Medical Text Analysis

Prediction of Diabetes and it's many Co-morbidities

Table of contents

01

Objectives

Why do we need to analyse medical text

03

Results analysis

The results of our analysis

02

Methodology

What data and methods we used to predict

04

Conclusions

The predictions and future direction

Why?

1

Analyzing medical text through NLP techniques in this project facilitates disease prediction and co-morbidity assessment. 2

One person or medical professional might miss all the possible comorbidities associated with diabetes 3

While structured values and categories offer easy analysis and results, most information is recorded in the medical text

Knowledge Process

Methods

Parse the XML file and make a data frame

Remove stopword, Tokenize text Apply Named Entity
Recognition with
existing hugging face
model

1

_

3

6

5

4

Use GridSearch to get the parameters for best possible accuracy

Use XGBoost Classifier to predict disease outcome Extract Word
Embeddings using
Clinical BERT model

Accuracy

75% Osteoarthritis

Direction and final goal

Can be used to map all disorders

The values of how closely the words are related

A Chart can be generated for each patient

When medical text is provided - output their comorbidity network graph

Conclusions

By using the medical text we can with reasonable accuracy predict if a person has diabetes or not. Accuracy can be improved with more data and better medically trained models

Thank You!

Do you have any questions?

sai.p.lakkireddy.gr@dartmouth.edu

Github link (Request access)

https://github.com/saipriya0209/Project_Diabetes_Clinical_Text_Analysis_QBS101_5.git

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

Resources

- Harvard n2c2 NLP Data Sets
- Stack Overflow
- Chat GPT
- Hugging Face
- Özlem Uzuner, PhD, Recognizing Obesity and Comorbidities in Sparse Data, Journal of the American Medical Informatics Association, Volume 16, Issue 4, July 2009, Pages 561–570, https://doi.org/10.1197/jamia.M3115

