Aflevering 26

2.b mat A

Kevin Zhou

1. april 2024

Bedømmelseskriterier:

• Redegørelse og dokumentation for metode

• Figurer, grafer og andre illustrationer

• Notation og layout

• Formidling og forklaring

Minrui Kevin Zhou 2.b Aflevering 26

Opgave 1

En linje l er givet ved ligningen

$$5 \cdot (x-7) + 4 \cdot (y-2) = 0$$

- a. Angiv en normalvektor til linjen l.
- b. Angiv et punkt P_0 på linjen l.

Løsning:

a. Fra linjens ligning ses det, at en normalvektor til linjen må være

$$\vec{\mathbf{n}} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

b. Lad P_0 have x-værdien 7. Så kan vi regne y-værdien for punktet, da det må opfylde linjens ligning.

$$5 \cdot (x-7) + 4 \cdot (y-2) = 0 \iff 4 \cdot (y-2) = 0$$
$$\iff y = 2$$

Altså har vi

$$P_0 = (7,2)$$

Opgave 2

En linje l har parameterfremstillingen

$$l: \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad t \in \mathbb{R}$$

Bestem en ligning for den linje m, der går gennem punktet (3,4) og er vinkelret på l.

Løsning:

Vektoren $\binom{2}{1}$ er en retningsvektor for l. Derfor kan den da være en normalvektor til linjen m. Da m skal gå gennem (3,4), så kan en ligning for m være

$$2 \cdot (x-3) + 1 \cdot (y-4) = 0 \iff 2x + y - 10 = 0$$

Opgave 3

To linjer i planen er givet ved ligningerne

$$l: x - 2y - 5 = 0$$

$$m: -3x + 6y + 12 = 0$$

- a. Gør rede for, at de to linjer er parallelle.
- b. Bestem afstanden mellem de to linjer.

Løsning:

a. Vi kan fra ligningerne se, at en normalvektor for l er $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ og en normalvektor for m er $\begin{pmatrix} -3 \\ 6 \end{pmatrix}$. Siden der gælder, at

$$-2 \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$$

så er de to normalvektorer for l og m skalare multipla, hvilket medfører, at de to normalvektorer er parallele. Da to normalvektorer for m og l er parallele, så må m og l også være parallele.

Minrui Kevin Zhou 2.b Aflevering 26

b. Afstanden mellem de to linjer må være afstanden mellem et punkt, der tilhører den ene linje, og den anden linje. Vi ser da, at $P_0 = (1, -\frac{3}{2}) \in m$. Vi har da

$$dist(P_0,l) = \frac{\left|1 \cdot 1 + 2 \cdot \frac{3}{2} - 5\right|}{\sqrt{1^2 + (-2)^2}}$$
$$= \frac{1}{\sqrt{5}}$$

Opgave 4

To linjer i planen er givet ved parameterfremstillingerne

$$l: \quad {\binom{-1}{2}} + t \cdot {\binom{2}{1}}, \quad t \in \mathbb{R}$$
$$m: \quad {\binom{0}{1}} + s \cdot {\binom{1}{-1}}, \quad s \in \mathbb{R}$$

- a. Gør rede for, at de to linjer ikke er parallelle
- b. Bestem koordinaterne til de to linjer skæringspunktet S.

Løsning:

a. To retningsvektorer for m og l er henholdsvis $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ og $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Da disse to vektorer ikke er skalare multipla, så er de ikke parallele. Atså er de to linjer heller ikke parallele.

b. Ved skæringspunktet har vi følgende ligningssystem, der løses:

$$-1 + 2t = s \land 2 + t = 1 - s \implies 2 + t = 1 + 1 - 2t$$

$$\iff 3t = 0$$

$$\iff t = 0$$

Vi sætter denne t-værdi ind i parameterfremstillingen for l og får positionssvektoren til S.

$$\vec{\mathbf{p}} = \begin{pmatrix} -1\\2 \end{pmatrix} + 0 \cdot \begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} -1\\2 \end{pmatrix}$$

Altså er S = (-1,2).

Opgave 5

En cirkel har ligningen

$$x^2 - 2x + y^2 + 6y + 8 = 0$$

a. Bestem cirklens radius og koordinatsættet til cirklens centrum.

En linje er bestemt ved parameterfremstillingen

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

b. Bestem koordinatsættet til hvert af skæringspunkterne mellem cirklen og linjen.

Løsning:

a. Cirklens ligning kan omskrives på følgende måde:

$$x^{2} - 2x + y^{2} + 6y + 8 = 0 \iff (x - 1)^{2} + (y + 3)^{2} = 2$$

Da er det klart, at cirklens radius må være $\sqrt{2}$ og cirklens centrum må være i (1, -3). Dette ses også i fig. 1.

Minrui Kevin Zhou 2.b Aflevering 26

b. Fra parameterfremstilling ses det (skæring med y-aksen og hældning er givet), at en ligning for linjen må være

$$y = -x - 2$$

Vi substituerer dette udtryk ind i ligningen for cirklen.

$$(x-1)^2 + (-x-2+3)^2 = 2 \iff 2x^2 - 4x = 0$$
$$\iff x(2x-4) = 0$$
$$\iff x = 0 \lor x = 2$$

De tilhørende y-værdier er

$$y = -2 \lor y = -4$$

Altså har vi koordinatsættene til de to skæringspunkter til at være (0, -2) og (2, -4). Dette ses også i fig. 1.

Figur 1: Cirklen og linjen fra opgaven tegnet i GeoGebra