Project 3

Project description

You will need to implement a trace-driven cache simulator, and use it to evaluate the performance of different cache architecture features. The project is described in detail in sim.pdf.

File description

In the attachment, you will find the following project files:

- cache.h cache simulator definitions
- cache.c cache simulator (put all your edits here)
- main.h simulation driver definitions
- main.c simulation driver
- Public tests
 - public-block.trace test cache block sizes
 - public-assoc.trace test cache associativity
 - public-write.trace test cache write policy
 - public-instr.trace test instruction cache
 - spice10.trace 1st 10 accesses in spice.trace
 - spice100.trace 1st 100 accesses in spice.trace
 - spice1000.trace 1st 1000 accesses in spice.trace
- Expected outputs for public tests
 - public-block1.out
 - public-assoc1.out
 - public-write1.out
 - public-instr1.out
 - spice10.out
 - spice100.out
 - spice1000.out
- Makefile makefile to create simulator
- runPublic csh script to run public tests
- sim.pdf detailed description of project
- tags.txt example index & tag values for spice100.trace

In addition, there are three large application traces:

- spice.trace circuit simulator
- cc.trace C compiler
- tex.trace Tex document processor

Requirements

- Write a simple report about how you implement the cache simulator and answer the questions in sim.pdf
- Compress your project and submit it to XueZaiZheDa before the deadline. And hand in the paper report before 2024.1.14. Use your student ID as file name. Files you should submit:
 - code/ directory
 - Report

Note

• It's ok if you can't implement a fully functional simulator, make your best effort and do what you can do.