Thème : Constitution et transformations de la matière

P9: Transformations nucléaires

Activité 1: Fission et fusion

Objectifs : Relier l'énergie convertie dans le Soleil et dans une centrale nucléaire à des réactions nucléaires. Identifier la nature physique, chimique ou nucléaire d'une transformation à partir de sa description ou d'une écriture symbolique modélisant la transformation.

Noyau/particule	Baryum	Deutérium	Hélium	Hydrogène	Krypton	Neutron	Tritium	Uranium
Symbole	¹⁴⁰ ₅₆ Ba	² ₁ H	⁴He	1 ₁ H	⁹³ ₃₆ Kr	$\frac{1}{0}n$	$^{3}_{1}H$	²³⁵ ₉₂ U

Partie 1 : fission nucléaire

Document 1: l'effet Matilda

https://www.youtube.com/watch?v=BDFPSpwP83s

Document 2 : la fission nucléaire

http://www.cea.fr/multimedia/Lists/StaticFiles/animations/noflash/radioactivite/fission.mp4

partie 2 : fusion nucléaire

Document 3: la fusion nucléaire

http://www.cea.fr/multimedia/Lists/StaticFiles/animations/noflash/radioactivite/fusion-nucleaire.mp4

Document 4: la fusion dans le soleil

https://www.youtube.com/watch?v=1aKLyPoDjVE

Questions

- 1. Expliquer la difference entre une reaction nucléaire et une reaction chimique.
- 2. Quelles loi de conservation doivent respecter les transformations nucléaires ?

Partie 1 : fission nucléaire

- 3. Expliquer la fission nucléaire (cause, conséquence).
- 4. *(FACULTATIF)* Pourquoi utiliser un neutron pour réaliser la fission ? (et pas un proton ou un électron ?)
- 5. En utilisant les lois de conservation, écrire l'équation de fission de l'uranium 235.
- 6. A)Qui a découvert la fission nucléaire?
 - B) Qui a été crédité pour cette découverte ?
 - C) Definir l'effet Matilda.
- 7. Donner un exemple de domaine ou la fission est utilisée.

Partie 2 : la fusion nucléaire

- 8. Comment appelle t'on les noyaux de tritium et de deutérium?
- 9. Expliquer la fusion nucléaire (cause, conséquence).
- 10. Ecrire l'équation de fusion des noyaux de deutérium et de tritium.
- 11. Quelle grandeur physique est convertie en énergie lors de la fission?