

Signal acceptance in 2lss

Charlie Mueller ttH multi-lepton meeting October 5, 2015

Generator level acceptance study

- Starting with signal skim, looking only at H —> WW, ZZ tautau decays, categorizing events at gen level into
 - 2lss
 - 31
 - **-** ≥4|
- Based on robust prompt flags present in miniAOD
- "pure multi-lep signal" skim

Preselected lepton multiplicity

- PS lepton multiplicity by GEN category
- Normalized to 1

Extra PS leptons in 2lss

bin	yield
== 0 PS leptons	3%
== 1 PS leptons	19%
== 2 PS leptons	56%
== 3 PS leptons	19%
== 4 PS leptons	3%

bin	yield
== 0 PS leptons	2%
== 1 PS leptons	8%
== 2 PS leptons	28%
== 3 PS leptons	47%
== 4 PS leptons	14%
== 5 PS leptons	2%

	PS lepton multiplici	ty 4l
0.35		
0.3		
0.25	<u>-</u> -	
0.2		
0.15		
0.1		
0.05		
0	0 1 2 3 4 5	6 7 8
	bin	vield

DIN	yieia
== 0 PS leptons	1%
== 1 PS leptons	5%
== 2 PS leptons	17%
== 3 PS leptons	31%
== 4 PS leptons	35%
== 5 PS leptons	10%
== 6 PS leptons	2%

Properties of extra PS lep in 2lss

- How often is the charge of the extra lepton opposite to the prompt SS lepton charges?
 - 56% of the time
- How often is the pT of the extra lepton lower than the the pT of the two prompt leptons?
 - 64% of the time
- Normalized to 1

Origins of "extra" PS leptons in 2lss

- When # PS leptons > 2 in 2lss
- pdg ID of the particle, parent, grandparent of the extra unmatched PS lepton(s)
- hists normalized to 1

Recovering extra PS leptons in 2lss

- Since the extra PS leptons in 2lss are coming from non-prompt/hadronic parents they are very unlikely to pass the 3l,4l selections
- To avoiding complicating the FR sideband, can recover up to: 19% x 0.64 = 12% of 2lss events assuming
 - They fail the 3I signal selection
 - The leading 2 leptons pass 2lss selection
- Proposal: modify 2lss selection to accept these events

Original 2lss selection

- Pt > 20,20
- == 2 PS && == 2 tight
- same sign
- ≥ 4 jets
- MET LD > 0.2
- lep1 pt + lep2 pt + MET > 100
- Z veto (10 GeV window) for ee
- charge flip for muons and electrons
 - track pt / error track pt > .2 (mu)
 - isGsfCtfScPixChargeConsistent = true (ele)

Proposed 2lss selection

- Same as original selection except changing from:
 - = 2PS AND = 2t
- to:
 - $-(= 2PS AND = 2t) OR (=3PS AND = 2t AND PS_lep3.pt < tight_lep2.pt)$
- Where
 - PS_lep3.pt < PS_lep2.pt < PS_lep1.pt</p>
 - tight_lep2.pt < tight_lep1.pt</p>
- Requiring the third PS lepton have the lowest pt does not complicate the FR calculation

RECO event selections

- numerator = events passing event selection
- denominator = events in gen category

Original 21ss selection

	GEN 2lss	GEN 3I	GEN ≥ 4I
RECO 2lss selection	9.7%	0%	0.4%
RECO 3I selection	3%	8.6%	3.8%
RECO 4I selection	1.2%	5.1%	15.2%

New 2155 selection

	GEN 2Iss	GEN 3I	GEN ≥ 4I
RECO 2lss selection	11.9%	0%	0.4%
RECO 3I selection	3%	8.6%	3.8%
RECO 4I selection	1.2%	5.1%	15.2%

RECO event selections event yields by GEN category

- Yields are # of events passing each RECO selection by GEN category
- 23% increase in events in 2lss when adopting new 2lss selection

Original 2155 selection

	GEN 2Iss	GEN 3I	GEN ≥ 4I
RECO 2lss selection	3702	15	144
RECO 3I selection	505	2809	1253
RECO 4I selection	30	219	653

New 2155 selection

	GEN 2Iss	GEN 3I	GEN ≥ 4I
RECO 2lss selection	4562	15	144
RECO 3I selection	505	2809	1253
RECO 4I selection	30	219	653

Evaluating new 2lss selection

- Running over Spring '15 MC
 - -S = ttH
 - B = ttbar + ttW
- @ 3 fb⁻¹
 - $[S/\sqrt{B}]_{old\ 2lss\ selection} = 0.396$
 - $[S/\sqrt{B}]_{\text{new 2lss selection}} = 0.444$
- @ 10 fb⁻¹
 - $[S/\sqrt{B}]_{old\ 2lss\ selection} = 0.723$
 - $[S/\sqrt{B}]_{\text{new 2lss selection}} = 0.810$
- 12% improvement in S/√B (for 2lss only) with new selection
 - S/√B calculated with events passing 2lss selection only, no further signal extraction/discriminators applied
 - No lepton flavor categorization (ee,μμ,eμ)
 - No hadronic tau multiplicity categorization

Properties of 4th PS lep in 3l

- How often is the charge sum of the 4 PS != 0?
 - 56% of the time
- How often is the pT of the extra lepton lower than the the pT of the three prompt leptons?
 - 64% of the time
- Normalized to 1

parentage of 4th PS lepton in 3l

Summary

- To be repeated with:
 - preselection
 - lep MVA
 - synchronization
 - trigger selections + pT thresholds
- Further improvements to 2I selection being evaluated
- Studying similar techniques in 3I

Backup

Samples

• ttH:

 ttHJetToNonbb_M125_13TeV_amcatnloFXFX_madspi n_pythia8_mWCutfix/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM

ttbar:

 TTJets_TuneCUETP8M1_13TeV-amcatnloFXFXpythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM

• ttW:

- TTWJetsToLNu_TuneCUETP8M1_13TeVamcatnloFXFX-madspin-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM

Selection definitions

- Muons
 - Preselection
 - pT > 5, |eta| < 2.4
 - isGlobalMuon OR isTrackerMuon
 - isPFMuon
 - Tight selection
 - Medium ID
- Electrons
 - Preselection
 - pT > 7, |eta| < 2.5
 - passes eleMVA ID
 - num missing inner hits ≤ 1
 - Tight selection
 - pass conversion veto
 - num missing inner hits = 0
- Common
 - Preselection
 - |dxy| < 0.05, |dz| < 0.1
 - remove electrons within dR ≤ 0.05 of preselected muons
 - Tight selection
 - lepMVA > 0.8
- Note: no isolation used in preselection

Preselection efficiency

- Overall PS efficiency by GEN category
 - ss2l: **84%**
 - 3l: **87%**
 - ≥4|: **87%**
- PS efficiency on following slides evaluated for raw leptons in events in the 0,1 PS lepton bins on slide 3

Analyzing preselection cut efficiencies in 2lss 0,1 PS lep events

- NOT CUT FLOW
- numerator = # of PAT leptons removed by corresponding cut only
- denominator = total # of PAT leptons in skim

Electrons

Cut	% of unmatched raw PAT objects removed
pT > 7	49%
ele MVA ID	92%
I eta I < 2.5	1%
num missing inner hits ≤ 1	5%
I dxy I < 0.05	17%
l dz l < 0.1	17%
minilso < 0.4	54%

Juons

Cut	% of unmatched raw PAT objects removed
pT > 5	75%
isPFMuon	24%
l eta l < 2.4	5%
isGlobalMuon OR isTrackerMuon	4%
I dxy I < 0.05	14%
I dz I < 0.1	35%
minilso < 0.4	42%

Analyzing uncorrelated preselection cut efficiencies in 2lss 0,1 PS lep events

- Numerator = # of objects failing cut when it passes all other cuts
- Denominator = # of objects in skim
- objects = raw PAT leptons

Electrons

% of objects failing ONLY this cut Cut pT > 70 ele MVA ID 13% I eta I < 2.5 0 num missing inner hits ≤ 1 0 | dxy | < 0.052% | dz | < 0.11% minilso < 0.4 0

*not adjusted for negative weights

Muons

Cut	% of objects failing only this cut
pT > 5	25%
isPFMuon	2%
I eta I < 2.4	3%
isGlobalMuon OR isTrackerMuon	0
I dxy I < 0.05	1%
dz < 0.1	2%
minilso < 0.4	0

Categorized acceptance

yield = # of events in category remaining after cut / total # of events in category cutting on PAT leptons

'PS' and 'tight' defined on slide 4

2lss gen events

cut	yield
== 2 PS leptons	58%
≥ 2 PS leptons	84%
> 2 PS leptons	26%
== 2 tight leptons	31%
≥ 2 tight leptons	32%
> 2 tight leptons	1%

3I gen events

cut	yield
== 2 PS leptons	23%
== 3 PS leptons	53%
≥ 3 PS leptons	72%

≥ 4l gen events

cut	yield
== 2 PS leptons	15%
== 3 PS leptons	30%
== 4 PS leptons	39%
≥ 4 PS leptons	51%

Preselection efficiency

- Overall PS efficiency by GEN category (no matching)
 - ss2l: **36%**
 - 3I: **45%**
 - **-** ≥4|: **50%**
- PS efficiency on following slides evaluated for raw leptons in events in the 0,1 PS lepton bins on slide 3

