Peckness of Edge Posets

David Hemminger, Aaron Landesman, Zijian Yao

August 5, 2014

Table of Contents

- Background
- 2 The Edge Poset Construction and a Conjecture
- Main Result
 - Statement of Theorem
 - Outline of Proof

Basic Definitions

Definition

Let P be a finite graded poset of rank n, that is:

- Elements of P are a disjoint union of P_0, P_1, \ldots, P_n , called the *ranks*
- If $x \in P_i$ and $x \lessdot y$, then $y \in P_{i+1}$
- Define $\operatorname{rk}(x) = k$, where $x \in P_k$.

Definition

A map $f: P \to Q$ is a morphism from P to Q if $x \leq_P y \implies f(x) \leq_Q f(y)$ and $\operatorname{rk}(x) = \operatorname{rk}(f(x))$. We say that f is injective/surjective/bijective if it is an injection/surjection/bijection from P to Q as sets.

Peck Posets

Definition

Write $p_i = |P_i|$. P is

- Rank-symmetric if $p_i = p_{n-i}$ for all $1 \le i \le n$
- Rank-unimodal if for some $0 \le k \le n$ we have

$$p_0 \leq p_1 \leq \ldots \leq p_k \geq p_{k+1} \geq \ldots \geq p_n$$

- k-Sperner if no disjoint union of k antichains (sets of pairwise incomparable elements) in P is larger than the disjoint union of the largest k ranks of P
- Strongly Sperner if it is k-Sperner for all $1 \le k \le n$.
- Peck if P is rank-symmetric, rank-unimodal, and strongly Sperner.

Let V(P) and $V(P_i)$ be the complex vector spaces with bases $\{x|x\in P\}$ and $\{x|x\in P_i\}$

Lemma (Stanley, 1980)

P is Peck if and only if there exists an linear transformation $U\colon V(P)\to V(P)$ such that

• For every basis element $x \in P$,

$$U(x) = \sum_{y > x} c_{x,y} y$$

• For all $0 \le i < \frac{n}{2}$, the map $U^{n-2i} : V(P_i) \to V(P_{n-i})$ is an isomorphism.

If the Lefschetz map defined by

$$L(x) = \sum_{y > x} y$$

satisfies the second condition in the previous lemma, then P is unitary Peck.

Table of Contents

- Background
- 2 The Edge Poset Construction and a Conjecture
- Main Result
 - Statement of Theorem
 - Outline of Proof

Definition of the Edge Poset

Definition

For P a finite graded poset, it's *edge poset* $\mathcal{E}(P)$ is the finite graded poset defined as follows.

- Elements of $\mathcal{E}(P)$ are ordered pairs $(x,y) \in P \times P$ where $x \lessdot y$
- Define $(x, y) \lessdot_{\mathcal{E}} (x', y')$ if $x \lessdot_{P} x'$ and $y \lessdot_{P} y'$
- Define ≤_ε to be the transitive closure of <_ε
- Define $\operatorname{rk}_{\mathcal{E}}(x,y) = \operatorname{rk}_{\mathcal{P}}(x)$.

A Conjecture on the Peckness of Edge Posets

Definition

The boolean algebra of rank n is the poset whose elements are subsets of [n] with order given by containment, i.e. for $x, y \in B_n$, $x \le y$ if $x \subseteq y$.

Conjecture (Hemminger, Landesman, and Yao 2014)

Let $G \subseteq Aut(B_n)$. Then $\mathcal{E}(B_n/G)$ is Peck.

Table of Contents

- Background
- 2 The Edge Poset Construction and a Conjecture
- Main Result
 - Statement of Theorem
 - Outline of Proof

Main Result

Definition

A group action of G on P is cover transitive if whenever $x, y, z \in P$ such that $x \lessdot z$, $y \lessdot z$, and $y \in Gx$, there exists some $g \in \operatorname{Stab}_G(z)$ such that $g \cdot x = y$.

Theorem (Hemminger, Landesman, and Yao 2014)

If a group action of G on B_n is cover transitive, then $\mathcal{E}(B_n/G)$ is Peck.

Given a group action of G on P, we define a group action of G on $\mathcal{E}(P)$ by letting $g \cdot (x,y) = (g \cdot x, g \cdot y)$ for all $g \in G$.

Given a group action of G on P, we define a group action of G on $\mathcal{E}(P)$ by letting $g \cdot (x,y) = (g \cdot x, g \cdot y)$ for all $g \in G$.

Proposition

The map $q: \mathcal{E}(P)/G \to \mathcal{E}(P/G)$ defined by q(G(x,y)) = (Gx,Gy) is a surjective morphism. Furthermore, q is also injective if and only if the action of G on P is cover transitive.

Lemma

If $f: P \to Q$ is a bijective morphism and P is Peck then Q is Peck.

Theorem (Stanley, 1984)

If P is unitary Peck and $G \subseteq Aut(P)$, then P/G is Peck.

It then suffices to show that $\mathcal{E}(B_n)$ is unitary Peck. Unfortunately while this is true, the only proof that we know is long and computational. Instead we outline a nicer –albeit less direct– proof.

Definition of $\mathcal{H}(P)$

Definition

For P a finite graded poset, define the graded poset $\mathcal{H}(P)$ as follows.

- Elements are pairs $(x, y) \in P \times P$ such that $x \leqslant y$
- Define $(x,y) \leqslant_{\mathcal{H}} (x',y')$ if $x \leqslant_P x', y \leqslant_P y'$ and $\mathbf{y} \neq \mathbf{x}'$
- Define $\leq_{\mathcal{H}}$ to be the transitive closure of $\lessdot_{\mathcal{H}}$
- Define $rk_{\mathcal{H}}(x,y) = rk_{\mathcal{P}}(x)$.

$\mathcal{H}(B_n)$ is unitary Peck

add figure

As before, for G acting on P, define $g \cdot (x, y) = (g \cdot x, g \cdot y)$.

Remark

Since $\mathcal{E}(P)$ and $\mathcal{H}(P)$ have the same elements and $(x,y) \leq_{\mathcal{H}} (x',y') \implies (x,y) \leq_{\mathcal{E}} (x',y')$, there is a natural bijective morphism $\mathcal{H}(P)/G \to \mathcal{E}(P)/G$.

Proof of Main Result.

 $\mathcal{H}(B_n)$ unitary Peck $\implies \mathcal{H}(B_n)/G$ Peck $\implies \mathcal{E}(B_n)/G$ Peck $\implies \mathcal{E}(B_n/G)$ Peck.