BURJEB PURE MATHS PROPOSED GUIDE 2024

S/N	SOLUTION	Mark
		S
1.	$y = x^2 - 5$	
	$\frac{dy}{dx} = 2x = 3$	
	$\frac{d}{dx} = 2x = 3$	
	x = 1.5,	
	$y = 1.5^2 - 5 = -2.75$	
	The coordinates are (1.5, -2.75)	
	$\frac{y+2.75}{x-1.5}=3$	
	$\frac{1}{x-1.5} - 3$	
	y = 3x - 7.25 compare with $y = 3x + k$	05
	The value of k is -7.25	
	Alternatively	
	substituting $(1.5, -2.75)$ into $y = 3x + k$	
	-2.75 = 3(1.5) + k, k = -7.25	
2.	z+2+3i =3	05
	$\sqrt{(x+2)^2 + (y+3)^2} = 3$	
	$(x+2)^2 + (y+3)^2 = 3^2$	
	Centre (-2, -3) and radius is 3units	
	Mean point is (1, 1)	
	$\max value = 3 + \sqrt{(-2-1)^2 + (-3-1)^2}$	
	$\max value = 3 + 5 = 8units$	
3.	let the roots be \propto and β	

4.		05
	• • • • • • • • • • • • • • • • • • • •	
	= 3.1702 <i>untes</i>	
5.	$RHS = \frac{sin5A - sinA}{sinA}$	

	$=\frac{2cos3Asin2A}{sinA}$	05
	$-\frac{4cos3AsinAcosA}{}$	
	- $sinA$	
	$= 4\cos 3A\cos A$	
	= LHS	
6.	$\int_{1}^{10} x \log x^{2} dx = \frac{2}{\ln 10} \int_{1}^{10} x \ln x dx$	
	let u = Inx	
	$\frac{du}{dx} = \frac{1}{x}$	
	$\frac{dx}{dx} - \frac{1}{x}$	
	$\int dv = \int x dx$	
	$v = \frac{x^2}{2}$	
	$v = \frac{1}{2}$	
	$\int_{1}^{10} x \log x^{2} dx = \left[\frac{2x^{2} Inx}{2In10} \right]_{1}^{10} - \frac{2}{2In10} \int_{1}^{10} x dx$	
	$= \left\{ \frac{10^2 In10}{In10} - 0 - \frac{10^2}{2In10} + \frac{1}{2In10} \right\}$	
	$=2\left(50-\frac{99}{4In10}\right) As required$	05
	Alternatively	
	$\int_{1}^{10} x \log x^{2} dx = \frac{1}{\ln 10} \int_{1}^{10} 2x \ln x dx$	

	sign	differentiation integration
	+	Inx
	-	$\frac{1}{x^2}$
		$\frac{1}{x}$
	$\left[\frac{1}{In10}\right]$	$\int_{1}^{10} 2x Inx dx = \frac{1}{In10} \left\{ \left[\frac{x^2 Inx}{1} \right]_{1}^{10} - \int_{1}^{10} x dx \right\}$
		$= \left\{ \frac{10^2 In10}{In10} - 0 - \frac{10^2}{2In10} + \frac{1}{2In10} \right\}$
		$=2\left(50-\frac{99}{4In10}\right)$
7.		$dv xv xe^x$
, .		$\frac{dy}{dx} - \frac{xy}{1+x} = \frac{xe^x}{1+x}$
		$R = e^{\int \frac{-x}{1+x} dx} = e^{\int \left(-1 + \frac{1}{1+x}\right) dx}$
		$=\frac{1+x}{e^x}$
		$\left(\frac{1+x}{e^x}\right)\frac{dy}{dx} - \left(\frac{xy}{1+x}\right) \cdot \left(\frac{1+x}{e^x}\right)$
		$= \left(\frac{xe^x}{1+x}\right) \cdot \left(\frac{1+x}{e^x}\right)$
		$\frac{d}{dx}\left(y\left(\frac{1+x}{e^x}\right)\right) = x$
		$\int d\left(y\left(\frac{1+x}{e^x}\right)\right) = \int x dx$

	$y\left(\frac{1+x}{e^x}\right) = \frac{x^2}{2} + c$ $1\left(\frac{1+0}{e^0}\right) = 0 + c, c = 1$ $y\left(\frac{1+x}{e^x}\right) = \frac{x^2}{2} + 1$	05
8.	$cos\theta = \frac{x}{9}, sin\theta = \frac{y}{16}$ $using \sin^2\theta + cos^2\theta = 1$ $\left(\frac{x}{9}\right)^2 + \left(\frac{y}{16}\right)^2 = 1 \text{ is an ellipse}$ $a = 16 \text{ and } b = 9$ $using b^2 = a^2(1 - e^2)$ $\frac{81}{256} = 1 - e^2, e = \frac{\sqrt{175}}{16}$ $ae = 16.\frac{\sqrt{175}}{16} = \sqrt{175}$ $\frac{a}{e} = \frac{16X16}{\sqrt{175}} = \frac{256}{\sqrt{175}}$ $s(0, \sqrt{175}), s^1(0, -\sqrt{175})$ $y = \frac{256}{\sqrt{175}} \text{ and } y = \frac{256}{\sqrt{175}} \text{ are the equations of the}$	05
	directrices.	

9	SECTION B	
(a)	$p^{3-x-x-5}q^{5x-3x} = 1$	
	$p^{-2-2x}q^{2x} = 1$	
	$q^{2x} = p^{2+2x}$	
	$2x\log_r q = (2+2x)\log_r p$	
	$x\log_r q - \log_r p - x\log_r p = 0$	
	$x\log_r\left(\frac{q}{p}\right) - \log_r p = 0 \text{ As required}$	
		05
b)	$2a - 14 = b \dots \dots$	
	$\sqrt{a} + \sqrt{b} = 5 \dots \dots 2$	
	$\left(\sqrt{a} + \sqrt{2a - 14}\right)^2 = 5^2$	
	$a + 2\sqrt{2a^2 - 14a} + 2a - 14 = 25$	
	$3a - 14 + 2\sqrt{2a^2 - 14a} = 25$	
	$\left(2\sqrt{2a^2-14}\right)^2=(39-3a)^2$	
	$4(2a^2 - 14a) = 1521 - 234a + 9a^2$	
	$a^2 - 178a + 1521 = 0$	
	$a = \frac{-(-178) \pm \sqrt{(-178)^2 - 4(1)(1521)}}{120}$	
	$a={2(1)}$	
	a = 9 or a = 169	
	verifying	
	when $a = 9$	
	$LHS = \sqrt{9} + \sqrt{4} = 5 = RHS$	

	LHS = $\sqrt{169} + \sqrt{338 - 14} = 13 + 18 ≠ 5$ ∴ $a = 9$ and b = 2(9) - 14 = 4 ∴ $a = 9$ and $b = 4$	
		07
10 a)	Change of limits $ \frac{y}{0} = \frac{1}{3} \left\{ \frac{1}{3^6} - \frac{1}{3^6} \right\} = -\frac{1}{26244} $ Change of limits $ \int_0^1 \frac{y^2 + y^5}{(y^6 + 2y^3)^7} dy = \frac{1}{6} \int_0^3 \frac{1}{u^7} du $ $ = -\frac{1}{36} \left\{ \frac{1}{3^6} - \frac{1}{0} \right\} = -\frac{1}{26244} $	
		05

		1
	= 1.3152 square units	
11a	$n = \begin{vmatrix} \mathbf{i} & -\mathbf{j} & \mathbf{k} \\ 2 & 1 & 5 \\ 1 & -1 & -2 \end{vmatrix}$ $n = 3\mathbf{i} + 9\mathbf{j} - 3\mathbf{k}$	
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 9 \\ -3 \end{pmatrix} = \begin{pmatrix} 3 \\ 9 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} $	
	3x + 9y - 3z = 0 $x + 3y - z = 0$	04
b	$\cos\theta = \frac{\begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}}{}$	
	$cos\theta = \frac{(27)(-17)}{\sqrt{(3^2 + (-4)^2 + (2)^2) \cdot (1^2 + 3^2 + (-1)^2)}}$ $cos\theta = \frac{-11}{\sqrt{319}},$	
	$\theta = \cos^{-1}\left(\frac{11}{\sqrt{319}}\right) = 51.98^{0}$	04
c)	$\boldsymbol{n} = \begin{vmatrix} \boldsymbol{i} & -\boldsymbol{j} & \boldsymbol{k} \\ 3 & -4 & 2 \\ 1 & 3 & -1 \end{vmatrix}$	
	$\mathbf{n} = -2\mathbf{i} + 5\mathbf{j} + 13\mathbf{k}$ $let \ y = 0$	

$$\frac{2 | x - z = 0 \dots \dots 1}{5x = 5, x = 1}$$

$$r = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 5 \\ 13 \end{pmatrix} \text{ is the line of intersection}$$

$$Alternatively$$

$$\frac{1}{3} \begin{vmatrix} 3x - 4y + 2z = 5 \\ x + 3y - z = 0 \end{vmatrix}$$

$$-13y + 5z = 5$$

$$z = \frac{5 + 13y}{5}$$

$$let y = t$$

$$z = \frac{5 + 13t}{5}$$

$$x + 3t - \left(\frac{5 + 13t}{5}\right) = 0$$

$$5x + 15t - 5 - 13t = 0$$

$$x = \frac{5 - 2t}{5}$$

$$r = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 5 \\ 1 \\ \frac{13}{5} \end{pmatrix} \text{ is the line of intersection}$$

$$12a$$

$$tan4x + tan2x = 0$$

$$\frac{2tan2x}{1 - tan^2 2x} + tan2x = 0$$

	20 0	
	$2tan2x + tan2x - tan^32x = 0$	
	$3tan2x - tan^32x = 0$	
	$tan2x(3 - tan^22x) = 0$	
	$Either\ tan2x = 0$	
	$2x = \tan^{-1} 0$	
	$2x = 0^{\circ}$, 180°	
	$x = 0^0, 90^0$	
	$Or\ tan2x = \pm\sqrt{3}$	
	When $tan2x = \sqrt{3}$	
	$2x = \tan^{-1} \sqrt{3}$	
	$2x = 60^{\circ}, 240^{\circ}$	
	$x = 30^{\circ}, 120^{\circ}$	
	ignoring the negative sign $A = \tan^{-1} \sqrt{3} = 60^{\circ}$	
	$2x = 120^{\circ}, 300^{\circ}$	
	$x = 60^{\circ}, 150^{\circ}$	
	$x = \{0^0, 90^0, 30^0, 120^0, 60^0, 150^0\}$	07
b	sinθ	
	$RHS = \frac{\pi}{\sqrt{2} \sin\theta \cos\frac{\pi}{4} + \sqrt{2}\cos\theta \sin\frac{\pi}{4}}$	
	sin heta	
	$=\frac{2}{2}\sin\theta+\frac{2}{2}\cos\theta$	
	$=\frac{\sin\theta}{}$	
	$={\sin\theta+\cos\theta}$	

$$= \frac{\frac{sin\theta}{cos\theta}}{\frac{sin\theta}{cos\theta}} + \frac{cos\theta}{cos\theta} = \frac{tan\theta}{tan\theta + 1}$$

$$= \frac{\frac{p}{q}}{\frac{p+q}{q}} = \frac{p}{q} \cdot \frac{q}{(p+q)}$$

$$= \frac{p}{p+q} = LHS$$
Accept the use of a right angled triangle to obtain the expression for $cos\theta$ and $sin\theta$ instead of dividing the numerator and denominator to create $tan\theta$

13a
$$y = \frac{cos\lambda x}{1 + sin\lambda x}$$

$$\frac{dy}{dx} = \frac{(1 + sin\lambda x)(-\lambda sin\lambda x) - cos\lambda x(\lambda cos\lambda x)}{(1 + sin\lambda x)^2}$$

$$\frac{dy}{dx} = \frac{-\lambda sin\lambda x - \lambda sin^2 \lambda x - \lambda cos^2 \lambda x}{(1 + sin\lambda x)^2}$$

$$\frac{dy}{dx} = \frac{-\lambda - \lambda sin\lambda x}{(1 + sin\lambda x)^2} = \frac{-\lambda (1 + sin\lambda x)}{(1 + sin\lambda x)^2}$$

$$= \frac{-\lambda}{1 + sin\lambda x}$$
 as required

b

Added volume, $\frac{dv}{dt} = 1.5cm^3/s$

Removed volume, $\frac{dv}{dt} = 2cm^3/s$

Resultant change in volume, $\frac{dv}{dt} = 0.5cm^3/s$

By similarity, $\frac{H}{R} = \frac{h}{r}$

$$\frac{20}{4} = \frac{h}{r}$$

$$r = \frac{h}{5}$$

$$v = \frac{1}{3}$$
. base area. height

$$v = \frac{\pi}{3} \left(\frac{h}{5}\right)^2$$

$$v = \frac{\pi}{75} h^3, \frac{dv}{dh} = \frac{\pi}{25} h^2$$

	dv dv dh	
	$\frac{d}{dt} = \frac{d}{dh} \cdot \frac{d}{dt}$	
	$0.5 = \frac{\pi}{25}h^2 \cdot \frac{dh}{dt}$	
	20 00	
	$\frac{dh}{dt} = \frac{12.5}{\pi (12)^2} = \frac{25}{288\pi} = 0.0276$	
	∴ the depth is changing at a constant rate of	
	$rac{25}{288\pi}$ cms $^{-1}$ when the depth is 12 cm	07
14a	$y^2 - 2y = 8x + 17$	
	$y^2 - 2y + (-1)^2 = 8x + 17 + (-1)^2$	
	$(y-1)^2 = 8x + 18$	
	$(y-1)^2 = 8(x+2.25)$	
	Comparing with $Y^2 = 4aX$	
	4a = 8, a = 2	
	vertex(-2.25, 1) focus(-0.25, 1)	
	The axis of the parabola is $y = 1$	05
b	$2y\frac{dy}{dx} = 4a$	
	$\frac{2y}{dx} - \frac{1}{4}$	
	$\frac{dy}{dx} = \frac{2a}{y}$	
	-	
	$At p(ap^2, 2ap)$	
	$\frac{dy}{dx} = \frac{2a}{2ap} = \frac{1}{p}$	
	The equation becomes $\frac{y-2ap}{x-ap^2} = \frac{1}{p}$	
	$yp - ap^2 = x \dots eqn1$	

also at
$$Q(aq^2, 2aq)$$

$$\frac{dy}{dx} = \frac{2a}{2aq} = \frac{1}{q}$$
The equation becomes $\frac{y-2aq}{x-aq^2} = \frac{1}{q}$

$$yq - aq^2 = x \dots eqn2$$

$$eqn1 = eqn2$$

$$yp - ap^2 = yq - aq^2$$

$$y(p-q) = a(p^2 - q^2)$$

$$y = a(p+q)$$
From eqn1 $x = ap(p+q) - ap^2 = apq$

$$\therefore The coordinates of R $(apq, a(p+q))$$$

$$2 \ and \ y > 0$$

Hence

$$when y = -2$$

$$-2x^{2} + 2(-2)x - 3(-2) - 8 = 0$$

$$x^{2} + 2x + 1 = 0$$

$$(x + 1)^{2} = 0$$

$$x = -1(-1, -2) \max$$

$$x^{2}(0) + 2(0)x - 3(0) - 8 = 0 \text{ N/A}$$
The turning point is $(-1, -2) \max$

05

ii

$$y(x^2 + 2x - 3) = 8$$
$$y = \frac{8}{x^2 + 2x - 3}$$

Vertical asymptotes

$$as y \to \pm \infty$$

$$x^2 + 2x - 3 \to 0$$

$$(x+3)(x-1) = 0$$

x = -3 and x

= 1 are the equations of vertical asymptotes Horizontal asymptotes

$$y = \frac{\frac{8}{x^2}}{\frac{x^2}{x^2} + \frac{2x}{x^2} - \frac{3}{x^2}}$$

$$as \ x \to \pm \infty,$$

$$y \to 0$$

y = 0 is the equation of horizontal asymptote Hence

Intercepts

When
$$x = 0$$
, $y = \frac{-8}{3} \left(0, \frac{-8}{3} \right)$

When
$$y = 0$$
, $x = N/A$

The curve has no x-intercept

Critical values

$$x = -3 \text{ and } x = 1$$

Investigati	on table	Ι		
	x < -3	-3 < x < 1	x > 1	
8	+	+	+	
x + 3	-	+	+	
x-1	-	_	+	
Net sign	+	_	+	
	No curve (-1, -	$\frac{8}{x^2 + 2x - 3}$	X=1	0′
				1

$$\frac{d\theta}{dt} = -k(\theta - 25)$$

$$\int \frac{d\theta}{\theta - 25} = \int -kdt$$

$$In(\theta - 25) = -kt + A$$
When $t = 0, \theta = 95^{\circ}c$

$$In(95 - 25) = -k(0) + A,$$

$$A = In70$$

$$In(\theta - 25) = -kt + In70$$

$$In\left(\frac{\theta - 25}{70}\right) = -kt$$

$$t = 25mins, \theta = 60^{\circ}c$$

$$In\left(\frac{60 - 25}{70}\right) = -25k,$$

$$k = \frac{1}{25}In2$$

$$In\left(\frac{\theta - 25}{70}\right) = -t\frac{1}{25}In2$$
The differential equation is $\frac{d\theta}{dt} = -(\theta - 25)\frac{1}{25}In2$

$$In\left(\frac{32 - 25}{70}\right) = -t\frac{1}{25}In2$$

$$25In0.1 = -tIn2$$

$$t = \frac{25In0.1}{In2} = 83.0482minutes$$

$$further time = 83.0482 - 25 = 58.0482minutes$$

$$END$$