

Chapitre 4 Étude des systèmes fondamentaux du premier ordre

Cours

Savoirs et compétences :

- □ Mod-C2.3 : Modèles canoniques du premier ordre
 - ☐ Mod-C2-S1 : Identifier le comportement d'un système pour l'assimiler à un modèle canonique, à partir d'une réponse temporelle
 - ☐ Mod-C2-S2 : Établir un modèle de comportement à partir de relevés expérimentaux
 - Mod-C2-S3 : On pourra étudier les systèmes du premier ordre présentant un retard pur

Charge d'un condensateur

Moteur à courant continu (suivant les hypothèses)

1	Définition	2
2	Caractéristiques de la réponse impulsionnelle	2
3	Caractéristiques de la réponse indicielle	2
1	Caractéristiques de la répense à une rampe	2

1 Définition

Les systèmes du premier ordre sont régis par une équation différentielle de la forme suivante :

$$\tau \frac{ds(t)}{dt} + s(t) = Ke(t)$$

Définition Dans le domaine de Laplace, la fonction de transfert de ce système est donc donnée par :

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + \tau p}$$

On note:

- τ la constante de temps ($\tau > 0$);
- K le gain statique du système (K > 0).

Schéma-bloc d'un système du premier ordre :

$$E(p) \longrightarrow H(p) = \frac{K}{1 + \tau p} \longrightarrow S(p)$$

2 Caractéristiques de la réponse impulsionnelle

Par définition on rappelle que la réponse impulsionnelle correspond à la courbe de réponse du système sollicité par une fonction de Dirac.

Réponse temporelle : $s(t) = \frac{K}{\tau} e^{-\frac{t}{\tau}}$

Valeur initiale : $s(0) = \frac{K}{\tau}$

Valeur finale: $\lim_{t \to +\infty} s(t) = 0$

Équation de la tangente à $\Delta(t) = \frac{K}{\tau} - \frac{K}{\tau^2}t$ l'origine :

Démonstration Éléments de démonstration

Dans le cas d'une réponse impulsionnelle, l'entrée est un Dirac : on a donc E(p) = 1. En conséquence,

$$S(p) = E(p) \cdot H(p) = \frac{K}{1 + \tau p}$$

La transformée de Laplace inverse permet de conclure directement que :

$$\forall t > 0 \quad s(t) = \frac{K}{\tau} e^{-\frac{t}{\tau}}$$

3 Caractéristiques de la réponse indicielle

Par définition on rappelle que la réponse indicielle correspond à la courbe de réponse du système sollicité par une fonction échelon d'amplitude E_0 : $\forall t > 0$, $e(t) = E_0$.

 $t = 3\tau$

t(s)

Caractéristiques remarquables de la réponse indicielle

R L'écart statique d'un système du premier ordre répondant à une entrée indicielle est nul si le gain K est égal à 1.

Résultat Pour $t = \tau$,

$$s(\tau) = K E_0(1-e) \simeq 0,63 K E_0$$

Lorsque $t = \tau$ la sortie a donc atteint 63% de la valeur finale.

Résultat On note t_r le temps de réponse à 5%.

$$t_r = -\ln(0,05)\tau \simeq 3\tau$$

Démonstration Éléments de démonstration

Dans le cas d'une réponse indicielle, l'entrée est un échelon d'amplitude E_0 , on a donc $E(p) = \frac{E_0}{p}$. En conséquence,

$$S(p) = E(p) \cdot H(p) = \frac{E_0}{p} \cdot \frac{K}{1 + \tau p}$$

S(p) se décompose en éléments simples de la façon suivante :

$$S(p) = \frac{\alpha}{p} + \frac{\beta}{1 + \tau p} = \frac{E_0 K}{p} - \frac{E_0 K \tau}{1 + \tau p}$$

La transformée de Laplace inverse permet de conclure que :

$$\forall t > 0 \quad s(t) = KE_0 \left(1 - e^{-\frac{t}{\tau}} \right)$$

4 Caractéristiques de la réponse à une rampe

On sollicite un système du premier ordre avec une rampe de pente A. On a e(t) = At u(t) dans le domaine temporel et $E(p) = \frac{A}{p^2}$ dans le domaine de Laplace.

Réponse temporelle : $s(t) = AK \left(t - \tau + \tau e^{-\frac{t}{\tau}} \right) u(t)$

Valeur initiale : s(0) = 0

Valeur finale : $\lim_{t \to +\infty = 0} s(t) = +\infty$

Coefficient directeur

de l'asymptote en $+\infty$: AK

Erreur dynamique : $AK\tau$

t(s)