AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1. (Currently amended) A composition comprising a compound of formula I:

$$\begin{bmatrix} R^{1} & (X)_{\frac{1}{8}} & (T)_{\frac{1}{6}} & (X')_{\frac{1}{8}} & (T)_{\frac{1}{6}} & (X')_{\frac{1}{8}} & (T)_{\frac{1}{6}} & (X')_{\frac{1}{8}} & (T)_{\frac{1}{6}} & (X')_{\frac{1}{8}} & (T)_{\frac{1}{6}} & (T)_{\frac{1}{6}}$$

Wherein:

- a.) m is an integer from 0 to 3;
- b.) t is an integer from 0 to 4;
- c.) a is 0 or 1;
- d.) b is 0 or 1;
- e.) g is 0 or 1;
- f.) R¹ for said radical is independently selected from the group consisting of:
 - i) H
 - ii) C₁-C₁₆ linear or branched, substituted or unsubstituted alkyl;
 - iii) C2-C16 linear or branched, substituted or unsubstituted alkenyl;
 - iv) C2-C16 linear or branched, substituted or unsubstituted alkynyl;
 - v) C₃-C₁₆ linear or branched, substituted or unsubstituted cycloalkyl;
 - vi) C₃-C₁₆ linear or branched, substituted or unsubstituted cycloalkenyl;
 - vii) C7-C16 linear or branched, substituted or unsubstituted alkaryl;
 - viii) C7-C16 linear or branched, substituted or unsubstituted aralkyl;
 - ix) C₆-C₁₆ substituted or unsubstituted aryl;

Page 2 of 12

- C₅-C₂₀ heteroaryl units comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, and mixtures thereof; and
- a suitable charge balancing counterion (Mⁿ⁺)_{1/ns} provided a and b are both 1 and X is selected from O and S;
- when a, b and g are all 0 for any single radical, R¹-(X)_a-(T)_b(X')_g-, R¹ for said radical may be further selected from the group
 consisting of CN, an amine oxide moiety, NO₂ and mixtures
 thereof;
- g.) X and X', when present, are selected from O, S, and NR2;
- h.) each R² is independently selected from the group consisting of:
 - i) H;
 - ii) C₁-C₁₆ linear or branched, substituted or unsubstituted alkyl;
 - iii) C2-C16 linear or branched, substituted or unsubstituted alkenyl;
 - iv) C2-C16 linear or branched, substituted or unsubstituted alkynyl;
 - v) C3-C₁₆ linear or branched, substituted or unsubstituted cycloalkyl;
 - vi) C₃-C₁₆ linear or branched, substituted or unsubstituted cycloalkenyl;
 - vii) C₇-C₁₆ linear or branched, substituted or unsubstituted alkaryl;
 - viii) C7-C16 linear or branched, substituted or unsubstituted aralkyl;
 - ix) C₆-C₁₆ substituted or unsubstituted aryl; and
 - C₅-C₂₀ heteroaryl units comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, and mixtures thereof;
 - i.) T, when present, is selected from C=O, C=S, S=O, and SO₂; when T is S=O or SO₂, X and X' associated with said T may not be S;
- j.) G is:
 - i) H;
 - ii) a suitable charge balancing counterion (Mⁿ⁺)_{1/n}, or
 - iii) a cleaveable group selected from the group consisting of $Si((O)_pR^3)_3$, where p is independently 0 or 1; $C(O)_q((O)_pR^3)_r$, wherein p is independently 0 or 1 and when q is 1, r is 1, and when q is 0, r is 3; R^3 is independently selected from the group consisting of C_1 - C_{16} linear or branched, substituted or

unsubstituted alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkaryl, aralkyl, and aryl, and mixtures thereof provided that when, for any radical, b is 0, a, g, or a and g are 0 for said radical; said composition comprising an enzyme.

- 2. (Currently amended) The composition of Claim 1 further comprising at least one additional component selected from the group consisting of:
 - a) a surfactant wherein either:
 - (i) the ratio of the weight of the surfactant divided by the weight of the substituted salicylanilide compound of formula I is greater than or equal to 1.0 and further provided that the surfactant is 1 wt% or greater of the composition; or
 - (ii) the composition comprises at least 1 wt% of a cationic surfactant, wherein the ratio of the weight of the surfactant divided by the weight of said compound I is greater than or equal to 1.0; and wherein a 10 wt% aqueous solution of this composition has a pH less than or equal to 7.0;
 - b) from 0.5% to 90% by weight of a solvent said solvent having Hildebrand solubility parameter dS (cal/cm³)^{1/2} meeting the following criterion: 5 < dS < 20, wherein a 10 wt% aqueous solution of this composition has a pH ≥ (pKa 1) where pKa is the calculated pKa of the O-G phenol of formula I, or when G is not H, the pKa of the O-G phenol of formula I that results from replacing G with H;
 - c) a perfume having a C log P greater than or equal to 2.0; and
 - d) mixtures thereof-0.001 to 1.0% by weight of an enzyme; and
 - e) 0.001 to 1.0% by weight of an enzyme mixtures thereof.
 - (Original) The composition of Claim 2 wherein the enzyme is selected from the group consisting of: proteases, amylases, cellulases, mannanases, xyloglucanases, pectinases, lipases, laccases, peroxidases and mixtures thereof.
 - (Original) The composition of Claim 2 wherein the composition comprises at least two of said additional components.
 - 5. (Currently amended) A method of reducing bacteria or inhibiting bacterial growth comprising contacting a substrate comprising a textile with the composition of Claim 1 a compound of formula I:

Page 4 of 12

$$\begin{bmatrix} R^{1} & (X)_{\overline{a}} & (T)_{\overline{b}} & (X')_{\overline{g}} \end{bmatrix}_{\overline{m}}^{6} & \underbrace{\begin{bmatrix} X' \\ Y \\ \overline{g} \end{bmatrix}_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{\begin{bmatrix} X' \\ \overline{g} \end{bmatrix}_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} \end{bmatrix}_{\overline{g}}^{5}}_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} \end{bmatrix}_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} \end{bmatrix}_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} \end{bmatrix}_{\overline{g}}^{5}}_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} \end{bmatrix}_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} }_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} }_{\overline{g}}^{5}}_{\overline{g}}} & \underbrace{X' \\ \overline{g} }_{\overline{g}}^{5}}_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} }_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} }_{\overline{g}}^{5}}_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} }_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} }_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} }_{\overline{g}}^{5}}_{\overline{g}} & \underbrace{X' \\ \overline{g} }_{\overline{g}} & \underbrace{X' \\ \overline{g} }_{\overline{g}}^{5}}_{\overline{g}} &$$

Wherein:

a.) m is an integer from 0 to 3;

b.) t is an integer from 0 to 4;

c.) a is 0 or 1;

d.) b is 0 or 1;

e.) g is 0 or 1;

f.) R1 for said radical is independently selected from the group consisting of:

i) <u>H;</u>

ii) C1-C16 linear or branched, substituted or unsubstituted alkyl;

iii) C2-C16 linear or branched, substituted or unsubstituted alkenyl;

iv) C₂-C₁₆ linear or branched, substituted or unsubstituted alkynyl;

v) C₃-C₁₆ linear or branched, substituted or unsubstituted

cycloalkyl:

vi) C₃-C₁₆ linear or branched, substituted or unsubstituted cycloalkenyl;

vii) C2-C16 linear or branched, substituted or unsubstituted alkaryl;

viii) C₇-C₁₆ linear or branched, substituted or unsubstituted aralkyl;

ix) C₆-C₁₆ substituted or unsubstituted aryl;

x) C₅-C₂₀ heteroaryl units comprising one or more heteroatoms
selected from the group consisting of nitrogen, oxygen, sulfur,
and mixtures thereof; and

a suitable charge balancing counterion (Mⁿ⁺)_{1/n}, provided a and b are both 1 and X is selected from O and S;

when a, b and g are all 0 for any single radical, R¹-(X)_a-(T)_b
(X')_g-, R¹ for said radical may be further selected from the group

consisting of CN, an amine oxide moiety, NO₂ and mixtures

thereof;

Page 5 of 12

- g.) X and X', when present, are selected from O, S, and NR2;
- h.) each R² is independently selected from the group consisting of:
 - i) H;
 - ii) C₁-C₁₆ linear or branched, substituted or unsubstituted alkyl;
 - iii) C2-C16 linear or branched, substituted or unsubstituted alkenyl;
 - iv) C₂-C₁₆ linear or branched, substituted or unsubstituted alkynyl;
 - v) C3-C₁₆ linear or branched, substituted or unsubstituted cycloalkyl;
 - vi) C₃-C₁₆ linear or branched, substituted or unsubstituted cycloalkenyl;
 - vii) C₇-C₁₆ linear or branched, substituted or unsubstituted alkaryl;
 - viii) C₇-C₁₆ linear or branched, substituted or unsubstituted aralkyl;
 - ix) C₆-C₁₆ substituted or unsubstituted aryl; and
 - x) C₃-C₂₀ heteroaryl units comprising one or more heteroatoms
 selected from the group consisting of nitrogen, oxygen, sulfur,
 and mixtures thereof;
- i.) T, when present, is selected from C=O, C=S, S=O, and SO₂; when T is S=O or SO₂, X and X' associated with said T may not be S;
- i.) G is:
 - i) H;
 - ii) a suitable charge balancing counterion (Mn+)1/1/2, or
 - iii) a cleaveable group selected from the group consisting of Si((O)_pR³)₃, where p is independently 0 or 1; C(O)_a((O)_pR³)_t, wherein p is independently 0 or 1 and when q is 1, r is 1, and when q is 0, r is 3; R³ is independently selected from the group consisting of C₁-C₁₆ linear or branched, substituted or unsubstituted alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkaryl, aralkyl, and aryl, and mixtures thereof

provided that when, for any radical, b is 0, a, g, or a and g are 0 for said radical.

- (Original) A substrate treated according to the method of Claim 5.
- 7. (Original) A liquid detergent comprising the composition of Claim 1.

Page 6 of 12

- 8. (Original) The composition of Claim 2 wherein m is 0 or 1; t is 0 or 1; a, b and g are all 0; G is H and R¹, when present, is not H.
- 9. (Original) The composition of Claim 8 wherein said compound is selected from the group consisting of:

- C) mixtures thereof
 wherein R² is selected from the group consisting of:
 - i) H;
 - ii) C₁-C16 linear or branched, substituted or unsubstituted alkyl;
 - iii) C2-C16 linear or branched, substituted or unsubstituted alkenyl;
 - iv) C2-C16 linear or branched, substituted or unsubstituted alkynyl;
 - v) C₃-C₁₆ linear or branched, substituted or unsubstituted cycloalkyl;
 - vi) C₃-C₁₆ linear or branched, substituted or unsubstituted cycloalkenyl;
 - vii) C7-C16 linear or branched, substituted or unsubstituted alkaryl;
 - viii) C7-C16 linear or branched, substituted or unsubstituted aralkyl;
 - ix) C₆-C₁₆ substituted or unsubstituted aryl; and
 - x) C₅-C₂₀ heteroaryl units comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, and mixtures thereof.

Page 7 of 12

- 10. (Original) The composition of Claim 9 wherein R² is selected from the group consisting
 - a.) C₁-C₁₆ linear or branched, substituted or unsubstituted alkyl; and
 - b.) C₆-C₁₆ substituted or unsubstituted aryl.
- 11. (Original) The composition of Claim 2, wherein m is 0 or 1; t is 0 or 1; and G is H
- 12. (Original) The composition of Claim 11, wherein t is 0.
- 13. (Original) The composition of Claim 12, wherein all a, b and g are 0.
- 14. (Original) The composition of Claim 13, wherein m is 0.
- 15. (Currently amended) A composition according to Claim 1 wherein said compound is selected from:

A)

B)

; and

C) mixtures thereof;

wherein R² is selected from the group consisting of:

- i) H;
- ii) C₁-C₁₆ linear or branched, substituted or unsubstituted alkyl;
- iii) C2-C16 linear or branched, substituted or unsubstituted alkenyl;
- iv) C2-C16 linear or branched, substituted or unsubstituted alkynyl;

Page 8 of 12

aryl, and mixtures thereof.

- V) C₃-C₁₆ linear or branched, substituted or unsubstituted cycloalkyl;
- vi) C₃-C₁₆ linear or branched, substituted or unsubstituted cycloalkenyl;
- vii) C7-C16 linear or branched, substituted or unsubstituted alkaryl;
- viii) C₇-C₁₆ linear or branched, substituted or unsubstituted aralkyl;
- ix) C₆-C₁₆ substituted or unsubstituted aryl; and
- x) C₅-C₂₀ heteroaryl units comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, and mixtures thereof; and G is H, a suitable charge balancing counterion (M⁰⁺)_{1/20}, or a cleaveable group selected from the group consisting of Si((O)_pR³)₃, where p is independently 0 or 1; C(O)_q((O)_pR³)_r, wherein p is independently 0 or 1 and when q is 1, r is 1, and when q is 0, r is 3; R³ is independently selected from the group consisting of C₁-C₁₆ linear or branched, substituted

16. (Currently amended) The composition of Claim 15 wherein for said compound of Claim

15, wherein R² is selected from the group consisting of:

or unsubstituted alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkaryl, aralkyl, and

- a.) C₁-C₁₆ linear or branched, substituted or unsubstituted alkyl; and
- b.) C₆-C₁₆ substituted or unsubstituted aryl.

17. (Currently amended) The composition of Claim 16 wherein for said compound of Claim 16, wherein R² is selected from the group consisting of:

- a.) C₅-C₁₁ linear or branched, substituted or unsubstituted alkyl; and
- b.) C₆-C₁₄ substituted or unsubstituted aryl.

18. (Withdrawn) A method of synthesizing a 5-acyl substituted salicylamide comprising the step of moving the attachment point of an acyl group, said acyl group being attached to the phenolic oxygen atom at position 2 of a salicylamide, from said phenolic oxygen atom to the carbon atom at the 5 position of said salicylamide.

- 19. (Withdrawn) The method of Claim 18 wherein moving said acyl group comprises the step of contacting the salicylamide having the acyl group attached to the phenolic oxygen atom at position 2 of said salicylamide with a Lewis acid.
- 20. (Withdrawn) The method of Claim 19 wherein said moving step is performed in the presence of a solvent.

Page 9 of 12