EMTH171 S2-19 Case study 1

Using Newton's Method to match power supply to demand

Assoc. Prof. Digby Symons

Department of Mechanical Engineering
digby.symons@canterbury.ac.nz

Exercise 1: hauling a sled up an incline with a cable

Electric motor

Electric motors give peak power output at a certain speed

 $\alpha = 1 \text{ W.s}^2/\text{rad}^2$

 β = 314.16 rad/s

1 rev/min = 1 rpm = 2π rad/60s

 $rad/s \times 30/\pi = rpm$

A gearbox or two-pulley system is used to reduce the shaft speed

Tangential speed of winch drum

$$V = \frac{R\alpha}{r_{ob}}$$

R is radius of winch drum (m) ω is speed of motor (rad/s)

Gearbox ratio
$$r_{gb}$$
=

diameter of driven pulley diameter of driver pulley

or

number of teeth on driven gearwheel number of teeth on driver gearwheel

If r_{gb} >1 the system reduces shaft speed: output shaft is slower than input

Equilibrium of forces on sled

Work

A force does **mechanical work** when it acts on a body such that there is a displacement of the point of application in the direction of the force.

Thus a force does work when it results in movement.

 $mechanical work = force \times distance$

Power

Mechanical power P = rate of doing work

$$work = Fd$$

$$P = \frac{\partial}{\partial t} (Fd) = F \frac{\partial d}{\partial t} + d \frac{\partial F}{\partial t}$$
$$= F \frac{\partial d}{\partial t} \text{ (if force is constant)} = Fv$$

Force and power required to climb a gradient

$$F = mg \sin(\theta)$$

Power = $mg \sin(\theta) V$

Equilibrium requires a contact force

Normal contact force = $mg \cos(\theta)$

Contact force can result in friction

Friction force = $C_f mg \cos(\theta)$

Power to overcome friction = $C_f mg \cos(\theta) V$

Friction is a resistive force which dissipates power

Power to overcome friction = $C_f mg \cos(\theta) V$

coefficient of static friction (stiction) = μ_s coefficient of kinetic friction (when moving) = $\mu_k = \textbf{\textit{C}}_f$

Materials	$\mu_{\mathfrak{s}}$	μ_{k}
Steel on steel	0.74	0.57
Aluminum on steel	0.61	0.47
Copper on steel	0.53	0.36
Rubber on concrete (dry)	1.0	0.8
Rubber on concrete (wet)	0.3	0.25
Wood on wood	0.25-0.5	0.2
Glass on glass	0.94	0.4
Teflon on Teflon	0.04	0.04
Teflon on steel	0.04	0.04
Waxed wood on wet snow	0.14	0.1
Waxed wood on dry snow	0.10	0.04
Metal on metal (lubricated)	0.15	0.06
Ice on ice	0.1	0.03
Synovial joints in humans	0.01	0.003
Very rough surfaces		1.5

Power supply

Power demand

$$P_{output} = \alpha \left(\beta \omega - \omega^2\right)$$

$$P_{demand} = mg \sin(\theta)V + C_f mg \cos(\theta)V$$

Sled moves at constant speed when: $P_{\it demand} = P_{\it output}$

V = const., $\omega = \text{const.}$

$$mg\sin(\theta)V + C_f mg\cos(\theta)V = \alpha(\beta\omega - \omega^2)$$

Substitute so there is only one independent variable:

$$mg\sin(\theta)V + C_f mg\cos(\theta)V = \alpha \left(\beta \frac{r_{gb}V}{R} - \frac{r_{gb}^2V}{R^2}\right)$$

Rearrange as an expression which evaluates to zero when solved:

$$f(V) = mg\sin(\theta)V + C_f mg\cos(\theta)V - \alpha \left(\beta \frac{r_{gb}V}{R} - \frac{r_{gb}^2V^2}{R^2}\right) = 0$$

Task: Find the value of *V* that satisfies this equation: *a root-finding problem*

Graphical solution

Total power demand = motor output (occurs at 2 < V < 3 m/s)

Sled mass = 1000 kg Gear ratio = 20 Pulley radius = 0.5 m Gradient = 45° $C_f = 0.2$

In your report, each figure must have a caption.

Problem: find the root of:

$$f(V) = mg\sin(\theta)V + C_f mg\cos(\theta)V - \alpha \left(\beta \frac{r_{gb}V}{R} - \frac{r_{gb}^2V}{R^2}\right) = 0$$

Newton's method:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Where:

$$f'(V) = mg\sin(\theta) + C_f mg\cos(\theta) - \alpha \left(\beta \frac{r_{gb}}{R} - \frac{2r_{gb}^2 V}{R^2}\right) = \frac{\partial f}{\partial V}$$

n	V_n (m/s)	$f(V_n)$ (Watts)
0	2.0000	-2084.61917
1	2.9662	1493.46542
2	2.6817	129.51023
3	2.6518	1.42550
4	2.6515	0.00018
5	2.6515	-3e-12
	0 1 2 3	 0 2.0000 1 2.9662 2 2.6817 3 2.6518 4 2.6515

Write a MATLAB script to use Newton's method to solve for V.

- Check your iterated solution against your graph. Does it lie at the speed that the power output and power demand curves cross?
- Experiment with different initial guesses.
- Take $g = 9.81 \text{m/s}^2$

Your report section for Exercise 1 must include:

- Introduction describing the problem solved, and the methods used
- Plot of the motor power and power demand as a function of V
- Convergence plot (*V* versus iteration number)
- Discussion of whether there is more than one solution
- Clear statement saying at what constant velocity V the sled travels
- Copy of your script, suitably commented (in an Appendix)

All plots must:

- be scaled properly
- have both axes labelled
- have a caption
- have a legend (or defining caption) if there is more than one curve on a plot

Exercise 2: Road car power

Medium size family road car

Toyota 2ZR-FE engine

Otto cycle engines

Torque and Power

Power = Torque × angular velocity

$$P = T\omega$$

Toyota 2ZR-FE-1.8L petrol

Toyota 2GD-FTV-2.4L turbo diesel

Mathematical model of engine power supply

$$P_{output} = \alpha \omega - \beta \omega^2$$

$$\alpha$$
 = 420W.s/rad β = 0.44W.s²/rad²

Max power $\approx 100 \text{kW} \approx 134 \text{hp}$

1 horsepower = 746 W

James Watt 1736-1819

Horsepower is **not** an SI unit

Transmission gear ratios

$$\omega_{w} = \frac{\omega}{r_{fd} r_{gb}}$$

$$V = \frac{R\omega}{r_{fd}r_{gb}}$$

Gearbox: in first gear, r_{gb} $^{\sim}$ 3 to 3.5. In top gear (4th or 5th) $^{\sim}$ 0.7 to 1 Final drive 3.5 < r_{fd} < 4.2

Power losses: Aerodynamic drag

resisting force due to drag $F_D = C_D A \frac{1}{2} \rho V^2$

power required to overcome drag $P_D = C_D A \frac{1}{2} \rho V^3$

Power required to climb a gradient

Power to climb gradient = $mg \sin(\theta) V$

Rolling resistance

Power losses: Rolling resistance

$$F_{rr} = C_{rr} mg \cos(\theta)$$

$$P_{rr} = C_{rr} mg \cos(\theta) V$$

C_{rr}	
0.0002-0.001	Steel railway wheel on steel track
0.001	19mm smooth bicycle tyre on wooden track
0.002	As above on smooth concrete
0.004	As above on asphalt
0.008	As above on rough sealed road
0.0025	Michelin eco-marathon tyres
0.006-0.01	Low resistance car and truck tyres on smooth road
0.010-0.015	Ordinary car tyres on concrete
0.030-0.035	Ordinary car tyres on asphalt
0.05-0.065	Ordinary car tyres on grass and mud
0.3	Ordinary car tyres on sand

Acceleration power

Force required to accelerate at rate a

$$F = ma$$

Power required when travelling at speed V to accelerate at rate a

$$P = maV$$

Total power demand = Engine power

$$C_d A \frac{1}{2} \rho V^3 + mg \sin(\theta) V + C_{rr} mg \cos(\theta) V + maV = \left(\frac{\alpha V}{K} - \frac{\beta V^2}{K^2}\right)$$

Rearrange into a form which can be solved by Newton's method.

Write a MATLAB script to solve for *V* with the following parameters:

Mass 1500 kg Drag coefficient $C_d = 0.30$ Frontal area 2.0 m² $C_{rr} = 0.010$

Wheel radius 0.205m

Engine parameters: α = 420 W.s/rad, β = 0.440 W.s²/rad²

Final drive ratio of 3.50

Top gear with a gearbox ratio $r_{qb} = 0.80$

 $g = 9.81 \text{ m/s}^2$ and air density is 1.2 kg/m^3

Throttle is wide open at all times

Assume there is no wind

Total power demand = Engine power

$$C_d A \frac{1}{2} \rho V^3 + mg \sin(\theta) V + C_{rr} mg \cos(\theta) V + maV = \left(\frac{\alpha V}{K} - \frac{\beta V^2}{K^2}\right)$$

- Case 1: No gradient, no acceleration
- Case 2: A gradient of 10°, no acceleration
- Case 3: A gradient of -5°, no acceleration
- Case 4: No gradient, an acceleration of 1 m/s²

Follow the instructions in the notes

Reports must have a title, date and the names and email addresses of all authors.