Devoir surveillé n°04: corrigé

Solution 1

- **1.** Puisque arctan est définie sur \mathbb{R} , h est définie sur $\mathbb{R} \setminus \{-1,0\}$.
- 2. Les fonctions $x \mapsto \frac{1}{2x^2}$, $x \mapsto \frac{x}{x+1}$ et $x \mapsto \frac{x-1}{x}$ sont dérivables sur $\mathbb{R} \setminus \{-1,0\}$ à valeurs dans \mathbb{R} et arctan est dérivable sur \mathbb{R} . Il s'ensuit que h est également dérivable sur $\mathbb{R} \setminus \{-1,0\}$ et que pour tout $x \in \mathbb{R} \setminus \{-1,0\}$,

$$h'(x) = -\frac{1}{x^3} \cdot \frac{1}{1 + \left(\frac{1}{2x^2}\right)^2} - \frac{1}{(x+1)^2} \cdot \frac{1}{1 + \left(\frac{x}{x+1}\right)^2} + \frac{1}{x^2} \cdot \frac{1}{1 + \left(\frac{x-1}{x}\right)^2}$$

$$= -\frac{4x}{4x^4 + 1} - \frac{1}{(x+1)^2 + x^2} + \frac{1}{x^2 + (x-1)^2}$$

$$= -\frac{4x}{4x^4 + 1} - \frac{1}{2x^2 + 2x + 1} + \frac{1}{2x^2 - 2x + 1}$$

$$= -\frac{4x}{4x^4 + 1} + \frac{(2x^2 + 2x + 1) - (2x^2 - 2x + 1)}{(2x^2 + 1)^2 - (2x)^2}$$

$$= -\frac{4x}{4x^4 + 1} + \frac{4x}{4x^4 + 1} = 0$$

- 3. La question montre que h est constante sur chacun des intervalles $]-\infty,-1[,]-1,0[$ et $]0,+\infty[$. Puisque $h(1)=\arctan(1/2)-\arctan(1/2)+\arctan(0)=0, h$ est constante égale à 0 sur $]0,+\infty[$. Puisque $\lim_{-\infty}h=\arctan(0)-\arctan(1)+\arctan(1), h$ est constante égale à 0 sur $]-\infty,-1[$. Enfin, puisque $\lim_{-\infty}h=\lim_{+\infty}\arctan-\arctan(0)+\lim_{+\infty}\arctan=\pi, h$ est constante égale à π sur]-1,0[.
- **4.** a. Soit $n \in \mathbb{N}^*$.

$$\begin{aligned} \mathbf{S}_n &= \sum_{k=1}^n \arctan\left(\frac{1}{2k^2}\right) \\ &= \sum_{k=1}^n \arctan\left(\frac{k}{k+1}\right) - \arctan\left(\frac{k-1}{k}\right) & \text{car } h \text{ est nulle sur } \mathbb{R}_+^* \\ &= \arctan\left(\frac{n}{n+1}\right) - \arctan(0) & \text{par t\'elescopage} \\ &= \arctan\left(\frac{n}{n+1}\right) \end{aligned}$$

- **b.** Puisque $\lim_{n\to+\infty} \frac{n}{n+1} = 1$, $\lim_{n\to+\infty} S_n = \arctan(1) = \frac{\pi}{4}$.
- c. Vu en cours.
- **d.** Pour tout $n \in \mathbb{N}^*$,

$$T_n = \sum_{k=1}^n \arctan(2k^2)$$

$$= \sum_{k=1}^n \frac{\pi}{2} - \arctan\left(\frac{1}{2k^2}\right)$$
 d'après la question précédente
$$= \frac{n\pi}{2} - S_n$$

Puisque $\lim_{n\to+\infty}\frac{n\pi}{2}=+\infty$ et $\lim_{n\to+\infty}S_n=\frac{\pi}{2}$, $\lim_{n\to+\infty}T_n=+\infty$ par opérations. Enfin, $\frac{T_n}{n}=\frac{\pi}{2}-\frac{S_n}{n}$ donc $\lim_{n\to+\infty}\frac{T_n}{n}=\frac{\pi}{2}$ par opérations.

Solution 2

1. Tout d'abord, $\sin(0) = 0$ donc $f_n(0) = 0$. Ainsi $\lim_{n \to +\infty} f_n(0) = 0$. Si $x \in \left[0, \frac{\pi}{2}\right]$, $0 \le \cos x < 1$ donc $\lim_{n \to +\infty} \cos^n(x) = 0$ (suite géométrique). Ainsi $\lim_{n \to +\infty} f_n(x) = 0$.

- 2. On a clairement $f_n(0) = 0$. De plus, cos et sin sont positives sur $\left[0, \frac{\pi}{2}\right]$ donc f_n également. Par conséquent, le minimum de f_n sur $\left[0, \frac{\pi}{2}\right]$ est 0 (et il est atteint en 0).
- 3. f_n est clairement dérivable sur $\left[0, \frac{\pi}{2}\right]$ est

$$\forall x \in \left[0, \frac{\pi}{2}\right], f_n'(x) = -n\cos^{n-1}(x)\sin^2(x) + \cos^{n+1}(x) = \cos^{n-1}(x)(\cos^2(x) - n\sin^2(x))$$

Comme \cos^{n-1} est positive sur $\left[0, \frac{\pi}{2}\right]$, le signe de $f_n'(x)$ est le signe de $\cos^2(x) - n\sin^2(x)$. Soit $x \in \left[0, \frac{\pi}{2}\right]$.

- Si $x \le \arctan \frac{1}{\sqrt{n}}$, alors $0 \le \tan x \le \frac{1}{\sqrt{n}}$ par croissance de tan sur $\left[0, \frac{\pi}{2}\right[$ puis $\tan^2 x \le \frac{1}{n}$ par croissance de la fonction $x \mapsto x^2 \text{ sur } \mathbb{R}_+$ puis $\cos^2 x - n \sin^2 x \ge 0$ et enfin $f'_n(x) \ge 0$
- Si $x \ge \arctan \frac{1}{\sqrt{n}}$, alors $\tan x \ge \frac{1}{\sqrt{n}} \ge 0$ par croissance de $\tan \sup \left[0, \frac{\pi}{2}\right[\text{ puis } \tan^2 x \le \frac{1}{n} \text{ par croissance de la fonction } x \mapsto x^2 \sin \mathbb{R}_+ \text{ puis } \cos^2 x n \sin^2 x \le 0 \text{ et enfin } f'_n(x) \le 0.$

Ainsi f_n est-elle croissante sur $\left[0, \arctan \frac{1}{\sqrt{n}}\right]$ et décroissante sur $\left[\arctan \frac{1}{\sqrt{n}}, \frac{\pi}{2}\right]$: elle admet donc un maximum en $\arctan \frac{1}{\sqrt{n}} \operatorname{sur} \left[0, \frac{\pi}{2}\right].$

4. Posons $u_n = \arctan\left(\frac{1}{\sqrt{n}}\right)$. On a donc

$$M_n = f_n(u_n) = \cos^n(u_n)\sin(u_n)$$

Puisque $u_n \in \left[0, \frac{\pi}{2}\right], 0 \le \cos(u_n) \le 1$ puis $0 \le \cos^n(u_n) \le 1$. Par conséquent

$$0 \le M_n \le \sin(u_n)$$

Puisque $\lim_{n\to+\infty}\frac{1}{\sqrt{n}}=0$, $\lim_{n\to+\infty}u_n=\arctan(0)=0$ car arctan est continue en 0. Enfin, par continuité de sin en 0, $\lim_{n\to+\infty} \sin(u_n) = \sin(0) = 0$. On rappelle que

$$0 \le M_n \le \sin(u_n)$$

donc $\lim_{n\to+\infty} M_n = 0$ d'après le théorème des gendarmes.

5. Tout d'abord, $\sin(0) = 0$ donc $f_n(0) = 0$. Ainsi $\lim_{n \to +\infty} f_n(0) = 0$. Si $x \in \left[0, \frac{\pi}{2}\right], 0 \le \cos x < 1$ donc $\lim_{n\to+\infty} \sqrt{n} \cos^n(x) = 0$ (croissances comparées). Ainsi $\lim_{n\to+\infty} f_n(x) = 0$.

Remarque. Si on n'a pas encore vu les croissances comparées pour les suites, on peut constater que pour $x \in \left[0, \frac{\pi}{2}\right]$,

$$\sqrt{n}\cos^n(x) = n^{\frac{1}{2}}e^{n\ln(\cos(x))} \longrightarrow_{\to +\infty} 0$$

car $\ln(\cos(x)) < 0$ (0 < $\cos x < 1$). De plus, $\sqrt{n} \cos^n \frac{\pi}{2} = 0$.

Dans tous les cas, $\lim_{n \to +\infty} f_n(x) = 0$.

6. Soit $x \in \mathbb{R}$. Posons $\theta = \arctan(x)$ et remarquons déjà que $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. De plus, $\tan \theta = x \operatorname{donc} x \cos \theta = \sin \theta$ puis $x^2 \cos^2 \theta = \sin^2 \theta = 1 - \cos^2 \theta$. Ainsi $\cos^2 \theta = \frac{1}{1+x^2}$. Mais comme $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \cos \theta > 0 \operatorname{donc} \right]$

$$\cos(\arctan x) = \cos \theta = \frac{1}{\sqrt{1+x^2}}$$

et

$$\sin(\arctan x) = \sin \theta = x \cos \theta = \frac{x}{\sqrt{1+x^2}}$$

7. Posons $u_n = \left(1 + \frac{1}{n}\right)^n$ de sorte que $\ln(u_n) = n \ln\left(1 + \frac{1}{n}\right)$. Considérons alors la fonction $f: t \mapsto \ln(1+t)$. f est dérivable sur $]-1,+\infty[$ et $f'(t)=\frac{1}{1+t}$ pour $t\in]-1,+\infty[$. En particulier, f est dérivable en 0 de sorte que

$$\lim_{t \to 0} \frac{f(t) - f(0)}{t - 0} = f'(0) = 1$$

ou encore

$$\lim_{t \to 0} \frac{\ln(1+t)}{t} = 1$$

Posons alors $t = \frac{1}{n}$ de sorte que $t \longrightarrow 0$. On en déduit que

$$\lim_{n \to +\infty} n \ln \left(1 + \frac{1}{n} \right) = 1$$

c'est-à-dire que $\lim_{n\to+\infty}\ln(u_n)=1$. Par continuité de l'exponentielle en 1,

$$\lim_{n\to+\infty}u_n=e$$

8. On a clairement

$$\mathbf{M}'_n = \sqrt{n} \, \mathbf{M}_n = \sqrt{n} \cos^n \left(\arctan\left(\frac{1}{\sqrt{n}}\right) \right) \sin \left(\arctan\left(\frac{1}{\sqrt{n}}\right) \right)$$

La question 6 permet alors d'affirmer que

$$\mathbf{M}_n' = \left(\frac{1}{\sqrt{1+\frac{1}{n}}}\right)^n \cdot \frac{\frac{1}{\sqrt{n}}}{\sqrt{1+\frac{1}{n}}} \cdot \sqrt{n} = \frac{1}{\sqrt{\left(1+\frac{1}{n}\right)^n}} \cdot \frac{1}{\sqrt{1+\frac{1}{n}}}$$

Il est clair que $\lim_{n\to+\infty} \sqrt{1+\frac{1}{n}} = 1$ et, d'après la question 7, $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e$. On en déduit bien que

$$\lim_{n\to+\infty} \mathbf{M}_n' = \frac{1}{\sqrt{e}}$$

Solution 3

1. f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = (x+1)e^x$. On en déduit que f est strictement décroissante sur $]-\infty,-1]$ et strictement croissante sur $[-1,+\infty[$. Par opérations, $\lim_{+\infty} f = +\infty$ et $\lim_{-\infty} f = 0$

x	-∞	-1	+∞	
f'(x)		- o	+	
Variations de f	0	$-\frac{1}{e}$	+∞0	

- 2. f est strictement croissante et continue sur $[-1, +\infty[$. Elle induit donc une bijection de $[-1, +\infty[$ sur $I = [f(-1), \lim_{+\infty} f[=$
- 3. Comme f est dérivable sur $]-1,+\infty[$ et que sa dérivée ne s'annule pas sur $]-1,+\infty[$, W est dérivable sur $J=\left[-\frac{1}{e},+\infty\right[$. De plus, pour tout $x\in J$,

$$W'(x) = \frac{1}{f'(W(x))} = \frac{1}{(W(x) + 1)e^{W(x)}}$$

Comme f(0) = 0, W(0) = 0. Par conséquent, W'(0) = 1.

De plus, par définition de W, f(W(x)) = x i.e. $W(x)e^{W(x)} = x$ Notamment, si $x \neq 0$, on a nécessairement $W(x) \neq 0$ et donc $e^{W(x)} = \frac{x}{W(x)}$. On en déduit que pour tout $x \in J \setminus \{0\}$,

$$W'(x) = \frac{W(x)}{x(1+W(x))}$$

Solution 4

1. Posons φ : $u \in]-1, +\infty[\mapsto \ln(1+u) - u$. φ est dérivable et

$$\forall u \in]-1, +\infty[, \varphi'(u) = \frac{1}{1+u} - 1 = -\frac{u}{1+u}$$

Ainsi ϕ' est positive sur]-1,0] et négative sur $[0,+\infty[$. ϕ est donc croissante sur]-1,0] et décroissante sur $[0,+\infty[$: ϕ admet un maximum en 0. Comme $\phi(0)=0$, ϕ est négative sur $]-1,+\infty[$. Par contre,

$$\forall u \in]-1, +\infty[, \ln(1+u) \le u$$

2. Soit $t \in [0, n]$. Alors $\frac{t}{n} \in]-1, +\infty[$. D'après la question précédente,

$$\ln\left(1+\frac{t}{n}\right) \le \frac{t}{n}$$

puis

$$n\ln\left(1+\frac{t}{n}\right) \le t$$

puis, par passage à l'exponentielle,

$$\left(1+\frac{t}{n}\right)^n \le e^t$$

Si t = n, la seconde inégalité de l'énoncé est clairement vraie. Sinon, $-\frac{t}{n} \in]-1,+\infty[$ et, toujours d'après la première question,

$$\ln\left(1 - \frac{t}{n}\right) \le -\frac{t}{n}$$

puis

$$n\ln\left(1-\frac{t}{n}\right) \le -t$$

puis, par passage à l'exponentielle,

$$\left(1 - \frac{t}{n}\right)^n \le e^{-t}$$

3. D'après la seconde inégalité de la question précédente,

$$0 \le e^{-t} - f_n(t)$$

D'après la première inégalité,

$$\left(1+\frac{t}{n}\right)^n \le e^t$$

En mutipliant par $\left(1 - \frac{t}{n}\right)^n$ (positif),

$$\left(1 - \frac{t^2}{n^2}\right)^n \le e^t \left(1 - \frac{t}{n}\right)^n$$

En multipliant par $-e^{-t}$ (négatif),

$$-\left(1-\frac{t}{n}\right)^n \le -e^{-t}\left(1-\frac{t^2}{n^2}\right)^n$$

En ajoutant e^{-t} ,

$$e^{-t} - f_n(t) \le e^{-t} - e^{-t} \left(1 - \frac{t^2}{n^2} \right)^n = e^{-t} \left[1 - \left(1 - \frac{t^2}{n^2} \right)^n \right]$$

4. On fixe $u \in [0, 1]$ et on raisonne par récurrence sur n. Tout d'abord $(1 - u)^0 = 1 \ge 1 = 1 - 0 \cdot u$. Supposons que $(1 - u)^n \ge 1 - nu$ pour un certain $n \in \mathbb{N}$. Alors, en multipliant par 1 - u (positif),

$$(1-u)^{n+1} \ge (1-nu)(1-u) = 1 - (n+1)u + nu^2 \ge 1 - (n+1)u$$

Par récurrence, $(1-u)^n \ge 1 - nu$ pour tout $n \in \mathbb{N}$.

5. Soit $t \in [0, n]$. Alors $\frac{t^2}{n^2} \in [0, 1]$ donc, en appliquant la question précédente,

$$\left(1 - \frac{t^2}{n^2}\right)^n \ge 1 - n \cdot \frac{t^2}{n^2} = 1 - \frac{t^2}{n}$$

puis

$$1 - \left(1 - \frac{t^2}{n^2}\right)^n \le \frac{t^2}{n}$$

Enfin, d'après la question 3,

$$0 \le e^{-t} - f_n(t) \le \frac{t^2 e^{-t}}{n}$$

- **6.** D'après la question précédente, g_n est minorée par 0. Or $g_n(0) = 0$ donc le minimum de f_n sur [0, n] est $m_n = 0$ (atteint en 0).
- 7. On étudie les variations de ψ . ψ est clairement dérivable sur \mathbb{R}_+ et pour tout $t \in \mathbb{R}_+$, $\psi'(t) = t(2-t)e^{-t}$. On en déduit que ψ est croissante sur [0,2] et décroissante sur $[2,+\infty[$: ψ admet donc un maximum sur \mathbb{R}_+ en 2. En particulier, elle est majorée sur \mathbb{R}_+ (par $\psi(2) = \frac{4}{e}$).
- **8.** Notons t_n le point de [0, n] où g_n admet son maximum. D'après la question **5**,

$$0 \le g_n(t_n) \le \frac{\psi(t_n)}{n}$$

et donc

$$0 \le M_n \le \frac{4}{ne}$$

D'après le théorème des gendarmes, $\lim_{n\to+\infty} \mathbf{M}_n = 0$.