	2ª Prova de F-128 - Diurno	1)
		2)
	21/05/2012	3)
		4)
		Nota:
Nome:	RA:	Turma:

Obs: Na solução desta prova, considere $g = 10 \text{ m/s}^2$

Questão 01

As figuras (1) e (2) ilustram duas situações envolvendo um pequeno corpo de massa m e um fio ideal de comprimento l. Na figura (1), o corpo fica em equilíbrio quando suspenso do teto de um vagão de massa M, que se move para a direita com aceleração a, formando um ângulo θ com a vertical. Na figura (2), o corpo é levado até a posição angular θ (num referencial inercial) e depois abandonado com velocidade nula nessa posição.

- a) (0,5 ponto) Indique as forças que atuam sobre **o corpo e vagão** na situação da figura (1), mostrando os pares ação e reação;
- b) (0,5 ponto) Indique as forças que atuam sobre o corpo na situação da figura (2);
- c) (0,5 ponto) Determine a força externa que deve atuar no vagão, na figura (1), para que o corpo e o vagão se movam com a aceleração *a*. Justifique sua resposta;
- d) (1,0 ponto) Determine a relação entre os módulos das trações no fio nas situações das figuras (1) e (2).

2ª Prova de F-128 - Diurno

Questão 02

Na figura ao lado o bloco tem massa m_1 e o coeficiente de atrito entre as superfícies é μ .

- a) (0,5 ponto) Desenhe o diagrama das forças que atuam no bloco de massa m_1 , quando o bloco está na iminência de escorregar para baixo.
- b) (1,0 ponto) Quais devem ser os módulos mínimo e máximo da força \vec{F} que, aplicada ao bloco, o mantém em equilíbrio?
- c) (0,5 ponto) Calcule o trabalho da força \vec{F} quando o bloco desce uma distância d;
- d) (0,5 ponto) Qual a variação da energia cinética do bloco na situação do item c)?

2ª Prova de F-128 - Diurno

Questão 03

Um corpo de massa m=1,0 kg, que pode deslizar num aro circular de raio R=1,0 m contido num plano vertical, está preso por uma mola de constante elástica k=32 N/m. A mola está presa no ponto C, no topo do aro. Quando o corpo está em B, posição mais baixa do aro, a mola está relaxada.

- a) (1,0 ponto) Tomando como nula a energia potencial gravitacional no ponto B, qual é a energia potencial total do corpo no ponto A?;
- b) (0,5 ponto) Se abandonarmos o corpo, a partir do repouso, no ponto A, com que velocidade ele chegará a B?;
- c) (1,0 ponto) Ao chegar em B o corpo desprende-se da mola. Qual será a altura máxima atingida pelo corpo do outro lado do aro?

Nota: Se necessário, aproxime $\sqrt{3} = \frac{7}{4}$.

2ª Prova de F-128 - Diurno

Questão 4

Uma partícula de massa m se move em uma dimensão ao longo do eixo x. A força, em N, que age sobre ela é dada por:

$$F(x) = -9 + 9x^2$$

- a) (1,0 ponto) Considerando U(x=0)=0, calcule a energia U(x) associada a essa força e esboce um gráfico $U(x)\times x$.
- b) (0,5 ponto) Ache a(s) posição(ões) de equilíbrio, e identifique-o(s) como instável, estável ou indiferente. Justifique sua resposta.
- c) (0,5 ponto) Qual é o valor de *U* no ponto de equilíbrio instável?
- d) (0,5 ponto) Supondo que a partícula esteja inicialmente em repouso no ponto de equilíbrio estável de U(x), qual é o valor da mínima energia que deve ser fornecida para que o movimento da partícula deixe de ser confinado?

