(Не совсем)

TRANSFORMER

Sim
$$(\star , \star) = 10$$

Sim $(\star , \star) = -34$

$$Sim(a, b) = a^T b$$

```
10 9 -20 -34

10 -34 29 0

-29 -56 99 -3

-22 13 13 -33
```

ATTENTION

Softmax(Q^TK) $V[O(n^2d)]$

$$\frac{Sim(Q, K)}{\sum_{i} Sim(Q, K)_{i}} V \quad Sim(a, b) = e^{a^{T}b}$$

KERNELS

$$\varphi(x) = (x, x^2)$$

$$K(x, y) = \varphi(x)^{T} \varphi(y) = (x, x^{2})^{T} (y, y^{2}) = xy + x^{2}y^{2}$$

$$\frac{Sim(Q, K)}{\sum_{i} Sim(Q, K)_{i}} V \frac{\varphi(Q)^{T} \varphi(K)}{\sum_{i} \varphi(Q)_{i}^{T} \varphi(K)_{i}} V$$

$$X_{k} = \frac{\varphi(Q)^{T} \varphi(K)}{\sum_{i} \varphi(Q)_{i}^{T} \varphi(K)} V_{k} = \frac{\sum_{j} \varphi(Q_{k})^{T} \varphi(K_{j}) V_{j}}{\sum_{j} \varphi(Q_{k})^{T} \varphi(K_{j})}$$

$$= \frac{\varphi(Q_{k})^{T} \sum_{j} \varphi(K_{j}) V_{j}^{T}}{\varphi(Q_{k})^{T} \sum_{j} \varphi(K_{j})} [O(n^{2}d) \to O(nd)]$$

$$\varphi(x) = \text{elu}(x) + 1$$

AUTOREGRESSIVE MODELS

TEACHER FORCING + CAUSAL MASKING

O(nd) - наивная имплементация kernel трансформером $O\left(n^2d\right)$ - наивная имплементация softmax трансформером O(nd) - RNN

Speech recognition

Method	Validation PER	Time/epoch (s)
Bi-LSTM	10.94	1047
Softmax	5.12	2711
LSH-4	9.33	2250
Linear (ours)	8.08	824

TRANSFORMERS ARE RNNS

MNIST autoregressive

Method	Bits/dim	Imag	ges/sec
Softmax	0.621	0.45	(1×)
LSH-1	0.745	0.68	$(1.5\times)$
LSH-4	0.676	0.27	$(0.6\times)$
Linear (ours)	0.644	142.8	(317×)

CIFAR-10 autoregressive

Method	Bits/dim	Images/sec	
Softmax	3.47	0.004	(1×)
LSH-1	3.39	0.015	$(3.75\times)$
LSH-4	3.51	0.005	$(1.25\times)$
Linear (ours)	3.40	17.85	(4,462×)

$$\begin{split} s_0 &= 0, \\ z_0 &= 0, \\ s_i &= s_{i-1} + \phi \left(x_i W_K \right) \left(x_i W_V \right)^T, \\ z_i &= z_{i-1} + \phi \left(x_i W_K \right), \\ y_i &= f_l \left(\frac{\phi \left(x_i W_Q \right)^T s_i}{\phi \left(x_i W_Q \right)^T z_i} + x_i \right). \end{split}$$

QUESTIONS

- 1) какова асимптотическая сложность обычного трансформера в зависимости от длины последовательности токенов n? какова асимптотическая сложность rnn в такой-же ситуации? какова асимптотическая сложность трансформера из статьи?
- 2) выписать формулу attention стандартного softmax трансформера
- 3) выписать формулу attention произвольного трансформера через функцию похожести sim.
- 4) выписать формулу attention произвольного трансформера, через функцию добавляющую новые признаки соответствующие ядру трансформера (ядро наоборот) phi.

SOURCES

- 1) https://arxiv.org/abs/2006.16236
- 2) https://arxiv.org/abs/1706.03762
- 3) https://www.youtube.com/watch?v=hAooAOFRsYc