LECTURE 10.4 Model evaluation and selection (MODEL BUILDING)

SHOULD WE INCLUDE VARIABLES AS MANY AS POSSIBLE?

- First, any correlation among predictors will increase the standard error of the estimated regression coefficients.
- Second, having more slope parameters in our model will reduce interpretability and cause problems with multiple testing.
- Third, the model may suffer from overfitting. As the number of predictors approaches the sample size, we begin fitting the model to the noise.

MODEL EVALUATION

$$R^2 = \frac{\text{SSReg}}{\text{SS total}} = 1 - \frac{\text{SSerror}}{\text{SS total}}$$

1. R-SQUARE

In least-squares regression, R^2 is a statistic to reflect the strength of linear relationship between outcome and *a given set* of predictors.

 $SSReg(k \ variables) \le SSReg(k+1 \ variables)$

<u>Proof: modeling - Is MSE decreasing with increasing number of explanatory variables? - Cross Validated (stackexchange.com)</u>

In particular, R^2 has an *undesired property*. It increases when more variables enter the linear regression as predictors, even they are irrelevant to the outcome (Figures 1 and 2).

$$R^{2} = \frac{\text{SSReg}}{\text{SS total}} = 1 - \frac{\text{SSerror}}{\text{SS total}}$$

1. LIMITATION OF R-SQUARE

However, it does not indicate whether:

- the correct regression was used;
- omitted-variable bias exists;
- the most appropriate set of predictors has been chosen;
- the model might be improved by using transformed predictors.

2. Adjusted R-square

To take account of this drawback of R^2 , we use an adjusted R^2_{adi} , which is defined by:

adjusted
$$R_{adj}^2$$
, which is defined by:
$$R_{adj}^2 = 1 - (1 - R_k^2) \frac{n-1}{n-k-1}$$

$$= R_k^2 - (1 - R_k^2) \frac{k}{n - k - 1}$$

Note: R_{adj}^2 is always be less than or equal to that of R^2 and could be could be negative. The R_{adj}^2 measure *penalizes* the inclusion of a new predictor and thus it increases only if the contribution of the k^{th} predictor is large enough.

Figure 1:

Mean R^2 and R_{adj}^2 over 1000 least-squares of y_i 's on noises $(x_{i1}, ...,$ x_{ik})'s. In each fit, sample size n=100, and all y_i 's and all the x_{ik} 's were iid N(0,1).

Figure 2:

Mean R^2 and R_{adi}^2 over 1000 least-squares of y_i 's on noises $(x_{i1}, ...,$ x_{ik})'s. In each fit, sample size n = 100, and all y_i 's and all the x_{ik} 's were independent, $y_i \sim N(0,1)$, and $x_{ik} \sim B(10, 0.3)$.

3. Mallows' Cp-statistic

$$C_p = k + 1 + rac{(MSE_k - MSE_{all})(n - k - 1)}{MSE_{all}}$$

MSE_all, the mean squared error obtained from fitting the model containing *all* of the candidate predictors.

 MSE_k , the mean squared error obtained from fitting the model containing k candidate predictors.

For the largest model containing all of the candidate predictors, $C_p = k+1$ (always).

When more than one model has a small value of C_p value near k+1, in general, choose the simpler model or the model that meets your research needs.

4. Akaike Information Criterion

$$AIC = 2k + n Log(ResSS/n),$$

ResSS is the Residual Sum of Squares and K is the number of model parameters

$$AIC = -2ln(L) + 2k$$

with ln(L) the maximum log-likelihood of the model and k the number of free parameters.

Lower AIC values indicate a better-fit model, and a model with a delta-AIC (the difference between the two AIC values being compared) of more than -2 is considered significantly better than the model it is being compared to.

5. Bayesian Information Criterion

$$BIC = -2*ln(L)+k*ln(n)$$

Here n is the number of observations in the model, and k-1 is the number of predictors. That is, k is the number of total parameters (also the total number of coefficients, including the intercept) in the model, ln(L) is the maximum log-likelihood of the model and k the number of free parameters.

Lower BIC values indicate a better-fit model, BIC tends to select models with fewer parameters

MODEL BUILDING

Forward selection (forward stepwise selection)

Forward stepwise selection example with 5 variables:

PROCEDURES

- 1. Determine the most significant variable to add at each step
- The most significant variable can be chosen so that, when added to the model:
- It has the smallest p-value, or
- It provides the highest increase in R², or
- It provides the highest drop in model RSS (Residuals Sum of Squares) compared to other predictors under consideration.

PROCEDURES

2. Choose a stopping rule

- The stopping rule is satisfied when all remaining variables to consider have a p-value larger than some specified threshold, if added to the model. When we reach this state, forward selection will terminate and return a model that only contains variables with pvalues < threshold.</p>
- The threshold can be:
- 1 A fixed value (for instance: 0.05 or 0.2 or 0.5)
- 2 Determined by AIC (Akaike Information Criterion)
- 3 Determined by BIC (Bayesian information criterion)

```
fev ~ 1

Df Sum of Sq RSS AIC
+ hgt 1 369.99 120.93 -1099.86
+ age 1 280.92 210.00 -738.94
+ smoker 1 29.57 461.35 -224.21
+ sex 1 21.32 469.60 -212.63
<none> 490.92 -185.58
```

Start: AIC=-185.58

Step: AIC=-1132.62

```
fev ~ hgt + age

Df Sum of Sq RSS AIC
+ sex 1 4.0269 110.65 -1154.0
+ smoker 1 0.5921 114.08 -1134.0
<none> 114.67 -1132.6
```

```
Step: AIC=-1099.86

fev ~ hgt

Df Sum of Sq RSS AIC
+ age 1 6.2591 114.67 -1132.6
+ sex 1 2.4931 118.44 -1111.5
<none> 120.93 -1099.9
+ smoker 1 0.0022 120.93 -1097.9
```

```
Step: AIC=-1154
fev ~ hgt + age + sex

Df Sum of Sq RSS AIC
+ smoker 1 0.3684 110.28 -1154.2
<none> 110.65 -1154.0

Step: AIC=-1154.18
fev ~ hgt + age + sex + smoker
```

Backward selection (backward stepwise selection)

Backward stepwise selection example with 5 variables:

PROCEDURES

- 1. Determine the least significant variable to remove at each step
- The least significant variable is a variable that:
- 1 Has the highest p-value in the model, or
- Its elimination from the model causes the lowest drop in R², or
- Its elimination from the model causes the lowest increase in RSS (Residuals Sum of Squares) compared to other predictors

PROCEDURES

- 1. Choose a stopping rule
- The stopping rule is satisfied when all remaining variables in the model have a p-value smaller than some pre-specified threshold:
- 1 A fixed value (for instance: 0.05 or 0.2 or 0.5)
- Determined by AIC (Akaike Information Criterion)
- 3 Determined by BIC (Bayesian information criterion)

```
###Backward Stepwise Selection
#perform backward stepwise regression
backward <- step(all, direction='backward', scope=formula(all), trace=1)</pre>
#view results of backward stepwise regression
backward$anova
> backward <- step(all, direction='backward', scope=formula(all), trace=1)</pre>
Start: AIC=-1154.18
fev ~ age + hgt + sex + smoker
         Df Sum of Sq RSS AIC
                     110.28 -1154.18
<none>
- smoker 1 0.368 110.65 -1154.00
- sex 1 3.803 114.08 -1134.00
- age 1 8.099 118.38 -1109.83
- hgt 1 81.505 191.78 -794.28
> #view results of backward stepwise regression
> backward$anova
  Step Df Deviance Resid. Df Resid. Dev AIC
       NA NA 649 110.2796 -1154.178
```

Stepwise selection

p value to enter = P_{enter} = 0.15, p value to remove = P_{remove} = 0.15

> stepwise <- step(intercept_only, direction='both', scope=formula(all), trace=1)</pre>

Start: AIC=-185.58 fev ~ 1

		Df	Sum of Sq	RSS	AIC
+	hgt	1	369.99	120.93	-1099.86
+	age	1	280.92	210.00	-738.94
+	smoker	1	29.57	461.35	-224.21
+	sex	1	21.32	469.60	-212.63
<r< td=""><td>none></td><td></td><td></td><td>490.92</td><td>-185.58</td></r<>	none>			490.92	-185.58

Step: AIC=-1099.86 fev ~ hgt

		Df	Sum	of Sq	RSS	AIC
+	age	1		6.26	114.67	-1132.62
+	sex	1		2.49	118.44	-1111.49
<none></none>					120.93	-1099.86
+	smoker	1		0.00	120.93	-1097.87
_	hat	1	3	369.99	490.92	-185.58

Step: AIC=-1132.62 fev ~ hgt + age

		Df	Sum	of Sq	RSS	AIC
+	sex	1		4.027	110.65	-1154.00
+	smoker	1		0.592	114.08	-1134.00
<r< td=""><td>ione></td><td></td><td></td><td></td><td>114.67</td><td>-1132.62</td></r<>	ione>				114.67	-1132.62
-	age	1		6.259	120.93	-1099.86
-	hgt	1	9	95.326	210.00	-738.94

Step: AIC=-1154 fev ~ hgt + age + sex

	Df	Sum	of Sq	RSS	AIC
+ smoker	1		0.368	110.28	-1154.18
<none></none>				110.65	-1154.00
- sex	1		4.027	114.67	-1132.62
- age	1		7.793	118.44	-1111.49
- hgt	1	8	32.287	192.94	-792.37

Step: AIC=-1154.18 fev ~ hgt + age + sex + smoker