Visualizing Heart Development from 3D Volumetric Images

CENTURI Hackathon for Quantitative Biology

Project Presentation | 26 June 2022

Aya AL MASRI Richmond CRISOSTOMO Nessim LOUAFI Gabrielle ROULLET Shunyu WU Clara GUIJARRO*

Motivation

1. It is not possible to perform live +3D imaging simultaneously. Only snapshots of the structures.

Objectives & Workflow

How to merge the 3D shots and create animation?

In case there's not enough time points acquired, How to interpolate new frames in between? How to get quantitative data and information out of the growth? Ex. growth rate of each structure

Make the data and visualization open-source

Exploring the data

x	У	z	region	time
483.896118	479.282166	250.736298	Myocardium	1
341.627777	479.173523	213.652100	Myocardium	1
497.380615	528.164246	199.392334	Myocardium	1
196.249435	408.848846	247.797150	Myocardium	1
381.311951	505.832550	195.637360	Myocardium	1
222	22.5	(22)	1127	
144.500214	305.350647	67.670044	Splanchnic	311
392.155609	455.405273	457.748535	Splanchnic	311
371.418091	534.623413	436.022980	Splanchnic	311
307.482758	482.779449	385.307312	Splanchnic	311
630.777344	383.874298	205.416473	Splanchnic	311

Exploring the data

 2D scatter of the Myorcadium region of the heart colored by the z dimention over time

Testing Available Packages

jaxlib dependent, which doesn't support windows.

(Klatzow et al., 2022)

• They did correspondence, but no morphing.

(Dalmasso et al., 2021)

- Fearless Hearts: Create continuous timecourse for the heart development from limited nb of samples acquired at different timepoints
 - \circ They use .vti data, whereas our original data is in .ply, to convert them might be too time consuming $_{\rightarrow}$ 2h to convert only 1 time point

Going back to the Data - Interpolation

Geometric Loss functions between sampled measures, images and volumes

(Feydy et al., 2022)

GPU support

Geometric calculate loss functions with full support of Pytorch's autograd engine

Interpolation

- Data loaded on GPU as tensors
- Combine 4 region time point corresponding heart data as one to show full heart

- Optimal Transport matchings
- Output VTKs, use Paraview to view the animation
- Linear interpolation

Pick time points 1, 5, 11 and reconstruct a interpolation video of heart development from beginning to end. 32 interpolations in between two points.

Going back to the Data - Quantification

Distribution of Distance Moved

3D representation of the heart growth

User Interface

- Open-sourced
- User-friendly

CONCLUSION

Moving Forward

- Deployable and versatile user interface
- Suggestion for optimal sampling and interpolation
 - Loss of information quantification
- Correlative and more quantitative integration of data
 - Cellular level inference on growth and morphology
- Determine the minimum real data we need that we can use interpolation to reconstruct good enough simulate data to mimic reality

Visualizing Heart Development from 3D Volumetric Images

CENTURI Hackathon for Quantitative Biology

Project Presentation | 26 June 2022

Aya AL MASRI Richmond CRISOSTOMO Nessim LOUAFI Gabrielle ROULLET Shunyu WU Clara GUIJARRO*

