

Makine Öğrenmesi ve İmge Tanıma

Birinci hafta Giriş dersi İşleniş ve Genel Kavramlar-1

Makine Öğrenmesi ve İmge Tanıma Dersi

Başlıkları	KOIIU	Hafta	Konular
		1	Giriş ve Temel Kavramlar
		2	Karar ağaçları, Rassal orman algoritmaları
		3	Weka uygulaması, regresyon
		4	Sınıflandırma, kural tabanlı naif bayes
		5	sınıflandırma svm
		6	Kümeleme kmeans
		7	Knime uygulaması
		8	YSA
		9	Tensorflow
		10	Tensorflow
		11	Görüntü sınıflandırma
		12	Görüntü sınıflandırma
		13	Proje sunumları
		14	Proje sunumları

Makine Öğrenmesi ve İmge Tanıma Dersi

Kaynaklar	Kaynaklar					
	Weka, https://www.cs.waikato.ac.nz/ml/weka/					
	Tensorflow, https://www.tensorflow.org/					
	Singh, H. (2019) Practical machine learning and image processing: for facial recognition, object detection, and pattern recognition using python. Berkeley, California: Apress. doi: 10.1007/978-1-4842-4149-3.					
	Rebala, G., Ravi, A. and Churiwala, S. (2019), An Introduction to Machine Learning, Springer					
Ders Değerlendirme Sistemi	Değerlendirme Yöntemi	Katkı Yüzdesi (%)	Değerlendirme Yöntemi Ad			
	Dönem Sonu Sınavı	50	Dönem Sonu Sınavı			
	Ara Sınav	20	Ara Sınav			
	Proje	20	Proje			
	Ödev	10	Ödev			

Makine Öğrenmesi ve İmge Tanıma Dersi

- ✓ makine öğrenmesi ile ilgili kavramları tanıtmak
 - ✓ makine öğrenmesi uygulama becerilerini geliştirmek
 - Algoritmalar (karar ağaçları, kural tabanlı, bayes, svm, kmeans...)
 - Uygulamalar (weka, knime, tensorflow)
 - Görüntü sınıflandırma

Dersin İşlenişi Hakkında

- Teorik+Uygulama
- Durum çalışmaları
- Uygulamalar üzerinde temel pratikler

EDS

- Ders Notları
- Referans sayfalar
- Data

https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/courses.html

https://www.knime.com/knime-analytics-platform

https://www.tensorflow.org

Dersin İşlenişi Hakkında

- Teorik+Uygulama
- Durum çalışmaları
- Uygulamalar üzerinde temel pratikler

EDS

- Ders Notları
- Referans sayfalar
- Data

https://archive.ics.uci.edu/

https://www.kaggle.com/

10 dakika ara

GİRİŞ DERSİNİN KAYNAK KİTABI

• Sullivan, William. "Machine Learning For Beginners: Algorithms, Decision Tree & Random Forest Introduction, CreateSpace Independent Publishing Platform (August 20, 2017).

TANIMLAR

• Makine Öğrenmesi Nedir?

• den farkı?

Makine Öğrenmesi Nedir? Arthur Samuel, 1959

Makine öğrenimi, bilgisayarın açık bir şekilde programlanmadan, benzer veya ekstra verilerle beslenmeden gelecekte etkinliği işleme ve gerçekleştirme yeteneğini öğreneceği şekilde bilgisayar sistemlerine veri girme süreci olarak tanımlanabilir.

Basit bir deyişle, bilgisayarların kendi 'zihinlerini' geliştirmelerine ve düşünmelerine izin vermesidir.

Makine Öğrenmesi Nedir?

Eğer yazılım, işleri otomatikleştirmeyse, bu otomatikleştirmeyi otomatikleştirmeye benzer.

Geleneksel Programlama ve Makine Öğrenmesi Arasındaki Farklar

Geleneksel Programlama:

Makine öğrenmesi:

- Veriler bilgisayara beslenir ve bir program çalıştırılır.
- Bu program daha sonra, sağlanan verileri kullanarak çıktı sunar.

Geleneksel Programlama ve Makine Öğrenmesi Arasındaki Farklar

Geleneksel Programlama:

- Veriler bilgisayara beslenir ve bir program çalıştırılır.
- Bu program daha sonra, sağlanan verileri kullanarak çıktı sunar.

Data Program Computer Output

Makine öğrenmesi:

- Önceden çözülmüş veriler ve ortaya çıkan çıktı bilgisayara beslenir.
- Bu iki giriş bir program oluşturmak için kullanılır.
- Bu program daha sonra, geleneksel programlama işini yapabilir.

TANIMLAR

Yapay Zeka – Makine Öğrenmesi– Derin Öğrenme

Derin öğrenme bir tür makine öğrenmesi, makine öğrenmesi bir yapay zeka biçimidir.

Yapay zekaya dayalı sistemlerin tümü makine öğrenimi kullanmaz, örneğin, sürücüsüz otomobiller, kural tabanlı sistemler.

Sayısı binlerce olan makine öğrenmesi algoritmaları çok çeşitli görünse de, hepsi aşağıdaki üç temel kavramla birlikte ifade edilebilir.

- Temsil (representation)
- Değerlendirme (evaluation)
- Optimizasyon (optimization)

Temsil (representation):

Bu kavram, bilginin temsilinin nasıl yapıldığı ile ilgilidir.

Bilgiyi temsil etmek için neyin gerekli olduğu vb.

Temsilin bazı örnekleri, karar ağaçları, destek vektör makineleri, örnekler, yapay sinir ağları, grafik modeller vb.

(decision trees, support vector machines, instances, neural networks, graphical models etc.)

Değerlendirme (Evaluation):

Analytical Method Development

Bu algoritmalar için temel yapıyı oluşturan ikinci kavramdır.

Aday program olarak da bilinen hipotezleri değerlendirmek için kullanılan bir yöntemdir.

Bazı örnekler doğruluk, tahmin ve hatırlama, kare hata, olabilirlik, arka olasılık, maliyet, marj, entropi, k-L ıraksaması vb.

(accuracy, prediction and recall, squared error, likelihood, posterior probability, cost, margin, entropy k-L divergence etc.)

16 | Birgit Schmauser | April 2008

Optimizasyon:

Bu, algoritmaları oluşturan üçüncü ve son kavramdır.

Hipotez veya aday programın oluşturulduğu yöntemdir. Arama işlemi olarak da bilinir.

Örnekler: kombinasyonel optimizasyon, dışbükey optimizasyon ve kısıtlı optimizasyon sayılabilir.

(combinatorial optimization, convex optimization and constrained optimization.)

Bu bileşenlerin çeşitli kombinasyonlarını yapmak tüm makine öğrenme algoritmalarını oluşturur.

- Temsil (representation)
- Değerlendirme (evaluation)
- Optimizasyon (optimization)

