# Operations Research & Optimization

#### A new dimension to Data Science

Andrea Taverna, PhD andrea.taverna@outlook.com



OptLab – The Optimization Laboratory @ Università degli Studi di Milano



#### Note:

Hyperlinks seem not to work in the PDF version of the presentation.

I replaced the link symbols with numbers and added all the links in clear in the last three slides, titled "Links", with the corresponding number and description.

#### Key points



- 1 Operations Research (OR) is a "new dimension" of Data Science
  - New problems, new methods, new solutions



- 2 Problems that require OR are everywhere!
  - missed opportunities



- 3 You should invest in OR and Operations Researchers
  - grab those opportunities!

#### Outline

#### 1 Introduction

- From Data Science to OR
- Examples of OR applications

#### 2 Mathematical aspects of OR

- Models and algorithms
- Optimization for Data Science

#### 3 OR and Data Science in the industry

- ► The Analytics Stack
- OR in a Data Science team

## Introduction

## The goal of Data Science

support Business Decisions!



## The Data Science way



#### A forecast



#### And now what?

#### Take a Data-Driven Decision!



- Decisions required to obtain results
- Is data **enough** for taking **good decisions**?

#### **Business Simulation Games**

Can people take **good decisions** in a game **at least**?



Beer Game at MIT Management School [1]



The Manufacturing Game (TM) [2]

(used in **Education** and **Consultancy**)

#### The Beer Distribution Game [1]



- 4 players, 4 roles
- Costs for production, inventory, backlog
- Goal: satisfy demand and minimize cost

#### Beer Distribution Game: results



- Average cost 10x times the optimal one
- Even experienced professionals perform poorly!

#### **Beer Distribution Game: Demand**



Forecast with persistence ...

#### Causes of poor performance

- Not a data problem. Data is trivial!
- Costs from players' suboptimal decisions

Can't we do **better**?

Yes, with **Operations Research**!



## The Operations Research way



#### Example: Jobs planning (real-world ex.)



- Assign staff and machines to jobs
- Objectives:
  - 1 Maximize number of completed jobs
  - 2 Minimize schedule interruptions

## Jobs planning: Solution (jobs)

- 1 Jobs completion within 94% of true optimum
- 2 Optimal number of interruptions



## Jobs planning: Solution (workers)

- 1 Jobs completion within 94% of true optimum
- 2 Optimal number of interruptions



## Jobs planning with OR: workflow



## **Exploiting OR and Optimization**

OR **empowers** decision makers, it **does not** replace them!



- ► easy decisions → automatic
  - Prescriptive analytics
- ► hard decisions → clear
  - coordinate and communicate

#### Solvers, Modelling Software and Associations













































**GLPK** Gecode **GNU MathProg** 



**SCIP** 



Minizinc



## Success stories at INFORMS' Impact [3]

- ► NBC: optimize advertising slots sales
  - + 50 mln/y, reduce replanning by 80%
- ► UPS: delivery optimization
  - + 300 000 mln\$/y and -100 000 CO<sub>2</sub> ton/y
- ► Chile Football League: optimize game schedules
  - + 6 bln \$/y by increasing audience
- Disney World

• • •

## Optimisation in the Real World [4] Friendly introduction to practical OR problems



## Mathematical Aspects of OR

Models



## The Binary Knapsack Problem (BKP)

- Items with different values and weights
- A knaspack with limited capacity



#### **Problem:**

► Put items in the knapsack to maximize its value

## Ingredients of an optimization problem

- ▶ Data → Parameters
  - ightharpoonup Weight  $W_i$  and value  $e_i$  of item  $i \in I$
  - Knapsack capacity W
- **Decisions** → Variables
  - $X_i$  binary:  $X_i = 1$  if *i* is in the knapsack
- **► Rules** → Constraints
  - ► Knapsack Capacity:  $\sum_{i \in I} w_i x_i \leq W$
- ► Goals → Objective functions
  - ► Knapsack value:  $\max f(\mathbf{x}) = \sum_{i \in I} e_i \mathbf{x}_i$

## The Binary Knapsack Model

$$\max f(\mathbf{x}) = \sum_{i \in I} e_i \mathbf{x}_i \tag{1}$$

$$\sum_{i \in I} w_i x_i \le W \tag{2}$$

$$\mathbf{x}_{i} \in \{0, 1\} \qquad \forall i \in I \tag{3}$$

Solved by either a **general-purpose solver** or an **ad-hoc algorithm** 

## Mathematical Aspects of OR

Algorithms







#### Types of optimization problems

Problem 
$$P : \min f(\mathbf{x})$$
  
s.t.  $\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^{n \times m}$ 

#### Classification:

- ► Convexity → shape of functions and sets
  - Convex
  - Non-convex
- ► Integrality → type of variables
  - **Continuous:** all continuous
  - Mixed-integer: some integer, logical or categorical

#### Convexity: Convex vs Non-Convex



→: gradient

\* : local optimum

\* : global optimum

#### Integrality: Continuous vs Mixed Integer



- : invalid integer point
- : valid integer point
- : continuous valid space
- \*: continuous optimum
- \*: integer optimum

continuous optimum =/= integer optimum

→ rounding not enough!

## Solving optimization problems

|                   | Algorithm                                    | Complexity (as spiciness) |                |
|-------------------|----------------------------------------------|---------------------------|----------------|
|                   |                                              | Convex                    | Non-<br>Convex |
| Continuous        | gradient-<br>based                           |                           |                |
| Mixed-<br>Integer | smart<br>enumeration<br>of integer<br>points |                           |                |

#### A few algorithms for optimization

- Simplex
- Barrier
- Lagrangean Decomposition
- Branch&Bound
- Column Generation
- Benders Decomposition
- Ad-hoc Relaxations
- Matheuristics
- Metaheuristics: Tabu-Search, Large-Scale Neighbourhood search,...

## Mathematical Aspects of OR

Optimization for Data Science



## **Optimization for Data Science**

General **learning problem** on (X,y):

$$\min R(\theta) = \int_{\mathbf{X}} \mathcal{L}(\mathbf{y}, \mathbf{f}(\mathbf{x}; \theta)) d\mathbf{x} \quad \text{s.t. } \theta \in \Theta$$

→ An optimization problem!

#### Reframe learning as optimization:

- Improve existing DS methods
- Better solutions, richer models

## Optimization for Data Science[5]

"[...] the best machine learning work is an attempt to re-phrase prediction as an optimization problem [...] bad machine learning papers (most of them in fact) use bad out of date ad-hoc optimization techniques.

One thing we did in the past was to use CPLEX [...] to compute support vector machines. [...] it blew away all approaches coming from machine learning as CPLEX was several orders of magnitude faster."



#### Addendum

Following the talk, I decided to clarify and expand the points in the two previous slides.

- OR algorithms can be successfully exploited in some optimization problems in ML
  - See [6]

In other cases, OR algorithms are likely to be ill-suited

- Furthermore, ML can be successfully exploited in OR algorithms as well
  - See [7], and [8]
- OR and ML are complementary approaches that yield the best when working in synergy!

# Regression as an optimization problem (proof of concept)

(X,y) dataset  $\rightarrow$  features  $X \in \mathbb{R}^{n \times m}$ , labels  $y \in \mathbb{R}^n$ .

$$I=\{1...n\}, J=\{1...m\}.$$

$$\min \sum_{i \in I} \epsilon_i^+ + \epsilon_i^-$$

s.t. 
$$\sum_{j \in J} \beta_j^\top x_{ij} + \alpha = y_i + \epsilon_i^+ - \epsilon_i^- \quad \forall i \in I$$

$$\epsilon_{i}^{+} \geq 0, \epsilon_{i}^{-} \geq 0 \quad \forall i \in I$$
  
 $\beta_{i} \in \mathbb{R} \ \forall j \in J, \ \alpha \in \mathbb{R}$ 

Where:

- $\triangleright$   $\beta,\alpha$ : coefficients and fixed term
- ► €+, €-: residuals



# OR and Data Science in the Industry



### INFORMS' Analytics [9] (since 2008)

Free professional webzine, general scope





# OR&Optimization: the paradox

- Highest maturity, intelligence and unique disruptive power
  - High ROI!
- Example 2 Less known, compared to other methods
  - Too much disruptive?

# Lack of "hype"?





# The Analytics stack (PWC [10]-2013)

#### Data Analytics Maturity Model



## Analytics Maturity Model (SAS [11]-2013)



Analytics Maturity



# Analytics Value Escalator (Gartner[12]-2016)

#### **Quadrants of Analytic Value**





# OR&Optimization: the paradox

- Highest maturity, intelligence and unique disruptive power
  - High ROI!
- Example 2 Less known, compared to other methods
  - Too much disruptive?

**Beat the averages!**Do Operations Research!



# The Ideal Data Science team ... has Operations Research in it!

"Based on my experience in large industrial companies, I believe that every Data Science team should have a 20% of Operations Research expertise, to effectively deliver sustainable value to the business."

Benoit Rottembourg [13], head of Pricing Analytics @
 Maersk (Copenhagen) - former Partner at EURODECISION (France), Nov 2017



## An Operations Researcher near you

# Where are **your**Operations Researchers now?



(It's cold outside!)

## **Key points**



1 Give Data Science a new dimension!



2 Bring Operations Research to the world!



**3** Grab the opportunities, Get OR!

#### Links -I

- [1] Beer distribution game at MIT https://www.systemdynamics.org/index.php? option=com\_content&view=article&id=141:beergame&catid=20:site-content&Itemid=120
- [2] The Manufacturing Game http://manufacturinggame.com/the-manufacturing-game/
- [3] Informs' Impact magazine https://www.informs.org/Impact
- [4] Optimization in the real world www.optimisationintherealworld.co.uk/
- [5] JF Puget's blog post https://www.ibm.com/developerworks/community/blogs/jfp/entry/machine\_learning\_and\_optimization1?lang=en

#### Links-II

- [6] OR algorithms for ML and Data Science http://www.lnmb.nl/conferences/2018/programln mbconference/Bertsimas-1.pdf
- [7] Data Science algorithms for OR http://cerc-datascience.polymtl.ca/wp-content/uploads/2017/04/CERC\_DS4DM\_2017\_004-1.pdf
- [8] On synergy between OR and ML https://cpaior2017.dei.unipd.it/slides/Lodi.pdf
- [9] Analytics Magazine http://analytics-magazine.org/

#### Links-III

- [10] Analytics Stack (PWC) http://slideplayer.com/slide/4880231/
- [11] Analytics Maturity Model (SAS)
  https://www.slideshare.net/louisfernandes/
  130812-lse-lecturev20public
- [12] Analytics Value Escalator https://www.slideshare.net/CAPHC\_ACCSP/o ct-25-caphc-breakfast-symposiumsponsored-by-hitachi-cgi-evident-and-intelpaul-lewis-70281057
- [13] Benoit Rottembourg's profile https://www.linkedin.com/in/rottembourg/