A Simultaneous S/X Feed-System for a LEO-Satellite-Tracking Reflector Antenna

Christophe Granet^{#1}, Ian M. Davis^{#2}, John S. Kot^{#3}, Greg S. Pope^{#4}

*BAE Systems Australia Ltd 40-52 Talavera Road, North Ryde 2113 NSW, Australia

¹Christophe.Granet@baesystems.com; ²Ian.Davis5@baesystems.com ³John.Kot@baesystems.com; ⁴Greg.Pope@baesystems.com

Abstract— S-band has been used for satellite Telemetry, Tracking and Control (TT&C) applications for many years and more recently X-band has also been deployed. A theoretical design for a new dual S/X-band feed-system for a ground station with S-band transmit and receive capabilities and X-band receive capabilities is presented.

I. INTRODUCTION

An additional ground station antenna is required to communicate with an existing Low Earth Orbit (LEO) satellite system. The application requires an antenna feed-system to suit a 6.4m prime-focus antenna that can operate simultaneously in S- and X-band.

The S-band portion of the feed-system is required to uplink Telemetry Control (TC) signals to the satellites and downlink Telemetry Monitor (TM) signals from the satellite.

The X-band portion of the feed-system is required to receive data from the satellite. The feed-system is not required to transmit in X-band.

The theoretical preliminary study of the feed-system and antenna performance is reported here.

II. S/X FEED-SYSTEM

The target specifications for the complete antenna are listed in Tables 1 and 2 for S-band and X-band respectively.

Table 1: Target specifications at S-band.

Tuble 1. Tul get specifications at S band.	
Receive Band (Rx)	2.200 - 2.300 GHz
Transmit Band (Tx)	2.025 – 2.120 GHz
Power Handling	50 W minimum
G/T	19 dB/K at 5° antenna elevation
Tx-band sidelobes	29-25log θ dBi; $2^{\circ} < \theta \le 35^{\circ}$
	$-10 \text{ dBi}; 35^{\circ} < \theta \le 140^{\circ}$
	$5 \text{ dBi}; 140^{\circ} < \theta \le 180^{\circ}$
Polarization	Rx: LHCP or RHCP; Tx: RHCP
Axial ratio	Rx: < 1.6 dB; Tx: < 1.6 dB
VSWR	Rx: <1.5 : 1; Tx: <1.5 : 1
Transmit gain	40 dBi
EIRP	55 dBW

Table 2: Target specifications at X-band.

Receive Band (Rx)	8.0 – 8.5 GHz
G/T	28 dB/K at 5° antenna elevation
Polarization	RHCP
Axial ratio	< 1.6 dB
VSWR	<1.5:1

The proposed reflector geometry is a symmetrical prime-focus paraboloid with a 6.4m diameter and a focal-length of 2.56m. The f/D ratio of the reflector (where f is the focal length and D is the diameter) is therefore 0.4. A 1m-diameter central blockage is included to simulate the blockage of the feed-system. At present, however, no feed-support legs are considered in these preliminary results.

The half subtended-angle for the reflector, as seen from the focus, is $\theta_e \approx 64^\circ$. A simplified block diagram of the proposed S/X feed-system is shown in Fig. 1. The feed-system utilises a coaxial waveguide horn to ensure a common phase centre for both S-band and X-band. The theoretical radiation pattern (linear polarisation) of the coaxial horn is shown in Fig. 2 for 2.072 GHz, in Fig. 3 for 2.250 GHz and in Fig. 4 for 8.250 GHz while the theoretical return loss is shown in Fig. 5.

The S-band signals are carried by the coaxial waveguide section and are separated from the coaxial waveguide by a turnstile junction with four rectangular waveguide ports. WR430 waveguide-to-coaxial adapters are connected to each rectangular waveguide port of the turnstile junction which allows the remaining feed-network to be completed using coaxial components. Although this approach results in a higher insertion-loss and a slight degradation in Gain to Noise-Temperature Ratio (G/T), it has the advantage of significantly reducing the size, weight and cost of the feed-system.

In order to provide a circularly-polarized four-port feedsystem, the coaxial components required are two 180-degree hybrids connected to a 90-degree hybrid as shown in Fig. 1. This network provides RHCP (right-hand circular polarization) and LHCP (left-hand circular-polarization) ports that cover the entire transmit and receive frequency ranges (2.025 to 2.30 GHz). The transmit and receive signals are separated using commercially-available diplexers. Diplexers are used in lieu of standard filters so as to provide a dump-port for signals reflected from the coaxial horn; otherwise the horn mismatch will impact on the axial ratio performance. A Low Noise Amplifier (LNA) is connected to both the RHCP and LHCP receive ports to allow simultaneous reception of both signals.

The S-band transmit function works in reverse to that described above. As only a RHCP transmit port is required, the LHCP port is terminated with a coaxial load.

The X-band signals are carried by the circular waveguide section (the centre section of the coaxial structure) (Fig. 1), and pass through a circular-to-square waveguide transformer. The signal then passes through a septum polarizer which has two rectangular waveguide ports, one providing the X-band LHCP and the other RHCP. As only RHCP is required for the feed-system, the LHCP port is terminated with a waveguide load. The septum polarizer was chosen for this application because it is very compact, an advantage for feed-systems used in prime-focus applications.

Fig. 1: a) Simplified block-diagram of the feed-system; b) cross-section of the horn and turnstile junction

Fig. 2: Radiation pattern (linear polarization) of the feed system at 2.072 GHz.

Fig. 3: Radiation pattern (linear polarization) of the feed system at 2.250 GHz.

Fig. 4: Radiation pattern (linear polarization) of the feed system at 8.250 GHz.

Fig. 5: a) Theoretical return loss of the horn and turnstile junction at S-band and theoretical return loss of the horn at X-band.

Preliminary results for the 6.4m diameter antenna show that the expected gains (excluding feed chain losses) are:

- S-band Tx: Mid-band (2.072 GHz): Gain \approx 40.9 dBi (Aperture efficiency \approx 64%)
- S-band Rx: Mid-band (2.250 GHz): Gain \approx 41.2 dBi (Aperture efficiency \approx 57%)
- X-band Rx: Mid-band (8.250 GHz): Gain ≈ 51.9 dBi (Aperture efficiency $\approx 50\%$)

The theoretical radiation pattern of the 6.4m-diameter antenna is shown in Fig. 6.

Preliminary results on the antenna temperature calculation show that an antenna temperature (not system temperature) of about 56 K is expected for a 5 degree antenna-elevation at mid-band (2.25 GHz) of the S-band Rx and about 73 K at mid-band (8.25 GHz) of the X-band Rx.

Once all the losses are included, a G/T of approximately 19.2 dB/K is predicted at 2.25 GHz for a 5° antenna elevation while a G/T of 30.3 dB/K is predicted at 8.25 GHz.

The S-band transmit band losses including the diplexer and coaxial network were estimated to be 0.80 dB, giving a predicted mid-band gain of 40 dBi.

Fig. 6: Theoretical radiation pattern: a) 2.072 GHz, b) 2.25 GHz and c) 8.25 GHz

III. CONCLUSIONS

A compact low cost simultaneous S/X-band feed design has been designed for a prime focus 6.4m reflector system. The feed design is capable of transmitting and receiving in TT&C S-bad frequencies and receiving at X-band. The overall antenna performance is highly efficient with a G/T of 19.2 dB/K and 30.3 dB/K at 5 degrees elevation for S- and X-bands respectively.