

Viability of Virtual Machines in HPC

A State of the Art Analysis

22nd August 2016

Jens Breitbart¹, Simon Pickartz², Josef Weidendorfer¹, Antonelli Monti²

¹ Computer Architecture, Technische Universität München ² Automation of Complex Power Systems, E.ON ERC, RWTH Aachen

j.breitbart@tum.de

Why bother?

Virtual Machines are widely used in various fields.

- Isolation
 - HPC systems typically isolate jobs using dedicated nodes.
 - Multiple jobs on one node can increase overall throughput.

- Transparent start, stop and migration of jobs
 - Enables hardware maintenance without loosing job progress.
 - Reorchestrate job placement at runtime.

Why bother? — Maintenance

Why bother? — Reorchestration

Virtual Machines

- PCIe devices may be passed-through directly to the VM and Single Root I/O Virtualization (SRIOV) can be used
 - See our previous paper for details

- Virtual CPUs
 - => is thread-to-core mapping still effective?

Virtual Machines

- PCIe devices may be passed-through directly to the VM or use Single Root I/O Virtualization (SRIOV)
 - See our previous paper for details

- Virtual CPUs
 - => is thread to core mapping still effective?

- Nested page tables with two level page walk
 - => is main memory bandwidth affected negatively?

Hardware - Specification

- 2 Intel Xeon E5-2670 (Sandy Bridge) with 8 cores / 16 HTs each
- 2.6—3.3 GHz
- 115 W TDP for each CPU
- 2 * 64 GB memory
- QDR Infiniband, 1 GBit/s Ethernet, SSD

Hardware - Energy Measurements

- RAPL Running Average Power Limit
 - Cores: CPU cores and L1/2 cache
 - Package: whole package
 - DRAM: main memory
- MEGWARE Clustsafe PDU: whole system incl. power supply

Applications — MPIBlast

- We used a slightly modified version of MPIBlast 1.6.0
- It is a computational bioinformatics application
- "embarrassing parallel"
- Data fits into L1 cache
- A lot of instruction dependencies within the main kernel

A compute bound application

Applications — CG solver

- Part of the LAMA library
- Conjugate gradient solver used with randomly created matrices
- Uses OpenMP for shared memory parallisation
- About 70% of the runtime is spent in Intels MKL

A main memory bandwidth limited application

Thread pinning with VMs

(b) LAMA

Energy consumption within VMs — MPIBlast

Energy consumption within VMs — LAMA

Co-scheduling with VMs

VMs in HPC

- Overall performance is fine...
 - ... besides a small drop only noticeable in STREAM
- Energy consumption is fine as well

But...

VMs in HPC

- Increase in complexity
 - We could not identify the reason for the performance increases when running LAMA within a VM.
 - Thread pinning gets more complicated and most runtimes don't get it right.
- Start, stop, or migrate is not possible with a VM that has an attached PCIe device (such as Infiniband).
 - MPI support is required!
 - We have a prototype.
- Inter-VM intra host communication is slow => VM granularity is important.

Conclusion

- Most benefits cannot be achieved with the default HPC software stack.
- But there are various possibilities that should be analyzed further.

Please take a look at <u>www.en.fast-project.de</u> for related research.

