Assignment 8 Prudhvi Vajja

Question 6

a) Specify (in ms) the minimum time to retrieve a record with key k in the B⁺-tree provided that there is a record with this key.

Ans:

```
The largest integer n: N \le \text{block size} - ((\text{block-address size})/(\text{block-address size} + \text{record key size})) Extra block access id: N + 1 N = 4096 - 9 / (9+12) N = 194 New N = 194 + 1 = 195. Given block access time as 10ms Minimum time to retrieve a record is: (\log_{195}(10^8) + 1) * 10 = 50 \text{ ms}.
```

b) Specify (in ms) the maximum time to retrieve a record with key k in the B+-tree.

Ans:

As N = 194 therefore for a branching factor of 2, no: of branches=> 194/2 + 1 = 94The height of the tree is 4.

Block access time is 10ms The total time is (4 + 1 + 1) *10 ms = 60 ms.

Question 9

a) Ans:

Records in R = 1,500,000. Records in S = 5,000. b(R) = 1500000/30 = 50000 b(S) = 5000/10 = 500buffer blocks = 101

With R as outer relation: IO = b(R) + (b(R) * b(S))/100 = 300000

With S as outer relation: IO = b(S) + (b(R) * b(S))/100 = 250500

b) Ans:

Merge sorting R takes $2*b(R) \log_{100}(b(R)) = 2*50000 * \log (50000) = 300000$

Merge sorting S takes $2*b(S) \log_{100}(b(S)) = 2*500 * \log (500) = 2000$

Total =
$$b(R) + b(S) + 2*b(R) \log_{100}(b(R)) + 2*b(S) \log_{100}(b(S))$$

= 352500

c) Ans:

Merge sorting R takes $2*B(R) \log_{100}(B(R)) = 2*50000 * \log (50000) = 300000$ Merge sorting S takes $2*B(S) \log_{100}(B(S)) = 2*500 * \log (500) = 2000$

With 1 B value i.e p=1:

we will do a block nested - loop join with s as outer relation. So, it will require b(S) + b(R)b(S)/100 block accesses i.e 250500 block accesses.

With 2 B value i.e p=2:

we will do a 2-block nested - loop join with s as outer relation. b(S) = 500/2 = 250, b(R) = 50000/2 = 25000. So, it will require b(S) + b(R)b(S)/100 block accesses i.e 62750 block accesses.

With 3 B value i.e p=3:

we will do a 3-block nested - loop join with s as outer relation. b(S) = 500/3 = 170, b(R) = 50000/3 = 17000 nearly. So, it will require b(S) + b(R)b(S)/100 block accesses i.e 29070 block accesses.

d) Ans:

Total cost

- -Hash phase costs2*b(R)+2*b(S)
- -Merge phase costs b(R) +b(S)
- -Total: 3*(b(R)+b(S)) = 3*(50000+50) = 150150.

Part 3 Question 10

(a) S1 = R1(x)R2(y)R1(z)R2(x)R1(y)

As there are no cycles, it is conflict serializable, Conflict equivalent schedule: R1(x) R1(z) R1(y) R2(x) R2(y)

(b) S2 = R1(x)W2(y)R1(z)R3(z)W2(x)R1(y).

It is not conflict serializable, as there are cycles.

(c) S3 = R1(z)W2(x)R2(z)R2(y)W1(x)W3(z)W1(y)R3(x).

As there are no cycles, it is conflict serializable, Conflict equivalent schedule: R1(z) W2(x) R2(y) R2(z) W1(x) W3(z) W1(y) R3(x)

Question 11

Give 3 transactions T1, T2, T3 and a schedule S on these transactions whose precedence graph (i.e. serialization graph) consists of the edges (T1, T2), (T2, T1), (T1, T3), (T3, T2).

R1(A) R2(B) W3(A) W1(B) W2(A)

Question 12

Give 3 transactions T1, T2, and T3 that each involve read and write operations and a schedule S that is conflict-equivalent with all serial schedules over T1, T2, and T3.

This is represented as: R2(x) R1(x) W1(x) R2(y) W2(y) R3(y) W3(y)

As T2 should execute before T1 and T3, so the order of T3 and T1 is not important Therefore the possible conflict equivalent schedules are:

1. T2 T1 T3

$$T1 = R1(x)W1(x), T2 = R2(x) R2(y)W2(y), T3 = R3(y) W3(y)$$

2. T2 T3 T1

$$T1 = R1(x)W1(x), T2 = R2(x) R2(y)W2(y), T3 = R3(y) W3(y)$$

As we have three Transactions: T1, T2, T3 Possible combinations are 6 out which four of them except this two have conflicts such as T1 T3 T2, T1 T2 T3, T3 T1 T2, T3 T2 T1

Question 13

a) Show that each serial schedule involving transaction T_1 and T_2 pre- serves the consistency requirement of the database.

```
For T1 T2:

Initially: A = 0, B = 0

After T1: A = 0, B = 1

After T2: A = 0, B = 1

A = 0 V B = 0 = T V F = T

Similarly, for T2 T1 also consistency is met.
```

b) Construct a schedule on T1 and T2 that produces a non-serializable schedule.

```
R1(A); R2(B); R2(A); R1(B);
if A = 0 then B: = B+1;
if B = 0 then A: = A+1;
W2(A); W1(B);
```

c) Is there a non-serial schedule on T1 and T2 that produces a serializable schedule? If so, give an example

No, As R1(A) conflicts with W2(A) and R2(B) conflicts with W1(B). We cannot start with either of them without forming a cycle.