

Building Temporal Graphs and Embeddings

A Practitioner's Approach

Srdjan Marinovic

February, 2020

About me

- Research background in security and non-monotonic systems
- Currently CTO at a DC-startup SignalFrame

SignalFrame

Indexing public WiFi/Bluetooth infrastructure

- Analyzing temporal changes and relationships between spaces and devices
 - Supplementing satellite image analysis
 - 2nd Factor Authentication
 - Market intelligence

SignalGraph

- Signals are nodes in a streaming temporal graph
- ~ 6 billion nodes
- ~ 100 billion edges

- . ~ 300 million updated nodes per day
- . ~ 1 billion edge updates per day

SignalGraph (GWU wifi @ 1 week Feb)

SignalGraph (GWU wifi @ 1 week Feb)

SignalGraph (GWU wifi @ 1 week Feb)

Temporal (Streaming) System Model

Temporal (Streaming) Systems

- Network analytics
 - Intrusion detection
- Recommendation engines
- User rankings
- Geo-temporal analytics

Practitioner's proposition

Model and analyze temporal graphs via explicit temporal nodes and edges.

01

V

Temporal Graph Schema

Schema Goals

- Queries (lock-free)* parallelizable over time
- Implement on-top of existing DBs
- Maintain constant in-memory size
- Reduce time-filtering in batch queries
 - i.e. process only the necessary data

Strawman: Time as a (multi-)edge property

Strawman: Time as a (multi-)edge property

- Density edges/node increases with time
 - Limits the scalability for real-time and batch queries
- Limited concurrent access for reads and writes
- Makes time-constraints hard to implemented and scale

Timed Nodes: Time window part of a node's id

Timed Nodes: Time window part of a node's id

Windows need not be the same:

Geo-temporal analysis

Timed Nodes: Time window part of a node's id

Note: suited for vertex-centric (adjacency list) storage

Timed Graphs:

Group windows into graphs for batch processing

Timed Nodes: Open-World Assumption Are two nodes connected?

Timed Nodes: Open-World Assumption

- Assume Closed-World
 - Set w = 0 if edge does not exist in past N windows
- Create snapshots of aggregated past windows
 - Propagate aggregated edges as a new edge
 - Can be done in a lazy (amortized) fashion

Related Work on Modelling/Processing Temporal Graphs

- Chronos: A Graph Engine for Temporal Graph Analysis
 - [Han et al 2014]
- GraphOne: A Data Store for Real-time Analytics on Evolving Graphs
 - [Kumar et al 2019]
- GraphTau: Time-Evolving Graph Processing at Scale
 - [lyer et al 2016]
- Kineograph: Taking the Pulse of a Fast-Changing and Connected World
 - [Cheng et al 2012]
- A Foundation of Lazy Streaming Graphs
 - [Dexter et al 2019]
- KickStarter: Fast and Accurate Computations on Streaming Graphs via Trimmed Approximations
 - [Vora et al 2017]

Timed Nodes Schema: Summary

- Nodes sharded across time windows.
- Length of windows can be learnt from the stream.
- Pro: Can be implemented on top of existing Graph/KV DBs
- Pro: Well suited for concurrent reads/writes
- Pro: Reduces density edges/nodes
- Pro: Easy to drop past data and have a constant in-mem size
- Con: Requires an additional query layer
- Con: Requires dealing with Open-World and snapshots

02

V

Temporal Embeddings

Embedding Goals

- Expose changes in a node's behaviour over arbitrary time windows.
- Account for different levels of activity across time.
- Deal with infinite node sets.
 - or at least billions of nodes

(Static) Embeddings

.
$$f_{embed}: Node \rightarrow R^d$$

(Ideally, d << number of nodes)</p>

- Two main approaches:
 - Laplacian Eigenvectors
 - Random-walk skip-gram models

Random-walk skip-gram

Multiple walks per node e.g.

```
Walk = [n4,n3,n2,n1]
Skip-window-1 = [
(n4,n3)
(n3,n4)
(n3,n2)
(n1,n2)
```

Random-walk skip-gram

Strawman Temporal Embedding 1

 Train on random walks across all time windows to produce one embedding per node.

- Does not model change over time.
- Does not differentiate between different levels of activity over time.

Strawman Temporal Embedding 2

- Apply skip-gram model to each timed node
 - Add regularization to "shadow" (non-temporal) nodes
 - Use strawman-1 embeddings as priors

- Still need to deal with:
 - "infinite" (streaming) graphs?
 - no activity?
 - different levels of activity?

- Build random-walks per node per sliding windows
- 2. Aggregate random-walks from connected components into a sparse vector
 - NLP/IR: Each vector is a document with nodes as dimensions.
- Collect all sparse vectors per connected components per sliding windows

Build embeddings for [t0, t_m] with some step. Step and size hyper-params can result in a smoother-transition between embeddings.

[t0, t_n] [t0+step, t_n+step] [t0+2*step, t_n+2*step]

Generate weighted random walks per connected component.

Starting at the hidden node (in this case n4)

(n0, n3, n1) (n0, n3, n2) \sum "document" vector

(n7, n9) \sum "document" vector (n7, n9)

. . .

SignalFrame's 2nd Factor Authentication

A bubble is a time window of 14 days, with a 3-day overlap.

A bubble represents all 1-hop neighbours of a device that we want to authenticate.

Has the behaviour changed?

SignalFrame's 2nd Factor Authentication

Reduction to temporal embeddings.

Has the behaviour changed?

SignalFrame's 2nd Factor Authentication

Embedding is a "signal" document.

All other signals are noise.

Similarity between sets of temporal embeddings

- Still need to address:
 - Different amount of evidence for the activity during a time window
 - Different set sizes, i.e. presence and absence of activity

3 devices; 2 temporal communities per device

Embeddings per device (derived from sliding over temporal communities)

3 devices; 2 temporal communities per device

Embeddings per device (derived from sliding over temporal communities)

Similarity between sets of temporal embeddings

- $f: 2^{Embedding} \times 2^{Embedding} \rightarrow R$
- Input:
 - M(n,m) pairwise cosine between sets A, B
 - weights_a weights associated to members of A
 - weights_b weights associated to members of B

Sketch

- W, where w(i,j) = **min**(weights_a(i), weights_b(j))
- S = $M \circ W$ // Hadamard product
- score = $\max(\sum_{i=1}^{n} \max(S(i,.)), \sum_{i=1}^{m} \max(S(.,i)))$
- decay = $max(Onorm(Max_i^n M(i,.)), Onorm(Max_i^m M(.,j)))$
 - 0 Onorm(vector) := (len_non_zero(vector) + 1)/(len(vector) +1)
- 5. **return** score * decay

Related Work on Graph Embeddings

- Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
 - [Belkin et al 2000]
- DeepWalk: Online Learning of Social Representations
 - [Perozzi et al 2014]
- node2vec: Scalable Feature Learning for Networks
 - Grover et al 2016]
- struc2vec: LearningNodeRepresentationsfromStructural Identity
 - [Ribeiro et al 2017]
- Is a Single Embedding Enough? Learning Node Representations that Capture Multiple
 Social Contexts
 - [Epasto et al 2019]

Temporal (Quasi-)Embeddings Summary

- Pro: Can be done in pseudo real-time for some use-cases
- Pro: Explicit similarity model for sets of embeddings
- Pro: Process new nodes in a streaming mode
- Con: Dimensions are not reduced
- Con: No explicit cost function

Future Work

- Focus on structural embeddings (ala struct2vec) but with infinite inputs
 - Use quasi-embeddings as "syntactic" embedding
- Explore how/if Graph NNs can be used for structural analysis

Thanks.