```
# 1. Upload the Dataset
from google.colab import files
uploaded = files.upload()
```

 $\overline{\mathbf{T}}$ Choose Files No file chosen onabla

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to

2. Load the Dataset import pandas as pd import numpy as np

train_data = pd.read_csv('mnist_train.csv') # Replace with your filename train_data.head()

0 5 1 0 2 4	-		0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0									-	·	ŭ		
2 1					5	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
2 7	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
3 1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
4 9	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0

3. Data Exploration print("Shape of dataset:", train_data.shape) print("Dataset info:") print(train_data.info()) print("Statistical description:") print(train_data.describe())

Shape of dataset: (60000, 785) _

Dataset info:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 60000 entries, 0 to 59999 Columns: 785 entries, label to 28x28

dtypes: int64(785) memory usage: 359.3 MB

None

None Statistical description:

	Tabel	TXT	IXZ	TXO	1X4	TXO	TXO	
count	60000.000000	60000.0	60000.0	60000.0	60000.0	60000.0	60000.0	
mean	4.453933	0.0	0.0	0.0	0.0	0.0	0.0	
std	2.889270	0.0	0.0	0.0	0.0	0.0	0.0	
min	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	
25%	2.000000	0.0	0.0	0.0	0.0	0.0	0.0	
50%	4.000000	0.0	0.0	0.0	0.0	0.0	0.0	
75%	7.000000	0.0	0.0	0.0	0.0	0.0	0.0	
max	9.000000	0.0	0.0	0.0	0.0	0.0	0.0	

	1x7	1x8	1x9	 28x19	28x20	\
count	60000.0	60000.0	60000.0	 60000.000000	60000.000000	
mean	0.0	0.0	0.0	 0.200433	0.088867	
std	0.0	0.0	0.0	 6.042472	3.956189	
min	0.0	0.0	0.0	 0.000000	0.000000	
25%	0.0	0.0	0.0	 0.000000	0.000000	
50%	0.0	0.0	0.0	 0.000000	0.000000	
75%	0.0	0.0	0.0	 0.000000	0.000000	
max	0.0	0.0	0.0	 254.000000	254.000000	

	28x21	28x22	28x23	28x24	28x25	28x26	\
count	60000.000000	60000.000000	60000.000000	60000.0000	60000.0	60000.0	
mean	0.045633	0.019283	0.015117	0.0020	0.0	0.0	
std	2.839845	1.686770	1.678283	0.3466	0.0	0.0	
min	0.000000	0.000000	0.000000	0.0000	0.0	0.0	
25%	0.000000	0.000000	0.000000	0.0000	0.0	0.0	
50%	0.000000	0.000000	0.000000	0.0000	0.0	0.0	
75%	0.000000	0.000000	0.000000	0.0000	0.0	0.0	
max	253.000000	253.000000	254.000000	62.0000	0.0	0.0	

	28x27	28x28
count	60000.0	60000.0
mean	0.0	0.0
std	0.0	0.0
min	0.0	0.0
25%	0.0	0.0
50%	0.0	0.0
75%	0.0	0.0

```
0.0
     max
                           0.0
     [8 rows x 785 columns]
# 4. Check for Missing Values and Duplicates
print("Missing values:\n", train_data.isnull().sum())
print("Duplicates:", train_data.duplicated().sum())
→ Missing values:
      label
                0
     1x1
               0
     1x2
               0
     1x3
               0
     1x4
               0
     28x24
     28x25
               0
     28x26
     28x27
               0
     28x28
               a
     Length: 785, dtype: int64
     Duplicates: 0
# 5. Visualize a Few Features
import matplotlib.pyplot as plt
# Visualize first 5 digits
for i in range(5):
    img = train_data.iloc[i, 1:].values.reshape(28, 28)
    plt.imshow(img, cmap='gray')
    plt.title(f"Label: {train_data.iloc[i, 0]}")
    plt.axis('off')
    plt.show()
```


Label: 5

Label: 0

Label: 4

Label: 1

 $X_scaled = X / 255.0$

Label: 9


```
import pandas as pd
# Load the CSV file (adjust the path if needed)
df = pd.read_csv("/content/mnist_test.csv", header=None)
# Rename columns: first column is label, rest are pixels
df.columns = ['label'] + [f'pixel{i}' for i in range(1, df.shape[1])]
# Split into features and target
X = df.drop('label', axis=1)
y = df['label']
print("X shape:", X.shape)
print("y shape:", y.shape)
 ⋺₹
            FileNotFoundError
                                                                                                                  Traceback (most recent call last)
            <ipython-input-22-f1f0ca33b744> in <cell line: 0>()
                          3 # Load the CSV file (adjust the path if needed)
             ----> 4 df = pd.read_csv("/content/mnist_test.csv", header=None)
                           6 # Rename columns: first column is label, rest are pixels
                                                                                           - 💲 4 frames -
            \underline{/usr/local/lib/python 3.11/dist-packages/pandas/io/common.py} \ \ in \ get\_handle(path\_or\_buf, \ mode, \ encoding, \ compression, \ memory\_map, \ node, \ node,
            is_text, errors, storage_options)
                                                   if ioargs.encoding and "b" not in ioargs.mode:
                      871
                      872
                                                             # Encoding
             --> 873
                                                             handle = open(
                      874
                                                                       handle,
                      875
                                                                       ioargs.mode,
            FileNotFoundError: [Frrno 2] No such file or directory: '/content/mnist test csy'
   Next steps: ( Explain error
# 7. Convert Categorical Columns to Numerical (Not needed - labels are already numeric)
# Included for completeness
y = y.astype('int')
# 8. One-Hot Encoding (for target variable)
from tensorflow.keras.utils import to_categorical
y_encoded = to_categorical(y)
# 9. Feature Scaling
```

```
# 10. Train-Test Split
from sklearn.model_selection import train_test_split
X_train, X_val, y_train, y_val = train_test_split(X_scaled, y_encoded, test_size=0.2, random_state=42)

# 11. Model Building (Deep Learning)
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten

model = Sequential([
    Dense(512, activation='relu', input_shape=(784,)),
    Dropout(0.2),
    Dense(256, activation='relu'),
    Dropout(0.2),
    Dense(10, activation='softmax')
])

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
```

/usr/local/lib/python3.11/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` arg super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 512)	401,920
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 256)	131,328
dropout_1 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 10)	2,570

Total params: 535,818 (2.04 MB)
Trainable params: 535,818 (2.04 MB)
Non-trainable params: 0 (0 00 R)

12. Evaluation (Training)

 $\label{eq:history} \verb| history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=10, batch_size=128) \\$

```
⇒ Epoch 1/10
    375/375
                               — 10s 22ms/step - accuracy: 0.8421 - loss: 0.5272 - val_accuracy: 0.9651 - val_loss: 0.1218
    Epoch 2/10
                               — 11s 25ms/step - accuracy: 0.9623 - loss: 0.1218 - val_accuracy: 0.9723 - val_loss: 0.0902
    375/375 -
    Epoch 3/10
    375/375 -
                               — 8s 19ms/step - accuracy: 0.9743 - loss: 0.0818 - val_accuracy: 0.9750 - val_loss: 0.0774
    Epoch 4/10
    375/375 -
                                - 10s 18ms/step - accuracy: 0.9805 - loss: 0.0640 - val_accuracy: 0.9759 - val_loss: 0.0794
    Epoch 5/10
    375/375
                                - 11s 20ms/step - accuracy: 0.9844 - loss: 0.0470 - val_accuracy: 0.9803 - val_loss: 0.0676
    Epoch 6/10
    375/375
                                - 10s 26ms/step - accuracy: 0.9877 - loss: 0.0404 - val_accuracy: 0.9812 - val_loss: 0.0686
    Epoch 7/10
    375/375
                                - 10s 25ms/step - accuracy: 0.9896 - loss: 0.0329 - val_accuracy: 0.9796 - val_loss: 0.0689
    Epoch 8/10
                                - 8s 20ms/step - accuracy: 0.9908 - loss: 0.0272 - val_accuracy: 0.9810 - val_loss: 0.0733
    375/375
    Epoch 9/10
    375/375
                                – 10s 20ms/step - accuracy: 0.9911 - loss: 0.0277 - val_accuracy: 0.9812 - val_loss: 0.0704
    Epoch 10/10
    375/375
                                — 8s 15ms/step - accuracy: 0.9922 - loss: 0.0226 - val_accuracy: 0.9808 - val_loss: 0.0759
```

```
# 13. Make Predictions from New Input
sample = X_val.iloc[0].values.reshape(1, -1)
prediction = model.predict(sample)
predicted_digit = np.argmax(prediction)
print("Predicted digit:", predicted_digit)
```

```
1/1 — 0s 76ms/step
Predicted digit: 7
```

```
# 14. Convert to DataFrame and Encode (for new input if needed)
# Example for one new sample
sample_df = pd.DataFrame(sample)
sample_scaled = sample_df / 255.0
```

```
!pip install gradio import gradio as gr
```

from PIL import Image

```
Collecting semantic-version~=2.0 (from gradio)
       Downloading semantic_version-2.10.0-py2.py3-none-any.whl.metadata (9.7 kB)
     Collecting starlette<1.0,>=0.40.0 (from gradio)
       Downloading starlette-0.46.2-py3-none-any.whl.metadata (6.2 kB)
     Collecting tomlkit<0.14.0,>=0.12.0 (from gradio)
       Downloading tomlkit-0.13.2-py3-none-any.whl.metadata (2.7 kB)
     Requirement already satisfied: typer<1.0,>=0.12 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.15.3)
     Requirement already satisfied: typing-extensions~=4.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (4.13.2)
     Collecting uvicorn>=0.14.0 (from gradio)
       Downloading uvicorn-0.34.2-py3-none-any.whl.metadata (6.5 kB)
     Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from gradio-client==1.10.0->gradio) (2025.3.2)
     Requirement already satisfied: websockets<16.0,>=10.0 in /usr/local/lib/python3.11/dist-packages (from gradio-client==1.10.0->gra
     Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.11/dist-packages (from anyio<5.0,>=3.0->gradio) (3.10)
     Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.11/dist-packages (from anyio<5.0,>=3.0->gradio) (1.3.1)
     Requirement already satisfied: certifi in /usr/local/lib/python3.11/dist-packages (from httpx>=0.24.1->gradio) (2025.4.26)
     Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.11/dist-packages (from httpx>=0.24.1->gradio) (1.0.9)
     Requirement already satisfied: h11>=0.16 in /usr/local/lib/python3.11/dist-packages (from httpcore==1.*->httpx>=0.24.1->gradio) (
     Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.28.1->gradio) (3.18.0
     Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.28.1->gradio) (2.32.3
     Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.28.1->gradio) (4.
     Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas<3.0,>=1.0->gradio)
     Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas<3.0,>=1.0->gradio) (2025.2)
     Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas<3.0,>=1.0->gradio) (2025.2)
     Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.11/dist-packages (from pydantic<2.12,>=2.0->gradi
     Requirement already satisfied: pydantic-core==2.33.2 in /usr/local/lib/python3.11/dist-packages (from pydantic<2.12,>=2.0->gradio
     Requirement already satisfied: typing-inspection>=0.4.0 in /usr/local/lib/python3.11/dist-packages (from pydantic<2.12,>=2.0->gra
     Requirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.11/dist-packages (from typer<1.0,>=0.12->gradio) (8.1.8)
     Requirement already satisfied: shellingham>=1.3.0 in /usr/local/lib/python3.11/dist-packages (from typer<1.0,>=0.12->gradio) (1.5
     Requirement already satisfied: rich>=10.11.0 in /usr/local/lib/python3.11/dist-packages (from typer<1.0,>=0.12->gradio) (13.9.4)
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas<3.0,>=1.0
     Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.11/dist-packages (from rich>=10.11.0->typer<1.0,>=
     Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.11/dist-packages (from rich>=10.11.0->typer<1.0,
     Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hu
     Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.2
     Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.11/dist-packages (from markdown-it-py>=2.2.0->rich>=10.11.0->
     Downloading gradio-5.29.0-py3-none-any.whl (54.1 MB)
                                                54.1/54.1 MB 14.3 MB/s eta 0:00:00
     Downloading gradio_client-1.10.0-py3-none-any.whl (322 kB)
                                                 322.9/322.9 kB 20.7 MB/s eta 0:00:00
     Downloading aiofiles-24.1.0-py3-none-any.whl (15 kB)
     Downloading fastapi-0.115.12-py3-none-any.whl (95 kB)
                                                - 95.2/95.2 kB 6.9 MB/s eta 0:00:00
     Downloading groovy-0.1.2-py3-none-any.whl (14 kB)
     Downloading python_multipart-0.0.20-py3-none-any.whl (24 kB)
     Downloading ruff-0.11.8-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.5 MB)
                                                11.5/11.5 MB 95.2 MB/s eta 0:00:00
     Downloading safehttpx-0.1.6-py3-none-any.whl (8.7 kB)
     Downloading semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)
     Downloading starlette-0.46.2-py3-none-any.whl (72 kB)
                                                - 72.0/72.0 kB 4.2 MB/s eta 0:00:00
     Downloading tomlkit-0.13.2-py3-none-any.whl (37 kB)
     Downloading uvicorn-0.34.2-py3-none-any.whl (62 kB)
                                                - 62.5/62.5 kB 4.3 MB/s eta 0:00:00
     Downloading ffmpy-0.5.0-py3-none-any.whl (6.0 kB)
     Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)
     Installing collected packages: pydub, uvicorn, tomlkit, semantic-version, ruff, python-multipart, groovy, ffmpy, aiofiles, starle
     Successfully installed aiofiles-24.1.0 fastapi-0.115.12 ffmpy-0.5.0 gradio-5.29.0 gradio-client-1.10.0 groovy-0.1.2 pydub-0.25.1 🥃
# 17. Create a Prediction Function
def predict_digit(image):
    import cv2
    image = cv2.resize(image, (28, 28))
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    image = image.reshape(1, -1).astype('float32') / 255.0
   pred = model.predict(image)
    return np.argmax(pred)
# 18. Create the Gradio Interface
!pip install gradio
import gradio as gr
print(gr.__version__)
import gradio as gr
def greet(name):
    return "Hello " + name + "!"
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
import gradio as gr
import numpy as np
```