

Transfer Learning

BOSTON UNIVERSITY
MACHINE INTELLIGENCE
COMMUNITY

CNN: Fully-connected Layer

Ignoring bias values for simplification

In this example, we're doing regression

CNN: Automatic Feature Extraction

Feature map

Feature Hierarchy

- Learned features become progressively more complex throughout the network
- Earlier layers contain more primitive features

Primitive features

Complex features

Image from Lee et al. 2011

How to reuse learned models?

Would be useful to be able to reuse learned parameters and learned features

- Trained feature extractor contains features common among domain
- Reuse this part

- Trained fully-connected network contains features specific to dataset
- Can potentially reuse weights in latter layers as well

Deep learning so far ...

- Convolutional neural networks allows us to capture compositional data and convert it into a hierarchical representation.
 - This approach have prove quite effective in classification task, especially in computer vision.
- While CNN is effective in computer vision task, it is also requires a lot of resources.
- CNN, Neural Networks, Backpropagation are not new. All of these techniques have been around since the 1980s. But why it's popular now?

ImageNet

 Both a collection of 14+ millions images that are categorised by human into roughly 20 thousands categories. This dataset also fuels the ImageNet challenge.

The domain of data

- Finding large amount of data for every task we want our machine learning model to perform is hard.
 - e.g. doing machine translation on rare language pair.
 - e.g. data about cyber vulnerabilities exploits

The domain of data

- Sometime our input data varies.
 - e.g. speech recognition is challenging because every person's speech is a little bit different.
 Furthermore, there are different accent of the same language, thus one model for one language would not work well.

Chart from Awni Hannun

11

Learning from simulation

- Use a simulation of the real world to train a model.
 - Faster training time
 - Less costly
 - Able to repeat multiple time
- But the data from the simulation is still not the same data from the real world.
 - We need the ability to adapt the model from using the data in the simulated world to the data

DeepMind's simulated environment

So, transfer learning

- Utilise the feature extraction property of Convolutional Neural Networks
 - Reduce training time and computational cost.
 - Reduce the amount of data used.
- Improve performance with task where the data domain varies.
 - In general, instead of mapping data to output, we distill some "knowledge" about the data and use that to make a better machine learning model.

More formally

$$\mathcal{D} = \{\mathcal{X}, P(X)\}$$

Domain

Feature space

Marginal probability distribution

When $D_s \neq D_t$ or $T_s \neq T_t$, **transfer learning** aims to improve the target predictive function (the conditional probability distribution) in D_t using knowledge from D_s and T_s

Conditional probability distribution (this is what's usually learnt)

Different scenarios of transfer learning

The domains are different

$$\mathcal{X}_S \neq \mathcal{X}_T$$

The feature spaces of the data are different from each other. E.g. different languages.

$$P(X_S) \neq P(X_T)$$

The marginal probability distributions of the data are different.

E.g. different topic of document.

The tasks are different

$$\mathcal{Y}_S \neq \mathcal{Y}_T$$

The label spaces are different. E.g. classify the same document into different label depend on different task.

$$P(Y_S|X_S) \neq P(Y_T|X_T)$$

The learned functions are different. E.g. the source and target distribution of the data is unbalanced compared to their class.

Different setting of transfer learning

- Both domain and task are different -> Unsupervised Transfer Learning.
- Domains are different ->
 Transductive Transfer
 Learning
- Tasks are different ->
 Inductive Transfer
 Learning

Domain Adaptation

- We are learning the same task but on different domain of data.
- To make our model adapt to the change in domain, we could make the two domain "closer" to each other.
 - Transform data from the domains into an invariant space (K. Saenko et al. 2010)

- Make it an objective of the model to "confuse" the domains of the data (<u>Ganin</u> 2015)

Domain confusion using backpropagation

Multi-task learning

- Instead of training a model for each task, let's train one model for all the task and share the parameters for the models.
- This take advantage of the hierarchical representation of the data through the network.

Few-shot, One-shot, Zero-shot learning

Data is expensive. Can we use transfer learning to learn with less data?

 One-shot learning means that the model have one example of the class before it has to make the prediction and zero-shot learning is making prediction on brand new data.

Example of few shot learning in human

- If you are not familiar with this spiky fruit on the left here, it's a durian.
- Human has the ability to learn/understand concepts, ideas, or objects from very small "training" example.

Example of few shot learning in human

- So if you see the image of this spiky fruit again, you would easily be able to recognise that's it's a durian.
 - In essence, you only require one or few training example to "learn" new thing.

Example of zero shot learning in human

- Furthermore, human can generalise from other knowledge.
 - The wug test developed by Berko Gleason (1958) show that very young child can apply morphological rule to unknown words.
 - Here, we don't know the plural form of the word "wug", but we are able to formulate it anyway.

THIS IS A WUG.

NOW THERE IS ANOTHER ONE.

THERE ARE TWO OF THEM.

THERE ARE TWO _____.

Word-embedding

- Turns words to vector representation.
- Models like word2vec exploit the fact that semantically similar words tend to be around similar words.
- Vector representation have semantics value.

Image from Olah 2014

Pre-training and fine-tuning

- Fine-tuning is when you have a different but related dataset and you want to train the whole model to better fit what you have.
- Pre-train models have all the weights already trained. Just make a new Fully Connected layer at the end and retrain the layer.

Pretrained models with **PYT** bRCH

```
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
```

```
for param in model_conv.parameters():
    param.requires_grad = False
```

```
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 3)
```

- Import and instantiate pretrained model
- Remove the output layer of model
- Append a randomly initialized classifier and fine-tune

Try it out!

References & Further Reading

- http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Glorot_342.
 pdf
- http://www.deeplearningbook.org/contents/representation.html
- 3. http://anthropology.uwo.ca/faculty/creider/027/wugs.pdf
- 4. https://www.cs.princeton.edu/~rajeshr/papers/cacm2011-researchHighlights-c onvDBN.pdf
- 5. http://ruder.io/transfer-learning
- 6. http://ieeexplore.ieee.org/document/5288526/

Shoutout to our Sponsors

Boston University Computer Science

Boston University SPARK!

Boston University Software Application and Innovation Lab

Upcoming Events

MIC Paper signup: https://goo.gl/iAm6TL
BUMIC Projects signup: https://goo.gl/GmP9oK

BUMIC paper discussion:

Paper: Decoupled Neural Interfaces using Synthetic Gradients

Location: Fishbowl Conference Room

Date: 11.06.17 Time: 7 PM

Next workshop:

Topic: Sequential Data

Location: BU Hariri Seminar Room

Date: 11.07.17 Time: 7 PM

