

Módulo 4: Camada Física

Introdução às redes v7.0 (ITN)

Objetivos do módulo

CISCO

Título do módulo: Camada física

Objetivo do Módulo: Explicar como os protocolos de camada física, os serviços e a mídia de rede possibilitam as comunicações em redes de dados.

Título do Tópico	Objetivo do Tópico
Propósito da camada física	Descrever a finalidade e as funções da camada física na rede.
Características da camada física	Descreva as características da camada física.
Cabeamento de cobre	Identificar as características básicas do cabeamento de cobre.
Cabeamento UTP	Explicar como o cabo UTP é usado em redes Ethernet.
Cabeamento de fibra óptica	Descrever o cabeamento de fibra óptica e suas principais vantagens em relação a outros meios físicos.
Mídia sem fio	Conectar dispositivos usando meio físico com e sem fio.

confidencial da Cisco

- 4

4.1 – Propósito da camada física

Objetivo de camada física A conexão física

- Antes que qualquer comunicação de rede possa ocorrer, é necessário estabelecer uma conexão física com uma rede local.
- Essa conexão pode ser com ou sem fio, dependendo da configuração da rede.
- Isso geralmente se aplica se você está considerando um escritório corporativo ou uma casa.
- As placas de interface de rede (NICs) conectam um dispositivo à rede.
- Alguns dispositivos podem ter apenas uma NIC, enquanto outros podem ter várias NICs (com fio e/ou sem fio, por exemplo).
- Nem todas as conexões físicas oferecem o mesmo nível de desempenho.

Objetivo de camada física A camada física

- Transporta bits através da mídia de rede
- Ela aceita um quadro completo da camada de enlace de dados e o codifica como uma série de sinais que são transmitidos para o meio físico local.
- Este é o último passo no processo de encapsulamento.
- O próximo dispositivo no caminho para o destino recebe os bits e reencapsula o quadro e decide o que fazer com ele.

4.2 Características da camada física

Características da camada física Protocolos de camada física

Características da camada física Protocolos de camada física

Os padrões da camada física abordam três áreas funcionais:

- Componentes Físicos
- Codificação
- Sinalização

Os componentes físicos são dispositivos de hardware eletrônicos, meios físicos e outros conectores que transmitem e transportam os sinais para representar os bits.

 Os componentes de hardware, como NICs, interfaces e conectores, materiais de cabo e projetos de cabo são especificados nos padrões associados à camada física.

Características da camada física Codificação

- Codificação converte o fluxo de bits em um formato reconhecível pelo próximo dispositivo no caminho de rede.
- Esta 'codificação' fornece padrões previsíveis que podem ser reconhecidos pelo próximo dispositivo.

Voltage

 Exemplos de métodos de codificação incluem Manchester (mostrado na figura), 4B/5B e 8B/10B.

Time

Características da camada física Sinalização

- O método de sinalização é como os valores de bit, "1" e "0" são representados no meio físico.
- O método de sinalização varia de acordo com o tipo de meio que está sendo usado.

Sinais elétricos sobre cabo de cobre

Pulsos de luz sobre cabo de fibra óptica

Características da camada física Largura de banda

- Largura de banda é a capacidade na qual um meio pode transportar dados.
- A largura de banda digital mede a quantidade de dados que pode fluir de um lugar para outro em um determinado período de tempo; quantos bits podem ser transmitidos em um segundo.

 Propiedades da mídia física, tecnologias atuais e as leis da física têm função importante na determinação da largura de banda disponível.

Unidades de Largura de Banda	Sigla	Equivalência
Bits por segundo	bps	1 bps = unidade fundamental de largura de banda
Quilobits por segundo	Kbps	$1 \text{ kb/s} = 1.000 \text{ bps} = 10^3 \text{ bps}$
Megabits por segundo	Mbps	1 Mbps = $1,000,000$ bps = 10^6 bps
Gigabits por segundo	Gbps	1 Gbps $- 1,000,000,000$ bps $= 10^9$ bps
Terabits por segundo	Tbps	1 Tbps = $1,000,000,000,000$ bps = 10^{12} bps

Características da camada física Terminologia de largura de banda

Latência

Quantidade de tempo, incluindo atrasos, para os dados viajarem de um ponto a outro

Produtividade

a medida da transferência de bits através do meio físico durante um determinado período

Goodput

- a medida de dados úteis transferidos em um determinado período
- Goodput = Throughput sobrecarga de tráfego

4.3 Cabeamento de cobre

Cabeamento de cobre Características dos meios físicos em cobre

O cabeamento de cobre é o tipo mais comum de cabeamento usado nas redes hoje em dia. É barato, fácil de instalar e tem baixa resistência ao fluxo de corrente elétrica.

Limitações:

- Atenuação quanto mais tempo os sinais elétricos têm que viajar, mais fracos ficam.
- O sinal elétrico é suscetível a interferência de duas fontes, que podem distorcer e corromper os sinais de dados (Interferência Electromagnética (EMI) e Interferência de RFI (RFI) e Crosstalk).

Mitigação:

- A adesão estrita aos limites de comprimento do cabo atenuará a atenuação.
- Alguns tipos de cabos de cobre atenuam EMI e RFI usando blindagem metálica e aterramento.
- Alguns tipos de cabo de cobre atenuam o cruzamento, torcendo os fios do par de circuitos opostos juntos.

Cabeamento de cobre

Tipos de cabeamento de cobre

Unshielded Twisted-Pair (UTP) Cable

Shielded Twisted-Pair (STP) Cable

Coaxial Cable

Cabeamento de Cobre Par trançado não blindado (UTP)

- O cabeamento UTP é o meio físico de rede mais comum.
- Com terminação de conectores RJ-45.
- Interconecta hosts com dispositivos de rede intermediários.

Principais características do UTP

- A capa externa protege os fios de cobre contra danos físicos.
- 2. Os pares trançados protegem o sinal contra interferências.
- 3. O isolamento plástico com código de cores isola eletricamente os fios um do outro e identifica cada par.

Cabeamento de cobre

Cabo de par trançado blindado (STP)

Melhor proteção contra ruídos que o UTP

- Mais caro do que UTP
- Mais difícil de instalar do que UTP
- Com terminação de conectores RJ-45.
- Interconecta hosts com dispositivos de rede intermediários.

Principais Características do STP

- 1. A capa externa protege os fios de cobre contra danos físicos.
- O escudo trançado ou folha fornece proteção EMI/RFI
- 3. O escudo de folha para cada par de fios fornece proteção EMI/RFI
- 4. O isolamento plástico com código de cores isola eletricamente os fios um do outro e identifica cada par.

Cabo coaxial

Consiste do seguinte:

- Revestimento de cabo externo para evitar danos físicos menores
- Uma trança de cobre tecida, ou folha metálica, atua como o segundo fio no circuito e como uma blindagem para o condutor interno.
- 3. Uma camada de isolamento plástico flexível
- 4. Um condutor de cobre é usado para transmitir os sinais eletrônicos.

Há tipos diferentes de conectores utilizados com o cabo coax.

Comumente usado nas seguintes situações:

- Instalações sem fio- cabos coaxiais ligam antenas a dispositivos sem fio.
- Instalações de internet a cabo instalações do cliente fiação

4.4 - Cabeamento UTP

Cabeamento UTP Propriedades de cabeamento UTP

O UTP possui quatro pares de fios de cobre com código de cores torcidos juntos e envoltos em uma bainha de plástico flexível. Nenhuma blindagem é usada. UTP depende das seguintes propriedades para limitar o cruzamento:

- Cancelamento Cada fio em um par de fios usa polaridade oposta. Um fio é negativo, o outro é positivo. Eles são torcidos juntos e os campos magnéticos efetivamente cancelam uns aos outros e fora EMI/RFI.
- Variação de torções por pé em cada fio Cada fio é torcido uma quantidade diferente, o que ajuda a evitar cruzamentos entre os fios no cabo.

Padrões e conectores de cabeamento

As normas para UTP são estabelecidas pelo TIA/EIA. TIA/EIA-568 padroniza elementos como:

- Tipos de cabo
- Comprimentos de cabo
- Conectores
- Terminação de cabo
- Métodos de ensaio

Os padrões elétricos para cabeamento de cobre são estabelecidos pelo IEEE, que classifica o cabo de acordo com seu desempenho. Por exemplo:

- Categoria 3
- Categorias 5 e 5e
- Categoria 6

Category 5 and 5e Cable (UTP)

Category 6 Cable (UTP)

Cabeamento UTP

Padrões e conectores de cabeamento UTP

Conector RJ-45

Soquete RJ-45

Cabo UTP mal terminado

Cabo UTP devidamente encerrado

Cabeamento UTP de Cabos UTP direto e cruzado

um adaptador

Tipo do Cabo	Padrão	Aplicação			
Ethernet Direto	Ambas as extremidades T568A ou T568B	Host para dispositivo de rede			
Ethernet Cruzado*	Uma extremidade é T568A, outra é T568B	Host para host, switch para switch, roteador para roteador			
* Considerado legado devido à maioria das NICs usando o Auto-MDIX para detectar o tipo de cabo e a conexão completa					
Rollover	Propriedade da Cisco	Porta serial do host para Roteador ou Porta do Console do Switch, usando			

4.5 Cabeamento de fibra óptica

Cabeamento Fibra óprica Propriedades do Cabeamento de Fibra Óptica

- Não tão comum como UTP por causa da despesa envolvida
- Ideal para alguns cenários de rede
- Transmite dados por distâncias maiores com largura de banda maior do que qualquer outra mídia de rede
- Menos suscetíveis à atenuação e completamente imunes ao EMI/RFI
- Feito de fios flexíveis e extremamente finos de vidro muito puro
- Usa um laser ou LED para codificar bits como pulsos de luz
- O cabo de fibra óptica atua como um guia de ondas para transmitir luz entre as duas extremidades com perda mínima de sinal

Cabeamento de fibra óptica Tipos de meio físico de fibra

Fibra de modo único

- Núcleo muito pequeno
- Usa lasers caros
- Aplicações de longa distância

Fibra Multimodo

- Núcleo maior
- Usa LEDs menos dispendiosos
- Os LEDs transmitem em ângulos diferent
- Até 10 Gbps a mais de 550 metros

O termo dispersão se refere ao espalhamento do pulso de luz com o tempo. Maior dispersão significa aumento da perda de força do sinal. MMF tem maior dispersão do que SMF, com uma distância máxima do cabo para MMF é de 550 metros.

Cabeamento de fibra óptica Uso de cabeamento de fibra óptica

Agora, o cabeamento de fibra óptica é usado em quatro setores:

- Redes corporativas usadas para aplicativos de cabeamento de backbone e dispositivos de infraestrutura de interconexão
- 2. Fiber-to-the-Home (FTTH): usado para fornecer serviços de banda larga sempre ativos para casas e pequenas empresas.
- 3. Redes de longo curso Utilizadas por provedores de serviços para conectar países e cidades
- **4. Redes de cabos submarinos -** Utilizadas para fornecer soluções confiáveis de alta velocidade e alta capacidade, capazes de sobreviver em ambientes submarinos adversos até distâncias transoceânicas.

Nosso foco neste curso é o uso de fibra dentro da empresa.

Cabeamento de fibra óptica Conectores de fibra óptica

Conectores de Ponta Reta (Straight-Tip - ST)

Conectores Lucent (LC) Simplex

Conectores SC (Conectores de Assinante)

Conectores LC duplex, multimodo

© 2019 Cisco e/ou suas afiliadas. Todos os direitos reservados. Documen confidencial da Cisco

Cabo de remendo de fibra**óptica de cabeamento**

A cor amarela indica cabos de fibra monomodo e o laranja é para cabos de fibra multimodo.

Cabeamento de fibra ótica Fibra versus cobre

A fibra óptica é usada principalmente como cabeamento de backbone para alto tráfego, ponto a ponto

ligações entre instalações de distribuição de dados e para a interligação de edifícios

Problemas de Implementação	Cabeamento UTP	Cabeamento de fibra óptica
Largura de banda suportada	10 Mb/s - 10 Gb/s	10 Mb/s - 100 Gb/s
Distância	Relativamente curto (1 a 100 metros)	Relativamente longo (1 - 100.000 metros)
Imunidade a interferência eletromagnética e de frequências de rádio	Baixa	Alto (totalmente imune)
Imunidade a perigos elétricos	Baixa	Alto (totalmente imune)
Custos da mídia e dos conectores	Menor	Mais alta
Habilidades necessárias para a instalação	Menor	Mais alta

4.6 - Mídia Sem Fio

Meio físico sem fio

Propriedades do meio físico sem fio

Ele carrega sinais eletromagnéticos que representam dígitos binários usando frequências de rádio ou microondas. Isso fornece a melhor opção de mobilidade. Os números de conexão sem fio continuam aumentando.

Algumas das limitações do wireless:

- **Área de cobertura** A cobertura efetiva pode ser significativamente afetada pelas características físicas do local de implantação.
- Interferência O wireless é suscetível a interferência e pode ser interrompido por muitos dispositivos comuns.
- Segurança A cobertura de comunicação sem fio não requer acesso a uma parte física da mídia.
- As WLANs médias compartilhadas operam em half-duplex, o que significa que apenas um dispositivo pode enviar ou receber por vez. Muitos usuários acessando a WLAN simultaneamente resultam em largura de banda reduzida para cada usuário.

Meio físico sem fio Tipos de meio físico sem fio

Os padrões do IEEE e do setor de telecomunicações para comunicação de dados sem fio cobrem tanto o link de dados quanto as camadas físicas. Em cada um desses padrões, camada física especificações ditam:

- Métodos de codificação de dados para sinais de rádio
- Frequência e potência de transmissão
- Requisitos de recepção e decodificação de sinal
- Projeto e construção de antenas

Padrões Sem Fio:

- Wi-Fi (IEEE 802.11) Tecnologia LAN sem fio (WLAN)
- Bluetooth (IEEE 802.15) Padrão de rede de área pessoal sem fio (WPAN)
- WiMAX (IEEE 802.16) Usa uma topologia ponto-a-multiponto para fornecer acesso sem fio de banda larga
- **Zigbee (IEEE 802.15.4)** Comunicações com baixa taxa de dados e baixo consumo de consumo de consumente para aplicações de Internet das Coisas (IoT)

Meio físico sem fio LAN sem fio

Em geral, uma LAN sem fio (WLAN) requer os seguintes dispositivos:

- Access Point (Ponto de Acesso) Sem Fio (AP): concentra os sinais sem fio dos usuários e se conecta, geralmente por meio de um cabo de cobre, a uma infraestrutura de rede de cobre existente, como a Ethernet.
- Adaptadores de NIC sem fio fornecem recursos de comunicação sem fio para hosts de rede.

Existem vários padrões de WLAN. Ao adquirir equipamentos WLAN, garanta compatibilidade e interoperabilidade.

Os administradores de rede devem desenvolver e aplicar políticas e processos de segurança rigorosos para proteger as WLANs contra acesso e danos não autorizados.

© 2019 Cisco e/ou suas afiliadas. Todos os direitos reservados. Documento confidencial da Cisco

Meio físico sem fio

Packet Tracer - Conexão de uma LAN com e sem fio

Neste Packet Tracer, você fará o seguinte:

- Conectar-se à nuvem
- Conexão com um Roteador
- Conectar os dispositivos restantes
- Verificar as conexões
- Examinar a topologia física

Laboratório – Exibição de informações de NIC com e sem fio

Neste laboratório, você completará os seguintes objetivos:

- Identificar e trabalhar com placas de rede do PC
- Identificar e usar os ícones rede da notificação do sistema

4.7 - Módulo Prática e Quiz

Packet Tracer — Exploração de Camada Física — Modo Físico

Nesta atividade de modo físico do TRACER Packet (PTPM), você concluirá o seguinte:

- Examine Informações de Endereçamento IP Local
- Traçar o Caminho Entre Fonte e Destino

Packet Tracer - Conecte a camada física

Neste Packet Tracer, você fará o seguinte:

- Identificar Características Físicas de Dispositivos para Interconexão de Redes
- Selecionar os Módulos Corretos para Ter Conectividade
- Conectar os Dispositivos
- Verifique a conectividade de rede.

O que aprendi neste módulo?

- Antes de qualquer comunicação de rede, uma conexão física com uma rede local, com ou sem fio, deve ser estabelecida.
- A camada física consiste em circuitos eletrônicos, meios físicos e conectores desenvolvidos pelos engenheiros.
- Os padrões da camada física abordam três áreas funcionais: componentes físicos, codificação e sinalização.
- Três tipos de cabeamento de cobre são: UTP, STP e cabo coaxial (coaxial).
- O cabeamento de UTP está em conformidade com os padrões estabelecidos conjuntamente pela TIA/EIA. As características elétricas do cabeamento de cobre são definidas pelo Instituto de Engenharia Elétrica e Eletrônica (IEEE).
- Os principais tipos de cabos que são obtidos usando convenções de fiação específicas são Ethernet Straight-through e Ethernet Crossover.

O que eu aprendi neste módulo (Cont.)?

- O cabo de fibra óptica transmite dados por longas distâncias e a larguras de banda mais altas do que qualquer outra mídia de rede.
- Existem quatro tipos de conectores de fibra óptica: ST, SC, LC e LC multimodo duplex.
- Os cabos de patch de fibra óptica incluem multimodo SC-SC, monomodo LC-LC, multimodo ST-LC e monomodo SC-ST.
- O meio físico sem fio transporta sinais eletromagnéticos que representam os dígitos binários de comunicações de dados usando frequências de rádio ou de micro-ondas. A rede sem fio tem algumas limitações, incluindo área de cobertura, interferência, segurança e os problemas que ocorrem com qualquer mídia compartilhada.
- Os padrões sem fio incluem o seguinte: Wi-Fi (IEEE 802.11), Bluetooth (IEEE 802.15), WiMAX (IEEE 802.16) e Zigbee (IEEE 802.15.4).
- A LAN sem fio (WLAN) requer um AP sem fio e adaptadores NIC sem fio.

Novos Termos e Comandos

- Telecommunications Industry
 Association/Electronic Industries Association
 (TIA/EIA)
- latência
- produtividade
- goodput
- Interferência eletromagnética (EMI)
- Interferência de radiofrequência (RFI)
- Crosstalk
- Unshielded Twisted Pair (UTP)
- Shielded Twisted Pair (STP)
- Cabo coaxial
- RJ-45
- Cancelamento
- TIA/EIA-568

- Ethernet Direto
- Ethernet crossover
- Rollover
- Single-Mode Fiber (SMF)
- Multimode (MMF)
- Straight-tip (ST) Connectors
- Conectores SC (Conectores de Assinante)
- Conectores Lucent (LC) Simplex
- Conectores LC duplex, multimodo
- Bluetooth (IEEE 802.15)
- WiMAX (IEEE 802.16)
- Zigbee (IEEE 802.15.4)
- Access point sem fio (AP)

