Regras Derivadas e Equivalências Populares

Douglas O. Cardoso douglas.cardoso@cefet-rj.br docardoso.github.io

Roteiro

1 Regras Derivadas

2 Equivalências Populares

Roteiro

1 Regras Derivadas

2 Equivalências Populares

Douglas O. Cardoso CEFET-RJ Petrópolis

Informações Gerais

- Regras derivadas são sequências "auto-contidas" de aplicações das regras básicas de inferência (DN).
- São "atalhos" na descrição de provas, evitando repetições de passos.
- Não há impedimentos para o uso ou mesmo criação de regras derivadas, mas é necessário prová-las.
- Algumas regras derivadas são tão conhecidas quanto as regras básicas.

Modus Tollens

Modus Tollens (mt):

1.
$$p \rightarrow q$$

$$2. \neg q$$

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi}$$

premissa

$$e
ightarrow 1$$
, 3

Princípio do Terceiro Excluído

Princípio do Terceiro Excluído (pte):

$$\frac{\varnothing}{\phi \vee \neg \phi}$$

1.
$$[\neg(p \lor \neg p)]$$

1.1.1.
$$p \vee \neg p$$

$$1.1.2. \perp$$

1.2.
$$\neg p$$

1.3.
$$p \vee \neg p$$

2.
$$p \vee \neg p$$

$$i$$
 \vee 1.1

$$i \vee 1.2$$

Regra de Resolução 1

Regra de Resolução 1 (res_1) :

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

1.
$$p \lor q$$

$$2. \neg p$$

3.
$$[\neg q]$$

3.1.1.
$$\perp$$

1.
$$p \lor q$$
 premissa

 2. $\neg p$
 premissa

 3. $[\neg q]$
 suposição

 3.1. $[p]$
 suposição

 3.1.1. \bot
 $abs\ 2$, 3.1

 3.2. $[q]$
 suposição

 3.2.1. \bot
 $abs\ 3$, 3.2

 3.3. \bot
 $e \lor 1$, 3.1 , $3.1.1$, 3.2 , $3.2.1$

Regra de Resolução 2

Regra de Resolução 2 (res_2) :

1.
$$p \vee q$$

2.
$$\neg p \lor r$$

3.2.
$$q \vee r$$

4.1.
$$q \vee r$$

5.
$$q \vee r$$

$$\frac{\phi \vee \psi \qquad \neg \phi \vee \chi}{\psi \vee \chi}$$

premissa

premissa

suposição

$$res_1$$
 2, 3

$$i \lor 3.1$$

$$i \vee 4$$

$$e \lor 1$$
, 3, 3.2, 4, 4.1

Roteiro

1 Regras Derivadas

2 Equivalências Populares

Informações Gerais

- Duas fórmulas ϕ e ψ para as quais vale $\phi \vdash \psi$ assim como $\psi \vdash \phi$ são ditas equivalentes (segundo prova).
- Para provar uma equivalência $\phi \dashv \vdash \psi$ é necessário provar tanto a "ida" $\phi \vdash \psi$ quanto a "volta" $\psi \vdash \phi$.
- Assim como as regras derivadas, algumas equivalências são populares pelo seu uso frequente em provas.
- São apresentadas a seguir algumas dessas equivalências, e a prova da ida de cada uma delas. É sugerido como exercício provar cada volta.

Contraposição

Contraposição (cp): $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

- 1. $p \rightarrow q$
- 2. $[\neg q]$
- **2**.1. [*p*]
- 2.1.1. *q*
- 2.1.2.
- 2.2. $\neg p$
- 3. $\neg q \rightarrow \neg p$

- premissa
- suposição suposição
- $e \rightarrow 1, 2.1$
- abs 2, 2.1.1
- rra 2.1, 2.1.2
 - $i \rightarrow$ 2, 2.2

- * Usando modus tollens
- 1. $p \rightarrow q$
- **2**. [¬*q*]
- 2.1. $\neg p$
- 3. $\neg q \rightarrow \neg p$

- premissa
- . ~
- suposição
- mt 1, 2
- $i \to 3.1, 2.1$

Leis de (Augustus) De Morgan: $\neg \phi \lor \neg \psi \dashv \vdash \neg (\phi \land \psi)$

De Morgan (dm): $\neg p \lor \neg q \dashv \vdash \neg (p \land q)$

1.
$$\neg p \lor \neg q$$
 premissa

 2. $[p \land q]$
 suposição

 2.1. $[\neg p]$
 suposição

 2.1.1. p
 $e \land 2$

 2.1.2. \bot
 abs 2.1, 2.1.1

 2.2. $[\neg q]$
 suposição

 2.2.1. q
 $e \land 2$

 2.2.2. \bot
 abs 2.2, 2.2.1

 2.3. \bot
 $e \lor 1$, 2.1, 2.1.2, 2.2, 2.2, 2.2.2

 3. $\neg (p \land q)$
 rra 2, 2.3

Leis de (Augustus) De Morgan: $\neg \phi \land \neg \psi \dashv \vdash \neg (\phi \lor \psi)$

De Morgan (dm): $\neg p \land \neg q \dashv \vdash \neg (p \lor q)$

1.
$$\neg p \land \neg q$$
 premissa

 2. $[p \lor q]$
 suposição

 2.1. $[p]$
 suposição

 2.1.1. $\neg p$
 $e \land 1$

 2.1.2. \bot
 $abs \ 2.1, \ 2.1.1$

 2.2. $[q]$
 suposição

 2.2.1. $\neg q$
 $e \land 1$

 2.2.2. \bot
 $abs \ 2.2, \ 2.2.1$

 2.3. \bot
 $e \lor 1, \ 2.1, \ 2.1.2, \ 2.2, \ 2.2.2$

 3. $\neg (p \lor q)$
 $rra \ 2, \ 2.3$

Equivalência implicação-disjunção $\neg \phi \lor \psi \dashv \vdash \phi \to \psi$

Equivalência implicação-disjunção (eid): $\neg p \lor q \dashv \vdash p \to q$

1.
$$\neg p \lor q$$

premissa

suposição

$$res_1$$
 1, 2

3.
$$p \rightarrow q$$

$$i \rightarrow 2, 2.1$$

Propriedade distributiva, conjunção sobre disjunção

Distribuição de conjução sobre disjunção: $p \land (q \lor r) \dashv \vdash (p \land q) \lor (p \land r)$

6. $(p \land q) \lor (p \land r)$ $e \lor 3, 4, 4.2, 5, 5.2$

 $i \vee 5.1$

5.2. $(p \wedge q) \vee (p \wedge r)$

Propriedade distributiva, disjunção sobre conjunção

Distribuição de disjunção sobre conjunção: $p \lor (q \land r) \dashv \vdash (p \lor q) \land (p \lor r)$

1.
$$p \lor (q \land r)$$
 premissa

2.1.
$$p \lor q$$
 $i \lor 2$

2.2.
$$p \lor r$$
 $i \lor 2$

2.3.
$$(p \lor q) \land (p \lor r)$$
 $i \land 2.1, 2.2$

3.
$$[q \wedge r]$$
 suposição

3.1.
$$q$$
 $e \wedge 3$

$$3.2. r$$
 $e \wedge 3$

3.3.
$$p \lor q$$
 $i \lor 3.1$

3.4.
$$p \vee r$$
 $i \vee 3.2$

3.5.
$$(p \lor q) \land (p \lor r)$$
 $i \land 3.3, 3.4$

4.
$$(p \lor q) \land (p \lor r)$$
 $e \lor 1, 2, 2.3, 3, 3.5$