Монте-Карло моделирование уравнений агрегаций Малоранговый метод Метод принятия-отклонения

Дьяченко Р.Р.

Университет Сириус, ВМК МГУ

Август - Сентябрь, 2022

Contents

- Что исследуем?
- Где встречается такие объекты??
- Математическая формализация
- Точное решение дифференциального уравнения
- 5 Численные методы решения
- **6** Методы Монте-Карло
- Тестирование алгоритмов
- 🔞 Заключение

Что исследуем?

Объект изучения

Частицы, обладающие размером

Типы взаимодействия частиц

Агрегация (aggregation)

Фрагментация (shattering)

Где встречается такие объекты??

Где встречается такие объекты??

Где встречается такие объекты?

Процессы агрегации и фрагментации широко представлены в природе и нередко являются частью технологических процессов. В качестве важных примеров таких процессов можно указать следующие:

- Процессы обратимой полимеризации в растворах
- 2 Рост биологически важных биополимеров (например, прионов)
- Образование протопланет в пылевых облаках в межзвездном пространстве
- Распределение по размерам частиц в планетных кольцах, таких как кольца Сатурна
- Эволюция компьютерных сетей²
- 💿 и др

В случае однородных систем, рассматриваемых в моёй работе, указанные выше процессы описываются системой уравнений Смолуховского.

¹Cuzzi, J. N., Burns, J. A., Charnoz, S., Clark, R. N., Colwell, J. E., Dones, L., ... Weiss, J. (2010). An Evolving View of Saturn's Dynamic Rings. Science, 327(5972), 1470–1475.

²W. Miura, H. Takayasu, and M. Takayasu. Effect of coagulation of nodes in an evolving complex network. Phys. Rev. Lett, 108:168701, 2012

Математическая формализация

Параметры рассматриваемой модели

Основыне величины системы:

- $oldsymbol{0}$ V объём пространства взаимодейтвия
- $oldsymbol{0}$ n_i концентрация частиц размера i
- $lacktriangleq N_i$ количесвто частиц размера i в объёме V
- t момент времени, в который рассматривается система

Агрегация

$$\frac{dn_s(t)}{dt} = \frac{1}{2} \sum_{i+j=s} K_{ij} n_i(t) n_j(t) - \sum_{j=1}^{\infty} K_{sj} n_s(t) n_j(t).$$

M. Smoluchowski, Versuch Einer Mathematischen Theorie der Koagulationskinetik kolloider Losungen, Zeitschrift f. Physik. Chemie. XCII, 92 (1917) 129-168.

Дьяченко Р.Р.

$$\frac{dn_s(t)}{dt} = \frac{1}{2} \sum_{i+j=s} K_{ij} n_i(t) n_j(t) - \sum_{j=1}^{\infty} K_{sj} n_s(t) n_j(t).$$

 $K_{ij}({f ядро}\ {f с}$ истемы) — среднее число **столкновений** в единице **пространства** за единицу **времени** в системе с единичной **концентрацией частиц** размера—

$$[K_{ij}] = \frac{\text{столкновения}}{\text{пространство} \cdot \text{время} \cdot \frac{\text{частица}}{\text{пространство}} \cdot \frac{\text{частица}}{\text{пространство}}$$

Отметим, что из физических соображений следует симметричность и неотрицательность коэффициентов K_{ij} , т.е. $K_{ij}=K_{ji}>0$

 $n_s(t)$ — концентрация частиц размера $\,-\,s\,$ в момент t

$$[n_s] = \frac{\mathsf{частиц}}{\mathsf{пространство}}$$

$$\frac{dn_s(t)}{dt} = \frac{1}{2} \sum_{i+j=s} K_{ij} n_i(t) n_j(t) - \sum_{j=1}^{\infty} K_{sj} n_s(t) n_j(t).$$

- Первый член описывает скорость, с которой агрегаты размера s формируются из частиц с размерами i и j
- ② Второй член описывают скорость **исчезновения** частиц размера s из-за слияний с частицами любого размера j

Фрагментация

$$\frac{dn_s}{dt} = \frac{1}{2} \sum_{i+j=s} K_{ij} n_i n_j - \sum_{j=1}^{\infty} K_{sj} n_s n_j - \lambda \sum_{j=1}^{\infty} K_{sj} n_s n_j, \ s \neq 1$$

$$\frac{dn_1}{dt} = \frac{\lambda}{2} \sum_{i,j \geqslant 2} (i+j) K_{ij} n_i n_j - \sum_{j=1}^{\infty} K_{1j} n_1 n_j + \lambda \sum_{j=2}^{\infty} j K_{1j} n_1 n_j, \ s = 1$$

 λ — интенсивность фрагментации (безразмерная)

Фрагментация

$$\frac{dn_s}{dt} = \frac{1}{2} \sum_{i+j=s} K_{ij} n_i n_j - \sum_{j=1}^{\infty} K_{sj} n_s n_j - \lambda \sum_{j=1}^{\infty} K_{sj} n_s n_j, \ s \neq 1$$

$$\frac{dn_1}{dt} = \frac{\lambda}{2} \sum_{i,j \geqslant 2} (i+j) K_{ij} n_i n_j - \sum_{j=1}^{\infty} K_{1j} n_1 n_j + \lambda \sum_{j=2}^{\infty} j K_{1j} n_1 n_j, \ s = 1$$

• Частота столкновений с агрегацией частиц пропорциональна частоте столкновений с фрагментацией. В результате получается, что ядра: K_{ij} и A_{ij} (ядро фрагментации) отличаются сомножителем $\lambda>0$ т.е. $A_{ij}=\lambda K_{ij}$. (*Верно для широкого круга параметров системы)

Точное решение дифференциального уравнения

Точное решение дифференциального уравнения

Поиск решения

$$\frac{dn_s}{dt} = \frac{1}{2} \sum_{i+j=s} K_{ij} n_i n_j - \sum_{j=1}^{\infty} K_{sj} n_s n_j - \lambda \sum_{j=1}^{\infty} K_{sj} n_s n_j, \ s \neq 1$$

$$\frac{dn_1}{dt} = \frac{\lambda}{2} \sum_{i,j \ge 2} (i+j) K_{ij} n_i n_j - \sum_{j=1}^{\infty} K_{1j} n_1 n_j + \lambda \sum_{j=2}^{\infty} j K_{1j} n_1 n_j, \ s = 1$$

Вводя начальные условия $n_1(t=0)=n_{10},...,n_s(t=0)=n_{s0},...$, получаем задачу Коши для бесконечной системы обыкновенных дифференциальных уравнений.

На данный момент известно мало теоретических решений для такой системы. Достаточное условие, накладываемое на ядро для сохранения момента $\overset{\sim}{\sim}$

системы
$$\sum\limits_{i=1}^{\infty}in_{i}(t)$$
 при $t>0$

Утверждение:

Первый момент постоянен при t>0, если $\exists \lim_{i,j\to\infty} \frac{K_{ij}}{i+j}$ Иначе момент не сохраняется, либо сохраняется на конечном отрезке.

Известные решения

Начальные условия: $n_s(0) = \delta_{s1}$.

$$\frac{dn_s}{dt} = \frac{1}{2} \sum_{i+j=s} K_{ij} n_i n_j - \sum_{j=1}^{\infty} K_{sj} n_s n_j.$$

$$K_{ij} = 2:$$
 $n_s = \frac{1}{(1+t)^2} e^{-(s-1)\ln(1+1/t)}.$
 $K_{ij} = i+j:$ $n_s = \frac{s^{s-1}}{s!} e^{-t} (1-e^{-t})^{s-1} e^{-s(1-e^{-t})}.$

Для уравнений с фрагментацией:

$$K_{ij} = 1:$$
 $n_s(t \to \infty) \to \lambda \frac{(2s-3)!!}{s!} \frac{(1/2+\lambda)^{s-1}}{(1+\lambda)^{2s-1}}, \quad n(t) = \frac{2\lambda}{2\lambda+1-e^{-\lambda t}}.$

Что же делать в других случаях???

Численные методы решения

Упрощение математической модели

Аппроксимируем исходную бесконечную систему дифференциальных уравнений конечной системой:

$$\frac{dn_s}{dt} = \frac{1}{2} \sum_{i+j=s} K_{ij} n_i n_j - \sum_{j=1}^{M} K_{sj} n_s n_j.$$

Конечно-разностная схема

$$\frac{dn_s}{dt} = \frac{1}{2} \sum_{i+j=s} K_{ij} n_i n_j - \sum_{j=1}^{M} K_{sj} n_s n_j.$$

Сложность каждого шага по времени ${\cal O}(M^2).$

Если использовать малоранговую аппроксимацию K_{ij} ранга R, то $O\left(MR\log M\right)$.

С. А. Матвеев, Е. Е. Тыртышников, А. П. Смирнов, Н. В. Бриллиантов, Быстрый метод решения уравнений агрегационно-фрагментационной кинетики типа уравнений Смолуховского, Выч. мет. программирование, 15:1 (2014), 1–8

Можно запустить 10^6 частиц и уже получить точность порядка 0.1%.

Методы Монте-Карло

Простейшая идея методов Монте-Карло

Основная идея Монте-Карло

- lacktriangle Генерируем случайное число $r\in(0,1)$
- 2 Выберем две случайные частицы из нашей системы
- IF $r < p_{ij}$: Добавляем частицу i+j в память; Делаем шаг по времени; Обновляем вероятности системы;
- ELSE переход на шаг №1

Моменты реализации

- lacktriangle Генерируем случайное число $r\in(0,1)$
- Выберем две случайные частицы из нашей системы (Как выбирать?)
- ullet IF $r < p_{ij}$: (Как считать вероятности столкновения частиц?) Добавляем частицу i+j в память; (Как эффективно хранить частицы?)

Делаем шаг по времени; (Как считать шаг по времени?) Обновляем вероятности системы; (Как быстро пересчитывать вероятности?)

■ ELSE переход на шаг №1

Отвечая на эти вопросы, мы получим два алгоритма

Модификация до метода "принятия-отклонения"

- Как выбирать?
 - Выбираем пары равновероятно: $P_{ij}^0 = \frac{1}{2} N_i N_j / \left(\frac{1}{2} N^2\right) \, \left(N$ общее число частиц)
- ③ Как считать вероятности столкновения частиц? Добавим шаг отклонения: после выбора пары производим столкновение с вероятностью принятия $P_{
 m acc} = K_{ij}/\max_{i,j} K_{ij}$.
- Как эффективно хранить частицы?
 Будем хранить их в виде вектора размеров.
- **© Как быстро пересчитывать вероятности?** Необходима процедура обновления величины $\max_{i,j} K_{ij}$ на каждом шаге алгоритма.
- Как считать шаг по времени?

Как считать шаг по времени?

Вспомним:

 K_{ij} — среднее число **столкновений** в единице **пространства** за единицу

времени в системе с единичной концентрацией частиц размера -i,j

$$[K_{ij}] = rac{$$
СТОЛКНОВЕНИЯ} $rac{ ext{частица}}{ ext{пространство} \cdot ext{время} \cdot rac{ ext{частица}}{ ext{пространство}} \cdot rac{ ext{частица}}{ ext{пространство}}$

Как считать шаг по времени?

Вспомним:

 K_{ij} — среднее число **столкновений** в единице **пространства** за единицу

времени в системе с единичной концентрацией частиц размера -i,j

Тогда число **столкновений** частиц размера i и j в **пространстве** V за **время** Δt :

$$K_{ij} \cdot n_i \cdot n_j \cdot V \cdot \Delta t$$

А общее число столкновений в системе:

$$\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} K_{ij} n_i n_j V \Delta t$$

Как считать шаг по времени?

Зная общее число столкновений в системе за время - Δt :

$$\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} K_{ij} n_i n_j V \Delta t$$

Мы можем найти сколько время необходимо для одного столкновения au_{coll} :

$$\begin{split} \frac{1}{\tau_{\text{coll}}} &= \frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} K_{i,j} n_i n_j V = \frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{K_{i,j}}{V} N_i N_j = \frac{1}{2V} N(N-1) \left\langle K_{i,j} \right\rangle \\ &= \frac{K_{\text{max}} P_{acc} \cdot N(N-1)}{2V} \end{split}$$

Из-за "принятий-отклонений" частота столкновений в нашем алгоритме уменьшается по сравнению с теоретическим значением, поэтому необходимо компенсировать это, уменьшенив шаг по времени:

$$\tau = \tau_{coll} \cdot P_{acc} = \frac{2V}{N(N-1) \cdot K_{max}}$$

Метод принятия-отклонения 1

• Как выбирать?

Выбираем пары равновероятно: $P_{ij}^0=\frac{1}{2}N_iN_j/\left(\frac{1}{2}N^2\right)$ (N - общее число частиц)

- **②** Как считать вероятности столкновения частиц? Добавим шаг отклонения: после выбора пары производим столкновение с вероятностью принятия $P_{\rm acc} = K_{ij}/\max_{i,j} K_{ij}$.
- Как эффективно хранить частицы?
 Будем хранить их в виде вектора размеров.
- ullet Как быстро пересчитывать вероятности? Необходима процедура обновления величины $\max_{i,j} K_{ij}$ на каждом шаге алгоритма.
- Как считать шаг по времени?

$$\tau = \frac{2V}{N(N-1) \cdot K_{max}}$$

¹Garcia, A. L., van den Broeck, C., Aertsens, M., Serneels, R. (1987). A Monte Carlo simulation of coagulation. Physica A: Statistical Mechanics and Its Applications, 143(3), 535–546.

Проблема деградации модели

После каждого успешного события частиц становится меньше, поэтому качество выборки становится хуже, следовательно, точность приближения снижается.

Наша среда - пространственно однородна, поэтому можно воспользоваться следующим трюком. 1 В момент, когда остаётся менее половины частиц, необходимо удвоить удвоить объём и количество частиц. Таким образом, мы получим те же концентрации, но меньший шаг по времени.

¹Liffman, K. (1992). A direct simulation Monte-Carlo method for cluster coagulation. Journal of Computational Physics, 100(1), 116-127.

Псевдокод

```
s(v) = s(v) + s(l)
 1: Инициализация переменных и
                                                 13:
                                                       s(I) = s(N)
    массива размеров кластеров s(k) из
                                                 14:
    N = N(t=0) элементов.
                                                       s(N) = 1
                                                 15:
 2: while curtime < maxtime do
                                                       N -= 1
                                                 16:
                                                       if N \le N(t=0)/2 then
 3:
                                                 17.
       repeat
         curtime += \frac{2V}{K_{max}N(N-1)}
                                                          Скопировать размеры s(i+N) =
 4.
                                                 18.
                                                          s(i), i=\overline{1,N}.
         v = random integer(1, N)
 5.
                                                          N *= 2
                                                 19.
 6.
         repeat
                                                20:
                                                          V *= 2
 7:
            I = random integer(1, N)
                                                       end if
         until v \neq 1
                                                21:
 8.
                                                22:
                                                       if s(i) > v_{max} then
        i = s(v)
 9:
                                                23:
                                                          v_{\rm max} = s(v)
10.
         i = s(1)
                                                          Обновление K_{\max}(v_{\max})
      until K_{\text{max}} \cdot \text{rand}(0,1] \leq K_{ij}
                                                24:
11.
                                                       end if
12:
      v,l = min(v,l), max(v,l)
                                                25:
                                                 26: end while
```

Моменты реализации

- lacktriangle Генерируем случайное число $r \in (0,1)$
- Выберем две случайные частицы из нашей системы (Как выбирать?)
- ІF $r < p_{ij}$: (Как считать вероятности столкновения частиц?) Добавляем частицу i+j в память; (Как эффективно хранить частицы?)
 - Делаем шаг по времени; (Как считать шаг по времени?) Обновляем вероятности системы; (Как быстро пересчитывать вероятности?)
- ELSE переход на шаг №1

Малоранговое разложение матрицы (вспоминаем)

Пусть $B \in \mathbb{R}^{M imes N}$ – матрица M imes N с вещественными элементами $B_{ij}.$

Ранг матрицы B – минимальное значение R, для которого B может быть выражена как сумма внешних произведений:

$$B = \sum_{r=1}^{R} B^{r} = \sum_{r=1}^{R} u^{r} \cdot (v^{r})^{T}, \quad u^{k} \in \mathbb{R}^{M \times 1}, \quad v^{k} \in \mathbb{R}^{N \times 1}, \quad k = 1 \dots R$$

$$B_{ij} = \sum_{r=1}^{R} u_i^{\ r} (v_j^{\ r})^T, \quad k = 1 \dots R$$

Когда R < min(N,M), выражение называется малоранговым разложением матрицы B.

Малоранговый метод. Как выбирать частицы?

Ядро системы может быть представлено в виде $K_{ij}=\sum\limits_{r=1}^R\widetilde{u_i}^r\widetilde{v_j}^r$, тогда при $u_i{}^r=N_i\widetilde{u_i}^r$, $v_j{}^r=N_j\widetilde{v_j}^r$:

$$K_{ij}N_iN_j = \sum_{r=1}^R u_i{}^r v_j{}^r$$

Для R=1: $K_{ij}N_iN_j=u_iv_j$

В таком случае выбор размеров $i,\ j\in 1\dots M$ (M – максимальная масса частицы) можно провести независимо $P_{ij}=p_ip_j$, так как вероятность того, что первая частица имеет массу i равна:

$$p_{i} = \frac{\frac{\Delta t}{V} \sum_{j=1}^{M} K_{ij} N_{i} N_{j}}{\frac{\Delta t}{V} \sum_{i, j=1}^{M} K_{ij} N_{i} N_{j}} = \frac{\sum_{j=1}^{M} u_{i} v_{j}}{\sum_{i, j=1}^{M} u_{i} v_{j}} = \frac{u_{i} \left(\sum_{j=1}^{M} v_{j}\right)}{\sum_{i=1}^{M} u_{i} \left(\sum_{j=1}^{M} v_{j}\right)} = \frac{u_{i}}{\sum_{i=1}^{M} u_{i}}$$

 p_i зависит только от компонент вектора $ec{u}$. Аналогично вычисляется p_j

Малоранговый метод. Как выбирать частицы?

Если ранг больше 1, мы можем представить матрицу с элементами $B_{ij}=K_{ij}N_iN_j$ как сумму ядер ранга 1 и рассматривать их отдельно, как будто мы рассматриваем разные механизмы агрегации.

Чтобы определить, какое ядро использовать, мы можем сравнить общие скорости агрегации и выбрать r-ый член вида $B^r=u^r\cdot (v^r)^T$ с вероятностью:

$$p_r = \frac{\sum_{i,j=1}^{M} B_{ij}^r}{\sum_{r=1}^{R} \sum_{i,j=1}^{M} B_{ij}^r} = \frac{\sum_{i,j=1}^{M} u_i^r v_j^r}{\sum_{r=1}^{R} \sum_{i,j=1}^{M} u_i^r v_j^r} = \frac{\sum_{i=1}^{M} u_i^r \sum_{j=1}^{M} v_j^r}{\sum_{r=1}^{R} \left(\sum_{i=1}^{M} u_i^r \sum_{j=1}^{M} v_j^r\right)}$$

Малоранговый метод. Как выбирать частицы?

Выбрав компоненту r, элемент предятавляется в виде:

$$K_{ij}N_iN_j = u_i^r v_j^r.$$

Выбор размеров i и j между 1 и $M=s_{\max}$ можно провести независимо:

$$P_{ij} = P_i P_j, \quad P_i = \frac{u_i}{\sum_s u_s}, \quad P_j = \frac{v_j}{\sum_s v_s}.$$

Как происходит выбор:

- Генерируется число $x = \operatorname{rand}\left(0,1\right] \cdot \sum_{k} u_{k}.$
- Выбирается промежуток так, что

$$\sum_{k=1}^{i-1} u_k < x \leqslant \sum_{k=1}^{i} u_k.$$

Вероятность попасть в этот промежуток равна отношению его длины u_k к общей сумме длин $\sum_k u_k$ — то, что нужно!

Линейный поиск займет O(N) операций. Хотим бинарный,

Как сделать быстрый (бинарный) поиск?

Деревья отрезков:

Дерево отрезков – это двоичное дерево, которое содержит частичные суммы элементов массива. В вершине такого дерева содержится сумма всех элементов массива.

Поиск и модификация элементов в дереве отрезков занимают $O(\log M)$, где $M = s_{\max}$

Модификация до малорангового метода

- ① Как эффективно хранить частицы? Необходимо хранить 2R деревьев отрезков. Длина каждого равна $2s_{max}$, s_{max} — максимальный размер
- ullet Как выбирать пару частиц? Поиск в дереве отрезков занимает $O(\log M)$, где $M=s_{\max}$
- ullet Как считать вероятности столкновения частиц? Поиск в дереве отрезков занимает $O(\log M)$, где $M=s_{\max}$
- Как считать шаг по времени?

Малоранговый метод. Как считать шаг по времени?

$$\tau = \frac{\Delta t}{\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} K_{ij} n_i n_j V \Delta t} = \frac{1}{\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} K_{ij} n_i n_j V}$$

$$\frac{1}{\tau} = \frac{1}{2V} \sum_{i=1}^{N} \sum_{j=1}^{N} K_{ij} N_i N_j = \frac{1}{2V} \sum_{i,j=1}^{N} \sum_{k=1}^{R} u_i^k v_j^k =$$

$$\mid R = rank(B), \ \{B\}_{ij} = K_{ij} N_i N_j \ , B = \sum_{k=1}^{R} u_k v_k^T \mid$$

$$= \frac{1}{2V} \sum_{k=1}^{R} (\sum_{i=1}^{N} u_i^k \cdot \sum_{j=1}^{N} v_j^k)$$

Таким образом, шаг по времени:

$$\tau = \frac{2V}{\sum_{k=1}^{R} (\sum_{i=1}^{N} u_i^k \cdot \sum_{j=1}^{N} v_j^k)}$$

Модификация до малорангового метода

• Как эффективно хранить частицы?

Необходимо хранить 2R деревьев отрезков, длина каждого равна $2s_{max}$, s_{max} – максимальный размер

- f a Как быстро пересчитывать вероятности? Обновление занимает $O(\log M)$, где $M=s_{\max}$
- ullet Как выбирать пару частиц? Поиск в дереве отрезков занимает $O(\log M)$, где $M=s_{\max}$
- ① Как считать вероятности столкновения частиц? Поиск в дереве отрезков занимает $O(\log M)$, где $M = s_{\max}$
- Как считать шаг по времени?

$$\tau = \frac{2V}{\sum\limits_{k=1}^{R} \left(\sum\limits_{i=1}^{N} u_i^k \cdot \sum\limits_{j=1}^{N} v_j^k\right)}$$

Таким образом, нужно посчитать сумму произведений вершин деревьев отрезков. Сложность подсчёта шага по времени: O(R)

Общая версия выбора размеров

```
13: i = Find(u^{t,k})
 1: repeat
      z = rand(0,1) \sum_{r=1}^{R} u^{r,t}(1)v^{r,t}(1)
                                              14: \mathbf{i} = \mathbf{Find}(v^{t,k})
2:
                                               15: {Отклонение столкновения "с
      {Обновление времени:}
                                                     собой":}
3:
      curtime +=
                                                     if (i == i) and
4:
                                               16:
      2V/\sum_{r=1}^{R} u^{r,t}(1)v^{r,t}(1)
                                                     (N_i \cdot \text{rand}(0,1] \leqslant 1) then
                                                        continue
                                               17:
     {Выбор компоненты:}
                                                     end if
5:
                                               18:
      for k = 1 to R-1 do
                                                     {Отклонение столкновения,
6.
                                               19:
        z = u^{r,t}(1)v^{r,t}(1)
7.
                                                     если частиц нет:}
         if z \le 0 then
                                                     if (N_i == 0) or (N_i == 0)
                                               20:
            break
                                                     then
g.
         end if
                                                        continue
10.
                                              21:
     end for
                                                     end if
11.
                                               22:
12:
      {Выбор размеров:}
                                              23: until і и ј не выбраны
```

Тестирование алгоритмов

Описание тестов

Мной были реализованы оба этих алгоритма на ${\sf C}++^1$. Мы будем сравнивать малоранговый метод с методом принятия-отклонения. Поскольку в конечном итоге все три метода приводят к одинаковым вероятностям, пропорциональным K_{ij} , а все остальные шаги те же, то они имеют одинаковую точность. Единственная разница во времени вычисления, поэтому мы сосредоточимся на ней.

¹https://github.com/DrEternity/

$K_{ij} = 2$, N = 1000, maxtime = 10

Малоранговый метод: 0.005 сек. Принятие-отклонение: 0.3 сек.

$K_{ij} = 2$, N = 10000, maxtime = 10

Малоранговый метод: 0.025 сек. Принятие-отклонение: 5.23 сек.

$K_{ij} = 2$, N = 100000, maxtime = 10

Малоранговый метод: 0.25 сек. Принятие-отклонение: 70.59 сек.

$K_{ij} = 2$, N = 1000000, maxtime = 10

Малоранговый метод: 2.6 сек. Принятие-отклонение: 1249.67 сек.

$K_{ij} = i + j$, N = 1000, maxtime = 2

Малоранговый метод: 0.004 сек. Принятие-отклонение: 0.29 сек.

$K_{ij}=i+j$, N=10000, maxtime =2

Малоранговый метод: 0.035 сек. Принятие-отклонение: 7.2 сек.

$K_{ij} = i + j$, N = 100000, maxtime = 2

Малоранговый метод: 0.37 сек. Принятие-отклонение: 210.59 сек.

Дополнительное тестирование малорангового метода

```
\{K_{ij}=i+j;\,N=10^7;\,t=1\} - Столкновений: 0,76\cdot 10^7 Время работы: 1.629 \{K_{ij}=i+j;\,N=10^7;\,t=2\} - Столкновений: 1,5\cdot 10^7 Время работы: 3.84858 \{K_{ij}=i+j;\,N=10^7;\,t=3\} - Столкновений: 2,2\cdot 10^7 Время работы: 7.08634 \{K_{ij}=i+j;\,N=10^7;\,t=4\} - Столкновений: 2,9\cdot 10^7 Время работы: 6.12887 \{K_{ij}=i+j;\,N=10^8;\,t=1\} - Столкновений: 7,6\cdot 10^7 Время работы: 9.459 \{K_{ij}=i+j;\,N=10^8;\,t=2\} - Столкновений: 14\cdot 10^7 Время работы: 28.72 \{K_{ij}=i+j;\,N=10^8;\,t=3\} - Столкновений: 22\cdot 10^7 Время работы: 44.44
```

Осцилляции

В противоположность простому релаксационному поведению, ожидаемому для уравнений, подобных Смолуховскому, недавно был зарегистрирован удивительный режим колебаний для кинетики агрегации-фрагментации. Было замечено, что кинетические уравнения с ядрами вида:

$$K_{ij} = (\frac{i}{j})^a + (\frac{j}{i})^a$$

приводят к устойчивым колебаниям для a>0,5 и $0<\lambda<\lambda_{crit}$ Такие колебания были обнаружены численно с помощью эффективной реализации конечно-разностной схемы интегрирования по времени Рунге-Кутты второго порядка.

Дополнительная независимая проверка этого явления крайне желательна. Здесь мы покажем, что Малоранговый метод Монте-Карло демонстрируют те же колебания плотностей, что и в статье.

Осцилляции

Проведя численное моделирование:

 $N = 10^6$, $K_{ij} = (\frac{i}{i})^{0.98} + (\frac{j}{i})^{0.98}$, $\lambda = 0.005$

Получаем следущий результат:

Время: 768 сек. Соударений: 209951719

Осцилляции

Проведя численное моделирование:

$$N = 10^6$$
, $K_{ij} = (\frac{i}{j})^{0.95} + (\frac{j}{i})^{0.95}$, $\lambda = 0.01$.

Получаем следущий результат:

Время: 1177 сек. Соударений: 302575699

Итог тестов

- Малоранговый метод показывает высокую скорость работы на ядрах разных типов по сравнению с методом принятия-отклонения
- Колебательные решения для спецального ядра являются надежными и стабильными по отношению к стохастическим ошибкам и флуктуациям, присущим методам Монте-Карло.

Заключение

Заключение

- Изучена новая модель взаимодействия объектов в природе и её приложения
- Осознана математическая формализация в виде системы дифференциальных уравнений
- Разобраны теоретические аспекты существования решений
- Реализованы численные методы Монте-Карло
- Произведено сравнение временных затрат алгоритмов

Благодарю за внимание!

