Flu Dashboard Workshop Instructions

Contents

Overview	1
Files in Your Workshop Folder	1
Workflow Steps	1
Step 1: Review Example Outputs	1
Step 2: Calculate Key Metrics	2
Step 3: Map of Cases by Province	2
Step 4: Plot of Case Counts	2
Step 5: Download Data Page	2
Step 6: About Page	2
Step 7: Render and Deploy	2

Overview

In this workshop, you will create a dashboard summarizing the 2013 outbreak of influenza A H7N9 in China using data provided by the outbreaks package.

Your final product should be similar to the provided solutions.html. You can also refer to sample_dashboard_gapminder.qmd file for guidance as the dashboard created there is very similar to the one you need to create.

Files in Your Workshop Folder

Below are the key files in your workshop folder:

- Index.qmd: This is where you'll build your dashboard.
- solutions.html: An example dashboard that demonstrates what your final output should look like. Aim to get close to this example in function and style.
- sample_dashboard_gapminder.qmd: A sample dashboard that you can reference for style and code snippets.

Workflow Steps

Step 1: Review Example Outputs

Start by reviewing the solutions.html to understand the required outputs and functionalities of your dashboard.

Next, take a look at the sample_dashboard_gampinder.qmd file to see how that dashboard was created. Render the sample_dashboard_gapminder.qmd file to HTML to see the output.

Then, once you feel you have a good understanding of the required outputs and how to create them, you can start building your dashboard in the index.qmd file.

Step 2: Calculate Key Metrics

Start by calculating the main metrics to display on your dashboard:

- Total Number of Cases: Count all the rows in the dataset.
- Total Deaths: Count the number of deaths.
- **Total Hospitalizations**: Count the number of hospitalizations. (Tip: you can use the date of hospitalization variable to do this.)

Step 3: Map of Cases by Province

- Generate a summary of the number of cases per province using count() or group_by() and summarize().
- Obtain shapefiles for China using rgeoboundaries::gb_adm1("china").
- Ensure the province names in your dataset match those in the shapefiles. Here's some code to help with harmonizing the names:

```
china_map <- rgeoboundaries::gb_adm1("china")

# Simplify names for matching
china_map <- china_map %>%
    mutate(province = str_trim(str_remove(shapeName, "Province|Municipality|Autonomous Region")))

# Fix any specific mismatches (e.g., Guangdong vs. Guangzhou)
china_map <- china_map %>%
    mutate(province = if_else(province == "Guangzhou", "Guangdong", province))
```

• Join the harmonized data and create a choropleth map displaying the number of cases per province.

Step 4: Plot of Case Counts

• Create a bar chart using ggplot2 to show the number of cases per province.

Step 5: Download Data Page

• Implement a data download section using reactable for an interactive table and a download button. Modify the example code from the sample_dashboard_gapminder for this section.

Step 6: About Page

• Include a description of the dataset and the purpose of the dashboard. Copy and adapt the content from the solutions.html dashboard.

Step 7: Render and Deploy

 Once your dashboard is complete, knit the index.qmd to HTML, review your output, and deploy it to GitHub Pages.