

I320D - Topics in Human Centered Data Science Text Mining and NLP Essentials

Week 2: Ambiguity, Multilingualism, Fundamentals layers of NLP, Overview of text corpora and datasets, Regular Expressions

Dr. Abhijit Mishra

Week 1: Recap

- Lecture:
 - Syllabus Overview,
 - NLP Definition and Layered View
- Practicum:
 - Python Basics and File, String and Document Processing, Frequency Analysis and Visualization of text Data

Recap: What is Natural Language Processing?

- Branch of Al
- Two Goals:
 - Science Goal: Understand the way language operates
 - Engineering Goal: Construct systems that examine and generate text (language), bridging the divide between humans and machines.

NLP, Areas of AI: Inter-dependencies

Layered view of NLP

Context beyond presented text (world knowledge

Context from multiple sentences / documents

Context confined to a sentence

Deep Syntax, Parses, Dependency between phrases

Syntax, Part-of-speech, Expressions

Word meaning without context

Ambiguity at the heart of NLP

- Ambiguity is what makes natural languages such as English, Mandarin different from computer languages such as JAVA, Python
- NLP objective: to help computers tackle ambiguity at every layer

Layered view of NLP

Context beyond presented text (world knowledge

Context from multiple sentences / documents

Context confined to a sentence

Deep Syntax, Parses, Dependency between phrases

Syntax, Part-of-speech, Expressions

Word meaning without context

Morphology

- Word formation rules from root words
- **Nouns**: Plural (boy-boys); Gender marking (czar-czarina)
- Verbs: Tense (dance-danced); Aspect (perfective: sit-had sat); Modality (Hindi: khaana khaaiie) (to eat -> please eat)
- Compounds : German: der Apfelbaum: der Apfel (apple) + der Baum (tree)

Morphology Analysis Applications

Direct:

- **Text to Speech:** accurately pronouncing words requires understanding verb conjugations, plural forms, and irregular forms
- Spell Correction
 - Example: English spell checkers use morphology analysis to correct words with variations such as plurals (e.g., "cats" instead of "cat's") or verb forms (e.g., "running" instead of "runing")
- Word Auto-completion
- Search: Getting better matches (how?)

Indirect:

 Any application that requires higher order processing (e.g., Machine translation, Summarization, Information Extraction)

Ambiguity in Morphology Analysis

- Ambiguity: no definite patterns (boy-boys; woman-women)
- How to break words into sub-words / prefixes-rootssuffixes? No fixed rules.
- Example: Turkish Word "kitaplarımızdan"
 - Valid Splitting 1:"kitap-lar-ımız-dan"
 - Meaning: "from our books"
 - Components: "kitap" (book), "-lar" (plural), "-ımız" (our), "-dan" (from)
 - Valid Splitting 2: "kita-plar-ımız-dan"
 - Meaning: "from our continents"
 - Components: "kıta" (continent), "-lar" (plural), "-ımız" (our), "-dan" (from)

Compounding Compunds the Challenge

- German Language (Morphologically Rich)
 - "Rindfleischetikettierungsüberwachungsaufgabenübertragungsge setz"
 - Breakdown: Rindfleisch (beef) + Etikettierung (labeling) +
 Überwachung (monitoring) + Aufgaben (tasks) + Übertragung (transfer)
 + Gesetz (law)
 - Meaning: Beef labeling monitoring task transfer law (referring to a repealed German law)

Compounding (...)

• Hindi: "Sundarvan" (सुंदरवन): Breakdown: Sundar (beautiful) + Van (forest), but don't breakdown राजेश (Rajesh) = Raja (King)+ IshA (God) = God of Kings (only refers to Vishnu, a popular Hindu deity)

English:

- "Guns and Roses" Don't break
- "Flowers and weapons" Break

Ambiguity in Morphology Analysis

- First crucial step in NLP
- A task of interest to computer science: Finite State Machines for Word Morphology

Layered view of NLP

Context beyond presented text (world knowledge

Context from multiple sentences / documents

Context within to a sentence

Deep Syntax, Parses, Dependency between phrases

Syntax, Part-of-speech, Expressions

Word meaning without context

Lexical and Shallow Structural Analysis

- Dictionary and word properties
 - dog
 - Noun (lexical property)
 - Takes-'s'-in-plural (morphological property)
 - Animate (semantic property)
 - 4-legged (semantic property)
 - Carnivore (semantic property)
 - Don't spread with COVID (pragmatic property)

Lexical Analysis Applications

Direct:

- Text Classification based on Topics (e.g., news classification into domains such as sports, politics)
- Entity Recognition (identifying names of people, places, organizations)
 - Washington person or place?
 - Hindi: पूजा (Pooja) name of a girl or the act of worshiping
- Sentiment Analysis given a text, identify the emotional tone expressed by analyzing words
- Machine Translation: Select words in target language based on meaning given in the source language
- Indirect: Search Engines, Deep Semantic Analysis, Dialog Systems

Lexical Ambiguity

- Ambiguity in parts-of-speech
 - Dog as a noun (animal)
 - Dog as a verb (to pursue)
- Sense disambiguation
 - Dog (as animal)
 - Dog (as a very detestable person)
- Very common in day-to-day communications
 - "Ground breaking research"
 - "India eradicates polio, says WHO"

"Technological developments bring in new terms, additional meanings/nuances for existing terms"

- Justify as in justify the right margin (word processing context)
- Xeroxed: a new verb
- Communifaking: pretending to talk on mobile when you are actually not
- Helicopter Parenting: over parenting
- Obamagain, modinomics
- lol, omg, imo, imho, tbh

Ambiguity of Multiwords

- The grandfather kicked the bucket after suffering from cancer.
- This job is a piece of cake
- Put the sweater on
- The 3rd white horse was the dark horse of the race

Shallow Structural Analysis

- Involves analyzing the surface or syntactic structure of text without delving into deep meaning-based / grammatical relationships
- Includes tasks such as part-of-speech tagging and chunking

Shallow Structural Analysis

- Two types of tasks
 - Part-of-Speech Tagging (POS Tagging)
 - POS tagging involves assigning grammatical categories (such as nouns, verbs, adjectives, etc.) to each word in a sentence.
 - Sequential flow of information
 - Example:
 - "The cat chased the mouse".
 - The / DT cat / NN chased / VBD the / DT mouse / NN
 - DT-> Determiner NN->Noun, VBD->Verb in past tense
 - Chunking: grouping adjacent words together into "chunks" based on their syntactic structure.
 - Noun Phrase (NP): "The cat," "the mouse"
 - Verb Phrase: "chased"

Applications and Ambiguities

- Shallow Structural Analysis Applications
 - **Direct:** Pattern extraction, Character Analysis in Stories, Entity Extraction and linking, Knowledge Extraction
 - Example: "Barack Obama was born on August 4, 1961"
 - Knowledge: <"Barack Obama", "birth year", "1961">
 - Indirect: Search, Translation, Question Answering

Applications and Ambiguities

- Words can have multiple grammatical interpretations, leading to ambiguity in POS tagging. For example, "bank" can be a noun (financial institution) or a verb (to tilt to one side).
- "The wind is strong as they wind their way through the forest."

"The" - Determiner, "wind" (1st occurrence) - Noun (referring to the movement of air), "is" - Verb (to be), "strong" - Adjective, "as" - Conjunction, "they" - Pronoun, "wind" (2nd occurrence) - Verb (to twist or turn), "their" - Possessive Pronoun, "way" - Noun, "through" - Preposition, "the" - Determiner, "forest" - Noun

Layered view of NLP

Context beyond presented text (world knowledge

Context from multiple sentences / documents

Context within to a sentence

Deep Syntax, Parses, Dependency between phrases

Syntax, Part-of-speech, Expressions

Word meaning without context

Deep Syntax, Parsing, Dependency between phrases

- Involves a more detailed and thorough examination of the grammatical structure of sentences, typically through constituency parsing and dependency parsing.
- Constituency Parsing: breaking down a sentence into its grammatical constituents or phrases
 - Follows Context Free Grammar based rules
- Dependency Parsing: analyzes the syntactic relationships between words in a sentence by representing them as a directed graph

Structure - Constituency Parsing

Understanding dependencies – Dependency parsing

Deep Structure/Syntax Analysis Applications

- Rules / feature extraction for
 - Machine Translation
 - Question Answering
 - Grammar Checking
- Processing large text corpora and extracting patterns / knowledge

Ambiguity in Structure

Scope:

- "The old men and women were taken to safe locations"
- (old men and women) vs. ((old men) and women)
- Preposition Phrase Attachment
 - "I saw the boy with a telescope" (unclear who has the telescope)
 - "I saw the mountain with a telescope" (who has the telescope) clear for humans, may not be for the computer

How humans (and computers) understand text – Layered view of NLP

Context beyond presented text (world knowledge

Context from multiple sentences / documents

Context within to a sentence

Deep Syntax, Parses, Dependency between phrases

Syntax, Part-of-speech, Expressions

Word meaning without context

Semantic Analysis

- Representation in terms of
 - Predicate calculus/Semantic Nets/Frames/Conceptual Dependencies and Scripts
 - "Abhijit gave a book to Bo"
 - Action: Give, Agent: Abhijit, Object: Book, Recipient: Bo
 - Challenge: ambiguity in semantic role labeling
 - "Visiting aunts can be a nuisance"
 - "Flying planes can be dangerous"

How humans (and computers) understand text – Layered view of NLP

Context beyond presented text (world knowledge

Context from multiple sentences / documents

Context within to a sentence

Deep Syntax, Parses, Dependency between phrases

Syntax, Part-of-speech, Expressions

Word meaning without context

Ambiguity in Discourse

- Coreference : A challenge
- Binding of referring nouns and pronouns
 - "The monkey ate the banana, because it was hungry"
 - "The monkey ate the banana, because it was ripe and sweet"
 - "The monkey ate the banana, because it was lunch time"

How humans (and computers) understand text – Layered view of NLP

Context beyond presented text (world knowledge

Context from multiple sentences / documents

Context within to a sentence

Deep Syntax, Parses, Dependency between phrases

Syntax, Part-of-speech, Expressions

Word meaning without context

Pragmatism

- Very hard problem
- Model user intention
 - Boy to girl: "Are you a Wi-Fi hotspot? Because I'm feeling a strong connection."
 - Girl: "That's soooo cheesy"
- Requires world knowledge

Complexity of Connected Text

"John was returning from school dejected – today was the math test"

"He could not control the class"

"Teacher shouldn't have made him responsible"

"After all he is just a janitor"

Source: http://www.cse.iitb.ac.in/~cs626-460-2011

Textual humour

Wordplay:

- "I'm reading a book on anti-gravity. It's impossible to put down."
- "I'm friends with all electricians. We have great current connections."

Sarcasm:

"Sure, I'd love to help you move this weekend. Because what's more fun than carrying heavy furniture up and down stairs?"

Situational Disparities:

Teacher (angrily): "did you miss the class yesterday?"

Student: "not much"

John: "I got a Jaguar car for my unemployed youngest son."

Jack: "That's a great exchange!"

NLP and Multilingualism

- NLP should be non-English centric. Why?
- Linguistic Variation: Languages differ in structure; multilingual NLP adapts for processing diversity.
- Global Interaction: Multilingual NLP facilitates communication across languages for broader engagement.
- Cognitive Empowerment:
 - Translate every form of information and human intelligence into computer understandable form so that machines can "help everyone" alike

NLP Applications

- Low level:
 - Explaining words and phrases in document
 - Extract phrases, parts-of-speech, parse structure
 - Analyze words and get their root forms
 - Understand document semantics and pragmatics
- High level:
 - Translate sentences / documents
 - Analyze sentiment
 - Summarize
 - Answer Questions

NLP Algorithms

- Rule Based
- Machine Learning based or "data driven"
 - Classifiers: SVM, Logistic Regression
 - Sequence Labelers: HMM, CRFs
- Deep neural network based
 - Feed forward networks
 - Recurrent networks
 - Transformers

Putting everything together: "The NLP

Trinity" Algos / **Techniques Transformers** RNN, LSTMs **Feed Forward Nets** HMM, CRF SVM, Logistic Regression Tasks and applications Rule Based Question lemmatization Sentence Vectorization Machine Answering Arabic German Chinese **English** Languages

Source: http://www.cse.iitb.ac.in/~cs626-460-2011

Text Corpora for NLP processing

- A collection of text called corpus, is used for collecting various language data
 - Unlabeled: cleaned text without any annotation
 - Labeled: Text labeled for classification, with summaries, translations, question answering pairs
- With annotation: more information, but manual labor intensive

Popular Text Corpora

Text Classification:

- IMDb Movie Reviews
 - A dataset containing movie reviews along with sentiment labels (positive/negative), commonly used for sentiment analysis and binary classification tasks.

• 20 Newsgroups:

- A collection of approximately 20,000 newsgroup documents across 20 different categories, often used for text classification and topic modeling tasks.
- GLUE Benchmark Datasets: Assorted NLP classification tasks for benchmarking / testing new NLP models
 - https://gluebenchmark.com/tasks/

Popular Text Corpora – Summarization

CNN/Daily Mail:

 A dataset consisting of news articles paired with human-generated summaries. It is widely used for abstractive text summarization tasks.

DUC (Document Understanding Conference) datasets:

 Datasets from the Document Understanding Conference containing documents and manually created summaries, used for extractive and abstractive summarization evaluation.

Multilingual Corpora – Translation

WMT (Workshop on Machine Translation) Datasets:

 WMT provides datasets for machine translation tasks. The datasets cover multiple language pairs and are commonly used for training and evaluating translation models.

• IWSLT (International Workshop on Spoken Language Translation) Datasets:

 IWSLT offers datasets for spoken language translation tasks, which include parallel text and audio data in multiple languages.

Corpora for Parsing / POS / Chunks

- Penn Treebank from Upenn, Sentences tagged with POS and Parse trees / graphs
- Brown Corpus
- CoNLL Datasets for Named Entity Recognition

Unlabeled Corpora for Language Modeling

- **1.Common Crawl:** A web archive corpus that includes data crawled from a wide range of websites.
- 2.Wikipedia Dump: Wikipedia provides periodic dumps of its entire content, including articles in various languages.
- **3.OpenSubtitles:** A large collection of subtitles from movies and TV shows, available in multiple languages.

Unlabeled Corpora for Language Modeling

- **4. BookCorpus:** A dataset containing text excerpts from books. It is used for training language models and extracting information from a diverse range of literary content.
- **5. Gutenberg Corpus:** Project Gutenberg offers a collection of freely available literary works, including novels, essays, and poetry. It is a valuable resource for unsupervised learning and language modeling.
- **6. Reuters Corpus:** The Reuters Corpus is a collection of news articles from the Reuters news agency.

Unlabeled Corpora for Language Modeling

- English Gigaword: A large newswire corpus containing news articles from a variety of sources.
 While some versions include part-of-speech tags, the raw text is often used for unsupervised learning tasks.
- **Billion Word Corpus:** A large-scale corpus consisting of a billion-word dataset from web pages. It is commonly used for training language models due to its extensive size.
- One Billion Word Benchmark: Similar to the Billion Word Corpus, this benchmark provides a large amount of unlabeled text for language modeling tasks.
- **Reddit Data:** Reddit provides data dumps of discussions and comments from its platform. The raw text from Reddit discussions can be used for various unsupervised learning tasks.
- Red pajama Dataset: 1 Trillion tokens / words, open sourced for LLM development

Major Data Sources

- Kaggle
- Huggingface Dataset

Next class

Lab: Introduction to NLTK and SpaCy libraries, Regular Expressions and Pattern Matching in Python, Loading and cleaning text data

Please fill out the pre-course survey here: https://forms.gle/FzJnF8esckd7bPtn9Links to an external site.

Next week: Ambiguity, Multilingualism, Fundamentals layers of NLP, Overview of text corpora and datasets, Regular Expressions,