ECEn 671: Mathematics of Signals and Systems

Randal W. Beard

Brigham Young University

September 1, 2023

Section 1

Gradient Descent

The topic for the remainder of the course is minimization and maximization of functions.

In particular we will constrain our attention to continuously differentiable functions.

Suppose we have a function of the form

and we would like to find x^* , what should we do?

The basic idea of gradient descent is to pick any $x^{[0]}$ and then move "downward". To move down, we look at the slope of f.

If
$$\frac{\partial f}{\partial x}(x^{[k]})$$
 is positive, chose $x^{[k+1]} < x^{[k]}$.

If
$$\frac{\partial f}{\partial x}(x^{[k]})$$
 is negative, choose $x^{[k+1]}>x^{[k]}$

i.e.

$$x^{[k+1]} = x^{[k]} - \alpha \frac{\partial f}{\partial x}(x^{[k]}),$$

where α is the step size.

Before moving to the multivariable case, lets consider the potential problems with this approach.

Problem 1: Local Minima. If f looks like this:

then if the initial condition is at $x^{[0]}$, the iteration

$$x^{[k+1]} = x^{[k]} - \alpha \frac{\partial f}{\partial x}(x^{[k]})$$

will converge to x^+ , if α is small enough.

Other initial conditions will result in x^{++} while others will give x^* , the true minimum.

This is a fundamental problem with <u>any</u> method that relies on derivative information. There are no completely satisfactory solutions to the problem. However there are many ad-hoc fixes.

Example

- ► Execute from numerous "random" initial conditions and pick the lowest solution.
- Occassionally introduce random jumps in x.
- etc...

Problem 2: Step Size. The selection of α can have a major effect on the convergence of the sequence

$$x^{[k+1]} = x^{[k]} - \alpha \frac{\partial f}{\partial x}(x^{[k]})$$

For example,

Note f is very steep on sides, so $\alpha \frac{\partial f}{\partial x}(x^{[k]})$ could be large. This could cause $x^{[1]}$ to overshoot the minimum. This could cause (1) instability, (2) limit cycles, (3) extremely slow and oscillatory convergence

Lesson: Don't make α too large.

However if α is too small, then convergence will be very slow.

Most implementations adapt the size of α .

Section 2

Gradient Descent: Multivariable Case

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a multivariable function.

Example

If
$$x \in \mathbb{R}^n$$
 then $f(x) = x_1^2 + x_2^2 + \cdots + x_n^2$ maps $\mathbb{R}^n \to \mathbb{R}$.

The gradient of a multivariable function is

$$\frac{\partial f}{\partial x} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

and maps $\mathbb{R}^n \to \mathbb{R}^n$.

Example

If
$$f(x) = x_1^2 + \dots + x_n^2$$
 then $\frac{\partial f}{\partial x} = \begin{pmatrix} 2x_1 \\ 2x_2 \\ \vdots \\ 2x_n \end{pmatrix}$

The gradient points perpendicular to the level curves of f.

Theorem (Moon Theorem 14.5)

Let $f: \mathbb{R}^m \to \mathbb{R}$ be a differentiable function in some open set D. The gradient $\frac{\partial f}{\partial x}(x)$ points in the direction of the maximum increase of f at the point x.

Proof.

Expand $f(x + \lambda y)$ in a Taylor series as

$$f(x + \lambda y) = f(x) + \lambda \frac{\partial f^T}{\partial x}(x)y + \text{Higher Order Terms (HOT)}$$

where HOT. are $O(\lambda^2)$, i.e.,

$$\lim_{\lambda \to 0} \frac{H.O.T.}{\lambda} = 0.$$

We would like to find y that maximizes $f(x + \lambda y)$ as $\lambda \to 0$. By Cauchy-Schwartz, $\frac{\partial f^T}{\partial x}y$ is maximized when $y = \frac{\partial f}{\partial y}$.

For multivarible functions, the gradient descent formula is

$$x^{[k+1]} = x^{[k]} - \alpha_k \frac{\partial f}{\partial x} (x^{[k]})$$

Again, the selection of the step size is very important. If α_k is too small convergence will be slow.

If α_k is too large, algorithm could be unstable.

How to pick the right α ?

Locally around a min or max, every smooth function can be approximated by a quadratic (Taylor series).

We can gain insight about the selection of α by studying quadratic functions.

Let
$$f(x) = x^T R x - 2b^T x$$
 where $x \in \mathbb{R}^m, b \in \mathbb{R}^m, R = R^T > 0$.

Taking the gradient we get

$$\frac{\partial f}{\partial x} = 2Rx - 2b.$$

So the gradient descent algorithm is

$$x^{[k+1]} = x^{[k]} - 2\alpha (Rx^{[k]} - b).$$

Let x^* satisfy $Rx^* = b$ then

$$x^{[k+1]} - x^* = x^{[k]} - x^* - 2\alpha(Rx^{[k]} - Rx^*)$$

Define $y^{[k]} = x^{[k]} - x^*$ and $\mu = 2\alpha$, then

$$y^{[k+1]} = y^{[k]} - \mu R y^{[k]}$$
$$= (I - \mu R) y^{[k]}$$
$$\implies y^{[k]} = (I - \mu R)^k y^{[0]}.$$

Since *R* is symmetric positive definite

$$R = Q\Lambda Q^T$$

where Q-orthogonal. Therefore,

$$y^{[k]} = (QQ^{T} - \mu Q \Lambda Q^{T})^{k} y^{[0]}$$

= $Q(I - \mu \Lambda)^{k} Q^{T} y^{[0]}$

Letting $z = Q^T y$,

$$z^{[k]} = (I - \mu \Lambda)^k z^{[0]} \tag{1}$$

$$\Longrightarrow z_i^{[k]} = (1 - \mu \lambda_i)^k z_i^{[0]} \tag{2}$$

which converges if $|1 - \mu \lambda_i| < 1$, i = 1, ..., m.

Therefore, convergence happens when

$$-1 < 1 - \mu \lambda_i < 1$$

$$\iff -2 < -\mu \lambda_i < 0$$

$$\iff 0 < \mu \lambda_i < 2$$

$$\iff 0 < \mu < \frac{2}{\lambda_i}$$

Recall that $\lambda_i > 0$ when R is positive definite, so if

$$0<\alpha<\frac{1}{\lambda_{\mathsf{max}}(R)}$$

then steepest descent converges for quadratic functions.

Note that the convergence along each eigenaxis is determined by $\frac{1}{\lambda_i}$.

Therefore if R is ill-conditioned, i.e., $\frac{\lambda_{\max}}{\lambda_{\min}}$ is large, then convergence for gradient descent will be much slower along some axes than others.