Principal Component Analysis

Taking a picture

Taking a picture

Dimensionality reduction:

Taking a picture of data and try to keep as much information as possible

Dimensionality Reduction

Dimensionality Reduction

Let's learn how to project the data into a line that can keep the points as far as possible.

Housing Data

Size
Number of rooms
Number of bathrooms
Schools around
Crime rate

Housing Data

Size
Number of rooms
Number of bathrooms

Schools around
Crime rate

Size feature

Location feature

Size feature

Housing Data

5 dimensions

2 dimensions

Size

Number of rooms

Number of bathrooms

Schools around Crime rate Size feature

Location feature

How do we balance the 3 weights (of exactly same weight), assuming the bar has no weight

Mean

Mean

Variance

How do we measure distance when we have same mean?

Variance

Variance =

Variance is basically a measure that tells how spread out is a set

Variance

Variance =
$$\frac{1^2 + 0^2 + 1^2}{3} = 2/3$$

Mean

Variance =
$$\frac{2^2 + 1^2 + 3^2}{3} = 14/3$$

What is the variance for a 2D dataset? i.e. a set is in the plane

Variance?

Variance?

x-variance =
$$\frac{2^2 + 0^2 + 2^2}{3}$$
 = 8/3

y-variance =
$$\frac{1^2+0^2+1^2}{3}$$
 = 2/3

How to differentiate 2 fundamentally different datasets that have same x variance and y variance?

Covariance tells how 3 points (in the right image) are different from 3 points (in the left image)

Covariance calculates sum of products of coordinates (Earlier it was a sum of square of one of the coordinates)

Covariance

covariance =
$$\frac{(-2) + 0 + (-2)}{3} = -4/3$$

covariance =
$$\frac{2+0+2}{3} = 4/3$$

Covariance

This set looks neither like positively correlated nor negatively correlated

Covariance

$$\bullet^{(-2,1)}$$
 $\bullet^{(0,1)}$ $\bullet^{(2,1)}$ $\bullet^{(-2,0)}$ $\bullet^{(-2,0)}$ $\bullet^{(0,0)}$ $\bullet^{(2,0)}$ $\bullet^{(-2,-1)}$ $\bullet^{(0,-1)}$ $\bullet^{(2,-1)}$

covariance =
$$\frac{-2+0+2+0+0+2+0+-2}{9} = 0$$

So by looking at the set (or data points) we get an intuition about the covariance

Covariance

negative covariance

covariance zero (or very small)

positive covariance

Covariance helps a lot in PCA

Imagine we have a dataset like below. How do we find the perfect projection

Covariance matrix

Covariance matrix

Linear transformation just turns the points of one plane to point on another plane using the number of matrix

Linear Transformations

Hence the linear transformation is stretching the plane in two direction, and those directions are given by Eigen vectors and the amount is given by Eigen values

2D dataset is transformed into 1D dataset by picking Eigen vector with high Eigen value i.e. projecting the axis the carries most amount of information

Credits: The PCA content is taken from amazing explanation of Luis Serrano