```
In [2]: import pandas as pd
import numpy as np
```

In [3]: data = pd.read_csv("C:\\Users\\amang\\Downloads\\task2\\tested.csv")

In [4]: data.head()

Out[4]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
	0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	Nai
	1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	Nai
	2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	Nal
	3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	Nal
	4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	Nai
	4											•

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Survived	418 non-null	int64
2	Pclass	418 non-null	int64
3	Name	418 non-null	object
4	Sex	418 non-null	object
5	Age	332 non-null	float64
6	SibSp	418 non-null	int64
7	Parch	418 non-null	int64
8	Ticket	418 non-null	object
9	Fare	417 non-null	float64
10	Cabin	91 non-null	object
11	Embarked	418 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 39.3+ KB

```
In [6]: data.isnull().sum()
Out[6]: PassengerId
                          0
        Survived
                          0
        Pclass
                          0
        Name
                          0
                          0
        Sex
        Age
                         86
        SibSp
                          0
        Parch
                          0
        Ticket
                          0
        Fare
                          1
        Cabin
                        327
        Embarked
                          0
        dtype: int64
```

In [7]: data = data.drop(["PassengerId","Ticket","Cabin","Name"],axis=1)
 data.head()

Out[7]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	34.5	0	0	7.8292	Q
1	1	3	female	47.0	1	0	7.0000	S
2	0	2	male	62.0	0	0	9.6875	Q
3	0	3	male	27.0	0	0	8.6625	S
4	1	3	female	22.0	1	1	12.2875	S

In [8]: data.describe()

Out[8]:

	Survived	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	0.363636	2.265550	30.272590	0.447368	0.392344	35.627188
std	0.481622	0.841838	14.181209	0.896760	0.981429	55.907576
min	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	0.000000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	0.000000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1.000000	3.000000	76.000000	8.000000	9.000000	512.329200

```
In [9]: data.isnull().sum()
 Out[9]: Survived
                       0
          Pclass
                       0
          Sex
                       0
          Age
                      86
          SibSp
                       0
          Parch
                       0
          Fare
                       1
          Embarked
          dtype: int64
In [10]: data = data.drop(["Fare"],axis=1)
In [23]: mean = data["Age"].mean()
          data["Age"]=data["Age"].replace(np.nan, mean)
In [18]: print(data.dtypes)
          Survived
                        int64
          Pclass
                        int64
          Sex
                       object
                      float64
          Age
                        int64
          SibSp
          Parch
                        int64
          Embarked
                       object
          dtype: object
In [25]: data["Age"] = data["Age"].astype(int)
In [26]: data.head()
Out[26]:
             Survived Pclass
                              Sex Age SibSp Parch Embarked
          0
                   0
                          3
                                    34
                                           0
                                                  0
                                                           Q
                              male
                                                           S
                   1
                          3 female
                                    47
                                                  0
          2
                   0
                          2
                                    62
                                                           Q
                              male
                                           0
                                                  0
                   0
                                                           S
          3
                          3
                                    27
                                                  0
                              male
                                           0
                                                           S
                          3 female
                                    22
In [27]: data["Embarked"].unique()
Out[27]: array(['Q', 'S', 'C'], dtype=object)
In [28]: data = pd.get_dummies(data, columns=['Sex'], drop_first=True)
```

```
In [29]: data.head()
```

Out[29]:		Survived	Pclass	Age	SibSp	Parch	Embarked	Sex_male
	0	0	3	34	0	0	Q	1
	1	1	3	47	1	0	S	0
	2	0	2	62	0	0	Q	1
	3	0	3	27	0	0	S	1
	4	1	3	22	1	1	S	0

```
In [30]: import matplotlib.pyplot as plt
```

```
In [31]: data['Survived'].value_counts().plot(kind='bar',color='yellow')
    plt.xlabel("Survived")
    plt.ylabel("Frequency")
    plt.title("Survived chart")
    plt.show()
```



```
In [35]: from sklearn.model_selection import train_test_split
    from sklearn.impute import SimpleImputer
    from sklearn.metrics import accuracy_score
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import mean_squared_error,r2_score, mean_absolute_error

In [40]: X = data.drop(["Survived","Embarked"],axis=1)
    y= data["Survived"]

In [41]: X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state)

In [42]: model=LogisticRegression()

In [43]: model.fit(X_train,y_train)

Out[43]: LogisticRegression()

In [45]: y_prediction = model.predict(X_test)
    Accuracy = accuracy_score(y_test,y_prediction)
    print("Accuracy:",Accuracy)
```

Accuracy: 1.0