Preparação para exame

12.º Ano de Escolaridade | Turma G-K

FUNÇÕES REAIS DE VARIÁVEL REAL /FUNÇÃO EXPONENCIAL / FUNÇÃO LOGARÍTMICA

1. Na figura 1 está representado, em referencial, o.n. xOy, parte do gráfico da função polinomial definida por $A(x) = x^3 - 3x^2 + 4$ e um trapézio [OPQR].

Tal como a figura sugere:

- R é o ponto de interseção do gráfico da função com o eixo das ordenadas;
- Q é o ponto de gráfico da função com abcissa a, com a > 2;
- P pertence a Ox e tem a mesma abcissa de Q.

Figura 1

Recorre às capacidades gráficas da tua calculadora para resolver o seguinte problema:

Qual é o valor da abcissa do ponto P para o qual a área do trapézio [OPQR] é igual a 20?

Na tua resposta deves:

- mostrar que a área do área do trapézio [OPQR], em função de a, é dada por $f(a) = \frac{1}{2}a^4 \frac{3}{2}a^3 + 4a$, com a > 2;
- equacionar o problema;
- apresentar o(s)gráfico(s)visualizado(s)na calculadora gráfica, devidamente identificados, assinalando o(s)ponto(s) que consideres relevantes;
- apresentar a solução para o problema com aproximação às centésimas.
- 2. Na figura 2, está representado um triângulo retângulo [ABC].

Admite que:

- \bullet os catetos [AB] e [AC] medem, respetivamente, 4 e 3 unidades de comprimento;
- o ponto D desloca-se ao longo do cateto [AB], nunca coincidindo com o ponto A, nem com o ponto B.

Para cada posição do ponto D, seja x o comprimento do segmento de reta [DB].

Qual das expressões seguintes dá,
em função de x, o perímetro do triângulo
 [BCD]?

(B)
$$4 + x + \sqrt{25 + x^2}$$

(C)
$$5 + x + \sqrt{x^2 - 8x + 25}$$

(D)
$$4 + x + \sqrt{x^2 - 8x + 25}$$

Figura 2

3. Na figura 3 está representado, em referencial ortonormado xOy, parte do gráfico da função f, real de variável real.

Seja (a_n) uma sucessão de valores do domínio de f. Sabe-se que a sucessão $f(a_n)$ tende para 4.

Qual das sucessões poderá ser (a_n) ?

(B)
$$a_n = 4 + \frac{1}{e^n}$$

(C)
$$a_n = 2 - \frac{1}{e^n}$$

(D)
$$a_n = 2 + \frac{1}{e^n}$$

Figura 3

4. O valor de k para o qual se tem $\lim \left(1+\frac{2}{5n}\right)^{2n-3}=e^{k+1}$ é:

(A)
$$-\frac{1}{5}$$

(B)
$$\frac{1}{5}$$
 (C) $\frac{4}{5}$

(C)
$$\frac{4}{5}$$

(D)
$$\frac{9}{5}$$

5. Na figura 4 está representado, em referencial ortonormado xOy, parte do gráfico de uma função f de domínio \mathbb{R}^+ , definida por $f(x) = \ln(x) + e$.

A é um ponto do gráfico da função f, cuja ordenada é 1+e.

Em qual das opções está a abcissa do ponto A?

(B)
$$2e$$

(C)
$$e^{-1}$$

(D) 2

Figura 4

- 6. Considera as funções f, g e h, reais de variável real, definidas por $f(x) = e^x 2e^{-x}, g(x) = e^{-x} + e$ e $h(x) = \ln\left(\frac{x+e}{e}\right) - 1.$
 - 6.1. Sem recorres à expressão da função inversa de h, determina $h^{-1}(-1)$.
 - 6.2. Resolve a condição $f(x) = 3 4e^{-x}$.

6.3. Na figura 5 estão representados, em referencial o.n. xOy, partes dos gráficos das funções f e g e um triângulo [ABC].

Sabe-se que:

- B é o ponto de interseção do gráfico da função f com o eixo Oy:
- \bullet C é o ponto de interseção dos dois gráficos representados

Determina um valor aproximado às centésimas da área do triângulo [ABC].

Nota: Para o cálculo das coordenadas do ponto C, recorre às potencialidades da calculadora gráfica e considera os valores arredondados às centésimas.

Figura 5

7. Seja
$$k \in \mathbb{R} \setminus \{0\}$$
 e seja a função f, real de variável real, definida por

$$f(x) = \begin{cases} \frac{ex}{e - e^{2kx+1}} & se \quad x < 0\\ \frac{e^{-\ln(4)}}{se} & se \quad x = 0\\ \frac{\sqrt{x+4} - 2}{x} & se \quad x > 0 \end{cases}$$

Averigua se existe $k \in \mathbb{R} \setminus \{0\}$ para o qual a função f é contínua no ponto x = 0. Em caso afirmativo, indica o seu valor.

- 8. Sabendo que $a, c \in \mathbb{R}^+ \setminus \{1\}$ e que $log_c(a) = 2$, mostra que $log_c(\sqrt[3]{a^2c}) = \frac{5}{3}$.
- 9. Determina:

9.1.
$$\lim_{x \to +\infty} \left[\frac{\sqrt{e^{-x}} + x}{x + \sqrt{x}} + \frac{\sqrt{x^2}}{x} \right]$$

9.2.
$$\lim_{x \to 4} \left[(x^2 - 16) \times \frac{2}{x^3 - 7x^2 + 8x + 16} \right]$$

10. O Rodrigo está prestes a tomar o seu café expresso matinal no bar da faculdade onde estuda. Sabe-se que a temperatura do café, t minutos após ser colocado na chávena, é bem modelada pela função

$$f(t) = 30 + 45e^{-0.6t}$$

- 10.1. Qual a temperatura do café no preciso momento em que o funcionário do bar o coloca na chávena?
- 10.2. O Rodrigo espera sempre que o café que se encontra na chávena arrefeça um pouco antes de o tomar. Quanto tempo vai ter de esperar para tomar o café, se o quiser tomar a uma temperatura de 35° C? Apresenta o resultado arredondada às centésimas.
- 11. A atividade F, de qualquer substância radioativa, é dada, numa certa unidade de medida, pela expressão

$$F(t) = A \times e^{-Bt}$$

Sendo A e B constantes reais positivas e t é o tempo em horas, com $t \ge 0$.

Mostra que o tempo necessário para que a atividade F passe do seu valor inicial para metade é $\frac{\ln(2)}{B}$.

- 12. Para certos valores de a e de b (a > 1) e (b > 1), tem-se $\log_b(a^4b) = 6$. Qual é, para esses valores de a e de b, o valor de $\log_a(b)$?
 - (A) $\frac{4}{5}$
 - (B) $\frac{3}{4}$
 - (C) $\frac{4}{7}$
 - (D) $\frac{5}{4}$
- 13. Sejam a e b dois números reais superiores a 1, tais que $a=b^{10}$. Determina $\log_a(\sqrt{b}) + \log_b(a^2)$.
- 14. Seja a um número real.

Seja a função f, de domínio \mathbb{R}^+ , definida por $f(x) = e^{a^2 \ln x}$.

Considera, num referencial o. n. xOy, o ponto $P\left(\frac{1}{2}; \frac{1}{64}\right)$

Sabe-se que o ponto P pertence ao gráfico de f. Determina o(s) valor(es) de a.

15. Considera a função f, de domínio] $-\infty$; -1[, definida por $f(x) = 2x + 1 + \frac{\ln(-x-1)}{2x}$.

Resolve os dois itens seguintes, recorrendo a métodos analíticos, sem usares a calculadora.

- 15.1. Estuda a função f quanto à existência de assintotas ao seu gráfico e, caso existam, indica as suas equações.
- 15.2. Mostra que a equação f(x) = -2e tem, pelo menos, uma solução em]-e-1;-2[.
- 16. Considera a função f, de domínio \mathbb{R}^+ . Sabe-se que:
 - ullet o gráfico de f tem uma assíntota oblíqua;
 - $\bullet \lim_{x \mapsto +\infty} \frac{x}{f(x) + e^{-x} + 2x} = -2$

Qual é o declive dessa assíntota?

SUCESSÕES DE NÚMEROS REAIS

17. Prova, usando o método de indução matemática, que:

$$1 \times 1! + 2 \times 2! + 3 \times 3! + \ldots + n \times n! = (n+1)! - 1, \forall n \in \mathbb{N}$$

Entenda-se que: $n! \rightarrow$ fatorial de n

- 18. Prova que se (a_n) é progressão aritmética de razão r então $b_n = k^{a_n}$ define uma progressão geométrica de razão k^r , sendo k diferente de zero e um.
- 19. Se (a_n) é progressão geométrica de termos positivos e de razão r, com $r \in \mathbb{R}^+ \setminus \{1\}$ então $b_n = \log_a(a_n)$ define uma progressão aritmética de razão $\log_a(r)$, sendo $a \in \mathbb{R}^+ \setminus \{1\}$.

(Nota: Os itens 18 e 19 são adaptados de dois itens da autoria do professor José Luís Freitas)