```
In [6]:
#pimporting libraries and data set
import pandas as pd
import numpy as np
df = pd.read_excel("C:\\Users\\maagalu\\Desktop\\arima.xlsx")
import warnings
warnings.filterwarnings('ignore')
                                                                                                                                              In [8]:
# Checking for the data type
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 97936 entries, 0 to 97935
Data columns (total 9 columns):
# Column Non-Null Count Dtype
0 Date
            97936 non-null object
1
   Country
             97936 non-null object
   Restaurant ID 97936 non-null int64
              97936 non-null object
3 Cuisine
4
   Items
              97936 non-null int64
              97936 non-null float64
5
   Cost
   Delivery Time 97936 non-null float64
6
7
   Month
               97936 non-null object
```

df.head(5)

8 Week

Out[5]: Date Country Restaurant ID Cuisine Items Cost Delivery Time Month Week 1-1-2020 8007 1 46.00 Portuga Sushi 18.2 January 1 Fast 1-1-2020 Portugal 7456 23.50 11.5 January 1-1-2020 Portugal 9825 10.91 Sushi 3 10.7 January 1-1-2020 Portugal 6551 Chinese 6.45 7.4 January Fast

22.1 January

2 10.92

#Converting Date column data type from Object to date data format df['Date']=pd.to_datetime(df['Date'])

9729

food

97936 non-null int64

dtypes: float64(2), int64(3), object(4)

memory usage: 6.7+ MB

dt['Date']=pd.to_datetime(dt['Date'])

df.info()

1-1-2020

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 97936 entries, 0 to 97935
Data columns (total 9 columns):
Column Non-Null Count Dtype

Ghana

0 Date 97936 non-null datetime64[ns] 97936 non-null object 1 Country Restaurant ID 97936 non-null int64 97936 non-null object 3 Cuisine 4 Items 97936 non-null int64 5 Cost 97936 non-null float64 6

6 Delivery Time 97936 non-null float64 7 Month 97936 non-null object 8 Week 97936 non-null int64

 $dtypes: datetime 64 [ns] (1), \, float 64 (2), \, int 64 (3), \, object (3) \\$

memory usage: 6.7+ MB

#Grouping number of Orders placed by countries based on date s = df.groupby(['Date'])['Items'].count()

s1= s.to_frame().rename(columns={'Items':'Orders'}).reset_index()

In [25]:

In [24]:

In [23]:

In [5]:

In [9]:

In [10]:

s1

	Date	Orders
0	2020-01-01	1006
1	2020-01-02	1230
2	2020-01-03	1186
3	2020-01-04	953
4	2020-01-05	986
5	2020-01-06	1007
6	2020-01-07	1116
7	2020-01-08	1155
8	2020-01-09	1625
9	2020-01-10	1597
10	2020-01-11	1105
11	2020-01-12	1128
12	2020-01-13	1179
13	2020-01-14	1334
14	2020-01-15	1565
15	2020-01-16	1520
16	2020-01-17	1495
17	2020-01-18	1237
18	2020-01-19	1341
19	2020-01-20	1468
20	2020-01-21	1741
21	2020-01-22	1838
22	2020-01-23	1871
23	2020-01-24	1663
24	2020-01-25	1345
25	2020-01-26	1376
26	2020-01-27	1522
27	2020-01-28	1677
28	2020-01-29	2029
29	2020-01-30	2052
30	2020-01-31	1891
31	2020-02-01	1551
32	2020-02-02	1630
33	2020-02-03	1616
34	2020-02-04	1733
35	2020-02-05	2043
36	2020-02-06	2084
37	2020-02-07	1886
38	2020-02-08	1510
39	2020-02-09	1705
40	2020-02-10	1627
41	2020-02-11	1862
42	2020-02-12	2087
43	2020-02-13	2191
	2020-02-14	2328
45	2020-02-15	1546
46	2020-02-16	1694
	2020-02-17	1722
48	2020-02-18	1775
49	2020-02-19	2189
50	2020-02-20	2268
51	2020-02-21	1982

```
      54
      2020-02-24
      1831

      55
      2020-02-25
      2089

      56
      2020-02-26
      2662

      57
      2020-02-27
      2501

      58
      2020-02-28
      2236

In [15]:
```

import matplotlib.pyplot as plt
import statsmodels.api as sms

Orders 616

1734

%matplotlib inline

2020-02-23

s1.set_index('Date',inplace=True)

In [18]:

Out[18]:

In [16]:

s1.head()

```
Date
2020-01-01 1006
2020-01-02 1230
2020-01-03 1186
2020-01-04 953
2020-01-05 986
```

ARIMA(Autoregressive Integrated Moving Averages) and Seasonal ARIMA

1) Visualize the time series data 2) If the data is seasonal then make the time series data stationary 3) Plot the correlation and autocorrelation charts 4) Construct the ARIMA model or Seasonal ARIMA based on the data 5) Use the model to make the predictions

In [19]:

Out[19]:

s1.plot()

<AxesSubplot:xlabel='Date'>

In [15]:

 $\textbf{from} \ \text{statsmodels.tsa.stattools} \ \textbf{import} \ \text{adfuller}$

In [16]:

```
#Checking for seasonality by performing dickey fuller test

def adf_test(series):
    result=adfuller(series)
    print('ADF statistics: {}'.format(result[0]))
    print('p-value: {}'.format(result[1]))
    if result[1] <= 0.05:
        print("strong evidence against the null hypothesis, rejecting the null hypothesis and data is stationary")
    else:
        print("Weak evidence against null hypothesis, indicating data is non stationary")
```

adf_test(s1['Orders'])

ADF statistics: -1.6160321018396893 p-value: 0.47481011817588453

Weak evidence against null hypothesis, indicating data is non stationary

As per the dickey fuller test I found out that the data is seasonal and the next steps involved in prediction are 1) Finding p,d,q values. Where 'p' can be determined by ploting Partial autocorrelation, which indicates AR model lags 'd' can be determined by how many times we differentiated data to make it stationary 'q' can be determined by ploting autocorrelation, which indicates moving average lags 2) Based on the p,d,q values we can do the predictions

In [19]:

decomposition = sms.tsa.seasonal_decompose(s1, model='additive')
fig = decomposition.plot()
plt.show()

In [20]:

len(s1)

59

In [21]:

Out[20]:

train=s1[:45] test=s1[45:]

In [22]:

#differentiating the data to make it stationary for forecasting s1['Orders first difference'] = s1['Orders'] - s1['Orders'].shift(1)

In [23]:

s1.head()

Out[23]:

Orders		Orders first difference
Date		
2020-01-01	1006	NaN
2020-01-02	1230	224.0
2020-01-03	1186	-44.0
2020-01-04	953	-233.0
2020-01-05	986	33.0

In [25]:

adf_test(s1['Orders first difference'].dropna())

ADF statistics: -3.937974088449084 p-value: 0.0017724889713223088

strong evidence against the null hypothesis, rejecting the null hypothesis and data is stationary

In [26]:

s1['Orders first difference'].plot()

In [27]:

from statsmodels.graphics.tsaplots import plot_acf,plot_pacf

In [31]:

fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sms.graphics.tsa.plot_acf(s1['Orders first difference'].dropna(),lags=25,ax=ax1)
ax2 = fig.add_subplot(212)

fig = sms.graphics.tsa.plot_pacf(s1['Orders first difference'].dropna(),lags=25,ax=ax2)

In [32]:

#p=1,d=1,q=1 from statsmodels.tsa.arima_model import ARIMA

In [34]:

model=ARIMA(s1['Orders'],order=(1,1,1))
model_fit=model.fit()

C:\Users\maagalu\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred f requency D will be used.

warnings.warn('No frequency information was'

C:\Users\maagalu\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred f requency D will be used.

warnings.warn('No frequency information was'

In [35]:

model_fit.summary()

ARIMA Model Results							
Dep. Variable:	D	.Orders	No. Obs	ervatio	ns:		58
Model:	ARIMA	(1, 1, 1)	Log	Likeliho	od	-392	2.954
Method:		css-mle	ir	S.D. novatio	-	206	6.541
Date:	Mon,	09 May 2022		A	AIC	793	3.908
Time:	1	3:22:47		E	BIC	802	2.149
Sample:	01-0	02-2020		н	OIC	797	7.118
	- 02-2	28-2020					
	coef	std err	z	P> z	[0.	025	0.975]
const	18.7577	3.081	6.088	0.000	12.	719	24.796
ar.L1.D.Orders	0.5135	0.116	4.440	0.000	0.	287	0.740

Roots

0.046

-21.619

0.000

-1.091

-0.909

-0.9999

	Real	Imaginary	Modulus	Frequency
AR.1	1.9475	+0.0000j	1.9475	0.0000
MA.1	1.0001	+0.0000j	1.0001	0.0000

In [36]:

 $\begin{tabular}{ll} $\tt s1['forecast']=model_fit.predict(start=45,end=57,dynamic={\bf True}) \\ $\tt s1[['Orders','forecast']].plot(figsize=(12,8)) \\ \end{tabular}$

<AxesSubplot:xlabel='Date'>

ma.L1.D.Orders

Out[36]:

After ARIMA model evaluation, we can observe that the model has not given the proper prediction due to seasonality! # That is why I am using SARIMA model for prediction by taking 7 days period as seasonal

In [38]:

In []:

 $model=sms.tsa.statespace.SARIMAX(s1['Orders'], order=(1,\ 1,\ 1), seasonal_order=(1,1,1,7)) \\ results=model.fit()$

C:\Users\maagalu\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred f requency D will be used.

warnings.warn('No frequency information was'

C:\Users\maagalu\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred f requency D will be used.

warnings.warn('No frequency information was'

ation was' In [39]: <AxesSubplot:xlabel='Date'>

From the above graph, It is confirmed that SARIMA model prediction is inline with the true values. from pandas.tseries.offsets import DateOffset future_dates=[s1.index[-1]+DateOffset(days=x)for x in range(0,32)]

future_datest_df=pd.DataFrame(index=future_dates[1:],columns=s1.columns)

future_datest_df.tail()

	Orders	Orders first difference	forecast
2020-03-26	NaN	NaN	NaN
2020-03-27	NaN	NaN	NaN
2020-03-28	NaN	NaN	NaN
2020-03-29	NaN	NaN	NaN
2020-03-30	NaN	NaN	NaN

future_df=pd.concat([s1,future_datest_df])

#Continuing the SARIMA model test for the prediction of Orders for the month of March future_df['forecast']=results.predict(start=58,end=90,dynamic=**True**) future_df[['Orders','forecast']].plot(figsize=(12,8))

Out[39]:

In [59]:

In [60]:

In [61]:

Out[61]:

In [62]:

In [65]:

