Exercises for 4.1-4.4

1. Fill in missing items:

1. Γ	$\vdash (P \lor Q) \supset R$ premise
2. <i>P</i>	⊢ <i>P</i>
3	⊢
4	⊢
5. Γ	⊢ 4,⊃I
6. <i>Q</i>	$\vdash Q$
7	⊢
8	⊢
9. Г	$\vdash Q \supset R$ 8, \supset I
10. Γ	⊢ 5,9,∧I

2. Add missing annotations for the following proof of $\vdash (\neg P \lor \neg Q) \supset \neg (P \land Q)$

1.
$$\neg P \lor \neg Q$$
 $\vdash \neg P \lor \neg Q$
 ...

 2. $P \land Q$
 $\vdash P \land Q$
 ...

 3. $\neg P$
 $\vdash \neg P$
 ...

 4. $P \land Q$
 $\vdash P$
 ...

 5. $\neg P, P \land Q$
 $\vdash \neg P$
 ...

 6. $\neg P$
 $\vdash \neg (P \land Q)$
 ...

 7. $\neg Q$
 $\vdash \neg (P \land Q)$
 ...

 8. $P \land Q$
 $\vdash Q$
 ...

 9. $\neg Q, P \land Q$
 $\vdash \neg Q$
 ...

 10. $\neg Q$
 $\vdash \neg (P \land Q)$
 ...

 11. $\neg P \lor \neg Q$
 $\vdash \neg (P \land Q)$
 ...

 12.
 $\vdash (\neg P \lor \neg Q) \supset \neg (P \land Q)$
 ...

1. $\neg(P \lor Q)$	$\vdash \neg (P \lor Q)$	 	
	$\vdash \neg (P \lor Q)$	 	
1. $\neg(P \lor Q)$ 2. P	$\vdash \neg (P \lor Q)$ $\vdash P \qquad \dots$ $\vdash P \lor Q$	 	
 ¬(P ∨ Q) P P 	$\vdash \neg (P \lor Q)$ $\vdash P \qquad \dots$ $\vdash P \lor Q$ $\vdash \neg (P \lor Q)$	 	
1. $\neg (P \lor Q)$ 2. P 3. P 4. $\neg (P \lor Q), P$ 5. $\neg (P \lor Q)$	$\vdash \neg (P \lor Q)$ $\vdash P \qquad \dots$ $\vdash P \lor Q$ $\vdash \neg (P \lor Q)$ $\vdash \neg P \qquad \dots$	 	
1. $\neg (P \lor Q)$ 2. P 3. P 4. $\neg (P \lor Q), P$ 5. $\neg (P \lor Q)$	$\vdash \neg (P \lor Q)$ $\vdash P \qquad \dots$ $\vdash P \lor Q$ $\vdash \neg (P \lor Q)$ $\vdash \neg P \qquad \dots$	 	
 P P ¬(P ∨ Q), P ¬(P ∨ Q) 	$\vdash \neg (P \lor Q)$ $\vdash P \qquad \dots$ $\vdash P \lor Q$ $\vdash \neg (P \lor Q)$ $\vdash \neg P \qquad \dots$	 	
 ¬(P ∨ Q) P P ¬(P ∨ Q), P ¬(P ∨ Q) 	$\vdash \neg (P \lor Q)$ $\vdash P \qquad \dots$ $\vdash P \lor Q$ $\vdash \neg (P \lor Q)$ $\vdash \neg P \qquad \dots$	 	
 ¬(P ∨ Q) P P ¬(P ∨ Q), P ¬(P ∨ Q) 	$\vdash \neg (P \lor Q)$ $\vdash P \qquad \dots$ $\vdash P \lor Q$ $\vdash \neg (P \lor Q)$ $\vdash \neg P \qquad \dots$		
 ¬(P ∨ Q) P P ¬(P ∨ Q), P ¬(P ∨ Q) 	$\vdash \neg (P \lor Q)$ $\vdash P \qquad \dots$ $\vdash P \lor Q$ $\vdash \neg (P \lor Q)$ $\vdash \neg P \qquad \dots$		
1. $\neg (P \lor Q)$ 2. P 3. P 4. $\neg (P \lor Q), P$ 5. $\neg (P \lor Q)$	$\vdash \neg (P \lor Q)$ $\vdash P \qquad \dots$ $\vdash P \lor Q$ $\vdash \neg (P \lor Q)$ $\vdash \neg P \qquad \dots$		

5. Add missing items.

11.
$$\neg (P \supset Q) \qquad \vdash P \qquad \dots$$

- $\vdash \neg (P \supset Q) \supset P$ 12.
- 6. Prove $P \supset Q, P \lor Q \vdash Q$. Hint: Assume $P \supset Q$ and assume Q. Use \lor E.

7.	Recall the Prisoner's Dilemma (exercise for 3.1-4). Let P mean that Jerry will confess, and let Q mean that Ben is better off confessing. Turn the reasoning in the standardized form provided in the answer key into a derivation that utilizes EM (hint: the derivation will have two premises)					