BEST AVAILABLE COPY

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: **A2** C12N 15/51, C12Q 1/68, A61K 39/29 G01N 33/576, C07N 14/18, C12Q 1/70, C07K 16/10

(11) International Publication Number:

WO 94/25601

(43) International Publication Date: 10 November 1994 (10.11.94)

(21) International Application Number:

PCT/EP94/01323

(22) 'International Filing Date:

27 April 1994 (27.04.94)

(30) Priority Data:

27 April 1993 (27.04.93) EP 93401099.2 (34) Countries for which the regional or international application was filed: GB et al. 5 August 1993 (05.08.93) EP

(34) Countries for which the regional or international application was filed:

GB et al.

(71) Applicant (for all designated States except US): N.V. INNO-GENETICS S.A. [BE/BE]; Industriepark, Zwihnaarde 7, Box 4, B-9052 Ghent (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MAERTENS, Geert [BE/BE]; Zilversparrenstrasse 64, B-8310 Brugge (BE). STUYVER, Lieven [BE/BE]; Hoogstraat 27, B-9340 Lede (BE).

(74) Agent: GROSSET-FOURNIER, Chantal; Grosset-Fournier & Demachy S.A.R.L., 103, rue La Fayette, F-75010 Paris (FR). (81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KG, KP, KR, KZ, LK, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NEW SEQUENCES OF HEPATITIS C VIRUS GENOTYPES AND THEIR USE AS THERAPEUTIC AND DIAGNOSTIC **AGENTS**

(57) Abstract

The present invention relates to a polynucleic acid composition comprising or consisting of at least one polynucleic acid containing 8 or more contiguous nucleotides corresponding to a nucleotide sequence from the region spanning positions 417 to 957 of the Core/E1 region of HCV type 3; and/or the region spanning positions 4664 to 4730 of the NS3 region of HCV type 3; and/or the region spanning positions 4892 to 5292 of the NS3/4 region of HCV type 3; and/or the region spanning positions 8 023 to 8 235 of the NS5 region of the BR36 subgroup of HCV type 3a; and/or the coding region of HCV type 4a starting at nucleotide 379 in the core region; and/or the coding region of HCV type 4; and/or the coding region of HCV type 5, with said nucleotide numbering being with respect to the numbering of HCV nucleic acids as shown in Table 1, and with said polynucleic acids containing at least one nucleotide difference with known HCV type 1, and/or HCV type 2 genomes in the above indicated regions, or the complement thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

			•		
AT	Austria	GB	United Kingdom	MIR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	, JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LÌ	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	ŤĴ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MID	Republic of Moldova	ŪA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon		. •	***	TICL STOLL

NEW SEQUENCES OF HEPATITIS C VIRUS GENOTYPES AND THEIR USE AS THERAPEUTIC AND DIAGNOSTIC AGENTS

The invention relates to new sequences of hepatitis C virus (HCV) genotypes and their use as therapeutic and diagnostic agents.

The present invention relates to new nucleotide and amino acid sequences corresponding to the coding region of a new type 2 subtype 2d, type-specific sequences corresponding to HCV type 3a, to new sequences corresponding to the coding region of a new subtype 3c, and to new sequences corresponding to the coding region of HCV type 4 and type 5 subtype 5a; a process for preparing them, and their use for diagnosis, prophylaxis and therapy.

The technical problem underlying the present invention is to provide new type-specific sequences of the Core, the E1, the E2, the NS3, the NS4 and the NS5 regions of HCV type 4 and type 5, as well as of new variants of HCV types 2 and 3. These new HCV sequences are useful to diagnose the presence of type 2 and/or type 3 and/or type 4 and/or type 5 HCV genotypes in a biological sample. Moreover, the availability of these new type-specific sequences can increase the overall sensitivity of HCV detection and should also prove to be useful for therapeutic purposes.

Hepatitis C viruses (HCV) have been found to be the major cause of non-A, non-B hepatitis. The sequences of cDNA clones covering the complete genome of several prototype isolates have been determined (Kato et al., 1990; Choo et al., 1991; Okamoto et al., 1991; Okamoto et al., 1992). Comparison of these isolates shows that the variability in nucleotide sequences can be used to distinguish at least 2 different genotypes, type 1 (HCV-1 and HCV-J) and type 2 (HC-J6 and HC-J8), with an average homology of about 68%. Within each type, at least two subtypes exist (e.g. represented by HCV-1 and HCV-J), having an average homology of about 79%. HCV genomes belonging to the same subtype show average homologies of more than 90% (Okamoto et al., 1992). However, the partial nucleotide sequence of the NS5 region of the HCV-T isolates showed at most 67% homology with the previously published sequences, indicating the existence of a yet another HCV type (Mori et al., 1992). Parts of the 5' untranslated region (UR), core, NS3, and NS5 regions of this type 3 have been published, further establishing the similar evolutionary distances between the 3 major genotypes and their subtypes (Chan et al., 1992).

The identification of type 3 genotypes in clinical samples can be achieved by means of PCR with type-specific primers for the NS5 region. However, the degree to which this will

be successful is largely dependent on sequence variability and on the virus titer present in the serum. Therefore, routine PCR in the open reading frame, especially for type 3 and the new type 4 and 5 described in the present invention and/or group V (Cha et al., 1992) genotypes can be predicted to be unsuccessful. A new typing system (LiPA), based on variation in the highly conserved 5' UR, proved to be more useful because the 5 major HCV genotypes and their subtypes can be determined (Stuyver et al., 1993). The selection of high-titer isolates enables to obtain PCR fragments for cloning with only 2 primers, while nested PCR requires that 4 primers match the unknown sequences of the new type 3, 4 and 5 genotypes.

New sequences of the 5' untranslated region (5'UR) have been listed by Bukh et al. (1992). For some of these, the E1 region has recently been described (Bukh et al., 1993). Isolates with similar sequences in the 5'UR to a group of isolates including DK12 and HK10 described by Bukh et al. (1992) and E-b1 to E-b8 described and classified as type 3 by Chan et al. (1991), have been reported and described in the 5'UR, the carboxyterminal part of E1, and in the NS5 region as group IV by Cha et al. (1992; WO 92/19743), and have also been described in the 5'UR for isolate BR56 and classified as type 3 by the inventors of this application (Stuyver et al., 1993).

The aim of the present invention is to provide new HCV nucleotide and amino acid sequences enabling the detection of HCV infection.

Another aim of the present infection is to provide new nucleotide and amino acid HCV sequences enabling the classification of infected biological fluids into different serological groups unambiguously linked to types and subtypes at the genome level.

Another aim of the present invention is to provide new nucleotide and amino acid HCV sequences ameliorating the overall HCV detection rate.

Another aim of the present invention is to provide new HCV sequences, useful for the design of HCV vaccine compositions.

Another aim of the present invention is to provide a pharmaceutical composition consisting of antibodies raised against the polypeptides encoded by these new HCV sequences, for therapy or diagnosis.

The present invention relates more particularly to a composition comprising or consisting of at least one polynucleic acid containing at least 5, and preferably 8 or more contiguous nucleotides selected from at least one of the following HCV sequences:

- an HCV type 3 genomic sequence, more particularly in any of the following regions:

- the region spanning positions 417 to 957 of the Core/E1 region of HCV subtype 3a,
- the region spanning positions 4664 to 4730 of the NS3 region of HCV type
- the region spanning positions 4892 to 5292 of the NS3/4 region of HCV type 3,
- the region spanning positions 8023 to 8235 of the NS5 region of the BR36 subgroup of HCV subtype 3a,
 - an HCV subtype 3c genomic sequence,

more particularly the coding regions of the above-specified regions;

- an HCV subtype 2d genomic sequence, more particularly the coding region of HCV subtype 2d;
- an HCV type 4 genomic sequence, more particularly the coding region, more particularly the coding region of subtypes 4a, 4e, 4f, 4g, 4h, 4i, and 4j,
- an HCV type 5 genomic sequence, more particularly the coding region of HCV type 5, more particularly the regions encoding Core, E1, E2, NS3, and NS4

with said nucleotide numbering being with respect to the numbering of HCV nucleic acids as shown in Table 1, and with said polynucleic acids containing at least one nucleotide difference with known HCV (type 1, type 2, and type 3) polynucleic acid sequences in the above-indicated regions, or the complement thereof.

It is to be noted that the nucleotide difference in the polynucleic acids of the invention may involve or not an amino acid difference in the corresponding amino acid sequences coded by said polynucleic acids.

According to a preferred embodiment, the present invention relates to a composition comprising or containing at least one polynucleic acid encoding an HCV polyprotein, with said polynucleic acid containing at least 5, preferably at least 8 nucleotides corresponding to at least part of an HCV nucleotide sequence encoding an HCV polyprotein, and with said HCV polyprotein containing in its sequence at least one of the following amino acid residues: L7, Q43, M44, S60, R67, Q70, T71, A79, A87, N106, K115, A127, A190, S130, V134, G142, I144, E152, A157, V158, P165, S177 or Y177, I178, V180 or E180 or F182, R184, I186, H187, T189, A190, S191 or G191, Q192 or L192 or I192 or V192 or E192, N193 or H193 or P193, W194 or Y194, H195, A197 or I197 or V197 or T197, V202, I203 or L203, Q208, A210, V212, F214, T216, R217 or D217 or E217 or V217, H218 or N218, H219 or

V219 or L219, L227 or I227, M231 or E231 or Q231, T232 or D232 or A232 or K232, Q235 or I235, A237 or T237, I242, I246, S247, S248, V249, S250 or Y250, I251 or V251 or M251 or F251, D252, T254 or V254, L255 or V255, E256 or A256, M258 or F258 or V258, A260 or Q260 or S260, A261, T264 or Y264, M265, I266 or A266, A267, G268 or T268, F271 or M271 or V271, I277, M280 or H280, I284 or A284 or L84, V274, V291, N292 or S292, R293 or I293 or Y293, Q294 or R294, L297 or I297 or Q297, A299 or K299 or Q299, N303 or T303, T308 or L308, T310 or F310 or A310 or D310 or V310, L313, G317 or Q317, L333, S351, A358, A359, A363, S364, A366, T369, L373, F376, Q386, I387, S392, I399, F402, I403, R405, D454, A461, A463, T464, K484, Q500, E501, S521, K522, H524, N528, S531, S532, V534, F536, F537, M539, I546, C1282, A1283, H1310, V1312, Q1321, P1368, V1372, V1373, K1405, Q1406, S1409, A1424, A1429, C1435, S1436, S1456, H1496, A1504, D1510, D1529, I1543, N1567, D1556, N1567, M1572, Q1579, L1581, S1583, F1585, V1595, E1606 or T1606, M1611, V1612 or L1612, P1630, C1636, P1651, T1656 or I1656, L1663, V1667, V1677, A1681, H1685, E1687, G1689, V1695, A1700, Q1704, Y1705, A1713, A1714 or S1714, M1718, D1719, A1721 or T1721, R1722, A1723 or V1723, H1726 or G1726, E1730, V1732, F1735, I1736, S1737, R1738, T1739, G1740, Q1741, K1742, Q1743, A1744, T1745, L1746, E1747 or K1747, I1749, A1750, T1751 or A1751, V1753, N1755, K1756, A1757, P1758, A1759, H1762, T1763, Y1764, P2645, A2647, K2650, K2653 or L2653, S2664, N2673, F2680, K2681, L2686, H2692, Q2695 or L2695 or I2695, V2712, F2715, V2719 or Q2719, T2722, T2724, S2725, R2726, G2729, Y2735, H2739, I2748, G2746 or I2746, I2748, P2752 or K2752, P2754 or T2754, T2757 or P2757, with said notation being composed of a letter representing the amino acid residue by its one-letter code, and a number representing the amino acid numbering according to Kato et al., 1990.

Each of the above-mentioned residues can be found in any of Figures 2, 5, 7, 11 or 12 showing the new amino acid sequences of the present invention aligned with known sequences of other types or subtypes of HCV for the Core, E1, E2, NS3, NS4, and NS5 regions.

More particularly, a polynucleic acid contained in the composition according to the present invention contains at least 5, preferably 8, or more contiguous nucleotides corresponding to a sequence of contiguous nucleotides selected from at least one of HCV sequences encoding the following new HCV amino acid sequences:

new sequences spanning amino acid positions 1 to 319 of the Core/E1 region of HCV subtype 2d, type 3 (more particularly new sequences for subtypes 3a and 3c), new type 4

- subtypes (more particularly new sequences for subtypes 4a, 4e, 4f, 4g, 4h, 4i and 4j) and type 5a, as shown in Figure 5;
- new sequences spanning amino acid positions 328 to 546 of the E1/E2 region of HCV subtype 5a as shown in Figure 12;
- new sequences spanning amino acid positions 1556 to 1764 of the NS3/NS4 region of HCV type 3 (more particularly for new subtypes 3a sequences), and subtype 5a, as shown in Figure 7 or 11;
- new sequences spanning amino acid positions 2645 to 2757 of the NS5B region of HCV subtype 2d, type 3 (more particularly for new subtypes 3a and 3c), new type 4 subtypes (more particularly subtypes 4a, 4e, 4f, 4g, 4h, 4i and 4j) and subtype 5a, as shown in Figure 2,

Using the LiPA system mentioned above, Brazilian blood donors with high titer type 3 hepatitis C virus, Gabonese patients with high-titer type 4 hepatitis C virus, and a Belgian patient with high-titer HCV type 5 infection were selected. Nucleotide sequences in the core, E1, NS5 and NS4 regions which have not yet been reported before, were analyzed in the frame of the invention. Coding sequences (with the exception of the core region) of any type 4 isolate are reported for the first time in the present invention. The NS5b region was also analyzed for the new type 3 isolates. After having determined the NS5b sequences, comparison with the Ta and Tb subtypes described by Mori et al. (1992) was possible, and the type 3 sequences could be identified as type 3a genotypes. The new type 4 isolates segregated into 10 subtypes, based on homologies obtained in the NS5 and E1 regions. New type 2 and 3 sequences could also be distinguished from previously described type 2 or 3 subtypes from sera collected in Belgium and the Netherlands.

The term "polynucleic acid" refers to a single stranded or double stranded nucleic acid sequence which may contain at least 5 contiguous nucleotides to the complete nucleotide sequence (f.i. at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more contiguous nucleotides). A polynucleic acid which is up till about 100 nucleotides in length is often also referred to as an oligonucleotide. A polynucleic acid may consist of deoxyribonucleotides or ribonucleotides, nucleotide analogues or modified nucleotides, or may have been adapted for therapeutic purposes. A polynucleic acid may also comprise a double stranded cDNA clone which can be used for cloning purposes, or for *in vivo* therapy, or prophylaxis.

The term "polynucleic acid composition" refers to any kind of composition comprising essentially said polynucleic acids. Said composition may be of a diagnostic or a therapeutic

nature.

The expression "nucleotides corresponding to" refers to nucleotides which are homologous or complementary to an indicated nucleotide sequence or region within a specific HCV sequence.

The term "coding region" corresponds to the region of the HCV genome that encodes the HCV polyprotein. In fact, it comprises the complete genome with the exception of the 5' untranslated region and 3' untranslated region.

The term "HCV polyprotein" refers to the HCV polyprotein of the HCV-J isolate (Kato et al., 1990). The adenine residue at position 330 (Kato et al., 1990) is the first residue of the ATG codon that initiates the long HCV polyprotein of 3010 amino acids in HCV-J and other type 1b isolates, and of 3011 amino acids in HCV-1 and other type 1a isolates, and of 3033 amino acids in type 2 isolates HC-J6 and HC-J8 (Okamoto et al., 1992).

This adenine is designated as position 1 at the nucleic acid level, and this methionine is designated as position 1 at the amino acid level, in the present invention. As type 1a isolates contain 1 extra amino acid in the NS5a region, coding sequences of type 1a and 1b have identical numbering in the Core, E1, NS3, and NS4 region, but will differ in the NS5b region as indicated in Table 1. Type 2 isolates have 4 extra amino acids in the E2 region, and 17 or 18 extra amino acids in

the NS5 region compared to type 1 isolates, and will differ in numbering from type 1 isolates in the NS3/4 region and NS5b regions as indicated in Table 1.

TABLE 1

	Region	Positions described in the present invention*	Positions described for HCV-J (Kato et al., 1990)	Positions described for HCV-1 (Choo et al., 1991)	Positions described for HC-J6, HC-J8 (Okamoto et al., 1992)
Nucleotide s	NS5b	8023/8235 7932/8271	8352/8564 8261/8600	8026/8238 7935/8274	8433/8645 8342/8681
	NS3/4	4664/5292 4664/4730 4892/5292 3856/4209 4936/5292	4993/5621 4993/5059 5221/5621 4185/4528 5265/5621	4664/5292 4664/4730 4892/5292 3856/4209 4936/5292	5017/5645 5017/5083 5245/5645 4209/4762 5289/5645
		coding region of present invention	330/9359	1/9033	342/9439
Amino Acids	NS5b	2675/2745 2645/2757	2675/2745 2645/2757	2676/2746 2646/2758	2698/2768 2668/2780
	NS3/4	1556/1764 1286/1403 1646/1764	1556/1764 1286/1403 1646/1764	1556/1764 1286/1403 1646/1764	1560/1768 1290/1407 1650/1768

Table 1: Comparison of the HCV nucleotide and amino acid numbering system used in the present invention (*) with the numbering used for other prototype isolates. For example, 8352/8564 indicates the region designated by the numbering from nucleotide 8352 to nucleotide 8564 as described by Kato et al. (1990). Since the numbering system of the present invention starts at the polyprotein initiation site, the 329 nucleotides of the 5' untranslated region described by Kato et al. (1990) have to be substracted, and the corresponding region is numbered from nucleotide 8023 ("8352-329") to 8235 ("8564-329").

The term "HCV type" corresponds to a group of HCV isolates of which the complete genome shows more than 74% homology at the nucleic acid level, or of which the NS5 region between nucleotide positions 7932 and 8271 shows more than 74% homology at the nucleic acid level, or of which the complete HCV polyprotein shows more than 78% homology at the amino acid level, or of which the NS5 region between amino acids at positions 2645 and 2757 shows more than 80% homology at the amino acid level, to polyproteins of the other isolates of the group, with said numbering beginning at the first ATG codon or first methionine of the long HCV polyprotein of the HCV-J isolate (Kato et al., 1990). Isolates belonging to different types of HCV exhibit homologies, over the complete genome, of less than 74% at the nucleic acid level and less than 78% at the amino acid level. Isolates belonging to the same type usually show homologies of about 92 to 95% at the nucleic acid level and 95 to 96% at the amino acid level when belonging to the same subtype, and those belonging to the same type but different subtypes preferably show homologies of about 79% at the nucleic acid level and 85-86% at the amino acid level.

More preferably the definition of HCV types is concluded from the classification of HCV isolates according to their nucleotide distances calculated as detailed below:

- (1) based on phylogenetic analysis of nucleic acid sequences in the NS5b region between nucleotides 7935 and 8274 (Choo et al., 1991) or 8261 and 8600 (Kato et al., 1990) or 8342 and 8681 (Okamoto et al., 1991), isolates belonging to the same HCV type show nucleotide distances of less than 0.34, usually less than 0.33, and more usually of less than 0.32, and isolates belonging to the same subtype show nucleotide distances of less than 0.135, usually of less than 0.13, and more usually of less than 0.125, and consequently isolates belonging to the same type but different subtypes show nucleotide distances ranging from 0.135 to 0.34, usually ranging from 0.1384 to 0.2477, and more usually ranging from 0.15 to 0.32, and isolates belonging to different HCV types show nucleotide distances greater than 0.34, usually greater that 0.35, and more usually of greater than 0.358, more usually ranging from 0.1384 to 0.2977.
- (2) based on phylogenetic analysis of nucleic acid sequences in the core/E1 region between nucleotides 378 and 957, isolates belonging to the same HCV type show nucleotide distances of less than 0.38, usually of less than 0.37, and more usually of less than 0.364, and isolates belonging to the same subtype show nucleotide distances of less than 0.17, usually of less than 0.16, and more usually of less than 0.15, more usually less than 0.135, more usually less than 0.134, and consequently isolates belonging to the same type but different subtypes show

nucleotide distances ranging from 0.15 to 0.38, usually ranging from 0.16 to 0.37, and more usually ranging from 0.17 to 0.36, more usually ranging from 0.133 to 0.379, and isolates belonging to different HCV types show nucleotide distances greater than 0.34, 0.35, 0.36, usually more than 0.365, and more usually of greater than 0.37,

(3) based on phylogenetic analysis of nucleic acid sequences in the NS3/NS4 region between nucleotides 4664 and 5292 (Choo et al., 1991) or between nucleotides 4993 and 5621 (Kato et al., 1990) or between nucleotides 5017 and 5645 (Okamoto et al., 1991), isolates belonging to the same HCV type show nucleotide distances of less than 0.35, usually of less than 0.34, and more usually of less than 0.33, and isolates belonging to the same subtype show nucleotide distances of less than 0.19, usually of less than 0.18, and more usually of less than 0.17, and consequently isolates belonging to the same type but different subtypes show nucleotide distances ranging from 0.17 to 0.35, usually ranging from 0.18 to 0.34, and more usually ranging from 0.19 to 0.33, and isolates belonging to different HCV types show nucleotide distances greater than 0.33, usually greater than 0.34, and more usually of greater than 0.35.

Table 2: Molecular evolutionary distances

Region	Core/E1	E1	NS5B	NS5B
	579 bp	384 bp	340 bp	222 bp
Isolates*	0.0017 - 0.1347	0.0026 - 0.2031	0.0003 - 0.1151	0.000 - 0.1323
	(0.0750 ± 0.0245)	(0.0969 ± 0.0289)	(0.0637 ± 0.0229)	(0.0607 <u>+</u> 0.0205)
Subtypes	0.1330 - 0.3794	0.1645 - 0.4869	0.1384 - 0.2977	0.117 - 0.3538
	(0.2786 ± 0.0363)	(0.3761 ± 0.0433)	(0.2219 ± 0.0341)	(0.2391 <u>+</u> 0.0399)
Types*	0.3479 - 0.6306	0.4309 - 0.9561	0.3581 - 0.6670	0.3457 - 0.7471
	(0.4703 <u>+</u> 0.0525)	(0.6308 <u>+</u> 0.0928)	(0.4994 <u>+</u> 0.0495)	(0.5295 <u>+</u> 0.0627)

* Figures created by the PHYLIP program DNADIST are expressed as minimum to maximum (average ± standard deviation). Phylogenetic distances for isolates belonging to the same subtype ('isolates'), to different subtypes of the same type ('subtypes'), and to different types ('types') are given.

In a comparative phylogenetic analysis of available sequences, ranges of molecular evolutionary distances for different regions of the genome were calculated, based on 19,781

pairwise comparisons by means of the DNA DIST program of the phylogeny inference package PHYLIP version 3.5C (Felsenstein, 1993). The results are shown in Table 2 and indicate that although the majority of distances obtained in each region fit with classification of a certain isolate, only the ranges obtained in the 340bp NS5B-region are non-overlapping and therefor conclusive. However, as was performed in the present invention, it is preferable to obtain sequence information from at least 2 regions before final classification of a given isolate.

Designation of a number to the different types of HCV and HCV types nomenclature is based on chronological discovery of the different types. The numbering system used in the present invention might still fluctuate according to international conventions or guidelines. For example, "type 4" might be changed into "type 5" or "type 6".

The term "subtype" corresponds to a group of HCV isolates of which the complete polyprotein shows a homology of more than 90% both at the nucleic acid and amino acid levels, or of which the NS5 region between nucleotide positions 7932 and 8271 shows a homology of more than 90% at the nucleic acid level to the corresponding parts of the genomes of the other isolates of the same group, with said numbering beginning with the adenine residue of the initiation codon of the HCV polyprotein. Isolates belonging to the same type but different subtypes of HCV show homologies of more than 74% at the nucleic acid level and of more than 78% at the amino acid level.

The term "BR36 subgroup" refers to a group of type 3a HCV isolates (BR36, BR33, BR34) that are 95 %, preferably 95.5 %, most preferably 96 % homologous to the sequences as represented in SEQ ID NO 1, 3, 5, 7, 9, 11 in the NS5b region from position 8023 to 8235.

It is to be understood that extremely variable regions like the E1, E2 and NS4 regions will exhibit lower homologies than the average homology of the complete genome of the polyprotein.

Using these criteria, HCV isolates can be classified into at least 6 types. Several subtypes can clearly be distinguished in types 1, 2, 3 and 4: 1a, 1b, 2a, 2b, 2c, 2d, 3a, 3b, 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i and 4j based on homologies of the 5' UR and coding regions including the part of NS5 between positions 7932 and 8271. An overview of most of the reported isolates and their proposed classification according to the typing system of the present invention as well as other proposed classifications is presented in Table 3.

Table 3

HCV CLASSIFICATION

,	OKA- MOTO	MORI	NAKA O	СНА	PROTOTYPE
1a	I	I ·	Pt	ĢI	HCV-1, HCV-H, HC-J1
1b	П,	II	KI	GII	HCV-J, HCV-BK, HCV-T, HC-JK1, HC- J4, HCV-CHINA
1c	· . 1	 			HC-G9
2a	Ш	m	K2a	GIII	НС-Ј6
2 b	ĮV	IV ·	K2b	GIII	НС-J8
2c					S83, ARG6, ARG8, I10, T983
2d		•		'	NE92
3a	V	v	К3	GIV	E-b1, Ta, BR36, BR33, HD10, NZL1
3ь	•	VI	К 3	GIV	HCV-TR, Tb
, Зс		•	١.	-	BE98
4a			F.		Z4, GB809-4
4b					- Z1
²² 4c				,	GB116, GB358, GB215, Z6, Z7
4d					DK13
4e			· ·		GB809-2, CAM600, CAM736
4f					CAM622, CAM627
4g			•		GB549
4h		•			GB438
4i					CAR4/1205
4j					CAR1/501
4k		•			EG29
5a		• .		GV	SA3, SA4, SA1, SA7, SA11, BE95
6a					HK1, HK2, HK3, HK4

The term "complement" refers to a nucleotide sequence which is complementary to an indicated sequence and which is able to hybridize to the indicated sequences.

The composition of the invention can comprise many combinations. By way of example, the composition of the invention can comprise:

- two (or more) nucleic acids from the same region or,
- two nucleic acids (or more), respectively from different regions, for the same isolate or for different isolates,
- or nucleic acids from the same regions and from at least two different regions (for the same isolate or for different isolates).

The present invention relates more particularly to a polynucleic acid composition as defined above, wherein said polynucleic acid corresponds to a nucleotide sequence selected from any of the following HCV type 3 genomic sequences:

- an HCV genomic sequence having a homology of at least 67%, preferably more than 69%, more preferably 71%, even more preferably more than 73%, or most preferably more than 76% to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 (HD10, BR36 or BR33 sequences) in the region spanning positions 417 to 957 of the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence having a homology of at least 65%, preferably more than 67%, preferably more than 69%, even preferably more than 70%, most preferably more than 74% to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 (HD10, BR36 or BR33 sequences) in the region spanning positions 574 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence as having a homology of at least 79%, more preferably at least 81%, most preferably more than 83% or more to any of the sequences as represented in SEQ ID NO 147 (representing positions 1 to 346 of the Core region of HVC type 3c, sequence BE98) in the region spanning positions 1 to 378 of the Core region as shown in Figure 3;
- an HCV genomic sequence of HVC type 3a having a homology of at least 74%, more preferably at least 76%, most preferably more than 78% or more to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 (HD10, BR36 or BR33 sequences) in the region spanning positions 417 to 957 in the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence of HCV type 3a as having a homology of at least 74%,

preferably more than 76%, most preferably 78% or more to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 (HD10, BR36 or BR33 sequences) in the region spanning positions 574 to 957 in the E1 region as shown in Figure 4;

- an HCV genomic sequence as having a homology of more than 73.5%, preferably more than 74%, most preferably 75% homology to the sequence as represented in SEQ ID NO 29 (HCCl53 sequence) in the region spanning positions 4664 to 4730 of the NS3 region as shown in figure 6;
- an HCV genomic sequence having a homology of more than 70%, preferably more than 72%, most preferably more than 74% homology to any of the sequences as represented in SEQ ID NO 29, 31, 33, 35, 37 or 39 (HCCl53, HD10, BR36 sequences) in the region spanning positions 4892 to 5292 in the NS3/NS4 region as shown in Figure 6 or 10;
- an HCV genomic sequence of the BR36 subgroup of HCV type 3a as having a homology of more than 95%, preferably 95,5%, most preferably 96% homology to any of the sequences as represented in SEQ ID NO 5, 7, 1, 3, 9 or 11 (BR34, BR33, BR36 sequences) in the region spanning positions 8023 to 8235 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence of the BR36 subgroup of HCV type 3a as having a homology of more than 96%, preferably 96.5%, most preferably 97% homology to any of the sequences as represented in SEQ ID NO 5, 7, 1, 3, 9 or 11 (BR34, BR33, BR36 sequences) in the region spanning positions 8023 to 8192 of the NS5B region as shown in Figure 1;
- an HCV genomic sequence of HCV type 3c being characterized as having a homology of more than 79%, more preferably more than 81%, and most preferably more than 83% to the sequence as represented in SEQ ID NO 149 (BE98 sequence) in the region spanning positions 7932 to 8271 in the NS5B region as shown in Figure 1.

Preferentially the above-mentioned genomic HCV sequences depict sequences from the coding regions of all the above-mentioned sequences.

According to the nucleotide distance classification system (with said nucleotide distances being calculated as explained above), said sequences of said composition are selected from:

- an HCV genomic sequence being characterized as having a nucleotide distance of less than 0.44, preferably of less than 0.40, most preferably of less than 0.36 to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region

spanning positions 417 to 957 of the Core/E1 region as shown in Figure 4;

- an HCV genomic sequence being characterized having a nucleotide distance of less than 0.53, preferably less than 0.49, most preferably of less than 0.45 to any of the sequences as represented in SEQ ID NO 19, 21, 23, 25 or 27 in the region spanning positions 574 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence characterized having a nucleotide distance of less than 0.15, preferably less than 0.13, and most preferably less than 0.11 to any of the sequences as represented in SEQ ID NO 147 in the region spanning positions 1 to 378 of the Core region as shown in Figure 3;
- an HCV genomic sequence of HVC type 3a being characterized as having a nucleotide distance of less than 0.3, preferably less than 0.26, most preferably of less than 0.22 to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region spanning positions 417 to 957 in the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence of HCV type 3a being characterized as having a nucleotide distance of less than 0.35, preferably less than 0.31, most preferably of less than 0.27 to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region spanning positions 574 to 957 in the E1 region as shown in Figure 4;
- an HCV genomic sequence of the BR36 subgroup of HCV type 3a being characterized as having a nucleotide sequence of less than 0.0423, preferably less than 0.042, preferably less than 0.0362 to any of the sequences as represented in SEQ ID NO 5, 7, 1, 3, 9 or 11 in the region spanning positions 8023 to 8235 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence of HCV type 3c being characterized as having a nucleotide distance of less than 0.255, preferably of less than 0.25, more preferably of less than 0.21, most preferably of less than 0.17 to the sequence as represented in SEQ ID NO 149 in the region spanning positions 7932 to 8271 in the NS5B region as shown in Figure 1.

In the present application, the E1 sequences encoding the antigenic ectodomain of the E1 protein, which does not overlap the carboxyterminal signal-anchor sequences of E1 disclosed by Cha et al. (1992; WO 92/19743), in addition to the NS4 epitope region, and a part of the NS5 region are disclosed for 4 different isolates: BR33, BR34, BR36, HCCl53 and HD10, all belonging to type 3a (SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35, 37 or 39).

Also within the present invention are new subtype 3c sequences (SEQ ID NO 147, 149 of the isolate BE98 in the Core and NS5 regions (see Figures 3 and 1).

Finally the present invention also relates to a new subtype 3a sequence as represented in SEQ ID NO 217 (see Figure 1)

Also included within the present invention are sequence variants of the polynucleic acids as selected from any of the nucleotide sequences as given in any of the above mentioned SEQ ID numbers, with said sequence variants containing either deletions and/or insertions of one or more nucleotides, mainly at the extremities of oligonucleotides (either 3' or 5'), or substitutions of some non-essential nucleotides by others (including modified nucleotides an/or inosine), for example, a type 1 or 2 sequence might be modified into a type 3 sequence by replacing some nucleotides of the type 1 or 2 sequence with type-specific nucleotides of type 3 as shown in Figure 1 (NS5 region), Figure 3 (Core region), Figure 4 (Core/E1 region), Figure 6 and 10 (NS3/NS4 region).

According to another embodiment, the present invention relates to a polynucleic acid composition as defined above, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV type 5 genomic sequences:

- an HCV genomic sequence as having a homology of more than 85%, preferably more than 86%, most preferably more than 87% homology to any of the sequences as represented in SEQ ID NO 41, 43, 45, 47, 49, 51, 53 (PC sequences) or 151 (BE95 sequence) in the region spanning positions 1 to 573 of the Core region as shown in Figure 9 and 3;
- an HCV genomic sequence as having a homology of more than 61%, preferably more than 63%, more preferably more than 65% homology, even more preferably more than 66% homology and most preferably more than 67% homology (f.i. 69 and 71%) to any of the sequences as represented in SEQ ID NO 41, 43, 45, 47, 49, 51, 53 (PC sequences), 153 or 155 (BE95, BE100 sequences) in the region spanning positions 574 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence having a homology of more than 76.5%, preferably of more than 77%, most preferably of more than 78% homology with any of the sequences as represented in SEQ ID NO 55, 57, 197 or 199 (PC sequences) in the region spanning positions 3856 to 4209 of the NS3 region as shown in Figure 6 or 10;
- an HCV genomic sequence having a homology of more than 68%, preferably of more than 70%, most preferably of more than 72% homology with the sequence as represented in SEQ ID NO 157 (BE95 sequence) in the region spanning positions 980 to 1179 of the E1/E2 region as shown in Figure 13;
- an HCV genomic sequence having a homology of more than 57%, preferably more than

59%, most preferably more than 61% homology to any of the sequences as represented in SEQ ID NO 59 or 61 (PC sequences) in the region spanning positions 4936 to 5296 of the NS4 region as shown in Figure 6 or 10;

- an HCV genomic sequence as having a homology of more than 93%, preferably more than 93.5%, most preferably more than 94% homology to any of the sequences as represented in SEQ ID NO 159 or 161 (BE95 or BE96 sequences) in the region spanning positions 7932 to 8271 of the NS5B region as shown in Figure 1.

Preferentially the above-mentioned genomic HCV sequences depict sequences from the coding regions of all the above-mentioned sequences.

According to the nucleotide distance classification system (with said nucleotide distances being calculated as explained above), said sequences of said composition are selected from:

- a nucleotide distance of less than 0.53, preferably less than 0.51, more preferably less than 0.49 for the E1 region to the type 5 sequences depicted above;
- a nucleotide distance of less than 0.3, preferably less than 0.28, more preferably of less than 0.26 for the Core region to the type 5 sequences depicted above;
- a nucleotide distance of less than 0.072, preferably less than 0.071, more preferably less than 0.070 for the NS5B region to the type 5 sequences as depicted above.

Isolates with similar sequences in the 5'UR to a group of isolates including SA1, SA3, and SA7 described in the 5'UR by Bukh et al. (1992), have been reported and described in the 5'UR and NS5 region as group V by Cha et al. (1992; WO 92/19743). This group of isolates belongs to type 5a as described in the present invention (SEQ ID NO 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 151, 153, 155, 157, 159, 161, 197 and 199).

Also included within the present invention are sequence variants of the polynucleic acids as selected from any of the nucleotide sequences as given in any of the above given SEQ ID numbers with said sequence variants containing either deletion and/or insertions of one or more nucleotides, mainly at the extremities of oligonucleotides (either 3' or 5'), or substitutions of some non-essential nucleotides (i.e. nucleotides not essential to discriminate between different genotypes of HCV) by others (including modified nucleotides an/or inosine), for example, a type 1 or 2 sequence might be modified into a type 5 sequence by replacing some nucleotides of the type 1 or 2 sequence with type-specific nucleotides of type 5 as shown in Figure 3 (Core region), Figure 4 (Core/E1 region), Figure 10 (NS3 / NS4 region), Figure 14 (E1/E2 region).

Another group of isolates including BU74 and BU79 having similar sequences in the 5'UR to isolates including Z6 and Z7 as described in the 5'UR by Bukh et al. (1992), have been described in the 5'UR and classified as a new type 4 by the inventors of this application (Stuyver et al., 1993). Coding sequences, including core, E1 and NS5 sequences of several new Gabonese isolates belonging to this group, are disclosed in the present invention (SEQ ID NO 106, 108, 110, 112, 114, 116, 118, 120 and 122).

According to yet another embodiment, the present invention relates to a composition as defined above, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV type 4 genomic sequences:

- an HCV genomic sequence having a homology of more than 66%, preferably more than 68%, most preferably more than 70% homology in the E1 region spanning positions 574 to 957 to any of the sequences as represented in SEQ ID NO 118, 120 or 122 (GB358, GB549, GB809 sequences) as shown in Figure 4;
- an HCV genomic sequence having a homology of more than 71%, preferably more than 72%, most preferably more than 74% homology to any of the sequences as represented in SEQ ID NO 118, 120 or 122 (GB358, GB549, GB809 sequences) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence having a homology of more than 92%, preferably more than 93%, most preferably more than 94% homology to any of the sequences as represented in SEQ ID NO 163 or 165 (GB809, CAM600 sequences) in the region spanning positions 1 to 378 of the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4c) having a homology of more than 85%, preferably more than 86%, more preferably more than 86.5% homology, most preferably more than 87, more than 88 or more than 89% homology to any of the sequences as represented in SEQ ID NO 183, 185 or 187 (GB116, GB215, GB809 sequences) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4a) having a homology of more than 81%, preferably more than 83%, most preferably more than 85% homology to the sequence as represented in SEQ ID NO 189 (GB908 sequence) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4e) having a homology of more than 85%, preferably more than 87%, most preferably more than 89% homology to any of the sequences as represented in SEQ ID NO 167 or 169 (CAM600, GB908 sequences) in the region

- spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4f) having a homology of more than 79%, preferably more than 81%, most preferably more than 83% homology to any of the sequences as represented in SEQ ID NO 171 or 173 (CAMG22, CAMG27 sequences) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4g) having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 175 (GB549 sequence) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4h) having a homology of more than 83%, preferably more than 85%, most preferably more than 87% homology to the sequence as represented in SEQ ID NO 177 (GB438 sequence) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4i) as having a homology of more than 76%, preferably more than 78%, most preferably more than 80% homology to the sequence as represented in SEQ ID NO 179 (CAR4/1205 sequence) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4j?) having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 181 (CAR4/901 sequence) in the region spanning positions 379 to 957 of the E1 region as shown in figure 4;
- an HCV genomic sequence as having a homology of more than 73%, preferably more than 75%, most preferably more than 77% homology to any of the sequences as represented in SEQ ID NO 106, 108, 110, 112, 114, or 116 (GB48, GB116, GB215, GB358, GB549, GB809 sequences) in the region spanning positions 7932 to 8271 of the NS5 region as shown in figure 1;
- an HCV genomic sequence (subtype 4c) having a homology of more than 88%, preferably more than 89%, most preferably more than 90% homology to any of the sequences as represented in SEQ ID NO 106, 108, 110, or 112 (GB48, GB116, GB215, GB358 sequences) in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4e) having a homology of more than 88%, preferably more than 89%, most preferably more than 90% homology to any of the sequences as

- represented in SEQ ID NO 116 or 201 (GB809 or CAM 600 sequences) in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4f) having a homology of more than 87%, preferably more than 89%, most preferably more than 90% homology to the sequence as represented in SEQ ID NO 203 (CAMG22 sequence) in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4g) as having a homology of more than 85%, preferably more than 87%, most preferably more than 89% homology to the sequence as represented in SEQ ID NO 114 (GB549 sequence) in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4h) as having a homology of more than 86%, preferably more than 87%, more preferably more than 88% homology, more preferably more than 89% homology to the sequence as represented in SEQ ID NO 207 (GB437 sequence) in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4i) having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 209 (CAR4/1205 sequence) in the region spanning positions 7932 to 8271 of the NS5 region as shown in figure 1;
- an HCV genomic sequence (subtype 4j) having a homology of more than 81%, preferably more than 83%, most preferably more than 85% homology to the sequence as represented in SEQ ID NO 211 (CAR1/501 sequence) in the region spanning positions 7932 to 8271 of the NS5 region as shown in figure 1.

Preferentially the above-mentioned genomic HCV sequences depict sequences from the coding regions of all the above-mentioned sequences.

According to the nucleotide distance classification system (with said nucleotide distances being calculated as explained above), said sequences of said composition are selected from:

- an HCV genomic sequence (type 4) being characterized as having a nucleotide distance of less than 0.52, 0.50, 0.4880, 0.46, 0.44, 0.43 or most preferably less than 0.42 in the region spanning positions 574 to 957 to any of the sequences as represented in SEQ ID NO 118, 120 or 122 in the region spanning positions 1 to 957 of the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence (type 4) being characterized as having a nucleotide distance of

less than 0.39, 0.36 0.34 0.32 or most preferably less than 0.31 to any of the sequences as represented in SEQ ID NO 118, 120 or 122 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;

- an HCV genomic sequence (subtype 4c) being characterized as having a nucleotide distance of less than 0.27, 0.26, 0.24, 0.22, 0.20, 0.18, 0.17, 0.162, 0.16 or most preferably less than 0.15 to any of the sequences as represented in SEQ ID NO 183, 185 or 187 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4a) being characterized as having a nucleotide distance of less than 0.30, 0.28, 0.26, 0.24, 0.22, 0.21 or most preferably of less than 0.205 to the sequence as represented in SEQ ID NO 189 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4e) being characterized as having a nucleotide distance of less than 0.26, 0.25, 0.23, 0.21, 0.19, 0.17, 0.165, most preferably less than 0.16 to any of the sequences as represented in SEQ ID NO 167 or 169 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4f) being characterized as having a nucleotide distance of less than 0.26, 0.24, 0.22, 0.20, 0.18, 0.16, 0.15 or most preferably less than 0.14 to any of the sequences as represented in SEQ ID NO 171 or 173 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4g) being characterized as having a nucleotide distance of less than 0.20, 0.19, 0.18, 0.17 or most preferably of less than 0.16 to the sequence as represented in SEQ ID NO 175 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4h) being characterized as having a nucleotide distance of less than 0.20, 0.19, 0.18, 0.17 and most preferably of less than 0.16 to the sequence as represented in SEQ ID NO 177 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4i) being characterized as having a nucleotide distance of less than 0.27, 0.25, 0.23, 0.21 and preferably less than 0.16 to the sequence as represented in SEQ ID NO 179 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4j?) being characterized as having a nucleotide distance of less than 0.19, 0.18, 0.17, 0.165 and most preferably of less than 0.16 to the

- sequence as represented in SEQ ID NO 181 in the region spanning positions 379 to 957 of the E1 region as shown in figure 4;
- an HCV genomic sequence (type 4) being characterized as having a nucleotide distance of less than 0.35, 0.34, 0.32 and most preferably of less than 0.30 to any of the sequences as represented in SEQ ID NO 106, 108, 110, 112, 114, or 116 in the region spanning positions 7932 to 8271 of the NS5 region as shown in figure 1;
- an HCV genomic sequence (subtype 4c) being characterized as having a nucleotide distance of less than 0.18, 0.16, 0.14, 0.135, 0.13, 0.1275 or most preferably less than 0.125 to any of the sequences as represented in SEQ ID NO 106, 108, 110, or 112 in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4e) being characterized as having a nucleotide distance of less than 0.15, 0.14, 0.135, 0.13 and most preferably of less than 0.125 to any of the sequences as represented in SEQ ID NO 116 or 201 in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4f) being characterized as having a nucleotide distance of less than 0.15, 0.14, 0.135, 0.13 or most preferably less than 0.125 to the sequence as represented in SEQ ID NO 203 in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4g) being characterized as having a nucleotide distance of less than 0.17, 0.16, 0.15, 0.14, 0.13 or most preferably less than 0.125 to the sequence as represented in SEQ ID NO 114 in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4h) being characterized as having a nucleotide distance of less than 0.155, 0.15, 0.145, 0.14, 0.135, 0.13 or most preferably less than 0.125 to the sequence as represented in SEQ ID NO 207 in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4i) being characterized as having a nucleotide distance of less than 0.17, 0.16, 0.15, 0.14, 0.13 or most preferably of less than 0.125 to the sequence as represented in SEQ ID NO 209 in the region spanning positions 7932 to 8271 of the NS5 region as shown in figure 1;
- an HCV genomic sequence (subtype 4j) being characterized as having a nucleotide distance of less than 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13 and most preferably of less than 0.125 to the sequence as represented in SEQ ID NO 211 in the region spanning

positions 7932 to 8271 of the NS5 region as shown in figure 1.

Also included within the present invention are sequence variants of the polynucleic acids as selected from any of the nucleotide sequences as given in any of the above given SEQ ID numbers with said sequence variants containing either deletion and/or insertions of one or more nucleotides, mainly at the extremities of oligonucleotides (either 3' or 5'), or substitutions of some non-essential nucleotides (i.e. nucleotides not essential to discriminate between different genotypes of HCV) by others (including modified nucleotides an/or inosine), for example, a type 1 or 2 sequence might be modified into a type 4 sequence by replacing some nucleotides of the type 1 or 2 sequence with type-specific nucleotides of type 4 as shown in Figure 3 (Core region), Figure 4 (Core/E1 region), Figure 10 (NS3 / NS4 region), Figure 14 (E1/E2 region).

The present invention also relates to a sequence as represented in SEQ ID NO 193 (GB724 sequence).

After aligning NS5 or E1 sequences of GB48, GB, 116, GB215, GB358, GB549 and GB809, these isolates clearly segregated into 3 subtypes within type 4: GB48, GB116, GB215 and GB358 belong to the sybtype designated 4c, GB549 to subtype 4g and GB809 to subtype 4e. In NS5, GB809 (subtype 4e) showed a higher nucleic acids homology to subtype 4c isolates (85.6 - 86.8%) than to GB549 (subtype 4g, 79.7%), while GB549 showed similar homologies to both other subtypes (78.8 to 80% to subtype 4c and 79.7% to subtype 4e). In E1, subtype 4c showed equal nucleic acid homologies of 75.2% to subtypes 4g and 4e while 4g and 4e were 78.4% homologous. At the amino acid level however, subtype 4e showed a normal homology to subtype 4c (80.2%), while subtype 4g was more homologous to 4c (83.3%) and 4e (84.1%).

According to yet another embodiment, the present invention relates to a composition as defined above, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV type 2d genomic sequences:

- an HCV genomic sequence as having a homology of more than 78%, preferably more than 80%, most preferably more than 82% homology to the sequence as represented in SEQ ID NO (NE92) 143 in the region spanning positions 379 to 957 of the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence as having a homology of more than 74%, preferably more than 76%, most preferably more than 78% homology to the sequence as represented in SEQ ID NO 143 (NE92) in the region spanning positions 574 to 957 as shown in Figure 4;

an HCV genomic sequence as having a homology of more than 87%, preferably more than 89%, most preferably more than 91% homology to the sequence as represented in SEQ ID NO 145 (NE92) in the region spanning positions 7932 to 8271 of the NS5B region as shown in Figure 1.

Preferentially the above-mentioned genomic HCV sequences depict sequences from the coding regions of all the above-mentioned sequences.

According to the nucleotide distance classification system (with said nucleotide distances being calculated as explained above), said sequences of said composition are selected from:

- a nucleotide distance of less than 0.32, preferably less than 0.31, more preferably less than 0.30 for the E1 region (574 to 95)7) to any of the above specified sequences;
- a nucleotide distance of less than 0.08, preferably less than 0.07, more preferably less than 0.06 for the Core region (1 to 378) to any of the above given sequences
- a nucleotide distance of less than 0.15, preferentially less than 0.13, more preferentially less than 0.12 for the NS5B region to any of the above-specified sequences.

Polynucleic acid sequences according to the present invention which are homologous to the sequences as represented by a SEQ ID NO can be characterized and isolated according to any of the techniques known in the art, such as amplification by means of type or subtype specific primers, hybridization with type or subtype specific probes under more or less stringent conditions, serological screening methods (see examples 4 and 11) or via the LiPA typing system.

Polynucleic acid sequences of the genomes indicated above from regions not yet depicted in the present examples, figures and sequence listing can be obtained by any of the techniques known in the art, such as amplification techniques using suitable primers from the type or subtype specific sequences of the present invention.

The present invention relates also to a composition as defined above, wherein said polynucleic acid is liable to act as a primer for amplifying the nucleic acid of a certain isolate belonging to the genotype from which the primer is derived.

An example of a primer according to this embodiment of the invention is HCPr 152 as shown in table 7 (SEQ ID NO 79).

The term "primer" refers to a single stranded DNA oligonucleotide sequence capable of acting as a point of initiation for synthesis of a primer extension product which is complementary to the nucleic acid strand to be copied. The length and the sequence of the primer must be such that they allow to prime the synthesis of the extension products.

Preferably the primer is about 5-50 nucleotides. Specific length and sequence will depend on the complexity of the required DNA or RNA targets, as well as on the conditions of primer use such as temperature and ionic strength.

The fact that amplification primers do not have to match exactly with corresponding template sequence to warrant proper amplification is amply documented in the literature (Kwok et al., 1990).

The amplification method used can be either polymerase chain reaction (PCR; Saiki et al., 1988), ligase chain reaction (LCR; Landgren et al., 1988; Wu & Wallace, 1989; Barany, 1991), nucleic acid sequence-based amplification (NASBA; Guatelli et al., 1990; Compton, 1991), transcription-based amplification system (TAS; Kwoh et al., 1989), strand displacement amplification (SDA; Duck, 1990; Walker et al., 1992) or amplification by means of QB replicase (Lizardi et al., 1988; Lomeli et al., 1989) or any other suitable method to amplify nucleic acid molecules using primer extension. During amplification, the amplified products can be conveniently labelled either using labelled primers or by incorporating labelled nucleotides. Labels may be isotopic (32P, 35S, etc.) or non-isotopic (biotin, digoxigenin, etc.). The amplification reaction is repeated between 20 and 80 times, advantageously between 30 and 50 times.

The present invention also relates to a composition as defined above, wherein said polynucleic acid is able to act as a hybridization probe for specific detection and/or classification into types of a nucleic acid containing said nucleotide sequence, with said oligonucleotide being possibly labelled or attached to a solid substrate.

The term "probe" refers to single stranded sequence-specific oligonucleotides which have a sequence which is complementary to the target sequence of the HCV genotype(s) to be detected.

Preferably, these probes are about 5 to 50 nucleotides long, more preferably from about 10 to 25 nucleotides.

The term "solid support" can refer to any substrate to which an oligonucleotide probe can be coupled, provided that it retains its hybridization characteristics and provided that the background level of hybridization remains low. Usually the solid substrate will be a microtiter plate, a membrane (e.g. nylon or nitrocellulose) or a microsphere (bead). Prior to application to the membrane or fixation it may be convenient to modify the nucleic acid probe in order to facilitate fixation or improve the hybridization efficiency. Such modifications may encompass homopolymer tailing, coupling with different reactive groups such as aliphatic

groups, NH₂ groups, SH groups, carboxylic groups, or coupling with biotin or haptens.

The present invention also relates to the use of a composition as defined above for detecting the presence of one or more HCV genotypes, more particularly for detecting the presence of a nucleic acid of any of the HCV genotypes having a nucleotide sequence as defined above, present in a biological sample liable to contain them, comprising at least the following steps:

- (i) possibly extracting sample nucleic acid,
- (ii) possibly amplifying the nucleic acid with at least one of the primers as defined above or any other HCV subtype 2d, HCV type 3, HCV type 4, HCV type 5 or universal HCV primer,
- (iii) hybrizing the nucleic acids of the biological sample, possibly under denatured conditions, and with said nucleic acids being possibly labelled during or after amplification, at appropriate conditions with one or more probes as defined above, with said probes being preferably attached to a solid substrate,
- (iv) washing at appropriate conditions,
- (v) detecting the hybrids formed,
- (vi) inferring the presence of one or more HCV genotypes present from the observed hybridization pattern.

Preferably, this technique could be performed in the Core or NS5B region.

The term "nucleic acid" can also be referred to as analyte strand and corresponds to a single- or double-stranded nucleic acid molecule. This analyte strand is preferentially positive-or negative stranded RNA, cDNA or amplified cDNA.

The term "biological sample" refers to any biological sample (tissue or fluid) containing HCV nucleic acid sequences and refers more particularly to blood serum or plasma samples.

The term "HCV subtype 2d primer" refers to a primer which specifically amplifies HCV subtype 2d sequences present in a sample (see Examples section and figures).

The term "HCV type 3 primer" refers to a primer which specifically amplifies HCV type 3 sequences present in a sample (see Examples section and figures).

The term "HCV type 4 primer" refers to a primer which specifically amplifies HCV type 4 genomes present in a sample.

The term "universal HCV primer" refers to oligonucleotide sequences complementary to any of the conserved regions of the HCV genome.

The term "HCV type 5 primer" refers to a primer which specifically amplifies HCV type

5 genomes present in a sample. The term "universal HCV primer" refers to oligonucleotide sequences complementary to any of the conserved regions of the HCV genome.

The expression "appropriate" hybridization and washing conditions are to be understood as stringent and are generally known in the art (e.g. Maniatis et al., Molecular Cloning: A Laboratory Manual, New York, Cold Spring Harbor Laboratory, 1982).

However, according to the hybridization solution (SSC, SSPE, etc.), these probes should be hybridized at their appropriate temperature in order to attain sufficient specificity.

The term "labelled" refers to the use of labelled nucleic acids. This may include the use of labelled nucleotides incorporated during the polymerase step of the amplification such as illustrated by Saiki et al. (1988) or Bej et al. (1990) or labelled primers, or by any other method known to the person skilled in the art.

The process of the invention comprises the steps of contacting any of the probes as defined above, with one of the following elements:

- either a biological sample in which the nucleic acids are made available for hybridization,
- or the purified nucleic acids contained in the biological sample
- or a single copy derived from the purified nucleic acids,
- or an amplified copy derived from the purified nucleic acids, with said elements or with said probes being attached to a solid substrate.

The expression "inferring the presence of one or more HCV genotypes present from the observed hybridization pattern" refers to the identification of the presence of HCV genomes in the sample by analyzing the pattern of binding of a panel of oligonucleotide probes. Single probes may provide useful information concerning the presence or absence of HCV genomes in a sample. On the other hand, the variation of the HCV genomes is dispersed in nature, so rarely is any one probe able to identify uniquely a specific HCV genome. Rather, the identity of an HCV genotype may be inferred from the pattern of binding of a panel of oligonucleotide probes, which are specific for (different) segments of the different HCV genomes. Depending on the choice of these oligonucleotide probes, each known HCV genotype will correspond to a specific hybridization pattern upon use of a specific combination of probes. Each HCV genotype will also be able to be discriminated from any other HCV genotype amplified with the same primers depending on the choice of the oligonucleotide probes. Comparison of the generated pattern of positively hybridizing probes for a sample containing one or more unknown HCV sequences to a scheme of expected

hybridization patterns, allows one to clearly infer the HCV genotypes present in said sample.

The present invention thus relates to a method as defined above, wherein one or more hybridization probes are selected from any of SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59 or 61, 106, 108, 110, 112, 114, 116, 118, 120, 122, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 198, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 222, 269 or sequence variants thereof, with said sequence variants containing deletions and/or insertions of one or more nucleotides, mainly at their extremities (either 3' or 5'), or substitutions of some non-essential nucleotides (i.e. nucleotides not essential to discriminate between genotypes) by others (including modified nucleotides or inosine), or with said variants consisting of the complement of any of the above-mentioned oligonucleotide probes, or with said variants consisting of ribonucleotides instead of deoxyribonucleotides, all provided that said variant probes can be caused to hybridize with the same specificity as the oligonucleotide probes from which they are derived.

In order to distinguish the amplified HCV genomes from each other, the target polynucleic acids are hybridized to a set of sequence-specific DNA probes targetting HCV genotypic regions located in the HCV polynucleic acids.

Most of these probes target the most type-specific regions of HCV genotypes, but some can be caused to hybridize to more than one HCV genotype.

According to the hybridization solution (SSC, SSPE, etc.), these probes should be stringently hybridized at their appropriate temperature in order to attain sufficient specificity. However, by slightly modifying the DNA probes, either by adding or deleting one or a few nucleotides at their extremities (either 3' or 5'), or substituting some non-essential nucleotides (i.e. nucleotides not essential to discriminate between types) by others (including modified nucleotides or inosine) these probes or variants thereof can be caused to hybridize specifically at the same hybridization conditions (i.e. the same temperature and the same hybridization solution). Also changing the amount (concentration) of probe used may be beneficial to obtain more specific hybridization results. It should be noted in this context, that probes of the same length, regardless of their GC content, will hybridize specifically at approximately the same temperature in TMACl solutions (Jacobs et al., 1988).

Suitable assay methods for purposes of the present invention to detect hybrids formed between the oligonucleotide probes and the nucleic acid sequences in a sample may comprise any of the assay formats known in the art, such as the conventional dot-blot format, sandwich hybridization or reverse hybridization. For example, the detection can be accomplished using a dot blot format, the unlabelled amplified sample being bound to a membrane, the membrane being incorporated with at least one labelled probe under suitable hybridization and wash conditions, and the presence of bound probe being monitored.

An alternative and preferred method is a "reverse" dot-blot format, in which the amplified sequence contains a label. In this format, the unlabelled oligonucleotide probes are bound to a solid support and exposed to the labelled sample under appropriate stringent hybridization and subsequent washing conditions. It is to be understood that also any other assay method which relies on the formation of a hybrid between the nucleic acids of the sample and the oligonucleotide probes according to the present invention may be used.

According to an advantageous embodiment, the process of detecting one or more HCV genotypes contained in a biological sample comprises the steps of contacting amplified HCV nucleic acid copies derived from the biological sample, with oligonucleotide probes which have been immobilized as parallel lines on a solid support.

According to this advantageous method, the probes are immobilized in a Line Probe Assay (LiPA) format. This is a reverse hybridization format (Saiki et al., 1989) using membrane strips onto which several oligonucleotide probes (including negative or positive control oligonucleotides) can be conveniently applied as parallel lines.

The invention thus also relates to a solid support, preferably a membrane strip, carrying on its surface, one or more probes as defined above, coupled to the support in the form of parallel lines.

The LiPA is a very rapid and user-friendly hybridization test. Results can be read 4 h. after the start of the amplification. After amplification during which usually a non-isotopic label is incorporated in the amplified product, and alkaline denaturation, the amplified product is contacted with the probes on the membrane and the hybridization is carried out for about 1 to 1,5 h hybridized polynucleic acid is detected. From the hybridization pattern generated, the HCV type can be deduced either visually, but preferably using dedicated software. The LiPA format is completely compatible with commercially available scanning devices, thus rendering automatic interpretation of the results very reliable. All those advantages make the LiPA format liable for the use of HCV detection in a routine setting. The LiPA format should be particularly advantageous for detecting the presence of different HCV genotypes.

The present invention also relates to a method for detecting and identifying novel HCV

genotypes, different from the known HCV genomes, comprising the steps of:

- determining to which HCV genotype the nucleotides present in a biological sample belong, according to the process as defined above,
- in the case of observing a sample which does not generate a hybridization pattern compatible with those defined in Table 3, sequencing the portion of the HCV genome sequence corresponding to the aberrantly hybridizing probe of the new HCV genotype to be determined.

The present invention also relates to the use of a composition as defined above, for detecting one or more genotypes of HCV present in a biological sample liable to contain them, comprising the steps of:

- (i) possibly extracting sample nucleic acid,
- (ii) amplifying the nucleic acid with at least one of the primers as defined above,
- (iii) sequencing the amplified products
- (iv) inferring the HCV genotypes present from the determined sequences by comparison to all known HCV sequences.

The present invention also relates to a composition consisting of or comprising at least one peptide or polypeptide comprising a contiguous sequence of at least 5 amino acids corresponding to a contiguous amino acid sequence encoded by at least one of the HCV genomic sequences as defined above, having at least one amino acid differing from the corresponding region of known HCV (type 1 and/or type 2 and/or type 3) polyprotein sequences as shown in Table 3, or muteins thereof.

It is to be noted that, at the level of the amino acid sequence, an amino acid difference (with respect to known HCV amino acid sequences) is necessary, which means that the polypeptides of the invention correspond to polynucleic acids having a nucleotide difference (with known HCV polynucleic acid sequences) involving an amino acid difference.

The new amino acid sequences, as deduced from the disclosed nucleotide sequences (see SEQ ID NO 1 to 62 and 106 to 123 and 143 to 218, 223 and 270), show homologies of only 59.9 to 78% with prototype sequences of type 1 and 2 for the NS4 region, and of only 53.9 to 68.8% with prototype sequences of type 1 and 2 for the E1 region. As the NS4 region is known to contain several epitopes, for example characterized in patent application EP-A-0 489 968, and as the E1 protein is expected to be subject to immune attack as part of the viral envelope and expected to contain epitopes, the NS4 and E1 epitopes of the new type 3, 4 and 5 isolates will consistently differ from the epitopes present in type 1 and 2 isolates. This is

examplified by the type-specificity of NS4 synthetic peptides as presented in example 4, and the type-specificity of recombinant E1 proteins in example 11.

After aligning the new subtype 2d, type 3, 4 and 5 (see SEQ ID NO 1 to 62 and 106 to 123 and 143 to 218, 223 and 270) amino acid sequences with the prototype sequences of type 1a, 1b, 2a, and 2b, type- and subtype-specific variable regions can be delineated as presented in Figure 5 and 7.

As to the muteins derived from the polypeptides of the invention, Table 4 gives an overview of the amino acid substitutions which could be the basis of some of the muteins as defined above.

The peptides according to the present invention contain preferably at least 5 contiguous HCV amino acids, preferably however at least 8 contiguous amino acids, at least 10 or at least 15 (for instance at least 9, 11, 12, 13, 14, 20 or 25 amino acids) of the new HCV sequences of the invention.

TABLE 4

Amino acids	Synonymous groups	
Ser (S)	Ser, Thr, Gly, Asn	
Arg (R)	Arg, His, Lys, Glu, Gln	-
Leu (L)	Leu; Ile, Met, Phe, Val, Tyr	
Pro (P)	Pro, Ala, Thr, Gly	
Thr (T)	Thr, Pro, Ser, Ala, Gly, His, Gln	
Ala (A)	Ala, Pro, Gly, Thr	
Val (V)	Val, Met, Ile, Tyr, Phe, Leu, Val	
Gly (G)	Gly, Ala, Thr, Pro, Ser	
Ile (I)	Ile, Met, Leu, Phe, Val, Ile, Tyr	
Phe (F)	Phe, Met, Tyr, Ile, Leu, Trp, Val	
Tyr (Y)	Tyr, Phe, Trp, Met, Ile, Val, Leu	
Cys (C)	Cys, Ser, Thr, Met	
His (H)	His, Gln, Arg, Lys, Glu, Thr	
Gln (Q)	Gln, Glu, His, Lys, Asn, Thr, Arg	
Asn (N)	Asn, Asp, Ser, Gln	
	Lys, Arg, Glu, Gln, His	. •
Lys (K)	Asp, Asn, Glu, Gln	,
Asp (D)	Glu, Gln, Asp, Lys, Asn, His, Arg	·
Glu (E) Met '(M)	Met, Ile, Leu, Phe, Val	

The polypeptides of the invention, and particularly the fragments, can be prepared by classical chemical synthesis.

The synthesis can be carried out in homogeneous solution or in solid phase.

For instance, the synthesis technique in homogeneous solution which can be used is the one described by Houbenweyl in the book entitled "Methode der organischen chemie" (Method of organic chemistry) edited by E. Wunsh, vol. 15-I et II. THIEME, Stuttgart 1974.

The polypeptides of the invention can also be prepared in solid phase according to the methods described by Atherton and Shepard in their book entitled "Solid phase peptide synthesis" (IRL Press, Oxford, 1989).

The polypeptides according to this invention can be prepared by means of recombinant DNA techniques as described by Maniatis et al., Molecular Cloning: A Laboratory Manual, New York, Cold Spring Harbor Laboratory, 1982).

The present invention relates particularly to a polypeptide or peptide composition as defined above, wherein said contiguous sequence contains in its sequence at least one of the following amino acid residues:

L7, Q43, M44, S60, R67, Q70, T71, A79, A87, N106, K115, A127, A190, S130, V134, G142, I144, E152, A157, V158, P165, S177 or Y177, I178, V180 or E180 or F182, R184, 1186, H187, T189, A190, S191 or G191, Q192 or L192 or I192 or V192 or E192, N193 or H193 or P193, W194 or Y194, H195, A197 or I197 or V197 or T197, V202, I203 or L203, Q208, A210, V212, F214, T216, R217 or D217 or E217 or V217, H218 or N218, H219 or V219 or L219, L227 or I227, M231 or E231 or Q231, T232 or D232 or A232 or K232, Q235 or I235, A237 or T237, I242, I246, S247, S248, V249, S250 or Y250, I251 or V251 or M251 or F251, D252, T254 or V254, L255 or V255, E256 or A256, M258 or F258 or V258, A260 or Q260 or S260, A261, T264 or Y264, M265, I266 or A266, A267, G268 or T268, F271 or M271 or V271, I277, M280 or H280, I284 or A284 or L84, V274, V291, N292 or S292, R293 or I293 or Y293, Q294 or R294, L297 or I297 or Q297, A299 or K299 or Q299, N303 or T303, T308 or L308, T310 or F310 or A310 or D310 or V310, L313, G317 or Q317, L333, S351, A358, A359, A363, S364, A366, T369, L373, F376, Q386, I387, S392, I399, F402, I403, R405, D454, A461, A463, T464, K484, Q500, E501, S521, K522, H524, N528, S531, S532, V534, F536, F537, M539, I546, C1282, A1283, H1310, V1312, Q1321, P1368, V1372, V1373, K1405, Q1406, S1409, A1424, A1429, C1435, S1436, S1456, H1496, A1504, D1510, D1529, I1543, N1567, D1556, N1567, M1572, Q1579, L1581, S1583, F1585, V1595, E1606 or T1606, M1611, V1612 or L1612, P1630, C1636, P1651, T1656 or I1656, L1663, V1667, V1677, A1681, H1685, E1687, G1689, V1695, A1700, Q1704, Y1705, A1713, A1714 or S1714, M1718, D1719, A1721 or T1721, R1722, A1723 or V1723, H1726 or G1726, E1730, V1732, F1735, I1736, S1737, R1738, T1739, G1740, Q1741, K1742, Q1743, A1744, T1745, L1746, E1747 or K1747, I1749, A1750, T1751 or A1751, V1753, N1755, K1756, A1757, P1758, A1759, H1762, T1763, Y1764, P2645, A2647, K2650, K2653 or L2653, S2664, N2673, F2680, K2681, L2686, H2692, Q2695 or L2695 or I2695, V2712, F2715, V2719 or Q2719, T2722, T2724, S2725, R2726, G2729, Y2735, H2739, I2748, G2746 or I2746, I2748, P2752 or K2752, P2754 or T2754, T2757 or P2757,

with said notation being composed of a letter representing the amino acid residue by its oneletter code, and a number representing the amino acid numbering according to Kato et al., 1990 as shown in Table 1 (comparison with other isolates). See also the numbering in Figures 2, 5, 7, and 11 (alignment amino acid sequences).

Within the group of unique and new amino acid residues of the present invention, the following residues were found to be specific for the following types of HCV according to the

HCV classification system used in the present invention:

- Q208, R217, E231, I235, I246, T264, I266, A267, F271, K299, L2686, Q2719 which are specific for the HCV subtype 2d sequences of the present invention as shown in Fig. 5 and 2;
 - Q43, S60, R67, F182, I186, H187, A190, S191, L192, W194, V202, L203, V219, Q231, D232, A237, T254, M280, Q299, T303, L308, and/or L313 which are specific for the Core/E1 region of HCV type 3 of the invention as shown in Fig. 5;
 - D1556, Q1579, L1581, S1584, F1585, E1606, V1612, P1630, C1636, T1656, L1663, H1685, E1687, G1689, V1695, Y1705, A1713, A1714, A1721, V1723, H1726, R1738, Q1743, A1744, E1747, I1749, A1751, A1759 and/or H1762 which are specific for the NS3/4 region of HCV type 3 sequences of the invention as shown in Fig. 7;
 - K2665, D2666, R2670 which are specific for the NS5B region of HCV type 3 of the invention as shown in Fig. 2;
 - L7, A79, A127, S130, E152, V158, S177 or Y177, V180 or E180, R184, T189, Q192 or E192 or I192, N193 or H193, I197 or V197, I203, A210, V212, E217, H218, H219, L227, A232, V249, I251 or M251, D252, L255 or V255, E256, M258 or V258 or F258, A260 or Q260, M265, T268, V271, V274, M280, I284, N292 or S292, Q294, L297 or I297, T308, A310 or D310 or V310 or T310, and G317 which are specific for the core/E1 region of HCV type 4 sequences of the present invention as shown in Fig. 5;
- P2645, K2650, K2653, G2656, V2658, T2668, N2673 or N2673, K2681, H2686, D2691, L2692, Q2695 or L2695 or I2695, Y2704, V2712, F2715, V2719, I2722, S2725, G2729, Y2735, G2746 or I2746, P2752 or K2752, Q2753, P2754 or T2754, T2757 or P2757 which are specific for the NS5B region of the HCV type 4 sequences of the present invention as shown in Fig. 2;
 - M44, Q70, A87, N106, K115, V137, G142, P165, I178, F251, A299, N303, Q317 which are specific for the Core/E1 region of the HCV type 4 sequences of the present invention as shown in Fig. 5;
- L333, S351, A358, A359, A363, S364, A366, T369, L373, F376, Q386, I387, S392, I399, F102, I403, R405, D454, A461, A463, T464, K484, Q500, E501, S521, K522, H524, N528, S532, V534, F537, M539, I546 which are specific for

- the E1/E2 region of the HCV type 5 sequences of the present invention as shown in Fig. 12;
- C1282, A1283, V1312, Q1321, P1368, V1372, K1405, Q1406, S1409, A1424,
- A1429, C1435, S1436, S1456, H1496, A1504, D1510, D1529, I1543, N1567,
- M1572, V1595, T1606, M1611, L1612, I1656, V1667, A1681, A1700, A1713,
- S1714, M1718, D1719, T1721, R1722, A1723, G1726, F1735, I1736, S1737,
- T1739, G1740, K1742, T1745, L1746, K1747, A1750, V1753, N1755, A1757,
- D1758, T1763, and Y1764 which are specific for the NS3/NS4 region of HCV type 5 sequences of the invention as shown in Fig. 7:
- A2647, L2653, S2674, F2680, T2724, R2726, Y2730, H2739 which are specific for the NS5B region of the HCV type 5 sequences of the present invention as shown in Fig. 2;
- A256, P1631, V1677, Q1704, E1730, V1732, Q1741 and T1751 which are specific for the HCV type 3 and 5 sequences of the present invention as shown in Fig. 5 and 7;
 - T71, A157, I227, T237, T240, Y250, V251, S260, M271, T2673, T2722, I2748 which are specific for the HCV type 3 and 4 sequences of the present invention as shown in Fig. 5 and 2,
- V192, Y194, A197, P249, S250, R294 which are specific for the HCV type 4 and 5 sequences of the present invention as shown in Fig. 5;
- I293 which is specific for the HCV type 4 and subtype 2d sequence of the present invention as shown in Fig. 5;
- D217 and R294 which are specific for the HCV type 3, 4 and 5 sequences of the present invention as shown in Fig. 5;
- L192 which is specific for the HCV type 3 and subtype 2d sequences of the present invention as shown in Fig. 5;
- G191 and T197 which are specific for the HCV type 3, 4 and subtype 2d sequences of the present invention as shown in Fig. 5;
- K232 which is specific for the HCV subtype 2d en type 5 sequences of the present invention as shown in Fig. 5.

and with said notation being composed of a letter, unambiguously representing the amino acid by its one-letter code, and a number representing the amino acid numbering according to Kato et al., 1990 (see also Table 1 for comparison with other isolates), as well as Figure 2 (NS5)

region), Figure 5 (Core/E1 region), Figure 7 (NS3/NS4 region), Figure 12 (E1/E2 region). Some of the above-mentioned amino acids may be contained in type or subtype specific epitopes.

For example M231 (detected in type 5) refers to a methionine at position 231. A glutamine (Q) is present at the same position 231 in type 3 isolates, whereas this position is occupied by an arginine in type 1 isolates and by a lysine (K) or asparagine (N) in type 2 isolates (see Figure 5).

The peptide or polypeptide according to this embodiment of the invention may be possibly labelled, or attached to a solid substrate, or coupled to a carrier molecule such as biotin, or mixed with a proper adjuvant.

The variable region in the core protein (V-CORE in Fig. 5) has been shown to be useful for serotyping (Machida et al., 1992). The sequence of the disclosed type 5 sequence in this region shows type-specific features. The peptide from amino acid 70 to 78 shows the following unique sequence for the sequences of the present inevntion (see figure 5):

QPTGRSWGQ (SEQ ID NO '93)

RSEGRTSWAQ (SEQ ID NO 220)

and RTEGRTSWAQ (SEQ ID NO 221)

Another preferred V-Core spanning region is the peptide spanning positions 60 to 78 of subtype 3c with sequence:

SRRQPIPRARRTEGRSWAQ (SEQ ID NO 268)

Five type-specific variable regions (V1 to V5) can be identified after aligning E1 amino acid sequences of the 4 genotypes, as shown in Figure 5.

Region V1 encompasses amino acids 192 to 203, this is the amino-terminal 10 amino acids of the E1 protein. The following unique sequences as shown in Fig. 5 can be deduced:

LEWRNTSGLYVL (SEQ ID NO 83)

VNYRNASGIYHI (SEQ ID NO 126)

OHYRNISGIYHV (SEQ ID NO 127)

EHYRNASGIYHI (SEQ ID NO 128)

IHYRNASGIYHI (SEQ ID NO 224)

VPYRNASGIYHV (SEQ ID NO 84)

VNYRNASGIYHI (SEQ ID NO 225)

VNYRNASGVYHI (SEQ ID NO 226)

VNYHNTSGIYHL (SEQ ID NO 227)

QHYRNASGIYHV (SEQ ID NO 228) QHYRNVSGIYHV (SEQ ID NO 229) IHYRNASDGYYI (SEQ ID NO 230) LQVKNTSSSYMV (SEQ ID NO 231)

Region V2 encompasses amino acids 213 to 223. The following unique sequences can be found in the V2 region as shown in Figure 5:

VYEADDVILHT (SEQ ID NO 85)

VYETEHHILHL (SEQ ID NO 129)

VYEADHHIMHL (SEQ ID NO 130)

VYETDHHILHL (SEQ ID NO 131)

VYEADNLILHA (SEQ ID NO 86)

VWQLRAIVLHV (SEQ ID NO 232)

VYEADYHILHL (SEQ ID NO 233)

VYETDNHILHL (SEQ ID NO 234)

VYETENHILHL (SEQ ID NO 235)

VFETVHHILHL (SEQ ID NO 236)

VFETEHHILHL (SEQ ID NO 237) VFETDHHIMHL (SEQ ID NO 238)

VYETENHILHL (SEQ ID NO 239)

VYEADALILHA (SEQ ID NO 240)

Region V3 encompasses the amino acids 230 to 242. The following unique V3 region sequences can be deduced from Figure 5:

VQDGNTSTCWTPV (SEQ ID NO 87)

VQDGNTSACWTPV (SEQ ID NO 241)

VRVGNQSRCWVAL (SEQ ID NO 132)

VRTGNTSRCWVPL (SEQ ID NO 133)

VRAGNVSRCWTPV (SEQ ID NO 134)

EEKGNISRCWIPV (SEQ ID NO 242)

VKTGNQSRCWVAL (SEQ ID NO 243)

VRTGNQSRCWVAL (SEQ ID NO 244)

VKTGNQSRCWIAL (SEQ ID NO 245)

VKTGNVSRCWIPL (SEQ ID NO 247) VKTGNVSRCWISL (SEQ ID NO 248)

VRKDNVSRCWVQI (SEQ ID NO 249)

Region V4 encompasses the amino acids 248 to 257. The following unique V4 region sequences can be deduced from figure 5:

VRYVGATTAS (SEQ ID NO 89)

APYIGAPLES (SEQ ID NO 135)

APYVGAPLES (SEQ ID NO 136)

AVSMDAPLES (SEQ ID NO 137)

APSLGAVTAP (SEQ ID NO 90)

APSFGAVTAP (SEQ ID NO 250)

VSQPGALTKG (SEQ ID NO 251)

VKYVGATTAS (SEQ ID NO 252)

APYIGAPVES (SEQ ID NO 253)

AQHLNAPLES (SEQ ID NO 254)

SPYVGAPLEP (SEQ ID NO 255)

SPYAGAPLEP (SEQ ID NO 256)

APYLGAPLEP (SEQ ID NO 257)

APYLGAPLES (SEQ ID NO 258)

APYVGAPLES (SEQ ID NO 259)

VPYLGAPLTS (SEQ ID NO 260)

APHLRAPLSS (SEQ ID NO 261)

APYLGAPLTS (SEQ ID NO.262)

Region V5 encompasses the amino acids 294 to 303. The following unique V5 region peptides can be deduced from figure 5:

RPRRHQTVQT (SEQ ID NO 91)

QPRRHWTTQD (SEQ ID NO 138)

RPRRHWTTQD (SEQ ID NO 139)

RPRQHATVQN (SEQ ID NO 92)

RPRQHATVQD (SEQ ID NO 263)

SPQHHKFVQD (SEQ ID NO 264)

RPRRLWTTQE (SEQ ID NO 265)

PPRIHETTQD (SEQ ID NO 266)

The variable region in the E2 region (HVR-2) of type 5a as shown in Figure 12 spanning amino acid positions 471 to 484 is also a preferred peptide according to the present invention

with the following sequence:

TISYANGSGPSDDK (SEQ ID NO 267)

The above given list of peptides are particularly suitable for vaccine and diagnostic development.

Also comprised in the present invention is any synthetic peptide or polypeptide containing at least 5 contiguous amino acids derived from the above-defined peptides in their peptidic chain.

According to a specific embodiment, the present invention relates to a composition as defined above, wherein said contiguous sequence is selected from any of the following HCV amino acid type 3 sequences:

- a sequence having a homology of more than 72%, preferably more than 74%, more preferably more than 77% and most preferably more than 80 or 84% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 (HD10, BR36, BR33 sequences) in the region spanning positions 140 to 319 in the Core/E1 region as shown in Figure 5;
- a sequence having a homology of more than 70%, preferably more than 72%, more preferably more than 75% homology, most preferably more than 81% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 (HD10, BR36, BR33 sequences) in the E1 region spanning positions 192 to 319 as shown in Figure 5;
- a sequence having a homology of more than 86%, preferably more than 88%, and most preferably more than 90% homology to the amino acid sequences as represented in SEQ ID NO 148 (type 3c); BE98 in the region spanning positions 1 to 110 in the Core region as shown in Figure 5;
- a sequence having a homology of more than 76%, preferably more than 78%, most preferably more than 80% to any of the amino acid sequences as represented in SEQ ID NO 30, 32, 34, 36, 38 or 40 (HCCl53, HD10, BR36 sequences) in the region spanning positions 1646 to 1764 in the NS3/NS4 region as shown in Figure 7 and 11;
- a sequence having a homology of more than 81%, preferably more than 83%, and most preferably more than 86% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 (HD10, BR36, BR33 sequences) in the region spanning positions 140 to 319 in the Core/E1 region as shown in Figure 5;
- a sequence having a homology of more than 81.5%, preferably more than 83%, and most

preferably more than 86% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 (HD10, BR36, BR33 sequences) in the E1 region spanning positions 192 to 319 as shown in Figure 5;

- a sequence having a homology of more than 86%, preferably more than 88%, most preferably more than 90% to the amino acid sequence as represented in SEQ ID NO 150; (type 3c BE98) in the region spanning positions 2645 to 2757 in the NS5B region as shown in Figure 2.

According to yet another embodiment, the present invention relates to a composition as defined above, wherein said contiguous sequence is selected from any of the following HCV amino acid type 4 sequences:

- a sequence having a homology of more than 80%, preferably more than 82%, most preferably more than 84% homology to any of the amino acid sequences as represented in SEQ ID NO 118, 120, and 122 (GB358, GB549, GB809 sequences) in the region spanning positions 127 to 319 of the Core/E1 region as shown in Figure 5;
- a sequence having a homology of more than 73%, preferably more than 75%, most preferably more than 78% homology in the E1 region spanning positions 192 to 319 to any of the amino acid sequences as represented in SEQ ID NO 118, 120, and 122 (GB358, GB549, GB809 sequences) in the region spanning positions 140 to 319 of the Core/E1 region as shown in Figure 5;
- a sequence having more than 85%, preferably more than 86%, most preferably more than 87% homology to any of the amino acid sequences as represented in SEQ ID NO 118, 120 or 122 (GB358, GB549, GB809 sequences) in the region spanning positions 192 to 319 of E1 as shown in Figure 5;
- a sequence showing more than 73%, preferably more than 74%, most preferably more than 75% homology to any of the amino acid sequences as represented in SEQ ID NO 106, 108, 110, 112, 114 or 116 (GB48, GB116, GB215, GB358, GB549, GB809 sequences) in the region spanning positions 2645 to 2757 of the NS5B region as shown in Figure 2;
- a sequence having any of the sequences as represented in SEQ ID NO 164 or 166 (GB809 and CAM600 sequences) in the Core/E1 region as shown in Figure 5;
- a sequence having any of the sequences as represented in SEQ ID NO 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188 or 190 (CAM600, GB809, CAMG22, CAMG27, GB549, GB438, CAR4/1205, CAR4/901, GB116, GB215, GB958, GB809-4 sequences) in the E1 region as shown in Figure 5;

a sequence having any of the sequences as represented in SEQ ID NO 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212 (GB358, GB724, BE100, PC, CAM600, CAMG22, etc.) in the NS5B region.

The above-mentioned type 4 peptides polypeptides comprise at least an amino acid sequence selected from any HCV type 4 polyprotein with the exception of core sequence as disclosed by Simmonds et al. (1993, EG-29, see Figure 5).

According to yet another aspect, the present invention relates to a composition as defined above, wherein said contiguous sequence is selected from any of the following HCV amino acid type 5 sequences:

- a sequence having more than 93%, preferably more than 94%, most preferably more than 95% homology in the region spanning Core positions 1 to 191 to any of the amino acid sequences as represented in SEQ ID NO 42, 44, 46, 48, 50, 52 or 54 (PC sequences) and SEQ ID NO 152 (BE95) as shown in Figure 5;
 - a sequence having more than 73%, preferably more than 74%, most preferably more than 76% homology in the region spanning E1 positions 192 to 319 to any of the amino acid sequences as represented in SEQ ID NO 42, 44, 46, 48, 50, 52 or 54 (PC sequences) as shown in Figure 5;
- a sequence having a more than 78%, preferably more than 80%, most preferably more than 83% homology to any of the amino acid sequences as represented in SEQ ID NO 42, 44, 46, 48, 50, 52, 54, 154, 156 (BE95, BE100) (PC sequences) in the region spanning positions 1 to 319 of the Core/E1 region as shown in Figure 5;
- a sequence having more than 90%, preferably more than 91%, most preferably more than 92% homology to any of the amino acid sequences represented in SEQ ID NO 56 to 58 (PC sequences) in the region spanning positions 1286 to 1403 of the NS3 region as shown in Figure 7 or 11;
- a sequence having more than 66%, more particularly 68%, most particularly 70% or more homology to any of the amino acid sequences as represented in SEQ ID NO 60 or 62 (PC sequences) in the region spanning positions 1646 to 1764 of the NS3/4 region as shown in Figure 7 or 11.

According to yet another embodiment, the present invention relates to a composition as defined above, wherein said contiguous sequence is selected from any of the following HCV amino acid type 2d sequences:

a sequence having more than 83%, preferably more than 85%, most preferably more than

- 87% homology to the amino acid sequence as represented in SEQ ID NO 144 (NE92) in the region spanning positions 1 to 319 of the Core/E1 region as shown in Figure 5;
- a sequence having more than 79%, preferably more than 81%, most preferably more than 84% homology in the region spanning E1 positions 192 to 319 to the amino acid sequence as represented in SEQ ID NO 144 (NE92) as shown in Figure 12;
- a sequence having more than 95%, more particularly 96%, most particularly 97% or more homology to the amino acid sequence as represented in SEQ ID NO 146 (NE92) in the region spanning positions 2645 to 2757 of the NS5B region as shown in Figure 2.

The present invention also relates to a recombinant vector, particularly for cloning and/or expression, with said recombinant vector comprising a vector sequence, an appropriate prokaryotic, eukaryotic or viral promoter sequence followed by the nucleotide sequences as defined above, with said recombinant vector allowing the expression of any one of the HCV type 2 and/or HCV type 3 and/or type 4 and/or type 5 derived polypeptides as defined above in a prokaryotic, or eukaryotic host or in living mammals when injected as naked DNA, and more particularly a recombinant vector allowing the expression of any of the following HCV type 2d, type 3, type 4 or type 5 polypeptides spanning the following amino acid positions:

- a polypeptide starting at position 1 and ending at any position in the region between positions 70 and 326, more particularly a polypeptide spanning positions 1 to 70, 1 to 85, positions 1 to 120, positions 1 to 150, positions 1 to 191, positions 1 to 200, for expression of the Core protein, and a polypeptide spanning positions 1 to 263, positions 1 to 326, for expression of the Core and E1 protein;
 - a polypeptide starting at any position in the region between positions 117 and 192, and ending at any position in the region between positions 263 and 326, for expression of E1, or forms that have the putative membrane anchor deleted (positions 264 to 293 plus or minus 8 amino acids);
 - a polypeptide starting at any position in the region between positions 1556 and 1688, and ending at any position in the region between positions 1739 and 1764, for expression of the NS4 regions, more particularly a polypeptide starting at position 1658 and ending at position 1711 for expression of the NS4a antigen, and more particularly, a polypeptide starting at position 1712 and ending between positions 1743 and 1972, for example 1712-1743, 1712-1764, 1712-1782, 1712-1972, 1712 to 1782 and 1902 to 1972 for expression of the NS4b protein or parts thereof.

The term "vector" may comprise a plasmid, a cosmid, a phage, or a virus.

In order to carry out the expression of the polypeptides of the invention in bacteria such as E. coli or in eukaryotic cells such as in S. cerevisiae, or in cultured vertebrate or invertebrate hosts such as insect cells, Chinese Hamster Ovary (CHO), COS, BHK, and MDCK cells, the following steps are carried out:

transformation of an appropriate cellular host with a recombinant vector, in which a nucleotide sequence coding for one of the polypeptides of the invention has been inserted under the control of the appropriate regulatory elements, particularly a promoter recognized by the polymerases of the cellular host and, in the case of a prokaryotic host, an appropriate ribosome binding site (RBS), enabling the expression in said cellular host of said nucleotide sequence. In the case of an eukaryotic host any artificial signal sequence or pre/pro sequence might be provided, or the natural HCV signal sequence might be employed, e.g. for expression of E1 the signal sequence starting between amino acid positions 117 and 170 and ending at amino acid position 191 can be used, for expression of NS4, the signal sequence starting between amino acid positions 1646 and 1659 can be used, culture of said transformed cellular host under conditions enabling the expression of said insert.

The present invention also relates to a composition as defined above, wherein said polypeptide is a recombinant polypeptide expressed by means of an expression vector as defined above.

The present invention also relates to a composition as defined above, for use in a method for immunizing a mammal, preferably humans, against HCV comprising administring a sufficient amount of the composition possibly accompanied by pharmaceutically acceptable adjuvants, to produce an immune response, more particularly a vaccine composition including HCV type 3 polypeptides derived from the Core, E1 or the NS4 region and/or HCV type 4 and/or HCV type 5 polypeptides and/or HCV type 2d polypeptides.

The present invention also relates to an antibody raised upon immunization with a composition as defined above by means of a process as defined above, with said antibody being reactive with any of the polypeptides as defined above, and with said antibody being preferably a monoclonal antibody.

The monoclonal antibodies of the invention can be produced by any hybridoma liable to be formed according to classical methods from splenic cells of an animal, particularly from

a mouse or rat, immunized against the HCV polypeptides according to the invention, or muteins thereof, or fragments thereof as defined above on the one hand, and of cells of a myeloma cell line on the other hand, and to be selected by the ability of the hybridoma to produce the monoclonal antibodies recognizing the polypeptides which has been initially used for the immunization of the animals.

The antibodies involved in the invention can be labelled by an appropriate label of the enzymatic, fluorescent, or radioactive type.

The monoclonal antibodies according to this preferred embodiment of the invention may be humanized versions of mouse monoclonal antibodies made by means of recombinant DNA technology, departing from parts of mouse and/or human genomic DNA sequences coding for H and L chains or from cDNA clones coding for H and L chains.

Alternatively the monoclonal antibodies according to this preferred embodiment of the invention may be human monoclonal antibodies. These antibodies according to the present embodiment of the invention can also be derived from human peripheral blood lymphocytes of patients infected with type 3, type 4 or type 5 HCV, or vaccinated against HCV. Such human monoclonal antibodies are prepared, for instance, by means of human peripheral blood lymphocytes (PBL) repopulation of severe combined immune deficiency (SCID) mice (for recent review, see Duchosal et al. 1992).

The invention also relates to the use of the proteins of the invention, muteins thereof, or peptides derived therefrom for the selection of recombinant antibodies by the process of repertoire cloning (Persson et al., 1991).

Antibodies directed to peptides derived from a certaing genotype may be used either for the detection of such HCV genotypes, or as therapeutic agents.

The present invention also relates to the use of a composition as defined above for incorporation into an immunoassay for detecting HCV, present in biological sample liable to contain it, comprising at least the following steps:

- (i) contacting the biological sample to be analyzed for the presence of HCV antibodies with any of the compositions as defined above preferably in an immobilized form under appropriate conditions which allow the formation of an immune complex, wherein said polypeptide can be a biotinylated polypeptide which is covalently bound to a solid substrate by means of streptavidin or avidin complexes,
- (ii) removing unbound components,
- (iii) incubating the immune complexes formed with heterologous antibodies, which

specifically bind to the antibodies present in the sample to be analyzed, with said heterologous antibodies having conjugated to a detectable label under appropriate conditions.

(iv) detecting the presence of said immunecomplexes visually or by means of densitometry and inferring the HCV serotype present from the observed hybridization pattern.

The present invention also relates to the use of a composition as defined above, for incorporation into a serotyping assay for detecting one or more serological types of HCV present in a biological sample liable to contain it, more particularly for detecting E1 and NS4 antigens or antibodies of the different types to be detected combined in one assay format, comprising at least the following steps:

- (i) contacting the biological sample to be analyzed for the presence of HCV antibodies or antigens of one or more serological types, with at least one of the compositions as defined above, an immobilized form under appropriate conditions which allow the formation of an immunecomplex,
- (ii) removing unbound components,
- (iii) incubating the immunecomplexes formed with heterologous antibodies, which specifically bind to the antibodies present in the sample to be analyzed, with said heterologous antibodies having conjugated to a detectable label under appropriate conditions,
- (iv) detecting the presence of said immunecomplexes visually or by means of densitometry and inferring the presence of one or more HCV serological types present from the observed binding pattern.

The present invention also relates to the use of a composition as defined above, for immobilization on a solid substrate and incorporation into a reversed phase hybridization assay, preferably for immobilization as parallel lines onto a solid support such as a membrane strip, for determining the presence or the genotype of HCV according to a method as defined above.

The present invention thus also relates to a kit for determining the presence of HCV genotypes as defined above present in a biological sample liable to contain them, comprising:

possibly at least one primer composition containing any primer selected from those defined above or any other HCV type 3 and/or HCV type 4, and/or HCV type 5, or universal HCV primers,

- at least one probe composition as defined above, with said probes being preferentially immobilized on a solid substrate, and more preferentially on one and the same membrane strip,
- a buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the possibly amplified products to be carried out, means for detecting the hybrids resulting from the preceding hybriziation,
- possibly also including an automated scanning and interpretation device for inferring the HCV genotypes present in the sample from the observed hybridization pattern.

The genotype may also be detected by means of a type-specific antibody as defined above, which is linked to any polynucleotide sequence that can afterwards be amplified by PCR to detect the immune complex formed (Immuno-PCR, Sano et al., 1992);

The present invention also relates to a kit for determining the presence of HCV antibodies as defined above present in a biological sample liable to contain them, comprising:

- at least one polypeptide composition as defined above, preferentially in combination with other polypeptides or peptides from HCV type 1, HCV type 2 or other types of HCV, with said polypeptides being preferentially immobilized on a solid substrate, and more preferentially on one and the same membrane strip,
- a buffer or components necessary for producing the buffer enabling binding reaction between these polypeptides and the antibodies against HCV present in the biological sample,
- means for detecting the immunecomplexes formed in the preceding binding reaction,
- possibly also including an automated scanning and interpretation device for inferring the HCV genotypes present in the sample from the observed binding pattern.

Figure Legends

Figure 1,

Alignment of consensus nucleotide sequences for each of the type 3a isolates BR34, BR36, and BR33, deduced from the clones with SEQ ID NO 1, 5, 9; type 4 isolates GB48, GB116, GB215, GB358, GB549, GB809, CAM600, CAMG22, GB438, CAR4/1205, CAR1/501 (SEQ ID NO. 106, 108, 110, 112, 114, 116, 201, 203, 205, 207, 209 and 211); type 5a isolates BE95 and BE96 (SEQ ID NO 159 and 161) and type 2d isolate NE92 (SEQ ID NO 145) from the region between nucleotides 7932 and 8271, with known sequences from the corresponding region of isolates HCV-1, HCV-J, HC-J6, HC-J8, T1 and T9, and others as shown in Table 3.

Figure 2

Alignment of amino acids sequences deduced from the nucleic acid sequences as represented in Figure 1 from the subtype 3a clones BR34 (SEQ ID NO 2, 4), BR36 (SEQ ID NO 6, 8) and BR33 (SEQ ID NO 10, 12), the subtype 3c clone BE98 (SEQ ID NO 150), and the type 4 clones GB48 (SEQ ID NO 107), GB116 (SEQ ID NO 109), GB215 (SEQ ID NO 111), GB358 (SEQ ID NO 113), GB549 (SEQ ID NO 115) GB809 (SEQ ID NO 117); CAM600, CAMG22, GB438, CAR4/1205, CAR1/501 (SEQ ID NO 202, 204, 206, 208, 210, 212); the type 5a clones BE95 and BE96 (SEQ ID NO 160 and 162); as well as the subtype 2d isolate NE92 (SEQ ID NO 146) from the region between amino acids 2645 to 2757 with known sequences from the corresponding region of isolates HCV-I, HCV-J, HC-J6, and HC-J8, T1 and T9, and other sequences as shown in Table 3.

Figure 3

Alignment of type 2d, 3c, 4 and 5a nucleotide sequences from isolates NE92, BE98, GB358, GB809, CAM600, GB724, BE95 (SEQ ID NO 143, 147, 191, 163, 165, 193 and 151) in the Core region between nucleotide positions 1 and 500, with known sequences from the corresponding region of type 1, type 2, type 3 and type 4 sequences.

Figure 4

Alignment of nucleotide sequences for the subtype 2d isolate NE92 (SEQ ID NO 143), the type 4 isolates GB358 (SEQ ID NO 118 and 187), GB549 (SEQ ID NO 120 and 175), and

GB809-2 (SEQ ID NO 122 and 169), GB 809-4, BG116, GB215, CAM600, CAMG22, CAMG27, GB438, CAR4/1205, CAR4/901 (SEQ ID NO 189, 183, 185, 167, 171, 173, 177, 179; 181), sequences for each of the subtype 3a isolates HD10, BR36, and BR33, (SEQ ID NO 13, 15, 17 (HD10), 19, 21 (BR36) and 23, 25 or 27 (BR23) and the subtype 5a isolates BE95 and BE100 (SEQ ID NO 143 and 195) from the region between nucleotides 379 and 957, with known sequences from the corresponding region of type 1 and 2 and 3.

Figure 5

Alignment of amino acid sequences deduced from the new HCV nucleotide sequences of the Core/E1 region of isolates BR33, BR36, HD10, GB358, GB549, and GB809, PC or BE95, CAM600, and GB724 (SEQ ID NO. 14, 20, 24, 119 or 192, 121, 123 or 164, 54 or 152, 166 and 194) from the region between positions 1 and 319, with known sequences from type 1a (HCV-1), type 1b (HCV-J), type 2a (HC-JG), type 2b (HC-J8), NZL1, HCV-TR, positions 7-89 of type 3a (E-b1), and positions 8-88 of type 4a (EG-29). V-Core, variable region with type-specific features in the core protein, V1, variable region 1 of the E1 protein, V2, variable region 2 of the E1 protein, V3, variable region 3 of the E1 protein, V4, variable region 4 of the E1 protein, V5, variable region 5 of the E1 protein.

Figure 6

Alignment of nucleotide sequences of isolates HCCL53, HD10 and BR36, deduced from clones with SEQ ID NO 29, 31, 33, 35, 37 and 39, from the NS3/4 region between nucleotides 4664 to 5292, with known sequences from the corresponding region of isolates HCV-1, HCV-J, HC-J6, and HC-J8, EB1, EB2, EB6 and EB7.

Figure 7

Alignment of amino acid sequences deduced from the new HCV nucleotide sequences of the NS3/NS4 region of isolate BR36 (SEQ ID NO 36, 38 and 40) and BE95 (SEQ ID NO 270). NS4-1, indicates the region that was synthesized as synthetic peptide 1 of the NS4 region, NS4-5, indicates the region that was synthesized as synthetic peptide 5 of the NS4 region; NS4-7, indicates the region that was synthesized as synthetic peptide 7 of the NS4 region.

Figure 8

Reactivity of the three LIPA-selected (Stuyver et al., 1993) type 3 sera on the Inno-LIA HCV Ab II assay (Innogenetics) (left), and on the NS4-LIA test. For the NS4-LIA test, NS4-1, NS4-5, and NS4-7 peptides were synthesized based on the type 1 (HCV-1), type 2 (HC-J6) and type 3 (BR36) prototype isolate sequences as shown in Table 4, and applied as parallel lines onto a membrane strip as indicated. 1, serum BR33, 2, serum HD10, 3, serum DKH.

Figure 9

Nucleotide sequences of Core/E1 clones obtained from the PCR fragments PC-2, PC-3, and PC-4, obtained from serum BE95 (PC-2-1 (SEQ ID NO 41), PC-2-6 (SEQ ID NO 43), PC-4-1 (SEQ ID NO 45), PC-4-6 (SEQ ID NO 47), PC-3-4 (SEQ ID NO 49), and PC-3-8 (SEQ ID NO 51)) of subtype 5a isolate BE95.

A consensus sequence is shown for the Core and E1 region of isolate BE95, presented as PC C/E1 with SEQ ID NO 53. Y, C or T, R, A or G, S, C or G.

Figure 10

Alignment of nucleotide sequences of clones with SEQ ID NO 197 and 199 (PC sequences, see also SEQ ID NO 55, 57, 59) and SEQ ID NO 35, 37 and 39 (BR36 sequences) from the NS3/4 region between nucleotides 3856 to 5292, with known sequences from the corresponding region of isolates HCV-1, HCV-J, HC-J6, and HC-J8.

Figure 11

Alignment of amino acid sequences of subtype 5a BE95 isolate PC clones with SEQ ID NO 56 and 58, from the NS3/4 region between amino acids 1286 to 1764, with known sequences from the corresponding region of isolates HCV-1, HCV-J, HC-J6, and HC-J8.

Figure 12

Alignment of amino acid sequences of subtype 5a isolate BE95 (SEQ ID NO 158) in the E1/E2 region spanning positions 328 to 546, with known sequences from the corresponding region of isolates HCV-1, HCV-J, HC-J6, HC-J8, NZL1 and HCV-TR (see Table 3).

Figure 13

Alignment of the nucleotide sequences of subtype 5a isolate BE95 (SEQ ID NO 157) in the E1/E2 region with known HCV sequences as shown in Table 3.

EXAMPLES

Example 1: The NS5b region of HCV type 3

Type 3 sera, selected by means of the INNO-LiPA HCV research kit (Stuyver et al., 1993) from a number of Brazilian blood donors, were positive in the HCV antibody, ELISA (Innotest HCV Ab II; Innogenetics) and/or in the INNO-LIA HCV Ab II confirmation test (Innogenetics). Only those sera that were positive after the first round of PCR reactions (Stuyver et al., 1993) were retained for further study.

Reverse transcription and nested PCR: RNA was extracted from 50 μ l serum and subjected to cDNA synthesis as described (Stuyver et al., 1993). This cDNA was used as template for PCR, for which the total volume was increased to 50 μ l containing 10 pmoles of each primer, 3 μ l of 10x Pfu buffer 2 (Stratagene) and 2.5 U of Pfu DNA polymerase (Stratagene). The cDNA was amplified over 45 cycles consisting of 1 min 94°C, 1 min 50°C and 2 min 72°C. The amplified products were separated by electrophoresis, isolated, cloned and sequenced as described (Stuyver et al., 1993).

Type 3a and 3b-specific primers in the NS5 region were selected from the published sequences (Mori et al., 1992) as follows:

for type 3a:

HCPr161(+): 5'-ACCGGAGGCCAGGAGAGTGATCTCCTCC-3' (SEQ ID NO 63) and HCPr162(-): 5'-GGGCTGCTCTATCCTCATCGACGCCATC-3' (SEQ ID NO 64);

for type 3b:

HCPr163(+): 5'-GCCAGAGGCTCGGAAGGCGATCAGCGCT-3' (SEQ ID O 65) and HCPr164(-): 5'-GAGCTGCTCTGTCCTCCTCGACGCCGCA-3' (SEQ ID NO 66)

Using the Line Probe Assay (LiPA) (Stuyver et al., 1993), seven high-titer type 3 sera were selected and subsequently analyzed with the primer sets HCPr161/162 for type 3a, and HCPr163/164 for type 3b. None of these sera was positive with the type 3b primers. NS5 PCR fragments obtained using the type 3a primers from serum BR36 (BR36-23), serum BR33 (BR33-2) and serum BR34 (BR34-4) were selected for cloning. The following sequences were obtained from the PCR fragments:

From fragment BR34-4:

BR34-4-20 (SEQ ID NO 1), BR34-4-19 (SEQ ID NO 3)

From fragment BR36-23:

BR36-23-18 (SEQ ID NO 5), BR36-23-20 (SEQ ID NO 7)

From fragment BR33-2:

BR33-2-17 (SEQ ID NO 9), BR33-2-21 (SEQ ID NO 11)

An alignment of sequences with SEQ ID NO 1, 5 and 9 with known sequences is given in Figure 1. An alignment of the deduced amino acid sequences is shown in Figure 2. The 3 isolates are very closely related to each other (mutual homologies of about 95%) and to the published sequences of type 3a (Mori et al., 1992), but are only distantly related to type 1 and type 2 sequences (Table 5). Therefore, it is clearly demonstrated that NS5 sequences from LiPA-selected type 3 sera are indeed derived from a type 3 genome. Moreover, by analyzing the NS5 region of serum BR34, for which no 5'UR sequences were determined as described in Stuyver et al. (1993), the excellent correlation between typing by means of the LiPA and genotyping as deduced from nucleotide sequencing was further proven.

Example 2: The Core/E1 region of HCV type 3

After aligning the sequences of HCV-1 (Choo et al., 1991), HCV-J (Kato et al., 1990), HC-J6 (Okamoto et al., 1991), and HC-J8 (Okamoto et al., 1992), PCR primers were chosen regions of little sequence variation. **Primers** HCPr23(+): CTCATGGGGTACATTCCGCT-3' (SEO ID NO 67) HCPr54(-): TATTACCAGTTCATCATCATATCCCA-3' (SEQ ID NO 68), were synthesized on a 392 DNA/RNA synthesizer (Applied Biosystems). This set of primers was selected to amplify the sequence from nucleotide 397 to 957 encoding amino acids 140 to 319 (Kato et al., 1990): 52 amino acids from the carboxyterminus of core and 128 amino acids of E1 (Kato et al., 1990). The amplification products BR36-9, BRR33-1, and HD10-2 were cloned as described (Stuyver et al., 1993). The following clones were obtained from the PCR fragments:

From fragment HD10-2:

HD10-2-5 (SEQ ID NO 13), HD10-2-14 (SEQ ID NO 15), HD10-2-21 (SEQ ID NO 17) From fragment BR36-9:

BR36-9-13 (SEQ ID NO 19), BR36-9-20 (SEQ ID NO 21),

From fragment BR33-1:

BR33-1-10 (SEQ ID NO 23), BR33-1-19 (SEQ ID NO 25), BR33-1-20 (SEQ ID NO 27), An alignment of the type 3 E1 nucleotide sequences (HD10, BR36, BR33) with SEQ ID NO 13, 19 and 23 with known E1 sequences is presented in Figure 4. Four variations were detected in the E1 clones from serum HD10 and BR36, while only 2 were found in BR33. All are silent third letter variations, with the exception of mutations at position 40 (L to P)

and 125 (M to I). The homologies of the type 3 E1 region (without core) with type 1 and 2 prototype sequences are depicted in Table 5.

In total, 8 clones covering the core/E1 region of 3 different isolates were sequenced and the E1 portion was compared with the known genotypes (Table 3) as shown in Figure 5. After computer analysis of the deduced amino acid sequence, a signal-anchor sequence at the core carboxyterminus was detected which might, through analogy with type 1b (Hijikata et al., 1991), promote cleavage before the LEWRN sequence (position 192, Fig. 5). The L-to-P mutation in one of the HD10-2 clones resides in this signal-anchor region and potentially impairs recognition by signal peptidase (computer prediction). Since no examples of such substitutions were found at this position in previously described sequences, this mutation might have resulted from reverse transcriptase or Pfu polymerase misincorporation. The 4 amino-terminal potential N-linked glycosylation sites, which are also present in HCV types 1a and 2, remain conserved in type 3. The N-glycosylation site in type 1b (aa 250, Kato et al., 1990) remains a unique feature of this subtype. All E1 cysteines, and the putative transmembrane region (aa 264 to 293, computer prediction) containing the aspartic acid at position 279, are conserved in all three HCV types. The following hypervariable regions can be delineated: V1 from aa 192 to 203 (numbering according to Kato et al., 1990), V2 (213-223), V3 (230-242), V4 (248-257), and V5 (294-303). Such hydrophilic regions are thought to be exposed to the host defense mechanisms. This variability might therefore have been induced by the host's immune response. Additional putative N-linked glycosylation sites in the V4 region in all type 1b isolates known today and in the V5 region of HC-J8 (type 2b) possibly further contribute to modulation of the immune response. Therefore, analysis of this region, in the present invention, for type 3 and 4 sequences has been instrumental in the delineation of epitopes that reside in the V-regions of E1, which will be critical for future vaccine and diagnostics development.

Example 3: The NS3/NS4 region of HCV Type 3

For the NS3/NS4 border region, the following sets of primers were selected in the regions of little sequence variability after aligning the sequences of HCV-1 (Choo et al., 1991), HCV-J (Kato et al., 1990), HC-J6 (Okamoto et al., 1991), and HC-J8 (Okamoto et al., 1992) (smaller case lettering is used for nucleotides added for cloning purposes):

set A:

HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 69)

- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set B:
- HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 69)
- HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQID NO 71) set C:
- HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set D:
- HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)
- HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQID NO 71) set E:
- HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 69)
- HCPr119(-): actagtcgactaRTTIGCIATIAGCCG/TRTTCATCCAYTG-3' (SEQID NO 73) set F:
- HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)
- HCPr119(-): actagtcgactaRTTIGCIATIAGCCG/TRTTCATCCAYTG-3' (SEQ ID NO 73) set G:
- HCPr131(+): 5'-ggaattctagaCCITCITGGGAYGARAYITGGAARTG-3' (SEQ ID NO 74)
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set H:
- HCPr130(+): 5'-ggaattctagACIGCITAYCARGCIACIGTITGYGC-3' (SEQ ID NO 75)
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set I:
- HCPr134(+): 5'-CATATAGATGCCCACTTCCTATC-3' (SEQ ID NO 76)
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set J:
- HCPr131(+): 5'-ggaattctagaCCITCITGGGAYGARAYITGGAARTG-3' (SEQ ID NO 74)
 HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71)

set K:

HCPr130(+): 5'-ggaattctagACIGCITAYCARGCIACIGTITGYGC-3' (SEQ ID NO 75)
HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71)

set L:

HCPr134(+): 5'-CATATAGATGCCCACTTCCTATC-3' (SEQ ID NO 76)

HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQID NO 71)

set M:

HCPr3(+): 5'-GTGTGCCAGGACCATC-3' (SEQ ID NO 77) and

HCPr4(-): 5'-GACATGCATGTCATGATGTA-3 (SEQ ID NO 78)

set N:

HCPr3(+): 5'-GTGTGCCAGGACCATC-3' (SEQ ID NO 77) and

HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQID NO 71)

set O:

HCPr3(+): 5'-GTGTGCC'AGGACCATC-3' (SEQ ID NO 77) and

HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70)

No PCR products could be obtained with the sets of primers A, B, C, D, E, F, G, H, I, J, K, L, M, and N, on random-primed cDNA obtained from type 3 sera. With the primer set O, no fragment could be amplified from type 3 sera. However, a smear containing a few weakly stainable bands was obtained from serum BR36. After sequence analysis of several DNA fragments, purified and cloned from the area around 300 bp on the agarose gel, only one clone, HCCl53 (SEQ ID NO 29), was shown to contain HCV information. This sequence was used to design primer HCPr152.

A new primer set P was subsequently tested on several sera.

set P:

HCPr152(+): 5'-TACGCCTCTTCTATATCGGTTGGGGCCTG-3' (SEQ ID NO 79) and

HCPr66(-): 5'-CTATTATTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70)

The 464-bp HCPr152/66 fragment was obtained from serum BR36 (BR36-20) and serum HD10 (HD10-1). The following clones were obtained from these PCR products:

From fragment HD10-1:

HD10-1-25 (SEQ ID NO 31), HD10-1-3 (SEQ ID NO 33),

From fragment BR36-20:

BR36-20-164 (SEQ ID NO 35), BR36-20-165 (SEQ ID NO 37), BR36-20-166 (SEQ ID NO 39),

The nucleotide sequences obtained from clones with SEQ ID NO 29, 31, 33, 35, 37 or 39 are shown aligned with the sequences of prototype isolates of other types of HCV in Figure 6. In addition to one silent 3rd letter variation, one 2nd letter mutation resulted in an

E to G substitution at position 175 of the deduced amino acid sequence of BR36 (Fig. 7). Serum HD10 clones were completely identical. The two type 3 isolates were nearly 94% homologous in this NS4 region. The homologies with other types are presented in Table 5.

Example 4: Analysis of the anti-NS4 response to type-specific peptides

As the NS4 sequence contains the information for an important epitope cluster, and since antibodies towards this region seem to exhibit little cross-reactivity (Chan et al., 1991), it was worthwhile to investigate the type-specific antibody response to this region. For each of the 3 genotypes, HCV-1 (Choo et al., 1991), HC-J6 (Okamoto et al., 1991) and BR36 (present invention), three 20-mer peptides were synthesized covering the epitope region between amino acids 1688 and 1743 (as depicted in table 6). The synthetic peptides were applied as parallel lines onto membrane strips. Detection of anti-NS4 antibodies and color development was performed according to the procedure described for the INNO-LIA HCV Ab II kit (Innogenetics, Antwerp). Peptide synthesis was carried out on a 9050 PepSynthesizer (Millipore). After incubation with 15 LiPA-selected type 3 sera, 9 samples showed reactivity towards NS4 peptides of at least 2 different types, but a clearly positive reaction was observed for 3 sera (serum BR33, HD30 and DKH) on the type 3 peptides, while negative (serum BR33 and HD30) or indeterminate (serum DKH) on the type 1 and type 2 NS4 peptides; 3 sera tested negative for anti-NS4 antibodies (Figure 8). Using the same membrane strips coated with the 9 peptides as indicated above and as shown in Figure 8, 38 type 1 sera (10 type 1a and 28 type 1b), 11 type 2 sera (10 type 2a and 1 type 2b), 12 type 3a sera and 2 type 4 sera (as determined by the LiPA procedure) were also tested. As shown in Table 8, the sera reacted in a genotype-specific manner with the NS4 epitopes. These results demonstrate that type-specific anti-NS4 antibodies can be detected in the sera of some patients. Such genotype-specific synthetic peptides might be employed to develop serotyping assays, for example a mixture of the nine peptides as indicated above, or combined with the NS4 peptides from the HCV type 4 or 6 genotype or from new genotypes corresponding to the region between amino acids 1688 and 1743, or synthetic peptides of the NS4 region between amino acids 1688 and 1743 of at least one of the 6 genotypes, combined with the E1 protein or deletion mutants thereof, or synthetic E1 peptides of at least one of the genotypes. Such compositions could be further extended with type-specific peptides or proteins, including for example the region between amino acids 68 and 91 of the core protein, or more preferably the region between amino acids 68 and 78. Furthermore, such type-specific

antigens may be advantageously used to improve current diagnostic screening and confirmation assays and/or HCV vaccines.

Example 5 The Core and E1 regions of HCV type 5

Sample BE95 was selected from a group of sera that reacted positive in a prototype Line Probe Assay as described earlier (Stuyver et al., 1993), because a high-titer of HCV RNA could be detected, enabling cloning of fragments by a single round of PCR. As no sequences from any coding region of type 5 has been disclosed yet, synthetic oligonucleotides for PCR amplification were chosen in the regions of little sequence variation after aligning the sequences of HCV-1 (Choo et al., 1991), HCV-J (Kato et al., 1990), HC-J6 (Okamoto et al., 1991), HC-J8 (Okamoto et al., 1992), and the new type 3 sequences of the present invention HD10, BR33, and BR36 (see Figure 5, Example 2). The following sets of primers were synthesized on a 392 DNA/RNA synthesizer (Applied Biosystems):

Set 1:

HCPr52(+): 5'-atgTTGGGTAAGGTCATCGATACCCT-3' (SEQ ID NO 80) and

HCPr54(-): 5'-ctattaCCAGTTCATCATCATATCCCA-3' (SEQ ID NO 78)

Set 2:

HCPr41(+): 5'-CCCGGGAGGTCTCGTAGACCGTGCA-3' (SEQ ID NO 81) and

HCPr40(-): 5'-ctattaAAGATAGAGAAAGAGCAACCGGG-3'(SEQ ID NO 82)

Set 3:

HCPr41(+): 5'-CCCGGGAGGTCTCGTAGACCGTGCA-3' (SEQ ID NO 81) and

HCPr54(-): 5'-ccattaCCAGTTCATCATCATATCCCA-3' (SEQ ID NO 78)

The three sets of primers were employed to amplify the regions of the type 5 isolate PC as described (Stuyver et al., 1993). Set 1 was used to amplify the E1 region and yielded fragment PC-4, set 2 was designed to yield the Core region and yielded fragment PC-2. Set 3 was used to amplify the Core and E1 region and yielded fragment PC-3. These fragments were cloned as described (Stuyver et al., 1993). The following clones were obtained from the PCR fragments:

From fragment PC-2:

PC-2-1 (SEQ ID NO 41), PC-2-6 (SEQ ID NO 43),

From fragment PC-4:

PC-4-1 (SEQ ID NO 45), PC-4-6 (SEQ ID NO 47),

From fragment PC-3:

PC-3-4 (SEQ ID NO 49), PC-3-8 (SEQ ID NO 51)

An alignment of sequences with SEQ ID NO 41, 43, 45, 47, 49 and 51, is given in Figure 9. A consensus amino acid sequence (PC C/E1; SEQ ID NO 54) can be deduced from each of the 2 clones cloned from each of the three PCR fragments as depicted in Figure 5, which overlaps the region between nucleotides 1 and 957 (Kato et al., 1990). The 6 clones are very closely related to each other (mutual homologies of about 99.7%).

An alignment of nucleotide sequence with SEQ ID NO 53 or 151 (PC C/E1 from isolate BE95) with known nucleotide sequences from the Core/E1 region is given in Figure 3. The clone is only distantly related to type 1, type 2, type 3 and type 4 sequences (Table 5).

Example 6: NS3/NS4 region of HCV type 5

Attempts were undertaken to clone the NS3/NS4 region of the isolate BE95, described in example 5. The following sets of primers were selected in the regions of little sequence variability after aligning the sequences of HCV-1 (Choo et al., 1991), HCV-J (Kato et al., 1991), HC-J6 (Okamoto et al., 1991), and HC-J8 (Okamoto et al., 1992) and of the sequences obtained from type 3 sera of the present invention (SEQ ID NO 31, 33, 35, 37 and 39); smaller case lettering is used for nucleotides added for cloning purposes:

set A:

HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 66)

HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set B:

HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 69)

HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71) set C:

HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)

HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set D:

HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)

HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQID NO 71) set E:

HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 69)

HCPr119(-): actagtcgactaRTTIGCIATIAGCCG/TRTTCATCCAYTG-3' (SEQ ID NO 73)

set F:

HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)

HCPr119(-): actagtcgactaRTTIGCIATIAGCCG/TRTTCATCCAYTG-3' (SEQ ID NO 73)

set G:

HCPr131(+): 5'-ggaattctagaCCITCITGGGAYGARAYITGGAARTG-3' (SEQ ID NO 74)

HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70)

set H:

HCPr130(+): 5'-ggaattctagACIGCITAYCARGCIACIGTITGYGC-3' (SEQ ID NO 75)

HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70)

set I:

HCPr134(+): 5'-CATATAGATGCCCACTTCCTATC-3' (SEQ ID NO 76)

HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70)

set J:

HCPr131(+): 5'-ggaattctagaCCITCITGGGAYGARAYITGGAARTG-3' (SEQ ID 74)

HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQID NO 71)

' □ set K:

HCPr130(+): 5'-ggaattctagACIGCITAYCARGCIACIGTITGYGC-3' (SEQ ID NO 75)

*HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQID NO 71)

set L:

HCPr134(+): 5'-CATATAGATGCCCACTTCCTATC-3' (SEQ ID NO 76)

HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQID NO 71)

set M:

HCPr3(+): 5'-GTGTGCCAGGACCATC-3' (SEQ ID NO 77) and

HCPr4(-): 5'-GACATGCATGTCATGATGTA-3' (SEQ ID NO 78)

set N:

HCPr3(+): 5'-GTGTGCCAGGACCATC-3' (SEQ ID NO 77) and

HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO

71)

set O:

HCPr3(+): 5'-GTGTGCCAGGACCATC-3' (SEQ ID NO 77) and

HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70)

No PCR products could be obtained with the sets of primers A, B, C, D, E, F, G,

H, I, J, K, L, M, and N, on random-primed cDNA obtained from type 3 sera. However,

set O yielded what appeared to be a PCR artifact fragment estimated about 1450 base pairs, instead of the expected 628 base pairs. Although it is not expected that PCR artifact fragments contain information of the gene or genome that was targetted in the experiment, efforts were put in cloning of this artifact fragment, which was designated fragment PC-1. The following clones, were obtained from fragment PC-1:

PC-1-37 (SEQ ID NO 59 and SEQ ID NO 55), PC-1-48 (SEQ ID NO 61 and SEQ ID NO 57)

The sequences obtained from the 5' and 3' ends of the clones are given in SEQ ID NOS 55, 57, 59, and 61, and the complete sequences with SEQ ID NO 197 and 199 are shown aligned with the sequences of prototype isolates of other types of HCV in Figure 10 and the alignment of the deduced amino acid sequences is shown in Figure 11 and 7. Surprisingly, the PCR artifact clone contained HCV information. The positions of the sequences within the HCV genome are compatible with a contiguous HCV sequence of 1437 nucleotides, which was the estimated size of the cloned PCR artifact fragment. Primer HCPr66 primed correctly at the expected position in the HCV genome. Therefore, primer HCPr3 must have incidentally misprimed at a position 809 nucleotides upstream of its legitimate position in the HCV genome. This could not be expected since no sequence information was available from a coding region of type 5.

Example 7: The E2 region of HCV type 5

Serum BE95 was chosen for experiments aimed at amplifying a part of the E2 region of HCV type 5.

After aligning the sequences of HCV-1 (2), HCV-J(1), HC-J6 (3), and HC-J8 (4), PCR primers were chosen in those regions of little sequence variation.

Primers HCPr109(+): 5'-TGGGATATGATGATGATGACTGGTC-3' (SEQ ID NO 141) and HCPr14(-): 5'-CCAGGTACAACCGAACCAATTGCC-3' (SEQ ID NO 142) were combined to amplify the aminoterminal region of the E2/NS1 region, and were synthesized on a 392 DNA/RNA synthesizer (Applied Biosystems). With primers HCPr109 and HCPr14, a PCR fragment of 661 bp was generated, containing 169 nucleodtides corresponding to the E1 carboxyterminus and 492 bases from the region encoding the E2 aminoterminus.

An alignment of the type 5 E1/E2 sequences with seq ID NO. 158 with known sequences is presented in Figure 10. The deduced protein sequence was compared with the different

genotypes (Fig. 12, amino acids 328-546). In the E1 region, there were no extra structural important motifs found. The aminoterminal part of E2 was hypervariable when compared with the other genotypes. All 6 N-glycosylation sites and all 7 cysteine residue's were conserved in this E2 region. To preserve alignment, it was necessary to introduce a gap between aa 474 and 475 as for type 3a, but not between aa 480 and 481, as for type 2.

Example 8: The NS5b region of HCV type 4

Type 4 sera GB48, GB116, GB215, and GB358, selected by means of the line probe assay (LiPA, Stuyver et al., 1993), as well as sera GB549 and GB809 that could not be typed by means of this LiPA (only hybridization was observed with the universal probes), were selected from Gabonese patients. All these sera were positive after the first round of PCR reactions for the 5' untranslated region (Stuyver et al., 1993) and were retained for further study.

RNA was isolated from the sera and cDNA synthesized as described in example 1.

Universal primers in the NS5 region were selected after alignment of the published sequences

HCPr206(+): 5'-TGGGGATCCCGTATGATACCCGCTGCTTTGA-3'

(SEQ ID NO. 124) and

HCPr207(-): 5'-GGCGGAATTCCTGGTCATAGCCTCCGTGAA-3'

(SEQ ID NO. 125);

as follows:

and were synthesized on a 392 DNA/RNA synthesizer (Applied Biosystems). Using the Line Probe Assay (LiPA), four high-titer type 4 sera and 2 sera that could not be classified were selected and subsequently analyzed with the primer set HCPr206/207. NS5 PCR fragments obtained using these primers from serum GB48 (GB48-3), serum GB116 (GB116-3), serum GB215 (GB215-3), serum GB358 (GB358-3), serum GB549 (GB549-3), and serum GB809 (GB809-3), were selected for cloning. The following sequences were obtained from the PCR fragments:

From fragment GB48-3: GB48-3-10 (SEQ ID NO. 106)

From fragment GB116-3: GB116-3-5 (SEQ ID NO. 108)

From fragment GB215-3: GB215-3-8 (SEQ ID NO. 110)

From fragment GB358-3: GB358-3-3 (SEQ ID NO. 112)

From fragment GB549-3: GB549-3-6 (SEQ ID NO. 114)

From fragment GB809-3: GB809-3-1 (SEQ ID NO. 116)

An alignment of nucleotide sequences with SEQ ID NO. 106, 108, 110, 112, 114, and 116 with known sequences is given in Figure 1. An alignment of deduced amino acid sequences with SEQ ID NO. 107, 109, 111, 113, 115, and 117 with known sequences is given in Figure 2. The 4 isolates that had been typed as type 4 by means of LiPA are very closely related to each other (mutual homologies of about 95%), but are only distantly related to type 1, type 2, and type 3 sequences (e.g. GB358 shows homologies of 65.6 to 67.7% with other genotypes, Table 4). The sequence obtained from sera GB549 and GB809 also show similar homologies with genotypes 1, 2, and 3 (65.9 to 68.8% for GB549 and 65.0 to 68.5% for GB809, Table 4), but an intermediate homology of 79.7 to 86.8% (often observed between subtypes of the same type) exists between GB549 or GB809 with the group of isolates consisting of GB48, GB116, GB215, and GB358, or between GB549 and GB809. These data indicate the discovery of 3 new subtypes within the HCV genotype 4: in the present invention, these 3 subtypes are designated subtype 4c, represented by isolates GB48, GB116, GB215, and GB358, subtype 4g, represented by isolate GB549, and subtype 4e, represented by isolate GB809. Although the homologies observed between subtypes in the NS5 region seem to indicate a closer relationship between subtypes 4c and 4e, the homologies observed in the E1 region indicate that subtypes 4g and 4e show the closest relation (see example 8).

Example 9: The Core/E1 region of HCV type 4

From each of the 3 new type 4 subtypes, one representative serum was selected for cloning experiments in the Core/E1 region. GB549 (subtype 4g) and GB809 (subtype 4e) were analyzed together with isolate GB358 that was chosen from the subtype 4c group.

Synthetic oligonucleotides:

After aligning the sequences of HCV-1 (2), HCV-J(1), HC-J6 (3), and HC-J8 (4), PCR primers were chosen in those regions of little sequence variation.

Primers HCPr52(+): 5'-atgTTGGGTAAGGTCATCGATACCCT-3', HCPr23(+): 5'-CTCATGGGGTACCCT-3', and HCPr54(-): 5'-CTATTACCAGTTCATCATCATATCCCA-3', were synthesized on a 392 DNA/RNA synthesizer (Applied Biosystems). The sets of primers HCPr23/54 and HCPr52/54 were used, but only with the primer set HCPr52/54, PCR fragments could be obtained. This set of primers amplified the sequence from nucleotide 379 to 957 encoding amino acids 127 to 319: 65 amino acids from the carboxyterminus of core and 128 amino acids of E1. The

amplification products GB358-4, GB549-4, and GB809-4 were cloned as described in example 1. The following clones were obtained from the PCR fragments:

From fragment GB358-4: GB358-4-1 (SEQ ID NO 118)

From fragment GB549-4: GB549-4-3 (SEQ ID NO 120)

From fragment GB809-4: GB809-4-3 (SEQ ID NO 122)

An alignment of the type 4 Core/E1 nucleotide sequences with seq ID NO. 118, 120, and 122 with known sequences is presented in Figure 4. The homologies of the type 4 E1 region (without core) with type 1, type 2, type 3, and type 5 prototype sequences are depicted in Table 4. Homologies of 53 to 66% are observed with representative isolates of non-type 4 genotypes. Observed homologies in the E1 region within type 4, between the different subtypes, ranges from 75.2 to 78.4%. The recently disclosed sequences of the core region of Egyptian type 4 isolates (for example EG-29 in Figure 3) described by Simmonds et al. (1993) do not allow alignment with the Gabonese sequences (as described in the present invention) in the NSB region and may belong to different type 4 subtypes(s) as can be deduced from the core sequences. The deduced amino acid sequences with SEQ ID NO 119, 121, and 123 are aligned with other prototype sequences in Figure 5. Again, type-specific variation mainly resides in the variable V regions, designated in the present invention, and therefore, type-4-specific amino acids or V regions will be instrumental in diagnosis and therapeutics for HCV type 4.

Example 10: The Core/E1 and NS5b regions of new HCV type 2, 3 and 4 subtypes

Samples NE92 (subtype 2d), BE98 (subtype 3c), CAM600 and GB809 (subtype 4e), CAMG22 and CAMG27 (subtype 4f), GB438 (subtype 4h), CAR4/1205 subtype (4i), CAR1/501 (subtype 4j), CAR1/901 (subtype 4?), and GB724 (subtype 4?) were selected from a group of sera that reacted positive but aberrantly in a prototype Line Probe Assay as described earlier (Stuyver et al., 1993). Another type 5a isolate BE100 was also analyzed in the C/E1 region, and yet another type 5a isolate BE96 in the NS5b region. A high-titer of HCV RNA could be detected, enabling cloning of fragments by a single round of PCR. As no sequences from any coding region of these subtypes had been disclosed yet, synthetic oligonucleotides for PCR amplification were chosen in the regions of little sequence variation after aligning the sequences of HCV-1 (Choo et al., 1991), HCV-J(Kato et al., 1990), HC-J6 (Okamoto et al., 1991), HC-J8 (Okamoto et al., 1992), and the other new sequences of the present invention.

The above mentioned sets 1, 2 and 3 (see example 5) of primers were used, but only with set 1, PCR fragments could be obtained from all isolates (except for BE98, GB724, and CAR1/501). This set of primers amplified the sequence from nucleotide 379 to 957 encoding amino acids 127 to 319: 65 amino acids from the carboxyterminus of core and 128 amino acids of E1. With set 3, the core/E1 region from isolate NE92 and BE98 could be amplified, and with set 2, the core region of GB358, GB724, GB809, and CAM600 could be amplified. The amplification products were cloned as described in example 1. The following clones were obtained from the PCR fragments:

From isolate GB724, the clone with SEQ ID NO 193 from the core region.

From isolate NE92, the clone with SEQ ID NO 143

From isolate BE98, the clone from the core/E1 region of which part of the sequence has been analyzed and is given in SEQ ID NO 147,

From isolate CAM600, the clone with SEQ ID NO 167 from the E1 region, or SEQ ID NO 165 from the Core/E1 region as shown in Figure 3,

From isolate CAMG22, the clone with SEQ ID NO 171 from the E1 region as shown in Figure 4,

from isolate GB358, the clone with SEQ ID NO 191 in the core region,.

from isolate CAMG27, the clone with SEQ ID NO 173 from the core/E1 region,

from isolate GB438, the clone with SEQ ID NO 177 from the core/ E1 region,

from isolate CAR4/1205, the clone with SEQ ID NO 179 from the core/E1 region,

from isolate CAR1/901, the clone with SEQ ID NO 181 from the core/ E1 region,

from isolate GB809, the clone GB809-4 with SEQ ID NO 189 from the core/E1 region,

clone GB809-2 with SEQ ID NO 169 from the core/E1 region and the clone with SEQ ID NO 163 from the core region,

and from isolate BE100, the clone with SEQ ID NO 155 from the Core/E1 region as shown in Figure 4.

An alignment of these Core/E1 sequences with known Core/E1 sequences is presented in Figure 4. The deduced amino acid sequences with SEQ ID NO 144, 148, 164, 168, 170, 172, 174, 178, 180, 182, 190, 192, 194, 156, 166 are aligned with other prototype sequences in Figure 5. Again, type-specific variation mainly resides in the variable V regions, designated in the present invention, and therefore, type 2d, 3c and type 4-specific amino acids or V regions will be instrumental in diagnosis and therapeutics for HCV type (subtype) 2d, 3c or the different type 4 subtypes.

The NS5b region of isolates NE92, BE98, CAM600, CAMG22, GB438, CAR4/1205, CAR1/501, and BE96 was amplified with primers HCPr206 and HCPr207 (Table 7). The corresponding clones were cloned and sequenced as in example 1 and the corresponding sequences (of which BE98 was partly sequenced) received the following identification numbers:

NE92: SEQ ID NO 145

BE98: SEQ ID NO 149

CAM600: SEQ ID NO 201 CAMG22: SEQ ID NO 203

GB438: SEQ ID NO 207

CAR4/1205: SEQ ID NO 209

CAR1/501: SEQ ID NO 211

BE95: SEQ ID NO 159 BE96: SEQ ID NO 161

An alignment of these NS5b sequences with known NS5b sequences is presented in Figure 1. The deduced amino acid sequences with SEQ ID NO 146, 150, 202, 204, 206, 208, 210, 212, 160, 162 are aligned with other prototype sequences in Figure 2. Again, subtype-specific variations can be observed, and therefore, type 2d, 3c and type 4-specific amino acids or V regions will be instrumental in diagnosis and therapeutics for HCV type (subtype) 2d, 3c or the different type 4 subtypes.

Example 11: Genotype-specific reactivity of anti-E1 antibodies (Serotyping)

E1 proteins were expressed from vaccinia virus constructs containing a core/E1 region extending from nucleotide positions 355 to 978 (Core/E1 clones described in previous examples including the primers HCPr52 and HCPr54), and expressed proteins from L119 (after the initiator methionine) to W326 of the HCV polyprotein. The expressed protein was modified upon expression in the appropriate host cells (e.g. HeLa, RK13, HuTK-, HepG2) by cleavage between amino acids 191 and 192 of the HCV polyprotein and by the addition of high-mannose type carbohydrate motifs. Therefore, a 30 to 32 kDa glycoprotein could be observed on western blot by means of detection with serum from patients with hepatitis C.

As a reference, a genotype 1b clone obtained form the isolate HCV-B was also expressed in an identical way as described above, and was expressed from recombinant vaccinia virus vvHCV-11A.

A panel of 104 genotyped sera was first tested for reactivity with a cell lysate containing type 1b protein expressed from the recombinant vaccinia virus vvHCV-11A, and compared with cell lysate of RK13 cells infected with a wild type vaccinia virus ('E1/WT'). The lysates were coated as a 1/20 dilution on a normal ELISA microtiter plate (Nunc maxisorb) and left to react with a 1/20 diluation of the respective sera. The panel consisted of 14 type 1a, 38 type 1b, 21 type 2, 21 type 3a, and 9 type 4 sera. Human antibodies were subsequently detected by a goat anti-human IgG conjugated with peroxidase and the enzyme activity was detected. The optical density values of the E1 and wild type lysates were divided and a factor 2 was taken as the cut-off. The results are given in the table A. Eleven out of 14 type 1a sera (79%), 25 out of 38 type 1b sera (66%), 6 out of 21 (29%), 5 out of 21 (24%), and none of the 9 type 4 or the type 5 serum reacted (0%). These experiments clearly show the high prevalence of anti-E1 antibodies reactive with the type 1 E1 protein in patients infected with type 1 (36/52 (69%)) (either type 1a or type 1b), but the low prevalence or absence in non-type 1 sera (11/52 (21%)).

TABLE A

serum	E1/WT
type 1a	
3748	3.15
3807	3.51
5282	1.99
9321	3.12
9324	2.76
9325	6.12
9326	10.56
9356	1.79
9388	3.5
8366	10.72
8380	2.27
10925	4.02
10936	5.04
10938	1.36

	·
type 1b	
5205	2.25
5222	1.33
5246	1.24
5250	13.58
5493	0.87
5573	1.75
8243	1.77
8244	2.05
8316	1.21
8358	5.04
9337	14.47
9410	5
9413	5.51
10905	1.26
10919	5.00
10928	8.72
10929	8.26
10931	2.3
10932	4.41
44	2.37
45	3.14
46	4.37
47	5.68
48	2.97
49	1.18
50 51	9.85 4.51
52	1.11
53	5.20
54	0.08
55	1.48
56	1.06
57	3.85
58	7.6
59	3.28
60	3.23
61	7.82
62	1.92

type 2		
type 2 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	0.91 1.16 2.51 0.96 1.20 0.96 2.58 8.05 0.92 0.82 5.75 0.79 0.86 0.85 0.76 0.92 1.08 2.33 2.83	
42 43	1.21	
type 3	0.51	-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	6.88 1.47 3.06 6.52 10.24 2.72 1.11 1.54 1.60 1.21 1.07 1.00 0.85 0.96 0.51 1.00 1.09 0.99 1.04 1.04 0.96	

type 4	
22	0.87
GB48	0.49 ' '
GB113	0.68
GB116	0.73
GB215	0.52
GB358	0.56
GB359	0.71
GB438	1.08
GB516	1.04
type 5	
BE95	0.86

Core/E1 clones of isolates BR36 (type 3a) and BE95 (type 5a) were subsequently recombined into the viruses vvHCV-62 and vvHCV-63, respectively. A genotyped panel of sera was subsequently tested onto cell lysates obtained from RK13 cells infected with the recombinant viruses vvHCV-62 and vvHCV-63. Tests were carried out as described above and the results are given in the table given below (TABLE B). From these results, it can clearly be seen that, although some cross-reactivity occurs (especially between type 1 and 3), the obtained values of a given serum are usually higher on its homologous E1 protein than on an E1 protein of another genotype. For type 5 sera, none of the 5 sera were reactive on type 1 or 3 E1 proteins, while 3 out of 5 were shown to contain anti-E1 antibodies when tested on their homologous type 5 protein. Therefore, in this simple test system, a considerable number of sera can already be serotyped. Combined with the reactivity to type-specific NS4 epitopes or epitopes derived from other type-specific parts of the HCV polyprotein, a serotyping assay may be developed for discriminating the major types of HCV. To overcome the problem of cross-reactivity, the position of cross-reactive epitopes may be determined by someone skilled in the art (e.g. by means of competition of the reactivity with synthetic peptides), and the epitopes evoking cross-reactivity may be left out of the composition to be included in the serotyping assay or may be included in sample diluent to outcompete cross-reactive antibodies.

TABLE B

TABLE B						
serum	E11b/WT	E13a/WT	E15a/WT			
type 1b			1 1 2 12			
8316	0.89	0.59	0.80			
8358	2.22	2.65	1.96			
9337	1.59	0.96	0.93			
9410	16.32	9.60	3.62			
9413	9.89	2.91	2.85			
10905	1.04	0.96	1.05			
10919	3.17	2.56	2.96			
10928	4.39	2.28	2.07			
10929	2.95	2.07	2.08			
10931	3.11	1.49	2.11			
5	0.86	0.86	0.96			
6	3.48	1.32	1.32			
· 7	6.76	4.00	3.77			
8	10.88	3.44	4.04			
9	1.76	1.88	1.58			
1 0 ,	9.88	7.48	7.20			
11	8.48	8.99	8.45			
12	0.76	0.72	0.76			
13	5.04	5.67	5.37			
14.	10.48	10.54	11.22			
15	5.18	1.62	1.65			
type 3						
8332	3.39	4.22	0.66			
10907	3.24	4.39	0.96			
10908	0.99	0.94	0.98			
10934	0.86	0.90	0.90			
10927	2.58	2.71	2.44			
8210	0.82	0.80	0.86			
8344	1.09	6.66	1.17			
8351	1.21	1.29	1.22			
30	0.85	4.11	0.98			
32	0.85	2.16	1.04			
ype 5	0.50					
DE110	0.78	0.95	1.54			
BE110	0.79	1.01	4.95			
BE95	0.47	0.52	0.65			
BE111	0.71	0.75	8.33			
BE112 BE113	1.01	1.27	2.37			
DE113	1.11	1.35	1.60			

Table 5. Homologies of new HCV sequences with other known HCV types

Region	Isolate	la	1b	2a	2b		3a	3	b
(nucleotides)	(type)	HCV-1	HCV-J	н С-J6 ,	HC-J8	Tl	T 7	Т9	T10
Core (1-573)	PC (5)	83.8 (91.6)	84.8 (92.1)	82.6 (90.1)	82.4 (89.0)	٠		<u> </u>	:
E1 (574-957)	HD10 (3)	61.5 (68.0)	64.6 (68.8)	57.8 (55.5)	56.3 (59.4)			` ,	
	BR36 (3)	62.0 (66.4)	62.5 (67.2)	56.5 (53.9)	55.2 (58.6)		, t		
	BR33 (3)	60.7 (67.2)	63.3 (68.0)	56.5 (54.7)	56.0 (58.6)			' '	
	PC (5)	61.4 (64,0)	62.4 (64.8)	54.1 (49.6)	53.3 (47.2)	٠ ١			
	GB358 (4a)	62.5 (69.1)	62.8 (65.9)	59.4 (54.0)	54.4 (54.0)			1	
	GB549 (4b)		62.8 (69.8)	59.1 (56.4)	56.5 (54.0)				
	GB809 (4c)	63.3 (69.1)	60.7 (64.3)	56,7 (53.2)	53.0 (51.6)			<u> </u>	
NS3 (3856-4209)	PC (5)	74.7 ' (89)	76.1 (86.4)	76.1 (89.8)	78.0 (89.0)		٠.		
NS4	BR36 (3)	67.8 (78.5)	69.8 (75.1)	62.0 (67.5)	61.7 (66.0)			•	
(4892-5292)	HD 10 (3)	69.8 (74.6)		57:8 (59.9)	59.1 (59.9)				
NS4 (4936-5292)	PC (5)	61.3 (62.2)	63.0 (65.5)	52.9 (46.2)	54.3 (43.7)				
NS5b	BR34 (3)	65.7	66.7	63.9	64.3	94.8	93.9	75.6	77.0
(8023-8235)	BR36 (3)	64.3	67.6	64.8	66.7	94.8	93.4	75.1	76.5
	BR33 (3)	65.7	67.1	64.3	64.8	94.8	93.9	76.0	77.5
,	GB358 (4a)	67.7 (76.1)	65.6 (77.0)	66.5 (70.8)	65.6 (71.7)	l ·			
	GB549 (4b)	68.8 (76.1)-		65.9 (71.7)	65.9 (74.4)				
	GB809 (4c)	68.5 (73.5)	65.0 (73.5)	67.7 (69.9)	67.7 (73.5)				

Shown are the nucleotide homologies (the amino-acid homology is given between brackets) for the region indicated in the left column.

Table 6. NS4 sequences of the different genotypes

prototype	ТУРЕ	SYNTHETIC PEPTIDE NS4-1 (NS4a)	SYNTHETIC PEPTIDE NS4-5 (NS4b)	SYNTHETIC PEPTIDE NS4-7 (NS4b)
position->	, 1	1 1 6 7 9 0 0 0	1 1 7 7 7 2 3 3 0 0 0	1 1 7 7 7 3 4 4 9
HCV-1	1a	LSG KPAIIPDREV LY <u>RE</u> FDE	SQHLPYIEQ GMMLAEQFKQ K	LAEQFKQ KALGLLQTAS RQA
HCV-J	,1b	LSG RPAVIPDREV LYQEFDE	as <u>h</u> lpyieq g <u>mol</u> aeqfk <u>o</u> k	LAEQFKQ KALGLLQTAT KQA
HC-J6	2a '	<u>VNO</u> R <u>AV</u> V <u>A</u> PDKEV LY <u>E</u> AFDE	as <u>raal</u> iee go <u>r</u> iae <u>ml</u> k <u>s</u> k	IAB <u>ML</u> K <u>S</u> K <u>IQ</u> GLLQQAS KQA
НС-Ј8	2b	L <u>ND</u> R <u>VV</u> V <u>A</u> PDKEI LY <u>E</u> AFDE	as <u>k</u> a <u>aliee gorm</u> ae <u>miks</u> k	MAEMLKS KIQGLLQQAT RQA
BR36	3а	L <u>G</u> G KPAI <u>V</u> PDKEV LYQ <u>Q Y</u> DE	sq <u>a</u> apyieq <u>aqy</u> ia <u>h</u> qfk <i>e</i> k	IAHQFKE KVLGLLQRAT QQQ
PC	5	LSG KPAJIPDRE <u>A</u> LYQ <i>Q</i> FDE V	A <u>AS</u> LPY <u>MD</u> E <u>TRA</u> IA <u>G</u> QFK <i>E</i> K	IAGOFKE KVLG <u>FIS</u> T <u>TG</u> <u>QK</u> A

^{*,} residues conserved in every genotype. Underlined amino acids are type-specific, amino acids in italics are unique to type 3 and 5 sequences.

Table 7

SEQ ID NO	Primer NO (polarity)	Sequence from 5' to 3'
63	HCPr161(+)	5'-ACCGGAGGCCAGGAGAGTGATCTCCTCC-3'
64	HCPr162(-)	5'-GGGCTGCTCTATCCTCATCGACGCCATC-3'
65	HCPr163(+)	5'-GCCAGAGGCTCGGAAGGCGATCAGCGCT-3'
66	HCPr164(-)	5'-GAGCTGCTCTGTCCTCGACGCCGCA-3'
67	HCPr23(+)	5'-CTCATGGGGTACATTCCGCT-3'
68	HCPr54(-)	5'-CTATTACCAGTTCATCATCATATCCCA-3'
69	HCPr116(+)	5'-ttttAAATACATCATGRCITGYATG-3'
70	HCPr66(-)	5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3'
71	HCPr118(-)	5'actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3'
72	HCPr117(+)	5'-ttttAAATACATCGCIRCITGCATGCA-3'
73:	HCPr119(-)	5'-actagtcgactaRTTIGCIATIAGCCKRTTCATCCAYTG-3'
74 '	HCPr131(+)	5'-ggaattctagaCCITCITGGGAYGARAYITGGAARTG-3'
75	HCPr130(+)	5'-ggaattctagACIGCITAYCARGCIACIGTITGYGC-3'
76	HCPr134(+)	5'-CATATAGATGCCCACTTCCTATC-3'
77	HCPr3(+)	5'-GTGTGCCAGGACCATC-3'
78	HCPr4(-)	5'-GACATGCATGTCATGATGTA-3'
79	HCPr152(+)	5'-TACGCCTCTTCTATATCGGTTGGGGCCTG-3'
80	HCPr52(+)	5'-atgTTGGGTAAGGTCATCGATACCCT-3'
81 ,	HCPr41(+)	5'-CCCGGGAGGTCTCGTAGACCGTGCA-3'
82	HCPr40(-)	5'-ctattaAAGATAGAGAAAGAGCAACCGGG-3'
124	HCPR206	5'-tggggatcccgtatgatacccgctgctttga-3'
125	HCPR207	5'-ggcggaattcctggtcatagcctccgtgaa-3'
141	HCPR109	5'-tgggatatgatgatgaactggtc-3'
142	HCPR14	5'-ccaggtacaaccgaaccaattgcc-3'

Table 8: NS4 SEROTYPING

Tyl	Type 1 NS4		Type	Type 2 NS4	' '	Type	Type 3 NS4	
-	2	7	1	S,	7	-	S	7
m — — m m m m m	. + + - m m m m m m m m m m m m m m m m m	m 7 m m m m m	1110111	- 1 + 1 1 1 1 1 1 1 1 1 1	m 07 m m 07 07 07	÷ - + + + + + + + + + + + + + + + + + +	· · · · · · · · · · · · · · · · · · ·	16 - 6 2 2 7 - 6
m m	3.3	m m	· · ·	+ 	ж —			1 m m

	Type	Type 1 NS4		Type	Type 2 NS4		Type	Type 3 NS4	
serum	1	5	7	1	5	7	1	-	7
type 1b								: 	,
111	;	+		ı	•	,	. 1	•	•
112	•	5.	3	•	•	2	1	ı	
113	7	3	3	1	•	-	• .	•	ر ا
114	2	۳.	<u>ب</u>	_	+	7	+	-	'n
115	3	3	٣.	ı	+	ر. ا	1 1	, 1	ю
116	3	3	٣.	•	-/+	,			-
1117	3		•	3.	+/-	-	<u>'</u>	,	٠ ١
118	-	7	m	1	-/+	7	•	+	m
119	-/+	7	7	' +	'	7	+	-,	. 7
120	•	33	٣	ر ن د	'	;	•	,	,
121	3	m	<u>ش</u>	- /+	2	7	7	5	<u>ب</u>
122	3	س		•	_	7	7	-	_
123	m	m	7	•		2	•	, <u>_</u>	-
124	3	т	٣		' +	7		•	2-

·	- T		
•	7	w-++w-+	7 7 7
3 NS4	S		
Type 3	1		
	7	2 + + 2 - 3 - 1 - 3 - 2 - 4 + 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	
e 2 NS4			~ ~ ' + - 3 ~ ' + - 3 ~ ~ .
Type 2	_		~ ~ ~ ~ ~ ~ ` ~ ' ~ ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	7	m + m m m + r m m + r m	' ' ' ' ' ' + ' ' ' ' ' '
1 NS4	2	m + m m m m - 1 - 1 m m m h m	
Type 1	1	m-mmbm-m	
	serum	125 126 127 128 129 130 131 132 134 135 136 136	type 2a 139 140 141 142 144 45 46 47
			typ 139 140 141 142 143 144 145 146 147

Type 1 NS4 Type Type 1 NS4 Type 2b - +/- +/- 3 +/- +/- +/- +/- +/- +/- +/- +///-											
1 5 7 1 - +- +- +- 3 +- +- +- +- +- 3 		Type	NS4		Type	2 NS4		Type	Type 3 NS4		
+ + 3 + + + + 3 + + + + + + + 11 33 2 3 3	erum 1		. 5	7	1	. 5.	7	1	\$	7	
++ ++ ++ ++ 3 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	2b						l li		, ,		
+- +- +- +- +- +- +- +- +- +- +- +- +- +			+/-	+/-	3	3		2	-/+	-/+	<u>'</u>
++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	3								1.		
+			- / +	+/-	+	-/+	-/+	_	8	ا س ا	
+	-2.					· •		7 "	B :	7	
+/- 1 3 2 3	٠, ٠		• , •		, ,	, ,			. —		
4			-	ж	ı	-/+	7	7	_	۳.	
4			7	ຕຸ່	,	7	7	;	_		
4/-	•		•	1	•		•	• `	;	. '	
7 1 1 1				•	- /+	- -	, (-/+	7 (7 0	,
1 1 1			Ι,	ı	1	- -	7 7	ا بد	7 "	7 ~	
-				1 1	1 1	<u>'</u>		, ,	5 2	. m	
				•	1	1	1	/+	3	2	
	4 9						, '				
			•	•	•		•	•	, •		
163 2 +	. 2		, 1	ı	. 1	· /	-/+	-/+	,	• ,	

REFERENCES

Barany F (1991). Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci USA 88: 189-193.

Bej A, Mahbubani M, Miller R, Di Cesare J, Haff L, Atlas R (1990) Mutiplex PCR amplification and immobilized capture probes for detection of bacterial pathogens and indicators in water. Mol Cell Probes 4:353-365.

Bukh J, Purcell R, Miller R (1992). Sequence analysis of the 5' noncoding region of hepatitis C virus. Proc Natl Acad Sci USA 89:4942-4946.

Bukh J, Purcell R, Miller R (1993). At least 12 genotypes ... PNAS 90,8234-8238.

Cha T, Beal E, Irvine B, Kolberg J, Chien D, Kuo G, Urdea M (1992) At least five related, but distinct, hepatitis C viral genotypes exist. Proc Natl Acad Sci USA 89:7144-7148.

Chan S-W, Simmonds P, McOmish F, Yap P, Mitchell R, Dow B, Follett E (1991) Serological responses to infection with three different types of hepatitis C virus. Lancet 338:1991.

Chan S-W, McOmish F, Holmes E, Dow B, Peutherer J, Follett E, Yap P, Simmonds P (1992) Analysis of a new hepatitis C virus type and its phylogenetic relationship to existing variants. J Gen Virol 73:1131-1141.

Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156-159.

Choo Q, Richman K, Han J, Berger K, Lee C, Dong C, Gallegos C, Coit D, Medina-Selby A, Barr P, Weiner A, Bradley D, Kuo G, Houghton M (1991) Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci USA 88:2451-2455.

Compton J (1991). Nucleic acid sequence-based amplification. Nature, 350: 91-92.

Duchosal A, Eming S, Fisher P (1992) Immunization of hu-PBL-SCID mice and the resue of human monoclonal Fab fragments through combinatorial libraries. Nature 355:258-262.

77

Duck P (1990). Probe amplifier system based on chimeric cycling oligonucleotides. Biotechniques 9, 142-147.

Guatelli J, Whitfield K, Kwoh D, Barringer K, Richman D, Gengeras T (1990) Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA 87: 1874-1878.

Hijikata M, Kato N, Ootsuyama Y, Nakagawa M, Shimotohmo K (1991) Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis. Proc Natl Acad Sci USA 88, 5547-5551.

Jacobs K, Rudersdorf R, Neill S, Dougherty J, Brown E, Fritsch E (1988) The thermal stability of oligonucleotide duplexes is sequence independent in tetraalkylammonium salt solutions: application to identifying recombinant DNA clones. Nucl Acids Res 16:4637-4650.

Kato N, Hijikata M, Ootsuyama Y, Nakagawa M, Ohkoshi S, Sugimura T, Shimotohno K (1990) Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci USA 87:9524-9528.

Kwoh D, Davis G, Whitfield K, Chappelle H, Dimichele L, Gingeras T (1989). Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci USA, 86: 1173-1177.

Kwok S, Kellogg D, McKinney N, Spasic D, Goda L, Levenson C, Sinisky J, (1990). Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency views type 1 model studies. Nucl. Acids Res., 18: 999.

Landgren U, Kaiser R, Sanders J, Hood L (1988). A ligase-mediated gene detection technique. Science 241:1077-1080.

Lizardi P, Guerra C, Lomeli H, Tussie-Luna I, Kramer F (1988) Exponential amplification of recombinant RNA hybridization probes. Bio/Technology 6:1197-1202.

Lomeli H, Tyagi S, Printchard C, Lisardi P, Kramer F (1989) Quantitative assays based on the use of replicatable hybridization probes. Clin Chem 35: 1826-1831.

Machida A, Ohnuma H, Tsuda F, Munekata E, Tanaka T, Akahane Y, Okamoto H, Mishiro S (1992) Hepatology 16, 886-891.

Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Mori S, Kato N, Yagyu A, Tanaka T, Ikeda Y, Petchclai B, Chiewsilp P, Kurimura T, Shimotohno K (1992) A new type of hepatitis C virus in patients in Thailand Biochem Biophys Res Comm 183:334-342.

Okamoto H, Okada S, Sugiyama Y, Kurai K, Iizuka H, Machida A, Miyakawa Y, Mayumi M (1991) Nucleotide sequence of the genomic RNA of hepatitis C virus isolated from a human carrier: comparison with reported isolates for conserved and divergent regions. J Gen Virol 72:2697-2704.

Okamoto H, Kurai K, Okada S, Yamamoto K, Lizuka H, Tanaka T, Fukuda S, Tsuda F, Mishiro S (1992) Full-length sequences of a hepatitis C virus genome having poor homology to reported isolates: comparative study of four distinct genotypes. Virology 188:331-341.

Persson M, Caothien R, Burton D (1991). Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc Natl Acad Sci USA 89:2432-2436. Saiki R, Gelfand D, Stoffel S, Scharf S, Higuchi R, Horn G, Mullis K, Erlich H (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487-491.

Saiki R, Walsh P, Levenson C, Erlich H (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes (1989) Proc Natl Acad Sci USA

86:6230-6234,

Sano T, Smith C, Cantor C (1992) Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258:120-122.

Simmonds P, McOmsh F, Yap P, Chan S, Lin C, Dusheiko G, Saeed A, Holmes E (1993), Sequence variability in the 5' non-coding region of hepatitis C virus: identification of a new virus type and restrictions on sequence diversity. J Gen Virology, 74:661-668.

Stuyver L, Rossau R, Wyseur A, Duhamel M, Vanderborght B, Van Heuverswyn H, Maertens G (1993) Typing of hepatitis C virus (HCV) isolates and characterization of new (sub)types using a Line Probe Assay. J Gen Virology, 74: 1093-1102.

Walker G, Little M, Nadeau J, Shank D (1992). Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci USA 89:392-396.

Wu D, Wallace B (1989). The ligation amplification reaction (LAR) - amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4:560-569.

CLAIMS

- 1. A composition comprising or consisting of at least one polynucleic acid containing 8 or more contiguous nucleotides selected from at least one of the following HCV sequences:
- an HCV type 3 genomic sequence, more particularly in any of the following regions:
 - the region spanning positions 417 to 957 of the Core/E1 region of HCV subtype 3a,
 - the region spanning positions 4664 to 4730 of the NS3 region of HCV type 3,
 - the region spanning positions 4892 to 5292 of the NS3/4 region of HCV type 3,
 - the region spanning positions 8023 to 8235 of the NS5 region of HCV subtype 3a.
 - an HCV subtype 3c genomic sequence,
- an HCV subtype 2d genomic sequence,
- an HCV type 4 genomic sequence,
- the coding region of HCV subtype 5a,

with said nucleotide numbering being with respect to the numbering of HCV nucleic acids as shown in Table 1, and with said polynucleic acids containing at least one nucleotide difference with known HCV polynucleic acid sequences in the above-indicated regions, or the complement thereof.

- 2. A composition according to claim 1, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV genomic sequences:
- an HCV genomic sequence as having a homology of at least 67%, preferably more than 69%, most preferably 71% or more to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region spanning positions 417 to 957 of the Core/E1 region;
- an HCV genomic sequence as having a homology of at least 65%, preferably more than 67%, most preferably 69% or more to any of the sequences as represented in SEQ ID NO 19, 21, 23, 25 or 27 in the region spanning positions 574 to 957 of the E1 region;
- an HCV genomic sequence, having a homology of at least 79%, more preferably at least 81%, most preferably more than 83% or more to any of the sequences as represented in

- SEQ ID NO 147 in the region spanning positions 1 to 378 of the Core region;
- an HCV genomic sequence having a homology of at least 74%, more preferably at least 76%, most preferably more than 78% or more to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region spanning positions 417 to 957 in the Core/E1 region;
- an HCV genomic sequence having a homology of at least 74%, preferably more than 76%, most preferably 78% or more to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region spanning positions 574 to 957 in the E1 region;
- an HCV genomic sequence having a homology of more than 73.5%, preferably more than 74%, most preferably 75% homology to any of the sequence as represented in SEQ ID NO 29 in the region spanning positions 4664 to 4730 of the NS3 region;
- an HCV genomic sequence having a homology of more than 70%, preferably more than 72%, most preferably more than 74% homology to any of the sequences as represented in SEQ ID NO 29, 31, 33, 35, 37 or 39 in the region spanning positions 4892 to 5292 in the NS3/NS4 region;
- an HCV genomic sequence having a homology of more than 95%, preferably 95,5%, most preferably 96% homology to any of the sequences as represented in SEQ ID NO 5, 7, 1, 3, 9 or 11 in the region spanning positions 8023 to 8235 of the NS5 region;
- an HCV genomic sequence of the BR36 subgroup of HCV type 3a having a homology of more than 96%, preferably 96.5%, most preferably 97% homology to any of the sequences as represented in SEQ ID NO 5, 7, 1, 3, 9 or 11 in the region spanning positions 8023 to 8192 of the NS5B region;
- an HCV genomic sequence having a homology of more than 79%, more preferably more than 81%, and most preferably more than 83% to the sequence as represented in SEQ ID NO 149 in the region spanning positions 7932 to 8271 in the NS5B region.
- 3. A composition according to claim 1, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV genomic sequences:
- an HCV genomic sequence having a homology of more than 85%, preferably more than 86%, most preferably more than 87% homology to any of the sequences as represented in SEQ ID NO 41, 43, 45, 47, 49, 51, 53 or 151 in the region spanning positions 1 to 573 of the Core region;

- an HCV genomic sequence having a homology of more than 61%, preferably more than 63%, most preferably more than 65% homology to any of the sequences as represented in SEQ ID NO 41, 43, 45, 47, 49, 51, 53, 153 or 155 in the region spanning positions 574 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 76.5%, preferably of more than 77%, most preferably of more than 78% homology with any of the sequences as represented in SEQ ID NO 55, 57, 197 or 199 in the region spanning positions 3856 to 4209 of the NS3 region;
- an HCV genomic sequence having a homology of more than 68%, preferably of more than 70%, most preferably of more than 72% homology with the sequence as represented in SEQ ID NO 157 in the region spanning positions 980 to 1179 of the E1/E2 region;
- an HOV genomic sequence having a homology of more than 57%, preferably more than 59%, most preferably more than 61% homology to any of the sequences as represented in SEQ ID NO 59 or 61 in the region spanning positions 4936 to 5296 of the NS4 region;
- an HCV genomic sequence having a homology of more than 93%, preferably more than 93.5%, most preferably more than 94% homology to any of the sequences as represented in SEQ ID NO 159 or 161 in the region spanning positions 7932 to 8271 of the NS5B region.
- 4. A composition according to claim 1, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV genomic sequences:
- an HCV genomic sequence having a homology of more than 66%, preferably more than 68%, most preferably more than 70% homology in the E1 region spanning positions 574 to 957 to any of the sequences as represented in SEQ ID NO 118, 120 or 122 in the region spanning positions 1 to 957 of the Core/E1 region;
- an HCV genomic sequence having a homology of more than 71%, preferably more than 72%, most preferably more than 74% homology to any of the sequences as represented in SEQ ID NO 118, 120 or 122 in the region spanning positions 379 to 957;
- an HCV genomic sequence having a homology of more than 85%, preferably more than 86%, most preferably more than 86.5% homology to any of the sequences as represented in SEQ ID NO 183, 185 or 187 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 81%, preferably more than

- 83%, most preferably more than 85% homology to the sequence as represented in SEQ ID NO 189 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 85%, preferably more than 87%, most preferably more than 89% homology to any of the sequences as represented in SEQ ID NO 167 or 169 in the region spanning positions 379 to 957 of the E1 region;
 an HCV genomic sequence having a homology of more than 79%, preferably more than
 - 81%, most preferably more than 83% homology to any of the sequences as represented in SEQ ID NO 171 or 173 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 175 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 83%, preferably more than 85%, most preferably more than 87% homology to the sequence as represented in SEQ ID NO 177 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 76%, preferably more than 78%, most preferably more than 80% homology to the sequence as represented in SEQ ID NO 179 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 181 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 73%, preferably more than 75%, most preferably more than 77% homology to any of the sequences as represented in SEQ ID NO 106, 108, 110, 112, 114, or 116 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 88%, preferably more than 89%, most preferably more than 90% homology to any of the sequences as represented in SEQ ID NO 106, 108, 110, or 112 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 88%, preferably more than 89%, most preferably more than 90% homology to any of the sequences as represented in SEQ ID NO 116 or 201 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 87%, preferably more than

- 89%, most preferably more than 90% homology to the sequence as represented in SEQ ID NO 203 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 85%, preferably more than 87%, most preferably more than 89% homology to the sequence as represented in SEQ ID NO 114 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 86%, preferably more than 87%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 207 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 209 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 81%, preferably more than 83%, most preferably more than 85% homology to the sequence as represented in SEQ ID NO 211 in the region spanning positions 7932 to 8271 of the NS5 region.
- 5. A composition according to claim 1, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV genomic sequences:
- an HCV genomic sequence having a homology of more than 78%, preferably more than 80%, most preferably more than 82% homology to the sequence as represented in SEQ ID NO 143 in the region spanning positions 379 to 957 of the Core/E1 region;
- an HCV genomic sequence having a homology of more than 74%, preferably more than 76%, most preferably more than 78% homology to the sequence as represented in SEQ ID NO 143 in the region spanning positions 574 to 957;
- an HCV genomic sequence having a homology of more than 87%, preferably more than 89%, most preferably more than 91% homology to the sequence as represented in SEQ ID NO 145 in the region spanning positions 7932 to 8271 of the NS5B region.
- 6. A composition according to any of claims 1 to 5, wherein said polynucleic acid is liable to act as a primer for amplifying the nucleic acid of a certain isolate belonging to the genotype from which the primer is derived.
- 7. A composition according to any of claims 1 to 5, wherein said polynucleic acid is able to act as a hybridization probe for specific detection and/or classification into types of a

nucleic acid containing said nucleotide sequence, with said oligonucleotide being possibly labelled or attached to a solid substrate.

- 8. Use of a composition according to any of claims 1 to 7 for *in vitro* detecting the presence of one or more HCV genotypes, more particularly for detecting the presence of a nucleic acid of any of the HCV genotypes having a nucleotide sequence as defined in any of claims 1 to 5, present in a biological sample liable to contain them, comprising at least the following steps:
 - (i) possibly extracting sample nucleic acid,
 - (ii) possibly amplifying the nucleic acid with at least one of the primers according to claim 6 or any other HCV type 2, HCV type 3, HCV type 4, HCV type 5 or universal HCV primer,
 - (iii) hybridizing the nucleic acids of the biological sample, possibly under denatured conditions, and with said nucleic acids being possibly labelled during or after amplification, at appropriate conditions with one or more probes according to claim 7, with said probes being preferably attached to a solid substrate,
 - (iv) washing at appropriate conditions,
 - (v) detecting the hybrids formed,
 - (vi) inferring the presence of one or more HCV genotypes present from the observed hybridization pattern.
- 9. A composition consisting of or comprising at least one peptide or polypeptide containing in its sequence a contiguous sequence of at least 5 amino acids of an HCV polyprotein encoded by any of the polynucleic acids according to any of claims 1 to 5.
- 10. A composition according to claim 9, wherein said contiguous sequence contains in its sequence at least one of the following amino acid residues:
- L7, Q43, M44, S60, R67, Q70, T71, A79, A87, N106, K115, A127, A190, S130, V134, G142, I144, E152, A157, V158, P165, S177 or Y177, I178, V180 or E180 or F182, R184, I186, H187, T189, A190, S191 or G191, Q192 or L192 or I192 or V192 or E192, N193 or H193 or P193, W194 or Y194, H195, A197 or I197 or V197 or T197, V202, I203 or L203, Q208, A210, V212, F214, T216, R217 or D217 or E217 or V217, H218 or N218, H219 or V219 or L219, L227 or I227, M231 or E231 or Q231, T232 or D232 or A232 or K232, Q235

1990 as shown in Table 1.

or I235, A237 or T237, I242, I246, S247, S248, V249, S250 or Y250, I251 or V251 or M251 or F251, D252, T254 or V254, L255 or V255, E256 or A256, M258 or F258 or V258, A260 or Q260 or S260, A261, T264 or Y264, M265, I266 or A266, A267, G268 or T268, F271 or M271 or V271, I277, M280 or H280, I284 or A284 or L84, V274, V291, N292 or S292, R293 or I293 or Y293, Q294 or R294, L297 or I297 or Q297, A299 or K299 or Q299, N303 or T303, T308 or L308, T310 or F310 or A310 or D310 or V310, L313, G317 or Q317, L333, S351, A358, A359, A363, S364, A366, T369, L373, F376, Q386, I387, S392, I399, F402, I403, R405, D454, A461, A463, T464, K484, Q500, E501, S521, K522, H524, N528, S531, S532, V534, F536, F537, M539, I546, C1282, A1283, H1310, V1312, Q1321, P1368, V1372, V1373, K1405, Q1406, S1409, A1424, A1429, C1435, S1436, S1456, H1496, A1504, D1510, D1529, I1543, N1567, D1556, N1567, M1572, Q1579, L1581, S1583, F1585, V1595, E1606 or T1606, M1611, V1612 or L1612, P1630, C1636, P1651, T1656 or I1656, L1663, V1667, V1677, A1681, H1685, E1687, G1689, V1695, A1700, Q1704, Y1705, A1713, A1714 or S1714, M1718, D1719, A1721 or T1721, R1722, A1723 or V1723, H1726 or G1726, E1730, V1732, F1735, I1736, S1737, R1738, T1739, G1740, Q1741, K1742, Q1743, A1744, T1745, L1746, E1747 or K1747, I1749, A1750, T1751 or A1751, V1753, N1755, K1756, A1757, P1758, A1759, H1762, T1763, Y1764, P2645, A2647, K2650, K2653 or L2653, S2664, N2673, F2680, K2681, L2686, H2692, Q2695 or L2695 or I2695, V2712, F2715, V2719 or Q2719, T2722, T2724, S2725, R2726, G2729, Y2735, H2739, I2748, G2746 or I2746, I2748, P2752 or K2752, P2754 or T2754, T2757 or P2757, with said notation being composed of a letter representing the amino acid residue by its one-

11. A composition according to any of claims 9 or 10, wherein said contiguous sequence is selected from any of the following HCV amino acid sequences:

letter code, and a number representing the amino acid numbering according to Kato et al.,

- a sequence having a homology of more than 72%, preferably more than 74%, and most preferably more than 77% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 in the region spanning positions 140 to 319 in the Core/E1 region;
- a sequence having a homology of more than 70%, preferably more than 72%, and most preferably more than 75% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 in the E1 region spanning positions 192 to

319;

- a sequence having a homology of more than 86%, preferably more than 88%, and most preferably more than 90% homology to the amino acid sequences as represented in SEQ ID NO 148 in the region spanning positions 1 to 110 in the Core region;
- a sequence having a homology of more than 76%, preferably more than 78%, most preferably more than 80% to any of the amino acid sequences as represented in SEQ ID NO 30, 32, 34, 36, 38 or 40 in the region spanning positions 1646 to 1764 in the NS3/NS4 region;
- a sequence having a homology of more than 81.5%, preferably more than 83%, and most preferably more than 86% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 in the E1 region spanning positions 192 to 319;
- a sequence having a homology of more than 86%, preferably more than 88%, most preferably more than 90% to the amino acid sequence as represented in SEQ ID NO 150 in the region spanning positions 2645 to 2757 in the NS5B region;
- 12. A composition according to any of claims 9 or 10, wherein said contiguous sequence is selected from any of the following HCV amino acid sequences:
- a sequence having a homology of more than 80%, preferably more than 82%, most preferably more than 84% homology to any of the amino acid sequences as represented in SEQ ID NO 118, 120, and 122 in the region spanning positions 127 to 319,
- a sequence having a homology of more than 73%, preferably more than 75%, most preferably more than 78% homology in the E1 region spanning positions 192 to 319 to any of the amino acid sequences as represented in SEQ ID NO 118, 120, and 122, in the region spanning positions 127 to 319,
- a sequence having more than 85%, preferably more than 86%, most preferably more than 87% homology to any of the amino acid sequences as represented in SEQ ID NO 118, 120 or 122, in the region spanning positions 192 to 319.
- 13. A composition according to any of claims 9 or 10, wherein said contiguous sequence is selected from any of the following HCV amino acid sequences:
- a sequence having more than 93%, preferably more than 94%, most preferably more than 95% homology in the region spanning Core positions 1 to 191 to any of the amino acid

- sequences as represented in SEQ ID NO 42, 44, 46, 48, 50, 52, 54, or 152;
- a sequence having more than 73%, preferably more than 74%, most preferably more than 76% homology in the region spanning E1 positions 192 to 319 to any of the amino acid sequences as represented in SEQ ID NO 42, 44, 46, 48, 50, 52, 54, 154 or 156;
- a sequence spanning positions 1286 to 1403 of the NS3 region, with said sequence being characterized as having more than 90%, preferably more than 91%, most preferably more than 92% homology to any of the amino acid sequences represented in SEQ ID NO 56 to 58;
- a sequence spanning positions 1646 to 1764 of the NS3/4 region, with said sequence being characterized as having more than 66%, more particularly 68%, most particularly 70% or more homology to any of the amino acid sequences as represented in SEQ ID NO 60 or 62.
- 14. A composition according to any of claims 9 to 10, wherein said contiguous sequence is selected from any of the following HCV amino acid sequences:
- a sequence having a more than 83%, preferably more than 85%, most preferably more than 87% homology in the region spanning Core positions 1 to 319 to the amino acid sequence as represented in SEQ ID NO 144;
- a sequence having a more than 79%, preferably more than 81%, most preferably more than 84% homology in the region spanning E1 positions 192 to 319 to the amino acid sequence as represented in SEQ ID NO 144;
- a sequence having more than 95%, more particularly 96%, most particularly 97% or more homology to the amino acid sequence as represented in SEQ ID NO 146, in the region spanning positions 2645 to 2757 of the NS5B region.
- 15. A composition according to any of claims 9 to 14, wherein said sequence is selected from the following peptides:

QPTGRSWGQ (SEQ ID NO 93)

RSEGRTSWAQ (SEQ ID NO 220)

RTEGRTSWAQ (SEQ ID NO 221)

SRRQPIPRARRTEGRSWAQ (SEQ ID NO 268)

LEWRNTSGLYVL (SEQ ID NO 83)

VNYRNASGIYHI (SEQ ID NO 126)

QHYRNISGIYHV (SEQ ID NO 127) EHYRNASGIYHI (SEQ ID NO 128) IHYRNASGIYHI (SEQ ID NO 224) VPYRNASGIYHV (SEQ ID NO 84) VNYRNASGIYHI (SEQ ID NO 225) VNYRNASGVYHI (SEQ ID NO 226) VNYHNTSGIYHL (SEQ ID NO 227) QHYRNASGIYHV (SEQ ID NO 228) QHYRNVSGIYHV (SEQ ID NO 229) IHYRNASDGYYI (SEQ ID NO 230) LQVKNTSSSYMV (SEQ ID NO 231) VYEADDVILHT (SEQ ID NO 85) VYETEHHILHL (SEQ ID NO 129) VYEADHHIMHL (SEQ ID NO 130) VYETDHHILHL (SEQ ID NO 131) VYEADNLILHA (SEQ ID NO 86) VWQLRAIVLHV (SEQ ID NO 232) VYEADYHILHL (SEQ ID NO 233) VYETDNHILHL (SEQ ID NO 234) VYETENHILHL (SEQ ID NO 235) VFETVHHILHL (SEQ ID NO 236) VFETEHHILHL (SEQ ID NO 237) VFETDHHIMHL (SEQ ID NO 238) VYETENHILHL (SEQ ID NO 239) VYEADALILHA (SEQ ID NO 240) VQDGNTSTCWTPV (SEQ ID NO 87) VQDGNTSACWTPV (SEQ ID NO 241) VRVGNQSRCWVAL (SEQ ID NO 132) VRTGNTSRCWVPL (SEQ ID NO 133) VRAGNVSRCWTPV (SEQ ID NO 134) EEKGNISRCWIPV (SEQ ID NO 242) VKTGNQSRCWVAL (SEQ ID NO 243)

VRTGNQSRCWVAL (SEQ ID NO 244)

VKTGNQSRCWIAL (SEQ ID NO 245)

VKTGNVSRCWIPL (SEQ ID NO 247)

VKTGNVSRCWISL (SEQ ID NO 248)

VRKDNVSRCWVQI (SEQ ID NO 249)

VRYVGATTAS (SEQ ID NO 89)

APYIGAPLES (SEQ ID NO 135)

APYVGAPLES (SEQ ID NO 136)

AVSMDAPLES (SEQ ID NO 137)

APSLGAVTAP (SEQ ID NO 90)

APSFGAVTAP (SEQ ID, NO 250)

VSQPGALTKG (SEQ ID NO 251)

VKYVGATTAS (SEQ ID NO 252)

APYIGAPVES (SEQ ID NO 253)

AQHLNAPLES (SEQ ID NO 254)

SPYVGAPLEP (SEQ ID NO 255)

SPYAGAPLEP (SEQ ID NO 256)

APYLGAPLEP (SEQ ID NO 257)

APYLGAPLES (SEQ ID NO 258)

APYVGAPLES (SEQ ID NO 259)

VPYLGAPLTS (SEQ ID NO 260)

APHLRAPLSS (SEQ ID NO 261)

APYLGAPLTS (SEQ ID NO 262)

RPRRHQTVQT (SEQ ID NO 91)

QPRRHWTTQD (SEQ ID NO 138)

RPRRHWTTQD (SEQ ID NO 139) RPRQHATVQN (SEQ ID NO 92)

RPRQHATVQD (SEQ ID NO 263)

SPQHHKFVQD (SEQ ID NO 264)

RPRRLWTTQE (SEQ ID NO 265)

PPRIHETTQD (SEQ ID NO 266)

TISYANGSGPSDDK (SEQ ID NO 267)

^{16.} Recombinant vector, particularly for cloning and/or expression, with said recombinant

vector comprising a vector sequence, an appropriate prokaryotic, eukaryotic or viral promoter sequence followed by the nucleotide sequences as defined in claims 1 to 5, with said recombinant vector allowing the expression of any one of the HCV type 2 and/or HCV type 3 and/or type 4 and/or type 5 derived polypeptides according to any of claims 9 to 15 in a prokaryotic, or eukaryotic host, or in living mammals when injected as naked DNA, and more particularly a recombinant vector allowing the expression of any of the following HCV type 2, HCV type 3, type 4 or type 5 polypeptides spanning the following amino acid positions:

- a polypeptide starting at position 1 and ending at any position in the region between positions 70 and 326, more particularly a polypeptide spanning positions 1 to 70, 1 to 85, positions 1 to 120, positions 1 to 150, positions 1 to 191, positions 1 to 200, for expression of the Core protein, and positions 1 to 263, positions 1 to 326, for expression of the Core and E1 protein;
- a polypeptide starting at any position in the region between positions 117 and 192, and ending at any position in the region between positions 263 and 326, more particularly from positions 119 to 326, for expression of E1, or forms that have the putative membrane anchor deleted (positions 264 to 293 plus or minus 8 amino acids);
- a polypeptide starting at any position in the region between positions 1556 and 1688, and ending at any position in the region between positions 1739 and 1764, for expression of the NS4 regions, more particularly a polypeptide starting at position 1658 and ending at position 1711 for expression of the NS4a antigen, and more particularly, a polypeptide starting at position 1712 and ending between positions 1743 and 1972, for example 1712-1743, 1712-1764, 1712-1782, 1712-1972, 1712 to 1782 and 1902 to 1972 for expression of the NS4b protein or parts thereof.
- 17. A composition according to any of claims 9 to 15, wherein said polypeptide is a recombinant polypeptide expressed by means of an expression vector as defined in claim 16.
- 18. A composition according to any of claims 9 to 15 or 16, for use in a method for immunizing a mammal, preferably humans, against HCV comprising administratering a sufficient amount of the composition possibly accompanied by pharmaceutically acceptable adjuvants, to produce an immune response, more particularly a vaccine composition including HCV type 3 polypeptides derived from the E1, Core, or NS4 region and/or type 4 and/or type 5 and/or type 2 polypeptides.

- 19. Antibody raised upon immunization with a composition according to any of claims 9 to 15, 17 or 18, by means of a process according to claim 18, with said antibody being reactive with any of the polypeptides as defined in any of claims 9 to 15, 17 or 18.
- 20. Process for detecting in vitro HCV present in biological sample liable to contain it, comprising at least the following steps:
 - (i) contacting the biological sample to be analyzed for the presence of HCV antibodies with any of the compositions according to claims 9 to 15, 17 or 18, preferentially in an immobilized form under appropriate conditions which allow the formation of an immune complex, wherein said polypeptide is preferentially in the form of a biotinylated polypeptide and is covalently bound to a solid substrate by means of streptavidin or avidin complexes,
 - (ii) removing unbound components,
 - (iii) incubating the immunecomplexes formed with heterologous antibodies, which specifically bind to the antibodies present in the sample to be analyzed, with said heterologous antibodies having conjugated to a detectable label under appropriate conditions,
 - (iv) detecting the presence of said immunecomplexes visually or by means of densitometry and inferring the HCV serotype(s) present from the observed hybridization pattern.
- 21. Use of a composition according to any of claims 9 to 15, 17 or 18, for incorporation into a serotyping assay for detecting one or more serological types of HCV present in a biological sample liable to contain it, more particularly for detecting E1 and NS4 antigens or antibodies of the different types to be detected combined in one assay format, comprising at least the following steps:
 - (i) contacting the biological sample to be analyzed for the presence of HCV antibodies or antigens of one or more serological types, with at least one of the compositions according to claims 9 to 15, 17 or 18 in an immobilized form under appropriate conditions which allow the formation of an immunecomplex, (wherein said polypeptide is preferentially in the form of a biotinylated polypeptide and is covalently bound to a solid substrate by means of streptavidin or avidin complexes),

- (ii) removing unbound components,
- (iii) incubating the immunecomplexes formed with heterologous antibodies, which specifically bind to the antibodies present in the sample to be analyzed, with said heterologous antibodies having conjugated to a detectable label under appropriate conditions,
- (iv) detecting the presence of said immunecomplexes visually or by means of densitometry and inferring the HCV serological types present from the observed binding pattern.
- 22. A kit for determining the presence of HCV genotypes as defined in any of claims 1 to 5 present in a biological sample liable to contain them, comprising:
 - possibly at least one primer composition containing any primer selected from those defined in claim 6 or any other HCV type 2 and/or HCV type 3 and/or HCV type 4 and/or HCV type 5, or universal HCV primers,
 - at least one probe composition according to claim 7, preferably in combination with other polypeptides or peptides from HCV type 1, type 2 or other types of HCV, with said probes being preferentially immobilized on a solid substrate, and more preferentially on one and the same membrane strip,
 - a buffer or components necessary for producing, the buffer enabling hybridization reaction between these probes and the possibly amplified products to be carried out,
 - a means for detecting the hybrids resulting from the preceding hybriziation,
 - possibly also including an automated scanning and interpretation device for infering the HCV genotype(s) present in the sample from the observed hybridization pattern.
- 23. A kit for determining the presence of HCV antibodies according to any of claims 9 to 15, 17 or 18 present in a biological sample liable to contain them, comprising:
 - at least one polypeptide composition according to any of claims 9 to 15, 17 or 18, with said polypeptides being preferentially immobilized on a solid substrate, and more preferentially on one and the same membrane strip,
 - a buffer or components necessary for producing the buffer enabling binding reaction between these polypeptides and the antibodies against HCV present in the biological sample,
 - a means for detecting the immune complexes formed in the preceding binding

reaction,

possibly also including an automated scanning and interpretation device for infering the HCV genotype present in the sample from the observed binding pattern.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: Innogenetics sa.
 - (B) STREET: Industriepark Zwijnaarde 7, box 4
 - (C) CITY: Ghent
 - (E) COUNTRY: Belgium
 - (F) POSTAL CODE (ZIP): B-9052
 - (G) TELEPHONE: 00 32 9 241 07 11
 - (H) TELEFAX: 00 32 9 241 07 99
- (ii) TITLE OF INVENTION: New sequences of hepatitis C virus genotypes for diagnosis, prophylaxis and therapy.
- (iii) NUMBER OF SEQUENCES: 270
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO "
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:

(B) CLONE: BR34-4-20

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..213
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CTC ACG GAA CGG CTT TAC TGC GGG GGC CCT ATG TTC AAC AGC AAG GGG Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly 1 5 10 15

GCC CAG TGT GGT TAT CGC CGC TGC CGT GCC AGT GGA GTT CTG CCT ACC Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr

20

30

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids

70

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly

1 10 15

Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr

Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala 35 40 45

Arg Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp 50 55 60

Leu Val Val Val Ala Glu Ser

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vii) IMMEDIATE SOURCE:
 - ___ (B) CLONE: BR36-23-18
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..213

	(xi) SE	QUEN	CE DI	ESCR.	IPTI	ON;	SEQ :	ID N	d: '3	:			-	ı		
				CTT Leu 5												•	4.8
				TAT													96
				ACA Thr												•	1,44
				CTC Leu												· · · · · · · · · · · · · · · · · · ·	192
				GCT Ala											1		213
(2)			. 1	FOR		:					-).					
		() (I	1) LI 3) TY	ENCE ENGTI (PE: OPOLO	ł: 71 amir	lam:	ino a							1			
	(ii)	MOI	LECUI	LE TY	PE:	prof	tein										
	(xi)	SEC	QUENC	E DI	ESCRI	PTIC	ON:	SEQ :	ID NO	D: 4	: ·				. '		
Leu 1	Thr	Glu	Arg	Leu 5	Tyr	Cys	Gly	Gly	Pro 10	Met	Phe	Asn	Ser	Lys 15	Gly	· .	
Ala	Gln	Cys	50 Gly	Tyr	Arg	Arg	Cys	Arg 25	Ala	Ser	Gly	Val	Leu 30	Pro	Thr	•	
Ser	Phe	Gly 35	Asn	Thr	Ile	Thr	Cys 40	Tyr	Ile	Lys	Ala	Thr 45	Ala	Ala	Ala		
Arg	Ala 50	Ala	Gly	Leu	Arg	Asn 55	Pro'	Asp	Phe	Leu	Val 60	Cys	Gly	Asp	Asp		·.
Leu 65	Val	Val	Val	Ala	Glu 70	Ser									*.		

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

144

192

213

il		·								20	•		,				-	
		(i	i) M	OLEC	TULE	TYPE	E: cI	ONA .								•	-,	
		(ii	i) H	YPOI	HETI	CAL:	NO			1		• •	· .'		•			
		(ii	i) A	NTI-	SENS	E: N	io ¦				•				•			·
		(vi:				SOU E: B			α						., 1			•
٠ ١	. !	(is	.:	EATU.			K30-	23-1	8						. 1	•		
				(A),	NAME	/KEY TION	: CD	s .213		,	t .							
		(xi	.) SI	EQUE	NCE I	DESCI	RIPT:	ION:	SEQ	ID	NO:	5:						
	CT	C ACG	GAG	CGC	CT	ר דאנ	י יייני	- GG	יו ברכי	a aa	·) 				-	
•	Le	u Thr 1	Glu	ı Arg	J Let	ı Tyr	Cys	s Gly	Gl	y Pr 1	o Me	t Ph	ie As	n Se	r Ly	NG GG 's Gl .5	G Y	
	GC(C CAG a Gln	TGT Cys	GGT Gly	TAI	CGC	CG1	TGC	CG'	T GC	C AG	T GG	A GI	T CI	G CC	T AC	C	
			•						2	5				3	0	٠.		
	AG(TTC Phe	GGC	AAC Asn	ACA Thr	ATC Ile	ACT Thr	TGT Cys	TAC Ty:	C ATO	C AA	A GC	C AC a Th	A GC	G GC	C GCZ	A .	
			. 1			1 1		. 40				'	4	5				
	Lys	GCC Ala 50	Ala	GGC	Leu	CGG Arg	261	CCG Pro	GAC Asp	TTT Phe	CTI Let	r GTC	C TG(C GG s Gl	A GA' Y As _l	T GAT	,	
	CTG	GTC Val	GTG	GTG	GCT	GAG	AGT					60) '		-			
	65	• .	•	٠.		70						. * *						
	(2)	INFO	RMAI	'ION	FOR	SEQ	ID 1	10: é	· ·		-	•						
	•	. (i) s	EQUE	NCE	CHAR	LACTE	ERIST	rics	:				,				
			A) B()) LE) TY	NGTH PE:	I: 71 amin	ami o ac	no a	cid	s								
						GY:												
		(ii)			•						•					. *		
		(xi)																
		Thr C			,					10					15			
A	lla	Gln (ys (31y ? 20	Tyr i	Arg 1	Arg	Cys i	Arg 25	Ala	Ser	Gly	Val	Leu 30	Pro	Thr		
S	er	Phe G	ly <i>1</i> 35	Asn I	Thr :	Ile 7	Thr (Cys :	Гуr	Ile	Lys	Ala	Thr	Ala	Ala	Ala		

Lys Ala Ala Gly Leu Arg Ser Pro Asp Phe Leu Val Cys Gly Asp Asp 50 55 60

Leu Val Val Val Ala Glu Ser 65 70

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: BR36-23-20
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..213
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:
- CTC ACG GAG CGG CTT TAC TGC GGG GGC CCT ATG TTT AAC AGC AAA GGG
 Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly
 1 5 10 15

96

- GCC CAG TGT GGT TAT CGC CGT TGC CGT GCC AGT GGA GTT CTG CCT ACC
 Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr
 20 25 30
- AGC TTC GGC AAC ACA ATC ACT TGT TAC ATC AAA GCC ACA GCG GCC GCA
 Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala
- AAA GCC GCA GGC CTC CGG AGC CCG GAC TTT CTT GTC TGC GGA GAT GAT
 Lys Ala Ala Gly Leu Arg Ser Pro Asp Phe Leu Val Cys Gly Asp Asp

CTG GTC GTG GCT GAG AGT

Leu Val Val Ala Glu Ser

65 70

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

												,					
	(ii	.) мо	LECU	LE T	YPE:	pro	tein					•				,	
	(xi) ' SE	OUEN	CE D	ESCR	IPTI	ON	SEO	TD N	, ',							:
										٠.	:			•		•	
	ı Thr	Glu	Arg	Leu	Tyr	Cys	Gly	Gly		Met	Phe	Asn	Ser	Lys	Gly	٠	•
1	-			. 5		,			10					15			
Ala	Gln	Cys	Gly	Tyr	Arg	Arg	Cys	Arg	Ala	Ser	Gly	Val	Leu	Pro	Thr		
	•	•	20	•			r	25					- 30		•		. 1
Ser	Phe	Gly	Asn	Thr	Ile	Thr	Cys	Tyr	Ile	· Lys	Ala	Thr	Ala	Ala	Ala		
		35				•	40					45	•		•	•	
Lys	Ala	Ala	Gly	Leu	Arg	Ser	Pro	Asp	Phe	Leu	Val	Cvs	Glv	asp	Asp		. '
	50					55		-	.*		60		2				
Leu	Val	Val	Val	Ala	Glu	Ser				4 2		• •					
65				•	70		•	٠.									
(2)	INF	ORMA'	TION	FOR	SEO	ID I	NO ·	, '							,		
					. 1	, ,				,					ı		
	(i					CTER:			_					ı			
						leic			5				, ,				
						ESS:		gle									
		(1	0): 10	DPOT	JGY :	line	ear									1 () 1	
	(ii) MOI	LECUI	LE T	YPE:	CDN	A Si		$e_i^{(i)}$								
	(iii) HY!	РОТНІ	TIC	ALí: 1	NO .	-1				. '				. •		
																	,
	(iii)) AN	ri-si	ENSE	: NO												
							,	1							ı		
	(vii)		MEDIA			CE: 33-2-				.•							
		(1	3) CI	CNE	BR.	3 3- ∠- 0	-1/				-						
	(ix)		TURE														
			4) N#			12	213									1	
	(xi)	SEC	OUENC	E DE	SCR	IPTIC	on: s	SEO 1	י D אור). 9.	•						
								٠.		•							
CTC	ACG Thr	GAG	CGG	CTT	TAC	TGC	GGG	GGC	CCT	ATG	TTC	AAC	AGC	AAG	GGG		48
1			ar 9	5	+ A T	Cys	Gry	GT.	10	met	FIIE	ASII	ser	ьуs 15	GIA	-	٠.
GCC	CAC	mam.	aam :	413 AV	000	000	mam		000		~~-						
	CAG Gln																96
			20	<u>.</u> .	-	_	-	25			٠.٠		30				
ልርጥ	ጥጥር	GGC	ממ	ארא	ልጥሮ	λст	TO THE	יין מידי	እጥሮ	77C	ccc	7 (77	CCC	COM	aás.		- 4 -

192

Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala

AAA GCC GCA GGC CTC CGG AAC CCG GAC TTT CTT GTT TGC GGA GAT GAT

40

35

Lys Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp 50 55 5 60

TTG GTC GTG GTG GCT GAG AGT Leu Val Val Val Ala Glu Ser 65 70 '213

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly
1 5 10 15

Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr 20 25 30

Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala 35 40 45

Lys Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp 50 55 60

Leu Val Val Val Ala Glu Ser 65 70

- (2) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO

 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..213
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

CTC	ACG	GAG	CGG	СТТ	ጥ ል ር	TGC	aca	ccc	COM	3 550	-				- -		
Len	Thr	Glu	Ara	Ton	The	~	03	93	CCT	AIG	TTC	AAC	AGC	AAG	GGG		48
		O. u	Arg	- red	IAT	Сув	GIY	GIY	Pro	Met	Phe	Asn	Ser	Lys	Gly		1
			•	5					. 10					15		٠.	
						t								•			
GCC	CAG	TGT	GGT	TAT	CGC	CGT	TGT	CGT	GCC	AGT	GGA	GTT	CTG	CCT	ACC		96
Ala	Gln	Cys	Gly	Tyr	Arg	Arg	Cvs	Ara	Ala	Ser	Glv	Val	TAN	Dwa	Mp.		. Je
			20	-	. –		•	25		-	O _T	Val		PIO	IIII		
AGT	TTC	GGC	AAC	ACA	ልጥሮ	ACT	TOT		3 m.c				30,				
Ser	Phe	Glv	y cz	mbles	TIC	Mb	101	TAC	ATC	AAG	GCC	ACA	GCG	GCT	GCA		144
1	1116	d T la	WPII	THE	TIE	Thr	Cys	Tyr	Ile	Lys	Ala	Thr	Ala	Ala	Ala		
		35					40					45	•				
222	~~~				•				4								
AAA -	GCC	GCA	GGC	CTC	CGG	AAC	CCG	GAC	TTT	CTT	GTT	TGC	GGA	GAT	GAT		192
Lys	Ara	Ala	Gly	Leu	Arg	Asn	\mathtt{Pro}	Asp	Phe	Leu	Val	Cvs	Glv	Asp	Asn		
١	50					55					60	-	2		· · · · ·		
															t		
TTG	GTC	GTG	GTG	GCT	GAG	AGT					*						
Leu	Val	Val	Val	Ala	Glu	Ser	4			٠.	٠.					•	213
65		•	· · · ·		70				-								
					. 10												
		•											,	•			
						•										•	

- (2) INFORMATION FOR SEQ ID NO: 12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii') MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly

1 10 15

Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr

Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala 35 40 45

Lys Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp 50 55 60

Leu Val Val Val Ala Glu Ser 65 70

- (2) INFORMATION FOR SEQ ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 541 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(vii) IMMEDIATE SOURCE:

(B) CLONE: HD10-2-5

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 2..541

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

						ra Go												46
•	V	11 G.	LY A.	ia Pi		al G	Ly G.	TA N	al A.		rg A. 10	ra rie	eu A.	La, H		LY 15		
		*			•	J	•		4	•		,						
	GTG	AGG	GCC	CTT	GAA	GAC	GGG	ATA	AAT	TTC	GCA	ACA	GGG	AAT	TTG	CCC		94
						Asp												
		,			20					25			-	•	30		•	
		ì	'	•						1					F			
	GGT	TGC	TCC	TTT	TCT	ATC	TTC	СТТ	CTT	GCT	CTG	TTÇ	TCT	TGC	TTA	ATC		142
	Gly	Cys	Ser	Phe	Ser	Ile	Phe	Leu	Leu	Ala	Leu	Phe	Ser	Cys	Leu	Ile		4
			•	35					40					45				
			,														1.1	
						CTA												190
	HIS	PFO	A18		ser	Leu		' 55	Arg	ASI	Thr	ser	61A	Leu	Tyr	Val		-
		•	. 1			1 1		33				,	. 60		•			
	СТТ	ACC	AAC	GAC	тст	TCC	ידממ	AGC	ΔСΤ	חיידים	GTG	тът	GAG	GCC	.GAT	GAC		238
						Ser												230
		65			-7		70					75						
	GTT	ATT	CTG	CAC	ACA	CCC	GGC	TGT	GTA	CCT	TGT	GTT	CAG	GAC	GGT	AAT		286
	Val	Ile	Leu	His	Thr	Pro	Gly	Cys	Val	Pro	Cys	Val	Gln	Asp	Gly	Asn		
	80		•		-	85					90					95		
		•										•		•				•
						ACC												334
	Thr	Ser	Ala	Cys	-	Thr	Pro	Val	Thr		Thr	Val	Ala	Val	· T	Tyr		
					100					105					110		•	
	GTC	CCA	CON	אככ	אככ	GCT	TO C	תייטר	cac	אממ	CMT	CTD	GNC	እጥር	mme.	CTTC		382
						Ala												302
	741	Cly	ALU	115		ALG	001	110	120	9	11,10	V41	ДОР	125	Deu	val		
	GGC	GCG	GCC.	ACG	ATG	TGC	TCT	GCT	CTC	TAC	GTG	GGT	GAT	ATG	TGT	GGG		430
	Gly	Ala	Ala	Thr	Met	Cys	Ser	Ala	Leu	Tyr	Val	Gly	Asp	Met	Cys	Gly		
		•	130					135					140					
	GCC	GTC	TTC	CTC	GTG	GGA	CAA	GCC	TTC	ACG	TTC	AGA	CCT	CGT	CGC	CAT		478
	Ala	Val	Phe	Leu	Val	Gly		Ala	Phe	Thr	Phe	-	Pro	Arg	Arg	His		
	٠.	145					150					155						*
														a> =				
						TGT												526
		Inr	vai	GIN	Inr	Cys	ASN	cys	ser	тел	_	PTO	GTÅ	HIS	ьeи			
	160					165					170			•		175		

GGA CAC CGA ATG GCT Gly His Arg Met Ala 180

541

- (2) INFORMATION FOR SEQ ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val

Arg Ala Leu Glu Asp Gly Ile Asn, Phe Ala Thr Gly Asn Leu Pro Gly
20 25 30

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His

Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu 50 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

Ile Leu His Thr Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn Thr

85 90 95

Ser Ala Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Arg Tyr Val

Gly Ala Thr Thr Ala Ser Ile Arg Arg His Val Asp Met Leu Val Gly

Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala, 130 135 140

Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg Arg His Gln 145 150 155 160

Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly
165 170 175

His Arg Met Ala 180

- (2) INFORMATION FOR SEQ ID NO: 15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 541 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

												,				, ,			
		(ii) MO	LECU	LE T	YPE:	cDN.	A							٠,				,
		(iii) HY	POTH	ETIC	AL: 1	NO.		1.										,
		(iii) AN	TI-S	ENSE	: NO	' ,		•							-			
<u> </u>	, ,) FE	B) C	LONE'	SOUR(: HD: KEY:	10-2	-14							•			r	
		٠				ION:		541											
		(xi) SE	Q'UEN	CE DI	ESCR:	IPTIC	ON:	sėo:	ID NO): 1!	5:			٠.		•		
						TA GO				la A					is G				46
	GTG	; AGG	GCC.	' CTT	GDD	GAC	GGG	מידמ	ידיממ	П	GCA	מ כי מ	GGG	יית מ	ተ ምምር	ccc			94
						Asp										Pro			74
						ATC													142
						CTA Leu												;	190
						TCC Ser												;	238
						CCC Pro 85						Val							286
	ACA					ACC Thr					ACA	GTG				TAC		;	334
						GCT Ala												:	382
						TGC Cys	Ser											•	430
						GGA Gly													478

CAA ACG GTC CAG ACC TGT AAC TGC TCA CTG TAC CCA GGC CAT CTT TCA

Gln Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser 160 170 175

GGA CAC CGA ATG GCT Gly His Arg Met Ala

541

- (2) INFORMATION FOR SEQ ID NO: 16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val

1 5 10 15

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly 25 30

Cys Ser Phe Ser Ile Phe Leu Pro Ala Leu Phe Ser Cys Leu Ile His

Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu 50' 55 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

Ile Leu His Thr Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn Thr 85 90 95

Ser Ala Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Arg Tyr Val 100 105 110

Gly Ala Thr Thr Ala Ser Ile Arg Arg His Val Asp Ile Leu Val Gly
115 120 125

Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala 130 135 140

Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg Arg His Gln 145 150 155 160

Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly
165

His Arg Met Ala 180

- (2) INFORMATION FOR SEQ ID NO: 17:
 - (i) SEQUENCE CHARACTERISTICS:

		(1	B) T	YPE:	nuc	leic	aci		.	· ' ₁	,	·		1.1			
		•		TRAN			-1	gle						,			
		()	D) 17	OPOL	OGY:	Tin	ear								. • `	. •	,
	(ii), MO	LECU	LE T	YPE:	cDN.	A.					•	•	,		•	· .
	(iii) HY	POTH	ETIC	AL: 1	NO '				1 .							
	(iii	ÀN.	ri-s	ENSE	: 'NO		P ·						1				
	(ari i	! \ ТМП	, . MEDT:	ATE :	SOTTP	1 ·	1					•				,	
	(• ± ± .			LONE			-21			-		•			•		
	(ix) FE	ופודיים	r.		•			.*		¥ + .						
. •	(- (2	A) N	ame/i ocat:	-		541·										
						. F 1	:						,		ı		•
	(xi)) SE(QUEN	CE DI	ESCR:	IPTI	ON:	SEQ :	ID Ņ); 1·	7:				1		
C G	TC G	GC GC	er co	CT G	TA G	GA G	GC G	TC G	CA A	SA G	CC C	rt G	CG C	AT G	GC	•	46
	al G								la A	rg A				is Ģ	ļу		
•	1		- 1		5 .			-1	•	LO				•	15		
	AGG															1 1 1 1 1	94
Val	'Arg	Ala	Leu		Asp	Gly	Ile	Asn	'	Ala	Thr	Gly	Asn		Pro		
	-	,	i'r	20		;			25		. •		,	30	. •		• . •
	TGC																142
Gly	Cys	Ser		Ser	Ile	Phe	Leu	Leu 40	Ala	Leu	Phe	Ser		Leu	Ile		
			35				·	40					45		•		
	CCA																190
His	Pro		Ala	Ser	Leu	Glu		Arg	Asn	Thr	Ser	_	Leu	Tyr	Val		
		50				ď	55					60			,		
	ACC																238
Leu	Thr 65	Asn	Asp	Cys	Ser	Asn 70	Ser	Ser	Ile	Val	Tyr 75	Glu	Ala	Asp	Asp		
GTT	ATT	CTG	CAC	ACA	CCC	GGC	TGT	GTA	CCT	TGT	GTT	CAG	GAC	GGT	AAT		286
	Ile	Leu	His	Thr		Gly	Cys	Val	Pro	_	Val	Gln	Asp	Gly			
80			•		85					90					95		
	TCT																334
Thr	Ser	Ala	Cys	Trp	Thr	Pro	Val	Thr	Pro	Thr	Val	Ala	Val	Arg	Tyr		
	•																
	GGA																382
vaı	Gly	ATS	115	THE	ATS	ser	тте	120	Arg	HIS	val	Asp	11e 125	тей	· vaı		
GGC	GCG	GCC	ACG	ATG	TGC	TCT	GCT	CTC	TAC	GTG	GGT	GAT	ATG	TGT	GGG		430
Gly	Ala	Ala 130	Thr	Met	Cys	Ser	Ala 135	Leu	Tyr	Val	Gly	Asp	Met	Cys	Gly		

GCC Ala	GTC Val 145	TTC Phe	CTC Leu	GTG Val	GGA Gly	CAA Gln 150	GCC Ala	TTC Phe	ACG Thr	TTC Phe	AGA Arg 155	Pro	CGT Arg	CGC Arg	CAT His		478
CAA Gln 160	ACG Thr	GTC Val	CAG Gln	ACC Thr	TGT Cys 165	Asn	TGC Cys	TCA Ser	CTG Leu	TAC Tyr 170	CCA Pro	GGC Gly	CAT His	CTT Leu	TCA Ser 175	;	526
			ATG Met			i	u		,				.,	.			541

- (2) INFORMATION FOR SEQ ID NO: 18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid |
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val

1 5 10 15

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly, 20 25 30

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His

Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu 50 55 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

Ile Leu His Thr Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn Thr
85 90 95

Ser Ala Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Arg Tyr Val

Gly Ala Thr Thr Ala Ser Ile Arg Arg His Val Asp Ile Leu Val Gly
115 120 125

Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala 130 135 140

Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg Arg His Gln 145 150 155 160

Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly
165 170 175

His Arg Met Ala

•			180				•					'				,		
(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO:	19:		44-	•	. '		1				ı
	(i	() () ()	A) L: B) T C) S'	CE CI ENGTI YPE: TRANI	H: 5 nuc DEDN	41 ba leic ESS:	ase pacions acions	pair: d	s								•	
	(ii) MO	LECU	LE T	YPE:	CDN	A						. '					
	(iii)) HY !	POTH	ETIC	AL: 1	40 '			1			- "	. •			· .		·
1	(iii)) AN	ri-si	ENSE	: NO											,		
	(vii			ATE S			-13	1 1 ₁										
	(ix	(2	-	E: AME/I OCAT:			541				,							
	(xi)),SE	QUEN	CE DI	ESCR:	IPTIC	ON:	SEQ :	ID NO	D: 19	9:			•				•
				CC G'. ro Va					la A		cc c			is G		; ;		46
V: GTG	al G 1 AGG	lγ A. GCC	la P		dl G 5 GAC	ly G: GGG	ly Va ' ATA	A LE	la A	rg A: 10 GCA	CC C' la L	eu A. GGG	la H	is G : TTG	ly 15 CCC	;		46 94
V: GTG Val GGT	AGG Arg	GCC Ala	CTT Leu TTT	GAA Glu 20 TCT Ser	GAC Asp	GGG Gly	ATA Ile	AAT Asn	TTC Phe 25	GCA Ala	CC C'la La La ACA Thr	GGG Gly	AAT ASN TGC	TTG Leu 30	ly 15 CCC Pro	; ;		•
Va GTG Val GGT Gly	AGG Arg TGC Cys	GCC Ala TCC Ser	CTT Leu TTT Phe 35	GAA Glu 20 TCT Ser	GAC Asp ATT Ile	GGG Gly TTC Phe	ATA Ile CTT Leu	AAT Asn CTT Leu 40	TTC Phe 25 GCT Ala	GCA Ala CTG Leu	CC C'la La La ACA Thr TTC Phe	GGG Gly TCT Ser	AAT ASD TGC Cys 45	TTG Leu 30 TTA Leu	ly 15 CCC Pro ATT Ile			94
Va GTG Val GGT Gly CAT His	AGG Arg TGC Cys CCA Pro	GCC Ala TCC Ser GCA Ala 50	CTT Leu TTT Phe 35 GCT Ala	GAA Glu 20 TCT Ser	GAC Asp ATT Ile CTA Leu	GGG Gly TTC Phe GAG Glu	ATA Ile CTT Leu TGG Trp 55 AGC	AAT Asn CTT Leu 40 CGG Arg	TTC Phe 25 GCT Ala AAT AST	GCA Ala CTG Leu ACG Thr	ACA Thr TTC Phe TCT Ser	GGG Gly TCT Ser GGC Gly 60	AAT ASD TGC Cys 45 CTC Leu	TTG Leu 30 TTA Leu TAT Tyr	CCC Pro ATT Ile GTC Val			94 142
Vacantia Series Value of Cartesia Carte	AGG Arg TGC Cys CCA Pro ACC Thr 65	GCC Ala TCC Ser GCA Ala 50 AAC Asn	CTT Leu TTT Phe 35 GCT Ala GAC Asp	GAA Glu 20 TCT Ser AGT Ser	GAC Asp ATT Ile CTA Leu TCC Ser CCC	GGG Gly TTC Phe GAG Glu AAT Asn 70	ATA Ile CTT Leu TGG Trp 55 AGC Ser	AAT Asn CTT Leu 40 CGG Arg AGT Ser	TTC Phe 25 GCT Ala AAT Asn ATT Ile	GCA Ala CTG Leu ACG Thr GTG Val	CC C'la Li ACA Thr TTC Phe TCT Ser TAC Tyr 75	GGG Gly TCT Ser GGC Gly 60 GAG Glu	AAT ASN TGC Cys 45 CTC Leu GCC Ala	TTG Leu 30 TTA Leu TAT Tyr GAT Asp	CCC Pro ATT Ile GTC Val GAC Asp			94 142 190

GTC GGA GCA ACC ACC GCT TCG ATA CGC AGT CAT GTG GAC CTA TTA GTG Val Gly Ala Thr Thr Ala Ser Ile Arg Ser His Val Asp Leu Leu Val

115

- (2) INFORMATION FOR SEQ ID NO: 20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear,
 - (ii) MOLECULE TYPE: protein

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly

20

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His

35

40

Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu

50

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val

65

Ile Leu His Thr Pro Gly Cys Ile Pro Cys Val Gln Asp Gly Asn Thr 85 90 95

Ser Thr Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Lys Tyr Val

Gly Ala Thr Thr Ala Ser Ile Arg Ser His Val Asp Leu Leu Val Gly
115 120 125

Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala 130 135 140

Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg Arg His Gln 145 150 155 160

Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly

170

175

His Arg Met Ala 180

- (2) INFORMATION FOR SEQ ID NO: 21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 541 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: BR36-9-20
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..541
 - (xi) SEQUENCE DESCRIPTION! SEQ ID NO: 21:
- C GTC GGC GCT CCC GTA GGA GGC GTC GCA AGA GCC CTT GCG CAT GGC
 Val Gly Ala Pro Val Gly Val Ala Arg Ala Leu Ala His Gly
 1 5 10 15
- GTG AGG GCC CTT GAA GAC GGG ATA AAT TTC GCA ACA GGG AAT TTG CCC
 Val Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro
 20 25 30
- GGT TGC TCC TTT TCT ATT TTC CTT CTT GCT CTG TTC TCT TGC TTA ATT

 Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile

 35

 40

 45
- CAT CCA GCA GCT AGT CTA GAG TGG CGG AAT ACG TCT GGC CTC TAT GTC

 His Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val

 50 55 60
- CTT ACC AAC GAC TGT TCC AAT AGC AGT ATT GTG TAC GAG GCC GAT GAC
 Leu Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp
 65 70 75
- GTT ATT CTG CAC ACA CCC GGC TGC ATA CCT TGT GTC CAG GAC GGC AAT

 Val Ile Leu His Thr Pro Gly Cys Ile Pro Cys Val Gln Asp Gly Asn

 80 85 90 95
- ACA TCC ACG TGC TGG ACC CCA GTG ACA CCT ACA GTG GCA GTC AAG TAC

 Thr Ser Thr Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Lys Tyr

 100 105 110

									112		•				•			
			ACC Thr 115	1111	ALG	.ser	тте	120	ser	His	Val	Asp	Leu 125	Leu	Val	•		382
GGC	GCG Ala	GCC Ala 130	ACG Thr	ATG Met	TGC	TCT Ser	GCG Ala 135	CTC Leu	TAC Tyr	GTG Val	GGT Gly	GAC Asp 140	ATG Met	TGT Cys	GGG Gly		:	430
GCT Ala	GTC Val 145	TTC Phe	CTC Leu	GTG Val	GGA Gly	CAA Gln 150	GCC Ala	TTC Phe	ACG Thr	TTC Phe	AGA Arg 155	CCT Pro	CGT Arg	bgc Arg	CAT His			478
CAA Gln 160	ACG Thr	GTC Val	CAG Gln	ACC Thr	TGT Cys 165	AAC Asn	TGC Cys	TCG Ser	CTG' Leu	TAC Tyr 170	CCA Pro	GGC	CAT His	CTT Leu	TCA Ser 175			526
GGA Gly	CAT His	CGA Arg	ATG Met	GCT Ala 180	. 1	٠.	. 4	• · ·							•			541
(2)	INFO	RMAT	'ION	FOR	SEQ	ID N	0: 2	2:	. 1				. '.	•		•		
	((A	EQUE:) LE:) TY:) TO:	NGTH PE:	: 18	o am	ino i	ICS: acid:	5		:					1 -	•	•

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His 35

Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val

Ile Leu His Thr Pro Gly Cys Ile Pro Cys Val Gln Asp Gly Asn Thr 85 90

Ser Thr Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Lys Tyr Val 100 105

Gly Ala Thr Thr Ala Ser Ile Arg Ser His Val Asp Leu Leu Val Gly 120.-

Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala 130 135

Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg Arg His Gln 145 150 155 160	
Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly 165 170 175	•
His Arg Met Ala 180	
(2) INFORMATION FOR SEQ ID NO: 23:	· 1
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 541 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	•
(iii) ANTI-SENSE: NO	
(vii) IMMEDIATE SOURCE: (B) CLONE: BR33-1-10	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2541	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23: C GTC GGC GCT CCC GTA GGA GGC GTC GCA AGA GCC CTT GCG CAT GGC Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly 1 5 10 15	46
GTG AGG GCC CTT GAG GAC GGG ATA AAC TTC GCA ACA GGG AAT TTG CCC Val Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro 20 25 30	94
GGT TGC TCC TTT TCT ATC TTC CTT CTT GCT CTG TTC TCT TGC TTA ATC Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile 35 40 45	142
CAT CCA GCA GCT GGT CTA GAG TGG CGG AAT ACG TCT GGC CTC TAT GTC His Pro Ala Ala Gly Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val 50 55 60	190
CTT ACC AAC GAC TGT TCC AAT AGT AGT ATT GTG TAT GAG GCC GAT GAC	238
Leu Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp 65 70 75	٠.

382

430

478

526

541

ΑC	СТ	СТ	ACA	TC	~ ~~	C 7 C												
Th	r s	er	Thr	Cy	s Tr	b m	c ccz r Pro	Val	A AC	r Pro	o Th	A GI r Va	G G	CA G la V	al	Arg	Tyr	
СT	יר פי	GC /	CCA	n de		,			!	105		٠.	•			110		
Va	1 G	ly ?	GCA Ala	Thi	Th:	r Ala	TCC Ser	ATF	A CGO	C AGI	CA'CA'	T GT	G G	AC C	TG	TTA	GTA	
				115	5	. '	1		120		• ••••	o va		1 1		ren	vai	
GG G1	CG	CG (3CC	ACG	ATO	G TGC	TCT	GCG	CTI	TAC	GT	G GG	T G	'A T	rg '	TGT	GGG	
	y A.	Las	130	THE	. Mei	c Cys	Ser	Ala 135	Let	ı Tyr	Va.	l Gl	y As 14	p M	et (Cys	Gly	
GC	C GI	C 1	rtc	CTC	GTO	GGA	CAA	GCC	TTC	ACG	TTC	AG	A CC	:Ç C(3C (cgc'	CAT	
AL	a Va 14		'ne	Leu	Va]	l Gly	Gln 150	ATA	Phe	Thr	Phe	2 Arg	g Pr	O A	rg 1	Arg	His	
CA	A AC	'G G	TC	CAG	ACC	TGT	AAC	TGO	TCG	CTG	TAC	. cc	A GG	c cz	AT: C	TT.	TCA	
160		rV	'al	Gln	Thr	Cys 165	Asn	Суѣ	Ser	Leu	Ту: 170	Pro	G1	у Ні	s i	eu	Ser 175	
GG <i>I</i>	A CA	TC	'GC	ATG	GCI						1		•				173	
					Ala		: `			. 1	•			•				
				÷	180				•			,						
(2)	IN	FOR	МАТ	TON	FOR	SEO	ID 1	·	34.	-			•			_		
							i						•				. 12	
		(1)) S. .(A) LI EQUI	ence Engt	CHAI H: 1	RACTE 80 an	RIST nino	rics acid	: is		i .			4		i.	
		. 1	(B)) T	PE:	amiı	no ac line	id			,	1 .	, , , , , , , , , , , , , , , , , , ,					
i	(i:	i)]					prot								·.		•	
•	•			•			PTIO		EQ 1	D NC): 24	4: '						
Val							Gly							-4.				
_								-		10						15	,	
Arg	Ala	. L∈	eu G	31u 20	Asp	Gly	Ile	Asn	Phe 25	Ala	Thr	Gly	Asn	Let 3		ro (3ly	
Cys	Ser	Ph 3	ne S	er	Ile	Phe	Leu :	Leu . 40	Ala	Leu	Phe	Ser	Cys 45		ı II	le F	lis	
Pro	Ala	Al	a G	ly	Leu	Glu	Trp 2	Arg I	Asn	Thr	Ser	Gly	Leu	Туз	Vā	al I	-eu	
	50	-					55					60		·				
Thr 65	Asn	As	рC	ys i	Ser	Asn 70	Ser 8	Ser :	Ile '	Val '	Tyr 75	Glu	Ala	Asp	As	p V	al 80	
Ile	Leu	Hi	s A	la 1	Pro 85	Gly	Cys \	/al 1	Pro (Cys T	Val	Gln	Asp	Gly			'hr	
0	m)					_			:	90						5		
ser	ınr	СУ	s T	rp '	I'hr	Pro '	Val 1		2ro :	Thr \	/al	Ala	Val	Arg		r V	al	

Gly Ala Thr Thr Ala Ser Ile Arg Ser His Val Asp Leu Leu Val Gly

115	120	125	,
Ala Ala Thr Met Cys Ser A	ala Leu Tyr Val Gly .35	Asp Met Cys 140	Gly Ala
Val Phe Leu Val Gly Gln 7	ala Phe Thr Phe Arg	·	His Gln 160
Thr Val Gln Thr Cys Asn C	Cys Ser Leu Tyr Pro 170	o Gly His Leu	Ser Gly 175
His Arg Met Ala 180	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		en e
(2) INFORMATION FOR SEQ I	D NO: 25:		
(i) SEQUENCE CHARACT (A) LENGTH: 541 (B) TYPE: nucle (C) STRANDEDNES (D) TOPOLOGY: 1	base pairs ic acid S: single		
(ii) MOLECULE TYPE: c	DNA		· · · · · · · · · · · · · · · · · · ·
(iii) HYPOTHETICAL: NO			
(iii) ANTI-SENSE: NO			10
(vii) IMMEDIATE SOURCE			
(ix) FEATURE: (A) NAME/KEY: C (B) LOCATION: 2			
(xi) SEQUENCE DESCRIP	PTION: SEQ ID NO: 2	25:	
C GTC GGC GCT CCC GTA GGA Val Gly Ala Pro Val Gly 1 5			
GTG AGG GCC CTT GAG GAC G Val Arg Ala Leu Glu Asp G 20			
GGT TGC TCT TTT TCT ATC T Gly Cys Ser Phe Ser Ile F 35			
CAT CCA GCA GCT GGT CTA G His Pro Ala Ala Gly Leu G 50			
CTT ACC AAC GAC TGT TCC A			

GTT	' ATI	CTG	CAC	GCG	CCC	GGC	TGT	GTA	ССТ	ጥረም	GTC	מאכי		000	AAT		
Val	Ile	Leu	His	Ala	Pro	Gľy	Cvs	Val	Pro	Cve	tra 1	Gla	AGAC	GGC	AAT	1	286
80					85	. •				,90	Val	GIII	ASD	GIY			
		i _k	•				•1		,	100					95		
ACG	TCT	ACA	TGC	TGG	ACC	·CCA	GTA	ACA	CCT	מים	GTG.	GC)	CTC	200	ma ci		
Thr	Ser	Thr	Cys	Tro	Thr	Pro	Val	Thr	Dro	The	7707	NI:	31-3	AGG	TAC		334
		•		100				+ * * * *	105	TIII	val	HTA	val		ıyr		•
				-					105					110			
GTC	GGG	GCA	ACC	ACC	CCT	THCC	ለ ሞአ	000	Nom	h	-						
Va l	Glv	Δla	Thr	Thr	מכו	r _i ce com	AIA	7	AGT	CAT	GTG	GAC	CTG	TTA	GTA		382
	, 023	7.14	Thr	1111	Ата	ser	TTE		ser	His	Val	Asp.		Leu	Val		1
		1 1	113					120					125				•
GGC	GCG	GCC	ACG	ATIC	TICC	mcm.	000										
Glv	Ala	Δla	ACG	Met	C C	TCI	77-	CTT	TAC	GTG	GGT	GAT	ATG	TGT	GGG		430
		130	Thr	Hec	Cys	Ser	Ala	Leu	TYT	Val	GIA	Asp	Met	Cys	Gly		1 .
		130		• ;			135		٠.			140					
GCC	GTC	ידידירי	רידר '	GT/G	CCN	(TA A	-										
Ala	Val	Phe	CTC	77-7	GGA	CAA	GCC	TTC	ACG	TTC	AGA	CCC	CGC	CGC	CAT		478
	145	FIIC	Leu	vai	GIA	GIN	Ата	Phe	Thr	Phe		Pro	Arg	Arg	His	•	
	140				,	150				,	155						•
ממי	A CC	CTC	CAC	3.00	mam	1		'							,		
CAA Cln	Thr	17-1	CAG	ACC	TGT	AAC	TGC	TCG	CTG	TAC	CCA	GGC	CAT	CTT	TCA	٠.	526
160		vaı	Gln	Thr.	Cys	ASI	Cys	Ser	Leu	Tyr	Pro	Gly.	His	Leu	Ser		
100			. ,		165		1			170					175		
	ראידי	CCA	ATG		'									,		•	
			Met				•					ı	1	•			541
- - y		AL G						-1									
			- t = - i	180								,					

- (2) INFORMATION FOR SEQ ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val

1 5 10 15

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly 20 25 30

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His
35 40, 45

Pro Ala Ala Gly Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu 50 55 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

Ile Leu His Ala Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn Thr 85 90 95

		•					-					•	•					
Ser	Thr	Cys	Trp 100		Pro	Val	Thr	Pro 105		Val	Ala	Val	Arg 110		val	`I .		
Gly	Ala	Thr 115		Ala	Ser	.Ile	Arg 120		His	Val	Asp	Leu 125	Leu	Vai	Gly			
Ala	Ala 130		Met	Сув	Ser	Ala 135	Leu	Tyr	Val	Gly	Asp 140	Met	Cys	Gly	Ala			
Val 145	Phe	Leu	Val	Gly	Gln 150	Ala	Phe	Thr	Phe	Arg 155	Pro	Arg	Arg	His	Gln 160			,
Thr	Val	Gln	Thr	Cys 165	Asn	Cys	Ser	Leu	Tyr 170	Pro	Gly	His	Leu	Ser 175				1
His	Arg	Met	Ala 180	1			•	٠.					٠.					
(2)	INF	ORMAT	MOIT	FOR	SEQ	ID I	NO:	27:								۱ .		
	(i)	(E	A) LI 3) TY C) ST	CE CH ENGTH (PE: FRANI OPOLO	nuc: DEDNI	41 ba leic ESS:	ase pacions acions acio	pair: d	s '	i			1 1		ı			
	(ii)	MOI						4				ı					F	
	(iii)						Va .				,		٠.			٠.		
	(iii)					,			,	•	. '		. •	•	. •			
	·/										,	•						
	(vii) (ix)		3) CI	LONE :			-20	<i>!</i>				•		•				
				ME/F			541											٠
	(xi)	SEC	UENC	E DE	SCRI	' PTIC	ON: S	SÉQ :	ID NO): 27	7:	•				•		
	rc GG al Gl								la Aı					s Gl				46
	AGG Arg				Asp												٠.	94
	TGC Cys																	142
	CCA Pro																•	190

CT*	T AC	C AA r Ası	C GAO	TG7	TCC Ser	AAT Asr 70	. 561	r AG:	r AT	T GT(≥ Val	F TA1	Glu	GCC Ala	GA!	GAC Asp	• • •	238
GTT Val		CTC	G CAC	GCG Ala	CCC Pro 85	, сту	TG1	GTA Val	CCI Pro	T'TGT Cys	Val	CAG Gln	GAC Asp	GGC Gly	AAT Asn 95	,	286
	J	,	,-	100	. 1111	PIO	var	Thr	105	Thr	Val	Ala	Val	Arg 110			334
•	-		115		nia	Ser	116	120	ser	His	Val	Asp	Leu 125	Leu			382
GGC Gly	GCG Ala	GCC Ala 130	ACG Thr	ATG Met	TGC Cys	TCT Ser	GCG Ala 135	CTT. Leu	TAC Tyr	GTG Val	GGT Gly,	GAT Asp 140	ATG Met	TGT Cys	GGG Gly		430
GCC Ala	GTC Val 145	TTC Phe	CTC Leu	GTG Val	GGA Gly	CAA Gln 150	GCC Ala	TTC Phe	ACG Thr	TTC Phe	AGA Arg 155	CCC Pro	CĞC Arg _i	CGC Arg	CAT His		478
CAA Gln 160	ACG Thr	GTC Val	CAG Gln	ACC Thr	TGT Cys 165	AAC Asn	TGC Cys	TCG Ser	CTG Leu	TAC Tyr 170	CCA Pro	GGC Gly	CAT His	CTT Leu	TCA Ser 175	, ,	526
GGA Gly	CAT His	CGA Arg	ATG Met	GCT Ala 180	•	+ '.				' F) .) . ,				I.		541

(2) INFORMATION FOR SEQ ID NO: 28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val

1 5 10 15

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly

20 25 30

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His

Pro Ala Ala Gly Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu 50 55 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

									•			,						
ii	Ile	e Leu	His	Ala	Pro 85	Gly	Cys	Val	Pro	Cys 90		Gln	Asp	Gly	Asn 95	Thr		·
	Sei	Thr	Cys	Trp 100	Thr	Pro	Val '	Thr	Pro 105	Thr	Val	Ala	Val	Arg	Tyr	Val		
•	Gly	/ Ala	Thr 115	Thr	Ala	Ser	İle	Arg 120	Ser	His	Val	Asp	Leu 125	Leu	Val	Gly	-	
. ļ	Ala	Ala 130		Met	Суз	Ser	Ala 135		'Tyr	Val	Gly	Asp	Met	Cys	Gly	Ala		
	Val	Phe	Leu	Val	Gly	Gln 150	Ala	Phe	Thr	Phe	Arg 155		Arg	Arg	His	Gln 160		
		'Val	Gln	Thr	Су <u>я</u> 165	Asn	Cys	Ser	Leu	Tyr 170	Pro	Gly	His	Leu	Ser 175	Gly		
	His	Arg		Ala 180		. 1		. ,	' I			•						
٠	(2)	, INFO	ORMAT	rion :	FOR	SEQ	ID 1	NO: 2	29:	1	• •				ı	•		•
			(<i>)</i> (E (C	QUENC A) LE B) TY C) SI D) TO	ENGTH PE: RANI POLO	H: 28 nucl DEDNE DGY:	37 baleic ESS: line	ase p acid sing	oairs 1	3	·		•			;	1:	
		(ii) (iii)	·	ECUL				4				1						
		(iii)							į.			, ·						
		(vii)		EDIA				3							,			
	1	(ix)	(A	TURE) NA) LO	ME/K			287		- -							· ·	
	•	(xi)	SEQ	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NC): 29) :	•					
		GAC T Asp P																47
		TTT Phe																95
		GCC Ala							Ala									143
									40					4.5				

Ser Trp Asp Glu Met Trp Lys Cys Leu Val Arg Leu Lys Pro Thr Leu 55 60

CAT GGA CCT ACG CCT CTT CTA TAT CGG TTG GGG CCT GTC CAA AAT GAA 239

His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Pro Val Gln Asn Glu 75

ATC TGC TTG ACA CAC CCC ATC ACA AAA TAC ATC ATG GCA TGC ATG TCA 287

Ile Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser 90 95

- (2) INFORMATION FOR SEQ ID NO: 30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 95 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

Asp Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala His 1 5 10 15

Phe Leu Ser Gln Thr Lys Gln Gln Gly Leu Asn Phe Ser Phe Leu Thr
20 25 30

Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro Pro Ser 35 40 45

Trp Asp Glu Met Trp Lys Cys Leu Val Arg Leu Lys Pro Thr Leu His
50 55 60

Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Pro Val Gln Asn Glu Ile 65 70 75 80

Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser

- (2) INFORMATION FOR SEQ ID NO: 31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 401 base pairs(B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO

(ix	F	EΑ	TU	πE	:

- (A) NAME/KEY: CDS
- (B) LOCATION: 3..401

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

														•			
					TGC 'Cys												47
:	1		 		5					10		_,,	-3-,		15	· ·	,
					GAT												95
Ala	Cys	Met	. Ser	Ala 20	_	Leu	Glu	Val	Thr 25	Thr	Ser	Thr	Trp	Val	Leu		
					GCG												143
Leu	Gly	Gly	Val 35		ı Ala	Ala '	Leu	Ala 40	Ala	Tyr	Cys	Leu	Ser 45	Val	Gly		
					GGT											•	191
Cys	Val	Val 50		Val	Gly	His	Ile 55		Lėu	Gly	Gly	Lys 60		Ala	Leu		
					GTG												239
Val	Pro 65		Lys	Glu	Val	Leu 70	Tyr	Gln	Gln	Tyr	Asp 75	Glu	Met	Glu	Glu	1 *	
					CCA												287
Cys 80		Gľn	Ala	Ala	Pro 85	Tyr	Ile	Glu	Gln	Ala 90		Val	Ile	Ala	His 95		
CAG	TTC	AAG	GAG	AAA	ATC	CTT	GGA	CTG	CTG	CAG	CGA	GCC	ACC	CAA	CAA		335
Gļn	Phe	Lys	Glu	Lys 100	Ile	Leu	Gly	Leu	Leu 105	Gln	Arg	,Ala	Thr	Gln 110			•
					ccc												383
Gln	Ala	Val	Ile 115	Glu	Pro	Val	Ile	Ala 120	Ser	Asn	Trp	Gln	Lys 125	Leu	Glu		
					CAT												401
Thr	Phe	Trp		Lys	His							•					

- (2) INFORMATION FOR SEQ ID NO: 32:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 133 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

Gln Asn Glu Ile Cys Leu Thr His Pro Val Thr Lys Tyr Ile Met Ala

20 25 30		
Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val 35 40 45	Gly Cys	· .
Val Val Ile Val Gly His Ile Glu Leu Gly Gly Lys Pro Ala 50 60	Leu Val	
Pro Asp Lys Glu Val Leu Tyr Gln Gln Tyr Asp Glu Met Glu 65 70, 75	Glu Cys	ı '
Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala 85 90	His, Gln 95	1
Phe Lys Glu Lys Ile Leu Gly Leu Leu Gln Arg Ala Thr Gln (•	
Ala Val Ile Glu Pro Val İle Ala Ser Asn Trp Gln Lys Leu (115 120 125 Phe Trp His Lys His	Slu Thr	
130 (2) INFORMATION FOR SEQ ID NO: 33:	i i	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 401 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: CDNA		
(iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO		
(vii) IMMEDIATE SOURCE: (B) CLONE: HD10-1-3		•
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3401		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:		
TC CAA AAT GAA ATC TGC TTG ACA CAC CCC GTC ACA AAA TAC ATT Gln Asn Glu Ile Cys Leu Thr His Pro Val Thr Lys Tyr Ile 1	Met 15	47
GCA TGC ATG TCA GCT GAT CTG GAA GTA ACC ACC AGC ACC TGG GTA Ala Cys Met Ser Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Va	l Leu O	95
CTT GGA GGG GTC CTC GCG GCC CTA GCG GCC TAC TGC TCA GTG	C GGC 1	43

									12	J		1						
	Leu	Gly	Gly	Val. 35	Leu	Ala	Al'a	Leu	Ala 40	Ala	Tyr	Cys	Leu	Ser 45	Val	gly		
		Val		ATC Ile													· •	191
	Val			AAG Lys				Tyr										- 239
	TGC	TCG		GCC Ala			TAC	ATC				CAG				CAC His		287
	CAG			GAG Glu		ATC					CAG					CAA		335
				Ile	GAG				Ala	TCC				Lys	CTT	GAA Glu	· ·	383
			Trp	CAC His					120		•			125				401
	(2)	INFO	130 ORMAT	rion ,	FOR	SEQ	ID 1	NO: 3	34:	·;		. ,		÷.				
		•	(i) S (1 (E	SEQUE A) LE B) TO	ENCE ENGTI YPE :	CHAP H: 13 amir	RACTI 33 ar 10 ac	ERIST	rics:									
•		•		LECUI			- · .											
	Gln 1	_		OUENC Ile	_				5		mla aa	•	Tyr	Ile	Met 15	Ala	•	
	Cys	Met	Ser	Ala 20	Asp	Leu	Glu	Val	Thr 25	Thr	Ser	Thr	Trp	Val 30	Leu	Leu		
	, -		35	Leu				40			٠		45	•				
		50	•	Val		. •	55				-	60						
	65			Glu Ala		70	•				75					80		
					85					90			-		95			

Phe Lys Glu Lys Ile Leu Gly Leu Leu Gln Arg Ala Thr Gln Gln

335

W	O 94/256	01													PCT/E	D04/012
								124		٠,					ț CI/E	P94/0132
ù		:	100				. 1	05			•	1	10	,	ı	
A	la Val	Ile (3lu P	ro Va	al II	le A.	la so 20	er A	sn T	rp G	ln .L; 1:	ys L 25	eu, G	lų 🤉	Chr	
P	he Trp 130	His I	ys H	is	, , , , , , , , , , , , , , , , , , ,							•				
(:	2) INFO	ORMATI	ON FO	OR SE	Q ĮD	NO:	: 35:	:			1		., •			
	(i)	(B) (C)	ENCE LENG TYPE STRA TOPO	TH: : nu NDED	401 clei NESS	base c ac : si	pai id ngle	rs	- E S			ı		•		
	(ii)	MOLE	CULE	ŢYPE	: cD	NA	ı								• .	
	(iii)	НУРО	THETI	CAL:	NO	•	t _i			•						
	(iii)	ANTI	-SENS	E: No	o' ,		-					•				
	. (vii)		CLON			, 20-16	64			ı			,			1
		FEATU (A) (B)	NAME,	KEY:	CDS	; 401				1 1					1	
	(xi)	SEQUE	NCE I	ESCR	IPTI	ON:	SEQ	ID N	10: 3	35:						
TC	CAA AA Gln As	AT GAA sn Glu	ATC	TGC Cys 5	TTG Leu	ACA Thr	CAC His	CCC Pro	ATC Ile	ACA Thr	AAA Lys	TAC Tyr	ATC Ile	ATG Met		47
GCA Ala	TGC A Cys M	TG TC let Se	A GCT r Ala 20	veb	CTG Leu	GAA Glu	GTA Val	ACC Thr 25	Thr	AGC Ser	ACC Thr	TGG	GTI Val	Le	G u	95
CTT Leu	GGA G	GG GT ly Va	L Deu	GCG Ala	GCC Ala	CTA Leu	GCG Ala 40	GCC Ala	TAC Tyr	TGC Cys	TTG Leu	TCA Ser 45	GTC Val	GG:	r Y	143
TGT Cys	GTT G	TG AT al Ile 50	GTG Val	GGT Gly	CAT His	ATC Ile 55	GAG Glu	CTG Leu	GGG Gly	GGC Gly	AAG Lys 60	CCG Pro	GCA Ala	ATC Ile	2	191
GTT Val	CCA GI Pro As	AC AAA sp Lys	GAG Glu	GTG Val	TTG Leu	TAT Tyr	CAA Gln	CAA Gln	TAC Tyr	GAT Asp	GAG Glu	ATG Met	GAA Glu	GA0	}	239

90

TGC TCA CAA GCT GCC CCA TAT ATC GAA CAA GCT CAG GTA ATA GCT CAC Cys Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His

CAG TTC AAG GGA AAA GTC CTT GGA TTG CTG CAG CGA GCC ACC CAA CAA

70

85

80

Gln Phe Lys Gly Lys Val Leu Gly Leu Leu Gln Arg Ala Thr Gln Gln 100 105 110

CAA GCT GTC ATT GAG CCC ATA GTA ACT ACC AAC TGG CAA AAG CTT GAG Gln Ala Val Ile Glu Pro Ile Val Thr Thr Asn Trp Gln Lys Leu Glu

GCC TTT TGG CAC AAG CAT Ala Phe Trp His Lys His

401

383

- (2) INFORMATION FOR SEQ ID NO: 36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 133 amino acids
 - (B) TYPE: amino acid '
 - (D) TOPOLOGY: linear '
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

Gln Asn Glu Ile Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala 1 5 10 15

Cys Met Ser Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu Leu 20 25 30

Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly Cys 35 40 45

Val Val Ile Val Gly His Ile Glu Leu Gly Gly Lys Pro Ala Ile Val 50 55 60

Pro Asp Lys Glu Val Leu Tyr Gln Gln Tyr Asp Glu Met Glu Glu Cys 65 70 75 80

Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His Gln 85 90 95

Phe Lys Gly Lys Val Leu Gly Leu Leu Gln Arg Ala Thr Gln Gln 100 105 110

Ala Val Ile Glu Pro Ile Val Thr Thr Asn Trp Gln Lys Leu Glu Ala 115 120 125

Phe Trp His Lys His 130

- (2) INFORMATION FOR SEQ ID NO: 37:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 401 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

	\-	· · · · ·	ACTE.	COLE	TAB	S: CI	ONA		·				,			1	,
	(ii	i) I	IYPO	THET	ICAL:	No	1			. 1				•			
	(ii	i) 1	ITM	-SENS	SE: N	TO ,				, ,		,,		1			
	1	•									•					\$	
	(vi	i) I		OIATE CLON				.66	•	1 .			•				
	(i:	x) F	EATU	RE:	'		r								•		1
			(A) (B)	NAME LOCA	/KEY	; CD	S ' .401			l			,				
				;		1									1		t
	(x:	i) s	EQUE	NCE	DESC	RIPT:	ION:	SEQ	ID	NO:	37:	•					
TC				ATC								•					
,	Gln 1	Asn	Glu	Ile	Cys 5	'Leu	Thr	His	Pro	Ile 10	Thr	AAA Lys	TAC Tyr	ATC Ile	ATG Met 15	•	4
GCA Ala	TGC Cys	: ATC	TC:	A GCT r Ala 20		CTC Lev	GAZ 1 Gli	A GT	A ACC	Thi	AGC Sec	C ACC	TG(GTT Val	TTG Leu		95
CTT	GGA	GGG	GTO	CTC	GCG	GCC	CTA	. GCG	3 GC(ን ጥልር	TO	, and			GGT		
Leu	Gly	Gly	' Va] 35		Ala	Ala	Lev	Ala 40	LATE	Tyr	Cys	Lev	Ser Ser 45	Val	Gly		143
	•	50			Gry.	nis	55	GIU	. Len	Gly	Gly	Lys 60	Pro	Ala			191
GTT Val	CCA Pro 65	GAC Asp	AAA Lys	GAG Glu	GTG Val	TTG Leu 70	TAT	CAA Gln	CAA Gln	TAC Tyr	GAT Asp 75	GAG Glu	ATG Met	GAA Glu	GAG Glu		239
TGC Cys 80	TCA Ser	CAA Gln	GCT Ala	GCC Ala	CCA Pro 85	TAT Tyr	ATC Ile	GAA Glu	CAA Gln	GCT Ala 90	CAG Gln	GTG Val	ATA	GCT Ala	CAC His		287
CAG :	TTC Phe	AAG Lys	GAA Glu	AAA Lys 100	GTC Val	CTT Leu	GGA Gly	TTG Leu	CTG Leu 105	CAG Gln	CGA Arg	GCC Ala	ACC Thr	CAA Gln 110	CAA Gln		335
CAA (Eln A	CT lla	GTC Val	ATT Ile 115	GAG Glu	CCC Pro	ATA Ile	GTA Val	ACT Thr 120	ACC Thr	AAC .Asn	TGG Trp	CAA Gln	AAG Lys 125	CTT Leu	GAG Glu		383
SCC T	he '	TGG Trp 130	CAC His	AAG Lys	CAT His						,						401
														•			

- (2) INFORMATION FOR SEQ ID NO: 38:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 133 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi), SEQUENCE DESCRIPTION: SEQ ID NO: 38:

Gln Asn Glu Ile Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala 1 5 10 15

Cys Met Ser Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu Leu
20 25 30

Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly Cys 35 40 45

Val Val Ile Val Gly His Ile Glu Leu Gly Cly Lys Pro Ala Ile Val
50 60

Pro Asp Lys Glu Val Leu Tyr Gln Gln Tyr Asp Glu Met Glu Glu Cys 65 70 75 80

Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His Gln 85 90 95

Phe Lys Glu Lys Val Leu Gly Leu Leu Gln Arg Ala Thr Gln Gln 100 105 110

Ala Val Ile Glu Pro Ile Val Thr Asn Trp Gln Lys Leu Glu Ala 115 120 125

Phe Trp His Lys His

- (2) INFORMATION FOR SEQ ID NO: 39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 401 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO

 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 3..401
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

	1		GAA Glu		5	Deu	1111	nis	Pro	11e 10	Thr	Lys	Tyr'	Ile	Met 15	4
	- 4 -			2()	, nec	i GI	ı vaı	Thr 25	Thr	Sei	r Thi	Tr	Va]		. 9
•	-	4	35	-	· AIG	, Ala	TEU	40	Ala	Tyr	Cys	Leu	Ser 45	Val	GGT Gly	14:
		50			Gry	1115	55	GIU	Leu	Gly	Gly	Lys 60	Pro	Ala	ATC Ile	191
GTT Val	CCA Pro 65	GAC Asp	AAA Lys	GAG Glu	GTG Val	TTG Leu 70	TAT Tyr	CAA Gln	CAA Gln	TAC Tyr	GAT Asp 75	GAG Glu	ATG Met	GAA Glu	GAG Glu	 239
TGC Cys 80	TCA Ser	CAA Gln	GCT Ala	GCC Ala	CCA Pro 85	TAT Tyr	ATC Įle	GAA Glu	CAA Gln	GCT Ala 90	CAG Gln	GTA Val	ATA Ile	GCT Ala	CAC His	287
CAG Gln	TTC Phe	AAG Lys	GAA Glu	AAA Lys 100	GTC Val	CTT Leu	GGA Gly	TTG Leu	CTG Leu 105	CAG Gln	CGA Arg	GCC Ala	ACC Thr	CAA Gln 110	CAA Gln	335
CAA (Gln)	GCT Ala	ĠŢC Val	ATT Ile 115	GAG Glu	CĆC Pro	ATA Ile	vaı	ACT Thr 120	ACC Thr	AAC Asn	TGG Trp	CAA Gln	AAG Lys 125	CTT Leu	GAG Glu	383
GCC 1	?he	TGG Trp 130	CAC . His :	AAG Lys	CAT His			-			; •		٠			401

- (2) INFORMATION FOR SEQ ID NO: 40:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 133 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

Gln Asn Glu Ile Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala 1 5 10 15

Cys Met Ser Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu Leu 20 25 30

Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly Cys
35 40 45

•		, <u></u> ,	-				•		12	9			ŀ					
	Val	Val 50	Ile	Val	Gly	His	Ile 55	Glu	Leu	Gly	Gly	Lys 60	Pro	Ala	Ile	Val		
	Pro 65	Asp	Lys	Glu	Val	Leu 70	Tyr	Gln	Gln	Tyr	Asp 75	Glu	Met	Glu	Glu	80		•
	Ser	Gln	Ala	Ala	Pro 85	Tyr	Ile	Glu	Gln	Ala 90		Val	Ile	Ala	His 95	Gln		· .
	Phe	'Lys	Glu	Lys 100		Leu	Gly	Leu	Leu 105	Gln	Arg	Ala	Thr	Gln 110	Gln	Gln		
	Ala	Val	Ile 115	Glu	Pro	Ile	Val	Thr 120	Thr	Asn	Trp	Gln	Lys 125	Leu	Glu	Ala		1
	Phe	Trp 130		Lys	His			'. • • •										•
	(2)	INF	ORMA'	TION	FOR	SEQ	IP 1	NO: 4	41:								· .	
	· ·	,	(2 (1 (0 (1	QUENCA) LAI B) TO C) SO D) TO LECUI	ENGTI YPE : IRANI OPOLO	H: 50 nuc DEDNI DGY:	09 baleic ESS: line	ase p acid sing ear	pair: i	3						, ,		
		(iii)	нуі	POTHI	eTIC/	AL: Ì	70 0	*.1		*5	, 1				1	. •		
			•	TI-SI MEDIJ			CE:		,								,	
	•	(ix)) FE <i>l</i>	B) CI ATURI A) NI B) L(E: AME/I	KEY:	CDS	509										
		(xi)) SE(QUENC	CE DE	ESCR.	[PTI	ON: S	SEQ :	ED NO	b: 4:	1:			•			
				ACG I														47
				CCA Pro													•	95
				TAC Tyr 35														143
	GCG	ACT	CGG	AAG	ACT	TCG	GAA	CGG						CGG				191

Ala Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln

ı	•	5	0				5.	5				, 60) .	•) 1		
CC Pr	T ATT O Ile 65	CCC Pro	C AAG D Lys	GCC Ala	G CGC	CAG Gln 70	PIC	C ACC	GG(C CGG / Arg	S TCC Ser 75	Trp	GGI Gly	CAZ Glr	CCC Pro		239
. 80	G TAC Y Tyr				85	. 	Ala	Asn	GIU	90.	' Leu	Gly	Trp	Ala	Gly 95		287
	CTG Leu			100	9	GI y	ser	Arg	105	Asn	Trp	Gly	Pro	Asn 110	Asp	•	335
	CGG Arg		115		m g	ASII	Dea	120	Lys	Val.	Ile	Asp	Thr 125	Leu	Thr'		383
	GGA Gly	130				1	135	TYE.	116	Pro	Leu	Val 140	Gly	Gly	Pro		431
ATT	GGG Gly 145	GGC Gly	GTC Val	GCA Ala	5	GCT Ala 150	CTC Leu	GCA Ala	CAC His	Gly	GTG Val 155	AGG Arg	GTC ' Val	CTT Leu	GAG Glu		4,79
GAC Asp 160	GGG Gly	GTA Val	AAC Asn	Tyr	GCA Ala 165	ACA (GGG Gly	AAT Asn	TTA Leu	,	: 				. ,		509
(2)	INFO	RMAT	ION 1	FOR	SEQ :	ID NO): 4 :	2:									
		(A) (B) (D)	EQUEN LEN TYP TOP	GTH: PE: 6	: 169 mino SY: 1	ami aci inea	no a d	ICS:	5			•					
	(ii)	MOLE	CULE	TYP	E: 12	rote	in		•								

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile Val Gly

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg Ala 40

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 55 60

Ile Pro Lys Ala Arg Gln Pro Thr Gly Arg Ser Trp Gly Gln Pro Gly

Tyr Pro Trp Pro Leu Tyr Ala Asn Glu Gly Leu Gly Trp Ala Gly Trp

191

WO 94/23001	•	. 131				121 74/01323
85		90			95	•
Leu Leu Ser Pro Arg Gl	y Ser Arg	Pro Asn 105	Trp Gly	Pro Asn 1	Asp Pro	
Arg Arg Lys Ser Arg Ass	n Leu Gly 120		Ile Asp	Thr Leu 1	Thr Cys	
Gly Phe Ala Asp Leu Me	t Gly Tyr 135	Ile Pro	Leu Val	Gly Gly	Pro Ile	
Gly Gly Val Ala Arg Ala		His Gly	Val Arg 155	Val Leu (Glu Asp 160	•
Gly Val Asn Tyr Ala Thi	r Gly Asn	Leu				1
(2) INFORMATION FOR SEC	Q ID NO:4	3 ¹ 1:		1	•	•
(i) SEQUENCE CHAR (A) LENGTH: ! (B) TYPE: nuc (C) STRANDEDI (D) TOPOLOGY	509 base p cleic acio NESS: sing	pairs d '				
(ii) MOLECULE TYPE	1					
(iii) HYPOTHETICAL:	•		, ,			
(vii) IMMEDIATE SOUR (B) CLONE: PO						
(ix) FEATURE: (A) NAME/KEY: (B) LOCATION:	: CDS	· · · · · · · · · · · · · · · · · · ·		1		
(xi) SEQUENCE DESC	RIPTION: S	SEQ ID NO): 43:			•
CC ATG AGC ACG AAT CCT Met Ser Thr Asn Pro 1 5						47
AAC CGT CGC CCA CAG GAC Asn Arg Arg Pro Gln Asp 20	•	•		· ·		95

60

GGC GGA GTT TAC TTG TTG CCG CGC AGG GGC CCT AGG ATG GGT GTG CGC

Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg

GCG ACT CGG AAG ACT TCG GAA CGG TCG CAA CCC CGT GGA CGG CGT CAG

Ala Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln 55

35

50

Pro	ATT Ile 65	Pro	Lys	GCG Ala	CGC Arg	CAG ·Gln 70	CCC Pro	ACG Thr	GGC Gly	CGG Arg	TCC Ser 75	TGG	GGT Gly	CAA Gln	ccc Pro		239
GGG Gly 80	TAT	CCT Pro	TGG Trp	CCC Pro	CTT Leu 85	TAC Tyr	GCC Ala	AAT Asn	GAG Glu	GGC Gly 90	Leu	GGG	TGG Trp	GCA Ala	GGG Gly 95	•	287
TGG Trp	CTG Leu	CTC Leu	TCC Ser	CCT Pro 100	CGA Arg	GGC	TCT Ser	CGG Arg	CCT Pro 105	AAT Asn	TĠG Trp	GGC Gly	CCC Pro	AAT Asn 110	GAC Asp	1	335
CCC Pro	CGG Arg	CGA Arg	AAA Lys 115	TCG Ser	CGT Arg	AAT	TTG Leu	GGT Gly 120	AAG Lys	GTC Val	ATC	GAT Asp	ACC Thr 125	CTA Leu	ACG	•	383
TGC Cys	GGA Gly	TTC Phe 130	GCC Ala	GAT Asp	CTC Leu	ATG Met	GGG Gly 135	TAT Tyr	ATC Ile	CCG Pro	CTC Leu	GTA Val 140	GGC Gly	GGC Gly	CCC Pro	•	431
TTE	145	GIY	Val	GCA Ala	Arg	Ala 150	Leu	Ala	His	GGT	GTG Val 155	AGG Arg	GTC Val	CTT Leu	GAG Glu	4	479
GAC Asp 160	GGG	GTA Val	AAC Asn	TAT Tyr	GCA Ala 165	ACA Thr	GGG Gly	AAT Asn	TTA Leu		•	1	1			 5	509

(2) INFORMATION FOR SEQ ID NO: 44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 169 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg Ala 35 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro
50 55 60

Ile Pro Lys Ala Arg Gln Pro Thr Gly Arg Ser Trp Gly Gln Pro Gly 65 70 75 80

Tyr Pro Trp Pro Leu Tyr Ala Asn Glu Gly Leu Gly Trp Ala Gly Trp 85 90 95

133	
Leu Leu Ser Pro Arg Gly Ser Arg Pro Asn Trp Gly Pro Asn Asp Pro 100 105 110	
Arg Arg Lys Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 115 120 125	
Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly Pro Ile 130 135 140	
Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 145 150 155 160	1
Gly Val Asn Tyr Ala Thr Gly Asn Leu 165	
(2) INFORMATION FOR SEQ ID NO: 45:	,
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 580 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(iii) HYPOTHETICAL: NO	1 · 1,
(iii) ANTI-SENSE: NO	
(vii) IMMEDIATE SOURCE: (B) CLONE: PC-4-1	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2580	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
A ACG TGC GGA TTC GCC GAT CTC ATG GGG TAT ATC CCG CTC GTA GGC Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly 1 5 10 15	46
GGC CCC ATT GGG GGC GTC GCA AGG GCT CTC GCA CAC GGT GTG AGG GTC Gly Pro Ile Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val 20 25 30	94
CTT GAG GAC GGG GTA AAC TAT GCA ACA GGG AAT TTA CCC GGT TGC TCT Leu Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser 35 40 45	142
TTC TCT ATC TTT ATT CTT GCT CTT CTC TCG TGT CTG ACC GTT CCG GCC Phe Ser Ile Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala 50 55 60	190
TCT GCA GTT CCC TAC CGA AAT GCC TCT GGG ATT TAT CAT GTT ACC AAT	238

Ser	Ala 65	Val	Pro	Tyr	Arg	Asn 70	Ala	Ser	Gly	Ile	Tyr 75	His	Val	Thir	Asn		
GAT Asp 80	Cys	CCA	AAC Asn	TCT	TCC Ser 85	ATA Ile	GTC Val	TAT Tyr	GAG Glu	GCA Ala 90	GAT Asp	AAC Asn	CTG	ATC Ile	CTA Leu 95		286
H1S	Ala	Pro , ,	GIY.	Cys 100	Val	Pro	Cys	Val	Met 105	Thr	Gly	Asn	Val	AGT Ser 110	Arg		334
Cys	Trp	val	115	Ile	Thr	Pro	Thr	Leu 120	'Ser	Ala	Pro	Ser	Leu 125		Ala	• ,	382
val	inr	130	Pro	Leu	Arg	Arg	Ala 135 ₁	≀Val	Asp	Tyr	Leu	Ala 140	Gly	GGG Gly	Ala		430
Ala	145	Cys	ser	Ala	Leu	Tyr 150	Val	Gly	Asp	Ala	Cys 155	Gly	Ala	CTA Leu	Phe	· .	478
160	Val	GTÄ	Gln	Met	Phe 165	Thr	Tyr	Arg	Pro	Arg 170	Gln	His	Ala	ACG Thr	Val 175		526
GIN	Asn'	TGC Cys	Asn	TGT Cys 180'	TCC Ser	ATT Ile	TAC Tyr	Ser	GGC Gly 185	CAT His,	GTT Val	ACC Thr	GGC Gly	CAC His 190	CGG Arg	,	574
ATG Met												•	,			•	580

- (2) INFORMATION FOR SEQ ID NO: 46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly

1 10 15

Pro Ile Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu
20 25 30

Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe

Ser Ile Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp Asn Leu Ile Leu His
85 90 95

Ala Pro Gly Cys Val Pro Cys Val Met Thr Gly Asn Val Ser Arg Cys
100 105 110

Trp Val Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Leu Gly Ala Val

Thr Ala Pro Leu Arg Arg Ala Val Asp Tyr Leu Ala Gly Gly Ala Ala
' 130 135 140

Leu Cys Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln 165 170 175

Asn Cys Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 47:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE: (B) CLONE: PC-4-6
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..580
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:
- A ACG TGC GGA TTC GCC GAT CTC ATG GGG TAT ATC CCG CTC GTA GGC
 Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly

GGC CCC ATT GGG GGC GTC GCA AGG GCT CTC GCA CAC GGT GTG AGG GTC

94

46

ca.			~-		-		_					•					
GI	PIC	, TTE	GIA	. GTÀ	Val	. Аца	Arg	Ala	Leu	Ala	His	Gly	Val	Arg	val	1	
				7	,	÷ .	•		:25	٠				, 30			
CTI	GAG	'GAC	GGG	GTA	AAC	TAT	··GCA	ACA	GGG	AAT	TTA	CCC	GGT	י ייינור	TCT	-	
Lev	Glu	Asp	Gly	Val	Asn	Tyr	Ala	Thr	Gly	Asn	Leu	Pro	Glv	Cvs	Ser	•	142
			35			ī		40	•	'			45		501		
	•	1										•			٠.		
TTC	TCT	ATC	TTT	ATT	CTT	GCI	CTT	CTC	TCG	TGT	CTG	ACC	GTT	CCG	GCC		190
Phe	Ser	Ile	Phe	Ile	Leu	Ala	Leu	Leu	S'er	Cys	Leu	Thr	Val	Pro	Ala		-50
	• .	50		· 1			55					60					
							,										, 1
TCT	GCA	' GTT	CCC	TAC	CGA	AAT	GCC	TCT	GGG	ATT	TAT	CAT	GTT	ACC	AAT		238
Ser	Ala	Val	Pro	Tyr	Arg	Asn	Ala	Ser	Gly	Ile	Tyr	His	Val	Thr	Asn		
	65		•	;		70					. 75						1
ርአጥ	TOO	CCN	· 334	. '	maa										•		
Asn	Cve	Dro	AAC	TCT	TCC	ATA	GTC	TAT	GAG	GCA	GAT	AAC	CTG	ATC	CTA		286
80	Cys	FIG	Asn	Ser	85		vaı	ıyr	GIu		Asp	Asn	Leu	Ile	Leu		
, • •				1	65	, ,	• •			'. 90	•				95		•
CAC	GCA	CCT	GGT	TGC	GTG	, מכיזי	ጥርተ	CTC	ਾ. ਨਿਆਟਾ	202	aam				AGA		
His	Ala	Pro	Gly	Cvs	Val	Pro	Cve	Val	Met	The	GGI	AAT	GIG	AGT	AGA	,	334
			2	100			Cyb	Val	105	,	GIY	ASII	vaı				
					. ''		•		-05				•	110	•		
TGC	TGG	GTC	CAA	ATT	ACC	CCT	ACA	CTG	TCA	GCC	CCG	AGC	CTC	GGÅ	GCA		382
Cys	Trp	Val	Gln	Ile	Thr	Pro	Thr	Leu	Ser	Ala	Pro	Ser	Leu	Glv	Ala		302
			115					120					125				
			1 .									1					
GTC	ACG	GCT	CCT	CTT	CGG	AGA	GCC	GTT	GAC	TAC	CTA	GCG	GGA	GGG	GCT		430
Val	Thr	Ala	Pro	Leu	Arg	Arg	Ala	Val	Asp	Tyr	Leu	Ala	${\tt Gly}$	Gly	Ala		
	,	130	' '			•	135				. ,	140					
GCC	כידירי	тсс ТСС	TOC	CCC	מוחא	m2 C	C.M.				:						
Ala	Leu	CAS	TCC	Δl=	Len	TAC	GTA	GGA	GAC	GCG	TGT	GGG	GCA	CTA	TTC		478
	145	Cys	Ser	nia	neu	150	vaı	GLY.	Asp	Ala		GIY	Ala	Leu	Phe		
						130	٠,				155			•			
TTG	GTA	GGC	CAA	ÄTG	TTC	ACC	TAT	AGG	CCT	CGĊ	CAG	CAC	COT	አ ርር	CTC		F26
Leu	Val	Gly	Gln	Met	Phe	Thr	Tyr	Arg	Pro	Ara	Gln	His	Ala	Thr	U=1		526
160					165	n	, -	_		170					175		•
		•						•					٠.				
CAG	AAC	TGC	AAC	TGT	TCC	ATT	TAC	AGT	GGC	CAT	GTT	ACC	GGC	CAC	CGG ,		574
Gln	Asn	Cys	Asn	Cys	Ser	Ile	Tyr	Ser	Gly	His	Val	Thr	Gly	His	Arg		_
				180					185					190	-		
ATG	CCA																
Met			,														580
1-1C C	ALA																

(2) INFORMATION FOR SEQ ID NO: 48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear -
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ide Pro Leu Val Gly Gly

1 5 10 15

Pro Ile Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu
20 25 30

Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn'Ser Ser Ile Val Tyr Glu Ala Asp Asn Leu Ile Leu His 85 90 95

Ala Pro Gly Cys Val Pro Cys Val Met Thr Gly Asn Val Ser Arg Cys
100 105 110

Trp Val Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Leu Gly Ala Val

Thr Ala Pro Leu Arg Arg Ala Val Asp Tyr Leu Ala Gly Gly Ala Ala 130 135 140

Leu Cys Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu 145 ' 150 155 ' 160

Val Gly Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln 165 170 175

Asn Cys Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 49:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 959 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: PC-3-4

(ix) FEATURE:

- (A) NAME/KEY: CDS (B) LOCATION: 3..959

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

	·	,															
CC	ATG	AGC	ACG	AAT	CCT	AAA	CCT	CAA	AGA	AAA	ACÇ.	AAA	AGA	AAC	ACC		47
	Met	Ser	Thr	Asn	Pro	Lys.	Pro	Ģln	Ar'g	Lys	Thr	Lys	Arg	Asn	Thr		
	, ,1	•		· 4,	, 5					10		•	. •		15		
																	'
AAC	CGI	' CGC	CCA	CAG	GAC	GTC	AAG	TTC	CCG	GGC	GGI	GGI	CAG	ATC	GTT		95
Asn	Arg	Arg	Pro			Val	Lys	Phe	Pro	Gly	gly	Gly	Gln	Ile	Val		
			•	;20					25					30)		F 1
				• ;					: .		•						
GGC	GGA	GTT	TAC	TTG	TTG	CCG	CGC	AGG	GGC	CCI	* AGG	ATG	GGT	GTG	CGC		143
GTA	GIY	vaı			Leu	Pro	Arg			Pro	Arg	Met	Gly	Val	Arg	.*	
			35	F			19	40		•	•		45				•
ccc	y Citt		330) CIM	micca	'											
אות	MC1	7~~	AAG	Mb	706	GAA	CGG	TCG	CAA	CCC	CGI	GGA	CGG	CGI	CAG		191
ALA	1111	A19		Inr	ser	GIU			Gin	Pro	Arg		_	Arg	Gln		
•		. 50			. 10	•	55		,	;		60	٠,		1		
ССТ	∑	CCC	'א אכי	GCC	acc	C) C	aaá	* ~~									
Dro	TIA	Dro	Tara	Ala	200	CAG	D	ACG	GGC	CGG	TCC	TGG	GGT	CAA	CCC		239
	65		цуs	Ата	ALG		PIO	THE	GIY	Arg			GIA	Gln	Pro		
	. 0.5		1			70		4			75	1					
GGG	ТАС	CCT	। TGG	, הככ	ملسليم	ሞአር	acc	ייית ג	CAG	000	OMO				GGG	• 1	
Glv	Túr	Pro	Trn	Dro	T.em	Time	אום.	yez	Clu	GGC	CIC	GGG	TGG	GCA	GGG Gly		287
80			בייו	1	85	171	PLA	ASII	Gru	90 GT Å	Leu	GIY	urp	Ата	_		
			•		85	•			.4	90	•		. •		. 95		
TGG	CTG	CTC	TCC	CCT	CGA	GGC	ייטיד	CGG	CCT	አስጥ	ФСС	ccc	000	220	GAC		
Trp	Leu	Leu	Ser	Pro	Ara	Glv	Ser	Ara	Dro	yez	Too	C1	Doo	AAT	Asp	÷	335
				100		<u></u>		 9	105	ASII	пр	GIY	PIO	110			•
							, '	,	105					110		٠.,	
CCC	CGG	CGA	AAA	TCG	CGT	AAT	TTG	GGT	AAG	GTC	ልጥሮ	CAT	ACC	רידיא	ACG	•	383
Pro	Arg	Arg	Lys	Ser	Arg	Asn	Leu	Glv	Lvs	Val	Ile	Asp	Thr	T.en	Thr		363
	_	_	115			a		120	-2-				125				•
						•										-	
TGC	GGA	TTC	GCC	GAT	CTC	ATG	GGG	TAT	ATC	CCG	CTC	GTA	GGC	GGC	CCC		431
Cys	Gly	Phe	Ala	Asp	Leu	Met	Gly	Tyr	Ile	Pro	Leu	Val	Gly	Gly	Pro	•	
		130					135		·			140			_	•	
ATT	GGG	GGC	GTC	GCA	AGG	GCT	CTC	GCA	CAC	GGT	GTG	AGG	GTC	CTT	GAG		479
Ile	Gly	Gly	Val	Ala	Arg	Ala	Leu	Ala	His	Gly	Val	Arg	Val	Leu	Glu		
	145					150					155						
GAC	GGG	GTA	AAC	TAT	GCA	ACA	GGG	AAT	TTA	CCC	GGT	TGC	TCT	TTC	TCT		527
	Gly	Val	Asn	Tyr	Ala	Thr	Gly	Asn	Leu	Pro	Gly	Cys	Ser	Phe	Ser		
160					165					170					175		
					• *												
															GCA		575
Ile	Phe	Ile	Leu		Leu	Leu	Ser	Cys	Leu	Thr	Val	Pro	Ala	Ser	Ala		
				180					185	:				190			•
		TAC															623
val	Pro	Tyr		Asn	Ala	Ser	Gly		Tyr	His	Val	Thr		Asp	Cys		
			195					200					205		-		

												•					
CCA	AAC	TCT	TCC	ATA	GTC	TAT	GAG	GCA	GAT	ÄAC	CTG	ATC	CTA	CAC	GCA		6.71
Pro	Asn	•	Ser	Ile	Val	Tyr	"	Ala	Asp'	Asn	Leu		Leu	His	Ala		
		210			* •		215		•			220				'	
COTT	COT	mcc.	CTC	CCT	TGT	CTC	א יוויכי	מים מ	CCT	አእጥ	ama	አረጥ	7 C7	, TCC	TOC		719
		,			Cys												. 119
FIO	225	Cys	Val	0 برء	Cys	230	Hec		GL y	L SII	235	Der	AL 9	Cys	115		
				•						•		•	٠				
GTC	CAA	ATT	ACC	CCT	ACA	CTG	,TCA	GCC-	cca	AGC	CTC	GGA	GCA	GTC	ACG		1767
Val	Gln	Ile	Thr	Pro	Thr	Leu	Ser	Ala	Pro	Ser	Leu	Gly	Ala	Val	Thr	•	
240			•		245	1			.	250					255		•
		•				• •.											100
					GCC	-											815
Ala	Pro	Leu	Arg		Ala	Val	Asp	Tyr		Ala	Gly	Gly	Ala		Leu		
				260			•		265			•		270			
TGC	TCC	GCG	מידים	ተልሮ	GTA	GGZ	GÁC	GCG	тст	GGG	GCA	מידים	י. י	ጥጥር	дтъ		863
															Val		005
-,-			275	- 1 -		1		280	-7-	1			285				•
	•																
GGC	ÇAA	ATG	TTC	ACC	TAT'	AGĠ	CCT	CGC	CAĠ	CAC	GCT	ACG	GTG	CAG	ÅAC	·	911
Gly	Gln	Met	Phę	Thr	Tyr	Arg	Pro'	Arg	Gln	His	Ala	Thr	Val	Gln	Asn		
		290				•	295					300	, ,				
					· .			L									
					TAC												959
cys	305	cys	șer	тте	Tyr	ser 310	GIA	HIS	vaı	Inr	315	HIS	Arg	met	ATS	٠.	
	303		1.			310	-Ci				313						

(2) INFORMATION FOR SEQ ID NO: 50:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 319 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile Val Gly 20 25 30

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg Ala 35 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 50 55 60

Ile Pro Lys Ala Arg Gln Pro Thr Gly Arg Ser Trp Gly Gln Pro Gly 65 70 75 80

Tyr Pro Trp Pro Leu Tyr Ala Asn Glu Gly Leu Gly Trp Ala Gly Trp
85 90 95

Leu Leu Ser Pro Arg Gly Ser Arg Pro Asn Trp Gly Pro Asn Asp Pro
100 105 110

Arg Arg Lys Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys
115 120 125

Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly, Pro Ile 130 135 140

Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp
145
150
155
160
Cly Val Arg Thro Ala Thro Cly Arg Ley Dro Cly Cyc Con Dbs Con The

Gly Val Asn Tyr Ala Thr Gly Asn Leu'Pro Gly Cys Ser Phe Ser Ile
165 170 175

Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Val

Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp Cys Pro 195 200 205

Asn Ser Ser Ile Val Tyr Glu Ala Asp Asn Leu Ile Leu His Ala Pro 210 215 220

Gly Cys Val Pro Cys Val Met Thr Gly Asn Val Ser Arg Cys Trp Val 225 230 235 240

Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Leu Gly Ala Val Thr Ala 245 250 255

Pro Leu Arg Arg Ala Val Asp Tyr Leu Ala Gly Gly Ala Ala Leu Cys 260 265 270

Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu Val Gly 275 280 285

Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln Asn Cys 290 295 300

Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Arg Met Ala 305 310 315

- (2) INFORMATION FOR SEQ ID NO: 51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 959 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:

(B) CLONE: PC-3-8

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 3..959

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

							•				•			·. · · ·				
i	CC 2	ATG	AGC	ACG	AAT	CCT	AAA	CCT	CAA	AGA	AAA.	ACC	AAA	AGA i	AAC	ACC		47
1	' 1	Met	Ser	Thr	Asn	Pro	Lys	Pro	Gln	Arg	Lys	Thr	Lys	Arg	Asn	Thr	•	
•	•	1				5					, 10					15		· ' ·
				٠.	,		1			1								
	AAC	CGT	CGC	CCA	CAG	GAC	GTC	AAG	TTC	CCG	GGC	GGT	' GGI	CAG	ATC	GTT		95
	Asn	Arg	Arg	Pro	Gln	Asp	Val	Lys	Phe	Pro	Gly	Gly	Gly	Gln	Ile	Val		
		•			20					25		•		, .	30)		
			٠.	•		1			.'.						١.			
																CGC		143
	СТĀ	GIA	Val		Leu	Leu	Pro	Arg			Pro	Arg	Met		Val	Arg		
	•			, 35					40	•				45	,	•		
		7 CID	aab	יא א מי	a cam	maa		000		(12.2							•	201
																CAG Gln		191
	AIG	1111	50	nys	1111	261	Gru	55	361	GLII	PIO	Arg	60	•	Arg	GIII		•
			50						-	•		•						
	CCT	ATT	ccc	AAG	GCG	CGC	CAG	ccc	ACG	GGC	CGG	TCC	TGG	GGT	CAA	ccc		239
								,								Pro	1.	
		65		•		'	70			•		75	•	•		•	I:	:
			1 1					•	•			. '						•
	GGG	TAC	CCT	TGG	CCC	CTT	TAC	GCC	TAA	GAG	GGC	CTC	' GGG	TGG	GCA	GGG		287
	Gly	Tyr	Pro	Trp	Pro	Leu	Tyr	Ala	Asn	Glu	Gly	Leu	Gly	Trp	Ala	Gly	-	
	80					85		•			90					95		
						•												
													1			GAC		335
	Trp	Leu	Leu	Ser		Arg	GIY	Ser	Arg		Asn	Trp	GTA	Pro		Asp		
					100					105					110			
	ccc	CGG	CGN	א א א	TCG	ССТ	ייי מ מ	ידיתים	CCT	מממ	GTC		G እ T	ACC.	CTD	ACG		383
																Thr		303
		•••	••••	115		• 9			120	_,_			1101	125				
	•	•				-												
	TGC	GGA	TTC	GCC	GAT	CTC	ATG	GGG	TAC	ATC	CCG	CTC	GTA	GGC	GGC	CCC		431
	Cys	Gly	Phe	Ala	Asp	Leu	Met	Gly	Tyr	Ile	Pro	Leu	Val	Gly	Gly	Pro		
			130			•		135					140			-		
•					. •										•		-	
																GAG		479
	Val	-	Gly	Val	Ala	Arg		Leu	Ala	His	Gly	_	Arg	Val	Leu	Glu		
		145					150					155				•	•	
	C 2 C	000	CITI N	220	en a en	CC2	202	aaa	יחיתה	eren a	000	- ccm		m/cm	TITE C	TCT		
																Ser		527
	160	Gry	Vai	ASII	ıyı	165	1111	GLY	ASII	neu	170	_	Cys	561	FILE	175		
	200							•			_,,							
	ATC	TTT	ATT	CTT	GCT	CTT	CTC	TCG	TGT	CTG	ACC	GTT	CCG	GCC	TCT	GCA		575
																Ala		
					180				-	185					190			
														.				٠.
	GTT	CCC	TAC	CGA	AAT	GCC	TCT	GGG	ATT	TAT	CAT	GTT	ACC	AAT	GAT	TGC		623

Val	Pro	Туг	195	Asn	Ala	Ser	Gly ~	1le 200	Tyr	His	Val	Thr	Asn 205		Cys	1	
CCA Pro	AAC Asn	Ser 210	ser	ATA Ile	GTC Val	TAT Tyr	"GAG Glu 215	GCA Ala	GAT Asp	AAC Asn	CTG Leu	ATC Ile 220	CTA Leu	CAC	GCA Ala	• •	67:
CCT Pro	GGT Gly 225	TGC Cys	GTG Val	CCT	TGT Cys	GTC Val 230	ATG Met	ACA Thr	GGT Gly	AAT Asn	GTG Val 235	AGT Ser	AGA Arg	TGC Cys	TGG Trp		719
GTC Val 240	CAA Gln	ATT Ile	ACC Thr	CCT Pro	ACA Thr 245	CTG Leu	TCA Ser	GCC Ala	CCG Pro	AGC Ser 250	CTC Leu	GGA Gly	GCA Ala	GTC Val	ACG Thr' 255	•	767
GCT Ala	CCT Pro	CTT Leu	CGG Arg	AGA Arg 260	GCC Ala	GTT Val	GAC Asp	TAC Tyr	CTA Leu 265	Ala	GGA Gly	GGG Gly	GCT Ala	GCC Ala 270	CTC Leu		815
TGC Cys	TCC Ser	GCG Ala	TTA Leu 275	TAC Tyr	GTA Val	GGA Gly	GAC Asp	GCG Ala 280	TGT Cys	GGG Gly	GCA Ala	CTA Leu	TTC Phe 285	TTG Leu	GTA Val		863
GGC Gly	CAA Gln	ATG Met 290	TTC Phe	ACC Thr	TAT Tyr	AGG Arg	CCT Pro 295	CGC Arg	CAG Gln	CAC His	GCT Ala	ACG Thr 300	GTG Val	CAG Gln	AAC Asn		911
Cys	AAC Asn 305	TGT Cys	TCC Ser	ATT Ile	TAC Tyr	AGT Ser 310	GGC	CAT His	GTT Val	ACC Thr	GGC Gly 315	CAC His	CGG Arg	ATG Met	GCA Ala	1.0	959

- (2) INFORMATION FOR SEQ ID NO: 52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 319 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly 20 25 30

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg Ala
35 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 50 60

Ile Pro Lys Ala Arg Gln Pro Thr Gly Arg Ser Trp Gly Gln Pro Gly
65 70 75 80

- Tyr Pro Trp Pro Leu Tyr Ala Asn Glu Gly Leu Gly Trp Ala Gly Trp 90 : Leu Leu Ser Pro Arg Gly Ser Arg Pro Asn Trp Gly Pro Asn Asp Pro 100 105 Arg Arg Lys Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 120 125 Gly'Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly Pro Val 135 Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 150 155 Gly Val Asn Tyr Pro Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile 165 170 ' Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp Cys Pro 200 Asn Ser Ser Ile Val Tyr Glu Ala Asp Asn Leu Ile Leu His Ala Pro 215 220 Gly Cys Val Pro Cys Val Met Thr Gly Asn Val Ser Arg Cys Trp Val ° 235 230 Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Leu Gly Ala Val Thr Ala -245 Pro Leu Arg Arg Ala Val Asp Tyr Leu Ala Gly Gly Ala Ala Leu Cys 265 260 Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu Val Gly Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln Asn Cys 290 Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Arg Met Ala 310
- (2) INFORMATION FOR SEQ ID NO: 53:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 959 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO

- (iii) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE: (B) CLONE: PC C/E1
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..959
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

CCATGAGCAC	GAATCCTAAA	CCTCAAAGAA	AAACCAAAAG	AAACACCAAC	CGTCGCCCAC	60
AGGACGTCAA	GTTCCCGGGC	GGTGGTCAGA	TCGTTGGCGG	AGTTTACTTG	TTGCCGCGCA	120
GGGGCCCTAG	GATGGGTGTG	CGCGCGACTC	GGAAGACTTC	GGAACGGTCG	CAACCCCGTG	180
GACGGCGTCA	GCCTATTCCC	AAGGCGCGCC	AGCCCACGGG	CCGGTCCTGG	GGTCAACCCG	240
GGTACCCTTG	GCCCCTTTAC	GCCAATGAGG	GCCTCGGGTG	GGCAGGGTGG	CTGCTCTCCC	300
	TCGGCCTAAT		•			360
	CGATACCCTA	i i			100	420
1 1	CRTTGGGGGC	C		i .		480
	CTATSCAACA			1 .		- 540
	GTGTCTGACC					600
·	TACCAATGAT			i i		660
	ACCTGGTTGC				**	720
	CCCTACACTG					780
•	CTACCTAGCG	4				840
	ACTATTCTTG			•		900
CGGTGCAGAA	CTGCAACTGT	TCCATTTACA	GTGGCCATGT	TACCGGCCAC	CGGATGGCA	959

- (2) INFORMATION FOR SEQ ID NO: 54:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 319 amino acids(B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15

					•	1					•		٠.		•
Arg	Arg	Pro	Gln 20	Asp	Val	Lys	Phe	Pro 25	Gly	, G∄À	Gly	Gln	Ile 30	Val	Gly
Gly	Val	Tyr ,35	Leu	Leu	Pro	Arg	Arg 40	Gly	Pro	Arg	Met	Gly '45	Val	Arg	Ala
Thr	Arg 50	Lys	Thr	Ser	Glu	Arg 55	Ser	Gln	Рто	Arg	Gly 60	Arg	Arg	Gln	Pro
Ile 65	Pro	Ļys :	Ala	Arg	Gln 70		Thr	Gly		Ser 75	Trp	Gly	Gln	Pro	Gly 80
Tyr	Pro	Trp	Pro	Leu 85		Ala	Asn	Glu	Gly 90	Leu	Gly	Trp	Ala	Gly 95	Trp
Leu	Leu	Ser	Pro 100	Arg	Gly	Ser	Arg	Pro 105	Asn	Ţŗp	Gly	Pro	Asn 110	Asp	Pro
Arg	Arg	Lys 115	Ser	Arg	Asn	Leu	Gly 120	Lys	Val	Ile	Asp	Thr 125	Leu	Thr	Cys
Gly	Phe 130	Ala	Asp	Leu	Met	Gly 135	Tyr	Ile	Pro	Leu	Val 140		Gly	Pro	Val
Gly 145	Gly	Val	Ala	Arg	Ala 150	Leu	Ala	His	Gly	Val 155	Arg	Vaļ	Leu	Glu	Asp 160
Gly	Val.	Asn	Tyr	Pro 165	Thr	Gly	Asn	Leu	Pro 170		Cys	Ser		Ser 175	
Phe	Ile	Leu	Ala 180	Leu	Leu	Ser	Cys	Leu 185	Thr	Val	Pro	Ala	Ser 190	Ala	Val ·
Pro	Tyr	Arg 195	Asn	Ala	Ser	Gly	lle 200	Tyr	His	Val	Thr	Asn 205	Asp	Cys	Pro
Asn	Ser 210	Ser	Ile	Val	Tyr	Glu' 215	'Ala	Asp	Asn	Leu	Ile 220	Leu	His	Ala	Pro
Gly 225	Cys	Val	Pro	Cys	Val 230	Met	Thr	Gly	Asn	Val 235	Ser	Arg	Cys	Trp	Val 240
Gln	Iľe	Thr	Pro	Thr 245	Leu	Ser	Ala ,	Pro	Ser 250	Leu	Gly	Ala	Val	Thr 255	Ala
Pro	Leu	Arg	Arg 260	Ala	Val	Asp	Tyr	Leu 265	Ala	Gly	Gly	Ala	Ala 270	Leu	CÀè
Ser	Ala	Leu 275	Tyr	Val	Gly	Asp	Ala 280	Cys	Gly	Ala	Leu	Phe 285	Leu	Val	Gly
Gln	Met 290	Phe	Thr	Tyr	Arg	Pro. 295	Arg	Gln	His	Ala	Thr 300	Val	Gln	Asn	Cys
naA 305	Cys	Ser	Ile	Tyr	Ser 310	Gly	His	Val	Thr	Gly 315	His	Arg	Met	Ala	

(2) INFORMATION FOR SEQ ID NO:	55:
--------------------------------	-----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 354 base pairs
 - (B) TYPE: nucleic acid.
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: PC-1-37
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..354
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

ACCACCGGAG CTTCTATCAC ATACTCCACT TACGGCAAGT TCCTTGCTGA TGGAGGGTGT 60

TCAGGCGGGG CGCATGACGT GATCATATGC GACGAGTGCC ATTCCCAGGA CGCCACCACC 120

ATTCTTGGGA TAGGCACTGT CCTTGACCAG GCAGAGACGG CTGGAGCTAG GCTCGTCGTC 180

TTGGCCACGG NCACCCCTCC CGGCAGTGTG ACAACGCCCC ACCCCAACAT CGAGGAAGTG 240

GCCCTGCCTC AGGAGGGGA GGTTCCCTTC TACGGCAGAG CCATTCCCCT TGCTTTTATA 300

AAGGGTGGTA GGCATCTCAT CTTCTGCCAT TCCAAGAAAA ATTGTGATGA ACTC 354

- (2) INFORMATION FOR SEQ ID NO: 56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 118 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala

1 10 15

Asp Gly Gly Cys Ser Gly Gly Ala His Asp Val Ile Ile Cys Asp Glu 20 25 30

c	ys His	Ser 35	Gln	Asp	Ala	Thr	Thr 40	Ile	Leu	Gly	Ile	Gl _, у 45	Thr	Val	Leu	,
.	sp Gln 50	Ala	Glu	Thr	Ala	Gly 55	Ala	Arg	Leu	Val	Val 60	Leu	Ala	Thr	Xaa	
	hr Pro	Pro	Gly		Val	Thr	Thr	Pro	His	Pro 75	Asn	Ile	Glu	Glu	Val 80	
¦ A	la Leu	Pro	Gln	Glu 85	Gly '	Glu	Val	-	Phe 90	Tyr	Gly	Àrg	Ala	Ile 95	Pro	•
Ļ	eu Ala	Phe	Ile 100	Lys	Gly	Gly	Arg	His 105	Leu	Ile	Phe	Cys	His 110	Ser	Lys	
. L	ys Asn	Cys 115	Asp	Glu	Leu	· 1			٠.			•	•			
	(B		E CHI NGTH: PE: 1 RANDI	ARACT : 354 nucle EDNES	TERIS L bas Lic a SS: S	STICS SE PA ACID SING	S: airs		-			•				•
(i	i) MOL	ECULI	E TYI	PE: 0	DNA'		•									· ·
(ii	i) HYP	OTHE:	ricai	: , NC) '				. 1	1 .					•	
(ii	i) ANT	I-SEI	NSE:	NO								•	-	•	٠	
(vi	i) IMM (B	EDIA:				,				•						•
, (i		TURE) NAI) LO	ME/KI			54						•		٠.		·
(x	i) SEQ	UENCI	DES	CRIE	PTION	1: SI	EQ II	ON C	: 57	•	٠					
ACCACC	GGAG C	TTCT	ATCAC	C ATA	CTC	CACT	TAC	GCA)	AGT :	rcct:	rgcto	GA TO	GAG	GTGT	r	60
TCAGGC	GGCG C	GTAT	GACG	GA7	CAT	ATGC	GAC	BAGT	GCC 1	ATTC	CCAGO	GA CO	CCA	CCAC	2	120
ATTCTT	GGGA T	AGGC	ACTGI	CCI	TGAC	CCAG	GCA	BAGA	CGG (CTGG	AGCT	AG GO	CTCG:	CGT	2	180
TTGGNC	ACGG N	CACC	CCTC	c ccc	CAG	rgtg	ACA	ACGC	ccc 2	ACCC	CAAC	AT CO	BAGG!	AAGT	3	240
GCCCTG	CCTC A	GGAG	3GGG <i>I</i>	A GGT	TCC	CTTC	TAC	GNA	GAG (CCAT?	rccc	T TO	CTT	TAT	Ą	300
AAGGGT	GGTA G	GCAT	CTCAT	r cri	CTGC	CCAT	TCC	AAGAI	AAA I	AATG:	rgato	SA AG	CTT			354
(2) IN	FORMAT	ION I	FOR S	SEQ I	D NO	D: 58	B :									.*

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 133 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala

5 10 15

Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Val Ile Ile Cys Asp Glu 20 25 30

Cys His Ser Gln Asp Ala Thr Thr Ile Leu Gly Ile Gly Thr Val Leu 35 40 45

Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Xaa Thr Xaa 50 55 60

Thr Pro Pro Gly Ser Val Thr Thr Pro His Pro Asn Ile Glu Glu Val 65 70 75 80

Ala Leu Pro Gln Glu Gly Glu Val Pro Phe Tyr Xaa Arg Ala Ile Pro 85 90 95

Leu Ala Phe Ile Lys Gly Gly Arg His Leu Ile Phe Cys His Ser Lys
100 105 110

Lys Lys Cys Asp Glu Leu Arg Gln Ala Thr Asp Gln Pro Gly Arg Glu 115 120 125

Arg Pro Trp Glu Tyr

- (2) INFORMATION FOR SEQ ID NO: 59:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 357 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: PC-1-37
 - (ix) FEATURE:
 (A) NAME/KEY: CDS

(B) LOCATION: 1.:357

	•	*1				
(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:	59:

ATGGCTTTCA TGTCTCCGGA CTTGGAGGTC ATTACCANCA CTTGGGTTCT GGTGGGGGGC 60
GTTGTGGCGA CCCTGNCGNC CTACTGCTTG ACGGTGGGTT CGGTAGCCAT AGTCGGTAGG 120
ATCATCCTCT CTGGGAAACC TGCCATCATT NCCGATAGGG AGGTATTATA CCAGCAATTT 180
GATGAGATGG AGGAGTGCTC GGCCTCGTTG CCCTATATGG ACGAAACACG TNCCATTGCC 240
GGACAATTCA AAGAGAAAGT GCTCGGCTTC ATCAGCACGA CCGGCCAGAA GGCTGAAACT 300
CTGAAGCCGG CAGCCACGTC TGTGTGGAAC AAGGCTGATC AGTTCTGGNC CACATAC 357

(2) INFORMATION FOR SEQ ID NO: 60:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 128 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

Met Ala Phe Met Ser Pro Asp Leu Glu Val Ile Thr Xaa Thr Trp Val 1 5 10 15

Leu Val Gly Gly Val Val Ala Thr Leu Xaa Xaa Tyr Cys Leu Thr Val 20 25 30

Gly Ser Val Ala Ile Val Gly Arg Ile Ile Leu Ser Gly Lys Pro Ala 35 40 45

Ile Ile Xaa Asp Arg Glu Val Leu Tyr Gln Gln Phe Asp Glu Met Glu 50 55 60

Glu Cys Ser Ala Ser Leu Pro Tyr Met Asp Glu Thr Arg Xaa Ile Ala 65 70 75 80

Gly Gln Phe Lys Glu Lys Val Leu Gly Phe Ile Ser Thr Thr Gly Gln 85 90 95

Lys Ala Glu Thr Leu Lys Pro Ala Ala Thr Ser Val Trp Asn Lys Ala 100 105 110

Asp Gln Phe Trp Xaa Thr Tyr Met Trp Asn Phe Ile Ser Gly Ile Gln 115 120 125

(2) INFORMATION FOR SEQ ID NO: 61:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 357 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE: (B) CLONE: PC-1-48
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..357
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

ATGGCTTGCA TGTCTGCGGA CCTGGAGGTC ATTACCANCA CTTGGGTTCT GGTGGGGGGC 60
GTTGTGGCGN CCCTGGCGGC CTACTGCTTG ACGGTGGGTT CGGTAGCCAT AGTCGGTAGG 120
ATCATCCTCT CTGGGAAACC TGCCATCATT CCCGATAGGG AGGCATTATA CCANCAATTT, 180
GATGAGATGG AGGAGTGCTC GGCCTCGTTG CCCTATATGG ACGAGACACG TGCCATTGCC 240
GGACAATTCA AAGAGAAAGT GCTCGGCTTC ATCAGCACGA CCGGCCAGAA GGCTGAAACT 300
CTGAAGCCGG CAGCCACGTC TGTGTGGAAC AAGGCTGANC AGTTCTGGGC CACATAC 357

- (2) INFORMATION FOR SEQ ID NO: 62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 128 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

Met Ala Cys Met Ser Ala Asp Leu Glu Val Ile Thr Xaa Thr Trp Val 1 5 10 15

Leu Val Gly Gly Val Val Ala Xaa Leu Ala Ala Tyr Cys Leu Thr Val 20 25 30

Gly Ser Val Ala Ile Val Gly Arg Ile Ile Leu Ser Gly Lys Pro Ala 35 40 45

Ile Ile Pro Asp Arg Glu Ala Leu Tyr Xaa Gln Phe Asp Glu Met Glu 50 55 60

Glu Cys Ser Ala Ser Leu Pro Tyr Met Asp Glu Thr Arg Ala Ile Ala 75 70 Gly Gln Phe Lys Glu Lys Val Leu Gly Phe Ile Ser Thr Thr Gly Gln Lys Ala Glu Thr Leu Lys Pro Ala Ala Thr Ser Val Trp Asn Lys Ala 105 Xaa Gln Phe Trp Ala Thr Tyr Met Trp Asn Phe Ile Ser Gly Ile Gln 120 125 115

- (2) INFORMATION FOR SEQ ID NO: 63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - '(A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr161".
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

ACCGGAGGCC AGGAGAGTGA TCTCCTCC

28

- (2) INFORMATION FOR SEQ ID NO: 64:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: YES
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr162"

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:
GGGCTGCTCT ATCCTCATCG ACGCCATC
 (2) INFORMATION FOR SEQ ID NO: 65:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 28 base pairs
           (B) TYPE: nucleic acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: DNA (genomic)
  (iii) HYPOTHETICAL: YES
   (iii) ANTI-SENSE: NO
    (ix) FEATURE:
           (A) NAME/KEY: misc_feature
           (B) LOCATION: 1..28
           (D) OTHER INFORMATION: /standard_name= "HCV' Primer
                 HCPr163"
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:
GCCAGAGGCT CGGAAGGCGA TCAGCGCT
                                                                       2.8
(2) INFORMATION FOR SEQ ID NO: 66:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 28 base pairs
          (B) TYPE: nucleic acid
          (C) STRANDEDNESS: single
         (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: DNA (genomic)
   (iii) HYPOTHETICAL: YES
   (iii) ANTI-SENSE: YES
    (ix) FEATURE:
          (A) NAME/KEY: misc feature
          (B) LOCATION: 1..28
          (D) OTHER INFORMATION: /standard_name= "HCV Primer
                 HCPr164"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:
GAGCTGCTCT GTCCTCCTCG ACGCCGCA
                                                                        28
(2) INFORMATION FOR SEQ ID NO: 67:
```

(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			
(ii)	MOLECULE TYPE: DNA (genomic)		
' (iii)	HYPOTHETICAL: YES		1	
(iii)	ANTI-SENSE: NO			•
(ix)	FEATURE:	•	•	
1	(A) NAME/KEY: misc_feature			
•	(B) LOCATION: 128			
	(D) OTHER INFORMATION: //st	andard_name= "HCV	Primer	•
	HCPr23"	2 L		•
	•			
/-+= \	CROVENICE PROCEDITION OF A	D NO. 67	•	•
(X1)	SEQUENCE DESCRIPTION: SEQ I	D NO: 67:		
CTCATGGG	GT ACATTCCGCT	,	•	20
CICAIOOC	, , ,			20
(2) INFO	RMATION FOR SEQ ID NO: 68:			
(3)	SEQUENCE CHARACTERISTICS:			1.1
. (=)	(A) LENGTH: 27 base pairs			
	(B) TYPE: nucleic acid	· 1	•	•
	(C) STRANDEDNESS: single			•
	(D) TOPOLOGY: linear			
(ii)	MOLECULE TYPE: DNA (genomic)		
(iii)	HYPOTHETICAL: YES	0		
(222)		• •		•
(111)	ANTI-SENSE: YES			•
(ix)	FEATURE:	•		
	(A) NAME/KEY: misc_feature			
•	(B) LOCATION: 128			•
	(D) OTHER INFORMATION: /st	andard_name= "HCV	Primer	•
	HCPr54"			
(xi)	SEQUENCE DESCRIPTION: SEQ I	D NO: 68:		
CTATTACC	AG TTCATCATCA TATCCCA			27
(2) INFO	ORMATION FOR SEQ ID NO: 69:			
(i)	SEQUENCE CHARACTERISTICS:			•
	(A) LENGTH: 24 base pairs			· · · · · · · · · · · · · · · · · · ·
	(B) TYPE: nucleic acid			
	(C) STRANDEDNESS: single			
	(D) TOPOLOGY: linear	•	•	
	MOLECULE TYPE: DNA (genomic			-
(44)	MINISTER TVDE: INA (MANAMIA			

- (iii) HYPOTHETICAL: YES
- (iii) ANTI-SENSE: NO
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1.1.28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr116"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

TTTTAAATAC ATCATGRCTG YATG

2

- (2) INFORMATION FOR SEQ ID NO: 70:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear.
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: YES
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr66"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:

CTATTATTGT ATCCCRCTGA TGAARTTCCA CAT

3.3

- (2) INFORMATION FOR SEQ ID NO: 71:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: YES
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature

- (B) LOCATION: 1..28
 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr118:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:

ACTAGTCGAC TAYTGATCCR CTATRWARTT CCACAT

36

- (2) 'INFORMATION FOR SEQ ID NO: 72:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE;
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..28
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:

TTTTAAATAC ATCGCRCTGC ATGCA.

25

- (2) INFORMATION FOR SEQ ID NO: 73:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: YES
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr119:
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

ACTAGTCGAC TARTTGCATA GCCKRTTCAT CCAYTG

36

	•	•
(2) INFORMATION FOR SEQ ID NO: 74:	· · · · · · · · · · · · · · · · · · ·	•
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 34 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear	•	
	· · · · · · · · · · · · · · · · · · ·	
(ii) MOLECULE TYPE: DNA (genomic)		
(iii) HYPOTHETICAL: YES		
(iii) ANTI-SENSE: NO		
/ \		
(ix) FEATURE:		•
(A) NAME/KEY: misc_feature	1	
(B) LOCATION: 128		
(D) OTHER INFORMATION: /star	ndard_name= "HCV Primer	
HCPr131:		• •
(bi) SEQUENCE DESCRIPTION SEQ ID	270 - 74	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 74:	ŧ
GGAATTCTAG ACCTCTGGGA YGARAYTGGA ARTG		. 34
(2) INFORMATION FOR SEQ ID NO: 75:		1.5
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 31 base pairs	1	,
(B) TYPE: nucleic acid	× 1	•
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: DNA (genomic)		
(iii) HYPOTHETICAL: YES		
,,,,,	•	
(iii) ANTI-SENSE: NO		
(ix) FEATURE:		
(A) NAME/KEY: misc_feature		
(B) LOCATION: 128		
(D) OTHER INFORMATION: /star HCPr130:	ndard_name= "HCV Primer	
	•	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 75:	
GGAATTCTAG ACGCTAYCAR GCACGTTGYG C		3:

(i) SEQUENCE CHARACTERISTICS:

(2) INFORMATION FOR SEQ ID NO: 76:

(A) LENGTH: 23 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear	*-	
•		•
(ii) MOLECULE TYPE: DNA (genomic)	1	
1		
(iii) HYPOTHETICAL: YES	·	
(111)	·- 1	
(iii) ANTI-SENSE: NO	F. Company	
i		
' , , , <u> </u>		
(ix) FEATURE:		
(A) NAME/KEY: misc_feature		
(B) LOCATION: 128	and and an array budget	
(D) OTHER INFORMATION: /sta	indard_name= "HCV Primer	
HCPr134:		
· · · · · · · · · · · · · · · · · · ·		
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO. 76.	
(XI) SEQUENCE DESCRIPTION: SEQ ID) NO: 76:	
CATATAGATG CCCACTTCCT ATC		2
CATATAGATG ECCACTICCT ATC		4
(2) INFORMATION FOR SEQ ID NO: 77:		
(2) INFORMATION FOR BEQ 1D NO. 77.		
(i) SEQUENCE CHARACTERISTICS:		•
(A) LENGTH: 16 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single	· · · · · · · · · · · · · · · · · · ·	
(D) TOPOLOGY: linear	t-	
1		
(ii) MOLECULE TYPE: DNA (genomic)	r en en en en en en en en en en en en en	
(iii) HYPOTHETICAL: YES		
(iii) ANTI-SENSE: YES	· · · · · · · · · · · · · · · · · · ·	
•	•	
(ix) FEATURE:		
(A) NAME/KEY: misc_feature		
(B) LOCATION: 128	and and arrow budget	
(D) OTHER INFORMATION: /sta	indard_name= "HCV Primer	
HCPr3:		
1		
(xi) SEQUENCE DESCRIPTION: SEQ ID) NO: 77:	
(XI) DECOUNCE DESCRIPTION. DEG ID		
GTGTGCCAGG ACCATC		1
		_
(2) INFORMATION FOR SEQ ID NO: 78:	·	
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 20 base pairs		٠.
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		

(ii) MOLECULE TYPE: DNA (genomic)

```
(iii) HYPOTHETICAL: YES
```

(iii) ANTI-SENSE; YES

(ix)' FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 1...28
- (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr4:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:

GACATGCATG TCATGATGTA

20

- (2) INFORMATION FOR SEQ ID NO: 79:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr152:
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

TACGCCTCTT CTATATCGGT TGGGGCCTG

29

- (2) INFORMATION FOR SEQ ID NO: 80:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs(B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: NO

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- , (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr52:
- (xi) SEQUENCE DESCRIPTION: SEQ ID, NO: 80:

ATGTTGGGTA AGGTCATCGA TACCCT

+ 26

- (2) INFORMATION FOR SEQ ID NO: 81:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear:
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE: '
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr41:
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:

CCCGGGAGGT CTCGTAGACC GTGCA

25

- (2) INFORMATION FOR SEQ ID NO: 82:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: YES
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION: 1..28

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:

29

- (2) INFORMATION FOR SEQ ID NO: 83:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 192 to 203 of the V1 region of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:
 Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu
 1 5 10
- (2) INFORMATION FOR SEQ ID NO: 84:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 192 to 203 of the V1 region of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 85:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (viii) POSITION IN PROTEIN: 1
- (B) MAP POSITION: positions 213 to 223 of the V2 region of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

Val Tyr Glu Ala Asp Asp Val Ile Leu His Thr
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 86:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 213 to 233 of the V2 region of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

Val Tyr Glu Ala Asp Asn Leu Ile Leu His Ala 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 87:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 230 to 242 of the V3 region of HCV type 3

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

Val Gln Asp Gly Asn Thr Ser Thr Cys Trp Thr Pro Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 88:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 230 to 242 of the V3 region of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

Val Met Thr Gly Asn Val Ser Arg Cys Trp Val Gln Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 89:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 248 to 257 of the V4 region of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

Val Arg Tyr Val Gly Ala Thr Thr Ala Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 90:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH; 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 248 to 257 of the V4 region of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

Ala Pro Ser Leu Gly Ala Val Thr Ala Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 91:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amind acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 294 to 303 of the V5 region of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:

Arg Pro Arg Arg His Gln Thr Val Gln Thr 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 92:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 294 to 303 of the V5 region of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:

Arg Pro Arg Gln His Ala Thr Val Gln Asn 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 93:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
 - (B) MAP POSITION: positions 70 to 78 of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:

Gln Pro Thr Gly Arg Ser Trp Gly Gln 1

- (2) INFORMATION FOR SEQ ID NO: 94:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO " ...
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: BR33 and BR36
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 230 to 237 of the V3 region of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:

Val Gln Asp Gly Asn Thr Ser Thr 1

- (2) INFORMATION FOR SEQ ID NO: 95:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
- (C) INDIVIDUAL ISOLATE: HD10 |
- (viii) POSITION'IN PROTEIN:
- (B) MAP POSITION: positions 230 to 237 of the V3 region of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

Val Gln Asp Gly Asn Thr Ser Ala

- (2) INFORMATION FOR SEQ ID NO: 96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - '(ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: BR36
- (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 248 to 257 of the V4 region of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:

Val Lys Tyr Val Gly Ala Thr Thr Ala Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 97:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: BR36

- (viii) POSITION IN GENOME:
 - (B) MAP POSITION: Positions 1688 to 1707 of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

Leu Gly Gly Lys Pro Ala Ile Val Pro Asp Lys Glu Val Leu Tyr Gln

10

Gln Tyr Asp Glu 20

- (2) INFORMATION FOR SEQ ID NO: 98:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid,
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 (C) INDIVIDUAL ISOLATE: HD10
 - (viii), POSITION IN GENOME:
 - (B) MAP POSITION: positions 1688 to 1707 of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

Leu Gly Gly Lys Pro Ala Leu Val Pro Asp Lys Glu Val Leu Tyr Gln

1 10 15

Gln Tyr Asp Glu 20

- (2) INFORMATION FOR SEQ ID NO: 99:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1712 to 1731
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His Gln 1 5 10 15

Phe Lys Glu Lys

- (2) INFORMATION FOR SEQ ID NO: 100:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: BR36
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1724 to 1743 of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:

Ile Ala His Gln Phe Lys Glu Lys Val Leu Gly Leu Gln Arg Ala

Thr Gln Gln Gln 20

- (2) INFORMATION FOR SEQ ID NO: 101:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: HD10
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1724 to 1743 of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:

Ile Ala His Gln Phe Lys Glu Lys Ile Leu Gly Leu Leu Gln Arg Ala
1 5 10 15

Thr Gln Gln Gln 20

- (2) INFORMATION FOR SEQ ID NO: 102:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1688 to 1707 of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:

Leu Ser Gly Lys Pro Ala Ile Ile Pro Asp Arg Glu Ala Leu Tyr Gln

5 10 15

Gln Phe, Asp Glu 20

- (2) INFORMATION FOR SEQ ID NO: 103:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1688 to 1707
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

Leu Ser Gly Lys Pro Ala Ile Ile Pro Asp Arg Glu Val Leu Tyr Gln

5 10 15

Gln Phe Asp Glu 20

- (2) INFORMATION FOR SEQ ID NO: 104:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (viii) POSITION IN GENOME:
 - (B) MAP POSITION: position 1712 to 1731 of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:

Ser Ala Ser Leu Pro Tyr Met Asp Glu Thr Arg Ala Ile Ala Gly Gln

1 10 15

Phe Lys Glu Lys

- (2) INFORMATION FOR SEQ ID NO: 105:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1724 to 1743 of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:

Ile Ala Gly Gln Phe Lys Glu Lys Val Leu Gly Phe Ile Ser Thr Thr 1 5 10 15

Gly Gln Lys Ala 20

- (2) INFORMATION FOR SEQ ID NO: 106:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO

	170		FC1/EP94/01323
(iii) ANTI-SENSE: NO			· .
	je.		' 1
(vii) IMMEDIATE SOURCE:			
(B) CLONE: GB48-	" 3-10	· · · · · · · · · · · · · · · · · · ·	
•	,		
(ix) FEATURE:			
(A) NAME/KEY: CD:	5		•
(B) LOCATION: 2.	.340 ' '		
(xi) SEQUENCE DESCRIPTI	1		+ f
C TCC ACT GTA ACC GAA AAG G	AC ATC AGG GTC G	AG GAG GAG GMG ma	_
Ser Thr Val Thr Glu Lys A	sp Ile Arg Val G	lu Glu Glu Val Tv	T 46
- 5	10	i	
CAG TGT TGT GAC CTG GAG CCC	GAA GCC CGC ANG	CCA AMM AGE	•
Gln Cys Cys Asp Leu Glu Pro	Glu Ala Arg Lys	Ala Ile Thr Ala	CTA 94
20 1	25	30	ueu
ACA GAG AGA CTC TAC GTG GGC	GGT CCC amc ca-		
Thr Glu Arg Leu Tyr Val Gly	Gly Pro Met His	AAC AGC AAG GGA (AC 142
35	40	45	Asp
CTG TGC GGG TAT CGC AGA TGT			
CTG TGC GGG TAT CGC AGA TGT Leu Cys Gly Tyr Arg Arg Cys	Arg Ala Sar Clu	GTC TAC ACC ACC	AGC 190
50	55	tal Tyr Thr Thr S	Ger
TTC GGG AAC AGA GTG AGA			
TTC GGG AAC ACA CTG ACG TGC Phe Gly Asn Thr Leu Thr Cyc	TAC CTC AAA GCC	TCA GCC GCT ATC A	AA 238
Phe Gly Asn Thr Leu Thr Cys 65 70	Tyr Leu Lys Ala	Ser Ala Ala Ile L 75	ys
CCC CCC		4 To 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
GCG GCG GGG CTG AGA GAC TGC	ACC ATG TTG GTC	TGT GGT GAT GAC C	TG 286
Ala Ala Gly Leu Arg Asp Cys 80 85	Thr Met Leu Val	Cys Gly Asp Asp L	eu
•	90		95
GTT GTC ATC GCT GAG AGC GAT Val Val Ile Ala Glu sor Agn	GGC GTA GAG GAG	GAC AAA CGA CCC C	TC 334
Val Val Ile Ala Glu Ser Asp 100	GIY VAI GIU Glu ;	Asp Lys Arg Pro L	eu
	105	110	
GGA GCC	• .		340
Gly Ala			. 540
	•		
(0)			•
(2) INFORMATION FOR SEQ ID NO	D: 107:		•
(i) SEQUENCE CHARACTE	Temros		
(A) LENGTH: 113 am	ino acids		. *.
4-1			

- (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

Ser Thr Val Thr Glu Lys Asp Ile Arg Val Glu Glu Glu Val Tyr Gln

1 5 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Ala Ile Thr Ala Leu Thr 25 Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Lys Gly Asp Leu 40 Cys Gly Tyr Arg Arg Cys Ard Ala Ser Gly Wal Tyr Thr Thr Ser Phe 55 Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile Lys Ala 70 Ala Gly Leu Arg Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val 90 Val Ile Ala Glu Ser Asp Gly Val Glu Glu Asp Lys Arg Pro Leu Gly 100 | 105 Ala (2) INFORMATION FOR SEQ ID NO: 108: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 340 base pairs (B) TYPE: nucleic acid ' (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vii) IMMEDIATE SOURCE: (B) CLONE: GB116-3-5 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2..340 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108: C TCC ACT GTA ACC GAA AAG GAC ATC AGG GTC GAG GAG GAG GTA TAT Ser Thr Val Thr Glu Lys Asp Ile Arg Val Glu Glu Glu Val Tyr CAG TGT TGT GAC CTG GAG CCC GAG GCC CGC AGA GCA ATT ACC GCC CTA Gln Cys Cys Asp Leu Glu Pro Glu Ala Arg Arg Ala Ile Thr Ala Leu ACA GAG AGA CTC TAC GTG GGC GGT CCC ATG CAT AAC AGC AGG GGA GAC 142 Thr Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Arg Gly Asp

CTG Leu	TGC Cys	GGG Glv	TAT	CGC Arg	AGA Ara	TGC	CGT	GCG	AGC	GGC	GTC	TAC	ACC	ACÇ Thr	AGC		190
	.	50	-,3-	3	• 5	, cy c	55	,n.L.	,	GIĀ	vai	60	inr	Inr	ser		, ,
TTC	GGG	AAC	ACA	CTG	ACG	TGC	TAT	CTC	AAA	GCC	TCA	GCC	GCT	ATC.	AGA		238
Phe	Gly 65	Asn	Thr	Leu	Thr	Cys , 70	Tyr	Leu	Lys	Ala	Ser 75	Ala	Ala	Ile	Arg		
GCG	GCG	GGG	CTG	AGA	GAC	TGC	ACC	ATG	TTG	GTC	TGT	GGT	GAT	'GAC	CTG		286
Ala 80	Ala	Gly	Leu	Arg	Asp	Cys	Thr	Met	Leu	Val	Cys	Gly	Asp	Asp	Leu		
, PO		, ,			85					90					95.		
GTC	GTC	ATT	GCT	GAA	AGC	GAT	GGC	GTA	GAĠ	GAG	GAC	AAA	CGA	GCC	CTC	•	334
Val	Val	Ile	Ala	Glu 100	Ser	Asp	ĠĮĄ	Val		Glu	Asp	Lys	Arg	Ala	Leu		
1 .				100					105					110			
GGA														ı	,		340
Gly	Ата						ı.										

- (2) INFORMATION FOR SEQ ID NO: 109:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

Ser Thr Val Thr Glu Lys Asp Ile Arg Val Glu Glu Glu Val Tyr Gln
1 5 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Arg Ala Ile Thr Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Arg Gly Asp Leu
35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile Arg Ala 65 70 75 80

Ala Gly Leu Arg Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val
85 90 95

Val Ile Ala Glu Ser Asp Gly Val Glu Glu Asp Lys Arg Ala Leu Gly
100 105 110

Ala

(2) INFORMATION FOR SEQ ID NO: 110:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 340 base pairs(B) TYPE: nucleic acid

			(c) s	TRAN	DEDN OGY:	ESS:	sin			•					•	•	
		(ii) MO	LECU	LE T	YPE:	cDN	A,				ŧ				·		
	ļ · ,	(iii (iii		1 2		AL: I			a e				•	, ,,	I			
	' .			١.	•	•	•) ,			,				• .
	ı,	(vii				SOUR(3-8										
		(ix	(2		AME/I	KEY:			, , , , , , , , , , , , , , , , , , ,		•					,	· ·	
		(x i)) sė	QUEN	CE DI	ESCR:	IPTI	ON:	SEQ :	ID N): <u>1</u> :	10:		•	ŧ			
		CC A(er T)								rg Va					al T		ŀ·	46
١.		TGT Cys														CTA Leu	•	94
		GAG Glu																142
		TGC Cys																190
		GGG Gly 65																238
		TCA Ser																286
		GTC Val																334
		GTC Val																340

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:

Ser Thr Val Thr Glu Lys Asp Ile Arg Val Glu Glu Glu Val Tyr Gln

1 , 5 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Thr Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Lys Gly Asp Leu
35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 '55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile Arg Ala 65 70 75 80

Ser Gly Leu Arg Asp Cys Thr Met Leu Val Tyr Gly Asp Asp Leu Val 85 90 95

Val Ile Ala Glu Ser Asp Gly Val Glu Glu Asp Lys Arg Ala Leu Gly

Val

- (2) INFORMATION FOR SEQ ID NO: 112:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO

 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..340
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

C TCC ACT GTA ACC GAA AAG GAC ATC AGG GTC GAG GAG GAG GTG TAT

c.	o~ 1701	, h = 77	- J - 171	h~ @	1 7.	us A	Sm. T	י ה	37.	.1 a	·	· · · · · · · ·		o i m		1	
50	1	ar v	al T	ur G.	5	ys mu	sp I	IE A		ar G. 19	ru G.	Iu G.	iu v	a1 1			
			GAC														94
Gln	Cys	Cys	Asp	Leu	Glu	Pro	Glu	Ala	Arg	Lys	Ala	Ile	Thr	Ala	Leu	· .	
	•	ı		20					25			•		30			
ACA	GAG	AGA	CTC	TAT	GTG	GG¢	GGT	CCC	AŢG	ÇAT	AAC	AGC	AAG	GGA	GAC	•	142
			Leu						,								•
	t .		3,5		•		r .	40	. 1				45		_		F
CTG	TGT	GGG	TAT	CGC	AGA	TGC	cġc	GCA	AGC	GGC	GTC	TAC	ACC	ACC	AGC,		190
			Tyr			•									,		
		50		;	J	1	55			2	,	60			1		
TTC	GGG	AAC	ACA.	CTG	ACG	TGC	TAC	CTC	AAA	GCC	TCA	GCC	GCT	ATC	AGA		238
Phe	Gly	Asn	Thr	Leu	Thr	Cys	Tyr	Leu	Lys	Ala	Ser	Ala	Ala	Ile	Arg	•	
	65			1		70	1.1			1.	75						•
GCG	GCG	GGG	CTG	AGA	GAC	TGC	ACC-	ATG	TTG	GTC	TGT	GGT	GAT	GAC	CTG		286
			Leu													٠	
80					. 8:5:	• •			•	, 90	-	-		-	95		
GTC	GTC	ATC	GCT	GAG	AGC	GAT	GGC	GTT	GAG	GAG	GAC	. AAA	CGA	GCC	СТС		334
			Ala														
			1	100			2	4	105					110			
			1						•			,				$\mathbf{r}_{i},\mathbf{t}_{j}$	
GGA	GCC		•								•		٠.				340
Gly	Ala		1 14				-5		٠: `								
	•			•		•					•		· , t				
			•										. •		•		•
(2)	INFO	RMA	NOI	FOR	SEQ	ID i	10: 3	113:									·
	٠,	(i)	EQUE	ENÇE	CHAI	RACTI	ERIST	rics:							1	*	•

- (A) LENGTH: 113 amino acids
- (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:

Ser Thr Val Thr Glu Lys Asp Ile Arg Val Glu Glu Glu Val Tyr Gln
1 5 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Ala Ile Thr Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Lys Gly Asp Leu 35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile Arg Ala 65 70 75 80

286

									176	,					1 (1/1	11 J4/01323
Al	a Gl	y Le	u Ar	g As 8.	р Су 5	s Th	r Me	t Le	u Va 9	1 Cy	s Gl	y Asj	o Asp	Leu 95	Val,	
Va	l Il	e Al	a Gl	u Se	r As	p Gl	y Va	1 Gl	u Gl 5	u Asj	p Ly	s Arg	Ala 110	Leu	Gly	· · · · · · · · ·
Al	a					1 ₁										
(2)) іиі	FORM	ATION	FO!	SE¢	QI C	NO:	114	:			•				
i ,	(:		EQUEN (A) I (B) I (C) S (D) I	ENGT TPE:	TH: : nuc IDEDI	340 b cleic NESS:	ase ac: sir	pain id	rs							
	(ii	i) M	DLECU	LE I	YPE :	CDN	ľΑ,	4 4				•	•		. •	
	•		(POTH			1								•		
	(vii		MEDI				3-6								ı	1
		٠, (ATUR A) N B) L	AME/	KEY:	CDS 2	340				,					
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0: 1	14:				,	
C T	CC A er T	CG G hr V	TG A	CC G.	AA A lu A 5	GG G rg A	AT A sp I	TC A le A	rg T	CC G hr G	AG G lu G	AA G	AG AT lu Il	С ТА е Ту: 1:	r	46
CAG Gln	TGC Cys	TGC Cys	GAC Asp	CTG Leu 20	GAG Glu	CCC	GAA Glu	GCC Ala	CGC Arg 25	AAG Lys	GTG Val	ATA Ile	TCC Ser	GCC (Ala 1 30	CTA Leu	94
ACG Thr	GAA Glu	AGA Arg	CTC Leu 35	TAC Tyr	GTG Val	GGC Gly	GGT Gly	CCC Pro 40	ATG Met	TAC Tyr	AAC Asn	TCC Ser	AAG Lys 45	GGG (GAC Asp	142
CTA Leu	TGC Cys	GGG Gly 50	CAA Gln	CGG Arg	AGG Arg	TGC Cys	CGC Arg 55	GCA Ala	AGC Ser	GGG Gly	GTC Val	TAC Tyr 60	ACC .	ACC I	AGC Ser	190
TTC Phe	GGG Gly 65	AAC Asn	ACT Thr	GTA Val	ACG Thr	TGT Cys 70	TAT Tyr	CTC Leu	AAG Lys	GCC Ala	GTT Val 75	GCG Ala	GCT :	ACT I	Arg Arg	238

90

GCC GCA GGT CTG AAA GGT TGC AGC ATG CTG GTT TGT GGA GAC GAC TTA

Ala Ala Gly Leu Lys Gly Cys Ser Met Leu Val Cys Gly Asp Asp Leu

85

80

GTC GTC ATC TGC GAG AGC GGC GGC GTA GAG GAG GAT GCA AGA GCC CTC

Val Val Ile Cys Glu Ser Gly Gly Val Glu Glu Asp Ala Arg Ala Leu

100

105

110

CGA GCC Arg Ala

(2) 'INFORMATION FOR SEQ ID NO: 115:

- (i) SEQUENCE CHARACTERÍSTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:

Ser Thr Val Thr Glu Arg Asp Ile Arg Thr Glu Glu Glu Ile Tyr Gln

1 10 15 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Ser Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met Tyr Asn Ser Lys Gly Asp Leu 35 40 45

Cys Gly Gln Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 55 60

Gly Asn Thr Val Thr Cys Tyr Leu Lys Ala Val Ala Ala Thr Arg Ala 65 70 75 80

Ala Gly Leu Lys Gly Cys Ser Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Cys Glu Ser Gly Gly Val Glu Glu Asp Ala Arg Ala Leu Arg 100 105 110

Ala

- (2) INFORMATION FOR SEQ ID NO: 116:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO

(vii) IMMEDIATE SOURCE:

(B) CLONE: GB809-3-1

		(ix	c) FE	ATUF	Œ:	• •			t +		F		٠				ı	
							CDS				(•
								*				•			1			
ļ		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0: 1	16:	•					
ì	C T	CC A er T 1	CT G	TG A	CT G hr G	AG A lu A 5	.GA G .rg 'A	AC A sp I	TC A le L	ys V	TC G al G 10	AA G lu G	AA G lu G	AA G ļu V	TC T	AT 'yr 15	•	' 4 6
	CAG	TGT	TGT	GAT	CTG	GAG	CCC	GAG	GCC	CGC	AAG	GTA	ATA	GCC	GCC	CTĆ		94
	Gln	Cys	Cys	Asp	Leu 20	Glu	Pro	Glu	Ala	Arg 25	Lys	Val	Ile	Àla	Ala 30	Leu	٠.	
	ACG	GAG	AGA	CTC	TAC	GTĠ	GGC	GGC	ccc	ATG	CAT	AAC	AGC	AAG	GGA	GAC	•	142
٠	Inr	GIU	Arg	Leu 35	Tyr	Val	Gly	Gly	Pro 40	Met	His	Asn	Ser	Lys 45		Asp	•	•
	CTT Leu	TGC Cys	GGG Gly 50	TAT Tyr	CGT Arg	AGA Arg	TGC Cys	CGC Arg	GCG Ala	AGC Ser	GGC Gly	GTA Val	TAC Tyr 60	ACC Thr	ACC Thr	AGC Ser		190
	TTC	GGG	AAC	ACA	ATG	ACG	TGC	TAC	CTT	AAG	GCC	TCA	GCA	GCC	ATC	AGG	1	238
	Phe	Gly'	' Asn	Thr	Met	Thr	Суя 70	Tyr	Leu	Lys	Ala	ser, 75	Ala	Ala	Ile	Arg		230
	GCT Ala 80	GCG Ala	GGG Gly	CTA Leu	AAG Lys	GAT Asp 85	TGC Cys	ACC Thr	ATG Met	CTG Leu	GTT Val 90	TGC Cys	GGT Gly	GAC Asp	GAC Asp	CTA Leu 95		286
	GTC	GTG	ATC	GCC	GAG	AGC	GGT	GGC	GTT	GAG	GAG	GAC	AAA	CGA	GCC	СТС		334
	Val	Val '	Ile	Ala	Glu 100	Ser	Gly	Gly	Val	Glu 105	Glu	Asp	Lys	Arg	Ala 110	Leu		
	GGA Gly		,			•												340
	_		,		,												•	
	(2)	INFO	RMAT	CION	FOR	SEQ	ID N	io: 1	.17:									
		((A) LE	NGTH PE:	: 11 amin	ACTE 3 am 10 ac 1 ine	ino id						. •				
		(ii)	MOL	ECUL	E TY	PE:	prot	ein										
		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 11	7:				k		•.

Ser Thr Val Thr Glu Arg Asp Ile Lys Val Glu Glu Val Tyr Gln

15

									17	9	i	,				ı		•	
	Cys	Cys	Asp	Leu 20	Glu	Pro	Glu	Ala	Arg 25	Lys	Val	Ile	Ala	Ala 30	Leů ,	Thr		•	•
	Glu	Arg	Leu 35	Tyr	Val	Gly	Gly '	Pro	Met	His	Asn	Ser	Lys 45	Gly	Asp _.	Leu	.*		
	Cys	Gly 50	Tyr	Arg	Arg	Cys	Arg 55	Ala	Ser	Gly	Val	Tyr 60	Thr	Thr	Ser	Phe		,	
\ i	Gly 65	Asn	Thr	Met	Thr	Cys 70	Tyr	Leu	Lys	Ala	Ser 75	Ala	Ala	Ile	Arg	Ala 80		•	
	Ala	Gly	Leu	ГÄS	Asp 85	Cys	Thr	Met	Leu	Val 90	Cys	Gly	Asp	Asp	Leu 95	Val			
	Val	Ile		Glu 100	Ser	Gly	Gly	Val	Glu 105		Asp	Lys	Arg	Ala 110	Leu	Gly			
	Ala	,	1			. 1					•				•				
٠.	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	10: 3	L18:	•		•			ı				
			() (1 () (1	QUENCA) LI B) T C) S C) T C LECUI	ENGTI (PE : (RANI ()POL(H: 57 nucl DEDNI DGY:	74 ba leic ESS: line	ase p acid 'sing ear	pairs 1								1.		
		(iii)	HY1	POTH	ETIC	AL: 1	10												
		(iii)	MA (ri-si	ENSE	: NO						•					•		
		(vii)		MEDIA B) CI				1-1			•		. •						
	1	(ix)	(2	ATURI A) NI B) L(AME/I			574	· · · .							· .	· ·	٠.	
		(xi)) SE(QUEN	CE DI	ESCRI	IPTIC	ON: 5	SEQ :	ID NO): 1 :	18:				•			
		TGC																48	
		GTG Val																96	
		GAC Asp															٠.	144	

											1	١.					
TCT Ser	ATC Ile	TTC Phe	CTC Leu	TTG Leu	GCA Ala	CTT Leu	CTT Leu	TCG Ser	TGC	CTG Leu	ACT	GTT Val	CCC	ACC	TCG Ser	ŧ	192
	50	4	•	7		55	મ)		60	, 42		+111	Sel		
GCC	GTC	AAC	TAT	CGC	AAT	GCC	TCG	GGC	ATC	, TAT	CAC	ATC	ACC	AAT	GAC		240
A1a 65	Val	Asn '	Tyr	Arg	Asn 70	Ala	Ser	Gly	Ile			,Ile	Thr	Asn	Asp	•	•
•				•.	. /0	1				75			., 1		80-		
TGC	CCG	AAC	TCG	AGC	ATA	GTG	TAC	GAG	A'CC	GAG	CAC	CAC	ATC	CTA	CAC		288
Cys	Pro	Asn	Ser	Ser	Ile	Val	Tyr	Glu	Thr	Glu	His	His	Il'e	Leu	His		1
	•		, .	85			·		90					95			•
CTC	CCA	GGG	TGT	TTA	CCC,	TGC	GTG	AGG	GTT	GGG	AAT	CAG	TCA	CGC	TGC		. 336
Leu	Pro	Gly	Cys 100	Leu	Pro	Cys	Val	Arg	Val	Gly	Asn	Ģln		Arg	Cys		1
				•									110				
TGG	GTG	GCC	CTC	ACT	CCC	ACC	GTG	GCG	GCG	CCT	TAC	ATC	GGC	GCT	CCG		384
Trp	vaı	A1a 115	Leu	Thr	Pro	Thr	Val 120	Ala	Ala	Pro	Tyr		Gly	Ala	Pro		•
						1	,	,				125			•		
CTT	GAA	TCC	CTC	CGG	AGT	CAT	GTG	GAT	CTG	ATG	GTA	GGT	GCC	GCT	ACT	•	432
Leu	130	ser	Leu	Arg	Ser	His 135	Val	Asp	Leu	,Met		Gly	Ala	Ala	Thr		*
		•	i		•		1				140			ŀ			
GCG	TGC	TCC	GCT	CTT	TAC	ATC	GGA	GAC	CTG	TGC	GGT	GGC'	GTA	TTC	TTG		480
145	Cys	Ser	ALA	Leu	150	116	СΙΆ	Asp	Leu	Cys 155	Gly	Gly	Val	Phe			
	,												*,		160	, 1	
GTT	GGT	CAG,	ATG	TTC	TCT	TTC:	CAG	CCG	CGG	CGC	CAC	TGG	ACT	ACG	CAG		528
Val	GIY	GIII	MeC	165	ser	Pne	GIN	Pro	Arg	Arg	His	Trp	Thr	Thr.	Gln	·	
				•													•
GAC	TGC	AAT	TGT	TCC	ATC	TAC	GCG	GGG	CAC	GTT	ACG	GGC	CAC	AGG	A	•	574
Ąsp	-10	,	180	261	-1E	+ A T		185	AIS	vaı	ınr	GTÅ	His 190	Arg			
				1											•		

(2) INFORMATION FOR SEQ ID NO: 119:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 191 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala

1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Thr Ser

48

96

181 50 Ala Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp 70 . . 75 Cys Pro Asn Ser Ser Ile Val Tyr Glu Thr Glu His His Ile Leu His 85 Leu Pro Gly Cys Leu Pro Cys Val Arg Val Gly Asn Gln Ser Arg Cys 100 105 Trp Val Ala Leu Thr Pro Thr Val Ala Ala Pro Tyr Ile Gly Ala Pro 125 120 Leu Glu Ser Leu Arg Ser His Val Asp Leu Met Val Gly Ala Ala Thr 135 Ala Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 150 155 Val Gly Gln Met Phe Ser Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165. '' 170

(2) INFORMATION FOR SEQ ID NO: 120:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 574 base pairs

Asp Cys Asn Cys Ser Ile Tyr Ala Gly His Val Thr Gly His Arg

185

190

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE, TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: GB549-4-3
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..574
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:

ACG TGC GGC TTT GCC GAC CTC ATG GGA TAC ATC CCG CTC GTG GGC GCC
Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala

1 5 10 15

CCT GTG GGT GGC GTC GCC AGG GCC TTG GCA CAT GGT GTC AGG GCC GTG
Pro Val Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val
20 25 30

GIU	Asp	35	TIE	Asn	Tyr	Ala	Thr 40	Gly	Asn	Leu	Pro	Gly	Cys	Ser	TTT Phe	•	144
Ser	Ile 50	Pne	Leu	Leu	Ala	CTT Leu 55	CTC Leu	TCG Ser	TGC Cys	Leu	ACT Thr	Val	CCG	GCC Ala	TCG Ser		192
GCG Ala 65	CAG Gln	CAC	TAC Tyr	CGG Ang	AAC Asn 70	ATC	TCG Ser	GGC Gly	ATT Ile	TAT Tyr 75	CAC His	GTC Val	ACC Thr	AAT Asn	GAC Asp 80		240
TGC Cys	CCG Pro	AAC Asn	TCT Ser	AGT Ser 85	ATA Ile	GTG Val	TAT Tyr	GAA Glu	GCT Ala 90	GAC Asp	CAT His	CAT, His	ATC Ile	ATG Met 95	CAT		288
CTA	CCA Pro	GGG Gly	TGT Cys 100	GTG Val	CCT Pro	TGC Cys	GTG Val	AGA Arg 105	ACC Thr	GGG Gly	AAC Asn	ACC Thr	TCG Ser 110	CGC Arg	TGC Cys		336
TGG Trp	GTT Val	CCT Pro 115	TTA Leu	ACA Thr	CCC Pro	ACT Thr	GTG Val 120	GCT Ala	GCC Ala	CCC	TAT Tyr	GTT Val 125	GGC GGC	GCG Ala	CCG Pro		384
CTC Leu	GAA Glu 130	TCC Ser	ATG Met	CGG Arg	CGG Arg	CAC His 135	GTG Val	GAC Asp	TTA Leu	ATG Met	GTG Val 140	GGT Gly	GCC Ala	GCC Ala	ACC		432
GTC Val 145	TGC Cys	TCG Ser	GCC Ala	Leú	TAC Tyr 150	ATC Ile	GGA Gly	GAC Asp	CTT Leu	TGC Cys 155	GGA Gly	GGT Gly	GTC Val	TTC Phe	CTG Leu 160		480
GTC Val	GGG Gly	CAG Gln	met	TTC Phe 165	ACC Thr	TTC Phe	CGG Arg	CCG Pro	CGC Arg 170	CGC Arg	CAT His	TGG Trp	ACT Thr	ACC Thr 175	CAG Gln		528
GAC Asp	TGC Cys	AAC Asn	TGC Cys 180	TCT Ser	ATC Ile	TAT Tyr	Asp	GGC Gly 185	CAC His	ATC Ile	ACC Thr	Gly	CAT His 190	AGA Arg	A		574

- (2) INFORMATION FOR SEQ ID NO: 121:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 191 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala
1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30 Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 60

Ala Gln His Tyr Arg Asn Ile Ser Gly Ile Tyr His Val Thr Asn Asp
65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp His His Ile Met His
85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Thr Ser Arg Cys
100 105 110

Trp Val Pro Leu Thr Pro Thr Val Ala Ala Pro Tyr Val Gly Ala Pro 115' 120' 125

Leu Glu Ser Met Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Val Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Arg Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Asp Gly His Ile Thr Gly His Arg

(2) INFORMATION FOR SEQ ID NO: 122:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 574 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: GB809-4-3
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..574
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:

ACG TGC GGC TTC GCC GAC CTC ATG GGA TAC ATC CCG CTC GTG GGC GCC

		•																
Thr 1	Cys	Gly	Phe	Ala 5	Asp	Leu	Met	Gly	Tyr 10	Ile	Pro	Leu	Val	Gly	Ala	1		
CCC Pro	GTT Val	GGG Gly	GGC	GTC Val	GCC Ala	AGG Arg	GCC Ala	CTG Leu	GC G	CAT His	GGC	GTC Val	AGG Arq	GCT Ala	GTG Val	. :	9 (5
	•	ı	20			•	•	25	,			•	30			-		
GAG Glu	GAC Asp	Gly	ATT Ile	AAC Asn	TAT Tyr	GÇG Ala	ACA Thr	GGG Gly	AAT Asn	CTT Leu	CCC Pro	GGT Gly	TGC Cys	TCT Ser	TTC Phe		144	1
m Cm	እ መረተ	35	'ama	cma.			40					45					1	
Ser	Ile 50	Phe	CTC Leu	Leu	Ala	Leu 55	Leu	Ser	TGC Cys	CTC Leu	ACT Thr	GTC Val	CCA Pro	GCG Ala	TCA Ser		192	?
GCT	GAG	CAC	TAC	CGG	AAT	1	TCG	GGC	ATC	ТАТ	CAC	, ATC	ACC	, דעע	GAC		240	•
Aļa 65	Glu	His	Tyr	Arg I	Asn 70	Ala	Ser	Gly	Ile	Tyr 75	His	Ile	Thr	Asn	Asp 80		. 240	,
TGT Cvs	CCG Pro	AAT Asn	TCC Ser	AGC Ser	GTA Val	GTC Val	TAT	GA/A	ACT	GAC	CAC	CAT	ATA	TTG	CAC		288	ţ
				85	1.1	•			90	;				95,		•		
TTG Leu	CCG Pro	GGG Gly	TGC Cys	GTA Val	CCC Pro	TGC Cys	GTG Val	AGG Arg	GCC Ala	GGG Gly	AAC Asn	GTG Val	TCT Ser	CGT Arg	TGC Cys		336	:
TGG	ACG Thr	CCG	100 GTA Val	ACA	CCT	ACG	GTG	1,05 GCT	GCC	GTA	TCC	ATG	110 GAC	GCT	ÇCG		384	
		115	P 1	****	PIO		120	Ala	AIA	vaı	ser	125	Asp	Ala	Pro.			
CTC Leu	GAG Glu 130	TCC Ser	TTC Phe	CGG Arg	CGG Arg	His	GTG Val	GAC Asp	CTA Leu	ATG Met	Val	GGT Gly	GCG Ala	GCC Ala	ACC Thr		432	
GTG		TCT	GTC	CTC	ТАТ	135	, GGA	GAC	СТС	ጥርጥ	140 GGA	сст	CCT	TTC	CTIA		400	
Val 145	Cys	Ser	Val	Leu	Tyr 150	Val	Gly	Asp	Leu	Cys 155	Gly	Gly	Ala	Phe	Leu 160		480	
GTG Val	GGG Gly	CAG Gln	ATG Met	TTC Phe	ACC Thr	TTC Phe	CAG Gln	CCG Pro	CGT Arg	CGC Arg	CAC His	TGG Trp	ACC Thr	ACG Thr	CAG Gln		528	
				165:					170					175	·			
Asp	Cys	AAT Asn	TGC Cys 18'0	Ser	Ile	TAT	Thr	GGC Gly 185	CAT	ATC Ile	ACC Thr	GGC Gly	CAC His 190	AGG Arg	A		574	
															•			

(2) INFORMATION FOR SEQ ID NO: 123:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 191 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala
1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50, 55 60

Ala Glu His Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Val Val Tyr Glu Thr Asp His His Ile Leu His
85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Ala Gly Asn Val Ser Arg Cys

Trp Thr Pro Val Thr Pro Thr Val Ala Ala Val Ser Met Asp Ala Pro
115 120 125

Leu Glu Ser Phe Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr
130 135 140

Val Cys Ser Val Leu Tyr Val Gly Asp Leu Cys Gly Gly Ala Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg 180 185 190

- (2) INFORMATION FOR SEQ ID NO: 124:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..31
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr206"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

31

TGGGGATCCC GTATGATACC CGCTGCTTTG A

- (2) INFORMATION FOR SEQ ID NO: 125:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: YES
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION: 1..30
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HcPr207"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

GGCGGAATTC CTGGTCATAG CCTCCGTGAA

30

- (2) INFORMATION FOR SEQ ID NO: 126:
- (i) SEQUENCE CHARACTERISTICS:
 - '(A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB358
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:

Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 127:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Amino acid
 - (C) INDIVIDUAL ISOLATE: GB549
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

Gln His Tyr Arg Asn Ile Ser Gly Ile Tyr His Val

- (2) INFORMATION FOR SEQ ID NO: 128:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid '
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Amino acid
 - (C) INDIVIDUAL ISOLATE: GB809
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:

Glu His Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 129:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB358
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

Val Tyr Glu Thr Glu His His Ile Leu His Leu
1 5 10

(2) INFORMATION FOR SEQ ID NO: 130:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB549
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:

Val Tyr Glu Ala Asp His His Ile Met His Leu
1 5 1 10

- (2) INFORMATION FOR SEQ ID NO: 131:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB809
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:

Val Tyr Glu Thr Asp His His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 132:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB358

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

Val Arg Val Gly Asn Gln Ser Arg Cys Trp Val Ala Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 133:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - '(iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB549
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:

Val Arg Thr Gly Asn Thr Ser Arg Cys Trp Val Pro Leu

1 10

- (2) INFORMATION FOR SEQ ID NO: 134:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB809
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:

Val Arg Ala Gly Asn Val Ser Arg Cys Trp Thr Pro Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 135:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino ācids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB358
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

Ala Pro Tyr Ile Gly Ala Pro Leu Glu Ser
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 136:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB549
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:

Ala Pro Tyr Val Gly Ala Pro Leu Glu Ser
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 137:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB809
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:

Ala Val Ser Met Asp Ala Pro Leu Glu Ser 1 5 10

(2) INFORMATION FOR SEQ ID NO: 138:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) | INDIVIDUAL ISOLATE: GB358 and GB809
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

Gln Pro Arg Arg His Trp Thr Thr Gln Asp

- (2) INFORMATION FOR SEQ ID NO: 139:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB549
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

Arg Pro Arg Arg His Trp Thr Thr Gln Asp 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 140:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:

. 23

- (A) ORGANISM: amino acid
- (C) INDIVIDUAL ISOLATE: GB549
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

Arg Pro Arg Arg His Trp Thr Thr Gln Asp

- (2) INFORMATION FOR SEQ ID NO: 141:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:
 TGGGATATGA TGATGAACTG GTC
- (2) INFORMATION FOR SEQ ID NO: 142:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: YES
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:

CCAGGTACAA CCGAACCAAT TGCC

(2) INFORMATION FOR SEQ ID NO: 143:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 957 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii)	MOLECULE TYPE: cDNA	
(iii)	HYPOTHETICAL: NO	

(iii) ANTI-SENSE: NO

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 1..957

(ix) FEATURE:

(A) NAME/KEY: mat_peptide

(B) LOCATION: 1..954

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:

								')			•	1			*		
					AAA,										AAC Asn		48
. 1	361	1 ,	ASII	5	Dys		GIII	Arg	10		туъ	Arg	ASJI	15	MSII.	•	
CGC	CGC	CCA	CAG	GAC	GTC	AAG	TTC	CĊG	GGC	GGT	GGC	CAG	ATC	GTT	GGT		96
Arg	Arg	Pro	Gln 20	Asp	Val	Lys	Phe	Pro 25	Gly	Gly	Gly	Gln	Ile 30	Val	Gly		
GGA	GTA	TAC	TTG	TTG	CCG	CGC	AGG	GGC	CCC	CGG	TTG	GGT	GTG	CGC	GCG	1.	144
Gly	Val	Tyr 35	Leu	Leu	Pro	Arg	Arg 40	Gly	Pro	Arg	Leu	Gly 45	Val	Arg	Ala'		
					GAG											•	192
Thr	Arg 50	Lys	Thr	Ser	Glu	Arg 55	Ser	Gln	Pro	Arg	Gly	Arg	Arg	Gln	Pro		
					CGC												240
Ile 65	Pro	Lys.	Asp	Arg	Arg 70	Pro	Thr	Gly	Lys	Ser 75	Trp	Gly	Lys	Pro	80 Gly		
					TAC											•	288
Ţyr	Pro	Trp	Pro	Leu 85	Tyr	Gly	Asn	Glu	Gly 90	Leu	Gly	Trp	Ala	95	Trp		
					GGG												336
Leu	Leu	Ser	100	Arg	Gly	Ser	Arg	105	ser	Trp	GIA	Pro	110	Asp	Pro		
					AAC								•				384
Arg	His	Arg 115	Ser	Arg	Asn	Leu	120	ŗ'ns	Val	IIe	Asp	125	Leu	Thr	Cys		
					ATG												432
Gly	Phe 130	Ala	Asp	Leu	Met	Gly -	Tyr	Ile	Pro	Val	Val 140	Gly	Ala	Pro	Val		•.
					GCT												480
Gly 145	Gly	Val	Ala	Arg	Ala 150	Leu	АТА	HIS	GTA	Val 155	Arg	vai	Leu	GIu	Asp 160		
T#2					730					TOO					100		

								* -	•								-
GGG Gly	ATA Ile	AAC Asn	TAT Tyr	GCA Ala 165	ACA Thr	GGG G1y	AAC Asn	TTG Leu	CCC Pro 170	Gly	TGC Cys	TCC Ser	TTT Phe	TCT Ser	ATC Ile		528
				CTG					ACT	GTG				GGC	TTG	:	576
Phe	Leu	Leu	Ala 180	Leu	Leu	Ser	Cys	Ile 185	Thr	Val	Pro	Val	Ser 190	Gly	Leu		*.
				ACC Thr		Ser											624
AAC Asn	AGT Ser 210	AGC Ser	ATC Ile	GTC Val	TGG ^l Trp	CAG Gln 215	CTC Leu	AGG Arg	GAT Asp	GCT Ala	GTT Val	CTT Leu	CAC His	GTC Val	'CCĊ Pro		672
	TGT			TGT Cys		GAG Glu					TCC					•	720
CCG				AAT Asn 245	ATA	, GCT				CCT				Thr	AAG		768
			Thr	CAT His				Ile	ATT				Thr				816
				ATA Ile												+ C	864
		275	•				280		.•			285	. '				
				ATC Ile													912
				TAC Tyr													957

(2) INFORMATION FOR SEQ ID NO: 144:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 319 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile Val Gly

- Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala 40 Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro Ile Pro Lys Asp Arg Arg Pro Thr Gly Lys Ser Trp Gly Lys Pro Gly 175 Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro 100 105 Arg His Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 120 Gly Phe Ala Asp Leu Met Gly Tyr Ile, Pro Val Val Gly Ala Pro Val 135 Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 150 Gly Ile Asn Tyr, Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile 170 Phe Leu Leu Ala Leu Leu Ser Cys Ile Thr Val Pro Val Ser Gly Leu 185 Gln Val Lys Asn Thr Ser Ser Ser Tyr Met Val Thr Asn Asp Cys Gln 200 Asn Ser Ser Ile Val Trp Gln Leu Arg Asp Ala Val Leu His Val Pro 215 Gly Cys Val Pro Cys Glu Glu Lys Gly Asn Ile Ser Arg Cys Trp Ile 230 235 Pro Val Ser Pro Asn Ile Ala Val Ser Gln Pro Gly Ala Leu Thr Lys Gly Leu Arg Thr His Ile Asp Thr Ile Ile Ala Ser Ala Thr Phe Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Ala Val Met Leu Ala Ser 285 Gln Val Phe Ile Ile Ser Pro Gln His His Lys Phe Val Gln Asp Cys 295 Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg Met Ala
- (2) INFORMATION FOR SEQ ID NO: 1:5:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 340 base pairs

(B) TYPE: nucleic acid

		•			OGY:			916					· .					. '
	(ii)	MOI	ECUI	LE T	YPE:	CDN	A .										•	' .
	(iii)	HYE	ОТНІ	ETIC	AL: '1	40												
	(iii)	ANT	ri-si	ENSE	: NO		*	,		,				•				
				. 1		•	.1						1					
	(ix)	FEA	TURI	3:									•					
			,		KEY:	_	_	tide	1									
1	(ix)	FEA	TURI	3 :											ı	,		
					KEY:			•					• •	1				
		(E	B) L(CAT:	ON:	2	340	ı				, .		•				
	(xi)	SEC	UENC	CE DI	SCRI	[PTIC	ON: S	SEQ :	ID NO	, D: 14	45:			,		•		
С то	CA AC	і, Раст	יר אנ	ים פי	אם אנ	2G G	ארי אי	י דר אנ	י אר מיבי	מיים מיים	NG G	N.C. 100	יר אי	יייי מייי וויייייייייייייייייייייייייייי	۸.			4.5
Se	er Th	r Va	1 Th	ır G.	lu Ai	g A	sp' I	le A	rg T	nr G	lu 'G	lu Se	er I	le T	yr			, 4 6
	1 ,	. •			5					10				. :	15		1	
CTT	GCT	TGC	TCT	TTA	ccc	GAG	CAG	GCA	CGG	ACT	GCC	ATA	CAC	TCA	CTG	1.	,	. 94
Leu	Ala	Cys	Ser	Leu 20	Pro	Glu	Gln	Ala	Arg 25	Thr	Ala	Ile	His	Ser 30	Leu,		,	
ACT	GAG	, AGĠ	CTT	TAC	GTG	GGA	GGG	CCC	ATG	CTA	AAC	AGC	AAA	GGG	CAA			142
	Glu																	
אכיכי	TGC	CC 3	ma c	202	CCC	ECC	aaia	000	7.00	~~~	aria	mmc	3.00	3 Cm				
	Cys																	190
		50	٠.		٠.		55					60		,	•			-
	GGA .																	238
Met	Gly 65	Asn	Thr	Ile	Thr	Cys 70	Tyr	Val	Lys	Ala	Gln 75	Ala	Ala	Cys	Lys	•		
COM	aaa'	000		a mm	CCC	000	200	3 m.c.	ama	ama	maa		~~~	~~~		•		
	GCG Ala																	286
80					85		•			90			_		95			
	GTC .																	334
Val	Val	Ile	Ser	Glu 100	Ser	Gln	Gly	Thr	Glu 105	Glu	Asp	Glu	Arg	Asn 110	Leu			
CGA	GCC																,	340
Ara	Ala																	

- (2) INFORMATION FOR SEQ ID NO: 146:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 113 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:

Ser Thr Val Thr Glu Arg Asp Ile Arg Thr Glu Glu Ser Ile Tyr Leu
1 5 10 15

Ala Cys Ser Leu Pro Glu Gln Ala Arg Thr Ala Ile His Ser Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met Leu Asn Ser Lys Gly Gln Thr, 35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Phe Thr Thr Ser Met 50 60

Gly Asn Thr Ile Thr Cys Tyr Val Lys Ala Gln Ala Ala Cys Lys Ala 65 70 75 80

Ala Gly Ile Ile Ala Pro Thr Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Ser Glu Ser Gln Gly Thr Glu Glu Asp Glu Arg Asn Leu Arg 100 105 110

Ala

- (2) INFORMATION FOR SEQ ID NO: 147:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 345 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..345
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..342
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:

ATG AGC ACA CTT CCT AAA CCA CAA AGA AAA ACC AAA AGA AAC ACC AAC

Met.	Ser	Thr	Leu	Pro 5	Lys	Pro	Gln	Arg	Lys 10	Thr	Lys	Arg	Asn	Thr	Asn		
CCC Pro	GGC Gly	CAC His	AGG Arg 20	ACG Thr	TTA Leu	AGT Ser	TCC Ser	CAG Gln 25	GCĢ Ala	GCG Ala	GTC Val	AGA Arg	TCG Ser 30	TTG Leu	GTG Val	1	96
GAG Glu	TTT Phe	ACG Thr 35	TGC Cys	TAC Tyr	CAC His	Ala	GGG Gly 40	GCC Ala	CCC Pro	AGT Ser	TGG Trp	GTG Val 45	TGC Cys	GTG Val	CAG Gln		144
TGC Cys	GCA Ala 50	AGA Arg	CTT Leu	CCG Pro	AGC: Ser	GGT Gly 55	c'GC Arg	AAC Asn	CTĆ Leu	GCA Ala	GTA Val 60	GGC Gly	GCC Ala	AAC Asn	CCA Pro		192
TCC Ser 65	CCA Pro	GGG Gly	CGC Arg	GCC Ala	GAA Glu 70	CCG Pro	AGG Arg	GCA Ala	GGT Gly	CCT Pro 75	GGG Gly	CTC Leu	AGC Ser	CCG Pro	GGT Gly 80		240
ACC Thr	CTT Leu	GGC Gly	CCC	TAT Tyr 85	Met	ggy Gja	ATG Met	AGG Arg	GCT Ala 90	GCG Ala	GGT Gly	GGG Gly	CAG Gln	GGT Gly 95	GGC Gly		288
TCC Ser	TGT Cys	CCC Pro	CGC Arg 100	GCG Ala	GCT Ala	CTC Leu	GCC Ala	CGT Arg 105	CGT Arg	GGG	GCC Ala	CAA Gln	ATG Met 110	ACC Thr	CCC Pro		336
GGC Gly		GGA Gly' 115	P 1				ù		9				· .				345

(2) INFORMATION FOR SEQ ID NO: 148:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 115 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

 Met Ser Thr Leu Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

Pro Gly His Arg Thr Leu Ser Ser Gln Ala Ala Val Arg Ser Leu Val 20 25 30

Glu Phe Thr Cys Tyr His Ala Gly Ala Pro Ser Trp Val Cys Val Gln 35 40 45

Cys Ala Arg Leu Pro Ser Gly Arg Asn Leu Ala Val Gly Ala Asn Pro
50 55 60

Ser Pro Gly Arg Ala Glu Pro Arg Ala Gly Pro Gly Leu Ser Pro Gly 65 70 75 80

Thr Leu Gly Pro Tyr Met Gly Met Arg Ala Ala Gly Gly Gln Gly Gly

280

199 90 Ser Cys Pro Arg Ala Ala Leu Ala Arg Arg Gly Ala Gln Met Thr Pro 105 Gly Ala Gly 115 (2) INFORMATION FOR SEQ ID NO: 149: (i), SEQUENCE CHARACTERISTICS: (A) LENGTH: 280 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear ' (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2..280 (ix) FEATURE: (A) NAME/KEY: mat peptide (B) LOCATION: 2..277 (xi) SEQUENCE DESCRIPTION': SEQ ID NO: 149: G GCC TGT GAC CTC AAG GAC GAG GCT AGG AGG GTG ATA ACT TCA CTC Ala Cys Asp Leu Lys Asp Glu Ala Arg Arg Val Ile Thr Ser Leu ACG GAG CGG CTT TAC TGT GGT GGT CCT ATG TTC AAC AGC AAG GGA CAA Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly Gln CAC TGC GGT TAC CGC CGC TGC CGT GCT AGT GGG GTG CTA CCC ACC AGC His Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr Ser .35 TTC GGG AAC ACA ATC ACC TGT TAC ATC AAA GCA AAG GCA GCT ACC AAA 190 Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Lys Ala Ala Thr Lys 50 GCT GCC GGA ATT AAA AAT CCA TCA TTC CTT GTC TGC GGA GAT GAC TTG 238 Ala Ala Gly Ile Lys Asn Pro Ser Phe Leu Val Cys Gly Asp Asp Leu 65 70

- (2) INFORMATION FOR SEQ ID NO: 150:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 93 amino acids

GTC GTG ATT GCT GAG AGT GCA GGG ATC GAT GAG GAC AGA GCG

Val Val Ile Ala Glu Ser Ala Gly Ile Asp Glu Asp Arg Ala

48

- (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:

Ala Cys Asp Leu Lys Asp Glu Ala Arg Arg Val Ile Thr Ser Leu Thr

1 5 10 15

Glu Arg Led Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly Gln His

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr Ser Phe 35 40 45

Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Lys Ala Ala Thr Lys Ala 50 55 60

Ala Gly IIe Lys Asn Pro Ser Phe Leu Val Cys Gly Asp Asp Leu Val 65 70 75 80

Val İle Ala Glu Ser Ala Gly Ile Asp Glu Asp Arg Ala 85 90

- (2) INFORMATION FOR SEQ ID NO: 151:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 499 base pairs
 - (B) TYPE: nucleic acid
 - '(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..499
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..496
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

ATG AGC ACG AAT CCT AAA CCT CAA AGA AAA ACC AAA AGA AAC ACC AAC
Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

1 5 10 15

CGT CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT GGT CAG ATC GTT GGC Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile Val Gly

		TTG Leu									144
	,	ACT Thr									192
		GCG Ala									1240
		CCC Pro							Trp		. 288
		CCT Pro 100									336
		TCG Ser									384
		GAT Asp								, 1°	432
		GCA Ala						Glu			480
		TAT Tyr		G					1	•	499

- (2) INFORMATION FOR SEQ ID NO: 152:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly 20 25 30

Gly Val Tyr Leu Leu Pro Arg Gly Pro Arg Met Gly Val Arg Ala 35 40 45

									. 2	02					,			
	Thi	Arg 50	Lys	Thr	Ser	Glu	Arg 55	Ser	Gln	Pro	Arg	Gly 60	Arg	Arg	Gln	Pro		J.
	11e 65	Pro	Lys	Ala	Arg	Gln 70	Pro	Thr	Gly	Arg	Ser 75		Gly	Gln	Pro	Gly 80	•	
	Tyr	Pro	Trp	Pro	Leu 85	Tyr	Ala	Asn	Glu	Gly 90		Gly	Trp	Ala	Gly 95	Trp		
,	Leu	Leu	Ser	Pro 100	Arg	Gly	Ser	Arg	Pro	Asn	Trp	Gly	Pro	Asn 110	Asp	Pro		
	Arg	Arg	Lys 115	Ser	Arg	Asn	Leu	Gly 120	Lys	Val	Ile	Asp	Thr 125	Leu	Thr	Cys		. •
		Phe 130	•		,		135	1				140		• *			· .	
	145	•				150		Ala	His	Gly	Val 155	Arg	Val	Leu	Glu	Asp 160		
		Val			165									· · · · · · · · · · · · · · · · · · ·	,			
		(i)	SEC (A (E (C	QUENC LE L) TY L) ST L) TO LECUL	E CH NGTH PE: RAND	IARAC 1: 57 nucl EDNE	TERI 9 ba eic SS: line	STIC se p acid sing	CS: pairs	5	ı	1 .					•	
		(iii) (iii)					io											
1	,	(ix)	(A	TURE) NA) LO	ME/K			79			·,							
		(ix)	(A	TURE) NAI) LO	ME/K				ide					•		· .	:	
		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NC): 15	3:					•	
Τ	CG hr 1	TGC (Cys (GGA '	TTC (GCC (Ala 1	GAT (Asp 1	CTC I	ATG Met	GGG	TAC Tyr 10	ATC	CCG Pro	CTC (Leu '	GTA Val	GGC Gly 15	GGC Gly		48
P	cc ro	GTT (Val (GGG (Gly (GGC (Gly \ 20	GTC (GCA 1	AGG (Arg 1	GCT-	CTC Leu 25	GCA Ala	CAC (GGT (GTG 1	AGG Arg 30	GTC Val	CTT Leu		96
G	AG	GAC (GG (STA A	AAC 1	TAT	CCA A	ACA (GGG .	AAT	TTA (ccc (GGT :	rgc '	TCT '	TTC		144

	Glu	Asp	Gly 35	Val	Asn	Tyr	Pro	Thr 40	Gly	Asn	Leu	Pro	Gly 45	Cys	Ser	Phe		ı
										•		• • •		·	•			٠.
	TCT	ATC	TTT	ATT	CTT	GCT	CTT	CTC	TCG	TGT	CTG	ACC	GTT	CCG	GCC	TCT		192
						Ala												
	Ser		FIIC	116	Dea	ALG			501	Cys	Deu	60	V 4.1	110	7.14	,		
		50				•	, 55					80						
	GCA	GTT	CCC	TAC	CGA	AAT	GCC	тст	GGG	ATT	TAT	CAT	GTT	ACC	AAT	GAT		240
						Asn												
	65			- 7 -	5	70					75					80		
	1		, 1	·		, 0								•				
i	TĠC	CCA.	חממ	ጥርጥ	י דככ	ATA	GTC	ТΑТ	GAG	GCA	GAT	מאכי	CTG	ATC	СТА	CAC		288
						Ile												
	Cys	PIO	ASH	361		116	Val		GIU	90	קנת	ASII	Leu		95			
				1	85					30					95			
	CCN.	COT	CCT	TCC	GTG.	CCT	ጥርጥ	GTC	A TC	מים	CCT	ידעע	GTG	ACT	D C D	TGC		336
						Pro											•	330
	ATA	Pro	GIY			PIO	Cys		1105	TILL	GIY.	ASII	vai	110	Aid	Cys		
				100				·	. 102	•			•	110			-	
	maa	CTC.	CAN.	א נוזינו	א כיכי	CCT. 1	א כי א	CTC	TCA	GCC	ccc	NGC	CTC	GGA	GCD	GTC		384
																	• •	. 304
	Trp	vai		TTE	THE	Pro	THE		ser	Ala	PIO	Ser	_	GIY	Ala	Val		•
		•	115			•		120		'			125		1			
				:				COTO	ai a	mn	CITE S	ao'a		000	aam	000		433
						AGA												432
	Thr			Leu	Arg	Arg		vaı	Asp	Tyr	Leu		GIA	GIY	Ala	ATA	٠.	
		130	•				135	. '				140		•			1 .	
	•							•								*		
																TTG'		480
	Leu,	Cys	Ser	Ala	Leu	Tyr	Val'	Gly	Asp	Ala	Cys	Gly	Ala	Leu	Phe			
	145		` ` (150				•	155	•				160		•
						•	,										•	
						ACC												528
	Val	Gly	${\tt Gln}$	Met	Phe	Thr	Tyr	Arg	Pro	Arg	Gln	His	Ala	Thr	Val	Gln		
		•			165					170				٠.	175			
			٠				•											
						ATT												576
	Asn	Cys	Asn	Cys	Ser	Ile	Tyr	Ser	Gly	His	Val	Thr	Gly	His	Arg	Met		
		•		180					185					190				•
			•										-	•			•	*,
	GCG																•	579
	Ala																•	

- (2) INFORMATION FOR SEQ ID NO: 154:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly
1 5 10 15

Pro Val Gly Cly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu 20 25 30

Glu Asp Gly Val Asn Tyr Pro Thr Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile'Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp Asn Leu Ile Leu His
85 90 95

Ala Pro Gly Cys Val Pro Cys Val Met Thr Gly Asn Val Ser Arg Cys
100 105 110

Trp Val Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Leu Gly Ala Val

Thr Ala Pro Leu Arg Arg Ala Val Asp Tyr Leu Ala Gly Gly Ala Ala 130 135 140

Leu Cys Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln
165 170 175

Asn Cys Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 155:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..579
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..576

12011	CECTENCE	DESCRIPTION:	CEO	TD	NO.	155.
(スエ),	PECOENCE	DESCRIPTION:	SEQ	TD	140 ;	155:

ACG	TGC	GGA	TTC	GĊC	GAC	CTC	GTG	GGG	TAC	ATC	CCG	CTC	GTA	GGC	GGC		48
Thr	Cys	Gly	Phe	Ala	Asp	Leu	Val	Gly	Tyr	Ile	Pro	Leu	Val	Gly	Gly		
1	-	, -		. 5				_	10					15			
						ŀ				+ -			**				
CCC	GTT	GGG	GGC	GTC	GCA	AGG	GCT	CTC	GCA	CAT	GGT	GTG	AGG	GTT	CTT		96
					Ala												ı
			. 20.					25			•		30			•	
		'	, .	•			•		ı								•
GAG	GAC	GGG	GTG	AAT	TAT	GCA	ACA	GGG	AAT	CTG	CCT	GGT	TGC	TCT	TTC	2	144
					Tyr											•	. 1.
	-	35		· ;	_	,	40		٠.			45					
						٠.			·	. '							
TCT	ATC	TTC	ATT	CTT	GCA	CTT	CTC	TCG	TGC	CTC	ACT	GTC	ÇÇĞ	GCC	TCT	,	192
					Ala												
	50					55					60						
		•				1	:	1 '									
GCA	GTT	CCC	TAC	CGA	AAT	GCC	TCT	GGG	ATC	TAT	CAT	GTC	ACC	AAT	GAT		240
					.Asn					•							
65	•		, ,	, -	70		,	•		75			. •	1	80		
			'														
TGC	CCA	AAC	TCT	TCC	ATA	GTC	TAT	GAG	GCA	GAT	GAT	CTG	ATC	CTA	CAC		288
Cvs	Pro	Asn	ser	Ser	Ile	Val	Tyr	Gľu	Ala	Asp	Asp	Leu	Ile	Leu	His		
- 4			1	85			•		90.	_	, <u>-</u>	•		95		1.1.	
	,		•								,		٠.		•	· .	
GCA	CCT	GGC	TGC	GTG	CCT	TGT	GTC	AGG	AAA	GAT	AAT	GTG	AGT	AGG	TGC		336
					Pro												
			100			_		105					110				. *
TGG	GTC	CAA	ATT	ACC	CCC	ACG	CTG	TCA	GCC	CCG	AGC	TTC	GGA	GCA	GTC	•	384
Trp	Val	Gln	Ile	Thr	Pro	Thr	Leu	Ser	Ala	Pro	Ser	Phe	Gly	Ala	Val		
	i	115		1		•	120	· .				125	·		1		
					AGA												432
Thr	Ala	Pro	Leu	Arg	Arg	Alá	Val	Asp	Tyr	Leu	Val	Gly	Gly	Ala	Ala		
	130					135					140						
			•		,	•										•	•
					TAC											•	480
Leu	Cys	Ser	Ala	Leu	Tyr	Val	Gly	Asp	Ala	Cys	Gly	Ala	Leu	Phe			
145				-	150					155					160		
			' . '				•										
GTA	GGC	CAA	ATG	TTC	ACC	TAT	AGG	CCT	CGC	CAG	CAT	GCT	ACG	GTG	CAG		528
Val	Gly	Gln	Met		Thr	Tyr	Arg	Pro		GIn	His	Ala	Thr		GIn		
				165				1	170					175			
						_ :				~=~			~-	~~	3 mc		F 77 C
GAC	TGC	AAC	TGT	TCC	ATC	TAC	AGT	GGC	CAC	GTC	ACC	GGC	CAT	CAG	ATG		576
Asp	Cys	Asn		Ser	Ile	Tyr	Ser		Hls	val	Inr	GTA		GID	met		
			180					185					190				
													,				-570
GCA																	579
Ala																	

⁽²⁾ INFORMATION FOR SEQ ID NO: 156:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:

Thr Cys Gly Phe Ala Asp Leu Val Gly Tyr Ile Pro Leu Val Gly Gly

1 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu
20 25 30

Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Leu Ile Leu His
85 90 95

Ala Pro Gly Cys Val Pro Cys Val Arg Lys Asp Asn Val Ser Arg Cys
100 105 110

Trp Val Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Phe Gly Ala Val

Thr Ala Pro Leu Arg Arg Ala Val Asp Tyr Leu Val Gly Gly Ala Ala 130 135 140

Leu Cys Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln
165 170 175

Asp Cys Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Gln Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 157:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 530 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

	•	
(iii) HYPOTHETICAL: NO		
(iii) ANTI-SENSE: NO	•	
(ix) FEATURE:		
(A) NAME/KEY: CDS (B) LOCATION: 3530		
(ix) FEATURE:		•
(A) NAME/KEY: mat_peptide (B) LOCATION: 3527		
	•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:		
CA CCT ACG ACA GCT CTG CTG GTG GCC CAG TTA CTG CGG ATT CCC C Pro Thr Thr Ala Leu Leu Val Ala Gln Leu Leu Arg Ile Pro G		47
1 5 10	15	
GTG GTC ATT GAC ATC GCA GGG AGC CAC TGG GGG GTC TTG TTT Val Val Ile Asp Ile Ile Ala Gly Ser His Trp Gly Val Leu Phe		95
20 25 30	GTC 1	43
GCC GCA TAC TAT GCA TCG GTG GCT AAC TGG ACC AAG GTC GTG CTG Ala Ala Tyr Tyr Ala Ser Val Ala Asn Trp Thr Lys Val Val Leu 35 40 45	Val	43
TTG TTT CTG TTT GCA GGG GTT GAT GCT ACT ACC CAG ATT TCG GGC	GGC 1	91
Leu Phe Leu Phe Ala Gly Val Asp Ala Thr Thr Gln Ile Ser Gly 50 55 60		
TCC AGC GCC CAA ACG ACG TAT GGC ATC GCC TCA TTT ATC ACC CGC	GGC 2	3 9
Ser Ser Ala Gln Thr Thr Tyr Gly Ile Ala Ser Phe Ile Thr Arg 65 70 75		
GCG CAG CAG AAA CTG CAG CTC ATA AAT ACC AAC GGA AGC TGG CAC		87
Ala Gln Gln Lys Leu Gln Leu Ile Asn Thr Asn Gly Ser Trp His 80 85 90	Ile 95	•
AAC AGG ACC GCC CTT AAT TGT AAT GAC AGC CTC CAG ACT GGG TTC	ATA 3	35
Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe 100 105 110	116	
GCC GGC CTC TTC TAC TAC CAT AAG TTC AAC TCT TCT GGA TGC CCG Ala Gly Leu Phe Tyr Tyr His Lys Phe Asn Ser Ser Gly Cys Pro	GAT 3	83
115 120 125		
CGG ATG GCT AGC TGT AGG GCC CTT GCC ACT TTT GAC CAG GGC TGG Arg Met Ala Ser Cys Arg Ala Leu Ala Thr Phe Asp Gln Gly Trp	GGA 4	31
130 135 140	•	٠.
ACT ATC AGC TAT GCC AAC ATA TCG-GGT CCC AGT GAT GAC AAA CCA Thr Ile Ser Tyr Ala Asn Ile Ser Gly Pro Ser Asp Asp Lys Pro		79
145 150 155		
TGC TGG CAC TAT CCC CCA CGG CCG TGC GGA GTG GTG CCA GCC CAA	GAG 5	27

Cys Trp His Tyr Pro Pro Arg Pro Cys Gly Val Val Pro Ala Gln Glu GTC Val (2) INFORMATION FOR SEQ ID NO: 158: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 176 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158: Pro Thr Thr Ala Leu Leu Val Ala Gln Leu Leu Arg Ile Pro Gln Val 5 - 10 Val Ile Asp Ile Ile Ala Gly Ser His Trp Gly Val Leu Phe Ala Ala Ala Tyr Tyr Ala Ser Val Ala Asn Trp Thr Lys Val Val Leu Val Leu 35 , 40 Phe Leu Phe Ala Gly Val Asp Ala Thr Thr Gln Ile Ser Gly Gly Ser 55 ii Ser Ala Gln Thr Thr Tyr Gly Ile Ala Ser Phe Ile Thr Arg Gly Ala 65 Gln Gln Lys Leu Gln Leu Ile Asn Thr Asn Gly Ser Trp His Ile Asn 85

Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe Ile Ala 100

Gly Leu Phe Tyr Tyr His Lys Phe Asn Ser Ser Gly Cys Pro Asp Arg 120

105

Met Ala Ser Cys Arg Ala Leu Ala Thr Phe Asp Gln Gly Trp Gly Thr 135

Ile Ser Tyr Ala Asn Ile Ser Gly Pro Ser Asp Asp Lys Pro Tyr Cys 150 160

Trp His Tyr Pro Pro Arg Pro Cys Gly Val Val Pro Ala Gln Glu Val 165

- (2) INFORMATION FOR SEQ ID NO: 159:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

		(I) TC	POLC	OGY:	line	ear							•	•	•		
	(ii)	MOI	LECUI	E TY	PE:	cDN7	4		•		• • •		· 1	·			•	•
							, '											
	(iii)	HYI	POTHE	ETIC	AL: N	1O							-					
	(iii)	INA	ri-si	ENSE :	NO	ł				,								
						ì					•	٠,	• •	•				
1	(ix)	FE!	ATURI	3: 1			.0				•		1				•	÷
! }	:	(2	1) N.	ME/I	ŒY:	CDS					-		•			•		
		(E	3) LC	CAT	ON:	23	340				-	•				•		
	/ \	12127	ATURI													•		
1	(TV)				ŒY:	mat	pept	tide										
·					ON:	_									•			
	•	•						1 .	•						•			
			· .						·			ı						
	(xi)	SEÇ	QUENC	CE DE	ESCRI	IPTIC	ON:	SEQ .	ID NO); 1!	59:							
C T	CG' ' A C	י יר פיז	מ ידיי	C G	AA CZ	AT G	AC A'	TA. A'	rg A	C G	AA G	AG TO	cc a	TT T	AC		. 4	16
	er Th															•	-	,
	1		:		5		٠,			LO	ı				15		•	
CAA	TCA.	TGT	GAC	TTG	CAG	ccc	GAG	GCA	CGC	GCA	GCA	ATA	CGG	TCA	CTC		, 6	4
	Ser															+ -		
				20			1	,	25					30			· .	
200	CAA	400	omo	ma.c	mam	CC7	000	ccc	እጥር	יים פיים יים פיים	, A A C	N.C.C	אאמ	dec	ראא.		. 14	12
	Gln																	
1111	0111		35		CyD	O. J		40		-1-			45					
-					,													
	TGT																. 19	0
Gln	Cys		Tyr	Arg	Arg	Cys			Ser	Gly	Val		Thr	Thr	ser			
		50					55	•				60		•				
ATG	GGC	AAC	ACC	ATG	ACG	TGC	TAC	ATC	AAG	GCT	TTA	GCC	TCC	TGT	AGA		-23	8
Met	Gly	Asn	Thr	Met	Thr	Cys	Tyr	Ile	Lys	Ala	Leu	Ala	Ser	Cys	Arg			
	65	•				70					75							•
	GCA		cmc	666	G2 G	maa	200	CTTIC	ama	ama	m/cm	CCT	CAC	CAT	CTT		28	
	Ala																20	
80	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****		••••	85	-,-				90	~. 	2			95	1.		٠.
					٠.							•						
GTG	GCC	ATC	TGC	GAG	AGC	CAG	GGG	ACA	CAC	GAG	GAT	GAA	GCA	AGC	CTG		33	34
Val	Ala	Ile	Cys		Ser	Gln	Gly	Thr		Glu	Asp	GIu	Ala		ьeu			
				100			•		105					110	,	;		
AGA	GCC																34	10
	Ala																•	
		÷			· ·										•			
																	•	

- (2) INFORMATION FOR SEQ ID NO: 160:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

Ser Thr Val Thr Glu His Asp Ile Met Thr Glu Glu Ser Ile Tyr Gln

1 15

Ser Cys Asp Leu Gln Pro Glu Ala Arg Ala Ile Arg Ser Leu Thr 20 25 30

Gln Arg Leu Tyr Cys Gly Gly Pro Met Tyr Asn Ser Lys Gly Gln Gln
35 40

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Phe Thr Thr Ser Met
50 55 60

Gly Asn Thr Met Thr Cys Tyr Ile Lys Ala Leu Ala Ser Cys Arg Ala 65 70 75 80

Ala Arg Leu Arg Asp Cys Thr Leu Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Ala Ile Cys Glu Ser Gln Gly Thr His Glu Asp Glu Ala Ser Leu Arg

Ala'

- (2) INFORMATION FOR SEQ ID NO: 161:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..340
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 2..337
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:
- C TCA ACC GCC ACC GAA CAT GAC ATA TTG ACT GAA GAG TCC ATA TAC Ser Thr Ala Thr Glu His Asp Ile Leu Thr Glu Glu Ser Ile Tyr

	1				5	1			·. :	10		•		:	15		
CAA	TCA	TGT	GAC	TCG	CAG	ccc	GAC	GCA	cgd	GCA	GCA	ATA	CGG	TCA	CTC	· · ·	94
			Asp														
		•		20					25					30	•		1, .
	,	1										I.			*		
			TTG													•	142
Thr	Gln	Arg	Leu	Phe	Cys	Gly	Gly		Met	Tyr	Asn	Ser		Gly	Gln		•
			35	٠,		,		40					45			•	•
ממ	, הכת	CCT	TAT	CGC	AGA	TGC	רפר. י	GCC	AGC	GGC	GTC	ጥጥር	ACC	ACC	ДСТ		190
															Ser		100
0111	Cy5	50	-,-				55			0-7		60			201		
•			•	;								4					
ATG	GGC	AAC	ACC	ATG	ACG	TGC	TAC	ATT	AAG	GCT	TTA	GCC	TCC	TGT	AGA		238
Met	Gly	Asn	Thr	Met	Thr	Cys	Tyr	Ile	Lys	Ala	Leu	Ala	Ser	Cys	Arg		
•	65					70	,			, ,	75						•
7.00		000	CTC	,	C	lma C	200	ama	ama	ama.	mom.	CCTT	CAC	CAM	Cam	•	286
															His		200
80	ATO	GLY	пец	Arg	85	TYL	1111	Deu	Deu	90	Cys	GIY	nsp	nsp	95		
•					. 11	•			•	,					1		
GTG	GCC	ATC	TGC	GAG	AGC	CAG	GGG	ACA	CAC	GAG	GAT	GAA	GCG	DAA	CTG		334
			Cys														
				100					105				•	110			
			,					-1									
			, '					4				ŧ					240
	GCC		,					-1			· •	t	·.		-		340
	GCC 'Ala			,			· .1	.1				t	•,				340
			P	1		•	·.i	4	'n,			ı					340
			, , , , , , , , , , , , , , , , , , ,	ı		ı	*.d		*;			ř					340
Arg	'Ala	ORMA:	rion	FOR	SEQ	ID	40 : • 1	162:	**************************************			,					340
Arg	'Ala INFO								13 ·			•					340
Arg	'Ala INFO	(i) 8	SEQUI	ENCE	CHAI	RACTI	ŖŔĬS:	ŗics	: :			ı					340
Arg	'Ala INFO	(i) §	SEQUI	ence Engti	CHAI	RACTI	RIS:	ŗics	: :			ı					340
Arg	'Ala INFO	(i) S (1 (I	SEQUE A) LI B) T	ence Engti Ype :	CHAI H: 1: amir	RACTI	ERIS: nino cid	ŗics	: :			,					340
Arg	'Ala INFO	(i) S (1 (I	SEQUI	ence Engti Ype :	CHAI H: 1: amir	RACTI	ERIS: nino cid	ŗics	: :			•					340
Arg	INFO	(i) (() (I) (I)	SEQUE A) LI B) T	ENCE ENGTI (PE : OPOL(CHAI H: 1: amii DGY:	RACTI 13 ar no ac line	ERIS: mino cid ear	ŗics	: :			•					340
Arg	Ala INFO	(i) (i) (i) (i) (i)	SEQUI A) LI B) TO D) TO	ENCE ENGTI (PE: OPOL(CHAI H: 1: amir DGY:	RACTI 13 ar no ac line prot	ERIS: mino cid ear cein	rics aci	: ls			•					340
Arg	Ala INFO	(i) (i) (i) (i) (i)	SEQUE A) LI B) TY	ENCE ENGTI (PE: OPOL(CHAI H: 1: amir DGY:	RACTI 13 ar no ac line prot	ERIS: mino cid ear cein	rics aci	: ls	D: 10	52:	•					340
Arg (2)	'Ala INF((ii) (xi)	(i) S (1 (I (I) MOI	SEQUE (A) LE (B) TY (C) TO (C) TO	ENCE ENGTI (PE: OPOLO LE TY	CHAI H: 1: amin DGY: 'PE:	RACTI 13 am no ac line prot	erist nino cid ear cein	rics acid	: ds			ser	Ile		Gln		340
Arg (2)	'Ala INF((ii) (xi)	(i) S (1 (I (I) MOI	SEQUI A) LI B) TO D) TO	ENCE ENGTI (PE: OPOLO LE TY	CHAI H: 1: amin DGY: 'PE:	RACTI 13 am no ac line prot	erist nino cid ear cein	rics acid	: ds			Ser	Ile		Gln		340
Arg (2) Ser	INFO (ii) (xi) Thr	(i) 8 (I (I) MOI) SE(SEQUENCE Thr	ENCE ENGTH PE: OPOLO LE TY CE DI Glu 5	CHAI H: 1: amir DGY: 'PE: ESCR:	RACTI 13 at no ac line prot IPTIC	ERIST nino cid ear cein ON: S	rics acid	: is ID No Thr 10	Glu	Glu			Tyr 15			340
Arg (2) Ser	INFO (ii) (xi) Thr	(i) 8 (I (I) MOI) SE(SEQUE A) LECUI LECUI QUENC Thr	ENCE ENGTH PE: OPOLO LE TY CE DI Glu 5	CHAI H: 1: amir DGY: 'PE: ESCR:	RACTI 13 at no ac line prot IPTIC	ERIST nino cid ear cein ON: S	rics acid SEQ Leu	: is ID No Thr 10	Glu	Glu		Ser	Tyr 15			340
Arg (2) Ser 1	(ii) (xi) Thr	(i) (i) (i) (i) (i) (ii) MOI SEÇ	SEQUENCE Thr	ENCE ENGTH YPE: OPOLO LE TY CE DI Glu 5	CHAI H: 1: amir DGY: 'PE: ESCR: His	RACTI 13 ar no ac line prot IPTIC Asp	ERIST mino cid ear cein ON: S Ile	rics acid SEQ Leu Arg 25	: is ID No Thr 10 Ala	Glu Ala	Glu Ile	Arg	ser 30	Tyr 15 Leu	Thr		340
Arg (2) Ser 1	(ii) (xi) Thr	(i) (i) (i) (i) (i) (ii) MOI SEÇ	SEQUE A) LECUI LECUI QUENC Thr	ENCE ENGTH YPE: OPOLO LE TY CE DI Glu 5	CHAI H: 1: amir DGY: 'PE: ESCR: His	RACTI 13 ar no ac line prot IPTIC Asp	ERIST mino cid ear cein ON: S Ile	rics acid SEQ Leu Arg 25	: is ID No Thr 10 Ala	Glu Ala	Glu Ile	Arg	ser 30	Tyr 15 Leu	Thr		340

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Phe Thr Thr Ser Met

Gly Asn Thr Met Thr Cys Tyr Ile-Lys Ala Leu Ala Ser Cys Arg Thr

Ala Gly Leu Arg Asp Tyr Thr Leu Leu Val Cys Gly Asp Asp His Val

85

50

Ala Ile Cys Glu Ser Gln Gly Thr His Glu Asp Glu Ala Asn Leu Arg

Ala

(2) INFORMATION FOR SEQ ID NO: 163:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 499 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..499
- (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..496
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:

A	TG	AGC	ACG	AAT	CCT	AAA	CTT	CAA	AGA	AAA	ACC	AAA	CGT	AAC	ACC	AAC	48	
M	et	Ser	Thr	Asn	Pro	Lys	Leu	Gln	Arg	Lys	Thr	Lys	Arg	Asn	Thr	Asn		
	1				5	_			,	10					15			
С	GC	CGC	ccc	ATG	GAC	GTT	AAG	TTC	CCG	GGT	GGT	GGC	CAG	ATC	GTT	GGC	96	

CGC CGC CCC ATG GAC GTT AAG TTC CCG GGT GGT GGC CAG ATC GTT GGC
Arg Arg Pro Met Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly
20 25 30

GGA GTT TAC TTG TTG CCG CGC AGG GGC CCT AGG TTG GGT GTG CGC GCG
Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala

35
40
45

ACT CGG AAG ACT TCG GAG CGG TCG CAA CCT CGT GGG AGG CGC CAA CCT

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro

50 55 60

ATC CCC AAG GCG CGC CGA TCC GAG GGC AGA TCC TGG GCG CAG CCC GGG

Ile Pro Lys Ala Arg Arg Ser Glu Gly Arg Ser Trp Ala Gln Pro Gly

65 70 75 80

TAT CCT TGG CCC CTT TAC GGC AAT-GAG GGC TGT GGG TGG GCA GGG TGG

Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Cys Gly Trp Ala Gly Trp

85

90

95

CTC CTG TCC CCT CGC GGG TCT CGG CCG TCT TGG GGC CCT AAT GAT CCC 336

									-	- 10						1			
iŧ	Leu	Leu	Ser	Pro 100	Arg	Gly	Ser	Arg	Pro 105	Ser	Trp	Gly	Pro	Asn 110		Pro		ŀ	
				TCC Ser												•		384	
,				GAC Asp														432	
· .				GCC Ala											Glu			480	
1				TAC Tyr			G		, , , , , , , , , , , , , , , , , , ,						•			499	
	(2)	INFO	ORMA	rion	FOR	SEQ	ID 1	10: 3	L 64 :		1		,	•	,		•		
		•	(<i>I</i>	SEQUE A) LE B) TY	ENGTI PE:	H: 16	56 ar	mino cid				i					1 *	1	
١			' '	LECUI		, ,	_	. 1		FD . N/). 1 <i>4</i>	., '	1 -			•	•		
	Met 1	Ser		QUENC Asn									Arg	Asn	Thr 15	Asn			
	Arg	Arg	Pro	Met 20	Asp	Val	Lys	Phe	Pro 25	Gly	Gly	Gly	Gln	Ile 30	Val	Gly			
	Gly	V'al	Tyr 35	Leu	Leu	Pro	Arg	Arg 40	Gly	Pro	Arg	Leu	Gly 45	Val	Arg	Ala			
	Thr	Arg 50	-	Thr	Ser	Glu	Arg 55	•	Gln	Pro	Arg	Gly 60	Arg	Arg	Gln	Pro			
	Ile 65	Pro	Lys	Ala	Arg	Arg 70	Ser	Glu	Gly	Arg	Ser 75	Trp	Ala	Gln	Pro	Gly 80			

Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Cys Gly Trp Ala Gly Trp

Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Asn Asp Pro

Arg Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys
115 120 - 125

Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala Pro Val

135

Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val Glu Asp 145 150 155 160

Gly Ile Asn Tyr Ala Thr 165

- (2) INFORMATION FOR SEQ ID, NO: 165:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 499 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

ATGAGCACGA	ATCCTAAACC	TCAAAGAAAA	ACCAAACGTA	ACACCAACCG	CCGCCCTATG	60
GACGTTAAGT	TCCCAGGCGG	TGGTCAGATC	GTTGGCGGAG	TTTACTTGTT	GCCGCGCAGG	120
GGCCCCAGGT	TGGGTGTGCG	CGCGACTCGG	AAGACTTCGG	AGCGGTCGCA	ACCTCGTGGG	180
AGGCGCCAAC	CTATCCCCAA	GGCGCGCCGA	ACCGAGGGCA	GATCCTGGGC	GCAGCCCGGG	240
TATCCTTGGC	CCCTTTACGG	CAATGAGGGC	TGTGGGTGGG	CAGGGTGGCT	CCTGTCCCCT	300
CGCGGNTCTC	GGNCGTCTTG	GGGCCCCAAT	GATCCCCGGN	GGAGATCCCG	CAACTTGGGT	360
AAGGTCATCG	ATACCCTAAC	ATGCGGCTTC	GCCGACCTCA	TGGGATACAT	CCCGCTTGTA	420
GGCGCCCCCG	TGGGTGGCGT	CGCCAGGGCC	CTGGCACATG	GTGTTAGGGC	TGTGGAAGAC	480
GGGATCAATT	ATGCAACAG					499

- (2) INFORMATION FOR SEQ ID NO: 166:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 126 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

	1		•		5	+	•			10					15	1	
	Arg,	Arg	Pro	Met 20	Asp	Val	Lys	Phe	Pro 25	Gly	Gly	Gly	Gln	Ile 30	Val	Gly	
	Gly	Val	Туг 35	Leu	Leu	Pro	Arg	Arg 40	Gly	Pro	Arg	Leu	Gly 45	Val	Arg	Ala	
	Thr	Arg 50	Lys	Thr	Ser		Arg 55	Ser	Gln	Pro	Arg	Gly 60	Arg	Arg	Gln	Pro	•
	Ile 65	Pro	Lys	Ala	Arg	Arg 70	Thr	Glu	σlγ	Arg	Ser 75	Trp	Ala	Gln	Pro	Gly 80	1
	Tyr	Pro	Trp	Pro	Leu 85	Tyr	Gly	Asn	Glu	Gly 90	Cys	Gly	Trp	Ala	Gly 95	Trp	
•	Leu	Leu	Ser	Pro 100	. ,	Xaa	Ser	Arg	Xaa 105	Ser	Trp	Gly	Pro	Asn 110	Asp	Pro	•
	Arg	Xaa	Arg 115	Ser	Arg	Asn	Leu	Gly 120	Lys	Val	Ile	Asp	Thr 125	Leu		•	
(2)	INFO	RMAT:	ION I	FOR .	SEQ :	ID N): 1	67:					1 .				
	(i)	(A)) TYI	NGTH PE: 1	: 57	TERI: 9 ba: eic : SS:	se pacid	airs	η,			•				1.1	
	å					line			.0				, 1				
	(ii)	MOL	ECULI	E TY	PE:	CDNA								. •			
	(iii)	Η̈́ΧÞ	OTHE:	rica:	L: N	0	. ,					:			1	• .	
	(iii)	ANT	I-SEI	NSE:	МО	· ·											
	(ix)	(A)	AN (ME/K		CDS	79	•								·	
	(ix)	(A)		ME/K		mat_j 15		ide	,								
	(xi)	SEO	UENC	E DE	SCRI	PTIO	n: ˈs	EQ I	D NO	: 16	7:				•		
	TGC (GGC '	TTC	GCC ·	GAC	CTC	ATG	GGA	TAC	ATC	CCG						48
CCC	GTG (GGT (GGC (Gly '	GTC Val	GCC Ala	AGG Arg	GCC- Ala	CTG Leu 25	GCA Ala	CAT His	GGT Gly	GTT Val	AGG Arg 30	GCT Ala	GTG Val		96
GAZ	A GAC	GGG .	ATC :	TAA	TAT	GCA .	ACA	GGG	AAC	CTT	ccc	GGT	TGC	TCC	TTT		144

Glu	Asp	Gly 35	Ile	Asn	Tyr	Ala	Thr 40	Gly	Asn	Leu	Pro	Gly 45	Cys	Ser	Phe		
тст	ATC	TTC	CTC	TTG	GCG	CTC	CTC	TCG	TGC	CTG	ACT	GTT	CCC	ACA	TCG	19	€ 12
Ser	Ile 50	Phe	Leu	Leu	Ala	Leu 55	Leu	Ser	Cys	'Leu	Thr 60	Val	Pro	Thr	Ser		
GCC	GTT	AAC	TAT	CGC	AAT	GCT	TCG	GGC	ATT	TAT	CAC	ATC	ACC	AAT	GAC	24	10
Ala	Val	Asn	Tyr	Arg	Asn	Ala	Ser	Gly	Ile	Tyr	His	Ile	Thr	Asn	Asp		
65		. 1		1	70		a a		1	75					80		
TGC	CCG	AAT	GCA	ÀGC	ATA	GTG	TAC	GAG	ACC	GAA	AAT	CAC	ATC	TTA	CAC	28	38
Cys	Pro	Asn	Ala	Ser	Ile	Val	Tyr	Glu'	Thr	Glu	Asn	His,	Ile	Leu	His		
,			1	. 85					90				*	95			
														CGG		33	16
Leu	Pro	Gly	Cys	Val	Pro	Cys	Val	Arg.	Thr	Gly	Asn	Gln	Ser	Arg	Cys	· .	
			100			• •	, 4	105			• •		110	•		•	
TGG	GTG	GCC	CTC	ACT	ccb	ACA	GTA	GCG	TCG	CCA	TAC	GCC	GGT	GCT	CCG	38	4
Trp	Val		Leu	Thr	Pro	Thr	Val	Ala	Ser	Pro	Tyr	Ala	Ġlу	Ala	Pro	*	
	ï	1'15		-	-	•	120		i	-		125	ł				
														GCC		. 43	2
Leu		Pro	Leu	Arg	Arg		Val	Asp	Leu	Met	Val,	Gly	Ala	Ala	Thr	•	
	130					135	•				140	•				• • •	
														TTC		48	0
	Cys	Ser	Ala	Leu		Ile	Gly	Asp	Leu		Gly	Gly	Leu	Phe	Leu	•	
145		١.			150	•				155		• .			160		
														ACT		52	8
Val	Gly	Gln	Met		Thr	Phe	Gln	Pro	Arg	Arg	His	Trp	Thr	Thr	Gln		
				165					170		2.4			175			
														CGG		57	6
Asp	Cys	Asn	Cys 180	Ser	lle	Tyr	Thr			Ile	Thr	Gly		Arg	Met		
'			190					185		,			190				
GCA						•										57	9
Ala																	

- (2) INFORMATION FOR SEQ ID NO: 168:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala
1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30 '

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Thr Ser 50 55 60

Ala Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp
65 70 75 80

Cys Pro Asn Ala Ser Ile Val Tyr Glu Thr Glu Asn His Ile Leu His
85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Ala Gly Ala Pro 115 120 125

Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Met Cys Ser Ala, Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180 185 190

Ala

(2) INFORMATION FOR SEQ ID NO: 169:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..579
- (ix) FEATURE:
 - (A) NAME/KEY: mat peptide
 - (B) LOCATION: 1..576

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169:

		•	
ACA TGC GGC TTC	GCC GAC CTC ATG	GGA TAC ATC CCG CTT	GTA GGC GCC . 49
Thr Cvs Glv Phe	Ala Asp Leu Met	Gly Tyr Ile Pro Leu	Val Cly Ala
1	5.	10	vai Giy Aia
- ·	-		13

CCC	GTG	GGT	GGC	GTC	GCC	AGA	GCC	CTG	GCA	. CAC	GGT	CTT	ACC	CCT	GTG	96
																90
Pro	Val	Gly	Gly	Val	Ala	Arg	Ala	Leu	Ala	His	Glv	Val	Ara	Ala	Val	
		, F	20			_					3					
			20					25	,				·30			

GAA	GAC GGG	ATC	AAC	TAC	GCA	ACA	GGG '	TAA	CTC	CCC	GGT	TGC	TCC	TTT	144
Glu	Asp Gly	,Ile	Asn	Tyr	Ala	Thr	Gly	Asn	Leu	Pro	Gly	Cys	Ser	Phe	
•	35					40	•				45				

TCT ATC TTC						
Ser Ile Phe	Leu Leu	Ala Leu Leu	Ser Cys	Leu Thr, Val	Pro Ala	Ser
50	•	55		60		

GGC	GTT	אַבּבּ	ጥልጥ	CGC	די מי מ	CCT	TOO	CCC	CIDIT	m a m	030	300	200		·		
																240	
Gly	Val	Asn	Tyr	Arg	Asn	Ala	Ser	Gly	Val	Tyr	His	Ile	Thr.	Asn	Asp		
65	•				70					75			,		80		

				85					90	_			•	9.5		1 .		
Cys	Pro	Asn	Ala	Ser	Ile	Val	Tyr	Glu	Thr	Asp	Asn	His	Ile	Leu	His			
TGC																	' 28	8

CTC	CCA	GGG	TGC	GTA	CCC	TGT GTG	AAG	ACC	GGG,	AAC	CAG	TCG	CGG	TGT		336
						Cys Val										
		•	100				105					110	. •			

TGG	GTG	GCC	CTC	ACT	CCC	ACA	GTG	GCG	TCG	CCT	TAC	GTC	GGT	GCT	CCG	384
\mathtt{Trp}	Val	Ala	Leu	Thr	Pro	Thr	Val	Ala	Ser	Pro	Tyr	Val	Gly	Ala	Pro	
		115					120				1	125	-			

CTC GAG CCC T	TG CGG	CGC CAT	GTG GAC	CTG ATG GTA	GGT GCT	GCC ACC	432
Leu Glu Pro L							
130		135		140.	- · .		

GTG	TGC	TCC	GÇC	CTC	TAC	GTC	GGC	GAC	CTG	TGC	GGT	GGC	TTA	TTC	TTG	480	
Val	Cys	Ser	Ala	Leu	Tyr	Val	Gly	Asp	Leu	Cys	Gly	Gly	Leu	Phe	Leu		
145	1				150					155	, -	_			1.60		

GTA	GGC	CAA	ATG	TTC	ACC	TTC	CAA	CCG	CGA	CGC	CAC	TGG	ACG	ACC	CAG	528
Val																
*				165				•	170					775		

GAC	TGT	AAT	TGT	TCC	ATC	TAC	GCA	GGG	CAT	ATT	ACG	GGC	CAT	CGG	ATG	576
															Met	
			700													

	and the second s	•	
GCT			570

⁽²⁾ INFORMATION FOR SEQ ID NO: 170:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala '1 5 10 15

219

Pro Val Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Gly Val Asn Tyr Arg Asn Ala Ser Gly Val Tyr His Ile Thr Asn Asp 65 70 75 80

Cys Pro Asn Ala Ser Ile Val Tyr Glu Thr Asp Asn His Ile Leu His 85 90 95

Leu Pro Gly Cys Val Pro Cys Val Lys Thr Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Val Gly Ala Pro 115 120 125

Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr
130 135 140

Val Cys Ser Ala Leu Tyr Val Gly Asp Leu Cys Gly Gly Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln
165 170 175

Asp Cys Asn Cys Ser Ile Tyr Ala Gly His Ile Thr Gly His Arg Met
180 185 190

- (2) INFORMATION FOR SEQ ID NO: 171:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

	(ii:	i) Hy	POTE	ETIC	AL:	NO,		•			·				1	i .	
	(iii	AA (i	ITI-S	ENSE	: NO	, .				.,				1			
		4	•		÷ .		4		,					1			
	(i)		A) N	IAME/				•		•		1	,				·
	(i)	. (c) FE		OCAT E:	'ION:	11.	579		ı	F .	• *						
	•			IAME/ OCAT				tide					ı				1
			, ,						• !								
	(xi	.) SE	QUEN	CE D	ESCR	IPŢI	ON:	SEQ	ID N	0: 1	71:	•					1 .
AC	A TGC c Cys L	GGC Gly	TTC Phe	GCC Ala	GAC Asp	CTC Leu	ATG Met	GGA Gly	TAC Tyr 10	ATC Ile	CCG Pro	CTT Leu	GTG Val	GGC Gly 15	GCC Ala	٠.	48
CC	GTI	GGT	GGC	GTC	GCC	AGA	GCC	CTT	GCG	CAC	GGC	GTC	AGG	GCT	GTG		96
PIC	Val	GIY	20		Ala	Arg	Ala	Leu 25	Ala	His	Gly	Val	Arg 30	Ala	.Val		
GA/ Glu	A GAC	GGG Gly 35	Ile	AAC Asn	TAT Tyr	GCA Ala	ACA Thr 40	GGG Gly	AAC Asn	CTT Leu	CCT Pro	GGT Gly 45	TGC Cys	TCC Ser	TTT Phe		144
TC1 Se1	ATC Ile	Phe	CTT	CTG Leu	GCA Ala	CTT Leu 55	CTC Leu	TCG Ser	TGC Cys	CTG Leu	ACT Thr	GTC Val	CCC Pro	GCC Ala	TCG Ser		192
							•		.*				!				
Ala 65	GTG Val	His	TAŢ	CAC His	AAC Asn 70	ACC	TCG Ser	GGC	ATC Ile	TAC Tyr 75	CAC His	CTC Leu	ACC Thr	AAT Asn	GAC Asp 80		240
TGC	CCT Pro	AAC Asn	TCT	AGC Ser 85	ATA Ile	GTC Val	TTT Phe	GAG Glu	GCA Ala 90	GTC Val	CAT His	CAC His	ATC Ile	TTG Leu 95	CAC His		288
CTI Leu	CCA	GGA Gly	TGC Cys 100	GTC Val	CCT Pro	TGT Cys	GTA Val	AGA Arg 105	ACT Thr	GGG Gly	AAC Asn	Gln	TCT Ser 110	Arg	TGC Cys		336
TGG	GTA Val	GCC Ala 115	TTG Leu	ACC Thr	CCC Pro	Thr	CTG Leu 120	GCC Ala	GCG Ala	CCA Pro	TAC Tyr	CTT Leu 125	GGC Gly	GCT Ala	CCA Pro		384
CTC	GAG Glu 130	Ser	ATG Met	CGG Arg	CGT Arg	CAC His 135	GTG Val	GAT Asp	TTG Leu	ATG Met	GTG Val 140	GGC Gly	ACT Thr	GCT Ala	ACA Thr		432
TTG Leu 145	TGC Cys	TCA Ser	GCA Ala	CTC Leu	TAC Tyr 150	GTT Val	GGG Gly	GAC Asp	CTG Leu	TGC Cys 155	GGG Gly	GGC Gly	ATA Ile	Phe	CTA Leu 160		480
	GGC Gly															. * •	528

GAG TGC AAT TGT TCC ACC TAT CCG GGC CAC ATC ACG GGT CAT AGA ATG Glu Cys Asn Cys Ser Thr Tyr Pro Gly His Ile Thr Gly His Arg Met 180 185 190

576

GCG Ala 579

- (2) INFORMATION FOR SEQ ID NO: 172:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala

1 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 , 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 ' 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Val His Tyr His Asn Thr Ser Gly Ile Tyr His Leu Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Phe Glu Ala Val His His Ile Leu His 85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Thr Pro Thr Leu Ala Ala Pro Tyr Leu Gly Ala Pro
115 120 125

Leu Glu Ser Met Arg Arg His Val Asp Leu Met Val Gly Thr Ala Thr 130 135 140

Leu Cys Ser Ala Leu Tyr Val Gly Asp Leu Cys Gly Gly Ile Phe Leu 145 150 155 160

Ala Gly Gln Met Phe Thr Phe Arg Pro Arg Leu His Trp Thr Thr Gln 165 170 175

Glu Cys Asn Cys Ser Thr Tyr Pro Gly His Ile Thr Gly His Arg Met 180 185 190

336

															•		
(2)	7377	77747	nt out	707	220	TD 1							٠.,				.,
(2)	INF	JRMA.	LION	FUR	SEQ	ו ענ	NO:	1/3:						'			٠,
	(1)	SEC	TIENO	CE CI	ARA	משיים.	ISTT(CS .		•				,		•	
	_			ENGT		•											
				YPE:	- 1		-	-	,								
				rrani						+							,
				OPOLO				are.					1				
,		(1), 10) POL	JGI:	'T TII6	=a1			•							
ı	(44)	MOT	ECTI	LE TY	me.	a DNI		·					, 1				
•	(++	1101	JECU	ue I.	IPE:	CDIV	•									,	r .
	(iii)	HVI	ווייי	erter	1. • .T.	۸O ,			'	,							
	,,	••••	1		·	.10						,					
1	(iii)	ANT	[]~S]	ENSE	NO.				•								• •
							•								ŀ		
	,	, (•				
	(ix)	FE!	ATURI	E :			. 4										
				AME/I	KEY:	CDS						٠.					
				CAT:			579					٠		,			
	•	•	-,			1											
	(ix	FE	ATURI	E:					i	·							
				AME/I	ŒY:	mat	pept	tide		•			,				
				CAT:				•			٠,						
	· '	**															
	(xi)	SEC	QUEN	CE DI	SSCR:	IPTIC	ON: S	SEQ :	D NO): 1 [°]	73:	•				•	
			_	+				_								• •	
	тсс	GGT	TCC	GCC	GAC	CTC	ATG	GGÄ	TAC	ATC	ccg					•	48
		GGT	TCC	GCC	GAC	CTC	ATG	GGÄ	TAC	ATC	ccg					1 · · · · · · · · · · · · · · · · · · ·	48
	тсс	GGT	TCC	GCC	GAC	CTC	ATG	GGÄ	TAC	ATC	ccg					•	48
Thr 1	TG¢ Cys	gļy	TCC Ser	GCC Ala 5	GAC Asp	CTC Leu	ATG Met	GGA Gly	TAC Tyr 10	ATC:	CCG Pro	,Leu	Val	Gly 15	Ala	•	48
Thr 1 CCT	TG¢ Cys GTG	GGT Gly GGT	TCC Ser	GCC Ala 5	GAC Asp	CTC Leu	ATG Met	GGA Gly TTG	TAC Tyr 10	ATC: Ile	CCG Pro	,Leu GTC	Val	Gly 15 GCT	Ala	•	4 8 96
Thr 1 CCT	TG¢ Cys	GGT Gly GGT	TCC Ser GGC Gly	GCC Ala 5	GAC Asp	CTC Leu	ATG Met	GGA Gly TTG Leu	TAC Tyr 10	ATC: Ile	CCG Pro	,Leu GTC	Val AGG Arg	Gly 15 GCT	Ala		
Thr 1 CCT	TG¢ Cys GTG	GGT Gly GGT	TCC Ser	GCC Ala 5	GAC Asp	CTC Leu	ATG Met	GGA Gly TTG	TAC Tyr 10	ATC: Ile	CCG Pro	,Leu GTC	Val	Gly 15 GCT	Ala	•	
Thr 1 CCT Pro	TGC Cys GTG Val	GGT Gly GGT Gly	TCC Ser GGC Gly 20	GCC Ala 5 GTC Val	GAC Asp GCC Ala	CTC Leu AGG Arg	ATG Met GCC Ala	GGA Gly TTG Leu 25	TAC Tyr 10 GCG Ala	ATC Ile CAT His	CCG Pro GGC Gly	GTC Val	Val AGG Arg 30	Gly 15 GCT Ala	Ala GTG Val	•	96
Thr 1 CCT Pro	TGC Cys GTG Val	GGT Gly GGT Gly	TCC Ser GGC Gly 20	GCC Ala 5 GTC Val	GAC Asp GCC Ala	CTC Leu AGG Arg	ATG Met GCC Ala	GGA Gly TTG Leu 25	TAC Tyr 10 GCG Ala	ATC Ile CAT His	CCG Pro GGC Gly	GTC Val	Val AGG Arg 30 TGC	Gly 15 GCT Ala TCT	Ala GTG Val	•	
Thr 1 CCT Pro	TGC Cys GTG Val	GGT Gly GGT GGG GGG	TCC Ser GGC Gly 20	GCC Ala 5 GTC Val	GAC Asp GCC Ala	CTC Leu AGG Arg	ATG Met GCC Ala ACA Thr	GGA Gly TTG Leu 25	TAC Tyr 10 GCG Ala	ATC Ile CAT His	CCG Pro GGC Gly	GTC Val	Val AGG Arg 30 TGC	Gly 15 GCT Ala TCT	Ala GTG Val	•	96
Thr 1 CCT Pro	TGC Cys GTG Val	GGT Gly GGT Gly	TCC Ser GGC Gly 20	GCC Ala 5 GTC Val	GAC Asp GCC Ala	CTC Leu AGG Arg	ATG Met GCC Ala	GGA Gly TTG Leu 25	TAC Tyr 10 GCG Ala	ATC Ile CAT His	CCG Pro GGC Gly	GTC Val	Val AGG Arg 30 TGC	Gly 15 GCT Ala TCT	Ala GTG Val	•	96
Thr 1 CCT Pro GAG Glu	TGC Cys GTG Val GAC Asp	GGT Gly GGT Gly GGG Gly 35	TCC Ser GGC Gly 20 ATA Ile	GCC Ala 5 GTC Val AAC Asn	GAC Asp GCC Ala TAT Tyr	CTC Leu AGG Arg GCA Ala	ATG Met GCC Ala ACA Thr 40	GGA Gly TTG Leu 25 GGG Gly	TAC Tyr 10 GCG Ala AAC Asn	ATC Ile CAT His CTT Leu	CCG Pro GGC Gly CCT Pro	GTC Val GGT Gly 45	AGG Arg 30 TGC Cys	Gly 15 GCT Ala TCT Ser	Ala GTG Val TTT Phe		96 144
Thr 1 CCT Pro GAG Glu	TGC Cys GTG Val GAC Asp	GGT Gly GGT Gly GGG Gly 35	TCC Ser GGC Gly 20 ATA Ile	GCC Ala 5 GTC Val AAC Asn	GAC Asp GCC Ala TAT Tyr	CTC Leu AGG Arg GCA Ala	ATG Met GCC Ala ACA Thr 40	GGA Gly TTG Leu 25 GGG Gly	TAC Tyr 10 GCG Ala AAC Asn	ATC Ile CAT His CTT Leu CTG	CCG Pro GGC Gly CCT Pro	GTC Val	AGG Arg 30 TGC Cys	Gly 15 GCT Ala TCT Ser	Ala GTG Val TTT Phe		96
Thr 1 CCT Pro GAG Glu	TGC Cys GTG Val GAC Asp	GGT Gly GGT Gly GGG Gly 35	TCC Ser GGC Gly 20 ATA Ile	GCC Ala 5 GTC Val AAC Asn	GAC Asp GCC Ala TAT Tyr	CTC Leu AGG Arg GCA Ala CTT Leu	ATG Met GCC Ala ACA Thr 40	GGA Gly TTG Leu 25 GGG Gly	TAC Tyr 10 GCG Ala AAC Asn	ATC Ile CAT His CTT Leu CTG	CCG Pro GGC Gly CCT Pro	GTC Val	AGG Arg 30 TGC Cys	Gly 15 GCT Ala TCT Ser	Ala GTG Val TTT Phe		96 144
Thr 1 CCT Pro GAG Glu	TGC Cys GTG Val GAC Asp	GGT Gly GGT Gly GGG Gly 35	TCC Ser GGC Gly 20 ATA Ile	GCC Ala 5 GTC Val AAC Asn	GAC Asp GCC Ala TAT Tyr	CTC Leu AGG Arg GCA Ala	ATG Met GCC Ala ACA Thr 40	GGA Gly TTG Leu 25 GGG Gly	TAC Tyr 10 GCG Ala AAC Asn	ATC Ile CAT His CTT Leu CTG	CCG Pro GGC Gly CCT Pro	GTC Val	AGG Arg 30 TGC Cys	Gly 15 GCT Ala TCT Ser	Ala GTG Val TTT Phe		96 144
Thr 1 CCT Pro GAG Glu	TGC Cys GTG Val GAC Asp	GGT Gly GGG Gly 35 TTC Phe	TCC Ser GGC Gly 20 ATA Ile CTT Leu	GCC Ala 5 GTC Val AAC Asn CTG Leu	GAC Asp GCC Ala TAT Tyr GCA Ala	CTC Leu AGG Arg GCA Ala CTT Leu 55	ATG Met GCC Ala ACA Thr 40 CTC Leu	GGA Gly TTG Leu 25 GGG Gly TCG Ser	TAC Tyr 10 GCG Ala AAC Asn TGC	ATC Ile CAT His CTT Leu CTG Leu	CCG Pro GGC Gly CCT Pro ACT Thr 60	GTC Val	AGG Arg 30 TGC Cys	Gly 15 GCT Ala TCT Ser GCC Ala	Ala GTG Val TTT Phe TCA Ser		96 144
Thr 1 CCT Pro GAG Glu TCT Ser	TGC Cys GTG Val GAC Asp ATC Ile 50	GGT Gly GGG Gly 35 TTC Phe	TCC Ser GGC Gly 20 ATA Ile CTT Leu	GCC Ala 5 GTC Val AAC Asn CTG Leu	GAC Asp GCC Ala TAT Tyr GCA Ala	CTC Leu AGG Arg GCA Ala CTT Leu 55	ATG Met GCC Ala ACA Thr 40 CTC Leu	GGA Gly TTG Leu 25 GGG Gly TCG Ser	TAC Tyr 10 GCG Ala AAC Asn TGC Cys	ATC Ile CAT His CTT Leu CTG Leu	CCG Pro GGC Gly CCT Pro ACT Thr 60 CAC	GTC Val GGT Gly 45 GTC Val	AGG Arg 30 TGC Cys	Gly 15 GCT Ala TCT Ser GCC Ala	Ala GTG Val TTT Phe TCA Ser		96 144 192
Thr 1 CCT Pro GAG Glu TCT Ser	TGC Cys GTG Val GAC Asp ATC Ile 50	GGT Gly GGG Gly 35 TTC Phe	TCC Ser GGC Gly 20 ATA Ile CTT Leu	GCC Ala 5 GTC Val AAC Asn CTG Leu	GAC Asp GCC Ala TAT Tyr GCA Ala	CTC Leu AGG Arg GCA Ala CTT Leu 55	ATG Met GCC Ala ACA Thr 40 CTC Leu	GGA Gly TTG Leu 25 GGG Gly TCG Ser	TAC Tyr 10 GCG Ala AAC Asn TGC Cys	ATC Ile CAT His CTT Leu CTG Leu	CCG Pro GGC Gly CCT Pro ACT Thr 60 CAC	GTC Val GGT Gly 45 GTC Val	AGG Arg 30 TGC Cys	Gly 15 GCT Ala TCT Ser GCC Ala	Ala GTG Val TTT Phe TCA Ser		96 144 192

TGC CCT AAC TCT AGC ATA GTC TTT GAG GCA GAG CAT CAC ATC TTG CAT

Cys Pro Asn Ser Ser Ile Val Phe Glu Ala Glu His His Ile Leu His

CTT CCA GGA TGC GTC CCC TGT GTG AGA ACT GGG AAC CAG TCA CGA TGC

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Gln Ser Arg Cys

TGG ATA GCC TTG ACC CCT ACG TTG GCC GCG CCA CAC ATT GGC GCT CCA Trp Ile Ala Leu Thr Pro Thr Leu Ala Ala Pro His Ile Gly Ala Pro

90

85

100

115 125 CTT GAG TCC ATG CGA CGT CAT GTG GAT TTG ATG GTA GGC ACT GCC ACA Leu Glu Ser Met Arg Arg His Val Asp Leu Met Val Gly Thr Ala Thr 130 TTG TGC TCC GCA CTC TAC ATT GGA GAT CTG TGC GGA GGC ATA TTT CTA 480 Leu Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Ile Phe Leu 150 ; 145 GTG GGC CAG ATG TTC AAC TTC AGG CCC CGC CTG CAC TGG ACC ACC CAG 528 Val Gly Gln Met Phe Asn Phe Arg Pro Arg Leu His Trp Thr Thr Gln 170 GAG TGC AAT TGT TCC ATC TAT CCA GGC CAC ATC ACG GGT CAC AGA ATG 576 Glu Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg Met 180 185 579 GCG Ala

(2) INFORMATION FOR SEQ ID NO: 174:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:

Thr Cys Gly Ser Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 10

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 40

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser

Ala Val His Tyr His Asn Thr Ser Gly Ile Tyr His Ile Thr Asn Asp

Cys Pro Asn Ser Ser Ile Val Phe Glu Ala Glu His His Ile Leu His

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Gln Ser Arg Cys

Trp Ile Ala Leu Thr Pro Thr Leu Ala Ala Pro His Ile Gly Ala Pro

	•							22	24				1		•	•	
Lei	1 Glu 130	Ser	Met	Arg	Arg	His 135		. Asp	Leu	Met	Val 140		Thr	Ala	Thr	1	
Let 145	ı Cys	'Ser	Ala	Leu	Tyr 150		Gly	Asp	Leu	Cys 155		Gly	Ile	Phe	Leu 160		
Val	Gly	Gln	Met	Phe 165		Phe	Arg	Pro	Arg 170		His	Trp	Thr	Thr 175			
Glu	, Cys	Asn	Cys 180	Ser	Įle	Tyr	Pro	Gly 185		Ile	Thr	Gly	His 190	Arg	Met		1
Ala			,		•			•	1		•	,			. , .		
(2)	INF	ORMA	rion	FOR	SEQ	ID :	NO:	175:	:		, 1 - ,					ar .	
•	(i)	· (I	A) LI 3) T? C) S?	engti YPE : Irani	H: 5 nuc DEDN	CTER 79 b leic ESS: lin	ase aci sin	pair d	s						•		
	(ii)	MOI								•				í 	•		
	(iii) (iii)		٠,			NO		.a			. ,	1	•				
		FEA	TURE	E: AME/I	KEY:		50 x		· · · · · · · · · · · · · · · · · · ·				. 1			.	,
	(ix)	FEA	TURE	S: AME/I	KEY:	mat	pep	tide	:								
	(xi)	SEC				e	•	SEO :	ID NO): 1'	75 :						•
ACG Thr	TGC Cys	GGC	TTT	GCC	GAC	CTC	ATG	GGA	TAC	ATC	CCG	CTC Leu	GTG Val	GGC Gly 15	GCC Ala		48
CCT Pro	GTG Val	GGT Gly	GGC Gly 20	GTC Val	GCC Ala	AGG Arg	GCC Ala	TTG Leu 25	GCA Ala	CAT His	GGT Gly	GTC Val	AGG Arg 30	GCC Ala	GTG Val		96
Glu	GAC Asp	Gly 35	Ile	Asn	Tyr	Ala	Thr 40	Gly	Asn	Leu	Pro	Gly 45	Cys	Ser	Phe	·	144
	ATC Ile															-	192

GCG CAG CAC TAC CGG AAC ATC TCG GGC ATT TAT CAC GTC ACC AAT GAC Ala Gln His Tyr Arg Asn Ile Ser Gly Ile Tyr His Val Thr Asn Asp

	65					70		•			75				٠,	80	•	
					Ser	ATA Ile				Ala					Met			288
						сст												336
•	Leu ,	Pro	Gly	Cys 100		Pro	Cys	Val	Arg 105	Thr	Gly	Asn		Ser 110	Arg	Cys		
į														Gly		CCG Pro	•	384
						CGG Arg											· .	432
			TCG			TAC												480
	Val 145	Cys	Ser	,Ala	Leu	Tyr 150	Ile :	Gly	Asp	Leu	Cys 155	Gly	Gly	Val	Phe	Leu 160		
						ACC Thr												528
			Asn	Cys		ATC Ile			Gly					His		ATG Met		576
	GCT		. 1	180		' 1	•		185				· , .	190		•	٠	579
	Ala	·																
	(2)		•	٠.		SEQ						. • •						
		,	(1	A) LI B) T	engti YPE :	CHAI H: 1! amii OGY:	93 ar	mino cid				•	. •				:	
						YPE: ESCR.	- -		SEO '	וח אני	o : 1	76:						· .
	Thr			_		Asp							Leu	Val	Gly 15	Ala		
	Pro	Val	Gly	Gly 20	Val	Ala	Arg	Ala	Leu 25	Ala	His	Gly	Val	Arg 30	Ala	Val	٠.	
	Glu	Asp	Gly	Ile	Asn	Tyr	Ala	Thr	Gly	Asn	Leu	Pro	Gly	Cys	Ser	Phe		·.

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser

Ala Gln His Tyr Arg Asn Ile Ser Gly Ile Tyr His Val Thr Asn Asp 75 70 Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp His His Ile Met His 90, Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Thr Ser Arg Cys 105 Trp Val Pro Leu Thr Pro Thr Val Ala Ala Pro Tyr Val Gly Ala Pro 120 Leu Glu Ser Met Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 Val Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 155 Val Gly Gln Met Phe Thr Phe Arg Pro Arg Arg His Trp Thr Thr Gln 170 Asp Cys Asn Cys Ser Ile Tyr Asp Gly His Ile Thr Gly His Arg Met 185 180 Ala (2) INFORMATION FOR SEQ ID NO: 177: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 579 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..579 (ix) FEATURE: (A) NAME/KEY: mat peptide (B) LOCATION: 1..576 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177: ACG TGC GGG TTC GCC GAC CTC ATG GGA TAC ATC CCG CTC GTG GGC GCT 48 Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 1

CCA GTA GGA GGC GTC GCC AGA GCC TTG GCG CAT GGC GTC AGG GCT GTG

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val

									22	7		,	٠.	•			•		
				20			•		25				•	30		•	1	•	
	GAG	GAC	GGG	ATC	AAT	TAC	GCA	ACA	GGG	AAC	CTT	CCC	GGC	TGC	TCC	TTT	. :	14	4
	Glu	Asp	Gly	Ile	Asn	Tyr	Ala	Thr	Gly	Asn	Leu	Pro	Glý	Cys	Set	Phe			
			35				•	40			,		45	٠.		•			
	TCT	ATC	TTC	CTC	TTG	GTA	CTT	CTC	TCG	CGC	CTA	ACT	GTC	CCA	GCG	TCT		19:	2
	Ser	Ile	Phe	Leu	Leu	Val	Let	Leu	Ser	Arg	Ļeu	Thr	Val	Pro	Ala	Ser		٠.	
		50				,	55					60							
															AAC		•	24	0
	Ala	Gln	His	Tyr	Arg	Asn	Ala	Ser	Gly.	Ile	Tyr	His	Val	Thr	Asn	Asp.			
	65					70	•				75					80			
	TGC	CCG	אמר	TCC	AGT	. עיייע	GTG	TAT	ĠΔΔ	GGC	GAC	י רים יי	CAC	አጥ ሮ	ATG	, השכ		28	R
															Met			20	•
	-,-				85			-1-		90					95				
	,				1		ı	1,0			•			•					
															CGT		,	330	6
	Leu	Pro	Gly	Cys	Val	Pro	Сув	Val	Arg	Thr	Gly	Asn	Val	Ser	Arg	Cys			
				100					105					110				•	
		, Tomo	COM	mm »	202	. + 1	N CITT	CITIA.	acc	CTC	CCC	TT A C	CTC	aga	GCT	רי מי		38	,
															Ala			30.	=
	110		115					120		·		-1-	125	بر_ب					
				, '					-1				,						
																ACC		43	2
	Leu		Ser	Val	Arg	Gln			Asp	Leu	Met		Gly	Ala	Ala	Thr	•		
		130		1 p	1		135	.1		':		140							
	מידים	TGC	ጥርጥ	GCC	СД.С.	ТΔС	ΣTC	GGA	GAC	CAT	TGC	GGA.	GGT	GTC	TTC	TTG		48	0
															Phe				•
	145	- 2				150	٠.	•	-		155	-	-			160			
											,						٠.		
															ACC			52	8
,	Ala	Gly	Gln	Met		Ser	Phe	Gln	Pro	_	Arg	His	Trp	Thr	Thr	Gln			
	•				165		p			170					175				
	GAT	TGC	AAC	TGT	TCC	ATC	TAT	GTG	GGC	CAC	ATC	ACC	GGC	CAC	AGG	ATG	٠	57	6
																Met	1 '		
				180		•			185					190					

(2) INFORMATION FOR SEQ ID NO: 178:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:

GCC Ala Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala
1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile Phe Leu Leu Val Leu Leu Ser Arg Leu Thr Val Pro Ala Ser 50 55 60

Ala Gln His Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp
65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp His His Ile Met His 85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Val Ser Arg Cys
100 105 110

Trp Ile Pro Leu Thr Pro Thr Val Ala Val Pro Tyr Leu Gly Ala Pro 115 120 125

Leu Thr Ser Val Arg Gln His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Leu Cys Ser Ala Leu Tyr Ile Gly Asp His Cys Gly Gly Val Phe Leu 145 150 155 160

Ala Gly Gln Met Val Ser Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Val Gly His Ile Thr Gly His Arg Met 180 185 190

- (2) INFORMATION FOR SEQ ID NO: 179:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..579

(xi) SI	EQUENCE DESC	CRIPTION: SE	EQ ID NO: 17	79:		
ACCTGCGGCT	TCGCCGACCT	CATGGGATAC	ATCCCGCTCG	TAGGCGCCCC	CGTGGGAGGC	60
GTCGCCAGAR	CTCTGGCGCA	TGGCGTCAGG	GCTCTGGAAG	ACGGGATCAA	TTATGCAACA	120
GGGAATCTTC	CTGGTTGCTC	TTTCTCTATC	TCCCTTCTTG	AACTTCTCTC	GTGCCTGACT	180
GTTCCCGCCT	CAGCCATCCA	CTATCGCAAT	GCTTCGGACG	GTTATTATAT	CACCAATGAT	240
TGCCCGAACT	CTAGCATAGT	GTATGAAGCC	GAGAACCACA	TCTTGCACCT	TCCGGGGTGT	300
ATACCCTGTG	TGAAGACCGG	GAATCAGTCG	CGGTGCTGGG	TGGCTCTCAC	CCCCACGCTG	360
GCGGCCCCAC	ACCTACGTGC	TCCGCTTTCG	TCCTTACGGG	CGCATGTGGA	CCTAATGGTG	420
GGGGCCGCCA	CGGCATGCTC	CGCTTTTTAC	ATTGGAGATC	TGTGCGGGGG	TGTGTTTTTG	480
GCGGGCCAAC	TGTTCACTAT	CCGGCCACGC	ATTCATGAAA	CCACTCAGGA	CTGCAATTGC	540
TCCATCTACT	CAGGGCACAT	CACGGGTNNN	NNNNNNNN	The state of the s	1	579

(2) INFORMATION FOR SEQ ID NO: 180:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi)	SEQU	JENCI	DES	CRI	COITS	1: S	EQ II	NO:	180):			,		_
Thr 1	Cys	Gly	Phe	Ala 5	Asp	Leu	Met	Gly	Tyr 10	Ile	Pro	Leu	Val	Gly 15	Ala
Pro	Val	Gly	Gly 20	Val	Ala	Arg	Xaa	Leu 25	Ala	His	Gly	Val	Arg 30	Ala	Leu
Glu	qaA	Gly 35	Ile	Asn	Tyr	Ala	Thr 40	Gly	Asn	Leu	Pro	Gly 45	Cys	Ser	Phe
Ser	Ile 50	Ser	Leu	Leu	Glu	Leu 55	Leu	Ser	Cys	Leu	Thr 60	Val	Pro	Ala	Ser
Ala 65	Ile	His	Tyr	Arg	Asn 70	Ala	Ser	Asp	Gly	Tyr 75	Tyr	Ile	Thr	Asn	Asp 80
Cys	Pro	Asn	Ser	Ser 85	Ile	Val	Tyr	Glu	Ala 90	Glu	Asn	His	Ile	Leu 95	His
Leu	Pro	Gly	Cys	Ile	Pro	Cys	Val	Lys 105	Thr	Gly	Asn	Gln	Ser	Arg	Cys

Trp Val Ala Leu Thr Pro Thr Leu Ala Ala Pro His Leu Arg Ala Pro 115 120 125

Leu Ser Ser Leu Arg Ala His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 ,140

Ala Cys Ser Ala Phe Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 145 150 155 160

Ala Gly Gln Leu Phe Thr Ile Arg Pro Arg Ile His Glu Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Ser Gly His Ile Thr Gly Xaa Xaa Xaa 180 185 190

Xaa

(2) INFORMATION FOR SEQ ID NO: 181:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1. 578

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181:

GCGTGCGGCT	TCGCCGATCT	CATGGGATAC	ATCCCGCTCG	TAGGCGCCCC	CGTGGGTGGC	60
GTCGCCAGAG	CCCTGGCGCA	CGGTGTTAGG	GCTGTGGAGG	ACGGGATTAA	CTACGCAACA	120
GGGAATCTTC	CTGGTTGCTC	TTTCTCTATC	TNCCTTCTGG	CACTTCTCTC	GTGCCTGACT	180
GTCCCGGCCT	CGGCTCAGCA	CTACCGGAAT	GTCTCGGGCA	TCTACCACGT	CACCAATGAT	240
TGCCCGAATT	CCAGCATAGT	GTATGAAGCC	GATCACCACA	TCATGCACTT	ACCAGGGTGC	300
ATACCCTGCG	TGAGGACCGG	GAACGTTTCG	CGCTGCTGGG	TATCTCTGAC	ACCTACTGTG	360
GCTGCTCCCT	ACCTCGGGGC	TCCGCTTACG	TCGCTACGGC	GGCATGTGGA	TTTGATGGTG	420
GGTGCAGCCA	CCCTTTGCTC	TGCCCTCTAC	GTCGGAGACC	TCTGTGGAGG	TGTCTTCCTA	480

579

GTGG	GACAG	A TO	STTC	ACCTI	CC3	GCCC	GCGC	CGCC	ACTO	GA C	CACI	CAG	A CI	GCAA	CTGC	:
TCC	 \ATTT\	CG T	cggc	CACAT	r' CAC	CAGG	CAC	AGAZ	TGG	CT .						• •
(2)	INFO	TAMS	ON I	FOR S	SEQ I	מן ְשׁנ): 18	32:			. '			•		
	(i)		JENCE LEN						' 5 1	• •		•	•			
			TY									÷				1
	• •		STE					Le	F .						•	
		(D)	TOE	OLO	3Y: 3	linea	ır									,
	(22)	MOT		, , , , , , , , , , , , , , , , , , , ,		1			:			•	-	•		
	(ii)	MOLI	SCOLL	S (TY)	e: I	DIOLE	ein.			•						
	٠ .										•					
*			(ł		•	1,1		•							. '
	(xi)	SEQU	JENCI	E · DES	CRI	TION	1: SI	II, QE	NO:	182	2:				ı	
	Ala	Cys	Gly			Asp	Leu	Met	Gly	Tyr	Ile	Pro	Leu	Val		Ala
-	1				5' '				I	10					15	
•	Pro	Val	Gly	Gly 20	νal	Ala	Arg	Ala	Leu 25	Ala	His	Gly	Val	Arg 30	Ala	Val
	Glu	Asp	ь р 35	Ilė	Asn	Tyr	Ala	Thr	Gly	Asn	Leu	Pro	Gly	Cys	Ser	Phe
	'	•	, ii			. :	į	••	•						٠	
	Ser	Ile 50	Xaa	Leu	Leu	Aľa	Leu 55	Leu	Ser	Cys	Leu	Thr 60	Val	Pro	Ala	Ser
	Ala 65	Gln	His	Tyr	Arg	Asn 70	Val	Ser	Gly	Ile	Туг 75	His	Val	Thr	Asn	Asp 80
	Сув	Pro	Asn	Ser	Ser 85	Ile	Val	Tyr	Glu	Ala 90	Asp	His	His	Ile	Met 95	His
	Leu	Pro	Gly	Cys		Pro	Cys	Val	Arg 105	Thr	Gly	Asn	Val	Ser 110	Arg	Cys
	Trp	Val	Ser 115	Leu	Thr	Pro	Thr	Val 120	Ala	Ala	Pro	Tyr	Leu 125	Gly	Ala	Pro
	Leu	Thr 130	Ser	Leu	Arg	Arg	His 135	Val	Asp	Leu		Val 140		Ala	Ala	Thr
	Leu 145	Cys	Ser	Ala	Leu	Tyr 150	Val	Gly	Asp	Leu	Cys 155	Gly	Gly	Val	Phe	Leu 160
	Val	Gly	Gln	Met	Phe 165	Thr	Phe	Gln	Pro	Arg 170	Arg	His	Trp	Thr	Thr 175	Gln
	Asp	Cys	Asn	Cys 180	Ser	Ile	Tyr	Val	Gly 185	His	Ile	Thr	Gly	His 190	Arg	Met

(2) INFORMATION FOR SEQ ID NO: 183:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..579
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..579

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:

				,							•					5
ACC	TGC	GGC	TTŢ	GCC	GAC	CTC,	ATG	GGA	TAC	ATC	CCG	CTC	GTA	GGC	GCC	48
Thr	Cys	Gly	Phe	Ala	'Asp	Leu	Met	Gly	Tyr	Ile	Pro	Leu	Val	Gly	Ala	
1		,		5					10		٠.			15		
			-										•			
CCT	GTG	GGT	GGC	GTC	GCC	AGG	GCC	CTA	GAA	CAC	GGT	GTT	AGG	GCT	GTG	96
Pro	Val	Gly	Gly	Val	Ala	Arg	Ala	Leu	Glu	His	Gly	Val	Arg	Ala	Val	
•			20					25			. '		30			
												•				
GAG	GAC	GGT	ATT	AAT	TAT	GCA	ACA	GGG	AAT	CTC	ccc	GGT	TGC	TCT	TTT	144
Glu	Asp	Gly	Ile	Asn	Tyr	Ala	Thr	Gly	Asn	Leu	Pro	Gly	Cys	Ser	Phe	
		35					40					45				
TCT	ATC	TCC	CTC	TTG	GCA	CTT	CTT	TCG	TGC	CTG	ACT	GTT	CCC	ACC	TCA .	192
Ser			Leu	Leu	Ala	Leu	Leu	Ser	Суѕ	Leu	Thr	Val	Pro	Thr	Ser	
	50.		-			55					60					
			TAT													240
Ala	Val	Asn	Tyr	Arg	Asn	Ala	Ser	Gly	Val	Tyr	His	Ile	Thr	Asn	Asp	
65				•	- 70			٠.		75		٠.			80	
													, ,		1.00	
TGC	CCG	AAT	TCG	AGC	ATA	GTG	TAC	GAG	GCT	GAC	TAC	CAC	ATC	CTA	CAC	288
Cys	Pro	Asn	Ser		Ile	Val	Tyr	Glu	Ala	Asp	Tyr	His	Ile	Leu	His	
				85					90					95		
							•									•
CTC	CCT	GGG	TGC	TTA	CCC	TGC	GTG	AGG	GTT	GGG	AAT	CAG	TCA	CGC	TGC	33,6
Leu	Pro	Gly	Cys	Leu	Pro	Cys	Val		Val	Gly	Asn	Gln	Ser	Arg	Сув	
			100					105					110			
																•
TGG	GTG	GCC	CTT	ACT	CCC	ACC	GTG	GCG	GCG	CCT	TAC	GTT	GGT	GCT	CCG	384
Lrp	Val	Ala	Leu	Thr	Pro	Thr	Val	Ala	Ala	Pro	Tyr	Val	Gly	Ala	Pro	

WO 341230					•		` 2	233	•		٠.	1				
	115					120	•				125			•	1	
	113					120					+23					
CTA GAA																432
Leu Glu		Leu	Arg	Ser		Val	Asp	Leu	Met.	•	Gly	Ala	Ala	Thr		•
130					135	,				140	ŀ	•				
GTG TGC	TCC	GCT	CŢT	TAC	ATC	GGG	GAC	CTG	TGC	GGT	GGC	GTA	TTT	TTG	,	480
Val Cys	Ser	Ala	Leų		Ile	Gly	Asp	Leu		Gly	Gly	Val	Phe			2.3
145			•	150	, ,				155					160		
GTT GGT	CAG	АПС:	ىلىنلىن	' ጥርጥ	ייייי כיייי	CAG	CCG	CGA	CGC	CAC	тсс	ACC	ACG	CAG		528
Val Gly															,	, , ,
			165		•			170					175			
GAC TGC																576
Asp Cys	Asn	180		11e	Tyr	ATA	185	HIS	vaı	Inr	GLY	190	Arg	Met		
•									•		•					
GCA			•		1	12							٠.			579
Ala	•		•		1		. , ,			•		·			٠.	•
	٠							•								
(2) INF	ORMAT	NOI	FOR	SEQ'	'ID'	. OV.	184:	•	i		•	•		•		•
*		2.0	•				•							i		
	(i) S	-		CHAI H: 19							•	1 1			-	•
				amir			aci	15								
	,-										•					
	(I), ' T(DEOTO	GY:	line	ear								•		١.
, ,								. . '				·.	•		٠. '	' .
(ii	IOM (E							41.								' .
		EÇUI	LE T	YPE:	pro	tein	SEQ :	ID NO	, D: 18	34:					•.	•. • • • • • • • • • • • • • • • • • • •
(xi) MOI) SEC	EÇUI QUEN(LE T	YPE: ESCRI	prot	tein										' .
(xi Thr Cys) MOI) SEC	EÇUI QUEN(LE T	YPE: ESCRI	prot	tein		Tyr			Leu	Val		Ala		•
(xi) MOI) SEC	EÇUI QUEN(LE T	YPE: ESCRI	prot	tein					Leu	Val	Gly 15	Ala		
(xi Thr Cys) MOI) SEC	EÇUI QUENC Phe	LE TY CE DI Ala 5	YPE: ESCRI Asp	prot IPTIC	tein ON: : Met	Gly	Туг 10	Ile	Pro			15	1		
(xi Thr Cys) MOI) SEC	EÇUI QUENC Phe	LE TY CE DI Ala 5	YPE: ESCRI Asp	prot IPTIC	tein ON: : Met	Gly	Туг 10	Ile	Pro			15	1		
(xi Thr Cys 1 Pro Val) MOI) SEC Gly Gly	DUENO Phe Gly 20	CE DE Ala 5	YPE: ESCRI Asp Ala	prot IPTIC Leu Arg	DN: S Met	Gly Leu 25	Tyr 10 Ala	Ile His	Pro	Val	Arg 30	15 Ala	Val		
(xi Thr Cys) MOI) SEC Gly Gly	DUENO Phe Gly 20	CE DE Ala 5	YPE: ESCRI Asp Ala	prot IPTIC Leu Arg	DN: S Met	Gly Leu 25	Tyr 10 Ala	Ile His	Pro	Val	Arg 30	15 Ala	Val		
(xi Thr Cys 1 Pro Val	Gly Gly Gly 35	DUENO Phe Gly 20	CE DI Ala 5 Val	PE: ESCRI Asp Ala	prot [PTIC Leu Arg	Met Ala Thr	Gly Leu 25 Gly	Tyr 10 Ala Asn	Ile His Leu	Pro Gly Pro	Val Gly 45	Arg 30 Cys	15 Ala Ser	Val Phe		
Thr Cys 1 Pro Val Glu Asp	Gly Gly Gly SP Gly Gly SP Gly	DUENO Phe Gly 20	CE DI Ala 5 Val	PE: ESCRI Asp Ala	prot IPTIC Leu Arg Ala	Met Ala Thr	Gly Leu 25 Gly	Tyr 10 Ala Asn	Ile His Leu	Pro Gly Pro Thr	Val Gly 45	Arg 30 Cys	15 Ala Ser	Val Phe		
(xi Thr Cys 1 Pro Val	Gly Gly Gly SP Gly Gly SP Gly	DUENO Phe Gly 20	CE DI Ala 5 Val	PE: ESCRI Asp Ala	prot [PTIC Leu Arg	Met Ala Thr	Gly Leu 25 Gly	Tyr 10 Ala Asn	Ile His Leu	Pro Gly Pro	Val Gly 45	Arg 30 Cys	15 Ala Ser	Val Phe		
Thr Cys 1 Pro Val Glu Asp	Gly Gly Gly 35	DUENG Phe Gly 20 Ile	CE DI Ala 5 Val Asn Leu	YPE: ESCRI Asp Ala Tyr	prof [PTIC Leu Arg Ala Leu 55	Met Ala Thr 40 Leu	Gly Leu 25 Gly Ser	Tyr 10 Ala Asn Cys	Ile His Leu Leu	Pro Gly Pro Thr	Val Gly 45 Val	Arg 30 Cys	15 Ala Ser Thr	Val Phe Ser		
Thr Cys 1 Pro Val Glu Asp Ser Ile 50	Gly Gly Gly 35	DUENG Phe Gly 20 Ile	CE DI Ala 5 Val Asn Leu	YPE: ESCRI Asp Ala Tyr	prof [PTIC Leu Arg Ala Leu 55	Met Ala Thr 40	Gly Leu 25 Gly Ser	Tyr 10 Ala Asn Cys	Ile His Leu Leu	Pro Gly Pro Thr	Val Gly 45 Val	Arg 30 Cys	15 Ala Ser Thr	Val Phe Ser		
Thr Cys 1 Pro Val Glu Asp Ser Ile 50 Ala Val 65	Gly Gly Gly She	DUENO Phe Gly 20 Ile Leu	LE TY Ala 5 Val Asn Leu Arg	ASP Ala Tyr Ala Asn 70	prof IPTIC Leu Arg Ala Leu 55	Met Ala Thr 40 Leu Ser	Gly Leu 25 Gly Ser	Tyr 10 Ala Asn Cys	Ile His Leu Leu Tyr 75	Pro Gly Pro Thr 60	Val Gly 45 Val	Arg 30 Cys Pro	15 Ala Ser Thr	Val Phe Ser Asp		
Thr Cys 1 Pro Val Glu Asp Ser Ile 50 Ala Val	Gly Gly Gly She	DUENO Phe Gly 20 Ile Leu	LE TY Ala 5 Val Asn Leu Arg	ASP Ala Tyr Ala Asn 70	prof IPTIC Leu Arg Ala Leu 55	Met Ala Thr 40 Leu Ser	Gly Leu 25 Gly Ser	Tyr 10 Ala Asn Cys	Ile His Leu Leu Tyr 75	Pro Gly Pro Thr 60	Val Gly 45 Val	Arg 30 Cys Pro	15 Ala Ser Thr	Val Phe Ser Asp		
Thr Cys 1 Pro Val Glu Asp Ser Ile 50 Ala Val 65 Cys Pro	Gly Gly Gly She Asn	DUENO Phe Gly 20 Ile Leu Tyr	LE TY Ala 5 Val Asn Leu Arg Ser 85	Asp Ala Tyr Ala Asn 70	Prof IPTIC Leu Arg Ala Leu 55 Ala	Thr 40 Leu Ser	Gly Leu 25 Gly Ser Gly	Tyr 10 Ala Asn Cys Ile Thr 90	Ile His Leu Leu Tyr 75 Glu	Pro Gly Pro Thr 60 His	Val Gly 45 Val Ile	Arg 30 Cys Pro Thr	15 Ala Ser Thr Asn Leu 95	Val Phe Ser Asp 80		
Thr Cys 1 Pro Val Glu Asp Ser Ile 50 Ala Val 65	Gly Gly Gly She Asn	DUENO Phe Gly 20 Ile Leu Tyr Ala	LE TY Ala 5 Val Asn Leu Arg Ser 85	Asp Ala Tyr Ala Asn 70	Prof IPTIC Leu Arg Ala Leu 55 Ala	Thr 40 Leu Ser	Gly Leu 25 Gly Ser Gly Glu	Tyr 10 Ala Asn Cys Ile Thr 90	Ile His Leu Leu Tyr 75 Glu	Pro Gly Pro Thr 60 His	Val Gly 45 Val Ile	Arg 30 Cys Pro Thr Ile	15 Ala Ser Thr Asn Leu 95	Val Phe Ser Asp 80		
Thr Cys 1 Pro Val Glu Asp Ser Ile 50 Ala Val 65 Cys Pro	Gly Gly Gly She Asn	DUENO Phe Gly 20 Ile Leu Tyr	LE TY Ala 5 Val Asn Leu Arg Ser 85	Asp Ala Tyr Ala Asn 70	Prof IPTIC Leu Arg Ala Leu 55 Ala	Thr 40 Leu Ser	Gly Leu 25 Gly Ser Gly	Tyr 10 Ala Asn Cys Ile Thr 90	Ile His Leu Leu Tyr 75 Glu	Pro Gly Pro Thr 60 His	Val Gly 45 Val Ile	Arg 30 Cys Pro Thr	15 Ala Ser Thr Asn Leu 95	Val Phe Ser Asp 80		
Thr Cys 1 Pro Val Glu Asp Ser Ile 50 Ala Val 65 Cys Pro	Gly Gly Gly SEC Gly Gly Asn Asn	DUENO Phe Gly 20 Ile Leu Tyr Ala Cys 100	LE TY Ala 5 Val Asn Leu Arg Ser 85	Asp Ala Tyr Ala Asn 70 Ile	Prof IPTIC Leu Arg Ala Leu 55 Ala Val	Thr 40 Leu Ser Tyr	Gly Leu 25 Gly Ser Gly Glu Arg 105	Tyr 10 Ala Asn Cys Ile Thr 90	Ile His Leu Leu Tyr 75 Glu Gly	Pro Gly Pro Thr 60 His	Val Gly 45 Val Ile His	Arg 30 Cys Pro Thr Ile Ser 110	15 Ala Ser Thr Asn Leu 95 Arg	Val Phe Ser Asp 80 His		

Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr

135

130

Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 145 150 155

Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met
180 185 190

- (2) INFORMATION FOR SEQ ID NO: 182:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 192 amino acids
 - (B) TYPE: amino acid |
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182:
- Ala Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 1 5 10 15
- Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val
- Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe
 35 40 45
- Ser Ile Ser Phe Trp His Phe Ser Arg Ala * Leu Ser Arg Pro Arg 50 55 60
- Leu Ser Thr Thr Gly Met Ser Arg Ala Ser Thr Thr Ser Pro Met Ile
 65 70 75 80
- Ala Arg Ile Pro Ala * Cys Met Lys Pro Ile Thr Thr Ser Cys Thr 85 90 95
- Tyr Gln Gly Ala Tyr Pro Ala * Gly Pro Gly Thr Phe Arg Ala Ala 100 105 110
- Gly Tyr Leu * His Leu Leu Trp Leu Leu Pro Thr Ser Gly Leu Arg 115 120 125
- Leu Arg Arg Tyr Gly Gly Met Trp Ile * Trp Trp Val Gln Pro Pro 130 135 140
- Phe Ala Leu Pro Ser Thr Ser Glu Thr Ser Val Glu Val Ser Ser *
 145 150 155 160
- Trp Asp Arg Cys Ser Pro Ser Ser Arg Ala Ala Thr Gly Pro Leu Arg 165 170 175
- Thr Ala Thr Ala Pro Phe Thr Ser Ala Thr Ser Gln Ala Thr Glu Trp

180 185 190

(2) INFORMATION FOR SEQ ID NO: 185:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..579
- (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..576

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:

							ÄTG Met									48	
							GCC Ala									96	
							ACA Thr 40									144	
							CTC Leu								TCG Ser	192	-
							TCG									240	
							TAC Tyr									288	
CTT Leu	CC <u>A</u> Pro	GGG Gly	TGC Cys 100	TTA Leu	CCC Pro	TGT Cys	GTG Val	AGG Arg 105	GTT Val	GGG Gly	AAT Asn	CAG Gln	TCA Ser 110	CGT	TGT Cys	336	

TGG GTG GCC CTC TCT CCC ACC GTG GCG GCG CCT TAC ATC GGT GCT CCA

	•							2	.30			٠.	1		•		•
Trp	Val	Ala 115	Leu	Ser	Pro	Thr	Val 120		Ala	Pro	Tyr	lle 125		Ala	Pro	1	
GTT Val	GAA Glu 130	TCC Ser	TTC Phe	CGG Arg	AGA Arg	CAC His 135	.GTG Val	GAC Asp	ATG Met	ATG Met	GTG Val 140	GGC Gly	GCT Ala	GCT Ala	ACT		432
GTG Val 145	TGC Cys	TCC Ser	GCT Ala	CTC Leu	TAT Tyr 150	ATT Ile	GGG Gly	GAC Asp	TTG Leu	TGT Cys 155	GGT Gly	GGC	GTA Val	TTC Phe	TTG Leu 160		480
GTT Val	GGT Gly	CAG Gln	ATG Met	TTT Phe 165	TCT Ser	TTC Phe	CGG Arg	CCA Pro	CGA Arg 170	CGC Arg	CAC His	TGG Trp	ACT Thr	ACG Thr 175	CAG Gln		528
GAC Asp	TGC Cys	AAT Asn	TGT Cys 180	TCC Ser	ATC Ile	TAC Tyr	GCG Ala	GGG Gly 185	CAC His	ATC Ile	ACT	GGC Gly	CAC His 190	GGA Gly	ATG Met	÷	576
GCA Ala		•				i											579
(2)	INFO	RMAT	TION	FOR	SEQ	ID N	10: 1	186:		t t		,		l .	•		
		(2 (E (E	SEQUE L) LE B) TY	NGTH PE: POLC	: 19 amin GY:	3 am 10 ac line	ino id ar				· !					1 T	
			ECUL					EQ I	D NO): 18	16 :						
Thr	Cys	Gly	Phe	Ala	gsA	Leu	Met	Glv	Tvr	Tle	Pro	T.em	17a 1	Glv	λ1 -		

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Glu His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Tyr Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Thr Ser 50 55 60

Ala Ile His Tyr Arg Asn Ala Ser Gly Val Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp His His Ile Leu His
85 90 95

Leu Pro Gly Cys Leu Pro Cys Val Arg Val Gly Asn Gln Ser Arg Cys
100 -105 110

Trp Val Ala Leu Ser Pro Thr Val Ala Ala Pro Tyr Ile Gly Ala Pro 115 120 125

									۷.	3/		ı						•
	Val	Glu 130	Ser	Phe	Arg	Arg	His 135	Val	Asp	Met	Met	Val 140	Gly	Ala	Ala	Thr		
	Val 145	Сув	Ser	Ala	Leu	Tyr 150	Ile	Ġlу	Asp	Leu,	Cys 155	Gly	Gly	Val	Phé	Leu 160		•
	Val	Gly	Gln	Met	Phe 165	Ser	Phe	Arg	Pro	Arg 170	Arg	His	Trp	Thr	Thr 175	Gln		
	Asp	'Cys	Asn	Cys 180		Ile	Tyr	Ala	Gly 185	His	Ile	Thr	Gly	His 190	Gly	Met		
	Ala										,							
	(2)	,					ID N											
			(<i>I</i>	A) LI 3) TY	ENGTI PE :	i: 5	79 ba leic ESS:	ase p acid	pairs d'	3						1		
		(44)	(I) T (POLO	OGY':'	line cDN	ear		•	i				ŀ	•		
		(iii)		,				.	•									
	. •	(iii) '	ANT	ri-si	ENSE :	: NO		Via.		· ","							• .	
		(ix)	(2		ME/I		CDS										·	
		(ix)	FE2	ATURI	S:,		15		,						•		٠.	
•		*					mat_ 1		cide									• .
							PTIC						٠					
		TGC Cys			Ala	-												48
		GTG Val																96
		GAC Asp																144
		ATC Ile 50						Leu										192
						•						~ ~						

Ala 65	Val	Asn	Tyr	Arg	Asn 70	Ala	Ser	Gly	Ile	Tyr 75.	His	Ile	Thr	Asn	Asp,	
TGC Cys	CCG Pro	AAC Asn	TCG Ser	AGC Ser 85	ATA Ile	GTG Val	TAC Tyr	GAG Glu	ACC Thr 90	GAG Glu	CAC His	CAC His	ATC Ile	CTA Leu 95	CAC His	288
CTC Leu	CCA Pro	GGG Gly	TGT Cys 100	TTA Leu	CCC Pro	TGC Cys	GTG Val	AGG Arg 105	GTT Val	GGG'	AAT Asn	CAG Gln	TCA Ser 110	,CGC Arg	TGC Cys	336
TGG Trp	GTG Val	GCC Ala 115	Leu	ACT Thr	CCC Pro	ACC Th'r	GTG Val 120	Ala	GCG Ala	CCT Pro	TAC Tyr	ATC Ile 125	GGC Gly	GCT Ala	CCG Pro	'384
CTT Leu	GAA Glu 130	TCC Ser	CTC Leu	CGG Arg	AGT Ser	CAT His 135	Val	GAT 'Asp	CTG Leu	ATG Met	GTA Val 140	Gly	GCC Ala	GCT Ala	ACT Thr	432
GCG Ala 145	TGC Cys	TCC	GCT Ala	CTT Leu	TAC Tyr 150	ATC Ile	GGA Gly	GAC Asp	CTG Leu	TGC Cys 155	GGT Gly	GGC Gly	GTA Val	TTT Phe	TTG Leu 160	480
GTT Val	GGT Gly	CAG Gln	ATG Met	TTC Phe 165	TCT Ser	TTC Phe	CAG Gln	CCG Pro	CGG Arg 170	CGC Arg	CAC His	TGG Trp	ACT Thr	ACG Thr 175	CAG Gln	528
GAC Asp	TGC Cys'	AAT Asn	TGT Cys 180	TCC Ser	ATC Ile	TAC Tyr	GCG Ala	GGG Gly 185	CAC His	GTT Val	ACG Thr	GGC Gly	CAC His 190	AGG Arg	ATG. Met	576
GCA Ala										4		•		•	. •	579

(2) INFORMATION FOR SEQ ID NO: 188:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala

1 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr-Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Thr Ser 50 55 60

Ala Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Thr Glu His His Ile Leu His 85 90 95

Leu Pro Gly Cys Leu Pro Cys Val Arg Val Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Thr Pro Thr Val Ala Ala Pro Tyr Ile Gly Ala Pro 115 120 125

Leu Glu Ser Leu Arg Ser His Val Asp Leu Met Val Gly Ala Ala Thr ' 130 135 140

Ala Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 145 150 155 160

Val Gly Gln Met Phe Ser Phe Gln Pro Arg Arg His Trp Thr Thr Gln
165 170 175

Asp Cys Asn Cys Ser Ile Tyr Ala Gly His Val Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 189:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..579
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..576
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:

ACG TGC GGC TTC GCC GAC CTC ATG GGA TAC ATC CCG CTC GTG GGC GCC Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala

1 10 15

CCC	GTT	GGG	GGC	GTC	GCC	AĢG	GCC	CTG	GCG	CAT	GGC	GTC	AGG	GCT	GTG	1		96
Pro	Val	Gly		Val	Ala	Arg	Ala		Ala	His	Gly	Val		Ala	Val			
		t _i	. 20	* .				25	. 1				30					
GAG	GAC	GGG	חידים	ממ	TAT	. GCG	מים מ"	GGG	አ አ ጥ	СФФ	CCC	COT	TOC	mcm ,	. TTĆ	•	,	
Glu	Asp	Gly	Tle	Asn	Tyr	a ra	Thr	Glv	Yen	T.011	Dro	GGI	Circ	ICI Com	Dho.			144
		1 35		71011	-1-	71.24	40	G ₁	VOII	пец	PIU	GTA	Cys	ser	Pne			
		22		٠.			- 10					43						
TCT	ATC	TTC	CTC	CTG	GCA	י. כידידי	СТТ	TCG	TGC	كبيار	ΔСТ	GTC.	CCA	GCC	TCA			1 66
Ser.	Ile	Phe	Leu	Leu	Ala	Leu	Leu	Ser	Cvs	Leu	Thr	Val	Dro	Ala	Ser	* **		192
,	50				V	55			777		60	· · · ·	110	, ALG	Ser)	
																	•	
GCT	GAG	CAC	TAC	CGG	AAT	GCT	TCG	GGC	ATC	TAT	CAC	ATC	ACC	AAT	GAC			240
Ala	Glu	His	Tyr	Arg	Asn	Ala	Ser	Gly	Ile	Tyr	His	Ile	Thr	Asn	Asp			1
65				. :	70	1				75		•			80			
				'		٠.					٠.							
TGT	CCG	TAA	TCC	AGC	GTA	GTC	TAT	GAA	ACT	GAC	CAC	CAT	ATA	TTG	CAC			288
Cys	Pro	Asn	Ser	Ser	Val	Val	Tyr	Glu	Thr	'Asp	His	His	Ile	Leu	His		•	
				85					90					95				
						t									'	•		
		GGG																336
ьeu	Pro	GIÀ		val,	PţĢ	Cys	Val		Ala	,Gly	Asn	Val		Arg	Cys			
		,	100				1	105					110	i				
TGG	ACG	CCG	GTA	A C'A	CCT	àca	CTC	GCT	GCC	משים	maa	a mo		COM	000			204
		Pro																384
		115					120	n+u	nra	Val	261	125	Asp	Ala	PIO			
			.' '										:		• •	, '		
CTC	GAG	TCC,	TTC	CGG	CGG	CAT	GTG	GAC	CTA	ATG	GTA	GGT	GCG	GCC	ACC	•		432
Leu	Glu	Ser	Phe	Arg	Arg	His	Val	qaA	Leu	Met	Val	Gly	Ala	Ala	Thr			
	130					135			.1		140	-	. 1	•				
•																		
		TCT																480
	Cys	Ser	Val	Leu		Val	Gly	Asp	Leu	Cys	Gly	Gly	Ala	Phe	Leu			
145	•	•		,	150	. '	,			155					160			
CITICO"	000	ain a	3 m/3	mma	3.00	mma	G3 G	~~~					·					
172 J	Clar	CAG	Mot	TTC	ACC.	TTC	CAG	CCG	CGT	CGC	CAC	TGG	ACC	ACG	CAG			528
val	GIY	Gln	Met	165	THE	Phe	ĢIII	PIO	170	Arg	HIS	urp	Inr					
									170					175				
GAT	TGT	TAA	TGC	TCC	ATC	TAT	ACT	GGC	CAT	ATC	ACC	GGC	CAC	AGG	ልጥር	•		576
		Asn																570
_			180	-	_	•	-	185				1	190	3				
									•							٠		
GCG			•				,											579
21 a																		

(2) INFORMATION FOR SEQ ID NO: 190:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala
1 5 10 15

Pro Val Gly Gly Val Ala, Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Glu His Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp, 65 70 75 80

Cys Pro Asn Ser Ser Val Val Tyr Glu Thr Asp His His Ile Leu His
85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Ala Gly Asn Val Ser Arg Cys
100 105 110

Trp Thr Pro Val Thr Pro Thr Val Ala Ala Val Ser Met Asp Ala Pro 115 120 125

Leu Glu Ser Phe Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130, 135 140

Val Cys Ser Val Leu Tyr Val Gly Asp Leu Cys Gly Gly Ala Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met
180 185 190

- (2) INFORMATION FOR SEQ ID NO: 191:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 289 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS

1	(B)	Τ.	ററു	TT	ON:	٦.	21	
1			-		JIN :	-1 -1	- 4	

- (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..286
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO; 191:

ATG Met	AGC Ser	ACG Thr	AAT Asn	CCT	AAA Lys	CCT Pro	CAA Gln	AGA Arg	Lys	ACC Thr	AAA Lys	CGT Arg	AAC Asn	ACC Thr	AAC Asn		, (48
CGC	CGC	CCC	ATG	GAC	GTT	AAG	TTC	CCG	GGC	GGT	GGC	CAG	ልጥሮ	15 GTT				96
Arg	Arg	Pro	Met 20	Asp	Val	Lys	Phe	Pro 25	Gly	Gly	Gly	Gln	Ile 30	Val	Gly		. •	,
GGA Gly	GTT Val	TAC Tyr 35	TTG Leu	TTG Leu	CCG Pro	CGC Arg	AGG Arg 40	GGC Gly	CCC Pro	AGG Arg	TTG Leu	GGT Gly	GTG Val	CGC Arg	GCG Ala	•	14	14
ACT Thr	AGG Arg	AAG Lys	ACT Thr	TCG Ser	GAG Glu	CGG Arg	TCG Ser	CAA Gln	CCT Pro	CGT Arg	GGG Gly	AGA Arg	CGT Arg	CAG Gln	CCT Pro		19	2
እጥር	50	770	ceż	aam.	CCA	.55					60.) 						
Ile 65	CCC Pro	Lys	Ala	Arg	Arg 70	Ser	GAG	GGA	AGG	Ser 75	Trp	GCT Ala	CAG Gln	Pro	GGG Gly 80		· 24	10
TAC Tyr	CCA Pro	TGG Trp	CCT Pro	CTT Leu 85	TAC Tyr	GGT Gly	AAT Asn	GAG Glu	GGT Gly 90	TGT Cys	GGG Gly	TGG Trp	GCA Ala	GGA Gly 95	TGG Trp	G	28	39

- (2) INFORMATION FOR SEQ ID NO: 192:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 96 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

1 10 15

Arg Arg Pro Met Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly
20 25 30

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala
35 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 50 55 60

Ile Pro Lys Ala Arg Arg Ser Glu Gly Arg Ser Trp Ala Gln Pro Gly

336

243 75 80 65 70 Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Cys Gly Trp Ala Gly Trp 85 (2) INFORMATION FOR SEQ ID NO: 193: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 498 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..498 (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 1..495 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193: ATG AGC ACG AAT CCT AAA CCT CAA AGA AAA ACC AAA CGT AAC ACC AAC 48 Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 10 CGC CGC CCT ATG GAC GTA AAG TTC CCG GGC GGT GGA CAG ATC GTT GGC Arg Arg Pro Met Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly GGA GTT TAC TTG TTG CCG CGC AGG GGC CCC CGG TTG GGT GTG CGC GCG 144 Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala 35 ' ACT CGG AAG ACT TCG GAG CGG TCG CAA CCT CGT GGC AGG CGT CAA CCT 192 Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro ATC CCC AAG GCG CGC CGG TCC GAG GGC AGG TCC TGG GCG CAA GCC GGG 240 Ile Pro Lys Ala Arg Arg Ser Glu Gly Arg Ser Trp Ala Gln Ala Gly 75 65 70

TAC CCC TGG CCC CTC TAT GGC AAT GAG GGC TGT GGG TGG GCA GGG TGG

Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Cys Gly Trp Ala Gly Trp

CTC CTG TCT CCT CGC GGC TCT CGG CCA TCT TGG GGC CCA AAT GAT CCC

85.

90

Leu	Leu	Ser	Pro 100	Arg	Glý	Ser	Arg	Pro 105	Ser	Trp	Gly	Pro	Asn 110	Asp	Pro		
CGG Arg	CGG Arg	AGA Arg 115	TCG Ser	CGC Arg	AAT Asn	CTG	GGT Gly 120	Lys	GTC Val	ATC Ile	GAT Asp	ACC Thr 125	CTG Leu	ACG Thr	TGC Cys	3	84
GGC Gly	TTC Phe 130	GCC Ala	GAC Asp	CTC Leu	ATG Met	GGA Gly 135	TAC Tyr	ATC Ile	CCG Pro	CTC Leu	GTG Val 140	GGC Gly	GCC Ala	CCC Pro	GTC Val	4	32
GGG Gly 145	GGC Gly	GTC Val	GCC Ala	AGG Arg	GCC Ala 150	CTG Leu	GCG Ala	CAT His	GGC	GTC Val 155	AGG Arg	GCT Ala	GTG Val	GAG Glu	GAC Asp 160	· '4	80
			TAT Tyr			·		1								4	98

- (2) INFORMATION FOR SEQ ID NO: 194:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15

Arg Arg Pro Met Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly
20 25 30

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala 35 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 50 55 60

Ile Pro Lys Ala Arg Arg Ser Glu Gly Arg Ser Trp Ala Gln Ala Gly 65 70 75 80

Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Cys Gly Trp Ala Gly Trp
85 90 95

Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Asn Asp Pro
100 105 110

Arg Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 115 120 125

Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala Pro Val 130 135 140

*1	O 94	72300	1				•		2	45	•	, ,				1	227 1,1		
it	Gly 145	Gly	Val	Ala	Arg	Ala 150	Leu	Ala	His	Gly	Val 155	Arg	Ala	Val	Glu	Asp 160		,	•
-	Gly	Ile	Asn	Tyr	Arg 165	Gln	, .		! .							•			,
	٠				•		1 1								•				
	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	10:	195:				•	. ••	•				
<i>į</i> .	1	(i)	(1 (1	A) L1 B) T C) S	engti /PE : [rani	HARAC nuclosedni OGY:	79 ba leiç ESS:	ase p acid sing	pairs 1	5									•
!	1	(ii)	MOI	ĻECUI	LE T	YPE:	cDN	A .	ł						ı		•		
	•	(iii)	нуі	РОТНІ	ETIC	AL: 1	40		4	•			1		•			٠	•
		(iii)	AN.	ri-si	ENSE	: NO	•				,				,		•		
		(ix)	(2		AME/I	KEY:		579	•		•	•						•	
· .		(ix)	, (2		AME/i	KEY:			tide				1 .				1	•	,
,									SEQ :										
		TGC Cys																48	
		GTT Val																96	•
		GAC Asp												Cys				144	
		ATC Ile 50						Leu										192	2
フ		GTT Val																240)
		CCA Pro																288	3

GCA CCT GGC TGC GTG CCT TGT GTC AGG AAA GAT AAT GTG AGT AGG TGC

Ala	Pro	Gly	Cys 100	Val	Pro	Сув	Val	Arg	Lys	Asp	Asn	Val	Ser 110	_	Ċys		
	GTC Val														GTC Val	• ,	384
	,	115					120			,110		,125	029	2124		, *	•
ACG	GCT	CCC	CTT	ĊGG	AGA	GCC	GTT	GAT	TAC	ŢТG	GTG	GGA	GGG	GCT	GCC		432
	Ala	Pro	Leu	Arg	Arg	Ala	Val	Asp	Tyr	Leu	Val	Gly	Gly	Ala	Ala		•
	130			. '	ļ	135					140		. •		*		1
CTC	TGC	TCC	GCG	TTA	TAC	GTT	GGA	GAC	GCG	TGT	GGG	GCA	CTA	TTT	TTG		480
Leu	Cys	Ser	Ala	Leu	Tyr.	Val	Gly	Asp	Ala	Cys	Gly	Ala	Leu	Phe	Leu		
145			,	; · ;	150	ı				155		1			,160		
GTA	GGC	CAA	ATG.	TTC	ACC	TAT.	AGG	CCT	CGC	CAG	CAT	GCT	ACG	GTG	CAG		528
Val	Gly	Gln	Met		Thr	Tyr	Arg	Pro	Arg	Gln	His	Ala	Thr	Val	Gln		
				165		, '	'.'		170					175			
	TGC																576
Asp	Cys	Asn		ser	IIe	Tyr	Ser		His	Val	Thr	GIY		Gln	Met		
			180					185		•			190				•
GCA					. ''					•							579
Ala			' 1				•						,	1			

- (2) INFORMATION FOR SEQ ID NO: 196:
 - '(i) SÉQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:

Thr Cys Gly Phe Ala Asp Leu Val Gly Tyr Ile Pro Leu Val Gly Gly
1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu 20 25 30

Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Leu Ile Leu His
85 90 95

Ala Pro Gly Cys Val Pro Cys Val Arg Lys Asp Asn Val Ser Arg Cys
100 105 110

•		•		'	•			
_		1	_	,	•		_ '	
Trp Val Gln Ile	Thr Pro		Ser Ala	Pro Ser		y Ala	Val	
,115	1	,120			125			
Thr Ala Pro Leu	ı Arg Arg A	Ala Val A	Asp Tvr	Leu Val	Glv Gl	v Ala	Ala	
130		L35		140	_			
•								
Leu Cys Ser Ala		/al Gly A	Asp Ala		Ala Le			
145	150			155			160	
Val Clar Clar Mot	Dho Thr 1	Tree Name I	l Na Vac	Cln Wie	አገ። ሞክ	~ Val	Gln.	
Val Gly Gln Met	165 i	LYL ALG E	170 A19	GIII HIS	WIG III	175		
•	700				•		•	
Asp Cys Asn Cys	Ser Ile T	yr Ser G	Sly His	Val Thr	Gly Hi	s Gln	Met	
180)		185	¥ 4.	. 19	0		
*7		•						**
Al'a	1			,				
	- L	,						
(2) INFORMATION	FOR SEQ	D NO: 19	97:	٠.,				
		•	,	1				
	ICE CHARACT			ı	•	•	'	
•	ENGTH: 579	- .	airs	•				
	TYPE: nucle TRANDEDNES		. ا	,				
· · · · · · · · · · · · · · · · · · ·	OPOLOGY:]		1					
	,							* 1
'(ii) MOLECU	TLE TYPE: C	DNA						,
read the same	TOTAL STATE		*;	1				
(iii) HYPOTH	ETICAL: NO	, .	, I					
(iii) ANTI-S	ENSE: NO							
					•			
		7 A						
(ix) FEATUR						-	•	
	NAME/KEY: (LOCATION:)		•					
(8)	OCATION.					•	•	
(ix) FEATUR								
(A) N	IAME/KEY: n	nat_pepti	ide				'	
(B) I	OCATION: 1	1576						-
		•						
(xi) SEOUEN	CE DESCRI	TION: SE	EO ID NO): 197:	•	•		•
. (312) 022021							•	
	GCC GAC							48
ACT TGC GGC TTT				T1 - D	T.011 Wa	ി ദിം	Δla	
ACT TGC GGC TTT Thr Cys Gly Phe		Leu Met (TIE Pro	Dea va			
		Leu Met (10	ile Pro	Deu va	15	****	
Thr Cys Gly Phe	e Ala Asp I 5		10			15		96
Thr Cys Gly Phe 1 CCC GTG GGT GGC	Ala Asp I 5 C GTC GCC I	AGA GCC (10 CTG GAA	CAT GGT	GTT AG	15 G GCT	GTG	96
Thr Cys Gly Phe	Ala Asp I 5 C GTC GCC A Val Ala A	AGA GCC (10 CTG GAA	CAT GGT	GTT AG	15 G GCT	GTG	96
Thr Cys Gly Phe 1 CCC GTG GGT GGC Pro Val Gly Gly 20	e Ala Asp I 5 C GTC GCC A Val Ala A	AGA GCC (Arg Ala I	10 CTG GAA Leu Glu 25	CAT GGT His Gly	GTT AG Val Ar 3	15 G GCT g Ala 0	GTG Val	
Thr Cys Gly Phe 1 CCC GTG GGT GGC Pro Val Gly Gly 20 GAG GAC GGC ATC	Ala Asp I 5 C GTC GCC A Val Ala A	AGA GCC (Arg Ala I	10 CTG GAA Leu Glu 25 GGG AAT	CAT GGT His Gly	GTT AG Val Ar 3	15 G GCT g Ala 0	GTG Val	96
Thr Cys Gly Phe 1 CCC GTG GGT GGC Pro Val Gly Gly 20 GAG GAC GGC ATC Glu Asp Gly Ile	Ala Asp I 5 C GTC GCC A Val Ala A	AGA GCC (Arg Ala I	10 CTG GAA Leu Glu 25 GGG AAT	CAT GGT His Gly	GTT AG Val Ar 3 GGT TG Gly Cy	15 G GCT g Ala 0	GTG Val	
Thr Cys Gly Phe 1 CCC GTG GGT GGC Pro Val Gly Gly 20 GAG GAC GGC ATC	Ala Asp I 5 C GTC GCC A Val Ala A	AGA GCC (Arg Ala I	10 CTG GAA Leu Glu 25 GGG AAT	CAT GGT His Gly	GTT AG Val Ar 3	15 G GCT g Ala 0	GTG Val	
Thr Cys Gly Phe 1 CCC GTG GGT GGC Pro Val Gly Gly 20 GAG GAC GGC ATC Glu Asp Gly Ile	Ala Asp I 5 C GTC GCC I Val Ala I C AAT TAT C ASn Tyr I	AGA GCC (Arg Ala I	TG GAA Leu Glu 25 GGG AAT Gly Asn	CAT GGT His Gly CTC CCC Leu Pro	GTT AG Val Ar 3 GGT TG Gly Cy 45	15 G GCT g Ala 0 C TCT s Ser	GTG Val TTC Phe	

Ser	Ile 50	Tyr	Leu	Leu	Ala	Leu 55	Leu	Ser	Cys	Leu	Thr 60	Val	Pro	Thr	Ser	,	ı
GCC Ala 65	ATC Ile	CAC His	TAT Tyr	CGC Arg	AAT Asn 70	GCC Ala	TCG Ser	GGC Gly	GTC Val	TAC Tyr 75	CAC His	GTC Val	ACC	AAT Asn	GAC Asp 80		240
TGC Cys	CCG Pro	AAC Asn	TCG Ser	AGC Ser 85	ATA Ile	GTG Val	TAC	GAG Glu	GCC Ala 90	GAC Asp	CAC	CAC His	ATC Ile	CTA Leu 95	CAC His		288
CTT	CCA Pro	GGG Gly	TGC Cys 100	TTA Leu	CCC Pro	TGT Cys	GTG Val	AGG Arg 105	GTT Val	GGG Gly	AAT Asn	CAG Gln	TCA Ser 110	CGT Arg	TGT Cys		336
TGG Trp	GTG Val	GCC Ala 115	CTC Leu	TCT Ser	CCC Pro	ACC Thr	GTG Val 120	Ala	GCG Ala	CCT Pro	Tyr	ATC Ile 125	GGT Gly	GCT Ala	CCA Pro		384
GTT Val	GAA Glu 130	TCC	TTC Phe	CGG Arg	AGA Arg	CAC His 135	GTG Val	GAC Asp	ATG Met	ATG Met	GTG Val 140	GGC Gly	GCT Ala	GCT Ala	ACT Thr	•	432
	TGC Cys																480
GTT Val	GGT Gly	CAG Gln	ATG Met	TTT Phe 165	TCT Ser	TTC Phe	CGG Arg	CCA Pro	CGA Arg 170	CGC Arg	CAC His	TGG Trp	ACT Thr	ACG Thr 175	CAG Gln		528
	TGC Cys																576
GCA Ala	•••		*.		٠.			•	٠							•	579

- (2) INFORMATION FOR SEQ ID NO: 198:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala
1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Glu His Gly Val Arg Ala Val

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe

1 1 1

.

35

• 4.5

Ser Ile Tyr Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Thr Ser 50 55 60

Ala Ile His Tyr Arg Asn Ala Ser Gly Val Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp His His Ile Leu His
85 90 95

Leu Pro Gly Cys Leu Pro Cys Val Arg Val Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Ser Pro Thr Val Ala Pro Tyr Ile Gly Ala Pro 115 120 125

Val Glu Ser Phe Arg Arg His Val Asp Met Met Val Gly Ala Ala Thr
130 135 140

Val Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 145 150 160

Val Gly Gln Met Phe Ser Phe Arg Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Ala Gly His Ile Thr Gly His Gly Met
180 185 190

Ala

(2) INFORMATION FOR SEQ ID NO: 199:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1470 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..1470
- (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 2..1467
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:

A T	CA C Ser P	CA C	cc c	AG C	TT C eu L 5	TA T eu S	CA C er H	AT A is T	CT C hr P	CA C ro L 10	TT A eu T	CG G hr A	CA A la S	er S	CC er 15,		46
TTG Lev	CTG Leu	ATG Met	GAG Glu	GGT Gly 20	Val	CAG Gln	GCG Ala	GCG Ala	CGC Arg 25	ATG Met	ACG Thr	TGA *			GCG Ala		94
ACG Thr	AGT Ser	Ala	ATT Ile 35	CCC Pro	AGG Arg	ACG Thr	CCA Pro	CCA Pro 40	CCA Pro	TTC Phe	TTG Leu	GGA Gly	TAG * 45	Ala	CTG Leu		142
TCC Ser	TTG Leu	ACC Thr 50	Arg	CAG Gln	AGA Arg	CGG Arg	CTG Leu 55	GAG Glu	CTA Leu	GGC Gly	TCG Ser	TCG Ser 60	TCT Ser	TGG Trp	CCA		190
Arg	Pro 65	Pro	Leu	Pro	GCA Ala	Val 70	·* 4	Gln	Arg	Pro	Thr 75	Pro	Thr	Ser	Arg		238
Lys 80	Trp	Pro	Cys	Leu	Arg 85	Arg	Gly	Arg	Phe	Pro 90	Ser	Thr	Ala	Glu	CCA Pro 95	•	286
Phe	Pro	Leu	Leu	Leu 100	TAA *	Arg	Val	Val	Gly 105	Ile	Ser	Ser	Ser	Ala 110	Ile		334
Pro	Arg	ŗ,	Asn 115	Val	Met	Asn	Ser	Pro 120	Ser	Asn	*,	Pro	Ala 125	Trp			382
*	Thr	Pro 130	Trp	His	ATT	Ile	Glu 135	Val	*	Thr	Ser	Pro 140	Ser	Tyr	Pro		430
Gln	Gln 145	Glu	Thr	Trp	TCG	Cys 150	Ala	Ala	Pro	Thr	Arg 155	Ser	*	Arg	Asp		478
Ser 160	Pro	Ala	Thr	Leu	165	Leu	Ser	* .	Thr	Ala 170	Thr	Pro	Pro	Ser	Leu 175	. !	526
Arg	Arg	Trp	Thr	Ser 180	GTC Val	Trp	Ile	Pro	Leu 185	Leu	Pro	Leu	Arg	Leu 190	Pro		574
Gln	Cys	Pro	Arg 195	Thr		Cys	Pro	Glu 200	Ala	Ser	Val	Gly	Ala 205	Ala	Arg		622
Gly	Glu	Val 210	Gly	Thr	GCA Ala	Tyr	Thr- 215	Gly	Met	Ser	Arg	Leu 220	Glu	Arg	Asp		670
Arg	Leu	Ala	Cys	Ser	ACT Thr	Pro	TGG Trp	TGC Cys	TCT Ser	GTG Val	AGT Ser	GCT Ala	ACG Thr	ATG Met	CCG Pro		.718

		225					230	•	1			235			•		1	,
					ACG Thr		*								GGT Gly			766
1				Lys	CAC His 260													814
!					GGT Gly											CAT		862
·					CAA Gln													910
	GTA Val	CCA Pro 305	AGC Ser	AAC Asn	AGT Ser	CTG, Leu	TGT Cys 310	TCG Ser	CGC Arg	GAA Glu	AGC Ser	GCC Ala 315	CCC Pro	CCC Pro	CAG Gln	CTG Leu		958
	GGA Gly 320	CAC His	AAT Asn	GTG Val	GAA Glu	ATG Met 325	CAT His	GCT Ala	CCG Pro	TCT Ser	CAA Gln 330	ACC Thr	GAC Asp	TTA Leu	ACT Thr	GGC Gly 335	1:	1006
						Tyr										ACA Thr		1054
	CTG Leu	ACG Thr	CAC	CCC Pro 355	ATC Ile	ACC Thr	AAG Lys	TAC Tyr	ATT Ile 360	ATG Met	GCT Ala	TGC Cys	ATG Met	TCT Ser 365	GCG Ala	GAC Asp		1102
	TTG Leu	GAG Glu	GTC Val 370	ATT Ile	ACC Thr	AGC Ser	ACT	TGG Trp 375	GTT Val	CTG Leu	GTG Val	GGG Gly	GGC Gly	GTT Val	GTG Val	GCG Ala	ı	1150
	GCC Ala	CTG Leu 385	GCG Ala	GCC Ala	TAC	TGC Cys	TTG Leu 390	ACG Thr	GTG Val	GGT Gly	TCG Ser	GTA Val 395	GCC Ala	ATA Ile	GTC Val	GGT Gly	· · · · · · · · · · · · · · · · · · ·	1198
	AGG Arg 400	ATC Ile	ATC Ile	CTC Leu	TCT Ser	GGG Gly 405	AAA Lys	CCT	GCC Ala	ATC Ile	ATT Ile 410	CCC	GAT Asp	AGG Arg	GAG Glu	GTA Val 415		1246
	TTA Leu	TAC Tyr	CAG Gln	CAA Gln	TTT Phe 420	GAT Asp	GAG Glu	ATG Met	GAG Glu	GAG Glu 425	TGC Cys	TCG Ser	GCC Ala	TCG Ser	TTG Leu 430	CCC Pro		1294
	TAT Tyr	ATG Met	GAC Asp	GAA Glu 435	ACA Thr	CGT Arg	GCC	ATT Ile	GCC Ala 440	GGA Gly	CAA Gln	TTC Phe	AAA Lys	GAG Glu 445	AAA Lys	GTG Val		1342
	CTC Leu	GGC Gly	TTC Phe 450	Ile	AGC Ser	ACG Thr	ACC Thr	GGC Gly 455	CAG Gln	AAG Lys	GCT Ala	GAA Glu	ACT Thr 460	Leu	AAG Lys	CCG Pro		1390

															ACA	1	1438
Ala	Ala	Thr	Ser	Val	\mathtt{Trp}	Asn	Lys	Ala	Glu	Gln	Phe	Trp	Pro	His	Thr		•
	465			•		470			1	1	475						
	1,	'			4	•	d	•						1			
TGT	GGA	ACT	TCA	TCA	GTG	GGA	TAC	AAT	AAT.	AG					•		1470
Cys	Gly	Thr	Ser	Ser	Val	Ġly	Tyr	Asn	Asn			,					
480					485							-			*		

(2), INFORMATION FOR SEQ ID NO: 197:

- (i') SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1485 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA.
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1485

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197:

TGTGCÇA	LGGA	CCATCACCAC	CGGAGCTTCT	ATCACATACT	CCACTTACGG	CAAGTTCCTT	60
GCTGATG	GAG	GGTGTTCAGG	CGGCGCGCAT	GACGTGATCA	TATGCGACGA	GTGCCATTCC	120
CAGGACG	CCA	CCACCATTCT	TGGGATAGGC	ACTGTCCTTG	ACCAGGCAGA	GACGGCTGGA	180
GCTAGGC	TCG	TCGTCTTGGC	CACGGCCACC	CCTCCCGGCA	GTGTGACAAC	GCCCCACCCC	240
AACATCG	AGG	AAGTGGCCCT	GCCTCAGGAG	GGGGAGGTTC	CCTTCTACGG	CAGAGCCATT	300
CCCCTTG	CTT	TTATAAAGGG	TGGTAGGCAT	CTCATCTTCT	GCCATTCCAA	GAAAAATGT	360
GATGAAC	TCG	CCAAGCAACT	GACCAGCCTG	GGCGTGAACG	CCGTGGCATA	TTATAGAGGT	420
CTAGACG	TCG	CCGTCATACC	CACAACAGGA	GACGTGGTCG	TGTGCAGCAC	CGACGCGCTC	480
ATGACGG	GAT	TCACCGGCGA	CTTTGATTCT	GTCATAGACT	GCAACTCCGC	CGTCACTCAG	540
ACGGTGG	ACT	TCAGTCTGGA	TCCCACTTTT	ACCATTGAGA	CTACCACAGT	GCCCCAGGAC	600
GCAGTGT	CCA	GAAGCCAGCG	TTGGGGCCGC	ACGGGGAGAG	GTAGGCACGG	CATATACCGG	660
TATGTCT	CGG	CTGGAGAGAG	ACCGTCTGGC	ATGTTCGACT	CCGTGGTGCT	CTGTGAGTGC	720
TACGATG	CCG	GATGTGCATG	GTACGATCTG	ACTCCTGCCG	AGACTACCGT	GAGGTTGCGC	780
GCTTACN	TAA	ACACCCCCGG	GCTCCCTGTC	TGTCAGGACC	ATTTGGAATT	CTGGGAGGG	840
GTGTTCA	CGG	GGCTCACTAA	CATCGACGCT	CACATGCTGT	CACAGACCAA	ACAGGGTGGG	900
GAGAATI	TCC	CATACCTTGT	AGCGTACCAA	GCAACAGTCT	GTGTTCGCGC	GAAAGCGCCC	960

CCCCCAGCT	GGGACACAAT	GTGGAAATGC	ATGCTCCGTC	TCAAACCGAC	NTTAACTGGC	102
CCTACTCCCC	TCTTGTACAG	GCTGGGGCCC	GTCCAGAATG	AGATCACACT	GACGCACCCC	108
ATCACCAAGT	ACATTATGGC	TTGCATGTCT	GCGGACTTGG	AGGTCATTAC	CAGCACTTGG	114
GTTCTGGTGG	GGGCGTTGT	GCCGCCCTG	GCGGCCTACT	GCTTGACGGT	GGGTTCGGTA	120
GCCATAGTCG	GTAGGATCAT	CCTCTCTGGG	AAACCTGCCA	TCATTCCCGA	TAGGGAGGTA	126
TTATACCAGC	AATTTGATGA	GATGGAGGAG	TGCTCGGCCT	CGTTGCCCTA	TATGGACGAA	132
ACACGTGCCA	TTGCCGGACA	ATTCAAAGAG	AAAGTGCTCG	GCTTCATCAG	CACGACCGGC	138
CAGAAGGCTG	AAACTCTGAA	GCCGGCAGCC	ACGTCTGTGT	GGAACAAGGC	TGAGCAGTTC	. 144
TGGNCCACAT	ACATGTGGAA	CTTCATCAGT	GGGATACAAT	AATAG		148

(2) INFORMATION FOR SEQ ID NO: 198:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 484 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:

Cys Ala Arg Thr Ile Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr 1 5 10 15

Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala His Asp Val 20 25 30

Ile Ile Cys Asp Glu Cys His Ser Gln Asp Ala Thr Thr Ile Leu Gly 35 40 45

Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val 50 55 60

Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Thr Pro His Pro 65 70 75 80

Asn Ile Glu Glu Val Ala Leu Pro Gln Glu Gly Glu Val Pro Phe Tyr 85 90 95

Gly Arg Ala Ile Pro Leu Ala Phe Ile Lys Gly Gly Arg His Leu Ile 100 105 110

Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Lys Gln Leu Thr

Ser Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ala 130 135 140

														,		
	Val 145	Ile	Pro	Thr	Thr	Gly 150		Val	Val	Val	Cys 155		Thr	Asp	Ala	Leu 160
	Met	Thr	Gly	Phe	Thr 165	Gly	Asp	Phe	Asp	Ser 170		Ile	Asp	Cys	Asn 175	Ser
	Ala	Val	Thr	Gln 180	Thr	Val	Asp	Phe	Ser 185		Asp	Pro	Thr	Phe 190	Thr	Ile
	Glu	Thr	Thr 195	Thr	Val	Pro	Gln	Asp 200	Ala	Val	Ser	Arg	Ser 205	Gln	Arg	Trp
	Gly	Arg 210	Thr	Gly	Arg	Gly	Arg 215	His	Gly	Ile	Tyr	Arg 220	Tyr	Val	Ser	Ala
	Gly 225	. Glu	Arg	Pro	Ser	Gly 230		Phe	Asp	Ser	Val 235		Leu	Cys	Glu	Cys 240
	Tyr	Asp	Ala	Gly	Cys 245	Ala	Trp	Tyr	Asp	Leu 250	Thr	Pro	Ala	Glu	Thr 255	Thr
ľ	Val	Arg	Leu	Arg 260	Ala	Tyr	Xaa	Asn	Thr 265	Pro	Gly	Leu	Pro	Val 270	Cys	Gln
	Asp	His	Leu 275	Glu	Phe	Trp	'Glu	Gly 280	Val	Phe	Thr	Gly	Leu 285	Thr	Asn	Ile
	Asp	Ala 290	His	Met	Leu	Ser	Gln 295	Thr	Lys	Gln'	Gly	Gly 300	Ġlu	Asn	Phe	Pro
	Tyr 305	Leu	Val	Ala	Tyr	Gln 310	Ala	Thr	Val	Cys	Val 315	Arg	Ala	Lys	Ala	Pro 320
	Pro	Pro	Ser	Trp	Asp 325	Thr	Met	Trp	Lys	Cys 330	Met	Leu	Arg	Leu	Lys 335	Pro
	Xaa	Leu	Thr	Gly 340	Pro	Thr	Pro	Leu	Leu 345	Tyr	Arg	Leu	Gly	Pro 350	Val	Gln
			355			Thr		360					365		٠.	
	Met	Ser 370	Ala	Asp	Leu	Glu	Val 375	Ile	Thr	Ser	Thr	Trp 380	Val	Leu	Val	Gly
	Gly 385	Val	Val	Ala	Ala	Leu 390	Ala	Ala	Tyr	Cys	Leu 395	Thr	Val	Gly	Ser	Val 400
	Ala	Ile	Val	Gly	Arg 405	Ile	Ile	Leu	Ser	Gly 410	Lys	Pro	Ala	Ile	Ile 415	Pro
	Asp	Arg	Glu	Val 420	Leu	Tyr	Gln	Gln	Phe 425	Asp	Glu	Met	Glu	Glu 430	Cys	Ser
•	Ala	Ser	Leu 435	Pro	Tyr	Met	Asp	Glu 440	Thr	Arg	Ala		Ala 445	Gly	Gln	Phe

Lys Glu Lys Val Leu Gly Phe Ile Ser Thr Thr Gly Gln Lys Ala Glu 450 455 460

Thr Leu Lys Pro Ala Ala Thr Ser Val Trp Asn Lys Ala Glu Gln Phe 465 470 480

Trp Xaa Thr Tyr

(2) INFORMATION FOR SEQ ID NO: 199:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1485 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - '(A) NAME/KEY: CDS
 - (B) LOCATION: 1..1485

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:

TGTGCCAGGA	CCATCACCAC	CGGAGCTTCT	ATCACATACT	CCACTTACGG	CAAGTTCCTT	60
GCTGATGGAĠ	GGTGTTCAGG	CGGCGCGTAT	GACGTGATCA	TATGCGACGA	GTGCCATTCC	120
CAGGACGCCA	CCACCATTCT	TGGGATAGGC	ACTGTCCTTG	ACCAGGCAGA	GACGGCTGGA	180
GCTAGGCTCG	TCGTCTTGGC	CACGGCCACC	CCTCCCGGCA	GTGTGACAAC	GCCCCACCCC	240
AACATCGAGG	AAGTGGCCCT	GCCTCAGGAG	GGGGAGGTTC	CCTTCTACGG	CAGAGCCATT	300
CCCCTTGCTT	TTATAAAGGG	TGGTAGGCAT	CTCATCTTCT	GCCATTCCAA	GAAAAAATGT	360
GATGAACTCG	CCAAGCAACT	GACCAGCCTG	GGCGTGAACG	CCGTGGCATA	TTATAGAGGT	420
CTAGACGTCG	CCGTCATCCC	CACAGCAGGA	GACGTGGTCG	TGTGCAGCAC	CGACGCGCTC	480
ATGACGGGAT	TCACCGGCGA	CTTTGATTCT	GTCATAGACT	GCAACTCCGC	CGTCACTCAG	540
ACGGTGGACT	TCAGTCTGGA	TCCCACTTTT	ACCATTGAGA	CTACCACAGT	GCCCCAGGAC	600
GCAGTGTCCA	GAAGCCAGCG	TAGGGGCCGC	ACGGGGAGAG	GTAGGCACGG	CATATACCGG	660
	CTGGAGAGAG					720
TACGATGCCG	GATGTGCGTG	GTATGATCTG	ACTCCTGCCG	AGACTACCGT	GAGGTTGCGC	780
GCTTACATAA	ACACCCCCGG	GCTCCCTGTC	TGTCAGGACC	ATTTGGAATT	CTGGGAGGG	840
GTGTTCACGG	GGCTCACTAA	CATCGACGCT	CACATGCTGT	CACAGACCAA	ACAGGGTGGG	900
GAGAATTTNC	CATACCTTGT	AGCGTACCAA	GCAACAGTCT	GTGTTCGCGC	GAAAGCGCCC	960

CCCCCCAGCT	GGGACACAAT	GTGGAAATGC	ATGCTCCGTC	TCAAACCGAC	TTTAACTGGC	1020
CCTACTCCCC	TCTTGTACAG	GCTGGGGCCC	GTCCAGANTG	AGATCACACT	GACGCACCCC	1080
ATCACCAAGT	ACATTATGGC	TTGCATGTCT	GCGGACTTGG	AGGTCATTAC	CANCACTTGG	1140
GTTCTGGTGG	GGGGCGTTGT	GGCGGCCCTG	GCGGCCTACT	GCTTGACGGT	GGGTTCGGTA	1200
GCCATAGTCG	GTAGGATCAT	CCTCTCTGGG	AAACCTGCCA	TCATTCCCGA	TAGGGAGGCA	1260
TTATACCAGC	AATTTGATGA	GATGGAGGAG	тсстсссст	CGTTGCCCTA	TATGGACGAG	1320
ACACGTGCCA	TTGCCGGACA	ATTCAAAGAG	AAAGTGCTCG	GCTTCATCAG	CACGACCĠGC	1380
CAGAAGGCTG	AAACTCTGAA	GCCGGCAGCC	ACGTCTGTGT	GGAACAAGGC	TGAGCAGTTC	1440
TGGGCCACAT	ACATGTGGAA	CTTCATCAGC	GGGATACAAT	AATAG	•	1485

(2) INFORMATION FOR SEQ ID NO: 200:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 484 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:

Cys Ala Arg Thr Ile Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr 1 5 10 15

Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Val 20 25 30

Ile Ile Cys Asp Glu Cys His Ser Gln Asp Ala Thr Thr Ile Leu Gly
35 40 45

Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val
50 55 60

Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Thr Pro His Pro 65 70 75 80

Asn Ile Glu Glu Val Ala Leu Pro Gln Glu Gly Glu Val Pro Phe Tyr 85 90 95

Gly Arg Ala Ile Pro Leu Ala Phe Ile Lys Gly Gly Arg His Leu Ile 100 105 110

Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Lys Gln Leu Thr 115 120 125

											•				,	
	Ser	Leu 130	Gly	Val	Asn	Ala	Val 135	Ala	Tyr	Tyr	Arg	Gly 140	Leu	Asp	Val	Ala
	Val 145	Ile	Pro	Thr		Gly 150	Asp	Val	Val	Val	Cys 155	Ser	Thr	Asp	Ala	Leu 160
	Met	Thr	Gly	Phe	Thr 165	Gly	Asp	Phe	Asp	Ser 170	Val	Ile	Asp	Cys	Asn 175	Ser
	Ala	Val		Gln 180	Thr	Val.	Asp	Phe	Ser 185	Leu	Asp	Pro	Thr	Phe 190	Thr	Ile
	Glu		Thr 195	Thr	Val	Þro	Gln	Asp 200	Ala	Val	Ser	Arg	Ser 205	Gln	Arg	Arg
	Gly	Arg 210	Thr	Gly	Arg	Gly	Arg 215	His	Gly	Ile	Tyr	Arg 220	Tyr	Val	Ser	Ala
	Gly 225	Glu	Arg	Xaa	Ser	Asp 230	Met	Phe	Asp	Ser	Val 235	Val	Leu	Cys	Glu	Cys 240
ï	Tyr	Asp	Ala	Gly	Cys 245	Ala	Trp	Tyr	'Asp	Leu 250	Thr	Pro	Ala	Glu	Thr 255	Thr
	Val	Arg	Leu	Arg 260	Ala	Tyr	Ile	Asn	Thr 265	Pro	Gly	Leu	Pro	Val 270	Cys	Gln
	Asp	His	Leu 275	Glu	Phe	Trp	Glu	Gly 280	Val	Phe,	Thr	Gly	Leu 285	Thr	Asn	Ile
	Asp	Ala 290	His	Met	Leu	Ser	Gln 295	Thr	Lys	Gln	Gly	Gly 300	Glu	Asn	Xaa	Pro
	Tyr 305	Leu	Val	Ala	Tyr	Gln 310	Ala	Thr	Val	Cys	Val 315	Arg	Aļa	Lys	Ala	Pro 320
	Pro	Pro	Ser	Trp	Asp 325	Thr	Met	Trp	Lys	Cys 330	Met	Leu	Arg	Leu	Lys 335	Pro
	Thr	Leu		Gly 340	Pro	Thr	Pro	Leu	Leu 345	Tyr	Arg	Leu	Gly	Pro 350	Val	Gln
	Xaa	Glu	Ile 355	Thr	Leu	Thr	His	Pro 360	Ile	Thr	Lys	Tyr	11e 365	Met	Ala	Cys
	Met	Ser 370		Asp	Leu	Glu	Val 375	Ile	Thr	Xaa	Thr	Trp 380	Val	Leu	Val	Gly
	Gly 385	Val	Val	Ala	Ala	Leu 390	Ala	Ala	Tyr	Cys	Leu 395	Thr	Val	Gly	Ser	Val 400
	Ala	Ile	Val	Gly	Arg 405	Ile	Ile	Leu	Ser	Gly 410	Lys	Pro	Ala	Ile	Ile 415	Pro
	Asp	Arg	Glu	Ala 420	Leu	Tyr	Gln	Gln	Phe 425	Asp	Glu	Met	Glu	Glu 430	Cys	Ser
	Ala	Ser	Leu	Pro	Tyr	Met	Asp	Glu	Thr	Arg	Ala	Ile	Ala	Gly	Gln	Phe

286

								2:	00								•
			435			ı		440)				445		ı		
		Glu 450		Val	Leu		Phe 455		Ser	'Thr	Thr	Gly 460		Lys	Ala	Glu	
	Thr 465		Lys	Pro	Ala	Ala 470		Ser	Val	Trp	Asn 475	-	Ala	Glu	Gln	Phe 480	
(2),	Trp		Thr	_		ID N	0: 2	01:	1	1:	•		1				•
	(i')	(A (B (C) LE) TY) ST	ngth PE : RAND	ARAC : 34 nucl EDNE GY:	0 ba eic SS:	se p acid sing	airs I	1			1	·				T .
•	(ii)	MOL	ECUL	E TY	PE:	cDNA	. ' ,			1							
. ((iii)	НУР	OTHE	TICA	L: N	o	: •				,		•				
. ((iii)	ANT	I-SE	NSE :	МО	,			•	;				1			
	(ix)	(A		ME/K	EY:		40					,	1	, ř		, I	
•	(ix)	(A		ME/K	EY: ON:			ide					•				
	(xi)	SEQ	UENC	É DE	SCRI	PTIO	N: S	EQ I	D NC): 20	1:						
	CC AC er Th								g Va					ıl Ty			46
	TGT Cys																94
	GAG Glu																142
	TGC Cys															; ·.	190
	GGG Gly 65																238

90

GCT GCG GGG CTG AAG GAC TGC ACC ATG CTG GTT TGC GGT GAC GAC TTA

Ala Ala Gly Leu Lys Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu

80

GTC GTG ATC GCT GAA AGC GGT GGC GTC GAG GAG GAC AAG CGA GCC CTC Val Val Ile Ala Glu Ser Gly Gly Val Glu Glu Asp Lys Arg Ala Leu 100 105 110

334

GGA GCT, Gly Ala 340

- (2) INFORMATION FOR SEQ ID NO: 202:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:

Ser Thr Val Thr Glu Arg Asp Ile Arg Val Glu Glu Glu Val Tyr Gln

1 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Thr Ala Leu Thr

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Thr Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met Tyr Asn Ser Lys Gly Asp Leu 35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile Arg Ala 65 70 75 80

Ala Gly Leu Lys Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Ala Glu Ser Gly Gly Val Glu Glu Asp Lys Arg Ala Leu Gly
100 105 110

Ala

- (2) INFORMATION FOR SEQ ID NO: 203:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO

GGA GCT Gly Ala

(ix) FEATURE: (A) NAME/KEY: CDS	
(B) LOCATION: 2340	
(ix) FEATURE:	•
(A) NAME/KEY: mat_peptide	•
(B) LOCATION: 2337	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203:	
C TCC ACA GTG ACT GAA AGA GAC ATC AGG GTC GAG GAA GAG GT	
Ser Thr Val Thr Glu Arg Asp Ile Arg Val Glu Glu Va	C TAC 46
1 5 10	1 1yr 15
	1 .
CAG TGT TGT GAC CTG GAG CCT GAA ACC CGC AAG GTA ATA TCT,	GCC CTC 94
Gln Cys Cys Asp Leu Glu Pro Glu Thr Arg Lys Val Ile Ser	Ala Leu
20 25	30
	1
ACT GAA AGA CTC TAT GTG GGC GGT CCC ATG CAC AAC AGC AGG	GGA GAC 142
Thr Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Arg	Gly Asp
35 40 45	1
CTA TGC GGG TAC CGT AGA TGC CGC GCG AGC GGC GTA TAC ACC	ACA AGC ' 190
Leu Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr	Thr Ser
50 55 60	1
TTC GGG AAC ACT CTG ACG TGC TTC CTC AAG GCC ACA GCG GCC .	ACC AAA . 238
Phe Gly Asn Thr Leu Thr Cys Phe Leu Lys Ala Thr Ala Ala	Thr Lys
65 70 75	•
GCC GCT GGC CTA AAG GAC TGC ACC ATG TTG GTG TGT GGT GAC	ርአር ምምአ ኃዕራ
Ala Ala Gly Leu Lys Asp Cys Thr Met Leu Val Cys Gly Asp	GAC TTA 286
80 85 90	95
GTC GTT ATC GCC GAA AGC GAT GGT GTC GAA GAG GAC CGC CGA	GCC CTC 334
Val Val Ile Ala Glu Ser Asp Gly Val Glu Glu Asp Arg Arg	Ala Leu
100 105	110

- (2) INFORMATION FOR SEQ ID NO: 204:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:

Ser Thr Val Thr Glu Arg Asp Ile Arg Val Glu Glu Glu Val Tyr Gln

1 5 10 15

	•								: .			•							
	Cys	Cys	Asp	Leu 20	Glu	Pro	Glu	Thr	Arg 25	Lys	Val	Ile	Ser	Ala 30	Leu	Thr		•	
	Glu	Arg	Leu 35	Tyr	Val	Gly '	Gly	Pro 40	Met	His	Åsn	Ser	Arg 45	Gly	Asp	Leu	•	÷	
	Cys	Gly 50	Tyr	Arg	Arg	Cys	Arg ;55	Ala	Ser	Gly	Val'	Tyr 60	Thr	Thr	Ser	Phe			
ļ	Gly 65	Asn _:	Thr	Leu	Thr	Cys 70	Phe	Leu	Lys		Thr 75	Ala	Ala	Thr	Lys	Ala 80		•	
	Ala	Gly	Leu	Lys	Asp 85	Cys	Thr	Met	Leu	Val 90	Cys	Gly	Asp	Asp	Leu 95	Val			
	Val	Ile	Ala	Glu 100	Ser	Asp	Gly		'Glu ' 105	Glu	Asp	Arg	Aṛg	Ala 110	Leu	Gly			
	Ala			٠.		1	•			1			•		,				
	(2)			гіои					. •		•	٠.		·					
		(1)	(1 (1 (0	QUENCA) LIB) TYCC) ST	engti (PE : [rani	nuc DEDNI	40 ba leic ESS:	ase ; 'aci sin	pair: d	5		1						•	
				LECUI			•	Α .								·	·		-
		(iii) (iii)					NO					1							
		(ix		ATURI		٠.					•							•	
	٠,		(1	A) NI B) L(CAT:			340			,							:	,
		(1X)	. (2	ATURI A) Ni B) L	AME/I				tide		•	•							
		(xi) SE	QUEN	CE DI	ESCR	IPTI(ON:	SEQ :	ID N	0: 2	05:							
	C T	CC AG er Tl	cg g' hr V	TG AG	cc Gi nr Gi	AA AG lu A: 5	GG.G rg A	AT A sp I	TC A	rg T	CC G hr G 10	AG G lu G	AA G lu G	AG A' lu I	le T	AC yr 15			46
	CAG Gln	TGC Cys	TGC Cys	GAC Asp	CTG Leu 20	Glu	CCC Pro	GAA Glu	GCC Ala	CGC Arg 25	AAG Lys	GTG Val	ATA Ile	TCC Ser	GCC Ala 30	Leu			94
	ACG Thr	GAA Glu	AGA Arg	CTC Leu 35	TAC Tyr	GTG Val	GGC Gly	GGT Gly	CCC Pro	ATG Met	TAC Tyr	AAC Asn	TCC	AAG Lys 45	GGG Gly	GAC Asp		14	42

CTA	TGC	GGG	CAA	CGG	AGG	TGC	CGC	GCA	AGC	GGG	GTC	TAC	ACC	ACC	AGC		190
Leu	Cys	Gly	Gln	Arg	Arg	Cys	Arg	Ala	Ser	Gly	Val	Tyr	Thr	Thr	Ser	•	
	''	50				*1	55					60		1			-
					•			•	٠,								
TTC	GGG	AAC	ACT	GTA	ACG	TGT	TAT	CTC	AAG	GCC	GTT,	GCG	GCT	ACT	AGG		238
Phe	Gly	Asn	Thr	Val	Thr	Cys	Tyr	Leu	Lys	Ala	Val	Ala	Ala	Thr	Arg		
	65			•.		70			_		75				_		
						, .			1	1	•	•					
GCÇ	GCA	GGT	CTG	AAA	GGT	TGC	AGC	ATG	CŢG	GTT	TGT	GGA	GAC	GAC	TTA		286
														Asp			
80	. 1	_		,	85	· -	1			90	. •	•	•	-	95		
				•				•						•	. '		
GTC	GTC	ATC	TGC	GAG	AGC	GGC	GGC	GTA	GAG	GAG.	GAT	GCA	AGA	GCC	CTC		1 334
														Ala			
				100		Ē	_		105	•	• • -		_	110			
+	:									1 .						**	
CGA	GCC		1)					•				٠.				340
Arg	Ala				- 1												

- (2) INFORMATION FOR SEQ ID NO: 206:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A), LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206:

Ser Thr Val Thr Glu Arg Asp Ile Arg Thr Glu Glu Glu Ile Tyr Gln

1 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Ser Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met Tyr Asn Ser Lys Gly Asp Leu 35 40 45

Cys Gly Gln Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 55 60

Gly Asn Thr Val Thr Cys Tyr Leu Lys Ala Val Ala Ala Thr Arg Ala 65 70 75 80

Ala Gly Leu Lys Gly Cys Ser Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Cys Glu Ser Gly Gly Val Glu Glu Asp Ala Arg Ala Leu Arg
100 105 110

Ala

(2) INFORMATION FOR SEQ ID NO: 207:

			ų · ()	B) T C) S	ENGT: YPE: TRANI OPOL	nuc. DEDNI	leic ESS:	aci sin	đ	s					1		: 	
		(ii) MO	LECU.	LE T	YPE:	CDN.	A		1	1	•	•	•		٠		
		(iii)) HY	POTH	ETIC	AL: 1	NO	r	· .	1		•	·	. 1		,		:
		(iii)	AN'	ri-si	ENSE	: NO	ı	1		•			٠				•	
		(ix) FE		e: ame/1	VEV.	CDS.						•			1		
					OCAT:		,	340			1 .)	,					
		(ix)		A) N	ei: AME/I OCATI					· . · .	•	٠				1	•	
		(xi)	SEÇ	OUENG	CE DI	ESCRI	LPTI	ON:	SEQ :	, ID NO	; D: 20	07:		•	1	•		
					CT GA					rg Va					le T		. •	46
					CTG Leu 20													94
					TAC Tyr										-			142
•					CGG Arg												,	190
					GTG Val	Thr												238
					AAA Lys		Cys										,	286
					GAA Glu 100													334
	CGA Arg					•					*.					. :		340

(2) INFORMATION FOR SEQ ID NO: 208:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 113 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 208:

 Ser Thr Val Thr Glu Arg Asp Ile Arg Val Glu Glu Glu Ile Tyr Gln

 1 5 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Ser Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Lys Gly Gly Pro Met Tyr Asn Ser Lys Gly Asp Leu 35 40, 45

Cys Gly Leu Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 55 60

Gly Asn Thr Val Thr Cys Tyr Leu Lys Ala Thr Ala Ala Thr Arg Ala
65 70 75 80

Ala Gly Leu Lys Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Ala Glu Ser Gly Gly Val Glu Glu Asp Ala Arg Ala Leu Arg

Ala

- (2) INFORMATION FOR SEQ ID NO: 209:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 (B) LOCATION: 1..340
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209:

CCCCACCGTG ACNGAGAGGG ACNTCAGGGT CGAGGAAGAG GTCTATCAGT GCTGTAATCT 60
GGAGNCCGAT GNCCGCAAGG TCATCAACGC CCTCACAGAG AGACTCTACG TGGGCGGCCC 120

TATGCACAAC	AGCAAGGGAG	ACCTGTGTGG	CATCCGTAGA	TGCCGCGCGA	GCGGCGTTTA		180
CACCACGAGC	TTCGGAAACA	CGCTGACTTG	CTACCTCAAA	GCCACAGCGG	CCA'CCAGGGC	•	240
CGCGGGCTTG	AAGGATTGCA	CCATGCTGGT	CTGCGGNGAC	GACCTGGTTG	TCATTGCTGA		300
GAGCATTGGC	ATAGACGAGG	acaa'gcaagc	CCTCCGNACT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			340

- (2) INFORMATION FOR SEQ ID NO: 210:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:

Pro Thr Val Thr Glu Arg Asp Xaa Arg Val Glu Glu Glu Val Tyr Gln

1 10 15

Cys Cys Asn Leu Glu Xaa' Asp Xaa Arg Lys Val Ile Asn Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Lys Gly Asp Leu 35 40 45

Cys Gly Ile Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Thr Ala Ala Thr Arg Ala 65 70 75 80

Ala Gly Leu Lys Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Ala Glu Ser Ile Gly Ile Asp Glu Asp Lys Gln Ala Leu Arg 100 105 110

Thr

- (2) INFORMATION FOR SEQ ID NO: 211:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(ii	i·)	HYP	OTHETI	CAL:	NO

(iii) ANTI-SENSE: NO

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..340

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:

CTCGACTGTG NCCGAGAGGG ACATCAGGAC AGAGGGAGAG GTCTATCAGT GTTGCGACCT 60
GGAACCGGAA GCCCGCAAGG TAATCACCGC CCTCACTGAG AGACTCTATG TGGGCGGACC 120
CATGTTCAAC AGCAAGGGAG ACCTGTGCGG ACAACGCCGG TGCCGCGCAA GCGGCGTGTT 180
CACCACCAGC TTCGGGAACA CACTGACGTG CTACCTTAAA GCCACAGCTG CTACTAGAGC 240
AGCCGGCTTA AAAGATTGCA CCATGCTGGT CTGCGGTGAC GACTTAGTCG TTATTTCCGA 300
GAGCGCCGGT GTGGAGGAGG ATCCCANAAC CCNNCGACCN 340

(2) INFORMATION FOR SEQ ID NO: 212:

- (i') | SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:

Ser Thr Val Xaa Glu Arg Asp Ile Arg Thr Glu Gly Glu Val Tyr Gln
1 5 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Thr Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met Phe Asn Ser Lys Gly Asp Leu 35 40 45

Cys Gly Gln Arg Arg Cys Arg Ala Ser Gly Val Phe Thr Thr Ser Phe 50 55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Thr Ala Ala Thr Arg Ala

	65					, 0					/5				•	80		•
	Ala	Gly	/ Let	Lys	85	o Cys	s Thi	r Met	. Let	ı Va'l , 90	l Cy	s Gl	y Asj	Asp	Leu 95	Val	•	•.
	Val	. Ile	e Ser	Glu 100		Ala	a Gly	y Val	1 Glu 105		ı Ası	o Pr	о Хаа	Thr	Xaa	Arg		
	Pro	, ,				·	.i			· .		••	'					
(2)	INFC	RMAT	NOI	FOR	SEQ	ID 1	10: 2	213:					•			•	•	
	(i)	(<i>I</i> (i	QUENCA) LE B) TY C) SI C) TO	NGTH PE: RANI	H: 34 nucl	10 ba leic ESS:	ase p acid	pairs d gle			·	•	•	!				
	(ii)	MOI	LECUI	E ŤY	ZPÉ:	CDN	A							•				
	(iii)	нуі	POTHE	TIC	AL: 1	1 0		•	1				ı					
	(iii) ,	ANT	TI-SE	NSE :	NO :						•			•				
	(ix)	`(Z	ATURE A) NA B) LC	ME/F			340							·	F		•1 •	
	(ix)	(2	ATURE A) NA B) LC	ME/F		_	_	tide			ı			٠		•		
	(xi)	SEC	UENC	E DE	ESCR	PTIC	ON: S	SEQ I	D NO): ² 21	13:							
	CA AC er Th								g Va					le Ty			4	6
	TGT Cys																9	4
	GAG Glu																14:	2
	TGT Cys															٠	19	0
	GGT Gly 65																23	8
com			OTTIC	a. a	CNC	THE C	i in coo	አሞሮ	OTTO	CTC	TGC	GGC.	GNC	GNC	CTT		28	_

Ala Ala Lys Leu Gln Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu 80 85 90 95

GTC GTT, ATC TGT GAA AGC GCG, GGA ACC CAA GAG GAC GCG GCG AGC CTA 334

Val Val Ile Cys Gly Ser Ala Gly Thr Glp Cly Acp Ala Ala Cor Lev

Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala Ala Ser Leu
100 105 110

CGA GTC Arg Val

340

- (2) INFORMATION FOR SEQ ID NO: 214:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214:

Ser Thr Val Thr Glu Asn Asp Ile Arg Val Glu Glu Ser Ile Tyr Gln

1 10 15

Cys Cys Asp Leu Ala Pro Glu Ala Arg Gln Ala Ile Lys Ser Leu Thr 20 25 30

Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn 35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr Thr Ser Cys 50 55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala 65 70 75 80

Ala Lys Leu Gln Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala Ala Ser Leu Arg 100 105 110

Val

- (2) INFORMATION FOR SEQ ID NO: 215:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

														1.4			
	(iii)	, ANT	ri-si	ENSE	NO :					•							•
		*1			•		4							1			
				٠٠.`											•		
	(ix)	, FEA	ATURI	Ξ:								1					
		•	A) ·NA		ŒΥ:	CDS											
			3) LO				340			+ .	1.1	٠.	••				
	٠.			•		1 .		2	·			·					
	'(ix)	FE?	ATURI	3:	•		·		1				. '				1
		(1	A) NA	ME/I	ŒY:	mat	pept	tide					•				
		(E	3) LO	CAT	ON:	123	340		ł						, ,		
				•	٠.											•	
			•	;								1			1		•
	(xi)	SEC	QUEN	CE DI	ESCRI	PTIC	ON: S	SEQ :	ID N	D: 2:	15:	,					
						٠,											
C T	CA AC	CC GI	C A	CG GA	AG AC	G G	AT A	ra ao	GA A	ÇA' G	AA G	AA TO	CC A	ra T	TΑ		46
Se	er Th	ar Va	al Th	nt G	lu Ai	g As	sp' I.	le A	rg T	hr G	lu G	lu Se	er Il	le Ty	yr		•
	1			٠.	5.	٢	_			10					15 ,		
		•				1	:		•								
CAA	GCT	TGT	TCC	CTG	CCC	CAA	GAG	GCC	AGA	ACT	GTC	ATA	CAC	TCG	CTC		94
		Cys								•							
		. •		-20					25					3 O ₁			
			,		•												
ACC	GAG	AGA	CTC	TAC	GTG	GGA	ĠGG	CCC	ATG	ATA	AAC	AGC	AAA	GGG	CAA		142
		Arg															
	-,	_	35			. •	-	40				·	45			1.	
	٠.		•								•	•			•	•	
TCC	TGC	GGT	'TAC	AGG	CGT	TGC	CGC	GCA	AGC	GGT	GTT	TTC	ACC	ACC	AGC		190
		Gly														-	•
	• -	50					55				. :	60					
				,													
ATG	GGG	AAT	ACC	ATG	ACG	TGT	TAC	ATC	AAA	GCC	CTT	GCA	GCG	TGT	AAA		238
Met	Gly	Asn	Thr	Met	Thr	Cys	Tyr	Ile	Lys	Ala	Leu	Ala	Ala	Cys	Lys		
	65	•		1		70	•				75		•		1		
		•											•				
		GGG															286
Ala	Ala	Gly	Ile	Val	Asp	Pro	Val	Met	Leu	Val	Cys	Gly	Asp	Asp	Ļeu		
80					85					90					95		•
						•										1	
GTC	GTC	ATC	TCG	GAG	AGC	CAG	GGT	AAC	GAG	GAG	GAC	GAG	CGA	AAC	CTG		334
Val	Val	Ile	Ser	Glu	Ser	Gln	Gly	Asn	Glu	Glu	Asp	Glu	Arg	Asn	Leu		
				100					105			*		110	•		
	'		•														
AGA	GCT											•					340
Arg	Ala				-												
•																	
								l .									•

- (2) INFORMATION FOR SEQ ID NO: 216:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid ".
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

46

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:

Ser Thr Val Thr Glu Arg Asp Ile Arg Thr Glu Glu Ser Ile Tyr Gln
1 5 10 15

Ala Cys Ser Leu Pro Gln Glu Ala Arg Thr Val Ile His Ser Leu Thr
20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met Ile Asn Ser Lys Gly Gln Ser
35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Phe Thr Thr Ser Met 50 55 60

Gly Asn Thr Met Thr Cys Tyr Ile Lys Ala Leu Ala Ala Cys Lys Ala 65 70 75 80

Ala Gly Ile Val Asp Pro Val Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Ser Glu Ser Gln Gly Asn Glu Glu Asp Glu Arg Asn Leu Arg

Ala

- (2) INFORMATION FOR SEQ ID NO: 217:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..340
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 2..340
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:
- C TCG ACT GTC ACT GAA CAG GAC ATC AGG GTG GAA GAG GAG ATA TAT Ser Thr Val Thr Glu Gln Asp Ile Arg Val Glu Glu Glu Ile Tyr 1 5 10 15

CAA TGC TGC AAC CTT GAA CCG GAG GCC AGG AAA GTG ATC TCC TCC CTC Gln Cys Cys Asn Leu Glu Pro Glu Ala Arg Lys Val Ile Ser Ser Leu

20 25 ACG GAG CGG CTT TAC TGC GGA GGC CCT ATG TTT AAC AGC AAG GGG GCC 142 Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly Ala CAG TGT GGT TAT CGC CGT TGC CGT GCC AGT GGA GTT CTG CCT ACC AGC Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr Ser 55 50 TTT GGC AAC ACA ATC ACT TGT TAC ATC AAG GCC ACA ACG GCC GCG AAG 238 Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Thr Ala Ala Lys 70 75 65 GCC GCA GGC CTC CGG AAC CCG GAC TTT CTT GTC TGC GGA GAT GAT CTG 286 Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp Leu 90 85 GTC GTG GTG GCT GAG AGT GAT GGC GTC GAC GAG GAT AGA GCA GCC CTG 334 Val Val Val Ala Glu Ser Asp Gly Val Asp Glu Asp Arg Ala Ala Leu 340 AGA GCC Arg Ala

- (2) INFORMATION FOR SEQ ID NO: 218:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:

Ser Thr Val Thr Glu Gln Asp Ile Arg Val Glu Glu Glu Ile Tyr Gln
1 5 10 15

Cys Cys Asn Leu Glu Pro Glu Ala Arg Lys Val Ile Ser Ser Leu Thr 20 25 30

Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly Ala Gln
35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr Ser Phe 50 60

Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Thr Ala Ala Lys Ala 65 70 75 80

Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Val Ala Glu Ser Asp Gly Val Asp Glu Asp Arg Ala Ala Leu Arg 100 105 110 Ala

- (2) INFORMATION FOR SEQ ID NO: 219:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:

Arg Ser Glu Gly Arg Thr Ser Trp Ala Gln

1 5 10

- (2) INFORMATION FOR SEQ ID NO: 220:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220:

Arg Ser Glu Gly Arg Thr Ser Trp Ala Gln 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 221:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:

Arg Thr Glu Gly Arg Thr Ser Trp Ala Gln 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 222:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 629 base pairs

			-				acre										
					DEDNI			J1e				,					
		(1) T(POLC	OGY:	line	ear		•	•	٠.,						
				•		•	-	• .				,					
	(11)	MOT	ECIT	E TY	PE:	CDNZ											
	(11)	1101	JD C 01				-								•		
•						1_1											
	(iii)	HYI	POTHE	ETICA	T: 1	10										•	
														1			
	(iii)	ANT	ri-si	NSE :	NO	i				٠.		• •	, ,				
	,																
		, 1						•		•							
i :		:		•													•
	(ix)	FEA	TURE	E :	•					C 1	•						
		(7	A) NA	ME/I	ŒY:	CDS			•				•				
	,	(F	3) LC	CATI	ON:	36	29						-				
1		•	-,				_										
					•											•	
•	(1X)	FE											• •				
		(2	i) Ni	ME/I	ŒY:	mat_	pept	ide	•		-			٠.		•	
		(I	3) LC	CAT	ON:	36	29	4			•	t					
		•			•	•				1		•					
			' 													•	
·.	(XI)	SEÇ	DENC	E DE	ESCRI	LPTIC	ON: S	SEQ .	LD NO): 22	22:						
	1	•	•											ł			
TA	GAC T	rtt. 1	rgg c	AG A	AGC C	TC T	TTC, A	ACT (GA (CTA A	ACT ,	CAC A	ATA (GAT (3CC		47
	Asp I																
. •	י קטר		p	L	-			••••	, -	10				F	15		
	÷	•	•		5		٠,			10					.13		
		•														1.5	
	TTT																95
His	Phe	Leu	Ser	Gln	Thr	Lys	Gln	Gln	Gly	Leu	Aşn	Phe	Ser	Phe	Leu	1	
		1 L .		20		•			25		11.			30			
		. 1			• •		٠.										
		'							-	~~~	<i>a</i> a	0.00		aaa	003		143
	GCC	TAC	ממים	CCC	ACT	CTC	TGC	GCT	CGC	GCG	CAG	GCT	CCT	·CCC	CCA		
ጥኮሎ																	
1111	Ala																-15
1111	Ala																115
	Ala		Gln					Ala					Pro				
		Tyr	Gln 35	Ala	Thr	Val	Cys	Ala 40	Arg	Ala	Gln	Ala	Pro 45	Pro	Pro		
AGT	TGG	Tyr GAC	Gln 35 GAG	Ala ATG	Thr	Val AAG	Cys TGT	Ala 40 CTC	Arg GTA	Ala	Gln CTT	Ala 'AAG	Pro 45 CCA	Pro	Pro CTA		191
AGT		Tyr GAC	Gln 35 GAG	Ala ATG	Thr	Val AAG	Cys TGT Cys	Ala 40 CTC	Arg GTA	Ala	Gln CTT	Ala AAG Lys	Pro 45 CCA	Pro	Pro CTA	٠.	
AGT	TGG	Tyr GAC	Gln 35 GAG	Ala ATG	Thr	Val AAG	Cys TGT	Ala 40 CTC	Arg GTA	Ala	Gln CTT	Ala 'AAG	Pro 45 CCA	Pro	Pro CTA	٠.	
AGT	TGG	Tyr GAC Asp	Gln 35 GAG	Ala ATG	Thr	Val AAG	Cys TGT Cys	Ala 40 CTC	Arg GTA	Ala	Gln CTT	Ala AAG Lys	Pro 45 CCA	Pro	Pro CTA	٠.	
AGT Ser	TGG Trp	Tyr GAC Asp 50	Gln 35 GAG Glu	Ala ATG Met	Thr TGG Trp	Val AAG Lys	TGT Cys 55	Ala 40 CTC Leu	Arg GTA Val	Ala CGG Arg	Gln CTT Leu	AAG Lys 60	Pro 45 CCA Pro	ACA Thr	Pro CTA Leu	٠.	
AGT Ser	TGG Trp GGA	GAC Asp 50	Gln 35 GAG Glu ACG	Ala ATG Met	Thr TGG Trp	Val AAG Lys	TGT Cys 55 TAT	Ala 40 CTC Leu CGG	Arg GTA Val TTG	Ala CGG Arg	Gln CTT Leu CCT	AAG Lys 60 GTC	Pro 45 CCA Pro	ACA Thr	Pro CTA Leu GAA	٠.	191
AGT Ser	TGG Trp GGA Gly	GAC Asp 50	Gln 35 GAG Glu ACG	Ala ATG Met	Thr TGG Trp	Val AAG Lys CTA Leu	TGT Cys 55 TAT	Ala 40 CTC Leu CGG	Arg GTA Val TTG	Ala CGG Arg	CTT Leu CCT Pro	AAG Lys 60 GTC	Pro 45 CCA Pro	ACA Thr	Pro CTA Leu GAA	٠.	191
AGT Ser	TGG Trp GGA	GAC Asp 50	Gln 35 GAG Glu ACG	Ala ATG Met	Thr TGG Trp	Val AAG Lys	TGT Cys 55 TAT	Ala 40 CTC Leu CGG	Arg GTA Val TTG	Ala CGG Arg	Gln CTT Leu CCT	AAG Lys 60 GTC	Pro 45 CCA Pro	ACA Thr	Pro CTA Leu GAA	٠.	191
AGT Ser CAT His	TGG Trp GGA Gly 65	GAC Asp 50 CCT Pro	Gln 35 GAG Glu ACG Thr	Ala ATG Met CCT Pro	Thr TGG Trp CTT Leu	AAG Lys CTA Leu 70	TGT Cys 55 TAT Tyr	Ala 40 CTC Leu CGG Arg	Arg GTA Val TTG Leu	Ala CGG Arg GGG Gly	CTT Leu CCT Pro 75	AAG Lys 60 GTC Val	Pro 45 CCA Pro CAA Gln	ACA Thr AAT Asn	Pro CTA Leu GAA Glu	• .	191
AGT Ser CAT His	TGG Trp GGA Gly 65	GAC Asp 50 CCT Pro	Gln 35 GAG Glu ACG Thr	Ala ATG Met CCT Pro	Thr TGG Trp CTT Leu	AAG Lys CTA Leu 70	TGT Cys 55 TAT Tyr	Ala 40 CTC Leu CGG Arg	Arg GTA Val TTG Leu	Ala CGG Arg GGG Gly	CTT Leu CCT Pro 75	AAG Lys 60 GTC Val	Pro 45 CCA Pro CAA Gln	ACA Thr AAT Asn	Pro CTA Leu GAA Glu	• .	191
AGT Ser CAT His	TGG Trp GGA Gly 65	GAC Asp 50 CCT Pro	Gln 35 GAG Glu ACG Thr	Ala ATG Met CCT Pro	Thr TGG Trp CTT Leu CCC	AAG Lys CTA Leu 70	TGT Cys 55 TAT Tyr	Ala 40 CTC Leu CGG Arg	GTA Val TTG Leu	Ala CGG Arg GGG Gly	CTT Leu CCT Pro 75	Ala AAG Lys 60 GTC Val	Pro 45 CCA Pro CAA Gln	ACA Thr AAT Asn	Pro CTA Leu GAA Glu	• .	191 239
AGT Ser CAT His	TGG Trp GGA Gly 65	GAC Asp 50 CCT Pro	Gln 35 GAG Glu ACG Thr	Ala ATG Met CCT Pro	Thr TGG Trp CTT Leu CCC Pro	AAG Lys CTA Leu 70	TGT Cys 55 TAT Tyr	Ala 40 CTC Leu CGG Arg	GTA Val TTG Leu	CGG Arg GGG Gly ATC	CTT Leu CCT Pro 75	Ala AAG Lys 60 GTC Val	Pro 45 CCA Pro CAA Gln	ACA Thr AAT Asn	CTA Leu GAA Glu TCA Ser	• .	191 239
AGT Ser CAT His	TGG Trp GGA Gly 65	GAC Asp 50 CCT Pro	Gln 35 GAG Glu ACG Thr	Ala ATG Met CCT Pro	Thr TGG Trp CTT Leu CCC	AAG Lys CTA Leu 70	TGT Cys 55 TAT Tyr	Ala 40 CTC Leu CGG Arg	GTA Val TTG Leu	Ala CGG Arg GGG Gly	CTT Leu CCT Pro 75	Ala AAG Lys 60 GTC Val	Pro 45 CCA Pro CAA Gln	ACA Thr AAT Asn	Pro CTA Leu GAA Glu	• .	191 239
AGT Ser CAT His ATC Ile 80	TGG Trp GGA Gly 65 TGC Cys	GAC Asp 50 CCT Pro	Gln 35 GAG Glu ACG Thr	Ala ATG Met CCT Pro CAC	Thr TGG Trp CTT Leu CCC Pro 85	AAG Lys CTA Leu 70 ATC	TGT Cys 55 TAT Tyr ACA Thr	Ala 40 CTC Leu CGG Arg	GTA Val TTG Leu TAC	CGG Arg GGG Gly ATC Ile 90	CTT Leu CCT Pro 75 ATG Met	Ala AAG Lys 60 GTC Val GCA Ala	Pro 45 CCA Pro CAA Gln TGC Cys	ACA Thr AAT Asn ATG Met	CTA Leu GAA Glu TCA Ser 95		191 239 287
AGT Ser CAT His ATC Ile 80	TGG Trp GGA Gly 65 TGC Cys	GAC Asp 50 CCT Pro	Gln 35 GAG Glu ACG Thr ACA Thr	Ala ATG Met CCT Pro CAC His	Thr TGG Trp CTT Leu CCC Pro 85	AAG Lys CTA Leu 70 ATC Ile	TGT Cys 55 TAT Tyr ACA Thr	Ala 40 CTC Leu CGG Arg AAA Lys	GTA Val TTG Leu TAC Tyr	CGG Arg GGG Gly ATC Ile 90	CTT Leu CCT Pro 75 ATG Met	Ala AAG Lys 60 GTC Val GCA Ala	Pro 45 CCA Pro CAA Gln TGC Cys	ACA Thr AAT Asn ATG Met	CTA Leu GAA Glu TCA Ser 95		191 239
AGT Ser CAT His ATC Ile 80	TGG Trp GGA Gly 65 TGC Cys	GAC Asp 50 CCT Pro	Gln 35 GAG Glu ACG Thr ACA Thr	Ala ATG Met CCT Pro CAC His	Thr TGG Trp CTT Leu CCC Pro 85	AAG Lys CTA Leu 70 ATC Ile	TGT Cys 55 TAT Tyr ACA Thr	Ala 40 CTC Leu CGG Arg AAA Lys	GTA Val TTG Leu TAC Tyr	CGG Arg GGG Gly ATC Ile 90	CTT Leu CCT Pro 75 ATG Met	Ala AAG Lys 60 GTC Val GCA Ala	Pro 45 CCA Pro CAA Gln TGC Cys	ACA Thr AAT Asn ATG Met	CTA Leu GAA Glu TCA Ser 95		191 239 287
AGT Ser CAT His ATC Ile 80	TGG Trp GGA Gly 65 TGC Cys	GAC Asp 50 CCT Pro	Gln 35 GAG Glu ACG Thr ACA Thr	Ala ATG Met CCT Pro CAC His	Thr TGG Trp CTT Leu CCC Pro 85	AAG Lys CTA Leu 70 ATC Ile	TGT Cys 55 TAT Tyr ACA Thr	Ala 40 CTC Leu CGG Arg AAA Lys	GTA Val TTG Leu TAC Tyr TGG Trp	CGG Arg GGG Gly ATC Ile 90	CTT Leu CCT Pro 75 ATG Met	Ala AAG Lys 60 GTC Val GCA Ala	Pro 45 CCA Pro CAA Gln TGC Cys	ACA Thr AAT Asn ATG Met	CTA Leu GAA Glu TCA Ser 95		191 239 287
AGT Ser CAT His ATC Ile 80	TGG Trp GGA Gly 65 TGC Cys	GAC Asp 50 CCT Pro	Gln 35 GAG Glu ACG Thr ACA Thr	Ala ATG Met CCT Pro CAC His	Thr TGG Trp CTT Leu CCC Pro 85	AAG Lys CTA Leu 70 ATC Ile	TGT Cys 55 TAT Tyr ACA Thr	Ala 40 CTC Leu CGG Arg AAA Lys	GTA Val TTG Leu TAC Tyr	CGG Arg GGG Gly ATC Ile 90	CTT Leu CCT Pro 75 ATG Met	Ala AAG Lys 60 GTC Val GCA Ala	Pro 45 CCA Pro CAA Gln TGC Cys	ACA Thr AAT Asn ATG Met	CTA Leu GAA Glu TCA Ser 95		191 239 287
AGT Ser CAT His ATC Ile 80 GCT Ala	TGG Trp GGA Gly 65 TGC Cys	GAC Asp 50 CCT Pro	Gln 35 GAG Glu ACG Thr ACA Thr	Ala ATG Met CCT Pro CAC His GTA Val	Thr TGG Trp CTT Leu CCC Pro 85 ACC Thr	AAG Lys CTA Leu 70 ATC Ile ACC Thr	TGT Cys 55 TAT Tyr ACA Thr	Ala 40 CTC Leu CGG Arg AAA Lys	GTA Val TTG Leu TAC Tyr	CGG Arg GGG Gly ATC Ile 90 GTT Val	CTT Leu CCT Pro 75 ATG Met	Ala AAG Lys 60 GTC Val GCA Ala CTT Leu	Pro 45 CCA Pro CAA Gln TGC Cys	ACA Thr AAT ASN ATG Met	CTA Leu GAA Glu TCA Ser 95 GTC Val		191 239 287
AGT Ser CAT His ATC Ile 80 GCT Ala	TGG Trp GGA Gly 65 TGC Cys GAT Asp	GAC Asp 50 CCT Pro TTG Leu CTG Leu GCC	Gln 35 GAG Glu ACG Thr ACA Thr GAA Glu	Ala ATG Met CCT Pro CAC His GTA Val 100 GCG	Thr TGG Trp CTT Leu CCC Pro 85 ACC Thr	AAG Lys CTA Leu 70 ATC Ile ACC Thr	TGT Cys 55 TAT Tyr ACA Thr AGC ser	Ala 40 CTC Leu CGG Arg AAA Lys ACC Thr	GTA Val TTG Leu TAC Tyr TGG Trp 105	CGG Arg GGG Gly ATC Ile 90 GTT Val	CTT Leu CCT Pro 75 ATG Met TTG Leu	Ala AAG Lys 60 GTC Val GCA Ala CTT Leu TGT	Pro 45 CCA Pro CAA Gln TGC Cys	ACA Thr AAT Asn ATG Met GGG Gly 110	CTA Leu GAA Glu TCA Ser 95 GTC Val		191 239 287
AGT Ser CAT His ATC Ile 80 GCT Ala	TGG Trp GGA Gly 65 TGC Cys GAT Asp	GAC Asp 50 CCT Pro TTG Leu CTG Leu GCC	Gln 35 GAG Glu ACG Thr ACA Thr GAA Glu	Ala ATG Met CCT Pro CAC His GTA Val 100 GCG	Thr TGG Trp CTT Leu CCC Pro 85 ACC Thr	AAG Lys CTA Leu 70 ATC Ile ACC Thr	TGT Cys 55 TAT Tyr ACA Thr AGC ser	Ala 40 CTC Leu CGG Arg AAA Lys ACC Thr	GTA Val TTG Leu TAC Tyr TGG Trp 105	CGG Arg GGG Gly ATC Ile 90 GTT Val	CTT Leu CCT Pro 75 ATG Met TTG Leu	Ala AAG Lys 60 GTC Val GCA Ala CTT Leu TGT	Pro 45 CCA Pro CAA Gln TGC Cys	ACA Thr AAT Asn ATG Met GGG Gly 110	CTA Leu GAA Glu TCA Ser 95 GTC Val		191 239 287
AGT Ser CAT His ATC Ile 80 GCT Ala	TGG Trp GGA Gly 65 TGC Cys GAT Asp	GAC Asp 50 CCT Pro TTG Leu CTG Leu GCC	Gln 35 GAG Glu ACG Thr ACA Thr GAA Glu CTA Leu	Ala ATG Met CCT Pro CAC His GTA Val 100 GCG	Thr TGG Trp CTT Leu CCC Pro 85 ACC Thr	AAG Lys CTA Leu 70 ATC Ile ACC Thr	TGT Cys 55 TAT Tyr ACA Thr AGC ser	Ala 40 CTC Leu CGG Arg AAA Lys ACC Thr	GTA Val TTG Leu TAC Tyr TGG Trp 105	CGG Arg GGG Gly ATC Ile 90 GTT Val	CTT Leu CCT Pro 75 ATG Met TTG Leu	Ala AAG Lys 60 GTC Val GCA Ala CTT Leu TGT	Pro 45 CCA Pro CAA Gln TGC Cys	ACA Thr AAT Asn ATG Met GGG Gly 110	CTA Leu GAA Glu TCA Ser 95 GTC Val		191 239 287
AGT Ser CAT His ATC Ile 80 GCT Ala	TGG Trp GGA Gly 65 TGC Cys GAT Asp	GAC Asp 50 CCT Pro TTG Leu CTG Leu GCC	Gln 35 GAG Glu ACG Thr ACA Thr GAA Glu	Ala ATG Met CCT Pro CAC His GTA Val 100 GCG	Thr TGG Trp CTT Leu CCC Pro 85 ACC Thr	AAG Lys CTA Leu 70 ATC Ile ACC Thr	TGT Cys 55 TAT Tyr ACA Thr AGC ser	Ala 40 CTC Leu CGG Arg AAA Lys ACC Thr	GTA Val TTG Leu TAC Tyr TGG Trp 105	CGG Arg GGG Gly ATC Ile 90 GTT Val	CTT Leu CCT Pro 75 ATG Met TTG Leu	Ala AAG Lys 60 GTC Val GCA Ala CTT Leu TGT	Pro 45 CCA Pro CAA Gln TGC Cys GGA Gly	ACA Thr AAT Asn ATG Met GGG Gly 110	CTA Leu GAA Glu TCA Ser 95 GTC Val		191 239 287
AGT Ser CAT His ATC Ile 80 GCT Ala CTC Leu	TGG Trp GGA Gly 65 TGC Cys GAT Asp	GAC Asp 50 CCT Pro TTG Leu CTG Leu GCC Ala	Gln 35 GAG Glu ACG Thr ACA Thr GAA Glu CTA Leu 115	Ala ATG Met CCT Pro CAC His GTA Val 100 GCG Ala	Thr TGG Trp CTT Leu CCC Pro 85 ACC Thr GCC Ala	AAG Lys CTA Leu 70 ATC Ile ACC Thr	TGT Cys 55 TAT Tyr ACA Thr AGC ser	Ala 40 CTC Leu CGG Arg AAA Lys ACC Thr	GTA Val TTG Leu TAC Tyr TGG Trp 105 TCA Ser	CGG Arg GGG Gly ATC 1le 90 GTT Val	CTT Leu CCT Pro 75 ATG Met TTG Leu GGT	Ala AAG Lys 60 GTC Val GCA Ala CTT Leu TGT Cys	Pro 45 CCA Pro CAA Gln TGC Cys GGA Gly GTT Val 125	ACA Thr AAT Asn ATG Met GGG Gly 110 GTG Val	CTA Leu GAA Glu TCA Ser 95 GTC Val		191 239 287 335
AGT Ser CAT His ATC Ile 80 GCT Ala CTC Leu	TGG Trp GGA Gly 65 TGC Cys GAT Asp GCG Ala	GAC Asp 50 CCT Pro TTG Leu GCC Ala	Gln 35 GAG Glu ACG Thr ACA Thr GAA Glu CTA Leu 115	Ala ATG Met CCT Pro CAC His GTA Val 100 GCG Ala	Thr TGG Trp CTT Leu CCC Pro 85 ACC Thr GCC Ala	AAG Lys CTA Leu 70 ATC Ile ACC Thr TAC Tyr	TGT Cys 55 TAT Tyr ACA Thr AGC ser	Ala 40 CTC Leu CGG Arg AAA Lys ACC Thr TTG Leu 120	GTA Val TTG Leu TAC Tyr TGG Trp 105 TCA Ser	CGG Arg GGG Gly ATC Ile 90 GTT Val GTC Val	CTT Leu CCT Pro 75 ATG Met TTG Leu GGT Gly	Ala AAG Lys 60 GTC Val GCA Ala CTT Leu TGT Cys	Pro 45 CCA Pro CAA Gln TGC Cys GGA Gly GTT Val 125 CCA	ACA Thr AAT ASN ATG Met GGG Gly 110 GTG Val	CTA Leu GAA Glu TCA Ser 95 GTC Val ATT Ile		191 239 287
AGT Ser CAT His ATC Ile 80 GCT Ala CTC Leu	TGG Trp GGA Gly 65 TGC Cys GAT Asp	GAC Asp 50 CCT Pro TTG Leu GCC Ala	Gln 35 GAG Glu ACG Thr ACA Thr GAA Glu CTA Leu 115	Ala ATG Met CCT Pro CAC His GTA Val 100 GCG Ala	Thr TGG Trp CTT Leu CCC Pro 85 ACC Thr GCC Ala	AAG Lys CTA Leu 70 ATC Ile ACC Thr TAC Tyr	TGT Cys 55 TAT Tyr ACA Thr AGC ser	Ala 40 CTC Leu CGG Arg AAA Lys ACC Thr TTG Leu 120	GTA Val TTG Leu TAC Tyr TGG Trp 105 TCA Ser	CGG Arg GGG Gly ATC Ile 90 GTT Val GTC Val	CTT Leu CCT Pro 75 ATG Met TTG Leu GGT Gly	Ala AAG Lys 60 GTC Val GCA Ala CTT Leu TGT Cys	Pro 45 CCA Pro CAA Gln TGC Cys GGA Gly GTT Val 125 CCA	ACA Thr AAT ASN ATG Met GGG Gly 110 GTG Val	CTA Leu GAA Glu TCA Ser 95 GTC Val ATT Ile		191 239 287 335

GAG	GTG	TTG	TAT	CAA	CAA	TAC	GAT	GAG	ATG	GAA	.GAG	TGC	TCA	CAA	GCT		47:
Glu	Val	Leu	Tyr	Gln	Gln	Tyr	Asp	Glu	Met	Glu	Glu	Cys	Ser	Gln	Ala	•	
	145			۲,		150				, ',	155			1			
		1,	•				14										:
GCC	CCA	TAT	ATC	GAA	CAA	GCT	CAG	GTA	ATA	·GCT	CAC	CAG	TTC	AAG	GAA		52
Ala	Pro	Tyr	Ile	Glu	Gln	Ala	Gln	Val	Ile	Ála	His	Gln	Phe	Lys	Glu	1.	
160	•	1			165					170		•			175		
		٠		٠.		1							٠,				
AAA	GTC	CTT	GGA	TTG	CTG	CAG	CGA	GCC	ACC	CAA	CAA	CAA	GCT	GTC	ATT.		579
Lys	Val	Leu	Gly	Leu	Leu	Gln	Arg	Ala	Thr	Gln	Gln	Gln	Ala	Val	Ile		
				180			r ·		185	l				190		•	. 1
			<u>. </u>			1 .	. 1			ŧ		*					
GAG	CCC	ATA	GTA	ACT	ACC	AAC	TGG	CAA	AAG	CTT	GAG	GCC	TTT	TGG	CAC	١.	623
GIU	Pro	шe	Val	Thr	Thr	Asn	Trp		Lys	Leu	Glu	Ala	Phe	Trp	His		1
			195			'		200				•	205		'		
AAG	ראידי					1	,		-		٠.	*					
Lys										100			*			v.*	629
בעעם	HTD			1			1.1			• •	•						٠
						ı					•						

- (2) INFORMATION FOR SEQ ID NO: 223:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 209 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:

Asp Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala His

1 5 10 15

Phe Leu Ser Gln Thr Lys Gln Gln Gly Leu Asn Phe Ser Phe Leu Thr
20 25 30

Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro Pro Ser 35 40 45

Trp Asp Glu Met Trp Lys Cys Leu Val Arg Leu Lys Pro Thr Leu His
50 55 60

Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Pro Val Gln Asn Glu Ile
65 70 75 80

Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser Ala

Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu Leu Gly Gly Val Leu 100 105 110

Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly Cys Val Val Ile Val 115 120 125

Gly His Ile Glu Leu Gly Gly Lys Pro Ala Ile Val Pro Asp Lys Glu 130 135 140 Val Leu Tyr Gln Gln Tyr Asp Glu Met Glu Glu Cys Ser Gln Ala Ala 145 , 150 , 155 160

Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His Gln Phe Lys Glu Lys
165 170 175

Val Leu Gly Leu Leu Gln Arg Ala Thr Gln Gln Gln Ala Val Ile Glu 180 185 190

Pro Ile Val Thr Thr Asn Trp Gln Lys Leu Glu Ala Phe Trp His Lys
195 200 205

His

- (2) INFORMATION FOR SEQ ID NO: 224:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 2..12
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:

Ile His Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile

- (2) INFORMATION FOR SEQ ID NO: 225:
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 12 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226:

Val Asn Tyr Arg Asn Ala Ser Gly Val Tyr His Ile 1 5 10

- '(2) INFORMATION FOR SEQ ID NO: 227:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

Val Asn Tyr His Asn Thr Ser Gly Ile Tyr His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 228:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:

Gln His Tyr Arg Asn Ala Ser Gly Ile Tyr His Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 229:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:

Gln His Tyr Arg Asn Val Ser Gly Ile Tyr His Val 1 5, 10

- (2) INFORMATION FOR SEQ ID NO: 230:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:

Ile His Tyr Arg Asn'Ala Ser Asp Gly Tyr Tyr Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 231:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - '(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:

Leu Gln Val Lys Asn Thr Ser Ser Ser Tyr Met Val

- (2) INFORMATION FOR SEQ ID NO: 232:
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:

Val Trp Gln Leu Arg Ala Ile Val Leu His Val 1 5 10

(2) INFORMATION FOR SEQ ID NO: 233:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:

Val Tyr Glu Ala Asp Tyr His Ile Leu His Leu, 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 234:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:

Val Tyr Glu Thr Asp Asn His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 235:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:

Val Tyr Glu Thr Glu Asn His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 236:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid "
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236:

Val Phe Glu Thr Val His His Ile Leu His Leu

1 5 10

- (2) INFORMATION FOR SEQ ID NO: 237:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:

Val Phe Glu Thr Glu His His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 238:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A), LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:

Val Phe Glu Thr Asp His His Ile Met His Leu

1 10

- (2) INFORMATION FOR SEQ ID NO: 239:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear \
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:

Val Tyr Glu Thr Glu Asn His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 240:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240:

Val Tyr Glu Ala Asp Ala Leu Ile Leu His Ala 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 241:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241:

Val Gln Asp Gly Asn Thr Ser Ala Cys Trp Thr Pro Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 242:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
- (2) INFORMATION FOR SEQ ID NO: 243:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:

- (2) INFORMATION FOR SEQ ID NO: 244:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:

Val Arg Thr Gly Asn Gln Ser Arg Cys Trp Val Ala Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 245:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245:

Val Lys Thr Gly Asn Gln Ser Arg Cys Trp Ile Ala Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 246:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246:

Val Lys Thr Gly Asn Gln Ser Arg Cys Trp Ile Ala Leu

10

- (2) INFORMATION FOR SEQ ID NO: 247:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247:

Val Lys Thr Gly Asn Ser Val Arg Cys Trp Ile Pro Leu

1 5 10

- (2) INFORMATION FOR SEQ ID NO: 248:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:

Val Lys Thr Gly Asn Val Ser Arg Cys Trp Ile Ser Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 249:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 249:

Val Arg Lys Asp Asn Val Ser Arg Cys Trp Val Gln Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 250:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:

Ala Pro Ser Phe Gly Ala Val Thr Ala Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 251:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (c) STRANDEDNESS: single
 - (D) TOPOLOGY: linear '
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:

Val Ser Gln Pro Gly Ala Leu Thr Lys Gly
1 5 10

- (2) INFORMATION FOR SEQ ID 'NO: 252:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252:

Val Lys Tyr Val Gly Ala Thr Thr Ala Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 253:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253:

- (2) INFORMATION FOR SEQ ID NO: 254:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254:

Ala Gln His Leu Asn Ala Pro Leu Glu Ser 1 5 1 10

The second of the second

- (2) INFORMATION FOR SEQ ID NO: 255:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255:

Ser Pro Tyr Val Gly Ala Pro Leu Glu Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 256:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256:

Ser Pro Tyr Ala Gly Ala Pro Leu Glu Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 257:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 10 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257:

Ala Pro Tyr Leu Gly Ala Pro Leu Glu Ser

- (2) INFORMATION FOR SEQ ID NO: 258:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino 'acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258:

Ala Pro Tyr Leu Gly Ala Pro Leu Glu Ser

1 5 10

- (2) INFORMATION FOR SEQ ID NO: 259:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259:

Ala Pro Tyr Val Gly Ala Pro Leu Glu Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 260:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260:
 Asn Val Pro Tyr Leu Gly Ala Pro Leu Thr Ser
- (2) INFORMATION FOR SEQ ID NO: 261:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261:
 - Ala Pro His Leu Arg Ala Pro Leu Ser Ser
- (2) INFORMATION FOR SEQ ID NO: 262:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 262:
 - Ala Pro Tyr Leu Gly Ala Pro Leu Thr Ser
 1 5 10
- (2) INFORMATION FOR SEQ ID NO: 263:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263:
 - Arg Pro Arg Gln His Ala Thr Val Gln Asp 1 5 10
- (2) INFORMATION FOR SEQ ID NO: 264:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264:

Ser Pro Gln His His Lys Phe Val Gln Asp 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 265:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265:

Arg Pro Arg Arg Leu Trp Thr Thr Gln Glu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 266:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266:

Pro Pro Arg Ile His Glu Thr Thr Gln Asp 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 267:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 267:

Thr Ile Ser Tyr Ala Asn Gly Ser Gly Pro Ser Asp Asp Lys

1 10

- (2), INFORMATION FOR SEQ ID NO: 268:
 - (i') SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268:

Ser Arg Arg Gln Pro Ile Pro Arg Ala Arg Arg Thr Glu Gly Arg Ser 1 5 10 15

Trp Ala, Gln

- (2) INFORMATION FOR SEQ ID NO: 269:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1443 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1443
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..1443
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269:

ACC ATC ACC ACC GGA GCT TCT ATC ACA TAC TCC ACT TAC GGC AAG TTC Thr Ile Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr Gly Lys Phe

	1	*		5				10			15	,	1	
					TGT Cys								. •	1 96
					CAG Gln		•							144
1	•			•	GAG Glu							GCC Ala	•	192
					GGC Gly 70				His					240
٠.					CAG Gln							GCC Ala	• .	288
					ATA Ile									336
					GAT Asp	Glu							,	384
					TAT Tyr									432
					GTC Val 150	Val								480
					GAT Asp								•	528
					AGT Ser									576
					GCA Ala									624
					GGC Gly									672
					GAC Asp 230									720

								2.5	,,		,		•			•	
GGA Gly	TGT Cys	GCG Ala	TGG Trp	TAT Tyr 245	GAT Asp	CTG Leu	ACT Thr	CCT Pro	GCC Ala 250	Glu	ACT	ACC Thr	GTG Val	AGG Arg 255	TTG Leu	•	768
CGC Arg	GCT Ala	TAC Tyr	ATA Ile 260	AAC Asn	ACC Thr	CCC Pro	GGG Gly	CTC Leu 265	CCT Pro	GTC Val	TGT Cys	CAG Gln	GAC Asp 270	CAT. His	TTG Leu		816
GAA Glu	TTC Phe	TGG Trp 275	GAG Glu	GJY	GTG Val	Phe	ACG Thr 280	GGG Gly	CTC Leu	ACT Thr	AAC Asn	ATC Ile 285	GAC Asp	GCT Ala	CAC His		864
ATG Met	CTG Leu 290	TCA Ser	CAG Gln	ACC Thr	AAA ^l Lys	CAG Gln 295	GGT Gly	GGG Gly	GAG Glu	AAT Asn	TTC Phe 300	CCA Pro	TAC	CTT Leu	GTA Val		912
			GCA Ala			Cys											960
			ATG Met							CTC Leu					ACT Thr	•	1008
GGC Gly	CCT Pro	ACT Thr	CCC Pro 340	CTC Leu	TTG Leu	TAC Tyr	AGG Arg	CTG Leu 345	GGG Gly	CCC Pro	GTC Val	CAG Gln	AAT Asn 350	GAĠ Glu	ATC Ile		1056
	Leu		His												GCG Ala	• •	1104
			GTC Val														1152
			GCG Ala														1200
			ATC Ile														1248
			CAG Gln 420													· .	1296
	Tyr		GAC Asp														1344
			TTC Phe														1392
			ACG Thr												ACA Thr 480		1440

TAC Tyr 1443

- (2) INFORMATION FOR SEQ ID NO: 270:
 - (i) SEQUENCE CHARACTERISTICS: ,
 - (A) LENGTH: 481 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270:

Thr Ile Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr Gly Lys Phe

1 10 15

Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Val Ile Ile Cys
20 25 30

Asp Glu Cys His Ser Gln Asp Ala Thr Thr Ile Leu Gly Ile Gly Thr
35 40 45

Val Leu Asp Gin Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Ala 50 55 60

Thr Ala Thr Pro Pro Gly Ser Val Thr Thr Pro His Pro Asn Ile Glu 65 70 75 80 Glu Val Ala Leu Pro Gln Glu Gly Glu Val Pro Phe Tyr Gly Arg Ala

Ile Pro Leu Ala Phe Ile Lys Gly Gly Arg His Leu Ile Phe Cys His
100 105 110

Ser Lys Lys Cys Asp Glu Leu Ala Lys Gln Leu Thr Ser Leu Gly
115 120 125

Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ala Val Ile Pro

Thr Ala Gly Asp Val Val Cys Ser Thr Asp Ala Leu Met Thr Gly
145 150 155 160

Phe Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Ser Ala Val Thr 165 170 175

Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr Thr 180 185 190

Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg Thr 195 200 205

Gly Arg Gly Arg His Gly Ile Tyr Arg Tyr Val Ser Ala Gly Glu Arg 210 215 220

Pro Ser Asp Met Phe Asp Ser Val Val Leu Cys Glu Cys Tyr Asp Ala

	225	•				230		ı			235	'			i	240
	Gly	Cys	Ala	Trp	Tyr 245	Asp	Leu	Thr	Pro	Ala 250	Glu	Thr	Thr	Val	Arg 255	Leu
	Arg	Ala	Tyr	11e 260	Asn	Thr	Pro	Gly.	Leu 265	Pro	Val	Cys	Gln	Asp 270	His	Leu
l	Glu	Phe	Trp 275	Glu	Gly	Val	Phe	Thr 280	Gly	Leu	Thr	Asn	Ile 285	Asp	Ala	His
;	Met	Leu 290	Ser	Gln	Thr	Lys	Gln 295	Gly	Gly	Glu	Asn	Phe 300	Pro	Tyr	Leu	Val
	Дla 305	Tyr	Gln	Åla	Thr	Val 310	Cys	Val	Arg	Ala	Lys 315	Ala	Pro	Pro	Pro	Ser 320
	Trp	Asp	Thr	Met	Trp 325	Lys	Cys.	Met _{i,}	Leu	Arg 330	Leu	Lys	Pro	Thr	Leu 335	Thr
	Gly	Pro		Pro 340	Leu	Leu	Tyr	Arg	Leu 345	Gly '	Pro	Val	Gln	Asn 350	Glu	Ile
	Thr	Leu ,	Thr 355	His	Pro	Ile	Thr	Lys 360	Tyr	Ile	Met	Aľa	Cys 365	Met	Ser	Ala
	Asp	Leu 370	Glu	Val	Ile	Thr	Ser 375	Thr	Trp	Val	Leu	Val 380	Gly	Gly	Val	Val
	Ala 385	Ala	Leu	Ala	Ala	Tyr 390	Cys	Leu	Thr	Val	Gly 395	Ser	Val	Ala	Ile	Val 400
	Gly	Arg	Ile	Ile	Leu 405	Ser	Gly	Lys	Pro	Ala 410	Ile	Ile	Pro	Asp	Arg 415	Glu
	Ala	Leu _.	Tyr	Gln 420	Gln	Phe	Asp	Glu	Met 425	Glu	Glu	Cys	Ser	Ala 430	Ser	Leu
	Pro	Tyr	Met 435	Asp	Glu	Thr	Arg	Ala 440	Ile	Ala	Gly	Gln	Phe 445	Lys	Glu	Lys
	Val	Leu 450	Gly	Phe	Ile	Ser	Thr 455	Thr	Gly	Gln	Lys	Ala 460	Glu	Thr	Leu	Lys
	Pro 465	Ala	Ala	Thr	Ser	Val 470	Trp	Asn	Lys		Glu 475		Phe	Trp	Ala	Thr 480
	Tyr		•				•									

7981 T				
7932 CTCCACAGTCACTGAGAGCGACATCCGTACGGAGGCAATCTACCAATAGATATTTTA	-T-CAT-GGG AT-CATGG AT-CATG ATGG T-TG-	-T-CATTGAGATTGAGAGAGA	-	AGA
AGG7			A	1 1 1 1
ATCCGTACGG	A-GT- AA-AA- AA-AA-	A-AT A-GGT A-GGT A-GGT	A-GGT	A-G
TGAGAGCGAC AT CA		GG ACAG ACAG ACAG	ACAG	ACAT
932 TCCACAGTCAC AG		- A - G	AT	T L L
7011	1 1 1		i	i si
110 110 110	200 200 200 200 200 200 200 200 200 200	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	· ·			•
HCV-1 HCV-J BE90 2TY4 4TY4	HC-J6 HC-J6 NE91 EB12 EB12 ARG6 HI10	1505 T 1505 NE92 CHR20 CHR21 T 1 T 1	NE93 NZL13 EB1 EB2 EB3	EB7 T9 T10 BE98

31											~,							
798	TG-	Ļ	Ė	i.	H	1	- B			T G-	I G-	i.	T G	' ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
•	AGG	AGG-A-	1		-A-A-G-	- A-	A-AGG	A-AG	A-AG	A-AGG	-GA-AGG	G	G-1-	1	T-CA-	. I I	T-CT-	
	A-GGTC	A-GGTC	A-GGTC	A-GGTC	AAGGTCA-	A-GGTCA-	i	TA-GC	1	Ż-	A-GA-		•	D	ATTGTA-	L		
	TACA-AG-	TACA-AG-	TACA-AA-	ζ	TGA-	TGA	GAA	GGCAG	GGBG	Ż	BGN-C			-CIC	C-CCACAT	-CIC		
7932	1 1	1 1	1 1	1 1	 	1	1 1	1 1	1		G		•	- B B	A-	G	- <u>G</u> <u>G</u>	
	•						-											
	4c	4c	4c	4c	4e	4e	4£	49	4h	41.	4)	4k	4 k	<u>5</u> a	5 a	5 a	5a	
	GB48	GB116	GB215	GB358	GB809	$\overline{}$	CAMG22	GB549	GB43	CAR4/12			EG-	BE9		CHR1	F CHR19	5)

Continued

2	•	7 .	7	1
	_	1	1	1

						٠,							3,	/1:	11	٠,						ļ						•		
	31	*,		•			-	•		٠.	4												١.	,			1			
	i	CCCTCACC	 		ATT-	ATT	-AGT	-GD-		-GT	-AGT	-AGT	-AGT	-AT-GT	-AG=-T	B		A	B	B	B	B	B	B	9	5	B	A	9	TA
		ひょ] []	W-	AAA	AAA	-AC-C-	-AC-C-	AC-C-	AC-C-	AC-C-	-AC-C-	-AC-C-	-AC-C-	-AC-C-	ICC	TCC	TCC	TCC	LCC	ICC	1CC	DDI	DDI	DDI	DDI				GCG-
		ACCCCCAAGCCCGCGTGGCCAT		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	G-CAT	G-CACT	'G-GA-ACT	.GA-AACT-T	G-GA-AACT-T	G-GA-AACT-T	G-GIAACI	-GL-	G-GAACTT-	G-GTGACTT-	GAGACT	G-GA-GAAA-TG-	G-GA-GAAA-TG-	G-GA-GAAA-TG-	G-GA-GAGA-TG-	G-GA-GAAA-TG-	G-GA-GAAA-TG-	Ð-	3-GA-GAAA-TG-	G-GA-GAAA-TG-	3-GA-AAAA-TG-	G-GA-GAATG-				G-GTGAAG
•	982	TGTGACCTCG	D	1 1 1 1 1 1	DD	B	CTC-T-GCC-GAGG	CTCTGCCT-AAG	CTCGCCAA	CTCGCCT-AAG	CCTCAGCCTGAGG	CCTCAGCC-GAGG	CCCTCAGCCTGAGG	CTCAGCCT-AGG	CTCTT-ACC-GAG	-CATAGG	-CATAGG	-CATAGG	CATAG	A-TTGG	CCATAG	-CATAGG	-CATAGG	CATAG	-CATAGG	CATAG				-CTGAC
•	SEQ ID	٠.	۳	213	•				215		•	· · · · · · · · · · · · · · · · · · ·	-		145						217						_ ~	1,3	~	
	,	Н -	۲ ا ا	QT	1c	10	2a	2b	2p	5p	. 2c	2c	2c	2c	2d	3a	3a	3a	3а	3a.	3a	3a	3a	3a	3а	3а	3a	3a	3а	3p
•		HCV-1		日により	2TY4	4TY4	HC-JE	HC-J8	NE91	EB12	ARG6	ARG8	011 STI	T983	ME92	E CHR20	T CHR21	E CHR22	IL IL	LI 26	NE93	NZL13	EB1	EB2	EB3	EB7	BR33	BR34	BR36	T9

1 - Continued 3
- Continued
- Conti
•
•
•
•
•
•
Н
Н
W
ы
3
1
<u>i</u>
re

H	4/111
SEQ ID 7982 -CTG-AG-GTGAAGCG-TAA	106
3b 3c	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
T10 BE98	GB48 GB116 GB215 GB215 GB358 GB358 GB809 GB809 GB8438 GB438 GB438 GAR4/1205 GAR1/501

5/111

. 181				
3GGAGAACTGCGG C	-CC-ATC			
TTACCAATTCAAGGGGGGGAGAACTG -GTG-AC -GTAC		CAGC-A CAGC-AA- CAGC-AA- CAGC-AA AGC-A	ပွဲ ပွဲ ပွဲ ပွဲ ပွဲ ပွဲ	- CAGC - AA CAGC - AA CAGC - A CAGC - A CAGC - AA CAGC - AA CAGT - A
	2CA-GTTCA-GTTCA-G-TA-CA-G-TACA-G-AACA-G-AACA-G-AACA-G-AACA-G-AACA-G-AACA-GAACA-GAACA-GAACA-GAACA-GAACA-GAACA-GAACA-GAAA-	GCA-GA- GCA-GA- GCA-GCTA- A-GTT		CA-GII A-GIT A-GIT A-GIT A-GIT
	0	-CA	-CTGCA	CTGC CTGC CTGC CTGC CTGC
8032 AGGCTTT C C	- A G G G G G G G G G	- A - G A - A - A - C A - A - A - C - C		
11 11 11 12	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 3 3 5 C C C C C C C C C C C C C C C C	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	д в в в в в в в п п п п п п п
HCV-1 HCV-J BE90 2TY4	4114 HC-J6 HC-J8 NE91 EB12 ARG6	TO THE STATE OF TH	(97 T1 NE 93 NZL 13 EB 1	EB2 EB3 EB7 BR33 BR34 BR36 T9

6/111

	· · · · · · · · · · · · · · · · · · ·		•	
CGCA-CATCA-GTACAGT-ACTCC-G	ACCGCTCA-GCATCAGC-AACCTGACGCTCA-GCATCAGC-AACCTGAC		ACGCACA-GTTCAGC-AACC-GCCA-GCACAGC-AACGCCA-GCAAGC-A C-CCGCCA-GCAAGC-A	C-CT-G-TCTGACA-GTATCAGC-AC-AC- C-C-GCTGACA-GTATCAGC-AC-AC- C-CGCTGACA-GTATCAGC-AC-AC-
35 33	4 4 4 4 4 0 0 0 0 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
T10 BE98	GB48 GB116 GB215 GB358	CAMGOO CAMG22 GB549 GB438 CAR4/1205	TH CAR1/501 EG-13 EG-19 BE95	BE96 CHR18 CHR19

8131	1	- - 1	1		1 1	; ;	-1-	- L -	Р Г		1 1	1 . 1	- I -	1 1	i 1	! !		 	!!!	1 1		1	 	1		; !		- [-
·	GCTGTGGTA		C		ATGG-	ATGG-	ATGG-	ATGG-	ATG	ATGC-	ATGC-	ATG	ATGA-	TCC-	TCC-	TCC-	TCC-	LCC-	LC-	DCC-	TCC-	TCC	JCC	JCC	T-TCC-=	DDL	ICC-	ICC
,	CAGGTGCCGCGCGAGCGGCGTACTGACAACTA			-DD	- L - C	-DDD-	-DDD-	-CTC-	.CCC	-DDD-	D D D-	DDD-	DD	-C-I-C-	C-L-D-	-C-L-D-	-C-I-C-	-C-I-C	-C-I-D-	-C-L-C-	-C-I-C-	-C-TC	DD-	-C-L-C	- C- L - C	-C-IC	-C-LC	-C-I-O-
· .	SCGGCGTAC:	B		D	B B	TTT-	- T L T L T L -	- LLL	AG	CAG	AG	TGG	AGT-	TAC	TAT	TAT	TAC	TAC	TAT	TAT	TAT	TAT-	TAT	TAT	IAT	TAT-	TAT	
	CCGCGCGCAC	A	TC	TC-		A			1 1 1 1 1 1 1	! ! ! ! !	1 1 1 1 1	1 1 1 1 1 1 1 1 .		LL	L L	TT	L	T	DL	L C	I	I C,	LC	L	ITC		T	
8082	TCG	1 1 1	1 1 1 1 1 1 1	! ! ! ! ! ! !	GCA-GC-T	CA-GC-T	TCA-GC-T	TCA-GC-C	GCA-GC-T	GCA-GC-T	GCA-GC-T	TCA-GC-T	ACA-AC-C	T	T	T	TC	TC-C	TL	T	T	T	TL	TL	I	TC	T	D-D
	1a	1p	1c	10	2a	2b	2b	2b	2c	2c	2c	2c	2.d	3a	3a	3a	3а	3а	3a	3a	3а	3a	3a	3a	3a	3a	3а	35
	HCV-1 HCV-1	BE90	2TY4	4TY4	HC-16	HC-J8	NE91	EB12	S ARG6	S ARG8	110 110	F T983	NE92	元 CHR20	T CHR21	CHR22	TI TI	LI 26)	NE93	NZL13	EB1	EB2	EB3	EB7	BR33	BR34	BR36	T9

9

8131 	CTACC-CTCGCTACCCTCGCTACCCTCG		ACT-TGCTCAACTATGCTCATT-CCCTATGCCT-CCCTATGCCT-CCCTATGC
L - L D	A T A	AA AA	ATGA A
8082 C- TCC-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G GCT2 GC-AG GCTG -ATCT2	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
3b 3c	4 4 4 4 4 4 0 0 0 0 0	44444 444 1 44 1	<u>4</u> 4 ቢ ቢ ቢ ቢ አ አ ሬ ሬ ሬ ሬ
T10 BE98	GB48 GB116 GB215 GB358	CAM600 CAM622 CAMG22 GB549 GB438 GCAR4/1205	

								·										ı		•							•	,	
	81				٠.	٠			ı				,				1.	,		٠,	٠								
	811	- CGCAGGGE I C - T AA	-TGAA	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-TA-A	-TA	A	-TGA	GCA-T	GCA-T	GCA-T	TGCA-T	TGCA-A	C			C)	C	AAC	D	0)	72	D	C		TGT
	T T T T T T T T T T T T T T T T T T T	16		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		AAG-	G-=-AAG-	GAA	GCAA	AAAC-	GAAC	GAAC	GCAAC	AAG	T-CGAAG	TGCGAAG	TGCCGA	TGCGAAG	TGCAA-G	GCGAAG	TGC-AAG	CGAG	CGAG	CAAG	CAA	TGCAAA	TGCAA-G	GCAAA	A-CA-G
	ָּהָ בְּיִבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִ	CAAGGUUGGGUAGUU1G1UGAGUUGUAGGG GACTGTAA-		TA	TA	-ATTAG	-ATT	-ATT	-ATT	-ATAAAG	-AAG	-AA-G	-AAA	A-AA	TA-AG	TA-AG	-ATA-AG	ACAG	ACAG	ACAA-G	ACAG	-ATACAG	ACAG	ACAG	ACAG	ACAG	ACAG-	. A ACA G	ACT
	E 6	ACI 16C 1ACA1 CA ATT-G-	A T C-A-	D-		-ATG-G-	-AT	L9-	-A	-B-9B-	-B-9B-	-B-99-	-B-9L9-	-B-BB-	L		L		T	T	I		L			I		·	- C T
	8132		- I	- L - L -	L -	A	A-G-	A-G-	A-G-	-A	-A	- G	-AT-	A	- AA	AA	- AA	- AA	-GA	- AA	- AA	- AA	- AA	- AA	-AA	- AA	- AA	- AA	- AA-A-
	· ·	T T	1p	1c	1c	2a	2b	2b	2b	2c	20	2c	2c	2d	. 3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3p
ı	1011	HCV-J	BE90	2TY4	4TY4	HC-76	HC-J8	NE91	EB12	s ARG6	SE ARG8	II 110	T983	S NE92	南 CHR20	CHR21	CHR22	E 2	26)	NE93	NZL13	EB1	EB2	EB3	EB7	BR33	BR34	BR36	T9

	,		, ,		•
8.1	1 4				
8132 -AA-ACTACTGA-CA-GTGT -AACTAAAATACCAATCAA-T	-AGGGCATCACTATCAAGGG -AGGTCATCACTATCAGG -AGGTCATCACATCA-GGTG -AGGTCATCACATCA-GGTG	GG	AGTTCGTTGTAC-A-G	-TAACATTAC-AAC -AAACCTAT-AGG	A-GGTTTACT A-GGTTTTACT A-GGTTTTACT
3b 3c	4 4 4 C C C C C C C C C C C C C C C C C	4 4 6 4 6 6	4 4 4 4 4 1 i	4 4 4 7 4 7	ប្រ ក ស ស ស ស ស ស ស ស
T10 BE98	GB48 GB116 GB215 GB358	GB80 CAM6 G22	GB549 GB438 GCAR4/1205	CAR1/50 EG-13 EG-19	BE95 BE96 CHR1

		CGACTTAG	C-I-	1			<u> </u>	-9-D	-9-0		1			· 1	TC	[TC-G-		TC- G-	[TC-G-	IC-G-	:TC-G-:	:TG-	•		•		BL	D-DL,	'TC-G	
		TGGCGA	1	CG			<u></u>	A	A		•				J	CA	4	CA	I I	1	CA]]A]			;		1 1	A T	-	A
		CGTGTG	AAC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			GA	99	G) <u>-</u> 9)CL	1	C	(): 	b)CL	1 (•		٠	IT-C	1	IC-C	ICC
•		CAGGACTGCACCATGCTCGTGTGTGCGACGACTT	g	B	1	1 1		TTTT	If	;TT.	: !	1	1	1	9-	'A-T-T-	A-T-T-	A-T-T	A-T-T-	A-T-T-	H	A-T-T	A-	.A-	A-	A-	- 1	A-T-T	A-T-T	- LI-C,
. 10	32	SGACTGC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 - 1 - 1 - 1	1 1 1 1 1 1		DDDD-:	CCTC	טַ	5-DD	ລວ-ລ-:	ט	-CIC	-CI	DD-D-	ACCGG	AC-CCGG	ACCGG	ACCGG	ACCGG	ACCGG	ACCGG	A-TCCGG	ACCGG	ACCGG	ACCGG	ACCGG	-ACCGGA-T	AG-CCGG	CCAT
Continued .	818	CAC			. 5	. !	ATT	GT-	-LE	GT-	GTI	GLI	GTT	GLL	ATI	- 0	ဗုံ	-9-	-b-	-G-		- .			•	-Ð-	-B-		က်	A-A
- Cont		1a	1p	1p	1c	1c	2a	2p	2b	. 2b	2c	2c	2c	2c	2d	3а	3а	3а	3а	3а	3a	3 <u>a</u>	3a	3а	3a	3a	3a	3a	3а	3p
Figure 1		HCV-1	HCV-J	BE90	2TY4	4TY4	HC-J6	HC-J8	NE91	EB12	ARG6	ARG8	110	T983	NE92	CHR20	CHR21	CHR22	T1	T7 .	NE93	NZL13	EB1	EB2	EB3	EB7	BR33	3		T9
											0	IID/	7717	F1 (**	- ^			400												

12/111

					٠		,				í	٠	1.			. `				
17.78	AAGCGCGGGGGTCCAGGAGGACGCGGCGAGCCTGAGAGCC	TGCAC		A-CGA	A-CGA-AT	A-CGA-AT	<u>A</u> -CGAAC	TAGAAGC	TAGAA-AGC	TAGAAGCG	TAGAAGC	TAG-AGC	TAGAAGC	TAGAAGC				AGAAGCTC	AGAAGCTC	AGA
8232	AAGCGCGGGGGTCCAGGAC	GTAAC	AACA	GCAAC-G	GCAATAA-G	GCATAA-G	GTCAAC-G	GT-ATCG-C	GT-ATCG-C	GT-ATCA-T	GATCG-T	GT-ATCG-C	GT-ATCG-C	GT-ATCG-T	ДД	GT	ДД	TGCCG	TGCCC	GTAAG-T
	1a	1p	1b	2a	2p	2b	2d	3a	3a	3а	3а	3а	3а	3а	3а	3а	3а	3b	3b	30
	HCV-1	HCV-J	BE90	HC-16	HC-78	NE91	NE92	S CHR20	SCHR21	CHR22	II U	S T7	H NE93	NZL13	RBB BR33	m BR34	6 BR36	T9	T10	BE98

14/111

Figure 1 -	Continued 13	ued 13	
		8232	8271
GB48	4c	GATC-AGAAACGACCG-	1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 '
GB116	4 _C		
GB215	4c	AAACGAGC	: ·
GB358	4C) - -	. 1
GB809	4e)	- E-
CAM600	4e	(()	·
G22	4£) - - -	
GB549	49) - - -	1
GB438	4h	CCGAGC	
CAR4/1205	41	1 1 1	· E-
CAR1/501	4]	TC-CANA-CNNC-	Z-U-
BE95	5a	1A	
BE96	5a	Ŕ	:
CHR18	5 a	GCAACGCTAAA	1
CHR19	5a	GCAAACGCT-AAT	<u> </u>

SUBSTITUTE SHEET (RULE 26)

SEQ ID 2645 - 2694	STVTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGGPLTNSRGENCG	-NVSA-EQIK-Q		KKKK	RSRA-S-PEE-HTHMFK-OT	A-S-PQETV-H	-2-	A-S-PQETV-H	-S-PEETHM	LS-S-PEETH	A-S-PQETHK-QS	146MLK-OT			VEM-E-EKV-SCMFK-	KV-SCMF	QVEN-E-ERV-SCMFK-AQ	$Q^V^E^N^-E^-E^KV^-S^C^MY^K^-VQ^$	218	N Q V - E N - E - E KV - S C MF K - AQ	K-AQ	N-E-EKV-SCMFK-AQ	N-E-EKV-SCMFK-AQ	C	10,12	2,4	6,8	HEE-F-E-K	QE-E	
	1a 1	q q	1 _C	1c	2a	2b	2b	2p	2c	2c	2c	2d	Ć	۲ م	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a_	3a	g N	3a	35	3p	
	HCV-1	0.06	Y4	¥4	HC-J6	-J8	91	12	G8	0	83	92	, ,	KZU	R21	R22			93	613			K	7	33	34	98	T9		

16/111

														1				
7697	MHK-DI,		MHK-DL	 	MHK-DI		MHK-DL	MYK-DL				- !	1 '	254		- IMI-	-CMYK-QQ	CMYK-QQ
	N-E-E-KTA	3KV-		[-	E-EKV-TA	E-EKTA	E-EKV-AA	E-E-KV-TA	E-ET-KV-SA	[EKV-SA	- KV-NA	E-EKV-TĀ	. 0	אכ	ייים. זיים רייד	スー・一〇・・	RQ
2645	ΛΛ	ΛΛ	KVEV	KVEV	KVEV	KVEV	KKVEV	EV	EEVEV	RE	RK	PR-X-VEV	X-RGEV) () () ()	י ט נ			SSMH
			107	109	111	113	117	202	204	115	208	210	212		201)		
	4a	4a	4c	4c	4c	4c	4e	4 e	4 £	<u>4</u> g	4h	4i	4j	υ	σ	ל ה ה	d U	5 a
	EG13	EG19	GB48	GB116	GB215	GB358	GB809	CAM600	CAMG22	GB549	GB438	CAR4/1205	CAR1/501	ת הפת	REGE	0,1115	OTALO	CHR19

SUBSTITUTE SHEET (RULE 26)

14	. 1				1			,						ı				. :			•						,	•	•	•
2744	CGDDLVVICE	NN				-S		-S			1		-S	VA-	VA-	VA-	VA-	VA-		VA-		• .			VA	VA-	VA-	-SA	-SA	A -
	YRRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCTMLVCGDDLVVICE	-K	X	R	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IIAP	Nd-NI	IV-PV	~~IV-PV	IVAP-	IVAP-	V-IVAS-	IIAP	RNPDF	RTPDF	RNPDF	RNPDF	RNPDF	RNPDF	-N-RNPDF	RNPD	RNPD	RNPD	RNPD	RNPDF	RNPDF	RSPDF	K-PSF	K-PSF	IKNPSF
	CYIKARAAĞRA	III	ST-	IJ	T	VLK-	LK-	IK-	IK-	-NV	-NV-	-V-NKV-	-VQK-	SK-	AK-	AE	TAK-	T	TT-AK-	TAK-	T	L E -	T	XX-	TH	TA	TAK-	L	T	K TK -
	TISCGNILIC					IM	MY	MM	MM	M	W	W	IW	PFI	PFI	PFI	PFI	PFI	PFI	PFI	PFI	PFI	PFI	PFI	PFI	PFI	ÞFI	PFI	PFI-	PFI
2692	YRRCRASGVI	1 1 1 1 1 1	1 1 1 1		1 1 1 1 1 1 1 1 1	1 1 1 1	1 1 1 1 1		日	A	1 1 1 1	A	1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	1a	1 p			10					2c		2c	2d	3a	3a	3a	3а	3а	3a	3а	3a	3a	3a	3a	3а	3а	3а	3 p	3b	3C
	HCV-1	HCV-J	BE90	2TY4	4TY4	HC-J6	HC-J8	S NE91	EB12	S ARG8	110 UTI	11 T983	S NE92	H CHR20	CHR21	ICHR22	.E.:	^L L 26)	NE93	NZL13	EB1	EB2	EB3	EB7	BR33	BR34	BR36	Т9	T10	BE98

18/111

٠ ٦	1				' ,	ı			· .			1 2 1		I	'	٠,	
2695	FLSIKRA-	-IR	SISR	FLSIR	-SIK	FIDSIK	-TTKK	VLVTKG-S	EVLTT	 EL	LTIR	II-	MM	L-STR-Y-LH-	MM	S	
												4k	5 a	5 a	5 a	5 a	
	GB48	GB116	GB215	GB358	GB809	CAM600	CAMG22	GB549				EG19	H BE95			CHR19	6)

19/111

. ,		,		
2745 2757 SAGVQEDAASLRA TA	-Q-TEERN -Q-NEERN -Q-NEERN	-DDR-A -DDRTA -DNR-A-G-	-DDR-A -DDRTA -DDR-A -DDR-A	- - C - E - R - A - C E R - A
1a 1b 1b	2a 2b 2b 2d	8 8 8 8 8 8	я я в в я я я я	
HCV-1 HCV-J BE90	HC-J6 HC-J8 NE91 NE92	CHR20 CHR21 CHR22	T1 T7 NE93 NZL13	BR33 BR34 BR36 T9 T10
	2745 1 1a SAGVQEDAASLR J 1bTA 1bTA	2745 1a SAGVQEDAASLR 1bTA 1bTR 2a -Q-TEERN 2b -Q-NEERN 2b -Q-NEERN 2d -Q-TEERN	2745 1a SAGVQEDAASLR 1bTA 1bTERN 2a -Q-TEERN 2b -Q-NEERN 2d -Q-TEERN 3a -DDR-A 3a -DDRTA 3a -DDRTA	2745 1a SAGVQEDAASLR 1bTA 1bTRN 2a -Q-TEERN 2b -Q-NEERN 2d -Q-TEERN 2d -Q-TEERN 3a -DDRTA 3a -DDRTA 3a -DDRTA 3a -DDRTA 3a -DDRTA 3a -DDRTA 3a -DDRTA 3a -DDRTA 3a -DDRTA 3a -DDRTA

20/111

c <u>nued</u> 5	2745 2757	-DEKRP-G-	-DEKRA-G-	-DEKRA-GV	-DEKRA-G-	-GEKRA-G-	-GEKRA-G-	-DERRA-G-	-GERA	-GERA	-I-IDKQAT	EPXTX-P	-Q-THB	-Q-THE-N	-O-THK	-Q-THE-CV
Conti		4°C	4c	4c	4°C	4 e	4e	4£			4 i	4 j	5a	5 a	5a .	<u></u> 2а
Figure 2 -		GB48	GB116	GB215	GB358	GB809	CAM600	G22	GB549	GB438	CAR4/1205	CAR1/501	BE95	BE96	CHR18	CHR19

SUBSTITUTE SHEET (RULE 26)

•	プラブル ペプブ ペプ ペルロフブ ちゅんご みんちゅん ちゃん ちゃん ちゅんじつ ちゅうしゅう フェーフ・フロット	A1646CACGAA1.CCIAAACCICAAAAAAAAAAACAAACGIAACACGAACCG	1 D B		AAAA-AA-A	1	TA-AT	ACTT	A-AACT	ACTAGCA-AS		L	111111111111111111111111111111111111111					51	Ō	1 L	TTCC	CC				1	TAC	CCATT		CTATTACT	CTATACTAC	CCATTTTT	
CEO ID	Na C	Ia	1.b	2a	2b	2d 143	3a	3a	3b		σ	16	4e 165	19	4?	5a 151 .			1a	1b	2a	2b	2d	3a	3a	3b	30	4c	4e	4 e	4.5	4.5	_. 5а
	4	HCV-1	HCV-J	HC-J6	HC-J8	NE92	EB1	NZL1	HCV-TR	BE98	GB358	GB809	CAM600	GB724	EG-29	BE95	-	:	HCV-1	HCV-J	HC-J6	HC-J8	NE92	EB1	NZL1	HCV-TR	BE98	GB358	GB809	CAM600	GB724	EG-29	BE95

22/111

HCV-1 HCV-1 HCV-J HC-J6 HC-J6 HC-J8 NE92 EB1 NZL1 HCV-TR BE98 GB358 GB358 GB358 GB358 GB358	- Contin 1a 1a 1b 2d 3a 3c 4c 4e 4e 4e	TGGGTGTGCGCGCGACGA(CACACACACACACACACACACACACACA
BE95	n B	TC-G
HCV-1 HCV-J HC-:-T6	1a 1b	CAACCTCGAGGTAGACG
HC-J8	2b 2b	IBBCB
EB1 NZI.1	33 B	GB GC
HCV-TR RF98	3p 3p	
GB358	7 4 0	
GB809 CAM600	4 4 9 4	GG
GB724 EG-29 BE95	4 4 C C C B	GA

23/111

									ì		4			,				•	٠.		. •										
<u>inued 2</u>	GGCTCGTCGGCCCGAGGGCAGGACCTGGGCTCAGCCCGGGTACCCTTGGC	1	AGCTACTAATGAA-AAAC=	A-AGCTACCA-TGAAAT	A-AGCACTA-TGAA-AAA-	GAGAT	GAGACT		GCAAT	AT-TA	CATAT		AG	GATATAAAATA	GC-AACCTGA		<u>AGGGCTGCGGGTGGGCGGGATGGCTCCTGT</u>	-CTATGA	CGACTCA	CACTCT	CG		C	ATTATC	AG	-TTCTTTAG		D	T	· · · · · · · · · · · · · · · · · · ·	TC-C
Conti	1a	1b	2a	2b	2d	3а	3а	3p	30	4c	4e	4e	4?	4?	5а		1a	1p	2a	Sp	2q	3а	3a	3p	30	4c	4 e	4 e	4?	4?	5 а
Figure 3 -	HCV-1	HCV-J	10	HC-J8		EB1	NZL1	HCV-TR	BE98	GB358	GB809	CAM600	GB724	EG-29	BE95		HCV-1	HCV-J	HC-J6	HC-J8	NE92	EB1	NZL1	HCV-TR	BE98	GB358	GB809	CAM600	GB724	EG-29	BE95

24/111

			. '	' '	•			r				. •							•						. 1		
1	CGGCGTAGGTCGCG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		AA	ACA	DW		AC	A	DB	N-GAC	GA	A-A			CTTCGCCGACCTCA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LL		- L L L		A	A				L
1	GGCCCCACAGACCCC		AT		AT	A-AT	A-AT	A-AT	A-AT	T-ATT-	ATT	A-ATT	AT		1	TACCCTTACGTGCGG	A			L	BD	A	AT <i>F</i>	AA	AA		A
7	301 CGTGGCTCTCGGCCTAGCTGGGGCCCCACAGACCCCCGGCGTAGGTCGCG		ATCTCTCT	CGTCT	AGCGTCA	CCTATCT	CCTATC	TCT	CCCGTCG	CGGTCT	CNN-GTCT	CATCT	AAT		-	CAATTTGGGTAAGGTCATCGATACCCTTACGTGCGGCTTCGCCGACCTCA		- CG		- C	A		- C - T T C	- CC			
Continued		1b	2a	2b	2d	3a	3a	3b	3c	4e	4e	4?	5a				1b T-	2a	2b	2d	3a	3a	3b	4e	4e		5a T'-
Figure 3 -	HCV-1	HCV-J	HC-J6	HC-J8	NE92	EB1	NZL1	HCV-TR	BE98	GB809	S CAME 00	GB724	H BE95	SHE	ΕT	3 HCV-1	THCV-J	9U-JH 2	9 HC-J8	NE92	EB1	NZL1	HCV-TR	GB809	CAM600	GB 7 24	BE95

25/111

401	TGGGGTACATACCGCTCGTCGGCGCCCCTCTTGGAGGCGCTGCCAGGGCC	TTT				-A-	TT	F F	ACTATCTC-	-GD-	TCAGCAGTCAT		451	CTGGCGCATGGCGTCCGGGTTCTGGAAGACGGCGTGAACTATGCAACAG	ATGG	C	ACTTACGA-ATC	CGA-A	CGACCTGA-AT-TC	CTTGACAT-GGA	ACTTAC-GGA-CC	-TAGAGA-	N-G	CACTGACTGGA
401		1 1 1	1 1 1	1 1	1 1 1	1 1	1 1 1	1	1 -	1	1 1		451	CTGG	1 1	\mathcal{O}	1 1 1 1		-D	-D	1 1 1	! ! !	1. 1. 1. 1.	C -
	1a	1p	2a	2b	2d	3a	3b	4e	4 e	4.2	5а	-										4e		
	HCV-1	HCV-J	9C-2H	HC-J8	NE92	NZL1	HCV-TR	GB809	CAM600	GB724	BE95			HCV-1	HCV-J	HC-J6	HC-J8	NE92	NZL1	HCV-TR	GB809	CAM600	GB724	BE95

428) 1									2	6/	11	1	, ,	. ,		٠			, '		•			ı	•		
3.79	TGCGGCTTCGCCGACCTCATGGGGTACATACCGCTCGTCGGCGCCCC				I I		ATT	T	LLLLL	TTT					L	T			CTAA	TTAAA	TAA	ATA	ATA	ATG	T-CAA			C
SEO ID NO) i l									143		3,15,1	~	9,2				$\mathbf{\omega}$	183	œ	18,	22,16	S	~	~	\sim	7	7
;	la	1a	1a	1a	1a	1a	1p	2a	2b	2d		3a	3a	3a	3а	3b		4 a	4 C	4c	4c	4 e	4 e	4 £	4 £	49	4 h	4 i
	HCV-1	HCVEC1	HCVHCT18	HCVHCT23	HCVHCT27	HCVTH	HCV-J	HC-	HC-	II NE92		HD1	BR3	田 BR36	NZL1	HCV-TR	26)		GB116	GB215	GB358	GB809 2	$CAM60\overline{0}$	CAMG22	CAMG27	GB549	GB438	CAR4/1205

Figure 4 - Continued 1

CAR4/901 4? 181

BE95 5a 143

BE100 5a 195

•	478 TGGCGTCCGGGTTCTGGAAG	CT	CTGA-ACG- CTTACG-	8/111 GAGGTG	C C C C C C C C C C C C C C C C C C C	- TAC-G - TAC-G - TAC-G		- C-GG- - C
	429 TCTTGGAGGCGCTGCCAGGGCCCTTGGCGCATGGCGTCCGGGTTCTGGA	G	GCCTCATCA- GGTCATAAAAAAAAA	-G-ATCAAT CG-ATCAAT CG-ATCAAT	-GGTCAA	-GTTCA -GTTCA -GTTCA	-GTTCTTA	TCATA-
continued z	12 12 12	1a 1a 1b	2a 2b 2d	ש ש ש ש	ည်းကွာပွာ	្រែ ៣ ៣ ៕	· ч Б	h AG-A i CG-G
o : # ambra	•	HCVHCT23 HCVHCT27 HCVTH HCV-J	HC-J6 HC-J8 NE92	ധ വ ന ന	E. 4. 4. 4.	GB358 46 GB809 2 46 CAM600 46	4 4	GB438 4] CAR4/1205 4

CG-GTTCA	GGTCATCACTGACT GGTCATCATGAT-
- ზე	ည် ည
4.5	5 5 5
CAR4/901	BE95 BE100

Continued

Figure 4

30/113

4	479 ACGGCGTGAACTATGCAACAGGGAACCTTCCTGGTTGCTCTTTCTCTATC			GTT-TT-ACCT GA-ATCTT-ACT GA-AT-GC	GA-AT-TCTT-GCTGA-ATCTT-GCTGA-AT-TCTT-GCTGA-AT-TCTT-GCTGA-AT-TC	GA-TTTCCTTTTTT	GA-T
: Continued 4			1a 1a 1b	1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Figure 4:	HCV-1	HCVHCT18 HCVHCT23	HCVHCT27 HCVTH HCV-J	HC-J6 HC-J8 NE92	HD10 BR33 BR36 NZL15 HCV-TR	GB809_4 GB116_ GB215 GB358 GB809_2 CAM600	CAMG22 CAMG27 GB549 GB438

32/111

TGCTCTCTTGACTGTGCCCGCTTCGGCCTA				TT-GTTTGAG-CAA-TGTAGTGG- GTGG-	T-ATATA-CG-TCC-GTG	-TA-TCCATA-AG-	AAG-	A-T-CATA-AG-	TTTTA-T-CATAAG-CAGTCTAG-	CCTCTCTGCGT-GTAG-
е е с Н Н с	ם מ מ נ	La 1b	2a	2b 2c	2q	3a	3a	3а	3а	3b
HCV-1 HCVEC1	HCVHCT23 HCVHCT27	HCV-J		18211 883 833	NE92	HD10				⊛ HCV-TR

33/111

	4	
	4a ,	GAC-C
	מ'	9-9
	4 b	
	4c	-TTGCT
	4c	-ACTATGCTA-CAT
	4c	-TTGCTA-
	4c	GTTA-
	4c	GT-A-
	4d	- Y
	4e	CTATGC-CTGG
	4e	CTGCGCTA-AGTTA-
	4£	
	4 £	
·	49	AATGCGCGC-G
·	4ĥ	CTTATGCC-ACAGTTC-G
ر کا	41	-CT-AATGCTCAAT
	4.2	-NATGC
	5a	TATTTGTCETGCT-AGTF-C
	5a	ATATGC-CCGCTAGTT-C
		GTT-C

34/111

HCV-1 HCVEC1 HCVHCT18 HCVHCT23 HCVTH HCV-J6 HC-J6 HC-J8 S83 NE92		GCGCAACTCCAGGGGCTTTACCACGTCACCAATGATTGCCCTAAACAAAAAAAA
		3GA-GT-TCCTGT-C-TCCTT-C
HD10 BR33 BP36	и и и и и и	GA-GT-TCCTGT-C-TCCTT-C GTA-GT-TCCTGT-C-TCCTT-C
		GTA-GT-TCCGT-C-TCCTT-C
HCV-TR	3b	GTACACGA-GT-TCATGTGC-TCCTTG

35/111

				٠.		•							•	٠.					•	•
628	-I-	- I -	A	- L -	1	1 1	; ¹	1 1	1	- IG	- TG	, i	ф 1 -	1	1 ' 1	; ;	H		1	l l
	TG-	TG-	1	G			1	d		G	G	 	1 1 1 1 1		G	G	- - - -	A	A	A
	C	1 1 1	1 1 1	C	D		 D	C	1 1 1	C	C	C	D	C	D	1 1 1	 	1 1 1	' 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 1 1	1 1 1 1 1 1 1	1 1	1 1 1 1 1	1 1 1 1	1 1 1 1 1,)	<u>C</u>) 	11:	1 1 1	- I -	1 1	D	1 1 1	i 1 1 1	1 1 1 1	 	t t t
	A	Y	L -	- TA	1 1 1	A	1 1 1	A	L-	Y	A	C	A	1 1 1		-TA	1 1 1	.TT-		<u> T.</u>
	EI I	E41	i I	-1-	. i	Ë	- L -	-I-	 	E	Ë	i ! !	-T-	-T-	į	-TT-		- - -	<u>.</u>	
•	CA-C-	CA-C-	-J-5J-	-D-5D-:	1	CA-C-	-D-9D-	-0-90-	-1G-C-	BD	CA	-CA-C-	-CA-C-	CA	-CA-C-	ACGG	-CA-C-	A	A-C-	
•	TG-TT	TG-TT	TG-TT	-GI9-	TGL	[GT	L91	TĞT	-AG-T	TG-TT	TG-TT	- A T	-AT	-AT-T	TG-AT	LL-5	.GT-T	.GT-T-	-L-LD	- I - I 9.
	ACG	ACG	J8D		I	[I	[T-A		<u></u> _	I	T-A	T-A	ACG	ACG1	AT1	[BJ	.CA1	.CA7	.CA
579	CIP	H	CTA	CIP	CTA	CTA	CTA	CTA	CTA	CTA	CIA	TTA	TTA	F	FH	H	CIA	CTA	CTA	CIA
													٠							
	4a	<u>4</u> a	4p	4 C	4 C	4 C	4 C	4 C	4d	4e	4e	4 £	4 £	49	4h	41	4?		5 B	
•	GB809 4	Z4	Z1	B11	GB215	B35		27	Д	GB809				GB5	GB43	CAR4/12	CAR4/901	BE	띮	SA4
									S	UBS	TITE	UT	E S	HE	:T (RU	_E 26)		

36/111

Continued

37/111

,														•						•		
	- 678	TTG	-ATTG	TTGAT	-ACTCT	-ACTA	-ACTCAT	DLD	-ACTCA	-ACTCA	-ACTCA	-ACTCA	1	TCTA-=A	TCTAAT	CTACT	CI	TTAA	. 1	G-AT	-AG-ATC	TG-ATT
		A-C-	TAT-A-CCA	AAGC-CCAA	T-A-T-CCA	C-A-C-CCA	A-C-AGC-CCA	TC-AAC-CCAGT	TC-AAC-CCA	TAA-C-ATT-CCAT	-CA	-C-AAA	TA-T-CCAT	TA-AGCCAT	-A-CCATA	CCAA	TAC-AGA-CCAT	TAC-ATC-CEAA		A-ATA-CCT	TA-ATCTG	T-ATA-CCTGT
Continued 11	629	a -CCG-A	a - C	-DD- q	-D		ن	ບ	ت	d و		e -AC	f -LC	f -TC	I 6	Ч		٠٠.		a -TTCCA(5a -TTCCAC	
Figure 4 - Co		B809_4.	4	1	9	B215	B358	9		DK13	GB809 2	CAM600	G22	G27	GB549	GB438	CAR4/1205	/901		E95	0	A4

38/111

	,						•	١.			•								•	
679	ACGA-G-CCGTGTC-TCAC-CG-A ACTGATGACTGA-AC-TAC-CG	D-DCLC	-ACGA-G-TTG-	-ACTGA-G-	T-ACGA-G-TTGTCAGAC-CCCC-G	-GCTGA-	ACTGA-GGCAGAC-C	TGA-GAGAAGT-CACT-TC-C-	ACTGAAGACCGCAGC	ACTGA-GACTGCAGC	TAA-AACTGCAGTCACT	CTGA-AACT-	GGA-AACCGAC-C-CTC-TT-A	D9-	A-ACTGAAGACCGTCAGCC	-ACGA-GACCGTTC-C		GTCATGACATT-TGAGTACCCAAT	GTCA-GA-A-ATT-TGAGTCC	GTCA-GC-A-ATT-TAGT-ACCCAAC-
÷	4 4 0 0	4p	4c	4c	4 C	4c	4c	4d	4 e	4 e	4 £	4£	49	4p	41	4?			5 a	
	GB809_4 7.4		B11	B2	B35	92	27	DK13	GB80	O	O	O	GB54	G	CAR4/12	CAR4/901	E 2	9 BE95	\vdash	SA4

40/111

A 4 0 4	
AG-ATGTGCA-C-GCC-GGCGCT-ACA-GGCT-AG AC-ACTGTG-AAC-CCGGTGCG-T-A-TCGTAGCG C-ATC-CTATC-ACCTGGCGCT-T-A-T-A-GGCG GC-ATA-ATGTGCC-ACCTGGTGCG-TTA-C-A-GGCGG	AAAGTT-C-T-GG-GCAAA-CG-TTC-A-ACA AAAGTT-C-T-GGGGCAAA-CG-TTC-A-ACA AAAGTA-T-C-T-GG-GCAAA-CG-TTC-A-ACA AAAGTA-T-C-T-GG-GCAA-TA-TG-TTC-A-ACA AAAGTT-C-T-GG-GCAA-TA-TG-TTC-A-ACA AA-GAGTT-C-T-GG-GCAA-TA-TG-TTC-A-ACA
2a 2b 2c	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
HC-J6 HC-J8 NE92	HD10 BR33 BR36 NZL15 HCV-TR
	2b AG-AT 2b AC-AC 2cC-ATC-C- 2d GC-ATA-A-

ω						j.															
729	TGGTATCCATGG-CGCTGCTCGA-TCCT-CG	GATGT-GCAC-CCCGGCCCTGCTTGA-TC-T-CG-	CTG-GCCCTCCCGCAGTTAGA-TCCA-GCA	TCCCGG-GCCTT-C-TTGGTGCTGCTAGAATCCCGA	TCCGG-GCCTT-CAT-GGTGCTA-TTGAATCCT-CGA	TCCGG-GCCTT-CAT-GGCGCTGCTTGAATCCCGA	TCCGGTGTCTTAT-GGTGCTGCTTGACTCCC-GA	TCCCGG-GCCTTAT-GGTGCAGCTTGAATCCA-CGA	CCCTG-GCAACCTGTGCTGCTTGA-TCTT-GA	TCAGT-GCCTT-C-T-GGTGCTGCTCGACCT-GG-	TCAAGT-GCCAT-C-C-GGTGCTGCTTGACCT-GG-	CCG-GCCAT-CCTTGGCGCTACTCGA-TCCA-GG-	TT-G-GCCAC-CATIGGCGCTACTIGA-ICCA-G	ACTTGCCCTTTGGCGCGGCTCGAATCCA-GG-		CCGGCCAC-CCTACGTGCTGCTTTTCCT-AGG	ATTG-TCCCT-CCT-GGGGCTGCTTTCAG-	AGCCT-GG-GCAGT-AG-T-CT	CCT-AGCC-AGCTT-GG-GCAGT-AG-T-CCGA	CTT-AGCC-ACT-GG-GCGGT-AG-T-CTGA	_
	4 a	4 a	4p	4c	4 C	4c	4 C	4c	4d	4 e	4 e	4£	4£	49	4h	41	4.5		<u>5</u> а		
	GB809 4	Z4 _	Z1	\leftarrow	GB215		92		DK1	GB809	CAM600			GB54	GB	CAR4/12	CA	BE95	\vdash	SA4	
								J	UD	JIII	U	LU	1 16	- • - (, .	'	/				

42/111

828 GTCACATCGATCTGCTTGTCGGGAGCGCCCACCCTCTGTTCGGCCCTCTAC	CGTCAGGAT-TCGCTT CAGCAA-CAAT-GCATGGCT-GT CAGTT CAG
о о о о о с Н Н Н Н Н Н	2000 B 2000 2000 2000 2000 2000 2000 200
HCV-1 HCVEC1 HCVHCT18 HCVHCT23 HCVHCT27 HCVTH	HC-J6 S83 NE92 HD10 BR33 HCV-TR

							'									•				
79	-GA <u>T</u> GCGG-G-CT-T-T	TG-GCT-AA-G-	GTG-ACA-G	TG-GA-GA-TGCTTTG-GCC		TG-GA-GA-TGCTTGCGCC	-GGCGCTTG-A-	ATG-GCA-GACGCTTAG-G	G-GTT	CTG-GCA-G	TG-GCA-GATGCT	G-GTA-G	TG-GTA-GAC-CT	GG-GCT-AA-GGTGC	GTG-GCA-GGGCGT-AC-	CGTG-GCAA-GGGCGGCACCTT-T-	-GTG-GTA-GGTGCATCTC-T-	AGC-G-TCTACA-CGAG-GTGCGT	CCCC	GGC-G-TCTACT-A-CGAG-GTGA-
	4 a	4 a	4p	4c	4 C	4c	4c	4c	4d	4e	4e	4 £	4 £	49	4 h	41	4.5	5a	5 a	5a
	GB809 4	Z4 _	Z1	GB116	GB215	GB358	92			GB809	CAM6			GB54		12		BE95	\vdash	SA4

44/11

9 GGGGACCTATGCGGGTCTGTCTTTCTTGTCGGCCAACTGTT GG		ATG-GGA-GCA-CGAATG-GGCA-G	TA-GTGCCGAGCCG TA-GTGCCGAGCCG TTA-GTG
ω υιι			3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
HCV-1 HCVEC1 HCVHCT18	HCVHCT23 HCVHCT27 HCVTH HCV-J	HC-J6 HC-J8 S83 NE92 HD10	BR36 NZL15 HCV - TR

Continued

						•			•										,		
, '	878	-GA	-GAAT	-GGA	-GATT-T-	-GATT-T	-GAT-T	-GAT	-GATT-T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	A	-GA	-GAA	-GA	-GAGGT	TA-	-GA	AA	AA	AA
	829	TAGTAGGCTCAGG-	T	-TATGTAGGCCAG	-CGTGGCAT-GTT-	A-TT-GTTGGCACT-GTT-	A-CAGTGGCAT-GTT-	TATGTGGCACT-GT	-TGTGGCAT-GTT	-CAG-GTGGGCT-GT-	-CCGTGGCT-ACT-G-	A-CCT-GTGGCT-ACT-GG	-TGGGCA-AC-A-	A-TATGAGGCA-AAG	-CATAGGGG-	A-CAATAGGCT-G-CAG-	A-TATGGGGT-G-CG	CACTAGGCAGA-	AAGCGTG-AC-ACT-GA	TAGCGTG-AC-AT-GA	CGCGG-AGT-GA
:		4 a	4a	4p	4c	4c	4c	4c	4c	4q	4e	4 e	4£	4 £	49	4h	<u>4</u> i	4.2		Бa	
		GB809 4	Z4 _	21	GB116	GB215	GB358	92	1.4	SE DK13	GB809					GB43	CAR4/12		BE95	\vdash	SA4

46/111

•	928 CTATC] ; ; ;) 	C	- C-	AC-	-AC-	3C-	3C-	1C-	C -	AC-
nued 20	879 CTCTCCCAGGCGCCACTGGACGACGCAAGGTTGCAATTGCTCTATCTA		- B	1,)	ATC-C-GT-TGAGTAAA	GACAATTTGTACC	-AACAAAACTTCCAGCTC	ATAC-TTTGTCG-AACTC	GCAATTAA-TTTGTCG-ACCTC	-AGATC-TTCAAGTCGACCTCAC-G-	-AGAC-CTCAAGTCGACCTCGC-(-AGATC-TTCAAGTCGACCTCGC-(-AGATC-ATCAAGTCGACCTCGC-(-AGATC-CACCGTGACGCG
Conti	1a	ם ד	Н г	H H	1b	2a	. 2b	7 C	2 d		3a	3.a	3a	3b
Figure 4 - Continuo	HCV-1	HCVEC1 HCVHCT18	HCVHCT23	HCVTH	HCV-J	RSI HC-Je		S83	SHEE SHEE		TE BR33		NZL15	HCV-TR

. ,	~															٠						
	928	TA)	CC	DDL	DDCC	5DJL	90 L		CA	TTCG	CA	D-DI			CTCG	LDC	CCC		CTCA	CTCCA	
		-G-A	-Ğ-AĞ	-G-A	-G-AC	-G-AC	-G-AC-	-G-AC	-G-AC	AC	-G-AC	-G-AC	-G-AG	-G-AG	-G-AC	-G-A	-G-AC	-G-AC		-GAAC	-G-AC	AC
		- (-,-)-	-()-	-DD-		L-	L -	I-	<u>T</u> -	-00-	-J	-CJ-	- <u>0</u> <u>0</u> -	-CC-	-TC-	-TC-	-LD-	-CJ-	•	GI	GI	GI
		1 1 1 1 1 1	1 1 1	1 1 1 1 1 1	1 1 1 1	1 . 1 . 1 . 1 . 1	1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1 1	1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L-		-TGAA-	1		CCI	- IGCI-	ACT
		GC-T	GC-T	GC-CG	GC-A	AC-A	GCD5	GC-A	GC-A	TC-C	GC-A	GC-AT-	-C-C-L-1	-C-C-1G-	D-D5	-CT-	AC-CATT-	ე-ენ		TC-C-AG-	TC-C-AG-	TC-C-AG-
ued 21	879	-CAG	TCGG	- CGA	- CAG	990-	- CAG	-CAG	CAG	-CAA	- CAA	-CAA-	BBD -	- AGG	55D -	-CAA	55D-	-CAG		TAGG	TAGG	TAGG
Continue		4a	4a	4p	4 0	4 C	<u>4</u>	4°C	4c	4d	4e	4e	4 £	4£			41		-		5a	
Figure 4 -		GB809 4	Z4 	21	B11	GB215	GB358	92		Saf DK13	GB809			EE G27	GB54	103 GB438	CAR4/12	© CAR4/901		BE95	\vdash	SA4
H									SI	JBS	TIT	UTI	E SI	HEE	T (I	RUL	.E 2	26)				

48/111

	1			. 1					*						
957	ACGGGTCACCGCATGGC	1.	A		CGT-AT	CTAG	AATCCCCT	-GGCTAT	CCTATGG		C-TT-AAT	C-TT-AATAT	C-TT-AATAT	C-TT-AATAT	G-TT-AATG
929			1 1 1 1	1 1 1 1	1 1 1 1 1 1						A	A	A-	A-	-A
•	1 1 d	א ה	la	L	1b	28	2b	20	20		3а	3а	32	32	3b
	HCV-1 HCVHCT18	HCVHCT23	HCVHCT27	HCVTH	HCV-J		HC-J8		NE92			BR33	BR36	NZL15	HCV-TR
						Sl	JBS	TIT	UTE	St	IEE	T (F	RUL	E 2	6)

Continued

49/11/1

1
4 a
44 4b
4c -
_
, ບັ
ن
<u>م</u> ۔
4e -A.
ข
4f -
- 4f
4g A'
4h T
4i -
4? T
מי
3 ·
5a G

SATR		50/111 :	
1 MSTNPKPQKKNKRNTNRRPQDVKFPGGGQIVGGVYLLPRRGPRLGVRATR	R-TR-T	LRQTX	R-T
SEQ ID	144	148	192 164 166 194 152
1a 7	2a 2b 2d	3a 3b 3c	4c 4e 4? 5a
HCV1 HCVJ	HCJ6 HCJ8 NE92	EB1 NZL1 HCV-TR BE98	GB358 GB809 CAM600 GB724 EG-29 BE95

5	1	1	1	1	1

	KTSERSOPRGRROPIPKAR RPEGRTWAO PGYPWPLYGNEGCGWAGWLLSP		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Y	AL
V-core	RPEGRTWAG	-ST-KS-GK -ST-KS-GK T-KS-GK	-SS -SS		0-1S-G-
51	KTSERSQPRGRRQP I PKAR		KQ-HL		8 9 8 8 3 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8
	<u>ਦ</u> ਦ	2a 2b 2d	3a 3a 3c	45 46 46 45	5a
	HCV1 HCVJ	HCJ6 HCJ8 NE92	EB1 NZL1 HCV-TR BE98	GB358 GB809 CAM600 GB724 EG-29	BE95

52/111

	101 RGSRPSWGPTDPRRRSRNLGKVIDTL		XNXXXXXXXXX	XNN
Figure 5 - Continued 2	101 1a RGSRF 1b 2a 2b	3a 3b	4e -XX 4c -XX	5a
Figure 5 -	HCV1 HCVJ HCJ6 HCJ8 NE92	NZL1 HCV-TR BE98	GB809 CAM600 GB724	BE95

53/111

Figure 5 - Continued 3	Contir	ued 3
HCV-1	<u>_a</u>	127 TCGFADLMGYIPLVGAPLGGAARALAHGVRVLEDGVNYATGNLPGCSFSI
HCVEC1	<u>_</u>	
HCVHCT18	<u>_a</u>	
HCVHCT23	<u>1</u> 9	
HCVHCT27	<u>1</u>	
HCVTH	<u>Ja</u>	
HCV-J	1	
91°-3H	2 a	
HC-18	5 2 2 2	
NE92	5q	\II\\\\\\
HD 10	3a	VV
BR33	3a	
BR36	3а	1 1 1 1 1 1
NZL1	3а	1 1 1 1 1 1 1 1
HCV-TR	3b	

54/111

55/111

1		, .					
PGC	1 1 1	:		1 1 1 1 (1)		!!!	! !
VYEAADAILHT	A	W-W	TWOLOA-VV TWOLTVL	-WalkVV	D-V	D-V	E-VL
TNDCPNSSI			T-D	0	S		S-S
YQVRNSTGLYHV S		-EVS-I	AE-K-ISTG-M- VEISSS-YA VF-KDTGDS-MP	LK-TSSS-M-	LEWTSVL LEWTSVL		LEY - S VL
FLLALLSCLTVPASA			\ \	9-AI	FIHAS	FIHAS	
<u>a a a</u>	<u> </u>	1	2a 2b	5g	3a 3a	3a 3a	ΩC .
HCV-1 HCVEC1 HCVHCT18	HCVHCT23 HCVHCT27 HCVTH	HCV-J	HC-J6 HC-J8 S83	NE92	HD 10 BR33	BR36 NZL1	ארעיוא
	1 1a FLLALLSCLTVPASA YQVRNSTGLYHV TNDCPNSSI VYEAADAILHT T18 1a	1 1a FLLALLSCLTVPASA YQVRNSTGLYHV TNDCPNSSI VYEAADAILHT T18 1a	18 1a	1a FLLALLSCLTVPASA YQVRNSTGLYHV TNDCPNSSI VYEAADA1LHT 1a	1	1	1

56/111

226	ſ	:				-	<u>:</u>	-	-						<u></u>	- - -	<u>-</u>	! !	- -				-
	٧2	ТВИН	ДНИ	TEHH-M-	D <u>Y</u> H	DHQ	TEHH	EHO	MEHH	TDYH	HNQL	TENH	-FVHH	-FEHH	-W-HHQ	DHH-M-	ENH	-W-HHQ	ADNC		DNT		-LDAM[
		\)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ E	8 9 8 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	# # # # # # # # # # # # # # # # # # #	1 1 1 1 1 1		A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 1 1 1 2 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ \$ \$ \$ \$ \$	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 2	; ; ; ;	; ; ; ; ;		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	- V1	EHYAS-II	EHYAS-II	VHYAS-V	VNYAS-VI	, i.,	VNYAS-II	VNYAS-V-z-	VNYH-AS-VI	X-SKN-	VNYAS-VI	VNYAS-II	VHYH-TS-IL	VHYH-TS-II	QHYIS-I	QHYAS-I	IHYASDG-YI	QHYVS-I	VPYAS-I		VPYAS-V	• • •	T.V.GSL
od 6 177	_	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			SS	λ					9	L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 3 8 E 8 E 1 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1		V (G	SES)		<u> </u>	_		
Continued		4 a	ф а	4p	740	, 4c	, 4c	4c	4 c	p †	4 e	4e	4 f	44	6 4		41	. 75	5 a	5a	5а		ę 9
Figure 5 .		GB809_4	57	. 21	GB116	GB215	GB358	92	27	DK13	GB809_2	CAM600	CAMG22	CAMG27	GB549	GB438	CAR4/1205	CAR4/901	BE95	BE100	SA4		HK2

57/111

276 1VE	LCSALY	4>4 \$\$\$\$
276 PŪTATIVE	LLVGSATLCSALY	T MI-MAA A II-MV T TIIAF I-S-V- MA-M I-S-VA-M I-S-V- I-S-W I-S-V- I-S-W I-S-V- I-S-W
	LRRHID I	
		- T
ir E	7 T T T T T T T	
74	TRDGKLPATQTKT	VQQPGALTQG VKHRGALTRS ISQPGALTKG VSQPGALTKG V-YVGATTAS V-YVGATTAS V-YVGATTAS V-YVGATTAS
1	TRD	
. \	TPTVA TRDGKLPATQ	S-N S-NL- S-NI-
	CWVAMVPVL	
V3	ASRCWVAM VV VV KPV 	TLH
>	VREGNASRCWVAM -HVVD-VV	EKVT1PV E-TA-VPV EEKIIPV -QDT-TTPV -QDT-TTPV -QDT-TTPV -QDT-TTPV -QDT-TTPV
1	X + + : : : : :	
22.7	A I I I I I I	
tinc		
Con	<u> </u>	28 26 27 39 39 39 39 39
5	1 118 123 127	
ure	.V-1 .VEC. .VHC] .VHC] .VTH	7- 16 33 33 33 36 11 V-TR
Fic		SH BRZZ
Figure 5 · Continued 7	011111	

58/111

	V3 V4 PUTATIVE	AVTPV AVSMDA-LES FVMAVV	-WV-S	VQL S APYIGA-VES FV- MM=-AV VQL APYIGA-LES S-V- -MAA	APYIGA-LES IVMA-		-TQ	-TQI-L L- APHIGA-LES MV- -MT	-TVIPLL-	SL APYLGA-L-SVM-	MTVQILS APSLGAVTAPAVKD-VQILS APSFGAVTAPAV-	-""-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-
	V3		-TE-TPL		' ! !	K-1 T0]-I	-TVIPL	JS^-	Io	 - -
Continued 8	·	4a 64	4b 4b	1 07 70 07	7 07	a ₇	4e 4	bħ	4h 4	I Z + Z + Z + Z + Z + Z + Z + Z + Z +		1 1 1
Figure 5 - Continued		GB809_4 Z4	Z1 GB116	GB215 GB358 74	27	DK13 GB809_2	CAM600 CAMG22	CAMG27 GB549	GB438	CAR4/901	BE100	SA4

59/111

	319	CNCS I YPGH I T GHRMA	SA		
		SPRRHWTTQG	YE-V-D	QNFE QNFE QH-TFV-E QH-KFV-D	RQ-V-T RQ-V-T RQ-V-T RQ-V-T
Continued 9	277 TRANSMEMBRANE DOMAIN	VGDLCGSVFLVGQLFTF		G-M-AA-M-IV VA-MILS-A-MV VALM-AA-VVVV IA-M-AS-V-II	MAA MAA MAA
l i		<u> </u>	. 6	25 25 26	3a 3a 3b 3b
Figure 5 -		HCV-1 HCVEC1 HCVHCT18 HCVHCT23 HCVHCT27	HCV-J	HC-J8 S83 NE92	HD10 BR33 BR36 NZL1 HCV-TR

60/111

	319		AG	A		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O			\
	\$7	R			QD	RLE	RD QD RI-ED	Ö	RQ-A-V-N RQ-A-V-D RQ-T-V-D	QD
	. \	1 1 6	ט יט יט	× 5.	: : :	1 2	- S		~ ~ ~	1
Continued 10	277 TRANSMEMBRANE DOMAIN	AMA		1 1 1 1 1 1	-W10I -W15I	IGIMM-	IGM- IHGAMV	-W9	AALM- AALM-	ILA
		4a 4a 4b	2 4 4 0 0 0	7 4 4 ;	46 4e	4f 4f	49 4h 4i	43	7 7 2 2 2 2	6а
Figure 5 -		GB809_4 24 21	GB215	25 27 72	DK13 GB809_2 CAM600	CAMG22 CAMG27	GB549 GB438 CAR4/1205	CAR4/901	BE95 BE100 SA4	HK2

4648 GTGTGCCAGGACCATCTTGAATTTTGGGAGGCGTCTTTACĀGGCCTCACT		AA	ATACGCCA-CGTA	-ACA	←	7997		- 0227 6697	CATATAGATGCCCACTTTCTATCCCAGACAAGCAGAGTGGGGAGAACCTT	 CA	CTC	C	CAGACTCT-C	CAGACTCT-C	ACAGACTCT-C	ACAGACTCT-C	
HCV-1	HCV-J	HC-J6	HC-18	HCC153	EB1	EB2	 S E87	IB ST		9F SHE					EB6	E87	

BNSDOCID: <WO___9425601A2_I_>

62/111

4850	CCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAAT	-AG	-AGTGCCTCGC-CTTACCC	-AGACTCCCGC-CTTCGAEC	-AAATGTTTC-GTGCCA	A	-CA	1 Y	V	Y	-AACATGTC	-AAATGTC 4892	-AT-AACGT-	-AT-AACGTTC		8287
SEQ ID NO					58	31	33	35	37	39			•			
	HCV-1	HCV-J	HC-16	HC-18	HCC153	HD10-1-25		BR36-20-164	BR36-20-						6)	

64/111

,			1			•				. •							
AAATACATC	1 1 1 -	GGTG-T	TG-TACATGT	TACAA	1 1 1 1 1 1 1	G-1CAA		0667	GGCCGACCTGGAGGTCGTCACGAGCACCTGGGTGCTCGTTG	\ \ \	ATCA-GAT-ACG-CG-	A					ATTAAACC
HCV-1	HCV-J HC-J6	HC-J8 HCC153	HD10-1-25	BR36-20	BR36	를 BR36-20-165	te si	HEET			9 HC-78	HCC153	HD 10-1-25	HD10-1-3	BR36-20-164	BR36-20-166	BR36-20-165

65/111

5040 GCGCGTCCTGGCTGCTTTGGCCGCGTATTGCCTGTCAACAGGCTGCGTG AT-GCCG-GCAGGTGCGCG-GTT -GGCCGCT -AGTT -AGT -AG	A1-82	GTTCATAAGCGGGCG-TA=-
HCV-1 HCV-1 HCV-3 HCV-3 HC-36 HC-16 HC-16 HC-1-25 HCV-1 HCV-1 HC-16 HCV-1 HC-16 HCV-1 HC-16	BR36-20-164	BR36-20-166 BR36-20-165

66/111

Figure 6 - Continued 6

	5191 - 5240	+ '
HCV-1	AAGGCCCTCGGCCTCCTGCAGACCGCGTCCCGTCAGGCAGAGGTTATCGC	
r-7	GAT-GACAAAGA-GC-GCT	
-16	ATAAT-ATCAATAAAATC-A-ACACA	1
HC-J8	ATA-AAAACAGCA-AA-GATC-A-ACACA	
10-1-25	AATTAGCGACAAAACACTCT-A	•
HD10-1-3	AATTAGCGACAAAACACTCT-A	
BR36-20-164	A-TTAT-GCGACAAAACACTC-T-A	.1
0	A-TTAT-GCGACAAAACACTCT-A	
BR36-20-165	A-TTAT-GCGACAAAACACTCT-A	•
	5241 5290	
HCV-1	CCCTGCTGTCCAGACCAACTGGCAAAACTCGAGACCTTCTGGGCGAAGC	
HCV-J	TC-TGGGTG-GCCTGT	
-16	ACG-TTCTCCGG-ACAACA-	
- 18	GAA-AT-ATCACCGTACAATCA-	
HD 10-1-25	GC-TAA-AGCTT	
10-1-3	GC-TAA-AGCTT	
BR36-20-164	GCATAAACT	
20-	GCATAAACT	
BR36-20-165	GCATAAACT	

Figure 6 · continued 7

HCV-1 HCV-J HC-J6 HC-J8 HD10-1-25 HD10-1-3 BR36-20-164 BR36-20-165

1290 1300 1310 1320 1330 ITTGSPITYSTYGKFLADGGCSGGAYDIIICDECHSTDATSILGIGGC	1340 1350 1360 1370 1380 TVLDQAETAGARLVVLATATPPGSVTVPHPNIEEVALSTTGEIPFYGKAI
SEQ ID NO	
1a 1b 2a 2b 5a	1a 1b 2a 2b 5a
Figure HCV-1 HCV-1 HCV-1 HCV-1 HCV-18 BE95	1- 20 1-

HCV-1 HCV-J HC-J8 HC-J8 BE95 HCV-1 HCV-J	1a 2b 2b 1b 1b	1390 1400 1410 1420 1430 PLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVIPTSG -1-A
85	5	N-0-1 I-S-V N-0-1
χc	T.	\- \- \- \- \- \- \- \- \- \- \- \-

					7	71/11	1 , , ,				•	, ,	•
	1530 řři	3		1		-	1580	SG	Y		ڄ	- 9-	Ġ
	1490 - 1500 1510 1520 15	AVOR I WAR GRI I GI I RI VAL GENT SGIII DOSVECECI DAGGARI	1111 Y - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	S	SRL-VY-SSVA	SRHY-SADV	1540 - 1550 1560 1570	TPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFTGLTHIDAHFLSQTKQSG					SQ
inued 2							SEQ ID NO						223
Cont		<u>a</u>	4	2a	5p	5 a		a	1	2a	5 p	5 a	3 a
Figure 7 - Continued 2		HCV-1	HCV-J	HC-16	HC-18	8E95		HCV-1	HCV-J	HC-J6	HC-18	BE95	BR36
					SUE	STITUT	E SHEE	T (R	ULE	26)		

Continued 3

1590 1600 1610 1620 1630 ENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLYRLGA D	1640 1650 1660 1680 1680 1680 1680 1680 1680 168
1590 15 ENLPYLVAYQATV 1b D	16 VQNEITLTHPV 1bVI 2a -TV 2b -TV
HCV-1 HCV-J HC-J6 C-J8 BE95 BR36	HCV-1 HCV-J HC-J6 RC-J8 BE95 BR36 33

72/111,

73/111

					,		
	1730		LAEQFKQ IML-S MML-S I-HE I-GE		1		
	1710 1720	NS4-5 -	SQHLPYIEQGMM LAEQFKQ ASQ ASRAALE-QR IML-S ASKAALE-QR MML-S AAAQV I-HE	0	KH	: : : ≿	
ŕ	Ċ	· :	W	1760	CLETFWAI	P-V-Q PQ AH N-A-QXTY	•
	1690 -1700	NS4-1	LSGKPAIIPDREVLYREFDERVQ VNQRAVVAK-IEADRVVVAK-IEAGVKQQY	0 1750	ALGLLQTASRQA EVIAPAVQTNWQKLETFWAKH	QD-QAS- QD-QI-SS- AE-I-T -TLKATSV-	
			LSGKPAIIPDRERV VNQRAVVAKNDRVVVAKGVK-	1740	Latasraa TK	IQQK IQQ-T VR-TQ-Q VFIS-TGQK-	
r 			VIVGRVV II C-ILH S-ILH HIE AII	NS4-7	K ALGLL	10	1
יייייייייייייייייייייייייייייייייייייי		. · ·	1a 1b 2a 3a 5a		1a 1b	2a 3a 5a	
r igur e			HCV-1 HCV-J HC-J6 HC-J8 BR36 BE95		HCV-1 HCV-J	HC-J6 HC-J8 BR36 BE95	

SUBSTITUTE SHEET (RULE 26)

74/111

Figure 8

NO 1 ATGAGCACGAATCCTAAACCTCAAAGAAAACCAAAAGAAACACCAACCG			100 TCGCCCACAGGACGTCAAGTTCCCGGGCGGTGGTCAGATCGTTGGCGGAG			
SEQ ID	43	23		· .		
	TOTILISER PC-5-8			8-5-2d E 26)	PC-2-6	PC C/E1

Figure 9

· Continued 1	101 TTTACTTGTTGCCGCGCGCGCCCTAGGATGGGTGTGCGCGCGC					151	AAGACTTCGGAACGGTCGCAACCCCGTGGACGGCGTCAGCCTATTCCCAA					
Figure 9	PC-3-4	PC-3-8	PC-2-1	PC-2-6	PC C/E1		PC-3-4	PC-3-8	PC-2-1	PC-2-6	PC C/E1	

SUBSTITUTE SHEET (RULE 26)

PC-5-8 PC-2-1 PC-2-6	201 GGCGCGCCCACGGGCCGGTCTGGGGTCAACCCGGGTACCCTTGGC
PC C/E1	002
PC-3-4 PC-3-8	CCCTTTACGCCAATGAGGGCCTCGGGTGGGCAGGGTGGCTGCTCCCCT
PC-2-1 PC-2-6 PC C/F1	

79/111

401 TGGGGTATATCCCGCTCGTAGGCGCCCCCATTGGGGGCGTCGCAAGGGCT C	SOO - SOO -
401 TGG	SEQ ID NO 45 46
PC-3-4 PC-3-8 PC-2-1 PC-2-6 PC-4-1 PC-4-6	PC-3-4 PC-3-8 PC-2-1 PC-2-6 PC-4-1 PC-4-6

SUBSTITUTE SHEET (RULE 26)

GTCTGACCGTTCCGGCCTCTGCAGTTCCCTACCGAAATGCCTCTGGGATT Continued 5 551 Figure 9 PC-3-4 PC-3-8 PC-2-1 PC-2-6 PC-4-1 PC-4-6 PC-3-4 PC-3-8 PC-4-1

601 TATCATGTTACCAATGATTGCCCAAACTCTTCCATAGTCTATGAGGCAGA 651 TAACCTGATCCTACACGCACCTGGTTGCGTGCCTTGTGTCATGACAGGTA Continued 6 Figure 9 PC-3-4 PC-3-8 PC-4-1 PC-4-6 PC C/E1 PC-3-4 PC-3-8 PC-4-1 PC-4-6

701 ATGTGAGTAGATGCTGGGTCCAAATTACCCCTACACTGTCAGCCCCGAGC 751 CTCGGAGCAGTCACGGCTCCTTCGGAGAGCCGTTGACTACCTAGCGGG

SUBSTITUTE SHEET (RULE 26)

Continued 7

Figure 9

801 AGGGGCTGCCCTCTGCTCCGCGTTATACGTAGGAGACGCGTGTGGGGGCA Continued 8 Figure 9 PC-3-4 PC-3-8 PC-4-1 PC-4-6

950 901 GTGCAGAACTGCAACTGTTCCATTTACAGTGGCCATGTTACCGGCCACCG Continued 9 951 GATGGCA Figure 9 PC-3-4 PC-3-8 PC-4-1 PC-4-6 SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO 9425601A2 1 :

	3856	ACCACTGGCAGCCCCATCACGTACTCCACCTACGG	-TT	GCGGCGAT	CGGA-T-TTTT	CAGCTT-TA	CAGCTT-TAT		3891	GGGCGCTTATGACATAATA	C	ACTGCG-ACC	TA-CATACTG-A-CCTCC=-C-	GCG-G-C-	G-GG-CGGG			3941	TITGIGACGAGIGCCACTCCACGGAIGCCACAICCAICTIGGGCAICGGC	-ATAATCT-GTA	-ACTATGGTCT-TCATC-CA	-ACATAGTC-TTAC-TT	-ACTCACACATC-TGA	-ACTCACACATC-TGA	
		1a	1p	2a	2b	<u></u> 5а	5a	3a		1a	1p	2a	2b	5 a	5 a	3а			1a	1p	. 2a	2b	5 a	5 a	3а
	SEQ ID NO					197	199	222								•					-				-
Figure 10		HCV-1	HCV-J	HC-J6	HC-J8	PC1 37	C1 48	BR36	S	GHCV-1	D-VOH	FHC-J6	HC-J8	PC1 3	HPC1 48	3 BR36	JLE	26	HCV-1	HCV-J	HC-J6	HC-J8	PC1 37	PC1_48	BR36

	-1
7	4
70:20	
	t
C	>
٣	ح ح
	ainbii

1 STCCTTGACCAAGCAGAG				4041 4090 4090 A COURT A COURT A COURT A COURT A COURT A COURT A COURT A COURT A COURT A COURT A COURT A COURT A COURT A		TGTGCGAGAACCCA	AGCTA-GGAACTCAGTA	GCAGTGAACC	G	4140	AGGTIGCICIGICCACCACCGGAGAGAICCCTITITACGGCAAGGCIAIC	-AGCATTCCTAC	GCCGGGCAGGAGTCCTG-GG-T	GCTGGTCA-GAGCTTT	-AGCC-TCAGGAGGG-CGACT		
B	1b 2a	2b	വ വ വ വ	r-		2a	Sp	n D	ე ე ე		1a	1b	2a	Sp	л Б	ი ი ი	ช ว
HCV-1	HCV-J HC-J6	HC-J8	PC1_37 PC1_48 BR36	\$ UCW 1	T-AOH UBS	HC-J6	HC-J8	PC1_3	H PC1 48 BR36	ULE 2	(9) HCV - 1	HCV-J	HC-J6	HC-J8	PC1_37	PCI 48	DECO

inued 2	4141	CCCCTCGAAGTAATCAAGGGGGGGAGACATCTCTTTTTTTT	A-TG-CCAG	GTC-TACAACT-GCC	A-CTT-C	T-CTT-TATTG	T-CTT-T-ATTG		4191 - 4240	AAGAAGTGCGACGAACTCGCCGCAAAGCTGGTCGCATTGGGCATCAAT	TGG	ATGG-GGCCTCGG-GTAT-GC-	TG	AATTAAGC-AAC-AGCCG-GC-	AATTAAGC-AAC-AGCCG-GC-		7200	Z ± ± CGTGGCCTACTACTGCGGGTCTTGACGTGTCCGTCCATCACGACCAG	-TAGTGCTATA	AAA-AGGGCAAATCAG	TATA-GCC	1 1 1 1 1		
0 - Cont		1a	1b	2a	2b	<u>5</u> а	5 a	3а		1a	1b	2a	2b	5 a	5 a	3a		(C)	1p	2a	2b	5a	5 a	3a
Figure 10 - Continue		HCV-1	HCV-J	HC-J6	HC-J8		$PC1_48$	BR36	S	7	D-70HST	11HC-J6	HC-J8	第PC1 37		BR36	E 2 (HCV-1	HCV-J	HC-J6	ر. ا	PC1 37		\mathbf{v}

								•					•											
	4291	GATGTTGTCGTGGCAACCGATGCCCTCATGACCGGCTATACCGGCG	ı)CGGTCTATGC	1CGGTGCAGCC-GG-A-TC	1CGGTGCAGCC-GG-A-TC		-	CTTCGACTCGGTGATAGACTGCAATACGTGTGTCACCCAGACAGTCGAT									1 1		DIBU	D-VD-L	LGLCLL	
		Ţ	T	26	21	56	5	3a		13	11	25	2k	58	5 а	ω Θ		ττ •	- 1 - 1		2,4	5 2	5 a	33
!_>		HCV-1	HCV-J	HC-J6	HC-J8	\sim	PC1_48	BR36		HC	HC\	HC-	HC-	PC1	PC1_4	BR3	RULE	H T	E E	HCT6	MT TH	· ~	PC1_48	BR36

4441 - 4490	GACTGGCAGGG	GGGTG-GGGAT		T-GGGY-GA-GAG	AGA-A-GCGTC-CGGAT-G	AGA-A-GCG		44	TCTACAGATTTGT	GGA-TAAAG	-TTG-ATT-CA-TTAGA	-TG-ATT-GT-ACA-G	-AC-G-ACT-GG-TAA-AG	AC-G-ACT-GG-TAA-A-NT-A		4551	rccgrccrcrgrgagrgcrargacgcaggcrgrgcrrggrargagcr	-CGG	3TAGGGCC-	3TAGCTCGGCA	3TGGA	-CGTGGTCTCAGTG	
:			2a	2p	5a		3a		1a	1b	2a	2b	Ба	5 a	3a		1a	1b	2a	2b	5а	Ба	3a
					7			SU	ISH HCV-1	F HCV-J	HC-76	HC-J8	T PC1 37	$PC1_4$	BR36	26)	HCV-1	HCV-J	HC-J6	HC-J8	PC1_37	PC1_48	BR36

•	4640 G -	4 1 1 1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6))	0 4
Continued 5	CGCCGAGACTACAGTTAGGCTACGAGCGTACATGAACACCCCGG TCT-GT-GGTC-AT-A-A	-ÀAGCCCATT-CATATT	CCCGTGTGCCAGGACCATCTTGAATTTTGGGAGGGCGTCTTTACA 	4691 GCCTCACTCATATAGATGCCCACTTTCTATCCCAGACAAGCCAGAGTGGG
	1a 1b	22 23 33 34	11 12 22 23 23 23 23 23 23 23 23 23 23 23 23	1a 1b 2a 5a 3a
Figure 10	1 1	HC-J6 HC-J8 PC1_37 PC1_48 BR36	HCV-1 HCV-J HC-J6 HC-J8 PC1_37 BR36	HCV - 1 HCV - J HC - J6 HC - J8 PC1 37 PC1 48

	· · · .		
4741 GAGAACCTTCCTTACCTGGTAGCGTACCAAGCCACCGTGTGCGCTAGGGC 1bCC	1	Lb	4841 1a TCAAGCCCACCTTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCT 1b -AAGGGTC 2aATAGTGCCTCGTC 2bATAGACTCCCGTC 5aAGNT-AACCTTGG
— — (V (V,U)	, w (*)	— (A (A R) R) W	322222
·			
HCV-1 HCV-J HC-J6 HC-J8	PC1_48 BR36 HCV-1	HCV-J HC-J6 HC-J8 PC1_37 BR36	95 ayna HCV-1 HC-J6 HC-J8 PC1_37 PC1_48

	•			1				• •	
4891 GTTCAGAATGAAATCACCCTGACGCACCCAGTCACCAAATACATGAA	AGGTCACA-A	G	1 CATGTCGGCCGACCTGGAGGTCGTCACGAGCACCTGGGTGC	C =	T T G T A - T G G G G G G G	L SCGTCCTGGCTGCTTTGGCCGCGTATTGCCTGTCAACAG	-AA-GCA-GA-GA-GA-G	ACCGATCG-GT	-GTGGCCGCCTA-GGTGT-CGA -AGCGCC-AGCCTGTCTT-
	1b 2a 2b	3 D D B	۳.					2b 5a	3 D
		PC1_37 PC1_48 BR36	•		PC1_37 PC1_48		HCV-J HC-J6	HC-J8 PC1_37	PC1_48 BR36

Figure 10 - Continued 8	5041 a GTCATAGTGGCCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCA bTAA	2a TGCA-CC-CT-GCA-G-TAA-CA-CGAG-C-TCG-TGCG 2b TCCA-TC	5091 CAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCA	5141 ACTTACCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAG 1b
Figure 10	HCV-1 HCV-J	HC-J6 HC-J8 PC1_37 PC1_48 BR36	STREET HCV-1 HCV-1 HCV-1 HC-16 HC-16 HC-18 HC-18 HC-18 HC-18 HC-18	HCV-1 HCV-J HC-J6 HC-J8 PC1_37 PC1_48 BR36

				,					ŧ												
6 pano	5191 AAGGCCCTCGGCCTCCTGCAGACCGCGTCCCGGTCAGGCAGG	-ATAAT-ATCAATAAAA-=	A-TGT	A-TGTA-CAGCGA-CGGAGATAAC-C-	A-TTAT-GCGACAAAACACTCT-A	5241	CTGCTGTCCAGACCAACTGGCAAAACTCGAGACCTTCTGGGCGAAG	LDDdLDd-d-dL	-CGG-TTCT	GAA-AT-ATCACCGTACAATCA-	GGA-C-AC-T-TGTGA-CGGCTCAGN-C-CAT	- 1	GCATAAACTGTGTCAC	5291	AT		D -	טֿ	Ų	J-	
- Continue	1a 1b	2a 75	5 a	5a	ಥ Ƙ		la	q ₁	2a	2b	5а	<u>5</u> a	3a		1a	1b	2a	2b	Ба	5 а	3a
Figure 10	HCV-1 HCV-J	HC-J6 HC-J8	PC1_37	PC1_48	BR36		San HCV-1	HCV-	HC-J	HC-J8	PC1_	PC1_4	BR36		HCV	HCV-J	HC-J6	HC-J8	PC1_37	₩	BR36

					•
9	5	/	1	1	1

•	·	ન	95/111'	
SEQ ID NO		- 56 58		
1286 HCV-1 TTGSPITYSTYGKFLADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVV	GC	48AS	### HCV-1 LATATPPGSVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAA #### HCV-1 LATATPPGSVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAA ##################################	8)
			•	•

1406	KLVALGINAVAYYRGLDVSVIPTSGDVVVVVATDALMTGYTGDFDSVIDCNTCVTQTVDFS		A-RGM-LVAVA	A-RGM-VVA-S-I	1466	LDPTFTIETITLPQDAVSRTQRRGRTGRGKPGIYRFVAPGERPSGMFDSSVLCECYDAGC	TT	T-Q-VSRLY-STAA	T-Q-VSRL-VY-SSA		1526	AWYELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFTGLTHIDAHFLSQTKQSGENLPY	SA-D	 F	
	HCV-1	HCV-J	HC-16	HC-J8		HCV-1	HCV-J	9C-2H ₩		ITU				HC-J8	26

Figure 11 - Continued 2

H 1 1 1	
LVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLYRLGAVQNEITLTHPVTKYI	1646 MTCMSADLEVVTSTWVLVGGVLAALAAYCLSTGCVVIVGRVVLSGKPAIIPDRĒEVLYREF -A
HCV-1 HCV-J HC-J6 HC-J8	HCV - 1 HCV - J HCV - J HCV - J HC - $J6$ HC - $J6$ HC - $J6$ HC - $J6$ HCV - J HCV - $J6$ HCV - $J6$ HC - $J6$ HC - $J6$

en en grande de la companya de la companya de la companya de la companya de la companya de la companya de la c La companya de la co	
330 340 350 370 370 PTTALVMAQLLRIPQAILDMIAGAHWGVLAGIAYFSMVGNWAKVLVVLELVSVVVMF-LQ-AI-M	380
330 340 350 360 370	380
350 MIAGAHWGVLA(-V	400 SGFVSLLAP GSLW-SQ RTLTGMFSL AAG-FTT QA-AG-FDI YRLTDIFST Y-IA-FITR
340 	390 RVASST TVTA-NA SS-QER TT-SRHT T-AMAQSI
330 	380 FAGVDA ETH G H A Q V T-Y -S H-Y -S T-Q
1a 1b 2a 2b 3a 3b 5a	1a 1b 2b 3a 3b 5a
HCV1 HCVJ HCJ6 HCJ8 NZL1 HCVTR BE95	HCV1 HCVJ HCJ8 HCJ8 NZL1 HCVTR BE95

99/111

		+		ì		a				••	.,	•				
	* 470 *	NCNDSLNTGWLAGLFYHHKFNSSGCPERLASCRPLTDFDQGWGPISY AN	QFI-AA-RAMIDE-ATH DM	MSASIEA-RVALQ-ED-	SG-DRITLE-ET-	I-F-RLTD		-ATT	510 520		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-V-0X		•	-H-XS
-	760	.ASCRP		ISAS	9S	SK-		IA		PVYCF	1 1 1 1	1 1 1 1 1 1 1	1			1 1 1
	450	NSSGCPERL	MA-	W		10		D-M-	500	IVPAKSVCG	S0	RQV-S-S	RT	S		/0E/
	044	AGLFYHHKF	-AA-R-	HFST-S	0FST	· \	·	\hat{\chi}	065	 WHYPPKPCG	A-R	RQ	R	A-RD		RQE
•	430	NCNDSLNTGWL	FI	-4H		E-IFIYT0SK-I-F-R		FI	087	- GSGP/DQRPYC	PESS/SQ-	VTN-E-M	VTNDG-M	ITS-DI		IS-DK
	•	1 a	1 b	Sa S	Sp	3a	3p	5а		1	1 p	2a	2 p	3a	3b	5a
		HCV1	HCVJ	HCJ6	HCJ8	NZL1	HCVTR	BE95	į	HCV1	HCVJ	HCJ6	HCJ8	NZL1	HCVTR	BE95

Figure 12 - Continued 2

*

Continued 2

*

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 2

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

Continued 3

#

		·	۲.					ı		10	1/	11	1						1 '	•			
086	CCCCTACGACGGCGTTGGTAATGGCTCAGCTGCTCCGGATCCCACAAGCC		111+++11+++++++++++++++++++++++++++++++	-AACC-AGG-AT-GA	-GCAACC-AGGT-GT-A	-AAACC-AGGT-GŢT	-AGGT-GT-	-GAACC-AGGT-GT-AT		-GAATC-AGG=-T-GT-AT	CAGGT-GT-	CAGGT-GT-	טַ	-AAACC-CGT-GT-A	-GCG-TA-CAA-CCGT-CGC-A-GCGCG-G-T-	-TATCTTA-CAA-CC-CCT-CGCCGCTTG-TCGCTG	-ACG-CA-CA-A-CCGT-CGC-A-GCGCG-G-TT	-AATCTTA-CAA-CC-CCT-TGCCGCTTG-T-~TG-GCTA	CG-TGTGTAGGGTG-CGTT-ACGA	-CGTT-GC	CG-CGTGTAGG-AGTG-CGTT-GCGA	CG-CGTGTAGGGCG-TGTC-GC-GA	-AATCC-GGT-AGT-TG
	1a	1a	1a	1b	1b	1b	1b	1b	1b	1b	1p	1 p	1p	1b	2a	2p	2a	2b	3a	3a	3a	3а	.5a
SEQ ID					, ·																		157
	HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91	S HCV-JTA	S HCV-JTB	HCV-CHINA	T-VOH-E	후 HCV-JK1	HCUNK	HCV-N	11 HC-J6	F HC-18	9 HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95

	GGACATGATCGCTGGTGCTCACTGGGGGAGTCCTGGCGGGCATAGC			-G-G-G-G-CTAC-T	L-D	-g-g-gggggggggggg	-BB-B-	-G-GGCAC-T	1	-G-G-TGGC	:- 99	D-D	-A-	L-D	CT-GCGTCATTCT	TTTTCC-GCTTGGTTTT-G	CTAGCG	TGTTCC-GCTCGGTTTT-G	-GCGCT	<u>-</u> -	- YC	AG-ACGCTCAT	CAGAGCGTTTT-C-GCC
1030	ATCTT	A	-I	BB	GG	BB	GG	GGT	GGT	GA	GGT		GG	GA-C	A - A	GC-CA	A-A	-99L-J9	T-GC	T-GC	T-GC	T-CL	GA-T
		HCH-H																					

					ı	1												٠		•			
. 1	TCCTGGTAGFGCTGCTGC			T A - T A A -	- T A - T A A -	A-TGCA-	-TA-TGCA-	TA-TA-	-TAT-	-TTA-TA-	TA	TA-TA-	T-C-A	-TTA-TA-	G-TCA-TTT	A-C-CCA-CCT-	G-TCA-CT	A-T-CCA-CCC-	GCAA-CA-CA-G-TA	GCTA-CA-CGG-TA	GCTA-CA-CA-G-TA	GCTA-CA-CA-G-TA	GCTT-
	GGGCGAAG	1 1 1 1 1 1 1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	T	L	L	L	L	L	I	L	L	L	L	AA-	CA-	1 1 1 1 1	CA-	D	<u>0</u>	D	C	A-C
1	CCATGGTGGGGAACTGGGCGAAGGTC	1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- A	-A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	- L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				V AGÇĞ- ·	AAGCG-	1AGCG	1 	1C	1CT		C	LD
1080	GTATTTCTCCATGG1			CC-AT	CC-AT(CC-AT	CC-AT	CC-AT	CC-AT	CC-ATG	CC-AT	CC-AT	CC-AT	CC-ATC	CCCA	CCA	CCTCA-	CCA-	CACA-	CACA-	CACAA	CCA	AC-ATG-ATC
	1a	1a	1a	1b	1b	1b	1p	1b	1b	1.b	1b	1b	1b	1b	2a	2b	2a	2b	3а	3a	3a	3а	5 a
	HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91	HCV-JTA	HCV-JTB	HCV-CHINA	HCV-T	HCV-JK1	HCUNK	HCV-N	HC-J6	HC-J8	HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95

SUBSTITUTE SHEET (RULE 26)

															,				•				
1130	TATTTGCCGGCGTCGACGCGGAAACCCACGTCACCGGGGGAAGTCCCCC		-G	-CTBB	1 T Z	-CC	TACGT-GGGTG	-CGTCGCAA-CT	-CGTCGCAA-CT		-TTG-AGTATGT-AAG-CA-TG-C	GCA	しじしじ	-T	· 1	CCAGGAA-	-TA-CG-AC-GTT-CTTC	-CCAAC-	<u></u>	 - '(TC- A	-GAGTTACTGA-TT-GCCTCCAGC-
	1a	1a	la	1b	1b	1b	1p	1b	1p	1b	1b	1b	1b	1p	2a	2b	2a	2b	3a	3a	3а	3а	5a
	HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83		SO HCV-JTA								⊕ HC−18	HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95

Continued

105/111

•	SCAGAA	1 1 1 1	1 1 1 1 1]I	I	IG	- -	GG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L	1 1 1	I	II	IG	1 1 1		. 1	<u>G</u> -		1.	AA		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	GGCGCCAA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I	C-ATC	GC-GTC	TGGTC	14	BC-BBC(GC - GGC(1	GGTC(I-GGC	GC-GGTT	GC-GTCT	- + L G	I	D-L	TCG-	CA	ე၅ე	CGA	CGI	29
•	CTCGCACCA	TA	TA	<u>T</u>	IAGT	L	-TTT-	IA-C-A-	IA-C	r-TAT	T-TAA-	rAGTT	r-TagcT	I-TAT	$\Gamma \Gamma - C - TT$	T-TA-TA-T	I T - CT - T	TAGCT	r-r-ACAT-	r-ta-tgrg	rAAT-GG	D9-21	4A-C-GC
	STIAGCCIC	<u>I-9-</u> -	L	-GTC-TGG-	GTC-A-GI-	.CGTC	CGTC	ACGIC-I	C-CGTC-I	CACGTC	CGICI	- CGIC-I	CGTC	2	CACCGA-GT-	C-C-G	CACCA-GT-	CCA	C-G-LL	.CID	CT	C-GL-L	CCTCAT-T
	CTGGATTTC	BG	D	AGA-CC-C-	ACA-GC-C-	-CACGC-C-	-CGCA	'AGA-CG-CA(- BB) D -	ACA-TC-C-	CACCGGC-CG	GCTCGC-AA	CACCAGCGC-		B-	-	TAGAG-C-	'AA-CG	GA GA - A-	ACA-G	ACA-GCA	ACA-C-
180	CACACTGTGTCTGGATTTGTTAGCCTCCTCGCACCAGGCGCCCAAGCAGAA	GCAC-G-	G-G-CA	'CGCACCCAGA-CC-	A CACCAACA-GC-	CACC	GCACC	G-CACACCCAGA-CG	G-CACACCCAG	G-T-CACCCIC-	GCACCCA	- G	GGG-C-CIAGCICGC-	CI	-T-AC-CCAGGACCC-	-B-500L5-	CACACCAGG-	-TCTA	GTCA-ACCCAA-	-TGACCAGAGA	-TGAC-	GTGAC-	-AGAC
		1a	la -	T qI	1b A	1b -	1b -	1b -	1b -	1b -	1b -	1b -	1b -	1b -	2a -			2b -	3a -	3a -	3a -	3a	. 5a
	ICV - 1	H-H	-J1	V-J	V-BK	-J4.83	- 74.91	V-JTA	V-JTB	HCV-CHINA	V-T	V-JK1	UNK	N-V	- J6	-J8	-J5	- 37	L1	M26	85	US114	BE95
	HC	HC	HC	HC	HC	HC	HC	HC	HC	HC	HC	HC	HC	HC	HC	HC	HC	HC	NZ	HE	TH	US	BE

106/111

					1									•			:	,		*		•
1230 CGTCCAGCTGATCAACACCAAGGGCAGTTGGCACCTCAATAGCACGGCCC	A	т. т. т. т. т. т. т. т. т. т. т. т. т. т	ACG-G	TATG	TG-GT		ACATCAC	ACA	TATTCTAC	TACCC	ATG-T		TAT		T-TT-AA-A	-TAC	AGTAA-ACA-AC	.GBTCGB	.GGTTA	.GTGAA	.GGTTCGTACC-	AC-GCATACACGC
13 E	1a	la I	1b	1b	1 p	1p	1b	1b	1 p	1b	1p	$^{1}\mathrm{p}$	1b	2a	5p	2a	2b	3а	3а	3a	3a	5 a
HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91			HCV-CHINA							6 HC-JE	HC-J7	NZL1	HEM26	TH85	US114	BE95

														1			,						
1280 TGAACTGCAATGATAGCCTCAAČACCGGCTGGTTGGCAGGGCTTTTCTAT		AATAAA	TCTCC-ATG-TCA-TT-CC	DBD-L-BL-BLB-DBB	-AGCTCCTCCC-C-CG	-ATGTCGG-TCC-TC-C	ATCG-TCTC-CAGC	ATCG-TC	CTCTTG-TTC-TC	-ACCTCC-GTG-TTC-TCTCG	CGTC-ATG-TCTC-C-C	GCLCLG-LLG-LC-C-C	D-GCLCC-GLG-LCC-LC-CC	CTCTT-GCTCC-CGTCAG	-CI	TCTC-T-GTTA-CGTCCG	-CTT-GC-AAT-TCCT-CCGT-	-ATGTC-A-AG-TTA-ATT-GT		T-GTC-A-AG-TCA-AT-GT-	T-GTC-A-AG-TCA-ATT-GC-T	-TTTCC-GTG-TCA-ACCCC	
1a	Па	1a	1p	1p	1p	1p	1b	1p	119	1b	1p	1 p	1p	.2a	Sp	2a	Sp	3а	3а	3а	3а	5 a	
HCV - 1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91									HC-J8		HC-J7	NZL1	HEM26	TH85	US114	BE95	

, 1	CIGCCG	! ! !	1 1 1		g	 	1 1 1 1	A-	A-	1 1 1	1 1 1 1 1 1	L	1 1 1	1 1 1		; ; ; ;		1 19 3 1	AA	TAA	AA	[AA	TA-
1	GAGGCTAGCCAG	D-L	B-L	-C-CA-GT	-C-CA-GCA	-C-CA-G	-C-CA-G	-C-CA-G	-C-CA-G	-C-CA-G	-C-CA-G	-C-CA-GT	29-L2-2-	-C-CA-G	AC-CA-GTGC	-C-CT-GT-TTC	TC-CGTGT	-C-CT-GT-TTC	A	CCAG	ACAG	ACAG	TCA-GT
	CTTCAGGCTGTCCTGAGAGGCTAGCCAGCTGCCG		D	3CGCB	3CGCA	BCBZE	90BDE	3CACA	3CACA	3CACG-A	3CGCA	3TACT-A	9DDDE	3CACG-G	3AC	JJ	3ACC-	7DCC	A-TAC-	A-T-AC-	A-TAC-	A-TAC-	TACG
1330	CACCACAAGTTCAACTC	GA	A	GCAGG-(ACAT-GT(ACAG(ACA(GCA(GCA(ACAGG-()-bbBDB	GTAA-G(A-ATGG-(ACATG(ACGC	ACAG(GT-ACGCTG	GT-AGACGTAGC	L	II		T-TA-T	TTT
	В	מ	٠. «	Д	q	q	Q	Ω	م	Ω	Ω	م	۵	P	൯	۵۔	๙	0	щ	т.	æ	К	æ
																					ÿ	33	5a
	HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91	2 HCV-JTA	HCV-JTB	HCV-CHINA	HCV-T	₽ HCV-JK1	HCUNK	HCV-N	HC-J6	2 HC-18	9 HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95
								J	,UU		<u>۔</u> ، ر			`							•		•

						,			•														
,	GCCA	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-AT-	TG	ATG	A-TG	AG	AG	A-TG	A-TG	IG	A-TG	TG	-GAG-A	CGAAA	CGAG-AT-	-GAGA	- L		- AA -	- L	1 1 1
	GGCCCTATCAGTTAT			DC	TCT-C	DDD	DDD	CGG	IC	C	DDDI	CCC	TCC	DDI	G-CT-ACAAG1	AA-CT-GGAACG	A-CT-GCAACG1	AA-CT-GGAAGI	CT-A-CAG	T-CT-G-CAG	CT-G-CAG	T-CT-G-CAG	AAC
1380	ACCCCTTACCGATTTTGACCAGGGCTG			CA-CGATGC-CTG	CAAGA-A-GCA	CAGA-TGGC-CA	CAGAGGC-CA	CTA-CGA-A-GC-CTA	CTAGA-A-GC-CTA	CAGATACACT	TTAGA-A-GCTA	TAGA-AGGC-CTAG	CAGATACAC-CGG	CTAGA-A-GCA	CAGTA-CGAG-CCCGGGTA	CGGGGGACG-ATC	CAG-A-CGAG-CCCGGATAG	TAAGGGATCG-ATCG	GA-CTTTCCAGGA	GA-CTTCCCAGGG	GA-CTCCCA-TG	GA-CTTCCCAGGG	GGGAC
	1a	1a	la	1b	1b	1b	1b	1b	1b	1b	1p	1b	1b	1b	2a	2 p	2a	2 p	3a	3а	3a	3a	5 a
	HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91	HCV-JTA	HCV-JTB	HCV-CHINA	HCV-T	HCV-JK1	HCUNK	HCV-N	HC-J6	HC-J8	HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95

SUBSTITUTE SHEET (RULE 26)

							,							1			•						•	
	TGGCACTACCCCCCA			- b	TAT	TT	. 1	Y	A-	- - <u>-</u> -	1	Y-	L9-9		A	9L		9LL	Y	ŀ			1	
· · · · · · · · · · · · · · · · · · ·	GACCAGCGCCCTACTGCTGGCACTACCCCC	G-A	1	. [- - - -	TA-GTT	TA-GTT	TA-GT	TA-GT	A-GTT	TT	AA-GT	TA-GT	1	TAT-A-AGT	AT-A-GG	- A-A-	T-A-A-	TG-CA-AA	AG-CAAAG	TG-CAAAA	TG-CAAA G	TG-CAAAAT	
1430	ACGGAAGCGGCCCC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TGCCTGAGAT-G	-GTCTA-AT-A	-GCCTGA-AG	-GCCT-A-AG	-GCCTG-ATG	-GCCTG-G-A-TTG	-GCCTGATAT-G	-G-CTGA-ATAG	-GTCTCAT-G	-GCCTCAT-ATTTG	-TCCT-AA-AG	-T-TC-C-AATAGAG	TC-C-AA-GATGGG	-T-TC-C-AATAGAA	-T-TT-C-AA-GAGGAG	ATC-CTTICT	ATCTCTT-GTCC	ATC-CTTCT	ATC-CATT-TTCT	AT-TCGTAGT	
	1a	1a	1a	1b	1b	1b	1b	1b	1b	1b	1b	1b	1b	1b	2a	2b	.2a	2b	3a	3a .	3а	3a	5a	
	HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91	HCV-JTA	HCV-JTB	HCV-CHINA	HCV-T	HCV-JK1	HCUNK	HCV-N	HC-J6	HC-J8	HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95	

(١		f)	•	٠,٠				. 1	-										•	
1480 AAACCTTGCGGTATTGTGCCCGCGAĀGAGTGTG	-GTCAC	AA	LD-	رر ا	ည	-IC-	CGG-AGTCATTC-CAG	ATC-	CG-AAGCCATTC-GAG	GTCATC-	CGTTT-CAG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-TCA-ACG-	CIGCI(-CGI-G-	GTCACG-TC	-CCI-G	T-ACCG-	CA	TAAA - G C A AT	TT-ACCCG	CGGGAG-GACC-AGAGC
la 1	1a	1a	1b	1p	1p	1b	$^{1}\mathrm{p}$	1p	1p	1p	1p	1p	1 p	2a	2b	2a	2b	3a	3a	3a	3a	Бa
HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91	S HCV-JTA	SO HCV-JTB	HCV-CHINA	HCV-T	₽ HCV-JK1	HCUNK	HCV-N	HC-J6		6 HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95

THIS PAGE BLANK (USPTO)

PCT

ECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UN	NDER THE PATENT COOPERATION TREATY (PCT)
C12N 15/51 C12O 1/68 1/70 A61K 39/29 A3	11) International Publication Number: WO 94/25601 43) International Publication Date: 10 November 1994 (10.11.94)
(21) International Application Number: PCT/EP94/01323 (22) International Filing Date: 27 April 1994 (27.04.94) (30) Priority Data: 27 April 1993 (27.04.93) EP (34) Countries for which the regional or international application was filed: GB et al. 93402019.9 5 August 1993 (05.08.93) EP (34) Countries for which the regional or international application was filed: GB et al.	CZ, DE, DK, ES, FI, GB, GE, HU, JP, KG, KP, KR, KZ, LK, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
 (71) Applicant (for all designated States except US): N.V. INNOGENETICS S.A. [BE/BE]; Industriepark, Zwihnaarde 7, Box 4, B-9052 Ghent (BE). (72) Inventors; and (75) Inventors/Applicants (for US only): MAERTENS, Geert [BE/BE]; Zilversparrenstrasse 64, B-8310 Brugge (BE). STUYVER, Lieven [BE/BE]; Hoogstraat 27, B-9340 Lede (BE). 	(88) Date of publication of the international search report: 02 March 1995 (02.03.95)
(74) Agent: GROSSET-FOURNIER, Chantal; Grosset-Fournier & Demachy S.A.R.L., 103, rue La Fayette, F-75010 Paris (FR).	

(54) Title: NEW SEQUENCES OF HEPATITIS C VIRUS GENOTYPES AND THEIR USE AS THERAPEUTIC AND DIAGNOSTIC **AGENTS**

(57) Abstract

The present invention relates to a polynucleic acid composition comprising or consisting of at least one polynucleic acid containing 8 or more contiguous nucleotides corresponding to a nucleotide sequence from the region spanning positions 417 to 957 of the Core/E1 region of HCV type 3; and/or the region spanning positions 4664 to 4730 of the NS3 region of HCV type 3; and/or the region spanning positions 4892 to 5292 of the NS3/4 region of HCV type 3; and/or the region spanning positions 8 023 to 8 235 of the NS5 region of the BR36 subgroup of HCV type 3a; and/or the coding region of HCV type 4a starting at nucleotide 379 in the core region; and/or the coding region of HCV type 4; and/or the coding region of HCV type 5, with said nucleotide numbering being with respect to the numbering of HCV nucleic acids as shown in Table 1, and with said polynucleic acids containing at least one nucleotide difference with known HCV type 1, and/or HCV type 2 genomes in the above indicated regions, or the complement thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	CB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW ·	Malawi
BB	Barbados	GN	Guinca	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	, PL	Poland
BR	Brazil	JP	Japan	PŤ	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
ČG.	Congo		of Korca	SE	Swcden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
Ci	Côte d'Ivoire	KZ	Kazak histan	SK	Slovakia
CM	Cameroon	Li	Liechtenstein	SN	Senegal
CN	China	Ĺĸ	Sri Lanka	TD	Chad
cs	Czechoslovakia	LÜ	Luxembourg	TC	Togo
CZ	Czech Republic	ĹŸ	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tohago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
		MG	Madagascar	US	United States of America
ES	Spain Finland	ML	Mali	ÜZ	Uzbekistan
Fì		MN	Mongolia -	VN	Vict Nam
. FR	France Gabon	MIN	Mongona	***	

INTERNATIONAL SEARCH REPORT

Inten nal Application No PCT/EP 94/01323

A. CLASSIFICATION OF SUBJECT MATTER IPC 5 C12N15/51 C12Q1/ G01N33/576 A61K39/29 C1201/68 C12Q1/70 C07K7/04 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N C12Q C07K A61K G01N IPC 5 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X J. GEN. VIROL., 🗔 1,2, 6-11, vol.73, 1992 pages 1131 - 1141 15-23 S.W.CHAN ET AL. 'Analysis of a new hepatitis C type and its phylogenetic relationship to existing variants' cited in the application see figures 3,5 X 1,2,6-8, BIOCHEM. BIOPHYS. RES. COMMUN., vol.183, no.1, 1992 pages 334 - 342 S. MORI ET AL- 'A new type of hepatitis C in patients in Thailand' cited in the application see figure 1 see the whole document X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report D 1 -02- 1995 14 October 1994 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NI. - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016 SKELLY J.M.

Form PCT/ISA/210 (second sheet) (July 1992)

3

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
\	PROC. NATL. ACAD. SCI. USA, vol.89, 1992 pages 7144 - 7148 T. A. CHA ET AL 'At least five related but distinct genotypes of hepatitis C virus exist' cited in the application see figure 1	1
,	WO,A,92 19743 (CHIRON CORPORATION) 12 November 1992 cited in the application see figure 2	1,2, 6-11, 15-23
•	WO,A,93 06126 (CHIRON CORPORATION) 1 April 1993 see the whole document	9-11
X	VIROLOGY, vol.180, 1991 pages 842 - 848 A.WEINER ET AL. 'Variable and hypervariable regions are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins' see figures 1,2	1,2, 6-11, 15-23
(J. GASTROENTEROL. HEPATOL., vol.8, 1993 pages 150 - 156 K. CHAYAMA ET AL. 'Genotypic subtyping of hepatitis C virus' see the whole document	1,2,6-8,
, P	WO,A,93 10239 (COMMON SERVICES AGENCY) 27 May 1993 see the whole document	1,2, 6-11, 15-23
(,P	BIOCHEM. BIOPHYS. RES. COMMUN., vol.192, no.2, 1993 pages 635 - 641 L. STUYVER AT AL. 'Analysis of the putative E1 envelope and NS4a epitope regions of HCV type 3' see the whole document	1,2,6-8,
(,P	J. GEN. VIROL., vol.74, 1993 pages 1093 - 1102 L. STUYVER ET AL. 'Typing of hepatitis C virus isolates and characterisation of new subtypes using a line probe assay' see the whole document	1,2,6-8, 22

Inter vial Application No PCT/EP 94/01323

Communication DOCUMENTS CONSIDERED TO BE RELEVANT		PCT/EP 94/01323		1/01323
(,P J. CLIN. MICRO., vol.31, no.6, 1993 6-11, pages 1493 - 1503 15-23 P. SIMMONDS ET AL. 'Mapping of serotype-specific immunodominant epitopes in the NS4 region of hepatitis C virus'				Relevant to claim his
vol.31, no.6, 1993 pages 1493 - 1503 P. SIMMONDS ET AL. 'Mapping of serotype-specific immunodominant epitopes in the NS4 region of hepatitis C virus'	Category *	Citation of document, with indication, where appropriate, of the relevant passages	ument, with indication, where appropriate, of the relevant passages Relevan	
	X,P	vol.31, no.6, 1993 pages 1493 - 1503 P. SIMMONDS ET AL. 'Mapping of serotype-specific immunodominant epitopes in the NS4 region of hepatitis C virus'		6-11,
			••	
	·		1	
	•			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

ational application No.

PCT/EP 94/01323

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
il	
This in	sternational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
ı. 🔽	Claims Nos.:
	because they relate to subject matter not required to be searched by this Authority, namely:
12.	Claims Nos.:
T	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
ľ	
'	
_	
3	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
1	because they are dependent diamin and a second seco
	in the stime (Continuation of item 2 of first sheet)
Box I	I Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This I	nternational Searching Authority found multiple inventions in this international application, as follows:
'''''	
ļ ·	See annex.
	See annex.
1	
_ ا	
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
	SEMICIANIE GAMB.
┨	The state of this Authority did not invite payment
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
j	
] _{3.} [As only some of the required additional search fees were timely paid by the applicant, this international search report
-	covers only those claims for which fees were paid, specifically claims Nos.:
ŀ	
1	
_ ا	The second state of the second search report is
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1	
	1,2,6-10 partially; 11,15-23 partially.
İ	
1	
	The additional search fees were accompanied by the applicant's protest.
Rem	
	No protest accompanied the payment of additional search fees.
1	
i	

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

РСТЛЅА/210 FURTHER INFORMATION CONTINUED FROM

LACK OF UNITY OF INVENTION

1;2;6-10 (partially); 11;15-23 (partially): 1. Claims: Polynucleotides or amino acids corresponding to the core/El region of HCV subtype 3a and

their uses.

1;2;6-10 (partially); 11;15-23 (partially): 2. Claims: Polynucleotides or amino acids corresponding to other regions of the genome of HCV subtypes 3,

3a and 3c and their uses.

1;3;6-10 (partially); 13;15-23 (partially): 3. Claims:

Polynucleotides or amino acids corresponding to various regions of the genome of HCV subtype 5

and their uses.

1;4;6-10 (partially); 12;15-23 (partially): 4. Claims:

Polynucleotides or amino acids corresponding to various regions of the genome of HCV subtype 4 and .

their uses.

1;5;6-10 (partially); 14;15-23 (partially): 5. Claims:

Polynucleotides or amino acids corresponding to

various regions of the genome of HCV subtype 2d

and their uses.

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter mal Application No
PCT/EP, 94/01323

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9219743	12-11-92	AU-A- 2155892	21-12-92
i	•	CZ-A- 9302377	13-04-94
	<i>c</i> ,	, EP-A- 0585398'	09-03-94
4	4	JP-T- 6508026	14-09-94
		NO-A- 934019	05-11-93
WO-A-9306126	01-04-93	AU-A- 2643692	27-04-93
		CA-A- 2116764	01-04-93
• •		EP-A- 0608261	03-08-94
C.		FI-A- 941199	27-04-94
WO-A-9310239	27-05-93	, AU-A- 3088792	15-06-93
NO 11 2010¢05	7, 00 00	CA-A- 2123875	27-05-93
		EP-A- 0610436	17-08-94
•		FI-A- 942369	19-07-94

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
A FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)