

## Answers and Solutions

### Modulus of vector, Algebra of vectors

**1.** (a) 
$$l_1 = \sqrt{25 + 25} = 5\sqrt{2}$$
,  $l_2 = \sqrt{25 + 25} = 5\sqrt{2}$ ,  $l_3 = 5\sqrt{2}$ .  
Hence,  $l_1 + l_2 + l_3 = 3\sqrt{50} = \sqrt{450}$ .

2. (d) 
$$\mathbf{a} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k} \Rightarrow |a| = \sqrt{4 + 1 + 4} = \sqrt{9}$$
  
 $\mathbf{b} = -\mathbf{i} + \mathbf{j} - 4\mathbf{k} \Rightarrow |b| = \sqrt{1 + 1 + 16} = \sqrt{18}$   
 $\mathbf{c} = -\mathbf{i} - 2\mathbf{j} + 2\mathbf{k} \Rightarrow |c| = \sqrt{1 + 4 + 4} = \sqrt{9}$   
 $|\mathbf{a}| = |\mathbf{c}|$  and also,  $\mathbf{b}^2 = \mathbf{a}^2 + \mathbf{c}^2$   
Hence it is isosceles and right angled to

Hence it is isosceles and right angled triangle.

3. (d) 
$$|\mathbf{a}| = \sqrt{9 + 16 + 25} = 5\sqrt{2}$$
  
Area  $|\mathbf{a}|^2 = 25 \times 2 = 50$ .

**4.** (a) 
$$|xa| = |x| |a| \Rightarrow |x| \sqrt{4+4+1} = 1 \Rightarrow x = \pm \frac{1}{3}$$
.

**5.** (c) Since 
$$\sin^2 2\theta + \cos^2 \theta$$
 is not equal to one necessarily.

**6.** (c) Equal in magnitude, as bisector 
$$=\frac{\hat{\mathbf{a}} + \hat{\mathbf{b}}}{\sqrt{2}}$$
 if  $|\mathbf{a}| \neq |\mathbf{b}|$ .

7. (b) 
$$|\mathbf{b}| \hat{\mathbf{a}} = \sqrt{9 + 36 + 4} \left( \frac{\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}}{\sqrt{1 + 4 + 4}} \right) = \frac{7}{3} (\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}).$$

8. (d) 
$$\mathbf{p} - 2\mathbf{q} = \mathbf{i} - 4\mathbf{j} - 7\mathbf{k}$$
  
 $|\mathbf{p} - 2\mathbf{q}| = \sqrt{49 + 16 + 1} = \sqrt{66}$ .

**9.** (c) 
$$\mathbf{b} = \cos 120\mathbf{i} + \sin 120\mathbf{j}$$
 or  $\mathbf{b} = -\frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j}$ .  
Therefore  $\mathbf{a} + \mathbf{b} = \mathbf{i} - \frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j} = \frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j}$ .

(c) Equilateral, since each side is of length  $\sqrt{6}$ .

**11.** (a) 
$$\mathbf{a} = 4\mathbf{i} + 2\mathbf{j} - 4\mathbf{k} \Rightarrow |\mathbf{a}| = \sqrt{16 + 16 + 4} = 6$$

$$\mathbf{b} = -3\mathbf{i} + 2\mathbf{j} + 12\mathbf{k} \Rightarrow |\mathbf{b}| = \sqrt{144 + 4 + 9} = \sqrt{157}$$

$$\mathbf{c} = -\mathbf{i} - 4\mathbf{j} - 8\mathbf{k} \Rightarrow |\mathbf{c}| = \sqrt{64 + 16 + 1} = 9$$
Hence perimeter is  $15 + \sqrt{157}$ .

**12.** (b) 
$$\overrightarrow{AB} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k} \Rightarrow |\overrightarrow{AB}| = 3.$$

**13.** (b) 
$$R = \sqrt{4 + 100 + 121} = 15$$
.

(a) It is a fundamental concept.

(d) Resultant vector =  $2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ .

Direction cosines are  $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ .

**16.** (a) 
$$7 = \sqrt{(5+1)^2 + (4-2)^2 + (a+2)^2} \Rightarrow a+2=\pm 3$$
 or  $a=-5$ , 1.

17. (a) Direction is not determined.

**18.** (c) Let 
$$\mathbf{a} = \mathbf{h} + m\mathbf{j} + n\mathbf{k}$$
, where  $l^2 + m^2 + n^2 = 1$ .

**a** makes an angle 
$$\frac{\pi}{4}$$
 with z-axis.

$$\therefore n = \frac{1}{\sqrt{2}}, \quad l^2 + m^2 = \frac{1}{2} \qquad .....(i)$$

$$\therefore \mathbf{a} = /\mathbf{i} + m\mathbf{j} + \frac{\mathbf{k}}{\sqrt{2}}$$

$$\mathbf{a} + \mathbf{i} + \mathbf{j} = (/+1)\mathbf{i} + (m+1)\mathbf{j} + \frac{\mathbf{k}}{\sqrt{2}}$$

magnitude 1, hence

$$(/+1)^2 + (m+1)^2 = \frac{1}{2}$$
 .....(ii)

From (i) and (ii),  $2/m = \frac{1}{2} \Rightarrow l = m = -\frac{1}{2}$ 

Hence 
$$\mathbf{a} = -\frac{\mathbf{i}}{2} - \frac{\mathbf{j}}{2} + \frac{\mathbf{k}}{\sqrt{2}}$$
.

19. (b) It is a fundamental concept.

**20.** (d) Given 
$$\mathbf{a} + \mathbf{c} = \mathbf{b} + \mathbf{d} \Rightarrow \frac{1}{2} (\mathbf{a} + \mathbf{c}) = \frac{1}{2} (\mathbf{b} + \mathbf{d})$$

Here, mid points of  $\overrightarrow{AC}$  and  $\overrightarrow{BD}$  coincide, where  $\overrightarrow{AC}$  and  $\overrightarrow{BD}$  are diagonals. In addition, we know that diagonals of a parallelogram bisect each other.

Hence quadrilateral is parallelogram.

**21.** (b) 
$$\overrightarrow{AB} = 4\mathbf{i} - 5\mathbf{j} + 11\mathbf{k}$$

Direction cosine along y-axis

$$=\frac{-5}{\sqrt{16+25+121}}=\frac{-5}{\sqrt{162}}.$$

**22.** (a) 
$$|\overrightarrow{AB}| = |Q| = \sqrt{P^2 + P^2} = P\sqrt{2}$$
.

**23.** (c) 
$$\frac{3}{\sqrt{3^2+4^2+5^2}} = \frac{3}{\sqrt{50}}$$
.

**24.** (c) Here, 
$$\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$$
,  $\overrightarrow{OB} = 3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ 

$$\overrightarrow{OC} = 4\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$

So, 
$$\overrightarrow{AB} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$$
,  $\overrightarrow{BC} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$ ,  $\overrightarrow{CA} = 2\mathbf{i} - \mathbf{j} - \mathbf{k}$ 

Clearly 
$$|AB| = |BC| = |CA| = \sqrt{6}$$

So these points are vertices of an equilateral triangle.

Let P,Q and R be points having **25.** (b) position vectors  $\alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}$ ,  $\beta \mathbf{i} + \gamma \mathbf{j} + \alpha \mathbf{k}$  and  $\gamma \mathbf{i} + \alpha \mathbf{j} + \beta \mathbf{k}$  respectively.

Then.

$$|\overrightarrow{PQ}| = |\overrightarrow{QR}| = |\overrightarrow{RP}| = \sqrt{(\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2}$$

Hence  $\triangle PQR$  is an equilateral triangle.

**26.** (b) We have 
$$|\mathbf{a} + \mathbf{b}|^2 + |\mathbf{a} - \mathbf{b}|^2 = 2(|\mathbf{a}|^2 + |\mathbf{b}|^2)$$



$$\therefore 25+|\mathbf{a}-\mathbf{b}|^2=2(9+16) \Rightarrow |\mathbf{a}-\mathbf{b}|=5.$$

- **27.** (b) **Trick**: Here is the only vector  $4(\sqrt{2}\mathbf{i} + \mathbf{j} \pm \mathbf{k})$ , whose length is 8.
- **28.** (b) Since **a** and **b** are non-collinear, so  $\mathbf{a} + \mathbf{b}$  and  $\mathbf{a} \mathbf{b}$  will also be non-collinear. Hence,  $\mathbf{a} + \mathbf{b}$  and  $\mathbf{a} \mathbf{b}$  are linearly independent vectors.
- **29.** (b)  $\overrightarrow{AB} = \text{Position vector of } \overrightarrow{B} \text{Position vector}$  of  $\overrightarrow{A} = (2\mathbf{i} + 3\mathbf{j} 6\mathbf{k}) (6\mathbf{i} 2\mathbf{j} + 3\mathbf{k}) = -4\mathbf{i} + 5\mathbf{j} 9\mathbf{k}$   $|\overrightarrow{AB}| = \sqrt{16 + 25 + 81} = \sqrt{122}, \ \overrightarrow{BC} = \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$   $|\overrightarrow{BC}| = \sqrt{1 + 9 + 16} = \sqrt{26} \text{ and } \overrightarrow{AC} = -3\mathbf{i} + 8\mathbf{j} 5\mathbf{k}$   $|\overrightarrow{AC}| = \sqrt{98}$

Therefore,  $AB^2 = 122$ ,  $BC^2 = 26$  and  $AC^2 = 98$ .  $\Rightarrow AB^2 + BC^2 = 26 + 122 = 148$ 

Since  $AC^2 < AB^2 + BC^2$ , therefore  $\triangle ABC$  is an obtuse-angled triangle.

**30.** (c) 
$$R^2 = P^2 + Q^2 + 2PQ \cos\theta$$
  
 $(\sqrt{7}Q)^2 = P^2 + Q^2 + 2PQ \cos60^{\circ}$   
 $7Q^2 = P^2 + Q + PQ \qquad P^2 + PQ - 6Q^2 = 0$   
 $P^2 + 3PQ - 2PQ - 6Q^2 = 0$   
 $P(P+3Q) - 2Q(P+3Q) = 0$   
 $(P-2Q)(P+3Q) = 0$   
 $P-2Q = 0 \text{ or } P+3Q = 0$ 

From P-2Q=0  $\frac{P}{Q}=2$ .

**31.** (b) Vector  $A = 3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}$ . We know that direction cosines of

$$\vec{A} = \frac{3}{\sqrt{3^2 + 4^2 + 5^2}}, \frac{-4}{\sqrt{3^2 + 4^2 + 5^2}}, \frac{5}{\sqrt{3^2 + 4^2 + 5^2}}$$
$$= \frac{3}{5\sqrt{2}}, \frac{-4}{5\sqrt{2}}, \frac{1}{\sqrt{2}}.$$

- **32.** (d)  $\overrightarrow{AB} = (6-2)\mathbf{i} + (-3+9)\mathbf{j} + (8+4)\mathbf{k} = 4\mathbf{i} + 6\mathbf{j} + 12\mathbf{k}$  $|\overrightarrow{AB}| = \sqrt{16+36+144} = 14.$
- **33.** (d)  $\overline{PQ} = (5-1)\mathbf{i} + (-2-3)\mathbf{j} + (4+7)\mathbf{k} = 4\mathbf{i} 5\mathbf{j} + 11\mathbf{k}$  $|\overline{PQ}| = \sqrt{16+25+121} = \sqrt{162}$ .
- **34.** (c)  $m\mathbf{a}$  is a unit vector if and only if  $|m\mathbf{a}| m$   $|\mathbf{a}| = 1$

$$m=\frac{1}{|\mathbf{a}|}$$
.

35. (c) 
$$\overrightarrow{AB} = (3-2)\mathbf{i} + (-2-1)\mathbf{j} + (1+1)\mathbf{k} = \mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$$
  
 $\overrightarrow{BC} = (1-3)\mathbf{i} + (4+2)\mathbf{j} + (-3-1)\mathbf{k} = -2\mathbf{i} + 6\mathbf{j} - 4\mathbf{k}$   
 $\overrightarrow{CA} = (2-1)\mathbf{i} + (1-4)\mathbf{j} + (-1+3)\mathbf{k} = \mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$ 

$$|\overrightarrow{AB}| = \sqrt{1+9+4} = \sqrt{14}$$
  
 $|\overrightarrow{BC}| = \sqrt{4+36+16} = \sqrt{56} = 2\sqrt{14}$ 

$$|\overrightarrow{CA}| = \sqrt{1+9+4} = \sqrt{14}$$

So,  $|\overrightarrow{AB}| + |\overrightarrow{AC}| = |\overrightarrow{BC}|$  and angle between AB and BC is 180°. Points A, B, C can not form an isosceles triangle.

Hence A, B, C are collinear.

36. (c) P.V. of 
$$\overrightarrow{AD} = \frac{(3+5)i + (0-2)j + (4+4)k}{2} = 4\mathbf{i} - \mathbf{j} + 4\mathbf{k}$$

$$|\overrightarrow{AD}| = \sqrt{16+16+1} = \sqrt{33}$$
.

**37.** (d) Given, position vectors of A, B and C are  $7\mathbf{j} + 10\mathbf{k}$ ,  $-\mathbf{i} + 6\mathbf{j} + 6\mathbf{k}$  and  $-4\mathbf{i} + 9\mathbf{j} + 6\mathbf{k}$  respectively.

$$|\overrightarrow{AB}| = |-\mathbf{i} - \mathbf{j} - 4\mathbf{k}| = \sqrt{18}$$
$$|\overrightarrow{BC}| = |-3\mathbf{i} + 3\mathbf{j}| = \sqrt{18}$$
$$|\overrightarrow{AC}| = |-4\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}| = \sqrt{36}$$

Clearly, AB = BC and  $(AC)^2 = (AB)^2 + (BC)^2$ Hence, triangle is right angled isosceles.

**38.** (c) Let A = (1, 1, -1), B = (2, 3, 0), C = (3, 5, -2), D = (0, -1, 1)So,  $\overrightarrow{AB} = (1, 2, 1)$ ,  $\overrightarrow{BC} = (1, 2, -2)$ ,  $\overrightarrow{CD} = (-3, -6, 3)$ ,  $\overrightarrow{DA} = (1, 2, -2)$ 

Clearly,  $\overrightarrow{BC}||\overrightarrow{DA}$  but  $AB \neq CD$  So, it is a trapezium.

**39.** (b)  $R\cos\theta = 6\cos0^\circ + 2\sqrt{2}\cos(180^\circ - B) + 5\cos270^\circ$ 



$$R\cos\theta = 6 - 2\sqrt{2}\cos\theta \qquad \qquad \dots \dots ($$

 $R\sin\theta = 6\sin0^{\circ} + 2\sqrt{2}\sin(180^{\circ} - B) + 5\sin270^{\circ}$ 

$$R\sin\theta = 2\sqrt{2}\sin\theta - 5$$
 .....(ii)  
From (i) and (ii),

 $R^2 = 36 + 8\cos^2 B - 24\sqrt{2}\cos B + 8\sin^2 B$ 

= 61+8( $\cos^2 B + \sin^2 B$ ) –  $24\sqrt{2}\cos B - 20\sqrt{2}\sin B$ : ABC is a right angled isosceles triangle i.e.,  $\angle B = \angle C = 45^\circ$ 

$$\therefore R^2 = 61 + 8(1) - 24\sqrt{2} \cdot \frac{1}{\sqrt{2}} - 20\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 25$$

R = 5

**40.** (b) By triangle law,  $\overrightarrow{AB} = \overrightarrow{AD} - \overrightarrow{BD}$ ,  $\overrightarrow{AC} = \overrightarrow{AD} - \overrightarrow{CD}$ 



Therefore,  $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF}$ =  $3\overrightarrow{AD} + (\overrightarrow{AE} - \overrightarrow{BD}) + (\overrightarrow{AF} - \overrightarrow{CD}) = 3\overrightarrow{AD}$ 

Hence  $\lambda = 3$ , [Since  $\overrightarrow{AE} = \overrightarrow{BD}$ ,  $\overrightarrow{AF} = \overrightarrow{CD}$ ].

**41.** (d)  $\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{BP} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}$  .....(i)



 $\overrightarrow{AQ} = \overrightarrow{AD} + \overrightarrow{DQ} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{DC} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB}$  .....(ii)

By (i) and (ii), we get,

$$\overrightarrow{AP} + \overrightarrow{AQ} = \frac{3}{2} (\overrightarrow{AB} + \overrightarrow{AD}) = \frac{3}{2} (\overrightarrow{AB} + \overrightarrow{BC}) = \frac{3}{2} \overrightarrow{AC}.$$

**42.** (c)  $\overrightarrow{AP} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{PQ}$  or  $\overrightarrow{AP} + \overrightarrow{PB} = \overrightarrow{PQ} + \overrightarrow{CP}$ 



Hence it is a parallelogram.

- 43. (b) v = b + c .....(i) w = b + a .....(ii) We have, x = v + w = a + 2b + c.
- **44.** (b) It is obvious.
- **45.** (c) Since  $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD} \Rightarrow \overrightarrow{BD} = \overrightarrow{AD} \overrightarrow{AB}$   $= (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) - (2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}) = -\mathbf{i} - 2\mathbf{j} + 8\mathbf{k}$ Hence unit vector in the direction of  $\overrightarrow{BD}$  is  $\frac{-\mathbf{i} - 2\mathbf{j} + 8\mathbf{k}}{|-\mathbf{i} - 2\mathbf{j} + 8\mathbf{k}|} = \frac{-\mathbf{i} - 2\mathbf{j} + 8\mathbf{k}}{\sqrt{69}}.$ 
  - **46.** (d) Let  $\mathbf{a} + 2\mathbf{b} = x\mathbf{c}$  and  $\mathbf{b} + 3\mathbf{c} = y\mathbf{a}$ , then  $\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} = (x+6)\mathbf{c}$  and  $\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} = (1+2y)\mathbf{a}$ So,  $(x+6)\mathbf{c} = (1+2y)\mathbf{a}$ Since  $\mathbf{a}$  and  $\mathbf{c}$  are non-zero and non-collinear, we have x+6=0 and 1+2y=0 *i.e.*, x=-6 and  $y=-\frac{1}{2}$ . In either case, we have  $\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} = \mathbf{0}$ .
- 47. (d)  $\mathbf{a} + \mathbf{b} = 4\mathbf{i} + 4\mathbf{j}$ , therefore unit vector  $\frac{4(\mathbf{i} + \mathbf{j})}{\sqrt{32}} = \frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}}.$

- **48.** (a) Let **b** should be added, then  $\mathbf{a} + \mathbf{b} = \mathbf{i}$  $\Rightarrow \mathbf{b} = \mathbf{i} - \mathbf{a} = \mathbf{i} - (3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}) = -2\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$ .
- **49.** (c)  $\mathbf{R} = 3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k} \Rightarrow \hat{\mathbf{R}} = \frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{5\sqrt{2}}$
- **50.** (b) Obviously,  $\overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DE}$



- **51.** (c)  $3\overrightarrow{OD} + \overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC}$
- $= \overrightarrow{OD} + \overrightarrow{DA} + \overrightarrow{OD} + \overrightarrow{DB} + \overrightarrow{OD} + \overrightarrow{DC} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}.$  **52.** (b) Let  $-2\mathbf{a} + 3\mathbf{b} \mathbf{c} = x\mathbf{p} + y\mathbf{q} + z\mathbf{r}$   $\Rightarrow -2\mathbf{a} + 3\mathbf{b} \mathbf{c}$   $= (2x + y 3z)\mathbf{a} + (-3x 2y + z)\mathbf{b} + (y + 2z)\mathbf{c}$   $\therefore 2x + y 3z = -2, \quad -3x 2y + z = 3 \text{ and } y + 2z = -1$

Solving these, we get x = 0,  $y = -\frac{7}{5}$ ,  $z = \frac{1}{5}$ 

$$-2a+3b-c=\frac{(-7q+r)}{5}$$
.

Trick: Check alternates one by one

*i.e.*, (a) 
$$p-4q=-2a+5b-4c$$

(b) 
$$\frac{-7\mathbf{q}+\mathbf{r}}{5}=-2\mathbf{a}+3\mathbf{b}-\mathbf{c}$$
.

**53.** (a) We have,  $\mathbf{p} = \overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AC} + \lambda \overrightarrow{AD} + \overrightarrow{CD}$   $= \lambda \overrightarrow{AD} + (\overrightarrow{AC} + \overrightarrow{CD}) = \lambda \overrightarrow{AD} + \overrightarrow{AD} = (\lambda + 1)\overrightarrow{AD}.$ 

Therefore  $\mathbf{p} = \mu \overrightarrow{AD} \Rightarrow \mu = \lambda + 1$ .

- **54.** (a)  $|\mathbf{a} + \mathbf{b}| = |3\mathbf{i} + 4\mathbf{j} 12\mathbf{k}| = |\sqrt{3^2 + 4^2 + 12^2}| = 13$  $\therefore \mathbf{a} + \mathbf{b} = 13.$
- **55.** (b)  $\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}, \overrightarrow{D}, \overrightarrow{E}$  are five co-planar points.  $\overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC} + \overrightarrow{AE} + \overrightarrow{BE} + \overrightarrow{CE}$   $= (\overrightarrow{DA} + \overrightarrow{AE}) + (\overrightarrow{DB} + \overrightarrow{BE}) + (\overrightarrow{DC} + \overrightarrow{CE})$   $= \overrightarrow{DE} + \overrightarrow{DE} + \overrightarrow{DE} = 3\overrightarrow{DE}.$  **56.** (c)  $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = (3 + 3 + 3)\overrightarrow{B} + (3 +$
- **56.** (c)  $\mathbf{a} + \mathbf{b} + \mathbf{c} = (3 + 2 1)\mathbf{i} + (-2 4 + 2)\mathbf{j} + (1 3 + 2)\mathbf{k}$ =  $4\mathbf{i} - 4\mathbf{j}$ .
- **57.** (b) Points A, B, C, D, E are in a plane. Resultant  $= (\overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE}) + (\overrightarrow{CB} + \overrightarrow{DB} + \overrightarrow{EB})$   $= (\overrightarrow{AC} + \overrightarrow{CB}) + (\overrightarrow{AD} + \overrightarrow{DB}) + (\overrightarrow{AE} + \overrightarrow{EB})$   $= \overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{AB} = 3\overrightarrow{AB}.$
- **58.** (a) P + Q = 18, R = 12,  $\theta = 90^{\circ}$ , (say)  $\tan \theta = \tan 90^{\circ} = \infty$



$$\Rightarrow P + Q\cos\alpha = 0 , : \cos\alpha = \frac{-P}{Q}$$

Also, 
$$(12)^2 = P^2 + Q^2 + 2PQ \cos\alpha$$

or 
$$144 = P^2 + O^2 + (2P)(-P)$$

$$\Rightarrow$$
 144=  $Q^2 - P^2 = (Q + P)(Q - P)$ 

or 
$$144 = 18(Q - P)$$
 or  $Q - P = 8$ 

After solving Q = 13, P = 5.

- **59.** (a) Resultant vector =  $(2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}) + (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$ Unit vector =  $\frac{3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}}{\sqrt{9 + 36 + 4}} = \frac{1}{7}(3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k})$ .
- **60.** (a) It is obvious.
- **61.** (b) It is obvious.

**62.** (a) 
$$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \frac{\mathbf{b} + \mathbf{c}}{2} - \mathbf{a} = \frac{\mathbf{b} + \mathbf{c} - 2\mathbf{a}}{2}$$
,

(where O is the origin for reference)

Similarly, 
$$\overrightarrow{BE} = \overrightarrow{OE} - \overrightarrow{OB} = \frac{\mathbf{c} + \mathbf{a}}{2} - \mathbf{b} = \frac{\mathbf{c} + \mathbf{a} - 2\mathbf{b}}{2}$$



Now, 
$$\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}$$
  
=  $\frac{\mathbf{b} + \mathbf{c} - 2\mathbf{a}}{2} + \frac{\mathbf{c} + \mathbf{a} - 2\mathbf{b}}{2} + \frac{\mathbf{a} + \mathbf{b} - 2\mathbf{c}}{2} = \mathbf{0}$ .

**63.** (d) Since given that  $\overrightarrow{AC} = 3\overrightarrow{AB}$ . It means that point C divides  $\overrightarrow{AB}$  externally. Thus  $\overrightarrow{AC} : \overrightarrow{BC} = 3:2$ 



Hence 
$$\overrightarrow{OC} = \frac{3.\mathbf{b} - 2.\mathbf{a}}{3 - 2} = 3\mathbf{b} - 2\mathbf{a}$$
.

**64.** (b) 
$$\frac{\mathbf{a} + \mathbf{b}}{2} = 2\mathbf{i} - \mathbf{j} + \frac{5}{2}\mathbf{k}$$
.

**65.** (b) Let position vector of D is  $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ , then  $\Rightarrow -2\mathbf{j} - 4\mathbf{k} = (7 - x)\mathbf{i} + (7 - y)\mathbf{j} + (7 - z)\mathbf{k}$  $\Rightarrow x = 7, y = 9, z = 11.$ 

Hence position vector of D will be 7i + 9j + 11k.

**66.** (d) We know that P will be the mid point of AC and BD



$$\therefore \overrightarrow{OA} + \overrightarrow{OC} = 2\overrightarrow{OP}$$

and 
$$\overrightarrow{OB} + \overrightarrow{OD} = 2\overrightarrow{OP}$$

Adding (i) and 
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{OD}$$

 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OP}$ .

- **67.** (a) Let the position vector of P is  $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ , then  $\overrightarrow{AB} = \overrightarrow{CP} \Rightarrow \mathbf{j} \mathbf{i} = x\mathbf{i} + y\mathbf{j} + (z-1)\mathbf{k}$ By comparing the coefficients of  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$ , we get x = -1, y = 1 and  $z = 1 = 0 \Rightarrow z = 1$ Hence required position vector is  $-\mathbf{i} + \mathbf{j} + \mathbf{k}$ .
- **68.** (b)  $\overrightarrow{AB} = -\mathbf{i} \mathbf{j} 2\mathbf{k}$  and  $\overrightarrow{CD} = 6\mathbf{i} + 6\mathbf{j} + 12\mathbf{k}$ Hence,  $\overrightarrow{AB}||\overrightarrow{CD}$ .
- **69.** (c)  $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} \mathbf{k}$ ,  $\overrightarrow{OP} = 3(\mathbf{i} + \mathbf{j} + \mathbf{k})$ ,  $\overrightarrow{OB} = ?$ we have  $\overrightarrow{OP} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2}$   $\Rightarrow \overrightarrow{OB} = 2\overrightarrow{OP} \overrightarrow{OA}$   $= 4\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$



- **Trick**: By inspection, middle point of  $4\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$  and  $2\mathbf{i} + 3\mathbf{j} \mathbf{k}$  is  $3(\mathbf{i} + \mathbf{j} + \mathbf{k})$ .
- 70. (d)  $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \mathbf{0}$  and  $\overrightarrow{GA'} + \overrightarrow{GB} + \overrightarrow{GC'} = \mathbf{0}$  $\Rightarrow (\overrightarrow{GA} - \overrightarrow{GA'}) + (\overrightarrow{GB} - \overrightarrow{GB'}) + (\overrightarrow{GC} - \overrightarrow{GC'}) = \mathbf{0}$   $\Rightarrow (\overrightarrow{GA} + \overrightarrow{GG} - \overrightarrow{GA'}) + (\overrightarrow{GB} + \overrightarrow{GG} - \overrightarrow{GB'})$   $+ (\overrightarrow{GC} + \overrightarrow{GG} - \overrightarrow{GC'}) = 3\overrightarrow{GG}$   $\Rightarrow (\overrightarrow{GA} - \overrightarrow{GA'}) + (\overrightarrow{GB} - \overrightarrow{GB'}) + (\overrightarrow{GC} - \overrightarrow{GC'}) = 3\overrightarrow{GG}$   $\Rightarrow \overrightarrow{A'A} + \overrightarrow{BB} + \overrightarrow{CC} = 3\overrightarrow{GG} \Rightarrow \overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 3\overrightarrow{GG'}.$
- 71. (b)  $\overrightarrow{OA} = \overrightarrow{OO} + \overrightarrow{OA}$   $\overrightarrow{OB} = \overrightarrow{OO} + \overrightarrow{OB}$   $\overrightarrow{OC} = \overrightarrow{OO} + \overrightarrow{OC}$   $\Rightarrow \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$   $= 3\overrightarrow{OO} + \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OO} = -\overrightarrow{OO}$   $\therefore \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 2\overrightarrow{OO}.$ 
  - **72.** (a) As in figure  $\overrightarrow{AB} = \mathbf{a}$ ,  $\overrightarrow{BC} = \mathbf{b}$ , so  $\overrightarrow{AD} = 2\mathbf{b}$  and  $\overrightarrow{ED} = \mathbf{a}$ .





Now, 
$$\overrightarrow{AE} + \overrightarrow{ED} = \overrightarrow{AD} \Rightarrow \overrightarrow{AE} = \overrightarrow{AD} - \overrightarrow{ED} = 2\mathbf{b} - \mathbf{a}$$
.

**73.** (a) Since position vector of a point C with respect to B is

$$\overrightarrow{BC} = \mathbf{i} + \mathbf{j}$$
 .....(i)

Similarly, 
$$\overrightarrow{AB} = \mathbf{i} - \mathbf{i}$$
 .....(ii)

Now by (i) and (ii),  $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = 2\mathbf{i}$ .

**74.** (a) 
$$\overrightarrow{OP} = \frac{1(\overrightarrow{OB}) + 2(6\mathbf{b} - 2\mathbf{a})}{1 + 2}$$



**75.** (b) 
$$\frac{3\mathbf{i} - \mathbf{j} - 3\mathbf{k} + \mathbf{i} + 3\mathbf{j} - \mathbf{k}}{2} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$$
.

**76.** (b) 
$$\overrightarrow{PA} + \overrightarrow{PB} = (\overrightarrow{PA} + \overrightarrow{AC}) + (\overrightarrow{PB} + \overrightarrow{BC}) - (\overrightarrow{AC} + \overrightarrow{BC})$$
  
=  $\overrightarrow{PC} + \overrightarrow{PC} - (\overrightarrow{AC} - \overrightarrow{CB}) = 2\overrightarrow{PC} - 0$ , (:  $\overrightarrow{AC} = \overrightarrow{CB}$ )



 $\therefore \overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$ .

**77.** (d) We know by fundamental theorem of proportionality that  $\overrightarrow{DE} = \frac{1}{2} \overrightarrow{BC}$ 



In triangle,  $\overrightarrow{BC} = \mathbf{b} - \mathbf{a}$ ; Hence,  $\overrightarrow{DE} = \frac{1}{2}(\mathbf{b} - \mathbf{a})$ .

**78.** (b) 
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0 \Rightarrow \mathbf{a} + \mathbf{b} - \mathbf{c} = 0$$
.

**79.** (c) 
$$\overrightarrow{AE} + \overrightarrow{ED} + \overrightarrow{DC} + \overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DC} + \overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{AB}$$
. Obviously, if  $\overrightarrow{BC}$  is added to this system, then it will be  $\overrightarrow{AC} + \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} + \overrightarrow{AC} = 2\overrightarrow{AC}$ .

**80.** (c) Since 
$$\overrightarrow{OA} = \mathbf{a}$$
,  $\overrightarrow{OB} = \mathbf{b}$  and  $2AC = CO$ 

By section formula 
$$\overrightarrow{OC} = \frac{2}{3}\mathbf{a}$$
.

Therefore, 
$$|\overrightarrow{CD}| = 3|\overrightarrow{OB}| \Rightarrow \overrightarrow{CD} = 3\mathbf{b}$$

$$\Rightarrow \overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{CD} = \frac{2}{3}\mathbf{a} + 3\mathbf{b}$$

Hence, 
$$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \frac{2}{3}\mathbf{a} + 3\mathbf{b} - \mathbf{a} = 3\mathbf{b} - \frac{1}{3}\mathbf{a}$$
.

**81.** (a) 
$$2\overrightarrow{OA} + 3\overrightarrow{OB} = 2(\overrightarrow{OC} + \overrightarrow{CA}) + 3(\overrightarrow{OC} + \overrightarrow{CB})$$
  
=  $5\overrightarrow{OC} + 2\overrightarrow{CA} + 3\overrightarrow{CB} = 5\overrightarrow{OC}$ ,  $\{: 2\overrightarrow{CA} = -3\overrightarrow{CB}\}$ .

- **82.** (c)  $\overrightarrow{AB} = \overrightarrow{BC}$  (as given). Hence it is an isosceles triangle.
- **83.** (a) It should be remembered.
  - **84.** (b) Position vectors of the points which divides internally is,  $\frac{3(2\mathbf{a} 3\mathbf{b}) + 2(3\mathbf{a} 2\mathbf{b})}{5} = \frac{12\mathbf{a} 13\mathbf{b}}{5}.$

**85.** (a) 
$$\overrightarrow{AB} = \overrightarrow{CX} \Rightarrow \mathbf{j} - \mathbf{i} = P.V.of X - \mathbf{k} \Rightarrow P.V.of X = -\mathbf{i} + \mathbf{j} + \mathbf{k}$$
.

- **86.** (a) It is obvious.
  - **87.** (a) Position vectors of vertices A, B and C of the triangle  $ABC = \mathbf{a}$ ,  $\mathbf{b}$  and  $\mathbf{c}$ . We know that position vector of centroid of the triangle  $(G) = \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{2}$ .

Therefore, 
$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$$
  
=  $\left(\mathbf{a} - \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3}\right) + \left(\mathbf{b} - \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3}\right) + \left(\mathbf{c} - \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3}\right)$   
=  $\frac{1}{3}[2\mathbf{a} - \mathbf{b} - \mathbf{c} + 2\mathbf{b} - \mathbf{a} - \mathbf{c} + 2\mathbf{c} - \mathbf{a} - \mathbf{b}] = \mathbf{0}$ .

**88.** (c) Co-ordinate of *C* is 
$$\left(\frac{2-4}{2}, \frac{-1+3}{2}\right) = (-1, 1)$$
  
  $\therefore \overrightarrow{OC} = -\mathbf{i} + \mathbf{j}$ .

**89.** (d) A regular hexagon *ABCDEF*.



We know from the hexagon that  $\overrightarrow{AD}$  is parallel to  $\overrightarrow{BC}$  or  $\overrightarrow{AD} = 2\overrightarrow{BC}$ ;  $\overrightarrow{EB}$  is parallel to  $\overrightarrow{FA}$  or  $\overrightarrow{EB} = 2\overrightarrow{FA}$ , and  $\overrightarrow{FC}$  is parallel to  $\overrightarrow{AB}$  or  $\overrightarrow{FC} = 2\overrightarrow{AB}$ .

Thus 
$$\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = 2\overrightarrow{BC} + 2\overrightarrow{FA} + 2\overrightarrow{AB}$$
  
=  $2(\overrightarrow{FA} + \overrightarrow{AB} + \overrightarrow{BC}) = 2(\overrightarrow{FC}) = 2(2\overrightarrow{AB}) = 4\overrightarrow{AB}$ .



**90.** (c) If **x** be the position vector of *B*, then **a** divides *AB* in the ratio 2:3.

$$a = \frac{2x + 3(a + 2b)}{2 + 3}$$

$$5\mathbf{a} - 3\mathbf{a} - 6\mathbf{b} = 2\mathbf{x} \Rightarrow \mathbf{x} = \mathbf{a} - 3\mathbf{b}$$
.

**91.** (a)  $\overrightarrow{BE} + \overrightarrow{AF} = \overrightarrow{OE} - \overrightarrow{OB} + \overrightarrow{OF} - \overrightarrow{OA}$ 



$$= \frac{\overrightarrow{OA} + \overrightarrow{OC}}{2} - \overrightarrow{OB} + \frac{\overrightarrow{OB} + \overrightarrow{OC}}{2} - \overrightarrow{OA}$$

$$=\overrightarrow{OC}-\frac{\overrightarrow{OA}+\overrightarrow{OB}}{2}=\overrightarrow{OC}-\overrightarrow{OD}=\overrightarrow{DC}.$$

**92.** (a) Let the bisector of angle A meets BC at D, then AD divides BC in the ratio AB: AC Position vectors of D

$$=\frac{|\overrightarrow{AB}|(2\mathbf{i}+5\mathbf{j}+7\mathbf{k})+|\overrightarrow{AC}|(2\mathbf{i}+3\mathbf{j}+4\mathbf{k})}{|\overrightarrow{AB}|+|\overrightarrow{AC}|}$$

Here,  $|\overrightarrow{AB}| = |-2\mathbf{i} - 4\mathbf{j} - 4\mathbf{k}| = 6$  and

$$|\overrightarrow{AC}| = |-2\mathbf{i} - 2\mathbf{j} - \mathbf{k}| = 3$$

Position vector of  $D = \frac{6(2\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}) + 3(2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})}{6+3}$ 

$$=\frac{18\textbf{i}+39\textbf{j}+54\textbf{k})}{9}=\frac{1}{3}(6\textbf{i}+13\textbf{j}+18\textbf{k})\,.$$

**93.** (d)  $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b} = (\lambda + \mu)\mathbf{i} - \lambda \mathbf{j} + \mu \mathbf{k}$ 

Now, **c.a** = 
$$0 \Rightarrow 2\lambda + \mu = 0 \Rightarrow \mu = -2\lambda$$

Therefore,  $\mathbf{c} = -\lambda \mathbf{i} - \lambda \mathbf{j} - 2\lambda \mathbf{k} = (\sqrt{6})(-\lambda) \left[ \frac{\mathbf{i} + \mathbf{j} + 2\mathbf{k}}{\sqrt{6}} \right]$ 

Hence, unit vector  $=\frac{(\mathbf{i}+\mathbf{j}+2\mathbf{k})}{\sqrt{6}}$ .

**94.** (d) Here  $\overrightarrow{AB} = -2\mathbf{j}$ ,  $\overrightarrow{BC} = (a-1)\mathbf{i} + (b+1)\mathbf{j} + d\mathbf{k}$ 

The points are collinear, then  $\overrightarrow{AB} = k(\overrightarrow{BC})$ 

$$-2\mathbf{j} = k\{(a-1)\mathbf{i} + (b+1)\mathbf{j} + d\mathbf{k}\}$$

On comparing, k(a-1)=0, k(b+1)=-2, kc=0.

Hence c = 0, a = 1 and b is arbitrary scalar.

- **95.** (d)  $(\mathbf{a} \mathbf{b}) (\mathbf{a} + \mathbf{b}) = [(\mathbf{a} + k\mathbf{b}) (\mathbf{a} \mathbf{b})]$  $\Rightarrow -2\mathbf{b} = (k+1)\mathbf{b}$ . Hence  $k \in R$ .
- **96.** (a) Here  $\overrightarrow{AB} = \mathbf{b} \mathbf{a}$  and  $\overrightarrow{AC} = (3\mathbf{a} 2\mathbf{b}) (\mathbf{a}) = -2(\mathbf{b} \mathbf{a})$

Therefore, it is of the form  $\overrightarrow{AB} = \overrightarrow{mAC}$ . Hence *A*, *B*, *C* are collinear. **97.** (a) It is obvious.

**98.** (d) 
$$\frac{3}{a} = \frac{1}{b} = \frac{-5}{-15} \Rightarrow a = 9, b = 3.$$

**99.** (a) If the given points be A, B, C, then  $\overrightarrow{AB} = k(\overrightarrow{BC})$  $\Rightarrow -20\mathbf{i} - 11\mathbf{j} = k[(a-40)\mathbf{i} - 44\mathbf{j}]$ 

On comparing, 
$$-11 = -44k \Rightarrow k = \frac{1}{4}$$

And 
$$-20 = \frac{1}{4}(a-40) \Rightarrow a = -40$$
.

- **100.** (c) Unit vector prarallel to  $\overrightarrow{OA}$   $= \frac{4\mathbf{i} + 5\mathbf{j}}{\sqrt{16 + 25}} = \frac{1}{\sqrt{41}} (4\mathbf{i} + 5\mathbf{j}).$ 
  - **101.** (c)  $\overrightarrow{AB} = -4\mathbf{i} + 5\mathbf{k}$ , which is a vector lying in a plane parallel to xz- plane.
  - **102.** (c) If given points be A, B, C then  $\overrightarrow{AB} = k(\overrightarrow{BC})$  or  $2\mathbf{i} 8\mathbf{j} = k[(a-12)\mathbf{i} + 16\mathbf{j}] \Rightarrow k = \frac{-1}{2}$
- **103.** (d)  $\overrightarrow{AB} = \lambda \overrightarrow{BC}$ , (for collinearity) Here  $\overrightarrow{AB} = -2\mathbf{b}$ ,  $\overrightarrow{BC} = (k+1)\mathbf{b}$ Hence  $\forall k \in R \Rightarrow \overrightarrow{AB} = \lambda \overrightarrow{BC}$ .

Also,  $2 = k(a-12) \Rightarrow a = 8$ .

- **104.** (b)  $\overrightarrow{AB} = -\mathbf{i} 4\mathbf{j}$ ,  $\overrightarrow{CD} = -2\mathbf{i} + (\lambda 2)\mathbf{j}$  $\therefore \overrightarrow{AB} \mid \overrightarrow{CD}$ . So  $, \frac{-1}{-2} = \frac{-4}{\lambda - 2}$ ,  $\lambda - 2 = -8$  or
- **105.** (a) Obviously,  $\frac{3}{6} = \frac{2}{-4x} = -\frac{1}{y} \Rightarrow x = -1$  and y = -2.
  - **106.** (d) Obviously,  $\frac{1}{6} = \frac{1}{-4x} = -\frac{1}{y} \Rightarrow x = -1$  and y = -2.

**k**, the corresponding equations are 
$$x+3y-4z=\lambda x$$
 or  $(1-\lambda)x+3y-4z=0$  .....(i)

$$x - (\lambda + 3)y + 5z = 0$$

 $\lambda = -6$ .

$$3x + y - \lambda z = 0$$

These equations (i), (ii) and (iii) have a non-trivial solution, if

$$\begin{vmatrix} (1-\lambda) & 3 & -4 \\ 1 & -(\lambda+3) & 5 \\ 3 & 1 & -\lambda \end{vmatrix} = 0 \Rightarrow \lambda = 0, -1.$$

- **107.** (b) These are coplanar because 1(a) + 1(b) = a + b.
- 108. (d) It is a fundamental concept.

 $(x-2)-\lambda(2x+1)=0, \lambda+1=0$ 

- **109.** (c)  $\mathbf{a} + \mathbf{b} = 3\mathbf{i} + 9\mathbf{j} = 3(\mathbf{i} + 3\mathbf{j})$ . Hence it is parallel to (1,3).
  - **110.** (c) Since  $\mathbf{c} = (x-2)\mathbf{a} + \mathbf{b}$  and  $\mathbf{d} = (2x+1)\mathbf{a} \mathbf{b}$  are collinear, therefore  $\mathbf{c} = \lambda \mathbf{d}$   $\Rightarrow (x-2)\mathbf{a} + \mathbf{b} = \lambda(2x+1)\mathbf{a} \lambda \mathbf{b}$ or  $[(x-2) \lambda(2x+1)]\mathbf{a} + (\lambda+1)\mathbf{b} = 0$



(: a,b are linearly independent)

$$\Rightarrow x-2+2x+1=0 \Rightarrow x=\frac{1}{3}.$$

**111.** (a) 
$$\begin{vmatrix} 1 & 2 & 3 \\ \lambda & 4 & 7 \\ -3 & -2 & -5 \end{vmatrix} = 0 \Rightarrow \lambda = 3.$$

- **112.** (a)  $\overrightarrow{PQ} = 3\mathbf{a} + 3\sqrt{3}\mathbf{b}$  and  $\overrightarrow{RS} = 2\mathbf{a} + 2\sqrt{3}\mathbf{b}$ Hence  $\overrightarrow{PQ} | \overrightarrow{RS}$ .
- **113.** (c) Condition for collinearity,  $\mathbf{b} = \lambda \mathbf{a}$  $\Rightarrow$   $(-2\mathbf{i} + m\mathbf{j}) = \lambda(\mathbf{i} - \mathbf{j})$ Comparison of coefficient, we get  $\Rightarrow \lambda = -2$  and  $-\lambda = m$  So, m = 2.
- **114.** (b) Let the *B* divide *AC* in ratio  $\lambda:1$ , then  $5i - 2k = \frac{\lambda(11i + 3j + 7k) + i - 2j - 8k}{\lambda + 1}$  $\Rightarrow 3\lambda - 2 = 0 \Rightarrow \lambda = \frac{2}{3}$  *i.e.*, ratio = 2 : 3.
  - If **a**, **b** are two non-zero, non-collinear **115.** (c) vectors and x, v are two scalars such that then x = 0, y = 0 . Because  $x\mathbf{a} + y\mathbf{b} = 0$ , otherwise one will be a scalar multiple of the other and hence collinear which is a contradiction.
- **116.** (a) If A, B, C are collinear. Then  $\overrightarrow{AB} = \lambda \overrightarrow{BC}$  $2\mathbf{i} + (4 - x)\mathbf{j} + 4\mathbf{k} = \lambda[(y - 3)\mathbf{i} - 6\mathbf{j} - 12\mathbf{k}]$  $\Rightarrow$  2 =  $(v-3)\lambda$ ....(i) and  $4 - x = -6\lambda$ ....(ii)  $4 = -12\lambda \implies \lambda = \frac{-1}{3}$ By (i), y = -3 and by (ii),

x=2 ; (x, y) = (2, -3).

- **117.** (c)  $x\mathbf{a} + y\mathbf{b}$  represents a vector coplanar with  $\mathbf{a}$  and
- **118.** (a) We have  $a + b + c = \alpha d$  and  $b + c + d = \beta a$  $\therefore$  a+b+c+d = ( $\alpha$ +1)d and a+b+c+d = ( $\beta$ +1)a.  $\Rightarrow$   $(\alpha + 1)\mathbf{d} = (\beta + 1)\mathbf{a}$

If  $\alpha \neq -1$ , then  $(\alpha + 1)\mathbf{d} = (\beta + 1)\mathbf{a} \Rightarrow \mathbf{d} = \frac{\beta + 1}{\alpha + 1}\mathbf{a}$  $\Rightarrow$  **a**+**b**+**c** =  $\alpha$  **d**  $\Rightarrow$  **a**+**b**+**c** =  $\alpha \left( \frac{\beta+1}{\alpha+1} \right)$  **a** 

$$\Rightarrow \mathbf{a} + \mathbf{b} + \mathbf{c} = \alpha \, \mathbf{d} \Rightarrow \mathbf{a} + \mathbf{b} + \mathbf{c} = \alpha \left( \frac{r}{\alpha + 1} \right)$$
$$\Rightarrow \left( 1 - \frac{\alpha(\beta + 1)}{\alpha + 1} \right) \mathbf{a} + \mathbf{b} + \mathbf{c} = 0$$

 $\Rightarrow$  **a**, **b**, **c** are coplanar which is contradiction to the given condition,  $\alpha = -1$ a + b + c + d = 0.

Since **a** and **b** are collinear, we have **119.** (a)  $\mathbf{a} = m\mathbf{b}$  for some scalar m. i - j = m(-2i + kj) i - j = -2mi + kmj

$$-2m = 1, km = -1$$

$$m = -\frac{1}{2}$$
, So  $k = 2$ .

#### Scalar or Dot product of two vectors and its applications

- (a) Let a = xi + yj + 2k. Then (a.i)i + (a.j)j + (a.k)k = a.
- 2. (d) Let  $\mathbf{r} = \lambda \mathbf{i} + \lambda \mathbf{j} + \lambda \mathbf{k}$ . Since  $\mathbf{r} \cdot \mathbf{i} = \mathbf{r} \cdot \mathbf{j} = \mathbf{r} \cdot \mathbf{k}$  $\Rightarrow X = V = Z$

Also 
$$| \mathbf{r} | = \sqrt{x^2 + y^2 + z^2} = 3 \Rightarrow x = \pm \sqrt{3}$$
, {By (i)}

Hence the required vector  $\mathbf{r} = \pm \sqrt{3}(\mathbf{i} + \mathbf{j} + \mathbf{k})$ .

**Trick**: As the vector  $\pm \sqrt{3}(\mathbf{i} + \mathbf{j} + \mathbf{k})$  satisfies both the conditions.

- 3. (c)  $\mathbf{a}.\mathbf{b} = \mathbf{a}.\mathbf{c} \Rightarrow \mathbf{a}.\mathbf{b} - \mathbf{a}.\mathbf{c} = 0 \Rightarrow \mathbf{a}.(\mathbf{b} - \mathbf{c}) = 0$  $\Rightarrow$  Either b-c=0 or  $a=0 \Rightarrow b=c$  or  $a\perp(b-c)$ .
- 4. (b) a.b = -|a||b|,  $(:: \cos\theta = -1).$
- 5. (c) Squaring  $(\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{0}$ , we get  $\mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2 + 2\mathbf{a}.\mathbf{b} + 2\mathbf{b}.\mathbf{c} + 2\mathbf{c}.\mathbf{a} = 0$  $|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2(\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a}) = 0$  $2(a.b + b.c + c.a) = -3 \implies a.b + b.c + c.a = -\frac{3}{2}$ .
  - **6.**(c) Since **a**, **b** and **c** are mutually perpendicular, so a.b = b.c = c.a = 0

Angle between  $\mathbf{a}$  and  $\mathbf{a} + \mathbf{b} + \mathbf{c}$  is

$$\cos\theta = \frac{\mathbf{a}.(\mathbf{a} + \mathbf{b} + \mathbf{c})}{|\mathbf{a}||\mathbf{a} + \mathbf{b} + \mathbf{c}|} \qquad \dots (i)$$

Now |  $a \mid b \mid d \mid c \mid a$ 

$$|\mathbf{a} + \mathbf{b} + \mathbf{c}|^2 = \mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2 + 2\mathbf{a} \cdot \mathbf{b} + 2\mathbf{b} \cdot \mathbf{c} + 2\mathbf{c} \cdot \mathbf{a}$$
  
=  $a^2 + a^2 + a^2 + 0 + 0 + 0$   
 $|\mathbf{a} + \mathbf{b} + \mathbf{c}|^2 = 3a^2 \Rightarrow |\mathbf{a} + \mathbf{b} + \mathbf{c}| = \sqrt{3}a$ 

Putting this value in (i), we get  $\theta = \cos^{-1} \frac{1}{\sqrt{3}}$ .

7.(a) Three mutually perpendicular unit vectors = a, **b** and **c**. Therefore

re 
$$|a| = |b| = |c| = 1$$

and

a.b = b.c = c.a = 0. We know that

$$|\mathbf{a} + \mathbf{b} + \mathbf{c}|^2 = (\mathbf{a} + \mathbf{b} + \mathbf{c}) \cdot (\mathbf{a} + \mathbf{b} + \mathbf{c}) = |\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2(\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}) = 1 + 1 + 1 + 0 = 3$$

or 
$$| \mathbf{a} + \mathbf{b} + \mathbf{c} | = \sqrt{3}$$
.

- (c)  $\mathbf{a} + \mathbf{b} = \mathbf{c} \Rightarrow |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a} \cdot \mathbf{b} = |\mathbf{c}|^2$ and  $|\mathbf{a}| + |\mathbf{b}| = |\mathbf{c}| \implies |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}| |\mathbf{b}| = |\mathbf{c}|^2$  $\therefore$  **a**. **b** = | **a**|| **b**|  $\Rightarrow$  cos $\theta$  = 1  $\theta$  = 0.
- (d) Since  $\mathbf{a} \perp \mathbf{b} \Rightarrow \mathbf{a} \cdot \mathbf{b} = 0$  $|\mathbf{a} - \mathbf{b}|^2 = (\mathbf{a} - \mathbf{b})^2 = a^2 + b^2 - 2\mathbf{a} \cdot \mathbf{b} = 25 + 25$  $\Rightarrow |\mathbf{a} - \mathbf{b}| = 5\sqrt{2}$ .



- **10.** (b)  $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a} \cdot \mathbf{b}$ or  $|\mathbf{a} + \mathbf{b}|^2 = 2.2\cos^2\frac{\theta}{2} \Rightarrow \cos\frac{\theta}{2} = \frac{1}{2}|\mathbf{a} + \mathbf{b}|$ .
- **11.** (d)  $\mathbf{a} + \mathbf{b} = -\mathbf{c} \Rightarrow |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}||\mathbf{b}|\cos\theta = |\mathbf{c}|^2$  $\Rightarrow \cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2}$ .
- 12. (a)  $|\mathbf{a} + \mathbf{b}| > |\mathbf{a} \mathbf{b}|$ Squaring both sides, we get  $a^2 + b^2 + 2\mathbf{a} \cdot \mathbf{b} > a^2 + b^2 - 2\mathbf{a} \cdot \mathbf{b}$   $4\mathbf{a} \cdot \mathbf{b} > 0 \qquad \cos\theta > 0 \text{ Hence } \theta < 90^\circ \text{ , (acute)}.$
- 13. (a) Given that  $\mathbf{a} = \mathbf{b} + \mathbf{c}$  and angle between  $\mathbf{b}$  and  $\mathbf{c}$  is  $\frac{\pi}{2}$ .

  So,  $\mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2 + 2\mathbf{b} \cdot \mathbf{c}$ or  $\mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2 + 2|\mathbf{b}||\mathbf{c}|\cos\frac{\pi}{2}$ or  $\mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2 + 0$ ,  $\therefore \mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2$ i.e.,  $\mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2$ .
- **14.** (d) Obviously  $\mathbf{a}$ ,  $\mathbf{b}$  are unit vectors.
- **15.** (d) Angle between  $\mathbf{i} + \mathbf{j} + \mathbf{k}$  and  $\mathbf{i}$  is equal to  $\cos^{-1}\left\{\frac{(\mathbf{i} + \mathbf{j} + \mathbf{k}).\mathbf{i}}{|\mathbf{i} + \mathbf{j} + \mathbf{k}||\mathbf{i}|}\right\} \Rightarrow \alpha = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$  Similarly angle between  $\mathbf{i} + \mathbf{j} + \mathbf{k}$  and  $\mathbf{j}$  is  $\beta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) \text{ and between } \mathbf{i} + \mathbf{j} + \mathbf{k} \text{ and } \mathbf{k} \text{ is}$   $\gamma = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right). \text{ Hence } \alpha = \beta = \gamma.$
- **16.** (b) Let  $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \Rightarrow \mathbf{r} \cdot \mathbf{i} = x$ ,  $\mathbf{r} \cdot \mathbf{j} = y$ ,  $\mathbf{r} \cdot \mathbf{k} = z$  $\Rightarrow (\mathbf{r} \cdot \mathbf{i})^2 + (\mathbf{r} \cdot \mathbf{j})^2 + (\mathbf{r} \cdot \mathbf{k})^2 = x^2 + y^2 + z^2 = r^2$ .
- 17. (d) Parallel vector =  $(2 + b)\mathbf{i} + 6\mathbf{j} 2\mathbf{k}$ Unit vector =  $\frac{(2 + b)\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}}{\sqrt{b^2 + 4b + 44}}$ According to the condition,  $1 = \frac{(2 + b) + 6 - 2}{\sqrt{b^2 + 4b + 44}}$  $\Rightarrow b^2 + 4b + 44 = b^2 + 12b + 36 \Rightarrow 8b = 8 \Rightarrow b = 1$ .
- **18.** (b) Let unit vector be  $y\mathbf{i} + 2\mathbf{k}$ , then  $\sqrt{y^2 + z^2} = 1$  .....(i)

Since given that  $\cos 30^\circ = \frac{(y\mathbf{j} + 2\mathbf{k}).(y\mathbf{j})}{|y\mathbf{j} + 2\mathbf{k}| |y\mathbf{j}|}$   $\Rightarrow \frac{y^2}{\left(\sqrt{y^2 + z^2}\right)y} = \frac{\sqrt{3}}{2} \Rightarrow y = \frac{\sqrt{3}}{2},$   $(\because \sqrt{y^2 + z^2} = 1 \text{by (i)})$ Similarly,  $\cos 60^\circ = \frac{(y\mathbf{j} + 2\mathbf{k}).2\mathbf{k}}{|y\mathbf{j} + 2\mathbf{k}|.2\mathbf{k}} \Rightarrow z = \frac{1}{2}$ 

Hence the components of unit vector are  $0, \frac{\sqrt{3}}{2}, \frac{1}{2}$ .

**Trick:** Since the vector lies in yz- plane, so it will be either  $0\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j} + \frac{1}{2}\mathbf{k}$  or  $0\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{\sqrt{3}}{2}\mathbf{k}$ . But the vector  $\frac{\sqrt{3}}{2}\mathbf{j} + \frac{1}{2}\mathbf{k}$  makes angle 30° with y- axis and that of 60° with z-axis.

- **19.** (c)  $\Sigma \mathbf{F} = 2\mathbf{j} \mathbf{k}$ ,  $\overrightarrow{AB} = 2\mathbf{i} + 4\mathbf{j} \mathbf{k}$  $\Sigma \mathbf{F} \cdot \overrightarrow{AB} = 8 + 1 = 9$ .
- **20.** (c)  $\mathbf{a}.\mathbf{b} = aa\cos 20^\circ$ ,  $\{: |\mathbf{a}| = |\mathbf{b}| = a(say)\}$  $\Rightarrow -8 = -\frac{a^2}{2} \Rightarrow a = 4$

(Negative sign does not occur in moduli).

- **21.** (b)  $|4\mathbf{a} + 3\mathbf{b}| = \sqrt{(4\mathbf{a} + 3\mathbf{b}) \cdot (4\mathbf{a} + 3\mathbf{b})}$   $= \sqrt{16|\mathbf{a}|^2 + 9|\mathbf{b}|^2 + 24\mathbf{a} \cdot \mathbf{b}}$   $= \sqrt{144 + 144 + 24 \times 3 \times 4 \times \left(\frac{-1}{2}\right)} = 12$ 
  - 22. (d) Let the required vector be  $\alpha = d_1\mathbf{i} + d_2\mathbf{j} + d_3\mathbf{k}$ , where  $d_1^2 + d_2^2 + d_3^2 = 51$ , (given) .....(i)

    Now, each of the given vectors  $\mathbf{a}$ ,  $\mathbf{b}$ ,  $\mathbf{c}$  is a unit vector  $\cos\theta = \frac{\mathbf{d} \cdot \mathbf{a}}{|\mathbf{d}||\mathbf{a}|} = \frac{\mathbf{d} \cdot \mathbf{b}}{|\mathbf{d}||\mathbf{b}|} = \frac{\mathbf{d} \cdot \mathbf{c}}{|\mathbf{d}||\mathbf{c}|}$  or  $\mathbf{d} \cdot \mathbf{a} = \mathbf{d} \cdot \mathbf{b} = \mathbf{d} \cdot \mathbf{c}$

 $|\mathbf{d}| = \sqrt{51}$  cancels out and  $|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 1$ Hence,

 $\frac{1}{3}(d_1 - 2d_2 + 2d_3) = \frac{1}{5}(-4d_1 + 0d_2 - 3d_3) = d_2$ 

$$\Rightarrow d_1 - 5d_2 + 2d_3 = 0 \text{ and } 4d_1 + 5d_2 + 3d_3 = 0$$
On solving, 
$$\frac{d_1}{5} = \frac{d_2}{-1} = \frac{d_3}{-5} = \lambda \text{ (say)}$$
Putting  $d_1, d_2$  and  $d_3$  in (i), we get  $\lambda = \pm 1$ 
Hence the required vectors are  $\pm (5\mathbf{i} - \mathbf{j} - 5\mathbf{k})$ .

23. (b) Since **a**, **b** and **c** are coplanar, therefore there exists (x, y, z not all zero) such

Trick: Check it with the options.

that  $x\mathbf{a} + y\mathbf{b} + z\mathbf{c} = 0 \qquad \dots (i)$  Multiply be **a** scalarly, we get  $x(\mathbf{a} \cdot \mathbf{a}) + (\mathbf{a} \cdot \mathbf{b}) + z(\mathbf{a} \cdot \mathbf{c}) = 0 \qquad \dots (ii)$  and  $x(\mathbf{a} \cdot \mathbf{b}) + y(\mathbf{b} \cdot \mathbf{b}) + z(\mathbf{b} \cdot \mathbf{c}) = 0 \qquad \dots (iii)$  Eliminating x, y and z from (i), (ii) and (iii),

### 826 Vector Algebra

we get 
$$\begin{vmatrix} a & b & c \\ a.a & a.b & a.c \\ a.b & b.b & b.c \end{vmatrix} = 0.$$

**Note:** Students should remember this question as a formula.

- **24.** (c) It is obvious.
- 25. (c)  $\mathbf{r} = \mathbf{p} + \lambda \mathbf{q} \Rightarrow \mathbf{r} \cdot \mathbf{q} = \mathbf{p} \cdot \mathbf{q} + \lambda \mathbf{q} \cdot \mathbf{q}$  $\Rightarrow 0 = 7 + 14\lambda \Rightarrow \lambda = -\frac{1}{2}$ Therefore,  $\mathbf{r} = -\frac{1}{2}(\mathbf{i} + 5\mathbf{j} - 4\mathbf{k})$ .
- **26.** (a)  $\mathbf{d}.\mathbf{c} = \lambda(\mathbf{a} \times \mathbf{b}).\mathbf{c} + \mu(\mathbf{b} \times \mathbf{c}).\mathbf{c} + \nu(\mathbf{c} \times \mathbf{a}).\mathbf{c}$   $= \lambda[\mathbf{a} \, \mathbf{b} \, \mathbf{c}] + 0 + 0 = \lambda[\mathbf{a} \, \mathbf{b} \, \mathbf{c}] = \frac{\lambda}{8}$ Hence  $\lambda = 8(\mathbf{d}.\mathbf{c}), \ \mu = 8(\mathbf{d}.\mathbf{a}) \ \text{and} \ \nu = 8(\mathbf{d}.\mathbf{b})$ Therefore,  $\lambda + \mu + \nu = 8\mathbf{d}.\mathbf{c} + 8\mathbf{d}.\mathbf{a} + 8\mathbf{d}.\mathbf{b}$   $= 8\mathbf{d}.(\mathbf{a} + \mathbf{b} + \mathbf{c}).$
- **27.** (c) Let  $\overrightarrow{OA} = P_1 \mathbf{i}$ ,  $\overrightarrow{CB} = -P_1 \mathbf{i}$ ,  $\overrightarrow{OB} = -P_1 \mathbf{i} + P_1 \mathbf{j}$   $A \longrightarrow X$   $\overrightarrow{OB} \cdot \mathbf{j} = \cos 60^{\circ} \Rightarrow \frac{(-P_1 \mathbf{i} + P_1) \cdot \mathbf{j}}{\sqrt{P_1^2 + P^2}} = \frac{1}{2}$   $\Rightarrow 2P = \sqrt{P^2 + P_1^2} \Rightarrow P_1 = P\sqrt{3}$
- **28.** (d) It is obvious, since  $\mathbf{a} \cdot \mathbf{b} = 0$ . Hence  $(\mathbf{a} + \mathbf{b})^2 = a^2 + b^2 = (\mathbf{a} - \mathbf{b})^2$ .
- **29.** (a) It is a fundamental concept.
- **30.** (a)  $(\mathbf{a} + \mathbf{b} + \mathbf{c})^2 = 0$   $|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2\mathbf{a} \cdot \mathbf{b} + 2\mathbf{b} \cdot \mathbf{c} + 2\mathbf{c} \cdot \mathbf{a} = 0$   $9 + 1 + 16 + 2(\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}) = 0$  $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a} = -\frac{26}{2} = -13.$

 $|\overrightarrow{OB}| = \sqrt{P^2 + P_1^2} = \sqrt{P^2 + 3P^2} = 2P.$ 

**31.** (d)  $\overrightarrow{AB} \cdot \overrightarrow{AF} = |\mathbf{a}| |\mathbf{a}| \cos 120^\circ = \frac{-1}{2} a^2$  and  $\frac{1}{2} \overrightarrow{BC}^2 = \frac{1}{2} a^2 \int_{-1}^{E} D C$ 

Therefore, 
$$\overrightarrow{AB}.\overrightarrow{AF} + \frac{1}{2}\overrightarrow{BC}^2 = \frac{1}{2}a^2 - \frac{1}{2}a^2 = 0.$$

**32.** (c) We have  $\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{BC}.\overrightarrow{BA}+\overrightarrow{CA}.\overrightarrow{CB}$ 

$$(AB)(AC)\cos\theta + (BC)(BA)\cos\theta0^{\circ} - \theta) + 0$$



33. (d) 
$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \mathbf{a} + \mathbf{b} + \mathbf{c}$$

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \mathbf{a} + \mathbf{b} \text{ or } \overrightarrow{CA} = -(\mathbf{a} + \mathbf{b})$$

$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = \mathbf{b} + \mathbf{c}$$
Therefore,  $\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{BC} \cdot \overrightarrow{AD} + \overrightarrow{CA} \cdot \overrightarrow{BD}$ 

$$= \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b} + \mathbf{c}) + (-\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} + \mathbf{c})$$

$$= \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} - \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{c} = 0.$$

**34.** (a) Let 
$$\mathbf{a} = x\mathbf{i} + y\mathbf{j}$$
, then  $\mathbf{a} \cdot \mathbf{b} = 0$   

$$\Rightarrow 4x - 3y = 0 \Rightarrow \frac{x}{3} = \frac{y}{4} \Rightarrow x = 3\lambda, \ y = 4\lambda, \ \lambda \in R.$$
Now  $|\mathbf{a}| = |\mathbf{b}| \Rightarrow x^2 + y^2 = 16 + 9 + 25$   

$$= 9\lambda^2 + 16\lambda^2 = 50$$
  

$$\Rightarrow \lambda = \pm \sqrt{2} \Rightarrow x = \pm 3\sqrt{2}, \ y = \pm 4\sqrt{2}$$
Hence,  $\mathbf{a} = \pm \sqrt{2}(3\mathbf{i} + 4\mathbf{j})$ .

- **35.** (a) Let  $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ , then  $\mathbf{a}.\mathbf{i} = a_1$ ,  $\mathbf{a}.\mathbf{j} = a_2$ ,  $\mathbf{a}.\mathbf{k} = a_3$  $\therefore \mathbf{a} = (\mathbf{a}.\mathbf{i})\mathbf{i} + (\mathbf{a}.\mathbf{j})\mathbf{j} + (\mathbf{a}.\mathbf{k})\mathbf{k}$ .
- 36. (a)  $(\mathbf{b} \mathbf{a}) \cdot \left(\mathbf{c} \frac{\mathbf{a} + \mathbf{b}}{2}\right) = \mathbf{b} \cdot \mathbf{c} \mathbf{b} \cdot \left(\frac{\mathbf{a} + \mathbf{b}}{2}\right) \mathbf{a} \cdot \mathbf{c} + \frac{\mathbf{a}}{2}(\mathbf{a} + \mathbf{b})$ and  $|\mathbf{a} - \mathbf{c}| = |\mathbf{b} - \mathbf{c}| \implies |\mathbf{a} - \mathbf{c}|^2 = |\mathbf{b} - \mathbf{c}|^2$   $\mathbf{a} + \mathbf{b} = 2\mathbf{c}$ Therefore,  $(\mathbf{b} - \mathbf{a}) \cdot \left(\mathbf{c} - \frac{\mathbf{a} + \mathbf{b}}{2}\right) = 0$ .
- 37. (d) It is obvious. 38. (a)  $\mathbf{a} = (1, -1, 2), \mathbf{b} = (-2, 3, 5), \mathbf{c} = (2, -2, 4)$ So,  $\mathbf{a} = (1, -1, 2) \equiv \mathbf{i} - \mathbf{j} + 2\mathbf{k}; \mathbf{b} = (-2, 3, 5) \equiv -2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and  $\mathbf{c} = (2, -2, 4) \equiv 2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$   $\Rightarrow \mathbf{a} - 2\mathbf{b} + 3\mathbf{c} = (\mathbf{i} - \mathbf{j} + 2\mathbf{k}) - 2(-2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k})$   $+3(2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k})$  $= 11\mathbf{i} - 13\mathbf{j} + 4\mathbf{k}$  and  $(\mathbf{a} - 2\mathbf{b} + 3\mathbf{c}).\mathbf{i} = 11$ .
- 39. (a) It is obvious.
  40. (d) : a+b+c=0 Squaring both sides, we get |a|²+|b|²+|c|²+2(a.b+b.c+c.a)=0 ⇒ 2(a.b+b.c+c.a)=-(9+16+25) ⇒ a.b+b.c+c.a=-25.



- **41.** (c)  $\therefore$  **a.a** = **a**|| **a**|  $\cos\theta =$  **a**|<sup>2</sup>,  $(\because \theta = 0^o)$  and **b.b**=| **b**|| **b**|  $\cos\theta =$  | **b**|<sup>2</sup>, (Here  $\theta = 0^o$ ) Also, since **a** and **b** are sides of rhombus | **a**|=| **b**|. Hence **a.a**=**b.b**.
- **42.** (c)  $|\mathbf{x} \mathbf{y}|^2 = (\mathbf{x} \mathbf{y}) \cdot (\mathbf{x} \mathbf{y}) = 1 + 1 2|\mathbf{x}||\mathbf{y}| \cos \pi$   $= 2 - 2\cos \pi, : |\mathbf{x} - \mathbf{y}|^2 = 4$ So,  $\frac{1}{2}|\mathbf{x} - \mathbf{y}| = 1, [::|\mathbf{x}|^2 = |\mathbf{y}|^2 = 1, |\mathbf{x}| = |\mathbf{y}| = 1].$
- 43. (a) Let  $\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ . Then  $\mathbf{a} \cdot \mathbf{i} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \cdot \mathbf{i} = x$  and  $\mathbf{a} \cdot (\mathbf{i} + \mathbf{j}) = x + y$  and  $\mathbf{a} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = x + y + z$   $\therefore$  Given that x = x + y = x + y + zNow  $x = x + y \Rightarrow y = 0$  and

 $x+y=x+y+z \Rightarrow z=0$ Hence x=1;  $\therefore \mathbf{a}=\mathbf{i}$ .

- **44.** (b) It is obvious.
- 45. (c) (a + b).(a b) = a.a + b.a b.a b.b=  $a.a - b.b = |a|^2 - |b|^2$ = 0, (:|a| = |b|).
- **46.** (b)  $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$   $(\mathbf{a} + \mathbf{b} + \mathbf{c}).(\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{0}$   $|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2(\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a}) = 0$   $\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a} = \frac{-1 - 4 - 9}{2} = -7.$ 
  - **47.** (b) Let the vector be given as  $a\mathbf{i} + b\mathbf{j} + d\mathbf{k}$ . For this vector to be coplanar with  $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$  and  $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ , we will have  $a\mathbf{i} + b\mathbf{j} + d\mathbf{k} = p(\mathbf{i} + \mathbf{j} + 2\mathbf{k}) + r(\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ . This gives, a = p + r .....(i)

$$b = p + 2r$$
 .....(ii)  
 $c = 2p + r$  .....(iii)

For the vector  $a\mathbf{i} + b\mathbf{j} + d\mathbf{k}$  to be perpendicular to  $\mathbf{i} + \mathbf{j} + \mathbf{k}$ , we will have  $(a\mathbf{i} + b\mathbf{j} + d\mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 0$ 

 $\Rightarrow a+b+c=0 \qquad \qquad .....(iv)$ 

Adding equation (i) to (iii), we get 4p+4r=a+b+c

$$\Rightarrow 4(p+r)=0 \Rightarrow p=-r$$

Now with the help of (i), (ii) and (iii), we get a=0, b=r, c=p=-r

Hence the required vector is  $\ell(\mathbf{j} - \mathbf{k})$ 

To be its unit vector  $r^2 + r^2 = 1 \Rightarrow r = \pm \frac{1}{\sqrt{2}}$ 

Hence the required unit vector is,  $\pm \frac{1}{\sqrt{2}}(\mathbf{j} - \mathbf{k})$ .

**Trick**: Check for option (a)  $\frac{\mathbf{i} - \mathbf{j}}{\sqrt{2}}$  is a unit vector and perpendicular to  $\mathbf{i} + \mathbf{j} + \mathbf{k}$ .

But 
$$\begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0\\ 1 & 1 & 2\\ 1 & 2 & 1 \end{vmatrix} = -\frac{4}{\sqrt{2}} \neq 0$$
.

So it is not coplanar with the given vector.

Check for option (b),  $\pm \left(\frac{\mathbf{j} - \mathbf{k}}{\sqrt{2}}\right)$  is a unit vector

and also perpendicular to i+j+k

$$\begin{vmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix} = 0.$$

So, it is also coplanar with the given vectors.

**48.** (b) Since  $\mathbf{a} + \lambda \mathbf{b}$  is perpendicular to  $\mathbf{a} - \lambda \mathbf{b}$ , then their product will be zero.

So, 
$$(\mathbf{a} + \lambda \mathbf{b}) \cdot (\mathbf{a} - \lambda \mathbf{b}) = 0$$
  $|\mathbf{a}|^2 - \lambda^2 |\mathbf{b}|^2 = 0$   
or  $\lambda^2 = \frac{|\mathbf{a}|^2}{|\mathbf{b}|^2} \Rightarrow \lambda^2 = \frac{9}{16}$  or  $\lambda = \pm \frac{3}{4}$ ,

 $[::|\mathbf{a}|=3,|\mathbf{b}|=4]$ 

**49.** (b) Here  $|\mathbf{a}| = 4$ ;  $|\mathbf{b}| = 4$ ;  $|\mathbf{c}| = 2$  and  $\mathbf{a}.(\mathbf{b} + \mathbf{c}) = 0 \Rightarrow \mathbf{a}.\mathbf{b} + \mathbf{a}.\mathbf{c} = 0$  .....(i)

**b**.(**c** + **a**) = 
$$0 \Rightarrow$$
 **b**.**c**+ **b**.**a**=  $0$  .....(ii)  
**c**.(**a** + **b**) =  $0 \Rightarrow$  **c**.**a**+ **c**.**b**=  $0$  .....(iii)

Adding (i), (ii) and (iii), we get,  $2[\mathbf{a}.\mathbf{b}+\mathbf{b.c}+\mathbf{c.a}]=0$ 

$$|\mathbf{a} + \mathbf{b} + \mathbf{c}| = \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2(\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a})}$$

$$= \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2} = \sqrt{16 + 16 + 4}$$
$$|\mathbf{a} + \mathbf{b} + \mathbf{c}| = 6.$$

- **50.** (b)  $\cos\theta = \frac{3(2) + (1)(-2) + 2(4)}{\sqrt{9 + 1 + 4}\sqrt{4 + 4 + 16}} = \frac{12}{\sqrt{14}\sqrt{24}} = \frac{6}{\sqrt{14}\sqrt{6}}$  $\Rightarrow \cos\theta = \frac{\sqrt{3}}{\sqrt{7}} \Rightarrow \sin\theta = \frac{2}{\sqrt{7}} \qquad \theta = \sin^{-1}\left(\frac{2}{\sqrt{7}}\right).$
- **51.** (d)  $\overrightarrow{AB} = \mathbf{i} + 4\mathbf{j} \mathbf{k}$ ,  $\overrightarrow{CD} = -2\mathbf{i} 8\mathbf{j} + 2\mathbf{k}$  $\cos\theta = \frac{\overrightarrow{AB.CD}}{|\overrightarrow{AB}| \cdot |\overrightarrow{CD}|} = \frac{-2 - 32 - 2}{\sqrt{18} \cdot \sqrt{72}}$   $= \frac{-2 - 32 - 2}{2 \times 18} = -1 \Rightarrow \theta = \pi.$
- **52.** (b)  $(\mathbf{a} \sqrt{2}\mathbf{b})^2 = 1 \Rightarrow 1 + 2 2\sqrt{2}\mathbf{a}.\mathbf{b} = 1$  $\Rightarrow \mathbf{a}.\mathbf{b} = \frac{1}{\sqrt{2}} \Rightarrow \cos\theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}.$
- **53.** (a) It is obvious from figure.





**54.** (d) 
$$(\mathbf{i} - \mathbf{j} + \mathbf{k}) \cdot (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = \sqrt{3}\sqrt{6}\cos\theta$$
  

$$\Rightarrow \cos\theta = \frac{0}{\sqrt{3}\sqrt{6}} \Rightarrow \theta = \frac{\pi}{2}.$$

**55.** (d) Here 
$$\overrightarrow{AB} = -3\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}$$
,  $\overrightarrow{BC} = -2\mathbf{i} + \mathbf{j} + 4\mathbf{k}$  and  $\overrightarrow{AB} \cdot \overrightarrow{BC} = 6 + 6 - 12 = 0 \Rightarrow \angle ABC = 90^\circ$ .

**56.** (b) According to the given conditions, 
$$\mathbf{a} \cdot \mathbf{b} > 0$$
 and  $\mathbf{b} \cdot \mathbf{c} < 0$ , where  $\mathbf{c} = (0, 1, 0)$ .  $\Rightarrow 2x^2 - 3x + 1 > 0$  and  $x < 0$ . Hence the result.

**57.** (b) 
$$(\mathbf{a} - q\mathbf{b})^2 = 1 = 2 - 2\cos \Rightarrow \theta = 60^\circ$$
.

**58.** (c) As we know 
$$\mathbf{a} \cdot \mathbf{b} = ab\cos\theta$$

Obviously,  $\cos\theta \ge 0$  for  $0 \le \theta \le \frac{\pi}{2}$  and

$$\frac{3\pi}{2} \le \theta \le 2\pi.$$

**59.** (c) We have 
$$\mathbf{a} + \mathbf{b} = 4\mathbf{i} + \mathbf{j} - \mathbf{k}$$
 and  $\mathbf{a} - \mathbf{b} = -2\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}$ .  
Clearly  $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = 0$ . Hence  $(\mathbf{a} + \mathbf{b}) \perp (\mathbf{a} - \mathbf{b})$ .

**60.** (b) For acute angle 
$$\mathbf{a}.\mathbf{b} > 0$$

$$i.e., -3x + 2x^2 + 1 > 0 \Rightarrow (x-1)(2x-1) > 0$$
For obtuse angle between  $\mathbf{b}$  and  $x$ -axis  $\mathbf{b}.\mathbf{i} < 0$ 

$$x < 0$$
.

**61.** (c) 
$$\theta = \cos^{-1} \left( \frac{2 \times 12 + 6 \times (-4) + 3(3)}{\sqrt{2^2 + 6^2 + 3^2} \sqrt{12^2 + 4^2 + 3^2}} \right)$$
  
=  $\cos^{-1} \left( \frac{9}{7 \times 13} \right) = \cos^{-1} \left( \frac{9}{91} \right)$ .

**62.** (d) 
$$\cos \frac{\pi}{3} = \frac{1+a}{\sqrt{2}\sqrt{2+a^2}} \Rightarrow a=0$$
.

**63.** (c) Given, 
$$\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0} \Rightarrow \mathbf{a} + \mathbf{b} = -\mathbf{c}$$
  
Squaring on both sides,
$$|\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}||\mathbf{b}|\cos\theta = |-\mathbf{c}|^2$$

$$\Rightarrow 9 + 25 + 30\cos\theta = 49 \qquad \cos\theta = \frac{1}{2} \Rightarrow \theta = 60^\circ.$$

**64.** (d) Given condition is 
$$\mathbf{a} + \mathbf{b} = \mathbf{c}$$
.  
Using dot product,  $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{c} \cdot \mathbf{c}$   
 $\Rightarrow \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + 2\mathbf{a} \cdot \mathbf{b} = \mathbf{c} \cdot \mathbf{c}$   
 $\Rightarrow |\mathbf{a}| \cdot |\mathbf{a}| \cos 0^{\circ} + |\mathbf{b}| \cdot |\mathbf{b}| \cos 0^{\circ} + 2|\mathbf{a}| \cdot |\mathbf{b}| \cos \alpha$   
 $= |\mathbf{c}| \cdot |\mathbf{c}| \cos 0^{\circ}$ ,  $(\because |\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 1)$   
 $\Rightarrow 1 + 1 + 2\cos \alpha = 1 \Rightarrow \cos \alpha = -\frac{1}{2} \Rightarrow \alpha = \frac{2\pi}{3}$ .

**65.** (b) Let 
$$|\mathbf{a}| = 1$$
 and  $|\mathbf{b}| = 1$   
Also  $|\mathbf{a} + \mathbf{b}|^2 = 1^2 \Rightarrow 1 + 1 + 2\cos\theta = 1 \Rightarrow \theta = 120^\circ$   
 $\therefore |\mathbf{a} - \mathbf{b}|^2 = 1 + 1 - 2\cos\theta = 3 \Rightarrow |\mathbf{a} - \mathbf{b}| = \sqrt{3}.$ 

66. (a) Let 
$$\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$$
 and  $\mathbf{b} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$   
Since  $\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ 

$$= \frac{(2\mathbf{i} + 3\mathbf{j} + \mathbf{k}) \cdot (2\mathbf{i} - \mathbf{j} - \mathbf{k})}{\sqrt{(2)^2 + (3)^2 + (1)^2} \sqrt{(2)^2 + (-1)^2 + (-1)^2}}$$

$$= \frac{4 - 3 - 1}{\sqrt{(4 + 9 + 1)} \sqrt{(4 + 1 + 1)}} = 0$$

$$\therefore \theta = \frac{\pi}{2}.$$

**67.** (a) 
$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{12 - 6 - 2}{\sqrt{4 + 4 + 1}\sqrt{36 + 9 + 4}} = \frac{4}{21}$$
.

**68.** (b) 
$$(\mathbf{a} + 2\mathbf{b}) \cdot (5\mathbf{a} - 4\mathbf{b}) = 0 \text{ or } 5\mathbf{a}^2 + 6\mathbf{a} \cdot \mathbf{b} - 8\mathbf{b}^2 = 0$$
  
or  $6\mathbf{a} \cdot \mathbf{b} = 3$ , (:  $\mathbf{a}^2 = 1$ ,  $\mathbf{b}^2 = 1$ )  
 $\therefore \mathbf{a} \cdot \mathbf{b} = \frac{1}{2}$  or  $|\mathbf{a}| |\mathbf{b}| \cos \theta = \frac{1}{2}$   
 $\therefore \cos \theta = \frac{1}{2}$ ,  $\therefore \theta = 60^\circ$ .

**69.** (a) 
$$|\mathbf{a} - \mathbf{b}| = \sqrt{1^2 + 1^2 - 2 \cdot 1^2 \cos \theta} = \sqrt{2(1 - \cos \theta)}$$

$$= \sqrt{2} \times \sqrt{2} \sin \frac{\theta}{2} = 2 \sin \frac{\theta}{2} \Rightarrow \sin \frac{\theta}{2} = \frac{|\mathbf{a} - \mathbf{b}|}{2}.$$

70. (a) 
$$\mathbf{a} = (1,1,4) = \mathbf{i} + \mathbf{j} + 4\mathbf{k}$$
,  $\mathbf{b} = (1,-1,4) = \mathbf{i} - \mathbf{j} + 4\mathbf{k}$   
 $\mathbf{a} + \mathbf{b} = 2\mathbf{i} + 8\mathbf{k}$   $\mathbf{a} - \mathbf{b} = 2\mathbf{j}$   
Since,  $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = 0$   
 $(\mathbf{a} + \mathbf{b}) \perp (\mathbf{a} - \mathbf{b})$ . Hence  $\theta = 90^\circ$ .

**71.** (a) Let the vector is  $x\mathbf{i} + y\mathbf{j} + 2\mathbf{k}$ . Now according to the conditions,  $\sqrt{x^2 + y^2 + z^2} = 3 \Rightarrow x^2 + y^2 + z^2 = 9$ 

and 
$$3x + y - 4z = 0$$
 .....(i)  
.....(ii)  
.....(iii)  
.....(iii)

[: it is perpendicular to both vectors, hence by  $a_1b_1 + a_2b_2 + a_3b_3 = 0$ ]

On solving the equation (i), (ii) and (iii), we

get x=2, y=-2 and z=1.

Therefore, the required vector is  $2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ .

**Trick:** By inspection, the vector  $2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$  is of length 3 and also perpendicular to the given vectors.

**72.** (b)  $|\mathbf{a} + \mathbf{b}| = |\mathbf{a} - \mathbf{b}|$ ; Squaring both sides, we get  $4\mathbf{a} \cdot \mathbf{b} = 0$ 

 $\Rightarrow$  **a** is perpendicular to **b**.

**73.** (d) **a.b** = 
$$0 = 4 - a - 1 \Rightarrow a = 3$$
.

74. (d) 
$$\mathbf{a} + t\mathbf{b} = 2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + (-t\mathbf{i} + 2t\mathbf{j} + t\mathbf{k})$$
  
 $= (2 - t)\mathbf{i} + (2 + 2t)\mathbf{j} + (3 + t)\mathbf{k}$   
Given that it is perpendicular to  $\mathbf{c} = 3\mathbf{i} + \mathbf{j}$   
Hence  $(2 - t)3 + (2 + 2t)1 + (3 + t)0 = 0$   
 $\Rightarrow 6 - 3t + 2 + 2t = 0 \Rightarrow t = 8$ .

**75.** (c) **a.b** = 
$$(2-4-\lambda)=0 \Rightarrow \lambda=-2$$
.



- **76.** (b) To be perpendicular, 2a+3b-4c=0 and option(b) satisfies this equation.
- 77. (b)  $x^2 + y^2 = 1$ Let vector be  $x\mathbf{i} + y\mathbf{j}$ , then 4x - 3y = 0 $\Rightarrow 4x = 3y \Rightarrow x = \frac{3}{5}, y = \frac{4}{5}$ ,

Hence the required vector is  $\frac{1}{5}(3\mathbf{i} + 4\mathbf{j})$ .

78. (c)  $\mathbf{a} + m\mathbf{b} + m\mathbf{c} = \mathbf{0}$ Squaring both sides, we get

equal to zero.

$$a^2l^2 + m^2b^2 + m^2c^2 + 2lm\mathbf{a}.\mathbf{b} + 2ln\mathbf{a}.\mathbf{c} + 2mn\mathbf{b}.\mathbf{c} = 0$$
  
But **a,b,c** are mutually perpendicular  
So, **a.b, b.c** and **c.a** are equal to zero.  
Therefore,  $a^2l^2 + m^2b^2 + m^2c^2 = 0$  i.e.,  $l$ ,  $m$   $n$  are equal to zero because  $a^2$ ,  $b^2$  and  $c^2$  cannot be

79. (b)  $\vec{L} = \mathbf{i} + 4\mathbf{j}$ Therefore, vector perpendicular to  $\vec{L} = \lambda(4\mathbf{i} - \mathbf{j})$ Unit vector is  $\frac{4\mathbf{i} - \mathbf{j}}{\sqrt{17}}$ .

But it points towards origin  $\therefore \text{ Required vector} = \frac{-4\mathbf{i} + \mathbf{j}}{\sqrt{17}}.$ 

**80.** (a) Obviously,  $3a-12-15=0 \Rightarrow a=9$ .

**81.** (a) Since  $(2\lambda \mathbf{i} + \mathbf{j} - \mathbf{k}) \cdot (2\mathbf{j} + \mathbf{k}) = 1$  for every  $\lambda$ , therefore the vectors will not be perpendicular for any  $\lambda$ .

- **82.** (c) It is obvious.
- **83.** (c) Clearly,  $8 \times 2 3 \times 4 + 2 \times \lambda = 0 \Rightarrow \lambda = -2$ .
- **84.** (a, c, d) Check it with the options.
- **85.** (d) Accordingly,  $a \times (-1) + 2(5) + 3(a) = 0 \Rightarrow a = -5$ .
- **86.** (d) It is obvious.
- **87.** (d)  $\frac{1}{2} = \frac{-2}{\lambda} \Rightarrow \lambda = -4$ .
  - 88. (a) We know that as the vectors are perpendicular, therefore their dot product is zero or (ai + 6j k).(7i 3j + 17k) = 0
  - or 7a-18-17=0 or 7a=35 or a=5. 89. (c) Since angle between the vectors is  $90^{\circ}$ , therefore dot product of the vectors will be zero or  $(4\mathbf{i} + \mathbf{j} - \mathbf{k}) \cdot (3\mathbf{i} + m\mathbf{j} + 2\mathbf{k}) = 0$
- or 12 + m 2 = 0 or m = -10. 90. (c) Let  $\mathbf{a} = 3\mathbf{i} + \lambda \mathbf{j} + \mathbf{k}$ ,  $\mathbf{b} = 2\mathbf{i} - \mathbf{j} + 8\mathbf{k}$   $\therefore \mathbf{a} \perp \mathbf{b}$ ,  $\mathbf{a} \cdot \mathbf{b} = 0$   $(3\mathbf{i} + \lambda \mathbf{j} + \mathbf{k}) \cdot (2\mathbf{i} - \mathbf{j} + 8\mathbf{k}) = 0$  $6 - \lambda + 8 = 0 \implies \lambda = 14$ .
- **91.** (d)  $(b.\hat{a})\hat{a} = \left\{ \frac{(a.b)}{|a|} \right\} \hat{a} = \frac{(a.b)a}{a.a}$ .

- **92.** (a) 14cos60°, 14sin60° or  $7, \frac{14\sqrt{3}}{2}$  or  $7, 7\sqrt{3}$ .
  - 93. (b) The component of vector **a** along **b** is  $\frac{(\mathbf{a}.\mathbf{b})\mathbf{b}}{|\mathbf{b}|^2} = \frac{18}{25}(3\mathbf{j} + 4\mathbf{k})$ .
  - **94.** (b)  $\mathbf{b}_2 = \mathbf{b} \mathbf{b}_1 = -\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} + 4\mathbf{k}$  and obviously  $\mathbf{b}_2$  is perpendicular to  $\mathbf{a}$ .
- **95.** (b)  $\left[ (\mathbf{i} + \mathbf{j}) \cdot \frac{(\mathbf{j} + \mathbf{k})}{\sqrt{2}} \right] \frac{(\mathbf{j} + \mathbf{k})}{\sqrt{2}} = \frac{(\mathbf{j} + \mathbf{k})}{2}.$
- **96.** (b)  $(2\mathbf{i} + 3\mathbf{j} 2\mathbf{k}) \cdot \frac{(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})}{\sqrt{14}} = \frac{2}{\sqrt{14}}$
- **97.** (b) Required value  $=\frac{\mathbf{b}.\mathbf{a}}{|\mathbf{b}|}/\frac{\mathbf{a}.\mathbf{b}}{|\mathbf{a}|} = \frac{|\mathbf{a}|}{|\mathbf{b}|} = \frac{7}{3}$ .
- **98.** (c) It is a fundamental concept.
- **99.** (a) Vectors  $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$  and  $\mathbf{b} = 5\mathbf{i} 3\mathbf{j} + \mathbf{k}$ . We know that the projection of  $\mathbf{b}$  on  $\mathbf{a} = \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|} = \frac{(2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \cdot (5\mathbf{i} - 3\mathbf{j} + \mathbf{k})}{\sqrt{(2)^2 + (1)^2 + (2)^2}} = \frac{10 - 3 + 2}{\sqrt{9}} = \frac{9}{3} = 3.$
- **100.** (b) Projection of **a** on **b**  $= |\mathbf{a}| \cos \theta = |\mathbf{a}| \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}$   $= \frac{4 + 8 + 7}{\sqrt{16 + 16 + 49}} = \frac{19}{\sqrt{81}} = \frac{19}{9}.$ 
  - **101.** (a) Projection of the vector  $\mathbf{i} + \mathbf{j} + \mathbf{k}$  along vector  $\mathbf{j} = \frac{(\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot \mathbf{j}}{|\mathbf{j}|} = \frac{1}{1} = 1$ .
- **102.** (a)  $|\mathbf{W}| = (\mathbf{i} 3\mathbf{j} + 5\mathbf{k}) \cdot (-2\mathbf{i} 4\mathbf{j} + \mathbf{k}) = -2 + 12 + 5 = 15 \, unit.$
- **103.** (a)  $|\mathbf{W}| = (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \cdot (\mathbf{i} 2\mathbf{j} + 2\mathbf{k}) = 1 4 + 6 = 3.$
- **104.** (a) Here  $\mathbf{F} = 2\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ ,  $\mathbf{d} = -2\mathbf{i} 2\mathbf{j} 2\mathbf{k}$ Work done  $= \mathbf{F} \cdot \mathbf{d} = -4 + 6 - 4 = -2$  or 2 *unit*.
  - **105.** (c) Resultant force  $\mathbf{F} = 5\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$  and displacement  $\mathbf{d} = 2\mathbf{i} 2\mathbf{j} + 10\mathbf{k}$ , then Work done  $\mathbf{W} = \mathbf{F} \cdot \mathbf{d} = 10 6 + 20 = 24$  unit
- 106. (d) Required work done

= 
$$(3\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} + 2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}).(5\mathbf{i} + 4\mathbf{j} + 2\mathbf{k} - \mathbf{i} - 2\mathbf{j} - \mathbf{k})$$
  
=  $(5\mathbf{i} + 6\mathbf{j} - \mathbf{k}).(4\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = 20 + 12 - 1 = 31.$ 

- **107.** (c)  $W = \mathbf{F} \cdot \mathbf{d} = (3\mathbf{i} + 2\mathbf{j} 5\mathbf{k}) \cdot (2\mathbf{i} \mathbf{j} \mathbf{k}) = 6 2 + 5 = 9 \text{ unit.}$ 
  - **108.** (b) Required work done = (Force vector).(Displacement vector)

Force vector = 
$$5 \cdot \left( \frac{2\mathbf{i} - 2\mathbf{j} + \mathbf{k}}{|2\mathbf{i} - 2\mathbf{j} + \mathbf{k}|} \right) = \frac{5}{3} (2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$$

Required work done

$$= \frac{5}{3}(2\mathbf{i} - 2\mathbf{j} + \mathbf{k}).[(5\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}) - (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})]$$



#### 830 Vector Algebra

$$= \frac{5}{3}[(2\mathbf{i} - 2\mathbf{j} + \mathbf{k}).(4\mathbf{i} + \mathbf{j} + 4\mathbf{k})] = \frac{5}{3}[8 - 2 + 4] = \frac{50}{3} \quad uni$$

t

**109.** (c) 
$$\vec{F} + \vec{F}_1 + \vec{F}_2 = 7\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$$
  
 $\mathbf{d} = \text{P.V. of } \vec{B} - \text{P.V. of } \vec{A} = 4\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$   
 $W = \mathbf{F.d} = 28 + 4 + 8 = 40 \text{ unit.}$ 

**110.** (a) Projection of 
$$x\mathbf{i} - \mathbf{j} + \mathbf{k}$$
 on  $2\mathbf{i} - \mathbf{j} + 5\mathbf{k}$ 

$$= \frac{(x\mathbf{i} - \mathbf{j} + \mathbf{k})(2\mathbf{i} - \mathbf{j} + 5\mathbf{k})}{\sqrt{4 + 1 + 25}} = \frac{2x + 1 + 5}{\sqrt{30}}$$

But, given 
$$\frac{2x+6}{\sqrt{30}} = \frac{1}{\sqrt{30}}$$
  $2x+6=1$   $x = \frac{-5}{2}$ .

**111.** (b) 
$$x + y + z = 0 \Rightarrow x = -(y + z)$$

$$|x|^2 = (y + z).(y + z)$$

$$|\mathbf{x}|^2 = |\mathbf{v}|^2 + |\mathbf{z}|^2 + 2\mathbf{v}.\mathbf{z}$$

$$|\mathbf{x}|^2 = |\mathbf{y}|^2 + |\mathbf{z}|^2 + 2|\mathbf{y}||\mathbf{z}| \cos\theta$$

$$4 = 4 + 4 + 2 \times 2 \times 2 \cos\theta$$

$$\cos\theta = \frac{-1}{2} \Rightarrow \theta = 120^{\circ}$$

$$cose \hat{c}120^{o}+cot^{2}120^{o}=\left(\frac{2}{\sqrt{3}}\right)^{2}+\left(-\frac{1}{\sqrt{3}}\right)^{2}=\frac{4}{3}+\frac{1}{3}=\frac{5}{3}\cdot$$

**112.** (c) 
$$\frac{(2\mathbf{i} + \mathbf{j} - 3\mathbf{k}).(\mathbf{i} - 2\mathbf{j} + \mathbf{k})}{|\mathbf{i} - 2\mathbf{i} + \mathbf{k}|} = \frac{2 - 2 - 3}{\sqrt{1 + 4 + 1}} = \frac{-3}{\sqrt{6}} = -\sqrt{\frac{3}{2}}.$$

**113.** (b) 
$$(3\mathbf{a} - 4\mathbf{b})(2\mathbf{a} + 5\mathbf{b}) = 6|\mathbf{a}|^2 - 20|\mathbf{b}|^2 + 7\mathbf{a}.\mathbf{b} = 6 - 20 + 7\mathbf{a}.\mathbf{b}$$

Given, 
$$|\mathbf{a} + \mathbf{b}|^2 = (\sqrt{3})^2 |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a}.\mathbf{b} = 3$$

$$2a.b = 1$$
  $a.b = \frac{1}{2}$ 

Therefore, (3a-4b).(2a+5b)

$$=6-20+7\times\frac{1}{2}=-14+\frac{7}{2}=\frac{-21}{2}$$
.

**114.** (d) Position vectors in the plane of vectors  $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$  and  $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$  are  $= (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) - (\mathbf{i} + \mathbf{j} + 2\mathbf{k}) = \mathbf{j} - \mathbf{k}$ 

Unit vector = 
$$\frac{\mathbf{j} - \mathbf{k}}{\sqrt{2}}$$

$$\left(\operatorname{Since}\left(\frac{\mathbf{j}-\mathbf{k}}{\sqrt{2}}\right)(2\mathbf{i}+\mathbf{j}+\mathbf{k})=\frac{-1+1}{\sqrt{2}}=0\right).$$

**115.** (d) 
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = 0 \Rightarrow \mathbf{a} \cdot \mathbf{b} + \mathbf{c} \cdot \mathbf{a} = 0$$
 .....(i)

$$b(c + a) = 0$$
  $b.c + a.b = 0$  ....(ii)

$$c.(a + b) = 0$$
  $c.a + b.c = 0$  .....(iii)

From (i), (ii) and (iii),

$$2(a.b + b.c + c.a) = 0$$

Now, 
$$|\mathbf{a} + \mathbf{b}|^2 |\mathbf{b} + \mathbf{c}|^2 + |\mathbf{c} + \mathbf{a}|^2 = 6^2 + 8^2 + 10^2$$

$$2[|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2] + 2[\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a}] = 200$$

$$2|\mathbf{a}+\mathbf{b}+\mathbf{c}|^2=200 |\mathbf{a}+\mathbf{b}+\mathbf{c}|=10.$$

# Vector or Cross product of two vectors and its applications

- **1.** (d) It is obvious.
- 2. (c)  $|\mathbf{a} \times \mathbf{b}| = 1 \Rightarrow |\sin\theta| = 1 \Rightarrow \sin\theta = 1 \Rightarrow \theta = \frac{\pi}{2}$ .
- 3. (b)  $(\mathbf{b} \mathbf{a}) \times (\mathbf{c} \mathbf{b}) = \mathbf{0}$  or  $\mathbf{b} \times \mathbf{c} + \mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{a} = \mathbf{0}$ .
- 4. (a)  $(a-b)\times(a+b) = a\times a b\times a + a\times b b\times b$

$$= \mathbf{a} \times \mathbf{b} - \mathbf{b} \times \mathbf{a} = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{b} = 2(\mathbf{a} \times \mathbf{b}).$$

5. (c) Since  $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$   $\Rightarrow \mathbf{a} \times (\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{0} \Rightarrow \mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} = \mathbf{0}$   $\Rightarrow \mathbf{a} \times \mathbf{b} = -\mathbf{a} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$  .....(i) Similarly,  $\mathbf{b} \times (\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{0}$   $\Rightarrow \mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c}$  .....(ii)

By (i) and (ii), we get 
$$\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$$
.

- **6.** (c)  $|\mathbf{a} \times \mathbf{b}| = (\mathbf{a}.\mathbf{b}) \Rightarrow ab\sin\theta = ab\cos\theta$  $\Rightarrow \tan\theta = \frac{ab}{ab} = 1 \Rightarrow \theta = \frac{\pi}{4}.$
- 7. (b)  $14(a \times b) + 15(b \times a) = b \times a$ .
- 8. (c)  $\mathbf{a}.\mathbf{b} = \mathbf{0} \Rightarrow \mathbf{a} \perp \mathbf{b}$  or  $\mathbf{a} = \mathbf{0}$  or  $\mathbf{b} = \mathbf{0}$ and  $\mathbf{a} \times \mathbf{b} = \mathbf{0} \Rightarrow \mathbf{a} \mid \mid \mathbf{b}$  or  $\mathbf{a} = \mathbf{0}$  or  $\mathbf{b} = \mathbf{0}$ Hence, either  $\mathbf{a}$  or  $\mathbf{b}$  is a null vector.
- 9. (b) Component of **a** along  $\mathbf{b} = a\cos\theta = \frac{|\mathbf{a}.\mathbf{b}|}{|\mathbf{b}|}$ Similarly component of **a** perpendicular to **b**  $= a\sin\theta = \frac{|\mathbf{a}\times\mathbf{b}|}{|\mathbf{b}|}.$