SỞ GIÁO DUC VÀ ĐÀO TAO THÀNH PHỐ HỒ CHÍ MINH

TRUÒNG PTDL HERMANN GMEINER

ĐỀ THI THỬ TỐT NGHIỆP THPT QUỐC **GIA 2023**

Môn: TOÁN

Thời gian làm bài: 90 phút

ĐỀ CHÍNH THỰC

(Đề thi có 6 trang)

Ho và tên thí sinh:

MÃ ĐÊ: 001

Số báo danh: Mỗi câu trả lời đúng được 0,2 điểm.

ĐỀ BÀI

- Trong không gian Oxyz, cho mặt phẳng (P): 3x + y 2z + 1 = 0. Vecto nào sau đây là một Câu 1. vecto pháp tuyến của (P)?
 - **A.** $\vec{n}_1 = (1; -2; 1)$.
- **B.** $\vec{n}_2 = (3; -2; 1)$.
- **C.** $\vec{n}_3 = (-2;1;3)$. **D.** $\vec{n}_4 = (3;1;-2)$.
- Số cách xếp 4 người thành một hàng ngang là Câu 2.

- **D.** 4!.
- Cho hàm số y = f(x) có đồ thị là đường cong như hình bên dưới. Câu 3.

Đồ thị hàm số đã cho cắt trục hoành tại điểm nào sau đây?

- **A.** (2;0).
- **B.** (0;2).
- $\mathbf{C}. (-2;0).$
- **D.** (0;-2).

- Tập xác định của hàm số $y = x^{\sqrt{5}}$ là Câu 4.
 - A. $(0;+\infty)$.
- **B.** $[0;+\infty)$.
- $\mathbf{C}.(-\infty;0).$
- **D.** $(-\infty; +\infty)$.
- Cho hàm số f(x) liên tục trên \mathbb{R} và a là số thực dương. Khẳng định nào dưới đây đúng? Câu 5.

- **A.** $\int_{-a}^{a} f(x) dx = 0$. **B.** $\int_{-a}^{0} f(x) dx = 0$. **C.** $\int_{0}^{a} f(x) dx = 0$. **D.** $\int_{a}^{a} f(x) dx = 0$.
- Thể tích của khối cầu có bán kính R là Câu 6.
 - **A.** $\frac{4}{2}\pi R^3$.
- **B.** $\frac{1}{3}\pi R^3$.
- C. $4\pi R^3$.

- Môđun của số phức z = 4 3i bằng Câu 7.
 - **A.** 5.

- **B.** $\sqrt{7}$.
- C. 25.
- **D.** 7.

- **Câu 8.** Giá trị của $\int_{-x}^{5} \frac{1}{x} dx$ bằng
 - **A.** $\ln \frac{5}{2}$. **B.** $\ln \frac{2}{5}$.
- C. $\frac{1}{3} \ln 3$.
- **D.** 3ln3.
- Trong không gian Oxyz, đường thẳng đi qua điểm M(3;-1;2) và có vecto chỉ phương Câu 9. $\vec{u} = (4;5;-7)$ có phương trình là
 - **A.** $\frac{x+3}{4} = \frac{y-1}{5} = \frac{z+2}{7}$.

B. $\frac{x+4}{3} = \frac{y+5}{-1} = \frac{z-7}{2}$.

C. $\frac{x-4}{3} = \frac{y-5}{-1} = \frac{z+7}{2}$.

- **D.** $\frac{x-3}{4} = \frac{y+1}{5} = \frac{z-2}{-7}$.
- **Câu 10.** Trong không gian Oxyz, cho hai véctor $\vec{a} = (2;3;2)$ và $\vec{b} = (1;1;-1)$. Véctor $\vec{a} \vec{b}$ có toạ độ là
 - **A.** (-1;-2;3).
- **B.** (3;5;1).
- **C.** (3;4;1).
- **D.** (1;2;3).
- **Câu 11.** Cho khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h. Thể tích V của khối lăng trụ đã cho được tính theo công thức nào dưới đây?
 - **A.** $V = \frac{1}{2}Bh$.
- **B.** V = Bh.
- **C.** V = 3Bh.
- **D.** $V = \frac{1}{2}Bh$.
- **Câu 12.** Điểm M trong hình bên dưới biểu diễn số phức nào sau đây?

- **A.** $z_3 = -2 + 3i$.
- **B.** $z_2 = 2 3i$.
- **D.** $z_4 = 3 2i$.
- **Câu 13.** Thể tích của khối trụ có chiều cao h = 2 và bán kính đáy r = 3 là
 - A. 6π .
- \mathbf{B} , 9π .
- **C.** 15π
- **D.** 18π .
- Câu 14. Hàm số nào sau đây có đồ thị là đường cong như hình bên dưới?

- **A.** $y = x^4 2x^2 + 1$. **B.** $y = -x^4 + 2x^2 + 1$. **C.** $y = -x^3 + 3x^2 + 1$. **D.** $y = x^3 3x^2 + 1$.
- **Câu 15.** Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng $d: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{2}$?
 - **A.** N(-1;0;1).
- **B.** Q(-2;-1;-2). **C.** M(2;1;2).
- **D.** P(1;0;-1).

- **Câu 16.** Nghiệm của phương trình $3^x = 7$ là
 - **A.** $x = 3^7$.
- **B.** $x = \log_7 3$. **C.** $x = \frac{7}{2}$.
- **D.** $x = \log_3 7$.
- **Câu 17.** Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và k là một số thực khác 0. Khẳng định nào dưới đây đúng?

A. $\int kf(x) dx = k \int f(x) dx$.

- **B.** $\int kf(x) dx = k + \int f(x) dx.$
- C. $\int kf(x) dx = \int k dx \cdot \int f(x) dx$.
- **D.** $\int kf(x) dx = \frac{1}{k} \int f(x) dx$.

Câu 18. Cho hàm số y = f(x) có đồ thị là đường cong như hình bên dưới.

Hàm số đã cho đồng biến trên khoảng nào sau đây?

- A. $(-\infty;0)$.
- **B.** $(2; +\infty)$.
- $\mathbf{C.}(-2;2).$
- **D.** (0;2).

- **Câu 19.** Với a là số thực dương, $\log a^{10}$ bằng
 - **A.** 10a.
- **B.** $10 + \log a$.
- **C.** 10 log *a* .
- **D.** $\frac{1}{10} \log a$.
- **Câu 20.** Cho hai số phức $z_1 = 2 + 3i$ và $z_2 = 3 2i$. Số phức $z_1.z_2$ bằng
 - **A.** 12 + 5i.
- **B.** -5i
- C. 6-6i
- **D.** 5*i* .

Câu 21. Cho hàm số y = f(x) có bảng biến thiên như sau:

Hàm số đã cho đat cực đại tại

- **A.** x = -1.
- **B.** x = -6.
- C. x = 5
- $\mathbf{D} \mathbf{r} 2$

- **Câu 22.** Họ nguyên hàm của của hàm số $f(x) = x^2 3x$ là
 - **A.** $\int f(x) dx = \frac{x^3}{3} \frac{3x^2}{2} + C$.
- **B.** $\int f(x) dx = 2x 3 + C$.
- C. $\int f(x) dx = x^3 3x^2 + C$.

- **D.** $\int f(x) dx = \frac{x^3}{3} 3x^2 + C$.
- **Câu 23.** Tiệm cận đứng của đồ thị hàm số $y = \frac{2x-4}{x+1}$ là đường thẳng có phương trình
 - **A.** x = 2.
- **B.** x = -1.
- C. x = -2.
- **D.** x = 1.
- **Câu 24.** Cho khối chóp có diện tích đáy B = 6 và chiều cao h = 4. Thể tích của khối chóp đã cho bằng **A.** 8. **B.** 24. **C.** 12. **D.** 72.
- Câu 25. Trong không gian Oxyz, mặt cầu tâm I(1;0;-2) và bán kính R=4 có phương trình là
 - **A.** $(x-1)^2 + y^2 + (z+2)^2 = 4$.

B. $(x-1)^2 + y^2 + (z+2)^2 = 16$.

C. $(x+1)^2 + y^2 + (z-2)^2 = 4$.

D. $(x+1)^2 + y^2 + (z-2)^2 = 16$.

Câu 26. Số nghiệm nguyên của bất phương trình $\log_{\frac{1}{4}}(x-1) + \log_{4}(14-2x) \ge 0$ là

A. 5

B. 4.

C. 6.

D. 3.

Câu 27. Cho $\log_a 5 = 3$, khi đó giá trị của $\log_{a^2} (5a^3)$ bằng

A. 3.

B. 8.

C. 5

D. 15

Câu 28. Cho hàm số f(x) liên tục trên đoạn [0;2] và thỏa mãn $\int_{0}^{2} f(x) dx = 6$. Giá trị của tích phân

 $\int_{0}^{\frac{\pi}{2}} f(2\sin x)\cos x dx \text{ bằng}$

A. -6.

B. −3.

C. 3.

D. 6.

Câu 29. Giá trị lớn nhất của hàm số $f(x) = 2x^3 - 6x$ trên đoạn [0;2] bằng

A. 0.

B. 4

C. -4.

D. 2.

Câu 30. Hàm số $y = \frac{x^3}{3} - 2x^2 + 3x + 1$ nghịch biến trên khoảng nào dưới đây?

A. $(-\infty;3)$.

B. $(1;+\infty)$.

 $\mathbf{C}. (-3;1).$

D. (1;3).

Câu 31. Cho hình lăng trụ tam giác đều ABC. A'B'C' có tất cả các cạnh đều bằng 2

Khoảng cách từ B đến mặt phẳng (ACC'A') bằng

A. $\sqrt{3}$.

B. $\sqrt{2}$.

C. $\frac{\sqrt{3}}{2}$.

D. 2.

Câu 32. Cho số phức $z = (1+2i)^2$. Số phức $\frac{z}{i}$ bằng

A. -3 + 4i.

B. 2-i.

C. 4 + 3i.

D. 4-3i.

Câu 33. Cho cấp số cộng (u_n) biết $u_1 = 5, u_2 = 8$. Giá trị của u_4 bằng

A. 17.

B. 11.

C. 14.

D. 13.

Câu 34. Tập xác định của hàm số $y = \log_3(x^2 - 1)$ là

A. $(-\infty;-1)\cup(1;+\infty)$.

B. (-1;1).

C. $(-\infty;-1] \cup [1;+\infty)$.

D. [-1;1].

Câu 35. Cho hàm số y = f(x) có đạo hàm f'(x) = x(x-1)(x+3). Hàm số đạt cực đại tại điểm

A. x = 3.

B. x = 1.

C. x = 0.

D. x = -3.

- Một hộp chứa 9 quả cầu gồm 4 quả màu xanh, 3 quả màu đỏ và 2 quả màu vàng. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Xác suất để trong 3 quả cầu lấy được có ít nhất một quả màu đỏ bằng
 - A. $\frac{19}{28}$.
- **B.** $\frac{17}{42}$. **C.** $\frac{1}{2}$.

- **Câu 37.** Cho hàm số f(x) có đạo hàm $f'(x) = \frac{1}{\sqrt{1-3x}}, \forall x \in \left(-\infty; \frac{1}{3}\right)$ và $f(-1) = \frac{2}{3}$. Biết F(x) là nguyên hàm của f(x) thỏa mãn F(-1) = 0. Giá trị của $F\left(\frac{1}{4}\right)$ bằng

- **B.** $\frac{14}{27}$. **C.** $-\frac{8}{27}$. **D.** $\frac{1}{54}$.
- **Câu 38.** Cho hình hộp chữ nhật ABCD.A'B'C'D' có $AB=1, AD=AA'=\sqrt{3}$. Gọi M,N lần lượt là trung điểm của A'B' và BC. Góc giữa hai đường thẳng MN và AC bằng
- B_{\bullet} 60°.

- Trên tập hợp số phức, biết $z_0 = 3 2i$ là một nghiệm của phương trình $z^2 + az + b = 0$. Giá trị **Câu 39.** của a+b bằng
 - **A.** 7.

- $B_{1} 19$.
- C_{\bullet} -7.
- **D.** 19.
- **Câu 40.** Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ bên dưới.

Số nghiệm của phương trình f[f(x)] = 0 là

A. 7.

- **B.** 8.
- C. 9.
- **D.** 6.
- **Câu 41.** Có bao nhiều số nguyên x thỏa mãn $(9^x 10.3^{x+2} + 729)\sqrt{2\ln 30 \ln(9x)} \ge 0$?
 - **A.** 97.
- **B.** 96.
- C. 98.
- Cho khối nón đỉnh S có đáy là đường tròn tâm O, bán kính R. Trên đường tròn O lấy hai điểm A, B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng $\sqrt{2}R^2$. Thể tích khối nón đã cho bằng
 - **A.** $\frac{\sqrt{14}}{6}\pi R^3$.

- B. $\frac{\sqrt{14}}{2}\pi R^3$. C. $\frac{\sqrt{14}}{2}\pi R^3$. D. $\frac{\sqrt{14}}{12}\pi R^3$.
- **Câu 43.** Trong không gian Oxyz, giao tuyến của hai mặt phẳng $(\alpha): x+2y+z-1=0$ và (β) : x-y-z+2=0 có phương trình là
 - **A.** $\begin{cases} x = -1 + t \\ y = 1 + 2t \\ z = t \end{cases}$ **B.** $\begin{cases} x = -1 + t \\ y = 1 2t \\ z = 3t \end{cases}$ **C.** $\begin{cases} x = t \\ y = -t \\ z = 2 t \end{cases}$ **D.** $\begin{cases} x = -t \\ y = 2t \\ z = 1 3t \end{cases}$

Câu 44.	Trong không gian Oxyz	z, gọi (P) là mặt phẳng	g chứa đường thẳng d :	$\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{-1}$ và cắt						
				với d. Phương trình của						
Câu 45.	A. $x+2y+5z-4=0$. B. $2x-y-3=0$. C. $x+2y-z-4=0$. D. $x+2y+5z-5=0$. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữa nhật, $AB=2$, $AD=2\sqrt{3}$, tam giác SA cân tại S và nằm trong mặt phẳng vuông góc đáy, khoảng cách giữa hai đường thẳng AB SC bằng S . Tính thể tích của khối chóp $S.ABCD$ bằng									
	A. $16\sqrt{3}$.	B. $\frac{16\sqrt{3}}{3}$.	C. $24\sqrt{3}$.	D. $8\sqrt{3}$.						
Câu 46.	Cho (H) là hình phẳn	g giới hạn bởi đồ thị h		trục hoành và trục tung.						
	Đường thẳng d qua $A(0;4)$ và có hệ số góc k $(k \in \mathbb{R})$ chia hình (H) thành hai phần có diện									
	tích bằng nhau. Giá trị c									
	A. -8.		C. -4.							
Câu 47.	Cho hàm số $f(x)$ có	đạo hàm $f'(x) = \frac{1}{2}x^2$	$-2x + \frac{3}{2}$ và $f(0) = 0$.	Có bao nhiêu số nguyên						
	$m \in (-2021; 2022)$ để h	$n \text{am so } g(x) = \left f^2(x) + 2 \right $	2f(x) + m có đúng 3 đi	ểm cực trị?						
	A. 2021.	B. 2020.	C. 2022.	D. 4042.						
Câu 48.	Cho các số phức w,z t	hỏa mãn $ w+i = \frac{3\sqrt{5}}{5}$	và $5w = (2+i)(z-4)$.	Giá trị lớn nhất của biểu						
	thức $P = z - 1 - 2i + z - 5 - 2i $ bằng									
	A. $6\sqrt{7}$.	B. $2\sqrt{53}$.	C. $4\sqrt{13}$.	D. $4 + 2\sqrt{13}$.						
Câu 49.	Trong không gian $Oxyz$, cho mặt cầu $(S):(x+1)^2+(y-1)^2+z^2=4$ và hai điểm $A(1;2;4)$, $B(0;0;1)$. Mặt phẳng $(P):ax+by+cz+3=0$ $(a,b,c\in\mathbb{R})$ đi qua A,B và cắt (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Giá trị của $a+b+c$ bằng									
		B. $\frac{33}{5}$.								
CA #0	•	3	'	3						
Cau 50.	Có bao nhiều cặp số ng	uyen $(x; y)$ thoa man 2	$2.3^{-1} - \log_3(3^{-2} + 2y) =$	= 6y - x + 1 va						
	$2022^{-1} \le y \le 2022$? A. 13.	B. 15.	C. 7.	D. 6.						
	1. 13.	D. 10.		D. 0.						
	Thí sinh không được	HẾT - c sử dụng tài liệu. G		hích gì thêm.						
	-									
Họ và tế	en giám thị 1:	Chữ	ký:							
Họ và tế	ên giám thị 2:	Chữ	ký:							

BẢNG ĐÁP ÁN

1. D	2.D	3.A	4.A	5.D	6.A	7.A	8.A	9.D	10.D
11.B	12.A	13.D	14.B	15.D	16.D	17.A	18.D	19.C	20.A
21.A	22.A	23.B	24.A	25.B	26.B	27.A	28.C	29.B	30.D
31.A	32. C	33.C	34.A	35.C	36.D	37.A	38.B	39.A	40.A
41.D	42.A	43.B	44.A	45.D	46.D	47.A	48.B	49.A	50.C

LÒI GIẢI CHI TIẾT

[Mức độ 1] Trong không gian Oxyz, cho mặt phẳng (P): 3x + y - 2z + 1 = 0. Vecto nào sau Câu 1. đây là một vecto pháp tuyến của (P)?

A. $\vec{n}_1 = (1; -2; 1)$. **B.** $\vec{n}_2 = (3; -2; 1)$. **C.** $\vec{n}_3 = (-2; 1; 3)$.

Lời giải

Vector pháp tuyến của (P) là $\vec{n}_4 = (3;1;-2)$.

Câu 2. [Mức độ 1] Số cách xếp 4 người thành một hàng ngang là

A. A_4^2 .

B. 4^4 .

 $C. C_4^4.$

D. 4!.

Lời giải

Số cách xếp 4 người thành một hàng ngang là số hoán vị 4 phần tử: $P_4 = 4!$.

[**Mức độ 1**] Cho hàm số y = f(x) có đồ thị là đường cong như hình bên dưới. Câu 3.

Đồ thị hàm số đã cho cắt trục hoành tại điểm nào sau đây?

A. (2;0).

B. (0;2).

C. (-2;0).

D. (0;-2).

Lời giải

Quan sát hình vẽ ta thấy đồ thị hàm số đã cho cắt trục hoành tại điểm (2;0).

[**Mức độ 1**] Tập xác định của hàm số $y = x^{\sqrt{5}}$ là Câu 4.

 $\mathbf{A}_{\cdot}(0;+\infty)$.

B. $[0;+\infty)$.

C. $(-\infty;0)$. D. $(-\infty;+\infty)$.

Lời giải

Hàm số $y = x^{\sqrt{5}}$ là hàm số lũy thừa với số mũ là $\alpha = \sqrt{5} \notin \mathbb{Z}$ nên điều kiện xác định là x > 0. Vậy tập xác định của hàm số đã cho là $(0; +\infty)$.

[**Mức độ 1**] Cho hàm số f(x) liên tục trên \mathbb{R} và a là số thực dương. Khẳng định nào dưới Câu 5. đây đúng?

A. $\int_{-a}^{a} f(x) dx = 0$. **B.** $\int_{-a}^{0} f(x) dx = 0$. **C.** $\int_{0}^{a} f(x) dx = 0$. **D.** $\int_{a}^{a} f(x) dx = 0$.

Lời giải

Theo tính chất tích phân ta có $\int_{-\infty}^{\infty} f(x) dx = 0$.

Giải thích: Gọi F(x) là một nguyên hàm của hàm số f(x).

Ta có:
$$\int_{a}^{a} f(x) dx = F(x)|_{a}^{a} = F(a) - F(a) = 0$$
.

[**Mức độ 1**] Thể tích của khối cầu có bán kính R là Câu 6.

$$\underline{\mathbf{A.}} \; \frac{4}{3} \pi R^3$$

B.
$$\frac{1}{3}\pi R^3$$
.

C.
$$4\pi R^3$$
.

D.
$$\frac{4}{3}\pi R^2$$
.

Lời giải

Theo lý thuyết công thức tính thể tích khối cầu có bán kính R là $\frac{4}{2}\pi R^3$.

Môđun của số phức z = 4 - 3i bằng Câu 7.

B.
$$\sqrt{7}$$

Lời giải

Ta có
$$z = 4 - 3i \Rightarrow |z| = \sqrt{4^2 + (-3)^2} = 5$$
.

Giá trị của $\int_{-x}^{5} \frac{1}{x} dx$ bằng

$$\underline{\mathbf{A}} \cdot \ln \frac{5}{2}$$

B.
$$\ln \frac{2}{5}$$
.

C.
$$\frac{1}{3} \ln 3$$
.

Lời giải

Ta có
$$\int_{2}^{5} \frac{1}{x} dx = \ln|x||_{2}^{5} = \ln 5 - \ln 2 = \ln \frac{5}{2}$$
.

Trong không gian Oxyz, đường thẳng đi qua điểm M(3;-1;2) và có vecto chỉ phương Câu 9. $\vec{u} = (4;5;-7)$ có phương trình là

A.
$$\frac{x+3}{4} = \frac{y-1}{5} = \frac{z+2}{-7}$$
.

B.
$$\frac{x+4}{3} = \frac{y+5}{-1} = \frac{z-7}{2}$$
.

C.
$$\frac{x-4}{3} = \frac{y-5}{-1} = \frac{z+7}{2}$$
.

B.
$$\frac{x+4}{3} = \frac{y+5}{-1} = \frac{z-7}{2}$$
.
D. $\frac{x-3}{4} = \frac{y+1}{5} = \frac{z-2}{-7}$.

Lời giải

Đường thẳng đi qua điểm M(3;-1;2) và có vecto chỉ phương $\vec{u} = (4;5;-7)$ có phương trình chính tắc là: $\frac{x-3}{4} = \frac{y+1}{5} = \frac{z-2}{-7}$.

Trong không gian Oxyz, cho hai véctor $\vec{a} = (2;3;2)$ và $\vec{b} = (1;1;-1)$. Véctor $\vec{a} - \vec{b}$ có toạ độ là **Câu 10.**

A.
$$(-1;-2;3)$$
.

Lời giải

Ta có:
$$\vec{a} - \vec{b} = (2-1; 3-1; 2+1) \Rightarrow \vec{a} - \vec{b} = (1; 2; 3)$$
.

Cho khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h. Thể tích V của khối lăng trụ đã cho được tính theo công thức nào dưới đây?

A.
$$V = \frac{1}{2}Bh$$
.

$$\mathbf{B.}\ V = Bh\ .$$

C.
$$V = 3Bh$$
.

D.
$$V = \frac{1}{3}Bh$$
.

Lời giải

Thể tích V của khối lăng trụ đã cho được tính theo công thức V = Bh.

Câu 12. Điểm M trong hình bên dưới biểu diễn số phức nào sau đây?

A.
$$z_3 = -2 + 3i$$

B.
$$z_2 = 2 - 3i$$
.

C.
$$z_1 = 3 + 2i$$
. **D.** $z_4 = 3 - 2i$.

D.
$$z_4 = 3 - 2i$$
.

Lời giải

Dựa vào hình vẽ ta có M(-2;3), suy ra điểm M(-2;3) là điểm biểu diễn của số phức $z_3 = -2 + 3i.$

Thể tích của khối trụ có chiều cao h = 2 và bán kính đáy r = 3 là **Câu 13.**

A.
$$6\pi$$

B.
$$9\pi$$
.

$$C. 15\pi$$

D.
$$18\pi$$

Lời giải

Thể tích khối trụ là $V = \pi r^2 h = \pi .3^2 .2 = 18\pi$.

Hàm số nào sau đây có đồ thị là đường cong như hình bên dưới?

A.
$$y = x^4 - 2x^2 + 1$$
.

$$\mathbf{B.} \ \ y = -x^4 + 2x^2 + 1$$

$$y = -x^4 + 2x^2 + 1$$
. C. $y = -x^3 + 3x^2 + 1$. D. $y = x^3 - 3x^2 + 1$.

$$D. y = x^3 - 3x^2 + 1.$$

Lời giải

Đồ thị trên là đồ thị hàm số trùng phương có hệ số a < 0 nên chọn đáp án B.

Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng $d: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{2}$?

A.
$$N(-1;0;1)$$

A.
$$N(-1;0;1)$$
. **B.** $Q(-2;-1;-2)$. **C.** $M(2;1;2)$.

C.
$$M(2;1;2)$$
.

D.
$$P(1;0;-1)$$

Lời giải

Thế tọa độ điểm P(1;0;-1) vào phương trình đường thẳng d, ta có $\frac{1-1}{2} = \frac{0}{1} = \frac{-1+1}{2}$ là mệnh đề đúng nên điểm P(1;0;-1) thuộc đường thẳng d.

Câu 16. Nghiệm của phương trình $3^x = 7$ là

A.
$$x = 3^7$$
.

B.
$$x = \log_7 3$$

B.
$$x = \log_7 3$$
. **C.** $x = \frac{7}{3}$.

$$\mathbf{D.} \ x = \log_3 7.$$

Lời giải

Phương trình $3^x = 7 \Leftrightarrow x = \log_3 7$.

Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và k là một số thực khác 0. Khẳng định nào dưới đây đúng?

$$\underline{\mathbf{A}} \int kf(x) \, \mathrm{d}x = k \int f(x) \, \mathrm{d}x.$$

B.
$$\int kf(x) dx = k + \int f(x) dx.$$

C.
$$\int kf(x)dx = \int k dx \cdot \int f(x)dx$$
.

D.
$$\int kf(x) dx = \frac{1}{k} \int f(x) dx$$
.

Lời giải

Tính chất của nguyên hàm: $\int kf(x) dx = k \int f(x) dx$ với k là một số thực khác 0.

Câu 18. Cho hàm số y = f(x) có đồ thị là đường cong như hình bên dưới.

Hàm số đã cho đồng biến trên khoảng nào sau đây?

A.
$$(-\infty;0)$$
.

B.
$$(2;+\infty)$$
.

$$\mathbf{C}.(-2;2).$$

Lời giải

Dựa vào đồ thị, hàm số đã cho đồng biến trên khoảng (0;2).

Câu 19. Với a là số thực dương, $\log a^{10}$ bằng

B.
$$10 + \log a$$
.

D.
$$\frac{1}{10} \log a$$
.

Lời giải

Ta có $\log a^{10} = 10 \log a$ nên chọn C.

Câu 20. Cho hai số phức $z_1 = 2 + 3i$ và $z_2 = 3 - 2i$. Số phức $z_1.z_2$ bằng

A.
$$12 + 5i$$
.

$$R_{i}$$
 $-5i$

$$\mathbf{C}$$
. 6-6*i*.

Lời giải

Ta có $z_1 \cdot z_2 = (2+3i)(3-2i) = 6-4i+9i-6i^2 = 12+5i$. Chọn A.

Câu 21. Cho hàm số y = f(x) có bảng biến thiên như sau:

x	$-\infty$		-1		2		$+\infty$
f'(x)		+	0	_	0	+	
f(x)	$-\infty$		√ ⁵ \		_6		$+\infty$

Hàm số đã cho đạt cực đại tại

$$\mathbf{A.} \ \ x = -1 \ .$$

B.
$$x = -6$$
.

C.
$$x = 5$$
.

D.
$$x = 2$$
.

Lời giải

Dựa vào bảng biến thiên, ta thấy hàm số đạt cực đại tại x = -1 nên chọn A.

Câu 22. [**Mức độ 1**] Họ nguyên hàm của của hàm số $f(x) = x^2 - 3x$ là

$$\mathbf{A.} \int f(x) dx = \frac{x^3}{3} - \frac{3x^2}{2} + C.$$

B.
$$\int f(x) dx = 2x - 3 + C$$
.

C.
$$\int f(x) dx = x^3 - 3x^2 + C$$
.

D.
$$\int f(x) dx = \frac{x^3}{3} - 3x^2 + C$$
.

Lời giải

Họ nguyên hàm của của hàm số $f(x) = x^2 - 3x$ là

$$\int f(x) dx = \int (x^2 - 3x) dx = \frac{x^3}{3} - \frac{3x^2}{2} + C.$$

Câu 23. [**Mức độ 1**] Tiệm cận đứng của đồ thị hàm số $y = \frac{2x-4}{x+1}$ là đường thẳng có phương trình

A.
$$x = 2$$
.

B.
$$x = -1$$
.

C.
$$x = -2$$
.

D.
$$x = 1$$
.

Lời giải

Ta có: $\lim_{x\to -1^+} \frac{2x-4}{x+1} = -\infty$, $\lim_{x\to -1^-} \frac{2x-4}{x+1} = +\infty$. Nên hàm số $y = \frac{2x-4}{x+1}$ có duy nhất một đường tiêm cân đứng x = -1.

Câu 24. [**Mức độ 1**] Cho khối chóp có diện tích đáy B = 6 và chiều cao h = 4. Thể tích của khối chóp đã cho bằng

A. 8.

B. 24.

C. 12.

D. 72.

Lời giải

Thể tích của khối chóp đã cho là $V = \frac{1}{3}Bh = \frac{1}{3}.6.4 = 8.$

Câu 25. Trong không gian Oxyz, mặt cầu tâm I(1;0;-2) và bán kính R=4 có phương trình là

A.
$$(x-1)^2 + y^2 + (z+2)^2 = 4$$
.

B.
$$(x-1)^2 + y^2 + (z+2)^2 = 16$$
.

C.
$$(x+1)^2 + y^2 + (z-2)^2 = 4$$
.

D.
$$(x+1)^2 + y^2 + (z-2)^2 = 16$$
.

Lời giải

Trong không gian Oxyz, mặt cầu tâm I(1;0;-2) và bán kính R=4 có phương trình là $(x-1)^2+y^2+(z+2)^2=16$.

Câu 26. Số nghiệm nguyên của bất phương trình $\log_{\frac{1}{4}}(x-1) + \log_4(14-2x) \ge 0$ là

A. 5.

B. 4

C. 6.

D. 3.

Lời giải

Điều kiện xác định: $\begin{cases} x-1 > 0 \\ 14-2x > 0 \end{cases} \Leftrightarrow 1 < x < 7.$

Với điều kiện trên, ta có: $\log_{\frac{1}{4}}(x-1) + \log_{4}(14-2x) \ge 0 \Leftrightarrow -\log_{4}(x-1) + \log_{4}(14-2x) \ge 0$

$$\Leftrightarrow \log_4(14-2x) \ge \log_4(x-1) \Leftrightarrow 14-2x \ge x-1 \Leftrightarrow x \le 5$$

Kết hợp với điều kiện ta thấy có 4 nghiệm nguyên của bất phương trình đã cho là 2;3;4;5.

Câu 27. Cho $\log_a 5 = 3$, khi đó giá trị của $\log_{a^2} (5a^3)$ bằng

A. 3

B. 8

C. 5

D. 15.

Lời giải

$$\log_{a^2} \left(5a^3 \right) = \frac{1}{2} \log_a \left(5a^3 \right) = \frac{1}{2} \left(\log_a 5 + \log_a a^3 \right) = \frac{1}{2} \left(\log_a 5 + 3 \right) = \frac{1}{2} \left(3 + 3 \right) = 3.$$

Câu 28. Cho hàm số f(x) liên tục trên đoạn [0;2] và thỏa mãn $\int_{0}^{2} f(x) dx = 6$. Giá trị của tích phân

$$\int_{0}^{\frac{\pi}{2}} f(2\sin x)\cos x dx \text{ bằng}$$

A. -6.

 $\mathbf{B}_{\bullet} = 3$

C. 3.

D. 6.

Lời giải

Đặt $t = 2 \sin x \Rightarrow dt = 2 \cos x dx \Leftrightarrow \frac{1}{2} dt = \cos x dx$.

Đổi cận: $x = 0 \Rightarrow t = 0$; $x = \frac{\pi}{2} \Rightarrow t = 2$.

$$\int_{0}^{\frac{\pi}{2}} f(2\sin x)\cos x dx = \frac{1}{2} \int_{0}^{2} f(t) dt = 3.$$

Câu 29. Giá trị lớn nhất của hàm số $f(x) = 2x^3 - 6x$ trên đoạn [0,2] bằng

A. 0.

B. 4

C. -4.

D. 2.

Lời giải

Hàm số $f(x) = 2x^3 - 6x$ liên tục trên đoạn [0; 2].

Ta có
$$f'(x) = 6x^2 - 6$$
, $f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -1 \notin [0; 2] \end{bmatrix}$.

f(1) = -4, f(0) = 0, f(2) = 4. Suy ra giá trị lớn nhất của hàm số trên đoạn [0;2] là f(2) = 4.

Câu 30. Hàm số $y = \frac{x^3}{3} - 2x^2 + 3x + 1$ nghịch biến trên khoảng nào dưới đây?

A. $(-\infty;3)$.

B. $(1;+\infty)$.

 $\mathbf{C}. (-3;1).$

D. (1;3).

Lời giải

Xét hàm số $y = \frac{x^3}{3} - 2x^2 + 3x + 1$. Tập xác định: $D = \mathbb{R}$.

$$y' = x^2 - 4x + 3, \ y' = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 3 \end{bmatrix}.$$

Bảng biến thiên

x	$-\infty$		1		3		$+\infty$
f'(x)		+	0	_	0	+	
f(x)	$-\infty'$		$\sqrt{\frac{7}{3}}$		^ 1/		$+\infty$

Dựa vào BBT, suy ra hàm số nghịch biến trên khoảng (1;3).

Câu 31. Cho hình lăng trụ tam giác đều *ABC.A'B'C'* có tất cả các cạnh đều bằng 2 (tham khảo hình bên dưới)

Khoảng cách từ B đến mặt phẳng $\left(ACC'A'\right)$ bằng

B.
$$\sqrt{2}$$
.

C.
$$\frac{\sqrt{3}}{2}$$
.

Lời giải

Trong mặt phẳng (ABC) kẻ $BH \perp AC$.

Vì ABC.A'B'C' là hình lăng trụ tam giác đều $A'A \perp (ABC) \Rightarrow A'A \perp BH$.

$$\text{Vậy} \begin{cases} BH \perp AC, BH \perp A'A \\ AC, A'A \subset \left(ACC'A'\right) \implies BH \perp \left(ACC'A'\right) \Rightarrow d\left(B, \left(ACC'A'\right)\right) = BH \\ AC \cap A'A = A \end{cases}$$

 ΔABC đều cạnh bằng 2 nên $BH = \frac{2\sqrt{3}}{2} = \sqrt{3}$.

 Câu 32. Cho số phức $z = (1+2i)^2$. Số phức $\frac{z}{i}$ bằng

 A. -3+4i.
 B. 2-i.
 C. 4+3i.
 D. 4-3i.

 Lời giải

 Ta có: $z = (1+2i)^2 = -3+4i \Rightarrow \frac{z}{i} = \frac{-3+4i}{i} = 4+3i$.

 Câu 33. Cho cấp số cộng (u_n) biết $u_1 = 5, u_2 = 8$. Giá trị của u_4 bằng

 A. 17.
 B. 11.

 C. 14.

 D. 13.

Lời giải

Ta có (u_n) là cấp số cộng nên $u_2 = u_1 + d \Leftrightarrow 8 = 5 + d \Leftrightarrow d = 3$.

Vậy $u_4 = u_1 + 3d = 5 + 3.3 = 14$.

Câu 34. Tập xác định của hàm số $y = \log_3(x^2 - 1)$ là

 $\underline{\mathbf{A}}. \left(-\infty; -1\right) \cup \left(1; +\infty\right).$

B. (-1;1).

C. $(-\infty;-1] \cup [1;+\infty)$.

D. [-1;1].

Lời giải

TXĐ: $x^2 - 1 > 0 \Leftrightarrow x < -1 \text{ v } x > 1$. Vậy tập xác định: $D = (-\infty; -1) \cup (1; +\infty)$.

Câu 35. [**Mức độ 2**] Cho hàm số y = f(x) có đạo hàm f'(x) = x(x-1)(x+3). Hàm số đạt cực đại tại điểm

A. x = 3.

B. x = 1.

C. x = 0.

D. x = -3.

Lời giải

Ta có bảng xét dấu của f'(x):

Từ bảng xét dấu của f'(x) ta thấy hàm số đạt cực đại tại điểm x = 0.

Câu 36. [Mức độ 3] Một hộp chứa 9 quả cầu gồm 4 quả màu xanh, 3 quả màu đỏ và 2 quả màu vàng. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Xác suất để trong 3 quả cầu lấy được có ít nhất một quả màu đỏ bằng

A. $\frac{19}{28}$.

B. $\frac{17}{42}$.

 $\frac{1}{3}$.

 $\frac{16}{21}$

Lời giải

Không gian mẫu Ω bao gồm các cách lấy ra tùy ý 3 quả cầu từ 9 quả cầu trong hộp nên ta có $n(\Omega) = C_9^3$.

Gọi A là biến cố "trong 3 quả lấy được có ít nhất một quả màu đỏ ". Khi đó ta có \overline{A} là biến cố "không lấy được quả màu đỏ nào", do đó $n(\overline{A}) = C_6^3$.

Từ đó $P(\overline{A}) = \frac{C_6^3}{C_9^3} = \frac{5}{21}$. Suy ra $P(A) = \frac{16}{21}$.

Câu 37. Cho hàm số f(x) có đạo hàm $f'(x) = \frac{1}{\sqrt{1-3x}}, \forall x \in \left(-\infty; \frac{1}{3}\right)$ và $f(-1) = \frac{2}{3}$. Biết F(x) là nguyên hàm của f(x) thỏa mãn F(-1) = 0. Giá trị của $F\left(\frac{1}{4}\right)$ bằng

$$\frac{4}{3}$$

B.
$$\frac{14}{27}$$
.

$$\frac{\mathbf{C.}}{27}$$
.

D.
$$\frac{1}{54}$$

Lời giải

Ta có
$$f(x) = \int \frac{1}{\sqrt{1-3x}} dx = -\frac{2}{3} \sqrt{1-3x} + C_1$$
.

Mà
$$f(-1) = \frac{2}{3} \Leftrightarrow -\frac{2}{3}\sqrt{1-3(-1)} + C_1 = \frac{2}{3} \Leftrightarrow C_1 = 2.$$

Khi đó
$$f(x) = -\frac{2}{3}\sqrt{1-3x} + 2$$
.

Lại có
$$F(x) = \int \left(-\frac{2}{3}\sqrt{1-3x} + 2\right) dx = \int \left[-\frac{2}{3}(1-3x)^{\frac{1}{2}} + 2\right] dx = \frac{4}{27}(1-3x)^{\frac{3}{2}} + 2x + C_2.$$

Mà
$$F(-1) = 0 \Leftrightarrow \frac{4}{27} (1+3)^{\frac{3}{2}} - 2 + C_2 = 0 \Leftrightarrow C_2 = \frac{22}{27}.$$

Vậy
$$F(x) = \frac{4}{27} (1 - 3x)^{\frac{3}{2}} + 2x + \frac{22}{27} \Rightarrow F(\frac{1}{4}) = \frac{4}{3}$$
.

Câu 38. Cho hình hộp chữ nhật ABCD.A'B'C'D' có $AB=1, AD=AA'=\sqrt{3}$. Gọi M,N lần lượt là trung điểm của A'B' và BC. Góc giữa hai đường thẳng MN và AC bằng

A. 45° .

 $C. 30^{\circ}$.

D. 90° .

Lời giải

Xét tam giác ABC vuông tại $B \Rightarrow AC = \sqrt{AB^2 + BC^2} = 2$.

Gọi P là trung điểm của AB.

Khi đó NP là đường trung bình của tam giác $ABC \Rightarrow \begin{cases} NP//AC \\ NP = \frac{1}{2}AC = 1 \end{cases}$

Do
$$NP//AC$$
 nên $\widehat{(MN, AC)} = \widehat{(MN, NP)} = \widehat{MNP}$

Do M, P lần lượt là trung điểm của A'B' và $AB \Rightarrow MP = AA' = \sqrt{3}$.

Xét tam giác MNP vuông tại P có $\tan \widehat{MNP} = \frac{MP}{NP} = \sqrt{3} \Rightarrow \widehat{MNP} = 60^{\circ}$.

Câu 39. [**Mức độ 2**] Trên tập hợp số phức, biết $z_0 = 3 - 2i$ là một nghiệm của phương trình $z^2 + az + b = 0$ (với $a, b \in \mathbb{R}$). Giá trị của a + b bằng

A. 7

- **B.** −19.
- **C.** −7.
- **D.** 19.

Lời giải

Phương trình $z^2 + az + b = 0$ với hệ số thực a, b có nghiệm $z_1 = z_0 = 3 - 2i$ thì sẽ có nghiệm $z_2 = \overline{z_1} = 3 + 2i$. Theo định lí Vi-ét ta có:

$$\begin{cases} z_1 + z_2 = -\frac{a}{1} = -a \\ z_1 z_2 = \frac{b}{1} = b \end{cases} \Leftrightarrow \begin{cases} 3 - 2i + 3 + 2i = -a \\ (3 - 2i)(3 + 2i) = b \end{cases} \Leftrightarrow \begin{cases} a = -6 \\ b = 13 \end{cases}.$$

Khi đó a+b=-6+13=7.

Câu 40. [**Mức độ 3**] Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ bên dưới.

Số nghiệm của phương trình f[f(x)] = 0 là

A. 7

B. 8.

C. 9.

D. 6.

Lời giải

Ta có:
$$f[f(x)] = 0 \Leftrightarrow \begin{bmatrix} f(x) = a < -1 \\ f(x) = b \in (0;1) \\ f(x) = c \in (1;3) \end{bmatrix}$$

Phương trình f(x) = a < -1 có 1 nghiệm.

Phương trình $f(x) = b \in (0;1)$ có 3 nghiệm.

Phương trình $f(x) = c \in (1,3)$ có 3 nghiệm.

Tất các các nghiệm này khác nhau. Vậy phương trình f[f(x)] = 0 có 7 nghiệm.

Cách khác:

Hàm số bậc ba $f(x) = ax^3 + bx^2 + cx + d$ có $f'(x) = 3ax^2 + 2bx + c$ có hai điểm cực trị là $x = \pm 1$, suy ra $f'(x) = 3a(x-1)(x+1) = 3a(x^2-1) = 3ax^2 - 3a \Rightarrow f(x) = ax^3 - 3ax + d$.

Đồ thị hàm số y = f(x) đi qua điểm A(-1;3) và B(1;-1) nên ta có hệ

$$\begin{cases} f(-1) = 3 \\ f(1) = -1 \end{cases} \Leftrightarrow \begin{cases} 2a + d = 3 \\ -2a + d = -1 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ d = 1 \end{cases} \Rightarrow f(x) = x^3 - 3x + 1.$$

Khi đó
$$f(x) = 0 \Leftrightarrow x^3 - 3x + 1 = 0 \Leftrightarrow \begin{bmatrix} x = a \approx -1,8794 \\ x = b \approx 0,3473 \\ x = c \approx 1,5321 \end{bmatrix}$$

Phương trình $f[f(x)] = 0 \Leftrightarrow \begin{bmatrix} f(x) = a \\ f(x) = b \\ \end{bmatrix}$

Phương trình
$$f[f(x)] = 0 \Leftrightarrow \begin{bmatrix} f(x) = a \\ f(x) = b \end{bmatrix}$$

Dựa vào đồ thị ta thấy phương trình f(x) = a có một nghiệm, phương trình f(x) = b có ba nghiệm và phương trình f(x) = c có 3 nghiệm.

Vậy phương trình f[f(x)] = 0 có tất cả 7 nghiệm.

Có bao nhiều số nguyên x thỏa mãn $(9^x - 10.3^{x+2} + 729)\sqrt{2\ln 30 - \ln(9x)} \ge 0$? **A.** 97. **B.** 96. **C.** 98. C. 98. A. 97. **B.** 96.

Lời giải

Điều kiện:
$$\begin{cases} x > 0 \\ 2 \ln 30 - \ln(9x) \ge 0 \end{cases} \Leftrightarrow \begin{cases} x > 0 \\ x \le 100 \end{cases} \Leftrightarrow x \in (0;100].$$

+ Với
$$x = 100$$
, khi đó $(9^x - 10.3^{x+2} + 729)\sqrt{2\ln 30 - \ln(9x)} = 0$. Suy ra $x = 100$ thỏa mãn.

+ Với
$$x \in (0;100)$$
, bất phương trình $(9^x - 10.3^{x+2} + 729)\sqrt{2\ln 30 - \ln(9x)} \ge 0$

$$\Leftrightarrow \left(3^x\right)^2 - 90.3^x + 729 \ge 0$$

$$\Leftrightarrow \begin{bmatrix} 3^x \ge 81 \\ 3^x \le 9 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x \ge 4 \\ x \le 2 \end{bmatrix} \Leftrightarrow x \in (0;2] \cup [4;100).$$

Vậy bất phương trình đã cho có tập nghiệm là $S = (0,2] \cup [4,100]$. Suy ra có 99 số nguyên xthỏa mãn bài toán.

Cho khối nón đỉnh S có đáy là đường tròn tâm O, bán kính R. Trên đường tròn O lấy hai **Câu 42.** điểm A, B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng $\sqrt{2}R^2$. Thể tích khổi nón đã cho bằng

- **B.** $\frac{\sqrt{14}}{2}\pi R^3$. **C.** $\frac{\sqrt{14}}{3}\pi R^3$. **D.** $\frac{\sqrt{14}}{12}\pi R^3$.

 $\triangle OAB$ vuông tại $O \Rightarrow AB = \sqrt{R^2 + R^2} = R\sqrt{2}$.

Gọi I là trung điểm của AB.

Ta có $\triangle SAB$ cân tại $S \Rightarrow SI$ vuông góc với AB.

$$S_{\Delta SAB} = \frac{1}{2}.AB.SI = R^2\sqrt{2} \Rightarrow SI = \frac{2.R^2\sqrt{2}}{R\sqrt{2}} = 2R.$$

Ta lại có OI là trung tuyến của tam giác vuông OAB

$$\Rightarrow OI = \frac{AB}{2} = \frac{R\sqrt{2}}{2}.$$

$$\triangle SOI$$
 vuông tại $O \Rightarrow SO = \sqrt{SI^2 - OI^2} = \sqrt{(2R)^2 - \left(\frac{R\sqrt{2}}{2}\right)^2} = \frac{\sqrt{14}}{2}R$.

$$V = \frac{1}{3}\pi .OA^{2}.SO = \frac{1}{3}\pi .R^{2}.\frac{\sqrt{14}}{2}R = \frac{\sqrt{14}}{6}\pi R^{3}.$$

Câu 43. Trong không gian Oxyz, giao tuyến của hai mặt phẳng $(\alpha): x+2y+z-1=0$ và (β) : x-y-z+2=0 có phương trình là

A.
$$\begin{cases} x = -1 + t \\ y = 1 + 2t \\ z = t \end{cases}$$

$$\frac{\mathbf{B}_{\bullet}}{\mathbf{B}_{\bullet}} \begin{cases} x = -1 + t \\ y = 1 - 2t \\ z = 3t \end{cases}$$

C.
$$\begin{cases} x = t \\ y = -t \\ z = 2 - t \end{cases}$$
 D.
$$\begin{cases} x = -t \\ y = 2t \\ z = 1 - 3t \end{cases}$$

$$\mathbf{D.} \begin{cases}
x = -t \\
y = 2t \\
z = 1 - 3t
\end{cases}$$

Lời giải

Gọi
$$d = (\alpha) \cap (\beta)$$
.

Mặt phẳng (α) và (β) lần lượt có một VTPT là $\overrightarrow{n_{\alpha}} = (1;2;1)$ và $\overrightarrow{n_{\beta}} = (1;-1;-1)$.

Suy ra d có một VTPT là $\vec{n} = \left[\overrightarrow{n_{\beta}}, \overrightarrow{n_{\alpha}} \right] = (1; -2; 3)$.

Lấy
$$M \in (\alpha) \cap (\beta) \Rightarrow M(-1;1;0) \in d$$
.

Vậy *d* có phương trình là $\begin{cases} x = -1 + t \\ y = 1 - 2t \end{cases}$.

Trong không gian Oxyz, gọi (P) là mặt phẳng chứa đường thẳng $d: \frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{-1}$ và cắt Câu 44. trục Ox, Oy lần lượt tại A và B sao cho đường thẳng AB vuông góc với d. Phương trình của mặt phẳng (P) là

A.
$$x+2y+5z-4=0$$
. **B.** $2x-y-3=0$. **C.** $x+2y-z-4=0$. **D.** $x+2y+5z-5=0$.

B.
$$2x - y - 3 = 0$$

C.
$$x + 2y - z - 4 = 0$$
.

D.
$$x + 2y + 5z - 5 = 0$$

Lời giải

Ta có
$$d:$$

$$\begin{cases} M(2;1;0) \in d \\ \overrightarrow{u_d} = (1;2;-1) \end{cases}.$$

Do $A \in Ox$, $B \in Oy \Rightarrow AB \subset (Oxy) \Rightarrow \overrightarrow{u_{AB}} \perp \overrightarrow{k} = (0;0;1)$.

Đường thẳng $AB \perp d \Rightarrow \overrightarrow{u_{\scriptscriptstyle AB}} \perp \overrightarrow{u_{\scriptscriptstyle d}}$.

Suy ra $\overrightarrow{u_{AB}} = \lceil \overrightarrow{k}, \overrightarrow{u_d} \rceil = (-2; 1; 0)$.

Do
$$\begin{cases} d \subset (P) \\ AB \subset (P) \end{cases} \Rightarrow \overrightarrow{n_P} = \left[\overrightarrow{u_{AB}}, \overrightarrow{u_d}\right] = \left(-1; -2; -5\right).$$

Phương trình mặt phẳng (P) qua M(2;1;0) và nhận véctor $\overrightarrow{n_P} = (-1;-2;-5)$ làm một véctor pháp tuyến là $(P):-1(x-2)-2(y-1)-5(z-0)=0 \Leftrightarrow x+2y+5z-4=0$.

Cho hình chóp S.ABCD có đáy ABCD là hình chữa nhật, $AB=2, AD=2\sqrt{3}$, tam giác SABCâu 45. cân tại S và nằm trong mặt phẳng vuông góc đáy, khoảng cách giữa hai đường thẳng AB và SC bằng 3. Tính thể tích của khối chóp S.ABCD bằng

A. $16\sqrt{3}$.

B. $\frac{16\sqrt{3}}{2}$.

C. $24\sqrt{3}$.

. Lời giải

Gọi H là trung điểm của AB ta có:

$$\begin{array}{l}
(SAB) \perp (ABCD) \\
(SAB) \cap (ABCD) = AB \\
SH \subset (SAB) \\
SH \perp AB
\end{array} \Rightarrow SH \perp (ABCD);$$

Gọi M là trung điểm của CD, ta có:

$$\begin{array}{l} CD \perp HM \\ CD \perp SH \end{array} \} \Rightarrow CD \perp \big(SHM\big); CD \subset \big(SCD\big) \Rightarrow \big(SHM\big) \perp \big(SCD\big) \ \ \text{theo giao tuy\'en } SM \ ;$$

Ta có $AB//CD \subset (SCD) \Rightarrow AB//(SCD)$;

$$\Rightarrow d_{\scriptscriptstyle \left(AB,SC\right)} = d_{\scriptscriptstyle \left[AB,\left(SCD\right)\right]} = d_{\scriptscriptstyle \left[H,\left(SCD\right)\right]} \ ;$$

$$\text{K\'e } HK \perp SM \Rightarrow HK \perp \big(SCD\big) \Rightarrow d_{\lceil H, (SCD) \rceil} = HK ;$$

Ta có ΔSHM vuông tại H, HK là đường cao nên

$$\frac{1}{HK^2} = \frac{1}{SH^2} + \frac{1}{HM^2} \Rightarrow \frac{1}{SH^2} = \frac{1}{9} - \frac{1}{12} = \frac{1}{36} \Rightarrow SH = 6;$$

Vậy
$$V_{S.ABCD} = \frac{1}{3}.S_{ABCD}.SH = \frac{1}{3}.2.2\sqrt{3}.6 = 8\sqrt{3}$$
.

Câu 46. Cho (H) là hình phẳng giới hạn bởi đồ thị hàm số $y = x^2 - 4x + 4$, trục hoành và trục tung. Đường thẳng d qua A(0;4) và có hệ số góc k $(k \in \mathbb{R})$ chia hình (H) thành hai phần có diện tích bằng nhau. Giá trị của k bằng

A. −8.

B. -2.

C. -4.

D. −6.

Lời giải

Phương trình đường thẳng d: y = kx + 4.

Từ hình vẽ, do đường thẳng d chia hình (H) thành hai phần có diện tích bằng nhau nên d cắt trục Ox tại điểm $B\left(-\frac{4}{k};0\right)$ với điều kiện $0<-\frac{4}{k}<2 \Leftrightarrow k<-2$.

Với mọi $x \in [0;2]$ thì $x^2 - 4x + 4 \ge 0$.

$$S = S_1 + S_2 = \int_0^2 |x^2 - 4x + 4| dx = \frac{8}{3}.$$

Do
$$S_1 = S_2$$
 nên $S_1 = \frac{4}{3}$.

Ta có:
$$S_1 = \frac{1}{2}OA.OB = \frac{1}{2}.4. \left| \frac{4}{-k} \right| = \frac{1}{2}.4. \frac{4}{-k} = \frac{4}{3} \iff k = -6.$$

Câu 47. Cho hàm số f(x) có đạo hàm $f'(x) = \frac{1}{2}x^2 - 2x + \frac{3}{2}$ và f(0) = 0. Có bao nhiều số nguyên $m \in (-2021; 2022)$ để hàm số $g(x) = |f^2(x) + 2f(x) + m|$ có đúng 3 điểm cực trị?

A. 2021.

- **B.** 2020.
- C. 2022.
- **D.** 4042.

Lời giải

Ta có:
$$f(x) = \frac{1}{6}x^3 - x^2 + \frac{3}{2}x + C$$
.

Mà
$$f(0) = 0 \iff C = 0$$
. Do đó, $f(x) = \frac{1}{6}x^3 - x^2 + \frac{3}{2}x$.

Đặt
$$h(x) = f^{2}(x) + 2f(x) + m$$
.

$$h'(x) = 2f'(x).f(x) + 2f'(x) = 2f'(x)(f(x)+1).$$

$$h'(x) = 0 \Leftrightarrow \begin{bmatrix} f'(x) = 0 \\ f(x) = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 3 \lor x = 1 \\ x = a \approx -0.4920 \end{bmatrix}$$

Bảng biến thiên của h(x)

Từ bảng biến thiên, $g(x) = |f^2(x) + 2f(x) + m| = |h(x)|$ có đúng 3 điểm cực trị $\Leftrightarrow 0 \leq -1 + m \Leftrightarrow m \geq 1 \text{ . Mà } \begin{cases} m \in \mathbb{Z} \\ m \in \left(-2021; 2022\right) \end{cases} \text{ nên có 2021 giá trị } m \text{ thỏa yêu cầu.}$

- Cho các số phức w, z thỏa mãn $|w+i| = \frac{3\sqrt{5}}{5}$ và 5w = (2+i)(z-4). Giá trị lớn nhất của biểu thức P = |z - 1 - 2i| + |z - 5 - 2i| bằng
 - **A.** $6\sqrt{7}$.

- **C.** $4\sqrt{13}$. **D.** $4+2\sqrt{13}$.

Lời giải

Gọi z = x + yi $(x, y \in \mathbb{R})$ khi đó M(x, y) biểu diễn cho số phức z.

Theo đề bài: 5w = (2+i)(z-4)

$$\Leftrightarrow 5(w+i) = (2+i)z - (8-i) \Leftrightarrow |5(w+i)| = |(2+i)z - (8-i)|$$

$$\Leftrightarrow |(2-i)(w+i)| = |z-(3-2i)| \Leftrightarrow |z-(3-2i)| = 3.$$

Suy ra M(x; y) thuộc đường tròn tâm I(3; -2) và bán kính R = 3.

Ta có P = |z - 1 - 2i| + |z - 5 - 2i| = |z - (1 + 2i)| + |z - (5 + 2i)| = MA + MB với A(1;2) và B(5;2).

Gọi E là trung điểm của đoạn thẳng AB suy ra E(3;2) và IE = 4 (E nằm ngoài (I)).

$$P = MA + MB \le \sqrt{(1^2 + 1^2)(MA^2 + MB^2)} = \sqrt{2(MA^2 + MB^2)} = \sqrt{4ME^2 + AB^2} = \sqrt{4ME^2 + 16}.$$

Biểu thức P đạt giá trị lớn nhất khi độ dài ME lớn nhất hay M, I, E thẳng hàng.

Khi đó
$$ME_{\text{max}} = IE + IM = 7 \text{ và } \overrightarrow{IM} = \frac{3}{4}\overrightarrow{EI} \Rightarrow M(3;-5).$$

Vậy biểu thức
$$P_{\text{max}} = \sqrt{4.7^2 + 16} = 2\sqrt{53}$$
 khi $z = 3 - 5i$ và $w = \frac{3}{5} - \frac{11}{5}i$.

Câu 49. [**Mức độ 4**] Trong không gian Oxyz, cho mặt cầu $(S):(x+1)^2+(y-1)^2+z^2=4$ và hai điểm A(1;2;4), B(0;0;1). Mặt phẳng (P):ax+by+cz+3=0 $(a,b,c\in\mathbb{R})$ đi qua A,B và cắt (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Giá trị của a+b+c bằng

$$A_{\cdot \cdot} - \frac{3}{4}$$

B.
$$\frac{33}{5}$$
.

C.
$$\frac{27}{4}$$
.

D.
$$\frac{31}{5}$$
.

Lời giải

Mặt cầu (S) có tâm I(-1;1;0) và bán kính R=2.

Ta có $IA = \sqrt{21}$, $IB = \sqrt{3}$ nên A nằm ngoài (S), B nằm trong (S). Do đó mặt phẳng (P) luôn cắt (S) theo một đường tròn (C) tâm K bán kính r.

Gọi M là hình chiếu vuông góc của I trên đường thẳng AB.

Ta có
$$IK = d(I, (P))$$
 và $r^2 = R^2 - IK^2$.

Ta có
$$IK \perp (P) \implies IK \leq IM \implies r^2 \geq R^2 - IM^2$$
.

Đẳng thức xảy ra khi $\mathit{IM} \perp (P)$. Khi đó

$$\vec{n}_{(P)} = (\overrightarrow{AB} \wedge \overrightarrow{IA}) \wedge \overrightarrow{AB} = (12; -18; 8).$$

Vì R; IM không đổi nên r có giá trị nhỏ nhất bằng $\sqrt{R^2 - IM^2}$.

Khi đó phương trình mặt phẳng (P) là

$$12(x-0)-18(y-0)+8(z-1)=0$$

$$\Leftrightarrow 12x - 18y + 8z - 8 = 0$$

$$\Leftrightarrow -\frac{9}{2}x + \frac{27}{4}y - 3z + 3 = 0.$$

Vậy
$$a+b+c=-\frac{9}{2}+\frac{27}{4}-3=-\frac{3}{4}$$
.

Cách 2:

Mặt cầu
$$(S)$$
:
$$\begin{cases} Tâm I(-1;1;0) \\ R = 2 \end{cases}$$
.

Do $IB = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3} < R = 2$ nên mặt phẳng (P) luôn cắt mặt cầu (S) theo một đường tròn giao tuyến (C).

Gọi H,K lần lượt là hình chiếu vuông góc của tâm I lên (P) và đường thẳng AB và r là bán kính đường tròn giao tuyến (C).

Ta có
$$r = \sqrt{R^2 - IH^2} = \sqrt{R^2 - [d(I, (P))]^2}$$

Vì
$$d(I,(P)) = IH \le IK \Rightarrow r \ge \sqrt{R^2 - IK^2} \Rightarrow r_{\min} = \sqrt{R^2 - IK^2}$$
.

Dấu "=" xảy ra khi và chỉ khi $H \equiv K$ hay $(P) \perp IK$.

Ta có
$$\overrightarrow{BA} = (1;2;3)$$
, suy ra $AB : \begin{cases} x = t \\ y = 2t \end{cases}$, $(t \in \mathbb{R})$. $z = 1 + 3t$

Do
$$K \in AB \Rightarrow K(t; 2t; 1+3t) \Rightarrow \overrightarrow{IK} = (t+1; 2t-1; 3t+1).$$

$$IK \perp AB \Leftrightarrow \overrightarrow{IK}.\overrightarrow{BA} = 0 \Leftrightarrow 1(t+1) + 2(2t-1) + 3(3t+1) = 0 \Leftrightarrow t = -\frac{1}{7}$$
. Suy ra $\overrightarrow{IK} = \left(\frac{6}{7}; -\frac{9}{7}; \frac{4}{7}\right)$

Phương trình mặt phẳng (P) qua B và nhận $\overrightarrow{n_P} = (6; -9; 4) = 7.\overrightarrow{IK}$ làm một véctơ pháp tuyến có phương trình $6(x-0)-9(y-0)+4(z-1)=0 \Leftrightarrow -\frac{9}{2}x+\frac{27}{4}y-3z+3=0$.

Khi đó
$$\begin{cases} a = -\frac{9}{2} \\ b = \frac{27}{4} \text{ . Vậy } a+b+c = -\frac{3}{4} \text{ .} \\ c = -3 \end{cases}$$

Câu 50. Có bao nhiều cặp số nguyên (x; y) thỏa mãn $2.3^{x-1} - \log_3(3^{x-2} + 2y) = 6y - x + 1$ và $2022^{-1} \le y \le 2022$?

A. 13.

B. 15.

<u>C.</u> 7.

D. 6.

Lời giải

+ Điều kiện
$$3^{x-2} + 2y > 0$$
.

+ Phương trình tương đương:
$$2.3^{x-1} - \log_3(3^{x-1} + 6y) = 6y - x$$
 (*).

+ Đặt:
$$u = \log_3 (3^{x-1} + 6y) \Rightarrow 3^{x-1} + 6y = 3^u \Rightarrow 6y = 3^u - 3^{x-1}$$
.

Ta có: (*)
$$\Leftrightarrow 2.3^{x-1} - u = 3^u - 3^{x-1} - x$$

$$\Leftrightarrow$$
 3.3^{x-1} + x = 3^u + u \Leftrightarrow 3^x + x = 3^u + u.

+ Hàm $f(t) = 3^t + t$ đồng biến trên \mathbb{R} nên

$$3^{x} + x = 3^{u} + u \Leftrightarrow x = u \Leftrightarrow x = \log_{3} \left(3^{x-1} + 6y\right)$$

$$\Leftrightarrow 3^{x-1} + 6y = 3^x \Leftrightarrow y = 3^{x-2}$$
 (thỏa đk $3^{x-2} + 2y > 0$).

+ Do
$$2022^{-1} \le y \le 2022$$
 nên $2022^{-1} \le 3^{x-2} \le 2022$

$$\Leftrightarrow \log_3 2022^{-1} \le x - 2 \le \log_3 2022$$

$$\Leftrightarrow \log_3 2022^{-1} + 2 \le x \le \log_3 2022 + 2$$

$$\Rightarrow -5 < x < 9$$
.

+ Do *x* nguyên, suy ra $x \in \{-4, -3, ..., 8\}$.

$$x \in \{-4, -3, -2, -1, 0, 1\}$$
 suy ra y không nguyên do $0 < y = 3^{x-2} < 1$.

$$x \in \{2; 3; 4; 5; 6; 7; 8\}$$
 suy ra y nguyên do $y \in \{3^0; 3^1; 3^2; 3^3; 3^4; 3^5; 3^6\}$.

+ Vậy có 7 cặp số nguyên (x; y) thỏa YCBT.

---HÉT---