Correlation & Regression

Ibrahim Rijal - 2106633323

Identify the explanatory variable and the response variable

Explanatory variable (Independent): Number of hours of safety driving classes

Response Variable (Dependent): The number of driving accidents for each driver

The ages (in years) of 11 children and the numbers of words in their vocabulary

Age, x	1	2	3	4	5	6	3	5	2	4	6
Vocabulary size, y	3	440	1200	1500	2100	2600	1100	2000	500	1525	2500

- (a) display the data in a scatter plot
- (b) calculate the sample correlation coefficient r
- (c) describe the type of correlation and interpret the correlation in the context of the data.

a) Display the data in a scatter plot

b) Calculate the sample correlation coefficient r

age (x)	vocab size (y)
1	3
2	440
3	1200
4	1500
5	2100
6	2600
3	1100
5	2000
2	500
4	1525
6	2500

c) Describe the type of correlation and interpret the correlation in the context of the data

From the scatter plot, we can conclude that this is a (very nearly perfect) positive linear correlation, because x increases as y tends to increase.

Interpretation

r = 0.996 shows a strong positive linear correlation, which shows that as children grow older, their vocabulary also expands

The weights (in pounds) of eight vehicles and the variabilities of their braking distances (in feet) when stopping on a wet surface are shown in the table. At a = 0.05, is there enough evidence to conclude that there is a significant linear correlation between vehicle weight and variability in braking distance on a wet surface?

Weight, x	5890	5340	6500	4800	5940	5600	5100	5850
Variability, y	2.92	2.40	4.09	1.72	2.88	2.53	2.32	2.78

Use Table 11 in Appendix B or perform a hypothesis test using Table 5 in Appendix B to make a conclusion about the correlation coefficient. Compare with using technology

Use Table 11 in Appendix B or perform a hypothesis test using Table 5 in Appendix B to make a conclusion about the correlation coefficient.

Compare with using technology

$$|r| = 0.998 > a$$

t = r / sqrt((1 - r^2)/(n - 2)) = 38.67

Reject HO
Based on the evidence at a significance level of 50%, it can be concluded that there is a linear relationship between weight and braking distance.

	x	у	x^2	y^2	
	4800	1,72	23040000	2,9584	
	5100	2,32	26010000	5,3824	
	5340	2,4	28515600	5,76	
	5600	2,53	31360000	6,4009	
	5850	2,78	34222500	7,7284	
	5890	2,92	34692100	8,5264	
	5940	2,88	35283600	8,2944	
	6500	4	42250000	16	
Sigma	45020	21,55	255373800	61,0509	

K	=CORREL(C2:C1	0;B2:B10)
	В	С
	0,9981247186	

The table shows the total square footages (in billions) of retailing space at shopping centers, the numbers (in thousands) of shopping centers, and the sales (in billions of dollars) for shopping centers for eight years.

Square	Sale
footage	price
1924	174.9
1592	136.9
2413	275.0
2332	219.9
1552	120.0
1312	99.9
1278	145.0

a) Find the equation of the regression line for the data.

	×	У	хy	x^2	y^2
	1924	174,9	336507,6	3701776	30590,01
	1592	136,9	217944,8	2534464	18741,61
	2413	275,0	663575	5822569	75625
	2332	219,9	512806,8	5438224	48356,01
	1552	120,0	186240	2408704	14400
	1312	99,9	131068,8	1721344	9980,01
	1278	145,0	185310	1633284	21025
SIGMA	12403	1171,6	2048143	23260365	218717,64

Berdasarkan rumus diatas m = 0,122696738571002000000 b = -50,02966407

Sehingga y-hat = 0.122x -50.03

The Equation of a Regression Line

$$\hat{y} = mx + b$$
 where

$$m = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)^2} \qquad b = \overline{y} - m\overline{x} = \frac{\sum y}{n} - m\frac{\sum x}{n}$$

b) Construct a scatter plot of the data and draw the regression line (in 1 figure)

Best-fit values

 Slope
 0.1227 ± 0.02265

 Y-intercept
 -50.03 ± 41.30

 X-intercept
 407.8

 1/Slope
 8.150

95% Confidence Intervals

 Slope
 0.06445 to 0.1809

 Y-intercept
 -156.2 to 56.14

 X-intercept
 -856.3 to 878.2

Goodness of Fit

R square 0.8544 Sy.x 25.67

Is slope significantly non-zero?

F 29.33
DFn,DFd 1,5
P Value 0.0029
Deviation from Significant horizontal?

https://www.gr aphpad.com/q uickcalcs/linear 2/

c) Predict values of y with i. x = 1450 square feet; ii. x = 2175 square feet.

y-hat = 0.122x - 50.03

i. y-hat = 0.122 (1450) - 50.03 = 127,8806069 So, when the square footage is 1450 sq feet, the sale price almost equals to 127,88 thousand dollars

ii. y-hat = 0.122 (2175) - 50.03 = 216,8357423 So, when the square footage is 2175 sq feet, the sale price almost equals to 216,84 thousand dollars

The table shows the median annual earnings (in dollars) of male and female workers from 10 states in a recent year. The equation of the regression line is ny = 0.939x - 6745.842.

Median annual earnings of male workers, x	41,331	48,389	42,667	43,631	55,116	48,492	37,528	43,425	39,562	40,621
Median annual earnings of female workers, y	30,658	40,019	33,665	31,762	44,937	38,025	28,506	35,691	30,578	32,578

Find:

- (a) the coefficient of determination r^2 and interpret the result
- (b) the standard error of estimate s_o and interpret the result.

a) Find the coefficient of determination r^2 and interpret the result

Dari persamaan garis regresi y = 0.939x - 6745.283 didapatkan nilai y, yaitu: y = 0.939(45.637) - 6745.283 =**36107.3**

Kemudian, dengan menggunakan rumus **margin of error** seperti yang tertera di atas, didapatkan nilai margin of error sebesar **3271**

Maka,

(36107.3 - 3271) < y < (36107.3 + 3271)

32746.3 < y < 39288.3

b) the standard error of estimate se and interpret the result.

$$SEE = \sqrt{\frac{\sum (x_i - \bar{x})}{n - 2}}$$

SEE = 1.557

Margin of error =
$$Zx\sqrt{\frac{PX(1-P)}{N}}$$

Dari persamaan garis regresi y = 0.939x - 6745.283 didapatkan nilai y, yaitu: y = 0.939(45.637) - 6745.283 =**36107.3**

Kemudian, dengan menggunakan rumus **margin of error** seperti yang tertera di atas, didapatkan nilai margin of error sebesar **3271**

Maka,

$$(36107.3 - 3271) < y < (36107.3 + 3271)$$

32746.3 < y < 39288.3

Sales, y	Total square footage, x1	Number of Shopping Center, x2
1032.4	5.7	85.5
1105.3	5.8	87.1
1181.1	6.0	88.9
1221.7	6.1	90.5
1277.2	6.2	91.9
1339.2	6.4	93.7
1432.6	6.5	96.0
1530.4	6.7	98.9

The table shows the total square footages (in billions) of retailing space at shopping centers, the numbers (in thousands) of shopping centers, and the sales (in billions of dollars) for shopping centers for eight years.

Use technology to find (a) the multiple regression equation for the data shown in the table, (b) the standard error of estimate and interpret the result, and (c) the coefficient of determination and interpret the result.

	A	В	С	D	Е	F G H	I J	K	L M
2		Sales, y	Total square footage, x1	Number of shopping centre, x2		Regression			? X
3		1032.4	5.7	85.5		Input	Construction of the		ОК
4		1105.3	5.8	87.1		Input <u>Y</u> Range:	\$B\$3:\$B\$10	<u> </u>	Cancel
5		1181.1	6	88.9		Input X Range:	\$C\$3:\$D\$10	<u> </u>	
6		1221.7	6.1	90.5			Constant is <u>Z</u> ero		<u>H</u> elp
7		1277.2	6.2	91.9		Confidence Level: 95	%		
8		1339.2	6.4	93.7		Output options			
9		1432.6	6.5	96		Output Range:	\$F\$3	<u>+</u>	
10		1530.4	6.7	98.9		New Worksheet Ply:			
11						○ New <u>W</u> orkbook			
12 13						Residuals			
14						Residuals Standardized Residuals	Resi <u>d</u> ual Plots L <u>i</u> ne Fit Plots		
15							Line rit riots		
16 17						Normal Probability Normal Probability Plots			
17									

	Coefficients
Intercept	-2075.22702
X Variable 1	20.8958107
X Variable 2	35.0709394

Regression Statistics

Multiple R

R Square

Standard Error

Observations

Persamaan reg	resi:
---------------	-------

$$y = 20.90x_1 + 35.07x_2 - 2075.23$$

Interpretasi: Standard error of estimate dari hasil penjualan pusat perbelanjaan selama 8 tahun untuk total kuadrat lahan dan jumlah pusat perbelanjaan tertentu adalah \$8.72 miliar.

Multiple R
$$0.99901274$$
R Square 0.99802646 $\mathbf{r}^2 \cong \mathbf{0.998}$
Adjusted R Square 0.99723704 Interpreta ditinjau m kuadrat la

$$r^2 \cong \mathbf{0.998}$$

0.99723704 Interpretasi: Sekitar 99.8% dari variasi penjualan dapat ditinjau melalui hubungan antara penjualan dengan total kuadrat lahan dan jumlah pusat perbelanjaan. Sekitar 0.2% 8 variasi tidak dapat ditinjau karena beberapa faktor, seperti sampling error, kebetulan, atau variabel tidak diketahui.