MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

(PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSACN-2011)

NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA

MATEMÁTICA

- 1) É correto afirmar que o número $5^{2011} + 2 \cdot 11^{2011}$ é múltiplo de
 - (A) 13
 - (B) 11
 - (C) 7
 - (D) 5
 - (E) 3
- 2) A solução real da equação $\frac{7}{x-1} \frac{8}{x+1} = \frac{9}{x^2-1}$ é um divisor de
 - (A) 12
 - (B) 14
 - (C) 15
 - (D) 16
 - (E) 19
- A soma das raízes de uma equação do 2º grau é $\sqrt{2}$ e o produto dessas raízes é 0,25. Determine o valor de $\frac{a^3-b^3-2ab^2}{a^2-b^2}$, sabendo que 'a' e 'b' são as raízes dessa equação do 2º grau e a>b, e assinale a opção correta.
 - $(A) \quad \frac{1}{2}$
 - (B) $\frac{\sqrt{3}-2}{4}$
 - (C) -1
 - (D) $\sqrt{2} + \frac{1}{4}$
 - (E) $\sqrt{2} \frac{1}{4}$

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

- 4) Sejam 'a', 'b' e 'c' números reais não nulos tais que $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} = p, \quad \frac{a}{b} + \frac{b}{a} + \frac{c}{a} + \frac{a}{c} + \frac{b}{b} + \frac{c}{b} = q \quad e \quad ab + ac + bc = r. \quad 0 \quad \text{valor de}$ $q^2 + 6q \text{ é sempre igual a}$
 - (A) $\frac{p^2r^2+9}{4}$
 - (B) $\frac{p^2r^2-9p}{12}$
 - (C) p^2r^2-9
 - (D) $\frac{p^2r^2-10}{4r}$
 - (E) $p^2r^2 12p$
- 5) A quantidade de soluções reais e distintas da equação $3x^3 \sqrt{33x^3 + 97} = 5$ é
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 5
 - (E) 6

Prova : Amarela Concurso : PSACN/2011

Profissão: PROVA DE MATEMÁTICA

- Num paralelograma ABCD de altura CP = 3, a razão $\frac{AB}{BC}$ = 2. Seja 'M' o ponto médio de AB e 'P' o pé da altura de ABCD baixada sobre o prolongamento de AB, a partir de C. Sabe-se que a razão entre as áreas dos triângulos MPC e ADM é $\frac{S(MPC)}{S(ADM)} = \frac{2+\sqrt{3}}{2} \text{. A área do triângulo BPC é igual a}$
 - $(A) \quad \frac{15\sqrt{3}}{2}$
 - (B) $\frac{9\sqrt{3}}{2}$
 - $(C) \quad \frac{5\sqrt{3}}{2}$
 - $(D) \quad \frac{3\sqrt{3}}{2}$
 - (E) $\frac{\sqrt{3}}{2}$
- 7) 0 valor de $\sqrt{9^{0.5} \times 0.333... + \sqrt[7]{4 \times \sqrt{0.0625}}} \frac{(3.444... + 4.555...)}{\sqrt[3]{64}}$ é
 - (A) 0
 - (B) $\sqrt{2}$
 - (C) $\sqrt{3}-2$
 - (D) $\sqrt{2} 2$
 - (E) 1

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

- 8) Dado um quadrilátero convexo em que as diagonais são perpendiculares, analise as afirmações abaixo.
 - I Um quadrilátero assim formado sempre será um quadrado.
 - II Um quadrilátero assim formado sempre será um losango.
 - III- Pelo menos uma das diagonais de um quadrilátero assim formado divide esse quadrilátero em dois triângulos isósceles.

Assinale a opção correta.

- (A) Apenas a afirmativa I é verdadeira.
- (B) Apenas a afirmativa II é verdadeira.
- (C) Apenas a afirmativa III é verdadeira.
- (D) Apenas as afirmativas II e III são verdadeiras.
- (E) Apenas as afirmativas I, II e III são verdadeiras.
- 9) Observe a figura a seguir

A figura acima mostra, num mesmo plano, duas ilhas representadas pelos pontos 'A' e 'B' e os pontos 'C', 'D', 'M' e 'P' fixados no continente por um observador. Sabe-se que $A\hat{C}B = A\hat{D}B = A\hat{P}D = 30^{\circ}$, 'M' é o ponto médio de CD = 100m e que PM = 10m é perpendicular a CD. Nessas condições, a distância entre as ilhas é de:

- (A) 150m
- (B) 130m
- (C) 120m
- (D) 80m
- (E) 60m

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

- 10) Numa pesquisa sobre leitores dos jornais A e B, constatou-se que 70% leem o jornal A e 65% leem o jornal B. Qual o percentual máximo dos que leem os jornais A e B?
 - (A) 35%
 - (B) 50%
 - (C) 65%
 - (D) 80%
 - (E) 95%
- 11) Analise as afirmações abaixo referentes a números reais simbolizados por 'a', 'b' ou 'c'.
 - I A condição a·b·c>0 garante que 'a', 'b' e 'c' não são, simultaneamente, iguais a zero, bem como a condição $a^2+b^2+c^2\neq 0$.
 - II Quando o valor absoluto de 'a' é menor do que b > 0, é verdade que -b < a < b.
 - III- Admitindo que b>c, é verdadeiro afirmar que $b^2>c^2$.

Assinale a opção correta.

- (A) Apenas a afirmativa I é verdadeira.
- (B) Apenas a afirmativa II é verdadeira.
- (C) Apenas a afirmativa III é verdadeira.
- (D) Apenas as afirmativas I e II são verdadeiras.
- (E) Apenas as afirmativas I e III são verdadeiras.

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

5/10

12) Observe a figura abaixo

A figura apresentada foi construída por etapas. A cada etapa, acrescenta-se pontos na horizontal e na vertical, com uma unidade de distância, exceto na etapa 1, iniciada com 1 ponto.

Continuando a compor a figura com estas etapas e buscando um padrão, é correto concluir que

- (A) cada etapa possui quantidade ímpar de pontos e a soma desses 'n' primeiros ímpares é $n^2\,.$
- (B) a soma de todos os números naturais começando do 1 até 'n' é sempre um quadrado perfeito.
- (C) a soma dos pontos das 'n' primeiras etapas é $2n^2-1$.
- (D) cada etapa 'n' tem 3n-2 pontos.
- (E) cada etapa 'n' tem 2n+1 pontos.

13) O número real $\sqrt[3]{26-15\sqrt{3}}$ é igual a

(A)
$$5-\sqrt{3}$$

(B)
$$\sqrt{7-4\sqrt{3}}$$

(C)
$$3-\sqrt{2}$$

(D)
$$\sqrt{13-3\sqrt{3}}$$

Prova : Amarela

Profissão: PROVA DE MATEMÁTICA

- 14) A divisão do inteiro positivo 'N' por 5 tem quociente ' q_1 ' e resto 1. A divisão de ' $4q_1$ ' por 5 tem quociente ' q_2 ' e resto 1. A divisão de ' $4q_2$ ' por 5 tem quociente ' q_3 ' e resto 1. Finalmente, dividindo ' $4q_3$ ' por 5, o quociente é ' q_4 ' e o resto é 1. Sabendo que 'N' pertence ao intervalo aberto (621, 1871), a soma dos algarismos de 'N' é
 - (A) 18
 - (B) 16
 - (C) 15
 - (D) 13
 - (E) 12
- 15) Assinale a opção que apresenta o único número que NÃO é inteiro.
 - (A) \$\sqrt{1771561}
 - (B) \$\frac{4}{28561}
 - (C) \$\sqrt{4826807}
 - (D) \$\frac{4}{331776}
 - (E) ∜148035889
- 16) A expressão $\sqrt[3]{-(x-1)^6}$ é um número real. Dentre os números reais que essa expressão pode assumir, o maior deles é:
 - (A) 2
 - (B) $\sqrt{2} 1$
 - (C) $2 \sqrt{2}$
 - (D) 1
 - (E) 0

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

17) Sejam
$$A = [7^{2011}, 11^{2011}]$$
 e $B = \{x \in R \mid x = (1-t) \cdot 7^{2011} + t \cdot 11^{2011} \text{ com } t \in [0,1]\},$ o conjunto $A - B \in$

- (A) $A \cap B$
- (B) $B \{11^{2011}\}$
- (C) $A \{7^{2011}\}$
- (D) A
- (E) Ø
- 18) Um aluno estudava sobre polígonos convexos e tentou obter dois polígonos de 'N' e 'n' lados (N \neq n), e com 'D' e 'd' diagonais, respectivamente, de modo que $^{N-n=D-d}$. A quantidade de soluções corretas que satisfazem essas condições é
 - (A) 0.
 - (B) 1.
 - (C) 2.
 - (D) 3.
 - (E) indeterminada.

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

19) Considere a figura abaixo.

- A razão $\frac{\mathcal{S}(\mathit{MPQ})}{\mathcal{S}(\mathit{ABC})}$, entre as áreas dos triângulos MPQ e ABC, é
- (A) $\frac{7}{12}$
- (B) $\frac{5}{12}$
- (C) $\frac{7}{15}$
- (D) $\frac{8}{15}$
- (E) $\frac{7}{8}$

Prova :

: Amarela

Profissão: PROVA DE MATEMÁTICA

20) Observe a ilustração a seguir.

Qual a quantidade mínima de peças necessárias para revestir, sem falta ou sobra, um quadrado de lado 5, utilizando as peças acima?

- (A) 12
- (B) 11
- (C) 10
- (D) 9
- (E) 8

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

DIRETORIA DE ENSINO DA MARINHA

PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL (PSACN/2011) - A Diretoria de Ensino da Marinha divulga os gabaritos referentes à Prova Escrita de Matemática realizada no dia 31 de julho de 2011.

MATEMÁTICA							
PROVA		PROVA		PROVA		PROVA	
AMARELA		AZUL		VERDE		ROSA	
01	E	01	D	01	E	01	D
02	A	02	В	02	D	02	A
03	E	03	A	03	E	03	В
04	C	04	C	04	E	04	A
05	A	05	В	05	D	05	E
06	В	06	A	06	D	06	D
07	D	07	D	07	В	07	С
08	C	80	С	80	E	80	В
09	В	09	E	09	A	09	С
10	C	10	E	10	C	10	A
11	В	11	A	11	В	11	E
12	A	12	E	12	A	12	В
13	В	13	С	13	В	13	A
14	D	14	D	14	C	14	E
15	C	15	A	15	В	15	С
16	E	16	В	16	C	16	D
17	E	17	E	17	C	17	В
18	A	18	C	18	В	18	C
19	В	19	В	19	A	19	E
20	D	20	В	20	А	20	В

OBS: O candidato que desejar interpor recurso da prova escrita, previsto no item 7 do Edital e Instruções ao Candidato, poderá fazê-lo até o dia 12 de agosto de 2011.