Tarea V

Nicholas Mc-Donnell

 $2 do \ semestre \ 2017$

${\rm \acute{I}ndice}$

Capítulo 10	2
10.5	2
1	2
7	2
9	2
10.6 Dominio de Enteros y Cuerpos Fraccionarios	3
1	3
3	3
5	4
10.7 Ideales Máximos	5
1	5
3	5
7	5
10.8 Geometría Algebraica	5
1	5
5	7
7	7
Capítulo 11	7
11.1 Factorización de Enteros y Polinomios	7
3	7
5	8
8	Q

Capítulo 10

10.5

1

Describe the ring obtained from \mathbb{Z} by adjoining an element α satisfying the two relations $2\alpha - 6 = 0$ and $\alpha - 10 = 0$

Demostración. Primero recordemos que $\mathbb{Z}[\alpha] \simeq \mathbb{Z}[x]/(x-10,2x-6)$, y con esto veremos algunas propiedades del anillo.

$$x \equiv 10 \quad 2(x-3) \equiv 0$$

$$\implies 10 \equiv 3 \implies 7 \equiv 0$$

Por lo que podemos ver que usando el primer teorema de isomorfismos, se concluye que $\mathbb{Z}[\alpha] \simeq \mathbb{Z}_7$

7

Analyze the ring obtained from \mathbb{Z} by adjoining an element α which satisfies the pair of relations $\alpha^3 + \alpha^2 + 1 = 0$ and $\alpha^2 + \alpha = 0$

Demostración. Lo primero que notamos es que $\mathbb{Z}[\alpha] \simeq \mathbb{Z}[x]/(x^3+x^2+1,x^2+x)$. Notamos que el ideal (x^3+x^2+1,x^2+x) contiene el 1. Esto implica que $\mathbb{Z}[\alpha] \simeq \mathbb{Z}_0$

9

Describe the ring obtained fro $\mathbb{Z}/12\mathbb{Z}$ by adjoining an inverse of 2

Demostración. Se sabe que adjuntar un inverso a un anillo es equivalente a cocientar de la siguiente forma:

$$R[a] = R[x]/(2x-1)$$

Donde a es el inverso del elemento en cuestión. Para este caso en especifico es el inverso de 2.

$$\implies \mathbb{Z}_{12}[a] = \mathbb{Z}_{12}[x]/(2x-1)$$

Usando las propiedades del anillo:

$$12x \equiv 0$$

$$x \equiv a$$

$$\therefore 12a \equiv 0$$

Pero notamos lo siguiente:

$$12 = 6 \cdot 2 \implies 6 \equiv 0$$

Mas aun:

$$3 \equiv 0$$

Observamos que $2 \cdot 2 = 4 = 3 + 1 \equiv 1$

$$\implies 2 \equiv a$$

Esto nos lleva a que concluir $\mathbb{Z}_{12}[a] \simeq \mathbb{Z}_3$, usando el primer teorema de isomorfismos.

10.6 Dominio de Enteros y Cuerpos Fraccionarios

1

Prove that the subring of an integral domain is an integral domain.

Demostración. Sea $R' \subset R$ anillo, y R dominio.

$$a, b \in R' : ab = 0$$

$$\therefore a, b \in R \implies (a = 0 \lor b = 0)$$

Lo que implica que R' es dominio.

3

Let R be an integral domain. Prove that the polynomial ring R[x] is an integral domain.

Demostración. Demostraremos esto por medio de inducción.

Sean $a, b \in R[x] : ab = 0$

$$\therefore a = \sum_{i=0}^{n} \alpha_i x^i \quad \forall i : \alpha_i \in R$$

$$\therefore b = \sum_{j=0}^{k} \beta_i x^j \quad \forall j : \beta_j \in R$$

Luego gr(a) = n, gr(b) = k.

Caso Base:

$$n=0, k=0$$

$$a = \alpha_0, b = \beta_0$$

$$\implies \alpha_0 \beta_0 = 0$$

$$\alpha_0, \beta_0 \in R \implies \alpha_0 = 0 \lor \beta_0 = 0$$

Caso Inductivo sobre n:

 $\underline{n=l,k=0}$

$$\sum_{i=0}^{l} \alpha_i \beta_0 x^i = 0 \implies (\forall i \le l : \alpha_i = 0 \lor \beta_0 = 0) \iff (a = 0 \lor b = 0)$$

 $\underline{n=l+1, k=0}$

$$\sum_{i=0}^{l+1} \alpha_i \beta_0 x^i = \sum_{i=0}^{l} \alpha_i \beta_0 x^i + \alpha_{l+1} \beta_0 x^{l+1} = 0$$

Pero sabemos que lo primero implica $\forall i \leq l : \alpha_i = 0 \lor \beta_0 = 0$. Lo que nos deja con lo siguiente:

$$\alpha_{l+1}\beta_0 x^{l+1} = 0$$

$$\implies \alpha_{l+1}\beta_0 = 0$$

Recordamos que ambos coeficientes pertenecen a R, por lo que $\alpha_{l+1} = 0 \lor \beta_0 = 0$. Vemos que si $\beta_0 \neq 0 \implies \forall i \leq l+1 : \alpha_i = 0$.

$$\implies \forall n : a\beta_0 = 0 \iff a = 0 \lor \beta_0 = 0$$

Caso Inductivo sobre k:

n = m, k = l

$$ab = 0 \implies (\forall i \le n : \alpha_i = 0 \lor \forall j \le k : \beta_i = 0) \iff (a = 0 \lor b = 0)$$

 $\underline{n=m, k=l+1}$

$$\left(\sum_{i=0}^{n} \alpha_i x^i\right) \cdot \left(\sum_{j=0}^{l+1} \beta_j x^j\right) = \left(\sum_{i=0}^{n} \alpha_i x^i\right) \cdot \left(\sum_{j=0}^{l} \beta_j x^j\right) + \sum_{i=0}^{n} \alpha_i \beta_{l+1} x^{i+l+1} = 0$$

Sabemos que lo primero implica que $\forall i \leq n : \alpha_i = 0 \lor \forall j \leq l : \beta_j = 0$. Y notamos que lo segundo es una caso similar y equivalente a la inducción sobre n. También vemos que si $\beta_{l+1} \neq 0 \implies \forall i \leq n : \alpha_i = 0$.

$$\implies (\forall i \leq n : \alpha_i = 0 \lor \forall j \leq k : \beta_i = 0) \iff a = 0 \lor b = 0$$

Que es lo que queríamos demostrar.

5

Is there an integral domain containing exactly 10 elements?

Demostración. Hay dos grupos de orden 10, el dihedral y \mathbb{Z}_{10} , notamos que solo \mathbb{Z}_{10} es un grupo

abeliano. Vemos los siguientes elementos de \mathbb{Z}_{10} :

$$2 \cdot 5 = 10 = 0$$

 \implies No hay dominio de orden 10

10.7 Ideales Máximos

1

Prove that the maximal ideals of the ring of integers are the principal ideals generated by prime integers.

Demostración. Recordamos la definición de un ideal máximo: M es ideal máximo de $R\iff \exists I\neq R: M\subset I \text{ con } M\neq R.$

3

Prove that the ideal $(x+y^2,y+x^2+2xy^2+y^4)$ in $\mathbb{C}[x,y]$ is a maximal ideal

7

Prove that the ring $\mathbb{F}_2[x]/(x^3+x+1)$ is a field, but that $\mathbb{F}_3[x]/(x^3+x+1)$ is not a field.

Demostración. Recordamos que R/I es un cuerpo ssi I es ideal máximo. Ademas que si F es cuerpo entonces, todo ideal en F[x] es principal. Notamos que todo ideal (g(x)) es máximo ssi g(x) es irreducible en F[x].

$$p(x) = x^3 + x + 1$$

$$p(0) = 1, p(1) = 1$$

Por lo que p(x) es irreducible en $\mathbb{F}_2[x]$.

Notamos que $x^3+x+1\equiv (x+2)(x^2+x+2)$ en \mathbb{F}_3 , por lo que $(x^3+x+1)\subset (x+2)$. Lo que implica que $\mathbb{F}_3[x]/(x^3+x+1)$ no es cuerpo.

10.8 Geometría Algebraica

1

Determine the following points of intersection of two complex plane curves in each of the following:

(a)
$$y^2 - x^3 + x^2 = 1, x + y = 1$$

(b)
$$x^2 + xy + y^2 = 1, x^2 + 2y^2 = 1$$

(c)
$$y^2 = x^3, xy = 1$$

(d)
$$x + y + y^2 = 0, x - y + y^2 = 0$$

(e)
$$x + y^2 = 0, y + x^2 + 2xy^2 + y^4 = 0$$

Demostración. (a) Tomamos y = 1 - x:

$$(1-x)^{2} - x^{3} + x^{2} = 1$$

$$\implies 1 - 2x + x^{2} - x^{3} + x^{2} = 1$$

$$-2x + 2x^{2} - x^{3} = 0$$

$$\therefore x(2 - 2x + x^{2}) = 0$$

Notamos que $x^2 - 2x + 2 = (x - (1+i))(x - (1-i))$

$$\implies x = 1 + i, x = 1 - i, x = 0$$

$$\implies \{(1+i,-i),(1-i,i),(0,1)\} = \{(x,y) \in \mathbb{C}[x,y] : y^2 - x^3 + x^2 = 1, x+y = 1\}$$

(b) Restamos $x^2 + 2y^2 = 1$ de $x^2 + xy + y^2 = 1$

$$\therefore xy - y^2 = 0$$

$$\implies y(x-y) = 0$$

Notamos que no todo punto que cumple x = y cumple $x^2 + 2y^2 = 1$, por lo que reemplazamos:

$$3y^2 = 1$$

$$\implies \{(\pm\sqrt{3}/3, \pm\sqrt{3}/3), (\pm1,0)\} = \{(x,y) \in \mathbb{C}[x,y] : x^2 + xy + y^2 = 1, x^2 + 2y^2 = 1\}$$

(c) Tomamos y = 1/x:

$$\therefore (1/x)^2 = x^3$$

$$\implies x^5 = 1$$

Por lo que los x son las raíces quintas de la unidad, y los y son sus inversos.

(d) Restamos $x - y + y^2 = 0$ de $x + y + y^2$:

$$\therefore 2y = 0$$

$$\implies y = 0$$

$$\implies \{(0,0)\} = \{(x,y) \in \mathbb{C}[x,y] : x+y+y^2 = 0, x-y+y^2 = 0\}$$

(e) Tomamos $x = -y^2$:

$$\therefore y + (-y^2)^2 + 2(-y^2)y^2 + y^4 = 0$$

$$\implies y = 0$$

$$\implies \{(0,0)\} = \{(x,y) \in \mathbb{C}[x,y] : x + y^2 = 0, y + x^2 + 2xy^2 + y^4 = 0\}$$

5

Let $f_1, ..., f_r; g_1, ..., g_r \in \mathbb{C}[x_1, ..., x_n]$, and let U, V be the zeros of $\{f_1, ..., f_r\}, \{g_1, ..., g_s\}$ respectively. Prove that if U and V do not meet, then $(f_1, ..., f_r; g_1, ..., g_s)$ is the unit ideal.

Demostración. Si U y V no se encuentran, esto implica que $U \cap V = \emptyset$. Por lo que el sistema de ecuaciones $f_1 = ... = f_r = g_1 = ... = g_s = 0$ no tiene solución, por el corolario (8.5), existe una combinación lineal de estos polinomios que genera el 1, por lo que $1 \in (f_1, ..., f_r; g_1, ..., g_s) \implies (f_1, ..., f_r; g_1, ..., g_s) = (1)$

7

Prove that the variety defined by a set $\{f_1, ..., f_r\}$ of polynomials depends only on the ideal $(f_1, ..., f_r)$ that they generate.

Capítulo 11

11.1 Factorización de Enteros y Polinomios

3

Prove that if d is the greatest common divisor of $a_1, ..., a_n$ then the greatest common divisor of $a_1/d, ..., a_n/d$ is 1.

Demostración. Asumamos que el gcd de $a_1/d,...,a_n/d$ es k, donde $k \neq 1$

$$\therefore a_i/d = km_i \forall i$$

$$\implies a_i = kdm_i \forall i$$

$$\implies gcd(a_1, ..., a_n) = kd = d$$

$$\rightarrow \leftarrow$$

Esto finaliza la demostración.

- (a) Let a, b be integers with $a \neq 0$, and write b = aq + r, where $0 \leq r \leq |a|$. Prove that the two greatest common divisors (a, b) and (a, r) are equal.
- (b) Describe an algorithm, based on (a), for computing the greatest common divisor.
- (c) Use your algorithm to compute the greatest common divisor of the following:
 - (a) 1456, 235
 - (b) 123456789, 135792468
- (a) Demostración. Sean e, f el gcd de a, b y de a, r respectivamente:

$$\therefore f \mid aq + r \implies f \mid b$$

$$\implies f \mid e$$

Similarmente:

$$e \mid b - aq \implies e \mid r$$

$$\implies e \mid f$$

$$\implies e = f$$

- (b) En base a lo visto uno puede ver que $gcd(r_i, r_{i+1}) = gcd(a, b)$ donde r_i es el resto de la division de r_{i-2} y r_{i-1} , $\forall i < q$, con $r_q = 0$. Por esto podemos ver un algoritmo donde se dividen repetidamente los restos, hasta que uno sea 0, y el resto anterior a ese es el gcd.
- (c) (a)

$$1456:235=6$$

Resto: 46

$$235:46=5$$

Resto: 5

$$46:5=9$$

Resto: 1

$$5:1=5$$

Resto: 0

 $\gcd(1456,235)=1$

(b)

135792468:123456789=1

Resto: 12335679

123456789:12335679=10

Resto: 99999

12335679:99999=123

Resto: 35802

99999:35802=2

Resto: 28395

35802:28395=1

Resto: 7407

28395:7407=3

Resto: 6174

7407:6174=1

Resto: 1233

6174:1233=5

Resto: 9

1233:9=137

Resto: 0

 $\gcd(123456789, 135792468) = 9$

8

Factor the following polynomials into irreducible factors in $\mathbb{F}_p[x]$

- (a) $x^3 + x + 1, p = 2$
- **(b)** $x^2 3x 3, p = 5$
- (c) $x^2 + 1, p = 7$
- (a) Sea $p(x) = x^3 + x + 1$

$$p(0) = 1, p(1) = 1$$

Por lo que p(x) no tiene ceros, sabemos que x no divide a p(x). Veamos si x+1 divide a p(x).

$$x^3 + x + 1 : x + 1 = x^2 - x + 2$$

Con resto -1

$$\implies x^3 + x + 1 = (x+1)(x^2 - x + 2) - 1$$

En \mathbb{F}_2

$$x^{3} + x + 1 = (x+1)(x^{2} + x) + 1$$

Por lo que $x^3 + x + 1$ es irreducible.

(b) Sea $p(x) = x^2 - 3x - 3$

$$p(1) = -5$$

$$\implies p(1) \equiv 0$$

Vemos lo siguiente:

$$x^2 + 2x - 3 \equiv x^2 - 3x - 3$$

$$\therefore (x-1)(x+2) \equiv x^2 - 3x - 3$$

Los cuales claramente son irreducibles.

(c) Sea $p(x) = x^2 + 1$

$$p(7k) \equiv 1, p(7k+1) \equiv 2, p(7k+2) \equiv 5$$

$$p(7k+3) \equiv 3, p(7k+4) \equiv 3, p(7k+5) \equiv 5$$

$$p(7k+6) \equiv 2$$

Por lo que vemos que no tiene ceros, lo que nos lleva a concluir que p(x) es irreducible.