Sets

Sets

Quasi-definition

We don't attempt to define a set, but we describe a set as a collection of things, often called *members*. The members of a set can be numbers, ordered pairs, functions, or sets themselves. In a bit, we'll learn that there are some things that might appear to be valid sets, but really are not sets.

Here are some examples of sets:

- $\{46,107\}$ is a set with two members, namely 46 and 107. We reserve the curly braces to delineate a set.
- $\{46, \{46, 107\}\}$ is a set with two members, namely 46 and $\{46, 107\}$. One member of this set is an integer, but the other is a set with two members—that's OK.
- $\{0,1,2,3,\dots\}$ is apparently the set of all nonnegative integers. I say apparently because the ellipses (the ...) isn't entirely clear.
- {} is a set with no members.

Named Sets

We'll use the following names for subsets of real numbers:

 \mathbf{R} = the set of real numbers,

 \mathbb{R} = the set of real numbers for handwritten text,

 $\mathbf{R}_{>0} = \{ x \in \mathbf{R} \mid x > 0 \},$

 $\mathbf{R}_{\neq 0} = \{x \in \mathbf{R} \mid x \neq 0\}, \text{ (and similarly for other subscripts)}$

 $\mathbf{Z} = \mathsf{the} \; \mathsf{set} \; \mathsf{of} \; \mathsf{integers},$

 \mathbb{Z} = the set of integers for handwritten text,

 \mathbf{Q} = the set of rational numbers,

 $\mathbb{Q} =$ the set of rational numbers for handwritten text,

 $\emptyset = A$ set with no members, that is the empty set

4

Membership

For a set A, we define a predicate (boolean valued function) as

$$x \in A = \begin{cases} \mathbf{T} & \text{if } x \text{ is a member of } A \\ \mathbf{F} & \text{if } x \text{ is not member of } A \end{cases}$$

For example:

- $107 \in \{46, 107\} = T$
- $(107) \in \{46, \{107\}\} = T$
- $(107) \in \{46, 107\} = F$

5

Set Operators

Definition

Let A and B be sets. Define the set union, intersection, and difference

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\},\$$

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\},\$$

$$A \setminus B = \{x \mid (x \in A) \land (x \notin B)\},\$$

respectively.

Set (an) example

Example

We have

```
\{6, 107\} \cap \{28, 107\} = \{107\},\
\{6, 107\} \cup \{28, 107\} = \{6, 28, 107\},\
\{6, 107\} \setminus \{28, 107\} = \{6\},\
\{28, 107\} \setminus \{6, 107\} = \{28\}.
```

- lacktriangle The last two examples show that in general $A \setminus B \neq B \setminus A$.
- ▼ The set difference is so much like real number subtraction, sometimes the symbol "-" is used instead of \.

Set predicates

Definition

Let A and B be sets. Define

$$A \subset B \equiv (\forall x \in A)(x \in B),$$

 $A = B \equiv (A \subset B) \land (B \subset A).$

Specializing $A\subset B$ to $A=\varnothing$ gives

$$[\varnothing\subset B]\equiv (\forall x\in\varnothing)(x\in B)\equiv {\sf true}.$$

We've shown that:

Proposition

Thus for all sets A and for any empty set \emptyset , we have $\emptyset \subset A$.

8

Set equality

To show that sets A and B are equal, we almost always prove that $A\subset B$ and $B\subset A$. If a proposition has the form

Proposition

If H_1, H_2, \ldots , and H_n , then A = B.

where $H_1, H_2, \dots H_n$ is the hypothesis, a template for proving the theorem is

Proof

Suppose $x \in A$. We'll show that $x \in B$. Since $x \in A, H_1, H_2, \ldots$ and H_n , we have \ldots ; therefore $x \in B$.

Suppose $x \in B$. We'll show that $x \in A$. Since $x \in B, H_1, H_2, \ldots$ and H_n , we have \ldots ; therefore $x \in A$.

① Notice how in the first case we append $x \in A$ to the hypothesis; and in the second case, we append $x \in B$.

Establish notation

Proposition

The set union is associative.

Proof

Let A, B, and C be sets. We'll show that $A \cup (B \cup C) = (A \cup B) \cup C$. Our proof uses the fact that the disjunction is associative; we have

- The statement of the proposition doesn't introduce notation, so the proof must do so.
- Alternatively, we can show that $A \cup (B \cup C) \subset (A \cup B) \cup C)$ and $(A \cup B) \cup C) \subset A \cup (B \cup C)$.

Alternative proofs

Proof

Let A,B, and C be sets. We'll show that $A\cup (B\cup C)=(A\cup B)\cup C.$ We have

$$\begin{aligned} x \in A \cup (B \cup C) &\implies (x \in A) \vee (x \in B \cup C), \\ &\implies (x \in A) \vee ((x \in B) \vee (x \in C)), \\ &\implies ((x \in A) \vee (x \in B)) \vee (x \in C), \\ &\implies x \in (A \cup B) \cup C. \end{aligned}$$

Similarly, we can show that $x \in (A \cup B) \cup C \implies x \in A \cup (B \cup C)$.

The uniqueness of emptiness

Proposition

There is at most one empty set.

Proof

Let O and O' be empty sets. Since O is empty, we have $O \subset O'$. Similarly since O' is empty, we have $O' \subset O$. We have shown that $O \subset O'$ and $O' \subset O$; therefore O = O'.

- 1 With impunity, we can now refer to the empty set.
- ② A clumsy way to proof this is by contradiction. The proof assumes that there are empty sets O and O', but $O \neq O'$.

Conflation

Question: True or false: $\emptyset = \{\emptyset\}$.

Answer: It's false. The set $\{\varnothing\}$ is a set that has (exactly) one member, namely its member is the empty set. But the empty set has no members, so $\varnothing \neq \{\varnothing\}$

We can write this as

Counterexample ($\varnothing = \{\varnothing\}$)

We have $\varnothing \in \{\varnothing\}$, but $\varnothing \notin \varnothing$; therefore $\varnothing \neq \{\varnothing\}$.

A counterexample is a proof of the negation of some statement. Usually to be considered a counter example, the proof examines one particular case.