A Computational Platform for Gene Expression Analysis

Diogo Teixeira¹

Supervisors: Rui Camacho², Nuno Fonseca³

¹Check affiliation

²Check affiliation

³Check affiliation

July 2014

Outline

- 1 Introduction
 - Domain Problem
 - Motivation and Objectives
- 2 Developed Solution
 - Overview
 - RNA-Seq Analysis Pipeline
 - RBP Analysis Pipeline (PBS Finder)
 - Integration
- 3 Case Studies
 - RNA-Seq Analysis Pipeline
 - RBP Analysis Pipeline (PBS Finder)
- 4 Conclusions
 - Objective Fulfilment
 - Future Work

Domain Problem I

Introduction

Molecular biology is a young field of study, with a lot of unknowns and partial knowledge.

- Studying gene expression is crucial to understand the mechanisms that control living organisms.
- We focused on two different areas:
 - differential expression analysis;
 - RNA-binding protein (RBP) discovery and analysis.

Domain Problem II

Introduction

Three distinct problems:

- Read alignment against a reference genome and differential expression analysis on the aligned data.
- RBP discovery, analysis and information enrichment.
- Further result analysis using data mining techniques.

Introduction

Tools are complex

Tools for biological data analysis often require a very technical set of skills.

Introduction

Tools are complex

Tools for biological data analysis often require a very technical set of skills.

Tasks are repetitive

Analysing high quantities of data can be repetitive, especially if executed manually.

Introduction

Tools are complex

Tools for biological data analysis often require a very technical set of skills.

Tasks are repetitive

Analysing high quantities of data can be repetitive, especially if executed manually.

Information is scattered

Information is easy to acquire, but is often scattered through multiple platforms, services and institutions.

Introduction

Tools are complex

Tools for biological data analysis often require a very technical set of skills.

Tasks are repetitive

Analysing high quantities of data can be repetitive, especially if executed manually.

Information is scattered

Information is easy to acquire, but is often scattered through multiple platforms, services and institutions.

Create simpler tools

Any user should be able to use the tools, with little to no training.

Introduction

Tools are complex

Tools for biological data analysis often require a very technical set of skills.

Tasks are repetitive

Analysing high quantities of data can be repetitive, especially if executed manually.

Information is scattered

Information is easy to acquire, but is often scattered through multiple platforms, services and institutions.

Create simpler tools

Any user should be able to use the tools, with little to no training.

Automate tasks

Automated systems should perform repetitive tasks, so that users can focus on their work.

Introduction

Tools are complex

Tools for biological data analysis often require a very technical set of skills.

Tasks are repetitive

Analysing high quantities of data can be repetitive, especially if executed manually.

Information is scattered

Information is easy to acquire, but is often scattered through multiple platforms, services and institutions.

Create simpler tools

Any user should be able to use the tools, with little to no training.

Automate tasks

Automated systems should perform repetitive tasks, so that users can focus on their work.

Gather information

Information should be contextually aggregated, allowing for quick access of relevant information.

Overview

Developed Solution

■ Two distinct problems warrant two different solutions.

■ The developed system should be available anywhere, through the internet.

■ The system should be as modular as possible, to allow future extensions.

RNA-Seq Analysis Pipeline I

Developed Solution

NOTES:

- Show scheme, refer iRAP, the script and the web interface.
- Refer multiple differential expression tools.
- Refer user input and tool configuration.

RBP Analysis Pipeline (PBS Finder) I

Developed Solution

NOTES:

- Show scheme, RBP finding, gene enrichment, clustering.
- Refer web interface. Refer that the tools is in production for several months, being extensively tested by experts.
- Refer user input and tool configuration.

Developed Solution

While focusing on aggregation and quick access to information, does it make sense to separate the results into two different platforms?

Developed Solution

While focusing on aggregation and quick access to information, does it make sense to separate the results into two different platforms?

Developed Solution

A list of differentially expressed genes is not very useful without further information about those genes. Does it make sense for a user to launch a new gene enrichment task by hand?

Developed Solution

A list of differentially expressed genes is not very useful without further information about those genes. Does it make sense for a user to launch a new gene enrichment task by hand?

Developed Solution

A fully integrated solution: the analysis pipelines can be used separately or automatically executed in sequence; result visualization for both pipelines is isolated.

RNA-Seq Analysis Pipeline

Case Studies

NOTES:

- Refer objectives, data and experimental method.
- Refer results.

RBP Analysis Pipeline (PBS Finder) I

Case Studies

Case study results viewed in PBS Finder:

RBP Analysis Pipeline (PBS Finder) II

Case Studies

NOTES:

- Refer objectives, data and experimental method.
- Refer results.
- Show screenshot.
- Show table.

Objective Fulfilment

Conclusions

■ RBP analysis pipeline and web platform (PBS Finder) implemented and tested. PBS Finder has been in production for several months; during this time it was thoroughly tested by IBMC experts.

- RNA-Seq analysis pipeline implemented and tested (iRAP deployed and result consolidation tool implemented).
- Integration of both tools could not be accomplished.

Future Work

Conclusions

■ Fully integrate the RNA-Seq analysis pipeline with the web platform (automatic job configuration, result visualization, etc.).

Study the requirements for deploying the platform in large scale, and assess the feasibility of making it available internet-wide.

Review

- 1 Introduction
 - Domain Problem
 - Motivation and Objectives
- 2 Developed Solution
 - Overview
 - RNA-Seq Analysis Pipeline
 - RBP Analysis Pipeline (PBS Finder)
 - Integration
- 3 Case Studies
 - RNA-Seq Analysis Pipeline
 - RBP Analysis Pipeline (PBS Finder)
- 4 Conclusions
 - Objective Fulfilment
 - Future Work

A Computational Platform for Gene Expression Analysis

Diogo Teixeira¹

Supervisors: Rui Camacho², Nuno Fonseca³

¹Check affiliation

²Check affiliation

³Check affiliation

July 2014