

<u>Clemens Lode</u>, Urban Richter, Hartmut Schmeck Karlsruhe Institute of Technology (Germany) Institute AIFB July, GECCO 2010

Adaption of XCS to Multi-Learner Predator/Prey Scenarios

http://www.flickr.com/photos/shreeram

Outline

http://www.flickr.com/photos/yathin

- Learning ClassifierSystems
- XCS in Predator/Prey Scenarios
- Adapting the Reward Function
- Experimental Results

Learning Classifier Systems

T: Tree F: Food

- Standard (Multi-Step) Problem:
 - Maze6
- Goal:
 - Find the shortest path to from a random position to food

Learning Classifier Systems

T: Tree F: Food

Problem:

- Limited sensors, no global knowledge
 - Partially observableMarkov decision process
- Solution:
 - Iterations, backpropagation of reward

Learning Classifier Systems

T: Tree F: Food

Problem:

- Limited sensors, no global knowledge
 - Partially observableMarkov decision process
- Solution:
 - Iterations, backpropagation of reward
- Aliasing positions:
 - Handle by using memory

Predator/Prey Scenarios

- Many aliasing positions
- Other agents present
- Dynamic world
 - food and other agents move
- Limited sensors
 - ca. 5 cells range

T: Trees

F: Food

A: Agent

Predator/Prey Scenarios

- Terminology:
 - Obstacles, prey, predator
- Goal: Try to stay near the prey
 - Global observation task
 - Runs continuously
 - Maximize average quality

T: Trees/Obstacles F: Food/Prey

A: Agent/Predator

Classification of Predator/Prey Scenarios

- (1) Access to local information only
- Open areas with some obstacles
- (3) Internal state unknown to others

- No standard MDP
 - Limited sensors (1, 3)
 - Aliasing positions (2)

Classification of Predator/Prey Scenarios

- (1) Access to local information only
- (2) Open areas with some obstacles
- (3) Internal state unknown to others
- (4) Dynamic scenario

- No standard MDP
 - Limited sensors (1, 3)
 - Aliasing positions (2)
- No POMDP
 - Non-static scenario (4)

Classification of Predator/Prey Scenarios

- (1) Access to local information only
- (2) Open areas with some obstacles
- (3) Internal state unknown to others
- (4) Dynamic scenario
- (5) Predators share global observation task
- (6) Runs continuously

- No standard MDP
 - Limited sensors (1, 3)
 - Aliasing positions (2)
- No POMDP
 - Non-static scenario (4)
- XCS has to be adapted
 - No "final" reward (5), no iterations (6)

Adaption of the Standard XCS Reward Function

- Standard implementation:
 - Reward:
 - Prey is in a neighboring cell

- Adapted implementation
 - Reward:
 - Prey is in observation range
 - "XCS obs"
 - Prey is in sight range
 - "XCS sight"

Adaption of the Standard XCS Reward Function

- Standard implementation:
 - Reward:
 - Prey is in a neighboring cell

- Reward action:
 - Assign reward
 - Restart scenario
 - Explore/exploit phase

- Adapted implementation
 - Reward:
 - Prey is in observation range
 - "XCS obs"
 - Prey is in sight range
 - "XCS sight"
 - Reward action:
 - Assign reward
 - Continue scenario
 - Always use exploit phase

Sensors

One sensor array for each direction

Sensors

One sensor array for each direction

Sensors can sense either far or near (observation range / sight range)

Sensors

One sensor array for each direction

Sensors can sense either far or near (observation range / sight range)

Sensors can distinguish between predators, prey, and obstacles

Testing Methodology

http://www.flickr.com/photos/james_crowley

Behavior

- 1 Prey
 - "Obstacle-evading prey"
 - "Predator-evading prey"
 - "Blinded Prey"
 - Speed 2 cells / step
- 8 Predators
 - Speed 1 cell / step
- Standard XCS parameter settings

Testing Methodology

Variance in the 16x16 Predator/Prey Scenario

- 2,000,000 steps
- Reset of XCS every 20,000 steps (="experiment")
- Reset of scenario (new random positions)
 every 2,000 steps

XCS Experimental Results "Pillar Scenario"

XCS (obs) shows some learning

Obstacle-evading prey

Predator-evading prey

A

XCS Experimental Results "Random Scenario"

XCS shows very little learning

Obstacle-evading prey

Predator-evading prey

XCS Experimental Results "Difficult Scenario"

- XCS shows significant learning
 - But also unlearning after 8,000 steps
- "Difficult Scenario" is a maze-like scenario, this result was expected

Blinded prey

A

A

A

Move West

Move West

Move North

Move West

Move North

Move North

Move West

Reward Distribution "eventXCS"

 Analyze succession of positive and negative events

Reward Distribution "eventXCS"

- Analyze succession of positive and negative events
- Distribute the reward as soon as possible (i.e. at each event)
- Idea:
 - Action sets close to an event probably contributed more

Experimental Results "Pillar Scenario"

eventXCS clearly outperforms XCS

Obstacle-evading prey

Predator-evading prey

Experimental Results "Random Scenario"

eventXCS shows slow but steady
 learning with an obstacle-evading prey

A

Obstacle-evading prey

Predator-evading prey

Experimental Results "Difficult Scenario"

- eventXCS fails in this scenario (not displayed, fitness = ~o)
- Using "tournament selection" shows acceptable results with no sign of unlearning

Blinded prey

Conclusion

- Predator/Prey scenarios are NOMDP
- XCS can learn (with minimal adaptions) in some P/P scenarios
- Using event handling and reward distribution (eventXCS) much better learning can be observed
- But: Might need some improvement in difficult scenarios

Backup slides

Neutral Events

Neutral Event

- No positive or negative event for a number of steps
- Half of the action sets is discarded and receives reward
- Idea:
 - Good actions are rewarded earlier
 - Preventing of dead ends

Neutral Events

Neutral Event

- No positive or negative event for a number of steps
- Half of the action sets is discarded and receives reward
- Idea:
 - Good actions are rewarded earlier
 - Preventing of dead ends
- Problem:
 - Error possibility high if directly followed by an event.

reward for action sets

Neutral Events

Tests have shown that a stack size of 8 is generally good for all three scenarios

Learning Rate \(\beta \)

- Pillar Scenario
 - Obstacle-evading prey
 - Low learning rate (0.05)
 good, eventXCS very stable

Learning Rate B

Pillar Scenario Predator-evading prey

Random Scenario, Obstacle evading prey

Random Scenario, Predator evading

Learning Rate \(\beta \)

- Difficult Scenario
 - Blind prey
 - High learning rates show an advantage because of long distance to the prey

