## Tema 2 – Introducción a los Sistemas Informáticos

CFGS DAW – Sistemas Informáticos

### Informática

¿Qué es? 

— Ciencia que estudia el tratamiento (almacenamiento, proceso, etc.) automático de la información.

- ¿Qué es la información? -> datos/mensaje/señal
  - Analógica
  - Digital → Los ordenadores utilizan información digital
- La información es tratada por el Sistema Informático





### Sistema Informático

- El ordenador es una máquina compuesta de elementos físicos (*hardware*), en su mayoría de origen eléctrico-electrónico, capaz de realizar una gran variedad de trabajos a gran velocidad y con gran precisión.
- Estos componentes electrónicos necesitan de otros componentes no físicos que los pongan en funcionamiento, también llamados componentes lógicos: los programas (**software**).
- El sistema operativo es el componente software de un sistema informático capaz de hacer que los programas (software) procesen información (datos) sobre los componentes electrónicos de un ordenador o sistema informático (hardware).
- Entre *software* y *hardware* existe otro concepto importante dentro de un sistema informático: el *firmware*. Es la parte intangible (software) de componentes del *hardware*.



### Sistema Informático (II)

- Evolución → <a href="https://www.youtube.com/watch?v=lsAeTXNQyIA">https://www.youtube.com/watch?v=lsAeTXNQyIA</a>
- Generaciones → <a href="https://www.youtube.com/watch?v=z5IIWdgdMEo">https://www.youtube.com/watch?v=z5IIWdgdMEo</a>
- Componentes → <a href="https://www.youtube.com/watch?v=r9p517ruN2s">https://www.youtube.com/watch?v=r9p517ruN2s</a>
- Funciones -> ¿Dónde encontramos sistemas informáticos?

### Codificación de la información

- Un **símbolo** puede ser manejado como sustituto de aquello que representa.
- Un código es un conjunto de símbolos.
- Se define **codificar** como la transformación de un dato a una representación preestablecida (símbolos) que sigue unas reglas (sintaxis).
- Los ordenadores utilizan un código binario → los símbolos son 0 y 1.

¿Cómo se representan números, letras, etc. utilizando un código binario?







### Codificación de la información (II)

**Códigos alfanuméricos**  $\rightarrow$  representación de letras, números y caracteres especiales

- ASCII:
  - 7 bits (8 bits → ASCII Extendido), 128 caracteres
- **EBCDIC:** 
  - 8 bits, 256 caracteres
  - Primero que se ideó para uso en ordenadores, por IBM
- **UNICODE:** 
  - De 8 bits, 16 bits (65536 caracteres) y 32 bits  $\rightarrow$  UTF
  - Para utilizar alfabetos distintos al inglés/americano

**Códigos numéricos** → representación de cantidades utilizando sistemas de numeración

- Binario
- Complementos a 1 y a 2 -> permiten la representación de números negativos
- IEEE 754 → coma flotante (notación científica)

| A)      |     |                       | JLI     |     |         |                      |     |
|---------|-----|-----------------------|---------|-----|---------|----------------------|-----|
| Decimal | Hex | Char                  | Decimal | Hex | Char    | <sub>I</sub> Decimal | Нех |
| 0       | 0   | [NULL]                | 32      | 20  | [SPACE] | 64                   | 40  |
| 1       | 1   | [START OF HEADING]    | 33      | 21  | 1       | 65                   | 41  |
| 2       | 2   | (START OF TEXT)       | 34      | 22  |         | 66                   | 42  |
| 3       | 3   | [END OF TEXT]         | 35      | 23  | #       | 67                   | 43  |
| 4       | 4   | [END OF TRANSMISSION] | 36      | 24  | \$      | 68                   | 44  |
| 5       | 5   | [ENQUIRY]             | 37      | 25  | %       | 69                   | 45  |
| 6       | 6   | [ACKNOWLEDGE]         | 38      | 26  | &       | 70                   | 46  |
| 7       | 7   | [BELL]                | 39      | 27  | 1       | 71                   | 47  |
|         |     |                       |         |     |         |                      |     |





## Codificación de la información (III)

Sistemas de numeración → conjunto de reglas y símbolos para construir todos los números válidos

- Binario:
  - Su base es 2 → utiliza 2 símbolos (0, 1)
- Octal:
  - Su base es 8  $\rightarrow$  utiliza 8 símbolos (0, 1, 2, 3, 4, 5, 6, 7)
- Decimal:
  - Su base es 10 → utiliza 10 símbolos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
- Hexadecimal
  - Su base es 16 → utiliza 16 símbolos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

| Decimal | Binario | Base 8 | Base 16 |
|---------|---------|--------|---------|
| 0       | 00000   | 0      | 0       |
| 1       | 00001   | 1      | 1       |
| 2       | 00010   | 2      | 2       |
| 3       | 00011   | 3      | 3       |
| 4       | 00100   | 4      | 4       |
| 5       | 00101   | 5      | 5       |
| 6       | 00110   | 6      | 6       |
| 7       | 00111   | 7      | 7       |
| 8       | 01000   | 10     | 8       |
| 9       | 01001   | 11     | 9       |
| 10      | 01010   | 12     | Α       |
| 11      | 01011   | 13     | В       |
| 12      | 01100   | 14     | С       |
| 13      | 01101   | 15     | D       |
| 14      | 01110   | 16     | E       |
| 15      | 01111   | 17     | F       |
| 16      | 10000   | 20     | 10      |
| 17      | 10001   | 21     | 11      |
| 18      | 10010   | 22     | 12      |
| 19      | 10011   | 23     | 13      |

# Codificación de la información (IV)

#### Sistemas de numeración (cont.)

Teorema fundamental de la numeración:

$$N_i = \sum_{j=-d}^{n} (digito)_i \cdot (base)^i$$

donde:

- i = posición respecto a la coma.
  - Para los dígitos de la derecha la i es negativa, empezando en −1; para los de la izquierda es positiva, empezando en 0.
- d = número de dígitos a la derecha de la coma.
- n = número de dígitos a la izquierda de la coma −1.
- dígito = cada uno de los que componen el número.
- base = base del sistema de numeración.

¿Cómo se construye el número 114 (decimal)?

## Codificación de la información (V)

### Sistemas de numeración (cont.)

Sistema Binario ←→ Sistema decimal

• 11001 → a decimal

|                   | 24   | $2^3$ | 2 <sup>2</sup> | $2^1$ | 20  |
|-------------------|------|-------|----------------|-------|-----|
| Número<br>binario | 1    | 1     | 0              | 0     | 1   |
| Suma<br>decimal   | 16 – | + 8 + | _              |       | 1 = |

• 25 → a binario



| 2 <sup>0</sup>  | 1    |
|-----------------|------|
| 2 <sup>1</sup>  | 2    |
| $2^2$           | 4    |
| $2^3$           | 8    |
| $2^4$           | 16   |
| 2 <sup>5</sup>  | 32   |
| 2 <sup>6</sup>  | 64   |
| 27              | 128  |
| 28              | 254  |
| 2 <sup>9</sup>  | 512  |
| 2 <sup>10</sup> | 1024 |

25

# Codificación de la información (VI)

### Sistemas de numeración (cont.)

Sistema Octal ←→ Sistema decimal

• 1635<sub>8</sub> → a decimal

|              | 83        | 8 <sup>2</sup>               | 81               | $8^{o}$                      |       |
|--------------|-----------|------------------------------|------------------|------------------------------|-------|
| Número octal | 1         | 6                            | 3                | 5                            |       |
| Suma decimal | $1*8^3 +$ | - <b>6*</b> 8 <sup>2</sup> - | ├ <b>3*</b> 8¹ ┤ | - <b>5</b> *8 <sup>0</sup> = | _ 925 |

• 925<sub>10</sub> → a octal



### Codificación de la información (VII)

#### Sistemas de numeración (cont.)

Sistema Hexadecimal ←→ Sistema decimal

 $\begin{array}{c|cc}
16^0 & 1 \\
\hline
16^1 & 16 \\
\hline
16^2 & 256 \\
\hline
16^3 & 4096 \\
\end{array}$ 

• A25D<sub>16</sub> → a decimal

|                       | $16^{3}$             | $16^{2}$     | $16^{1}$  | $16^{0}$                     | 16 <sup>3</sup> | 409 |
|-----------------------|----------------------|--------------|-----------|------------------------------|-----------------|-----|
| Número<br>hexadecimal | Α                    | 2            | 5         | D                            |                 |     |
| Suma decimal          | 10*16 <sup>3</sup> - | $+ 2*16^2 -$ | ├ 5*16¹ ─ | ├ 13*16 <sup>0</sup> <u></u> | _ 4150          | 65  |

• 41565<sub>10</sub> → a hexadecimal



### Trabajando con la información: Operaciones lógicas y aritméticas binarias

- Álgebra de Boole  $\rightarrow$  utiliza sistema binario
- Operaciones:
  - Lógicas → e.g.: condición1 Y condición2
    - OR
    - AND
    - NOT
    - Derivadas → NOR, NAND, XOR
  - Aritméticas  $\rightarrow$  e.g.: Suma
- $10_{2}$



- Resta ≡ sumar el primer número con el complementario del segundo
  - Complemento a 1 ≡ NOT al número "negativo"
  - Complemento a 2 ≡ Complemento a 1 + "1" al número "negativo"

### Representación interna de la información

- Bit:
  - Unidad mínima de información
  - 0 ("apagado") y 1 ("encendido")
- Byte:
  - Agrupación de 8 bits
  - También se le llama "octeto"
- Palabra:
  - Tamaño de información manejada en paralelo por los componentes del sistema (memoria, registros o buses)
  - Comunes → 8, 32, 64, 128 y 256 bits.
  - A mayor tamaño de palabra en un ordenador -> mayor precisión y potencia de cálculo

### Medidas de la información

#### Almacenamiento de la información

- La información es almacenada (y tratada) en un sistema informático
- Existen unidades de medida de la cantidad de información
- Actualmente, la capacidad de la memoria RAM se mide en GB, y la capacidad de los discos duros en GB o TB.

https://www.youtube.com/watch?v=8co2ADsKOUo&list=PLXZi7lIJeTrojhf1u7ZMuRIjw JZb3\_B3b&index=6

https://www.youtube.com/watch?v=Mv\_Ape519ys&list=PLXZi7lIJeTrojhf1u7ZMuRljw JZb3\_B3b&index=7

```
Bit = mínima unidad de información.
```

4 Bits = Nibble o cuarteto.

8 Bits = 1 Byte.

1024 Bytes = 1 Kilobyte.

1024 Kilobytes = 1 Megabyte (MB).

1024 Megabytes = 1 Gigabyte (GB).

1024 Gigabytes = 1 Terabyte (TB).

1 024 Terabytes = 1 Petabyte (PB).

1024 Petabytes = 1 Exabyte (EB).

1024 Exabytes = 1 Zettabyte (ZB).

1024 Zettabytes = 1 Yottabyte (YB).

1024 Yottabytes = 1 Brontobyte (BB).

### Medidas de la información (II)

#### Almacenamiento de la información

- Más correcto:
  - Uso de "prefijos binarios". E.g.:
    - KiB (Kibi Byte)  $\rightarrow$  Kibi = Binary Kilo (2<sup>10</sup>)
    - MiB (Mebi Byte)  $\rightarrow$  Mebi = Binary Mega (2<sup>20</sup>)
    - GiB (Gibi Byte)  $\rightarrow$  Gibi = Binary Giga (2<sup>30</sup>)
  - Uso de prefijos del Sistema Internacional: E.g.:
    - KB (Kilo Byte)  $\rightarrow$  (10<sup>3</sup>)
    - MB (Mega Byte)  $\rightarrow$  (10<sup>6</sup>)
    - GB (Giga Byte)  $\rightarrow$  (10<sup>9</sup>)
- Pero nosotros vamos a utilizar los prefijos del Sistema Internacional con potencias binarias (lo más habitual):
  - Esto es, 1024 KB hacen 1MB, etc.

| Nombre<br>(símbolo) | Sistema<br>Internacional de<br>Unidades (SI)<br>Estándar (uso decimal) | Prefijo binario<br>(uso binario)          | Nombre<br>(símbolo) |  |
|---------------------|------------------------------------------------------------------------|-------------------------------------------|---------------------|--|
| Kilobyte (KB)       | $1000^1 = 10^3 \text{ bytes}$                                          | $1024^1 = 2^{10}$ bytes                   | Kibibyte (kib)      |  |
| Megabyte (MB)       | 1000 <sup>2</sup> = 10 <sup>6</sup> bytes                              | 1024 <sup>2</sup> = 2 <sup>20</sup> bytes | Mebibyte (Mib)      |  |
| Gigabyte (GB)       | 1000³ = 10° bytes                                                      | 1024 <sup>3</sup> = 2 <sup>30</sup> bytes | Gibibyte (Gib)      |  |
| Terabyte (TB)       | $1000^4 = 10^{12}$ bytes                                               | $1024^4 = 2^{40}$ bytes                   | Tebibyte(Tib)       |  |
| Petabyte (PB)       | $1000^5 = 10^{15}$ bytes                                               | 1024 <sup>5</sup> = 2 <sup>50</sup> bytes | Pebibyte (Pib)      |  |
| Exabyte (EB)        | 1000 <sup>6</sup> = 10 <sup>18</sup> bytes                             | 1024 <sup>6</sup> = 2 <sup>60</sup> bytes | Exbibyte (Eib)      |  |
| Zettabyte (ZB)      | $1000^7 = 10^{21}$ bytes                                               | $1024^7 = 2^{70}$ bytes                   | Zebibyte (Zib)      |  |
| Yottabyte (YB)      | $1000^8 = 10^{24}$ bytes                                               | 1024 <sup>8</sup> = 2 <sup>80</sup> bytes | Yobibyte (Yib)      |  |

### Clasificación de los sistemas informáticos

- Superordenadores
- Macroordenadores o mainframes
- Servidores y estaciones de trabajo (*workstation*)
- Ordenadores personales
  - Sobremesa
  - Portátil
  - Convertible 2-1
  - Thin clients
  - Single Board Computer
    - ¿ejemplo?
- Tablets, smartphones





