Math Preliminaries:

- How mathematical: algebra, not calculus
 - will review
 - discrete math book, eg: Epp.
- Ceiling $[\]:[x\]=$ smallest int $\geq x, [1.2]=2$
- Floor [] : [x] =biggest int $\leq x, [1.2] = 1$
- \sum , \prod : \sum = sum, \prod = product
- factorial: n! = 1*2*3*... n
 - -4! = 1*2*3*4 = 24

Math Preliminaries:

• Exponential:

- $-a^{x+y}=a^xa^y$
- $-a^{xy}=(a^x)^{\wedge}y$
- $a^{-x} = 1/a^{x}$
- Log: If $a^x = y$ then $\log_a y = x$.
 - $-\log_2 8 = 3$, $\log_{10} 100 = 2$, $\log_2 1 = 0$
 - base 2, base e, e is Euler's number, ln
 - $-\log xy = \log x + \log y$
 - $-\log x^y = y \log x$

<u>Algorithms – introduction</u>

- What is an algorithm?
- Method of solving a problem .
- Instance: valid input.
- Terminate, unambiguous, 100% correct
- Difference between an algorithm and a program: algorithm at a higher level, but enough detail to implement as program.
- How to describe an algorithm: in English or pseudo code **NOT CODE!**

<u>Algorithms – introduction</u>

- To see how to describe: look at examples in textbook or class.
 - Enough detail so reader can see what is going on,
 but not so much that loose sight of big picture.
- Problem: Find the largest number in an unsorted array
- In English: go through the array, keeping track of largest number seen so far as champion. If the current number is bigger than the champion, make the current number the champion.

<u>Algorithms – introduction</u>

• In pseudocode:

```
champ = A[1]
for i= 2 to n
  if A [i] > champ then
    champ = A[i]
Return (champ)
```

- In C/C++/Java code:
 - NOT OK

Measuring efficiency of Algorithms

- How to compare two diff. algorithms for efficiency i.e. how much time they take.
- Eg: searching in a sorted array.
- Linear search
- Binary search
- Which is faster?
- Can linear search ever do better than binary search?
- Can binary search ever do better than linear search?
- So which is better? How do we decide?

Measuring efficiency of Algorithms

- Benchmarking/Run-time analyis: very useful, but dependent on machine, data, program, what other processes are operating at that time.
- Theoretical analysis: try to get an estimate of number of statements executed. How to do?
- Average case: problems:
 - Averaged over what ?
 - Hard to do.
 - Makes no guarantee about one particular input

Worst case analysis

- How much time could the algorithm possibly take
 - Pessimistic but safe, easier to do than average case.
- How to compare: n better than n^2.
- Is 10n better than n^2?
 - For what n?
 - We want to see what happens for larger values of n.
- Look at example

Big-Oh analysis

- Big-Oh notation: captures what happens for larger values of n; asymptotic analysis.
- Definition: f(n) is O(g(n)) if there exists values M and t such that f(n) < M g(n) for x > t.
- Eg: $2n^2$ is $O(n^3)$, n^4 is not $O(n^2)$
- Graphical interpretation

Growth Rates

big-Oh properties

- $x^a + x^a(a-1) + x^a(a-2) \dots is O(x^a)$
- If $a \le b$, x^a is $O(x^b)$
- $\log x$ is $O(x^a)$, x^a is $O(2^x)$. Log functions < polynomial < exponential.
- log bases don't matter $\log_a x$ is $O(\log_b x)$
- If f(x) is O(h(x)), g(x) is O(h(x)) then f(x) + g(x) is O(h(x))
- If f(x) is O(h(x)), c * f(x) is O(h(x))

big-Oh properties/analysis

- f(x) is O(g(x)) same as saying f(x) belongs to O(g(x)).
- Best big-Oh calculation: 5x² is O(x²), 5x² is O(x³).
 - Better to write $O(x^2)$ why?
 - More accurate, think of algorithm analysis
- How to count # ops:
 - elementary ops count as 1
 - Do big-Oh analysis
 - Loops are crucial, nested loops

Examples

- sum = 0for (int j = 1; $j \le n$; j++) sum = sum + j
- for (int j = 0; j < n; j++)
 for (int k = 0; k < n; k++)
 println (j + k)
- Adding two matrices
- while (n > 1) n = n / 2;
- Linear search
- Binary search
- Now can we answer whether binary search is better than linear search?

Common O() functions

- If worstTime(n) is _____, we will say
- "worstTime(n) is ."
- O(1) ... constant
- O(log n) ... logarithmic in n
- O(n) ... linear in n
- O(n²) ... quadratic in n
- O(2ⁿ) ... exponential in n

Sorting

- What is the sorting problem
- Input: Array A in arbitrary order
- Output: A in sorted order, smallest to biggest
- Why is it important i.e. why sort?
- Makes searching faster. How?
- Binary search
- How to sort: many different algorithms

Insertion sort

- Idea: At every point, elts on left sorted, elements on right unsorted. In single iteration:
 - -Take next element from unsorted part
 - Insert it into sorted part
- Eg: 7 3 4 2 8 5

Procedure Insert (A[1..n])

```
for i \leftarrow 2 to n do {
/* put A[i] in correct spot */
  x \leftarrow T[i]; i \leftarrow i-1
  while (j > 0) AND (x < T[j])
       \{T[i+1] \leftarrow T[i]
       j \leftarrow j-1
   T[j+1] \leftarrow x
```

Insertion sort time analysis

- Worst case: analysis
- Can this be improved: i.e. could we do better? To show not, find bad example.
- Best case: good input for insertion sort, time?
- Average case: intuition
- Ω Omega: for lower bounds
- Θ Theta: "same" if O() and Ω ()

Merge sort

- Can find another sorting algorithm faster than insertion sort ?
 - Faster than $O(n^2)$
- Divide and conquer: will study later
- Merge algorithm:
 - Input: sorted arrays A,B
 - Output: combined sorted array C
 - How to do?
 - -Eg: A= 2,4,5,8.B=1,3,9,10
- Time analysis of Merge:

Merge sort

- Input: array A with n elts
- Assume: n is power of 2
- merge sort (A)
 Break A into L,R size n/2
 merge sort (L)
 merge sort (R)
 merge (L,R) into A
- Eg: 7 2 3 5 4 9 1 6
- Time analysis: