Разработка программного приложения для идентификации повреждений плодов яблок

Федоров Дмитрий

ΠM18-1

Научный руководитель:

Хорт Дмитрий Олегович

Содержание

- 1. Актуальность
- 2. Задачи
- 3. Существующие решение
- 4. Разработка модели
- 5. Результаты
- 6. Практическое применение

1. Цели и актуальность

Проблема

Яблочная промышленность является одной из самых быстро развивающихся среди всех фруктов в мире. Различные повреждения и болезни яблок, и несвоевременное их предотвращение становится одним из ключевых факторов в качестве плодов и доходности бизнеса по выращиванию яблок, что также напрямую наносит вред для развития всей сельскохозяйственной отрасли. В связи с этим решение проблемы определения и распознавания повреждений и болезней яблок поможет повысить качество конечного продукта и внесет положительное влияние на отрасль и инвестиции в нее.

Актуальность

Решение проблемы автоматического определения болезней яблок поможет решить следующие проблемы:

- 1. Своевременное лечение деревьев \ устранение зараженных приведет к повышению урожайности;
- 2. Повышение урожайности сделает бизнес по выращиванию яблок более привлекательным для инвесторов, что послужит развитием для сельскохозяйственной отрасли;
- 3. Автоматизация проверки плодов позволит высвободить сотрудников от рутинной работы;
- 4. За счет определения точного процента "брака", автоматизация проверки плодов позволит увеличить точность ценообразования.

2. Задачи

Задачи работы

Задача распознавания повреждений и болезней плодов яблок подразделяется на 3 подзадачи:

- Сбор и первичная обработка изображений
- Выделение плодов яблок на изображении
- Определение повреждений плода

В ходе данной работы основными элементами исследования станут выделение плодов яблок на изображении и последующее определение повреждений на них. В качестве данных для обучения модели будут использоваться готовые и промаркированные наборы данных.

3. Существующие решения

Определение повреждений яблок с использованием Multi-Scale Dense Classification Network

В примере будет рассмотрено применение Multi-Scale convolutional нейронной сети, которая используется для определения 11 различных видов заболеваний на основании анализа изображений плодов и листьев яблонь. В работе были использованы следующие подходы:

- Для дополнения набора данных был использован метод Cycle-GAN, который позволил сгенерировать изображения двух болезней на поверхности здоровых яблок.
- Multi-scale Dense нейронная сеть была использована для определения заболеваний.

Результаты

Результат модели Multi-scale Dense Inception-V4, Точность2 - результат модели Multi-scale Dense Inception-ResNet-V2:

Disease	Accuracy1 (%)	Accuracy2 (%)
Healthy apple leaf	95.63	95.82
General apple scab	93.18	93.21
Serious apple scab	93.45	93.79
Apple gray spot	92.11	92.27
General cedar apple rust	92.80	92.65
Serious cedar apple rust	93.12	93.86
Healthy green apple fruit	96.34	96.73
Healthy red apple fruit	96.22	96.75
General anthracnose	94.27	94.77
Serious anthracnose	94.15	94.45
Ring rot	93.97	94.38
Overall	94.31	94.74

3. Существующие решения

Определение повреждений яблок при помощи анализа нескольких признаков (Multi-feature Fusion)

В работе описано создание устройства по сортировке плодов в полевых условиях. Для оценки яблок выбраны 4 характеристики: цвет, форма, дефекты поверхности и размер. Были разработаны алгоритмы для определения и различения этих четырех признаков при помощи компьютерного зрения и других алгоритмов. После определения четыре признака были объединены в одну модель для классификации на 3 категории: яблоки первого сорта, яблоки второго сорта и яблоки других сортов.

Общая точность алгоритма сортировки составила 95%.

Figure 1. (a) Schematic diagram of the apple field grading device: 1. guiding baffle, 2. conveyor belt, 3. direction-adjusting brush, 4. industrial camera, 5. illumination source, 6. photoelectric sensor, 7. actuating push plate, 8. collection pipeline, 9. collection box, 10. wheels, 11. computer; (b) schematic diagram of the installation position of the industrial camera.

3. Существующие решения

Выявление дефектов яблок на основе FCM-NPGA и многомерного анализа изображений

Для определения дефектов яблок в работе был предложен алгоритм, основанный на сегментации при помощи Fuzzy C-means и нелинейного генетического алгоритма (NPGA), и последующего анализа изображений. При обработке изображение было очищено и улучшено при помощи дробного дифференцирования: с изображения был удален шум и краевые точки. После обработки изображение сегментировалось и после сегментации определялись повреждения плодов.

Результаты

Результаты эксперимента показали, что метод FCM-NPGA хорошо справляется с сегментацией изображений с выраженными геометрическими характеристиками, а метод многомерного анализа позволяет доопределить эти сегменты. Общая точность эксперимента составила 98%, что означает, что в 98% случаев дефекты на изображении были выделены верно.

Шаги разработки

Разработка модели по определению повреждений яблок разделена на 3 основные части:

1. Предобработка изображения

Изменение характеристик изображения для подготовки к анализу моделью.

2. Выделение плода яблока

Выделение контура плода яблока для исключения влияния фона на результат.

3. Определение повреждения

Анализ выделенного плода на наличие повреждений и болезней.

Предобработка изображения

Предобработка изображения является необходимым шагом для построения модели, так как она позволяет стандартизировать все изображения, которые будут использоваться для обучения модели и повысить качество изображегия за счет удаления шумов.

Основными методами предобработки являются:

- Геометрические изменение изменение размера изображения;
- Изменение контрастности, яркости, насышенности и других свойств изображения;
- Фильтрация и сегментация изображения для очищения от "шумов".

Для целей предобработки изображения использовались модули python библиотеки opencv2:

Выделение плода яблока

Так как картинки яблок для обучения и в продуктивной версии получаются различным образом и имеют разные фоновые изображения, то выделение плода яблока становится необходимым для очистки изображения и устранения влияния фона на работу модели.

Для выделения плода яблока на картинке использовались методы cvtColor, adaptiveThreshold, medianBlur, findContours:

Определение дефекта

1. Подготовка датасета

Для обучения модели был использован размеченный датасет с 4 видами яблок: Здоровый плод, плод с гнилью, плод с пятнами, плод с паршой:

2. Расширение датасета

Для увеличения датасета были применены методы создания дополнительных изображений (data augmentation):

3. Расширение датасета

Подготовленные изображения были разделены на обучающую и валидационную выборку по 90 и 10 процентов соответсвенно.

В качестве модели была использована рекуррентная нейронная сеть (Sequential) из пакета tensorflow.keras.

5. Результаты

Оценка результатов

Модель была обучена с использованием следующих параметров: batch_size = 32, epoch = 30.

Результаты обучения модели и проверки на валидационной выборке:

Шаги по улучшению модели

- 1. Доработка алгоритма выделения плода на изображении
- 2. Расширение датасета для обучение
- 3. Тестирование на личных \ полевых примерах
- 4. Анализ влияния изменения параметров модели

6. Практическое применение

Возможные применения алгоритма на практике

Разработанная модель модет применяться для двух основных целей:

- Идентификация поврежденных плодов на производстве (в садах) для своевременного реагирование и устранения причин болезни \ вырубка больного дерева и тд
- Классификация плодов в распределительных центрах магазина для оценки качества и сверки с заявленным в договоре

Полевые условия

Использование алгоритма в полевых условиях поможет своевременно обнаружить и предотвратить заболевания деревьев и плодов. Своевременное устранение, в свою, очередь повлечет повышение количества и качества урожая, что послужит повышением инвестиционной привлекательности сельскохозйственной отрасли

Распределительные центры

Использование алгоритма в распределитиельных центрах позволит более точно определить процент низкокачественных плодов, что послужит основой для более точного ценообразования.