

REDES NEURAIS

Multi Layer Perceptron - Regressão

Ana Thais Castro anathaiscastro@poli.ufrj.br

Jonas Degrave jonasdegrave@poli.ufrj.br

Índice

- ➤ Introdução
- Metodologia
 - Análise Exploratória
 - Pré-Processamento
 - Modelo de Regressão MLP
 - Otimização de Hiperparâmetros
- Resultados e Conclusão

Figura 1: Diamantes. (Fonte: Alrosa)

Introdução

O objetivo deste trabalho é explorar o projeto de hiper-parâmetros para **avaliar modelos de regressão MLP** usando um dataset para predição de preço de diamantes.

Business Understanding

- A tarefa de aprendizado predição do preço pode ser útil tanto do ponto de vista de quem vende quanto de quem compra, para que seja possível estimar o valor adequado a partir de algumas características de um diamante.
- Considerando a análise de resultados conhecidos de outros artigos, emprega-se como critério de sucesso o coeficiente de determinação (R2 Score) comparativo aos já encontrados como benchmarking.

Figura 2: Etapas CRISP-DM. (Fonte: Udacity)

Introdução

Data Understanding

Dataset: Diamonds.csv	
Registros	54 000
Variáveis	10
Tipo	Regressão
Objetivo	Estimar Preço

x: length (mm)

y: width (mm)

z: depth (mm)

Price

in USD\$, regression target variable

Table

width of top relative to widest point

Depth %

depth (z) relative to widest point

Volume

engineered feature (V = x * y * z)

Figura 3: Dimensões de Diamantes. *(Fonte: Lumera Diamonds)*

Introdução

Data Understanding

Cut (5)

- 1. Fair
- 2. Good
- 3. Very Good
- 4. Premium
- 5. Ideal

Clarity (8)

- 1. |1
- 2. SI2
- 3. SI1
- 4. VS2
- 5. VS1
- J. VJ1
- 6. VVS2
- 7. VVS1
- 8. IF

Color (7)

- 1. J (Best)
- 1
- 3. H
- 5. F
- 6. E
- 7. D (Worst)

Carat

- 0.20
- [...]
- 5.00

5 carat = 1 gram

Figura 4: 4C's dos Diamantes - Cut, Clarity, Color, Carat. (Fonte: De Beers)

Violin Plot: Cut, Color, Clarity

- Apresenta a distribuição de registros por preço em cada categoria.
- Existe hierarquia "melhor" "pior" para as variáveis categóricas.
- Label Encoding vs One Hot:
 Atribuição de valores numéricos
 sequenciais às variáveis categóricas.

Pair Plot

- Data Selection: Remoção de outliers discrepantes identificados no pair plot.
- Data Cleaning: Eliminação de registros com valores nulos ou inexistentes.

Correlation Heatmap Plot

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

- Feature Engineering
- Redução de Dimensionalidade:
 Variáveis 'x', 'y' e 'z' eliminadas por haver alta correlação com 'volume'.

Histogram Plot e Normalização

 Subtrair da média para centrar na origem e dividir pelo desvio padrão para normalização:

dataNorm =
$$(x - \overline{x}) / \sigma$$

- Resultado: σ = 1 nas variáveis
- Melhor treinabilidade e convergência do modelo.

Modelo de Regressão MLP

Figura 5: Rede MLP modelada. (Fonte)

Modelo Base: sklearn.neural_network.MLPRegressor()

- 6 entradas e 1 saída
- 2 hidden layers de 100 neurônios 'tanh'
- Regularização L2: α = 0.001
- Taxa aprendizado constante: 0.001
- Solver: Adam
- Validação Cruzada com k-fold (k=10)

MLPRegressor(activation='tanh', alpha=0.001, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='constant', learning_rate_init=0.001, max_fun=15000, max_iter=1000, momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=1e-06, validation_fraction=0.1, verbose=True, warm_start=False)

Metodologia | Otim. Hiperparâmetros

Otimização de Hiperparâmetros: sklearn.model_selection.GridSearchCV()

- 7 tipos de hiperparâmetros em estudo
- Combinatória: 622 080 opções com 6.2 milhões de modelos k-fold (impossível computar)
- Sem Combinatória: 71 buscas com 710 modelos com k-fold (computacionalmente viável)

Função de Ativação

y=sqrt(Price)

y=log(Price)

Alpha

Conclusão

Metodologia:

 A análise de sensibilidade da função objetivo à variação dos hiperparâmetros pode ser uma ferramenta poderosa para a correta configuração das redes Multi-Layer Perceptron (MLP).

Características das redes MLP:

- MLP's são sensíveis à normalização e pré-processamento correto dos dados.
- MLP's com camadas ocultas têm função custo não-convexa com múltiplos mínimos locais.
 Diferentes inicializações dos pesos podem convergir para soluções não ótimas diferentes.
- MLP's têm performance altamente dependente do refinamento de hiperparâmetros.

Trabalhos Futuros:

- Algoritmizar o processo de ajuste de hiperparâmetros para reduzir a subjetividade de inspeção.
- Possíveis caminhos são o Gradiente Descendente e Algoritmos Genéticos.
- Publicar uma nota técnica / artigo.

Referências

Kaggle, "Diamonds - Analyze diamonds by their cut, clarity, price, and other attributes" (2017)

Disponível em: https://www.kaggle.com/shivam2503/diamonds

SciKit-Learn.org, "User Guide" (2020)

Disponível em: https://scikit-learn.org/stable/user_guide.html

MARMOLEJOS, J. M. P., "Implementing Data Mining Methods to Predict Diamond Prices" (2018)

ZHANG, C. Y., et al., "State-of-the-Art Diamond Price Predictions using Neural Networks" (2017)

LECUN, Y., et al., "Efficient Backprop" (1998)

ESPÍNDOLA, R., "EEL817 Redes Neurais - Notas de Aula" (2020)

Obrigado!

Ana Thais Castro anathaiscastro@poli.ufrj.br

Jonas Degrave jonasdegrave@poli.ufrj.br