## TKN/KS/16-6008

# Third Semester B. Sc. (I. T.) Examination Paper-II

#### DATA STRUCTURE

Time: Three Hours]

[ Max. Marks : 50

5

- N. B. : (1) All questions are compulsory and carry equal marks.
  - (2) Draw neat and labelled diagram wherever necessary.

#### 1. EITHER

- (a) Explain with example representation of linked list as an array. 5
- (b) Write an algorithm to add node in a single linked list after a given node. 5

#### OR

- (c) Write an algorithm to search given information in the single linked list.
- (d) How polynomials are represented using the linked list? Explain with example.

### 2. EITHER

- (a) Convert following expressions into prifix and postfix notation.
  - (i)  $\frac{a^{\mathbf{x}} + b^{\mathbf{y}}}{a^{\mathbf{x}} b^{\mathbf{y}}} * \frac{\mathbf{x}}{\mathbf{y}}$  (ii)  $a^{\mathbf{x}}$

TKN/KS/16-6008 Contd.

(b) Write an algorithm for quick sort method using stack.

#### OR

- (c) Explain following operations in stack.
  - (i) PUSH (ii)
    - (ii) POP.

5

5

(d) Write an algorithm to convert infix notation in to prifix notation. 5

#### 3. EITHER

(a) What is queue ? Explain its representation in memory.

(b) Write an algorithm for insertion sort.

OR

- (c) What do you mean by collision resolution? How collisions are resolved? Explain.
- (d) Write an algorithm to add node in the queue. 5

#### 4. EITHER

- (a) Explain Linked representation and array representation of Binary tree with example. 5
- (b) Write an algorithm for Bredth first search (BFS) for a graph. 5

## OR

(c) Write an algorithm for inorder traversing of binary tree.

TKN/KS/16-6008

2

Contd.

(d) Give linked representation of following graph.



5

- 5. (a) Write an algorithm to search a given element in the double linked list.  $2\frac{1}{2}$ 
  - (b) Write an algorithm for calculating the factorial of a given number.  $2\frac{1}{2}$
  - (c) Explain overflow condition and underflow condition in queue.  $2\frac{1}{2}$

(d)



Write different paths for vertex  $V_1$  to vertex  $V_3$ .  $2\frac{1}{2}$