맞춤형 수압 기반 EHA 설계를 위한 이중 사판식 펌프 특성 연구

Characteristic Analysis of the Double Swash-Plate Pumps for the Customized Design of the Water-based Electro-Hydraulic Actuator

김 대 경*, 최 예 린*, 임 동 원*†

*Department of Mechanical Engineering, University of Suwon †Corresponding author email: dwlim@suwon.ac.kr

Abstract

The water-based Electro-Hydraulic Actuator (EHA) system is environment-friendly by using water as a working fluid. Keeping the EHA advantage of its high output ratio per weight, the small size of EHA can make the design flexible, and a few swash-plate pumps in EHA can be composed for the various design requirements. This study experimentally characterizes the performances of the double pump composition in parallel or in series. The series connection increased the pressure by 1.2 times as much as the singular setting. The parallel connection enabled larger volumetric flow (1.6 times). It is concluded that the higher pay-load and the faster response can be obtained by doubling the pumps for the greater pressure and flow rate attributes, respectively. And the pressure and flow-rate characteristics can be applied to the customized EHA design.

I. 서론

수압 기반 전기-유압 액추에이터 (Electro-Hydraulic Actuator)

높은 무게당 출력비 친환경적, 화재위험 X 최근 EHA 소형화를 통한 응용분야 확대

요구조건에 따른 맞춤형 설계 가능

→ 설계 단가 절감

펌프 구성에 따른 공학적 특성분석 필요

단일펌프와 다중펌프 (직렬, 병렬)로 구성 후 실험적으로 분석

Ⅲ. 펌프 실험 계획

유체 회로

다음 그림. 1의 유체 회로도와 같이 실제 시스템 구성하여 실험을 진행한다. 실험은 하중의 위치에 따라 상승/하강 모드로 나누었다.

0 0 0 0

0 0 0 6

그림 .1 실험 유체 회로 (왼쪽: 단일 모터-펌프, 중간: 모터-펌프 직렬 연결, 오른 쪽: 모터-펌프 병렬 연결)

Ⅲ. 펌프 실험 결과

구동기 피스톤의 변위, 소요시간, 유량 비교

표 .1 측정된 구동기 변위, 소요시간, 유량 비교

	단일 모터	직렬 연결	병렬 연결
구동기 변위 [<i>mm</i>]	46.8	108	41.6
총 소요시간 [sec]	22	38.3	7.4
유량 [mm³/sec]	1090	1050	1790

그림 .2 시간에 따른 구동기 피스톤 변위

시간에 따른 압력 비교

표 .2 각 모드 별 최대 압력 비교 지력 여격

상승모드 최대 압력 [MPa] 0.43 0.576 0.527		단일 모터	직렬 연결	병렬 연결
1	상승모드 최대 압력 [MPa]	0.79	0.963	0.763
O.8 O.7 O.6 O.5 O.2 O.1 O.0 O.0	하강모드 최대 압력 [MPa]	0.43	0.576	0.527
0.6 0.5 0.4 0.3 0.2 0.1 0	0.8 0.7 0.6 0.5 0.4 0.2 0.1 0 -0.1	20.00 25	Pressure_seriesPressure_Paral	lel
	0.5 O.4	and the property of the contract of the contra	—Pressure —Pressure	e_series e_Parallel
고림 .3 시간에 따른 압력 변화 (위: 상승 모드, 아래: 하강 모드)		t [sec]		

- ✔ 구동기가 하중을 올리는 상승 모드 실험을 바탕으로 볼 때
 - <u>병렬 구성으로 증가된 유량</u>은 상승 시간을 줄이며,
 - <u>직렬 구성으로 높여진 압력</u>은 **가반하중을 증가**시킨다.
- ✓ 결과를 바탕으로 보다 빠른 응답성 또는 요구 하중에 따라 펌프를 새 로 만들 필요없이 다중 소형 펌프를 조합하여 사용할 수 있다.

Acknowledgement

본 연구는 중소벤처기업부의 2021년도 창업성장기술개발사업에서 지원하여 연구하였음. (No. S3055132)

참고문헌

[1] 송하권 외, "소형 EHA 시스템을 위한 사판식 수압 펌프의 소형화 설계," 제 어로봇시스템학회 국내학술대회 논문집, 제6호