M-M PAPER, MORPHOLOGICAL BIAS

G. A. D. SAVORGNAN¹ AND A. W. GRAHAM¹

Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia. $Draft\ version\ March\ 18,\ 2015$

ABSTRACT

abstract
Subject headings: keywords

1. INTRODUCTION

More than two and a half decades ago, Dressler (1989) foresaw a "rough scaling of black hole mass with the mass of the spheroidal component", as suggested by the sequence of five galaxies (M87, M104, M31, M32 and the Milky Way). His "rough scaling" was a premature version of the nowadays popular correlation between black hole mass, $M_{\rm BH}$, and host spheroid luminosity, $L_{\rm sph}$, and also host spheroid mass, $M_{\rm sph}$ (Yee 1992; Kormendy & Richstone 1995; Magorrian et al. 1998; Marconi & Hunt 2003; Häring & Rix 2004). These early studies were dominated by high-mass, early-type galaxies, for which they reported a quasi-linear $M_{\rm BH}-M_{\rm sph}$ relation, in agreement with a dry-merging formation scenario. Subsequent studies of the $M_{\rm BH}-L_{\rm sph}$ and $M_{\rm BH}-M_{\rm sph}$ diagrams (Ferrarese & Ford 2005; Lauer et al. 2007; Graham 2007, 2008; Gültekin et al. 2009; Sani et al. 2011; Beifiori et al. 2012; Erwin & Gadotti 2012; Vika et al. 2012; van den Bosch et al. 2012; McConnell & Ma 2013; Kormendy & Ho 2013; Rusli et al. 2013; see Graham 2015 for an extensive review about the early discovery and successive improvements of these correlations) used similar galaxy samples, which remained dominated by high-mass, earlytype objects having $M_{\rm BH}\gtrsim 0.5\times 10^8~{\rm M_{\odot}}$, and therefore recovered a near-linear relation. However, the consensus about a linear $M_{\rm BH}-M_{\rm sph}$ correlation was not unanimous. Some studies reported a slope steeper than 1, or noticed that low-mass spheroids were downwards offset from the relation traced by their high-mass counterparts (Laor 1998; Wandel 1999; Laor 2001; Ryan et al. 2007). lasker

- 2. DATA
- 3. ANALYSIS
- 4. RESULTS
- 5. CONCLUSIONS

This research was supported by Australian Research Council funding through grants DP110103509 and FT110100263. This work is based on observations made with the IRAC instrument (Fazio et al. 2004) on-board the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research has made

use of the GOLDMine database (Gavazzi et al. 2003) and the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory. California

Fig. 1.—

Fig. 2.—

Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Beifiori, A., Courteau, S., Corsini, E. M., & Zhu, Y. 2012, MNRAS, 419, 2497 Dressler, A. 1989, in IAU Symposium, Vol. 134, Active Galactic Nuclei, ed. D. E. Osterbrock & J. S. Miller, 217

Erwin, P., & Gadotti, D. A. 2012, Advances in Astronomy, 2012, 4 Fazio, G. G., Hora, J. L., Allen, L. E., et al. 2004, ApJS, 154, 10Ferrarese, L., & Ford, H. 2005, Space Sci. Rev., 116, 523

Gavazzi, G., Boselli, A., Donati, A., Franzetti, P., & Scodeggio, M. 2003, A&A, 400, 451

Graham, A. W. 2007, MNRAS, 379, 711

—. 2008, PASA, 25, 167

 $2015,\, \mathrm{ArXiv}\ \mathrm{e\text{-}prints},\, \mathrm{arXiv}.1501.02937$

Gültekin, K., Richstone, D. O., Gebhardt, K., et al. 2009, ApJ,

Häring, N., & Rix, H.-W. 2004, ApJ, 604, L89 Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511

Kormendy, J., & Richstone, D. 1995, ARA&A, 33, 581

Laor, A. 1998, ApJ, 505, L83

-. 2001, ApJ, 553, 677

Lauer, T. R., Faber, S. M., Richstone, D., et al. 2007, ApJ, 662,

Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115,

Marconi, A., & Hunt, L. K. 2003, ApJ, 589, L21

McConnell, N. J., & Ma, C.-P. 2013, ApJ, 764, 184

Rusli, S. P., Erwin, P., Saglia, R. P., et al. 2013, AJ, 146, 160 Ryan, C. J., De Robertis, M. M., Virani, S., Laor, A., & Dawson, P. C. 2007, ApJ, 654, 799

Sani, E., Marconi, A., Hunt, L. K., & Risaliti, G. 2011, MNRAS, 413, 1479

van den Bosch, R. C. E., Gebhardt, K., Gültekin, K., et al. 2012, Nature, 491, 729

Vika, M., Driver, S. P., Cameron, E., Kelvin, L., & Robotham, A. 2012, MNRAS, 419, 2264 Wandel, A. 1999, ApJ, 519, L39

Yee, H. K. C. 1992, in Astronomical Society of the Pacific Conference Series, Vol. 31, Relationships Between Active Galactic Nuclei and Starburst Galaxies, ed. A. V. Filippenko,