

Development of Portable Smart Robot Bomb for Uneven Territory

Byeonghun Na Prof. Kyoungchul Kong

The Department of Mechanical Engineering, Sogang University

Contents

- Introduction
- Locomotion of a Quadruped Animal
 - Experimental results
 - Desired joint angle trajectory
- Design of a Mechanical Link System
 - Five-bar mechanism
 - Kinematics analysis
 - Parameter optimization
 - Simulation
 - Experiment
- ***** Conclusion

Introduction

- Remote controlled explosive device
 - The radio-controlled car loaded with explosives
 - Wheel or caterpillar type
- Reduced-DOF robots
 - Legged transportation system for an uneven terrain
 - Inherently high mobility
 - Issues: trajectory generation, mechanical design, link mechanism,
 high power (torque) capacity actuator, vision system, communication,
 durability, ...

RC Bomb Car

Reduced-DOF robot

Robotic Systems Control Laboratory

Cheetaroid II: Concept Design

Cheetaroid-II: a quadruped robot with one DOF actuation

Mechanical drawing

Simulated motions

Desired Joint Angle Trajectory

Experimental setting

- In order to obtain the reference joint angles for the design of a link mechanism
- Obtained from the trotting motion of a dog
- A high-speed camera was utilized

Desired Joint Angle Trajectory

Desired Trajectories

- The shoulder joint: as simple as an 1DOF pendulum system
- The elbow joint : major flexion occurs in the swing phase

Robotic Systems Control Laboratory

Robotic Systems Control Laboratory

Parameter Optimization

Design parameter optimization

Cost function

$$J(\mathbf{X}) = \int_0^{2\pi} [\theta(\phi) - \theta(\phi + \alpha) - \beta]^2 d\phi + \lambda_H [\|T_y\|_{\infty} - \|T_y\|_{\infty}]^{-1}$$

- X: design variable

 $-\theta(\phi)$: Reference angle trajectory

 $-\alpha, \beta$: Dummy variable

 $-\lambda_H$: Weighting factor

- T_y : Height of the tiptoe

Optimized design parameters

Variable	Value	Variable	Value
l_{HA}	0.065 m	l_{AC}	0.085 m
l_{HK}	0.1 m	l_{BC}	0.097 m
l_{KB}	0.027 m	l_R	0.030 m
D_{χ}	0.067 m	D_y	-0.039 m

Simulated Motions(1/3)

Optimized joint angle trajectories

- The shoulder joint: similar to the reference motion
- The elbow joint : a large discrepancy caused by
 - Maximization of the clearance of the tiptoe
 - Engineering constraints for the torque arm length, and so on

Simulated Motions(2/3)

Clearance of tiptoe

- The tiptoe follows an elliptical shape
- The clearance is about 0.048 [m] (26% of the total length of a leg)
- Large clearance of the tiptoe is important for gait stability

Simulated Motions(3/3)

Generated gait motion by link system

Mechanical Design(1/2)

❖ Power transmission system

Mechanical Design(2/2)

Compliant foot

- To reduce the impulsive ground reaction force
- Designed to have J-shaped curvature
- Made of CFRP(Carbon Fiber Reinforced Plastic)

Cheetaroid II: Overall Design

Cheetaroid-II: a quadruped robot with one DOF actuation

DC motor Battery Control unit Mechanical CFRP feet link system

Size: 500(W) x 200(D) x 300(H)

Weight: 5kg

Experiments(1/2)

❖ On a treadmill

Speed: 1 m/s

Experiments(2/2)

Outdoor environment

Conclusions

- A quadruped robot actuated by only one actuator was proposed for Portable Smart Robot Bomb
- A mechanical link system was designed
- Design parameters were selected and optimized that considering the leg motion of a dog
- The robot successfully realized the desired gait motion
- Cheetaroid-II is a simple, cheap, and light robot system that is able to move fast

THANK YOU

