

Moderazione

• Se l'intensità dell'effetto di X su Y cambia al variare dei livelli (valori) di un variabile M, diremo che M è un moderatore dell'effetto di X su Y, e che l'effetto di X su Y è condizionale ai valori di M

Esempio

• In un esperimento i partecipanti, divisi in due gruppi sperimentali, sono sottoposti a prime di "might" vs "morality" (*prime*). Poi svolgono un compito cooperativo in cui possono cooperate con diversa intensità (BEH). Essendo la cooperazione associata sia a valori individuali che alle aspettative sull'opponente, le aspettative di cooperazione dell'altro sono state chieste ad ogni soggetto (EXP), ed una misura continua di Social Value Orientation (SVO) è stata presa, con valori alti corrispondenti a maggiore tratto di cooperatività

Quesito sul "chi"

Cioè ci domandiamo per chi, o in quali condizioni, PRIME abbia un effetto su BEH

- Possiamo ipotizzare che l'effetto di PRIME non sia uguale per tutti, ma che sia più o meno forte a seconda del tratto di cooperatività
- Ad esempio che l'effetto di PRIME sia più forte se si è cooperativi di proprio, e più debole se si è individualisti.

Moderazione

- Cioè ipotizziamo che l'effetto di PRIME su BEH non sia uguale per tutti, ma la sua intensità cambi (e.g. cresce) al variare di SVO
- Ipotizziamo che l'effetto di X su Y varia per diversi livelli di M

Caratteristiche del moderatore

• Il modello (logico) di moderazione regge se la variabile moderatore possiede alcune caratteristiche:

- M deve poter cambiare l'intensità dell'effetto tra X e Y SVO descrive persone differenti che possono essere più o meno sensibili al PRIME
- M non è generalmente causato da X SVO è un tratto e non dipende dal prime ricevuto

Moderazione Statistica= Interazione

- Il modello (logico) di moderazione si testa statisticamente andando a testare l'interazione tra la variabile indipendente e il moderatore
- Se X e M interagiscono nel predire Y, possiamo affermare che M sia un moderatore

Moderazione Statistica

lacktriangle Se vi è una interazione tra X e M, possiamo scegliere liberamente (teoricamente) quale

Due variabili continue

- Se non c'è interazione (regressione multipla) tutte le rette del piano sono parallele
- L'effetto di una VI è costante (non condizionale) al punteggio dell'altra

Interazione

- Se c'è interazione le rette non sono paralle, ed il piano si incurva
- L'effetto di una VI cambia per punteggi diversi dell'altra IV

Linee di interazione

Se c'è interazione le rette non sono paralle, ed il piano si incurva

L'effetto di una VI cambia perpunteggio diversi dell'altra VI

Effetto moltiplicativo

 L'interazione viene inserita in una regressione mediante il prodotto delle VI

Il prodotto delle VI

$$Y_{i} = a + B_{1} \cdot X_{1} + B_{2} \cdot X_{2} + B_{int} X_{1} X_{2}$$

Il coefficiente di X₂ cambia al variare di X₂

$$Y_i = a + (B_1 + B_{int} X_1) \cdot X_2 + B_1 \cdot X_1$$

L'effetto delle VI cambia al variare dell'altra VI

Effetti condizionali vs lineari

 Un effetto lineare (in assenza di interazione) indica il cambio nella VD al variare della VI

$$Y_i = a + B_1 \cdot X_1 + B_2 \cdot X_2$$

Cambio in VD

 L'interazione (il B associato al prodotto) indica il cambio di effetto di una VI sulla VD quando varia l'altra VI

$$Y_i = a + B_1 X_1 + (B_2 + B_{int} X_1) \cdot X_2$$

Cambio di effetto

cambio in VD

Effetto condizionale

 Esempio: Se lo stipendio dei ricercatore incrementa con le pubblicazioni citate (CITS) condizionatamente al genere del ricercatore (GENDER)

Per le donne l'effetto è minore

$$Y_i = a + (B_{gender} + B_{int} X_c) \cdot 0 + B_{cits} \cdot K_c$$

Che per gli uomini

$$Y_i = a + (B_{gender} + B_{int} X_c) \cdot 1 + B_{cits} \cdot K_c$$

Terminologia

Quando vi è una interazione in una regressione con variabili continue,
 gli effetti dei termini lineari si chiamano effetti di primo ordine

$$Y_{i} = a + B_{1} \cdot X_{1} + B_{2} \cdot X_{2} + B_{int} X_{1} X_{2}$$
Effetti di primo ordine

Esempio

• La ricerca è volta a studiare le relazioni tra età (XAGE), anni di attività fisica sportiva (ZEXER), e resistenza fisica (YENDU). A tale scopo un campione di 245 adulti sono stati sottoposti ad un esercizio in palestra e misurata il tempo di resistenza alla corsa

Il modello atteso è:

Esempio

- Un campione di soggetti è stato testato per la resistenza fisica (endurance) mentre correva su un tappeto mobile
- Ci si propone di studiare l'influenza dell'età e dell'esercizio fisico sull'endurance
- Endurance è misurata come minuti di corsa sul tappeto
- Età in anni e esercizio fisico in anni da cui il soggetto si allena regolarmente

```
yendu
##
        xage
                     zexer
   Min.
         :20.00
                 Min. : 0.00
                                Min. : 0.00
  1st Qu.:43.00
                 1st Qu.: 7.00
                              1st Qu.:19.00
  Median :48.00
                 Median :11.00
                              Median :27.00
   Mean :49.18
                 Mean :10.67
                                      :26.53
                               Mean
  3rd Qu.:56.00
                 3rd Qu.:14.00 3rd Qu.:33.00
                 Max. :26.00
   Max. :82.00
                                      :55.00
                                Max.
```

Stima degli effetti

 In termini di software (R o altro) si esegue una regressione multipla inserendo anche il prodotto del delle variabili indipendenti

Esempio di Cohen et. Al 2003, dataset exercise

In R

Aggiungo il prodotto delle variabili

Eseguo il codice

```
mod<-lm(yendu~xage+zexer+xage*zexer, data=exercise)
summary(mod)</pre>
```

Interazione

Eseguo il codice

```
mod<-lm(yendu~xage+zexer+xage*zexer, data=exercise)
summary(mod)</pre>
```

Effetto di interazione

L'effetto di *age* su *endurance* cambia ai diversi livelli di *exer*

Effetti di primo ordine

Eseguo il codice

```
mod<-lm(yendu~xage+zexer+xage*zexer, data=exercise)
summary(mod)</pre>
```

Effetto di *age*?

Sembra che all'aumentare dell'età, diminuisca la resistenza (OK)

Effetti di primo ordine

Eseguo il codice

```
mod<-lm(yendu~xage+zexer+xage*zexer, data=exercise)
summary(mod)</pre>
```

Effetto di exer?

Sembra che all'aumentare dell'esercizio, diminuisca la resistenza (non OK)

Effetti di ordine primo in presenza di interazione

 Quando l'interazione è presente nella regressione, gli effetti di ordine primo diventano condizionali al valore dell'altra variabile indipendente

$$\hat{Y}_i = a + B_1 \cdot X_1 + B_2 \cdot X_2 + B_{int} X_1 X_2$$
Cosa è B₁?

Non è più l'effetto di X₁ tenendo costante X₂!

B₁è l'effetto di X₁ tenendo costante l'altra IV X₂ a zero

$$\hat{Y}_i = a + B_1 \cdot X_1 + B_2 \cdot 0 + B_{int} X_1 0 = a + B_1 \cdot X_1$$
Se $X_2 = 0$, allora B_1 è l'effetto di X_1

Linee di interazione

 Notiamo infatti che se c'è interazione, non esiste più un effetto unico delle VI, ma l'effetto è condizionale ai valori dell'altra

Effetti di ordine primo in presenza di interazione

In presenza del termine di interazione, l'effetto semplice (primo ordine)
 è l'effetto della VI tenendo l'altra IV costante a zero

$$\hat{Y}_{i} = a + B_{1} \cdot X_{1} + B_{2} \cdot 0 + B_{int} X_{1} 0 = a + B_{1} \cdot X_{1}$$

Scale Invariance

- Gli effetti di ordine primo (lineari) sono dunque scale variant
- Un coefficiente si dice scale invariant se il suo valore non si modifica quando aggiungiamo o sottraiamo una costante alla variabile indipendente.
- Un coefficiente si dice scale variant se il suo valore si modifica, dunque il suo valore dipendende dallo zero della variabile indipendente
- Cioè sono una stima dell'effetto per quell'ipotetico gruppo di soggetti che hanno zero nella VI (per l'interazione dell'altra VI)

Scale Invariance

• Il termine di interazione è invece scale invariant

$$\hat{Y}_i = a + B_1 X_1$$

$$\hat{Y}_{i} = a + B_{1} \cdot X_{1} + B_{2} \cdot X_{2} + B_{int} X_{1} X_{2} =$$

$$\hat{Y}_{i} = a + B_{1} \cdot X_{1} + B_{2} \cdot X_{2} + B_{3} \cdot X_{3} + B_{int} X_{1} X_{2} + B_{int3} X_{1} X_{2} X_{3}$$

Il termine di ordine più alto è sempre scale invariant, gli altri non sono invariant

Il senso dello zero

 Quando una variabile continua ha uno zero interpretabile e sensato (stipendio, quantità di stimolazione ricevuta, anni di allenamento) l'effetto delle altre variabili è stimato per "coloro che non hanno quella quantità" Dunque l'effetto lineare delle altre variabili è interpretabile

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 53.17896   7.52661   7.065 1.71e-11 ***

## xage     -0.76596   0.15980   -4.793 2.87e-06 ***

## zexer     -1.35095   0.66626   -2.028 0.043694 *

## xage:zexer   0.04724   0.01359   3.476 0.000604 ***

## ---
```

Effetto di età sull'endurance per chi non si allena per nulla Ha senso e dunque si può interpretare

Il senso dello zero

- Quando una variabile continua non ha uno zero interpretabile e sensato oppure lo zero è completamente fuori il range dei nostri dati, l'effetto delle altre VI non è interpretabile
- Nessuno può avere età=0 e avere anni di allenamento

Effetto di allenamento per eta=0 Non ha senso e dunque non si può interpretare

Dare senso allo zero

 Noi possiamo sempre dare un senso allo zero di una variabili, centrando quella variabile ad un valore interessante (ad esempio la media)

La nuova VI ha media=0

Dare senso allo zero

I nuovi risultati saranno interpretabili

Effetto di *age* per livello medio di *exer*

Effetto di *exer* per livello medio di *age*

Zero sensato

 Si può sempre centrare le variabili prima di calcolare la regressione con interazione

Zero sensato

Centrando, chi aveva un valore medio ha ora un valore di zero

Centrando alla media

- Centrando le variabili alle loro medie otteniamo che l'effetto di ordine prima delle altra variabili sarà l'effetto medio del campione
- Dunque si può interpretare come "effetto principale"

Centrato vs Non centrato

Non centrata

Centrata

Scale variant

Centrando alla media

 L'interazione non cambia perché essa indica la curvatura (il cambiamento di effetto), che rimane uguale essendo il modello identico

Il Fit non cambia

```
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
#
                            1.065 1.71e-11 ***
           Non centrata
                      <del>0.13900 -4</del>.793 2.87e-06 ***
## xage
             -0.70090
## zexer -1.35095 0.66626 -2.028 0.043694 *
## xage:zexer 0.04724 0.01359 3.476 0.000604 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.7 on 241 degrees of freedom
## Multiple R-squared: 0.2061, Adjusted R-squared: 0.1962
## F-statistic: 20.86 on 3 and 241 DF, p value: 4.764e-12
                                                                  ***
                ## cexer 0.97272 0.13653 7.124 1.20e-11 ***
                ## cage:cexer 0.04724 0.01359 3.476 0.000604 ***
                ## ---
                ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                ##
                ## Residual standard error: 9.7 on 241 degrees of freedom
                ## Multiple R-squared: 0.2061, Adjusted R-squared: 0.1962
                ## F-statistic: 20.86 on 3 and 241 DF, -value: 4.764e-12
```

Centrata

Recap

- L'interazione esiste quando l'effetto di una VI cambia al variare di altre VI
- La stima dell'interazione equivale a stimare l'effetto del prodotto dele VI
- Se l'effetto è significativo, l'effetto lineare delle VI diventa condizionale al valore delle altre VI
- L'effetto lineare (primo ordine) si interpreta come l'effetto della VI ad esso associato per le altre VI tenute costanti a zero
- Quando lo zero non ha un senso, si possono centrare le variabili alle loro medie
- Il termine di interazione non cambia centrando le variabili
- Il fit del modello (R-quadro, F, p-value) non cambia centrando le variabili

Problemi con le interazioni

- Come intepretare l'andamento degli effetti al variare delle VI
- Come testare che le variabili abbiano un effetto per specifici valori delle altre

Simple Slope Analisys

Un dubbio

- Perchè non fare un median-split (categorizzare le variabili) e poi fare una ANOVA
 - I test sarebbero fatti solo su parti del campione
 - Il potere statistico sarebbe più basso
 - La categorizzazione potrebbe nascondere delle interazioni reali o fare emergere delle interazioni inesistenti (artefatte)

Il median-split non è più consentito nei giornali internazionali

Simple slope analysis

 Simple slope analysis consiste nello stimare gli effetti di una VI a vari livelli dell'altra, per consentire di capire come variano gli effetti

Simple slope analysis

• E' equivalente a selezionare duo o più rette del piano di regressione

Possiamo scegliere due rette a dei valori sensati del moderatore

Simple slope analysis

E rappresentarle in due dimensioni

Test di significatività delle simple slopes

 Spesso vogliamo anche testare la significatività dell'effetto di una VI acerti livelli (es. Alto vs basso) dell'altra VI

Simple slope

Sfruttiamo il fatto che essendo gli effetti lineari scale variant, cambiando lo zero dell'altra VI cambiamo il valore della stima

$$\hat{Y}_{i} = a + B_{1}0 + (B_{2} + B_{int}0) \cdot X_{2}$$

 $\hat{Y}_{i} = a + B_{2}X_{2}$

Stima e Significatività

- Per ottenere queste informazioni sfruttiamo il fatto che gli effetti di primo ordine sono scale variant (condizionali al valore di zero dell'altra VI)
- Il first-order effect (B di X_1) èl'effetto di X_1 per $X_2=0$
- Se vogliamo stimare l'effetto di X_1 per specifici valori di X_2 (es. Una deviazione standard sopra la media ed una sotto), basterà centrare la variabile X_2 a tali valori
- Esempio: Exercise ha dev.stad=4.8, dunque centremo Exercise a 4.8 (1 s.dev sopra) e a –4.8 (1 s.dev sotto)

$$highExer=Exer-mean(Exer)-4.8$$

Centrare ad una deviazione sopra

Ci muoviamo da 0 a 1 deviazioni standard sopra la media

$$c=X_1-\bar{X}_1-SD(X_1)$$

Stima delle simple slopes

 Rifacciamo le analisi con la nuova variabile centrata ad una deviazione standard sopra la media (chi si allena molto)

```
mod3<-lm(yendu~cage+hexer+cage*hexer, data=exercise)
summary(mod3)</pre>
```

```
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
  (Intercept) 30.53366
                          0.90253 33.831 < 2e-16 ***
               -0.03609
                                   -0.400 0.689641
## cage
                          0.09025
               0.97272
                          0.13653 7.124 1.2e-11 ***
## hexer
## cage:hexer
               0.04724
                          0.01359
                                   3.476 0.000604 ***
## ---
```

Effetto di età per exercise=+1 s.dev For chi si allena molto exercise, l'età non ha un effetto significativo sulla performance

Centrare per valori bassi

Aggiungendo una deviazione standard spostiamo lo zero verso i valori

Stima delle simple slopes

 Rifacciamo le analisi con la nuova variabile centrata ad una deviazione standard sotto la media (chi si allena poco)

```
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                            0.93371
                                    22.752 < 2e-16 ***
   (Intercept) 21.24379
## cage
               -0.48729
                            0.09214
                                     -5.289 2.76e-07
## lexer
                0.97272
                            0.13653
                                      7.124 1.20e-11 ***
                                      3.476 0.000604 ***
                 0.04724
                            0.01359
## cage:lexer
## ---
                Effetto di età per exercise= -1 s.dev
              per chi si allena poco, l'età ha un effetto negativo
                      significativo sulla performance
```

Simple Slopes graph

Ora plottiamo le simple slopes, cioè gli effetti appena stimati

- jamovi GAMLj GLM **semplifica** di molto l'analisi con le interazioni
- Settando le variabili (di default) calcola una regressione multipla (senza interazione)

- jamovi GAMLj GLM semplifica di molto l'analisi con le interazioni
- Aggiungiamo l'interazione nel modello in "Model"

Dicultati

General Linear Model

ANOVA

	Sum of Squares	df	Mean Square	F	p
Model	5887	3	1962.4	20.9	< .001
xage	1570	1	1569.8	16.7	< .001
zexer	4775	1	4775.3	50.8	< .001
xage ≭ zexer	1137	1	1136.5	12.1	< .001
Residuals	22674	241	94.1		

Note. R-squared= 0.206, adjusted R-squared= 0.196

Notiamo che i risultati sono già sensati

Model Coefficients (Parameter Estimates)

				95% Confide	ence Interval		
	Contrast	Estimate	SE	Lower	Upper	t	p
(Intercept)	Intercept	25.8887	0.6466	24.6150	27.1625	40.04	< .001
xage	xage	-0.2617	0.0641	-0.3879	-0.1355	-4.08	< .001
zexer	zexer	0.9727	0.1365	0.7038	1.2417	7.12	< .001
xage * zexer	xage * zexer	0.0472	0.0136	0.0205	0.0740	3.48	< .001

GAMLj centra le variabili sulla media di default

 Se volessimo cambiare il default per le variabili, andiamo nella opzione "covariates scaling"

default

Standardizzato o none=originale della variabile

Jamovi: simple slope graph

Opzione "Plots"

Jamovi: simple slope graph

 Se volessimo cambiare il default per le variabili, andiamo nella opzione "covariates scaling"

Jamovi: simple slope test

Opzione "Simple effects"

Calcola gli effetti di "xage" per exer=Media, exer=+1SD, exer=-1SD

jamovi: simple slope graph

Effetto di age per differenti livelli di exercise

Simple Effects ANOVA

Simple effects of xage

Effect	Moderator Levels	Sum of Squares	df	F	р
xage	zexer at 5.9	2631.7	1	27.972	< .001
xage	zexer at 10.67	1569.8	1	16.686	< .001
xage	zexer at 15.45	15.0	1	0.160	0.690

Simple Effects Parameters

Simple effects of xage

Effect	Moderator Levels	Estimate	SE	t	р
xage	zexer at 5.9	-4.925	0.931	-5.289	< .001
xage	zexer at 10.67	-2.645	0.647	-4.085	< .001
xage	zexer at 15.45	-0.365	0.912	-0.400	0.690

Interazioni con variabili categoriche

ANOVA

- In presenza di variabili indipendenti categoriche i tutto si semplifica in quanto abbiamo a che fare con medie dei gruppi
- Simple slope graph diventa senplicemente il grafico delle medie
- Per interpretare i coefficienti, però, è necessario centrare le variabili su 0, come per le continue

ANOVA Fattoriale

- In presenza di più variabili indipendenti categoriche e di interazioni centrare le variabili modifica i risultati
- I coefficienti degli effetti lineari sono calcolati per l'altra variabile uguale a 0
- Se le variabili sono centrate, essi sono calcolati in media, dunque otteniamo gli effetti principali

Esempio

- Un campione di **pazienti neurologici ed un gruppo di controllo** sperimentale sono stati testati nel seguente esperimento. Il compito del soggetto era quello di leggere una lettera al centro dello schermo e momorizzarla. Contemporaneamente alla lettera apparivano sullo schermo delle immagini distrattori.
- Al soggetto era richiesto e di ignorare le immagini e di non rivolgere lo sguardo verso le immagini ma tenerlo il più possibile verso il centro dello schermo. Le immagini presentate erano di due tipi, a seconda della **condizione sperimentale** (condizioni between-subject). In una condizione i soggetti vedevano delle immagini di volti di persone, nell'altra condizione delle immagini di forme geometriche.
- L'ipotesi da testare era che i soggetti normali fossero maggiormente distratti dai volti mentre i soggetti neurologici fossero egualmente distraibili da volti e forme geometriche. La variabile dipendente è il numero di squardi rivolti verso i distrattori (la frequenza di sguardi per ogni soggetto). Prima dell'esperimento unb misura di impulsività è stata rilevata per poter controllare eventuali effetti sulla variabile dipendente.

ANOVA in GAMLj è (ovviamente) molto semplificata.

ANOVA in GAMLj

ANOVA Omnibus tests

	SS	df	F	р	η²p
Model	70.190	3	6.608	< .001	0.171
gruppi	0.490	1	0.138	0.711	0.001
condizione	37.210	1	10.509	0.002	0.099
gruppi ≭ condizione	32.490	1	9.176	0.003	0.087
Residuals	339.920	96			
Total	410.110	99			

Fixed Effects Parameter Estimates

95% Confidence Interval									
Names	Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	(Intercept)	10.670	0.188	10.296	11.044	0.0000	96	56.704	< .001
gruppi1	1 - 0	0.140	0.376	-0.607	0.887	0.0688	96	0.372	0.711
condizione1	1 - 0	1.220	0.376	0.473	1.967	0.5994	96	3.242	0.002
gruppi1 ★ condizione1	1-0 * 1-0	2.280	0.753	0.786	3.774	1.1202	96	3.029	0.003

GAMLj plots

GAMLj plots

GAMLj simple effects

GAMLj simple effects

Simple Effects ANOVA

Simple effects of gruppi

Effect	Moderator Levels	Sum of Squares	df	F	р
gruppi	condizione at 0	12.5	1	3.53	0.063
gruppi	condizione at 1	20.5	1	5.78	0.018

Simple Effects Parameters

Simple effects of gruppi

Effect	Moderator Levels	Estimate	SE	t	р
gruppi1	condizione at 0	-0.500	0.266	-1.88	0.063
gruppi1	condizione at 1	0.640	0.266	2.40	0.018

GAMLj post hoc tests

GAMLj post hoc

Post Hoc Tests

Post Hoc Comparisons - condizione * gruppi

	Cor	mpa	rison	_				
condizione	gruppi		condizione	gruppi	Difference	SE	t	P _{Tukey}
0	0	-	0	1	1.0000	0.532	1.879	0.244
		-	1	0	-0.0800	0.532	-0.150	0.999
		-	1	1	-1.3600	0.532	-2.555	0.058
	1	-	1	1	-2.3600	0.532	-4.434	< .001
1	0	-	0	1	1.0800	0.532	2.029	0.185
		-	1	1	-1.2800	0.532	-2.405	0.083

jamovi: GAMLj

• In GAMLj l'analisi "funziona" in quanto le variabili categoriche sono codificate con **contrasts coding centrato sullo 0**

Contrast Coefficients

Name	Contrast	level=0	level=1
gruppi1	1 - 0	-0.5	0.5

Note. Intercept computed for sample mean

condizione

Name	Contrast	level=0	level=1
condizione1	1 - 0	-0.5	0.5

Note. Intercept computed for sample mean

Chiedo i coefficienti

Chiedo i coefficienti

Le F sono calcolate centrando le variabili dummy (effetti principali e

interazioni)

Tests of Between-Subjects Effects

Dependent Variable: sguardi

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	70.190ª	3	23.397	6.608	.000
Intercept	11384.890	1	11384.890	3215.314	.000
gruppi	.490	1	.490	.138	.711
condizione	37.210	1	37.210	10.509	.002
gruppi * condizione	32.490	1	32.490	9.176	.003
Error	339.920	96	3.541		
Total	11795.000	100			
Corrected Total	410.110	99			

a. R Squared = .171 (Adjusted R Squared = .145)

ANOVA Omnibus tests

	SS	df	F	р	η²p
Model	70.190	3	6.608	< .001	0.171
gruppi	0.490	1	0.138	0.711	0.001
condizione	37.210	1	10.509	0.002	0.099
gruppi ≭ condizione	32.490	1	9.176	0.003	0.087
Residuals	339.920	96			
Total	410.110	99			

jamovi

SPSS

I coefficienti sono calcolati con dummy 0 1, con reference il gruppo più alto

Parameter Estimates

	1				95% Confidence Interval		
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound	
Intercept	11.920	.376	31.673	.000	11.173	12.667	
[gruppi=0]	-1.280	.532	-2.405	.018	-2.336	224	
[gruppi=1]	0ª						
[condizione=0]	-2.360	.532	-4.434	.000	-3.416	-1.304	
[condizione=1]	0ª						
[gruppi=0] * [condizione=0]	2.280	.753	3.029	.003	.786	3.774	
[gruppi=0] * [condizione=1]	0ª	-					
[gruppi=1] * [condizione=0]	0ª		-	,			
[gruppi=1] * [condizione=1] a. This parameter is set	0ª				reference		

Per cambiare le dummies bisogna calcolare nuove variabili con i codici che preferiamo: non è possibile centrarle via opzioni di spss!

Interazioni con variabili categoriche e continue

Moderazione

- Avevamo visto l'esempio in cui l'effetto di PRIME (categorica) su BEH può cambiare intensità (e.g. cresce) al variare di SVO
- PRIME categorica, SVO continua

Moderazione Statistica

Stimeremo un modello lineare moderato con l'interazione PRIME*SVO

GAMLj

GAMLj

GAMLj

General Linear Model

ANOVA

	Sum of Squares	df	Mean Square	F	р	η²p
Model	3940	3	1313	7.23	< .001	0.184
prime	2098	1	2098	11.56	< .001	0.107
SVO	794	1	794	4.37	0.039	0.044
prime * SVO	1262	1	1262	6.95	0.010	0.068
Residuals	17427	96	182			

Note. R-squared= 0.184, adjusted R-squared= 0.159

Model Coefficients (Parameter Estimates)

	Contrast	Estimate	SE	Lower	Upper	t	p
(Intercept)	Intercept	58.16	1.347	55.483	60.83	43.16	< .001
prime1	1 - (0,1)	4.58	1.347	1.906	7.25	3.40	< .001
SV0	SVO	2.04	0.976	0.104	3.98	2.09	0.039
prime1 * SVO	1-(0,1) * SVO	2.57	0.976	0.636	4.51	2.64	0.010

Mediazione e Moderazione

I due modelli teorici possono operare insieme per spiegare gli effetti

Mediazione condizionale o moderata

Modello 4

Mediazione condizionale

- E' possibile ragionare in vari modi per capire (bene) la mediazione moderata
 - *Mediazione moderata*: Partendo da un modello di mediazione, ragionare sui possibili moderatori
 - *Moderazione mediata*: Partendo da una interazione, e domandandoci perché vi sia tale mediazione

Il modello statistico, i passi da fare per ottenere i risultati, e l'interpretazione non cambia

Prototipi

- Per capire la mediazione condizionale è anche utile partire da dei modelli
 "prototipici", e poi eventualmente combinarli in un unico modello
 - *Modello prototipico*: un modello strutturalmente semplice di cui è (relativamente) semplice interpretare i risultati

Mediazione moderata

Partiamo da un ipotetico modello di mediazione

- E domandiamoci in che mode l'intensità dell'effetto mediato può dipendere da un moderatore
- Ricordiamo che l'effetto mediato è dato dal prodotto a*b
- Dunque la mediazione può essere moderata se un moderatore cambia a o b

Partiamo da un ipotetico modello di mediazione

 Nel primo caso, il moderatore cambia l'intensità della relazione tra X ed il mediatore M

Partiamo da un ipotetico modello di mediazione

 Nel primo caso, il moderatore cambia l'intensità della relazione tra X ed il mediatore M

Partiamo da un ipotetico modello di mediazione

Nel secondo caso, il moderatore cambia l'intensità della relazione tra il mediatore Med e la variabile dipendente

Partiamo da un ipotetico modello di mediazione

Nel secondo caso, il moderatore cambia l'intensità della relazione tra il mediatore Med e la variabile dipendente

Combinando i casi

Queste possibilità possono combinarsi insieme per dare un modello complesso

Problema

• Il problema di questo modo di ragionare (ottimo in teoria) è che rende opaca la traduzione del modello in modelli statistici da stimare

Possiamo allora ragionare in termini di moderazione mediata

Moderazione

- Partiamo ora da un modello di mediazione, e domandiamoci perché ci sia una moderazione
- Cioè, domandiamoci se la moderazione osservata possa essere mediata da l'intervento di una variabile mediatore

Mediazione

Ricordiamo che nella mediazione (il perché ci sia un effetto semplice) dovevamo avere:

- 1) Effetto totale: $X \rightarrow Y$
- 2) Effetto sul mediatore: $X \rightarrow Med$
- 3) Effetto parziale del mediatore: $Med \rightarrow Y$ al netto di X

Modelli prototipico

• Esistono solo tre modelli prototipici che possono spiegare perché osserviamo una moderazione grazie all'intervento dei un mediatore

Caso A

Nel primo modello prototipico, X e Mod interagiscono su Y in quanto X e Mod interagiscono su un moderatore, che a sua volta influenza Y

Caso A

• Nel primo modello prototipico, X e Mod interagiscono su Y in quanto X e Mod interagiscono su un moderatore, che a sua volta influenza Y

Caso A: Effetto sul mediatore

X e Mod devono mostrare una interazione nel predire Med

Caso A: Effetto del mediatore

Med deve avere un effetto principale (non moderato) su Y, al netto delle altre variabili

Caso A: Effetti

- 1) Effetto totale: Interazione **X*Mod**
- 2) Effetto sul mediatore: **X*Mod**
- 3) Effetto parziale del mediatore: **Med** al netto di tutti gli altri effetti

Caso A: stima

- 1) Effetto totale: Y~X+Mod+**X*Mod**
- 2) Effetto sul mediatore: Med~X+Mod+X*Mod
- 3) Effetto parziale mediatore: Y~X+Mod+X*Mod+Med+Med*X+Med*Mod

Caso A: effetto mediato

• Nel primo modello prototipico, X e Mod interagiscono su Y in quanto X e Mod interagiscono su un moderatore, che a sua volta influenza Y

L'effetto mediato varierà per diversi livelli di Mod

Caso B

Nel secondo modello prototipico, X e Mod interagiscono su Y in quanto Med e Mod interagiscono sulla Y

Caso B

Nel secondo modello prototipico, X e Mod interagiscono su Y in quanto Med e Mod interagiscono sulla Y

Caso B: Effetto sul mediatore

X deve mostrare un effetto diretto su Med

Caso B: Effetto del mediatore

Med e Mod devono interagire su Y, al netto delle altre variabili

Caso B: Effetti

- 1) Effetto totale: Interazione **X*Mod**
- 2) Effetto sul mediatore: X
- 3) Effetto parziale del mediatore: **Med*Mod** al netto di tutti gli altri effetti

Caso B: stima

- 1) Effetto totale: Y~X+Mod+**X*Mod**
- 2) Effetto sul mediatore: Med~X+Mod+X*Mod
- 3) Effetto parziale mediatore: Y~X+Mod+X*Mod+Med+Med*X+**Med*Mod**

Caso B: effetto mediato

L'effetto mediato varierà per diversi livelli di Mod

Dunque

 Qualsiasi sia il nostro modello, le regressioni necessarie sono sempre le stesse 3

- 1) Effetto totale: Y~X+Mod+X*Mod
- 2) Effetto sul mediatore: Med~X+Mod+X*Mod
- 3) Effetto parziale mediatore:

Y~X+Mod+X*Mod+Med+Med*X+Med*Mod

Dunque

- L'effetto mediato sarà dato dal prodotto dei coefficienti delle simple slopes (effetti di primo ordine)
- Al variare del moderatore, varierà anche l'intensità dell'effetto mediato
- Variando i livelli del moderatore, otteniamo l'effetto mediato a differenti livelli del moderatore

Interpretazione dei risultati

Nei risultati, guarderemo:

• Se sono presenti (significative) le interazioni

• Gli effetti mediati ai diversi livelli del moderatore