What did we do?

OS theory

- OSC book's suggested syllabus
 - http://codex.cs.yale.edu/avi/os-book/OS9/syllabi-dir/typical.html
- Many things were added ex) Linux implementations
- But skimmed/skipped the following:
 - Deadlock theory OSCE2 5.11 / OSC9 7.1-7.3
 - I/O systems OSCE2 chapter 12 / OSC9 chapter 13, COMS 3827 & 4824
 - Network file system (NFS) OSCE2 11.8 / OSC9 12.8

Advanced UNIX programming

- APUE book & http-server assignments
- Many advanced topics including:
 - Signal handling
 - Multi-threaded programming, concurrency, locking
 - Non-blocking I/O, select(), mmap()
 - IPC pipes, shared memory, domain sockets

What else did we do?

- Linux system administration
 - Arch Linux!
 - Install, maintenance, and repair
 - Shell scripting
 - Kernel compile
 - I wish I had time to cover virtualization:
 - https://www.vmware.com/pdf/asplos235_adams.pdf
 - http://www.virtualbox.org/manual/ch10.html
- Linux kernel programming
 - HW2: intro to crazy OS-level C
 - HW5, aka Fridge: system calls, kernel-level locking, wait queues
 - HW6: file systems & VFS architecture
 - HW7, aka Freezer: new Linux scheduler
 - We skimmed/skipped:
 - Interrupt handlers and bottom half
 - Kernel synchronization using RCU
 - Kernel memory management & block I/O layer

Please

Fill out CourseWorks evaluation

- Remember your pledge
 - Don't share class materials with friends
 - Don't post any class-related code to GitHub
 - Don't post exams to CourseHero

The most important thing I learned was not be afraid.

That's a harder lesson to learn that it sounds, because the only way to really learn it is to do the things you think sound hard. . . . this was the biggest takeaway for me from the kernel development work in OS.

- Andrew Kiluk

Hack on!