Matriz Inversa

1) Verifique se
$$\begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$$
 é a inversa de $\begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$.

a)
$$\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 3 & 6 \\ 2 & 4 \end{pmatrix}$

3) Sejam as matrizes
$$A = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$
 e $B = \begin{pmatrix} 0 & 1 \\ -3 & 4 \end{pmatrix}$. Determine:

a)
$$A^{-1} + B$$

b)
$$A^{-1} \cdot B$$

c)
$$B^{-1} \cdot A$$

4) A inversa de
$$\begin{pmatrix} y & -3 \\ -2 & x \end{pmatrix}$$
 é a matriz $\begin{pmatrix} x & x-4 \\ x-5 & 1 \end{pmatrix}$. Determine x e y .

5) Seja
$$A^{-1}$$
 a inversa de $A = \begin{pmatrix} 7 & -3 \\ 2 & -1 \end{pmatrix}$. Determine:
a) $A + A^{-1}$ b) $(A^{-1})^2 + A^2$
6) Sejam $A = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$ e $B = \begin{pmatrix} 11 & 4 \\ 9 & 8 \end{pmatrix}$.

a)
$$A + A^{-1}$$
 b) $(A^{-1})^2 + A^{-1}$

6) Sejam
$$A = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$$
 e $B = \begin{pmatrix} 11 & 4 \\ 9 & 8 \end{pmatrix}$

a) Determine
$$A^{-1}$$

b) Usando o resultado do item (a), resolva a equação
$$A \cdot X = B$$
.