

=====

Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2009; month=8; day=20; hr=10; min=8; sec=19; ms=180;]

=====

Application No: 10576439 Version No: 2.0

Input Set:

Output Set:

Started: 2009-07-31 17:17:42.928
Finished: 2009-07-31 17:17:51.871
Elapsed: 0 hr(s) 0 min(s) 8 sec(s) 943 ms
Total Warnings: 5
Total Errors: 1
No. of SeqIDs Defined: 7
Actual SeqID Count: 7

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
E 257	Invalid sequence data feature in <221> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)

SEQUENCE LISTING

<110> Lussier, Bruno
Vachon, Luc
Allas, Soraya
Abribat, Thierry

<120> USE OF GROWTH HORMONE RELEASING FACTOR ANALOGS IN TREATING PATIENTS SUFFERING FROM
WASTING

<130> 09555.0151USWO

<140> 10576439
<141> 2009-07-31

<150> PCT/CA2004/001843
<151> 2004-10-20

<150> 60/512,198
<151> 2003-10-20

<160> 7

<170> PatentIn version 3.3

<210> 1
<211> 44
<212> PRT
<213> Artificial sequence

<220>
<223> GRF peptide

<220>
<221> VARIANT
<222> (1)..(1)
<223> Xaa = Tyr or His

<220>
<221> VARIANT
<222> (2)..(2)
<223> Xaa = Val or Ala

<220>
<221> VARIANT
<222> (8)..(8)
<223> Xaa = Asn or Ser

<220>
<221> VARIANT
<222> (13)..(13)
<223> Xaa = Val or Ile

<220>
<221> VARIANT
<222> (15)..(15)

```
<223> Xaa = Ala or Gly

<220>
<221> VARIANT
<222> (18)..(18)
<223> Xaa = Ser or Tyr

<220>
<221> VARIANT
<222> (24)..(24)
<223> Xaa = Gln or His

<220>
<221> VARIANT
<222> (25)..(25)
<223> Xaa = Asp or Glu

<220>
<221> VARIANT
<222> (27)..(27)
<223> Xaa = Met or Ile or Nle

<220>
<221> VARIANT
<222> (28)..(28)
<223> Xaa = Ser or Asn

<220>
<221> VARIANT
<222> (30)..(30)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (31)..(31)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (32)..(32)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (33)..(33)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (34)..(34)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (35)..(35)
<223> Xaa = any amino acid or is absent
```

```

<220>
<221> VARIANT
<222> (36)..(36)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (37)..(37)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (38)..(38)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (39)..(39)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (40)..(40)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (41)..(41)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (42)..(42)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (43)..(43)
<223> Xaa = any amino acid or is absent

<220>
<221> VARIANT
<222> (44)..(44)
<223> Xaa = any amino acid or is absent

<220>
<221> MOD_RES
<222> (44)..(44)
<223> C-terminal residue is modified with NH2 or NH-(CH2)n-CONH2, with n=1 to 12

<400> 1

```

Xaa Xaa Asp Ala Ile Phe Tyr Xaa Ser Tyr Arg Lys Xaa Leu Xaa Gln
 1 5 10 15

Leu Xaa Ala Arg Lys Leu Leu Xaa Xaa Ile Xaa Xaa Arg Xaa Xaa Xaa
 20 25 30

Xaa
35 40

<210> 2
<211> 44
<212> PRT
<213> Homo sapiens

<220>
<221> MISC_FEATURE
<222> (44) .. (44)
<223> Leu residue is capped with an unsubstituted amide moiety

<400> 2

Tyr Ala Asp Ala Ile Phe Thr Asn Ser Tyr Arg Lys Val Leu Gly Gln
1 5 10 15

Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Met Ser Arg Gln Gln Gly
20 25 30

Glu Ser Asn Gln Glu Arg Gly Ala Arg Ala Arg Leu
35 40

<210> 3
<211> 44
<212> PRT
<213> Artificial sequence

<220>
<223> Amino acid sequence of human GRF

<400> 3

Tyr Ala Asp Ala Ile Phe Thr Asn Ser Tyr Arg Lys Val Leu Gly Gln
1 5 10 15

Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Met Ser Arg Gln Gln Gly
20 25 30

Glu Ser Asn Gln Glu Arg Gly Ala Arg Ala Arg Leu
35 40

<210> 4
<211> 29
<212> PRT
<213> Homo sapiens

<220>
<221> MISC_FEATURE
<222> (29) .. (29)
<223> Arg residue is capped with an unsubstituted amide moiety

<400> 4

Tyr Ala Asp Ala Ile Phe Thr Asn Ser Tyr Arg Lys Val Leu Gly Gln
1 5 10 15

Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Met Ser Arg
20 25

<210> 5
<211> 29
<212> PRT
<213> Artificial sequence

<220>
<223> Amino acid sequence of minimum active core of human GRF

<400> 5

Tyr Ala Asp Ala Ile Phe Thr Asn Ser Tyr Arg Lys Val Leu Gly Gln
1 5 10 15

Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Met Ser Arg
20 25

<210> 6
<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> Amino acid sequence corresponding to positions 30 to 44 of human
GRF

<400> 6

Gln Gln Gly Glu Ser Asn Gln Glu Arg Gly Ala Arg Ala Arg Leu
1 5 10 15

<210> 7
<211> 44
<212> PRT
<213> Artificial sequence

<220>
<223> Modified GRF peptide

<220>
<221> MISC_FEATURE
<222> (1)...(1)
<223> Tyr residue is linked to an hexenoyl-trans-3 moiety

<220>
<221> MISC_FEATURE
<222> (44)...(44)
<223> Leu residue is capped with an unsubstituted amide moiety

<400> 7

Tyr Ala Asp Ala Ile Phe Thr Asn Ser Tyr Arg Lys Val Leu Gly Gln
1 5 10 15

Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Met Ser Arg Gln Gln Gly
20 25 30

Glu Ser Asn Gln Glu Arg Gly Ala Arg Ala Arg Leu
35 40