

**UNCLASSIFIED**

---

---

**AD 274 273**

*Reproduced  
by the*

**ARMED SERVICES TECHNICAL INFORMATION AGENCY  
ARLINGTON HALL STATION  
ARLINGTON 12, VIRGINIA**



---

---

**UNCLASSIFIED**

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

274273  
274273  
CATALOGED BY ASTIA  
AS AD NO.

672  
11  
SMITHSONIAN INSTITUTION  
ASTROPHYSICAL OBSERVATORY

Research in Space Science

SPECIAL REPORT

Number 84

February 9, 1962  
CAMBRIDGE 38, MASSACHUSETTS

1150 850 1150  
TISIA

**SAO Special Report No. 84**

**PRELIMINARY ANALYSIS OF THE ATMOSPHERIC DRAG OF  
THE TWELVE-FOOT BALLOON SATELLITE (1961 δ1)**

by

**Luigi G. Jacchia and Jack Slowey**

**Smithsonian Institution  
Astrophysical Observatory**

**Cambridge 38, Massachusetts**

PRELIMINARY ANALYSIS OF THE ATMOSPHERIC DRAG OF  
THE TWELVE-FOOT BALLOON SATELLITE (1961  $\delta 1$ )<sup>1</sup>

by

Luigi G. Jacchia<sup>2</sup> and Jack Slowey<sup>3</sup>

(Manuscript received January 10, 1962)

Summary. --Accurate values of the atmospheric drag for the Explorer IX Satellite (1961  $\delta 1$ ) were computed at one-day intervals, except during magnetically perturbed days when the interval was 0.5 days. Atmospheric densities at perigee were derived by numerical integration of the drag equation, using a rotating model atmosphere with oblateness and diurnal bulge. Atmospheric temperatures were derived from Nicolet's helium-topped, diffusion-equilibrium model with asymptotically isothermal temperature profiles (Nicolet, 1961). Apart from the diurnal-bulge effect, the temperature  $T$  is well represented by  $T = \text{const} + A_p + 2.5 F_{10}'$  where  $A_p$  is the daily planetary geomagnetic index a.d.  $F_{10}'$  the 10.7-cm solar flux. The temperatures derived from this satellite are in good agreement with the temperatures obtained from several other satellites during the same time interval.

---

1. Derivation of the accelerations

Secular anomalistic accelerations were derived for Satellite 1961  $\delta 1$  (Explorer IX, the 12-foot balloon satellite) using observations in the time interval February 17 to October 2, 1961. As a preliminary step, orbital elements were obtained at one-day intervals by means of the Differential Orbit Improvement (D.O.I.) Program (Veis and Moore, 1960) on the IBM 7090 calculator; these orbits will be published in separate reports by Mrs. Beatrice Miller, who was responsible for the computations.

Approximately 7100 observations were available. Of these, 2134 were field-reduced positions on photographs taken with the Smithsonian Baker-Nunn cameras; apart from a few scattered kinetheodolite measures, the bulk of the remaining observations was made by Moonwatch teams. While all observations were used for orbital computations, only the Baker-Nunn and theodolite positions were plotted to derive accelerations. The method used in deriving accelerations has been described by Jacchia (1961a). The time covered by the observations was divided into six intervals of comparable duration, taking care to have a 10-day overlap between the end of one interval and the beginning of the next. Within each interval, analytical expressions were fitted by least squares to the computed orbital elements in such a way that no appreciable systematic residuals could be detected except in the mean anomaly; in the latter, systematic residuals up to 0.001 revolutions were tolerated. The equations are given in table 1. Note that one single set of equations was used for all the elements except the mean anomaly in sections 3 and 4, and that the same was done in sections 5 and 6.

---

1. Part of this work was performed under contract with the Geophysics Research Directorate, U. S. Air Force, Cambridge; the National Aeronautics and Space Administration contributed the major support.

2. Physicist, Smithsonian Astrophysical Observatory.

3. Astronomer, Smithsonian Astrophysical Observatory.

All the satellite observations were processed a second time through the D.O.I. program -- with all the orbital elements known and defined by the equations of table 1 -- to compute individual residuals  $\Delta M$  in mean anomaly for each observation. These residuals were then plotted against time and smooth curves were drawn through the plotted points. Ordinates were read off on these curves at one-day intervals, except at times of sharp inflections -- invariably connected with magnetic storms -- when the interval was reduced to 0.5 day. The table of  $\Delta M$  thus obtained was then differenced to compute  $d^2(\Delta M)/dt^2$ . If  $M_0(t)$  is the expression for  $M$  in table 1, of which  $\Delta M$  are residuals, we obtain

$$\ddot{M} = \frac{d^2 M}{dt^2} = \frac{d^2 M_0}{dt^2} + \frac{d^2}{dt^2} \Delta M. \quad (1)$$

If the argument of perigee  $\omega$  is represented by a non-linear equation, we must correct for the acceleration of the perigee, which is the origin of  $M$ . The corrected value  $M_c$  of the acceleration in  $M$  is then

$$\ddot{M}_c = \ddot{M} + \left( \frac{dM}{dv} \right)_0 \ddot{v}, \quad (2)$$

where  $\left( \frac{dM}{dv} \right)_0$  is the derivative of  $M$  with respect to the true anomaly  $v$  at perigee ( $M = v = 0$ ), which is a function of the orbital eccentricity  $e$  and is given by the expansion

$$\left( \frac{dM}{dv} \right)_0 = 1 - 2e + \frac{3}{2} e^2 - \dots \quad (3)$$

The rate of change of the period, or secular acceleration, is clearly given by

$$\frac{dP}{dt} = \dot{P} = - \frac{\dot{M}_c}{\dot{M}^2}. \quad (4)$$

## 2. Radiation pressure

Since solar radiation pressure, through periodic shadowing, contributes a large share  $\dot{P}_R$  to the observed change in period for this satellite, we must correct for it if we want to obtain the atmospheric part  $\dot{P}_A$  of the drag. We then have

$$\dot{P}_A = \dot{P} - \dot{P}_R. \quad (5)$$

Using the expressions of table 1 for the orbital elements, we computed  $\dot{P}_R$  by means of Kozai's radiation-pressure program (Kozai, 1960); the force acting on the satellite was taken as  $F_R = 4.63 \times 10^{-5} A$  (c.g.s.), where  $A$  is the presentation area of the satellite; this corresponds to a value of the solar constant of  $2.00 \text{ cal cm}^{-2} \text{ min}^{-1}$ . The same program, with the same constant, accounts for the observed variation in eccentricity from February 17 to September 28, 1961, with a discrepancy of less than 1 percent, and provides a good check on the accuracy of the procedure and of the assumptions. Specifically, the eccentricity changed in that interval from 0.1223 to 0.1077. Radiation pressure accounts for a decrease in eccentricity  $\Delta_1 e = -0.0128$ ; to this value must be added the contribution of atmospheric drag  $\Delta_2 e = -0.0017$ , and the contribution of the gravitational third-harmonic oscillation, which however turns out to be negligible due to the fortuitous in-phase positions of the extremes of the time interval. We are thus left with a total computed change in eccentricity  $\Delta e = \Delta_1 e + \Delta_2 e = -0.0145$ , against an observed value  $\Delta e = -0.0146$ .

### 3. Atmospheric densities

The rate of change of the anomalistic period  $P$  of an artificial satellite due to drag in a rotating atmosphere is very closely given (Sterne, 1958) by the equation

$$\frac{dP}{dt} = -\frac{3}{2} C_D \frac{A}{m} \rho_{\pi} \int_0^{2\pi} \frac{(1 + e \cos E)^{\frac{3}{2}}}{\rho_{\pi} (1 - e \cos E)^{\frac{1}{2}}} \left( 1 - d \frac{1 - e \cos E}{1 + e \cos E} \right)^{\frac{1}{2}} dE, \quad (6)$$

where

$$d = P \omega_s (1 - e^2)^{\frac{1}{2}} \cos i;$$

$C_D$  is the drag coefficient;  $m$  the mass of the satellite;  $a$  the major axis of its orbit;  $\rho_{\pi}$  the atmospheric density at perigee height;  $\rho$  the atmospheric density at the height corresponding to a given value of the independent variable  $E$ , the eccentric anomaly; and  $\omega_s$  is the angular velocity of atmospheric rotation ( $A$  and  $e$  have already been defined).

Relatively simple formulas have been derived by various authors from equation (6), with the assumption of a density scale height either constant or linear with height; more complicated formulas take into account the flattening of the atmosphere and the diurnal bulge. We have preferred to compute  $\rho_{\pi}$  directly from equation (6), using numerical integration. For the variation of  $\rho$  along the orbit, a modified version of Jacchia's atmospheric model (Jacchia, 1960) was used; the modification concerns the amplitude of the diurnal bulge which, if extrapolated beyond the height of 700 km (explicitly labelled as the upper limit), would become excessively large. Consequently, equation (10) in Jacchia's 1960 paper was changed to

$$\rho = \rho_0(z) F_{20} \left[ 1 + \varphi(z) \cos^8 \frac{\psi'}{2} \right], \quad (7)$$

with

$$\varphi(z) = 4.6 + 4 \tan^{-1} [0.005(z - 600)].$$

The factor  $F_{20}$  is irrelevant because it is eliminated in the ratio  $\rho/\rho_{\pi}$ . With this modification the density at the center of the bulge reaches at great heights an asymptotic ratio of ten times the night-time density at the same height and is more in line with Nicolet's (1961) helium-diffusion model, which represents satisfactorily the density variations inferred from satellites with perigee above 350 km (Jacchia, 1961b). A lag angle  $\lambda = 30^\circ$  was used for the position of the bulge with respect to the sub-solar point.

The area/mass ratio of the satellite, computed from data kindly supplied by Dr. W. J. O'Sullivan of the Langley Research Center, N.A.S.A., (namely, weight 6631.5 grams, diameter exactly 12 feet) is  $A/m = 15,844 \text{ cm}^2/\text{gm}$ . The drag coefficient  $C_D$  was taken to be 2.2; this value, which is being used in the reduction of drag data for satellites of intermediate perigee heights (300-800 km), was adopted as representing a good compromise between the extremes of 2.1 and 2.3 which can be expected for satellites of different shapes under various conditions, according to King-Hele and Walker (1961).

The derived values  $\dot{P}$  and the computed values of  $\dot{P}_R$  and  $\log \dot{\rho}_{\pi}$  are assembled in table 2.

### 4. Atmospheric temperatures

The perigee height of Satellite 1961 '1 changed very rapidly because of the large effect of the radiation pressure; it rose from 640 km shortly after launching to 753 km at the end of the 7.5-month interval considered in this paper. In addition, there are periodic changes of perigee height caused by the

geometric effect of the earth's oblateness and by the third-harmonic gravitational perturbations. Under these circumstances it would be exceedingly difficult to disentangle the changes in drag due to the variable perigee height from those due to variable atmospheric structure, without the guide of an acceptable atmospheric model. Jacchia (1961b) found that the model constructed by Nicolet (1961) on the basis of diffusion equilibrium with a helium top and asymptotically-isothermal temperature profiles is in good agreement with recent results from several satellites. Since, according to Nicolet's model, the temperature is not height-dependent at the perigee heights of Satellite 1961 51, it appears useful to convert the atmospheric densities at perigee height to atmospheric temperatures and analyze the latter. This was done by a two-dimensional interpolation in Nicolet's tables, in the process of which the original data had to be very slightly smoothed.

Specifically, we proceeded as follows. Perigee heights above the geoid were computed in connection with each observed value of the drag. Six "standard" perigee heights were selected, each valid for a limited time-interval, as shown below:

|     | Time interval | Standard perigee height |
|-----|---------------|-------------------------|
| MJD | 37349 - 37393 | 660 km                  |
|     | 37394 - 37430 | 680 km                  |
|     | 37431 - 37462 | 700 km                  |
|     | 37463 - 37504 | 720 km                  |
|     | 37505 - 37574 | 740 km                  |

Within each interval we reduced the atmospheric density, derived from the drag, to the "standard" perigee height using the modified Jacchia (1960) model described in section 3. Since the difference between the actual and the standard perigee height does not exceed 10 km and the scale heights are of the order of 100 km, a small inconsistency in the scale height does not appreciably affect the result.

For each of the standard heights values of  $\log \zeta$  were interpolated for the 12 selected temperatures used by Nicolet, and 5th-degree polynomials were fitted to the data by least squares, to express the temperature  $T$  as a function of  $\log \zeta$ . The temperatures derived from this satellite (see table 2) are in good agreement with the temperatures obtained from several other satellites during the same time interval.

##### 5. Correlation of atmospheric temperatures with solar and geomagnetic data

In figure 1 the atmospheric temperatures derived from the atmospheric drag are compared with the observed values of the planetary geomagnetic index  $A_p$  and of the solar flux at 10.7 and 20 cm. Since the  $A_p$  index is a daily mean of the eight 3-hourly  $a_p$  indices, it is fair to compare it directly with the temperatures when these are computed from atmospheric drag derived with a resolution of one day. During perturbed periods (MJD 37360-37371, 37493-37501, and 37505-37510), when we used a resolution of 0.5, we computed a modified "half-day  $A_p$ ", by taking the mean of the four values of  $a_p$  centered around each given time.

The daily  $A_p$ 's are centered around noon, G.M.T., and, roughly, so are the mean values of the 10.7-cm solar flux published by the National Research Council, Ottawa, and of the 20-cm flux published by the Heinrich-Hertz Institut, Berlin-Adlershof. For this reason, in preparing table 3, we have preferred to leave the solar and geomagnetic data in their original form and to interpolate linearly the temperatures of table 2 to show their values at 12<sup>h</sup> G.M.T.

The correlation between the atmospheric temperatures on the one hand and the geomagnetic and solar data on the other is shown in figure 1, and is so close and evident that no additional comment is necessary. It is sufficient to say that every single geomagnetic disturbance, large or small, is reflected in a proportional temperature disturbance, and that all the fluctuations common to the curves of the 10.7-cm and 20-cm flux are present also in the temperature curve.

From a rough, preliminary analysis of the atmospheric temperatures derived from satellites when their perigee was in the dark hemisphere, Jacchia (1961b) found that the temperature increases by  $3^\circ$  K for each unit increase of  $1 \times 10^{-22}$  watts/m<sup>2</sup>/cycle/second bandwidth in the 10.7-cm solar flux ( $F_{10}$ ). More recent data would indicate that the coefficient  $dT/dF_{10}$  is a little lower in the vicinity of  $2.6$ . For the present data a coefficient of  $2.5$  seems to give the best fit.

Similarly, the temperature perturbations on magnetically disturbed days are better represented for this satellite by an increase of  $1.0$  per  $A_p$  unit than by the coefficient  $1.5/A_p$  as previously given by Jacchia (1962). We are referring here to moderate magnetic perturbations ( $A_p < 60$ ); for larger perturbations the relation between such an index as  $A_p$  and the heating of the atmosphere smoothed over a finite time interval can hardly be expected to be very consistent, not to say linear. This may easily explain the difference between the two coefficients, since the value of  $1.5$  was derived mostly from larger perturbations.

The last column of table 3 gives temperatures  $T'_{\pi}$  reduced to  $A_p = 0$  and to  $F_{10} = 100$ , with the formula

$$T'_{\pi} = T_{\pi} - A_p - 2.5 F_{10} .$$

No values of  $T'_{\pi}$  were computed for days when  $A_p$  was greater than  $30$ , and for the following day. It should be clear that during magnetic storms short-lived fluctuations make it impossible to apply quantitative corrections for geomagnetic activity with any accuracy comparable with that obtainable on relatively quiet days, since satellite accelerations are inevitably smoothed out by the process of double differentiation involved in their computation.

The plot  $T'_{\pi}$  at the bottom of figure 1 shows that the maxima and minima in phase with the decimetric solar flux have just about disappeared. A rising trend is visible throughout, as the perigee slowly moves toward the diurnal bulge. A quantitative analysis of the temperature variation as a function of position relative to the bulge is not justified by the small range ( $< 40^\circ$ ) in the angular geocentric distance  $\psi'$  between the satellite perigee and the center of the bulge. Table 4 gives, at interval of  $5$  days, two values of  $\psi'$ , computed on the basis of a lag angle of  $0^\circ$  and  $30^\circ$  in longitude, respectively, between the bulge and the sub-solar point; the last column gives the perigee height  $z_{\pi}$  above the geoid.

Satellite 1961 E1 is only one of nine satellites for which accurate accelerations were computed for use in a more general analysis of atmospheric properties; these preliminary results are published separately now in view of the interest that has been expressed in the performance of this particular satellite as an instrument for the determination of atmospheric densities.

References

JACCHIA, L. G.

1960. A variable atmospheric-density model from satellite accelerations. *Journ. Geophys. Res.*, vol. 65, pp. 2775-2782.

1961a. The atmospheric drag of artificial satellites during the October 1960 and November 1960 events. *Smithsonian Astrophys. Obs., Special Report No. 62*, 13 pp.

1961b. A working model for the upper atmosphere. *Nature*, vol. 192, pp. 1147-1148.

KING-HELE, D. G. and WALKER, D. M. C.

1961. Upper-atmosphere density during the years 1957 to 1961, determined from satellite orbits. Paper presented at COSPAR Symposium, Florence, 10-14 April, 1961.

KOZAI, Y.

1960. Effects of solar radiation pressure on the motion of an artificial satellite. *Smithsonian Astrophys. Obs., Special Report No. 56*, pp. 25-33.

NICOLET, M.

1961. Density of the heterosphere related to temperature. *Smithsonian Astrophys. Obs., Special Report No. 75*, 30 pp.

STERNE T. E.

1959. Effect of the rotation of a planetary atmosphere upon the orbit of a close satellite. *Journ. Amer. Rocket Soc.*, vol. 29, pp. 777-782.

VEIS, G. and MOORE, C. E.

1960. The Smithsonian Astrophysical Observatory differential orbit improvement program. Seminar Proceedings, Tracking Programs and Orbit Determination, Jet Propulsion Laboratory.

Table I

## Least-Squares Fitting of Orbital Elements for 1961 δ1

## Section 1: MJD 37347 to 37400 (February 17 - April 11, 1961)

$$\begin{aligned}
 T_o &= 37347.0 \\
 \omega &= 101^\circ 806 + 4^\circ 7377t + .0011t^2 - .83 \times 10^{-5}t^3 - .20 \times 10^{-7}t^4 \\
 \Omega &= 169^\circ 365 - 3^\circ 6398t + .89 \times 10^{-4}t^2 - .16 \times 10^{-6}t^3 \\
 i &= 38^\circ 8603 + .0011t - .41 \times 10^{-4}t^2 + .34 \times 10^{-6}t^3 \\
 e &= .12236 - .00015t + .59 \times 10^{-6}t^2 + .42 \times 10^{-8}t^3 \\
 M &= .46926 + 12.160213t + .51 \times 10^{-5}t^2 + .46 \times 10^{-6}t^3 - .15 \times 10^{-8}t^4
 \end{aligned}$$

## Section 2: MJD 37390 to 37435 (April 1 - May 16, 1961)

$$\begin{aligned}
 T_o &= 37390.0 \\
 \omega &= 306^\circ 830 + 4^\circ 7829t - .00045t^2 - .15 \times 10^{-4}t^3 + .25 \times 10^{-6}t^4 + .16 \times 10^{-8}t^5 \\
 \Omega &= 13^\circ 007 - 3^\circ 6336t - .17 \times 10^{-4}t^2 + .50 \times 10^{-6}t^3 \\
 i &= 38^\circ 8557 + .00083t - .76 \times 10^{-4}t^2 + .12 \times 10^{-5}t^3 \\
 e &= .11729 - .97 \times 10^{-4}t + .66 \times 10^{-4}t^2 - .24 \times 10^{-6}t^3 + .25 \times 10^{-8}t^4 \\
 M &= .39776 + 12.163319t + .11 \times 10^{-4}t^2 + .67 \times 10^{-6}t^3 - .74 \times 10^{-8}t^4
 \end{aligned}$$

## Section 3: MJD 37425 to 37468 (May 6 - June 18, 1961)

$$\begin{aligned}
 T_o &= 37415.0 \\
 \omega &= 65^\circ 941 + 4^\circ 7657t + .22 \times 10^{-4}t^2 + .175 \sin(166^\circ 42 + 4^\circ 77t) \\
 \Omega &= 282^\circ 163 - 3^\circ 6327t - .346 \times 10^{-5}t^2 + .36 \times 10^{-6}t^3 - .13 \times 10^{-8}t^4 \\
 i &= 38^\circ 8493 - .000565t + .35 \times 10^{-4}t^2 - .71 \times 10^{-6}t^3 + .40 \times 10^{-8}t^4 \\
 e &= .11617 - .85 \times 10^{-4}t + .34 \times 10^{-6}t^2 - .20 \times 10^{-7}t^3 + .47 \times 10^{-9}t^4 - .29 \times 10^{-11}t^5 \\
 M &= .49293 + 12.165635t - .56 \times 10^{-4}t^2 + .20 \times 10^{-5}t^3 - .20 \times 10^{-7}t^4
 \end{aligned}$$

Table I (cont.)

Section 4: MJD 37458 to 37510 (June 8 - July 30, 1961)

$$\begin{aligned}
 T_0 &= 37415.0 \\
 \omega &= 65^\circ 941 + 4^\circ 7657t + .22 \times 10^{-4} t^2 + .175 \sin(166^\circ 42 + 4^\circ 77t) \\
 \Omega &= 282^\circ 163 - 3^\circ 6327t - .346 \times 10^{-5} t^2 + .36 \times 10^{-6} t^3 - .13 \times 10^{-8} t^4 \\
 i &= 38^\circ 8493 - .000565t + .35 \times 10^{-4} t^2 - .71 \times 10^{-6} t^3 + .40 \times 10^{-8} t^4 \\
 e &= .11617 - .85 \times 10^{-4} t + .34 \times 10^{-6} t^2 - .20 \times 10^{-7} t^3 + .47 \times 10^{-9} t^4 - .29 \times 10^{-11} t^5 \\
 M &= .64170 + 12.152901t + .000365t^2 - .37 \times 10^{-5} t^3 + .14 \times 10^{-7} t^4
 \end{aligned}$$

Section 5: MJD 37500 to 37542 (July 20 - August 31, 1961)

$$\begin{aligned}
 T_0 &= 37500.0 \\
 \omega &= 110^\circ 991 + 4^\circ 7874t - .000148t^2 + .197 \sin(172^\circ 21 + 4^\circ 77t) \\
 \Omega &= 333^\circ 508 - 3^\circ 6268t - .94 \times 10^{-4} t^2 + .18 \times 10^{-5} t^3 - .11 \times 10^{-7} t^4 \\
 i &= 38^\circ 8325 + .000761t - .39 \times 10^{-4} t^2 + .65 \times 10^{-6} t^3 - .41 \times 10^{-8} t^4 \\
 e &= .11079 - .000112t + .44 \times 10^{-5} t^2 - .19 \times 10^{-6} t^3 + .36 \times 10^{-8} t^4 - .22 \times 10^{-10} t^5 \\
 M &= .74612 + 12.170484t - .24 \times 10^{-4} t^2 + .23 \times 10^{-5} t^3 - .23 \times 10^{-7} t^4
 \end{aligned}$$

Section 6: MJD 37532 to 37574 (August 21 - October 2, 1961)

$$\begin{aligned}
 T_0 &= 37500.0 \\
 \omega &= 110^\circ 991 + 4^\circ 7874t - .000148t^2 + .197 \sin(172^\circ 21 + 4^\circ 77t) \\
 \Omega &= 333^\circ 508 - 3^\circ 6268t - .94 \times 10^{-4} t^2 + .18 \times 10^{-5} t^3 - .11 \times 10^{-7} t^4 \\
 i &= 38^\circ 8325 + .000761t - .39 \times 10^{-4} t^2 + .65 \times 10^{-6} t^3 - .41 \times 10^{-8} t^4 \\
 e &= .11079 - .000112t + .44 \times 10^{-5} t^2 - .19 \times 10^{-6} t^3 + .36 \times 10^{-8} t^4 - .22 \times 10^{-10} t^5 \\
 M &= .53811 + 12.185659t - .000381t^2 + .49 \times 10^{-5} t^3 - .21 \times 10^{-7} t^4
 \end{aligned}$$

**Table II**  
**Satellite 1961 61 - Acceleration, atmospheric drag and atmospheric temperature**

| MJD     | $-10^6 \dot{P}$ | $10^6 \dot{P}_R$ | $-10^6 (\dot{P} - \dot{P}_R)$ | $\log \rho_{\pi}$ | $T_{\pi}$ |
|---------|-----------------|------------------|-------------------------------|-------------------|-----------|
| 37349.0 | 0.30            | 1.10             | 1.40                          | -16.533           | 920       |
| 50.0    | 0.28            | 1.10             | 1.38                          | .539              | 919       |
| 51.0    | 0.31            | 1.09             | 1.40                          | .531              | 922       |
| 52.0    | 0.34            | 1.08             | 1.42                          | .523              | 925       |
| 53.0    | 0.31            | 1.07             | 1.38                          | .532              | 923       |
| 54.0    | 0.33            | 1.06             | 1.39                          | .527              | 925       |
| 55.0    | 0.28            | 1.05             | 1.33                          | .543              | 921       |
| 56.0    | 0.31            | 1.03             | 1.34                          | .537              | 924       |
| 57.0    | 0.38            | 1.01             | 1.39                          | .518              | 929       |
| 58.0    | 0.51            | 0.99             | 1.50                          | .482              | 940       |
| 59.0    | 0.64            | 0.96             | 1.60                          | .452              | 949       |
| 60.0    | 0.49            | 0.94             | 1.43                          | -16.498           | 937       |
| 60.5    | 0.35            | 0.93             | 1.28                          | -16.546           | 924       |
| 61.0    | 0.32            | 0.92             | 1.24                          | .559              | 921       |
| 61.5    | 0.31            | 0.90             | 1.21                          | .569              | 919       |
| 62.0    | 0.29            | 0.89             | 1.18                          | .579              | 916       |
| 62.5    | 0.24            | 0.88             | 1.12                          | .601              | 911       |
| 63.0    | 0.30            | 0.87             | 1.17                          | .582              | 917       |
| 63.5    | 0.39            | 0.86             | 1.25                          | .553              | 925       |
| 64.0    | 0.64            | 0.85             | 1.49                          | .476              | 947       |
| 64.5    | 0.73            | 0.84             | 1.57                          | .454              | 954       |
| 65.0    | 0.90            | 0.83             | 1.73                          | .412              | 968       |
| 65.5    | 0.55            | 0.83             | 1.38                          | .510              | 939       |
| 66.0    | 0.26            | 0.82             | 1.08                          | .617              | 911       |
| 66.5    | 0.24            | 0.81             | 1.05                          | .630              | 908       |
| 67.0    | 0.25            | 0.80             | 1.05                          | .630              | 909       |
| 67.5    | 0.28            | 0.79             | 1.07                          | .623              | 912       |
| 68.0    | 0.31            | 0.78             | 1.09                          | .616              | 914       |
| 68.5    | 0.78            | 0.78             | 1.56                          | .461              | 959       |
| 69.0    | 0.97            | 0.78             | 1.75                          | .412              | 974       |
| 69.5    | 0.28            | 0.78             | 1.06                          | .631              | 913       |
| 70.0    | 0.23            | 0.78             | 1.01                          | .654              | 908       |
| 70.5    | 0.18            | 0.78             | 0.96                          | .677              | 903       |
| 71.0    | 0.19            | 0.78             | 0.97                          | -16.674           | 904       |
| 72.0    | 0.16            | 0.79             | 0.95                          | -16.686           | 903       |
| 73.0    | 0.23            | 0.80             | 1.03                          | .654              | 913       |
| 74.0    | 0.25            | 0.81             | 1.06                          | .645              | 917       |
| 75.0    | 0.23            | 0.82             | 1.05                          | .652              | 917       |
| 76.0    | 0.20            | 0.84             | 1.04                          | .660              | 917       |
| 77.0    | 0.25            | 0.85             | 1.10                          | .638              | 924       |
| 78.0    | 0.38            | 0.87             | 1.25                          | .586              | 940       |
| 79.0    | 0.45            | 0.89             | 1.34                          | .558              | 950       |
| 80.0    | 0.50            | 0.90             | 1.40                          | .541              | 956       |
| 81.0    | 0.51            | 0.92             | 1.43                          | .533              | 960       |
| 82.0    | 0.60            | 0.94             | 1.54                          | .501              | 970       |
| 83.0    | 0.57            | 0.95             | 1.52                          | .507              | 969       |

| MJD     | $-10^6 \dot{P}$ | $10^6 \dot{P}_R$ | $-10^6 (\dot{P} - \dot{P}_R)$ | $\log \rho_{\pi}$ | $T_{\pi}$ |
|---------|-----------------|------------------|-------------------------------|-------------------|-----------|
| 37384.0 | 0.60            | 0.96             | 1.56                          | -16.496           | 973       |
| 85.0    | 0.89            | 0.97             | 1.86                          | .419              | 999       |
| 86.0    | 1.23            | 0.97             | 2.20                          | .344              | 1024      |
| 87.0    | 1.21            | 0.97             | 2.18                          | .346              | 1024      |
| 88.0    | 1.10            | 0.97             | 2.07                          | .367              | 1017      |
| 89.0    | 1.06            | 0.96             | 2.02                          | .375              | 1014      |
| 90.0    | 1.06            | 0.95             | 2.01                          | .374              | 1014      |
| 91.0    | 1.03            | 0.94             | 1.97                          | .380              | 1012      |
| 92.0    | 0.93            | 0.93             | 1.86                          | .402              | 1004      |
| 93.0    | 0.72            | 0.92             | 1.64                          | .454              | 987       |
| 94.0    | 0.52            | 0.90             | 1.42                          | .514              | 980       |
| 95.0    | 0.42            | 0.88             | 1.30                          | .550              | 968       |
| 96.0    | 0.44            | 0.87             | 1.31                          | .544              | 970       |
| 97.0    | 0.39            | 0.85             | 1.24                          | .566              | 963       |
| 98.0    | 0.40            | 0.83             | 1.23                          | .568              | 962       |
| 99.0    | 0.33            | 0.82             | 1.15                          | .596              | 954       |
| 400.0   | 0.31            | 0.80             | 1.11                          | .610              | 950       |
| 01.0    | 0.24            | 0.79             | 1.03                          | .642              | 941       |
| 02.0    | 0.07            | 0.77             | 0.84                          | .730              | 917       |
| 03.0    | 0.28            | 0.76             | 1.04                          | .638              | 943       |
| 04.0    | 0.79            | 0.75             | 1.54                          | .468              | 995       |
| 05.0    | 0.60            | 0.75             | 1.35                          | .526              | 977       |
| 06.0    | 0.25            | 0.75             | 1.00                          | .658              | 939       |
| 07.0    | 0.31            | 0.75             | 1.06                          | .634              | 947       |
| 08.0    | 0.21            | 0.75             | 0.96                          | .679              | 935       |
| 09.0    | 0.21            | 0.75             | 0.96                          | .681              | 935       |
| 10.0    | 0.31            | 0.75             | 1.06                          | .640              | 948       |
| 11.0    | 0.36            | 0.76             | 1.12                          | .618              | 956       |
| 12.0    | 0.41            | 0.76             | 1.17                          | .600              | 962       |
| 13.0    | 0.38            | 0.77             | 1.15                          | .609              | 961       |
| 14.0    | 0.56            | 0.77             | 1.33                          | .547              | 981       |
| 15.0    | 0.56            | 0.78             | 1.34                          | .545              | 983       |
| 16.0    | 0.60            | 0.78             | 1.44                          | .514              | 994       |
| 17.0    | 0.59            | 0.79             | 1.38                          | .532              | 990       |
| 18.0    | 0.55            | 0.79             | 1.34                          | .544              | 987       |
| 19.0    | 0.54            | 0.79             | 1.33                          | .546              | 987       |
| 20.0    | 0.44            | 0.78             | 1.22                          | .582              | 977       |
| 21.0    | 0.42            | 0.78             | 1.20                          | .587              | 976       |
| 22.0    | 0.42            | 0.77             | 1.19                          | .588              | 976       |
| 23.0    | 0.30            | 0.76             | 1.06                          | .635              | 962       |
| 24.0    | 0.29            | 0.74             | 1.03                          | .644              | 960       |
| 25.0    | 0.48            | 0.72             | 1.20                          | .574              | 982       |
| 26.0    | 0.57            | 0.70             | 1.27                          | .546              | 991       |
| 27.0    | 0.28            | 0.67             | 0.95                          | .668              | 953       |
| 28.0    | 0.09            | 0.64             | 0.73                          | .779              | 922       |
| 29.0    | 0.01            | 0.61             | 0.62                          | .847              | 904       |
| 30.0    | 0.18            | 0.58             | 0.76                          | .755              | 929       |
| 31.0    | 0.29            | 0.55             | 0.84                          | .708              | 953       |
| 32.0    | 0.41            | 0.52             | 0.93                          | .661              | 967       |

Table II (cont.)

| MJD     | $-10^6 \dot{P}$ | $10^6 \dot{P}_R$ | $-10^6 (\dot{P} - \dot{P}_R)$ | $\log \rho_{\pi}$ | $T_{\pi}$ |
|---------|-----------------|------------------|-------------------------------|-------------------|-----------|
| 37433.0 | 0.41            | 0.48             | 0.89                          | -16.678           | 962       |
| 34.0    | 0.45            | 0.44             | 0.89                          | .676              | 962       |
| 35.0    | 0.43            | 0.41             | 0.84                          | .700              | 956       |
| 36.0    | 0.32            | 0.37             | 0.69                          | .784              | 932       |
| 37.0    | 0.41            | 0.32             | 0.73                          | .759              | 939       |
| 38.0    | 0.59            | 0.27             | 0.86                          | .688              | 960       |
| 39.0    | 0.74            | 0.20             | 0.94                          | .649              | 972       |
| 40.0    | 0.84            | 0.13             | 0.97                          | .637              | 977       |
| 41.0    | 0.96            | 0.08             | 1.04                          | .608              | 987       |
| 42.0    | 1.11            | 0.04             | 1.15                          | .575              | 1001      |
| 43.0    | 1.26            | 0.01             | 1.27                          | .525              | 1016      |
| 44.0    | 1.17            | -0.02            | 1.15                          | .571              | 1002      |
| 45.0    | 1.10            | -0.03            | 1.07                          | .606              | 993       |
| 46.0    | 1.02            | -0.04            | 0.98                          | .647              | 981       |
| 47.0    | 0.91            | -0.04            | 0.87                          | .703              | 966       |
| 48.0    | 0.80            | -0.03            | 0.77                          | .761              | 950       |
| 49.0    | 0.86            | -0.03            | 0.83                          | .733              | 960       |
| 50.0    | 0.95            | -0.03            | 0.92                          | .693              | 974       |
| 51.0    | 0.97            | -0.03            | 0.94                          | .689              | 977       |
| 52.0    | 0.93            | -0.02            | 0.91                          | .709              | 972       |
| 53.0    | 0.87            | -0.01            | 0.86                          | .739              | 964       |
| 54.0    | 0.73            | 0.01             | 0.74                          | .809              | 945       |
| 55.0    | 0.74            | 0.05             | 0.79                          | .786              | 953       |
| 56.0    | 0.84            | 0.13             | 0.97                          | .701              | 979       |
| 57.0    | 0.70            | 0.21             | 0.91                          | .733              | 970       |
| 58.0    | 0.46            | 0.32             | 0.78                          | .804              | 950       |
| 59.0    | 0.28            | 0.44             | 0.72                          | .842              | 939       |
| 60.0    | 0.14            | 0.56             | 0.70                          | .856              | 935       |
| 61.0    | 0.04            | 0.67             | 0.71                          | .851              | 937       |
| 62.0    | -0.03           | 0.75             | 0.72                          | .846              | 938       |
| 63.0    | -0.03           | 0.80             | 0.77                          | .817              | 955       |
| 64.0    | -0.03           | 0.83             | 0.80                          | .799              | 961       |
| 65.0    | 0.03            | 0.85             | 0.88                          | .756              | 974       |
| 66.0    | 0.13            | 0.86             | 0.99                          | .702              | 990       |
| 67.0    | 0.16            | 0.87             | 1.03                          | .683              | 996       |
| 68.0    | 0.18            | 0.87             | 1.05                          | .671              | 999       |
| 69.0    | 0.30            | 0.87             | 1.17                          | .621              | 1015      |
| 70.0    | 0.38            | 0.86             | 1.24                          | .592              | 1025      |
| 71.0    | 0.70            | 0.84             | 1.54                          | .495              | 1058      |
| 72.0    | 0.51            | 0.83             | 1.34                          | .552              | 1038      |
| 73.0    | 0.49            | 0.82             | 1.31                          | .558              | 1036      |
| 74.0    | 0.26            | 0.80             | 1.06                          | .647              | 1006      |
| 75.0    | 0.12            | 0.79             | 0.91                          | .711              | 986       |
| 76.0    | 0.06            | 0.77             | 0.83                          | .748              | 974       |
| 77.0    | -0.01           | 0.75             | 0.74                          | .796              | 960       |
| 78.0    | -0.02           | 0.73             | 0.71                          | .813              | 955       |
| 79.0    | -0.05           | 0.72             | 0.67                          | .836              | 949       |
| 80.0    | -0.11           | 0.70             | 0.59                          | .891              | 934       |

Table II (cont.)

| MJD     | $-10^6 \dot{P}$ | $10^6 \dot{P}_R$ | $-10^6 (\dot{P} - \dot{P}_R)$ | $\log \rho_{\pi}$ | $T_{\pi}$ |
|---------|-----------------|------------------|-------------------------------|-------------------|-----------|
| 37481.0 | -0.14           | 0.69             | 0.55                          | -16.921           | 926       |
| 82.0    | -0.14           | 0.68             | 0.54                          | .928              | 924       |
| 83.0    | -0.12           | 0.67             | 0.55                          | .920              | 928       |
| 84.0    | -0.08           | 0.66             | 0.58                          | .897              | 935       |
| 85.0    | -0.07           | 0.65             | 0.58                          | .898              | 936       |
| 86.0    | -0.03           | 0.64             | 0.61                          | .876              | 944       |
| 87.0    | -0.01           | 0.63             | 0.64                          | .856              | 951       |
| 88.0    | 0.04            | 0.63             | 0.67                          | .836              | 958       |
| 89.0    | 0.02            | 0.62             | 0.64                          | .856              | 953       |
| 90.0    | 0.03            | 0.62             | 0.65                          | .850              | 956       |
| 91.0    | 0.05            | 0.61             | 0.66                          | .843              | 959       |
| 92.0    | 0.24            | 0.61             | 0.85                          | .733              | 994       |
| 37493.0 | 0.26            | 0.61             | 0.87                          | -16.722           | 998       |
| 93.5    | 0.47            | 0.61             | 1.08                          | .628              | 1030      |
| 94.0    | 0.70            | 0.60             | 1.30                          | .547              | 1058      |
| 94.5    | 0.77            | 0.60             | 1.37                          | .523              | 1067      |
| 95.0    | 1.11            | 0.60             | 1.71                          | .426              | 1104      |
| 95.5    | 0.97            | 0.59             | 1.56                          | .465              | 1089      |
| 96.0    | 0.68            | 0.59             | 1.27                          | .554              | 1057      |
| 96.5    | 0.55            | 0.59             | 1.14                          | .600              | 1041      |
| 97.0    | 0.49            | 0.58             | 1.07                          | .626              | 1032      |
| 97.5    | 0.51            | 0.58             | 1.09                          | .617              | 1035      |
| 98.0    | 0.80            | 0.57             | 1.37                          | .517              | 1071      |
| 98.5    | 0.99            | 0.57             | 1.56                          | .459              | 1092      |
| 99.0    | 1.20            | 0.56             | 1.76                          | .406              | 1113      |
| 99.5    | 0.79            | 0.55             | 1.34                          | .523              | 1069      |
| 500.0   | 0.63            | 0.54             | 1.17                          | .580              | 1048      |
| 00.5    | 0.59            | 0.54             | 1.13                          | .594              | 1043      |
| 01.0    | 0.62            | 0.53             | 1.15                          | .585              | 1046      |
| 37502.0 | 0.58            | 0.51             | 1.09                          | -16.606           | 1039      |
| 03.0    | 0.56            | 0.49             | 1.05                          | .619              | 1035      |
| 04.0    | 0.48            | 0.47             | 0.95                          | .660              | 1021      |
| 37505.0 | 0.61            | 0.45             | 1.06                          | -16.610           | 1050      |
| 05.5    | 0.62            | 0.44             | 1.06                          | .609              | 1050      |
| 06.0    | 0.28            | 0.42             | 0.70                          | .788              | 990       |
| 06.5    | 0.34            | 0.41             | 0.75                          | .757              | 1000      |
| 07.0    | 0.78            | 0.40             | 1.18                          | .559              | 1068      |
| 07.5    | 1.57            | 0.39             | 1.96                          | .337              | 1153      |
| 08.0    | 1.11            | 0.37             | 1.48                          | .458              | 1105      |
| 08.5    | 0.36            | 0.36             | 0.72                          | .771              | 995       |
| 09.0    | 0.23            | 0.35             | 0.58                          | .864              | 966       |
| 09.5    | 0.29            | 0.33             | 0.62                          | .834              | 975       |
| 10.0    | 0.24            | 0.32             | 0.56                          | .878              | 961       |

Table II (cont.)

| MJD     | $-10^6 \dot{P}$ | $10^6 \dot{P}_R$ | $-10^6 (\dot{P} - \dot{P}_R)$ | $\log \rho_{\text{II}}$ | $T_{\text{II}}$ |
|---------|-----------------|------------------|-------------------------------|-------------------------|-----------------|
| 37511.0 | 0.22            | 0.30             | 0.52                          | -16.909                 | 952             |
| 12.0    | 0.27            | 0.27             | 0.54                          | .892                    | 957             |
| 13.0    | 0.28            | 0.25             | 0.53                          | .900                    | 955             |
| 14.0    | 0.46            | 0.22             | 0.68                          | .792                    | 989             |
| 15.0    | 0.51            | 0.20             | 0.71                          | .774                    | 996             |
| 16.0    | 0.43            | 0.17             | 0.60                          | .849                    | 973             |
| 17.0    | 0.38            | 0.14             | 0.52                          | .913                    | 954             |
| 18.0    | 0.45            | 0.12             | 0.57                          | .875                    | 966             |
| 19.0    | 0.57            | 0.08             | 0.65                          | .821                    | 984             |
| 20.0    | 0.69            | 0.05             | 0.74                          | .767                    | 1003            |
| 21.0    | 0.97            | 0.03             | 1.00                          | .640                    | 1047            |
| 22.0    | 1.05            | 0.01             | 1.06                          | .619                    | 1056            |
| 23.0    | 1.12            | -0.01            | 1.11                          | .603                    | 1064            |
| 24.0    | 0.95            | -0.02            | 0.93                          | .684                    | 1037            |
| 25.0    | 1.03            | -0.02            | 1.01                          | .652                    | 1049            |
| 26.0    | 1.10            | -0.03            | 1.07                          | .632                    | 1058            |
| 27.0    | 1.07            | -0.02            | 1.05                          | .645                    | 1055            |
| 28.0    | 1.03            | -0.01            | 1.02                          | .662                    | 1051            |
| 29.0    | 1.02            | 0.01             | 1.03                          | .661                    | 1052            |
| 30.0    | 1.00            | 0.05             | 1.05                          | .657                    | 1055            |
| 31.0    | 0.92            | 0.10             | 1.02                          | .673                    | 1051            |
| 32.0    | 0.83            | 0.18             | 1.01                          | .680                    | 1049            |
| 33.0    | 0.58            | 0.27             | 0.85                          | .756                    | 1023            |
| 34.0    | 0.32            | 0.36             | 0.68                          | .855                    | 992             |
| 35.0    | 0.22            | 0.44             | 0.66                          | .868                    | 988             |
| 36.0    | 0.14            | 0.51             | 0.65                          | .874                    | 986             |
| 37.0    | 0.11            | 0.55             | 0.66                          | .866                    | 989             |
| 38.0    | 0.09            | 0.58             | 0.67                          | .858                    | 991             |
| 39.0    | 0.09            | 0.60             | 0.69                          | .842                    | 996             |
| 40.0    | 0.14            | 0.61             | 0.75                          | .803                    | 1009            |
| 41.0    | 0.16            | 0.61             | 0.77                          | .788                    | 1013            |
| 42.0    | 0.15            | 0.61             | 0.76                          | .790                    | 1012            |
| 43.0    | 0.19            | 0.60             | 0.79                          | .769                    | 1018            |
| 44.0    | 0.15            | 0.59             | 0.74                          | .793                    | 1010            |
| 45.0    | 0.07            | 0.57             | 0.64                          | .852                    | 990             |
| 46.0    | 0.11            | 0.55             | 0.66                          | .834                    | 995             |
| 47.0    | 0.15            | 0.53             | 0.68                          | .818                    | 1000            |
| 48.0    | 0.19            | 0.50             | 0.69                          | .808                    | 1003            |
| 49.0    | 0.26            | 0.48             | 0.74                          | .774                    | 1013            |
| 50.0    | 0.38            | 0.45             | 0.83                          | .722                    | 1031            |

Table III  
Atmospheric temperature compared with geomagnetic and solar data

| MJD<br>(noon) | T <sub>π</sub> | A <sub>p</sub> | F <sub>10</sub> | F <sub>20</sub> | T <sub>π'</sub> | MJD<br>(noon) | T <sub>π</sub> | A <sub>p</sub> | F <sub>10</sub> | F <sub>20</sub> | T <sub>π'</sub> |
|---------------|----------------|----------------|-----------------|-----------------|-----------------|---------------|----------------|----------------|-----------------|-----------------|-----------------|
| 37349         | 920            | 18             | 96              | 89              | 912             | 3796          | 966            | 8              | 98              | 82              | 963             |
| 350           | 920            | 30             | 99              | 88              | 892             | 397           | 962            | 6              | 104             | 80              | 946             |
| 351           | 924            | 23             | 100             | 89              | 901             | 398           | 958            | 24             | 96              | 78              | 944             |
| 352           | 924            | 18             | 102             | 93              | 901             | 399           | 952            | 17             | 93              | 76              | 953             |
| 353           | 924            | 11             | 103             | 96              | 905             | 400           | 946            | 16             | 92              | 74              | 950             |
| 354           | 923            | 10             | 104             | 96              | 903             | 401           | 929            | 10             | 89              | 72              | 947             |
| 355           | 922            | 3              | 106             | 97              | 904             | 402           | 930            | 15             | 88              | 73              | 945             |
| 356           | 926            | 4              | 101             | 93              | 920             | 403           | 969            | 54             | 93              | 73              | -               |
| 357           | 934            | 9              | 103             | 89              | 917             | 404           | 986            | 61             | 98              | 80              | -               |
| 358           | 949            | 12             | 103             | 89              | 929             | 405           | 958            | 13             | 103             | 84              | -               |
| 359           | 943            | 8              | 103             | 89              | 927             | 406           | 943            | 4              | 105             | 88              | 927             |
| 360           | 929            | 8              | 103             | 85              | 913             | 407           | 941            | 5              | 107             | 92              | 918             |
| 361           | 918            | 5              | 104             | 86              | 903             | 408           | 936            | 7              | 105             | 92              | 917             |
| 362           | 916            | 3              | 96              | 85              | 923             | 409           | 942            | 7              | 103             | 90              | 927             |
| 363           | 931            | 14             | 94              | 85              | 932             | 410           | 952            | 2              | 104             | 90              | 940             |
| 364           | 958            | 37             | 93              | 84              | -               | 411           | 959            | 8              | 103             | 87              | 943             |
| 365           | 940            | 3              | 95              | 83              | -               | 412           | 962            | 8              | 105             | 87              | 942             |
| 366           | 910            | 5              | 94              | 83              | -               | 413           | 971            | 11             | 111             | 89              | 932             |
| 367           | 912            | 13             | 90              | 81              | -               | 414           | 982            | 8              | 111             | 92              | 946             |
| 368           | 944            | 46             | 91              | 81              | -               | 415           | 988            | 14             | 126             | 95              | 909             |
| 369           | 941            | 6              | 98              | 78              | -               | 416           | 997            | 12             | 120             | 94              | 935             |
| 370           | 906            | 7              | 92              | 77              | 919             | 417           | 988            | 7              | 114             | 93              | 946             |
| 371           | 904            | 10             | 93              | 77              | 912             | 418           | 987            | 5              | 121             | 96              | 930             |
| 372           | 908            | 26             | 91              | 80              | 904             | 419           | 982            | 9              | 122             | 97              | 918             |
| 373           | 916            | 24             | 98              | 79              | 897             | 420           | 976            | 15             | 124             | 97              | 901             |
| 374           | 918            | 20             | 99              | 82              | 900             | 421           | 976            | 19             | 119             | 93              | 909             |
| 375           | 917            | 14             | 98              | 85              | 908             | 422           | 969            | 4              | 110             | 88              | 940             |
| 376           | 920            | 12             | 101             | 87              | 906             | 42            | 961            | 8              | 104             | 85              | 943             |
| 377           | 932            | 38             | 102             | 91              | -               | 424           | 971            | 20             | 103             | 81              | 943             |
| 378           | 945            | 17             | 105             | 92              | 916             | 425           | 986            | 30             | 97              | 80              | 964             |
| 379           | 953            | 11             | 105             | 94              | 930             | 426           | 972            | 20             | 97              | 82              | 960             |
| 380           | 958            | 13             | 106             | 95              | 930             | 427           | 938            | 11             | 94              | 79              | 942             |
| 381           | 965            | 10             | 110             | 98              | 930             | 428           | 913            | 15             | 96              | 79              | 908             |
| 382           | 970            | 8              | 116             | 100             | 922             | 429           | 916            | 8              | 92              | 80              | 928             |
| 383           | 971            | 5              | 118             | 105             | 921             | 430           | 941            | 19             | 98              | 80              | 927             |
| 384           | 986            | 9              | 121             | 105             | 925             | 431           | 960            | 15             | 101             | 84              | 943             |
| 385           | 1012           | 22             | 125             | 108             | 928             | 432           | 964            | 22             | 97              | 83              | 950             |
| 386           | 1024           | 17             | 126             | 106             | 942             | 433           | 962            | 10             | 93              | 81              | 970             |
| 387           | 1020           | 6              | 126             | 106             | 949             | 434           | 959            | 4              | 91              | 79              | 977             |
| 388           | 1016           | 10             | 125             | 106             | 944             | 435           | 944            | 28             | 88              | 78              | 946             |
| 389           | 1014           | 6              | 117             | 102             | 966             | 436           | 936            | 8              | 88              | 78              | 958             |
| 390           | 1013           | 17             | 113             | 95              | 964             | 437           | 950            | 3              | 95              | 80              | 959             |
| 391           | 1008           | 14             | 105             | 92              | 982             | 438           | 966            | 8              | 100             | 85              | 958             |
| 392           | 996            | 27             | 101             | 87              | 967             | 439           | 974            | 13             | 105             | 87              | 949             |
| 393           | 984            | 6              | 103             | 85              | 970             | 440           | 982            | 5              | 110             | 90              | 952             |
| 394           | 974            | 5              | 107             | 83              | 951             | 441           | 990            | 11             | 109             | 92              | 957             |
| 395           | 969            | 9              | 106             | 83              | 945             | 442           | 1004           | 14             | 110             | 95              | 965             |

Table II (cont.)

| MJD     | $-10^6 \dot{P}$ | $10^6 \dot{P}_R$ | $-10^6 (\dot{P} - \dot{P}_R)$ | $\log \rho_{\pi}$ | $T_{\pi}$ |
|---------|-----------------|------------------|-------------------------------|-------------------|-----------|
| 37551.0 | 0.51            | 0.43             | 0.94                          | -16.666           | 1050      |
| 52.0    | 0.57            | 0.40             | 0.97                          | .650              | 1055      |
| 53.0    | 0.60            | 0.37             | 0.97                          | .649              | 1056      |
| 54.0    | 0.71            | 0.35             | 1.06                          | .610              | 1070      |
| 55.0    | 0.75            | 0.33             | 1.08                          | .601              | 1073      |
| 56.0    | 0.78            | 0.31             | 1.09                          | .597              | 1075      |
| 57.0    | 0.75            | 0.29             | 1.04                          | .618              | 1068      |
| 58.0    | 0.74            | 0.27             | 1.01                          | .632              | 1064      |
| 59.0    | 0.71            | 0.25             | 0.96                          | .655              | 1056      |
| 60.0    | 0.69            | 0.24             | 0.93                          | .671              | 1051      |
| 61.0    | 0.63            | 0.24             | 0.87                          | .702              | 1041      |
| 62.0    | 0.55            | 0.23             | 0.78                          | .751              | 1025      |
| 63.0    | 0.43            | 0.23             | 0.66                          | .826              | 1001      |
| 64.0    | 0.35            | 0.23             | 0.58                          | .884              | 983       |
| 65.0    | 0.42            | 0.24             | 0.66                          | .831              | 1001      |
| 66.0    | 0.43            | 0.24             | 0.67                          | .826              | 1003      |
| 67.0    | 0.46            | 0.25             | 0.71                          | .804              | 1011      |
| 68.0    | 0.46            | 0.26             | 0.72                          | .800              | 1013      |
| 69.0    | 0.43            | 0.27             | 0.70                          | .814              | 1009      |
| 70.0    | 0.40            | 0.29             | 0.70                          | .815              | 1009      |
| 71.0    | 0.39            | 0.31             | 0.70                          | .816              | 1010      |
| 72.0    | 0.42            | 0.33             | 0.73                          | .799              | 1016      |
| 73.0    | 1.11            | 0.35             | 1.46                          | .498              | 1126      |
| 74.0    | 1.01            | 0.37             | 1.38                          | -16.523           | 1117      |

Table III (cont.)

| MJD<br>(noon) | T <sub>π</sub> | A <sub>p</sub> | F <sub>10</sub> | F <sub>20</sub> | T' <sub>π</sub> | MJD<br>(noon) | T <sub>π</sub> | A <sub>p</sub> | F <sub>10</sub> | F <sub>20</sub> | T' <sub>π</sub> |
|---------------|----------------|----------------|-----------------|-----------------|-----------------|---------------|----------------|----------------|-----------------|-----------------|-----------------|
| 37443         | 1009           | 8              | 108             | 91              | 981             | 37491         | 976            | 9              | 138             | 111             | 872             |
| 444           | 998            | 34             | 106             | 91              | -               | 492           | 996            | 5              | 137             | 121             | 899             |
| 445           | 987            | 7              | 88              | 90              | -               | 493           | 1028           | 102            | 141             | 116             | -               |
| 446           | 974            | 6              | 95              | 88              | 980             | 494           | 1081           | 98             | 136             | 118             | -               |
| 447           | 958            | 10             | 91              | 85              | 970             | 495           | 1080           | 25             | 136             | 119             | -               |
| 448           | 955            | 5              | 91              | 80              | 972             | 496           | 1044           | 23             | 132             | 119             | -               |
| 449           | 967            | 9              | 88              | 76              | 988             | 497           | 1052           | 36             | 137             | 131             | -               |
| 450           | 976            | 22             | 88              | 76              | 984             | 498           | 1092           | 93             | 131             | 121             | -               |
| 451           | 974            | 30             | 86              | 71              | 979             | 499           | 1080           | 18             | 126             | 115             | -               |
| 452           | 968            | 28             | 88              | 70              | 970             | 500           | 1047           | 19             | 123             | 113             | -               |
| 453           | 954            | 10             | 92              | 72              | 964             | 501           | 1042           | 35             | 118             | 110             | -               |
| 454           | 949            | 8              | 89              | 73              | 969             | 502           | 1037           | 12             | 119             | 109             | -               |
| 455           | 966            | 9              | 86              | 73              | 992             | 503           | 1028           | 17             | 118             | 111*            | 966             |
| 456           | 974            | 17             | 88              | 71              | 987             | 504           | 1036           | 13             | 118             | 112             | 978             |
| 457           | 960            | 24             | 89              | 72              | 964             | 505           | 1020           | 14             | 117             | 104             | 964             |
| 458           | 944            | 16             | 91              | 74              | 950             | 506           | 1029           | 23             | 115             | 98              | 968             |
| 459           | 937            | 6              | 100             | 76              | 931             | 507           | 1086           | 114            | 111             | 97              | -               |
| 460           | 936            | 4              | 102             | 84              | 927             | 508           | 1036           | 18             | 105             | 90              | -               |
| 461           | 938            | 2              | 110             | 85              | 911             | 509           | 964            | 8              | 103             |                 | 948             |
| 462           | 947            | 8              | 108             | 89              | 919             | 510           | 957            | 8              | 92              |                 | 969             |
| 463           | 958            | 3              | 114             | 90              | 920             | 511           | 954            | 6              | 91              | 71              | 970             |
| 464           | 968            | 4              | 123             | 97              | 906             | 512           | 956            | 8              | 90              | 76              | 973             |
| 465           | 982            | 11             | 129             | 100             | 899             | 513           | 972            | 42             | 87              | 76              | -               |
| 466           | 993            | 10             | 132             | 102             | 903             | 514           | 992            | 18             | 91              | 79              | -               |
| 467           | 998            | 6              | 137             | 106             | 900             | 515           | 984            | 18             | 88              | 77              | 996             |
| 468           | 1008           | 14             | 136             | 104             | 904             | 516           | 964            | 9              | 90              | 72              | 980             |
| 469           | 1020           | 7              | 131             | 108             | 935             | 517           | 960            | 7              | 92              | 76              | 973             |
| 470           | 1042           | 10             | 131             | 110             | 954             | 518           | 975            | 4              | 99              | 81              | 973             |
| 471           | 1048           | 58             | 132             | 113             | -               | 519           | 994            | 17             | 105             | 86              | 965             |
| 472           | 1037           | 58             | 134             | 108             | -               | 520           | 1025           | 4              | 113             | 91              | 989             |
| 473           | 1021           | 9              | 135             | 103             | -               | 521           | 1052           | 11             | 122             | 97              | 986             |
| 474           | 996            | 6              | 117             | 100             | 948             | 522           | 1060           | 24             | 130             | 109             | 961             |
| 475           | 980            | 9              | 111             | 89              | 943             | 523           | 1050           | 7              | 128             | 114             | 973             |
| 476           | 967            | 6              | 108             | 86              | 941             | 524           | 1043           | 2              | 128             | 110*            | 971             |
| 477           | 958            | 7              | 99              | 76              | 953             | 525           | 1054           | 8              | 127             | 120             | 978             |
| 478           | 952            | 4              | 95              | 78              | 960             | 526           | 1056           | 8              | 123             | 118             | 990             |
| 479           | 942            | 25             | 102             | 78              | 912             | 527           | 1053           | 5              | 119             | 115             | 1000            |
| 480           | 930            | 4              | 103             | 77              | 918             | 528           | 1052           | 5              | 119             | 113             | 999             |
| 481           | 925            | 10             | 104             | 76              | 905             | 529           | 1054           | 5              | 116             | 109             | 1009            |
| 482           | 926            | 12             | 99              |                 | 916             | 530           | 1053           | 9              | 113             | 103             | 1012            |
| 483           | 932            | 16             | 104             | 76              | 906             | 531           | 1050           | 6              | 109             | 102*            | 1022            |
| 484           | 936            | 16             | 103             | 82*             | 912             | 532           | 1036           | 5              | 104             | 96              | 1021            |
| 485           | 940            | 45             | 106             |                 | -               | 533           | 1008           | 2              | 103             | 90              | 998             |
| 486           | 948            | 16             | 102             | 88              | -               | 534           | 990            | 3              | 98              | 87              | 992             |
| 487           | 954            | 14             | 105             | 94*             | 928             | 535           | 987            | 4              | 97              | 87              | 991             |
| 488           | 956            | 10             | 107             | 93              | 928             | 536           | 988            | 9              | 93              | 84              | 997             |
| 489           | 954            | 9              | 112             |                 | 915             | 537           | 990            | 11             | 95              | 82              | 991             |
| 490           | 958            | 14             | 124             | 100             | 884             | 538           | 994            | 8              | 95              | 81*             | 998             |

Table III (cont.)

| MJD<br>(noon) | T <sub>π</sub> | A <sub>p</sub> | F <sub>10</sub> | F <sub>20</sub> | T' <sub>π</sub> |
|---------------|----------------|----------------|-----------------|-----------------|-----------------|
| 37539         | 1002           | 5              | 100             | 83              | 997             |
| 540           | 1011           | 16             | 103             | 83              | 987             |
| 541           | 1012           | 37             | 106             | 82              | -               |
| 542           | 1015           | 30             | 109             | 83              | 963             |
| 543           | 1014           | 28             | 110             | 84              | 961             |
| 544           | 1000           | 13             | 110             | 84              | 962             |
| 545           | 992            | 12             | 117             | 87              | 938             |
| 546           | 998            | 5              | 118             | 89              | 948             |
| 547           | 1002           | 12             | 114             | 90              | 955             |
| 548           | 1008           | 5              | 112             | 95              | 973             |
| 549           | 1022           | 4              | 115             | 99              | 980             |
| 550           | 1040           | 4              | 117             | 98              | 994             |
| 551           | 1052           | 8              | 126             | 104             | 979             |
| 552           | 1056           | 7              | 130             | 103*            | 974             |
| 553           | 1063           | 12             | 127             | 108             | 983             |
| 554           | 1072           | 17             | 130             | 105             | 980             |
| 555           | 1074           | 8              | 130             | 112             | 991             |
| 556           | 1072           | 28             | 137             | 113             | 952             |
| 557           | 1066           | 6              | 135             | 116             | 972             |
| 558           | 1060           | 7              | 133             | 110             | 971             |
| 559           | 1054           | 11             | 124             | 103             | 983             |
| 560           | 1046           | 7              | 115             | 96              | 1001            |
| 561           | 1033           | 3              | 108             | 88              | 1010            |
| 562           | 1013           | 9              | 101             | 83              | 1002            |
| 563           | 992            | 2              | 96              | 78              | 1000            |
| 564           | 992            | 6              | 92              | 73              | 1006            |
| 565           | 1002           | 2              | 90              | 75              | 1025            |
| 566           | 1007           | 42             | 97              | 77*             | -               |
| 567           | 1012           | 35             | 97              | 82              | -               |
| 568           | 1011           | 18             | 98              | 84              | 998             |
| 569           | 1009           | 26             | 96              | 84              | 993             |
| 570           | 1010           | 5              | 96              | 81              | 1015            |
| 571           | 1013           | 6              | 102             | 81              | 1002            |
| 572           | 1071           | 36             | 100             | 81              | -               |
| 573           | 1122           | 114            | 98              | 78              | -               |

Values with \* are morning means, not daily means.

Table IV

Perigee height  $z_{\text{II}}$  above geoid and angular distance  $\psi'$  between perigee and diurnal bulge

| MJD   | $z_{\text{II}}$<br>(km) | $\psi'$<br>$\lambda = 0^\circ$ | $\psi'$<br>$\lambda = 30^\circ$ | MJD   | $z_{\text{II}}$<br>(km) | $\psi'$<br>$\lambda = 0^\circ$ | $\psi'$<br>$\lambda = 30^\circ$ |
|-------|-------------------------|--------------------------------|---------------------------------|-------|-------------------------|--------------------------------|---------------------------------|
| 37350 | 641.7                   | 67.4                           | 90.2                            | 37465 | 714.0                   | 62.1                           | 80.0                            |
| 355   | 644.1                   | 59.9                           | 85.7                            | 470   | 712.6                   | 52.6                           | 73.7                            |
| 360   | 646.6                   | 56.1                           | 85.0                            | 475   | 712.2                   | 44.6                           | 69.7                            |
| 365   | 651.2                   | 57.4                           | 87.2                            | 480   | 714.2                   | 40.4                           | 67.8                            |
| 370   | 658.0                   | 61.4                           | 89.7                            | 485   | 718.4                   | 39.3                           | 66.2                            |
| 375   | 665.8                   | 64.4                           | 89.9                            | 490   | 723.1                   | 38.4                           | 63.1                            |
| 380   | 672.3                   | 64.0                           | 86.9                            | 495   | 726.3                   | 35.1                           | 58.2                            |
| 385   | 675.7                   | 59.8                           | 82.0                            | 500   | 727.2                   | 29.6                           | 53.5                            |
| 390   | 676.2                   | 53.9                           | 77.9                            | 505   | 727.7                   | 25.4                           | 52.2                            |
| 395   | 675.4                   | 49.2                           | 76.4                            | 510   | 727.4                   | 28.0                           | 56.4                            |
| 400   | 674.8                   | 48.1                           | 77.5                            | 515   | 728.8                   | 37.4                           | 64.6                            |
| 405   | 676.6                   | 49.9                           | 79.2                            | 520   | 732.9                   | 48.3                           | 73.1                            |
| 410   | 680.8                   | 51.6                           | 78.8                            | 525   | 738.8                   | 56.4                           | 78.1                            |
| 415   | 686.1                   | 50.5                           | 75.0                            | 530   | 744.1                   | 59.0                           | 77.6                            |
| 420   | 690.3                   | 45.6                           | 68.6                            | 535   | 746.9                   | 55.1                           | 71.7                            |
| 425   | 692.4                   | 38.5                           | 62.7                            | 540   | 746.7                   | 45.7                           | 63.2                            |
| 430   | 692.6                   | 33.9                           | 61.0                            | 545   | 744.7                   | 33.8                           | 55.8                            |
| 435   | 692.7                   | 37.2                           | 65.6                            | 550   | 742.8                   | 25.0                           | 53.2                            |
| 440   | 694.9                   | 47.6                           | 74.6                            | 555   | 742.9                   | 26.1                           | 55.6                            |
| 445   | 699.8                   | 59.5                           | 84.0                            | 560   | 745.0                   | 34.3                           | 60.0                            |
| 450   | 706.0                   | 68.7                           | 90.3                            | 565   | 747.9                   | 41.8                           | 62.7                            |
| 455   | 711.4                   | 72.4                           | 91.0                            | 570   | 750.6                   | 44.7                           | 61.5                            |
| 460   | 714.0                   | 69.7                           | 86.8                            | 575   | 753.1                   | 41.9                           | 56.8                            |



Figure 1. --Atmospheric temperatures around perigee for Satellite δ1, compared with geomagnetic activity and decimetric solar flux.

NOTICE

This series of Special Reports was instituted under the supervision of Dr. F. L. Whipple, Director of the Astrophysical Observatory of the Smithsonian Institution, shortly after the launching of the first artificial earth satellite on October 4, 1957. Contributions come from the Staff of the Observatory. First issued to ensure the immediate dissemination of data for satellite tracking, the Reports have continued to provide a rapid distribution of catalogues of satellite observations, orbital information, and preliminary results of data analyses prior to formal publication in the appropriate journals.

Edited and produced under the supervision of Mrs. L. G. Boyd and Mr. E. N. Hayes, the Reports are indexed by the Science and Technology Division of the Library of Congress, and are regularly distributed to all institutions participating in the U. S. space research program and to individual scientists who request them from the Administrative Officer, Technical Information, Smithsonian Astrophysical Observatory, Cambridge 38, Massachusetts.