$12n_{0500} \ (K12n_{0500})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 5u^{30} - 14u^{29} + \dots + 2b + 5, -u^{30} + 2u^{29} + \dots + 4a + 5, u^{31} - 4u^{30} + \dots - 2u - 1 \rangle$$

 $I_2^u = \langle b, a^3 + a^2u + a^2 - 2u - 3, u^2 + u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 37 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{c} \text{I. } I_1^u = \\ \langle 5u^{30} - 14u^{29} + \dots + 2b + 5, \ -u^{30} + 2u^{29} + \dots + 4a + 5, \ u^{31} - 4u^{30} + \dots - 2u - 1 \rangle \end{array}$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{4}u^{30} - \frac{1}{2}u^{29} + \dots - \frac{5}{2}u - \frac{5}{4} \\ -\frac{5}{2}u^{30} + 7u^{29} + \dots - 6u - \frac{5}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{4}u^{30} - \frac{1}{2}u^{29} + \dots - \frac{5}{2}u - \frac{5}{4} \\ -\frac{13}{4}u^{30} + \frac{33}{4}u^{29} + \dots - \frac{29}{4}u - 3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{9}{4}u^{30} - \frac{15}{4}u^{29} + \dots + \frac{21}{4}u + \frac{5}{2} \\ -\frac{5}{4}u^{30} + \frac{13}{4}u^{29} + \dots - \frac{17}{4}u + \frac{3}{4} \\ \frac{1}{4}u^{30} - \frac{1}{2}u^{29} + \dots + \frac{1}{2}u + \frac{1}{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + 2u \\ \frac{1}{4}u^{30} - \frac{1}{2}u^{29} + \dots + \frac{19}{2}u + \frac{1}{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{4}u^{30} + \frac{1}{4}u^{29} + \dots - \frac{19}{4}u + \frac{1}{2} \\ \frac{1}{4}u^{30} - \frac{1}{2}u^{29} + \dots + \frac{15}{2}u + \frac{7}{2} \\ -\frac{5}{4}u^{30} + \frac{13}{4}u^{29} + \dots - \frac{9}{4}u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-11u^{30} + 29u^{29} + \cdots 16u^2 \frac{15}{2}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{31} + 35u^{30} + \dots + 177u + 4$
c_2, c_5	$u^{31} + 3u^{30} + \dots - 15u + 2$
c_3,c_{11}	$u^{31} - 3u^{30} + \dots - 9u + 1$
c_4	$u^{31} - 3u^{30} + \dots - 2916u + 243$
c_6, c_7, c_9 c_{10}	$u^{31} - 4u^{30} + \dots - 2u - 1$
<i>c</i> ₈	$u^{31} + u^{30} + \dots - 32u + 64$
c_{12}	$u^{31} + 22u^{29} + \dots - 2095u + 2071$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{31} - 75y^{30} + \dots + 52609y - 16$
c_2, c_5	$y^{31} - 35y^{30} + \dots + 177y - 4$
c_3, c_{11}	$y^{31} + 25y^{30} + \dots + 65y - 1$
c_4	$y^{31} + 5y^{30} + \dots + 3359232y - 59049$
c_6, c_7, c_9 c_{10}	$y^{31} - 34y^{30} + \dots - 2y - 1$
c_8	$y^{31} + 35y^{30} + \dots + 1024y - 4096$
c_{12}	$y^{31} + 44y^{30} + \dots - 9225729y - 4289041$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.602350 + 0.764489I		
a = -0.96517 - 1.53953I	-5.83199 - 7.50635I	2.66894 + 5.59456I
b = 0.35606 - 1.75288I		
u = -0.602350 - 0.764489I		
a = -0.96517 + 1.53953I	-5.83199 + 7.50635I	2.66894 - 5.59456I
b = 0.35606 + 1.75288I		
u = -0.543360 + 0.792514I		
a = 0.91165 + 1.54215I	-10.03040 - 2.62343I	-1.03684 + 2.68072I
b = -0.17449 + 1.80984I		
u = -0.543360 - 0.792514I		
a = 0.91165 - 1.54215I	-10.03040 + 2.62343I	-1.03684 - 2.68072I
b = -0.17449 - 1.80984I		
u = -0.473452 + 0.802011I		
a = -0.85502 - 1.55001I	-6.21873 + 2.31735I	1.87364 - 0.58111I
b = -0.03027 - 1.79370I		
u = -0.473452 - 0.802011I		
a = -0.85502 + 1.55001I	-6.21873 - 2.31735I	1.87364 + 0.58111I
b = -0.03027 + 1.79370I		
u = 0.751448 + 0.311977I		
a = -0.131566 - 0.324454I	3.50508 + 0.49905I	6.93091 - 1.38994I
b = -0.652866 + 0.653689I		
u = 0.751448 - 0.311977I		
a = -0.131566 + 0.324454I	3.50508 - 0.49905I	6.93091 + 1.38994I
b = -0.652866 - 0.653689I		
u = -1.34946		
a = -0.997928	2.46733	3.43490
b = 1.24408		
u = 1.366810 + 0.074394I		
a = 0.234215 - 0.622051I	3.50947 + 1.97376I	4.13605 - 3.59471I
b = -0.045603 - 1.264260I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.366810 - 0.074394I		
a = 0.234215 + 0.622051I	3.50947 - 1.97376I	4.13605 + 3.59471I
b = -0.045603 + 1.264260I		
u = -1.375110 + 0.092603I		
a = 0.939498 + 0.219836I	6.34649 - 4.23203I	7.34906 + 3.43500I
b = -1.276320 - 0.062520I		
u = -1.375110 - 0.092603I		
a = 0.939498 - 0.219836I	6.34649 + 4.23203I	7.34906 - 3.43500I
b = -1.276320 + 0.062520I		
u = 0.527133		
a = -0.257315	0.784642	13.1720
b = 0.358345		
u = 1.47433 + 0.08812I		
a = -0.497026 + 0.970443I	9.65588 + 4.45983I	7.97346 - 3.71466I
b = 0.186128 + 1.163550I		
u = 1.47433 - 0.08812I		
a = -0.497026 - 0.970443I	9.65588 - 4.45983I	7.97346 + 3.71466I
b = 0.186128 - 1.163550I		
u = 0.146677 + 0.492597I		
a = -0.018556 + 1.292810I	1.62298 + 2.35384I	1.82470 - 4.53214I
b = 0.836447 + 0.454443I		
u = 0.146677 - 0.492597I		
a = -0.018556 - 1.292810I	1.62298 - 2.35384I	1.82470 + 4.53214I
b = 0.836447 - 0.454443I		
u = 1.49116 + 0.29858I	0.10740 : 1.004007	^
a = 0.877997 - 0.367679I	0.10746 + 1.69492I	0
b = -0.35046 - 1.70481I		
u = 1.49116 - 0.29858I	0.10510 1.001007	
a = 0.877997 + 0.367679I	0.10746 - 1.69492I	0
b = -0.35046 + 1.70481I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.54074 + 0.28653I		
a = -0.983728 + 0.406676I	-3.24464 + 6.59865I	0
b = 0.52058 + 1.68308I		
u = 1.54074 - 0.28653I		
a = -0.983728 - 0.406676I	-3.24464 - 6.59865I	0
b = 0.52058 - 1.68308I		
u = -0.369500 + 0.215346I		
a = 0.63729 + 2.88917I	3.53058 - 3.26263I	-0.32878 + 7.06957I
b = -0.010339 + 0.599954I		
u = -0.369500 - 0.215346I		
a = 0.63729 - 2.88917I	3.53058 + 3.26263I	-0.32878 - 7.06957I
b = -0.010339 - 0.599954I		
u = 1.57119 + 0.26571I		
a = 1.058660 - 0.452456I	1.31297 + 11.33500I	0
b = -0.63708 - 1.61140I		
u = 1.57119 - 0.26571I		
a = 1.058660 + 0.452456I	1.31297 - 11.33500I	0
b = -0.63708 + 1.61140I		
u = -1.59573		
a = 0.257600	8.24985	15.5880
b = -0.497580		
u = -1.63289 + 0.05265I		
a = -0.234203 - 0.321554I	11.78470 - 1.72102I	0
b = 0.531375 + 0.618506I		
u = -1.63289 - 0.05265I		
a = -0.234203 + 0.321554I	11.78470 + 1.72102I	0
b = 0.531375 - 0.618506I		
u = -0.136671 + 0.320613I		
a = 0.02478 - 2.19557I	-1.239080 - 0.576153I	-5.00436 + 2.78236I
b = -0.305592 - 0.594543I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.136671 - 0.320613I		
a = 0.02478 + 2.19557I	-1.239080 + 0.576153I	-5.00436 - 2.78236I
b = -0.305592 + 0.594543I		

II.
$$I_2^u = \langle b, a^3 + a^2u + a^2 - 2u - 3, u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a \\ au - a \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a^{2}u + a - u - 1 \\ au - a \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{2}u \\ -2a^{2}u + a^{2} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 3a^{2}u - a^{2} - u \\ -2a^{2}u + a^{2} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a^{2}u - au + 2a - u - 1 \\ au - a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-a^2 6au + a + u + 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_3	$(u^3 + u^2 + 2u + 1)^2$
C4	$u^6 - 2u^5 + 5u^4 + 2u^3 + 3u^2 - 3u - 1$
<i>C</i> ₅	$(u^3 - u^2 + 1)^2$
c_6, c_7	$(u^2 - u - 1)^3$
<i>c</i> ₈	u^6
c_9, c_{10}	$(u^2+u-1)^3$
c_{12}	$u^6 - u^5 - u^4 + 4u^3 + 3u^2 - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5	$(y^3 - y^2 + 2y - 1)^2$
c_4	$y^6 + 6y^5 + 39y^4 + 12y^3 + 11y^2 - 15y + 1$
c_6, c_7, c_9 c_{10}	$(y^2 - 3y + 1)^3$
<i>C</i> ₈	y^6
c_{12}	$y^6 - 3y^5 + 15y^4 - 24y^3 + 11y^2 - 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 1.22142	-0.126494	0.818320
b = 0		
u = 0.618034		
a = -1.41973 + 1.20521I	4.01109 + 2.82812I	8.89985 + 0.15818I
b = 0		
u = 0.618034		
a = -1.41973 - 1.20521I	4.01109 - 2.82812I	8.89985 - 0.15818I
b = 0		
u = -1.61803		
a = 0.542287 + 0.460350I	11.90680 - 2.82812I	9.10673 + 4.43024I
b = 0		
u = -1.61803		
a = 0.542287 - 0.460350I	11.90680 + 2.82812I	9.10673 - 4.43024I
b = 0		
u = -1.61803		
a = -0.466540	7.76919	-1.83150
b = 0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^3 - u^2 + 2u - 1)^2)(u^{31} + 35u^{30} + \dots + 177u + 4)$
c_2	$((u^3 + u^2 - 1)^2)(u^{31} + 3u^{30} + \dots - 15u + 2)$
c_3	$((u^3 + u^2 + 2u + 1)^2)(u^{31} - 3u^{30} + \dots - 9u + 1)$
c_4	$ (u^6 - 2u^5 + \dots - 3u - 1)(u^{31} - 3u^{30} + \dots - 2916u + 243) $
c_5	$((u^3 - u^2 + 1)^2)(u^{31} + 3u^{30} + \dots - 15u + 2)$
c_6, c_7	$((u^2 - u - 1)^3)(u^{31} - 4u^{30} + \dots - 2u - 1)$
<i>C</i> 8	$u^6(u^{31} + u^{30} + \dots - 32u + 64)$
c_{9}, c_{10}	$((u^2 + u - 1)^3)(u^{31} - 4u^{30} + \dots - 2u - 1)$
c_{11}	$((u^3 - u^2 + 2u - 1)^2)(u^{31} - 3u^{30} + \dots - 9u + 1)$
c_{12}	$(u^6 - u^5 - u^4 + 4u^3 + 3u^2 - 1)(u^{31} + 22u^{29} + \dots - 2095u + 2071)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^3 + 3y^2 + 2y - 1)^2)(y^{31} - 75y^{30} + \dots + 52609y - 16)$
c_2, c_5	$((y^3 - y^2 + 2y - 1)^2)(y^{31} - 35y^{30} + \dots + 177y - 4)$
c_3, c_{11}	$((y^3 + 3y^2 + 2y - 1)^2)(y^{31} + 25y^{30} + \dots + 65y - 1)$
c_4	$(y^6 + 6y^5 + 39y^4 + 12y^3 + 11y^2 - 15y + 1)$ $\cdot (y^{31} + 5y^{30} + \dots + 3359232y - 59049)$
c_6, c_7, c_9 c_{10}	$((y^2 - 3y + 1)^3)(y^{31} - 34y^{30} + \dots - 2y - 1)$
c_8	$y^6(y^{31} + 35y^{30} + \dots + 1024y - 4096)$
c_{12}	$(y^6 - 3y^5 + 15y^4 - 24y^3 + 11y^2 - 6y + 1)$ $\cdot (y^{31} + 44y^{30} + \dots - 9225729y - 4289041)$