ITCS 175 Definite Integral

Some of the material in these slides is from *Calculus* 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Definite Integral

5.5.1 DEFINITION A function f is said to be *integrable* on a finite closed interval [a, b] if the limit

$$\lim_{\max \Delta x_k \to 0} \sum_{k=1}^n f(x_k^*) \Delta x_k$$

exists and does not depend on the choice of partitions or on the choice of the points x_k^* in the subintervals. When this is the case we denote the limit by the symbol

$$\int_a^b f(x) dx = \lim_{\max \Delta x_k \to 0} \sum_{k=1}^n f(x_k^*) \Delta x_k$$

which is called the *definite integral* of f from a to b. The numbers a and b are called the *lower limit of integration* and the *upper limit of integration*, respectively, and f(x) is called the *integrand*.

Definite Integral

Approximations with variable width

Continuous Functions are Integrable

5.5.2 THEOREM If a function f is continuous on an interval [a, b], then f is integrable on [a, b], and the net signed area A between the graph of f and the interval [a, b] is

$$A = \int_{a}^{b} f(x) \, dx \tag{1}$$

The area under the graph of f over the interval [a, b] is represented by the definite integral.

The Definite Integral

Geometric Interpretation

5.5.3 DEFINITION

(a) If a is in the domain of f, we define

$$\int_{a}^{a} f(x) \, dx = 0$$

(b) If f is integrable on [a, b], then we define

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

Definite Integral Rules

5.5.4 THEOREM If f and g are integrable on [a, b] and if c is a constant, then cf, f + g, and f - g are integrable on [a, b] and

(a)
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

(b)
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

(c)
$$\int_a^b [f(x) - g(x)] dx = \int_a^b f(x) dx - \int_a^b g(x) dx$$

Definite Integral Rules

5.5.5 THEOREM If f is integrable on a closed interval containing the three points a, b, and c, then

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

no matter how the points are ordered.

Definite Integral

Example: Evaluate the integrals.

1)
$$\int_{-1}^{2} 3dx$$

2)
$$\int_{1}^{2} (6x^2 + 2x - 1) dx$$

3)
$$\int_0^2 y(1+y^3)dy$$

$$4) \int_0^{\pi/2} (\sin x + \cos x) dx$$

5)
$$\int_0^{\pi/4} \sec^2 x \, dx$$

Table 5.2.1
INTEGRATION FORMULAS

DIFFERENTIATION FORMULA	INTEGRATION FORMULA	DIFFERENTIATION FORMULA	INTEGRATION FORMULA
$1. \ \frac{d}{dx}[x] = 1$	$\int dx = x + C$	8. $\frac{d}{dx}[-\csc x] = \csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$
2. $\frac{d}{dx} \left[\frac{x^{r+1}}{r+1} \right] = x^r (r \neq -1)$	$\int x^r dx = \frac{x^{r+1}}{r+1} + C (r \neq -1)$	$9. \ \frac{d}{dx}[e^x] = e^x$	$\int e^x dx = e^x + C$
$3. \ \frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$	10. $\frac{d}{dx} \left[\frac{b^x}{\ln b} \right] = b^x (0 < b, \ b \neq 1)$	$\int b^x dx = \frac{b^x}{\ln b} + C (0 < b, \ b \neq 1)$
$4. \frac{d}{dx}[-\cos x] = \sin x$	$\int \sin x dx = -\cos x + C$	11. $\frac{d}{dx}[\ln x] = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + C$
$5. \frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$	12. $\frac{d}{dx}[\tan^{-1}x] = \frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx = \tan^{-1}x + C$
$6. \frac{d}{dx}[-\cot x] = \csc^2 x$	$\int \csc^2 x dx = -\cot x + C$	13. $\frac{d}{dx}[\sin^{-1}x] = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}x + C$
7. $\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$	14. $\frac{d}{dx}[\sec^{-1} x] = \frac{1}{x\sqrt{x^2 - 1}}$	$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + C$

Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Definite Integral vs. Antiderivatives (Indefinite Integral)

We have seen two basic ideas so far:

Indefinite Integral: Computes a family of functions

$$\int f(x)dx$$

Definite Integral: Computes a **number** = **area**

$$\int_a^b f(x)dx$$

Fundamental Theorem of Calculus - I

5.6.1 THEOREM (The Fundamental Theorem of Calculus, Part 1) If f is continuous on [a, b] and F is any antiderivative of f on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \tag{2}$$

Relationship between Definite and Indefinite Integrals

$$\int_{a}^{b} f(x)dx = \int f(x)dx \mid_{a}^{b}$$

Fundamental Theorem of Calculus - I

Exercise #14-15