Моделирование эпидемии с помощью марковского процесса

С.п. $\xi(t)$ (с конечным или счетным множеством состояний E) наз. марковским, если

$$\forall n \geq 1, \ \forall 0 \leq t_0 < t_1 < \dots < t_{n+1}, \forall i_0, \dots, i_{n+1} \in E$$

$$P(\xi(t_{n+1}) = i_{n+1} | \xi(t_0) = i_0, \dots, \xi(t_n) = i_n) = P(\xi(t_{n+1}) = i_{n+1} | \xi(t_n) = i_n)$$

Условная вероятность $P(\xi(t+\Delta)=j|\xi(t)=i)=P_{ij}(t,\Delta)$ наз. переходной вероятностью МП из состояния i в состояние j на интервале $(t;t+\Delta)$.

$$\sum_{i\in E} P_{ij}(t,\Delta) = 1$$

Марковский процесс задается семейством матриц переходных вероятностей $P_{ij}(t,\Delta)$, $i,j\in E$ и начальным распределением $p(0)=(p_i(0),\ i\in E)$, где $p_i(0)=P(\xi(0)=i)$

$$\sum_{i \in E} p_i(0) = 1, \forall i \in E \quad p_i(0) \ge 0$$

МП наз. однородным, если $P_{ij}(t, \Delta) = P_{ij}(\Delta)$

Однородный марковский процесс задается инфинитезимальными характеристиками (интенсивностями перехода и выхода) и начальным распределением.

Интенсивность перехода: $a_{ij} = \lim_{\Lambda \to 0} \frac{P_{ij}(\Delta)}{\Lambda}$, $i \neq j$

Предел a_{ij} всегда существует и всегда конечен.

Интенсивность выхода: $a_i = \lim_{\Delta \to 0} \frac{1 - P_{ii}(\Delta)}{\Delta}$

$$P_{ii}(\Delta) = P(\xi(t + \Delta) = i | \xi(t) = i)$$

Процесс регулярный (консервативный), если $a_i = \sum_{j \neq i} a_{ij}$

Процесс с конечным множеством состояния всегда является регулярным.

Для регулярного процесса верна систему ДУ Колмогорова:

$$P_j(t) = P(\xi(t) = j)$$

$$\begin{cases} P_j'(t) = -a_j P_j(t) + \sum_{i \neq j} a_{ij} P_i(t) \\ P_i(0) = p_i(0), \ j \in E \end{cases}$$

Предельное распределение

$$\pi_{j} = \lim_{t \to \infty} P_{j}(t)$$

$$\begin{cases} 0 = -a_{j}\pi_{j} + \sum_{i \neq j} a_{ij}\pi_{i} \\ \sum_{j} \pi_{j} = 1 \end{cases}$$

Конструктивное определение траектории

однородного марковского процесса.

 t_n – момент n-го изменения состояния процесса $\xi(t)$.

Последовательность $\xi_n = \xi(t_n), n \ge 0$ называется вложенной марковской цепью.

$$P(\xi_n = j | \xi_{n-1} = i) = \frac{a_{ij}}{a_i}$$

 $au_n = t_n - t_{n-1}$ – интервал между изменениями состояний процесса

$$P(\tau_n < t | \xi_{n-1} = i) = \begin{cases} 0, t \le 0 \\ 1 - e^{-a_i t}, t > 0 \end{cases}$$

Метод обратных функций для моделирования непрерывных случайных величин

Утверждение. Пусть X – непрерывная случайная величина, и ее функция распределения F(x)=P(X< x) монотонно возрастает. Тогда случайная величина Y=F(X) имеет равномерное распределение на отрезке [0;1].

Доказательство. Напомним, что если случайная величина равномерно распределена на отрезке [a;b], то ее функция распределения имеет следующий

вид:
$$G(y) = \begin{cases} 0, \ y \le a \\ \frac{y-a}{b-a}, \ a < y \le b \end{cases}$$
. Очевидно, для отрезка $[0;1]$ $G(y) = \begin{cases} 0, \ y \le 0 \\ y, \ 0 < y \le 1 \\ 1, \ y > 1 \end{cases}$

.

Найдем функцию распределения случайной величины Y = F(X). При $y \le 0$ $G_{_Y}(y) = P(Y < y) = P(F(X) < y) = 0$, поскольку F(X) – это вероятность, и она не может принимать отрицательные значения. Аналогично, если y > 1, то $G_{_Y}(y) = 1$, т.к. вероятность всегда ≤ 1 .

Осталось рассмотреть случай $0 < y \le 1$. Заметим, что поскольку функция F(x) непрерывна и монотонно возрастает, то у нее существует обратная функция, которая также является монотонно возрастающей. Поэтому $G_Y(y) = P(Y < y) = P(F(X) < y) = P\left(F^{-1}(F(X)) < F^{-1}(y)\right) = P(X < F^{-1}(y)) = F(F^{-1}(y)) = y$, что и треб.

Из доказанного утверждения следует, что если Y = F(X) — реализация случайной величины, имеющей равномерное распределение на отрезке [0;1], то $X = F^{-1}(Y)$ - это реализация случайной величины, имеющей распределение F(x). Поэтому для того, чтобы смоделировать выборку из генеральной совокупности с заданным теоретическим распределением, нужно сначала получить выборку $(Y_1,...,Y_n)$ из генеральной совокупности с равномерным распределением на отрезке [0;1], а затем, подставляя полученные числа в формулу обратной функции, вычислить значения $(X_1,...,X_n)$, которые и будут являться реализациями случайной величины с заданным распределением F(x).

$$F(t) = 1 - e^{-a_i t}$$

$$Y = F(X) = 1 - e^{-a_i X}$$

$$e^{-a_i X} = 1 - Y$$

$$-a_i X = \ln(1 - Y)$$

$$X = -\frac{\ln(1 - Y)}{a_i}$$

Моделирование дискретных случайных величин

 $Y \sim R[0; 1]$ Random, Uniform

$$P(X = k) = p_k, p_k \ge 0, \sum_{k=0}^{\infty} p_k = 1$$

$$P(Y \in (0; p_0)) = p_0 = P(X = 0)$$

$$P\left(Y \in \left(\sum_{i=0}^{k-1} p_i; \sum_{i=0}^{k} p_i\right)\right) = p_k = P(X = k)$$

Для эпидемического процесса:

(i,j) – текущее состояние в момент t

і – количество больных (инфицированных)

j – количество восприимчивых

$$a_{(i,j)(i+1,j-1)} = i\beta \frac{j}{N}$$

$$a_{(i,j)(i-1,j)}=i\gamma$$

$$a_{(i,j)} = i\beta \frac{j}{N} + i\gamma$$

$$P_{(i,j)(i+1,j-1)} = \frac{i\beta \frac{j}{N}}{i\beta \frac{j}{N} + i\gamma} = \frac{\beta \frac{j}{N}}{\beta \frac{j}{N} + \gamma}$$

$$P_{(i,j)(i-1,j)} = \frac{\gamma}{\beta \frac{j}{N} + \gamma}$$