Sebastian Lapuschkin (né Bach), December 16, 1986

sebastian@lapuschkin.com • +49 (177) 483-2754 • github.com/sebastian-lapuschkin Kaiserin-Augusta-Allee 92 • 10589 Berlin • Berlin • Germany

Summary

Sebastian received the Dr. rer. nat. (PhD) degree with distinction ("summa cum laude") from the Berlin Institute of Technology in 2018. From 2007 to 2013 he studied computer science (B. Sc. and M. Sc.) at the Berlin Institute of Technology, with a focus on software engineering and machine learning.

Currently, he is a tenured researcher at the machine learning group at Fraunhofer Heinrich Hertz Institute (HHI) in Berlin. His research interests include computer vision, machine learning and data analysis, data and algorithm visualization, and the interpretation and (meta-)analysis of machine learning system behavior.

Professional Experience

Fraunhofer Heinrich Hertz Institute/HHI

Berlin, Germany

Jan '19 – present

Tenured Researcher

Occupation of a PostDoc position at Fraunhofer HHI.

Current research focus: Development of (meta-)analysis methods of machine learning behaviour. Improving machine learning predictors and data sources using interpretability feedback.

Research Associate Oct '14 – Dec '18

Affiliation to the newly founded machine learning group at Fraunhofer HHI with simultaneous continuation of PhD studies at TU Berlin.

Research focus: Applications and refinement of the "Layer-wise Relevance Propagation" (LRP) method, resulting in several highly cited publications and multiple open source software tools and repositories.

Other work: Extensions of the h.265 (HEVC) video codec towards the upcoming h.266 standard.

Conceptualization and setup of a HPC cluster with modern GPU hardware.

Implementation of multiple live demos hands-on showcasing the groups' research nation-wide and internationally.

Additional supervision by Dr. Wojciech Samek.

Berlin Institute of Technology/TU Berlin

BERLIN, GERMANY

Research Associate

Sep '13 – Sep '14

Research focus: Formalization of the "Layer-wise Relevance Propagation" (LRP) concept for explaining individual and nonlinear decisions of machine learning methods, including Neural Networks and kernelized predictors.

Extension of LRP to one class learning and anomaly detection tasks.

Supervision by by Prof. Dr. Klaus-Robert Müller and Prof. Dr. Alexander Binder.

Research/Teaching Assistant

Oct '11 – Aug '13

Research assistant to Prof. Dr. Alexander Binder at the department for machine learning at TU Berlin. *Tasks:* Structure and cell type detection in large histopathology images using Bag of Words image processing pipelines and SVM classifiers.

Teaching assistant to Prof. Dr. Klaus-Robert Müller and Prof. Dr. Franz Király.

Tasks: Preparation and lecturing of exercise sessions complementing the lectures "Machine Learning 1" and "Machine Learning 2 – Theory and Application".

Visualization and animation of data and learning algorithms discussed in the lecture.

Teaching Assistant

Oct '09 – Sep '11

Teaching assistant to Prof. Dr. Marc Alexa, Prof. Dr. Odej Kao and Prof. Dr. Oliver Brock. *Tasks:* Course instruction for algorithmic and practical foundations of computer science (B.Sc.).

Curriculum: Basic and advanced Java development, software engineering and OOP concepts, algorithms on image and graph data, among others.

Education

Berlin Institute of Technology/TU Berlin

Berlin, Germany 2013 – 2018

PhD in Machine Learning (with distinction / "summa cum laude")

Research focus on methods and applications of explainable AI (XAI):

Layer-wise Relevance Propagation, Deep Taylor Decomposition, Spectral Relevance Analysis, et cetera.

20 published and peer-reviewed research papers with over 1200 citations according to Google Scholar.

Thesis: "Opening the machine learning black box with Layer-wise Relevance Propagation"

Master of Science degree in Computer Science (1.4 / "very good" / GPA 3.7)

2010 - 2013

Heavy focus on machine learning, computer vision and large scale data processing. Development dominantly using C++, C#, Java, Matlab and python.

My thesis introduces a precursor concept to "Layer-wise Relevance Propagation" for interpreting predictions of Bag of Words image processing pipelines with multiple kernel SVMs.

Thesis: "On Pixel-wise Predictions from Image-wise Bag of Words Classification" (Grade: 1.0 / A)

Bachelor of Science degree in Computer Science (2.0 / "good" / GPA 3.0)

2007 - 2010

Focus on algorithms, software development and data analysis using imperative (Java, C, C++) and functional (OPAL) programming languages.

Thesis: "Keyword-Based Image Browsing of Large Image Databases" (Grade: 1.0 / A)

Deutschhaus-Gymnasium/DHG

Würzburg, Germany

Abitur (pre-university secondary education)

1998 - 2007

Skills

Technical specialties: Extensive experience in software development using various languages, tools and environments:

(bash, C, C++, C#, git, HTML, Java, LINUX, lua, Matlab, python, subversion, SQL, UNIX, ...)

Proficiency in scientific working and writing (e.g. LATEX, Inkscape, ...),

the development and application of machine learning methods

(e.g. SVMs, DNNs, preprocessing pipelines, embeddings, clustering, ...),

in various application domains

(text, audio, video, images, time series and biomechanical data, ...).

Natural languages: German (mother tongue), English (full professional proficiency).

Interests

In no particular order: Data visualization, programming, working out, (couch-coop) video games, (audio) books, over-engineered automation of daily tasks, the outdoors and spending time with the wife, dogs & kid hiking in the woods, vegan food (cooking and eating, much).

Publications

Journal Articles

Alber M, Lapuschkin S, Seegerer P, Hägele M, Schütt K T, Montavon G, Samek W, Müller K-R, Dähne S and Kindermans P-J (2019).

"iNNvestigate Neural Networks!".

In: Journal of Machine Learning Research 20(93):1-8

Lapuschkin S, Wäldchen S, Binder A, Montavon G, Samek W and Müller K-R (2019).

"Unmasking Clever Hans Predictors and Assessing what Machines Really Learn".

In: Nature Communications 10:1069

Horst F, Lapuschkin S, Samek W, Müller K-R and Schöllhorn W I (2019).

"Explaining the Unique Nature of Individual Gait Patterns with Deep Learning".

In: Scientific Reports 9:2391

Montavon G, Lapuschkin S, Binder A, Samek W and Müller K-R (2017).

"Explaining NonLinear Classification Decisions with Deep Taylor Decomposition".

In: Pattern Recognition 65:211-222

Samek W, Binder A, Montavon G, Lapuschkin S, and Müller K-R (2017).

"Evaluating the Visualization of what a Deep Neural Network has Learned".

In: IEEE Transactions of Neural Networks and Learning Systems

Sturm I, Lapuschkin S, Samek W and Müller K-R (2016).

"Interpretable Deep Neural Networks for Single-Trial EEG Classification".

In: Journal of Neuroscience Methods 274:141-145

Lapuschkin S, Binder A, Montavon G, Müller K-R and Samek W (2016).

"The Layer-wise Relevance Propagation Toolbox for Artificial Neural Networks".

In: Journal of Machine Learning Research 17(114):1-5

Bach S, Binder A, Montavon G, Klauschen F, Müller K-R and Samek W (2015).

"On Pixel-wise Explanations for Non-Linear Classifier Decisions by Layer-wise Relevance Propagation". In: *PLoS ONE* 10(7):e0130140

Contributions to Conference Proceedings

Alber M, **Lapuschkin S**, Seegerer P, Hägele M, Schütt K T, Montavon G, Samek W, Müller K-R, Dähne S and Kindermans P-J (2018).

"How to iNNvestigate Neural Networks' Predictors!".

In: Machine Learning Open Source Software: Sustainable Communities. NIPS Workshop

Lapuschkin S, Binder A, Müller K-R and Samek W (2017).

"Understanding and Comparing Deep Neural Networks for Age and Gender Classification".

In: Proceedings of the ICCV'17 Workshop on Analysis and Modeling of Faces and Gestures (AMFG) 2017:1629-1638

Srinivasan V, Lapuschkin S, Hellge C, Müller K-R and Samek W (2017).

"Interpretable Action Recognition in Compressed Domain".

In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2017:1692-1696

Bach S, Binder A, Müller K-R and Samek W (2016).

"Controlling Explanatory Heatmap Resolution and Semantics via Decomposition Depth".

In: Proceedings of the IEEE International Conference of Image Processing (ICIP) 2016:2271-2275

Binder A, Samek W, Montavon G, Bach S, and Müller K-R (2016).

"Analyzing and Validating Neural Network Predictions".

In: Proceedings of the ICML'16 Workshop on Visualization for Deep Learning . Best paper award winner

Lapuschkin S, Binder A, Montavon G, Müller K-R and Samek W (2016).

"Analyzing Classifiers: Fisher Vectors and Deep Neural Networks".

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016:2912-2920

Montavon G, Bach S, Binder A, Samek W and Müller K-R (2016).

"Deep Taylor Decomposition of Neural Networks".

In: Proceedings of the ICML'16 Workshop on Visualization for Deep Learning 2016:2912-2920

Samek W, Montavon G, Binder A, Lapuschkin S and Müller K-R (2016).

"Interpreting the Predictions of Complex ML Models by Layer-wise Relevance Propagation".

In: Proceedings of the Interpretable ML for Complex Systems NIPS'16 Workshop

Book Chapters

Binder A, **Bach S**, Montavon G, Müller K-R and Samek W (2016).

"Layer-wise Relevance Propagation for Deep Neural Network Architectures".

In: *Information Science and Applications (ICISA) 2016. Lecture Notes in Electrical Engineering* 276:913-922. Springer Singapore

Binder A, Montavon G, Lapuschkin S, Müller K-R and Samek W (2016).

"Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers".

In: Lecture Notes in Computer Science 9887:63-71. Springer Berlin/Heidelberg

Preprints

Hägele M, Seegerer P, **Lapuschkin S**, Bockmayr M, Samek W, Klauschen F, Müller K-R, Binder A (2019). "Resolving Challenges in Deep Learning-based Analyses of Histopathological Images using Explanation Methods".

In: CoRR abs/1908.06943

Becker S, Ackermann M, Lapuschkin S, Müller K-R and Samek W (2018).

"Interpreting and Explaining Deep Neural Networks for Classification of Audio Signals".

In: CoRR abs/1807.03418

Schwenk G and Bach S (2014).

"Detecting Behavioural and Structural Anomalies in Media-Cloud Applications".

In: CoRR abs/1409.8035