Eksamen på Økonomistudiet. Sommeren 2011

MATEMATIK A

1. årsprøve
Tirsdag den 16. august 2011
(2 timers skriftlig prøve uden hjælpemidler)
Vi henleder din opmærksomhed på. at du skal besvare eksamensopgaven pa

Vi henleder din opmærksomhed på, at du skal besvare eksamensopgaven på dansk. Har du tilmeldt dig fagets engelske titel med "eksamen på dansk" i parentes, skal du også besvare det opgavesættet på dansk.

Er du i tvivl om, hvad du har tilmeldt dig, fremgår det af printet med din tilmelding fra de studerendes selvbetjening.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

1. ÅRSPRØVE 2011 S-1A rx

EKSAMEN I MATEMATIK A

Tirsdag den 16. august 2011

2 sider med 3 opgaver.

Løsningstid: 2 timer.

Ingen hjælpemidler må medbringes ved eksamen.

Opgave 1.

Rentesregning.

(1) Hvis den årlige rente i et pengeinstitut kaldes r, og der er n årlige terminer, skal man vise, at en kapital S_0 , som indsættes i pengeinstituttet på en terminsdag, og som forrentes i t år, vokser til

$$S_{nt} = S_0 \left(\left(1 + \frac{r}{n} \right)^n \right)^t = S_0 \left(1 + \frac{r}{n} \right)^{nt}.$$

(2) Vis, at

$$\left(1+\frac{r}{n}\right)^n \to e^r \text{ for } n \to \infty.$$

(3) Vis, at

$$r = n\Big(\Big(\frac{S_{nt}}{S_0}\Big)^{\frac{1}{nt}} - 1\Big).$$

Opgave 2. For ethvert $x \in \mathbf{R}$ betragter vi den uendelige række

$$(*) \qquad \sum_{n=0}^{\infty} \left(\frac{2}{5 + \cos(x)}\right)^n.$$

(1) Bestem mængden

$$K = \{x \in \mathbf{R} \mid (*) \text{ er konvergent}\}.$$

(2) Bestem en forskrift for funktionen $f: K \to \mathbf{R}$, som er givet ved

$$\forall x \in K : f(x) = \sum_{n=0}^{\infty} \left(\frac{2}{5 + \cos(x)}\right)^n.$$

- (3) Bestem den afledede f' af funktionen f.
- (4) Bestem mængden af de $x \in K$, hvor elasticiteten El f(x) for funktionen f eksisterer, og udregn derpå El f(x).

Opgave 3. Vi betragter mængden

$$D = \{(x, y) \in \mathbf{R}^2 \mid x > 0 \land y > 0\}$$

og funktionen $f:D\to\mathbf{R},$ som er defineret ved

$$\forall (x, y) \in D : f(x, y) = \ln(x) - x + \ln(y) - 5y.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

- (2) Vis, at funktionen f har netop et stationært punkt, bestem dette punkt, og godtgør, at det er et maksimumspunkt for f.
- (3) Lad funktionen $\phi: \mathbf{R} \to \mathbf{R}$ være givet ved

$$\forall s \in \mathbf{R} : \phi(s) = f(e^s, e^{2s}).$$

Vis, at funktionen ϕ er strengt konkav på hele den reelle akse, og bestem værdimængden $R(\phi)$ for ϕ .