Decision Tree Example: Locating a New Bar

Example taken from Callan, R. (2003). Artificial Intelligence, Basingstoke, UK: Palgrave MacMillan, p. 242-247.

A brewery owns a chain of bars/restaurants and wants to construct a way in which they can assess the suitability of a new site for a bar, based upon certain attributes. The attributes for a set of example data are given in the following table:

	City/Town	University	Housing Estate	Industrial Estate	Transport	Schools	Class
1	Y	Y	M	N	A	L	+
2	N	N	S	N	P	L	-
3	Y	Y	M	N	A	M	+
4	Y	N	M	N	P	S	ı
5	N	N	M	Y	P	M	+
6	N	Y	N	N	A	S	ı
7	Y	N	N	N	G	S	+
8	Y	N	S	N	A	M	ı
9	N	N	L	Y	P	L	+
10	N	N	M	N	P	S	ı
11	N	N	L	Y	A	M	+
12	Y	N	N	N	G	L	+
13	N	Y	S	N	P	L	ı
14	N	N	L	Y	P	L	+
15	Y	N	M	N	A	M	ı
16	Y	Y	N	N	G	S	+
17	N	N	L	N	A	M	-
18	N	N	L	N	P	S	-
19	Y	N	N	N	G	L	+
20	Y	N	N	N	G	S	+

The attributes define whether the example is a:

- 1. City or town: Yes or No.
- 2. Has a University nearby: Yes or No.
- 3. What type of housing estate, if any, is nearby: None, Small, Medium or Large.
- 4. Has an industrial estate nearby: Yes or No.
- 5. What is the quality of public transport like: Good, Average or Poor.
- 6. The number of schools nearby: Small, Medium or Large.

The class defines whether the brewery considers the site good (+) or bad (-).

Matthew Casey Page 1 of 2

Exercise

In a group, complete the following tasks:

1. Using the examples, construct a decision tree that the brewery can use to assess a new site.

Hint: look at each attribute in turn to determine if a single, or a group of attributes and values always give either a positive (+) or negative (-) class.

2. Test your decision tree using the following examples, noting the outcome:

	City/Town	University	Housing Estate	Industrial Estate	Transport	Schools
21	N	N	L	Y	A	S
22	N	Y	L	N	A	L
23	Y	Y	M	N	A	M
24	N	N	M	Y	A	S
25	Y	N	S	Y	A	M
26	Y	N	N	N	A	L
27	N	N	M	N	P	S
28	N	N	L	Y	P	L
29	Y	N	N	N	G	S

When thinking about these tasks, consider the following:

- 1. How did you construct the tree using the examples?
- 2. How did you choose which attribute you should use first and subsequently? Why?
- 3. Are there any attributes that you did not use?
- 4. How many trees can you construct using the same example data? If there is more than one tree, which is the best, and why?

Matthew Casey Page 2 of 2