RNA seq: differential expression analysis

For INF-BIO 4121/9121 Fall semester 2016

Rebekah Oomen / Monica Hongrø Solbakken r.a.oomen@ibv.uio.no / m.h.solbakken@ibv.uio.no

The INFBIO case

- Non-model organism Atlantic cod
- Reference genome available
- A treatment to investigate immune responses
- Simple treatment-control setup over time

The INFBIO case

Two time-points, 6 treated and 6 controls In total 12 samples

Input material for Tuxedo

- Raw reads
 - May be trimmed if f.ex mapping % is low
- A fairly good reference genome

Step I — mapping with Tophat

- Built upon the short read mapper Bowtie
 - Burrows-Wheeler indexing
- Tophat identifies possible splice junctions in the Bowtie alignment
- New mapping to these splice juntions
- Thus, no annotation of reference needed

The details of Tophat

Cufflinks

- Transcript assembly
 - A parsimonious strategy to resolve isoforms
- First level transcript quantification
 - Immature vs mature transcripts

Cuffmerge

 Pooling of cufflinks data per sample to ensure proper overall experiment "present transcripts" overview

Cuffdiff

Cuffdiff "learns the variation for each gene across replicates" to calculate differential expression

cummeRbund

All about the visuals...

Sequence evaluation / trimming and their effects on transcriptome analyses

Sequencing facility provides:

- Your sequence data in fastq format
- Usually a sequencing run together with an overall data evaluation
- If the sequencing facility has performed library prep you can ask for library quality checks
- Some guarantee certain amounts of reads from a lane/flow cell/SMRTcell

The fastq format

 Beware! Different sequencing technologies uses different quality encodings - ex : might correspond to different qualities

Raw sequence evaluation

Look for:

- Low sequence output from a certain lane(s)
- Several consecutive cycles with lower quality
- Very poor read 2 danger of loosing pairing
- Very biased kmer profile and sequence content

Some sources of bias are

- Instrument error
- Poor starting material
- Over-amplification of library

Check the fastqc reports I

Check the fastqc reports II

Raw read trimming

- Adapter trim: based on sequence similarity
 - Adapter/sequencing primer removal
- Hard trim: set number of bases
 - Certain primers
 - Known bias
- Soft trim: set quality threshold
 - Quality trimming
 - May be modified to trim on other criteria for special applications

What to trim I

- Depending on the aim of your project
 - Library adapters
 - Sequencing primers
 - Poor quality sequence beginning/end of read
 - Un-randomness at beginning/end of read

What to trim II

- De novo: Improves transcriptome assembly accuracy and efficiency
- Reference: shorter mapping time

Random hexamers in mRNA seq

- Hexamers are not completely random
- Hexamer hard trim is an option
- Might loose more data
- Might improve assembly
- Consider hard trim if your assembly/mapping stats are poor

What is enough trimming?

- · Recommended to do adapter and quality trim
- Expect to loose between 10 and 15 % of your sequence data (more with suboptimal libraries)
- A stringent and/or global trimming setup leads to more data loss
 - This works well if making a transcriptome assembly
 - Differential expression analysis will suffer

Trimming of uninformative reads?

Table 1 Sources of uninformative reads for different experiments				
Source of uninformative reads	WGS	WES	ChIP-seq	RNA-seq
Sequencing adaptor reads	\checkmark	\checkmark	✓	✓
Low-quality reads	\checkmark	\checkmark	✓	✓
Unmapped reads	\checkmark	\checkmark	✓	✓
Reads that do not map uniquely	\checkmark	\checkmark	✓	✓
PCR duplicates	\checkmark	\checkmark	✓	✓
Reads that map out with peaks, transcript models or exons	_	\checkmark	✓	\checkmark
Reads that map to uninformative transcripts (for example, rRNA)	_	-	_	\checkmark
ChIP-seq, chromatin immunoprecipitation followed by sequencing; RNA-seq, RNA sequencing;				

rRNA, ribosomal RNA; WES, whole-exome sequencing; WGS, whole-genome sequencing.

Low complexity / "identical" reads?

Assembly

- May slow down the assembly process
- Do not contribute to increased resolution
- Handled in various ways be different software
 - May lead to misassembled transcripts
- Differential expression
 - Do not remove low complex reads!
 - Normalization / removing reads affects read count

Effects of read trimming

Assembly

- Trimming-transcriptome completeness trade-off
- Trade-off between computation time and lower precision
- Trimming w/ sequence correction will lead to loss of rare transcripts

DE analysis

- Reduced dataset but higher % in mapback towards reference
- The trade-off is between Q20 and Q30
- Extensive trimming reduces information about lowly expressed genes

The sticky notes!

 Put up YELLOW if command is running nicely

Put up PINK if error or other issues

Where is what?

https://login.tl.uio.no/

/data/RNAseq/<various_folders>

- Don't write to these folders use your home area (~)
- When in doubt copy needed files to ~ and run command
- Protect long-running commands with screen, nohup or similar.

Do you know screen?

Protect long-running commands with screen, nohup or similar.

Want to kill a running job?

- Ctrl c if the command is running on your command line
- top if the command is running in the background
 - In top press k and then the related PID number to kill it
 - Press q to quit top

Want to save output printing to the terminal (on screen)?

- To save standard out and standard err (stdout, stderr) attach the following to any command you like:
 - 1>file.out 2>file.err
- Give the files names that make sense for you

```
cufflinks -p 30 -o 6hrs_A_cuff 6hrs_A/accepted_hits.bam
cufflinks -p 30 -o 6hrs_A_cuff 6hrs_A/accepted_hits.bam \
1>6hrsA_cufflinks.out 2>6hrsA_cufflinks.err
```

Short on syntax used on the slides

```
trim_galore \
--fastqc \
--gzip \
--length 40 \
--paired \
<~/Sample1_R1.gz> \
<~/Sample1_R2.gz> &
```

~ (tilde) is a shortcut referring to your home area

\ breaks up the command to make it more readable. Can also be used in the terminal

<...> fill in the true filename and do not use <>

& sends the command to the background to free the command line.

Short hands and short cuts

Making life easier on the command line

Clean up your home area regularly

Delete any non-usable files in your home area

```
rm file
rm -r directory
```

PS: this cannot be reversed!

Your allocated resources

- Memory will not be an issue in this module
- Each student has 2 CPUs available
- Unless otherwise stated a command will use 1 CPU

Exercise I

- Run fastqc on a full sample and a subsample
- Compare outputs

Run fastqc

pwd - see where you are

```
pwd
mkdir <sample_name>
which fastqc

fastqc -o <sample_name> \
    --noextract \
    /data/RNAseq/trimmed_sequences/sample.fastq
    /data/RNAseq/trimmed sequences/sample.fastq
```

Evaluate the fastqc output

- What does per base sequence quality tell you?
- What does per tile sequence quality tell you?
- Do you see signs of adapters/hexamers in the per base sequence content?
- Is the GC content reasonable for a vertebrate?
- Any overrepresented sequences?
- What differes between the two sample sets?

Mapping

- Make directory for index in ~
- Copy index there (.tb2 files + gff file)
- Run tophat2 on subsample (if time full sample also)

Evaluate the mapping results