4. Considere o seguinte problema de programação linear de maximização:

	z	x_1	x_2	x_3	x_4	
x_3	0	1		1	0	12
x_4	0	1	2	0	1	12
	1	-8	0	0	0	0

a) Resolva o problema utilizando o método Simplex. A resolução envolve vários pivôs degenerados. Relembre que a regra é: "Dada uma coluna pivô, a linha pivô (variável básica que sai da base) é a linha com **menor razão** (lado direito/coluna pivô) **positiva** (*i.e.*, coeficiente da coluna pivô >0)". Pode haver pivôs em que a menor razão é 0, dando origem a um pivô degenerado.

	z	x_1		x_3	x_4	
x_3	0	1	-1	1	0	12
x_3	0	1	2	0	1	12
	1	-8	0	0	0	0

Qual o elemento pivô?

Há um empate na escolha da linha pivô.

A próxima solução será degenerada.

O critério de desempate também não ajuda.

Vamos apresentar as resoluções seleccionando quer uma linha, quer outra.

Em primeiro lugar, seleccionando a primeira linha com linha pivô.

escolhendo a linha 1 como linha pivô:

		Z	x_1	x_2	X ₃	X_4	b
X	3	0	1	-1	1	0	12
X	1	0	1	2	0	1	12
Z		1	-8	0	0	0	0
		Z	x_{1}	\mathbf{x}_{2}	X ₃	X_4	
X	L	0	1	-1	1	0	12
X	1	0	0	3	-1	1	0
Z		1	0	-8	8	0	96

	Z	X_1	X ₂	X ₃	X_4	
X ₁	0	1	-1	1	0	12
X ₄	0	0	3	-1	1	0
Z	1	0	-8	8	0	96
						ı
	Z	x_1	X_2	X ₃	X_4	
X ₁	0	1	0	2/3	1/3	12
x ₂	0	0	1	-1/3	1/3	0
Z	1	0	0	16/3	8/3	96

Comentários:

- Último quadro permite concluir que a solução é óptima: (x1,x2,x3,x4)T = (12,0,0,0)T.
- Penúltimo quadro tem a mesma solução: (x1,x2,x3,x4)T = (12,0,0,0)T.
- A um mesmo vértice (solução básica) podem corresponder bases diferentes.
- No vértice óptimo, podemos ter bases óptimas e bases não óptimas.

escolhendo a linha 2 como linha pivô:

	Z	x_1	X_2	X ₃	X_4	b
X ₃	0	1	-1	1	0	12
x_4	0	1	2	0	1	12
Z	1	-8	0	0	0	0
1						ı
	Z	X ₁	X_2	X ₃	X_4	
X ₃	0	0	-3	1	-1	0
X_1	0	1	2	0	1	12
Z	1	0	16	0	8	96

⁻ Obtém-se uma base óptima alternativa, que corresponde à mesma solução básica: (x1,x2,x3,x4)T = (12,0,0,0)T com x1 = 12, e todas as outras variáveis nulas.