Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчет Лабораторная работа № 5 По курсу «Технологии машинного обучения»

ИСПС ЛЕНИ Е. Л	ОЛНИТЕЛІ)
-----------------------	----------	---

Группа ИУ5-65Б Камалов М.Р.

"1" июня 2021 г.

ПРЕПОДАВАТЕЛЬ

Гапанюк Ю.Е.

"__"___2021 г.

Москва 2021

Цель лабораторной работы: изучение ансамблей моделей машинного обучения.

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите две ансамблевые модели. Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.

Скрины jupyter notebook


```
In [3]:

from operator import itemgetter

def draw_feature_importances(tree_model, X_dataset, figsize=(10,5)):

"""

**BuBOJ Важности признаков в виде графика
"""

#*Copmupo&ka значений важности признаков по убыванию
list_to_sort = list(zip(X_dataset.columns.values, tree_model.feature_importances_))
sorted_list = sorted(list_to_sort, key=itemgetter(1), reverse = True)

#*Hasθaния признаков
labels = [x for x_ in sorted_list]

#*Bashнocmu πризнаков
data = [x for _,x in sorted_list]

#*BuBOd графика
fig, ax = plt.subplots(figsize=figsize)
ind = np.arange(len(labels))
plt.tar(ind, data)
plt.xticks(ind, labels, rotation='vertical')

#*BuBOd значений
for a,b in zip(ind, data):
    plt.text(a-0.05, b+0.01, str(round(b,3)))
plt.tshr(kow())
return labels, data
```

```
def print_accuracy_score_for_classes(
    y_true: np.ndarray,
    y_pred: np.ndarray):
    """

    Bывод метрики асcuracy для каждого класса
    """

    accs = accuracy_score_for_classes(y_true, y_pred)
    if len(accs)>0:
        print('Meтка \t Accuracy')
    for i in accs:
        print('{} \t {}'.format(i, accs[i]))
```

Выборка датасета и ее разделение на тестовую и обучающую

]:		alaahal	malia asid		alcalinity of ach		tatal mhamala	flavanaida	nonflavonoid nhanala	nroanth a svanina	color intensity	hua	~4300/~4:
_		alconor	manc_acid	asıı	alcalifity_ol_asfi	magnesium	total_prieriois	navanoius	nonflavanoid_phenols	proantilocyanins	color_intensity	nue	00280/003
	0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	
	1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	
	2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	
	3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	
	4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	
	173	13.71	5.65	2.45	20.5	95.0	1.68	0.61	0.52	1.06	7.70	0.64	
	174	13.40	3.91	2.48	23.0	102.0	1.80	0.75	0.43	1.41	7.30	0.70	
	175	13.27	4.28	2.26	20.0	120.0	1.59	0.69	0.43	1.35	10.20	0.59	
	176	13.17	2.59	2.37	20.0	120.0	1.65	0.68	0.53	1.46	9.30	0.60	
	177	14.13	4.10	2.74	24.5	96.0	2.05	0.76	0.56	1.35	9.20	0.61	
1	170 r	v 12	columns										
	17010	JW5 ^ 13	COIUITIIIS										
4													•

Обучение моделей и тестирование

Случайный лес


```
In [15]:
target1 = tree_wine.predict(X_test)
accuracy_score(Y_test, target1), precision_score(Y_test, target1, average='macro')
```

Out[15]: (0.9830508474576272, 0.9866666666666667)

In [16]: print_accuracy_score_for_classes(Y_test, target1)

Метка Accuracy 0 1.0 1 0.9545454545454546

2 1.0

Бустинг

In [13]: # BaxHocmb npu3Hako6
gr_boost_wine = GradientBoostingClassifier(random_state=1)
gr_boost_wine.fit(X_train, Y_train)
__,_ = draw_feature_importances(gr_boost_wine, wine_df)


```
In [17]: target2 = gr_boost_wine.predict(X_test)
accuracy_score(Y_test, target2), precision_score(Y_test, target2, average='macro')
```

Out[17]: (0.9661016949152542, 0.9743589743589745)

In [19]: print_accuracy_score_for_classes(Y_test, target2)

Метка Accuracy 0 1.0 1 0.909090909090909091 2 1.0

Выводы

Принимая во внимание, что модель **случайного леса** получила результат точнее, можем сделать вывод, что датасет wine содержит в основном простые зависимости, нежели сложные. Это означает, что борьба с переобучением приносит лучшие результаты в этом датасете.