Routing -- Overview

Kameswari Chebrolu

Service Model Implementation

Background

- Role of network layer is 'end-host delivery'
 - We looked at how packets are forwarded
- How are forwarding tables built? Via Routing Protocols
- Routing vs Forwarding
- Routing domain: All routers under same administrative control
 - E.g. University network, ISP network

Theory

- Based on Graph theory
- Nodes: Hosts, Routers, Networks
- Edges: Correspond to physical links
 - Edges associated with a cost
 - No edge → infinite cost
- Neighbor: Directly connected nodes

Goal of Routing

- Single Pair 'shortest' path problem: Find least cost path between two nodes
 - Path cost is sum of the costs of the individual edges
 - Assumption: Links are undirected

Nodes A, E

Goal of Routing

- Single-source 'shortest' path problem: Find least cost path from a source to all other nodes in the graph
- Refer to Dijkstra's algorithm

Desirable Features

- Optimality: Least cost paths
- Correctness: Path actually exists
- Simplistic: Easy to implement
- Robust: Handle router/link failures
- Stable: Fast convergence to equilibrium after state change
 - Minimal overhead: No. and frequency of message exchange
 - Scalable: Handle large number of nodes

Cost Metric

- Cost = $1 \rightarrow$ Hop count
 - Doesn't distinguish between links based on bandwidth, delay, current load, losses etc
- Static: 1/link_bandwidth
- Dynamic: Queue Length, Delay
 - Not stable (ping-pong effect)
- Reality: Links assigned 'static' cost by administrators (e.g. Constant/link_bandwidth)

Summary

- Routing based on graph theory
- Goal of routing is to find 'optimal' path between nodes
- Many approaches to routing
 - Popular: dynamic, distributed based on global/local information
- Up ahead: Popular routing algorithms