TF-IDF (Term Frequency-Inverse Document Frequency)

It is a technique used to convert text into numbers, just like Bag of Words, but it's smarter — it tries to capture importance of words.

Or Purpose of TF-IDF

- **BoW** treats all words equally even common words like "the", "is", "and" get high scores.
- TF-IDF solves this by reducing the weight of common words and increasing the weight of rare but meaningful words.

In short:

"TF-IDF tells you how important a word is in a document, relative to a collection of documents."

1. Term Frequency (TF)

- This is the **number of times** a word appears in a document.
- But we usually normalize it (to prevent bias from longer docs):

$$\mathrm{TF}(w,d) = \frac{\mathrm{Count\ of\ word\ } w \mathrm{\ in\ document\ } d}{\mathrm{Total\ words\ in\ document\ } d}$$

2. Inverse Document Frequency (IDF)

This tells us **how rare or common** a word is across all documents.

$$ext{IDF}(w) = \log \left(rac{N}{1 + ext{Number of documents containing } w}
ight)$$

brace brace The **log** is $ightarrow log_e$

- **N** = Total number of documents
- Rare words → high IDF
- Common words → low IDF

Corpus → Paragraph

Document → Sentence

Vocabulary → Unique Words

Words → All the words present in corpus

TF-IDF = TF × IDF

- **High** when: the word appears often in one document but not in others.
- Low when: the word is common in many documents.

Sa →	good l good g boy giv	ory To	erm Fregit	Pocument Frequency F) = No. of rep of words in sentence No. of words in sentence loge (No. of Sentences No. of sentences containing the word)
	Term	Frequency		<u>IDF</u>
	Sı	S 2	S 3	Words IDF
good	1/2	1/2	<i>y</i> ₃	good 10ge(3/3)=0
boy	1/2	0	1/3	boy $\log_2(3/2)$
girl	0	1/2	1/3	girl 19c(3/2)

	good	boy	girl	<u>ي</u>
Sent 1	O,	1/2 x 10g (3/2)	0	
Sun+ 2	0	Ο	1/2 109 (3/2)	
Scnt 3	0	1 loge (3/2)	1/3 loge(3/2)	

Suppose you have 3 documents:

D1 = "I love pizza"

D2 = "I love burgers"

D3 = "I hate pizza"

Step 1: Vocabulary

["I", "love", "pizza", "burgers", "hate"]

Step 2: Count word frequencies → TF

Normalize counts (optional)

Step 3: Count in how many documents each word appears → IDF

Word	Appears in Docs	IDF Calculation	IDF (approx)
1	3	log(3 / (1+3)) = log(1)	0.0
love	2	log(3 / (1+2)) = log(1.5)	0.4
pizza	2	log(3 / (1+2)) = log(1.5)	0.4
burgers	1	log(3 / (1+1)) = log(1.5)	0.4
hate	1	log(3 / (1+1)) = log(1.5)	0.4

Then multiply **TF** × **IDF** for each word in each document.

tf(t,d)

	blue	bright	can	see	shining	sky	sun	today
1	1/2	0	0	0	0	1/2	0	0
2	0	1/3	0	0	0	0	1/3	1/3
3	0	1/3	0	0	0	1/3	1/3	0
4	0	1/6	1/6	1/6	1/6	0	1/3	0

- TF-IDF: Multiply TF and IDF scores, use to rank importance of words within documents
 - Most important word for each document is highlighted

idf(t, D)

 $tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$

	blue	bright	can	see	shining	sky	sun	today
1	0.301	0	0	0	0	0.151	0	0
2	0	0.0417	0	0	0	0	0.0417	0.201
3	0	0.0417	0	0	0	0.100	0.0417	0
4	0	0.0209	0.100	0.100	0.100	0	0.0417	0

Python Example using scikit-learn

```
from sklearn.feature_extraction.text import TfidfVectorizer
docs = ["I love pizza", "I love burgers", "I hate pizza"]
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(docs)
# View results
print(X.toarray()) # The TF-IDF matrix
print(vectorizer.get_feature_names_out())
```

```
[[0.
                        0.70710678 0.70710678]
                        0.60534851 0.
             0.79596054 0.
                                    0.60534851]
'burgers' 'hate' 'love' 'pizza']
```

Key Parameters in TfidfVectorizer

Parameter Description		Example		
stop_words	Remove common words ('english')	stop_words='english'		
ngram_range	Include word pairs ((1,2))	ngram_range=(1, 2)		
max_features	Limit vocabulary size	max_features=1000		
norm	Normalize vectors ('12' , '11')	norm='I2'		

Interpretation of Output

- The **TF-IDF matrix** contains floating-point numbers.
- Each number shows how important a word is in that document.
- Words that appear in many documents have low TF-IDF.

EXECUTE Comparison with Bag of Words

Feature	Bag of Words	TF-IDF
Word Count	Yes	Yes
Penalize Common Words	X No	✓ Yes
Capture Importance	X No	✓ Yes
Values	Integers (0,1,2)	Floats (0.0 to 1.0 approx.)
Sparse Matrix	Yes	Yes

☆ Where TF-IDF is Used

- Document classification
- Search engines (ranking relevant documents)
- · Spam filtering
- Information retrieval
- Text clustering

Advantages of TF-IDF

1. Highlights important words and downplays common ones (IMP for interview)

- If a word is present in every sentence, less importance is given to that word
- 2. Improves accuracy of classical ML models
- 3. Fast and efficient to compute
- 4. Works without labeled data (unsupervised)
- 5. **Interpretable** easy to see which words matter
- 6. **Customizable** with parameters like min_df , max_df , ngram_range

▲ Limitations of TF-IDF

Limitation	Why it happens
X Ignores word order	Like BoW
X No context	"bank" in money vs river — treated same
X Not deep	Cannot detect meaning or sarcasm
X Still sparse	For large text, matrix still full of zeros

👺 Trivia

- TF-IDF is unsupervised no labels are needed.
- It's still used as a **baseline** in many NLP systems.
- In deep learning, it's replaced by **word embeddings** (Word2Vec, BERT, etc.) but TF-IDF is still useful when:
 - You want fast results
 - You want explainable features
 - You're working with small data

Word2Vec is still best.