

National University of Computer & Emerging Sciences, Karachi Spring-2025 FAST School of Computing

MT-2008 Multivariate Calculus

ASSIGNMENT #3

Q 1. Evaluate $\iint_D xy \, dA$, where D is the region bounded by the line y=x-1 and the parabola $y^2 = 2x + 6.$

Q 2. Find the volume of the solid under the surface $z=2x+y^2$ and above the region bounded by $x = y^2$ and $x = y^3$.

Q 3. Evaluate the integral by reversing the order of integration.

$$\int_0^1 \int_{\arcsin y}^{\pi/2} \cos x \sqrt{1 + \cos^2 x} \, dx \, dy$$

Q 4. Use double integral to find the area of the region above the x-axis, between the cardioid $r = 2 + 2\sin\theta$ and circle $r = 6\sin\theta$.

Q 5. Evaluate the iterated integral by converting to polar coordinates. $\iint_D 2y \ dA$, where D is the region in the first quadrant bounded above by the circle $(x-1)^2 + y^2 = 1$ and below by the line y = x.

Q 6. Evaluate the iterated integral.

$$\int_0^3 \int_0^1 \int_0^{\sqrt{1-z^2}} z e^y \, dx \, dz \, dy$$

Q 7. Evaluate the integral $\int_C F.\,dr$, where $F(x,y,z)=x{f i}-z{f j}+y{f k}$ and ${f C}$ is given by $r(t) = 2ti + 3ti - t^2k - 1 \le t \le 1$

Q 8. Evaluate the line integral $\int_{\text{C}} xyz^2 \, ds$, where C is the line segment from (-1, 5 , 0) to (1, 6, 4).

Q 9. Use Green's Theorem to evaluate the line integral along the curve C:

 $\int_{\mathcal{C}} (e^{x} + y^{2}) dx + (e^{y} + x^{2}) dy$, where C is the boundary of the region between $y = x^{2}$ and y = x.

Q 10. Evaluate the surface integral. $\iint_S xy \ dS$, Where S is the triangular region with vertices (1,0,0),(0,2,0), and (0,0,2).