8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY

8.1 Normaalimuotomenetelmä

Usean vapausasteen systeemin liikeyhtälöiden (7.2) ratkaiseminen vaatii kaavan (7.37) tai (7.38) homogeenisen yhtälön yleisen ratkaisun $\{x\}$ lisäksi pakkovoimavektoria $\{F\}$ vastaavan yksityisratkaisun $\{x\}_p$ tuntemista. Joissakin yksittäistapauksissa, kuten harmoniselle pakkovoimavektorille, voidaan yksityisratkaisu arvata. Yleisesti tämä ei onnistu, joten tarvitaan tehokkaampia menetelmiä. Pakkovoimavektorin luonne vaikuttaa yksityisratkaisun löytämiseen, mutta on selvää, että liikeyhtälöiden kytkentä hankaloittaa tilannetta. Eräs mahdollisuus liikeyhtälöiden (7.2) ratkaisemiseksi on normaalimuotomenetelmä, jonka periaatteet esitetään seuraavassa. Perusajatus tuli esille kaavan (7.35) yhteydessä, jonka mukaan systeemin tila voidaan esittää ominaismuotojen lineaarisena yhdistelmänä. Normaalimuotomenetelmässä systeemin tilan kuvaamiseen valitaan uudet koordinaatit η_i , $i=1,2,\ldots,n$ siten, että koordinaatti η_i ilmaisee, millä osuudella ominaismuoto $\{X\}_i$ on mukana systeemin tilassa. Osoittautuu vielä, että koordinaatit η_i , $i=1,2,\ldots,n$ ovat pääkoordinaatit eli niiden avulla lausutut liikeyhtälöt eivät sisällä staattista eivätkä dynaamista kytkentää.

Normaalimuotomenetelmässä lähtökohtana ovat systeemin liikeyhtälöt ja alkuehdot lausuttuna mielivaltaisen koordinaattien $\{x\} = \{x_1 \ x_2 \ \cdots \ x_n\}$ avulla eli

$$[M] \{\ddot{x}\} + [K] \{x\} = \{F\} \qquad \{x(0)\} = \{x_0\} \qquad \{\dot{x}(0)\} = \{\dot{x}_0\}$$
(8.1)

Aluksi ratkaistaan ominaiskulmataajuudet ω_i , i = 1, 2, ..., n karakteristisesta yhtälöstä

$$\det([K] - \omega^2[M]) = 0 \tag{8.2}$$

jonka jälkeen lasketaan normeeratut ominaismuodot $\{X\}_i$, i = 1, 2, ..., n yhtälöistä

$$([K] - \omega_i^2[M])(X)_i = \{0\}, i = 1, 2, ..., n$$
 (8.3)

Jos systeemillä on moninkertaisia ominaiskulmataajuuksia, valitaan niitä vastaamaan ominaismuodot, jotka toteuttavat ortogonaalisuusehdot

$$\{X\}_{i}^{T}[M]\{X\}_{j} = \{X\}_{i}^{T}[K]\{X\}_{j} = 0 \qquad (8.4) \ x_{1}(t) = X_{1}\sin\Omega t \qquad x_{2}(t) = X_{2}\sin\Omega t$$

kun i \neq j . Muodostetaan modaalimatriisi $\left[\Phi\right]$, jonka pystyrivit ovat ominaisvektorit

$$[\Phi] = [\{X\}_1 \quad \{X\}_2 \quad \cdots \quad \{X\}_n]$$
 (8.5)

Määritellään pääkoordinaatit $\{\eta\} = \{\eta_1 \quad \eta_2 \quad \cdots \quad \eta_n\}$ yhtälöllä

$$\{x\} = \eta_1\{X\}_1 + \eta_2\{X\}_2 + \dots + \eta_k\{X\}_n = [\Phi]\{\eta\}$$
(8.6)

Muunnetaan liikeyhtälöt (8.1) pääkoordinaatistoon sijoittamalla $\{x\}$ kaavasta (8.6) ja kertomalla saatua yhtälöä vasemmalta matriisilla $[\Phi]^T$, jolloin seuraa

$$[\Phi]^{\mathsf{T}}[\mathsf{M}][\Phi] \{\ddot{\eta}\} + [\Phi]^{\mathsf{T}}[\mathsf{K}][\Phi] \{\eta\} = [\Phi]^{\mathsf{T}} \{\mathsf{F}\}$$
 (8.7)

Kirjoitetaan yhtälö (8.7) muotoon

$$\boxed{ \left[\widetilde{\mathsf{M}} \right] \left\{ \widetilde{\mathsf{\eta}} \right\} + \left[\widetilde{\mathsf{K}} \right] \left\{ \widetilde{\mathsf{\eta}} \right\} = \left\{ \widetilde{\mathsf{F}} \right\} }$$
 (8.8)

jossa on käytetty merkintöjä

$$\left[\widetilde{\mathsf{M}}\right] = \left[\Phi\right]^{\mathsf{T}} \left[\mathsf{M}\right] \left[\Phi\right] \qquad \left[\widetilde{\mathsf{K}}\right] = \left[\Phi\right]^{\mathsf{T}} \left[\mathsf{K}\right] \left[\Phi\right] \qquad \left\{\widetilde{\mathsf{F}}\right\} = \left[\Phi\right]^{\mathsf{T}} \left\{\mathsf{F}\right\}$$

$$(8.9)$$

 $\left[\widetilde{M}\right]$ on modaalimassamatriisi, $\left[\widetilde{K}\right]$ modaalijäykkyysmatriisi ja $\left\{\widetilde{F}\right\}$ modaalivoimavektori. Ominaismuotojen ortogonaalisuudesta (8.4) seuraa, että $\left[\widetilde{M}\right]$ ja $\left[\widetilde{K}\right]$ ovat lävistäjämatriiseja, joiden lävistäjäalkioina ovat modaalimassat M_i ja modaalijäykkyydet K_i

$$M_i = \{X\}_i^T[M]\{X\}_i$$
 $K_i = \{X\}_i^T[K]\{X\}_i$ (8.10)

Liikeyhtälöt (8.8) ovat auki kirjoitettuna muotoa

$$\begin{cases} M_1 \ddot{\eta}_1 + K_1 \eta_1 = \widetilde{F}_1 \\ \dots \\ M_i \ddot{\eta}_i + K_i \eta_i = \widetilde{F}_i \\ \dots \\ M_n \ddot{\eta}_n + K_n \eta_n = \widetilde{F}_n \end{cases} \tag{8.11}$$

Jakamalla yhtälöt (8.11) puolittain modaalimassoilla ja ottamalla lisäksi huomioon yhtälö (7.14) saadaan

$$\begin{cases} \ddot{\eta}_{1} + \omega_{1}^{2} \, \eta_{1} = \widetilde{F}_{1} / M_{1} \\ \dots \\ \ddot{\eta}_{i} + \omega_{i}^{2} \, \eta_{i} = \widetilde{F}_{i} / M_{i} \\ \dots \\ \ddot{\eta}_{n} + \omega_{n}^{2} \, \eta_{n} = \widetilde{F}_{n} / M_{n} \end{cases}$$

$$(8.12)$$

Kukin tuntematon koordinaatti η_i voidaan ratkaista omasta yhtälöstään, sillä yhtälöiden (8.12) välillä ei ole kytkentää. Ryhmän (8.12) yhtälöt ovat toisen kertaluvun tavallisia differentiaaliyhtälöitä. Tyypillisen yhtälön

$$\ddot{\eta}_i + \omega_i^2 \, \eta_i = \tilde{\mathsf{F}}_i \, / \mathsf{M}_i \tag{8.13}$$

ratkaisu voidaan esittää muodossa

$$\eta_{i} = \eta_{ih} + \eta_{ip} \tag{8.14}$$

jossa η_{ih} on homogeenisen yhtälön yleinen ratkaisu ja η_{ip} täydellisen yhtälön yksityisratkaisu. Tunnetusti on voimassa

$$\eta_{ih} = D_i \sin \omega_i t + E_i \cos \omega_i t \tag{8.15}$$

Yksityisratkaisun η_{ip} etsimiseen voidaan soveltaa kaikkia tavallisten differentiaaliyhtälöiden teorian yhteydessä esitettyjä menetelmiä, kuten esimerkiksi Duhamelin integraalia. Vakiot D_i ja E_i saadaan alkuehdoista (8.1), jotka on vielä muunnettava pääkoordinaatistoon. Kaavan (8.6) perusteella saadaan

$$\{x(0)\} = \{x_0\} = [\Phi] \{\eta(0)\} \qquad \{\dot{x}(0)\} = \{\dot{x}_0\} = [\Phi] \{\dot{\eta}(0)\}$$
(8.16)

Kertomalla nämä yhtälöt puolittain vasemmalta matriisilla $\left[\Phi\right]^{\mathsf{T}}\left[\mathsf{M}\right]$ saadaan tulokset

$$[\boldsymbol{\Phi}]^{\mathsf{T}} [\mathsf{M}] \{ \mathbf{x}_{0} \} = [\widetilde{\mathsf{M}}] \{ \boldsymbol{\eta}(0) \} \qquad [\boldsymbol{\Phi}]^{\mathsf{T}} [\mathsf{M}] \{ \dot{\mathbf{x}}_{0} \} = [\widetilde{\mathsf{M}}] \{ \dot{\boldsymbol{\eta}}(0) \}$$
 (8.17)

Koska $\left[\widetilde{\mathbf{M}}\right]$ on lävistäjämatriisi, saadaan pääkoordinaattien alkuehdoiksi

$$\eta_{i}(0) = \frac{1}{M_{i}} \{X\}_{i}^{T} [M] \{x_{0}\} \qquad \dot{\eta}_{i}(0) = \frac{1}{M_{i}} \{X\}_{i}^{T} [M] \{\dot{x}_{0}\} \quad , i = 1, 2, ..., n$$
(8.18)

Kun pääkoordinaatit η_i tunnetaan, kaavan (8.6) avulla voidaan palata alkuperäisiin koordinaatteihin x_i .

8.1.1 Harmoninen pakkovoimavektori

Tarkastellaan harmonista pakkovoimavektoria vastaavaa yksityisratkaisua. Kuormitusvektorina on tällöin

$$\{F\} = \{F_0\} \sin \Omega t \tag{8.19}$$

jossa $\{F_0\}$ on vakiovektori. Modaalivoimavektoriksi tulee tässä tapauksessa

$$\left\{ \tilde{\mathsf{F}} \right\} = \left[\Phi \right]^{\mathsf{T}} \left\{ \mathsf{F}_{0} \right\} \sin \Omega \mathsf{t} \tag{8.20}$$

Vektorin $\left\{ \mathbf{\tilde{F}} \right\}$ tyypillinen komponentti on

$$\widetilde{F}_{i} = \{X\}_{i}^{\mathsf{T}} \{F_{0}\} \sin \Omega t = P_{i} \sin \Omega t \tag{8.21}$$

jolloin on merkitty $P_i = \{X\}_i^T \{F_0\}$. Koordinaattia η_i vastaava liikeyhtälö on siis

$$\ddot{\eta}_{i} + \omega_{i}^{2} \eta_{i} = \frac{P_{i}}{M_{i}} \sin \Omega t \tag{8.22}$$

jonka yksityisratkaisu on tapauksissa $\Omega \neq \omega_i$

$$\eta_{ip} = Y_i \sin \Omega t = \frac{P_i}{M_i} \frac{1}{\omega_i^2 - \Omega^2} \sin \Omega t = \frac{P_i}{K_i} \frac{1}{1 - (\Omega/\omega_i)^2} \sin \Omega t$$
(8.23)

8.1.2 Esimerkki 1

Kahden vapausasteen vaimenemattoman pakkovärähtelyn liikeyhtälöt ovat muotoa

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} F_1(t) \\ F_2(t) \end{Bmatrix}$$
(8.24)

Kuva 8.1 Esimerkki 1.

Liikeyhtälöiden ratkaisemisessa tarvitaan systeemin alkuehdot eli on tunnettava alkuasemat $x_1(0)$ ja $x_2(0)$ sekä alkunopeudet $\dot{x}_1(0)$ ja $\dot{x}_2(0)$.

Tarkastellaan liikeyhtälöiden (8.24) ratkaisemista kuvan 8.1 kahden va-

pausasteen jousi-massa systeemin tapauksessa, kun kuormituksena on harmoninen pakkovoimavektori

$$\{F(t)\} = \{F_1 \quad 0\} \sin \Omega t$$

Systeemin liikeyhtälöiksi tulee

$$\begin{bmatrix} m & 0 \\ 0 & 2m \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \begin{bmatrix} 2k & -k \\ -k & 3k \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} F_1 \\ 0 \end{Bmatrix} \sin \Omega t$$

Ratkaistaan aluksi ominaiskulmataajuudet ja -muodot. Yhtälöstä

$$\left(\begin{bmatrix} 2k & -k \\ -k & 3k \end{bmatrix} - \omega^2 \begin{bmatrix} m & 0 \\ 0 & 2m \end{bmatrix} \right) \begin{Bmatrix} X_1 \\ X_2 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$

seuraa karakteristinen yhtälö

$$\begin{vmatrix} 2k - m\omega^2 & -k \\ -k & 3k - 2m\omega^2 \end{vmatrix} = 0 \implies (2k - m\omega^2)(3k - 2m\omega^2) - k^2 = 0$$

$$\Rightarrow \qquad 2m^2(\omega^2)^2 - 7km(\omega^2) + 5k^2 = 0 \quad \Rightarrow \quad \omega_1^2 = \frac{k}{m} \quad \omega_2^2 = \frac{5k}{2m}$$

Amplitudien yhtälöparin toisesta yhtälöstä seuraa

$$-k X_{1} + (3k - 2m\omega^{2}) X_{2} = 0 \qquad \Rightarrow \qquad \frac{X_{2}}{X_{1}} = \frac{k}{3k - 2m\omega^{2}}$$

$$\Rightarrow \qquad \left(\frac{X_{2}}{X_{1}}\right)_{1} = \frac{k}{3k - 2k} = 1 \qquad \left(\frac{X_{2}}{X_{1}}\right)_{2} = \frac{k}{3k - 5k} = -0.5$$

Ominaisvektorit ovat näin ollen $\{X\}_1 = A_1\{1\ 1\}$ ja $\{X\}_2 = A_2\{1\ -0.5\}$. Ne on esitetty kuvassa 8.2, kun $A_1 = A_2 = 1$. Muodostetaan systeemin modaalimatriisi $[\Phi]$, jonka pystyrivit ovat normeeratut ominaismuodot eli

Kuva 8.2 Ominaisvektorit.

$$\begin{bmatrix} \mathbf{\Phi} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -0.5 \end{bmatrix}$$

jossa on valittu $A_1 = A_2 = 1$. Määritellään pääkoordinaatit η_1 ja η_2 yhtälöllä

$$\{x\} = [\Phi] \{\eta\}$$

jossa $\{x\} = \{x_1 \quad x_2\}$ ja $\{\eta\} = \{\eta_1 \quad \eta_2\}$. Pääkoordinaatit määrittelevä yhtälö on siis

Modaalivoimavektoriksi saadaan

$$\left\{\widetilde{F}\right\} = \begin{bmatrix} 1 & 1 \\ 1 & -0.5 \end{bmatrix} \left\{ \begin{matrix} F_1 \\ 0 \end{matrix} \right\} sin\Omega t = \left\{ \begin{matrix} F_1 \\ F_1 \end{matrix} \right\} sin\Omega t$$

joten kaavan (8.21) $P_1 = F_1$ ja $P_2 = F_1$. Lasketaan modaalimassat ja -jäykkyydet

$$M_1 = \{X\}_1^T [M] \{X\}_1 = \{1 \ 1\} \begin{bmatrix} m & 0 \\ 0 & 2m \end{bmatrix} \{1 \\ 1 \} = 3m$$

$$M_2 = \{X\}_2^T [M] \{X\}_2 = \{1 -0.5\} \begin{bmatrix} m & 0 \\ 0 & 2m \end{bmatrix} \{ 1 \\ -0.5 \} = \frac{3}{2} m$$

$$K_1 = \left\{X\right\}_1^T \begin{bmatrix} K \end{bmatrix} \left\{X\right\}_1 = \left\{1 \quad 1\right\} \begin{bmatrix} 2k & -k \\ -k & 3k \end{bmatrix} \begin{Bmatrix} 1 \\ 1 \end{Bmatrix} = 3k$$

$$K_2 = \{X\}_2^T [K] \{X\}_2 = \{1 -0.5\} \begin{bmatrix} 2k - k \\ -k & 3k \end{bmatrix} \begin{Bmatrix} 1 \\ -0.5 \end{Bmatrix} = 15k/4$$

Liikeyhtälöt pääkoordinaatistossa ovat kaavan (8.22) perusteella

$$\ddot{\eta}_1 + \omega_1^2 \, \eta_1 = \frac{F_1}{3m} sin\Omega t \qquad \ddot{\eta}_2 + \omega_2^2 \, \eta_2 = \frac{2F_1}{3m} sin\Omega t$$

Ratkaisu pääkoordinaatistossa on kaavojen (8.14), (8.15) ja (8.23) mukaisesti

$$\begin{split} & \eta_1 = \eta_{1h} + \eta_{1p} = D_1 \sin \omega_1 t + E_1 \cos \omega_1 t + Y_1 \sin \Omega t \\ & \eta_2 = \eta_{2h} + \eta_{2p} = D_2 \sin \omega_2 t + E_2 \cos \omega_2 t + Y_2 \sin \Omega t \end{split}$$

joissa D_1 ja E_1 sekä D_2 ja E_2 ovat alkuehdoista saatavia vakioita ja

$$Y_1 = \frac{F_1/3k}{1 - (\Omega/\omega_1)^2}$$
 $Y_2 = \frac{4F_1/15k}{1 - (\Omega/\omega_2)^2}$

Olkoot alkuehdot $\{x_0\} = \{0\}$ ja $\{\dot{x}_0\} = \{0\}$, eli systeemi on alkuhetkellä levossa tasapainoasemassaan. Pääkoordinaattien alkuehdoiksi tulee tällöin kaavasta (8.18)

$$\eta_1(0) = 0 \qquad \quad \eta_2(0) = 0 \qquad \quad \dot{\eta}_1(0) = 0 \qquad \quad \dot{\eta}_2(0) = 0$$

Ensimmäisestä ja toisesta alkuehdosta seuraa $E_1 = 0$ ja $E_2 = 0$, joten

$$\dot{\eta}_1 = \omega_1 D_1 \cos \omega_1 t + \Omega Y_1 \cos \Omega t \qquad \dot{\eta}_2 = \omega_2 D_2 \cos \omega_2 t + \Omega Y_2 \cos \Omega t$$

Kolmannesta ja neljännestä alkuehdosta seuraa $D_1=-\frac{\Omega}{\omega_1}Y_1$ ja $D_2=-\frac{\Omega}{\omega_2}Y_2$, joten

$$\eta_1 = -\frac{\Omega}{\omega_1} Y_1 \sin \omega_1 t + Y_1 \sin \Omega t \qquad \quad \eta_2 = -\frac{\Omega}{\omega_2} Y_2 \sin \omega_2 t + Y_2 \sin \Omega t$$

Alkuperäisten koordinaattien ratkaisut saadaan kaavan (8.6) muunnoksella eli

$$\begin{aligned} x_1 &= \eta_1 + \eta_2 = \left(-\frac{\Omega}{\omega_1} Y_1 \sin \omega_1 t - \frac{\Omega}{\omega_2} Y_2 \sin \omega_2 t \right) + \left(Y_1 + Y_2 \right) \sin \Omega t \\ x_2 &= \eta_1 - 0.5 \, \eta_2 = \left(-\frac{\Omega}{\omega_1} Y_1 \sin \omega_1 t + 0.5 \cdot \frac{\Omega}{\omega_2} Y_2 \sin \omega_2 t \right) + \left(Y_1 - 0.5 \cdot Y_2 \right) \sin \Omega t \end{aligned}$$

joissa viimeiset termit edustavat pakkovärähtelyjä ja niiden amplitudit X₁ ja X₂ ovat

$$X_{1} = \frac{F_{1}/3k}{1 - \left(\Omega/\omega_{1}\right)^{2}} + \frac{4F_{1}/15k}{1 - \left(\Omega/\omega_{2}\right)^{2}} \qquad X_{2} = \frac{F_{1}/3k}{1 - \left(\Omega/\omega_{1}\right)^{2}} - \frac{2F_{1}/15k}{1 - \left(\Omega/\omega_{2}\right)^{2}}$$

Kuvassa 8.3 on esitetty normeeratut amplitudit $f_1=k\,X_1/F_1$ ja $f_2=k\,X_2/F_1$ taajuussuhteen $r_1=\Omega/\omega_1$ funktiona. Käyrät lähestyvät ääretöntä resonanssikohdissa $\Omega=\omega_1$ ja $\Omega=\omega_2=\sqrt{\frac{5}{2}}\,\omega_1\approx$ 1,581 ω_1 , joissa yksityisratkaisut eivät ole voimassa.

Nähdään, että herätevoiman kulmataajuuden Ω ollessa lähellä jotakin systeemin ominaiskulmataajuutta on syntyvällä pakkovärähtelyllä hyvin suuri amplitudi.

Kuva 8.3 Yksityisratkaisut.

8.1.3 Esimerkki 2

Tarkastellaan kohdan 7.2.1 esimerkin 1 jousi-massa systeemiä parametrien arvoilla m = 10 kg ja k = 1000 N/m, kun systeemiin vaikuttaa harmoninen pakkovoimavektori $\{F\} = \{0 \ F_0 \ 0\} \sin \Omega t$, jossa $\Omega = 10 \, \text{rad/s}$ ja $F_0 = 10 \, \text{N}$. Ominaiskulmataajuuksiksi ja modaalimatriisiksi saadaan sivun 7.5 ja 7.6 tuloksien perusteella

$$\omega_1 \approx 7,654 \frac{\text{rad}}{\text{s}}$$
 $\omega_2 \approx 14,142 \frac{\text{rad}}{\text{s}}$ $\omega_3 \approx 18,478 \frac{\text{rad}}{\text{s}}$ $\left[\Phi\right] = \begin{bmatrix} 1 & 1 & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & -1 & 1 \end{bmatrix}$

joten pääkoordinaatit määrittelevä yhtälö on

$$\left\{ x \right\} = \left\{ \begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix} \right\} = \left[\begin{matrix} \Phi \end{matrix} \right] \left\{ \eta \right\} = \left[\begin{matrix} 1 & 1 & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & -1 & 1 \end{matrix} \right] \left\{ \begin{matrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{matrix} \right\} = \left\{ \begin{matrix} \eta_1 + \eta_2 + \eta_3 \\ \sqrt{2} \left(\eta_1 - \eta_3 \right) \right\} \\ \eta_1 - \eta_2 + \eta_3 \end{matrix} \right\}$$

Modaalivoimavektoriksi saadaan

$$\left\{ \widetilde{F} \right\} = \begin{bmatrix} \Phi \end{bmatrix}^{\mathsf{T}} \left\{ F \right\} = \begin{bmatrix} 1 & \sqrt{2} & 1 \\ 1 & 0 & -1 \\ 1 & -\sqrt{2} & 1 \end{bmatrix} \left\{ \begin{matrix} 0 \\ 10 \\ 0 \end{matrix} \right\} \sin(10t) = \left\{ \begin{matrix} 14,142 \\ 0 \\ -14,142 \end{matrix} \right\} \sin(10t)$$

joten $P_1 = 14,142N$, $P_2 = 0$ ja $P_3 = -14,142N$.

Lasketaan modaalimassat ja -jäykkyydet

$$M_1 = \begin{cases} 1 & \sqrt{2} & 1 \end{cases} \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{cases} 1 \\ \sqrt{2} \\ 1 \end{bmatrix} = 40 \text{ kg}$$

$$M_2 = \left\{ 1 \quad 0 \quad -1 \right\} \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix} \left\{ \begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right\} = 20 \, \text{kg}$$

$$M_1 = \begin{cases} 1 & -\sqrt{2} & 1 \end{cases} \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{cases} 1 \\ -\sqrt{2} \\ 1 \end{bmatrix} = 40 \text{ kg}$$

$$K_1 = \begin{cases} 1 & \sqrt{2} & 1 \end{cases} \begin{bmatrix} 2000 & -1000 & 0 \\ -1000 & 2000 & -1000 \\ 0 & -1000 & 2000 \end{bmatrix} \begin{cases} 1 \\ \sqrt{2} \\ 1 \end{cases} \approx 2343 \, \text{N/m}$$

$$K_2 = \left\{ \begin{matrix} 1 & 0 & -1 \end{matrix} \right\} \begin{bmatrix} 2000 & -1000 & 0 \\ -1000 & 2000 & -1000 \\ 0 & -1000 & 2000 \end{bmatrix} \left\{ \begin{matrix} 1 \\ 0 \\ -1 \end{matrix} \right\} = 4000 \, N/m$$

$$K_3 = \begin{cases} 1 & -\sqrt{2} & 1 \end{cases} \begin{bmatrix} 2000 & -1000 & 0 \\ -1000 & 2000 & -1000 \\ 0 & -1000 & 2000 \end{bmatrix} \begin{cases} 1 \\ -\sqrt{2} \\ 1 \end{cases} \approx 13657 \text{ N/m}$$

Liikeyhtälöt pääkoordinaatistossa ovat kaavan (8.22) mukaan (yksiköt on jätetty pois)

$$\ddot{\eta}_1 + 58,579 \, \eta_1 = 0,35355 \sin(10 \, t)$$

 $\ddot{\eta}_2 + 200,000 \, \eta_2 = 0$

$$\ddot{\eta}_3 + 341,421\eta_3 = -0,35355\sin(10t)$$

Ratkaisu pääkoordinaatistossa saadaan kaavoista (8.14), (8.15) ja (8.23) ja se on

$$\eta_1 = D_1 \sin(7,654t) + E_1 \cos(7,654t) - 0,0085355 \sin(10t)$$

$$\eta_2 = D_2 \sin(14,142t) + E_2 \cos(14,142t)$$

$$\eta_3 = D_3 \sin(18,478t) + E_3 \cos(18,478t) - 0,0014645 \sin(10t)$$

Olkoot systeemin alkuehdot

$$\{x_0\} = \{0 \quad 0,01m \quad 0\} \qquad \{\dot{x}_0\} = \{0 \quad 0 \quad 0\}$$

Tällöin kaavasta (8.18) seuraa pääkoordinaattien alkuehdoiksi

$$\eta_1(0) = \frac{1}{40} \begin{cases} 1 & \sqrt{2} & 1 \end{cases} \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{cases} 0 \\ 0,01 \\ 0 \end{bmatrix} = 0,0035355 \, \text{m} \qquad \dot{\eta}_1(0) = 0$$

$$\eta_2(0) = \frac{1}{20} \left\{ 1 \quad 0 \quad -1 \right\} \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{Bmatrix} 0 \\ 0,01 \\ 0 \end{Bmatrix} = 0 \qquad \qquad \dot{\eta}_2(0) = 0$$

$$\eta_3(0) = \frac{1}{40} \left\{ 1 - \sqrt{2} \quad 1 \right\} \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix} \left\{ \begin{matrix} 0 \\ 0,01 \\ 0 \end{matrix} \right\} = -0,0035355 \, \text{m} \quad \dot{\eta}_3(0) = 0$$

Asemien alkuehdoista seuraa

$$\eta_1(0) = E_1 = 0.0035355 \,\text{m}$$
 $\eta_2(0) = E_2 = 0$ $\eta_3(0) = E_3 = -0.0035355 \,\text{m}$

Nopeuksien lausekkeiksi tulee derivoimalla

$$\begin{split} &\dot{\eta}_1 = 7,654 \cdot D_1 \cos(7,654\,t) - 7,654 \cdot E_1 \sin(7,654\,t) - 0,085355 \cos(10\,t) \\ &\dot{\eta}_2 = 14,142 \cdot D_2 \cos(14,142\,t) - 14,142 \cdot E_2 \sin(14,142\,t) \\ &\dot{\eta}_3 = 18,478 \cdot D_3 \cos(18,478\,t) - 18,478 \cdot E_3 \sin(18,478\,t) - 0,014645 \cos(10\,t) \end{split}$$

Nopeuksien alkuehdoista seuraa

$$\begin{split} \dot{\eta}_1(0) &= 7,654 \cdot D_1 - 0,085355 = 0 \quad \Rightarrow \quad D_1 = 0,011152\,\text{m} \\ \dot{\eta}_2(0) &= 14,142 \cdot D_2 = 0 \quad \Rightarrow \quad D_2 = 0 \\ \dot{\eta}_3(0) &= 18,478 \cdot D_3 - 0,014645 = 0 \quad \Rightarrow \quad D_3 = 0,00079256\,\text{m} \end{split}$$

Sijoittamalla lasketut vakiot liikeyhtälöiden ratkaisuun saadaan tulokset

$$\begin{split} &\eta_1 = 0.011152 \sin(7.654\,t) + 0.0035355 \cos(7.654\,t) - 0.0085355 \sin(10\,t) \\ &\eta_2 = 0 \\ &\eta_3 = 0.00079256 \sin(18.478\,t) - 0.0035355 \cos(18.478\,t) - 0.0014645 \sin(10\,t) \end{split}$$

Alkuperäiset koordinaatit $\{x\}$ saadaan kaavasta $\{x\} = [\Phi] \{\eta\}$ eli

$$\begin{aligned} x_1(t) &= \eta_1 + \eta_2 + \eta_3 = 0.011152\sin(7.654\,t) + 0.0035355\cos(7.654\,t) + \\ &\quad 0.00079256\sin(18.478\,t) - 0.0035355\cos(18.478\,t) - 0.010000\sin(10\,t) \end{aligned}$$

$$\begin{aligned} x_2(t) &= \sqrt{2} \left(\eta_1 - \eta_3 \right) = 0.015772 \sin(7.654 \, t) + 0.0050000 \cos(7.654 \, t) - \\ &\quad 0.0011209 \sin(18.478 \, t) + 0.0050000 \cos(18.478 \, t) - 0.010000 \sin(10 \, t) \end{aligned}$$

$$\begin{aligned} x_3(t) &= \eta_1 - \eta_2 + \eta_3 = 0.011152\sin(7.654\,t) + 0.0035355\cos(7.654\,t) + \\ &\quad 0.00079256\sin(18.478\,t) - 0.0035355\cos(18.478\,t) - 0.010000\sin(10\,t) \end{aligned}$$

Kuvassa 8.4 on esitetty siirtymien kuvaajat aikavälillä [0,10]s.

Kuva 8.4 Siirtymien vaihtelu.

8.2 Värähtelyn absorbointi

Kuva 8.5 Absorbointi.

Tarkastellaan pakkovärähtelyn sovelluksena kuvan 8.5 vaimentamatonta kahden vapausasteen systeemiä, jossa alempaan massaan m_1 vaikuttaa harmoninen pakkovoima $F(t) = F_0 \sin \Omega t$. Systeemin liikeyhtälöiksi saadaan kuvan 8.5 vapaakappalekuvista Newtonin lakia käyttämällä

$$\begin{cases} m_1\ddot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 = F_0 \sin\Omega t \\ m_2\ddot{x}_2 - k_2x_1 + k_2x_2 = 0 \end{cases}$$
 (8.25)

Etsitään liikeyhtälöiden pakkovoimaa vastaavaa yksityisratkaisua muodossa

$$x_1(t) = X_1 \sin \Omega t \qquad x_2(t) = X_2 \sin \Omega t \tag{8.26}$$

jolloin kiihtyvyydet ovat

$$\ddot{\mathbf{x}}_{1}(t) = -\mathbf{\Omega}^{2} \, \mathbf{X}_{1} \sin \mathbf{\Omega} t \qquad \ddot{\mathbf{x}}_{2}(t) = -\mathbf{\Omega}^{2} \, \mathbf{X}_{2} \sin \mathbf{\Omega} t \tag{8.27}$$

Sijoitetaan yksityisratkaisu liikeyhtälöryhmään, josta seura tulos

$$\begin{cases} -m_{1}\Omega^{2} X_{1} \sin\Omega t + (k_{1} + k_{2}) X_{1} \sin\Omega t - k_{2} X_{2} \sin\Omega t = F_{0} \sin\Omega t \\ -m_{2}\Omega^{2} X_{2} \sin\Omega t - k_{2} X_{1} \sin\Omega t + k_{2} X_{2} \sin\Omega t = 0 \end{cases}$$
(8.28)

Kaavasta (8.28) seuraa amplitudien X_1 ja X_2 ratkaisemiseen yhtälöpari

$$\begin{cases} (k_1 + k_2 - m_1 \Omega^2) X_1 - k_2 X_2 = F_0 \\ k_2 X_1 + (k_2 - m_2 \Omega^2) X_2 = 0 \end{cases}$$
(8.29)

Otetaan käyttöön merkinnät $s_1^2 = k_1/m_1$ ja $s_2^2 = k_2/m_2$. Tällöin yhtälöparin (8.29) toisesta yhtälöstä seuraa tulos

$$X_{1} = \left[1 - (\Omega/s_{2})^{2}\right] X_{2} \tag{8.30}$$

Sijoittamalla tulos (8.30) yhtälöparin (8.29) toiseen yhtälöön saadaan

$$(k_1 + k_2 - m_1 \Omega^2) \Big[1 - (\Omega/s_2)^2 \Big] X_2 - k_2 X_2 = F_0 \qquad \Rightarrow$$

$$\Big\{ \Big[1 + k_2 / k_1 - (\Omega/s_1)^2 \Big] \Big[1 - (\Omega/s_2)^2 \Big] - k_2 / k_1 \Big\} X_2 = F_0 / k_1$$
(8.31)

josta ratkeaa massan m₂ amplitudille X₂ lauseke

$$X_{2} = \frac{F_{0}/k_{1}}{\left[1 + k_{2}/k_{1} - (\Omega/s_{1})^{2}\right]\left[1 - (\Omega/s_{2})^{2}\right] - k_{2}/k_{1}}$$
(8.32)

Massan m₁ amplitudiksi saadaan kaavasta (8.30)

$$X_{1} = \frac{\left[1 - (\Omega/s_{2})^{2}\right] F_{0}/k_{1}}{\left[1 + k_{2}/k_{1} - (\Omega/s_{1})^{2}\right] \left[1 - (\Omega/s_{2})^{2}\right] - k_{2}/k_{1}}$$
(8.33)

Kaavasta (8.33) näkyy, että massan m_1 pakkovärähtelyn amplitudi X_1 saadaan nollaksi valitsemalla $s_2^2 = k_2/m_2$ siten, että

$$1 - \left(\Omega/\mathrm{s}_2\right)^2 = 0 \tag{8.34}$$

Tällöin systeemin osa k_2 , m_2 toimii häiriötaajuutta Ω vastaavana massan m_1 värähtelyn absorboijana. Kaavasta (8.34) seuraa häiriötaajuutta Ω vastaavaksi absorboijan viritysehdoksi

$$k_2/m_2 = \Omega^2 \tag{8.35}$$

Absorbointitilannetta vastaavaksi massan m₂ amplitudiksi tulee kaavasta (8.32)

$$X_2 = -F_0/k_2$$
 (8.36)

Absorboijaa suunniteltaessa on otettava huomioon amplitudin X_2 sallittu arvo. Massaan m_2 vaikuttavan jousivoiman amplitudi on $k_2 X_2 = -F_0$. Absorboijan toiminta perustuu näin ollen siihen, että siitä aiheutuu massaan m_1 häiriövoiman kanssa yhtä suuri, mutta vastakkaissuuntainen voima.