ESE 402/542 Recitation 6: Hypothesis Testing

Topics

- ► Hypothesis testing overview
- ► Neyman-Pearson paradigm

- ► *H*₀: null hypothesis (default model)
- $ightharpoonup H_1$: alternative model (default model not true)

- ► *H*₀: null hypothesis (default model)
- $ightharpoonup H_1$: alternative model (default model not true)
- Accept or reject H_0 based on seen data X_1, \ldots, X_n

- $ightharpoonup H_0$: null hypothesis (default model)
- ► *H*₁: alternative model (default model not true)
- ▶ Accept or reject H_0 based on seen data X_1, \ldots, X_n
- ▶ Partition the space of all possible observations $\{X_1, \ldots, X_n\}$ into R and $R^{\mathbb{C}}$, based on a test statistic

- ► *H*₀: null hypothesis (default model)
- $ightharpoonup H_1$: alternative model (default model not true)
- Accept or reject H_0 based on seen data X_1, \ldots, X_n
- ▶ Partition the space of all possible observations $\{X_1, \dots, X_n\}$ into R and R^{\complement} , based on a test statistic
- R contains all the observations where H₀ is rejected, hence R is the rejection region
- Likewise, R^{\complement} is the acceptance region

Type I/II errors

- ► For any rejection region *R*, there are two errors that can happen
- Type I error: reject H₀ when H₀ is true (samples land in R, but H₀ was true)
- ▶ Probability of type I error: $\alpha(R) = P(X_1, ..., X_n \in R; H_0)$
- ▶ Type II error: accept H_0 when H_0 is false (samples land in R^{\complement} , but H_0 was false)
- ▶ Probability of type II error: $\beta(R) = P(X_1, ..., X_n \notin R; H_1)$

Type I/II errors

- Note that in the traditional hypothesis testing set-up, the Type I error $\alpha(R)$ is precisely the experimenter-designated significance level. It quantifies the acceptable level of risk in the experiment: " $\alpha=0.05$ means there is a 5% probability that the null model occurs by chance, which is unlikely enough for me".
- Type II error is not always accessible to the experimenter. Requires knowledge of the actual alternative distribution. This is not known to us when we define an alternative hypothesis like $H_1 = \theta \neq \theta_0$.
- Type II error is often seen as the more "dangerous" error. This is often due to the convention of notation, e.g. $H_0 =$ Patient does not have disease, $H_1 =$ Patient does have disease. Accepting the null hypothesis when the patient does have the disease is very bad, from a clinical point of view.

Type I/II errors

However, mathematically, Type I and II errors are not any more or less important than each other. In fact, sometimes they are philosophically equivalent, e.g.

$$H_0: \mu = \mu_0$$

 $H_1: \mu = \mu_1$,

where μ_0 and μ_1 are possible means of a normal distribution. Then $\alpha = \mathbb{P}[H_1|H_0]$, $\beta = \mathbb{P}[H_0|H_1]$. Note that those errors exactly flip if we had set

$$H'_0: \mu = \mu_1$$

 $H'_1: \mu = \mu_0.$

$$\alpha' = \mathbb{P}[H'_1|H'_0] = \mathbb{P}[H_0|H_1] = \beta,$$

 $\beta' = \mathbb{P}[H'_0|H'_1] = \mathbb{P}[H_1|H_0] = \alpha.$

There are not always two well-defined alternative hypotheses. Instead, you may have a question like "Is my coin fair?".

▶ Have null hypothesis of the form $H_0: \theta = \theta_0$. Alternative hypothesis is simply $H_1: \theta \neq \theta_0$

- ▶ Have null hypothesis of the form $H_0: \theta = \theta_0$. Alternative hypothesis is simply $H_1: \theta \neq \theta_0$
- ▶ Choose a test statistic $T(X_1, ..., X_n)$

- ▶ Have null hypothesis of the form $H_0: \theta = \theta_0$. Alternative hypothesis is simply $H_1: \theta \neq \theta_0$
- ightharpoonup Choose a test statistic $T(X_1, \ldots, X_n)$
- ▶ Determine the shape of rejection region (where does H_0 get rejected)
- Choose a significance level α_0 where you want the type I error α to be less than

- ▶ Have null hypothesis of the form $H_0: \theta = \theta_0$. Alternative hypothesis is simply $H_1: \theta \neq \theta_0$
- ▶ Choose a test statistic $T(X_1, ..., X_n)$
- ▶ Determine the shape of rejection region (where does H_0 get rejected)
- Choose a significance level α_0 where you want the type I error α to be less than
- ▶ Determine a threshold t for your statistic T such that the $\alpha \leq \alpha_0$ (this determines rejection region)

Suppose we have X_1, \ldots, X_n i.i.d. normal, with mean θ (unknown) and known variance σ^2 . We want to know if they are 0-mean or not. Hence $H_0: \theta = 0$, $H_1: \theta \neq 0$.

- Naturally, rejection region might be of the form $|T| \ge t$

- ► Choose $T = \frac{X_1 + \dots + X_n}{\sigma \sqrt{n}}$
- Naturally, rejection region might be of the form $|T| \ge t$
- We want to find t such that $\alpha_0 = P(|T| \ge t; \theta = 0)$

- ► Choose $T = \frac{X_1 + \dots + X_n}{\sigma \sqrt{n}}$
- Naturally, rejection region might be of the form $|T| \ge t$
- We want to find t such that $\alpha_0 = P(|T| \ge t; \theta = 0)$
- ► $P(|T| \ge t; \theta = 0) = P(|\mathcal{N}(0,1)| \ge t) = \alpha$

- ► Choose $T = \frac{X_1 + \dots + X_n}{\sigma_2 \sqrt{n}}$
- Naturally, rejection region might be of the form $|T| \ge t$
- We want to find t such that $\alpha_0 = P(|T| \ge t; \theta = 0)$
- ► $P(|T| \ge t; \theta = 0) = P(|\mathcal{N}(0,1)| \ge t) = \alpha$
- ▶ Thus, we set $t = z(\alpha/2)$, and reject H_0 if |T| > t

Example Problem: Means of Two Populations

Let X_1, \ldots, X_{n_1} be i.i.d. Bernoulli(θ_X) and Y_1, \ldots, Y_{n_2} be i.i.d. Bernoulli(θ_Y). Consider the two hypotheses $H_0: \theta_X = \theta_Y$ and $H_1: \theta_X \neq \theta_Y$. Determine a rejection region for H_0 at the α significance level.

Hint 1: Under H_0 , $\theta_X = \theta_Y$.

Hint 2: Use a statistic that is based on $\bar{\theta}_X - \bar{\theta}_Y$ and apply the CLT.

Example Problem: Means of Two Populations

Let X_1, \ldots, X_{n_1} be i.i.d. Bernoulli(θ_X) and Y_1, \ldots, Y_{n_2} be i.i.d. Bernoulli(θ_Y). Consider the two hypotheses $H_0: \theta_X = \theta_Y$ and $H_1: \theta_X \neq \theta_Y$. Determine a rejection region for H_0 at the α significance level.

Hint 1: Under H_0 , $\theta_X = \theta_Y$.

Hint 2: Use a statistic that is based on $\bar{\theta}_X - \bar{\theta}_Y$ and apply the CLT. Solution: We want to reject H_0 if $\bar{\theta}_X - \bar{\theta}_Y$ is large. Under H_0 ,

$$\hat{\sigma}^2 = \operatorname{var}(\bar{\theta}_X - \bar{\theta}_Y) = \operatorname{var}(\bar{\theta}_X) + \operatorname{var}(\bar{\theta}_Y) = \frac{1}{n_1} \bar{\theta}_X (1 - \bar{\theta}_X) + \frac{1}{n_2} \bar{\theta}_Y (1 - \bar{\theta}_Y)$$

$$E[\bar{\theta}_X - \bar{\theta}_Y] = 0$$

Hence $\frac{1}{\hat{\sigma}}(\bar{\theta}_X - \bar{\theta}_Y) \sim \mathcal{N}(0,1)$ Therefore we reject H_0 if $\frac{1}{\hat{\sigma}}(\bar{\theta}_X - \bar{\theta}_Y) > z(\alpha/2)$

Example Problem: