Examenul de bacalaureat național 2015 Proba E. c)

Matematică M pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{18} = 3\sqrt{2}$, $\sqrt{50} = 5\sqrt{2}$ și $\sqrt{8} = 2\sqrt{2}$	3 p
	$9 - 3\sqrt{2} + 5\sqrt{2} - 2\sqrt{2} = 9$	2p
2.	f(2) = 2 - m	2p
	$2 - m = 0 \Leftrightarrow m = 2$	3 p
3.	$x^2 + 1 = 1$	2p
	x = 0 care verifică ecuația	3p
4.	$5\% \cdot x = \frac{x}{20}$, unde x este profitul anual al firmei	3 p
	$\frac{x}{20} = 2\ 000 \Rightarrow x = 40\ 000$ de lei	2p
5.	$m_d = 1$ și $m = m_d \Rightarrow m = 1$	3 p
	Ecuația dreptei este $y = x - 2$	2p
6.	$\sin 30^{\circ} = \frac{1}{2}, \cos 30^{\circ} = \frac{\sqrt{3}}{2}$	2p
	$\sin 30^{\circ} + \sqrt{3} \cdot \cos 30^{\circ} = \frac{1}{2} + \sqrt{3} \cdot \frac{\sqrt{3}}{2} = 2$	3p

SUBIECTUL al II-lea (30 de puncte)

1.	(-2)*2=(-2)+2-2=	3 p
	=-2	2p
2.	(x*y)*z = (x+y-2)*z = x+y+z-4	2p
	x*(y*z) = x*(y+z-2) = x+y+z-4 = (x*y)*z pentru orice numere reale x, y şi z	3 p
3.	x*2=x+2-2=x pentru orice număr real x	3p
	2 * x = 2 + x - 2 = x pentru orice număr real x	2p
4.	(x+1)+x-2=3	3p
	x = 2	2p
5.	$9^{x} + 3^{x} - 2 = 0 \Leftrightarrow (3^{x} + 2)(3^{x} - 1) = 0$	3 p
	x = 0	2p
6.	$x^{2} * \frac{1}{x^{2}} = x^{2} + \frac{1}{x^{2}} - 2 = \frac{x^{4} - 2x^{2} + 1}{x^{2}} =$	2p
	$= \frac{\left(x^2 - 1\right)^2}{x^2} \ge 0 \text{ pentru orice număr real nenul } x$	3р

SUBIECTUL al III-lea (30 de puncte)

1.	$\det(A(0)) = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = 0 \cdot 0 - (-1) \cdot 1 =$	3p
	=1	2p
2.	$A(1) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \ A(-1) = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}, \ A(7) = \begin{pmatrix} 7 & 1 \\ -1 & 7 \end{pmatrix}$	3p
	$4 \cdot A(1) - 3 \cdot A(-1) = 4 \cdot \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} - 3 \cdot \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 7 & 1 \\ -1 & 7 \end{pmatrix} = A(7)$	2p
3.	$\det(A(a)) = \begin{vmatrix} a & 1 \\ -1 & a \end{vmatrix} = a^2 + 1$	2p
	$a^2 + 1 = 10 \Leftrightarrow a_1 = -3 \text{ si } a_2 = 3$	3 p
4.	$A(a) - I_2 = \begin{pmatrix} a - 1 & 1 \\ -1 & a - 1 \end{pmatrix}$	3p
	$\det(A(a) - I_2) = \begin{vmatrix} a - 1 & 1 \\ -1 & a - 1 \end{vmatrix} = (a - 1)^2 + 1 > 0 \text{ pentru orice număr real } a$	2p
5.	$\det(A(2)) = 5$	2p
	$A^{-1}(2) = \begin{pmatrix} \frac{2}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} \end{pmatrix}$	3 p
6.	$\det(A(a)) = \begin{vmatrix} a & 1 \\ -1 & a \end{vmatrix} = a^2 + 1$	2p
	$a^2 \le 400 \Leftrightarrow a \le 20$ și $a \in \mathbb{Z}$, deci sunt 41 de matrice $A(a)$ care verifică cerința	3 p