Thomas R. Cameron

Davidson College

Mathematics and Computer Science

Phone: 509-330-0195

E-mail: thcameron@davidson.edu URL: www.thomasrcameron.com

Current Position

Visiting Assistant Professor, Mathematics and Computer Science, Davidson College

Areas of Specialization

Linear Algebra and the numerical solution of both the linear and nonlinear eigenvalue problems. Additional interests include: dynamical systems, matrix polynomials, programming, and spectral theory.

Appointments Held

current	Visiting	Assistant	Professor,	Davidson	College
---------	----------	-----------	------------	----------	---------

Visiting Assistant Professor, The College of Idaho 2016-2017

Education

2013-2016	Рн.D. in Mathematics, Washington State University
2012-2013	M.Sc. in Mathematics, Washington State University
2009-2012	B.Sc. in Mathematics, University of Minnesota Duluth

Honors & Awards

2015	MSRI Summer Graduate School on Spectral Geometry, University of Montreal
2015	Radziemski Fellowship, Washington State University
2012	Sylvan D. Burgstahler Memorial Scholarship, University of Minnesota Duluth

Publications & Presentations

JOURNAL ARTICLES

2017

2017	Thomas R. Cameron and Panayiotis J. Psarrakos, On the generalization of Descartes' rule of signs for
	matrix polynomials, In Progress.
2017	Thomas R. Cameron, The Determinant: from Signed Volume to Laplace's Formula, In Review.

Thomas R. Cameron and Nikolas I. Steckley, On the application of Laguerre's method to the polynomial eigenvalue problem, https://arxiv.org/abs/1703.08767.

- Thomas R. Cameron, On the reduction of matrix polynomials to Hessenberg form, Electronic Journal of Linear Algebra, 31 (2016), 321-334.
- Thomas R. Cameron, Spectral bounds for matrix polynomials with unitary coefficients, Electronic Journal of Linear Algebra, 30 (2015), 585-591.

TALKS

- Descartes' Rule of Signs for matrix polynomials, AMS Spring Western Sectional Meeting, Washington State University.
- A conjecture on Descartes' Rule of Signs for matrix polynomials, CLaN Seminar, Washington State University.
- Spectral bounds for unitary matrix polynomials, Analysis Seminar, Washington State University.
- Constructive proof of Hessenberg form for matrix polynomials, CLaN Seminar, Washington State University.
- Another approach to Jordan form, CLaN Seminar, Washington State University.
- 2015 How do we really find eigenvalues?, Colloquium, University of Minnesota Duluth.
- 2014 Hyman's method for matrix polynomials, CLaN Seminar, Washington State University.
- Factorization of matrix polynomials, CLaN Seminar, Washington State University.
- The nonlinear eigenvalue problem, Colloquium, University of Minnesota Duluth.
- The Ehrlich-Aberth method for matrix polynomials, CLaN Seminar, Washington State University.
- When does Newton's method fail?, CLaN Seminar, Washington State University.

Posters

- On Modifications to Laguerre's Method and the Polynomial Eigenvalue Problem, PNWNAS 17, Corvallis, OR.
- Hessenberg form for matrix polynomials, SIAM LA 15, Atlanta, GA.
- Eigenvalue computation for tridiagonal matrix polynomials, PNWNAS 14, Portland, OR.

Referee Experience

LAA: Linear Algebra and Applications ELA: Electronic Journal of Linear Algebra

MAA: Mathematical Association of America: Mathematics Magazine

REVIEW EXPERIENCE

Macmillan: J. Holt, Linear Algebra with Applications

Teaching

Courses Taught

current MAT-150: Linear Algebra, CSC/MAT-220: Discrete Structures, Davidson College

MAT-101: Survey of Algebra and Probability, MAT-102: Functions, CSC-150: Computer Science 1, MAT-252: Discrete Mathematics, CSC-270: Applied Databases, MAT-498: Upper Division Seminar,

MAT-494: Independent Study, The College of Idaho

Math-273: Calc 3, Math-220: Linear Algebra, Math-103 (online): Algebra Methods, Washington

State University

2014-2015 Math-220: Linear Algebra, Math-105: Exploring Mathematics, Washington State University

- Math-106: Pre-Calc, Math-202: Business Calc 2, Math-220: Linear Algebra, Washington State University

 Moth-201: Business Calc 1, Math-106: Pre-Calc, Washington State University
- Math-201: Business Calc 1, Math-106: Pre-Calc, Washington State University

Supervised Undergraduate Research

- Nick Steckley, On Modifications to Laguerre's Method and the Polynomial Eigenvalue Problem, presented at the 2017 PNWNAS.
- Leo Trujilo, *The numerical range of a matrix polynomial*, presented at the 2016-2017 College of Idaho Undergraduate Research Conference, The College of Idaho.
- Will Callahan, Sam Chandler, Johanna Mori, and Leo Trujilo, *Using Chebyshev polynomials to solve ordinary differential equations*, presented at the 2016 Murdock Undergraduate Research Conference, The College of Idaho.
- Nick Steckley, A personalized grade management system using MySQL and PHP, Washington State University.
- Grant Hutchings, *Numerical algorithms for matrix computations and applications*, Washington State University.
- ²⁰¹⁴⁻²⁰¹⁵ Michael Newsham, Bernstein polynomials and companion matrices, Washington State University.

Community Involvement

- The Charlotte Mathematics Club: Assisted in the events and activities planned for the club.
- The Bird Stop: Developed website for a local business.