Quiz 2: Functions and Relations I

- Q1 Consider $f: \mathbb{P} \to \mathbb{P}$ given by f(x) = 2x + 1. What is the inverse image of $\{1, 2, 3\}$, i.e. what is $f^{\leftarrow}(\{1, 2, 3\})$?
 - **Answer:** The values of x for which $2x + 1 \in \{1, 2, 3\}$ are $0, \frac{1}{2}$, and 1. Of these, only $1 \in \mathbb{P}$, the domain of f. So $f \leftarrow (\{1, 2, 3\}) = \{1\}$.
- Q2 Let $A = \{a, b, c\}$ and consider $g : \text{Pow}(A) \to \mathbb{N}$ given by g(X) = |X|. What is Im(g)?
 - **Answer:** $g(\emptyset) = 0$, $g(\{a\}) = g(\{b\}) = g(\{c\}) = 1$, $g(\{a,b\}) = g(\{b,c\}) = g(\{a,c\}) = 2$, and $g(\{a,b,c\}) = 3$ so $\text{Im}(g) = \{0,1,2,3\}$.
- Q3 Let $\Sigma = \{a, b\}$ and consider $f, g: \Sigma^* \to \Sigma^*$ given by

$$f(w) = ww$$
$$g(w) = awb$$

What is $f \circ g(aba)$?

Answer: $f \circ g(aba) = f(g(aba)) = f(aabab) = aababaabab$

- Q4 Suppose $f:S\to T$ and $g:T\to U$ are bijective. True or false: $g\circ f$ is always bijective.
 - **Answer:** If f and g are injective then: $g \circ f(x) = g \circ f(y)$ implies g(f(x)) = g(f(y)), which implies f(x) = f(y) (because g is injective), which implies x = y (because f is injective). So $g \circ f$ is injective.
 - If f and g are surjective then: for all $u \in U$ there is a $t \in T$ such that g(t) = u and for all $t \in T$ there is an $s \in S$ such that f(s) = t. So, for all $u \in U$ there is an $s \in S$ such that $g \circ f(s) = g(f(s)) = u$. So $g \circ f$ is surjective.
 - Therefore, if f and g are bijective, then $g \circ f$ is (always) bijective.
- Q5 Let $\Sigma = \{a,b\}$ and consider the relation $R \subseteq \Sigma^* \times \Sigma^*$ given by $(w,v) \in R$ if length(wv) is even. Which of the properties Reflexivity (R) and Transitivity (T) does R have?
 - **Answer:** For all $w \in \Sigma^*$, length(ww) = 2length(w) is even, so $(w, w) \in R$. So R is reflexive (R).
 - If $\operatorname{length}(wv) = \operatorname{length}(w) + \operatorname{length}(v)$ is even and $\operatorname{length}(vu) = \operatorname{length}(v) + \operatorname{length}(u)$ is even then $\operatorname{length}(w)$, $\operatorname{length}(v)$ and $\operatorname{length}(u)$ are either all even, or all odd. In either case $\operatorname{length}(w) + \operatorname{length}(u) = \operatorname{length}(wu)$ is even, so $(w, u) \in R$. So R is transitive (T).