Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Module	Fin Plate	
MainModule	Shear Connection	
Connectivity	Column flange-Beam web	
Shear(kN)*	50.0	
Su	apporting Section	
g g	DDD 000M440 =	

	Supporting Section					
	Supporting Section			PBP 320X146.7		
	Mate	Material *		E 250 (Fe 410 W)A		
	Ultimate stren	igth, fu (MPa)		410		
	Yield Strengt	th , fy (MPa)	250			
ĺ	Mass	146.68	Iz(cm4)	326707000.0		
	Area(cm2) -	18690.0	Iy(cm4)	101505100.0		
	A					
	D(mm)	319.0	rz(cm)	132.20000000000002		
	B(mm)	312.0	ry(cm)	73.7		
	t(mm)	20.0	Zz(cm3)	2048320.0000000002		
	T(mm)	20	Zy(cm3)	650670.0		
	FlangeSlope	90	Zpz(cm3)	2338490.0		
	R1(mm)	2.7	Zpy(cm3)	650670.0		
	R2(mm)	0.0				

Supported Section

	Supported Section					
Supported Section			MB 250			
Mate	erial *		E 250 (Fe 410 W)A 410			
Ultimate strer	ngth, fu (MPa)					
Yield Streng	th , fy (MPa)		250			
Mass	37.2	Iz(cm4)	51190000.0			
Area(cm2) -	4740.0	Iy(cm4)	3210000.0			
A						
D(mm)	250.0	rz(cm)	104.0			
B(mm)	125.0	ry(cm)	26.0			
t(mm)	6.9	Zz(cm3)	409600.0			
T(mm)	12.5	Zy(cm3)	51000.0			
FlangeSlope	98	Zpz(cm3)	464500.0			
R1(mm)	13.0	Zpy(cm3)	51000.0			
R2(mm)	6.5					

Bolt Details

Diameter (mm)*	[12.0, 16.0, 20.0, 24.0, 30.0, 36.0]
Grade *	[3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 1
Type *	Bearing Bolt
Bolt hole type	Standard
Slip factor (µ_f)	0.3
Type of edges	a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
	Plate Details
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 24.0]
Material *	E 165 (Fe 290)
Ultimate strength, fu (MPa)	290
Yield Strength , fy (MPa)	165
	Weld Details
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		24.0	
Grade *		3.6	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{300.0 * 1 * 353}{\sqrt{3} \ * 1.25}$ $= 48.91$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 24.0 * 8.0 * 290}{1.25}$ $= 57.91$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (48.91, 57.91)$ $= 48.91$	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{50.0^{2} + 50.0^{2}}}{48.91}$ $= 2$	4	
No of Columns		2	
No of Rows		2	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 24.0 = 60.0$	60	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 6.9, \ 300 \ mm)$ = 300	60	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 24.0 = 60.0$	60	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 6.9, \ 300 \ mm)$ = 300	60	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 26.0 = 44.2	45	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{165}}$ $= 118.08$	45	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 26.0 = 44.2	45	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 *8.0 * \sqrt{\frac{250}{165}}$ $= 118.08$	45	Pass
Capacity (kN)	42.72	57.91	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 250.0 = 150.0$	150	Pass
	$d_b - 2(t_{bf} + r_{b1} + gap)$		
Max. Plate Height (mm)	= 250.0 - 2 * (12.5 + 13.0 + 10)	150	Pass
	= 199.0		
	$2 * e_{min} + (n \ c - 1) * p_{min})$		
Min. Plate Length (mm)	= 2 * 44.2 + (2 - 1) * 60.0	160.0	Pass
	=158.4		
Min.Plate Thickness (mm)	$t_w = 6.9$	8.0	Pass
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
		$\sqrt{3} * \gamma_{mo}$	
Shear yielding Capacity		$=\frac{150*8.0*165}{\sqrt{3}*1.1}$	
(V_dy) (kN)			
		= 103.92 $0.75 * A_{vor} * f_{vor}$	
		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity		= 1 * (150 - (2 * 26.0)) * 8.0 * 290	
(V_dn) (kN)		= 170.52	
Block Shear Capacity in		182.99	
Shear (V_db) (kN)			
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	50.0	= Min(103.92, 170.52, 182.99)	Pass
(kN)		= 103.92	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{ma}}$	
T . W. 11. C		7.7.00	
Tension Yielding Capacity (kN)		$= \frac{150 * 8.0 * 165}{11}$	
(III I)		= 180.0	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
		$I_{dn} \equiv \frac{1}{\gamma_{m1}}$	
Tension Rupture Capacity		$= \frac{0.9 * (150 - 2 * 26.0) * 8.0 * 290}{1.25}$	0
(kN)			
		= 163.7	
Block Shear Capacity in Tension (T db) (kN)		262.06	
(=/ (/		$T_d = Min(T_{dq}, T_{dn}, T_{db})$	
Tension Capacity (kN)	50.0	= Min(180.0, 163.7, 262.06)	Pass
• • • • • • • • • • • • • • • • • • • •		= 163.7	
Moment Capacity (kN-m)	4.25	6.75	Pass
Interaction Ratio	≤1	4 25 50 0	Pass
incraction (auto		$\frac{4.25}{6.75} + \frac{50.0}{163.7} = 0.94$	1 000

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)		8	Pass
Max Weld Size (mm)	$Thickness of Thinner part$ $= Min(20, 8.0) = 8.0$ $t_{w_{max}} = 8.0$	8	Pass
Weld Strength (kN/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{4250000.0 * 70.0}{457333.33}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{4250000.0 * 0.0}{457333.33}$ $V_{wv} = \frac{V}{l_{w}} = \frac{50000.0}{280}$ $A_{wh} = \frac{A}{l_{w}} = \frac{50000.0}{280}$ $R_{w} = \sqrt{(650.51 + 178.57)^{2} + (0.0 + 178.57)^{2}}$ $= 848.09$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{5.6 * 290}{\sqrt{3} * 1.25}$ $= 1060.48$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View