Automatic Control

Frequency response tools for analysis and design of feedback control systems

- Part II: Polar diagram, Nyquist diagram and Nichols diagram

Automatic Control – M. Canale

Frequency response function

The function $H(j\omega): \mathbb{R}^+ \to \mathbb{C}$ of the variable $\omega \in \mathbb{R}^+$ is called **frequency response function** of the system:

$$H(j\omega) = \text{Re}[H(j\omega)] + j \, \text{Im}[H(j\omega)] \rightarrow \text{ Cartesian representation}$$

$$H(j\omega) = |H(j\omega)| e^{j \angle H(j\omega)} \rightarrow \text{ Polar representation}$$

Frequency response graphical representations

Automatic Control – M. Canale

Frequency response: graphical representations

The **frequency response function** of a dynamic system can be graphically represented through:

- **Bode diagrams** \rightarrow representation of $|H(j\omega)|$ and $\angle H(j\omega)$ in function of $\omega \in \mathbb{R}^+$
- **Polar diagram** \rightarrow representation of Im[$H(j\omega)$]) vs. Re[$H(j\omega)$] parameterized in $\omega \in \mathbb{R}^+$
- Nichols diagram \rightarrow representation of $|H(j\omega)|$ vs. $\angle H(j\omega)$ parameterized in $\omega \in \mathbb{R}^+$

Polar diagram

Graphical representations: polar diagram

Polar diagram \rightarrow Representation of Im[$H(j\omega)$]) vs. Re[$H(j\omega)$] parametrized in $\omega \in \mathbb{R}^+$

- The polar diagram is obtained by representing $Im[H(j\omega)]$ as a function of $Re[H(j\omega)]$ in a single plot parameterized and oriented wrt ω
- Each point of the plot corresponds to a value of the frequency $\omega \in \mathbb{R}^+$

Automatic Control – M. Canale

Automatic Control – M. Canale

Automatic Control – M. Canale

AC L09 6

Polar diagram

Polar diagram \rightarrow Representation of Im[$H(j\omega)$]) vs. Re[$H(j\omega)$] parametrized and oriented in $\omega \in \mathbb{R}^+$

Polar diagram: approximate drawing

An approximate polar diagram can be obtained from the Bode diagram according to the following procedure:

- **Real and imaginary part for** $\omega = 0^+$: take from the Bode diagram the values of $|H(j0^+)|$ and $\angle H(j0^+)$, and mark the corresponding point on the plane $(\text{Re}[H(j\omega)], \text{Im}[H(j\omega)])$
- **Real and imaginary part for** $\omega \to \infty$: take from the Bode diagram the values of $|H(j\infty)|$ and $\angle H(j\infty)$, and mark the corresponding point on the plane $(\text{Re}[H(j\omega)], \text{Im}[H(j\omega)])$
- **Real and imaginary part for 0** < ω < ∞ : consider, on the $\angle H(j\omega)$ diagram, the points corresponding to: $\angle H(j\omega) = \pm k 90^\circ$, k = 0,1,2,... \rightarrow these points identify the intersections of the polar diagram with the axes of the (Re[$H(j\omega)$], Im[$H(j\omega)$]) plane

Polar diagram: example 1

$$H(s) = \frac{1}{s^2 + 3s + 2}$$

Automatic Control – M. Canale

AC L09 9

Polar diagram: example 2

Automatic Control – M. Canale

AC_L09 10

Polar diagram: example 3

Automatic Control – M. Canale

Polar diagram: example 4

Automatic Control – M. Canale

AC_L09 12

Automatic Control – M. Canale

AC L09 13

Polar diagram

- Polar diagram with MatLab
- Statement nyquist

Automatic Control – M. Canale

AC L09 14

Nyquist diagram

Nyquist contour

The **Nyquist contour** is defined as the closed curve Γ on the complex plane s given by the union of the following set of points:

- the negative imaginary axis $\rightarrow s = \sigma + j\omega$: $\sigma = 0$, $\omega \in (-\infty, 0)$
- the positive imaginary axis $\rightarrow s = \sigma + j\omega$: $\sigma = 0$, $\omega \in [0, +\infty)$
- a semicircle of radius $R \to \infty$, centered at the origin, connecting clockwise the points $(0+j\infty)$ and $(0-j\infty)$

Nyquist diagram

The **Nyquist diagram** is defined as the image on the complex plane $(Re[H(j\omega)], Im[H(j\omega)])$ of the function H(s) computed on the Nyquist contour Γ

Automatic Control – M. Canale

AC_L09 17

Nyquist diagrams: approximate drawing

An approximate Nyquist diagram can be obtained from the polar diagram

- Axis $j\omega > 0$: the image is the polar diagram
- **Axis** $j\omega < 0$: since $H(j\omega) = H * (-j\omega)$, the image is the symmetric reflection of the polar diagram w.r.t. the real axis Re[$H(j\omega)$]
- **Semicircle R** $\rightarrow \infty$: the image is given by $H(j \infty)$
- **Semicircle** $\rho \to 0 \to \text{related to the presence of a pole in } s = j\omega_0$ with mulitplicity μ : the image is given by μ semicircles which clockwise connect the image of ω_0^- , $(H(j\omega_0^-))$ with the image of ω_0^+ , $(H(j\omega_0^+))$ on the $(\text{Re}[H(j\omega)])$, $\text{Im}[H(j\omega)]$) plane

Nyquist contour: a critical case

If the Nyquist contour has some poles on the imaginary axis (e.g. in the origin), the function H(s) cannot be computed

In this case, the Nyquist contour has to be modified:

Automatic Control – M. Canale

AC L09 18

Nyquist diagram: example 1

$$H(s) = \frac{1}{s^2 + 3s + 2}$$

Automatic Control – M. Canale

Nyquist diagram: example 2

Automatic Control – M. Canale

AC_LU9

Nyquist diagram

- Nyquist diagram with MatLab
- Command nyquist

Transfer function:

s

>> H=1/(s^2+3*s+2)

Transfer function:

1

 $s^2 + 3 s + 2$

>> figure, nyquist(H)

Remark: MatLab **does not plot** the images of the semicircles $\rho \rightarrow 0$

Automatic Control – M. Canale

AC L09 23

Nyquist diagram: example 3

Automatic Control – M. Canale

AC L09 22

Nichols diagram

Automatic Control – M. Canale

Graphical representations: Nichols diagram

Nichols diagram \rightarrow representation of $|H(j\omega)|$ vs. $\angle H(j\omega)$ parametrized in $\omega \in \mathbb{R}^+$

- The Nichols diagram is obtained by representing $|H(j\omega)|$ in function of $\angle H(j\omega)$ in a single plot parameterized and oriented in ω
- Each point of the plot corresponds to a value of the frequency $\omega \in \mathbb{R}^+$
- The origin of the diagram is conventionally fixed at the point (-180°,0 dB)

Automatic Control – M. Canale

AC_L09 25

AC L09 27

Nichols diagram: example 1

Nichols diagram

Nichols diagram \rightarrow polar representation of $|H(j\omega)|_{dB}$ vs. $\angle H(j\omega)$ in degrees as parametrized and oriented in $\omega \in \mathbb{R}^+$

Automatic Control – M. Canale

AC_L09 26

Nichols diagram: example 2

Automatic Control – M. Canale

AC_L09 28

Nichols diagram: example 3

$$H(s) = \frac{1}{s^2(1+s)}$$

Automatic Control – M. Canale

Nichols diagram

- Nichols diagram with MatLab
- Statement nichols

Automatic Control – M. Canale

Nichols diagram: example 4

$$H(s) = \frac{e^{-s}}{s(1+s)^2}$$
Rode Diagram
$$\frac{s}{s(1+s)^2} = \frac{e^{-s}}{s(1+s)^2}$$
Nichols Chat
$$\frac{s}{s(1+s)^2} = \frac{e^{-s}}{s(1+s)^2} = \frac{e^{-s}}{s(1+s)$$

Automatic Control – M. Canale