2023-24(下)模拟(2)

- 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.
- 1. 已知非零向量 \vec{a} , \vec{b} 满足 \vec{a} · \vec{b} =0,| \vec{a} |=3,且 \vec{a} 与 \vec{a} + \vec{b} 的夹角为 $\frac{\pi}{4}$,则| \vec{b} |= () A. 6 B. $3\sqrt{2}$ C. $2\sqrt{2}$ D. 3
- 2. 若 $(\sqrt[3]{x} \frac{1}{x})^n (n \in N^*)$ 的展开式中所有项的二项式系数之和为 16,则 $(\sqrt[3]{x} + \frac{1}{x})^{2n}$ 的展开式中的常数项为(
-) A. "a = -1"是"直线 $a^2x y + 1 = 0$ 与直线x ay 2 = 0 互相垂直"的充要条件 3. 下列说法正确的是(
- B. 直线 $x \sin \alpha + y + 2 = 0$ 的倾斜角的取值范围是 $[0, \frac{\pi}{4}] \cup [\frac{3\pi}{4}, \pi)$
- C. 过 (x_1, y_1) , (x_2, y_2) 两点的所有直线的方程 $\frac{y y_1}{y_2 y_1} = \frac{x x_1}{x_2 x_1}$
- D. 经过点(I,I) 且在 x 轴和 y 轴上截距都相等的直线方程为 x + y 2 = 0
- 4. 如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为(
- A. 2π

- B. $\frac{3}{2}\pi$
- C. $\frac{2\sqrt{3}}{2}\pi$ D. $\frac{1}{2}\pi$
- 5. 在 $\triangle ABC$ 中, $2a\cos A = b\cos C + c\cos B$,则 $\angle A = ($) A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{2}$ D. $\frac{2\pi}{3}$
- 6. 设 A,B 是椭圆 $C: \frac{x^2}{4} + \frac{y^2}{\nu} = 1$ 的两个焦点,若 C 上存在点 P 满足 $\angle APB = 120^\circ$,则 k 的取值范围是(
- A. $(0,1] \cup [16,+\infty)$ B. $(0,\frac{1}{2}] \cup [8,+\infty)$ C. $(0,\frac{1}{2}] \cup [16,+\infty)$ D. $(0,1] \cup [8,+\infty)$
- 7. 已知函数 $f(x) = x^3 + ax^2 + bx + c(a,b,c \in R)$, 若不等式 f(x) < 0 的解集为 $\{x \mid x < m+1, \exists x \neq m\}$, 则函数 f(x)
- 的极小值是 () A. $-\frac{1}{4}$ B. 0 C. $-\frac{4}{27}$ D. $-\frac{4}{9}$
- 8. 已知定义域为 R 的函数 f(x) 的导函数为 f'(x) ,若函数 f(3x+1) 和 f'(x+2) 均为偶函数,且 f'(2)=-8 ,则 $\sum_{i=1}^{2023} f'(i)$ 的值为()A. 0 B. 8 C. -8 D. 4
- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对 的得6分, 部分选对的得部分分, 有选错的得0分.
- 9. 数列 $\{a_n\}$ 前 n 项的和为 S_n ,则下列说法正确的是 () A.若 $a_n = -2n + 11$,则数列 $\{a_n\}$ 前 5 项的和最大 B. 若 $\{a_n\}$ 为等比数列, $S_4=3$, $S_8=9$,则 $S_{16}=54$ C. 若 $a_1=2022$, $S_n=n^2a_n$,则 $a_{2021}=\frac{2}{2021}$
- D. 若 $\{a_n\}$ 为等差数列,且 $a_{1011}<0$, $a_{1011}+a_{1012}>0$,则当 $S_n<0$ 时,n的最大值为 2022
- 10. 已知向量 $\vec{a} = (\sin \omega x, \cos \omega x)(\omega > 0), \vec{b} = (\sin^2(\frac{\omega x}{2} + \frac{\pi}{4}), \cos^2(\frac{\omega x}{2}))$,函数 $f(x) = \vec{a} \cdot \vec{b}$,则(
- A. 若 f(x) 的最小正周期为 π ,则 f(x) 的图象关于点($\frac{3\pi}{8},\frac{1}{2}$)对称 B. 若 f(x) 的图象关于直线 $x = \frac{\pi}{2}$ 对称,则 ω

可能为 $\frac{1}{2}$ C. 若f(x)在 $\left[-\frac{2\pi}{5}, \frac{\pi}{6}\right]$ 上单调递增,则 $\omega \in (0, \frac{3}{2})$

- D. 若 f(x) 的图象向左平移 $\frac{\pi}{3}$ 个单位长度后得到一个偶函数的图象,则 ω 的最小值为 $\frac{3}{2}$
- 11. 已知正方体 $ABCD A_lB_lC_lD_l$ 的棱长为 1,点 P 是线段 BC_l 的中点,点 M,N 是线段 B_lD_l 上的动点,则下列结论正确的是() A. AD_l 与平面 BMN 所成角为 $\frac{\pi}{6}$ B. 点 A_l 到平面 AB_lD_l 的距离为 $\frac{\sqrt{6}}{3}$
- C. A_1P / 平面 ACD_1 D. 三棱柱 $AA_1D_1 BB_1C_1$ 的外接球半径为 $\frac{\sqrt{3}}{3}$
- 三. 填空题: 本题共3小题,每小题5分,共15分.
- 12. 设复数 $z_1 = 2 i$, $z_2 = a + 2i$ (i 是虚数单位, $a \in R$),若 $z_1 z_2 \in R$,则 a =_____.

- 13. 已知菱形 ABCD 边长为 6, $\angle ADC = \frac{2\pi}{3}$, E 为对角线 AC 上一点, $AE = \sqrt{3}$.将 $\triangle ABD$ 沿 BD 翻折到 $\triangle A'BD$ 的位置,E 移动到 E' 且二面角 A' BD A 的大小为 $\frac{\pi}{3}$,则三棱锥 A' BCD 的外接球的半径为_____; 过 E' 作平面 α 与该外接球相交,所得截面面积的最小值为
- 14. 已知数列 $\{a_n\}$ 的各项都是正数, $a_{n+1}^2 a_{n+1} = a_n (n \in N^*)$. 若数列 $\{a_n\}$ 各项单调递增,则首项 a_1 的取值范围是

______;
$$\stackrel{\cdot}{=} a_1 = \frac{2}{3}$$
 时,记 $b_n = \frac{(-1)^{n-1}}{a_n - 1}$,若 $k < b_1 + b_2 + \dots + b_{2023} < k + \frac{1}{2}$,则整数 $k =$ _____.

四、解答题: 本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.

	$X_i \leftarrow$	1↩	2←	3 ←	4↩	5↩	L.
:	y_i \leftarrow	75 ←	84 ←	93 ←	98∈	100€	<

- 15. 某专营店统计了最近 5 天到该店购物的人数 y_i 和时间第 x_i 天之间的数据,列表如下:
- (1) 由表中给出的数据,判断是否可用线性回归模型拟合人数y与时间x之间的关系?(若|r|>0.75,则认为线性相关程度高,可用线性回归模型拟合;否则,不可用线性回归模型拟合.计算r 时精确到 0.01)
- (2)该专营店为了吸引顾客,推出两种促销方案:方案一,购物金额每满 100 元可减 10 元;方案二,购物金额超过 800 元可抽奖三次,每次中奖的概率均为 $\frac{1}{3}$,且每次抽奖互不影响,中奖一次打 9 折,中奖两次打 8 折,中奖三次打 6 折.某顾客计划在此专营店购买一件价值 1000 元的商品,请从实际付款金额的数学期望的角度分

析,选哪种方案更优惠?参考数据:
$$\sqrt{4340} \approx 65.88$$
 . 附:相关系数 $r = \frac{\sum\limits_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum\limits_{i=1}^{n}(x_i-\bar{x})^2\sum\limits_{i=1}^{n}(y_i-\bar{y})^2}}$.

16. 如图,在梯形 ABCD 中, AD //BC , $AD \perp AB$, $BC = 2AD = \sqrt{6}$, $AB = \sqrt{3}$, $AC \ni BD$ 交于点 M , 将 $\triangle ABD$ 沿 BD 翻折至 $\triangle PBD$, 使点 A 到达点 P 的位置. (1)证明: $BD \perp PC$;

(2) 若平面 PBC 与平面 PBD 的夹角的余弦值为 $\frac{\sqrt{7}}{7}$, 求三棱锥 P-BCD 的体积.

17. 已知函数 $f(x) = x \cos x$, $g(x) = a \sin x$. (1) 若 a = 1, 证明: 当 $x \in (0, \pi)$ 时, x > g(x) > f(x);

(2) 当 $x \in (-\pi,0) \cup (0,\pi)$ 时, $\frac{f(x)}{g(x)} < \frac{\sin x}{x}$,求a的取值范围.

- 18. 已知 $\odot M$ 过点 $A(\sqrt{3},0)$,且与 $\odot N : (x + \sqrt{3})^2 + y^2 = 16$ 内切,设 $\odot M$ 的圆心 M 的轨迹为 C.
- (1)求轨迹 C 的方程;(2)设直线 l 不经过点 B(2,0) 且与曲线 C 交于点 P,Q 两点,若直线 PB 与直线 QB 的斜率之积为 $-\frac{1}{2}$,判断直线 l 是否过定点,若过定点,求出此定点的坐标,若不过定点,请说明理由.

- 19. 给定正整数 $N \ge 3$,已知项数为 m 且无重复项的数对序列 A: $(x_1, y_1), (x_2, y_2), \cdots, (x_m, y_m)$ 满足如下三个性质: ① $x_i, y_i \in \{1, 2, \cdots, N\}$,且 $x_i \ne y_i (i = 1, 2, \cdots, m)$; ② $x_{i+1} = y_i (i = 1, 2, \cdots, m-1)$; ③ (p, q) 与 (q, p) 不同时在数对序列 A 中. (1) 当 N = 3 , m = 3 时,写出所有满足 $x_1 = 1$ 的数对序列 A ;
- (2) 当 N=6 时,证明: $m \le 13$; (3) 当 N 为奇数时,记m 的最大值为T(N),求T(N).

2023-24(下)模拟(2)

2024-02-17

解答

一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.

- 1. 已知非零向量 \vec{a} , \vec{b} 满足 \vec{a} · \vec{b} =0,| \vec{a} |=3,且 \vec{a} 与 \vec{a} + \vec{b} 的夹角为 $\frac{\pi}{4}$,则| \vec{b} |=(D)A. 6 B. 3 $\sqrt{2}$ C. 2 $\sqrt{2}$ D. 3
- 2. 若 $(\sqrt[3]{x} \frac{1}{x})^n (n \in N^*)$ 的展开式中所有项的二项式系数之和为 16,则 $(\sqrt[3]{x} + \frac{1}{x})^{2n}$ 的展开式中的常数项为
- (C) A. 6 B. 8
- 3. 下列说法正确的是(B)A. "a = -1"是"直线 $a^2x y + 1 = 0$ 与直线x ay 2 = 0 互相垂直"的充要条件
- B. 直线 $x \sin \alpha + y + 2 = 0$ 的倾斜角的取值范围是 $[0, \frac{\pi}{4}] \cup [\frac{3\pi}{4}, \pi)$
- C. 过 (x_1, y_1) , (x_2, y_2) 两点的所有直线的方程 $\frac{y y_1}{y_2 y_1} = \frac{x x_1}{x_2 x_1}$
- D. 经过点(1,1) 且在 x 轴和 y 轴上截距都相等的直线方程为 x+y-2=0
- 4. 如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为(C)

- B. $\frac{3}{2}\pi$
- C. $\frac{2\sqrt{3}}{2}\pi$
- 5. 在 $\triangle ABC$ 中, $2a\cos A = b\cos C + c\cos B$,则 $\angle A = (B)$ A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{2}$ D. $\frac{2\pi}{3}$
- 6. 设 A,B 是椭圆 $C: \frac{x^2}{A} + \frac{y^2}{\nu} = 1$ 的两个焦点,若 C 上存在点 P 满足 $\angle APB = 120^\circ$,则 k 的取值范围是(A)
- A. $(0,1] \cup [16,+\infty)$ B. $(0,\frac{1}{2}] \cup [8,+\infty)$ C. $(0,\frac{1}{2}] \cup [16,+\infty)$ D. $(0,1] \cup [8,+\infty)$
- 7. 已知函数 $f(x) = x^3 + ax^2 + bx + c(a,b,c \in R)$, 若不等式 f(x) < 0 的解集为 $\{x \mid x < m + 1, \exists x \neq m\}$, 则函数 f(x)
- 的极小值是 (C) A. $-\frac{1}{4}$ B. 0 C. $-\frac{4}{27}$ D. $-\frac{4}{9}$

- 8. 已知定义域为 R 的函数 f(x) 的导函数为 f'(x) ,若函数 f(3x+1) 和 f'(x+2) 均为偶函数,且 f'(2)=-8 ,则
- $\sum_{i=1}^{30.5} f'(i)$ 的值为(C)A. 0 B. 8 C. -8

- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对 的得6分, 部分选对的得部分分, 有选错的得0分.
- 9. 数列 $\{a_n\}$ 前n项的和为 S_n ,则下列说法正确的是(AC)A.若 $a_n = -2n + 11$,则数列 $\{a_n\}$ 前5项的和最大 B.
- 若 $\{a_n\}$ 为等比数列, $S_4=3$, $S_8=9$,则 $S_{16}=54$ C. 若 $a_1=2022$, $S_n=n^2a_n$,则 $a_{2021}=\frac{2}{2021}$
- D. 若 $\{a_n\}$ 为等差数列,且 $a_{1011} < 0$, $a_{1011} + a_{1012} > 0$,则当 $S_n < 0$ 时,n的最大值为 2022
- 10. 已知向量 $\vec{a} = (\sin \omega x, \cos \omega x)(\omega > 0), \vec{b} = (\sin^2(\frac{\omega x}{2} + \frac{\pi}{4}), \cos^2(\frac{\omega x}{2}))$,函数 $f(x) = \vec{a} \cdot \vec{b}$,则(ABC)
- A. 若 f(x) 的最小正周期为 π ,则 f(x) 的图象关于点($\frac{3\pi}{8},\frac{1}{2}$)对称 B. 若 f(x) 的图象关于直线 $x=\frac{\pi}{2}$ 对称,则 ω
- 可能为 $\frac{1}{2}$ C. 若f(x)在 $\left[-\frac{2\pi}{5}, \frac{\pi}{6}\right]$ 上单调递增,则 $\omega \in (0, \frac{3}{2})$

- D. 若 f(x) 的图象向左平移 $\frac{\pi}{3}$ 个单位长度后得到一个偶函数的图象,则 ω 的最小值为 $\frac{3}{2}$
- 11. 已知正方体 $ABCD A_lB_lC_lD_l$ 的棱长为 1,点 P 是线段 BC_l 的中点,点 M,N 是线段 B_lD_l 上的动点,则下列结论正确的是(AC) $A. AD_l$ 与平面 BMN 所成角为 $\frac{\pi}{6}$ B. 点 A_l 到平面 AB_lD_l 的距离为 $\frac{\sqrt{6}}{3}$
- C. A_1P / 平面 ACD_1 D. 三棱柱 $AA_1D_1 BB_1C_1$ 的外接球半径为 $\frac{\sqrt{3}}{3}$
- 三. 填空题: 本题共3小题,每小题5分,共15分.
- 12. 设复数 $z_1 = 2 i$, $z_2 = a + 2i$ (i 是虚数单位, $a \in R$),若 $z_1 z_2 \in R$,则 a =______. 4
- 13. 已知菱形 ABCD 边长为 6, $\angle ADC = \frac{2\pi}{3}$, E 为对角线 AC 上一点, $AE = \sqrt{3}$.

将 $\triangle ABD$ 沿 BD 翻折到 $\triangle A'BD$ 的位置, E 移动到 E' 且二面角 A'-BD-A 的大小为 $\frac{\pi}{3}$,

14. 已知数列 $\{a_n\}$ 的各项都是正数, $a_{n+1}^2 - a_{n+1} = a_n (n \in N^*)$. 若数列 $\{a_n\}$ 各项单调递增,则首项 a_1 的取值范围是

_____;
$$\stackrel{\cdot}{=} a_1 = \frac{2}{3}$$
 时,记 $b_n = \frac{(-1)^{n-1}}{a_n - 1}$,若 $k < b_1 + b_2 + \dots + b_{2023} < k + \frac{1}{2}$,则整数 $k =$ _____. (0,2),-4

$$key$$
: 由 $a_{n+1}^2 - a_{n+1} = a_n > 0$ 得 $a_{n+1} = \frac{1 + \sqrt{1 + 4a_n}}{2}$,设 $f(x) = \frac{1 + \sqrt{1 + 4x}}{2}$,则 $f(x)$ 在 $x > 0$ 上递增,且 $f(x) = x \Leftrightarrow x = 2$

曲
$$a_2 = \frac{1 + \sqrt{1 + 4a_1}}{2} > a_1$$
得 $0 < a_1 < 2, ∴ 1 < a_2 < a_3 < 2,$

若0<a_k < a_{k+1} < 2 $(k \ge 2)$ 成立,则f (0) < f (a_k) < f (a_{k+1}) < f(2)

$$\overrightarrow{\text{mi}}f(0) = 1 > 0, f(a_k) = a_{k+1}, f(a_{k+1}) = a_{k+2}, f(2) = 2,$$

 $\therefore 0 < a_{k+1} < a_{k+2} < 2$ 也成立, $\therefore 1 < a_n < a_{n+1} < 2, \therefore a$ 的取值范围为(0,2),

$$\therefore b_1 + b_2 + \dots + b_{2023} = -3 + \frac{(-1)^{2022}}{a_{2023}} - \frac{(-1)^0}{a_1} = -4.5 + \frac{1}{a_{2023}} \in (-4, -3.5)(\because a_{2023} \in (1, 2), \therefore \frac{1}{a_{2023}} \in (\frac{1}{2}, 1)), \therefore k = -4$$

- 四、解答题: 本题共 5 小题, 共 77 分. 解答应写出文字说明、证明过程或演算步骤.
- 15. 某专营店统计了最近 5 天到该店购物的人数 y_i 和时间第 x_i 天之间的数据,列表如下:

$X_i \subset$	1←	2←	3 ←	4←	5 ←
y_i \leftarrow	75 ↔	84 ←	93 ←	98€	100€

- (1) 由表中给出的数据,判断是否可用线性回归模型拟合人数y与时间x之间的关系?(若|r|>0.75,则认为线性相关程度高,可用线性回归模型拟合;否则,不可用线性回归模型拟合.计算r 时精确到0.01)
- (2)该专营店为了吸引顾客,推出两种促销方案:方案一,购物金额每满 100 元可减 10 元;方案二,购物金额超过 800 元可抽奖三次,每次中奖的概率均为 $\frac{1}{3}$,且每次抽奖互不影响,中奖一次打 9 折,中奖两次打 8 折,中奖三次打 6 折.某顾客计划在此专营店购买一件价值 1000 元的商品,请从实际付款金额的数学期望的角度分

析,选哪种方案更优惠?参考数据:
$$\sqrt{4340} \approx 65.88$$
 . 附:相关系数 $r = \frac{\sum\limits_{i=1}^{n}(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum\limits_{i=1}^{n}(x_i - \overline{x})^2\sum\limits_{i=1}^{n}(y_i - \overline{y})^2}}$.

【小问 1 详解】解:
$$\bar{x} = \frac{1+2+3+4+5}{5} = 3$$
, $\bar{y} = \frac{75+84+93+98+100}{5} = 90$,

所以,
$$\sum_{i=1}^{5} (x_i - \overline{x})(y_i - \overline{y}) = -2 \times (-15) - 1 \times (-6) + 0 + 1 \times 8 + 2 \times 10 = 64$$
,

$$\sum_{i=1}^{5} \left(x_i - \overline{x} \right)^2 = 4 + 1 + 0 + 1 + 4 = 10 , \quad \sum_{i=1}^{5} \left(y_i - \overline{y} \right)^2 = \left(-15 \right)^2 + \left(-6 \right)^2 + 3^2 + 8^2 + 10^2 = 434 ,$$

所以,
$$r = \frac{\sum\limits_{i=1}^{5} \left(x_i - \overline{x}\right) \left(y_i - \overline{y}\right)}{\sqrt{\sum\limits_{i=1}^{5} \left(x_i - \overline{x}\right)^2 \cdot \sum\limits_{i=1}^{5} \left(y_i - \overline{y}\right)^2}} = \frac{64}{\sqrt{10 \times 434}} \approx \frac{64}{65.88} \approx 0.97 > 0.75$$
,

所以,y与x的线性相关性很强,故可用线性回归模型拟合人数y与时间x之间的关系. 【小问 2 详解】解:设方案一的实际付款金额为Y元,方案二的实际付款金额为Y元,

由题意可知, $E(X) = 1000 \times 0.9 = 900$ (元),

Y的可能取值有600、800、900、1000,

$$P(Y = 600) = \left(\frac{1}{3}\right)^3 = \frac{1}{27}, \quad P(Y = 800) = C_3^2 \cdot \left(\frac{1}{3}\right)^2 \cdot \frac{2}{3} = \frac{2}{9},$$

$$P(Y=900) = C_3^1 \cdot \frac{1}{3} \cdot \left(\frac{2}{3}\right)^2 = \frac{4}{9}, \quad P(Y=1000) = \left(\frac{2}{3}\right)^3 = \frac{8}{27}$$

所以,
$$E(Y) = 600 \times \frac{1}{27} + 800 \times \frac{2}{9} + 900 \times \frac{4}{9} + 1000 \times \frac{8}{27} = \frac{24200}{27} < \frac{24300}{27} = E(X)$$
,

所以,方案二更优惠.

16. 如图,在梯形 ABCD 中, AD //BC , $AD \perp AB$, $BC = 2AD = \sqrt{6}$, $AB = \sqrt{3}$, $AC \ni BD$ 交于点 M , 将 $\triangle ABD$ 沿 BD 翻折至 $\triangle PBD$, 使点 A 到达点 P 的位置. (1)证明: $BD \perp PC$;

(2) 若平面 PBC 与平面 PBD 的夹角的余弦值为 $\frac{\sqrt{7}}{7}$, 求三棱锥 P-BCD 的体积.

【小问 1 详解】
$$\because \tan \angle ADB = \frac{AB}{AD} = \frac{\sqrt{3}}{\frac{\sqrt{6}}{2}} = \sqrt{2}$$
 , $\tan \angle CAB = \frac{BC}{AB} = \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{2}$,

$$\therefore \angle ADB, \angle CAB \in (0, \frac{\pi}{2}) \therefore \angle ADB = \angle CAB,$$

$$\therefore \angle ADB + \angle MAD = \angle CAB + \angle MAD = \frac{\pi}{2}, \quad \therefore AC \perp BD, \quad \Box AM \perp BD, \quad CM \perp BD,$$

$$\therefore PM \perp BD$$
, $CM \perp BD$, $Z PM \cap CM = M$,

PM, CM ⊂ 平面 PMC, $\therefore BD \perp$ 平面 PMC,

PC ⊂ 平面 PMC, ∴ $BD \perp PC$;

【小问 2 详解】直角
$$\triangle ABC$$
 中, $AC = \sqrt{AB^2 + BC^2} = 3$,

$$\therefore AD // BC$$
, $\therefore \frac{AM}{CM} = \frac{AD}{BC} = \frac{DM}{BM} = \frac{1}{2}$,

∴
$$AM = 1$$
, $CM = 2$, $BM = \sqrt{AB^2 - AM^2} = \sqrt{3 - 1} = \sqrt{2}$, $MD = \frac{3\sqrt{2}}{2}$, $MD = \frac{\sqrt{2}}{2}$

由(1) BD ∠平面 PMC,

以M为坐标原点建立如图所示的空间直角坐标系M-xyz,

则
$$B(\sqrt{2},0,0)$$
 , $C(0,2,0)$, $D(-\frac{\sqrt{2}}{2},0,0)$,

设 $P(0,\cos\theta,\sin\theta)$, 其中 $0<\theta<\pi$,

所以
$$\overrightarrow{MB} = (\sqrt{2}, 0, 0)$$
, $\overrightarrow{CB} = (\sqrt{2}, -2, 0)$, $\overrightarrow{BP} = (-\sqrt{2}, \cos\theta, \sin\theta)$,

设平面
$$PBD$$
 的一个法向量为 $\vec{n} = (x_1, y_1, z_1)$,则
$$\begin{cases} \vec{n} \cdot \overrightarrow{MB} = \sqrt{2}x_1 = 0 \\ \vec{n} \cdot \overrightarrow{BP} = -\sqrt{2}x_1 + y_1 \cos \theta + z_1 \sin \theta = 0 \end{cases}$$

$$\mathbb{R} y_1 = \sin \theta$$
, $\vec{n} = (0, \sin \theta, -\cos \theta)$,

设平面
$$PBC$$
 的一个法向量为 $\overrightarrow{m} = (x_2, y_2, z_2)$,则
$$\begin{cases} \overrightarrow{m} \cdot \overrightarrow{CB} = \sqrt{2}x_2 - 2y_2 = 0 \\ \overrightarrow{m} \cdot \overrightarrow{BP} = -\sqrt{2}x_2 + y_2\cos\theta + z_2\sin\theta = 0 \end{cases}$$

取
$$y_2 = \sin \theta$$
, 则 $\vec{m} = (\sqrt{2}\sin \theta, \sin \theta, 2 - \cos \theta)$,

$$\left|\cos\langle\vec{m},\vec{n}\rangle\right| = \left|\frac{\vec{n}\cdot\vec{m}}{|\vec{n}||\vec{m}|}\right| = \left|\frac{1-2\cos\theta}{\sqrt{3\sin^2\theta + (2-\cos\theta)^2}}\right| = \frac{\sqrt{7}}{7}$$

解得
$$\cos \theta = \frac{4}{5}$$
, $\sin \theta = \frac{3}{5}$ 或 $\cos \theta = 0$, $\sin \theta = 1$

则
$$P\left(0,\frac{4}{5},\frac{3}{5}\right)$$
 或 $P\left(0,0,1\right)$

故
$$V_{P-BCD} = \frac{1}{3} S_{\triangle BCD} \cdot |z_P| = \frac{1}{3} \left(\frac{1}{2} \cdot BD \cdot MC \right) \cdot |z_P| = \frac{3\sqrt{2}}{10}$$
 或 $\frac{\sqrt{2}}{2}$.

17. 已知函数 $f(x) = x \cos x$, $g(x) = a \sin x$. (1) 若 a = 1, 证明: 当 $x \in (0, \pi)$ 时, x > g(x) > f(x);

(2) 当
$$x \in (-\pi,0) \cup (0,\pi)$$
时, $\frac{f(x)}{g(x)} < \frac{\sin x}{x}$,求 a 的取值范围.

则 $p'(x) = 1 - \cos x > 0, q'(x) = x \sin x > 0, \therefore p(x)$ 在 $(0,\pi)$ 上递增,q(x)在 $(0,\pi)$ 上递增,

$$\therefore p(x) > p(0) = 0, q(x) > p(0) = 0, \therefore x > g(x) > f(x)$$
, 证毕

(2) 解: 由
$$\frac{f(x)}{g(x)} - \frac{\sin x}{x} = \frac{x \cos x}{a \sin x} - \frac{\sin x}{x} (x \in (-\pi, 0) \cup (0, \pi))$$
是偶函数

得
$$\frac{f(x)}{g(x)} < \frac{\sin x}{x} (x \in (-\pi, 0) \cup (0, \pi)) \Leftrightarrow \frac{f(x)}{g(x)} = \frac{x \cos x}{a \sin x} < \frac{\sin x}{x} (x \in (0, \pi)) \Leftrightarrow \frac{1}{a} \cos x < \frac{\sin^2 x}{x^2} (0 < x < \pi)$$

$$\because \lim_{x \to 0^+} \frac{\sin x}{x} = 1, \therefore \frac{1}{a} \le 1 \quad \exists 1 \quad \exists 1 \quad a < 0, or, a \ge 1$$

当
$$x = \frac{\pi}{2}$$
时,不等式成立;当 $x \in (\frac{\pi}{2}, \pi)$ 时, $\cos x < 0$, $\frac{\sin x}{x} > 0$,... $\frac{1}{a} > \frac{\sin^2 x}{x^2 \cos x}$ 记为 $p(x)$

$$\mathbb{M}q'(x) = \frac{3}{2} - x\sin 2x - \frac{3}{2}\cos 2x = \sin x(3\sin x - 2x\cos x) > 0$$

$$\therefore q(x)_{\min} = q(\frac{\pi}{2}) = \frac{\pi}{2} > 0, \quad p'(x) > 0, \quad p(x) < p(\pi) = 0, \quad \frac{1}{a} > 0, \quad a \ge 1$$

当
$$x \in (0, \frac{\pi}{2})$$
时, $\frac{1}{a} < \frac{\sin^2 x}{x^2 \cos x}$ 记为 $p(x)$,则 $p'(x) = \frac{\sin x(\frac{3}{2}x + \frac{1}{2}x\cos 2x - \sin 2x)}{x^2 \cos^2 x} > 0$

$$\Leftrightarrow 0 < \frac{3}{2}x + \frac{1}{2}x\cos 2x - \sin 2x i \exists \exists q(x), \exists q(x) = \frac{3}{2} - x\sin 2x - \frac{3}{2}\cos 2x = \sin x\cos x (3\tan x - 2x) > 0$$

而
$$\lim_{x\to 0^+} p(x) = 1$$
, $\therefore \frac{1}{a} \le 1$ 即 $a \ge 1$. 综上: a 的 取值范围为[1,+∞)

18. 已知 $\odot M$ 过点 $A(\sqrt{3},0)$,且与 $\odot N:(x+\sqrt{3})^2+y^2=16$ 内切,设 $\odot M$ 的圆心 M 的轨迹为 C.

(1) 求轨迹 C 的方程; (2) 设直线 l 不经过点 B(2,0) 且与曲线 C 交于点 P,Q 两点,若直线 PB 与直线 QB 的斜率之积为 $-\frac{1}{2}$,判断直线 l 是否过定点,若过定点,求出此定点的坐标,若不过定点,请说明理由.

解: (1) 由已知得:
$$|MA| = 4 - |MN|$$
, ∴ C 的方程为 $\frac{x^2}{4} + y^2 = 1$

(2) 由题意设 l_{PO} : $x = ty + n(n \neq 2)$

代入
$$C$$
方程得: $(t^2+4)y^2+2tny+n^2-4=0$

$$\therefore \begin{cases} y_P + y_Q = -\frac{2tn}{t^2 + 4}, \, \text{\mathbb{L}} \Delta = 16(t^2 + 4 - 4) > 0 \\ y_P y_Q = \frac{n^2 - 4}{t^2 + 4} \end{cases}$$

$$\therefore k_{BP}k_{BQ} = \frac{y_P}{x_P - 2} \cdot \frac{y_Q}{x_Q - 2} = \frac{y_P y_Q}{(ty_P + n - 2)(ty_Q + n - 2)} = \frac{\frac{n^2 - 4}{t^2 + 4}}{\frac{t^2 (n^2 - 4)}{t^2 + 4} + t(n - 2) \cdot \frac{-2tn}{t^2 + 4} + (n - 2)^2} = -\frac{1}{2}$$

$$\Leftrightarrow$$
 $-2(n^2-4)=t^2(n^2-4)-2t^2(n^2-2n)+(n^2-4n+4)(t^2+4)$

⇔
$$3n^2 - 8n + 4 = (3n - 2)(n - 2) = 0$$
, ∴ $n = \frac{2}{3}$, ∴ 直线 l 经过定点 $(\frac{2}{3}, 0)$

19. (西城区上期末) 给定正整数 $N \ge 3$, 已知项数为 m 且无重复项的数对序列 A: $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$

满足如下三个性质: ① $x_i, y_i \in \{1, 2, \dots, N\}$,且 $x_i \neq y_i (i = 1, 2, \dots, m)$;② $x_{i+1} = y_i (i = 1, 2, \dots, m-1)$;③ (p, q) 与

(q,p)不同时在数对序列 A 中. (1) 当 N=3, m=3 时, 写出所有满足 $x_1=1$ 的数对序列 A;

- (2) 当 N = 6 时,证明: $m \le 13$; (3) 当 N 为奇数时,记 m 的最大值为T(N),求T(N).
- (1) 解: 由题意得 x_i, y_i 1,2,3},∴A:(1,2),(2,3),(3,1),或A:(1,3),(3,2),(2,1)}
- (2) 证明::: N = 6,由(p,q)与(q,p)不同时在数对序列A中,得 $m \le C_6^2 = 15$,

且1,2,3,4,5,6每个数至多出现5次

由 (x_1, y_i) 在数对序列中,则 (y_i, x_i) 不在数对序列中, (x_i, y_m) 在数对序列中,

则 (y_m, x_i) 不在数对序列中, x_1, y_m 可以出现5次,其它数最多只能出现4次,

∴
$$m \le \frac{1}{2}(2 \times 5 + 4 \times 4) = 13$$
, \mathbb{I}

(3) 解: $idN = 2k + 1(k ∈ N^*)$,

由 (2) 得
$$T(N) \le \frac{1}{2}[2k \cdot 2 + (2k - 1) \cdot 2k] = \frac{1}{2}(4k^2 + 2k + 1)$$
, ∴ $T(N)_{\text{max}} = 2k^2 + k = \frac{N(N - 1)}{2}(=C_N^2)$,

下面构造一个有 C_N^2 项的数对序列A:集合中每个集合只有一个元素在A中,

 $\{(1,2),(2,1)\},\{(1,3),(3,1)\},\{(1,4),(4,1)\},\cdots,\{(1,2k+1),(2k+1,1)\},$

 $\{(2,3),(3,2)\},\{(2,4),(4,2)\},\{(2,5),(5,2)\},\cdots,\{(2,2k+1),(2k+1,2)\},$

 $\{(3,4),(4,3)\},\{(3,5),(5,3)\},\{(3,6),(6,3)\},\cdots,\{(3,2k+1),(2k+1,3)\},$

.....

 $\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-1),(2k-1,2k-3)\},\{(2k-3,2k),(2k,2k-3)\},\{(2k-3,2k+1),(2k+1,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-1),(2k-2,2k-3)\},\{(2k-3,2k-1),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-3)\},\{(2k-3,2k-2),(2k-2,2k-2)\},\{(2k-2,2k-2),(2k-2,2k-2)\},\{(2k-2,2k-2),(2k-2,2k-2)\},\{(2k-2,2k-2),(2k-2),(2k-2)\},\{(2k-2,2k-2),(2k-2),(2k-2)\},\{(2k-2,2k-2),(2k-2),(2k-2)\},\{(2k-2,2k-2),($

 $\{(2k-2,2k-1),(2k-1,2k-2)\},\{(2k-2,2k),(2k,2k-2)\},\{(2k-2,2k+1),(2k+1,2k-2)\},$

 $\{(2k-1,2k),(2k,2k-1)\},\{(2k-1,2k+1),(2k+1,2k-1)\},$

 $\{(2k, 2k+1), (2k+1, 2k)\},\$

构造 $A:(1,2),(2,3),\cdots(2k,2k+1),(2k+1,2k-1),(2k-1,2k-3),(2k-3,2k),(2k,2k-2),(2k-2,2k+1),(2k+1,2k-3),$

…,(2k+1,1).刚好有
$$C_N^2 = \frac{N(N-1)}{2}$$
项

【小问 3 详解】当 N 为奇数时,先证明T(N+2)=T(N)+2N+1.

因为(p,q)与(q,p)不同时在数对序列A中,

所以
$$T(N) \le C_N^2 = \frac{1}{2}N(N-1)$$
,

当 N=3 时,构造 A:(1,2),(2,3),(3,1) 恰有 C_3^2 项,且首项的第1个分量与末项的第2个分量都为1.

对奇数 N , 如果和可以构造一个恰有 \mathbb{C}_N^2 项的序列 \mathbb{A} , 且首项的第1个分量与末项的第2个分量都为1,

那么多奇数 N+2而言,可按如下方式构造满足条件的序列 A':

首先,对于如下2N+1个数对集合:

$$\{(1, N+1), (N+1,1)\}, \{(1, N+2), (N+2,1)\}, \{(2, N+1), (N+1,2)\}, \{(2, N+2), (N+2,2)\}, \{(2, N+$$

$$\cdots \{(N, N+1), (N+1, N)\}, \{(N, N+2), (N+2, N)\}, \{(N+1, N+2), (N+2, N+1)\},$$

每个集合中都至多有一个数对出现在序列 A' 中,所以 $T(N+2) \le T(N) + 2N + 1$,

其次,对每个不大于N的偶数 $i \in \{2,4,6,\cdots,N-1\}$,

将如下 4 个数对并为一组: (N+1,i),(i,N+2),(N+2,i+1),(i+1,N+1),

共得到
$$\frac{N-1}{2}$$
组,将这 $\frac{N-1}{2}$ 组对数以及 $(1,N+1),(N+1,N+2),(N+2,1)$,

接如下方式补充到 A 的后面,即 A,(1,N+1),(N+1,2),(2,N+2),(N+2,3),(3,n+1),…,

$$(N+1, N-1), (N-1, N+2), (N+2, N), (N, N+1), (N+1, N+2), (N+2, 1).$$

此时恰有T(N)+2N+1项,所以T(N+2)=T(N)+2N+1.

综上, 当
$$N$$
为奇数时, $T(N) = (T(N) - T(N-2)) + (T(N-2) - T(N-4)) + \cdots + (T(5) - T(3)) + T(3)$

$$=(2(N-2)+1)+(2(N-4)+1)+\cdots+(2\times 3+1)+3$$

$$= (2(N-2)+1)+(2(N-4)+1)+\cdots+(2\times 3+1)+(2\times 1+1)$$

$$= (2N-3)+(2N-7)+\cdots+7+3 = \frac{2N-3+3}{2} \times \frac{N-2+1}{2} = \frac{1}{2}N(N-1).$$