Machine Learning Course basic track

Lecture 7: Bias-variance decomposition & Feature importances

MIPT, 2019

Outline

- 1. Gradient boosting recap
- 2. Bias-variance decomposition.
- 3. Feature importances estimation

We use gradient descent in space of our models

$$\hat{f}(x) = \sum_{i=1}^{t-1} \hat{f}_i(x),$$

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)}, \quad \text{for } i = 1, \dots, n,$$

$$\theta_t = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^n (r_{it} - h(x_i, \theta))^2,$$

$$\rho_t = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1} L(y_i, \hat{f}(x_i) + \rho \cdot h(x_i, \theta_t))$$

In linear regression case with MSE loss:

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)} = -2(\hat{y}_i - y_i) \propto \hat{y}_i - y_i$$

What we need:

- Data.
- Loss function and its gradient.
- Family of algorithms (with constraints on hyperparameters if necessary).
- Number of iterations M.
- Initial value (GBM by Friedman): constant.

The dataset $X=(x_i,y_i)_{i=1}^\ell$ with $y_i\in\mathbb{R}$ for regression problem.

The dataset $X=(x_i,y_i)_{i=1}^\ell$ with $y_i\in\mathbb{R}$ for regression problem.

Denote loss function
$$L(y,a) = ig(y-a(x)ig)^2$$
 .

The dataset $X=(x_i,y_i)_{i=1}^\ell$ with $y_i\in\mathbb{R}$ for regression problem.

Denote loss function
$$L(y,a) = ig(y-a(x)ig)^2$$
 .

The corresponding risk estimation is

$$R(a) = \mathbb{E}_{x,y} \Big[\big(y - a(x) \big)^2 \Big] = \int_{\mathbb{Y}} \int_{\mathbb{Y}} p(x,y) \big(y - a(x) \big)^2 dx dy.$$

Let's show that
$$a_*(x) = \mathbb{E}[y \,|\, x] = \int_{\mathbb{V}} y p(y \,|\, x) dy$$

Let's show that
$$a_*(x) = \mathbb{E}[y \,|\, x] = \int_{\mathbb{Y}} y p(y \,|\, x) dy = \operatorname*{arg\,min}_a R(a).$$

Let's show that
$$a_*(x) = \mathbb{E}[y \mid x] = \int_{\mathbb{Y}} y p(y \mid x) dy = \operatorname*{arg\,min}_a R(a).$$

$$L(y, a(x)) = (y - a(x))^2$$

Let's show that
$$a_*(x) = \mathbb{E}[y \mid x] = \int_{\mathbb{Y}} y p(y \mid x) dy = \operatorname*{arg\,min}_a R(a).$$

$$L(y, a(x)) = (y - a(x))^{2} = (y - \mathbb{E}(y \mid x) + \mathbb{E}(y \mid x) - a(x))^{2} =$$

Let's show that
$$a_*(x) = \mathbb{E}[y \mid x] = \int_{\mathbb{Y}} y p(y \mid x) dy = \operatorname*{arg\,min}_a R(a).$$

$$L(y, a(x)) = (y - a(x))^{2} = (y - \mathbb{E}(y \mid x) + \mathbb{E}(y \mid x) - a(x))^{2} =$$

$$= (y - \mathbb{E}(y \mid x))^{2} + 2(y - \mathbb{E}(y \mid x))(\mathbb{E}(y \mid x) - a(x)) + (\mathbb{E}(y \mid x) - a(x))^{2}.$$

Let's return to the risk estimation:

Let's show that
$$a_*(x) = \mathbb{E}[y \mid x] = \int_{\mathbb{Y}} y p(y \mid x) dy = \operatorname*{arg\,min}_a R(a).$$

$$L(y, a(x)) = (y - a(x))^{2} = (y - \mathbb{E}(y \mid x) + \mathbb{E}(y \mid x) - a(x))^{2} =$$

$$= (y - \mathbb{E}(y \mid x))^{2} + 2(y - \mathbb{E}(y \mid x))(\mathbb{E}(y \mid x) - a(x)) + (\mathbb{E}(y \mid x) - a(x))^{2}.$$

Let's return to the risk estimation:

$$R(a) = \mathbb{E}_{x,y}L(y,a(x))$$

Let's show that
$$a_*(x) = \mathbb{E}[y \mid x] = \int_{\mathbb{Y}} y p(y \mid x) dy = \operatorname*{arg\,min}_a R(a).$$

$$L(y, a(x)) = (y - a(x))^{2} = (y - \mathbb{E}(y \mid x) + \mathbb{E}(y \mid x) - a(x))^{2} =$$

$$= (y - \mathbb{E}(y \mid x))^{2} + 2(y - \mathbb{E}(y \mid x))(\mathbb{E}(y \mid x) - a(x)) + (\mathbb{E}(y \mid x) - a(x))^{2}.$$

Let's return to the risk estimation:

$$R(a) = \mathbb{E}_{x,y} L(y, a(x)) =$$

$$= \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 +$$

$$+ 2\mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x)) (\mathbb{E}(y \mid x) - a(x)).$$

Focus on the last term:
$$+2\mathbb{E}_{x,y}ig(y-\mathbb{E}(y\,|\,x)ig)ig(\mathbb{E}(y\,|\,x)-a(x)ig).$$

 $= \mathbb{E}_{x,y}(y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y}(\mathbb{E}(y \mid x) - a(x))^2 + \mathbb{E}_{x,y}(y \mid x) + \mathbb{E}_{x,y}(y \mid$

 $R(a) = \mathbb{E}_{x,y}L(y,a(x)) =$

Focus on the last term:

$$R(a) = \mathbb{E}_{x,y} L(y,a(x)) = \\ = \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 + \\ + 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y \mid x) \big) \big(\mathbb{E}(y \mid x) - a(x) \big).$$
 Focus on the last term:

$$\mathbb{E}_{x}\mathbb{E}_{y}\left[\left(y - \mathbb{E}(y \mid x)\right)\left(\mathbb{E}(y \mid x) - a(x)\right) \mid x\right] =$$

$$R(a) = \mathbb{E}_{x,y} L(y,a(x)) = \\ = \mathbb{E}_{x,y} (y - \mathbb{E}(y\,|\,x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y\,|\,x) - a(x))^2 + \\ + 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y\,|\,x)\big) \big(\mathbb{E}(y\,|\,x) - a(x)\big).$$
 Focus on the last term:

Does not depend on y $\mathbb{E}_x \mathbb{E}_y \Big[\big(y - \mathbb{E}(y \,|\, x) \big) \Big[\big(\mathbb{E}(y \,|\, x) - a(x) \big) \Big] \,|\, x \Big] =$

$$\begin{split} R(a) &= \mathbb{E}_{x,y} L(y,a(x)) = \\ &= \mathbb{E}_{x,y} (y - \mathbb{E}(y \,|\, x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \,|\, x) - a(x))^2 + \\ &+ 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y \,|\, x) \big) \big(\mathbb{E}(y \,|\, x) - a(x) \big). \end{split}$$
 Focus on the last term:

Does not depend on y

$$\mathbb{E}_{x}\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big)\Big(\mathbb{E}(y \mid x) - a(x)\Big) \mid x\Big] =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - a(x)\big)\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big) \mid x\Big]\Big) =$$

$$R(a) = \mathbb{E}_{x,y} L(y,a(x)) = \\ = \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 + \\ + 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y \mid x) \big) \big(\mathbb{E}(y \mid x) - a(x) \big).$$
 Focus on the last term:

$$\mathbb{E}_{x}\mathbb{E}_{y}\left[\left(y - \mathbb{E}(y \mid x)\right)\left(\mathbb{E}(y \mid x) - a(x)\right) \mid x\right] =$$

$$= \mathbb{E}_{x}\left(\left(\mathbb{E}(y \mid x) - a(x)\right)\mathbb{E}_{y}\left[\left(y - \mathbb{E}(y \mid x)\right) \mid x\right]\right) =$$

$$= \mathbb{E}_{x}\left(\left(\mathbb{E}(y \mid x) - a(x)\right)\left(\mathbb{E}(y \mid x) - \mathbb{E}(y \mid x)\right)\right) =$$

$$R(a) = \mathbb{E}_{x,y} L(y,a(x)) = \\ = \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 + \\ + 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y \mid x) \big) \big(\mathbb{E}(y \mid x) - a(x) \big).$$
 Focus on the last term:

$$\mathbb{E}_{x}\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big)\big(\mathbb{E}(y \mid x) - a(x)\big) \mid x\Big] =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - a(x)\big)\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big) \mid x\Big]\Big) =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - a(x)\big)\big(\mathbb{E}(y \mid x) - \mathbb{E}(y \mid x)\big)\Big) =$$

$$= 0$$

$$R(a) = \mathbb{E}_{x,y} L(y,a(x)) = \\ = \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 + \\ + 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y \mid x) \big) \big(\mathbb{E}(y \mid x) - a(x) \big).$$

$$\mathbb{E}_{x}\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big)\big(\mathbb{E}(y \mid x) - a(x)\big) \mid x\Big] =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - a(x)\big)\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big) \mid x\Big]\Big) =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - a(x)\big)\big(\mathbb{E}(y \mid x) - \mathbb{E}(y \mid x)\big)\Big) =$$

$$= 0$$

Does not depend on a(x)

So the risk takes form:

$$R(a) = \mathbb{E}_{x,y}(y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y}(\mathbb{E}(y \mid x) - a(x))^2.$$

The minimum is reached when $a(x) = \mathbb{E}(y \mid x)$.

So the optimal regression model with square loss is

$$a_*(x) = \mathbb{E}(y \mid x) = \int_{\mathbb{Y}} yp(y \mid x)dy.$$

So
$$L(\mu) = \mathbb{E}_X \left[\mathbb{E}_{x,y} \left[\left(y - \mu(X)(x) \right)^2 \right] \right]$$
 , where X dataset.

So
$$L(\mu)=\mathbb{E}_X\left|\mathbb{E}_{x,y}\left|\left(y-\mu(X)(x)\right)^2\right|
ight|$$
 , where X dataset.

If X is fixed, then

$$\mathbb{E}_{x,y}\Big[\big(y-\mu(X)\big)^2\Big] = \mathbb{E}_{x,y}\Big[\big(y-\mathbb{E}[y\,|\,x]\big)^2\Big] + \mathbb{E}_{x,y}\Big[\big(\mathbb{E}[y\,|\,x]-\mu(X)\big)^2\Big].$$

So
$$L(\mu) = \mathbb{E}_X \Big[\mathbb{E}_{x,y} \Big[ig(y - \mu(X)(x) ig)^2 \Big] \Big]$$
 , where X dataset.

If X is fixed, then

$$\mathbb{E}_{x,y}\Big[\big(y-\mu(X)\big)^2\Big] = \mathbb{E}_{x,y}\Big[\big(y-\mathbb{E}[y\,|\,x]\big)^2\Big] + \mathbb{E}_{x,y}\Big[\big(\mathbb{E}[y\,|\,x]-\mu(X)\big)^2\Big].$$

Let's combine the latter equations:

So
$$L(\mu)=\mathbb{E}_X\left[\mathbb{E}_{x,y}\left[\left(y-\mu(X)(x)
ight)^2\right]
ight]$$
 , where X dataset.

If X is fixed, then

$$\mathbb{E}_{x,y}\Big[\big(y-\mu(X)\big)^2\Big] = \mathbb{E}_{x,y}\Big[\big(y-\mathbb{E}[y\,|\,x]\big)^2\Big] + \mathbb{E}_{x,y}\Big[\big(\mathbb{E}[y\,|\,x]-\mu(X)\big)^2\Big].$$

Let's combine the latter equations:

$$L(\mu) = \mathbb{E}_{X} \left[\underbrace{\mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^{2} \right]} + \mathbb{E}_{x,y} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^{2} \right] \right]$$

$$L(\mu) = \mathbb{E}_X \left[\underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{Does not depend on X}} + \mathbb{E}_{x,y} \Big[\big(\mathbb{E}[y \, | \, x] - \mu(X) \big)^2 \Big] \right] =$$

$$L(\mu) = \mathbb{E}_X \left[\underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{Does not depend on X}} + \mathbb{E}_{x,y} \Big[\big(\mathbb{E}[y \, | \, x] - \mu(X) \big)^2 \Big] \right] = 0$$

$$= \mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^2 \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big].$$

$$L(\mu) = \mathbb{E}_{X} \left[\mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^{2} \right] + \mathbb{E}_{x,y} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^{2} \right] \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^{2} \right] + \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^{2} \right] \right].$$

Focus on the second term:

$$L(\mu) = \mathbb{E}_{X} \Big[\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^{2} \Big] + \mathbb{E}_{x,y} \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^{2} \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^2 \Big] + \Big[\mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big] \Big].$$

Focus on the second term:

$$\mathbb{E}_{x,y}\Big[\mathbb{E}_X\Big[\big(\mathbb{E}[y\,|\,x]-\mu(X)\big)^2\Big]\Big] =$$

$$L(\mu) = \mathbb{E}_X \left[\mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^2 \right] + \mathbb{E}_{x,y} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^2 \right] \right] =$$

$$= \mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^2 \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big].$$

Focus on the second term:

$$\mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^{2} \right] \right] =$$

$$= \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] + \mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right)^{2} \right] \right]$$

$$\mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_X \big[\mu(X) \big] + \mathbb{E}_X \big[\mu(X) \big] - \mu(X) \big)^2 \Big] \Big] =$$

$$\mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^{2} \right] \right] =$$

$$= \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] + \mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right)^{2} \right] \right] =$$

$$= \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] \right)^{2} \right] \right] + \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right)^{2} \right] \right] +$$

$$+ 2\mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] \right) \left(\mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right) \right] \right].$$

Just a bit further, we are almost there

$$\mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^{2} \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] + \mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \big)^{2} \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \big)^{2} \Big] \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\big(\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \big)^{2} \Big] \Big] +$$

$$\bigg[+ 2\mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_X \big[\mu(X) \big] \big) \big(\mathbb{E}_X \big[\mu(X) \big] - \mu(X) \big) \Big] \bigg].$$

Focus on this term

$$\mathbb{E}_{X} \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \big) \big(\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \big) \Big] =$$

$$\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] \right) \left(\mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right) \right] =$$

$$= \left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] \right) \mathbb{E}_{X} \left[\mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right] =$$

$$\begin{split} \mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \Big(\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \Big) \Big] &= \\ &= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \mathbb{E}_{X} \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \Big] = \\ &= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mathbb{E}_{X} \big[\mu(X) \big] \Big] = \end{split}$$

$$\mathbb{E}_{X} \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \big) \big(\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \big) \Big] =$$

$$= \big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \big) \mathbb{E}_{X} \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \Big] =$$

$$= \big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \big) \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mathbb{E}_{X} \big[\mu(X) \big] \Big] =$$

$$= 0.$$

$$\mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mu(X) \Big)^{2} \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} [\mu(X)] + \mathbb{E}_{X} [\mu(X)] - \mu(X) \Big)^{2} \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} [\mu(X)] \Big)^{2} \Big] \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}_{X} [\mu(X)] - \mu(X) \Big)^{2} \Big] \Big] +$$

$$+2\mathbb{E}_{x,y}\Big[\mathbb{E}_X\Big[\big(\mathbb{E}[y\,|\,x]-\mathbb{E}_X\big[\mu(X)\big]\big)\big(\mathbb{E}_X\big[\mu(X)\big]-\mu(X)\big)\Big]\Big].$$

$$L(\mu) = \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \underbrace{\mathbb{E}_x \Big[\big(\mathbb{E}_X \big[\mu(X) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \underbrace{\mathbb{E}_x \Big[\big(\mu(X) - \mathbb{E}_X \big[\mu(X) \big] \big)^2 \Big] \Big]}_{\text{variance}}.$$

$$L(\mu) = \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \underbrace{\mathbb{E}_x \Big[\big(\mathbb{E}_X \big[\mu(X) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \underbrace{\mathbb{E}_x \Big[\big(\mu(X) - \mathbb{E}_X \big[\mu(X) \big] \big)^2 \Big]}_{\text{variance}}.$$

This exact form of bias-variance decomposition is correct for square loss in regression.

However, it is much more general. See extra materials for more exotic cases.

Bagging = Bootstrap aggregating

Denote dataset \tilde{X} bootstrapped from X.

Denote μ : $\tilde{\mu}(X) = \mu(\tilde{X})$. Let $b_n(x)$ be basic algorithm.

Denote the ensemble:

$$a_N(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x) = \frac{1}{N} \sum_{n=1}^{N} \tilde{\mu}(X)(x).$$

$$L(\mu) = \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \underbrace{\mathbb{E}_x \Big[\big(\mathbb{E}_X \big[\mu(X) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \underbrace{\mathbb{E}_x \Big[\big(\mu(X) - \mathbb{E}_X \big[\mu(X) \big] \big)^2 \Big] \Big]}_{\text{variance}}.$$

$$\mathbb{E}_{x,y}\Big[\Big(\mathbb{E}_X\Big[\frac{1}{N}\sum_{1}^N \tilde{\mu}(X)(x)\Big] - \mathbb{E}[y\,|\,x]\Big)^2\Big] =$$

$$\mathbb{E}_{x,y} \left[\left(\mathbb{E}_X \left[\frac{1}{N} \sum_{n=1}^N \tilde{\mu}(X)(x) \right] - \mathbb{E}[y \mid x] \right)^2 \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\frac{1}{N} \sum_{n=1}^N \mathbb{E}_X [\tilde{\mu}(X)(x)] - \mathbb{E}[y \mid x] \right)^2 \right] =$$

$$\mathbb{E}_{x,y} \left[\left(\mathbb{E}_X \left[\frac{1}{N} \sum_{n=1}^N \tilde{\mu}(X)(x) \right] - \mathbb{E}[y \mid x] \right)^2 \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\frac{1}{N} \sum_{n=1}^N \mathbb{E}_X [\tilde{\mu}(X)(x)] - \mathbb{E}[y \mid x] \right)^2 \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\mathbb{E}_X \left[\tilde{\mu}(X)(x) \right] - \mathbb{E}[y \mid x] \right)^2 \right].$$

$$\mathbb{E}_{x,y} \left[\left(\mathbb{E}_{X} \left[\frac{1}{N} \sum_{n=1}^{N} \tilde{\mu}(X)(x) \right] - \mathbb{E}[y \mid x] \right)^{2} \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{X} [\tilde{\mu}(X)(x)] - \mathbb{E}[y \mid x] \right)^{2} \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\mathbb{E}_{X} \left[\tilde{\mu}(X)(x) \right] - \mathbb{E}[y \mid x] \right)^{2} \right].$$
One algorithm bias

The variance: $\mathbb{E}_{x,y}\Big[\mathbb{E}_X\Big[\Big(\frac{1}{N}\sum_{n=1}^N \tilde{\mu}(X)(x) - \mathbb{E}_X\Big[\frac{1}{N}\sum_{n=1}^N \tilde{\mu}(X)(x)\Big]\Big)^2\Big]\Big].$

$$\left(\frac{1}{N}\sum_{n=1}^{N}\tilde{\mu}(X)(x) - \mathbb{E}_{X}\left[\frac{1}{N}\sum_{n=1}^{N}\tilde{\mu}(X)(x)\right]\right)^{2} =
= \frac{1}{N^{2}}\left(\sum_{n=1}^{N}\left[\tilde{\mu}(X)(x) - \mathbb{E}_{X}\left[\tilde{\mu}(X)(x)\right]\right]\right)^{2} =
= \frac{1}{N^{2}}\sum_{n=1}^{N}\left(\tilde{\mu}(X)(x) - \mathbb{E}_{X}\left[\tilde{\mu}(X)(x)\right]\right)^{2} +
+ \frac{1}{N^{2}}\sum_{n_{1}\neq n_{2}}\left(\tilde{\mu}(X)(x) - \mathbb{E}_{X}\left[\tilde{\mu}(X)(x)\right]\right)\left(\tilde{\mu}(X)(x) - \mathbb{E}_{X}\left[\tilde{\mu}(X)(x)\right]\right)$$

The variance:

$$\begin{split} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\frac{1}{N^{2}} \sum_{n=1}^{N} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} + \\ &+ \frac{1}{N^{2}} \sum_{n_{1} \neq n_{2}} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] = \\ &= \frac{1}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\sum_{n=1}^{N} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} \Big] \Big] + \\ &+ \frac{1}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\sum_{n_{1} \neq n_{2}} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] = \text{One algorithm} \\ &= \underbrace{ \Big[\frac{1}{N} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} \Big] \Big] + \\ &+ \frac{N(N-1)}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] + \\ &\times \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \Big] \Big) \Big] \Big] \end{split}$$

The variance:

$$\begin{split} &\mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\frac{1}{N^{2}} \sum_{n=1}^{N} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} + \\ &+ \frac{1}{N^{2}} \sum_{n_{1} \neq n_{2}} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] = \\ &= \frac{1}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\sum_{n=1}^{N} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} \Big] \Big] + \\ &+ \frac{1}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\sum_{n_{1} \neq n_{2}} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] = \text{One algorithm} \\ &= \underbrace{ \Big[\frac{1}{N} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} \Big] \Big] + }_{\text{variance}} \\ &+ \underbrace{ \frac{1}{N} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} \Big] \Big] + }_{\text{variance}} \\ &+ \underbrace{ \frac{1}{N} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] }_{\text{variance}} \\ &+ \underbrace{ \frac{1}{N} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] }_{\text{variance}} \\ \end{aligned}$$

Feature importance estimation

$$)=-1-0.9=-1.9$$

Feature importance estimation

- 1. Permutation importance
- 2. Partial Dependence Plots (PDP)
- 3. Tree specific:
 - a. Gain
 - b. Frequency (Split Count)
 - c. Cover (weighted Split Count)
- 4. Shap

Permutation importance

Height at age 20 (cm)	Height at age 10 (cm)	 Socks owned at age 10
182	155	 20
175	147	 10
156	142	 8
153	130	 24

Permutation importance

Height at age 20 (cm)	Height at age 10 (cm)	 Socks owned at age 10
182	155	 20
175	147	 10
	(A	
156	142	 8
153	130	 24

Train model

Observe changes caused by feature random permutations

Partial Dependence Plots

PDP for feature "Goal Scored"

Number of unique grid points: 6

Importance estimation problems

Shap values

Consider i-th feature. Shap value will be

$$\phi_i(p) = \sum_{S \subseteq N/\{i\}} rac{|S|!(n-|S|-1)!}{n!} (p(S \cup \{i\}) - p(S))$$

where $p(S \cup \{i\})$ is model prediction on feature subset S with *i-th* feature added.

Shap values

Consider i-th feature. Shap value will be

$$\phi_i(p) = \sum_{S \subseteq N/\{i\}} rac{|S|!(n-|S|-1)!}{n!} (p(S \cup \{i\}) - p(S))$$

where $p(S \cup \{i\})$ is model prediction on feature subset S with *i-th* feature added.

SHAP values are the only consistent and locally accurate individualized feature attributions

Outro

- 1. Remember the bias-varience decomposition
- 2. Consider using SHAP values to estimate feature importances.

Great demo: http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html