SÉRIE DE EXERCÍCIOS

RETIFICADOR DE MEIA ONDA

- 1. O valor eficaz da tensão senoidal no secundário do transformador da Figura é igual a 30 (V_{ef}). Calcular na carga R_L :
- a) O valor de pico da tensão
- o) O valor médio da tensão
- e) O valor médio da corrente

2. Nesse problema são fornecidos os valores de $I_{F(AV)}$ para alguns diodos comerciais. Se a tensão no secundário do transformador da Figura é igual a 115 (V_{ef}), quais os diodos relacionados pode(m) ser utilizado(s)?

1N 914	$I_{F(AV)}$	=	50 [mA]
1N 3070	$I_{F(AV)}$	=	100 [mA]
1N 4002	I _{F(AV)}	=	1 [A]
1N 1183	I _{F(AV)}	=	35 [A]

3. Se a tensão no primário do transformador da Figura for de 127 (V_{ef}), e sua relação de espiras (primário para secundário) for de dois para um, qual a PIV sobre o diodo e qual(is) do(s) diodos comerciais relacionados a seguir pode(m) ser utilizado(s)?

4. O valor eficaz da tensão senoidal no secundário transformador da figura abaixo é igual a 30 [V]. Determine:

- a) A forma de onda da tensão e da corrente no secundário do transformador.
- b) A forma de onda da tensão e da corrente na carga ${
 m R}_{
 m L}.$
- c) A forma de onda da tensão sobre o diodo retificador e da corrente que por ele flui.
- d) O valor de pico da tensão de saída.
- e) O valor médio da tensão de saída.
- f) O valor eficaz da tensão de saída

- g. O valor de pico da corrente pela carga.
- h. O valor médio da corrente pela carga.
- i. O valor eficaz da corrente pela carga.
- j. Os valores mínimos dos parâmetros $I_{F(av)}$, I_{FRM} e V_{RRM} para o diodo retificador.
- 5. Um retificador de meia onda utilizando diodo de Silício deve alimentar uma carga de 1 k Ω . O transformador utilizado possui 500 espiras no primário e 200 espiras no secundário e será ligado a uma rede de 127 ($V_{\rm ef}$)/60(Hz). Calcular.
- a) A tensão contínua na carga
- b) A potência RMS na carga
- c) A corrente contínua no secundário do transformador

RESPOSTAS

01) a)
$$V_{o(m)} = 42,43$$
 [V] b) $V_{o(av)} = 13,50$ [V] c) $I_{o(av)} = 27,01$ [mA]

b)
$$V_{o(av)} = 13,50 [V]$$

c)
$$I_{o(av)} = 27,01 \text{ [mA]}$$

02) I_{D(av)} = 103,09 (mA). Como I_{F(AV)} ≥ I_{D(av)}, somente os diodos 1N 4002 e 1N 1183 poderão ser utilizados.

03) PIV = 89,80 [V], logo, somente os diodos 1N 4002 e 1N 3070 poderão ser utilizados.

04)

a) Tensão de Entrada (V_i)

Corrente na Carga (i_o)

04)

d)
$$V_{o(m)} = V_{i(m)} - V_{K} = \sqrt{2} \times V_{i(rms)} - V_{K}$$

 $V_{o(m)} = \sqrt{2} \times 30 - 0,7 = 41,73(V)$

 $05) V_{o(av)} = 22,65 (V)$

$$P_{o(rms)} = 1,27(W)$$

$$i_{s(av)} = 22,65 (mA)$$

e)
$$V_{o(av)} = 13,28(V)$$

f)
$$V_{o(rms)} = 20.86(V)$$

g)
$$I_{o(m)} = 83,46 (m A)$$

h)
$$I_{o(av)} = 26,57 (mA)$$

i)
$$I_{o(rms)} = 41,73 (mA)$$

j)
$$I_{F(AV)} \ge I_{D(AV)} = I_{o(av)} = 26,57 (m A)$$

$$I_{_{FRM}} \ge I_{_{D(m)}} = I_{_{o(m)}} = 83,46 (mA)$$

$$PIV \ge V_{i(m)} = \sqrt{2} \times V_{i(rms)} = \sqrt{2} \times 30 = 42,43(V)$$