Review: Naïve Bayes

CS114B Lab 1

Kenneth Lai

February 5, 2021

Suppose we observe a movie review d = "predictable with no fun". Is the review positive or negative?

► Training data:

document	class	
just plain boring	negative	
entirely predictable and lacks energy	negative	
no surprises and very few laughs	negative	
very powerful	positive	
the most fun film of the summer	positive	

Naïve Bayes models are generative

- ► Naïve Bayes models are generative
 - Assume the data are generated according to an underlying distribution

Documents are bags of words

- Documents are bags of words
- Data generated by multinomial distribution

- Documents are bags of words
- Data generated by multinomial distribution
 - "rolling a |V|-sided die n times"

- Documents are bags of words
- Data generated by multinomial distribution
 - "rolling a |V|-sided die n times"
 - ightharpoonup V = vocabulary, n = length of document

- ▶ *c* = negative
- ightharpoonup d = "predictable with no fun"

- ightharpoonup c = negative
- ▶ d = "predictable with no fun"
 - w_1 = predictable
 - \triangleright $w_2 = \text{with}$
 - $\sim w_3 = no$
 - $w_4 = \text{fun}$

▶ Bayes' Rule:
$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

▶ Bayes' Rule:
$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

$$\hat{c} = \operatorname*{argmax}_{c \in \mathcal{C}} P(d|c)P(c)$$

- ▶ Bayes' Rule: $P(c|d) = \frac{P(d|c)P(c)}{P(d)}$
- $\hat{c} = \operatorname*{argmax}_{c \in C} P(d|c)P(c)$
- ▶ What about P(d)?

- ▶ Bayes' Rule: $P(c|d) = \frac{P(d|c)P(c)}{P(d)}$
- $\hat{c} = \operatorname*{argmax}_{c \in C} P(d|c)P(c)$
- ▶ What about P(d)?
 - ightharpoonup P(d) is the same for each class

$$\hat{c} = \operatorname*{argmax}_{c \in \mathcal{C}} P(c) P(d|c)$$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c)P(d|c) \\
= \underset{c \in C}{\operatorname{argmax}} P(c)P(w_1, ..., w_n|c)$$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c)P(d|c) \\
= \underset{c \in C}{\operatorname{argmax}} P(c)P(w_1, ..., w_n|c)$$

► Chain Rule:
$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{i=1}^{n} P\left(w_{i} \middle| \bigcap_{j=1}^{i-1} w_{j}, c\right)$$

Independence Assumptions

▶ Bag of Words Assumption: position doesn't matter

Independence Assumptions

- ▶ Bag of Words Assumption: position doesn't matter
- Naïve Bayes Assumption: features (words) are independent given the class

Independence Assumptions

- Bag of Words Assumption: position doesn't matter
- Naïve Bayes Assumption: features (words) are independent given the class

$$\prod_{i=1}^n P\left(w_i \middle| \bigcap_{j=1}^{i-1} w_j, c\right) = \prod_{i=1}^n P(w_i | c)$$

$$c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(w_i|c)$$

$$c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(w_i | c)$$

Everything is counting!

$$c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(w_i | c)$$

Everything is counting!

$$\hat{P}(c) = \frac{\mathsf{doccount}(c)}{\sum_{c' \in C} \mathsf{doccount}(c')}$$

$$c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(w_i | c)$$

Everything is counting!

$$\hat{P}(c) = \frac{\mathsf{doccount}(c)}{\sum_{c' \in C} \mathsf{doccount}(c')}$$

$$\hat{P}(w_i|c) = \frac{\text{wordcount}(w_i, c)}{\sum_{w \in V} \text{wordcount}(w, c)}$$

▶ What if w_i does not appear in any documents of class c?

- ▶ What if *w_i* does not appear in any documents of class *c*?
 - $\hat{P}(w_i|c)=0$

- ▶ What if *w_i* does not appear in any documents of class *c*?
 - $\hat{P}(w_i|c)=0$
- Suppose we observe a movie review D' = "just fun". Is the review positive or negative?

- ▶ What if *w_i* does not appear in any documents of class *c*?
 - $\hat{P}(w_i|c)=0$
- Suppose we observe a movie review D' = "just fun". Is the review positive or negative?
 - ightharpoonup argmax(0,0)=?

Smoothing

▶ Laplace (add-1) smoothing: add 1 to all word counts

Smoothing

▶ Laplace (add-1) smoothing: add 1 to all word counts

$$\hat{P}(w_i|c) = \frac{\text{wordcount}(w_i, c) + 1}{\sum_{w \in V} (\text{wordcount}(w, c) + 1)}$$

$$= \frac{\text{wordcount}(w_i, c) + 1}{\left(\sum_{w \in V} \text{wordcount}(w, c)\right) + |V|}$$

$$\hat{P}(c) = \frac{\mathsf{doccount}(c)}{\sum_{c' \in C} \mathsf{doccount}(c')}$$

$$\hat{P}(w_i|c) = \frac{\mathsf{wordcount}(w_i,c) + 1}{\left(\sum_{w \in V} \mathsf{wordcount}(w,c)\right) + |V|}$$

$$\hat{P}(c) = \frac{\mathsf{doccount}(c)}{\sum_{c' \in C} \mathsf{doccount}(c')}$$

$$\hat{P}(w_i|c) = \frac{\mathsf{wordcount}(w_i,c) + 1}{\left(\sum_{w \in V} \mathsf{wordcount}(w,c)\right) + |V|}$$

document	class	
just plain boring	negative	
entirely predictable and lacks energy	negative	
no surprises and very few laughs	negative	
very powerful	positive	
the most fun film of the summer	positive	

$$\hat{P}(c) = \frac{\mathsf{doccount}(c)}{\sum_{c' \in C} \mathsf{doccount}(c')}$$

$$\hat{P}(w_i|c) = \frac{\mathsf{wordcount}(w_i,c) + 1}{\left(\sum_{w \in V} \mathsf{wordcount}(w,c)\right) + |V|}$$

document	class	
just plain boring	negative	
entirely predictable and lacks energy	negative	
no surprises and very few laughs	negative	
very powerful	positive	
the most fun film of the summer	positive	

- $\hat{P}(\text{negative}) = 3/5$
- $\hat{P}(positive) = 2/5$

	wordcount(w, c)		w			
	VVC	rucount(w,c)	predictable	no	fun	
		negative	1	1	0	
	C	positive	0	0	1	

C	wordcount(w,c)+1		w			
	VVC	ordcount(w, c) $+$ 1	predictable	no	fun	
	_	negative	1 + 1	1 + 1	0 + 1	
	C	positive	0 + 1	0+1	1 + 1	

	wordcount(w,c)+1		w				
			predictable	no	fun		
	с	negative	2	2	1		
		positive	1	1	2		

•	wordcount(w,c)+1		w				
			predictable	no	fun		
	с	negative	2	2	1		
		positive	1	1	2		

- $\sum_{w \in V} \mathsf{wordcount}(w, \mathsf{negative}) = 14$
- $\sum_{w \in V} \mathsf{wordcount}(w, \mathsf{positive}) = 9$

•	wordcount(w,c)+1		w				
			predictable	no	fun		
	с	negative	2	2	1		
		positive	1	1	2		

- $\sum_{w \in V} \mathsf{wordcount}(w, \mathsf{negative}) = 14$
- $\sum_{w \in V} \mathsf{wordcount}(w, \mathsf{positive}) = 9$
- ► |V| = 20

Þ

$\hat{P}(w c)$		W					
		predictable	no	fun			
С	negative	2/(14+20)	2/(14+20)	1/(14+20)			
	positive	1/(9+20)	1/(9+20)	2/(9+20)			

- $\sum_{w \in V} \mathsf{wordcount}(w, \mathsf{negative}) = 14$
- $\sum_{w \in V} \mathsf{wordcount}(w, \mathsf{positive}) = 9$
- ► |*V*| = 20

	$\hat{P}(w c)$		w				
			predictable	no	fun		
	С	negative	1/17	1/17	1/34		
		positive	1/29	1/29	2/29		

- $\sum_{w \in V} \mathsf{wordcount}(w, \mathsf{negative}) = 14$
- $\sum_{w \in V} \mathsf{wordcount}(w, \mathsf{positive}) = 9$
- ▶ |*V*| = 20

Suppose we observe a movie review d = "predictable with no fun". Is the review positive or negative?

Suppose we observe a movie review d = "predictable with no fun". Is the review positive or negative?

$$c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(w_i | c)$$

Suppose we observe a movie review d = "predictable with no fun". Is the review positive or negative?

$$c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(w_i | c)$$

▶ Ignore unknown word "with"

Suppose we observe a movie review d = "predictable with no fun". Is the review positive or negative?

$$c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1} P(w_i | c)$$

- ▶ Ignore unknown word "with"
- ► $P(\text{negative}|d) \propto 3/5 \times (1/17)^2 \times 1/34 \approx 6.1 \times 10^{-5}$

- Suppose we observe a movie review d = "predictable with no fun". Is the review positive or negative?
- $c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1} P(w_i | c)$
 - ▶ Ignore unknown word "with"
- ► $P(\text{negative}|d) \propto 3/5 \times (1/17)^2 \times 1/34 \approx 6.1 \times 10^{-5}$
- ► $P(\text{positive}|d) \propto 2/5 \times (1/29)^2 \times 2/29 \approx 3.2 \times 10^{-5}$

- Suppose we observe a movie review d = "predictable with no fun". Is the review positive or negative?
- $c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1}^{m} P(w_i | c)$
 - ► Ignore unknown word "with"
- ► $P(\text{negative}|d) \propto 3/5 \times (1/17)^2 \times 1/34 \approx 6.1 \times 10^{-5}$
- ► $P(\text{positive}|d) \propto 2/5 \times (1/29)^2 \times 2/29 \approx 3.2 \times 10^{-5}$
- negative

▶ Not all features are (necessarily) words

- Not all features are (necessarily) words
 - ► Character n-grams, specific phrases, non-linguistic features, etc.

- Not all features are (necessarily) words
 - ► Character n-grams, specific phrases, non-linguistic features, etc.
- Not all words are (necessarily) features

- Not all features are (necessarily) words
 - ► Character n-grams, specific phrases, non-linguistic features, etc.
- Not all words are (necessarily) features
 - ► Ignore unknown words

- Not all features are (necessarily) words
 - ► Character n-grams, specific phrases, non-linguistic features, etc.
- Not all words are (necessarily) features
 - Ignore unknown words
 - ► Ignore non-feature words

- Not all features are (necessarily) words
 - ► Character n-grams, specific phrases, non-linguistic features, etc.
- Not all words are (necessarily) features
 - Ignore unknown words
 - ► Ignore non-feature words

- Not all features are (necessarily) words
 - ► Character n-grams, specific phrases, non-linguistic features, etc.
- Not all words are (necessarily) features
 - Ignore unknown words
 - ► Ignore non-feature words

$$c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1, w_i \in \operatorname{features}}^{"} P(w_i | c)$$

▶ Importantly, V should still be the entire vocabulary

- Not all features are (necessarily) words
 - ► Character n-grams, specific phrases, non-linguistic features, etc.
- Not all words are (necessarily) features
 - Ignore unknown words
 - Ignore non-feature words

$$c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1, w_i \in \operatorname{features}}^{"} P(w_i | c)$$

- ▶ Importantly, V should still be the entire vocabulary
 - ▶ The other words are still there, even if we are not using them

• If $x \times y = z$, then $\log(x) + \log(y) = \log(z)$

• If
$$x \times y = z$$
, then $\log(x) + \log(y) = \log(z)$

$$c_{NB} = \operatorname*{argmax} \log(P(c)) + \sum_{i=1}^{n} \log(P(w_i|c))$$

- ▶ If $x \times y = z$, then $\log(x) + \log(y) = \log(z)$
- $c_{NB} = \operatorname*{argmax}_{c \in C} \log(P(c)) + \sum_{i=1}^{n} \log(P(w_i|c))$
- Avoid floating-point underflow

- ▶ If $x \times y = z$, then $\log(x) + \log(y) = \log(z)$
- $c_{NB} = \operatorname*{argmax}_{c \in \mathcal{C}} \log(P(c)) + \sum_{i=1}^{n} \log(P(w_i|c))$
- Avoid floating-point underflow
 - (You will need to do this for PA, but not for HW)