8

There is perhaps nothing which so occupies the middle position of mathematics as trigonometry.

—J.F. Herbart (1890)

8.1 પ્રાસ્તાવિક

તમે અગાઉના ધોરણમાં ત્રિકોણ અને વિશિષ્ટ વિકલ્પમાં કાટકોણ ત્રિકોણનો અભ્યાસ કરી ચૂક્યા છો. હવે આપણી આસપાસમાંથી જ જેમાં કાટકોણ ત્રિકોણ બનતો હોય તેવી કલ્પના કરી શકાય એવાં કેટલાંક ઉદાહરણો લઈએ. ઉદાહરણ તરીકે :

- 1. ધારો કે, એક શાળાના વિદ્યાર્થીઓ કુતુબિમનારની મુલાકાત લઈ રહ્યા છે. હવે જો કોઈ એક વિદ્યાર્થી મિનારની ટોચ તરફ જુએ તો અહીં આકૃતિ 8.1માં બતાવ્યા પ્રમાણે કાટકોણ ત્રિકોણની કલ્પના કરી શકાય. શું આ મિનારની ઊંચાઈ વાસ્તવિક રીતે માપ્યા વગર વિદ્યાર્થી શોધી શકશે ?
- 2. ધારો કે, એક છોકરી નદીના કિનારા પર રહેલા તેના ઘરની અગાસીમાં બેઠી છે. તે નદીના બીજા કિનારા પર આવેલા મંદિરનાં પગથિયાં પર રહેલા ફૂલોનાં કૂંડાંને જુએ છે. આ પરિસ્થિતિમાં પણ આકૃતિ 8.2માં બતાવ્યા પ્રમાણે કાટકોણ ત્રિકોણ બનતો હોય તેવી કલ્પના કરી શકાય છે. જો તમે જાણતા હો કે, નિરીક્ષણ કરનાર વ્યક્તિ કેટલી ઊંચાઈ પર બેઠી છે, તો શું તમે નદીની પહોળાઈ શોધી શકશો ?

3. ધારો કે, ગરમ હવાવાળું એક બલૂન હવામાં ઊડી રહ્યું છે. આકાશમાં રહેલા આ બલૂનને એક છોકરી જુએ છે અને તેની જાણ કરવા તે પોતાની માતા પાસે દોડીને જાય છે. આ બલૂનને જોવા તેની માતા પણ તરત જ ઘરની બહાર આવે છે. હવે ધારો કે, છોકરીએ જ્યારે આ બલૂનને પ્રથમવાર જોયું ત્યારે તે બિંદુ A પર હતું અને હવે જ્યારે માતા અને પુત્રી બંને સાથે બલૂનને જુએ છે ત્યારે બલૂન બિંદુ B સુધી પહોંચી ગયું છે. શું તમે બિંદુ B નું જમીનથી શિરોલંબઅંતર શોધી શકશો ?

ઉપર્યુક્ત બધી જ પરિસ્થિતિઓમાં ગણિતશાસ્ત્રની એક શાખામાં આવતી ગાણિતિક પદ્ધતિઓના ઉપયોગથી અંતર અને ઊંચાઈ શોધી શકાય છે આ શાખાને ત્રિકોણિમિતિ કહે છે. અંગ્રેજી શબ્દ 'Trigonometry' ત્રણ ગ્રીક શબ્દો, 'Tri' (એટલે કે, ત્રણ), 'Gon' (એટલે કે, બાજુ) અને 'metron' (એટલે કે, માપ)ના સંયોજનથી બનેલ છે. ખરેખર તો ત્રિકોણિમિતિ, ત્રિકોણની બાજુઓ તથા ખૂણાઓ વચ્ચેના સંબંધનો અભ્યાસ છે. પ્રાચીન સમયમાં ત્રિકોણિમિતિ પર થયેલ કાર્યનો ઉલ્લેખ ઇજિપ્ત અને બેબિલોનમાં મળે છે. પ્રાચીન સમયમાં ખગોળશાસ્ત્રીઓ ત્રિકોણિમિતિનો ઉપયોગ પૃથ્વીથી તારાઓ અને ગ્રહોનું અંતર શોધવા માટે કરતા હતા. આજે પણ યંત્રશાસ્ત્ર અને ભૌતિકવિજ્ઞાનમાં વપરાતી પ્રૌદ્યોગિકીની નવીન પદ્ધતિઓ ત્રિકોણિમિતિની સંકલ્પનાઓ પર આધારિત છે.

આ પ્રકરણમાં આપણે કાટકોણ ત્રિકોણમાં રહેલા લઘુકોણોની સાપેક્ષમાં તેની બાજુઓના ગુણોત્તરો વિશે ચર્ચા કરીશું. આપણે તેને ખૂણાઓ માટેના ત્રિકોણમિતીય ગુણોત્તર કહીશું. આ ગુણોત્તરનો વિસ્તાર બીજા ખૂણાઓ માટે પણ કરી શકાય છે. છતાં પણ આપણે અહીં આપણી ચર્ચા ફક્ત લઘુકોણ સુધી જ સીમિત રાખીશું. આપણે અહીં 0° અને 90° માપના ખૂણાઓના ત્રિકોણમિતીય ગુણોત્તરો પણ વ્યાખ્યાયિત કરીશું, તેમજ કેટલાક વિશિષ્ટ ખૂણાઓ માટેના ત્રિકોણમિતીય ગુણોત્તરો મેળવીશું તથા આ ગુણોત્તરોને સંબંધિત કેટલાક નિત્યસમ સ્થાપિત કરીશું. તેમને

આપણે *ત્રિ<mark>કોણમિતીય નિત્યસમ</mark> ક*હીશું.

8.2 ત્રિકોણમિતીય ગુણોત્તરો

વિભાગ 8.1માં તમે વિભિન્ન પરિસ્થિતિઓમાં કાલ્પનિક રીતે બનતા કાટકોણ ત્રિકોણ વિશે જોયું.

ચાલો, આકૃતિ 8.4 માં બતાવ્યા પ્રમાણે કાટકોણ ત્રિકોણ ABC લો.

અહીં, ∠CAB (ટૂંકમાં ∠A) લઘુકોણ છે. ખૂણા A ને સાપેક્ષ બાજુ BC ની સ્થિતિ વિશે ધ્યાન આપો. તે ખૂણા A ની સામે છે. આપણે તેને ખૂણા A ની સામેની બાજુ (Opposite side) કહીશું. બાજુ AC કાટકોણ ત્રિકોણનો કર્ણ (Hypotenuse) છે અને બાજુ AB, ∠A નો ભાગ છે તેથી, તેને ખૂણા A ની પાસેની બાજુ (Adjacent side) કહીશું.

ખૂશા C ની

સામેની બાજ

B

ધ્યાન આપો, અહીં ખૂશા A ની જગ્યાએ ખૂશો C લઈએ તો બાજુઓની સ્થિતિ બદલાઈ જાય છે. (જુઓ આકૃતિ 8.5.)

અગાઉના ધોરણમાં તમે 'ગુણોત્તર'ની સંકલ્પના વિશે અભ્યાસ કર્યો છે. હવે આપણે કાટકોણ ત્રિકોણની બાજુઓ સંબંધિત કેટલાક ગુણોત્તરોને વ્યાખ્યાયિત કરીશું અને તે ગુણોત્તરોને આપણે ત્રિકોણમિતીય ગુણોત્તરો કહીશું.

કાટકોણ ત્રિકોણ ABCમાં (જુઓ આકૃતિ 8.4.) ખૂણા A માટેના ત્રિકોણમિતીય ગુણોત્તરો નીચે પ્રમાણે વ્યાખ્યાયિત કરી શકાય છે :

$$\angle A \text{ ril sine} = \frac{\text{wgul } A \text{ ril } \text{ suip}}{\text{spi}} = \frac{BC}{AC}$$

$$\angle A \text{ ril cosine} = \frac{\text{wgul } A \text{ ril } \text{ unith} \text{ long}}{\text{spi}} = \frac{AB}{AC}$$

$$\angle A \text{ ril tangent} = \frac{\text{wgul } A \text{ ril } \text{ long}}{\text{wgul } A \text{ ril } \text{ unith} \text{ long}} = \frac{BC}{AB}$$

$$\angle A \text{ ril cosecant} = \frac{1}{\angle A \text{ ril } \text{ sine}} = \frac{\text{spi}}{\text{wgul } A \text{ ril } \text{ unith} \text{ long}} = \frac{AC}{BC}$$

$$\angle A \text{ ril secant} = \frac{1}{\angle A \text{ ril } \text{ cosine}} = \frac{\text{spi}}{\text{wgul } A \text{ ril } \text{ unith} \text{ long}} = \frac{AC}{AB}$$

$$\angle A \text{ ril cotangent} = \frac{1}{\angle A \text{ ril tangent}} = \frac{\text{wgul } A \text{ ril } \text{ unith} \text{ long}}{\text{wgul } A \text{ ril } \text{ unith} \text{ long}} = \frac{AB}{BC}$$

ઉપર્યુક્ત વ્યાખ્યાયિત ગુણોત્તરોને ટૂંકમાં અનુક્રમે sin A, cos A, tan A, cosec A, sec A અને cot A સ્વરૂપે લખાય છે. ધ્યાન આપો, અહીં ગુણોત્તરો cosec A, sec A અને cot A અનુક્રમે sin A, cos A અને tan A ના વ્યસ્ત ગુણોત્તરો છે.

અહીં તમે એ પણ જોઈ શકો છો કે,

$$tan A = \frac{BC}{AB} = \frac{\frac{BC}{AC}}{\frac{AB}{AC}} = \frac{sin A}{cos A} \quad \text{with } cot A = \frac{cos A}{sin A}.$$

આમ, કાટકોણ ત્રિકોણમાં રહેલા લઘુકોણના ત્રિકોણમિતીય ગુણોત્તરો, ત્રિકોણના ખૂણાઓ તથા બાજુઓની લંબાઈ વચ્ચેનો સંબંધ દર્શાવે છે. તમે કાટકોણ ત્રિકોણના ખૂણા C માટેના ત્રિકોણમિતીય ગુણોત્તરો વ્યાખ્યાયિત કરવાનો પ્રયત્ન કરી શકશો ? (જુઓ આકૃતિ 8.5.)

The first use of the idea of 'sine' in the way we use it today was in the work Aryabhatiyam by Aryabhata, in C.E. 500. Aryabhata used the word ardha-jya for the half-chord, which was shortened to jya or jiva in due course. When the Aryabhatiyam was translated into Arabic, the word jiva was retained as it is. The word jiva was translated into sinus, which means curve, when the Arabic version was translated into Latin. Soon the word sinus, also used as sine, became common in mathematical texts throughout Europe. An English Professor of astronomy Edmund Gunter (C.E.1581– C.E.1626), first used the abbreviated notation 'sin'.

Aryabhata C.E. 476 – 550

The origin of the terms 'cosine' and 'tangent' was much later. The cosine function arose from the need to compute the sine of the complementary angle. Aryabhata called it kotijya. The name cosinus originated with Edmund Gunter. In C.E.1674, the English Mathematician Sir Jonas Moore first used the abbreviated notation 'cos'.

નોંધ : ધ્યાન આપો, અહીં sin A નો ઉપયોગ 'ખૂણા A ના sine' ના સંક્ષિપ્તરૂપે કરવામાં આવેલ છે. sin A એ sin અને A નો ગુણાકાર નથી. sin ને A થી અલગ કરીએ તો તેનો કોઈ જ અર્થ નથી. તે જ પ્રમાણે cos A એ cos અને A નો ગુણાકાર નથી. તેવી જ રીતે બીજા ગુણોત્તરો માટે પણ આવું જ અર્થઘટન કરી શકાય.

હવે જો આપણે કાટકોણ ત્રિકોણ ABC ના કર્ણ AC પર બિંદુ P લઈએ અથવા લંબાવેલ બાજુ AC પર એક બિંદુ Q લઈએ અને AB પર લંબ PM દોરીએ અથવા લંબાવેલ બાજુ AB પર લંબ QN દોરીએ (જુઓ, આકૃતિ 8.6) તો Δ PAM માં $\angle A$ માટેના ત્રિકોણમિતીય ગુણોત્તરો અને Δ CAB માં $\angle A$ માટે ત્રિકોણમિતીય ગુણોત્તરો અથવા Δ QAN માં $\angle A$ માટેના ત્રિકોણમિતીય ગુણોત્તરોમાં શું અંતર હોય ?

આકૃતિ 8.6

આનો ઉત્તર મેળવવા સૌપ્રથમ આ ત્રિકોણોનું નિરીક્ષણ કરો. શું Δ PAM અને Δ CAB સમરૂપ છે ? પ્રકરણ-6માં આપેલ સમરૂપતાની શરત (ખૂખૂ) યાદ કરો. આ સિદ્ધાંત પ્રમાણે તમે જોઈ શકો છો કે, ત્રિકોણ PAM અને ત્રિકોણ CAB સમરૂપ છે.

આમ, સમરૂપ ત્રિકોશના ગુશધર્મ પ્રમાશે અનુરૂપ બાજુઓ સમપ્રમાશ હોય છે.

આમ, આપણી પાસે
$$\frac{AM}{AB} = \frac{AP}{AC} = \frac{MP}{BC}$$
 છે.

તેના પરથી આપણને $\frac{MP}{AP} = \frac{BC}{AC} = sin A$ મળશે.

તે જ પ્રમાણે
$$\frac{AM}{AP} = \frac{AB}{AC} = \cos A$$
, $\frac{MP}{AM} = \frac{BC}{AB} = \tan A$ વગેરે મળશે.

આ દર્શાવે છે કે, ∆ PAM માં ∠A માટેના ત્રિકોણમિતીય ગુણોત્તરો અને ∆ CAB માં ∠A માટેના ત્રિકોણમિતીય ગુણોત્તરો એક જ છે.

આ જ પ્રમાણે તમે ચકાસી શકો છો કે, Δ QAN માં પણ \sin A (તથા અન્ય ત્રિકોણમિતીય ગુણોત્તરો)નું મૂલ્ય સમાન જ મળે છે.

આપણા આ અવલોકનથી સ્પષ્ટ થાય છે કે, જો ખૂણાનું માપ સમાન રહે તો તે ખૂણા માટેના ત્રિકોણમિતીય ગુણોત્તરોનાં મૂલ્યોમાં ત્રિકોણની બાજુઓની લંબાઈ સાથે કોઈ પરિવર્તન થતું નથી.

નોંધ : આપણી સુવિધા માટે આપણે $(\sin A)^2$, $(\cos A)^2$ વગેરેને બદલે અનુક્રમે $\sin^2 A$, $\cos^2 A$ વગેરે લખીશું. પરંતુ $\csc A = (\sin A)^{-1} \neq \sin^{-1} A$ (જેને \sin ઇનવર્સ A વંચાય છે.) $\sin^{-1} A$ નો અર્થ જુદો થાય છે. તેની ચર્ચા આપણે પછીના ધોરણમાં કરીશું. આ જ પ્રમાણે ઉપર્યુક્ત વિધાનો અન્ય ત્રિકોણમિતીય ગુણોત્તરો માટે પણ લાગુ પડશે. કેટલીકવાર ખૂણો દર્શાવવા ગ્રીક અક્ષર θ (થીટા) પણ ઉપયોગમાં લેવાય છે.

આપણે લઘુકોણ માટેના છ ત્રિકોણમિતીય ગુણોત્તરો વ્યાખ્યાયિત કર્યા. જો આપણે કોઈ એક ગુણોત્તર જાણતા હોઈએ તો શું બીજા ગુણોત્તરો શોધી શકીશું ? ચાલો, જોઈએ.

જો કાટકોશ ત્રિકોશ ABC માં $\sin A = \frac{1}{3}$ હોય, તો આનો અર્થ એ થાય કે $\frac{BC}{AC} = \frac{1}{3}$, એટલે કે, ત્રિકોશની બાજુઓ BC અને AC ની લંબાઈનો ગુણોત્તર 1:3 છે. (જુઓ આકૃતિ 8.7.) તેથી કોઈ એક ધન સંખ્યા k માટે જો BC બરાબર k લઈએ તો AC બરાબર 3k થાય. ખૂણા A માટેના બીજા ત્રિકોશમિતીય ગુણોત્તરો શોધવા માટે આપણે ત્રીજી બાજુ AB ની લંબાઈ શોધવી પડે. તમને પાયથાગોરસનું પ્રમેય યાદ છે? ચાલો તેના ઉપયોગથી આપણે AB ની લંબાઈ શોધીએ.

$$AB^2 = AC^2 - BC^2 = (3k)^2 - (k)^2 = 8k^2 = (2\sqrt{2}\ k)^2$$
 માટે,
$$AB = \pm\ 2\sqrt{2}\ k$$
 તેથી આપણને
$$AB = 2\sqrt{2}\ k$$
 મળે
$$(AB = -\ 2\sqrt{2}\ k\)$$
કેમ નહિ ?)

હવે,
$$\cos A = \frac{AB}{AC} = \frac{2\sqrt{2}k}{3k} = \frac{2\sqrt{2}}{3}$$

આ જ પ્રમાણે તમે ખૂણા A માટેના અન્ય ત્રિકોણમિતીય ગુણોત્તરો પણ શોધી શકશો.

નોંધ : કાટકોણ ત્રિકોણમાં, લાંબામાં લાંબી બાજુ કર્ણ હોવાથી $sin\ A$ અને $cos\ A$ નું મૂલ્ય હંમેશાં 1 થી ઓછું હશે. (કોઈ વિશેષ સ્થિતિમાં જ તે 1 હશે.)

ચાલો કેટલાંક ઉદાહરણ જોઈએ.

ઉદાહરણ 1: જો $tan A = \frac{4}{3}$ હોય, તો $\angle A$ ના અન્ય ત્રિકોણમિતીય ગુણોત્તરો શોધો.

ઉકેલ : સૌપ્રથમ કાટકોણ ΔABC દોરો. (જુઓ આકૃતિ 8.8).

હવે, આપણે જાણીએ છીએ કે,
$$tan A = \frac{BC}{AB} = \frac{4}{3}$$

માટે, જો કોઈ ધન સંખ્યા k માટે BC = 4k હોય, તો AB = 3k

હવે, પાયથાગોરસના પ્રમેયનો ઉપયોગ કરતાં

$$AC^2 = AB^2 + BC^2 = (4k)^2 + (3k)^2 = 25k^2$$

તેથી, AC = 5 k મળે.

હવે, આપણે તેમની વ્યાખ્યાને આધારે બધા જ ત્રિકોણમિતીય ગુણોત્તરો લખીએ.

આકૃતિ 8.8

$$\sin A = \frac{BC}{AC} = \frac{4k}{5k} = \frac{4}{5}$$

$$\cos A = \frac{AB}{AC} = \frac{3k}{5k} = \frac{3}{5}$$

માટે,
$$\cot A = \frac{1}{\tan A} = \frac{3}{4}$$
, $\csc A = \frac{1}{\sin A} = \frac{5}{4}$ અને $\sec A = \frac{1}{\cos A} = \frac{5}{3}$

ઉદાહરણ 2: લઘુકોણ B તથા Q માટે $\sin B = \sin Q$ છે. સાબિત કરો કે $\angle B = \angle Q$

ઉકેલ : ચાલો, આપણે જેમાં $sin\ B=sin\ Q$ હોય, એવા બે કાટકોણ ΔABC અને ΔPQR લઈએ.

(જુઓ આકૃતિ 8.9.)

અહીં,
$$\sin B = \frac{AC}{AB}$$

અને
$$\sin Q = \frac{PR}{PQ}$$

તેથી,
$$\frac{AC}{AB} = \frac{PR}{PQ}$$

માટે,
$$\frac{AC}{PR} = \frac{AB}{PQ} = k \qquad (ધારો)$$

આકૃતિ 8.9

હવે, પાયથાગોરસના પ્રમેયનો ઉપયોગ કરતાં,

$$BC = \sqrt{AB^2 - AC^2}$$

અને

$$QR = \sqrt{PQ^2 - PR^2}$$

તેથી,
$$\frac{BC}{QR} = \frac{\sqrt{AB^2 - AC^2}}{\sqrt{PQ^2 - PR^2}}$$

$$= \frac{\sqrt{k^2 \, PQ^2 - k^2 \, PR^2}}{\sqrt{PQ^2 - PR^2}}$$

$$= \frac{k\sqrt{PQ^2 - PR^2}}{\sqrt{PQ^2 - PR^2}} = k \tag{2}$$

પરિણામ (1) અને (2) પરથી,

$$\frac{AC}{PR} = \frac{AB}{PQ} = \frac{BC}{QR}$$

આમ, પ્રમેય 6.4 પ્રમાણે \triangle ACB \sim \triangle PRQ. તેથી, \angle B = \angle Q

ઉદાહરણ 3: જેમાં $\angle C$ કાટખૂણો હોય, તેવો કોઈ \triangle ACB લો. AB = 29 એકમ, BC = 21 એકમ અને \angle ABC = θ (જુઓ આકૃતિ 8.10) હોય, તો નિમ્નલિખિત મૃલ્ય શોધો :

(i)
$$\cos^2\theta + \sin^2\theta$$
,

(ii)
$$\cos^2 \theta - \sin^2 \theta$$
.

ઉકેલ : Δ ACB માં,

AC =
$$\sqrt{AB^2 - BC^2}$$

= $\sqrt{(29)^2 - (21)^2}$
= $\sqrt{(29-21)(29+21)}$
= $\sqrt{(8)(50)}$
= $\sqrt{400}$
= 20 એકમ

તેથી,
$$\sin \theta = \frac{AC}{AB} = \frac{20}{29}$$
, $\cos \theta = \frac{BC}{AB} = \frac{21}{29}$

હવે, (i)
$$\cos^2\theta + \sin^2\theta = \left(\frac{21}{29}\right)^2 + \left(\frac{20}{29}\right)^2 = \frac{21^2 + 20^2}{29^2} = \frac{441 + 400}{841} = 1$$

અને (ii)
$$\cos^2\theta - \sin^2\theta = \left(\frac{21}{29}\right)^2 - \left(\frac{20}{29}\right)^2 = \frac{\left(21+20\right)\left(21-20\right)}{29^2} = \frac{41}{841}$$

આકૃતિ 8.10

ઉદાહરણ 4: કાટકોણ ત્રિકોણ ABC માં ખૂણો B કાટખૂણો છે. જો tan A=1 તો ચકાસો કે 2 sin A cos A=1ઉકેલ : Δ ABC માં,

$$tan A = \frac{BC}{AB} = 1$$
 (જુઓ આકૃતિ 8.11.)

ધારો કે કોઈ ધન સંખ્યા k માટે AB = BC = k,

હવે,
$$AC = \sqrt{AB^2 + BC^2}$$

= $\sqrt{(k)^2 + (k)^2} = k\sqrt{2}$

માટે,
$$\sin A = \frac{BC}{AC} = \frac{1}{\sqrt{2}}$$
 અને $\cos A = \frac{AB}{AC} = \frac{1}{\sqrt{2}}$

તેથી,
$$2 \sin A \cos A = 2 \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\right) = 1$$
 સિદ્ધ થાય છે.

ઉદાહરણ $5:\Delta$ OPQ માં, P કાટખૂશો છે, OP = 7 સેમી અને OQ - PQ = 1 સેમી (જુઓ આકૃતિ 8.12), sin Q અને cos Q નું મૂલ્ય શોધો.

ઉકેલ : Δ OPQ માં,

$$OQ^2 = OP^2 + PQ^2$$
∴ $(1 + PQ)^2 = OP^2 + PQ^2$
∴ $1 + PQ^2 + 2PQ = OP^2 + PQ^2$
(§4 ?)

 $\therefore 1 + 2PQ = 7^2$

તેથી,
$$sin Q = \frac{7}{25}$$
 અને $cos Q = \frac{24}{25}$

(su ?)

- ∆ ABC માં ∠B કાટખૂરાો છે. AB = 24 સેમી, BC = 7 સેમી હોય, તો નીચેના ગુરાોત્તરોનું મૂલ્ય શોધો :
 - (i) sin A, cos A
 - (ii) sin C, cos C
- આકૃતિ 8.13 માં, tan P cot R શોધો.
- 3. જો $\sin A = \frac{3}{4}$ હોય, તો $\cos A$ અને $\tan A$ ની ગણતરી કરો.
- 4. જો 15 cot A = 8 હોય, તો sin A અને sec A શોધો.
- 5. જો $\sec \theta = \frac{13}{12}$ હોય, તો બાકીના બધા જ ત્રિકોણમિતીય ગુણોત્તરો શોધો.

- 6. ∠A અને ∠B એવા લઘુકોણો છે કે, જેથી $\cos A = \cos B$. સાબિત કરો કે ∠A = ∠B
- 7. $\Re \cot \theta = \frac{7}{8}$ હોય તો, (i) $\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}$ (ii) $\cot^2 \theta$ શોધો.
- 8. જો 3 $\cot A = 4$ હોય, તો નક્કી કરો કે $\frac{1 \tan^2 A}{1 + \tan^2 A} = \cos^2 A \sin^2 A$ છે કે નહિ.
- 9. \triangle ABC માં \angle B કાટખૂણો છે. જો $tan A = \frac{1}{\sqrt{3}}$ હોય, તો નિમ્નલિખિત મૂલ્ય શોધો.
 - (i) $\sin A \cos C + \cos A \sin C$
 - (ii) cos A cos C sin A sin C
- **10.** \triangle PQR માં ∠Q કાટખૂણો છે અને PR + QR = 25 સેમી અને PQ = 5 સેમી હોય, તો \sin P, \cos P અને \tan P શોધો.
- 11. નીચેનાં વિધાનો સત્ય છે કે નહિ તે કારણ આપી જણાવો :
 - (i) tan A નું મૂલ્ય હંમેશાં 1 કરતાં ઓછું હોય છે.
 - (ii) A માપવાળા કોઈક ખૂશા માટે $\sec A = \frac{12}{5}$ સત્ય છે.
 - (iii) ખૂણા A ના cosecant ને સંક્ષિપ્તમાં cos A તરીકે લખાય છે.
 - (iv) cot અને A નો ગુણાકાર cot A છે.
 - (v) θ માપવાળા કોઈ એક ખૂણા માટે $\sin \theta = \frac{4}{3}$ શક્ય છે.

8.3 વિશિષ્ટ માપના ખૂણા માટેના ત્રિકોણમિતીય ગુણોત્તરો

ભૂમિતિમાં તમે 30°, 45°, 60° અને 90° માપના ખૂશાઓની રચનાથી પરિચિત છો. આ વિભાગમાં આપણે આ ખૂશાઓ અને 0° માપના ખૂશા માટેના ત્રિકોશમિતીય ગુશોત્તરોના મૂલ્ય મેળવીશું.

45° ના ખૂણા માટે ત્રિકોણમિતીય ગુણોત્તરો

 Δ ABC માં ખૂણો B કાટખૂણો છે. હવે જો કોઈ એક ખૂણો 45° હોય તો બીજો લઘુકોણ પણ 45°નો થાય.

અર્થાત્,
$$\angle A = \angle C = 45^\circ$$

(જુઓ આકૃતિ 8.14.)

$$BC = AB$$

ધારો કે,

$$BC = AB = a$$

પાયથાગોરસના પ્રમેય પરથી, $AC^2 = AB^2 + BC^2 = a^2 + a^2 = 2a^2$

માટે,
$$AC = a\sqrt{2}$$

આકૃતિ 8.14

ત્રિકોશમિતીય ગુણોત્તરોની વ્યાખ્યાઓનો ઉપયોગ કરતાં આપણને,

30° અને 60° ના ખૂણા માટે ત્રિકોણમિતીય ગુણોત્તરો

હવે આપણે 30° અને 60° ના ખૂણા માટેના ત્રિકોણમિતીય ગુણોત્તરો મેળવીએ. કોઈ એક સમબાજુ ત્રિકોણ ABC લો. સમબાજુ ત્રિકોણમાં દરેક ખૂણો 60° નો હોવાથી,

$$\angle A = \angle B = \angle C = 60^\circ$$
 બિંદુ A માંથી બાજુ BC પર લંબ AD દોરો (જુઓ આકૃતિ 8.15.) હવે, Δ ABD \cong Δ ACD (ક્રેમ ?) માટે, Δ BD Δ DC Δ BD Δ CAD (એકરૂપ ત્રિકોશના અનુરૂપ ખુશાઓ) આકૃતિ 8.15

હવે તમે જોઈ શકો છો કે,

 Δ ABD જેમાં ખૂણો D કાટખૂણો હોય તેવો કાટકોણ ત્રિકોણ છે અને \angle BAD = 30° તથા \angle ABD = 60° (જુઓ આકૃતિ 8.15.)

તમે જાણો છો કે, ત્રિકોણમિતીય ગુણોત્તરો શોધવા માટે, આપણે ત્રિકોણની બાજુઓની લંબાઈ શોધવી પડશે. તેથી, ધારો કે, AB = 2a

માટે,
$$BD = \frac{1}{2} BC = a$$
 અને
$$AD^2 = AB^2 - BD^2 = (2a)^2 - (a)^2 = 3a^2,$$
 માટે,
$$AD = a\sqrt{3}$$
 હવે, આપણને

$$\sin 30^{\circ} = \frac{BD}{AB} = \frac{a}{2a} = \frac{1}{2}, \cos 30^{\circ} = \frac{AD}{AB} = \frac{a\sqrt{3}}{2a} = \frac{\sqrt{3}}{2}$$

$$tan 30^{\circ} = \frac{BD}{AD} = \frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}} + \psi.$$

અને
$$\cos ec \ 30^\circ = \frac{1}{\sin 30^\circ} = 2, \ \sec \ 30^\circ = \frac{1}{\cos 30^\circ} = \frac{2}{\sqrt{3}}$$

$$\cot \ 30^\circ = \frac{1}{\tan 30^\circ} = \sqrt{3}$$

$$\sin \ 60^\circ = \frac{AD}{AB} = \frac{a\sqrt{3}}{2a} = \frac{\sqrt{3}}{2}, \ \cos \ 60^\circ = \frac{1}{2}, \ \tan \ 60^\circ = \sqrt{3},$$

$$\csc \ 60^\circ = \frac{2}{\sqrt{3}}, \ \sec \ 60^\circ = 2 \ \ \text{અને} \ \cot \ 60^\circ = \frac{1}{\sqrt{3}}$$

0° અને 90° માટેના ત્રિકોણમિતીય ગુણોત્તરો

હવે આપણે જોઈએ કે જો કાટકોણ ત્રિકોણ ABC માં ખૂણા A નું માપ શૂન્ય થાય ત્યાં સુધી ક્રમશઃ ઓછું કરીએ, (જુઓ આકૃતિ 8.16.) તો ખૂણા Aના ત્રિકોણમિતીય ગુણોત્તરો પર શું પ્રભાવ પડે. જેમ જેમ $\angle A$ નું માપ નાનું થતું જશે તેમ-તેમ બાજુ BC ની લંબાઈ ઘટતી જશે. બિંદુ C, બિંદુ B ની નજીક આવતું જશે અને જયારે $\angle A$ નું માપ 0° ની એકદમ નજીક હશે ત્યારે AC એ AB ને લગભગ સમાન થઈ જશે (જુઓ આકૃતિ 8.17.)

આકૃતિ 8.16

આકૃતિ 8.17

જયારે $\angle A$ નું માપ શૂન્યની એકદમ નજીક હશે, ત્યારે BC ની લંબાઈ પણ શૂન્યની નજીક હશે. ત્યારે $\sin A = \frac{BC}{AC} \text{ નું } મૂલ્ય પણ શૂન્યની નજીક હશે. અને જયારે <math>\angle A$ નું માપ શૂન્યની એકદમ નજીક હશે, ત્યારે લગભગ AC અને AB સમાન હશે તેથી, $\cos A = \frac{AB}{AC}$ નું મૂલ્ય 1 ની એકદમ નજીક હશે.

આની મદદથી આપણે જ્યારે $A=0^\circ$ હોય, ત્યારે $\sin A$ અને $\cos A$ નાં મૂલ્યોને વ્યાખ્યાયિત કરી શકીશું. અહીં $\sin 0^\circ=0$ અને $\cos 0^\circ=1$ વ્યાખ્યાયિત થાય છે. આના ઉપયોગથી આપણને

$$\sec 0^{\circ} = \frac{1}{\cos 0^{\circ}} = 1$$
 અને $\csc 0^{\circ} = \frac{1}{\sin 0^{\circ}}$ પુન: અવ્યાખ્યાયિત છે. (ક્રેમ?)

ચાલો, હવે આપણે જોઈએ કે જો કાટકોણ ત્રિકોણ ABC માં ખૂણા A નું માપ 90° થાય ત્યાં સુધી ક્રમશઃ વધારતા જઈએ તો આ સ્થિતિમાં ખૂણા A ના ત્રિકોણમિતીય ગુણોત્તરો પર શું પ્રભાવ પડે. જેમ-જેમ \angle A નું માપ મોટું થશે તેમ-તેમ \angle C નાનો થતો જશે. માટે ઉપર્યુક્ત પરિસ્થિતિ પ્રમાણે બાજુ AB ની લંબાઈ ઘટશે. બિંદુ A બિંદુ B ની નજીક આવશે અને જ્યારે \angle A નું માપ 90° ની એકદમ નજીક હશે, ત્યારે \angle C નું માપ 0° ની એકદમ નજીક હશે અને બાજુ AC બાજુ BC ને લગભગ સંપાતી થશે. (જુઓ આકૃતિ 8.18.)

જયારે $\angle C$ નું માપ 0° ની એકદમ નજીક હશે, ત્યારે $\angle A$ નું માપ 90° ની અત્યંત નજીક હશે. બાજુ AC અને બાજુ BC ની લંબાઈ લગભગ સમાન થશે અને તેથી $\sin A$ નું મૂલ્ય 1ની અત્યંત નજીક હશે. અને જયારે $\angle A$ નું માપ 90° ની અત્યંત નજીક હશે, ત્યારે $\angle C$ નું માપ 0° ની અત્યંત નજીક હશે અને બાજુ AB નું માપ લગભગ શૂન્ય થશે તેથી $\cos A$ નું મૂલ્ય શૂન્યની એકદમ નજીક હશે.

આમ, આપણે $\sin 90^\circ = 1$ અને $\cos 90^\circ = 0$ વ્યાખ્યાયિત કરીશું.

હવે, તમે 90° માટેના બીજા ત્રિકોણમિતીય ગુણોત્તરો શોધવાનો પ્રયત્ન કેમ નથી કરતા ?

હવે, આપણે ઝડપી સંદર્ભ માટે 0°, 30°, 45°, 60° અને 90° માપના બધા જ ગુણોત્તરોના મૂલ્ય કોષ્ટક 8.1 માં દર્શાવીશું.

કોષ્ટક 8.1

∠A	0°	30°	45°	60°	90°
sin A	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos A	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan A	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	અવ્યાખ્યાયિત
cosec A	અવ્યાખ્યાયિત	2	√2	$\frac{2}{\sqrt{3}}$	1
sec A	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	અવ્યાખ્યાયિત
cot A	અવ્યાખ્યાયિત	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

નોંધ : ઉપર્યુક્ત કોષ્ટકમાં તમે જોઈ શકો છો કે જેમ-જેમ $\angle A$ નું માપ 0° થી વધીને 90° થાય છે તેમ-તેમ $sin\ A$ નું માપ 0 થી વધીને 1 થાય છે તથા $cos\ A$ નું માપ 1 થી ઘટીને 0 થાય છે.

ચાલો આપણે ઉપર્યુક્ત કોષ્ટકની કિંમતોનો ઉપયોગ કેટલાંક ઉદાહરણમાં કરીએ :

ઉદાહરણ 6 : △ ABCમાં B કાટખૂશો છે, AB = 5 સેમી અને ∠ACB = 30° (જુઓ આકૃતિ 8.19). તો બાજુ BC અને AC ની લંબાઈ શોધો.

ઉકેલ : બાજુ BC ની લંબાઈ શોધવા માટે આપણે બાજુ BC અને બાજુ AB ને સમાવતા ત્રિકોણમિતીય ગુણોત્તર પસંદ કરીશું. અહીં, ખૂણા C માટે બાજુ BC પાસેની બાજુ છે તથા AB ખૂણા C ની સામેની બાજુ છે.

માટે,
$$\frac{AB}{BC} = tan \ C \ \text{એટલે } \text{s} \ \frac{5}{BC} = tan \ 30^{\circ} = \frac{1}{\sqrt{3}}$$

આથી,
$$BC = 5\sqrt{3}$$
 સેમી મળશે.

બાજુ AC ની લંબાઈ શોધવા માટે આપણે
$$\sin 30^\circ = \frac{AB}{AC}$$
 લઈશું. (ક્રેમ ?)

એટલે કે,
$$\frac{1}{2} = \frac{5}{AC}$$
$$\therefore AC = 10 સેમી$$

જુઓ કે, ઉપર્યુક્ત ઉદાહરણમાં ત્રીજી બાજુની લંબાઈ શોધવા માટે આપણે બીજા વિકલ્પ તરીકે પાયથાગોરસના પ્રમેયનો પણ ઉપયોગ કરી શકીએ છીએ.

એટલે કે,
$$AC = \sqrt{AB^2 + BC^2} = \sqrt{5^2 + (5\sqrt{3})^2}$$
 સેમી = 10 સેમી

ઉદાહરણ $7:\Delta$ PQRમાં, Q કાટખૂર્ણો છે (જુઓ આકૃતિ 8.20). PQ = 3 સેમી અને PR = 6 સેમી હોય, તો \angle QPR અને \angle PRQ શોધો.

ઉંકેલ : PQ = 3 સેમી અને PR = 6 સેમી આપેલ છે.

હવે
$$\frac{PQ}{PR} = \sin R$$
$$\therefore \sin R = \frac{3}{6} = \frac{1}{2}$$

(§H ?)

તમે અહીં જોઈ શકો છો કે, કાટકોણ ત્રિકોણમાં જો કોઈ એક બાજુ અને અન્ય કોઈ એક ભાગ (કોઈ એક લઘુકોણ અથવા તો કોઈ એક બાજુ) આપેલ હોય, તો ત્રિકોણની બાકીની બાજુ અને ખૂણાઓનાં માપ શોધી શકાય છે. ઉદાહરણ 8: જો $sin(A-B) = \frac{1}{2}$, $cos(A+B) = \frac{1}{2}$, $0^{\circ} < A+B \le 90^{\circ}$, A > B, તો A અને B શોધો.

ઉકેલ :
$$sin(A - B) = \frac{1}{2}$$
 હોવાથી $A - B = 30^{\circ}$ (કેમ ?) (1)

અને
$$cos(A + B) = \frac{1}{2}$$
 હોવાથી $A + B = 60^{\circ}$

(1) અને (2) નો ઉકેલ શોધતાં,

આપણને $A = 45^{\circ}$ અને $B = 15^{\circ}$ મળે.

સ્વાધ્યાય 8.2

- 1. કિંમત શોધો :
 - (i) $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$
- (ii) $2 \tan^2 45^\circ + \cos^2 30^\circ \sin^2 60^\circ$

(iii)
$$\frac{\cos 45^{\circ}}{\sec 30^{\circ} + \csc 30^{\circ}}$$

(iv)
$$\frac{\sin 30^{\circ} + \tan 45^{\circ} - \csc 60^{\circ}}{\sec 30^{\circ} + \cos 60^{\circ} + \cot 45^{\circ}}$$

(v)
$$\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$$

- 2. સાચો વિકલ્પ પસંદ કરો અને તેની યથાર્થતા ચકાસો :
 - (i) $\frac{2\tan 30^{\circ}}{1+\tan^2 30^{\circ}} = \dots$
 - (A) sin 60°
- (B) cos 60°
- (C) tan 60°
- (D) sin 30°

(ii)
$$\frac{1-\tan^2 45^\circ}{1+\tan^2 45^\circ} = \dots$$

- (A) tan 90°
- (B) 1

- (C) sin 45°
- (D) 0°
- (iii) જ્યારે A = હોય, ત્યારે sin 2A = 2 sin A સત્ય હોય.
 - $(A) 0^{\circ}$
- $(B) 30^{\circ}$
- (C) 45°
- (D) 60°

(iv)
$$\frac{2\tan 30^{\circ}}{1-\tan^2 30^{\circ}} = \dots$$

- (A) cos 60°
- (B) sin 60°
- (C) tan 60°
- (D) sin 30°
- 3. $\Re \tan (A + B) = \sqrt{3} \text{ with } \tan (A B) = \frac{1}{\sqrt{3}}, 0^{\circ} < A + B \le 90^{\circ}, A > B, \text{ di } A \text{ with } B \text{ with.}$
- 4. નીચેનાં વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :
 - (i) sin(A + B) = sin A + sin B.
 - (ii) જેમ-જેમ θ નું મૂલ્ય વધે, તેમ તેમ sin θ નું મૂલ્ય વધે છે.
 - (iii) જેમ-જેમ θ નું મૂલ્ય વધે, તેમ તેમ cos θ નું મૂલ્ય વધે છે.
 - (iv) θ ના દરેક મૂલ્ય માટે $\sin \theta = \cos \theta$ થાય.
 - (v) A = 0° માટે $\cot A$ અવ્યાખ્યાયિત છે.

આકૃતિ 8.21

8.4 કોટિકોણના ત્રિકોણમિતીય ગુણોત્તરો

તમને યાદ હશે કે, જો બે ખૂશાઓનાં માપનો સરવાળો 90° હોય તો બંને ખૂશાઓને એકબીજાના કોટિકોશ કહે છે. △ ABC માં, ∠B કાટખૂશો હોય, તો શું તમને અહીં કોટિકોશની એક જોડ મળશે ? (જુઓ આકૃતિ 8.21.)

 $\angle A + \angle C = 90^{\circ}$ હોવાથી, તે બંને કોર્ટિકોણની જોડ બનાવે છે. આપણી પાસે,

$$sin A = \frac{BC}{AC}, cos A = \frac{AB}{AC}, tan A = \frac{BC}{AB}$$

$$cosec A = \frac{AC}{BC}, sec A = \frac{AC}{AB}, cot A = \frac{AB}{BC}$$
(1)

હવે, આપણે $\angle C = 90^{\circ} - \angle A$ માટેના ત્રિકોણમિતીય ગુણોત્તરો લખીએ.

આપશી સુવિધા માટે આપશે 90° – ∠A ને 90° – A તરીકે લખીશું.

ખુણા 90° – A માટે સામેની બાજુ અને પાસેની બાજુ કઈ હશે ?

તમે જોઈ શકો છો કે, ખૂણા 90° – A માટે, સામેની બાજુ AB છે અને પાસેની બાજુ BC છે.

માટે,

$$sin (90^{\circ} - A) = \frac{AB}{AC}, cos (90^{\circ} - A) = \frac{BC}{AC}, tan (90^{\circ} - A) = \frac{AB}{BC}$$

$$cosec (90^{\circ} - A) = \frac{AC}{AB}, sec (90^{\circ} - A) = \frac{AC}{BC}, cot (90^{\circ} - A) = \frac{BC}{AB}$$
(2)

હવે (1) અને (2) માં દર્શાવેલ ગુણોત્તરોની સરખામણી કરતાં આપણે જોઈશું કે :

$$sin (90^{\circ} - A) = \frac{AB}{AC} = cos A$$
 અને $cos (90^{\circ} - A) = \frac{BC}{AC} = sin A$

અને
$$tan (90^{\circ} - A) = \frac{AB}{BC} = cot A$$
 અને $cot (90^{\circ} - A) = \frac{BC}{AB} = tan A$

$$sec\ (90^{\circ} - A) = \frac{AC}{BC} = cosec\ A$$
 અને $cosec\ (90^{\circ} - A) = \frac{AC}{AB} = sec\ A$

આમ, 0° અને 90° ની વચ્ચે આવેલા ખૂણા A ના દરેક મૂલ્ય માટે,

$$sin (90^{\circ} - A) = cos A,$$
 $cos (90^{\circ} - A) = sin A,$
 $tan (90^{\circ} - A) = cot A,$ $cot (90^{\circ} - A) = tan A,$

$$sec (90^{\circ} - A) = cosec A,$$
 $cosec (90^{\circ} - A) = sec A,$

હવે, $A = 0^{\circ}$ અને $A = 90^{\circ}$ માટે આ સત્ય છે કે નહિ તે ચકાસો.

નોંધ : tan 0° = 0 = cot 90°, sec 0° = 1 = cosec 90° અને sec 90°, cosec 0°, tan 90° તથા cot 0° અવ્યાખ્યાયિત છે.

હવે કેટલાંક ઉદાહરણો જોઈશું.

ઉદાહરણ 9 : કિંમત શોધો : $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$

ઉકેલ : આપણે જાણીએ છીએ કે,

$$\cot A = \tan (90^{\circ} - A)$$

માટે
$$\cot 25^{\circ} = \tan (90^{\circ} - 25^{\circ}) = \tan 65^{\circ}$$

એટલે કે,
$$\frac{\tan 65^{\circ}}{\cot 25^{\circ}} = \frac{\tan 65^{\circ}}{\tan 65^{\circ}} = 1$$

ઉદાહરણ 10: જો 3A એ લઘુકોણનું માપ હોય તથા $\sin 3A = \cos (A - 26^\circ)$ હોય, તો A ની કિંમત શોધો.

ઉકેલ : અહીં, આપણે
$$\sin 3A = \cos (A - 26^\circ)$$
 આપેલ છે. (1)

હવે, $\sin 3A = \cos (90^{\circ} - 3A)$ હોવાથી આપણે પરિણામ (1) ને નીચે પ્રમાણે લખી શકીએ.

$$cos (90^{\circ} - 3A) = cos (A - 26^{\circ})$$

હવે, $90^{\circ} - 3A$ અને $A - 26^{\circ}$ બંને લઘુકોણ હોવાથી,

$$90^{\circ} - 3A = A - 26^{\circ}$$

તેથી, $A = 29^{\circ} + 0.$

ઉદાહરણ 11 : cot 85° + cos 75° ને 0° અને 45° વચ્ચેના માપવાળા ત્રિકોણમિતીય ગુણોત્તરનો ઉપયોગ કરીને દર્શાવો.

634:
$$cot 85^{\circ} + cos 75^{\circ} = cot (90^{\circ} - 5^{\circ}) + cos (90^{\circ} - 15^{\circ})$$

$$= tan 5^{\circ} + sin 15^{\circ}$$

સ્વાધ્યાય 8.3

1. કિંમત શોધો :

(i)
$$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$$
 (ii) $\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$ (iii) $\cos 48^{\circ} -$

(iii)
$$\cos 48^\circ - \sin 42^\circ$$
 (iv) $\csc 31^\circ - \sec 59^\circ$

- 2. સાબિત કરો :
 - (i) $tan 48^{\circ} tan 23^{\circ} tan 42^{\circ} tan 67^{\circ} = 1$
 - (ii) $\cos 38^{\circ} \cos 52^{\circ} \sin 38^{\circ} \sin 52^{\circ} = 0$
- 3. જો 2A એ લઘુકોણનું માપ હોય તથા $tan\ 2A = cot\ (A-18^\circ)$ હોય, તો A ની કિંમત શોધો.
- 4. જો tan A = cot B હોય, તો સાબિત કરો કે, A + B = 90°
- 5. જો 4A એ લઘુકોણનું માપ હોય તથા $sec\ 4A = cosec\ (A-20^\circ)$ હોય, તો A ની કિંમત શોધો.
- 6. જો A, B અને C એ \triangle ABC ના ખૂણા હોય, તો સાબિત કરો કે, $sin\left(\frac{B+C}{2}\right) = cos \frac{A}{2}$
- 7. sin 67° + cos 75° ને 0° અને 45° વચ્ચેના માપવાળા ખૂણાના ત્રિકોણમિતીય ગુણોત્તર તરીકે દર્શાવો.

8.5 ત્રિકોણમિતીય નિત્યસમો

તમને યાદ હશે કે, જો સમીકરણમાં આવતા ચલના દરેક મૂલ્ય માટે સમીકરણ સત્ય હોય, તો સમીકરણને નિત્યસમ કહી શકાય. તે જ પ્રમાણે, જ્યારે ત્રિકોણમિતીય ગુણોત્તરોને સમાવતા સમીકરણમાં આવતા ખૂણાઓના પ્રત્યેક મૂલ્ય માટે સમીકરણ સત્ય હોય, ત્યારે તે સમીકરણને ત્રિકોણમિતીય નિત્યસમ કહેવાય.

△ ABC માં ∠ B કાટખૂશો છે (જુઓ આકૃતિ 8.22.) અહીં

$$AB^2 + BC^2 = AC^2 \tag{1}$$

પરિણામ (1)ના દરેક પદને AC^2 વડે ભાગતાં, આપણને

$$\frac{AB^2}{AC^2} + \frac{BC^2}{AC^2} = \frac{AC^2}{AC^2} + \hat{W}.$$

માટે,
$$\left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 = \left(\frac{AC}{AC}\right)^2$$

$$\therefore (\cos A)^2 + (\sin A)^2 = 1$$

$$\therefore \quad \cos^2 \mathbf{A} + \sin^2 \mathbf{A} \quad = 1 \tag{2}$$

આ, $0^{\circ} \leq A \leq 90^{\circ}$ માં આપેલ દરેક A માટે સત્ય છે. તેથી, તે ત્રિકોણમિતીય નિત્યસમ છે.

હવે, પરિણામ (1) ને AB2 વડે ભાગતાં આપણને,

$$\frac{AB^2}{AB^2} + \frac{BC^2}{AB^2} = \frac{AC^2}{AB^2}$$
મળે.

$$\therefore \left(\frac{AB}{AB}\right)^2 + \left(\frac{BC}{AB}\right)^2 = \left(\frac{AC}{AB}\right)^2$$

$$\therefore 1 + \tan^2 A = \sec^2 A$$
(3)

શું આ સમીકરણ $A=0^\circ$ માટે સત્ય છે ? હા, છે. જો $A=90^\circ$ હોય તો ? $A=90^\circ$ માટે $tan\ A$ અને $sec\ A$ વ્યાખ્યાયિત નથી. આમ, પરિણામ (3) જ્યાં $0^\circ \le A < 90^\circ$ માં આવેલ પ્રત્યેક A માટે સત્ય છે.

હવે જોઈએ કે, પરિણામ (1) ને BC² વડે ભાગીએ તો શું મળે.

$$\frac{AB^2}{BC^2} + \frac{BC^2}{BC^2} = \frac{AC^2}{BC^2}$$

$$\therefore \left(\frac{AB}{BC}\right)^2 + \left(\frac{BC}{BC}\right)^2 = \left(\frac{AC}{BC}\right)^2$$

$$\therefore \cot^2 A + 1 = \csc^2 A \tag{4}$$

આપણે નોંધીએ કે, $A=0^\circ$ માટે $cosec\ A$ અને $cot\ A$ વ્યાખ્યાયિત નથી. આમ, પરિણામ (4) એ $0^\circ < A \le 90^\circ$ માં આવેલ પ્રત્યેક A માટે સત્ય છે.

આ નિત્યસમોના ઉપયોગથી દરેક ત્રિકોણમિતીય ગુણોત્તરને અન્ય ત્રિકોણમિતીય ગુણોત્તરના સ્વરૂપે દર્શાવી શકાય, એટલે કે જો કોઈ એક ગુણોત્તરની કિંમત જ્ઞાત હોય તો અન્ય ત્રિકોણમિતીય ગુણોત્તરોની કિંમત શોધી શકાય.

હવે આપણે જોઈશું કે નિત્યસમના ઉપયોગથી આ કેવી રીતે શોધી શકાય. ધારો કે, આપણને $tan \ A = \frac{1}{\sqrt{3}}$ આપેલ છે. માટે, $cot \ A = \sqrt{3}$

હવે,
$$sec^2 A = 1 + tan^2 A = 1 + \frac{1}{3} = \frac{4}{3}$$
. આથી, $sec A = \frac{2}{\sqrt{3}}$ અને $cos A = \frac{\sqrt{3}}{2}$

અને
$$\sin A = \sqrt{1-\cos^2 A} = \sqrt{1-\frac{3}{4}} = \frac{1}{2}$$
. માટે, $\csc A = 2$

ઉદાહરણ 12 : ત્રિકોણમિતીય ગુણોત્તરો cos A, tan A અને sec A ને sin A ના સ્વરૂપમાં દર્શાવો.

ઉકેલ :
$$cos^2 A + sin^2 A = 1$$
 હોવાથી,

$$\cos^2 A = 1 - \sin^2 A$$
, એટલે કે, $\cos A = \pm \sqrt{1 - \sin^2 A}$ માટે, $\cos A = \sqrt{1 - \sin^2 A}$ મળે (કેમ ?) આમ, $\tan A = \frac{\sin A}{\cos A} = \frac{\sin A}{\sqrt{1 - \sin^2 A}}$

અને,
$$\sec A = \frac{1}{\cos A} = \frac{1}{\sqrt{1-\sin^2 A}}$$

ઉદાહરણ 13 : સાબિત કરો કે $\sec A (1 - \sin A) (\sec A + \tan A) = 1$

Gia:
$$\text{SLML} = \sec A (1 - \sin A) (\sec A + \tan A) = \left(\frac{1}{\cos A}\right) (1 - \sin A) \left(\frac{1}{\cos A} + \frac{\sin A}{\cos A}\right)$$

$$= \frac{(1 - \sin A)(1 + \sin A)}{\cos^2 A}$$

$$= \frac{1 - \sin^2 A}{\cos^2 A}$$

$$= \frac{\cos^2 A}{\cos^2 A} = 1 = \text{S.ML}.$$

ઉદાહરણ 14 : સાબિત કરો કે,
$$\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\csc A - 1}{\csc A + 1}$$

GEA: SI.GI. =
$$\frac{\cot A - \cos A}{\cot A + \cos A}$$
 = $\frac{\frac{\cos A}{\sin A} - \cos A}{\frac{\cos A}{\sin A} + \cos A}$ = $\frac{\cos A \left(\frac{1}{\sin A} - 1\right)}{\cos A \left(\frac{1}{\sin A} + 1\right)}$ = $\frac{\left(\frac{1}{\sin A} - 1\right)}{\left(\frac{1}{\sin A} + 1\right)}$ = $\frac{\cot A - \cos A}{\cos A + \cos A}$ = $\frac{\cot A - \cos A}{\sin A}$ = $\frac{\cot A - \cot A}{\cot A + \cot A}$ = $\frac{\cot A - \cot A}{\cot A}{\cot A}$ = $\frac{\cot A - \cot A}{\cot A}$

ઉદાહરણ 15 : નિત્યસમ $\sec^2\theta=1+\tan^2\theta$ નો ઉપયોગ કરીને સાબિત કરો કે, $\frac{\sin\theta-\cos\theta+1}{\sin\theta+\cos\theta-1}=\frac{1}{\sec\theta-\tan\theta}$

ઉકેલ : અહીં $tan \theta$ અને $sec \theta$ ને સમાવતા નિત્યસમનો ઉપયોગ કરવાનો હોવાથી, સૌપ્રથમ આપણે ડા.બા.ના (આપણે જેને સાબિત કરવા માગીએ છીએ તે નિત્યસમની) અંશ અને છેદમાં રહેલા દરેક પદને $cos \theta$ વડે ભાગીશું અને ડા.બા.નું $sec \theta$ અને $tan \theta$ ના સ્વરૂપમાં રૂપાંતર કરીશું.

SI.GI.
$$= \frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1}$$

$$= \frac{\tan\theta - 1 + \sec\theta}{\tan\theta + 1 - \sec\theta}$$

$$= \frac{(\tan\theta + \sec\theta) - 1}{(\tan\theta - \sec\theta) + 1}$$

$$= \frac{\{(\tan\theta + \sec\theta) - 1\} (\tan\theta - \sec\theta)}{\{(\tan\theta - \sec\theta) + 1\} (\tan\theta - \sec\theta)}$$

$$= \frac{(\tan^2\theta - \sec^2\theta) - (\tan\theta - \sec\theta)}{\{(\tan\theta - \sec\theta) + 1\} (\tan\theta - \sec\theta)}$$

$$= \frac{-1 - \tan\theta + \sec\theta}{(\tan\theta - \sec\theta + 1) (\tan\theta - \sec\theta)}$$

$$= \frac{-1}{\tan\theta - \sec\theta}$$

$$= \frac{1}{\sec\theta - \tan\theta}$$

આ તો આપણે જે નિત્યસમ સાબિત કરવા માંગતા હતા તેની જ.બા. છે.

ગણિત

स्वाध्याय 8.4

- ત્રિકોણમિતીય ગુણોત્તરો sin A, sec A અને tan A ને cot A નાં પદોમાં દર્શાવો.
- ખૂણા A ના બધા જ ત્રિકોણમિતીય ગુણોત્તરોને sec A નાં પદોમાં દર્શાવો.
- કિંમત શોધો : 3.

(i)
$$\frac{\sin^2 63^\circ + \sin^2 27^\circ}{\cos^2 17^\circ + \cos^2 73^\circ}$$

- (ii) $sin 25^{\circ} cos 65^{\circ} + cos 25^{\circ} sin 65^{\circ}$
- સાચો વિકલ્પ પસંદ કરો અને તમારી પસંદગીની યથાર્થતા ચકાસો :
 - (i) $9 \sec^2 A 9 \tan^2 A = \dots$

(A) 1

(C) 8

(D) 0

(ii) $(1 + tan \theta + sec \theta) (1 + cot \theta - cosec \theta) = \dots$

(A) 0

(B) 1

(C) 2

(D) -1

(iii) (sec A + tan A) (1 - sin A) =

(A) sec A

(B) sin A

(C) cosec A

(D) cos A

(iv) $\frac{1 + tan^2 A}{1 + cot^2 A} = \dots$

(A) sec² A

(B) -1

(C) cot2 A

(D) tan2 A

5. નીચેના નિત્યસમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂશા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :

(i)
$$(\cos \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$$
 (ii) $\frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A} = 2 \sec A$

(ii)
$$\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A} = 2 \sec A$$

(iii)
$$\frac{\tan \theta}{1-\cot \theta} + \frac{\cot \theta}{1-\tan \theta} = 1 + \sec \theta \csc \theta$$

[સ્ચન : પદાવલિને $sin \theta$ અને $cos \theta$ ના સ્વરૂપે લખો.]

(iv)
$$\frac{1+\sec A}{\sec A} = \frac{\sin^2 A}{1-\cos A}$$
 [સૂચન : ડા.બા. અને જ.બા. નું અલગ–અલગ સાદું રૂપ આપો.]

(v) નિત્યસમ
$$cosec^2 A = 1 + cot^2 A$$
 નો ઉપયોગ કરીને $\frac{cos A - sin A + 1}{cos A + sin A - 1} = cosec A + cot A$ સાબિત કરો.

(vi)
$$\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$$

(vii)
$$\frac{\sin\theta - 2\sin^3\theta}{2\cos^3\theta - \cos\theta} = \tan\theta$$

(viii)
$$(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$$

(ix)
$$(cosec A - sin A) (sec A - cos A) = \frac{1}{tan A + cot A}$$

[સૂચન : ડા.બા. અને જ.બા. નું અલગ-અલગ સાદું રૂપ આપો.]

(x)
$$\left(\frac{1+\tan^2 A}{1+\cot^2 A}\right) = \left(\frac{1-\tan A}{1-\cot A}\right)^2 = \tan^2 A$$

8.6 સારાંશ

આ પ્રકરણમાં તમે નીચે આપેલા મુદ્દાઓ શીખ્યાં :

1. જેમાં કાટખૂણો B હોય તેવા, કાટકોણ ત્રિકોણ ABC માં, $sin\ A = \frac{\text{ખૂણા } A \ -11}{\text{દાર્ગ}}$

$$sin A = \frac{}{}$$
 કર્ણ
$$cos A = \frac{}{}$$
 ખૂણા A ની પાસેની બાજુ કર્ણ

$$tan A = \frac{\text{ખૂશા } A ની સામેની બાજુ}{\text{ખૂશા } A ની પાસેની બાજુ}$$

2.
$$cosec A = \frac{1}{sin A}$$
, $sec A = \frac{1}{cos A}$, $tan A = \frac{1}{cos A}$, $tan A = \frac{sin A}{cos A}$

- જો આપણે લઘુકોણના કોઈ એક ત્રિકોણિમતીય ગુણોત્તરનું મૂલ્ય જાણતાં હોઈએ, તો અન્ય ત્રિકોણિમતીય ગુણોત્તરોનાં મૂલ્ય સરળતાથી શોધી શકાય છે.
- 4. 0°, 30°, 45°, 60° અને 90° માપના ખૂશાઓ માટેના ત્રિકોણમિતીય ગુણોત્તરોનાં મૂલ્ય
- 5. sin A અને cos A નું મૂલ્ય ક્યારેય 1 થી વધારે ન હોય અને sec A અને cosec A નું મૂલ્ય હંમેશાં 1 અથવા 1 થી વધારે જ હોય.
- 6. $sin (90^{\circ} A) = cos A$, $cos (90^{\circ} A) = sin A$ $tan (90^{\circ} - A) = cot A$, $cot (90^{\circ} - A) = tan A$ $sec (90^{\circ} - A) = cosec A$, $cosec (90^{\circ} - A) = sec A$.

7.
$$sin^2 A + cos^2 A = 1$$

 $0^\circ \le A < 90^\circ$ હોય તેવા પ્રત્યેક A માટે $sec^2 A - tan^2 A = 1$
 $0^\circ < A \le 90^\circ$ હોય તેવા પ્રત્યેક A માટે $cosec^2 A - cot^2 A = 1$