

Computer Organization & Design

The Hardware/Software Interface

Chapter 3 Arithmetic for Computer

Haifeng Liu
College of Computer Science and Technology, Zhejiang University
haifengliu@zju.edu.cn

- 3.1 Introduction
- **3.2** Signed and Unsigned Numbers-Possible Representations
- 3.3 Arithmetic--Addition & subtraction and ALU
- **3.4** Multiplication
- 3.5 Division
- **3.6** Floating point numbers

3.1 Introduction

□ Computer words are composed of bits;

- thus words can be represented as binary numbers
- there are 32bits/word or 64bits/word in RISC-V
- Contains four bytes for 32bits word

■ Simplified to contain only in course:

- memory-reference instructions: lw, sw
- arithmetic-logical instructions: add, sub, and, or, xor, slt...
- control flow instructions: beq, bne, jal

□ Generic Implementation:

- use the program counter (PC) to supply instruction address
- get the instruction from memory
- read registers
- use the instruction to decide exactly what to do

■ All instructions use the ALU after reading the registers

Why? memory-reference? arithmetic? control flow?

Numbers

- □ Bits are just bits (no inherent meaning)— conventions define relationship between bits and numbers
- □ Binary numbers (base 2) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001... decimal: 0 1 2 3...2ⁿ-1
- **□** Of course it gets more complicated: numbers are finite (overflow) fractions and real numbers negative numbers
- **■** How do we represent numbers? i.e., which bit patterns will represent which numbers?

Do you Know?

- □ What is this about following Digital?
 - Don't know!

(Do not know, is the right answer!)

- Ah, Why?
 - Because different occasions have different meaning
- The possible meaning is
 - IP Address
 - Machine instructions
 - Values of Binary number :
 - □ Integer
 - □ Fixed Point Number
 - □ Floating Point Number

The following 4-bit binary integer What does it mean?

Don't know!

Do not know, is the right answer!

- □ Ah, still do not know for?
- **■** Integer representation of different methods have different meaning
 - Unsigned
 - Signed

$$1001_2 = 9_{10}$$

$$1001_2 = -1_{10}$$
 or -7_{10} ?

3.2 Signed and Unsigned Numbers **Possible Representations**

Sign Magnitude:	One's Complement	Two's Complement
000 = +0	000 = +0	000 = +0
001 = +1	001 = +1	001 = +1
010 = +2	010 = +2	010 = +2
011 = +3	011 = +3	011 = +3
100 = -0	100 = -3	100 = -4
101 = -1	101 = -2	101 = -3
110 = -2	110 = -1	110 = -2
111 = -3	111 = -0	111 = -1

■ Which one is best? Why?

■ Issues: number of zeros, ease of operations

■ Number systems

Radix based systems are dominating decimal, octal, binary,...

$$(N)_{k} = (A_{n-1}A_{n-2}A_{n-3}...A_{1}A_{0} \cdot A_{-1}A_{-2}A...A_{-m+1}A_{-m})_{k}$$

$$(N)_{K} = (\sum_{i=m}^{n-1} A_{i} \cdot k^{i})_{k}$$
LSD

- \blacksquare A: value of the digit, k: radix, n: digits left of radix point, m: digits right of radix point
- Alternatives, e.g. Roman numbers (or Letter)
- □ Decimal (k=10) \rightarrow used by humans
- Binary (k=2) \rightarrow used by computers

□ Representation

- ASCII text characters
 - Easy read and write of numbers
 - □ Complex arithmetic (character wise)
- Binary number
 - Natural form for computers
 - Requires formatting routines for I/O

□ Integer numbers, unsigned

- Address calculations
- Numbers that can only be positive

□ Signed numbers

- Positive
- Negative

□ Floating point numbers

- numeric calculations
- Different grades of precision
 - □ Singe precision (IEEE)
 - Double precision (IEEE)
 - Quadruple precision

- □ Sign and magnitude
- □ 2's complement
- □ 1's complement

similar to 2's complement, + 0 & - 0

Biased notation

 $1000\ 0000 = minimal\ negative\ value(-2^7)$

0111 1111 = maximal positive value (2^7-1)

- **□** Representation
 - Binary
 - Decimal
 - Hexadecimal

☐ First idea:

Positive and negative numbers

- Take one bit (e.g. 31) as the **sign bit**
 - □ Problem

 - \square 1 0000000 = 0 negative zero!
- Each comparison to 0 requires two steps
- □ 1's complement
- □ 2's complement

Two's Complement Operations

□ Negating a two's complement number:

invert all bits & add 1 with end

remember: "negate" and "invert" are quite different!

Defining: Assume:
$$x = \pm 0.x_{-1}x_{-2}x_{-3}...x_{-m}$$
 OR $x = \pm x_{n-1}x_{-n-2}x_{-n-3}x_{-n-4}...x_{-0}$

$$[X]_{c} = \begin{cases} X & 0 \le X < 1 \\ 2 + X = 2 - |X| & -1 \le X < 0 \end{cases}$$

$$\begin{cases} X & 0 \le X < 1 \\ 0 \le X < 0 \end{cases}$$

$$\begin{cases} X & 0 \le X < 2^{n} \\ 2^{n+1} + |X| = 2^{n+1} - |X| - 2^{n} \le X < 0 \end{cases}$$
integer

- Converting n bit numbers into numbers with more than n bits:
 - MIPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits

The absolute value of the sum of two=2ⁿ

- □ Only one representation for 0
- □ One more negative number than positive number

More common: use of 2's complement ---- negatives have one additional number


```
(0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000)_2 = (0)_{10}
(0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001)_2 = (1)_{10}
(0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1101)_2 = (2, 147, 483, 645)_{10}
(0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1110)_2 = (2, 147, 483, 646)_{10}
(0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111)_2 = (2, 147, 483, 647)_{10}
(1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000)_2 = (-2,\ 147,\ 483,\ 648)_{10}
(1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001)_2 = (-2,\ 147,\ 483,\ 647)_{10}
(1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010)_2 = (-2,\ 147,\ 483,\ 646)_{10}
(1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1101)_2 = (-3)_{10}
(1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1110)_2 = (-2)_{10}
(1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111)_2 = (-1)_{10}
```

Two's Biased notation

■ Negating Biased notation number:

invert all bits and add 1 with end

Defining: Assume: $x = \pm x_{-(n-1)}x_{-(n-2)}x_{-(n-3)}x_{-(n-4)}...x_{-0}$

$$[X]_b = (2^n + X -2^n \le X \le 2^n)$$

 $[0]_b = 100000...(2^n)$

$$x=+1011 [X]_b=11011$$

 $x=-1011 [X]_b=00101$

sign bit "1" Positive sign bit "0" Negative

2's Biased notation VS 2's complement.

Only reverse sign bit e.g.

$$X=+1011$$
 [X]c=01011 [X]b=11011
 $X=-1011$ [X]c=10101 [X]b=00101

biase

- **■** Expansion
 - e.g. 8 bit numbers to 64/32 bit numbers
- Required for operations with registers(32/64 bits) and immediate operands (8 bits)
- **□** Sign extension
 - Take the lower 8 bits as they are
 - Copy the highest bit to the remaining 24/56 bits
 - $00000010 \rightarrow 2$ 0000 0000 0000 0000 0000 0000 0000 0010
 - 1111 1110 \rightarrow -2 1111 1111 1111 1111 1111 1111 1111 1110

3.3 Arithmetic

- Addition and Subtraction
- Logical operations
- □ Constructing a simple ALU
- Multiplication
- Division
- □ Floating point arithmetic
- □ Adding all parts to get an ALU

\square Adding bit by bit, carries \rightarrow next digit

0000 0111	7 ₁₀
+ 0000 0110	6 ₁₀
0000 1101	13 ₁₀

■ Subtraction

- Directly
- Addition of 2's complement

0000 0111	7 ₁₀
- 0000 0110	6 ₁₀
0000 0001	1 ₁₀

Overflow

□ The sum of two numbers can exceed any representation

- The difference of two numbers can exceed any representation
- **□** 2's complement:

Numbers change

sign and size

Overflow conditions

□ General overflow conditions

Operation	Operand A	Operand B	Result overflow	
A+B	<u>≥</u> 0	≧0	<0	(01)
A+B	<0	<0	≧0	(10)
A-B	≧0	<0	<0	(01)
A-B	<0	≧0	≧0	(10)

Double sign-bits

- □ An exception (interrupt) occurs
 - Control jumps to predefined address for exception
 - Interrupted address is saved for possible resumption
- □ Signaling to application (Ada, Fortran)
- □ Ignore, don't always want to detect overflow

note: sltu, sltiu for unsigned comparisons

Overflow process

- **□** Hardware detection in the ALU
 - Generation of an exception (interrupt)
- Save the instruction address (not PC) in special register SEPC
- **■** Jump to specific routine in OS
 - Correct & return to program
 - Return to program with error code
 - Abort program

Arithmetic for Multimedia

©Graphics and media processing operates on vectors of 8-bit and 16-bit data

& Use 64-bit adder, with partitioned carry chain

 \odot Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

© SIMD (single-instruction, multiple-data)

Saturating operations

© On overflow, result is largest representable value

⊙c.f. 2s-complement modulo arithmetic

E.g., clipping in audio, saturation in video

- **□** Logical shift operations
 - right (srl)
 - left (sll) Filled with '0'
- **□** The machine instruction for the instruction

slli x11, x9, 3

 \blacksquare **Example:** slli x11, x9, 3

x9: 0000 0000 0000 0000 1100 1000 0000 1111

x11: 0000 0000 0000 0110 0100 0000 0111 1000

Logical operations

- **■** AND→bit-wise AND between registers
 - and register1, register2, register3
- □ OR →bit-wise OR between registers or register1, register2, register3
- **■** Example:

and x3, x10, x16

or x4, x10, x16

- **x**16: 0000 0000 0000 0000 1100 1000 0000 1111
- **x**10: 0000 0000 0000 0110 0100 0000 0111 1000
- **x**3: 0000 0000 0000 0000 0100 0000 0000 1000
- **x**4: 0000 0000 0000 0110 1100 1000 0111 1111

计算机学院 系统结构与系统软件实验室

Constructing an ALU

■ Two methods constitute the ALU

- extended the adder
- Parallel redundant select

□ Step by step:

- build a single bit ALU
- and expand it to the desired width

□ First function:

logic AND and OR

A half adder

- \square Sum = \overline{a} b + a \overline{b}
- \Box Carry = a b

A full adder

- Accepts a carry in
- □ Sum = $A \oplus B \oplus Carry_{In}$
- $\Box Carry_{Out} = B Carry_{In} + A Carry_{In} + A B$

Inputs			Outputs		Commonto	
Α	В	Carry _{In}	Carry _{Out}	Sum	Comments	
0	0	0	0	0	0+0+0=00	
0	0	1	0	1	0+0+1=01	
0	1	0	0	1	0+1+0=01	
0	1	1	1	0	0+1+1=10	
1	0	0	0	1	1+0+0=01	
1	0	1	1	0	1+0+1=10	
1	1	0	1	0	1+1+0=10	
1	1	1	1	1	1+1+1=11	

□ Full adder in 2-level design

1 bit ALU

- - AND
 - OR
 - ADD
- □ Cell

Cascade Element

Basic 32 bit ALU

- **□** Inputs parallel
- □ Carry is cascaded
- □ Ripple carry adder

行波进位加法器

- □ Slow, but simple
- \square 1st Carry In = 0

Extended 1 bit ALU-- Subtraction

■ Subtraction

- **a b**
- Inverting b
- 1st CarryIn= 1

Extended 1 bit ALU-- comparison

□ Functions

- AND
- OR
- Add
- Subtract

■ Missing: comparison

- slt rd,rs,rt
- If rs < rt, rd=1, else rd=0
- \blacksquare For rd, all bits = 0 except the least significant
- Subtraction (rs rt), if the result is negative → rs < rt
- Use of sign bit as indicator

■ Most significant bit

- Set for comparison
- Overflow detect
- □ Cell

Cascade Element

Operati on	Operan d A	Operan d B	Result overflow	
A+B	≧0	≧0	<0	(01)
A+B	<0	<0	≧0	(10)
A-B	≧0	<0	<0	(01)
А-В	<0	≧0	≧0	(10)

Complete ALU

- □ Input
 - A > B
- **□** Control lines
 - Binvert
 - Operation
 - Carry in
- Output
 - Result
 - Overflow
- **□** Slow, but simple
 - Inputs parallel
 - Carry is cascaded
 - □ Ripple carry adder

Complete ALU —with Zero detector

□ Add a Zero detector

注析:三大学 计算机学院 系统结构与系统软件实验室

ALU symbol & Control

□ Symbol of the ALU Alu Operation

Control: Function table

ALU Control Lines	Function
000	And
001	Or
010	Add
110	Sub
111	Set on less than
100	nor
101	srl
011	xor


```
module alu(A, B, ALU operation, res, zero, overflow);
  input [31:0] A, B;
  input [2:0] ALU operation;
  output [31:0] res;
  output zero, overflow;
  wire [31:0] res and, res or, res add, res sub, res nor, res slt;
  reg [31:0] res;
  parameter one = 32'h00000001, zero 0 = 32'h000000000;
    assign res and = A&B;
    assign res or = A|B;
    assign res add = A+B;
    assign res sub = A-B;
     assign res slt =(A < B)? one : zero 0;
     always @ (A or B or ALU operation)
           case (ALU operation)
           3'b000: res=res and;
           3'b001: res=res or;
           3'b010: res=res add;
           3'b110: res=res sub;
           3'b100: res=\sim(A | B);
           3'b111: res=res slt;
           default: res=32'hx;
           endcase
    assign zero = (res==0)? 1: 0;
```

endmodule

How do you write with overflow code?

What is the difference The codes in the Synthesize?

Speed considerations

- □ Previously used: ripple carry adder
- **□** Delay for the sum: two units

Speed considerations

- **□** Delay of one adder
 - 2 time units
- □ Total delay for stages: 2n unit delays
- Not appropriate for high speed application

Fast adders

- □ All functions can be represented in 2-level logic.
- □ But:
 - The number of inputs of the gates would drastically rise
- **□** Target:

Optimum between speed and size

Fast adders

□ Carry look-ahead adder

Calculating the carries before the sum is ready

□ Carry skip adder

 Accelerating the carry calculation by skipping some blocks

□ Carry select adder

Calculate two results and use the correct one

Carry Lookahead Adder (CLA)

- □ Given Stage *i* from a Full Adder, we know that there will be a carry generated when $A_i = B_i = "1"$, whether or not there is a carry-in
- □ Alternately, there will be a carry propagated if the "half-sum" is "1" and a carry-in, C_i occurs, then $C_{i+1}=1$ G_{i}
- ☐ These two signal conditions are called
 - **generate**, denoted as G_i
 - **propagate**, denoted as P_i

Addition formula in CLA

■ In the ripple carry adder:

- \bullet G_i , P_i , and S_i are local to each cell of the adder
- lacktriangle C_i is also local each cell
- □ In the carry lookahead adder, in order to reduce the length of the carry chain, Ci is changed to a more global function spanning multiple cells
- \square Defining the equations for the Full Adder in term of the P_i and G_i :

$$\mathbf{P}_{i} = \mathbf{A}_{i} \oplus \mathbf{B}_{i}$$

$$\mathbf{G}_{i} = \mathbf{A}_{i} \mathbf{B}_{i}$$

$$\mathbf{S}_{i} = \mathbf{P}_{i} \oplus \mathbf{C}_{i}$$

$$\mathbf{C}_{i+1} = \mathbf{G}_{i} + \mathbf{P}_{i} \mathbf{C}_{i}$$

Carry Lookahead Development

- \square C_{i+1} can be removed from the cells and used to derive a set of carry equations spanning multiple cells.
- \square Beginning at the cell 0 with carry in C_0 :

$$C_{1} = G_{0} + P_{0} C_{0}$$

$$C_{2} = G_{1} + P_{1} C_{1} = G_{1} + P_{1} (G_{0} + P_{0} C_{0})$$

$$= G_{1} + P_{1}G_{0} + P_{1}P_{0} C_{0}$$

$$C_{3} = G_{2} + P_{2} C_{2} = G_{2} + P_{2} (G_{1} + P_{1}G_{0} + P_{1}P_{0} C_{0})$$

$$= G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0} C_{0}$$

$$C_{4} = G_{3} + P_{3} C_{3} = G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1}$$

$$+ P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0} C_{0}$$

Group Carry Lookahead Logic

- Last slide show shows the implementation of these equations for four bits. This could be extended to more than four bits; in practice, due to limited gate fan-in, such extension is not feasible.
- Instead, the concept is extended another level by considering group generate (G_{0-3}) and group propagate (P_{0-3}) functions:

$$G_{0-3} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 P_0 G_0$$

 $P_{0-3} = P_3 P_2 P_1 P_0$

■ Using these two equations:

$$C_4 = G_{0-3} + P_{0-3} C_0$$

Thus, it is possible to have four 4-bit adders use one of the same carry lookahead circuit to speed up 16-bit addition

Extended Example: 16 carry lookahead adder

$$\begin{array}{lll} C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0 & = G_{0 \sim 3} + P_{0 \sim 3} C_0 \\ C_8 = G_7 + P_7 G_6 + P_7 P_6 G_5 + P_7 P_6 P_5 G_4 + P_7 P_6 P_5 P_4 C_4 & = G_{4 \sim 7} + P_{4 \sim 7} C_4 \\ C_{12} = G_{11} + P_{11} G_{10} + P_{11} P_{10} G_9 + P_{11} P_{10} P_9 G_8 + P_{11} P_{10} P_9 P_8 C_8 & = G_{8 \sim 11} + P_{8 \sim 11} C_8 \\ C_{16} = G_{15} + P_{15} G_{14} + P_{15} P_{14} G_{13} + P_{15} P_{14} P_{13} G_{12} + P_{15} P_{14} P_{13} P_{12} C_{12} & = G_{12 \sim 15} + P_{12 \sim 15} C_{12} \\ & = G_{12 \sim 15} + P_{12 \sim 15} (G_{8 \sim 11} + P_{8 \sim 11} (G_{4 \sim 7} + P_{4 \sim 7} (G_{0 \sim 3} + P_{0 \sim 3} C_0))) \\ \hline C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0 \\ G_{0 \sim 3} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 \\ G_{4 \sim 7} = G_7 + P_7 G_6 + P_7 P_6 G_5 + P_7 P_6 P_5 G_4 \\ G_{8 \sim 11} = G_{11} + P_{11} G_{10} + P_{11} P_{10} G_9 + P_{11} P_{10} P_9 G_8 \\ G_{12 \sim 15} = G_{15} + P_{15} G_{14} + P_{15} P_{14} G_{13} + P_{15} P_{14} P_{13} G_{12} \\ P_{0 \sim 3} = P_3 P_2 P_1 P_0 \end{array}$$

注于:一大学 计算机学院 系统结构与系统软件实验室

 $P_{4,7} = P_7 P_6 P_5 P_4$

 $P_{8-11} = P_{11} P_{10} P_{0} P_{8}$

 $P_{12\sim15} = P_{15} P_{14} P_{13} P_{12}$

Carry skip adder

- **■** Accelerating the carry by skipping the interior blocks
- □ Optimal speed with no-equal distribution of block length

Carry skip adder

Fig. 7.1 Converting a 16-bit ripple-carry adder into a simple carry-skip adder with 4-bit skip blocks.

□ Carry selection by nibbles

3.4 Multiplication

■ Binary multiplication

Multiplicand × Multiplier

1000 × 1001

■ Look at current bit position

- If multiplier is 1
 - then add multiplicand
 - □ Else add 0
- shift multiplicand left by 1 bit

Multiplier V1- Logic Diagram

64 bits: multiplier

128 bits: multiplicand, product, ALU

Multiplier V1--Algorithmic rule

- Requires 64 iterations
 - Addition
 - Shift
 - Comparison
- □ Almost 200 cycles
- □ Very big, Too slow!

Multiplier V2

- □ Real addition is performed only with 64 bits
- □ Least significant bits of the product don't change
- □ New idea:
 - Don't shift the multiplicand
 - Instead, shift the product
 - Shift the multiplier
- □ ALU reduced to 64 bits!

				1	0	0	0
			×	1	0	0	1
				1	0	0	0
			0	0	0	0	
		0	0	0	0		
+	1	0	0	0			
	1	0	0	1	0	0	0

Multiplier V2-- Logic Diagram

- □ Diagram of the V2 multiplier
- Only left half of product register is changed

油厂工大学 计算机学院 系统结构与系统软件实验室

Multiplier V2----Algorithmic rule

- **■** Addition performed only on left half of product register
- □ Shift of product register

浙江大学 计算机学院 系统结构与系统软件实

Multiplicand x multiplier: 0001 x 0111

Multiplicand: Multiplier:×	0001 0111	Shift	
_	00000000	out	#Initial value for the product
1	00010000	_ 🕇	#After adding 0001, Multiplier=1
	00001000	0	#After shifting right the product one bit
_	0001		
2	00011000		#After adding 0001, Multiplier=1
	00001100	0	#After shifting right the product one bit
	0001		#After adding 0001, Multiplier=1
3	00011100		
	00001110	0	#After shifting right the product one bit
	0000		
4	00001110		#After adding 0001, Multiplier=0
	00000111	0	#After shifting right the product one bit

注析 : 大学 计算机学院 系统结构与系统软件实验室

Multiplier V 3

- Further optimization
- At the initial state the product register contains only '0'
- The lower 64 bits are simply shifted out
- Idea: use these lower 64 bits for the multiplier

油厂工大学 计算机学院 系统结构与系统软件实验室

Multiplier V3 Logic Diagram

Multiplier V3--Algorithmic rule

- Set product register to '0'
- **■** Load lower bits of product register with multiplier
- **□** Test least significant bit of product register

浙江大学 计算机学院 系统结构与系统软件

Multiplicand x multiplier: 0001 x 0111

Multiplicand: Multiplier:×	0001 0111	Shift	
• –	0000 <mark>0111</mark>	out	#Initial value for the product
1	00010111	_	#After adding 0001, Multiplier=1
	00001011	1	#After shifting right the product one bit
	0001		
2	00011011		#After adding 0001, Multiplier=1
	00001101	_ 1	#After shifting right the product one bit
	0001		#After adding 0001, Multiplier=1
3	00011101		
	00001110	1	#After shifting right the product one bit
	0000		
4	00001110		#After adding 0001, Multiplier=0
	00000111	0	#After shifting right the product one bit

Signed multiplication

■ Basic approach:

- Store the signs of the operands
- Convert signed numbers to unsigned numbers (most significant bit (MSB) = 0)
- Perform multiplication
- If sign bits of operands are equal sign bit = 0, else sign bit = 1

■ Improved method:

Booth's Algorithm

Assumption: addition and subtraction are available

Principle -- Decomposable multiplication


```
\square Assumes: Z=y\times 101111100
    Z=y(10000000+1111100+100-100)
      =y(1\times2^7+1000000-100)
      =v(1\times 2^7+1\times 2^6-2^2)
      =y(1\times2<sup>7</sup>+1\times2<sup>6</sup>+0\times2<sup>5</sup>+0\times2<sup>4</sup>+0\times2<sup>3</sup>+0\times2<sup>2</sup>+0\times2<sup>1</sup>+0\times2<sup>0</sup>-1\times2<sup>2</sup>)
      = y(1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 - 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0)
      = y \times 2^7 + y \times 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 - y \times 2^2 + 0 \times 2^1 + 0 \times 2^0
                                                                                                      Only
                             add
                                                   Only shift sub
                                                                                                       shift
                                                                                                         00
                                                            11
                                    01
```

Booth's Algorithm

□ Idea: If you have a sequence of '1's

- subtract at first '1' in multiplier
- shift for the sequence of '1's
- add where prior step had last '1'

□ Result:

- Possibly less additions and more shifts
- Faster, if shifts are faster than additions

□ Logic required identifying the run

straight		Booth	
0010 * 0110		0010 * 0110	
0000	shift	0000	shift
0010	add	0010	sub
0010	add	0000	shift
0000	shift	0010	add
00001100		00001100	

Booth's Algorithm rule

□ Analysis of two consecutive bits

	Current	last	Explanation	Example
	1	0	Beginning	000011110000
	1	1	middle of '1'	000011110000
	0	1	End	000 <mark>01</mark> 1110000
□ Action	0	0	Middle of '0'	000011110000

10	subtract multiplicand from left
1 1	no arithmetic operation-shift
0 1	add multiplicand to left half
0 0	no arithmetic operation-shift

- \Box Bit₋₁ = '0'
- **□** Arithmetic shift right:
 - keeps the leftmost bit constant
 - no change of sign bit!

Example with negative numbers

1 2 * (-3) = -6

1 0010 * 1101 = 1111 1010

iteration	step	Multiplicand	product
0	Initial Values	0010	0000 1101 0
1	1.c:10→Prod=Prod-Mcand	0010	1110 11 <i>01</i> 0
1	2: shift right Product	0010	1111 0110 1
2	1.b:01→Prod=Prod + Mcand	0010	0001 01 <i>10</i> 1
	2: shift right Product	0010	0000 10110
2	1.c:10→Prod=Prod-Mcand	0010	1110 10 <i>11</i> 0
3	2: shift right Product	0010	1111 010 1 1
4	1.d: 11 → <i>no operation</i>	0010	1111 0101 1
4	2: shift right Product	0010	1111 1010 1

13 * (-11) = - 143 <u>01101 * 10101 = 11011 10001-->00100 01111</u>

	step	Multiplicand	product
0	Initial Values	01101	00000 1010 <u>1 0</u>
1	1.c:10→Prod=Prod-Mcand	01101	10011 10101 0
'	2: shift right Product	01101	11001 1101 <u>0 1</u>
	1.b:01→Prod=Prod+Mcand	01101	00110 11010 1
2	2: shift right Product	01101	00011 0110 <u>1 0</u>
	1.c:10→Prod=Prod-Mcand	01101	10110 01101 0
3	2: shift right Product	01101	11011 0011 <u>0 1</u>
1	1.d:01→Prod=Prod+Mcand	01101	01000 00110 1
4	2: shift right Product	01101	00100 0001 <u>1 0</u>
	1.e:10→Prod=Prod-Mcand	01101	10111 00011 0
4	2: shift right Product	01101	11011 10001 1

Faster Multiplication

□ Uses multiple adders

Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

RISC-V Multiplication

□ Four multiply instructions:

- mul: multiply
 - □ Gives the lower 64 bits of the product
- mulh: multiply high
 - □ Gives the upper 64 bits of the product, assuming the operands are signed
- mulhu: multiply high unsigned
 - □ Gives the upper 64 bits of the product, assuming the operands are unsigned
- mulhsu: multiply high signed/unsigned
 - □ Gives the upper 64 bits of the product, assuming one operand is signed and the other unsigned
- Use mulh result to check for 64-bit overflow

3.5 Division

n-bit operands yield *n*-bit quotient and remainder

- Oheck for 0 divisor
- O Long division approach
 - ¶ If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - **9** Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - ⊕ Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - © Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division V1 --Logic Diagram

- At first, the divisor is in the left half of the divisor register, the dividend is in the right half of the remainder register.
- □ Shift right the divisor register each step
- □ Dividend = quotient × divisor + remainder
 - Remainder < divisor
 - Iterative subtraction
- □ Result:
 - Greater than 0: then we get a 1
 - Smaller than 0: then we get a 0

沙大学 计算机学院 系统结构与系统软件实验室

Algorithm V 1

□ Each step:

- Subtract divisor
- Depending on Result
 - □ Leave or
 - □ Restore
- Depending on Result
 - Write '1' or
 - □ Write '0'

注析::大学 计算机学院 系统结构与系统软件实验室

Example (7 ÷ 2) for division v1 00000111 ÷ 0010

Iteration	Step	Quotient	Divisor	Remainder
0	Initial Values	0000	(0010) 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	0 110 0111
1	2b: Rem<0 => +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	Q111 0111
2	2b: Rem < 0 => +Div, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	0111 1111
3	2b: Rem < 0 => +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	0000 0011
4	2a: Rem 0 => sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem - Div	0001	0000 0010	0000 0001
	2a: Rem 0 => sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: shift Div right	0011	0000 0001	0000 0001

- 1. Why should the divisor be shifted right one bit each time?
- 2. Why should the divisor be placed in the **left half** of the divisor register, and the dividend be placed in the right half of the remainder register at first?

```
quotient
remainder
  - divisor
   0 remainder
```


Modified Division

- Reduction of Divisor and ALU width by half
- Shifting of the remainder
- **Saving 1 iteration**
- Remainder register keeps quotient No quotient register required

- One cycle per partial-remainder subtraction
- □ Looks a lot like a multiplier!
 - Same hardware can be used for both

Algorithm V 3

- Much the same as the last one
- Except change of register usage

计算机学院 系统结构与系统

Example 7/2 for Modified Division Well known numbers: 0000 0111/0010

iteration	step	Divisor	Remainder
0	Initial Values	0010	0000 0111
	Shift Rem left 1	0010	0000 1110
1	1.Rem=Rem-Div	0010	1110 1110
	2b: Rem<0 \rightarrow +Div,sll R,R ₀ =0	0010	0001 110 <i>0</i> [*]
2	1.Rem=Rem-Div	0010	1111 1100
2	2b: Rem<0 \rightarrow +Div,sll R,R ₀ =0	0010	0011 1000
3	1.Rem=Rem-Div	0010	0001 1000
J	2a: Rem>0 →sll R,R ₀ =1	0010	0011 0001
1	1.Rem=Rem-Div	0010	0 001 0001
4	2a: Rem>0 →sll R,R ₀ =1	0010	0010 0011
	Shift left half of Rem right 1		0001 0011

□ Keep the signs in mind for Dividend and Remainder

$$(+7) \div (+2) = +3$$
 Remainder = +1

$$>$$
 7 = 3 \times 2 + (+1) = 6 + 1

$$(-7) \div (+2) = -3$$
 Remainder = -1

$$\rightarrow$$
 -7 = -3 \times 2 + (-1) = -6 - 1

$$(+7) \div (-2) = -3$$
 Remainder = +1

$$(-7) \div (-2) = +3$$
 Remainder = -1

- **□** Instructions: div, divu
- \square Divide by $0 \longrightarrow$ overflow: Check by software

Faster Division

- □ Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- ☐ Faster dividers (e.g. SRT division) generate multiple quotient bits per step
 - Still require multiple steps

RISC-V Division

□ Four instructions:

- div, rem: signed divide, remainder
- divu, remu: unsigned divide, remainder

□ Overflow and division-by-zero don't produce errors

- Just return defined results
- Faster for the common case of no error

□ Reasoning

- Larger number range than integer rage
- Fractions
- Numbers like e (2.71828) and π (3.14159265....)

not normalized

■ Representation for non-integral numbers

• Including very small and very large numbers

□ Like scientific notation

$$-2.34 \times 10^{56}$$
 normalized

$$-+0.002 \times 10^{-4}$$

$$-+987.02 \times 10^9$$

Floating Point

- □ In binary
 - $\blacksquare \pm 1.xxxxxxxx_2 \times 2^{yyyy}$
- □ Types float and double in C
- **□** Representation
 - Sign
 - Fraction
 - Exponent
 - More bits for fraction: more accuracy
 - More bits for exponent: increases the range

Floating Point Standard

- □ Defined by IEEE Std 754-1980
- **□** Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- **■** Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent **Fraction**

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- \square S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- □ Normalize significand: $1.0 \le |\text{significand}| < 2.0$
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- **■** Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

□ Represent –0.75

$$-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$$

- \blacksquare S = 1
- Fraction = $1000...00_2$
- Exponent = -1 + Bias
 - \square Single: $-1 + 127 = 126 = 011111110_2$
 - □ Double: $-1 + 1023 = 1022 = 0111111111110_2$

Single precision

31	30	23	22	•••••		0
1	0111 11	10	100	0000 0000 0	0000 0000	0000
1 bit	8 bits			23 b	oits	

Double precision

31	30		20	19	•••	•••		0
1	011 1	1111 1	110	1	000 000	0000	0000	0000
1bit	1	1 bits				20 bits	S	
0000	0000	000	0 00	000	0000	0000	0000	0000

31	30	23	22		0
1	1000 00	01	010	0000 0000 0000	0000 0000
1 bit	8 bits			23 bits	

$$(-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)} = (-1)^{1} \times (1 + 0.25) \times 2^{(129-127)}$$

= $-1 \times 1.25 \times 2^{2}$
= -1.25×4
= -5.0

Single-Precision Range

■ Exponents 00000000 and 11111111 reserved

□ Smallest value

- Exponent: 0000001 \Rightarrow actual exponent = 1 - 127 = -126
- Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
- $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

□ Largest value

- exponent: 11111110 \Rightarrow actual exponent = 254 - 127 = +127
- Fraction: $111...11 \Rightarrow \text{significand} \approx 2.0$
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- □ Exponents 0000...00 and 1111...11 reserved
- **□** Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

□ Largest value

- Exponent: 11111111110 \Rightarrow actual exponent = 2046 - 1023 = +1023
- Fraction: $111...11 \Rightarrow \text{significand} \approx 2.0$
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

□ Relative precision

- all fraction bits are significant
- Single: approx 2^{-23}
 - Equivalent to $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 7$ decimal digits of precision
- Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Limitations

□ Overflow:

The number is too big to be represented

□ Underflow:

The number is too small to be represented

Denormal Numbers

\square Exponent = 000...0 \Rightarrow hidden bit is 0

$$x = (-1)^S \times (0 + Fraction) \times 2^{1-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Two representations of 0.0!

Infinities and NaNs

\square Exponent = 111...1, Fraction = 000...0

- ±Infinity
- Can be used in subsequent calculations, avoiding need for overflow check

\square Exponent = 111...1, Fraction \neq 000...0

- Not-a-Number (NaN)
- Indicates illegal or undefined result □ e.g., 0.0 / 0.0
- Can be used in subsequent calculations

IEEE 754 standard

- \square 00... 00_{two} represents 0;
- □ instead of interrupting on a divide by 0, software can set the result to a bit pattern representing $+\infty$ or $-\infty$;
- □ *NaN*: Not a Number.
- $\pm \infty$ represented by f=0, E=255, S=0,1 must obey all mathematical conventions: $F+\infty=\infty$, $F/\infty=0$
- □ denormalized numbers represented by E=0 -values smaller than smallest normalized number - lowering probability of exponent underflow

Single precision		Double precisi	on	Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	denormalized number
1-254	Anything	1-2046	Anything	Floating-point number
255	0	2047	0	infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Floating point addition

■ Example in decimal: system precision 4 digits

What is
$$9.999 \cdot 10^1 + 1.610 \cdot 10^{-1}$$
?

■ Aligning the two numbers

$$9.999 \cdot 10^{1}$$

$$0.01610 \cdot 10^1 \rightarrow 0.016 \cdot 10^1$$
 Truncation

Addition

Normalization

$$1.0015 \cdot 10^2$$

Rounding

$$1.002 \cdot 10^2$$

- Alignment
- □ The proper digits have to be added
- Addition of significands
- Normalization of the result
- Rounding

Example y=0.5+(-0.4375) in binary

$$\square$$
 0.5₁₀ = 1.000₂ × 2⁻¹

$$\square$$
 -0.4375₂=-1.110₂×2⁻²

Step1: The fraction with lesser exponent is shifted right until matches $-1.110_2 \times 2^{-2} \rightarrow -0.111_2 \times 2^{-1}$

□ Step2: Add the significands

$$1.000_{2} \times 2^{-1}$$
+) - $0.111_{2} \times 2^{-1}$

$$0.001_{2} \times 2^{-1}$$

■ Step3: Normalize the sum and checking for overflow or underflow $0.001_2 \times 2^{-1} \rightarrow 0.010_2 \times 2^{-2} \rightarrow 0.100_2 \times 2^{-3} \rightarrow 1.000_2 \times 2^{-4}$

□ Step4: Round the sum

$$1.000_2 \times 2^{-4} = 0.0625_{10}$$

Algorithm

THE UNITED

■ Normalize Significands

- Add Significands
- Normalize the sum
- □ Over/underflow
- Rounding
- Normalization

Start

江大学 计算机学院 系统结构与系统额

FP Adder Hardware

FP Adder Hardware

- Much more complex than integer adder
- **□** Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- □ FP adder usually takes several cycles
 - Can be pipelined

Floating-Point Multiplication

- □ Consider a 4-digit decimal example
 - \blacksquare 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- **□** 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- □ 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^5$
- □ 3. Normalize result & check for over/underflow
 - \blacksquare 1.0212 × 10⁶
- **□** 4. Round and renormalize if necessary
 - 1.021×10^6
- **□** 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^{6}$

Floating Point Multiplication

Composition of number from different parts

→ separate handling

$$(s1 \cdot 2^{e1}) \cdot (s2 \cdot 2^{e2}) = (s1 \cdot s2) \cdot 2^{e1+e2}$$

Example

 $0\ 10000011$ $000\ 0000\ 0000\ 0000\ 0000\ 0000 = 1 \times 2^4$

- Both significands are $1 \rightarrow \text{product} = 1 \rightarrow \text{Sign} = 1$
- \blacksquare Add the exponents, bias = 127

10000010

+10000011

110000101

Correction: 110000101-011111111=10000110=134=127+3+4

Multiplication

- Add exponents
- Multiply the significands
- Normalize
- Over- underflow
- Rounding
- □ Sign

计算机学院 系统结构与系统

multiplying the numbers 0.5_{ten} and -0.4375_{ten} \rightarrow 1.000_{two}x 2⁻¹ by -1.110_{two}x 2⁻²

□ Step1:Adding the exponents without bias or using the biased

$$-(-1+127)+(-2+127)-127=(-1-2)+(127+127-127)=-3+127=124$$

□ Step 2. Multiplying the significands

$$1.110000_{\text{two}} \text{x} 2^{-3}$$

□ Step 3. normalize

■ $127 \ge -3 \ge -126$, no overflow or underflow.

□ Step 4. Rounding

 $1.110_{two} x2^{-3}$

□ Step 5. sign

 $-1.110_{\text{two}} \text{x} 2^{-3} = -0.21875_{\text{ten}}$

X	$1.000_{\rm two} \\ 1.110_{\rm two}$
-	0000
	1000
	1000
1	000
1	110000 _{two}

Data Flow

FP Arithmetic Hardware

- □ FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- □ FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - $FP \leftrightarrow integer conversion$
- **□** Operations usually takes several cycles
 - Can be pipelined

Division-- Brief

- Subtraction of exponents
- □ Division of the significands
- Normalization
- Rounding
- □ Sign

$$x = -1.5_{ten} \times 10^{38}$$
, $y = 1.5_{ten} \times 10^{38}$, and $z = 1.0$

$$x + (y + z) = 0.0$$

$$(x+y) + z = 1.0$$

FP Instructions in RISC-V

- □ Separate FP registers: f0, ..., f31
 - double-precision
 - single-precision values stored in the lower 32 bits
- **□** FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- **□** FP load and store instructions
 - flw, fld
 - fsw, fsd

FP Instructions in RISC-V

□ Single-precision arithmetic

- fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.s □ e.g., fadds. s f2, f4, f6
- **□** Double-precision arithmetic
 - fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d ■ e.g., fadd. d f2, f4, f6
- □ Single- and double-precision comparison
 - feq. s, flt. s, fle. s
 - feq. d, flt. d, fle. d
 - Result is 0 or 1 in integer destination register
 - Use beq, bne to branch on comparison result
- **□** Branch on FP condition code true or false
 - B. cond

FP Example: "F to "C


```
□ C code:
```

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in f10, result in f10, literals in global memory space
- □ Compiled RISC-V code:

```
f2c: f1w f0, const5(x3) // f0 = 5.0f f1w f1, const9(x3) // f1 = 9.0f fdiv.s f0, f0, f1 // f0 = 5.0f / 9.0f f1w f1, const32(x3) // f1 = 32.0f fsub.s f10, f10, f1 // f10 = fahr - 32.0 fmul.s f10, f0, f10 // f10 = (5.0f/9.0f) * (fahr-32.0f) jalr x0,0(x1) // return
```


沙大学 计算机学院 系统结构与系统软件实验室

FP Example: Array Multiplication

```
\bigcirc C = C + A \times B
```

€ All 32 × 32 matrices, 64-bit double-precision elements

OC code:

```
void mm (double c[][],
         double a[][], double b[][]) {
  size_t i, j, k;
  for (i = 0; i < 32; i = i + 1)
    for (j = 0; j < 32; j = j + 1)
      for (k = 0; k < 32; k = k + 1)
        c[i][j] = c[i][j]
                  + a[i][k] * b[k][j];
```

♠ Addresses of c, a, b in x10, x11, x12, and i , j , k in x5, x6, x7

Chapter 3 — Arithmetic for Computers — 115

FP Example: Array Multiplication

RISC-V code:

```
mm: . . .
            x28, 32
                         // x28 = 32 (row size/loop end)
      Ιi
            x5, 0
      Ιi
                         // i = 0; initialize 1st for loop
L1:
      Ιi
           x6, 0
                         // j = 0; initialize 2nd for loop
L2:
      Ιi
            x7, 0
                         // k = 0; initialize 3rd for loop
      sIIi x30, x5, 5
                         // x30 = i * 2**5  (size of row of c)
            x30, x30, x6
                         // x30 = i * size(row) + i
       add
      sHi
           x30, x30, 3
                         // x30 = byte offset of [i][j]
       add
            x30, x10, x30
                         // x30 = byte address of c[i][j]
                         // f0 = c[i][j]
      fl d
            f0,0(x30)
L3:
      sHi
           x29, x7, 5
                         // x29 = k * 2**5  (size of row of b)
      add
            x29, x29, x6
                         // x29 = k * size(row) + i
      sHi
           x29, x29, 3
                         // x29 = byte offset of [k][j]
       add
            x29, x12, x29 // x29 = byte address of b[k][j]
      fld
            f1, 0(x29)
                         // f1 = b[k][j]
```

FP Example: Array Multiplication

```
sHi
                 // x29 = i * 2**5  (size of row of a)
      x29, x5, 5
add
      x29, x29, x7 // x29 = i * size(row) + k
sHi
      x29, x29, 3 // x29 = byte offset of [i][k]
      x29, x11, x29 // x29 = byte address of a[i][k]
add
      f2, 0(x29) // f2 = a[i][k]
fl d
fmul.d f1, f2, f1 // f1 = a[i][k] * b[k][j]
                 // f0 = c[i][j] + a[i][k] * b[k][j]
fadd. d f0, f0, f1
addi
      x7, x7, 1 // k = k + 1
bl tu
      x7, x28, L3
                  // if (k < 32) go to L3
      f0,0(x30)
                  // c[i][i] = f0
fsd
      x6, x6, 1 // j = j + 1
addi
bl tu
      x6, x28, L2 // if (j < 32) go to L2
addi
      x5, x5, 1 // i = i + 1
      x5, x28, L1 // if (i < 32) go to L1
bl tu
```

Accurate Arithmetic

- **□** IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- □ Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- □ Trade-off between hardware complexity, performance, and market requirements

Round modes

■ Rounding: four rounding modes

- Round to 0
- Round to $+\infty$
- Round to $-\infty$
- Round to next even number (default)

у	round down (towards -∞)	round up (towards +∞)	round towards zero	round to nearest even
+23.67	+23	+24	+23	+24
+23.50	+23	+24	+23	+24
+23.35	+23	+24	+23	+23
+23.00	+23	+23	+23	+23
0	0	0	0	0
-23.00	-23	-23	-23	-23
-23.35	-24	-23	-23	-23
-23.50	-24	-23	-23	-24
-23.67	-24	-23	-23	-24

Accurate Arithmetic

- IEEE 754 always keeps two extra bits on the right during intermediate additions, called guard and round
- **■** Rounding with Guard Digits
 - Add $2.56_{\text{ten}} \times 10^0 \text{ to } 2.34_{\text{ten}} \times 10^2$

$$\begin{array}{r} 2.3400_{\text{ten}} \\ + \ \, \frac{0.0256_{\text{ten}}}{2.3656_{\text{ten}}} \end{array}$$

- The guard digit holds 5 and the round digit holds 6.
- Sum= 2.37_{ten} x 10^2 .
- **■** Rounding without Guard Digits

$$+ \frac{2.34_{\text{ten}}}{2.36_{\text{ten}}}$$

 \sim Sum=2.36_{ten} x 10²

sticky bit

- □ A bit used in rounding in addition to guard and round that is set whenever there are nonzero bits to the right of the round bit.
- □ allows the computer to see the difference between $0.50 \dots 00_{ten}$ and $0.50 \dots 0l_{ten}$ when rounding.
- **examples** in the floating point format with guard, round and sticky bits


```
grs
1.11000000000000000000100 0 0
1.11000000000000000000001
1.11000000000000000000001
(LSB=0)
(LSB=1)
```


Concluding Remarks

- □ Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- **□** Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs
- **□** ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- **□** Bounded range and precision
 - Operations can overflow and underflow

Assignment

Reading: chapter 3

Problems:

3.1, 3.5, 3.8, 3.9, 3.13, 3.19

3.20-24(later after chapter 2), 3.27, 3.29

Note: In 3.21, change MIPS to RISC-V

OEND