FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Use of a static code analysis tool can help detect some possible problems. Normally the first step in debugging is to attempt to reproduce the problem. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Different programming languages support different styles of programming (called programming paradigms). Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Programs were mostly entered using punched cards or paper tape. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). However, Charles Babbage had already written his first program for the Analytical Engine in 1837. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Whatever the approach to development may be, the final program must satisfy some fundamental properties.