第三章 固态电子论基础 Introduction to the Electronic Theory of Solids

固态物质(固体):大量原子(分子)组成的刚体

	自由电子	孤立原子中的电子	固体中的电子
外力源	无	单一原子核及同一	众多原子核及其电子
		原子的其它电子	
能量分布	连续谱	能级	能带

能级: 电子仅占据的几个分立的能量状态

能带: 电子可占据的几个连续的能量区间

能带理论: 研究固体中电子运动的一种主要方法

共有化运动

布洛赫波

能带

受束缚 轨道

分立能级

自由运动平面波

能量连续

3.1 周期势场中的电子和能带论 the energy band theory and electrons in periodic potential wells

3.1.1 能带的形成formation of energy bands

原子相互接近形成晶体

不同原子的相似壳层交迭

电子不再局限在某一个原子 可以从一个原子转移到另一个原子上

电子在整个晶体中进行共有化运动

两个原子相距较远,其能级与孤立原子一样,但有2度简并

原子相互接近,每个原子中的电子除受本身原子势场作用外,还受另外原子势场的作用

分裂成2个相距很近的能级

靠的越近分裂越厉害

两个氢原子互相接近

(a) Wave functions combined for σ_{1s}

(c) Wave functions combined for σ_{1s}^*

(b) Bonding probability density

(d) Antibonding probability density

ro: 晶体中平衡态原子间的距离

想象:

众多原子的间距

分裂的能级数目

实际晶体: r₀

达到平衡态形成晶体

晶体中原子密度 很高10²²原子/cm³

- ✓ 泡利不相容原理
- ✓ 任一能级包含的量子态十分有限;

众多的分裂能级

形成准连续的能带

ro: 晶体中平衡态原子间的距离

- 孤立原子能级E_{nl}, 能容纳电子2(2*l*+1);
- N个原子组成晶体,能级分裂成由N个能级组成的能带,该能带能容纳2N(2/+1)个电子。

实际晶体的能级分裂情况比较复杂例:硅(Si)晶体能级分裂

能带互相交叠形成混合能带、交叠后还能再次分裂成上下两个能带

a₀: 硅晶体中平衡态原子间的距离

硅晶体N个原子: 外壳层4N个电子

3s(l=0)支壳层2N个态, 填充了2N个电子填满、 没有空态

3p(*l*=1)支壳层6*N*个态,填充了剩下的2*N*个电子 还有4*N*个空态

3.1.2 KP模型the Kronig-Penney model

多体多电子问题

单体多电子问题

绝热近似(哈特里-福克自洽场):

- 电子运动速度>>离子运动速度
- 假定离子固定在平衡位置上不动
- 离子运动与电子运动不交换能量

单电子近似:

- 其他电子的作用 →平均势场
- 固定的离子势场

单体单电子问题

周期势场近似:固定的粒子势场和 其他电子的场之和是一个周期场

周期性势场中的单电 子问题(能带理论)

原子实:除价电子外,包括原子核和所有壳层的电子

单电子原子例:

孤立原子位函数

$$U(r) = -e^2/(4\pi\varepsilon_0 r)$$

相邻原子实的位函数交叠

其它电子的排斥作用

削弱

原子实的位函数起伏

电子实际感受到的位函数

与第2章例子不同,结合势场U的空间周期性

晶体中周期性势场与晶格有相同的周期

一维: U(x) = U(x + na), a为晶格常数, n为整数单电子在一维周期性势场中的运动满足薛定谔方程

$$-\frac{\hbar^2}{2m_0}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + U(x)\psi(x) = E\psi(x)$$

x 位移到 x + na

$$-\frac{\hbar^2}{2m_0}\frac{\mathrm{d}^2\psi(x+na)}{\mathrm{d}x^2} + U(x+na)\psi(x+na) = E\psi(x+na)$$

势场周期性U(x) = U(x + na)

$$-\frac{\hbar^2}{2m_0}\frac{\mathrm{d}^2\psi(x+na)}{\mathrm{d}x^2} + U(x)\psi(x+na) = E\psi(x+na)$$

 $\psi(x)$ 与 $\psi(x+na)$ 是什么关系? $\psi(x) = \psi(x+na)$? 周期函数?

布洛赫定理的严格证明:

1. 引入平移算符,证明平移算符与哈密顿算符对易, 两者具有相同的本征函数。

2. 利用周期性边界条件确定平移算符的本征值,最后给出电子的波函数形式:

一维情况下,周期势场中电子的波函数满足以下关系:

$$\psi(x + na) = \exp(jkna)\psi(x)$$

$$\psi(x + na) = \exp(jkna)\psi(x)$$

假定:
$$\psi(x) = u(x) \exp(jkx)$$

$$u(x) = \psi(x) \exp(-jkx)$$

 $x \longrightarrow x + na$
 $u(x + na) = \exp(-jkna - jkx)\psi(x + na)$
 $(x + na) = \exp(jkna)\psi(x)$
 $u(x + na) = \exp(jkna)\psi(x)$

- \triangleright 自由电子波函数为平面波 $\varphi(x) = A \exp(jkx)$
- > u(x)也是具有晶格周期的周期函数

布洛赫定理:在一维周期性势场中的单电子波函数为一个周期性调幅的平面波,其振幅周期为晶格周期,用布洛赫函数描写状态的电子称为布洛赫电子。

布洛赫函数 $\psi(x) = u(x) \exp(jkx)$

布洛赫函数: 周期性函数: 晶格矢量:

$$\psi(\mathbf{r}) = u(\mathbf{r}) \exp(j\mathbf{k} \cdot \mathbf{r})$$

$$u(\mathbf{r} + \mathbf{R}_n) = u(\mathbf{r})$$

$$\mathbf{R}_n = p\mathbf{a} + q\mathbf{b} + s\mathbf{c}$$

自由电子的动量: ħk

布洛赫电子的 M 并不具有确定的动量,不具严格意义下的 动量含义,但它具有动量的性质,称为准动量

	自由电子	布洛赫电子	孤立原子中的电子
波函数	A exp (jkx)	$u(x) \exp(jkx)$	f(r)
	平面波	布洛赫波 (调制平面波)	束缚电子
运动区间	空间各点	晶体中	原子核周围
运动形式	自由运动	共有化运动	束缚运动

$$\frac{\mathrm{d}^{2}u_{2}(x)}{\mathrm{d}x^{2}} + 2\mathrm{j}k\frac{\mathrm{d}u_{2}(x)}{\mathrm{d}x} - (k^{2} - \beta^{2})u_{2}(x) = 0$$

$$\beta^{2} = (2m_{0}/\hbar^{2})(E - U_{0})$$

$$\underline{\mathsf{XI:}} \ u_1(x) = A \exp[\mathsf{j}(\alpha - k)x] + B \exp[-\mathsf{j}(\alpha + k)x] \quad 0 < x < a$$

$$\underline{\mathbf{Z}}$$
 $\underline{\mathbf{II}}$: $u_2(x) = C \exp[\mathbf{j}(\beta - k)x] + D \exp[-\mathbf{j}(\beta + k)x]$ $-b < x < 0$

连续边界条件

$$\frac{du_{1}(x)}{dx}\Big|_{x=0} = \frac{du_{2}(x)}{dx}\Big|_{x=0}$$

$$A+B-C-D=0$$

$$(\alpha - k)A - (\alpha + k)B - (\beta - k)C + (\beta + k)D = 0$$

$$x = a$$
, -b: $u_1(a) = u_2(-b)$

$$\exp[j(\alpha - k)a]A + \exp[-j(\alpha + k)a]B - \exp[-j(\beta - k)b]C - \exp[j(\beta + k)b]D = 0$$

$$du_1(x)/dx\Big|_{x=a} = du_2(x)/dx\Big|_{x=-b}$$

$$(\alpha - k)\exp[j(\alpha - k)a]A - (\alpha + k)\exp[-j(\alpha + k)a]B - (\beta - k)\exp[-j(\beta - k)b]C + (\beta + k)\exp[j(\beta + k)b]D = 0$$

根据连续边界条件,可以获得以A,B,C,D为未知数的四个线性齐次方程

线性齐次方程组的非零解的条件是系数行列式为0:

$$\begin{vmatrix} 1 & 1 & -1 & -1 \\ \alpha - k & -(\alpha + k) & -(\beta - k) & \beta + k \\ \exp[j(\alpha - k)a] & \exp[-j(\alpha + k)a] & -\exp[-j(\beta - k)b] & -\exp[j(\beta + k)b] \\ (\alpha - k)\exp[j(\alpha - k)a] & -(\alpha + k)\exp[-j(\alpha + k)a] & -(\beta - k)\exp[-j(\beta - k)b] & (\beta + k)\exp[j(\beta + k)b] \end{vmatrix} = 0$$

$$-\frac{\alpha^2 + \beta^2}{2\alpha\beta}\sin(\alpha a)\sin(\beta b) + \cos(\alpha a)\cos(\beta b) = \cos[k(a+b)]$$

电子束缚在晶体内
$$E < U_0$$
 $\beta^2 = (2m_0/\hbar^2)(E-U_0)$ $\beta = \mathbf{j}\gamma$

$$\alpha^2 = (2m_0/\hbar^2)E$$

 $\frac{\gamma^2 + \alpha^2}{2\alpha\gamma} \sin(\alpha a) \sinh(\gamma b) + \cos(\alpha a) \cosh(\gamma b) = \cos[k(a+b)]$

用数值法或图解法可以确定 k, E, U_0 的关系

$$\frac{\gamma^2 + \alpha^2}{2\alpha\gamma} \sin(\alpha a) \sinh(\gamma b) + \cos(\alpha a) \cosh(\gamma b) = \cos[k(a+b)]$$

假定势垒很窄但很高

$$b \rightarrow 0$$
, $U_0 \rightarrow \infty$

而 bU_0 = 有限值

$$\alpha^2 = (2m_0/\hbar^2)E$$

$$\gamma^2 = (2m_0/\hbar^2)(U_0 - E)$$

运用

$$\frac{\sinh \gamma b}{2\gamma a} \to \frac{b}{2a}$$

$$\frac{\sinh \gamma b}{2\gamma a} \to \frac{b}{2a} \qquad \left(\frac{m_0(bU_0)a}{\hbar^2}\right) \frac{\sin(\alpha a)}{\alpha a} + \cos(\alpha a) = \cos(ka)$$

$$P' = \frac{m_0(bU_0)a}{\hbar^2}$$

本征方程:
$$F(E) = P' \frac{\sin(\alpha a)}{\alpha a} + \cos(\alpha a) = \cos(ka)$$

本征方程为简化情况下,薛定谔方程有非零解的条件

$$F(E) = P' \frac{\sin(\alpha a)}{\alpha a} + \cos(\alpha a) = \cos(ka)$$

求解薛定谔 方程的思路:

求出总能量E

$$\alpha^2 = (2m_0/\hbar^2)E$$
 $\beta^2 = (2m_0/\hbar^2)(E - U_0)$ 求出 α

$$\underline{\mathsf{X}}$$
: $u_1(x) = A \exp[\mathsf{j}(\alpha - k)x] + B \exp[-\mathsf{j}(\alpha + k)x]$ $0 < x < a$

布洛赫函数 $\psi(x) = u(x) \exp(jkx)$

3.1.3 k空间图the k-space diagram

决定E和k的关系: 色散关系

$$\alpha^2 = (2m_0/\hbar^2)E$$

$$F(E) = f(\alpha a) = P' \frac{\sin(\alpha a)}{\alpha a} + \cos(\alpha a) = \cos(ka)$$

One-dimensional band structure of electrons

■ 禁帯

本征方程:

$$F(E) = P' \frac{\sin(\alpha a)}{\alpha a} + \cos(\alpha a) = \cos(ka)$$

$$P' = \frac{m_0(bU_0)a}{\hbar^2}$$

$$F(E) = \cos(\alpha a) = \cos(ka)$$

连续抛物线

3.1.4 能带论的其它模型: 微扰法

- 对于一些简单的问题,如一维无限深势阱问题,氢原子问题等,薛定谔方程可以给出精确的解析解。但对于大量的实际物理问题,薛定谔方程不能求出精确解。只能采用近似方法求解,如微扰法,变分法等等。
- → 微扰法: 从已知简单系统的精确解(零级近似)出发,将复杂系统看做对简单系统的微小扰动。假如扰动不大,复杂系统的物理性质可视为简单系统的物理性质加上一些修正(微扰项)。微扰法计算系统能级和波函数的修正项。

地球受万有引力作用绕太阳转动,可是由于其它行星的影响,需要对轨道予以修正。在这种情况下,计算所使用的方法是:首先把太阳和地球作为二体系统,求出其轨道(无视扰动,可精确求解),然后研究这个轨道受其它行星的影响(视为小扰动)而发生的变化。

3.1.4 能带论的其它模型

1. 自由电子模型the free electron model

晶体势场很弱

以势场平均值 U_0 求解薛定谔方程

$$\frac{\mathrm{d}^2 \psi(x)}{\mathrm{d}x^2} + \frac{2mE(E - U_0)}{\hbar^2} \psi(x) = 0$$

$$E_0(k) = U_0 + \hbar^2 k^2 / (2m_0)$$

$$\psi_0(x) = A \exp(jkx)$$

实际势场可以分解

$$U(x) = U_0 + \sum_{n \neq 0} \exp(j\frac{2\pi}{a}nx)$$

微扰法求解 薛定谔方程

零级近似:

$$E_0(k) = U_0 + \hbar^2 k^2 / (2m_0)$$

$$\psi_0(x) = A \exp(jkx)$$

修正 $\psi(x)$ 和E(k)

■ 禁帯

一 允带

自由电子模型:

- · 电子能量与波矢的关系图(色散关系)与K-P模型类似
- 色散曲线更接近自由电子的抛物线关系
- · 在k=nπ/a附近有微小扰动
- *E(k)*是偶函数
- 适用于金属价电子的粗略近似

2. 紧束缚模型

晶体中原子间的距离较远

每个原子对其电子 有较强的束缚作用

原子间的相互作用较小

只对能级进行微扰

以孤立原子的能量作为零级近似

简并能级

能带

紧束缚模型:适用于导电性能差的晶体,对狭窄内壳层 能带的粗略近似

为什么要用E-k关系(能带图)来描述晶体中的电子行为

- 从波动的角度来看待电子;
- 描述波动行为的最重要关系是色散关系(ω -k关系)

矩形波导色散特性曲线

$$k'_{zmn} = \sqrt{k^2 - k'_t^2} = \sqrt{k^2 - k'_{xm}^2 - k'_{yn}^2}$$
$$= \sqrt{\omega^2 \mu \varepsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

