Volume using Integral 2.4.3

 \blacktriangleright Volume of a Cylindrical Solid: A cylindrical solid is bounded above by a surface z=f(x,y) and bounded below by a plane region R on xy-plane and the sides bounded by straight lines parallel to z - axis. Then volume of the solid is

$$V = \int \int_{E} \int_{z=0}^{f(x,y)} dx dy dz = \int \int_{E} f(x,y) dx dy$$

▶ Volume Enclosed by two Surfaces: If a solid is bounded above by a surface $z = f_2(x, y)$ and bounded below by the surface $z = f_1(x,y)$ and both the surfaces are above the xy-plane. Also the <u>sides bounded</u> by straight lines parallel to z-axis. Then volume of the solid is

$$V = \int \int_{E} [f_2(x,y) - f_1(x,y)] dxdy$$

Here E is the projection of both the surfaces on xy - plane. Also here both f_1, f_2 must be positive, continuous and $f_2 \geq f_1$ on E.

 \blacktriangleright Volume Enclosed by a Closed Surface : Let S be a closed surface and any straight line parallel to z - axis cut it in almost two points. The surface S have two parts $z = \phi_2(x, y)$ upper part and $z = \phi_1(x, y)$ is the lower part. Then volume of the solid is

$$V = \int \int_{E} [\phi_2(x, y) - \phi_1(x, y)] dxdy$$

Here E is the projection of S on xy - plane.

Example 2.18. Evaluate $\int \int_{V} \frac{dxdydz}{(x+y+z+1)^3} \text{ where } V \text{ is the tetrahedron bounded}$ by the planes $x=0,\ y=0,\ z=0,\ x+y+z=1.$ $\Rightarrow \int \int \int_{V} \frac{dxdydz}{(x+y+z+1)^3} = \int_{x=0}^{1} dx \int_{y=0}^{1-x} dy \int_{z=0}^{1-x-y} \frac{1}{(x+y+z+1)^3} dz =$

$$\Rightarrow \int \int \int_{V} \frac{dx dy dz}{(x+y+z+1)^3} = \int_{x=0}^{1} dx \int_{y=0}^{1-x} dy \int_{z=0}^{1-x-y} \frac{1}{(x+y+z+1)^3} dz = \frac{1}{2} \int_{x=0}^{1} dx \int_{y=0}^{1-x} dy \left[\frac{1}{(1+x+y)^2} - \frac{1}{4} \right] = \frac{1}{2} \int_{x=0}^{1} dx \int_{y=0}^{1-x} \left[\frac{1}{(1+x+y)^2} - \frac{1}{4} \right] dy = \frac{1}{2} \int_{x=0}^{1} \left[\frac{1}{1+x} - \frac{3}{4} + \frac{x}{4} \right] dx = \frac{1}{2} \left[\ln 2 - \frac{5}{8} \right].$$

[Do It Yourself] 2.100. Find the volume of the region in the first octant $(x, y, z \ge 0)$

bounded by the cylinder
$$x^2 + y^2 = 4$$
 and the planes $z = 2$, $y + z = 4$.
[Hint: $V = \int_{z=2}^{4-y} dz \int_{x=0}^{2} dx \int_{y=0}^{\sqrt{4-x^2}} dy = \int_{x=0}^{2} dx \int_{y=0}^{\sqrt{4-x^2}} (2-y)dy = 2\pi - \frac{8}{3}$].

[Do It Yourself] 2.102. Consider the region S enclosed by the surface $z = y^2$ and the planes z = 1, x = 0, x = 1, y = -1 and y = 1. The volume of S is (A) 1/3 (B) 2/3 (C) 1 (D) 4/3.

[Hint: Using Rule 2:
$$V = \int_{x=0}^{1} dx \int_{y=-1}^{1} (1-y^2)dy = \int_{y=-1}^{1} (1-y^2)dy = 4/3$$
].

[Do It Yourself] 2.103. Show that the volume common to the cylinder $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$ is $16a^3/3$.

[Hint: Use Rule 1:
$$V = 2 \int_{x=-a}^{a} dx \int_{y=-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} \sqrt{a^2-x^2} dy = 4 \int_{x=-a}^{a} (a^2-x^2) dx$$
].

2.5 Beta and Gamma Functions

- ▶ Gamma function: $\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx$ (n > 0), provided the integral converges.
- $\blacktriangleright \Gamma(n+1) = n\Gamma(n), \ n > 0.$
- $ightharpoonup \Gamma(m) = (m-1)!, for positive integer m..$
- $\Gamma(1) = 1, \ \Gamma(\frac{1}{2}) = \sqrt{\pi}.$
- ► $\Gamma(p)\Gamma(1-p) = \pi \csc(p\pi), \ 0$
- $\Gamma(\frac{1}{3})\Gamma(\frac{2}{3}) = \Gamma(\frac{1}{3})\Gamma(1-\frac{1}{3}) = \pi \csc(\frac{\pi}{3}) = \frac{2\pi}{\sqrt{3}}$
- ▶ Beta function Form 1: $\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$ (m,n>0), provided the integral converges.
- ▶ Beta function Form 2: $\beta(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx \ (m,n>0)$, provided the integral converges.
- ▶ Beta function Form 3: $\beta(m,n) = 2 \int_0^{\pi/2} \sin^{2m-1} x \cos^{2n-1} x dx \ (m,n>0)$, provided the integral converges.
- ▶ Beta and Gamma Relation: $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.

[Do It Yourself] 2.111. Let $J = \frac{1}{\pi} \int_0^1 t^{-\frac{1}{2}} (1-t)^{\frac{3}{2}} dt$. Then what is the value of J?

[Do It Yourself] 2.112. Show the following results

1.
$$\int_0^\infty e^{-ax} x^{n-1} dx = \frac{\Gamma(n)}{a^n}, \ n, a > 0.$$

2.
$$\Gamma(n+1) = n\Gamma(n)$$
.

3.
$$\Gamma(1) = 1$$
, $\Gamma(1/2) = \sqrt{\pi}$.

4.
$$\beta(m,n) = \beta(n,m)$$
.

5.
$$\beta(m,n) = 2 \int_0^{\pi/2} \sin^{2m-1} x \cos^{2n-1} x dx \ (m,n>0).$$

[Do It Yourself] 2.113. Using the transformation $x = \frac{y}{1+y}$ show that $\beta(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx \ (m,n>0).$

[Do It Yourself] 2.114. Show that $\int_0^{\pi/2} \sin^p x \cos^q x dx = \frac{1}{2}\beta(\frac{p+1}{2}, \frac{q+1}{2}).$

[Do It Yourself] 2.115. Find $\int_0^\infty e^{-x^2} dx$, $\int_0^\infty x^m e^{-x^n} dx$, $\int_0^\infty \sqrt{x} e^{-x^3} dx$.

[Do It Yourself] 2.116. Find $\int_0^1 x^3 (1-x^7)^2 dx$, $\int_0^1 \sqrt{1-x^4} dx$.

[Do It Yourself] 2.117. Find $\int_0^{\pi/2} \sin^5 x dx$, $\int_0^{\pi/2} \sin^6 x dx$, $\int_0^{\pi/2} \cos^7 x dx$, $\int_0^{\pi/2} \cos^3 x dx$.