Композиция гомотетий

Утверждение. Композиция двух гомотетий с коэффициентами k_1 и k_2 — это либо гомотетия с коэффициентом k_1k_2 , либо параллельный перенос (при $k_1k_2=1$).

- \bullet Если композиция двух гомотетий оказалась гомотетией, то её центр лежит на прямой O_1O_2 .
- Если композиция двух гомотетий оказалась параллельным переносом, то вектор этого переноса будет параллелен прямой O_1O_2 , где O_1 и O_2 центры исходных гомотетий.

Утверждение. Для двух неравных окружностей существует единственная гомотетия с положительным коэффициентом и единственная гомотетия с отрицательным коэффициентом, которые переводят одну окружность в другую.

Обычно про композицию гомотетий полезно думать в контексте окружностей. А именно, для трёх окружностей среди 6 центров их попарных гомотетий можно найти четыре тройки, лежащие на одной прямой. Это утверждение называется теоремой Монжа или теоремой о трёх колпаках.

- 1. Одна окружность лежит внутри другой. Три другие окружности касаются внутренним образом большей из них и внешним образом меньшей. Для каждой из последних трёх окружностей провели прямую, через её точки касания с первыми двумя. Докажите, что три эти прямые пересекаются в одной точке.
- **2.** В треугольник ABC вписана окружность, которая касается сторон AB и AC, а также описанной около треугольника ABC окружности внутренним образом в точке A_1 (эта окружность называется *полувписанной*). Докажите, что прямая AA_1 и две аналогичные пересекаются в одной точке. Какая ещё прямая проходит через эту точку?
- **3.** Из точки P, лежащей на радикальной оси окружностей, таких, что одна не лежит внутри другой, провели к ним касательные PA и PB, причём обе окружности лежат внутри угла APB. Докажите, что прямая AB проходит через точку пересечения общих внешних касательных к этим окружностям.
- **4.** Продолжения сторон выпуклого четырёхугольника ABCD пересекаются в точках P и Q. На сторонах четырёхугольника выбрали по точке

- так, что получился параллелограмм, причём одна пара его сторон параллельна PQ. Докажите, что центр параллелограмма лежит на одной из диагоналей четырёхугольника ABCD.
- 5. Дан описанный четырёхугольник ABCD. Докажите, что точка пересечения диагоналей, центр вписанной окружности треугольника ABC и центр вневписанной окружности треугольника ACD, касающейся стороны AC, лежат на одной прямой.
- 6. На плоскости расположены окружности ω_1 , ω_2 , ω_3 , ω_4 разных радиусов, никакая из которых не лежит внутри другой (см. рисунок). Общие внешние касательные окружностей ω_1 и ω_2 пересекаются в той же точке, что и общие внешние касательные окружностей ω_3 и ω_4 . Докажите, что в область, ограниченную общими внешними касательными к парам окружностей ω_1 и ω_4 , ω_2 и ω_3 , можно вписать окружность.

Рис. 1: к задаче 6

- 7. Окружность ω лежит внутри Ω . Рассматриваются всевозможные пары окружностей γ_1 и γ_2 , касающиеся Ω внутренним, а ω внешним образом. Найдите ГМТ пересечения общих внешних касательных к γ_1 и γ_2 .
- 8. Во вписанном четырёхугольнике ABCD противоположные стороны не параллельны. Точки K, L, M и N лежат на сторонах AB, BC, CD и DA соответственно так, что KLMN ромб, причём $KL \parallel AC, LM \parallel BD$. В треугольники ANK, BKL, CLM и DMN вписаны окружности $\omega_1, \omega_2, \omega_3$ и ω_4 соответственно. Докажите, что точки пересечения внутренних касательных у пар окружностей ω_1 и ω_3, ω_2 и ω_4 совпадают.