Mathematik für Informatik II - Tutorium - Woche 2

Aufgabe 6

 B_1 B_2 B_3

Skalarprodukt

Gegeben seien Abbildungen von der Form

Bilinearform

$$B: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x,y) \mapsto ?$$

Wir möchten diese darauf untersuchen, ob sie Bilinearformen und Skalarprodukte darstellen.

Bilinearform

Definition 8.1.4: Bilinearform

Es seien V und W \mathbb{K} -Vektorräume, dann ist eine Bilinearform auf $V \times W$ eine Abbildung

$$B: V \times W \to \mathbb{K}, (v, w) \mapsto B(v, w),$$

die für jedes feste $v \in V$ beziehungsweise jedes feste $w \in W$ eine Linearform auf W beziehungsweise V ist. Das heißt, für alle $v, v_1, v_2 \in V$ und alle $w, w_1, w_2 \in W$ und alle $\lambda \in \mathbb{K}$ gilt

- (B1) $B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w),$
- (B2) $B(\lambda v, w) = \lambda B(v, w)$,
- (B3) $B(v, w_1 + w_2) = B(v, w_1) + B(v, w_2),$
- (B4) $B(v, \lambda w) = \lambda B(v, w)$.

Bilinearform

Definition 8.1.4: Bilinearform

Es seien V und W \mathbb{K} -Vektorräume, dann ist eine *Bilinearform* auf $V \times W$ eine Abbildung

$$B: V \times W \to \mathbb{K}, (v, w) \mapsto B(v, w),$$

die für jedes feste $v \in V$ beziehungsweise jedes feste $w \in W$ eine Linearform auf W beziehungsweise V ist. Das heißt, für alle $v, v_1, v_2 \in V$ und alle $w, w_1, w_2 \in W$ und alle $\lambda \in \mathbb{K}$ gilt

(B1)
$$B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w), \qquad F(x + y) = F(x) + F(y)$$

(B2)
$$B(\lambda v, w) = \lambda B(v, w),$$
 $F(\lambda x) = \lambda F(x)$

(B3)
$$B(v, w_1 + w_2) = B(v, w_1) + B(v, w_2), \qquad F(x+y) = F(x) + F(y)$$

(B4)
$$B(v, \lambda w) = \lambda B(v, w)$$
. $F(\lambda x) = \lambda F(x)$

- (ロ) (個) (E) (E) (E) (9)

Aufgabe 6

Bilinearform Skalarprodukt B_1 B_2 B_3

Es sei

$$B_1: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad (x,y) \mapsto \sum_{j=1}^n j x_j y_j$$

gegeben.

Ist B_1 eine Bilinearform (linear in beiden Argumenten)?

$$B_1: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad (x,y) \mapsto \sum_{j=1}^n j x_j y_j$$

gegeben.

Ist B_1 eine Bilinearform (linear in beiden Argumenten)?

Ja! Wir sehen z.B.

$$(x+z,\lambda y)\mapsto \sum_{j=1}^n j(x_j+z_j)\lambda y_j=\lambda \sum_{j=1}^n jx_jy_j+\lambda \sum_{j=1}^n jz_jy_j.$$

(Beachte: Prinzipiell müssen (B1) - (B4) überprüft werden. Möchte man mit Symmetrie argumentieren, um die Betrachtung des zweiten Arguments auslassen zu können, muss dies entsprechend begründet werden!)

Aufgabe 6

Bilinearform Skalarprodukt B_1 B_2 B_3

Es sei

$$B_1: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad (x,y) \mapsto \sum_{j=1}^n j x_j y_j$$

gegeben.

Ist B_1 eine Skalarprodukt?

Skalarprodukt

Definition 8.1.11: Symmetrie, Definitheit, Skalarprodukt

Es sei V ein \mathbb{K} -Vektorraum, dann heißt eine Bilinearform B auf $V \times V$

- (i) symmetrisch, falls für alle $v, w \in V$ B(v, w) = B(w, v) gilt.
- (ii) positiv definit, falls $\mathbb{K} = \mathbb{R}$ und $\forall v \in V \setminus \{0\} \ (B(v, v) > 0)$.
- (iii) negativ definit, falls $\mathbb{K} = \mathbb{R}$ und $\forall v \in V \setminus \{0\}$ (B(v, v) < 0).
- (iv) positiv beziehungsweise negativ semidefinit, falls $\mathbb{K} = \mathbb{R}$ und $\forall v \in V \setminus \{0\} \ (B(v,v) \geq 0)$ beziehungsweise ≤ 0 .
- (v) indefinit, wenn $\mathbb{K} = \mathbb{R}$ und B weder positiv noch negativ semidefinit ist.
- (vi) ein Skalarprodukt, falls B positiv definit und symmetrisch ist.

Skalarprodukt

Definition 8.1.11: Symmetrie, Definitheit, Skalarprodukt

Es sei V ein \mathbb{K} -Vektorraum, dann heißt eine Bilinearform B auf $V \times V$

- (i) symmetrisch, falls für alle $v, w \in V$ B(v, w) = B(w, v) gilt.
- (ii) positiv definit, falls $\mathbb{K} = \mathbb{R}$ und $\forall v \in V \setminus \{0\} \ (B(v, v) > 0)$.
- (iii) negativ definit, falls $\mathbb{K} = \mathbb{R}$ und $\forall v \in V \setminus \{0\}$ (B(v, v) < 0).
- (iv) positiv beziehungsweise negativ semidefinit, falls $\mathbb{K} = \mathbb{R}$ und $\forall v \in V \setminus \{0\} \ (B(v,v) \geq 0)$ beziehungsweise ≤ 0 .
- (v) indefinit, wenn $\mathbb{K} = \mathbb{R}$ und B weder positiv noch negativ semidefinit ist.
- (vi) ein Skalarprodukt, falls B positiv definit und symmetrisch ist.

$$\begin{array}{cccc} & & B_1 & B_2 & B_3 \\ \text{Bilinearform} & \checkmark & \\ \text{Skalarprodukt} & \checkmark & \end{array}$$

$$B_1: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad (x,y) \mapsto \sum_{j=1}^n j x_j y_j$$

gegeben.

Ist B_1 eine Skalarprodukt?

Ja! B_1 ist sowohl positiv definit, da

Bilinearform

$$(x,x)\mapsto \sum_{j=1}^n jx_jx_j=\sum_{j=1}^n jx_j^2>0 \text{ für alle }x\in\mathbb{R}^n\setminus\{0\}\,,$$

wie auch offensichtlich symmetrisch.

$$B_2: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad (x,y) \mapsto \sum_{j=1}^n (-1)^j x_j y_j$$

 B_3

gegeben.

Ist B_2 eine Bilinearform (in beiden Argumenten linear)?

$$B_1$$
 B_2 B_3

$$B_2: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad (x,y) \mapsto \sum_{j=1}^n (-1)^j x_j y_j$$

gegeben.

Ist B_2 eine Bilinearform (in beiden Argumenten linear)?

Ja! Die Argumentation verläuft identisch wie zuvor.

Aufgabe 6 Bilinearform
$$\stackrel{B_1}{\checkmark}$$
 $\stackrel{B_2}{\checkmark}$ $\stackrel{B_3}{\checkmark}$

$$B_2: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad (x,y) \mapsto \sum_{j=1}^n (-1)^j x_j y_j$$

gegeben.

Ist B_2 ein Skalarprodukt?

$$\begin{array}{ccccc} Aufgabe \ 6 & {}_{\stackrel{\rm Bilinear form}{\rm Skalar produkt}} & {}^{g_1}_{\checkmark} & {}^{g_2}_{\checkmark} & {}^{g_3}_{\checkmark} \end{array}$$

$$B_2: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad (x,y) \mapsto \sum_{j=1}^n (-1)^j x_j y_j$$

gegeben.

Ist B_2 ein Skalarprodukt?

Nein! B_2 ist nicht positiv definit. So gilt z.B. für den ersten Einheitsvektor $(e_1 = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}^{\top})$

$$(e_1, e_1) \mapsto \sum_{i=1}^n (-1)^j e_{1_j}^2 = -1 < 0$$

Aufgabe 6 Bilinearform
$$\begin{array}{ccccc} B_1 & B_2 & B_3 \\ & & & \checkmark & \checkmark \end{array}$$

$$B_3: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad (x,y) \mapsto \sum_{j=1}^n x_j y_j^2$$

gegeben.

Ist B_3 eine Bilinearform (linear in beiden Argumenten)?

$$B_3: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad (x,y) \mapsto \sum_{j=1}^n x_j y_j^2$$

gegeben.

Ist B_3 eine Bilinearform (linear in beiden Argumenten)?

Nein! B_3 ist nicht linear in seinem zweiten Argument. So gilt z.B.

$$(x, \lambda y) \mapsto \sum_{j=1}^n x_j (\lambda y_j)^2 = \lambda^2 \sum_{j=1}^n x_j y_j^2 \neq \lambda \sum_{j=1}^n x_j y_j^2.$$

Insbesondere ist B_3 somit auch kein Skalarprodukt.

Aufgabe 7

Es sei $F: \mathbb{R}^n \to \mathbb{R}^n$ eine lineare Abbildung und $\langle \cdot, \cdot \rangle$ ein beliebiges Skalarprodukt auf dem \mathbb{R}^n . Zeigen Sie:

$$\forall x \in \mathbb{R}^n \left(x - F(x) \in (\mathrm{Bild}(F))^\perp \right) \Rightarrow \forall x, y \in \mathbb{R}^n (\langle x, F(y) \rangle = \langle F(x), y \rangle).$$

Gilt das auch, wenn man \mathbb{R}^n durch \mathbb{C}^n ersetzt?

Orthogonalität

Definition 8.1.7: Orthogonalität

Es seien V und W \mathbb{K} -Vektorräume und $B:V\times W\to \mathbb{K}$ eine Bilinearform, dann heißen $v\in V$ und $w\in W$ orthogonal bezüglich der Bilinearform B, falls B(v,w)=0 gilt. Für $M\subseteq V$ ist

$$M^{\perp} := \{ w \in W \mid \forall v \in M(B(v, w) = 0) \}$$

ein Unterraum von W. Er heißt der zu M orthogonale Unterraum bezüglich B. Analog erklärt man für $N \subseteq W$ den zu N orthogonalen Unterraum $N^{\perp} \subseteq V$ bezüglich B.

Orthogonalität

Definition 8.1.7: Orthogonalität

Es seien V und W \mathbb{K} -Vektorräume und $B:V\times W\to \mathbb{K}$ eine Bilinearform, dann heißen $v\in V$ und $w\in W$ orthogonal bezüglich der Bilinearform B, falls B(v,w)=0 gilt. Für $M\subseteq V$ ist

$$M^{\perp} := \{ w \in W \mid \forall v \in M(B(v, w) = 0) \}$$

ein Unterraum von W. Er heißt der zu M orthogonale Unterraum bezüglich B. Analog erklärt man für $N \subseteq W$ den zu N orthogonalen Unterraum $N^{\perp} \subseteq V$ bezüglich B.

Aufgabe 7 $\forall x \in \mathbb{R}^n (x - F(x) \in (\text{Bild}(F))^{\perp}) \Rightarrow \forall x, y \in \mathbb{R}^n (\langle x, F(y) \rangle = \langle F(x), y \rangle)$

Beweis: Es gilt

$$\langle x, F(y) \rangle = \langle F(x), y \rangle \iff \langle x, F(y) \rangle - \langle F(x), y \rangle = 0$$

$$\iff \langle x, F(y) \rangle \underbrace{-\langle F(x), F(y) \rangle + \langle F(x), F(y) \rangle}_{\text{nahrhafte Null}} - \langle F(x), y \rangle = 0$$

$$\iff \langle x - F(x), F(y) \rangle - \langle F(x), y - F(y) \rangle = 0$$

Nach Annahme gilt nun $x - F(x) \in (\operatorname{Bild}(F))^{\perp}$ für alle $x \in \mathbb{R}^n$, womit insbesondere $\langle x - F(x), F(y) \rangle = \langle F(y), x - F(x) \rangle = 0$ für alle $x, y \in \mathbb{R}^n$. Wir schließen die Behauptung.

Aufgabe 7
$$\forall x \in \mathbb{R}^n (x - F(x) \in (\text{Bild}(F))^{\perp}) \Rightarrow \forall x, y \in \mathbb{R}^n (\langle x, F(y) \rangle = \langle F(x), y \rangle)$$

Beweis: Es gilt

$$\langle x, F(y) \rangle = \langle F(x), y \rangle \iff \langle x, F(y) \rangle - \langle F(x), y \rangle = 0$$

$$\iff \langle x, F(y) \rangle \underbrace{-\langle F(x), F(y) \rangle + \langle F(x), F(y) \rangle}_{\text{nahrhafte Null}} - \langle F(x), y \rangle = 0$$

$$\iff \langle x - F(x), F(y) \rangle - \langle F(x), y - F(y) \rangle = 0$$

Nach Annahme gilt nun $x - F(x) \in (\mathrm{Bild}(F))^{\perp}$ für alle $x \in \mathbb{R}^n$, womit insbesondere $\langle x - F(x), F(y) \rangle = \langle F(y), x - F(x) \rangle = 0$ für alle $x, y \in \mathbb{R}^n$. Wir schließen die Behauptung.

Gilt $\mathbb{K}=\mathbb{C}$, so ist $\langle\cdot,\cdot\rangle$ hermitesch. Dies beeinflusst jedoch nicht unseren Beweis, die Beh. gilt auch für $\mathbb{K}=\mathbb{C}!$ (Beachte: $\langle F(x),y-F(y)\rangle=\overline{\langle y-F(y),F(x)\rangle}=0$, da $\bar{0}=0$)

Highlights

Definition 8.1.1: Linearform

Eine Linearform auf einem \mathbb{K} -Vektorraum V ist eine lineare Abbildung $\varphi:V\to\mathbb{K}$. Die Menge aller Linearformen auf V bilden einen Vektorraum $V^*:=\mathrm{Hom}(V,\mathbb{K})$, welcher der zu V duale Vektorraum heißt.

Elemente des dualen Vektorraums sind Pfeile!

Highlights

Eine Matrix $A \in M(n \times n, \mathbb{C})$ nenne wir *hermitesch*, wenn $A^{\top} = \overline{A}$ gilt. Welche Besonderheit gilt in diesem Fall für die Diagonaleinträge a_{ii} ?

Highlights

Definition 8.2.1: Kanonische Norm und Abstand im \mathbb{R}^n

Es sei $x = (x_1 \ldots x_n)^{\top} \in \mathbb{R}^n$, $n \in \mathbb{N}$, dann definieren wir die *Norm* (Länge, Betrag, Euklidische Norm) von x als

$$||x|| := ||x||_2 := \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} = \sqrt{x_1^2 + \dots + x_n^2}$$

Der *Abstand* von zwei Vektoren $x, y \in \mathbb{R}^n$ ist dann nach dem Satz des Pythagoras

$$d(x,y) := ||x-y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$