

DeepMovie: Plug-and-Play DNN Training Pipeline for Movie Recommendation

Jiazi Bu^{*1,2}, Zhiyuan Zhang^{*1,2}, Xizhuo Zhang^{*1,2}

¹Shanghai Jiaotong University ²School of Electronic Information and Electrical Engineering *Equally Contribution

DeepMovie can integrate with many of the most advanced deep learning modules in a plug-and-play manner

3.get latent matrix with our model and reconstruct ratings

2.get ratings R and reviews X

4.recommend movies for each user with reconstructed ratings

Experimental results on MovieLens dataset

 Performance metrics (in terms of RMSE loss) of DeepMovie based on different base modules on MovieLens-1M and 10M benchmark

Base Module	MovieLens-1M	MovieLens-10M	
PMF (baseline)	0.8971	0.8311	
CNN (+ MLP)	0.8733	0.7970	
LSTM	0.8675	0.7959	
ResNet	0.8658	0.7931	
Transformer	0.8601	0.7883	
CNN + KAN	0.8725	0.7941	

• Single epoch training time of different base modules (single A10 GPU)

CNN	LSTM	ResNet	Transformer	KAN
2.7720	3.8126	4.2604	10.9185	3.1637

Method: Integrates neural network into PMF

- probabilistic matrix factorization (PMF)
- find latent models of users and items on a shared latent space

R: user-item rating matrix, NxM U: user latent matrix, KxN

large but sparse \rightarrow small and dense \mathbf{V} : item latent matrix, KxM suppose Gaussian observation noise $pig(R\mid U, V, \sigma^2ig) = \prod^N \prod^M Nig(r_{ij}\mid u_i^T v_j, \sigma^2ig)^{I_{ij}}$

• use network to extract V from reviews X

PMF

 $pig(V \mid W, X, \sigma_V^2ig) = \prod Nig(v_j \mid network(W, X_j), \sigma_V^2 Iig)$ Optimize through maximum a posteriori(MAP)

 $\max_{U,V,W} pig(U,V,W \mid R,X,\sigma^2,\sigma_U^2,\sigma_U^2,\sigma_V^2ig)$ $\min\left(\left\|I\otimes\left(R-U^TV
ight)
ight\|_{Fro}+\lambda_V\|V-network(W,X)\|_{Fro}+\lambda_U\|U\|_{Fro}+\lambda_V\|V\|_{Fro}
ight)$

- Update
- 1. update **U**: $u_i \leftarrow \left(VI_iV^T + \lambda_UI_K\right)^{-1}VR_i$
- 2. update V: $v_j \leftarrow \left(UI_jU^T + \lambda_VI_K\right)^{-1}(UR_j + \lambda_Vnetwork(W, X_j))$
- 3. train the network to fit **V**

repeat until converge

Network

(x)