Lluís Galbany

Contact Institute of Space Sciences (IEEC-CSIC)

Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona.

+34 937 379 788 75

lgalbany@ice.csic.es

https://lgalbany.github.io

ORCID 0000-0002-1296-6887

Synopsis of the CV

I am an observational astrophysicist with broad and multidisciplinary interests spanning supernova physics, massive stars, galaxy evolution, and cosmology. I obtained a PhD in Physics from Universitat Autònoma de Barcelona in Oct 2011 under the supervision of Prof. Ramon Miquel at the Institut de Física d'Altes Energies (IFAE). I have been a postdoctoral researcher at the CENTRA/IST in Lisboa under the supervision of Dr. Vallery Stanishev and Prof. A. M. Mourao, a FONDECYT postdoctoral fellow at the Astronomy Department of Universidad de Chile working with Prof. Mario Hamuy, a research associate at the Department of Physics and Astronomy of University of Pittsburgh working with Prof. Michael Wood-Vasey, and a Marie Skłodowska-Curie fellow at Universidad de Granada integrated in Prof. Inmaculada Domínguez group. Currently, I am a Ramón y Cajal Fellow at the Institute of Space Sciences (IEEC-CSIC). I have always enjoyed scientific independence, conducting competitive research in enjoyable scientific environments.

So far, I have published 260 articles with more than 16,000 citations and an h-index of 56 (ADS, Jan 2022). My work has been presented in international conferences giving in total 60 talks, including 24 invitations to deliver seminars at different institutions. I have been PI of 52 successful observational proposals in a competitive basis in the largest observatories around the world, and participated in other 38 observational campaigns. I have led analyses within major collaborations (SDSS-II SN, CALIFA, PESSTO, DES, HSC-SSP, MaNGA, J-PLUS, LSST, WFIRST), and I had the chance to mentor 1 postdoc, 2 PhD students, 10 undergraduate and 16 graduate students, including two funded 3-months research visits.

Education

Sep 2006 - Oct 2011

Ph.D. in Physics, Institut de Física d'Altes Energies - IFAE, U. Autònoma de Barcelona - UAB. Supernova studies in the SDSS-II/SNe Survey: spectroscopy of the peculiar SN 2007qd, and photometric properties of Type-la supernovae as a function of the distance to the host galaxy.

Supervisor: Prof. Ramon Miquel.

Sep 2006 - Apr 2008 Master degree in Physics, U. Autònoma de Barcelona (UAB).

Tests of DES Charge Coupled Devices. Supervisors: Ramon Miquel and Manel Martínez.

Jun 2007

Certificate of Teaching Proficiency, Institute of Education Sciences (ICE-UAB).

Sep 2001 - Jun 2006 B.S. in Physics (5-year degree), U. Autònoma de Barcelona (UAB).

Research activity

From Sep 2021 Ramon y Cajal fellow (RyC 2019). Institut de Ciències de l'Espai (IEEC-CSIC).

Sep 2019 - Aug 2021 Marie Skłodowska-Curie fellow (MSCA-IF 2018). Universidad de Granada.

Sep 2016 - Aug 2019 Postdoctoral research associate. University of Pittsburgh.

Oct 2013 - Aug 2016 FONDECYT 2014 postdoctoral fellow. Universidad de Chile.

Nov 2011 - Sep 2013 Postdoctoral researcher. Instituto Superior Técnico (IST), Universidade de Lisboa.

Fellowships and grants awarded

Dec 2021	MOST CSIC 2021 project. Funding: 23,946.20 EUR.
Dec 2021	CSIC I-LINK A project. Funding: 23,914.92 EUR.
Sep 2021	Hubble Space Telescope Cycle 29 $\#16741$ proposal. Funding: $\sim 90,000$ USD.
Sep 2021	Proyecto Nacional I+D+i AYA PID2020-115253GA-I00. Funding: 155,577 EUR.
Sep 2021	Proyecto Intramural Especial (PIE) CSIC 20215AT016. Funding: 150.000 EUR.
Jul 2020	Ramon y Cajal Fellowship (RyC 2019, ranked 1st). Funding: 308.600 EUR.
May 2020	UGR conference organization funding. Amount: 1.000 EUR.
Mar 2020	NOAJ grant for visitor researcher program. Funding: 285.000 JPY.
Feb 2019	Marie Skłodowska-Curie Actions - Individual Fellowship (MSCA-IF): 172,932.48 EUR.
Jan 2019	The future of SN host galaxies studies workshop. Funding PITT-PACC: 8,000 USD.
Apr 2018	New advances in NIR SNIa science workshop. Funding PITT-PACC: 10,000 USD.
Mar 2018	SNe II cosmology with the LSST workshop. Funding PITT-PACC: 4,000 USD.
Mar 2017	FINCA grant for visitor researcher program. Funding: 2,650 EUR.
Nov 2016	Preparing for SN Science in the LSST Era workshop. Funding LSST Enabling science: 19,750 USD.
Apr 2013	FONDECYT Postdoctoral fellowship 2014. CONICYT - Chile: 74.352.000 CLP
Jun 2004	SENECA-SICUE student fellowship, Universidad de La Laguna. Funding: 4,520 EUR.

Total funding awarded: approx. 1,000,000 EUR

Teaching activity

Nov 2021	Guest Lecturer Techniques in Observational Astronomy, Purdue University, IL.
From Sep 2021	Lecturer Postgraduate Program in High Energy Physics, Astrophysics & Cosmology, ICE-IFAE.
	MasterCosmos BCN. Neutron Stars, Black Holes and Gravitational Waves.
Sep 2019 - Aug 2021	Lecturer Department of Theoretical and Cosmological Physics, U. Granada.
	Stellar Physics, Physics Laboratory, General Physics.
Nov 2016	Guest Lecturer '2nd SELGIFS Advanced School on IFS Data Analysis', UAM, Madrid, Spain.
Aug 2014	Guest Lecturer 'Guillermo Haro Advanced School on IFS Techniques and Analysis', INAOE, Puebla, Mexico.
Sep 2008 - Sep 2010	Teaching Assistant Physics Department of U. Autònoma de Barcelona. General Physics, Mathematical Methods, Physics Laboratory.

Supervision and mentorship

Postdocs

From Nov 2021 **Tomás Müller**, ICE-CSIC. Supernova cosmology in the NIR. Funding: Proyecto Intramural Especial (PIE) CSIC 20215AT016.

PhD students

From Sep 2022	Cristina Jiménez, ICE-UAB. PhD advisor.
	Improved H_0 determination from IFS SN environments characterization.
	Funding: "Ayudas para contratos predoctorales para la formación de doctores 2020".
From Sep 2020	Raúl González Díaz, INAOE/ICE-UAB. Co-supervised with Fabián Rosales.
	Diffuse interstellar gas in IFS.
Sep 18 - Sep 21	Jared Hand, U. Pittsburgh. Supervised by W. M. Wood-Vasey.
	Stellar population synthesis. (See selected refereed papers #70)
Sep 18 - Feb 21	Daniel Perrefort, U. Pittsburgh. Supervised by W. M. Wood-Vasey.
	Subluminous SNe. (See <i>selected refereed papers</i> #62)
From Apr 2018	Héctor Martínez Rodríguez , U. Pittsburgh. Supervised by C. Badenes.
	SN remnants in IFS. (paper in prep.)
Abr-Jul 2016	Laura Sánchez-Menguiano, U. Granada. Supervised by I. Pérez and S. F. Sánchez.

	Radial migration. (See selected refereed papers $\#21$) Funding: "Ayudas a la movilidad predoctoral para estancias en centros de I+D 2015".					
Mar 2016	Manuel Emilio Moreno-Raya, U. Complutense. Supervised by M. Mollá and A. López-Sánchez Elemental abundances of int-z SN host galaxies. (See selected refereed papers #35)					
From Jun 2015	Alessandro Razza , U. Chile. <i>Supervised by G. Blanc</i> . SN Ia extinction studies from their LC and IFS of their host galaxies. (paper in prep.)					
Aug-Nov 2014	Manuel Emilio Moreno-Raya , U. Complutense. <i>Supervised by M. Mollá and A. López-Sánchez</i> Elemental abundances of low-z SN host galaxies. (See <i>selected refereed papers</i> #12, #22). Funding: "Ayudas a la movilidad predoctoral para estancias en centros de I+D 2013".					

Master students

From Sep 2020	Sara Muñoz Torres, U. Granada. <i>TFM supervisor</i> . The oxygen abundance dependence on the Cepheid period in SH0ES. (paper in prep.)					
Oct 19 - Jul 20	Román Fernández Aranda , U. Complutense Madrid. <i>TFM supervised with M. Mollà</i> . Stellar populations of supernova host galaxies at high-z 0.5 <z<1.0. (paper="" in="" prep.)<="" td=""></z<1.0.>					
Sep 19 - Jul 20	Raúl González Díaz, U. Granada. TFM supervised with R García-Benito. NCR method in broad and narrow band data from J-PLUS. (paper in prep.)					
Dec 18 - Jul 20	Nataliya Ramos Chernenko , U. Granada. <i>TFM supervised with I. Domínguez</i> . The local environment of Type Ia supernovae with IFS.					
Nov 18 - Jun 19	Macarena García del Valle, U. Complutense Madrid. <i>TFM supervised with M. Mollà</i> . Type la supernova environments at high redshift. (paper in prep.)					
Oct 18 - Sep 19	Isaac Lozano Rey , U. Internacional de València (VIU). <i>TFM supervisor</i> . The imprint of hydrogen-rich core collapse supernovae from their parent populations.					
Sep 16 - Jun 17	Asier Castrillo, U. Autónoma Madrid. <i>TFM supervised with Y. Ascasibar</i> . Supernova rates in nearby galaxies. (See <i>selected refereed papers</i> #63)					

Undergrad students

Sep 20 - Jul 21	Antonio láñez Ferres , U. Granada. <i>TFG supervisor</i> . Studying the diversity of type la supernovae in the near-infrared. (paper in prep.)
Sep 20 - Jul 21	María Delgado Mancheño, U. Granada. <i>TFG supervisor</i> . The type Ia NIR Hubble diagram constructed with ANDICAM JHK data.
Nov 19 - Jul 20	Darío García Redecillas, U. Granada. TFG supervisor. Studying the diversity of subluminous type la supernovae from twins.
Nov 19 - Jul 20	Lamberto Oltra Nieto , U. Granada. <i>TFG supervisor</i> . The local environment of supernovae as seen by J-PLUS. (paper in prep.)
Sep 16 - Jun 17	Asier Castrillo, U. Autónoma Madrid. <i>TFM supervised with Y. Ascasibar</i> . Supernova rates in nearby galaxies. (See <i>selected refereed papers</i> #63)
Sep 16 - Sep 17	Nicolette M. Kier, U. Pittsburgh. HII region statistics in PISCO. (See <i>selected refereed papers</i> #34)
Sep 16 - Mar 17	Yiwen Huang , Carnegie Mellon U. Statistical study of SN Ia 91bg-like. (See <i>selected refereed papers</i> #50)
Jan-Sep 2016	Luis Mora , U. Chile. <i>TFG supervisor</i> . Measuring CO at SN locations with CARMA. (See <i>selected refereed papers</i> #25)
Jan-Jul 2015	Tania Moraga , U. Chile. <i>TFG supervisor</i> . Type II multiwavelength light-curve characterization. (See <i>selected refereed papers</i> #11)
Feb-Jul 2014	Ismael Pessa , U. Chile. <i>TFG supervisor</i> . SNe Ia properties as a function of the distance to host galaxy. (See <i>selected refereed papers</i> #71)

- 71. Aperture-corrected spectroscopic type la supernova host galaxy properties

 L. Galbany, M. Smith, S. Duarte Puertas, S. González-Gaitán, I. Pessa, et al. A&A, accepted, arXiv:2112.02517.
- 70. The Dependence of the Type Ia Supernova Host Bias on Observation or Fitting Technique J. Hand, S. Liu, L. Galbany, et al. APJ, accepted, arXiv:2102.08980.
- 69. Are Type Ia Supernovae in Restframe H Brighter in More Massive Galaxies?

 K. A. Ponder, W. MN. Wood-Vasey, A. Weyant, N. T. Barton, L. Galbany, et al. APJ, accepted.
- 68. Carnegie Supernova Project: The First Homogeneous Sample of 2003fg-like Type la Supernova. C. Ashall, J. Lu, E. Y. Hsiao, P. Hoeflich, M. Phillips, L. Galbany, et al. APJ, accepted, arXiv::2106.12140.
- 67. The effects of varying colour-luminosity relations on type la supernova science. S. González-Gaitán, T. de Jaeger, L. Galbany, et al. MNRAS, 508:4656 (2021), arXiv:2009.13230.
- 66. ASASSN-15hy: an under-luminous, red 03fg-like type la supernova. J. Lu, C. Ashall, E. Y. Hsiao, P. Hoeflich, L. Galbany, et al. APJ, 920:107 (2021), arXiv:2107.08150.
- 65. Probing the Progenitors of SNe Ia using Circumstellar Material Interaction Signatures. P. Clark, K. Maguire, M. Bulla, L. Galbany, et al. MNRAS, 507:4367 (2021), arXiv:2107.09034.
- 64. Supernova 2018cuf: A Type IIP supernova with a slow fall from plateau.
 Y. Dong, S. Valenti, K. A. Bostroem, D. J. Sand, J. E. Andrews, L. Galbany, et al. APJ, 906:56 (2021). arXiv:2010.09764.
- 63. The delay time distribution of supernovae from IFS of nearby galaxies.

 A. Castrillo, Y. Ascasibar, L. Galbany, S. F. Sánchez, et al. MNRAS, 501:3122 (2021). arXiv:2012.11958.
- 62. A Template-based Approach to the Photometric Classification of SN 1991bg-like SNe in the SDSS-II SN Survey. D. Perrefort; Y. Zhang; L. Galbany, W. M. Wood-Vasey, S. González-Gaitán APJ, 904:156 (2020). arXiv:2010.09756.
- 61. Observational constraints on the optical and NIR emission from a NS-BH binary merger candidate S190814bv ENGRAVE coll. A&A, 643:113 (2020). arXiv:2002.01950.
- 60. The stellar metallicity distribution function of galaxies in the CALIFA survey.

 A. Mejía-Narváez, S. F. Sánchez, E. A. Lacerda, L. Carigi, L. Galbany, et al. MNRAS, 499:4838 (2020). arXiv:2009.13712.
- SN 2017ivv: A type II supernova with an abnormal nebular evolution.
 C. P. Gutiérrez, A. Pastorello, A. Jerkstrand, L. Galbany, et al. MNRAS, 499:974 (2020). arXiv:2008.09628.
- 58. A measurement of the Hubble constant from Type II supernovae.

 T. de Jaeger, W. Zheng, B. E. Stahl, A. V. Filippenko, A. G. Riess, L. Galbany. MNRAS, 496:3402 (2020). arXiv:2006.03412.
- 57. Studying Type II supernovae as cosmological standard candles using the Dark Energy Survey. T. de Jaeger, L. Galbany, S. González-Gaitán, et al. MNRAS, 495:1860 (2020). arXiv:2005.09757.
- 56. Studying the environment of AT 2018cow with MUSE.

 J. D. Lyman, L. Galbany, S. F. Sánchez, J. P. Anderson, H. Kuncarayakti. MNRAS, 495:992 (2020). arXiv:2005.02412.
- 55. Discovery and Rapid Follow-up Observations of the Unusual Type II SN 2018ivc in NGC 1068.

 K. A. Bostroem, S. Valenti, D. J. Sand, J. E. Andrews, S. D. Van Dyk, L. Galbany, et al. APJ, 895:31 (2020), arXiv:1909.07304.
- 54. The AMUSING++ Compilation: I. Full Sample Characterization and Galactic-Scale Outflows Selection. C. López-Cobá, S. F. Sánchez, J. P. Anderson, I. Cruz-González, L. Galbany, et al. AJ, 159:167 (2020), arXiv:2002.09328.
- 53. HII regions in the CALIFA survey: I. catalog presentation.

 C. Espinosa-Ponce, S. F. Sánchez, C. Morisset, J. K. Barrera, L. Galbany, et al. MNRAS, 494:1622 (2020), arXiv:2003.07865.
- Galaxies hosting an AGN: a view from the CALIFA survey.
 E. Lacerda, S. Sánchez, R. Cid Fernandes, C. López-Cobá, C. Espinosa, L. Galbany. MNRAS, 492:3073 (2020), arXiv:2001.00099.
- 51. The 50-100 pc scale parent stellar populations of SNII and limitations of single star evolution models. P. Schady, J.J. Eldridge, J. Anderson, T.-W. Chen, L. Galbany, et al. MNRAS, 490:4515 (2019), arXiv:1907.12260.
- 50. Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type la supernova 2016hnk. L. Galbany, C. Ashall, P. Hoeflich, S. González-Gaitán, et al. A&A, 630:A76 (2019), arXiv:1904.10034.
- 49. Models and Sim. for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC) R. Kessler, G. Narayan, A. Avelino, E. Bachelet, R. Biswas, ...(with) L. Galbany, et al. PASP, 131:094501 (2019), arXiv:1903.11756.
- 48. The extraplanar type II supernova ASASSN-14jb in the ESO 467-G051 galaxy. N. Meza, J. L. Prieto, A. Clocchiatti, L. Galbany, et al. A&A, 629:A57 (2019), arXiv:1811.11771.
- 47. Superluminous Supernovae from the Dark Energy Survey.

 C. Angus, M. Smith, M. Sullivan, C. Inserra, P. Wiseman, ...(with) L. Galbany, et al. MNRAS, 487:2215 (2019), arXiv:1812.04071.

- 46. On the nature of the unusual transient AT 2018cow from Hi observations of its host galaxy M. J. Michałowski, P. Kamphuis, J. Hjorth, D. A. Kann, A. de Ugarte, L. Galbany, et al. A&A, 627:106 (2019), arXiv:1902.10144.
- 45. Accounting for the uncertainties in gas kinematics arising from stellar continuum subtraction in MUSE IFS. E. Bellocchi, Y. Ascasibar, L. Galbany, H. Ibarra-Medel, M. Gavilán, Á. Díaz A&A, 625:A83 (2019), arXiv:1903.06252.
- 44. Emission-line diagnostics of CCSN host HII regions including massive binary population Lin Xiao, L. Galbany, J.J. Eldridge, and Elizabeth R. Stanway. MNRAS, 482:384 (2019), arXiv:1805.01213.
- 43. Unravelling the infrared transient VVV-WIT-06: the case for an origin in a classical nova D.P.K. Banerjee, E. Y. Hsiao, T. Diamond, L. Galbany, et al. APJ, 867:99 (2018), arXiv:1809.06801.
- 42. Thermonuclear supernovae and cosmology I. Dominguez, L. Galbany. EPJP, 133:323 (2018).
- 41. The SELGIFS data challenge: generating synth. obs. of CALIFA galaxies from hydrodynamical simulations G. Guidi, J. Casado, Y. Ascasibar, R. García-Benito, L. Galbany, et al. MNRAS, 479:917 (2018), arXiv:1610.07620.
- 40. Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE.

 L. Galbany, T. E. Collett, J. Méndez-Abreu, S. F. Sánchez, J. P. Anderson. MNRAS, 479:262 (2018), arXiv:1803.09277G.
- 39. SN 2016esw: a bright Type II supernova observed a few hours after the explosion T. de Jaeger, L. Galbany, C. P. Gutiérrez, A. V. Filippenko, W. Zheng, et al., MNRAS, 478:3776 (2018), arXiv:1805.03205.
- 38. No surviving companion in Kepler's supernova.
 P. Ruiz-Lapuente, F. Damiani, L. R. Bedin, J. I. Gonzalez Hernandez, L. Galbany, et al., APJ, 862:124 (2018), arXiv:1711.00876.
- 37. The lowest metallicity type II supernova from the highest mass red-supergiant progenitor J. P. Anderson, L. Dessart, C. P. Gutiérrez, T. Krühler, L. Galbany, et al., NATURE ASTRONOMY, 2:574 (2018), arXiv:1805.04434.
- 36. Observed Type II supernova colours from the Carnegie Supernova Project-I T. de Jaeger, J. P. Anderson, L. Galbany, et al., MNRAS, 476:4592 (2018), arXiv:1802.07254.
- 35. Elemental gas-phase abundances of intermediate redshift type la supernova star-forming host galaxies M. E Moreno-Raya, L. Galbany, A. R. López-Sánchez, M. Mollá, et al., MNRAS, 476:307 (2018), arXiv:1801.06547.
- 34. PISCO: The PMAS/Ppak Integral field supernova hosts compilation

 L. Galbany, J. P. Anderson, S. F. Sánchez, H. Kuncarayakti, S. Pedraz, et al., APJ, 855:107 (2018), arXiv:1802.01589.
- 33. Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy H. Kuncarayakti, J. P. Anderson, L. Galbany, K. Maeda, M. Hamuy, et al. A&A, 613:35 (2018), arXiv:1711.05765.
- 32. Studying the ultraviolet spectrum of the first spectroscopically confirmed SN at z=2. M. Smith, M. Sullivan, R. C. Nichol, L. Galbany, et al., APJ, 854:37 (2018), arXiv:1712.04535.
- 31. The shape of O abundance profiles explored with MUSE: evidence for widespread deviations from single gradients L. Sánchez-Menguiano, S. F. Sánchez, I. Pérez, T. Ruiz-Lara, L. Galbany, et al. A&A. 609:A119 (2018), arXiv:1710.01188.
- 30. Investigating the diversity of SNe lax: A MUSE and NOT spectroscopic study of their environments J. D. Lyman, F. Taddia, M. D. Stritzinger, L. Galbany, G. Leloudas, et al. MNRAS, 473:1359 (2018), arXiv:1707.042708.
- 29. SN 2016jhj at redshift 0.34: extending the SN II Hubble diagram using the standard candle method T. de Jaeger, L. Galbany, A. Filippenko, S. González-Gaitán, et al. MNRAS, 472:4233 (2017), arXiv:1709.01513.
- 28. Serendipitous discovery of an optical emission line jet in NGC 232 C. Lopez-Cobá, S. F. Sánchez, I. Cruz-González, L. Binette, L. Galbany, et al. APJL, 850:L17 (2017), arXiv:1711.02785.
- 27. Type II SN spectral diversity II: spectroscopic and photometric correlations
 C. P. Gutiérrez, J. P. Anderson, M. Hamuy, S. González-Gaitán, L. Galbany, et al. APJ, 850:90 (2017), arXiv:1709.02799.
- 26. DES15E2mlf: A Spectroscopically Confirmed Superluminous SN that Exploded 3.5 Gyr After the Big Bang Y.-C. Pan, R. J. Foley, M. Smith, L. Galbany, C. B. D'Andrea, et al. MNRAS, 470:4241 (2017), arXiv:1702.05430.
- Molecular gas at supernova local environments unveiled by EDGE
 L. Galbany, L. Mora, S. González-Gaitán, A. Bolatto, H. Dannerbauer, et al. MNRAS, 468 628 (2017), arXiv:1702.02945.
- 24. Hot gas around SN 1998bw. The progenitor inferred through its environment T. Krühler, H. Kuncarayakti, P. Schady, J. Anderson, L. Galbany, J. Gensior. A&A, 602:A85 (2017), arXiv:1702.05430.
- 23. A type II supernova Hubble diagram from the CSP, SDSS-II nd SNLS surveys.

 T. de Jaeger, S. González-Gaitán, M. Hamuy, L. Galbany, J. P. Anderson, et al. APJ, 835:166 (2017), arXiv:1612.05636.
- 22. Using the local gas-phase oxygen abundances to explore a metallicity-dependence in SNe la luminosities M.E. Moreno-Raya, Á.R. López-Sánchez, M. Mollá, L. Galbany, et al. MNRAS, 462:1281 (2016), arXiv:1607.05526.

- 21. Evidence of ongoing radial migration in NGC 6754: Azimutal variations of the gas properties.

 L. Sánchez-Menguiano, S. F. Sánchez, D. Kawata, ... (with) L. Galbany, et al. APJL, 830:40 (2016), arXiv:1603.04748.
- 20. MUSE Reveals a Recent Merger in the Post-starburst Host Galaxy of the TDE ASASSN-14li.

 J. L. Prieto, T. Krühler, J. P. Anderson, L. Galbany, C. S. Kochanek, et al. APJL, 830:32 (2016), arXiv:1609.00013.
- 19. CALIFA, the Calar Alto Legacy Integral Field Area survey IV. Third Public data release. S. F. Sánchez, R. García-Benito, S. Zibetti, C. J. Walcher, ...(with) L. Galbany, et al. A&A, 594:A36 (2016) arXiv:1604.02289.
- 18. Unresolved versus resolved: calibrating young SSP models with VLT/MUSE observation of NGC 3603. H. Kuncarayakti, L. Galbany, J. P. Anderson, T. Krühler, M. Hamuy. A&A, 593:A78 (2016) arXiv:1607.03446.
- 17. Nearby supernova host galaxies from the CALIFA Survey: II. SN environmental metallicity L. Galbany, V. Stanishev, A. M. Mourão, M. Rodrigues, H. Flores, et al. A&A, 591:48 (2016), arXiv:1603.07808.
- 16. Evolving into a remnant: optical spectroscopy of SN 1978K at thirty-six years
 H. Kuncarayakti, K. Maeda, J. P. Anderson, M. Hamuy, K. Nomoto, L. Galbany MNRAS, 458:2063 (2016), arXiv:1512.02108.
- 15. Type II supernovae as probes of environment metallicity: observations of host HII regions J. P. Anderson, C. P. Gutiérrez, L. Dessart, M. Hamuy, L. Galbany, et al. A&A, 589:A110 (2016) arXiv:1602.00011
- 14. SN 2014J at M82: I. A middle-class type la supernova by all spectroscopic metrics L. Galbany, M. E. Moreno-Raya, P. Ruiz-Lapuente, J. I. González-Hernández, et al. MNRAS, 457:525 (2016), arXiv:1510.06596.
- Characterising the environments of supernovae with MUSE
 L. Galbany, J. P. Anderson, F. F. Rosales-Ortega, H. Kuncarayakti, et al. MNRAS, 455:4087 (2016), arXiv:1511.01495
- 12. On the dependence of the type la SNe luminosities on the metallicity of their host galaxies M. E. Moreno-Raya, M. Mollá, Á . R. López-Sánchez, L. Galbany, et al. APJL, 818:L19 (2016), arXiv:1511.05348
- 11. UBVRIz light curves of 51 type II supernovae

 L. Galbany, M. Hamuy, M. M. Phillips, N. B. Suntzeff, J. Maza, et al. AJ, 151:33 (2016), arXiv:1511.08402
- 10. A Hubble diagram from type II supernovae based solely on photometry: The photometric-colour method T. de Jaeger, S. González-Gaitán, J. P. Anderson, L. Galbany, M. Hamuy, et al. APJ, 815:121 (2015), arXiv:1511.05145
- 9. The rise-time of Type II supernovae S. González-Gaitán, N. Tominaga, J. Molina, L. Galbany, F. Bufano, et al. MNRAS, 451: 2212 (2015), arXiv:1505.02988
- 8. PESSTO: survey description and products from the first data release.
 S. J. Smartt, S. Valenti, M. Fraser, C. Inserra, D. R. Young, ...(with) L. Galbany, et al. A&A, 579:A40 (2015), arXiv:1410.2210.
- Statistical Studies of Supernova Environments.
 J. P. Anderson, P. A. James, S. M. Habergham, L. Galbany, H. Kuncarayakti PASA, 32:e019 (2015), arXiv:1504.04043.
- CALIFA, the Calar Alto Legacy Integral Field Area survey. III. Second public data release
 R. García-Benito, S. Zibetti, S.F. Sánchez, B. Huseman, ...(with) L. Galbany, et al. A&A, 576:135 (2015), arXiv:1409.8302
- 5. Census of HII regions in NGC6754 derived with MUSE: Constraints on the metal mixing scale. S.F. Sánchez, L. Galbany, J. Falcón-Barroso, P. Sánchez-Blázquez, E. Pérez, et al. A&A, 573:A105 (2015), arXiv:1411.4967
- 4. Nearby SN host galaxies from the CALIFA Survey: I. Sample, data analysis, and correlation to SF regions L. Galbany, V. Stanishev, A. M. Mourão, M. Rodrigues, H. Flores, et al. A&A, 572:A38 (2014), arXiv:1409.1623
- 3. Aperture corrections for galaxy properties computed from the CALIFA survey.

 J. Iglesias-Páramo, J.M. Vílchez, L. Galbany, S.F. Sánchez, F.F. Rosales-Ortega, et al. A&AL, 553:L7 (2013), arXiv:1304.16440
- Type-la Supernova properties as a function of the distance to host galaxy in the SDSS-II/SNe survey.
 L. Galbany, R. Miquel, L. Ostman, P. J. Brown, D. Cinabro, et al. APJ, 755:125 (2012), arXiv:1206.2210
- 1. The Subluminous Supernova 2007qd: A Missing Link in a Family of Low-Luminosity Type la Supernovae. C. M. McClelland, P. M. Garnavich, L. Galbany, R. Miquel, R. J. Foley, et al. APJ, 720:704-716 (2010), arXiv:1007.2850

Other refereed papers

- 189. About 0.4% of the Core-Collapse Supernovae occur in, or near, elliptical galaxies I. Irani, et al. APJ, accepted —:— (2021), arXiv:—.
- 188. Type II SNe from the CSP-I II. Physical parameter distributions from hydrodynamical modelling L. Mart]'inez, et al. A&A, accepted —:— (2021), arXiv:—.
- 187. Carnegie Supernova Project: kinky i-band light-curves of Type la supernova and the effect on Hubble residuals P. Pessi, et al. APJ, accepted —:— (2021), arXiv:2112.03122.
- 186. HARMONI view of AGN around cosmic noon: Resolved stellar morpho-kinematics and the MBH- σ_* relation B. García-Lorenzo, et al. A&A, accepted —:— (2021), arXiv:—.

- 185. Carnegie Supernova Project-II: Near-infrared Spectroscopy of Stripped-Envelope Core-Collapse Supernovae M. Shahbandeh, et al. APJ, accepted —:— (2021), arXiv:—.
- 184. A Virgo Environmental Survey ... (VESTIGE).XII. Ionised gas emission in the inner regions of lenticular galaxies A. Boselli, et al. A&A, accepted —:— (2021), arXiv:—.
- 183. Signatures of AGN induced metal loss in the stellar population A. Camps-Fariña, et al. APJL, accepted —:— (2021), arXiv:—.
- 182. Type II supernovae from the CSP-I. I. Bolometric light-curves of 74 SNe II using uBgVriYJH photometry L. A&A, accepted —:— (2021), arXiv:—.
- 181. Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae S. Prentice et al. MNRAS, accepted —:— (2021), arXiv:—.
- 180. SN 2018agk: A type Ia supernova with a smooth power-law rise in Kepler (K2) $_{\rm Q.~Wang~et~al.}$ APJ, accepted —:— (2021), arXiv:—.
- 179. Real-time Discovery of AT2020xnd: A Fast, Luminous Ultraviolet Transient with No Associated Supernova D. Perley, et al. MNRAS, accepted —:— (2021), arXiv:—.
- 178. Measuring an off-Center Detonation through Infrared Line Profiles: The peculiar SNIa 2020qxp/ASASSN-20jq P. Hoeflich, et al. APJ, accepted —:— (2021), arXiv:—.
- 177. Circumstellar Medium Constraints on the Environment of Two Nearby SNe Ia: SN 2017cbv and SN 2020nlb D. Sand, et al. APJ, accepted —:— (2021), arXiv:—.
- 176. $[\alpha/\text{Fe}]$ traced by H ii regions from the CALIFA survey: The connection between morphology and O/H patterns S. F. Sánchez, et al. A&A, accepted —:— (2021), arXiv:—.
- 175. SN2017jgh A high-cadence complete shock cooling lightcurve of a SN IIb with the Kepler telescope P. Armstrong, et al. MNRAS, accepted —:— (2021), arXiv:—.
- 174. Intermediate-Luminosity Red Transients: Spectro-photometric Global Properties Y. Cai, et al. A&A, accepted —:— (2021), arXiv:—.
- 173. The Exotic Type Ic-BL SN 2018gep: Blurring the Line Between SNe and Fast Optical Transients T. A. Pritchard, et al. APJ, accepted —:— (2021), arXiv:—.
- 172. SN2019hcc: A Type II Supernova Displaying Early O II Lines E. Parrag, et al. MNRAS, accepted —:— (2021), arXiv:—.
- 171. An Amusing Look at the Host of the Periodic Nuclear Transient ASASSN-14ko Reveals a Second AGN M. A. Tucker, et al. APJ, accepted —:— (2021), arXiv:2011.05998.
- 170. Rates and delay times of type la supernovae in the Dark Energy Survey P. Wiseman, et al. MNRAS, accepted —:— (2021), arXiv:2105.11954.
- 169. Alert Classification for the ALeRCE Broker System: The Real-time Stamp Classifier R. Carrasco-Davis, et al. AJ, accepted —:— (2021), arXiv:2008.03309.
- 168. SN 2020cpg: ePESSTO+ follow-up of an energetic stripped envelope supernova $_{\rm K.~Medler,~et~al.}$ MNRAS, accepted —:— (2021), arXiv:2106.09505.
- 167. The DES SN Program: Modelling selection efficiency and observed core CCSN contamination M. Vincenzi, et al. MNRAS, accepted —:— (2021), arXiv:2012.07180.
- 166. Understanding the Extreme Luminosity of DES14X2fna M. Grayling, et al. MNRAS, 505:3950 (2021), arXiv:2103.14669.
- 165. Detection of metallicity correlations in 100 nearby galaxies Z. Li, et al. MNRAS, 504:5496 (2021), arXiv:2104.14807.
- 164. Luminous Type II Short-Plateau SN 2006Y, 2006ai, 2016egz: A Transitional Class from Stripped Massive RSG D. Hiramatsu, et al. APJ, 913:55 (2021), arXiv:2010.15566.
- 163. The double-peaked type Ic Supernova 2019cad: another SN 2005bf-like object C. P. Gutiérrez, et al. MNRAS, 504:4907 (2021), arXiv:2104.03723.
- 162. Strong, Early Near Infrared Carbon Absorption in the Transitional Type Ia SN 2015bp/SNHunt281 S. D. Wyatt, et al. APJ, 914:57 (2021), arXiv:2012.02858.
- 161. Evolution of the chemical enrichment and the Mass-Metallicity relation in CALIFA galaxies A. Camps-Fariña, et al. MNRAS, 504:3478 (2021), arXiv:2011.01229.

- 160. Core-collapse supernova subtypes in luminous infrared galaxies E. Kankare, et al. A&A, 649:A134 (2021), arXiv:2102.13512.
- 159. The first Hubble diagram and cosmological constraints using superluminous supernovae C. Inserra, et al. MNRAS, 504:2535 (2021), arXiv:2004.12218.
- 158. SN 2013ai: a link between hydrogen rich and hydrogen poor core-collapse supernovae S. Davis, et al. APJ, 909:145 (2021), arXiv:2101.05424.
- 157. J-PLUS: The Star Formation Main Sequence and Rate Density at d \lesssim 75 Mpc G. Vilella-Rojo, et al. A&A, 650:A68 (2021), arXiv:2101.04062.
- 156. Active learning with RESSPECT: Resource allocation for extragalactic astronomical transients N. Kennamer, et al. IEEE-SSCI 2020, 20266870 (2021), arXiv:2010.05941.
- 155. NIR/optical observations of SNIc 2020oi and Ic-BL 2020bvc: CO, dust and high-velocity SN ejecta J. Rho, et al. APJ, 908:232 (2021), arXiv:2010.00662.
- 154. SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail A. Fiore, et al. MNRAS, 502:2120 (2021), arXiv:2012.12755.
- 153. The Effect of Environment on Type Ia Supernovae in the Dark Energy Survey Three-Year Cosmological Sample L. Kelsey, et al. MNRAS, 501:4861 (2021), arXiv:2008.12101.
- 152. MUSE Reveals Extended Circumnuclear Outflows in the Seyfert 1 NGC 7469 A. C. Robleto-Orús, et al. APJL, 906:L6 (2021), arXiv:2012.08094.
- 151. VESTIGE IX: A detail study of the ram pressure down to the scale of individual HII regions in IC 3476 A. Boselli, et al. A&A, 646:A139 (2021), arXiv:2012.07377.
- 150. Constraints on the rate of supernovae lasting for more than a year from Subaru/Hyper Suprime-Cam T. Moriya, et al. APJ, 908:249 (2021), arXiv:2012.00171.
- 149. The early discovery of SN 2017ahn: signatures of persistent interaction in a fast declining Type II supernova L. Tartaglia, et al. APJ, 907:52 (2021), arXiv:2008.06515.
- 148. First Cosmology Results using SNe Ia from DES: Survey Overview, Performance, and Supernova Spectroscopy. M. Smith, et al. AJ, 160:267 (2020), arXiv:1811.09565.
- 147. SN 2019muj a well-observed Type lax supernova that bridges the luminosity gap of the class B. Barna, et al. MNRAS, 501:1078 (2020), arXiv:2011.03068.
- 146. Optical and NIR observations of the nearby supernova SN2017cbv L. Wang, et al. APJ,904:14 (2020), arXiv:2009.11415.
- 145. An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz $_{\rm M.\ Nichol\ et\ al.\ }MNRAS$, 499:482 (2020), arXiv:2006.02454.
- 144. Direct evidence of 2 component ejecta in SN2016gkg from nebular spectroscopy H. Kuncarayakti et al. APJ, 902:139 (2020), arXiv:2008.12294.
- 143. Carnegie Supernova Project II: Classification of Type la Supernovae A. Burrow et al. APJ, 901:154 (2020), arXiv:2008.07636.
- 142. Carnegie Supernova Project-I: Correlation Between SNIa and Their Host Galaxies from Optical to NIR Bands S. Uddin et al. APJ, 901:143 (2020), arXiv:2006.15164.
- 141. SN 2018gjx confirms that some SNe Ibn are SNe IIb exploding in dense CSM s. Prentice, et al. MNRAS, 499:1450 (2020), arXiv:2009.10509.
- 140. The tidal disruption event AT 2018hyz I. Double-peaked emission lines and a flat Balmer decrement P. Short et al. MNRAS, 498:4119 (2020), arXiv:2003.05470.
- 139. Carnegie Supernova Project II: The slowest rising SNIa LSQ14fmg and clues to the origin of super-Ch events E. Y. Hsiao et al. APJ, 900:140 (2020), arXiv:2008.05614.
- 138. The Carnegie SN Project II. Observations of SN 2014ab reveals a 2010jl-like SN IIn with pre-existing dust $_{\rm T.\ Moriya\ et\ al.}$ A&A, 641:148 (2020), arXiv:2006.10198.
- 137. The host galaxies of 106 rapidly evolving transients discovered by the Dark Energy Survey P. Wiseman et al. MNRAS, 498:2575 (2020), arXiv:2005.08653.
- 136. SN 2019ehk: A Double-Peaked Ca-rich Transient with Luminous X-ray and Shock-Ionized Spectral Features. W. V. Jacobson-Galán et al. APJ, 898:166 (2020), arXiv:2005.01782.

- 135. The Tidal Disruption Event AT 2018hyz II: Light Curve Modeling of a Partially Disrupted Star S. Gomez et al. MNRAS, 497:1925 (2020), arXiv:2003.05469.
- 134. The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio Tomás E. Müller et al. MNRAS, 497:361 (2020), arXiv:2006.15028.
- 133. The 16th DR of the SDSS: First release from the Apogee-2 Southern survey and full release of EBOSS spectra. R. Ahumada et al. APJS, 249:3 (2020), arXiv:1912.02905.
- 132. Carnegie Supernova Project II. Observations of the luminous red nova AT 2014ej. M. D. Stritzinger et al. A&A, 639:104 (2020), arXiv:2005.00076.
- 131. Carnegie Supernova Project II. Observations of the intermediate luminosity red transient SNhunt120. M. D. Stritzinger et al. A&A, 896:13 (2020), arXiv:2005.00319.
- 130. SN siblings: assessing the consistency of SNIa properties that share the same parent galaxies. D. Scolnic, et al. APJ, 896:13 (2020), arXiv:2002.00974.
- 129. SN 2013aa and SN 2017cbv: Two Sibling Type Ia Supernovae in the spiral galaxy NGC 5643. C. Burns, et al. APJ, 895:118 (2020), arXiv:2004.13069.
- 128. DES16C3cje: A low-luminosity, long-lived supernova.

 C. P. Gutiérrez et al. MNRAS, 495:95 (2020), arXiv:2001.11559.
- 127. OzDES multi-object fibre spectroscopy for the Dark Energy Survey: Results and second data release. C. Lidman et al. MNRAS, 496:19 (2020), arXiv:1907.12260.
- 126. Supernova Host Galaxies in the Dark Energy Survey: I. Deep Coadds, Photometry, and Stellar Masses. P. Wiseman et al. MNRAS, 495:4040 (2020), arXiv:2001.02640.
- 125. Carnegie Supernova Project-II: A new method to photometrically identify sub-types of extreme SNe Ia. C. Ashall, et al. APJL, 895:3 (2020), arXiv:2003.11121.
- 124. The Mystery of Photometric Twins DES17X1boj and DES16E2bjy. M. Pursiainen, et al. MNRAS, 494:5576 (2020), arXiv:1911.12083.
- 123. First Cosmology Results using SNIa from DES: The Effect of Host Galaxy Properties on Supernova Luminosity. M. Smith, et al. MNRAS, 494:4426 (2020), arXiv:2001.11294.
- 122. SN2016gsd: Evaluating an unusual luminous and linear supernova T. Reynolds, et al. MNRAS, 493:1761 (2020), arXiv:1909.13617.
- 121. Asteroids' Size Distribution and Colors from HiTS J. Peña, et al., AJ, 159:4 (2020), arXiv:2003.05499.
- 120. Clearing the Smoke: Nebular Spectra of 111 Type Ia Supernovae Exclude Single Degenerate Progenitors M. A. Tucker, et al. MNRAS, 493:1044 (2020), arXiv:1903.05115.
- 119. Arm-interarm O/H variations explored with MUSE: the role of spiral structure in the chemical enrichment L. Sánchez-Menguiano, et al. MNRAS, 492:4149 (2020), arXiv:2001.03450.
- 118. The rise and fall of an extraordinarily fast Ca-rich transient The discovery of ATLAS19dqr/SN 2019bkc. S. J. Prentice, et al. A&A, 635:A186 (2020), arXiv:1909.05567.
- 117. Initial Evaluation of SNEMO2 and SNEMO7 standardization derived from current SNIa LCs B. Rose, et al. APJ, 890:60 (2020), arXiv:1912.09993.
- 116. CSP-II. Early observations and progenitor constraints of the Type Ib SN LSQ13abf M. D. Stritzinger, et al. A&A, 634:A21 (2020), arXiv:1911.04564 .
- 115. J-PLUS: tools to identify planetary nebulae and symbiotic stars in the J-PLUS and S-PLUS surveys. L. A. Gutiérrez-Soto, et al. A&A, 633:123 (2020), arXiv:1912.10145.
- 114. The spectral evolution of AT2018dyb and the presence of metal lines in TDEs $_{
 m G.\ Leloudas,\ et\ al.}$ APJ, 887:218 (2019), arXiv:1903.03120.
- 113. The CALIFA view on stellar angular momentum across the Hubble sequence. J. Falcón-Barroso, et al. A&A, 632:59 (2019), arXiv:1910.06236.
- 112. SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf O. R. McBrien, et al. APJ, 885:23 (2019), arXiv:1909.04545.
- 111. SN 2017gmr: An energetic Type II-P supernova with asymmetries. J. E. Andrews, et al. APJ, 885:43 (2019), arXiv:1907.01013.

- 110. PLAsTiCC: Selection of a performance metric for classification probabilities balancing diverse science goals A.Malz et al. AJ, 158:171 (2019), arXiv:1809.11145.
- 109. SDSS-IV MaStar A Large and Comprehensive Empirical Stellar Spectral Library. R. Yan, et al. APJ, 883:175 (2019), arXiv:1812.02745.
- 108. J-PLUS: Impact of bars on quenching timescales in nearby green valley disc galaxies J. P. Nogueira-Cavalcante, et al. A&A, 630:88 (2019), arXiv:1907.11244.
- 107. HSC16aayt: Slowly evolving interacting transient rising for more than 100 days T. Moriya, et al. APJ, 882:70 (2019), arXiv:1907.01633.
- 106. ASASSN-15pz: Revealing Significant Photometric Diversity Among 2009dc-like, Peculiar Type Ia Supernovae P. Chen, et al. APJ, 880:35 (2019), arXiv:1904.03198.
- 105. First cosmology results using SNIa from the DES: Measurement of the Hubble constant. E. Macaulay, et al. MNRAS, 486:2184 (2019), arXiv:1811.02376.
- 104. ASASSN-15oz: Evidence of Circumstellar Interaction in a Type IIL Supernova. K. Azalee Bostroem, et al. MNRAS, 485:5120 (2019), arXiv:1901.09962.
- 103. A Physical Basis for the H-band Blue-edge vel. and LC Shape Correlation in Context of SNIa Explosion Physics C. Ashall, et al. APJ, 878:86 (2019), arXiv:1904.01633.
- 102. Cosmological constraints from multiple probes in the Dark Energy Survey. T. Abbott, et al. PHRvL, 122:171301 (2019), arXiv:1811.02375.
- 101. Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors? S. Prentice et al. MNRAS, 485:1559 (2019), arXiv:1812.03716.
- 100. Nebular H α Limits for Fast Declining Type Ia Supernovae D. Sand, et al. APJL, 877:L4 (2019), arXiv:1903.03626.
- 99. The type IIP supernova 2017eaw: from explosion to the nebular phase T. Szalai, et al. APJ, 876:19 (2019), arXiv:1903.09048.
- 98. First release of the high-z SLSNe from the Subaru high-z SN campaign (SHIZUCA). II. Spectroscopic properties. C. Curtin, et al., APJS, 241:17 (2019), arXiv:1801.08241.
- 97. First release of the high-z SLSNe from the Subaru high-z SN campaign (SHIZUCA). I. Photometric properties T. J. Moriya, et al., APJS, 241:16 (2019), arXiv:1801.08240.
- 96. CSPII: Using NIR Spectroscopy to determine the outer 56 Ni distribution in SNIa as a test for explosion scenarios. C. Ashall, et al. APJL, 875:L14 (2019), arXiv:1902.10088.
- 95. First cosmology results using SNIa from the DES: Photometric pipeline and light curve release. D. Brout, et al. APJ, 874:106 (2019), arXiv:1811.02378.
- 94. First cosmology results using SNIa from the DES: Analysis, systematic uncertainties, and validation. D. Brout, et al. APJ, 874:50 (2019), arXiv:1811.02377.
- 93. The Fifteenth Data Release of the SDSS: 1st Release of MaNGA-derived Quantities, Vis. Tools, and Stel. Lib. D. S. Aguado, et al. APJS, 240:23 (2019), arXiv:1812.02759.
- 92. First cosmology results using SNIa from the DES: Constraints on cosmological parameters. T. Abbott, et al. APJL, 872:L30 (2019), arXiv:1811.02374.
- 91. J-PLUS: measuring H α emission line fluxes in the nearby universe R. García-Logroño, et al., A&A, 622:A180 (2019), arXiv:1804.04039.
- 90. J-PLUS: Morphological star/galaxy classification by PDF analysis C. López-Sanjuan, et al., A&A, 622:A177 (2019), arXiv:1804.02673.
- 89. J-PLUS: The Javalambre Photometric Local Universe Survey. J. Cenarro, et al., A&A, 622:A176 (2019), arXiv:1804.02667.
- 88. Carnegie Supernova Project-II: The Near-infrared Spectroscopy Program Eric Y. Hsiao, et al. PASP, 131:014002 (2019), arXiv:1810.08213.
- 87. Carnegie Supernova Project-II: Extending the NIR Hubble Diagram for Type Ia Supernovae to z \sim 0.1 Mark M. Phillips, et al. PASP, 131:014001 (2019), arXiv:1810.09252.
- 86. Systematic study of outflows in the Local Universe using CALIFA: I. Sample selection and main properties. C. López-Cobá et al. MNRAS, 482:4032 (2018), arXiv:1811.01253.

- 85. Spatial field reconstruction with INLA: Application to IFU galaxy data. S. González-Gaitán, et al. MNRAS, 482:3880 (2019), arXiv:1802.06280.
- 84. K2 Observations of SN 2018oh Reveal a Two-Component Rising Light Curve for a Type la Supernova. G. Dimitriadis, et al., APJL, 870:L1 (2018), arXiv:1811.10061.
- 83. Phot. and spec. properties of SN Ia 2018oh with early excess emission from the Kepler 2 observations W. Li et al. APJ, 870:12 (2019), arXiv:1811.10056.
- 82. A Virgo Env. Survey Tracing Ionised Gas Emission (VESTIGE).IV. Tails of Ionised Gas in the MR NGC 4424. A. Boselli et al. A&A, 620:A164 (2018), arXiv:1810.09234.
- 81. SN 2017ens: The metamorphosis.of a bright broad-lined type Ic supernova to a type IIn T.-W. Chen et al. APJL, 867:L31 (2018), arXiv:1808.04382.
- 80. A nearby superluminous supernova with a long pre-maximum 'plateau' and strong CII features J.P. Anderson et al. A&A, 629:A67 (2018), arXiv:1806.10609.
- 79. The High Cadence Transient Survey (HiTS) IV. Compilation and characterization of light-curve catalogs J. Martínez, et al., AJ, 156:186 (2018), arXiv:1809.00763.
- 78. Relativistic supernova 2009bb exploded close to an atomic gas cloud. Michal J. Michalowski, et al., A&A, 618:A104 (2018), arXiv:1808.00977.
- 77. Type II supernovae in low luminosity host galaxies.

 C. Gutiérrez, et al., and MNRAS, 479:3232 (2018), arXiv:1806.03855.
- 76. The delay of shock breakout due to circumstellar material seen in most Type II Supernovae F. Förster, et al., NATURE ASTRONOMY, 2:808 (2018), arXiv:1809.06379.
- 75. Using late-time spectra to constrain Type la supernova progenitor and explosion properties K. Maguire, et al., MNRAS, 477:3567 (2018), arXiv:1803.10252.
- 74. The Data Release of the Sloan Digital Sky Survey-II Supernova Survey. M. Sako, et al. PASP, 130:064002 (2018), arXiv:1401.3317.
- 73. The type IIn supernova 2010bt: The explosion of a star in outburst. N. Elias-Rosa, et al., APJ, 860:68 (2018), arXiv:1805.02188.
- 72. The twin SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events. L. $_{\rm Tomasella,\ et\ al.}$, $_{\rm MNRAS}$, 475:1937 (2017), $_{\rm arXiv:1712.03933}$
- 71. The fourteenth data release of the Sloan Digital Sky Survey B. Abolfathi, et al. APJS. 235:42 (2018), arXiv:1707.09322.
- 70. Discovery of distant RR Lyrae stars in the Milky Way using DECam G. Medina, et al., APJ, 855:43 (2018), arXiv:1802.01581.
- 69. Asteroids in the High Cadence Transient Survey J. Peña, et al., AJ, 155:135 (2018), arXiv:1806.03352.
- 68. SN 2017dio: a type lc SN exploding in a hydrogen-rich circumstellar medium H. Kuncarayakti, et al., APJL, 854:L14 (2018), arXiv:1712.00027
- 67. Morpho-kinematic properties of S0 bulges in the CALIFA survey: Clues to the origin of S0 galaxies. J. Méndez-Abreu, et al., A&A, 474:1307 (2017), arXiv:1710.09349.
- 66. The early detection and follow-up of the highly obscured type II SN 2016ija/DLT16am L. Tartaglia, et al., ApJ.~853:62~(2018), arXiv:1711.03940
- 65. A kilonova as the electromagnetic counterpart to a gravitational-wave source S. Smartt, et al., NATURE, 551:75 (2017), arXiv:1710.05841.
- 64. Type II SN spectral diversity I: Observations, sample characterization and spectral line evolution C. P. Gutiérrez, et al.,, APJ, 850:89 (2017), arXiv:1709.02487.
- 63. Multi-messenger Observations of a Binary Neutron Star Merger B. P. Abbott, et al., APJL, 848:2 (2017), arXiv:1710.05833.
- 62. Toward the Dynamical Classification of Galaxies: PCA of SAURON and CALIFA circular velocity curves V. Kalinova, et al., MNRAS, 469:2539 (2017), arXiv:1509.03352.
- 61. The Mass-Metallicity Relation revisited with CALIFA S.F. Sánchez, et al., MNRAS, 469:2121 (2017), arXiv:1703.09769.

- 60. Serendipitous discovery of RR Lyrae stars in the Leo V ultra-faint galaxy G. Medina, et al., APJL, 845:10 (2017), arXiv:1708.00009.
- 59. Complexity in the light curves and spectra of slow-evolving superluminous supernovae C. Inserra, et al., MNRAS, 468:4642 (2017), arXiv:1701.00941.
- 58. Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies and the distant Universe M. R. Blanton, et al., AJ, 154:28 (2017), arXiv:1603.04748.
- 57. Observational evidences for radial migration in disc galaxies from CALIFA $_{\rm T.\ Ruiz\text{-}Lara,\ et\ al.,\ }A\&A,\ 604:A4\ (2017),\ arXiv:1705.02120.$
- 56. Arm and interarm abundance gradients in CALIFA spiral galaxies L. Sánchez-Menguiano, et al.,, A&A, 603:A113 (2017), arXiv:1705.05733.
- 55. Resolving the age bimodality of galaxy stellar populations on kpc scales s. Zibetti, et al. MNRAS, 468:1902 (2017), arXiv:1701.06570.
- 54. Star formation driven galactic winds in UGC 10043.

 C. López-Cobá, et al., MNRAS, 467:4951 (2017), arXiv:1701.01695.
- 53. The spectral evolution of SLSN LSQ14mo and its interacting host galaxy system $_{\rm T.-W.~Chen,~et~al.}$ A&A, 602:A9 (2017), arXiv:1611.09910.
- 52. Early observations of type la supernova SN2015F. R. Cartier, et al., MNRAS, 464:4476 (2016), arXiv:1609.04465.
- 51. The progenitor and early evolution of the type IIb SN 2016GKG L. Tartaglia, et al., APJ LETTERS, 836:L12 (2017), arXiv:1611.00419.
- 50. 2D Multi-component photometric decomposition of CALIFA galaxies. J. Méndez-Abreu, et al., A&A, 598:32 (2017), arXiv:1610.05324.
- 49. Stellar kinematics across the Hubble sequence in the CALIFA survey: general properties and aperture corrections. J. Falcón-Barroso, et al. A&A, 597:A48 (2017), arXiv:1609.06446.
- 48. IMF shape constraints from stellar populations and dynamics from CALIFA M. Lyubenova, et al., MNRAS LETTERS, 463:3220 (2016), arXiv:1606.07448.
- 47. The High cadence Transient Survey (HiTS): I. Survey design and supernova shock breakout constraints. F. Förster, et al., APJ, 832:155 (2016), arXiv:1609.03567.
- 46. Pan-STARRS and PESSTO search for the optical counterpart to the LIGO gravitational wave source GW150914 S. J. Smartt, e al., MNRAS LETTERS, 462:4094 (2016), arXiv:1602.04156.
- 45. The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey. E. Pérez-Montero, et al., A&A, 595:A62 (2016), arXiv:1608.04677.
- 44. Photoionization models of the CALIFA HII regions compatible with the direct method C. Morisset, et al., A&A, 594:A37 (2016) arXiv:1606.01146.
- 43. Supernova 2014J at M82: II. Direct analysis of spectra obtained with IN and WH telescopes P. Vallely, et al. MNRAS, 460:1614 (2016), arXiv:151202608.
- 42. First survey of Wolf-Rayet star populations over the full extension of nearby galaxies observed with CALIFA D. Miralles-Caballero, et al. A&A, 592:A105 (2016), arXiv:1605.03991.
- 41. Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" B. P. Abbott, et al. APJ SUPPLEMENT SERIES, 225:8 (2016), arXiv:1602.07864.
- 40. Localization and broadband follow-up of the gravitational-wave transient GW150914 B. P. Abbott, et al. APJ LETTERS, 826:L13 (2016), arXiv:1602.08492.
- 39. Aperture effects on the oxygen abundance determinations from CALIFA data J. Iglesias-Páramo, et al. APJ, 826:71 (2016), arXiv:1605.03490.
- 38. SN 2015bn: a detailed multi-wavelength view of a nearby superluminous supernova M. Nicholl, et al. APJ, 826:39 (2016), arXiv:1603.04748.
- 37. Star formation along the Hubble sequence: Radial structure of the star formation of CALIFA galaxies R. González Delgado, et al. A&A, 590:A44 (2016), arXiv:1603.00874.
- 36. The type lax supernova, SN 2015H: a white dwarf deflagration candidate M. R. Magee, et al. A&A, 589:A89 (2016), arXiv:1603.04728.

- 35. PIPE3D, A pipeline to analyse integral field spectroscopy: II. Analysis sequence and CALIFA dataproducts S. F. Sánchez, et al. RMxAA, 52:171 (2016), arXiv:1601.01830.
- 34. Spatially-Resolved Star Formation Main Sequence Of Galaxies in the CALIFA Survey M. Cano-Díaz, et al. A&A LETTERS, 821:L2 (2016), arXiv:1602.02770.
- 33. Warm ionized gas in CALIFA early-type galaxies 2D emission-line patterns and kinematics for 32 galaxies $_{\rm J.~M.~Gomes,~et~al.}$ A&A, 588:68 (2016), arXiv:1509.02191.
- 32. LSQ13fn: A type II-Plateau SN with a possibly low Z progenitor that breaks the standardised candle relation J. Polshaw, et al. A&A, 588:1 (2016), arXiv:1511.01718.
- 31. The shape of the oxygen abundance profiles in CALIFA face-on spiral galaxies L. Sánchez-Menguiano, et al. A&A, 587:70 (2016), arXiv:1601.01542.
- 30. No direct coupling between bending of galaxy disc stellar age and light profiles T. Ruiz-Lara, et al. MNRAS LETTERS, 456:35 (2016), arXiv:1511.03499.
- 29. Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy: the big brother of SN 1998S T. Kangas, et al. MNRAS, 456:323 (2016), arXiv:1510.06596.
- 28. Spectroscopic aperture biases in inside-out evolving early-type galaxies from CALIFA J. M. Gomes, et al. A&A, 586:A22 (2016), arXiv:1511.01300.
- 27. Spiral-like star-forming patterns in CALIFA early-type galaxies J. M. Gomes, et al., A&A, 585:A92 (2016), arXiv:1511.00744.
- 26. Outer-disk reddening and gas-phase metallicities: The CALIFA connection R. A. Marino, et al., A&A, 585:47 (2016), arXiv:1509.07878.
- 25. Star Formation in the Local Universe from the CALIFA sample: I. Calibrating the SFR using IFS data C. Catalán-Torrecilla, et al., A&A, 584:A87 (2015), arXiv:1507.03801.
- 24. On the diversity of Super-luminous Supernovae: Ejected mass as the dominant factor M. Nicholl, et al., MNRAS, 452:3869 (2015), arXiv:1503.03310.
- 23. The CALIFA survey across the Hubble sequence: Spatially resolved stellar pop. properties in bulges and disks R. M. González Delgado, et al., A&A, 581:A103 (2015), arXiv:1506.04157.
- 22. LSQ14bdq: A Type Ic super-luminous supernova with a double-peaked light curve M. Nicholl, et al., APJ LETTERS, 807:L18 (2015), arXiv:1505.01078.
- 21. Central star formation and metallicity in CALIFA interacting galaxies J.K. Barrera-Ballesteros, et al., A&A, 579:A45 (2015), arXiv:1505.03153.
- 20. Early-time light curves of Type lb/c supernovae from the SDSS-II Supernova Survey F. Taddia, et al., A&A, 574:A60 (2015), arXiv:1408.4084.
- 19. Imprints of galaxy evolution on HII regions. Memory of the past uncovered by the CALIFA survey. S.F. Sánchez, et al., A&A, 574:A47 (2015), arXiv:1409.8293.
- 18. Defining photometric peculiar type la supernovae S. González-Gaitán, et al., APJ, 795:142 (2014), arXiv:1409.4811.
- 17. CALIFA: a diameter selected sample for an Integral Field Spectroscopy galaxy survey C.J. Walcher, et al., A&A, 569:A1 (2014), arXiv:1407.2939.
- 16. The Core Collapse Supernova Rate from the SDSS-II Supernova Survey $_{\rm M.\ Taylor,\ et\ al.}$, APJ, 792:135 (2014), arXiv:1407.0999.
- 15. Insights on the stellar mass-metallicity relation from the CALIFA survey R. M. González Delgado, et al., APJ LETTERS, 791:L16 (2014), arXiv:1407.1315.
- 14. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. M. Betoule, et al., A&A, 568:A22 (2014), arXiv:1401.4064.
- 13. Hubble Space Telescope and ground-based observations of the type lax supernovae SN 2005hk and SN 2008A C. Mc Cully, et al., APJ, 786:134 (2014), arXiv:1309.4457.
- 12. Host galaxy spectra and consequences for SN typing from the SDSS SN Survey. M. D. Olmstead, et al., AJ, 147:75 (2014), arXiv:1308.6818.
- 11. A characteristic oxygen abundance gradient in galaxies disks unveiled with CALIFA S.F. Sánchez, et al. , A&A, 563:A49 (2014), arXiv:1311.7052.

- 10. The effect of weak lensing on distance estimates from supernovae. M. Smith, et al., APJ, 780:24 (2014), arXiv:1307.2566.
- 9. The effects of spatial resolution on Integral Field Unit Surveys at different redshift. The CALIFA perspective. D. Mast, et al., A&A, 561:129 (2014), arXiv:1311.3941.
- 8. The N2 and O3N2 indicators revisited: improved calibrations based on CALIFA and T_e -based literature data. R. A. Marino, et al., A&A, 559:114 (2013), arXiv:1307.5316.
- 7. The nature of LINER galaxies: Ubiquitous hot old stars plus rare accreting black holes. R. Singh, et al., A&A, 558:A43 (2013), arXiv:1308.4271.
- 6. Properties of type la supernovae inside rich galaxy clusters. H. S. Xavier, et al., MNRAS, 434:1443 (2013), arXiv:1304.6431.
- 5. Nebular emission and the Lyman continuum photon escape fraction in CALIFA early-type galaxies. P. Papaderos, et al., A&A LETTERS, 555:L1 (2013), arXiv:1306.2338.
- 4. Mass-Metallicity relation explored with CALIFA. I. Is there a dependence on the star-formation rate?. S. F. Sánchez, et al., A&A, 554:A58 (2013), arXiv:1304.2158.
- 3. CALIFA, the Calar Alto Legacy Integral Field Area survey: II. First public data release. B. Husemann, et al., A&A, 549:A87 (2013), arXiv:1210.8150.
- 2. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey. B. Dilday, et al., APJ, 715:1021-1035 (2010), arXiv:1003.1521.
- 1. Measurements of the Rate of Type Ia Supernovae at Redshift $z \lesssim 0.3$ from the SDSS-II Supernova Survey. B. Dilday, et al., APJ, 713:1026-1036 (2010), arXiv:1001.4995.

Thesis

2. Supernova studies in the SDSS-II/SNe Survey: spectroscopy of the peculiar SN 2007qd, and photometric properties of Type-Ia supernovae as a function of the distance to the host galaxy.

Lluís Galbany, PhD thesis, Universitat Autònoma de Barcelona, Departament de Física, 28 10 2011
Supervisor: Dr. Ramon Miquel. Tribunal: Dr. Robert C. Nichol, Dr. Enrique Fernàndez, Dr. Francisco J. Castander
BASES DE DATOS DE TESIS DOCTORALES (TESEO), REF. 936108

1. Tests of DES Charge Coupled Devices

Lluís Galbany, Master thesis (DEA), Universitat Autònoma de Barcelona, Departament de Física, 18 04 2008

Supervisor: Dr. Ramon Miquel, Dr. Manel Martínez. Trib.: Dr. Eduard Massó, Dr. Enrique Fernàndez, Dr. Francisco J. Castander BIBLIOTECA DE CIÈNCIA I TECNOLOGIA (UAB), T-53 2008 GAL

Invited presentations and selected talks

- Feb 2022 Seminar: Cornering H0 form SNe Ia in the NIR, IAC, Tenerife.
- Jan 2022 Seminar: Cornering H0 form SNe Ia in the NIR, ICE-CSIC.
- Jan 2022 (Contributed): *The metallicity of type la supernova progenitors, Estallidos de formación estelar* meeting, CIEMAT, Madrid.
- Dec 2021 Seminar: Dust, H0, SNe, King's College London.
- May 2020 (Contributed): Type Ia SNe evolution studied with IFS: the low and high-z examples, CSIC, Madrid.
- Apr 2020 Seminar: A SN in the borough: IFS of SN hosts, NYU Abu Dhabi (POSTPONED COVID-19).
- Mar 2020 (Contributed): The Legacy Andalusian Transient IFU Network Observatory (LATINO), IAA, Granada.
- Jan 2020 (Contributed): The AMUSING survey, CRISPINHO workshop, Granada.
- Oct 2019 Seminar: A SN in the borough: integral field spectroscopy of SN hosts, UNAM México.
- Oct 2019 (Contributed): IFS follow up of CSP SNIa host galaxies, Carnegie Obs, Passadena.
- Sep 2019 (Contributed): Dones and ToDos in IFS surveys of SN hosts, U. de Southampton, UK.
- Sep 2019 Seminar: Constraining progenitors with integral field spectroscopy, U. de Granada.
- Sep 2019 Seminar: Surveys of integral field spectroscopy of SN hosts, Florida State University, Tallahassee, FL.
- Aug 2019 Invited talk: Progenitors of Type Ia supernovae conference, Lijiang, Yunnan, China.
- Jul 2019 (Contributed): Analyzing Integral field spectroscopy data CRISP workshop, Lisbon, Portugal.
- Feb 2019 (Contributed) A 1991bg-like SNIa 2016hnk, Carnegie SN Project meeting, Saint George Island, FL.
- Dec 2018 (Contributed) Testing WFIRST simulations with SNEMO, Lawrence Berkeley National Lab, CA.

- Nov 2018 Seminar: SN Ia local environments with IFS, University of Pennsylvania, Philadelphia PA.
- Nov 2018 Seminar: SN 2016hnk, a Ca-rich 91bg-like SN Ia with a light echo, ESO, Santiago, Chile.
- Nov 2018 (Contributed) The local environment of type Ia SNe as seen with IFS, Bariloche, Argentina.
- Jul 2018 (Contributed) A Ca-rich faint 91bg-like type Ia SN, Institute for Astrophysics, Honolulu HI.
- Jul 2018 (Contributed) CSP SN Ia environments with IFS. Carnegie SN Project meeting, IfA, Honolulu HI.
- Jul 2018 (Contributed) A Ca-rich faint 91bg-like type Ia SN, Lorentz center, Leiden.
- Jun 2018 Seminar: Inferring SN progenitor properties with J-PLUS, CEFCA, Teruel.
- Jun 2018 Seminar: Using the environment to infer SN progenitor properties, U. Zaragoza.
- Jun 2018 Seminar: Using the environment to infer SN progenitor properties, U. Barcelona.
- Jun 2018 Seminar: The Pmas/ppak Integral-field SN hosts COmpilation (PISCO), IAA Granada.
- Jun 2018 Seminar: Using the environment to infer SN progenitor properties, U. Autònoma de Barcelona.
- Dec 2017 Seminar: The Pmas/ppak Integral-field SN hosts COmpilation (PISCO), CfA Harvard MA.
- Oct 2017 (Contributed) The local environment of type Ia SNe as seen with IFS, Carnegie Observatories, Pasadena.
- Mar 2017 Seminar: The All-weather MUse SN Integral field Nearby Galaxies survey, U. Oulu, Finland.
- Mar 2017 Seminar: PISCO and AMUSING: IFS of SN environments, University of Turku, Finland.
- Feb 2017 Seminar: Integral field spectroscopy of SN environments, University of Toronto, Canada.
- Feb 2017 Seminar: What's there? Integral field spectroscopy to study SN environments, U. Pittsburgh PA.
- Nov 2016 Invited talk: The All-weather MUse AN Integral field Nearby Galaxies survey, IFS school UAM, Madrid.
- Nov 2016 Invited talk: SN remnant dominated regions and SN rates with IFS, IFS school UAM, Madrid.
- Nov 2016 (Contributed) Spectrophot. SNII template: A SiFTO fitter for SNeII. LSST SN workshop, Pittsburgh.
- Aug 2016 (Contributed) *SN environmental studies through IFS*. SNe through the ages: understanding the past to prepare for the future, Easter Island, Chile.
- Jul 2016 (Contributed) *SN environmental studies through IIFS*. XII Reunión Sociedad Española de Astronomía (SEA) 2016, Bilbo, Spain.
- Jul 2016 (Contributed) The All-weather MUse Supernova Integral field Nearby Galaxies (AMUSING) survey. European Week of Astronomy and Space Science (EWASS) 2016, Athens, Greece.
- Jun 2016 (Contributed) Standardization of SN II light-curves with statistical methods. Meeting on Fundamental Cosmology, Barcelona.
- Jun 2016 Seminar: Environmental studies of SNe. CIEMAT, Madrid, Spain.
- May 2016 (Contributed) Statistical methods in SN II light-curves. South American Supernovae 2016, La Plata, Argentina.
- Mar 2016 (Contributed) *The local environment of SNe as seen with IFS*. Chilean Astronomical Society (SOCHIAS) meeting 2016, Antofagasta, Chile.
- Jun 2015 (Contributed) Nearby supernova host galaxies from the CALIFA survey. European Week of Astronomy and Space Science (EWASS) 2015, La Laguna, Spain.
- Jun 2015 (Contributed) The local environment of SNe., IX PESSTO meeting, Paris, France.
- May 2015 Seminar: Characterizing SN host galaxies with IFS. European Southern Observatory, Santiago, Chile.
- Apr 2015 (Contributed) PCA of type II SN light-curves. South American Supernovae 2015, Santiago, Chile.
- Apr 2015 (Contributed) SN studies with IFS: the CALIFA contribution. CALIFA Busy Week, Firenze, Italy.
- Sep 2014 Seminar: Characterizing SN host galaxies with IFS. Universidad de Guanajuato, Mexico.
- Aug 2014 Invited talk: What can IFS shine on SN progenitors. Invited tutorial: Studying SN environments with IFS. Guillermo Haro Advanced School on IFS Techniques and Analysis, INAOE, Puebla, Mexico.
- May 2014 Seminar: *Integral Field Spectroscopy of nearby supernova host galaxies*.. Institut d'Estudis Espacials de Catalunya, Universitat Autònoma de Barcelona.
- Nov 2013 (Contributed) Studying SNe environment with CALIFA Survey. LARIM: XIV Latin American Regional IAU Meeting, Florianópolis, Brasil.
- Jul 2013 (Contributed) *Integral Field Unit spectroscopy of supernova host galaxies*. XXIII Encontro Nacional de Astronomía e Astrofísica (ENAA), CAAUL Universidade de Lisboa, Portugal.
- Apr 2013 Seminar: IFU spectroscopy of SN host galaxies. Universidad de Chile, Santiago, Chile.
- Apr 2013 (Contributed) IFU spectroscopy of SN host galaxies. CALIFA 5th Busy Week, AIP, Potsdam, Germany.

- Jan 2013 Seminar: *Using the environment to understand SNe properties*. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.
- Nov 2012 (Contributed) Studying CCSNe environment with CALIFA Survey. CALIFA 4th Busy Week, Instituto de Astronomía de Andalucía (IAA), Granada, Spain.
- Aug 2012 (Contributed) *Type-la SNe standarization accounting for the environment*. Modern Cosmology: Early Universe, CMB and LSS, Benasque Center for Science, Benasque, Spain.
- Oct 2010 (Contributed) *Type-la SDSS-II/SNe properties as a function of the distance to their host galaxies.* SDSS-II/SN Collaboration Meeting, Argonne National Laboratory, IL, USA.

Participation and responsibilities in international collaborations

2018 - present	Member of the Electro-magnetic counterparts of GW at the VLT (ENGRAVE). MUSE instrument scientist (with J. Lyman).
2016 - present	Member of the J-PLUS collaboration. Leading the SN environments working group.
2016 - present	Full member of the LSST Dark Energy Science Collaboration (DESC). Served in the Publication Board committee (2019-2021).
	Serving as a co-chair of the Speakers Bureau (2021-present).
2016 - present	External collaborator of the Hyper Suprime Cam Survey (HSCS) for SNe II and SLSNe.
2016 - 2021	Member (until 2019; EC since then) of the Sloan Digital Sky Survey IV (SDSS-IV). PI of an ancillary program in MaNGA to observe SN host galaxies.
2015 - present	Member (EC until 2021) of the Dark Energy Survey (DES). Leading the SNII working group.
2015 - 2016	Member of the Chilean Scientific Coordination Committee for the LSST.
2013 - present	Member of Public ESO Spectroscopic Survey of Transient Objects (PESSTO \rightarrow ePESSTO+). Serving as the ePESSTO+ Ombudsperson, and in the Target And Alert (TAT) committee. PI of the <i>SN environments</i> and the <i>SNIa cosmology in the NIR</i> science groups.
2011 - 2017	Associate member of the Calar Alto Legacy Integral Field Area Survey (CALIFA). Responsible of the external ancillary data catalogues.
2008 - 2014	External member of the Sloan Digital Sky Survey II - Supernova Survey (SDSS-II/SNe).
2006 - 2011	Participant member of the Dark Energy Survey (DES)

Major collaborators

J. P. Anderson (ESO, Chile), S. Gónzalez-Gaitán (CENTRA, Portugal), M. Phillips (Carnegie Obs.), E. Hsiao (FSU), S. F. Sánchez (UNAM, México), M. Stritzinger (Aarhus), H. Kuncarayakti (U. Turku, Finland), F. Förster (CMM, U. Chile), I. Domínguez (UGR, Spain), M. Hamuy (DAS, U. Chile), C. Badenes (U. Pittsburgh), M. A. Pérez-Torres (IAA-CEFCA), M. Mollá (CIEMAT, Spain), A. R. López-Sánchez (Macquire U.), F. F. Rosales-Ortega (INAOE, México), Y. Ascasibar (UAM, Spain), J. M. Vílchez (IAA, Spain), A. M. Mourão (IST, Lisbon), R. Miquel (IFAE-UAB, Spain).

Observing experience

— As a Principal investigator (PI):

Hubble Space Telescope (HST) 2.4m / WFC3 Cycle 29. 16741, 218 orbits (Service mode; SM). Cerro Paranal Observatory (CPO) 8.1m UT4 / MUSE 20B. 106.2104.001, 53 hours (SM). 17A. 099.D-0022(A), 45 hours (SM). 16B. 098.D-0115(A), 99 hours (SM). 14B. 60.A-9329(A), 4 hours (SM). 14B. 60.A-9329(A), 4 hours (SM). 22A. 0109.22Y8.001, 3 hours (SM). 19B. 0104.D-0498(A), 36 hours (SM). 8.1m UT4 / HAWKI 22A. 0109.22WW.001, 66 hours (SM).

```
6.5m Baade Telescope / FIRE
                                                      16B. CN2016B-17, 2 nights (Visitor mode; VM).
                       6.5m Clay Telescope / LDSS3
                                                      16B. CN2016B-16, 4 nights (VM).
    Observatorio Roque de Los Muchachos (ORM)
            2.5m Nordic Optical Telescope / NOTCam
                                                      22A. 38-NOT2/22A, 6 half-nights.
                                                      21B. 74-NOT10/21B, 6 half-nights.
                                                      21A. 58-NOT4/21A, 6 half-nights.
                                                      20B. 6-NOT2-A/20B, 6 half-nights.
                                                      22A. 49-MULTIPLE-2/22A, 14 hours.
              10.4m Gran Telescopio Canarias / EMIR
                                                      21B. 57-GTC36/21A, 18 hours.
                                                      20B. 5-GTC3/20B, 20 hours.
                                                      22A. 49-MULTIPLE-2/22A, 10 hours.
             10.4m Gran Telescopio Canarias / OSIRIS
                                                      20B. 11-GTC9/20B, 6 hours (ToO).
                                                      20A. 76-GTC52/20A, 10 hours (ToO).
           4.5m William Herschel Telescope / PFQHY
                                                      21B. SW2021a13, 16h (SM).
                                                      21B. SW2021a26, 28h (SM).
       4.5m William Herschel Telescope / ACAM-LIRIS
                                                      20A. 150-WHT5/20A, 4 nights.
                          Gemini Observatory (GO)
                              8.2m G-North / GMOS
                                                      18B. NOAO-2018B-0060, 10 hours (SM).
                                                      18A. NOAO-2018A-0125, 1.1 hours (SM).
                                                      18A. NOAO-2018A-0040, 10 hours (SM).
                             8.2m G-South / GMOS
                                                      15B. GS-2015B-Q-8, 10 hours (SM).
  Cerro Tololo Inter-American Observatory (CTIO)
                1.3m SMARTS telescope / ANDICAM
                                                      19A. 2019A-0081, 42 hours (SM).
                                                      18B. 2018B-0016, 42 hours (SM).
                                                      18A. 2018A-0047, 30 hours (SM).
Centro Astronómico Hispano de Andalucía (CAHA)
                       3.5m telescope / OMEGA2000
                                                      22A. 22A-3.5-002, 4 nights (VM).
                                                      21B. 21B-3.5-003, 4 nights (VM).
                                                      21A. F21-3.5-003, 4 nights (SM).
                                                      20B. H20-3.5-002, 4 nights (SM).
                        3.5m telescope / PMAS-Ppak
                                                      22A. 22A-3.5-011, 5 nights (VM).
                                                      20B. H20-3.5-001, 4 nights (VM).
                                                      20A. F20-3.5-008, 5 nights (VM).
                                                      18B. H18-3.5-008, 6 nights (VM).
                                                      18A. F18-3.5-001, 3 nights (SM).
                                                      17B. H17-3.5-001, 2 nights (SM).
                                                      17A. F17-3.5-001, 3 nights (SM).
                                                      16B. H16-3.5-012, 2 nights (SM).
                                                      16A. F16-3.5-006, 5 nights (SM).
                                                      15B. H15-3.5-004, 4 nights (VM).
       Astronomical Australian Observatory (AAO)
                       4.2m AAT telescope / KOALA
                                                      18A. A/2018A/19, 11 nights (VM).
    Observatorio Astroómico de Javalambre (OAJ)
                           0.8m telescope / T80Cam
                                                      21A. 2000182, 44.24 hours (SM).
                                                      20B. 2000177, 47.52 hours (SM).
                                                      20A. 1900165, 47.52 hours (SM).
                                                      19B. 1900154, 47.52 hours (SM).
                                                      19A. 1800146, 46.9 hours (SM).
      Observatori Astronòmic del Montec (OAdM)
                           0.8m telescope / T80Cam
                                                      22A. p389, 45 hours (remote).
                                                      21B. p351, 45 hours (remote).
                 Apache Point Observatory (APO)
```

Las Campanas Observatory (LCO)

— As a co-principal investigator (co-PI), or co-investigator (col) but involved in observations:

```
ORM / 3.6m TNG Telescope / DOLORES
                                                      22A. 50-TNG4/22A, 8h PI: Gonzélez.
    JWST / 6.5m James Webb Space Telescope / MIRI
                                                      Cycle 1. #02114, 21.1h. PI: Ashall.
JWST / 6.5m James Webb Space Telescope / NIRSPEC
                                                      Cycle 1. #02122, 22.1h. PI: Ashall.
         HST / 2.4m Hubble Space Telescope / WFC3
                                                      Cycle 28. #16287, 210 Snapshot targets. PI: Lyman.
          HST / 2.4m Hubble Space Telescope / STIS
                                                      Cycle 28. #16190, 62 orbits. PI: Brown.
         HST / 2.4m Hubble Space Telescope / WFC3
                                                      Cycle 28. #16275, 18 orbits. PI: Tanvir.
             CAHA / 2.2m CAHA Telescope / CAFOS
                                                      20A. F20-2.2-023, 5 nights. PI: Morales.
         HST / 2.4m Hubble Space Telescope / WFC3
                                                      Cycle 27. #15889, 77 orbits. PI: Jha.
                           CPO / 8.1m UT4 / MUSE
                                                      19B. 104.D-0503(A)-(B), 99 hours (SM). PI: Anderson.
               CAHA / 3.5m telescope / PMAS-Ppak
                                                      19B. H19-3.5-002, 6 nights (VM). PI: Domínguez.
               \textbf{CAHA} \ / \ 3.5 m \ telescope \ / \ PMAS-Ppak
                                                      19A. F19-3.5-001, 4 nights (VM). PI: Domínguez.
                           CPO / 8.1m UT4 / MUSE
                                                      19A. 103.D-0440(A)-(B), 99 hours (SM). PI: Anderson.
         HST / 2.4m Hubble Space Telescope / WFC3
                                                      Cycle 26. #15664, 90 orbits. PI: Levan.
                           CPO / 8.1m UT4 / MUSE
                                                      18B. 102.B-0628(A), 22 hours (SM). PI: López-Sánchez.
                           CPO / 8.1m UT4 / MUSE
                                                      18B. 102.D-0095(A), 99 hours (SM). PI: Anderson.
                           CPO / 8.1m UT4 / MUSE
                                                      18A. 101.D-0748(A), 99 hours (SM). PI: Kuncarayakti.
             CAHA / 2.2m CAHA Telescope / CAFOS
                                                      17B. H17-2.2-023, 10 nights. PI: Moreno-Raya.
                        GO / 8.2m G-South / GMOS
                                                      17B. CL-2017B-015, 12 hours (SM). PI: Olivares
                           CPO / 8.1m UT4 / MUSE
                                                      17B. 100.D-0341(A), 99 hours (SM). PI: Kuncarayakti.
                 LCO / 6.5m Baade Telescope / FIRE
                                                      17A. CL-2017A-XXX, 1 night. PI: González-Gaitán.
  LCO / 6.5m Baade/Clay Telescopes / IMACS/LDSS3
                                                      17A. CL-2017B-046, 4 nights. PI: Förster.
                        GO / 8.2m G-South / GMOS
                                                      16B. CL-2016B-009, 14 hours (SM). PI: González-Gaitán
               LCO / 6.5m Baade Telescope / IMACS
                                                      16A. CL-2016A-XXX, 1 night. PI: Kuncarayakti.
               LCO / 6.5m Baade Telescope / IMACS
                                                      16A. CL-2016A-XXX, 0.5 nights. PI: Förster.
                           CPO / 8.1m UT4 / MUSE
                                                      16A. 097.D-0408(A), 99 hours (SM). PI: Anderson.
                           CPO / 8.1m UT4 / MUSE
                                                      15B. 096.D-0296(A), 99 hours (SM). PI: Anderson.
                 LCO / 6.5m Clay Telescope / LDSS3
                                                      15B. CL-2015B-XXX, 4 nights. PI: González-Gaitán.
           LSO / 3.5m NTT Telescope / EFOSC-SOFI
                                                      15B. —, 4 nights. PI: Smartt.
                           CPO / 8.1m UT4 / MUSE
                                                      15A. 095.D-0091(B), 99 hours (SM).
             CPO / 8.1m UT1 VLT Telescope / MUSE
                                                      15A. —, 4 nights. PI: Kuncarayakti.
               CTIO / 4m Blanco Telescope / DECam
                                                      15A. —, 6 nights. PI: Förster.
                ORM / 10m GTC Telescope / OSIRIS
                                                      14B. —, 22 hours. PI: Moreno-Raya.
           LSO / 3.5m NTT Telescope / EFOSC-SOFI
                                                      14B. —, 4 nights. PI: Smartt.
                                                      14A. CL-2014A-XXX, 1 night. PI: Kuncarayakti.
               LCO / 6.5m Baade Telescope / IMACS
               CTIO / 4m Blanco Telescope / DECam
                                                      14A. —, 5 nights. PI: Förster.
               ORM / 4.2m WHT Telescope / ACAM
                                                      14A. —, 4 nights. PI: Moreno-Raya.
              CAHA / 3.5m CAHA Telescope / PMAS
                                                      13A. —, 4 nights. PI: Sánchez.
               ORM / 3.6m TNG Telescope / OSIRIS
                                                      07B. —, 2 nights. PI: Castander.
```

Organization of scientific meetings and seminar series

```
May 2022
           LOC member of the 16th Iberian Cosmology (IberiCOS) 2022 meeting, May 4-6.
Sep 2021
           SOC member of the Encontro Nacional de Astronomia e Astrofisica (ENAA) 2021, Sep 8-10.
 Jul 2020
           SOC member of the Dark Energy Science Collaboration (DESC) virtual meeting, Jul 20-24.
Jun 2020
            Chair of the special session Supernova host environments at the EAS 2020, Leiden, NL.
Mar 2020
           SOC member of the Public Surveys and new instrumentation for Calar Alto Observatory workshop,
            Granada, Mar 12-13.
Jan 2020
           Organizer of the workshop CRISPINHO: Correcting reddening intelligently for cosmological super-
            nova probes, Granada, Jan 27-31.
Sep 2019
            Organizer of the workshop The future of SN host galaxies studies II, Southampton, UK, Sep 23-25.
Jan 2019
            Organizer of the workshop The future of SN host galaxies studies, Pittsburgh, USA, Jan 22-24.
```

Organizer of the workshop New advances in NIR SNIa science, Pittsburgh, USA, April 11-13.

Apr 2018

- Mar 2018 Organizer of the workshop SN II cosmology in the LSST, Pittsburgh, USA, March 5-9.
- 2017 2019 Organizer of the Astro Seminars at the Department of Physics and Astronomy U. Pittsburgh.
 - Nov 2016 Organizer of the workshop *Preparing for supernova science in the LSST era: a kick-off workshop*, Pittsburgh, USA, November 16-18.
 - Nov 2016 LOC member of the DEC LSST Hack Week, Pittsburgh, US, November 7-11.
 - Aug 2016 LOC member of the conference Supernovae through the ages: understanding the past to prepare for the future, Easter Island, Chile, August 9-13. Funding: several sources including ESO-Chile, AURA, Carnegie observatories, MAS, and CASSACA.
 - Aug 2016 Organizer of the workshop *SIDH: Supernova is in da house*, Santiago, Chile, August 1-5. Funding: \$200,000 CLP from the Millennium Institute for Astrophysics (MAS).
- 2014 2015 Organizer of 'Supernova Journal Club' seminar series (DAS).
- 2009 2010 Organizer of PhD students 'Thursday's Meeting seminar series (IFAE).

Research visits

Oct 2019 Instituto de Astronomía, UNAM, Mexico City

Quality control pipeline for the AMUSING survey.

Collaborator: Prof. Sebastián Sánchez.

Oct 2019 Carnegie Observatories, Pasadena

Preparation of the next stage of the Carnegie Supernova Project (CSP).

Collaborator: Dr. Christopher Burns.

Jul 2019 Universidade de Lisboa, Portugal.

Correcting reddening intelligently for cosmological supernova probes (CRISP).

Collaborator: Dr. Santiago González-Gaitán.

Nov 2018 European Southern Observatory (ESO), Chile.

Executive meeting for the AMUSING survey.

Collaborator: Dr. Joseph Anderson.

Oct 2018 University of Southampton, UK.

SN Ia environments with IFS.

Collaborators: Dr. Matthew Smith and Prof. Mark Sullivan.

May 2018 Macquaire University, AUS.

IFS observations with KOALA.

Collaborator: Dr. Ángel R. López-Sánchez.

Feb 2018 University of Berkeley, US.

Type II SN cosmology in the Dark Energy Survey.

Collaborator: Dr. Thomas de Jaeger.

Jun 2017 Centro Inv. Energéticas, Medioambientales y Tecnológicas (CIEMAT), SPAIN.

Intermediate redshift type la supernova host galaxies.

Collaborator: Dra. Mercedes Mollá

Mar 2017 University of Turku, FINLAND. Under the FINCA visitor program.

Integral Field Spectroscopy of SN host galaxies.

Collaborator: Dr. Hanindyo Kuncarayakti, Dr. Seppo Matila.

Feb 2017 University of Berkeley, US.

Type II supernova cosmology.

Collaborator: Dr. Thomas de Jaeger.

Jun 2016 Centro Inv. Energéticas, Medioambientales y Tecnológicas (CIEMAT), SPAIN.

Metallicity dependence on SN la luminosity.

Collaborator: Dra. Mercedes Mollá

Feb 2016 University of Pittsburgh, US.

Type Ia supernova cosmology in the NIR.

Collaborators: Dr. Michael Wood-Vasey and Dr. Carles Badenes.

Jun 2015 Instituto de Astrofísica de Canarias, SPAIN.

Spectroscopic characterization of SN 2014J.

Collaborators: Dr. Jonay I. González

Jun 2014 University of Southampton & Institute of Cosmology and Gravitation, Portsmouth, UK.

Supernova science with DECam.

Collaborators: Dr. Francisco Förster, Dr. Mark Sullivan, Dr. Robert Nichol

Apr 2013 Departamento de Astronomía, Universidad de Chile, CHILE.

Core-collapse and type Ia SNe environmental studies.

Collaborators: Dr. Joseph Anderson

Jan 2013 Centro Inv. Energéticas, Medioambientales y Tecnológicas (CIEMAT), SPAIN.

Type Ia SN standardization accounting for host galaxy metallicity.

Collaborator: Dra. Mercedes Mollá

Feb 2007 Fermi National Laboratory (FNAL), US

Studies related to DES CCD characterization.

Supervisors: Dra. Brenna Flaugher and Dr. Juan Estrada

Press and outreach

04/11/0001	Λ. I					N 4 1 1	ь.
24/11/2021	Outreach	talk at I	Alzına	primary	school.	Molins de	Rei.

- 18/03/2021 Two outreach talks at the mental health unit of the juvenile detention center Els Til·lers.
- 12/11/2020 Interview in La esfera celeste Astronomy blog (Link).
- 14/11/2019 Outreach talk at José Hurtado Primary school, Granada. "What is a star?" (IAU100).
- 08/11/2019 Participation in "Semana de la Ciencia" at UGR. Speaker in Stand 5 "Stellar evolution" (Link).
- 23/06/2018 "Perfils", interview in the online newspaper Nació digital (in Catalan, Nació Digital).
- 20/06/2018 Interview in the La Xarxa television (in Catalan, Vallès Oriental TV).
- 30/05/2018 'Career day' at the Environmental Charter School, outreach talk. Pittsburgh PA.
- 18/03/2016 "Supernovas, explosiones en el universo", outreach talk at the Colegio Su Santidad Juan XXIII, San Joaquín, Chile (in Spanish, Día de astronomia, CONICYT).
- 18/03/2016 "Supernovas, explosiones en el universo", outreach talk at the Colegio Malaquias Concha, La Granja, Chile (in Spanish, Día de astronomia, CONICYT).
- 01/12/2015 "Supernovas, explosiones estelares", outreach talk at the Liceo Bicentenario Zapallar high school, Curicó, Chile (in Spanish, http://www.astrofisica.cl/?p=4904).
- 30/11/2015 "Supernovas, explosiones estelares", outreach talk at the Liceo Complejo Educacional Javiera Carrera high school, Talca, Chile (in Spanish, http://www.astrofisica.cl/?p=4904)
- 13/04/2015 "Qué son los meteoritos?", outreach talk at the Pintacuentos primary school, Las Condes, Chile (in Spanish, http://www.astrofisica.cl/?p=4287).
- 03/02/2014 "Esclata la Supernova més propera a la Terra des de 1604", press article in the online newspaper Nació digital (in Catalan, Nació Digital).
- 10/02/2014 "Un granollerí que estudia l'Univers a Santiago de Xile", short interview for the La Xarxa television (in Catalan, Vallès Oriental TV).
- 28/12/2012 "Supernovas, la llave del lado oscuro del Universo", outreach talk at the llatargi Astronomical Association, Oñati, Spain (in Spanish, El Correo).

Languages

Catalan Native speaker Spanish Native speaker English CEFR C1

CEFR A2.

Portuguese

Astronomical society membership

2019 - present European Astronomical Society (EAS)

2016 - present Sociedad Española de Astronomía (SEA)

2015 - 2016 Sociedad Chilena de Astronomía (SOCHIAS)

Other merits

- Reviewer for journals: ApJL, ApJ & AJ (US), MNRAS (UK), JCAP (UK/IT), Galaxies (Switzerland).
- May 2021 Reviewer for the Hubble Space Telescope Cycle 29 proposals.
- 2020-2021 ESO Observing Programmes Committee (OPC) Panel member for periods P106, P108 (P107 cancelled), and P109.
- Apr 2020 Profesor Contratado Doctor credential awarded from the Agencia Nacional de Evaluación de la Calidad y Acreditación (ANECA).
- Oct 2019 Reviewer for the Hubble Space Telescope Cycles 26 and 27 Mid-cycle proposals.
- May 2019 CIRTL course on Diversity in the College Classroom.
- Apr 2019 Lecturer (*Lector*) credential issued by the Agència per a la Qualitat Universitària (AQU) de Catalunya.
- Dec 2018 Associate certification from the Center for the Integration of Research, Teaching, and Learning (CIRTL), University of Pittsburgh.
- 2017 DDT External reviewer for the Spanish Time Allocation Committee (CAT) of the Instituto de Astrofísica de Canarias (IAC).
 - Jul 2016 Member of the Tribunal in Manuel Moreno-Raya PhD thesis defense.
- 2016A semester External reviewer for the Spanish Time Allocation Committee (CAT) of the Instituto de Astrofísica de Canarias (IAC).
 - Dec 2015 Tenured assistant professor (*Recerca*) credential issued by the Agència per a la Qualitat Universitària (AQU) de Catalunya.
 - Jun 2011 Training Program for Higher Education Teachers (FDES-UAB).
 - Jun 2010 Corrector of University Access Exams (PAU).
 - 2008 Radiological protection program at UTPR (UAB).