华中农业大学本科课程考试试卷

考试课程与试卷类型: 概率论与数理统计 B 姓名:

学年学期: 14-15-1 学号:

考试时间: 班级:

 $u_{0.975}=1.96$

 $F_{0.975}(5,5)=7.15$, $F_{0.95}(2,15)=3.68$, $F_{0.95}(1,5)=5.79$

 $t_{0.975}(5)=2.5706, t_{0.975}(10)=2.2281$

- 一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。答案错选或未选者,该题不得分。每小题 3 分,共 15 分。)
- 1.设 $X \sim N(\mu, \sigma^2), X_1, X_2, ..., X_n$ 是来自 X 的样本,则 σ^2 的无偏估计量是()

$$(A)\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2};\quad (B)\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2};$$

$$(C) \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu)^2; \quad (D) \frac{1}{n+1} \sum_{i=1}^{n} (X_i - \mu)^2;$$

2.设 $X \sim N(2,4^2), X_1, X_2, X_n$ 是来自 X 的样本,则下面结果正确的是()

$$(A)\frac{\overline{X}-2}{4} \sim N(0,1); \quad (B)\frac{\overline{X}-2}{16} \sim N(0,1); \quad (C)\frac{\overline{X}-2}{2} \sim N(0,1); \quad (D)\frac{\overline{X}-2}{4/\sqrt{n}} \sim N(0,1).$$

3.设 X~N(μ , σ^2), X_1 , X_2 ,..., X_n 是来自 X 的样本,则 $Y = \sum_{i=1}^n (\frac{X_i - \mu}{\sigma})^2$ 服从分布()

(A)
$$\chi^2(n-1)$$
; (B) $\chi^2(n)$; (C) $t(n-1)$; (D) $t(n)$.

- 4.设 $X\sim N(\mu,\sigma^2)$, σ^2 已知,则总体均值 μ 的置信区间长度 L 与置信度 1- α 的关系是()
- (A)当 1-α缩小时, L 缩短; (B) 当 1-α缩小时, L 增大;
- (C) 当 $1-\alpha$ 缩小时, L 不变; (D) 以上说法都不对.
- 5.假设检验中,显著性水平α表示 ()
- (A)H₀为假, 但接受 H₀的概率; (B) H₀为真, 但拒绝 H₀的概率;
- (C)H₀为假,且拒绝 H₀的概率; (D)可信度.
- 二、填空题(将下列各题的一个或多个正确答案写在答题纸相应位置处。答案写错的,该题不得分。每空3分,共15分。)
- 1. 设 $X \sim N(\mu, \sigma^2)$, μ 为未知参数, σ^2 已知, X_1, X_2, \dots, X_n 是来自 X 的样本,作样本函数如下:
- ① $(1/2)X_1 + (1/2)X_2 + (1/6)X_3$; ② $\frac{1}{n}\sum_{i=1}^n (X_i \mu)^2$; ③ $\overline{X} = \frac{1}{n}\sum_{i=1}^n X_i$; ④ X_1 ; ⑤ $\sum_{i=1}^n \frac{X_i^2}{\sigma^2}$

这些函数中是统计量的有(); 是 μ 的无偏估计量的有(); 最有效的是().

- 2. 设 $X \sim P(\lambda), \lambda$ 为未知参数, X_1, X_2, \dots, X_n 是来自 X 的样本,则 P(X=0) 的极大似然估计量为()
- 3. 假设总体 X 服从正态分布 N(1,0.2²), X₁, X₂,..., X_n是 X 的一个样本,要使样本均值 \overline{x} 满足概率不等式 $P(0.9 \le \overline{X} \le 1.1) \ge 0.95$,则样本容量 n 最小应取()
- **三、解答题**(每小题 10 分, 共 20 分)在下列情形下求总体 X 的未知参数 θ 的矩估计量和极大似 然估计量:

$$(1)P(X = k) = \theta(1-\theta)^{k-1}, k = 1,2,...,$$
 \sharp $\theta < 0 < 1;$

$$(2) p(x,\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0 & 其它 \end{cases}$$

四、(20分)测得两批电子器件的样品的电阻(欧)为

设这两批器材的电阻值总体 X、Y 分别服从分布 $N(\mu_1, \sigma_1^2)$, $N(\mu_2, \sigma_2^2)$, μ_1 , μ_2 , σ_1^2 , σ_2^2 均未知,且两样本独立。(1)检验假设(α =0.05)

$$H_{0}^{'}:\sigma_{1}^{2}=\sigma_{2}^{2};H_{0}^{'}:\sigma_{1}^{2}\neq\sigma_{2}^{2}$$

(2) 在 (1) 的基础上检验假设 (α=0.05)

 H_0 : $\mu_1 = \mu_2$; H_1 : $\mu_1 \neq \mu_2$

(己知: $\overline{X} = 0.1407$, $\overline{Y} = 0.1385$, $S_x^{*2} = 7.9 \times 10^{-6}$, $S_y^{*2} = 7.1 \times 10^{-6}$)

五、(10分)抽查某地区 3 所小学五年级男学生的身高数据见下表。问这所小学五年级男学生 的平均身高是否有显著差异(α=0.05)?(设各个总体服从正态分布,且方差相 等.)

当 :	丝校	身高数据									
	1	128.1	134.1	133.1	138.1	140.8	127.4				
	2	150.3	147.9	136.8	126.0	150.7	155.8				
	3	140.6	143.1	144.5	143.7	148.5	146.4				

六、(20分)在钢丝碳含量对于电阻的效应的研究中,得到以下数据:

碳含量 x (%)	0.1	0.3	0.4	0.55	0.70	0.80	0.95
电阻 y (20°C 时, μΩ)	15	18	19	21	22.6	23.8	26

且设对于给定的 x, y 是服从正态分布的随机变量.

求(1)y对于 x 的线性回归方程;

- (2)检验假设 $H_0:b=0$; $H_1:b\neq 0$ ($\alpha=0.05$);
- (3)若回归效果显著,求b的置信度为0.95的置信区间;

(4)求 x=0.5 处的置信度为 0.95 的预测区间。

