Intro: Difficulty and Advantage in Quantitate Investment

- Difficulty: noisy and unstable
- Advantage: option to say I don't know
- Scheme 1: observation $\xrightarrow{ML \ models}$ prediction $\xrightarrow{strategy}$ trading signal
 - Problem: hard to train ML models (due to the difficulty we did not make use of the advantage)
 - Possible solution: train ML model that yields not only prediction but also calibrated confidence (how to label confidence? i.e. predictable cases and unpredictable cases)

RL

- Scheme 2: observation → trading signal
 - Suffer from the difficulty at the same time benefit from the advantage

Deterministic Policy Gradient

Silver, David, et al. "Deterministic policy gradient algorithms." ICML. 2014.

Recap: Stochastic Policy Gradient Theorem

- Stochastic policy: $\pi_{\theta}(s, a) = \mathbb{P}[a|s, \theta]$
- RL as maximization: $J(\pi_{\theta}) = \int_{\mathcal{S}} \rho^{\pi}(s) \int_{\mathcal{A}} \pi_{\theta}(s, a) r(s, a) da \ ds$, where $\rho^{\pi}(s) = \int_{\mathcal{S}} \sum_{t=1}^{\infty} \gamma^{t-1} p_1(s') p(s' \to s, t, \pi) ds'$
- Policy gradient theorem (Sutton, 1999)*

$$\nabla_{\theta} J(\pi_{\theta}) = \int_{\mathcal{S}} \rho^{\pi}(s) \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(a|s) Q^{\pi}(s, a) dads$$
$$= \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s, a) \right]$$

- Key: how to estimate $Q^{\pi}(s, a)$?
 - REINFORCE (William, 1988, 1992): use MC (no bias, slow, high variance)

Recap: Actor-critic and Compatible function

- Actor-critic:
 - actor $\rightarrow \pi_{\theta}(s, a)$; update along $\nabla_{\theta} J_{\theta}(\pi_{\theta})$
 - critic $\rightarrow Q^w(s,a)$; update via any value function estimation algorithm
- Use function approximation to estimate $Q^w(s,a) \to Q^{\pi}(s,a)$
- Without bias: compatible function approximator*
 - $Q^w(s, a) = \nabla_{\theta} \log \pi_{\theta}(a|s)^T w$
 - $w = \arg\min \epsilon^2(w) = \arg\min \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} [(Q^w(s, a) Q^{\pi}(s, a))^2]$

 $^{\frac{5}{2}5/18}$ Proof on Sutton, et al. *Policy gradient methods for reinforcement learning with function approximation*. NIPS $^{\frac{4}{2}000}$.

Recap: Off-policy

- Off-policy: to explore more efficiently, especially when target policy is deterministic
- Off-policy policy gradient theorem*

$$J(\pi_{\theta}) = \int_{\mathcal{S}} \rho^{\pi}(s) \int_{\mathcal{A}} \pi_{\theta}(s, a) Q^{\pi}(s, a) da \, ds$$
$$\rightarrow J_{\beta}(\pi_{\theta}) = \int_{\mathcal{S}} \rho^{\beta}(s) \int_{\mathcal{A}} \pi_{\theta}(s, a) Q^{\pi}(s, a) da \, ds$$

$$\nabla_{\theta} J_{\theta}(\pi_{\theta}) = \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi} [\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi}(s, a)]$$

$$\rightarrow \nabla_{\theta} J_{\beta}(\pi_{\theta}) \approx \mathbb{E}_{s \sim \rho^{\beta}, a \sim \beta} \left[\frac{\pi_{\theta}(s, a)}{\beta_{\theta}(s, a)} \nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi}(s, a) \right]$$

From Stochastic to Deterministic

- All the above conclusion are based on stochastic policy gradient
- When target policy is deterministic, gradient computation doesn't need to sum over action space, thus faster.

• On-policy:
$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{s \sim \rho} \pi_{,a \sim \pi} [\nabla_{\theta} \log \pi_{\theta}(s,a) Q^{\pi}(s,a)]$$

 $\rightarrow \nabla_{\theta} J(\mu_{\theta}) = \mathbb{E}_{s \sim \rho} \mu \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu}(s,a) \Big|_{a = \mu_{\theta}(s)} \right]^{*}$

• Off-policy:
$$\nabla_{\theta}J_{\beta}(\pi_{\theta}) \approx \mathbb{E}_{s \sim \rho^{\beta}, a \sim \beta} \left[\frac{\pi_{\theta}(s, a)}{\beta_{\theta}(s, a)} \nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi}(s, a) \right]$$

$$\rightarrow \nabla_{\theta}J_{\beta}(\mu_{\theta}) \approx \mathbb{E}_{s \sim \rho^{\beta}} \left[\nabla_{\theta}\mu_{\theta}(s) \nabla_{a}Q^{\mu}(s, a) \Big|_{a = \mu_{\theta}(s)} \right]$$

From Stochastic to Deterministic

Deterministic case is a limit of stochastic case

Theorem 2. Consider a stochastic policy $\pi_{\mu_{\theta},\sigma}$ such that $\pi_{\mu_{\theta},\sigma}(a|s) = \nu_{\sigma}(\mu_{\theta}(s),a)$, where σ is a parameter controlling the variance and ν_{σ} satisfy conditions B.1 and the MDP satisfies conditions A.1 and A.2. Then,

$$\lim_{\sigma \downarrow 0} \nabla_{\theta} J(\pi_{\mu_{\theta},\sigma}) = \nabla_{\theta} J(\mu_{\theta})^{*} \tag{10}$$

where on the l.h.s. the gradient is the standard stochastic policy gradient and on the r.h.s. the gradient is the deterministic policy gradient.

sealzhang.tk

On-Policy Deterministic Actor-Critic

• (On-policy) deterministic policy gradient theorem

$$\nabla_{\theta} J(\mu_{\theta}) = \mathbb{E}_{s \sim \rho} \mu \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu}(s, a) \, \Big|_{a = \mu_{\theta}(s)} \right]$$

Sarsa used to estimate action-value function

$$\delta_t = r_t + \gamma Q^w(s_{t+1}, a_{t+1}) - Q^w(s_t, a_t)$$

$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w Q^w(s_t, a_t)$$

$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu_\theta(s_t) |\nabla_a Q^w(s_t, a_t)|_{a=\mu_\theta(s)}$$

Off-Policy Deterministic Actor-Critic

(Off-policy) deterministic policy gradient theorem

$$\nabla_{\theta} J_{\beta}(\mu_{\theta}) \approx \mathbb{E}_{s \sim \rho^{\beta}} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu}(s, a) \Big|_{a = \mu_{\theta}(s)} \right]$$

Q-learning used to estimate action-value function

$$\delta_t = r_t + \gamma Q^w(s_{t+1}, \mu_{\theta}(s_{t+1})) - Q^w(s_t, a_t)$$

$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w Q^w(s_t, a_t)$$

$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu_{\theta}(s_t) |\nabla_a Q^w(s_t, a_t)|_{a = \mu_{\theta}(s)}$$

Compatible Function with Deterministic Policy

Stochastic

- $\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi}(s, a)]$
- $Q^{W}(s, a) = \nabla_{\theta} \log \pi_{\theta}(a|s)^{T} w$
- $w = \arg\min \epsilon^2(w) = \arg\min \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} [(Q^w(s, a) Q^{\pi}(s, a))^2]$

Deterministic

- $\nabla_{\theta} J(\mu_{\theta}) = \mathbb{E} \big[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu}(s, a) |_{a = \mu_{\theta}(s)} \big]$
- $\nabla_a Q^w(s, a)|_{a=\mu_{\theta}(s)} = \nabla_{\theta} \mu_{\theta}(s)^T w$
- $w = \arg\min \epsilon^2(w) = \arg\min \mathbb{E}\left[\left(\nabla_a Q^w(s, a)|_{a=\mu_{\theta}(s)} \nabla_a Q^{\mu}(s, a)|_{a=\mu_{\theta}(s)}\right)^2\right]$
- Compatible (= no bias): $\nabla_{\theta} J(\mu_{\theta}) = \mathbb{E} \big[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{w}(s,a) |_{a=\mu_{\theta}(s)} \big]$

Specific Form of Compatible Function

- Deterministic
 - $\nabla_a Q^w(s,a)|_{a=\mu_{\theta}(s)} = \nabla_{\theta} \mu_{\theta}(s)^T w$
 - $w = \arg\min \epsilon^2(w) = \arg\min \mathbb{E}[\left(\nabla_a Q^w(s, a)|_{a=\mu_{\theta}(s)} \nabla_a Q^{\mu}(s, a)|_{a=\mu_{\theta}(s)}\right)^2]$
- $Q^{W}(s,a) = A^{W}(s,a) + V^{V}(s) = \phi(s,a)^{T}w + \phi(s)^{T}v = (a \mu_{\theta})^{T}\nabla_{\theta}\mu_{\theta}(s)^{T}w + \phi(s)^{T}v$
- This is defined to satisfy cond. 1. Use Q-learning to approximately satisfy cond. 2

Compatible Off-Policy Deterministic Actor-Critic (COPDAC)

•
$$Q^{w}(s, a) = \phi(s, a)^{T} w + \phi(s)^{T} v = (a - \mu_{\theta})^{T} \nabla_{\theta} \mu_{\theta}(s)^{T} w + \phi(s)^{T} v$$

$$\delta_{t} = r_{t} + \gamma Q^{w}(s_{t+1}, \mu_{\theta}(s_{t+1})) - Q^{w}(s_{t}, a_{t})$$

$$\theta_{t+1} = \theta_{t} + \alpha_{\theta} \nabla_{\theta} \mu_{\theta}(s_{t}) \left(\nabla_{\theta} \mu_{\theta}(s_{t})^{\top} w_{t} \right)$$

$$w_{t+1} = w_{t} + \alpha_{w} \delta_{t} \phi(s_{t}, a_{t})$$

$$v_{t+1} = v_{t} + \alpha_{v} \delta_{t} \phi(s_{t})$$

Gradient Q-learning to prevent diverge (COPDAC-GQ)*

$$\begin{split} \delta_t &= r_t + \gamma Q^w(s_{t+1}, \mu_\theta(s_{t+1})) - Q^w(s_t, a_t) \\ \theta_{t+1} &= \theta_t + \alpha_\theta \nabla_\theta \mu_\theta(s_t) \left(\nabla_\theta \mu_\theta(s_t)^\top w_t \right) \\ w_{t+1} &= w_t + \alpha_w \delta_t \phi(s_t, a_t) \\ &- \alpha_w \gamma \phi(s_{t+1}, \mu_\theta(s_{t+1})) \left(\phi(s_t, a_t)^\top u_t \right) \\ v_{t+1} &= v_t + \alpha_v \delta_t \phi(s_t) \\ &- \alpha_v \gamma \phi(s_{t+1}) \left(\phi(s_t, a_t)^\top u_t \right) \\ u_{t+1} &= u_t + \alpha_u \left(\delta_{t, \theta_t} \phi(s_t, a_t)^\top u_t \right) \phi(s_t, a_t) \end{split}$$

* For detail see Sutton's book chapter 11.7

Experiment: Continuous Bandit Task

Figure 1. Comparison of stochastic actor-critic (SAC-B) and deterministic actor-critic (COPDAC-B) on the continuous bandit task.

SAC-B (stochastic actor-critic): $\pi_{\theta,y}(\cdot) \sim \mathcal{N}(\theta, \exp(y))$ COPDAC-B: $\beta(\cdot) \sim \mathcal{N}(\mu_{\theta}, \sigma_{\beta}^2), \mu_{\theta} = \theta$

Experiment: Continuous RL

Figure 2. Comparison of stochastic on-policy actor-critic (SAC), stochastic off-policy actor-critic (OffPAC), and deterministic off-policy actor-critic (COPDAC) on continuous-action reinforcement learning. Each point is the average test performance of the mean policy.

15

SAC (stochastic actor-critic): $\pi_{\theta,y}(s,\cdot) \sim \mathcal{N}(\theta^T \phi(s), \exp(y^T \phi(s)))$ OffPAC (off-policy actor-critic): explore as $\beta(\cdot|s)$, learn a stochastic policy $\pi_{\theta,y}(s,\cdot)$ as SAC COPDAC: $\beta(\cdot|s) \sim \mathcal{N}(\mu_{\theta}(s), \sigma_{\beta}^2), \mu_{\theta}(s) = \theta^T \phi(s)$

Experiment: Octopus Arm

- Task: 6 segments attached to a rotating base; strike the target with any part of the arm
- 50 continuous state var.; 20 action var.

Figure 3. Ten runs of COPDAC on a 6-segment octopus arm with 20 action dimensions and 50 state dimensions; each point represents the return per episode (above) and the number of time-steps for the arm to reach the target (below).

Deep Deterministic Policy Gradient (DDPG)

Recap: Deep Q-learning

- Q-learning:
 - $Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') Q(s,a)]$
 - Policy π : $a \leftarrow \max_{a'} Q(s, a')$
- Learn NN parameters for Q-learning in stable and robust way
 - Replay buffer to minimize correlation between samples
 - Target Q network to give consistent target
- When action space is high-dimensional continuous space?
 - → Deterministic policy gradient

DDPG

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process N for action exploration

Receive initial observation state s_1

for
$$t = 1$$
, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set
$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for

Ornstein-Uhlenbeck process

Replay buffer

Critic network training (with batchnorm)

Actor network training (with batchnorm)

Target Q network and target policy network

Experiment

Input: 64x64(pixels)x3(rgb)x3(action repeat)

Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark grey), with target networks and batch normalization (green), with target networks from pixel-only inputs (blue). Target networks are crucial.

Experiment

Table 1: Performance after training across all environments for at most 2.5 million steps. We report both the average and best observed (across 5 runs). All scores, except Torcs, are normalized so that a random agent receives 0 and a planning algorithm 1; for Torcs we present the raw reward score. We include results from the DDPG algorithm in the low-dimensional (lowd) version of the environment and high-dimensional (pix). For comparision we also include results from the original DPG algorithm with a replay buffer and batch normalization (cntrl).

environment	$R_{av,lowd}$	$R_{best,lowd}$	$R_{av,pix}$	$R_{best,pix}$	$R_{av,cntrl}$	$R_{best,cntrl}$
blockworld1	1.156	1.511	0.466	1.299	-0.080	1.260
blockworld3da	0.340	0.705	0.889	2.225	-0.139	0.658
canada	0.303	1.735	0.176	0.688	0.125	1.157
canada2d	0.400	0.978	-0.285	0.119	-0.045	0.701
cart	0.938	1.336	1.096	1.258	0.343	1.216
cartpole	0.844	1.115	0.482	1.138	0.244	0.755
cartpoleBalance	0.951	1.000	0.335	0.996	-0.468	0.528
cartpoleParallelDouble	0.549	0.900	0.188	0.323	0.197	0.572
cartpoleSerialDouble	0.272	0.719	0.195	0.642	0.143	0.701
cartpoleSerialTriple	0.736	0.946	0.412	0.427	0.583	0.942
cheetah	0.903	1.206	0.457	0.792	-0.008	0.425
fixedReacher	0.849	1.021	0.693	0.981	0.259	0.927
fixedReacherDouble	0.924	0.996	0.872	0.943	0.290	0.995
fixedReacherSingle	0.954	1.000	0.827	0.995	0.620	0.999
gripper	0.655	0.972	0.406	0.790	0.461	0.816
gripperRandom	0.618	0.937	0.082	0.791	0.557	0.808
hardCheetah	1.311	1.990	1.204	1.431	-0.031	1.411
hopper	0.676	0.936	0.112	0.924	0.078	0.917
hyq	0.416	0.722	0.234	0.672	0.198	0.618
movingGripper	0.474	0.936	0.480	0.644	0.416	0.805
pendulum	0.946	1.021	0.663	1.055	0.099	0.951
reacher	0.720	0.987	0.194	0.878	0.231	0.953
reacher3daFixedTarget	0.585	0.943	0.453	0.922	0.204	0.631
reacher3daRandomTarget	0.467	0.739	0.374	0.735	-0.046	0.158
reacherSingle	0.981	1.102	1.000	1.083	1.010	1.083
walker2d	0.705	1.573	0.944	1.476	0.393	1.397
torcs seal	zh 393.1385	1840.036	-401.911	1876.284	-911.034	1961.600