

- What is a neural network?
- How do we structure it?
- How do we train it?
- How do we implement it?

NEURONS

ARTIFICIAL NEURONS

ARTIFICIAL NEURAL NETWORKS

HOWEVER ...

... a neural network has absolutely nothing to do with a brain.

NOTATION: WEIGHTS AND BIASES

PERCEPTRONS

THE SNACK EXAMPLE

You just sat down in the couch to watch your favorite tv show! Is it really worth it to get up again to get some snacks?

THE SNACK EXAMPLE II

You decide that you absolutely want snacks.

Luckily, your partner is not sitting in the couch!

THE SNACK EXAMPLE II

You decide that you absolutely want snacks.

Luckily, your partner is not sitting in the couch!

TRAINING A NEURAL NETWORK

THIS LEAVES TWO QUESTIONS

THE TENSORFLOW PLAYGROUND

playground.tensorflow.org

- What is a neural network?
- How do we structure it?
- How do we train it?
- How do we implement it?

HOW TO STRUCTURE THE NETWORK

- What is a neural network?
- How do we structure it?
- How do we train it?
- How do we implement it?

HOW TO OPTIMIZE WEIGHTS AND BIASES

Longitude & latitude:

Altitude:

GRADIENT DESCENT

I. Find the direction in which the descent is steepest

2. Take a step in that direction

3. Repeat until you reach the bottom

THE LEARNING RATE

STOCHASTIC GRADIENT DESCENT

Don't update weights and biases based on all your data every time. Instead,

,

BUT WHAT IF ...

SUDDEN CHANGES

1. Perceptrons

2. The number of misclassifications

FIXING THE PERCEPTRON PROBLEM

output =
$$\begin{cases} 0 & \text{if } wx + b \le 0 \\ 1 & \text{if } wx + b > 0 \end{cases}$$

$$output = \frac{1}{1 + e^{-(wx+b)}}$$

DIFFERENT ACTIVATION FUNCTIONS

sigmoid tanh ReLU

ACTIVATION IN THE OUTPUT LAYER

FIXING THE ACCURACY PROBLEM

THE LOSS FUNCTION

The quadratic loss function

$$L(\boldsymbol{w}, \boldsymbol{b}) = \frac{1}{2n} \sum_{x} ||y(x) - a(x, \boldsymbol{w}, \boldsymbol{b})||^{2}$$

but usually we use

Example from before

$$y(x_1) = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

$$u(x_1, \mathbf{w}, \mathbf{b}) = \begin{bmatrix} 0.1 \\ 0.8 \\ 0.07 \\ 0.03. \end{bmatrix}$$

- What is a neural network?
- How do we structure it?
- How do we train it?
- How do we implement it?

LET'S TRY TO MAKE ONE

Jupyter Notebook Neural networks - Digits

