PRATICA 2: MICRÔMETRO

1 Objetivos

• Conhecimento do micrômetro e familiarização com seu uso.

2 Material

- Micrômetro
- Esfera

- Tarugo
- Folha de papel
- Lâmina de barbear
- Fios

3 Fundamentos

O micrômetro é um instrumento de medida portátil de boa precisão quando que pode ser usado para medir as dimensões de um objeto. A sua faixa de medição está normalmente restrita a 25 milímetros(mais ou menos uma polega) o que restringe bastante seu uso. A Figura 1 mostra as várias partes que compõem um micrômetro.

Figure 1: Micrômetro

- 1. Faces Medição
- 2. Batente
- 3. Fuso
- 4. Bainha
- 5. Bucha Interna
- 6. Porca de Ajuste

- 7. Arco
- 8. Isolante Térmico
- 9. Trava
- 10. Linha de Referência
- 11. Tambor
- 12. Catraca

3.1 Princípio de Funcionamento do Micrômetro

O princípio de funcionamento do micrômetro é semelhante ao sistema parafuso porca como pode ser visto na Figura 2. Cada volta do parafuso corresponde ao avanço de um passo, dividindo-se a cabeça do parafuso pode-se avaliar frações menores que as dos passo do parafuso.

Figure 2: Passo do micrômetro

3.2 Resolução do Micrômetro

A resolução nos micrômetros pode ser de 0,01mm; 0,001mm; 0.001" ou 0.0001". No micrômetro de 0 a 25mm ou de 0 a 1", quando as faces dos contatos estão juntas, a borda do tambor coincide com o traço zero (0) da bainha. A linha longitudinal, gravada na bainha, coincide com o zero (0) da escala do tambor.

A cada volta do tambor, o fuso do micrômetro avança a distância de um passo e a resolução de um micrômetro corresponde ao menor deslocamento de seu fuso. Para obter a medida, divide-se o passo pelo número de divisões do tambor.

$$Resolução = \frac{passo da rosca do fuso micrométrico}{número de divisões do tambor}$$

Exemplo: Para um micrômetro com passo da rosca igual a 0,5mm e número de divisões do tambor igual 50 temos:

$$Resolução = \frac{passo \ da \ rosca \ do \ fuso \ micrométrico}{número \ de \ divisões \ do \ tambor} = \frac{0,5mm}{50} = 0,01mm$$

3.3 Medindo com um micrômetro

A leitura dos valores em um micrômetro consiste basicamente de três passos:

- 10. passo leitura dos milímetros inteiros na escala da bainha.
- **20.** passo leitura dos meios milímetros, também na escala da bainha.
- **30.** passo leitura dos centésimos de milímetro na escala do tambor.

Ao final soma-se os valores encontrados em cada um dos passos indicados. Veja o exemplo na Figura 3 para a leitura em um micrômetro com resolução de 0,01mm.

Figure 3: Leitura em um micrômetro com resolução de 0,01mm

Na Figura 3 temos:

	17,00mm	(escala dos milímetros da bainha)
+	0,50mm	(escala dos meio milímetros da bainha)
	0,32mm	(escala centesimal do tambor)
	17 82mm	

OBS.: Em geral não se usa estimar os milésimos de milímetro, entretanto para medidas menores do que 0,10*mm* isto se faz necessário para evitar que a medida fique com somente um algarismo significativo.

4 Pré-laboratório

Faça as leituras das figuras abaixo.

5 Procedimento

OBS.: Antes de você fazer esta prática é conveniente conhecer o conteúdo do texto sobre *Algarismos Significativos*. O aluno que não observar as regras sobre Algarismos Significativos em seus relatórios será penalizado.

Utilizando o cálculo do *valor médio*, em que o número de termos é o mesmo dos números componentes da equipe, como uso do paquímetro, determine:

5.1 Cálulos de Volume, diâmetros e espessuras

5.1.1 O volume da esfera em mm^3 . Utilize os cálculos dos valores médios obtidos.

	Medida 1	Medida 2	Medida 3	Média
Diâmetro(mm)				

Cálculo do Volume		

5.1.2 Calcule, da mesma maneira, a área das seções retas dos fios apresentados

	Medida 1	Medida 2	Medida 3	Média
Diâmetro do fio 1(mm)				
Diâmetro do fio 2(mm)				
Diâmetro do fio 3(mm)				

Cálculo das seções retas

5.1.3 Meça o diâmetro do tarugo

	Medida 1	Medida 2	Medida 3	Média
Diâmetro(mm)				

5.1.4 Meça a espessura de um fio de cabelo

	Medida 1	Medida 2	Medida 3	Média
Espessura(mm)				

5.1.5 Meça a espessura desta folha de papel

	Medida 1	Medida 2	Medida 3	Média
Espessura(mm)				

5.1.6 Meça a espessura de uma lâmina de barbear

	Medida 1	Medida 2	Medida 3	Média
Espessura(mm)				

6 Questionário

- 1. Qual o instrumento de maior precisão: o paquímetro utilizado na Prática 1 ou o micrômetro desta prática? Justifique.
- 2. Indique algum outro método que também permita determinar o volume da esfera. (Tema livre).
- 3. De um modo geral, ao medir com um micrômetro, quais as causas mais prováveis de erro?
- 4. Determine a precisão de um micrômetro cujas características são: tambor dividido em 50 partes iguais e passo de 0, 25 mm.