Explicit Euler Method

Ahmed Salem

The ODE used

$$rac{dv}{dt} = k(v-v_r)(v-v_t) - w + In$$

$$\frac{dw}{dt} = a[b(v-v_r)-w]$$

Variables and Parameters

- C: Membrane capacitance (value: C=100, units: typically pF or scaled).
- v: Neuron membrane potential (in millivolts, mV).
- w: Recovery current (in picoamperes, pA, or scaled units).
- t: **Time** (in milliseconds, ms).
- vr: Resting membrane potential (value: vr = -60mV)
- k: Scaling factor for the quadratic term (value: k = 0.7).
- vt: Threshold membrane potential (value: vt = -40mV)
- In: Input current (values: In = 0, for, t < 101ms, In = 70, $for, t \ge 101ms$, units: pA)
- a: Time scale of recovery (value: a = 0.03, units: ms^{-1})
- b: Sensitivity of recovery to membrane potential (value: b = -2, dimensionless or scaled).

Initial conditions

$$v(t = 0) = v0$$

$$w(t = 0) = w0$$

Where v0 and w0 are constants chosen based on the desired initial state of the neuron (e.g., resting potential).

Reset mechanism

when the membrane potentials reaches a threshold $v_{
m peak}=35mV$ we

- $\bullet \ \ \operatorname{set} \, v(t) = -50 mV$
- set w(t) = w(t) + 100

Euler Method

FIGURE 22.1 Euler's method.

• To calculate the y_{n+1} we use $y[i+1] = y[i] + h \cdot f(t_i, y)$ where where $f(t_i, y_i)$ is the differential equation evaluated at t_i and y_i

Advantages of Euler's method

- Simplicity and Ease of Implementation
- Low Computational Cost per Step
- Intuitive and Transparent
- · Suitable for Initial Testing

Disadvantages of Euler's method

- Low Accuracy: as its a first-order method O(h)
- Unsuitable with stiff or rapidly changing systems: as the dynamic neuron model we are using shoes sharp variations in solutions and derivatives

Solving Systems of ODE

 Apply the method to each dependent variable simultaneously so the system will look like this

$$\frac{d}{dt}\begin{bmatrix}v\\w\end{bmatrix} = \begin{bmatrix}\frac{k(v-v_r)(v-v_t)-w+\ln}{C}\\a\left[b(v-v_r)-w\right]\end{bmatrix} = f(t,\begin{bmatrix}v\\w\end{bmatrix})$$

we will use initial condition of

- v(0) = vr = -60
- w(0) = 0.

the Flow of the solution

first we will initialize the parameters and variables then for each step (In is an array where In=0, for, i<101, and, In=70, for, i>=101) there will be a function that calculates the derivative for both dependent variables

- $ullet f_1(t,v,w) = rac{k(v-v_r)(v-v_t)-w+ ext{In}[i]}{C}$
- $\bullet \ \ f_2(t,v,w) = a \left[b(v-v_r) w \right]$

and after computing the derivative we will calculate y_{n+1} using:

- $\quad \bullet \ \ v[i+1] = v[i] + h \cdot f_1(t_i,v[i],w[i]) \\$
- $ullet w[i+1] = w[i] + h \cdot f_2(t_i,v[i],w[i])$

The flow of the program

- 1. setup the parameters
- 2. chose the initial values
- 3. in the main body (the for loop) we first call euler
- 4. in the *euler* we then call *neuron* to calculate the derivatives
- 5. use the calculated derivatives to calculate the next y
- 6. return the calculated y to the main body and save it in a numpy array
- 7. at the end of the for loop check for spike
 - 1. if true, reset
 - 2. else, continue
- 8. rinse and repeat

Code

```
import numpy as np
import matplotlib.pyplot as plt
import time
#-----
## Para
C=100
vr = -60
vt = -40
k = 0.7
an = 0.03
bn = -2
cn = -50
dn = 100
vpeak = 35
ncall = 0
nout = 1000
h=1
#-----
In = np.zeros(nout+2)
In[101:] = 70
v = np.zeros(nout+2)
w = np.zeros(nout+2)
v[0]=vr
W[0] = 0
t = np.arange(0, nout+2, h)
###-----
def neuron(t,y):
   global ncall
   v = y[0]
   w = y[1]
   dvbydt = (k*(v - vr) * (v - vt) - w + In[i]) / C
   dwbydt = an * (bn * (v - vr) - w)
```

```
ncall += 1
   return np.array([dvbydt, dwbydt])
def euler(h,t,y):
   deriv = neuron(t,y)
   y = y + (deriv*h)
   return y
#----
def get_time():
   return time.time() * 1000
###-----
start_time = get_time()
for i in range(0, nout+1):
   y = np.array([v[i],w[i]])
   yout=euler(h,t[i],y)
   v[i+1]=yout[0]
   w[i+1]=yout[1]
   if(v[i+1]>=vpeak):
       v[i]=vpeak
       v[i+1]=cn
       w[i+1]=w[i+1]+dn
###-----
end_time = get_time()
elapsed_time = end_time - start_time
print(f"elapsed time is : {elapsed_time}")
# Plotting v(t)
plt.figure(figsize=(10, 6))
plt.plot(t, v, 'b-', label='Membrane Potential v(t)')
plt.xlabel('Time (ms)')
plt.ylabel('Membrane Potential (mV)')
plt.title('Dynamic Neuron Model: Membrane Potential vs. Time')
plt.grid(True)
plt.legend()
plt.show()
# Plotting w(t)
plt.figure(figsize=(10, 6))
plt.plot(t, w, 'r-', label='Recovery Variable w(t)')
plt.xlabel('Time (ms)')
```

```
plt.ylabel('Recovery Variable (pA)')
plt.title('Dynamic Neuron Model: Recovery Variable vs. Time')
plt.grid(True)
plt.legend()
plt.show()
# Plotting w vs. v (Phase Plane)
plt.figure(figsize=(8, 6))
plt.plot(v, w, 'g-', label='Phase Plane (w vs. v)')
plt.xlabel('Membrane Potential v (mV)')
plt.ylabel('Recovery Variable w (pA)')
plt.title('Dynamic Neuron Model: Phase Plane')
plt.grid(True)
plt.legend()
plt.show()
print(ncall)
print(f"\nComparison with Table 4.3a:")
print(f"t=0.0: v[0] = \{v[0]:.4f\}, w[0] = \{w[0]:.4f\}")
print(f"t=250.0: v[250] = \{v[251]:.4f\}, w[250] = \{w[251]:.4f\}")
print(f"t=500.0: v[500] = \{v[501]:.4f\}, w[500] = \{w[501]:.4f\}")
print(f"t=750.0: v[750] = \{v[751]:.4f\}, w[750] = \{w[751]:.4f\}")
print(f"t=1000.0: v[1000] = \{v[1001]:.4f\}, w[1000] = \{w[1001]:.4f\}")
```

Results

Time take for the method to finish: 5.576904296875

Reference values

t v w
0.0 -60.0000 0.0000
250.0 -54.4819 6.2834
500.0 -50.6154 59.0910
750.0 -49.5530 -12.4763
1000.0 -53.6973 1.5649

ncall = 1000

Code Values

```
Comparison with Table 4.3a:

t=0.0: v[0] = -60.0000, w[0] = 0.0000

t=250.0: v[250] = -54.4819, w[250] = 6.2834

t=500.0: v[500] = -50.6154, w[500] = 59.0910

t=750.0: v[750] = -49.5530, w[750] = -12.4763

t=1000.0: v[1000] = -53.6973, w[1000] = 1.5649
```