EJERCICIO EXPERIMENTAL

1. Material

- Generador de funciones - Polímetro

- 1 resistencia de 1KΩ1W

- Transformador 220V-24V

- 1 diodo semiconductor D1N4007

Osciloscopio1 diodo zéner de 5V1

2. Proceso

1. Utilizando un polímetro identificar los terminales correspondientes al ánodo y cátodo del diodo. Representarlo, indicar dichos terminales y definirlos.

Ánodo: 424 Cátodo: no funciona

*fongo el lado + del polímetro en el + y el - en el -. Si el voltaje es +, en el + esta el ánodo y en el - el cátodo.

Ade mas, da la tersión umbral.*

2. Para un circuito como el de la figura, con fuente de alimentación V, diodo D y resistencia de carga RL. Calcular la resistencia RL mínima que puede utilizarse si V = 10 V y las características del diodo son $V\gamma = 0.7 \text{ V}$, $I_{Dmax} = 1 \text{ A}$. Calcular también la potencia que debe disipar la resistencia calculada.

$$V_{in} = V_{umbral} + R_{min} \cdot I_{max}$$

$$R_{min} = \frac{V_{in} - V_{x}}{I_{max}} = \frac{10 - 0.7}{1} = 9.3 \Omega$$

3. Montar el circuito mostrado en la figura con $R = 1 \text{K}\Omega$. Medir anotando los valores de la tensión en bornas del diodo V_D y la corriente I_D para los valores de tensión de entrada dados en la tabla siguiente. Comprobar teóricamente los resultados anteriores a partir de los datosdel diodo y del circuito.

Ventrada (V)	(V)	V _R (V)	In (V _R /R) (mA) (V _R / 1000)
-10	-10,1	0	0
-5	-5,09	0	0
-2	- 2,05	0	0
0.1	0,44	0	0
0.2	0.21	0	0
0.3	0,3	0	0
0.4	0,44	0,04	0,01
0.5	0,48	0,05	0.05
0.6	0.51	0.1	6.1
0.7	0,52	0,44	0,44
0.8	0,55	0,3	0,3
0.9	0.56	0,39	0,39
1	0.56	0,39	0,39
3	0,64	2,39	2,39
5	0,67	4,22	4,22
10	0.7	9.22	9,22

4. Montar el circuito mostrado en la figura para obtener la curva característica tensión-corriente del diodo en el osciloscopio. Alimenta al circuito con una señal de 10 V de amplitud, y 50 Hz. Dibujar la curva indicando las escalas en V,mA ó A. Describir la

curva.

Descripción:

5. Calcular para el apartado anterior el valor de la tensión inversa máxima que soporta el diodo, la tensión umbral y la corriente máxima que circula.

6. Para un circuito, con fuente de alimentación V, diodo $z\acute{e}ner$ D_Z y resistencia de carga R_L . Calcular la resistencia R_L mínima que puede utilizarse si V=10 V y las características del diodo son $V\gamma=0.7$ V, $I_{Dmax}=1$ A, $V_Z=5.1$ V. Calcular también la potencia que debe disipar la resistencia calculada.

$$V_{in} = V_{umbral} + R_{min} \cdot I_{max}$$

$$R_{min} = \frac{V_{in} - V_8}{I_{max}} = \frac{10 - 0.7}{1} = 9.3 \Omega$$

$$R_{min} = \frac{V_{in} - V_8}{I_{max}} = \frac{10 - 5.1}{1} = 4.9 \Omega \quad \text{polarizado}$$

$$P = V_8 I_c = I_c^2 R = 1^2 \cdot 9.3 = 9.3 \omega$$

7. Montar el circuito anterior con $R_L = 1 \text{K}\Omega$. Medir anotando los valores de la tensión en bornas del diodo V_{Dz} y la corriente I_D para los valores de tensión de entrada dados en la tabla siguiente. Comprobar teóricamente los resultados anteriores a partir de los datosdel diodo y del circuito.

Ventrada (V)	V _D (V)	V _R (V)	$I_{D} (V_{R}/R) (mA) $ $(\bigvee_{R}/4000)$
-10	-5,1	5	5
-5.5	-5,02	0,53	0,53
-5.3	- 4,99	0,37	0,37
-5	-4.9	0,15	0,15
-4.8	- 4,76	0,07	0,07
-4	- 4,44	0	0
-1	-1,05	0	0
0.2	0'58	0	0
0.4	0.48	٥	٥
0.6	0,64	0.03	0.03
0.7	0,66	0,06	0,06
0.8	0,69	0,47	0,47
0.9	0,69	0,13	0,13
1	0,74	0,37	0,37
3	0,76	2,32	2,32
5	4,3	6,77	0,77

8. Montar el circuito que se indica para obtener la curva característica tensión-corriente del diodo zéner en el osciloscopio. Alimenta al circuito con una señal de 10 V de amplitud, y 50 Hz . Dibujar la curva indicando las escalas en V,mA ó A. Describir la curva.

9. Calcular para el apartado anterior el valor de la tensión inversa máxima que soporta el diodo, la tensión umbral, la tensión zéner y la corriente máxima que circula.

$$V_{Y} = 0.7V$$
 $T_{Max} = 0.9 MA$
 $V_{inv MAx} = 5.1V$
 $V_{z} = 0.7 - 5.1V$

3. NOTAS