Sistemas embarcados

Introdução ao projeto de software de sistemas embarcados

O projeto de software (em geral, bem como para sistemas embarcados) é organizado seguindo um **modelo de camadas.**

A camada de abstração de hardware (HAL) é aquela que tem acesso direto aos registradores dos periféricos e da CPU.

A camada de abstração de hardware (Hardware Abstraction Layer - HAL) é composta pelos *drivers de dispositivos (device drivers)*.

Um driver de dispositivo funciona como um tradutor entre o dispositivo e as aplicações ou o sistema operacional.

Permite a **interação** com o dispositivo através de **comandos** de software **abstratos**.

Torna desnecessário para as demais partes de software saber **detalhes** de implementação do **dispositivo** (ex.: endereço de **registradores**, programação dos registradores, etc).

Drivers de dispositivos são acessados através de uma interface (API – Interface de Programação de Aplicação)

Uma API define uma biblioteca de funções. Ex.:

- para imprimir na impressora usa-se a função "Printer_print (char c)"
- para imprimir no display usa-se "Display_print (char c)"

A camada de abstração de hardware (HAL) é aquela que tem acesso direto aos registradores dos periféricos e da CPU.

Projeto de Sistemas Embarcados

Exemplo de API:

Driver UART.c/UART.h

```
UART_ini (baud_t BAUDRATE, par_t PARIDADE, ...)

UART_tx( char )
```

UART_rx(char *)

A camada de software do sistema geralmente é implementada como um sistema multitarefas:

como uma máquina de estados finitos (**FSM**) ou

um sistema operacional de tempo real (RTOS)

Camada de software do sistema

A camada de software do sistema define a estrutura principal de todo o software.

O projeto da camada de software do sistema se dá entre duas formas básicas (modelos de programação):

baseado em eventos ou baseado em threads

Threads x eventos

camada de software do sistema

Threads

Eventos

Execução de uma aplicação através da divisão da mesma em duas ou mais tarefas executadas concorrentemente (multithreading).

O gerenciamento e a **execução de threads** é uma função básica de um **sistema operacional** (SO)

Em um sistema guiado por eventos as tarefas são compostas por estados do sistema, onde a transição entre estados é disparada por eventos.

Sistemas **guiados por eventos** são modelados como **máquinas de estados finitos** (FSM)

Threads x eventos

Implementação da camada de software do sistema

Projeto de Sistemas Embarcados

A camada de software do aplicação é aquela que implementa os aplicativos e determina as funcionalidades do sistema embarcado.

Camada de software de aplicação

A camada de software de aplicação determina as funcionalides do sistema embarcado.

O projeto da camada de software de aplicação segue o modelo adotado pela camada de software do sistema (guiado por eventos ou baseado em threads).

O software de aplicação é baseado na utilização da **API** fornecida pelo software do sistema e/ou de *middleware.*

Middleware

Middleware é uma subcamada de software que fica na camada de software do sistema, sendo geralmente utilizada pelo software de aplicação como uma biblioteca de software separada ou integrada ao um OS.

Middleware

Middleware permite reusar software entre várias aplicações, evitando replicação do código, aumentando a flexibilidade, a portabilidade, a segurança e a intercomunicação entre aplicações, e diminuindo a complexidade das aplicações.

Middleware

Exemplo: *Middleware* para comunicação em redes de dados, como protocolos TCP/IP.

Camada de software de aplicação

A camada de software de aplicação determina as funcionalides do sistema embarcado.

Exemplo: servidor web HTTP e FTP

Exemplo: MP3 player com cliente FTP

Projeto de Sistemas Embarcados

Referências

Tammy Noergaard. 2005. **Embedded Systems Architecture:** *A Comprehensive Guide for Engineers and Programmers*. Newnes.