(12) UK Patent Application (19) GB (11) 2 138 796 A

(43) Application published 31 Oct 1984

- (21) Application No 8311059
- (22) Date of filing 22 Apr 1983

- (51) INT CL3 C23F.11/18
- (52) Domestic classification C1C 253 254 315 324 463 B U1S 1349 1471 1976 1978 3010 3013 C1C
- (71) Applicant VEB Leuna-Werke "Walter Ulbricht" (DR Germany),
- DDR-422 Leuna 3, German Democratic Republic (72) Inventors
 - **Dr Wilfried Fuchs Dr Horst Richter** Vendelin Kaufmann **Christina Muller Dr Roland Kober** Dr Wolfgang Renker
- (74) Agent and/or Address for Service J B King, Kings Patent Agency Limited, 146a Queen Victoria Street, London EC4V 5AT

- (56) Documents cited None
- (58) Field of search C1C

(54) Preventing corrosion

(57) In a process for improving the initial activity of activated hydrazine employed for the prevention of corrosion in boiler feed water and for the wet preservation of idle plant, the initial activity of hydrazine solutions activated with complexes of trivalent cobalt are increased in relation to oxygen dissolved in water by adding trivalent phenols, preferably pyrogallol, in small quantitites to the hydrazine solution containing activator.

SPECIFICATION

Proc ss f r improving th initial activity of activat d hydrazin

	This invention relates to a process for improving the initial activity of hydrazine in relation to oxygen dissolved in water, the hydrazine being activated by the addition of complexes of trivalent cobalt with inorganic ligands as complex-formers. Activated hydrazine is used as a means for the removal of oxygen from water, particularly from boiler feed water and from water employed for the preservation of idle plant in order to prevent corrosion of tanks, pipes, heat	5					
10	exchangers and other parts. For the removal of oxygen dissolved in water various processes are employed. Preference is given to the use of hydrazine which even at low temperatures and with the addition of suitable activators reacts with oxygen dissolved in water to form harmless hydrogen. Cationic and anionic complexes of trivalent cobalt, with inorganic ligands as complex-formers, have been	10					
15	proposed as particularly suitable activators, (GB/83 Ref: 39291). However hydrazine activated in this way does not immediately reach full reaction speed in relation to oxygen dissolved in water.	15					
20	It has been suggested that these drawbacks may be overcome by gasification, using air, of the hydrazine solution containing activator. This system suffers from the drawback that a special step has to be introduced into the process in order to ensure satisfactory initial activity. A further disadvantage is that with the use of hydrazine solutions in the customary commercial concentrations exhausted air contains hydrazine vapour and must not be directly discharged into the environment.	20					
25	This invention seeks to enable the initial activity of activated hydrazine in relation to oxygen dissolved in water to be improved when the activators used consist of complexes of the trivalent cobalt with inorganic ligands serving as complex-formers. For this a suitable activator system is required which would ensure that hydrazine solution	25					
30	provided with the activators in moderate concentration would immediately reach a high reaction speed in relation to oxygen dissolved in water, the process not requiring gasification with air.	30.					
35	are not sufficiently effective as sole additives for hydrazine and surprisingly do not have an effect until used in conjunction with complexes of trivalent cobalt. A particularly suitable agent is pyrogallol, but oxyhydroquinone and phloroglucin are likewise effective. One advantage of the process is that a high reaction speed is already obtained with only slight quantities. Additions of the aforementioned coactivators amounting to 0.05 to 0.5% by mass, in relation to the ordinary	35					
40	commercial hydrazine solution of 15 to 25% strength, or 5 to 50% in relation to the cobalt complex activator content, are sufficient. Higher concentrations are possible but do not offer any special advantages. The small quantities of organic coactivators added enable the disadvantages otherwise observable with organic additives to be avoided. It is a particularly advantage that the effect does not decrease as time proceeds during removal of oxygen. The coactivators are dissolved, prior to use, in the hydrazine solution containing activator.						
45	Examples	45					
50	In an aqueous hydrazine solution which contains 220 g of hydrazine per litre and which has been activated with 0.1% by mass of pentamminocobalt (III)-trichloride or sodium hexanitritocobaltate (III), 0.1 g of oxyhydroquinone per litre was dissolved. 1 ml of the solution containing coactivator was mixed into one litre of an oxygenous water containing 6 to 7 mg O ₂ /1 in a dissolved state. The oxygenous water had been set in advance to a pH value of 9.3 or 10.5.						
55	The temperature amounted to 293°K. After a reaction time of 10 minutes the residual oxygen content was measured. The water was then gasified by passing air through it for 10 minutes and thus once again supplied with oxygen. This process was repeated. The oxygen content was in each case determined immediately after the gasification and after a reaction time of 10 minutes. The results are shown in Tables 1 to 4.						
	Table 1 Catalyst: 1 g of pentamminocobalt-(III)-chloride and 0.1g of pyrogallol per litr f hydrazin solution	60					

65

Gasification	pH value	Residual Start	oxygen in mg/1 Aft r 10 minut reaction time
Without	10.5	5.8	0.7
			0.6
			Traces
			0
4			Ö
			Ö
			Ŏ
			1.2
			0.4
			Traces
3			Traces
			0
			ŏ
			ŏ
	<u> </u>		
Gasification	pH value	Residual Start	oxygen in mg/1 After 10 minute reaction time
Without	10.5	6.0	0.7
1			0
		0	ŏ
3			Ŏ
4			0
	10.5	Ŏ	Ö
6	10.5	ŏ	Ö
			0.5
1			0
			Ö
3			0
4	9.5		•
	ອ.ວ	U	U
5	9.5 9.5	0	0 0 .
	Without 1 2 3 4 5 6 Without 1 2 3 4 5 6 Table 2 Catalyst: 1 0 sc Gasification Without 1 2 3 4 5 6 Without 1 2 3	Without 10.5 1 10.5 2 10.5 3 10.5 4 10.5 5 10.5 6 10.5 Without 9.3 1 9.3 2 9.3 3 9.3 4 9.3 5 9.3 6 9.3 Table 2 Catalyst: 1 g of sodium 0.1 g of pyrosolution Gasification pH value Without 10.5 1 10.5 2 10.5 3 10.5 4 10.5 5 10.5 6 10.5 Without 9.5 1 9.5 9.5	Gasification pH value Start Without 10.5 5.8 1 10.5 2.7 2 10.5 1.7 3 10.5 0.8 4 10.5 1.2 5 10.5 0.8 6 10.5 0.7 Without 9.3 5.8 1 9.3 3.5 2 9.3 2.1 3 9.3 0.8 5 9.3 1.5 6 9.3 1.4 Table 2 Catalyst: 1 g of sodiumhexanitrite 0.1 g of pyrogallol per lasolution Residual Start Without 10.5 0.2 2 10.5 0.2 2 10.5 0.2 2 10.5 0 3 10.5 0 4 10.5 0 5 10.5 0 6 10.5 0 Without 9.5 5.7 1 9.5 0.1 2 9.5 0.8 3 9.5 0.1

ē			alt-(III)-chlorid and one per litre of hydraz	ine ·
Gasificati	on pH value	Residual Start	oxygen in mg/1 After 10 minute reaction time	
Without	10.5	5.9	0.1	
1	10.5	1.8	Traces	
2	10.5	0.8	0	
3 4	10.5 10.5	0.3 0.1	0	
5	10.5	0.1	Ŏ	
6	10.5	0.1	0	
Without	9.5	5.8	0.5	
1	9.5 9.5	2.3 2.0	0.1 0.1	
3	9.5 9.5	0.2	Traces	
4	9.5	0.4	0 .	
5	9.5	0.4	0	
6	9.5	0.6	0	•
Table 4 Catalyst:		nydroqunin	ocobaltate-(III) and one per litre of	
			oxygen in mg/1	
Gasification	on pH value	Residual Start	After 10 minute reaction time	
Gasification Without	10.5	Start 6.1	0.05	
Without 1	10.5 10.5	6.1 0.4	0.05 Traces	
Without 1 2	10.5 10.5 10.5	6.1 0.4 0	0.05 Traces.	
Without 1	10.5 10.5	6.1 0.4 0	0.05 Traces	
Without 1 2 3	10.5 10.5 10.5 10.5 10.5 10.5	6.1 0.4 0 0 0	0.05 Traces. 0 0	
Without 1 2 3 4 5	10.5 10.5 10.5 10.5 10.5 10.5 10.5	6.1 0.4 0 0 0 0	0.05 Traces. 0 0 0	
Without 1 2 3 4 5 6 Without	10.5 10.5 10.5 10.5 10.5 10.5 10.5 9.5	6.1 0.4 0 0 0 0 0 0 5.9	0.05 Traces. 0 0 0 0 0 0	
Without 1 2 3 4 5 6 Without 1	10.5 10.5 10.5 10.5 10.5 10.5 10.5 9.5 9.5	6.1 0.4 0 0 0 0 0 0 5.9 3.5	0.05 Traces. 0 0 0 0 0 0 2.0 1.8	
Without 1 2 3 4 5 6 Without	10.5 10.5 10.5 10.5 10.5 10.5 10.5 9.5	6.1 0.4 0 0 0 0 0 0 5.9	0.05 Traces. 0 0 0 0 0 0	-
Without 1 2 3 4 5 6 Without 1 2 3 4 4 5 6 4 6 Without 1 2 3 4	10.5 10.5 10.5 10.5 10.5 10.5 10.5 9.5 9.5 9.5 9.5	6.1 0.4 0 0 0 0 0 5.9 3.5 3.0	O.05 Traces. O O O O O O O O O O O O O O O Traces O O O O O O O O O O O O O O O O O O O	
Without 1 2 3 4 5 6 Without 1 2 3 4 5 6 5 6 Without 1 2 3 4 5	10.5 10.5 10.5 10.5 10.5 10.5 10.5 9.5 9.5 9.5 9.5 9.5	Start 6.1 0.4 0 0 0 5.9 3.5 3.0 0.6 0.3 1.1	O.05 Traces. O O O O O O O O O O O O O O Traces Traces Traces Traces Traces	
Without 1 2 3 4 5 6 Without 1 2 3 4 4 5 6 4 6 Without 1 2 3 4	10.5 10.5 10.5 10.5 10.5 10.5 10.5 9.5 9.5 9.5 9.5	6.1 0.4 0 0 0 0 0 5.9 3.5 3.0 0.6 0.3	O.05 Traces. O O O O O O O O O O O O O O O Traces O O O O O O O O O O O O O O O O O O O	
Without 1 2 3 4 5 6 Without 1 2 3 4 5 6 Example 2 An aque complex a hydroxyqu (after a rei	10.5 10.5 10.5 10.5 10.5 10.5 10.5 9.5 9.5 9.5 9.5 9.5 9.5	6.1 0.4 0 0 0 0 0 5.9 3.5 3.0 0.6 0.3 1.1 1.1	reaction time 0.05 Traces. 0 0 0 0 0 2.0 1.8 0.4 Traces	ydrazine per litre and free of cobalt 5 g of pyrogallol and phloroglucin or thus treated was mixed as in Example 1 ygenous water and the residual oxygen

C ncentration: 0.5 g per litre of hydrazine solution, Temperature 293 $\mbox{\ensuremath{\mbox{\scriptsize K}}}$

5	Organic compound	pH value	Gasification	Residual Start	oxygen in mg/1 After 10 minute reaction time	5	
	Pyrogallol	10.5	Without	4.8	3.3	•	
10		10.5	1	4.3	2.6	10)
	Pyrogallol	10.5	2	3.6	2.8		
	Pyrogallol	10.5	3	3.5	2.9		
	Pyrogaliol	10.5	4	3.5	2.9		
	Pyrogallol	10.5	5	3.5	3.3		
15	Pyrogallol	10.5	6	3.5	3.1	15	,
	Phloroglucin	10.5	Without	4.3	3.7		
	Phloroglucin	10.5	1	4.4	4.0		
	Phloroglucin	10.5	2	4.3	3.7		
	Phloroglucin	10.5	3	4.2	3.7		
20	Phloroglucin	10.5	4	3.7	3.7	20)
	Phloroglucin	10.5	5	3.7	3.7	•	
	Phloroglucin	10.5	6	4.0	3.9		
	Oxyhydroquinone	10.5	Without	4.3	0.3		
	Oxyhydroquinone	10.5	1	4.3	2.0		
25		10.5	2	2.8	1.7	25	
	Oxyhydroquinone	10.5	3	3.2	2.4		
	Oxyhydroquinone	10.5	4	3.3	2.6		
	Oxyhydroquinone	10.5	5	3.4	2.3	•	
	Oxyhydroquinone	10.5	6	3.3	2.5		
30						30	

CLAIMS

1. Process for improving the initial activity of hydrazine in relation to aquous dissolved oxygen, the hydrazine having been activated by the addition of complexes of trivalent cobalt 35 with inorganic ligands as complex-formers, wherein trivalent phenols are added as coactivators to the hydrazine solution.

 Process in accordance with Claim 1, wherein the coactivator used is pyrogallol.
 Process in accordance with Claim 1 or 2, wherein the coactivators are used in quantities of 5 to 50% (by mass) in relation to the cobalt complex activator.

4. Process in accordance with Claim 3, wherein the quantity of coactivator used in 10%. 40

5. Process substantially as described herein and exemplified.

Printed in the United Kingdom for Her Majesty's Stationery Office, Dd 8818935, 1984, 4235.
Published at The Patent Office, 25 Southampton Buildings, London, WÇ2A 1AY, from which copies may be obtained.

35