Package 'TensorDB'

April 23, 2020

Type Pa	nckage
Title X	
Version	1.0
Date 20	20-04-23
Author	D. Bonnery
Maintai	ner D. Bonnery <dbonnery@umd.edu></dbonnery@umd.edu>
	misc, ASS,
Suggests	S
Descript	tion Data
License	GPL (>= 2)
LazyLoa	ad yes
LazyDat	ta true
Roxyger	nNote 7.0.2
R top	ics documented:
	A2M
	extractA
	%.%
Index	5

2 extractA

A2M

Converts Array to matrix

Description

Converts Array to matrix

Usage

```
A2M(
    A,
    n,
    p = if (is.character(n)) {         setdiff(names(dimnames(A), n)) } else {
        setdiff(1:length(dim(A)), n) }
)
```

Arguments

- A An (eventually named) array
- n a subvector of 1:length(dim(A)) or names(dimnames(A)).
- p a subvector of 1:length(dim(A)) or names(dimnames(A)).

extractA

Extracts dimension from array

Description

Extracts dimension from array

Usage

```
extractA(A, a, ...)
```

Arguments

```
A a named array
```

a a list of dimensions of A (a subvector of 1:length($\dim(A)$) or a subvector of

dimnames(A))

a vector the same length of a of integers. necessarily ...[i]<=dim(A)[a[i]]

%.%

Examples

```
A=array(1:(prod(2:4)),2:4);
dimnames(A)<-sapply(dim(A),seq_len)
names(dimnames(A))<-paste0("x",2:4)
extractA(A,integer(0),integer(0));
extractA(A,"x3",2);
extractA(A,c("x4","x3"),1,2);</pre>
```

%.%

Define a tensor product

Description

Define a tensor product

Usage

A %.% B

Arguments A

An (eventually named) array of dimension $\dim(A) = (a_i)_{i \in I_A}$ B An (eventually named) array of dimension $\dim(B) = (b_j)_{j \in I_B}$ I_A a named list of subvectors from names(dimnames(A)) or from 1:length(dim(A)). $I_A = (I_A^{(c)}, I_A^{(n)}, I_A^{(p)})$. I_B a named list of subvectors from names(dimnames(B)) or from 1:length(dim(B)). $I_B = (I_B^{(c)}, I_B^{(p)}, I_B^{(q)})$. Necessarily, $(\dim(A))_{I_A^{(p)}} = (\dim(B))_{I_B^{(p)}}$ (e.g dim(A)[I_A\$p]==dim(B)[I_B\$p] and $(\dim(A))_{i \in I_A^{(c)}} = (\dim(B))_{i \in I_B^{(c)}}$ e.g dim(A)[I_A\$c]==dim(B)[I_B\$c])

Value

C=AB the array of dimension
$$\left((a_\ell)_{\ell\in I_A^{(c)}},(a_i)_{i\in I_A^{(n)}}(b_j)_{j\in I_B^{(q)}}\right)$$
 defined by
$$\forall (\ell_1,\ldots,\ell_C)\in\prod_{i\in I_A^{(c)}}\{1,\ldots,a_i\},$$

$$\forall (i_1,\ldots,i_N)\in\prod_{i\in I_A^{(n)}}\{1,\ldots,a_i\},$$

$$\forall (j_1,\ldots,j_Q)\in\prod_{j\in I_B^{(q)}}\{1,\ldots,b_j\},$$

$$C[\ell_1,\ldots,\ell_N]:=\sum_{j\in I_B^{(q)}}\sum_{j\in I_B^{(q)}}\{1,\ldots,b_j\},$$

 $C[\ell_1, \dots, \ell_C, i_1, \dots, i_N, j_1, \dots, j_Q] = \sum_{k_1=1}^{K_1} \dots \sum_{k_P=1}^{K_P} A^{\star}[\ell_1, \dots, \ell_C, i_1, \dots, i_q, k_1, \dots, k_p] \times B^{\star}[\ell_1, \dots, \ell_C, k_1, \dots, k_p, j_1, \dots, j_n]$

where A^* and B^* are multidimensional transposition of A and B and $K_1, \ldots, K_P = \dim(A)_{I_A^{(p)}}$.

%.%

Examples

```
A=array(1:(prod(2:6)),2:6);
dimnames(A)<-sapply(dim(A),seq_len)
names(dimnames(A))<-paste0("x",2:6)
B=array(1:(prod(3:7)),3:7);
dimnames(B)<-sapply(dim(B),seq_len)
names(dimnames(B))<-paste0("y",3:7)
I_A=list(c=c("x3","x5"),n=c("x2","x4"),p="x6")
I_B=list(c=c("y3","y5"),q=c("y4","y7"),p="y6")
"%.%"(A,B)
"%.%"(A,B,I_A,I_B)
W%.%.%.%t(X);</pre>
```

Index

%.%, <u>3</u>

A2M, 2

extractA, 2