

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева Академия базовой подготовки

Институт, группа	К работе допущен	
		(дата, подпись преподавателя)
Студент	Работа выполнена	
		(дата, подпись преподавателя)
Преподаватель	Отчет принят	
		(пото полице преполовотеля)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № К-1

Изучение явления внешнего фотоэффекта

Внешний вид экспериментальной установки

1. Запишите цель проводимого эксперимента:
2. В чем заключается явление внешнего фотоэффекта?
3. Что называется, «красной границей» фотоэффекта?
4. Сформулируйте законы фотоэффекта.
5. Объясните ход прямой и обратной ветвей графика зависимости фототока от напряжения между катодом и анодом.

6. Таблица экспериментальных данных. Светофильтр № 1.

Таблица 1

Определение задерживающего напряжения (λ_1)

Светофильтр № 1	$(\lambda_I = 435 \text{ HM})$							
№ измерения	1	2	3	4	5	6	7	8
U_i , B								
$\langle U_1 \rangle$, B								

Подпись преподавателя

- 7. Вычисление абсолютной погрешность измерения ΔU_1 .
- 7.1. Отклонение от среднего для каждого опыта:

№ измерения	1	2	3	4	5	6	7	8
$\Delta U_i = U_i - \langle U_1 \rangle $								

7.2. Среднеквадратичное отклонение:

$$S_U = \sqrt{\frac{\sum_{i=1}^n \Delta U_i^2}{n(n-1)}} =$$

7.3. Случайная погрешность (доверительный интервал):

$$\Delta U_1 = S_U \cdot t_{p,n} =$$

8. Работа выхода:

$$\langle A_1 \rangle = \frac{hc}{\lambda_1} - e \langle U_1 \rangle =$$

9. Ошибку расчета работы выхода:

$$\Delta A_1 = |e| \Delta U_1 =$$

10. Записать окончательный результат в виде:

$$A_1 = \langle A_1 \rangle \pm \Delta A_1$$

$$A_1 =$$

Определение задерживающего напряжения (λ_2)

Светофильтр № 1	$(\lambda_I = 407 \text{ нм})$							
№ измерения	1	2	3	4	5	6	7	8
U_i , B								
$\langle U_2 \rangle$, B								

_					
$\Pi \cap$	ппись	препол	авателя		
110	диись	прспод	abaicin		

- 7. Вычисление абсолютной погрешность измерения ΔU_2 .
- 7.1. Отклонение от среднего для каждого опыта:

№ измерения	1	2	3	4	5	6	7	8
$\Delta U_i = U_i - \langle U_2 \rangle $								

7.2. Среднеквадратичное отклонение:

$$S_U = \sqrt{\frac{\sum_{i=1}^n \Delta U_i^2}{n(n-1)}} =$$

7.3. Случайная погрешность (доверительный интервал):

$$\Delta U_2 = S_U \cdot t_{p,n} =$$

8. Работа выхода:

$$\langle A_2 \rangle = \frac{hc}{\lambda_2} - e \langle U_2 \rangle =$$

9. Ошибку расчета работы выхода:

$$\Delta A_2 = |e| \Delta U_2 =$$

10. Записать окончательный результат в виде:

$$A_2 = \langle A_2 \rangle \pm \Delta A_2$$

$$A_2 =$$

Подпись студента _____ Дата ____