Clustering

What is Clustering

- Group observations together so that the elements in one group will be
 - Similar to one another
 - Different from elements in other groups

- Unsupervised Learning
 - •The clustering rules are coming from the data, not from external specifications

Clustering Application

- Discover which stocks share similar market fluctuations
 - Samsung and PC accessary manufacturers (same direction)
 - Apple and Samsung (maybe opposite direction)
- Group customers according to their attributes
 - Targeted Marketing (send Amazon Prime advertisement to frequent buyers)
 - •Finding "Good" customers (never claim refund, return, and care less about discounts)
- Group borrowers according to their repayment behavior
 - Predict who is going to default

Clustering Can be Ambiguous

Based on different attributes, we got different clusters

We have these circles, and we try to cluster them And there are two attributes: x and y, or x1 and x2 We randomly select 2 centroids: red and yellow

- We calculate the distance between each data point and the two temporary centroids.
- If a point is closer to red, it is classified as red. If a point is closer to yellow, it is classified as yellow.

- Within each temporary group, we calculate the central point. For example, the new red centroid is (\bar{x}_j, \bar{y}_j) , where $j \in Red$ Like the central gravity point.
- Do the same to the yellow group.
- Because the centroids moved, we have to reclassify each points using the new centroids.

- Here is the new grouping, the circled points are now belong to the red group
- Then we calculate the new centroids based on the updated grouping

- The new centroid moved again.
- So we need to repeat the process
- Until.....

- Until we get to a point where the "central gravity point" does not move at all.
- In most cases, the centroids will converge very quickly.

Choosing the Initial Centroid

- This is important
 - Choosing the right number (how many clusters you need)
 - Choosing the right location (where you put your initial centroids)
- If this is not done properly
 - Mathematically no problem, the algorithm will still work
 - But the clustering will not make sense

Choosing the Initial Centroid

Evaluating K-Mean Clusters

- Sum of Squared errors (SSE)
- Individual Cluster SSE = $\sum_{x \in C_i} dist^2 (C_i, x)$
 - How close each of the points in cluster i to the center
 - Lower individual SSE Better individual cluster
- Total SSE = $\sum_{i=1}^{k} \sum_{x \in C_i} dist^2 (C_i, x)$ = sum of every individual SSE
 - Lower Total SSE a better set of clusters

Evaluating K-Mean Clusters

Cluster 1

$$SSE_1 = 1^2 + 1.3^2 + 2^2$$

= 1 + 1.69 + 4 = 6.69

Cluster 2

$$SSE_2 = 3^2 + 3.3^2 + 1.5^2$$

= 9 + 10.89 + 2.25 = 22.14

For this particular clustering result:

Individual SSE: SSE1=6.69, SSE2=22.14

Total SSE=SSE1 + SSE2= xxx

If there is another clustering result that has lower Total SSE, maybe we need to pick it.

How to Choose the Best Initial Centroid

- There is no single, best way to do it
- Some suggestions
 - Select more centroids to start with, and then choose the ones that are farthest apart.
 - Pre and post processing the data

Pre/Post-Process the Data

Pre-Processing

- Normalize the data
- Remove outliers
 - Outliers don't represent the population, remove them

Post-Processing

- Remove small clusters
- Split loose clusters
- Merge cluster that are too close
- So, pretty subjective
- Until it makes sense
- If the clusters never make sense, the data may just not be well-suited for clustering

We may use "Hierarchical Clustering" to determine

- First, define a distance (Euclidean Distance etc.)
- Initialize: treat each data point as a cluster
- Compute distance between all clusters
- Merge the closest two clusters
- Repeat the previous steps

- If we keep merging nonstop, we end up with only one cluster
- Where every data point is in this single cluster
- So we have to stop somewhere

- We can choose a dissimilarity threshold.
- When two cluster is dissimilar to some extent, we stop merging

Some dissimilarity measures

$$D_{min}(C_i, C_j) = min_{x \in C_i, y \in C_j} ||x - y||^2$$

$$D_{max}(C_i, C_j) = max_{x \in C_i, y \in C_i} ||x - y||^2$$

$$D_{means}(C_i, C_j) = \|\mu_i - \mu_j\|^2$$

$$D_{avg}(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{x \in C_i, y \in C_j} ||x - y||^2$$

produces minimal spanning tree.

avoids elongated clusters.

