1 Sviluppi Asintotici

Questi sviluppi saranno utili per la risoluzione di alcuni problemi, approssimando delle funzioni a dei polinomi più o meno precisi.

f(x)	sviluppo $(x \to 0)$	formula generale
e^x	$1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$	$\frac{x^n}{n!} \ n \ge 0, \forall n \in \mathbb{N}$
$\log(1+x)$	$x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$	$\frac{x^n}{n} \ n > 0, \forall n \in \mathbb{N}$
$\sin(x)$	$x - \frac{x^3}{6} + o(x^3)$	
$\sinh(x)$	$x + \frac{x^3}{6} + o(x^3)$	
$\cos(x)$	$1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$	
$\cosh(x)$	$1 + \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$	
$\tan(x)$	$x + \frac{x^3}{3} + o(x^3)$	
$\arctan(x)$	$x - \frac{x^3}{3} + o(x^3)$	
$(1+x)^a$	$1 + ax + \frac{a \cdot (a-1)}{2} \cdot x^2 + o(x^2)$	