

Semester 1 Examinations 2013/2014

Exam Codes 4BS3, 4BS9, 4FM2, 4BMS2, 3BA1, 4BA4

Exams B.Sc. Mathematical Science

B.Sc. Financial Mathematics & Economics

B.Sc.

B.A. (Mathematics)

Module Measure Theory

Module Code MA490

External Examiner Dr Colin Campbell Internal Examiner(s) Dr Goetz Pfeiffer

Dr Ray Ryan

<u>Instructions:</u> Answer every question.

Duration 2 Hours

No. of Pages 3 pages, including this one

Department School of Mathematics, Statistics and Applied Mathematics

Requirements: No special requirements

Release to Library: Yes

Q1 [49%] Answer six of the following:

- (a) Let X be a set with five elements. How many algebras of subsets of X contain exactly four subsets?
- (b) In Bernoulli Space Ω , let E_n be the event that the *n*th toss is heads. Write down a formula in terms of the E_n for the following event: "Every time two Heads appear in succession, the next two tosses are Tails".
- (c) Find the Jordan content of the set $\{1, 1/2, 1/4, 1/8, \dots\}$.
- (d) Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = 1 x^2$. Prove directly from the definition of a measurable function that f is Borel measurable.
- (e) Let $f_n(x) = x(1-x)^n$. Prove that f_n converges uniformly to zero on the interval [0,1].
- (f) If f is a nonnegative measurable function, then there is an increasing sequence (f_n) of simple measurable functions that converges pointwise to f. Give the construction of the first two terms, f_1 and f_2 , in such a sequence.
- (g) Consider the following sequence of random variables on Bernoulli Space Ω :

$$X_n(\omega) = \begin{cases} 1 & \text{if } \omega \text{ has a run of } n \text{ Heads starting with the } n \text{th toss,} \\ 0 & \text{otherwise.} \end{cases}$$

Show that X_n converges to 0 in probability. Does this sequence converge pointwise? Explain your answer.

- (h) Let μ be counting measure on the σ -algebra $\mathcal{P}(\mathbb{N})$. What is the integral $\int_{\mathbb{N}} s \, d\mu$ for a function $s \colon \mathbb{N} \to \mathbb{R}$? What does it mean for s to be integrable?
- (i) Give an example of a sequence (f_n) of Lebesgue integrable functions on \mathbb{R} that converges but for which term by term integration is not valid. State one of the convergence theorems and explain why it does not apply to your example.
- (j) Find the value of the following sum:

$$\sum_{n=1}^{\infty} \int_{0}^{\pi/2} (1 - \sqrt{\sin x})^{n} \cos x \, dx \, .$$

Justify each step in your calculation.

(k) Give the definition of the Cantor Set C. Which of the following numbers belong to C?

(i)
$$\frac{5}{6}$$
, (ii) $\frac{20}{81}$, (iii) $(0.02021)_3$.

You must answer every question.

$\mathbf{Q2} \, \left[\mathbf{17\%} \, \, \, \right]$

- (a) Give the definition of the Jordan Content, c(E), of a set E of real numbers. Explain why the set function c is not additive.
- (b) Let μ be a measure on a σ -algebra \mathcal{A} of subsets of a set X. Show that if (E_n) is a sequence of measurable subsets of X, then

$$\mu\bigg(\bigcup_{n=1}^{\infty} E_n\bigg) \le \sum_{n=1}^{\infty} \mu(E_n) \,.$$

(c) Give the definition of the lower limit and the upper limit of a sequence of sets. State one result that enables you to find the measure of a lower limit or an upper limit set.

Q3 [17%] Let X be a set and \mathcal{A} a σ -algebra of subsets of X.

- (a) Give the definition of a measurable function and use it to show if f is measurable then so is f^2 .
- (b) Let (f_n) be a sequence of measurable functions on X. Give the definition of each of the following:
 - (i) f_n converges to f almost everywhere.
 - (ii) f_n converges to f almost uniformly.
 - (iii) f_n converges to f uniformly.
 - (iv) f_n converges to f in measure.

Give an example of a sequence that satisfies (i) but not (ii) and a sequence that satisfies (ii) but not (iii).

(c) State Egoroff's Theorem for sequences of measurable functions on X when $\mu(X)$ is finite. Give an example to show that the finiteness condition is essential.

$\mathbf{Q4} \, \left[\mathbf{17\%} \, \right]$

- (a) Give a brief account of the construction of the Riemann integral. Explain briefly how Lebesgue's construction took a different approach.
- (b) Let f(x) = 1 if x is a rational number and f(x) = 0 if x is irrational. Explain why f is not Riemann integrable on the interval [0, 1]. What is the value of the Lebesgue integral of f on [0, 1]?
- (c) Let f be a nonnegative measurable function on a measure space (X, \mathcal{A}, μ) . Show that if $\int_X f \, d\mu = 0$ then f(x) = 0 almost everywhere.