Linear Least-Squares Problem (LSP) QR Method

Rafikul Alam
Department of Mathematics
Indian Institute of Technology Guwahati
Guwahati - 781039, INDIA

Outline

• QR method for LSP

Complex matrix	Real matrix
Hermitian: $A^* = A$	Symmetric: $A^{\top} = A$
Unitary: $AA^* = A^*A = I$	Orthogonal: $AA^{\top} = A^{\top}A = I$
Isometry: $A^*A = I$	Isometry: $A^{\top}A = I$

Complex matrix	Real matrix
Hermitian: $A^* = A$	Symmetric: $A^{\top} = A$
Unitary: $AA^* = A^*A = I$	Orthogonal: $AA^{\top} = A^{\top}A = I$
Isometry: $A^*A = I$	Isometry: $A^{\top}A = I$

Fact: An $n \times n$ matrix A is unitary (resp., orthogonal) if and only if columns of A are orthonormal.

Complex matrix	Real matrix
Hermitian: $A^* = A$	Symmetric: $A^{\top} = A$
Unitary: $AA^* = A^*A = I$	Orthogonal: $AA^{\top} = A^{\top}A = I$
Isometry: $A^*A = I$	Isometry: $A^{\top}A = I$

Fact: An $n \times n$ matrix A is unitary (resp., orthogonal) if and only if columns of A are orthonormal. An $m \times n$ matrix is isometry if and only if columns of A are orthonormal.

Complex matrix	Real matrix
Hermitian: $A^* = A$	Symmetric: $A^{\top} = A$
Unitary: $AA^* = A^*A = I$	Orthogonal: $AA^{\top} = A^{\top}A = I$
Isometry: $A^*A = I$	Isometry: $A^{\top}A = I$

Fact: An $n \times n$ matrix A is unitary (resp., orthogonal) if and only if columns of A are orthonormal. An $m \times n$ matrix is isometry if and only if columns of A are orthonormal.

Example: The matrix
$$U := \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
 is unitary and $P := \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ is orthogonal.

Complex matrix	Real matrix
Hermitian: $A^* = A$	Symmetric: $A^{\top} = A$
Unitary: $AA^* = A^*A = I$	Orthogonal: $AA^{\top} = A^{\top}A = I$
Isometry: $A^*A = I$	Isometry: $A^{\top}A = I$

Fact: An $n \times n$ matrix A is unitary (resp., orthogonal) if and only if columns of A are orthonormal. An $m \times n$ matrix is isometry if and only if columns of A are orthonormal.

Example: The matrix
$$U:=\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
 is unitary and $P:=\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ is orthogonal. The

$$\mathsf{matrix}\ Q := \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix} \text{ is an isometry.}$$

Complex matrix	Real matrix
Hermitian: $A^* = A$	Symmetric: $A^{\top} = A$
Unitary: $AA^* = A^*A = I$	Orthogonal: $AA^{\top} = A^{\top}A = I$
Isometry: $A^*A = I$	Isometry: $A^{\top}A = I$

Fact: An $n \times n$ matrix A is unitary (resp., orthogonal) if and only if columns of A are orthonormal. An $m \times n$ matrix is isometry if and only if columns of A are orthonormal.

Example: The matrix
$$U := \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
 is unitary and $P := \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ is orthogonal. The

$$\mathsf{matrix} \ Q := \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix} \text{ is an isometry.}$$

Exercise: An $n \times n$ matrix U is unitary (resp., orthogonal) if and only if $\langle Ux, Uy \rangle = \langle x, y \rangle$ for all x and y. An $m \times n$ matrix Q is an isometry if and only if $\langle Qx, Qy \rangle = \langle x, y \rangle$ for all x and y.

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Then there is a unitary matrix $Q \in \mathbb{C}^{m \times m}$ and an upper triangular matrix $\mathcal{R} \in \mathbb{C}^{m \times n}$ such that $A = Q\mathcal{R}$.

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Then there is a unitary matrix $Q \in \mathbb{C}^{m \times m}$ and an upper triangular matrix $\mathcal{R} \in \mathbb{C}^{m \times n}$ such that $A = Q\mathcal{R}$. If $\operatorname{rank}(A) = n$ then \mathcal{R} is of the form $\mathcal{R} = \begin{bmatrix} R \\ 0 \end{bmatrix}$ for some nonsingular upper triangular matrix $R \in \mathbb{C}^{n \times n}$.

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Then there is a unitary matrix $Q \in \mathbb{C}^{m \times m}$ and an upper triangular matrix $\mathcal{R} \in \mathbb{C}^{m \times n}$ such that $A = Q\mathcal{R}$. If $\operatorname{rank}(A) = n$ then \mathcal{R} is of the form $\mathcal{R} = \begin{bmatrix} R \\ 0 \end{bmatrix}$ for some nonsingular upper triangular matrix $R \in \mathbb{C}^{n \times n}$. Let $Q = \begin{bmatrix} Q_n & Q_{m-n} \end{bmatrix}$ with $Q_n \in \mathbb{C}^{m \times n}$. Then Q_n is an isometry and

$$A = QR = \begin{bmatrix} Q_n & Q_{m-n} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_n R. \blacksquare$$

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Then there is a unitary matrix $Q \in \mathbb{C}^{m \times m}$ and an upper triangular matrix $\mathcal{R} \in \mathbb{C}^{m \times n}$ such that $A = Q\mathcal{R}$. If $\operatorname{rank}(A) = n$ then \mathcal{R} is of the form $\mathcal{R} = \begin{bmatrix} R \\ 0 \end{bmatrix}$ for some nonsingular upper triangular matrix $R \in \mathbb{C}^{n \times n}$. Let $Q = \begin{bmatrix} Q_n & Q_{m-n} \end{bmatrix}$ with $Q_n \in \mathbb{C}^{m \times n}$. Then Q_n is an isometry and

$$A = QR = \begin{bmatrix} Q_n & Q_{m-n} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_n R. \blacksquare$$

Remark: The factorization A = QR is called a full QR factorization and $A = Q_nR$ is called a compact (or economy size) QR factorization of A.

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Then there is a unitary matrix $Q \in \mathbb{C}^{m \times m}$ and an upper triangular matrix $\mathcal{R} \in \mathbb{C}^{m \times n}$ such that $A = Q\mathcal{R}$. If $\operatorname{rank}(A) = n$ then \mathcal{R} is of the form $\mathcal{R} = \begin{bmatrix} R \\ 0 \end{bmatrix}$ for some nonsingular upper triangular matrix $R \in \mathbb{C}^{n \times n}$. Let $Q = \begin{bmatrix} Q_n & Q_{m-n} \end{bmatrix}$ with $Q_n \in \mathbb{C}^{m \times n}$. Then Q_n is an isometry and

$$A = QR = \begin{bmatrix} Q_n & Q_{m-n} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_n R. \blacksquare$$

Remark: The factorization A = QR is called a full QR factorization and $A = Q_nR$ is called a compact (or economy size) QR factorization of A. MATLAB commands: [Q,R] = qr(A) and [Q,R] = qr(A,0), respectively, compute full and compact QR factorization of A

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Then there is a unitary matrix $Q \in \mathbb{C}^{m \times m}$ and an upper triangular matrix $\mathcal{R} \in \mathbb{C}^{m \times n}$ such that $A = Q\mathcal{R}$. If $\operatorname{rank}(A) = n$ then \mathcal{R} is of the form $\mathcal{R} = \begin{bmatrix} R \\ 0 \end{bmatrix}$ for some nonsingular upper triangular matrix $R \in \mathbb{C}^{n \times n}$. Let $Q = \begin{bmatrix} Q_n & Q_{m-n} \end{bmatrix}$ with $Q_n \in \mathbb{C}^{m \times n}$. Then Q_n is an isometry and

$$A = QR = \begin{bmatrix} Q_n & Q_{m-n} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_n R. \blacksquare$$

Remark: The factorization A = QR is called a full QR factorization and $A = Q_nR$ is called a compact (or economy size) QR factorization of A. MATLAB commands: [Q,R] = qr(A) and [Q,R] = qr(A,0), respectively, compute full and compact QR factorization of A

Example:

A QR factorization of A provides an efficient method for solution of the LSP $Ax \approx b$.

A QR factorization of A provides an efficient method for solution of the LSP $Ax \approx b$.

Suppose that
$$\operatorname{rank}(A) = n$$
. Set $\begin{bmatrix} c \\ d \end{bmatrix} := Q^*b$, where $c \in \mathbb{C}^n$ and $d \in \mathbb{C}^{m-n}$. Then

$$||Ax - b||_2 = ||Q^*(Ax - b)||_2 = ||\begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} c \\ d \end{bmatrix}||_2 = \sqrt{||Rx - c||_2^2 + ||d||_2^2}.$$

A QR factorization of A provides an efficient method for solution of the LSP $Ax \approx b$.

Suppose that $\operatorname{rank}(A) = n$. Set $\begin{bmatrix} c \\ d \end{bmatrix} := Q^*b$, where $c \in \mathbb{C}^n$ and $d \in \mathbb{C}^{m-n}$. Then

$$||Ax - b||_2 = ||Q^*(Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} c \\ d \end{bmatrix} \right\|_2 = \sqrt{||Rx - c||_2^2 + ||d||_2^2}.$$

This shows that min $||Ax - b||_2 = ||d||_2 \iff Rx = c$. Hence $x = R^{-1}c$ is a unique solution of the LSP and $||d||_2$ is the residual.

A QR factorization of A provides an efficient method for solution of the LSP $Ax \approx b$.

Suppose that
$$\operatorname{rank}(A) = n$$
. Set $\begin{bmatrix} c \\ d \end{bmatrix} := Q^*b$, where $c \in \mathbb{C}^n$ and $d \in \mathbb{C}^{m-n}$. Then

$$||Ax - b||_2 = ||Q^*(Ax - b)||_2 = ||\begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} c \\ d \end{bmatrix}||_2 = \sqrt{||Rx - c||_2^2 + ||d||_2^2}.$$

This shows that min $||Ax - b||_2 = ||d||_2 \iff Rx = c$. Hence $x = R^{-1}c$ is a unique solution of the LSP and $||d||_2$ is the residual. [If $Q \in \mathbb{C}^{n \times n}$ is unitary then $||Qx||_2 = ||x||_2$ for all x.]

A QR factorization of A provides an efficient method for solution of the LSP $Ax \approx b$.

Suppose that $\operatorname{rank}(A)=n.$ Set $\begin{bmatrix} c \\ d \end{bmatrix}:=Q^*b,$ where $c\in\mathbb{C}^n$ and $d\in\mathbb{C}^{m-n}.$ Then

$$||Ax - b||_2 = ||Q^*(Ax - b)||_2 = ||\begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} c \\ d \end{bmatrix}||_2 = \sqrt{||Rx - c||_2^2 + ||d||_2^2}.$$

This shows that min $||Ax - b||_2 = ||d||_2 \iff Rx = c$. Hence $x = R^{-1}c$ is a unique solution of the LSP and $||d||_2$ is the residual. [If $Q \in \mathbb{C}^{n \times n}$ is unitary then $||Qx||_2 = ||x||_2$ for all x.]

Algorithm: Solution of LSP $Ax \approx b$ when rank(A) = n.

- 1. Compute QR factorization $A = Q \begin{bmatrix} R \\ 0 \end{bmatrix}$.
- 2. Set $\begin{bmatrix} c \\ d \end{bmatrix} := Q^*b$, where $c \in \mathbb{C}^n$ and $d \in \mathbb{C}^{m-n}$.
- 3. Solve upper triangular system Rx = c.
- 4. Compute the residual $||d||_2$.

Example

Given
$$A = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}$$
 and $b = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix}$, solve the LSP $Ax \approx b$.

1. Compute QR factorization:
$$A = \begin{bmatrix} -\frac{3}{5} & 0 & \frac{4}{5} \\ -\frac{4}{5} & 0 & -\frac{3}{5} \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -5 & 10 \\ 0 & -1 \\ \hline 0 & 0 \end{bmatrix} = Q \begin{bmatrix} R \\ 0 \end{bmatrix}.$$

Example

Given
$$A = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}$$
 and $b = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix}$, solve the LSP $Ax \approx b$.

- 1. Compute QR factorization: $A = \begin{bmatrix} -\frac{3}{5} & 0 & \frac{4}{5} \\ -\frac{4}{5} & 0 & -\frac{3}{5} \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -5 & 10 \\ 0 & -1 \\ \hline 0 & 0 \end{bmatrix} = Q \begin{bmatrix} R \\ 0 \end{bmatrix}.$
- 2. Compute $Q^{\top}b = \begin{bmatrix} -5 \\ -2 \\ \hline -5 \end{bmatrix}$.

Example

Given
$$A = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}$$
 and $b = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix}$, solve the LSP $Ax \approx b$.

- 1. Compute QR factorization: $A = \begin{bmatrix} -\frac{3}{5} & 0 & \frac{4}{5} \\ -\frac{4}{5} & 0 & -\frac{3}{5} \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -5 & 10 \\ 0 & -1 \\ \hline 0 & 0 \end{bmatrix} = Q \begin{bmatrix} R \\ 0 \end{bmatrix}.$
- 2. Compute $Q^{\top}b = \begin{bmatrix} -5 \\ -2 \\ \hline -5 \end{bmatrix}$.
- 3. Solve $\begin{bmatrix} -5 & 10 \\ 0 & -1 \end{bmatrix} x = \begin{bmatrix} -5 \\ -2 \end{bmatrix} \Longrightarrow x = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$.
- 4. The residual $\|\mathbf{d}\|_2 = 5$.

If the matrix Q in the QR factorization A=QR is not required, then the LSP $Ax\approx b$ can be solved more efficiently by computing QR factorization of the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$.

If the matrix Q in the QR factorization A=QR is not required, then the LSP $Ax\approx b$ can be solved more efficiently by computing QR factorization of the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$.

Suppose that rank(A) = n. Then

$$Ax - b = \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix}$$
 and $\begin{bmatrix} A & b \end{bmatrix} = Q \begin{bmatrix} R & c \\ 0 & d \end{bmatrix} = Q\mathcal{R}$, where $d \in \mathbb{C}$.

If the matrix Q in the QR factorization A=QR is not required, then the LSP $Ax\approx b$ can be solved more efficiently by computing QR factorization of the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$.

Suppose that rank(A) = n. Then

$$Ax - b = \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix}$$
 and $\begin{bmatrix} A & b \end{bmatrix} = Q \begin{bmatrix} R & c \\ 0 & d \end{bmatrix} = Q\mathcal{R}$, where $d \in \mathbb{C}$.

Hence $||Ax - b||_2 = \sqrt{||Rx - c||_2 + |d|^2} \implies \min ||Ax - b||_2 = |d| \iff Rx = c$.

If the matrix Q in the QR factorization A=QR is not required, then the LSP $Ax\approx b$ can be solved more efficiently by computing QR factorization of the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$.

Suppose that rank(A) = n. Then

$$Ax - b = \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix}$$
 and $\begin{bmatrix} A & b \end{bmatrix} = Q \begin{bmatrix} R & c \\ 0 & d \end{bmatrix} = Q\mathcal{R}$, where $d \in \mathbb{C}$.

Hence
$$||Ax - b||_2 = \sqrt{||Rx - c||_2 + |d|^2} \Longrightarrow \min ||Ax - b||_2 = |d| \iff Rx = c$$
.

Hence the LSP $Ax \approx b$ can be solved in three steps:

If the matrix Q in the QR factorization A=QR is not required, then the LSP $Ax\approx b$ can be solved more efficiently by computing QR factorization of the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$.

Suppose that rank(A) = n. Then

$$Ax - b = \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix}$$
 and $\begin{bmatrix} A & b \end{bmatrix} = Q \begin{bmatrix} R & c \\ 0 & d \end{bmatrix} = Q\mathcal{R}$, where $d \in \mathbb{C}$.

Hence
$$||Ax - b||_2 = \sqrt{||Rx - c||_2 + |d|^2} \implies \min ||Ax - b||_2 = |d| \iff Rx = c$$
.

Hence the LSP $Ax \approx b$ can be solved in three steps:

• Compute QR factorization [A, b] = QR.

If the matrix Q in the QR factorization A=QR is not required, then the LSP $Ax\approx b$ can be solved more efficiently by computing QR factorization of the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$.

Suppose that rank(A) = n. Then

$$Ax - b = \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix}$$
 and $\begin{bmatrix} A & b \end{bmatrix} = Q \begin{bmatrix} R & c \\ 0 & d \end{bmatrix} = Q\mathcal{R}$, where $d \in \mathbb{C}$.

Hence
$$||Ax - b||_2 = \sqrt{||Rx - c||_2 + |d|^2} \Longrightarrow \min ||Ax - b||_2 = |d| \iff Rx = c$$
.

Hence the LSP $Ax \approx b$ can be solved in three steps:

- Compute QR factorization [A, b] = QR.
- Solve the upper triangular sytem R(1:n, 1:n)x = R(1:n, n+1).

If the matrix Q in the QR factorization A=QR is not required, then the LSP $Ax\approx b$ can be solved more efficiently by computing QR factorization of the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$.

Suppose that rank(A) = n. Then

$$Ax - b = \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix}$$
 and $\begin{bmatrix} A & b \end{bmatrix} = Q \begin{bmatrix} R & c \\ 0 & d \end{bmatrix} = Q\mathcal{R}$, where $d \in \mathbb{C}$.

Hence
$$||Ax - b||_2 = \sqrt{||Rx - c||_2 + |d|^2} \implies \min ||Ax - b||_2 = |d| \iff Rx = c$$
.

Hence the LSP $Ax \approx b$ can be solved in three steps:

- Compute QR factorization [A, b] = QR.
- Solve the upper triangular sytem R(1:n, 1:n)x = R(1:n, n+1).
- Compute residual norm |d| = abs(R(n+1, n+1)).

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Suppose that $\operatorname{rank}(A) = r$. Then there is a unitary matrix $Q \in \mathbb{C}^{m \times m}$ and a nonsingular upper triangular matrix $R_{11} \in \mathbb{C}^{r \times r}$ such that

$$AP = Q \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix} = Q\mathcal{R},$$

where $P \in \mathbb{R}^{n \times n}$ is a permutation matrix and $R_{12} \in \mathbb{C}^{r \times (n-r)}$.

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Suppose that $\operatorname{rank}(A) = r$. Then there is a unitary matrix $Q \in \mathbb{C}^{m \times m}$ and a nonsingular upper triangular matrix $R_{11} \in \mathbb{C}^{r \times r}$ such that

$$AP = Q \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix} = Q\mathcal{R},$$

where $P \in \mathbb{R}^{n \times n}$ is a permutation matrix and $R_{12} \in \mathbb{C}^{r \times (n-r)}$.

Set
$$\begin{bmatrix} c \\ d \end{bmatrix} := Q^*b$$
, where $c \in \mathbb{C}^r$ and $d \in \mathbb{C}^{m-r}$. Then

$$||Ax - b||_2 = ||Q^*(APP^\top x - b)||_2 = \left\| \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} - \begin{bmatrix} c \\ d \end{bmatrix} \right\|_2$$
$$= \sqrt{||R_{11}y + R_{12}z - c||_2^2 + ||d||_2^2}.$$

This shows that $\min \|Ax - b\|_2 = \|d\|_2 \iff R_{11}y = c - R_{12}z$.

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Suppose that $\operatorname{rank}(A) = r$. Then there is a unitary matrix $Q \in \mathbb{C}^{m \times m}$ and a nonsingular upper triangular matrix $R_{11} \in \mathbb{C}^{r \times r}$ such that

$$AP = Q \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix} = Q\mathcal{R},$$

where $P \in \mathbb{R}^{n \times n}$ is a permutation matrix and $R_{12} \in \mathbb{C}^{r \times (n-r)}$.

Set
$$\begin{bmatrix} c \\ d \end{bmatrix} := Q^*b,$$
 where $c \in \mathbb{C}^r$ and $d \in \mathbb{C}^{m-r}.$ Then

$$||Ax - b||_2 = ||Q^*(APP^\top x - b)||_2 = \left\| \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} - \begin{bmatrix} c \\ d \end{bmatrix} \right\|_2$$
$$= \sqrt{||R_{11}y + R_{12}z - c||_2^2 + ||d||_2^2}.$$

This shows that $\min \|Ax - b\|_2 = \|d\|_2 \iff R_{11}y = c - R_{12}z$. Hence $x = P \begin{bmatrix} y \\ z \end{bmatrix}$ is a solution of the LSP for any $z \in \mathbb{C}^{n-r}$ and $\|d\|_2$ is the residual. Setting z = 0 we obtain a unique solution with smallest norm.

Algorithm: Solution of LSP $Ax \approx b$ when rank(A) = r.

- 1. Compute QR factorization $AP = Q \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix}$, where $Q \in \mathbb{C}^{m \times m}$ is unitary, $R_{11} \in \mathbb{C}^{r \times r}$ is nonsingular and upper triangular.
- 2. Set $\begin{bmatrix} c \\ d \end{bmatrix} := Q^*b$, where $c \in \mathbb{C}^r$ and $d \in \mathbb{C}^{m-r}$.

Algorithm: Solution of LSP $Ax \approx b$ when rank(A) = r.

- 1. Compute QR factorization $AP = Q \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix}$, where $Q \in \mathbb{C}^{m \times m}$ is unitary, $R_{11} \in \mathbb{C}^{r \times r}$ is nonsingular and upper triangular.
- 2. Set $\begin{bmatrix} c \\ d \end{bmatrix} := Q^*b$, where $c \in \mathbb{C}^r$ and $d \in \mathbb{C}^{m-r}$.
- 3. Solve upper triangular system $R_{11}y = c$.
- 4. Set $x = P \begin{bmatrix} y \\ 0 \end{bmatrix}$. Then x is a unique solution of $Ax \approx b$.
- 5. Compute the residual $||d||_2$.

Algorithm: Solution of LSP $Ax \approx b$ when rank(A) = r.

- 1. Compute QR factorization $AP = Q \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix}$, where $Q \in \mathbb{C}^{m \times m}$ is unitary, $R_{11} \in \mathbb{C}^{r \times r}$ is nonsingular and upper triangular.
- 2. Set $\begin{bmatrix} c \\ d \end{bmatrix} := Q^*b$, where $c \in \mathbb{C}^r$ and $d \in \mathbb{C}^{m-r}$.
- 3. Solve upper triangular system $R_{11}y = c$.
- 4. Set $x = P \begin{bmatrix} y \\ 0 \end{bmatrix}$. Then x is a unique solution of $Ax \approx b$.
- 5. Compute the residual $||d||_2$.

Remark: If x is a solution of LSP $Ax \approx b$ then x + z is also a solution for any $z \in N(A)$. Hence the LSP has n - r linearly independent solutions.

Algorithm: Solution of LSP $Ax \approx b$ when rank(A) = r.

- 1. Compute QR factorization $AP = Q \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix}$, where $Q \in \mathbb{C}^{m \times m}$ is unitary, $R_{11} \in \mathbb{C}^{r \times r}$ is nonsingular and upper triangular.
- 2. Set $\begin{bmatrix} c \\ d \end{bmatrix} := Q^*b$, where $c \in \mathbb{C}^r$ and $d \in \mathbb{C}^{m-r}$.
- 3. Solve upper triangular system $R_{11}y = c$.
- 4. Set $x = P \begin{bmatrix} y \\ 0 \end{bmatrix}$. Then x is a unique solution of $Ax \approx b$.
- 5. Compute the residual $||d||_2$.

Remark: If x is a solution of LSP $Ax \approx b$ then x + z is also a solution for any $z \in N(A)$. Hence the LSP has n - r linearly independent solutions.

A rank deficient LSP is an ill-posed problem and solutions are strongly dependent on the rank of A. Numerical rank determination is a tricky problem.

Algorithm: Solution of LSP $Ax \approx b$ when rank(A) = r.

- 1. Compute QR factorization $AP = Q \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix}$, where $Q \in \mathbb{C}^{m \times m}$ is unitary, $R_{11} \in \mathbb{C}^{r \times r}$ is nonsingular and upper triangular.
- 2. Set $\begin{bmatrix} c \\ d \end{bmatrix} := Q^*b$, where $c \in \mathbb{C}^r$ and $d \in \mathbb{C}^{m-r}$.
- 3. Solve upper triangular system $R_{11}y = c$.
- 4. Set $x = P \begin{bmatrix} y \\ 0 \end{bmatrix}$. Then x is a unique solution of $Ax \approx b$.
- 5. Compute the residual $||d||_2$.

Remark: If x is a solution of LSP $Ax \approx b$ then x + z is also a solution for any $z \in N(A)$. Hence the LSP has n - r linearly independent solutions.

A rank deficient LSP is an ill-posed problem and solutions are strongly dependent on the rank of A. Numerical rank determination is a tricky problem.

The MATLAB command [Q,R,P] = qr(A) computes a QR factorization AP = QR.

Theorem: Let $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A) = n$. Then there exist unique isometry $Q \in \mathbb{R}^{m \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A = QR.

Theorem: Let $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A) = n$. Then there exist unique isometry $Q \in \mathbb{R}^{m \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A = QR.

Proof: Let $A = \hat{Q}\hat{R}$ be a QR factroziation of A, where $\hat{Q} \in R^{m \times n}$ is an isometry and $\hat{R} \in \mathbb{R}^{n \times n}$ is upper triangular.

Theorem: Let $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A) = n$. Then there exist unique isometry $Q \in \mathbb{R}^{m \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A = QR.

Proof: Let $A = \hat{Q}\hat{R}$ be a QR factroziation of A, where $\hat{Q} \in R^{m \times n}$ is an isometry and $\hat{R} \in \mathbb{R}^{n \times n}$ is upper triangular. Let r_{11}, \ldots, r_{nn} be the diagonal entries of \hat{R} . Define $D := \operatorname{diag}(\operatorname{sign}(r_{11}), \cdots, \operatorname{sign}(r_{nn}))$.

Theorem: Let $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A) = n$. Then there exist unique isometry $Q \in \mathbb{R}^{m \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A = QR.

Proof: Let $A = \hat{Q}\hat{R}$ be a QR factroziation of A, where $\hat{Q} \in R^{m \times n}$ is an isometry and $\hat{R} \in \mathbb{R}^{n \times n}$ is upper triangular. Let r_{11}, \ldots, r_{nn} be the diagonal entries of \hat{R} . Define $D := \operatorname{diag}(\operatorname{sign}(r_{11}), \cdots, \operatorname{sign}(r_{nn}))$.

Then D is unitary, $Q := \hat{Q}D$ is an isometry, $R := D\hat{R}$ is upper triangular with positive diagonal entries, and A = QR.

Theorem: Let $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A) = n$. Then there exist unique isometry $Q \in \mathbb{R}^{m \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A = QR.

Proof: Let $A = \hat{Q}\hat{R}$ be a QR factroziation of A, where $\hat{Q} \in R^{m \times n}$ is an isometry and $\hat{R} \in \mathbb{R}^{n \times n}$ is upper triangular. Let r_{11}, \ldots, r_{nn} be the diagonal entries of \hat{R} . Define $D := \operatorname{diag}(\operatorname{sign}(r_{11}), \cdots, \operatorname{sign}(r_{nn}))$.

Then D is unitary, $Q := \hat{Q}D$ is an isometry, $R := D\hat{R}$ is upper triangular with positive diagonal entries, and A = QR. This proves the existence.

Theorem: Let $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A) = n$. Then there exist unique isometry $Q \in \mathbb{R}^{m \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A = QR.

Proof: Let $A = \hat{Q}\hat{R}$ be a QR factroziation of A, where $\hat{Q} \in R^{m \times n}$ is an isometry and $\hat{R} \in \mathbb{R}^{n \times n}$ is upper triangular. Let r_{11}, \ldots, r_{nn} be the diagonal entries of \hat{R} . Define $D := \operatorname{diag}(\operatorname{sign}(r_{11}), \cdots, \operatorname{sign}(r_{nn}))$.

Then D is unitary, $Q := \hat{Q}D$ is an isometry, $R := D\hat{R}$ is upper triangular with positive diagonal entries, and A = QR. This proves the existence.

Now suppose that $A = Q_1R_1 = Q_2R_2$, where Q_1, Q_2 are isometry and R_1, R_2 are upper triangular with positive diangonal entries.

Theorem: Let $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A) = n$. Then there exist unique isometry $Q \in \mathbb{R}^{m \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A = QR.

Proof: Let $A = \hat{Q}\hat{R}$ be a QR factroziation of A, where $\hat{Q} \in R^{m \times n}$ is an isometry and $\hat{R} \in \mathbb{R}^{n \times n}$ is upper triangular. Let r_{11}, \ldots, r_{nn} be the diagonal entries of \hat{R} . Define $D := \operatorname{diag}(\operatorname{sign}(r_{11}), \cdots, \operatorname{sign}(r_{nn}))$.

Then D is unitary, $Q := \hat{Q}D$ is an isometry, $R := D\hat{R}$ is upper triangular with positive diagonal entries, and A = QR. This proves the existence.

Now suppose that $A=Q_1R_1=Q_2R_2$, where Q_1,Q_2 are isometry and R_1,R_2 are upper triangular with positive diangonal entries.

Then $A^{\top}A = R_1^{\top}R_1 = R_2^{\top}R_2$ are Cholesky factorizations of $A^{\top}A$. By uniqueness of Cholesky factorization, $R_1 = R_2$ which gives $Q_1 = Q_2$.
