Last name	
First name	

LARSON—MATH 601—CLASSROOM WORKSHEET 16 Coordinates, Row Equivalence.

Concepts & Notation

- (Sec. 2.4) ordered basis, coordinates, coordinate matrix, $[\alpha]_{\mathcal{B}}$.
- (Sec. 2.5) row rank.
- 1. **Explain:** For a vector space V with bases \mathcal{B} and \mathcal{B}' , and vector $\alpha \in V$, there is an invertible matrix P such that $[\alpha]_{\mathcal{B}} = P[\alpha]_{\mathcal{B}'}$.

2. Claim: If V is a vector space V over a field \mathbb{F} with basis \mathcal{B} and P is an invertible $n \times n$ matrix then there is a unique ordered basis \mathcal{B}' of V so that $[\alpha]_{\mathcal{B}} = P[\alpha]_{\mathcal{B}'}$.

3. What is the *row space* of a matrix? Why is it a vector space? Describe the row space of $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.

4. What is the *row rank* of a matrix? Find the row rank of $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.

5. Claim: Row-equivalent matrices have the same row-space.

6. Claim: If matrix A is equivalent to row-reduced echelon R and to $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then $R = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.