Домашняя работа №1

по Теоретическим моделям вычислений

Задание 1

Построить конечные автоматы¹, распознающие следующие языки:

1.
$$L_1 = \{\omega \in \{a, b, c\}^* : |\omega|_c = 1\}$$

2. $L_2 = \{\omega \in \{a,b\}^* : |\omega|_a \leqslant 2, |\omega|_b \geqslant 2\}$ Рассмотрим автоматы $A = \{\omega \in \{a,b\}^* : |\omega|_a \leqslant 2\}$ и $B = \{\omega \in \{a,b\}^* : |\omega|_B \geqslant 2\}$, распознающие каждое условие по отдельности:

Тогда $L_2 = A \times B$. Терминальными состояниями в L_2 будут вершины 13, 23 и 33. Теперь выпишем переходы для произведения автоматов в виде таблицы:

A	B	переход по a	переход по b
1	1	21	12
2	2	32	23
3	3	-	33
1	2	22	13
2	3	33	23
3	1	-	32
1	3	23	13
2	1	31	22
3	2	-	33

После прямого произведения двух автоматов получим окончательный ответ:

¹Так как библиотека graphviz для IATEXпо неизвестной мне причине, не может использовать строки в кавыках в качестве имён узлов и не может распознавать имена, состоящие из расположенных слитно цифр и букв, то названия узлов в некоторых приведённых здесь графах будут иметь длинные числовые наименования.

- 3. $L_3 = \{\omega \in \{a,b\}^* : |\omega|_a \neq |\omega|_b\}$ Этот язык нельзя описать с помощью ДКА, т.к. для описания языка необходимо запоминать количество символов одного типа, что ДКА сделать не может.
- 4. $L_4=\{\omega\in\{a,b\}^*:\omega\omega=\omega\omega\omega\}$ Очевидно, что такой язык описывает только пустые слова:

Задание 2

Построить конечные автоматы, распознающие слудеющие языки, используя прямое произведение:

1. $L_1 = \{\omega \in \{a,b\}^* : |\omega|_a \geqslant 2 \wedge |\omega|_b \geqslant 2\}$ Рассмотрим автоматы $A = \{\omega \in \{a,b\}^* : |\omega|_a \geqslant 2\}$ и $B = \{\omega \in \{a,b\}^* : |\omega|_b \geqslant 2\}$, распознающие каждое условие по отдельности:

Тогда $L_1 = A \times B$, имеем $\Sigma = \{a, b\}$, s = 11 и $T = \{33\}$. Теперь выпишем переходы для произведения автоматов в виде таблицы:

A	B	переход по a	переход по b
1	1	21	12
2	2	32	23
3	3	33	33
1	2	22	13
2	3	33	23
3	1	31	32
1	3	23	13
2	1	31	22
3	2	32	33

После прямого произведения двух автоматов получим окончательный ответ:

2. $L_2 = \{\omega \in \{a,b\}^* : |\omega| \geqslant 3 \land |\omega| \text{ нечётное} \}$ Рассмотрим автоматы $A = \{\omega \in \{a,b\}^* : |\omega| \geqslant 3 \}$ и $B = \{\omega \in \{a,b\}^* : |\omega| \text{ нечётное} \}$:

Тогда $L_2=A\times B,$ имеем $\Sigma=\{a,b\},\,s=11$ и $T=\{33\}.$ Переходы для произведения автоматов:

A	B	переход по a или b
1	1	22
2	1	32
3	1	42
4	1	42
1	2	21
2	2	31
3	2	41
4	2	41

После прямого произведения двух автоматов получим окончательный ответ:

ДКА можно упростить, т.к. невозможно попасть в узлы 12, 21 и 32:

C другой стороны, описать данный язык можно c помощью более компактного автомата, созданного "вручную":

3. $L_3 = \{\omega \in \{a,b\}^* : |\omega|_a$ чётно $\wedge |\omega|_b$ кратно $3\}$ Рассмотрим автоматы $A = \{\omega \in \{a,b\}^* : |\omega|_a$ чётно $\}$ и $B = \{\omega \in \{a,b\}^* : |\omega|_b$ кратно $3\}$:

Тогда $L_3=A\times B,$ имеем $\Sigma=\{a,b\},$ s=11 и $T=\{11\}.$ Переходы для произведения автоматов:

A	B	переход по a	переход по b
1	1	21	12
2	2	12	23
1	2	22	13
2	3	13	21
1	3	23	11
2	1	11	22

После прямого произведения двух автоматов получим окончательный ответ:

4. $L_4=\neg L_3$ Имеем, $T_4=Q_3\setminus T_3=\{12,13,21,22,23\}$, тогда можно легко построить ДКА:

5. $L_5 = L_2 \setminus L_3$

Для построения этого автомата используем упрощённую версию автомата L_2 , которая была получена в пункте 2 этого задания. Для удобства дальнейших преобразований, перенумеруем названия узлов графа $\neg L_3$:

Так как $L_5=L_2\setminus L_3=L_2\cap \neg L_3=\neg L_3\times L_2$, тогда имеем: $\Sigma=\{a,b\},\,s=11$ и $T=\{42,43,44,45,46\}.$ Выпишем переходы для L_5 :

L_2	$\neg L_3$	переход по a	переход по b
1	1	24	22
1	2	25	23
1	3	26	21
1	4	21	25
1	5	22	26
1	6	23	24
2	1	34	32
2	2	35	33
2	3	36	31
2	4	31	35
2	5	32	36
2	6	33	34

		ı	
L_2	$\neg L_3$	переход по a	переход по b
3	1	44	32
3	2	45	33
3	3	46	31
3	4	41	35
3	5	42	36
3	6	43	34
4	1	34	32
4	2	35	33
4	3	36	31
4	4	31	35
4	5	32	36
4	6	33	34

Построим автомат:

Задание 3

Построить минимальные ДКА по регулярным выражениям:

1. $(ab+aba)^*a$ Составим недетерминированный автомат, чтобы затем преобразовать его в детерминированный:

Построим эквивалентный ДКА по алгоритму Томпсона:

Q	a	b
1	234	-
234	-	15
15	1234	-
1234	234	15

Получили минимальный и детерминированный автомат:

2. $a(a(ab)^*b)^*(ab)^*$ Построим НКА:

Построим эквивалентный ДКА по алгоритму Томпсона:

Q	a	b
1	2	-
2	35	-
35	4	2
4	-	3
3	4	2

Получили следующий детерминированный автомат:

Определим пары различимых состояний и попробуем минимизировать полученный автомат:

	1	2	3	35	4
1		+	+	+	+
2	+		+	+	+
3	+	+			+
35	+	+			+
4	+	+	+	+	

Получили различимые состояния $\{1,2,3,335,4\}$, перестроим автомат, очевидно, что он минимальный:

$$0 \qquad \begin{array}{c|c} & & & \\ \hline & & & \\ \hline \end{array}$$

3. $(a + (a + b)(a + b)b)^*$ Построим НКА:

Построим эквивалентный ДКА по алгоритму Томпсона:

Q	a	b
1	12	2
12	123	23
2	3	3
123	123	123
23	3	13
3	-	1
13	12	12

Получили следующий детерминированный автомат:

Определим пары различимых состояний и попробуем минимизировать полученный автомат:

	1	12	13	123	2	23	3
1					+	+	+
12					+	+	+
13					+	+	+
123					+	+	+
2	+	+	+	+			+
23	+	+	+	+			+
3	+	+	+	+	+	+	

4. $(b+c)((ab)^*c+(ba)^*)^*$ Сразу можем построить ДКА:

Определим пары различимых состояний и попробуем минимизировать полученный автомат:

	1	2	3	4	5	6	7
1		+	+	+	+	+	+
2	+		+	+		+	
3	+	+		+	+	+	+
4	+	+	+		+	+	+
5	+		+	+		+	
6	+	+	+	+	+		+
7	+		+	+		+	

Получили различимые состояния $\{1, 257, 3, 4, 5, 6\}$, перестроим автомат, очевидно, что он минимальный:

5. $(a+b)^+(aa+abab+bb+baba)(a+b)^+$ Построим НКА:

Построим эквивалентный ДКА по алгоритму Томпсона:

Q	a	b
1	2	2
2	13	18
13	3	3
123	123	123
23	3	13
3	-	1
13	12	12

Задание 4

Определить, является ли следующие языки регулярными или нет:

1. $L = \{(aab)^n b (aba)^m : n \geqslant 0, m \geqslant 0\}$ Язык регулярный, так как по нему возможно составить ДКА:

2. $L = \{uaav : u \in \{a,b\}^*, \ v \in \{a,b\}^*, |u|_b \geqslant |v|_a\}$

Применим лемму о разрастании. Зафиксируем $\forall n \in \mathbb{N}$ и рассмотрим слово $\omega = b^n aaa^n, \ |\omega| = 2n + 2 \ge n.$ Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \ne 0, \ |xy| \le n$:

$$x = b^k, \ y = b^l, \ z = b^{n-k-l}aaa^n,$$

где
$$1 \le k + l \le n \land l > 0$$

Дргуих разбиенний, удовлетворяющих данным условиям, нет. Для любого из таких разбиений слово $xy^0z \notin L$. Лемма не выполняется, значит, L не регулярный язык.

3. $L = \{a^m w : w \in \{a, b\}^*, 1 \ge |w|_b \ge m\}$

Применим лемму о разрастании. Зафиксируем $\forall n \in \mathbb{N}$ и рассмотрим слово $\omega = a^n b^n$, $|\omega| = 2n \geqslant n$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0$, $|xy| \leq n$:

$$x = a^{l}, y = a^{m}, z = a^{n-l-m}b^{n},$$

где
$$l+k\leqslant n \ \land \ m\neq 0$$

Дргуих разбиенний, удовлетворяющих данным условиям, нет. Теперь выполним накачку:

$$xy^iz = a^l(a^m)^ia^{n-l-m}b^n = a^{n-mi}b^n \notin L, \ i \geqslant 0 \in \mathbb{N}$$

Лемма не выполняется, значит, L не регулярный язык.

4. $L = \{a^k b^m a^n : k = n \lor m > 0\}$

Применим лемму о разрастании. Зафиксируем $\forall n \in \mathbb{N}$ и рассмотрим слово $\omega = a^n b a^n$, $|\omega| = 2n + 1 \ge n$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \ne 0$, $|xy| \le n$:

$$x = a^k, y = a^m, z = a^{n-k-m}ba^n,$$

где
$$k+m\leqslant n \ \land \ m\neq 0$$

Дргуих разбиенний, удовлетворяющих данным условиям, нет. Теперь выполним накачку:

$$xy^iz = a^k(a^m)^ia^{n-k-m}ba^n = a^{n+m(i-1)}ba^n \notin L, \ i \geqslant 2 \in \mathbb{N}$$

Получили противоречие, лемма не выполняется, значит, L не регулярный язык.

5. $L = \{ucv : u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$

Применим лемму о разрастании. Зафиксируем $\forall n \in \mathbb{N}$ и рассмотрим слово $\omega = (ab)^n c(ab)^n = \alpha_1 \alpha_2 ... \alpha_{4n+1}, \ |\omega| = 4n+1 \geqslant n$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0, \ |xy| \leq n$:

$$x = \alpha_1 \alpha_2 ... \alpha_k, \ y = \alpha_{k+1} ... \alpha_{k+m}, \ z = \alpha_{k+m+1} ... \alpha_{4n+1} c(ab)^n,$$

где
$$k+m\leqslant n \ \land \ m\neq 0$$

Дргуих разбиенний, удовлетворяющих данным условиям, нет. Теперь выполним накачку:

$$xy^{i}z = (\alpha_{1}\alpha_{2}...\alpha_{k})(\alpha_{k+1}...\alpha_{k+m})^{i}(\alpha_{k+m+1}...\alpha_{4n+1}c(ab)^{n})$$

При i=2 имеем:

$$xy^2z = (\alpha_1\alpha_2...\alpha_k)(\alpha_{k+1}...\alpha_{k+m})^2(\alpha_{k+m+1}...\alpha_{4n+1}c(ab)^n) \notin L$$

Лемма не выполняется, значит, L не регулярный язык.