Universidad Nacional Autónoma de México

Fundamentos de Bases de Datos

Tarea 5: Dependencias y Normalización

Almeida Rodríguez Jerónimo 418003815

Figueroa Sandoval Gerardo Emiliano 315241774

Ibarra Moreno Gisselle 315602193

1. Preguntas de repaso:

- ¿Qué es una dependencia funcional y cómo se define? Una dependencia funcional es una relación unidireccional entre dos atributos tal que para algún valor de B, solamente tiene relacionado uno de A por medio de la relación. Se definen cómo A → B.
- ¿Para qué sirve el concepto de dependencia en la normalización?
 Para eliminar o en su defecto reducir la redundancia en un
- Sea A la llave de R(A, B, C). Indica todas las dependencias

$$A \to B$$
; $A \to C$

Y, cómo relación trivial, $A \to A$.

que se haya reducido al redundancia.

base de datos. funcionales que implica A.

 ¿Qué es una forma normal? ¿Cuál es el objetivo de normalizar un modelo de datos?
 Una forma normal es una manera de, por medio de reglas sobre las relaciones, descomponer los datos de la base de tal manera

El objetivo de normalizr es un modelo de datos es reducir en la mayor medida posible la redundancia en una base de datos.

- ¿En qué casos es preferible lograr 3NF en vez de BCNF? Cuándo no se desea descomponer más el esquema.
- 2. Proporciona algunos ejemplos que demuestren que las siguientes reglas no son válidas:
 - a) Si A \rightarrow B, entonces B \rightarrow A Sea la relación R(restaurante, ciudad, teléfono).

Se tiene la DF $restaurante \rightarrow ciudad$, ya que un restaurante tiene asociada una sola ciudad, pero notemos que la DF $ciudad \rightarrow restaurante$ no se da, ya que una ciudad tiene varios restaurantes.

Por lo que $A \to B$ no implica que $B \to A$

b) Si A \rightarrow C, entonces A \rightarrow C

Sea R(usuario, teléfono).

Es fácil ver que usuario \twoheadrightarrow teléfono. Por otro lado, si tuvieramos que teléfono \to usuario entonces la dependencia no podría

ser multivaludada porque en el caso en el que un usuario tuviera dos o más teléfonos tendríamos que dos telefonos determinan funcionalmente a un usuario y eso es contrario a la definción de dependencia funcional.

- 3. Para cada uno de los esquemas que se muestran a continuación:
 - a) R(A,B,C,D,E) con $F = \{AB \to CD, E \to C, D \to B\}$
 - b) R(A,B,C,D,E)con $F = \{AB \rightarrow C, DE \rightarrow C, B \rightarrow D\}$
 - Especifica de ser posible dos DF no triviales que se pueden derivar de las dependencias funcionales dadas.
 a. {AB → C, AB → D}.
 - Indica alguna llave candidata para R.
 a.{ABE}+={ABCDE}
 - Especifica todas las violaciones a la BCNF a. $\{AB \to CD, E \to C, D \to B\}$
 - Normaliza de acuerdo a BCNF, asegúrate de indicar cuáles son las relaciones resultantes con sus respectivas dependencias funcionales:
 - a. Tomamos la violación $AB \to CD$.

Obtenemos las relación S(A,B,C,D) con dependecias $\{AB \to CD, D \to B\}$ y la relación T(A,B,E) con dependencias $\{ABE \to ABE\}$.

 ${AB}={ABCD}$ es una llave para S, entonces tomamos la violación D \rightarrow B.

Obtenemos la relación U(D,B) con dependencia $\{D \to B\}$ y la relación V(D,A,C) con dependencia $\{DAC \to DAC\}$.

Por lo tanto el esquema en BCNF es U(D,B), V(D,A,C) y T(A,B,E).

- 4. Para cada una de las siguientes relaciones con su respectivo conjunto de dependencias funcionales:
 - a) R(A,B,C,D,E,F)con $F = \{B \rightarrow D, B \rightarrow E, D \rightarrow F, AB \rightarrow C\}$
 - $b) \ \ R(A,B,C,D,E)con \ F = \{A \rightarrow BC, \, B \rightarrow D, \, CD \rightarrow E, \, E \rightarrow A \ \}$
 - Indica todas las violaciones a la 3NF

a. La única violación a la 3NF es $D\rightarrow F$.

Podemos observar también que F se minimiza de la siguiente manera:

$$F'=\{B \to ED, D \to F, AB \to C\}$$

- b. $\{A\}+=\{ABCDE\}$ y $\{E\}+=\{EABCD\}$ son llaves, entonces la única violación a la 3NF es $B\to D$.
- Normaliza de acuerdo a la 3NF
 - a. Superfluos por la izquierda: $AB \rightarrow$

A es superfluo por la izquierda? B=BEF, entonces A no es superfluo.

 \mathcal{E}^B es superfluo? $\{A\} + = \{A\}$, entonces B no es superfluo.

Superfluos por la derecha: $B \to ED$

E E superfluo? B+=ED, entonces E no lo es.

¿D es superfluo? $\{B\} + = \{ED\}$, entonces D no lo es.

Por lo tanto, el esquema en 3NF es: S(B,E,D), T(D,F), U(A,B,C)

b. Superfluos por la izquierda: $CD \rightarrow E$

;C es superfluo? D → E, {D}+={D} entonces C no es superfluo.

¿D es superfluo? C → E, {C}+={C} entonces D no es superfluo.

Superfluos por la derecha: $A \to BC$

 \dot{B} es superfluo? A \rightarrow C, F'={A \rightarrow C, B \rightarrow D, CD \rightarrow E, E \rightarrow A}.

 $\{A\}+=\{AC\}$ por lo tanto, B no es superfluo.

 $A \rightarrow B F'' = \{A \rightarrow B, B \rightarrow D, CD \rightarrow E, E \rightarrow A\}.$

 $\{A\} += \{AB\}$ por lo tanto, C no es superfluo.

Entonces F ya es el mínimo.

 $S(A,B,C),\ T(B,D),\ U(C,D,E)$ y V(E,A)es el esquema en 3NF.

- 6. Para cada uno de los esquemas, con su respectivo conjunto de dependencias multivaluadas, resuelve los siguientes puntos:
 - a) R(A,B,C,D)con $DMV = AB \rightarrow C, B \rightarrow D$
 - b) R(A,B,C,D,E)con $DMV = A \rightarrow B$, $AB \rightarrow C$, $A \rightarrow D$, $AB \rightarrow E$
 - Encuentra todas las violaciones a la 4NF.

- a. $\{AB\} + = \{ABCD\}$ es una llave y no hay violaciones
- b. $\{AB\} + = \{ABCDE\}$ es una llave. Las violaciones son $\{A \rightarrow B\}$.
- Normaliza de acuerdo a la 4NF.
 - a. Dividimos la relación en dos esquemas: U(A,B,C) y V(B,D).
 Ambos esquemas ya están en 4NF.
 - Ambos esquemas ya estan en 4NF
 - b. Tomamos la violación A→B.
 Obtenemos las relaciones S(A,B) con DMV={A→B} y T(A,C,D,E) con DMV={A→}.
 {ACE}+={ACED} es una llave para T, entonces tomamos la violación A→D.
 Obtenemos las relaciones U(A,D) con DMV={A→} y V(A,C,E) con DMV={ACE→}.
 Por lo tanto, el esquema en 4NF es S(A,B), U(A,D) y
- 7. Se tiene la siguiente relación:

V(A,C,E).

R(idEnfermo, idCirujano, fechaCirugía, nombreEnfermo, direcciónEnfermo, nombreCirujano, nombreCirugía, medicinaSuministrada, efectosSecundarios)

Expresa las siguientes restricciones en forma de dependencias funcionales: A un enfermo sólo se le da una medicina después de la operación. Si existen efectos secundarios estos dependen sólo de la medicina suministrada. Sólo puede existir un efecto secundario por medicamento.

 $F = \{idEnfermo \ nombre Cirugía \rightarrow medicina Suministrada, \\ medicina Suministrada \rightarrow efectos Secundarios, \\ efectos Secundarios \rightarrow medicina Suministrada \}$

Especifica otras dependencias funcionales o multivaluadas que deban satisfacerse en la relación R. Por cada una que definas, deberá aparecer un enunciado en español como en el inciso anterior. Un cirujano atiende a un enfermo y le receta una medicina en una cierta fecha.

Un enfermo tiene un nombre y una direcicón.

F'=F∪{idCirujano → idEnfermo medicinaSuministrada, fechaCirugía,

 $idEnfermo \rightarrow nombreEnfermo direcciónEnfermo$