PPL Theory Aeronautical Radio Operation

RARO 2 - Components of the Radio

Document Identification		
Document Category	Training Material	
Document Revision Number		
Document Issue Date		
Document Status	Active	
Document Title		
Document Identification	MBWTRG-TRM-XXX	

2. Related Documents

Related Documents	Document Identification

Amendments made to this document since the previous version are listed below. All amendments to this document have been made in accordance with CAE OAAM's document management procedure.

Slide	Changes

HOW DOES IT ACTUALLY WORK?

Transmitting sound waves via radio waves

Transmitting sound waves via radio waves

➤ Before we examine the individual components of the radio, we need to ask the question – how to we actually transmit our voices (sound waves) via the radio?

Transmitting sound waves via radio waves

➤ Before we examine the individual components of the radio, we need to ask the question – how to we actually transmit our voices (sound waves) via the radio?

The answer - modulation

Modulation

> Step 1: We speak and transmit sound waves (in the Audio Frequency)

Modulation

> Step 1: We speak and transmit sound waves (in the Audio Frequency)

Modulation

> Step 1: We speak and transmit sound waves (in the Audio Frequency)

> Step 2: These sound waves are superimposed onto a carrier wave (VHF) in order to be transmitted via radio

Modulation

> Step 1: We speak and transmit sound waves (in the Audio Frequency)

> Step 2: These sound waves are superimposed onto a carrier wave (VHF) in order to be transmitted via radio

Modulation

> Step 1: We speak and transmit sound waves (in the Audio Frequency)

> Step 2: These sound waves are superimposed onto a carrier wave (VHF) in order to be transmitted via radio

> Step 3: Once received, this superimposed message is then demodulated back into an audible frequency for us to hear.

Types of Modulation

➤ Amplitude Modulation (AM) – used by VHF aeronautical radios

Frequency Modulation (FM)

Types of Modulation

QUESTIONS/COMMENTS?

RADIO COMPONENTS

Radio Components

Radio Components

Radio Components – Power Source

Radio Components - Power Source

➤ Electrical equipment, including the aircraft radio, can draw power from two different sources:

Radio Components - Power Source

- ➤ Electrical equipment, including the aircraft radio, can draw power from two different sources:
 - 1. The alternator (when the engine is running)

Radio Components – Power Source

- ➤ Electrical equipment, including the aircraft radio, can draw power from two different sources:
 - 1. The alternator (when the engine is running)
 - 2. The battery (when the engine is inoperative)

Radio Components - Power Source

- ➤ Electrical equipment, including the aircraft radio, can draw power from two different sources:
 - 1. The alternator (when the engine is running)
 - 2. The battery (when the engine is inoperative)

Radio Components - Power Source

- ➤ Electrical equipment, including the aircraft radio, can draw power from two different sources:
 - 1. The alternator (when the engine is running)
 - 2. The battery (when the engine is inoperative)

Note: in some aircraft, there is a separate avionics switch

Radio Components

Radio Components – VHF COM

Radio Components – VHF COM

Radio set used for communications

Radio Components – VHF COM

Radio set used for communications

Radio Components

Radio Components – VHF NAV

Radio Components – VHF NAV

Radio set used for navigation using radio navigation aids e.g. VOR

Radio Components – VHF NAV

> Radio set used for navigation using radio navigation aids e.g. VOR

Radio Components – VHF NAV & COM

Radio Components – VHF NAV & COM

VHF NAV & VHF COM can also be combined in one antenna

Radio Components – VHF NAV & COM

> VHF NAV & VHF COM can also be combined in one antenna

Radio Components – VHF NAV & COM

VHF NAV & VHF COM can also be combined in one antenna

Radio Components – VHF NAV & COM

Radio Components – VHF NAV & COM

Radio Components – VHF NAV & COM

Radio Components – VHF NAV & COM

Radio Components

Radio Components – Microphone

Radio Components - Microphone

➤ The microphone takes the sound waves produced by your voice and converts them into electrical signals

Radio Components - Microphone

- ➤ The microphone takes the sound waves produced by your voice and converts them into electrical signals
- ➤ When the transmit button is pressed, a carrier wave is transmitted on the selected frequency and any sounds made are superimposed onto this carrier wave (modulation)

Radio Components - Microphone

- ➤ The microphone takes the sound waves produced by your voice and converts them into electrical signals
- ➤ When the transmit button is pressed, a carrier wave is transmitted on the selected frequency and any sounds made are superimposed onto this carrier wave (modulation)
- ➤ This modulated signal is then sent to the antenna for transmission to the outside world

Radio Components – Transmitter

Radio Components – Transmitter

Radio Components – Transmitter

Radio Components – Transmitter

Radio Components – Antenna

➤ The signal from the transmitter is sent to the antenna and radiated out into space

Radio Components – Antenna

- ➤ The signal from the transmitter is sent to the antenna and radiated out into space
- ➤ Most antennas are ½ or ¼ the wavelength of the transmitted signal. e.g. a VHF signal of 120MHz corresponds to a wavelength of about 2.5m

Radio Components – Antenna

- The signal from the transmitter is sent to the antenna and radiated out into space
- ➤ Most antennas are ½ or ¼ the wavelength of the transmitted signal. e.g. a VHF signal of 120MHz corresponds to a wavelength of about 2.5m

Radio Components – Receiver

Radio Components – Receiver

Receivers work opposite to transmitters. They receive radio signals via the antenna

Radio Components – Receiver

Receivers work opposite to transmitters. They receive radio signals via the antenna

Radio Components - Receiver

- Receivers work opposite to transmitters. They receive radio signals via the antenna
- From here, the signal is sent to the headphones or speaker.

Radio Components

Radio Components – Headphones/Speaker

➤ The signal is demodulated, allowing the original message to be heard through the headphones/cabin speaker in sound waves detectable to the human ear

Radio Components – Fuses & Circuit Breakers

Radio Components – Fuses & Circuit Breakers

➤ Electrical malfunctions are managed through the use of fuses and circuit breakers

Radio Components – Fuses & Circuit Breakers

- ➤ Electrical malfunctions are managed through the use of fuses and circuit breakers
- ➤ In the event of a malfunction, a fuse will melt or a circuit breaker will "pop" to avoid further damage to the electrical system

Radio Components – Fuses & Circuit Breakers

- Electrical malfunctions are managed through the use of fuses and circuit breakers
- ➤ In the event of a malfunction, a fuse will melt or a circuit breaker will "pop" to avoid further damage to the electrical system

QUESTIONS/COMMENTS?

INTERCOM

Intercom System

SIMPLEX:

Intercom System

SIMPLEX:

> Transmission to the outside world works via a Push To Talk (PTT) system

Intercom System

SIMPLEX:

- > Transmission to the outside world works via a Push To Talk (PTT) system
- Only one person can transmit on any one frequency at any one time
- This is known as a <u>simplex</u> system

Intercom System

SIMPLEX:

- > Transmission to the outside world works via a Push To Talk (PTT) system
- Only one person can transmit on any one frequency at any one time
- This is known as a <u>simplex</u> system

DUPLEX:

Intercom System

SIMPLEX:

- Transmission to the outside world works via a Push To Talk (PTT) system
- Only one person can transmit on any one frequency at any one time
- This is known as a <u>simplex</u> system

DUPLEX:

Most aircraft are also equipped with an electrical intercom system. This allows crew members to talk freely to each other without having to push any buttons

Intercom System

SIMPLEX:

- Transmission to the outside world works via a Push To Talk (PTT) system
- Only one person can transmit on any one frequency at any one time
- This is known as a <u>simplex</u> system

DUPLEX:

- Most aircraft are also equipped with an electrical intercom system. This allows crew members to talk freely to each other without having to push any buttons
- This system, like the telephone, operates under a <u>duplex</u> system, meaning that more than one person can speak at any one time.

QUESTIONS/COMMENTS?