Reversible Jump MCMC

Nick Whiteley

02.11.2008

6.1 Bayesian multi-model inference

Multi-model inference: Idea

- So far we have assumed: We know what the true model is.
 all inference was done conditionally on this model being true.
- In reality there is often more than one plausible model.
- Examples:
 - Linear / quadratic regression
 - Choice of covariates in a regression model
 - Number of components in a mixture model

Bayesian Multi-model inference: Setup (1)

- Model $\mathcal{M}_k := \{ f_k(\cdot | \boldsymbol{\theta}), \boldsymbol{\theta} \in \Theta_k \}.$
- Hierarchical Bayesian model:
 - Prior distribution on the space of models (at least enumerable)

$$\mathbb{P}(\mathcal{M}_k) = p_k$$
 with $\sum_k p_k = 1$.

• Prior on the parameters in each model

$$\boldsymbol{\theta}|\mathcal{M}_k \sim f_k^{\text{prior}}(\boldsymbol{\theta}).$$

• Likelihood of observed data y_1, \ldots, y_n is

$$l_k(\mathbf{y}_1,\ldots,\mathbf{y}_n|\boldsymbol{\theta}) := \prod_{i=1}^n f_k(\mathbf{y}_i|\boldsymbol{\theta}).$$

• Posterior density of θ in model \mathcal{M}_k is

$$f_k^{\text{post}}(\boldsymbol{\theta}) = \frac{f_k^{\text{prior}}(\boldsymbol{\theta}) l_k(\mathbf{y}_1, \dots, \mathbf{y}_n | \boldsymbol{\theta})}{\int_{\Theta_k} l_k^{\text{prior}}(\boldsymbol{\vartheta}) l_k(\mathbf{y}_1, \dots, \mathbf{y}_n | \boldsymbol{\vartheta}) d\boldsymbol{\vartheta}}$$

Bayesian Multi-model inference: Setup (2)

ullet Posterior probability that the data was generated by model \mathcal{M}_k

$$\mathbb{P}(\mathcal{M}_k|\mathbf{y}_1,\ldots,\mathbf{y}_n) = \frac{p_k \int_{\Theta_k} f_k^{\text{prior}}(\boldsymbol{\theta}) l_k(\mathbf{y}_1,\ldots,\mathbf{y}_n|\boldsymbol{\theta}) \ d\boldsymbol{\theta}}{\sum_{\kappa} p_{\kappa} \int_{\Theta_{\kappa}} f_{\kappa}^{\text{prior}}(\boldsymbol{\theta}) l_{\kappa}(\mathbf{y}_1,\ldots,\mathbf{y}_n|\boldsymbol{\theta}) \ d\boldsymbol{\theta}}$$

 Comparison between two models \mathcal{M}_{k_1} and \mathcal{M}_{k_2} by the posterior odds

$$\frac{\mathbb{P}(\mathcal{M}_{k_1}|\mathbf{y}_1,\ldots,\mathbf{y}_n)}{\mathbb{P}(\mathcal{M}_{k_2}|\mathbf{y}_1,\ldots,\mathbf{y}_n)} = \frac{p_{k_1}}{p_{k_2}} \cdot \underbrace{\frac{\int_{\Theta_{k_1}} f_{k_1}^{\text{prior}}(\boldsymbol{\theta}) l_{k_1}(\mathbf{y}_1,\ldots,\mathbf{y}_n|\boldsymbol{\theta}) d\boldsymbol{\theta}}{\int_{\Theta_{k_2}} f_{k_2}^{\text{prior}}(\boldsymbol{\theta}) l_{k_2}(\mathbf{y}_1,\ldots,\mathbf{y}_n|\boldsymbol{\theta}) d\boldsymbol{\theta}}}_{\text{"Bayes factor"}}.$$

- We can either . . .
 - only consider the model with the highest posterior probability $\mathbb{P}(\mathcal{M}_k|\mathbf{y}_1,\ldots,\mathbf{y}_n)$, or
 - ullet perform model averaging using $\mathbb{P}(\mathcal{M}_k|\mathbf{y}_1,\ldots,\mathbf{y}_n)$ as weights.

Bayesian Multi-model inference: Transdimensional simulation

Within model simulation Run a separate MCMC algorithm for each model.(not always possible due to the large (possibly infinite) number of candidate models / often not efficient)

Transdimensional simulation Sample directly from the joint posterior

$$f^{\text{post}}(k, \boldsymbol{\theta}) = \frac{p_k f_k^{\text{prior}}(\boldsymbol{\theta}) l_k(\mathbf{y}_1, \dots, \mathbf{y}_n | \boldsymbol{\theta})}{\sum_{\kappa} p_{\kappa} \int_{\Theta_{\kappa}} l_{\kappa}^{\text{prior}}(\boldsymbol{\vartheta}) f_{\kappa}(\mathbf{y}_1, \dots, \mathbf{y}_n | \boldsymbol{\vartheta}) d\boldsymbol{\vartheta}}$$

defined on disjoint union

$$\Theta := \bigcup_{k} (\{k\} \times \Theta_k) .$$

(e.g. $\Theta_k := \mathbb{R}^k$ requires variable dimension simulation)

6.2 Another look at the M-H algorithm

Setup

Random walk Metropolis algorithm

Propose $\mathbf{X} := \mathbf{X}^{(t-1)} + \boldsymbol{\varepsilon}$ with $\boldsymbol{\varepsilon} \sim g$ (g symmetric distribution)

More generally, we will..

obtain ${\bf X}$ by some deterministic transformation of $({\bf X}^{(t-1)}, {\bf U}^{(t-1)})$ with ${\bf U}^{(t-1)} \sim g_{1 \to 2}$.

Details (1)

• Consider a transformation $T_{1\rightarrow 2}$:

$$\mathbf{T}_{1\rightarrow 2}: (\mathbf{X}^{(t-1)}, \mathbf{U}^{(t-1)}) \mapsto (\mathbf{X}, \mathbf{U}).$$

- Assume $\mathbf{T}_{1 \to 2}$ is a diffeomorphism with inverse $\mathbf{T}_{2 \to 1} = \mathbf{T}_{1 \to 2}^{-1}.$
- Now consider an algorithm with the following proposal:
 - $1 \rightarrow 2$ with prob. 1/2, draw $\mathbf{U}^{(t-1)} \sim g_1$ and set $(\mathbf{X}, \mathbf{U}) = \mathbf{T}_{1 \rightarrow 2}(\mathbf{X}^{(t-1)}, \mathbf{U}^{(t-1)})$.
 - $2 \to 1$ with prob. 1/2, draw $\mathbf{U}^{(t-1)} \sim g_2$ and set $(\mathbf{X}, \mathbf{U}) = \mathbf{T}_{2 \to 1}(\mathbf{X}^{(t-1)}, \mathbf{U}^{(t-1)})$.
- What probability of acceptance gives detailed balance?

Details (2)

Detailed balance w.r.t. f can be achieved by setting the probability of acceptance for the move $1 \rightarrow 2$ to

$$\alpha(\mathbf{x}|\mathbf{x}^{(t-1)}) = \min \left\{ 1, \frac{f(\mathbf{x})g_{2\to 1}(\mathbf{u})}{f(\mathbf{x}^{(t-1)})g_{1\to 2}(\mathbf{u}^{(t-1)})} \left| \frac{\partial \mathbf{T}_{1\to 2}(\mathbf{x}^{(t-1)}, \mathbf{u}^{(t-1)})}{\partial (\mathbf{x}^{(t-1)}, \mathbf{u}^{(t-1)})} \right| \right\}$$

Example 6.1 RW Metropolis in this framework

Consider the random walk Metropolis algorithm with

$$\mathbf{X} = \mathbf{X}^{(t-1)} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim g_{1\to 2},$$

In our new notation this can be seen as two (equivalent) moves

$$\begin{aligned} (\mathbf{X}, \mathbf{U}) &= \mathbf{T}_{1 \to 2}(\mathbf{X}^{(t-1)}, \mathbf{U}^{(t-1)}) = (\mathbf{X}^{(t-1)} + \mathbf{U}^{(t-1)}, \mathbf{U}^{(t-1)}), \\ \mathbf{U}^{(t-1)} &\sim g_{1 \to 2} \\ (\mathbf{X}, \mathbf{U}) &= \mathbf{T}_{2 \to 1}(\mathbf{X}^{(t-1)}, \mathbf{U}^{(t-1)}) = (\mathbf{X}^{(t-1)} - \mathbf{U}^{(t-1)}, \mathbf{U}^{(t-1)}), \\ \mathbf{U}^{(t-1)} &\sim g_{2 \to 1} = g_{1 \to 2} \end{aligned}$$

We accept the newly proposed ${f X}$ with probability

$$\alpha(\mathbf{X}|\mathbf{X}^{(t-1)}) = \min \left\{ 1, \frac{f(\mathbf{X})g_{2\rightarrow 1}(\mathbf{U})}{f(\mathbf{X}^{(t-1)})g_{1\rightarrow 2}(\mathbf{U}^{(t-1)})} \left| \frac{\partial \mathbf{T}_{1\rightarrow 2}(\mathbf{X}^{(t-1)}, \mathbf{U}^{(t-1)})}{\partial (\mathbf{X}^{(t-1)}, \mathbf{U}^{(t-1)})} \right| \right\}$$

$$= \min \left\{ 1, \frac{f(\mathbf{X})}{f(\mathbf{X}^{(t-1)})} \right\}.$$

6.3 The reversible jump algorithm

Idea of the reversible jump algorithm

- Algorithm from the previous slides does not require $\mathbf{X}^{(t-1)}$ and $\mathbf{X}^{(t)}$ to be of the same dimension.
- We only need $dim(\mathbf{X}^{(t-1)}) + dim(\mathbf{U}^{(t-1)}) = dim(\mathbf{X}) + dim(\mathbf{U}).$
- Idea: Use this framework to sample from the joint posterior

$$f^{\text{post}}(k, \boldsymbol{\theta}) = \frac{p_k f_k^{\text{prior}}(\boldsymbol{\theta}) l_k(\mathbf{y}_1, \dots, \mathbf{y}_n | \boldsymbol{\theta})}{\sum_{\kappa} p_{\kappa} \int_{\Theta_{\kappa}} f_{\kappa}^{\text{prior}}(\boldsymbol{\vartheta}) l_{\kappa}(\mathbf{y}_1, \dots, \mathbf{y}_n | \boldsymbol{\vartheta}) d\boldsymbol{\vartheta}}$$

$$\propto p_k f_k^{\text{prior}}(\boldsymbol{\theta}) l_k(\mathbf{y}_1, \dots, \mathbf{y}_n | \boldsymbol{\theta})$$

defined on

$$\Theta := \bigcup_{k} \left(\{k\} \times \Theta_k \right)$$

Green's reversible jump algorithm

Algorithm 6.1 (Reversible jump)

Starting with $k^{(0)}$ and $\boldsymbol{\theta}^{(0)}$ iterate for $t=1,2,\ldots$

- ① Select new model \mathcal{M}_k with probability $\rho_{k^{(t-1)} \to k}$. (With probability $\rho_{k^{(t-1)} \to k^{(t-1)}}$ update the parameters of $\mathcal{M}_{k^{(t-1)}}$ and skip the remaining steps.)
- 2 Generate $\mathbf{u}^{(t-1)} \sim g_{k^{(t-1)} \rightarrow k}$
- $\textbf{3} \; \operatorname{Set} \; (\boldsymbol{\theta}, \mathbf{u}) := T_{k^{(t-1)} \to k}(\boldsymbol{\theta}^{(t-1)}, \mathbf{u}^{(t-1)}).$
- Compute

$$\alpha = \min \left\{ 1, \frac{f^{\text{post}}(k, \boldsymbol{\theta}) \rho_{k \to k^{(t-1)}} g_{k \to k^{(t-1)}}(\mathbf{u})}{f^{\text{post}}(k^{(t-1)}, \boldsymbol{\theta}^{(t-1)}) \rho_{k^{(t-1)} \to k} g_{k^{(t-1)} \to k}(\mathbf{u}^{(t-1)})} \right.$$
$$\left. \left. \left| \frac{\partial \mathbf{T}_{k^{(t-1)} \to k}(\boldsymbol{\theta}^{(t-1)}, \mathbf{u}^{(t-1)})}{\partial (\boldsymbol{\theta}^{(t-1)}, \mathbf{u}^{(t-1)})} \right| \right\}$$

3 With probability α set $k^{(t)} = k$ and $\theta^{(t)} = \theta$, otherwise keep $k^{(t)} = k^{(t-1)}$ and $\theta^{(t)} = \theta^{(t-1)}$.

Properties of the reversible jump algorithm

Remark 6.1

The probability of acceptance of the reversible jump algorithm does not depend on the normalisation constant of the joint posterior $f^{post}(k, \theta)$.

Proposition 6.1

The joint posterior $f^{\mathrm{post}}(k, \boldsymbol{\theta})$ is the invariant distribution of MC generated by the reversible jump algorithm, if all $\mathbf{T}_{k \to l}$ are diffeomorphisms with $\mathbf{T}_{l \to k} = \mathbf{T}_{k \to l}^{(-1)}$ and $\rho_{k \to l} \neq 0$ unless $\rho_{l \to k} = 0$.

Example 6.2: Model

- Two possible models \mathcal{M}_1 and \mathcal{M}_2 .
- \mathcal{M}_1 has a single parameter $\theta \in [0, 1]$.
- \mathcal{M}_2 has two parameters $\theta_1, \theta_2 \in D$ with triangular domain $D = \{(\theta_1, \theta_2) : 0 \leq \theta_2 \leq \theta_1 \leq 1\}.$
- The joint posterior of (k, θ) is

$$f^{\text{post}}(k, \boldsymbol{\theta}) \propto p_k f_k^{\text{prior}}(\boldsymbol{\theta}) l_k(\mathbf{y}_1, \dots, \mathbf{y}_n | \boldsymbol{\theta})$$

• We need to propose two moves ${f T}_{1\to 2}$ and ${f T}_{2\to 1}$ such that ${f T}_{1\to 2}={f T}_{2\to 1}^{-1}.$

Example 6.2: Moves

• Move from \mathcal{M}_2 to \mathcal{M}_1 : drop θ_2 , i.e.

$$(\theta_1, U) := \mathbf{T}_{2 \to 1}(\theta_1, \theta_2) = (\theta_1, \star)$$

ullet Move from \mathcal{M}_1 to \mathcal{M}_2 : draw $U \sim \mathsf{U}[0,1]$ and

$$(\theta_1, \theta_2) = \mathbf{T}_{1 \to 2}(\theta_1, U) = (\theta_1, U\theta_1)$$

For the Jacobian we have that

$$\left| \frac{\partial \mathbf{T}_{1 \to 2}(\theta, u)}{\partial (\theta, u)} \right| = \left| \begin{array}{cc} 1 & 0 \\ u & \theta \end{array} \right| = |\theta| = \theta.$$

• Additionally fixed dimensional move in \mathcal{M}_1 (with probability 0.5 update θ_1 , otherwise attempt jump to \mathcal{M}_2).

Example 6.2: Resulting algorithm (1)

- If the current model is \mathcal{M}_1 (i.e. $k^{(t-1)} = 1$):
 - * With probability 1/2 perform an update of $\theta^{(t-1)}$ within model \mathcal{M}_1 , i.e.
 - **1** Generate $\theta_1 \sim \mathsf{U}[0,1]$.
 - 2 Compute the probability of acceptance

$$\alpha = \min \left\{ 1, \frac{f_1^{\text{prior}}(\theta_1) l_1(\mathbf{y}_1, \dots, \mathbf{y}_n | \theta_1)}{f_1^{\text{prior}}(\theta_1^{(t-1)}) l_1(\mathbf{y}_1, \dots, \mathbf{y}_n | \theta_1^{(t-1)})} \right\}$$

- **3** With probability α set $\theta^{(t)} = \theta$, otherwise keep $\theta^{(t)} = \theta^{(t-1)}$.
- * Otherwise attempt a jump to model \mathcal{M}_2 , i.e.

 - $2 \text{ Set } (\theta_1, \theta_2) := T_{1 \to 2} (\theta^{(t-1)}, u^{(t-1)}) = (\theta^{(t-1)}, u^{(t-1)} \theta^{(t-1)}).$
 - Compute

$$\alpha = \min \left\{ 1, \frac{p_2 \cdot f_2^{\text{prior}}(\theta_1, \theta_2) l_2(\mathbf{y}_1, \dots, \mathbf{y}_n | \theta_1, \theta_2) \cdot 1}{p_1 \cdot f_1^{\text{prior}}(\theta_1^{(t-1)}) l_1(\mathbf{y}_1, \dots, \mathbf{y}_n | \theta_1^{(t-1)}) \cdot 1/2 \cdot 1} \cdot \theta_1^{(t-1)} \right\}$$

With probability α set $k^{(t)}=2$ and $\boldsymbol{\theta}^{(t)}=(\theta_1,\theta_2)$, otherwise keep k=1 and $\boldsymbol{\theta}^{(t)}=\boldsymbol{\theta}^{(t-1)}$.

Example 6.2: Resulting algorithm (2)

- Otherwise, if the current model is \mathcal{M}_2 (i.e. $k^{(t-1)}=2$) attempt a jump to \mathcal{M}_1 :
 - $\bullet \ \, \mathsf{Set} \,\, (\theta,u) := T_{2 \to 1}(\theta_1^{(t-1)},\theta_2^{(t-1)}) = (\theta_1^{(t-1)},\theta_2^{(t-1)}/\theta_1^{(t-1)}).$
 - 2 Compute

$$\alpha = \min \left\{ 1, \frac{p_1 \cdot f_1^{\text{prior}}(\theta_1) l_1(\mathbf{y}_1, \dots, \mathbf{y}_n | \theta_1) \cdot 1/2 \cdot 1}{p_2 \cdot f_2^{\text{prior}}(\theta_1^{(t-1)}, \theta_2^{(t-1)}) l_2(\mathbf{y}_1, \dots, \mathbf{y}_n | \theta_1^{(t-1)}, \theta_2^{(t-1)}) \cdot 1} \cdot \frac{1}{\theta_1^{(t-1)}} \right\}$$

 $\textbf{ With probability } \alpha \text{ set } k^{(t)} = 1 \text{ and } \theta^{(t)} = \theta \text{, otherwise keep } k = 2 \text{ and } \boldsymbol{\theta}^{(t)} = (\theta_1^{(t-1)}, \theta_2^{(t-1)}).$

Example 6.3: Mixtures of Gaussians: Model

Recall the density of a mixture of Gaussians

$$f(y_i|\pi_1,\ldots,\pi_k,\mu_1,\ldots,\mu_k,\tau_1,\ldots,\tau_k) = \sum_{\kappa=1}^k \pi_\kappa \phi_{(\mu_\kappa,1/\tau_\kappa)}(y_i)$$

with
$$\boldsymbol{\theta} = (\pi_1, \dots, \pi_k, \mu_1, \dots, \mu_k, \tau_1, \dots, \tau_k)$$
.

- To ensure identifiability: $\mu_1 < \ldots < \mu_k$.
- Previously: Number of components k treated as known.
- Now: We want to estimate k as well as θ .
- Suitable priors:

Number of components discrete $p_k = \mathbb{P}(\mathcal{M}_k)$ Prior probabilities $(\pi_1, \dots, \pi_k) | \mathcal{M}_k \sim \mathsf{Dirichlet}(\dots)$ Mean of population $\kappa \ \mu_{\kappa} | \mathcal{M}_k \sim \mathsf{N}(\dots)$ Precision of population $\kappa \ \tau_{\kappa} | \mathcal{M}_k \sim \mathsf{Gamma}(\dots)$

Example 6.3: Mixtures of Gaussians: Transdimensional moves

- Transdimensional moves correspond to adding / removing components
- Several possibilities for such pairs of moves:
 - Add a new component ("birth") / drop a component ("death") without updating the other components.
 - Split an existing component into two / merge two components into one.

Example 6.3: Mixtures of Gaussians: Birth move

- Birth move $k \to k+1$: add a new component by . . .
 - drawing the mean μ_{k+1} and the precision τ_{k+1} from the corresponding prior distributions.
 - drawing $\pi_{k+1} \sim \text{Beta}(1,k)$ and rescaling the other prior probabilities to $\pi_{\kappa} = \pi_{\kappa}^{(t-1)}(1-\pi_{k+1}^{(t)})$ $(\kappa=1,\ldots,k)$.
- In our reversible jump notation:

$$\begin{aligned} u_1^{(t-1)} &\sim g_1 = f_{\mathsf{Beta}(1,k)}, & u_2^{(t-1)} &\sim g_2 = f_{\mu}^{\mathsf{prior}}, & u_3^{(t-1)} &\sim g_3 = f_{\tau}^{\mathsf{prior}} \\ \begin{pmatrix} \pi_1 \\ \vdots \\ \pi_k \\ \pi_{k+1} \\ \vdots \\ \mu_{k+1} \\ \vdots \\ \tau_{k+1} \end{pmatrix} &= T_{k \to k+1} \begin{pmatrix} \pi_1^{(t-1)} \\ \vdots \\ \pi_k^{(t-1)} \\ \vdots \\ u_1^{(t-1)} \\ u_2^{(t-1)} \\ u_3^{(t-1)} \end{pmatrix} = \begin{pmatrix} \pi_1^{(t-1)}(1 - u_1^{(t-1)}) \\ \vdots \\ \pi_k^{(t-1)}(1 - u_1^{(t-1)}) \\ u_1^{(t-1)} \\ \vdots \\ u_2^{(t-1)} \\ \vdots \\ u_3^{(t-1)} \end{pmatrix}$$

Example 6.3: Mixtures of Gaussians: Death move

- Death move $k+1 \rightarrow k$: remove the κ -th component
- \bullet For simplicity assume that we remove the $\kappa=k+1\mbox{-st}$ component
- Note that we need to rescale the prior probabilities to $\pi_{\iota}=\pi_{\iota}/(1-\pi_{k+1}^{(t-1)})$ $(\iota=1,\ldots,k).$
- In our reversible jump notation

$$\begin{pmatrix} \pi_{1} \\ \vdots \\ \pi_{k} \\ \vdots \\ u_{1} \\ u_{2} \\ u_{3} \end{pmatrix} = T_{k+1 \to k} \begin{pmatrix} \pi_{1}^{(t-1)} \\ \vdots \\ \pi_{k+1}^{(t-1)} \\ \vdots \\ \mu_{k+1}^{(t-1)} \\ \vdots \\ \tau_{k+1}^{(t-1)} \end{pmatrix} = \begin{pmatrix} \pi_{1}^{(t-1)}/(1 - \pi_{k+1}^{(t-1)}) \\ \vdots \\ \pi_{k}^{(t-1)}/(1 - \pi_{k+1}^{(t-1)}) \\ \vdots \\ \pi_{k+1}^{(t-1)} \\ \mu_{k+1}^{(t-1)} \\ \tau_{k+1}^{(t-1)} \end{pmatrix}$$

Example 6.3: Mixtures of Gaussians: Probabilities of acceptance

- We have $T_{k+1 \to k} = T_{k \to k+1}^{-1}$
- \bullet The determinant of the Jacobian of the birth move is $T_{k \to k+1}$ is

$$(1 - u_1^{(t-1)})^k$$

Probability of acceptance of the birth move:

$$\min \left\{ 1, \frac{p_{k+1} f_{k+1}^{\text{prior}}(\boldsymbol{\theta}) l(y_1, \dots, y_n | \boldsymbol{\theta})}{p_k f_k^{\text{prior}}(\boldsymbol{\theta}^{(t-1)}) l(y_1, \dots, y_n | \boldsymbol{\theta}^{(t-1)})} \cdot \frac{(k+1)!}{k!} \cdot \frac{\rho_{k+1 \to k} / (k+1)}{\rho_{k \to k+1} g_1(u_1^{(t-1)}) g_2(u_2^{(t-1)}) g_3(u_3^{(t-1)})} \cdot (1 - u_1^{(t-1)})^k \right\}$$

• Probability of acceptance of the death move is the reciprocal.