7.2

Variations d'une suite

SPÉ MATHS 1ÈRE - JB DUTHOIT

-\(\frac{1}{\phi}\)-Approche

- 1. Étudier les variations de la suite (u_n) définie par $u_n = 2n + 3$.
- 2. Étudier les variations de la suite (u_n) définie par $u_n = (n-3)^2$.

7.2.1 Définitions

Définition

Soit $k \in \mathbb{N}$.

- Dire qu'<u>une suite</u> (u_n) est croissante pour $n \ge k$ signifie que pour tout entier $n \ge k$, $u_{n+1} \ge u_n$.
- Dire qu'<u>une suite</u> (u_n) est décroissante pour $n \ge k$ signifie que pour tout entier $n \ge k$, $u_{n+1} \le u_n$.

7.2.2 Méthodes pour démontrer les variations d'une suite

Méthode de la différence

- On calcule $u_{n+1} u_n$.
- On étudie le signe de $u_{n+1} u_n$
- - Si, à partir d'un certain rang, $u_{n+1} u_n \ge 0$, alors la suite est croissante à partir de ce rang.
 - Si, à partir d'un certain rang, $u_{n+1} u_n \le 0$, alors la suite est décroissante à partir de ce rang.

Méthode du quotient

🛆 Cette méthode ne fonctionne que si tous les termes de la suite sont strictement positifs.

- On calcule $\frac{u_{n+1}}{u_n}$.
- On compare $\frac{u_{n+1}}{u_n}$ à 1.
- Si, à partir d'un certain rang, $\frac{u_{n+1}}{u_n} \ge 1$ alors la suite (u_n) est croissante à partir de ce rang.
 - Si, à partir d'un certain rang, $\frac{u_{n+1}}{u_n} \leq 1$ alors la suite (u_n) est décroissante à partir de ce rang.

Méthode en utilisant les variations de f pour une suite du type $u_n = f(n)$

On utilise pour cela la propriété suivante :

Propriété Variation de fonction et de suite

Soit $\bar{k} \in \mathbb{N}$.

Soit (u_n) une suite définie par $u_n = f(n)$ où f est une fonction définie sur $[0; +\infty[$.

- si f est une fonction croissante sur $[k; +\infty[$, alors (u_n) est croissante pour $n \ge k$.
- si f est une fonction décroissante sur $[k; +\infty[$, alors (u_n) est décroissante pour $n \ge k$.

La méthode consiste donc à :

- Étudier les variation de la fonction f sur $[0; +\infty[$.
- Trouver un intervalle du type $[k; +\infty[$ (avec $k \in \mathbb{N}$) où la fonction f est monotone.
- Conclure, en utilisant la propriété précédente, quant aux variations de la suite (u_n) .

Savoir-Faire 7.36

SAVOIR DÉMONTRER LES VARIATIONS D'UNE SUITE.

- 1. Méthode 1 : Étudier les variations de la suite (u_n) définie par $u_n = (n+2)^2$.
- 2. Méthode 2 : Étudier les variations de la suite (u_n) définie par $u_n = \frac{5}{2^n}$.
- 3. Méthode 3 : Étudier les variations de la suite (u_n) définie par $u_n = n^2 3n + 1$.

Secution Secution Secution Secution Secution

Étudier les variations des suites (u_n) définie par :

- 1. $u_n = 2n^2 3n + 1$. Rép : u_0 est strictement croissante pour $n \ge 1$.
- 2. $u_n = \frac{3^n}{2^{n-1}}$. Rép : (u_n) est strictement croissante.
- 3. $u_n = n^3 n^2 + n$. Rép : (u_n) est strictement croissante.
- 4. $u_n = \frac{n-3}{2n+1}$ Rép : (u_n) est strictement croissante.

7.2.3 Variations des suites arithmétiques et suites géométriques Suites arithmétiques

Propriété

Soit (u_n) une suite arithmétique de raison r.

- si r = 0 alors la suite (u_n) est strictement constante.
- si r > 0 alors la suite (u_n) est strictement croissante.
- si r < 0 alors la suite (u_n) est strictement décroissante.

∠Démonstration 7.6

 \gt Démonstration évidente en utilisant la méthode de la différence, car $u_{n+1}-u_n=r$.

Exemple

- r = 3 et $u_0 = 2$:
- r = -2 et $u_0 = 5$:

Suites géométriques

Propriété

Soit (u_n) une suite géométrique de raison q et de premier terme $u_0 \neq 0$.

- si q = 0 ou q = 1 alors la suite (u_n) est constante (au pire à partir du second terme).
- si q > 1 alors :
 - si $u_0>0$ alors la suite (u_n) est strictement croissante.
 - si $u_0 < 0$ alors la suite (u_n) est strictement décroissante.
- si 0 < q < 1 alors :
 - si $u_0 > 0$ alors la suite (u_n) est strictement décroissante.
 - si $u_0 < 0$ alors la suite (u_n) est strictement croissante.
- si q < 0 alors la suite (u_n) n'est pas monotone.

Exemple

- q = 3 et $u_0 = 2$:
- q = 3 et $u_0 = -2$:
- q = 0.5 et $u_0 = 2$:
- q = 0.5 et $u_0 = -2$:
- q = -3 et $u_0 = 1$: