December 13,	2005		FINAL EXAMINA	TINAL EXAMINATION				
PAPER NO: _	275							
DEPARTMEN	T & COURSE NO	TIME: 2_HOU	RS					
EXAMINATIO	ON: Introductory C	entified Below)						
NAME: (P)	RINT)							
NAME: (PRINT)								
STUDENT NUMBER:								
SIGNATUR		tand that cheating is	s a serious offense)	_				
Please indicate your instructor and section by placing a check mark in the appropriate box below.								
SECTION		TIME	INSTRUCTOR					
□ L01	M,W,F Tues.	10:30 - 11:20 10:00 - 10:50	Penner	DO NOT WRITE IN THIS COLUMN				
□ L02	M,W,F	9:30 - 10:20	Shivakumar					
□ L03	Tues, Thurs.	10:00 - 11:15	Kalajdzievski	1. /14				
□ L04	M,W,F.	11:30 - 12:20	Korytowski	2.				
□ L05	M,W,F.	12:30 - 1:20	Gumel	/11				
□ L06	M,W,F.	3:30 - 4:20	Young	3. /14				
□ L07	Tues. Even.	7:00 - 9:45	Sichler	4.				
□ L91	Challenge for			/10				
□ Dakota □ St. John's Ravenscourt □ Sisler				5				
INSTRUC	TIONS TO ST	6. /22						
		ise show your work	clearly.	_				
No calculat	ors, texts, notes	7. /12						
blank pages	has a title pag for rough work	8						
	You may remo ful not to loosen	9/11						
margin besi	f each question de the statemen questions is 120	10. /8						
provided be room, you n	questions on the neath the questi nay continue you page, but CLEA tinued	TOTAL /120						
to com	irraeca.							

December 13, 2005

FINAL EXAMINATION

PAPER NO: 275

PAGE 1 of 7

DEPARTMENT & COURSE NO: 136,150

TIME: 2 HOURS

EXAMINATION: Introductory Calculus

EXAMINER: (Various)

Values

1. Compute f'(x). Do not simplify your answer.

[4] a)
$$f(x) = \sin(e^{\ln x}) + \ln(e^{2005})$$

= $8 \ln (x) + 2005$
So $f'(x) = \cos(x)$

Recall:
$$e^{\ln x} = x$$

 $\ln(e^x) = x$

[4] b)
$$f(x) = \tan\left(\frac{x^2}{\cos x} + 1\right)$$

$$f'(x) = \sec^2\left(\frac{x^2}{\cos x} + 1\right) \cdot \left(\frac{x^2}{\cos x} + 1\right)'$$

$$f'(x) = \sec^2\left(\frac{x^2}{\cos x} + 1\right) \cdot \left(\frac{2x\cos(x) - x^2(-\sin(x))}{(\cos(x))^2}\right)$$

[6] c)
$$f(x) = x^{2\cos(x^2)}$$

$$f'(x) = \left(e^{\ln x}\right)^2 \cos(x^2) = e^{\ln(x) \cdot 2\cos(x^2)}$$

$$f'(x) = e^{\ln(x) \cdot 2\cos(x^2)} \cdot \left(2\ln(x) \cos(x^2) \right)'$$

$$= e^{\ln(x) \cdot 2\cos(x^2)} \cdot \left(\frac{2}{X} \cos(x^2) + 2\ln(x) \left(-\sin(x^2) \cdot 2x \right) \right)$$

December 13, 2005

FINAL EXAMINATION

PAPER NO: _275

PAGE 2 of 7

DEPARTMENT & COURSE NO: 136,150

TIME: 2 HOURS

EXAMINATION: Introductory Calculus

EXAMINER: (Various)

Values

2

[2] a) State when a function f(x) is continuous at x = a.

A function is continuous at x=a if $\lim_{x\to a} f(x) = f(a)$.

[2] b) State when a function f(x) is differentiable at x = a.

A function f(x) is differentiable at x=a if $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ exists, or equivalently $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ exists.

[7] c) Prove that if a function f(x) is differentiable at x = a then it is continuous at x = a.

Note that

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a} \cdot x - a.$$

So taking limits of both sides $\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} (x - a) \right] \text{ applying limit}$

=) $\lim_{x\to a} f(x) - \lim_{x\to a} f(a) = \lim_{x\to a} \frac{f(x) - f(a)}{x-a} \cdot \lim_{x\to a} x-a$

lim fix) - fca) = f'(a) · 0

exists by assumption

= 17

Therefore limf(x)=f(a), and f is cts.

December 13, 2005

FINAL EXAMINATION

PAPER NO: 275

PAGE 3 of 7

DEPARTMENT & COURSE NO: 136,150

TIME: 2 HOURS

EXAMINATION: Introductory Calculus

EXAMINER: (Various)

Values

a) Find all points (a,b) on the curve $y=x^3-x+1$ where the tangent line is parallel to the line y = 11x + 5.

$$y' = 3x^2 - 1$$
. For what x is $3x^2 - 1 = 11$?
 $\Rightarrow 3x^2 = 12 \Rightarrow x^2 = 4$
 $\Rightarrow x = \pm 2$.

Therefore y=(-2)3-(-2)+1=-8+4+1=-3 $y = (2)^3 - (2) + 1 = 8 - 1 = 7$. So (2, -5) and (2, 7).

b) Compute y' at the point (1,1) if $3y^3x^2 - 3xy + 2x = 2$

Implicit.
$$3(3y^2y'x^2 + 3y^3 \cdot 2x) - 3(yy'x + y) + 2 = 0$$

So with $x=1$, $y=1$ we get: $3(3y' + 2) - 3(y' + 1) + 2 = 0$
 $\Rightarrow 6y' + 6 - 3 + 2 = 0$
4.

[5] (a) Compute f''(x) if $f(x) = 9\log_{10}\left(\frac{x}{3}\right)$.

Recall
$$\frac{d}{dx} \log_a(x) = \frac{1}{x \ln(a)}$$
, from $\log_a(x) = \frac{\ln(x)}{\ln(a)}$. Therefore

$$f'(x) = 9\frac{1}{(\frac{x}{3})ln(10)} \cdot \frac{1}{3} = \frac{9}{ln(10)} \cdot \frac{1}{x}$$
, so $f''(x) = \frac{-9}{ln(10)} \cdot \frac{1}{x^2}$

(b) Suppose $f(x) = 2^{3x}$. First find f'(x), f''(x) and f'''(x), and then use the pattern you see to compute $f^{(1000)}(x)$ (the 1000th derivative of f(x)). **DO** NOT simplify your answer.

Recall
$$\frac{d}{dx}(2^x) = 2^x \log(2)$$
 so $f'(x) = 2^{3x} \ln(2) \cdot 3$

Then
$$f''(x) = \ln(2) \cdot 3(2^{3x} \ln(2) \cdot 3) = (\ln(2) \cdot 3)^2 2^{3x}$$

the pattern

 $f^{(1000)}(x) = (ln(2).3)^{1000}.2^{3x}$

December 13, 2005

FINAL EXAMINATION

PAPER NO: 275

PAGE 4 of 7

DEPARTMENT & COURSE NO: 136.150

TIME: 2 HOURS

EXAMINATION: Introductory Calculus

EXAMINER: (Various)

Values

[10] 5. Find the absolute minimum and the absolute maximum of the function $f(x) = x^3 - 3x^2 - 9x + 2$ over the interval [-2,2].

We get f'(x1=3x2-6x-9=3(x2-2x-3)=3(x-3)(x+1). So we get one crit pt x=-1 in the interval [-2,2] We test: f(-2) = (-2)3-3(-2)2-9(-2)+2=-8-12+18+2=0 $f(-1) = (-1)^3 - 3(-1)^2 - 9(-1) + 2 = -1 - 3 + 9 + 2 = 7$ $f(2) = 2^3 - 3.4 - 9.2 + 2 = 8 - 12 - 18 + 2 = -20$ x=2 gives a min off(2)=-20 and x=-1 gives a max of f(-1) =7

A window is in the shape of a rectangle surmounted on both sides by semicircles as in the picture to the right. If the perimeter of the window is 6 m find the dimensions x and y (as shown in the figure) so that the greatest amount of light is admitted through the window.

Te. maximize the area. The total area is

$$A = xy + \pi \left(\frac{x}{2}\right)^2 = xy + \frac{\pi}{4}x^2$$

Circumference

And
$$6 = 2y + \pi x \Rightarrow y = \frac{6 - \pi x}{2} = 3 - \frac{\pi}{2}x$$
, Thus

$$A = x \left(3 - \frac{\pi}{2} x \right) + \pi \left(\frac{x^2}{4} \right) = 3x - \frac{\pi}{2} x^2 + \frac{\pi}{4} x^2 = 3x - \frac{\pi}{4} x^2$$

Note x≥0 and since \(\pi x \le 6\), \(\chi \le \frac{\pi}{2}\): So we test

X=0, x= 1, and the critical point coming from A = 3- 1/2 x=0. ie. = 3 > x = ===

If x=0 then A=3(0)==0, if x= = 1 then

$$A = \frac{18}{\pi} - \frac{\pi}{4} \cdot \left(\frac{6}{\pi}\right)^2 = \frac{18}{\pi} - \frac{\pi}{4} \cdot \frac{36}{\pi^2} = \frac{18}{\pi} - \frac{9}{\pi} = \frac{9}{\pi} \parallel^{\frac{1}{2}} \text{ i.e. A circular window of diameter}$$

December	13	2005

FINAL EXAMINATION

PAPER NO: 275

PAGE 5 of 7

DEPARTMENT & COURSE NO: 136,150

TIME: 2 HOURS

EXAMINATION: Introductory Calculus

EXAMINER: (Various)

Values

[23] 7. Suppose $f(x) = \ln(x^2 + 1)$. Then (no need to check) $f'(x) = \frac{2x}{1+x^2}$,

$$f''(x) = \frac{2(1-x^2)}{(1+x^2)^2}.$$

[18] a) Compile the following information about f(x) and its graph.

(Give answers only: Answer "none" if the function does not display a feature listed).

[1] Domain all of

Need x2+1>0, but this is always true

[1] Symmetry (is f(x) even, odd or neither?)

[1] Equation(s) of vertical asymptote(s) none.

[1] Equation(s) of horizontal asymptote(s) vorue .

[2] Coordinates of the critical point(s) of f(x) (0,0)

[2] Interval(s) where f(x) is increasing $(0, \infty)$ Since $1+x^2 > 0 \forall x$ and 2x > 0 here

[2] Interval(s) where f(x) is decreasing $(-\infty, 0)$ since $1+x^2>0$ $\forall x$ and 2x<0 Here

[1] Coordinates of local maxima no maxima

[2] Coordinates of local minima

[2] Intervals where f(x) is concave up (-1, 1)

[2] Intervals where f(x) is concave down $(-\infty, -1)$ \cup $(1, \infty)$

[2] x-coordinates of inflection points x=-1 and x=1

[4] b) Make a clear sketch of y = f(x) labeling extreme and inflection points.

b)
$$f(x) = \ln(x^2 + 1)$$

 $f(-x) = \ln((+x)^2 + 1) = \ln(x^2 + 1) = f(x)$
So $f(x)$ is even.

- c) $\ln(x)$ has a vertical asymptote at x=0, so $\ln(x^2+1)$ could have a vertical asymptote if $x^2+1=0$. However $x^2+1=0$ is not possible \Rightarrow no vert asymptote.
- d) $\lim_{x\to\infty} \ln(x) = \infty$, $\int_{\infty}^{\infty} \lim_{x\to\infty} \ln(x^2+1) = \infty$ and since it's even $\lim_{x\to-\infty} \ln(x^2+1) = \infty$ so no horizontal asymptotes.
- e) Critical pt if f'(x)=0 or undefined. Always defined, so only at $2x=0 \Rightarrow x=0$. In this case $f(0)=\ln(0^2+1)=\ln(1)=0$. So crit pt. coords are (0,0).
- f) Concavity: The bottom $(1+x^2)^2$ is always positive. The top is $2(1-x^2) = 2(1-x)(1+x)$ so we get:

function	(-∞,-1)	(-1, 1)	(1,∞)
1 -x	+	+	-
1+X	-	. +	+
f"(x)	-	+	_
f(x)			
	conc.	cone	down

December 13, 2005

FINAL EXAMINATION

PAPER NO: 275

PAGE 6 of 7

DEPARTMENT & COURSE NO: 136,150

TIME: 2 HOURS

EXAMINATION: Introductory Calculus

EXAMINER: (Various)

Val: .es

[8] 8. Find
$$g(x)$$
 if $g''(x) = 12x + \frac{1}{x^2}$, $g'(1) = 2$ and $g(1) = -2$.

Since
$$g''(x) = 12x + x^{-2}$$
, we get $g'(x) = 12(\frac{x^2}{2}) + \frac{x^2}{-1} \cdot c = 6x^2 - \frac{1}{x} + C$. Then use $g'(1) = 2$ and get $2 = 6(1) - \frac{1}{1} + C \Rightarrow C = 2 - 6 + 1 = -3$. So

$$g(x) = 6\left(\frac{x^3}{3}\right) - \ln(x) - 3x + D$$
, Then use $g(1) = -2$ to find D.
 $g(x) = 2x^2 - \ln(x) - 3x + D$. (See apposite page)

[5] (a) Evaluate $\int (x^5 - \sin x - \sqrt[3]{x}) dx$.

This means "find an antiderivative", which we should know how to do:

$$= \frac{x^{6}}{6} - (-\cos(x)) - \frac{x^{3+1}}{\frac{1}{3+1}} + C$$

$$= \frac{x^{6}}{6} + \cos(x) - \frac{3}{4}x^{4/3} + C$$

[5] (b) Find
$$\frac{dF}{dx}$$
 if $F(x) = \int_{0}^{x^{2}-1} (t-3)dt$.

 $=2x^3-8x$.

If
$$g(u) = \int_0^u (t-3) dt$$
 and $u(x) = x^2-1$, then

$$F(x) = g(u(x)).$$
 Therefore $F'(x) = \frac{dg}{du} \cdot \frac{du}{dx}$

$$= (u-3) \cdot 2x$$
ordinary derivative rules.
$$= ((x^2-1)-3) \cdot 2x$$

$$-2 = 2(1)^{3} - l_n(1) - 3(1) + D$$
$$= 2 - 0 - 3 + D$$

$$\Rightarrow$$
 D = -2 - 2 + 3 = -1.

December 13, 2005

FINAL EXAMINATION

PAPER NO: 275

PAGE 7 of 7

DEPARTMENT & COURSE NO: 136,150

TIME: 2 HOURS

EXAMINATION: Introductory Calculus

EXAMINER: (Various)

Values

[8] 10. Sketch and find the area of the region bounded (from below) by the x-axis and the graph of the function $y = 9 - x^2$. $9 - x^2 = (3 - x)(3 + x)$

So the area is

$$A = \int_{-3}^{3} q - x^{2} dx$$

$$= \left[9x - \frac{x^{3}}{3} \right]_{-3}^{3} = \left(\left(9(3) - \frac{3^{5}}{3} \right) - \left(9(-3) - \frac{(-3)^{3}}{3} \right) \right)$$

$$= \left(27 - 9 \right) - \left(-27 + 9 \right)$$

$$= 18 + 18 = 36$$