[2019–2020] группа: ГеОМ-10 17 декабря 2019 г.

Серия 9. Геометрические неравенства

- **1.** В треугольнике длины двух высот соответственно равны 12 и 20. Докажите, что длина третьей высоты меньше 30.
- **2.** Точка пересечения медиан треугольника ABC обозначена через G. Выяснилось, что $\angle BGC < 90^\circ$. Докажите, что $AB + AC > 3 \cdot BC$.
- **3.** Биссектрисы AA_1 , BB_1 , CC_1 треугольника ABC пересекаются в точке I. Какой из отрезков: A_1I , B_1I , C_1I наибольший, если $\angle A > \angle B > \angle C$?
- **4.** В четырёхугольнике ABCD угол при вершине A тупой, точка F середина стороны BC. Докажите, что $2 \cdot AF < BD + CD$.
- **5.** Два круга касаются друг друга внешним образом и лежат внутри остроугольного треугольника ABC. Кроме того, первый круг касается отрезков AB и BC, а второй круг касается отрезков CA и CB. Докажите, что сумма радиусов этих кругов больше радиуса окружности, вписанной в треугольник ABC.
- **6.** В трапеции $ABCD~(AD \parallel BC)$ диагонали AC и BD пересекаются в точке S. Известно, что $\angle ASD = 120^\circ$. Докажите, что $AB + CD \geqslant AD$.
- 7. В треугольнике ABC проведены биссектрисы BB_1 и CC_1 . Лучи B_1C_1 и CB пересекаются в точке X. Докажите, что $3 \cdot \angle B_1XC < \angle ABC \angle ACB$.
- 8. В остроугольном треугольнике ABC сторона BC наименьшая; B_1, C_1 произвольные точки на сторонах AC, AB соответственно. Докажите, что длина ломанной BB_1C_1C не меньше удвоенной длины отрезка BC.
- **9.** В выпуклом четырехугольнике ABCD диагональ AC делится диагональю BD пополам, а угол при вершине B равен 60° . Докажите, что $AD + DC \geqslant BD$.