

### **HKUSTx:** ELEC1200.2x A System View of Communications: From Signals to...

- Pre-course Materials
- ▶ Topic 1: Course Overview
- **▼** Topic 2: Lossless **Source Coding: Hamming** Codes
- 2.1 Source Coding Week 1 Quiz due Nov 02, 2015 at 15:30 UT 🗗
- 2.2 Sequence of Yes/No Questions Week 1 Quiz due Nov 02. 2015 at 15:30 UT
- 2.3 Entropy of a Bit Week 1 Quiz due Nov 02, 2015 at 15:30 UT

## 2.4 Entropy of a **Discrete Random** Variable

Week 1 Quiz due Nov 02, 2015 at 15:30 UT @

## 2.5 Average Code Length

Week 1 Quiz due Nov 02, 2015 at 15:30 UT 🗗

#### 2.6 Huffman Code

Week 1 Quiz due Nov 02, 2015 at 15:30 UT

## 2.7 Lab 1 - Source Coding

Lab due Nov 02, 2015 at 15:30 UTC

MATLAB download and

# 2.4 QUIZ QUESTION 1 (1/1 point)

Consider a biased die, where the probabilities of the six outcomes, X, are given by probabilities, p[X], shown below.

Χ p[X]= ==== 1 0.1 2 0.2 3 0.3 4 0.2 5 0.15 6 0.05

What is the entropy of a single toss of this die? Give your answer to two significant digits (e.g. 1.00).

Answer: 2.41 2.41

2.41

#### **EXPLANATION**

Compute the entropy according to the formula

$$H = -\sum_{X=1}^6 p[X]log_2(p[X])$$

You have used 1 of 3 submissions

# 2.4 QUIZ QUESTION 2 (1/1 point)

In comparison with the entropy of a single toss of a fair die (i.e. where all outcomes are equally likely), the entropy of the biased die above is

Greater Smaller tutorials

Equal

#### **EXPLANATION**

A discrete random variable where all N possible values are equally likely has the maximum entropy among all discrete random variables with N possible outcomes. This entropy is  $H = log_2(N)$ . When N=2 , Hpprox 2.585 .

You have used 1 of 2 submissions

# 2.4 QUIZ QUESTION 3 (1/1 point)

Consider two discrete random variables, X and Y. X can assume integer values from 1 to 4 with the probabilities p(X) shown below.

```
Χ
     p(X)
=
     ====
     0.4
1
2
     0.3
     0.2
3
4
     0.1
```

Y can assume integer values from 5 to 8 with the probabilities p(Y) shown below.

```
Υ
     p(Y)
=
     ====
     0.1
5
6
     0.2
7
     0.3
     0.4
```

The entropy of X is

- greater than the entropy of Y.
- less than the entropy of Y.
- equal to the entropy of Y.

#### **EXPLANATION**

The entropy depends only upon the probabilities of the possible outcomes, not upon their values (which do not even need to be numerical). Both X and Y have four possible outcomes with probabilites 0.1, 0.2, 0.3 and 0.4. Thus, they have the same entropy.

You have used 1 of 2 submissions

© All Rights Reserved



© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

















