SONY® Transistor Radio Circuits

CONTENTS

Page

Model

TR-732	••••••	• • • • • • • • • • • • • • • • • • • •	 ••••••	••••	12	to 15

— 2 —

Specifications

Circuit : 7 Transistor Superheterodyne

MW 530~1,605 Kc (566~187 m) Frequency Coverage:

SW 3.9~12 Mc (77~25 m)

Intermediate Frequency: 455 Kc

> Built-in Ferrite Bar Antenna Antenna System:

Auxiliary Antenna Lead

MW $22\mu V/m$ with built-in Ferrite Bar Antenna Maximum Sensitivity:

SW $22\mu V/m$ with built-in Ferrite Bar Antenna (at 10 mW output)

Selectivity: 17 dB at 10 Kc off resonance, at 1,400 Kc

Output Power: 560 mW (undistorted), 2.12 Volts across 8Ω load

4" PM dynamic, 8 Ω Speaker: Four size "D" Flashlight Battery:

Batteries (6 Volts)

15 mA at zero signal,

Current Drain: 195 mA at 560 mW Output

11-7/16"×6-3/8"×3-7/16" Dimensions:

 $(290 \times 162 \times 87.5 \text{ mm})$

4.3 lbs.(1.95 Kg.) Weight:

Adjustments

a) Frequency Coverage Adjustment

	Lower Limit	Adjust	Upper Limit	Adjust
MW	520 Kc	Core of MW OSC Coil (L_{21})	1,680 Kc N	1W OSC Trimmer (C_{2-3})
SW	3.8 Mc	Core of SW OSC Coil (L_{22})	12.6 Mc S	W OSC Trimmer (C_{2-4})

b) Tracking Adjustment

Ļ	ower Checking Poin	t Adjust	Upper Checking Point	Adjust
MW	620 Kc	Position of MW ANT Coil (L11)	1,400 Kc	MW ANT Trimmer $\{C_{2-1}\}$
SW	3.8 Mc	Position of SW ANT Coil (L ₁₂)	12.6 Mc	SW ANT Trimmer (C_{2-2})

MW Band

Frequency Coverage Adjustment

- (1) Deliver a 520 Kc signal from the SSG.
- (2) Set the Tuning Capacitor at the maximum capacitance position by turning the Tuning Knob of the Receiver counter-clockwise.
- (3) Adjust the core of the MW OSC Coil to tune to the signal.
- (4) Set the Tuning Capacitor at the minimum capacitance position by turning the Tuning Knob of the Receiver clockwise.
- (5) Deliver a 1,680 Kc signal from the SSG.
- (6) Adjust the MW OSC Trimmer Capacitor to tune to the signal.
- (7) Repeat the above procedures (1 \sim 6) until the frequency range between 520 Kc and 1,680 Kc is fully covered.

Tracking Adjustment

- (1) Deliver a 620 Kc signal from the SSG.
- (2) Tune to the signal by turning the Tuning Knob of the Receiver.
- (3) Adjust the position of the MW ANT Coil along the Ferrite Bar to obtain the maximum output.
- (4) Deliver a 1,400 Kc signal from the SSG.
- (5) Tune to the signal by turning the Tuning Knob of the Receiver.
- (6) Adjust the MW ANT Trimmer Capacitor to obtain the maximum output.
- (7) Repeat the above procedures (1 \sim 6) until the maximum output is obtained.

SW Band

- (1) Set the Tuning Capacitor at the maximum capacitance position by turning the Tuning Knob of the Receiver counter-clockwise.
- (2) Deliver a 3.8 Mc signal from the SSG.
- (3) Adjust the core of the SW OSC Coil to tune to the signal.
- (4) Adjust the core (position) of the SW ANT Coil (along the Ferrite Bar) to obtain the maximum output.
- (5) Set the Tuning Capacitor at the minimum capacitance position by turning the Tuning Knob of the Receiver clockwise.
- (6) Deliver a 12.6 Mc signal from the SSG.
- (7) Adjust the SW OSC Trimmer Capacitor to tune to the signal.
- (8) Adjust the SW ANT Trimmer Capacitor to obtain the maximum output.
- (9) Repeat the above procedures (1 \sim 8) until the specified frequency range (3.8 \sim 12.6 Mc) is fully covered and the maximum output is obtained.

FM Band

Frequency Coverage Adjustment

- (1) Set the modulation of the SSG to "AM".
- (2) Deliver a 86.5 Mc signal from the SSG.
- (3) Set the Tuning Capacitor at the maximum capacitance position by turning the Tuning Knob of the Receiver counter-clockwise.
- (4) Adjust the core and gap of the FM OSC Coil to tune to the signal.
- (5) Deliver a 108 Mc signal from the SSG.
- (6) Set the Tuning Capacitor at the minimum capacitance position by turning the Tuning Knob of the Receiver clockwise.

- (7) Adjust the FM OSC Trimmer Capacitor to tune to the signal.
- (8) Repeat the above procedures (2~7) until the frequency range between 86.5 Mc and 108 Mc is fully covered.

Tracking Adjustment

- (1) Set the modulation of the SSG to "AM".
- (2) Deliver a 86.5 Mc signal from the SSG.
- (3) Tune to the signal correctly by turning the Tuning Knob of the Receiver.
- (4) Change the modulation of the SSG to "FM"
- (5) Adjust the FM RF Coil for the maximum reading on the Output Meter.
- (6) Change the modulation of the SSG to "AM"
- (7) Deliver a 108 Mc signal from the SSG.
- (8) Tune to the signal correctly by turning the Tuning Knob of the Receiver.
- (9) Change the modulation of the SSG to "FM".
- (10) Adjust the FM RF Trimmer Capacitor to obtain the maximum output.
- (11) Repeat the above procedures (1 \sim 10) until the maximum output is obtained.

Frequencies used for the above adjustment are a little different with some models.