Evaluation-bilan 4 - Sujet A

1^{ère}spé

Calculatrice autorisée. Toutes les réponses doivent être justifiées.

Exercice 1 ... / 5 pts

Une chaîne de salons de coiffure propose à ses clients qui viennent pour une coupe, deux prestations supplémentaires cumulables :

- · Une coloration naturelle à base de plantes appelée « couleur-soin » ;
- · Des mèches blondes pour donner du relief à la chevelure, appelées « effet coup de soleil ».

Le tableauc ci-contre donne la répartition incomplète des demandes des clients sur une semaine.

On choisi un client au hasard.

On note C l'événement : « Le client souhaite une « couleur-soin » et E l'événement : « Le client souhaite un « effet coup de soleil ».

	C	\overline{C}	Total
E		15	25
\overline{E}			
Total	24		40

Pour chaque question, plusieurs réponses peuvent être correctes.

١.	La p	probabilité (que le c	client ait d	choisi une « cou	leur-soin» et	un « effet coup c	le sole	il» e	st
----	------	---------------	----------	--------------	------------------	---------------	-------------------	---------	-------	----

- $\Box P_E(C)$
- $\Box P(C \cap E)$
- **□** 25%
- **40%**

- **2.** $P_{\overline{E}}(C)$ représente la probabilité que le client :
 - ☐ ait choisi une « couleur-soin » sans « effet coup de soleil »;
 - ☐ ait choisi une «couleur-soin» et «effet coup de soleil»;
 - ☐ n'ait pas choisi un «effet coup de soleil» sachant qu'il a choisi une «couleur-soin»;
 - ait choisi une «couleur-soin» sachant qu'il n'a pas choisi un « effet coup de soleil».
- 3. La probabilité que le client n'ait choisi ni une « couleur-soin », ni un « effet coup de soleil » est :
 - **□** 25%
- $\Box 2,5\%$
- $\supset \frac{1}{40}$

 $\Box \frac{1}{16}$

Exercice 2 ... / 10 pts

Une agence de voyage propose deux formules week-end pour se rendre à Londres depuis Paris. Les clients choisissent leur moyen de transport : train ou avion.

De plus, s'ils le souhaitent, ils peuvent compléter leur formule par l'option « visites guidées ».

Une étude a produit les données suivantes :

- 42 % des clients optent pour l'avion;
- · Parmi les clients ayant choisi le train, 44 % choisissent aussi l'option «visites guidées»;
- · 30 % des clients ont choisi à la fois l'avion et l'option « visites guidées ».

On interroge au hasard un client de l'agence ayant souscrit à une formule week-end à Londres. On considère les événements suivants :

- *A* : le client a choisi l'avion;
- \cdot V : le client a choisi l'option « visites guidées ».
- 1. Donner les probabilités P(A), $P_{\bar{A}}(V)$ et $P(A \cap V)$ et construire un arbre de probabilités représentant la situation.

2. Calculer $P_A(V)$.

3. Démontrer que la probabilité pour que le client interrogé ait choisi l'option « visites guidées » est égale à 0.555 environ.

4. Calculer la probabilité pour que le client interrogé ait pris l'avion sachant qu'il n'a pas choisi l'option « visites guidées ». Arrondir le résultat au centième.

5. On interroge au hasard deux clients de manière aléatoire et indépendante. Quelle est la probabilité qu'aucun des deux ne prenne l'option « visites guidées »? On donnera les résultats sous forme de valeurs approchées à 10^{-3} près.

Exercice 3 ... / 5 pts

Soit x un réel compris entre 0 et 1.

Soient A et B deux événements tels que P(A)=x, P(B)=1-x et $P(A\cap B)=\frac{3}{16}.$

Déterminer toutes les valeurs de \boldsymbol{x} possibles pour que \boldsymbol{A} et \boldsymbol{B} soient indépendants.

Evaluation-bilan 4 - Sujet B

1^{ère}spé

Calculatrice autorisée. Toutes les réponses doivent être justifiées.

Exercice 1 ... / 5 pts

Une chaîne de salons de coiffure propose à ses clients qui viennent pour une coupe, deux prestations supplémentaires cumulables :

- · Une coloration naturelle à base de plantes appelée « couleur-soin »;
- · Des mèches blondes pour donner du relief à la chevelure, appelées « effet coup de soleil ».

Le tableauc ci-contre donne la répartition incomplète des demandes des clients sur une semaine.

On choisi un client au hasard.

On note C l'événement : « Le client souhaite une « couleur-soin » et E l'événement : « Le client souhaite un « effet coup de soleil ».

	C	\overline{C}	Total
E		10	18
\overline{E}			
Total	25		40

Pour chaque question, plusieurs réponses peuvent être correctes.

- 1. La probabilité que le client ait choisi une «couleur-soin» et un «effet coup de soleil» est :
 - $\Box P(C \cap E)$
- $\Box P_E(C)$
- **□** 20%
- **□** 32%

- **2.** $P_{\overline{E}}(C)$ représente la probabilité que le client :
 - ☐ n'ait pas choisi un «effet coup de soleil» sachant qu'il a choisi une «couleur-soin»;
 - ait choisi une «couleur-soin» sachant qu'il n'a pas choisi un « effet coup de soleil»;
 - ☐ ait choisi une «couleur-soin» sans «effet coup de soleil»;
 - ☐ ait choisi une « couleur-soin » et « effet coup de soleil »;
- 3. La probabilité que le client n'ait choisi ni une « couleur-soin », ni un « effet coup de soleil » est :
 - **□** 5%

- **□** 12,5%
- $\supset \frac{5}{15}$

 $\Box \frac{4}{40}$

Exercice 2 ... / 10 pts

Une agence de voyage propose deux formules week-end pour se rendre à Londres depuis Paris. Les clients choisissent leur moyen de transport : train ou avion.

De plus, s'ils le souhaitent, ils peuvent compléter leur formule par l'option « visites guidées ».

Une étude a produit les données suivantes :

- 49 % des clients optent pour l'avion;
- · Parmi les clients ayant choisi le train, 35 % choisissent aussi l'option «visites guidées»;
- · 25 % des clients ont choisi à la fois l'avion et l'option « visites guidées ».

On interroge au hasard un client de l'agence ayant souscrit à une formule week-end à Londres. On considère les événements suivants :

- *A* : le client a choisi l'avion;
- \cdot V : le client a choisi l'option « visites guidées ».
- 1. Donner les probabilités P(A), $P_{\bar{A}}(V)$ et $P(A \cap V)$ et construire un arbre de probabilités représentant la situation.

2. Calculer $P_A(V)$.

3. Démontrer que la probabilité pour que le client interrogé ait choisi l'option «visites guidées» est égale à 0,429 environ.

4. Calculer la probabilité pour que le client interrogé ait pris l'avion sachant qu'il n'a pas choisi l'option « visites guidées ». Arrondir le résultat au centième.

5. On interroge au hasard deux clients de manière aléatoire et indépendante. Quelle est la probabilité qu'aucun des deux ne prenne l'option « visites guidées »? On donnera les résultats sous forme de valeurs approchées à 10^{-3} près.

Exercice 3 ... / 5 pts

Soit x un réel compris entre 0 et 1.

Soient A et B deux événements tels que P(A)=x, P(B)=1-x et $P(A\cap B)=\frac{2}{9}$.

Déterminer toutes les valeurs de x possibles pour que A et B soient indépendants.

Corrigé sujet A

1. De l'énoncé, on déduit que :

$$P(A) = 0.42$$

$$P_{\bar{A}}(V) = 0.44$$

$$P(A \cap V) = 0.3$$

On peut alors construire cet arbre de probabilités :

 $P(A \cap V)$:

On a donc
$$P_A(V) = \frac{P(A \cap V)}{P(A)} = \frac{0.3}{0.42} = \frac{30}{42}.$$

2. Comme A et \bar{A} forment une partition de l'univers, on peut appliquer la loi des probabilités totales :

$$P(V) = P(A \cap V) + P(\bar{A} \cap V).$$

Or
$$P(\bar{A} \cap V) = P(\bar{A}) \times P_{\bar{A}}(V) = (1 - 0.42) \times 0.44 = 0.255.$$

Donc P(V) = 0.3 + 0.255 = 0.555.

$$\text{3. On a } P_{\bar{V}}(A) = \frac{P(\bar{V} \cap A)}{P(\bar{V})} = \frac{P(A \cap \bar{V})}{P(\bar{V})} = \frac{P(A) \times P_A(\bar{V})}{P(\bar{V})}.$$

Or, d'après la question précédente : $P(\bar{V}) = 1 - P(V) = 1 - 0.555 = 0.445$

et d'après la question $1: P_A(\bar{V}) = 1 - P_A(V) = 1 - \frac{30}{42} = \frac{12}{42}$.

Donc
$$P_{\bar{V}}(A) = \frac{0.42 \times \frac{12}{42}}{0.445} \approx 0.27.$$

4. On a vu que $P(\bar{V}) = 1 - 0.555 = 0.445$.

Comme les deux événements sont indépendants, en les appelant \bar{V}_1 et \bar{V}_2 , on a : $P(\bar{V}_1 \cap \bar{V}_2) = P(\bar{V}_1) \times P(\bar{V}_2)$

La probabilité cherchée est donc égale à $P(\bar{V}_1 \cap \bar{V}_2) = 0.445 \times 0.445 \approx 0.198$.

Corrigé sujet A

1. De l'énoncé, on déduit que :

$$P(A) = 0.49$$

$$P_{\bar{A}}(V) = 0.35$$

$$P(A \cap V) = 0.25$$

On peut alors construire cet arbre de probabilités :

 $P(A \cap V) =$

On a donc
$$P_A(V) = rac{P(A \cap V)}{P(A)} = rac{0.25}{0.49} = rac{25}{49}.$$

2. Comme A et \bar{A} forment une partition de l'univers, on peut appliquer la loi des probabilités totales : $P(V) = P(A \cap V) + P(\bar{A} \cap V).$

Or
$$P(\bar{A} \cap V) = P(\bar{A}) \times P_{\bar{A}}(V) = (1 - 0.49) \times 0.35 = 0.179.$$

Donc P(V) = 0.25 + 0.179 = 0.429.

3. On a
$$P_{\bar{V}}(A) = \frac{P(\bar{V} \cap A)}{P(\bar{V})} = \frac{P(A \cap \bar{V})}{P(\bar{V})} = \frac{P(A) \times P_A(\bar{V})}{P(\bar{V})}.$$
 Or, d'après la question précédente : $P(\bar{V}) = 1 - P(V) = 1 - 0.429 = 0.572$ et d'après la question $1: P_A(\bar{V}) = 1 - P_A(V) = 1 - \frac{25}{49} = \frac{24}{49}.$

Donc
$$P_{\bar{V}}(A) = \frac{0.49 \times \frac{24}{49}}{0.572} \approx 0.42.$$

4. On a vu que $P(\bar{V}) = 1 - 0.429 = 0.572$.

Comme les deux événements sont indépendants, en les appelant \bar{V}_1 et \bar{V}_2 , on a : $P(\bar{V}_1 \cap \bar{V}_2) =$ $P(\bar{V_1}) \times P(\bar{V_2})$

La probabilité cherchée est donc égale à $P(\bar{V_1}\cap \bar{V_2})=0.572\times 0.572\approx 0.327.$