2010年全国硕士研究生招生考试试题

一、选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)

- (1) 函数 $f(x) = \frac{x^2 x}{x^2 1} \sqrt{1 + \frac{1}{x^2}}$ 的无穷间断点的个数为() (A)0. (B)1. (C)2. (D)3.
- (2) 设 y_1, y_2 是一阶线性非齐次微分方程 y' + p(x)y = q(x) 的两个特解, 若常数 λ, μ 使 $λy_1 + μy_2$ 是该方程的解, $λy_1 μy_2$ 是该方程对应的齐次方程的解, 则()
 - $(\mathrm{A})\lambda = \frac{1}{2} \ , \mu = \frac{1}{2}.$

(B) $\lambda = -\frac{1}{2}, \mu = -\frac{1}{2}.$

 $(C)\lambda = \frac{2}{3}, \mu = \frac{1}{3}.$

- (D) $\lambda = \frac{2}{3}, \mu = \frac{2}{3}$.
- (3) 曲线 $y = x^2$ 与曲线 $y = a \ln x (a \neq 0)$ 相切,则 a = ((C)2e. (D)e.
- (4) 设m,n 均是正整数,则反常积分 $\int_0^1 \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性()
 - (A) 仅与 m 的取值有关.

(B) 仅与 n 的取值有关.

(C)与m,n的取值都有关.

- (D) 与 m, n 的取值都无关.
- (5) 设函数 z = z(x, y) 由方程 $F\left(\frac{y}{x}, \frac{z}{x}\right) = 0$ 确定,其中 F 为可微函数,且 $F_2' \neq 0$,则 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} =$ (A) x. (B) z. (C) -x. (D) -z.
- (6) $\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} = ($
 - (A) $\int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y^2)} dy$.

(B) $\int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y)} dy$.

 $(C)\int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y)} dy.$

- (D) $\int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y^2)} dy$.
- (7) 设向量组 $\mathbf{I}: \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_r$ 可由向量组 $\mathbf{II}: \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_s$ 线性表示. 下列命题正确的 是()
 - (A) 若向量组 I 线性无关,则 $r \leq s$.
- (B) 若向量组 I 线性相关,则 r > s.
- (C) 若向量组 Ⅱ 线性无关,则 $r \leq s$.
- (D) 若向量组 Ⅱ 线性相关,则 r > s.
- (8) 设 A 为 4 阶实对称矩阵,则 $A^2 + A = 0$. 若 A 的秩为 3,则 A 相似于()
 - $(A) \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 0 \end{pmatrix}.$ $(B) \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 & \\ & & & 0 \end{pmatrix}.$

二、填空题(本题共6小题,每小题4分,共24分,把答案填在题中横线上.)

- (9) 3 阶常系数线性齐次微分方程 y''' 2y'' + y' 2y = 0 的通解为 y = 1.
- (10) 曲线 $y = \frac{2x^3}{x^2 + 1}$ 的渐近线方程为_____.
- (11) 函数 $y = \ln(1 2x)$ 在 x = 0 处的 n 阶导数 $y^{(n)}(0) = ____.$
- (12) 当 0 \leq θ \leq π 时,对数螺线 $r = e^{\theta}$ 的弧长为 .
- (13) 已知一个长方形的长l 以 2 cm/s 的速率增加,宽w 以 3 cm/s 的速率增加,则当l=12 cm,w=
- (14) 设A,B为 3 阶矩阵,且|A|=3,|B|=2, $|A^{-1}+B|=2$,则 $|A+B^{-1}|=$ _____.

三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分10分)

求函数
$$f(x) = \int_{1}^{x^2} (x^2 - t) e^{-t^2} dt$$
 的单调区间与极值.

(16)(本题满分10分)

(I) 比较
$$\int_0^1 |\ln t| [\ln(1+t)]^n dt 与 \int_0^1 t^n |\ln t| dt (n = 1, 2, \dots)$$
 的大小,说明理由;

(
$$II$$
) 记 $u_n = \int_0^1 |\ln t| [\ln(1+t)]^n dt (n = 1, 2, \dots)$,求极限 $\lim_{n \to \infty} u_n$.

(17)(本题满分11分) 更多笔记资料公众号【考研666】免费分享

(18) (本题满分10分)

一个高为 l 的柱体形贮油罐,底面是长轴为 2a,短轴为 2b 的椭圆. 现将贮油罐平放,当油罐中油面高度为 $\frac{3}{2}b$ 时(如图),计算油的质量. (长度单位为 m,质量单位为 kg,油的密度为常量 ρ ,单位为 kg/m^3).

(19) (本题满分11分)

设函数 u = f(x, y) 具有二阶连续偏导数,且满足等式 $4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} = 0$. 确定 a, b 的值,使等式在变换 $\xi = x + ay$, $\eta = x + by$ 下简化为 $\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$.

(20) (本题满分10分)

计算二重积分 $I=\iint_D r^2\sin\theta\sqrt{1-r^2\cos2\theta}\mathrm{d}r\mathrm{d}\theta$, 其中 $D=\left\{(r,\theta)\,\middle|\,0\leqslant r\leqslant\sec\theta,\ 0\leqslant\theta\leqslant\frac{\pi}{4}\right\}$.

(21)(本题满分10分) 更多笔记资料公众号 【考研666】免费分享

设函数 f(x) 在闭区间[0,1] 上连续,在开区间(0,1) 内可导,且 f(0) = 0, $f(1) = \frac{1}{3}$. 证明:存在 $\xi \in \left(0, \frac{1}{2}\right), \eta \in \left(\frac{1}{2}, 1\right),$ 使得: $f'(\xi) + f'(\eta) = \xi^2 + \eta^2$.

(22)(本题满分11分)

设
$$\mathbf{A} = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$. 已知线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 存在两个不同的解.

- (I) 求 λ, a;
- (II) 求方程组 Ax = b 的通解.

(23)(本题满分11分

设
$$\mathbf{A} = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix}$$
, 正交矩阵 \mathbf{Q} 使 $\mathbf{Q}^{\mathsf{T}} \mathbf{A} \mathbf{Q}$ 为对角矩阵, 若 \mathbf{Q} 的第 1 列为 $\frac{1}{\sqrt{6}} (1, 2, 1)^{\mathsf{T}}$, 求 a, \mathbf{Q} .