

Material de Estudos

Banco de Dados - MySQL

Conceito de Banco de Dados

Um banco de dados é de demasiada importância, pois serve especificamente para armazenar dados úteis, armazenando esses dados de forma inteligente.

Neste mercado temos dois tipos de profissionais: o profissional que gera ou cria o banco de dados (Administrador de Dados), e o outro que realiza a manutenção e administra dados já existentes (Database Administrator - DBA).

A linguagem a ser utilizada para estruturar um banco de dados, é a **SQL**, tendo a função de armazenar arquivos em diferentes lugares, além de gerar as informações úteis, de forma que possamos interagir.

A transação engloba todas as atividades que um SGBD (Sistema de Gerenciamento de Banco de Dados) realiza após a interação que o usuário tem com o próprio sistema.

Para criar um banco de dados, temos **4 regras** que são fundamentais:

1. ATOMICIDADE

Deve ser realizado uma transação em dois estados, **commit** (sucesso) ou **rollback** (falha), sendo que se ocorrer um problema nesta transação, retornará ao estado original.

2. CONSISTÊNCIA

As regras em sua totalidade sempre devem ser respeitadas, garantindo que todo tipo de dados estejam corretos, tendo consistência. Como atributos de: VARCHAR (Conjunto de caracteres), INT (Número inteiro sem casa decimal "8"),FLOAT (Número inteiro com casa decimal "8.5"), DATE, etc.

Nota: Devemos indicar o tipo de atributo, pois o computador o identifica e determina um valor específico em kb para utilização, variando de acordo com estes valores atribuídos.

3. ISOLAMENTO

Cada transação é única e independente, sendo assim, duas transações que alterem o mesmo valor de uma tabela não entram em conflito. Toda operação é uma engrenagem na SGBD.

4. DURABILIDADE

Quando uma transação é finalizada, seus dados estão salvos de qualquer modificação. Somente outra transação pode modificá-los. Os dados, portanto, ficam protegidos.

Sendo assim, para que um banco de dados funcione, deve-se respeitar essas quatro regras, que irão garantir o bom funcionamento do mesmo.

Evolução dos Bancos de Dados

Nasceu na década de 60, sendo armazenado de forma rudimentar, até que a empresa IBM investiu em pesquisas para relacionamento e atividades de armazenamento de dados do formato virtual.

Através do pesquisador **Edgar Frank Codd** que tem a autoria de um modelo relacional de banco de dados.

Até que na década de **70**, surgiu o **sistema R.** e a **Linguagem SQL** (Structured Query Language).

Nos anos 80 a Oracle, outra empresa gigante entrou na área dos Bancos de Dados, lançou o Oracle 2 e então IBM para não ficar para trás, lançou o SQL DS (DB2 dos tempos atuais), surgimento também do Microsoft SQL Server uma SQL que era livre, mas acabou sendo comprada pela Oracle. E seus idealizadores, que realizaram um Spin Off para o MariaDB. que muitos nem mesmo consideram como banco de dados.

Nos dias atuais temos como disponibilidade para nosso uso, os Bancos de Dados free e os pagos, como por exemplo temos:

- MySQL
- MariaDB
- Microsoft SQL Server
- DB2
- PostgreSQL
- Oracle
- MongoDB

Com base em todo o decorrer desta história, concluímos que os Sistemas de bancos de dados atuais são seguros e extremamente confiáveis, proporcionando também imensas possibilidades aos desenvolvedores por meio de seu uso.

Modelo Relacional

O modelo relacional é um modelo físico, que representa o banco de dados como uma coleção de tabelas (relações), enquanto o modelo Entidade-Relacionamento, é usado para descrever as entidades e as suas características (atributos), ilustrando como esses elementos se relacionam entre si.

O modelo conceitual é utilizado para descrever os objetos (Entidades), suas características (atributos) e os relacionamentos entre si, representando de forma abstrata um banco de dados, fornecendo informações sobre os aspectos relacionados ao seu domínio.

O modelo relacional é o passo seguinte da modelagem de banco de dados, mostrando com clareza o "mapeamento" entre as diversas tabelas que compõem o banco de dados, sendo um modelo físico representando os dados de um banco de dados, por meio de uma coleção de tabelas, também chamadas de relações ou instâncias.

- Cada Entidade torna-se uma Tabela;
- Cada atributo torna-se um campo da tabela criada;
- Os atributos identificadores formam a chave primária.

Atributos são as informações que referenciam a entidade.

Atributos identificadores são únicos para cada entidade, como CPF.

Tipos de Dados

- binary = Número binário (0 ou 1);
 blob = Um objeto do tipo arquivo, com dados brutos imutáveis;
 boolean = Verdadeiro ou falso (0 e 1);
 date = Data;
 datetime = Data e hora;
 decimal = Maior número de dígitos significativos para um número;
 float = Número com vírgula;
 integer = Número inteiro;
 string = Poucas letras;
 text = Texto;
- **time** = Hora/tempo;
- **timestamp** = Basicamente representa um instante único, um ponto específico na linha do tempo;
- varchar = Caracteres (letras e números)[Sem limite];
- char = Caracteres [com limite].

Normalização de Dados

As formas normais correspondem a um conjunto de regras e de simplificação de tabelas.

Principais especificações de cada formal normal	
Forma normal	Característica principal.
1FN	Apenas atributos atômicos.
2FN	Estar na 1FN e sem dependência funcional parcial.
3FN	Estar na 2FN e sem dependência funcional transitiva.
Boyce-Codd	Estar na 3FN e não pode existir um atributo A determinando outro B, sendo que A não é super-chave.
4FN	Estar na 3FN e não pode existir dependência funcional multivalorada.
5FN	Estar na 4FN e não pode existir dependência funcional de junção.

Sendo que apenas as três primeiras são essenciais, **1FN**, **2FN** e **3FN**. Pois as duas últimas são utilizadas apenas quando o banco de dados já está construído sendo aplicados depois de anos da existência das demais.

Dependências funcionais

Uma dependência funcional ocorre quando um valor A depende de um valor B. As dependências funcionais se dividem em três:

• **Dependência funcional total** - Quando houver uma chave primária concatenada, isto é, duas ou mais colunas são a chave primária

de uma tabela, as demais colunas dependerão exclusivamente dessa ligação para que possam ser inseridas corretamente.

Exemplo: "

Tabela ItemVenda

- CodVenda PRIMARY KEY
- CodProduto PRIMARY KEY
- Otd

Repare que a coluna Qtd irá depender totalmente da chave primária concatenada entre CodVenda e CodProduto.

• **Dependência funcional parcial** - Ocorre quando um item da tabela depende de uma parte da chave primária concatenada da tabela, e não da chave toda.

Exemplo: "

Tabela ItemVenda

- CodVenda PRIMARY KEY
- CodProduto PRIMARY KEY
- Otd
- PrecoProduto

A coluna PrecoProduto depende do valor da coluna CodProduto, que faz parte da chave primária da tabela ItemVenda. Portanto, PrecoProduto depende parcialmente da chave primária concatenada da tabela.

• Dependência funcional transitiva - Acontece quando uma coluna da tabela depende de outra coluna da tabela que não é chave dessa tabela.

Exemplo: "

Tabela ItemVenda

- CodVenda PRIMARY KEY
- CodProduto PRIMARY KEY
- Otd
- PrecoProduto
- TotalParcial

A coluna TotalParcial depende do resultado da multiplicação das colunas Qtd por PrecoProduto, e essas colunas não são chave da tabela.

Sendo assim, para estruturar uma tabela de banco de dados bem otimizada, deve-se seguir estas três regras.

Linguagem de Definição de Dados

A Linguagem SQL é uma linguagem de consulta estruturada, transformando os dados (nível físico) em informação (nível lógico).

• DDL (Linguagem de Definição de Dados)

Comandos (CREATE, ALTER E DROP) - Usados na estrutura da data base.

CREATE = Comando utilizado para criação de tabelas;

- CREATE DATABASE/TABLE nome

ALTER = Comando utilizado para alteração de tabelas;

- ALTER TABLE nome ADD nome2
- ALTER TABLE nome DROP COLUMN nome
- ALTER TABLE nome MODIFY COLUMN nome
- ALTER TABLE nome CHANGE `nome` `nome2` VARCHAR(-)

DROP = Comando utilizado para exclusão de tabelas.

- DROP DATABASE/TABLE nome

Linguagem de Manipulação de Dados

• DML (Linguagem de Manipulação de Dados)

Comandos (INSERT, UPDATE, SELECT E DELETE) - Usando para adicionar dados na data base.

INSERT = Comando utilizado para inserção de dados;

- INSERT INTO (atributo1, atributo2, ...) VALUE (valor-atributo1 valor-atributo2, ...)
- INSERT INTO alunos VALUE (valor-atributo1, valor-atributo2, ...)

UPDATE = Comando utilizado para atualização de dados;

```
    - UPDATE tabela SET atributo = '' WHERE PK = ;
    - UPDATE tabela SET atributo = CONCAT('value', atributo);
    SELECT = Comando utilizado para pesquisa de dados;
```

DELETE = Comando utilizado para exclusão de dados.

Criando uma DataBase

Passo a passo

1. Baixar o XAMPP :

https://www.apachefriends.org/xampp-files/7.3.29/xampp-windows-x64-7.3.29-1-VC15-installer.exe

- 2. Com o mesmo já aberto, instale os serviços necessários, neste caso (Apache e MySQL)
- 3. Clique Start para Apache e para MySQL
- 4. Após iniciado, clique em Admin em MySQL
- 5. Quando aberta a LocalHost clique em SQL e no campo de texto digite: CREATE DATABASE nome_database;

Referências

- Conceitos de Banco de Dados (grupoa.education)
- Evolução de Banco de Dados (grupoa.education)
- Modelo Relacional (grupoa.education)
- Diagrama de Entidade e Relacionamento (DER) (grupoa.education)
- Normalização de Dados (grupoa.education)
- <u>Linguagem de definição de dados (DDL) Data Definition Language</u> (grupoa.education)
- <u>Linguagem de manipulação de dados (DML) Data Manipulation Language</u> (grupoa.education)