The Composition Theorem for Differential Privacy

Sewoong Oh

Department of ISE University of Illinois at Urbana-Champaign

Joint work with Peter Kairouz (UIUC) and Pramod Viswanath (UIUC)

Privacy calculus

Privacy via plausible deniability [Warner 1965]

Have you ever used illegal drugs?

say yes

answer truthfully

ε -differential privacy

D_0	Alice	22
	Bob	45
	:	:
	Me	23

D_1	Alice	22
	Bob	45
	:	:

(ε, δ) -differential privacy

)1	Alice	22
	Bob	45
	:	:

$$\mathbb{P}(q(D_0) \in S) \le e^{\varepsilon} \mathbb{P}(q(D_1) \in S) + \delta$$

Composition of Differentially Private Mechanisms

Differential privacy and privacy region are equivalent

$$\mathbb{P}(q(D_0) \in S) \le e^{\varepsilon} \mathbb{P}(q(D_1) \in S) + \delta$$

$$P_{\text{FA}} + e^{\varepsilon} P_{\text{MD}} \geq 1 - \delta$$

 $e^{\varepsilon} P_{\text{FA}} + P_{\text{MD}} \geq 1 - \delta$

q is (ε, δ) -differentially private $\iff \mathcal{R}_q \subseteq \mathcal{R}_{\varepsilon, \delta}$

$$\Rightarrow$$
 $\mathcal{R}_q \subseteq \mathcal{R}_{arepsilon, \delta}$

Data Processing Inequality (DPI)

Converse to DPI

Converse to the Data Processing Inequality [KOV '15]

$$D-q_1(D)-q_2(D) \quad \iff \quad \mathcal{R}_{q_2} \subseteq \mathcal{R}_{q_1}$$

precisely, there exists a coupling of $q_1(D)$ and $q_2(D)$ such that

- (a) $D-q_1(D)-q_2(D)$; or equivalently
- (b) $q_2(D) = T(q_1(D)).$

[Blackwell 1953]

Converse to DPI

Converse to the Data Processing Inequality [KOV '15]

$$D-q_1(D)-q_2(D) \quad \longleftarrow \quad \mathcal{R}_{q_2} \subseteq \mathcal{R}_{q_1}$$

precisely, there exists a coupling of $q_1(D)$ and $q_2(D)$ such that

- (a) $D-q_1(D)-q_2(D)$; or equivalently
- (b) $q_2(D) = T(q_1(D)).$

[Blackwell 1953]

Dominant mechanisms for (ε, δ) -differential privacy

the converse DPI implies that the following randomized response $q_{\varepsilon,\delta}$ dominates over all (ε,δ) -differentially private mechanisms

Dominant mechanism under composition

How much privacy is lost in the end?

For what values of (ε, δ) , is the resulting composition still differentially private?

How does privacy region evolve under composition?

Dominant mechanism under composition

How much privacy is lost in the end?

For what values of (ε, δ) , is the resulting composition still differentially private?

How does privacy region evolve under composition?

Dominant mechanism under composition

How much privacy is lost in the end?

For what values of (ε, δ) , is the resulting composition still differentially private?

How does privacy region evolve under composition?

Composition of dominant mechanisms

k composition of (0.4, 0.1)-differential private mechanisms

this gives the exact evolution of privacy, such that any known results on composition are corollaries.

The composition theorem [Dwork, et al '10], [KOV '15]

k-fold composition of (ε,δ) -differentially private mechanisms satisfy $(\tilde{\varepsilon},k\delta+\tilde{\delta})$ -differential privacy with

$$\tilde{\varepsilon}_{\tilde{\delta}} = k\varepsilon^2 + \varepsilon\sqrt{2k\log(1/\tilde{\delta})}$$

significant improvement over $(k\varepsilon,k\delta)$ -guarantee when $\varepsilon\to 0$

Comparisons with the state-of-the-art

30-fold composition of (0.1, 0.001)-differentially private mechanisms

Recap

Computational tool for exact composition

• Improved "cut-and-paste" composition theorem $(\tilde{\varepsilon}, k\delta + \tilde{\delta})$ -differential privacy with

$$\tilde{\varepsilon}_{\tilde{\delta}} = k\varepsilon^2 + \varepsilon\sqrt{2k\log(1/\tilde{\delta})}$$

Going forward

- Computational Complexity [Vadhan, Murtagh '15]
- "Optimality of non-interactive randomized response", arXiv:1407.1546

Dominant Mechanisms for Large Alphabets
"Extremal mechanisms for local differential privacy", NIPS 2014

"The composition theorem for differential privacy", ICML 2015