PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-269172

(43)Date of publication of application: 09.10.1998

(51)Int.CI.

G06F 13/362

(21)Application number: 09-259451

(71)Applicant: KOREA ELECTRON TELECOMMUN

(22)Date of filing:

(72)Inventor: PAKU YUN OKU

KIM YON YON

IMU KI UKU

(30)Priority

Priority number : 96 9670172

Priority date: 23.12.1996

Priority country: KR

(54) BUS ARBITER CIRCUIT

(57)Abstract:

PROBLEM TO BE SOLVED: To make it possible to support many master devices on a PCI bus, by using a one-shot signal based upon a frame signal and outputting an arbitration signal at the same as the end of the operation of a module in use with top priority.

12.08.1997

SOLUTION: A decoding part 100 receives a signal 22 of a module having requested service and searches a priority decoder 25 for the module with top priority among requesting modules. At this time, a one-shot generation part 200 generates the one-shot signal 33 by using the frame signal 30. A signal storage part 300 stores the module with the top priority according to the signal 33 and feeds it back as a signal 21 for selecting a next requesting module. An arbitration signal output part 400 uses the one-shot signal 33 based upon the frame signal 30 to output a bus arbitration signal 38 for starting use to the module with top priority at the same time as the operation end of the module in use.

LEGAL STATUS

[Date of request for examination]

12.08.1997

[Date of sending the examiner's decision of rejection]

07.05.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-269172

(43) 公開日 平成10年(1998) 10月9日

(51) Int.Cl.⁶

識別記号

G06F 13/362

510

FΙ

G06F 13/362

請求項の数3 FD (全 9 頁) 審査請求 有

(21)出願番号

特願平9-259451

(22)出顧日

平成9年(1997)8月12日

(31)優先権主張番号 1996 P70172

(32)優先日

1996年12月23日

(33)優先権主張国

韓国 (KR)

(71)出願人 596180076

韓國電子通信研究院

大韓民国大田廣城市儒城區柯亭洞161

(72)発明者 パク ユン オク

大韓民国 大田廣域市 チュン區 ザヤン

洞 ドンアアパート 106-705

(72)発明者 キム ヨン ヨン

大韓民国 大田廣域市 儒城區 漁隱洞

ハンピッアパート 109-702

(72)発明者 イム キ ウク

大韓民国 大田廣城市 西區 ウォルピョ

ン洞 テヨンムグンファアパート 203-

(74)代理人 弁理士 瀬谷 徹 (外1名)

(54) 【発明の名称】 パスアピータ回路

(57)【要約】

【課題】 PCI バスを使用する多数のマスターデバイス を支援すると共に、バスを用いようとするマスターデバ イスの優先順位、公平性を同時に保障するバスアビータ 回路を提案する。

【解決手段】 一回のPCI クロックに同期させることに よって、バスの非効率的の使用を防止し、 PCI バスクロ ックに同期させることによって、非同期の問題を解決 し、公平性を簡単な回路で付与することによって、PCI バス上から低い優先順位を持つマスターデバイスのバス 使用の機会均等を同時に具現することを特徴とする。

【特許請求の範囲】

PCI バスの使用サービスを要請したモジ 【請求項1】 ュールの要求信号n rg[15:0]を受け入れ、既にサービス 受けたモジュールの要求信号s rg[15:0]との組合せによ り現在サービスを受けていないモジュールの要求信号の みを選択し、選択されたモジュールの要求信号の中の優 **先順位の一番高いモジュールの要求信号を探し出し出力** する要求信号デコーディング手段と、

バスの使用承諾を取得したモジュールの動作開始信号で あるフレーム信号n frame をPCI クロックに同期させ、 ワンショット信号1-frame を生じ、このワンショット信 号を、上記PCI クロックによってラッチさせ、ラッチさ れたフレームパルス frame s により、上記ワンショット 信号1_frame をリセットさせるワンショット信号の発生 手段と、

上記ワンショット信号1 frame に上記要求信号デコーデ ィング手段の最優先順位の要求信号top rg[15:0]を同期 させてレジスタにラッチさせ、そのラッチされた優先順 位の要求信号を、上記既にサービス受けたモジュールの 要求信号s rq[15:0]としてフィードバックさせ、上記最 20 優先順位の要求信号top rq[15:0]と前記サービスを要請 したモジュールの要求信号n_rq[15:0]とを組合せ、サー ビスの中のモジュールの無いフリーの状態である時、前 記レジスタをリセットさせ、新たなサービスの要求を受 け入れる準備をするサービス中の要求信号貯蔵部と、 前記最優先順位の要求信号top rg[15:0]を、前記1_fram e 信号に同期させて入力し、PCI バスの使用承諾を行う 仲裁信号n gnt [15:0] として出力し、前記フレーム信号 n frame によりリセットされる仲裁信号出力手段とから 構成されたことを特徴とするバスアビータ回路。

前記要求信号デコーディング手段は、 【請求項2】 PCI バスの使用サービスを要請したモジュールの要求信 号n rg[15:0]と前記サービス中の要求信号貯蔵部から出 力される既にサービス受けたモジュールの要求信号 s_rq [15:0]とを各ビット別に論理和させ、バス使用を要求し ているモジュール中の現在サービスを受けていないモジ ュールのみを探し出す要求信号の選択部と、

前記要求信号の選択部から論理和され出力されるサービ スしていない要求信号un s rg[15:0] を受け入れ、バス の使用を要求した順序及び既に決められた優先順位に基 40 づいて、優先順位の一番高い要求信号を探し出し、最優 先順位の要求信号のみをセッティングさせ出力する優先 順位デコーダから構成されることを特徴とする請求項1 記載のバスアビータ回路。

【請求項3】 前記ワンショット信号の発生手段は、 PCI バスの使用許可を取得したモジュールの動作開始信 号である、前記フレーム信号n frame をPCI の全体の同 期のためのクロック信号pci clock に同期させて入力 し、1 frame 信号として出力する第1のフリップフロッ

その第1のフリップフロップの出力信号1 frame を、前 記クロック信号pci clock に同期させてラッチさせる第 2のフリップフロップと、

前記第2のフリップフロップの出力信号 frame s と前記 第1のフリップフロップの出力信号1 frame とを前記第 1のフリップフロップのリセット信号として印加させる オアゲートで構成し、一回のクロックで全体の回路の同 期化を実現することを特徴とする請求項1記載のバスア ビータ回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、周辺素子連結(Pe ripheral Component Interconnect : 以下、PCIとい う) 用のバスアビータ回路に係り、特に PCI バス上のモ ジュール等によって高速の動作が可能であるようにする と共に最少の回路として1段の同期回路を用い同期クロ ックを同期させ、多くのPCI バス上のマスターデバイス を支援することができるようにした周辺素子連結 (PCI) 用のバスアビータ回路に関するものである。

[0002]

【従来の技術】PCI バスをPCではない制御機等において 用いる場合、制御機内には相当数のPCI マスターデバイ スが存在することになり、かつ、高速の動作を要求する 場合が多い。既存の方式は、少数のマスターデバイスを 有する機器の構成に適合し、これを大規模のマスターデ バイスを有する制御機内では構成方式が2、3段の同期 クロックを用いるため、公平性付与の正確性等において 動作が遅くなっていた。従って、多くのマスターデバイ スを有する制御機等に構成されるバスアビータは、回路 の複雑性が少なく、高速動作が可能で、多数個のマスタ ーデバイスに公平性 (fairness)及び優先順位を同時に満 たす回路が要求される。

【0003】コンピューター周辺機器に係る技術とし て、既にPCI バスは広範囲に用いられており、これに関 する多くの技術が発表されている。特に、PCI バスはマ スターデバイスとスレーブデバイスに区分され、PCIバ ス上のモジュールが構成され、マスター機能とスレーブ 機能を同時に持つ場合も可能であり、機能が異なるマス ターデバイスを一つのモジュール内に多数個有すること が出来る構造から成っている。特に、問題となること は、多くのマスターデバイスがバス使用を要求する場 合、これを仲裁する回路は使用者が構成するようになっ ており、回路の構成に応じてバスの効率性が異なること になる。

【0004】既存の方式は、PCで用いる場合を仮定し、 PCI, ISA(Industrial Standard Architecture), MCA 等 の複合的なバス構造を支援する回路に対して多数開示さ れている。特に、バス使用を要求する要請信号を、 PCI バスクロックと同期させる回路の場合、多数のラッチを 用い回路を複雑にし、かつ応答の速度を遅くしており、

30

多くのマスターデバイスが一つのPCI バス上で動作する 制御機等の場合、回路が複雑になる欠点を有しており、 効率的な優先順位の付与、及び公平性の付与に問題があ った。

【0005】PCI バスを用いようとするマスターデバイス (Master Device) (又はInitiator)は、バスの使用権を得るためバスの使用要求を知らせる信号である、n_rq信号をアサート (assert)し、これによる仲裁結果によって使用承諾であるn_gnt 信号を受け使用権を取得しなければ使用が不可能である。

【0006】図1は、PCIバスの仲裁周期を示すタイミング図として、これに図示したように、バスを用いようとするマスターデバイスは、仲裁要求信号であるn_req[1・0]信号(2及び3)をアサートし、仲裁回路においては、この信号を入力して現在仲裁を要請したマスターデバイスに順次的にバスの使用承諾を知らせてくれる、n_grt[1・0]信号(4及び5)を与えることによって、許可を要請した信号(n_frame)(6)に対するデバイスについて使用権を付与(7)することになる。許可を得るモジュールは、PCIバスが開放された(free)状態でのみバスを使用20することができ、開放状態の確認は、現在n_grt信号(4及び5)がアサートされているか否かを確認することによって、可能である。

【0007】図2は、既存のPCIバスのアビータ回路図である。

【0008】既存の方式では、各マスターデバイスから の仲裁要求信号を受け、先ず要求したデバイスの信号を 選んだ後、このデバイスに対してバス使用要求をラッチ する。これは、図1のn rg信号(2及び3)をPCI バスクロ ックに同期させるためである。 PCI バスクロック信号 (1) で第1のラッチ回路 (10)にラッチした後、優先順位 デコーダであるプライオリティデコーダ (Priority Deco der) (11)と許可 (GNT) デコーダ (12)を用いて、一番高い 順位のバス使用要求デバイスを選定した後、このデバイ ス信号を再び第2及び第3のラッチ回路 (17 及び18) に ラッチして、バス使用権を承諾する信号であるn_gnt 信 号(4,5及び14)を出力し、バス使用権を付与するように なっている。このような方式は、PCI バスを最小単位で 具現した場合には、効果的ではあるが、特殊な目的で多 数個を支援する場合は(例えば、8個以上)、大規模な 40 バスアビータ回路となり、公平性を付与し難くなる。

【0009】この回路では、ラッチ回路が2つ以上 (10、13及び17) 必要であり、バス使用権を承諾するのに2クロック以上を要するので、バスの使用率を低下させる要因になっている。

[0010]

【発明が解決しようとする課題】従って、本発明は、 PC I バスを使用する多数のマスターデバイスを支援すると 同時に、バスを用いようとするマスターデバイスの優先 順位、公平性を同時に保障し、一回の PCI クロックに同 50

期して動作させることを目的とするものである。

【0011】これによって、バスの効率的な使用を可能にし、PCIバスクロックに同期されて動作することによって、非同期の問題を解決し、公平性を簡単な回路で実現することによって、PCIバス上の低い優先順位を持つマスターデバイスのバス使用の機会均等を同時に具現することが出来るPCI用のバスアビータ回路を提供することにその目的がある。

[0012]

【課題を解決するための手段】上記課題を解決するた め、本発明に係るバスアビータ回路は、PCI バスの使用 サービスを要請したモジュールの要求信号n rg[15:0]を 受け入れ、既にサービス受けたモジュールの要求信号 s_ rg[15:0]との組合せにより現在サービスを受けていない モジュールの要求信号のみを選択し、選択されたモジュ ールの要求信号の中の優先順位の一番高いモジュールの 要求信号を探し出し出力する要求信号デコーディング手 段と、バスの使用承諾を取得したモジュールの動作開始 信号であるフレーム信号n_frame をPCI クロックに同期 させ、ワンショット信号1-frame を生じ、このワンショ ット信号を、上記PCI クロックによってラッチさせ、ラ ッチされたフレームパルス frame_s により、上記ワンシ ョット信号1 frame をリセットさせるワンショット信号 の発生手段と、上記ワンショット信号1 frame に上記要 求信号デコーディング手段の最優先順位の要求信号 top rg[15:0]を同期させてレジスタにラッチさせ、そのラッ チされた優先順位の要求信号を、上記既にサービス受け たモジュールの要求信号s rg[15:0]としてフィードバッ クさせ、上記最優先順位の要求信号top rg[15:0]と前記 サービスを要請したモジュールの要求信号n rg[15:0]と を組合せ、サービスの中のモジュールの無いフリーの状 態である時、前記レジスタをリセットさせ、新たなサー ビスの要求を受け入れる準備をするサービス中の要求信 号貯蔵部と、前記最優先順位の要求信号top_rq[15:0] を、前記1 frame 信号に同期させて入力し、PCI バスの 使用承諾を行う仲裁信号n gnt [15:0] として出力し、前 記フレーム信号n frame によりリセットされる仲裁信号 出力手段とから構成されたことを特徴とする。

【0013】又、前記要求信号デコーディング手段は、PCI バスの使用サービスを要請したモジュールの要求信号n_rq[15:0]と前記サービス中の要求信号貯蔵部から出力される既にサービス受けたモジュールの要求信号 s_rq [15:0]とを各ビット別に論理和させ、バス使用を要求しているモジュールの中の現在サービスを受けていないモジュールのみを探し出す要求信号の選択部と、前記要求信号の選択部から論理和され出力されるサービスしていない要求信号いま。rq[15:0]を受け入れ、バスの使用を要求した順序及び既に決められた優先順位に基づいて、優先順位の一番高い要求信号を探し出し、最優先順位の要求信号のみをセッティングさせ出力する優先順位デコ

ーダから構成されることを特徴とする。

【0014】又、前記ワンショット信号の発生手段は、 PCI バスの使用許可を取得したモジュールの動作開始信 号である、前記フレーム信号n frame をPCI の全体の同 期のためのクロック信号pci clock に同期させて入力 し、1 frame 信号として出力する第1のフリップフロッ プと、その第1のフリップフロップの出力信号1_frame を、前記クロック信号pci clock に同期させてラッチさ せる第2のフリップフロップと、前記第2のフリップフ ロップの出力信号frame_s と前記第1のフリップフロッ 10 プの出力信号1 frame とを前記第1のフリップフロップ のリセット信号として印加させるオアゲートで構成し、 一回のクロックで全体の回路の同期化を実現することを 特徴とする。

【0015】このように本発明は、サービスを要請した モジュールの信号を受け、既にサービスを受けたモジュ ールを除いた残りの要請モジュールを選択し、前記選択 された要請モジュールの中から一番優先順位の高いモジ ュールを優先順位デコーダから探し出す。この時、使用 許可を受けたモジュールの動作開始を知らせる信号であ 20 るフレーム信号を用いて、ワンショット信号を生成し、 そのワンショット信号に基づいて上記から探し出した優 先順位が一番高いモジュールを記憶させ、上記サービス を受けたモジュールを除いた残りの要請モジュールを選 択する為の信号としてフィードバックさせ、上記フレー ム信号に基づいたワンショット信号を用い、上記優先順 位の一番高いモジュールに現在使用中にあるモジュール の動作が終わると同時に使用が開始できるようにバスア ビータ信号を出力するように構成することに特徴があ る。

[0016]

【発明の実施の形態】図3は、本発明のPCIバス用のバ スアビータ回路であり、図示されたように、 pcr バスの 使用サービスを要請したモジュールの要求信号 n_rq[15: 0]を受け入れ、既にサービス受けたモジュールの要求信 号s rg[15:0]との組合せによりサービスを受けていない モジュールの要求信号のみを選択し、選択されたモジュ ールの要求信号の中の優先順位の一番高いモジュールの 要求信号を探し出し、セットさせ出力する要求信号デコ ーディング部 (100) と、バスの使用承諾を取得したモジ 40 ュールの動作開始信号であるフレーム信号 n_frame をPC I クロックに同期させ、ワンショット信号1-frame を生 じ、このワンショット信号を、上記PCI クロックによっ てラッチさせ、ラッチされたフレームパルス frame_s に より、上記ワンショット信号1 frame をリセットさせる ワンショット信号の発生部 (200) と、上記ワンショット 信号1_frame に上記要求信号デコーディング手段の最優 先順位の要求信号top rq[15:0]を同期させラッチさせ、 そのラッチされた優先順位の要求信号を、上記既にサー ビス受けたモジュールの要求信号s_rq[15:0]としてフィ 50

ードバックさせ、上記最優先順位の要求信号 top rg[15: 0]と前記サービスを要請したモジュールの要求信号 n rq [15:0]を組合せ、サービス中のモジュールの無いフリー の状態である時、前記ラッチをリセットさせ、新たなサ ービスの要求を受け入れる準備をするサービス中の要求 信号の貯蔵部 (300) と、前記最優先順位の要求信号 top_ rg[15:0]を、前記1 frame 信号に同期させて入力し、CC I バスの使用承諾を行う仲裁信号n gnt [15:0] として出 力し、前記フレーム信号n frame によりリセットされる 仲裁信号出力部(400) とから構成される。

【0017】前記要求信号のデコーディング部 (100) は、PCI バスの使用サービスを要請したモジュールの要 求信号n rq[15:0]と前記サービス中の要求信号の貯蔵手 段(300) から出力される既にサービス受けたモジュール の要求信号s rg[15:0]とを入力し、各ビット別に論理和 させ、バス使用を要求しているモジュールの中の現在サ ービスを受けていないモジュールのみを探し出す要求信 号の選択部(23)と、その要求信号の選択部(23)から論理 和され出力されるサービスしていない要求信号 w s rq [15:0] を受け入れ、バスの使用を要求した順序及び既 に決められた優先順位に基づいて、優先順位の一番高い 要求信号を探し出し、最優先順位の要求信号のみをセッ ティングさせ出力する優先順位デコーダ (25)から構成さ れる。

【0018】ここで、前記要求信号の選択部 (23)は、各 マスターデバイスのバス使用要請信号 (22)を受け、既に サービスされたマスターデバイスからの要請であるか否 かを判定する回路として、s_rq[15··0] 信号(21)とn_rq [15・・0] 信号 (22)のアンド (AND) アレイ回路で構成され ている。

【0019】かつ、前記ワンショット信号の発生部(20 0) は、PCI バスの使用許可を取得したモジュールの動 作開始信号である、前記フレーム信号n frame をPCI の 全体の同期のためのクロック信号pci clock に同期させ て入力させ、1 frame 信号として出力する第1のフリッ プフロップ(32)と、その第1のフリップフロップ(32)の 出力信号1_frame を、前記クロック信号pci clock に同 期させて入力させ、ラッチさせる第2のフリップフロッ プ(34)と、その第2のフリップフロップ(34)の出力信号 frame s と前記第1のフリップフロップの出力信号1 fr ame を、前記第1のフリップフロップ (32)のリセット信 号として印加させるオアゲートで構成し、一回のクロッ クで全体の回路の同期化を実現させることができるよう・ に構成される。

【0020】 ここで、ワンショット発生部 (200) は、本 発明のバスアビータ回路全体を同期化し、状態変換開始 点を探し出すための信号である frame s 信号 (35)を生成 する部分で、バス使用権を取得したモジュールがバス使 用を開始することを知らせる信号であるn_frame 信号(3 0)を、PCI バスクロック (31)に同期させワンショット信

号 (33、35) を発生するようにし、この信号を用いて新たなバス仲裁結果をラッチするようにしている。これは、PCI バスが使用中であるか否かを確認するための信号にも用いられる。PCI バスのクロック (31)で最初ラッチされた信号は、1_frame 信号 (33)であり、この信号を用いて再びframe_s 信号 (35)を生成し、frame_s 信号 (35)がラッチされると、この信号を用いて1_frame 信号 (33)をクリアーさせることによって、PCI バス上にn_frame 信号 (30)がアサートされると、1クロック周期のパルス状態の信号に変換される。

【0021】前記優先順位信号の貯蔵部(300)は、現在サービスされず、且つ、現在バス使用を要求しているマスターデバイスの中の一番優先順位の高いモジュールを探し出すための回路である優先順位デコーダ(25)の出力信号(26)を用い、バス使用権をRCIバスに伝達し、サービスすべきマスターデバイスを書き込むサービス要請(Serviced RQ)信号の記憶回路である。貯蔵部(300)のレジスタ(27)にラッチされたマスターデバイスは、フリー状態の検出部(37)の出力が、現在サービスしていないマ*

*スターデバイスが無いことを表示する信号である no_top _rq 信号(29)によって、全部クリアーされ、新たなサービス提供のマスターデバイスを探すように構成されている。

【0022】一方、本発明の構成の各信号は、16ビット[15:0]信号として、これらをそれぞれビット別に処理するアレイで構成されるが、図面では、便宜上、1つの素子のみを表示し、入/出力信号を[15:0]で表示した。【0023】このように、構成された本発明の各部分別に詳しい動作を記述すれば、次のようである。

【0024】現在バス使用を要求する信号であるn_rq[15:0]信号(22)を受け、この信号を元にして既にサービスしたマスターデバイスからの要請であるか否かを確認するため、次の式(1)のような回路を通過させ、un_s_rq[15:0]信号(24)を生じさせる。この信号は、既にサービスされてなく、サービスを要請したマスターデバイスからの要求であることを示すのに、次のような式(1)を有する回路で具現される。

```
式(1)
!un s rq[15]* = !n_rq[15]* < !s_rq[15]
|un s rq[14] = |n rq[14]
                           < !s_rq[14]
!un_s_q[13] = !n_q[13]
                           < !s rq[13]
|un s rq[12]| = |n rq[12]|
                           < !s rq[12]
                           < !s rq[11]
|un | s | rq[11] = |n | rq[11]
|un s rq[10]| = |n rq[10]|
                          < !s_rq[10]
              = !n_{q}[9]
                           < !s rq[9]
!un_s_rq[9]
              = !n rq[8]
                           < !s rq[8]
!un s rq[8]
!un s rq[7]
             = !n_rq[7]
                           < !s_rq[7]
                           < !s rq[6]
              = !n rq[6]
!unsrq[6]
!un_s_rq[5]
             = !n rq[5]
                           < !s.mq[5]
!un_s_rq[4]
              = !n rq[4]
                           < !s rq[4]
              = !n rq[3]
                           < !s rq[3]
!un s rq[3]
!unsrq[2]
              = !n rq[2]
                           < !s rq[2]
!un s rq[1]
              = !n_rq[1]
                           < !s_rq[1]
              = !n rq[0]
                           < !s rq[0]
!un s rq[0]
```

上記の式(1) で、wn_s_rq[15・・0]信号(24)は、まだサービスしていない状態を示し、n_rq[15・・0]信号(22)は、RCI バス上においての要請信号であり、s_rq[15・・0]信号(21)は、その値が1である場合、既にサービスを要請したものであるのを示す。n_rq[15・・0]信号(22)とs_rq 40 [15・・0]信号(21)をアンド(AND)回路(23)としてwn_s_r q[15・・0]信号(24)を導出することは、s_rq[15・・0]信号(21)が既に同期された信号として、n_rq[15・・0]信号(22)の非同期信号を同期化し、既存方式で2段のラッチを

用いることによるクロックの無駄使いを防止することに ある。

【0025】このum_s_rq[15・・0]信号が、プライオリティデコーダ(Priority Decoder) (25)に入力され、一番優先順位の高いバス使用要求モジュールを探し出すために用いられる。前記プライオリティデコーダ(Priority Decoder) (25)は、一番高い優先順位を探し出すため、次の式(2) を有する回路から構成されている。

```
IF ( !um_s_rq[15]) then top rq[15..0] = B0111111111111111--(\vec{r}/2) else if (!um_s_rq[14]) then top rq[15..0] = B1101111111111111 else if (!um_s_rq[13]) then top rq[15..0] = B1110111111111111 else if (!um_s_rq[12]) then top rq[15..0] = B1111011111111111 else if (!um_s_rq[11]) then top rq[15..0] = B1111101111111111 else if (!um_s_rq[10]) then top rq[15..0] = B111110111111111
```

【0026】現在サービスしているバス使用権の状態を、PCI バスのn_frame 信号(30)のワンステップパルス(cne step pulse)であるframe_s 信号(35)を用いて、top_rq[15..0] 信号(26)をs_rq[15..0] 信号(21)の入力として、一回のサービスを受けた要請器からのn_rq信号(22)は、使用許可を受けたモジュールが、n_frame 信号(30)を生じさせることによりバスの動作が始まったので、このマスターデバイスは、既にサービスを受けたという事実をサービス中の要請信号を貯蔵するレジスタ(27)に 30 蓄える。このs_rq信号(21)が、1でセットされることによって、新たなバス使用要請を探し出す式である、式(1)を通過することが出来なく、低い順位のバス使用要請モジュールが、バス使用権を取得させることにより公平性を付与する。

【0027】このように、s_rq[15..0] 信号(21)は、前述したように、n_rq[15..0] 信号(22)とアンド(AND) 回路で組み合わせられ、既にサービスを受けたモジュール*

*は、これ以上下位の要請モジュールが、全てサービスを受ける前までには、新たな要請を受け入れないことによって、公平性を保障してくれる。そして、バス使用に対する使用承諾は、PCI バス上のframe 信号(30)が、ディアサート(deassert)されると、すぐ次の順位のバス使用要請マスターデバイスに使用許可を知らせることができる。使用許可を前以って受けても、PCI バス使用規格に応じてIRDY信号とTRDY信号を受ける前には、バスを用いることができない。

【0028】このような期間を用いて、次に使用権限が与えられたことを知っているマスターデバイスは、次のバス使用に応じる動作準備を前以って内部的に遂行できることによって高速化された、PCI バス使用環境を提供することになる。フリー状態の検出部 (37)は、現在バス使用の要請があるか否かを判断し、現在使用要請のあることを知らせる信号である、no_top_rq 信号 (29)を生成する。若し、値が1であれば、サービス受けていないマスターデバイスがこれ以上無いことを示す。

【0029】この信号は、レジスタ (27)のリセット (Reset) 端子 (r) に入力され、s_rq信号 (21)の内容を全てクリアーさせることによって、新たなバス使用仲裁を始めることにより再び一番高い順位のマスターデバイスからバス使用権を付与することになる。 no_top_rq 信号 (29)の生成は、次の式 (3) を有する回路として構成される。

[0030]

```
mo_top-rq = un_s_rq[15] < un_s_rq[14] < --- 式(3)

un_s_rq[13] < un_s_rq[12] <

un_s_rq[11] < un_s_rq[10] <

un_s_rq[9] < un_s_rq[8] <

un_s_rq[7] < un_s_rq[6] <

un_s_rq[5] < un_s_rq[4] <

un_s_rq[3] < un_s_rq[2] <

un_s_rq[1] < un_s_rq[0] < である。
```

従って、本発明は、使用バス同期化に係る周期を最小化し、仲裁の結果をすぐにバスで用いられるようにし、全体回路の構成に必要なロジックの数が最小化できるようにすることによって、FPCAやASICへの具現を容易にし

[0031]

【発明の効果】上述したように、本発明によれば、PCI 50 バス上のモジュールとして、高速の動作が可能であり、

同時に最小の回路で PCI バス上の多くのマスターデバイスを支援できるようにすることによって、 PCI バスの仲裁回路を簡略化することができ、基本的に 1 クロックのラッチのみでバスの同期化が実現でき、同時に公平性と優先順位を満たすことによって、仲裁回路に追加的な付加回路を用いなくとも、容易に具現できるものである。

【図面の簡単な説明】

【図1】pcr バスの仲裁周期を示したタイミング図であ ス

【図2】従来の周辺素子連結(PCI)バスの仲裁回路図 10である。

【図3】本発明の周辺素子連結 (PCI) バスの仲裁回路図である。

【符号の説明】

23 要求信号の選択部

25 優先順位デコーダ

27 サービス中の要求信号貯蔵用レジスタ

32, 34 フリップフロップ

36 仲裁信号出力用フリップフロップ

37 バスのフリー状態検出部

100 要求信号デコーディング部

200 ワンショット信号の発生部

300 サービス中の要求信号貯蔵部

400 仲裁信号出力部

AND エンドゲート

OR オアゲート

IN 反転ゲート

【図1】

【図3】

