

Automated embryo stage classification in time-lapse microscopy video of early human embryo development

Authors: Yu Wang, Farshid Moussavi, Peter Lorenzen, Presenter: Martin Chian

Auxogyn, Inc., Menlo Park, CA 94025, USA

{ywang, fmoussavi, plorenzen, mchian}@auxogyn.com

Background and Significance

 The *EevaTM* (Early Embryo Viability Assessment) Test –was developed to automatically measure cell division timings and provide quantitative information regarding embryo development.

EevaTM Time Lapse Image Acquisition

We developed a multi-level classification method to identify the embryo stage (i.e. 1-cell, 2-cell, 3-cell, 4-or-more-cell) at every time point of a time-lapse microscopy video of early human embryo development.

Embryo Features

Hand-crafted Features (62)

shape, texture, edge features

1) Region properties 2) Edge features 3) GLCM features

Temporal Image Similarity

- Based on Bhattacharyya distance of the BoF histograms of consecutive frames
- Registration free, rotation and translation invariant
- "Dips" in the plot are good indications of stage transitions
- Used by the Viterbi algorithm to define state transitional probability

The Method

3-Level Embryo Stage Classification Framework

- Level 1: per-frame embryo stage classification
 - 4 Adaboost Classifiers with 262 embryo features
- Level 2: local embryo stage classification with temporal context
 - 4 Adaboost Classifiers with 262 embryo features and 20 temporal features.
- Level 3: global refinement with Viterbi algorithm
 - Performs refinement with global context
 - Fuses different sources of information (i.e. classification probabilities, temporal image similarity)
 - Integrates prior and enforces non-decreasing number of cells

Results

- 327 human embryo videos (500 frames, each with 151 x 151 pixels) for training, 389 embryo videos for testing.
- All the embryo videos were captured using the *EevaTM* system.
- Two human experts annotated the embryo stages of each frame.

Importance of different sets of features in trained level-1 (left) and level-2 (right) classification models

	1-cell	2-cell	3-cell	4-or-more	Overall
Level-1	87.96%	77.45%	7.79%	85.03%	80.10%
Level-2	88.04%	72.05%	10.71%	92.94%	82.53%
Level-3	91 95%	85 58%	20.86%	94 14%	87 92%

Classification performance at different levels

Precision (left) and Recall (right) of cell division detection as functions of the offset tolerance

