I KOLOKVIJUM

- 1. (10 poena) GRANIČNE VREDNOSTI
 - a) Koristeći princip monotonije pokazati da je niz $\{a_n\}$ dat sa $a_1 = 3$, $a_{n+1} = \frac{9a_n + 4}{a_n + 6}$ konvergentan i odrediti njegovu graničnu vrednost.
 - b) Pokazati da niz $\{b_n\}$ sa opštim članom

$$b_n = \frac{1}{\sqrt[4]{81n^4 + 1}} + \frac{1}{\sqrt[4]{81n^4 + 2}} + \dots + \frac{1}{\sqrt[4]{81n^4 + 7n}}$$

konvergira i naći njegovu graničnu vrednost.

2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati funkciju $f(x) = \frac{\sqrt[3]{x^2}}{x+1}$ i nacrtati njen grafik.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Naći tri pozitivna realna broja čiji je proizvod 27 tako da zbir kvadrata recipročnih vrednosti bude minimalan.

II KOLOKVIJUM

- 1. (15 poena) INTEGRALI
 - a) Izračunati $\int \left(\frac{1}{(x+1)^3 \sqrt{x^2+2x}} + \frac{x \cos x}{\sin^2 x}\right) dx.$
 - b) Primenom određenog integrala odrediti graničnu vrednost niza $\{a_n\}$ sa opštim članom

$$a_n = \frac{1}{n} \ln \frac{(n+1)(n+2)\cdots(2n)}{n^n}.$$

- 2. (15 poena) **DIFERENCIJALNE JEDNAČINE**
 - a) Pokazati da diferencijalna jednačina

$$xdx + (4y^4 + 4x^2y^2 + y)dy = 0$$

ima integracioni množitelj oblika $h = h(x^2 + y^2)$ i odrediti njeno opšte rešenje.

b) Koristeći metod varijacije konstanti rešiti diferencijalnu jednačinu $y'' - y' = \frac{1}{e^x + 1}$.