Team Veriphi

Team Members:

Pratik Deshmukh (TU Wien) Vasili Savin (TU Wien) Kartik Arya (TU Wien)

Mentors:

Vinay Deshpande (Nvidia)
Mark Dokter (Know Center)

Veriphi: NN Robustness Verification

The Problem:

- Neural networks are vulnerable to adversarial perturbations
- Critical for safety applications (autonomous vehicles, medical AI)
- Verification tools too slow for production use (hours per model)

Our Solution:

- GPU-accelerated 2-phase verification (attack + formal proof)
- Novel TRM architecture for constraint satisfaction
- Real-world Airbus logistics dataset (105M parameter model)

Algorithmic Motif:

Dense tensor operations (Linear layers, ReLU) + constraint propagation

Evolution & Strategy

Initial Goal:

Build GPU-accelerated verification tool for academic benchmarks (MNIST/CIFAR-10)

Initial Strategy:

- Phase 1: Implement attack-guided verification (FGSM + α , β -CROWN)
- Phase 2: Train TRM models with 3 methods (Baseline, IBP, PGD)
- Phase 3: Compare verification across datasets

How Strategy Evolved:

- Added Phase 3b: Real-world Airbus Beluga logistics dataset
- Scaled from 191K to 105.8M parameters (550× larger!)
- Focus shifted to profiling & optimization (Nsight Systems)

Results & Final Profile

Academic Benchmarks

MNIST (191K params):

- $\sqrt{18P}$ training: 78% verified @ ε=0.08
- \checkmark 0.15-0.24s per sample on A100
- ✓ 18-30 MB GPU memory

CIFAR-10 (191K params):

- $\sqrt{\text{PGD training: 94\% verified @ ε=0.001}}$
- \checkmark 0.09-0.24s per sample
- ✓ 20-53 MB GPU memory

Production Scale

Airbus Beluga Logistics:

- √ 105.8M parameter TRM
- √ 270 logistics problems
- √ 69-821 jigs, 43-199 flights
- √ 5 constraint types

Performance:

- √ 2.6s verification per sample
- \checkmark Loss: 930 \rightarrow 2.26 (trained)
- √ Successfully profiled with Nsight Systems

Challenges:

- balancing
- tuning

Key Finding:

- Training method effectiveness
- depends on data complexity!

GPU Acceleration & Energy Efficiency

GPU Speedup Achievements

- Attack Phase (FGSM/I-FGSM): 85% reduction in verification time
- Formal Verification: A100 GPU vs 32-core CPU baseline
- MNIST: ~5× faster end-to-end with attack-guided strategy
- Beluga (105M params): 2.6s per sample (GPU-only viable solution)

Energy Efficiency Estimate

Baseline: 32-core CPU node (2× AMD EPYC, ~500W TDP)

GPU Config: 1× A100 (400W TDP) achieving 5× speedup

Result: ~4× more energy efficient (less compute time + lower power)

Challenges Encountered

Algorithm Issues:

- Constraint weight imbalance (type matching dominated at 1577/2149)
- AMP (Automatic Mixed Precision) causing training instability
- IBP certified training failing on complex CIFAR-10 data

System & Infrastructure:

- VSC-5 disk quota limits (5GB) preventing checkpoint saves
- Profiling data corruption during transfer
- Multi-node synchronization for distributed verification

Tool Limitations:

- auto-LiRPA incompatible with recursive TRM architectures initially, we used TRM-MLP variant
- Nsight Systems requires specific CUDA module loading
- No native support for constraint satisfaction in verification tools

What would make neural network verification easier?

- Native GPU-accelerated constraint propagation libraries
- Better profiling for recursive neural architectures
- Integrated hyperparameter tuning for certified training

Language Standards:

- PyTorch native support for formal verification primitives
- Standard API for constraint satisfaction in neural networks
- Better AMP compatibility with verification tools

Systems:

- Higher disk quotas on HPC clusters (current 5GB too limiting or need to use \$DATA)
- Better multi-GPU scheduling for verification workloads
- Integrated Nsight+auto-LiRPA profiling

© Event Improvements:

- Full access to cluster resources for hackathon duration
- Dedicated verification track (current focus on training)

Impact & Future Directions

Was it Worth It?

- ✓ Absolutely! Scaled from toy problems to production-ready tool
- ✓ First-ever verification of 105M parameter constraint satisfaction model
- ✓ Published research insights on training method vs dataset complexity
- \checkmark Built complete end-to-end GPU pipeline (training \rightarrow verification)

Next Steps

- 1. Submit to VNN-COMP 2025 (neural network verification competition)
- 2. Scale Beluga training to full 270 problems with optimized weights
- 3. Multi-GPU distributed verification experiments
- 4. Publish paper: 'TRM Verification at Scale' (target: NeurIPS/ICML)

Background

Neural networks are vulnerable to adversarial attacks, making verification critical for safety-critical applications.

Computational Motif:

- Dense matrix operations
- ReLU activation propagation
- Constraint checking

Focus Areas:

- GPU acceleration
- Attack-guided verification
- Recursive architectures

Objectives & Approach

Objectives:

- **✓** Build GPU-accelerated verifier
- **✓ Support TRM architectures**
- √ Scale to production models

Programming Models:

- PyTorch + CUDA
- auto-LiRPA library
- Custom constraint layers

Profiling:

- Nsight Systems
- NVTX annotations

Performance Tuning:

- Mixed precision (AMP)
- Gradient checkpointing
- Batched verification

Accomplishment

What We Achieved:

- √ 5× speedup with attack-guided verification
- √ Verified 105M param model(2.6s/sample)
- √ Cross-dataset research findings

Performance:

- MNIST: 0.15s/sample
- CIFAR-10: 0.09s/sample
- Beluga: 2.6s/sample
- GPU memory: 18-53 MB

Enables real-world AI safety validation in aerospace logistics!

Team Veriphi - Hackathon Summary

We, Team Veriphi developed a GPU-accelerated neural network verification tool combining adversarial attacks with formal α,β -CROWN proofs. We achieved 5× speedup on MNIST/CIFAR-10 benchmarks (0.09-0.24s per sample on A100) and successfully scaled to production-level Airbus Beluga logistics problems with a 105.8M parameter Tiny Recursive Model. Our comprehensive experiments across three training methods (Baseline, IBP, PGD) revealed that training effectiveness depends critically on dataset complexity—IBP excels on simple MNIST (78% verified @ ε =0.08) while PGD dominates complex CIFAR-10 (94% @ ε =0.001). We profiled using Nsight Systems, overcame constraint weight balancing challenges, and built the first-ever verified constraint satisfaction model at this scale, enabling real-world AI safety validation.

