CS1110 30/09/2015

Adding Bits With Logic Gates (cont.)

Example:

Truth Table for a Full Adder

We want to create a logical circuit to implement a full adder. Lets start with the truth table:

C _{in}	a	Ь	sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Later we will see a mechanism for creating equations and circuits from truth tables.

For now, we are going to create a circuit by intuition and pattern-matching.

C _{in}	a	Ь	sum	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0

CS1110 30/09/2015

1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Consider the two blocks above.

In the first block $C_{in} = 0$, in the second $C_{in} = 1$.

In the first block, sum = aXORb and C_{out} = a.b, which is the same as the half adder.

In the second block, sum = aXNORb and $C_{out} = a+b$.

Rewriting

If
$$C_{in}=0$$
:
$$sum=aXORb,\,C_{out}=a.b$$
 If $C_{in}=1$:
$$sum=aXNORb,\,C_{out}=a+b$$

The following circuit implements this: (get picture) a and b connected to each circuit listed above appropriately. Those circuits connected to C_{in} by 2 multiplexors.

Multiplexor:

One input to an AND can control the gate. If it's 0, the gate outputs a 0. If it's 1 the gate outputs the other input to it. By putting an OR after two ANDs, where one input to one AND is C_{in} and one input to the other AND is C_{in} , the value of C_{in} controls whether the result is taken from the first AND or the second AND.