Cryptography (5830)

Computational indistinguishability
Stream ciphers, block ciphers
Reduction-based approach to analysis

Towards computational indistinguishability

Def. A symmetric encryption scheme is perfectly secure if for all messages M,M' and ciphertexts C

Pr[Enc(K,M) = C] = Pr[Enc(K,M') = C]

where probabilities are over choice of K

Let's give a game-based formulation of this using an adversary Let SE = (Kg,Enc,Dec) be a symmetric encryption scheme Let \mathcal{A} Let be a randomized algorithm, called the adversary

 $\begin{array}{l} \underline{\mathsf{IND}(\mathsf{SE},\mathcal{A}):} \\ (\mathsf{st},\mathsf{M}_0,\mathsf{M}_1) <- \$ \ \mathcal{A}_1 \\ \mathsf{K} <- \$ \ \mathsf{Kg} \ ; \ \mathsf{b} <- \$ \ \{\mathsf{0},\mathsf{1}\} \\ \mathsf{C} <- \$ \ \mathsf{Enc}(\mathsf{K},\mathsf{M}_\mathsf{b}) \\ \mathsf{b}' <- \$ \ \mathcal{A}_2 \ (\mathsf{st},\mathsf{C}) \\ \mathsf{Return} \ (\mathsf{b} = \mathsf{b}') \end{array}$

IND(SE, \mathcal{A})'s output is 1 if (b = b'). We say then that the adversary succeeded

Def. A scheme SE is perfectly secure if for every \mathcal{A} it is the case that $Pr[IND(SE, \mathcal{A}) = 1] = 1/2$

Computational indistinguishability

Def. A symmetric encryption scheme is (t, ϵ) -indistinguishable if for any adversary $\mathcal A$ running in time at most t it holds that

$$Pr[IND(SE, A) = 1] \le 1/2 + \epsilon$$

1) Tiny adversarial success

2) Computationally limited adversary

Discussion questions:

- 1) Does (t, ϵ) -indistinguishability model known, chosen message attack? What about chosen ciphertext?
- 2) Is a OTP (t, ϵ) -indistinguishable?
- 3) Is a substitution cipher (t, ϵ) -indistinguishable?

How do we build computationallysecure SE schemes?

We will take a reductionist approach

- Introduce stream ciphers, build encryption from it
- Introduce block ciphers
- Build stream ciphers from block ciphers
- Prove that block cipher security implies indistinguishability

Stream ciphers

A stream cipher is a pair of algorithms (Kg,G):

- Kg outputs a random key K
- G(K,IV) takes secret K, additional random value IV (called initialization vector, can be public), desired length L, outputs string P with |P| = L

Stream cipher security

(t, ϵ)-pseudorandom generator: no attacker limited to time t can distinguish between IV,G(K,IV,L) and random bitstring of length L with advantage greater ϵ

PRG(G,L, \mathcal{B}): K <-\$ Kg ; IV <-\$ {0,1}^n P₁ <- G(K,IV,L) P₀ <- {0,1}^L b <-\$ {0,1} b' <-\$ \mathcal{B} (IV, P_b) Return (b = b') Advantage:

$$\epsilon$$
 = | Pr[PRG1(G,L, \mathcal{B}) = 1] - Pr[PRG0(G,L, \mathcal{B}) = 0] |

PRG game with

PRG game with

b fixed to 1

PRG to 0

SE from a stream cipher

Say we have a secure stream cipher. How do we build an SE scheme?

Kg():

 $K < -\$ \{0,1\}^k$

Pick a random key

<u>Enc(K,M):</u>

L <- | M |

 $IV < -\$ \{0,1\}^n$

Return (IV, $G(K,IV,L) \oplus M$)

Dec(K,(IV,C)):

L <- |C|

Return $G(K,IV,L) \oplus C$

Assume ciphertext can be parsed into IV and remaining ciphertext bits

Reduction-based security analysis

Goal: show that if stream cipher is secure, then encryption is secure

Reduces security analysis task to analyzing primitive

Confidence in stream cipher's security gives confidence in scheme's security

Candidate stream ciphers?

Build a stream cipher from scratch. Example: RC4 designed by Ron Rivest in the 1990s. Up until recently, a popular custom construction of stream cipher used Internet-wide Confidence? Cryptanalysis (frequency analysis) shows it is *not* pseudorandom

Block ciphers

Family of permutations, one permutation for each key

$$E: \{0,1\}^k \times \{0,1\}^n \longrightarrow \{0,1\}^n$$

Use notation $E(K,X) = E_K(X) = Y$ Define inverse $D(K,Y) = D_K(Y) = X$ such that $D_K(E_K(X)) = X$ E,D must be efficiently computable

Key generation: pick K uniformly at random from $\{0,1\}^k$

Nowadays $k \ge 128$

CTR mode stream cipher

Counter mode stream cipher CT = (Kg,G) where:

- Kg outputs random k-bit key
- $G(K,IV,L) = trunc_L(E_K(IV \oplus 1) || E_K(IV \oplus 1) || ... || E_K(IV \oplus m))$ where m = ceil(|M| / n) and $trunc_L$ outputs first L bits of input

Truncate P3 to get L total bits

SE from a stream cipher

Say we have a secure stream cipher. How do we build an SE scheme?

<u>Kg():</u>

 $K < -\$ \{0,1\}^k$

Pick a random key

<u>Enc(K,M):</u>

L <- | M |

 $IV < -\$ \{0,1\}^n$

Return (IV, $G(K,IV,L) \oplus M$)

Dec(K,(IV,C)):

L <- |C|

Return $G(K,IV,L) \oplus C$

Assume ciphertext can be parsed into IV and remaining ciphertext bits

CTR-mode SE scheme

Say we have a secure stream cipher. How do we build an SE scheme?

<u>Kg():</u>

 $K < -\$ \{0,1\}^k$

Pick a random key

Enc(K,M):

```
L <- |M|; m <= ceil(L/n)

IV <-$ \{0,1\}^n

P <- trunc<sub>L</sub>(E_K(IV \oplus 1) \parallel \cdots \parallel E_K(IV \oplus m))

Return (IV, P \oplus M)
```

trunc_L() outputs first L bits of input

Dec(K,(IV,C)):

```
\begin{split} &L <- |C| \; ; \; m <= ceil(L/n) \\ &P <- E_K(IV \oplus 1) \parallel \cdots \parallel trunc(E_K(IV \oplus m)) \\ &Return \; (IV, P \oplus C \; ) \end{split}
```

Assume ciphertext can be parsed into IV and remaining ciphertext bits

Block cipher security

Func(n) is set of all functions $\{0,1\}^n \rightarrow \{0,1\}^n$

O is called an *oracle*. A subroutine that adversary can make calls to.

PRF(E, C): K <-\$ {0,1}^k F <-\$ Func(n) b <-\$ {0,1} b' <-\$ C⁰() Return (b = b')

 $\frac{O(X):}{\text{If b} = 1 \text{ then}}$ $\text{Return } E_K(X)$ Return F(X)

 (t,q,ϵ) -pseudorandom function: no attacker limited to time t and q queries to O can distinguish between E_K and random function with advantage greater than ϵ

Advantage:

$$\epsilon = | Pr[PRF1(G,L,C) = 1] - Pr[PRF0(G,L,C) = 0] |$$

PRF game with b fixed to 1

PRF game with b fixed to 0

Reduction-based security analysis

Goal: show that if stream cipher is secure, then encryption is secure

Reduces security analysis task to analyzing block cipher

Confidence in block cipher security gives confidence in scheme's security

Reduction 1

$\mathsf{IND}(\mathsf{SE},\mathcal{A})$: $(st, M_0, M_1) < -\$ A_1$ $K < -\$ Kg ; b < -\$ \{0,1\}$ $C < -\$ Enc(K,M_h)$ b' <-\$ \mathcal{A}_2 (st, C) Return (b = b')

$$Pr[IND(SE, A) = 1] = 1/2 + \epsilon$$

$$\frac{\mathcal{B}(\text{IV,P}):}{(\text{M}_0,\text{M}_1)} <-\$ \, \mathcal{A}$$

$$d <-\$ \, \{0,1\}$$

$$d' <-\$ \, \mathcal{A} \, (\text{IV, M}_d \oplus \text{P})$$
If $(d = d')$ then
$$\text{Return 1}$$

$$\text{Return 0}$$

PRG(G,L,
$$\mathcal{B}$$
):
K <-\$ Kg ; IV <-\$ {0,1}^n
P₁ <- G(K,IV,L)
P₀ <- {0,1}^L
b <-\$ {0,1}
b' <-\$ \mathcal{B} (IV,P_b)
Return (b = b')

$$Pr[IND(SE, \mathcal{A}) = 1] = 1/2 + \epsilon$$
 $\epsilon' = |Pr[PRG1(G, L, \mathcal{B}) = 1] - Pr[PRG0(G, L, \mathcal{B}) = 0] |$

Pr[PRG1(G,L,
$$\mathcal{B}$$
) = 1] = Pr[IND(SE, \mathcal{A}) = 1]
Pr[PRG0(G,L, \mathcal{B}) = 0] = Pr[d = d' \wedge b = 0] = 1/2
 ϵ' = Pr[IND(SE, \mathcal{A}) = 1] - 1/2
= ϵ + 1/2 - 1/2
= ϵ

 \mathcal{B} runs in time that of \mathcal{A} plus small overhead

Reduction 2

PRG(G,L, \mathcal{B}): K <-\$ Kg ; IV <-\$ {0,1}^n P₁ <- G(K,IV,L) P₀ <- {0,1}^L b <-\$ {0,1} b' <-\$ \mathcal{B} (IV,P_b) Return (b = b')

$$\epsilon'$$
 = | Pr[PRG1(G,L, \mathcal{B}) = 1] -
Pr[PRG0(G,L, \mathcal{B}) = 0] |

$$\epsilon''$$
 = | Pr[PRF1(G,L, C) = 1] -
Pr[PRF0(G,L, C) = 0] |

```
PRF(E, C):

K <-$ {0,1}<sup>k</sup>

F <-$ Func(n)

b <-$ {0,1}

b' <-$ C<sup>0</sup>()

Return (b = b')

O(X):

If b = 1 then
```

$$\frac{C^{\circ}}{IV < -\$ \{0,1\}^{n}}$$

$$P = trunc_{L}(O(IV \oplus 1) \parallel \cdots \parallel O(IV \oplus m))$$

$$d' < -\$ \mathcal{B}(IV, P)$$
Return d'

$$Pr[PRF1(G,L,C) = 1] = Pr[PRG1(SE,\mathcal{B}) = 1]$$

$$Pr[PRF0(G,L,C) = 0] = Pr[PRG0(SE,\mathcal{B}) = 0]$$

$$\epsilon'' = \epsilon'$$

 ${\cal C}$ runs in time that of ${\cal B}$ plus small overhead ${\cal C}$ makes m queries to O

Summary & game plan

- Computational indistinguishability
- Stream ciphers
 - Pseudorandom generator security
- Block ciphers
 - Pseudorandom function security
- Reductions

- Next time:
 - Block cipher design