Systèmes Embarqués 1 & 2

Classes T-2/I-2 // 2018-2019

p.03 - Entrées - Sorties

Solutions

Exercice 1

Calculer la taille du buffer de réception (nombre de paquets et taille en bytes de la mémoire pour stocker les données) pour un contrôleur Ethernet avec un débit 100Mbps full-duplex, sous les conditions suivantes

(a) Taille des paquets : 64 bytes. Débit constant à la vitesse la ligne. Latence du récepteur: 15ms

(b) Taille des paquets : 1500 bytes. Débit constant à la vitesse la ligne. Latence du récepteur : 15 ms

Solution:

- Pour des paquets à 64 bytes
 - Temps d'émission d'un paquet:
 - * 64 Byte \rightarrow 512 bits @ 100 Mbps \rightarrow 512b / 100Mb/s = 5.12 μ s \approx 5 μ s
 - Nombre de paquets reçus en 15 ms
 - * 15 ms / 5 μs/frame = 3000 frames -> 3000 entrées
 - Taille mémoire
 - * 3000 frames @ 64 byte/frame = 192'000 byte
- · Pour des paquets à 1500 bytes
 - Temps d'émission d'un paquet:
 - * 1500 Byte -> 12'000 bits @ 100 Mbps -> 12000b / 100Mb/s = 120 μ s
 - Nombre de paquets reçus en 15 ms
 - * 15 ms / 120 µs/frame = 125 frames -> 125 entrées
 - Taille mémoire
 - * 125 frames @ 1500 byte/frame = 187'500 byte

- Si le pilote de périphérique doit supporter les 2 tailles de trames, la taille de la mémoire sera
 - 3000 frames @ 1500 Byte/frame = 4,5 Mbytes
 - -> soit environ 20x plus que nécessaire...
- Pour pallier à ce problème on utilise un chaînage de buffers de plus petite taille, par exemple des buffers de 256 bytes
 - Les trames jusqu'à 256 bytes utillent 1 buffer
 - Les trames en dessus de 256 bytes utilisent deux buffers ou plus