Implementiere zunächst die rekursive Methode. Welches Laufzeitverhalten ist zu erwarten? Wie könnte es bestätigt werden?

```
public double samrek(int n) {
    if (n==0) {
      return w 0;
    else {
      if (n==1) {
         return w_1;
      else {
         return 1.8*samrek(n-1)-0.9*samrek(n-2)+1;
```

Zeitmessung:

```
public long zeitMessen(int n){
    long time = System.nanoTime();
    samrek(n);
    return System.nanoTime() - time;
}
```

Fehlerquellen:

- Zeitmessung erfordert auch Zeit (kann mit leerem Anweisungsblock gemessen werden.)
- Prozess kann während der Ausführung z.B. durch Garbage Collection unterbrochen werden.
 - mehrmals messen und Minimum nehmen

Miss für verschiedene n-Werte die Laufzeit von samrek und trage sie in eine Tabelle ein. Führe jeweils mehrere Messungen durch!

```
public void Messung(int og){
    for (int i=0;i<og; i++) {
       long minZeit = zeitMessen(i);
       for (int j=0; j<9; j++){
         long zeit = zeitMessen(i);
         if (zeit<minZeit){minZeit = zeit;}</pre>
       System.out.println(i +";" +minZeit);
```

Miss für verschiedene n-Werte die Laufzeit von samrek und trage sie in eine Tabelle ein. Führe jeweils mehrere Messungen durch!

n	t(n)
0	100
1	200
2	400
3	700
4	1200
5	1500
6	3200
7	4500
8	5700
9	9000
10	1100
11	1600
12	2700
13	4100
14	7000
15	10900
16	17200
17	29700

Halblogarithmische Auftragung

Ordinate hat logarithmische Skalierung

Der Graph einer Exponentialfunktion ist halblogarithmisch aufgetragen eine Gerade.

Schritte zählen

Nach jeder Anweisung wird das Attribut schrittzaehler um eins (evtl. auch gewichtet) erhöht.

- sagt nichts über den absoluten Zeitverbrauch
- unabhängig von konkretem Rechner und Unterbrechungen durch andere Prozesse

```
public long schritteZaehlen(int n) {
    schrittzaehler = 0;
    samrek(n);
    return schrittzaehler;
}
```

```
public double samrek(int n) {
   schrittzaehler++;
   if (n==0) {
      return w 0;
    else {
      if (n==1) {
         return w_1;
      else {
         return 1.8*samrek(n-1)-0.9*samrek(n-2)+1;
```

Zähle für verschiedene n-Werte die Schritte von samrek und trage sie in eine Tabelle ein.

n		A(n)
	0	1
	1	1
	2	3
	3	5
	5	15
	10	177
	15	1973
	20	21891
	25	242785
	30	2692537
	35	29860703
	40	331160281
	45	3672623805

http://www.papersnake.de/logarithmenpapier/einfachlogarithmisch/

Ermittle rechnerisch oder graphisch die Exponentialfunktion:

- rechnerisch:
 - Ansatz: $f(x) = b \cdot a^x$
 - 2 Wertepaare einsetzen und a, b bestimmen
- graphisch:

```
Geradengleichung ablesen: y = mx + t
d.h. log f(x) = mx + t,
d.h. f(x) = 10^{mx+t} = 10^t \cdot (10^m)^x
```

Ergebnis: $f(x) \approx 1,446 \cdot 1,618^{x}$

• rechnerisch:

$$f(x) = b \cdot a^{x}$$

$$f(15) = 1973 = b \cdot a^{15}$$

$$I$$

$$f(40) = 331160281 = b \cdot a^{40}$$
II

$$II/I: \ a^{25} = \frac{331160281}{1973} \approx 167846$$

$$a \approx 1,62$$

in
$$I: b = \frac{1973}{a^{15}} \approx 1,45$$

• graphisch:

y-Abschnitt messen: entweder lineare Skala

$$t \approx \frac{0.7}{4.5} \approx 0.16$$

oder logarithmische Skala

$$t \approx \log 1,45 \approx 0,16$$

Steigung:

$$m = \frac{4,2}{20} = 0,21$$

Geradengleichung:

$$y = 0,21 \cdot x + 0,16$$

$$y = 0,21 \cdot x + 0,16$$

Da logarithmische Skala, gilt für die betrachtete Funktion:

$$f(x) = 10^{0.21 \cdot x + 0.16}$$

$$f(x) = (10^{0.21})^x \cdot 10^{0.16} = 1,62^x \cdot 1,45$$

d.h. a=1,62, b=1,45

Insb:

Je größer die Steigung m der Geraden, desto größer die Basis a der Exponentialfunktion.

Implementiere die iterative Methode. Welches Laufzeitverhalten ist zu erwarten?

```
public double samit(int n){
   if (n==0) { return w 0; }
   else {
      if (n==1){ return w_1;}
      else {
         double w n = -1;
         for (int i=0; i< n-1; i++){
           w_n = 1.8 * w_1 - 0.9 * w_0 + 1;
           w 0 = w 1;
           w 1 = w n;
         return w_n;
```

```
samit(n)
```

```
public double samit(int n){
    if (n==0) {
      schrittzaehler++;
      return w 0;
   else {
      if (n==1){
         schrittzaehler++;
         return w 1;
      else {
         double w_n = -1;
         for (int i=0; i<n-1; i++){
           schrittzaehler++;
           w_n = 1.8 * w_1 - 0.9 * w_0 + 1;
           schrittzaehler++; //eventuell stärker gewichten
           w 0 = w 1;
           schrittzaehler++;
           w_1 = w_n;
           schrittzaehler++;
         return w n;
```

Zähle für verschiedene n-Werte die Schritte von samit und trage sie in eine Tabelle ein.

n	A(n)
0	1
1	1
2	4
3	8
5	16
10	36
15	56
20	76
25	96
30	116
35	136
40	156
45	176

Ordnung: O(n)

Prüfe, dass eine evtl. Gewichtung der Rechenschritte, nichts an der Laufzeitordnung ändert.

...oder eine eigene Methode, die nur Schritte zählt und den gleichen Aufbau hat, wie die zu messende Methode:

```
public double samrek(int n) {
                                     public long nurSchritte(int n) {
    schrittzaehler++;
    if (n==0) {
                                         if (n==0) {
      return w_0;
                                            return 1;
    else {
                                          else {
                                            if (n==1) {
      if (n==1) {
         return w 1;
                                               return 1;
      else {
                                             else {
         return 1.8*samrek(n-1)
                                               return 1+nurSchritte(n-1)
          -0.9*samrek(n-2)+1;
                                                + nurSchritte(n-2);
```

HA: S. 126 – 128 (knapp Mitte) lesen! S. 130 / 1 Kombinationen

```
public class Kombinationen {
  public long fakultaet (int n) {
    if (n==1){
      return 1;
    else {
      return n*fakultaet(n-1);
  public long schritteZaehlen(int n){
    if (n==1){
      return 1;
    else {
      return 1+schritteZaehlen(n-1);
```

Lineare Funktion: O(n)

iterative Lösung:

```
public long fakit(int n){
    long erg = 1;
    for (int i = 1; i<=n; i++){
        erg = erg * i;
    }
    return erg;
    }</pre>
```

Vorteil: kein stack overflow