Introduction Figures simples Graphiques Diagrammes Graphes

Schémas et graphiques en $\Delta T \in X$ avec TikZ

David Sandoz

École Polytechnique Fédérale de Lausanne

22 août 2014

Table des matières I

- Introduction
 - Alternatives
 - TikZ
- 2 Figures simples
 - L'environnement
 - \draw
 - Ajouter du texte
- Graphiques
 - plot
 - Domaine
 - Fonctions
 - Axes et grille

Table des matières II

- PGFPlots
- Représentation de données
- Oiagrammes
 - Diagramme en bâtons
 - Diagramme circulaire
- Graphes
 - Différence entre \coordinate et \node
 - Lier des nœuds
 - Décoration des nœuds
 - · Abstraction des styles

Références

- TikZ and PGF, Manual for version 1.18
 Par Till Tantau (créateur de TikZ)
- TikZ pour l'impatient
 Par Gérard Tisseau et Jacques Duma (en français)
- Manual for Package PGFPLOTS
 Par Dr. Christian Feuersänger
- Drawing Pie Chart by using pgf-pie
 Par Yuan Xu

Introduction

- Introduction
 - Alternatives
 - TikZ

Alternatives

Quelles sont les différentes possibilités pour intégrer un schéma dans LATEX?

- Importation avec \includegraphics{}
- Génération du schéma avec du code LATEX

TikZ

Avantages

- Style et format adapté aux documents LATEX
- Les graphiques créés peuvent contenir du texte écrit en <u>ATFX</u>
- Pas de fichiers externes

Inconvéninents

- N'est pas WYSIWYG
- Peut être lent (LATEXn'est pas fait pour les gros calculs)

Figures simples

- Pigures simples
 - L'environnement
 - \draw
 - Ajouter du texte

L'environnement

```
\usepackage{tikz}
...
\begin{tikzpicture}
...
\end{tikzpicture}
```


Tracer un cercle

en guise de premier exemple

Tracer un cercle

Voici un cercle

en guise de premier exemple

```
Voici un cercle
\begin{tikzpicture}
    \draw (0,0) circle (1);
\end{tikzpicture}
en guise de premier exemple
```


David Sandoz

Voici un cercle

en guise de premier exemple

en guise de premier exemple

```
Voici un cercle
\begin{tikzpicture}
    \draw (0,0) circle (1);
\end{tikzpicture}
en guise de premier exemple
```


Dans la figure ci-dessous se trouve un cercle

Figure: Un cercle réalisé avec Tik7

Dans la figure ci-dessous se trouve un cercle

Figure: Un cercle réalisé avec Tik7

```
Dans la figure ci-dessous se
    trouve un cercle
\begin{figure}
  \begin{tikzpicture}
    \draw (0,0) circle (1);
  \end{tikzpicture}
  \caption{Un cercle réalisé
    avec TikZ}
\end{figure}
```


Coordonnées

Les schémas sont centrés sur les dessins et non pas sur l'origine du système de coordonnées.

```
\begin\tikzpi
```

```
\begin{tikzpicture}
  \draw (0,0) circle (1);
\end{tikzpicture}
```


Coordonnées

Les schémas sont centrés sur les dessins et non pas sur l'origine du système de coordonnées.


```
\begin{tikzpicture}
    \draw (0,0) circle (1);
\end{tikzpicture}
```



```
\begin{tikzpicture}
    \draw (3,-2) circle (1);
\end{tikzpicture}
```

Échelle


```
\begin{tikzpicture}
   \draw (0,0) circle (1);
\end{tikzpicture}
```


Échelle

\begin{tikzpicture}
 \draw (0,0) circle (1);
\end{tikzpicture}


```
\begin{tikzpicture}[scale=2]
    \draw (0,0) circle (10);
\end{tikzpicture}
```

Tracer un segment

```
\draw (0,0) -- (1,0);
```


Tracer un segment

```
draw (0,0) -- (1,0);
\draw [thick, dashed] (0,0) -- (1,0);
\draw [dotted, ->] (0,0) -- (1,0);
\draw [->, >= latex] (0,0) -- (1,0);
```

Voir les références pour plus d'options

\coordinate(nom) at (x,y)

Il peut être plus agréable d'avoir des points avec des noms.

```
\coordinate (A) at (2,3);
\coordinate (B) at (5,1);
\draw (A) -- (B);
```


\coordinate(nom) at (x,y)

Il peut être plus agréable d'avoir des points avec des noms.

```
\coordinate (A) at (2,3);
\coordinate (B) at (5,1);
\draw (A) -- (B);
```


Tracer un arc de cercle ou un rectangle

```
\draw (0.0) arc (0:90:1);
```


Tracer un arc de cercle ou un rectangle


```
\draw (0,0) rectangle (1,2);
```


Tracer une grille

 $\draw (0,0) grid (4,3);$

Tracer une grille

\draw [very thin, gray] (0,0) grid[step=0.5] (4,3);

Combinaison de dessins


```
\draw (0,0) circle (1);
\draw (0,0) -- (0,1);
\draw (0,0) -- (1,0);
```


Enchainements de dessins

Ajouter du texte

Ajouter du texte


```
\draw (0,0) circle (1);
\draw (0,0) -- (0,1);
\draw (0,0) -- (1,0);
\draw (0,0) node[below left]{$0$};
\draw (0,1) node[above]{$A$};
\draw (1,0) node[right]{$B$};
```


Ajouter du texte


```
\draw (1,0) arc (0:135:1);
\draw (0,0) -- (-1.5,1.5);
\draw (0,0) -- (2,0);
\draw (0,0) node[below left]{$0$};
\draw (70:1) node[above right]{$\frac{3\pi}{4}$};
```


plot
Domaine
Fonctions
Axes et grille
PGFPlots
Représentation de données

Graphiques

- Graphiques
 - plot
 - Domaine
 - Fonctions
 - Axes et grille
 - PGFPlots
 - Représentation de données

Tracer une courbe linéaire

$$y = \frac{x}{4} \Rightarrow$$
 Équations paramétriques : $x = x, y = \frac{x}{4}$

Tracer une courbe linéaire

$$y = \frac{x}{4} \Rightarrow$$
 Équations paramétriques : $x = x, y = \frac{x}{4}$
\draw plot (\x, \x/4);

Tracer une courbe linéaire

$$y = \frac{x}{4} \Rightarrow$$
 Équations paramétriques : $x = x, y = \frac{x}{4}$
\draw plot (\x, \x/4);

Tracer une courbe linéaire

$$y = \frac{x}{4} \Rightarrow$$
 Équations paramétriques : $x = x, y = \frac{x}{4}$
\draw plot (\x, \x/4);

Par défaut

Domaine de -5 à 5.

Domaine

```
\draw [domain=-2:2] plot (\x, \x/4);
```


Fonctions

Des fonctions standard sont incluses.

Attention

Si des formules contiennent des parenthèses ou des virgules, il faut les écrire entre accolades.

```
\label{local_draw} $$ \left[ \operatorname{domain} = -3:1.5 \right] $$ plot (\x, {exp(\x)});
```


plot Domaine Fonctions Axes et grille PGFPlots Représentation de données

Fonctions

Attention

Les fonctions trigonométriques attendent des angles en degrés. Il faut spécifier si l'on souhaite des angles en radiant

```
\draw [domain=-pi:pi] plot (\x, {sin(\x r)});
```


Introduction Figures simples **Graphiques** Diagrammes Graphes plot Domaine Fonctions Axes et grille PGFPlots Représentation de données

Précision

Par défaut

Calcul de 25 points sur la courbe.

Précision

Par défaut

Calcul de 25 points sur la courbe.

```
\draw [domain=-pi:pi] plot (\x, {sin(5*\x r)});
```


Introduction Figures simples **Graphiques** Diagrammes Graphes plot Domaine Fonctions Axes et grille PGFPlots Représentation de données

Précision

```
\draw [domain=-pi:pi,samples=200] plot (\x, {sin(5*\x r)});
```


Précision

plot Domaine Fonctions Axes et grille PGFPlots Représentation de données

Axes et grilles

Axes et grilles

```
\draw [very thin, gray] (0,0) grid (8,4);
\draw [->] (0,0) -- (0,4);
\draw [->] (0,0) -- (8,0);
\draw (0,0) node[below left] {0};
\draw (0,4) node[left] {4};
\draw (8,0) node[below] {8};
\draw (0,4) node[above] {$y$};
\draw (8,0) node[right] {$x$};
\draw (1.5,1.5) node[below] {$\frac{1}{x}$};
\draw [domain=0.25:8,samples=200,red] plot (\x, 1/\x);
```

Un peu compliqué pour simplement afficher une grille, des axes et les unités ...

plot Domaine Fonctions Axes et grille **PGFPlots** Représentation de données

PGFPlots

- Un package basé sur PGF/TikZ
- Simplifie l'insertion de graphiques
- \usepackage{pgfplots}
- Toujours entre

```
\begin{tikzpicture}
...
\end{tikzpicture}
```


Exemple de PGFPlots

plot
Domaine
Fonctions
Axes et grille
PGFPlots
Représentation de données

Exemple de PGFPlots

```
\label{limits} $$ \left[ \text{title=} \left\{ y = \frac{1}{x} \right\}, \text{ xlabel=} \left\{ x \right\}, \\ y \text{label=} \left\{ y \right\} \right] \\ \addplot[domain=0.25:8, samples=200, red] \left\{ 1/x \right\}; \\ \end{axis}
```


plot Domaine Fonctions Axes et grille PGFPlots Représentation de données

Représentation de données

Peut se faire sans PGFPlots, mais c'est aussi plus facile avec.

Représentation de données

Peut se faire sans PGFPlots, mais c'est aussi plus facile avec.


```
\begin{loglogaxis}[
    title=Convergence Plot,
    xlabel={Degrees of
        freedom},
    ylabel={$L_2$ Error},
]
\addplot table {example_data/
    data_d1.dat};
\end{loglogaxis}
```


Représentation de données


```
\begin{loglogaxis}[
    title=Convergence Plot,
    xlabel={Degrees of
        freedom}.
    vlabel={$L_2$ Error},
\addplot table {example_data/
   data_d1.dat};
\addplot table {example_data/
   data_d2.dat};
\addplot table {example_data/
   data d3.dat}:
\end{loglogaxis}
```

Légende


```
\begin{loglogaxis}[
    title=Convergence Plot,
    xlabel={Degrees of
        freedom}.
    vlabel={$L_2$ Error},
    legend entries={$d=2$,$d
        =3$,$d=4$}.
\addplot table {example_data/
    data_d1.dat};
\addplot table {example_data/
    data_d2.dat};
\addplot table {example_data/
    data d3.dat}:
\end{loglogaxis}
         4 D > 4 A > 4 B > 4
```

Barres d'erreurs


```
begin{axis}
addplot+[error bars/.cd,
    y dir=both,y explicit,
    x dir=both,x explicit,

coordinates {
    (0,0) +- (0.5,0.1)
    (0.1,0.1) +- (0.05,0.2)
    (0.2,0.2) +- (0,0.05)
    (0.5,0.5) +- (0.1,0.2)
    (1,1) +- (0.3,0.1)};
end{axis}
```

Diagrammes

- 4 Diagrammes
 - Diagramme en bâtons
 - Diagramme circulaire

Diagramme en bâtons

Toujours avec PGFPlots.


```
\begin{axis}[ybar]
```


Diagramme en bâtons

Toujours avec PGFPlots.

Diagramme en bâtons

Toujours avec PGFPlots.

Avec le package pgf-pie.

\usepackage{pgf-pie}

 $\phi[\text{text=inside}] \{10/A, 20/B, 30/C, 40/D\}$

Pas que circulaire

ASSOCIATION DES ETUDIANTS EN INFORMATIQUE ET COMMUNICATIONS

 $pie[square, text=inside]{10/A, 20/B, 30/C, 40/D}$

 $pie[polar, text=inside]{10/A, 20/B, 30/C, 40/D}$

\pie[cloud, text=inside] $\{10/A, 20/B, 30/C, 40/D\}$

Différence entre \coordinate et \node Lier des nœuds Décoration des nœuds Abstraction des styles

Graphes

- Graphes
 - Différence entre \coordinate et \node
 - Lier des nœuds
 - Décoration des nœuds
 - Abstraction des styles

Graphes


```
\coordinate (L) at (0,0);
```



```
\coordinate (L) at (0,0);
```

Un point à utiliser avec \draw, mais qui ne s'affiche pas.


```
\coordinate (L) at (0,0);
```

Un point à utiliser avec \draw, mais qui ne s'affiche pas.

```
\node[draw] (L) at (0,0) {Lausanne};
```



```
\coordinate (L) at (0,0);
```

Un point à utiliser avec \draw, mais qui ne s'affiche pas.

```
\node[draw] (L) at (0,0) {Lausanne};
```

Lausanne

Lier des nœuds

```
\node[draw] (L) at (0,0) {Lausanne};
\node[draw] (C) at (6,1) {Coire};
\draw[<->,>=latex] (L) -- (B);
```


Lier des nœuds

```
\node[draw] (L) at (0,0) {Lausanne};
\node[draw] (C) at (6,1) {Coire};
\draw[<->,>=latex] (L) -- (B);
Coire
```


Lier des nœuds

Neuchâtel

Coire

Lausanne

```
\node[draw] (L) at (0,0) {Lausanne};
\node[draw] (C) at (6,1) {Coire};
\node[draw] (N) at (2,2) {Neuchatel};
```



```
| Neuchâtel | Coire | Coire | | Coire | Coire
```



```
\draw[->,>=latex] (L) to[bend right] (N);
\draw[->,>=latex] (N) to[bend left] (C);
\draw[->,>=latex] (C) to[bend left] (L);
```


Décoration des nœuds

\usetikzlibrary{shapes}

Lausanne | Neuchâtel | Coire | Genève | Berne

Décoration des nœuds

```
\usetikzlibrary{shapes}
                              Coire
                                          Genève
                                                         Berne
Lausanne
\node[draw,rectangle,rounded corners=3pt] (L) at (0,0)
                                            {Lausanne};
\node[draw,minimum height=1cm,dashed] (N) at (3,0)
                                          {Neuchatel}:
\node[draw,diamond,aspect=2.5] (C) at (6,0) {Coire};
\node[draw,ellipse] (G) at (9,0) {Genève};
\node[draw,circle,fill=gray!50] (B) at (12,0) {Berne};
```

```
\tikzset{ville/.style={draw,rectangle,rounded corners=3pt}}
\tikzset{capitale/.style={draw,ellipse,thick,fill=black!25}}
\begin{tikzpicture}
\node[ville] (L) at (0,0) {Lausanne};
\node[ville] (N) at (1,2) {Neuchatel};
\node[ville] (C) at (8,1) {Coire};
\node[ville] (G) at (-1,-1) {Genève};
\node[capitale] (B) at (4,2) {Berne};
\end{tikzpicture}
```



```
\tikzset{ville/.style={draw,rectangle,rounded corners=3pt}}
\tikzset{capitale/.style={draw,ellipse,thick,fill=black!25}}
\begin{tikzpicture}
\node[ville] (L) at (0,0) {Lausanne};
\node[ville] (N) at (1,2) {Neuchatel};
\node[ville] (C) at (8,1) {Coire};
\node[ville] (G) at (-1,-1) {Genève};
\node[capitale] (B) at (4,2) {Berne};
\end{tikzpicture}
Neuchate
Neuchate
```

Coire

Lausanne

Genève


```
\tikzset{radial/.style={very thick,->,>=stealth}}
\tikzset{transversal/.style={<->,>=stealth,thick,dashed}}
\begin{tikzpicture}
\draw[radial] (B) -- (L); \draw[radial] (B) -- (N);
\draw[radial] (B) -- (C); \draw[radial] (B) -- (G);
\draw[transversal] (N) -- (L);
\draw[transversal] (L) -- (G);
\draw[transversal] (G) -- (C);
\end{tikzpicture}
```



```
\tikzset{radial/.style={very thick,->,>=stealth}}
\tikzset{transversal/.style={<->,>=stealth,thick,dashed}}
\begin{tikzpicture}
 \draw[radial] (B) -- (L); \draw[radial] (B) -- (N);
 \draw[radial] (B) -- (C); \draw[radial] (B) -- (G);
 \draw[transversal] (N) -- (L):
 \draw[transversal] (L) -- (G):
 \draw[transversal] (G) -- (C):
\end{tikzpicture}
        Neuchatel
                        Berne
                                           Coire
    Lausanne
Genève
                                         4日 > 4 周 > 4 目 > 4 目
```

Différence entre \coordinate et \node Lier des nœuds Décoration des nœuds Abstraction des styles

Ressources

De nombreux exemples sur texample.net/tikz/examples

Différence entre \coordinate et \node Lier des nœuds Décoration des nœuds Abstraction des styles

Questions?

Des questions?

