Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 1

10
Met Leu Leu Leu Leu Leu Phe Leu Leu Leu Leu Phe L
343 ATG CTG CTG CTG CTC TTC CTG CTG CTG CTC TTC C
Met Asp Leu Trp Pro Gly Ala Trp
301 CCCTCTGAGGTGGCCAGA ATG GAT TTG TGG CCA GGG GCA TGG
251 CCGCTGCCGCAGCCTGGCTGGGGGGGGCCCAGCCCCCCAGGCCCCTAC
201 CCTTGGCACCGACACCCCGACAGACAGAGACACAGCCATCCGCCACCA
151 CACCTCCCTCCATCGGCCGGGGCTAGGACACCCCCAAATCCCGTCGCCC
101 GGGGACAGCCCCCCACCATTCCTACCGCTATGGGCCCCAACCTCCCACTCC
51 AGCCCCAGCCCTCAGAGAGACAGCAGAAAGGGAGGGAGGG
1 GGAAGTCAGCAGGCGTTGGGGGGGGGGGGGGGAATAGCGGCGGCAGC

Pro Ser Ala Lys TTC TGC AGC CCC AGT GCC AAG Ser eu Leu Pro Thr Leu Trp Phe Cys $^{
m LGG}$ CCC ACC CTG CTG ΤG 380

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 1 (continued)

418

П Ö Ile ATC Trp TGG CCC Asn Gly TAC AAT Tyr Phe TTCCCC Ala Met AAG ATG LysPhe TTCPhe TACTYr

40

Val GTG Ala CCC Cys LGT Val GTG Pro CCTIle GCC ATC Ala Leu CIC Val GTG 50 Ala GCT Leu CTGPhe TTCen 455

 \mathcal{O} CGTTTGATC AAG ATG AAC GAG GTC AAC CGC GGA CGA 493 Ц Arg Leu Ile LysMet Asn Glu Val Asn Arg ${
m G1y}$ Arg

09

CGA TAC GGG ATC CIGAAA TAC

ATC

CAC

CTC

CIG

ATG

TA

530

Arg Ile G1y $\mathrm{T}\mathrm{yr}$ Tyr Leu LysIle His Leu Leu Met

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 1 (continued)

U \mathcal{O} Ser CCC TCG Pro Pro TTC CCT Phe CAC His His GCT CAC 90 Ala G1yCGA GGG Arg GTG Val GAG Glu GTG Val 568

Leu Ser \mathtt{TCT} Ser AGC Gln CAG His CAC Asn TCC AAC Ser Val GTC Val 100 GTTVal GTTTyr \mathtt{TAT} Pro CCC AG 605

 \mathcal{O} Gly Arg CCC 120 CCC Pro CCA CTGLeu Val GTAGlu GAG Met ATG Met ATG G1yCCC Leu Leu CTT110 CTGAsp GAT643

GCT GGC Ala Trp AAG CGC GAG CTA CTG TGG Leu Leu Glu Arg LysAla CCC Ile ATTPro GTG CCC Val γS 680

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 1 (continued)

Д Ile ATC GTCVal GGA G1yGCA Trp Leu Ala CLC140 TGG TGC CysLeu Ala CTG GCC G1yGGG CCC Ala TCT Ser 718

Val TC ATC GAC CGG AAG CGC ACG GGG GAT GCC ATC AGT GTC Ser Ile Thr Gly Asp Ala Lys Arg 150 Asp Arg Ile he 755

Asp V Ŋ 170 CTC ACC CAG GAC Gln Thr ren ren ACC CTG Thr Gln CAG Ala CCC GIC Val Glu GAG Ser 160 Met

AAC CAC Glu Gly Thr Arg Asn His CCT GAG GGA ACG AGA Pro TLL Phe GTGVal AGG GTC TGG Trp Val Arg ŢĞ 830

COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID **ACYLTRANSFERASE** Inventors: David W. LEUNG et al.

Title: METHOD OF SCREENING Docket No.: 077319-0382

AAA CGT GGC GCC Figure 1 (continued) TTCATG CTG CCC GGC TCC

AAT

868

C

TTC

田 Phe Gly Ala Phe Lys Arg 190 ProLeu Met Ser G1yAsn

AT CIT GCA GTG CAG GCC CAG GTT CCC ATT GTC CCC ATA Pro Ile Val Pro Gln Ala Gln Val 200 Val Leu Ala is 905

U G 220 AAG Lys TGC AAG LysCysTACTYYTTCPhe GAC Asp Gln CAA TCC TAC TYrSer $^{
m LCC}$ Ser ATG Met 210 GTCVal 943

CGT CGC TTC ACC TCG GGA CAA TGT CAG GTG CGG GTG Ser Gly Gln Cys Gln Val Arg Val Thr Phe Arg AG 980

Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 1 (continued)

G K Asp GAT CCA Pro ACA Thr CTGLeu CCC Glu Gly 240 GAA CCC ACG Thr Pro GTG Val CCA ProCCC Pro CTGLeu 1018

AC GTC CCA GCT CTG GCT GAC AGA GTC CGG CAC TCC ATG Met Ser Leu Ala Asp Arg Val Arg His 250 Val Pro Ala 1055

G Ç CGG 270 Thr Asp Gly Arg SGC TCC ACT GAT Ser GAA ATC IleGlu TTC CGG Arg Phe GTTVal ACT Thr 260 CTCLeu 1093

GT GGT GGT TAT CTG AAG AAG CCT GGG GGC GGT GGG TGA ACCCTGGCTCTGAGCTCTCCTCCCATCTGTCCCCCATCTTCCTCCC CACACCTACCCAGTGGGCCCTGAAGCAGGCCAAACCCTCTTCCTT GTCTCCCCTCTCCCCACTTATTCTCCTCTTTGGAATCTTCAACTTCTGAA ly Gly Gly Asp Tyr Leu Lys Lys Pro Gly Gly Gly 280 1266 1168

Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE Inventors: David W. LEUNG et al.

Docket No.: 077319-0382

Figure 1 (continued)

ACTCTTGCCTCGGTGCAGTTTCCACTCTTGACCCCCCACCTCCTACTGTCT TGTCTGTGGGACAGTTGCCTCCCCCTCATCTCCAGTGACTCAGCCTACAC AAGGGAGGGGAACATTCCATCCCCAGTGGAGTCTCTTCCTATGTGGTCTT CTCTACCCCTCTACCCCCACATTGGCCAGTGGACTCATCCATTCTTTGGA ACAAATCCCCCCCCACTCCAAAGTCCATGGATTCAATGGACTCATCATT TGTGAGGAGGACTTCTCGCCCTCTGGCTGGAAGCTGATACCTGAAGCACT TGTAGCCTCCTGTCAGTGGGGGCTGGACCCTTCTAATTCAGAGGTCTCAT GCCTGCCCTTGCCCAGATGCCCAGGGTCGTGCACTCTCTGGGATACCAGT TCAGTCTCCACATTTCTGGTTTTCTGTCCCCATAGTACAGTTCTTCAGTG GACATGACCCCACCCAGCCCCTGCAGCCTTGCTGACCATCTCACCAGAC ACAAGGGGAAGAAGCAGACATCAGGTGCTGCACTCACTTCTGCCCCCTGG GGAGTTGGGGAAAGGAACGAACCCTGGCTGGAGGGGGATAGGAGGGCTTTTT 1316 516 566 1416 1366 1466 1616 999 1966 1716 1766 1816 1916 1866

Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID **ACYLTRANSFERASE** Inventors: David W. LEUNG et al.

Docket No.: 077319-0382

(continued) Figure 1

CCCACACAGGGGGGGGGCTGGGAGCAAAAGGAGGGGTGGGACCCAG

2116

TTTTGCGTGGTTGTTTTTTTATTATTATCTGGATAACAGCAAAAAACTG 2166

AAAATAAAGAGAGAGAAAAAAAAAA 2216

0
a
=
\equiv
<u></u>
证
_

50 <u>F</u> <u>F</u> KMA G 	100 -YGIRVEVRG MLGLDVK -FGLKVECRK WAGVKVQLHA	150 -VPI-AKREL VTAKKSL TVTV-GKKSL STLAVMKKSS	200 LTQDVRV <u>WV</u> - KKNKRALWV- KKRRISIWM- KDFPRPFWLA	LAVQAQVPIV LAQQGKIPIV AAIAAGVPII SAVSIMRDFV
40 <u>LWFCSPSAKY</u> <u>C</u> IL <u>VC</u> VFGSI <u>Y</u> <u>LIV</u> NAIQAVL	90 REMELHIKYE ARCFYHVMKE GHMFGRLAPE WEQEVWYVDW	140 $VL - PGRC - \overline{IF} - PPGCT - \overline{IVQ} - \overline{PPGC} - \overline{I}$ $\overline{IVQ} - \overline{PP} \overline{I}$ $\overline{ILAQRS} \overline{GC} LG$	SVMSEVAQTL LTQDVRVWV-DTLNKGLENV KKNKRALWV-GTIAEVVNHF KKRRISIWM-KTLKWGLQRL KDFPRPFWLA	240 250 MLPFKRGAFH LA LA LIPFKTGAFH LA LA LA LIPFKTGAFH AA LA LA LIPFKTGAFH AA LA LA LIPFKTGAFH AA LA LA LIPFKTKGFV SA LA
30 LL-LLFLLPT AL-AG RL-IITVIYS PLGLLFLLSG	80 GRNVENMKIL GRQHLAQWIT PRNPKHVATF	130 SSLDLLGMME STLDIFMLGR NNYDMVTASN SDIDWL-IGW	180 IDRKRTGDAI LDRSKRQEAI IDRNNRTKAH LERS-WAKDE	230 T T ASQGLPAPRN
20 $\underline{LLL}LLF$ $YLRSV\underline{L}-\underline{VVL}$ $\underline{L}YIF$ $P\underline{L}V\underline{L}V\underline{L}$	$\begin{array}{c} 70 \\ \hline \mathbf{vLA} \mathbf{IPVCAVR} \\ \hline \mathbf{vIA} \mathbf{SILCTLI} \\ \hline \hline \mathbf{cLFS} \\ \hline \mathbf{EL} \\ \hline \end{array}$	120 -PYVVVSNHQ KPYIMIANHQ -NAIYIANHQ EHALIISNHR	170 $\underline{W} \underline{LAG} V I \underline{F}$ $\underline{WF} MA \underline{LSG} T Y \overline{F}$ $\underline{W} \underline{L} T \underline{G} N \underline{L} L$ $\underline{W} \underline{L} T \underline{G} N \underline{L} L$	220 GS SE <u>L</u> RG <u>L</u>
$\frac{10}{\text{MDLWPGAWM}} - \frac{\text{MDLWPGAWM}}{\text{MSV} - 1 \text{GRFLY}} - \frac{\text{M}}{\text{MAI}} $	60 FYNGWILFLA FYGG FYRRINRFLA	110 AHHF-PPSQ- VVGE-ENLAK PTDA-ESYG- DEETYRSMGK	160 LWAGSAGLAC KYVPFLG LWIPFFGQLY KFLPVIGWSM	210 -FPEGTRNHN -FPEGTRSYT -FPEGTRSRG LEVEGTRFTP
ਜਜਜ	51 51 51	101 101 101 101	151 151 151 151	201 201 201 201
Human LPAAT Yeast LPAAT E.coli LPAAT Maize LPAAT	Human LPAAT Yeast LPAAT E.coli LPAAT Maize LPAAT	Human LPAAT Yeast LPAAT E.coli LPAAT Maize LPAAT	Human LPAAT Yeast LPAAT E.coli LPAAT Maize LPAAT	Human LPAAT Yeast LPAAT E.coli LPAAT Maize LPAAT

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Human LPAAT Yeast LPAAT E.coli LPAAT Maize LPAAT Yeast LPAAT Yeast LPAAT E.coli LPAAT	251 251 251 251 251 301 301 301	260 PIVMSSYQDF PVCVSTTSTL PVCVSTTSNK PAIYDTTV 310 VSKWCKDIFV	270 YCKKERRETS VSPKYGVENR INLNRLHN IVPKDSPQPT 320 VRHSMLTV-F VRDQMVDT-L CRSIMEQK-I AKDALLDKHL	280 GQCQVRVLPP GCMIVRILKP GLVIVEMLPP MLRILKGQSS 330 REISTDGRGG KEIGYSPAIN AELDKEVAE- ATGTFDEEIR	290 VPTEGLTPDD ISTENLTKDK IDVSQYGKDQ VIHVRMKRHA 340 GDYLKKPGGG DTTLPPQ REAAGK PIGRPVKSLL	300 <u>VPALADR</u> IGEFAEK WRELAAH MSEMPKSDED 350 G*
Human LPAAT Yeast LPAAT E.coli LPAAT Maize LPAAT	351 351 351 351	360 <u>AIE</u> YA FG <u>AIE</u> FFKWT	370 A <u>L</u> Q Q <u>L</u> LSTWRGVA	380 HDKKVNKKIK FTAAGMALVT	390 NEPVPSVSIS GVMHVFIMFS	400 NDVNTHNEGS QAERS
Human LPAAT Yeast LPAAT E.coli LPAAT Maize LPAAT	401 401 401 401	410 <u>S</u> <u>V</u> 	420 KKMH*	430	440	450

Figure 2 (continued)

•	•
	n
U	Ц
- 7	٦.
- 1	
•	3
•	7
r	•
•	4
•	ı
-,	7
P.	
12	4
•	•

60	120	180	240	300	360	420	480	540
GCCGTGTCTG	CGAGTTCTAC	CTCGCTCGTC	CTGGTTCGTG	CAGGCTGCAĞ	GATGGGCCTC	CTTCCTGGGG	GCGCTCTAGC	CCTCAAAGTG
50	110	170	230	290	350	410	450 460 470 480 ccrcgggg grctrctra reaccggca gcgctctagc	530
TGGAGCTGTG	GCCGCGCGGC	cccccreec	GCATCATCGG	GGGACCCGCG	TCCTGGACAT	GGGAGCTGCT		TCAGGGAGAA
40	100	160	220	280	340	400	460	520
GGCCGGGCCA	GTGCAGCTGA	TTCACGGTGT	GAGAACATGA	TTCGAGGTGC	CACCAGAGCA	ATCGCCAAGC	GTCTTCTTCA	GAGCGCATGG
30	90	150	210	270	330	390	450	510
TCGGGCGCCG	GCTGCTGCTG	CGCGCTGTGC	CCGGACGGTG	CGGGCTCCGC	CGTCTCCAAC	CTGCGTGCAG	CCTCGGGGGC	CGACCTGGGC
20	80	140	200	260	320	380	440	500
GGCGGCGCCG	TGCTGTTGCT	CCCTGTACTG	GCCACGGCGG	AGTACTTTTA	CCTGTGTCAT	TTCCGGAGCG	TCATCATGTA	CAGTGATGGC
10	70	130	190	250	310	370	430	490
GGAGCGAGCT	900000000	GCCAAGGTCG	TGCCTGCTGT	CGAAGCTTCA	GAGGCCCGTC	ATGGAGGTCC	CCCGTGGGCC	ACTGCCATGA

Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE Inventors: David W. LEUNG et al.

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 3 (continued)

							•	
600	660	720	780	840	900	960	1020	1080
TAAGAAGGGC	CTCTTCCTTC	AGTGCAGGTG	CGTGGACACC	GGAGAACGGG	GGGCATGACC	CTCCCGGCTT	AGGAAGCCCC	CAGCTGGACC
590	650	710	770	830	890	930 940 950	1010	1070
TGCTGCCTTT	CCGTGGTGTA	GAACAGTCAC	TCCCTGCGCT	AGACCCCCCA	GACCACGGCA	CGATGGCTGG AGGATGGGCA GAGGGGACTC	CCCGGGAAGC	GCAGGGGGCT
580	640	700	760	820	880	940	1000	1060
AATGGGGACC	CCCATCGTCC	TTCACTTCAG	GCGGCGGACG	CACATCTCCA	CAGTAGCCCA	AGGATGGGCA	TCTCACTCAG	GGTGTCCCCT
570	620 630 640	690	750	810	870	930	990	1050
TCGCAACGAC	TGGCAGTCCA GGCACAGGTG CCCATCGTCC	GAAGAAGTTC	CGGCCTCACT	CACCTTCCTC	GCAGCCGGCC	CGATGGCTGG	CTCCCCCAGC	ACAGGCCCCT
560	620	680	740	800	860	920	980	1040
CCGAGGGTAC	TGGCAGTCCA	ACAACACCAA	TCCCCACCAG	CCATGAGGAC	GGTCTGGCGT	AGGTGGAAGC	CTCTGTCCGG	GGTCTCAGAC
550	610	670	730	790	850	910	970	1030
TGGATCTATC	GCCTTCTACC	TCCTCCTTCT	CTGGAAGCCA	TGCCACCGGG	GCCACTGCGG	TGGGGAGGGC	CCAAATACCA	TTCTGTCACT

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 3 (continued)

•	•	• • • • • • • • • • • • • • • • • • • •	•	•	AAA
1440	1430	1420	1410	1400	1390
1380	1360 1370 1380	1360	1350	1340	1330
AAAAAAAAA	TCTTGGAAAA AAAAAAAA	TCTTGGAAAA	ATAAACACAC	CTGTTTTTT	TACTCCGTTG
1320	TISSO 1320 1310 1320 CTGCTCCTGC TGGCCTGAAG AATCTGTGGG GTCAGCACTG	1300	. 1290	1280	1270
GTCAGCACTG		TGGCCTGAAG	CTGCTCCTGC	TCGGGGCCTG	GAGCCGGGAA
1260	1250	1240	1220 1230 .1240	1220	1210
GGGCCACAGG	CACGCACCCT	GTCCCAGACT	GGAGGACCCC GAGGCCAGGA GTCCCAGACT	GGAGGACCCC	GGAGCAGATG
1200	1170 1180 1190	1180		1160	1150
CGATGGCCCA	GCCCGCTGGT GGCCTGAGCC	GGCTGAGCC		TGCGGCTGTG	AGATGAGGCT
1140	1100 1110 1130 1130 1130 TCGAGGGCAG GGACTCGCGC CCACGGCACC TCTGGGNGCT	1120	1110	1100	1090
GGGNTGATAA		CCACGGCACC	GGACTCGCGC	TCGAGGGCAG	CTCCCGGGC

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 4

	CCG	Pro
20	TGG	Trp
	CTG	Met Glu Leu Trp
	GAG	Glu
10	ATG	Met
30	GGAGCGAGCTGGCGCCGCCGTCGGGCCCCGGGCC ATG GAG CTG TGG CCG	
20	GCGCCGTCG	
10	GGAGCGAGCTGGCG	

Len Leu Leu Len 80 CTG Leu Len TTGLeu CTGgce CTG

TAC TGC CTGLeu GTC GCC Val GCC AAG Lys120 TAC (Phe TTC GAG 225 525 Ser 100

180 GTC Val GTG TCC 160 150 TGC CTG

Met Ser 60 ATG AGC 220 AAC Asn GAG GTG 210 ACG 255 255 190

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

> GTC Val 110

TTC

GTG Val 80 GTC Val

					_	•		_	•			-	• •		-	 ·	•
		GAG	Glu	320	ATC	Ile			Glu		410	CTC	Leu		TTC	Phe	C
		$\mathbf{T}^{\mathbf{T}}\mathbf{C}$	Phe	,	GTC ATC	Cys. Val		ATG	Met		4	CTG CTC	Leu		GTC	Val	
	270	CGC	Arg		TGT	Cys.	360	CTC	Leu			GAG	Glu	450	GGC	Gly	
∵		CIC	Gly Leu	0.	CCC	Pro		ATG GGC	$G1\dot{y}$		0		Arg		999	Gly	(
nued		GGG		310	CGT CCC	Arg Pro 90		ATG	Met		400	AAG	Lys Arg 120		CTC	Leu	•
nti	260	TTT TAC	Phe Tyr		gcc	Ala	350	ATG	Met			CCC	Ala	440			
Figure 4 (continued)	.,	Tr T	Phe		GAG	Glu	m	CTG GAC ATG	Leu Asp Met Met			CAG ATC GCC AAG CGG	Ile	4	ATC ATG TAC	Met Tyr	
e 4		TAC	Tyr	300	CAG	Gln		CTG	Leu		390		Gln		ATC	Ile	•
iguz	250	AAG	Lys		CTG	Leu	0.1	ATC	lle			GTG	Val	0	CTC	ren	
Ŀ	25	TTC	Phe Lys 7		AGG	Arg	34	AGC	Ser Ile I	100		$^{\mathrm{TGC}}$	Cys	430	GGC CTC	Gly Leu	2
		AGC	Ser	290	292 922	Pro Arg		CAG	Gln		380	၁၅၁	Arg		GTG	Val	,
		CGA	Arg	(1	CCG	Pro		CAC	His		(*)	GAG CGC	Glu		CCC	Pro	•
	240		Val		GAC	Asp	330	AAC	Asn			CCG	Pro	420	999	Gly	
		TTC	Phe	280	CGG	Arg		TCC	Ser		0,	CTT	Leu		CTG	Leu	•
				28							370						

ATG ACA Met Thr

TTC Phe 140 GAC Asp

GTG ATG GCC Val Met Ala

ညည

AGC

TCT

CGC Arg

CAG

Asn Arg Gln

ATC AAC Ile Asn

460

480

ACT

Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 4 (continued)

	TAT T Y T Y T	AAG Lys	GTC Val 200	AAG Lys	GCC Ala 230
	ATC Ile	590 TTT Phe	ATC Ile	680 AAG Lys	GAA Glu
	TGG Trp	590 CCT TTT Pro Phe	CCC	680 ACC AAG Thr Lys	CTG
540	GTG Val	CTG Leu	630 GTG Val	AAC Asn	720 GTG Val
	AAA Lys	30 CTG Leu	CAG Gln	10 TAC TYr	CAG Gln
	CTC	580 GAC CTG ASP Leu 180	GCA Ala	670 TTC TAC Phe Tyr 210	GTG Val
530	GAG AAC Glu Asn	GGG G1y	620 CAG	TCC Ser	710 GTC ACA Val Thr
-,	GAG Glu	AAT Asn	GTC Val	TCC	7 GTC Val
	AGG Arg	570 GAC ASP	GCA Ala	660 TTC Phe	ACA Thr
20	ATG GTC Met Val	AAC Asn	610 TAC CTG Tyr Leu 190	TCC	700 TCA GGA Ser Gly 220
5	ATG Met 160	CGC Arg	61 TAC TYT 190	TCT Ser	700 TCA GGA Ser Gly 220
	CGC Arg	560 ACT Thr	TTC Phe	650 3 TAC T 1 Tyr S	ACT Thr
	GAG Glu	GGT G	GCC Ala	GTG Val	TTC
510	GGC	GAG Glu	600 GGC Gly	GTG Val	690 TTC Phe
	CTG	550 CCC Pro	AAG Lys	640 CCC Pro	AAG Lys

Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE Inventors: David W. LEUNG et al.

Docket No.: 077319-0382

	Figure 4 (continued) 730 740 750 770 ATC CCC ACC AGC GGC CTC ACT GCG GCG GAC GTC CCT GCG CTC GTG Ile Pro Thr Ser Gly Leu Thr Ala Ala Asp Val Pro Ala Leu Val 240
	780 810 GAC ACC TGC CAC CGG GCC ATG AGG ACC ACC TTC CTC CAC ATC TCC ASP Thr Cys His Arg Ala Met Arg Thr Thr Phe Leu His Ile Ser 250
	820 850 860 AAG ACC CCC CAG GAG AAC GGG GCC ACT GCG GGG TCT GGC GTG CAG Lys Thr Pro Gln Glu Asn Gly Ala Thr Ala Gly Ser Gly Val Gln 270
	870 880 890 900 910 920 CCG GCC CAG TAG CCCAGACCACGGCAGGGCATGACCTGGGGAGGGCAGGTGGAAGC
930	940 950 960 970 980 CGATGGCTGGAGGGCAGAGGGGACTCCTCCCGGCTTCCAAATACCACTCTGTCCGG
066	1000 1010 1020 1030 1040 CTCCCCCAGCTCTCAGCCCGGAAGCAGGAAGCCCCTTCTGTCACTGGTCTCAGAC 1050 1060 1070 1080 1090 1100 ACAGGCCCCTGGTGTCCCCTGCAGGGGGGCTCAGGCCCCTCCCCGGGCTCGAGGGGGCAG

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 4 (continued)

Figure 5

LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT

Alignment of LPAAT Sequences.

10 20 30 40 50 1	1 MAKIKISS-L RNRRQLKP AVAATADD DKDGVFMV 1 MDASCASSFL RGRCLESCFK ASFGMSQPKD AAGOPSRRPA DADDFFTVDD	51 QL——SRAAE FYAKVAL-YC ALGFTVSAVA SLYCLLGGG RTVENM-SII 51 TIWFCS BAK YFFKWAF-YN GWILFTAVLA IPVCAV-RG RNVENM-KIL 51 GCG FYGVIA SILCTLIGKQ HLAQWI-TAR 51 GMLYI FRILITVIYS ILVCVFG SIYCLFSPRN PKHVATF 51MLXI FRILIVIVIXS ILVCVFG SIYCLFSPRN PKHVATF 51MLXI FRILIVIVIXS ILVCVFG SIYCLFSPRN PKHVATF 51
Human LPAAT-β Human LPAAT-α Yeast LPAAT E.coli LPAAT H.influenzae	s.cypanium au L.douglassi C. nucifera	Human LPAAT-β Human LPAAT-α Yeast LPAAT E.coli LPAAT H.influenzae S.typhimuriu L.douglassi C. nucifera

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

ত
ne
Ë
o
<u>ပ</u>
e 5
ure
_
gure

						1 -				
150	I LIMING! MEV	SIDILGMEV	CFY-HVMKILM.GLDVKV VGEENLAK-K PYIMIANHOS TIDIFMCRI	N NYDMVTASNI	NYZI TVMCYN V	IN NYDMVTAANI	PIDAFFVMM	INDIFILM		200
140	PCV IVSNIHOS	PYV/VSNHQS	PYIMIANHOS	G NAIYIANHO	RAIYIGNHO	G NAIYIANHO	IFTYI SNHAS	I YI CNHAS		190
130	RDPRRLQEAR	RG AHHF PPSQ	VGEENLAK-K	RKPIDAESW	RIPODOKOIS	RKPADAENY	GSEHIKKRA	EGSEFSNI RA		180
120	FYGLRFEV	LYG IRVEV	MLGLDVKV	APLFGLKVE(YPLFGLKVE	APLFGLKVE	IMIY GIPIKI (MMIL GNPITI		170
110			101 CFY-HWMKL						·	160
	\vdash	\leftarrow	7	\vdash	\vdash	\vdash	-	Ä		
	Human L.PAAT-β	Human L.PAAT-α	Yeast LPAAT	E.coli LPAAT	H.influenzae	S.typhimuriu	L.douglassi	C. nucifera		

KSLLWIPFF TGQLYWLTCN ILIDRINNRAK AHS-TIAAV -GLACWLAGY IFIDRKRIGD ALS-VMSEV KSLIMIPFF - - GOLYWLIGN ILIDRINNRTK AHG--TIAEV KSLIWIPFF TGILYWVICN IFLIRENRIK AHN-IMSOL KEVIWYPILG Q-LYTLAH IRIDRSNPAA AIOSFTMKEA KEIIWYPLEG OFFLYVIANH ORIDRSNPSA ALES--IKEV -GLIMYLGGV FFINRORSST AME-VMAIL KSLKWPFL- - GWFMALSGT YFLDRSKROE ALD--TINKG ΣQT RELLWAGSA-RELL FIGEV-7/0 LPGRCVPIAK LP ERCVOIAK FPPGCTVTAK VOPPTVTVGK VOPPTVTVGK VOPRIVSVCK APIGTVGVAK PKGTVT IAK 151 151 151 151 151 Human L.PAAT-B Human LPAAT-α

E.coli LPAAT H.influenzae S.typhimuriu

C. nucifera L.douglassi

Yeast LPAAT

Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE Inventors: David W. LEUNG et al. Docket No.: 077319-0382

_
=
pa
മ
Ĭ
پ
.=
-
ō
Ų
ច
$\overline{}$
_
2 (
(I)
(I)
(I)
ure
ure
igure
ure
igure
igure

210 GERMARENLA WILYPEGTRN DINGIL—LPF KKGAFTL—A VQAQVPIVPV 201 AQTILIQDAR WWYFPEGTRS YISELIMLPF KKGAFTL—A VQAQVPIVPI 201 LENVKKNKR IS IWMFPEGTRS YISELIMLPF KKGAFTL—A QQGTIPIVPV 201 VNHFKKRR IS IWMFPEGTRS RGRGL—LPF KTGAFTH—A ISAGVPI IPV 201 VRHFKKRR IS IWMFPEGTRN RGRGL—LPF KTGAFTFHAA ISAGVPI IPV 201 VRVITEKNIS IWMFPEGTRS RGRGL—LPF KTGAFTFHAA ISAGVPI IPV 201 VRVITEKNIS IMMFPEGTRS GOGRL—LPF KTGAFTFHAA IAAGVPI IPV 201 VRVITEKNIS LIMFPEGTRS GOGRL—LPF KKGFVHL—A LQSTLPIVPM 201 ARAVVKNIS LITFPEGTRS KTGRL—LPF KKGFTHFITA LQTRLPIVPM	251 VYSSFSSF YNTKKFFTS GTVTVONLEA IPTSGLTAD VPALVDTCHR 251 VMSSYQDF YCKKHRRFTS GOQVRVLPP VPTEGLTAD VPALADRAPH 251 VMSSYQDF YCKKHRRFTS GOQVRVLPP VPTEGLTAD VPALADRAPH 251 VVSNTSTL VSPKYGVFNR GOMIVRILKP ISTENLITKOR IGEFAEKVRD 251 VCSSTH NKINIANRINN GLVTVEMLPP IDVSGYGKDO VRELAAHCR- 251 VCSSTH NKINIANRINN GLVTVEMLPP IDVSGYGKDO VRELAAHCR- 251 LITGTHLAWF TRKGTFRVRP VPITVKYLPP INTDDMTVIK IDDYVRMIHD 251 VLTGTHLAWF RKGTFRVRP VPITVKYLPP INTDDMTVIK IDDYVRMIHD 251 VLTGTHLAWF TRKGTFRVRP VPITVKYLPP INTDDMTVIK IDDYVRMIHD
Human LPAAT-β Human LPAAT-α Yeast LPAAT E.coli LPAAT H.influenzae S.typhimuriu L.douglassi C. nucifera	Human LPAAT-β 2 Human LPAAT-α 2 Yeast LPAAT E.coli LPAAT H.influenzae S.typhimuriu 2 L.douglassi 22 C. nucifera 22

Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE Inventors: David W. LEUNG et al.

Docket No.: 077319-0382

73
~~
×
=
=
=
Ξ
8
()
•
<u> </u>
5 (6
5 (
re 5 (
5 (
ure 5 (
re 5 (
ure 5 (
ure 5 (

350 NEPVPSVSI	
330 340 350 390350 39040 39040 3906 3906 3906 3906 3906 3906 3906 3006 3	330
330 GSGVQPAQ*- KPGGGG*- PPQALEYAAL REAAGKV* REATGKV* KGN* KGN*	380
KITQENGATA GSGVQPAQ* TDCRCGGDYL KKPGGGG* YSPAINDTTL PPQAIEYAA LDKEVA — ER EAAGKV*- LDKEVA — ER EATGKV*- PLGS TNR — S-K* XQKPLVSKGR DASGRSNS*	370 SSVKKMH*
AMRTTEHLIS KTROENGATA GSGVOPAQ* SMLTVEREIS TDGRGGDYL KKPGGGG* OMVDILKEIG YSPAINDTTL PROALEYAA -SIMEOKIAE LDKEVA — ER EAAGKV*- TALMEOKIAE LDKEVA — ER EATGKV*- IYVRNLPASO KPLGSTNR — S-K* TALYVIHLPE SOKPLVSKGR DASGRSNS*	360 SANDWITHINEG S
301 301 301 301 301 301 301	351 351 351 351 351 351 351
Human LPAAT-β Human LPAAT-α Yeast LPAAT E.coli LPAAT H.influenzae S.typhimuriu L.douglassi C. nucifera	Human L.PAAT-β Human L.PAAT-α Yeast L.PAAT E.coli L.PAAT H.influenzae S.typhimuriu L.douglassi C. nucifera

Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE Inventors: David W. LEUNG et al. Docket No.: 077319-0382

TLC Analysis of Acyltransferase Acitvity

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Induction of TNF in A549 LPAAT or A549 cells stimulated with mTNF and IL-1

Figure 7

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Induction of IL-6 in A549 LPAAT or A549 cells stimulated with mTNF and IL-1

Figure 8

Figure 9 Translated sequence of human LPAAT- γl

GGCA	GGTG	TCTG	GCTT	GTCC	$\overline{\mathtt{A}}\mathtt{CCC}$	TTTG(GCCC'	TGAG	GGCA	GCTG	TTCC	CACT	GGCT	CTGC	60 120
TGAC	CTTC	TGCC	TTGG	ACGG	CTGT	CCTC.	AGCG.	AGGG	GCCG	TGCA	CCCG	CTCC	TGAG	CAGC	180
GCC	ATG	GGC	CTG	CTG	GCC	TTC	CTG .	AAG .	ACC	CAG	TTC	GTG	CTG	CAC	225
000	Met	Gly	Leu	Leu	Ala	Phe	Leu	Lys	Thr	Gln	Phe	Val	Leu	His	
		_			5					10					
CTG	CTG	GTC	GGC	TTT	GTC	TTC	GTG	GTG	AGT	GGT	CTG	GTC	ATC	AAC	270
Leu	Leu	Val	Gly	Phe	Val	Phe	Val	Val	Ser	Gly	Leu	Val	Ile	Asn	
15					20					25					
TTC	GTC	CAG	CTG	TGC	ACG	CTG	GCG	CTC	TGG	CCG	GTC	AGC	AAG	CAG	315
Phe	Val	Gln	Leu	Cys	Thr	Leu	Ala	Leu	\mathtt{Trp}	Pro	Val	Ser	Lys	Gln	
30					35					40					2.50
CTC	TAC	CGC	CGC	CTC	AAC	TGC	CGC	CTC	GCA	TAC	TCA	CTC	TGG	AGC	360
Leu	Tyr	Arg	Arg	Leu	Asn	Cys	Arg	Leu	Ala	Tyr	Ser	Leu	Trp	Ser	
45					50					55					405
CAA	CTG	GTC	ATG	CTG	CTG	GAG	TGG	TGG	TCC	TGC	ACG	GAG	TGT	ACA	405
Gln	Leu	Val	Met	Leu	Leu	Glu	Trp	Trp	Ser	Cys	Thr	GIu	Cys	Thr	
60					65					70				~~~	450
CTG	TTC	ACG	GAC	CAG	GCC	ACG	GTA	GAG	CGC	TTT	GGG	AAG	GAG	CAC	450
Leu	Phe	Thr	Asp	Gln		Thr	Val	Glu	Arg	Phe	GTĀ	Lys	Glu	Hls	
75					80					85			cmc	mom.	
GCA	GTC	ATC	ATC	CTC	AAC	CAC	AAC	TTC	GAG	ATC	GAC	TTC	CTC	TGT	495
Ala	Val	Ile	Ile	Leu		His	Asn	Phe	Glu.	TIE	Asp	Pne	Leu	Cys	
90					95					100	000	100	maa	330	540
GGG	TGG	ACC	ATG	TGT	GAG	CGC	TTC	GGA	GTG	CTG	GGG	AGC	TCC	AAG	540
Gly	Trp	Thr	Met	Cys		Arg	Phe	GIA	vaı	Leu	GIY	ser	ser	гĀг	
105					110					115	omo.	3.000	666	mcc	585
GTC	CTC	GCT	AAG	AAG	GAG	CTG	CTC	TAC	GIG	CCC	CTC	ATC	Clar	TGG	202
Val	Leu	Ala	Lys	Lys		Leu	Leu	ıyr	vaı	Pro	Leu	тте	GIA	TEP	
120					125				maa	130		220	mcc	CAC	630
ACG	TGG	TAC	TTT	CTG	GAG	ATT	GTG	TTC	TGC	AAG	7~~	AAG	TGG	Clu	630
		Tyr	Phe	Leu		Ile	vai	Pne	CAP	145	Arg	пÃг	rrp	Gra	
135					140	GTC	C N N	ccc	CTC			СТС	TCG	GAC	675
GAG	GAC	CGG	GAC	ACC	11-1	77-3	Clu	Clv	Leu	Ara	Ara	T.e.u	Ser	Asp	0,5
		Arg	Asp	Thr	155		Giu	GIY	nea	160	nrg	nea			
150	,			, amo			CTC	CTG	ТΔС			GGG	ACG	CGC	720
TAC	: CCC	GAG	TAC	. ATG	. m~~	Dho	Tou	Len	Tyr	Cvs	Glu	Glv	Thr	Arg	
_) GIU	TYL	Mec	170		Беа	псс	* 3 -	175		O		3	
165	, , , ,			י אאר	. CAC	. כפר	ርጥጥ	AGC	ATG			GCG	GCT	GCT	765
7.1.0	ACC	GAC	, ACC	. AAC	. Wie	Ara	Va1	Ser	Met	Glu	. Val	Ala	Ala	Ala	
		GIU	1111	. Lys	185		* • •			190)	•			
180	,	- Cma		י כידיר	י כיתכ	, AAG	ТАС	CAC	СТС			CGG	ACC	AAG	810
AAC	- 63.	. Lou	. Dro	. Val	l.eu	Lvs	Tvr	His	Leu	Lev	Pro	Arc	Thr	Lys	
		Lec	LFIC	, ,	200)	-1-	-		205	5		,	-	
199) - mm/	- 200	- ACC	GC	A GTC	AAG	TGC	CTC	CGG	GGG	ACA	GTC	GCA	GCT	855
C1.	- Db	n mbr	- Thi	- Ala	Val	Lvs	Cvs	Leu	Arc	r Gly	/ Thr	· Val	Ala	Ala	
210		2 1111			215	<i>-</i>			_	220	Ó				
211	י מחשי ט	ר כאיז	r GT2	ACC			ттс	AGA	GGA	AAC	AAG	AAC	ccc	TCC	900
21.0	1 115	r Acr	. Val	Thi	r Lei	ı Asn	Phe	Arc	r Gly	Ası	ı Lys	Asr	ı Pro	Ser	
22!		r vo	, ,		230			_	_	235	5 -				
CTV	י כתע	3 666	ב אדר	CTC	TAC	GGG	AAG	, AAG	TAC	GAG	G GCG	GAG	ATC	TGC	945
T C	J TA	. Gl	, T14	a [.e1	ועע נ	Glv	Lvs	Lvs	Tyr	Glu	ı Ala	Ası	Met	Cys	
241	n				249	5				250)				
C 41	0 2 3 <i>C</i>	C AG	7 July	י ככי	ר כת	GAA	GAC	: ATC	: ccc			GA/	AAC	GAA	990
77 P	3 AU	o Au	y Ph	e Pro	Lei	ı Glu	Ast	Ile	Pro	Le	ı Ası	Gli	ı Lys	s Glu	
25	5				260)				26	5				
23.	ے م ددر	ጥ ሮልሳ	ን ጥር	G CT	r CA	r AAA	CTC	TAC	CAC	G GA	G AAC	GAG	G GCC	G CTC	1035
GC.	n 30	· CA	00												

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 9 (continued)

Ala 270	Ala	Gln	Trp	Leu	His 275	Lys	Leu	Tyr	Gln	Glu 280	Lys	Asp	Ala	Leu	
CAG	GAG	ATA	TAT	AAT	CAG	AAG	GGC	ATG	TTT	CCA	GGG	GAG	CAG	TTT	1080
													Gln		
285			-		290	-	_			295	_				
AAG	CCT	GCC	CGG	AGG	CCG	TGG	ACC	CTC	CTG	AAC	TTC	CTG	TCC	TGG	1125
Lys	Pro	Ala	Arg	Arg	Pro	Trp	Thr	Leu	Leu	Asn	Phe	Leu	Ser	Trp	
300					305					310					
GCC	ACC	ATT	CTC	CTG	TCT	CCC	CTC	TTC	AGT	TTT	GTC	TTG	GGC	GTC	1170
Ala	Thr	Ile	Leu	Leu	Ser	Pro	Leu	Phe	Ser	Phe	Val	Leu	Gly	Val	
315					320					325					
					_								GGG		1215
Phe	Ala	Ser	Gly	Ser		Leu	Leu	Ile	Leu		Phe	Leu	Gly	Phe	
330					335					340					
GTG													GTA		1260
Val	Gly	Ala	Ala	Ser		Gly	Val	Arg	Arg		Ile	Gly	Val	Thr	
345		•			350					355					
														AAA	1305
	Ile	Glu	ГЛЗ	Gly		Ser	Tyr	GIA	Asn		Glu	Phe	Lys	Lуs	
360					365					370					
			TTA	ATGG	CTGT	GACT	GAAC.	ACAC	الناكات	CCCT	GACG	GTGG'	PATC	CAGTT	1362
	Glu			~~~	C 3 C M	~~ ~ ~ ~	~ * * * *	2020	8 8 MM	2022	x		T-C-CCC	5 CTCT 5 5	1 4 2 2
														ATTAA TCAGG	1422 1482
														GGAGG	1542
														AAGAG	1602
													AAAA		1660
GGA	CCIT	1660	1 90 1	1101	دودر	IIAA	AC 1 1.	ngar.	CAAA	1111.	aaaa.	naaa.	~~~	mm.	1000

Figure 10

Title: METHOD OF SCREENING COMPOUNDS THAT INHIBIT LYSOPHOSPHATIDIC ACID **ACYLTRANSFERASE**

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

CACGCTGGCGCTCTGGCCGGTCAGCAAGCAGCTCTACCGCCGCCTCAACTGCCGCCTCGCC	61
TACTCACTCTGGAGCC <u>TAG</u> CACAAAAC <u>TAG</u> AAGCAACCCAAGCACCTGTCACTGGAGACT	121
AATT <u>ATG</u> CGGCACCCATACAGGGACCCTCTGCGGCCATC <u>ATG</u> GAGAGCCTTCATCTTGCC	181
CGTACAGTTTTAAGCGAAAAAGGAAGTATACAACAAAGTCCATAACTGGTC ATG CTG	238
Met Leu	

Translated sequence of LPAAT-Y2 cDNA

AATTATGCGGCACCCATACAGGGACCCTCTGCGGCCATCATGGAGAGCCTTCATCTTGCC 18 CGTACAGTTTTAAGCGAAAAAGGAAGTATACAACAAAGTCCATAACTGGTC ATG CTG 23												181			
CGT	CAG	TTTTI	AAGC	GAAA	\AGG!	AAGTA	ATAC	AACAA	AAGTO	CATA	<u> AACTC</u>	GTC			238
													Met	Leu	
CTG	GAG	TGG	TGG	TCC	TGC	ACG	GAG	TGT	ACA	CTG	TTC	ACG	GAC	CAG	283
				Ser			Glu					Thr			
		5	~~~				10	~ ~ ~	~ ~			15			
				CGC											328
AId	THE	20	GIU	Arg	Pne	GIĀ	25	GIU	HIS	мта	vai	30	TTE	ren	
AAC	CAC	AAC	TTC	GAG	ATC	GAC	TTC	CTC	TGT	GGG	TGG	ACC	ATG	TGT	373
Asn	His	Asn 35	Phe	Glu	Ile	Asp	Phe 40	Leu	Cys	Gly	Trp	Thr 45	Met	Cys	
GAG	CGC	TTC	GGA	GTG	CTG	GGG	AGC	TCC	AAG	GTC	CTC	GCT	AAG	AAG	418
Glu	Arg		Gly	Val	Leu	Gly	Ser 55	Ser	Lys	Val	Leu	_	Lys	Lys	
GAG	СТС	50 CTC	ТАС	GTG	CCC	СТС	_	GGC	тсс	ACG	ጥርር	60 TAC	ጥጥ	СТС	463
				Val											400
		65					70					75			
				TGC											508
GLu	Ile	Val 80	Phe	Суѕ	Lys	Arg	Lys 85	Trp	Glu	Glu	Asp	Arg 90	Asp	Thr	
GTG	GTC		GGG	CTG	AGG	CGC	CTG	TCG	GAC	TAC	CCC		TAC	ATG	553
Val	Val	Glu 95	Gly	Leu	Arg	Arg	Leu 100	Ser	Asp	Tyr	Pro	Glu 105	Tyr	Met	
TGG	TTT	CTC	CTG	TAC	TGC	GAG	GGG	ACG	CGC	TTC	ACG	GAG	ACC	AAG	598
Trp	Phe	Leu 110	Leu	Tyr	Суѕ	Glu	Gly 115	Thr	Arg	Phe	Thr	Glu 120	Thr	Lys	
-				ATG											643
His	Arg	Val 125	Ser	Met	Glu	Val	Ala 130	Ala	Ala	Lys	Gly	Leu 135	Pro	Val	
				CTG											688
Leu	ГЛЗ	Tyr 140	His	Leu	Leu	Pro	Arg 145	Thr	Lys	Gly	Phe	Thr 150	Thr	Ala	
				CGG											733
	-	155		Arg			160				_	165			
				GGA											778
Leu	Asn	Phe 170	Arg	Gly	Asn	Lys	Asn 175	Pro	Ser	Leu	Leu	Gly 180	Ile	Leu	
TAC	GGG		AAG	TAC	GAG	GCG	GAC	ATG	TGC	GTG	AGG	AGA	TTT	CCT	823
Tyr	Gly	Lys 185	Lys	Tyr	Glu	Ala	Asp 190	Met	Суѕ	Val	Arg	Arg 195	Phe	Pro	
				CCG											868
•		200		Pro			205					210	_		
				CAG											913
	_	215		Gln			220					225			
				TTT											958
		230		Phe			235			_		240	_	_	
				CTG											1003
Pro	Trp	Thr 245	Leu	Leu	Asn	Phe	Leu 250	Ser	Trp	Ala	Thr	Ile 255	Leu	Leu	
				AGT											1048
Ser	Pro	Leu	Phe	Ser	Phe	Val	Leu	Gly	Val	Phe	Ala	Ser	Gly	Ser	

Inventors: David W. LEUNG et al. Docket No.: 077319-0382

Figure 10 (continued)

		260					265					270			
CCT	CTC	CTG	ATC	CTG	ACT	TTC	TTG	GGG	TTT	GTG	GGA	GCA	GCT	TCC	1093
Pro	Leu	Leu	Ile	Leu	Thr	Phe	Leu	Gly	Phe	Val	Gly	Ala	Ala	Ser	
		275					280					285			
TTT	GGA	GTT	CGC	AGA	CTG	ATA	GGA	GTA	ACT	GAG	ATA	GAA	AAA	GGC	1138
Phe	Gly	Val	Arg	Arg	Leu	Ile	Gly	Val	Thr	Glu	Ile	Glu	Lys	Gly	
		290					295					300			
													ATT	ATGGC	1185
Ser	Ser	Tyr	Gly	Asn	Gln	Glu	Phe	Lys	Lys	Lys	Glu	***			
		305					310								
TGT	SACTO	SAAC	ACAC	GCGG	CCTC	GACG	GTGG	PATC	CAGT	raac:	rcaa.	AACC	AACA	CACAG	1245
AGT	GCAG	SAAA	AGAC	AATT	AGAA	ACTA!	TTTT	rctt?	ATTA	ACTG	GTGA	CTAA	TATT	AACAA	1305
														CCCAC	1365
														AGGCC	1425
TCC	CGCGC	GACG	CCGT	CTCT	CAG	AACT	CCGC	rtcc?	AAGA	GGGA	CCTT	rggc'	rgct	TTCTC	1485
TCC	גבבייו	ACTT	AGATO	CAAAC	$\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}$	AAAA	AAAA	AAAA	AAA						1523

TGAACCCAGCCGGCTCCATCTCAGCTTCTGGTTTCTAAGTCCATGTGCCAAAGGCTGCCAG 61															
GAAG	GAGA	CGCC	TTCC	TGAG	TCCT	GGAT	CTTT	CTTC	CTTC'	TGGA	ĀATC'	PTTG	ACTG	rggg	121
TAGT	TATT	TATT	TCTG	AA <u>TA</u>	<u>A</u> GAG	CGTC	CACG	CATC	<u>ATG</u>	GAC	CTC	GCG	GGA	CTG	175
													Gly 5		
CTG	AAG	TCT	CAG	TTC	CTG	TGC	CAC	CTG	GTC	TTC	TGC	TAC	GTC	TTT	220
			10					Leu 15			_	_	20		
ATT	GCC	TCA	GGG	CTA	ATC	ATC	AAC	ACC	ATT	CAG	CTC	TTC	ACT	CTC	265
			25					Thr 30					35		
CTC	CTC	TGG	ccc	ATT	AAC	AAG	CAG	CTC	TTC	CGG	AAG	ATC	AAC	TGC	310
			40					Leu 45					50	_	
AGA	CTG	TCC	TAT	TGC	ATC	TCA	AGC	CAG	CTG	GTG	ATG	CTG	CTG	GAG	355
			55					Gln 60					65		
TGG	TGG	TCG	GGC	ACG	GAA	TGC	ACC	ATC	TTC	ACG	GAC	CCG	CGC	GCC	400
			70					Ile 75					80		
TAC	CTC	AAG	TAT	GGG	AAG	GAA	AAT	GCC	ATC	GTG	GTT	CTC	AAC	CAC	445
			85					Ala 90					95		
AAG	TTT	GAA	ATT	GAC	TTT	CTG	TGT	GGC	TGG	AGC	CTG	TCC	GAA	CGC	490
			100					Gly 105					110	_	
TTT	GGG	CTG	TTA	GGG	GGC	TCC	AAG	GTC	CTG	GCC	AAG	AAA	GAG	CTG	535
			115					Val 120				_	125		
GCC	TAT	GTC	CCA	ATT	ATC	GGC	TGG	ATG	TGG	TAC	TTC	ACC	GAG	ATG	580
			130					Met 135					140		
GTC	TTC	TGT	TCG	CGC	AAG	TGG	GAG	CAG	GAT	CGC	AAG	ACG	GTT	GCC	625
			145					Gln 150			_		155		
ACC	AGT	TTG	CAG	CAC	CTC	CGG	GAC	TAC Tyr	CCC	GAG	AAG	TAT	TTT	TTC	670
			160					165				-	170		
CTG	ATT	CAC	TGT	GAG	GGC	ACA	CGG	TTC	ACG	GAG	AAG	AAG	CAT	GAG	715
			175					Phe 180			_	_	185		
ATC	AGC	ATG	CAG	GTG	GCC	CGG	GCC	AAG	GGG	CTG	CCT	CGC	CTC	AAG	760
			190					Lys 195				_	200	_	
CAT	CAC	CTG	TTG	CCA	CGA	ACC	AAG	GGC	TTC	GCC	ATC	ACC	GTG	AGG	805
			205					Gly 210					215	_	
AGC	TTG	AGA	AAT	GTA	GTT	TCA	GCT	GTA	TAT	GAC	TGT	ACA	CTC	AAT	850
			220					Val 225					230		
TTC	AGA	AAT	AAT	GAA	AAT	CCA	ACA	CTG	CTG	GGA	GTC	CTA	AAC	GGA	895
			235					Leu 240					245	-	
AAG	AAA	TAC	CAT	GCA	GAT	TTG	TAT	GTT	AGG	AGG	ATC	CCA	CTG	GAA	940
			250					Val 255					260		
GAC	ATC	CCT	GAA	GAC	GAT	GAC	GAG	TGC	TCG	GCC	TGG	CTG	CAC	AAG	985
Asp	Ile	Pro	Glu 265	Asp	Asp	Asp	Glu	Cys 270	Ser	Ala	Trp	Leu	His 275	Lys	

CTC T	AC C	AG	GAG	AAG	GAT	GCC	TTT	CAG	GAG	GAG	TAC	TAC	AGG	ACG	1030
Leu T	yr G			Lys	Asp	Ala	Phe		Glu	Glu	Tyr	Tyr		Thr	
			280					285					290		
GGC A															1075
Gly T	nr F		295	Glu	Thr	Pro	Met	300	Pro	Pro	Arg	Arg	205	Trp	
ACC C	ጥር ር			TCC	CTC	ተነተ	TGG		тсс	CTG	GTG	СТС		CCT	1120
Thr L															1120
	eu v		310	пр	nea	FIIC	TIP	315	Jer	Deu	Val	neu	320	PLO	
TTC T	TC C			CTG	GTC	AGC	ATG		AGG	AGC	GGG	тст		CTG	1165
Phe P	he G	iln	Phe	Leu	Val	Ser	Met	Ile	Arg	Ser	Gly	Ser	Ser	Leu	
			325					330			_		335		
ACG C	TG G	CC	AGC	TTC	ATC	CTC	GTC	TTC	TTT	GTG	GCC	TCC	GTG	GGA	1210
Thr L	eu A			Phe	Ile	Leu	Val		Phe	Val	Ala	Ser		Gly	
			340					345					350		
GTT C															1255
Val A	rg T			Ile	GIĀ	Val	Thr		ITe	Asp	Lys	GIY		Ala	366
TAC G	CC 7		355 mcm	CAC	NCC.	7 7 C	CAC	360	CTC	አአጥ	CAC	mc a	365	ACCC	1301
Tyr G													CIC	AGGG	1301
Tyr G	TAL		370	nap	Jer	Буз	G 111	375	Dea	NOIL	rap				
AGGTGT	CACC			AGGG#	ACCI	TGG	GAAG	TGG	rggc	TCTC	GCAT	ATCC	rcct'	TAGT	1361
GGGACA	CGG1	GAC	AAAC	GCTC	GGTC	SAGC	CCT	CTG	GCA	CGGC	GGAA	GTCA	CGAC	CTCT	1421
CCAGCC	AGGG	SAGT	CTGG	TCTC	CAAGO	GCCGC	SATGO	GGA	GAAG	GATG!	rttt(GTAA'	rctt	$\mathbf{r}\mathbf{r}\mathbf{r}$	1481
TCCCCA															1541
GTGTGG															1601
GGGCAG															1661
TGTAAC														TTAT	1721
GCCTCC	AAGI	LAAA	<u>aaaa</u>	7W.1,.1,\	MAAG'	ruc'l".	LTTC.	rocc.	LCAA	AAAA	AAAA	AAAA	A.		1774

	10	20	30	40	50
LPAAT-γ1	MGLLAFLKTQ	FVLHLLVGFV	FVVSGLVINF	VQ-LCTLALW	PVSKQLYRRL
LPAAT-Y2					
LPAAT-δ	MDLAGLLKSQ	FLCHLVFCYV	FIASGLIINT	IQ-LFTLLLW	PINKQLFRKI
	60	70	80	90	100
LPAAT-γ1		QLVMLLEWWS			
LPAAT-γ2		MLLEWWS		_	
LPAAT-δ	NCRLSYCISS	QLVMLLEWWS	GTECTIFTDP	ra ÿ lkygken	AIVVLNHKFE
	110	120	130	140	150
LPAAT-yl	IDFLCGWTMC	ERFGVLGSSK	VLAKKELLYV	PLIGWTWYFL	EIVFCKRKWE
LPAAT-Y2		ERFGVLGSSK			
LPAAT-δ	IDFLCGWSES	ERFGLLGGSK	VLAKKELAYV	PIIGWMWYFT	EMVFCSRKWE
	160	170	180	190	200
LPAAT-Y1	EDRDTVVEGL	RRLSDYPEYM	WFLLYCEGTR	FTETKHRVSM	EVAAAKGLPV
LPAAT-Y2	EDRDTVVEGL	RRLSDYPEYM	WFLLYCEGTR	FTETKHRVSM	EVAAAKGLPV
LPAAT-δ	QDRKTVATSL	Q HLRDYPEKY	FFLIHCEGTR	FTEKKHEISM	QVARAKGLPR
	210	220	230	240	250
LPAAT-Y1	LKYHLLPRTK	GFTTAVKCLR	GTVAAVYDVT	LNF-RGNKNP	SLLGILYGKK
LPAAT-Y2	LKYHLLPRTK	GFTTAVKCLR	GTVAAVYDVT	LNF-RGNKNP	SLLGILYGKK
LPAAT-δ	LKHHLLPRTK	GFAITVRSLR	NVVSAVYDCT	LNF-RNNENP	E LLGVLNGKK
	260	270	280	290	300
LPAAT-Y1	YEADMCVRRF	PLEDIPLDEK	EAAQWLHKLY	QEKDALQEIY	NQKGMFPGEQ
LPAAT-Y2	YEADMCVRRF	PLEDIPLDEK	EAAQWLHKLY	QEKDALQEIY	NQKGMFPGEQ
LPAAT $-\delta$	YHADLYVRRI	PLEDIPEDDD	ECŠAWLHKLY	QEKDAFQEEY	YR İ GTFP E TP
	310	320	330	340	350
LPAAT-γ1		LNFLSWATIL	LSPLFSFVLG	VFASGSPLLI	LTFLGFV
LPAAT-Y2	FKPARRPWTL	LNFLSWATIL	LSPLFSFVLG	VFASGSPLLI	LTFLGFV
LPAAT-δ	MVPPRRPWTL	VNWLFWASIJV	LYPFFQFLVS	MIRSGSSLTL	ASFILVF
	360	370	380		
LPAAT-γ1		IGVTEIEKGS		KKE*	
LPAAT-γ2		IGVTEIEKGS			
LPAAT-δ		IGVTEIDKGS			
				_	

· `}; ;

Figure 13

