Problem 4(b)

We plotted the old and new orbits. For the new orbits, we plotted the case for $\epsilon=0.8$, for both cases of applying impulse outward and inward.

The orbit equation for the new orbit is:

$$r(\theta) = \frac{\alpha}{1 + \epsilon \cos(\theta + \theta_0)}$$

Because at t=0, $\,\theta=0$, and $\,r(\theta=0)=\alpha=r_0$, $\,\theta_0\,$ must be $\,\pm\pi/2$. If $\,\theta_0=\pi/2$, we will have the case that impulse is applied outward. If $\,\theta_0=-\pi/2$, we will have the case that impulse is applied inward.

