华南理工大学期末考试试卷

《电工与电子技术》(化工类)

考试时间: 150 分钟

考试日期:

)。

月

H

)。

-	1 1	111	四	五.	六	七	八	九	+	+	<u></u>	总分
12	8	8	10	8	10	8	6	10	8	7	5	100

一. 选择题(每小题 2 分, 共 12 分)

1、图示电路中,供出功率的电源是(

(a)理想电压源

(b)理想电流源

(c)理想电压源与理想电流源

)。

2、图示电路正处于谐振状态,闭合 S 后,电流表 A 的读数将()。 (a)增大 (b)减小 (c)不变

- 3、图示电路在稳定状态下闭合开关 S, 该电路(
 - (a)不产生过渡过程,因为换路未引起L的电流发生变化
 - (b)要产生过渡过程,因为电路发生换路
 - (c)要发生过渡过程,因为电路有储能元件且发生换路

(a)增加

4、运行中的三相异步电动机, 当负载增大且不超过额定负载时, 其转速将((b)不变

(c)稍微减小

5、所示电路中,二极管 D 为理想元件,设 u_i =10 $\sin \omega t$ V,稳压管 DZ 的稳定电压为 5V,正 向压降不计,则输出电压 u_0 的波形为图 2 中(

6、电路如图所示,当 R_L 的值由大变小时, I_L 将()。 (a)变大 (b)变小 (c)不变

二、图示电路中,已知: U_s =15V, I_{s1} =3A, I_{s2} =2A, R_1 =3 Ω , R_2 =8 Ω , R_3 =4 Ω , R_4 =12 Ω , R_5 =2 Ω 。 用戴维宁定理求电流 I。(8 分)

三、如图所示的正弦交流电路中,电源频率为 50Hz,L=0.138H,电流有效值 I_c =2A, I_R =1.414A,电路功率因数 $cos \varphi$ =1。试求 R 和 C。(8 分)

四、线电压 U_{l} =220V 的对称三相电源上接有两组对称三相负载,一组是接成三角形的感性负载,每相功率为 4.84kW,功率因数 $\cos \varphi$ =0.8;另一组是接成星形的电阻负载,每相阻值为 10Ω ,如图所示。求各组负载的相电流及总的线电流。(10分)

五、图示电路原已稳定,t=0 时将开关 S 闭合,已知: R_1 = R_2 = R_3 = 10Ω ,L=4H, $U_{\rm SI}$ =10V, $U_{\rm S2}$ =20V。求开关 S 闭合后的线圈电流 $i_L(t)$ 。(8 分)

20 HT

t+2

六、有一容量为 10kVA 的单相变压器,电压为 3300/220V,变压器在额定状态下运行。求: (1)原、副边额定电流; (2)副边可接 60W,220V 的白炽灯多少盏; (3)副边若改接 40W,220V,功率因数 $cos \varphi$ =0.44 的日光灯,可接多少盏(镇流器损耗不计),变压器输出功率多少? (10分)

七、图示电路中 KM_1 、 KM_2 和 KM_3 分别控制电动机 M_1 、 M_2 和 M_3 ,试说明其控制功能,并画出主电路。(8 分)

八、电路如图 1 所示,设输入信号 $u_{\rm II},u_{\rm I2}$ 的波形如图 2 所示,若忽略二极管的正向压降,试画出输出电压 u_0 的波形,并说明 t_1 、 t_2 时间内二极管 D_1 , D_2 的工作状态。(6 分)

九、电路如图所示,要求: (1)定性画出电压 u_{o1} 及 u_{o2} 波形; (2)画出两种输出情况下的微变等效电路; (3)推导出分别自 1、2 端输出时的电压放大倍数表达式; (4)试分析从 1 端和 2 端输出时放大电路中分别存在什么类型和性质的反馈? (10 分)

十、电路如图所示, R_1 =6kΩ, R_2 =4kΩ, R_3 =12kΩ, R_4 =3kΩ, R_5 =24kΩ, R_6 =4kΩ, R_7 =2kΩ, R_8 =12kΩ, R_9 =6kΩ,且输入电压 u_{11} =1V, u_{12} =2V, u_{13} =-3V,求输出电压 u_{0} 为多少?(8 分)

十一、单相半控桥式整流电路如图所示,交流电源电压 $u_2=\sqrt{2}U_2\sin\omega t$, 当控制角 α_1 =60°时,输出电压平均值 $U_0=100\mathrm{V}$,问控制角 α_2 =30°时,输出电压平均值 U_0 应为多少?并定性画出 α_2 =30°时输出电压 u_0 的波形(一个半周期)。(7 分)

十二、画出下列语句表程序对应的梯形图。(5分)

NETWORK 1

LD I0.0

O I0.1

ON M0.2

= Q0.0

NETWOR 2

LDN Q0.0

A I0.3

O M0.0

AN I0.4

O M0.1

= M0.0