S1-Cinématique et dynamique

Chapitre 1 – Analyse dimensionnelle

Chapitre 2 – Cinématique cartésienne

Chapitre 3 – Principe fondamental de la dynamique

Chapitre 4 – Forces de frottements fluides et solides

Chapitre 5 – Tension d'un ressort / force élastique

Chapitre 6 – Cinématique en coordonnées polaires

Chapitre 7 – Travaux de forces et Énergies

Chapitre 8 – Positions d'équilibres pour un point matériel

22 séances cours/TD

1 poly

2 TP

3 CC

1. Analyse dimensionnelle

De quelles dimensions parle-t-on?

Qu'est-ce qu'une grandeur physique?

- Lorsqu'on peut mesurer une certaine caractéristique du monde physique on lui associe une dimension physique et une quantité appelée grandeur physique.
- Il existe des nombreuses dimensions physiques associées :
 - → A l'espace ⇔ la distance,
 - → A l'existence ⇔ la masse,
 - → A l'évolution ⇔ la durée,
 - → A la vitesse moyenne d'agitation d'un grand nombre d'entités ⇔ la température,
 - → L'énergie...
- Deux grandeurs ont même dimension physique si elles sont comparables.
 - Durée et distance sont des grandeurs physiques mesurables mais de dimensions différentes cela n'a pas de sens de les comparer (« poireaux ≠ carottes »)
- Mesurer, c'est comparer.
 - ➤ La comparaison se fait avec une unité choisie
 - >L'instrument de comparaison est l'étalon il est construit identique pour tout le monde

Polissage final d'un ancien prototype en platine iridié pour le kilogramme étalon...

Remarque sur la notion de dimension

Autrement dit, par définition, une grandeur physique G a une dimension si sa mesure dépend du choix de l'étalon de mesure.

Pour parler de la dimension de G, on note : [G].

<u>Exemple</u>: Pour une distance d, alors on écrit : [d] = L (qui est le symbole des longueurs)

<u>Question</u>: Selon vous, la valeur d'une distance entre deux points dépend-elle de l'unité de mesure des distances choisie?

Le Système International (S.I.) des unités a besoin de 7 dimensions de bases pour toutes les grandeurs physiques

Dimension	Symbole
Longueur	L
Masse	M
Temps	T
Intensité électrique	1
Température	Θ
Quantité de matière	N
Intensité lumineuse	J

<u>Les 7 dimensions principales</u> permettent de trouver les dimensions de <u>toutes les autres grandeurs</u> physiques connues dites grandeurs dérivées.

Il suffit que <u>connaitre une relation</u> entre la grandeur dérivée et les grandeurs fondamentales.

Exemples: 1. La vitesse

D'après la définition $v_x \equiv \frac{dx}{dt}$, on déduit : [v]=LT⁻¹.

2. Trouver les dimensions de : *l'accélération*, la *force*, *l'énergie*, la *tension électrique*,...

(Aidez-vous de relations connues.)

Quelles unités choisir?

Toise, aune, boisseau, pied, once, livre, botte, carcel ou arpent...

Mètre étalon, place Vendôme à Paris, sur la façade du ministère de la Justice

Copie du Kg-étalon au B.I.P.M.

Filiation des unités – cas de la masse

Système International des unités

Quels sont les étalons du Système International actuel?

© Constantes choisies ou expérimentales

Constante	Symbole	Valeur numérique	Unité
fréquence de la transition hyperfine du césium	n Δν _{Cs}	9 192 631 770	Hz
vitesse de la lumière dans le vide	С	299 792 458	${\rm m\ s^{-1}}$
constante de Planck	h	6,626 070 15 x 10 ⁻³⁴	Js
charge élémentaire	e	1,602 176 634 x 10 ⁻¹⁹	С
constante de Boltzmann	k	1,380 649 x 10 ⁻²³	J K ⁻¹
constante d'Avogadro	N_{A}	6,022 140 76 x 10 ²³	mol ⁻¹
efficacité lumineuse	K_{cd}	683	Im W ⁻¹

Les 7 unités FONDAMENTALES du Système International SI

Dimension	Symbole	Unité SI	Symbole
Longueur	L	mètre	m
Masse	M	kilogramme	kg
Temps	Т	seconde	S
Intensité électrique	I	ampère	A
Température	0	kelvin	K
Quantité de matière	Ν	mole	mol
Intensité lumineuse	J	candela	cd

Notez l'emploi des minuscules ou majuscules

Les unités physiques dérivées sont déterminées à partir des relations physiques et des unités fondamentales

La plupart des unités dérivées bénéficient d'un nom propre et d'un symbole.

Grandeur	Unité SI	Grandeur	Unité SI
aire	m ²	énergies	J (joule)
volume	m^3	pression	Pa (pascal)
masse molaire	kg.mol ⁻¹	tension	V (volt)
masse volumique	kg.m ⁻³	charge électrique	C (coulomb)
fréquence	Hz (hertz)	résistance électrique	Ω (ohm)
vitesse (scalaire)	m.s ⁻¹	champ électrique	V.m ⁻¹
vitesse angulaire, pulsation	rad.s ⁻¹	conductance électrique	S (siemens)
accélération (scalaire)	m.s ⁻²	capacité électrique	F (farad)
force d'interaction	N (newton)	inductance	H (henry)
puissance mécanique	W (watt)	champ magnétique	T (tesla)

Remarques:

NE PAS CONFONDRE DIMENSION ≠ UNITE

<u>L'unité relève d'un choix</u> (on dit une convention), pas la dimension qui est « physique » (LONGUEUR ≠ METRE).

Il existe des grandeurs sans dimensions avec des unités:

- Les angles* (mais ils ont des unités : rad, degrés...),
- Les quantités dans les fonctions sin(x), cos(x), ln(x), 1+x, etc.

^{*}Si l'on change l'étalon de distance, la mesure des angles , elle, reste inchangée: $\theta \equiv \frac{\widehat{A'B'}}{r}$

Petite révision des multiples et sous-multiples

Les préfixes SI

Valeur	10-18	10 ⁻¹⁵	10-12	10-9	10-6	10-3	10-2	10-1
Préfixe	atto	femto	pico	nano	micro	milli	centi	déci
Symbole	В	f	d	n	μ	m	С	d
Valeur	10 ¹	10 ²	10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸
Préfixe	déca	hecto	kilo	Mega	Giga	Tera	Peta	Exa
Symbole	da	h	k	M	G	Т	Р	Е

Entrainement : Remplir les cases vides

	Adjectif numéral	Puissance de dix	préfixe	symbole
Exemple:	« dizaine de »	10¹ ou 10	déca	da
	millier			
		10 ⁻⁶		
			giga	
				С
	milliardième			
		10 ²		
			méga	
				m

Comment utiliser tout ce que l'on sait sur les dimensions?

Par construction, toute dimension [G] est liée aux 7 dimensions fondamentales par une relation de type produit de puissances

[Vitesse] = L.T⁻¹
$$\Rightarrow$$
 a = 1, b =0, c = -1, d = 0, e = 0, f = 0, g = 0
[Energie] = M.L².T⁻² \Rightarrow a = 2, b =1, c = -2, d = 0, e = 0, f = 0, g = 0

Pour vérifier une formule

Toute formule inhomogène est nécessairement fausse.

Vérifier l'homogénéité de vos démonstrations littérales!!

Alors... distance, temps et vitesse sont reliées par : d = v/t ou d = t/v ou d = v.t ?

Remarques:

Certaines expressions ont été présentées au lycée alors qu'elles sont incorrectes : $pH= - log[H_3O^+]$ avec $[H_3O^+]$ en mol.L⁻¹.

En réalité, il faut écrire : $pH= - log([H_3O^+]/c^\circ)$ où c° est la concentration standard de 1000 mol.m⁻³ soit 1 mol.L⁻¹, à voir en chimie des solutions.

On retiendra quelques règles :

•Dans sin(x), cos(x), exp(x), ln(x) et log(x), x sans dimension;

•Dans log(1+x), x sans dimension;

•Dans log(1+x/y), x et y même dimension.

Bien entendu: HOMO

Nécessaire AU SENS PHYSIQUE mais pas suffisant

Exercice

La période d'oscillation d'un pendule simple dépend de sa longueur ℓ , du champ de pesanteur g et de l'amplitude angulaire $\theta_{\rm max}$ des oscillations. On propose plusieurs formules ; préciser quelles sont les formules inhomogènes :

$$T = 2\pi \sqrt{rac{\ell + heta_{
m max}}{g - heta_{
m max}}} \qquad T = 2\pi \sqrt{rac{\ell}{g heta_{
m max}}} \qquad T = 2\pi \sqrt{rac{\ell}{g}} \left(1 + rac{ heta_{
m max}^2}{16}
ight) \qquad T = 2\pi \sqrt{rac{\ell}{g}} \left(1 + rac{ heta_{
m max}}{\ell}
ight)$$

La première et la dernière ne sont pas homogènes.

Pour convertir des unités

L'équation aux dimensions étant indépendante du système d'unités, elle permet de convertir une unité d'un système vers celle d'un autre système.

Exemple

Système international, la force → newton

Système CGS(cm, gramme, seconde) force → dyne

Combien de newton vaut 1 dyne?

Aide : $[Force] = MLT^{-2}$

1 newton=10⁵ dynes

Pour modéliser

L'analyse dimensionnelle permet de prévoir la forme d'une loi si l'on sait quels sont les paramètres pertinents du problème

Application: Place à l'intuition avec la 3^{ième} loi de Kepler

« La période de révolution d'une planète attirée par le Soleil est reliée au demigrand axe, à la masse du Soleil et à la constante de gravitation. »

Retrouvez cette relation.

Aide : $[G] = M^{-1}L^3T^{-2}$

Sitographie

Les grandeurs fondamentales du Système International :

https://www.bipm.org/fr/about-us/

https://femto-physique.fr/omp/grandeurs-physiques.php

