1. Übung zur Physik I (WS 2013/14)

Ausgabedatum: 15.10.2013 Abgabedatum: 21./22.10.2013

Aufgabe 1: Rechnen mit Einheiten

(schriftlich, 2 Punkte)

Prof. Kohl/Prof. Rohlfing

a) Drücken Sie die Winkel 1° (Grad), 1' (Winkelminute) und 1" (Winkelsekunde) im Bogenmaß (rad) aus!

b) Um wieviel Sekunden geht eine gute Quarzuhr mit einer relativen Genauigkeit von 10⁻⁹ maximal in einem Jahr falsch?

Aufgabe 2: Entfernungen in der Astronomie

(schriftlich, 3 Punkte)

In der Astronomie werden oft – abweichend vom SI-System – andere Längeneinheiten verwendet, die auf dem mittleren Radius der Erdbahn um die Sonne (astronomische Einheit AE) bzw. auf der Lichtgeschwindigkeit beruhen.

- a) Welcher Strecke entspricht ein Lichtjahr (ly) (die Strecke, die Licht in einem Jahr zurücklegt)?
- b) Ein Parsec (pc) ist definiert als der Abstand, von dem aus ein Objekt der Größe 1 AE (AE \approx 1,496 · 10¹¹ m) unter einem Winkel α von einer Winkelsekunde (1") erscheint. Drücken Sie die Einheit pc in m und in Lichtjahren aus!
- c) Der nächste Fixstern (Alpha Centauri) ist etwa $d=4,3\cdot 10^{16}$ m
 entfernt. Drücken Sie diesen Abstand in Parsec und in Lichtjahren aus!

Aufgabe 3: Mittelwert und Standardabweichung

(mündlich, 3 Punkte)

In den Semesterferien jobben Sie bei einem Getränkehändler. Dort werden Sie damit beauftragt, zur Qualitätssicherung den Füllstand von Literflaschen (in ml) zu überprüfen. Ihre Messungen ergeben Folgendes:

Messung	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Volumen	989	1002	1000	996	998	1007	1002	999	1003	994	985	998	1001	1006

- a) Wie groß ist das mittlere Getränkevolumen?
- b) Wie groß ist die Standardabweichung σ des mittleren Getränkevolumens?
- c) Die Vorgabe der Qualitätssicherung ist, keine Flasche mit mehr als 2σ Abweichung vom Mittelwert in den Verkauf kommen zu lassen. Wie viele Flaschen müssen Sie aus dem Verkehr ziehen?

Die elementaren Funktionen $e^x = \exp(x)$, $\sin(x)$, $\cos(x)$, $\sinh(x)$ und $\cosh(x)$ (hyperbolische Sinus-/Kosinus-Funktion) lassen sich folgendermaßen darstellen:

$$e^x = \exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$, $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$,

$$\sinh(x) = \frac{1}{2} (e^x - e^{-x}), \quad \cosh(x) = \frac{1}{2} (e^x + e^{-x}).$$

Hierbei bedeutet

$$\sum_{n=0}^{m} a_n = a_0 + a_1 + a_2 + \dots + a_m .$$

Die entsprechenden Umkehrfunktionen lauten $\ln(y)$, $\arcsin(y)$, $\arcsin(y)$, $\arcsin(y)$ und $\arcsin(y)$. Beweisen Sie mittels der Summendarstellungen folgende Eigenschaften:

$$a) \quad \exp(0) = 1$$

a)
$$\exp(0) = 1$$
 b) $\exp(x + y) = \exp(x) \exp(y)$ c) $\frac{d}{dx} \exp(x) = \exp(x)$

c)
$$\frac{d}{dx} \exp(x) = \exp(x)$$

d)
$$\frac{d}{dx}\sin(x) = \cos(x)$$

d)
$$\frac{d}{dx}\sin(x) = \cos(x)$$
 e) $\frac{d}{dx}\cos(x) = -\sin(x)$

Hinweis:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}, \quad \text{wobei} \quad \binom{n}{k} = \frac{n!}{k! (n-k)!}.$$

Beweisen Sie ferner:

f)
$$\exp(-x) = \frac{1}{\exp(x)}$$
 g) $\exp(x) > 0$ für alle x h) $\sinh(-x) = -\sinh(x)$

g)
$$\exp(x) > 0$$
 für alle x

$$h) \quad \sinh\left(-x\right) = -\sinh\left(x\right)$$

i)
$$\cosh(-x) = \cosh(x)$$

i)
$$\cosh(-x) = \cosh(x)$$
 j) $\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$

$$k) \quad \cosh^2(x) - \sinh^2(x) = 1$$

k)
$$\cosh^{2}(x) - \sinh^{2}(x) = 1$$
 l) $\operatorname{arsinh}(y) = \ln(y + \sqrt{1 + y^{2}})$

Aufgabe 5: Differentialrechnung

(schriftlich, 3 Punkte)

Gegeben seien die Funktionen:

$$f_1(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}$$
 $f_2(x) = \cot(x) = \frac{\cos(x)}{\sin(x)} = \frac{1}{\tan(x)}$ $f_3(x) = \arccos(x)$

$$f_4(x) = \arctan(x)$$
 $f_5(x) = \sinh(x)$ $f_6(x) = \cosh(x)$

$$f_7(x) = \tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$
 $f_8(x) = \coth(x) = \frac{\cosh(x)}{\sinh(x)} = \frac{1}{\tanh(x)}$

- a) Skizzieren Sie die Funktionen. Überlegen Sie sich dazu bei den Funktionen $f_5(x)$ bis $f_8(x)$ deren Verhalten bei x = 0 und für $x \to +\infty$ bzw. $x \to -\infty$.
- b) Berechnen Sie die 1. und 2. Ableitung der Funktionen $f_1(x)$ bis $f_8(x)$.

Berechnen Sie folgende unbestimmte Integrale $I = \int f(x) d(x)$. Falls erforderlich, sollten Sie partiell integrieren bzw. substituieren.

1)
$$f(x) = 2x + 4x^2 + 5x^3$$

$$2) \quad f(x) = -\cos(x)$$

3)
$$f(x) = \frac{x}{(a^2 + x^2)^2}$$

1)
$$f(x) = 2x + 4x^2 + 5x^3$$
 2) $f(x) = -\cos(x)$ 3) $f(x) = \frac{x}{(a^2 + x^2)^2}$
4) $f(x) = \frac{x^2 - 1}{x^3 - x^2 - x + 1}$ 5) $f(x) = \frac{1}{\sin^2(x)}$ 6) $f(x) = \sinh(x) \cdot \cosh(x)$

$$5) \quad f(x) = \frac{1}{\sin^2(x)}$$

6)
$$f(x) = \sinh(x) \cdot \cosh(x)$$

7)
$$f(x) = \cos(x) \cdot e^{\sin(x)}$$
 8) $f(x) = x^2 \cos(x)$

$$8) \quad f(x) = x^2 \cos(x)$$

Vektorrechnung Aufgabe 7:

(schriftlich, 2 Punkte)

a) Berechnen Sie den Betrag der Vektoren:

$$\vec{a} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix} \quad \text{und} \quad \vec{c} = \begin{pmatrix} -3 \\ 3 \\ -6 \end{pmatrix}.$$

- b) Normieren Sie die Vektoren \vec{a} bis \vec{c} .
- c) Berechnen Sie mit den Vektroren \vec{a} bis \vec{c} :

$$\left(\vec{a} + \vec{b}\right)$$
, $\left(\vec{a} - \vec{b}\right)$, $\left(\vec{a} \cdot \vec{b}\right)$, $\vec{a} \times \vec{b}$,

$$\left(\vec{a} + \vec{c}\right)$$
, $\left(\vec{a} - \vec{c}\right)$, $\left(\vec{a} \cdot \vec{c}\right)$, $\vec{a} \times \vec{c}$.

- d) Wie groß ist der Winkel zwischen den Vektoren \vec{a} und \vec{b} ; \vec{a} und \vec{c} ?
- e) Wie lang ist die Projektion von \vec{a} auf \vec{b} ?