A PRELIMENERY REPORT ON

FLIGHT TICKET COMPARISON BOT

SUBMITTED TO THE VISHWAKARMA INSTITUTE OF INFORMATION TECHNOLOGY, PUNE

IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

BACHELOR OF TECHNOLOGY (COMPUTER ENGINEERING)

SUBMITTED BY

Group No. 2

Sr. No.	Name	PRN	Roll No.	Division
1	Darshan Vadile	22210373	323072	C
2	Atharva Karandikar	22320134	323083	C

DEPARTMENT OF COMPUTER ENGINEERING

BRACT'S VISHWAKARMA INSTITUTE OF INFORMATION TECHNOLOGY

SURVEY NO. 3/4, KONDHWA (BUDRUK), PUNE – 411048, MAHARASHTRA (INDIA).

Sr. No.		Title of Chapter	Page No.	
01		Introduction		
	1.1	Overview		
	1.2	Motivation	3	
	1.3	Problem Definition and Objectives	3	
	1.4	Project Scope & Limitations	3	
	1.5	Methodologies of Problem solving	3	
02		Literature Survey	4	
(03	System Design	5	
	3.1	System Architecture	5	
(04	Project Implementation	6	
	4.1	Overview of Project Modules	6	
	4.2	Tools and Technologies Used	6	
	4.3	Algorithm Details	7	
05		Results	9	
	5.1	Outcomes	10	
	5.2	Screen Shots	10	
	5.3	Metrics	11	
06		Conclusions	12	
	9.1	Conclusions	12	
	9.2	Future Work	12	
	9.3	Applications	12	
	•	References	13	

1. INTRODUCTION

1.1 Overview

The Flight Ticket Comparison Bot is an RPA solution that automates the search for the three cheapest flights for a given source, destination, and departure date. Leveraging Google Flights, the bot extracts fare, airline, departure time, duration, and a direct booking link, presenting results to the user in a single view.

1.2 Motivation

Online fare-comparison portals still require manual form-filling and page navigation. This is tedious and error-prone for casual users and travel desks alike. By delegating the repetitive search-and-compare task to an unattended bot, we cut effort, reduce human error, and obtain up-to-date fares instantly.

1.3 Problem Definition & Objectives

Problem Statement: Design and implement a bot that scans flight ticket prices across available online sources and returns the three cheapest options, showing: price, airline, departure/arrival time, flight duration, and booking link.

Objectives

- 1. Capture live fare data from Google Flights.
- 2. Sort the dataset in ascending order of price.
- 3. Extract the five key attributes for the top three cheapest flights.
- 4. Present the consolidated result to the end-user.

1.4 Scope & Limitations

- *Scope*: One-way economy searches, single departure date, data source limited to Google Flights, Automation Anywhere A360.
- *Limitations*: No support for return or multi-city itineraries; fares may vary between scrape and booking; DOM changes on google.com/flight may require bot maintenance; currency fixed to INR.

1.5 Methodology of Problem Solving

- 1. Accept user inputs (source IATA, destination IATA, date) through a simple form.
- 2. Construct Google Flights URL and launch in Chrome via Automation Anywhere.
- 3. After page load, use DOM XPath commands to collect flight cards into a list variable.
- 4. Parse each item to retrieve fare, airline, timing, duration, booking hyperlink.
- 5. Convert fare strings to integers, sort list, slice first three.
- 6. Display result set in a message box.

2. LITERATURE SURVEY

Year	Author / Source	Approach	Data Source	Key Points	Limitations
2023	Dev API	Quote API	Vyccanner	II · · · · · · · · · · · · · · · · · ·	Paid access, rate-limited
2022	Cleartrip Public API	JSON flights endpoint	Cleartrip	India-centric, simple auth	Limited carriers

Gap identified: Prior work emphasises APIs; minimal literature showcases a pure RPA scraper that eliminates API costs while keeping implementation lightweight.

3. SYSTEM DESIGN

3.1 System Architecture

Components:

- User Supplies three inputs (source IATA, destination IATA, departure date) and receives the ranked list of the three cheapest flights.
- Bot (Automation Anywhere A360) Orchestrates the workflow: builds the Google Flights URL, launches and controls Chrome, scrapes flight details, ranks them by price, and returns the results.
- **Chrome Browser** A browser instance driven by the bot; it renders the Google Flights page so the bot can interact with live elements exactly as a human would.
- Google Flights The external web service that aggregates real-time flight schedules and fares; it is the single data source the bot queries.

4. PROJECT IMPLEMENTATION

4.1 Module Overview

- 1. Launch & Navigate: Opens Chrome with constructed URL.
- 2. **Scrape Stage**: Loops over flight-card elements, stores raw strings.
- 3. Parse & Clean: Regex to isolate ₹ value; split airline, times, duration.
- 4. Rank & Select: Sort list ascending; select first three.
- 5. **Output**: Display a message box.

4.2 Tools & Technologies

- Automation Anywhere A360
- Google Chrome on Windows 11
- Regex
- XPath

4.3 Algorithm Details

- Input Stage Receive source airport, destination airport, and travel date from the user.
- Navigation Stage Direct the bot-controlled browser to the Google Flights results page for those inputs.
- Collection Stage Gather all flight entries displayed on the page.

- **Selection Stage** Keep only the three cheapest flights.
- Output Stage Present the selected flight details to the user and end the session.

5. RESULTS

5.1 Outcomes

Bot returns message box:

5.2 Screenshots

5.3 Metrics

Execution time: 79 seconds

6. CONCLUSIONS & FUTURE WORK

6.1 Conclusions

The RPA bot successfully automates fare comparison, providing instant cheapest-flight insights without API costs or manual effort.

6.2 Future Work

- Add return/multi-city support.
- Build price-drop alerts via email.

6.3 Applications

- Student travel desks
- Corporate travel cost-cutting
- Personal trip planning

REFERENCES

- Skyscanner API Docs, 2023.
 Cleartrip Public API Reference, 2022.