

Verfahren zur Elimination von Störsignalanteilen in einem Eingangssignal eines auditorischen Systems, Anwendung des Verfahrens und ein Hörgerät

5

Die vorliegende Erfindung betrifft ein Verfahren zur Elimination von Störsignalanteilen in einem Eingangssignal eines auditorischen Systems, eine Anwendung des Verfahrens zum Betrieb eines Hörgerätes sowie ein Hörgerät.

10

Hörgeräte werden bekanntlich bei Personen mit einem geschädigten Gehör eingesetzt, wobei es zunächst das Ziel ist, den Hörschaden möglichst vollständig zu kompensieren. Die Akzeptanz eines Hörgerätes ist beim Hörgeräteträger insbesondere dann erhöht, wenn das Hörgerät auch in einer Umgebung mit starken Störgeräuschen seine Aufgaben zufriedenstellend erfüllt, mit anderen Worten, wenn die Sprachverständlichkeit auch bei starken Störsignalen für den Hörgeräteträger hoch ist.

20

Wenn im folgenden der Begriff "Hörgerät" verwendet wird, so sind darunter sowohl sogenannte Hörlhilfen, welche zur Korrektur eines geschädigten Hörvermögens einer Person eingesetzt werden, als auch alle anderen akustischen Kommunikationssysteme, wie zum Beispiel Funkgeräte, zu verstehen.

25

Zur Verbesserung der Sprachverständlichkeit mit Hilfe von Hörgeräten bei Vorhandensein von Störsignalen sind drei Techniken bekannt:

Als erstes wird auf Hörgeräte verwiesen, welche mit der sogenannten Richtmikrophon-Technologie ausgestattet sind. Diese Technologie erlaubt es, eine räumliche Filterung vorzunehmen, so dass Störgeräusche, welche aus einer anderen Richtung als ein Nutzsignal kommen - beispielsweise

30

von hinten oder von der Seite - abgeschwächt oder sogar
eliminiert werden können. Das auch etwa unter dem Begriff
"Beamforming" bekannte Verfahren erfordert mindestens zwei
Mikrophone im Hörgerät. Einer der Hauptnachteile bei diesen
bekannten Hörgeräten ist die Tatsache, dass Störgeräusche,
welche aus der gleichen Richtung kommen wie das Nutzsignal,
nicht abgeschwächt, geschweige denn eliminiert werden
können.

10 Des weiteren wird auf die bekannte Möglichkeit verwiesen,
mit Hilfe einer Sendeeinheit ein interessierendes
Nutzsignal möglichst am Ort des Entstehens aufzunehmen und
über eine drahtlose Verbindung direkt in eine
Empfangseinheit im Hörgerät zu übermitteln. Damit wird
vermieden, dass Störsignale ins Hörgerät gelangen. Dieses
in der Hörgeräteindustrie auch etwa unter dem Begriff "FM-
(Frequency Modulation) -Technologie" bekannte Verfahren
erfordert Zusatzgeräte wie die bei der Schallquelle zu
platzierende Sendeeinheit und die mit dem Hörgerät zu
koppelnde Empfangseinheit. Die Handhabung ist für den
Hörgerätebenutzer entsprechend umständlich.

Schliesslich wird an dritter Stelle auf Hörgeräte
hingewiesen, in denen die Eingangssignale unter Anwendung
25 von Signalverarbeitungsalgorithmen verarbeiten werden mit
dem Ziel, die im Eingangssignal enthaltenen Störsignale zu
unterdrücken, zumindest aber abzuschwächen, bzw. die
entsprechenden Nutzsignalanteile zu verstärken (sogenanntes
"noise canceling"). Hierzu werden die im Eingangssignal
30 vorhandenen Störsignalanteile in mehreren Frequenzbändern
geschätzt, wobei in der Folge allfällige Störsignalanteile
vom Eingangssignal des Hörgerätes zur Erzeugung des
Nutzsignals subtrahiert werden oder die Störanteile
abgeschwächt werden. Dieses Vorgehen wird auch etwa als
35 "spectral subtraction" bezeichnet. Aus der europäischen
Patentschrift mit der Nummer EP-B1-0 534 837 ist ein

solches Verfahren bekannt, das zu annehmbaren Ergebnissen führt. Die Methode der spektralen Subtraktion funktioniert allerdings nur dann gut, wenn die Störsignalanteile bandbegrenzt und stationär sind. Ist diese Annahme nicht
5 erfüllt, wie z.B. bei nicht-stationären Störsignalanteilen, können das Nutzsignal (Sprachsignal, welches nicht-
stationär ist) und die Störsignalanteile nicht unterschieden werden. Die spektrale Subtraktion funktioniert in diesem Fall schlecht und die
10 Sprachverständlichkeit ist durch die nicht eliminierten Störgeräuschanteile stark reduziert. Darüber hinaus kann durch die Anwendung der spektralen Subtraktion auch das Nutzsignal beeinträchtigt werden.

15 Des weiteren hat eine Untersuchung von Baer et. al. ("Spectral Contrast Enhancement of Speech in Noise for Listeners with Sensorneural Hearing Impairment: Effects on Intelligibility, Quality, and Response Times", Journal of Rehabilitation Research and Development 30, Seiten 49 bis
20 72) gezeigt, dass die Verstärkung des spektralen Kontrastes (spectral enhancement) zwar zu einer subjektiv besseren Qualität des Signals sowie zu einer verminderten Höranstrengung führt aber nicht allgemein zu einer Verbesserung der Sprachverständlichkeit. In diesem Zusammenhang wird auf einen Aufsatz von Frank et. al. mit dem Titel "Evaluation of Spectral Enhancement in Hearing Aids, Combined with Phonemic Compression" (Journal of the Acoustic Society of America 106, Seiten 1452 bis 1464) verwiesen.
25

30 Des weiteren wird der Vollständigkeit halber auf die folgenden Dokumente verwiesen:

35 • T. Baer, B. C. J. Moore "Evaluation of a Scheme to Compensate for Reduced Frequency Selectivity in Hearing -Impaired Subjects", veröffentlicht in

"Modeling Sensorneural Hearing Loss" durch W.
Jesteadt, Lawrence Erlbaum Associated, Publishers,
Mahwah, New Jersey, 1997;

- 5 • V. Hohmann, "Binaural Noise Reduction and a
Localization Model Based on the Statistics of Binaural
Signal Parameters", International Hearing Aid Research
Conference, Lake Tahoe, 2000;
- US-5 727 072;
- N. Virag, "Speech enhancement based on masking
10 properties of the human auditory system", Ph.D.
Thesis, Ecole Polytechnique Fédérale de Lausanne,
1996.
- WO 91/03042

15 Der vorliegenden Erfindung liegt daher die Aufgabe
zugrunde, ein Verfahren anzugeben, bei dem die Elimination
von Störsignalanteilen verbessert ist.

20 Diese Aufgabe wird durch die im Patentanspruch 1
angegebenen Massnahmen gelöst. Vorteilhafte Ausgestaltungen
der Erfindung sowie eine Anwendung des Verfahrens und ein
Hörgerät sind in weiteren Ansprüchen angegeben.

25 Das erfindungsgemäße Verfahren, bestehend aus
Signalanalysephase und Verarbeitungsphase, erlaubt es, aus
beliebigen Eingangssignalen ein allfälliges Nutzsignal zu
extrahieren und unerwünschte Störanteile gezielt
auszuschalten bzw. erwünschte Signalanteile neu zu
generieren. Damit kann eine viel bessere, der
30 Umgebungssituation angepasste Störgeräuschunterdrückung
erreicht werden. Im Gegensatz zum herkömmlichen Noise
Canceling werden mit dem erfindungsgemäßen Verfahren die
Nutzsignale nicht beeinträchtigt. Des weiteren können auch
nicht-stationäre Störgeräusche aus dem Eingangssignal
35 entfernt werden. Schliesslich wird darauf hingewiesen, dass

mit herkömmlichen Störgeräusch-Unterdrückungsalgorithmen es nicht möglich ist, eine Synthese des Nutzsignals vorzunehmen.

5 Die Erfindung wird nachfolgend anhand von Zeichnungen beispielweise näher erläutert. Dabei zeigt

Fig. 1 eine schematische Darstellung des
erfindungsgemäßen Verfahrens anhand eines
10 Blockdiagramms,

Fig. 2, wiederum in schematischer Darstellung, einen Teil
des Blockdiagramms gemäß Fig. 1 und

15 Fig. 3 eine weitere Ausführungsform des in Fig. 2
dargestellten Teiblockdiagramms.

In Fig. 1 ist ein Blockdiagramm dargestellt, anhand dessen das erfindungsgemäße Verfahren, bestehend aus einer
20 Signalanalysephase I und einer Signalverarbeitungsphase II,
beschrieben wird. In der Signalanalysephase I wird ein
einem auditorischen System beaufschlagtes Eingangssignal
ES, welches sowohl Stör- als auch Nutzsignalanteile SS bzw.
NS aufweisen kann, anhand von auditorisch-basierten
25 Prinzipien, was im folgenden noch erläutert wird,
analysiert. In der Folge wird in der
Signalverarbeitungsphase II eine Störgeräuschbefreiung
vorgenommen, wobei die in der Signalanalysephase I
gewonnenen Erkenntnisse über die Störsignalanteile SS und
30 über die Nutzsignalanteile NS dazu verwendet werden.
Grundsätzlich werden hierzu zwei Ausführungsvarianten
vorgeschlagen: Die erste besteht darin, dass zur Gewinnung
des bzw. der Nutzsignale NS die unerwünschten
Störsignalanteile SS aus dem Eingangssignal ES entfernt
35 werden, bzw. dass die unerwünschten Störsignalanteile SS
unterdrückt oder abgeschwächt werden. Bei der zweiten

DEUTSCHE
PATENT-
OBERBEAMTE
196902587

Methode wird mittels einer Synthese das Nutzsignal NS bzw. NS' erzeugt.

In einer weiteren Ausführungsform des erfundungsgemässen
5 Verfahrens ist darüber hinaus auch vorgesehen, beide
vorstehend genannten Vorgehensweisen zu berücksichtigen,
mit anderen Worten, es wird sowohl die Unterdrückung der
ermittelten Störsignalanteile SS als auch die Synthese des
identifizierten Nutzsignals NS bzw. NS' in Kombination
10 angewendet.

Im Unterschied zu herkömmlichen Verfahren zur
Geräuschunterdrückung, bei denen ein Eingangssignal -
ebenfalls in einer Signalanalysephase - lediglich aufgrund
der Stationarität bzw. Nicht-Stationarität untersucht wird,
basiert das erfundungsgemässe Verfahren auf einer
auditorisch-basierten Signalanalyse. Dabei werden zumindest
auditorisch-basierte Merkmale, wie Lautheit, spektrales
15 Profil (timbre), harmonische Struktur (pitch), gemeinsame
Ein- und Ausschwingzeiten (on-/offset), kohärente
Amplituden- und Frequenzmodulation, kohärente Phasen,
interaurale Laufzeit- und Pegelunterschiede und andere, aus
dem Eingangssignal ES extrahiert, wobei die Extraktion
20 einzelner oder aller Merkmale vorgesehen sein kann. Die
Definition und weitere Angaben zu auditorischen Merkmalen
sind der druckschriftlichen Veröffentlichung von A. S.
Bregman mit dem Titel "Auditory Scene Analysis" (MIT Press,
Cambridge, London, 1990) entnehmbar. Es wird darauf
hingewiesen, dass das erfundungsgemässe Verfahren nicht auf
25 die Extraktion von auditorisch-basierten Merkmalen
eingeschränkt ist. Vielmehr ist denkbar, und soll im
weiteren als zusätzliche, vorteilhafte Ausgestaltung des
erfindungsgemässen Verfahrens verstanden werden, dass neben
auditorisch-basierten Merkmalen zusätzlich auch rein
30 technisch-basierte Merkmale - wie zum Beispiel
Nulldurchgangsraten, zeitliche Pegelschwankungen,

verschiedene Modulationsfrequenzen, spektraler Schwerpunkt, Amplitudenverteilung, u.a. - extrahiert werden.

In einer spezifischen Ausführungsform ist vorgesehen, dass
5 die Extraktion der Merkmale entweder aus dem Zeitsignal oder in verschiedenen, Frequenzbändern vorgenommen wird. Dazu kann eine gehörgerechte Filterbank (E. Zwicker, H. Fastl, Psychoacoustics -- Facts and Models , Springer Verlag, 1999) oder auch eine technisch basierte Filterbank
10 wie z. B. eine FFT- oder Wavelet-Filterbank verwendet werden.

Die Auswertung der ermittelten Merkmale, seien dies nun auditorisch-basierte oder technisch-basierte Merkmale, erlaubt die Identifikation und Unterscheidung verschiedener Signalanteile SA_1 bis SA_n , wobei einzelne dieser Signalanteile SA_1 bis SA_n interessierende Nutzsignale NS oder zu eliminierende Störsignale SS sind.
15
20 Die Auf trennung in die Signalanteile SA_1 bis SA_n wird erfindungsgemäss mit Hilfe von zwei verschiedenen Ansätzen erreicht. Die beiden Ansätze werden anhand der Figuren 2 und 3 im folgenden erläutert.
25 In Fig. 2 sind die in der Signalanalysephase I ablaufenden Verfahrensschritte in einem Blockdiagramm dargestellt. Es handelt sich dabei um zwei in Serie geschaltete Einheiten, nämlich um eine Merkmalsextraktionsseinheit 20 und um eine Gruppierungseinheit 21.
30 In der Merkmalsextraktionsseinheit 20 erfolgt die bereits erläuterte Extraktion von auditorisch-basierten und gegebenenfalls auch von technisch-basierten Merkmalen M_1 bis M_j zur Charakterisierung des Eingangssignals ES. Diese Merkmale M_1 bis M_j werden in der Folge in der Gruppierungseinheit 21 mit Hilfe der Methode der primitiven
35

Gruppierung, welche von A. S. Bregman mit dem Titel
"Auditory Scene Analysis" (MIT Press, Cambridge, London,
1990) beschrieben worden ist, geordnet. Diese an sich
bekannte Methode ist kontext-unabhängig und basiert auf der
5 sequentiellen Abfolge verschiedener Arbeitsschritte, mit
welchen das Eingangssignal ES auf Grund der extrahierten
Merkmale M₁ bis M_n in verschiedene, den unterschiedlichen
Klangquellen zugeordneten Signalanteilen SA₁ bis SA_n
unterteilt wird. Dieser Ansatz wird auch etwa als "bottom-
10 up" oder als "data-driven" bezeichnet. Diesbezüglich wird
auf die Veröffentlichung von G. Brown mit dem Titel
"Computational Auditory Scene Analysis: A Representational
Approach" (Ph.D. Thesis, University of Sheffield, 1992) und
auf die Veröffentlichung von M. Cooke mit dem Titel
15 "Modelling Auditory Processing Analysis and Organisation"
(Ph.D. Thesis, University of Sheffield, 1993) verwiesen.
Eine bevorzugte Ausführungsvariante ist in Fig. 3, wiederum
in einem Blockschaltbild, dargestellt, wobei die Verwendung
der Methode der Schema-basierten Gruppierung vorgesehen
20 ist, welche wiederum von A. S. Bregman (a.a.O.) ausführlich
erläutert worden ist. Die Methode der Schema-basierten
Gruppierung ist kontext-abhängig und wird auch etwa als
"top-down" oder "prediction-driven" bezeichnet.
Diesbezüglich sei auf die Veröffentlichung von D. P. W.
25 Ellis mit dem Titel "Prediction-Driven Computational
Auditory Scene Analysis" (Ph.D. Thesis, Massachusetts
Institute of Technology, 1996) verwiesen.

Wie aus Fig. 3 ersichtlich ist, wird neben der
30 Merkmalsextraktionseinheit 20 und der Gruppierungseinheit
21 zusätzlich eine Hypotheseeinheit 22 in der
Signalanalysephase I tätig. Dabei wird bereits aufgrund der
in Fig. 3 dargestellten Struktur deutlich, dass nicht mehr
nur eine sequentielle Abfolge von Arbeitsschritten
35 vorgesehen ist, sondern es wird, unter Berücksichtigung von
einem Vorwissen V, welche der Hypotheseinheit 22 zugeführt

wird, eine Hypothese H über die Art des Eingangssignals ES aufgrund der extrahierten Merkmale M₁ bis M_j und aufgrund der Signalanteile SA₁ bis SA_n erzeugt. Aufgrund der Hypothese H wird vorzugsweise sowohl die Merkmalsextraktion 5 in der Merkmalsextraktionseinheit 20 als auch die Gruppierung der Merkmale M₁ bis M_j einer momentanen Situation angepasst. Die Hypothese H wird also mittels einer "bottom-up"-Analyse sowie aufgrund des Vorwissens v über den akustischen Kontext generiert. Die Hypothese H 10 legt wiederum den Kontext der Gruppierung fest und basiert auf Kenntnissen und Annahmen über die akustische Umgebung sowie auf der Gruppierung selbst. Die in der Signalanalysephase I ablaufenden Verfahrensschritte sind 15 also nicht mehr rein sequentiell, sondern es ist eine Rückkopplungsschleife vorgesehen, welche die Anpassung an die jeweilige Situation ermöglicht.

Mit der eben beschriebenen bevorzugten Ausführungsvariante des erfundungsgemäßen Verfahrens ist es zum Beispiel 20 möglich, die Sprachverständlichkeit bei einem bekannten Sprecher, von dem das Vorwissen beispielsweise aus der Art der Sprache, typischen Pitchfrequenzen, Sprachgeschwindigkeit und Formantfrequenzen besteht, wesentlich zu verbessern gegenüber der Situation, wo keine 25 Angaben über den Sprecher mitberücksichtigt werden.

Gemäß dem erfundungsgemäßen Verfahren und unter Berücksichtigung der vorstehenden Ausführungen im Zusammenhang mit der Gruppierung können für die Bildung der 30 auditorischen Objekte, d.h. Signalanteile SA₁ bis SA_n, in beiden erwähnten Ansätzen für die Gruppierung die Prinzipien der Gestalttheorie (E. B. Goldstein, Wahrnehmungspsychologie , Spektrum Akademischer Verlag, 1996) auf die Merkmale M₁ bis M_j angewendet werden. Diese 35 beinhalten insbesondere

- Kontinuität,
- Nähe,
- Ähnlichkeit,
- gemeinsames Schicksal,
- 5 - Geschlossenheit und
- gute Fortsetzung.

Beispielsweise weisen Merkmale, die nicht kontinuierlich und nicht abrupt ändern, auf die Zugehörigkeit zu einer bestimmt Signalquelle hin. Zeitlich aufeinanderfolgende 10 Merkmale mit ähnlicher harmonischer Struktur (pitch) weisen auf spektrale Nähe hin und werden derselben Signalquelle zugeordnet. Auch andere ähnliche Merkmale, wie zum Beispiel Modulation, Pegel oder spektrales Profil, ermöglichen die 15 Gruppierung zu einzelnen Klangkomponenten. Ein gemeinsames Schicksal, wie zum Beispiel gemeinsames Ein- und/oder Ausschwingen und kohärente Modulation, deutet ebenfalls auf die Zugehörigkeit zum selben Signalanteil hin. Die Annahme der Geschlossenheit im zeitlichen Ablauf erleichtert die 20 Interpretation abruper Änderungen, so trennen Signallücken verschiedene Ereignisse oder Quellen, währenddem Überlagerte Anteile auf mehrere Quellen hindeuten.

Unter Fortführung der vorstehenden Ausführungen kann über 25 dies festgehalten werden, dass sich auch das Kriterium "gute Fortsetzung" für Schlussfolgerungen vorzüglich eignet. So ändert ein Signal normalerweise seinen Charakter nicht plötzlich, weshalb langsame Änderungen demselben Signalanteil zugeordnet werden, währenddem schnelle Wechsel 30 neue Signalanteile erzeugen.

Weitere Gruppierungsmöglichkeiten ergeben sich aus den extrahierten Merkmalen M_1 bis M_j selber. So kann durch die Analyse der Lautheit bestimmt werden, ob ein Signalanteil 35 überhaupt vorhanden ist oder nicht. Des weitern ist das spektrale Profil verschiedener Klangkomponenten

(Signalanteile) in der Regel unterschiedlich und ermöglicht daher die Differenzierung verschiedener auditorischer Objekte. Eine ermittelte harmonische Struktur (pitch) erlaubt ihrerseits Rückschlüsse auf einen tonalen

5 Signalanteil, der durch Pitch-Filterung erhalten werden kann. Die Übertragungsfunktion eines Pitch-Filters kann dabei beispielsweise die folgende Übertragungsfunktion aufweisen:

10 $H_{\text{pitch}}(z) = 1 - z^{-k},$

wobei z^{-k} der Periodenlänge der Pitchfrequenz entspricht. Durch Pitch-Filterung können sodann die tonalen Signalanteile von den restlichen Signalanteilen getrennt werden.

15
20 Die Analyse kohärenter Modulationen erlaubt es, spektrale Komponenten zu gruppieren, die mit demselben zeitlichen Muster moduliert sind, bzw. zu trennen, wenn die Muster unterschiedlich sind. Damit lassen sich insbesondere verschiedene Sprachanteile im Signal identifizieren und in der Folge auch trennen.

25 Die Auswertung gemeinsamer Ein- und Ausschwingvorgänge erlaubt es zu erkennen, welche Signalanteile mit verschiedenem Frequenzgehalt zusammengehören. Größere asynchrone Amplitudenansteige bzw. -abfälle indizieren wiederum unterschiedliche Signalanteile.

30 Nach der Identifikation der einzelnen Signalanteile SA₁ bis SA_n in der Signalanalysephase I kann die eigentliche Störgeräuschbefreiung in der Signalverarbeitungsphase II vorgenommen werden (Fig. 1). Eine Ausführungsform des erfindungsgemässen Verfahrens besteht darin, die
35 Störanteile in den Frequenzbändern, in welchen sie auftreten, abzusenken bzw. zu unterdrücken. Das gleiche

Resultat hat die Massnahme, dass identifizierte Nutzsignalanteile verstrkrt werden. In den gleichen erfindungsgemssen Lsungsbereich gehrt die Kombination von Absenken bzw. Unterdrcken von Strsignalanteilen und die Verstrkung von Nutzsignalanteilen.

Eine weitere Ausfhrungsform der in der Signalverarbeitungsphase II vorgenommenen Verfahrensschritte besteht darin, die gruppierten und als Nutzsignal identifizierten Signalanteile neu zusammenzumischen.

Eine noch weitere Ausfhrungsform des erfindungsgemssen Verfahrens besteht darin, dass das Nutzsignal NS bzw. das geschtzte Nutzsignal NS mittels der in der

Signalanalysephase I gewonnenen Informationen neu synthetisiert wird. Dabei besteht eine bevorzugte Ausfhrungsvariante darin, dass mittels Analyse der harmonischen Struktur (Pitch-Analyse) die verschiedenen

Grundfrequenzen der Nutzsignale extrahiert werden und dass die spektralen Pegel der harmonischen Oberwellen beispielsweise mittels Lautheits- oder LPC-Analyse bestimmt werden (S. Launer, "Loudness Perception in Listeners with Sensorineural Hearing Loss", Dissertation, Universitt Oldenburg, 1995, J. R. Deller, J. G. Proakis, J. H. L.

Hansen, "Discrete-Time Processing of Speech Signals", Macmillan Publishing Company, 1993). Aus dieser Information kann dann ein vollstndig synthetisch generiertes Signal fr tonale Sprachanteile erzeugt werden. In Weiterfhrung der vorstehend genannten, bevorzugten Ausfhrungsvariante wird vorgeschlagen, eine Kombination von Nutzsignalverstrkung und Nutzsignalsynthese vorzusehen.

Das erfindungsgemsse Verfahren, bestehend aus Signalanalysephase I und Signalverarbeitungsphase II, erlaubt es also, aus beliebigen Eingangssignalen ES ein

allfälliges Nutzsignal NS zu extrahieren und unerwünschte Störanteile SS gezielt auszuschalten bzw. erwünschte Signalanteile NS neu zu generieren. Damit kann eine viel bessere, der Umgebungssituation angepasste

5 Geräuschunterdrückung erreicht werden. Im Gegensatz zum herkömmlichen Noise Canceling werden mit dem erfindungsgemäßen Verfahren die Nutzsignale nicht beeinträchtigt. Des weiteren können auch nicht-stationäre Störgeräusche aus dem Eingangssignal ES entfernt werden.

10 Schliesslich wird darauf hingewiesen, dass mit herkömmlichen Störgeräusch-Unterdrückungsalgorithmen es nicht möglich ist, eine Synthese des Nutzsignals vorzunehmen.

15 Eine weitere Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, dass dieses mit den eingangs erwähnten Methoden wie Beamforming, binaurale Ansätze zur Störgeräuschlokalisation und -Unterdrückung oder durch Klassifikation der akustischen Umgebung und entsprechender Programmwahl kombiniert wird.

20

Zwei Beispiele ähnlicher Ansätze zur Störgeräuschbefreiung, welche sich aber nur der primitiven Gruppierung bedienen, sind im Folgenden genannt. Unoki und M. Akagi, "A method of signal extraction from noisy signal based on auditory scene analysis", Speech Communication, 27, Seiten 261 bis 279, 1999, und WO 00/01200. In beiden Ansätzen wird die Störgeräuschunterdrückung mittels Extraktion einiger weniger auditorischer Merkmale und kontextunabhängiger Gruppierung durchgeführt. Die hier vorgeschlagene Lösung ist jedoch vollständiger und dem auditorischen System näher. Es wird darauf hingewiesen, dass das erfindungsgemäße Verfahren nicht auf Sprache als Nutzsignal beschränkt ist. Darüber hinaus werden alle bekannten auditorischen Mechanismen sowie technisch basierte Merkmale verwendet. Außerdem erfolgt die

25

30

35

Merkmalsextraktion und die Gruppierung je nach Bedarf bzw.
Möglichkeit Kontext-/Vorwissen-abhängig oder -unabhängig.

- 15 -

Patentansprüche:

1. Verfahren zur Elimination von Störsignalanteilen (SS) in
5 einem Eingangssignal (ES), wobei das Verfahren darin
besteht,

10 · dass in einer Signalanalysephase (I) die
 Störsignalanteile (SS) und ein im Eingangssignal (ES)
 enthaltetes Nutzsignal (NS) charakterisiert werden und

15 · dass in einer Signalverarbeitungsphase (II) aufgrund
 der in der Signalanalysephase (I) erhaltenen
 Charakterisierung das Nutzsignal (NS) bzw. ein
 geschätztes Nutzsignal (NS') ermittelt bzw. erzeugt
 wird,

20 wobei die Charakterisierung der Signalanteile (SS, NS)
 zumindest unter Verwendung von auditorisch-basierten
 Merkmälern (M_1 bis M_j) erfolgt.

25 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
 ein oder mehrere der nachfolgenden auditorisch-basierten
 Merkmale (M_1 bis M_j) zur Charakterisierung der
 Signalanteile (NS, SS) verwendet werden: Lautheit,
 spektrales Profil, harmonische Struktur, gemeinsame Ein-
 und Ausschwingzeiten, kohärente Amplituden- und
 Frequenzmodulation, kohärente Phasen, interaurale Laufzeit-
 und Pegelunterschiede.

30 3. Verfahren nach Anspruch 1 oder 2, dadurch
 gekennzeichnet, dass die auditorisch-basierten Merkmale (M_1
 bis M_j) in unterschiedlichen Frequenzbändern ermittelt
 werden.

- 16 -

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Charakterisierung der Signalanteile (SS, NS) durch Auswertung der in der Signalanalysephase (I) ermittelten Merkmale (M_1 bis M_j) unter Verwendung der Methode der primitiven Gruppierung erfolgt.

5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Charakterisierung der 10 Signalanteile (SS, NS) durch Auswertung der in der Signalanalysephase (I) ermittelten Merkmale unter Verwendung der Methode der Schema-basierten Gruppierung erfolgt.

15 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass über die Art eines Signalanteils (SS, NS) eine Hypothese erstellt bzw. vorgegeben wird, die bei der Gruppierung der ermittelten Merkmale (M_1 bis M_j) berücksichtigt wird.

20 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass zur Charakterisierung der Signalannteile (NS, SS) die auditorisch-basierten und die gegebenenfalls anderen Merkmale (M_1 bis M_j) mit den Prinzipien der Gestalttheorie gruppiert werden.

25 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die als Störsignale (SS) identifizierten Signalanteile unterdrückt und/oder dass die als Nutzsignale (NS) bzw. als geschätzte Nutzsignale (NS') 30 identifizierten Signalanteile verstärkt werden.

9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Nutzsignal (NS) bzw. ein geschätztes Nutzsignal (NS') in der Signalverarbeitungsphase 35 (II) aufgrund von in der Signalanalysephase (I) ermittelten Merkmalen (M_1 bis M_j) synthetisiert wird.

DOTTING - DOTTING - DOTTING - DOTTING - DOTTING

- 17 -

/8532860

10. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in der Signalanalysephase (I) mit Hilfe einer Analyse der harmonischen Struktur verschiedene Grundfrequenzen der Signalanteile des Nutzsignals (NS) bzw. des geschätzten Nutzsignals (NS') extrahiert werden, dass, insbesondere mit Hilfe einer Lautheits- oder LPC-Analyse, spektrale Pegel von harmonischen Oberwellen dieser Signalanteile bestimmt werden und dass aufgrund der spektralen Pegel und der harmonischen Oberwellen ein Nutzsignal für tonale Sprachanteile synthetisiert wird.
11. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in der Signalanalysephase (I) mit Hilfe einer Analyse der harmonischen Struktur nichttonale Signalanteile des Nutzsignals (NS) bzw. des geschätzten Nutzsignals (NS') extrahiert werden, dass, insbesondere mit Hilfe einer Lautheits- oder LPC-Analyse, spektrale Pegel dieser Signalanteile bestimmt werden und dass mit Hilfe eines Noisegenerators ein Nutzsignal für nichttonale Sprachanteile synthetisiert wird.
12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass das Nutzsignal (NS) bzw. das geschätzte Nutzsignal (NS') verstärkt wird.
13. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 12 zum Betrieb eines Hörgerätes.
14. Hörgerät, das nach dem Verfahren gemäss einem der Ansprüche 1 bis 12 arbeitet.

- 18 -

Zusammenfassung:

Verfahren zur Elimination von Störsignalanteilen (SS) in einem Eingangssignal (ES), wobei das Verfahren darin

5 besteht, dass in einer Signalanalysephase (I) die Störsignalanteile (SS) und ein im Eingangssignal (ES) enthaltenes Nutzsignal (NS) charakterisiert werden und dass in einer Signalverarbeitungsphase (II) aufgrund der in der Signalanalysephase (I) erhaltenen Charakterisierung das
10 Nutzsignal (NS) bzw. ein geschätztes Nutzsignal (NS') ermittelt bzw. erzeugt wird, wobei die Charakterisierung der Signalelemente (SS, NS) zumindest unter Verwendung von auditorisch-basierten Merkmalen (M_1 bis M_j) erfolgt.
Des weiteren ist eine Anwendung des erfindungsgemässen
15 Verfahrens und ein Hörgerät, das nach dem erfindungsgemässen Verfahren arbeitet, angegeben.

(Fig. 1)