

ISO7131CC, ISO7140CC, ISO7140FCC ISO7141CC, ISO7141FCC

SLLSE83A - APRIL 2013 - REVISED JUNE 2013

www.ti.com

4242-V_{PK} Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators

Check for Samples: ISO7131CC, ISO7140CC, ISO7140FCC, ISO7141CC, ISO7141FCC

FEATURES

- Maximum Signaling Rate: 50 Mbps (with 5V Supplies)
- Robust Design With Integrated Noise Filter
- Default Output Low Option (Suffix F)
- Low Power Consumption, Typical I_{CC} per Channel (with 3.3 V Supplies):
 - ISO7131: 1.5 mA at 1 Mbps, 2.6 mA at 25 Mbps
 - ISO7140: TBD at 1 Mbps, TBD at 25 Mbps
 - ISO7141: 1.3 mA at 1 Mbps, 2.6 mA at 25 Mbps
- Low Propagation Delay: 23 ns Typical (3.3 V Supplies)
- Wide Temperature Range: –40°C to 125°C
- 50 kV/µs Transient Immunity, Typical
- Long Life with SiO₂ Isolation Barrier
- Operates From 2.7 V, 3.3 V and 5 V Supply and Logic Levels
- Small QSOP-16 Package

APPLICATIONS

- General-Purpose Isolation
 - Industrial Fieldbus
 - Profibus
 - Modbus™
 - DeviceNet Data Buses
 - RS-232, RS-485
 - Serial Peripheral Interface

SAFETY AND REGULATORY APPROVALS

- 2500 V_{RMS} Isolation for 1 minute per UL 1577
- 4242 V_{PK} Isolation per DIN EN 60747-5-2 (VDE 0884 Teil 2), 566 V_{PK} Working Voltage
- CSA Component Acceptance Notice 5A
- IEC 60950-1 and IEC 61010-1 End Equipment Standard Approvals
- All Approvals Pending

DESCRIPTION

ISO7131, ISO7140, and ISO7141 provide galvanic isolation up to $2500 \, V_{RMS}$ for 1 minute per UL and $4242 \, V_{PK}$ per VDE. ISO7131 has three channels with two forward and one reverse-direction channels. ISO7140 and ISO7141 are quad-channel isolators; ISO7140 has four forward, ISO7141 has three forward and one reverse-direction channel. These devices are capable of 50 Mbps maximum data rate with 5V supplies and 40Mbps maximum data rate with 3.3V or 2.7V supplies, with integrated filters on the inputs for noise-prone applications. The suffix F indicates that default output state is low; otherwise, the default output state is high (see Table 1).

Each isolation channel has a logic input and output buffer separated by a silicon dioxide (SiO_2) insulation barrier. Used in conjunction with isolated power supplies, these devices prevent noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. The devices have TTL input thresholds and can operate from 2.7 V, 3.3 V, and 5 V supplies.

PRODUCT	STATUS
ISO7131CC	Released
ISO7140CC	Product Preview
ISO7140FCC	Product Preview
ISO7141CC	Product Preview
ISO7141FCC	Product Preview

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DEVICE INFORMATION

PIN CONFIGURATIONS (TOP VIEW)

Table 1. FUNCTION TABLE⁽¹⁾

INPUT	ОЦТРИТ	INPUT (INS)	OUTPUT ENABLE	OUTPUT (OUTx)		
V _{CC}	V _{CC}	(INx)	(ENx)	ISO71xxCC	ISO71xxFCC	
		Н	H or open	Н	Н	
PU	PU	L	H or open	L	L	
FU	PU	X	L	Z	Z	
		Open	H or open	Н	L	
PD	PU	X	H or open	Н	L	
PD	PU	X	L	Z	Z	
PU	PD	X	X	Undetermined	Undetermined	

⁽¹⁾ PU = Powered Up ($V_{CC} \ge 2.7$ V); PD = Powered Down ($V_{CC} \le 2.1$ V); X = Irrelevant; H = High Level; L = Low Level; Z = High Impedance

AVAILABLE OPTIONS

PRODUCT	RATED ISOLATION	INPUT THRESHOLD	DEFAULT OUTPUT	MAX DATA RATE and INPUT FILTER	CHANNEL DIRECTION	MARKED AS	ORDERING NUMBER							
ISO7131CC					2 forward,	7131CC	ISO7131CCDBQ (tube)							
130713100			High		1 reverse	713100	ISO7131CCDBQR (reel)							
ISO7140CC ⁽¹⁾						7140CC	ISO7140CCDBQ (tube)							
150714000												4 forward,	7140CC	ISO7140CCDBQR (reel)
ISO7140FCC (1)	4040 \/	1.5-V TTL		50 Mbps, 0 reverse with noise filter integrated	0 reverse	7140FC	ISO7140FCCDBQ (tube)							
1507140FCC \	4242 V _{PK}	(CMOS compatible)	Low			:1	7140FC	ISO7140FCCDBQR (reel)						
ISO7141CC ⁽¹⁾			High	Lliab	I II all	I II all	1 2 1	1.0.1	1.00			74.4400	ISO7141CCDBQ (tube)	
150714100					3 forward, 1 reverse	7141CC	ISO7141CCDBQR (reel)							
ISO7141FCC ⁽¹⁾						1 reverse		ISO7141FCCDBQ (tube)						
150/141FCC(*)			Low			7141FC	ISO7141FCCDBQR (reel)							

⁽¹⁾ Product Preview

SLLSE83A - APRIL 2013-REVISED JUNE 2013

ABSOLUTE MAXIMUM RATINGS(1)

TEXAS INSTRUMENTS

www.ti.com

PARAMETER				VALUE
Supply voltage (2)	V _{CC1} , V _{CC2}			–0.5 V to 6 V
Voltage	INx, OUTx, ENx			-0.5 V to V _{CC} + 0.5 V
Output current	Io			±15 mA
	Human-body model	ESDA / JEDEC JS-001-2012		±4 kV
Electrostatic discharge	Field-induced charged device model	JEDEC JESD22-C101E	All pins	±1.5 kV
	Machine model	JEDEC JESD22-A115-A		±200 V
Maximum junction temperature	TJ	•		150°C
Storage temperature	Storage temperature T _{STG}			

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

PARAMETER		MIN	TYP	MAX	UNIT
V _{CC1} , V _{CC2}	Supply voltage	2.7		5.5	V
	High-level output current (V _{CC} ≥ 3.0 V)	-4			mA
I _{OH}	High-level output current (V _{CC} < 3.0 V)	-2			mA
I _{OL}	Low-level output current			4	mA
V _{IH}	High-level input voltage	2		V _{CC}	V
V _{IL}	Low-level input voltage	0		0.8	V
t _{ui}	Input pulse duration (V _{CC} ≥ 4.5V)	20			ns
t _{ui}	Input pulse duration (V _{CC} < 4.5V)	25			ns
1 / t _{ui}	Signaling rate (V _{CC} ≥ 4.5V)	0		50	Mbps
1 / t _{ui}	Signaling rate (V _{CC} < 4.5V)	0		40	Mbps
T _J	Junction temperature	-40		136	°C
T _A	Ambient temperature	-40	25	125	°C

THERMAL INFORMATION

	THERMA	L METRIC ⁽¹⁾	ISO7131, ISO714x	LINUT
	IHERMA	LMETRIC	DBQ (16 Pins)	UNIT
θ_{JA}	Junction-to-ambient thermal resistan	ce	104.5	°C/W
$\theta_{JC(top)}$	Junction-to-case(top) thermal resista	nce	57.8	°C/W
θ_{JB}	Junction-to-board thermal resistance		46.8	°C/W
ΨЈТ	Junction-to-top characterization para	meter	18.3	°C/W
ΨЈВ	Junction-to-board characterization pa	arameter	46.4	°C/W
θ _{JC(bottom)}	Junction-to-case(bottom) thermal res	istance	n/a	°C/W
P _D	Device power dissipation	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, T_J = 150^{\circ}\text{C}, C_L = 15 \text{ pF}$ Input a 25-MHz, 50% duty cycle square wave	150	mW

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values.

ELECTRICAL CHARACTERISTICS

 $V_{\rm CC1}$ and $V_{\rm CC2}$ at 5 V \pm 10% (over recommended operating conditions unless otherwise noted.)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	Lligh lovel output voltage	I _{OH} = -4 mA; see Figure 1	$V_{CCx}^{(1)} - 0.5$	4.8		V
V _{OH} High-level output voltage		$I_{OH} = -20 \mu A$; see Figure 1	$V_{CCx}^{(1)} - 0.1$	5		V
V	Low lovel output voltage	I _{OL} = 4 mA; see Figure 1		0.2	0.4	V
V _{OL}	Low-level output voltage	$I_{OL} = 20 \mu A$; see Figure 1		0	0.1	V
V _{I(HYS)}	Input threshold voltage hysteresis			450		mV
I _{IH}	High-level input current	V _{IH} = V _{CC} at INx or ENx			10	
I _{IL}	Low-level input current	V _{IL} = 0 V at INx or ENx	-10			μA
CMTI	Common-mode transient immunity	V _I = V _{CC} or 0 V; see Figure 4	25	75		kV/µs

⁽¹⁾ V_{CCx} is the supply voltage, V_{CC1} or V_{CC2} , for the output channel that is being measured.

SWITCHING CHARACTERISTICS

 V_{CC1} and V_{CC2} at 5 V \pm 10% (over recommended operating conditions unless otherwise noted.)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time		0	12	19	35	
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}		See Figure 1			3	
, (2)	Channel-to-channel output skew time		Same-direction channels			2	ns
t _{sk(0)} (2)	chi	Opposite-direction channels			4		
t _{sk(pp)} (3)	Part-to-part skew time					12	
t _r	Output signal rise time		Con Figure 4		2		
t _f	Output signal fall time		See Figure 1		2		ns
t _{PHZ} , t _{PLZ}	Disable propagation delay, high/low-to-high impedar	nce output	Can Figure 0		6	10	
t _{PZH} , t _{PZL}	Enable propagation delay, high impedance-to-high/lo	ow output	See Figure 2		5	10	ns
t _{fs}	Fail-safe output delay time from input data or power	loss	See Figure 3		9.5		μs
		ISO7131		8	11	18	ns
t_{GR}	Input glitch rejection time	ISO7140		TBD	TBD	TBD	
		ISO7141		6	11	18	

⁽¹⁾ Also known as pulse skew

Copyright © 2013, Texas Instruments Incorporated

Submit Documentation Feedback

⁽²⁾ t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

⁽³⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals, and loads.

SUPPLY CURRENT

 V_{CC1} and V_{CC2} at 5 V \pm 10% (over recommended operating conditions unless otherwise noted.)

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
ISO7131					
I _{CC1}	Diaghla	FNA FNO OV	2.2	3.7	
I _{CC2}	Disable	EN1 = EN2 = 0V	3.7	5	
I _{CC1}	DC to 1 Mbns		2.2	3.7	
I _{CC2}	DC to 1 Mbps		3.7	5	
I _{CC1}	10 Mbps		3.4	4.8	mA
I _{CC2}	TO MDPS	DC signal: $V_I = V_{CC}$ or 0 V AC signal: All channels switching with square-wave	4.9	6.6	IIIA
I _{CC1}	25 Mbps	clock input; C _L = 15 pF	4.9	6.6	
I _{CC2}	25 Mbps		6.8	9	
I _{CC1}	50 Mbps		7.1	10	
I _{CC2}	30 Mbps		10.5	13	
ISO7140	·			·	
I _{CC1}	Disable	EN = 0 V	TBD	TBD	
I _{CC2}	Disable	EN = 0 V	TBD	TBD	
I _{CC1}	DC to 1 Mbps		TBD	TBD	
I _{CC2}	DC to 1 lylops		TBD	TBD	mA
I _{CC1}	10 Mbps	0 Mbps	TBD	TBD	
I _{CC2}	TO Mbps	DC Signal: $V_I = V_{CC}$ or 0 V, AC Signal: All channels switching with square wave	TBD	TBD	
I _{CC1}	25 Mbps	clock input; C _L = 15 pF	TBD	TBD	
I _{CC2}	20 1/10/20		TBD	TBD	
I _{CC1}	50 Mbps		TBD	TBD	
I _{CC2}	30 Mbp3		TBD	TBD	
ISO7141					
I _{CC1}	Disable	EN1 = EN2 = 0V	2.5	4.2	
I _{CC2}	Disable		4.2	7	
I _{CC1}	DC to 1 Mbps		2.5	4.2	
I _{CC2}	DO TO 1 IVIDPO		4.2	7	
I _{CC1}	10 Mbps		3.8	5.3	mA
I _{CC2}	10 Minha	DC signal: $V_I = V_{CC}$ or 0 V, AC signal: All channels switching with square wave	6.2	9.6	шА
I _{CC1}	25 Mbps	clock input; C _L = 15 pF	5.6	7.5	
I _{CC2}	20 1000		9.2	13	
I _{CC1}	50 Mbps		8.4	11.2	
I _{CC2}	oo wibps		14	18.5	

ELECTRICAL CHARACTERISTICS

 V_{CC1} and V_{CC2} at 3.3 V \pm 10% (over recommended operating conditions unless otherwise noted.)

001	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Link lavel autout valtage	I _{OH} = -4 mA; see Figure 1	V _{CCx} ⁽¹⁾ – 0.5	3		V
V _{OH}	High-level output voltage	I _{OH} = -20 μA; see Figure 1	V _{CCx} ⁽¹⁾ – 0.1	3.3		V
V	Low lovel output voltage	I _{OL} = 4 mA; see Figure 1		0.2	0.4	V
V_{OL}	Low-level output voltage	I _{OL} = 20 μA; see Figure 1		0	0.1	V
V _{I(HYS)}	Input threshold voltage hysteresis			425		mV
I _{IH}	High-level input current	$V_{IH} = V_{CC}$ at INx or ENx			10	
$I_{\rm IL}$	Low-level input current	V _{IL} = 0 V at INx or ENx	-10			μA
CMTI	Common-mode transient immunity	V _I = V _{CC} or 0 V; see Figure 4	25	50		kV/μs

⁽¹⁾ V_{CCx} is the supply voltage, V_{CC1} or V_{CC2} , for the output channel that is being measured.

SWITCHING CHARACTERISTICS

 V_{CC1} and V_{CC2} at 3.3 V \pm 10% (over recommended operating conditions unless otherwise noted.)

	PARAMET	ER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time		0	15	23	45	
PWD ⁽¹⁾	Pulse width distortion t _{PHL} -	- t _{PLH}	See Figure 1			3	
			Same-direction Channels			2	ns
C		Channels			4	113	
t _{sk(pp)} (3)	Part-to-part skew time					19	
t _r	Output signal rise time				2.5		ns
t _f	Output signal fall time		See Figure 1		2.5		
t _{PHZ} , t _{PLZ}	Disable propagation delay, thigh-impedance output	from high/low to	2 5		6.5	15	
t _{PZH} , t _{PZL}	Enable propagation delay, fi impedance to high/low outp		See Figure 2		6.5	15	ns
t _{fs}	Fail-safe output delay time f power loss	rom input data or	See Figure 3		8		μs
		ISO7131		9	12.5	22	ns
t_{GR}	t _{GR} Input glitch rejection time			TBD	TBD	TBD	
		ISO7141		6	12.5	22	

⁽¹⁾ Also known as pulse skew

Copyright © 2013, Texas Instruments Incorporated

⁽²⁾ t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

⁽³⁾ $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

SUPPLY CURRENT

 V_{CC1} and V_{CC2} at 3.3 V \pm 10% (over recommended operating conditions unless otherwise noted.)

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
ISO7131				·	
I _{CC1}	Diaghla	FNA FNO OV	1.9	2.7	
I _{CC2}	Disable	EN1 = EN2 = 0 V	2.6	3.8	
I _{CC1}	DC to 1 Mbno		1.9	2.7	
I _{CC2}	DC to 1 Mbps		2.6	3.8	
I _{CC1}	10 Mbps		2.4	3.5	mA
I _{CC2}	TO Mbps	DC signal: $V_I = V_{CC}$ or 0 V AC signal: All channels switching with square-wave	3.5	4.7	mA
I _{CC1}	OF Mhno	clock input; C ₁ = 15 pF	3.2	4.6	
I _{CC2}	25 Mbps		4.7	6.2	
I _{CC1}	40 Mbps		5	7	
I _{CC2}	40 Mbps		7	9	
ISO7140	•	•			
I _{CC1}	Disable	EN = 0 V	TBD	TBD	
I _{CC2}	Disable	EN = 0 V	TBD	TBD	
I _{CC1}	DC to 1 Mbps	DC signal: V _I = V _{CC} or 0 V, AC signal: All channels switching with square-wave clock input; C _L = 15 pF	TBD	TBD	
I _{CC2}	DC to 1 Mbps		TBD	TBD	mA
I _{CC1}	10 Mbps		TBD	TBD	
I _{CC2}	TO Wibps		TBD	TBD	ША
I _{CC1}	25 Mbps		TBD	TBD	
I _{CC2}	25 IVIDPS		TBD	TBD	
I _{CC1}	40 Mbps		TBD	TBD	
I _{CC2}	40 Mbps		TBD	TBD	
ISO7141					
I _{CC1}	- Disable	EN1 = EN2 = 0 V	2	3.1	
I _{CC2}	Disable	ENT = ENZ = 0 V	3.2	4.9	
I _{CC1}	DC to 1 Mbps		2	3.1	
I _{CC2}	DC to 1 Minhs		3.2	4.9	
I _{CC1}	10 Mbps		2.8	3.8	mA
I _{CC2}	10 Minh2	DC signal: $V_I = V_{CC}$ or 0 V, AC signal: All channels switching with square-wave	4.5	6.1	ША
I _{CC1}	25 Mbps	clock input; C _L = 15 pF	4	5.2	
I _{CC2}	20 Minh2	· - ·	6.4	8.3	
I _{CC1}	40 Mbps		5	8	
I _{CC2}	40 Mbps		8.2	11.6	

ELECTRICAL CHARACTERISTICS

V_{CC1} and V_{CC2} at 2.7 V (over recommended operating conditions unless otherwise noted.)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	High level output valtege	I _{OH} = -2 mA; see Figure 1	V _{CC} ⁽¹⁾ – 0.3	2.5		V
V _{OH}	High-level output voltage	$I_{OH} = -20 \mu A$; see Figure 1	$V_{\rm CC}^{(1)} - 0.1$	2.7		V
V _{OL}	Laurianal antent naltana	I _{OL} = 4 mA; see Figure 1		0.2	0.4	
	Low-level output voltage	I _{OL} = 20 μA; see Figure 1		0	0.1	V
V _{I(HYS)}	Input threshold voltage hysteresis			350		mV
I _{IH}	High-level input current	V _{IH} = V _{CC} at INx or ENx			10	
I _{IL}	Low-level input current	V _{IL} = 0 V at INx or ENx	-10			μA
CMTI	Common-mode transient immunity	V _I = V _{CC} or 0 V; see Figure 4	25	50		kV/µs

⁽¹⁾ V_{CCx} is the supply voltage, V_{CC1} or V_{CC2} , for the output channel that is being measured.

SWITCHING CHARACTERISTICS

V_{CC1} and V_{CC2} at 2.7 V (over recommended operating conditions unless otherwise noted.)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time		0 5 4	15	27	50	
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}		See Figure 1			3	
			Same-direction Channels			2	ns
$t_{sk(0)}$ (2)	Channel-to-channel output skew time	Opposite-direction Channels			4		
t _{sk(pp)} (3)	Part-to-part skew time				22		
t _r	Output signal rise time	0		3			
t _f	Output signal fall time		See Figure 1		3		ns
t _{PHZ} , t _{PLZ}	Disable propagation delay, from high/low to himpedance output	gh-	Q., 5,		9	15	
t _{PZH} , t _{PZL}	Enable propagation delay, from high-impedant high/low output	ce to	See Figure 2		9	15	ns
t _{fs}	Fail-safe output delay time from input data or	power loss	See Figure 3		8.5		μs
		ISO7131		10	14	22.5	ns
t _{GR}	Input glitch rejection time ISO7			TBD	TBD	TBD	
		ISO7141		8	14	22.5	1

⁽¹⁾ Also known as pulse skew

⁽z) t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

⁽³⁾ $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals, and loads.

SUPPLY CURRENT

 V_{CC1} and V_{CC2} at 2.7 V (over recommended operating conditions unless otherwise noted.)

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
ISO7131	-				
I _{CC1}	Disable	FNA FN2 OV	1.2	2.4	
I _{CC2}	Disable	EN1 = EN2 = 0 V	2.3	3.3	
I _{CC1}	DC to 4 Mbno		1.2	2.4	
I _{CC2}	DC to 1 Mbps		2.3	3.3	
I _{CC1}	A		2.1	3	mA
I _{CC2}		DC signal: $V_1 = V_{CC}$ or 0 V AC signal: All channels switching with square-wave	2.9	4	ША
I _{CC1}		clock input; C ₁ = 15 pF	3	3.8	
I _{CC2}	25 Mbps		4	5.2	
I _{CC1}	40 Mbps		4.2	5.3	
I _{CC2}	40 Mbps		5.8	7	
ISO7140	-			•	
I _{CC1}	Disable	EN = 0 V	TBD	TBD	mA
I _{CC2}	Disable	EIN = U V	TBD	TBD	
I _{CC1}	DC to 1 Mbps		TBD	TBD	
I _{CC2}	10 Mbps		TBD	TBD	
I _{CC1}			TBD	TBD	
I _{CC2}	TO MIDPS	DC signal: $V_1 = V_{CC}$ or 0 V, AC signal: All channels switching with square-wave	TBD	TBD	
I _{CC1}	25 Mbps	clock input; C _L = 15 pF	TBD	TBD	
I _{CC2}	25 MDPS		TBD	TBD	
I _{CC1}	40 Mbps		TBD	TBD	
I _{CC2}	40 Mbps		TBD	TBD	
ISO7141					
I _{CC1}	Disable	EN1 = EN2 = 0 V	1.6	2.6	
I _{CC2}	Disable	LINT = LINZ = 0 V	2.8	4.1	
I _{CC1}	DC to 1 Mbps		1.6	2.6	
I _{CC2}	DC to 1 Mbps		2.8	4.1	
I _{CC1}	10 Mbps		2.3	3.2	mA
I _{CC2}	TO IVIDPS	DC signal: $V_1 = V_{CC}$ or 0 V, AC signal: All channels switching with square-wave	3.8	5	ША
I _{CC1}	25 Mbps	clock input; $C_L = 15 \text{ pF}$	3.3	4.2	
I _{CC2}	20 IVIUPS		5.4	6.8	
I _{CC1}	40 Mbps		4.3	5.8	
I _{CC2}	40 Minh2		6.9	9.2	

PARAMETER MEASUREMENT INFORMATION

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns, a supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns, a supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns, a supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns, a supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns, a supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns, $t_f \leq$ 50 kHz, 50% duty cycle, $t_f \leq$ 50 kHz, $t_f \leq$ 50 kHz,
- B. C_I = 15 pF and includes instrumentation and fixture capacitance within ±20%.

Figure 1. Switching-Characteristics Test Circuit and Voltage Waveforms

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns, $Z_O =$ 50 Ω .
- B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 2. Enable/Disable Propagation Delay-Time Test Circuit and Waveform

PARAMETER MEASUREMENT INFORMATION (continued)

A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 3. Failsafe Delay-Time Test Circuit and Voltage Waveforms

A. $C_L = 15pF$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 4. Common-Mode Transient Immunity Test Circuit

DEVICE INFORMATION

INSULATION AND SAFETY-RELATED SPECIFICATIONS

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IOTM}	Maximum transient overvoltage per DIN EN 60747-5-2 (VDE 0884 Teil 2)				4242	V_{PK}
V _{IORM}	Maximum working voltage per DIN EN 60747-5-2 (VDE 0884 Teil 2)				566	V_{PK}
V	Isolation Voltage per UL 1577	V _{TEST} = V _{ISO} , t = 60 sec (qualification)			2500	V_{RMS}
V _{ISO}		V _{TEST} = 1.2 * V _{ISO} , t = 1 sec (100% production)			3000	V_{RMS}
		After Input/Output safety test subgroup 2/3, $V_{PR} = V_{IORM} \times 1.2$, $t = 10 \text{ s}$, Partial discharge $< 5 \text{ pC}$				
V _{PR}	Input-to-output test voltage	Method a, After environmental tests subgroup 1, $V_{PR} = V_{IORM} \times 1.6$, $t = 10 \text{ s}$, Partial discharge < 5 pC				V_{PK}
		Method b1, 100% production test, $V_{PR} = V_{IORM} \times 1.875$, $t = 1 \text{ s}$, Partial discharge $< 5 \text{ pC}$			1061	
L(I01)	Minimum air gap (clearance)	Shortest terminal to terminal distance through air	3.7			mm
L(102)	Minimum external tracking (creepage)	Shortest terminal to terminal distance across the package surface	3.7			mm
	Minimum internal gap (internal clearance)	Distance through the insulation	0.014			mm
	Pollution degree			2		
СТІ	Tracking resistance (comparative tracking index)	DIN IEC 60112 / VDE 0303 Part 1	≥400			V
R _{IO} (1)	Isolation Resistance, Input to Output	$V_{IO} = 500 \text{ V}, T_A < 100^{\circ}\text{C}$	>10 ¹²			Ω
1/10 ()	isolation resistance, input to Output	$V_{1O} = 500 \text{ V}, 100^{\circ}\text{C} \le T_{A} \le \text{max}$		>10 ¹¹		22
C _{IO} (1)	Barrier capacitance, input to output	$V_{I} = 0.4 \sin (2\pi ft), f = 1 MHz$	2.3		pF	
C _I (2)	Input capacitance	$V_I = V_{CC}/2 + 0.4 \sin(2\pi ft), f = 1 \text{ MHz}, V_{CC} = 5 \text{ V}$		2.8		pF

⁽¹⁾ All pins on each side of the barrier tied together creating a two-terminal device.

NOTE

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board do not reduce this distance.

Creepage and clearance on a printed circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

Table 2. IEC 60664-1 RATINGS TABLE

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic Isolation Group	Material Group	II
	Rated mains voltage ≤ 150 V _{RMS}	I–IV
Installation classification	Rated mains voltage ≤ 300 V _{RMS}	I–III
	Rated mains voltage ≤ 400 V _{RMS}	I–II

⁽²⁾ Measured from input pin to ground.

REGULATORY INFORMATION

VDE	UL	CSA
Certified according to DIN EN 60747-5-2	Recognized under 1577 Component Recognition Program	Approved under CSA Component Acceptance Notice
Basic Insulation Maximum Transient Overvoltage, 4242 V _{PK} Maximum Working Voltage, 566 V _{PK}	Single protection, 2500 V _{RMS} ⁽¹⁾	Reinforced Insulation per CSA 60950-1-03 and IEC 60950-1 (2nd Ed.), 150 V _{RMS} maximum working voltage Basic Insulation per CSA 60950-1-03 and IEC 60950-1 (2nd Ed.), 380 V _{RMS} maximum working voltage Reinforced Insulation per CSA 61010-1-04 and IEC 61010-1 (2nd Edition), 150 V _{RMS} maximum working voltage
File number: 40016131 (approval pending)	File number: E181974 (approval pending)	File number: 220991 (approval pending)

⁽¹⁾ Production tested ≥ 3000 Vrms for 1 second in accordance with UL 1577.

IEC SAFETY LIMITING VALUES

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
			$\theta_{JA} = 104.5$ °C/W, $V_I = 5.5$ V, $T_J = 150$ °C, $T_A = 25$ °C			217	
I _S	Safety input, output, or supply current	DBQ-16	BQ-16 $\theta_{JA} = 104.5^{\circ}\text{C/W}, V_{I} = 3.6\text{V}, T_{J} = 150^{\circ}\text{C}, T_{A} = 25^{\circ}\text{C}$			332	mA
			$\theta_{JA} = 104.5$ °C/W, $V_I = 2.7$ V, $T_J = 150$ °C, $T_A = 25$ °C			443	
T_S	Maximum case temperature					150	°C

The safety-limiting constraint is the absolute-maximum junction temperature specified in the *Absolute Maximum Ratings* table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the *Thermal Information* table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

Figure 5. DBQ-16 θ_{JC} Thermal Derating Curve

Figure 6. Typical Application Circuits for ISO7131 and ISO7140

Figure 7. Typical Application Circuit for ISO7141

Note: For detailed layout recommendations, see Application Note SLLA284, Digital Isolator Design Guide.

Figure 8. Device I/O Schematics

TYPICAL CHARACTERISTICS

Figure 9. ISO7131 SUPPLY CURRENT FOR ALL CHANNELS VS DATA RATE

Figure 10. ISO7141 SUPPLY CURRENT FOR ALL CHANNELS vs DATA RATE

Figure 11. HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

Figure 12. LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

Figure 13. V_{CC} UNDERVOLTAGE THRESHOLD vs FREE-AIR TEMPERATURE

Figure 14. PROPAGATION DELAY TIME vs FREE-AIR TEMPERATURE

TYPICAL CHARACTERISTICS (continued)

Figure 15. OUTPUT JITTER vs DATA RATE

Figure 16. INPUT GLITCH REJECTION vs FREE-AIR TEMPERATURE

Figure 17. TYPICAL EYE DIAGRAM AT 40 MBPS, 2.7-V OPERATION

Figure 18. TYPICAL EYE DIAGRAM AT 40 MBPS, 3.3-V OPERATION

Figure 19. TYPICAL EYE DIAGRAM AT 50 MBPS, 5-V OPERATION

REVISION HISTORY

Cł	hanges from Original (April 2013) to Revision A	Page
•	Changed the SWITCHING CHARACTERISTICS table, Input glitch rejection time. Values by device	5
•	Changed the SWITCHING CHARACTERISTICS table, Input glitch rejection time. Values by device	7
•	Changed the SWITCHING CHARACTERISTICS table, Input glitch rejection time. Values by device	9
•	Added Figure 10	17

5-Jun-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ISO7131CCDBQ	ACTIVE	SSOP	DBQ	16	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7131CC	Samples
ISO7131CCDBQR	ACTIVE	SSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7131CC	Samples
ISO7140CCDBQ	PREVIEW	SSOP	DBQ	16	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7140CC	
ISO7140CCDBQR	PREVIEW	SSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7140CC	
ISO7140FCCDBQ	PREVIEW	SSOP	DBQ	16	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7140FC	
ISO7141CCDBQ	PREVIEW	SSOP	DBQ	16	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7141CC	
ISO7141CCDBQR	PREVIEW	SSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7141CC	
ISO7141FCCDBQ	PREVIEW	SSOP	DBQ	16	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7141FC	
ISO7141FCCDBQR	PREVIEW	SSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7141FC	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

5-Jun-2013

- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DBQ (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.
- D. Falls within JEDEC MO-137 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>