CS164 Programming Languages and Compilers

Spring 2024

Written Assignment 1

Assigned: January 24 Due: February 7 at 11:59 pm

Instructions: This assignment asks you to prepare written answers to questions on lexical analysis, regular expressions, and finite automata. Each of the questions has a short answer. You may discuss this assignment with other students and work on the problems together. However, your write-up should be your own individual work.

Please write your name, email address, and discussion section on your homework. *Please start each question on a new page. All written assignments must be submitted as a PDF via Gradescope: https://gradescope.com.* Instructions for how to submit assignments to Gradescope can be found at the following links: https://gradescope.com/get_started#student-submission

- 1. Consider the following languages of binary numbers over the alphabet $\Sigma = \{0, 1\}$.
 - L_1 : All binary numbers where the last digit is a 1 (e.g. $1,011,111,1011 \in L_1$)
 - \bullet L_2 : All binary numbers divisible by 4
 - L_3 : All binary numbers divisible by 3
 - ullet L_4 : All binary numbers that contain exactly 2 0's or no 1's

Give a deterministic finite automaton (DFA) for all the languages above. (Note: Empty strings are not binary numbers.)

- 2. Consider the regular expression $R=(ab)^*\mid (bb\mid aba)^*,$ note that language L(R) is over the alphabet $\Sigma=\{a,b\}$
 - Construct an ϵ -NFA for the language L(R).
 - Convert the above NFA to DFA.

(**Hint:** use approach describe in the lecture : ϵ -NFA \rightarrow NFA (label states) \rightarrow DFA).

3. Let $\Sigma_m = \{a_1, \dots, a_m\}$ be an alphabet containing m elements, for some integer $m \geq 1$. Let L_m be the following language that includes all strings in which at least one of the characters occurs an even number of times, i.e.

All strings in which a_i occurs an even number of times for some i, where $1 \le i \le m$

Construct a DFA for the language L_3 . Also construct an NFA for the language L_4 .

- 4. Determine whether or not the following languages are regular. Explain why in one or two sentences.
 - L_1 : All strings over the alphabet $\{a,b\}$ where there are at least as many a's as there are b's.
 - L_2 : All strings over the alphabet $\{a,b\}$ that are palindromes (same string when reversed).
 - L_3 : All words in the Oxford English dictionary. (**Hint:** assume dictionary has finite number of words).

5. Let $\Sigma = \{a, b\}$ be the alphabet for the language $L = \{waw^R \mid w, w^R \in \{a, b\}^*, \text{ and } w \text{ has even length}\}$, where w^R is the reverse of w.

Write a context free grammar for the language L.

6. Consider the following grammar:

$$S \to [\ S\ S\]$$

$$S \to a$$

$$S \to \varepsilon$$

Show that this grammar is ambiguous by finding a string that can be parsed in at least three different ways. Draw three different parse trees for this string, and write down the left-most derivation for each of the three trees.

- 7. Give context free grammars for the following languages. Your grammars should not be unnecessarily complex. For each grammar, briefly explain why your grammar accepts precisely the specified language.
 - (a) $L = \{x^iy^j : 0 \le j \le i\}$, where for example $x^5y^2 = xxxxxyy$.
 - (b) $L = \{a^i b^j c^k : i \ge 0, \ j \ge 0, \text{ and } i + j \le k\}.$
 - (c) $L = \{w^R \# w \mid w \in \{0,1\}^* \text{ and } w \text{ as a binary number is divisible by 3}\}$. For this problem, if w is empty then its value as a binary number is 0.