Chapter 8: Problems with Errors

Stats 500, Fall 2015 Brian Thelen, University of Michigan 443 West Hall, bjthelen@umich.edu

Problems with the Error

Recall $\epsilon \sim N(0, \sigma^2 I)$

- Unequal variance
- Correlated
- Heavy-tailed

Weighted Least Squares

Errors uncorrelated, but unequal variance, i.e.

$$\epsilon \sim N(0, \sigma^2 W^{-1})$$

where

$$W^{-1} = \mathbf{diag} (1/w_1, \dots, 1/w_n)$$

Examples:

- Error variance proportional to the response: $w_i = y_i^{-1}$
- y_i is the average of n_i observations: $w_i = n_i$

Estimates

Transformation:

$$\begin{array}{ccc} y_i & \to & \sqrt{w_i} y_i \\ x_i & \to & \sqrt{w_i} x_i \end{array}$$

Regress $\sqrt{w_i}y_i$ on $\sqrt{w_i}x_i$. Then

$$\hat{\beta} = (X^T \mathbf{W} X)^{-1} X^T \mathbf{W} y$$

$$var(\hat{\beta}) = (X^T \mathbf{W} X)^{-1} \sigma^2$$

$$\hat{\sigma}^2 = \frac{\hat{\epsilon}^T \mathbf{W} \hat{\epsilon}}{n - (p + 1)}$$

French Election Example

- French presidential election in 1981
- 10 candidates in 1st round top 2 in the 2nd round
- Who do the votes go to in the second round?
- Data: (vote totals are in thousands)
 - A Voters for Mitterand in the first round
 - B Voters for Giscard in the first round
 - C Voters for Chirac in the first round
 - •
 - K Voters for party K in the first round
 - A2 Voters for Mitterand in the second round
 - B2 Voters for party Giscard in the second round

French Election Example - cont'd

```
> data(fpe)
> fpe
               C D E F G H J K
      ΕI
      260
          51 64 36 23 9 5 4 4 3 3 105 114 17
Ain
     75
          14
             17
                  9 9 3 1 2 1 1 1
                                       32
Alpes
Vendee 336 61 105
                 59
                    19 10 11 6 5 4 3 115 176
Yonne 216 44 52
                 31
                    24 7 4
                            4 3 3 2
                                       91
>
## EI: total number of registered voters
## N: difference between 1st and 2nd round totals
```

```
##Fit a linear model with no intercept
> g < - lm(A2 \sim A+B+C+D+E+F+G+H+J+K+N-1,
   data=fpe, weights=1/EI)
> round(g$coef, 3)
1.067 -0.105 0.246 0.926 0.249 0.755 1.972
                 K
    Η
-0.566 0.612 1.211 0.529
> lm(A2 \sim A+B+C+D+E+F+G+H+J+K+N-1, data=fpe)$coef
                  C
                         D
                                Ε
 1.075 -0.125 0.257 0.905 0.671 0.783 2.166
    Η
                 K
-0.854 0.144 0.518 0.558
```

```
## Remove coefficients less than 0
## Set coefficients bigger than 1 to 1
> lm(A2 \sim offset(A+G+K)+C+D+E+F+J+N-1, data=fpe,
       weights=1/EI)$coef
       D E F J
 0.228 0.970 0.426 0.751 -0.177 0.615
# Now drop J
lm(A2 ~ offset(A+G+K)+C+D+E+F+N-1, data=fpe,
       weights=1/EI)$coef
0.226 0.970 0.390 0.744 0.609
```

Generalized Least Squares (GLS)

In general

$$\epsilon \sim N(0, \sigma^2 \Sigma)$$

Write

$$\Sigma = SS^T$$

where S is a lower triangular matrix (the **Cholesky** decomposition).

Transformation:

$$y \to S^{-1}y$$
$$x \to S^{-1}x$$

Generalized Least Squares Continued

Estimates:

$$\hat{\beta} = (X^T \mathbf{\Sigma}^{-1} X)^{-1} X^T \mathbf{\Sigma}^{-1} y$$

$$var(\hat{\beta}) = (X^T \mathbf{\Sigma}^{-1} X)^{-1} \sigma^2$$

$$\hat{\sigma}^2 = \frac{\hat{\epsilon}^T \mathbf{\Sigma}^{-1} \hat{\epsilon}}{n - (p + 1)}$$

Employment Example

Employment data from 1947 to 1962 Response: number of people employed (yearly) Predictors: gross national product and population over 14

- Data collected over time: errors could be correlated
- One of the simplest correlation structures over time: the autoregressive model – here AR(1):

$$\epsilon_{i+1} = \rho \epsilon_i + \delta_i$$

where δ_i are i.i.d. $N(0, \tau^2)$. This gives

$$cor(\epsilon_i, \epsilon_j) = \rho^{|i-j|}.$$

Employment Example

> data(longley)

> g <- lm(Employed ~ GNP + Population, longley)

- Scatter plot of $\hat{\epsilon}_{i+1}$ vs. $\hat{\epsilon}_i$
- Estimation of correlation (e.g., AR(1) model)

```
## Simple autoregressive correlation structure
## Simple residual scatter plot
plot(g$res[-16],g$res[-1],xlab='residual_{i}',
   + ylab='residual_{i+1}')
## Estimate rho
> rho <- cor(g$res[-1], g$res[-16])
> rho
[1] 0.3104092
> x <- model.matrix(g)
## Compute the correlation matrix
> Sigma <- diag(16)
> Sigma <- rho^abs(row(Sigma) - col(Sigma))</pre>
> Sigi <- solve(Sigma)</pre>
> xtxi <- solve(t(x) %*% Sigi %*% x)
> beta <- xtxi %*% t(x) %*% Sigi %*% longley$Empl</pre>
```

```
residual_{(i+1}
> beta
                       [,1]
  (Intercept) 94.8988949
  GNP
               0.0673895
  Population -0.4742741
## Compute the residuals
> res <- longley$Empl - x %*% beta</pre>
## rho is changed!
> cor(res[-1], res[-16])
[1] 0.3564162
```



```
## Fit GLS with AR(1) structure
> library(nlme)
> g <- gls(Employed ~ GNP + Population,
   correlation=corAR1(form=~Year), data=longley)
> summary(g)
Correlation Structure: AR(1)
 Formula: "Year
 Parameter estimate(s):
      Phi 0.6441692
Coefficients:
              Value Std.Error t-value p-value
Intercept 101.85813 14.198932 7.173647 <.0001
```

GNP 0.07207 0.010606 6.795485 <.0001 Population -0.54851 0.154130 -3.558778 0.0035

Residual standard error: 0.689207

Degrees of freedom: 16 total; 13 residual

```
> intervals(g)
```

Approximate 95% confidence intervals Coefficients:

lower est. upper (Intercept) 71.18320440 101.85813280 132.5330612 GNP 0.04915865 0.07207088 0.0949831 Population -0.88149053 -0.54851350 -0.2155365 Correlation structure:

lower est. upper Phi -0.4430373 0.6441692 0.9644866

Robust Regression

Main concern: **heavy-tailed** error distribution

- \bullet *M*-estimation
- 2 Least trimmed squares

M-estimation

Find β to minimize

$$\sum_{i=1}^{n} L(y_i - x_i^T \beta)$$

 $L(\cdot)$ is called the **loss** function.

M-estimation Continued

Possible loss functions:

- $L(z) = z^2$ least squares (LS)
- L(z) = |z| least absolute deviations (LAD)
- Huber 's method

$$L(z) = \begin{cases} z^2/2 & \text{if } |z| \le c \\ c|z| - c^2/2 & \text{otherwise} \end{cases}$$

c should be a robust estimate of σ , e.g., the median of $|\hat{\epsilon}_i|$.

Gala Example

Recall from Ch. 2: Number of species of tortoise on the various Galapagos slands

- Response: number of species of tortoise
- Predictors: number of endemic species, area of the island, highest elevation of the island, distance from the nearest island, distance from Santa Cruz Island, area of the adjacent island

o cc: : .

Coefficients:

```
Estimate Std.Error t value Pr(>|t|)
(Intercept) 7.068221 19.154198 0.369 0.715351
Area -0.023938 0.022422 -1.068 0.296318
Elevation 0.319465 0.053663 5.953 3.82e-06
Nearest 0.009144 1.054136 0.009 0.993151
Scruz -0.240524 0.215402 -1.117 0.275208
Adjacent -0.074805 0.017700 -4.226 0.000297
```

Residual standard error: 60.98 on 24 degrees of freedom Multiple R-Squared: 0.7658 Adjusted R-squared: 0.7171 F-statistic: 15.7 on 5 and 24 DF p-value: 6.838e-07

```
## Huber's method
```

- > library(MASS)
- > summary(ghuber)

Coefficients:

	Value	Std.Error	t value
(Intercept)	6.3611	12.3897	0.5134
Area	-0.0061	0.0145	-0.4214
Elevation	0.2476	0.0347	7.1320
Nearest	0.3592	0.6819	0.5267
Scruz	-0.1952	0.1393	-1.4013
Adiacent	-0.0546	0.0114	-4.7648

Residual standard error: 29.73 on 24 degrees of freedom

```
## Least absolute deviations
```

- > library(quantreg)
- > summary(glad)

Coefficients:

	${\tt coefficients}$	lower bd	upper bd
(Intercept)	1.31445	-19.87777	24.37411
Area	-0.00306	-0.03185	0.52800
Elevation	0.23211	0.12453	0.50196
Nearest	0.16366	-3.16339	2.98896
Scruz	-0.12314	-0.47987	0.13476
Adjacent	-0.05185	-0.10458	0.01739

Least Trimmed Squares (LTS)

Minimize:

$$\sum_{i=1}^{m} \hat{\epsilon}_{(i)}^2$$

where m < n and (i) indicates sorting.

Default
$$m$$
: $\lfloor n/2 \rfloor + \lfloor (p+1)/2 \rfloor$

ignores largest residuals

```
Gala Example
   ## Least trimmed squares
   > library(MASS)
   > glts <- ltsreg(Species ~ Area + Elevation +
           Nearest + Scruz + Adjacent, data=gala)
   > round(glts$coef, 3)
   (Intercept) Area Elevation Nearest Scruz Adjacent
     8.975 1.544 0.024 0.803 -0.117 -0.196
   ## Another try with set seed
   > set.seed(123)
   > glts <- ltsreg(Species ~ Area + Elevation +</pre>
   +
                     Nearest + Scruz + Adjacent, data=gala)
   > round(glts$coef, 3)
   (Intercept) Area Elevation Nearest Scruz Adjacent
        12.507 1.545 0.017 0.523 -0.094 -0.143
   ## Exact solution - takes longer
   > glts <- ltsreg(Species ~ Area + Elevation +
          Nearest + Scruz + Adjacent, data=gala, nsamp="exact")
   > round(glts$coef, 3)
   (Intercept) Area Elevation Nearest Scruz Adjacent
      9.381 1.544 0.024
                               0.811
```

-0.118, -0.198, = 0.00 25/36

Bootstrap

- We don't have the standard errors for the LTS regression coefficients.
- When we have no theory to compute SEs, can use bootstrap
- Fundamental idea: pretend the observed data is the population
- Resample observed data, create multiple samples
- From each sample, estimate parameters and assess variability

Bootstrap Continued

Simulation world:

- Generate ϵ from the known error distribution
- Form $y = X\beta + \epsilon$ from the known β
- Compute $\hat{\beta}$
- useful for testing new methodology

Bootstrap Continued

Bootstrap world:

- Sampling with replacement from $\hat{\epsilon}_1, \dots, \hat{\epsilon}_n \Rightarrow \epsilon^*$
- Form $y^* = X\hat{\beta} + \epsilon^*$
- Compute $\hat{\beta}^*$ from (X, y^*)
- useful for assessing estimator uncertainty on real data when no theory is available

Gala Example

```
# extract matrix of predictors for ltsreg
> x <- gala[,3:7]
## bootstrap 1000 times
> bcoef <- matrix(0, nrow=1000, ncol=6)</pre>
> for (i in 1:1000) {
+ newy <- glts$fit + glts$resid[sample(30, rep=T)]
+ bcoef[i,] <- ltsreg(x, newy, nsamp="best")$coef
+ }
## 95% C.I. for Parameters
> colnames(bcoef) = names(coef(glts))
> apply(bcoef,2,function(x),quantile(x,c(0.025,0.975)))
Error: unexpected ',' in "apply(bcoef,2,function(x),"
> apply(bcoef,2,function(x) quantile(x,c(0.025,0.975)))
      (Intercept) Area Elevation Nearest
                                                   Scruz
2.5% 1.917772 1.494069 -0.01461920 0.1588385 -0.26238063 -0.
97.5% 21.467200 1.606935 0.07333018 1.9147331 0.09821907 -0.
```

Histogram of bootstrap estimates


```
## LS model w/o Isabela (the most influential point)
> gi <- lm(formula(g), data=gala,</pre>
           subset=(row.names(gala) != 'Isabela'))
> summary(gi)
Coefficients:
           Estimate Std.Error t value Pr(>|t|)
(Intercept) 22.58614 13.40191 1.685 0.10545
Area
    0.29574 0.06186 4.781 8.04e-05
Elevation 0.14039 0.04970 2.824 0.00961
Nearest -0.25518 0.72168 -0.354 0.72686
Scruz -0.09010 0.14980 -0.602 0.55339
Adjacent -0.06503 0.01223 -5.318 2.12e-05
```

Residual standard error: 41.65 on 23 degrees of freedom Multiple R-Squared: 0.8714 Adjusted R-squared: 0.8434 F-statistic: 31.17 on 5 and 23 DF p-value: 1.617e-09

Remarks

- Two routes to the same goal:
 - Regression diagnostics in conjunction with LS
 - Robust methods

Former more informative, but time-consuming; latter quick and suitable for large datasets.

M-estimation failed to identify "Isabela"

Star Example

- 47 stars in the star cluster CYG OB1
- Response: log of the light intensity
- Predictor: log of the surface temperature

```
## Compare LS, Huber and LTS
> data(star)
> plot(light ~ temp, data=star, xlab="temp", ylab="light")
> starls <- lm(light ~ temp, star)
> abline(starls$coef)
> starhuber <- rlm(light ~ temp, star)
> abline(starhuber$coef, lty=2)
> starlts <- ltsreg(light ~ temp, star, nsamp="exact")
> abline(starlts$coef, lty=5)
```

Star Example Continued

Summary: Robust methods

- Protect against outliers and heavy tails... but not misspecified structure (model or error)
- Theory not available for standard errors need bootstrap
- If robust and LS fits are very different, cause to worry
- Useful when automatic fitting is needed (no human intervention)