Česká zemědělská univerzita v Praze Technická fakulta

Laboratorní práce

Speciální senzorika

Senzory přiblížení

Autor: Josef Kořínek

29. prosince 2022

1.Zadání

- Porovnejte tři typy senzorů přiblížení: indukční, kapacitní a magnetický
- Zjistěte, jaká je hystereze u jednotlivých snímačů
- Vypracujte protokol dle vzoru, který naleznete v kurzu předmětu na moodle.czu.cz

2. Princip fungování senzoru

Senzory přiblížení se používají pro detekci objektu bez potřeby fyzického kontaktu s objektem. **Kapacitní senzor** detekuje kovové i nekovové předměty. Na snímací hlavě senzoru je umístěn otevřený kondenzátor viz Obr. 1 Schéma kapacitního senzoru. Kapacita se mění na základě přibližování jakéhokoliv vodivého materiálu.[1]

Obr. 1 Schéma kapacitního senzoru[2]

Indukční senzor detekuje jen kovové předměty. Funguje na principu elektrické indukčnosti. Generuje vysokofrekvenční elektromagnetické pole a snímá změnu v poli pomocí indukční smyčky. Magnetické pole se mění, pokud se v poli ocitne kovový předmět. [1]

Obr. 2 Schéma indukčního senzoru[3]

V závislosti na vystavení magnetickému poli Halova sonda na čele **magnetického senzoru** vychyluje směr toku elektrického proudu. Tok magnetického pole je označen B na Obr. 3 [1, 4]

Obr. 3 Schéma magnetického senzoru[4]

3. Postup měření

Kapacitní senzor byl přiložen kolmo na hranu kelímku, postupně byl přibližován z vrchu směrem k úrovni sypkého materiálu a byla zaznamenána vzdálenost, od horního okraje kelímku, ve které se rozsvítila indikační dioda. Následně byl přibližován k úrovni ze spodu a byla zaznamenána hodnota kdy dioda zhasla. Měření bylo provedeno pro všechny materiály.

Indukční senzor byl umístěn do posuvného zařízení a zapojen podle schématu. Do žlábku na zařízení byly postupně vkládány válečky z jednotlivých materiálů. Materiál byl přibližován k senzoru a byla zaznamenána vzdálenost materiálu od senzoru, ve které se rozsvítila indikační dioda. Následně byl oddalován od senzoru a byla zaznamenána hodnota kdy dioda zhasla. Měření bylo provedeno pro všechny materiály.

Magnetický senzor byl umístěn do posuvného zařízení a zapojen podle schématu. Do žlábku na zařízení byl vložen magnet. Magnet byl přibližován k senzoru a byla zaznamenána vzdálenost magnetu od senzoru, ve které se rozsvítila indikační dioda. Následně byl oddalován od senzoru a byla zaznamenána hodnota kdy dioda zhasla.

4. Schéma zapojení

Obr. 4 Schéma zapojení senzorů – vlastní

5. Použité přístroje

Číslo	Název	Тур	Sériové číslo
1.	Zdroj	LW-K3010D	211101976
2.	Posuvné měřítko		
3.	Mikrometr	Roma (0,01 mm; 0-25 mm)	

Tab. 1 Seznam použitých přístrojů

6. Použité senzory

Číslo	Тур	Kategorie	S/N
1.	Induktivní senzor polohy	KS CO12-U-PNP	190591
2.	Magnetický senzor polohy	MC012-AL508-U-PNP	00327
3.	Kapacitní senzor polohy	KAP08 D1-0-70-PNP-L5	190133

Tab. 2 Seznam použitých senzorů

7. Zpracování dat

	k obvodu válce		s korekcí		Hodnota zjištěná
Materiál	z vrchu	zespodu	z vrchu	zespodu	posuvným měřítkem
písek	35	33	48,5	46,5	42
kukuřice	30	25	43,5	38,5	42
pšenice	25	20	38,5	33,5	36
polypropylen	Bez detekce			45	
voda	16	15	29,5	28,5	45
korekce	r=13,5				

Tab. 3 Naměřená data kapacitního senzoru [mm]

Hysterezi spočítáme jako rozdíl hodnoty zjištěné posuvným měřítkem a naměřených hodnot senzorem.

	Hodnoty hystereze		
Materiál	z vrchu	ze spodu	
písek	-6,5	-4,5	
kukuřice	-1,5	3,5	
pšenice	-2,5	2,5	
polypropylen	-	-	
voda	15,5	16,5	

Tab. 4 Spočítaná hystereze kapacitního senzoru

Obr. 5 Hysterezní křivka kapacitního senzoru

Materiál	k senzoru	od senzoru	
hliník	0,1	0,5	
mosaz	1	1,1	
měď	0,85	0,8	
ocel	3	3,1	

Tab. 5 Naměřená data indukčního senzoru [mm]

Jelikož u indukčnosti neznáme skutečné hodnoty, při kterých měl senzor spínat můžeme za hysterezi považovat rozdíl mezi hodnotou od senzoru a k senzoru. To samé můžeme prohlásit u magnetu.

Materiál	Hodnoty hystereze	
hliník	0,4	
mosaz	0,1	
měď	-0,05	
ocel	0,1	

Tab. 6 Spočítaná hystereze indukčního senzoru [mm]

Obr. 6 Hysterezní křivka indukčního senzoru

Materiál	k senzoru	od senzoru	Hodnota hystereze
magnet	4,85	5,85	1

Tab. 7 Naměřená data a spočítaná hystereze magnetického senzoru [mm]

8.Závěr

U každého senzoru došlo k naměření data a spočítání hystereze. U kapacitního a magnetického je hystereze jasně prokazatelná a musí se s ní při navrhování systému počítat. Hodnoty hystereze u indukčního senzoru se blížili k nule, dokonce tak že při měření mědi došlo k větší chybě vlivem lidského faktoru než byla hodnota hystereze a tak vyšla hodnota hystereze záporná. Byli vytvořeny hysterezní křivky pro indukční a kapacitní senzor. Hysterezní křivka pro magnet nelze vytvořit vzhledem k povaze měření.

9.Zdroje

- [1] What is Proximity Sensors? | A Complete Guide to Proximity Sensors [online]. [vid. 2022-12-29]. Dostupné z: https://www.educba.com/what-is-proximity-sensors/
- [2] Bezkontaktní kapacitní snímače přiblížení obecný popis | Automatizace.HW.cz [online]. [vid. 2023-01-12]. Dostupné z: https://automatizace.hw.cz/komponentymereni-a-regulace/bezkontaktni-kapacitni-senzory-priblizeni-obecny-popis.html
- [3] Bezkontaktní indukční snímače přiblížení obecný popis / Automatizace.HW.cz [online]. [vid. 2023-01-12]. Dostupné z: https://automatizace.hw.cz/komponentymereni-a-regulace/indukcni-snimace-priblizeni-obecny-popis.html
- [4] Magnetické senzory s Hallovým efektem 1. princip | Automatizace.HW.cz [online]. [vid. 2022-12-29]. Dostupné z: https://automatizace.hw.cz/magneticke-senzory-s-hallovym-efektem-1-princip