Corrigé de l'exercice 2 (modèles finis) du TD 3 (théories et modèles)

Question 1

 $(\mathbb{R},0,1,<)$, $(\mathbb{Q},0,1,<)$ et ([0,1],0,1,<) sont trois exemples de modèles valides. Tous vérifient les quatre axiomes.

Une théorie est cohérente si on ne peut pas prouver la formule ⊥.

Supposons que $\mathcal{T} \vdash \bot$ (\bot est un théorème de \mathcal{T}), alors $\mathcal{M} \models \bot$ (\mathcal{M} valide \bot) pour tout modèle \mathcal{M} de \mathcal{T} , c'est-à-dire que $\llbracket \bot \rrbracket^{\mathcal{M}} = 1$. Or, par définition, la valeur de vérité associée à \bot dans tout modèle est 0 ($\llbracket \bot \rrbracket^{\mathcal{M}} = 0$). On obtient une contradiction donc $\mathcal{T} \nvdash \bot$.

Par conséquent, la théorie $\mathcal T$ est cohérente (puisqu'elle admet des modèles).

Question 2

Dans un modèle donné \mathcal{M} de \mathcal{T} , on construit une suite infinie vérifiant $0 < ... < u_n < u_{n-1} < ... < u_1 < u_0 = 1$, de la manière suivante :

- $u_0 = 1$ (on a bien $0 < u_0$ par l'axiome 1).
- Par construction $0 < u_n$ donc par l'axiome 4, on trouve u_{n+1} tel que $0 < u_{n+1}$ et $u_{n+1} < u_n$.

Par récurrence et par transitivité (axiome 3), on obtient $u_n < u_m$ pour tous n < m.

Par anti-réflexivité (axiome 2), on obtient $u_n \neq u_m$ pour tous $n \neq m$.

Notre suite est ainsi une injection de $\mathbb N$ dans $\mathcal M$ donc $\mathcal M$ est infini.

Question 3

Modèle fini pour \mathcal{T}_1

 $(\{0,...,n\},0,0,\emptyset)$ (0 et 1 sont interprétés par le même élément et < est interprété par la relation vide) est un modèle fini de \mathcal{T}_1 .

En effet, il vérifie bien les axiomes 2, 3 et 4 (dont les hypothèses ne sont jamais vérifiées).

Modèle fini pour \mathcal{T}_2

 $(\{0,1,...,n\},0,1,\leq)$ est un modèle fini de $\mathcal{T}_2.$

En effet, il vérifie bien les axiomes 1 (0 \leq 1), 3 (\leq est une relation d'ordre, donc transitive) et 4 (il suffit de prendre z = x).

Modèle fini pour \mathcal{T}_3

 $(\{0,1,2,...,n\},0,1,\neq)$ est un modèle fini de \mathcal{T}_3 .

En effet, il vérifie bien les axiomes 1 ($0 \ne 1$), 2 ($\forall x, \neg(x \ne x)$) et 4 (à partir de trois éléments on peut en trouver un qui est simultanément différent de deux autres).

Modèle fini pour \mathcal{T}_4

 $(\{0,1,...,n\},0,1,<)$ est un modèle fini de \mathcal{T}_4 .

En effet, il vérifie bien les axiomes 1 (0 < 1), 2 (l'ordre strict est anti-réflexif) et 3 <math>(< est une relation d'ordre strict, donc transitive).