平成30年度(2018年度)日本留学試験

数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを<u>一つだけ</u>選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

II 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 3. コース 1 は 1 \sim 14 ページ, コース 2 は 15 \sim 27 ページにあります。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

III 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号)、または、0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A** , **BC** などが繰り返し現れる場合, 2 度目以降 は, **A** , **BC** のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{\mathbf{A}}\sqrt{\mathbf{B}}$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、下のようにマークしてください。
- (4) $\boxed{\textbf{DE}}_x$ に -x と答える場合は、 $\boxed{\textbf{D}}$ を一、 $\boxed{\textbf{E}}$ を1とし、下のようにマークしてください。

【解答用紙】

Α	0	0	1	2	3	4	9	6	0	8	9
В	Θ	0	0	2	0	4	6	6	0	8	9
С	Θ	0	0	2	3	•	6	6	0	8	9
D	0	. (0)	0	0	3	4	6	6	0	8	9
E	Θ	0	0	0	3	4	6	6	0	8	9

4. 解答用紙に書いてある注意事項も必ず読んでください。

※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	*	
名 前			

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを<u>一つだけ</u>選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を 〇 で囲み、その下のマーク欄をマークしてください。

選択したコースを正しくマークしないと、採点されません。

_	
1000	

問 1 2 次関数

$$f(x) = x^2 - 2(a+1)x + 2a^2$$

の $0 \le x \le 2$ における最大値 M と最小値 m について考える。ただし,a は $0 \le a \le 3$ を 満たす定数とする。

(1) y = f(x) のグラフの頂点の座標は

$$\left(a+igcap A\right)$$
, $a^2-igcap Ba-igcap C
ight)$

である。

D ~ H には、下の選択肢 ⑩ ~ ⑨ の中から適するものを選び (2) 次の文中の なさい。

最大値 M, 最小値 m を軸の位置に応じて求めると

 $0 \le a <$ **D** のとき

$$M = \begin{bmatrix} \mathbf{E} \end{bmatrix}, \quad m = \begin{bmatrix} \mathbf{F} \end{bmatrix}$$

 $D \leq a \leq 3$ のとき

$$M = \boxed{\mathbf{G}}, \quad m = \boxed{\mathbf{H}}$$

である。

- 0 0
- ① 1
- 2
- 3

- (4) $a^2 2a$
- § $a^2 2a 1$
- $(7) \quad 2a^2 2a 1$ $(8) \quad 2a^2 4a$
- $9 2a^2 6a + 3$
- (3) m が最大となるのは $a = \begin{bmatrix} I \end{bmatrix}$ のときであり、このときの m の値は $\begin{bmatrix} J \end{bmatrix}$ である。 また,m が最小となるのはa = \mathbf{K} のときであり,このときのm の値は \mathbf{LM} で ある。

- 問 2 1 個のさいころを 3 回投げて、1 回目、2 回目、3 回目に出る目の数をそれぞれ a, b, c と する。この a, b, c を用いて、2 次関数 $f(x) = ax^2 + bx + c$ を考える。
 - (1) b=4 かつ 2 次方程式 f(x)=0 が異なる 2 つの実数解をもつ確率は OPQ ある。
 - f(10) > 453 となる確率を求めよう。 f(10) > 453 となる (a,b,c) の場合の数を求めると、次のようになる。

$$a=4$$
 かつ $b=5$ のとき, R 通り

$$a=4$$
 かつ $b=6$ のとき, $oxed{S}$ 通り

$$a=5$$
 のとき, **TU** 通り

$$a=6$$
 のとき、 \boxed{VW} 通り

よって,求める確率は
$$X$$
 である。

数学-20

Π

数列 {an} は 問 1

$$a_1 = \frac{2}{9}$$
, $a_n = \frac{(n+1)(2n-3)}{3n(2n+1)} a_{n-1}$ $(n=2,3,4,\cdots)$

で与えられている。このとき,一般項 a_n と無限級数 $\sum_{n=0}^{\infty} a_n$ の和を求めよう。

(1) 次の文中の **A** ~ **E** には、下の選択肢 ® ~ **9** の中から適するものを選び なさい。

まず、
$$b_n=rac{n+1}{3^na_n}$$
 とおき、 $rac{b_n}{b_{n-1}}$ を n の式で表すと

となる。この式より

$$a_n = \frac{n+1}{3^n(\boxed{\mathsf{E}})(2n+1)}$$

である。

- ② n+1 ③ 2n-1 ④ 2n+1

- (5) 2n-3 (6) 2n+3 (7) 3n-1 (8) 3n

(2) 次に, $c_n = \frac{1}{3^n(2n+1)}$ $(n=0,1,2,\cdots)$ とおく。このとき, $a_n = Ac_{n-1} + Bc_n$ とおく

と,
$$A=rac{f F}{f G}$$
, $B=rac{f HI}{f J}$ である。この式を用いて, $S_n=\sum_{k=1}^n a_k$ を求めると

$$S_n = \frac{\boxed{\mathsf{K}}}{\boxed{\mathsf{L}}} (\boxed{\mathsf{M}} - c_n)$$

となる。したがって

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = \frac{\mathbb{N}}{\mathbb{O}}$$

を得る。

問 2 x 軸上の点 (5,0) を中心とする半径 4 の円 C を考える。

(1) 円 C 上に点 P(p,q) をとると

$$p^2 - \boxed{\mathbf{PQ}} p + q^2 + \boxed{\mathbf{R}} = 0$$

が成り立つ。 また、点 $\mathrm{P}(p,q)$ における円 C の接線の方程式は

$$(p-\boxed{\mathbf{S}})x+qy=\boxed{\mathbf{T}}p-\boxed{\mathbf{U}}$$

である。

(2) $a \ge 0$ とし、y 軸上の点 A(0,a) から円 C に接線を引き、その接点を P(p,q) とおく。 線分 AP の長さが最小となるのは、a = V のときであり、その長さは W である。

また, 点 A から円 C に引いた 2 本の接線が直交するのは、線分 AP の長さが X のときであり、このときの a の値は $a=\sqrt{Y}$ である。

-	-	_	_	
		L	1	
	ı	L	ı	

x の関数

$$f(x) = x^3 - 3ax^2 - 3(2a+1)x + a + 2$$

について, 次の問いに答えなさい。

(1)	次の文中の	G] ~	K	こは,	下の選択肢 ⑩ ~ ⑤ の中から適するものを選び
	なさい。また,	他の] には,	適す	る数を入れなさい。

f(x) の導関数は

であるから

(i)
$$a >$$
 EF のとき, $f(x)$ は $x = -$ **D** で **G** となり, $x =$ **B** $a +$ **C** で **H** となる。

(ii)
$$a = \begin{bmatrix} \mathsf{EF} \end{bmatrix}$$
 のとき, $f(x)$ はつねに $\begin{bmatrix} \mathsf{I} \end{bmatrix}$ となる。

- ① 極大
- ① 極小
- ② 增加
- ③ 減少

- (4) 最大
- ⑤ 最小

(III)は次ページに続く)

注) 導関数: derivative

- (2) $-1 \le x \le 1$ における f(x) の最小値 m を a を用いて表そう。
 - (i) $a \ge$ L のとき, m = MN a である。
 - (ii) OP $\leq a <$ L のとき、m = QR $\left(a^3 +$ S $a^2 +$ T $a\right)$ である。
 - (iii) $a < \mathbf{OP}$ のとき, $m = \mathbf{U}$ $a + \mathbf{V}$ である。

III の問題はこれで終わりです。 [III] の解答欄 **Z** はマークしないでください。

2つの関数

$$y = x \log ax$$
 ①

$$y = 2x - 3$$
 ②

を考える。ただし、a > 0 とする。また、 \log は自然対数を表す。

(1) ① のグラフが ② のグラフに接するような a を求めよう。

点 $(t, t \log at)$ における ① のグラフの接線の方程式は $lackbr{A}$ である。ただし, $lackbr{A}$ には、次の選択肢 ① ~ ③ の中から適するものを選びなさい。

$$0 \quad y = (\log at + 1)x - t$$

②
$$y = (a \log t + 1)x + t$$
 ③ $y = (a \log t + a)x + t$

$$(3) \quad y = (a \log t + a)x + t$$

したがって,① のグラフが ② のグラフに接するのは $a = \frac{e}{\mathbf{B}}$ のときで,その

接点の座標は (C , D) である。

(2)
$$a = \frac{e}{\mathbf{B}}$$
 のとき,関数 ① は $x = \mathbf{E} e^{\mathbf{F}}$ で最小値 $-\mathbf{G} e^{\mathbf{H}}$ をとる。

(IV は次ページに続く)

注) 自然対数: natural logarithm

(3)	$a = \frac{e}{\Box}$	のとき,	① のグラフと	② のグラ	フおよび x	軸で囲まれる部	部分の面積。	S
	を求めよう。							

次の不定積分を求めると

$$\int x \log ax \, dx = \boxed{ } + C \quad (C は積分定数)$$

である。ただし、 には、次の選択肢 ① ~ ③ の中から適するものを選びなさい。

- ① $\frac{1}{2}x^2 \log ax \frac{1}{2}x^2$ ① $2x^2 \log ax 2x^2$
- ② $\frac{1}{2}x^2 \log ax \frac{1}{4}x^2$ ③ $2x^2 \log ax 4x^2$

したがって

$$S = \frac{\boxed{\mathbf{J}}}{\boxed{\mathbf{K}}} e^{-\boxed{\mathbf{L}}}$$

である。

注) 不定積分: indefinite integral

[IV] の問題はこれで終わりです。 [IV] の解答欄 [M] ~ [Z] はマークしないでください。 コース2の問題はこれですべて終わりです。解答用紙のVはマークしないでください。

> 解答用紙の解答コース欄に「コース 2」が正しくマークしてあるか, もう一度確かめてください。

> > この問題冊子を持ち帰ることはできません。

〈数 学〉Mathematic

	コース	1 Cou	rse1
問	Q.	解答番号 row	正解 A.
		ABC	121
		D	1
	Ī	E	6
		F	5
		G	6
	問1	Н	8
		1	3
		J	6
I		K	1
		LM	-2
		NOPQ	5216
		R	3
	200	S	6
	問2	TÜ	36
		VW	36
	3 2 4	XY	38
	egio	AR	23
		AB CD	23
	To the second	E	4
		F	1
	問 1	GH	14
		IJ	-5
	187	KL	-1
I	1	M	3
ш		N	2
		0	1
		P	0
	問2	QR	43
	[P] Z	ST	13
		UV	23
			4
	g Man 1	ABCDE	23527
			48
		FG H	3
	1015	П	7
Ш		IVI	200
		JKL	28417
		MNOPQ	
		R	2
	1000	ST	57
		ABC	423
		DEF	423
		GH	31
		IJ	31
IV		KLMN	2313
		OPQR	2312
	The state of	STU	312
		VW	26
		XYZ	518

Ç, c	コース	2 Cou	urse2
問	IQ.	解答番号 row	正解 A.
		ABC	121
		D	1
		E	6
		A Fa	5
	4.3	G	6
	問1	H	8
		1 2	3
4		J	6
I		K	1
		LM	-2
		NOPQ	5216
		R	3
		S	3 6
	問2	TU	36
		VW	36
	307	VW	38
100		ΔR	28
	2	AB CD	45
		E	3
	問 1	FG	14
	IPJ T	HIJ	-14
	60 A -	KLM	141
П	1	NO	14
	Mark Control	PQR	109
		STU	559
		V	0
	問2	W	3
		X	4
		Y	7
		ABCD	3211
	2	#FF W	-1
		EF G	0
		Н	1
			2
		J	1
Ш		K	2 1 0
	1	L	0
		MN	-8
		OP	-1
	Special Co.	OBST	-432
		111/	44
		QRST UV WXY	333
	le le constant	VVAT	000
	100	A B	3
		CD	3
IV		CD EF	33
10		EF	32
	112	GH	32
		10.0	2
Ele/A		JKL	942