Internal Assignment - Practical

Paper Name – Operating Systems

B.Sc. (Hons.) Computer Science, Semester 3

Anshul Verma (19/78065)

Q1.

```
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
#define SIZE 5
int nums[SIZE] = \{0,1,2,3,4\};
int main()
int i;
pid t pid;
    pid = fork();
    if (pid == 0) {
        for (i = 0; i < SIZE; i++) {
            nums[i] *= -i;
            printf("CHILD: %d ",nums[i]); /* LINE X */
        }
    else if (pid > 0) {
        wait(NULL);
        for (i = 0; i < SIZE; i++)
            printf("PARENT: %d ",nums[i]); /* LINE Y */
    return 0;
}
```

What output will be at Line X and Line Y? Justify your answer.

Sal:1 Output:

Iteration	Line X	LineY
1	CHILD:D	PARENT: 0
2	CHILD:-1	PARENT: 1
3	CHILD:4	PARENT; 2
4	CHILD:-9	PARENT: 3
5	CHILD:-16	PARENT: 4

Here, as we can see, only the data for child process has changed not the pass data for parent process. This is because:

The changes made in child process occurs into only its copy of data and thus, it won't affect the parent process.

The following processes are being scheduled using a preemptive, roundrobin scheduling algorithm. Each process is assigned a numerical priority, with a higher number indicating a higher relative priority. In addition to the processes listed below, the system also has an *idle task* (which consumes no CPU resources and is identified as P_{idle}). This task has priority 0 and is scheduled whenever the system has no other available processes to run. The length of a time quantum is 10 units. If a process is preempted by a higher-priority process, the preempted process is placed at the end of the queue.

Thread	Priority	Burst	Arrival
P_1	40	20	0
P_2	30	25	25
P_3	30	25	30
P_4	35	15	60
P_5	5	10	100
P_6	10	10	105

- a. Show the scheduling order of the processes using a Gantt chart.
- b. What is the turnaround time for each process?
- c. What is the waiting time for each process?
- d. What is the CPU utilization rate?

Soli2 (a) According to given table, we can draw Gantt Chart as follows:

0	10	20									30 9					
	P ₁	P_1	Pidle	P2	P ₃	P ₂	P3	P4	P4	Pa	P3	Pidle	P5	P6	P ₅	7

(b)	Thread	Arrival Tin (AT)	CT)	Turnaround Time (TT) = (CT - AT)
	P ₁	0	20	20-0 = 20
	P ₂	25	80	80 - 25 = 55
	P ₃	50	90	90-30 =60
	P ₄	60	75	75-60 = 15
	P ₅	100	120	120-100 = 20
	P ₆	105	115	115-105=10
(E)	Thread	Ruset Times T	and Time Inte	riting Time

Waiting Time Thread Burst Time Turn Aroud Time (TT)(BT) (WT) = (TT-BT) 20 20-20 = 0 20 P1 55 55-25 = 38 P2 P3 25 60 - 25 = 3525 60 P4 15-15=0 15 15 P5 10 20 20-10=10 10 10 10-10=0

(d) CPU Utilization rate =
$$\frac{105}{120}$$
 = 87.5%