

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Cálculo I Examen III

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Cálculo I.

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor José Luis Gámez Ruíz.

Descripción Convocatoria Ordinaria.

Fecha 24 de enero de 2024.

Ejercicio 1 (2 puntos). Sea $A \subseteq \mathbb{R}$ un conjunto no vacío.

- 1. Demostrar que las dos siguientes afirmaciones son equivalentes:
 - a) A está acotado.
 - b) El conjunto $|A| = \{|a| : a \in A\}$ está mayorado.
- 2. Probar que si A acotado entonces existe una sucesión $\{a_n\}$ de puntos de A, que verifica $\{|a_n|\} \to \sup |A|$. ¿Se puede conseguir que tal $\{a_n\}$ sea monótona? Justificar las respuestas.

Ejercicio 2.

- 1. (2 puntos) Estudia la convergencia de las siguientes sucesiones calculando, en su caso, el límite:
 - a) $x_1 = 1$, $x_{n+1} = \sqrt{2 + x_n}$, $\forall n \in \mathbb{N}$.

b)
$$\left\{ \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \right) \right\}.$$

2. (1 punto) Estudiar la convergencia de la serie: $\sum_{n\geq 1} \frac{(1+\frac{1}{n})^n}{4^n}.$

Ejercicio 3 (2 puntos). Sea la sucesión $\{a_n\}$ verificando $|a_n - 1| \leq \frac{1}{n}, \forall n \in \mathbb{N}$. Se pide:

- 1. Probar que la serie $\sum_{n\geq 1} (-1)^n \frac{(a_n-1)}{n}$ converge absolutamente.
- 2. Estudiar la convergencia y la convergencia absoluta de la serie $\sum_{n\geq 1} (-1)^n \frac{a_n}{n}$.

$$Observaci\'on. \ \ \text{N\'otese que } \sum_{n\geqslant 1} (-1)^n \frac{(a_n-1)}{n} = \sum_{n\geqslant 1} (-1)^n \frac{a_n}{n} - \sum_{n\geqslant 1} (-1)^n \frac{1}{n}.$$

Ejercicio 4 (3 puntos). Considérese la función $f:[1,2] \to \mathbb{R}$, $f(x)=e^{-x}-\ln x$, $\forall x \in [1,2]$. Responder las siguientes cuestiones, enunciando todos los teoremas que se usen.

- 1. Demostrar que $\exists c \in]1,2[$ tal que f(c)=c-1.
- 2. Determinar la imagen de f.
- c) ¿Existe la inversa de f? En caso afirmativo, ¿es f^{-1} monótona?, ¿es f^{-1} continua? Justificar las respuestas.