

Tuesday, November 23th, 2021

Outline

- 1. What is Transfer Learning?
- 2. Why is use Transfer Learning?
- 3. How transferable are features?
- 4. Approaches to Transfer Learning
- 5. Experimental
- 6. Conclusions

Outline

Learning from Scratch

Transfer Learning

Pre-trained VGG-19 on ImageNet

Pre-trained VGG-19 on ImageNet

Traditional Learning Flow

Transfer Learning Flow

Outline

- 1. What is Transfer Learning?
- 2. Why is use Transfer Learning?

High-quality dataset consisting of a large amount of data ImageNet Challenge

IM GENET

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 1.2 M train
 100k test.

High-quality dataset consisting of a large amount of data ImageNet Challenge

High performance

High-quality dataset consisting of a large amount of data ImageNet Challenge

High performance

Dataset consisting of a small amount of data

Dataset consisting of a small amount of data High-quality dataset consisting of a large amount of data **ImageNet Challenge** COVID-19 Image **IM** GENET **Data Collection** THE RESERVE OF THE PARTY OF THE PARTY. 1.000 object classes A chest X-ray image dataset of (categories). viral and bacterial pneumonias Images: (mostly COVID-19) o 1.2 M train 100k test. Reuse _Training Training FC1 FC2 FC1 FC2 VGG-19-BN VGG-19-BN

High performance

High performance

Outline

- 1. What is Transfer Learning?
- 2. Why is use Transfer Learning?
- 3. How transferable are features?

3. How transferable are features?

Detect edges in the earlier layers

Detect edges in the earlier layers, shapes in the middle layer

Detect edges in the earlier layers, shapes in the middle layer and some task-specific features in the later layers

Outline

- 1. What is Transfer Learning?
- 2. Why is use Transfer Learning?
- 3. How transferable are features?
- 4. Approaches to Transfer Learning

Pretrained model

ImageNet

1000 Classes

ImageNet has many related categories...

Dataset A: random

gecko

garbage truck

fire truck

baseball

panther

panther

bookshop

rabbit

gorilla

ImageNet has many related categories...

Dataset A: man-made

garbage truck

fire truck

radiator

baseball

binoculars

bookshop

Dataset B: natural

gorilla

gecko

toucan

rabbit

panther

lion

- Measure general to specific transition layer by layer
- Transferability governed by:
 - lost co-adaptations
 - specificity
 - difference between base and target dataset
- Fine-tuning helps even on large target dataset

Outline

- 1. What is Transfer Learning?
- 2. Why is use Transfer Learning?
- 3. How transferable are features?
- 4. Approaches to Transfer Learning
- 5. Experimental

Dataset: https://www.kaggle.com/andyczhao/covidx-cxr2?select=train.txt

Data Structure

patient id	file_name	class	source
5	ARDSSevere.png	negative	cohen
25	$acute\hbox{-} respiratory\hbox{-} distress\hbox{-} syndrome\hbox{-} ards\hbox{-} 1.jpg$	negative	cohen
26	acute-respiratory-distress-syndrome-ards.jpg	negative	cohen
27	ards-secondary-to-tiger-snake-bite.png	negative	cohen
28	pneumocystis-pneumonia-2-PA.png	negative	cohen

 $Dataset: \verb|https://www.kaggle.com/andyczhao/covidx-cxr2?select=train.txt|$

Data Structure

patient id	file_name	class	source
5	ARDSSevere.png	negative	cohen
25	acute-respiratory-distress-syndrome-ards-1.jpg	negative	cohen
26	acute-respiratory-distress-syndrome-ards.jpg	negative	cohen
27	ards-secondary-to-tiger-snake-bite.png	negative	cohen
28	pneumocystis-pneumonia-2-PA.png	negative	cohen

Dataset: https://www.kaggle.com/andyczhao/covidx-cxr2?select=train.txt

Data Structure

patient id	file_name	class	source
5	ARDSSevere.png	negative	cohen
25	acute-respiratory-distress-syndrome-ards-1.jpg	negative	cohen
26	acute-respiratory-distress-syndrome-ards.jpg	negative	cohen
27	ards-secondary-to-tiger-snake-bite.png	negative	cohen
28	pneumocystis-pneumonia-2-PA.png	negative	cohen

VGG-NETS

ConvNet Configuration						
A	A-LRN	В	C	D	E	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
input (224 × 224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
	maxpool					
FC-4096						
FC-4096						
FC-1000						
soft-max						

VGG19

From the scratch: in 162m 38s

Transfer Learning: in 164m 26s

From the scratch: in 162m 38s

Accuracy over epochs of Model -x- Training acc -- Validation acc Epoch

Transfer Learning: in 164m 26s

From the scratch: in 162m 38s

Transfer Learning: in 164m 26s

Outline

- 1. What is Transfer Learning?
- 2. Why is use Transfer Learning?
- 3. How transferable are features?
- 4. Approaches to Transfer Learning
- 5. Experimental
- 6. Conclusions

Conclusions

1. What is Transfer Learning?

Learning from Scratch

Transfer Learning

2. Why is use Transfer Learning?

8

4. Approaches to Transfer Learning

4. Approaches to Transfer Learning

- Measure general to specific transition layer by layer
- · Transferability governed by:
- · lost co-adaptations
- specificity
- · difference between base and target dataset
- Fine-tuning helps even on large target dataset

https://s.yosinski.com/yosinski 141209 nips.pdf

47

References

https://towardsdatascience.com/a-practical-example-in-transfer-learning-with-pytorch-846bb835f2db https://yosinski.com/transfer

https://www.analyticsvidhya.com/blog/2019/10/how-to-master-transfer-learning-using-pytorch/

https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

https://hackernoon.com/transfer-learning-approaches-and-empirical-observations-efeff9dfeca6

https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html

