Introduction to de Rham Cohomology Theory

Zihao Huang¹ Hao Fan²

¹Undergraduate Mathematics and Applied mathematics, T-2001

²Undergraduate
Mathematics and Applied mathematics, T-2001

Final Report, May 2023

Outline

Motivation and Background

- Differential Forms and De Rham Cohomology
- Examples and Results

Table of Contents

Motivation and Background

- Differential Forms and De Rham Cohomology
- Examples and Results

Why de Rham Cohomology?

• Gives the name "differential" for (co)homology;

Why de Rham Cohomology?

- Gives the name "differential" for (co)homology;
- Connects calculus, algebra and topology;

Why de Rham Cohomology?

- Gives the name "differential" for (co)homology;
- Connects calculus, algebra and topology;
- De Rham cohomology is a powerful tool for studying smooth manifolds.

Calculus

[MT97, Chapter 1]. Fix an open set $U \subseteq \mathbb{R}^2$, and let $C^{\infty}(U, \mathbb{R}^k)$ denote the set of smooth functions from U to \mathbb{R}^k .

Definition (Gradient, Rotation)

For
$$F \in C^{\infty}(U, \mathbb{R})$$
 and $(F_1, F_2) \in C^{\infty}(U, \mathbb{R}^2)$, we define

grad
$$F := (D_1F, D_2F), rot(F_1, F_2) := D_1F_2 - D_2F_1.$$

Calculus

[MT97, Chapter 1]. Fix an open set $U \subseteq \mathbb{R}^2$, and let $C^{\infty}(U, \mathbb{R}^k)$ denote the set of smooth functions from U to \mathbb{R}^k .

Definition (Gradient, Rotation)

For $F \in C^\infty(U,\mathbb{R})$ and $(F_1,F_2) \in C^\infty(U,\mathbb{R}^2)$, we define

grad
$$F := (D_1F, D_2F), rot(F_1, F_2) := D_1F_2 - D_2F_1.$$

It follows that

Proposition

We have $rot \circ grad = 0$, and the following complex.

$$C^{\infty}(U,\mathbb{R}) \xrightarrow{\operatorname{grad}} C^{\infty}(U,\mathbb{R}^2) \xrightarrow{\operatorname{rot}} C^{\infty}(U,\mathbb{R}) \longrightarrow 0.$$

←□ → ←□ → ← = → ← = → へへ

Definition

The first homology group is the quotient group is defined as follows: $H^1_{dR}(U) := \ker(\text{rot}) / \operatorname{Im}(\text{grad}).$

Theorem

For a star-shaped open set $U \subseteq \mathbb{R}^2$, we have $H^1_{dR}(U) = 0$.

Sketch of Proof.

WLOG, let U be star-shaped with respect to 0. Let $rot(f_1, f_2) = 0$. The function

$$F(x_1,x_2) := \int_0^1 x_1 f_1(tx_1,tx_2) + x_2 f_2(tx_1,tx_2) dt$$

satisfies $D_1F = f_1$, $D_2F = f_2$ whenever $D_2f_1 = D_1f_2$. Therefore, grad $F = (f_1, f_2)$ and hence Im(grad) = ker(rot).

Remark

It is not very simple to find other $H^1_{dR}(U)$, even $U = \mathbb{R}^2 \setminus \{0\}$.

Definition

For $k \geq 1$ and an open subset $U \subseteq \mathbb{R}^k$, we define

$$H^0_{dR}(U) := \ker(\operatorname{grad}).$$

We will show that it counts the connected components of U (equivalently, path-connected components, since \mathbb{R}^n is locally path-connected).

Remark

It is not very simple to find other $H^1_{dR}(U)$, even $U = \mathbb{R}^2 \setminus \{0\}$.

Definition

For $k \geq 1$ and an open subset $U \subseteq \mathbb{R}^k$, we define

$$H^0_{dR}(U) := \ker(\operatorname{grad}).$$

We will show that it counts the connected components of U (equivalently, path-connected components, since \mathbb{R}^n is locally path-connected).

Theorem

For an open subset $U \subseteq \mathbb{R}^k$, $H^0_{dR}(U) = \mathbb{R}$ iff U is connected.

Proof.

Sufficiency: we want $f \in H^0_{dR}(U)$ to be just c_f , where c_f is a constant for each f. Each $x_0 \in U$, there is an open neighbourhood $V(x_0)$ of x_0 such that $f = f(x_0)$ on $V(x_0)$. Then the set

$$\{x \in U \mid f(x) = f(x_0)\} = f^{-1}(f(x_0))$$

is closed, since f is continuous. It is also open since $V(x_0) \subseteq U$. Now we prove what we wanted. Connectivity of U means that f is constant. Necessity: if U is not connected, we can take $f: U \to \{0,1\}$ that is smooth and surjective. Then dim $H^0_{dR}(U) > 1$.

There are relevant results, such as [Rot88, Exercise 12.2].

Exercise

If $\{X_{\lambda} : \lambda \in \Lambda\}$ is the set of path components of X, prove that, for every n > 0,

$$H^n(X;G)\cong\prod_{\lambda}H^n(X_{\lambda};G).$$

There are relevant results, such as [Rot88, Exercise 12.2].

Exercise

If $\{X_{\lambda} : \lambda \in \Lambda\}$ is the set of path components of X, prove that, for every n > 0,

$$H^n(X;G)\cong\prod_{\lambda}H^n(X_{\lambda};G).$$

Similarly

Corollary

For open set $U \subseteq \mathbb{R}^k$, we have $H^0_{dR}(U) = \prod_{\pi_0(U)} \mathbb{R}$.

Table of Contents

Motivation and Background

- Differential Forms and De Rham Cohomology
- Examples and Results

Differential Forms

Let x_1, \ldots, x_n be the linear coordinates on \mathbb{R}^n . Then for any fixed point $p \in \mathbb{R}^n$, we can define n linear map

$$\partial/\partial x_i: C_p^\infty \to \mathbb{R}$$

$$f \mapsto D_i f \mid_p.$$

The linear space spanned by $\{\partial/\partial x_i\}$ over $\mathbb R$ is denoted $T_p(\mathbb R^n)$, which is called the tangent space. The dual space $T_p^*(\mathbb R^n)$ is called the cotangent space. Let $\{dx_i\}$ to be the dual basis of $\{\partial/\partial x_i\}$.

For every fixed integer $1 \leq q \leq n$, let $\Omega^q(\mathbb{R}^n)$ to be the free-module of ring $C^{\infty}(\mathbb{R}^n)$ with the basis

$${dx_{i_1}...dx_{i_q} \mid 1 \leq i_1 < i_2 < ... < i_q \leq n}.$$

Every element in $\Omega^q(\mathbb{R}^n)$ has the form

$$\sum_{1 \le i_1 < i_2 < \dots < i_q \le n} f_{i_1 \dots i_q} dx_{i_1} \dots dx_{i_q},$$

where $f_{i_1...i_q} \in C^{\infty}(\mathbb{R}^n)$, we call it the C^{∞} *q*-form.

Remark

We define $\Omega^0(\mathbb{R}^n) = C^{\infty}(\mathbb{R}^n)$.

Define $\Omega^* = \bigoplus \Omega^q(\mathbb{R}^n)$, then Ω^* is also a $C^{\infty}(\mathbb{R}^n)$ -module. Define a multiple operation on Ω^* as usual sense but with relation:

$$\begin{cases} (dx_i)^2 = 0 \\ dx_i dx_j = -dx_j dx_i, i \neq j. \end{cases}$$

There is a differential operator

$$d:\Omega^q(\mathbb{R}^n)\to\Omega^{q+1}(\mathbb{R}^n)$$

defined as follows:

- ① If $f \in \Omega^0(\mathbb{R}^n)$, then $df = \sum D_i f \ dx_i$;
- ② If $\omega = \sum f_I dx_I$, then $d\omega = \sum df_I dx_I$.

Example

In the case \mathbb{R}^2 : let $\omega_0 = f \ \omega_1 = Pdx + Qdy$ and $\omega_2 = Fdxdy$. We have

$$d\omega_0 = D_1 f dx + D_2 f dy,$$

 $d\omega_1 = (D_1 P dx + D_2 P dy) \wedge dx + (D_1 Q dx + D_2 Q dy) \wedge dy$
 $= (D_1 Q - D_2 P) dx dy.$
 $d\omega_2 = 0.$

Proposition

We have $d \circ d = 0$ and hence a chain complex:

$$\Omega^0(\mathbb{R}^n) \longrightarrow \Omega^1(\mathbb{R}^n) \longrightarrow \cdots$$

$$\longrightarrow \Omega^{n-1}(\mathbb{R}^n) \longrightarrow \Omega^n(\mathbb{R}^n) \longrightarrow 0$$

The de Rham Complex

Example

Here is the de Rham complex of \mathbb{R}^2 , isomorphic to the lower complex mentioned before:

$$\Omega^{0}(\mathbb{R}^{2}) \xrightarrow{d} \Omega^{1}(\mathbb{R}^{2}) \xrightarrow{d} \Omega^{2}(\mathbb{R}^{2}) \xrightarrow{d} 0$$

$$\parallel^{\sim} \qquad \qquad \parallel^{\sim} \qquad \qquad \parallel^{\sim} \qquad .$$

$$C^{\infty}(\mathbb{R}^{2}, \mathbb{R}) \xrightarrow{\operatorname{grad}} C^{\infty}(\mathbb{R}^{2}, \mathbb{R}^{2}) \xrightarrow{\operatorname{rot}} C^{\infty}(\mathbb{R}^{2}, \mathbb{R}) \longrightarrow 0$$

Example (continued)

Here isomorphisms are

And d's are

$$f \longmapsto D_1 f dx + D_2 f dy, F_1 dx + F_2 dy \longmapsto (D_1 F_2 - D_2 F_1) dx dy.$$

De Rham Cohomology Groups

As we define homology groups of a complex:

Definition

The de Rham cohomology groups $H_{dR}^k(M)$ of a smooth manifold M are the quotient groups

$$H_{dR}^{k}(M) = \frac{\ker(d:\Omega^{k}(M) \to \Omega^{k+1}(M))}{\operatorname{Im}(d:\Omega^{k-1}(M) \to \Omega^{k}(M))}.$$

Remark

The element of $\ker(d:\Omega^k(M)\to\Omega^{k+1}(M))$ is called the closed k-form.

The element of $\operatorname{Im}(d:\Omega^{k-1}(M) \to \Omega^k(M))$ is called the exact k-form.

Table of Contents

Motivation and Background

- 2 Differential Forms and De Rham Cohomology
- Examples and Results

Examples

Example

For any smooth manifold M,

$$H^0_{dR}(M) \cong \mathbb{R}^k$$

where $k := \sharp \pi_0(M)$ is the number of connected (equivalently, path-connected) components of M.

It generalizes the corollary mentioned before:

Corollary

For open set $U \subseteq \mathbb{R}^k$, we have $H^0_{dR}(U) = \prod_{\pi_0(U)} \mathbb{R}$.

The Poincaré Lemma

Theorem (Poincaré's Lemma)

Let $U \subseteq \mathbb{R}^n$ be a star-shaped open set. Then

$$H_{dR}^{k}(U) = \begin{cases} \mathbb{R} & \text{if } k = 0\\ 0 & \text{if } k > 0 \end{cases}$$

The Poincaré Lemma

Theorem (Poincaré's Lemma)

Let $U \subseteq \mathbb{R}^n$ be a star-shaped open set. Then

$$H_{dR}^{k}(U) = \begin{cases} \mathbb{R} & \text{if } k = 0\\ 0 & \text{if } k > 0 \end{cases}$$

Example

Let $n \ge 1$ be fixed. For \mathbb{R}^n , we have

$$H_{dR}^{k}(\mathbb{R}^{n}) = \begin{cases} \mathbb{R} & \text{if } k = 0\\ 0 & \text{if } k > 0 \end{cases}$$

The case k = 0 follows from the previous example and the case (k, n) = (1, 2) was proved in Section 1. General proof can be founded in [MT97, Theorem 3.15].

De Rham's Theorem

Theorem (De Rham)

Let (M) be the category of smooth, connected, orientable manifolds with smooth maps. There is a natural isomorphism:

- Connects de Rham cohomology to classical cohomology.
- Gives an interretation of why de Rham cohomology is a topological invariant.

Other Important Results

- Functoriality of Ω^* : in fact, we have a contravariant functor Ω^* from the category (SmoothEuclid) to (ComDiffAlg). [BT13, Chapter 1.2]
- Mayer-Vietoris sequence for de Rham cohomology, which contributes one way to calculate homology groups of the punctured plane $\mathbb{R}^2 \setminus \{0\}$, spheres and so on. [MT97, Chapter 6].
- De Rham cohomology with compact supports. [BT13, Chapter 1.1]
- De Rham cohomology ring: $H^{\bullet}(M) := \bigoplus_{k \in \mathbb{Z}} H^k(M)$ is naturally a commutative graded ring (w.r.t the wedge product as a special case of cup product). e.g., $H^{\bullet}(\mathbb{R}^2 \setminus \{0\}) \cong \mathbb{R}[X]/(X^2)$. [Mun18, Chapter 5]

Thank you!

References

- [BT13] Raoul Bott and Loring W. Tu. Differential Forms in Algebraic Topology. New York: Springer-Verlag, 2013.
- [MT97] Ib H Madsen and Jørgen Tornehave. From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes. Cambridge University Press, 1997.
- [Mun18] J.R. Munkres. *Elements Of Algebraic Topology*. CRC Press, 2018.
- [Rot88] Joseph J. Rotman. An Introduction to Algebraic Topology. New York: Springer-Verlag, 1988.