Water Turbidity MeasurementAlgorithm

NITAY OZER
ITAY MAL
SUPERVISOR ADI VAINIGER

$$I_p^{water} \triangleq I_p^{(0)} e^{-\int_{X \in LOS_p} \beta^{water} dX} + I_p^{Ambient}$$

Where:

$$\beta^{water} \triangleq \beta_A^{water} + \beta_S^{water}$$

$$Absorption Scatter$$

Our Approach

Basic Assumptions

- Consistency of water turbidity in water body $\Rightarrow \beta^{water} = const.$
- Invariant to light source.
- Water body is big enough ⇒ No reflectance from surroundings.

From the above:

$$I_p^{water} = I_p^{(0)} e^{-\beta^{water} \cdot \Delta x} + I_p^{Ambient}$$

Calculating β^{water} with 2 Targets

From 1st target:

$$I_{p_1}^{water} = I_p^{(0)} e^{-\beta^{water} \cdot \Delta x_1} + I_{p_1}^{Ambient}$$

From 2nd target:

$$I_{p_2}^{water} = I_p^{(0)} e^{-\beta^{water} \cdot \Delta x_2} + I_{p_2}^{Ambient}$$

$$eta^{water} = -rac{lnigg(rac{I_{p_1}^{water}-I_{p_1}^{Ambient}}{I_{p_2}^{water}-I_{p_2}^{Ambient}}igg)}{\Delta x_1 - \Delta x_2}$$

Measurement Setup

Step I – Detecting the Targets

Step II – Averaging the Quarters

Step III – Calculating

Real Values:

$$\Delta x_1 = 0.6$$
 $\Delta x_2 = 1.2$
 $\beta_s^{water}(r, g, b) = (0.64, 0.64, 0.64)$
 $\beta_A^{water}(r, g, b) = (0.5, 0.2, 0)$
 $\beta^{water}(r, g, b) = (1.14, 0.84, 0.64)$

Estimated Values:

$$\Delta x_1 = 0.6009$$
 $\Delta x_2 = 1.2019$
 $\beta_s^{water}(r, g, b) = ???$
 $\beta_A^{water}(r, g, b) = ???$
 $\beta_A^{water}(r, g, b) = (1.86, 0.91, 0.13)$

Validating Assumptions

Water body is big enough ⇒ No reflectance from surroundings.

We chose to work with *floor_ref=0*

Validating Assumptions

▶ Invariant to light source.

Checking Absorption

- ▶ Sweeping only on $\beta_A^{water} \in [0,0.5]$.
- $\beta_s^{water} = (0,0,0).$

We can see that the behavior is almost perfectly linear with error $< 10^{-3}$, and with slope = 3.108

Checking scatter

- ▶ Sweeping only on $\beta_s^{water} \in [0,0.5]$.
- $\beta_A^{water} = (0,0,0).$

We can see that the graph behavior is **not linear**.

Checking scatter with absorption

- Sweeping only on $\beta_s^{water} \in [0,1]$.
- $\beta_A^{water} = (0.5, 0.2, 0).$

We can see that the graph behavior is still **not linear** and **different** for each channel.

