STAT 110 Practice Examination

Annotated Solutions

- 1. The sample mean \bar{y} is closest to
 - A. 41.3

Just one observation, not the average of all five.

B. 39.7

Again only a single value.

- C. **42.0**
- D. 52.5

 Mean can't be larger than every data point.
- E. 209.9

 That is the sum of the numbers, not their mean.
- 2. The sample standard deviation s is closest to
 - A. 1.0

 Would imply the five numbers are almost identical.
 - B. 8.2
 Needs values about 8 away from the mean—none are.
 - C. 94.0

 Mixes up variance and standard deviation.
 - D. **2.9**
 - E. 1.7 Used n in the denominator instead of n-1; too small.
- 3. Watching one T20 cricket match that totals 325 runs, choose the best statement:
 - A. It is unlikely totals ever exceed 500.

 One match can't tell us that.
 - B. 325 is "typical" because the game was random. Need a league-wide distribution.
 - C. We can't tell if 325 is unusual without knowing likely score ranges.
 - D. More than 300 runs is normal. No supporting evidence.

- E. Every game has exactly 325 runs. *Plainly impossible*.
- 4. Are variation and uncertainty important in statistics?
 - A. Yes—models describe variation and CIs/SEs quantify uncertainty.
 - B. No; parameters are known exactly.

 Population parameters are unknown.
 - C. Yes; it makes analysis look sophisticated. *Not a scientific reason.*
 - D. No; big data eliminate uncertainty.

 Large n reduces but never removes it.
 - E. No; once data are collected there's no uncertainty. Randomness persists.
- 5. Pr(Y = 3 or 4) for the gene-copy study
 - A. 0.30

 Omits the 4-copy probability.
 - B. 0.80
 - C. 0.20
 Only the missing 0.20 probability.
 - D. 0.50
 Counts 3-copies but not 4-copies.
 - E. 1.00
 Would mean everyone has 3 or 4 copies.
- 6. E[Y]
 - A. 2.25

 Dropped one probability weight.
 - B. 2.85
 - C. 2.50
 Used wrong weights.
 - D. 3.00
 Added instead of weighting.
 - E. 2.80
 Rounded from a wrong calculation.
- 7. Best description of E[Y]
 - A. A person will have exactly E[Y] copies. It's a long-run average, not a guarantee.
 - B. It's the expected (average) number of copies for one randomly chosen person.

- C. Half the people have fewer than E[Y].

 That defines the median.
- D. Exactly E[Y] copies means higher risk. Mean alone says nothing about risk.
- E. Copy number is normal with mean E[Y]. Normality wasn't given.
- 8. Meaning of $Pr(B | V^c)$
 - A. Probability a customer chooses a plant-based burger given they are not vegetarian.
 - B. Probability a customer is not vegetarian, given they chose the burger. *Condition reversed.*
 - C. Probability a vegetarian chooses the burger. *Condition is the opposite group.*
 - D. Joint probability of non-vegetarian & burger. $Not\ conditional.$
 - E. Probability of choosing a burger regardless of diet. *Ignores the condition*.
- 9. $Pr(V \mid B)$
 - A. 0.632
 - B. 0.600That's $Pr(B \mid V)$.
 - C. 0.180
 Only one piece of Bayes' rule.
 - D. 0.285

 Another single piece.
 - E. 0.105 Yet another single piece.
- 10. $Pr(V \cup B)$
 - A. **0.405**
 - B. 0.180

 Just vegetarians who choose burgers.
 - C. 0.300 Pr(V) only.
 - D. 0.285 Pr(B) only.
 - E. 1.000

 Would imply every customer is vegetarian or buys a burger.
- 11. Pr(B)

- A. 0.180
 Only vegetarians choosing burgers.
- B. 0.300 Pr(V), not Pr(B).
- C. **0.285**
- D. 0.105
 Only non-vegetarians choosing burgers.
- E. 1.000
 Would mean everyone buys a burger.

12. Best definition of a random variable

- A. Summarises both population and sample. *It's defined before any sample is taken*.
- B. Normally distributed variable. Distribution can be anything.
- C. A random process with a numerical outcome.
- D. Fixed but unknown value.

 The value is random before observing.
- E. Depends on the observed sample.

 Definition doesn't rely on realised data.

13. Which is best modelled as continuous?

- A. Eggs in a nest.

 Count data, discrete.
- B. Purchasing visitors. *Count data, discrete.*
- C. pH value of seawater
- D. Voters supporting a candidate.

 Discrete count.
- E. Tasks completed.

 Discrete count.

14. E[2X - 3Y] with E[X] = 10, E[Y] = 4

- A. 4 Used X 3Y instead of 2X 3Y.
- $\begin{array}{ccc} \text{B. 20} \\ & \textit{Multiplied rather than added/subtracted.} \end{array}$
- C. 12

 Dropped one coefficient.
- D. 8

- E. 0
 Incorrectly cancelled the terms.
- 15. sd(2X 3Y) (independent X, Y)
 - A. 10.50 That's the variance, not the s.d.
 - B. 1.22 Square-rooted the wrong total.
 - C. **3.24**
 - D. 2.12
 Left out a variance component.
 - E. 1.50
 Left out two variance components.
- 16. A healthy adult is 1.5 s.d. below the mean ($\mu = 40$, $\sigma = 8$). Score?
 - A. -1.5 z-score itself, not the raw score.
 - B. 38.5 Moved in the wrong direction.
 - C. 52.0 Moved above the mean.
 - D. 28.0
 - E. 40.0That's the mean (z = 0).
- 17. Code to find P(score > 48)
 - A. 1-pnorm(1.0)
 - B. 1-pnorm(48)

 Treats raw score as a z-score.
 - C. 1-pnorm(-1.0)

 Upper tail of the wrong z.
 - D. pnorm (1.0)Gives lower tail.
 - E. pnorm(48)

 Again uses raw score as z.
- 18. Sampling distribution of \bar{y} for n = 64
 - A. Normal(40, 8) Forgot to divide by $\sqrt{64}$.
 - B. Normal(40, 1)

- C. Normal(0,1)Standardised already.
- D. t_{63} σ is known, so we use z.
- E. Unknown.

 Central Limit Theorem gives it.
- 19. Same set-up as 18 but population not normal (still n = 64)
 - A. Normal(40,8) Same issue—must divide by \sqrt{n} .
 - B. Approximately normal(40,1)
 - C. Normal(0,1)Already standardised.
 - D. t_{63} σ known.
- 20. Which formula gives a 95 % confidence interval for a population mean when the population standard deviation is unknown?
 - A. $\bar{y} \pm z^{\star} \sqrt{\frac{p(1-p)}{n}} \%$ This is the $\stackrel{n}{CI}$ for a proportion, not a mean.
 - B. $\bar{y} \pm z^* \frac{\sigma}{\sqrt{n}} \%$ Uses the unknown σ instead of the sample s.
 - C. $\bar{y} \pm t_{n-1}^{\star} \frac{\sigma}{\sqrt{n}} \%$ σ is unknown; we should plug in s, not σ .
 - D. $\bar{y} \pm z^* s\%$ Forgot to divide by \sqrt{n} and uses z instead of t.
 - E. $\bar{y} \pm t_{n-1}^{\star} \frac{s}{\sqrt{n}}$
- 21. If we increase the confidence level from 90 % to 99 % while keeping the same sample,

6

- A. The point estimate changes.

 The sample mean stays the same.
- B. The standard error changes. SE depends only on s and n.
- C. The sample size must change. Sample size is fixed.
- D. The interval widens to guarantee the higher confidence.

- E. A higher confidence level always narrows the interval. *It actually widens.*
- 22. A 99 % confidence interval for the mean content of coffee jars is (201.2 g, 203.0 g). Which interpretation is correct?
 - A. 99 % of individual jars weigh between 201.2 g and 203.0 g. CI is about the mean, not single jars.
 - B. 99 % of future jars will fall in this range.

 Again, CI targets the mean.
 - C. There is a 99 % chance the true mean lies in this very interval.

 The probability refers to the method, not to μ once the interval is drawn.
 - D. If we took many samples, 99 % of the sample means would be in this range. Cls vary from sample to sample; means do not cluster in one fixed interval.
 - E. In the long run, 99 % of such intervals built this way would contain the true mean μ .
- 23. Which statement about a p-value is correct?
 - A. A large p-value proves the null hypothesis is true. "Prove" is too strong.
 - B. p = 0.03 means there is a 3 % chance the alternative is false. p-value is calculated under H_0 , not H_A .
 - C. p = 0.03 means that, if H_0 were true, we would see data this extreme only 3 % of the time.
 - D. p-value is the probability calculations were wrong. It measures data extremeness, not mistakes.
 - E. A small p-value guarantees practical importance. $Statistical \neq practical \ significance$.
- 24. Which step is genuine statistical estimation of a population mean?
 - A. Just replace μ by \bar{y} in a sentence. Pure description, no inference.
 - B. Compute the standard error only. SE alone isn't an estimate of μ .
 - C. Use the full population data. *Then it's no longer estimation.*
 - D. Guess a number that "looks right." *Not statistical*.
 - E. Build a confidence interval or carry out a test based on the sample.
- 25. In the penguin data, the first line of R code calculates mean(bill_length_mm). What does this value summarise?

- A. The average bill length for the sampled penguins.
- B. The average flipper length. $Wrong\ variable$.
- C. The standard deviation of bill length.

 Mean, not spread.
- D. The median bill length. $Mean \neq median$.
- E. The sample size.

 Mean is not a count.
- 26. The next line of code asks for sd(flipper_length_mm). What statistic is that?
 - A. Mean flipper length.

 It's the spread, not the centre.
 - B. Median flipper length. *Again, centre vs spread.*
 - C. Range of flipper length. Range is max-min.
 - D. The standard deviation of flipper length (how much they vary).
 - E. Sample size.

 Standard deviation isn't a count.
- 27. A one-sample t-test compares pollution before and after a policy. Which null hypothesis is correct?
 - A. $\mu_{\text{after}} \mu_{\text{before}} = 0$
 - B. $\mu_{\text{after}} = 0$ Should compare difference, not absolute level.
 - C. A small p-value means results are "not unusual." It actually means they are unusual under H_0 .
 - D. The test measures correlation between before & after. *It tests mean difference*.
 - E. Significance alone decides policy. Statistical vs practical issues.
- 28. You have paired "before/after" data. Which test is appropriate?
 - A. Paired-sample t-test on the differences.
 - B. Two-sample independent t-test. *Ignores pairing*.
 - C. Two-proportion z-test.

 Data are numeric, not proportions.
 - D. Chi-square test.

 Counts, not means.

E. ANOVA.

More than two groups required.

- 29. Statistical power is
 - A. The chosen α level.

 That's Type I error rate.
 - B. Probability of rejecting H_0 when H_0 is true. That's Type I error again.
 - C. Probability of rejecting H_0 when a specified alternative is true.
 - D. The observed p-value. p-value and power differ.
 - E. Guaranteed by $p \mid 0.05$. Low p doesn't ensure high power.
- 30. Which change *increases* the power of a test (all else fixed)?
 - A. Call the data "paired" when they are not. *Inflates Type I error*, not power properly.
 - B. Reduce the sample size. $Smaller\ n\ lowers\ power.$
 - C. Lower α from 0.05 to 0.01. Harder to reject, so power drops.
 - D. Replicate the same small study many times with no changes. *Each run keeps low power*.
 - E. Increase the sample size.
- 31. Standard error for the difference of two independent means: which value is correct? $(s_1 = 4.5, n_1 = 25; s_2 = 6.0, n_2 = 36)$
 - A. **2.11**
 - B. 4.44
 Forgot to divide by sample sizes.
 - C. 0.61
 Only used one group's variance.
 - D. 2.92

 Miscalculated the square-root step.
 - E. 16.32
 Added variances, then squared again.
- 32. Which R command correctly performs an *independent* two-sample t-test?
 - A. t.test(groupA, groupB, var.equal = FALSE)
 - B. t.test(groupA, groupB, paired = TRUE)

 Sets a paired test you don't have.

C. chisq.test(groupA, groupB)

Chi-square uses counts.

D. prop.test(groupA, groupB)

*Proportions, not means.

E. wilcox.test(groupA, groupB)

Non-parametric alternative.

- 33. Interpreting a 95 % CI for the difference (drug A minus placebo) of (-4.3, 1.2):
 - A. CI gives the mean reduction for drug A alone. *It describes the* difference.
 - B. Drug A is definitely better.

 CI includes zero—no guarantee.
 - C. A single patient will improve by 1.2 units. CI is about the mean, not an individual.
 - D. The CI proves no reduction is possible.

 Includes zero but doesn't prove equality.
 - E. Because the CI crosses 0, we lack strong evidence that drug A outperforms placebo.
- 34. A regression-output question asked, "Which statement is *not* correct?" Only one option is wrong.
 - A. The errors are normally distributed. *This is a valid model assumption*.
 - B. Homoscedasticity was assessed.

 Also true.
 - C. Linearity appears reasonable.

 Also true.
 - D. There is no random error term in the fitted model. Every regression has ε .
 - E. Independence of observations was checked. *Also true*.
- 35. With $\hat{y} = 150 0.75x$, the fitted mean at x = 20 is
 - A. 135
 - B. 148.5Added instead of subtracted 0.75×20 .
 - C. 135 for every bird.

 Mean model; individuals vary around it.
 - D. 150
 Forgot the slope term.
 - E. The model gives no spread. Residual SD gives the spread.

- 36. Interpret the slope $\hat{\beta}_1 = -0.75$ in $\hat{y} = 150 0.75x$.
 - A. On average, y decreases by 0.75 units for each 1-unit increase in x.
 - B. The line rises by 0.75 units per x. Sign is negative.
 - C. One bird's y always drops 0.75.

 Slope describes the mean, not individuals.
 - D. When x changes 10 units, y always drops 7.5. Again, average not guarantee.
 - E. -0.75 is the intercept. *Intercept is 150*.
- 37. A scatterplot gives r = -0.64 between age and aptitude.
 - A. The variables have a moderate negative linear relationship.
 - B. Positive correlation.

 The sign is negative.
 - C. No linear trend. |r| is well away from 0.
 - D. Relationship is curved.

 Nothing suggests curvature.
 - E. Outliers dominate.

 No evidence shown.
- 38. Least-squares line–fitting uses which criterion?
 - A. Draw a line by eye.

 Subjective, not least squares.
 - B. Minimise the sum of residuals. They cancel to 0 anyway.
 - C. Maximise correlation.

 Not the fitting rule.
 - D. Minimise the sum of *squared* residuals.
 - E. Find a perfect fit.

 Rarely possible with real data.
- 39. Which equation gives the *predicted* aptitude from age?
 - A. $\hat{x} = 150 0.75y$ Swapped variables.
 - B. $\hat{y} = 150 0.75x + \varepsilon$ ε is not part of the prediction.
 - C. $\hat{y} = 150 0.75x$
 - D. y = 150 0.75xDrops the "hat"—not clearly prediction.

- E. x = 150 0.75yPredicts age from aptitude.
- 40. The regression output gives p = 0.00177 for the slope. Which option matches this?
 - A. 0.020 Too large.
 - B. 0.15 Too large.
 - C. 0.051 *Too large*.
 - D. 0.50 Far too large.
 - E. 0.0018 (rounded).
- 41. The standard error for $\hat{\beta}_1$ is 0.310. Which description is correct?
 - A. The standard error tells us the average error made when predicting $\hat{y}\%$ That is the residual standard error, not $SE(\hat{\beta}_1)$.
 - B. It is the mean of the sampling distribution of $\hat{\beta}_1\%$ The mean of that distribution is the true β_1 , not the SE.
 - C. It measures variability of the y-values around the regression line% That quantity is σ_{ε} , not $SE(\hat{\beta}_1)$.
 - D. It is the difference between observed and true slope% That difference is one realisation, not the spread.
 - E. It describes the variability in the sampling distribution of $\hat{\beta}_1$.
- 42. With multiplier 2.093, the 95 % CI for β_1 is closest to
 - A. (-1.44, -0.82)Half-width too small (used wrong SE).
 - B. (99.26, 120.48) *Uses the* intercept *scale*.
 - C. (-1.78, -0.48)
 - D. (-11.74, 9.48) <u>Uses residual SD</u>, not slope <u>SE</u>.
 - E. (-2.43, 0.17)Wrong half-width and sign range includes 0.
- 43. Should we interpret $\hat{\beta}_0$ in this study?
 - A. Yes; it gives aptitude when age = 0 months. Age = 0 never occurs and is outside data range.
 - B. Yes; intercept is always meaningful. Not if x = 0 is implausible.

C. No; R^2 is too low. R^2 doesn't govern interpretability of β_0 .

D. No; SE is large. $Uncertainty \neq scientific\ meaning.$

- E. No; age = 0 is impossible here, so the intercept lacks scientific meaning.
- 44. Two intervals from predict(..., interval = "|A|") and "|B|":
 - A. Interval A: CI for mean, Interval B: PI Their widths are opposite.
 - B. Both are prediction intervals. *One is clearly narrower.*
 - C. Interval A for low aptitude, B for high. *Aptitude not in code*.
 - D. Interval A is a 95 % prediction interval; Interval B a 95 % CI for the mean response.
 - E. Interval B is narrower due to bigger n. Same n; difference is PI vs CI.
- 45. Predicted aptitude for a child who first speaks at 60 months:
 - A. 177
 Plugged 60 into a wrong formula.
 - B. 6591

 Multiplied instead of subtracting.
 - C. 104 *Used +1.13 rather than -1.13.*
 - D. **42**
 - E. 60
 Simply echoed the age.
- 46. Can the prediction in Question 45 be trusted?
 - A. Yes; $R^2 > 0.3$ guarantees reliability. R^2 alone never guarantees it.
 - B. Yes; residual SD is small. Still outside data range.
 - C. No; negative correlation forbids prediction. Sign isn't the issue.
 - D. No; age = 60 is an extrapolation beyond the observed 7–42 months.
 - E. No; linear models are never useful. *Too extreme*.
- 47. Multiple linear regression allows us to

- A. Have at most two predictors.

 Any number is allowed.
- B. Exclude categorical variables.

 They enter via dummies.
- C. Abandon lm for mlm.

 lm fits multiple predictors.
- D. Assess each predictor's effect while controlling for the others.
- E. Interpret only one predictor's effect. Each coefficient has meaning.
- 48. Interpreting $\hat{\beta}_0$ from the model with temperature only
 - A. Temperature = 0 °C lies within the data (-4.5 24.8 °C), so $\hat{\beta}_0 = 1873.9$ is the estimated mean metabolic rate at 0 °C.
 - B. We mustn't interpret it; 0 °C is biologically impossible. 0 °C is observed.
 - C. 0 °C is outside data so extrapolation. *It's inside*.
 - D. Intercept gives change per degree. Slope does that.
 - E. Intercepts are never interpreted.

 Context determines interpretability.
- 49. From the model with temperature + activity, which pair is $(\hat{\beta}_2, s_{\hat{\beta}_2})$?
 - A. 1623.69, 19.38 *That's the intercept.*
 - B. **52.64**, **2.95**
 - C. -18.63, 1.05 Those are for temperature.
 - D. 52.64, 19.38 SE mismatched to estimate.
 - E. -18.63, 2.95 Estimate and SE from different predictors.
- 50. Best wording of the 95 % CI for β_2 (activity)
 - A. 46.8–58.5 change; temp ignored.

 Must say "holding temperature fixed."
 - B. 46.8–58.5 *level* at 1 h. *CI is for* change.
 - C. -20.7—16.6 for temperature. That's the other predictor.

- D. We are 95 % confident the *mean* metabolic rate increases by 46.8–58.5 Kcal/day for each extra hour of activity, *holding temperature constant*.
- E. Mixed effects of both predictors. CI isolates activity's slope.
- 51. $R^2 = 84.8\%$. Which statement is *not* correct?
 - A. R^2 is the squared correlation between y and \hat{y} .

 True.
 - B. R^2 ranges from 0 to 1.
 - C. R^2 is the proportion of variance explained.
 - D. The label "Multiple R-squared" shows \mathbb{R}^2 in R output. True.
 - E. A model is useless unless $R^2 > 0.5$.
- 52. Residual-plot shows a funnel shape. Which assumption fails?
 - A. Linearity

 Trend looks straight.
 - B. Independence

 Plot gives no info on independence.
 - C. Outliers
 None obvious.
 - D. Constant variance (homoscedasticity).
 - E. No assumptions violated We see heteroscedasticity.
- 53. ANOVA: hypotheses being tested
 - A. Difference of two means.

 Only two groups.
 - $B. \ \, \text{Test of independence.} \\ \frac{Different\ procedure.}{}$
 - C. All four means unequal. *Too strict.*
 - D. $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$; H_A : at least one mean differs.
 - E. Equality of full distributions. *Focus is on means.*
- 54. F-value for that ANOVA
 - A. 27890

B. $355\,921$ That is SS_{type} .

C. 118640That is MS_{type} .

D. 4
Residual MS.

E. 14455 SS_{res}

- 55. Which statement is *not* correct about ANOVA?
 - A. ANOVA compares between-group to within-group variance.
 - B. Under H_0 , the F-value follows an F-distribution. Correct.
 - C. Large F suggests group means explain much variation. *Correct.*
 - D. df in the table choose the reference F-distribution. *Correct.*
 - E. The ANOVA table itself tells us which group means differ.
- 56. Which reference distribution gives the p-value?
 - A. Standard normal. Wrong family.
 - B. χ_3^2 .

 Not used here.
 - C. $F_{-}(3, 3398)$
 - D. χ^2_{3398} Wrong.
 - E. t_{3398} Wrong family.
- 57. Interpreting the tiny p-value from ANOVA ($\alpha = 0.01$)
 - A. Because p ; α , the data are very unlikely if all pitch-type means were equal.
 - B. p ; α proves slider = change-up speed. ANOVA is omnibus.
 - C. All four means differ.

 Post-hoc needed to know.
 - D. Shows Kershaw is "hard to face." Beyond the scope of speed.

E. Identifies slowest and fastest pitch. Need pairwise tests.

58. TukeyHSD(a_baseball) does what?

A. Fits separate regressions.

No, it's post-hoc on the ANOVA.

B. Tests equality of variances. $\underline{Levene/Bartlett\ do\ that}$.

C. Compares every pair of pitch-type means with a multiple-comparison adjustment.

D. Gives an updated ANOVA table. Already have one.

E. Tests each pitch vs overall mean. *Not Tukey's HSD.*

59. Interpreting the row FF-CU in Tukey output

A. More fastballs than curveballs per 100 pitches. Counts, not speeds.

B. Faster than "non-fastballs." *CU only*.

C. More strikes per 100 pitches. Not strike data.

D. Fastballs average 30.04-30.60 km/h faster than curveballs (95 % confidence).

E. 95 % probability statement.

Confidence, not probability about a fixed quantity.

60. Which is *not* an example of binary data?

A. The *number* of eggs in a nest Takes many integer values – a count, not yes/no.

B. Presence / absence of a gene. Two outcomes.

C. Dolphin breeding status (breeder / non-breeder). *Two outcomes*.

D. Task completed within time? (yes / no) <u>Two outcomes.</u>

E. Penguin age status (adult / juvenile). Two outcomes.

61. Which binomial assumption is violated in this bird-nest study?

A. Two possible outcomes (success / failure) for each trial hold. This one is satisfied.

- B. The probability of success p is the same for every trial. Also satisfied.
- C. Successive trials are independent.

 No evidence of dependence was given.
- D. Each trial outcome is recorded accurately. *No hint of mis-classification.*
- E. The number of trials n is fixed in advance.

 Here the count of nests keeps growing, so n is not predetermined.
- 62. What proportion of visits (6 430 of 7 729) resulted in a sale?
 - A. 0.83
 - B. 0.536 $430 \div 12\ 200\ was\ used-wrong\ denominator$.
 - C. 0.94 Divided 7 729 by 8 200.
 - D. 0.75
 Rounded from 5 800 ÷ 7 729, which is not the right count.
 - E. 0.78
 Used an intermediate rounded figure, not the exact ratio.
- 63. What fraction of tagged birds later returned? (419 of 791)
 - A. 0.33 419 ÷ 1 270—wrong denominator.
 - B. **0.53**
 - C. 0.91 791 ÷ 870—swapped numerator and denominator.
 - D. 0.41 327 ÷ 791—wrong numerator.
 - E. 0.80
 Rounded 634 ÷ 791—again wrong numerator.
- 64. In R, prop.test(x1, x2) reports a 95 % CI labelled "p1 p2". What parameter does that interval estimate?
 - A. p_1 Only the first group's proportion.
 - B. p_2 Only the second group's proportion.
 - C. $p_1 p_2$ (the *difference* between the two proportions).
 - D. $\frac{p_1}{p_2}$ That would be a risk ratio.

E. The pooled overall proportion.

Not what the CI targets.

not what the C1 targets.

- 65. By default, prop.test for a 2×2 table tests the null hypothesis
 - A. $p_1 = 0.5$ Only one group.
 - B. $p_2 = 0.5$ Only one group.
 - C. $p_1 + p_2 = 1$ Adds instead of compares.
 - D. $p_1 = p_2$ (equivalently, $p_1 p_2 = 0$).
 - E. $p_1p_2 = 0$ Product is irrelevant here.
- 66. For a 2 × 2 table, prop.test and chisq.test (with Yates correction) will always give
 - A. The same χ^2 statistic and therefore the same *p*-value.
 - B. Different χ^2 but same *p*-value. Statistic itself is identical.
 - C. Same statistic but a different reference distribution. Both use χ_1^2 .
 - D. An F-test in one case.

 Neither uses the F-family here.
 - E. Completely unrelated results.

 They address the same hypothesis.
- 67. Expected count (cancer cases, "light smokers" cell) is calculated as (row total×column total)/grand total Which option matches that formula?
 - A. Adds row to column totals. Should multiply.
 - B. Multiplies the row total by the column total, then divides by the grand total.
 - C. Uses the larger of the two totals.

 Not the expected-count rule.
 - D. Divides column by row total. Reverses the formula.
 - E. Grand total divided by both subtotals. Upside-down.
- 68. Using that rule, the expected number of cancer cases in the "never-smoked" group is approximately
 - A. 4.6

 Halved the correct value.

- B. 18.4

 Doubled the correct value.
- C. 12.0
 Rounded a mid-step mistakenly.
- D. **9.2**
- E. 25.0
 Used column total instead of grand total.
- 69. The χ^2 test on that 4×2 table checks
 - A. Whether the four row totals equal the two column totals. *Totals are fixed*.
 - B. Goodness-of-fit against a theoretical Poisson. Wrong framework.
 - C. Independence between smoking status (4 levels) and cancer (yes/no).
 - D. Equal variances across rows. *Different concept*.
 - E. Equality of four separate proportions at once. *Independence phrasing is preferred*.
- 70. The degrees of freedom for a 4×2 contingency table are

$$(r-1)(c-1) = (4-1)(2-1) =$$

- A. 1 Forgot (r-1).
- B. 2 Computed (c-1) only.
- C. **3**
- D. 5
 Added instead of multiplied.
- E. 6 Used $r \times (c-1)$.
- 71. The test yielded $p \approx 0.30$. At $\alpha = 0.05$ we therefore
 - A. Declare smoking causes cancer. Causality not established and p > 0.05.
 - B. Prove H_0 is true. Failing to reject \neq proof.
 - C. Need a bigger sample: n < 500. $n > 6\,000$ already.
 - D. Fail to reject H_0 ; evidence of association is weak.

E. Automatically switch to Fisher's exact test. *Expected counts are large enough.*

- 72. What does the Mann–Whitney (Wilcoxon rank-sum) test compare?
 - A. Equality of *means*.

It compares distributions via ranks.

B. Variances of two groups.

That's Levene's/Bartlett's test.

- C. Whether one distribution tends to give higher (or lower) values than the other.
- D. Medians only.

 Shift in distribution, not just the median.
- E. Counts of observations above 0. *Not its statistic.*
- 73. Its test statistic is the
 - A. Sum of the *signed* residuals.

 Signed ranks belong to the Wilcoxon signed-rank test for paired data.
 - B. Mean of raw values in group A. Raw data not used directly.
 - C. Variance of the pooled sample. $Not \ relevant.$
 - D. Largest observation's rank. *Uses all ranks, not just one.*
 - E. Sum of the ranks for one of the two groups.
- 74. Which statement about a non-parametric rank test is true?
 - A. They are always more powerful than t-tests. Often less powerful.
 - B. They provide easy CIs for a difference of means.

 Mean-based CIs are awkward.
 - C. They require no normality assumption for the underlying data.
 - D. Significance implies causation.

 Design, not p-values, yields causality.
 - E. Their p-value is guaranteed to be larger than in a parametric test. *Could be smaller or larger.*
- 75. A p-value of 0.004 from a Mann–Whitney test means
 - A. The average of the ranks equals the average of raw data. Ranks are not raw values.
 - B. 0.4 % probability the null is true. $p \neq Pr(H_0 \ true)$.

- C. If the two distributions were identical, we would see a rank-sum this extreme only 0.4~% of the time.
- D. There is no evidence of a difference. p = 0.004 is strong evidence against H_0 .
- E. Effect size must be large. $Significance \neq effect magnitude$.
- 76. A stratified random sample
 - A. Might ignore one stratum entirely.

 By definition, each stratum is sampled.
 - B. Picks exactly the same # units from each stratum. <u>Proportional or unequal allocation is common.</u>
 - C. Draws separate random subsamples within every stratum.
 - D. Always uses systematic sampling inside strata. Can be simple random or other methods.
 - E. Guarantees lower variance than an SRS. Often but not always.
- 77. In the cannabis-use survey, the biggest threat to validity was
 - A. Selection bias from non-response.

 High response rate reported.
 - B. Confounding by age.

 Age was adjusted for.
 - C. Information (reporting) bias: people may under-report cannabis use.
 - D. Instrument calibration error. Self-report, not instruments.
 - E. Over-powered sample inflating small effects. *Not the main concern.*
- 78. The MAO-A gene paper comparing Māori and non-Māori was criticised mainly because
 - A. It involved no ethics approval. Approval was obtained.
 - B. Researchers failed to involve Māori sufficiently in study design and interpretation.
 - C. The statistical model assumed independence. Standard assumption, not unique flaw.
 - D. Results were not peer-reviewed.

 They were published in a journal.
 - E. The gene was sequenced inaccurately. Genotyping method wasn't the issue.
- 79. Which practice *violates* the principle of genuine co-design with communities?

A. Researchers present preliminary ideas at a community hui. *Involves community*.

B. Community representatives sit on the advisory board. *Also involvement.*

C. Community veto over data sharing is respected. *Aligns with co-design*.

- D. Investigators finalise aims and methods *before* any community consultation.
- E. Draft results are fed back for comment. *Again involves community*.
- 80. In the CARE principles for Indigenous data, the "C" stands for
 - A. Collective benefit
 - B. Consent Important, but not the "C" in CARE.
 - C. Custodianship

 Covered by the "A" and "R" elements.
 - D. Confidentiality

 Not the first pillar here.
 - E. Collaboration

 Embedded in the overall framework, but not the C-word.
- 81. In a clinical trial, what best describes a placebo?
 - A. Some control groups receive no treatment at all. "No-treatment" \neq placebo if nothing is given.
 - B. A placebo pill lets participants know they are in the control arm. Blinding means they shouldn't know.
 - C. An inert treatment that looks the same as the active drug, helping blind participants and researchers.
 - D. Placebos are unethical because they deny therapy.

 Ethics boards permit them when no proven therapy exists.
 - E. Placebos make the study single-blind only. *They enable single* or *double blinding*.
- 82. Which variable qualifies as a *confounder* in an observational study?
 - A. Related only to the *predictor* but not the outcome.

 Must relate to both.
 - B. Related only to the *outcome* but not the predictor. *Must relate to* both.
 - C. Completely independent of both predictor and outcome. Cannot confound.

- D. Associated with both predictor and outcome, potentially distorting the observed relationship.
- E. Any variable measured after the outcome. Timing is wrong for confounding.
- 83. The "replication crisis" in science refers to
 - A. Journals publishing too few papers.

 The issue is about reproducibility, not volume.
 - B. Choosing Bayesian methods over frequentist ones. Both paradigms face replication issues.
 - C. Many published findings failing to reproduce when the studies are repeated independently.
 - D. A shortage of funding for statistics.

 Not the core of the crisis.
 - E. Peer reviewers demanding larger samples. Better power aids replication.
- 84. Testing dozens of hypotheses on one data set without adjustment mainly
 - A. Controls the Type I error at 5 % overall. *It inflates the family-wise error.*
 - B. Leaves the false-positive rate unchanged. *Actual rate increases.*
 - C. Inflates the chance of at least one false positive (Type I error).
 - D. Guarantees smaller *p*-values are true discoveries. They may be false positives.
 - E. Eliminates the need for follow-up studies. Replication is still needed.
- 85. "HARKing" (Hypothesising After Results are Known) is the practice of
 - A. Formulating or changing hypotheses *after* seeing the data, then presenting them as if specified beforehand.
 - B. Pre-registering study aims. *That is the opposite practice.*
 - C. Randomising subjects after consent. *Unrelated to hypotheses.*
 - D. Adding more predictors during peer review.

 Could be data dredging, but not the definition of HARKing.
 - E. Publishing only significant outcomes. *That is publication bias.*
- 86. Which statement about maximum likelihood estimation (MLE) is correct?

- A. MLE requires a Bayesian prior.

 MLE is purely likelihood based.
- B. MLE only works for very large samples. *It is defined for any sample size.*
- C. Computes p-values directly.

 MLE gives point estimates; tests use additional steps.
- D. MLE chooses parameter values that maximise the data's likelihood under the assumed model.
- E. Seldom used in real research. *It is standard in many fields.*
- 87. In Bayesian analysis, which statement is false?
 - A. Bayesian inference combines prior information with the data likelihood. *Core principle—true*.
 - B. The posterior distribution expresses updated beliefs about parameters. True.
 - C. Bayesian methods ignore the likelihood and rely only on the prior.
 - D. Bayesian credible intervals are probability statements about parameters. True.
 - E. Bayesian methods are widely applied in modern statistics. True.