Support Vector Machines

Classification with SVM, kernel trick

Machine Learning and Data Mining, 2020

Artem Maevskiy

National Research University Higher School of Economics

General Idea (linearly separable case)

Classification with linear models

$$\hat{f}(x) = \text{sign}[w^{T}x + w_{0}]$$
$$y \in \{-1, 1\}$$

Separating hyperplane:
$$w^{T}x + w_0 = 0$$

Optimal hyperplane

Assume a separating hyperplane exists (task is linearly separable)

Idea: find the best hyperplane by maximizing the distance to the closest data points

Correct classification if:

$$\begin{cases} w^{T}x + w_0 > 0, & y = +1 \\ w^{T}x + w_0 < 0, & y = -1 \end{cases}$$

or equivalently:

$$y(w^{\mathrm{T}}x + w_0) > 0$$

Correct classification if:

$$\begin{cases} w^{T}x + w_0 > 0, & y = +1 \\ w^{T}x + w_0 < 0, & y = -1 \end{cases}$$

or equivalently:

$$y(w^{\mathrm{T}}x + w_0) > 0$$

defined up to a multiplicative constant We can choose this constant s.t. for the closest point: $y_{\text{closest}}(w^Tx_{\text{closest}} + w_0) = 1$

Correct classification if:

$$\begin{cases} w^{T}x + w_0 > 0, & y = +1 \\ w^{T}x + w_0 < 0, & y = -1 \end{cases}$$

or equivalently:

$$y(w^{\mathrm{T}}x + w_0) > 0$$

defined up to a multiplicative constant We can choose this constant s.t. for the closest point: $y_{\text{closest}}(w^Tx_{\text{closest}}+w_0)=1$

So for all points:

$$y(w^{\mathrm{T}}x + w_0) \ge 1$$

Correct classification if:

$$\begin{cases} w^{T}x + w_0 > 0, & y = +1 \\ w^{T}x + w_0 < 0, & y = -1 \end{cases}$$

or equivalently:

$$y(w^{\mathrm{T}}x + w_0) > 0$$

defined up to a multiplicative constant We can choose this constant s.t. for the closest point: $y_{\text{closest}}(w^Tx_{\text{closest}} + w_0) = 1$

So for all points:

$$y(w^{\mathrm{T}}x + w_0) \ge 1$$

Distance to the closest point is:

$$h = y_{\text{closest}} \frac{\left(w^{\text{T}} x_{\text{closest}} + w_0\right)}{\|w\|} = \frac{1}{\|w\|}$$

So the problem can be defined as:

$$\begin{cases} \frac{1}{2} ||w||^2 \to \min_{w, w_0} \\ y_i(w^T x_i + w_0) \ge 1, & i = 1, ..., N \end{cases}$$

Nonseparable case

Slack variables

For nonseparable case, these conditions:

$$y_i(w^Tx_i + w_0) \ge 1, \qquad i = 1, ..., N$$

cannot be satisfied simultaneously.

Slack variables

For nonseparable case, these conditions:

$$y_i(w^Tx_i + w_0) \ge 1, \qquad i = 1, ..., N$$

cannot be satisfied simultaneously.

Need to introduce slack variables ξ_i :

$$y_i(w^Tx_i + w_0) \ge 1 - \xi_i,$$

 $\xi_i \ge 0, \qquad i = 1, ..., N$

Slack variables

For nonseparable case, these conditions:

$$y_i(w^Tx_i + w_0) \ge 1, \qquad i = 1, ..., N$$

cannot be satisfied simultaneously.

Need to introduce slack variables ξ_i :

$$y_i(w^Tx_i + w_0) \ge 1 - \xi_i,$$

 $\xi_i \ge 0, \qquad i = 1, ..., N$

And the objective function becomes:

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^N \xi_i \to \min_{w,w_0,\xi}$$

To solve:

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^N \xi_i \to \min_{w,w_0,\xi}$$

subject to:

$$y_i(w^Tx_i + w_0) \ge 1 - \xi_i,$$

 $\xi_i \ge 0, \qquad i = 1, ..., N$

To solve:

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^{N} \xi_i \to \min_{w, w_0, \xi}$$

subject to:

$$y_i(w^Tx_i + w_0) \ge 1 - \xi_i,$$

 $\xi_i \ge 0, \qquad i = 1, ..., N$

define the Lagrangian:

$$L(w, w_0, \xi, \alpha, r) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i (w^T x_i + w_0) - 1 + \xi_i) - \sum_{i=1}^{N} r_i \xi_i$$

To solve:

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^N \xi_i \to \min_{w,w_0,\xi}$$

subject to:

$$y_i(w^Tx_i + w_0) \ge 1 - \xi_i,$$

 $\xi_i \ge 0, \qquad i = 1, ..., N$

define the Lagrangian:

Solution determined by the Karush–Kuhn–Tucker conditions:

$$\frac{\partial L}{\partial(w, w_0, \xi_i)} = 0 \qquad L \to \max_{\alpha, r}$$

$$\alpha_i \ge 0, \quad r_i \ge 0$$

$$y_i (w^T x_i + w_0) \ge 1 - \xi_i$$

$$\xi_i \ge 0,$$

$$\alpha_i (y_i (w^T x_i + w_0) - 1 + \xi_i) = 0$$

$$r_i \xi_i = 0 \qquad i = 1, ..., N$$

$$L(w, w_0, \xi, \alpha, r) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i (w^T x_i + w_0) - 1 + \xi_i) - \sum_{i=1}^{N} r_i \xi_i$$

$$L(w, w_0, \xi, \alpha, r) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i (w^T x_i + w_0) - 1 + \xi_i) - \sum_{i=1}^{N} r_i \xi_i$$

$$\frac{\partial L}{\partial w} = 0 \quad \Rightarrow \quad w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

i.e. the solution is a linear combination of the training objects.

$$L(w, w_0, \xi, \alpha, r) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i (w^T x_i + w_0) - 1 + \xi_i) - \sum_{i=1}^{N} r_i \xi_i$$

$$\frac{\partial L}{\partial w} = 0 \quad \Rightarrow \quad w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

i.e. the solution is a linear combination of the training objects.

$$\frac{\partial L}{\partial w_0} = 0 \quad \Rightarrow \quad \sum_{i=1}^{N} \alpha_i y_i = 0$$

i.e. the combination coefficients need to be balanced between classes.

$$L(w, w_0, \xi, \alpha, r) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i (w^T x_i + w_0) - 1 + \xi_i) - \sum_{i=1}^{N} r_i \xi_i$$

$$\frac{\partial L}{\partial w} = 0 \quad \Rightarrow \quad w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

i.e. the solution is a linear combination of the training objects.

$$\frac{\partial L}{\partial w_0} = 0 \quad \Rightarrow \quad \sum_{i=1}^{N} \alpha_i y_i = 0$$

i.e. the combination coefficients need to be balanced between classes.

$$\frac{\partial L}{\partial \xi_i} = 0 \quad \Rightarrow \quad C - \alpha_i - r_i = 0$$

Dual problem

Substituting these into the Lagrangian:

$$w = \sum_{i=1}^{N} \alpha_i y_i x_i$$
, $\sum_{i=1}^{N} \alpha_i y_i = 0$, $C - \alpha_i - r_i = 0$

we obtain the **dual problem**:

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathrm{T}} x_{j} \to \max_{\alpha}$$

subject to:

$$\sum_{i=1}^{N} \alpha_i y_i = 0, \qquad 0 \le \alpha_i \le C$$

Due to these KKT conditions:

$$\alpha_i (y_i (w^T x_i + w_0) - 1 + \xi_i) = 0, \qquad r_i \xi_i = 0$$

Due to these KKT conditions:

$$\alpha_i (y_i (w^T x_i + w_0) - 1 + \xi_i) = 0, \qquad r_i \xi_i = 0$$

$$y_i(w^Tx_i + w_0) > 1 \Rightarrow \alpha_i = 0$$
 (non-informative vector)

Due to these KKT conditions:

$$\alpha_i(y_i(w^Tx_i + w_0) - 1 + \xi_i) = 0, \qquad r_i\xi_i = 0$$

$$y_i(w^Tx_i + w_0) > 1 \Rightarrow \alpha_i = 0$$
 (non-informative vector)

$$y_i(w^Tx_i + w_0) < 1 \implies \xi_i > 0$$
, $r_i = 0$, $\alpha_i = C$ (non-boundary support vector)

Due to these KKT conditions:

$$\alpha_i(y_i(w^Tx_i + w_0) - 1 + \xi_i) = 0, \qquad r_i\xi_i = 0$$

$$y_i \left(w^{\mathrm{T}} x_i + w_0 \right) > 1 \ \Rightarrow \ \alpha_i = 0$$
 (non-informative vector) $y_i \left(w^{\mathrm{T}} x_i + w_0 \right) < 1 \ \Rightarrow \ \xi_i > 0, \ r_i = 0, \ \alpha_i = C$ (non-boundary support vector) $y_i \left(w^{\mathrm{T}} x_i + w_0 \right) = 1 \ \Rightarrow \ \xi_i = 0, \ \alpha_i \in [0, C]$ (boundary support vector)

Whole pipeline:

Solve the dual problem to find the optimal α^*

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \rightarrow \max_{\alpha}$$

$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0, \qquad 0 \leq \alpha_{i} \leq C$$

Make predictions for new data:

$$\hat{y} = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i^* y_i x_i^{\mathrm{T}} x + w_0\right)$$

Can be obtained from e.g. boundary

support vectors from: $y_i(w^Tx_i + w_0) = 1$

Artem Maevskiy, NRU HSE

Kernel trick

Whole pipeline:

Note that the dual problem and prediction depend on the data only through scalar products:

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \to \max_{\alpha}$$

$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0, \qquad 0 \le \alpha_{i} \le C$$

$$\hat{y} = \operatorname{sign} \left(\sum_{i \in SV} \alpha_{i}^{*} y_{i} x_{i}^{T} x + w_{0} \right)$$

Feature expansion

Suppose we want to expand our features:

$$x_i \to \phi(x_i)$$

Then, our solution would only depend on the scalar products: $\phi^{T}(x_i)\phi(x_j)$.

Feature expansion

Suppose we want to expand our features:

$$x_i \to \phi(x_i)$$

Then, our solution would only depend on the scalar products: $\phi^{T}(x_i)\phi(x_j)$.

E.g. for the following polynomial expansion: $(x_1, x_2)_i \to \left(\frac{1}{2}, x_1, x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2\right)_i$, the scalar product equals to:

$$\frac{1}{4} + x_{1i}x_{1j} + x_{2i}x_{2j} + (x_{1i}x_{1j})^2 + 2(x_{1i}x_{1j})(x_{2i}x_{2j}) + (x_{2i}x_{2j})^2 =$$

$$= \frac{1}{4} + x_i^T x_j + (x_i^T x_j)^2 = (x_i^T x_j + \frac{1}{2})^2$$

Feature expansion

Suppose we want to expand our features:

$$x_i \to \phi(x_i)$$

Then, our solution would only depend on the scalar products: $\phi^{T}(x_i)\phi(x_j)$.

E.g. for the following polynomial expansion: $(x_1, x_2)_i \to \left(\frac{1}{2}, x_1, x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2\right)_{i'}$ the scalar product equals to:

$$\frac{1}{4} + x_{1i}x_{1j} + x_{2i}x_{2j} + (x_{1i}x_{1j})^{2} + 2(x_{1i}x_{1j})(x_{2i}x_{2j}) + (x_{2i}x_{2j})^{2} =$$

$$= \frac{1}{4} + x_{i}^{T}x_{j} + (x_{i}^{T}x_{j})^{2} = (x_{i}^{T}x_{j} + \frac{1}{2})^{2}$$

So instead of doing the expansion we can replace all scalar products with:

$$x_i^{\mathrm{T}} x_j \to K(x_i, x_j) = \left(x_i^{\mathrm{T}} x_j + \frac{1}{2}\right)^2$$

RBF kernel

This trick allows for expansions that would normally be infeasible to compute, e.g. expansions to infinite dimension spaces.

Example: Radial Basis Function (RBF) kernel:

$$K(x_i, x_j) = e^{-\gamma \|x_i - x_j\|^2}$$

This kernel has maximum of 1 for $x_i = x_j$, and decays to 0 as the vectors become further apart. Hence, the solution averages the labels for nearby support vectors:

$$\hat{y} = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i^* y_i K(x_i, x) + w_0\right)$$

Can any function be a kernel?

Note that the quadratic form of the dual problem is defined by the symmetric, positive semi-definite matrix XX^{T} :

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j} \to \max_{\alpha}$$

In fact, kernel functions should also have these properties (Mercer theorem):

Symmetry:

$$K(x_i, x_j) = K(x_j, x_i)$$

For every set x_1, \dots, x_M the Gram matrix is positive semi-definite:

$$K(x_i, x_j) \equiv K_{ij}$$
 - p.s.d.

 SVM is a linear classification model. In the linearly separable case it maximizes the distance from the closest training points to the decision boundary

- SVM is a linear classification model. In the linearly separable case it maximizes the distance from the closest training points to the decision boundary
- For the inseparable case, it balances between:
 - minimizing $||w||^2$, i.e. pushing the $w^Tx_i + w_0 = \pm 1$ lines further away from the decision boundary
 - maximizing the sum of margins for objects with $y_i(w^Tx_i + w_0) < 1$ (through slack variables)
- The balance is controlled by the constant C

- SVM is a linear classification model. In the linearly separable case it maximizes the distance from the closest training points to the decision boundary
- For the inseparable case, it balances between:
 - minimizing $||w||^2$, i.e. pushing the $w^Tx_i + w_0 = \pm 1$ lines further away from the decision boundary
 - maximizing the sum of margins for objects with $y_i(w^Tx_i + w_0) < 1$ (through slack variables)
- The balance is controlled by the constant C
- Solution only depends on the support vectors
 - Not robust to outliers as they always become support vectors

- SVM is a linear classification model. In the linearly separable case it maximizes the distance from the closest training points to the decision boundary
- For the inseparable case, it balances between:
 - minimizing $||w||^2$, i.e. pushing the $w^Tx_i + w_0 = \pm 1$ lines further away from the decision boundary
 - maximizing the sum of margins for objects with $y_i(w^Tx_i + w_0) < 1$ (through slack variables)
- The balance is controlled by the constant C
- Solution only depends on the support vectors
 - Not robust to outliers as they always become support vectors
- Kernel trick allows to expand features by just redefining the scalar product in the original feature space (i.e. almost no computational overhead)
 - This allows for infinite dimension representations
 - Can define kernels (similarity measures) for complex objects like strings, sets, graphs, etc.

Thank you!

Artem Maevskiy