$B \times B = \{(4,4)(5,0)(6,0)(4,b)(5,5)(6,0)\}$ $B \times B = \{(4,4)(4,6)(5,0)(5,4)(5,5)(5,6)\}$	$A = \{a,b\}$, $B = \{4,5,6\}$ Find $A \times B$, $B \times A$. $A \times A$, $B \times B$, $A \times A \times B$. $A \times B = \{(a,4), (a,5), (a,6), (b,4), (b,5), (b,6)\}$	$A \times B = \{(a,b) \mid a \in A \nmid b \in B\}$ If $A = \emptyset$ or $B = \emptyset$ then $A \times B = \emptyset$	$A = \{a, b\}$ $A = \{a, b\}$	* Product set or Cartesian product. Let A 3B be non empty sets we define the aroduct. Set or the Cartesian product AXB	* A Common notion of a relation is a type of association that exists between two or more objects. For ex - 1) x is a father of y year z year z	Unit 2 Relations and Function.
	* Binary relation. Let A &B be non empty sets then a binary relation R Fram A to B is subset of AxB is (A C AxB) the domain of R denoted by D(R) is the set of elements in a that are related to sub elements in B ie	* Basic Concepts of a relation set let. { A 14, A 2,, An 3 be a finite Callection of a set A subset R of A, x A 2 An is called an n-ary relation	$\frac{1}{(\theta \times \theta)} = \frac{1}{2}(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)}$ $\frac{1}{(\theta \times \theta)} = \frac{1}{2}(1,1)(1,2)(2,1)(2,2)(3,2)}$ $\frac{1}{(\theta \times \theta)} = \frac{1}{2}(1,1)(1,2)(2,1)(2,2)(2,2)}$	Qu) Let A = {1,2}, B = {1,2,3} Find (- common poir)	$A = \{a,b\}$, $A = \{a,b\}$, $B = \{4,5,6\}$ $A \times A \times B = \{(a,a,4), (a,b,4), (a,a,5), (a,a,6)\}$ (a,b,5) $(a,b,6)$ $(b,b,4)$ $(b,b,5)(b,b,6) (b,a,4) (b,b,5) (b,a,6) \{$	(6,4) (6,5), (6,6)}

$ \frac{1}{1} \times 1 = \frac{1}{1} \times 1 =$	platic set b) (2	Ou Let $A = \{2, 3, 4, 5\}$ & Let R be the relation on A such that $a < b$ find $D(R) \stackrel{?}{\downarrow} Rn(R)$ $A = \{2, 3, 4, 5\}$ So $a < b$ $A = \{2, 3, 4, 5\}$ So $a < b$ $A = \{2, 3, 4, 5\}$ So $a < b$ $A = \{2, 3, 4, 5\}$ Toomain = a $A = \{2, 3, 4, 5\}$ Toomain = a $A = \{2, 3, 4, 5\}$ Toomain = a
a,3) (c	Converse of a relation from A to B Given a relation from A to B Given a relation from A to B Given may define a relation from B to A as Follows. Follow	$ \frac{1}{8} = \frac{1}{8} (1.4) (2.$

How to Find R ₁ R ₂ . A R ₁ R ₂ R ₁ R ₂ . A R ₁ R ₂ R ₁ R ₂ . A R ₁ R ₂ R ₁ R ₂ . A B B C (a,d) A b C (a,d)	Let $R = R \{a, a, b, c, a\}$ $R_1 = \{(a, a), (a, b), (b, d), \{c, d\}\}$ $R_2 = \{(a, d), (b, c), (b, d), \{c, d\}\}$ $a) R_2 R_1$ $a) R_2 R_1$ $a) R_3 R_2$	elation 1 B & From A to B & Rel The Composite Rel R1. R2 at R1. R R1. R2 at R1. R
British (British) (British	d) (c,c) (c,d) 3	R1 R1. R1. (a,d) (a,d) (b,d) (a,d) (a,b) (a,b) {(a,a), (a,d,(a,b)} R2 R3 R2 R3 R3 R2

$R_{1} = \{(G, 4) (412) (53)\}$ $R_{2} = \{(2,3) (3,4) (4,5) (5,6) (4,2) (63)\}$ $R_{1}R_{2} = R_{1} R_{2} R_{1} R_{2}$ $R_{1}R_{2} = R_{1} R_{2} R_{1} R_{2}$ $R_{1}R_{2} = \{(3,4) (4,5) (6,5) (6,2)\}$ $R_{1}R_{2} = \{(4,3) (5,4) (6,5) (6,2)\}$ $R_{2}R_{1} = \{(3,2) (4,3) (5,4)\}$ $R_{3}R_{2} = \{(3,2) (4,3) (5,4)\}$	Cut let $A = \{2, 3, 4, 5, 6\}$ Repelation on $A = \{2, 6, 6, 6\}$ Replation on $A = \{2, 6, 6, 6\}$ Replation on $A = \{2, 6, 6\}$ Replation on $A = \{2, 6, 6\}$ Replation on $A = \{2, 6\}$
	RIRD RI = $\{(6,13) (5,2)\}$ RIRD RI = $\{(6,13) (5,2)\}$ RIRD RI = $\{(6,13) (5,2)\}$ RIRD RIPSE RIC = $\{(3,12) \{4,13\} (5,14) (3,15) (4,16)\}$ RIRD RIPSE RIC = $\{(3,14) (4,15) (5,14) (6,15) (2,14) (3,16)\}$ RIRD RIPSE RIC = $\{(3,14) (4,15) (5,14) (6,15) (2,14) (3,16)\}$ RIRD RIPSE RIC = $\{(3,14) (4,15) (5,14) (6,15) (2,14) (3,16)\}$

[c] = {c] -@ The rank of given relation R is 2 Out Let $B = \{1, 2, 3, 4\}$ $P = \{(1, 1)(1, 2)(1, 3)(2, 1)(2, 2)(3, 1)$ $P = \{(3, 3)(3, 2)(3, 3)(4, 4)\}$	Equivalence classes Let R be an equivalence telation on a set a A. For even Let R be an equivalence class of A courb then [a] R denote the set { x eA xRa} then [a] R is called equivalence class of A courb then rank of R is the number of classes are finite The rank of R. Te the number of classes are finite otherwise it is infinite otherwise it is infinite petermine the equivalence classes and the petermine the equivalence classes and the pank of R. [a] = { a, b } -0
1) A = U A; a) A; A Aj = \$\phi\$ a) A; A Aj = \$\phi\$ an element of a partition of A by symbol. It The rank of It is the number of blocks of The rank of It is the number of blocks of	

$ \begin{array}{lll} $	$A = \{1,2,3\}$ $A = \{1,2,3,\{3\}\}$ $A = \{\{1,2,3,\{2,3\}\}\}$ $A = \{\{2,3,\{2,3\},\{3\}\}\}$ $A = \{\{1,3,\{2,3\},\{3\}\}\}$ $A = \{\{1,3,\{2,3\},\{3,3\}\}\}$ $A = \{\{1,3,\{2,3\},\{3,3\}\}$ $A = \{\{1,3,\{2,3\},\{3,\{3,3\}\}$ $A = \{\{1,3,\{2$
	R={(111) (12) (21) (22) (3,3) (4.5) (4,4) (5,4) (55)} (1,4) (5,4) (55)} (1) (2) (2) (3) (3) (4) (4) (4) (5) (4) (5) (4) (5) (6) (1) (2) (2) (5) (6) (7) (7) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (3) (4) (5) (1) (1) (1) (2) (4) (5) (7) (6) (7) (7) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (3) (4) (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1

ex = $\{4, 3\}$ $R = \{14, 4\}$ (4,3) (3,3) $\{3,3\}$ $\{4,3\}$ er $\{3,4\}$ er $\{3,4\}$ er $\{3,4\}$ er	p is symmetric since (a,b) ER & (b,a) ER 4) Antisymmetric Relation R is said to be antisymmetric if whenever at then b & a.		2) Irreflexive Relation: R is said to be irreflexive if for every elements R = { a, b} R = { a, b} (b, d) { b} eR. ex = R = { a, b} R = { a, a} (b, b) eR.	Special properties at the Special Properties	E Rinary Relation.
Determine weather the given relation. R = { (p.P) (q.q) (q.H) (r.q) (r.x)}	Qu. let $\beta = \{p,q,r\}$ & MR 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	auther the relation of the relation of the relation of the reflection of the reflect	18 8		

5) Transitive (5,4) ER 4 (6,4) ER (6,4) ER (5,4) ER and (4,5) ER	(G.5) (G.6) $\frac{1}{3}$ 1) Reflexive: $(4,4)$ (S.5) (G.G) $\in \mathbb{R}$ given a) Symmetric. (4.G) $\in \mathbb{R}$ and (G.4) $\in \mathbb{R}$ (5.4) $\in \mathbb{R}$ and (4.5) $\in \mathbb{R}$	11/1	relation is equivalence neather the given relation	prelexive: (p,p) (q,q) (r,r) eR the given relation is reflexive relation. a) Symmetric: (q,r) eR f (r,q) eR Then the relation is symmetric relation. (q,r) eR f (r,q) eR Then the relation is symmetric relation. (Que)
	* Compasite of Binary Rolation From A to B & Ro be a let R1 be the relation From A to C is denote relation from A to C is denote. The Composite relation from A to C is denote relation is defined. RIR2 OF RIR2 IS DEST OF BED TO SEE A CEC N = D[b = B]	s) Symmetric: (t,p) ∈ R and but (p,r) ∉ R ∴ It is not symmetric relation Therefore, it is not equivalence relation	$R = \frac{1}{2}(p, p) (\pi, p) (p, q) (r, r) (q, q) (q, r)^{\frac{3}{2}}$ $Reflexive - (p, p) (q, q) (r, r) \in \mathbb{R}$ $\therefore \text{ given relation is reflexive.}$	The given relation is equivalence relation. Actormine whether the given relation are in an equivalence. (P)

Let R_1, R_2 be Relation on A such that $R_1 = \{ (a,b) \mid (a-b)=2 \} $ $R_2 = \{ (a,b) \mid (a+1) = b \text{ or } a = 2b \} $ Find the Composite relation R_1R_2 , R_2R_1 , $R_1R_2R_1$.	au. Let $A = \{a,b,c,d\}$ $R_1 = \{(a,a),(a_1b),(b_1d)\}$ and $R_2 = \{(a,d),(b_1c),(b_1d)\}$ (c.\mathbf{b})} Ro = \{(a,d),(b_1c),(b_1d),(c,\mathbf{b})\} Ro = \{(a,d),(b_1c),(b_1d),(c,\mathbf{b})\} Ro = \{(a,d),(a_1c)\} Ro = \{(a,d),(a_1c),(a_1b),(a_1d)\} Ro = \{(a,d),(a_1c),(a_1b),(a_1d),(a_1d)\} Ro = \{(a,d),(a,d),(a_1b),(a_1d),(a_1d)\} Ro = \{(a,d)\} Ro = \{(a,d),(a,d),(a,d),(a,d)\} Ro = \{(a,d)\} Ro = \{	
	$R_{1} = \{ (4,12) (3,16) (3,16) (4,12) (4,13) \}$ $R_{2} = \{ (4,12) (6,14) (4,15) (5,16) (4,12) (6,13) \}$ $R_{3} = \{ (4,12) (4,13) (6,12) (6,12) (6,12) (6,12) \}$ $R_{3} = \{ (4,12) (4,13) (5,12) (6,12) (6,12) (6,12) \}$ $R_{3} = \{ (3,12) (4,13) (5,12) (6,1$	10 = {(2,2) (2,3) (2,4) (2,5) (2,6) (3,2) (3,3)

$R^{2} = \{(1,3),(2,4)\} $ $R^{3} = \{(1,4)\}.$ $R^{4} = \{(1,2)(2,3)(3,4)(1,3)(2,4)(1,4)\}.$ $R^{4} = \{(1,2)(2,3)(3,4)(1,3)(2,4)(1,4)\}.$	Transistive Clouser: R*RUR² UR³ UR⁴ UR". Courl Let $B = \{1,2,3,4\}$ and $R = \{(1,2)(2,3)(3,4)\}$ be a relation on A find $R*$ and draw it diagraph A
# TO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

