

Année 2017-2018 Logique mathématique Durée: 02 h

Examen 1

Exercice

1. [4 pts] Soit la formule à priorité

$$\mathbf{F} = \neg((\mathbf{x} \land \mathbf{y}) \Rightarrow \mathbf{z} \Leftrightarrow (\mathbf{x} \Rightarrow \mathbf{z}) \land (\mathbf{y} \Rightarrow \mathbf{z})).$$

1. Rappelons que $\vDash \neg(x \Leftrightarrow y) \Leftrightarrow ((x \land \neg y) \lor (\neg x \land y)).$ Déduire que pour toutes formules A et B on $a : \neg(A \Leftrightarrow B) \equiv (A \land \neg B) \lor (\neg A \land B).$

2. Donner l'arbre de structure de F.

3. Transformer la formule F en une somme de monômes(FND).

La formule F est-elle satisfaisable? La formule F est-elle valide? Justifier.

1. En substituant x par A et y par B on obtient :

$$\vDash \neg (A \Leftrightarrow B) \Leftrightarrow ((A \land \neg B) \lor (\neg A \land B)).$$

De la propriété ($F \equiv G \operatorname{ssi} \models F \Leftrightarrow G$) on déduit que

$$\neg (A \Leftrightarrow B) \equiv (A \land \neg B) \lor (\neg A \land B).$$
 0.5 pt

2.

3.

$$F \equiv \overline{(xy \Rightarrow z)} \Leftrightarrow \overline{(x \Rightarrow z)(y \Rightarrow z)}$$

$$\equiv (xy \Rightarrow z)\overline{(x \Rightarrow z)(y \Rightarrow z)} + \overline{(xy \Rightarrow z)}(x \Rightarrow z)(y \Rightarrow z)$$

$$\equiv (\bar{x} + \bar{y} + z)(x\bar{z} + y\bar{z}) + (xy\bar{z})(\bar{x} + z)(\bar{y} + z)$$

$$\equiv \bar{x}y\bar{z} + \bar{y}x\bar{z}$$
1.5 pt

Oui F est satisfaisable. Elle a exactement deux modèles. x=0,y=1,z=0 et x=1,y=0,z=0. Elle n'est pas valide. Car $\neg F$ est satisfaisble. En effet:

$$\neg F \equiv (x + \bar{y} + z)(y + \bar{x} + z) \equiv xy + xz + \bar{y}\bar{x} + \bar{y}z + zy + z\bar{x} + z \equiv z + xy + \bar{y}\bar{x}.$$

! Soient F et G deux formules. Montrer que :

 $\vDash F \land G \text{ si et seulement si} \vDash F \text{ et } \vDash G.$

2. Soient F et G deux formules qui n'ont aucune variable commune. Montrer que

 $\vDash F \lor G \text{ si et seulement } si \vDash F \text{ ou } \vDash G.$

1. Sens \Rightarrow .

Supposons $\vDash (F \land G)$. Donc pour toute assignation v on a $[F \land G]_v = 1$ donc $min([F]_v, [G]_v) = 1$. Alors pour toute assignation v on a $[F]_v = [G]_v = 1$. Donc F et G sont valides.

 $\mathbf{Sens} \Leftarrow.$

Réciproquement supposons que $\vDash F$ et $\vDash G$. Soit v une assignation arbitraire. On a $[F]_v = 1$ et $[G]_v = 1$. Il vient alors que $[F \land G]_v = 1$. Donc $F \land G$ est valide.

2.

 $\overline{\mathbf{Sens}} \Leftarrow$.

Par contraposée. Supposons que $\not\vdash F \lor G$. Donc il existe une assignation v telle que $[F \lor G]_v = 0$. On déduit $max([F]_v, [G]_v) = 0$. Donc $[F]_v = 0$ et $[G]_v = 0$. Alors F n'est pas valide et G n'est pas valide.

Sens \Rightarrow .

Par contraposée. Supposons que F n'est pas valide et G n'est pas valide. Alors il existe v_1 telle que $[F]_{v1} = 0$ et il existe v_2 telle que $[G]_{v2} = 0$. On construit alors l'assignation w définie par

$$\left\{ \begin{array}{ll} w(x) = v_1(x) & \text{si} & x \in \mathcal{V}(F) \\ w(x) = v_2(x) & \text{sinon} \end{array} \right.$$

On remarque w et v_1 coïncident sur les variables de F. Donc $[F]_w = [F]_{v1} = 0$. En même temps on a w et v_2 coïncident sur les variables de G. En effet, si $x \in \mathcal{V}(G)$ alors $x \notin \mathcal{V}(F)$ (car $\mathcal{V}(F) \cap \mathcal{V}(G) = \emptyset$), Alors : si $x \in \mathcal{G}$ on a $w(x) = v_2(x)$. On déduit $[G]_w = [G]_{v2} = 0$. Alors $[F \vee G]_w = 0$. Donc $F \vee G$ n'est pas valide.

Exercice 3. 3 pts

1. Transformer $\neg F$ en forme normale conjonctive où

$$\mathbf{F} = (\mathbf{s} \land \mathbf{q} \Rightarrow \mathbf{r}) \land (\mathbf{s} \land \mathbf{p} \Rightarrow \mathbf{q}) \Rightarrow (\mathbf{q} \Rightarrow \mathbf{t}) \Rightarrow (\mathbf{p} \Rightarrow \mathbf{s}) \Rightarrow \mathbf{p} \Rightarrow \mathbf{t} \land \mathbf{p}$$

Attention: Vous n'avez pas le droit de distribuer le produit par rapport à la somme.

2. En utilisant l'arbre sémantique, étudier la validité de F.

Réponse.

1. En utilisant l'équivalence remarquable $\overline{(A \Rightarrow B)} \equiv A\overline{B}$ on obtient:

$$\neg F \equiv (sq \Rightarrow r)(sp \Rightarrow q)(q \Rightarrow t)(p \Rightarrow s)p(\overline{tp}) \\
\equiv (\bar{s} + \bar{q} + r)(\bar{s} + \bar{p} + q)(\bar{q} + t)(\bar{p} + s)p(\bar{t} + \bar{p}) \quad \text{1.5 pt}$$

2 Arbre sémantique Soit Γ l'ensemble des clauses équivalent à $\neg F$:

$$\Gamma = \{ \bar{s} + \bar{q} + r, \bar{s} + \bar{p} + q, \bar{q} + t, \bar{p} + s, p, \bar{t} + \bar{p} \}$$

Faisons le selon l'énumération p, t, s, q.

Figure 1: Arbre sémantique selon l'énumération: p, t, s, q.

L'arbre est fermé. Donc l'ensemble Γ est contradictoire. Alors F est valide.

$$\{\mathbf{a}\Rightarrow (\mathbf{b}\wedge\neg\mathbf{c}), \mathbf{b}\Rightarrow (\neg\mathbf{a}\vee\mathbf{c})\} \vDash \mathbf{b}\wedge\neg\mathbf{c}.$$

$$\blacksquare$$

$$\blacksquare$$

$$\mathbf{R\acute{e}ponse.}$$

$$\blacksquare$$

$$\{a\Rightarrow d, b\Rightarrow e, f\vee\neg c\} \vDash (a\vee b\vee c)\Rightarrow (d\vee e\vee f)$$
si et seulement si
$$\{a\Rightarrow d, b\Rightarrow e, f\vee\neg c, \neg ((a\vee b\vee c)\Rightarrow (d\vee e\vee f))\} \vDash \bot$$
si et seulement si

Résolution positive.

(1) $\bar{a} + d$ Hyp $\bar{b} + e$ (2)Hyp (3) $\bar{c} + f$ Hyp (4)a+b+cHyp (5)Hyp (6) $ar{e}$ Hyp Hyp (7)(8)a + c + eRes(2,4)(9)a+cRes(6,8)(10) a+fRes (9,3)Res(7,10)(11)a(12)dRes (11,1) (13)Res (12,5)

On a montré

$$\left\{\bar{a}+d,\bar{b}+e,f+\bar{c},a+b+c,\bar{d},\bar{e},\bar{f}\right\} \vdash_{\mathsf{pos}} \bot$$

Par le théorème de correction de la stratégie positive on a le résultat demandé.

$$\{a\Rightarrow(b\wedge\neg c),b\Rightarrow(\neg a\vee c)\}\vDash b\wedge\neg c\quad \mathbf{ssi}\quad \bar{a}+b,\bar{a}+\bar{c},\bar{b}+\bar{a}+c,\bar{b}+c\}\vDash\bot$$

Résolution positive.

- (1) $\bar{a} + b$ Hyp
- (2) $\bar{a} + \bar{c}$ Hyp
- (3) $\bar{b} + \bar{a} + c$ Hyp
- (4) $\bar{b} + c$ Hyp

Il n'y a pas de clause positive. Donc

$$\{\bar{a}+b,\bar{a}+\bar{c},\bar{b}+\bar{a}+c,\bar{b}+c\}\not\vdash_{\text{pos}}\bot.$$

Comme la résolution positive est complète pour la réfutation, on déduit

$$\{\bar{a}+b,\bar{a}+\bar{c},\bar{b}+\bar{a}+c,\bar{b}+c\}\not\vdash\bot. \end{substitute}$$

Exercice 5. $\llbracket 4 \text{ pts} \rrbracket$ On rappelle que le système $\{\neg, \land, \lor\}$ est complet. On définit le connecteur binaire * par

$$x * y \equiv \neg(x \Rightarrow y).$$

- 1. Que vaut 0 * 0? Déduire que le système $\{0,*\}$ est incomplet.
- 2. Montrer que le système {1,**} est complet.
- 3. Déduire que les systèmes $\{\Leftrightarrow,*\}, \{\Rightarrow,*\}, \{\neg,*\}$ sont complets.

Réponse.

- 1. $0*0 \equiv 0$. Donc pour l'assignation constante donnant 0 à toutes les variables, toute formule écrite avec $\{0,*\}$ aura comme valeur 0. Donc on ne peut pas exprimer 1 par exemple. Donc $\{0,*\}$ est incomplet.
- **2.** On note que $x * y \equiv x \land \neg y$.

- $\neg x \equiv 1 * x$ 0.5 pt
- $x \wedge y \equiv x \wedge \neg \neg y \equiv (x * \neg y) \equiv (x * (1 * y))$. 0.5 pt
- $x \lor y \equiv \neg(\neg x \land \neg y) \equiv \neg(\neg x * y) \equiv (1 * ((1 * x) * y))$ 0.5 pt

3.

- $1 \equiv x \Leftrightarrow x \text{ Donc } \{\Leftrightarrow, *\} \text{ est complet.}$
- $1 \equiv x \Rightarrow x \text{ Donc } \{\Rightarrow, *\} \text{ est complet.}$
- Comme $\{\Rightarrow,*\}$ est complet et $x\Rightarrow y\equiv \neg(x*y)$ donc $\{\neg,*\}$ est complet.

Soient les lettres propositionnelles r, p, b, s et h formalisant les propositions suivantes.

- r: " Il est riche"
- p: " Il est pauvre"
- b: "Il est en bonne santé"
- s: " Il fait du sport "
- h: "Il est heureux"

Question 1: Formaliser les propositions suivantes à l'aide de ces lettres propositionnelles et des connecteurs usuels $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$.

- 1. "Si il est pauvre alors il n'est pas riche "
- 2. "Faire du sport est une condition nécessaire pour être en bonne santé"
- 3. "Il est heureux si et seulement s'il est en bonne santé ou il est riche"
- 4. "Il est heureux et pauvre implique qu'il fait du sport"

Question 2: Le dernier énoncé est-il conséquence logique des 3 premiers? Justifier en utilisant Davis-Putnam.

$$**1**p \Rightarrow \neg r$$
 0.5 pt

$$**2**b \Rightarrow s$$
 0.5 pt

$$**3**h \Leftrightarrow b \lor r$$
 0.5 pt

$$**4**(h \land p) \Rightarrow s$$
 0.5 pt

Question 2.

$$\{p \Rightarrow \neg r, b \Rightarrow s, h \Leftrightarrow b \lor r\} \vDash (h \land p \Rightarrow s)$$

si et seulement si

$$\{p \Rightarrow \neg r, b \Rightarrow s, h \Leftrightarrow b \vee r, \neg (h \wedge p \Rightarrow s)\} \vDash \bot$$

si et seulement si

$$\{\bar{p}+\bar{r},\bar{b}+s,\bar{h}+b+r,h+\bar{b},h+\bar{r},\bar{b}+s,h,p,\bar{s}\} \vDash \bot$$
 1 pt

En utilisant l'algorithme de Davis Putnam.

Par résolution unitaire sur (h, p, \bar{s}) : On obtient $\{\bar{r}, b + r, \bar{b}\}$

Encore par résolution unitaire sur \bar{b}, \bar{r} on obtient la clause vide.

Donc l'ensemble est contradictoire. Conclusion: Oui le dernier énoncé est une conséquence logique des 3 premiers.

Bon courage

Le barème est donné à titre indicatif