Lecture 5 Group Operators

COMP3204 & COMP6223 Computer Vision

How do we combine points to make a new point in a new image?

Template convolution

Template convolution

Image

100	100	200	200	200
100	100	200	200	200
100	100	200	200	200
200	200	400	400	400
300	300	400	400	400

0	0	0	0	0
0	400	400	0	0
0	400	400	0	0
0	400	400	0	0
0	0	0	0	0

	•
\cdot	7 、,
	У

Resu	H
11000	

0	0	0	0	0
0	400	400	Q-	0
0	640	806	800	0
0	894	894	800	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	500	700	800	0
0	800	800	800	0
0	0	0	0	0

Template convolution

Convolution is a system response

$$convolution = f * g = \int_{-\infty}^{\infty} f(t) g(t - \tau) d\tau$$

Template convolution includes coordinate inversion in x and in y

$$(\mathbf{T} * \mathbf{I})_{i,j} = \sum_{x \in template} \sum_{y \in template} \mathbf{T}_{i+m-x,j+m-y} \mathbf{I}_{i+x,j+y}$$

Inversion is not needed if the template is symmetric

3×3 template and weighting coefficients

w ₀	w_I	<i>w</i> ₂
W3	W4	W 5
w_{6}	<i>W</i> 7	W8

$$\mathbf{N}_{x,y} = \sum_{i \in \text{template } j \in \text{template}} w_{i,j} \times \mathbf{O}_{x(i),y(j)}$$

3×3 averaging operator

$$\mathbf{N}_{x,y} = \frac{1}{9} \sum_{i \in 3} \sum_{j \in 3} \mathbf{O}_{x(i),y(j)}$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Illustrating the effect of window size

Template convolution via the Fourier transform

Allows for fast computation for template size $\geq 7 \times 7$

$$\mathbf{P} * \mathbf{T} = \mathfrak{I}^{-1} \left(\mathfrak{I}(\mathbf{P}) . \times \mathfrak{I}(\mathbf{T}) \right)$$

Template convolution *

Fourier transform of the picture, $\mathfrak{I}(\mathbf{P})$

Fourier transform of the template, $\Im(T)$

Point by point multiplication (.x).

Beware of clowns ... Oxford

$$f(x,y) * h(x,y) \Leftrightarrow F(u,v)H(u,v)$$

Imperial

$$w(t) = u(t) * v(t) \Leftrightarrow W(f) = U(f)V(f)$$

it's point by point!!

Template Convolution via the Fourier Transform

2D Gaussian function

$$g(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$

- Used to calculate template values
- Note compromise between variance σ^2 and window size
- Common choices 5×5, 1.0; 7×7, 1.2; 9×9, 1.4

2D Gaussian function and template

0.002	0.013	0.022	0.013	0. 002
0.013	0.060	0. 098	0. 060	0.013
0.022	0. 098	0.162	0. 098	0.022
0.013	0. 060	0.098	0. 060	0.013
0. 002	0.013	0.022	0.013	0. 002

Template for the 5×5 Gaussian Averaging Operator ($\sigma = 1.0$).

Applying Gaussian averaging

Finding the median from a 3×3 template

	2	8	7										
	4	0	6		2	4	3	8	0	5	7	6	7
	3	5	7										
((a) 3	×3 re	gion					(l) uns	sorte	l vect	or	
					0	2	3	4	5	6	7	7	8
									\uparrow	med	ian		
							(c)	sorte	d vec	tor, g	giving	g med	lian

Finding the median from a 3×3 template

Preserves edges

Removes salt and pepper noise

Newer stuff: non local means

Averaging which preserves regions

Applying non local means

(a) original image

(c) nonlocal means

Even newer stuff: Image Ray Transform

Use analogy to light to find shapes, removing remainder

Applying Image Ray Transform

