Практическое занятие 4. Дискретная случайная величина. Способы задания. Основные числовые характеристики Основные законы распределения

Дискретная случайная величина (ДСВ)					
Способы задания					
x_i - значение, которое может принять ДСВ Основное свойство: $\sum_{i=1}^{n} p_i = 1$					
F(x) имеет п разрывов первого рода (график принимает ступенчатый вид) $F(x)$ - неубывающая функция					
Числовые характеристики					
е ожидание					
$x_1 \le M(\xi) \le x_n$					
сия					
$D(\xi) \ge 0$					
отклонение (СКО)					
$\overline{O(\xi)}$					
Вероятность					
(реже, используя соотношения) $P(\xi < a) = F(a)$ $P(a \le \xi < b) = F(b) - F(a)$ $P(\xi \ge a) = 1 - F(a)$					

Основные	Основные законы распределения				
Биномиальный (схема Бернулли, СВ – количество успехов)	$P(\xi = k) = C_n^k p^k q^{n-k}$ k=0,1,n	$m_{\xi} = np$ $D_{\xi} = npq$			
Геометрический (СВ – количество опытов до первого успеха)	$P(\xi = k) = pq^{k-1}$ $k=1,2,$	$m_{\xi} = 1/p$ $D_{\xi} = q/p^2$			
Гипергеометрический Пусть имеется конечная совокупность, состоящая из N элементов (D из них обладают нужным свойством, оставшиеся N-D этим свойством не обладают). Случайным образом из общей совокупности выбирается п элементов. СВ - количество выбранных элементов, обладающих нужным свойством.	$P(\xi = k) = \frac{C_D^k \cdot C_{N-D}^{n-k}}{C_N^n}$ $k=0,1,n$	$m_{\xi} = nD/N$ $D_{\xi} = \frac{n(D/N)(1-D/N)(N-n)}{N-1}$ Лучше находить, построив ряд распределения			

ПРИМЕРЫ

4.1. Абитуриент сдаёт два вступительных экзамена: по математике и физике. Составить ряд распределения случайной величины x - числа полученных пятёрок, если вероятность получения пятёрки по математике равна 0.8, а по физике -0.6.

Решение. Обозначим A_1 и A_2 — события, заключающиеся в том, что и математика, и физика сданы на 5. Очевидно, возможные значения CB есть 0, 1, 2, причём

$$p(x=0) = p(\overline{A_1} \cdot \overline{A_2}) = p(\overline{A_1}) \cdot p(\overline{A_2}) = 0.2 \cdot 0.4 = 0.08;$$

$$p(x=1) = p(A_1 \cdot \overline{A_2} + \overline{A_1} \cdot A_2) = 0.8 \cdot 0.4 + 0.2 \cdot 0.6 = 0.44;$$

$$p(x=2) = p(A_1 \cdot A_2) = p(A_1) \cdot p(A_2) = 0.8 \cdot 0.6 = 0.48$$

Полученные результаты сведём в таблицу:

Xi	0	1	2
pi	0.08	0.44	0.48

$$\sum_{i=1}^{n} p_i = 0.08 + 0.44 + 0.48 = 1.$$

4.2. Закон распределения случайной величины задан таблично. Найти: 1) функцию распределения, 2) $p(\xi < 2)$, $p(\xi > 4)$, $p(2 \le \xi \le 4)$, 3) математическое ожидание, дисперсию и среднеквадратическое отклонение.

Xi	1	2	3	4	5
pi	0,1	0,2	0,4	0,2	0,1

Решение.

$$F(x) = \begin{cases} 0.1, & 1 < x \le 2\\ 0.1 + 0.2 = 0.3, & 2 < x \le 3\\ 0.1 + 0.2 + 0.4 = 0.7, & 3 < x \le 4\\ 0.1 + 0.2 + 0.4 + 0.2 = 0.9, & 4 < x \le 5,\\ 0.1 + 0.2 + 0.4 + 0.2 + 0.1 = 1, & x > 5 \end{cases}$$

2)
$$p(\xi < 2) = 0.1$$
; $p(\xi > 4) = 0.1$; $p(2 \le \xi \le 4) = 0.2 + 0.4 + 0.2 = 0.8$.
3) $M(\xi) = 1 \cdot 0.1 + 2 \cdot 0.2 + 3 \cdot 0.4 + 4 \cdot 0.2 + 5 \cdot 0.1 = 3$; $D(\xi) = 12 \cdot 0.1 + 22 \cdot 0.2 + 32 \cdot 0.4 + 42 \cdot 0.2 + 52 \cdot 0.1 - 32 = 1.2$ $\sigma(\xi) = \sqrt{1.2} = 1.095$

4.3.Монета подбрасывается 10 раз. Найти математическое ожидание и дисперсию CB – количества выпавших орлов.

Решение. Случайная величина имеет биномиальное распределение. Здесь n=10, p=0,5, q=0,5. Находим: $M_{\xi}=10\cdot 0,5=5$, $D\xi=10\cdot 0,5\cdot 0,5=2,5$.

4.4. Охотник-любитель стреляет из ружья по неподвижной мишени. Вероятность попасть в мишень при одном выстреле является величиной постоянной и равна 0,65. Стрельба по мишени ведется до первого попадания. Определить числовые характеристики числа израсходованных охотником патронов.

Решение. Случайная величина подчиняется геометрическому закона распределения, поэтому вероятность попадания в каждой попытке постоянна и составляет p=0.65; q=1-p=0.35. По формулам вычисляем математическое ожидание $m_{\mathcal{E}}=1/p=1/0.65\approx 1.538$

Дисперсию
$$D_{\xi}=q/p^2=0.35/0.65^2\approx0.828$$
 среднее квадратическое отклонение $\sigma_{\xi}=\sqrt{0.828}\approx0.91$

4.5 В ящике содержится 10 однотипных деталей, из них 7 стандартных, а остальные являются бракованными. Наугад из ящика берут 3 детали. Построить закон распределения целочисленной

2

случайной величины X— числа стандартных деталей, вычислить математическое ожидание, дисперсию и СКО

Решение. Построим гипергеометрический закон распределения:

I. Имеем следующие начальные условия для случая выбора трех деталей n = 3; N=10; D=7; N-D=3; k=0,1,2,3.

В табличной форме гипергеометрический закон для этих данных имеет вид

$X = x_k = k$	0	1	2	3
$P_k = \frac{C_7^k C_3^{3-k}}{C_{10}^3}$	$\frac{C_7^0 C_3^3}{C_{10}^3}$	$\frac{C_7^1 C_3^2}{C_{10}^3}$	$\frac{C_7^2 C_3^1}{C_{10}^3}$	$\frac{C_7^3 C_3^0}{C_{10}^3}$

в виде ряда распределения

k	0	1	2	3
$P_k = \frac{C_7^k C_3^k}{120}$	$\frac{1}{120}$	$\frac{21}{120}$	$\frac{63}{120}$	$\frac{35}{120}$

Числовые характеристики можно вычислить, конечно, и непосредственно из ряда распределения. Математическое ожидание $m_{\mathcal{E}} = nD/N = 3.7/10 = 2,1$

Дисперсия
$$D_{\xi} = \frac{n(D/N)(1-D/N)(N-n)}{N-1} = \frac{3 \cdot \frac{7}{10} \cdot (1-7/10)(10-3)}{9} = 0,49$$

Среднее квадратичное отклонение $\sigma_{\xi} = \sqrt{0.49} = 0.7$

Задачи для самостоятельного решения:

4.1. Закон распределения случайной величины задан таблично. Найти: 1) значение а; 2) функцию распределения, 2) $p(\xi > 4)$, 3) математическое ожидание, дисперсию и среднеквадратическое отклонение.

Xi	2	3	5
pi	0,1	2a	a

4.2. Закон распределения случайной величины задан таблично. Найти: 1) значение а; 2) функцию распределения, 2) $p(\xi \le 3)$, 3) математическое ожидание, дисперсию и среднеквадратическое отклонение.

Xi	2	3	10
pi	a	4a	5a

- 4.3. В коробке 5 красных карандашей, 3 синих. Вынимают два карандаша. Составить ряд распределения СВ количества вынутых карандашей красного цвета. Найти: 1) функцию распределения, 2) $p(\xi < 2)$, $p(2 \le \xi \le 4)$, 3) математическое ожидание, дисперсию и среднеквадратическое отклонение.
- 4.4. В группе 7 человек: 4 отличника, 2 хорошиста, 1 троечник. Выбирают четырех человек. Составить ряд распределения CB количества выбранных отличников. Найти числовые характеристики.
- 4.5. Монету бросают 3 раза. СВ число выпавших гербов. Построить для нее: 1) ряд распределения, 2) функцию распределения. Найти числовые характеристики.
- 4.6. Производится 2 независимых выстрела по мишени. Вероятность попадания при каждом выстреле равна 0,8. СВ разность между числом попаданий и числом промахов. Построить для нее: 1) ряд распределения, 2) функцию распределения. Найти числовые характеристики.
- 4.7. Известно, что $M(\xi)=2.7~D(\xi)=0.21$. Ряд распределения имеет вид

Xi	X1	X2
p _i	0,3	0,7

Найти X1, X2.

4.8. Дискретная случайная величина X задана законом распределения вероятностей

X	-5	2	4
p	0,2	0,7	0,1

Найти дисперсию.

- 4.9. Случайная величина ξ принимает только целые значения 1,2,...,10. При этом вероятности возможных значений ξ пропорциональны значениям: $P(\xi = k) = ck$. Найдите значение константы c и вероятность c0.
- 4.10. Случайная величина ξ принимает только целые неотрицательные значения 0,1,2,... . При этом $P(\xi=k)=c\cdot 6^{-k}$. Найдите значение константы c и вероятность $P(\xi<3)$.
- 4.11. Случайная величина ξ принимает только целые значения 1, 4, 7, 10, 13, каждое с вероятностью $\frac{1}{5}$. Найдите математическое ожидание $m_{\xi} = M\left(\xi\right)$ и вероятность $P(\xi < m_{\xi})$.
- 4.12. Для случайной величины ξ известно, что $M(\xi) = 4$, $M(|\xi|) = 8$, $D(|\xi|) = 20$. Найдите дисперсию $D(\xi)$.
- 4.13. Найти среднее число лотерейных билетов, на которые выпадут выигрыши, если приобретено 20 билетов, а вероятность выигрыша одного билета 0,1. Найти дисперсию числа успехов в данном опыте.
- 4.14. Проводятся три независимых испытания, в каждом из которых вероятность наступления некоторого события постоянна и равна р. Пусть ξ число появлений события А в этом опыте. Найти $D(\xi)$, если известно, что $M(\xi) = 2.1$.
- 4.15. Вероятность поражения цели при одном выстреле равна 0,4. Сколько надо произвести выстрелов, чтобы можно было ожидать в среднем 80 попаданий в цель?

- 4.16. Игральная кость подбрасывается до первого появления цифры 1. Определить все числовые характеристики для случайной величины ξ - числа осуществляемых подбрасываний.
- 4.17. В группе 10 человек: 6 отличников, 3 хорошиста, 1 троечник. Выбирают пять человек. Найти числовые характеристики СВ – количества выбранных хорошистов.
- 4.18. По мишени производится три выстрела, причем вероятность попадания при каждом выстреле равна 0.8. Рассматривается случайная величина X – число попаданий в мишень. Найти ее ряд распределения.
- 4.19. Из орудия производится стрельба по цели до первого попадания. Вероятность попадания в цель p = 0.6. Найти вероятность того, что попадание произойдет при третьем выстреле.

Ответы. 4.1.
$$F(x) = \begin{cases} 0, x \le 2 \\ 0.1, \ 2 < x \le 3 \\ 0.7, \ 3 < x \le 5 \end{cases}$$
 $a=0.3$, $p(\xi > 4) = 0.3$, $M(\xi) = 3.5$ $D(\xi) = 1.05$ $\sigma(\xi) \approx 1.025$

1.025

1.025
$$4.2. F(x) = \begin{cases} 0, x \le 2 \\ 0,1, \ 2 < x \le 3 \\ 0,5, \ 3 < x \le 10 \\ 1, \ x > 10 \end{cases} \quad \text{a=0.1}, \quad p(\xi \le 3) = 0.5, \ M(\xi) = 6.4 \ D(\xi) = 13.04 \ \sigma(\xi) \approx 3.61$$

4.3.

Xi	0	1	2
pi	3/28	15/28	5/14

$$F(x) = \begin{cases} 0, x \le 0 \\ 3/28, & 0 < x \le 1 \\ 9/14, & 1 < x \le 2 \\ 1, & x > 2 \end{cases} \quad p(\xi < 2) = 9/14, \quad p(2 \le \xi \le 4) = 5/14 \quad M(\xi) = 1,25 \quad D(\xi) \approx 0,402$$

$$\sigma(\xi) \approx 0.634$$
4.4.

$$M(\xi) \approx 2.28 \ D(\xi) \approx 0.38 \ \sigma(\xi) \approx 0.62$$

4.5.

$$F(x) = \begin{cases} x_i & 0 & 1 & 2 & 3 \\ p_i & 1/8 & 3/8 & 3/8 & 1/8 \end{cases}$$

$$F(x) = \begin{cases} 0, x \le 0 \\ 1/8, & 0 < x \le 1 \\ 1/2, & 1 < x \le 2 \\ 7/8, & 2 < x \le 3 \\ 1, & x > 3 \end{cases}$$

$$M(\xi) = 3/2 \ D(\xi) = 3/4 \ \sigma(\xi) = \sqrt{3}/2$$

4.6.

Xi	-2	0	2
рi	0,04	0,32	0,64

$$F(x) = \begin{cases} 0, x \le -2\\ 0,04, -2 < x \le 0\\ 0,36, 0 < x \le 2 \end{cases} \quad M(\xi) = 1,2 \quad D(\xi) = 1,28 \quad \sigma(\xi) = 1,13$$

4.7. X1=2, X2=3.

4.8. 8,76.

4.9. 1/55; 49/55

4.10.

4.11. 7; 2/5

4.12.60

4.13. 2, 0,18

4.14. 0,63

4.15. 200

 $4.16 \, m_{\xi} = 6 \ D_{\xi} = 30 \ 25. \ 0.3830$

4.17

4.18.

0	1	2	3
0,008	0,096	0,384	0,512

4.19. 0,096