Mathematical Methods

Giorgio Grigolo

October 30, 2021

Contents

Lecture 3: Rank of a Matrix

Definition 1. The rank of a matrix, denoted by rank (\mathbf{A}) , is equal to the number of non-zero rows in a row echelon form of \mathbf{A}

Theorem 1. Let $\mathbf{AX} = \mathbf{B}$ be a linear system of m linear equations in n unknowns with augmented matrix $(\mathbf{A} \mid \mathbf{B})$, then

- the system has a solution if and only if rank $(\mathbf{A}) = \text{rank} (\mathbf{A} \mid \mathbf{B})$.
- the system has a unique solution if and only if rank $(\mathbf{A}) = \operatorname{rank} (\mathbf{A} \mid \mathbf{B}) = n$.

Note. The rank of a matrix augmented with another cannot be smaller than the original non-augmented matrix and thus

$$\operatorname{rank}(\mathbf{A}) \neq \operatorname{rank}(\mathbf{A} \mid \mathbf{B}) \Leftrightarrow \operatorname{rank}(\mathbf{A}) < \operatorname{rank}(\mathbf{A} \mid \mathbf{B})$$

Example. For which values of a does the following system have a unique solution? For which pairs of a, b does the system have more than one solution?

$$\left. \begin{array}{c} x - 2y = 1 \\ x - y + az = 2 \\ ay + 9z = b \end{array} \right\}$$

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 0 & 1 \\ 1 & -1 & a & 2 \\ 0 & a & 9 & b \end{pmatrix} \overset{R}{\sim} \begin{pmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & 9 & 1 \\ 0 & 0 & 9 - a^2 & b - a \end{pmatrix}$$

The solution is unique if and only if $a \neq \pm 3$. Thus, rank $(\mathbf{A}) = 3$. The solutions are infinite if and only if $a = \pm 3$ and b - a = 0.

$$(a,b) = (\pm 3, \pm 3) \Rightarrow \operatorname{rank}(\mathbf{A}) = 3$$

If a system of n equations in n unknowns (also referred to as a square system) has a unique solution, then the solution can be found by using the inverse of the coefficient matrix.

$$\left. \begin{array}{c} \mathbf{AX} = \mathbf{B} \\ A \text{ is } n \times n \\ \end{array} \right\} \mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$$
 The system has 1 solution

Note. An $n \times n$ matrix **A** is invertible if and only if rank $(\mathbf{A}) = n$.