Graphische Datenverarbeitung

Graphische Objekte und deren Programmierung

Prof. Dr. Elke Hergenröther

h_da

Graphische Objekte und graphische Programmierung

1. Schritt: Erzeugung graphischer Objekte

Alle graphischen Objekte bestehen letztendlich aus Punkten, die mit Kanten zu Dreiecken verbunden wurden.

Bild entnommen aus: http://www.pytha.de/produkt/modeler_1.de.php

Jede Geometrie wird durch Punkte, Kanten, Flächen in einem bestimmten Koordinatensystem definiert

Kartesische Koordinatensysteme Definition eines Rechtecks in kartesischen Koordinaten

Kartesisches Koordinatensystem

OpenGL verbindet die Punkte zu best. Primitiven

Erzeugen einer Geometrie am Beispiel eines Pinguins (von Dominik Paulus)

Was fehlt noch zur vollständigen Modellierung des Pinguins?

- Neben den geometrischen Größen müssen noch die graphischen Attribute zugeordnet werden:
 Graphische Attribute beziehen sich auf das "Aussehen" der Objekte:
- Beispiel für graphische Attribute:
 - Farbe
 - Synthetische Textur auf die Fläche gemappt (=,geklebt")
 - JPEG-Bild auf Fläche gemappt
 - ..

Wie kann man die Primitive im lokalen Koordinatensystem "manipulieren", um einen Pinguin zu konstruieren?

Man kann sie:

- verschieben (translieren)
- drehen (rotieren)
- vergrößern und verkleinern (skalieren)

Diese "Manipulationen" nennt man Transformationen!

Beispiele für Transformationen im 3D-Raum

Um welche Achse wird die Geometrie bei der Rotation aedreht?

Demonstration des mathematisch positiven Drehsinns

Transformation im 3D-Raum: Skalierung

Skalierung entlang der x- und der y-Achse glScalef(x, y, z);

Der Szenengraph

Unterschied Baum und Graph

Baum

gerichteter nicht-zyklenfreier Graph

Szenengraph

Szenengraph besteht aus mindestens 3 Knotentypen:

Szenengraph dient zur Verwaltung einer komplexen Szene:

- Gruppierung von Geometrien zu Gruppen
- Gruppierung von Gruppen zu Gruppen
- Gruppierung von Gruppen zu einer Szene

Szenengraphstruktur:

- gerichtet
- azyklisch
- Geometrie / darstellbare
 Primitive in den Blättern

Welchen Vorteil hat ein gerichteter azyklischer Szenengraphen gegenüber Szenengraphen, die als Bäume realisiert wurden?

(Sehen wir dann beim Pinguin)

Erzeugung des Pinguins mit Hilfe eines Szenengraphen...

Folgende Primitive stehen zur Verfügung:

- Becher mit der Öffnung nach oben
- Ball (bereits mit Augen und Nase)
- [Ein Dreieck]

Zum

Szenengraph des Pinguins

Zum

Szenengraph des Pinguins

Allgemeines zu OpenGL

- OpenGL (Open Graphics Library) ist eine Spezifikation einer API für 3D-Graphik
- OpenGL spezifiziert (standardisiert) rund 250 Befehle
- Die Implementierung der Befehle findet man in den Grafikkartentreibern
 - Befehle werden dann entweder von der Grafikkarte ausgeführt
 - oder auf der CPU
- OpenGL ist ein Renderingsystem keine Modellierungssoftware: komplexe Modelle müssen aus einfachen graphischen Primitiven aufgebaut werden.

Allgemeines zu OpenGL

OpenGL ist eine State-Machine:

- Funktionen verändern den internen Zustand, bzw. verwenden ihn zur Darstellung.
- Das heißt einmal angeschaltet, bleibt der betreffende Zustand aktiv bis er wieder ausgeschaltet oder umgeschaltet wird.

OpenGL ist sehr "explizit":

- Was nicht explizit aktiviert wurde, bleibt aus.
- Beispiel: Es nutzt nichts die Transparenz zu setzen, wenn man nicht explizit gesagt hat, dass Transparenzen berechnet werden sollen.

GLUT (OpenGL Utility Toolkit)

Übernimmt Plattform unabhängig:

- Darstellung von Fenstern
- Tastatureingaben und Ausgaben
- Funktionen zum Zeichnen einfacher geometrischer Objekte (Torus, Zylinder, Kugel,...)

GLUT (OpenGL Utility Toolkit)

```
Initialisierung über:
glutInit(&argc, argv);
qlutInitDisplayMode( GLUT DEPTH |GLUT RGB );
qlutCreateWindow("Name");
Zeichenfunktion wird automatisch von der glutMainLoop aufgerufen.
Welche Funktion als Zeichenfunktion genutzt werden soll, wird mit
dieser Funktion festgelegt:
qlutDisplayFunc(display);
Aufruf der Hauptschleife:
glutMainLoop();
```

OpenGL Primitive

Definition der OpenGL Primitive

```
glBegin ( Typ des Primitivs )
   Liste von Eckpunkten (= Vertices)
glEnd ();

Beispiel:
glBegin ( GL_POINTS );
   glVertex3f ( xA, yA, zA );
   glVertex3f ( xB, yB, zB );
   glVertex3f ( xC, yC, zC );
   glVertex3f ( xD, yD, zD );
glEnd ();
```


Achtung:

Dies ist nicht die Bildschirmausgabe. Wegen der Größe der Punkte (1 Pixel) wird auf dem Schirm nur sehr wenig zu sehen sein

OpenGL Primitiv: Punkt

```
glPointSize ( 15.0 );
glBegin ( GL_POINTS );
glColor4f ( 0.0f, 0.0f, 1.0f, 1.0f );
glVertex3f ( -0.9f, 0.0f, 0.0f );
glVertex3f ( -0.2f, 0.8f, 0.0f );
glVertex3f ( +0.2f, 0.8f, 0.0f );
glVertex3f ( +0.9f, 0.0f, 0.0f );
glVertex3f ( );
```

OpenGL ist eine State-Machine:

- Funktionen verändern den internen Zustand.
- Das heißt, einmal angeschaltet, bleibt der betreffende Zustand aktiv, bis er wieder ausgeschaltet oder umgeschaltet wird.
- Beispiel: glColor4f

OpenGL Primitiv: Linie

```
glLineWidth ( 5.0 );
glBegin ( GL LINES );
  glColor4f (0.0f, 0.0f, 1.0f, 1.0f);
  glVertex3f ( -0.9f, 0.0f, 0.0f );
  glVertex3f ( -0.2f, 0.8f, 0.0f ); ■GLLINES
 glVertex3f ( +0.2f, 0.8f, 0.0f );
  glVertex3f ( +0.9f, 0.0f, 0.0f );
glEnd ();
```

OpenGL Primitiv: Linie

```
glLineWidth ( 5.0 );
glBegin (GL_LINES );
glColor4f ( 0.0f, 0.0f, 1.0f, 1.0f );
glVertex3f ( -0.9f, 0.0f, 0.0f );
glColor4f ( 0.0f, 1.0f, 0.0f, 1.0f );
glVertex3f ( -0.2f, 0.8f, 0.0f );
glVertex3f ( +0.2f, 0.8f, 0.0f );
glColor4f ( 1.0f, 0.0f, 0.0f, 1.0f );
glColor4f ( 1.0f, 0.0f, 0.0f, 1.0f );
glVertex3f ( +0.9f, 0.0f, 0.0f );
```


OpenGL Primitiv: Linienzug

```
glLineWidth ( 5.0 );
glBegin ( GL_LINE_STRIP );
    glColor4f ( 0.0f, 0.0f, 1.0f, 1.0f );
    glVertex3f ( -0.9f, 0.0f, 0.0f );
    glColor4f ( 0.0f, 1.0f, 0.0f, 1.0f );
    glVertex3f ( -0.2f, 0.8f, 0.0f );
    glVertex3f ( +0.2f, 0.8f, 0.0f );
    glColor4f ( 1.0f, 0.0f, 0.0f, 1.0f );
    glColor4f ( 1.0f, 0.0f, 0.0f, 1.0f );
    glVertex3f ( +0.9f, 0.0f, 0.0f );
```


OpenGL Primitiv: Geschlossener Linienzug

```
glLineWidth ( 5.0 );
glBegin ( GL_LINE_LOOP );
glColor4f ( 0.0f, 0.0f, 1.0f, 1.0f );
glVertex3f ( -0.9f, 0.0f, 0.0f );
glColor4f ( 0.0f, 1.0f, 0.0f, 1.0f );
glVertex3f ( -0.2f, 0.8f, 0.0f );
glVertex3f ( +0.2f, 0.8f, 0.0f );
glColor4f ( 1.0f, 0.0f, 0.0f, 1.0f );
glVertex3f ( +0.9f, 0.0f, 0.0f );
glVertex3f ( +0.9f, 0.0f, 0.0f );
```


OpenGL Primitiv: Dreieck

```
glBegin(GL_TRIANGLES);
   glColor4f ( 0.0f, 0.0f, 1.0f, 1.0f );
   glVertex3f(-0.9f, 0.0f, 0.0f );
   glColor4f ( 0.0f, 1.0f, 0.0f, 1.0f );
   glVertex3f(-0.2f, 0.8f, 0.0f );
   glVertex3f(+0.2f, 0.8f, 0.0f );
   glColor4f ( 1.0f, 0.0f, 0.0f, 1.0f );
   glVertex3f(+0.9f, 0.0f, 0.0f );
   glVertex3f(+0.2f,-0.8f, 0.0f );
   glVertex3f(-0.2f,-0.8f, 0.0f );
   glVertex3f(-0.2f,-0.8f, 0.0f );
```


OpenGL Primitiv: Dreiecksstreifen (Triangle Strip)

- Ziel ist es, möglichst wenig Elemente anzulegen.
- Eckpunkte können durch zusammenhängende Strips recycelt werden.

Anzahl der Punkte ohne Streifen- und mit Streifenbildung

OpenGL Primitiv: Dreiecksstreifen

905 Strips 6127 Eckpunkte

OpenGL Primitiv: Dreiecksstreifen

```
glBegin(GL_TRIANGLE_STRIP);
1. glColor4f ( 0.0, 0.0, 1.0, 1.0f );
   glVertex3f(-0.9, 0.0, 0.0 );
2. glColor4f ( 0.0, 1.0, 0.0, 1.0f );
   glVertex3f(-0.2, 0.8, 0.0 );
   glVertex3f( 0.2, 0.8, 0.0 );
4. glColor4f ( 1.0, 0.0, 0.0, 1.0f );
   glVertex3f( 0.9, 0.0, 0.0 );
   glVertex3f( 0.2,-0.8, 0.0 );
   glVertex3f( 0.2,-0.8, 0.0 );
   glVertex3f(-0.2,-0.8, 0.0 );
   glVertex3f(-0.2,-0.8, 0.0 );
```


Das zuletzt definierte Dreieck wird zuerst gezeichnet!

OpenGL Primitiv: Polygon

```
glBegin(GL POLYGON);
  glColor4f( 1., 0., 0., 1.);
  glVertex2f( -0.5, -0.5);
  glColor4f( 1., 1., 0., 1.);
  glVertex2f( 0.5, -0.5);
  glColor4f( 1., 1., 1., 1.);
  glVertex2f( 0.8, 0.);
  glColor4f( 0., 1., 0., 1.);
  glVertex2f( 0.5, 0.5);
  glColor4f( 0., 0., 1., 1.);
  glVertex2f( -0.5, 0.5);
glEnd();
```


Graphische Datenverarbeitung

Graphische Objekte & graphische Programmierung
Teil 2

Prof. Dr. Elke Hergenröther

h_da

Transformationen in OpenGL

```
Translation: Geometrie wird um den Vektor (x, y, z)
  verschoben!
glTranslatef( x, y, z);
Rotationen: Geometrie wird um den angegebenen Winkel
  (gegen den Uhrzeigersinn) um die Achse (x, y, z)
  rotiert.
glRotatef(Winkel, x, y, z);
x, y, z: Rotationsachse
Skalierung:
glScalef(x, y, z);
```

Beispiel für eine Translation

Beispiel für eine Rotation

Welche Transformationen sind notwendig um das Rechteck, wie vorgegeben, zu drehen?

- 3. Rücktransformation in die Originalposition
- 2. Rotation um die Z-Achse
- 1. Transformation in den Ursprung

Reihenfolge in der die Transformationen angewendet werden ist wichtig!

Transformationen werden in **umgekehrter** Reihenfolge angegeben:

```
glTranslatef( 0.5, 0.7, 0.);
GlRotatef( 60., 0., 0., 1.);
GlTranslatef( -0.5, -0.7, 0.);
Quadrat();
```

Reihenfolge in der die Transformationen auf das Quadrat angewendet werden:


```
glTranslatef( 0.5, 0.7, 0.);
glRotatef( 60., 0., 0., 1.);
glTranslatef( -0.5, -0.7, 0.);

glBegin( GL_POLYGON );
    glColor4f( 1., 0., 0., 1.);
    glVertex3f( 0.2, 0.5, 0);
    glVertex3f( 0.8, 0.5, 0);
    glVertex3f( 0.8, 0.9, 0);
    glVertex3f( 0.2, 0.9, 0);
    glVertex3f( 0.2, 0.9, 0);
GlEnd();
```

Warum werden die Transformationen in umgekehrter Reihenfolge angegeben?

- Alle Transformationen werden durch Matrixmultiplikationen realisiert.
- Matrixmultiplikationen sind nicht kommutativ (d.h. sie sind nicht in ihrer Reihenfolge vertauschbar)
- Beispiel: a.) liefert <u>nicht</u> dasselbe Ergebnis, wie b.)

a.)
$$\begin{bmatrix} 3 \\ 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

b.)
$$\begin{bmatrix} 5 \\ -3 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Warum werden die Transformationen in umgekehrter Reihenfolge ausgewertet?

- Alle Transformationen werden durch Matrixmultiplikationen realisiert.
- Matrixmultiplikationen sind nicht kommutativ (d.h. sie sind nicht in ihrer Reihenfolge vertauschbar)
- Äquivalente Berechnungen von P':

$$\vec{P}' = M_{2} (M_{1} \vec{P}) \Leftrightarrow \vec{P}$$

Intuitive Vorgehensweise wenn man "von Hand" transformiert:

P wird zunächst mit M₁ und dann wird der Ergebnisvektor mit M₂ multipliziert Vorgehensweise von OpenGL:

Erstellen einer akkumulierten Matrix (M₂ wird mit M₁ multipliziert).

Bildquelle: http://www.ors.bb.schule-bw.de/index.php/ag-s-und-projekte/ag-mathe

Transformationen werden in **umgekehrter** Reihenfolge angegeben:

```
glTranslatef( 0.5, 0.7, 0.);  // M<sub>T2</sub>
glRotatef( 60., 0., 0., 1.);  // M<sub>R</sub>
glTranslatef( -0.5, -0.7, 0.); // M<sub>T1</sub>
Quadrat();
```

Reihenfolge in der die Transformationen auf die akkumulierte Matrix M multipliziert werden:

 $M=M_{T2}$ * M_R * M_{T1} *

Punkt

Skalierung um die Faktoren:

$$x = 1, y = ? und z = ?$$

Skalierung um die Faktoren:

$$x = ?, y = ? und z = 1$$

$$x = 3$$
, $y = 0.3$ und $z = 1$

$$x = 3$$
, $y = 0.3$ und $z = 1$

$$x = 3$$
, $y = 1$ und $z = 1$

$$x = 3$$
, $y = 1$ und $z = 1$

Transformation eines Würfels

```
glRotatef(45., 0., 1., 0.);
Wuerfel(0.8);
```


Transformationen in OpenGL

Matrizenstack: Ermöglicht das temporäre Speichern von Matrizen

```
Akkumulierte Matrix wird auf den Stack gesichert: glPushMatrix();
```

Akkumulierte Matrix wird wieder aktiviert mit: glPopMatrix();

Mit dem Aufruf von glPopMatrix() werden alle Änderungen der aktuellen Matrix, die zwischen dem Aufruf glPushMatrix() und glPopMatrix() gemacht worden sind gelöscht.

Transformationen in OpenGL

```
glLoadIdentity();
glTranslatef(0.3, 0.3, 0); //T1
glPushMatrix();
glTranslatef( -0.25, 0., 0.); //T2
glScalef(0.25, 1., 1.); //S1
Quadrat();
glPopMatrix();
glTranslatef( 0.25, 0., 0.); //T3
glScalef(0.25, 1., 1.); //S2
Quadrat();
```

Welche Transformationen werden jeweils auf das Quadrat angewendet?

Probieren Sie den Szenegraphen des Pinguins in OpenGL (mit glPushMatrix() und glPopMatrix() zu programmieren ...

Aufgabe: Miniatursonnensystem

- Sonne rotiert um ihre Y-Achse.
- Während sie rotiert, pumpt sie sich auf und fällt wieder zusammen.
- Die Erde rotiert in einiger Entfernung mit gleicher Winkelgeschwindigkeit (d.h. überstrichener Winkel pro Zeiteinheit ist gleich) um die Y-Achse der Sonne.
- Zusätzlich rotiert die Erde um ihre eigene Y-Achse.
- Erde und Sonne sind eckig ;-)

Koordinatensystem der Sonne == Weltkoordinatensystem

Szenengraph des Miniatursonnensystems

- Sonne und Erde rotieren mit gleicher Winkelgeschwindigkeit um die Y-Achse der Sonne
- Aber nur die Sonne pumpt sich auf und fällt zusammen

Szenengraph des Miniatursonnensystem

Erde rotiert zusätzlich um ihre eigne Y-Achse

Prinzipielle Codierung des Szenengraphs

```
//Gruppenknoten zeigen an, wann die akkumulierte Matrix auf
 //dem Stack gesichert werden muss.
 glLoadIdentity();
 glRotatef(fRotSonne, 0., 1., 0.);
 glPushMatrix(); //Matrix wird auf den Stack gesichert
    glScalef(fX, fY, fZ); // hier wird gepumpt
    Wuerfel (0.5);
 glPopMatrix(); //Matrix wird wieder aktiviert
 glPushMatrix();
    glTranslatef( 0.5, 0., 0.);
    glRotatef( fRotErde, 0., 1., 0.);
    Wuerfel ( 0.2);
 glPopMatrix();
               Rotation um die Y-Achse der Sonne
Skalierung
                           Translation
(Pumpen)
                         Rotation um die Y-Achse der Erde
     Sonne
```

```
void Animate ()
  static float fRotSonne = 0., fRotErde=0;
  static float fX=1, fY=1, fZ=1;
  glLoadIdentity();
  glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
  // Puffer loeschen
  glRotatef(fRotSonne+= 5., 0., 1., 0.);
  glPushMatrix(); //Matrix wird auf den Stack gesichert
  if(fX == 1) { fX=1.12; fY=1.12; fZ=1.12; }
  else {fX=1; fY=1; fZ=1;}
  glScalef(fX, fY, fZ);
  Wuerfel (0.5);
  glPopMatrix(); //Matrix wird wieder aktiviert
  glTranslatef( 0.5, 0., 0.);
  glRotatef( fRotErde+= 25., 0., 1., 0.);
  Wuerfel (0.2);
  glFlush();
  Sleep (200);
```

Wiederholung: Szenengraph, Push- und Pop-Matrix am Beispiel des Roboterarms:

Ausgehend von unserem Würfel, soll dieser Roboterarm erstellt werden:

Konstruktionsprinzip des Roboterarms

Szenengraph des Roboterarms

Erzeugung graphischer Objekte

- Virtuelle Kamera
 - Innere und äußere Kameraparameter
 - Projektion der 3D Szene in den 2D Raum

Der Betrachter als Kameramodell "Perspektivische Projektion"

Der Betrachter als Kameramodell

Was passiert, wenn man die Position der Kamera verändert?

Der Betrachter als Kameramodell

Projektionsmöglichkeiten

Perspektivische Projektion

- "Natürliche Darstellung"
- Am meisten verwendete Projektionsart
- Sehstrahlen treffen sich in einem Fluchtpunkt

"Berechnung" der perspektivischen Projektion

Projektionsverfahren

Setzen des Volumenraums und Berechnung der Projektionsmatrix geschieht durch:

Parallel Projektion (orthographische Projektion):

```
glOrtho(GLdouble left, GLdouble right,
  GLdouble bottom, GLdouble top,
  GLdouble near, GLdouble far);
```


Projektionsverfahren

Setzen des Volumenraums und Berechnung der Projektionsmatrix geschieht durch:

Perspektivische Projektion:

Der sich bewegende Betrachter

- Es gibt keinen expliziten Unterschied zwischen Kamera und Betrachter.
- Es bleibt dem Programmierer überlassen, ob der Betrachter sich um das Objekt bewegt oder ob sich das Objekt um den Betrachter bewegt. (Auswahl : Anwendungsbedingt)
- D.h. die Betrachtertransformation wird auch zu den Transformationen hinzugezählt.

Simulation des bewegten Betrachters in OpenGL

- OpenGL: Rechtshändiges Koordinatensystem
- Standardmäßig guckt die Kamera von Nullpunkt entlang der negativen Z-Achse.
- Um die Betrachterposition zu ändern, gibt es den folgenden GLUT-Befehl:

- gluLookAt setzt die äußeren Kameraparameter
- Transformationen des Betrachters werden in der Matrix GL_MODELVIEW gespeichert

Graphische Objekte und ihre Erzeugung

Koordinatensysteme der geometrischen Daten:

- Kartesisches Koordinatensystem
- Polarkoordinatensystem
- Zylinderkoordinatensystem
- Kugelkoordinatensystem

Polygonale Darstellung:

- Polygone (mehr als 3 Kanten) müssen eben sein.
- 4 Punkte können bereits eine unebene Fläche bilden.

Alle Formen der darzustellenden Objekte werden durch Dreieckgitter angenähert!

Problembeschreibung am Beispiel der Modellierung einer runden Tischplatte:

Form des Tischplatte wird angenähert durch 4, 8, ... usw. Dreiecke

Besser: Kreise nicht durch einzelne Dreiecke definieren sondern durch eine Funktion beschreiben

Definition der x- und y-Werte eines Kreis durch Funktionen:

$$x_p = R * cos(\alpha)$$

 $y_p = R * sin(\alpha) mit (0 <= \alpha <= 2\pi)$

Annahme: Mittelpunkt des Kreises liegt im Ursprung

Fazit:

- Zur eindeutige Beschreibung der Kreisform genügt die Angabe des Radius (wenn der Mittelpunkt im Ursprung liegt)
- Mit der Angabe eines Winkelintervalls kann man nicht nur einen Kreis sondern auch einen Halbkreis, Viertelkreis und bei variablem Radius noch viele weitere zweidimensionale Geometrien definieren.

☐ Polarkoordinatensystem

Kartesisches Koordinatensystem

Polarkoordinatensystem

Beschreibung des Objektes erfolgt nicht in x- und y-Koordinaten sondern in r- (Radius) und α - Koordinaten (Winkel)

Kartesisches Koordinatensystem

Polarkoordinatensystem

Umrechnung vom Polarkoordinatensystem ins Kartesische Koordinatensystem

$$x = R * cos \alpha$$
 $y = R * sin \alpha$

Polarkoordinaten werden zur Beschreibung von Objekten verwendet, die durch die Drehung entlang einer Achse erzeugt werden können: Bsp. spiralförmige Objekte

Umrechnung vom Zylinderkoordinatensystem ins Kartesische Koord.

$$x = R * cos \Phi$$

$$y = R * \sin \Phi$$

$$z = z$$

Darstellung des Zylindermantels Zooim Zylinderkoordinatensystem

 OO_{\circ}

Motivation Kugelkoordinatensystem

Wieviele Parameter benötigt man um einen Punkt im Kugelkoordinatensystem eindeutig bestimmen zu können?

Vom kartesischen Koordinatensystem ins Kugelkoordinatensystem

Wie sieht die Kugeloberfläche im Kugelkoordinatensystem aus?

Umrechnung vom Kugelkoordinaten-system ins kartesische Koordinatensystem:

$$z = R * cos \Theta$$

Umrechnung vom Kugelkoordinatensystem ins kartesische Koordinatensystem:

 $z = R * cos \Theta$

Hilfsradius zur Bestimmung des Breitenkreises :

 $R' = R * \sin \Theta$

Umrechnung vom Kugelkoordinatensystem ins kartesische Koordinatensystem:

$$x = R' * cos \Phi$$

$$y = R' * sin \Phi$$

$$z = R * cos \Theta$$

Umrechnung vom Kugelkoordinatensystem ins kartesische Koordinatensystem:

$$x = R * \sin \Theta * \cos \Phi$$

$$y = R * \sin \Theta * \sin \Phi$$

$$z = R * cos \Theta$$

Zylin derk oordi nate nsyst em -Motiz en

Notizen zum Kugelkoordinatensystem