Chapitre 6 : Oscillateurs amortis

RESUME

CE QUE JE DOIS SAVOIR

Notions et contenus	Capacités exigibles
Circuit <i>RLC</i> série et oscillateur mécanique amorti par frot-	Analyser, sur des relevés expérimentaux, l'évolution de la
tement visqueux	forme de régimes transitoires en fonction des paramètres
	caractéristiques.
	Prévoir l'évolution du système à partir de considération
	énergétique.
	Écrire sous forme canonique l'équation différentielle afin
	d'identifier la pulsation propre et le facteur de qualité.
	Décrire la nature de la réponse en fonction de la valeur du
	facteur de qualité.
	Déterminer la réponse détailler dans le cas d'un régime libre
	ou d'un système soumis à un échelon de tension en recher-
	chant les racines du polynôme caractéristique.
	Déterminer un ordre de grandeur du régime transitoire se-
	lon la valeur du facteur de qualité.
Stockage et dissipation d'énergie	Réaliser un bilan énergétique.

Soit un système régit par un paramètre y(t). y peut être une tension, une intensité, une longueur...

1. Équation différentielle

$$\ddot{y} + \frac{\omega_0}{Q}\dot{y} + \omega_0^2 y = \omega_0^2 y_{eq}$$

avec y_{eq} la valeur de y å l'équilibre du système.

la pulsation propre ω_0 et le facteur de qualité Q sont à exprimer en fonction des caractéristiques du systèmes.

2. Solution complète

$$y_{tot} = y(t) + y_p$$

avec y(t) la solution de l'équation sans second membre et y_p une solution particulière, égale à la valeur de y_{tot} quand le système est à l'équilibre ou en régime permanent.

3. Équation différentielle sans second membre

$$\ddot{y} + \frac{\omega_0}{Q}\dot{y} + \omega_0^2 y = 0$$

avec y_{eq} la valeur de y å l'équilibre du système.

4. Équation caractéristique

$$r^2 + \frac{\omega_0}{Q}r + \omega_0^2 = 0$$

5. Solutions de l'équations sans second membre

Régime pseudo-périodique	$\Delta < 0 ext{ soit } Q > \frac{1}{2}$	$r_{1,2}=-rac{\omega_0}{2}\left(rac{1}{Q}\pm j\sqrt{4-rac{1}{Q^2}} ight)$	$y(t) = \exp(-t/\tau) \left[A \exp\left(j\frac{\sqrt{-\Delta}}{2}t\right) + B \exp\left(-j\frac{\sqrt{-\Delta}}{2}t\right) \right]$	$ au=rac{2Q}{\omega_0}$	$y(t) = \exp(-t/\tau) \left[A' \cos(\Omega t) + B' \sin(\Omega t) \right]$	$\Omega = \omega_0 \sqrt{1 - rac{1}{4Q^2}}$	$E = \begin{bmatrix} 2E \\ - V \end{bmatrix}$ $E = \begin{bmatrix} -V \\ -V \end{bmatrix}$	
Régime critique	$\Delta = 0 \text{ soit } Q = \frac{1}{2}$	$r_0 = -rac{\omega_0}{2Q}$	$y(t) = (A + Bt) \exp(r_0 t)$	$\tau_c = \frac{-1}{r_0} = \frac{2Q}{\omega_0}$			$u_{C}(t)$ $i(t)$ E 0	
Régime apériodique	$\Delta > 0$ soit $Q < \frac{1}{2}$	$r_{1,2}=-rac{\omega_0}{2}\left(rac{1}{Q}\pm\sqrt{rac{1}{Q^2}-4} ight)$	$y(t) = A\exp(r_1t) + B\exp(r_2t)$	$ au_A = -\frac{1}{r_1} \text{ ou } -\frac{1}{r_2}$	$y(t) = \exp(-t/\tau) \left[A' \cosh(\Omega t) + B' \sinh(\Omega t) \right]$	$\Omega = \omega_0 \sqrt{rac{1}{4Q^2} - 1}$	$u_C(t)$ $i(t)$ E 0	

$6. \ {\bf Analogie \ \'electrique/m\'ecanique}$

Grandeurs électr	riques	Grandeurs mécaniques		
Charge condensateur	q	Déplacement de la masse	x	
intensité du courant	$i = \frac{dq}{dt}$	Vitesse de la masse	$v = \frac{dx}{dt}$	
Inductance propre	L	Masse	m	
Résistance du circuit	R	Coefficient de frottement	α	
Capacité du condensateur	C	inverse de la raideur du ressort	1/k	
Pulsation propre	$\omega_0 = \frac{1}{\sqrt{LC}}$	Pulsation propre	$\omega_0 = \sqrt{\frac{k}{m}}$	
Facteur de qualité	$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$	facteur de qualité	$Q = \frac{1}{\alpha} \sqrt{k m}$	
Facteur d'amortissement	$\lambda = \frac{R}{2L} = \frac{\omega_0}{2Q}$	Facteur d'amortissement	$\lambda = \frac{\alpha}{2 m} = \frac{\omega_0}{2 Q}$	
Energie magnétique	$\mathcal{E}_{mag} = \frac{1}{2}Li^2$	Energie cinétique	$\mathcal{E}_c = \frac{1}{2}mv^2$	
Energie électrostatique	$\mathcal{E}_{elec} = rac{1}{2} rac{q^2}{C}$	Energie potentielle élastique	$\mathcal{E}_{pe} = \frac{1}{2}kx^2$	
Pertes par effet Joule	$P_J = -Ri^2$	Pertes par frottements	$P_f = -\alpha v^2$	