Caculus II Math 1038 (1002&1003)

Monica CHEN

Week 7: Ch14 Partial differentiation

1. Limit

To check whether a limit

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

exist or not, if yes, find the limit, if not, prove the limit does not exsit (find two paths).

2. Continuity

Definition: f is continuous on D if f is continuous at every point (a, b) in D.

$$\lim_{(x,y)\to(a,b)} f(x,y) = L = f(a,b)$$

f(x,y) is **defined** at (a,b) and the limit **exsits** and **equals** to f(a,b).

- (a) Any rational function is **continuous** on its domain.
- (b) To prove a function f(x,y) is **continuous at a given point** (a,b)
 - i. IF $(a,b) \in D$ (the point is in the domain) and f(x,y) is a polynomial/rational/trig function and other simple functions, THEN f(x,y) is continuous at (a,b), and the value equals to f(a,b) (no jump!)
 - ii. If $(a, b) \notin D$ (not in the domain), then we have to check
 - A. whether the limit L exists
 - B. whether the limit equal to f(a,b)
- (c) To prove a function f(x,y) is **continuous on a given region** D, then it is equivalent to prove f is continuous at every the point $(x,y) \in D$.

3. Partial derivative

(a) **Definition**: partial derivative with respect to x at (a, b),

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

$$f_x(a,b) = \lim_{k \to 0} \frac{f(a,b+k) - f(a,b)}{k}$$

- (b) to find partial derivatives $f_x(x,y)$
 - i. use definition as a limit.
 - ii. treat the other variable y as a constant and differentiate it as a function of single variable: important rules: Product, Quotient and Chain Rule.
- (c) notations:

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = D_x f$$

if z = f(x, y), we can also use

$$\frac{\partial z}{\partial x}$$

(d) interpretation of $f_x(a, b)$: slope of the tangent lines at point (a, b, f(a, b)) to the traces C in the plane y = b.

(e) Clairaut's Theorem: f(x,y) is defined on a disk D that contains (a,b). If f_{xy} and f_{yx} are both continuous on D, then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

4. Differentiability

(a) Increment/difference of z: Δz

$$\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$$

(b) Definition: The function is **differentiable at** (a,b) if $f_x(a,b)$ and $f_y(a,b)$ exist and

$$\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

where ϵ_1 and $\epsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$.

- (c) If $f_x(a,b)$ and $f_y(a,b)$ exist and are **continuous** at (a,b), then f is differentiable, and if a function f is differentiable at (a,b), then it is continuous at (a,b).
- (d) Important relationships: $i \rightarrow ii \rightarrow iii \rightarrow iv$
 - i. $f_x(a,b)$ and $f_y(a,b)$ are **continuous**
 - ii. f is differentiable at (a, b)
 - iii. f is continuous at (a, b)
 - iv. $\lim_{(x,y)\to(a,b)} f(x,y) = L$ limit exist.

 $iv \not\rightarrow iii \not\rightarrow ii \not\rightarrow i.$

- (e) To prove f is differentiable
 - i. Use definition: difficulty
 - ii. To show $f_x(a,b)$ and $f_y(a,b)$ exist AND are **continuous** at (a,b), .
- (f) To prove f is NOT differentiable:
 - i. To show f is not continuous, or
 - ii. by definition: ϵ_1 and $\epsilon_2 \not\to 0$.
- 5. Tangent plane through a point $P(x_0, y_0, z_0)$
 - (a) two tangent directions: $\overrightarrow{u}_x = \langle 1, 0, f_x(x_0, y_0) \rangle$ and $\overrightarrow{u}_y = \langle 0, 1, f_y(x_0, y_0) \rangle$
 - (b) normal vector of tangent plane $\overrightarrow{n} = \overrightarrow{u}_x \times \overrightarrow{u}_y = \langle f_x, f_y, -1 \rangle$
 - (c) equation of a tangent plane to the surface z = f(x, y)

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

(d) equation of a normal line

$$(x, y, z) = (x_0, y_0, z_0) + t \langle f_x, f_y, -1 \rangle$$

6. Linear approximations

for f(x,y)

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

7. Differentials

total differential

$$dz = f_x(a,b)dx + f_y(a,b)dy$$

compare with the difference/increment $\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$, we have $dz \approx \Delta z$.

8. Chain rule

(a) Recall for y = f(x) and x = g(t)

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

x is a intermediate variable and t is the sole independent variable.

(b)
$$z = f(x(t), y(t))$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

with x and y are intermediate variables and t is the sole independent variable.

(c)
$$z = f(x(s,t), y(s,t))$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial x} \cdot \frac{dy}{dt}$$
$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial r} \cdot \frac{dx}{ds} + \frac{\partial z}{\partial r} \cdot \frac{dy}{ds}$$

- (d) change of coordinate $(x, y) \to (r, \theta)$, with $x = r \cos \theta$ and $y = r \sin \theta$
- (e) Implicit differentiation F(x,y) = 0, where y = f(x) but f is not in a explicit form, and we need to find dy/dx

Differentiate both side

$$\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0$$

then

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$$

(f) Implicit Differentiation Theorem for F(x,y,z)=0 where z=f(x,y) is not explicit, to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ we can use the formula

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$

- 9. Directional derivatives $D_{\overrightarrow{u}}f = \nabla f \cdot \overrightarrow{u}$
 - (a) Recall z = f(x, y), $f_x = D_x f$ represents the rates of change of z in the x-direction, in the directions of the unit vector $\overrightarrow{i} = \langle 1, 0 \rangle$, similarly, $f_y = D_y f$ represents the rates of change of z in the y-direction, in the directions of the unit vector $\overrightarrow{j} = \langle 0, 1 \rangle$. along direction $\overrightarrow{u} = \overrightarrow{i} = \langle 1, 0 \rangle$ parallel to x-axis where y is fixed to be a constant,

$$f_x = D_x = \langle f_x, f_y \rangle \cdot \langle 1, 0 \rangle = f_x$$

similarly, along direction $\overrightarrow{u} = \overrightarrow{j} = \langle 0, 1 \rangle$ parallel to y-axis where x is fixed to be a constant,

$$f_y = D_y = \langle f_x, f_y \rangle \cdot \langle 0, 1 \rangle = f_y$$

(b) Definition of directional derivative of f at (x_0, y_0) in the direction of a unit vector $\overrightarrow{u} = \langle a, b \rangle$

$$D_{\overrightarrow{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

or we can represent $\overrightarrow{u} = \langle \cos \theta, \sin \theta \rangle$.

(c) Theorem

$$D_{\overrightarrow{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b = \langle f_x(x,y), f_y(x,y) \rangle \cdot \langle a,b \rangle = \nabla f \cdot \overrightarrow{u}$$

or

$$D_{\overrightarrow{u}}f(x,y) = f_x(x,y)\cos\theta + f_y(x,y)\sin\theta = \langle f_x(x,y), f_y(x,y)\rangle \cdot \langle \cos\theta, \sin\theta \rangle$$

prove by **Chain Rule** via defining a new function g(h) = f(x + ha, y + hb) then g(h) = f(x, y) with $x = x_0 + ha$ and $y = y_0 + hb$, so $\frac{dx}{dh} = a$ and $\frac{dy}{dh} = b$.

$$g'(h) = \frac{dg}{dh} = \frac{\partial f}{\partial x} \frac{dx}{dh} + \frac{\partial f}{\partial y} \frac{dy}{dh} = \frac{\partial f}{\partial x} a + \frac{\partial f}{\partial y} b$$

- 10. Gradient vector ∇f
 - (a) Recall f(x), the slope/gradient is f'(x)

(b) The gradient of a function f(x,y), grad f, ∇f (read "del f"), which is a **vector** function

$$\nabla f = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x} \overrightarrow{i} + \frac{\partial f}{\partial y} \overrightarrow{j}$$

$$\nabla f = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle = \frac{\partial f}{\partial x} \overrightarrow{i} + \frac{\partial f}{\partial y} \overrightarrow{j} + \frac{\partial f}{\partial z} \overrightarrow{k}$$

(c) directional derivative

$$D_{\overrightarrow{u}}f(x,y) = \nabla f \cdot \overrightarrow{u}$$

a projection of the gradient vector onto \overrightarrow{u} , which gives the

- i. rate of change of a function z in a given direction \overrightarrow{u} .
- ii. gradient of function of three variables
- (d) maximizing $D_{\overrightarrow{n}}$

$$D_{\overrightarrow{u}}f(x,y) = \nabla f \cdot \overrightarrow{u} = |\nabla f| \cdot |\overrightarrow{u}| \cos \theta$$

it attains its maxima when $\theta = 0$ which means \overrightarrow{u} is in the same direction as the gradient of f. Since $|\overrightarrow{u}| = 1$ and $\cos \theta = 1$

$$\max D_{\overrightarrow{\mathcal{H}}} f(x,y) = |\nabla f|$$

direction of steepest ascent. When $\theta = \pi$, $\cos \theta = -1$, \overrightarrow{u} is the direction of greatest descent.

$$\min D_{\overrightarrow{u}}f(x,y) = -|\nabla f|$$

- (e) To find the maximum rate of change,
 - i. find the gradient vector $\nabla f = \langle f_x, f_y \rangle$
 - ii. compute its length $|\nabla f|$ and get the maximum rate and $-|\nabla f|$ is the minimum rate,
 - iii. the direction of the maximum and minimum rate of change is the normalized ∇f :

$$\overrightarrow{u} = \frac{\nabla f}{|\nabla f|}, \quad \text{and} \quad \overrightarrow{u} = -\frac{\nabla f}{|\nabla f|}$$

- (f) other conclusions
 - i. $D_{\overrightarrow{d}} = 0$, when $\theta = \pi/2 \cos \theta = 0$, \overrightarrow{d} is perpendicular to ∇f (tangent to the level curves).
 - ii. The paths of steepest ascent/descent is a curve that remains **perpendicular to each level curves** through which it passes.
- (g) Theorem: tangent to the level curve of f at (a,b) is orthogonal to the gradient $\nabla f(a,b)$ given $\nabla f(a,b) = 0$. at level curves f(x,y) = k, so $f_x + f_y y'(x) = 0$ and $y' = -f_x/f_y$, so

tangent direction

$$\overrightarrow{t} = \langle 1, y' \rangle = \langle 1, -f_x/f_y \rangle$$

gradient vector:

$$\nabla f(a,b) = \langle f_x(a,b), f_y(a,b) \rangle$$

therefore

$$\overrightarrow{t} \cdot \nabla f(a, b) = 0$$

(h) Equation of the tangent line for f(x, y) = z

$$\nabla f(a,b) \cdot \langle x - a, y - b \rangle = 0$$

or

$$f_x(a,b)(x-a) + f_y(a,b)(y-b) = 0$$

(i) Theorem: the gradient of function f(x, y, z) is normal to the tangent plane to the **level surface** f(x, y, z) = k at the point (a, b, c). The equation of the tangent plane

$$f_x(a,b,c)(x-a) + f_y(a,b,c)(y-b) + f_z(a,b,c)(z-c) = 0$$

11. Extreme values

- (a) local maximum/minimum values
- (b) absolute maximum/minimum values
- (c) saddle point is a critical point which is a local max in one direction and local min in another direction
- (d) critical (stationary) point (a, b)

$$f_x(a,b) = f_y(a,b)$$

- (e) Discriminant: $D = f_{xx}f_{yy} f_{xy}^2$
- (f) Second Derivatives Test for critical points
 - i. $f_{xx} > 0$, D > 0, local min
 - ii. $f_{xx} < 0, D > 0$, local max
 - iii. D < 0, saddle point
- (g) Extreme value theorem: if f(x,y) is continuous on the closed and bounded region $R \subset \mathbb{R}^2$, then f has absolute max and min on R.
- (h) To find absolute max and min:
 - i. find all the critical points
 - ii. find all the boundary points
 - iii. compare the values at these points to get the greatest and least values to the absolute max and mean.

12. Optimization problems with two independent variables

- (a) objective function f(x,y) to maximize or to minimize
- (b) constaints g(x,y) = 0
- (c) Lagrange multiplier λ

$$\nabla f(a,b) = \lambda \nabla g(a,b)$$

or for three variables

$$\nabla f(a, b, c) = \lambda \nabla g(a, b, c)$$

(d) double constraints g(x, y, z) = 0 and h(x, y, z) = 0

$$\nabla f(a, b, c) = \lambda \nabla g(a, b, c) + \mu \nabla h(a, b, c)$$

(e) Our goal is to find the point (a, b, c) where extreme value locates and then compute f(a, b, c).