Wyklad10, złożoność obliczeniowa algorytmów

Rafał Grot

January 13, 2023

Contents

1	DLI	L TSP		1	
2	Zło	Złożoność obliczeniowa algorytmów			
	2.1	Złożon	ność pamięciowa	2	
	2.2	Złożon	ność czasowa	2	
	2.3	Typow	ve funkcjie złożoności obliczeniowej	2	
		2.3.1	Funkcja Stała	2	
		2.3.2	Funkcja liniowa	2	
		2.3.3	Funkcja kwadratowa	3	
		2.3.4	Funkcja wielomianowa	3	
		2.3.5	Funkcja wykłatnicza	3	
		2.3.6	Funkcja silnia wykładnicza	3	
3	Klasy			3	
	3.1	•	,	3	
	3.2			3	

1 DLL TSP

Nazwisko_Imie_GRXXX.dll

 ${\bf Tabelka\ eksportu\ Find Road}.$

A nie:

- \bullet _FindRoad
- _FindRoad@12

• FindRoad@12

Przed deklracją funkcji exportowej extern "C" void __stdcall FindRoad...

• w zależności od kompilatora __stdcall trzeba wywalić.

tdumb -ee nazwa.dll

2 Złożoność obliczeniowa algorytmów

2.1 Złożoność pamięciowa

2.2 Złożoność czasowa

Jak szybko rośnie zapotrzebowanie algorytmu wraz ze wzrostem rozmiaru zadania.

N – rozmiar zadania algortymicznego.

f(N) – funkcja złożoności obliczeniowej.

2.3 Typowe funkcjie złożoności obliczeniowej

2.3.1 Funkcja Stała

$$F(N) = A, A = const$$

 $O(1)$

1. O(1)

$$O(1) = O(1) + O(1) + \dots + O(1)$$

 $O(1) = A + O(1)$

2.3.2 Funkcja liniowa

$$F(N) = A \cdot N + B, A, B = const$$

 $\alpha = \operatorname{tg} A$

1. O(N)

$$O(N) = A \cdot O(N)$$

$$O(N) = O(N) + O(N) + \cdots + O(N)$$

$$O(N) = O(1) \cdot O(N)$$

$$O(N) = N \cdot O(1)$$

2.3.3 Funkcja kwadratowa

$$F(N) = A \cdot N^2 + B \cdot N + C$$

$$1. \ O(N^2)$$

$$O(N^2) = A \cdot O(N^2)$$

$$O(N^2) = O(N^2) + O(N^2) + \dots + O(N^2)$$

$$O(N^2) = O(N^2) + O(N)$$

$$O(N^2) = O(N^2) + O(1)$$

$$O(N^2) = N \cdot O(N)$$

$$O(N^2) = O(1) \cdot O(N^2)$$

2.3.4 Funkcja wielomianowa

$$F(N) = A \cdot N^B + \dots + X, A, B, \dots, X = const$$

 $O(N^2) = O(N) \cdot O(N)$

2.3.5 Funkcja wykłatnicza

$$F(N) = A^N + B^{B_1} + \dots + X$$

2.3.6 Funkcja silnia wykładnicza

$$f(N) = N!$$

3 Klasy

3.1 *P*, *NP*

Zadania klasy P, są to zadania które są rozwiązywalne przez algorytm w czasie wielomina
owym, przez deterministyczną maszynę Turinga.

3.2 *NP*

Są to zadnia dla których instnieją algorytmy które dają przybliżone rozwiązanie w czasie wielomianowym na niedetermistycznej maszynie Turinga.