Robust Augmented Reality using RGB-D SLAM

Ву

ZE ZHANG

Department of Engineering Mathematics University of Bristol

31 March 2017

1 Aims and Objectives

1.1 Aims

This project will study how to develop a robust Augmented Reality (AR) system based on RGB-D SLAM system. This AR system will use the accurate 3D model which is generated by SLAM system, so it is more robust and accurate than most other AR system.

1.2 Objectives

- Study RGB-D SLAM system.
- Connect new RGB-D sensor with SLAM system.
- Using SLAM system to contrast 3D model.
- Using AR software to create virtual character.
- Apply AR system in google map if time permits.

2 Motivation

AR and VR are two hot concept today, prevalent people also know them as VR film and AR game. I know AR because of the famous mobile game pokemon go which is showed in figure 1a. Then I find another AR app called SekaiCamera which is developed by Japanese company Tonchidot in figure 1b. It can add comments on object which is captured by your phone camera. I think AR is more useful than VR because it adds information on real scene instead of create a new scene. However, pokemon go and SekaiCamera are simple AR systems which only use 2D image and GPS. I want to develop a more robust AR system based on accurate 3D model which is provided by RGB-D SLAM system.

(a) pokemon go

(b) SekaiCamera

Figure 1: AR system

3 Risk register

Table 1: Risks

	Risks	Mitigation	Likelihood	Impact	Score
1	Can not understand RGB-	Ask research assistant	1	3	3
	D SLAM system	immediately when some			
		code is difficult to un-			
		$\operatorname{derstand}$			
2	Late arrive of RGB-D sen-	Ask supervisor to buy	1	2	2
	sor	RGB-D sensor early,			
		prepare some other			
		work to do			
3	Failure to connect RGB-D	Work together with my	2	4	8
	sensor with SLAM system	college who also use this			
		RGB-D sensor and keep			
		in touch with research			
		assistant			
4	Can not find problem when	Make small objects and	2	4	8
	debugging the program, af-	debug AR system after			
	ter all programming	program every part of			
		the code			
5	Break the RGB-D sensor	Calibrate the RGB-D	1	4	4
		sensor strictly as the			
		specification. Be careful			
		with RGB-D sensor and			
		keep it safe after exper-			
		iment			
6	Do not have enough time	Complete tasks as the	1	4	4
	to explore the application	time line strictly, give			
	of AR system	feedback to supervisor			
		after every task			

4 Timeline

Figure 2: Timeline