emma 3.0	If $\lambda_1,,\lambda_K$ are distinct eigenvalues of alinear map $\alpha: V \rightarrow V$ and $V_1,,V_K$ are
	corresponding eigenvectors, then the set {v,, vk} is linearly independent
orcollavy	35 if V is a finite dimensional, and a:v→V is a linear operator, it has at most dim(v) different eigenvalues
thm 3.8	Sundamental thm of algebra
	Sov a polynomial $p(x)$ with wefficients in C of degree n , $p(x)$ can be factored into factor $p(x) = c(x-z_1)(x-z_n)$
	where c, z,, zn are complex numbers
	for a polynomial q(x) of degree n with coefficients in IR, q(x) has at most n zeros,
	not necessarily in R. If z is a root of q(x), then so is the complex conjugate \(\mathbb{Z} \).
ihm 3.9	Let V be a finite-dimensional complex vector space and let d: V→V be a linear map. Then a has an eigenvalue
lemma 3	.11 For a finite dimensional vector space V with basis v, ,, vn and a linear map a:v->v
	the following are equivalent
	(a) the matrix is upper triangular
	(b) for each; , a(vj) e span (v,,,vj)
	(c) for each j, the space span (v,,, v) is irrnariant under a
lemma :	bilal let V be a finite dimensional complex vector space and let a: V -> V be a linear map.
	Then, there is a basis v,,, vn of V with respect to which the matrix of a is
	upper triangular

																to a	0 (1)	
	V	1,"",	Vn, t	nen a	is iv	iver fil	ole i	f &	only	if o	UI tv	le d	iagon	al eu	nties			