21-127 Homework 5

Christian Broms Section J

Thursday 22nd February, 2018

Complete the following problems. Fully justify each response.

1. Let X, Y, Z be sets, with $X, Y \subseteq Z$. Prove that

$$[(Z\backslash X)\cap (Z\backslash Y)]\cup (X\backslash Y)=Z\backslash Y.$$

Proof. (\subseteq) If we let $z \in [(Z \setminus X) \cap (Z \setminus Y)] \cup (X \setminus Y)$ then $z \in [(Z \setminus X) \cap (Z \setminus Y)]$ or $z \in (X \setminus Y)$ Then, $(z \in Z \text{ and } z \notin X \text{ and } z \notin Y)$ or $(z \in X \text{ and } z \notin Y)$. In the second part, when $(z \in X \text{ and } z \notin Y)$, since $X \subseteq Z$, and $z \in X$, we know that $z \in Z$. In the first part, when $(z \in Z \text{ and } z \notin X \text{ and } z \notin Y)$, we know $z \in Z$ and $z \notin Y$. Hence, we know that $z \in Z$ and $z \notin Y$ in both cases. Therefore, $z \in Z \setminus Y$ by definition, since $z \in Z$ and $z \notin Y$. Thus, we conclude, $[(Z \setminus X) \cap (Z \setminus Y)] \cup (X \setminus Y) \subseteq Z \setminus Y$

(⊇) If we let $z \in Z \setminus Y$, then $z \in Z$ and $z \notin Y$. Since $X \subseteq Z$, and $z \in Z$, then $z \in X$ or $z \notin X$. In the first case, when $z \in X$, we can say $z \in X \setminus Y$, because $z \in X$ and $z \notin Y$ In the second case, when $z \notin X$, and we know $z \notin Y$, we can say $z \notin X \cup Y$. Since $z \in Z$, then $z \in Z \setminus (X \cup Y)$. So, combining the two cases, we have $z \in Z \setminus (X \cup Y)$ or $z \in X \setminus Y$, so $z \in [Z \setminus (X \cup Y)] \cup (X \setminus Y)$. By DeMorgan's laws, we can expand this to $z \in [(Z \setminus X) \cap (Z \setminus Y)] \cup (X \setminus Y)$. We have shown that $(Z \setminus Y) \subseteq [(Z \setminus X) \cap (Z \setminus Y)] \cup (X \setminus Y)$.

Since we have shown two sides of containment, we can conclude that $[(Z\backslash X)\cap (Z\backslash Y)]\cup (X\backslash Y)=Z\backslash Y.$

2. Let X be a set. Prove that $X \times \emptyset = \emptyset$.

Proof. By definition, the Cartesian Product is defined as $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$. Thus, when we consider $Y = \emptyset$, it is impossible to create an ordered pair (x,y) with $x \in X, y \in Y$, because by definition of the empty set, there are no elements in Y. Thus, we cannot create such an ordered pair and $X \times \emptyset = \emptyset$.

3. Let X, Y, Z be sets. Is it true that $X \times (Y \times Z) = (X \times Y) \times Z$? Explain your answer with a proof or a counterexample.

False. Consider the following counterexample: Let $X = \{1\}, Y = \{2\}, Z = \{3\}$. We calculate $X \times (Y \times Z)$ as $X \times \{(2,3)\} = \{(1,(2,3))\}$. Now, calculating $(X \times Y) \times Z$ as $\{(1,2)\} \times Z = \{(3,(1,2))\}$. Thus, $\{(1,(2,3))\} \neq \{(3,(1,2))\}$ and therefore $X \times (Y \times Z) \neq (X \times Y) \times Z$.

- 4. For each of the following subsets G of $X \times Y$, determine if the subset represents the graph of a function from $X \to Y$. If so, specify the function.
 - (a) $X = \mathbb{R}$, $Y = \mathbb{R}$, $G = \{(x, x + 1) \mid x \in \mathbb{R}\}$. Yes, $f: X \to Y$, defined by f(x) = x + 1
 - (b) $X = \mathbb{R}, y = \mathbb{R}, G = \{(x^2, x) \mid x \in \mathbb{R}\}.$ No. $f: X \to Y$, defined by $f(x) = \sqrt{x}$ violates the condition of existence. Changing to domain to be only positive reals would fix.
 - (c) $X = \mathbb{R}^+, y = \mathbb{R}^+, G = \{(x^2, x) \mid x \in \mathbb{R}^+\}.$ Yes, $f: X \to Y$, defined by $f(x) = \sqrt{x}$
 - (d) $X = \mathbb{Q}$, $y = \mathbb{Q}$, $G = \{(x, y \mid x, y \in \mathbb{Q} \text{ and } xy = 1\}$. No. $f: X \to Y$, defined by $f(x) = \frac{1}{x}$ is undefined when x = 0. You could remove 0 from the domain to fix this issue.
- 5. Which of the following function specifications are well-defined? If one is not well-defined, determine a modification to the specification that would rectify the issue.
 - (a) $g: \mathbb{Q} \to \mathbb{Q}$ defined by g(x)(x+1) = 2.

Does not exist at -1, and thus violates the condition of totality. We can fix by redefining:

$$g(x) = \begin{cases} \frac{2}{x+1} & x \neq -1\\ 2 & x = -1 \end{cases}$$

- (b) $f: \mathbb{Q} \to \mathbb{R}$ defined by $f(x)(x + \pi) = 1$. Well Defined.
- (c) $h: \mathbb{R} \to \mathbb{R}$ defined by $h(x) = \sqrt{x}$. No, violates the condition of existence. We can fix by redefining the domain: $h: \mathbb{R}^+ \to \mathbb{R}^+$
- (d) $\ell : \mathbb{C} \to \mathbb{C}$ defined by $\ell(x) = \sqrt{x}$. Well-defined.
- 6. Let $f, g, h, \ell : \mathbb{R} \to \mathbb{R}$ be functions with the following specifications:

$$f(x) = x + 2;$$
 $g(x) = x^2;$ $h(x) = \frac{1}{x^2 + 1};$ $\ell(x) = -x.$

Write a specification, via a single equation, for each of the following:

- (a) $f \circ g = x^2 + 2$.
- (b) $g \circ f = (x+2)^2$.
- (c) $f \circ (g \circ (h \circ \ell)) = (\frac{1}{-x^2+1})^2 + 2$.
- (d) $(f \circ g) \circ (h \circ \ell) = (\frac{1}{-x^2+1})^2 + 2$.