Find $\lim_{x\to a^+} f(x)$, $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a} f(x)$, if they exist.

1.

2.

3.

4.

5.

6.

7.

8.

Find $\lim_{x\to a^+} f(x)$, $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a} f(x)$, if they exist.

9.
$$f(x) = \begin{cases} 2x-1, & x < 0 \\ x^2 + 4x - 1, & x \ge 0 \end{cases}$$
, $a = 0$

10.
$$f(x) = \begin{cases} x^2 + 3, & x < -1 \\ 2x + 6, & x \ge -1 \end{cases}, a = -1$$

11.
$$f(x) = \begin{cases} x+2, & x < 2 \\ 2, & 2 \le x \le 6, \ a = 6 \\ 14-2x, & x > 6 \end{cases}$$

12.
$$f(x) = \begin{cases} x+2, & x < 2 \\ 2, & 2 \le x \le 6, \ a = 2 \\ 14-2x, & x > 6 \end{cases}$$

13.
$$f(x) = \begin{cases} x^2 - 3, & x < 0 \\ -3, & 0 \le x \le 4, \ a = 0 \\ 2x - 5, & x > 4 \end{cases}$$

14.
$$f(x) = \begin{cases} x^2 - 3, & x < 0 \\ -3, & 0 \le x \le 4, \ a = 4 \\ 2x - 5, & x > 4 \end{cases}$$

15.
$$f(x) = \begin{cases} x^2 + x + 3, & -4 \le x < -1 \\ 4 - x^2, & -1 \le x \le 3 \\ 2x^2 - 5x + 1, & x > 3 \end{cases}$$
, $a = -1$

16.
$$f(x) = \begin{cases} x^2 + x + 3, & -4 \le x < -1 \\ 4 - x^2, & -1 \le x \le 3 \\ 2x^2 - 5x + 1, & x > 3 \end{cases}$$
, $a = 3$

Use a graphing calculator to find $\lim_{x \to a^+} f(x)$, $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a} f(x)$, if they exist.

17.
$$f(x) = \begin{cases} e^x - 1, & x < 0 \\ x^2 + x - 1, & x \ge 0 \end{cases}$$
, $a = 0$

18.
$$f(x) = \begin{cases} 3x^2 + 5x - 2, & x < -1 \\ x^3 + 4x + 1, & x \ge -1 \end{cases}, a = -1$$

19.
$$f(x) = \begin{cases} -2x^2 - x + 6, & x < -2 \\ 2 - 3x - x^3, & x \ge -2 \end{cases}, a = -2$$

20.
$$f(x) = \begin{cases} 2^x + 2, & x < 2 \\ 2x^2 - 3x + 3, & x \ge 2 \end{cases}$$
, $a = 2$

21.
$$f(x) = \begin{cases} \sqrt{x+5}, & x < 4 \\ x^2 - 5x + 6, & x \ge 4 \end{cases}$$
, $a = 4$

22.
$$f(x) = \begin{cases} \sqrt{2x+5}, & x < 2 \\ \sqrt{20-x^2}, & x \ge 2 \end{cases}$$
, $a = 2$

23.
$$f(x) = \begin{cases} \sqrt{x^2 + 3x + 5}, & x < 1 \\ \sqrt{3^x + 1}, & x \ge 1 \end{cases}$$
, $a = 1$

24.
$$f(x) = \begin{cases} \sqrt{x^2 + 5x + 4}, & x < -1 \\ \sqrt{2^x + \frac{3}{2}}, & x \ge -1 \end{cases}$$
, $a = -1$

Use the graph of f(x) to determine if the statements in problems 25 - 32 are true or false.

25. $\lim_{x \to -3^+} f(x)$ does not exist

26.
$$\lim_{x \to -2^+} f(x) = -1$$

27.
$$\lim_{x \to 0^+} f(x) = -1$$

28.
$$\lim_{x \to 0^{-}} f(x) = 4$$

29.
$$\lim_{x \to 0} f(x) = 4$$

30. $\lim_{x \to 1^-} f(x)$ does not exist

31.
$$\lim_{x \to 1^+} f(x) = 1$$

$$32. \lim_{x\to\infty} f(x) = 3$$

For problems 33 – 44, find the indicated limit.

33.
$$\lim_{x\to 2^+} (3x+1)$$

34.
$$\lim_{x \to -1^{-}} (1 - 5x)$$

35.
$$\lim_{x \to 3^+} \left(\frac{x+2}{x-1} \right)$$

36.
$$\lim_{x \to -2^{-}} \left(\frac{2x+5}{x+4} \right)$$

37.
$$\lim_{x \to -4^+} \left(\frac{3x-1}{x+4} \right)$$

38.
$$\lim_{x \to \left(\frac{1}{2}\right)^{-}} \left(\frac{x+4}{2x-1}\right)$$

39.
$$\lim_{x \to 1^+} \left(\frac{x+3}{x^2 - 2x + 1} \right)$$

40.
$$\lim_{x \to -1^{-}} \left(\frac{x^2 - 9}{x^2 + 5x + 4} \right)$$

41.
$$\lim_{x\to 2^+} \sqrt{x-2}$$

42.
$$\lim_{x \to 4^{-}} \sqrt{4-x}$$

43.
$$\lim_{x \to -1^+} \left(\frac{\sqrt{x+1}}{x^2 + 5} \right)$$

44.
$$\lim_{x \to -4^+} \left(\frac{\sqrt{x+4}}{x^2 - 3} \right)$$