Análise Comparativa de Desempenho: TCP e UDP Sistemas Distribuídos – Prof. Taniro Chacon Universidade Federal do Rio Grande do Norte (UFRN)

Gilneide Fernanda, Marcos Vitor, José Victor e Vinicius Cauã 24 de Abril de 2025

1 Introdução

Este relatório apresenta uma análise comparativa entre os protocolos TCP (Transmission Control Protocol) e UDP (User Datagram Protocol), com foco em desempenho de transmissão. Foram analisadas taxas de transmissão para diferentes tamanhos de pacotes, com e sem a simulação de perda e atraso de pacotes utilizando a ferramenta Clumsy, configurada com 1000ms de atraso e 10% de perda.

2 Resultados sem Clumsy

2.1 Tabela Comparativa

Table 1: Taxa de transmissão (Mbps) na mesma máquina

Tamanho do Pacote	TCP (Mbps)	UDP (Mbps)
1 KB	0.75	0.71
10 KB	7.39	7.26
20 KB	14.79	14.00
30 KB	22.16	21.12
$40~\mathrm{KB}$	29.90	28.50
50 KB	37.02	35.67
60 KB	44.73	41.88

2.2 Análise

O **UDP** é geralmente mais rápido para pacotes menores porque não tem a sobrecarga do estabelecimento de conexão e controle de congestionamento do TCP. Os testes em condições ideais (sem perda ou atraso) revelam que:

• O TCP pode superar o UDP em pacotes maiores quando sua janela de congestionamento está otimizada e o controle de fluxo está funcionando eficientemente.

Figure 1: Gráfico comparativo das taxas de transmissão no localhost

• O TCP gerencia a taxa de transmissão de dados e garante a entrega confiável, o que pode resultar em melhor desempenho para transferências maiores, especialmente quando a rede é estável.

3 Resultados com Clumsy (1000ms de atraso, 10% de perda)

3.1 Tabela Comparativa com Simulação de Perda

Table 2: Taxa de transmissão (Mbps) com Clumsy

Tamanho do Pacote	TCP (Mbps)	UDP (Mbps)
1 KB	0.13	0.00
10 KB	0.19	0.03
20 KB	0.38	0.06
30 KB	0.56	0.10
$40~\mathrm{KB}$	0.74	0.14
50 KB	0.73	0.18
60 KB	1.10	0.23

3.2 Análise com Perda e Atraso

A simulação de rede degradada com Clumsy evidencia comportamentos distintos entre os protocolos:

• O TCP, mesmo com perda e atraso, tenta garantir a entrega dos pacotes. Sua taxa de transmissão é fortemente afetada para pacotes pequenos, mas mostra um crescimento progressivo com o aumento do tamanho dos pacotes.

Figure 2: Gráfico comparativo das taxas de transmissão com Clumsy

- O UDP, por não implementar controle de congestionamento nem retransmissão, apresenta taxas extremamente baixas em todos os tamanhos de pacotes, com impacto severo especialmente nos menores.
- A robustez do TCP o torna mais confiável em redes instáveis, ainda que com desempenho inferior ao ideal.
- O UDP, apesar de leve, é inadequado para ambientes com alta perda e atraso quando não há mecanismos adicionais de correção de erros implementados na camada da aplicação.

4 Conclusão

A escolha entre TCP e UDP deve considerar tanto as características da aplicação quanto o ambiente de rede esperado:

- Em redes estáveis, ambos os protocolos apresentam bom desempenho, com o TCP ligeiramente superior para pacotes maiores.
- Em redes com alta latência e perda, o TCP mantém uma taxa de transmissão significativamente melhor devido à sua confiabilidade embutida.
- O UDP é mais eficiente quando se busca latência mínima e tolerância a perdas, como em aplicações de tempo real.
- Já o TCP é mais adequado para transmissões que exigem integridade e confiabilidade, mesmo em redes adversas.