

Ultrafast Euclidean Shortest Path Computation using Hub Labeling AAAI 2023

Jinchun Du, Bojie Shen, Muhammad Aamir Cheema Monash University

Outline

- Problem definition
- Previous works
 - Polyanya
 - End Point Search (EPS)
- Euclidean Hub Labeling
 - Preprocessing
 - Query processing
 - Optimisations
- Results

Pathfinding

Problem Definition

• Euclidean plane:

- polygonal obstacles
 - a set of vertices
 - set of closed edges

Problem Definition

- Euclidean plane:
 - polygonal obstacles
 - a set of vertices
 - set of closed edges
- Euclidean Shortest Path Problem:
 - For a given pair of start s and target t, ESPP finds a shortest obstacles-avoiding path for an agent to travel from s to t.

Outline

- Problem definition
- Previous works
 - Polyanya
 - End Point Search (EPS)
- Euclidean Hub Labeling
 - Preprocessing
 - Query processing
 - Optimisations
- Results

 Runs on navigation mesh with a set of convex polygons

- Runs on navigation mesh with a set of convex polygons
- Run an A*-like search starting from s

- Runs on navigation mesh with a set of convex polygons
- Run an A*-like search starting from s
- Advantages and disadvantages?

- Runs on navigation mesh with a set of convex polygons
- Run an A*-like search starting from s
- Advantage: no preprocessing needed

- Runs on navigation mesh with a set of convex polygons
- Run an A*-like search starting from s
- Advantage: no preprocessing needed
- Disadvantage: query runtime increases as s and t are further apart

Distance oracle – CPD [3]

Previous work

End Point Search (EPS) [2]

- Distance oracle CPD [3]
- EPS query
 - Incremental exploration from s and t
 - Connects s and t to visible vertices V_s and V_t
 - For each u in V_s and v in V_t
 - CPD finds a path between u and v
 - Maintains the best distance

- Distance oracle CPD [3]
- EPS
- Advantages and disadvantages?

- Distance oracle CPD [3]
- EPS
- Advantage: 10x faster than Polyanya

- Distance oracle CPD [3]
- EPS
- Advantage: 10x faster than Polyanya
- Disadvantage:
 - requires finding vertices visible from s and t

- Distance oracle CPD [3]
- EPS
- Advantage: 10x faster than Polyanya
- Disadvantage:
 - requires finding vertices visible from s and t
 - Pairwise comparisons

Outline

- Problem definition
- Previous works
 - Polyanya
 - End Point Search (EPS)
- Euclidean Hub Labeling
 - Preprocessing
 - Query processing
 - Optimisations
- Results

 Popular technique used in road networks

Melbourne road network with highway M1 highlighted

- Popular technique used in road networks
- Some nodes in a graph are more important than others

Melbourne road network with highway M1 highlighted

- Popular technique used in road networks
- Some nodes in a graph are more important than others
- Computing distance labels from the important hub node to all other nodes in the graph

Melbourne road network with highway M1 highlighted

- Popular technique used in road networks
- Some nodes in a graph are more important than others
- Computing distance labels from the important hub node to all other nodes in the graph
- Efficient distance retrieval by merging the labels

Melbourne road network with highway M1 highlighted

 Computes and stores a set of hub labels for each vertex in a graph

Figure 1: Visibility graph for the example in Figure 2

Vertex	Hub labels
A	(A, 0)
В	(A, 1.6), (B, 0)
С	(A, 6.2), (B, 4.6), (C, 0)
D	(A, 4.1), (B, 2.5), (C, 2.7), (D, 0)
Е	(A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0)
F	(A, 2.2), (B, 3.7), (F, 0)
G	(A, 2), (B, 2.8), (F, 1.9), (G,0)

Table 1: Hub labeling for the graph in Figure 1

- Computes and stores a set of hub labels for each vertex in a graph
- Data structure: each hub label is tuple $(h_i, d_{ij}) \in H(v_j)$ with:
 - i) Hub vertex $h_i \in V$
 - ii) Shortest distance d_{ij}
 - iii) Predecessor

Figure 1: Visibility graph for the example in Figure 2

Vertex	Hub labels
A	(A, 0)
В	(A, 1.6), (B, 0)
C	(A, 6.2), (B, 4.6), (C, 0)
D	(A, 4.1), (B, 2.5), (C, 2.7), (D, 0)
Е	(A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0)
F	(A, 2.2), (B, 3.7), (F, 0)
G	(A, 2), (B, 2.8), (F, 1.9), (G,0)

Table 1: Hub labeling for the graph in Figure 1

- Computes and stores a set of hub labels for each vertex in a graph
- Data structure
- Coverage property: at least one common hub node on the shortest path for any two reachable vertices

Figure 1: Visibility graph for the example in Figure 2

Vertex	Hub labels
A	(A, 0)
В	(A, 1.6), (B, 0)
С	(A, 6.2), (B, 4.6), (C, 0)
D	(A, 4.1), (B, 2.5), (C, 2.7), (D, 0)
Е	(A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0)
F	(A, 2.2), (B, 3.7), (F, 0)
G	(A, 2), (B, 2.8), (F, 1.9), (G,0)

Table 1: Hub labeling for the graph in Figure 1

- Computes and stores a set of hub labels for each vertex in a graph
- Data structure
- Coverage property
- The shortest path between any $v_s \in V$ and $v_t \in V$ can be computed by merging the hub labels of v_s and v_t .

Figure 1: Visibility graph for the example in Figure 2

Vertex	Hub labels
A	(A, 0)
В	(A, 1.6), (B, 0)
C	(A, 6.2), (B, 4.6), (C, 0)
D	(A, 4.1), (B, 2.5), (C, 2.7), (D, 0)
Е	(A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0)
F	(A, 2.2), (B, 3.7), (F, 0)
G	(A, 2), (B, 2.8), (F, 1.9), (G,0)

Table 1: Hub labeling for the graph in Figure 1

- Computes and stores a set of hub labels for each vertex in a graph
- Data structure
- Coverage property
- The shortest path between any $v_s \in V$ and $v_t \in V$ can be computed by merging the hub labels of v_s and v_t .

Figure 1: Visibility graph for the example in Figure 2

Vertex	Hub labels
A	(A, 0)
В	(A, 1.6), (B, 0)
С	(A, 6.2), (B, 4.6), (C, 0)
D	(A, 4.1), (B, 2.5), (C, 2.7), (D, 0)
E	(A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0)
F	(A, 2.2), (B, 3.7), (F, 0)
G	(A, 2), (B, 2.8), (F, 1.9), (G,0)

Table 1: Hub labeling for the graph in Figure 1

- Computes and stores a set of hub labels for each vertex in a graph
- Data structure
- Coverage property
- The shortest path between any $v_s \in V$ and $v_t \in V$ can be computed by merging the hub labels of v_s and v_t .

Figure 1: Visibility graph for the example in Figure 2

Vertex	Hub labels
A	(A, 0)
В	(A, 1.6), (B, 0)
С	(A, 6.2), (B, 4.6), (C, 0)
D	(A, 4.1), (B, 2.5), (C, 2.7), (D, 0)
E	(A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0)
F	(A, 2.2), (B, 3.7), (F, 0)
G	(A, 2), (B, 2.8), (F, 1.9), (G,0)

Table 1: Hub labeling for the graph in Figure 1

Distance =
$$E(A, 5.1) + F(A, 2.2)$$

= 7.3

- Computes and stores a set of hub labels for each vertex in a graph
- Data structure
- Coverage property
- The shortest path between any $v_s \in V$ and $v_t \in V$ can be computed by merging the hub labels of v_s and v_t .

Figure 1: Visibility graph for the example in Figure 2

Vertex	Hub labels
A	(A, 0)
В	(A, 1.6), (B, 0)
C	(A, 6.2), (B, 4.6), (C, 0)
D	(A, 4.1), (B, 2.5), (C, 2.7), (D, 0)
E	(A, 5.1 (B, 3.5) (C, 2.9), (D, 1), (E, 0)
F	(A, 2.2 (B, 3.7) (F, 0)
G	(A, 2), (B, 2.8), (F, 1.9), (G,0)

Table 1: Hub labeling for the graph in Figure 1

Distance =
$$E(B, 3.5) + F(B, 3.7)$$

= 7.2

Construct a visibility
 graph on convex vertices
 in the map

- Construct a visibility graph on convex vertices in the map
- 2. Compute hub labels on top of the visibility graph

Figure 1: Visibility graph for the example in Figure 2

Vertex	Hub labels
A	(A, 0)
В	(A, 1.6), (B, 0)
С	(A, 6.2), (B, 4.6), (C, 0)
D	(A, 4.1), (B, 2.5), (C, 2.7), (D, 0)
Е	(A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0)
F	(A, 2.2), (B, 3.7), (F, 0)
G	(A, 2), (B, 2.8), (F, 1.9), (G,0)

Table 1: Hub labeling for the graph in Figure 1

- Construct a visibility
 graph on convex vertices
 in the map
- 2. Compute hub labels on top of the visibility graph
- 3. Superimpose a uniform grid covering the whole graph

- 1. Construct a visibility graph on convex vertices in the map
- 2. Compute hub labels on top of the visibility graph
- 3. Superimpose a uniform grid covering the whole graph
- 4. For each cell c, copy labels of vertices visible from it (via labels)

Vertex	Hub labels	
Α	(A, 0)	
В	(A, 1.6), (B, 0)	
С	(A, 6.2), (B, 4.6), (C, 0)	
D	(A, 4.1), (B, 2.5), (C, 2.7), (D, 0)	
Е	(A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0)	
F	(A, 2.2), (B, 3.7), (F, 0)	
G	(A, 2), (B, 2.8), (F, 1.9), (G,0)	

Hub nodes	Via labels
A	(A, 0), (B, 1.6), (G, 2), (F, 2.2)
В	(B, 0), (G, 2.8), (F, 3.7)
F	(F, 0), (G, 1.9)
G	(G, 0)

Table 2: Hub labels and via labels for the figure above 33

- Construct a visibility graph on convex vertices in the map
- 2. Compute hub labels on top of the visibility graph
- 3. Superimpose a uniform grid covering the whole graph
- 4. For each cell c, copy labels of vertices visible from it (via labels)

Vertex	Hub labels	
Α	(A, 0)	
В	(A, 1.6), (B, 0)	
С	(A, 6.2), (B, 4.6), (C, 0)	
D	(A, 4.1), (B, 2.5), (C, 2.7), (D, 0)	
Е	(A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0)	
F	(A, 2.2) (B, 3.7), (F, 0)	
G	(A, 2), (B, 2.8), (F, 1.9), (G,0)	

Hub nodes	Via labels
A	(A, 0), (B, 1.6), (G, 2), (F, 2.2)
В	(B, 0), (G, 2.8), (F, 3.7)
F	(F, 0), (G, 1.9)
G	(G, 0)

Table 2: Hub labels and via labels for the figure above

1. Check if *s* and *t* are visible to each other

- 1. Check if *s* and *t* are visible to each other
- 2. Locate the grid cells of *s* and *t*, retrieving all the labels within it

Euclidean Hub Labeling Query processing

- 1. Check if *s* and *t* are visible to each other
- 2. Locate the grid cells of *s* and *t*, retrieving all the labels within it
- 3. Scan the via labels when there is a common hub node found and calculate the distance

Euclidean Hub Labeling Query processing

- 1. Check if *s* and *t* are visible to each other
- 2. Locate the grid cells of *s* and *t*, retrieving all the labels within it
- 3. Scan the via labels when there is a common hub node found and calculate the distance
- 4. The minimum distance is the shortest path

Current minimum distance = infinity

$H(c_s)$	Via Labels $VL_{h_i}(c_s)$
A:	(A, 0), (F, 2.2), (G, 2)
B:	(F, 3.7), (G, 2.8)
F:	(F, 0), (G, 1.9)
G:	(G, 0)

$$\begin{array}{|c|c|c|c|}\hline H(c_t) & \text{Via Labels } VL_{h_i}(c_t)\\ \hline & \text{A:} & (\text{B, 1.6}), (\text{C, 6.2}), (\text{D, 4.1}), (\text{E, 5.1})\\ \hline & \text{B:} & (\text{B, 0}), (\text{C, 4.6}), (\text{D, 2.5}), (\text{E, 3.5})\\ \hline & \text{C:} & (\text{C, 0}), (\text{D, 2.7}), (\text{E, 2.9})\\ \hline & \text{D:} & (\text{D, 0}), (\text{E, 1})\\ \hline & \text{E:} & (\text{E, 0}) \\ \hline \end{array}$$

$$Dist(s,A) = 1 + 2$$

= 3

Dist
$$(t,A) = 5.5 + 1.6$$

= 7.1

Current minimum distance = 10.1

$H(c_s)$	Via Labels $VL_{h_i}(c_s)$
A:	(A, 0), (F, 2.2), (G, 2)
B:	(F, 3.7), (G, 2.8)
F:	(F, 0), (G, 1.9)
G:	(G, 0)

$$H(c_t)$$
 Via Labels $VL_{h_i}(c_t)$

 A:
 (B, 1.6), (C, 6.2), (D, 4.1), (E, 5.1)

 B:
 (B, 0), (C, 4.6), (D, 2.5), (E, 3.5)

 C:
 (C, 0), (D, 2.7), (E, 2.9)

 D:
 (D, 0), (E, 1)

 E:
 (E, 0)

$$Dist(s,A) = 1 + 2$$

= 3

Dist
$$(t,A) = 5.5 + 1.6$$

= 7.1

Current minimum distance = 10.1

$H(c_s)$	Via Labels $VL_{h_i}(c_s)$	
A:	(A, 0), (F, 2.2), (G, 2)	
B:	(F, 3.7), (G, 2.8)	
F:	(F, 0), (G, 1.9)	
G:	(G, 0)	

$H(c_t)$	Via Labels $VL_{h_i}(c_t)$
A:	(B, 1.6), (C, 6.2), (D, 4.1), (E, 5.1)
B:	(B, 0), (C, 4.6), (D, 2.5), (E, 3.5)
C:	(C, 0), (D, 2.7), (E, 2.9)
D:	(D, 0), (E, 1)
E:	(E, 0)

Dist(s,B) =
$$1 + 2.8$$

= 3.8

$$Dist(t,B) = 5.5$$

Current minimum distance = 9.3

$H(c_s)$	Via Labels $VL_{h_i}(c_s)$	
A:	(A, 0), (F, 2.2), (G, 2)	_
B:	(F, 3.7), (G, 2.8)	
F:	(F, 0), (G, 1.9)	
G:	(G, 0)	

$H(c_t)$	Via Labels $VL_{h_i}(c_t)$
A:	(B, 1.6), (C, 6.2), (D, 4.1), (E, 5.1)
B:	(B, 0), (C, 4.6), (D, 2.5), (E, 3.5)
C:	(C, 0), (D, 2.7), (E, 2.9)
D:	(D, 0), (E, 1)
E:	(E, 0)

Dist(s,B) =
$$1 + 2.8$$

= 3.8

$$Dist(t,B) = 5.5$$

Shortest distance = 9.3 Shortest path = s, G, B, t

Euclidean Hub Labeling Optimisations

- Non-taut region pruning
- 2. Non-taut labels pruning
- 3. Distance bound pruning
- 4. Dead-end labels pruning

Figure 3: Illustrating pruning rules

$H(c_s)$	Via Labels $VL_{h_i}(c_s)$	
A:	(A, 0), (F, 2.2), (G, 2)	
B:	(F, 3.7) , (G, 2.8)	
F:	(F, 0), (G, 1.9)	
G:	(G, 0)	

$H(c_t)$	Via Labels $VL_{h_i}(c_t)$
A:	(B, 1.6), (C, 6.2), (D, 4.1), (E, 5.1)
B:	(B, 0), (C, 4.6) , (D, 2.5) , (E, 3.5)
C:	(C, 0), (D, 2.7), (E, 2.9)
D:	(D, 0), (E, 1)
E:	(E, 0)

Table 3: Labels pruned by different pruning rules (PR) are shown in different colors. PR1: blue, PR2: orange, PR3: red, PR4: purple. The hub nodes with all labels pruned are struckthrough gray.

Outline

- Problem definition
- Previous works
 - Polyanya
 - End Point Search (EPS)
- Euclidean Hub Labeling
 - Preprocessing
 - Query processing
 - Optimisations
- Results

Results

Experimental setup

Benchmarks: widely used game map benchmarks[5]

"	#Maps	# Queries	#Vertices	#Convex Vertices
DAO	156	159,464	1727.6	926.5
DA	67	68,150	1182.9	610.8
BG	75	93,160	1294.4	667.7
SC	75	198,224	11487.5	5792.7

Table 4: Total number of maps and queries, and average number of vertices and convex vertices in each benchmark.

Results

Experimental setup

- Benchmarks [5]
- Grid sizes: a parameter of the superimposed grid sizes
 - EHL 1x
 - EHL 4x
 - EHL 16x
 - EHL 64x

EHL 1x

51

Results

Preprocessing costs

Approach	Build Time (Secs)	Memory (MB)
EHL (1x)	4.41	137
EHL (4x)	0.35	27.5
EHL (16x)	0.05	7.1
EHL (64x)	0.02	2.4
EPS-CPD	0.11	0.21
EPS-HL	0.05	0.78

Average cost (build time and memory) for DAO benchmark for EHL and EPS

The x-axis shows the percentile ranks of queries in number of node expansions needed by A* search to solve them.

Thank you for listening ©

References

[1] Michael Cui, Daniel Harabor, Alban Grastien, "Compromise-free Pathfinding on a Navigation Mesh." In IJCAI, 2017.

[2] Bojie Shen, Muhammad Aamir Cheema, Daniel D. Harabor, and Peter J. Stuckey. "Euclidean pathfinding with compressed path databases." In *IJCAI* 2021.

[3] Adi Botea. "Ultra-fast optimal pathfinding without runtime search. In AIIDE 2011.

[4] Ye Li, Leong Hou, Man Lung Yiu, and Ngai Meng Kou. "An experimental study on hub labeling based shortest path algorithms." *In PVLDB 2017*.

[5] Nathan Sturtevant. "Benchmarks for Grid-Based Pathfinding". In IEEE Transactions on Computational Intelligence and Al in Games, 4(2): 144–148 2012.