Dual Half/Full, Carry-Increment, and Conditional Sum Adders

James E. Stine Electrical and Computer Engineering Department Oklahoma State University Stillwater, OK 74078, USA

1. Dual Half Adders

- (a) A Dual Half Adder (DHA) generates the sum and carry bits for each position.
- (b) The logic equations for a DHA are

$$s_k^0 = a_k \oplus b_k$$

$$s_k^1 = \overline{a_k \oplus b_k} = \overline{s_k^0}$$

$$c_{k+1}^0 = a_k \cdot b_k$$

$$c_{k+1}^1 = a_k + b_k$$

(c) The delays for a DHA are

$$a_k, b_k \to s_k^0 = 3 \triangle$$

$$a_k, b_k \to s_k^1 = 4 \triangle$$

$$a_k, b_k \to c_{k+1}^0, c_{k+1}^1 = 1 \triangle$$

- 2. Dual Ripple Carry Adders (DRCA)
 - (a) A DRCA computes one set of sum and carry bits with a carry in of zero, and a second set with a carry in of one.
 - (b) A single r-bit DRCA can replace two r-bit RCAs, when constructing a Carry Select Adder
 - (c) The first bit of the DRCA uses a Dual Half Adder (DHA).
 - (d) A DHA uses 5 gates and has the following delays:

$$a_k, b_k \to s_k^0 = 3 \triangle$$

$$a_k, b_k \to s_k^1 = 4 \triangle$$

$$a_k, b_k \to c_{k+1}^0, c_{k+1}^1 = 1 \triangle$$

- (e) All of the other bits use dual full adders (DFA).
- (f) A DFA uses $2 \cdot 5 + 4 = 14$ gates and has the

following gate delays:

$$a_k, b_k \rightarrow s_k^0 = 7 \bigtriangleup$$

$$a_k, b_k \rightarrow s_k^1 = 6 \bigtriangleup$$

$$a_k, b_k \rightarrow c_{k+1}^0 = 5 \bigtriangleup$$

$$a_k, b_k \rightarrow c_{k+1}^1 = 6 \bigtriangleup$$

$$c_k^0 \rightarrow s_k^0 = 3 \bigtriangleup$$

$$c_k^1 \rightarrow s_k^1 = 3 \bigtriangleup$$

$$c_k^0 \rightarrow c_{k+1}^0 = 2 \bigtriangleup$$

$$c_k^1 \rightarrow c_{k+1}^1 = 2 \bigtriangleup$$

(g) An *n*-bit DRCA requires 1 DHA and (n-1) DFAs. That is, it requires $5 + (n-1) \cdot 14$ or $14 \cdot n - 9$ gates and has the following delays.

$$a_k, b_k \to s_{n-1}^0, s_{n-1}^1 = (2n+3) \triangle$$

 $a_k, b_k \to c_n^0, c_n^1 = (2n+2) \triangle$

[h!]

1

- 3. Carry Select Adders with DRCA
 - (a) The DRCA can obviously be integrated with the Carry Select Adder to reduce the overall area content.
- 4. Carry Increment Adder (CINA)
 - (a) The carry increment adder was refined by R. Zimmermann and basically formulated by A. Takagi titled, "A reduced-area scheme for carry-select adders" in 1993.
 - (b) The idea is an algorithmic enhancement of carry-select adders using the ideas from the Weinberger-Smith Carry-Lookahead Concept.
 - (c) The basic proof of enhanced equation requires adding a redundant term to the equation we formulated with the DHA. That is, it first requires using the following equation, which we will attempt to prove:

$$c^1_{k+1} \quad = \quad c^0_{k+1} + c^1_{k+1}$$

To prove this equation, we break part the equations from the DHA definitions.

$$\begin{array}{lll} c_{k+1}^1 & = & (g_k + p_k \cdot c_k^1) + (g_k + p_k \cdot c_k^0) \\ c_{k+1}^1 & = & g_k + g_k + p_k \cdot c_k^1 + p_k \cdot c_k^0 \\ c_{k+1}^1 & = & g_k + p_k \cdot c_k^1 + p_k \cdot c_k^0 \\ c_{k+1}^1 & = & g_k + p_k \cdot (a_{k-1} + b_{k-1} + a_{k-1} \cdot b_{k-1}) \\ c_{k+1}^1 & = & g_k + p_k \cdot (a_{k-1} \cdot b_{k-1}) = c_{k+1}^1 \end{array}$$

(d) This proof basically uses two elements of DHA, such that:

$$c_{k+1}^0 = a_k \cdot b_k$$

$$c_{k+1}^1 = a_k + b_k$$

(e) So, the CINA uses the above formulation in the idea that carry-out or c_{k+1} can be selected between two values inside a multiplexor or mux. That is, the following relationship holds:

$$c_{k+1} = \overline{c_{in}} \cdot c_{k+1}^0 + c_{in} \cdot c_{k+1}^1$$

(f) Using this carry-out equation and the new redundant-enhanced equation forms the following relationship:

$$c_{k+1} = \overline{c_{in}} \cdot c_{k+1}^{0} + c_{in} \cdot (c_{k+1}^{0} + c_{k+1}^{1})$$

$$c_{k+1} = c_{k+1}^{0} + c_{in} \cdot c_{k+1}^{0}$$

$$c_{k+1} = (g_{k} + p_{k} \cdot c_{k}^{0}) + c_{in} \cdot (g_{k} + p_{k} \cdot c_{k}^{1})$$

$$c_{k+1} = c_{k+1}^{0} + c_{in} \cdot p_{k} \cdot c_{k}^{1}$$

$$c_{k+1} = c_{k+1}^{0} + c_{in} \cdot p_{k:k-r}$$

- (g) The previous simplification is achieved due to the absorption theorem in Boolean logic, such that: $g_k + c_{in} \cdot g_k = g_k$.
- (h) The last item assumes the basic ideas of the carry-select adder in that a carry-in of 1 (i.e., c_k^1) produces the group-propagate signal. Therefore, the RCA that produces the correct sum is incremented based on the value of c_{k+1} .
- (i) Generalized CINA Gate Counts
 - i. The first block, similar the carry-select adder, is nothing more than a carrypropagate ader.
 - ii. Each subsequent r block uses a RCA to produce the correct sum as well as the bitwise propagate signals from a 9 gate FA.
 - iii. It uses $\lceil n/r \rceil 1$ sets of carry logic blocks, each of which carries 2 gates.

- iv. The second RCA is a RCA that is composed of HA blocks adding s_k^0 and c_{k+1} from the previous block. Since the RCA just needs a c_{in} , the number of gates is $4 \cdot (n-r)$.
- v. Thus, the total number of gates used by a n-bit CINA with r-bit blocks is:

$$= 9 \cdot n + 2 \cdot \left(\lceil \frac{n}{r} \rceil - 1 \right) + 4 \cdot (n - r)$$

$$= 9 \cdot n + 2 \cdot \lceil \frac{n}{r} \rceil - 2 + 4 \cdot n - 4 \cdot r$$

$$= 13 \cdot n + 2 \cdot \lceil \frac{n}{r} \rceil - 2 - 4 \cdot r$$

- (j) Generalized CINA Delay
 - i. The first block is a RCA and has a delay of $2 \cdot r + 3$
 - ii. The next $(\lceil n/r \rceil 1)$ blocks have a delay of $2\triangle$ for the carry to skip.
 - iii. The last block must go through the RCA incrementor, which is composed of HAs aligned like a RCA. The delay of this structure is

$$(r-1) \cdot 1 + 3 = (r+2) \triangle$$

iv. Thus, the total delay for s_{n-1} is:

$$= (2 \cdot r + 3) + 2 \cdot (\lceil \frac{n}{r} \rceil - 2) + (r + 2)$$
$$= 3 \cdot r + 2 \cdot \lceil \frac{n}{r} \rceil + 1$$

- 5. Conditional Sum Concept.
 - (a) The conditional sum adder (CSUA) generates a pair of sum and carry bits is generated at each bit position. One pair assumes carry in of one and the other assumes a carry in of zero.
 - (b) The correct sums and carries are then selected using a tree of multiplexors.
- 6. Example of Conditional Sum Addition
- 7. An 8-bit Conditional Sum Adder
 - (a) An 8-bit CSUA requires one row of DHAs and three levels of multiplexors.
 - (b) The first row has a delay of $5\triangle$ to produce the carry out of the full adder, and the next three rows each have a delay of $4\triangle$ for the muxes. Thus, the total delay for an 8-bit CSUA is $5+3\cdot 4=17\triangle$

-	1	-	C		4	2	0	1	0
stage	k	7	6	5	4	3	2	1	0
0	a_k	1	0	1	1	0	1	1	0
	b_k	0	0	1	0	1	1	0	1
1	s_k^0	1	0	0	1	1	0	1	1
	c_{k+1}^{0}	0	0	1	0	0	1	0	0
	s_k^1	0	1	1	0	0	1	0	
	c_{k+1}^1	1	0	1	1	1	1	1	
2	s_k^0	1	0	0	1	0	0	1	1
	$\begin{array}{c} s_{k}^{1} \\ c_{k+1}^{1} \\ s_{k}^{0} \\ c_{k+1}^{0} \end{array}$	0		1		1		0	
	s_k^1	1	1	1	0	0	1		
	c_{k+1}^1	0		1		1			
3	s_k^0	1	1	0	1	0	0	1	1
	$\begin{array}{c} s_{k}^{1} \\ c_{k+1}^{1} \\ \hline s_{k}^{0} \\ c_{k+1}^{0} \end{array}$	0				1			
	s_k^1	1	1	1	0				
	c_{k+1}^1	0							
4	s_k	1	1	1	0	0	0	1	1
	c_{k+1}	0							

(c) The first row requires 7 DHAs (5 gates each) and 1 FA (9 gates). The second row requires 7 mux21x2 (8 gates each). The third row requires 3 mux21x3 (12 gates). The fourth row requires 1 mux21x5 (20 gates). Thus, the total number of gates is

$$7 \cdot 5 + 9 + 7 \cdot 8 + 3 \cdot 12 + 20 = 156$$

- 8. Generalized CSUA Gate Count (assume n is a power of 2)
 - (a) An n-bit CSUA uses n-1 DHAs and 1 FA in the first level.
 - (b) After this, there are $\lceil \log_2(n) \rceil$ rows of muxes. If the mux rows are labeled with indices $i = 0, 1, \ldots, \lceil \log_2(n) \rceil 1$, then in row i number of muxes is $(\frac{n}{2^i} 1)$, the number of bits per mux is $2^i + 1$, and the number of gates per mux is $4(2^i + 1) = 4 \cdot 2^i + 4$.
 - (c) Thus the toal number of gates for an n-bit CSUA is

$$\begin{aligned} &5\cdot (n-1)+9+\\ &\sum_{i=0}^{\lceil log_2(n)\rceil-1}(\frac{n}{2^i}-1)(4\cdot 2^i+4)\\ &\approx &4\cdot n\cdot \log_2(n)+9\cdot n-4\cdot log_2(n) \end{aligned}$$

- 9. Generalized CSUA Delay
 - (a) The first row has a delay of 5 \triangle to produce the carry out of the full adder.
 - (b) Each mux row has a delay of $3 \triangle$ and there are $\lceil \log_2(n) \rceil$ rows of muxes.

- (c) Thus, the total delay is $(5+3 \cdot \lceil \log_2(n) \rceil) \triangle$.
- 10. Characteristics of CSUAs
 - (a) CSUAs require the largest number of gates. The have $O(n \cdot log_2(n))$ area, whereas, the other adders (beside the CLA) had O(n) area.
 - (b) Like the CLA, CSUAs have logarithmic delay. However, there delay is always base two, whereas, the delay for the CLA is base r, where r is the maximum number of inputs.
 - (c) For r = 2 CSUAs become faster than CLAs, as n gets large.
 - (d) CSUAs are highly irregular and difficult to layout. Consequently, they are seldom implemented in practice.
- 11. Hybrid Carry Select Adders (HCSEA)
 - (a) With a HCSEA, the first adder is a carry lookahead adder, and a carry lookahead generator is used to produce the carries.
 - (b) 16-bit HCSEA with 4 bit blocks has a worst case delay of $16\triangle$ and uses 310 gates.
 - (c) If DRCAs are used, the worst case delay is reduced to $15\triangle$ and only 254 gates are required.
- 12. Power Dissipation in Adders
 - (a) The main source of power dissipation in well designed CMOS circuits is due to low-to-high logic transitions in digital circuits.
 - (b) This power dissipation, sometimes called dynamic power dissipation, can be expressed as

$$P = V_{DD}^2 \cdot f_{clk} \cdot C_{eff} \cdot p_t$$

where V_{DD} is the source voltage, f_{clk} is the clock frequency, C_{eff} is the effective capacitance and p_t is the probability of a low-to-high logic transition.

- (c) Dynamic power dissipation can be reduced by reducing any of the above 4 factors more or less.
- (d) If all other factors are constant, then the probability of low-to-high logic transitions is a good measure of the total power.
- (e) The actual power consumption ranks and the output transitions ranks are fairly close. The main exceptions to this is the Carry

IAT_EX

- Lookahead Adder and the Majerski Ripple Adder. Both of these adders have gates with higher fan-in, which increases the capacitance.
- (f) There is still some significant research that needs to be done in this area.

References

[1] T. K. Callaway and E. E. Swartzlander, "Estimating the power consumption of cmos adders," in *Proceedings of IEEE 11th Symposium on Computer Arithmetic*, pp. 210–216, 1993.

EMEX 4/8

Table 1: 16-Bit Adder Area [1].

Adder Type	Area (mm ²)	rank	Gate Count	rank
Ripple Carry	0.26	2	144	2
Majerski Ripple Carry	0.23	1	122	1
Constant Carry Skip	0.33	3	156	3
Variable Carry Skip	0.49	4	170	4
Carry Lookahead	0.53	5	200	5
Brent and Kung	0.53	6	203	6
Hybrid Carry Select	0.88	7	284	7
Conditional Sum	1.14	8	368	8

Table 2: 16-Bit Adder Delay [1].

V []				
Adder Type	Delay (nsec)	rank	Gate Delay	rank
Ripple Carry	51.4	8	36	8
Majerski Ripple Carry	34.3	7	19	6
Constant Carry Skip	28.6	6	23	7
Variable Carry Skip	22.8	5	17	4
Carry Lookahead	22.5	4	10	1
Brent and Kung	22.1	3	18	5
Hybrid Carry Select	18.6	1	14	3
Conditional Sum	21.2	2	12	2

Figure 1: Dual Half Adder.

Figure 2: Dual Full Adder.

 \LaTeX 5/8

Figure 3: Dual Ripple Carry Adder.

Figure 4: 16-bit Carry Select Adder using DRCA.

Figure 5: 16-bit Carry Increment Adder with r=4.

Table 3: 16-Bit Adder Power [1].

Table 3. 10 Bit Hader 1 a wer [1].							
Adder Type	Power	rank	Gate Output	rank			
	(mWatt)		Transitions				
Ripple Carry	1.7	1	90	1			
Majerski Ripple Carry	2.7	4	91	2			
Constant Carry Skip	1.8	2	99	3			
Variable Carry Skip	2.2	3	108	5			
Carry Lookahead	2.7	5	100	4			
Brent and Kung	3.1	6	112	6			
Hybrid Carry Select	3.8	7	150	7			
Conditional Sum	5.4	8	231	8			

 \LaTeX 6/8

Figure 6: 16-bit Hybrid Carry Select Adder.

Ľ^ATEX 7/8

Figure 7: 8-bit Conditional Sum Adder.

 \LaTeX 8/8