Gradient search

We generalize the form of Gradient Descent

ullet we minimize a function F that depends on variables ${f v}$

$$\mathbf{v}^* = \operatorname*{argmin} F(\mathbf{v})$$

- ullet by iteratively updating ${f v}$
 - lacksquare creating a sequence of $\mathbf{v}_{(0)}, \mathbf{v}_{(1}, \dots$
- via the update equation
 - lacktriangledown moving in the *negative* direction of the gradient of F wrt ${f v}$
 - moderated by learning rate α

$$\mathbf{v}_{(t)} = \mathbf{v}_{(t-1)} - lpha * rac{\partial F}{\partial \mathbf{v}}$$

Our familiar Gradient Descent

- ullet identifies F with the Loss Function ${\cal L}$
 - lacksquare which is a function of weights f W
- $\bullet \;$ and searches for the optimal \mathbf{W}^*

We define a maximization version of the search

ullet we maximize a function F that depends on variables ${f v}$

$$\mathbf{v}^* = \operatorname*{argmax}_{\mathbf{v}} F(\mathbf{v})$$

- ullet by iteratively updating ${f v}$
 - lacktriangledown creating a sequence of $\mathbf{v}_{(0)},\mathbf{v}_{(1},\dots$
- via the update equation
 - lacktriangledown moving in the *positive* direction of the gradient of F wrt ${f v}$
 - lacktriangle moderated by learning rate lpha

$$\mathbf{v}_{(t)} = \mathbf{v}_{(t-1)} + lpha * rac{\partial F}{\partial \mathbf{v}}$$

Gradient Ascent: uses

Background

Note

This is addressed more specifically in the module on <u>Interretation</u> (<u>Interpretation of DL Simple.ipynb#Probing</u>)

There are many synthetic features created among the layers of a Neural Network.

How do we discern the purpose of a specific feature k at layer l: $\mathbf{y}_{(l),k}$?

	Interpreting neuron for feature k in layer l						
y (0)	y _(i)	$\mathbf{y}_{(i),k}$	y _(L)				
000	000		000				

But when layer l has $N \geq 1$ non-feature dimensions

- the selected feature is really a feature map
- with dimensions matching the non-feature dimensions of the layer input

$$(d_1 imes d_2 imes \ldots d_N)$$

So there are $\prod_{i=1}^N d_i$ values (one per location) in the feature map

- rather than a single scalar value
- as in the case of layer outputs with only a feature dimension

Convolutional layer: $\mathbf{y}_{(l)}$: selecting a feature map to probe

Layer w/non-feature dimensions: $\mathbf{y}_{(l)}$

Layer w/non-feature dimensions, one element selected: $\mathbf{y}_{(l),j}$

In such a case

- we reduce each feature map (with non-feature dimensions)
- to a scalar
- using a Pooling operation to eliminate the non-feature dimensions
 - for example: Global Max Pooling

Convolutional layer: $\mathbf{y}_{(l)}$: selecting a feature map to probe Global Pooling

Layer w/non-feature dimensions: $\mathbf{y}_{(l)}$

Layer w/non-feature dimensions, pooled, one element selected: $\mathbf{y}_{(l),j}$

For the remainder of this section

- ullet we assume $\mathbf{y}_{(l),k}$ is a single scalar
- obtained by removing the non-feature dimensions, as above

Use Case: Find the maximally activating input

One way to discern the purpose of feature $\mathbf{y}_{(l),k}$

- is to find the input $\mathbf{y}_{(0)}$
- ullet that maximizes the *activation* (value) of $\mathbf{y}_{(l),k}$

We use Gradient Ascent where

$$ullet$$
 $F=\mathbf{y}_{(l),k}$

•
$$\mathbf{v} = \mathbf{y}_{(0)}$$

to discover the input vector
$$\mathbf{y}_{(0)}^*$$
 that maximally activates $\mathbf{y}_{(l),k}$
$$\mathbf{y}_{(0)}^* = \operatorname*{argmax}_{\mathbf{y}_{(0)}} \left(\mathbf{y}_{(l),k} |_{\mathbf{y}_{(0)} = \mathbf{y}_{(0)}} \right)$$

Note

- $\mathbf{y}_{(0)}^*$ is **not necessarily** an input example $\mathbf{x} \in \mathbf{X}$, the training dataset
- it is an vector with the *shape* of an input

Visualizing what convnets learn, via Gradient Ascent

Let's illustrate Gradient Ascent to visualize what one feature map within a Convolutional Layer of an Image Classifier is "looking for"

- the feature map's non-feature dimensions have been removed
- by Average Pooling
 - replacing the collection of values across multiple locations
 - by a single value: the mean value over the multiple locations

<u>Visualizing what convnets learn (https://colab.research.google.com/github/kerasteam/k</u>

io/blob/master/examples/vision/ipynb/visualizing_what_convnets_learn.ipynb#)

A blog post from a <u>previous version (https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html)</u> of the code shows the patterns of multiple feature maps at multiple layers.

Interesting sub-case: maximizing a logit in the Classifier Head

When the Neural Network solves a Classification task

- ullet the head layer L is a Classifier Layer
- with number of features equal to the number of possible classes
- ullet output feature k is the *probability* (or pre-probability "logit")
 - lacksquare on input being in class k

So Gradient Ascent when

$$egin{array}{l} ullet F = \mathbf{y}_{(L),k} \ ullet \mathbf{v} = \mathbf{y}_{(0)} \end{array}$$

•
$$\mathbf{v} = \mathbf{y}_{(0)}$$

finds the input $\mathbf{y}_{(0)}^*$

 $\bullet \;$ that results in the most confident prediction that it is in class k

Gradient Ascent in Code

In code, it looks like this

- from <u>Keras docs (https://colab.research.google.com/github/keras-team/keras-io/blob/master/guides/ipynb/customizing what happens in fit.ipynb#scrollTo=9z4</u>
- one step of Gradient Descent (inputs are a mini-batch of examples)

```
with tf.GradientTape() as tape:
    y_pred = self(x, training=True) # Forward pass
    # Compute the loss value
    # (the loss function is configured in `compile()`)
    loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)
# Compute gradients
trainable_vars = self.trainable_variables
gradients = tape.gradient(loss, trainable_vars)
# Update weights
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
```

Key points

- Define a loss \mathcal{L}
 - the loss is dependent on the weights ("trainable variables") of the model
- Compute the loss within the scope of tf.GradientTape()
 - Enables TensorFlow to compute gradients of any variable accessed in the scope
 - Loss calculated via self.compiled_loss in this case
 - o but any calculation that you would chose to define
- Obtain the gradients of the loss with respect to the trainable variables
- Updates the trainable variables
 - self.optimizer.apply_gradients(zip(gradients, trainable_vars)) in this case
 - General case weight += learning rate * gradient
 - Subtract the gradient: we are descending (reducing loss)

Gradient Ascent is nearly identical

- Except that we update
 - a collection of variables
 - o not necesarilty the weights
 - o perhaps some other variable
 - in the *positive* direction of the gradients
- So as to maximize a function ("utility")
 - we will continue, in code, to use "loss" for the function/variable name

```
In code, it looks like this:
with tf.GradientTape() as tape:
    tape.watch(vars)
    loss = compute_loss(vars)

# Compute gradients.
gradients = tape.gradient(loss, vars)
vars += learning_rate * gradients
```

- vars is a list of variables
- loss is dependent on vars
- we compute the gradient of the loss with respect to vars
- we *add* the gradient wrt vars:
 - we are ascending (increasing loss: better to call it "utility")

```
In [2]: print("Done")
```

Done