memo de probabilités et de statistiques

Simon Queric

2022-2023

1 Tribu, π -système, λ -système

Une **tribu** \mathcal{F} sur un ensemble Ω est une famille de parties de Ω qui contient Ω , stable par passage au complémentaire et stable par union dénombrable.

Un π -système \mathcal{C} sur un ensemble Ω est un ensemble de parties de Ω non vide et stable par intersection finie.

Un λ -système Λ sur un ensemble Ω est un ensemble de parties de Ω stables par passage au complémentaire et par union dénombrable de suites d'éléments deux à deux disjoints de Λ .

Théorème de classe monotone Si $\mathcal{C} \subseteq \Lambda$ alors $\sigma(\mathcal{C}) \subseteq \Lambda$

2 Espérance, Variance, Covariance

Soit X une v.a à valeurs complexes. Quand elle existe on définie son espérance par $\mathbb{E}(X)=\int_{\Omega}X\mathrm{d}\mathbb{P}$

Théorème de transfert
$$\int_{\Omega} f \circ X d\mathbb{P} = \int_{X} f dP^{X}$$

 $Cov(X) = \mathbb{E}((X - \mathbb{E}(X))(X - \mathbb{E}(X))^H)$ (pour le cas où X est complexe/réelle il s'agit de la variance de X)

$$Cov(X, Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))^H)$$

$$\mathbb{E}(AX + b) = A\mathbb{E}(X) + b$$
, $Cov(AX + b) = ACov(X)A^H$

Inégalité de Markov $\mathbb{P}(|X|\geqslant a)\leqslant \frac{\mathbb{E}(|X|)}{a}$

Soit X, Y deux variables aléatoires réelles.

Inégalité de Cauchy-Schwartz $\mathbb{E}(|XY|)$ \leq

$$\mathbb{E}(X^2)^{1/2} \, \mathbb{E}(Y^2)^{1/2}$$

Inégalité de Hölder $\mathbb{E}(|XY|) \leqslant \mathbb{E}(|X|^p)^{1/p} \mathbb{E}(|Y|^q)^{1/q}$ pour $\frac{1}{p} + \frac{1}{q} = 1$

Inégalité de Jensen Si ϕ est convexe et que $\phi(X)$ est L^1 alors $\phi(\mathbb{E}(X)) \leq \mathbb{E}(\phi(X))$

3 Espérance conditionnelle

Soit $\mathcal{G} \subseteq \mathcal{F}$ une sous tribu. Si X est L^1 , il existe une unique variable aléatoire Y dans $L^1(\Omega, \mathcal{G}, \mathbb{P})$ tq $\forall A \in \mathcal{G} \ \mathbb{E}(\mathbb{1}_A Y) = \mathbb{E}(\mathbb{1}_A X)$ On note cette v.a $\mathbb{E}(X|\mathcal{G})$

Dans le cas où X est L^2 on a $\mathbb{E}(X|\mathcal{G}) = \text{proj}(X|L^2(\Omega,\mathcal{G},\mathbb{P}))$

Propriétés

L'espérance conditionnelle est linéaire et positive. Si X est \mathcal{G} mesurable $\mathbb{E}(X|\mathcal{G})=X$. Si $X\perp \mathcal{G}$ ou si $\mathcal{G}=\{\Omega,\emptyset\}$ $\mathbb{E}(X|\mathcal{G})=\mathbb{E}(X)$.

- $(i) \mathbb{E}(|\mathbb{E}(X|\mathcal{G})|) \leq \mathbb{E}(|X|)$
- (ii) $\mathbb{E}(X|\mathcal{G}) \vee \mathbb{E}(Y|\mathcal{G}) \leqslant \mathbb{E}(X \vee Y|\mathcal{G})$
- (iii) $\mathbb{E}(X|\mathcal{G})_+ \leqslant \mathbb{E}(X_+|\mathcal{G})$
- $(iv) \mid \mathbb{E}(X|\mathcal{G}) \mid \leq \mathbb{E}(|X||\mathcal{G})$
- (v) (Tower property) Si $\mathcal{G} \subseteq \mathcal{H}$ alors $\mathbb{E}(\mathbb{E}(X|\mathcal{H})|\mathcal{G}) = \mathbb{E}(X|\mathcal{G})$
- $(vi) \ \mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$
- (vii) Si X est $\mathcal G$ mesurable et XY est L^1 alors : $\mathbb E(XY|\mathcal G)=X\,\mathbb E(Y|\mathcal G)$
- (viii) Si ϕ est une fonction convexe et si $\phi(X)$ est L^1 alors $\phi(\mathbb{E}(X|\mathcal{G})) \leqslant \mathbb{E}(\phi(X)|\mathcal{G})$

4 Noyau et loi conditionnelle

Soit (E_1, \mathcal{E}_1) , (E_2, \mathcal{E}_2) deux espaces mesurables. Un noyau est une application $N: E_2 \times \mathcal{E}_1 \to [0, +\infty]$ tel que: (i) $\forall x \in E_2 \ N(x, .)$ est une mesure et (ii) $\forall A \in \mathcal{E}_1 \ N(., A)$ est mesurable.

De plus, N est un noyau de probabilité si $\forall x \in E_2 \ N(x,.)$ est une mesure de probabilité.

Loi sachant \mathcal{G} $\mathbb{P}^{\mathcal{G}}$: noyau de probabilité $\Omega \times \mathcal{F}$ tel que $\mathbb{P}^{\mathcal{G}}(.,A) = \mathbb{E}(\mathbbm{1}_A|\mathcal{G})$

Loi de X sachant \mathcal{G} $\mathbb{P}^{X|\mathcal{G}}$: noyau de probabilité $\Omega \times \mathcal{X}$ tel que $\mathbb{P}^{X|\mathcal{G}}(.,A) = \mathbb{E}(\mathbb{1}_A(X)|\mathcal{G})$

Loi de X sachant Y $\mathbb{P}^{X|Y}$: noyau de probabilité $Y \times \mathcal{X}$ tel que $\mathbb{P}^{X|Y}(Y,A) = \mathbb{E}(\mathbbm{1}_A(X)|Y)$

On définit la densité conditionnelle de X sachant Y par $f^{X|Y}(x|y) = \frac{f^{(X,Y)}(x,y)}{f^Y(y)}$

Soit N un noyau sur $\mathbf{X} \times \mathcal{Y}$ et $\mu \in \mathbb{M}_{+}(\mathbf{X}, \mathcal{X})$ on peut définir la mesure $\mu \otimes N$ sur $\mathcal{X} \otimes \mathcal{Y}$ par $\mu \otimes N(C) = \int \left(\int \mathbb{1}_{C}(x, y) N(x, \mathrm{d}y)\right) \mu(\mathrm{d}x)$

Théorème de désintégration Soient X et Y deux variables aléatoires de $(\Omega, \mathcal{F}, \mathbb{P})$ dans \mathbf{X} et \mathbf{Y} respectivement. Si $\mathbb{P}^{(X,Y)} = \mu \otimes N$ alors $\mu = \mathbb{P}^X$ et $\mathbb{P}^{Y|X} = N$

5 Difféomorphisme et changement de variable

Soit $\phi: U \to V$ un difféomorphisme. On note $J_{\phi} = \left(\frac{\partial \phi_i}{\partial x_j}\right)_{1 \leqslant i,j \leqslant n}$ le jacobien de ϕ . On a $\int_U f = \int_V \frac{f \circ \phi^{-1}}{|(\det J_{\phi}) \circ \phi^{-1}|}$

Si
$$Y=\phi(X)$$
 alors $f_Y=\frac{f_X\circ\phi^{-1}}{|(\det J_\phi)\circ\phi^{-1}|}\mathbbm{1}_V$

6 Lois usuelles

6.1 Lois discrètes

Nom	Mesure de probabilité μ	Fonction caractéristique	m	σ^2
Loi de Bernoulli $\mathcal{B}(p)$	$p\delta_0 + q\delta_1$	$pe^{it} + q$	p	pq
Loi Binomiale $\mathcal{B}(n,p)$	$\sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} \delta_k$	$(pe^{it} + q)^n$	np	npq
Loi de Poisson $\mathcal{P}(\lambda)$	$\sum_{k=0}^{+\infty} \frac{\lambda^k e^{-\lambda}}{k!} \delta_k$	$\exp(\lambda(e^{it}-1))$	λ	λ
Loi géométrique $\mathcal{G}(p)$ sur \mathbb{N}	$\sum_{n=0}^{+\infty} pq^n \delta_n$	$\frac{p}{1 - qe^{it}}$	$\frac{q}{p}$	$\frac{q}{p^2}$
Loi géométrique $\mathcal{G}(p)$ sur \mathbb{N}^*	$\sum_{n=1}^{+\infty} pq^{n-1}\delta_n$	$\frac{pe^{it}}{1 - qe^{it}}$	$\frac{1}{p}$	$\frac{q}{p^2}$

6.2 Lois à densité par rapport à la mesure de Lebesgue

Nom	Densité	Fonction caractéristique	m	σ^2
Loi uniforme $\mathcal{U}([a,b])$	$\frac{1}{b-a}\mathbb{1}_{[a,b]}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$	$\frac{b-a}{2}$	$\frac{(b-a)^2}{12}$
Loi de Cauchy	$\frac{1}{\pi} \frac{1}{1+x^2}$	$e^{- t }$	n'existe pas	n'existe pas
Loi normale $\mathcal{N}(m, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	$e^{itm-rac{t^2\sigma^2}{2}}$	m	σ^2
Loi exponentielle $\mathcal{E}(\lambda)$	$\mathbb{1}_{\mathbb{R}_+}(x)\lambda e^{-\lambda x}$	$\left(1-\frac{it}{\lambda}\right)^{-1}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Loi Gamma $\Gamma(a,b)$	$\mathbb{1}_{\mathbb{R}_+}(x)\frac{b^a}{\Gamma(a)}e^{-bx}x^{a-1}$	$\left(1-\frac{it}{b}\right)^{-a}$	$rac{a}{b}$	$\frac{a}{b^2}$
Loi du chi-deux à n degrés de liberté χ^2_n	$\mathbb{1}_{\mathbb{R}_{+}}(x)\frac{e^{-\frac{x}{2}}x^{\frac{n}{2}-1}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}$	$(1-2it)^{-\frac{n}{2}}$	n	2n

7 Vecteurs gaussiens

Définition: $X = (X_1, \dots, X_d)$ est un vecteur gaussien si pour tout $t \in \mathbb{R}^d \langle t, X \rangle$ suit une loi normale.

Si $X \sim \mathcal{N}(m, \Gamma)$ alors $\phi_X(t) = \mathbb{E}(e^{i\langle t, X \rangle}) = e^{i\langle t, m \rangle - \frac{1}{2}t^T \Gamma t}$ et si $\Gamma \in GL_n(\mathbb{R})$ alors :

$$f_X(x_1, \dots, x_d) = \frac{1}{\sqrt{(2\pi)^d |\det \Gamma|}} \exp\left(-\frac{1}{2}\langle \Gamma^{-1}(x-m), x-m\rangle\right)$$

Soient (X_1, \cdots, X_n) n variables aléatoires. Les deux assertions sont équivalentes :

(i) X_1, \dots, X_n sont n variables gaussiennes indépendantes

(ii) (X_1, \dots, X_n) est un vecteur gaussien dont la matrice de covariance est diagonale

Autrement dit, pour un vecteur gaussien, la décorrelation implique l'indépendance.

8 Statistiques

Un modèle statistique est une famille de mesures de probabilité. Une statistique S est une fonction mesurable des observations. Un estimateur est une statistique qui cherche à estimer un paramètre.

On considère des modèles **dominés** i.e tels qu'il existe une mesure μ telle que pour toute probabilité P du modèle P admette une densité par rapport à μ . Les modèles considérés sont également **paramétrisés** i.e qu'il existe une bijection $\theta \in \Theta \mapsto P_{\theta} \in \mathcal{P}$.

L'erreur quadratique moyenne est :

$$EQM(\hat{g},\theta) := \mathbb{E}_{\theta}((\hat{g}(X) - g(\theta))^2) = \mathbb{E}_{\theta}(\hat{g}(X) - g(\theta))^2 + V_{\theta}(\hat{g}(X)) = b(\hat{g},\theta)^2 + V_{\theta}(\hat{g}(X)) = biais^2 + variance$$

Une **statistique suffisante** est une statistique S telle que pour toute probabilité du modèle $P \in \mathcal{P}$ la loi de X|S ne dépend pas de P.

Théorème de factorisation de Fisher : Si S = g(X) et que $\forall \theta \in \Theta \ p_{\theta} = h \times f_{\theta} \circ g$ alors S est une statistique suffisante.

9 Intuitions

Une statistique suffisante est une fonction des observations qui conserve l'information nécessaire à la determination du paramètre θ . En théorie de l'information : $I(X, \theta) = I(g(X), \theta)$.

Une loi conditionnelle est une probabilité paramétrée. C'est une loi de probabilité qui est elle même "aléatoire". La notation K(x, A) correspond a l'intuition $Y \in A$ sachant X = x.

10 Chaînes de Markov

Définition Une chaîne de Markov est un processus filtré $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ tel que :

$$\forall A \in \mathcal{F} \ \mathbb{P}(X_{n+1} \in A \mid \mathcal{F}_n) = \mathbb{P}(X_{n+1} \in A \mid X_n)$$

Une chaîne de Markov est caractérisée par sa loi initiale ν et ses noyaux de transition $(P_k)_{k\in\mathbb{N}}$. Une chaîne de Markov est **homogène** s'il existe un noyau P tel que pour tout $k\in\mathbb{N}$ et tout $A\in\mathcal{X}$ on ait $\mathbb{P}(X_{k+1}\in A\mid X_k)=P(X_k,A)$. La loi de X_k est alors νP^k

11 Martingales à temps discret

Soit $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n, \mathbb{P})$ un espace de probabilité filtré.

Définition Un processus L^1 adapté $(X_n)_{n\in\mathbb{N}}$ est une martingale si $\forall n\in\mathbb{N}$ $\mathbb{E}(X_{n+1}\mid\mathcal{F}_n)=X_n$.

Exemple 1 (Marche aléatoire) Soit $(X_k)_k$ une suite de variables intégrables, indépendantes de moyenne nulle. Alors le processus $(S_n)_n$ définit par $S_0 = 0$ et $S_n = \sum_{k=1}^n X_k$ est une martingale (pour la filtration $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$)

Exemple 2 (Martingale produit) Soit $(X_k)_k$ une suite de variables intégrables, positive de moyenne égale à 1. Alors le processus $(M_n)_n$ définit par $M_n = \prod_{k=0}^n X_k$ est une martingale (pour la filtration $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$)

Exemple 3 (Accumulation d'informations sur une variable aléatoire au cours du temps) Soit Y une variable aléatoire L^1 . Alors $(\mathbb{E}(Y|\mathcal{F}_n), \mathcal{F}_n)_{n\in\mathbb{N}}$ est une martingale.

Exemple 4 (Processus de branchement)

Soit $(\xi_{i,j})_{(i,j)\in\mathbb{N}^2}$ des variables i.i.d à valeurs dans \mathbb{N} de moyenne m. On pose $\mathcal{F}_0 = \{\emptyset,\Omega\}$ et $\mathcal{F}_n = \sigma(\xi_{i,j} \ \forall i \leqslant n-1)$.

On définit par récurrence le processus $(X_n)_n$ par $X_{n+1} = \sum_{j=1}^{X_n} \xi_{n,j}$. Le processus $Z_n = \frac{X_n}{m^n}$ est une martingale.

Exemple 5 (Statistique de test pour le Sequential Probability Ratio Test)

Proposition Si $(X_n)_n$ est une martingale alors $\mathbb{E}(X_n \mid \mathcal{F}_m) = X_m \ \forall m \leqslant n$

Définition Un processus $(A_n)_n$ est $(\mathcal{F}_n)_n$ prévisible si $\forall n \in \mathbb{N}^*$ A_n est \mathcal{F}_{n-1} mesurable.

Proposition Si X est une martingale et A un processus prévisible bornée presque sûrement (i.e pour tout n, A_n est borné presque sûrement) alors $(A \cdot X)$ est une martingale. Si $A \ge 0$ presque sûrement et que X est une sur/sous martingale alors $(A \cdot X)$ est une sur/sous-martingale.

Corollaire

Si $(X_n)_n$ est une martingale alors pour tout temps d'arrêt τ , $(X_{n \wedge \tau})_n$ est une martingale.

Interprétations des martingales en terme de jeu de hasard

- (i) $X_n X_{n-1}$
- (ii) C_n (mise au temps n)

(iii)
$$Y_n = (C \cdot X)_n = \sum_{k=1}^n C_k (X_k - X_{k-1})$$
 (gain total à l'instant n)

Stratégie

$$C_1 = \mathbb{1}_{\{X_1 \le a\}} \text{ et } C_n = \mathbb{1}_{\{C_{n-1}=1\}} \mathbb{1}_{\{X_1 \le b\}} + \mathbb{1}_{\{C_{n-1}=0\}} \mathbb{1}_{\{X_1 \le a\}}$$

Doob's Upcrossing Lemma

Soit a < b.

Si (X_n) est une sous-martingale alors $(b-a)\mathbb{E}(U_n^X(a,b)) \leqslant \mathbb{E}((X_n-a)_+) - \mathbb{E}((X_0-a)_+)$

Si (X_n) est une sur-martingale alors $(b-a)\mathbb{E}(U_n^X(a,b)) \leqslant \mathbb{E}((X_n-a)_-)$

Théorème d'arrêt

Soit $\underline{\nu}\leqslant \overline{\nu}$ deux temps d'arrêt bornés presque sûrement. Alors $\mathbb{E}(X_{\overline{\nu}}\mid \mathcal{F}_{\underline{\nu}})=X_{\underline{\nu}}$

Corollaire $(X_n)_n$ est une martingale si et seulement si pour tout temps d'arrêt L^{∞} τ on a $\mathbb{E}(X_{\tau}) = \mathbb{E}(X_0)$

Identité de Wald Soit σ un temps d'arrêt L^1 et $S_n = \sum_{k=1}^n X_k$ une marche aléatoire. Alors $\mathbb{E}(S_\sigma) = \mathbb{E}(\sigma)\mathbb{E}(X_1)$

Inégalités maximales

On pose $X_n^* = \max(X_0, X_1, ..., X_n)$.

- (i) Si X est une sous-martingale, alors pour tout $a \ge 0$ et pour tout $n \in \mathbb{N}$ on a $a\mathbb{P}(X_n^* \ge a) \le \mathbb{E}(X_n \mathbb{1}_{\{X_n^* \ge a\}})$
- (ii) Si X est une sous-martingale positive, alors pour tout $a \ge 0$ et $n \in \mathbb{N}$: $a\mathbb{P}(X_n^* \ge a) \le \mathbb{E}(X_n)$.
- (iii) Si X est une sur-martingale positive alors pour tout $a\geqslant 0$ on a : $a\mathbb{P}(\sup X_n^*\geqslant a)\leqslant \mathbb{E}(X_0)$
- (iv) (Maximal Doob inequality) Si |X| est une sous-martingale alors pour tout $n \in \mathbb{N}$ et p > 1: $||X|_n^*||_p \leqslant \frac{p}{n-1}||X_n||_p$

Théorème de décomposition de Doob

Tout processus $L^1(X_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ se décompose comme la somme d'une martingale et d'un processus prévisible : $X_n = M_n + A_n$ et $A_n = A_{n-1} + \mathbb{E}(\Delta X_n | \mathcal{F}_{n-1})$ i.e $\Delta A_n = \mathbb{E}(\Delta X_n | \mathcal{F}_{n-1})$

Théorèmes de convergence

Martingale bornée dans L^1

Soit $(X_n)_n$ une suite de v.a L^1 . On dit que $(X_n)_n$ est bornée dans L^1 si $\sup_{n\in\mathbb{N}} \mathbb{E}(\|X_n\|) < +\infty$.

Une martingale/sur-martingale ou sous-martingale bornée dans L^1 converge dans L^1 et presque sûrement et la limite est la même.

Martingale bornée dans L^2

Soit $(X_n)_n$ une suite de v.a L^2 . On dit que $(X_n)_n$ est bornée dans L^2 si $\sup_{n\in\mathbb{N}}\mathbb{E}(\|X_n\|^2)<+\infty$.

Une martingale/sur-martingale ou sous-martingale bornée dans L^2 converge dans L^2 , L^1 , presque sûrement et la limite est la même.

Uniforme Intégrabilité (U.I)

Définition Une famille $(X_t)_{t\in T}$ de variables aléatoires est dite uniformément intégrable si

$$\lim_{c \to +\infty} \sup_{t \in T} \mathbb{E}(|X_t| \mathbb{1}_{\{|X_t| \ge c\}}) = 0$$

Une famille de v.a uniformément intégrable est bornée dans L^1 .

Théorème

Loi 0-1 de Kolmogorov

Soit $(X_n)_n$ une suite de variables aléatoires indépendantes. On pose $\mathcal{T}_{\infty} := \bigcap_{n \in \mathbb{N}} \sigma(X_{n+k}, k \geq 0)$ la tribu asymptotique. Pour tout $A \in \mathcal{T}_{\infty}$ on a $\mathbb{P}(A) = 0$ ou $\mathbb{P}(A) = 1$.

Lois des grands nombres

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires L^1 i.i.d. Alors $\frac{1}{n}\sum_{k=1}^n X_k \longrightarrow \mathbb{E}(X_1)$ \mathbb{P} presque partout.

12 Convergence des variables aléatoires

Lemme de Borel-Cantelli

Soit $(A_n)_n \in \mathcal{F}^{\mathbb{N}}$. Si $\sum \mathbb{P}(A_n) < +\infty$ alors $\mathbb{P}(\limsup A_n) = 0$

Soit $(A_n)_n \in \mathcal{F}^{\mathbb{N}}$ des évènements **INDÉPENDANTS**. Si $\sum \mathbb{P}(A_n) = +\infty$ alors $\mathbb{P}(\limsup A_n) = 1$.

Convergence en probabilité

Définition

Une suite $(X_n)_n$ de variables aléatoires converge en probabilité vers X si $\forall \varepsilon > 0$ la suite $\mathbb{P}(\|X_n - X\| > \varepsilon)$ converge vers 0.

Lemme

Si $\forall \varepsilon > 0$, $\sum \mathbb{P}(\|X_n - X\| > \varepsilon) < +\infty$ alors X_n converge presque sûrement vers X.

Proposition

Une suite (X_n) converge en probabilité vers X si et seulement si il existe une extractrice $(n_k)_k$ telle que X_{n_k} converge vers X presque sûrement.

Proposition

Soit $(X_n)_n, X: \Omega \to \mathcal{X}$ des variables aléatoires et $f: \mathcal{X} \to \mathcal{Y}$ une fonction continue.

- (i) Si $X_n \longrightarrow X$ p.s alors $f(X_n) \longrightarrow f(X)$ presque sûrement.
- (ii) Si $X_n \longrightarrow X$ en probabilité alors $f(X_n) \longrightarrow f(X)$ en probabilité.

Convergence en loi

Définition

Une suite de mesure $(\mu_n)_n$ sur \mathbb{R}^d converge étroitement vers une mesure μ si pour toute fonction $f: \mathbb{R}^d \to \mathbb{R}$ continue et bornée on a $\mu_n(f) \longrightarrow \mu(f)$.

Une suite de variables aléatoires $(X_n)_n$ converge en loi vers une variable X si P_{X_n} converge étroitement vers P_X .

Théorème

La convergence en probabilité implique la convergence en loi.

Tension

Définition Soit $(\mu_n)_n$ une famille de mesures de probabilité. On dit que cette suite est tendue si pour tout $\varepsilon > 0$ il existe un compact K tel que pour tout entier n $\mu_n(K) \ge 1 - \varepsilon$. Cela signifie que toute la masse des mesures de probabilité est localisée dans ce compact à ε près.

Théorème de Portmanteau

Les assertions suivantes sont équivalentes.

- (i) $\mu_n \longrightarrow \mu$. (ii) Pour toute fonction f continue bornée, $\mu_n(f) \longrightarrow \mu(f)$.
- (iii) Pour toute fonction f lipschitzienne, continue, bornée $\mu_n(f) \longrightarrow \mu(f)$.
- (iv) Pour tout $A \in \mathcal{B}(\mathcal{X})$ tel que $\mu(\partial A) = 0, \mu_n(A) \longrightarrow \mu(A)$.

Théorème de Portmanteau pour les variables aléatoires

$$(i) X_n \xrightarrow{\mathcal{L}} X.$$

- (ii) Pour toute fonction f continue bornée, $\mathbb{E}(f(X_n)) \longrightarrow \mathbb{E}(f(X))$.
- (iii) Pour toute fonction f lipschitzienne, continue, bornée $\mathbb{E}(f(X_n)) \longrightarrow \mathbb{E}(f(X))$.
- (iv) Pour tout $A \in \mathcal{B}(\mathcal{X})$ tel que $\mathbb{P}(X \in \partial A) = 0, \mathbb{P}(X_n \in A) \longrightarrow \mathbb{P}(X \in A)$.
- (v) Pour tout x, point de continuité de F_X on a $F_{X_n}(x) \longrightarrow F_X(x)$.

Théorème de Prokhorov

Soit $(\mu_n)_n$ une suite tendue de mesures de probabilités. Il existe une extraction de cette suite qui converge étroitement vers une mesure μ .

Théorème de représentation de Skorokhod

Soient $(X_n)_n$ des variables aléatoires convergeant en loi vers X. Il existe un espace $(E, \mathcal{E}, \mathbb{P})$ et des variables $(Y_n)_n, Y : E \to \mathcal{X}$ telles que Y_n et X_n ont même loi, Y et X ont même loi et Y_n converge presque sûrement vers Y.

Théorème de Lévy

Soit $(\mu_n)_n$ une suite de mesures sur \mathbb{R}^d . Alors $(\mu_n)_n$ converge étroitement vers μ si et seulement si pour tout $t \in \mathbb{R}^d$, $\phi_{\mu_n}(t) \longrightarrow \phi_{\mu}(t)$.

Théorème Central Limite

Lemme de Slutsky

Références

- [1] Probabilités avancées Cours de Master Avancé 1, ENS Lyon de Christophe Garban
- [2] L'essentiel en théorie des probabilités de Jean Jacod et Philip Protter
- [3] Probability with martingales by David Williams
- [4] Polycopié du cours de Probabilités de M1 de François Roueff, Télécom Paris