7. Massimi e minimi

Definizione

Sia f(x; y) una funzione definita in un aperto $A \subset \mathbb{R}^2$ e sia $(x_0; y_0)$ un punto di A.

Se esiste un intorno circolare $I_{\delta}(x_0;y_0)$, di centro $(x_0;y_0)$ e raggio δ per cui

$$f(x_0; y_0) \ge f(x; y) \quad \forall (x; y) \in I_{\delta}(x_0; y_0) \cap A$$

Allora $(x_0; y_0)$ è un punto di massimo relativo o locale e $f(x_0; y_0)$ è un massimo relativo. Analogamente :

Se esiste un intorno circolare $I_{\delta}(x_0;y_0)$, di centro $(x_0;y_0)$ e raggio δ per cui

$$f(x_0; y_0) \le f(x; y) \quad \forall (x; y) \in I_{\delta}(x_0; y_0) \cap A$$

allora $(x_0; y_0)$ è un punto di **minimo relativo** o **locale** e $f(x_0; y_0)$ è un **minimo relativo**.

Metodo per la determinazione dei massimi e minimi relativi

Sia f(x; y) una funzione che ammette le derivate parziali fino al secondo ordine continue in ogni punto (x; y) di un insieme aperto $A \subset \mathbb{R}^2$.

1) Calcoliamo le derivate parziali prime della funzione f e risolviamo il sistema

$$\begin{cases} f_x(x;y) = 0 \\ f_y(x;y) = 0 \end{cases}$$

e siano $(x_0; y_0)$, $(x_1; y_1)$, ..., $(x_n; y_n)$ le soluzioni, detti **punti critici** o **punti estremanti**, eventuali punti di **massimo** o **minimo relativo**.

2) Calcoliamo il determinante **Hessiano** della funzione, cioè il determinante i cui elementi sono le derivale seconde

$$H(x;y) = \begin{vmatrix} f_{xx}(x;y) & f_{xy}(x;y) \\ f_{yx}(x;y) & f_{yy}(x;y) \end{vmatrix} =$$

$$= f_{xx}(x;y) \cdot f_{yy}(x;y) - f_{xy}(x;y) \cdot f_{yx}(x;y)$$

3) Calcoliamo l'hessiano in ogni punto soluzione del sistema di cui al punto 1). Quindi se nel punto $(x_0; y_0)$ si annullano le derivate parziali prime e risulta:

a. $H(x_0;y_0)>0$ e $f_{xx}(x_0;y_0)>0$ allora $(x_0;y_0)$ è un punto di **minimo relativo**

b. $H(x_0; y_0) > 0$ e $f_{xx}(x_0; y_0) < 0$ allora $(x_0; y_0)$ è un punto di massimo relativo

c. $H(x_0; y_0) < 0$ allora $(x_0; y_0)$ non è né di massimo né di minimo relativo; il punto $(x_0; y_0; f(x_0; y_0))$ si dice *punto di sella*

Se invece

d. $H(x_0; y_0) = 0$ la natura di $(x_0; y_0)$ deve essere studiata con altri strumenti.

L'annullarsi contemporaneo di f_x e di f_y in $(x_0; y_0)$ comporta che il piano tangente nel punto $P_0(x_0; y_0; f(x_0; y_0))$ sia parallelo al piano xy, quindi abbia equazione $z = f(x_0; y_0)$.

Esempi

1. Determiniamo i massimi e minimi locali della funzione

$$f(x; y) = x^2 + 3y^2 - 4x + 5$$

Risolviamo dapprima il sistema

$$\begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \implies \begin{cases} 2x - 4 = 0 \\ 6y = 0 \end{cases} \implies \begin{cases} x = 2 \\ y = 0 \end{cases}$$

Poiché

$$f_{xx} = 2 \qquad f_{yy} = 6 \qquad f_{xy} = f_{yx} = 0$$

Si ha

$$H(x; y) = \begin{vmatrix} 2 & 0 \\ 0 & 6 \end{vmatrix} = 12$$

Quindi, essendo $f_{xx} > 0$, H(2;0) > 0, il punto (2;0) è di minimo locale, il valore minimo della funzione è m = f(2;0) = 1 e il corrispondente punto sulla curva è $P_0(2;0;1)$, vedi fig. 1.

Fig. 1

2. Sia

$$f(x; y) = 4x^3 - y^3 - x^2 + 27y$$

Le soluzioni del sistema

$$\begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \implies \begin{cases} 12x^2 - 2x = 0 \\ -3y^2 + 27 = 0 \end{cases}$$

sono:

(0;3) (0;-3)
$$\left(\frac{1}{6};3\right)$$
 $\left(\frac{1}{6};-3\right)$

Calcoliamo le derivate seconde:

$$f_{xx} = 24x - 2$$
 $f_{yy} = -6y$ $f_{xy} = f_{yx} = 0$

e l'hessiano:

$$H(x; y) = \begin{vmatrix} 24x - 2 & 0 \\ 0 & -6y \end{vmatrix} = -6y(24x - 2)$$

Esaminiamo ora separatamente i punti trovati.

Poiché

$$H(0;3) = 36 > 0$$
 $f_{rr}(0;3) = -2 < 0$

il punto (0;3) è di massimo locale. Il massimo locale è M=f(0;3)=54.

Poiché

$$H(0:-3) = -36 < 0$$

il punto (0;-3) non è né di massimo locale né di minimo locale.

Poiché

$$H\left(\frac{1}{6};3\right) = -36 < 0$$

il punto $\left(\frac{1}{6}; 3\right)$ non è né di massimo locale né di minimo locale.

Infine, visto che

$$H\left(\frac{1}{6}; -3\right) = 36 > 0$$
 $f_{xx}\left(\frac{1}{6}; -3\right) = 2 > 0$

il punto $\left(\frac{1}{6}; -3\right)$ è di minimo locale. Il minimo locale è $m = f\left(\frac{1}{6}; -3\right) = -\frac{5833}{108}$.

Esercizi

(gli esercizi con asterisco sono avviati)

Determinare i massimi M e i minimi m relativi (o locali) per le seguenti funzioni:

1.
$$f(x; y) = x^2 + y^2 + xy - 2x - y$$

*2.
$$f(x; y) = x^2 + y^2 - 2x + 1$$

3.
$$f(x; y) = x^2 + xy + y^2 + 2x - 2y + 1$$

4.
$$f(x; y) = x^2 + xy + 3x + 2y + 5$$

5.
$$f(x; y) = 2x^2 + y^2 - 4x + 6y$$

6.
$$f(x; y) = 4x - 2y - x^2 - y^2 + xy$$

7.
$$f(x;y) = -x^2 - y^2 + 4x - 6y - 11$$

8.
$$f(x; y) = x^3 + 2x^2y + x - y$$

$$9. \ f(x;y) = -x^3 + xy + 4y$$

10.
$$f(x; y) = 2y^3 + x^3 - 3y^2 - 3x$$

11.
$$f(x; y) = xy^2(3 - x - y)$$

*12.
$$f(x; y) = (1 - x)^2 + 100(y - x^2)^2$$

13.
$$f(x; y) = xy + \frac{1}{x} + \frac{1}{y}$$

14.
$$f(x; y) = sin x + sin y$$

15.
$$f(x;y) = (x^2 - y)e^{x-y}$$

16.
$$f(x; y) = xe^{-x^2-y^2}$$

17.
$$f(x; y) = xe^y - e^x$$

18.
$$f(x; y) = (2y^2 - x^2)e^{x-y}$$

Una applicazione: Distanza tra due rette sghembe

Per determinare la distanza \overline{HK} tra le rette sghembe

$$r:(x(\lambda);y(\lambda);z(\lambda))$$
 e $s:(x(\mu);y(\mu);z(\mu))$

- si calcola la distanza al quadrato tra un punto generico su r e un punto generico su s , ottenendo la funzione nei parametri λ e μ

$$f(\lambda; \mu) = (x(\lambda) - x(\mu))^{2} + (y(\lambda) - y(\mu))^{2} + (z(\lambda) - z(\mu))^{2}$$

- si calcola il minimo di $f(\lambda; \mu)$
- la distanza $\overline{HK} = \sqrt{minf(\lambda;\mu)}$.

Esempio

Dopo aver verificato che le rette

$$r: \begin{cases} x = 4\lambda - 2 \\ y = -\lambda + 1 \end{cases} \quad \text{e} \quad s: \begin{cases} x = 2\mu - 1 \\ y = \mu \\ z = \mu - 1 \end{cases}$$

sono sghembe calcolarne la distanza \overline{HK} , cioè il minimo delle distanze tra i punti $H \in r$ e $K \in s$.

Le rette non sono parallele poiché non lo sono i loro vettori direzione

$$\vec{d}_r = (4; -1; 1)$$
 e $\vec{d}_s = (2; 1; 1)$.

Non sono incidenti poiché il sistema per determinare se hanno un punto in comune

$$\begin{cases} 4\lambda - 2 = 2\mu - 1 \\ -\lambda + 1 = \mu \\ \lambda = \mu - 1 \end{cases}$$

non ha soluzioni. Pertanto le rette sono sghembe.

Calcoliamo il quadrato della distanza tra due punti qualunque delle due rette:

$$f(\lambda; \mu) = (4\lambda - 2 - 2\mu + 1)^2 + (-\lambda + 1 - \mu)^2 + (\lambda - \mu + 1)^2 =$$
$$= 18\lambda^2 - 16\lambda\mu + 6\mu^2 - 8\lambda + 3$$

Calcoliamo le derivate prime

$$f_{\lambda}(\lambda;\mu) = 36\lambda - 16\mu - 8$$
 $f_{\mu}(\lambda;\mu) = -16\lambda + 12\mu$

$$f_{\mu}(\lambda;\mu) = -16\lambda + 12\mu$$

e risolviamo il sistema

$$\begin{cases} 36\lambda - 16\mu - 8 = 0 \\ -16\lambda + 12\mu = 0 \end{cases} \quad \Rightarrow \quad \lambda = \frac{6}{11} \ , \ \mu = \frac{8}{11}$$

Calcoliamo le derivate seconde:

$$f_{\lambda\lambda}(\lambda;\mu) = 36$$
 $f_{\lambda\mu}(\lambda;\mu) = f_{\mu\lambda}(\lambda;\mu) = -16$ $f_{\mu\mu}(\lambda;\mu) = 12$

Poiché il determinante dell'Hessiano

$$H = \begin{vmatrix} 36 & -16 \\ -16 & 12 \end{vmatrix} = 176 > 0$$
 e $f_{\lambda\lambda}(\lambda; \mu) = 36 > 0$

la funzione $\,f(\lambda;\mu)\,$ ha un minimo per $\lambda=rac{6}{11}\,$, $\,\mu=rac{8}{11}\,$ e risulta

$$f\left(\frac{6}{11}; \frac{8}{11}\right) = \frac{9}{11}$$

Pertanto la distanza tra le rette è

$$\overline{HK} = \frac{3\sqrt{11}}{11}$$
.

■ Nel capitolo Nozioni di Geometria nello spazio il calcolo della distanza tra due rette sghembe viene risolto con un altro metodo basato sul calcolo vettoriale.

Esercizi

Dopo aver verificato che le rette r e s sono sghembe calcolarne la distanza \overline{HK} :

19.
$$r: \begin{cases} x = 2t + 2 \\ y = t + 1 \\ z = -t \end{cases}$$
 $s: \begin{cases} x = h - 1 \\ y = 3h \\ z = h - 1 \end{cases}$

19.
$$r:\begin{cases} x = 2t + 2 \\ y = t + 1 \\ z = -t \end{cases}$$
 $s:\begin{cases} x = h - 1 \\ y = 3h \\ z = h - 1 \end{cases}$
20. $r:\begin{cases} x = 4\lambda + 1 \\ y = -\lambda - 1 \\ z = \lambda \end{cases}$ $s:\begin{cases} x = 2\mu \\ y = 2\mu + 1 \\ z = 3\mu + 1 \end{cases}$

21.
$$r: \begin{cases} x = -1 + 2t \\ y = t \end{cases}$$
 $s: \begin{cases} x = h - 1 \\ y = 0 \\ z = h - 3 \end{cases}$

22.
$$r: \begin{cases} x = -t + 2 \\ y = t + 1 \\ z = 1 \end{cases}$$
 $s: \begin{cases} x = -2h \\ y = 4h + 4 \\ z = 2h + 5 \end{cases}$

23.
$$r:\begin{cases} x = \lambda \\ y = 3\lambda + 1 \\ z = 5\lambda + 3 \end{cases}$$
 $s:\begin{cases} x = \mu + 1 \\ y = 2\mu - 1 \\ z = \mu \end{cases}$

24.
$$r: \begin{cases} x = -1 - t \\ y = t + 5 \\ z = 5 + 3t \end{cases}$$
 $s: \begin{cases} x = h \\ y = 2h - 1 \\ z = 5h - 2 \end{cases}$

Soluzioni

1. S.
$$m = -1 per x = 1, y = 0$$
;

*2. S.
$$m = 0$$
 per $x = 1$, $y = 0$;

(la funzione può essere scritta nella forma $f(x;y)=(x-1)^2+y^2$, pertanto essa è ≥ 0 $\forall (x;y)$ e il valore minimo m=0 si ottiene nel punto (1;0);), vedi fig. 2

Fig. 2

3. S.
$$m = -3$$
 in $(-2; 2)$;

4. S. né min né max ; il punto (-2; 1; 3) è un punto di sella ;

5. S.
$$m = -11 per x = 1, y = -3$$
;

L. Mereu – A. Nanni Funzioni in due variabili

6. S. M = 4 in (2; 0); vedi fig. 3

Fig. 3

7. S. M = 2 in (2; -3); vedi fig. 4

Fig. 4

L. Mereu – A. Nanni Funzioni in due variabili

8. S. nè minimo nè massimo ; i punti $\left(\pm \frac{\sqrt{2}}{2}; \mp \frac{5\sqrt{2}}{8}; \pm \frac{3\sqrt{2}}{4}\right)$ sono punti di sella ; vedi fig. 5

Fig. 5

9. S. né minimo né massimo ; (-4; 48,64) è un punto di sella ;

10. S.
$$m = -3$$
 in $(1; 1)$; $M = 2$ in $(-1; 0)$;

11. S.
$$M = \frac{81}{64}$$
 per $x = \frac{3}{4}$, $y = \frac{3}{2}$; vedi fig. 6

Fig. 6

*12. S. m=0 in (1;1); (possiamo notare che la funzione è ≥ 0 $\forall (x;y)$ perché somma di quadrati, il valore minimo è 0 e si ottiene quando si annullano contemporaneamente);

13. S.
$$m = 3$$
 per $x = 1, y = 1$;

L. Mereu – A. Nanni Funzioni in due variabili

14. S.
$$M=2$$
 in $\left(\frac{\pi}{2}+2k\pi;\frac{\pi}{2}+2k\pi\right)$, $m=-2$ in $\left(\frac{3\pi}{2}+2k\pi;\frac{3\pi}{2}+2k\pi\right)$, vedi fig. 7

Fig. 7

15. S.
$$m = -e^{-3/4} \ln \left(\frac{1}{2}; \frac{5}{4}\right)$$
 , vedi fig. 8

Fig. 8

16. S.
$$M = \frac{1}{\sqrt{2e}} \operatorname{per} x = \frac{\sqrt{2}}{2}, y = 0$$
;

17. S. nè minimo nè massimo ;il punto (0; 0; -1) è punto di sella ;

18. S.
$$M = -8e^{-2} \text{ per } x = -4, y = -2;$$

Una applicazione: Distanza tra due rette sghembe

19. S.
$$\overline{HK} = \frac{7\sqrt{2}}{5}$$
; $\left(t = -\frac{19}{25}, h = \frac{9}{25}\right)$; **20. S.** $\overline{HK} = \frac{1}{3}$; $\left(\lambda = -\frac{26}{45}; \mu = -\frac{3}{5}\right)$;

20. S.
$$\overline{HK} = \frac{1}{3}$$
; $\left(\lambda = -\frac{26}{45}; \mu = -\frac{3}{5}\right)$;

21. S.
$$\overline{HK} = \frac{2}{\sqrt{11}} \quad \left(t = \frac{6}{11}; h = \frac{14}{11}\right);$$
 21. S. $\overline{HK} = \frac{2}{\sqrt{11}} \quad \left(t = \frac{6}{11}; h = \frac{14}{11}\right);$

21. S.
$$\overline{HK} = \frac{2}{\sqrt{11}} \left(t = \frac{6}{11}; h = \frac{14}{11} \right)$$

22. S.
$$\overline{HK} = \sqrt{3} \ \left(t = -2; h = -\frac{3}{2} \right);$$

22. S.
$$\overline{HK} = \sqrt{3} \ \left(t = -2; h = -\frac{3}{2}\right);$$
 23. S. $\overline{HK} = 2\sqrt{\frac{6}{11}}; \left(\lambda = -\frac{8}{11}; \mu = -\frac{5}{11}\right);$

24. S.
$$\overline{HK} = 14\sqrt{\frac{2}{37}} \ \left(t = -\frac{52}{37}; h = \frac{29}{37}\right);$$