# Matrix representation of logic covers

- Used in logic minimizers
- Different formats
- Usually one row per implicant
- Symbols: 0,1,\*...

| 10 | 11 | 11 | 10 |
|----|----|----|----|
| 10 | 01 | 11 | 11 |
| 01 | 10 | 11 | 11 |
| 01 | 11 | 10 | 01 |

CS220: Synthesis of Digital System, Fall 06

## The positional cube notation

• Encoding scheme

| Ø | 00 |
|---|----|
| 0 | 10 |
| 1 | 01 |
| * | 11 |

- Operations
  - Intersection AND
  - Union OR
- $\varnothing$  symbol means implicant is void and should be removed
- \* means implicant is full in that variable
  - Don't care

2



## Example

• f=a'd'+a'b+ab'+ac'd

| 10 | 11 | 11 | 10 |
|----|----|----|----|
| 10 | 01 | 11 | 11 |
| 01 | 10 | 11 | 11 |
| 01 | 11 | 10 | 01 |

- a'd' AND a'b = 10 01 11 10 = a'bd'
- a'd' AND ab' =  $00\ 10\ 11\ 10 = \emptyset$ 
  - Can be removed
  - Not in the on-set

3

CS220: Synthesis of Digital System, Fall 06

## Multi-value input functions

- Input variables can have many values
- Representations
  - Literals: set of valid values
  - Sum of products of literals
    - Let's say a, b are binary, but f can be 0,1, or 2
    - $\bullet \ \ a^{\{0\}}b^{\{0\}}f^{\{0\}} + a^{\{0\}}b^{\{1\}}f^{\{2\}} + a^{\{1\}}b^{\{0\}}f^{\{2\}} + a^{\{1\}}b^{\{1\}}f^{\{0,1\}}$
- Extension of positional cube notation

| 10 | 10 | 100 |
|----|----|-----|
| 10 | 01 | 001 |
| 01 | 10 | 001 |
| 01 | 01 | 110 |

4



#### Multiple output functions

- Representation by its characteristic function
  - y=f(x) can be written as  $\chi(x,y)=1$
- $f_0=a'b'+ab$ ;  $f_1=ab$ ;  $f_2=ab'+a'b$

| 10 | 10 | 100 |
|----|----|-----|
| 10 | 01 | 001 |
| 01 | 10 | 001 |
| 01 | 01 | 110 |

- Represented in as multi-value input function
  - $a^{\{0\}}b^{\{0\}}f^{\{0\}} + a^{\{0\}}b^{\{1\}}f^{\{2\}} + a^{\{1\}}b^{\{0\}}f^{\{2\}} + a^{\{1\}}b^{\{1\}}f^{\{0,1\}}$
- Input/output parts are encoded together
  - No need to talk about multiple output functions anymore
  - Simply transform it to multi-value input single Boolean output functions

5

CS220: Synthesis of Digital System, Fall 06

#### Notations for operations between functions

- Size of a literal is the number of 1's in its field
  - 110 size 2
- Size of implicant is the product of sizes of its literals
  - 110 11 size 4
- Intersection
  - Compute by bitwise product
  - 110 11 and 100 01 is 100 01
- Supercube of two implicants is the smallest containing cube
  - Compute by bitwise or
  - Supercube(10 10 100; 10 01 001) is 10 11 101
- Distance of two implicants is the number of empty fields in their bitwise and
  - Distance (110 11; 100 01) is 0; Distance (110 11;001 01) is 1

6



#### Consensus

- If two implicants has distance larger or equal to 2
  - Consensus return 0
- If two implicants have distance equal to 1
  - Consensus return a single implicant
    - Parts that is "really close"

$$\mathcal{CONSENSUS}(\alpha,\beta) = \begin{cases} a_1 + b_1 & a_2 \cdot b_2 & \dots & a_n \cdot b_n \\ a_1 \cdot b_1 & a_2 + b_2 & \dots & a_n \cdot b_n \\ \dots & \dots & \dots & \dots \\ a_1 \cdot b_1 & a_2 \cdot b_2 & \dots & a_n + b_n \end{cases}$$





CS220: Synthesis of Digital System, Fall 06

#### Consensus

- Consensus (ab'c,ac')=ab' = 01 10 11
  - Parts that don't differ
- Consensus (ab'c,a'b'c')=0
  - Too different

$$\mathcal{CONSENSUS}(\alpha,\beta) = \begin{cases} a_1 + b_1 & a_2 \cdot b_2 & \dots & a_n \cdot b_n \\ a_1 \cdot b_1 & a_2 + b_2 & \dots & a_n \cdot b_n \\ \dots & \dots & \dots & \dots \\ a_1 \cdot b_1 & a_2 \cdot b_2 & \dots & a_n + b_n \end{cases}$$

α 01 10 01 β 01 11 10 γ 10 01 01





