

Espressif IoT SDK 使用手册

Status	Released
Current version	V0.8
Author	Fei Yu
Completion Date	2014.8.14
Reviewer	Jiangang Wu
Completion Date	2014.8.14

[] CONFIDENTIAL

[] INTERNAL

[√] PUBLIC

版本信息

日期	版本	撰写人	审核人	修改说明
2013.12.24	0.1	Jiangang Wu		初稿
2014.1.15	0.2	Jiangang Wu		增加 sta+softAP 模
				式例子
2014.2.7	0.3	Jiangang Wu		例子支持 WAN 接入
2014.3.20	0.4	Han Liu		例子支持系统升级,
				WAN 下更改用户,
				AP 热点获取,数据
				加密传输
2014.5.14	0.5	Jiangang Wu		去除例子,例子单独
				介绍
2014.6.19	0.6	Fei Yu		统一文档格式
2014.7.10	0.7	Fei Yu		支持云端升级
2014.8.14	0.8	Fei Yu		增加新 flash tool

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。版权归©2014 乐鑫信息技术有限公司所有。保留所有权利。

景

版本信	言息	2
目录		3
1.	前言	4
2.	虚拟机	5
2.1.	虚拟机软件	5
2.2.	虚拟电脑	5
2.2.1.	镜像	.5
2.2.2.	导入	5
2.2.3.	网络	8
2.2.4.	共享文件夹	8
2.2.5.	界面	10
3.	开发工具	11
3.1.	编译器	11
3.2.	串口工具	
3.2.1.	USB 转串口	13
3.2.2.	SecureCRT	14
3.3.	下载工具	14
3.3.1.	XTCOM_UTIL	14
3.3.2.	ESP_FLASH_DOWNLOAD	
3.4.	NetAssist	19
3.5.	Postman	19
3.6.	Tomcat	
4.	SDK 软件包	
4.1.	介绍目录结构	20
4.2.	目录结构	20
4.3.	编译及烧录方法	21
4.3.1.	不支持云端升级	21
4.3.2.	支持云端升级	22

1. 前言

本文主要介绍基于 ESP8266 物联网模块的 SDK 相关使用方法,包括虚拟机安装设置、开发工具使用以及 SDK 软件包架构等。

2. 虚拟机

基于 ESP8266 物联网模块进行二次开发所需的相关开发工具已安装到虚拟机中,用户只需安装虚拟机软件,并导入虚拟电脑,即可进行开发。

2.1. 虚拟机软件

虚拟机采用 VirtualBox, 下载地址为:

https://www.virtualbox.org/wiki/Downloads

选择相应平台下载安装。

2.2. 虚拟电脑

2.2.1. 镜像

虚拟电脑镜像采用开放式虚拟化格式(*.ova),文件为 ESP_IOT_SDK.ova,可以被其他虚拟机软件导入使用。

2.2.2. 导入

VirtualBox 默认情况,会将虚拟电脑导入系统盘,随着虚拟电脑的使用,会占用非常大的空间,建议设置虚拟电脑位置到非系统盘。

第一步:管理菜单下选择全局设定

第二步:选择常规,设置默认虚拟电脑位置,如:D:\vm

第三步:管理菜单下选择导入虚拟电脑

第四步:设置要导入的虚拟电脑路径,如:D:\vm\ESP_IOT_SDK.ova

第五步: 导入

导入成功后会在 D:\vm\ESP IOT SDK 目录下生成如下文件:

 SESP_IOT_SDK.vbox
 2013/12/27 10:49
 VirtualBox Machine Definition
 13 KB

 ESP_IOT_SDK-disk1.vmdk
 2013/12/27 10:49
 Virtual Machine Disk Format
 3,912,640 KB

2.2.3. 网络

为了使虚拟电脑能访问到 ESP8266 模块,需要使虚拟电脑和 ESP8266 在同一网段。使用虚拟电脑前,请先根据宿主机选择相应网卡。

在 VirtualBox 软件界面点击设置,进入网络设置页面。

界面名称选择主机电脑连接路由器的真实网卡。

2.2.4. 共享文件夹

使用虚拟电脑前,请先设置宿主机内的文件夹共享给虚拟电脑使用,例如: 新建一个"share"文件夹,专用于与虚拟电脑映射,宿主机可通过将资料拷到 此文件夹中,与虚拟机共享,具体如下:

设置成功后,在虚拟电脑内映射网络驱动器,如下图:

其中驱动器号设置为 D:, share 为在 VirtualBox 中设置的共享文件夹名称。默认情况下,虚拟电脑内已设置好共享文件夹。

映射成功后,在虚拟电脑内"我的电脑"中就会出现该网络驱动器,如下图。将 SDK 软件工程及其他资料放在该盘下,与宿主机进行共享。

网络驱动器

2.2.5. 界面

导入成功,并设置完网络后,即可进入系统。

3. 开发工具

虚拟电脑内默认安装了开发所需的软件,包括编译器、下载软件和一些调试软件,用户可根据需要自行安装其他软件。

3.1.编译器

双击桌面 Xtensa 图标即可打开编译环境,编译器相关参数已配置,工程路径已设置为 d:\esp_iot_sdk\app,请先按照 2.2.4 节的方法设置好共享文件夹,双击后会出现如下三个窗口:

1、

```
_ 🗆 ×
M lmgrd: FLEXnet license server
16:21:09 (lmgrd)
                    servers and usage across a heterogeneous
16:21:09 (lmgrd)
                   network of servers including Windows NT, Linux
16:21:09 (lmgrd)
                   and UNIX. Contact Macrovision at
16:21:09 (lmgrd)
                   www.macrovision.com for more details on how to
16:21:09 (lmgrd)
                   obtain an evaluation copy of FLEXnet Manager
16:21:09 (lmgrd)
                   for your enterprise.
16:21:09 (lmgrd)
16:21:09 (lmgrd)
16:21:09 (lmgrd)
16:21:09 (lmgrd)
16:21:09 (lmgrd) pid 3492
16:21:10 (Imgrd) Done rereading
16:21:10 (lmgrd) FLEXnet Licensing (v11.5.0.0 build 56285 i86_n3) started on esp
-sdk (IBM PC) (12/24/2013)
16:21:10 (lmgrd) Copyright (c) 1988-2007 Macrovision Europe Ltd. and/or Macrovis
ion Corporation. All Rights Reserved.
16:21:10 (lmgrd) US Patents 5,390,297 and 5,671,412.
16:21:10 (lmgrd) World Wide Web: http://www.macrovision.com
16:21:10 (lmgrd) License file(s): C:\usr\xtensa\license\lxinno-win_2013-07-01.li
16:21:10 (lmgrd) lmgrd tcp-port 27000
16:21:10 (lmgrd) Starting vendor daemons ...
16:21:10 (lmgrd) Started xtensad (pid 3520)
16:21:10 (lmgrd) xtensad using TCP-port 1036
```

2、

3′

其中 1 和 2 是编译器 license 窗口,不用理会。3 是编译窗口,当用户修改代码后,只需在该窗口执行相关命令,可生成下载所需的 bin 文件。

3.2. 串口工具

ESP8266 母板采用串口与电脑通讯,可以将串口接入虚拟电脑,利用虚拟电脑内的工具软件与 ESP8266 进行通讯。使用前请先安装驱动。

3.2.1. USB 转串口

市面上有多种 USB 转串口线,本文中使用的是采用 FT232R 的串口线,在菜单中将连接到主机的 USB 转串口设备分配给虚拟电脑,即可将 USB 转串口线连接到虚拟电脑。

在虚拟电脑内可设置 USB 转串口的串口号,建议设置为串口 6。

可以采用虚拟电脑内的驱动精灵安装其他型号的 USB 转串口线驱动。

3.2.2. SecureCRT

ESP8266 模块采用 74880 波特率, 需要在 SecureCRT 中进行设置。

3.3. 下载工具

3.3.1. XTCOM UTIL

双击桌面 XTCOM_UTIL 即可打开下载工具,将编译生成的*.bin 文件下载到 ESP8266 母板的 SPI Flash 中。

母板上跳线设置为 MTDO: 0, GPIO0: 0, GPIO2: 1, 可进入下载模式。操作步骤如下:

第一步:设置串口

第二步:选择相应的串口号,并打开

第三步:连接

第四步:下载镜像 bin 文件

 $15 \ / \ 23$ Espressif Systems June 19, 2014

注意: 对于不同的 bin 文件, 对应的 Program Address Offset 并不一致。例如,eagle.app.v6.flash.bin 文件, 对应的 Program Address Offset 为 0x0000。具体可见本文档"4.2 目录结构"中的 bin 目录说明。

第六步: 重新连接

第五步操作完成后,需要使 ESP8266 母板重新上电。关闭串口,并重复第二、 三两步。

第六步:选择下一个需要烧入 flash 的 bin 文件并下载。例如, eagle.app.v6.irom0text.bin 文件。

注意:对于 eagle.app.v6.irom0text.bin 文件,对应的 Program Address Offset 为 0x40000。具体可见本文档"4.2 目录结构"中的 bin 目录说明。

第七步: 关闭串口

下载完成后,可利用 SecureCRT 查看打印信息。

母板上跳线设置为 MTDO: 0, GPIOO: 1, GPIO2: 1, 可进入运行模式。

注意:进行跳线操作时,请断电操作。

3.3.2. ESP_FLASH_DOWNLOAD

Espressif 另提供工具 "ESP_FLASH_DOWNLOAD" 实现多个 bin 文件的一键烧录,将编译生成的多个*.bin 文件一次性下载到 ESP8266 母板的 SPI Flash 中。

- "ESP FLASH DOWNLOAD"说明如下:
- (1) 烧录文件勾选区,选择要烧录的 bin 文件,以及设置对应的烧录地址;
- (2) SPI FLASH CONFIG 区,配置 spi flash 的属性,按键 CombineBin 将上述勾选了的 bin 文件合成一个 targe.bin,按键 Default 将 SPI FLASH 的配置恢复默认值。

骤如下:

- 1) 选择需要烧录的 bin 文件 -> 填写烧录地址 -> 勾选需要烧录的选项。
- 2) 设置 COM 口和波特率。
- 3) 点击"START"开始下载。
- 4) 下载完成后,将母板断电,修改跳线为运行模式,上电正常运行。 母板上跳线设置为 MTDO: 0, GPIOO: 1, GPIO2: 1, 可进入运行模式。 注意:进行跳线操作时,请断电操作。

3.4. NetAssist

网络调试助手工具,用于调试 TCP、UDP。

3.5. Postman

Chrome 插件,用于调试 REST 架构 web service。

3.6. Tomcat

Web 应用服务器,用于存放升级文件。

4. SDK 软件包

4.1.介绍

在虚拟电脑中,SDK 软件包默认存于网络驱动器 D 盘根目录,编译器 xtensa 工作目录已指向 d:\esp_iot_sdk\app。

4.2. 目录结构

SDK 软件包中包含了进行二次开发所需的头文件、库文件以及其他编译所需的文件。目录结构如下图:

具体说明:

- 1、app 目录为用户工作主目录,包含 user 和 include 两个子目录,用户源代码及头文件均需存放在这两个目录内。可参考 examples 中的示例,详见步骤 4 说明。
- 2、 bin 目录为下载到 Flash 的 bin 文件,其中 at 文件夹内为支持 AT+指令的 bin 文件,upgrade 文件夹内为支持云端升级的 bin 文件。

- 3、 documents 目录为 SDK 相关说明文档:
- 4、 examples 目录为SDK例程,使用时只需将IoT_Demo 目录下的 user、include 目录以及 Makefile 文件拷贝到 app 目录下;
- 5、include 目录为 SDK 自带头文件,包含了用户可使用的相关 API 函数及其他定义,用户不需修改;
- 6、Id 目录为 SDK 软件链接时所需文件,用户不需修改;
- 7、lib 目录为 SDK 编译所需库文件:
- 8、tools 目录为生成 bin 文件所需工具,用户不需修改。

4.3.编译及烧录方法

编译时,请注意将 esp_iot_sdk\examples 的子目录内的 user、include 目录以及 Makefile 文件拷贝到 esp_iot_sdk\app 目录下。

烧录方式请参考"<u>3.3 下载工具</u>",需注意,每次完成下载一个 bin 到 flash 中,都需要关闭串口,再重新打开串口,连接,进入下一个 bin 的烧录过程。

4.3.1. 不支持云端升级

esp_iot_sdk_v0.7 及以前的版本,不支持云端升级。

编译方式如下:

- 1) 打开编译器 xtensa, 已默认指向待编译路径 d:\esp_iot_sdk\app。
- 2) 输入 make 命令,回车。根据 makefile 生成.output 文件夹,存放 lib 及obj 文件。
 - 3) 输入 gen_misc.bat,回车。即可生成相应 bin 文件。

bin 文件说明如下:

- 1) blank.bin,由 Espressif 提供,烧录到 0x7E000 地址;
- 2) eagle.app.v6.flash.bin,如上编译生成,烧录到 0x0000 地址;
- 3) master device key.bin,向 Espressif 服务器申请,烧录到 0x3E000 地址;
- 4) eagle.app.v6.irom0text.bin,如上编译生成,烧录到 0x40000 地址;

5)esp_init_data_default.bin,由 Espressif 提供,存储射频相关参数的初始值, 烧录到 0x7c000 地址

注意,

- 1) blank.bin 不是每次都需烧录,仅当 sdk 升级版本或需要擦除 WIFI 配置参数时进行烧录;
- 2)master_device_key.bin 不是每次都需烧录,仅当第一次写入或需要更改master_device_key 时烧录;
- 3)一般情况,仅需烧录 eagle.app.v6.flash.bin-> eagle.app.v6.irom0text.bin 两个 bin 即可。

4.3.2. 支持云端升级

esp_iot_sdk_v0.8 及之后的软件版本,支持云端升级。同时也兼容之前的编译及烧录方式,对于 esp_iot_sdk_v0.8 及之后的软件,如无需云端升级功能,仍可采用 4.3.1 不支持云端升级 中的编译及烧录方法。

具体的云端升级功能说明,请参见文档"云端升级实现方案"。

编译方式如下:

- 1) 打开编译器, 先编译 user1.bin, 执行指令 make APP=1
- 2) 执行 gen_misc_plus.bat user1,在路径"\esp_iot_sdk\bin\upgrade"下生成 user1.bin;
- 3) 执行 make clean,清除之前的编译信息;
- 4) 再编译 user2.bin,执行指令 make APP=2
- 5) 执行命令 gen_misc_plus.bat user2,在路径"\esp_iot_sdk\bin\upgrade" 下生成 user2.bin

bin 文件说明如下:

- 1) blank.bin,由 Espressif 提供,烧录到 0x7E000 地址;
- 2) boot.bin,由 Espressif 提供,烧录到 0x00000 地址;
- 3) user1.bin, 如上编译生成, 烧录到 0x01000 地址;
- 4) master device key.bin,向 Espressif 服务器申请,烧录到 0x3E000 地址;

5)esp_init_data_default.bin,由 Espressif 提供,存储射频相关参数的初始值,烧录到 0x7c000 地址

注意,

初次烧录仅需依照上述四步操作,无需烧录 user2.bin。

后续进行软件更新时,将新版本的 user1.bin 和 user2.bin 两个 bin 文件 均上传到服务器,服务器向用户推送软件更新消息,若用户选择更新,则设备会依据自身的运行情况选择下载 user1.bin 或 user2.bin 其中之一,实现云端升级。