```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv('/content/NEO Earth Close Approaches.csv')
df.head(),df.info()

Show hidden output
```

The dataset contains 1,573 entries and 9 columns. No missing values. The Close-Approach (CA) Date column is in string format and needs conversion to datetime. The Diameter column contains ranges (e.g., "13 m - 29 m"), requiring parsing into min/max values.

df.describe()

₹		Close-Approach (CA) Date	CA DistanceNominal (au)	CA DistanceMinimum (au)	V relative(km/s)	V infinity(km/s)	H(mag)	Rarity	Diameter Min (m)	Diam Max
	count	1573	1573.000000	1573.000000	1573.000000	1573.000000	1573.000000	1573.000000	1573.000000	1573.00
	mean	2023-11-03 04:32:41.042593792	0.021108	0.020705	10.596853	10.540846	26.136554	0.127146	23.903566	50.04
	min	2023-05-03 01:15:00	0.000070	0.000070	0.440000	0.130000	18.500000	0.000000	0.910000	2.000
	25%	2023-09-07 00:19:00	0.008530	0.008310	7.040000	7.000000	25.200000	0.000000	9.600000	21.00
	50%	2023-10-27 11:16:00	0.019840	0.019190	9.600000	9.570000	26.200000	0.000000	15.000000	34.00
	75%	2024-01-14 00:04:00	0.032290	0.031630	13.360000	13.320000	27.200000	0.000000	25.000000	55.00
	4									•

```
df['Close-Approach (CA) Date'] = pd.to_datetime(
    df['Close-Approach (CA) Date'].str.split('±').str[0].str.strip(),
    format='%Y-%b-%d %H:%M',
    errors='coerce'
)

df["Diameter Min (m)"] = df["Diameter"].str.extract(r'(\d+\.?\d*) m')[0].astype(float)
df["Diameter Max (m)"] = df["Diameter"].str.extract(r'-\s*(\d+\.?\d*) m')[0].astype(float)
df.drop(columns=["Diameter"], inplace=True)

df.head()
```

_ →		0bject	Close- Approach (CA) Date	CA DistanceNominal (au)	CA DistanceMinimum (au)	V relative(km/s)	V infinity(km/s)	H(mag)	Rarity	Diameter Min (m)	Diameter Max (m)	
	0	(2023 JA1)	2023-05-03 01:15:00	0.02518	0.02509	5.01	4.99	26.6	0	13.0	29.0	
	1	(2023 HV5)	2023-05-03 03:16:00	0.00291	0.00290	8.93	8.82	27.2	0	9.8	22.0	
	4 0	(2023	2023-05-03						-			•

Next steps:

View recommended plots

New interactive sheet

df.isnull().sum()

```
∓
              Object
                               0
     Close-Approach (CA) Date 0
      CA DistanceNominal (au) 0
     CA DistanceMinimum (au) 0
          V relative(km/s)
          V infinity(km/s)
                               0
              H(mag)
                               0
              Rarity
                               0
          Diameter Min (m)
                               0
         Diameter Max (m)
                               0
```

4

dtvpe: int64

df.dtypes

__

```
0
         Object
                                   object
Close-Approach (CA) Date
                          datetime64[ns]
CA DistanceNominal (au)
                                  float64
CA DistanceMinimum (au)
                                  float64
    V relative(km/s)
                                  float64
     V infinity(km/s)
                                  float64
         H(mag)
                                  float64
         Rarity
                                    int64
    Diameter Min (m)
                                  float64
   Diameter Max (m)
                                  float64
```

 $df["Diameter Min (m)"].fillna(df["Diameter Min (m)"].median(), inplace=True) \\ df["Diameter Max (m)"].fillna(df["Diameter Max (m)"].median(), inplace=True) \\$

₹

Show hidden output

dtvne: obiect

```
plt.figure(figsize=(8, 5))
sns.scatterplot(x=df["CA DistanceNominal (au)"], y=df["V relative(km/s)"], alpha=0.6)
plt.xlabel("Close-Approach Distance (AU)")
plt.ylabel("Relative Velocity (km/s)")
plt.title("Velocity vs. Close-Approach Distance")
plt.show()
```



```
# Visualization - Histogram of Close-Approach Distance (AU)
plt.figure(figsize=(8, 5))
sns.histplot(df["CA DistanceNominal (au)"], bins=30, kde=True, color='blue')
plt.xlabel("Close-Approach Distance (AU)")
plt.ylabel("Frequency")
plt.title("Distribution of Close-Approach Distances")
plt.show()
```



```
plt.figure(figsize=(10, 6))
plt.hist(
    (df["Diameter Min (m)"] + df["Diameter Max (m)"]) / 2,
    bins=5,
    color='green',
    edgecolor='black',
    alpha=0.7
)
plt.xlabel("Average Diameter (m)")
plt.ylabel("Frequency")
plt.title("Size Distribution Histogram")
plt.grid(True, alpha=0.3)
```

plt.show()


```
plt.figure(figsize=(10, 6))
plt.hist(
    df["V relative(km/s)"],
    bins=5,
    color='orange',
    edgecolor='black',
    alpha=0.7
)
plt.xlabel("Relative Velocity (km/s)")
plt.ylabel("Frequency")
plt.title("Velocity Distribution Histogram")
plt.grid(True, alpha=0.3)
plt.show()
```

 $\overline{\mathbf{T}}$


```
# Time series analysis of close approaches
plt.figure(figsize=(10, 5))
df_sorted = df.sort_values("Close-Approach (CA) Date")
sns.lineplot(x=df_sorted["Close-Approach (CA) Date"], y=df_sorted["CA DistanceNominal (au)"], marker="o", alpha=0.5)
plt.xlabel("Date")
plt.ylabel("Close-Approach Distance (AU)")
plt.title("Time Series of NEO Close Approaches")
plt.xticks(rotation=45)
plt.show()
```


Correlation heatmap

```
numeric_df = df.select_dtypes(include=['float64', 'int64'])
plt.figure(figsize=(8, 5))
sns.heatmap(numeric_df.corr(), annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Heatmap of NEO Data")
plt.show()
```

