Claims

[c1]	A device for producing a microfluid jet in a fluid environment, said device
	comprising:
	a microfluid chamber having:
	(i)at least one opening at a distal end;
	(ii)a vapor producing means opposite said opening;
	wherein said fluid chamber is capable of producing a microfluidic jet in a fluid
	environment upon actuation.
[c2]	The device according to Claim 1, wherein said vapor producing means produce
	a vapor bubble inside said microfluid chamber.
[c3]	The device according to Claim 1, wherein said vapor producing means is a high
	pressure vapor producing means.
[C4]	The device according to Claim 3, wherein said high pressure vapor producing
	means is an electrode.
[c5]	The device according to Claim 3, wherein said high pressure vapor producing
	means is a laser.
[c6]	The device according to Claim 1, wherein said opening has a diameter ranging
	from about 1 μ m to 1 mm.
[c7]	The device according to Claim 1, wherein a distance of 1 μ m to 1 cm separates
	said opening and said oppositely positioned vapor producing means.
[c8]	
	A device for producing a microfluidic jet in a fluid environment, said device
	comprising:
	a micronozzel having a distal end comprising a fluid chamber, wherein said
	fluid chamber has a volume ranging from about 10 μ m 3 to 1 cm 3 and comprises:
	(i)a single opening having a diameter ranging from about 1 μ m to 1 mm; and
	(ii)a vapor producing means located opposite said opening and separated from
	said opening by a distance ranging from about 1 μ m to 1 cm;

wherein said fluid chamber is capable of producing a microfluidic jet in a fluid

environment upon actuation.

- [c9] The device according to Claim 8, wherein said vapor producing means is a high pressure vapor producing means capable of introducing energy into a fluid in a manner sufficient to produce a vapor bubble.
- [c10] The device according to Claim 9, wherein said high pressure vapor producing means comprises an electrode.
- [c11] The device according to Claim 9, wherein said vapor producing means comprises a laser.
- [c12] The device according to Claim 8, wherein said opening has a diameter ranging from about 1 μ m to 1 mm.
 - A device for producing a microfluidic jet in a fluid environment, said device comprising:

a micronozzel having a distal end comprising a fluid chamber, wherein said fluid chamber has a volume ranging from about 10 μ m 3 to 1 cm 3 and comprises:

- (i)a single opening having a diameter ranging from about 1 μ m to 1 mm; and (ii)an electrode vapor producing means located opposite said opening and separated from said opening by a distance ranging from about 10 μ m to 1 cm; wherein said fluid chamber is capable of producing a microfluidic jet in a fluid environment upon actuation.
- [c14] A device comprising at least two microfluid chambers, wherein each microfluid chamber comprises:
 - (i)an opening at a distal end; and
 - (ii)a vapor producing means opposite said opening; wherein each of said microfluid chambers is capable of producing a microfluidic jet in a fluid environment upon actuation.
- [c15] The device according to Claim 14, wherein said at least two microfluid chambers are individually actuatable.
- [c16] The device according to Claim 14, wherein said device comprises a plurality of

[c13]

said microfluid chambers.

[c17] The device according to Claim 16, wherein said device comprises an array of microfluid chambers.

- [c18] A method of producing a fluid microjet in a fluid environment, said method comprising:
 - (a)contacting said fluid environment with a microfluid chamber comprising:
 - (i)an opening at a distal end; and
 - (ii)a vapor producing means opposite said openings;; and
 - (b)actuating said vapor producing means in a manner sufficient to produce a vapor bubble inside said fluid chamber;

whereby a fluid microjet is produced in said fluid environment.

The method according to Claim 18, wherein said vapor producing means is actuated in a manner sufficient to produce pulsed microfluid jets in said fluid environment.

The method according to Claim 18, wherein said microfluid chamber is positioned proximal to a tissue in said fluid environment and said method is a method of physically modulating said tissue with said fluid microjet.

The method according to Claim 20, wherein said method is a method of cutting tissue.

- [c22] The method according to Claim 20, wherein said micronozzel is positioned proximal to a cell and said method is a method of introducing fluid into said cell.
- [c23] The method according to Claim 20, wherein said micronozzel is positioned proximal to a blood vessel and said method is a method of manipulating a clot by a water jet.

[c20]

[c21]