WHAT IS CLAIMED IS:

1	1.	An igolate	ed polynucleotide, comprising a nucleic acid sequence selected from the group	
1	1.	consisting of:		
2			a polynucleotide of an even SEQ ID NO., or of a human cDNA of a deposited clone,	
3		a)	encoding at least any single integer from 6 to 500 amino acids of any one odd SEQ ID	
4				
5		4.5	NO., a polynucleotide of an even SEQ ID NO., or of a human cDNA of a deposited clone,	
6		b)		
7			encoding the signal peptide sequence of any one odd SEQ ID NO.,	
8		c)	a polynucleotide of an even SEQ ID NO., or of a human cDNA of a deposited clone,	
9			encoding a mature polypeptide sequence of any one odd SEQ ID NO.,	
10		d)	a polynucleotide of an even SEQ ID NO., or of a human cDNA of a deposited clone,	
11			encoding a full length polypeptide sequence of any one odd SEQ ID NO.,	
12		e)	a polynucleotide of an even SEQ ID NO., or of a human cDNA of a deposited clone,	
13			encoding a polypeptide sequence of a biologically active fragment of any one odd	
14			SEQ ID NO.,	
15		f)	a polynucleotide encoding a polypeptide sequence of at least any single integer from 6	
16			to 500 amino acids of any one odd SEQ ID NO. or of a polypeptide encoded by a	
17			human cDNA of a deposited clone,	
18		g)	a polynucleotide encoding a polypeptide sequence of a signal peptide of any one odd	
19			SEQ ID NO. or of a signal peptide encoded by a human cDNA of a deposited clone,	
20		h)	a polynucleotide encoding a polypeptide sequence of a mature polypeptide of any one	
21			odd SEQ ID NO. or of a mature polypeptide encoded by a human cDNA of a	
22			deposited clone,	
23		i)	a polynucleotide encoding a polypeptide sequence of a full length polypeptide of any	
24			one odd SEQ ID NO. or of a mature polypeptide encoded by a human cDNA of a	
25			deposited clone,	
26	<u>.</u>	j)	a polynucleotide encoding a polypeptide sequence of a biologically polypeptide of	
27	,		any one odd SEQ ID NO., or of a biologically polypeptide encoded by a human	
28	3		cDNA of a deposited clone,	
29)	k)	a polynucleotide of any one of a) through j) further comprising an expression vector,	
30		1)	a host cell recombinant for a polynucleotide of a) through k) above,	
31		m)	a non-human transgenic animal comprising the host cell of k),	
32		n)	a polynucleotide of a) through j) further comprising a physiologically acceptable	
3:		,	carrier.	

^{1 2.} A polypeptide comprising an amino acid sequence selected from the group consisting of:

	91.0	JS2.REG	
2		a)	any single integer from 6 to 500 amino acids of any one odd SEQ ID NO. or of a
3			polypeptide encoded by a human cDNA of a deposited clone;
4		b)	a signal peptide sequence of any one odd SEQ ID NO. or encoded by a human cDNA
5			of a deposited clone;
6		c)	a mature polypeptide sequence of any one odd SEQ ID NO. or encoded by a human
7			cDNA of a deposited clone;
8		d)	a full length polypeptide sequence of any one odd SEQ ID NO. or encoded by a
9			human cDNA of a deposited clone;
10		e)	a polypeptide of a) through d) further comprising a physiologically acceptable carrier.
1	3.	A method	d of making a polypeptide, said method comprising
2		a)	providing a population of host cells comprising the polynucleotide of claim 1;
3		b)	culturing said population of host cells under conditions conducive to the production of
4			a polypeptide of claim 2 within said host cells; and
5		c)	purifying said polypeptide from said population of host cells.
1	4.	A method	d of making a polypeptide, said method comprising:
2		a)	providing a population of cells comprising a polynucleotide encoding the polypeptide
3			of claim 2, operably linked to a promoter;
4		b)	culturing said population of cells under conditions conducive to the production of said
5			polypeptide within said cells; and
6		c)	purifying said polypeptide from said population of cells.
1	5.	An antib	ody that specifically binds to the polypeptide of claim 2.
1	6.	A metho	d of binding a polypeptide of claim 2 to an antibody of claim 5, comprising contacting
2		said antil	oody with said polypeptide under conditions in which antibody can specifically bind to
3		said poly	peptide.
1	7.	A metho	d of determining whether a GENSET gene is expressed within a mammal, said method
2		comprisi	ng the steps of:
3			a) providing a biological sample from said mammal
4			b) contacting said biological sample with either of:
5			i) a polynucleotide that hybridizes under stringent conditions to the
6			polynucleotide of claim 1; or
7			ii) a polypeptide that specifically binds to the polypeptide of claim 2; and

c) detecting the presence or absence of hybridization between said polynucleotide

3

	91.US2.REG					
9	and an RNA species within said sample, or the presence or absence of binding					
10	of said polypeptide to a protein within said sample;					
11	wherein a detection of said hybridization or of said binding indicates that said GENSET gene is					
12	expressed within said mammal.					
1	8. The method of claim 7, wherein said polynucleotide is a primer, and wherein said hybridization					
2	is detected by detecting the presence of an amplification product comprising the sequence of					
3	said primer.					
1	9. The method of claim 7, wherein said polypeptide is an antibody.					
1	10. A method of determining whether a mammal has an elevated or reduced level of GENSET general					
2	expression, said method comprising the steps of:					
3	a) providing a biological sample from said mammal; and					
4	b) comparing the amount of the polypeptide of claim 2, or of an RNA species					
5	encoding said polypeptide, within said biological sample with a level					
6	detected in or expected from a control sample;					
7	wherein an increased amount of said polypeptide or said RNA species within said biological					
8	sample compared to said level detected in or expected from said control sample indicates that					
9	said mammal has an elevated level of said GENSET gene expression, and wherein a decreased					

- 10 amount of said polypeptide or said RNA species within said biological sample compared to said 11 level detected in or expected from said control sample indicates that said mammal has a reduced 12 level of said GENSET gene expression.
- 1 11. A method of identifying a candidate modulator of a GENSET polypeptide, said method 2 comprising:
 - a) contacting the polypeptide of claim 2 with a test compound; and
- 4 b) determining whether said compound specifically binds to said polypeptide; 5 wherein a detection that said compound specifically binds to said polypeptide indicates that said 6 compound is a candidate modulator of said GENSET polypeptide.
- 1 12. The method of claim 11, further comprising testing the biological activity of said GENSET 2 polypeptide in the presence of said candidate modulator, wherein an alteration in the biological 3 activity of said GENSET polypeptide in the presence of said compound in comparison to the 4 activity in the absence of said compound indicates that the compound is a modulator of said 5

91.US2.REG

- 1 13. A method for the production of a pharmaceutical composition comprising
- a) identifying a modulator of a GENSET polypeptide using the method of claim 11;
- 3 and
- 4 b) combining said modulator with a physiologically acceptable carrier.

5