Estructura de datos
Enero - Abril 2018
Examen de diagnostico
9 de enero de 2018
Tiempo límite: 60 Minut

Matrícula:	

Profesor: Dr. Said Polanco Martagón

Este examen contiene 4 paginas (incluyendo esta página) y 10 preguntas.

El total de puntos es 10.

Lea detenidamente y conteste lo que se pregunta. Si no sabe la respuesta **no conteste**. Una respuesta *incorrecta* **restará los puntos de la pregunta**, mientras que una pregunta sin contestar **no restará puntos**.

Tabla de puntaje (Para uso del profesor)

Question	Points	Score
1	1	
2	1	
3	1	
4	1	
5	1	
6	1	
7	1	
8	1	
9	1	
10	1	
Total:	10	

- 1. (1 point) ¿cuál es el producto cartesiano de los conjuntos $A=\{1,2\}$ y $B=\{a,b,c\}$?
- 2. (1 point) Calcular la moda, media y desviación estándar de la siguiente serie de números: 21, 4, 56, 21, 19, 18, 23, 4, 56, 18, 21, 19, 23, 24, 21, 56, 21, 23, 18, 4.

- 3. (1 point) Considera estas frases.
 - "Todos los leones son fieros"
 - .^Algunos leones no toman café"
 - .^Algunas criaturas fieras no toman café"

Sean P(x), Q(x) y R(x) los enunciados "x es un león", "x es fiero" y "x toma café", respectivamente. Asumiendo que el dominio es el conjunto de todas las criaturas, expresa las sentencias del argumento usando los cuantificadores P(x), Q(x) y R(x).

- A.
- В.
- C.
- 4. (1 point) Escriba un algoritmo en pseudocódigo que dados dos puntos en el plano (x_1, y_1) y (x_2, y_2) , calcule y escriba la distancia entre ellos.

5. (1 point) Dado el siguiente diagrama de clases, escriba el programa correspondiente.

6.	(1 point) Dibuje la clase de un objeto conexión la cual contenga los métodos insert, select, update, delete. Dicho diagrama deberá mostrar el polimorfismo en los métodos.
7	(1 point) Sobragarga de métodos significa que pueden baber varios métodos con el mismo
1.	 (1 point) Sobrecarga de métodos significa que pueden haber varios métodos con el mismo nombre pero a los cuales se les pasan distintos a argumentos Verdadero Falso
8.	 (1 point) ¿Cuál es la descripción que crees que define mejor el concepto de 'clase' en la programación orientada a objetos?

- O Es un modelo o plantilla a partir de la cual creamos objetos
- O Es una categoria de datos ordenada en java.
- 9. (1 point) ¿Qué significa instanciar una clase?
 - O Duplicar una clase.
 - O Eliminar una clase.
 - O Crear un objeto a partir de su clase.
 - O Conectar dos clases por medio de la herencia.
- 10. (1 point) Dado el conjunto

$$P = \{(3, 11), (14, 12), (5, 15), (14, 6), (1, 15), (8, 21), (5, 7), (10, 11), (8, 4), (13, 1)\}$$

. ¿Cuál es el resultado de aplicar el algoritmo?. Donde $p \prec q$ si $\exists q_i \forall p_i : p_i = q_i \land p_i \leq q_i$. Dibuje una gráfica de puntos con su respuesta.

${\tt fast-non-dominated-sort}(P)$

```
for each p \in P
   S_p = \emptyset
   n_p = 0
   for each q \in P
       if (p \prec q) then
          S_p = S_p \cup \{q\}
       else if (q \prec p) then
          n_p = n_p + 1
   if n_p = 0 then
       p_{\text{rank}} = 1
       \mathcal{F}_1 = \mathcal{F}_1 \cup \{p\}
i = 1
while \mathcal{F}_i \neq \emptyset
   Q = \emptyset
   for each p \in \mathcal{F}_i
       for each q \in S_p
          n_q = n_q - 1
          if n_q = 0 then
              q_{\rm rank} = i + 1
              Q = Q \cup \{q\}
   i = i + 1
   F_i = Q
```