MAT 1107 Introduccción al Cálculo - Pauta Interrogación 2

Tiempo: 2:00 horas

- 1. Sean $\mathbb{N} = \{1, 2, ...\}$ el conjunto de los números naturales y $\mathbb{Z} = \{..., -1, 0, 1, ...\}$ el conjunto de los números enteros. Resuelva los siguientes problemas:
 - a) Demuestre que la función $f:\mathbb{N}\to\mathbb{N}$ definida por $f(n)=n^2$ es inyectiva. ¿Es sobreyectiva?

Solución. La función es inyectiva. En efecto, si f(n) = f(m) entonces $n^2 = m^2$. Como n, m > 0 tenemos que $n = \sqrt{n^2} = \sqrt{m^2} = m$. La función no es sobreyectiva, ya que y = 3 no es el cuadrdo de ninún número entero.

b) Construya una función biyectiva $f: \mathbb{N} \to \mathbb{Z}$.

Solución. Sea $f: \mathbb{N} \to \mathbb{Z}$ definida por

$$f(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ es par.} \\ -\frac{n-1}{2} & \text{si } n \text{ es impar.} \end{cases}$$

La función f es inyectiva. En efecto, si n es par y m es impar entonces sus imágenes tiene distinto signo y por lo tanto son distintas. Sean n, m números pares. Si f(n) = f(m) entonces n/2 = m/2 y por lo tanto n = m. Supongamos, finalmente, que n, m son impares. Si f(n) = f(m) entonces -(n-1)/2 = -(m-1)/2 y por lo tanto n = m. Por lo tanto, f es inyectiva. Probaremos que es sobreyectiva. Sea $n \in \mathbb{Z}$ un entero positivo, entonces f(2n) = n. Notemos que f(1) = 0. Sea $n \in \mathbb{Z}$ un entero negativo, entonces f(2n+1) = n. Por lo tanto f es sobreyectiva y en consecuencia, biyectiva.

- 2. Resuelva los siguientes problemas:
 - a) Determine el dominio de la función $f(x) = \sqrt{\frac{x^2+2}{x-1}}$.

Solución. Notemos que para que la función esté bien definida es suficiente que x-1>0. Luego $\mathrm{dom}(f)=(1,\infty)$.

b) Determine el recorrido de la función $f(x) = 3x^2 + 6x + 1$.

Solución. La funcón f es una parábola convexa. Por lo tanto, si (x_v, y_v) es el vértice entonces el recorrido es $[y_v, \infty)$. Notemos que $x_v = -b/(2a) = -6/6 = -1$, luego $y_v = f(-1) = -2$. Así, ref $(f) = [-2, \infty)$.

3. Sean $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = 3x + 2 y $g: [-1, 1] \to R$ definida por $\sqrt{1 - x^2}$. Determine el dominio una fórumla para $g \circ f$.

Solución. Notemos que,

$$\operatorname{dom}(g \circ f) = \{x \in \operatorname{dom} f : f(x) \in \operatorname{dom} g\} = \{x \in \mathbb{R} : 3x + 2 \in [-1, 1]\}$$
$$\{x \in \mathbb{R} : -1 \le 3x + 2 \le 1\} = \{x \in \mathbb{R} : -1 \le x \le \frac{-1}{3}\} = \left[-1, -\frac{1}{3}\right].$$

Además,

$$(g \circ f)(x) = \sqrt{1 - (3x + 2)^2} = \sqrt{-3 - 13x - 9x^2}.$$

4. Calcule los largos de los lados de un rectángulo de perímetro 80mts y área máxima.

Solución. Sean x e y los largos de los lados del rectángulo. Su perímetro viene dado por:

$$2x + 2y = 80$$

Por lo tanto y=40-x. Por otra parte su área es A=xy. Es decir, $A=x(40-x)=40x-x^2$. Así, el área es como funcón de x es una parábola que posee su máximo en el vértice. Para calcular el vértice, utilizamos la fórmula x'=-b/2a=-40/-2=20. Luego y'=40-20=20. Por lo tanto las dimensiones buscadas son x=20 e y=20, es decir el recátngulo de perímetro 80mts que maximiza área es el cuadrado de lado 20mts.