Базис - это упорядоченный набор линейно-независимых векторов в векторном пространстве. В этом случае, любой вектор этого пространства может быть представлен единственным способом, в виде линейной комбинации векторов из этого набора.

Базисы записываются как $(\overline{e}_1; \overline{e}_2; \ldots)$. Главное условие для этих векторов \overline{e}_i - они все *линейно независимые* относительно друг друга.

Давайте посмотрим на тонкости этого определения.

- 1. Упорядоченный набор: это значит, что порядок векторов в базисе имеет значение. Базис $(\overline{i};\overline{j})$ не равен базису $(\overline{j};\overline{i})$!
- 2. Линейная независимость: это значит, что ни какой вектор базиса не должен выражаться через другой вектор этого же базиса. Представим, например, "базис" $(\overline{a};\overline{b})$, где $\overline{a}(2;4)$ и $\overline{b}(4;8)$. Нетрудно заметить, что $\overline{b}=2\overline{a}$. Так как вектор \overline{b} выразился через \overline{a} , они будут коллинеарны, отчего наше 2д пространство будет сжато всего-лишь в одну прямую. Через этот "базис" мы не сможем выразить, допустим, точку (4,2).

$$egin{cases} 2lpha+4eta=4\ 4lpha+8eta=2 \end{cases} \Rightarrow arnothing$$

Кстати говоря, проверить, является ли набор вектором базисом, можно подсчитав *детерминант*, состоящий из координат данных векторов. Набор будет базисом, если детерминант не равен нулю:

$$egin{bmatrix} 2 & 4 \ 4 & 8 \end{bmatrix} = 2 \cdot 8 - 4 \cdot 4 = 0$$

3. Вектора в векторном пространстве: это значит, что какие вектора мы хотим выразить в пространстве, из него и должны быть выбранные базисные вектора. Мы не можем, например, выбрать 3д вектор для описания 2д базиса. Строго говоря, это просто должны быть элементы, для которых определены операции сложения и умножения.

4. Линейная комбинация: это просто словосочетание для описания разложения любого вектора как сумму других: скажем, базис $(\overline{i},\overline{j})$. Мы можем теперь выразить случайный вектор \overline{a} как линейную комбинацию этих векторов: $\overline{a}=5\overline{i}+3\overline{j}$.

Обращаю внимание, что базисные векторы не обязательно должны быть ортогональны - они вполне могут быть и под углом друг другу, главное, чтобы не были неколлинеарны!

Из-за этого факта базис может называться *ортогональным*, если все его векторы ортогональны друг другу. Затем, *ортогональный* базис может левелапнуться до *ортонормированного*, если длины всех его векторов равны единице.

Нулевой вектор делает любую систему линейно зависимой. Если векторы a и b коллинеарны, то они линейно зависимы. Если векторы a,b,c компланарны, то они линейно зависимы.

Комбинируя базис с точкой начала координат, мы получим *систему координат*.

Базис имеет понятие ориентации, но подробнее об этом в вопросе 9. Ориентация прямой, плоскости, пространства.