A QCNN for Quantum State Preparation Carnegie Vacation Scholarship

David Amorim

Week 5 (29/07/2024 - 02/08/2024)

Table of Contents

Preliminaries

2 Improving the Loss Function

Next Steps

Aims for the Week

The following aims were set at the last meeting (29/07/2024):

Improve Loss Function

Work on an improved version of WILL. Incorporate some phase extraction metrics (e.g. χ , ϵ) into the loss function.

Investigate Phase Extraction

Study the relationship between mismatch and the extracted phase, i.e. study the operator $\tilde{Q}^{\dagger}(\hat{I}\otimes\hat{R})\tilde{Q}.$

Mitigate Barren Plateaus

Work on strategies to mitigate barren plateaus, e.g. implement layer-by-layer training.

THIS WEEK INCLUDE EXAMPLES WITH HIGH m !! KEEP WORKING ON CHIL!! MAYBE RENAME TO QRQ??v DOES NOT WORK !!! I I I I

4 / 14

Table of Contents

Preliminaries

2 Improving the Loss Function

Next Steps

WILL Revisited

 As discussed at the meeting on 29/07, the definition of WILL (weighted L_p loss) was amended to:

$$\mathsf{WILL}_{\mathsf{p},\mathsf{q}} = \left(\sum_{k} \left| x_k - y_k \right|^p + |\mathbf{x}_k| \left| [k]_m - \Psi([k]_n) \right|^q \right)^{1/p}, \quad (1)$$

where the changes to the previous definition are highlighted

• Testing this for different Ψ (with L=6, m=3 and 600 epochs) yielded the following optimal values for p, q:

$\Psi(f)$	p	q
$\sim f$	0.25	0.5
$\sim f^2$	1	1.5
Ψ_{H23}	0.75	2

Table 1: Optimal identified p, q values for WILL

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	3.4e-2	6.0e-2	4.5e-1
σ	1.4e-1	1.1e-1	4.7e-1
ϵ	1.9e-2	9.2e-2	2.6e-1
χ	3.2e-2	5.1e-2	3.7e-1
Ω	4.46	3.19	0.76

Table 2: Comparing loss function metrics for $\Psi(f)\sim f$ ($L=6,\ m=3,\ 600$ epochs)

Figure 1: Comparing extracted phase functions for $\Psi(f)\sim f$ ($L=6,\ m=3,\ 600$ epochs)

7 / 14

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	1.9e-1	2.3e-1	6.6e-1
σ	1.2e-1	1.0e-1	4.1e-1
ϵ	2.2e-1	4.2e-1	2.8e-2
χ	1.9e-1	2.0e-1	6.1e-1
Ω	1.39	1.05	0.57

Table 3: Comparing loss function metrics for $\Psi(f) \sim f^2$ ($L=6,\ m=3,\ 600$ epochs)

Figure 2: Comparing extracted phase functions for $\Psi(f)\sim f^2$ ($L=6,\ m=3,$ 600 epochs)

8/14

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	6.8e-2	8.4e-2	7.6e-2
σ	1.8e-1	1.2e-1	2.6e-1
ϵ	4.5e-2	1.8e-1	7.3e-3
χ	7.4e-2	1.0e-1	6.2e-2
Ω	2.75	2.07	2.48

Table 4: Comparing loss function metrics for $\Psi_{\rm H23}$ ($L=6,\ m=3,\ 600$ epochs)

Figure 3: Comparing extracted phase functions for $\Psi_{\rm H23}$ ($L=6,\ m=3,\ 600$ epochs)

9/14

Other Approaches

- Attempts to define a loss function based directly on $\hat{Q}^{\dagger}\hat{R}\hat{Q}$, e.g. minimising χ , were unsuccessful
- This is due to the qiskit machine learning environment being build around sampler primitives which return quasi-probabilities instead of probability amplitudes
- Thus, phases cannot be directly taken into account for gradient calculation
- A possible work-around could be to switch to a QCNN based on an estimator primitive, which calculates the expectation value of an observable w.r.t to the state prepared by the network
- This would require the construction of an appropriate operator (note: qiskit supports non-Hermitian observables)
- Beyond this, no further ansatze for loss functions come to mind

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 久 ②

An Estimator-based PQC

• Let $|\tilde{\phi}\rangle$ be the state produced by the PQC:

$$|\tilde{\phi}\rangle = \sum_{k} \tilde{A}(k)e^{i\tilde{\Psi}(k)}|k\rangle$$
 (2)

The desired output state is

$$|\phi\rangle = \sum_{k} A(k)e^{i\Psi(k)}|k\rangle \tag{3}$$

 An estimator-based optimiser calculates the loss and gradients for each epoch based on the expectation value

$$\mathbb{E}(\tilde{\phi}) = \langle \tilde{\phi} | \hat{O} | \tilde{\phi} \rangle = \sum_{k,k'} \tilde{A}(k') \tilde{A}(k) \exp\left(i \left[\tilde{\Psi}(k) - \tilde{\Psi}(k')\right]\right) \langle k' | \hat{O} | k \rangle,$$
(4)

for some operator \hat{O}

4 11 1 4 12 1 4 12 1 12 1

11 / 14

An Estimator-based PQC

• Now construct \hat{O} such that

$$\langle k'|\hat{O}|k\rangle \equiv \frac{1}{A(k')A(k)} \exp\left(-i\left[\Psi(k) - \Psi(k')\right]\right)$$
 (5)

for $A(k), A(k') \neq 0$

Then

$$\mathbb{E}(\phi) = 1 \tag{6}$$

so that we can train the network to generate $|\phi\rangle$ by minimising $|1-\mathbb{E}(\tilde{\phi})|$

• This is highly speculative but could be worth trying?

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

12 / 14

Table of Contents

Preliminaries

2 Improving the Loss Function

Next Steps

Next Steps

• ...

14 / 14