Šie uzdevumi no nesenām "Baltic Way" olimpiādēm izmanto $K\bar{a}pin\bar{a}t\bar{a}ja$ pacelšanas lemmas (Lifting the Exponent Lemmas).

Uzdevums 100.5: Ar P(n) apzīmējam lielāko pirmskaitli, ar ko dalās n. Atrast visus naturālos skaitļus $n \geq 2$, kam

$$P(n) + |\sqrt{n}| = P(n+1) + |\sqrt{n+1}|.$$

(Piezīme: |x| apzīmē lielāko veselo skaitli, kas nepārsniedz x.)

Uzdevums 100.6: Atrast visus naturālos skaitļus n, kuriem $n^{n-1}-1$ dalās ar 2^{2015} , bet nedalās ar 2^{2016} .

Uzdevums 100.7: Dots pirmskaitlis p > 3, kuram $p \equiv 3 \pmod{4}$. Dotam naturālam skaitlim a_0 virkni a_0, a_1, \ldots definē kā $a_n = a_{n-1}^{2^n}$ visiem $n = 1, 2, \ldots$ Pierādīt, ka a_0 var izvēlēties tā, ka apakšvirkne $a_N, a_{N+1}, a_{N+2}, \ldots$ nav konstanta pēc moduļa p nevienam naturālam N.

Uzdevums 100.8: Ar $\omega(n)$ apzīmēsim dažādo pirmskaitļu skaitu, ar ko dalās n. Pierādīt, ka ir bezgalīgi daudz tādu naturālu skaitļu n, kuriem $\omega(n) < \omega(n+1) < \omega(n+2)$.

Uzdevums 100.9: Pirmskaitlim p un naturālam skaitlim n apzīmējam ar f(p,n) lielāko veselo skaitli k, kuram $p^k \mid n!$. Dots fiksēts pirmskaitlis p, bet m un c ir jebkādi naturāli skaitļi. Pierādīt, ka eksistē bezgalīgi daudzi tādi naturāli skaitļi n, kuriem $f(p,n) \equiv c \pmod{m}$.