學號:B04902063 系級: 資工三 姓名:陳昱儒

1. (1%) 請說明你實作的 RNN model,其模型架構、訓練過程和準確率為何? (Collaborators: 模型架構部分有參考去年修課的 湯忠憲 同學)

在進入訓練前有先使用gensim提供的PorterStemmer()提取詞幹,將一些英文單字詞性變化的差異去除。模型架構部分,首先使用了gensim提供的Word2Vec訓練好的100維詞向量丟進embedding layer(預設句子最長的長度為40個單字),再來分別使用了兩層的 Bidirectional LSTM,輸出維度分別為128和50,並分別使用了0.3以及0.2的dropout rate,activation 選用tanh。之後再接了兩層的Dense,輸出維度分別為50以及1,兩層Dense之間設了一個dropout,比率為0.3,而兩個Dense使用的activation分別為relu以及sigmoid,而model 訓練的 loss function 選用binary_crossentropy,optimizer選用adam,使用了10%的training data 做為validation data,model的summary如下:

ayer (type)	Output	Shape	Param #			
input_1 (InputLayer)	(None,	40)	0			
embedding_1 (Embedding)	(None,	40, 100)	20928100			
oidirectional_1 (Bidirection	(None,	40, 256)	234496			
oidirectional_2 (Bidirection	(None,	100)	122800			
dense_1 (Dense)	(None,	50)	5050			
dropout_1 (Dropout)	(None,	50)	0			
dense_2 (Dense)	(None,	1)	51			
Total params: 21,290,497 Trainable params: 362,397 Non-trainable params: 20,928,100 Train on 180000 samples, validate on 20000 samples						

以下為 model 訓練過程,可以從中發現 model 其實收斂的滿快的,大概在第五六個 epoch validation data set 的準確度就開始在震盪了。

2. (1%) 請說明你實作的 BOW model,其模型架構、訓練過程和準確率為何?

首先找出labeled data中出現次數大於20次的字詞將它們作為辭典,並利用此辭典將labeled data中的每一個詞按照詞典用one-hot轉換,當作一個bag of word,若是沒有見過的字就忽略掉,最後會製作成一個data size * dictionary size 的二維陣列,在使用四層Dense layer(512,256,32,1)訓練,四層layer間各設置dropout,比率均為0.2,最後的output在使用sigmoid function作為activationfunction,model 訓練的部分則和RNN一樣 loss function 選用binary_crossentropy,optimizer選用adam,以下為model的summary:

Layer (type)	Output	Shape	Param #		
dense_1 (Dense)	(None,	512)	3339776		
dropout_1 (Dropout)	(None,	512)	0		
dense_2 (Dense)	(None,	84)	43092		
dropout_2 (Dropout)	(None,	84)	0		
dense_3 (Dense)	(None,	1)	85		
activation_1 (Activation)	(None,	1)	0		
Total params: 3,382,953 Trainable params: 3,382,953 Non-trainable params: 0					
Train on 180000 samples, validate on 20000 samples					

以下為 model 訓練過程,由圖中可以發現,model 從一開始 validation data 得準確率就一直在震盪,即使訓練到第十個 epoch 準確率都落在 0.78 附近,比起 RNN model 沒有什麼顯著的上升趨勢,而 loss 則是緩慢的下降。在 kaggle 得到的分數為 0.78728,也較 RNN 差些,但還是有一定的水準。

3. (1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成 差異的原因。

	RNN model	bag of word model
today is a good day, but it is hot	0.160979	0.542912
today is hot, but it is a good day	0.915438	0.594889

上圖為兩句話分別經過 RNN model 以及 BOW model 預測出的結果,可以看出在 BOW model 中兩個句子預測出的結果幾乎沒有差異,都給出 positive 但信心水準極低的答案,我想是因為 BOW model 不會考慮單詞在句中的位置,僅會考慮這個句子由什麼樣的單字組成,所以會造成這兩個句子被預測出來的結果幾乎無差異(我想數值會不一樣是因我是使用空格斷詞,所以 day,和 hot,會被當作一個單字,而造成兩句結果的些微差異)。而 RNN model 就對這兩句給出一反一正且信心水準滿高的答案,因 RNN model 會判斷單詞出現的先後順序,因此位置的調換對 RNN model 來說就是不一樣的句子了!比較不會有預測出來相似的狀況。

4. (1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者 對準確率的影響。

將 training data 中所有的標點符號去掉後,使用和第一題一模一樣的 model 做訓練,發現在 kaggle 上的分數偏低了一點點,可以判斷標點符號對於句子正負面的判斷還是有一點點影響力的!

	有包含標點符號	去除標點符號
kaggle score	0.82751	0.82033

(InputLayer) (None, 40) 0						
ding_1 (Embedding) (None, 40, 100) 20700400 ectional_1 (Bidirection (None, 40, 256) 234496 ectional_2 (Bidirection (None, 100) 122800 _1 (Dense) (None, 50) 5050 ut_1 (Dropout) (None, 50) 0 _2 (Dense) (None, 1) 51 params: 21,062,797 able params: 362,397 rainable params: 20,700,400 on 180000 samples, validate on 20000 samples 1/10 0/180000 [=================================	ayer (type)	Output	Shape	Param #		
ectional_1 (Bidirection (None, 40, 256) 234496 ectional_2 (Bidirection (None, 100) 122800 _1 (Dense) (None, 50) 5050 ut_1 (Dropout) (None, 50) 0 _2 (Dense) (None, 1) 51	nput_1 (InputLayer)	(None,				
ectional_2 (Bidirection (None, 100)	nbedding_1 (Embedding)	(None,	40, 100)	20700400		
	idirectional_1 (Bidirection	(None,	40, 256)	234496		
ut_1 (Dropout) (None, 50) 0 _2 (Dense) (None, 1) 51	idirectional_2 (Bidirection	(None,	100)	122800		
	ense_1 (Dense)	(None,	50)	5050		
params: 21,062,797 able params: 362,397 rainable params: 20,700,400 on 180000 samples, validate on 20000 samples 1/10 0/180000 [=================================	ropout_1 (Dropout)	(None,	50)	0		
able params: 362,397 rainable params: 20,700,400 on 180000 samples, validate on 20000 samples 1/10 1/180000 [=================================	ense_2 (Dense)	(None,	1)	51		
0/180000 [=================================	poch 1/10 80000/180000 [] - 955s 	- loss: 0.4 s - loss: 0.4	487 - acc: 0.7962 - 329 - acc: 0.8060 - 205 - acc: 0.8133 - 130 - acc: 0.8164 - 1.4067 - acc: 0.8204 024 - acc: 0.8225 -	val_loss val_loss val_loss val_loss - val_los val_loss

以上為去除標點符號後的訓練過程以及 model summary。

5. (1%) 請描述在你的 semi-supervised 方法是如何標記 label,並比較有無 semi-supervised training 對準確率的影響。

(Collaborators: 參考助教投影片)

我選擇的方法是實作 self-training。先利用先前使用 labeled data 訓練出的 model 去預測 unlabeled training data,將 predict 出來結果大於 0.9 或小於 0.1 的 data 挑出來(也就是對於結果是 1 或 0 信心水準較高的 data)與原本的 labeled training data 接起來當做 training data 訓練 model,並記錄下已使用過的 data,讓下次預測時避免使用到已經被加入訓練過的 data,每次新加入 data 後會訓練 10 個 epoch(和原本的 model 一樣),而 validation data 全都使用和訓練原本 model 一樣的 data set(labeled data 前 40000 筆)以拿來比較,這樣訓練了三輪(訓練數量分別為 162800/236949/250959 筆),結果如下:

	semi-supervised	no semi-supervised
kaggle score (public)	0.73852	0.82751

	First round	Second round	Third round
validation accuracy	0.74~0.79	0.798~0.806	0.802~0.806

由上表可以發現我的 model 再加入了 semi-supervised 後準確率反而變差了,我想可能是我所設的 threshold 較低篩進了比較多的劣質資料或是產生了 overfitting 的狀況(在第三輪的 training accuracy 都有在 87%以上),所以造成訓練出來的結果反而比沒有實作 semi-supervised training 的 model 準確率還來得差。

第一輪訓練:

```
___start fit___
Train on 162800 samples, validate on 40000 samples
Epoch 1/10
162800/162800 [=______] - 938s - loss: 0.6073 - acc: 0.6752 - val_loss: 0.5322 - val_acc: 0.7434
Epoch 2/10
162800/162800 [=_____] - 937s - loss: 0.5376 - acc: 0.7374 - val_loss: 0.4935 - val_acc: 0.7657
Epoch 3/10
162800/162800 [=____] - 934s - loss: 0.5131 - acc: 0.7552 - val_loss: 0.4782 - val_acc: 0.7762
Epoch 4/10
162800/162800 [=___] - 934s - loss: 0.4976 - acc: 0.7661 - val_loss: 0.4802 - val_acc: 0.7813
Epoch 5/10
162800/162800 [=__] - 933s - loss: 0.4873 - acc: 0.7713 - val_loss: 0.4682 - val_acc: 0.7857
Epoch 6/10
162800/162800 [=__] - 931s - loss: 0.4781 - acc: 0.7780 - val_loss: 0.4558 - val_acc: 0.7915
Epoch 7/10
162800/162800 [=__] - 934s - loss: 0.4725 - acc: 0.7812 - val_loss: 0.4557 - val_acc: 0.7915
Epoch 7/10
162800/162800 [=_] - 934s - loss: 0.4667 - acc: 0.7812 - val_loss: 0.4558 - val_acc: 0.7884
Epoch 8/10
162800/162800 [=_] - 934s - loss: 0.4667 - acc: 0.7855 - val_loss: 0.4558 - val_acc: 0.7893
Epoch 1/10
162800/162800 [=_] - 935s - loss: 0.4627 - acc: 0.7885 - val_loss: 0.4558 - val_acc: 0.7939
Epoch 1/10
162800/162800 [=_] - 937s - loss: 0.4579 - acc: 0.7911 - val_loss: 0.4537 - val_acc: 0.7939
Epoch 1/10
162800/162800 [=_] - 937s - loss: 0.4579 - acc: 0.7911 - val_loss: 0.4537 - val_acc: 0.7939
Epoch 1/10
162800/162800 [=_] - 937s - loss: 0.4579 - acc: 0.7911 - val_loss: 0.4537 - val_acc: 0.7952
```

第二輪訓練:

第三輪訓練: