自然语言处理

句法分析: 形式语言

The path so far

- 最初,将语言视为由词构成的序列
 - n-gram (语言模型)
- 接着,引入词的句法属性
 - part-of-speech tagging (词性标注)
- 现在,考察词之间的句法关系
 - Syntactic parsing (句法分析)

语法和语义

- 大部分情况下,一个不合乎语法的句子也可以被理解
 - The boy quickly in the house the ball found
 - 看清楚路先兄弟
- 合乎语法的句子也可能无法理解
 - Are gyre and gimble in the wabe? (non-sense words)
 - 不会做饭的裁缝不是一个好司机
- 但句法规则可以传递如下信息:
 - 句子的语法
 - 词的顺序
 - 短语成分
 - 句子的层次结构
 - 句法关系,例如主语、宾语
 -

句法分析的应用

- ●句法分析被广泛且成功地应用到NLP的各个方面:
 - Meaning Representation [Jeffrey Flanigan, et al., ACL 2014]
 - High precision question answering [Pasca and Harabagiu, SIGIR 2011]
 - Source sentence analysis for machine translation [Xu et al., 2009]
 - Syntactically based sentence compression [Lin and Wilbur, 2007]
 - Extracting opinions about products [Bloom et al., NAACL 2007]
 - Relation extraction systems [Fundel et al., Bioinformatics 2006]
 - Improved interaction in computer games [Gorniak and Roy, 2005]
 - Helping linguists find data [Resnik et al., BLS 2005]
 - Improving biological named entity finding [Finkel et al., JNLPBA 2004]

一个简单的句子

- •I like the interesting lecture
- •PRO VB DET JJ NN

- ●除了以上的词性标注,往往还关心:
 - ●动词 *like*的主语是代词 / , 说明 who is doing the liking
 - ●动词 like的宾语是名词lecture, 说明 what is being liked
 - ●定冠词the 指出说明名词lecture
 - ●形容词interesting 给出更多关于名词lecture的信息

两种不同的句法结构

- 依存结构 (Dependency structure):
 - 说明词和其它词之间的依赖关系(从属关系、支配关系等)

● 可以表示为一个依有中的qyu put nthen tortoise on the rug

两种不同的句法结构

- 短语结构 (Phrase structure):
 - 将句子表示成嵌套的短语成分
- 父节点将子节点组合成较大的短语单元
 - 例如将DET JJ NN组合成NP

句法分析

●这里的句法分析 (Parsing) : 专指短语结构分析

INPUT: 句子

Boeing is located in Seattle

OUTPUT: 句法树

句法树中包含的信息

• (1) 词的词性类别

(N = noun, V = verb, DT = determiner)

句法树中包含的信息

●(2) 短语

- ●名词短语(NP): "the burglar", "the apartment"
- ●动词短语 (VP): "robbed the apartment"
- ●句子 (S): "the burglar robbed the apartment"

句法树中包含的信息

• 有用的关系:

● "the burglar"是" robbed"的主语

句法分析

- 两个目的:
 - 判断输入句子是否合乎给定的 语法

识别句子各部分是如何依据语 法规则组成合法句子,同时生 成句法树

• 两个准备:

- 语言的形式化描述 (规定该语言中允 许出现的结构)
- 句法分析技术(根据语法来分析句子并确定其结构)

◆关于语言的定义

人类所特有的用来表达意思、交流思想的工具,是 一种特殊的社会现象,由语音、词汇和语法构成一定 的系统。

一商务印书馆,《现代汉语词典》,1996

语言可以被看成一个抽象的数学系统。

一吴蔚天,1994

按照一定规律构成的句子和符号串的有限或无限的集合。 — N. Chomsky

- ◇ 诺姆•乔姆斯基(Noam Chomsky)
 - -1928年12月生于美国费城
 - 一1944年(16岁) 进入UPenn 学习哲学、语言学和数学
 - -1949年获学士学位、1951年获 硕士学位
 - -1952 起在哈佛认知研究中心研究员,后来获UPenn博士学位;1957年(29岁)MIT副教授,32岁成为现代语言学教授、47岁终生教授。

- ◆语言描述的三种途径
 - **❖ 穷举法** 只适合句子数目有限的语言。
 - ❖ 语法描述 生成语言中合格的句子。
 - ◆ 自动机 对输入的句子进行检验,区别哪些是语言中的句子,哪些不是语言中的句子。

◆形式语言的直观意义

形式语言是用来精确地描述语言(包括人工语言和自然语言)及其结构的手段。形式语言学 也称 代数语言学。

以重写规则 $\alpha \to \beta$ 的形式表示,其中, α , β 均为字符串。 顾名思义: 字符串 α 可以被改写成 β 。一个初步的字符串通过不断地运用重写规则,就可以得到另一个字符串。通过选择不同的规则并以不同的顺序来运用这些规则,就可以得到不同的新字符串。

◆形式语法的定义

形式语法是一个4元组 $G=(N, \Sigma, P, S)$, 其中 N 是非终结符的有限集合(有时也叫变量集或句法种类集); Σ 是终结符的有限集合, $N\cap\Sigma=\Phi$; $V=N\cup\Sigma$ 称总词汇表; P 是一组重写规则的有限集合: $P=\{\alpha\to\beta\}$,其中, α , β 是 V 中元素构成的串,但 α 中至少应含有一个非终结符号; $S\in N$,称为句子符或初始符。

例如: $G = (\{A, S\}, \{0, 1\}, P, S)$

 $P: S \rightarrow 0 A 1$ $0 A \rightarrow 00A1$ $A \rightarrow 1$

◆推导的定义

设 $G=(N, \Sigma, P, S)$ 是一个文法, 在 $(N \cup \Sigma)^*$ 上定义 关系 \Rightarrow (直接派生或推导)如下:

如果 $\alpha\beta\gamma$ 是 $(N \cup \Sigma)^*$ 中的符号串,且 $\beta \to \delta$ 是 P 的产生式,那么 $\alpha\beta\gamma \Rightarrow \alpha\delta\gamma$ 。

用 $\stackrel{+}{\ominus}$ (按非平凡方式派生)表示 $\stackrel{-}{\ominus}$ 的传递闭包,也就是 (N \cup Σ)*上的符号串 ξ_i 到 ξ_{i+1} 的 n ($n \ge 1$) 步推导或派生。

用 $\stackrel{*}{\ominus}$ (派生)表示 $\stackrel{\hookrightarrow}{\ominus}$ 的自反和传递闭包,即由(N \cup Σ)*上的符号串 ξ_i 到 ξ_{i+1} 经过n ($n \ge 0$) 步的推导或派生。

如果清楚某个推导是文法 G 所产生的,则符号 $\frac{*}{G}$ 或 $\frac{+}{G}$ 中的 G 可以省略不写。

◆最左推导、最右推导和规范推导

约定每步推导中只改写最左边的那个非终结符,这种推导称为"最左推导"。

约定每步推导中只改写最右边的那个非终结符,这种推导称为"最右推导"。

最右推导也称规范推导。

例3-1:
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E)$$

P: $E \to E + T \mid T$ $T \to T*F \mid F$
 $F \to (E) \mid a$
字符串 $a+a*a$ 的两种推导过程:
 $E \Rightarrow E+T$

例3-1:
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E)$$

P: $E \to E + T \mid T$ $T \to T*F \mid F$
 $F \to (E) \mid a$

$$E \Rightarrow E+T \Rightarrow T+T$$

例3-1:
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E)$$

P: $E \to E + T \mid T$ $T \to T*F \mid F$
 $F \to (E) \mid a$

$$E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T$$

例3-1:
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E)$$

P: $E \to E + T \mid T$ $T \to T*F \mid F$
 $F \to (E) \mid a$

$$E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow a+T$$

例3-1:
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E)$$

P: $E \to E + T \mid T$ $T \to T*F \mid F$
 $F \to (E) \mid a$

$$E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow a+T \Rightarrow a+T*F$$

例3-1:
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E)$$

P: $E \to E + T \mid T$ $T \to T*F \mid F$
 $F \to (E) \mid a$

$$E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow a+T \Rightarrow a+T*F$$
$$\Rightarrow a+F*F$$

例3-1:
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E)$$

P: $E \to E + T \mid T$ $T \to T*F \mid F$
 $F \to (E) \mid a$

$$E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow a+T \Rightarrow a+T*F$$
$$\Rightarrow a+F*F \Rightarrow a+a*F$$

例3-1:
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E)$$

P: $E \to E + T \mid T$ $T \to T*F \mid F$
 $F \to (E) \mid a$

$$E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow a+T \Rightarrow a+T*F$$

 $\Rightarrow a+F*F \Rightarrow a+a*F \Rightarrow a+a*a$ (最左推导)

例3-1:
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E)$$

P: $E \to E + T \mid T$ $T \to T*F \mid F$ $F \to (E) \mid a$

$$E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow a+T \Rightarrow a+T*F$$

 $\Rightarrow a+F*F \Rightarrow a+a*F \Rightarrow a+a*a$ (最左推导)
 $E \Rightarrow E+T \Rightarrow E+T*F \Rightarrow E+T*a \Rightarrow E+F*a \Rightarrow E+a*a$
 $\Rightarrow T+a*a \Rightarrow F+a*a \Rightarrow a+a*a$ (最右推导)

◆句型与句子

- - (1) S 是一个句子形式;
 - (2) 如果 αβγ 是一个句子形式,且 $\beta \rightarrow \delta$ 是 P 的产生式,则 αδγ 也是一个句子形式;

文法 G 的不含非终结符的句子形式称为 G 生成的 **何子**。由文法 G 生成的**语言**,记作 L(G),指 G 生成的的所有句子的集合。即:L(G)= $\{x \mid x \in \Sigma, S \xrightarrow{c} x\}$

◆正则文法

如果文法 $G=(N, \Sigma, P, S)$ 的 P 中的规则满足如下形式: $A \to B x$,或 $A \to x$,其中 $A, B \in N$, $x \in \Sigma$,则称该文法为<u>正则文法</u>或称 <u>3型文法</u>。(<u>左线性正则文法</u>)如果 $A \to x$ B,则该文法称为<mark>右线性正则文法</mark>。

例3-2:
$$G = (N, \Sigma, P, S),$$

$$N = \{S, A, B\}, \qquad \Sigma = \{a, b\},$$

$$P: (a) S \to a A \qquad (b) A \to a A$$

$$(c) A \to b b B \qquad (d) B \to b B$$

$$(e) B \to b \qquad A \to b B'$$

$$B' \to b B$$

 $L(G) = \{a^n b^m\}, n \ge 1, m \ge 3$

◆上下文无关文法 (context-free grammar, CFG)

如果 P 中的规则满足如下形式: $A \rightarrow \alpha$,其中 $A \in \mathbb{N}$, $\alpha \in (\mathbb{N} \cup \Sigma)^*$,则称该文法为上下文无关文法 (CFG) 或称 2 型文法。

例3-3:
$$G = (N, \Sigma, P, S),$$

$$N = \{S, A, B, C\}, \qquad \Sigma = \{a, b, c\},$$

$$P: (a) S \rightarrow A B C \qquad (b) A \rightarrow a A \mid a$$

$$(c) B \rightarrow b B \mid b \qquad (d) C \rightarrow B A \mid c$$

$$L(G) = \{a^n b^m a^k c^{\alpha}\}, n \ge 1, m \ge 1, k \ge 0, \alpha \in \{0, 1\}$$
 (如果 $k > 0$ 的话, $\alpha = 0$,否则, $\alpha = 1$ 。)

◆上下文有关文法

(context-sensitive grammar, CSG)

如果 P 中的规则满足如下形式: α A β \rightarrow α γ β , 其中 A \in N, α , β , γ \in (N \cup Σ)*,且 γ 至少包含一个字符,则称该文法为上下文有关文法(CSG) 或称 1 型文法。

 $\underline{S-种定义}$: if $x \to y$, $x \in (\mathbb{N} \cup \Sigma)^+$, $y \in (\mathbb{N} \cup \Sigma)^*$, 并且 $|y| \ge |x|$ 。

例3-4:
$$G = (N, \Sigma, P, S)$$

$$N = \{S, A, B, C\}, \qquad \Sigma = \{a, b, c\},$$

P: (a)
$$S \rightarrow A B C$$
 (b) $A \rightarrow a A \mid a$

(c)
$$B \rightarrow b B \mid b$$
 (d) $B \leftarrow B \leftarrow c$

$$L(G) = \{a^n b^m c^2\}, n \ge 1, m \ge 1$$

◆ 无约束文法(无限制重写系统)

如果 P 中的规则满足如下形式: $\alpha \rightarrow \beta$, α , β 是字符串,则称 G 为<u>无约束文法</u>,或称 0 型文法。

显然,每一个正则文法都是上下文无关文法,每一个上下无关文法都是上下文有关文法,而每一个上下文有关文法都是0型文法,即:

 $L(G0) \supseteq L(G1) \supseteq L(G2) \supseteq L(G3)$

◆语言与文法类型的约定

如果一种语言能由几种文法所产生,则把这种语言 称为在这几种文法中受限制最多的那种文法所产生的 语言。

例3-5: $G = (\{S, A, B\}, \{a, b\}, P, S)$ $P: S \rightarrow aB$ $S \rightarrow bA$ $A \rightarrow aS$ $A \rightarrow bAA$ $A \rightarrow a$ $B \rightarrow bS$ $B \rightarrow aBB$ $B \rightarrow b$

G为上下文无关文法。

 $L(G) = \{ 等数量的 a 和 b 构成的链 \}$

◆ CFG 产生的语言句子的派生树表示

CFG $G=(N, \Sigma, P, S)$ 产生一个句子的派生树由如下步骤构成:

- (1) 对于 $\forall x \in \mathbb{N}$ Σ 给一个标记作为节点, S 作为树的根节点。
- (2) 如果一个节点的标记为 A,并且它至少有一个除它自身以外的后裔,则 $A \in \mathbb{N}$ 。
- (3) 如果一个节点的标记为 A_1 它的 k(k>0) 个直接后裔节点按从左到右的次序依次标记为 $A_1, A_2, ..., A_k$,则 $A \rightarrow A_1A_2...A_k$ 一定是 P 中的一个产生式。

例如, $G = (\{S, A\}, \{a, b\}, P, S)$

 $P: S \to bA \quad A \to bAA \quad A \to a$

G 所产生的句子 bbaa 可以由下面的生树表示:

◆上下文无关文法的二义性

一个文法 G,如果存在某个句子有不只一棵分析树与之对应,那么称这个文法是二义的。

例: $G(E): E \rightarrow E + E \mid E * E \mid (E) \mid E - E \mid i$ 对于句子 i + i * i 有两棵对应的分析树。

例: 给定文法 G(S):

- $\bigcirc S \rightarrow P NP \mid PP Aux NP$
- \bigcirc PP \rightarrow P NP
- \bigcirc NP \rightarrow NN | NP Aux NP
- ④ P → 关于

⑤ NN → 鲁迅 | 文章

⑥ Aux → 的

短语"关于鲁迅的文章"的推导。

S ⇒ P NP ⇒ 关于 NP ⇒ 关于 NP Aux NP

- ⇒ 关于NN Aux NP ⇒ 关于鲁迅 Aux NP
- ⇒ 关于鲁迅的 NP ⇒ 关于鲁迅的 NN
- ⇒关于鲁迅的文章

例: 给定文法 G(S):

- $\bigcirc S \rightarrow P NP \mid PP Aux NP$
- \bigcirc PP \rightarrow P NP
- \bigcirc NP \rightarrow NN | NP Aux NP
- ④ P → 关于

⑤ NN → 鲁迅 | 文章

⑥ Aux → 的

短语"关于鲁迅的文章"的推导。

S ⇒ PP Aux NP ⇒ P NP Aux NP ⇒ 关于 NP Aux NP

- ⇒ 关于 NN Aux NP ⇒ 关于鲁迅 Aux NP
- ⇒ 关于鲁迅的 NP ⇒ 关于鲁迅的 NN
- ⇒关于鲁迅的文章

短语的派生树 - (1)

短语的派生树 - (2)