Homework-1 Solution Key COT 5405 - Fall 2017

1.

Stable matching

In this version of the Gale-Shapley algorithm, the individual selected to propose will be the first individual that is not already engaged.

(a) Gale-Shapley from the male's perspective

The following table will be updated while stepping through the algorithm by,

- selecting the line(s) to be affected by the current iteration
- applying strikethrough to prospects who reject the proposal
- applying bold text to the prospects who accept the proposal

male	fiancée						
Von	Allie	Bobbie	Eleanor	Cathy	Deanna		
Will	Allie Cathy		Deanna	Bobbie	Eleanor		
Xander	Deanna	Bobbie	Eleanor	Allie	Cathy		
Yousef	Eleanor	Deanna	Cathy	Bobbie	Allie		
Zack	Cathy Deanna		Allie	Bobbie	Eleanor		

From the final table, a matching (if one exists) may be easily read.

i. Select Von to propose to Allie who accepts.

Von	Allie	Bobbie	Eleanor	Cathy	Deanna
-----	-------	--------	---------	-------	--------

ii. Select Will to propose to Allie who declines.

Will	Allie	Cathy	Deanna	Bobbie	Eleanor
------	-------	-------	--------	--------	---------

iii. Select Will to propose to Cathy who accepts.

Will Allie Cathy [Deanna Bobbie	Eleanor
--------------------	---------------	---------

iv. Select Xander to propose to Deanna who accepts.

Xander	Deanna	Bobbie	Eleanor	Allie	Cathy

v. Select Yousef to propose to Eleanor who accepts.

Yousef	Eleanor	Deanna	Cathy	Bobbie	Allie
--------	---------	--------	-------	--------	-------

vi. Select Zack to propose to Cathy who accepts. Cathy breaks her engagement with Will.

			-		-
	1	Cathy		Bobbie	Eleanor
Zack	Cathy	Deanna	Allie	Bobbie	Eleanor

vii. Select Will to propose to Deanna who declines.

Will	Allie	Cathy	Deanna	Bobbie	Eleanor

viii. Select Will to propose to Bobbie who accepts.

Will	Allie	Cathy	Deanna	Bobbie	Eleanor

The final table for the male-centric algorithm is.

The initial table for the male certain algerianities,								
male		fiancée						
Von	Allie	Bobbie	Eleanor	Cathy	Deanna			
Will	Allie	Allie Cathy		Bobbie	Eleanor			
Xander	Deanna	Bobbie	Eleanor	Allie	Cathy			
Yousef	Eleanor	Deanna	Cathy	Bobbie	Allie			
Zack	Cathy Deanna		Allie	Bobbie	Eleanor			

(b) Gale-Shapley from the female's perspective

The following table will be updated while stepping through the algorithm by,

- selecting the line(s) to be affected by the current iteration
- applying strikethrough to prospects who reject the proposal
- applying bold text to the prospects who accept the proposal

female		fiancé						
Allie	Von	Will	Xander	Zack	Yousef			
Bobbie	Xander	Will	Zack	Yousef	Von			
Cathy	Yousef	Zack	Von	Xander	Will			
Deanna	Zack	Xander	Yousef	Von	Will			
Eleanor	Von	Yousef	Zack	Xander	Will			

From the final table, a matching (if one exists) may be easily read.

i. Select Allie to propose to Von who accepts.

					•
Allie	Von	Will	Xander	Zack	Yousef

ii. Select Bobbie to propose to Xander who accepts.

	Bobbie	Xander	Will	Zack	Yousef	Von
--	--------	--------	------	------	--------	-----

iii. Select Cathy to propose to Yousef who accepts.

	Cathy	Yousef	Zack	Von	Xander	Will	
--	-------	--------	------	-----	--------	------	--

iv. Select Deanna to propose to Zack who accepts.

Deanna	Zack	Xander	Yousef	Von	Will

v. Select Eleanor to propose to Von who declines.

Eleanor	Von	Yousef	Zack	Xander	Will
---------	----------------	--------	------	--------	------

vi. Select Eleanor to propose to Yousef who accepts. Yousef breaks his engagement with Cathy.

Cathy Youse Eleanor Von		Zack	Von	Xander	Will	
Eleanor	Von	Yousef	Zack	Xander	Will	

vii. Select Cathy to propose to Zack who accepts. Zack breaks his engagement with Deanna.

Cathy	Yousef	Zack	Von	Xander	Will
Deanna	Zack	Xander	Yousef	Von	Will

viii. Select Deanna to propose to Xander who accepts. Xander breaks his engagement with Bobbie.

Bobbie	Xander	Will	Zack	Yousef	Von
Deanna	Zack	Xander	Yousef	Von	Will

ix. Select Bobbie to propose to Will who accepts.

Bobbie	Xander	Will	Zack	Yousef	Von

The final table for the female-centric algorithm is,

female		fiancé								
Allie	Von	Will	Xander	Zack	Yousef					
Bobbie	Xander	Xander Will		Yousef	Von					
Cathy	Yousef	Zack	Von	Xander	Will					
Deanna	Zack	Xander	Yousef	Von	Will					
Eleanor	Von	Von Yousef		Xander	Will					

2.

Graph node adjacency format

Here are the adjacency matrix and adjacency list,

node	Α	В	С	D	Е	F
Α	0	1	1	1	0	0
В	1	0	1	1	0	0
С	1	1	0	1	1	1
D	1	1	1	0	1	0
E	0	0	1	1	0	1
F	0	0	1	0	1	0

A-**B**-C-**D** B-**A**-C-D C-A-B-D-E-F D-**A**-B-C-**E** E-C-**D**-F F-C-E

3.

Topological orderings

Every ordering of the graph must begin with node a and end with node f. There exist 4! orderings of the remaining 4 nodes b through e. Not all of these orderings are valid topological orderings of the graph. For each valid ordering with b followed by c (not necessarily adjacent) there exists an invalid ordering with b and c reversed. Likewise for orderings with d followed by e.

The number of topological orderings for this graph can then be computed as,

$$n=\frac{4!}{2!\cdot 2!}=6$$

with 4! total (valid plus not valid) orderings and 2! (valid plus not valid) pairings each of nodes b, c and d, e. The topological orderings are enumerated as,

abcdef abdcef adbcef adbccf adebcf

4.

Shortest path

Shortest path							
Comment	array	Α	В	С	D	Е	F
	$S = \{A$	A }					
Initialize	D	-	-	-	-	-	-
	D'	∞	4	10	3	∞	∞
D'(D) is minimum	$S = \{A$	$\overline{A,D}$					
$D(D) \leftarrow D'(D)$	D	-	-	-	3	-	-
Set $D'(w)$ for neighbors $w \notin S$ of D . $D'(B) = \min\{4, 3 + 6\}$,	D'	∞	4	10	3	5	∞
$D'(C) = \min\{10, 3+7\}, D'(E) = \min\{\infty, 3+2\}$							
D'(B) is minimum	$S = \{A$	A, D,	<i>B</i> }				
$D(B) \leftarrow D'(B)$	D	-	4	-	3	-	-
Set $D'(w)$ for neighbors $w \notin S$ of B . $D'(C) = \min\{10, 4+8\}$	D'	∞	4	10	3	5	∞
D'(E) is minimum	$S = \{A, D, B, E\}$						
$D(E) \leftarrow D'(E)$	D	-	4	-	3	5	-
Set $D'(w)$ for neighbors $w \notin S$ of E . $D'(C) = \min\{10, 5 + 1\}$,	D'	∞	4	6	3	5	10
$D'(F) = \min\{\infty, 5+5\}$							
D'(C) is minimum	$S = \{A$	A, D,	B, E	C, C			
$D(C) \leftarrow D'(C)$	D	-	4	6	3	5	-
Set $D'(w)$ for neighbors $w \notin S$ of C . $D'(F) = \min\{10, 6 + 9\}$,	D'	∞	4	6	3	5	10
$D'(F) = \min\{\infty, 5+5\}$							
D'(F) is minimum	$S = \{A, D, B, E, C, F\}$						
$D(F) \leftarrow D'(F)$	D	-	4	6	3	5	10
Set $D'(w)$ for neighbors $w \notin S$ of F .	D'	∞	4	6	3	5	10