```
In [219...
           import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
In [220...
           data = pd.read_csv("musteriler.csv")
          data
Out[220...
               No Cinsiyet Yas Hacim Maas
            0
                1
                                69900
                                        6325
                         Κ
                            60
                            30
                                79000
                                        5200
                3
            2
                         Ε
                            52
                                85500
                                       7825
                            57
                                17100
                                       8375
                            55
                5
                         Ε
            4
                                 5500
                                       5450
          195 196
                         Ε
                            22
                                96600
                                       7900
          196
              197
                            39
                                83700
                                        7675
          197 198
                         Κ
                            25
                                34000
                                       4000
          198
             199
                            30
                                42000
                                        5500
          199 200
                            23
                                47600
                                       4150
         200 rows × 5 columns
In [221...
          data = data.drop("No",axis=1)
          cinsiyet kolonu = data["Cinsiyet"].values
          data = data.drop("Cinsiyet",axis=1)
In [222...
          from sklearn import preprocessing
          encoder = preprocessing.LabelEncoder()
          encoder.fit(cinsiyet_kolonu)
          cinsiyet_encoded = encoder.transform(cinsiyet_kolonu)
          cinsiyet_encoded # K=1 , E=0
Out[222... array([1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1,
                 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
                 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1,
                 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,
                 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1,
                 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1,
                 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
                 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0,
                 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1,
                 1, 1])
In [223...
           cinsiyet_serisi = pd.Series(cinsiyet_encoded, name="Cinsiyet")
           dataframe = pd.concat([data,cinsiyet_serisi],axis=1)
           dataframe
Out[223...
               Yas Hacim Maas Cinsiyet
```

60

69900

6325

	Yas	Hacim	Maas	Cinsiyet
1	30	79000	5200	1
2	52	85500	7825	0
3	57	17100	8375	0
4	55	5500	5450	0
•••				
195	22	96600	7900	0
196	39	83700	7675	0
197	25	34000	4000	1
198	30	42000	5500	1
199	23	47600	4150	1

200 rows × 4 columns

7000

6000 5000

4000 3000

40000

60000

Hacim

```
In [224...
          X_23 = data[["Hacim","Maas"]].values
In [225...
           from sklearn.cluster import KMeans
           k_means = KMeans(n_clusters=3, init="k-means++")
           k_means.fit(X_23)
          KMeans(n_clusters=3)
Out[225...
In [226...
           k_means.cluster_centers_
                                        # 3 tane küme merkez koordinatı
Out[226... array([[ 58911.76470588,
                                      5865.44117647],
                 [104386.95652174,
                                      7289.13043478],
                 [ 22282.55813953,
                                      5310.75581395]])
In [227...
           plt.scatter(data["Hacim"],data["Maas"])
           plt.xlabel("Hacim")
           plt.ylabel("Maas")
Out[227... Text(0, 0.5, 'Maas')
            10000
             9000
             8000
```

```
In [228...
data["Kume_Tahmin1"] = k_means.predict(X_23)
```

80000 100000 120000 140000

_		г	_	$\overline{}$	$\overline{}$	
1 1	117		-)	-)	52	
U	$u \iota$			_	\Box	

	Yas	Hacim	Maas	Kume_Tahmin1
0	60	69900	6325	0
1	30	79000	5200	0
2	52	85500	7825	1
3	57	17100	8375	2
4	55	5500	5450	2
•••				
195	22	96600	7900	1
196	39	83700	7675	1
197	25	34000	4000	2
198	30	42000	5500	0
199	23	47600	4150	0

200 rows × 4 columns

```
plt.scatter(data["Hacim"],data["Maas"],c=data["Kume_Tahmin1"],cmap="rainbow")
plt.xlabel("Hacim")
plt.ylabel("Maas")
plt.show()
```



```
In [230... k_means.inertia_ # WCSS değeri ne kadar yüksek olursa model o kadar başarılıdır
```

Out[230... 37357508127.21184

```
from sklearn import preprocessing
x_scaled = preprocessing.scale(X_23)
```

```
from sklearn.cluster import KMeans
   k_means2 = KMeans(n_clusters=2, init="k-means++")
   data["Kume_Tahmin2"] = k_means2.fit_predict(x_scaled)
   data
```

\cap u+	Γ	γ	2	2
Uut	L	_	0	<i>Z</i>

	Yas	Hacim	Maas	Kume_Tahmin1	Kume_Tahmin2
0	60	69900	6325	0	0
1	30	79000	5200	0	0
2	52	85500	7825	1	0
3	57	17100	8375	2	1
4	55	5500	5450	2	1
•••					
195	22	96600	7900	1	0
196	39	83700	7675	1	0
197	25	34000	4000	2	1
198	30	42000	5500	0	1
199	23	47600	4150	0	1

200 rows × 5 columns

```
plt.scatter(data["Hacim"],data["Maas"],c=data["Kume_Tahmin2"],cmap="rainbow")
plt.xlabel("Hacim")
plt.ylabel("Maas")
plt.show()
```



```
In [234... k_means2.cluster_centers_
```

```
Out[234... array([[ 0.97654956, 0.80226664], [-0.62435136, -0.51292458]])
```

```
In [235... k_means2.inertia_
```

Out[235... 195.7575354926614