Best Marriage Partner

A table of Contents

[Classification]

- O1 Project Idea
 - Title & Problem description
 - Objective & Solution
- O2 Data set
 - Data Source
 - Data Distribution
- O3 Process for the project
- O4 Algorithm to be used

Classification

For Wedding Information Company

Project Idea

Best Marriage Partner

To increase the success rate of marriage and the satisfaction of a customer in a marriage information company.

Data set

http://archive.ics.uci.edu/ml/datasets/Bank+Marketing#

- √ There are 16 predictors and class (y or n)
- ✓ We will use attributes related to the marriage ex) Age, job, marital, education, debt, loan,

Data Type and Dirty Data

- ✓ This data set is composed of categorical data(job), numerical data(age), etc.
- ✓ need to make dirty data like missing / Wrong / Unusable data, Outliers.

Data Inspection

Statistical Description of Data set

[Data Distribution]

Data Inspection

Statistical Description of Dataset

[Data Distribution]

Restructuring

[Table Vertical Decomposition]

: Drop all the features that look unrelated to marriage.

```
columns = ['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'balance']
df = df[columns]
df = df.astype({"age":int,"balance": float})
```

• 16 features → 8 features

Data Value Changes

[Cleaning Dirty Data]

: Handle Missing data, outliers, redundancy

Missing Data

```
# Missing Data -> Change "unknown" to NaN

df = df.replace('unknown',np.nan)

print( * Missing data before removal *")

print("Total data : ",len(df))

df.isnull().sum()

df = df.dropna() # Delete Missing Data

print("* Missing data after removal *")

print("Total data : ",len(df))

df.isnull().sum() # Check Missing Data
```



```
df = df[df["balance"]<=40000]
df = df[df["balance"]>=-500]
```



```
# Delete Redundancy
df = df.drop_duplicates()
```


* Missing data before removal *

Total data: 45211

* Missing data after removal *

Total data: 43193

* data before removing redundancy * 42498

* data after removing redundancy * 38476

Data Value Changes

[Normalization]

: Data is normalized to a number between 0 and 1 to use algorithm

```
MinMax Scaler
```

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
feature = scaler.fit_transform(feature)
```

	Before					After						
	age	job	education	default	housing	loan	balance	[[0.51948052 0.4	1.	1.	0.	0.06626551]
0	58	4	2	0	1	0	2143.0	[0.33766234 0.9	0.5	1.	0.	0.01326313]
1	44	9	1	0	1	0	29.0	[0.19480519 0.2	0.5	1.	1.	0.01258619]
2	33	2	1	0	1	1	2.0					_
5	35	4	2	0	1	0	231.0	[0.68831169 0.5	0.	0.	0.	0.05588567]
6	28	4	2	0	1	1	447.0	[0.50649351 0.1	0.5	0.	0.	0.02928419]
7	42	2	2	1	1	0	2.0	[0.24675325 0.2	0.5	0.	0.	0.0870252]]

Feature Engineering

[Feature Creation] - LabelEncoding

: Converts categorical data into integers

```
# Label Encoding
from sklearn.preprocessing import LabelEncoder
labelEncoder = LabelEncoder()
labelEncoder.fit(df['job'])
df['job'] = labelEncoder.transform(df['job'])

labelEncoder.fit(df['marital'])
df['marital'] = labelEncoder.transform(df['marital'])

labelEncoder.fit(df['education'])
df['education'] = labelEncoder.transform(df['education'])

labelEncoder.fit(df['default'])
df['default'] = labelEncoder.transform(df['default'])

labelEncoder.fit(df['housing'])
df['housing'] = labelEncoder.transform(df['housing'])

labelEncoder.fit(df['loan'])
df['loan'] = labelEncoder.transform(df['loan'])
```

Before

		-	-					
	age	job	marital	education	default	housing	loan	balance
0	58	management	married	tertiary	ПО	yes	по	2143.0
1	44	technician	single	secondary	ПО	yes	ПО	29.0
2	33	entrepreneur	married	secondary	ПО	yes	yes	2.0
5	35	management	married	tertiary	по	yes	ПО	231.0

After

	age	job	education	default	housing	loan	balance
0	58	4	2	0	1	0	2143.0
1	44	9	1	0	1	0	29.0
2	33	2	1	0	1	1	2.0
5	35	4	2	0	1	0	231.0

Example

Married \rightarrow 1 Single \rightarrow 2

Feature Engineering

[Feature Reduction] - PCA

: Extracts major k components with a larger data variance.

from sklearn.decomposition import PCA pca = PCA(n_components=4) x_train = pca.fit_transform(x_train)

Before

After

* 7 \rightarrow 4 columns

Data Analysis

Decision Tree

→ Use 'GridSearchCV' to find the best score and parameter


```
decision_param = {'criterion' : ['gini', 'entropy'],
                  'min_samples_split' : [2, 10, 20],
                 'max_depth' : [1, 5, 10, 15],
                  'min_samples_leaf' : [1, 5, 10],
                  'max_leaf_nodes' : [5, 10, 20, 30, 40, 50],
                 'random_state' : [30, 50, 100]}
# Build three classifier
decision = DecisionTreeClassifier()
# Bulid GridSearchCV which find the parameter combination with the highest score
grid_decision = GridSearchCV(decision, param_grid = decision_param, scoring = 'accuracy', cv = 10)
# Training Decision Tree GridSearchCV
grid_decision.fit(x_train, y_train)
```

Data Analysis

→ Use 'GridSearchCV' to find the best score and parameter

Data Analysis

Logistic Regression

→ Use 'GridSearchCV' to find the best score and parameter

Data Evaluation

[Decision Tree]

```
* Decision Tree *

Best Parameter : DecisionTreeClassifier(class_weight=None, criterion='gini', max_dep th=10,

max_features=None, max_leaf_nodes=40,

min_impurity_decrease=0.0, min_impurity_split=None,

min_samples_leaf=1, min_samples_split=2,

min_weight_fraction_leaf=0.0, presort=False, random_state=30,

splitter='best')

High Score : 0.666617161103479
```

[Logistic Regression]

[SVM]

```
* SVM *
Best Parameter : SVC(C=10.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma=100, kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)
High Score : 0.6583373556603423
```

Score: 0.66 The score is too low

We had to go back to the previous process.

Back to preprocessing

[End to End Big Data Process]

- 1. Objective Setting
- 2. Data Curation
- 3. Data Inspection
- 4. Data Preprocessing
- 5. Data Analysis
- 6. Evaluation
- 7. Deployment

Data Preprocessing & Data Analysis

- We did the following to raise the score
 - ✓ Use standard scaler
 - ✓ Delete pca or change the number of component
 - ✓ Change algorithm → Random Forest Classification
 - → But, the results have not changed
- Reduce the number of classes

3 class
Married / Single / Divorced

2 class
Married or Single

→ The result has improved.

2

Data Evaluation

```
* Decision Tree *
                                                                      Score : 0.66
Best Parameter: DecisionTreeClassifier(class_weight=None,
            max_features=None, max_leaf_nodes=40,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=5, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, r
                                                                     Score : 0.75
            splitter='hest')
High Score: 0.7551106427818757
* Logistic Regression *
Best Parameter : LogisticRegression(C=1.0, class_weight=N<sub>0.6</sub>
          intercept_scaling=1, max_iter=50, multi_class=',
          penalty='12', random_state=None, solver='sag',
          verbose=0, warm_start=False)
                                                           0.4 -
High Score : 0.7555321390937829
                                                           0.3
* SVM *
Best Parameter: SVC(C=1.0, cache_size=200, class_weight=0.2
  decision_function_shape='ovr', degree=3, gamma=100, kerol
  max_iter=-1, probability=False, random_state=None, shri
  tol=0.001, verbose=False)
                                                                Decision Tree
                                                                            Logistic Regression
                                                                                              SVM
High Score: 0.7555742887249737
```

Data Evaluation

Confusion Matrix

[Decision Tree]

[[6108 771] [1783 1507]]

[Logistic Regression]

[[5939 940] [1599 1691]]

[SVM]

[[6072 807] [1698 1592]]

** Decision	Tree ** precision	recall	f1-score	support
class 0 class 1	0.77 0.66	0.89 0.46	0.83 0.54	6879 3290
avg / total	0.74	0.75	0.73	10169

** Logistic	Regression ** precision		f1-score	support
class 0 class 1	0.79 0.64	0.86 0.51	0.82 0.57	6879 3290
avg / total	0.74	0.75	0.74	10169

** SVM **				
	precision	recall	f1-score	support
class 0 class 1	0.78 0.66	0.88 0.48	0.83 0.56	6879 3290
avg / total	0.74	0.75	0.74	10169

Thank you