# 1 Math Facts

$$\sum_{k=0}^{n-1} ar^k = \left(\frac{1-r^n}{1-r}\right)$$

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

# 2 Properties of Signals

## 2.1 Complex Exponentials

We can represent signals as complex exponentials to make them a lot easier in certain cases (multiplication).

$$e^{jx} = \cos(x) + j\sin(x)$$
 
$$\cos(x) = \frac{e^{jx} + e^{-jx}}{2}$$
 
$$\sin(x) = \frac{e^{jx} - e^{-jx}}{2j} = -\frac{j}{2} \left( e^{jx} - e^{-jx} \right)$$

# 3 Fourier Series

# 3.1 Continuous Time Fourier Series

Split a signal up into harmonically related sinusoids, which each have a frequency that is an integer multiple of the fundamental frequency  $\omega_0 = \frac{2\pi}{T}$  of the signal. The fundamental frequency has the same period as the fundamental period of the signal, or the smallest value T for which x(t) = x(t+T) holds.

- Represents periodic signals
- Can't perfectly represent discontinuities—results in Gibb's Phenomenon (overshoot)
  - as number of terms increases, width of overshoot gets smaller, but magnitude does not (around 9%).

$$f(t) = \sum_{k=0}^{\infty} (c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t))$$

$$c_0 = \frac{1}{T} \int_T f(t) dt \quad \text{"average"}$$

$$c_k = \frac{2}{T} \int_T f(t) \cos(k\omega_0 t) dt$$

$$d_k = \frac{2}{T} \int_T f(t) \sin(k\omega_0 t) dt$$

Using exponential form, we get a simpler set of equations for CTFS:

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} X[k]e^{j\frac{2\pi kt}{T}}$$
$$X[k] = \frac{1}{T} \int_{T} x(t)e^{-j\frac{2\pi kt}{T}} dt$$

#### 3.1.1 Properties

• Real-Valued Periodic Signal:  $F[k] = F^*[-k]$  for real-valued signals.

## 2.2 Sampling

Because multiple frequencies can alias to the same frequency when sampled, we use the *Baseband* to describe the frequency represented by a set of samples. The baseband is the range of frequencies  $0 \le \Omega \le \pi$ .

If there are frequencies in the CT signal greater than the Nyquist frequency  $f_N = \frac{f_s}{2}$ , they will alias to frequencies in the base band. To avoid distortion, remove these frequencies before sampling (anti-aliasing).

• Symmetric and Antisymmetric Parts: The real part of F[k] comes from the symmetric part of the signal, the imaginary part comes from the antisymmetric part of the signal. In trig form, symmetric in  $c_k$ , antisymmetric in  $d_k$ .

| property        | $\mathbf{y}(\mathbf{t})$ | $\mathbf{Y}[\mathbf{k}]$        |
|-----------------|--------------------------|---------------------------------|
| Linearity       | $Ax_1(t) + Bx_2(t)$      | $AX_1[k] + BX_2[k]$             |
| Time Flip       | x(-t)                    | X[-k]                           |
| Time Shift      | $x(t-t_0)$               | $e^{-j\frac{2\pi kt_0}{T}}X[k]$ |
| Time Derivative | $\frac{d}{dt}x(t)$       | $Y[k] = j \frac{2\pi}{T} X[k]$  |

#### 3.2 DTFS

In CTFS, there can be an infinite number of harmonics, as resolution is infinite. In a DT signal with period N, there can only be N harmonics—the others will alias to a harmonic within those N. We have a similar fundamental frequency  $\Omega_0 = \frac{2\pi}{N}$ .

$$x[n] = x[n+N] = \sum_{k=k_0}^{k_0+N-1} X[k]e^{j\frac{2\pi}{N}kn}$$

$$X[k] = X[k+N] = \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$

## 3.2.1 Properties

| $\mathbf{property}$ | $\mathbf{y}[\mathbf{t}]$    | $\mathbf{Y}[\mathbf{k}]$      |
|---------------------|-----------------------------|-------------------------------|
| Linearity           | $Ax_1[n] + Bx_2[n]$         | $AX_1[k] + BX_2[k]$           |
| Time Flip           | x[-n]                       | X[-k]                         |
| Time Shift          | x[n-m]                      | $e^{-j\frac{2\pi km}{N}}X[k]$ |
| Sym. Part           | $\frac{1}{2}(x[n] + x[-n])$ | Re(X[k])                      |
| Antisym. Part       | $\frac{1}{2}(x[n] - x[-n])$ | $j \cdot Im(X[k])$            |

# 4 Fourier Transforms

### 4.1 CT Fourier Transform

Essentially, a fourier series as the period approaches infinity.

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \cdot e^{j\omega t} d\omega \quad X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$$

## 4.1.1 Useful Signals

Stretching in time compresses in frequency, and vice versa.



#### 4.1.2 Duality

If taking the CTFT of x(t) gives us  $X(\omega)$ , then if we interpret those coefficients as another signal and take the CTFT again, we will get  $2\pi x(-\omega)$ . Need clarity here.

#### 4.1.3 Properties

| property         | $\mathbf{y}(\mathbf{t})$ | $\mathbf{Y}(\omega)$                          |
|------------------|--------------------------|-----------------------------------------------|
| Linearity        | $ax_1(t) + bx_2(t)$      | $aX_1(\omega) + bX_2(\omega)$                 |
| Time Reversal    | x(-t)                    | $X(-\omega)$                                  |
| Time Delay       | $x(t-t_0)$               | $e^{-j\omega t_0}X(\omega)$                   |
| Conjugation      | $x^*(t)$                 | $X^*(-\omega)$                                |
| Scaling Time     | x(at)                    | $\frac{1}{ a }X\left(\frac{\omega}{a}\right)$ |
| Time Derivative  | $\frac{dx(t)}{dt}$       | $j\omega X(\omega)$                           |
| Freq. Derivative | tx(t)                    | $j\frac{d}{d\omega}X(\omega)$                 |

### 4.2 Discrete Time Fourier Transform

Same idea, we make a periodic version of x[n] by summing shifted copies and take the DTFS of that, but do so as the distance between copies approaches infinity.

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) \cdot e^{j\Omega n} d\Omega$$

$$X(\Omega) = X(\Omega + 2\pi) = \sum_{n = -\infty}^{\infty} x[n] \cdot e^{-j\Omega n}$$

## 4.2.1 Properties

Note that the coefficients are periodic in this case

| $\mathbf{property}$ | $\mathbf{y}(\mathbf{t})$ | $\mathbf{Y}(\omega)$          |
|---------------------|--------------------------|-------------------------------|
| Linearity           | $ax_1[n] + bx_2[n]$      | $aX_1(\Omega) + bX_2(\Omega)$ |
| Time Reversal       | x[-n]                    | $X(-\Omega)$                  |
| Time Delay          | $x[n-n_0]$               | $e^{-j\Omega n_0}X(\Omega)$   |
| Conjugation         | $x^*[n]$                 | $X^*(-\Omega)$                |
| Freq. Derivative    | nx[n]                    | $j\frac{d}{d\Omega}X(\Omega)$ |

# 5 Discrete Fourier Transform

Everything so far has had either infinite sums or a continuous domain—difficult for a computer. To solve this, we take an N-sample window of the signal, pretend the signal is periodic in N, and generate the DTFS of this fake-periodic signal.

- $\bullet$  Increasing N increases frequency resolution
- If the signal is not periodic in N, we get spectral blurring where frequencies do not line up exactly with the positions of the coefficients.

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi k}{N}n} \qquad X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \cdot e^{-j\frac{2\pi k}{N}n}$$

#### 5.0.1 Properties

| property    | $\mathbf{y}(\mathbf{t})$              | $\mathbf{Y}[\mathbf{k}]$        |
|-------------|---------------------------------------|---------------------------------|
| Linearity   | $Ax_1[n] + Bx_2[n]$                   | $AX_1[k] + BX_2[k]$             |
| Time Flip   | $x_p[N-n]$                            | X[-k]                           |
| Time Shift  | $x[n-n_0]$                            | $e^{-j\frac{2\pi k}{N}n_0}X[k]$ |
| Freq. Shift | $e^{-j\frac{2\pi k_0}{N}n}\cdot x[n]$ | $X[k-k_0]$                      |
| Conjugation | $x^*[n]$                              | $X^*[-k]$                       |

# 6 Systems Abstraction

Many applications can be modeled as systems that convert an input signal to an output signal. We focus on systems that are **linear** (you can add them together) and **time invariant** (delaying input delays the output by the same amount).

Systems can be represented with a **difference equation**  $(y[n] = \frac{x[n] + x[n-1]}{2}$  or in terms of **convolution** (using its unit-sample response). With convolution, we can use linearity to then construct the output of any signal by just adding and shifting.

#### 6.1 Convolution

Given a unit-sample response for a system, we can compute the output signal by shifting, multiplying, and adding, or integrating for a CT system:

$$y[n] = (x * h)[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

Convolution is **commutative** (can change the order), **associative** (which pair you convolve first doesn't matter) and **distributive over addition**.