Résumé de cours : Semaine 33, du 13 juin au 17 juin.

Première partie

Calcul différentiel (suite et fin)

Dans ce chapitre, on fixe deux \mathbb{R} -espaces vectoriels E et F de dimensions respectives p et n, une application f de U dans F, où U est un ouvert de E, une base $e = (e_1, \ldots, e_p)$ de E et une base $e' = (e'_1, \ldots, e'_n)$ de F.

1 Différentielle

Définition. On dit que f est différentiable en $a \in U$ si et seulement si il existe une application linéaire de E dans F, qui est alors unique et notée df(a) telle que, lorsque $h \in E$ tend vers 0, f(a+h) = f(a) + df(a)(h) + o(h). Dans ce cas, df(a) est appelée la différentielle de f en a. Il faut savoir le démontrer.

Remarque. Lorsque $E = \mathbb{R}$, f est différentiable en $a \in U$ si et seulement si f est dérivable en a. Dans ce cas, d(f)(a).h = f'(a).h = h.f'(a) et f'(a) = d(f)(a).1.

Propriété. Si f est différentiable en a, alors f est continue en a.

Propriété. On suppose que f est différentiable en a. Alors pour tout $v \in E$, f admet une dérivée partielle en a selon le vecteur v et $D_v f(a) = d(f)(a)(v)$. Il faut savoir le démontrer.

Propriété. Si f est différentiable en a, alors $d(f)(a) = \sum_{j=1}^{p} dx_j \frac{\partial f}{\partial x_j}(a)$,

Définition. Notons $f(x) = \sum_{i=1}^{n} f_i(x)e'_i$. Si f est différentiable en a, on appelle matrice jacobienne de

f en a, et on note $J_f(a)$, la matrice de d(f)(a) dans les bases e et e'. Alors, $J_f(a) = \left(\frac{\partial f_i}{\partial x_j}(a)\right)_{\substack{1 \leq i \leq n \\ 1 \leq i \leq p}}$

Définition. On dit que f est différentiable sur U lorsque, pour tout $a \in U$, f est différentiable en a. Dans ce cas, on dispose de la différentielle de f, notée $df: U \longrightarrow L(E, F)$.

2 Cas des applications numériques

2.1 Le gradient

Notation. dans ce paragraphe, on suppose que $F = \mathbb{R}$.

Définition. Supposons que E est un espace euclidien et que f est différentiable en a. Il existe un unique vecteur de E, appelé gradient de f en a et noté $\nabla f(a)$ tel que : $\forall h \in E < \nabla f(a) | h >= df(a)(h)$.

Si
$$e = (e_1, \dots, e_p)$$
 est une base **orthonormée** de E , $\nabla f(a) = \sum_{j=1}^p \frac{\partial f}{\partial x_j}(a)e_j$.

 $-\nabla f(a)$ est la direction de plus grande pente.

Recherche des extrema

Définition. Si $f:U\longrightarrow\mathbb{R}$ est différentiable, $a\in U$ est un point critique de f si et seulement si, pour tout $j \in \{1, ..., p\}$ $\frac{\partial f}{\partial x_j}(a) = 0$.

Théorème. Si f est différentiable et si f admet un extremum local en $a \in U$, alors a est un point critique de f.

3 Applications continûment différentiables

Définition 3.1

Définition. On dit que f est une application de classe C^1 sur U, ou qu'elle est continûment différentiable sur U si et seulement si f est différentiable et d(f) est continue de U dans L(E,F).

Théorème. f est de classe C^1 sur U si et seulement si pour tout $j \in \{1, \ldots, p\}$, l'application $j^{\text{ème}}$ dérivée partielle de f est définie et continue de U dans F.

Propriété. f est de classe C^1 sur U si et seulement si pour tout $v \in E \setminus \{0\}$, l'application $D_v(f)$ est définie et continue.

 $x \longmapsto \sum_{i=1}^n f_i(x)e_i'$ est de classe C^1 sur U si et seulement si pour tout $i \in \mathbb{N}_n, f_i$ Propriété. est de classe C^1 sur U.

Exemples 3.2

Propriété. Si $f \in L(E, F)$, alors f est de classe C^1 et, pour tout $a \in E$, d(f)(a) = f.

Lemme: Si F, F' et F" sont trois \mathbb{R} -espaces vectoriels et si $B: F \times F' \longrightarrow F$ " est une application bilinéaire continue, alors il existe $k \in \mathbb{R}_+$ tel que pour tout $(x,y) \in F \times F'$, ||B(x,y)|| < k||x|||y||.

Propriété. Soient F' et F" deux \mathbb{R} -espaces vectoriels de dimensions finies et $B: F \times F' \longrightarrow F$ " une application bilinéaire. Alors B est de classe C^1 et d(B)(u,v)(h,h') = B(h,v) + B(u,h'). Il faut savoir le démontrer.

Composition

Théorème. Soit G un troisième \mathbb{R} -espace vectoriel de dimension $m \in \mathbb{N}^*$ et V un ouvert de F.

Fine of the troisenie R-espace vectorie de dimension
$$m \in \mathbb{N}$$
 et V du ouver de Y .

 $f: U \longrightarrow V \qquad g: V \longrightarrow G$

Soient $x = \sum_{j=1}^{p} x_{j}e_{j} \longmapsto \sum_{i=1}^{n} f_{i}(x)e'_{i}$ et $y = \sum_{i=1}^{n} y_{i}e'_{i} \longmapsto g(y)$ deux applications différentiables (resp: de classe C^{1}). Alors $g \circ f$ est différentiable (resp: de classe C^{1}) et , pour tout $a \in U$, on a

 $d(g \circ f)(a) = d(g)(f(a)) \circ d(f)(a)$ et $J_{g \circ f}(a) = J_g(f(a)) \times J_f(a)$.

Il faut savoir le démontrer.

Formule. Règle de la chaîne :
$$\frac{\partial (g \circ f)}{\partial x_j}(a) = \sum_{i=1}^n \frac{\partial f_i}{\partial x_j}(a) \frac{\partial g}{\partial y_i}(f(a)).$$

Propriété. Soient
$$I$$
 un intervalle (non nécessairement ouvert) de \mathbb{R} ,
$$M: \quad I \longrightarrow U_p$$

$$t \longmapsto \sum_{j=1}^p \varphi_j(t) e_j \text{ un}$$

arc paramétré dérivable (resp : de classe C^1) et $f: U \longrightarrow F$ une application différentiable (resp : de classe C^1). Alors $f \circ M$ est un arc paramétré dérivable (resp : de classe C^1) à valeurs dans F.

De plus,
$$(f \circ M)'(a) = d(f)(M(a)).M'(a) = \sum_{j=1}^{p} M'_{j}(a) \frac{\partial f}{\partial x_{j}}(M(a)).$$

Lorsque $F = \mathbb{R}$ et E est euclidien, on a aussi $(f \circ M)'(a) = \langle [\nabla f](M(a))|M'(a) \rangle$.

Remarque. Dans le cas où $E = \mathbb{R}^p$, on peut écrire cette formule sous la forme suivante :

$$\forall a \in I \ \frac{d[f(M_1(t), \dots, M_p(t))]}{dt}(a) = \sum_{j=1}^p M_j'(a) \frac{\partial f}{\partial x_j}(M_1(a), \dots, M_p(a)).$$

Propriété. Si U est convexe, f est constante si et seulement si f est de classe C^1 et d(f) = 0. Il faut savoir le démontrer.

Propriété. Soient $f: U \longrightarrow F$ et $\varphi: U \longrightarrow \mathbb{R}$ deux applications différentiables (resp: de classe C^1). Alors $\varphi: f: U \longrightarrow F$ est une application différentiable (resp: de classe C^1) et

$$\forall a \in U \ \forall h \in U \ d(\varphi.f)(a).h = [d\varphi(a).h].f(a) + [\varphi(a)].[d(f)(a).h].$$

5 Un peu de géométrie différentielle

5.1 Vecteurs tangents

Définition. Soit X une partie de E et x un point de X. Soit v un vecteur de E.

On dira que v est un vecteur tangent à X en x si et seulement si il existe $\varepsilon > 0$ et un arc paramétré $M:]-\varepsilon, \varepsilon[\longrightarrow X$ dérivable en 0 tel que x=M(0) et v=M'(0).

En résumé, lorsque $v \neq 0$, v est tangent à X en x si et seulement si v dirige la tangente en x à un arc paramétré tracé sur X passant par x.

5.2 Plan tangent à une surface

Notation. On suppose que E est euclidien de dimension 3.

Définition. On appelle nappe paramétrée différentiable toute application différentiable $M: U \longrightarrow E$ $(u,v) \longmapsto M(u,v)$, où U est un ouvert de \mathbb{R}^2 . M(U) est le support de la nappe M.

Définition. Soit $M: U \longrightarrow E$ une nappe différentiable et soit $(u_0, v_0) \in U$. Toute combinaison linéaire des vecteurs $\frac{\partial M}{\partial u}(u_0, v_0)$ et $\frac{\partial M}{\partial v}(u_0, v_0)$ est un vecteur tangent à M(U) en $M(u_0, v_0)$. Lorsque $\left(\frac{\partial M}{\partial u}(u_0, v_0), \frac{\partial M}{\partial v}(u_0, v_0)\right)$ est libre, le plan affine $M(u_0, v_0) + \operatorname{Vect}\left(\frac{\partial M}{\partial u}(u_0, v_0), \frac{\partial M}{\partial v}(u_0, v_0)\right)$ est appelé le plan tangent à M en $M(u_0, v_0)$, et la droite affine $M(u_0, v_0) + \mathbb{R}\left(\frac{\partial M}{\partial u}(u_0, v_0) \wedge \frac{\partial M}{\partial v}(u_0, v_0)\right)$ est appelée la normale à M en $M(u_0, v_0)$.

Propriété. Soit U un ouvert de \mathbb{R}^2 et $f:U\longrightarrow\mathbb{R}$ une application différentiable. Alors la surface S d'équation z = f(x, y) est appelée le graphe de l'application f. S est aussi le support

de la nappe paramétrée différentiable $M:U\longrightarrow \mathbb{R}^3$ définie par $M(x,y)=\left| \begin{array}{c} x\\ y\\ f(x,y) \end{array} \right|$.

Fixons $(x_0, y_0) \in U$ et notons $z_0 = f(x_0, y_0)$ et $M_0 = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$

Alors le plan tangent en M_0 à S a pour équation $z - z_0 = (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_0)$. Il faut savoir le démontrer.

Surfaces de niveau 5.3

Notation. On suppose que E est euclidien. Soit U un ouvert de E et $f:U \longrightarrow \mathbb{R}$ différentiable. On appelle surfaces (ou lignes) de niveau de f les ensembles $\{x \in U/f(x) = k\}$, où k est fixé.

Propriété. Soit x un point de la surface de niveau $X = \{x \in U/f(x) = k\}$. Alors tout vecteur tangent en $x \ge X$ est orthogonal au gradient de f en x.

On dit que le gradient de f est orthogonal aux surfaces de niveau de f.

Il faut savoir le démontrer.

Familles sommables

6 Familles sommables de réels positifs

Notation. Pour tout ce paragraphe, on fixe un ensemble I. On fixe également une famille $u = (u_i)_{i \in I} \in \mathbb{R}^I_+$ de réels positifs indexée par I.

Définition. On pose $\sum_{i \in I} u_i = \sup_{\substack{J \in \mathcal{P}(I) \\ J \text{ finie } i \in J}} \sum_{i \in J} u_i \in \mathbb{R}_+ \cup \{+\infty\}$.

Définition. La famille u est sommable si et seulement si $\sum_{i=1}^n u_i < +\infty$, c'est-à-dire si et seulement si il existe $M \ge 0$ tel que, pour toute partie finie J de I, $\sum_{i \in I} u_i \le M$.

Propriété. Si $(u_i)_{i\in I}$ est sommable, alors $\{i\in I/u_i\neq 0\}$ est au plus dénombrable.

Remarque. Pour toute la suite, I est supposé au plus dénombrable.

Propriété. Soient $v = (v_i)_{i \in I}$ et $w = (w_i)_{i \in I}$ deux familles de réels positifs telles que, pour tout $i \in I, \, v_i \leq w_i.$ Si w est sommable, alors v est également sommable et $\sum_{i \in I} v_i \leq \sum_{i \in I} w_i$

Propriété. Lorsque $v = (v_i)_{i \in I}$ et $w = (w_i)_{i \in I}$ sont deux familles de réels positifs telles que, pour tout $i \in I$ $v_i \le w_i$, on peut toujours écrire que, dans $[0, +\infty]$, $\sum_{i \in I} v_i \le \sum_{i \in I} w_i$.

Propriété. Soit $(J_n)_{n\in\mathbb{N}}$ une suite adaptée à I. Les propriétés suivantes sont équivalentes :

- $(u_i)_{i \in I}$ est sommable. La suite $\left(\sum_{i \in I} u_i\right)_{n \in \mathbb{N}}$ est majorée.

— La suite
$$\left(\sum_{i\in J_n} u_i\right)_{n\in\mathbb{N}}$$
 est convergente dans \mathbb{R}_+ .

De plus, dans ce cas,
$$\sum_{i \in I} u_i = \sup_{n \in \mathbb{N}} \sum_{i \in J_n} u_i = \lim_{n \to +\infty} \sum_{i \in J_n} u_i$$
.

Il faut savoir le démontrer.

Propriété. Lorsque $I = \mathbb{N}$, $(u_n) \in \mathbb{R}_+^{\mathbb{N}}$ est sommable si et seulement si $\sum u_n$ est convergente et dans ce cas, $\sum_{n \in \mathbb{N}} u_n = \sum_{n=0}^{+\infty} u_n$.

Théorème. Supposons que I est dénombrable et soit φ une bijection de $\mathbb N$ dans I.

$$(u_i)_{i\in I}$$
 est sommable si et seulement si $\sum u_{\varphi(n)}$ est convergente et dans ce cas, $\sum_{i\in I} u_i = \sum_{n=0}^{+\infty} u_{\varphi(n)}$.

Propriété de linéarité : Si $(v_i)_{i\in I}$ et $(w_i)_{i\in I}$ sont deux familles sommables de réels positifs, alors pour tout $\alpha \in \mathbb{R}_+$, $(\alpha v_i + w_i)_{i\in I}$ est sommable. Dans ce cas, $\sum_{i\in I} (\alpha v_i + w_i) = \alpha \sum_{i\in I} v_i + \sum_{i\in I} w_i$.

Il faut savoir le démontrer.

Convention : Soit $(u_i)_{i\in I}$ une famille d'éléments de $\mathbb{R}_+ \cup \{+\infty\}$. S'il existe $i_0 \in I$ tel que $u_{i_0} = +\infty$, on convient que $\sum_{i\in I} u_i = +\infty$.

Convention : lorsqu'on travaille dans $\mathbb{R}_+ \cup \{+\infty\}$, on utilise la convention $0 \times (+\infty) = 0$. On convient aussi, mais c'est plus universel, que pour tout $x \in \mathbb{R}_+^*$, $x \times (+\infty) = +\infty$.

Propriété. Soit $(v_i)_{i \in I}$ et $(w_i)_{i \in I}$ deux familles d'éléments de $\mathbb{R}_+ \cup \{+\infty\}$ et soit $\alpha \in \mathbb{R}_+ \cup \{+\infty\}$. Alors, dans tous les cas, $\sum_{i \in I} (\alpha v_i + w_i) = \alpha \sum_{i \in I} v_i + \sum_{i \in I} w_i$.

7 Familles sommables de complexes

Notation. I désigne un ensemble au plus dénombrable et $(J_n)_{n\in\mathbb{N}}$ est une suite adaptée à I. On fixe une famille $u=(u_i)_{i\in I}$ de complexes.

Définition. $(u_i)_{i\in I}$ est sommable si et seulement si la famille $(|u_i|)_{i\in I}$ est sommable dans \mathbb{R}_+ . Ainsi, $(u_i)_{i\in I}$ est sommable si et seulement si $\sum_{i\in I} |u_i| < +\infty$.

Propriété. Supposons que tous les u_i sont réels. On pose $u_i^+ = \max(u_i, 0)$ et $u_i^- = \max(-u_i, 0)$. : $u_i = u_i^+ - u_i^-$ et $|u_i| = u_i^+ + u_i^-$. $(u_i)_{i \in I}$ est sommable si et seulement si $(u_i^+)_{i \in I}$ et $(u_i^-)_{i \in I}$ sont sommables. Dans ce cas, on pose $\sum_{i \in I} u_i = \sum_{i \in I} u_i^+ - \sum_{i \in I} u_i^-$.

Propriété. Supposons que les u_i sont complexes. Alors $\text{Re}(u) = (\text{Re}(u_k))_{k \in I}$ et $\text{Im}(u) = (\text{Im}(u_k))_{k \in I}$ sont à valeurs dans \mathbb{R} . u est sommable si et seulement si Re(u) et Im(u) sont sommables et dans ce cas, on convient que $\sum_{k \in I} u_k = \sum_{k \in I} \text{Re}(u_k) + i \sum_{k \in I} \text{Im}(u_k)$,

Propriété.
$$\forall (u_i)_{i \in I} \in \mathbb{C}^I, \ \sum_{i \in I} u_i = \lim_{n \to +\infty} \sum_{j \in J_n} u_j.$$

Il faut savoir le démontrer.

Inégalité triangulaire : si u est sommable, alors $\left|\sum_{i\in I}u_i\right|\leq \sum_{i\in I}|u_i|$.

Propriété. Lorsque $I = \mathbb{N}$, une suite $(u_n)_{n \in \mathbb{N}}$ est sommable si et seulement si la série $\sum u_n$ est absolument convergente. Dans ce cas, $\sum_{n \in \mathbb{N}} u_n = \sum_{n=0}^{+\infty} u_n$.

Propriété. Lorsque $I = \mathbb{Z}$, $(u_n)_{n \in \mathbb{Z}}$ est sommable si et seulement si les séries $\sum_{n \geq 0} u_n$ et $\sum_{n \geq 0} u_{-n}$ sont absolument convergentes et dans ce cas $\sum_{n \in \mathbb{Z}} u_n = \sum_{n=1}^{+\infty} u_{-n} + \sum_{n=0}^{+\infty} u_n$.

8 Propriétés des familles sommables

Notation. I désigne un ensemble au plus dénombrable et $(J_n)_{n\in\mathbb{N}}$ est une suite adaptée à I.

8.1 Linéarité

Propriété de linéarité : soit $a = (a_i)_{i \in I}$ et $b = (b_i)_{i \in I}$ deux familles sommables de complexes et soit $\alpha \in \mathbb{C}$. Alors la famille $\alpha a + b = (\alpha a_i + b_i)_{i \in I}$ est sommable et $\sum_{i \in I} (\alpha a_i + b_i) = \alpha \sum_{i \in I} a_i + \sum_{i \in I} b_i$.

Il faut savoir le démontrer.

Propriété. Soit $(u_i)_{i\in I} \in \mathbb{R}_+^I$ et $(v_i)_{i\in I} \in \mathbb{C}^I$. Si pour tout $i \in I$, $|v_i| \leq u_i$ et si (u_i) est sommable, alors (v_i) est sommable et $|\sum_{i\in I} v_i| \leq \sum_{i\in I} u_i$.

Notation. $l^{\infty}(I, \mathbb{K})$ est l'ensemble des familles $(u_i)_{i \in I}$ bornées de réels, et pour $p \in [1, +\infty[$, $l^p(I, \mathbb{K}) = \left\{ (u_i)_{i \in I} / \sum_{i \in I} |u_i|^p < +\infty \right\}$.

Propriété. $l^1(I, \mathbb{K}), l^2(I, \mathbb{K})$ et $l^{\infty}(I, \mathbb{K})$ sont des sous-espaces vectoriels de \mathbb{K}^I . De plus si (a_i) et (b_i) sont dans $l^2(I, \mathbb{K})$, alors (a_ib_i) est un élément de $l^1(I, \mathbb{K})$.

Propriété. Pour tout $(u_i), (v_i) \in l^2(I, \mathbb{R})$, on pose $((u_i)|(v_i)) = \sum_{i \in I} u_i v_i$.

 $l^2(I,\mathbb{R})$ muni de (.|.) est un espace préhilbertien.

Propriété.

- En posant $\|(u_i)_{i\in I}\|_{\infty} = \sup_{i\in I} |u_i|, (l^{\infty}(I), \mathbb{K})$ est un espace vectoriel normé;
- En posant $||(u_i)_{i\in I}||_1 = \sum_{i\in I}^{i\in I} |u_i|, (l^1(I), \mathbb{K})$ est un espace vectoriel normé;
- En posant $||(u_i)_{i\in I}||_2 = \sqrt{\sum_{i\in I} |u_i|^2}$, $(l^2(I), \mathbb{K})$ est un espace vectoriel normé.

8.2 Commutativité

Propriété. Commutativité de la somme d'une famille sommable.

Soient $(u_i)_{i \in I}$ une famille sommable de complexes et φ une bijection de I dans I.

Alors $(u_{\varphi(i)})_{i\in I}$ est aussi sommable et $\sum_{i\in I} u_{\varphi(i)} = \sum_{i\in I} u_i$.

Il faut savoir le démontrer.

Propriété. (Hors programme) Soient $(u_i)_{i\in I}$ une famille sommable de complexes et φ une bijection de K dans I. Alors $(u_{\varphi(k)})_{k\in K}$ est aussi sommable et $\sum_{k\in K} u_{\varphi(k)} = \sum_{i\in I} u_i$.

Remarque. Lorsque $(u_i)_{i \in I} \in \mathbb{R}^I_+$, pour toute bijection d'un ensemble K dans I, $\sum_{k \in I} u_{\varphi(k)} = \sum_{i \in I} u_i$.

Théorème. Sommation par paquets pour des familles de réels positifs.

Soit $(I_q)_{q\in\mathbb{N}}$ une partition de I (on accepte que certains I_q soient vides).

On suppose que $u=(u_i)_{i\in I}\in\mathbb{R}_+^I$. Alors u est sommable si et seulement si \diamond pour tout $q\in\mathbb{N}$, la famille $(u_i)_{i\in I_q}$ est sommable et

$$\diamond$$
 pour tout $q \in \mathbb{N}$, la famille $(u_i)_{i \in I_q}$ est sommable et

$$\diamond$$
 la suite $\left(\sum_{i\in I_q} u_i\right)_{q\in\mathbb{N}}$ est sommable.

Dans ce cas,
$$\sum_{i \in I} u_i = \sum_{q \in \mathbb{N}} \sum_{i \in I_q} u_i$$
.

Remarque. En cas de non sommabilité, on a encore : $\sum_{i \in I} u_i = \sum_{q \in \mathbb{N}} \sum_{i \in I_q} u_i = +\infty$.

Ainsi, on peut énoncer le théorème sous une forme plus concise : si $(I_q)_{q\in\mathbb{N}}$ est une partition de I et si $(u_i)_{i\in I}\in\mathbb{R}_+^I$, alors $\sum_{i\in I}u_i=\sum_{q\in\mathbb{N}}\sum_{i\in I_q}u_i$.

Corollaire. Interversion de sommations pour des suites doubles de réels positifs (Fubini). Soit $(u_{p,q})_{(p,q)\in\mathbb{N}^2}\in\mathbb{R}_+^{\mathbb{N}^2}$. Les propriétés suivantes sont équivalentes.

- \diamond La famille $(u_{p,q})_{(p,q)\in\mathbb{N}^2}$ est sommable.
- \diamond Pour tout $q \in \mathbb{N}$, $(u_{p,q})_{p \in \mathbb{N}}$ est sommable et la suite $\left(\sum_{p \in \mathbb{N}} u_{p,q}\right)_{q \in \mathbb{N}}$ est sommable.
- \diamond Pour tout $p \in \mathbb{N}$, $(u_{p,q})_{q \in \mathbb{N}}$ est sommable et la suite $\left(\sum_{q \in \mathbb{N}} u_{p,q}\right)_{q \in \mathbb{N}}$ est sommable.

Dans ce cas, on dit que $(u_{p,q})_{(p,q)\in\mathbb{N}^2}$ est une suite double sommable et on dispose des égalités suivantes.

$$\sum_{(p,q)\in\mathbb{N}^2} u_{p,q} = \sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q}\right) = \sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{p,q}\right).$$

Remarque. Comme précédemment, si l'on accepte de travailler dans $\mathbb{R}_+ \cup \{+\infty\}$, on peut énoncer ce théorème sous la forme suivante :

Pour tout
$$(u_{p,q})_{(p,q)\in\mathbb{N}^2} \in \mathbb{R}_+^{\mathbb{N}^2}$$
, $\sum_{(p,q)\in\mathbb{N}^2} u_{p,q} = \sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q}\right) = \sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{p,q}\right)$.