Trend		Seasonal	
	N	Α	M
N	$y_t = \ell_{t-1}(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$
	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$
A	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$
	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$	$b_{t} = b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_{t}$ $s_{t} = s_{t-m} + \gamma(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_{t}$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$ $s_t = s_{t-m}(1 + \gamma\varepsilon_t)$
		·	•
A_d	$y_t = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t)$ $\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$	$y_{t} = (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_{t})$ $\ell_{t} = \ell_{t-1} + \phi b_{t-1} + \alpha(\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_{t}$	$y_{t} = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_{t})$ $\ell_{t} = (\ell_{t-1} + \phi b_{t-1}) (1 + \alpha \varepsilon_{t})$
a	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$	$b_{t} = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_{t}$ $b_{t} = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_{t}$	$b_t = \phi b_{t-1} + \beta(\ell_{t-1})(1 + \alpha \epsilon_t)$ $b_t = \phi b_{t-1} + \beta(\ell_{t-1} + \phi b_{t-1})\epsilon_t$
		$s_t = s_{t-m} + \gamma(\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = \ell_{t-1} b_{t-1} (1 + \varepsilon_t)$	$y_t = (\ell_{t-1} b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} b_{t-1} s_{t-m} (1 + \varepsilon_t)$
M	$\ell_t = \ell_{t-1} b_{t-1} (1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1}b_{t-1} + \alpha(\ell_{t-1}b_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = \ell_{t-1} b_{t-1} (1 + \alpha \varepsilon_t)$
	$b_t = b_{t-1}(1 + \beta \varepsilon_t)$	$b_t = b_{t-1} + \beta(\ell_{t-1}b_{t-1} + s_{t-m})\varepsilon_t/\ell_{t-1}$	$b_t = b_{t-1}(1 + \beta \varepsilon_t)$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = \ell_{t-1} b_{t-1}^{\phi} (1 + \varepsilon_t)$	$y_t = (\ell_{t-1}b_{t-1}^{\phi} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} b_{t-1}^{\phi} s_{t-m} (1 + \varepsilon_t)$
M_d	$\ell_t = \ell_{t-1} b_{t-1}^{\phi} (1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} b_{t-1}^{\phi} + \alpha (\ell_{t-1} b_{t-1}^{\phi} + s_{t-m}) \varepsilon_t$	$\ell_t = \ell_{t-1} b_{t-1}^{\phi} (1 + \alpha \varepsilon_t)$
	$b_t = b_{t-1}^{\phi} (1 + \beta \varepsilon_t)$	$b_t = b_{t-1}^{\phi} + \beta(\ell_{t-1}b_{t-1}^{\phi} + s_{t-m})\varepsilon_t/\ell_{t-1}$	$b_t = b_{t-1}^{\phi} (1 + \beta \varepsilon_t)$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} b_{t-1}^{\phi} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$