Feuille d'exercices 3 : langages rationnels

Exercice 1

Quels sont les langages engendrés par les expressions régulières suivantes? Pour chaque langage, donner un automate d'états finis qui le reconnaît. :

```
- (a + b)*a(a + b)*
- bba+bba*
- (ab+)*
- (a + b+)+
- (a + b)*a(a + b)*a(a + b)*
- r = b*ab*a(a + b)*
```

Exercice 2

On considère le langage L sur l'alphabet $\Sigma = \{a, b\} : L = \{ab, ba\}.$

Donner une expression régulière et un automate d'états finis engendrant le langage L^* ; même question pour L^+ .

Exercice 3

Donner une expression régulière et un automate d'états finis engendrant le langage des mots sur l'alphabet $\Sigma = \{a, b\}$

- 1. avec exactement deux occurrences de 'a'.
- 2. avec au moins deux occurrences de 'a'.
- 3. avec un nombre pair d'occurrences de 'a'.

Exercice 4

Donner une expression régulière et un automate d'états finis engendrant l'ensemble des mots sur l'alphabet l'alphabet $\Sigma = \{a, b\}$.

- 1. formés d'un 'a' suivi d'un nombre quelconque de 'b'.
- 2. avec au moins une occurrence de 'a' et au moins une occurrence de 'b'.
- 3. sans occurrence du facteur 'ab'.

Exercice 5

Donner un automate d'états finis reconnaissant le langage des mots sur l'alphabet $\Sigma = \{a, b\}$

- 1. commençant par 'a'.
- 2. avec au moins deux occurrences de 'a'.
- 3. contenant 'a'.
- 4. comportant le facteur 'aba'.
- 5. ne comportant pas le facteur 'aba'.

Exercice 6

Donner un automate d'états finis reconnaissant le langage des mots sur $\Sigma = \{a,b\}$ sans double lettre.

Exercice 7

- 1. Donner une expression régulière et un automate d'états finis pour le langage des nombres binaires l'alphabet $\Sigma = \{0, 1\}$.
- 2. Donner une expression régulière et un automate d'états finis pour le langage des nombres binaires sans zéro inutile sur l'alphabet $\Sigma = \{0, 1\}$.

Exercice 8

Montrer que le langages des mots sur $\Sigma = \{a, b\}$ qui ont un nombre pair d'occurrences de 'a' et un nombre pair d'occurrences de 'b' est rationnel.