RL, RC, RLC回路

9. 交流回路 (4)

RC直列回路

- $\mathbf{Z} = R j \frac{1}{\omega C} = |\mathbf{Z}| \angle \theta_Z$, $\theta_Z = \tan^{-1} \frac{1}{R\omega C}$
 - Zの軌跡は、 $Re\{Z\} = R$, $Im\{Z\} < 0$ の半直線
 - $\omega = 0$ のとき(つまり $\frac{1}{\omega c}$ は高)、Zも ∞ に発散
 - $-\omega=\infty$ のとき(つまり $\frac{1}{\omega c}$ は低)、Zは最小。最小値はR

- Yの軌跡は、上半分の半円
- $-\omega = 0$ のとき、Yは最小。最小値は0
- $-\omega=\infty$ のとき、Yは最大。最大値は $\frac{1}{R}$

Zのインピーダンス図

 $Im \{Z\}$ R $\theta_{Z} \qquad \omega = \infty \qquad Re\{Z\}$ Z $\omega = \infty \qquad Re\{Z\}$

Yのアドミタンス図

Yの軌跡の導出

$$Y = \frac{1}{Z} = \frac{1}{R + jX} = \frac{R - jX}{(R + jX)(R - jX)} = \frac{R - jX}{R^2 + X^2} = G + jB$$

$$G = \frac{R}{R^2 + X^2}, \quad \therefore R^2 + X^2 = \frac{R}{G}$$

$$B = \frac{-X}{R^2 + X^2}$$

G, Bの式の両辺を2乗して加え, $R^2 + X^2 = \frac{R}{G}$ を用いてXを消去。

左辺:
$$G^2 + B^2$$

右辺:
$$\frac{R^2 + X^2}{(R^2 + X^2)^2} = \frac{1}{R^2 + X^2} = \frac{G}{R}$$

$$\therefore G^2 - \frac{G}{R} + B^2 = 0$$

整理して、

$$\left(G - \frac{1}{2R}\right)^2 + B^2 = \left(\frac{1}{2R}\right)^2$$
 半径 $\frac{1}{2R}$, 中心 $\left(\frac{1}{2R}, 0\right)$ の円

RC直列回路の正弦波応答

- ・ $E = |E| \angle \theta_E$ このとき、
- $I = \frac{E}{Z} = \frac{|E|}{|Z|} \angle (\theta_E \theta_Z)$
- $V_R = RI$ ……..Iと同位相

 I, E, V_R, V_C のフェーザ図 (I基準)

フェーザ図の別の描き方 (*E*基準)

容量性負荷なので、 IはEに対して進み位相。

RL直列回路

- $\mathbf{Z} = R + j\omega L = |\mathbf{Z}| \angle \theta_Z$, $\theta_Z = \tan^{-1} \frac{\omega L}{R}$
 - Zの軌跡は、 $Re\{Z\} = R$, $Im\{Z\} > 0$ の半直線
 - $\omega = 0$ のとき(つまり ωL は低)、Zは最小。最小値はR
 - $-\omega = \infty$ のとき(つまり ωL は高)、Zも ∞ に発散
- $Y = \frac{R}{R^2 + (\omega L)^2} j \frac{\omega L}{R^2 + (\omega L)^2} = G + jB$
 - Yの軌跡は、下半分の半円
 - $-\omega=0$ のとき、Yは最大。最大値は $\frac{1}{R}$
 - $-\omega = \infty$ のとき、Yは最小。最小値は0

Zのインピーダンス図

 $Im \{Z\}$ $j\omega L$ Z $\omega = 0$ $Re\{Z\}$

Yのアドミタンス図

RL直列回路の正弦波応答

- ・ $E = |E| \angle \theta_E$ このとき、
- $I = \frac{E}{Z} = \frac{|E|}{|Z|} \angle (\theta_E \theta_Z)$
- $V_R = RI$ Iと同位相
- $V_L = j\omega L I$ Iより90° 進む

 I, E, V_R, V_C のフェーザ図(I基準)

フェーザ図の別の描き方 (**E**基準)

誘導性負荷なので、 IはEに対して遅れ位相。

RLC直列回路

- $\mathbf{Z} = R + j\left(\omega L \frac{1}{\omega C}\right) = |\mathbf{Z}| \angle \theta_Z$, $\theta_Z = \tan^{-1} \frac{\omega L \frac{1}{\omega C}}{R}$
 - **Z**の軌跡は、 $Re\{Z\} = R$ の直線
 - $-\omega L \frac{1}{\omega c} = 0$ のとき、L, Cのリアクタンスが打ち消しあって0となるので、Zは最小値Rをとる。この現象を共振 (resonance)といい、このときの周波数 ω_0 を共振角周波数という。

•
$$Y = \frac{R}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} - j\frac{\omega L - \frac{1}{\omega C}}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = G + jB$$

- Yの軌跡は円を描く

$$\omega_0 = \frac{1}{\sqrt{LC}} = 2\pi f_0$$

$$\therefore f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Zのインピーダンス図

Yのアドミタンス図

RLC直列回路の正弦波応答

- Zは ω_0 で極小なので、Iは極大。この極大値を I_0 とする。
- 共振曲線(ωとIのグラフ)が鋭いほど、 ある周波数の正弦波だけを取り出せる、 つまり周波数選択性が高い。
- ・ 共振曲線の鋭さは、 共振周波数に対する半値幅の割合 $\frac{\Delta\omega}{\omega_0}$ で表す。
- 共振時は、CとLのリアクタンスは絶対値が等しくなる。 このとき、リアクタンスと直流抵抗の比をQ値(quality factor)と呼ぶ。

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

・ 比帯域幅はQ値に反比例する

$$\frac{\Delta\omega}{\omega_0} = \frac{1}{Q}$$
 Qの性質(導出は省略)

半値幅 $\Delta\omega$ とは $I=rac{I_0}{\sqrt{2}}$ となる ω の幅

10. 演習問題

1. 下図の回路(a),(b)の合成インピーダンスZを複素数で求め、 複素平面上に作図せよ。ただし、f = 50Hzとする。

- 2. 上図(a)の回路に、f = 60Hzの電流 $I = 2 \angle 0^\circ$ [A] が流れているとき、 V_R, V_L および端子間電圧Vのフェーザ表示を求め、フェーザ図を描け。
- 3. $R=10\Omega$, $C=0.001\mu$ F, L=1mHのRLC直列回路について、共振周波数 f_0 と、共振時のインピーダンス Z_0 、比帯域幅 $\frac{\Delta\omega}{\omega_0}$ を求めよ。