Chromium Feature Proposal

Intro

Cameron Raymond, Chris Molloy, Ross Hill, Michael Wrana, Brenden Forbes, Brendan Russell

- Better synching for tabs across devices
- Implementation
- Impacted Subsystems
- Test Cases
- Limitations/ Team issues
- Lessons learned

Conceptual Architecture

Alternative Implementation

- Have Rendering Engine handle Chrome Sync
 - Direct communication with Javascript Engine
 - Useful for further adaptions where Sync captures more nuance in the webpage's state
- Reduces
 - Performance
 - Reliability
 - New dependencies needed between Rendering Engine and Data Persistence to read in webpage state

Decided Implementation

- Right now, the data that gets synced includes browser history, extensions, bookmarks, and logins
- For our feature, Chromium must also sync webpage progress:
 - Scroll distance from top of page and time remaining on videos
- Chrome Sync will therefore need webpage data from **Blink**
- Chrome Sync communicates with Google servers through Network
- We keep Chrome Sync in Browser Engine and pass webpage progress data between Blink and Browser Engine
- By keeping Chrome Sync out of Blink we maintain Blink's cohesion

SAAM Analysis

- Stakeholders
 - Users
 - Devs
 - Investors
- SAAM

Impacted Subsystems

Sending updated webpage progress

- Browser Engine
 - Periodically requests page state updates from Blink and pushes the updates to Google sync servers if page state was sufficiently changed
 - The current page state is stored with Data Persistence
- Rendering Engine (Blink)
 - Blink returns page state (scroll distance and video progress)
 updates to Browser Engine

Impacted Subsystems cont.

Receiving updated webpage progress

- Browser Engine
 - Browser Engine receives an update from Google sync servers
 with an updated webpage state on a synced tab
 - Updated page state is saved with Data Persistence
 - The updated page state is sent to Blink
- Rendering Engine (Blink)
 - Blink receives an update page state from the Browser Engine and updates the page
- How Browser Engine interacts with Network is largely unchanged
- Browser Engine and Blink remain co-dependent in our architecture diagram

Test Cases

- Load a webpage
- Cross device sync
- Login/Logout
- Tab sync

Concurrency

- Separate Renderers
- Implementation Details
- Callback

Almost no Impact

Sequence Diagram Web Page is scrolled

Component Calling Returning (Context) Ongoing Process

Retrieving State On Seperate Device

Component Calling Returning (Context) Ongoing Process

Potential Risks And Limitations

- Risks
 - Change
 - Annoyance
 - Security
- Limitations
 - JavaScript

Team Issues

- Developers in different parts of the world
- Increased coupling through more nuanced Sync
 - Maintenance
- What is the default device to Sync with?

Lessons Learned

- Does not necessarily alter architecture
- Many implementations
- Teamwork

Conclusion

- Better tab synching
- SAAM Analysis
- Test Cases
- Concurrency

THANKS FOR LISTENING!!!!

