CS1231S: Discrete Structures

Tutorial #6: Functions

(Week 8: 7 - 11 March 2022)

1. Discussion Questions

These are meant for you to discuss on the LumiNUS Forum. No answers will be provided.

D1. Which of the following is a function? If it is not a function, explain.

(a) Define
$$f: \mathbb{Z} \to \mathbb{Z}$$
 by $\forall z \in \mathbb{Z}$, $f(z) = \begin{cases} 1, & \text{if } 2 \mid z, \\ 2, & \text{if } 3 \mid z. \end{cases}$

(b) Define
$$f: \mathbb{Z} \to \mathbb{Z}$$
 by $\forall z \in \mathbb{Z}$, $f(z) = \begin{cases} 1, & \text{if } 2 \mid z, \\ 2, & \text{if } 2 \nmid z. \end{cases}$

(c) Define
$$f: \mathbb{R} \to \mathbb{Z}$$
 by $\forall x \in \mathbb{R}$, $f(x) = 2x$.

(d) Define
$$f: \mathbb{Z} \to \mathbb{R}$$
 by $\forall x \in \mathbb{Z}$, $f(x) = 2x$.

- D2. Let function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$ be defined by setting, $\forall x. y \in \mathbb{Z}$, $f(x, y) = \frac{x+y}{3}$. Find three distinct pre-images of 2.
- D3. Definitions: Given any real number x,
 - (1) the **floor** of x, denoted $\lfloor x \rfloor$, is the unique integer n such that $n \leq x < n+1$;
 - (2) the **ceiling** of x, denoted $\lceil x \rceil$, is the unique integer n such that $n-1 < x \le n$.

Let f , $g \colon \mathbb{Q} \to \mathbb{Q}$ be defined by setting, for each $x \in \mathbb{Q}$,

$$f(x) = [x] + 1$$
 and $g(x) = [x]$.

What is the range of f? What is the range of g? Is f = g? Why?

- D4. To prove that a composition of two surjections is a surjection, Aiken wrote:
 - 1. Suppose $f: X \to Y$ and $g: Y \to Z$ are surjections.
 - 2. Then $\forall y \in Y \ \exists x \in X \ \text{such that} \ f(x) = y \ \text{as f is surjective,}$
 - 3. and $\forall z \in Z \ \exists y \in Y \ \text{such that} \ g(y) = z \ \text{as g is surjective}.$
 - 4. So $(g \circ f)(x) = g(f(x)) = g(y) = z$.
 - 5. Hence $g \circ f$ is a surjection.

Explain the mistakes in this "proof".

CS1231S: Discrete Structures Tutorial #6: Functions Answers

1. Define $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = x + 3$$
, and $g(x) = -x$, for all $x \in \mathbb{R}$.

Prove that (a) f is a bijection, (b) g is a bijection, and (c) $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Answers:

- (a) To prove f is a bijection.
- 1. (To show f is injective.)
 - 1.1. Let $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) = f(x_2)$.
 - 1.2. Then $x_1 + 3 = x_2 + 3$ by the definition of f.
 - 1.3. Then $x_1 = x_2$.
 - 1.4. Therefore, f is injective.
- 2. (To show f is surjective.)
 - 2.1. Take any $y \in \mathbb{R}$.
 - 2.2. Let x = y 3.
 - 2.3. Then f(x) = f(y-3) = (y-3) + 3 = y.
 - 2.4. Therefore, *f* is surjective.
- 3. Therefore f is bijective (by 1.4 and 2.4).
- (b) To prove g is a bijection.
- 1. (To show g is injective.)
 - 1.1. Let $x_1, x_2 \in \mathbb{R}$ such that $g(x_1) = g(x_2)$.
 - 1.2. Then $-x_1 = -x_2$ by the definition of g.
 - 1.3. Then $x_1 = x_2$.
 - 1.4. Therefore, g is injective.
- 2. (To show g is surjective.)
 - 2.1. Take any $y \in \mathbb{R}$.
 - 2.2. Let x = -y.
 - 2.3. Then g(x) = g(-y) = -(-y) = y.
 - 2.4. Therefore, g is surjective.
- 3. Therefore g is bijective (by 1.4 and 2.4).
- (c) $f^{-1}(x) = x 3$. $g^{-1}(x) = -x$. $(g \circ f)(x) = g(f(x)) = g(x+3) = -(x+3) = -x - 3$. $(g \circ f)^{-1}(x) = -x - 3$. $(f^{-1} \circ g^{-1})(x) = f^{-1}(g^{-1}(x)) = f^{-1}(-x) = -x - 3 = (g \circ f)^{-1}(x)$.

- 2. Let $A = \{a, b\}$ and S be the set of all strings over A. (See Lecture 7 for the definition of string.) Define a concatenate-by-a-on-the-left function $C: S \to S$ by C(s) = as for all $s \in S$.
 - (a) Is C an injection? Prove or give a counterexample.
 - (b) Is C a surjection? Prove or give a counterexample.

Answers:

(a) Yes, C is an injection.

Proof:

- 1. Take any two strings $s_1, s_2 \in S$ and suppose $C(s_1) = C(s_2)$.
- 2. Then $as_1 = as_2$ by the definition of C.
 - 2.1. Let the length of as_1 and as_2 be n.
 - 2.2. Then the length of s_1 and s_2 is n-1.
 - 2.3. Write $s_1 = x_1 x_2 \cdots x_{n-1}$ and $s_2 = y_1 y_2 \cdots y_{n-1}$ for $x_i, y_i \in A$, for all $i \in \{1, 2, \dots, n-1\}$.
 - 2.4. Thus $ax_1x_2 \cdots x_{n-1} = ay_1y_2 \cdots y_{n-1}$ by substitution.
 - 2.5. Thus $x_i = y_i$ for all $i \in \{1, 2, \dots, n-1\}$ by string equality.
 - 2.6. Hence $s_1 = s_2$.
- 3. Therefore C is an injection.
- (b) No, C is not a surjection.

Proof:

- 1. Take the string *b* from *S*.
- 2. (Claim: There is no $s \in S$ such that C(s) = b.)
- 3. Suppose not, i.e., suppose $\exists s \in S$ such that C(s) = b.
 - 3.1. Then C(s) = as = b by the definition of C.
 - 3.2. Then *as* and *b* have the same length.
 - 3.3. Since a and b have length 1, this means $s = \varepsilon$ (the empty string, which has a length of 0).
 - 3.4. But this means $b = as = a\varepsilon = a$.
 - 3.5. This is a contradiction since $a \neq b$.
- 4. Hence, for b, there is no $s \in S$ such that C(s) = b.
- 5. Therefore *C* is not a surjection.

- 3. Let $A = \{s, u\}$. Define a function $len: A^* \to \mathbb{Z}_{\geq 0}$ by setting $len(\sigma)$ to be the length of σ for each $\sigma \in A^*$.
 - (a) What is len(suu)?
 - (b) What is $len(\{\varepsilon, ss, uu, ssss\})$?
 - (c) What is $len^{-1}(\{3\})$?
 - (d) Does len^{-1} exist? Explain your answer.

Answers:

- (a) len(suu) = 3.
- (b) $len(\{\varepsilon, ss, uu, ssss\}) = \{0,2,4\}.$
- (c) $len^{-1}(\{3\}) = \{sss, ssu, sus, suu, uss, usu, uus, uuu\}.$
- (d) len(s) = 1 = len(u) but $s \neq u$. So len is not injective and so it is not bijective. Thus len^{-1} does not exist by Theorem 7.2.3. (Recall that len^{-1} refers to the inverse function of len.)
- 4. Which of the functions defined in the following are injective? Which are surjective? Prove that your answers are correct. If a function defined below is both injective and surjective, then find a formula for the inverse of the function. Here we denote by *Bool* the set {**true**, **false**}.
 - (a) $f: \mathbb{Q} \to \mathbb{Q}$; $x \mapsto 12x + 31$.
 - (b) $g:Bool^2 \to Bool;$ $(p,q) \mapsto p \land \sim q.$
 - (c) $h: Bool^2 \rightarrow Bool^2$; $(p,q) \mapsto (p \land q, p \lor q)$.
 - (d) $k: \mathbb{Z} \to \mathbb{Z}$; $x \mapsto \begin{cases} x, & \text{if } x \text{ is even;} \\ 2x - 1, & \text{if } x \text{ is odd.} \end{cases}$

Answers:

- (a) We could prove that f is injective and surjective, and hence bijective. Here, we try another approach: if we manage to find an inverse function for f, then by Theorem 7.2.3, f is bijective.
 - 1. Note that for all $x, y \in \mathbb{Q}$, $y = 12x + 31 \Leftrightarrow x = (y 31)/12$.
 - 2. Define $f^*: \mathbb{Q} \to \mathbb{Q}$ by setting, for all $y \in \mathbb{Q}$, $f^*(y) = (y 31)/12$.
 - 3. Then whenever $x, y \in \mathbb{Q}, y = f(x) \Leftrightarrow x = f^*(y)$.
 - 4. Thus f^* in the inverse of f.
 - 5. Hence f is bijective (i.e. both injective and surjective) by Theorem 7.2.3.

- (b)
- 1. g(false, true) = false = g(false, false), where $(false, true) \neq (false, false)$.
- 2. So g is not injective.
- 3. g(true, false) = true.
- 4. Lines 1 and 3 show that every elemnt of the codomain *Bool* is in the range of g.
- 5. Hence g is surjective.
- (c)
- 1. h(true, false) = (false, true) = g(false, true), where $(\text{true}, \text{false}) \neq (\text{false}, \text{true})$.
- 2. So *h* is not injective.
- 3. If $p, q, r \in Bool$ such that $h(p, q) = (\mathbf{true}, r)$, then
 - 3.1. $p \wedge q = \mathbf{true}$ by

by the definition of h;

- 3.2. $\therefore p = \text{true}$
- 3.3. $\therefore r = p \lor q = \mathbf{true}$ by the definition of h.
- 4. So (**true**, **false**) in the codomain is not in the range of *h*.
- 5. Hence *h* is not surjective.
- (d)
- 1. We first show that if x is an even integer, then k(x) is even.
 - 1.1. Let *x* be an even integer.
 - 1.2. Then k(x) = x by the definition of k.
 - 1.3. So k(x) is even.
- 2. Next we show that if x is an odd integer, then k(x) is odd.
 - 2.1. Let *x* be an odd integer.
 - 2.2. Then k(x) = 2x 1 = 2(x 1) + 1, where x 1 is an integer.
 - 2.3. So k(x) is odd.
- 3. Since every integer is either even or odd but not both, lines 1 and 2 tell us that, for every $x \in \mathbb{Z}$,
 - 3.1. x is even if and only if k(x) is even; and
 - 3.2. x is odd if and only if k(x) is odd.
- 4. Now we show that *k* is injective.
 - 4.1. Let $x_1, x_2 \in \mathbb{Z}$ such that $k(x_1) = k(x_2)$.
 - 4.2. Case 1: $k(x_1)$ is even.
 - 4.2.1. Then both x_1 and x_2 are even by line 3.1.
 - 4.2.2. So $x_1 = k(x_1) = k(x_2) = x_2$ by the definition of k.
 - 4.3. Case 2: $k(x_1)$ is odd.
 - 4.3.1. Then both x_1 and x_2 are odd by line 3.2.
 - 4.3.2. So $2x_1 1 = k(x_1) = k(x_2) = 2x_2 1$ by the definition of k.
 - 4.3.3. So $x_1 = x_2$.
 - 4.4. Since $k(x_1)$ is either even or odd, we conclude that $x_1 = x_2$ in any case.
 - 4.5. Therefore k is injective.

- 5. Finally, we prove by contradiction that k is not surjective.
 - 5.1. Suppose k is surjective.
 - 5.2. Note that 3 is in the codomain \mathbb{Z} .
 - 5.3. Use the surjectivity of k to find $x \in \mathbb{Z}$ such that k(x) = 3.
 - 5.4. Note that k(x) = 3 is odd and so x is odd by line 3.2.
 - 5.5. Thus 3 = k(x) = 2x 1 by the choice of x and the definition of k.
 - 5.6. Solving gives $x = \frac{3+1}{2} = 2$ which is even.
 - 5.7. This contradicts line 5.4 that x is odd.
 - 5.8. Therefore k is not surjective.
- 5. We have shown in Theorem 7.3.3 that if $f: X \to Y$ and $g: Y \to Z$ are both injective, then $g \circ f$ is injective.

Now, let $f: B \to C$. Suppose we have a function g with domain C such that $g \circ f$ is injective. Show that f is injective.

Answer:

- 1. Suppose g is a function with domain C such that $g \circ f$ is injective.
- 2. Let $x_1, x_2 \in B$ such that $f(x_1) = f(x_2)$.
- 3. Then $(g \circ f)(x_1) = g(f(x_2)) = g(f(x_2)) = (g \circ f)(x_2)$ by the definition of $g \circ f$.
- 4. So $x_1 = x_2$ as $g \circ f$ is injective by the choice of g.
- 5. Therefore f is injective.
- 6. We have shown in Theorem 7.3.4 that if $f: X \to Y$ and $g: Y \to Z$ are both surjective, then $g \circ f$ is surjective.

Now, let $f: B \to C$. Suppose we have a function e with codomain B such that $f \circ e$ is surjective. Show that f is surjective.

Answer:

- 1. Suppose e is a function with codomain B such that $f \circ e$ is surjective.
- 2. Take any $y \in C$.
- 3. Apply the surjectivity of $f \circ e$ to find w in the domain of e such that $y = (f \circ e)(w)$.
- 4. Let x = e(w).
- 5. Then $x \in B$ and $y = (f \circ e)(w) = f(e(w)) = f(x)$ by the definition of $f \circ e$.
- 6. Therefore $f \circ e$ is surjective.

7. Let $A = \{1,2,3\}$. The **order** of a bijection $f: A \to A$ is defined to be the smallest $n \in \mathbb{Z}^+$ such that

$$\underbrace{f \circ f \circ \cdots \circ f}_{n\text{-many } f'\mathsf{s}} = id_A.$$

Define functions $g, h: A \rightarrow A$ by setting, for all $x \in A$,

$$g(x) = \begin{cases} 1, & \text{if } x = 2; \\ 2, & \text{if } x = 1; \\ x, & \text{otherwise.} \end{cases} \qquad h(x) = \begin{cases} 2, & \text{if } x = 3; \\ 3, & \text{if } x = 2; \\ x, & \text{otherwise.} \end{cases}$$

Find the orders of $g, h, g \circ h$, and $h \circ g$.

Answers: The orders are respectively 2, 2, 3 and 3.

- 8. Let $f: A \to B$ be a function. Let $X \subseteq A$ and $Y \subseteq B$.
 - (a) Is it always the case that $X \subseteq f^{-1}(f(X))$? Is it always the case that $f^{-1}(f(X)) \subseteq X$? Justify your answer.
 - (b) Is it always the case that $Y \subseteq f(f^{-1}(Y))$? Is it always the case that $f(f^{-1}(Y)) \subseteq Y$? Justify your answer.

Answers

- (a) First we show it is always that case that $X \subseteq f^{-1}(f(X))$.
 - 1. Let $x \in X$.
 - 2. Then $f(x) \in f(X)$ by the definition of f(X).
 - 3. So $x \in f^{-1}(f(X))$ by the definition of $f^{-1}(f(X))$.

Next we show it is possible that $f^{-1}(f(X)) \nsubseteq X$.

- 1. Consider $f: \{-1,1\} \to \{0\}$ where f(-1) = 0 = f(1), and $X = \{1\}$.
- 2. Note that $f(X) = \{f(1)\} = \{0\}.$
- 3. Since f(-1) = 0, we know $-1 \in f^{-1}(\{0\}) = f^{-1}(f(X))$.
- 4. As $-1 \notin \{1\} = X$, we deduce that $f^{-1}(f(X)) \nsubseteq X$.

(Other counterexamples possible.)

- (b) First we show it is always that case that $f(f^{-1}(Y)) \subseteq Y$.
 - 1. Take any $y \in f(f^{-1}(Y))$.
 - 2. Then we have some $x \in f^{-1}(Y)$ such that y = f(x), by the definition of $f(f^{-1}(Y))$.
 - 3. Now, as $x \in f^{-1}(Y)$, we get $y' \in Y$ which makes y' = f(x).
 - 4. Since f is a function, this implies $y = f(x) = y' \in Y$ as required.

Next we show it is possible that $Y \nsubseteq f(f^{-1}(Y))$?.

- 1. Consider $f: \{0\} \to \{-1,1\}$ where f(0) = 1, and $Y = \{-1\}$.
- 2. Note that no $x \in \{0\}$ makes f(x) = -1.
- 3. So $f^{-1}(Y) = \emptyset$ by the definition of $f^{-1}(Y)$.
- 4. This entails $f(f^{-1}(Y)) = \emptyset \not\supseteq \{-1\} = Y$.

(Other counterexamples possible.)

9. [Optional question]

Consider the equivalence relation \sim on \mathbb{Q} defined by setting, for all $x, y \in \mathbb{Q}$,

$$x \sim y \Leftrightarrow x - y \in \mathbb{Z}$$
.

Define addition and multiplication on \mathbb{Q}/\sim as follows: whenever $[x],[y]\in\mathbb{Q}/\sim$,

$$[x] + [y] = [x + y]$$
 and $[x] \cdot [y] = [x \cdot y]$.

- (a) Is + well defined on \mathbb{Q}/\sim ?
- (b) Is \cdot well defined on \mathbb{Q}/\sim ?

Prove that your answers are correct.

Answers:

- (a) We claim that + is well defined on \mathbb{Q}/\sim .
 - 1. Let $[x_1], [y_1], [x_2], [y_2], \in \mathbb{Q}/\sim$ such that $[x_1] = [x_2]$ and $[y_1] = [y_2]$.
 - 2. So $x_1 \sim x_2$ and $y_1 \sim y_2$ by Lemma Rel.1.
 - 3. Use the definition of \sim to find $k, l \in \mathbb{Z}$ such that $x_1 x_2 = k$ and $y_1 y_2 = l$.
 - 4. Note that $(x_1 + y_1) (x_2 + y_2) = (x_1 x_2) + (y_1 y_2) = k + l \in \mathbb{Z}$.
 - 5. So $x_1 + y_1 \sim x_2 + y_2$ by the definition of \sim .
 - 6. Hence $[x_1] + [y_1] = [x_1 + y_1] = [x_2 + y_2] = [x_2] + [y_2]$ by Lemma Rel.1.
- (b) We claim that \cdot is not well defined on \mathbb{Q}/\sim .
 - 1. Note that $\frac{1}{2} \frac{-1}{2} = 1 \in \mathbb{Z}$.
 - 2. This implies $\frac{1}{2} \sim \frac{-1}{2}$ and so $\left[\frac{1}{2}\right] = \left[\frac{-1}{2}\right]$ by Lemma Rel.1.
 - 3. Note that $\frac{1}{4} \frac{-1}{4} = \frac{1}{2} \notin \mathbb{Z}$.
 - 4. This implies $\frac{1}{4} \nsim \frac{-1}{4}$ and so $\left[\frac{1}{4}\right] \neq \left[\frac{-1}{4}\right]$ by Lemma Rel.1.
 - 5. Therefore, according to the definition of \cdot on \mathbb{Q}/\sim ,

$$\left[\frac{1}{2}\right] \cdot \left[\frac{1}{2}\right] = \left[\frac{1}{2} \cdot \frac{1}{2}\right] = \left[\frac{1}{4}\right] \neq \left[\frac{-1}{4}\right] = \left[\frac{1}{2} \cdot \frac{-1}{2}\right] = \left[\frac{1}{2}\right] \cdot \left[\frac{-1}{2}\right].$$