PRELIMINARY

MOSEL VITELIC

V53C16258H HIGH PERFORMANCE 256K X 16 EDO PAGE MODE CMOS DYNAMIC RAM OPTIONAL SELF REFRESH

HIGH PERFORMANCE	25	30	35	40	45	50
Max. RAS Access Time, (t _{RAC})	25 ns	30 ns	35 ns	40 ns	45 ns	50 ns
Max. Column Address Access Time, (t _{CAA})	13 ns	16 ns	18 ns	20 ns	22 ns	24 ns
Min. Extended Data Out Mode Cycle Time, (t _{PC})	10 ns	12 ns	14 ns	15 ns	17 ns	19 ns
Min. Read/Write Cycle Time, (t _{RC})	45 ns	60 ns	70 ns	75 ns	80 ns	90 ns

Features

- 256K x 16-bit organization
- EDO Page Mode for a sustained data rate of 100 MHz
- RAS access time: 25, 30, 35, 40, 45, 50 ns
- Dual CAS Inputs
- Low power dissipation
- Read-Modify-Write, RAS-Only Refresh, CAS-Before-RAS Refresh
- Optional Self Refresh (V53C16258SH)
- Refresh Interval: 512 cycles/8 ms
- Available in 40-pin 400 mil SOJ and 40/44L-pin 400 mil TSOP-II packages
- Single +5V ±10% Power Supply
- TTL Interface

Description

The V53C16258H is a high speed 262,144 x 16 bit high performance CMOS dynamic random access memory. The V53C16258H offers a combination of unique features including: EDO Page Mode operation for higher sustained bandwidth with Page Mode cycle times as short as 10ns. All inputs are TTL compatible. Input and output capicatance is significantly lowered to increase performance and minimize loading. These features make the V53C16258H ideally suited for a wide variety of high performance computer systems and peripheral applications.

Device Usage Chart

Operating	Package	Outline			Access -		Power	T		
Temperature Range	к	Т	25	30	35	40	45	50	Std.	Temperature Mark
0°C to 70°C	•	•	•	•	•	•	•	•	•	Blank
-40°C to +85°C	•	•	•	•	•	•	•	•	•	I

Part Name	Self Refresh	Supply Voltage	Package	Speed
V53C16258HKxx	No Self Refresh	5V	SOJ	25/30/35/40/45/50
V53C16258HTxx	No Self Refresh	5V	TSOP	25/30/35/40/45/50
V53C16258SHKxx	Optional Standard Self Refresh (8ms)	5V	SOJ	25/30/35/40/45/50
V53C16258SHTxx	Optional Standard Self Refresh (8ms)	5V	TSOP	25/30/35/40/45/50

Pin Names

A ₀ -A ₈	Address Inputs
RAS	Row Address Strobe
UCAS	Column Address Strobe/Upper Byte Control
LCAS	Column Address Strobe/Lower Byte Control
WE	Write Enable
ŌĒ	Output Enable
I/O ₁ -I/O ₁₆	Data Input, Output
V _{CC}	+5V Supply
V _{SS}	0V Supply
NC	No Connect

40/44 Pin Plastic TSOP-II **PIN CONFIGURATION** Top View

16258H-01

Vcc	1 2 3 4 5 6 7 8 9	44
NC	13 14 15 16 17 18 19 20 21 22	32

Absolute Maximum Ratings*

*Note: Operation above Absolute Maximum Ratings can adversely affect device reliability.

Capacitance*

 $T_A = 25$ °C, $V_{CC} = 5 \text{ V} \pm 10$ %, $V_{SS} = 0 \text{ V}$

Symbol	Parameter	Тур.	Max.	Unit
C _{IN1}	Address Input	3	4	pF
C _{IN2}	RAS, CAS, WE, OE	4	5	pF
C _{OUT}	Data Input/Output	5	7	pF

^{*} Note: Capacitance is sampled and not 100% tested

Block Diagram

256K x 16

DC and Operating Characteristics (1-2) T_A = 0°C to 70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V, unless otherwise specified.

		Access	V:	V53C16258H				
Symbol	Parameter	Time	Min.	Тур.	Max.	Unit	Test Conditions	Notes
I _{LI}	Input Leakage Current (any input pin)		-10		10	μА	$V_{SS} \le V_{IN} \le V_{CC}$	
I _{LO}	Output Leakage Current (for High-Z State)		-10		10	μА	$V_{SS} \le V_{OUT} \le V_{CC}$ RAS, CAS at V_{IH}	
I _{CC1}	V _{CC} Supply Current,	25			260	mA	$t_{RC} = t_{RC} \text{ (min.)}$	1, 2
	Operating	30			200			
		35			190			
		40			180			
		45			100			
		50			90			
I _{CC2}	V _{CC} Supply Current, TTL Standby				2	mA	RAS, CAS at V _{IH} other inputs ≥ V _{SS}	
I _{CC3}	V _{CC} Supply Current,	25			260	mA	$t_{RC} = t_{RC} \text{ (min.)}$	2
	RAS-Only Refresh	30			200			
		35			190			
		40			180			
		45			100			
		50			90			
I _{CC4}	V _{CC} Supply Current,	25			200	mA	Minimum Cycle	1, 2
	EDO Page Mode Operation	30			140			
		35			130			
		40			120			
		45			90			
		50			80			
I _{CC5}	V _{CC} Supply Current, Standby, Output Enabled other inputs ≥ V _{SS}				2	mA	RAS = V _{IH} , CAS = V _{IL}	1
I _{CC6}	V _{CC} Supply Current, CMOS Standby				1	mA	$\label{eq:rate} \begin{split} \overline{RAS} &\geq V_{CC} - 0.2 \text{ V}, \\ \overline{CAS} &\geq V_{CC} - 0.2 \text{ V}, \\ \text{All other inputs} &\geq V_{SS} \end{split}$	
I _{CC7}	Self Refresh Current				400	μА	CBR Cycle with $t_{RAS} \ge t_{RASS}$ (Min.) and $\overline{CAS} = V_{IL}$; $\overline{WE} = V_{CC} - 0.2V$; $A_0 - A_8$ and $D_{IN} = V_{CC} - 0.2V$	
V _{CC}	Supply Voltage		4.5	5.0	5.5	V		
V _{IL}	Input Low Voltage		-1		0.8	V		3
V _{IH}	Input High Voltage		2.4		V _{CC} + 1	V		3
V _{OL}	Output Low Voltage				0.4	V	I _{OL} = 2 mA	
V _{OH}	Output High Voltage		2.4			V	I _{OH} = -2 mA	

 $\pmb{AC\ Characteristics}$ $T_A=0^{\circ}C$ to $70^{\circ}C,\,V_{CC}=5$ V \pm 10%, $V_{SS}=0V$ unless otherwise noted AC Test conditions, input pulse levels 0 to 3V

				25 MHz)	3	80	3	5	4	10	4	15		50		
#	Symbol	Parameter	Min.	Мах.	Min.	Max.	Unit	Notes								
1	t _{RAS}	RAS Pulse Width	25	75K	30	75K	35	75K	40	75K	45	75K	50	75K	ns	
2	t _{RC}	Read or Write Cycle Time	45		60		70		75		80		90		ns	
3	t _{RP}	RAS Precharge Time	15		20		25		25		25		30		ns	
4	t _{CSH}	CAS Hold Time	25		30		35		40		45		50		ns	
5	t _{CAS}	CAS Pulse Width	4		5		6		7		8		9		ns	
6	t _{RCD}	RAS to CAS Delay	10	17	12	20	13	24	15	28	18	32	19	36	ns	4
7	t _{RCS}	Read Command Setup Time	0		0		0		0		0		0		ns	
8	t _{ASR}	Row Address Setup Time	0		0		0		0		0		0		ns	
9	t _{RAH}	Row Address Hold Time	4		5		6		7		8		9		ns	
10	t _{ASC}	Column Address Setup Time	0		0		0		0		0		0		ns	
11	t _{CAH}	Column Address Hold Time	4		5		5		5		6		7		ns	
12	t _{RSH (R)}	RAS Hold Time (Read Cycle)	7		9		10		10		10		10		ns	
13	t _{CRP}	CAS to RAS Precharge Time	5		5		5		5		5		5		ns	
14	t _{RCH}	Read Command Hold Time Referenced to CAS	0		0		0		0		0		0		ns	5
15	t _{RRH}	Read Command Hold Time Referenced to RAS	0		0		0		0		0		0		ns	5
16	t _{ROH}	RAS Hold Time Referenced to OE	4		6		7		8		9		10		ns	
17	t _{OAC}	Access Time from OE		8		10		11		12		13		14	ns	12
18	t _{CAC}	Access Time from CAS		8		10		11		12		13		14	ns	6, 7, 14
19	t _{RAC}	Access Time from RAS		25		30		35		40		45		50	ns	6, 8, 9
20	t _{CAA}	Access Time from Column Address		13		16		18		20		22		24	ns	6, 7, 10
21	t _{LZ}	OE or CAS to Low-Z Output	0		0		0		0		0		0		ns	16
22	t _{HZ}	OE or CAS to High-Z Output	0	5	0	5	0	6	0	6	0	7	0	8	ns	16
23	t _{AR}	Column Address Hold Time from RAS	19		23		25		30		35		40		ns	
24	t _{RAD}	RAS to Column Address Delay Time	8	13	9	14	10	17	12	20	13	23	14	26	ns	11
25	t _{RSH (W)}	RAS or CAS Hold Time in Write Cycle	7		9		10		10		10		10		ns	
26	t _{CWL}	Write Command to CAS Lead Time	5		7		8		10		13		14		ns	
27	t _{WCS}	Write Command Setup Time	0		0		0		0		0		0		ns	12, 13
28	t _{WCH}	Write Command Hold Time	4		5		5		5		6		7		ns	

AC Characteristics (Cont'd)

				5 MHz)	3	80	3	5	4	10	4	15	5	60		
#	Symbol	Parameter	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	Unit	Notes
29	t _{WP}	Write Pulse Width	4		5		5		5		6		7		ns	
30	t _{WCR}	Write Command Hold Time from RAS	19		23		25		30		35		40		ns	
31	t _{RWL}	Write Command to RAS Lead Time	7		9		10		10		13		14		ns	
32	t _{DS}	Data in Setup Time	0		0		0		0		0		0		ns	14
33	t _{DH}	Data in Hold Time	4		5		5		5		6		7		ns	14
34	t _{WOH}	Write to OE Hold Time	5		5		5		6		7		8		ns	14
35	t _{OED}	OE to Data Delay Time	5		5		5		6		7		8		ns	14
36	t _{RWC}	Read-Modify-Write Cycle Time	67		79		90		95		115		130		ns	
37	t _{RRW}	Read-Modify-Write Cycle RAS Pulse Width	46		53		59		64		80		87		ns	
38	t _{CWD}	CAS to WE Delay	19		21		23		25		32		34		ns	12
39	t _{RWD}	RAS to WE Delay in Read- Modify-Write Cycle	36		41		46		51		62		68		ns	12
40	t _{CRW}	CAS Pulse Width (RMW)	27		31		34		38		50		52		ns	
41	t _{AWD}	Col. Address to WE Delay	24		27		29		31		41		42		ns	12
42	t _{PC}	EDO Fast Page Mode Read or Write Cycle Time	10		12		14		15		17		19		ns	
43	t _{CP}	CAS Precharge Time	3		3		4		5		6		7		ns	
44	t _{CAR}	Column Address to RAS Setup Time	13		16		18		20		22		24		ns	
45	t _{CAP}	Access Time from Column Precharge		15		18		20		22		25		27	ns	7
46	t _{DHR}	Data in Hold Time Referenced to RAS	19		23		25		30		35		40		ns	
47	t _{CSR}	CAS Setup Time CAS-before- RAS Refresh	5		7		8		10		10		10		ns	
48	t _{RPC}	RAS to CAS Precharge Time	0		0		0		0		0		0		ns	
49	t _{CHR}	CAS Hold Time CAS-before- RAS Refresh	6		7		8		8		10		10		ns	
50	t _{PCM}	EDO Page Mode Read-Modify-Write Cycle Time	35		40		43		47		65		70		ns	
51	t _{COH}	Output Hold After CAS Low	4		5		5		5		5		5		ns	
52	t _{OES}	OE Low to CAS High Setup Time	3		3		3		3		5		5		ns	
53	t _{OEH}	OE Hold Time from WE during Read-Modify Write Cycle	5		5		5		5		10		10		ns	

AC Characteristics (Cont'd)

			25 (100 MHz)		3	0	35		40		45		50			
#	Symbol	Parameter	Min.	Min. Max.		Max.	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	Unit	Notes
54	t _{OEP}	OE High Pulse Width	4		5		8		10		10		10		ns	
55	t _T	Transition Time (Rise and Fall)	1.5	50	1.5	50	1.5	50	1.5	50	1.5	50	1.5	50	ns	15
56	t _{REF}	Refresh Interval (512 Cycles)		8		8		8		8		8		8	ms	17
Opt	ional Se	lf Refresh														
57	t _{RASS}	RAS Pulse Width During Self Refresh	100		100		100		100		100		100		μs	18
58	t _{RPS}	RAS Precharge Time During Self Refresh	100		100		100		100		100		100		ns	18
59	t _{CHS}	CAS Hold Time Width During Self Refresh	100		100		100		100		100		100		ns	18
60	t _{CHD}	CAS Low Time During Self Refresh	100		100		100		100		100		100		μs	18

Notes:

- 1. I_{CC} is dependent on output loading when the device output is selected. Specified I_{CC} (max.) is measured with the output open.
- 2. I_{CC} is dependent upon the number of address transitions. Specified I_{CC} (max.) is measured with a maximum of two transitions per address cycle in EDO Page Mode.
- 3. Specified V_{IL} (min.) is steady state operating. During transitions, V_{IL} (min.) may undershoot to -1.0 V for a period not to exceed 20 ns. All AC parameters are measured with V_{IL} (min.) $\geq V_{SS}$ and V_{IH} (max.) $\leq V_{CC}$.
- 4. t_{RCD} (max.) is specified for reference only. Operation within t_{RCD} (max.) limits insures that t_{RAC} (max.) and t_{CAA} (max.) can be met. If t_{RCD} is greater than the specified t_{RCD} (max.), the access time is controlled by t_{CAA} and t_{CAC} .
- 5. Either t_{RRH} or t_{RCH} must be satisified for a Read Cycle to occur.
- 6. Measured with a load equivalent to one TTL input and 50 pF.
- 7. Access time is determined by the longest of t_{CAA} , t_{CAC} and t_{CAP} .
- Assumes that t_{RAD} ≤ t_{RAD} (max.). If t_{RAD} is greater than t_{RAD} (max.), t_{RAC} will increase by the amount that t_{RAD} exceeds t_{RAD} (max.).
- Assumes that t_{RCD} ≤ t_{RCD} (max.). If t_{RCD} is greater than t_{RCD} (max.), t_{RAC} will increase by the amount that t_{RCD} exceeds t_{RCD} (max.).
- 10. Assumes that $t_{RAD} \ge t_{RAD}$ (max.).
- 11. Operation within the t_{RAD} (max.) limit ensures that t_{RAC} (max.) can be met. t_{RAD} (max.) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD} (max.) limit, the access time is controlled by t_{CAA} and t_{CAC}.
- 12. t_{WCS} , t_{RWD} , t_{AWD} and t_{CWD} are not restrictive operating parameters.
- 13. t_{WCS} (min.) must be satisfied in an Early Write Cycle.
- 14. t_{DS} and t_{DH} are referenced to the latter occurrence of \overline{CAS} or \overline{WE} .
- 15. t_T is measured between V_{IH} (min.) and V_{IL} (max.). AC-measurements assume $t_T = 3$ ns.
- 16. Assumes a three-state test load (5 pF and a 500 Ohm Thevenin equivalent).
- 17. An initial 200 μs pause and 8 RAS-containing cycles are required when exiting an extended period of bias without clocks. An extended period of time without clocks is defined as one that exceeds the specified Refresh Interval.
- 18. One CBR refresh or complete set of row refreah cycles must be completed upon exiting Self Refreah Mode.

Truth Table

Function	RAS	LCAS	UCAS	WE	ŌĒ	ADDRESS	1/0	Notes
Standby	Н	Н	Н	Х	Х	Х	High-Z	
Read: Word	L	L	L	Н	L	ROW/COL	Data Out	
Read: Lower Byte	L	L	Н	Н	L	ROW/COL	Lower Byte, Data-Out Upper Byte, High-Z	
Read: Upper Byte	L	Н	L	Н	L	ROW/COL	Lower Byte, High-Z Upper Byte, Data-Out	
Write: Word (Early-Write)	L	L	L	L	Х	ROW/COL	Data-In	
Write: Lower Byte (Early)	L	L	Н	L	Х	ROW/COL	Lower Byte, Data-In Upper Byte, High-Z	
Read: Upper Byte (Early)	L	Н	L	L	Х	ROW/COL	Lower Byte, High-Z Upper Byte, Data-In	
Read-Write	L	L	L	H→L	L→H	ROW/COL	Data-Out, Data-In	1, 2
EDO Page-Mode Read	L	H→L	H→L	Н	L	COL	Data-Out	2
EDO Page-Mode Write	L	H→L	H→L	L	Х	COL	Data-In	2
EDO Page-Mode Read-Write	L	H→L	H→L	H→L	L→H	COL	Data-Out, Data-In	1, 2
Hidden Refresh Read	L→H→L	L	L	Н	L	ROW/COL	Data-Out	2
RAS-Only Refresh	L	Н	Н	Х	Х	ROW	High-Z	
CBR Refresh	H→L	L	L	Х	Х	Х	High-Z	3
Self Refresh	H→L	L	Н	Х	Х	Х	High-Z	

Notes:

- 1. Byte Write cycles LCAS or UCAS active.
- 2. Byte Read cycles $\overline{\text{LCAS}}$ or $\overline{\text{UCAS}}$ active.
- 3. Only one of the two $\overline{\text{CAS}}$ must be active ($\overline{\text{LCAS}}$ or $\overline{\text{UCAS}}$).

Waveforms of Read Cycle

Waveforms of Early Write Cycle

Waveforms of OE-Controlled Write Cycle

Waveforms of Read-Modify-Write Cycle

Waveforms of EDO Page Mode Read Cycle

Waveforms of EDO Page Mode Write Cycle

Waveforms of EDO Page Mode Read-Write Cycle

Waveforms of RAS-Only Refresh Cycle

NOTE: $\overline{\text{WE}}$, $\overline{\text{OE}}$ = Don't care

Waveforms of CAS-before-RAS Refresh Counter Test Cycle

Waveforms of CAS-before-RAS Refresh Cycle

NOTE: \overline{WE} , \overline{OE} , A_0 - A_8 = Don't care

V53C16258H Rev. 3.8 November 1999

Waveforms of Hidden Refresh Cycle (Read)

Waveforms of Hidden Refresh Cycle (Write)

Waveforms of EDO-Page-Mode Read-Early-Write Cycle (Pseudo Read-Modify-Write)

Waveforms of Self Refresh Cycle

Functional Description

The V53C16258H is a CMOS dynamic RAM optimized for high data bandwidth, low power applications. It is functionally similar to a traditional dynamic RAM. The V53C16258H reads and writes data by multiplexing an 18-bit address into a 9-bit row and a 9-bit column address. The row address is latched by the Row Address Strobe (RAS). The column address "flows through" an internal address buffer and is latched by the Column Address Strobe (CAS). Because access time is primarily dependent on a valid column address rather than the precise time that the CAS edge occurs, the delay time from RAS to CAS has little effect on the access time.

Memory Cycle

A memory cycle is initiated by bringing \overline{RAS} low. Any memory cycle, once initiated, must not be ended or aborted before the minimum t_{RAS} time has expired. This ensures proper device operation and data integrity. A new cycle must not be initiated until the minimum precharge time t_{RP}/t_{CP} has elapsed.

Read Cycle

A Read cycle is performed by holding the Write Enable ($\overline{\text{WE}}$) signal High during a $\overline{\text{RAS}}/\overline{\text{CAS}}$ operation. The column address must be held for a minimum specified by t_{AR} . Data Out becomes valid only when t_{OAC} , t_{RAC} , t_{CAA} and t_{CAC} are all satisifed. As a result, the access time is dependent on the timing relationships between these parameters. For example, the access time is limited by t_{CAA} when t_{RAC} , t_{CAC} and t_{OAC} are all satisfied.

Write Cycle

A Write Cycle is performed by taking WE and CAS low during a RAS operation. The column address is latched by CAS. The Write Cycle can be WE controlled or CAS controlled depending on whether WE or CAS falls later. Consequently, the input data must be valid at or before the falling edge of WE or CAS, whichever occurs last. In the CAS-controlled Write Cycle, when the leading edge of WE occurs prior to the CAS low transition, the I/O data pins will be in the High-Z state at the beginning of the Write function. Ending the Write with RAS or CAS will maintain the output in the High-Z state.

In the $\overline{\text{WE}}$ controlled Write Cycle, $\overline{\text{OE}}$ must be in the high state and t_{OED} must be satisfied.

Extended Data Output Page Mode

EDO Page operation permits all 512 columns within a selected row of the device to be randomly accessed at a high data rate. Maintaining RAS low while performing successive CAS cycles retains the row address internally and eliminates the need to reapply it for each cycle. The column address buffer acts as a transparent or flow-through latch while CAS is high. Thus, access begins from the occurrence of a valid column address rather than from the falling edge of \overline{CAS} , eliminating t_{ASC} and t_{T} from the critical timing path. CAS latches the address into the column address buffer. During EDO operation, Read, Write, Read-Modify-Write or Read-Write-Read cycles are possible at random addresses within a row. Following the initial entry cycle into Hyper Page Mode, access is t_{CAA} or t_{CAP} controlled. If the column address is valid prior to the rising edge of CAS, the access time is referenced to the CAS rising edge and is specified by t_{CAP}. If the column address is valid after the rising CAS edge, access is timed from the occurrence of a valid address and is specified by t_{CAA}. In both cases, the falling edge of CAS latches the address and enables the output.

EDO provides a sustained data rate of 83 MHz for applications that require high bandwidth such as bit-mapped graphics or high-speed signal processing. The following equation can be used to calculate the maximum data rate:

Data Rate =
$$\frac{512}{t_{RC} + 511 \times t_{PC}}$$

Self Refresh

Self Refresh mode provides internal refresh control signals to the DRAM during extended periods of inactivity. Device operation in this mode provides additional power savings and design ease by elimination of external refresh control signals. Self Refresh mode is initiated with a $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ (CBR) Refresh cycle, holding both $\overline{\text{RAS}}$ low (t_{RASS}) and $\overline{\text{CAS}}$ low (t_{CHD}) for a specified period. Both of these parameters are specified with minimum values to guarantee entry into Self Refresh operation. Once the device has been placed in to Self Refresh mode the $\overline{\text{CAS}}$ clock is no longer required to maintain Self Refresh operation.

The Self Refresh mode is terminated by returning the \overline{RAS} clock to a high level for a specified (t_{RPS}) minimum time. After termination of the Self Refresh cycle normal accesses to the device may be initiated immediately, providing that subsequent refresh cycles utilize the \overline{CAS} before \overline{RAS} (CBR) mode of operation.

Data Output Operation

The V53C16258H Input/Output is controlled by \overline{OE} , \overline{CAS} , \overline{WE} and \overline{RAS} . A \overline{RAS} low transition enables the transfer of data to and from the selected row address in the Memory Array. A RAS high transition disables data transfer and latches the output data if the output is enabled. After a memory cycle is initiated with a RAS low transition, a CAS low transition or CAS low level enables the internal I/O path. A CAS high transition or a CAS high level disables the I/O path and the output driver if it is enabled. A \overline{CAS} low transition while \overline{RAS} is high has no effect on the I/O data path or on the output drivers. The output drivers, when otherwise enabled, can be disabled by holding OE high. The OE signal has no effect on any data stored in the output latches. A WE low level can also disable the output drivers when CAS is low. During a Write cycle, if WE goes low at a time in relationship to CAS that would normally cause the outputs to be active, it is necessary to use \overline{OE} to disable the output drivers prior to the \overline{WE} low transition to allow Data In Setup Time (t_{DS}) to be satisfied.

Power-On

After application of the V_{CC} supply, an initial pause of 200 μs is required followed by a minimum of 8 initialization cycles (any combination of cycles containing a \overline{RAS} clock). Eight initialization cycles are required after extended periods of bias without clocks (greater than the Refresh Interval).

During Power-On, the V_{CC} current requirement of the V53C16258H is dependent on the input levels of \overline{RAS} and \overline{CAS} . If \overline{RAS} is low during Power-On, the device will go into an active cycle and I_{CC} will exhibit current transients. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} or be held at a valid V_{IH} during Power-On to avoid current surges.

Table 1. V53C16258H Data OutputOperation for Various Cycle Types

Cycle Type	I/O State
Read Cycles	Data from Addressed Memory Cell
CAS-Controlled Write Cycle (Early Write)	High-Z
WE-Controlled Write Cycle (Late Write)	OE Controlled. High OE = High-Z I/Os
Read-Modify-Write Cycles	Data from Addressed Memory Cell
EDO Read Cycle	Data from Addressed Memory Cell
EDO Write Cycle (Early Write)	High-Z
EDO Read-Modify- Write Cycle	Data from Addressed Memory Cell
RAS-only Refresh	High-Z
CAS-before-RAS Refresh Cycle	Data remains as in previous cycle
CAS-only Cycles	High-Z

Package Outlines

40-Pin Plastic SOJ

40/44L-Pin TSOP-II

Notes

MOSEL VITELIC

WORLDWIDE OFFICES

V53C16258H

U.S.A.

3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0952

HONG KONG

19 DAI FU STREET TAIPO INDUSTRIAL ESTATE TAIPO, NT, HONG KONG PHONE: 852-2666-3307 FAX: 852-2770-8011

TAIWAN

7F, NO. 102 MIN-CHUAN E. ROAD, SEC. 3 TAIPEI

PHONE: 886-2-2545-1213 FAX: 886-2-2545-1209

NO 19 LI HSIN RD. SCIENCE BASED IND. PARK HSIN CHU, TAIWAN, R.O.C. PHONE: 886-3-579-5888 FAX: 886-3-566-5888

SINGAPORE

10 ANSON ROAD #23-13 INTERNATIONAL PLAZA SINGAPORE 079903 PHONE: 65-3231801 FAX: 65-3237013

JAPAN

WBG MARIVE WEST 25F 6, NAKASE 2-CHOME MIHAMA-KU, CHIBA-SHI CHIBA 261-7125 PHONE: 81-43-299-6000

HONE: 81-43-299-6000 FAX: 81-43-299-6555

UK & IRELAND

SUITE 50, GROVEWOOD BUSINESS CENTRE STRATHCLYDE BUSINESS PARK BELLSHILL, LANARKSHIRE, SCOTLAND, ML4 3NQ PHONE: 01698-748515 FAX: 01698-748516

GERMANY (CONTINENTAL EUROPE & ISRAEL)

71083 HERRENBERG BENZSTR. 32 GERMANY

PHONE: +49 7032 2796-0 FAX: +49 7032 2796 22

U.S. SALES OFFICES

NORTHWESTERN

3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0952

NORTHEASTERN

SUITE 436 20 TRAFALGAR SQUARE NASHUA, NH 03063 PHONE: 603-889-4393 FAX: 603-889-9347

SOUTHWESTERN

302 N. EL CAMINO REAL #200 SAN CLEMENTE, CA 92672 PHONE: 949-361-7873 FAX: 949-361-7807

CENTRAL & SOUTHEASTERN

604 FIELDWOOD CIRCLE RICHARDSON, TX 75081 PHONE: 972-690-1402 FAX: 972-690-0341

© Copyright 1999, MOSEL VITELIC Inc.

11/99 Printed in U.S.A.

The information in this document is subject to change without notice.

MOSEL VITELIC makes no commitment to update or keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of MOSEL-VITELIC.

MOSEL VITELIC subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications. MOSEL VITELIC does not do testing appropriate to provide 100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which personal injury might occur from failure, purchaser must do its own quality assurance testing appropriate to such applications.