

Max Flow

Yannic Maus

Flow network

A flow network (G, c) consists of a directed graph G = (V, E) together with

- a capacity function $c: E \to \mathbb{N}_{\geq 0}$ (set to c(u, v) = 0 for $(u, v) \notin E$)
- a source s, a sink t: in-degree(s) = 0, out-degree(t) = 0

Flow network and Flows

A flow network (G, c) consists of a directed graph G = (V, E) together with

- a capacity function $c: E \to \mathbb{N}_{\geq 0}$ (set to c(u, v) = 0 for $(u, v) \notin E$)
- a source s, a sink t: in-degree(s) = 0, out-degree(t) = 0

A flow in a flow network (G, c) is a function $f: V \times V \to \mathbb{R}$ that satisfies

- capacity constraints,
- conservation of flow,
- skew symmetry.

Capacity constraint

Capacity constraint: $f(u,v) \le c(u,v) \ \forall (u,v) \in V \times V$

Never exceed the capacity of an edge

(technicality: we might have c(u, v) = 0, and f(u, v) < 0)

Skew symmetry

Skew symmetry: f(u, v) = -f(v, u)

We only note down positive flows.

The other direction of flow is "implicit"

The net flow from u to v must be the opposite of the net flow from v to u.

Conservation of flow

Conservation of flow: $\forall v \in V \setminus \{s, t\}$: $f(v, V) = \sum_{u \in V} f(v, u) = 0$

The net flow to a node is zero, except for the source, which "produces" flow, and the sink, which "consumes" flow

Value of a flow

The value |f| of a flow f is defined as $|f| = \sum_{v \in V \setminus \{s\}} f(s, v)$

"the flow leaving the source"

Goal: Given a flow network, find a flow with maximum value

Value of a flow

The value |f| of a flow f is defined as $|f| = \sum_{v \in V \setminus \{s\}} f(s, v)$

"the flow leaving the source"

Goal: Given a flow network, find a flow with maximum value

Warning! Not all literature have the exact same definition of a flow, e.g., CLRS requires $f(u,v) \ge 0$ for all $u,v \in V$, while we explicitly allow and make use of f(u,v) < 0 (recall skew symmetry).

Both definitions lead to a solid theory and arguments are similar, but differ a bit in the details.

Agenda

- Ford-Fulkerson-Method
 - Correctness & Termination
 - Bad Examples
- Edmonds-Karp-Algorithm
 - Runtime analysis
- Outlook: State of the art ...
- Application: Maximum Cardinality Bipartite Matchings

Ford-Fulkerson-Method

Ford-Fulkerson Method

Input: Given a flow network (G, c) with source node s, and sink node t

Output: Compute a flow f from s to t of maximum value

Ford-Fulkerson Method

Input: Given a flow network (G, c) with source node s, and sink node t

Output: Compute a flow f from s to t of maximum value

Initialize flow f with 0 while there exists an augmenting path p in G_f do augment f along p (by f_p) return f

Given a flow network (G, c) and a flow f: for all pairs $(u, v) \in V \times V$ define the residual capacity of f(u, v) = c(u, v) - f(u, v)

Given a flow network (G, c) and a flow f: for all pairs $(u, v) \in V \times V$ define the residual capacity of f(u, v) = c(u, v) - f(u, v)

Given a flow network (G, c) and a flow f: for all pairs $(u, v) \in V \times V$ define the residual capacity of f(u, v) = c(u, v) - f(u, v)

Given a flow network (G, c) and a flow f: for all pairs $(u, v) \in V \times V$ define the residual capacity of f(u, v) = c(u, v) - f(u, v)

The **residual network** $G_f(V, E_f)$ is given via the edge set $E_f = \{(u, v) \in V \times V | c_f(u, v) > 0 \}$

 G_f is a flow network with capacities c_f .

Original flow network G + flow f

Augmenting path

An s-t-path p in G_f is an augmenting path.

$$c_f(p) = \min\{c_f(u,v) | (u,v) \in p\}$$
 is the **residual capacity** of p .

Augmenting path

An s-t-path p in G_f is an augmenting path.

$$c_f(p) = \min\{c_f(u,v) | (u,v) \in p\}$$
 is the **residual capacity** of p .

Residual capacity $c_f(p)$ of this path is 1

Ford-Fulkerson Method

Input: Given a flow network (G, c) with source node s, and sink node t

Output: Compute a flow f from s to t of maximum value

Initialize flow f with 0 while there exists an augmenting path p in ${\it G}_f$ do augment f along p (by f_p) return f

$$f_p(u,v) = \begin{cases} c_p(u,v) & \text{if } (u,v) \in p \\ -c_p(u,v) & \text{if } (v,u) \in p \\ 0 & \text{otherwise} \end{cases} \Rightarrow f_p \text{ is a flow in } G_f$$

augment f along p: $f + f_p$

Analysis 1: $f + f_p$ is a flow

Link to animated version: https://algorithms.discrete.ma.tum.de/

Correctness: $f + f_p$ is a flow

The augmented version is a flow:

Capacity constraint:

$$(f + f_p)(u, v) = f(u, v) + f_p(u, v) \le f(u, v) + c_f(u, v)$$

$$\le f(u, v) + (c(u, v) - f(u, v))$$
 = $c(u, v)$

(arguments use that that f_p is a flow in G_f and that f is a flow in G)

Correctness: $f + f_p$ is a flow

The augmented version is a flow:

Capacity constraint:

$$(f + f_p)(u, v) = f(u, v) + f_p(u, v) \le f(u, v) + c_f(u, v)$$

$$\le f(u, v) + (c(u, v) - f(u, v))$$

$$= c(u, v)$$

Conservation of flow:

Let
$$u \in V \setminus \{s, t\}$$
. $(f + f_p)(u, V) = f(u, V) + f_p(u, V) = 0 + 0 = 0$

(arguments use that that f_p is a flow in G_f and that f is a flow in G)

Correctness: $f + f_p$ is a flow

The augmented version is a flow:

Capacity constraint:

$$(f + f_p)(u, v) = f(u, v) + f_p(u, v) \le f(u, v) + c_f(u, v)$$

$$\le f(u, v) + (c(u, v) - f(u, v))$$

$$= c(u, v)$$

Conservation of flow:

Let
$$u \in V \setminus \{s, t\}$$
. $(f + f_p)(u, V) = f(u, V) + f_p(u, V) = 0 + 0 = 0$

Skew Symmetry:

$$(f + f_p)(u, v) = f(u, v) + f_p(u, v) = -f(v, u) - f_p(v, u) = -(f(v, u) + f_p(v, u)) = -(f + f_p)(v, u)$$

(arguments use that that f_p is a flow in G_f and that f is a flow in G)

Analysis 2: A maximum flow?

Min-cut=Max-flow

(seemingly)

Cut

An s-t-cut (S, T) in G is a partition of V $(V = S \cup T, S \cap T = \emptyset)$ with $s \in S, t \in T$.

Cut

An s-t-cut (S,T) in G is a partition of V $(V = S \cup T, S \cap T = \emptyset)$ with $s \in S, t \in T$.

The capacity of a cut is

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v)$$

Cut

An s-t-cut (S, T) in G is a partition of V $(V = S \cup T, S \cap T = \emptyset)$ with $s \in S, t \in T$.

The capacity of a cut is

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v)$$

The **flow** over a cut is

$$f(S,T) = \sum_{u \in S, v \in T} f(u,v)$$

$$c(S,T) = 26$$
 $f(S,T) = 12 + 11 + (-4) = 19$

Cut

An s-t-cut (S, T) in G is a partition of V $(V = S \cup T, S \cap T = \emptyset)$ with $s \in S, t \in T$.

change!

The capacity of a cut is

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v)$$

The **flow** over a cut is

$$f(S,T) = \sum_{u \in S, v \in T} f(u,v)$$

$$f(S,T) = \frac{12 + 11 + (-4)}{11 + 8} = 19$$
no change!

$$= J(s,V) + \sum_{u \in S \setminus ES} J(u,V)$$

$$= J(s,V) + \sum_{u \in S \setminus ES} J(u,V)$$

Notation:

$$f(x,Y) = \sum_{y \in Y} f(x,y)$$

$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$$

Proof:

$$f(S,T) = f(S,V) - f(S,V \setminus T)$$

$$= f(S,V) - f(S,S) = f(S,V) - f(S,V) + f(S,$$

Notation:

$$f(x,Y) = \sum_{y \in Y} f(x,y)$$

$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$$

Proof:

Notation:

$$f(x,Y) = \sum_{y \in Y} f(x,y)$$

$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$$

Max-Flow = Min-Cut Theorem

Theorem: Let f be an s-t-flow in a flow network (G = (V, E), c).

The following are equivalent

- 1. flow f is a maximum flow
- 2. The residual network G_f contains **no** augmenting path
- 3. |f| = c(S, T) for a cut (S, T)

Max-Flow = Min-Cut Theorem

Theorem: Let f be an s-t-flow in a flow network (G = (V, E), c).

The following are equivalent

- 1. flow f is a maximum flow
- 2. The residual network G_f contains **no** augmenting path
- 3. |f| = c(S, T) for a cut (S, T)

Corollaries:

- If the Ford-Fulkerson-Method terminates, it has computed a maximum flow
- The capacity of the "smallest cut" equals the capacity of the maximum flow

Theorem: Let f be an s-t-flow in a flow network (G = (V, E), c).

The following are equivalent

- 1. flow f is a maximum flow
- 2. The residual network G_f contains **no** augmenting path
- 3. |f| = c(S, T) for a cut (S, T)

Proof $1 \rightarrow 2$:

Let *f* be a maximum flow.

Assume there is an augmenting path p in G_f .

Then $f + f_p$ is a flow with $|f + f_p| > |f|$, a contradiction.

Theorem: Let f be an s-t-flow in a flow network (G = (V, E), c).

The following are equivalent

- 1. flow f is a maximum flow
- 2. The residual network G_f contains **no** augmenting path
- 3. |f| = c(S, T) for a cut (S, T)

Proof $1 \rightarrow 2$:

Let *f* be a maximum flow.

Assume there is an augmenting path p in G_f .

Then $f + f_p$ is a flow with $|f + f_p| \ge |f|$, a contradiction.

Adding an augmenting path flow f_p always increases the value of the flow. Why?

Theorem: Let f be an s-t-flow in a flow network (G = (V, E), c).

The following are equivalent

- 1. flow f is a maximum flow
- 2. The residual network G_f contains **no** augmenting path
- 3. |f| = c(S, T) for a cut (S, T)

Proof $2 \rightarrow 3$:

Assume that G_f has no s-t path. Define:

$$S := \{ v \in V \mid \text{there is an } s\text{-}v \text{ path in } G_f \}, T := V \setminus S \text{ (note } T \neq \emptyset) \}$$

Theorem: Let f be an s-t-flow in a flow network (G = (V, E), c).

The following are equivalent

- 1. flow *f* is a maximum flow
- 2. The residual network G_f contains **no** augmenting path
- 3. |f| = c(S, T) for a cut (S, T)

Proof $2 \rightarrow 3$:

Assume that G_f has no s-t path. Define:

$$S := \{ v \in V \mid \text{there is an } s\text{-}v \text{ path in } G_f \}, T := V \setminus S \text{ (note } T \neq \emptyset) \}$$

Then (S,T) is a cut and we have f(u,v)=c(u,v) for all $u \in S, v \in T$.

$$|f| = f(S,T) = \sum_{u \in S, v \in T} f(u,v) = \sum_{u \in S, v \in T} c(u,v) = c(S,T).$$
 Lemma A

Max-Flow = Min-Cut Theorem: Proof $2 \rightarrow 3$

Proof $2 \rightarrow 3$:

Assume that G_f has no s-t path. Define:

$$S := \{ v \in V \mid \text{there is an } s\text{-}v \text{ path in } G_f \}, T := V \setminus S \text{ (note } T \neq \emptyset)$$

Then (S,T) is a cut and we have f(u,v)=c(u,v) for all $u\in S,v\in T$.

$$|f| = f(S,T) = \sum_{u \in S, v \in T} f(u,v) = \sum_{u \in S, v \in T} c(u,v) = c(S,T).$$

Max-Flow = Min-Cut Theorem: Proof $2 \rightarrow 3$

Proof $2 \rightarrow 3$:

Assume that G_f has no s-t path. Define:

$$S := \{ v \in V \mid \text{there is an } s\text{-}v \text{ path in } G_f \}, T := V \setminus S \text{ (note } T \neq \emptyset)$$

Then (S,T) is a cut and we have f(u,v)=c(u,v) for all $u\in S,v\in T$.

$$|f| = f(S,T) = \sum_{u \in S, v \in T} f(u,v) = \sum_{u \in S, v \in T} c(u,v) = c(S,T).$$

Theorem: Let f be an s-t-flow in a flow network (G = (V, E), c).

The following are equivalent

- 1. flow *f* is a maximum flow
- 2. The residual network G_f contains **no** augmenting path
- 3. |f| = c(S, T) for a cut (S, T)

Proof $3 \rightarrow 1$:

Pick the cut (S, T) from 3 and an arbitrary flow f:

Theorem: Let f be an s-t-flow in a flow network (G = (V, E), c).

The following are equivalent

- 1. flow *f* is a maximum flow
- 2. The residual network G_f contains **no** augmenting path
- 3. |f| = c(S, T) for a cut (S, T)

Proof $3 \rightarrow 1$:

Pick the cut (S, T) from 3 and an arbitrary flow f:

Lemma A
$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v)$$

Theorem: Let f be an s-t-flow in a flow network (G = (V, E), c).

The following are equivalent

- 1. flow *f* is a maximum flow
- 2. The residual network G_f contains **no** augmenting path
- 3. |f| = c(S, T) for a cut (S, T)

Proof $3 \rightarrow 1$:

Pick the cut (S, T) from 3 and an arbitrary flow f:

Lemma A
$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) \le \sum_{u \in S} \sum_{v \in T} c(u,v) = c(S,T)$$

Theorem: Let f be an s-t-flow in a flow network (G = (V, E), c).

The following are equivalent

- 1. flow *f* is a maximum flow
- 2. The residual network G_f contains **no** augmenting path
- 3. |f| = c(S, T) for a cut (S, T)

Proof $3 \rightarrow 1$:

Pick the cut (S, T) from 3 and an arbitrary flow f:

Lemma A
$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) \le \sum_{u \in S} \sum_{v \in T} c(u,v) = c(S,T)$$

Thus, the value of every flow is at most c(S,T), so, if it equals c(S,T), it has to be maximal!

Integrality sounds innocent but it is crucial for many applications.

Proof:

Integrality sounds innocent but it is crucial for many applications.

• |f| increases by at least one in each iteration \rightarrow at most f^* iterations.

Proof:

Integrality sounds innocent but it is crucial for many applications.

- |f| increases by at least one in each iteration \rightarrow at most f^* iterations.
- By induction: The capacity of each augmenting path is integral, and f(u, v) remains integral.

Proof:

Integrality sounds innocent but it is crucial for many applications.

- |f| increases by at least one in each iteration \rightarrow at most f^* iterations.
- By induction: The capacity of each augmenting path is integral, and f(u, v) remains integral.

Warning! The theorem statement does not hold for real-valued capacities. The ford-Fulkerson-Method might not even terminate!

How to find a min-cut?

- 1. Compute a max-flow
- 2. Let *S* consist of the vertices that one can reach from *s* via non-critical edges (An edge (u, v) is critical if c(u, v) = f(u, v))
- 3. Let $T = V \setminus S$.

How to find a min-cut?

- 1. Compute a max-flow
- 2. Let *S* consist of the vertices that one can reach from *s* via non-critical edges (An edge (u, v) is critical if c(u, v) = f(u, v))
- 3. Let $T = V \setminus S$.

How to find a min-cut?

- 1. Compute a max-flow
- 2. Let *S* consist of the vertices that one can reach from *s* via non-critical edges (An edge (u, v) is critical if c(u, v) = f(u, v))
- 3. Let $T = V \setminus S$.

33

Analysis 3: Runtime

The Ford-Fulkerson-method uses augmentation steps but f^* can be really large ...

Might be very slow, even if the network is very small.

Edmonds-Karp-Algorithm

credit also goes to Yefim Dinitz (who actually first published the algorithm/analysis 1970)


```
Initialize flow f with 0 while there exists an augmenting path in G_f do find a shortest augmenting path p augment f along p return f
```

Difference: We always chose a shortest augmenting path.

Theorem: The runtime of the Edmonds–Karp–Algorithm is polynomial in the size of the network, regardless of the value of the capacities.

Edmonds-Karp-Algorithm is fast (for this example)!

Analysis of Edmonds-Karp

"We will show that level of a vertex increases if its incident edges appears in several augmentations."

Analysis of Edmonds-Karp

Define:

- f_i : the current flow before the *i*-th augmentation step.
- $G_i = G_{f_i}$: the residual network of f_i (note that $G_1 = G$)
- $level_i(v)$: the distance of s to v in $G_i \in \{O_1, ..., |V|-1\}$ $v \in \{G_1, ..., |V|-1\}$

"We will show that level of a vertex increases if its incident edges appears in several augmentations."

Lemma B (levels don't decrease):

For all $v \in V$ and all i we have $level_{i+1}(v) \ge level_i(v)$.

For v = s the claim is trivial as $level_i(s) = 0$.

For v = s the claim is trivial as $level_i(s) = 0$.

Let $v \neq s$ with minimal $level_{i+1}(v)$, contradicting the claim.

For v = s the claim is trivial as $level_i(s) = 0$.

If there is no such path, $level_{i+1}(v) = \infty$, done!

Let $v \neq s$ with minimal $level_{i+1}(v)$, contradicting the claim.

$$s \longrightarrow v_1 \longrightarrow v_2 \longrightarrow \cdots \longrightarrow v$$

consider a shortest path from s to v in G_{i+1}

For v = s the claim is trivial as $level_i(s) = 0$.

If there is no such path, $level_{i+1}(v) = \infty$, done!

Let $v \neq s$ with minimal $level_{i+1}(v)$, contradicting the claim.

s
$$v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v$$
 consider a shortest path from s to v in G_{i+1}

(*) We have
$$level_{i+1}(v) = level_{i+1}(u) + 1 \ge level_i(u) + 1$$

due to choice of v, u doesn't contradict the claim!

For v = s the claim is trivial as $level_i(s) = 0$.

If there is no such path, $level_{i+1}(v) = \infty$, done!

Let $v \neq s$ with minimal $level_{i+1}(v)$, contradicting the claim.

s
$$v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v$$
 consider a shortest path from s to v in G_{i+1}

(*) We have
$$level_{i+1}(v) = level_{i+1}(u) + 1 \ge level_i(u) + 1$$
due to choice of v , u doesn't contradict the claim!

Case $(u, v) \in G_i$: $level_i(v) \le level_i(u) + 1$ (levels of adjacent vertices can differ by at most one)

For v = s the claim is trivial as $level_i(s) = 0$.

If there is no such path, $level_{i+1}(v) = \infty$, done!

Let $v \neq s$ with minimal $level_{i+1}(v)$, contradicting the claim.

$$s \longrightarrow v_1 \longrightarrow v_2 \longrightarrow \cdots \longrightarrow u \longrightarrow v$$

consider a shortest path from s to v in G_{i+1}

(*) We have
$$level_{i+1}(v) = level_{i+1}(u) + 1 \ge level_i(u) + 1$$

due to choice of v, u doesn't contradict the claim!

Case
$$(u, v) \in G_i$$
: $level_i(v) \leq level_i(u) + 1 \leq level_{i+1}(v)$ (levels of adjacent vertices can differ by at most one)

For v = s the claim is trivial as $level_i(s) = 0$.

If there is no such path, $level_{i+1}(v) = \infty$, done!

Let $v \neq s$ with minimal $level_{i+1}(v)$, contradicting the claim.

s
$$v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v$$
 cor

consider a shortest path from s to v in G_{i+1}

(*) We have
$$level_{i+1}(v) = level_{i+1}(u) + 1 \ge level_i(u) + 1$$

due to choice of v, u doesn't contradict the claim!

Case
$$(u, v) \in G_i$$
: $level_i(v) \leq level_i(u) + 1 \leq level_{i+1}(v)$ (levels of adjacent vertices can differ by at most one)

Case $(u, v) \notin G_i$: (v, u) must be an edge in the i-th augmenting path (v, u) must lie on the shortest s-t-path in G_i as (u, v) in G_{i+1} , hence $(v, u) = level_i(u) - 1 \le level_i(u) + 1$

For v = s the claim is trivial as $level_i(s) = 0$.

If there is no such path, $level_{i+1}(v) = \infty$, done!

Let $v \neq s$ with minimal $level_{i+1}(v)$, contradicting the claim.

consider a shortest path from s to v in G_{i+1}

(*) We have
$$level_{i+1}(v) = level_{i+1}(u) + 1 \ge level_i(u) + 1$$

due to choice of v, u doesn't contradict the claim!

Case $(u, v) \in G_i$: $level_i(v) \leq level_i(u) + 1 \leq level_{i+1}(v)$ (levels of adjacent vertices can differ by at most one)

Case $(u, v) \notin G_i$: (v, u) must be an edge in the i-th augmenting path (v, u) must lie on the shortest s-t-path in G_i as (u, v) in G_{i+1} , hence $|evel_i(v)| = |evel_i(u)| - 1 \le |evel_i(u)| + 1 \le |evel_i(u)| \le |evel_i(v)|$

During the execution of the Edmonds-Karp-Algorithm, any edge (u, v) disappears from the residual graph at most V/2 times.

During the execution of the Edmonds-Karp-Algorithm, any edge (u, v) disappears from the residual graph at most V/2 times.

Proof: Suppose $u \to v$ is in two residual graphs G_i and G_{j+1} , but not in any of the intermediate residual graphs G_{i+1} , G_i for some i < j.

During the execution of the Edmonds-Karp-Algorithm, any edge (u, v) disappears from the residual graph at most V/2 times.

Proof: Suppose $u \to v$ is in two residual graphs G_i and G_{j+1} , but not in any of the intermediate residual graphs G_{i+1} , G_i for some i < j.

- $u \to v$ must be on the i-th augmenting path: $level_i(v) = level_i(u) + 1$,
- $v \to u$ must be on the j-th augmenting path: $level_i(v) = level_i(u) 1$.

During the execution of the Edmonds-Karp-Algorithm, any edge (u, v) disappears from the residual graph at most V/2 times.

Proof: Suppose $u \to v$ is in two residual graphs G_i and G_{j+1} , but not in any of the intermediate residual graphs G_{i+1} , G_i for some i < j.

- $u \to v$ must be on the *i*-th augmenting path: $level_i(v) = level_i(u) + 1$,
- $v \to u$ must be on the j-th augmenting path: $level_i(v) = level_i(u) 1$.

```
By Lemma B, we have level_{j}(u) = level_{j}(v) + 1 \ge level_{i}(v) + 1 = level_{i}(u) + 2.
```


During the execution of the Edmonds-Karp-Algorithm, any edge (u, v) disappears from the residual graph at most V/2 times.

Proof: Suppose $u \to v$ is in two residual graphs G_i and G_{j+1} , but not in any of the intermediate residual graphs G_{i+1} , G_i for some i < j.

- $u \rightarrow v$ must be on the *i*-th augmenting path: $level_i(v) = level_i(u) + 1$,
- $v \to u$ must be on the j-th augmenting path: $level_i(v) = level_i(u) 1$.

```
By Lemma B, we have level_{j}(u) = level_{j}(v) + 1 \ge level_{i}(v) + 1 = level_{i}(u) + 2.
```

The distance from s to u increased by at least 2 between the disappearance and reappearance of $u \to v$. Since every level is either less than V or infinite, the number of disappearances is at most V/2

The Edmonds-Karp-Algorithm computes a maximum flow with runtime $O(|E|^2|V|)$.

The Edmonds-Karp-Algorithm computes a maximum flow with runtime $O(|E|^2|V|)$.

Proof:

As a special case of the Ford-Fulkerson Method, it computes a max-flow!

The Edmonds-Karp-Algorithm computes a maximum flow with runtime $O(|E|^2|V|)$.

Proof:

- As a special case of the Ford-Fulkerson Method, it computes a max-flow!
- Every augmentation requires O(|E|) steps as a shortest augmenting paths can be found via BFS and also G_f can be built with O(|E|) steps.

The Edmonds-Karp-Algorithm computes a maximum flow with runtime $O(|E|^2|V|)$.

Proof:

- As a special case of the Ford-Fulkerson Method, it computes a max-flow!
- Every augmentation requires O(|E|) steps as a shortest augmenting paths can be found via BFS and also G_f can be built with O(|E|) steps.
- There are at most $O(|E| \cdot |V|)$ augmentations ($\leq |V|/2$ augmentations per edge)

State-of-The-Art

Ford-Fulkerson Naïve, 1956	$O(Ef^*)$
Edmonds-Karp/Dinic's Algorithm, 1970	$O(E^2V) \mathcal{O}(V^5)$
Dinic's Algorithm, 1970	$O(EV^2) = O(V^4)$

State-of-The-Art

Ford-Fulkerson Naïve, 1956	$O(Ef^*)$
Edmonds-Karp/Dinic's Algorithm, 1970	$O(E^2V) \mathcal{O}(V^5)$
Dinic's Algorithm, 1970	$O(EV^2) = O(V^4)$
MKM (Malhotra Kumar Maheshwari) 1978	$O(V^3)$

MKM (Malhotra, Kumar, Maheshwari), 1978	$O(V^3)$
Dinic's algorithm with dynamic trees, 1982	$O(VE \log V)$
Push-relabel (many versions exist), 1988	$O(V^2E)$
KRT (King, Rao, Tarjan)'s algorithm, 1994	$O(VE \log_{\frac{E}{V \log V}} V)$

State-of-The-Art

Ford-Fulkerson Naïve, 1956	$O(Ef^*)$
Edmonds-Karp/Dinic's Algorithm, 1970	$O(E^2V) \mathcal{O}(V^5)$
Dinic's Algorithm, 1970	$O(EV^2) = O(V^4)$

MKM (Malhotra, Kumar, Maheshwari), 1978	$O(V^3)$
Dinic's algorithm with dynamic trees, 1982	$O(VE \log V)$
Push-relabel (many versions exist), 1988	$O(V^2E)$
KRT (King, Rao, Tarjan)'s algorithm, 1994	$O(VE \log_{\frac{E}{V \log V}} V)$

• • •

Orlin + KRT, 2013	O(VE)
Gao-Liu-Peng, 2021	$\tilde{O}(E^{\frac{3}{2}-\frac{1}{328}}\log maxCapacity)$

Complicated,
- rely on involved
Data structures

Application: Maximum Cardinality Bipartite Matching

A matching of a graph G = (V, E) is a subset $M \subseteq E$ of the edges such any vertex $v \in V$ has at most one adjacent edge in M.

A matching of a graph G = (V, E) is a subset $M \subseteq E$ of the edges such any vertex $v \in V$ has at most one adjacent edge in M.

A matching of a graph G = (V, E) is a subset $M \subseteq E$ of the edges such any vertex $v \in V$ has at most one adjacent edge in M.

Maximum Bipartite Cardinality Matching: Given a bipartite graph, compute a matching that contains as many edges as possible.

Here, important special case: The graph is bipartite! (match customers to products, ads to customers, ...)

A matching of a graph G = (V, E) is a subset $M \subseteq E$ of the edges such any vertex $v \in V$ has at most one adjacent edge in M.

Here, important special case: Tisions (match customers to product tensor)

Maximum Bipartite Cardinality Matching: Given a bipartite graph, compute a matching that contains as many edges as possible.

Reduction to Max-Flow

Maximum Bipartite Cardinality Matching: Given a bipartite graph, compute a matching that contains as many edges as possible.

Reduction to Max-Flow

Maximum Bipartite Cardinality Matching: Given a bipartite graph, compute a matching that contains as many edges as possible.

Reduction to Max-Flow

Given: Bipartite graph $B = (X \cup Y, E)$.

1. Build flow network

$$\widetilde{(B)} = (X \cup Y \cup \{s, t\}, E', c) \text{ with } E' = \{(s, x) | x \in X\} \cup \{(y, t) | y \in Y\} \cup \{(x, y) | \{x, y\} \in E\}$$
 and $c(e') = 1$ for all $e' \in E'$.

Maximum Bipartite Cardinality Matching: Given a bipartite graph, compute a matching that contains as many edges as possible.

Reduction to Max-Flow

Given: Bipartite graph $B = (X \cup Y, E)$.

1. Build flow network

$$\widetilde{(B)} = (X \cup Y \cup \{s, t\}, E', c) \text{ with } E' = \{(s, x) | x \in X\} \cup \{(y, t) | y \in Y\} \cup \{(x, y) | \{x, y\} \in E\}$$
 and $c(e') = 1$ for all $e' \in E'$.

- 2. Compute an integral max-flow of (\tilde{B}, c)
- Return the edges (of the original graph) with flow 1

Maximum Bipartite Cardinality Matching: Given a bipartite graph, compute a matching that contains as many edges as possible.

Reduction to Max-Flow

Given: Bipartite graph $B = (X \cup Y, E)$.

1. Build flow network

$$\widetilde{(B)} = (X \cup Y \cup \{s, t\}, E', c) \text{ with } E' = \{(s, x) | x \in X\} \cup \{(y, t) | y \in Y\} \cup \{(x, y) | \{x, y\} \in E\}$$
 and $c(e') = 1$ for all $e' \in E'$.

- 2. Compute an integral max-flow of (\tilde{B}, c)
- 3. Return the edges (of the original graph) with flow 1

Proof: Omitted, see, e.g., CLRS.

What else?

Link to animated version: https://algorithms.discrete.ma.tum.de/

Thank you