

Departamento de Engenharia Electrotécnica Instituto Superior de Engenharia do Porto

TESIS

Teoria dos Sistemas

Modelação de Sistemas

_

Exercícios Propostos e Soluções

1. Determine a Função de Transferência G(s) dos sistemas eléctricos representados nas figuras seguintes:

a)

$$G(s) = E_o(s)/E_i(s)$$

b)

$$G(s) = I_2(s)/E_i(s)$$

c)

$$G(s) = V_o(s)/V_i(s)$$

d)

$$G(s) = V_o(s)/V_i(s)$$

e)

$$G(s) = V_o(s)/V_i(s)$$

f)

$$G(s) = V_o(s)/V_i(s)$$
, considerando ($\omega_0 = R/L$)

Solução:

a)
$$\frac{E_o(s)}{E_i(s)} = \frac{1}{s^2 \cdot L \cdot C + s \cdot R \cdot C + 1}$$

b)
$$\frac{E_o(s)}{E_i(s)} = \frac{1}{s^3 \cdot L_1 \cdot L_2 \cdot C + s^2 \cdot (R_1 \cdot L_2 \cdot C + L_1 \cdot R_2 \cdot C) + s \cdot (L_1 + L_2 + R_1 \cdot R_2 \cdot C) + R_1 + R_2}$$

c)
$$\frac{V_o(s)}{V_i(s)} = \frac{(sCR)^2}{(sCR)^2 + 3sCR + 1}$$

d)
$$\frac{V_o(s)}{V_i(s)} = -\frac{R_2}{R_1} \frac{sC_1R_1 + 1}{sC_2R_2 + 1}$$

e)
$$\frac{V_o(s)}{V_i(s)} = \frac{R_4(C_1R_1 + C_2R_2)}{R_1R_3C_2} \left[1 + \frac{1}{C_1R_1 + C_2R_2} \cdot \frac{1}{s} + \frac{C_1R_1C_2R_2}{C_1R_1 + C_2R_2} \cdot s \right]$$

f)
$$\frac{v_o(s)}{v_i(s)} = \frac{{\omega_0}^2}{s^2 + 3s\omega_0 + {\omega_0}^2}$$

2. Determine a Função de Transferência G(s) dos sistemas mecânicos de translação representados nas figuras seguintes:

a)

$$G(s) = X(s)/F(s)$$

b)

$$G(s) = X_2(s)/F(s)$$

c)

$$G(s) = X_1(s)/F(s)$$

d)

$$G(s) = Y(s)/F(s)$$

e)

$$G(s) = X_1(s) / F(s)$$

f)

$$G(s) = Y(s)/U(s)$$

g)

$$G(s) = X(s)/F(s)$$

a)
$$\frac{X(s)}{F(s)} = \frac{1}{s^2M + sB + K}$$

b)
$$\frac{X_2(s)}{F(s)} = \frac{k}{(s^2 M_1 + k)(s^2 M_2 + k) - k^2}$$

c)
$$\frac{X_1(s)}{F(s)} = \frac{k_2}{s^4 M_1 M_2 + s^3 B_1 M_2 + s^2 (k_1 M_2 + M_2 k_2 + M_1 k_2) + s (B_1 k_2) + k_1 k_2}$$

d)
$$\frac{Y(s)}{F(s)} = \frac{sB_1 + k_1}{\left(s^2M_1 + sB_1 + k_1\right)\left(s^2M_2 + sB_1 + k_1 + k_2\right) - \left(sB_1 + k_1\right)^2}$$

e)
$$\frac{X_1(s)}{F(s)} = \frac{M_2 s^2 + Bs + K}{\left[M_1 M_2 s^2 + \left(M_1 + M_2\right) \left(Bs + K\right)\right] s^2}$$

f)
$$\frac{Y(s)}{U(s)} = \frac{Bs + K}{Ms^2 + Bs + K}$$

g)
$$\frac{X(s)}{F(s)} = \frac{1}{s^2 M + s(B_1 + B_2) + (k_1 + k_2)}$$

3. Para o sistema mecânico representado na figura, com uma inércia J, uma mola K e um atrito viscoso B, qual é o modelo matemático que descreve a relação entre o binário de entrada T e os deslocamentos angulares θ_1 e θ_2 .

a)

$$T(t), \theta_1(t)$$

$$\theta_2(t)$$

$$I$$

Solução:

a)
$$\begin{cases} T = K(\theta_1 - \theta_2) \\ T = J\ddot{\theta}_2 + B\dot{\theta}_2 \end{cases}$$

4. Considere o sistema de engrenagem representado no esquema seguinte onde T_1 é o binário aplicado, ao passo que J e ω_2 são, respectivamente. a inércia e a velocidade angular da carga. Qual a relação entre T_1 e $\dot{\omega}_2$.

a)

Solução:

a)
$$T_1 = J\left(\frac{N_1}{N_2}\right)\dot{\omega}_2$$

- **5.** Considere o sistema de engrenagens representado no esquema. Qual a relação entre T_1 e T_4 .
 - a)

a)
$$\frac{T_1}{T_4} = \frac{N_1 N_3}{N_2 N_4}$$

6. Considere o sistema de engrenagem representado no esquema seguinte onde T_1 é o binário aplicado, ao passo que J e ω_2 são, respectivamente. a inércia e a velocidade angular da carga. Qual a relação entre T_1 e ω_1 .

a)

Solução:

a)
$$T_1 = (J\dot{\omega}_1 + B\omega_1) \left(\frac{N_1}{N_2}\right)^2$$

7. Determine a Função de Transferência G(s) dos sistemas mecânicos de rotação representados nas figuras seguintes:

a)

$$G(s) = \theta_2(s)/T(s)$$

b)

$$G_1(s) = \theta_1(s)/T(s)$$

$$G_2(s) = \theta_2(s)/T(s)$$

Solução:

a)
$$\frac{\theta_2(s)}{T(s)} = \frac{s.B + K_1}{s^4.J_1.J_2 + s^3.(J_1.B + J_2.B) + s^2.(J_1.K_1 + J_1.K_2 + J_2.K_1) + s.(B.K_2) + K_1.K_2}$$

$$T(s) = \left[s^2 J_1 + s B_1 + \frac{k_1 k_2}{n^2 k_1 + k_2} \right] \theta_1(s) - \frac{n k_1 k_2}{n^2 k_1 + k_2} \theta_2(s)$$
b)
$$- \frac{n k_1 k_2}{n^2 k_1 + k_2} \theta_1(s) + \left[s^2 J_2 + s B_2 + \frac{n^2 k_1 k_2}{n^2 k_1 + k_2} \right] \theta_2(s) = 0$$

Considerando:

$$T(s) = G_1(s)\theta_1(s) - G_2(s)\theta_2(s) - G_3(s)\theta_1(s) + G_4(s)\theta_2(s) = 0$$

Temos:

$$\frac{\theta_1(s)}{T(s)} = \frac{G_4(s)}{G_1(s)G_4(s) - G_2(s)G_3(s)}$$

e

$$\frac{\theta_2(s)}{T(s)} = \frac{G_3(s)}{G_1(s)G_4(s) - G_2(s)G_3(s)}$$

- **8.** Determine a Função de Transferência G(s) dos sistemas electromecânicos representados nas figuras seguintes:
 - a) Motor DC controlado pela armadura:

$$G(s) = \theta_m(s)/V_a(s)$$

b) Motor DC controlado pelo campo:

$$G(s) = \theta_m(s)/V_f(s)$$

Solução:

a)
$$\frac{\theta_m(s)}{V_a(s)} = \frac{k_I}{(s.L_a + R_a).(s^2.J + s.B) + s.k_b.k_I}$$

b)
$$\frac{\theta_m(s)}{V_f(s)} = \frac{k_2}{(s.L_f + R_f).(s^2.J + s.B)}$$

- **9.** Determine a Função de Transferência G(s) dos sistemas térmicos representados nas figuras seguintes:
 - a) Termómetro de mercúrio:

Sendo:

 T_a : Temperatura ambiente

 T_{v} : Temperatura do vidro

 T_m : Temperatura do mercúrio

 C_v : Capacidade calorífica do vidro

 C_m : Capacidade calorífica do mercúrio

 R_1 , R_2 : Resistências térmicas

 Q_1 , Q_2 : Fluxos caloríficos

- i) Construa o diagrama de blocos deste circuito térmico, considerando a temperatura ambiente (T_a) como entrada e a temperatura do mercúrio (T_m) como saída.
- ii) Qual a função de transferência do sistema $G(s) = T_m(s)/T_a(s)$?
- **b**) Caldeira de aquecimento de líquidos:

Neste sistema térmico assume-se que o tanque se encontra isolado de forma a evitar perdas de calor para o ar envolvente, que não existe acumulação de calor no isolamento do tanque nem nas suas paredes e que o líquido no tanque se encontra perfeitamente misturado estando desta forma a uma temperatura uniforme. Assume-se também que os fluxos de entrada e de saída de líquido no tanque são constantes e que a temperatura do líquido à entrada do tanque é constante e igual a Θ_i °C.

Para t < 0 o sistema encontra-se num estado estável, e a resistência de aquecimento fornece calor a uma taxa de H J/s.

i) Para t=0 a taxa de fornecimento de calor é alterada de H para H+h J/s. Esta alteração provoca uma mudança da temperatura de saída do líquido de Θ_o para $\Theta_o + \theta$ °C. Suponha que a alteração de temperatura de saída do líquido, θ °C, é a saída do sistema e que a alteração da taxa de fornecimento de calor ao sistema, h J/s, é a entrada do sistema. Determine a função de transferência $\Theta(s)/H(s)$. Considere:

G: fluxo do líquido (kg/s)

c: calor específico do líquido (J/kg.K)

M: massa do líquido no tanque (kg)

R: resistência térmica (K.s/J)

C: capacidade térmica (J/K)

 h_o : alteração ao calor adicionado ao líquido de saída (J/s)

a)
$$\frac{T_m(s)}{T_a(s)} = \frac{1}{(1 + s.R_2.C_m).(1 + s.R_1.C_v) + s.R_1.C_m}$$

b)
$$\frac{\theta(s)}{H_i(s)} = \frac{R}{s.R.C+1}$$

- **10.** Determine a Função de Transferência G(s) dos sistemas hidraúlicos representados nas figuras seguintes:
 - a) Sistema de tanques independentes:

$$G(s) = Q_o(s)/Q_i(s)$$

b) Sistema de tanques interligados:

$$G(s) = Q_o(s)/Q_i(s)$$

a)
$$\frac{Q_o(s)}{Q_i(s)} = \frac{1}{s^2 A_1 A_2 R_1 R_2 + s A_1 R_1 + s A_2 R_2 + 1}$$

b)
$$\frac{Q_o(s)}{Q_i(s)} = \frac{1}{s^2 A_1 A_2 R_1 R_2 + s A_1 R_1 + s A_2 R_2 + s A_1 R_2 + 1}$$