VISHAL BALAJI

VECTORIZATION & GPU-PARALLELIZATION

CONTENTS

- 1. INTRODUCTION
- 2. VECTORIZATION
- 3. PROJECT
- 4. CHALLENGES WITH VECTORIZATION

INTRODUCTION

As of 2020, computing devices are responsible for 1% global CO2 emissions. Expected to increase to 2.5% by 2030

Training OpenAl's ChatGPT used 1.287 Gwh, roughly equivalent to 120 US homes for a year [2]

Vectorization:

- Perform mathematical operations on entire arrays, instead of iterating over individual elements.
- Commonly used in computer
 programming and data processing to
 optimize performance and efficiency

INTRODUCTION

*Images not for scale

Central Processing Unit (CPU)

- Few (2-12) strong cores (each >4GHz)
- Suited for serial workloads
- Designed for general purpose calculations

Graphics Processing Unit (GPU)

- Thousands of weaker cores (each <2GHz)
- Suitable for parallel workloads
- Designed for graphics processing like 3D rendering

VECTORIZATION SIMP COMPUTING

- SIMD (Single Instruction/Multiple Data)
- Exploitating data-parallelism: Applying same operation to large amount of data in parallel
- Enables faster execution time/higher throughput by leveraging parallelism at the instruction level
- SIMD extensions like SSE (Streaming SIMD Extensions), AVX (Advanced Vector Extensions), NVPTX (Nvidia Parallel Thread Execution) are present in CPUs/GPUs

VECTORIZATION SEQUENTIAL VS PARALLEL

Problem: Multiply element-wise the two arrays and add 6 to them [21, 27, 10, 19, 18], [3, 8, 12, 19, 23]

Simple for-loop solution:

Matrix multiply solution:

[21	17	10	19	18]
[3+	8 +	12	13	23
	6	6	6	6	6
	69	222	126	253	420

VECTORIZATION MATRIX ALGEBRA

1x1 +	1x2	1x9				
2x7	2x5	2x3	_	15	12	15
7x1	7x2	7x9	=	42	39	78
+	+	+				
5x7	5x5	5x3				

DATA LOCALITY

- Accessing data close in memory
- Optimized cache utilization by accessing elements of matrices in specific pattern

DATA INDEPENDENCY

- Certain blocks of data being computed are independent of other elements
- Easily schedulable and mappable to SIMD units

INHERENTLY MATHEMATICS

- Being used since 18th century
- Numerous algorithmic optimizations developed specifically for matrix algebra: Strassen algorithm, Coppersmith-Winograd algorithm

OPTIMIZED LIBRARIES

- Leveraging specific hardware specific features to provide efficient implementations
- Examples: openBLAS, Intel Math Kernel Library (MKL), cuBLAS

VECTORIZATION GPU

- Implements SIMD architecture by default
- Thousands of cores for parallel execution | RTX 4090 has
 16384 cores
- Memory Efficiencies:
 - More complex and interconnected cache system than CPU
 - Dedicated memory: Significantly faster than RAM
 - Aligned memory storage for faster access
- Extremely well optimized parallel computing languages:
 CUDA / OpenCL

VECTORIZATION

- Lower precision for futher speed up
 - GPUs compute default in FP32 (originally for 3D applications)
 - For many math purposes (especially AI) FP16 offers good enough precision
 - Close to 2x improvement in throughput
 - INT8, FP8, INT4 precision is also becoming increasingly used
- Specialized Hardware Made exclusively for matrix calculations
 - Nvidia Tensor Cores
 - Intel Xe-Cores

PROJECT

- To show the performance advantage of using vectorization and performance gains in using GPUs
- Primarily comparing normal for-loops (sequential) with matrix multiplication in following cases:
 - Dot Product (1-D and N-Dimensional array)
 - Machine Learning: Linear Regression
 - Deep Learning: CNN
 - Reinforcement Learning: Q-Learning


```
for _ in range(NUMBER_ITERS): # Doing same computation for 20 times to reduce runtime variance
    dot_loop_value = 0.0
    t_loop_start = perf_counter()
    for index in range(a.shape[0]):
        dot_loop_value += a[index] * b[index]
        t_loop_end = perf_counter()

        t_loop_total = t_loop_end - t_loop_start
        if _ > IGNORE_ITERS: # Ignoring first 3 loop iterations, to further reduce the noise
        avg_loop_time_list.append(t_loop_total)
avg_loop_time_list = np.array(avg_loop_time_list)
avg_loop_time = np.mean(avg_loop_time_list)
```

Sample code for benchmarking (For-loop, 1D array)

PROJECT PRODUCT

- What is dot product?
- To observe performance benefit of matrix dot product in comparison to for-loops based dot product at different sizes
- Done using Python numpy package for CPUs and PyTorch for GPUs
- Calculating speed by doing same dot product 15 times to eliminate variance (also ignoring first 2 computations)

Dot Product comparison | Loop vs np.dot() | 1-D Array

PROJECT DOT PRODUCT - 1D ARRAY

Length	Time ro (in	SpeedUp	
of array	Loop	np.dot()	(in x)
10	5.3	1.2	4.4
100	24	1.2	20.6
1000	246	1.3	182.1
10000	2420	2.7	906.1
100000	23700	88.5	267.8

- SpeedUp: time for Loop / time for np.dot()
- Operation: (1-D,) @ (1-D,)

Dot Product comparison | Loop vs np.dot() | N-D x N-D Array (CPU)

PROJECT DOT PRODUCT - ND ARRAY CPU

Shape of	Time re (in	SpeedUp	
array	Loop	np.dot()	(in x)
10,10	0.45	0.002	219
100,100	40.4	0.1	3153
1000,1000	417000	15	27731

Operation: (N-D, N-D) @ (N-D, N-D)

```
result = []
t_loop_start = perf_counter()
for i in range(a.shape[0]):
    row = []
    for j in range(b.shape[1]):
        product = 0
        for k in range(a.shape[1]):
            product += a[i][k] * b[k][j]
        row.append(product)
    result.append(row)
```

Dot Product comparison | GPU (Normal vs FP16) | N-D x N-D Array

PROJECT DOT PRODUCT - ND ARRAY GPU

Shape of	Time re (in r	SpeedUp	
array	Matmul (FP32)	Matmul (FP16)	(in x)
10,10	0.082	0.043	1.87
100,100	0.059	0.044	1.34
1000,1000	0.41	0.26	1.58
10000,10000	322	92	3.5

- Using PyTorch for GPU processing
- FP16/32 Floating point 16/32 bits
- Operation: (N-D, N-D) @ (N-D, N-D)

PROJECT DOT PRODUCT - ND ARRAY GPU VS CPU

Shape of	Time re	SpeedUp	
array	Matmul (GPU)	Matmul (CPU)	(in x)
10,10	0.082	0.002	0.024
100,100	0.059	0.1	1.69
1000,1000	0.41	15	36.5
10000,10000	322	16000	3.5

- GPU is significantly faster than CPU for larger arrays
- Why not small arrays?
 - For every GPU matmul, data must be first copied to GPU and then computed. This datacopy has time penalty and dominates while computing small arrays,

PROJECT ML: LINEAR REGRESSION

- Finding the right variables that fit the equation: y = mx + c
- Using Mean Squared Error (MSE) as cost function

$$MSE = \frac{1}{n} \sum_{i=1}^{m} (y_i - (mx_i + c))^2$$

- Using gradient descent to update the variables:
 - $m = m \alpha \cdot \frac{2}{m} \Sigma(\hat{y} y)$
 - $c = c \alpha \cdot \frac{2}{m} \Sigma(\hat{y} y).x$
- Using Learning rate: 0.0001 for 100 epochs

Linear Regression (Number of samples: 200)

PROJECT ML: LINEAR REGRESSION | RESULTS

Number of sample	Time reception (in	SpeedUp (in x)	
	Loop	Matmul	
20	0.005	1.17E-5	427
200	0.04	1.32E-5	3030
500	0.25	2.52E-5	9920
1000	1	3.28E-5	30500
2000	4.2	3.65E-5	115000

*All computations executed in CPU

 Using sklearn.datasets to generate regression datasets with some noise

PROJECT DEEP LEARNING: CNN

- Simple Convolution Neural Network (CNN) Classifier
- Dataset: CIFAR-10
- Stochastic Gradient Descent (SGD) with Cross Entropy Loss
- Training with Mixed Precision (FP16)
- Batchsize: Number of training samples processed in a single forward and backward pass
 - <u>Efficiency</u>: Faster parallel processing
 - Memory Utilization: Processing the data in batches reduces the memory requirements compared to processing one example at a time
 - <u>Stability:</u> Updating NN with multiple data points reduces variance

Working of CNN [14]

```
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
```


CIFAR 10 Dataset [11]

PROJECT DEEP LEARNING: CNN | RESULTS

Batchsize	Min. Loss	Max. Validation Accuracy (%)	Time per epoch (s)
2	16085	54	45.0
4	14416	56	27.8
8	17700	54	20.7
16	21182	53	15.4
64	32020	31	12.8
256	38722	15	11.8

PROJECT IMPROVEMENTS / TODO

OpenAl Gym Environments [12]

RL: Implement Vectorized Q-Learning Agent (with OpenAl Gym)

Bug: Check why Matmul is slower with Linear Regression in GPU

Improvement: Display 1% low and 95% quantile for benchmark result

Improvement: Polish the notebooks, more clear documentation/Readme file and add references

CHALLENGES WITH VECTORIZATION

- Can be complex to formulate
- Not all for-loop can be converted to matrix math:
 - Example: Conditional statements like if, else and Search operations like np.where()
 - Loop-unrolling methods are effective for above situations: np.vectorize(), tf.vectorized_map(), torch.vectorize()
- If any iteration of the loop depends on value from previous iteration, vectorization is close to impossible
- Scheduling overhead must be considered

FOR LOOPS ARE NOT BAD!!

REFERENCES

- [1] The Amount of Data Center Energy Use AKCP Monitoring
- [2] ChatGPT's energy usage is a mystery here's what we do know (techhq.com)
- [3] Basics of SIMD Programming (cvut.cz)
- [4] 4. Matrix Multiplication Dive into Deep Learning Compiler 0.1 documentation (d2l.ai)
- [5] CPU vs GPU | Definition and FAQs | HEAVY.AI
- [6] What's the Difference Between GDDR and DDR Memory? | Exxact Blog (exxactcorp.com)
- [7] OpenCL Overview The Khronos Group Inc
- [8] Overview CuPy 12.0.0 documentation
- [9] FP64, FP32, FP16, BFLOAT16, TF32, and other members of the ZOO | by Grigory Sapunov | Medium
- [10] Benchmarking GPUs for Mixed Precision Training with Deep Learning (paperspace.com)
- [11] CIFAR-10 and CIFAR-100 datasets (toronto.edu)
- [12] Getting Started With OpenAl Gym | Paperspace Blog
- [13] Matrix Quotes: Neo, Morpheus, Agent Smith And Trinity Quotes Parade: Entertainment, Recipes, Health, Life, Holidays
- [14] Overview of Convolutional Neural Network in Image Classification (analyticsindiamag.com)

