Polynômes factoriels

On note $\mathbb{R}[X]$ la \mathbb{R} algèbre des polynômes réels en l'indéterminée X .

Pour $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ désigne le sous-espace vectoriel formé des polynômes de degré inférieur à n.

Pour tout polynôme $P \in \mathbb{R}[X]$ on pose $\Delta(P) = P(X+1) - P(X)$.

Partie I

- 1.a Montrer que Δ est un endomorphisme de $\mathbb{R}[X]$.
- 1.b On suppose que P est un polynôme constant, préciser $\Delta(P)$. On suppose que $\deg P \ge 1$, déterminer $\deg(\Delta(P))$.
- 2. Soit $n \in \mathbb{N}^*$. On note Δ_n la restriction de Δ au départ de $\mathbb{R}_n[X]$.
- 2.a Justifier que Δ_n est un endomorphisme de $\mathbb{R}_n[X]$.
- 2.b Déterminer le noyau de Δ_n .
- 2.c Déterminer le rang puis l'image de Δ_n .
- 3.a Déduire de la question précédente que l'endomorphisme Δ est surjectif.
- 3.b Justifier: $\forall P \in \mathbb{R}[X], \exists ! Q \in \mathbb{R}[X]$ tel que $\Delta(Q) = P$ et Q(0) = 0. On définit alors une application $\nabla : \mathbb{R}[X] \to \mathbb{R}[X]$ en posant $\nabla(P) = Q$.
- Rq: Le symbole ∇ se lit « nabla »
- 3.c Montrer que ∇ est un endomorphisme de $\mathbb{R}[X]$.
- 3.d Observer que $\forall P \in \mathbb{R}[X], \forall p \in \mathbb{N}, \sum_{i=0}^{p} P(i) = \nabla(P)(p+1)$

Partie II

On pose:

$$P_0 = 1 \; , \; P_1 = X \; , \; P_2 = \frac{X(X-1)}{2!} \; , \ldots , \; P_m = \frac{X(X-1) \ldots (X-m+1)}{m!} = \frac{1}{m!} \prod_{k=0}^{m-1} (X-k) \; \; \text{pour} \; \; m \in \mathbb{N} \; .$$

On définit par récurrence Δ^k pour $k \in \mathbb{N}$, en posant $\Delta^0 = \text{Id}$ puis pour tout $k \in \mathbb{N}$, $\Delta^{k+1} = \Delta \circ \Delta^k$.

- 1.a Calculer $\Delta(P_0)$ et $\Delta(P_m)$ en fonction de P_{m-1} pour tout $m \in \mathbb{N}^*$.
- 1.b Pour $k, m \in \mathbb{N}$. Exprimer $\Delta^k(P_m)$ selon que $k \le m$ ou k > m.
- 1.c Enfin, exprimer $\Delta^k(P_m)(0)$ en discutant selon les valeurs de $k, m \in \mathbb{N}$.
- 2.a Justifier que la famille $\mathcal{B} = (P_0, P_1, ..., P_n)$ est une base de $\mathbb{R}_n[X]$.
- 2.b En déduire que $\forall P \in \mathbb{R}[X], P = \sum_{m=0}^{n} \Delta^{m}(P)(0)P_{m}$.
- 2.c Exprimer alors $\nabla(P)$ en fonction des $\Delta^m(P)(0)$ et des P_m .
- 3. Application:
- 3.a Déterminer, sous forme factorisée $\nabla(X^3)$.
- 3.b En déduire l'expression de $\sum_{i=0}^{m} i^3$.