Refine Search

Search Results -

Term	Documents
@PD	37628441
(38 AND (@PD > "20060901")).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	0
(L38 AND @PD > 20060901).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	0

US Pre-Grant Publication Full-Text Database US Patents Full-Text Database

US OCR Full-Text Database Database:

EPO Abstracts Database JPO Abstracts Database

Derwent World Patents Index

IBM Technical Disclosure Bulletins

Search:

L39		Refine Search
Recall Text 🗢	Clear	Interrupt

Search History

Purge Queries DATE: Friday, September 01, 2006 Printable Copy Create Case

Set Name side by side	Query	<u>Hit</u> Count	Set Name result set
DB=	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=ADJ		
<u>L39</u>	L38 and @pd > 20060901	0	<u>L39</u>
<u>L38</u>	L37 and L34	16	<u>L38</u>
<u>L37</u>	L28 and L26 and L30 and L33	424	<u>L37</u>
<u>L36</u>	L34 and digital adj filter	4	<u>L36</u>
<u>L35</u>	L34 and filter	28	<u>L35</u>
<u>L34</u>	L29 and (digital adj circuit)	52	<u>L34</u>
<u>L33</u>	L29 and (digital with circuit)	874	<u>L33</u>
<u>L32</u>	L29 and (digital with ciecuit)	0	<u>L32</u>
<u>L31</u>	L29 and (digital near4 ciecuit)	0	<u>L31</u>

<u>L30</u>	L29 and digital		<u>L30</u>
<u>L29</u>	L28 and gradient	27906	<u>L29</u>
<u>L28</u>	(magnetic adj resonance)	95512	<u>L28</u>
<u>L27</u>	(magnetic adj resonace)	71	<u>L27</u>
<u>L26</u>	(324/300 324/301 324/302 324/303 324/304 324/305 324/306 324/307 324/308 324/309 324/310 324/311 324/312 324/313 324/314 324/315 324/316 324/317 324/318 324/319 324/320 324/321 324/322 600/410 600/420 600/422).ccls.	9684	<u>L26</u>
<u>L25</u>	(324/300 324/301 324/302 324/303 324/304 324/305 324/306 324/307 324/308 324/309 324/310 324/311 324/312 324/313 324/314 324/315 324/316 324/317 324/318 324/319 324/320 324/321 324/322).ccls. (600/410 600/420 600/422).ccls.	0	<u>L25</u>
<u>L24</u>	5349296	20	<u>L24</u>
<u>L23</u>	5867027	6	L23
<u>L22</u>	L21	6	<u>L22</u>
<u>L21</u>	6191582	6	<u>L21</u>
<u>L20</u>	6154030	6	<u>L20</u>
<u>L19</u>	L18 and L15	16	<u>L19</u>
<u>L18</u>	L9 and L7 and L11 and L14	424	<u>L18</u>
<u>L17</u>	L15 and digital adj filter	4	<u>L17</u>
<u>L16</u>	L15 and filter	28	<u>L16</u>
<u>L15</u>	L10 and (digital adj circuit)	52	<u>L15</u>
<u>L14</u>	L10 and (digital with circuit)	874	<u>L14</u>
<u>L13</u>	L10 and (digital with ciecuit)	0	<u>L13</u>
<u>L12</u>	L10 and (digital near4 ciecuit)	0	<u>L12</u>
<u>L11</u>	L10 and digital	5174	<u>L11</u>
<u>L10</u>	L9 and gradient	27906	<u>L10</u>
<u>L9</u>	(magnetic adj resonance)	95512	<u>L9</u>
<u>L8</u>	(magnetic adj resonace)	71	<u>L8</u>
<u>L7</u>	(324/300-322, 600/410,420,422).ccls.	9684	<u>L7</u>
<u>L6</u>	324/300-322.ccls. 600/410,420,422.ccls.	0	<u>L6</u>
<u>L5</u>	5349296	20	<u>L5</u>
<u>L4</u>	5867027	6	<u>L4</u>
<u>L3</u>	L2	6	<u>L3</u>
<u>L2</u>	6191582	6	<u>L2</u>
<u>L1</u>	6154030	6	<u>L1</u>

END OF SEARCH HISTORY

Purge Queries

Purge?	L Num	Query	DB	Hits
	Ll	6154030	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
	L2	6191582	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
	L3	L2	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
	L4	5867027	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
	L5	5349296	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	20
	L6	324/300-322.ccls. 600/410,420,422.ccls.	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
	L7	(324/300-322, 600/410,420,422).ccls.	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	9684
	L8	(magnetic adj resonace)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	7.1
	L9	(magnetic adj resonance)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	95512
	L10	L9 and gradient	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	27906
	L11	L10 and digital	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	5174
	L12	L10 and (digital near4 ciecuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
	L13	L10 and (digital with ciecuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
	L14	L10 and (digital with circuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	874
	L15	L10 and (digital adj circuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	52
	L16	L15 and filter	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	28
	L17	L15 and digital adj filter	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	4
	L18	L9 and L7 and L11 and L14	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	424
	L19	L18 and L15	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	16
	L20	6154030	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6

L21	6191582	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
L22	L21	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
L23	5867027	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
L24	5349296	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	20
L25	(324/300 324/301 324/302 324/303 324/304 324/305 324/306 324/307 324/308 324/309 324/310 324/311 324/312 324/313 324/314 324/315 324/316 324/317 324/318 324/319 324/320 324/321 324/322).ccls. (600/410 600/420 600/422).ccls.	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
L26	(324/300 324/301 324/302 324/303 324/304 324/305 324/306 324/307 324/308 324/309 324/310 324/311 324/312 324/313 324/314 324/315 324/316 324/317 324/318 324/319 324/320 324/321 324/322 600/410 600/420 600/422).ccls.	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	9684
L27	(magnetic adj resonace)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	71
L28	(magnetic adj resonance)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	95512
L29	L28 and gradient	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	27906
L30	L29 and digital	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	5174
L31	L29 and (digital near4 ciecuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
L32	L29 and (digital with ciecuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
L33	L29 and (digital with circuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	874
L34	L29 and (digital adj circuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	52
L35	L34 and filter	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	28
L36	L34 and digital adj filter	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	4

L37	L28 and L26 and L30 and L33	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	424
L38	L37 and L34	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	16
L39	L38 and @pd > 20060901	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0

Purge Selected Queries Uncheck ALL

Purge ALL Queries Return

Purge Queries

Purge?	L Num	Query	DB	Hits
	Ll	6154030	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
	L2	6191582	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
	L3	L2	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
	L4	5867027	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
	L5	5349296	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	20
	L6	324/300-322.ccls. 600/410,420,422.ccls.	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
	L7	(324/300-322, 600/410,420,422).ccls.	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	9684
	L8	(magnetic adj resonace)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	71
	L9	(magnetic adj resonance)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	95512
	L10	L9 and gradient	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	27906
	L11	L10 and digital	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	5174
	L12	L10 and (digital near4 ciecuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
	L13	L10 and (digital with ciecuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
	L14	L10 and (digital with circuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	874
	L15	L10 and (digital adj circuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	52
	L16	L15 and filter	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	28
	L17	L15 and digital adj filter	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	4
	L18	L9 and L7 and L11 and L14	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	424
	L19	L18 and L15	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	16
	L20	6154030	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6

	L21	6191582	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
	L22	L21	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
	L23	5867027	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	6
	L24	5349296	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	20
	L25	(324/300 324/301 324/302 324/303 324/304 324/305 324/306 324/307 324/308 324/309 324/310 324/311 324/312 324/313 324/314 324/315 324/316 324/317 324/318 324/319 324/320 324/321 324/322).ccls. (600/410 600/420 600/422).ccls.	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
	L26	(324/300 324/301 324/302 324/303 324/304 324/305 324/306 324/307 324/308 324/309 324/310 324/311 324/312 324/313 324/314 324/315 324/316 324/317 324/318 324/319 324/320 324/321 324/322 600/410 600/420 600/422).ccls.	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	9684
	L27	(magnetic adj resonace)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	71
	L28	(magnetic adj resonance)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	95512
	L29	L28 and gradient	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	27906
	L30	L29 and digital	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	5174
	L31	L29 and (digital near4 ciecuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
	L32	L29 and (digital with ciecuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0
	L33	L29 and (digital with circuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	874
	L34	L29 and (digital adj circuit)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	52
	L35	L34 and filter	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	28
	L36	L34 and digital adj filter	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	4
<u> </u>				

L37	L28 and L26 and L30 and L33	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	424
L38	L37 and L34	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	16
L39	L38 and @pd > 20060901	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	0

Purge Selected Queries Uncheck ALL

Purge ALL Queries Return

http://jupiter:9000/bin/gate.exe?f=purg&state=dghb7e.46.1

WEST Search History

Hide Items Restore Clear Cancel

DATE: Friday, September 01, 2006

Hide?	<u>Set</u> Name	Query	<u>Hit</u> Count		
DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=ADJ					
	L39	L38 and @pd > 20060901	0		
	L38	L37 and L34	16		
	L37	L28 and L26 and L30 and L33	424		
	L36	L34 and digital adj filter	4		
	L35	L34 and filter	28		
	L34	L29 and (digital adj circuit)	52		
	L33	L29 and (digital with circuit)	874		
	L32	L29 and (digital with ciecuit)	0		
	L31	L29 and (digital near4 ciecuit)	0		
	L30	L29 and digital	5174		
	L29	L28 and gradient	27906		
	L28	(magnetic adj resonance)	95512		
	L27	(magnetic adj resonace)	71		
	L26	(324/300 324/301 324/302 324/303 324/304 324/305 324/306 324/307 324/308 324/309 324/310 324/311 324/312 324/313 324/314 324/315 324/316 324/317 324/318 324/319 324/320 324/321 324/322 600/410 600/420 600/422).ccls.	9684		
	L25	(324/300 324/301 324/302 324/303 324/304 324/305 324/306 324/307 324/308 324/309 324/310 324/311 324/312 324/313 324/314 324/315 324/316 324/317 324/318 324/319 324/320 324/321 324/322).ccls. (600/410 600/420 600/422).ccls.	0		
	L24	5349296	20		
	L23	5867027	6		
	L22	L21	6		
	L21	6191582	6		
	L20	6154030	6		
	L19	L18 and L15	16		
	L18	L9 and L7 and L11 and L14	424		
	L17	L15 and digital adj filter	4		
	L16	L15 and filter	28		
	L15	L10 and (digital adj circuit)	52		
	L14	L10 and (digital with circuit)	874		

L13	L10 and (digital with ciecuit)	0
L12	L10 and (digital near4 ciecuit)	0
L11	L10 and digital	5174
L10	L9 and gradient	27906
L9	(magnetic adj resonance)	95512
L8	(magnetic adj resonace)	71
L7	(324/300-322, 600/410,420,422).ccls.	9684
L6	324/300-322.ccls. 600/410,420,422.ccls.	0
L5	5349296	20
L4	5867027	6
L3	L2	6
L2	6191582	6
Ll	6154030	6

END OF SEARCH HISTORY

Hit List

First Hit Clear Generate Collection Print Fwd Refs Bkwd Refs

Generate OACS

Search Results - Record(s) 1 through 16 of 16 returned.

☐ 1. Document ID: US 5227728 A Relevance Rank: 88

L19: Entry 14 of 16 File: USPT

Jul 13, 1993

US-PAT-NO: 5227728

DOCUMENT-IDENTIFIER: US 5227728 A

TITLE: Gradient driver control in magnetic resonance imaging

DATE-ISSUED: July 13, 1993

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Kaufman; Leon San Francisco CA
Carlson; Joseph W. Kensington CA
Gran; Richard Farmingdale NY

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

The Regents of the University of Oakland CA 02

APPL-NO: 07/786828 [PALM]
DATE FILED: November 1, 1991

INT-CL-ISSUED: [05] G01V 3/00

INT-CL-CURRENT:

TYPE IPC DATE
CIPS G01 R 33/38 20060101
CIPS G01 R 33/389 20060101
CIPS G01 R 33/385 20060101

US-CL-ISSUED: 324/322; 324/318 US-CL-CURRENT: 324/322; 324/318

FIELD-OF-CLASSIFICATION-SEARCH: 324/322, 324/318, 324/312, 324/313, 324/319,

128/653.5

See application file for complete search history.

PRIOR-ART-DISCLOSED:

Record List Display Page 2 of 26

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4612596	September 1986	Fox	324/322
4703275	October 1987	Holland	324/322
4755755	July 1988	Carlson	324/319
4788502	November 1988	Keller et al.	324/318
4829252	May 1989	Kaufman	324/309
4885542	December 1989	Yao et al.	324/313
4928063	May 1990	Lampman et al.	324/324
4970457	November 1990	Kaufman et al.	324/309

OTHER PUBLICATIONS

"Passive Screening of Switched Magnetic Field <u>Gradients</u>" by R. Turner et al.-J. Phys. E. Sci., Instrum 19 (1986).

ART-UNIT: 263

PRIMARY-EXAMINER: Arana; Louis

ATTY-AGENT-FIRM: Nixon & Vanderhye

ABSTRACT:

Electromagnet coil driving circuitry in a <u>magnetic resonance</u> imaging system is modified to include a flux-driven closed-loop real-time feedback control. The result is more accurate and efficient control of the net actual <u>gradient</u> flux generated by the coil even in the presence of magnetic circuit materials exhibiting hysteresis effects and/or electrical conductors giving rise to eddy current effects. Such driver control can be used to simultaneously correct the magnetic flux changes induced by environmental, ambient or other outside disturbances affecting the net magnetic field within a patient imaging volume of a <u>magnetic resonance</u> imaging system.

31 Claims, 9 Drawing figures

Full Title Citation Front Review Classification	i Cate Reference	Elaims (MNU (trave tr
☐ 2. Document ID: US 5442290 A	Relevance Rank: 87	
L19: Entry 13 of 16	File: USPT	Aug 15, 1995

US-PAT-NO: 5442290

DOCUMENT-IDENTIFIER: US 5442290 A

TITLE: MRI gradient drive current control using all digital controller

DATE-ISSUED: August 15, 1995

Record List Display Page 4 of 26

5066914	November 1991	Vavrek et al.	324/309
5153516	October 1992	Gopalsami et al.	324/309
5227728	July 1993	Kaufman et al.	324/318
5250901	October 1993	Kaufman et al.	324/318

OTHER PUBLICATIONS

Motorola Manual--"Linear/switchmode Voltage Regulator Handbook", HB206 Rev. 2--pp. 79-143.

J. Phys. E. Sci. Instrum. 19 (1986) -- "Passive screening of switched magnetic field gradients" by R. Turner and R. Bowley, pp. 876-879.

ART-UNIT: 268

PRIMARY-EXAMINER: O'Shea; Sandra L.

ASSISTANT-EXAMINER: Mah; Raymond Y.

ATTY-AGENT-FIRM: Nixon & Vanderhye

ABSTRACT:

An all <u>digital</u> controlled current driver is used for each pulsed electromagnet (e.g., <u>gradient</u> coils) in a <u>magnetic resonance</u> imaging (MRI) system. Such an all <u>digital</u> current controller may be advantageously employed in either closed loop or open loop <u>gradient</u> coil control <u>circuits</u>. The elimination of analog components decreases cost, increases operating efficiency and improves operating characteristics of the MRI system.

19 Claims, 6 Drawing figures

Full	fitte: Offation Front Review Classification	Ontal Reference	Claims KMS Draw De
	Document ID: US 6285304 B1	Relevance Rank: 87	
L19: E	ntry 5 of 16	File: USPT	Sep 4, 2001

US-PAT-NO: 6285304

DOCUMENT-IDENTIFIER: US 6285304 B1

TITLE: Analog-to-digital converter <u>circuit</u> and control device for a <u>gradient</u> amplifier of a <u>magnetic resonance</u> imaging system

DATE-ISSUED: September 4, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Schweighofer; Peter Nuernberg DE

ASSIGNEE-INFORMATION:

Record List Display Page 6 of 26

ART-UNIT: 289

PRIMARY-EXAMINER: Wamsley; Patrick

ATTY-AGENT-FIRM: Schiff Hardin & Waite

ABSTRACT:

In an analog-to-digital converter circuit and a control device for a gradient amplifier, an analog difference signal is determined from an analog input signal and an analog converter signal. An integrator and an analog-to-digital converter are provided in order to integrate and digitalize the analog difference signal before further evaluation, thereby achieving high precision, resolution and stability with little outlay.

14 Claims, 2 Drawing figures

Full	Title Citation Front Review Classific	ation Date Reference	Claims NAME Draw D
	4. Document ID: US 20050052	2182 A1 Relevance Rank: 87	
L19:	Entry 2 of 16	File: PGPB	Mar 10, 2005

PGPUB-DOCUMENT-NUMBER: 20050052182

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20050052182 A1

TITLE: Apparatus and method for <u>magnetic resonance</u> measurement and mapping of electrical impedance, complex permittivity and complex conductivity as applied to detection and evaluation of sample pathology

PUBLICATION-DATE: March 10, 2005

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY

Wollin, Ernest Marathon FL US

ASSIGNEE-INFORMATION:

NAME CITY STATE COUNTRY TYPE CODE

Wollin Ventures, Inc. 02

APPL-NO: 10/902263 [PALM]
DATE FILED: July 30, 2004

RELATED-US-APPL-DATA:

Application 10/902263 is a continuation-in-part-of US application PCT/US03/27122, filed August 29, 2003, PENDING

filed August 29, 2003, PENDING

Application is a non-provisional-of-provisional application 60/406924, filed August 30, 2002,

INT-CL-PUBLISHED: [07] G01V 3/00

Record List Display Page 7 of 26

INT-CL-CURRENT:

TYPE IPC DATE
CIPP <u>G01</u> V <u>3/00</u> 20060101

US-CL-PUBLISHED: 324/307; 324/309 US-CL-CURRENT: 324/307; 324/309

REPRESENTATIVE-FIGURES: 1, 7

ABSTRACT:

A method of measurement of or mapping the distribution of complex permittivity, complex conductivity, complex impedance, or electric loss angle during magnetic resonance imaging or analysis. The method includes applying a time-varying electric field of a Faraday shield to a sample and cross-correlating the line spectrum signal so produced with the voltage applied to the Faraday shield in a detection circuit. The method permits non-contrast magnetic resonance screening for breast cancer in vivo and/or continuous measurement of electrical characteristics of materials at variable frequencies in vitro. A system of detecting and evaluating sample pathology includes a Faraday shield device that includes parallel electrodes oriented orthogonal to the static magnetic field of a MRI device to produce a time varying electric field. A detector is coupled to the MRI device to detect at least one of a complex permittivity, a complex conductivity, and an electrical impedance of the sample.

RELATED APPLICATIONS

[0001] This application claims benefit of priority to PCT Application No. PCT/US03/27122, filed on Aug. 29, 2003 and Provisional Application No. 60/406,924, filed on Aug. 30, 2002, incorporated by reference herein in its entirety.

Full Title Citation Front Review Classification Cate Re	erence Sequences Attachments Claims MMC Draw. D-

□ 5. Document ID: US 5876337 A Relevance Rank: 86

L19: Entry 9 of 16 File: USPT Mar 2, 1999

US-PAT-NO: 5876337

DOCUMENT-IDENTIFIER: US 5876337 A

TITLE: Magnetic resonance imaging apparatus and method for correcting the intensity

of the static magnetic field of the apparatus

DATE-ISSUED: March 2, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Tsuda; Munetaka Mito JP

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Record List Display Page 9 of 26

uniformity of the static magnetic field in a region of an object under examination is improved and image distortion is suppressed. The MRI apparatus can be effectively applied to a fast imaging technique, an imaging technique where NMR signals of adipose tissue are suppressed, and a high resolution spectrum.

17 Claims, 7 Drawing figures

Full Title Citation Front Review Classification Date Reference

Claims 1000 Drave D.

☐ 6. Document ID: US 6362622 B1 Relevance Rank: 86

L19: Entry 4 of 16

File: USPT

Mar 26, 2002

US-PAT-NO: 6362622

DOCUMENT-IDENTIFIER: US 6362622 B1

TITLE: Method and apparatus to embed and retrieve attribute information in magnetic

resonance imaging coils

DATE-ISSUED: March 26, 2002

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Stauber; John R. Fairview Park OH Burl; Michael Chagrin Falls OH

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Philips Medical Systems, Highland OH 02 (Cleveland) Inc. Heights

APPL-NO: 09/516002 [PALM] DATE FILED: February 29, 2000

INT-CL-ISSUED: [07] G01V 3/00

INT-CL-CURRENT:

TYPE IPC DATE CIPP G01 R 33/28 20060101

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 324/318, 324/322, 324/300, 324/314, 324/307,

324/309, 600/410, 600/421, 600/423, 340/652, 340/572 See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Record List Display Page 10 of 26

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4972852	November 1990	Koob et al.	128/653R
5065760	November 1991	Krause et al.	128/653.5
5461314	October 1995	Arakawa et al.	324/318
5657761	August 1997	Okada et al.	128/660.01
5689242	November 1997	Sims et al.	340/652
RE36495	January 2000	Blakeley et al.	600/410

OTHER PUBLICATIONS

Dallas Semiconductor, DS2433 4K-BIT 1-Wire.TM., EEPROM, Dec. 1999, pp. 1-18.

ART-UNIT: 2862

PRIMARY-EXAMINER: Arana; Louis

ATTY-AGENT-FIRM: Fay, Sharpe, Fagan, Minnich & McKee, LLP

ABSTRACT:

A <u>magnetic resonance</u> imaging system includes a patient couch (10) which selectively positions a patient relative to an examination region (14). An imaging coil (B) is disposed adjacent to a region of interest for receiving <u>magnetic resonance</u> signals emanating from the patient. A processor (48) both controls the imaging event and processes received signals from the imaging coil. A plug and socket assembly (24, 26) having a proximal component and a distal component relative to the imaging coil provides selective electrical connectivity between the imaging coil (B) and the processor (48). A non-volatile memory device (86), such as a 1-WIRE.TM. EEPROM, is affixed to the proximal component of the plug and socket assembly (24, 26) for storing a variety attributes associated with the imaging coil. The memory device is most conveniently mounted to a coaxial connector (110).

17 Claims, 6 Drawing figures

Full Ti	le Chation Front Review (lassification Cate Reference	Claims 1200 Uravau
_	Document ID: US 554	6001 A Relevance Rank: 86	
L19: En	try 12 of 16	File: USPT	Aug 13, 1996

US-PAT-NO: 5546001

DOCUMENT-IDENTIFIER: US 5546001 A

TITLE: Switching signal generator and magnetic resonance imaging system using the

same

DATE-ISSUED: August 13, 1996

Record List Display Page 12 of 26

ATTY-AGENT-FIRM: Limbach & Limbach L.L.P. Yin; Ronald L.

ABSTRACT:

There provided is a switching signal generator mounted in a system for handling a signal of a predetermined frequency band. A magnetic resonance imaging (MRI) system is one of the preferred systems. The generator comprises an element for supplying a switching signal of a switching frequency to a switching device mounted in the system and operated by pulse width modulation, the switching frequency being able to be changed in response to a control signal. The generator further comprises an element for adjusting the switching frequency by supplying the control signal to the switching signal supplying element so that a frequency which is product of the switching frequency and an integer falls out of the predetermined frequency band. In case of the MRI system, the predetermined frequency band is an image frequency band. As a result, the so-called F1 noise can be avoidable from the image.

9 Claims, 10 Drawing figures

Full T	tle Citation Front	Review Classification	Claims NMC Disorus
□ 8.	Document ID:	US 5800354 A	Relevance Rank: 86

File: USPT

Sep 1, 1998

US-PAT-NO: 5800354

L19: Entry 10 of 16

DOCUMENT-IDENTIFIER: US 5800354 A

TITLE: Method of and device for magnetic resonance imaging

DATE-ISSUED: September 1, 1998

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Hofland; Lennart Eindhoven NL

Savord; Bernard J. Andover MA Scampini; Steven A. Bedford MA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

U.S. Phillips Corporation New York NY 02 Hewlett-Packard Palo Alto CA 02

APPL-NO: 08/345026 [PALM]
DATE FILED: November 23, 1994

INT-CL-ISSUED: [06] A61B 5/055

INT-CL-CURRENT:

TYPE IPC DATE

Record List Display Page 14 of 26

the navigator signals (640) and to apply the derived corrections to the received echo signals (641, 642). Also this method could be combined with ECG-triggering and respiratory gating.

18 Claims, 8 Drawing figures

Full Title Citation Front Review Classification Cate Reference

Claims EWIC Drave De

☐ 9. Document ID: US RE36495 E Relevance Rank: 86

L19: Entry 7 of 16

File: USPT

Jan 11, 2000

US-PAT-NO: RE36495

DOCUMENT-IDENTIFIER: US RE36495 E

TITLE: RF coil identification and testing interface for NMR systems

DATE-ISSUED: January 11, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Blakeley; Douglas M. Euclid OH Molyneaux; David A. Gainesville FL

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Picker International, Inc. Highlands Heights OH 02

APPL-NO: 09/146889 [PALM]
DATE FILED: September 2, 1998

REISSUE-DATA:

US-PAT-NO DATE-ISSUED APPL-NO DATE-FILED

05551430 September 3, 1996 286780 August 5, 1994

INT-CL-ISSUED: [06] A61B 5/055

INT-CL-CURRENT:

TYPE IPC DATE
CIPP G01 R 33/28 20060101

US-CL-ISSUED: 600/410; 324/318, 324/322 US-CL-CURRENT: 600/410; 324/318, 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 600/410, 600/421, 600/422, 324/307, 324/309,

324/318, 324/322

See application file for complete search history.

PRIOR-ART-DISCLOSED:

Record List Display Page 15 of 26

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4972852	November 1990	Koob et al.	128/653R
5065760	November 1991	Krause et al.	128/653.5
5144244	September 1992	Kess	324/322
5457387	October 1995	Patrick et al.	324/318
5461314	October 1995	Arakawa et al.	324/318

ART-UNIT: 377

PRIMARY-EXAMINER: Casler; Brian L.

ATTY-AGENT-FIRM: Fay, Sharpe, Fagan, Minnich & McKee, LLP

ABSTRACT:

A movable patient supporting portion (10) of a patient couch (A) includes a socket (26) for receiving a mating plug (24) on a localized coil (B). The patient couch selectively inserts the localized coil and a supported patient into a bore (14) of a cryogenic magnet system (C). The localized coil includes a resistor (86) whose magnitude identifies the coil. A coil identification interrogator (84) interrogates the coil identification resistor and derives a corresponding binary coil identification. The coil identification addresses a look-up table (90) to retrieve diagnostic test information, an identification of a coil for a human-readable display, and, preferably, an identification of an isocenter of the coil. A diagnostic test unit (92) electrically tests the coil through the plug and socket connection with the diagnostic tests prescribed by the look-up table. A display interface (94) converts error messages from the diagnostic test unit and the coil identification from the look-up table into appropriate format for a display (40). A couch computer (18) controls a motor (20) in accordance with the isocenter of the coil from the look-up table to control positioning of the patient and the localized coil.

30 Claims, 4 Drawing figures

Full	Titl≋	Citation Front	Review: Classification	Date: Reference	Claims KWC	Drave Ds
			US 5938600 A	Relevance Rank:	 	
L19:	Entr	y 8 of 16		File: USPT	Aug 17,	1999

US-PAT-NO: 5938600

DOCUMENT-IDENTIFIER: US 5938600 A

TITLE: Method and device for heating by means of ultrasound

DATE-ISSUED: August 17, 1999

Record List Display Page 17 of 26

OTHER PUBLICATIONS

Ehman et al, "Adaptive Technique for High-Definition MR Imaging of Moving Structures", Radiology vol. 173 No. 1, 1989 pp. 255-263.
"On-Line MIR Monitored Noninvasive Ultrasound Surgery" K. Hynynen et al, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 14, Paris, France, Oct. 29-Nov. 1, 1992.

ART-UNIT: 377

PRIMARY-EXAMINER: Smith; Ruth S.

ATTY-AGENT-FIRM: Renfrew, Jr.; Dwight H.

ABSTRACT:

A method of heating a target region by ultrasound radiation includes determination of a position of the target region by a magnetic resonance method. The device for carrying out this method includes an ultrasound device and an MR device. By determining movement of the target region utilizing the MR device (100) and an appropriate magnetic resonance method, and by coupling the movement information to the ultrasound device (118) by an electric signal (122, 124), it is achieved that the ultrasound device can be controlled by the movement information. Various possibilities exist for controlling the ultrasound device. According to a first possibility, the focal region is adjusted to be situated within the target region in order to generate ultrasound. Another possibility is to determine from the movement information the instant at which the target region is situated within the focal region of the ultrasound and to generate ultrasound exclusively for a brief subsequent period during which the focal region is still within the target region. Another possibility is to refrain from generating ultrasound when the movement speed is too high. Finally, the movement information can also be used for making the focal region follow the target region during the generation of ultrasound.

21 Claims, 10 Drawing figures

Full Title Citation Front Review Classification	Date Salerance	Claims EKMC DrawDo
☐ 11. Document ID: US 6118681 A		
L19: Entry 6 of 16	File: USPT	Sep 12, 2000

US-PAT-NO: 6118681

DOCUMENT-IDENTIFIER: US 6118681 A

TITLE: Gradient amplifier for a magnetic resonance tomography apparatus and method

for controlling same

DATE-ISSUED: September 12, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Schweighofer; Peter Nuremberg DE

Record List Display Page 19 of 26

ABSTRACT:

In a <u>gradient</u> amplifier for a nuclear <u>magnetic resonance</u> tomography apparatus and a method for operating same, a reference value unit for providing a reference value for a <u>gradient</u> coil current, an actual value unit for determining an actual value of the <u>gradient</u> coil current, a control unit for determining a setting value, a modulator for generating at least one output stage drive signal and an output stage for generating an output signal across the coil are provided. The precision of the reference value and the precision of the actual value are higher by at least the factor of 10 than the precision of the setting value and/or of the at least one output stage drive signal and/or of the output signal. As a result, the <u>gradient</u> amplifier has a precision that is high enough to avoid disturbances affecting in the image can be realized with relatively little outlay.

22 Claims, 1 Drawing figures

Title Citation Front Review Classification Cale Relevance

12. Document ID: US 4992736 A Relevance Rank: 86

L19: Entry 15 of 16 File: USPT Feb 12, 1991

US-PAT-NO: 4992736

DOCUMENT-IDENTIFIER: US 4992736 A

TITLE: Radio frequency receiver for a NMR instrument

DATE-ISSUED: February 12, 1991

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Stormont; Robert S. Waukesha WI
Anas; Michael C. Germantown WI
Pelc; Norbert J. Wauwatosa WI

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

General Electric Company Milwaukee WI 02

APPL-NO: 07/389456 [PALM]
DATE FILED: August 4, 1989

INT-CL-ISSUED: [05] G01R 33/20

INT-CL-CURRENT:

TYPE IPC DATE

CIPS G01 R 33/32 20060101

CIPS G01 R 33/341 20060101

CIPS G01 R 33/34 20060101

Record List Display Page 20 of 26

CIPS G01 R 33/36 20060101

US-CL-ISSUED: 324/309 US-CL-CURRENT: 324/309

FIELD-OF-CLASSIFICATION-SEARCH: 455/60, 375/39, 375/75, 375/99, 375/103, 324/309,

324/310, 324/311, 324/312, 324/313, 324/314, 324/322, 318/611

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3423529	January 1969	O'Neill, Jr.	375/39
3443229	May 1969	Becker	375/39
<u>3522537</u>	August 1970	Boughtwood	375/39
4740753	April 1988	Glover	324/320
4839573	June 1989	Wise	318/611

ART-UNIT: 265

PRIMARY-EXAMINER: Tokar; Michael J.

ATTY-AGENT-FIRM: Quarles & Brady

ABSTRACT:

A receiver processes an NMR signal to produce a baseband image information signal from which two quadrature component signals are derived. An intermediate frequency section mixes the received NMR signal with two reference signals to shift the image information into a frequency band having a bandwidth BW and centered at a frequency that is 1.5 times the bandwidth BW. The resultant signal is filtered to remove extraneous signals outside the image information band. An analog to $\underline{\text{digital}}$ converter samples the filtered signal at a rate that is twice the bandwidth BW and digitizes the samples into a $\underline{\text{digital}}$ signal. A quadrature detector derives I and Q output signals from the $\underline{\text{digital}}$ signal by alternately selecting $\underline{\text{digital}}$ samples and negating every other sample selected for each of the I and Q output signals. The quadature detector also digitally filters the I and Q signals which are then used to construct an NMR image.

16 Claims, 10 Drawing figures

L19: Entry 11 of 16

Foll Title	Citation Front: Review Classification	Cale Reference Claims RWC Crace Co.
□ 13.		Relevance Rank: 86

File: USPT

Sep 3, 1996

Record List Display Page 22 of 26

ABSTRACT:

A movable patient supporting portion (10) of a patient couch (A) includes a socket (26) for receiving a mating plug (24) on a localized coil (B). The patient couch selectively inserts the localized coil and a supported patient into a bore (14) of a cryogenic magnet system (C). The localized coil includes a resistor (86) whose magnitude identifies the coil. A coil identification interrogator (84) interrogates the coil identification resistor and derives a corresponding binary coil identification. The coil identification addresses a look-up table (90) to retrieve diagnostic test information, an identification of a coil for a human-readable display, and, preferably, an identification of an isocenter of the coil. A diagnostic test unit (92) electrically tests the coil through the plug and socket connection with the diagnostic tests prescribed by the look-up table. A display interface (94) converts error messages from the diagnostic test unit and the coil identification from the look-up table into appropriate format for a display (40). A couch computer (18) controls a motor (20) in accordance with the isocenter of the coil from the look-up table to control positioning of the patient and the localized coil.

21 Claims, 4 Drawing figures

□ 14. Document ID: US 3810001 A Relevance Rank: 86

US-PAT-NO: 3810001

DOCUMENT-IDENTIFIER: US 3810001 A

TITLE: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY EMPLOYING DIFFERENCE FREQUENCY

MEASUREMENTS

DATE-ISSUED: May 7, 1974

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Ernst; Richard Robert Winterthur CH

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Varian Associates Palo Alto CA 02

APPL-NO: 05/263016 [PALM]
DATE FILED: June 15, 1972

INT-CL-ISSUED: [] G01r 33/08, G01n 27/02

INT-CL-CURRENT:

TYPE IPC DATE

Record List Display Page 23 of 26

CIPS G01 R 33/46 20060101 CIPS G01 R 33/44 20060101

US-CL-ISSUED: 324/.5R; 324/.5A US-CL-CURRENT: 324/313; 324/314

FIELD-OF-CLASSIFICATION-SEARCH: 324/.5R, 324/.5A, 324/.5AC

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3287629	November 1966	Varian	324/.5A
3475680	October 1969	Anderson et al.	324/.5A

ART-UNIT: 258

PRIMARY-EXAMINER: Corcoran; Robert J.

ATTY-AGENT-FIRM: Cole; S. Z. Fisher; G. M.

ABSTRACT:

A modified impulse type Fourier transform type of nuclear <u>magnetic resonance</u> spectrometer wherein the direct measurement of difference frequencies between a single reference resonance line and the multiple resonance lines of the sample under analysis is provided, which provides weighting of the sample decay response by its local signal-to-noise ratio resulting in simplified system components and avoidance of stringent conditions with respect to the stability of the static unidirectional magnet field. A non-linear detector forms the desired difference frequencies and weighting function. A first embodiment employs analog-to-digital conversion and a signal averaging computer with the resultant difference frequencies of the sample response Fourier-transformed to obtain the desired spectrum. A second embodiment avoids the analog-to-digital converter and the computer, utilizing instead a form of analog Fourier analyzer to obtain the output spectrum.

8 Claims, 11 Drawing figures

Full Title Chation Front Review Classification	Pate: Reference:	Claims IMAC Disor U
☐ 15. Document ID: US 6838964 B1		
L19: Entry 3 of 16	File: USPT	Jan 4, 2005

US-PAT-NO: 6838964

Record List Display Page 25 of 26

Remote monitoring of superconducting magnet systems of various types, manufacturers, vintages, and so forth, via a magnet selector interface providing for configuring the monitoring system to the particular magnet system of interest. The technique provides for scalable analogue to digital conversion with integrated excitation circuitry for the input and output of magnet system sensors. Devices, such as remote terminal units and other data-logging technology may be adapted to remotely monitor primary indicators and secondary indicators of magnet system performance and related boil-off of helium. The technique provides earlier warning of impending failures in the magnet system, and thus facilitates predictive maintenance, reduces maintenance costs, reduces MRI downtime, reduces helium loss, and the like.

File: PGPB

47 Claims, 5 Drawing figures

Full Title Citation Front Review Classification Date Reference

Claims 1990 Draw D

Aug 3, 2006

☐ 16. Document ID: US 20060173284 A1 Relevance Rank: 86

L19: Entry 1 of 16

PGPUB-DOCUMENT-NUMBER: 20060173284

PGPUB-FILING-TYPE:

DOCUMENT-IDENTIFIER: US 20060173284 A1

TITLE: Radiofrequency coil and catheter for surface nmr imaging and spectroscopy

PUBLICATION-DATE: August 3, 2006

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY

Ackerman; Jerome L. Newton MA US Wedeen; Van J. Somerville MA US

APPL-NO: 10/532156 [PALM]
DATE FILED: October 21, 2003

RELATED-US-APPL-DATA:

us-provisional-application US 60419987 20021021

PCT-DATA:

DATE-FILED APPL-NO PUB-NO PUB-DATE 371-DATE

Oct 21, 2003 PCT/US03/33316 Nov 7, 2005

INT-CL-PUBLISHED:

TYPE IPC DATE IPC-OLD IPCP A61B5/05 20060101 A61B005/05

INT-CL-CURRENT:

TYPE IPC DATE

Record List Display Page 26 of 26

CIPP A61 B 5/05 20060101

US-CL-PUBLISHED: 600/422 US-CL-CURRENT: 600/422

ABSTRACT:

In one aspect, the present invention provides a cylindrical meanderline coil that can significantly improve the performance and usefulness of nuclear <u>magnetic resonance</u> (NMR) catheter radiofrequency (RF) coils by shaping the spatial dimensions of the volume of excitation and reception of signal. This can provide improved accuracy in defining the volume of excitation and reception of the subject or specimen, and increase the signal to noise ratio of a received signal. In another aspect, the invention provides an intravascular catheter having a coil at its tip for generating and/or detecting magnetic excitations. A preamplifer coupled to the catheter in proximity of the coil allows amplifying signals generated and/or detected by the coil. Although in one application, a coil and/or a catheter of the invention can be employed, for example, for MR spectroscopy or imaging of biological tissue, such as atherosclerotic plaques arterial walls in the human body, the invention provides similar advantages in any situation where a <u>magnetic resonance</u> or other magnetic induction signal is to be received from a thin cylindrical shell or sector of a cylindrical shell.

RELATED APPLICATIONS

[0001] This application claims priority to provisional application No. 60/419,987 entitled "Radiofrequency coil and catheter for surface NMR imaging and spectroscopy," filed on Oct. 21, 2002.

Full Title Citation Front Review Classification Date Reference Sequences Attach	ments Elaims D	NE DISOLU
Clear Generate Collection Print Fwd Refs Bkwd Refs	Generate	
Term	Documents	
(15 AND 18).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	16	
(L18 AND L15).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	16	

Display Format: - Change Format

Previous Page Next Page Go to Doc#

First Hit Clear Generate Collection Print Fwd Refs Bkwd Refs Generate OACS

Search Results - Record(s) 1 through 6 of 6 returned.

1. Document ID: WO 9950681 A1, JP 2002510399 W, EP 985156 A1, US 6154030 A Relevance Rank: 99

L1: Entry 6 of 6

File: DWPI

Oct 7, 1999

DERWENT-ACC-NO: 1999-620075

DERWENT-WEEK: 200225

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE: Digital eddy current compensation apparatus in nuclear magnetic resonance

instrumentation

INVENTOR: WURL, J G

PATENT-ASSIGNEE: VARIAN INC (VARI)

PRIORITY-DATA: 1998US-0050773 (March 30, 1998)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
WO 9950681 A1	October 7, 1999	E	027	G01R033/565
JP 2002510399 W	April 2, 2002		025	G01R033/32
EP 985156 A1	March 15, 2000	E	000	G01R033/565
US 6154030 A	November 28, 2000		000	G01R033/20

DESIGNATED-STATES: JP AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE CH DE GB LI

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
WO 9950681A1	March 26, 1999	1999WO-US06708	
JP2002510399W	March 26, 1999	1999JP-0549588	
JP2002510399W	March 26, 1999	1999WO-US06708	
JP2002510399W		WO 9950681	Based on
EP 985156A1	March 26, 1999	1999EP-0912916	
EP 985156A1	March 26, 1999	1999WO-US06708	
EP 985156A1		WO 9950681	Based on
US 6154030A	March 30, 1998	1998US-0050773	

INT-CL (IPC): A61B 5/055; G01R 33/20; G01R 33/32; G01R 33/385; G01R 33/54;

G01R 33/565; G01V 3/00

Record List Display Page 3 of 14

USE - For compensating digital eddy current by shaping signal of selected shape in nuclear magnetic resonance instrumentation.

ADVANTAGE - The digital signal processor receives parameter establishing type of pulse and such parameters as required for that type of pulse thereby desired demand is created together with the eddy current corrections. It is only necessary that undesirable responses of physical system are known or can be measured via canonical experiments.

DESCRIPTION OF DRAWING(S) - The figure depicts the block diagram of digital eddy current compensator apparatus.

Converters 102,106

CHOSEN-DRAWING: Dwg.2/5

DERWENT-CLASS: P31 S01 S03 S05 V02

EPI-CODES: S01-E02A1; S01-E02A2; S01-E02A8A; S03-E07A; S03-E07C; S05-D02B1; V02-

F01G; V02-F03;

TOTAL BRIDGE FROM REVIEW CONSTRUCTION COLOR RESIDENCE

File: USPT

Aug 29, 2000

☐ 2. Document ID: US 6108847 A Relevance Rank: 99

US-PAT-NO: 6108847

L1: Entry 5 of 6

DOCUMENT-IDENTIFIER: US 6108847 A

TITLE: Antimicrobial brush

DATE-ISSUED: August 29, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Cueman; Glenn F. Davidson NC Hanrahan; William D. Charlotte NC

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Microban Products Company Huntersville NC 02

APPL-NO: 09/309029 [PALM]
DATE FILED: May 10, 1999

PARENT-CASE:

CROSS REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of U.S. patent application Ser. No. 08/855,019 filed May 12, 1997, now abandoned.

INT-CL-ISSUED: [07] A46B 15/00

INT-CL-CURRENT:

Record List Display Page 5 of 14

for any brush in which bristles are embedded in plastic, including toothbrushes, hair brushes, scrub brushes, toilet bowl brushes, cosmetic brushes, lip-color brushes, etc.

14 Claims, 6 Drawing figures

Full Title Citation Front Review Classification Cale Reference

Claims 1000 Drave D

☐ 3. Document ID: US 6153210 A Relevance Rank: 99

L1: Entry 4 of 6

File: USPT

Nov 28, 2000

US-PAT-NO: 6153210

DOCUMENT-IDENTIFIER: US 6153210 A

TITLE: Use of locally delivered metal ions for treatment of periodontal disease

DATE-ISSUED: November 28, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Roberts; F. Donald Dover MA
Friden; Phillip M. Bedford MA
Spacciapoli; Peter Newbury MA
Nelson; Eric Waltham MA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Periodontix, Inc. Watertown MA 02

APPL-NO: 08/911413 [PALM]
DATE FILED: August 14, 1997

INT-CL-ISSUED: [07] A61K 33/38, A61K 9/70, A61K 31/765, A61L 15/03

INT-CL-CURRENT:

TYPE IPC DATE

CIPS A61 K 33/24 20060101

CIPS <u>A61 K 33/30</u> 20060101

CIPS A61 K 33/26 20060101

CIPS A61 K 33/34 20060101

CIPS <u>A61 K 33/38</u> 20060101

CIPS A61 K 9/00 20060101

US-CL-ISSUED: 424/411; 424/422, 424/424, 424/425, 424/426, 424/435, 424/444,

424/445

US-CL-CURRENT: 424/411; 424/422, 424/424, 424/425, 424/426, 424/435, 424/444,

424/445

Record List Display Page 8 of 14

Hudson et al Australian and New Zealand Jl. of Ophthalmology(4): 391-394 Argyrol Argyrosis and the Acquisition of Art, Nov. 1985.

Dummett Postgraduate Medicine 49(1): 78-82 Systematic Significance of Oral Pigmentation and Discoloration, Jan. 1971.

Marshall et al Archives of Dermatology 113(8): 1077-1079 Systemic Argyria Secondary to Topical Silver Nitrate, Aug. 1977.

Lee et al Jl. of Dermatology 21(1): 50-53 Generalized Argyria After Habitual Use of AqNO3, Jan. 1994.

Jurizcka Haut Arzt 37(11): 628-631 Generalized Argyrosis, Nov. 1986.

MacIntire et al British Medical Journal 2(6154) : 1749-1750 Silver Poisoning Associated with an Antismoking Lozenge, Dec. 23-30, 1978.

Shelton et al British Medical Journal 1 (6158) : 267 Silver Poisoning Associated With an Antismoking Lozenge, Jan. 27, 1979.

Prescott et al Jl. Clin. Pathology 47(6): 556-557 Systemic Argyria, Jun. 1994.

Greene et al American Family Physician 36(6): 151-154 Argyria, Dec. 1987.

Westhofen et al Areh. Oto-Rhino-caryngology 243(4)260-264 Generalized Argyrosis in Man, 1986.

Capoen et al Arhiu Franc. de Pediatrie 46(1): 49-50 Agryria in Children, Jan. 1989.

Zech et al Nouv. Press Medicine 2 (3): 161-164 Generalized Argyria Silver mouthwash, Jan. 1973.

Williams, R., Medical Progress: Periodontal Disease, N Engl J Med., 322:373-382 (1990).

Thibodeau, E. A., et al. "Inhibition and Killing of Oral Bacteria by Silver Ions Generated with Low Intensity Direct Current," J Dent Res., 57(9-10): 922-926 (1978).

Russell, A.D. and Hugo, W.B., "Antimicrobial Activity and Action of Silver," Prog Med Chem., 31: 351-370 (1994).

Howell, T.H., et al., "Sulfadiazines reduce gingivitis and plaque formation in beagle dogs," J Clin Periodontol., 17: 734-737 (1990).

Howell, T.H., et al., "Sulfadiazines prevent plaque formation and gingivitis in beagles," J Periodont Res., 25: 197-200 (1990).

ART-UNIT: 164

PRIMARY-EXAMINER: Rose; Shep K.

ATTY-AGENT-FIRM: Clark & Elbing LLP

ABSTRACT:

Periodontal disease can be treated by the administration of metal ions, preferably silver ions, to the site where the microorganisms that cause this disease reside. Administration can be to periodontal pockets or adjacent to exposed tooth roots or alveolar bone during periodontal surgical procedures. The metal ions can be administered in polymeric microparticles, deformable films or microparticles embedded within deformable films. The metal ions are particularly microbiocidal to the bacterial pathogens that are the causative agents of periodontal disease.

12 Claims, 2 Drawing figures

Full Title Citation Front Review	Classification Date Reference	Claims KWC Draw Dr

☐ 4. Document ID: US 6154030 A Relevance Rank: 99

Record List Display Page 10 of 14

OTHER PUBLICATIONS

Article by Jehenson et al., entitled "Analytical Method for the Compensation of Eddy-Current Effects Induced by Pulsed Magnetic Field Gradients in NMR Systems," published in Journal of Magnetic Resonance in 1990, in vol. 90, pp. 264-278. Article by van Vaals et al., entitled "Optimization of Eddy-Current Compensation," published in Journal of Magnetic Resonance 1990, in vol. 90, pp. 52-70. Article by Morich et al., entitled "Exact Temporal Eddy Current Compensation in Magnetic Resonance Imaging Systems," published in IEEE Transactions on Medical Imaging in 1988, in vol. 7, No. 3, pp. 247-254.

Article by van Vaals et al., entitled "Optimization of Eddy-Current Compensation", published in Journal of Magnetic Resonance 90 on Oct. 15, 1990, No. 1, pp. 50-70. Article by Majors et al., entitled "Eddy current Compensation by Direct Field Detection and Digital Gradient Modification", published in Journal of Magnetic Resonance 87 on May 1990, No. 3, pp. 548-553.

ART-UNIT: 282

PRIMARY-EXAMINER: Oda; Christine K.

ASSISTANT-EXAMINER: Fetzner; Tiffany A.

ATTY-AGENT-FIRM: Berkowitz; Edward H.

ABSTRACT:

Eddy current compensation for magnetic field transients arising from electric current transients is obtained by digital computation of the time dependence of the eddy current magnetic effect, reversing the sense thereof to obtain a corrective signal portion, converting both the corrective portion and the basic signal profile to analogue form, summing same and directing the pre-compensated electric current through an inductive element.

13 Claims, 8 Drawing figures

Foll Tit	le: Citation Front Review Classification	Dates Seignarce Claims KMC Disputo
□ 5.	Document ID: US 6844733 B2	Relevance Rank: 99

L1: Entry 2 of 6 File: USPT Jan 18, 2005

US-PAT-NO: 6844733

DOCUMENT-IDENTIFIER: US 6844733 B2

TITLE: Magnetic resonance apparatus with compensation of fields arising due to eddy

currents

DATE-ISSUED: January 18, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Heid; Oliver Gunzenhausen DE

0 307 516

March 1989

ΕP

2 180 943

April 1987

GB

ART-UNIT: 2859

PRIMARY-EXAMINER: Arana; Louis

ATTY-AGENT-FIRM: Schiff Hardin LLP

ABSTRACT:

A magnetic resonance apparatus has a magnetic resonance scanner that includes a gradient coil for generating a gradient field, the scanner also has an electrically conductive structure that at least partially envelops the gradient coil, this structure, triggered by a change in the current in the gradient coil, generating an eddy current field having at least one component that compensates for at least one non-linear component of the gradient field within the imaging volume of the scanner, and further has a compensation coil connected in series with the gradient coil and disposed between the gradient coil and the electrically conductive structure, the compensation coil generating a magnetic field that, within the imaging volume, has no linear component and compensates at least for the non-linear component of the gradient field.

10 Claims, 1 Drawing figures

Full Title Citation Front Review Classification Date Reference Claims 1304C Drave De

☐ 6. Document ID: US 6903550 B2

Relevance Rank: 99

L1: Entry 1 of 6

File: USPT

Jun 7, 2005

US-PAT-NO: 6903550

DOCUMENT-IDENTIFIER: US 6903550 B2

TITLE: Eddy current correction method and magnetic resonance imaging apparatus

DATE-ISSUED: June 7, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Uetake; Nozomu

Tokyo

JΡ

ASSIGNEE-INFORMATION:

NAME

STATE ZIP CODE COUNTRY TYPE CODE CITY

GE Medical Systems Global Technology

Company, LLC

Waukesha WI

02

APPL-NO: 10/772880 [PALM] DATE FILED: February 5, 2004 Record List Display Page 14 of 14

field using the calculated value, and if the calculated value exceeds the predetermined upper limit value, a plurality of gradient magnetic fields affected by eddy current are simulated using a plurality of candidate corrective values not greater than the upper limit value, and correction is conducted on the gradient magnetic field using a candidate corrective value by which a relatively optimal gradient magnetic field can be obtained.

16 Claims, 15 Drawing figures

Full	Title: Citation :::Front: Review Classification Date: Reference	Claims KMAC Draw (
Clear	Generate Collection Print Fwd Refs Bkwd Refs	Generate OACS
	Term	Documents
	"6154030"	6
	6154030S	0
	"6154030".PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD.	6
	(6154030).PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD.	6

Display Format: - Change Format

Previous Page Next Page Go to Doc#

Hit List

First Hit Clear Generate Collection Print Fwd Refs Bkwd Refs

Generate OACS

Search Results - Record(s) 1 through 16 of 16 returned.

☐ 1. Document ID: US 5227728 A Relevance Rank: 88

L19: Entry 14 of 16 File: USPT Jul 13, 1993

US-PAT-NO: 5227728

DOCUMENT-IDENTIFIER: US 5227728 A

TITLE: Gradient driver control in magnetic resonance imaging

DATE-ISSUED: July 13, 1993

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Kaufman; Leon San Francisco CA
Carlson; Joseph W. Kensington CA
Gran; Richard Farmingdale NY

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

The Regents of the University of Oakland CA 02

APPL-NO: 07/786828 [PALM]
DATE FILED: November 1, 1991

INT-CL-ISSUED: [05] G01V 3/00

INT-CL-CURRENT:

TYPE IPC DATE
CIPS G01 R 33/38 20060101
CIPS G01 R 33/389 20060101
CIPS G01 R 33/385 20060101

US-CL-ISSUED: 324/322; 324/318 US-CL-CURRENT: 324/322; 324/318

FIELD-OF-CLASSIFICATION-SEARCH: 324/322, 324/318, 324/312, 324/313, 324/319,

128/653.5

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4612596	September 1986	Fox	324/322
4703275	October 1987	Holland	324/322
4755755	July 1988	Carlson	324/319
4788502	November 1988	Keller et al.	324/318
4829252	May 1989	Kaufman	324/309
4885542	December 1989	Yao et al.	324/313
4928063	May 1990	Lampman et al.	324/324
4970457	November 1990	Kaufman et al.	324/309

OTHER PUBLICATIONS

"Passive Screening of Switched Magnetic Field <u>Gradients</u>" by R. Turner et al.-J. Phys. E. Sci., Instrum 19 (1986).

ART-UNIT: 263

PRIMARY-EXAMINER: Arana; Louis

ATTY-AGENT-FIRM: Nixon & Vanderhye

ABSTRACT:

Electromagnet coil driving circuitry in a <u>magnetic resonance</u> imaging system is modified to include a flux-driven closed-loop real-time feedback control. The result is more accurate and efficient control of the net actual <u>gradient</u> flux generated by the coil even in the presence of magnetic circuit materials exhibiting hysteresis effects and/or electrical conductors giving rise to eddy current effects. Such driver control can be used to simultaneously correct the magnetic flux changes induced by environmental, ambient or other outside disturbances affecting the net magnetic field within a patient imaging volume of a <u>magnetic resonance</u> imaging system.

31 Claims, 9 Drawing figures

E FOR		Citation Front	Reviewe Classin	eation	Çate Reference	<u> </u>	laims 10000	Uraw U
		Document ID:			Relevance Rank:	***************************************		***************************************
L19:	Ent	ry 13 of 16			File: USPI		Aug 15,	1995

US-PAT-NO: 5442290

DOCUMENT-IDENTIFIER: US 5442290 A

TITLE: MRI gradient drive current control using all digital controller

DATE-ISSUED: August 15, 1995

Record List Display Page 4 of 26

5066914	November 1991	Vavrek et al.	324/309
<u>5153516</u>	October 1992	Gopalsami et al.	324/309
5227728	July 1993	Kaufman et al.	324/318
5250901	October 1993	Kaufman et al.	324/318

OTHER PUBLICATIONS

Motorola Manual--"Linear/switchmode Voltage Regulator Handbook", HB206 Rev. 2--pp. 79-143.

J. Phys. E. Sci. Instrum. 19 (1986) -- "Passive screening of switched magnetic field gradients" by R. Turner and R. Bowley, pp. 876-879.

ART-UNIT: 268

PRIMARY-EXAMINER: O'Shea; Sandra L.

ASSISTANT-EXAMINER: Mah; Raymond Y.

ATTY-AGENT-FIRM: Nixon & Vanderhye

ABSTRACT:

An all <u>digital</u> controlled current driver is used for each pulsed electromagnet (e.g., <u>gradient</u> coils) in a <u>magnetic resonance</u> imaging (MRI) system. Such an all <u>digital</u> current controller may be advantageously employed in either closed loop or open loop <u>gradient</u> coil control <u>circuits</u>. The elimination of analog components decreases cost, increases operating efficiency and improves operating characteristics of the MRI system.

19 Claims, 6 Drawing figures

Full Title Citation Front Review Classification	Date Reference	Claims KMC Draw Dr
☐ 3. Document ID: US 6285304 B1	Relevance Rank: 87	
L19: Entry 5 of 16	File: USPT	Sep 4, 2001

US-PAT-NO: 6285304

DOCUMENT-IDENTIFIER: US 6285304 B1

TITLE: Analog-to-<u>digital</u> converter <u>circuit</u> and control device for a <u>gradient</u> amplifier of a magnetic resonance imaging system

DATE-ISSUED: September 4, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Schweighofer; Peter Nuernberg DE

ASSIGNEE-INFORMATION:

Record List Display Page 6 of 26

ART-UNIT: 289

PRIMARY-EXAMINER: Wamsley; Patrick

ATTY-AGENT-FIRM: Schiff Hardin & Waite

ABSTRACT:

In an analog-to-digital converter circuit and a control device for a gradient amplifier, an analog difference signal is determined from an analog input signal and an analog converter signal. An integrator and an analog-to-digital converter are provided in order to integrate and digitalize the analog difference signal before further evaluation, thereby achieving high precision, resolution and stability with little outlay.

14 Claims, 2 Drawing figures

Full Title Citatio	n Front Review Classification Dat	Reference	Clains 10000 Draw b-
	ment ID: US 20050052182 A1	Relevance Rank: 87	
L19: Entry 2 o	f 16	File: PGPB	Mar 10, 2005

PGPUB-DOCUMENT-NUMBER: 20050052182

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20050052182 A1

TITLE: Apparatus and method for <u>magnetic resonance</u> measurement and mapping of electrical impedance, complex permittivity and complex conductivity as applied to detection and evaluation of sample pathology

PUBLICATION-DATE: March 10, 2005

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY

Wollin, Ernest Marathon FL US

ASSIGNEE-INFORMATION:

NAME CITY STATE COUNTRY TYPE CODE

Wollin Ventures, Inc. 02

APPL-NO: 10/902263 [PALM] DATE FILED: July 30, 2004

RELATED-US-APPL-DATA:

Application 10/902263 is a continuation-in-part-of US application PCT/US03/27122, filed August 29, 2003, PENDING

Application is a non-provisional-of-provisional application 60/406924, filed August 30, 2002,

INT-CL-PUBLISHED: [07] G01V 3/00

Record List Display Page 7 of 26

INT-CL-CURRENT:

TYPE IPC DATE
CIPP <u>G01</u> <u>V</u> <u>3</u>/<u>00</u> 20060101

US-CL-PUBLISHED: 324/307; 324/309 US-CL-CURRENT: 324/307; 324/309

REPRESENTATIVE-FIGURES: 1, 7

ABSTRACT:

A method of measurement of or mapping the distribution of complex permittivity, complex conductivity, complex impedance, or electric loss angle during magnetic resonance imaging or analysis. The method includes applying a time-varying electric field of a Faraday shield to a sample and cross-correlating the line spectrum signal so produced with the voltage applied to the Faraday shield in a detection circuit. The method permits non-contrast magnetic resonance screening for breast cancer in vivo and/or continuous measurement of electrical characteristics of materials at variable frequencies in vitro. A system of detecting and evaluating sample pathology includes a Faraday shield device that includes parallel electrodes oriented orthogonal to the static magnetic field of a MRI device to produce a time varying electric field. A detector is coupled to the MRI device to detect at least one of a complex permittivity, a complex conductivity, and an electrical impedance of the sample.

RELATED APPLICATIONS

[0001] This application claims benefit of priority to PCT Application No. PCT/US03/27122, filed on Aug. 29, 2003 and Provisional Application No. 60/406,924, filed on Aug. 30, 2002, incorporated by reference herein in its entirety.

Full Title Citation Front Review	Classification Date Refere	ince Sequences Attachm	ients Claims (1990) Draw Ge

☐ 5. Document ID: US 5876337 A Relevance Rank: 86

L19: Entry 9 of 16 File: USPT Mar 2, 1999

US-PAT-NO: 5876337

DOCUMENT-IDENTIFIER: US 5876337 A

TITLE: Magnetic resonance imaging apparatus and method for correcting the intensity

of the static magnetic field of the apparatus

DATE-ISSUED: March 2, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Tsuda; Munetaka Mito JP

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Record List Display Page 9 of 26

uniformity of the static magnetic field in a region of an object under examination is improved and image distortion is suppressed. The MRI apparatus can be effectively applied to a fast imaging technique, an imaging technique where NMR signals of adipose tissue are suppressed, and a high resolution spectrum.

17 Claims, 7 Drawing figures

Claims 1804C Drave Da

☐ 6. Document ID: US 6362622 B1 Relevance Rank: 86

Full Title Citation Front Review Classification Date Reference

L19: Entry 4 of 16 File: USPT Mar 26, 2002

US-PAT-NO: 6362622

DOCUMENT-IDENTIFIER: US 6362622 B1

TITLE: Method and apparatus to embed and retrieve attribute information in magnetic

resonance imaging coils

DATE-ISSUED: March 26, 2002

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Stauber; John R. Fairview Park OH Burl; Michael Chagrin Falls OH

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Philips Medical Systems, Highland (Cleveland) Inc. Heights

APPL-NO: 09/516002 [PALM]
DATE FILED: February 29, 2000

INT-CL-ISSUED: [07] G01V 3/00

INT-CL-CURRENT:

TYPE IPC DATE
CIPP <u>G01 R 33/28</u> 20060101

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 324/318, 324/322, 324/300, 324/314, 324/307,

324/309, 600/410, 600/421, 600/423, 340/652, 340/572 See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Record List Display Page 10 of 26

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4972852	November 1990	Koob et al.	128/653R
5065760	November 1991	Krause et al.	128/653.5
5461314	October 1995	Arakawa et al.	324/318
5657761	August 1997	Okada et al.	128/660.01
5689242	November 1997	Sims et al.	340/652
RE36495	January 2000	Blakeley et al.	600/410

OTHER PUBLICATIONS

Dallas Semiconductor, DS2433 4K-BIT 1-Wire.TM., EEPROM, Dec. 1999, pp. 1-18.

ART-UNIT: 2862

PRIMARY-EXAMINER: Arana; Louis

ATTY-AGENT-FIRM: Fay, Sharpe, Fagan, Minnich & McKee, LLP

ABSTRACT:

A <u>magnetic resonance</u> imaging system includes a patient couch (10) which selectively positions a patient relative to an examination region (14). An imaging coil (B) is disposed adjacent to a region of interest for receiving <u>magnetic resonance</u> signals emanating from the patient. A processor (48) both controls the imaging event and processes received signals from the imaging coil. A plug and socket assembly (24, 26) having a proximal component and a distal component relative to the imaging coil provides selective electrical connectivity between the imaging coil (B) and the processor (48). A non-volatile memory device (86), such as a 1-WIRE.TM. EEPROM, is affixed to the proximal component of the plug and socket assembly (24, 26) for storing a variety attributes associated with the imaging coil. The memory device is most conveniently mounted to a coaxial connector (110).

17 Claims, 6 Drawing figures

Full Title Chation Front Review Classification	Date Reference	Claims 1940 Draw. De
☐ 7. Document ID: US 5546001 A	Relevance Rank: 86	
L19: Entry 12 of 16	File: USPT	Aug 13, 1996

US-PAT-NO: 5546001

DOCUMENT-IDENTIFIER: US 5546001 A

TITLE: Switching signal generator and magnetic resonance imaging system using the

same

DATE-ISSUED: August 13, 1996

Record List Display Page 12 of 26

ATTY-AGENT-FIRM: Limbach & Limbach L.L.P. Yin; Ronald L.

ABSTRACT:

There provided is a switching signal generator mounted in a system for handling a signal of a predetermined frequency band. A magnetic resonance imaging (MRI) system is one of the preferred systems. The generator comprises an element for supplying a switching signal of a switching frequency to a switching device mounted in the system and operated by pulse width modulation, the switching frequency being able to be changed in response to a control signal. The generator further comprises an element for adjusting the switching frequency by supplying the control signal to the switching signal supplying element so that a frequency which is product of the switching frequency and an integer falls out of the predetermined frequency band. In case of the MRI system, the predetermined frequency band is an image frequency band. As a result, the so-called F1 noise can be avoidable from the image.

9 Claims, 10 Drawing figures

Full	Tittl	e Citation Front	Review Classification	Gale Reference Claims Not Visible.
		Document ID:		Relevance Rank: 86

File: USPT

Sep 1, 1998

US-PAT-NO: 5800354

L19: Entry 10 of 16

DOCUMENT-IDENTIFIER: US 5800354 A

TITLE: Method of and device for magnetic resonance imaging

DATE-ISSUED: September 1, 1998

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Hofland; Lennart Eindhoven NL

Savord; Bernard J. Andover MA Scampini; Steven A. Bedford MA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

U.S. Phillips Corporation New York NY 02 Hewlett-Packard Palo Alto CA 02

APPL-NO: 08/345026 [PALM]
DATE FILED: November 23, 1994

INT-CL-ISSUED: [06] A61B 5/055

INT-CL-CURRENT:

TYPE IPC DATE

Record List Display Page 14 of 26

the navigator signals (640) and to apply the derived corrections to the received echo signals (641, 642). Also this method could be combined with ECG-triggering and respiratory gating.

18 Claims, 8 Drawing figures

Full Title Citation Front Review Classification Date Reference

Claims DMC Draw D-

9. Document ID: US RE36495 E Relevance Rank: 86

L19: Entry 7 of 16

File: USPT

Jan 11, 2000

US-PAT-NO: RE36495

DOCUMENT-IDENTIFIER: US RE36495 E

TITLE: RF coil identification and testing interface for NMR systems

DATE-ISSUED: January 11, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Blakeley; Douglas M. Euclid OH Molyneaux; David A. Gainesville FL

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Picker International, Inc. Highlands Heights OH 02

APPL-NO: 09/146889 [PALM]
DATE FILED: September 2, 1998

REISSUE-DATA:

US-PAT-NO DATE-ISSUED APPL-NO DATE-FILED
05551430 September 3, 1996 286780 August 5, 1994

INT-CL-ISSUED: [06] A61B 5/055

INT-CL-CURRENT:

TYPE IPC DATE
CIPP G01 R 33/28 20060101

US-CL-ISSUED: 600/410; 324/318, 324/322 US-CL-CURRENT: 600/410; 324/318, 324/322

FIELD-OF-CLASSIFICATION-SEARCH: 600/410, 600/421, 600/422, 324/307, 324/309,

324/318, 324/322

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4972852	November 1990	Koob et al.	128/653R
5065760	November 1991	Krause et al.	128/653.5
5144244	September 1992	Kess	324/322
5457387	October 1995	Patrick et al.	324/318
5461314	October 1995	Arakawa et al.	324/318

ART-UNIT: 377

PRIMARY-EXAMINER: Casler; Brian L.

ATTY-AGENT-FIRM: Fay, Sharpe, Fagan, Minnich & McKee, LLP

ABSTRACT:

A movable patient supporting portion (10) of a patient couch (A) includes a socket (26) for receiving a mating plug (24) on a localized coil (B). The patient couch selectively inserts the localized coil and a supported patient into a bore (14) of a cryogenic magnet system (C). The localized coil includes a resistor (86) whose magnitude identifies the coil. A coil identification interrogator (84) interrogates the coil identification resistor and derives a corresponding binary coil identification. The coil identification addresses a look-up table (90) to retrieve diagnostic test information, an identification of a coil for a human-readable display, and, preferably, an identification of an isocenter of the coil. A diagnostic test unit (92) electrically tests the coil through the plug and socket connection with the diagnostic tests prescribed by the look-up table. A display interface (94) converts error messages from the diagnostic test unit and the coil identification from the look-up table into appropriate format for a display (40). A couch computer (18) controls a motor (20) in accordance with the isocenter of the coil from the look-up table to control positioning of the patient and the localized coil.

30 Claims, 4 Drawing figures

Follow	Title	Citation Front	Review Classification	Dates Reference	Claims KMCH Diam D
			IIS 5038600 A	Relevance Rank: 86	
_		y 8 of 16	03 3938000 A	File: USPT	Aug 17, 1999

US-PAT-NO: 5938600

DOCUMENT-IDENTIFIER: US 5938600 A

TITLE: Method and device for heating by means of ultrasound

DATE-ISSUED: August 17, 1999

Record List Display Page 17 of 26

OTHER PUBLICATIONS

Ehman et al, "Adaptive Technique for High-Definition MR Imaging of Moving Structures", Radiology vol. 173 No. 1, 1989 pp. 255-263. "On-Line MIR Monitored Noninvasive Ultrasound Surgery" K. Hynynen et al, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 14, Paris, France, Oct. 29-Nov. 1, 1992.

ART-UNIT: 377

PRIMARY-EXAMINER: Smith; Ruth S.

ATTY-AGENT-FIRM: Renfrew, Jr.; Dwight H.

ABSTRACT:

A method of heating a target region by ultrasound radiation includes determination of a position of the target region by a magnetic resonance method. The device for carrying out this method includes an ultrasound device and an MR device. By determining movement of the target region utilizing the MR device (100) and an appropriate magnetic resonance method, and by coupling the movement information to the ultrasound device (118) by an electric signal (122, 124), it is achieved that the ultrasound device can be controlled by the movement information. Various possibilities exist for controlling the ultrasound device. According to a first possibility, the focal region is adjusted to be situated within the target region in order to generate ultrasound. Another possibility is to determine from the movement information the instant at which the target region is situated within the focal region of the ultrasound and to generate ultrasound exclusively for a brief subsequent period during which the focal region is still within the target region. Another possibility is to refrain from generating ultrasound when the movement speed is too high. Finally, the movement information can also be used for making the focal region follow the target region during the generation of ultrasound.

21 Claims, 10 Drawing figures

Title Gration Front Review Classification Date Rescence Claims Room Practice

11. Document ID: US 6118681 A Relevance Rank: 86

File: USPT

Sep 12, 2000

US-PAT-NO: 6118681

L19: Entry 6 of 16

DOCUMENT-IDENTIFIER: US 6118681 A

TITLE: Gradient amplifier for a magnetic resonance tomography apparatus and method

for controlling same

DATE-ISSUED: September 12, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Schweighofer; Peter Nuremberg DE

Record List Display Page 19 of 26

ABSTRACT:

In a <u>gradient</u> amplifier for a nuclear <u>magnetic resonance</u> tomography apparatus and a method for operating same, a reference value unit for providing a reference value for a <u>gradient</u> coil current, an actual value unit for determining an actual value of the <u>gradient</u> coil current, a control unit for determining a setting value, a modulator for generating at least one output stage drive signal and an output stage for generating an output signal across the coil are provided. The precision of the reference value and the precision of the actual value are higher by at least the factor of 10 than the precision of the setting value and/or of the at least one output stage drive signal and/or of the output signal. As a result, the <u>gradient</u> amplifier has a precision that is high enough to avoid disturbances affecting in the image can be realized with relatively little outlay.

22 Claims, 1 Drawing figures

Full Title: Citation Front Review Classification Date Reference Citation Claims RMC: Draw D.

☐ 12. Document ID: US 4992736 A Relevance Rank: 86

L19: Entry 15 of 16 File: USPT Feb 12, 1991

US-PAT-NO: 4992736

DOCUMENT-IDENTIFIER: US 4992736 A

TITLE: Radio frequency receiver for a NMR instrument

DATE-ISSUED: February 12, 1991

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Stormont; Robert S. Waukesha WI
Anas; Michael C. Germantown WI
Pelc; Norbert J. Wauwatosa WI

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

General Electric Company Milwaukee WI 02

APPL-NO: 07/389456 [PALM]
DATE FILED: August 4, 1989

INT-CL-ISSUED: [05] G01R 33/20

INT-CL-CURRENT:

TYPE IPC DATE
CIPS G01 R 33/32 20060101
CIPS G01 R 33/341 20060101
CIPS G01 R 33/34 20060101

Record List Display Page 20 of 26

CIPS G01 R 33/36 20060101

US-CL-ISSUED: 324/309 US-CL-CURRENT: 324/309

FIELD-OF-CLASSIFICATION-SEARCH: 455/60, 375/39, 375/75, 375/99, 375/103, 324/309,

324/310, 324/311, 324/312, 324/313, 324/314, 324/322, 318/611

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3423529	January 1969	O'Neill, Jr.	375/39
3443229	May 1969	Becker	375/39
3522537	August 1970	Boughtwood	375/39
4740753	April 1988	Glover	324/320
4839573	June 1989	Wise	318/611

ART-UNIT: 265

PRIMARY-EXAMINER: Tokar; Michael J.

ATTY-AGENT-FIRM: Quarles & Brady

ABSTRACT:

A receiver processes an NMR signal to produce a baseband image information signal from which two quadrature component signals are derived. An intermediate frequency section mixes the received NMR signal with two reference signals to shift the image information into a frequency band having a bandwidth BW and centered at a frequency that is 1.5 times the bandwidth BW. The resultant signal is filtered to remove extraneous signals outside the image information band. An analog to digital converter samples the filtered signal at a rate that is twice the bandwidth BW and digitizes the samples into a digital signal. A quadrature detector derives I and Q output signals from the digital signal by alternately selecting digital samples and negating every other sample selected for each of the I and Q output signals. The quadrature detector also digitally filters the I and Q signals which are then used to construct an NMR image.

16 Claims, 10 Drawing figures

ः Full : Title: Citation Front : Review Classification	Referença	Glaims NAC Crew C.
☐ 13. Document ID: US 5551430 A	Relevance Rank: 86	
L19: Entry 11 of 16	File: USPT	Sep 3, 1996

Record List Display Page 22 of 26

ABSTRACT:

A movable patient supporting portion (10) of a patient couch (A) includes a socket (26) for receiving a mating plug (24) on a localized coil (B). The patient couch selectively inserts the localized coil and a supported patient into a bore (14) of a cryogenic magnet system (C). The localized coil includes a resistor (86) whose magnitude identifies the coil. A coil identification interrogator (84) interrogates the coil identification resistor and derives a corresponding binary coil identification. The coil identification addresses a look-up table (90) to retrieve diagnostic test information, an identification of a coil for a human-readable display, and, preferably, an identification of an isocenter of the coil. A diagnostic test unit (92) electrically tests the coil through the plug and socket connection with the diagnostic tests prescribed by the look-up table. A display interface (94) converts error messages from the diagnostic test unit and the coil identification from the look-up table into appropriate format for a display (40). A couch computer (18) controls a motor (20) in accordance with the isocenter of the coil from the look-up table to control positioning of the patient and the localized coil.

21 Claims, 4 Drawing figures

Full Title Citation Front Review Classification Date Reference Claims 10000 Draw De ☐ 14. Document ID: US 3810001 A Relevance Rank: 86 L19: Entry 16 of 16

File: USPT

May 7, 1974

US-PAT-NO: 3810001

DOCUMENT-IDENTIFIER: US 3810001 A

TITLE: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY EMPLOYING DIFFERENCE FREQUENCY

MEASUREMENTS

DATE-ISSUED: May 7, 1974

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Ernst; Richard Robert Winterthur CH

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Varian Associates Palo Alto 02 CA

APPL-NO: 05/263016 [PALM] DATE FILED: June 15, 1972

INT-CL-ISSUED: [] G01r 33/08, G01n 27/02

INT-CL-CURRENT:

TYPE IPC DATE Record List Display Page 23 of 26

CIPS G01 R 33/46 20060101 CIPS G01 R 33/44 20060101

US-CL-ISSUED: 324/.5R; 324/.5A US-CL-CURRENT: 324/313; 324/314

FIELD-OF-CLASSIFICATION-SEARCH: 324/.5R, 324/.5A, 324/.5AC

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3287629	November 1966	Varian	324/.5A
<u>3475680</u>	October 1969	Anderson et al.	324/.5A

ART-UNIT: 258

PRIMARY-EXAMINER: Corcoran; Robert J.

ATTY-AGENT-FIRM: Cole; S. Z. Fisher; G. M.

ABSTRACT:

A modified impulse type Fourier transform type of nuclear <u>magnetic resonance</u> spectrometer wherein the direct measurement of difference frequencies between a single reference resonance line and the multiple resonance lines of the sample under analysis is provided, which provides weighting of the sample decay response by its local signal-to-noise ratio resulting in simplified system components and avoidance of stringent conditions with respect to the stability of the static unidirectional magnet field. A non-linear detector forms the desired difference frequencies and weighting function. A first embodiment employs analog-to-digital conversion and a signal averaging computer with the resultant difference frequencies of the sample response Fourier-transformed to obtain the desired spectrum. A second embodiment avoids the analog-to-digital converter and the computer, utilizing instead a form of analog Fourier analyzer to obtain the output spectrum.

8 Claims, 11 Drawing figures

Full Title Citation Front Review Classification	Cate Reference	Claims EWE Draw D
☐ 15. Document ID: US 6838964 B1		
L19: Entry 3 of 16	File: USPT	Jan 4, 2005

US-PAT-NO: 6838964

Record List Display Page 25 of 26

Remote monitoring of superconducting magnet systems of various types, manufacturers, vintages, and so forth, via a magnet selector interface providing for configuring the monitoring system to the particular magnet system of interest. The technique provides for scalable analogue to <u>digital</u> conversion with integrated excitation circuitry for the input and output of magnet system sensors. Devices, such as remote terminal units and other data-logging technology may be adapted to remotely monitor primary indicators and secondary indicators of magnet system performance and related boil-off of helium. The technique provides earlier warning of impending failures in the magnet system, and thus facilitates predictive maintenance, reduces maintenance costs, reduces MRI downtime, reduces helium loss, and the like.

47 Claims, 5 Drawing figures

Full Title Citation Front Review Classification Date Reference

Claims (2000) Draw D-

l 16. Document ID: US 20060173284 A1 Relevance Rank: 86

L19: Entry 1 of 16 File: PGPB Aug 3, 2006

PGPUB-DOCUMENT-NUMBER: 20060173284

PGPUB-FILING-TYPE:

DOCUMENT-IDENTIFIER: US 20060173284 A1

TITLE: Radiofrequency coil and catheter for surface nmr imaging and spectroscopy

PUBLICATION-DATE: August 3, 2006

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY

Ackerman; Jerome L. Newton MA US Wedeen; Van J. Somerville MA US

APPL-NO: 10/532156 [PALM]
DATE FILED: October 21, 2003

RELATED-US-APPL-DATA:

us-provisional-application US 60419987 20021021

PCT-DATA:

DATE-FILED APPL-NO PUB-NO PUB-DATE 371-DATE

Oct 21, 2003 PCT/US03/33316 Nov 7, 2005

INT-CL-PUBLISHED:

TYPE IPC DATE IPC-OLD IPCP A61B5/05 20060101 A61B005/05

INT-CL-CURRENT:

TYPE IPC DATE

Record List Display Page 26 of 26

CIPP A61 B 5/05 20060101

US-CL-PUBLISHED: 600/422 US-CL-CURRENT: 600/422

ABSTRACT:

In one aspect, the present invention provides a cylindrical meanderline coil that can significantly improve the performance and usefulness of nuclear <u>magnetic resonance</u> (NMR) catheter radiofrequency (RF) coils by shaping the spatial dimensions of the volume of excitation and reception of signal. This can provide improved accuracy in defining the volume of excitation and reception of the subject or specimen, and increase the signal to noise ratio of a received signal. In another aspect, the invention provides an intravascular catheter having a coil at its tip for generating and/or detecting magnetic excitations. A preamplifer coupled to the catheter in proximity of the coil allows amplifying signals generated and/or detected by the coil. Although in one application, a coil and/or a catheter of the invention can be employed, for example, for MR spectroscopy or imaging of biological tissue, such as atherosclerotic plaques arterial walls in the human body, the invention provides similar advantages in any situation where a <u>magnetic resonance</u> or other magnetic induction signal is to be received from a thin cylindrical shell or sector of a cylindrical shell.

RELATED APPLICATIONS

[0001] This application claims priority to provisional application No. 60/419,987 entitled "Radiofrequency coil and catheter for surface NMR imaging and spectroscopy," filed on Oct. 21, 2002.

Full Title Citation Front Review Classification Cate Reference Sequences A	attachments: Claims NodCS Cra	2010
Clear Generate Collection Print Fwd Refs Bkwd R	xxxxxxxxxxx4 xxxxxxxxxxxxxxxxxxxxxxxxx	
Term	Documents	
(15 AND 18).PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD.	16	
(L18 AND L15).PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD.	16	

	,	***************************************
	3 :	Change Format
Display Format:	} - :	Ulidiue Fullidi
Dispiny I di mat.	£i	

Previous Page Next Page Go to Doc#

Record List Display Page 1 of 12

Hit List

First Hit Clear Generate Collection Print Fwd Refs Bkwd Refs

Generate OACS

Search Results - Record(s) 1 through 6 of 6 returned.

1. Document ID: US 6191582 B1 Relevance Rank: 99

L2: Entry 5 of 6 File: DWPI Feb 20, 2001

DERWENT-ACC-NO: 2001-289351

DERWENT-WEEK: 200130

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE: Eddy current compensation method for magnetic resonance imaging, involves selecting model from candidate models responsive to stability value of candidate models, based on which eddy current is compensated

INVENTOR: ZUR, Y

PATENT-ASSIGNEE: GENERAL ELECTRIC CO (GENE)

PRIORITY-DATA: 1999US-0358616 (July 21, 1999)

PATENT-FAMILY:

 PUB-NO
 PUB-DATE
 LANGUAGE
 PAGES
 MAIN-IPC

 US 6191582 B1
 February 20, 2001
 012
 G01V003/00

APPLICATION-DATA:

PUB-NO APPL-DATE APPL-NO DESCRIPTOR

US 6191582B1 July 21, 1999 1999US-0358616

INT-CL (IPC): G01V 3/00

ABSTRACTED-PUB-NO: US 6191582B

BASIC-ABSTRACT:

NOVELTY - The eddy current field measurements are fitted to several candidate models. Stability value indicating stability of fitted model is assigned to each fitted candidate model. A model is selected from the candidate models responsive to stability value of candidate models. The eddy fields are compensated responsive to selective model.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (a) method of correcting the filter parameters for eddy field compensation filter;
- (b) method of adjusting filter parameter of eddy field compensation filter.

Record List Display Page 2 of 12

USE - For magnetic resonance imaging, localized spectroscopy techniques.

ADVANTAGE - The method of converges correctly even in the presence of noise signal. Eddy field compensation is also suitable for eddy fields of large magnitude.

DESCRIPTION OF DRAWING(S) - The figure shows schematic illustration of MRI gradient coil assembly.

ABSTRACTED-PUB-NO: US 6191582B

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.1/4

DERWENT-CLASS: S01 S03 S05

EPI-CODES: S01-E02A2A; S03-E07A; S05-D02B2;

Full Title Cration Front Review Classification Date Reference Claims 1000 Disord.

☐ 2. Document ID: US <u>6191582</u> B1 Relevance Rank: 99

L2: Entry 4 of 6 File: USPT Feb 20, 2001

US-PAT-NO: 6191582

DOCUMENT-IDENTIFIER: US 6191582 B1

TITLE: Eddy current compensation

DATE-ISSUED: February 20, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Zur; Yuval Haifa IL

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

General Electric Company Schenectady NY 02

APPL-NO: 09/358616 [PALM] DATE FILED: July 21, 1999

INT-CL-ISSUED: [07] G01V 3/00

INT-CL-CURRENT:

TYPE IPC DATE
CIPS <u>G01</u> <u>R</u> <u>33/54</u> 20060101
CIPS G01 R 33/565 20060101

US-CL-ISSUED: 324/307; 324/309 US-CL-CURRENT: 324/307; 324/309 Record List Display Page 3 of 12

FIELD-OF-CLASSIFICATION-SEARCH: 324/307, 324/309, 324/322, 324/300 See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4698591	October 1987	Glover	324/307
4928063	May 1990	Lampman et al.	324/307
5200701	April 1993	Siebold et al.	324/309

OTHER PUBLICATIONS

Gach, H. Michael et al.; "A Programmable Pre-emphasis System"; MRM 40:427-431;

Van Vaals, J.J. and Bergman, A. H.; "Optimization of Eddy-Current Compensation"; Journal of Magnetic Resonance 90; pp. 52-70; 1990.

Jehenson, P. et al.; "Analytical Method for the Compensation of Eddy-Current Effects Induced by Pulsed Magnetic Field Gradients in NMR Systems"; Journal of Magnetic Resonance 90; pp. 264-278; 1990.

Zur, Yuval and Stokar, Saul; "An Algorithm for Eddy Currents Symmetrization and Compensation"; Magnetic Resonance in Medicine 35:252-260; Feb. 1996.

Morich, Michael A.; "Exact Temporal Eddy Current Compensation in Magnetic Resonance Imaging Systems"; IEEE Transactions on Medical Imaging, vol. 7, No. 3; Sep. 1988.

ART-UNIT: 282

PRIMARY-EXAMINER: Oda; Christine K.

ASSISTANT-EXAMINER: Shrivastav; Brij B.

ATTY-AGENT-FIRM: Cowan, Liebowitz & Latman, P.C. Dippert; William H.

ABSTRACT:

A method of compensating for an eddy field according to measurements of the field. The method includes fitting the measurements of the field to a plurality of candidate models of the field. A stability value indicative of the stability of the fitted model to changes, is assigned to each of the fitted candidate models. A model is selected from the candidate models responsive to the stability values of the candidate models and the eddy fields are compensated responsive to the selected model.

33 Claims, 4 Drawing figures

Full Title C	itation Front Review Classification	Date Reference Claims Kwis Draw or	
□ 3. Do	cument ID: US 6822446 B2	Relevance Rank: 99	

Record List Display Page 5 of 12

6556012 April 2003 Yamashita 324/318 2004/0051530 March 2004 Havens et al. 324/318

OTHER PUBLICATIONS

Edelstein et al., article "Making MRI Quieter" Magnetic Resonance Imaging Vol. 20 Feb. 2002 pp. 155-163.

ART-UNIT: 2859

PRIMARY-EXAMINER: Gutierrez; Diego

ASSISTANT-EXAMINER: Fetzner; Tiffany A.

ATTY-AGENT-FIRM: Horton; Carl B.

ABSTRACT:

A Magnetic Resonance Imaging (MRI) magnet field instability simulator (80) is provided. The simulator includes a rigid body motion generator (82) that simulates motion of one or more MRI system components. An eddy current analyzer (84) generates a magnetic stiffness and damping signal and an electromagnetic transfer function in response to the motions and a cryostat material properties signal. A mechanical model generator (86) generates a mechanical disturbance signal and a mechanical model of one or more MRI system components in response to the motions and the magnetic stiffness and damping signal. A structural analyzer (88) generates a motion signal in response to the mechanical model. A field instability calculator (90) generates a field instability signal in response to the electromagnetic transfer function and the motion signal. A method of performing the same is also provided.

20 Claims, 4 Drawing figures

L2: Entry 2 of 6 German German

US-PAT-NO: 6903550

DOCUMENT-IDENTIFIER: US 6903550 B2

TITLE: Eddy current correction method and magnetic resonance imaging apparatus

DATE-ISSUED: June 7, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Uetake; Nozomu Tokyo JP

ASSIGNEE-INFORMATION:

Record List Display Page 7 of 12

ABSTRACT:

For the purpose of conducting optimal eddy current correction within a limited output range, a corrective value for eddy current correction for a gradient magnetic field is calculated, if the calculated value does not exceed a predetermined upper limit value, correction is conducted on the gradient magnetic field using the calculated value, and if the calculated value exceeds the predetermined upper limit value, a plurality of gradient magnetic fields affected by eddy current are simulated using a plurality of candidate corrective values not greater than the upper limit value, and correction is conducted on the gradient magnetic field using a candidate corrective value by which a relatively optimal gradient magnetic field can be obtained.

16 Claims, 15 Drawing figures

THE REPORT OF THE PROPERTY OF

☐ 5. Document ID: US 6929123 B2 Relevance Rank: 99

L2: Entry 1 of 6 File: USPT Aug 16, 2005

US-PAT-NO: 6929123

DOCUMENT-IDENTIFIER: US 6929123 B2

TITLE: Security disk case

DATE-ISSUED: August 16, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Lau; Kwok Din Chai Wan HK

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Finest Industrial Co., Ltd. Chai Wan HK 03

APPL-NO: 10/389675 [PALM]
DATE FILED: March 14, 2003

INT-CL-ISSUED: [07] B65D 85/57

INT-CL-CURRENT:

TYPE IPC DATE
CIPS <u>G11</u> <u>B</u> <u>23/03</u> 20060101
CIPS <u>B65</u> <u>D</u> <u>85/57</u> 20060101

US-CL-ISSUED: 206/308.1; 206/310 US-CL-CURRENT: 206/308.1; 206/310 Record List Display Page 9 of 12

as the lid is move to its closed position. The hook can also include an inwardly extending lid tab of the lid and/or a projecting rib of a spine portion of the case.

19 Claims, 8 Drawing figures

Full Title Citation Front Review Classification Pale Reference

Glaims 12000 Diave D.

☐ 6. Document ID: JP 3678757 B2, GB 2272889 A, CN 1094004 A, GB 2272889 B, TW 318817 A, SG 50672 A1, JP 3166365 B2, KR 275797 B, JP 3553098 B2, CN 1045420 C, JP 3568212 B2 Relevance Rank: 93

L2: Entry 6 of 6

File: DWPI

Aug 3, 2005

DERWENT-ACC-NO: 1994-193854

DERWENT-WEEK: 200551

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE: Storage case for floppy discs - comprises rectangular box-like lip and base parts hinged to both sides of central spine and each contg. two pairs of ribs for gripping disc

INVENTOR: ASAKURA, H; IWAKI, Y ; KIKUCHI, S

PATENT-ASSIGNEE: SONY CORP (SONY)

PRIORITY-DATA: 1992JP-0345780 (December 25, 1992), 1992JP-0320042 (November 30, 1992), 1992JP-0320043 (November 30, 1992), 1992JP-0320044 (November 30, 1992), 1993JP-0097662 (April 23, 1993)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
JP 3678757 B2	August 3, 2005		007	B65D085/57
GB 2272889 A	June 1, 1994		039	B65D085/57
CN 1094004 A	October 26, 1994		000	B65D085/00
GB 2272889 B	July 31, 1996		001	B65D085/57
TW 318817 A	November 1, 1997		000	B65D085/57
SG 50672 A1	July 20, 1998		000	G11B023/03
JP 3166365 B2	May 14, 2001		007	B65D085/57
KR 275797 B	December 15, 2000		000	G11B023/02
JP 3553098 B2	August 11, 2004		009	B65D085/57
CN 1045420 C	October 6, 1999		000	B65D085/00
JP 3568212 B2	September 22, 2004		009	B65D085/57

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
JP 3678757B2	November 30, 1992	1992JP-0320043	
JP 3678757B2		JP 6156566	Previous Publ.
GB 2272889A	November 26, 1993	1993GB-0024330	