2020 北京延庆初三一模

数 学

一、选择题: (共 8 个小题,每小题 2 分,共 16 分) 下面各题均有四个选项,其中只有一个是符合题意的.

1. 最近,科学家发现了一种新型病毒,其最大直径约为 0.00012mm, 将 0.00012 用科学记数法表示为(

- A. 1.2×10^{-3} B. 1.2×10^{-4} C. 1.2×10^{4} D. 12×10^{3}

2. 下列各组图形中, \triangle A'B'C'与 \triangle ABC 成中心对称的是()

3. 下列立体图形的主视图、左视图、俯视图都一样的是(

4. 若分式 $\frac{1}{x+2}$ 有意义,则 x 的取值范围是 ()

- A. x > -2

5. 数轴上 A, B, C, D 四点中,有可能在以原点为圆心,以 $\sqrt{6}$ 为半径的圆上的点是(

A. 点 A

B. 点 B

6. 如图所示, $\triangle ABC$ 中 AB 边上的高线是()

A. 线段 DA

B. 线段 CA

C. 线段 CD

- D. 线段 BD
- 7. 下列实数中, 无理数的个数是()
 - ① 0.333 ② $\frac{1}{7}$ ③ $\sqrt{5}$ ④ π ⑤ 6.18118111811118......
 - A. 1 ↑
- B. 2 个
- C. 3 ↑
- D. 4 个
- 8. 如图,在 \odot 0 中,点 C 在优弧 AB 上,将弧 BC 沿直线 BC 折叠后刚好经过弦 AB 的 中点 D. 若 \odot 0 的半径 为 $\sqrt{5}$,AB=4,则 BC 的长是(

- A. $2\sqrt{3}$
- B. $3\sqrt{2}$
- C. $\frac{5\sqrt{3}}{2}$
- D. $\frac{\sqrt{65}}{2}$

- 二、填空题 (共8个小题,每题2分,共16分)
- 9. 因式分解: $a^3 9a =$ _____.
- 10. 如果 a+b=2, 那么代数式 $(1+\frac{2b}{a-b})\cdot \frac{a-b}{a^2+2ab+b^2}$ 的值是_____.
- 11. 如图, ∠1、∠2、∠3、∠4 是五边形 ABCDE 的 4 个外角, 若∠A=100°, 则∠1+∠2+∠3+∠4=____.

12. 如图, 在平行四边形 ABCD 中, 对角线 AC, BD 相交于点 O , 点 E 在边 BC 上, AE 与 BD 相交于点 G , 若 AG : GE=3 : 1, 则 EC : BC= .

13. 把光盘、含 60°角的三角板和直尺如图摆放, AB=2,则光盘的直径是...

14. 将含有 30° 角的直角三角板如图放置在平面直角坐标系中,OB 在 x 轴上,将三角板 绕原点 O 顺时针旋转 75°,若 OA=4,则点 A 的对应点 A' 的坐标为

16. 小明的爸爸想给妈妈送张美容卡作为生日礼物,小明家附近有 3 家美容店,爸爸不知 如何选择,于是让小明 对 3 家店铺顾客的满意度做了调查:

		⊜⊜	⊜	合计
美容店 A	53	28	19	100

美容店 В	50	40	10	100
美容店 C	65	26	9	100

(说明: 顾客对于店铺的满意度从高到低,依次为 3 个笑脸, 2 个笑脸, 1 个笑脸) 小明选择将____(填"A"、"B"或"C")美容店推荐给爸爸,能使妈妈获得满意体验可能性最大.

三、解答题(本题共 68 分)

17. 计算:
$$\sqrt{12} - 3\tan 30^{\circ} - (1 - \pi)^{0} + |1 - \sqrt{3}|$$
.

18. 解不等式组:
$$\begin{cases} x-1 < 3(x-3) \\ x \ge \frac{x+5}{2} \end{cases}$$

- 19. 关于 x 的一元二次方程 $mx^2 + 2x 1 = 0$ 有两个不相等的实数根.
 - (1) 求 m 的取值范围;
 - (2) 若方程的两个根都是有理数,写出一个满足条件的 m 的值,并求出此时方程的根.
- 20. 已知,如图,点 A 是直线 1 上的一点.

求作:正方形 ABCD,使得点 B 在直线 1 上. (要求保留作图痕迹,不用写作法) 请你说明, \angle BAD=90° 的依据是什么?

- 21. 四边形 ABCD 中, \angle A= \angle B= 90°,点 E 在边 AB 上,点 F 在 AD 的延长线上,且 点 E 与点 F 关于直线 CD 对称,过点 E 作 EG//AF 交 CD 于点 G,连接 FG,DE.
 - (1) 求证: 四边形 DEGF 是菱形;
 - (2) 若 AB=10, AF=BC=8, 求四边形 DEGF 的面积.

22. 如图, AB 是 \odot 0 的直径, 点 C 是 \odot 0 上的一点, 点 D 是弧 BC 的中点, 连接 AC, BD, 过点 D 作 AC 的 垂线 EF, 交 AC 的延长线于点 E, 交 AB 的延长线于点 F. .

- (1) 依题意补全图形;
- (2) 判断直线 EF 与⊙ 0 的位置关系,并说明理由
- (3) 若 AB=5, BD=3, 求线段 BF 的长

23. 在平面直角坐标系 x0y 中,将点 A (2, 4) 向下平移 2 个单位得到点 C,反比例函数 $y = \frac{m}{x}$ ($m \ne 0$) 的图象 经过点 C,过点 C 作 CB $\bot x$ 轴于点 B

- (1) 求 m 的值;
- (2) 一次函数 y=kx+b (k<0) 的图象经过点 C,交 x 轴于点 D, 线段 CD,BD,BC 围成的区域(不含边界)为 G; 若横、纵坐标都是整数的点叫做整点
- ①b=3 时,直接写出区域 G 内的整点个数
- ②若区域 G 内没有整点,结合函数图象,确定 k 的取值范围
- 24. 为了发展学生的数学核心素养,培养学生的综合能力,某市开展了初三学生的数学 学业水平测试.在这次测试中,从甲、乙两校各随机抽取了 30 名学生的测试成绩进行调查分析

收集数据

甲校	94	82	77	76	77	88	90	88	85	86	88	89	84	92	87
	88	80	53	89	91	91	86	68	75	94	84	76	69	83	92
乙校	83	64	91	88	71	92	88	92	86	61	78	91	84	92	92
	74	75	93	82	57	86	89	89	94	83	84	81	94	72	90

整理、描述数据 按如下分数段整理、描述这两组样本数据:

人数成绩	50≤x≤59	60≤x≤69	70≤x≤79	80≤x≤89	90≤x≤100
X					

学校					
甲校	1	2	5	15	7
乙校	1	2			10

(说明:成绩 80 分及以上为优秀,60[~]79 分为合格,60 分以下为不合格) 分析数据 两组样本数据的平均数、中位数、众数如下表所示:

学校	平均数	中位数	众数
甲校	83. 4	86	88
乙校	83. 2		

- (1) 请你补全表格;
- (2) 若甲校有 300 名学生,估计甲校此次测试的优秀人数为____;
- (3) 可以推断出____校学生的成绩比较好,理由为____.
- 25. 如图,AB 是 $\odot 0$ 的弦,AB=5cm,点 P 是弦 AB 上的一个定点,点 C 是弧 AB 上的一 个动点,连接 CP 并延长,交 $\odot 0$ 于点 D.

小明根据学习函数的经验,分别对 AC, PC, PD 长度之间的关系进行了探究.

下面是小明的探究过程:

(1) 对于点 C 在弧 AB 上的不同位置,画图、测量,得到了线段 AC, PC, PD 的长度的 几组值,如下表:

| 位置 |
|----|----|----|----|----|----|----|----|----|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| | | | | | | | | |

AC/cm	0	0. 37	1 00	1.82	2. 10	3.00	3.50	3. 91	5.00
PC/cm	1.00	0.81	0.69	0.75	1.26	2. 11	2 50	3.00	4.00
PD/cm	4. 00	5. 00	5. 80	6.00	3.00	1.90	1. 50	1. 32	1.00

在 AC, PC, PD 的长度这三个量中, 确定______的长度是自变量, 其他两条线段的长度都是这个自变量的函数;

(2) 请你在同一平面直角坐标系 xOy 中, 画 (1) 中所确定的两个函数的图象;

- (3) 结合函数图象,解决问题:
- ①当 PC=PD 时, AC 的长度约为____ cm;
- ②当△APC 为等腰三角形时, PC 的长度约为____ cm.
- 26. 在平面直角坐标系 xOy 中,抛物线 $y = ax^2 + bx + 3a$ ($a \neq 0$) 过点 A(1, 0).
 - (1) 求抛物线的对称轴;
 - (2) 直线 y=-x+4 与 y 轴交于点 B,与该抛物线的对称轴交于点 C,现将点 B 向左平移 一个单位到点 D,如果该抛物线与线段 CD有交点,结合函数的图象,求 a 的取值范围.

- 27. 如图 1,在等腰直角 \triangle ABC 中, \angle A =90°,AB=AC=3,在边 AB 上取一点 D(点 D 不与点 A,B 重合),在 边 AC 上取一点 E,使 AE=AD,连接 DE. 把 \triangle ADE 绕点 A 逆时针方向旋转 α (0° $< \alpha < 360$ °),如图 2.
 - (1) 请你在图 2 中,连接 CE 和 BD,判断线段 CE 和 BD 的数量关系,并说明理由;
 - (2) 请你在图 3 中,画出当 α =45° 时的图形,连接 CE 和 BE,求出此时 \triangle CBE 的面积;
 - (3) 若 AD=1, 点 M 是 CD 的中点,在△ADE 绕点 A 逆时针方向旋转的过程中,线段 AM 的最小值是____.

- 28. 对于平面内的点 P 和图形 M,给出如下定义:以点 P 为圆心,以 r 为半径作 \odot P,使得图形 M 上的所有点都在 \odot P 的内部(或边上),当 r 最小时,称 \odot P 为图形 M 的 P 点 控制圆,此时, \odot P 的半径称为图形 M 的 P 点控制半径.已知,在平面直角坐标系中, 正方形 OABC 的位置如图所示,其中点 B (2,2)
 - (1) 已知点 D (1, 0) ,正方形 OABC 的 D 点控制半径为 r_1 ,正方形 OABC 的 A 点 控制半径为 r_2 ,请比较大小: r_1 _____r₂;
 - (2) 连接 0B, 点 F 是线段 0B 上的点,直线 1: $y=\sqrt{3}$ x+b; 若存在正方形 0ABC 的 F 点控制圆与直线 1 有两个交点,求 b 的取值范围.

参考答案

一、选择题: (共 8 个小题,每小题 2 分,共 16 分) 下面各题均有四个选项,其中只有一个是符合题意的.

【答案】B

【解析】

【分析】

绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为 a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定.

【详解】解: 0.00012=1.2×10⁻⁴.

故选: B.

【点睛】本题考查用科学记数法表示较小的数,一般形式为 $a \times 10^{-n}$,其中 $1 \le |a| < 10$,n 为由原数左边起第一个不为零的数字前面的 0 的个数所决定.

2.

【答案】D

【解析】

【分析】

根据中心对称,轴对称,平移和旋转的性质对各选项分析判断即可得解.

- 【详解】解: A、是平移变换, 故本选项错误;
 - B、△ A'B'C'与△ABC 成轴对称,故本选项错误;
 - C、是旋转变换, 故本选项错误;
 - D、 $\triangle A'B'C'$ 与 $\triangle ABC$ 成中心对称,故本选项正确.

故选: D.

【点睛】本题考查中心对称图形的识别,关键是根据中心对称,轴对称,平移和旋转的性质解答.

3.

【答案】C
【解析】
【分析】
分别判断出各几何体的三视图即可.
【详解】解: A. 长方体的主视图、左视图、俯视图都是矩形,但是并不是都一样,故错误;
B. 圆柱的主视图、左视图是矩形,俯视图是圆,故错误;
C. 球的主视图、左视图、俯视图都一样,正确;
D. 圆锥的主视图、左视图是三角形,俯视图是带圆心的圆,故错误;
故选: C.
【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
4.
【答案】D
【解析】
【分析】
根据分式有意义的条件:分母不等于0,即可求解.
【详解】解: 根据题意得: x+2≠0,
解得: x≠-2.
故选: D.
【点睛】本题主要考查了分式有意义的条件,熟知分式有意义,分母不为零是解题的关键.
5.
【答案】A
【解析】

12 / 34

【分析】

估算出 $\sqrt{6}$ 和 $-\sqrt{6}$ 的取值范围,结合数轴判断即可.

【详解】解: :4<6<6.25,

$$\therefore 2 < \sqrt{6} < 2.5,$$

$$\therefore -2.5 < -\sqrt{6} < -2,$$

:以原点为圆心,以 $\sqrt{6}$ 为半径的圆上的点是点 A,

故选: A.

【点睛】本题考查了实数与数轴,无理数的估算,正确估算出 $\sqrt{6}$ 和 $-\sqrt{6}$ 的取值范围是解题关键.

6.

【答案】C

【解析】

【分析】

根据三角形高线的定义判断即可.

【详解】解:由图可得,△ABC中 AB 边上的高线是线段 CD,

故选: C.

【点睛】本题主要考查了三角形的高线,钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在 直线相交于三角形外一点.

7.

【答案】C

【解析】

【分析】

无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判断.

【详解】解:①②是有理数;③④⑤是无理数,无理数有3个,

故选: C.

【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有: π,2π等; 开方开不尽的数; 以及像 0.1010010001···等有这样规律的数.

8.

【答案】B

【解析】

【分析】

连接 OD、AC、DC、OB、OC,作 CE \bot AB \top E,OF \bot CE \top F,如图,利用垂径定理得到 OD \bot AB,则 AD = BD = $\frac{1}{2}$ AB = 2,于是根据勾股定理可计算出 OD = 1,再利用折叠的性质可判断 \widehat{AC} 和 \widehat{CD} 所在的圆为等圆,根据圆周角定理得到 $\widehat{AC} = \widehat{CD}$,所以 AC = DC,利用等腰三角形的性质得 AE = DE = 1,由四边形 ODEF 为正方形得到 OF = EF = 1,然后计算出 CF 后得到 CE = BE = 3,于是得到 BC = 3 $\sqrt{2}$.

【详解】解:连接OD、AC、DC、OB、OC,作CE_AB于E,OF_CE于F,如图,

: D 为 AB 的中点,

∴OD⊥AB,

$$\therefore AD = BD = \frac{1}{2} AB = 2,$$

在Rt \triangle OBD中,OD= $\sqrt{5-4}=1$,

:将 \widehat{BC} 沿直线 BC 折叠后刚好经过 AB 的中点 D,

 $\therefore \widehat{AC}$ 和 \widehat{CD} 所在的圆为等圆,

$$\therefore \widehat{AC} = \widehat{CD},$$

AC = DC,

AE = DE = 1,

易得四边形 ODEF 为正方形,

 \therefore OF=EF=1,

在 Rt \triangle OCF 中, CF= $\sqrt{OC^2 - OF^2} = \sqrt{5 - 1} = 2$,

∴CE=CF+EF=2+1=3, $\overline{\square}$ BE=BD+DE=2+1=3,

$$\therefore$$
BC = $3\sqrt{2}$.

故选: B.

【点睛】本题考查了折叠的性质,圆周角定理,垂径定理以及勾股定理,通过作辅助线构造出等腰三角形是解题的关键.

二、填空题 (共 8 个小题, 每题 2 分, 共 16 分)

9.

【答案】a(a+3)(a-3)

【解析】

【分析】

先提取公因式 a, 再用平方差公式分解即可.

【详解】原式=a(a²-9)=a(a+3)(a-3).

故答案为 a(a+3)(a-3).

【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.

10.

【答案】 $\frac{1}{2}$

【解析】

【分析】

先根据分式的混合运算法则化简原式,然后把 a+b=2 整体代入计算即可.

【详解】解: 原式=
$$\frac{a+b}{a-b}\cdot\frac{a-b}{\left(a+b\right)^2}=\frac{1}{a+b}$$
,

:a+b=2,

∴原式=
$$\frac{1}{a+b}$$
= $\frac{1}{2}$,

故答案为: $\frac{1}{2}$.

【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.

11.

【答案】280°

【解析】

试题分析: 先根据邻补角的定义得出与 ZEAB 相邻的外角 Z5 的度数,再根据多边形的外角和定理即可求解.

解:如图,:'∠EAB+∠5=180°,∠EAB=100°,

- ∴∠5=80°.
- $\therefore \angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 = 360^{\circ}$,
- ∴∠1+∠2+∠3+∠4=360 80° =280°

故答案为 280°.

考点: 多边形内角与外角.

12.

【答案】2:3

【解析】

【分析】

根据平行线分线段成比例定理结合平行四边形的性质求出 $\frac{BC}{BE}$ =3即可解决问题.

【详解】解: :'四边形 ABCD 是平行四边形,

 \therefore AD//BC, AD=BC,

$$\therefore \frac{AD}{BE} = \frac{AG}{GE} = 3,$$

$$\therefore \frac{BC}{BE} = 3,$$

 \therefore EC: BC=2: 3,

故答案为: 2: 3.

【点睛】本题考查了平行四边形的性质,平行线分线段成比例定理,正确寻找成比例线段是解题的关键.

13.

【答案】 $4\sqrt{3}$

【解析】

【分析】

如图作辅助线,根据切线长定理可知,AB=BC,BO 平分 $\angle ABC$,求出 $\angle ABO=60$ °,根据含 30 度直角三角形的性质和勾股定理计算即可

【详解】解:如图,设三角板和光盘的切点为C,圆心为O,连接OA,OB,

由切线长定理可知, AB=BC, BO 平分∠ABC,

$$\therefore$$
 \angle ABO= \angle OBC= 60° ,

$$\therefore$$
 OB=2AB=4,

: OA =
$$\sqrt{OB^2 - AB^2} = \sqrt{4^2 - 2^2} = 2\sqrt{3}$$
,

: 光盘的直径是 $4\sqrt{3}$,

故答案为: $4\sqrt{3}$

【点睛】本题考查了切线长定理,含30度直角三角形的性质以及勾股定理,求出∠ABO=60°是解题的关键.

14.

【答案】($2\sqrt{2}$, $-2\sqrt{2}$)

【解析】

【分析】

根据旋转的性质画出图形,求出 $\angle A'$ OE=45°,解直角三角形求出 A' E=0E= $2\sqrt{2}$ 即可.

【详解】解: 如图所示,将 OA 绕原点 O 顺时针旋转 75°得到 OA',过 A'作 A'E \perp x 轴于 E,则 OA'=OA=4, \angle A'OE=75°-30°=45°,

 \therefore A' E=0E=0A' \cdot cos45° = $2\sqrt{2}$,

∴点 A 的对应点 A′的坐标为($2\sqrt{2}$, $-2\sqrt{2}$),

故答案为: $(2\sqrt{2}, -2\sqrt{2})$.

【点睛】本题考查了旋转的性质,坐标与图形性质以及解直角三角形,求出∠A'OE=45°是解题的关键.

15.

【答案】6

【解析】

【分析】

根据题意,画出示意图,易得: $Rt \triangle EDC \hookrightarrow Rt \triangle FDC$,进而可得 $\frac{ED}{DC} = \frac{DC}{FD}$,即 $DC^2 = ED?FD$,代入数据可得答案.

【详解】根据题意,作△EFC,

树高为CD,且∠ECF=90°, ED=3, FD=12,

易得: Rt△EDC∽Rt△DCF,

有
$$\frac{ED}{DC} = \frac{DC}{FD}$$
, 即 DC²=ED×FD,

代入数据可得 DC2=36,

DC=6,

故答案为6.

16.

【答案】C

【解析】

【分析】

求出三个美容店满意度的加权平均数,比较后作出判断.

【详解】解: 美容店 A 的平均满意度为: $\frac{53\times3+28\times2+19\times1}{100}$ = 2.34,

美容店 B 的平均满意度为:
$$\frac{50 \times 3 + 40 \times 2 + 10 \times 1}{100} = 2.4$$
,

美容店 C 的平均满意度为:
$$\frac{65 \times 3 + 26 \times 2 + 9 \times 1}{100} = 2.56$$
,

 $\therefore 2.34 < 2.4 < 2.56$,

:. 小明选择将 C 美容店推荐给爸爸, 能使妈妈获得满意体验可能性最大,

故答案为: C.

【点睛】本题考查了加权平均数的计算与运用,熟练掌握加权平均数的计算公式是解题的关键.

三、解答题(本题共 68 分)

17.

【答案】 $2\sqrt{3}-2$

【解析】

【分析】

根据特殊角的三角函数值、二次根式的性质、零次幂、绝对值的运算法则进行运算,即可得到答案.

【详解】原式=
$$2\sqrt{3}-3\times\frac{\sqrt{3}}{3}-1+\sqrt{3}-1$$

$$=2\sqrt{3}-2.$$

【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、二次根式、绝对值、特殊角三角函数等考点的运算.

18.

【答案】 $x \ge 5$

【解析】

【分析】

分别求出不等式组中两个不等式的解集,找出解集的公共部分即可确定出不等式组的解集.

【详解】解:解不等式x-1 < 3(x-3)得:x > 4,

解不等式
$$x \ge \frac{x+5}{2}$$
得: $x \ge 5$,

故不等式组的解集为: $x \ge 5$.

【点睛】本题考查了解一元一次不等式组,熟练掌握确定不等式组解集的方法是解题的关键.

19.

【答案】 (1)
$$m > -1$$
且 $m \neq 0$; (2) $m = 3$; $x_1 = -1$, $x_2 = \frac{1}{3}$.

【解析】

【分析】

(1) 根据判别式的意义和一元二次方程的定义列不等式求解即可;

(2) 令 $\sqrt{b^2-4ac}$ 的值是有理数即可,然后求出 m 再解方程.

【详解】解: (1) : 一元二次方程 $mx^2 + 2x - 1 = 0$ 有两个不相等的实数根,

$$\therefore \Delta = 2^2 - 4m \times (-1) = 4 + 4m > 0 \perp m \neq 0,$$

解得: m > -1且 m $\neq 0$;

- (2):方程的两个根都是有理数,
- $\therefore \sqrt{b^2 4ac}$ 的值是有理数即可,

此时方程为: $3x^2 + 2x - 1 = 0$,

解得:
$$x_1 = -1$$
, $x_2 = \frac{1}{3}$.

【点睛】本题考查了一元二次方程的定义,一元二次方程根的判别式的意义以及公式法解一元二次方程,熟练掌握一元二次方程的根与判别式之间的关系是解题的关键.

20.

【答案】见解析.

【解析】

【分析】

在直线 I 上截取 AB 为合适的长度,确定 B 点位置,然后分别过点 A,点 B 作垂线,再分别以 A,B 为圆心,AB 长为半径,在 I 的同侧截取 AD=AB,BC=AB,连接 CD,即可得正方形 ABCD;由尺规作图的步骤结合 SSS 定理证明 $\triangle AEH$ $\cong \triangle AFH$,即可得 $\angle EAH$ $= \angle FAH$ $= 90^{\circ}$,即 $\angle BAD$ $= 90^{\circ}$.

【详解】解:如图所示,正方形 ABCD 即为所求;

由尺规作图可知, AE=AF, EH=FH,

又:AH=AH,

- ∴ △AEH≌ △AFH (SSS),
- ∴∠EAH=∠FAH,
- ∵∠EAH+∠FAH=180°,

∴∠EAH=∠FAH=90°,即∠BAD=90°.

【点睛】本题考查了正方形的性质,复杂作图,全等三角形的判定和性质,熟练掌握尺规作图的基本步骤是解题的关键.

21.

【答案】(1)见解析;(2)20.

【解析】

【分析】

- (1) 连接 EF,由对称的性质可得 DE=DF,GE=GF,求出∠EDG=∠EGD,得到 DE=GE,进而得到 DE=DF=GE=GF即可;
- (2) 连接 CF, CE, 易证四边形 ABCF 是矩形,可得 CE=CF=AB=10,利用勾股定理求出 BE,得到 AE 的长,DF=DE=x,则 AD=8-x,在 Rt \triangle ADE 中,利用勾股定理构建方程求出 DF 即可解决问题.

【详解】解: (1) 连接 EF,

- :点 E 与点 F 关于直线 CD 对称,
- :.CD 是 EF 的垂直平分线,
- ∴DE=DF, GE=GF, ∠EDG=∠FDG,
- ∵EG//AF,
- ∴∠FDG=∠EGD,
- $\therefore \angle EDG = \angle EGD$,
- \therefore DE=GE,
- \therefore DE=DF=GE=GF,
- :.四边形 DEGF 是菱形;

- (2) 连接 CF, CE,
- ∴∠A=∠B=90°,
- ∴∠A+∠B=180°,
- ∴AF//BC,

∇: AF=BC=8,

- :.四边形 ABCF 是矩形,
- \therefore CF=AB=10,
- :CD 是 EF 的垂直平分线,
- \therefore CE=CF=10,

$$\therefore BE = \sqrt{10^2 - 8^2} = 6$$
,

$$AE = 10 - 6 = 4$$
,

设
$$DF = DE = x$$
, 则 $AD = 8 - x$,

在 Rt \triangle ADE 中,由勾股定理得: $4^2 + (8-x)^2 = x^2$,

解得: x=5, 即 DF=5,

∴四边形 DEGF 的面积=DF • AE=5×4=20.

【点睛】本题主要考查了轴对称的性质,菱形的判定和性质,矩形的判定和性质以及勾股定理的应用等知识,灵活运用相关性质定理进行推理计算是解题的关键.

22.

【答案】 (1) 见解析; (2) 直线 EF 是①0 的切线, 理由见解析; (3) $BF = \frac{45}{7}$

【解析】

【分析】

- (1) 根据题意补全图形即可;
- (2) 连接 BC, OD 交于点 H, 证明 BC // EF, 根据 OD ⊥ BC 可得 OD ⊥ EF, 即可证得直线 EF 是 ⊙ 0 的切线;
- (3)设OH=x,在 $Rt \triangle OHB$ 和 $Rt \triangle BHD$ 中,利用勾股定理构建方程求出OH,进而可得AC,AE的长,然后由 $BC/\!\!\!/ EF$,利用平行线分线段成比例定理列式求出BF即可.

【详解】解: (1) 如图所示;

(2) 直线 EF 是⊙0 的切线;

理由:如图,连接BC,OD交于点H,

- **∵**AB 是直径,
- ∴∠ACB=90°,
- ∵∠E=90°,
- ∴BC // EF,
- ::点D是弧BC的中点,
- ∴OD⊥BC,
- ∴OD⊥EF,
- ∴直线 EF 是⊙0 的切线;
- (3) 如图, ∵AB=5, BD=3,

$$\therefore OB = OD = \frac{5}{2},$$

设
$$OH=x$$
,则 $DH=\frac{5}{2}-x$,

在 Rt \triangle OHB 中,由勾股定理得: $BH^2 = \left(\frac{5}{2}\right)^2 - x^2$,

在 Rt \triangle BHD 中,由勾股定理得: $BH^2 = 3^2 - \left(\frac{5}{2} \times x\right)^2$,

$$\therefore \left(\frac{5}{2}\right)^2 - x^2 = 3^2 - \left(\frac{5}{2} - x\right)^2, \quad \text{MFa:} \quad x = \frac{7}{10},$$

$$\therefore OH = \frac{7}{10}, \quad DH = \frac{9}{5},$$

∵0是AB中点,H是BC中点,

$$\therefore AC = 20H = \frac{7}{5},$$

易证四边形 HCED 是矩形,则 $CE = DH = \frac{9}{5}$,

$$\therefore AE = \frac{16}{5},$$

∵BC // EF,

$$\therefore \frac{AC}{AE} = \frac{AB}{AF}, \quad \text{III} \frac{\frac{7}{5}}{\frac{16}{5}} = \frac{5}{5 + BF},$$

$$\therefore BF = \frac{45}{7}.$$

【点睛】本题主要考查了圆周角定理的推论,切线的判定,垂径定理,勾股定理,矩形的判定以及平行线分线段成比例定理,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.

23.

【答案】 (1) m=4; (2) ①1 个; ② $k \le -1$.

【解析】

【分析】

- (1) 求出 C (2, 2), 代入 $y = \frac{m}{x}$ 即可得到 m 的值;
- (2) ①画出 b=3 时的函数图象,根据函数图象结合整点的定义判断即可;②根据函数图象判断出当直线 CD 过点(3,1)时,区域 G 内恰好没有整点,求出此时 k 的值即可得到 k 的取值范围.
- 【详解】解: (1) 将点 A(2,4) 向下平移 2 个单位得到点 C,则 C(2,2),

将 C (2, 2) 代入
$$y = \frac{m}{x}$$
, 得 $m = xy = 4$;

(2) ①当 b=3 时,一次函数 y=kx+b 过点 (0, 3),如图 1 所示,

由图象可得,区域 G内的整点为(3,1),只有一个;

②由图 1 可知, 当直线 CD 过点(3,1)时,区域 G内恰好没有整点,

代入 C (2, 2) 和 (3, 1) 得:
$$\begin{cases} 2k+b=2\\ 3k+b=1 \end{cases}, 解得: \begin{cases} k=-1\\ b=4 \end{cases},$$

- ∴若区域 G 内没有整点, k 的取值范围为: $k \le -1$.
- 【点睛】本题考查了待定系数法求反比例函数及一次函数解析式,一次函数的图象和性质以及新定义的理解,正确理解整点的定义,熟练掌握属性结合思想的应用是解题的关键.

24.

【答案】(1)5,12;86,92;(2)220;(3)乙,理由见解析.

【解析】

【分析】

- (1) 根据收集数据的表格可得乙校成绩在 $70 \le x \le 79$ 范围内的有 5 人,在 $80 \le x \le 89$ 范围内的有 12 人,然后再根据中位数和众数的定义求解即可;
- (2) 用 300 乘以甲校样本中优秀人数所占的比例即可;
- (3) 可以从中位数和众数的角度进行分析.
- 【详解】解: (1) 由收集数据可知: 乙校成绩在 70≤x≤79 范围内的有 5 人,在 80≤x≤89 范围内的有 12 人, 乙校学生成绩按从低到高排序后第 15,16 名学生的成绩分别为:86,86,

故乙校学生成绩的中位数为:
$$\frac{86+86}{2} = 86$$
,

乙校学生成绩中,92分的学生有4人,人数最多,故乙校学生成绩的众数为:92;

补全表格如下:

人数成绩					
<i>X</i> 学校	50≤x≤59	60≤x≤69	70≤x≤79	80≤x≤89	90≤x≤100
甲校	1	2	5	15	7
乙校	1	2	5	12	10

学校	平均数	中位数	众数
甲校	83. 4	86	88
乙校	83 2	86	92

(2)
$$300 \times \frac{15+7}{30} = 220$$
 (人),

答: 甲校此次测试的优秀人数为 220 人;

(3) 乙校学生的成绩比较好,

理由: 甲校和乙校的中位数相同, 但是乙校的众数大于甲校的众数, 说明乙校学生的成绩比较好.

【点睛】本题考查了数据的收集与整理,中位数和众数的求法和意义以及样本估计总体,解答本题的关键在于细心整理数据,掌握各个统计量的求法和意义.

25.

【答案】(1) AC; (2) 见解析; (3) ①2.9, ②0.69cm 或 1cm 或 0.8cm.

【解析】

【分析】

- (1) 根据变量和函数的定义结合题意分析即可;
- (2) 根据表中数据描出部分点, 然后连线即可;
- (3) ①两函数图象交点处的横坐标就是 PC=PD 时 AC 的长度;
- ②求出 AP=1cm, 然后分 AP=AC, AP=PC 和 AC=PC 三种情况, 分别求解即可.
- 【详解】解: (1) 由于 PC 和 PD 随着 AC 的变化而变化,
 - ::确定 AC 的长度是自变量,其他两条线段的长度都是这个自变量的函数,

故答案为: AC;

(2) 函数图象如图所示:

- (3) ①由函数图象得: 当 PC=PD时, AC的长度约为 2.9cm;
- ②: 当 AC=0 时, 点 A 和点 C 重合, 此时 PC=1cm,
- $\therefore AP = 1 cm$,

当 AP=AC=1cm 时,由表格得,PC=0.69cm,

当 AP=PC=1cm 时,则 PC=1cm,

当 AC=PC 时,如图,由函数图象得,PC≈0.8cm,

综上所述, PC的长度约为 0.69cm 或 1cm 或 0.8cm.

【点睛】本题考查动点问题的函数图象、圆的基本知识,解题的关键是学会画函数图象,利用数形结合的思想解决问题,属于中考常考题型.

26.

【答案】 (1)
$$x=2$$
; (2) $a \le -2$ 或 $a \ge \frac{1}{2}$.

【解析】

【分析】

- (1) 代入(1,0)可得b=-4a,然后根据抛物线的对称轴公式计算即可;
- (2) 首先求出抛物线过点(1,0),(3,0),然后分 a<0 和 a>0 两种情况,分别作出简图,结合图象根据抛物线与线段 CD 有交点得出不等式,即可求出 a 的取值范围.
- 【详解】解: (1) 把 (1, 0) 代入 $y = ax^2 + bx + 3a$ 得: 0=a+b+3a,
 - \therefore b=-4a,
 - ∴ 抛物线的对称轴为: $x = -\frac{b}{2a} = 2$;
 - (2) 由 (1) 可知, 抛物线解析式为: $y = ax^2 4ax + 3a = a(x-1)(x-3)$, 对称轴为: x=2,
 - ∴ 抛物线过点(1,0),(3,0),

当 x=2 时,y=-x+4=2,

∴C (2, 2),

当 a < 0 时,如图,由该抛物线与线段 CD 有交点可得: 当 x = 2 时, $y = ax^2 - 4ax + 3a \ge 2$,

即 $4a-8a+3a \ge 2$,

解得: $a \le -2$;

当 a>0 时,由题意得: B(0,4),

∴D (-1, 4),

如图,由该抛物线与线段 CD 有交点可得: 当 x=-1 时, $y = ax^2 - 4ax + 3a \ge 4$,

即 $a+4a+3a \ge 4$,

解得: $a \ge \frac{1}{2}$,

综上所述,a的取值范围为: $a \le -2$ 或 $a \ge \frac{1}{2}$.

【点睛】本题考查了二次函数的图象和性质,一次函数图象上点的坐标特征以及坐标的平移,熟练掌握数形结合思想的应用是解题的关键.

27.

【答案】 (1) CE=BD, 理由见解析; (2) 图形见解析, $S_{\triangle CBE} = \frac{9}{2}$; (3) 1.

【解析】

【分析】

- (1) 连接 CE 和 BD, 求出∠EAC=∠DAB, 即可利用 SAS 证明△AEC≌△ADB, 进而得到 CE=BD;
- (2)连接 CE 和 BE,延长 AD 交 BC 于 F,首先求出 \angle BAF= \angle CAF= \angle EAC=45°,然后可得 AF=BF=CF, \angle EAB=135°,进而证明 AE \angle BC,再根据 $S_{\angle CBE}=\frac{1}{2}$ $BC\cdot AF$ 进行计算;
- (3) 判断出在 \triangle ADE 绕点 A 逆时针方向旋转的过程中,点 M 在以 G 为圆心, $\frac{1}{2}$ 长为半径的圆上,即可得到点 M 与点 E 重合时 AM 取最小值.

【详解】解: (1) CE=BD;

理由:连接 CE 和 BD,如图 2 所示,

由题意可知, △ABC 和△ADE 都是等腰直角三角形,

- **∵**∠EAD=∠CAB=90°,
- ∴∠EAC=∠DAB,

 \mathbb{Z} : AE=AD, AC=AB,

- ∴ △AEC≌ △ADB (SAS),
- \therefore CE=BD;

(2) 当 α =45° 时,连接 CE 和 BE,如图所示,延长 AD 交 BC 于 F,

∵α =45°, △ABC 和△ADE 都是等腰直角三角形,

 \therefore \angle BAF= \angle CAF= \angle EAC= 45° ,

 \therefore AF=BF=CF, \angle EAB=135 $^{\circ}$,

 \therefore ZEAB+ \angle ABC= 135° + 45° = 180° ,

∴AE//BC,

$$:BC = \sqrt{3^2 + 3^2} = 3\sqrt{2}$$
,

$$\therefore AF = \frac{1}{2}BC = \frac{3\sqrt{2}}{2},$$

$$\therefore S_{\triangle CBE} = \frac{1}{2}BC \cdot AF = \frac{1}{2} \times 3\sqrt{2} \times \frac{3\sqrt{2}}{2} = \frac{9}{2};$$

(3) 如图 4, 当点 M 不在 AC 上时,取 AC 中点 G,连接 GM,

:M 是 CD'的中点,

$$\therefore GM = \frac{1}{2}AD' = \frac{1}{2}AD = \frac{1}{2},$$

当点 M 在 AC 上时,由 M 是 CD'的中点可得 GM= $\frac{1}{2}$,

 \therefore 在 \triangle ADE 绕点 A 逆时针方向旋转的过程中,点 M 在以 G 为圆心, $\frac{1}{2}$ 长为半径的圆上,

∴当点 M 与点 E 重合时 AM 取最小值,此时 AM=AE=1.

【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质、旋转的性质、勾股定理、三角形面积计算以及三角形中位线定理等知识,熟练掌握旋转的性质是解答本题的关键.

28.

【答案】 (1)
$$<$$
; (2) $2-2\sqrt{3}-4\sqrt{2} < b < 4\sqrt{2}$.

【解析】

【分析】

- (1) 根据控制半径的定义求出 r_1 和 r_2 即可解决问题;
- (2) 如图所示,圆 0 和圆 B 分别是以 0, B 为圆心,以 0B 长为半径的圆,分别求出直线 1 与圆 0 相切,直线 1 与圆 B 相切时的 b 值,得到两种极限情况下的 b 值,即可得到 b 的取值范围.

【详解】解: (1) 由题意得:
$$r_1 = BD = CD = \sqrt{1^2 + 2^2} = \sqrt{5}$$
, $r_2 = AC = \sqrt{2^2 + 2^2} = 2\sqrt{2}$,

 $\therefore r_1 < r_2;$

(2) 如图所示,圆 0 和圆 B 分别是以 0,B 为圆心,以 0B 长为半径的圆,

当直线 1: $y = \sqrt{3}x + b$ 与圆 0 相切于点 M 时,连接 OM,可得 OM 与直线 1 垂直,

则直线 OM 的解析式为: $y = -\frac{\sqrt{3}}{3}x$,

设M(x,
$$-\frac{\sqrt{3}}{3}x$$
),

∵0M=0B,

$$\therefore OM = \sqrt{x^2 + \left(-\frac{\sqrt{3}}{3}x\right)^2} = \sqrt{2^2 + 2^2},$$

$$\therefore x = -\sqrt{6} \text{ if } x = \sqrt{6} \text{ ($\texttt{\$}$$£)},$$

$$\therefore$$
M $(-\sqrt{6}, \sqrt{2})$

将
$$(-\sqrt{6}, \sqrt{2})$$
 代入 $y = \sqrt{3}x + b$ 得: $\sqrt{2} = \sqrt{3} \times (-\sqrt{6}) + b$,

解得:
$$b=4\sqrt{2}$$
,

当直线 1: $y = \sqrt{3}x + b$ 与圆 B 相切于点 N 时,连接 BN,

同理可求出此时 $b=2-2\sqrt{3}-4\sqrt{2}$,

∴ b 的取值范围为: $2-2\sqrt{3}-4\sqrt{2} < b < 4\sqrt{2}$.

【点睛】本题主要考查了新定义,直线与圆的位置关系,一次函数的图象和性质,勾股定理等知识,正确理解控制圆和控制半径的定义是解题的关键.