¡Felicitaciones! ¡Aprobaste!

PARA APROBAR 75 % o más

Continúa aprendiendo

calificación 100%

Practice quiz on the Cartesian Plane

PUNTOS TOTALES DE 5

1. Which of the following points in the Cartesian Plane is on the y-axis?

1 / 1 puntos

- $\bigcirc (5,0)$
- (0,-5)
- \bigcirc (1,1)
- (-5,0)

Correct

The *y*-axis is defined to be all points in the Cartesian plane with zero as *x*-coordinate. The point (0, -5) meets that requirement.

2. Find the distance between the points A = (2,2) and C = (3,3):

1 / 1 puntos

- O 1
- $\sqrt{2}$
- 0
- \bigcirc 2

Correct

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$.

In this case (a,b)=(2,2) and (c,d)=(3,3), so the distance is $\sqrt{(3-2)^2+(3-2)^2}=\sqrt{2}$.

1 / 1 puntos

3. Find the point-slope form of the equation of the line that goes between A = (1, 1) and B = (5, 3):

$$\bigcirc y = \frac{1}{2}x$$

$$y-1 = \frac{1}{2}(x-1)$$

$$y-3 = \frac{1}{2}(x-1)$$

$$y-1 = \frac{1}{2}(x-5)$$

✓ Correct

The point-slope form for the equation of a line with slope m that goes through the point (x_0, y_0) is $y - y_0 = m(x - x_0)$

In this case, the slope
$$m = \frac{3-1}{5-1} = \frac{1}{2}$$

We can choose either A or B for the point on the line, but in neither case do we get this chosen answer.

4. Which of the following points is on the line with equation:

1 / 1 puntos

$$y-1=2(x-2)$$
?

- \bigcirc (3,2)
- $\bigcirc (2,3)$
- \bigcirc (0,0)
- (2,1)

Correct

If we plug in 1 for y and 2 for x in the equation of the line, we make a true statement, 0 = 0, so this point lies on the line.

- 5. Suppose that a line ℓ has slope 2 and goes through the point (-1,0). What is the y-intercept of ℓ ?
 - \bigcirc -1
 - \bigcirc 1
 - 2
 - \bigcirc 0

✓ Correct

Recall that the y-intercept of ℓ is the y-coordinate of where ℓ hits the y-axis.

Since $(-1,0) \in \ell$, the point on ℓ with x=0 is obtained by running one unit from (-1,0) while rising two units.

This gives y = 2 as the *y*-intercept.