## **Dynamic Programming**

## **Longest Common Subsequence**

Dr. G P Gupta

## **Longest Common Subsequence**

## What is Subsequences?

- Suppose you have a sequence  $X = \langle x_1, x_2, ..., x_m \rangle$  of elements over a finite set S.
- A sequence Z = < z<sub>1</sub>, z<sub>2</sub>,...,z<sub>k</sub>> over S is called a subsequence of X if and only if it can be obtained from X by deleting elements.
- Put differently, there exist indices  $i_1{<}i_2{<}...{<}i_k$  such that

$$z_a = x_{i_a}$$

for all a in the range  $1 \le a \le k$ .

## What is Subsequences? Cont..

A subsequence of a string S, is a set of characters that appear in left-to-right order, but not necessarily consecutively.

#### Example

#### ACTTGCG

- $\bullet$  ACT ,  $\ ATTC$  ,  $\ T$  ,  $\ ACTTGC$  are all subsequences.
- $\bullet$  TTA is not a subequence

## What is Common Subsequences?

- Suppose that X and Y are two sequences over a set S.
- We say that  $\boldsymbol{Z}$  is a common subsequence of X and Y if and only if
- Z is a subsequence of X
- Z is a subsequence of Y

## What is Longest common subsequence?

- · Subsequence:
  - A subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements.
- · Longest common subsequence:
  - Longest common subsequence (LCS) of 2 sequences is a subsequence, with maximal length, which is common to both the sequences.

#### What is Longest common subsequence?

A common subsequence of two strings is a subsequence that appears in both strings. A longest common subsequence is a common subsequence of maximal length.

#### Example

$$\begin{split} S_1 &= AAACCGTGAGTTATTCGTTCTAGAA \\ S_2 &= CACCCCTAAGGTACCTTTGGTTC \end{split}$$

#### The Longest Common Subsequence Problem

Given two sequences X and Y over a set S, the longest common subsequence problem asks to find a common subsequence of X and Y that is of maximal length.

#### **Longest Common Subsequence**

- Biologists need to *measure how similar strands of DNA are* to determine how closely related an organism is to another.
- considering DNA as strings of letters A,C,G,T and then comparing similarities in the strings.
- Formally , researchers look at common subsequences in the strings.
- Example: X = AGTCAACGTT, Y=GTTCGACTGTG
- Both **S** = AGTG and **S'**=GTCACGT are subsequences
- · How to do find these efficiently?

#### What is Longest common subsequence?

 $S_1 = AAACCGTGAGTTATTCGTTCTAGAA$  $S_2 = CACCCCTAAGGTACCTTTGGTTC$ 

LCS is

ACCTAGTACTTTG

Has applications in many areas including biology.

#### **Brute Force solution**

- if |X| = m, |Y| = n, then there are  $2^m$  subsequences of x; we must compare each with Y (n comparisons)
- So the running time of the brute-force algorithm is  $O(n \ 2^{\text{m}})$
- Notice that the LCS problem has optimal substructure:
  - solutions of subproblems are parts of the final solution.
- Subproblems: "find LCS of pairs of prefixes of X and Y"

# **Dynamic Programming**

Let us try to develop a dynamic programming solution to the LCS problem.

## ith prefix of X

- Let  $X = \langle x_1, x_2, ..., x_m \rangle$  be a sequence.
- ith prefix of X:

We denote by  $X_i$  the sequence  $X_i = \langle x_1, x_2, ..., x_i \rangle$ and call it the **i**th **prefix of X**.

- · For example:
- if X = <A; B; C; B; D; A; B>, then 4<sup>th</sup> prefix: X4 = <A; B; C; B> and
- X0 is the empty sequence.

#### **LCS Notation**

Let X and Y be sequences.

#### LCS(X, Y) represent:

- the set of longest common subsequences of X and Y.

## Optimal Substructure

- Let  $X = < x_1, x_2, ..., x_m >$  and  $Y = < y_1, y_2, ..., y_n >$  be two sequences.
- Let  $Z = \langle z_1, z_2, ..., z_k \rangle$  is any LCS of X and Y.
- a) Case1: If  $x_m = y_n$  then certainly  $x_m = y_n = z_k$  and  $Z_{k-1}$  is  $in LCS(X_{m-1}, Y_{n-1})$

## Optimal Substructure cont..

Let  $X = \langle x_1, x_2, ..., x_m \rangle$ and  $Y = \langle y_1, y_2, ..., y_n \rangle$  be two sequences. Let  $Z = \langle z_1, z_2, ..., z_k \rangle$  is any LCS of X and Y.

- b) Case2: If  $x_m \neq y_n$  then  $x_m \neq z_k$  implies that **Z** is in LCS( $X_{m-1}$ , Y)
- c) Case3: If  $x_m \neq y_n$  then  $y_n \neq z_k$  implies that **Z** is in LCS(X, Y<sub>n-1</sub>)

# **Overlapping Subproblems**

- If  $x_m = y_n$  then we solve the subproblem to find an element in LCS( $X_{m-1}$ ,  $Y_{n-1}$ ) and append  $x_m$
- If  $x_m \neq y_n$  then we solve the two subproblems of finding elements in  $LCS(X_{m-1}\,,\,Y_{n-1}\,)$  and  $LCS(X_{m-1}\,,\,Y_{n-1}\,)$  and choose the longer one.

# Recursive Solution Let X and Y be sequences. Let $\mathbf{c}[\mathbf{i},\mathbf{j}]$ be the length of an LCS of the sequences Xi and Yj $\mathbf{c}[\mathbf{i},\mathbf{j}] = \begin{bmatrix} 0 & \bullet & \text{if } \mathbf{i} = \mathbf{0} & \text{or } \mathbf{j} = \mathbf{0} \\ & \bullet & \text{if } \mathbf{i} = \mathbf{0} & \text{or } \mathbf{j} = \mathbf{0} \\ & & \mathbf{c}[\mathbf{i},\mathbf{j}] = \mathbf{0} & \bullet & \text{if } \mathbf{i},\mathbf{j} > \mathbf{0} \text{ and } \mathbf{x}_i = \mathbf{y}_j \\ & & & \mathbf{max}(\mathbf{c}[\mathbf{i},\mathbf{j}-1],\mathbf{c}[\mathbf{i}-1,\mathbf{j}]) & \bullet & \text{if } \mathbf{i},\mathbf{j} > \mathbf{0} \text{ and } \mathbf{x}_i \neq \mathbf{y}_j \end{bmatrix}$

### optimal substructure of the LCS problem

The optimal substructure of the LCS problem gives the recursive formula

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$
 (15.9)

## **Dynamic Programming Solution**

•To compute length of an element in LCS(X,Y) with X of length m and Y of length n,

#### we do the following:

- Initialize first row and first column of the array c with 0.
- Calculate: c[1,j] for  $1 \le j \le n$ ,  $c[2,j] \text{ for } 1 \le j \le n$
- Return c[m, n]
- Complexity O(mn).

#### Dynamic Programming Solution cont..

- How can we get an actual longest common subsequence?
- Store in addition to the array c an array b pointing to the optimal subproblem chosen when computing c[i,j].

# Example

# LCS Example-1

- Consider the two sequences
- $X = \langle A, B, C, B, A \rangle$
- $Y = \langle B, D, C, A, B \rangle$

## LCS Example-1

$$x_{i} = y_{j} \Rightarrow c[i,j] = c[i-1,j-1]+1$$

$$x_{i} \neq y_{j} \Rightarrow c[i-1,j] \geqslant c[i,j-1]$$

$$c[i,j] = c[i-1,j] \qquad \uparrow$$

$$c[i-1,j] < c[i,j-1]$$

$$c[i,j] = c[i,j-1] \qquad \bullet$$

## LCS Example-1

|   | j       | <b>→</b> | 1   | 2   | 3   | 4   | 5      |
|---|---------|----------|-----|-----|-----|-----|--------|
| i |         | Уj       | В   | D   | C   | A   | В      |
| ļ | $x_{i}$ | 0        | 0   | 0   | 0   | 0   | 0      |
| 1 | A       | 0        | 0 ↑ | 0 ↑ | 0 ↑ | 1 ^ | 1<br>← |
| 2 | В       | 0        | 1 5 | 1 ← | 1 ← | 1 ↑ | 2 5    |
| 3 | C       | 0        | 1 ↑ | 1 ↑ | 2 5 | 2 ← | 2 ↑    |
| 4 | В       | 0        | 1 \ | 1 ↑ | 2 ↑ | 2 ↑ | 3 5    |
| 5 | A       | 0        | 1 ↑ | 1 ↑ | 2 ↑ | 3 < | 3 ↑    |

Thus the optimal LCS length is c[m,n] = 3.

## LCS Algorithm

- Computing the length of an LCS LCS-LENGTH (X, Y)
  - stores the c[i,j] values in a table c[0...m,0...n], and it computes the entries in row-major order.
- · Constructing an LCS
  - PRINT-LCS(b, X, i, j)
  - maintains the table b[1...m; 1...n] to help us construct an optimal solution

b[i,j] points to the table entry corresponding to the optimal subproblem solution chosen when computing c[i,j].

```
LCS-LENGTH(X, Y)

1  m = X.length

2  n = Y.length

3  let b[1...m, 1...n] and c[0...m, 0...n] be new tables

4  for i = 1 to m

5  c[i, 0] = 0

6  for j = 0 to n

7  c[0, j] = 0

8  for i = 1 to m

9  for j = 1 to n

10  if x_i = y_j

11  c[i, j] = c[i - 1, j - 1] + 1

12  b[i, j] = x_j

13  elseif c[i - 1, j] \ge c[i, j - 1]

14  c[i, j] = c[i - 1, j]

15  b[i, j] = x_j

16  else c[i, j] = c[i, j - 1]

17  b[i, j] = x_j

18  return c and b
```

#### **PRINT-LCS**

```
PRINT-LCS((b, X, i, j))

1 if i = 0 or j = 0

2 return

3 if b[i, j] = \text{```}

4 PRINT-LCS((b, X, i - 1, j - 1))

5 print x_i

6 elseif b[i, j] = \text{``}

7 PRINT-LCS((b, X, i - 1, j))

8 else PRINT-LCS((b, X, i, j - 1))
```

# Analysis

- since each table entry takes O(1) time to compute.
- The running time of the procedure is  $\Theta$  (mn).

# LCS Example

We'll see how LCS algorithm works on the following example:

- X = ABCB
- Y = BDCAB

What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$

$$X = A B C B$$

$$Y = B D C A B$$















































# LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So the running time is clearly O(mn) as each entry is done in 3 steps.
- Now how to get at the solution?
- · We use the arrows we created to guide us.
- We simply follow arrows back to base case 0





```
LCS-Length(X, Y)
m = length(X), n = length(Y)
for i = 1 to m
    do c[i, 0] = 0
for j = 0 to n
    do c[0, j] = 0
for i = 1 to m
       do for j = 1 to n
              do if (x_i = y_j)
                     then c[i, j] = c[i - 1, j - 1] + 1
                              b\left[i\,,\;j\,\right] = " \leftarrow \uparrow "
              else if c[i - 1, j] \ge c[i, j - 1]
                                then c[i, j] = c[i - 1, j]

b[i, j] = "\uparrow"
                                 else c[i, j] = c[i, j - 1]
                                      b[i, j] = "\leftarrow"
return c and b
```

End