HW5 - LSTM

New York Stock Prediction

- Dataset description
- Goal
 - Predict New York Stock price
 - 希望透過"前N天的股票資料"去預測"隔天的股價"
- Content
 - 約85,0000筆資料來自於 501間公司
- Ref
 - https://www.kaggle.com/dgawlik/nyse

程式內容&檔案簡介

- 1. prices-split-adjusted.csv 全部股票資料(不含STT)
- 2. STT.csv STT股票資料
- 3. model.py LSTM 模型架構
- 4. process.py 包含資料分割、資料 normalize function
- 5. train_test.py 模型訓練、測試

pycache	2019/5/16 上午 0	檔案資料夾	
prices-split-adjusted	2019/5/16 上午 0	Microsoft Excel 逗點分隔值檔案	53,239 KB
STT	2019/5/16 上午 0	Microsoft Excel 逗點分隔值檔案	110 KB
models	2019/5/15 下午 1	PY 檔案	2 KB
preprocess	2019/5/16 上午 1	PY 檔案	2 KB
train_test	2019/5/16 上午 0	PY 檔案	3 KB

程式內容說明

• process.py - 包含資料分割、資料 normalize function

```
def data_split(stock, seq_len):
    amount_of_features = len(stock.columns) # 5
    data = stock.as_matrix()
    sequence_length = seq_len + 1 # index starting from 0
    result = []
    result = np.array(result)
    row = round(0.85 * result.shape[0]) # 85% split
    return [x_train, y_train, x_test, y_test]
```

data_split () 可將資料分割前85%為train、後 15% 為test 以及透過 seq_len參數調整抓取前 N天資料 Ex. seq_len = 15 那就會抓取前15天股票資料(X),隔天資料 (Y)

```
def normalize_data(df):
    min_max_scaler = preprocessing.MinMaxScaler()
    df['open'] = min_max_scaler.fit_transform(df.open.values.reshape(-1,1))
    df['close'] = min_max_scaler.fit_transform(df.close.values.reshape(-1,1))
    df['high'] = min_max_scaler.fit_transform(df.high.values.reshape(-1,1))
    df['low'] = min_max_scaler.fit_transform(df.low.values.reshape(-1,1))
    df['volume'] = min_max_scaler.fit_transform(df.volume.values.reshape(-1,1))
    return df
```

normalize_data () 可將讀取資料feature做 normalize

Dataset Details - prices-split-adjusted.csv

	Α	В	С	D	E	F	G
1	date	symbol	open	close	low	high	volume
2	2016/1/5	WLTW	123.43	125.84	122.31	126.25	2163600
3	2016/1/6	WLTW	125.24	119.98	119.94	125.54	2386400
4	2016/1/7	WLTW	116.38	114.95	114.93	119.74	2489500
5	2016/1/8	WLTW	115.48	116.62	113.5	117.44	2006300
6	2016/1/11	WLTW	117.01	114.97	114.09	117.33	1408600
7	2016/1/12	WLTW	115.51	115.55	114.5	116.06	1098000
8	2016/1/13	WLTW	116.46	112.85	112.59	117.07	949600
9	2016/1/14	WLTW	113.51	114.38	110.05	115.03	785300
10	2016/1/15	WLTW	113.33	112.53	111.92	114.88	1093700
11	2016/1/19	WLTW	113.66	110.38	109.87	115.87	1523500
12	2016/1/20	WLTW	109.06	109.3	108.32	111.6	1653900
13	2016/1/21	WLTW	109.73	110	108.32	110.58	944300
14	2016/1/22	WLTW	111.88	111.95	110.19	112.95	744900
15	2016/1/25	WLTW	111.32	110.12	110	114.63	703800

每筆資料包含日期、公司代號、五維feature (開/閉市股價、當天最高/最低股價、當天成交量)

作業流程

- 1. 讀取"STT.csv"
- 2. 抓取"公司(STT)股票資料"
- 3. 將其做normalize
- 4. 将"STT"資料分割
 - train, test 資料集
 - 前N天股票資料(X)和隔天預測股價(Y)
- 5. 訓練模型、測試模型

```
df = pd.read_csv["./STTcsv", index_col = 0]

To str = df[df.symbol == 'STT'].copy()
#print(GOOG)

STT.drop(['symbol'],1,inplace=True)
STT new = normalize data(STT)
#print(GOOG_new)
window = 15

X_train, y_train, X_test, y_test = data_split(STT_new, window)
```

訓練&測試資料

- •訓練資料:
 - 全部公司股票資料 and STT前85%的股票資料
- 測試資料:
 - STT後15%股票資料

作業要求

- 繳交時間: 5/29 11:59pm.
- 設計一個合理的方法,某A公司隔天預測股價,例如:
 - 用某A公司前15天的資料,預測第16天的結果
 - 或用某50家跟A同領域的公司前15天的資料,預測第16天的結果
 - 或用全部股市公司的資料,預測某A第16天的股價
 - 或用某A公司前30天的資料,預測第31天的結果
 -
- 設計你的LSTM模型/或直接用助教提供的
- 畫出訓練loss與測試accuracy curves
- 以測試資料每一天為單位:
 - 計算每天(預測股價-真實股價)2的總和,回報估測誤差