AD-A009 890

AVERAGE P AND PKP CODAS FOR EARTHQUAKES (103 DEGREES - 118 DEGREES)

E. I. Sweetser, et al

Teledyne Geotech

Prepared for:

Air Force Technical Applications Center Advanced Research Projects Agency

10 June 1974

DISTRIBUTED BY:

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

I REPORT NUMBER		BEFORE COMPLETING FORM
	2 GOVT ACCESSIO	N NO 3 RECIPIENT'S CATALOG NUMBER
SDAC-TR-73-10		110.4166 916
TITLE (and Subtiffe)		S TYPE OF REPORT & PERIOD COVERED
AVERAGE P AND PKP CODAS FOR EARTHO	QUAKES	Technical
(103° - 118°)		6 PERFORMING ORG REPORT NUMBER
		5 PERFORMING ONG REPORT NUMBER
7 AUTHOR(s)		8 CONTRACT OR GRANT NUMBER(N)
		F08606-74-C-0006
Sweetser, E. I. and Cohen, T. J.		100000-74-6-0000
PERFORMING ORGANIZATION NAME AND ADDRESS		TO PROGRAM ELEMENT PROJECT TASK
Teledyne Geotech		AREA COME SHIT HOME
314 Montgomery Street		
Alexandria, Virginia 22314		
11 CONTROLLING OFFICE NAME AND ADDRESS		12 REPORT DATE
Defense Advanced Research Project	s Agency	10 June 1974
Nuclear Monitoring Research Offic	e	13 NUMBER OF PAGES
1400 Wilson BlvdArlington, Va.	22209	fice) IS SECURITY CLASS (of this report)
	nt from Controlling Of	
VELA Seismological Center		Unclassified
312 Montgomery Street		154 DECLASSIFICATION DOWNGRADING
Alexandria, Virginia		SCHEDULE
17. DISTRIBUTION STATEMENT (of the abstract entered	f in Block 20, i-differ	ent from Report)
17 DISTRIBUTION STATEMENT (of the abstract entered	d in Block 20, i differ	ent from Report)
17 DISTRIBUTION STATEMENT (of the abstract entered	1 in Block 20, ; diller	ent from Report)
17 DISTRIBUTION STATEMENT (of the abstract entered	f in Block 20, ; differ	ent from Report)
	in Block 20, ; differ	ent from Report)
	f in Block 20, ; differ	ent from Report)
	i in Block 20, ; differ	rent from Report)
18 SI PPLEMENTARY NOTES		
18 SI PPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessery e Earthquake Coda Coda Dec	and identify by block o	numher)
18 SI PPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessary e Earthquake Coda Coda Dec P-Coda Coda Pre	and identify by block t	numher)
18 SI PPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessary a Earthquake Coda Coda Dec	and identify by block o	numher)
18 SI PPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessary e Earthquake Coda Coda Dec P-Coda Coda Pre	and identify by block o	numher)
18 SI PPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessary e Earthquake Coda Coda Dec P-Coda Coda Pre	and identify by block of cay Character ediction	number)
18 SI PPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessery e Earthquake Coda Coda Dec P-Coda Coda Pre PKP-Coda 20 ABSTRACT (Continue on reverse side if necessery e)	and identify by block of cay Character ediction	number)
18 SI PPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessary elementary notes) Earthquake Coda Coda Dec P-Coda Coda Pre PKP-Coda 20 ABSTRACT (Continue on reverse side if necessary elementary) An analysis of seismograms of	and identify by block of cay Character ediction	umber) vents (m, < 5.8) recorded at a
18 SI PPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessery elementary notes) Earthquake Coda Coda Dec P-Coda Coda Pre PKP-Coda 20 ABSTRACT (Continue on reverse side if necessery elementary notes) An analysis of seismograms of world-wide network of 10 stations	cay Character ediction	umber) istics umber) vents (m _b < 5.8) recorded at a large events (m _b , M _e , or secondary)
18 SI PPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessery elementary notes) Earthquake Coda Coda Dec P-Coda Coda Pre PKP-Coda 20 ABSTRACT (Continue on reverse side if necessery elementary notes) An analysis of seismograms of world-wide network of 10 stations mm > 7.0) recorded at a world-wide	cay Character ediction and identify by block not 26 small es, and of 26 de network of	umber) istics vents (m _b < 5.8) recorded at a large events (m _b , M _s , or secondated stations, yielded an estimated
19 KEY WORDS (Continue on reverse side if necessery ender the continue on reve	cay Character ediction of 26 small es, and of 26 de network of sfor everts	vents (m _b < 5.8) recorded at a large events (m _b , M _s , or seconds 16 stations, yielded an estimatin the distance interval 103-115
18 SI PPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessery elementary notes) Earthquake Coda Coda Dec P-Coda Coda Pre PKP-Coda 20 ABSTRACT (Continue on reverse side if necessery elementary notes) An analysis of seismograms of world-wide network of 10 stations mm > 7.0) recorded at a world-wide	cay Character ediction and identify by block not 26 small es, and of 26 de network of s for everts al time for t	vents (m _b < 5.8) recorded at a large events (m _b , M _s , or seconds 16 stations, yielded an estimatin the distance interval 103-116 he PP phase, large event codas

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

NATIONAL TECHNICAL INFORMATION SERVICE
US Department of Commerce Springfield, VA. 22151

JRITY CLASSIFICATION OF THIS PAGE (When Dete Entered

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

events, and the period of source activity is estimated to be 1 to 2 minutes. Two sets of average coda decay curves, one each for large and small events, are given for the following distance intervals: 103-105°, 105-110°, 110-115°, and 115-118°.

Unclassified

AVERAGE P AND PKP CODAS FOR EARTHQUAKES (103° - 118°)

SEISMIC DATA ANALYSIS CENTER REPORT NO.: SDAC-TR-73-10

AFTAC Project No.: VELA VT/4709

Project Title: Seismic Data Analysis Center

ARPA Order No.: 1620

ARPA Program Code No.: 3F10

Name of Contractor: TELEDYNE GEOTECH

Contract No.: F08606-74-C-0006

Date of Contract: 01 July 1973

Amount of Contract: \$2,152,172

Contract Expiration Date: 30 June 1974

Project Manager: Royal A. Hartenberger

(703) 836-3882

P. O. Box 334, Alexandria, Virginia 22314

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ABSTRACT

An analysis of seismograms of 26 small events ($m_b \le 5.8$) recorded at a world-wide network of 10 stations, and of 26 large events (m_b , M_s , or secondary $m_b \ge 7.0$) recorded at a world-wide network of 16 stations, yielded an estimate of the coda decay characteristics for events in the distance interval $103-118^\circ$. For times greater than the arrival time for the PP phase, large event codas are about 0.11 m_b units greater than small event codas at corresponding times into the codas. This supports the hypothesis that large events are multiple events, and the period of source activity is estimated to be 1 to 2 minutes. Two sets of average coda decay curves, one each for large and small events, are given for the following distance intervals: $103-105^\circ$, $105-110^\circ$, $110-115^\circ$, and $115-118^\circ$.

TABLE OF CONTENTS

	Page
ABSTRACT	
INTRODUCTION	1
ANALYSIS TECHNIQUES	2
RESULTS	5
Coda Characteristics as a Function of Magnitude	5
Average Coda Determinations	16
CONCLUSIONS	22
REFERENCES	23
APPENDICES	

LIST OF FIGURES

Figure	No. Title	Page
1.	"B" Factor versus distance curves event data (90°-180°) after Sweets Blandford, 1973.	from ISC 18 er and
2	Comparison of large-event and smal codas, 103°-105° distance, with the event coda shifted 1 minute earlie to the small-event coda.	e large-
3	Comparison of large-event and smal codas, 105°-110° distance, with th event coda shifted 1 minute earlie to the small-event coda.	e large-
4	Comparison of large-event and smal codas, 115°-118° distance, with th event coda shifted 2 minutes earli to the small-event coda.	e large-

LIST OF TABLES

Table No	Title	Page
I	P-Coda Distance Intervals	3
II	PKP-Coda Distance Intervals	4
111	Large Event Information, 103-118° Distance (Listed by Event)	6
IV	Large Event Information, 103-118° Distance (Listed by Distance Interval)	7
V	Station Information - Large Events	8
VI	Small Event Information, 103-118° Distance (Listed by Event)	9
VII	Small Event Information, 103-118° Distance (Listed by Distance Interval)	10
NIII	Station Information - Small Events	11
IX	Coda Difference Analysis	14
X	Coda Difference Analysis	15
ΧI	Coda Difference Analysis (Observations for PP and later phases)	17

INTRODUCTION

The coda analyses presented in this report complement our previous studies of P and PKP codas for earthquakes (Cohen et al., 1972; Sweetser et al., 1973), and specifically detail coda characteristics in the distance interval 103 to 118°. Earlier stries performed using seismograms recorded at a network of Worldwide Standard Seismograph Stations (WWSSS) did not adequately define coda characteristics in this interval, especially for small events (NOS $m_b \leq 5.8$) recorded at distances where $P_{\mbox{diff}}$ is the first arrival. Because coda determinations are often used to determine how often signals from one event are masked in the coda of another event, it is necessary to have a complete set of coda observations with which to predict coda for a specified event. The purpose of this report, then, is to augment our present coda observations (Sweetser et al., 1973) with information on large- and small-event coda characteristics in the distance interval 103 to 118°.

ANALYSIS TECHNIQUES

The methods used to determine coda decay characteristics, and to determine quantitatively the difference in coda levels for large and small events, are described by Sweetser et al. (1973). Because coda characteristics are determined primarily by the arrival times and relative amplitudes of significant secondary phases, events are grouped by the distance intervals given in Tables I and II.

TABLE I
P-Coda Distance Intervals

1. 0 - 5° 2. 5 - 10° 3. 10 - 14° 4. 14 - 16° 5. 16 - 21° 6. 21 - 22° 7. 22 - 24° 8. 24 - 26° 9. 26 - 29° 10. 29 - 31° 11. 31 - 42° 12. 42 - 53° 13. 53 - 56° 14. 56 - 59° 15. 59 - 63° 16. 63 - 67° 17. 67 - 72° 18. 72 - 79° 19. 79 - 84° 20. 84 - 98° 21. 98 - 103° 22. 103 - 105° This Report 23. 105 - 110°

TABLE II

PKP-Coda Distance Intervals

1. 110 - 115° This Report

2. 115 - 118°

3. 118 - 127°

4. 127 - 136°

5. 136 - 140°

6. 140 - 145°

7. 145 - 155°

8. 155 - 166°

9. 166 - 180°

RESULTS

Coda Characteristics as a Function of Magnitude

Using data in the distance interval 103-118°, we first determine if any difference exists between the relative coda amplitudes for large and small events. That is, we seek the dependence of coda characteristics on event magnitude. In earlier work (Sweetser et al., 1973) we divided the earthquake population into two sets based on event magnitude. We defined a "large event" as one having an NOS m_h , NOS M_s , or secondary m_h (at an observatory such as Pasadena or Berkeley) of 7.0 or larger. On the other hand a "small event" was defined as having $m_b \leq 5.8$. The same definitions are used here, and thus the events shown in Tables III and IV constitute the large event population while the events shown in Tables VI and VII constitute the small event population. Note that the data consists of seismograms for events recorded at Worldwide Standard Sesimograph Stations (WWSSS) and observatory station TFO (Cohen et al., 1972; Sweetser et al., 1973), in addition to seismograms for events recorded at observatory stations CPO, LAO, TFO, UBO and WMO, the Large Aperature Seismic Array (LASA) and the Long-Range Seismic Measurement (LRSM) station KN-UT. To avoid biasing our results with path effects, the record for only one North American station is used for any given event in any given distance interval. Station information for both large and small events is given in Tables V and VIII. We assume that noise and station effects are of secondary importance in controlling coda characteristics, and as such, that it is not necessary to use a common set of station in our analyses. Station effects will be the subject of future investigations.

Grouping the data by distance interval, the large- and small-event codas were analyzed to yield average coda determinations and 95% confidence intervals for the average coda determinations (Appendix I). The codas analyzed were each required to have 8 or more coda observations.

To determine quantitatively the difference in coda levels for the two sets of determinations, the average difference for each distance interval and an associated t-statistic for this difference were computed as rollows:

TABLE III Lorge Event Information 103-118" Distance (Listed by Event)

155 THE THE OT 100 155 CAD 400 TOD DO		m.v.		105.3"	.0701		10.00 101.50		• 101.0			103.00	: d		2.61		· · · · · · · · · · · · · · · · · · ·						• 3	.0'701
AREA LOCATION ADE O	1	Pe Pritein		Wer Coast Central Chile 10 .2" 105.5"	fashington, U. S.	• • • • • • • • • • • • • • • • • • • •	Mer Coast of Northern Thire 117.2"		Luton, Philippines	Celebes	Sen. Gine	outh of Kermader Islands	liadenao, Bilippines		uton. Philippines	War Coast of Chiapas Merico	be Hebrides	De Guines	olowon islands	ee Cuines	outh Shetland 'slands	war Coast of Central Chile	er Ireland	* Ireland
Sounce Sounce		Ī	(7.5 -7.75 PM)	7 PAS!						٠	PAS) 1	PASI	PAS)	(i)	9	PAS)	9	PAS) N	(TH	î	•	PAS) N	î	PAS)
30	***		5.55			28.	(7.0	63.6			5.7	(1.0	(7.5		9.0	(7.0	(7.5	(1.0	0.0)	(7.9	(7.0	(1.5	•:.	s :
										•	1.5			::	0.6	1.1	0.7	1.0	0.7	:	1.0		•••	7
ğ "-l	-		:	• •	:	:			8.8	0.0								0.0	5.8	1.3	6.9			::
6l	٠		511	:	s	:		•	.,	13	11	1.19		2 :	::	33	13		11	33	33	:		• :
		:					70.00	119.38	17:-31	179.00	.02.58	178.06	139.76		11.11	917.00	100.78	145.5E	163.38	139.72	.7.10	11.70	153.96	153.06
80	901	150.75 65	76.75	71.20	 	•											.15	. 95	50	3.15	55	25	9	
6 ¢	901 ● 100			32.45 71.20		4	21.65	3.95	16.58		20.10	14.75	•		: :	:	=	•	11.05	•		\$2,55	5,55	5.75
(Degrees) (40)	10. 8 100. 8 100	37.071	3.3		:		02:25:21.6 21.65	13:27:18.7 2.95		22:14:19.4 ···				95 W 95 A 15		14:01:52.8								05 57 11.9

TABLE IV Large Event Information, 103-118° Distance (Listed by Distance Interval)

DATE	ORIGIN TIME Hr Min Sec	(Degrees)	LONGITUDE (Degrees)	DEPTH (km)	NOS	STATION	DISTANCE	SOURCE REGION
103-105°								
** 6 Jul 64	07:22:11.7	18.3N	100.4W	100	6.3	IST	104.5	Mexico
14 Mar 65	15:53:06.6	36.3N	70.7E	219	6.6	CPO	104.9*	Hindu Kush
**29 Apr 65	15:28:43.3	47.4N	122.4W	57	6.5	SHI	103.0*	Washington, U. S.
**21 Dec 67	02:25:21.6	21.85	70.0W	33	6.3	KON	103.5°	Near Coast of Northern Chile
1 Aug 68	20:19:21.9	16.5N	122.2E	37	5.9	LAO	103.4°	Luzon, Philippines
. 8 Jan 70	17:12:39.1	34.75	178.6E	179	6.1	COL	103.0°	South of Kermadec Islands
• 31 Oct 70	17:53:09.3	4.95	145.5E	42	6.0	TFO	103.7*	Cew Guines
* 14 Jul 71	Se:11:29.1	5.55	153.9E	47		SHI	103.0°	New Ireland
• 19 Jul 71	00:14:45.3	5.75	153.8E	42	5.8	SHI	103.0°	New Ireland
105-110°								
4428 Mar 65	16:33:14.6	32.45	71.2W	61	6.4	ADE	107.2°	Near Coast of Central Chile
**28 Mar 65	16:33:14.6	32.45	71.2W	61	6.4	CMC	105.3°	Near Coast of Central Chile
**23 Aug 65	19:46:02.9	16.3N	95.8W	28	6.7	MAT	106.7°	Mexico
28 May 68	13:27:18.7	2.95	139.3E	65	6.1	TFO	107.6°	New Guinea
1 Aug 68	20:19:21.9	16.5N	122.2E	37	5.9	UBO	105.7°	Luzon, Philippines
• 7 Apr 70	05:34:05.6	15.8N	121.7E	37	6.4	TFO	109.2°	Luzon, Philippines
• 12 Apr 70	04:01:44.0	15.1N	122.1E	24	5.9	TFO	109.3°	Luzon, Philippines
• 10 Jan 71	07:17:03.7	3.15	139.7E	33	7.3	TFO	107.4°	New Guinea
• 8 Feb 71	21:04:21.8	63.58	61.2W	33	6.3	TFO	105.4°	South Shetland Islands
110-115°								
**28 Mar 65	16:33:14.6	32.45	71.2W	61	6.4	KON	113.1°	Near Coast of Central Chile
**21 Dec 67	02:25:21.6	21.85	70.0W	33	6.3	IST	110.6°	Near Coast of Northern Chile
• 4 Jan 70	17:00:40.2	24.1N	102.5E	31	5.9	TFO	113.5°	Yunan, China
• 8 Jan 70	17:12:39.1	34.75	178.6E	179	6.1	PRE	113.5°	South of Kermadec Islands
• 10 Jan 70	12:07:08.6	6.8N	126.7E	73	6.1	TFO	111.7°	Mindanao, Philippines
* 29 Apr 70	14:01:32.8	14.5N	92.6W	33	5.8	MAT	110.1°	Near Coast of Chiapas, Mexico
• 2 Dec 70	15:54:19.9	11.05	163.3E	37	5.8	SHI	113.3°	Solomon Islands
• 10 Jan 71	07:17:03.7	3.15	139.7E	34	7.3	COP	112.7°	New Guinea
• 9 Jul 71	03:03:18.7	32.55	71.2W	54	6.6	COP	112.9°	Near Coast of Central Chile
115-118°								
**17 Nov 64	08:15:39.3	5.75	150.7E	45	6.7	IST	117.3°	New Britain
**28 Mar 65	16:33:14.6	32.45	71.2W	61	6.4	IST	117.6°	Near Coast of Central Chile
**21 Dec 67	02:25:21.6	21.85	70.0W	33	6.3	ADE	117.2°	Near Coast of Northern Chile
28 May 68	13:27:18.7	2.95	139.3E	65	6.1	WMO	117.7°	New Guinea
1 Aug 68	20:19:21.9	16.5N	122.2E	37	5.9	WMO	115.8°	Luzon, Philippines
**14 Aug 68	22:14:19.4	0.2N	119.8E	23	6.0	MAL	116.7°	Celebes
* 28 Mar 70	21:02:23.4	39.2N	29.5E	20	6.0	PEL	117.3°	Turkey
* 11 Aug 70	10:22:20.0	14.15	166.7E	33	6.2	SHI	117.7°	New Hebrides
• 21 Nov 71	05:57:11.9	11.85	166.6E	115	6.4	SHI	116.5°	Santa Cruz Islands

Arrivals from Sweetser et al. (1973)
 Arrivals from Cohen et al. (1972)

TABLE V

Station Information - Large Events

STATION	LOCATION	L. (Deg	LATITUDE Min S	DE Sec)	T(Deg	LONGITUDE Min Se	UDE Sec)	ELEVATION Meters
ADE	Adelaide, Australia	34	5.8	0.15	138	42	32E	655
CMC	Copper Mine, N.W.T., Canada	29	50	N00	115	0.5	M00	3.1
TOO	College Outpost, Alaska	64	54	N00	147	47	30W	3.20
COP	Copenhagen, Denmark	55.	41	N00	12	26	00E	13
CPO	Cumberland Plateau, Tennessee	35	35	41N	85	34	14W	574
IST	Istanbul, Turkey	11	02	44N	28	59	45E	50
KON	Kongsberg, Norway	59	38	57N	6	37	55E	200
LAO	LASA Array Center, Montana	46	41	19N	106	13	20W	744
MAL	Malaga, Spain	36	43	39N	4	24	40M	09
MAT	Matsushiro, Honshu, Japan	36	32	30N	138	12	32E	110
PEL	Peldehue, Chile	33	8 ()	375	20	41	M 2 0	069
PRE	Pretoria, South Africa	25	45	125	2 8	11	24E	1553
SHI	Shiraz, Iran	5	58	18N	5.2	31	12E	1596
TFO	Tonto Forest, Arizona	34	16	0 4N	111	16	1.5W	1609
UBO	Uinta Basin, Utah	10	19	18N	109	34	MZ 0	1596
WMO	Wichita Mountain, Oklahoma	34	43	0 5 N	86	35	21W	505

			Small Event Information, 103-118" Distance (Listed by Event)	nt Inform (Liste	Information, 103-11 (Listed by Event)	03-118"	Distance											
DATE	OBIGIN TIME Hr Min Sec	(Pegrees)	(Degrees)	# (F)	\$00	SON X	S C	SEC SOURCE	AREA LOCATION A	ADE	040	ě	5-8	3	3	ğ	9	0
17 mm 13	06:09:18.2	15.78	120.16		5.5						١	١	1	ı	1	i	1	1 :01
20 May 64	90:01:14.4	2.75	139.36	:	5.8				New Guinea									107
10 AM 01	4.60:10:50	20.15	175.30	*	5.8				Fiji Islands									
28 Aug 66	17:29:34.7	35.85	178.5E	:	5.8				Off Northern New Zealand	-	114.0				106.0			
11 30 67	11:20:45.7	34,18	45.78	*	5.6					110.8								
25 Feb 67	11:20:50.1	0.15	123.96		5.8									116.1				
25 Feb 67	11.58:66.4	0.25	123.9E		5.6				Celebes					116.2				
20 Apr 67	00:01:26.6	5.55	129.75		5.7				Banda Sea								116	
1 Nov 67	18:50:54.8	4.85	135.78	=	5.8		5.8 -6.2 BRK	2 BRK	New Guines					112.5				
13 Feb 60	92:12:31.5	5.55	131.16		5.8				Banda Sea					116.0				
26 Jun 68	15:60:31.1	12.25	171.46	9.0	5.6				Loyelty Islands			112.1						
24 Oct 68	15:51:10,5	5.9N	127.08	20	5.4		6,50	PAS	Halmahera				109.7*					
7 Dec 68	04:57:49.0	3,45	145.9E	15	5.3	6.5	6,20	PAS	New Guines									163.3"
31 Jen 69	00:44:13.5	4.2N	128.16	33	5.7	6,3	99.9	FAS	Halmahera									
17 Feb 69	2 . 65:29:00	3.68	128.48	:	5.6	5.5	6.50	PAS	Halmahera								112.3	
20 Feb 69	09:55:33.8	3.58	128.28	333	5.7		6.50	PAS	Halmahera					110.7				
24 Feb 69	00:08:45.6	6.25	131.00	38	5.8	6.8			Tanimber Island					116.5				
15 Apr 70	13:14:21.4	15.1N	122.76	17	5.7	6.0	6.00	PAS	Luzon, Philippines								109.0	
12 Jun 70	08:06:15.6	2.95	139.16	3.2	5.7	6.1	9.40	PAS	Luron, Philippines								107.8"	
50 Jul 70	00:52:19.5	37.88	55.98	13	5.7	9.9	6.75	888	Iran-USSR Border								107.1	
25 Mar 71	09:52:12.3	41.5N	79.3E	3.3	5.1		6.80	ddn	Kirgiz-Sinklang Sorder								103.8"	
1 Jul 71	01:16:16.8	6.45	130.3E	133	5.8				Banda Sea						117.9*			
26 Sep 71	16:33:04.7	0.15	124.98	1.1	5.8				Molucca Sea								117.4	
18 Jan 72	21:15:15.5	•.•5	145.08	53	6.3	6.6	6,70	BRK	New Guinea					106.3*			104.0*	
19 Jes 72	15:00:54.2	1.75	145.0E	33	5.8	\$. g	65.50	PAS	New Guinea								104.0*	
22 May 72	06:04:00.1	16.44	122. SE	3.	5.1	6.9	6.70	PAS	Lucon, Philippines					163.3*			*1 *01	

Smail-Event Information, 103-118° Distance (Eisted by Distance Interval)

SOURCE REGION	And the state of t	Off Northern New Lealand	New Guinea	Kirgiz-Sinkiana Border	New Guinea	New Guinea	Luzon, Philippines		Luzon, Philippines	New Guinea	Halmahera	Luzon, Philippines	Euzon, Philippines	Iran-USSR Border	New Guinea	Luzon, Philippines		Fiji Islands	Off Northern New Zealand	Iran-Iraq Border	New Guines	Loyalty Islands	Halsahera	Halmaher	Lairahera		New Guinea	Celebes	Celebes	Banda Sea	Banda Sea	Tanimbar Island	Banda Sea	Molucca Sea
DISTANCE		104.4	103.3	103.8	104.0	104.0	103.3		107.5	107.8	109.7	109.5	107.8	107.1	106.3	108.1		114.3	114.0	110.8	112.5	112.1	111.1	112. "	110.7		117.6	116.1	116.2	116.9	116.0	116.5	117.9°	117.4
STATION		OM/	080	TFO	TFO	TFO	EA0		UBO	UBO	TU-NA	TFO	IFO	TFO	LAO	TFO		NDI	CPO	ADE	LAO	KBE	080	TFO	FA0		OMM	LAO	LAO	TFO	LAO	LAO	EF2	TFO
So Po		5.8	5.3	5.7	5.7	93	5.7		5.5	5.8	5.4	5.7	5.7	5.7	5.7	5.7		5.8	00	5.6	5.8	5.6	5.7	5.6	5.7		5.8	5.8	5.6	5.7	5.8	2.00	5.00	5.8
(Km)		*6	15	33	33	33	3.4		80	61	70	1.2	32	19	33	34		96	6	34	14	06	33	1.4	33		61	9.2	98	181	0	3.8	133	7.1
(Degrees)		178.5L	145.9E	79.3L	145.0E	145.0E	122.3E		120.1E	139.3E	127.0E	122.7E	139.1E	55.9E	145.01	122.3E		175.3W	178.5E	45.7E	135.7E	171.41	128.1E	128.4E	128.2E		139.3E	123.9E	123.9E	129.7L	131. IE	131.0E	130.3E	124.9E
(Degrees)		35.85	3.45	41.5N	4.85	\$.7.E	16.6%		15.7N	2.75	8.9v	15.1N	2.95	37.8N	4.85	16.68		20.15	35.85	34.1N	4.85	22.25	4.24	3.8N	3.5N		2.75	0.15	0.25	5.55	5.58	6.25	6.45	0.15
ORIGIN FIME Hr Min Sec		07:29:34.7	04:57:49.0	09:52:12.3	21 15:15.5	15:00:54.2	06:04:00.1		05:09:18.2	06:01:14.8	15:51:18.5	13:14:21.4	08:06:16.6	00:52:19.5	21:15:15.5	06:04:00.1		05:01:09.4	07:29:34.7	11:20:45.7	18:56:54.8	15:40:31.1	00:44:13.3	00:42:59.2	09:55:33.8		06 01:14.8	11.20:50.1	11:33:44.4	00:01:26.8	02:12:31.5	00:08:45.6	01:16:16.8	16:33:04.7
DATI	103-105°	28 Aug 66	7 Dec 68	23 Mar 71	18 Jan 72	19 Jan 72	22 May 72	105-110°	17 May 63	20 May 64	24 Oct 68	15 Apr 70	12 Jun 70	30 Jul 70			110-115°	*10 Aug 56	28 Aug 66	*11 Jan 67	I Nov 67	*26 Jun 68	31 Jan 69	17 Feb 69	20 Feb 69	115-118°	20 May 64	25 Feb 07	25 Feb 67	20 Apr 67	13 Feb 68	24 Feb 69	1 Jul 71	26 Sep 71

* Arrivals from Sweetser et al. (1973)

TABLE VIII

Station Information - Small Events

STATION	LOCATION	LATITUDE (Deg Min Sec)	LATITUDE Min S	DE Sec)	(Deg	LONGITUDE (Deg Min Sec)	UDE Sec)	ELEVATION Meters
ADE	Adelaide, Australia	34	28	0.15	138	42	32E	655
CPO	Cumberland Plateau, Tennessee	35	35	41N	85	34	14W	574
KBI	Kabul, Afganistan	34	34	N00	69	90	24E	1980
FILENS	Kanab, Utah	37	0.1	2 2N	112	49	39 W	1737
1.40	LASA Array Center, Montana	46	41	19N	106	13	20W	744
1 E 2	_	45	54	34N	105	29	W80	754
ION	New Delhi, India	8 2	41	N00	77	13	00E	230
TEO	Tonto Forest, Arizona	34	16	0 4N	1,1	16	13W	1609
UBO	Uinta Basin, Utah	40	19	18N	109	34	WZ 0	1596
OWM	Wichita Mountain, Oklahoma	34	43	0 5 N	9.6	35	21W	505

Let \overline{X}_i be the average small-event coda amplitude at the i'th time point;

be the number of individual coda values at the i'th time point which went into the determination of \overline{X}_i ;

be the standard deviation of the individual small-event coda determinations at the i'th time point;

 \overline{Y}_{i} be the average large-event coda amplitude at the i'th time point;

be the number of individual coda values at the i'th time point which went into the determination of \overline{Y}_{i} ;

be the standard deviation of the individual large-event coda determination at the i'th time point.

Then:

$$\delta_{i} = \overline{Y}_{i} - \overline{X}_{i}$$

and

$$\overline{\delta} = P^{-1} \sum_{i=1}^{P} \delta_i$$

where P is the number of time points for which corresponding large event and small event average coda determinations are available.

To compute the associated t-statistic, we must first determine the standard deviation of the mean difference, $s_{\overline{k}}$:

$$\mathbf{s}_{\overline{\delta}} = \frac{\mathbf{s}}{\overline{P}} \sum_{i=1}^{P} \frac{1}{m_i} + \sum_{i=1}^{P} \frac{1}{n_i}$$
 1/2

where

$$s^{2} = \frac{\sum_{i=1}^{P} (m_{i}-1 s_{x_{i}}^{2} + \sum_{i=1}^{P} (n_{i}-1 s_{y_{i}}^{2})}{\sum_{i=1}^{P} (m_{i}-1) + \sum_{i=1}^{P} (n_{i}-1)}.$$

Then:

$$t = \frac{\delta}{s_{\delta}}$$

It should be noted that the standard deviations of the mean differences s_{δ} shown by Sweetser et al. (1973, page 42) are incorrect; the correct values for their work are shown in Table IX.

Sweetser et al. (1973), using average coda determinations, found that the greater the event magnitude, the higher is the relative amplitude level at any given time for elapsed times greater than 10-20 seconds into the coda. Specifically, large-event codas were, on the average, about 0.14 $\rm m_b$ units higher in relative amplitude than corresponding relative amplitudes in small event codas. This suggested that large events are multiple events, and the corresponding period of source activity for a large event sequence was estimated visually to be on the order of 1 to 2 minutes.

An analysis of the differences in the large- and small-event codas for the codas shown in Appendix I is given in Table X. Statistically, of the four data sets examined, three show the large-event codas to be significantly larger than the small-event codas at the 95% confidence level (one-sided t-test). Only the $0.17 \, \mathrm{m_b}$ units difference found in the distance interval 115-118°, however, is in close agreement with the 0.14 m_b units average difference found in our earlier work. That the difference is due probably to the low signal-to-noise ratios observed on the seismograms rather than a real difference in coda behavior. Small events especially in the shadow zone, which are generally recorded with low signal-to-noise ratios, tend to yield high coda determinations throughout the coda relative to the maximum. This biases the average coda determinations for small events upwards, thereby lessening and apparently eliminating, in some cases, the 0.1-0.2 m units difference in large- and small-event codas which was observed in our earlier work. A thorough explanation of this effect is given by Sweetser et al. (1973). The signal-to-noise problem is particularly bad in the distance interval 105-110°, where the first arrival is a weak emergent, diffracted P phase (Pdiff). As shown by Sweetser and Blandford (1973), the amplitude of the P_{diff} in this interval is reduced on the order of 0.7 m_h units over the amplitude of the P phase at distances of about 100° (Figure 1); thus unless an event had a magnitude $m_b \stackrel{\sim}{>} 5.6-5.8$, we found it difficult to

TABLE IX

Coda Difference Analysis

(Modified after Sweetser et al., 1973)

(Observations at 0 and 10 Seconds Eliminated)

DISTANCE INTERVAL	AVERAGE D1FFERENCE** IN MEAN CODA, 8 (m _b)	STANDARD DEVIATION, s & **	t-VALUE	OBSERVATIONAL PAIRS DEG. FREEDOM
42-53°	0.16	0.03	5.90*	460
53-56°	0.02	0.05	0.37	90
56-59°	0.09	0.05	1.88*	87
59-63°	0.25	0.04	6.87*	234
63-67°	0.09	0.03	3.32*	173
67-72°	0.11	0.02	4.82*	312
72-79°	0.13	0.02	6.11*	385
79 - 84°	0.17	0.03	6.06*	220
84-93°	0.13	0.02	8.25*	682
98-103°	0.03	0.02	1.09	116
110-115°	0.05	0.03	1.87*	69
118-127°	0.08	0.02	3.64*	199
127-136°	-0.11	0.01	-13.72*	165
136-140°	0.19	0.04	4.39*	46
140-145°	-0.11	0.04	-3.00*	47
145-155°	0.28	0.03	8.73*	65
155-166°	0.14	0.02	6.72*	49

^{*}Significant at the 95% confidence level for a one-sided t-test; critical test value is 1.64.

^{**}Values rounded to the nearest hundredth.

TAFLE X

Coda Difference Analysis

(Observations at 0 and 10 Seconds Eliminated)

DISTANCE	AVERAGE DIFFERENCE IN MEAN CODA, 8** (m _b)	STANDARD DEVIATION, s	** t-VALUE*	OBSERVATIONAL PAIRS DEG. FREEDOM
103-105°	0.04	0.01	8.00	240
105-110°	0.04	0.01	7.87	294
110-115°	-0.02	0.01	-3.33	226
115-118°	0.17	0.01	28.92	251

^{*}Significant at the 95% confidence level for a one-sided t-test; critical test value is 1.64.

^{**}Values rounded to the nearest hundredth.

obtain accurate determinations of $P_{\rm diff}$ coda decay characteristics. Similar problems are encountered for the P arrivals for events at distances between 103-105°, and for the PKIKP arrivals for events at distances between 110° and 112°.

The problem of low signal-to-noise ratios in the range $103-118^{\circ}$ is much less pronouned for PP arrivals than for $P_{\rm diff}$ or PKIKP arrivals (Figure 1). We expect, therefore, that a comparison of codas for PP and later phases would bettwe exhibit coda differences between large and small events. That this is true is shown by the results of Table XI. Here all coda determinations prior to the arrival of the PP phase have been omitted, and coda differences computed from the remaining determinations. With one exception (for the interval $110-115^{\circ}$), coda differences of from 0.07 to 0.18 m_b units are now observed. We therefore conclude that a statistically significant difference is observed between large- and small-event codas, and that large-event codas are on the average 0.11 m_b units greater than small-event codas (average of positive differences only).

If large events are multiple events, significant secondary phases should be extended in time. As such, coda decay characteristics for large events should be retarded by arrivals from events which may occur following the initial event in a sequence. This effect is shown in Figures 2 through 4, which shows that the large- and small-event codas can be brought into coincidence by shifting the large event codas to earlier relative times. Estimates for the time shift, on the order of 1 to 2 minutes, can only be given to the nearest minute due to the method used to quantify the coda.

Average Coda Determinations

Two sets of coda determinations will be given, one each for "large" and "small" events.

For small events, average P and PKIKP codas (solid line), together with their corresponding standard deviations for the individual coda observations (dashed lines) are given in Appendix II. Average P and PKIKP codas for large events are shown in Appendix III.

TABLE XI

Coda Difference Analysis (Observations for PP and later phases)

OBSERVATIONAL PAIRS DEG. FREEDOM	9	9	1	9.
OBSERV PA DEG. F	136	166	181	176
** t-VALUE	13.35	11.15	-3.08	23.84
STANDARD DEVIATION, s ₅ **	0.01	0.01	0.01	0.01
AVERAGE DIFFERENCE** IN MEAN CODA, 5 (m _b)	0.08	0.07	-0.02	0.18
TIME INTERVAL OF FIRST READING s - seconds m - minutos	4 - 5m	4 - 5m	40-50s	1-2m
DISTANCE	105-105°	105-110°	110-115°	115-118°

*Significant at the 95% confidence level for a one-sided t-test; critical test value is 1.64.

**Values rounded to the nearest hundredth.

Figure 1. "B" Factor versus distance curves from ISC event data (90°-180°) after Sweetser and Blandford, 1973.

Figure 2. Comparison of large-event and small-event codas, $103^{\circ}-105^{\circ}$ distance, with the large-event coda shifted 1 minute earlier relative to the small-event coda.

Figure 3. Comparison of large-event and small-event codas, $105^{\circ}-110^{\circ}$ distance, with the large-event coda shifted 1 minute earlier relative to the small-event coda.

Figure 4. Comparison of large-event and small-event codas, $115^{\circ}-118^{\circ}$ distance, with the large-event coda shifted 2 minutes earlier relative to the small-event coda.

CONCLUSIONS

From an analysis of 26 small-event ($m_b \le 5.8$) seismograms recorded at a world-wide network of 10 stations, and of 26 large-event (m_b , M_s , or secondary $m_b \ge 7.0$) seismograms recorded at a world-wide network of 16 stations, the following conclusions are drawn with respect to coda-decay characteristics for events in the distance interval 103-118°:

- 1. The greater the event magnitude, the higher is the relative coda amplitude for times greater than the arrival time for PP. At the 95% confidence level (one-sided t-test), the mean difference is 0.11 $\rm m_{\rm b}$ units.
- 2. Differences in relative coda levels for large and small events (though they probably exist) are not well observed for P, P_{diff}, and PKIKP arrivals in the distance intervals 103-105°, 105-110°, 110-115°, respectively. In the distance range 103-115°, these phases, especially those which derive from small events, are generally not well recorded; thus it is difficult to obtain accurate determinations of their relative coda levels.
- 3. The retarded coda-decay characteristics for large events support the hypothesis that these are multiple events. Further, the period of source activity is estimated at 1 to 2 minutes.

REFERENCES

- Cohen, T. J., Sweetser, E. I. and Dutterer, T. J., 1972. P and PKP coda decay characteristics for earthquakes, Seismic Data Laboratory Report No. 301, Teledyne Geotech, Alexandria, Virginia.
- Sweetser, E. I. and Blandford, R. R., 1973. Seismic distance-amplitude relations for short period P, P_{diff} , PP and compressional core phases for $\Delta > 90^{\circ}$, Seismic Data Analysis Center Report SDAC-TR-73-9, Teledyne Geotech, Alexandria, Virginia.
- Sweetser, E. I., Cohen, T. J. and Tillman, M. F., 1973. Average P and PKP codas for earthquakes, Seismic Data Laboratory Report No. 305, Teledyne Geotech, Alexandria, Virginia.

APPENDIX 1

Comparison of large-event and small-event coda averages; large-event coda average shown in bold black; small-event coda average shown in narrow black; dashed and dauned lines with dots, respectively, indicate 95% confidence level for the coda averages.

- 1. 103-105°
- 2. 105-110°
- 3. 110-115°
- 4. 115-118°

LARGE-	EVENT	CODA		SMALL-	EVENT	CODA	
TIME	AVG	STD DEV	OBS	TIME	AVG	STD DEV	085
0.05	31.	0.08	9.	0.05	27.	0.08	6.
10.05	27.	0.07	9.	10.05	35.	0.05	6.
20.08	33.	0.06	9.	20.0S	47.	0.08	6.
30.0S	35.	0.07	9.	30.0S	37.	0.04	6.
40.05	33.	0.05	9.	40.0S	32.	0.11	6.
50.0S	28.	0.05	9.	50.0S	32.	0.10	6.
1.0M	29.	0.06	9.	1.0M	24.	0.13	6.
1.5H	30.	0.06	9.	1.5M	25.	0.08	6.
2.5M	26.	0.06	9.	2.5M	23.	0.04	6.
3.5M	35.	0.05	9.	3,5M	41.	0.04	6.
4.5M	90.	0.04	9.	4.5H	95.	0.02	6.
5.5M	71.	0.05	9.	5.5M	59.	0.05	6.
6.5M	53.	0.05	9.	6.5M	40.	0.03	6.
7.5M	38.	0.05	8.	7.5M	34.	0.04	6.
8.5M	32.	0.07	1.	8.5M	28.	0.06	6.
9.5M	26.	0.04	1.	9.58	22.	0.07	6.
10.5M	26.	0.04	1.	10.5M	18.	0.05	6.
11.5M	28.	0.08	7.	11.58	19.	0.05	6.
12.5M	24.	0.07	1.	12,5M	16.	0.08	6.
13.5M	37.	0.06	7.	13,5M	24.	0.07	5.
14.5M	25.	0.04	1.	14.5M	22.	0.08	5.
15.5M	20.	0.10	7.	15.5M	30.	0.04	5.

Figure AI-1. Comparison of large-event and small event coda averages, 103-105°.

Figure AI-2. Comparison of large-event and small-event coda averages, 105-110°.

Figure AI-3. Comparison of large-event and small-event coda averages, 110-115°.

LARGE-	EVENT	CODA		SMALL-EV	NT CODA	
TIME	AVG	STD DEV	OBS	TIME A	G SID DEV	obs
0.08	35.	0.11	9.	0.05 70	0.11	В
10.08	40.	0.07	9.	10.0S 30	. 0.11	8.
20.05	46.	0.06	9.	20.0S 3		8.
30.0S	46.	0.07	9.	30.0S 3		8.
40.05	38.	0.06	9.	40.0S 3	. 0.07	8.
50.08	41.	0.04	9.	50.0S 2		8.
1.0M	40.	0.02	9.	1.0M 28		8.
1.5M	95.	0.02	9.	1.5M 40		8.
2.5M	46.	0.06	9.	2.5M 27		8.
3.5M	41.	0.05	9.	3.5M 34		в.
4.5M	33.	0.05	8.	4.5M 18		8.
5.5M	31.	0.05	7.	5.5M 20		7.
6.5M	25.	0.07	7.	6.5M 18		7.
7.5M	21.	0.10	7.	7.5H 14		7.
8.5M	23.	0.12	6.	8.5M 16		7.
9.5M	21.	0.13	6.	9.5M 16		1.
10.5M	37.	0.10	6.	10.5M 31		7.
11.5M	37.	0.08	6.	11.5M 21		7.
12.5M	25.	0.12	6.	12.5M 15		7.
13.5M	24.	0.14	5.	13.5M 17		6.
14.5M	26.	0.16	5.	14.5M 16		6.
15.5M	14.	0.10	4.	15.5M 14		6.

Figure AI-4. Comparison of large-event and small-event coda averages, 115-118°.

APPENDIX II

Small-event coda averages; dashed lines with dots indicate \pm one standard of the individual coda observations.

- 1. 103-105°
- 2. 105-110°
- 3. 110-115°
- 4. 115-118°

TIME	AVG	STD DEV	OBS
0.05	27.	0.20	6.
10.08	35.	0.13	b.
20.05	47.	0.18	6.
30,05	37.	0.09	6.
40.05	32.	(1.26	6.
50.08	32.	0.24	6.
1.08	24.	0.32	6.
1.5M	25.	U.20	6.
2.5M	23.	0.09	6.
3.5M	41.	0.09	6.
4.5M	95.	0.06	6.
5.5M	54.	0.12	6.
6.5M	40.	0.08	6.
7.5M	34.	0.10	h.
8.5M	28.	0.14	6.
9.5H	22.	0.18	6.
10.5H	18.	0.12	6.
11.5M	19.	0.12	h.
12.5M	16.	0.20	h.
13.5M	24.	0.16	5.
14.5M	22.	0.17	5.
15.5M	10.	0.08	5.

Figure AII-1. Small-event coda averages, $103-105^{\circ}$.

TIME	AVG	STD DEV	OBS
0.05	20.	0.14	9.
10.08	21.	0.22	9.
20.05	23.	0.24	9.
30.0S	26.	0.23	9.
40.05	23.	0.21	9.
50.05	22.	0.21	9.
1.0M	17.	0.25	9.
1.5M	19.	0.21	9.
2.5M	16.	0.23	9.
3.5M	30.	0.18	9.
4.5M	79.	0.17	9.
5.5M	53.	0.16	9.
6.5M	35.	0.15	9.
7.5M	28.	0.15	9.
8.5M	25.	0.15	9.
9.5M	19.	0.09	9.
10.5M	21.	0.08	9.
11.5M	20.	0.17	9.
12.5M	19.	0.16	9.
13.5M	18.	0.11	٩.
14.5M	20.	0.15	9.
15.5M	53.	0.29	9.

Figure AII-2. Small-event coda averages, $105-110^{\circ}$.

TIME	AVG	STD OEV	085
0.05	83.	0.14	8.
10.05	52.	0.16	8.
20.05	51.	0.15	a.
30.05	41.	0.16	8.
40.05	44.	0.19	8.
50.05	55.	0.24	8.
1.0M	48.	0.23	8.
1.5H	52.	0.26	8.
2.5M	44.	0.20	7.
3.5M	48.	0.15	6.
4.5M	31.	0.17	6.
5.5M	37.	0.12	5.
6.5M	44.	0.09	5.
7.5H	32.	0.15	5.
8.5M	29.	0.15	5.
9.5M	28.	0.14	5.
10.5M	42.	0.13	5.
11.5M	50.	0.29	5.
12.5M	39.	0.16	5.
13.5M	45.	0.24	5.
14.5M	38.	0.26	4.
15.5M	40.	0.30	4.

Figure AII-3. Small-event coda averages, 110-115°.

TIME	AVG	STD DEV	OBS
0.08	70.	0.30	8.
10.08	36.	0.32	8.
20.05	31.	0.15	8.
30.05	36.	0.12	8.
40.05	31.	0.19	8.
50.05	25.	0.19	В.
1.0H	28.	0.16	8.
1.5M	40.	0.21	8.
2.5M	27.	0.14	8.
3.5M	34.	0.33	8.
4.5M	18.	0.17	d.
5.5H	20.	0.17	7.
6.5M	18.	0.15	1.
7.5M	14.	0.17	7.
8.5M	16.	0.19	7.
9.5M	16.	0.18	7.
10.5M	31.	0.29	7.
11.5M	21.	0.15	7.
12.5M	15.	0.16	7.
13.5M	17.	0.16	6.
14.5M	16.	0.18	h.
15.5M	14.	0.11	6.

Figure AII-4. Small-event coda averages, 115-118°.

APPENDIX III

Large-event coda averages; dashed lines indicate \pm one standard deviation of the individual coda observations.

- 1. 103-105°
- 2. 105-110°
- 3. 110-115°
- 4. 115-118°

TIME	AVG	STD JEV	085
0.05	31.	0.23	4.
10.05	27.	0.21	9.
20.08	33.	0.17	9.
30.08	35.	0.20	9.
40.05	33.	0.14	9.
.0.05	28.	0.14	9.
1.0M	29.	0.17	9.
1.5M	30.	0.17	9.
2.5H	26.	0.18	9.
3.5M	35.	0.14	9.
4.5M	90.	0.12	9.
5.5M	71.	0.14	9.
6.5M	53.	0.14	9.
7.5M	38.	0.15	8.
8.5H	32.	0.18	7.
9.5H	26.	0.11	7.
10.5M	26.	0.10	7.
11.5H	28.	0.20	7.
12.5H	24.	0.19	7.
13.5M	37.	0.16	7.
14.5H	25.	0.10	7.
15.5M	20.	0.27	7.

Figure AIII-1. Large-event coda averages, 103-105°.

```
TIME AVG STD DEV 0BS

0.05 12. 0.20 9.
10.08 13. 0.34 9.
20.05 20. 0.24 9.
30.05 24. 0.12 9.
40.08 22. 0.12 9.
50.08 21. 0.18 9.
1.0M 19. 0.18 9.
1.5M 20. 0.12 9.
2.5H 16. 0.15 9.
3.5M 34. 0.22 9.
4.5M 83. 0.17 9.
5.5M 71. 0.15 9.
5.5M 71. 0.15 9.
6.5M 45. 0.16 9.
7.5M 38. 0.13 9.
6.5M 38. 0.13 9.
6.5M 26. 0.10 7.
10.5M 24. 0.07 6.
11.5M 19. 0.04 5.
12.5M 20. 0.12 5.
13.5M 19. 0.19 5.
14.5M 31. 0.13 5.
```


Figure AIII-2. Large-event coda averages, 105-110°.

```
TIME AVG STD DEV 08S

0.0S 41. 0.11 9.
10.0S 43. 0.15 9.
20.0S 39. 0.17 9.
40.0S 46. 0.18 9.
50.0S 57. 0.12 9.
1.0M 73. 0.13 9.
1.5M 98. 0.03 9.
2.5M 62. 0.13 9.
4.5M 40. 0.16 8.
5.5M 39. 0.21 8.
7.5M 28. 0.13 8.
7.5M 28. 0.13 8.
7.5M 28. 0.13 8.
7.5M 28. 0.13 8.
7.5M 29. 0.18 8.
7.5M 29. 0.18 8.
7.5M 29. 0.17 7.
10.5M 30. 0.16 6.
11.5M 43. 0.23 5.
12.5M 32. 0.15 5.
13.5M 31. 0.17 4.
14.5M 19. 0.22 4.
```


Figure AIII-3. Large-event coda averages, 110-115°.

```
TIME AVG STD DEV 0BS

0.0S 35. 0.32 9.
10.0S 40. 0.20 9.
20.0S 46. 0.19 9.
40.0S 38. 0.19 9.
50.0S 41. 0.12 9.
1.0M 40. 0.07 9.
1.5M 95. 0.07 9.
2.5M 46. 0.19 9.
4.5M 33. 0.15 8.
5.5M 31. 0.15 8.
5.5M 31. 0.15 7.
7.5M 21. 0.26 7.
8.5M 23. 0.29 6.
10.5M 37. 0.24 6.
11.5M 37. 0.20 6.
13.5M 24. 0.32 5.
14.5M 26. 0.35 5.
```


Figure AIII-4. Large-event coda averages, 115-118°.