DIGRESSION :

DENSENS INEQUALITY & CONVEXITY

Definition: A function f(x) is said to be convex over an interval (a, b) if for every $x_1, x_2 \in (a, b)$ and $0 \le \lambda \le 1$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$
. (2.72)

A function f is said to be strictly convex if equality holds only if $\lambda = 0$ or $\lambda = 1$.

(a)

(b)

Definition: A function f is concave if -f is convex.

NEG. 2ND DERIVATIVE 15 SUFFICIENT

5x(K-1) + 1x K = 0X

FOR SEGMENT RECOIL

Theorem 2.6.1: If the function f has a second derivative which is non-negative (positive) everywhere, then the function is convex (strictly convex).

Proof: We use the Taylor series expansion of the function around x_0 , i.e.,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x^*)}{2}(x - x_0)^2$$
 (2.73)

where x^* lies between x_0 and x. By hypothesis, $f''(x^*) \ge 0$, and thus the last term is always non-negative for all x.

We let $x_0 = \lambda x_1 + (1 - \lambda)x_2$ and take $x = x_1$ to obtain

$$f(x_1) \ge f(x_0) + f'(x_0)[(1 - \lambda)(x_1 - x_2)]. \tag{2.74}$$

Similarly, taking $x = x_2$, we obtain

$$f(x_2) \ge f(x_0) + f'(x_0)[\lambda(x_2 - x_1)]. \tag{2.75}$$

Multiplying (2.74) by λ and (2.75) by $1 - \lambda$ and adding, we obtain (2.72). The proof for strict convexity proceeds along the same lines. \square

$$\lambda f(x_1) + (1-\lambda) f(x_2)$$

$$\lambda (\lambda + 1-\lambda) f(x_0) + \lambda (1-\lambda) f'(x_0) (x_1-x_2) + \lambda (1-\lambda) f'(x_0) (x_2-x_1)$$

$$\lambda (\lambda + 1-\lambda) f(x_0) + \lambda (1-\lambda) f'(x_0) (x_2-x_1)$$

Let E denote expectation. Thus $EX = \sum_{x \in \mathcal{X}} p(x)x$ in the discrete case and $EX = \int x f(x) dx$ in the continuous case.

The next inequality is one of the most widely used in mathematics and one that underlies many of the basic results in information theory.

Theorem 2.6.2 (Jensen's inequality): If f is a convex function and X is a random variable, then

$$Ef(X) \ge f(EX) \,. \tag{2.76}$$

Moreover, if f is strictly convex, then equality in (2.76) implies that X = EX with probability 1, i.e., X is a constant.

Proof: We prove this for discrete distributions by induction on the number of mass points. The proof of conditions for equality when f is strictly convex will be left to the reader.

For a two mass point distribution, the inequality becomes

$$p_1 f(x_1) + p_2 f(x_2) \ge f(p_1 x_1 + p_2 x_2),$$
 (2.77)

which follows directly from the definition of convex functions. Suppose the theorem is true for distributions with k-1 mass points. Then writing $p_i' = p_i/(1-p_k)$ for $i=1,2,\ldots,k-1$, we have

$$\sum_{i=1}^{k} p_{i}f(x_{i}) = p_{k}f(x_{k}) + (1 - p_{k}) \sum_{i=1}^{k-1} p'_{i}f(x_{i})$$

$$\geq p_{k}f(x_{k}) + (1 - p_{k})f\left(\sum_{i=1}^{k-1} p'_{i}x_{i}\right)$$

$$\geq f\left(p_{k}X_{k} + (1 - p_{k})\sum_{i=1}^{k-1} p'_{i}X_{i}\right)$$

$$\geq f\left(\sum_{i=1}^{k} p_{i}X_{i}\right)$$

$$\geq f\left(\sum_{i=1}^{k} p_{i}X_{i}\right)$$

$$\geq f\left(\sum_{i=1}^{k} p_{i}X_{i}\right)$$

$$\leq f\left(\sum_{i=1}^{k} p_{i}X_{i}\right)$$

CONTINUOUS CASE PROVEN USING CONTINUITY ARGUMENTS!