Pesquisa Operacional

Introdução

 Otimização: maximizar ou minimizar uma quantidade específica, chamada objetivo, que depende de um número finito de variáveis de entrada.

- As variáveis de entrada podem ser:
 - Independentes uma das outras.
 - Relacionadas uma com as outras por meio de uma ou mais restrições.
- Algumas aplicações:
 - mix de produtos, escalonamento de tarefas, grade horária, roteamento e logística, planejamento financeiro, dentre outros.

Pesquisa Operacional

- A Pesquisa Operacional (PO) trata da modelagem matemática de fenômenos estáticos ou dinâmicos.
 - Os problemas estáticos são denominados por determinísticos. Nestes problemas, todos os componentes são conhecidos *a priori* e nenhuma aleatoriedade em sua ocorrência é admitida.
 - Os problemas dinâmicos são denominados estocásticos, e seus elementos apresentam uma probabilidade de ocorrência em uma determinada forma.

Etapas para o processo de PO

- Etapa 1: Observar o ambiente do problema.
 - Inclui diferentes atividades: reuniões, visita in loco, pesquisa,
 observações. Visa obter informações para a formulação do problema.
- Etapa 2: analisar e definir o problema.
 - Neste passo, além da definição explítica do problema, são analisados os objetivos, utilidade e limitações da PO.
- Etapa 3: Desenvolver um modelo.
 - Um modelo é uma representação de algo abstrato ou de uma situação real. Basicamente, são modelos matemáticos, os quais descrevem sistemas e processos na forma de equações e relacionamentos. O modelo pode ser testado sob diferentes restrições do ambiente.

Etapas para o processo de PO

- Step IV: Select appropriate data input
- A model works appropriately when there is appropriate data input. Hence, selecting appropriate input
- data is important step in the O.R. development stage or process. The activities in this step include
- internal/external data analysis, fact analysis, and collection of opinions and use of computer data banks.
- The objective of this step is to provide sufficient data input to operate and test the model developed in
- Step_III.
- Step V: Provide a solution and test its reasonableness
- This step is to get a solution with the help of model and input data. This solution is not implemented.

Aplicações

Aplicação	Resultados
Cobertura de arcos: rotas para leitura de água	105.793 metros para 97.839 metros
Alocação de vagas docentes nos departamentos de ensino	Distribuição mais adequada de vagas por departamento

Pesquisa Operacional

- Os problemas determinísticos de PO podem ser classificados em duas categorias genéricas: problemas de programação linear e não-linear.
- Um problema qualquer de programação linear é um problema de otimização com as seguintes características:
 - o problema possui um conjunto de variáveis manipuláveis no procedimento de busca pelo ótimo - variáveis de decisão do problema.
 - uma função objetivo compõe o critério de otimalidade, sendo escrita em termos das variáveis de decisão do problema. A função objetivo é uma função linear das variáveis de decisão, devendo ser otimizada.
 - os valores assumidos pelas variáveis de decisão devem satisfazer um conjunto de restrições - região de soluções viáveis do problema.
 - as variáveis de decisão podem assumir valores pré-estabelecidos no domínio dos números reais.

Programação Linear

- Problemas de programação são modelados tal que o melhor uso de recursos escassos possa ser determinado, conhecidos os objetivos e necessidades do analista.
- Problemas de programação linear compõem uma subclasse de problemas nos quais a modelagem é, inteiramente, expressa em termos de equações lineares.

Programação Linear

- A construção de um modelo de programação linear segue três passos básicos.
 - Passo I. Identifique as variáveis desconhecidas a serem determinadas (elas são denominadas variáveis de decisão) e represente-as através de símbolos algébricos (por exemplo, x e y ou x1 e x2).
 - Passo II. Liste todas as restrições do problema e expresse-as como equações (=) ou inequações (≤, ≥) lineares em termos das variáveis de decisão definidas no passo anterior.
 - Passo III. Identifique o objetivo ou critério de otimização do problema, representando-o como uma função linear das variáveis de decisão. O objetivo pode ser do tipo maximizar ou minimizar.

Exemplo#1 O problema do mix de produção

 A empresa Dalai-Lama deseja planejar a produção de incensos. Os incensos requerem dois tipos de recursos: mãode-obra e materiais. A empresa fabrica três tipos de incenso, cada qual com diferentes necessidades de mão-de-obra e materiais.

		Modelo	
	Α	В	O
Mão-de-obra (horas por unidade)	7	3	6
Materiais (g / unidade produzida)	4	4	5
Lucro (\$ / unidade)	4	2	3

 A disponibilidade de materiais é de 200 g/dia. A mão-de-obra disponível por dia é de 150 horas. Formule um problema de programação linear para determinar quanto deve ser produzido de cada tipo de incenso, tal que o lucro total seja maximizado.

Exemplo#1 O problema do mix de produção

- Passo I Identifique as variáveis de decisão. As atividades a serem determinadas dizem respeito às quantidades de produção dos três tipos de incenso. Representando essas quantidades em termos algébricos, tem-se:
 - x_Δ = produção diária do incenso tipo A
 - x_B = produção diária do incenso tipo B
 - x_C = produção diária do incenso tipo C

Exemplo#1: O problema do mix de produção

 Passo II. Liste todas as restrições do problema e expresse-as como equações (=) ou inequações (≤, ≥) lineares em termos das variáveis de decisão definidas no passo anterior.

$$7x_A + 3x_B + 6x_C \le 150$$

 $4x_A + 4x_B + 5x_C \le 200$
 $x_A \ge 0, x_B \ge 0, x_C \ge 0.$

Exemplo#1: O problema do mix de produção

 Passo III - Identifique o objetivo. O objetivo é maximizar o lucro total oriundo das vendas dos produtos. Supondo que tudo o que for produzido encontre mercado consumidor, o lucro total resultante das vendas será:

$$z = 4x_A + 2x_B + 3x_C$$

 Portanto, tem-se: determine os valores de xA, xB e xC que maximizem:

$$z = 4x_A + 2x_B + 3x_C$$

Sujeito às restrições:

$$7x_A + 3x_B + 6x_C \le 150$$

 $4x_A + 4x_B + 5x_C \le 200$
 $x_A \ge 0, x_B \ge 0, x_C \ge 0.$

Exemplo#2: Lucro versus Capacidade de Operação

 Uma indústria produz 2 produtos, sendo que um consome um certo número de horas em 3 máquinas para ser produzido:

Produto	Tempo Máquina A	Tempo Máquina B	Tempo Máquina C
I	2	1	4
II	2	2	2

Tempo de funcionamento máximo disponível das máquinas:

Máquina	Máximo tempo disponível
A	160
В	120
C	280

 O lucro para cada produto I é \$1,00 e para cada produto II é \$1,50. Quanto fabricar de cada produto tal que seja obedecida a capacidade operativa das máquinas com o maior lucro possível?

Exemplo#3: Empresa Aérea

Exemplo Típico 3

Uma empresa aérea possui 2 tipos de aeronaves, I e II, sendo que cada aeronave utiliza uma certa quantidade de pilotos, engenheiros de vôo e comissários, para operar, conforme a tabela:

Aeronave	Pilotos	Engenheiros de vôo	Comissários
I	2	1	4
II	2	2	2

A empresa possui a seguinte disponibilidade de funcionários:

Funcionário	Disponibilidade
Piloto	160
Engenheiro de vôo	120
Comissário	280

O lucro obtido por cada aeronave I é \$1,00 e por cada aeronave II é \$1,50. Quantas aeronaves de cada tipo devem utilizadas de modo que seja obedecida a disponibilidade de funcionários a fim de obter o maior lucro possível ?

Exemplo#4: Padaria

Exemplo Típico 2

Uma padaria produz 2 bolos, I e II, sendo que cada bolo consome um certa quantidade de açúcar, farinha e ovo, para ser produzido, conforme a tabela:

Bolo	Açúcar (kg)	Farinha (kg)	Ovo (un)
I	2	1	4
II	2	2	2

O estoque disponível dos ingredientes é:

Ingrediente	Estoque
Açúcar	160 kg
Farinha	120 kg
Ovo	280 un

O lucro obtido por cada bolo I é \$1,00 e por cada bolo II é \$1,50.

Quanto produzir de cada bolo com o estoque de ingredientes disponível a fim de obter o maior lucro possível ?