Week 1 Review

Textbook

- In case you don't want to purchase a full-price textbook but want access to it for reference:
 - Check the book out first in the library (it's under course reserves).
 - Look for a used copy
- If you have a different edition:
 - You can find the table of contents of the 4th edition under Course Materials -> General Course Information.

Week 1 Review

- Properties of electricity
- Semiconductor materials
 - Doping (n-type and p-type)
- p-n junctions
- Transistors
 - MOSFETs

How CSC258 tutorials work

- Each week has three hours of classroom time.
 - Two hours of lectures,
 - One hour of tutorials.
- The tutorial is split into two halves:
 - The first half hour at the beginning, reviewing last week's material and potential exam questions.
 - The second half hour is later in the week, reviewing what you need to know for the upcoming lab.

Let's review Logic gates are built from

Let's review

Logic gates are built from transistors.

This transistor is called nMOS.

It conducts (i.e., acts as a closed switch) if we apply 5 Volts (logic-1) at its gate.

This transistor is called pMOS

It conducts (i.e., acts as a closed switch, if we apply o Volts (logic-o, Gnd) at its gate.

Which gate is this one?

Α	В	W	Y
0	0		
0	1		
1	0		
1	1		

Basic Logic Gates: Symbols and Truth Tables

• What are the names and truth table values for the following gates? How many transistors do you need to build a NOT gate?

A	В	Y
0	0	
0	1	
1	0	
1	1	

A	В	Y
0	0	
0	1	
1	0	
1	1	

A	Y
0	
1	

Basic Logic Gates: Symbols and Truth Tables

• What are the names and truth table values for the following gates?

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

A	Y	
0	1	
1	0	

More Questions

What gate is created by the following?

Remember: transistors that look like are activated when the gate input is high, whereas transistors that look like are activated when the gate input is low.

Kinds of current

What is the name of currents A and B, and how are they produced?

Question 2

- Two things to note here:
 - Need to determine which electrons are moving from high concentration to low concentration (diffusion),

and which are moving because of the electric field (drift).

- Note: Current is measured in the opposite direction of electron flow (i.e. as the flow of positive charge through the material)
- □ A → diffusion

 $B \rightarrow drift$

Week 1 - Problem Set

Questions

 Name all the gates that produce a HIGH Output when all the Inputs are LOW NAND, NOR, NOT

2. What is the decimal representation of the hexadecimal value ox2A?

42

3. Draw a 2-input XNOR gate and the truth table for it.

Inputs		Outputs
Х	Υ	Z
0	0	1
0	1	0
1	0	0
1	1	1

Q4: Complete the truth table

A	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Questions

- 5. True or False? Doping gives a semiconductor an overall positive or False negative charge.
- 6. What kind of bias on a pn junction causes the depletion layer to expand? Reverse bias
- 7. Phosphorus has 5 electrons in its outer valence shell. When added in small amounts to silicon, the result is a _____ semiconductor. Doped or N-Type

Q8: Which gate is this one?

Α	В	W	Y
0	0	1	0
0	1	0	1
1	0	0	1
1	1	0	1

$$W = \overline{(A + B)}$$
$$Y = (A + B)$$