Remote Health Monitoring System with Analytics Dashboard

Sisira Kumar Kapat

Department of Computer Science & Engineering,
UCP Engineering School,
Berhampur, Orissa

Agenda

- Introduction to the project
- Literature Review
- Existing problem
- Proposed Solution
- Block Diagram
- Hardware/Software Design
- Experimental Investigation
- Flow Chart
- Result Analysis
- Advantages and Disadvantages
- Application
- Conclusion
- References

Introduction

- This project addresses the current demand of wearable which could be developed further to function and meet the need of patients effectively.
- Utilization of sensors decreases the possibility of human mistake, ensures better care and treatment, reduces medical expenses, lessens the involved space of the room and improves overall performance.
- This system is much practical in maintaining social distancing and to avoid spread of the Covid-19 or such contagious diseases.

Purpose

- The purpose of this project is to use ICT in healthcare.
- Bustling time schedule and unpredictable situations of life increases the probability of health risk, independent of the age of a person.
- Though we cannot replace the healthcare system with this, but this project ultimately supplements the existing healthcare system.

Existing Problem

- Hesitation to move to a hospital.
- Busy schedule of the people. The denial will increase the health issue and subsequently results into a health hazard.
- The numbers of health professionals are limited, which increases the personal overhead to each health professionals. For example, a single doctor can check or treat up to a certain number of patients in specific time duration.
- Patients who met with an accident, patients at the time of child-birth (delivery cases) or such patients in critical condition need emergency attention. A wearable can be much helpful in observing the status of such patients. The doctor can observe remotely to such patients till they arrive the hospital.

Proposed Solution

 Integrate sensors with handheld devices or wearable.

Block Diagram

- The system is composed of three components such as,
 - User interface to enter name, gender and age
 - IoT interface to collect the health parameters
 - Machine learning model in the cloud to evaluate the data

Block Diagram (Cont...)

Hardware/Software Design

- IoT Service (IBM Watson IoT Platform)
 - Temperature Sensor
 - Blood Pressure Sensor
 - Pulse Sensor
- Node-RED user interface
- Machine Learning Model design
- Cloudant Database Design

Procedure for hardware/software design

- IBM Academic Initiative account
- Create and launch Node-RED instance
- Create an IBM Watson IoT Platform
- Configure the IoT platform
- Configure the Watson Studio service
- Configure and connect the online simulator
- Build a machine learning model
- Create a node-RED flow to get data fro IBM IoT device
- Create HTTP requests
- Create UI to input user data
- Store the user data in the cloud database
- Create node-RED to display the detailed prediction

Hardware/Software Design (cont...)

The system is designed by using IBM cloud online resources.

Resources used

IBM Watson IoT Platform

IBM Watson IoT Platform

 This service is used to simulate the different sensors using IBM IoT.

```
Payload

Specify the event payload in the editor window or by uploading a CSV file.

0 {

1  "temperature": random(0, 41),

2  "pulse": random(0, 200),

3  "BPsystolic": random(0, 200),

4  "BPdiastolic": random(0, 140)
```

API keys

Node-RED UI Creation

Machine Learning model Creation

Dataset

Attribute	Range					
Age	0 to 80					
Temperature	0 to 41					
BP (Cistole)	0 to 200					
BP (Distole)	0 to 140					
BP (Distole)	0 to 140					

Machine Learning model Creation (cont...)

Machine Learning model Testing(cont...)

Machine Learning model Creation (cont...)

Database Creation

Data in the database

Experimental Investigation (Progress map)

Progress map ①

Prediction column: status

Pipeline Leaderboard (CV)

Pipeline leaderboard

Rank ↑	Name	Algorithm	Accuracy (Opt	Enhancements	Build time
* 1	Pipeline 3	Decision Tree Classifier	0.959	HPO-1 FE	00:00:36
2	Pipeline 4	Decision Tree Classifier	0.959	HPO-1 FE HPO	00:00:13
	ripeline	4 Decision Tree Class	itier (לכל.נ	HPO-1 FE HPO-
3	Pipeline	1 Decision Tree Class	ifier (0.958	None
4	Pipeline	2 Decision Tree Class	ifier (0.958	HPO-1
5	Pipeline	7 Random Forest Clas	sifier (0.953	HPO-1 FE
6	Pipeline	8 Random Forest Clas	sifier (0.953	HPO-1 FE HPO-

Some Terminologies associated with ML

 The accuracy of the classifier is the probability of correctly classifying the records in the test dataset.

$$Accuracy = \frac{True\ Positive + True\ negative}{Total}$$

 In multi-class classification, the true positive is the sum of all the true positive case of all the pipelines and similarly false positive, false negative and true negative is calculated.

Some Terminologies associated with ML

 The precision of the classifier is the probability of records actually being in a class if they are classified to be in that class.

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

 The recall of the classifier is the probability that a record is classified as being in a class if it actually belongs to that class.

$$Recall = \frac{True\ Positive}{True\ Positive + False\ N}$$

 The F-measure is the harmonic mean of precision and recall.

$$F - measure = \frac{2 \times Recall \times Pre}{Recall + Precise}$$

Detailed Accuracy (CV)

Pipeline leaderboard

Rank ↑	Name	Algorithm	Accuracy (Optimiz	F1 macro	F1 micro	F1 weighted	Log loss	Precision m	Precision m	Precision w	Recall macro	Recall micro	Recall weig
* 1	Pipeline 3	Decision Tree Classifier	0.959	0.930	0.959	0.959	1.400	0.939	0.959	0.965	0.937	0.959	0.959
2	Pipeline 4	Decision Tree Classifier	0.959	0.930	0.959	0.959	1.400	0.939	0.959	0.965	0.937	0.959	0.959
3	Pipeline 1	Decision Tree Classifier	0.958	0.930	0.958	0.958	1.437	0.937	0.958	0.963	0.937	0.958	0.958
3	Pipeline 1	Decision Tree Clas	ssifier	0.95	8	0.930	0.9	58 0	.958	1.437	0.937	0.95	8 0
4	Pipeline 2	Decision Tree Clas	ssifier	0.95	8	0.930	0.9	58 0	.958	1.437	0.937	0.95	8 0
5	Pipeline 7	Random Forest Cla	assifier	0.95	3	0.923	0.9	53 0	.952	0.315	0.946	0.95	3 0
6	Pipeline 8	Random Forest Cla	assifier	0.95	3	0.923	0.9	53 0	.952	0.315	0.946	0.95	3 0

Comparative analysis of different pipelines of cross validation

Metric chart ①

Prediction column: status

Comparative analysis of different pipelines of Holdout

Metric chart ①

Prediction column: status

Flowchart

Result Analysis

- Input
 - Form input
 - Sensor input
- Output

Form Input

Health Monitoring System

Health data

Name "

Prithvi

Name *

Prithvi

Gender*

male

age *

_

Sensor Input

Output

Advantages

- Quick access by means of the mobile devices.
- Avoid contagious diseases, since this platform avoids rush.
- Daily or hourly status of a patient can be maintained for observation. This facility can be helpful to keep track of the patients who are in critical condition.
- Utilization of sensors decreases the possibility of human mistake.
- Ensures better care and treatment.
- Reduces medical expenses by reducing the travelling frequency.
- Lessens the involved space of the room and improves overall performance

Disadvantages

- Some of the diseases require privacy and confidentiality. If the database got exposure to the public, then it violates the right to privacy of a person.
- We cannot replicate the healthcare system, no matter how efficient this system is, sometimes the person has to consult the health care professional.

Applications

- handhold devices
- wearable
- Web based monitoring

Conclusion and future work

- The health care system has to be improvised with the evolution and revolution of engineering and technology.
- This will create a positive environment to use the ICT in health care system.
- In this system the overall accuracy 95.9%, which holds good in the prediction but has to be improved.
- This can hamper the right to privacy in some extent which has to be taken care.

References used

- Ananda Mohon Ghosh, Debashish Halder, SK Alamgir Hossain, "Remote Health Monitoring System through IoT", 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp 921-926, 2016
- Dahlia Sam, S.Srinidhi, V. R. Niveditha, S.Amudha, D. Usha, "Progressed IOT Based Remote Health Monitoring System", International Journal of Control and Automation, Vol. 13, No. 2s, pp. 268-273, 2020
- Ngo Manh Khoi, Saguna Saguna, Karan Mitra, Christer Ahlund, "IReHMo: An Efficient IoT-Based Remote Health Monitoring System for Smart Regions", https://www.diva-portal.org/smash/get/diva2:1005647/FULLTEXT01.pdf
- Mohd. Hamim, Sumit Paul, Syed Iqramul Hoque, Md. Nafiur Rahman, Ifat-Al-Baqee, "IoT Based Remote Health Monitoring System for Patients and Elderly People", International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 978-1-5386-8014-8/19, IEEE, 2019

Thank You...