Logist	Reg	ress id u	(Weck 3	lectures	>			
., .,	4.							
- classifi								
- y 15	discret	e.						
u u								
1. Classi	firation							
	ex.	email	spam, or	ulme trav	sactrus, te	mor.		
	. 4	<i>c.</i> 2 o .	1 7 ->	himan	· clase			
	ð			0	7 -1435 .			
	и	regative.	pusitive	class.				
	c	lars) > pusitine					
	· mult	i - clars	classifia	tru	y = 10,1,	٠, ٢		
	· hne	ar negn	reson is w	st gwd -	for classifina	etivi		
			1) although	lu=0 ov		(X) cay mutan	t put of value i.e	
			, hand	j	, ,	<0.0r >	t out of range, i.e	
=>	Cognit	il regne	فكرايم : مم	tput aluc	uz in-range	. DE hocx) ≤ 1.	
	0				4			
	c l	ussification						
		4351114441						
2. Hyp	thesis	Represe	utation.					-
	- w	oant:	os hocx) &	1	an ear	neg ression.	Ø [™] (*)	
	=>	l. (x) =						
		No (7)	J. (8, ×),	nnene	g(&)= 1+e	-Z. (sig	hoid function,	
			t l			1	ostic function)	
		=	1+ e- 67 X		real number	912 }		
						V 1		
				ence	ho + (0,1)		0, 5	
					NG 4 (2) 1)			
	Y	pirk valu	re for 0				7	

Interpretation. ho(x) = estimated probability of y= 1 on input x. ex. x= / 1 | $h_{\theta}(x) = 0.7 = > 0.70$ chance of 6 cmg 1. y=0 or 1. => Pay=0 | x; 0) + Pay=1 /x; 0)=1, 3. Decision Bounday. . ho (x)= g(oTx); g(z)= 1+e-z = p(y=1|x; 9) Suppose predict $\begin{cases} y=1 \\ y=1 \end{cases}$ if $h_0(x) > 0.5$, $\theta^{7}x > 0$. $g(z) \neq 0.5 \text{ when } \neq \neq 0$ $h_0(z) = g(\theta^{\dagger} z) \neq 0.5 \iff \theta^{7} x = 0$

Non-Imear decision boundaries.

- define optimization objective. (cost function)
- training set, { (x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m)) }
- maxamples x4 [x.] x0=1, y6 10, 1]
- ho(x) = 1 + e-o7x.
- how to choose @ ?
- Recall:

$$\Rightarrow cost (h_0(x), y) = \frac{1}{2} (h_0(x), y)^{2}$$

Ite-07x. => non comex for square ast

Logista regression.

>> objective = create cost function sit. J(0) is convex.

Cost
$$(ho(x), y) = 1 - log(ho(x)), y=1 - log(1-ho(x)), y=0$$

- But as $ho(x) \rightarrow 0$, $cost \rightarrow \infty$.
- · (aptures Tutuitron of hock)=0 predet. P(y=(|z|,b)=0 but y=(

Compensative learning algorithm we went large cost of ao.

$$= -\frac{1}{m} \sum_{i=1}^{m} y \log h_{\theta}(x^{(i)}) \rightarrow (1-y^{(i)}) \log (1-h_{\theta}(x^{(i)}))$$

Cr maximum libelihood estimation.

To fit parameters 0, mon J(0)

To make predative given new x, output
$$h_0(z) = \frac{1}{1+e^{-\sigma T}z}$$
. $P(Y=1|z_5\theta)$

repeat (
$$\frac{2}{20}J(0) = \frac{1}{m}\int_{0}^{m} (h_0(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

def in hus changed from linear regression!

$$\begin{array}{c}
0 = \begin{pmatrix} 0 & 0 \\ \vdots \\ 0 & 1 \end{pmatrix}, \quad \chi^{(i)} = \begin{pmatrix} \chi^{(i)} \\ \chi^{(i)} \\ \vdots \\ \chi^{(i)} \end{pmatrix}$$
one sample χ_{N} $\gamma \rightarrow f$ eature ψ .

$$\theta_{j} := \theta_{j} - \alpha_{m} + \sum_{i=1}^{m} (1_{\theta_{i}}(x^{(i)}) - y^{(i)}) \cdot x_{j}^{(i)}$$

$$\frac{\theta}{\theta} = \frac{\theta}{m} - \frac{\alpha x}{m} \cdot \frac{x}{\pi} \cdot \left(\left(h_{\theta}(x^{(r)}) - g^{(r)} \right) \cdot x^{(r)} \right)$$

Advanced optimization

. cost function. Jio), man (mm J (0)

· gradient descent

Repeat 1 $O_{i} = O_{i} - \alpha \frac{2}{20}, J(0)$

Multiclass Classification.

ex. Email Foldering 1 Tagging > y=1,2,3,4, hobby. family

One-us -all. (one-us-rest)

-birrary (this group or not).

- Herate through every group.

. fit 3 class if iers: $h_0^{(i)}(x) = P(y=i|x;0)$ (i=1,2,3)

Tram a logistre regression classifier. he (i) (x) for each class i to prednt.

Lecture 7	Solving th	ne Problem of over fit	ting	
1. The p	roblem of a	puerfitting		
	(1) Vude	erfit, high bias	×	Θο 1 Θιχ
	(1) "Just	t nght"	1 , , ,	X
			Y,	φ ₀ +θιχ + θ ₁ χ ²
	(3) Over fi	it, high vaniance	1	
		tw fitting, can fit any data		θ 0 + θ 1 X + θ 2 X 2 + θ 3 2 3 + θ 4 X 4
	- to	many features		
4 ddmss	overlitting			
	(1) Reduce	number of features		
		- manually select - model selection		to keep.
	(2) Regulariz	a tron		
		- keep all the feature parameters oj.	ives, but reduce	magnitude / values of
		- Works well when w contributes a bit	se have a lot of 70 predating y	features, each of which

2.	Cost		Functi	on																								_			
			Intuit	מנה																								_			
			zniwi																	0	3 2	o		Ð4	~	0					
					Sup	pose	. _h	re	per	nali	۽ و	and	۱,	nak	e (ع, و)4	Sm	all.												
																			7	7											
				l	-,	min O		1 m	-	c L	(7	ر دا		1 (1) 5	٤ -	. 10	69	, 8	<u>+</u>	06	0 0	φ²								
						0	المد	ر جَ	1	` * 0	, _		1						3				-								
		CV	vall 1	value	ا د	for	So W	10	9	;	_	->	מריב	ر ا ا	4	h	48	the	513												
							100	<i>v</i>	Ç .																						
					(su	nalli	valu	es			_	>	اء ۾	.	pho	h e	t•	اط	JOV	fitt	-14 (٩.									
						w a																,									
		Fy	au al a		امما	c.). O			0	f.	atu	LLOC .	,	χı	. х	1.		. x	00												
			cample			319								•				, , ,													
									②	Pa	ram	etev	s :		00	, 8	, .			0	w .										
														<u>_</u>	ر د د	بو ،		.14	ء ا	w 2	. 1 %	+	Day 14	'auta	.a+.		† .	11	4	L I	,
																				, 4)	MI		pur	uu	حرا ه	<i>-</i> 3			K 710	·γ.	
			⇒					T			ſ	M				c i)		7 \						<u>m</u> _	_	1	_	7		
	shrn	·k a	all pa	ırahe	tes		•	J(0,]=	₹M	. L	<u>)</u> 7=1	. (Ch,	0		')	-y`	. ,	/	+			\ 	ح 1-1	θ.	j		_		
											`	~	_								/		1				1				
												_								[1			1-	1	_	,		
						7			,						,	1	1.		` 	V			~	6.	is veni	ous ton	2	de	A 1	5	
						A)	he		nt.						Λ·	heg	war	1201	rou	`						u	•)				
																											/				
							tran	1 di	aTa	fı"	t			ba(au	us	67	^t wn					Ð	ha	<i>ω</i> ,	100	.+	t•	6-		
														067	'ee'	ive.	s (3	n d	B					Su					4	
														•											200	((1)					
		7.1	λε	, ,	P 7	<i>f</i>	lara			الم	0:	, ,			+ /0 4		1.			0								+			
		-41	λι	, , , e		w	J	e,		ΔII	91	× 0		,	IVE	_	ИС	2 4 7	ノマ	9	0										
																		L	> A	+ -	lat	<u>. </u>	ros	اهروا	rta	e	On	e			
				ı A.	4.		,		1.	,	1-)											J		_					
		~>	und	ery 18	m	7		ΓW	nig	/h -	- 0 0 2	4S																			
					V																										
																												+			

3. Regularized L mear Rognession.

(1) Gradient Descent

$$\theta_0 := \theta_0 - \alpha = \sum_{i=1}^{M} \left[h_{\theta}(x^{(i)}) - y^{(i)} \right] x_0^{(i)}$$

$$0_{j} = = 0_{j} - \left\{ \alpha \prod_{i=1}^{M} \sum_{i=1}^{n} \left[h_{0}(x^{(i)}) - y^{(i)} \right] x_{j}^{(i)} + \prod_{i=1}^{M} b_{j} \right\}$$

P -00, J(0)

Toj J(0), regularizad

$$\theta \dot{g} = \theta \dot{g} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^{m} \left[h_{\theta}(\chi^{(i)}) - g^{(i)} \right] \chi_{\dot{g}}^{(i)}$$

1- \(\alpha\frac{1}{m}\) organal gredrent decore

o make of a bit smaller

@ perform regular update.

$$J(\theta) = -\left(\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log_{1} \cdots + \frac{1}{2m} \sum_{j=1}^{n} \theta_{j}^{2}\right)$$

Repeat 1

$$\theta_{j} := \theta_{j} - \alpha \left(\frac{1}{m} \sum_{\overline{z}=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \right) + \frac{\lambda}{m} o_{j}$$

Tey Warzed

Advanced Optimization.

function tjval, gradient]

 $\frac{k_{\theta}(x) = \frac{1}{1 + e^{\theta^7} x}}$

= costfunction (theta).

(+ Amyunc 1@ costfuction)

$$\frac{\partial}{\partial \theta_{j}}J(\theta) = \left[\frac{1}{m}\sum_{\vec{z}=j}^{m}\left(h_{\theta}(x^{(i)}-y^{(i)})\right)z_{j}^{(i)}\right] + \frac{1}{m}\omega_{j}$$