

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №7 «ПОЛЕВОЙ ТРАНЗИСТОР»

по курсу «Основы электроники»

Студент: Дубов Андрей Игоревич		
Группа: ИУ7-33Б		
Студент	подпись, дата	_ Дубов А. И.
Преподаватель	подпись, дата	_ Оглоблин Д. И.
Оценка		

2022 z

Оглавление

Параметры транзисторов	
Характеристики NJFET	
Характеристики PMOS	
ЈГЕТ как усилитель	
Полевой транзистор в импульсном режиме Инвертор на основе КМОП ключа	8
Исследования логического элемента 2И-НЕ	
Устройство ячейки триггера статической памяти	. 12

Параметры транзисторов

В работе используется транзисторы NJFET 2N3970 NMOS IRF533 PMOS IRF9533

Характеристики полевого транзистора.

Характеристики NJFET

Рисунок 1 Схема

Рисунок 2 Настройки DC

Рисунок 3 График передаточных характеристик

Рисунок 4 Ток пример 1/10 от начального

Начальный ток 39.278мА. Напряжение отсечки в точке -2.74 Теоретически Smax =2I нач/ Uотсечки = 2*39.278mA/2.74В \sim = 28.62mA/B.

Рисунок 5 Производная

Рисунок 6 Выходные характеристики

Характеристики PMOS

Рисунок 7 Pmos схема

Рисунок 8 Передаточные характеристики РМОЅ

Рисунок 9 Закрытие транзистора

По графику можно сказать, что он закрывается при напряжении примерно ~-3.305В.

Рисунок 10 Выходные характеристики NMOS

JFET как усилитель

Рисунок 11 Схема

Рисунок 12 Параметры временного анализа

Рисунок 13 Результат временного анализа

Коэффициент усиления по напряжению равен отношению амплитуд входного и выходного напряжения: K = (1316 MB-1309 MB)/0.04 B = 175

Полевой транзистор в импульсном режиме

Инвертор на основе КМОП ключа

Рисунок 14 Схема

Рисунок 15 Настройки

Рисунок 16 График

Из графика видно, что задержка по уровню 0.5 равна нулю, задержка перехода из 0 в 1 и наоборот равны нулю.

Рисунок 17 Передаточные характеристики

По полученным характеристикам определим напряжения, при которых открываются транзисторы — 3 В и 6.491 В и максимальный ток при напряжении питания 2.642 А. Поскольку транзисторы из задания условно комплементарны, поэтому характеристики отличаются от идеальных.

Исследования логического элемента 2И-НЕ

0 0 label=start 1us 1 2us 0 3us 1 4us 0 5us goto start 1 times

Рисунок 18 Схема

Рисунок 19 Настройки

Рисунок 20 Грифик

Как можно увидеть, схема не работает должным образом. Чтобы добиться желаемого результата, пересоберём схему с DtoA преобразователями.

0 0 label=start 1us 1 2us 0 3us 1 4us 0 5us goto start 1 times

Рисунок 21 Схема с DtoA

Видим, что схема стала работать более корректно

Вход Х1	Вход Х2	Выход Ү
0	0	1
1	0	1
0	1	1
1	1	0

Устройство ячейки триггера статической памяти.

0 0 label=start 1us 0 2us 0 4us 1 4.2us 0 7us 1 7.2us 0 9us 1 9.2us 0

0 0 label=0 0 label=start 1us 1 1.2us 0 3us 0 4us 0 5us 1 5.2us 0 8us 1 8.2us 0

Рисунок 22 Схема

Рисунок 23 Настройки

Рисунок 24 График