

PCI Express® Basics & Background

Richard Solomon
Synopsys

Acknowledgements

Thanks are due to Ravi Budruk, Mindshare, Inc. for much of the material on PCI Express Basics

Agenda

- PCI Express Background
- PCI Express Basics
- PCI Express Recent Developments

PCI Express Background

Revolutionary AND Evolutionary

- PCI™ (1992/1993)
 - ✓ Revolutionary
 - Plug and Play jumperless configuration (BARs)
 - Unprecedented bandwidth
 - 32-bit / 33MHz 133MB/sec
 - 64-bit / 66MHz 533MB/sec
 - Designed from day 1 for bus-mastering adapters

✓ Evolutionary

- System BIOS maps devices then operating systems boot and run without further knowledge of PCI
- PCI-aware O/S could gain improved functionality
- PCI 2.1 (1995) doubled bandwidth with 66MHz mode

Revolutionary AND Evolutionary

- PCI-X™ (1999)
 - Revolutionary
 - Unprecedented bandwidth
 - Up to 1066MB/sec with 64-bit / 133MHz
 - Registered bus protocol
 - Eased electrical timing requirements
 - Brought split transactions into PCI "world"
 - Evolutionary
 - PCI compatible at hardware *AND* software levels
 - PCI-X 2.0 (2003) doubled bandwidth
 - 2133MB/sec at PCI-X 266 and 4266MB/sec at PCI-X 533

Revolutionary AND Evolutionary

- PCI Express aka PCIe[®] (2002)
 - Revolutionary
 - Unprecedented bandwidth
 - x1: up to 1GB/sec in *EACH* direction
 - x16: up to 16GB/sec in *EACH* direction
 - "Relaxed" electricals due to serial bus architecture
 - Point-to-point, low voltage, dual simplex with embedded clocking

Evolutionary

- PCI compatible at software level
 - Configuration space, Power Management, etc.
 - Of course, PCIe-aware O/S can get more functionality
- Transaction layer familiar to PCI/PCI-X designers
- System topology matches PCI/PCI-X
- PCIe 2.0 (2006) doubled per-lane bandwidth: 250MB/s to 500MB/s
- PCIe 3.0 (2010) doubled again to 1GB/s/lane... PCIe 4.0 will double again to 2GB/s/lane!

PCI Concepts

Address Spaces – Memory & I/O

- Memory space mapped cleanly to CPU semantics
 - √ 32-bits of address space initially
 - √ 64-bits introduced via Dual-Address Cycles (DAC)
 - Extra clock of address time on PCI/PCI-X
 - 4 DWORD header in PCI Express
 - ✓ Burstable
- I/O space mapped cleanly to CPU semantics
 - √ 32-bits of address space
 - Actually much larger than CPUs of the time
 - ✓ Non-burstable
 - Most PCI implementations didn't support
 - PCI-X codified
 - Carries forward to PCI Express

Address Spaces – Configuration

- Configuration space???
 - ✓ Allows control of devices' address decodes without conflict
 - ✓ No conceptual mapping to CPU address space
 - Memory-based access mechanisms in PCI-X and PCIe
 - ✓ Bus / Device / Function (aka BDF) form hierarchy-based address (PCIe 3.0 calls this "Routing ID")
 - "Functions" allow multiple, logically independent agents in one physical device
 - E.g. combination SCSI + Ethernet device
 - 256 bytes or 4K bytes of configuration space per device
 - PCI/PCI-X bridges form hierarchy
 - PCIe switches form hierarchy
 - Look like PCI-PCI bridges to software
 - ✓ "Type 0" and "Type 1" configuration cycles
 - Type 0: to same bus segment
 - Type 1: to another bus segment

Configuration Space (cont'd)

Configuration Space

- Device Identification
 - ✓ VendorID: PCI-SIG assigned
 - ✓ DeviceID: Vendor self-assigned
 - ✓ Subsystem VendorID: PCI-SIG
 - ✓ Subsystem DeviceID: Vendor
- Address Decode controls
 - ✓ Software reads/writes BARs to determine required size and maps appropriately
 - Memory, I/O, and bus-master enables
- Other bus-oriented controls

Configuration Space – Capabilities List

Linked list

- ✓ Follow the list! Cannot assume fixed location of any given feature in any given device
- ✓ Features defined in their related specs:
 - PCI-X
 - PCIe
 - PCI Power Management
 - Etc.

Configuration Space – Extended Capabilities List

- PCI Express only
- Linked list
 - ✓ Follow the list! Cannot assume fixed location of any given feature in any given device
 - ✓ First entry in list is *always* at 100h
 - √ Features defined in PCI Express specification

31	<u> 2019</u>	<u> 16</u>	<u> 15</u>	8 /	0			
Pointer to Next Capability	Vers	sion		Capability ID				
Feature-specific Configuration Registers								

Dword 0
Dword 1
:
Dword n

Interrupts

- PCI introduced INTA#, INTB#, INTC#, INTD# collectively referred to as INTx
 - ✓ Level sensitive
 - ✓ Decoupled device from CPU interrupt
 - System controlled INTx to CPU interrupt mapping
 - Configuration registers
 - report A/B/C/D
 - programmed with CPU interrupt number
- PCI Express mimics this via "virtual wire" messages
 - ✓ Assert_INTx and Deassert_INTx

What are MSI and MSI-X?

- Memory Write replaces previous interrupt semantics
 - ✓ PCI and PCI-X devices stop asserting INTA/B/C/D and PCI Express devices stop sending Assert_INTx messages once MSI or MSI-X mode is enabled
 - MSI uses one address with a variable data value indicating which "vector" is asserting
 - ✓ MSI-X uses a table of independent address and data pairs for each "vector"
- NOTE: Boot devices and any device intended for a non-MSI operating system generally must still support the appropriate INTx signaling!

Split Transactions – Background

- PCI commands contained no length
 - ✓ Bus allowed disconnects and retries
 - ✓ Difficult data management for target device
 - Writes overflow buffers
 - Reads require pre-fetch
 - How much to pre-fetch? When to discard? Prevent stale data?
- PCI commands contained no initiator information
 - ✓ No way for target device to begin communication with the initiator
 - Peer-to-peer requires knowledge of system-assigned addresses

Split Transactions

- PCI-X commands added length and Routing ID of initiator
 - ✓ Writes: allow target device to allocate buffers
 - ✓ Reads: Pre-fetch now deterministic
- PCI-X retains "retry" & "disconnect", adds "split"
- Telephone analogy
 - ✓ Retry: "I'm busy go away"
 - Delayed transactions are complicated
 - ✓ Split: "I'll call you back"
 - Simple
 - More efficient

Benefits of Split Transactions

Bandwidth Usage with Conventional PCI Protocols

Number of Load Exerciser Cards

Bandwidth Usage with PCI-X Enhancements

Number of Load Exerciser Cards

PCI Express Basics

PCI Express Features

- Dual Simplex point-to-point serial connection
 - ✓ Independent transmit and receive sides
- Scalable Link Widths
 - ✓ x1, x2, x4, x8, *x12*, x16, *x32*
- Scalable Link Speeds
 - √ 2.5, 5.0 and 8.0GT/s (16GT/s coming in 4.0)
- Packet based transaction protocol

PCI Express Terminology

PCI Express Throughput

	Link Width						
Bandwidth (GB/s)	x1	x2	х4	x8	x16		
PCIe 1.x	0.25	0.5	1	2	4		
"2.5 GT/s"							
PCIe 2.x	0.5	1	2	4	8		
"5 GT/s"							
PCIe 3.0	1	2	4	8	16		
"8 GT/s"							
PCIe 4.0	2	4	8	16	32		
"16GT/s"							

Derivation of these numbers:

- 20% overhead due to 8b/10b encoding in 1.x and 2.x
- Note: ~1.5% overhead due to 128/130 encoding not reflected above in 3.x and 4.0

Additional Features

- Data Integrity and Error Handling
 - ✓ Link-level "LCRC"
 - ✓ Link-level "ACK/NAK"
 - ✓ End-to-end "ECRC"
- Credit-based Flow Control
 - ✓ No retry as in PCI
- MSI/MSI-X style interrupt handling
 - Also supports legacy PCI interrupt handling in-band
- Advanced power management
 - ✓ Active State PM
 - ✓ PCI compatible PM

Additional Features

- Evolutionary PCI-compatible software model
 - ✓ PCI configuration and enumeration software can be used to enumerate PCI Express hardware
 - ✓ PCI Express system will boot "PCI" OS
 - ✓ PCI Express supports "PCI" device drivers
 - ✓ New additional configuration address space requires OS and driver update
 - Advanced Error Reporting (AER)
 - PCI Express Link Controls

PCI Express Topology

- Legend
- PCI Express Device Downstream Port
 - PCI Express Device Upstream Port

Transaction Types, Address Spaces

- Request are translated to one of four transaction types by the Transaction Layer:
 - Memory Read or Memory Write. Used to transfer data from or to a memory mapped location.
 - The protocol also supports a *locked memory read* transaction variant
 - 2. I/O Read or I/O Write. Used to transfer data from or to an I/O location.
 - These transactions are restricted to supporting legacy endpoint devices
 - 3. Configuration Read or Configuration Write. Used to discover device capabilities, program features, and check status in the 4KB PCI Express configuration space.
 - 4. **Messages.** Handled like posted writes. Used for event signaling and general purpose messaging.

Three Methods For Packet Routing

- Each request or completion header is tagged as to its type, and each of the packet types is routed based on one of three schemes:
 - Address Routing
 - ✓ ID Routing
 - ✓ Implicit Routing
- Memory and IO requests use address routing
- Completions and Configuration cycles use ID routing
- Message requests have selectable routing based on a 3-bit code in the message routing sub-field of the header type field

Programmed I/O Transaction

DMA Transaction

Peer-to-Peer Transaction

-Step 4: Endpoint receives CpID Copyright © 2014, PCI-SIG, All Rights Reserved

TLP Origin and Destination

TLP Structure

Information in core section of TLP comes from Software Layer / Device Core

DLLP Origin and Destination

DLLP Structure

Bit transmit direction

Appended by Physical Layer

- ACK / NAK Packets
- Flow Control Packets
- Power Management Packets
- Vendor Defined Packets

Ordered-Set Origin and Destination

Ordered-Set Structure

COM Identifier Identifier • • • Identifier

- Training Sequence One (TS1)
 - √ 16 character set: 1 COM, 15 TS1 data characters
- Training Sequence Two (TS2)
 - √ 16 character set: 1 COM, 15 TS2 data characters
- SKIP
 - √ 4 character set: 1 COM followed by 3 SKP identifiers
- Fast Training Sequence (FTS)
 - ✓ 4 characters: 1 COM followed by 3 FTS identifiers
- Electrical Idle (IDLE)
 - ✓ 4 characters: 1 COM followed by 3 IDL identifiers
- Electrical Idle Exit (EIEOS) (new to 2.0 spec)
 - √ 16 characters

PCI Express Flow Control

 Credit-based flow control is point-to-point based, not end-to-end

Receiver sends Flow Control Packets (FCP) which are a type of DLLP (Data Link Layer Packet) to provide the transmitter with credits so that it can transmit packets to the receiver

ACK/NAK Protocol Overview

PCI Express Recent Developments

New Specifications

M.2 Specification, Revision 1.0

https://www.pcisig.com/members/downloads/PCIe_M.2_Electromechanical_Spec_Rev1.0_Final_11012013_RS_Clean.pdf

PCI Express Base 4.0, Draft 0.3

https://www.pcisig.com/members/downloads/PCI_Express_Base_4.0_Rev0.3_February19-2014.pdf

OCuLink, Draft 0.7

https://www.pcisig.com/members/downloads/OCuLink_07_r11_1010a.pdf

SFF-8639, Draft 0.7

https://www.pcisig.com/members/downloads/PCIe_SFF_03312014TS-rev1-markup.pdf

Newer ECNs (See session 4 after lunch for details)

NOP DLLP

https://www.pcisig.com/specifications/pciexpress/specifications/ECN_NOP_DL LP-2014-06-11_clean.pdf

Readiness Notifications (RN)

https://www.pcisig.com/specifications/pciexpress/specifications/ECN_RN_29_A ug_2013.pdf

M-PCIe

https://www.pcisig.com/specifications/pciexpress/specifications/ECN_M-PCIe_22_May_2013.pdf

L1 PM Substates

https://www.pcisig.com/specifications/pciexpress/specifications/ECN_L1_PM_S ubstates_with_CLKREQ_31_May_2013_Rev10a.pdf

Upcoming Events

- Compliance Workshop #91 (Taipei)
 - ✓ Tomorrow ②
- Compliance Workshop #92 (California)
 - ✓ December 2-5, 2014
- PCI-SIG Developers Conference Israel
 - ✓ March 2-3, 2015
- PCI-SIG Developers Conference
 - ✓ June 23-24, 2015
- PCI-SIG Developers Conference APAC
 - √ [TBD] October 2015?

Present a DevCon Member Samplementation Session

- Watch for e-mailed Call For Papers
- Send in an abstract!
 - √ 160 word summary
 - Ok to attach more detail (even a presentation)
 - ✓ No confidential material!
 - ✓ Not a datasheet or catalog or other marketing!
- Get selected
- Meet milestones and deadlines
- Practice, practice the presentation
- Present at DevCon

Thank you for attending the PCIe Technology Seminar.

For more information please go to www.pcisig.com