```
In [1]: # AA228/CS238: DMU
        # BayesNet Family Cancer inference
        # So far in this course you have learned a lot of theory but have not yet pu
        # Lets use a single problem the entire way. Lets say we are datascientists a
        # But how can we try to estimate this?
        # To start, please install:
        # !pip install pgmpy networkx matplotlib pydot
In [1]: # 2. Representation of a joint distribution with a BayesNet:
        from pgmpy.models import BayesianNetwork
        from pgmpy.factors.discrete import TabularCPD
        import matplotlib.pyplot as plt
        import networkx as nx
In [2]: # First lets represent the joint distribution as a directed graph below.
        # Lets assume we have some data on the conditional probability of each havir
        # We must write a probabilistic graphical model of a family that has a:
        # mom-grandma, mom-grandpa, dad-grandma, dad-grandpa, mom, dad, child1, chil
        # And we want to represent this as a graph with edges and nodes (per person)
        # Define the Bayesian Network structure
        model = BayesianNetwork([
            ('Mom-Grandma', 'Mom'),
            ('Mom-Grandpa', 'Mom'),
            ('Dad-Grandma', 'Dad'),
            ('Dad-Grandpa', 'Dad'),
            ('Mom', 'Child1'),
            ('Dad', 'Child1'),
            ('Mom', 'Child2'),
            ('Dad', 'Child2'),
        ])
        # Define CPDs (Conditional Probability Distributions)
        # Grandparents' prior probabilities of having cancer
        prior on cancer = 0.5
        cpd MG = TabularCPD(variable='Mom-Grandma', variable card=2, values=[[prior
                                                                              [1-pric
        cpd MP = TabularCPD(variable='Mom-Grandpa', variable card=2, values=[[prior
                                                                              [1-prid
        cpd DG = TabularCPD(variable='Dad-Grandma', variable card=2, values=[[prior
                                                                              [1-pric
```

```
cpd_DP = TabularCPD(variable='Dad-Grandpa', variable card=2, values=[[prior
# Lets explain this a bit, first, we name the node. Then we assign the varia
cancer probability given both parents have cancer = 0.9999
cancer probability given one parent has cancer = 0.7
cancer probability given no parent has cancer = 0.01
# Mom's probability of having cancer given her parents' cancer status
cpd M = TabularCPD(variable='Mom', variable card=2,
                   evidence=['Mom-Grandma', 'Mom-Grandpa'], evidence card=[2
                   values=[
                       [1-cancer probability given no parent has cancer, 1-c
                       [cancer probability given no parent has cancer, cance
                   1)
# Now lets explain this a bit, first, we assign the variable cardinality (va
# Then we assign the conditional probability that we have cancer given what
# Dad's probability of having cancer given his parents' cancer status
cpd D = TabularCPD(variable='Dad', variable card=2,
                   evidence=['Dad-Grandma', 'Dad-Grandpa'], evidence card=[2
                   values=[
                       [1-cancer probability given no parent has cancer, 1-c
                       [cancer probability given no parent has cancer, cance
                   ])
# Children's probability of having cancer given their parents' cancer status
cpd C1 = TabularCPD(variable='Child1', variable card=2,
                    evidence=['Mom', 'Dad'], evidence_card=[2, 2],
                   values=[
                       [1-cancer_probability_given_no_parent has cancer, 1-c
                       [cancer probability given no parent has cancer, cance
                   1)
cpd C2 = TabularCPD(variable='Child2', variable card=2,
                    evidence=['Mom', 'Dad'], evidence card=[2, 2],
                   values=[
                       [1-cancer probability given no parent has cancer, 1-c
                       [cancer probability given no parent has cancer, cance
                   ])
# Add CPDs to the model
model add cpds(cpd MG, cpd MP, cpd DG, cpd DP, cpd M, cpd D, cpd C1, cpd C2)
# Check if the model is valid
assert model.check model()
# Visualize the Bayesian Network using networkx
# Create a directed graph from the model
G = nx.DiGraph()
# Add nodes and edges from the Bayesian network
G.add nodes from(model.nodes())
G.add edges from(model.edges())
```

```
# Manually specify positions for a hierarchical layout
pos = {
    'Mom-Grandma': (1, 3),
    'Mom-Grandpa': (3, 3),
    'Dad-Grandma': (5, 3),
    'Dad-Grandpa': (7, 3),
    'Mom': (2, 2),
    'Dad': (6, 2),
    'Childl': (3, 1),
    'Child2': (5, 1),
}

# Draw the graph
nx.draw(G, pos, with_labels=True, node_size=3000, node_color='lightblue', ar
plt.title("Family Cancer Bayesian Network")
plt.show()
```

Family Cancer Bayesian Network


```
In [3]: # 2. Inference:
    # Next, now that we have our graph, lets ask the graph a question!
    # Given observing that mom-grandma has cancer, determine the change in proba
from pgmpy.inference import VariableElimination

# Perform inference using Variable Elimination
infer = VariableElimination(model)
```

```
prior_prob = infer.query(variables=['Child1'], evidence={})
print("Prior Probability of Child1 having cancer with no observation:")
print(prior_prob)

posterior_prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
print("\nPosterior Probability of Child1 having cancer given we observe Mom-
print(posterior_prob)

posterior_prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
print("\nPosterior Probability of Child1 having cancer given we observe Mom-
print(posterior_prob)

posterior_prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
print("\nPosterior Probability of Child1 having cancer given we observe all
print(posterior_prob)

posterior_prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
print("\nPosterior Probability of Child1 having cancer given we observe all
print(posterior prob)
```

Prior Probability of Child1 having cancer with no observation:

```
+-----+
| Child1 | phi(Child1) |
+======++
| Child1(0) | 0.4296 |
+-----+
| Child1(1) | 0.5704 |
+-----+
```

Posterior Probability of Child1 having cancer given we observe Mom-Grandma h as cancer:

```
+-----+
| Child1 | phi(Child1) |
+======++
| Child1(0) | 0.3489 |
+-----+
| Child1(1) | 0.6511 |
+-----+
```

Posterior Probability of Child1 having cancer given we observe Mom-Grandma d oes NOT have cancer:

+	+-		+
Child1		phi(Child1)	
+========	=+=		+
Child1(0)	•	0.5103	
·	•		
Child1(1)		0.4897	
+	+ -		+

Posterior Probability of Child1 having cancer given we observe all 4 grandpa rents have cancer:

```
+-----+
| Child1 | phi(Child1) |
+======++
| Child1(0) | 0.3000 |
+-----+
| Child1(1) | 0.7000 |
+-----+
```

Posterior Probability of Child1 having cancer given we observe all 4 grandpa rents don't have cancer:

In [4]: # as you can see, our probability of Child1 having cancer can range drastica

```
In [5]: # 3. Parameter Learning:
```

Now, where did these conditional probability tables come from? We just mad # But lets get some data on families around the world over the last 100 year

```
# First lets generate some fake data.
import numpy as np
import pandas as pd
from pgmpy.models import BayesianNetwork
from pgmpy.estimators import MaximumLikelihoodEstimator
def create data set(num families = 100,
                    true cancer probability given both parents have cancer =
                    true cancer probability given one parent has cancer = 0.
                    true cancer probability given no parent has cancer = 0.6
                    true prior on cancer = 0.5):
   data = []
   # Grandparents' prior probabilities of having cancer
   prob MG = [1-true prior on cancer, true prior on cancer] # [No Cancer,
   prob MP = [1-true prior on cancer, true prior on cancer]
   prob DG = [1-true prior on cancer, true prior on cancer]
   prob DP = [1-true prior on cancer, true prior on cancer]
   # Mom's probability of having cancer given her parents' cancer status
   cpd M values = np.array(
             [1-true cancer probability given no parent has cancer, 1-true of
         [true cancer probability given no parent has cancer, true cancer pr
         )
    # Dad's probability of having cancer given his parents' cancer status
    cpd D values = np.array(
             [1-true cancer probability given no parent has cancer, 1-true of
         [true cancer probability given no parent has cancer, true cancer pr
         )
    # Children's probability of having cancer given their parents' cancer st
    cpd C values = np.array(
             [1-true cancer probability given no parent has cancer, 1-true (
         [true cancer probability given no parent has cancer, true cancer pr
    )
   for in range(num families):
        family = {}
        # Generate grandparents' cancer status
        family['Mom-Grandma'] = np.random.choice([0,1], p=prob MG)
        family['Mom-Grandpa'] = np.random.choice([0,1], p=prob MP)
        family['Dad-Grandma'] = np.random.choice([0,1], p=prob DG)
```

```
family['Dad-Grandpa'] = np.random.choice([0,1], p=prob DP)
        # Mom's cancer status
        mg = family['Mom-Grandma']
        mp = family['Mom-Grandpa']
        index_M = mg * 2 + mp # Convert binary states to index (00->0, 01->
        prob M = cpd M values[:, index M]
        family['Mom'] = np.random.choice([0,1], p=prob M)
        # Dad's cancer status
        dg = family['Dad-Grandma']
        dp = family['Dad-Grandpa']
        index D = dg * 2 + dp
        prob D = cpd D values[:, index D]
        family['Dad'] = np.random.choice([0,1], p=prob D)
        # Child1's cancer status
        mom = family['Mom']
        dad = family['Dad']
        index C = mom * 2 + dad
        prob C1 = cpd C values[:, index C]
        family['Child1'] = np.random.choice([0,1], p=prob C1)
        # Child2's cancer status
        prob C2 = cpd C values[:, index C] # Same as Child1
        family['Child2'] = np.random.choice([0,1], p=prob_C2)
        data.append(family)
    # Convert to pandas DataFrame
    df = pd.DataFrame(data)
    return df
example dataset = create data set(num families = 10)
print("Here is an example dataset of 10 families in the world, where 0=did r
example dataset
```

Here is an example dataset of 10 families in the world, where 0=did not have cancer, 1=did have cancer

Out[5]:		Mom- Grandma	Mom- Grandpa	Dad- Grandma	Dad- Grandpa	Mom	Dad	Child1	Child2
	0	0	1	0	1	0	1	0	1
	1	1	0	0	0	1	0	0	1
	2	1	0	1	0	1	1	1	1
	3	0	1	1	1	1	1	1	1
	4	1	0	1	0	1	1	1	1
	5	1	0	0	0	0	0	0	0
	6	0	0	1	1	0	1	1	1
	7	0	1	1	0	0	1	0	0
	8	1	1	1	1	1	1	1	1
	9	1	0	0	0	0	0	0	0

```
In [6]: # Now lets use this data to estimate these values with MLE:
    model.fit(example_dataset, estimator=MaximumLikelihoodEstimator)

# Get the estimated CPDs (conditional probability distributions)
    estimated_cpds = model.get_cpds()

# Print the estimated CPDs
for cpd in estimated_cpds:
    print(cpd)
    print("\n")
```

```
WARNING:pgmpy:Replacing existing CPD for Mom-Grandma
WARNING:pgmpy:Replacing existing CPD for Mom
WARNING:pgmpy:Replacing existing CPD for Mom-Grandpa
WARNING:pgmpy:Replacing existing CPD for Dad-Grandma
WARNING:pgmpy:Replacing existing CPD for Dad
WARNING:pgmpy:Replacing existing CPD for Dad-Grandpa
WARNING:pgmpy:Replacing existing CPD for Child1
WARNING:pgmpy:Replacing existing CPD for Child2
```

				·		
Dad	Dad(0)	Dad(0) ++	Dad(1)	 	Dad(1) 	 -+
		.				-+
	•		•	1.0	•	
	•		•	0.0	•	
	· -+		+	Dad-Grandpa(6	+	
Dad-Grandma	Dad-G	randma(0)		Dad-Grandma(1	L) Dad	-Grandma
	•		•		•	
	-+		+	0.4 0.6	+	
мот-Grandpa Мот(0)	MOM-G -+ 1.0	. anupa (ช)	-	Mom-Grandpa(6 ຄ 1	MOM (פ + 0.0	
	- +		+	Mom-Grandma(1	+	
	-+	+		Mary Canaday (
Dad-Grandpa	+	+				
Dad-Grandpa	-	-				
		•				
Dad-Grandma	+	+				
Dad-Grandma	+ (0) 0.4					
Mom-Grandpa	-	•				
Mom-Grandpa	+	+				
	+	+				
Mom-Grandma		•				
		+				

```
In [7]: # now lets go back and do inference again with these new CPDs
In [8]: # 2. Inference:
        # Next, lets ask the graph a question!
        # Given observing that mom-grandma has cancer, determine the change in proba
        from pgmpy.inference import VariableElimination
        # Perform inference using Variable Elimination
        infer = VariableElimination(model)
        prior prob = infer.query(variables=['Child1'], evidence={})
        print("Prior Probability of Child1 having cancer with no observation:")
        print(prior prob)
        posterior prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
        print("\nPosterior Probability of Child1 having cancer given we observe Mom-
        print(posterior prob)
        posterior prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
        print("\nPosterior Probability of Child1 having cancer given we observe Mom-
        print(posterior prob)
        posterior prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
        print("\nPosterior Probability of Child1 having cancer given we observe all
        print(posterior prob)
        posterior_prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
        print("\nPosterior Probability of Child1 having cancer given we observe all
        print(posterior prob)
```

Prior Probability of Child1 having cancer with no observation:

```
+-----+
| Child1 | phi(Child1) |
+-----+
| Child1(0) | 0.4886 |
+-----+
| Child1(1) | 0.5114 |
```

Posterior Probability of Child1 having cancer given we observe Mom-Grandma h as cancer:

```
+-----+
| Child1 | phi(Child1) |
+======++
| Child1(0) | 0.3616 |
+-----+
| Child1(1) | 0.6384 |
+-----+
```

Posterior Probability of Child1 having cancer given we observe Mom-Grandma d oes NOT have cancer:

+	+		+
Child1		phi(Child1)	
+========	=+=		+
Child1(0)	-	0.6791	•
Child1(1)	İ	0.3209	
+	٠+٠		+

Posterior Probability of Child1 having cancer given we observe all 4 grandpa rents have cancer:

```
+-----+
| Child1 | phi(Child1) |
+=======+
| Child1(0) | 0.0000 |
+-----+
| Child1(1) | 1.0000 |
+-----+
```

Posterior Probability of Child1 having cancer given we observe all 4 grandpa rents don't have cancer:

```
+-----+
| Child1 | phi(Child1) |
+-----+
| Child1(0) | 1.0000 |
+-----+
| Child1(1) | 0.0000 |
```

In [9]: # Very different! As you can see the probability of the child getting cancer # Now this is because we have used an MLE estimate which is not great when r # Given that we have only seen 10 families, perhaps we are overestimating ho

In [10]: # Since we do not have much data, lets try to assign a "prior" on our parame

from pgmpy.estimators import BayesianEstimator

```
# Now lets use this data to estimate these values with MLE:
model.fit(example_dataset, estimator=BayesianEstimator)

# Get the estimated CPDs (conditional probability distributions)
estimated_cpds = model.get_cpds()

# Print the estimated CPDs
for cpd in estimated_cpds:
    print(cpd)
    print("\n")

WARNING:pgmpy:Replacing existing CPD for Mom-Grandma
WARNING:pgmpy:Replacing existing CPD for Mom
WARNING:pgmpy:Replacing existing CPD for Mom-Grandpa
```

```
WARNING:pgmpy:Replacing existing CPD for Mom-Grandma
WARNING:pgmpy:Replacing existing CPD for Mom
WARNING:pgmpy:Replacing existing CPD for Mom-Grandpa
WARNING:pgmpy:Replacing existing CPD for Dad-Grandma
WARNING:pgmpy:Replacing existing CPD for Dad
WARNING:pgmpy:Replacing existing CPD for Dad-Grandpa
WARNING:pgmpy:Replacing existing CPD for Child1
WARNING:pgmpy:Replacing existing CPD for Child2
```

	+ (0) 0.433333		
	(1) 0.566667		
	++		
	+		
	(0) 0.566667 +		
	(1) 0.433333		
Dad-Grandma((0) 0.433333		
Dad-Grandma((1) 0.566667		
	+		
	+ (0) 0.566667		
	+		
	(1) 0.433333		
Mom-Grandma	-+		Mom-Grandma(1)
Mom-Grandpa	Mom-Grandpa(0)		Mom-Grandpa(1)
Mom(0)	.+		0.277777777777778
Mom(1)	0.277777777777778		0.7222222222222
		•	
Dad-Grandma	-+ Dad-Grandma(0)		Dad-Grandma(1)
Dad-Grandpa	-+ Dad-Grandpa(0)		Dad-Grandpa(1)
Dad(0)	+ 0.8529411764705882 -+		0.14705882352941177
Dad(1)	0.14705882352941177		0.8529411764705882
	-+	+	T
	Dad(0)		
Mom	Mom(0)		+ Mom(1)
+-	0.8076923076923077	+-	+
\ - /		'	

```
In [11]: # Very different! Go back and see how different these values are. Now lets
         from pgmpy.inference import VariableElimination
         # Perform inference using Variable Elimination
         infer = VariableElimination(model)
         prior prob = infer.query(variables=['Child1'], evidence={})
         print("Prior Probability of Child1 having cancer with no observation:")
         print(prior prob)
         posterior prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
         print("\nPosterior Probability of Child1 having cancer given we observe Mom-
         print(posterior prob)
         posterior prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
         print("\nPosterior Probability of Child1 having cancer given we observe Mom-
         print(posterior prob)
         posterior prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
         print("\nPosterior Probability of Child1 having cancer given we observe all
         print(posterior prob)
         posterior_prob = infer.query(variables=['Child1'], evidence={'Mom-Grandma':
         print("\nPosterior Probability of Child1 having cancer given we observe all
         print(posterior prob)
```

Prior Probability of Child1 having cancer with no observation:

```
+-----+
| Child1 | phi(Child1) |
+======++
| Child1(0) | 0.5039 |
+-----+
| Child1(1) | 0.4961 |
+-----+
```

Posterior Probability of Childl having cancer given we observe Mom-Grandma h as cancer:

```
+-----+
| Child1 | phi(Child1) |
+======++
| Child1(0) | 0.4547 |
+-----+
| Child1(1) | 0.5453 |
+-----+
```

Posterior Probability of Child1 having cancer given we observe Mom-Grandma d oes NOT have cancer:

```
+-----+
| Child1 | phi(Child1) |
+======++
| Child1(0) | 0.5681 |
+-----+
| Child1(1) | 0.4319 |
+-----+
```

Posterior Probability of Child1 having cancer given we observe all 4 grandpa rents have cancer:

```
+----+
| Child1 | phi(Child1) |
+-----+
| Child1(0) | 0.3294 |
+-----+
| Child1(1) | 0.6706 |
```

Posterior Probability of Child1 having cancer given we observe all 4 grandpa rents don't have cancer:

In [12]: # now those estimates are much more reasonable right?

In [13]: # But who is right or wrong? When should I use MLE vs. Bayesian Learning??

As you can see, our choice to use MLE vs. Bayesian Learning should be base # Intuitively we can probably guess that if both of your parents have cancer # Maybe I subjectively believe that its really high, like 99%, so I will gue

```
# But maybe you believe the opposite! And you think its close to 0 still.. arepsilon
# Who is right? The frequentist (mle), bayesian me (with Beta(100,1), or bay
# NOTE: in this example our "true" true cancer probability given both parent
# Below we observe different sizes of datasets and how close our estimate is
# True parameters
true_cancer_probability_given_both_parents_have_cancer = 0.99
true cancer probability given one parent has cancer = 0.6
true_cancer_probability_given_no_parent_has_cancer = 0.01
true prior on cancer = 0.5
# Dataset sizes to test
n list = [10, 50, 100, 500, 1000, 5000]
# Lists to store estimates
beta distributions = [(1,1), (100,1), (1,100)]
for (a0,b0) in beta distributions:
    # Prior parameters for Bayesian estimation (Beta distribution)
   n values = []
   mle estimates = []
   bayes estimates = []
   for n in n list:
        # Generate data
       df = create data set(
            num families=n,
            true cancer probability given both parents have cancer=true canc
           true cancer probability given one parent has cancer=true cancer
           true cancer probability given no parent has cancer=true cancer p
           true prior on cancer=true prior on cancer
        # Filter data where both parents have cancer
        both parents have cancer = df[(df['Mom'] == 1) \& (df['Dad'] == 1)]
       total trials = len(both parents have cancer)
        if total trials > 0:
            successes = both_parents_have_cancer['Child1'].sum() # Number d
            failures = total trials - successes
            # MLE estimate
            mle_estimate = successes / total_trials
            # Bayesian estimate
            a post = a0 + successes
            b post = b0 + failures
            bayes estimate = a post / (a post + b post)
            n values.append(n)
            mle estimates.append(mle estimate)
            bayes estimates.append(bayes estimate)
        else:
```

```
print(f"For n = \{n\}, no instances where both parents have cancer
# Plotting the estimates
plt.figure(figsize=(10, 6))
# Plot the true value
plt.plot(n values, [true cancer probability given both parents have cancer
         label='True Value', marker='o', linestyle='--', color='green',
# Plot the MLE estimates
plt.scatter(n values, mle estimates, label='MLE Estimate', marker='o', l
# Plot the Bayesian estimates
plt.scatter(n values, bayes estimates, label='Bayesian Estimate', marker
plt.xlabel('Dataset Size (n)')
plt.ylabel('Probability of Child Having Cancer Given Both Parents Have (
plt.title(f'Estimation of Cancer Probability vs. Dataset Size with alpha
plt.legend()
plt.grid(True)
plt.show()
```


In [14]: # Now lets discuss each of these 3 plots.

The first we see that the MLE was way closer than the Beta(1,1) in the beg

Second, the Beta(100,1) was much closer than the MLE estimate. This is beg

Last, the Beta(1,100) was way off, so it actually hurt us compared to the

```
In [20]: # 5. Structure Learning
          # Now lets say we read a paper by a famous doctor who believes there may be
          # And so, us datascientists, want to let the data tell us if this is more li
          # How can we let the data tell us which graph is more likely given enough da
          # Well, we could model this by adding an edge from the grandparents to the \epsilon
          # And then we can compute the likelihood of that graph (G2) vs. the original
          # First, lets visualize G2 so you can see what I am talking about.
          import matplotlib.pyplot as plt
          import networkx as nx
          # Create the graph
          G2 = nx.DiGraph()
          # Add nodes for grandparents, parents, and children
          nodes = [
              'Mom-Grandma', 'Mom-Grandpa', 'Dad-Grandma', 'Dad-Grandpa',
              'Mom', 'Dad', 'Child1', 'Child2'
          G2.add nodes from(nodes)
          # Add edges from grandparents to parents
          G2.add edges from([
              ('Mom-Grandma', 'Mom'), ('Mom-Grandpa', 'Mom'),
              ('Dad-Grandma', 'Dad'), ('Dad-Grandpa', 'Dad')
          ])
          # Add edges from parents to children
          G2.add edges from([
              ('Mom', 'Child1'), ('Mom', 'Child2'),
              ('Dad', 'Child1'), ('Dad', 'Child2')
          ])
          # Add edges directly from grandparents to children
          G2.add edges from([
              ('Mom-Grandma', 'Child1'), ('Mom-Grandma', 'Child2'),
              ('Mom-Grandpa', 'Child1'), ('Mom-Grandpa', 'Child2'),
('Dad-Grandma', 'Child1'), ('Dad-Grandma', 'Child2'),
              ('Dad-Grandpa', 'Child1'), ('Dad-Grandpa', 'Child2')
          ])
          # Define the positions of the nodes
          pos = {
              'Mom-Grandma': (1, 3),
              'Mom-Grandpa': (3, 3),
              'Dad-Grandma': (5, 3),
              'Dad-Grandpa': (7, 3),
              'Mom': (2, 2),
              'Dad': (6, 2),
              'Child1': (2, 1),
              'Child2': (6, 1),
```

```
model_G2 = BayesianNetwork(list(G2.edges()))
model_G2.add_cpds(cpd_MG, cpd_MP, cpd_DG, cpd_DP, cpd_M, cpd_D, cpd_C1, cpd_
# Draw the graph with arrows from grandparents to children
plt.figure(figsize=(8, 6))
nx.draw(
    G2, pos, with_labels=True, node_size=3000, node_color='lightblue',
    arrowsize=20, font_size=10, font_color='black'
)
plt.title("Family Cancer Bayesian Network")
plt.show()
```

Family Cancer Bayesian Network


```
# Compare the scores
         if score G1 > score G2:
             print("G1 is more probable.")
         else:
             print("G2 is more probable.")
        BIC Score of G1: -21238.55236189877
        BIC Score of G2: -21695.190708234622
        G1 is more probable.
In [26]: # So now we have answered the question! Granted we generated the data so we
         # Lets take this to the next level! Lets say we want to let the data TELL us
         # Maybe there is some strange dependence between the parents! Where if one p
         # But just like before it all depends on our priors and the size of n for he
         from pgmpy.estimators import K2Score, HillClimbSearch
         # Dataset sizes to test
         n=5000
         df = create data set(num families=n)
         # Use HillClimbSearch to estimate the most probable graph
         hc = HillClimbSearch(df)
         estimated model = hc.estimate(scoring method='k2score', )
         # Print the edges of the estimated model
         print("Estimated Graph Structure:")
         print(estimated model.edges())
         # Visualize the estimated graph using networkx
         G estimated = nx.DiGraph(estimated model.edges())
         pos = nx.spring layout(G estimated, seed=42)
         plt.figure(figsize=(8, 6))
         nx.draw(
             G estimated, pos, with labels=True, node size=3000, node color='lightbld
             arrowsize=20, font size=10, font color='black'
         plt.title("Estimated Bayesian Network using HillClimbSearch with K2")
         plt.show()
                       | 0/1000000 [00:00<?, ?it/s]
        Estimated Graph Structure:
        [('Mom-Grandma', 'Mom-Grandpa'), ('Dad-Grandpa', 'Dad-Grandma'), ('Mom', 'Mo
        m-Grandma'), ('Mom', 'Mom-Grandpa'), ('Mom', 'Child2'), ('Mom', 'Dad'), ('Da
        d', 'Dad-Grandpa'), ('Dad', 'Dad-Grandma'), ('Dad', 'Child2'), ('Child1', 'M
        om'), ('Child1', 'Dad')]
```

Estimated Bayesian Network using HillClimbSearch with K2

In []: # 6. Simple Decisions

Now lets assume that you are a doctor, and you have the unfortunate respon
Chemo is a cancer treatment that uses drugs to kill cancer cells, stop the
If the patient has a high probability of having cancer, this may be their

So lets use our knowledge of Decision Graphs and Maximum Expected Utility

In []: