Advanced distance sampling analysis methods

Available using Distance software

Analysis engines inside Distance

- Conventional distance sampling
 - Classical analysis
- Multiple covariate distance sampling
 - Covariates included in detection function modelling
- Mark-recapture distance sampling
 - Detection at distance 0 (on trackline or on point) is less than 1
- Density surface modelling
 - Encounter rate modelled by covariates
- Multi-analysis distance sampling
 - Incorporating uncertainty in cluster size or species identity

Simulation engine

- Evaluate precision and bias of proposed survey designs
- When assumptions are violated
- Contrast alternative survey designs
- Assess changes in precision associated with changing amounts of survey effort

Detection at distance 0 less than 1

"the g(0) problem"

Data requirements

Observation data must have:

```
2 rows per object – one for Observer 1 and one for Observer 2
Fields for:

object ID

observer (1 or 2)
```

detected (1=yes, 0=no)

Additional covariate data can go in fields at the appropriate level

Example: (golf tee project)

observation-level covariates – fields created during data import

Visual Mark-Recapture

Visual Mark-Recapture

="failure"

Visual Mark-Recapture

- Seen by 2
 ="marked"

 Seen by 1
 ="success"
- We know 2 animals passed (because Obs 2 saw them)
- Of these, Obs 1 saw 1
- So **estimate:** $Pr(Obs \ 1 \ sees) = \hat{p}_1 = \frac{1}{2} = \frac{n_{12}}{n_2} = \underbrace{number "duplicates"}_{number \ seen \ by \ 2}$

University of St Andrews

Main Topic 1: g(0)<1: MRDS

 $Pr(animal\ i\ included)$ depends on covariates of animal i and g(0) can be <1.

- Remove/reduce bias due to g(0)<1
- Can examine effects of covariates

Density surface modelling

Encounter rate varies spatially as a function of environmental covariates

After adjusting for imperfect detectability

Modelling of adjusted counts with generalised additive models (GAMs)

Multi-analysis engine

Include uncertainty in various phases of data collection into the analysis

Multi-analysis engine

Unidentified sightings

Sightings cannot be identified to species

Causes bias when there are unidentified sightings on the transect

E.g. uncertainty in cluster size, distance, angle, multipliers If not included you may underestimate variability

ETP Data Unidentified Sightings

Simulation of distance sampling

What does it do?

Advanced topics are delivered in our St Andrews training workshops

Check the website for dates of next workshop Workshops are available for persons attending in person or attending remotely (via internet)

