Informe final - Amplificador Diferencial Retroalimentado

Universidad Nacional de San Antonio Abad del Cusco

Escuela profesional de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos III

Ing. Miguel Angel Janqui Cavero Ingeniero Electrónico Cusco, Perú miguel.janqui@unsaac.edu.pe

Estudiante de Ingeniería Electrónica Cusco, Perú 184657@unsaac.edu.pe

Ruth Juana Espino Puma - 185746 Davis Bremdow Salazar Roa - 200353 Estudiante de Ingeniería Electrónica Cusco, Perú 200353@unsaac.edu.pe

Abstract—Los circuitos resonantes son fundamentales en la recepción de señales de radiofrecuencia (RF) debido a su capacidad para seleccionar una frecuencia específica entre muchas presentes en el espectro electromagnético. Funcionan como filtros sintonizables que amplifican la señal deseada y atenúan las no deseadas, mejorando así la relación señal/ruido y la sensibilidad del receptor. Además, facilitan la demodulación eficiente al permitir que solo las señales de interés pasen a las siguientes etapas del sistema, como el mezclador o el amplificador. Su correcta implementación es clave para lograr una recepción clara y precisa en sistemas de comunicación inalámbrica.

Index Terms-Resonancia, Selectividad, Frecuencia RF, Filtro Pasa Banda, Receptores RF, Sintonía, Amplificación, Demodulación

I. Curva teórica I_O del circuito resonante en

En el primer circuito se realizo la simulación del mismo para la obtención de las características eléctricas destacando dentro de sus propiedades una máxima magnitud de corriente en la salida debido a la conexión de los elementos resistivos v reactivos en serie.

Los valores de salida se obtuvieron e 2 formas

- Forma experimental mediante la simulación
- De forma teórica

Siendo así que para el segundo método se hizo uso de la ecuación 1 en la cual se obtiene la corriente de salida en función al voltaje de entrada y la magnitud de la impedancia total del circuito en resonancia.

Además como se puede apreciar en 1 el valor de corriente I_O depende de la frecuencia, por lo que será necesario tabular y realizar este calculo para frecuencias por encima y por debajo de la frecuencias de resonancias F_O .

$$I_o = \frac{V_o}{Z} = \frac{V_o}{\sqrt{(R + R_1)^2 + (\omega L - \frac{1}{\omega C})^2}}$$
(1)

En la figura 1 se puede apreciar el circuito simulado con los valores de resistencias y reactancia asignados en la guía en el cual se configuraron dos multímetros configurados para una medición de señal alterna para medir el voltaje de salida y la corriente para cada valor de frecuencia.

Fig. 1: Circuito Resonante en Serie

Además de ello también se agrego un osciloscopio en la salida para determinar la forma de onda y el desfase de la señal de salida para valores muy por debajo y encima de la frecuencia de resonancia, siendo así que el resumen de valores medidos para el circuito serie se muestra en la tabla I.

Mostrándose la evolución de la corriente de forma gráfica para el método experimental en la figura 2

Fig. 2: Corriente en función de la frecuencia - Circuito Serie

Barrido de frecuencias		
f (Hz)	Vo [mV]	Io [mA]
10	333.437	0.666875
20	516.629	1.033
50	662.684	1.325
100	695.498	1.391
200	704.455	1.409
300	706.099	1.412
400	706.733	1.413
500	706.954	1.414
600	707.086	1.414
700	707.1	1.414
708.93	707.1	1.414
850	707.063	1.414
950	706.984	1.414
1000	706.939	1.414
1200	706.757	1.414
2000	705.517	1.411
2500	704.37	1.409
3500	701.313	1.403
5000	695.028	1.39

TABLE I: Valores simulados experimentalmente - Circuito Serie

Barrido de frecuencias		
f (Hz)	Vo [mV]	Io [mA]
10	333.437	0.103774
20	516.629	0.250128
50	662.684	0.41338
100	695.498	0.455872
200	704.455	0.467861
300	706.099	0.470101
400	706.733	0.47091
500	706.954	0.471217
600	707.086	0.471372
700	707.1	0.4714
708.93	707.1	0.4714
850	707.063	0.471353
950	706.984	0.471263
1000	706.939	0.47121
1200	706.757	0.470967
2000	705.517	0.469326
2500	704.37	0.467826
3500	701.313	0.463844
5000	695.028	0.455645

TABLE II: Corriente I_o teórica - Circuito Serie

Para la curva teórica se hizo uso de la expresión analítica referente al circuito serie ejemplificado por la ecuación 2, usando los valores de reactancia y resistencia definidos en el circuito a implementar.

$$I_o = \frac{V_o}{Z} = \frac{V_o}{\sqrt{(R + R_l)^2 + (\omega L - \frac{1}{\omega C})^2}}$$
(2)

Además para el calculo de la corriente de salida I_o , fue necesario tener como referencia un voltaje de salida V_o para cada frecuencia, usando como referencia para este propósito los voltajes en la tabla I.

Los valores teóricos calculados se muestran en la tabla II en la cual se detalla la frecuencia, el voltaje de salida $V_o[mV]$ y la corriente teórica $I_o[mA]$ en función a la impedancia total del circuito.

Finalmente en la figura $\ref{eq:constraint}$ se muestra la curva de corriente I_o teórica en la cual se puede apreciar que la magnitud de la corriente guarda una relación inversa con la frecuencia de corte respecto es mucho menor o mayor a la frecuencia de resonancia del circuito.

Fig. 3: Corriente de salida teórica respecto a la frecuencia

Por otro lado cabe destacar que aunque experimentalmente la corriente de salida I_o no disminuye significativamente para valores de frecuencia mucho mayores a la frecuencia de resonancia Fo=708.93 en la gráfica obtenida teóricamente la magnitud de este parámetro si se ve afectado apreciándose una pendiente negativa o decreciente para una frecuencia mayor a los 200 Hz.

II. Curva teórica I_O del circuito resonante en paralelo

$$I_o = \frac{V_o}{Z} = \frac{V_o}{\sqrt{R^2 + \frac{\omega^2 L^2}{(1 - \omega^2 C L)^2}}}$$
(3)

III. CURVA REAL VS CURVA TEÓRICA