ТЕОРІЯ ЙМОВІРНОСТЕЙ, СТАТИСТИКА ТА ЙМОВІРНІСНІ ПРОЦЕСИ Лекція 3.

Розора Ірина Василівна

Київ, 2020

Зміст І

- 📵 Аксіоматика теорії ймовірності, А.М. Колмогоров, 1933
 - ullet Означення алгебри та σ -алгебри випадкових подій
 - ullet Борелева σ -алгебра
 - Аксіоми ймовірності

Визначення ймовірнісного простору

3 Основні властивості ймовірності

Означення алгебри та σ -алгебри випадкових подій Борелева σ -алгебра Аксіоми ймовірності

Зміст

- 📵 Аксіоматика теорії ймовірності, А.М. Колмогоров, 1933
 - ullet Означення алгебри та σ -алгебри випадкових подій
 - ullet Борелева σ -алгебра
 - Аксіоми ймовірності
- 2 Визначення ймовірнісного простору
- 3 Основні властивості ймовірності

Проводиться стохастичний експеримент з ПЕП Ω .

Означення

Клас множин F_0 називається алгеброю, заданою на Ω , якщо

$$\Omega \in F_0$$

$$A \in F_0 \Rightarrow \overline{A} \in F_0$$

$$A \in F_0, B \in F_0 \Rightarrow A \cup B \in F_0$$

Проводиться стохастичний експеримент з ПЕП Ω .

Означення

Клас множин F_0 називається алгеброю, заданою на Ω , якщо

$$\Omega \in F_0$$

$$A \in F_0 \Rightarrow \overline{A} \in F_0$$

$$A \in F_0, B \in F_0 \Rightarrow A \cup B \in F_0$$

Проводиться стохастичний експеримент з ПЕП Ω .

Означення

Клас множин F_0 називається алгеброю, заданою на Ω , якщо

$$\Omega \in F_0$$

$$A \in F_0 \Rightarrow \overline{A} \in F_0$$

$$A \in F_0, B \in F_0 \Rightarrow A \cup B \in F_0$$

Якщо F_0 — алгебра, то з

$$A \in F_0, B \in F_0 \Rightarrow A \cap B \in F_0.$$

Дійсно

$$A \cap B = \overline{\overline{A} \cup \overline{B}} \in F_0$$

Якщо F_0 — алгебра, то з

$$A \in F_0, B \in F_0 \Rightarrow A \cap B \in F_0.$$

Дійсно,

$$A \cap B = \overline{\overline{A} \cup \overline{B}} \in F_0$$

Якщо F_0 — алгебра, то з

$$A_i \in F_0, i = \overline{1, n} \quad \Rightarrow \quad \bigcup_{i=1}^n A_i \in F_0.$$

Це твердження можна довести методом матем. індукції (ММІ)

Якщо F_0 — алгебра, то з

$$A_i \in F_0, i = \overline{1, n} \quad \Rightarrow \quad \bigcup_{i=1}^n A_i \in F_0.$$

Це твердження можна довести методом матем. індукції (ММІ)

Вправа:

- 1. Показати, що якщо $A,B\in F_0$, то $A\setminus B\in F_0$, $B\setminus A\in F_0$, $A\triangle B\in F_0$.
- 2. Клас множин F_0 є алгеброю \Leftrightarrow

$$\Omega \in F_0$$

$$A \setminus B \in F_0$$

1. Тривіальна алгебра

$$\{\Omega,\emptyset\}$$

2. Нехай A — деяка підмножина Ω . Тоді

$$\{\Omega,\emptyset,A,\overline{A}\}$$
 — алгебра.

3. $\Omega=[0,1),\ F_0$ — система підмножин з Ω , кожна з яких є скін. сумою неперетинних інтервалів вигляду [a,b). Тоді F_0 — алгебра.

Означення

Клас множин F називається σ -алгеброю, заданою на Ω , якщо

● (*F*1, нормованість)

$$\Omega \in F$$

(F2, доповнення)

$$A \in F \Rightarrow \overline{A} \in F$$

(F3, зліч. об'єднання)

$$\forall n \geq 1, A_n \in F, \Rightarrow \bigcup_{n=1}^{\infty} A_n \in F$$

Означення алгебри та σ -алгебри випадкових подій Борелева σ -алгебра Аксіоми ймовірності

Зауваження

Множини з σ -алгебри F ще називають подіями.

Зауваження

F1 - F3 — перша група аксіом Т.Йм.

"Клас усіх випадкових подій є σ -алгеброю F".

Приклад

Множина $F=2^{\Omega}$ всіх підмножин Ω утворює σ -алгебру.

Означення

Нехай K — деякий клас підмножин з Ω . Найменшою σ -алгеброю, що містить клас K, називається σ -алгебра $\sigma(K)$:

•
$$K \subset \sigma(K)$$

٥

$$\sigma(K) = \bigcap_{S \supset K, S - \sigma - \mathsf{алгебра}}$$

Борелеві множини на **R**

Означення

 σ -алгеброю борелевих (борелівських) множин на ${\sf R}$ називають мінімальну σ -алгебру σ -алгебру $\mathfrak{B}(\mathsf{R})$, породжену класом проміжків [a,b). Множини з σ -алгебри $\mathfrak{B}(\mathsf{R})$ називаються борелевими (борелівськими) множинами на R.

Приклад

Покажемо, що множина $\{a\}$, $\forall a \in \mathbb{R}$, ϵ борелевою.

$$\bigcap_{i=1}^{\infty} A_i = \overline{\bigcup_{i=1}^{\infty} \overline{A_i}} \in \mathfrak{B}(\mathsf{R}), \Rightarrow$$

$$\{a\} = \bigcap^{\infty} [a, a + \frac{1}{a}] \in \mathfrak{B}(\mathsf{R})$$

Борелеві множини на R

Означення

 σ -алгеброю борелевих (борелівських) множин на R називають мінімальну σ -алгебру σ -алгебру $\mathfrak{B}(R)$, породжену класом проміжків [a,b). Множини з σ -алгебри $\mathfrak{B}(R)$ називаються борелевими (борелівськими) множинами на R.

Приклад

Покажемо, що множина $\{a\}$, $\forall a \in \mathbb{R}$, є борелевою. Дійсно, оскільки за правилом де Моргана

$$igcap_{i=1}^{\infty} A_i = \overline{igcup_{i=1}^{\infty} \overline{A_i}} \in \mathfrak{B}(\mathsf{R}), \Rightarrow$$

$$\{a\} = \bigcap_{i=1}^{\infty} [a, a + \frac{1}{a}] \in \mathfrak{B}(\mathsf{R})$$

Борелеві множини на R

Означення

 σ -алгеброю борелевих (борелівських) множин на R називають мінімальну σ -алгебру σ -алгебру $\mathfrak{B}(R)$, породжену класом проміжків [a,b). Множини з σ -алгебри $\mathfrak{B}(R)$ називаються борелевими (борелівськими) множинами на R.

Приклад

Покажемо, що множина $\{a\}$, $\forall a \in \mathbb{R}$, є борелевою. Дійсно, оскільки за правилом де Моргана

$$\bigcap_{i=1}^{\infty}A_{i}=\overline{\bigcup_{i=1}^{\infty}\overline{A_{i}}}\in\mathfrak{B}(\mathsf{R}),\Rightarrow$$

$$\{a\} = \bigcap_{i=1}^{\infty} [a, a + \frac{1}{i}) \in \mathfrak{B}(\mathsf{R})$$

Будь-яка зліч. множина числової прямої є борел. множиною.

Дійсно, за власт. F3

$$\bigcup_{n=1}^{\infty} \{a_n\} \in \mathfrak{B}(\mathsf{R})$$

$$\forall a < b \in \mathbb{R} \quad (a, b) \in \mathfrak{B}(\mathbb{R})$$

$$(a,b) = [a,b) \cap \overline{\{a\}} \in \mathfrak{B}(\mathsf{R})$$

Будь-яка зліч. множина числової прямої є борел. множиною. Дійсно, за власт. F3

$$\bigcup_{n=1}^{\infty}\{a_n\}\in\mathfrak{B}(\mathsf{R})$$

$$\forall a < b \in \mathbb{R} \quad (a, b) \in \mathfrak{B}(\mathbb{R})$$

$$(a,b) = [a,b) \cap \overline{\{a\}} \in \mathfrak{B}(\mathsf{R})$$

Будь-яка зліч. множина числової прямої є борел. множиною. Дійсно, за власт. F3

$$\bigcup_{n=1}^{\infty} \{a_n\} \in \mathfrak{B}(\mathsf{R})$$

$$\forall a < b \in \mathsf{R} \quad (a, b) \in \mathfrak{B}(\mathsf{R})$$

$$(a,b)=[a,b)\cap\overline{\{a\}}\in\mathfrak{B}(\mathsf{R})$$

Будь-яка зліч. множина числової прямої є борел. множиною. Дійсно, за власт. F3

$$\bigcup_{n=1}^{\infty} \{a_n\} \in \mathfrak{B}(\mathsf{R})$$

$$\forall a < b \in \mathsf{R} \quad (a, b) \in \mathfrak{B}(\mathsf{R})$$

$$(a,b) = [a,b) \cap \overline{\{a\}} \in \mathfrak{B}(\mathsf{R})$$

Вправа:

Покажіть, що $\forall a \in \mathbf{R}$

•

$$(a, +\infty) \in \mathfrak{B}(\mathsf{R}), \quad [a, +\infty) \in \mathfrak{B}(\mathsf{R})$$

•

$$(-\infty, a) \in \mathfrak{B}(\mathsf{R}), \quad (-\infty, a] \in \mathfrak{B}(\mathsf{R})$$

- будь-яка відкрита множина є борел.
- будь-яка замкнена множина є борел.

Означення

Кажуть, що множина K замкнена відносно монотонної збіжності, якщо

ullet $A_n\in K: A_1\subset A_2\subset \cdots \subset A_n\subset \cdots, n\geq 1,$ випливає, що

$$\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty A_n\in\mathcal{K}$$

ullet $B_n \in K: \quad B_1 \supset B_2 \supset \cdots \supset B_n \supset \cdots, \quad n \geq 1,$ випливає, що

$$\lim_{n\to\infty}B_n=\bigcap_{n=1}^\infty B_n\in K$$

Означення алгебри та σ -алгебри випадкових подій Борелева σ -алгебра Аксіоми ймовірності

Теорема

Для того, щоб алгебра F_0 була σ -алгеброю $\Leftrightarrow F_0$ замкнена відносно монотонної збіжності.

Доведення. І

 \Rightarrow (Необхідність.) Нехай $F_0 - \sigma$ -алгебра, покажемо, що вона замкнена відносно монотон. збіжності, тобто

$$\forall A_n \in F_0: \quad A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots, \quad n \geq 1, \quad \Rightarrow \bigcup_{n=1}^{\infty} A_n \in F_0.$$

Дана властивість випливає з властивості F3 для σ -алгебри. Покажемо, що і для спадної послідовності її границя буде лежати в σ -алгебрі.

Отже, нехай

$$B_n \in F_0: B_1 \supset B_2 \supset \cdots \supset B_n \supset \cdots, n \ge 1.$$

Покажемо, що

$$\lim_{n\to\infty}B_n=\bigcap_{n\to 1}B_n\in F_0.$$

Доведення. II

Якщо $B_n \downarrow$ (є спадною послідовністю), то

$$\overline{B_n} \uparrow$$

є зростаючою:

$$\overline{B_1} \subset \overline{B_2} \subset \cdots \subset \overline{B_n} \subset \cdots, \quad n \ge 1.$$

Тому

$$\bigcup_{n=1}^{\infty} \overline{B_n} = \bigcap_{n=1}^{\infty} B_n \in F_0.$$

А з другої властивості (F2, доповнення) для σ -алгебри впливає, що і

$$\bigcap_{n=1}^{\infty} B_n \in F_0$$

Доведення. III

що потрібно було довести.

 \Leftarrow (Достатність.) Нехай алгебра F_0 буде замкненою відносно монотон. збіжності. Покажемо, що F_0 є σ -алгеброю. Досить довести, що виконується властивість F_3 (зліч. об'єднання)

$$\forall n \geq 1 A_n \in F_0, \quad \Rightarrow \quad \bigcup_{n=1}^{\infty} A_n \in F_0.$$

Утворимо нову послідовність

$$C_m = \bigcup_{n=1}^m A_n, \quad m \ge 1$$

з властивостями

Доведення. IV

•
$$C_1 \subset C_2 \subset \cdots$$
. Отже, $C_m \uparrow$

 $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} C_n.$

Оскільки $C_m \uparrow$ є монотонно зростаючою послідовністю, то із монотон. замкненості F_0 випливає, що $\bigcup_{n=1}^{\infty} C_n \in F_0$, тому і $\bigcup_{n=1}^{\infty} A_n \in F_0$, що і потрібно було довести. \square

Означення алгебри та σ -алгебри випадкових подій Борелева σ -алгебра Аксіоми ймовірності

У т. йм. із кожною випадковою подією пов'язують числову міру її вірогіднотсті — ймовірніть. Оскільки для частотного означення ймовірності, у скін. та зліч. йм. схемах виконувались властивості невід'ємності, нормованості та адитивності, то природньо постулювати такі аксіоми йм.

Означення

Числову функцію $P:F\to [0,1]$,визначену на класі випадкових подій F, називають ймовірністю (імовірнісною мірою), якщо виконуються такі вл.:

• (Р1, невід'ємність)

$$\forall A \in F P(A) \geq 0;$$

- (P2, нормованість) $P(\Omega) = 1$;
- (P3, σ -адитивність)

$$\forall n \geq 1 A_n \in F : A_i \cap A_j = \emptyset, i \neq j,$$

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n).$$

Означення

Функція $P(\cdot)$ називається адитивною ймовірністю, якщо замість вл. P3) виконується слабша умова

(Р3′, адитивність)

$$\forall A, B \in F : A \cap B = \emptyset, \quad P(A \cup B) = P(A) + P(B).$$

Зауваження

Властивість адитивності еквівалентна скін. адитивності:

• (Р3", скін. адитивність)

$$\forall n \geq 1 A_i \in F : A_i \cap A_j = \emptyset, i \neq j, i, j = \overline{1, n}$$

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i).$$

Означення алгебри та σ -алгебри випадкових подій Борелева σ -алгебра **Аксіоми ймовірності**

Зауваження

Другу групу аксіом Т.йм. можна сформулювати так: "Імовірність є σ -адитивною невід'ємною нормованою функцією на класі всіх випадкових подій."

Зауваження

Аксіомами т.йм. $\in F1 - F3$ та P1 - P3.

Зміст

- 📵 Аксіоматика теорії ймовірності, А.М. Колмогоров, 1933
 - ullet Означення алгебри та σ -алгебри випадкових подій
 - ullet Борелева σ -алгебра
 - Аксіоми ймовірності
- Визначення ймовірнісного простору
- 3 Основні властивості ймовірності

Означення

Імовірнісним постором називається трійка (Ω, F, P) , де

 $\Omega - \Pi E \Pi$ (будь-яка абстрактна множина),

F — клас усіх випадкових подій, підмножин з Ω , які утворюють σ -алгебру з власт. F1-F,

P— імовірнісна міра з власт. P1 - P3.

Аксіоматика теорії ймовірності, А.М. Колмогоров, 1933 **Визначення ймовірнісного простору**Основні властивості ймовірності

- ullet (F1, нормованість) $\Omega \in F$
- ullet (F2, доповнення) $A \in F \quad \Rightarrow \quad \overline{A} \in F$
- ullet (*F*3, зліч. об'єднання) $\forall n \geq 1 A_n \in F, \quad \Rightarrow \quad \bigcup_{n=1}^\infty A_n \in F$
- (Р1, невід'ємність) $\forall A \in F \ P(A) \ge 0$;
- (P2, нормованість) $P(\Omega) = 1$;
- (Р3, σ -адитивність) $\forall n \geq 1 A_n \in F : A_i \cap A_j = \emptyset, i \neq j,$

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n).$$

Зміст

- Аксіоматика теорії ймовірності, А.М. Колмогоров, 1933
 - ullet Означення алгебри та σ -алгебри випадкових подій
 - ullet Борелева σ -алгебра
 - Аксіоми ймовірності
- 2 Визначення ймовірнісного простору
- 3 Основні властивості ймовірності

1. Ймовірність доповнення

Нехай $A \in F$, тоді

$$P(\overline{A}) = 1 - P(A).$$

Оскільки $A \in F$, то з F2(доповнення) $\Rightarrow \overline{A} \in F$.

$$\Omega = A \cup \overline{A}, \quad A \cap \overline{A} = \emptyset.$$

Із власт. P2 (нормованості) та P3 (σ -адитивності) виплива ϵ

$$1 = P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A}).$$

1. Ймовірність доповнення

Нехай $A \in F$, тоді

$$P(\overline{A}) = 1 - P(A).$$

Оскільки $A \in F$, то з F2(доповнення) $\Rightarrow \overline{A} \in F$.

$$\Omega = A \cup \overline{A}, \quad A \cap \overline{A} = \emptyset.$$

Із власт. P2 (нормованості) та P3 (σ -адитивності) випливає

$$1 = P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A}).$$

2. Ймовірність неможливої події

$$P(\emptyset) = 0.$$

Оскільки

$$\emptyset = \overline{\Omega},$$

то з першої власт. про ймовірність доповнення та Р2 випливає

$$P(\emptyset) = 1 - P(\Omega) = 1 - 1 = 0.$$

2. Ймовірність неможливої події

$$P(\emptyset) = 0.$$

Оскільки

$$\emptyset = \overline{\Omega}$$
,

то з першої власт. про ймовірність доповнення та Р2 випливає

$$P(\emptyset) = 1 - P(\Omega) = 1 - 1 = 0.$$

3. Ймовірність вкладеної різниці

$$A, \in F \quad A \subset B \Rightarrow \quad P(B \setminus A) = P(B) - P(A).$$

Представимо подію *В* вигляді об'єднання двох несумісних подій.

$$B = A \cup (B \setminus A), \quad A \cap (B \setminus A) = \emptyset.$$

Отже, за власт. Р3

$$P(A \cup (B \setminus A)) = P(A) + P(B \setminus A) \Rightarrow P(B \setminus A) = P(B) - P(A).$$

3. Ймовірність вкладеної різниці

$$A, \in F \quad A \subset B \Rightarrow \quad P(B \setminus A) = P(B) - P(A).$$

Представимо подію B вигляді об'єднання двох несумісних подій.

$$B = A \cup (B \setminus A), \quad A \cap (B \setminus A) = \emptyset.$$

Отже, за власт. РЗ

$$P(A \cup (B \setminus A)) = P(A) + P(B \setminus A) \Rightarrow P(B \setminus A) = P(B) - P(A).$$

3. Ймовірність вкладеної різниці

$$A, \in F \quad A \subset B \Rightarrow \quad P(B \setminus A) = P(B) - P(A).$$

Представимо подію B вигляді об'єднання двох несумісних подій.

$$B = A \cup (B \setminus A), \quad A \cap (B \setminus A) = \emptyset.$$

Отже, за власт. Р3

$$P(A \cup (B \setminus A)) = P(A) + P(B \setminus A) \Rightarrow P(B \setminus A) = P(B) - P(A).$$

4. Монотонність ймовірності

$$A, B \in F$$
, $A \subset B \Rightarrow P(A) \leq P(B)$.

Із власт. невід'ємності Р1 випливає, що $P(B\setminus A)\geq 0$. Тоді із попередньої власт. (ймов. вкладеної різниці) маємо

$$P(B \setminus A) = P(B) - P(A) \ge 0 \quad \Rightarrow P(A) \le P(B).$$

4. Монотонність ймовірності

$$A, B \in F$$
, $A \subset B \Rightarrow P(A) \leq P(B)$.

Із власт. невід'ємності Р1 випливає, що $P(B \setminus A) \geq 0$. Тоді із попередньої власт. (ймов. вкладеної різниці) маємо

$$P(B \setminus A) = P(B) - P(A) \ge 0 \implies P(A) \le P(B).$$

5. Множина значень ймовірності

$$\{P(A), A \in F\} \subset [0,1].$$

Осільки

$$\emptyset \subset A \subset \Omega$$
,

то за власт. монотонності ймов.(4), йм. неможливої події (2) та Р2 (нормованості) отримаємо

$$0 = P(\emptyset) \le P(A) \le P(\Omega) = 1.$$

5. Множина значень ймовірності

$$\{P(A), A \in F\} \subset [0, 1].$$

Осільки

$$\emptyset \subset A \subset \Omega$$
,

то за власт. монотонності ймов.(4), йм. неможливої події (2) та Р2 (нормованості) отримаємо

$$0 = P(\emptyset) \le P(A) \le P(\Omega) = 1.$$

6. Йм. об'єднання двох подій

$$A, B \in F$$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Виразимо подію $A \cup B$ через суму несумісних подій:

$$A \cup B = A \cup (B \setminus (A \cap B)), \quad A \cap (B \setminus (A \cap B)) = \emptyset.$$

Тому за власт. Р3

$$P(A \cup B) = P(A \cup (B \setminus (A \cap B))) = P(A) + P(B \setminus (A \cap B)). (1)$$

Використаємо власт. 3. йм. вкладеної різниці для подій $A\cap B\subset B$:

$$P(B \setminus (A \cap B)) = P(B) - P(A \cap B).$$

Твердження повністю буде доведене, якщо отриману рівність підставити у (1).

6. Йм. об'єднання двох подій

$$A, B \in F$$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Виразимо подію $A \cup B$ через суму несумісних подій:

$$A \cup B = A \cup (B \setminus (A \cap B)), \quad A \cap (B \setminus (A \cap B)) = \emptyset.$$

Тому за власт. Р3

$$P(A \cup B) = P(A \cup (B \setminus (A \cap B))) = P(A) + P(B \setminus (A \cap B)). (1)$$

Використаємо власт. 3. йм. вкладеної різниці для подій $A\cap B\subset B$:

$$P(B \setminus (A \cap B)) = P(B) - P(A \cap B).$$

Твердження повністю буде доведене, якщо отриману рівність підставити у (1).

6. Йм. об'єднання двох подій

$$A, B \in F$$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Виразимо подію $A \cup B$ через суму несумісних подій:

$$A \cup B = A \cup (B \setminus (A \cap B)), \quad A \cap (B \setminus (A \cap B)) = \emptyset.$$

Тому за власт. Р3

$$P(A \cup B) = P(A \cup (B \setminus (A \cap B))) = P(A) + P(B \setminus (A \cap B)). (1)$$

Використаємо власт. 3. йм. вкладеної різниці для подій $A \cap B \subset B$:

$$P(B \setminus (A \cap B)) = P(B) - P(A \cap B).$$

Твердження повністю буде доведене, якщо отриману рівність підставити у (1).

7. Формула включення-виключення

Нехай
$$A_k, k = \overline{1,n}$$
 — випадкові події, тоді

$$P(\bigcup_{k=1}^{n} A_{k}) = \sum_{1 \leq i_{1} \leq n} P(A_{i_{1}}) - \sum_{1 \leq i_{1} < i_{2} \leq n} P(A_{i_{1}} \cap A_{i_{2}}) +$$

$$+ \sum_{1 \leq i_1 < i_2 < i_3 \leq n} P(A_{i_1} \cap A_{i_2} \cap A_{i_3}) + \cdots + (-1)^{n-1} P(A_1 \cap \cdots \cap A_n).$$

Доведення I

MMI.

- 1. Для n=2 формула виконується(\Leftarrow з власт. 6.)
- 2. Нехай вик. для *n*
- 3. Доведемо, що вик. для n+1. Позначимо $B=\bigcup_{k=1}^n A_k$.

$$P(\bigcup_{k=1}^{n+1} A_k) = P(B \cup A_{n+1}) = P(B) + P(A_{n+1}) - P(B \cap A_{n+1}) =$$

До P(B) застосовуємо формулу вкл.-викл.

$$= \sum_{1 \leq i_1 \leq n} P(A_{i_1}) - \sum_{1 \leq i_1 \leq i_2 \leq n} P(A_{i_1} \cap A_{i_2}) + \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n) +$$

Доведення II

$$+P(A_{n+1})-P(\bigcup_{k=1}^{n}(A_{k}\cap A_{n+1})).$$

До повного доведення залишилось до ост. доданку ще раз заст. формулу для n подій.

Приклад I

Приклад

Студент написав n листів. Поклавши їх у конверти, він "випадковим чином " підписав адреси на конвертах. Яка ймовірність того, що хоча б один лист потрапить до свого адресата?

Приклад

Числа $1,2,\cdots,n$ розташовані навмання. Знайти ймовірність того, що принаймні одне число співпадає із номером свого місця.

Ел. подія — упорядкована послідовність чисел. Всі ел.події рівноможливі.

$$|\Omega| = n!$$

 $A_i = \{$ Число і знаходиться на місці з номером і $\}, \quad i = \overline{1,n}.$

 $A_1 \cup A_2 \cup \dots \cup A_n = \{ ext{ хоча 6 одне на свооєму місці} \}$ Що означає подія $A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k} ?$

$$P(A_i) = \frac{(n-1)!}{n!}, \quad P(A_{i_1} \cap A_{i_2}) = \frac{(n-2)!}{n!}, \quad P(\bigcap_{j=1}^k A_{i_j}) = \frac{(n-k)!}{n!}.$$

$$\sum_{1 \le i \le n} P(A_{i_1}) = \sum_{1 \le i \le n} \frac{(n-1)!}{n!} = 1.$$

$$\sum_{1 \leq i_1 < i_2 \leq n} P(A_{i_1} \cap A_{i_2}) = C_n^2 \frac{(n-2)!}{n!} = \frac{(n)!}{(n-2)!2!} \frac{(n-2)!}{n!} = \frac{1}{2!}.$$

$$\sum_{1\leq i_1< i_2< \cdots< i_k\leq n} P(A_{i_1}\cap A_{i_2}\cap\cdots\cap A_{i_k})=\frac{1}{k!}$$

Тоді за формулою включення-виключення маємо

$$P(\bigcup_{k=1}^{n} A_k) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots + (-1)^{n-1} \frac{1}{n!}.$$

Вправа. Яка буде границя цієї ймовірності при $n \to \infty$?

ПИТАННЯ?