MA 350 Number Theory – Spring 2024

Homework 6

Due: April 19, 2024

Submit your written work in Canvas as a single PDF file, and be sure to show your work. Answers without accompanying work will receive zero credit.

- 1. (5 points) Find $\mu(78)$.
- 2. (5 points) Explain why it is not possible to exist a positive integer n such that

$$\mu(n) \neq 0, \mu(n+1) \neq 0, \mu(n+2) \neq 0 \text{ and } \mu(n+3) \neq 0.$$

- 3. (5 points) Prove that a product of two multiplicative arithmetic functions is multiplicative.
- 4. (30 points) Let $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ be the prime factorization of n.
 - (a) Let F be the arithmetic function defined by

$$F(n) = \sum_{d \mid n} \mu(d) \varphi(d)$$

First, find an expression for $F(p_i^{\alpha_i})$, where $i \in \{1, 2, \dots, k\}$, and then using Theorem 7.8, show that

$$F(n) = \prod_{i=1}^k (2 - p_i).$$

(b) By using a suitable function instead of ϕ used in part (a) above, prove that

$$\sum_{d|n} \mu^2(d) = 2^{\omega(n)}$$

where $\omega(n)$ is the number of distinct prime factors of n (i.e. $\omega(n)=k$)), and then deduce, using the \underline{M} öbius inversion formula, that

$$\mu^{2}(n) = \sum_{d|n} \mu(d) 2^{\omega\left(\frac{n}{d}\right)}.$$

Moreover, verify this formula for n = 12.

(c) Let F be the arithmetic function defined by

$$F(n) = \sum_{d|n} \mu^2(d) \, \varphi(d).$$

Prove that

$$F(n) = \begin{cases} 1 & \text{; if } n = 1\\ \prod_{i=1}^{k} p_i & \text{; otherwise.} \end{cases}$$

Deduce that

$$\mu^2(n) = \begin{cases} \frac{1}{1} & \text{; if } n = 1\\ \frac{1}{\varphi(n)} \sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right) \text{; otherwise} \end{cases}$$

and verify this formula for n = 15.