# Tutorial 2

### **Functions**

### Q.1: Encoder of Even Parity

#### Encoding function *f.*

- □ Input:  $(b_1, b_2, b_3, b_4)$ , where  $b_i \in \{0, 1\} \ \forall i$
- □ Output:  $(c_1, c_2, c_3, c_4, c_5)$ , where  $c_i \in \{0, 1\} \ \forall i$ 
  - $c_1 = b_1, c_2 = b_2, c_3 = b_3, c_4 = b_4,$
  - $c_1 + c_2 + c_3 + c_4 + c_5 = 0 \pmod{2}$
- a) What is the domain of f?
  - Hint: Use Cartesian product.
- b) What is the co-domain of f?
- c) What is the image of (0, 1, 0, 0)?

## Q.1: Encoder of Even Parity

#### Encoding function *f.*

- □ Input:  $(b_1, b_2, b_3, b_4)$ , where  $b_i \in \{0, 1\} \ \forall i$
- □ Output:  $(c_1, c_2, c_3, c_4, c_5)$ , where  $c_i \in \{0, 1\} \ \forall i$ 
  - $c_1 = b_1, c_2 = b_2, c_3 = b_3, c_4 = b_4,$
  - $c_1 + c_2 + c_3 + c_4 + c_5 = 0 \pmod{2}$
- d) What is the range of *f*?
  - 1)  $\{0,1\}^5$
  - 2)  $\{x \in \{0, 1\}^5 \mid x \text{ has an even number of 1s }\}$
  - 3)  $\{x \in \{0, 1\}^5 \mid x \text{ has an odd number of 1s }\}$

### Q.2: Decoder of Even Parity

Decoding function *g*.

- □ Input:  $(c_1, c_2, c_3, c_4, c_5)$ , where  $c_i \in \{0, 1\} \ \forall i$
- Output:
  - Either  $(b_1, b_2, b_3, b_4)$ , where  $b_i \in \{0, 1\} \ \forall i$
  - Or a special symbol *e* when an error is detected.
- a) What is the image of (0, 1, 0, 0, 1)?
- b) What is the image of (1, 1, 0, 1, 0)?
- c) What is the domain of g?
- d) What is the co-domain of *g*?
  - Hint: Don't forget the special symbol *e*.

### Q.3: Injection & Surjection

☐ Is it injection or surjection?

i)



ii)



- a) i) is injection, ii) is surjection
- b) i) is injection, ii) is also injection
- c) i) is surjection, ii) is injection
- d) i) is surjection, ii) is also surjection

### Q.4: Composition of Onto Functions

- □ Suppose  $f: X \to Y$  and  $g: Y \to Z$  are both surjections.
- $\square$  Is  $g \circ f$  a surjection? Prove or disprove it.
  - a) Yes
  - b) No

## Q.5: Comparison of Infinities

■ Do the intervals (0,1) and (0,2) have the same cardinality? Prove or disprove it.

- a) Yes
- b) No