

الگوريتم هاى گراف

استاد: دكتر عابديان

سوالات جلسات اول تا ششم

مهلت تحویل تکالیف: پانزده فروردین ۱۴۰۴

سوالات جلسه اول و دوم

- ۱. گراف های سهبخشی و چهاربخشی چگونه گرافهایی هستند ؟
- ۲. چگونه با استفاده از ماتریس مجاورت، تشخیص دهیم که در گراف، دوری به طول فرد داریم ؟
 - ۳. الگوریتم دایجسترا، الگوریتم خوبی است ؟ پیچیدگی زمانی آن را بررسی کنید.
 - ۴. اگر الگوریتم دایسجترا را از هر راس شروع کنیم، گراف حاصل، گرافی یکتا خواهد بود ؟
 - چگونه با استفاده از ماتریس مجاورت، یالهای برشی را تشخیص دهیم ؟

سوالات جلسه سوم و چهارم

- ۱. چرا گرافی که دوبخشی است و تعداد راسهای آن فرد است، یک گراف ناهمیلتونی است ؟
 - ۲. با استفاده از قضیه ۲.۴ نشان دهید گراف هرشل، ناهمیلتونی است.
 - ۳. چرا گراف پترسن، ناهمیلتونی است ؟
- ۴. آیا میتوانیم الگوریتم خوبی برای شناسایی بستار یک گراف، یا بدست آوردن بستار یگ گراف ارائه دهیم ؟ همچنین همیلتونی بودن را چطور میتوان با آن تشخیص داد ؟
 - Δ . با استفاده از ماتریس مجاورت، فرمول کیلی همیلتون را پیاده سازی کنید.
 - ⁹. چگونه با استفاده از ماتریس مجاورت میتوان بلوکهای یک گراف را شمرد ؟
- ۱ اگر A ماتریس مجاورت باشد، در A^k ، آیا $a_{i,j}$ برابر است با تعداد گشتهای به طول i از راس i به راس i با استفاده از شکل i ریر گزاره مذکور را بررسی کنید.

سوالات جلسه پنجم و ششم

- ۱. آیا در مورد گراف های ۵-منتظم که دارای یال برشی میباشند، میتوان ادعا کرد که دارای تطابق کامل نیستند ؟ همچنین بهطور کل، گرافهای فرد-منتظم چه ویژگیهایی دارند ؟
 - ۲. ادعای زیر را ثابت یا رد کنید:
 - $(\chi'=\Delta)$ اگر گراف G یک گراف r-منتظم با تعداد رئوس زوج باشد، آنگاه عدد رنگی یالی آن برابر Δ است.
 - ۳. (اختیاری) برنامهای بنویسید که مسئله زمانبندی کلاس را با استفاده از مفهوم عدد رنگی یالی حل کند. (هدف آن است که برنامهای با کمترین زمان ممکن ارائه شود)

(در مثال زیر برای مسئله زمانبندی کلاس، X_i نشان دهنده استاد iم و Y_i نشان دهنده کلاس iم میباشد.)

	Y_1	Y_2	Y_3	Y_4	Y_5
X_1	٢	•	١	•	١
X_2	•	•	١	١	•
X_3	١	•	•	١	٢
X_4	•	•	١	١	١