INFO 1998: Introduction to Machine Learning

Lecture 1: Introduction

INFO 1998: Introduction to Machine Learning

Agenda

- **1. Meet the Team**: Who are we?
- **2.** Introduction: What is Data Science / Machine Learning?
- **3.** Course Syllabus: What will we learn?
- **4. Course Logistics**: How will we learn?
- **5. Getting Started**: Software & Demo

Who are we?

Cornell Data Science

Pro	iect ⁻	Team

Intelligent Systems

Insights

Data Engineering

Algorithmic Trading

Community Outreach

Education

INFO 1998

Workshops

Online Tutorials

Course Manager

Who you'll have to bear with

Tanmay Bansal
Information Science '21
tb444@cornell.edu
Took INFO 1998 in Fall 2017
Still haven't taken the swim test

Course Instructors

Backbone of INFO 1998

Dylan TsaiCS '21
Is probably taking
33 credits

Chris Elliott IS '20 Veteran Web-Scraper

Camilo
Cedeno-Tobon
ORIE '21
Break-dancer

Emily Weed Stats '22 Professional Chef

Jerry Sun CS '23 Will debate you

Raye Liu
ORIE '22
aka Whitney
Houston

"By "Data Science", we mean almost everything that has something to do with data: Collecting, analyzing, modeling..... yet the most important part is its applications --- all sorts of applications."

Journal of Data Science

Conway's Data Science Venn Diagram

Conway's Data Science Venn Diagram

Data Science Machine Learning

Applications of Data Science

We'll be back to this slide!

Predictive	Stock Prices
Predictive	Netflix Recommendations
Preventive	Medical Diagnosis
Preventive	Social Impact Analytics
Real-Time	Digital Advertising
near-Time	Autonomous Vehicles

Course Objectives and Syllabus

What you should aim to understand by the end of the course

OBJECTIVES	SYLLABUS	
Manipulating Data	Data Manipulation / Visualization	
Communicating Data	Lectures 1-3	
Understanding of ML as a concept	Fundamentals of Machine Learning Lectures 4-5	
Intuitive understanding of ML models		
Implementation of ML models	Supervised Learning	
Comfort Using Python	Lectures 6-8	
Applications in Industry	Unsupervised Learning	
Project Experience	Lecture 9	

Sample Final Projects

"0 - 100, Real Quick" - Drake

- (1) Determining indicators for a candidate's success in Canadian Elections
 Kevin Zhou, Jerry Sun
- (2) Predicting Player Performance/Value using NFL Data Brian Bobby, Max Brody, Teddy Klausner

FAQS Is this class a good fit for you?

1) Will I become a Data Scientist / Machine Learning Engineer?

No, you will not. The course covers a breadth of concepts, helps build intuitive understanding of some models, but does not dive too deep into the mathematical complexities (since this is a 1000-level course). However, feel free to come to office hours if you're interested in learning more.

2) How much time commitment is this course?

Depends. If you want to have a strong command over the material so that you can get a head start in this field, you will have to read a little more and be prepared to spend time with our TAs to go over concepts in more depth. If you want to acquire just street-fighting machine learning skills, that's fine too – it'll require little more than 1 hour per week.

3) I have no background in CS / Stats – am I underprepared?

Not at all! We'll teach you everything you need to know, but you may have to spend a little more time getting comfortable with Python. A number of non-STEM graduate students have taken this class in the past to understand basics that they could apply to their research. A large number of freshmen also take the course because they're excited to learn more about the field. TL;DR: If you're interested, give it a shot!

Enrollment

Let's get this credit

1

Fill out tiny.cc/info1998_sp20

Enrollment

Let's get this credit

1

Fill out tiny.cc/info1998_sp20

2

Enroll in Piazza
(INFO 1998)
You will be added to CMS
over the weekend

For fun, download 'Pizza for Piazza'

EnrollmentLet's get this credit

1

Fill out tiny.cc/info1998_sp20

2

Enroll in Piazza
(INFO 1998)
You will be added to CMS
over the weekend

For fun, download 'Pizza for Piazza' 3

Enroll through
Student Center after
obtaining pins

Course Logistics How is the class structured (and graded)?

10 assignments (1 assignment per lecture)	50%	
Drop lowest score!		
Mid-semester Group Project	15%	
2-3 students		
Final Group Project	35%	
2-3 students		

Passing Grade: 70%

Getting Started

Jupyter Notebook

Documentation (Code + Visuals)

Supports Python, Julia, etc.

Easy to share

Python (3)

Easy to learn, Readable

Industry Standard

Great documentation, online resources

InstallationGet the required software

1.

https://www.anaconda.com/distribution/

2.

Open Terminal (MacOS) / Command Prompt (Windows), Type and enter: jupyter notebook

Demo

Next Steps

- Installation: Seek help at Office Hours!
- Assignment 1: Due at 5:30pm on Wednesday, Feb 19, 2020 on CMS (Will be enrolled soon!)
- Next Lecture: Data Manipulation

