DLS-DMO: Towards High Accuracy DL-Based OPC With Deep Lithography Simulator

Guojin Chen

supervised by

Prof. Yu Bei

Department of Computer Science & Engineering
The Chinese University of Hong Kong

June 17, 2020

Outline

Introduction and Background

```
Previous work

DLS-DMO

Data Generation

DCGAN-HD

DCUNet++

Multi D

Perceptual Loss

DLS

DMO

Irregular Splitting Algo
```

Results

Our datasets

ISPD 2019 datasets

Background and problem formulation

Project backgroud

Optical proximity correction (OPC) is a photolithography enhancement technique commonly used to compensate for image errors due to diffraction or process effects.

PRELIMINARIES of OPC: DESIGN, SRAF, MASK, WAFER

PRELIMINARIES of OPC: Flow, EPE, PVBand

Goal: Using NN to simulate this process And beat one commercial products: Calibre

Two main step

OPC and Litho

Goal: Test our model on the industry data

Outline

Introduction and Background

Previous work

```
DLS-DMO
Data Gene
```

Data delleratio

DCI INIatau

DCONEI+

Multi D

Perceptual Loss

DLS

Irregular Splitting Algo.

Results

Our datasets

ISPD 2019 datasets

cGAN

Objective function

$$\mathcal{L}_{cGAN}(G, D)$$

$$= \mathbb{E}_{x,y}[\log D(x, y)]$$

$$+ \mathbb{E}_{x,z}[\log(1 - D(x, G(x, z))].$$
(1)

OPC stage previous work: GAN-OPC

GAN-OPC: shortages

- We cannot control the litho simulator.
- ► ILT-based model, come from MOSAIC, small layout.
- Only initial solution, bottleneck on the ILT-model.

Litho stage previous work: LithoGAN

$$egin{aligned} \mathcal{L}_{cGAN}(G,D) = & \mathbb{E}_{x,y}[\log D(x,y)] + \ & \mathbb{E}_{x,z}[\log(1-D(x,G(x,z))] \end{aligned} \ \mathcal{L}_{L1}(G) = & \mathbb{E}_{x,y,z}[\parallel y-G(x,z)\parallel_1] \ G^* = rg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G,D) + \lambda \mathcal{L}_{L1}(G) \end{aligned}$$

LithoGAN: shortages

- 1. Wafer may not have center. Did not make full use of cGAN.
- 2. The center shift is over design, we just need a powerful generator.
- 3. Mask must be at the center, one time can only generator one wafer(in the center, few in the dataset.)

Outline

Introduction and Background

Previous work

DLS-DMO

Data Generation

DCGAN-HD

DCUNet++

Multi D

Perceptual Loss

DLS

DMO

Irregular Splitting Algo.

Results

Our datasets

ISPD 2019 datasets

Goal

Problem

- Initial solution need further correction.
- One time one via lithography process.
- Low accuracy and small layout.

Solution: DLS-DMO

- End-to-end mask optimization without using traditional model.
- High resolution cGAN model.
- Window splitting algorithm for large layout.

Generate Training set

Self-generated datasets

DCGAN-HD: solution for higher resolution

Generator: DCUNet++

Discriminator: Multi-discriminator

Perceptual Losses

DCUNet++: Generator of DCGAN-HD

UNet++

Arch.

- UNet++ for low-level information.
- Residual blocks

DCUNet++: Generator of DCGAN-HD

Arch.

- UNet++ for low-level information.
- Residual blocks

DCUNet++

Multi Scale discriminator

We design a multi-scale discriminator, different from pix2pixHD using 3 discriminators, our design uses 2 discriminators that have an identical network structure but operate at different image scales, which namedD1,D2. Specially, the discriminators D1,D2are trained to differentiate real and synthesized images at the 2 different scales, 1024×1024 and 512×512 respectively. As in pix2pixHD claimed, the multi-scale design helps the training of high-resolution model easier.

Perceptual Loss

DLS training

$$\mathcal{L}_{DLS} = \sum_{k=1,2} \mathcal{L}_{cGAN}(G, D_k) + \lambda_0 \mathcal{L}_{L_P}^{G, \Phi}(y, \hat{y}). \tag{2}$$

DMO training

$$\mathcal{L}_{DMO} = \sum_{k=1,2} \mathcal{L}_{cGAN}(G_{DMO}, (D_{DMO})_k) + \lambda_1 \mathcal{L}_{L_p}^{G_{DMO}, \Phi}(x, \hat{x}). \tag{3}$$

$$\mathcal{L}_{DLS-OPC} = \mathcal{L}_{DMO} + \mathcal{L}_{DLS} + \lambda_2 \mathcal{L}_{L_1}(\hat{y}, w_r). \tag{4}$$

Irregular Splitting Algo: Coarse to Fine, DBSCAN to KMenas

Algo. detail

- 1. DBSCAN then KMeans++
- Initialize the number of centroids from 1 to V to run KMeans++.
- Every cluster contains no more than K via patterns.
- Every via pattern must be contained in a window.
- If (3) or (4) is not satisfied, increase the centroid number.

Algo. figure

Main Contribution

- DCGAN-HD: we extend cGANs model by redesign the generator and discriminator for high resolution input (1024*1024), combined with a novel window-splitting algorithm, our model can handle input layout of any size with high accuracy.
- We build up a deep lithography simulator (DLS) based on our DCGAN-HD. Thanks to the express power of stack convolution layers, DLS is expected to conduct lithography simulation faster with similar contour quality compared to legacy lithography simulation process.
- We present DLS-DMO, a unified end-to-end trainable OPC engine that employs both DLS and DMO to conduct mask optimization without further fine-tune with legacy OPC engines.
- Experimental results show that the proposed DLS-OPC framework is able to output high quality lithography contours more efficiently than Calibre, which also derives $\sim 4 \times$ speed-up in OPC tasks while generating masks with even better printability.

Outline

```
Results
   Our datasets
```

ISPD 2019 datasets

Results on self-generated datasets

Results on self-generated datasets

Table 3: Comparison with State-of-the-art

	GAN-OPC				Calibre			DLS-OPC				
	EPE (nm)	$L_2(nm)$	$PVB (nm^2)$	t(s)	EPE (nm)	$L_2(nm)$	$PVB(nm^2)$	t(s)	EPE (nm)	$L_2(nm)$	$PVB(nm^2)$	t(s)
via 1	1.9963	1464	3064	284	0.2270	1084	2918	1417	0.2760	1080	2917	321
via 2	4.0936	4447	5764	281	0.4143	2161	5595	1406	0.8245	2129	5576	336
via 3	4.7920	8171	8426	285	0.5415	3350	8286	1435	0.8213	3244	8271	317
via 4	4.8181	11659	11558	291	0.4951	4331	10975	1477	0.8777	4263	10946	327
via 5	5.0121	15773	13876	279	0.4851	5410	13663	1423	0.7341	5396	13640	318
via 6	5.0814	18904	16371	284	0.4947	6647	15572	1419	0.8472	5981	15543	320
Average	4.2989	10069	9843	284	0.4430	3831	9502	1430	0.7301	3682	9482	323
Ratio	5.888	2.735	1.038	0.879	0.607	1.040	1.002	4.427	1.00	1.00	1.00	1.00

Results on ISPD 2019 datasets

Results on ISPD 2019 datasets

Table 4: Results on ISPD 2019

			Calibre		DLS-OPC				
	EPE (nm)	$L_2(nm)$	PV Band (nm^2)	Runtime (s)	EPE (nm)	$L_2(nm)$	PV Band (nm^2)	Runtime (s)	
via 1(6116)	0.2728	1073	2857	18959	0.3196	1056	2848	3963	
via 2(2652)	0.4548	2232	5670	7537	0.8015	2172	5654	1742	
via 3(1582)	0.4980	3602	8276	4494	1.1472	3196	8127	1021	
via 4(522)	0.5336	4395	11051	1692	1.1967	4361	10946	341	
via 5(777)	0.8214	5526	12305	2537	1.2696	4542	12251	495	
Weighted	0.393	2126	5230	12525	0.644	1981	5193	2664	
Average									
Ratio	0.615	1.073	1.007	4.70	1.00	1.00	1.00	1.00	

Results on ISPD 2019 datasets

Table 5: Results on ISPD 2019 Large layout

	EPE (nm)	PVB (um^2)	Runtime(s)		
DLS-OPC	0.7828	61.3132	Prep.	Infer.	Total
DL5-Of C	0.7626	01.3132	4395	231.5	4626.5
Calibre	0.5372	65.7928	6111.46		

Results

Figure 8: Visualization of DLS-OPC model advancement on via layer: (a) Epoch 20; (b) Epoch 40; (c) Epoch 60; (d) Epoch 80; (e) Epoch 100.

Thanks

Thank you.

