Prova tipo J

P2 de Álgebra Linear I-2003.213 de outubro de 2003

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revis.
1a	1.0		
1b	1.0		
1c	0.5		
2a	0.5		
2b	1.0		
2c	0.5		
3a	1.0		
3b	1.0		
4a	1.0		
4b	0.5		
5	1.0		
6	1.0		
Total	10.0		

- 1) Estude a veracidade das seguintes afirmações.
- **1.a)** Seja $\beta = \{u_1, u_2, u_3\}$ uma base de \mathbb{R}^3 . Então

$$\gamma = \{u_1 + u_2 + u_3, u_1 + 2u_2 - u_3, 2u_1 + u_2 + 6u_3\}$$

é uma base de \mathbb{R}^3 .

- **1.b)** Sejam ρ e π dois planos não paralelos de \mathbb{R}^3 que contém a origem (ou seja os planos se interceptam em uma reta). Sejam $\alpha = \{v_1, v_2\}$ uma base de π e $\tau = \{w_1, w_2\}$ uma base de ρ . Então $\epsilon = \{v_1, v_2, w_2\}$ é uma base de \mathbb{R}^3 .
- 1.c) Existe uma única transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$T(u+w) = T(u) + 2T(w),$$

para todo par de vetores $u \in w$.

2) Considere os vetores

$$v_1 = (1, 1, 0),$$
 $v_2 = (2, 0, 1),$ $v_3 = (1, -3, 2),$ $v_4 = (2, 2, 0),$ $v_5 = (3, 1, 1),$ $v_6 = (2, 3, a).$

- **2.a)** Determine o valor de **a** no vetor v_6 para que os vetores v_1, v_2, v_3, v_4, v_5 e v_6 gerem um plano π .
- **2.b)** Usando os vetores do item anterior, determine uma base β do plano π (ou seja os vetores da base são escolhidos entre os vetores v_1, \ldots, v_6) e determine as coordenadas do vetor (5, 1, 2) na base β .
- **2.c**) Encontre uma base $\alpha = \{u_1, u_2, u_3\}$ de \mathbb{R}^3 tal que o vetor v = (1, 2, 3) tenha coordenadas (1, 2, 0) na base α .

a) Seja w um vetor de \mathbb{R}^3 e $M\colon \mathbb{R}^3\to \mathbb{R}^3$ a transformação linear $M(u)=u\times w$. Sabendo que a matriz de M é

$$[M] = \left(\begin{array}{ccc} 0 & 2 & -2 \\ -2 & 0 & 1 \\ 2 & -1 & 0 \end{array}\right).$$

Determine o vetor w.

b) Considere agora o vetor v=(1,1,2) e a transformação linear $T\colon\mathbb{R}^3\to\mathbb{R}^3$ definida por

$$T(u) = u \times v$$
.

Determine a matriz [T] de T.

- 4) Considere a projeção P no plano 2x+y-z=0 na direção do vetor (1,1,1).
 - (a) Determine a matriz de P.
 - (b) Encontre a equação cartesiana de um plano cuja imagem pela transformação P seja a reta $(t,-t,t),\,t\in\mathbb{R}$.

5) Considere os pontos A=(1,1) e B=(3,4) de \mathbb{R}^2 . Determine um ponto C tal que A,B e C sejam os vértices de um triângulo equilátero.

6) Determine ${\bf a},\,{\bf b}$ e ${\bf c}$ para que a matriz [P] represente uma projeção em uma reta.

$$[P] = \left(\begin{array}{ccc} 1 & a & b \\ -1 & 1 & c \\ -1 & 1 & -1 \end{array} \right).$$

Determine a reta e a direção de projeção (isto é, a equação cartesiana do plano que dá a direção de projeção na reta).