Homework: Angle relationships

1. Given two parallel lines and a transversal, as shown. Apply the theorem "If a transversal intersects two parallel lines, then corresponding angles are congruent."

- (a) State the angle corresponding with $\angle 7$.
- (b) Given $m\angle 6 = 80^{\circ}$ and $m\angle 2 = 2x^{\circ}$. Find x.
- (c) Given $m \angle 5 = 100^{\circ}$. Find $m \angle 3$.
- 2. Given $m \angle R = 45$, $m \angle U = 55$, and $m \angle UST = 100$. Find $m \angle RSU$.

- 3. As shown below, two parallel lines that intersect a transversal, and $\overrightarrow{DF}||\overrightarrow{BC}|$. For each question below, name the type of the pair of angles (e.g. corresponding, alternate interior, same-side exterior, etc.) and whether they are congruent or supplementary.
 - (a) Justify $\angle ABC \cong \angle AEF$.
 - (b) Justify $\angle ABC \cong \angle AED$.
 - (c) Justify $\angle ABC + \angle BEF = 180^{\circ}$.

4. Given the situation in the diagram, answer each question. Circle True or False.

- (a) True or False: $\angle SPU$ is an acute angle.
- (b) True or False: \overrightarrow{RP} and \overrightarrow{PU} are opposite rays.
- (c) True or False: $\angle RPS$ and $\angle SPU$ are a linear pair.
- (d) True or False: $\angle SPT$ and $\angle TPR$ are adjacent.
- 5. Find the volume of a hemisphere with a radius of three inches, to the nearest whole cubic inch. (The formula for the volume of a sphere is $V = \frac{4}{3}\pi r^3$)

Classwork: Circle the appropriate equation and state the justification

Use the postulates and theorems you have learned. You may abbreviate them as follows: "def. of bisector," " \bot rays meet at 90°," "complementary \angle s add to 90," "linear pairs add to 180," "vertical \angle s are \cong ," "corresponding \angle s of parallel lines are \cong ."

1. Given corresponding angles of a transversal and two parallel lines, $\angle A$, $\angle B$.

$$\angle A \cong \angle B$$
 $m\angle A + m\angle B = 180^{\circ}$ _____

2. $\angle RPS \cong \angle SPU \quad m\angle RPS + m\angle SPU = 180^{\circ}$

3. Given $m \angle 1 = 4x + 6$, $m \angle 2 = 6x - 32$. Find $m \angle 1$.

$$\angle 1 \cong \angle 2$$
 $m\angle 1 + m\angle 2 = 180$

4. Given $m \angle R = m \angle U = 65$, and $m \angle UST = 130$. Find $m \angle RSU$.

$$\angle UST \cong \angle RSU \qquad m\angle UST + m\angle RSU = 180$$

5. Given $\overrightarrow{BA} \perp \overrightarrow{BC}$, $m \angle ABD = 2x - 5$, and $m \angle DBC = x - 10$.

$$\angle ABD \cong \angle DBC$$
 $m\angle ABD + m\angle DBC = 90$