

Научные руководители Немчин Н.П., Ветров С.В. Выполнил студент группы СУС-15 Попова В.С.

- Ставрогиным исследован белый равномернозернистый мрамор¹.
- При разном давлении.
- Испытания проводились на установке высокой жесткости, позволяющей изучать запредельную область.

¹ мрамор месторождения Коелга

 Образцы имели форму цилиндра диаметром 30 мм и длиной 80 мм.

- В опыте образец доводился до разрушения.
- Если разрушение на поверхности не наблюдалось, то образец помещался обратно в камеру, и опыт продолжался.
- Разрушенный образец имеет плоскость сдвига, по которой полностью потеряно сцепление.

Зоны деформирования

I – область упругого деформирования, II-IV – область запредельного деформирования, II – область уменьшения прочности и увеличения разрыхления, III – область предельного разрушения, IV – область предельных разрушения и разрыхления.

Формула по Баклашову из учебника «Геомеханика»:

$$\sigma_{1} = \beta \cdot \sigma_{3} + \sigma_{cx} - M \cdot \varepsilon_{1}, \qquad (1)$$

Формула, предложенная Немчиным Н.П., Ветровым С.В.:

$$\sigma_1 = \beta \cdot \sigma_3 - T \cdot |\theta - \theta_*| + \sigma_{\text{CK}}, \quad (2)$$

где σ_1 — продольное давление;

β – параметр условия прочности;

 σ_3 — боковое давление;

 Т – параметр, показывающий снижение прочности вследствие разрыхления;

 θ — относительное объемное расширение;

 θ_* — его значение на пределе прочности; $\sigma_{\scriptscriptstyle{\mathrm{CK}}}$ — предел прочности на одноосное сжатие.

Определение параметра снижения прочности Т:

$$\sigma_1 = \beta \cdot \sigma_3 + \sigma_{\text{CM}} - \frac{\theta - \theta_*}{\theta_{\text{np}} - \theta_*} \cdot (-\sigma_{\text{OCT}} + \sigma_1^*),$$
 (3)

формула, предложенная Немчиным Н.П., Ветровым С.В.,

$$\Delta \theta_{\rm np} = \theta_{\rm np} - \theta_{\rm 1},$$

$$\Delta \theta_* = \theta_* - \theta_{\rm 1},$$

$$T = \begin{vmatrix} \sigma_1^* - \sigma_{\text{OCT}} \\ \theta_{\text{IID}} - \theta_* \end{vmatrix} = \begin{vmatrix} \sigma_1^* - \sigma_{\text{OCT}} \\ \Delta \theta_{\text{IID}} - \Delta \theta_* \end{vmatrix}.$$

Цель:

Определить значение Т (параметр, показывающий снижение прочности вследствие разрыхления) из экспериментов профессора Ставрогина А.Н. для мрамора

$$T = \left| \frac{\sigma_1^* - \sigma_{\text{OCT}}}{\theta_{\text{IID}} - \theta_*} \right| = \left| \frac{\sigma_1^* - \sigma_{\text{OCT}}}{\Delta \theta_{\text{IID}} - \Delta \theta_*} \right| \tag{4}$$

Порядок расчета

- ullet Определим $heta_{
 m пp}$
- ullet Соответствующую ему $\Delta arepsilon_1$
- ullet По \Deltaarepsilon_1 находим Δ σ_1
- По пику кривой определяем предел прочности
- Соответствующее пределу прочности значение ε_1 *
- Определяем $\Delta \theta_*$ через $\varepsilon_1 *$

Зависимость объемных деформаций разрыхления от величины продольных деформаций при разных уровнях бокового давления

Диаграмма «Напряжение – деформации» для мрамора

Зависимость объемных деформаций разрыхления от величины продольных деформаций при разных уровнях бокового давления

Определение $T(\sigma_3)$

σ ₃ , MΠa	Т, МПа
2,5	7276,58
25	382,2
50	285,84

$$T = C_0 + C_1 \cdot \sigma_3 + C_2 \cdot \sigma_3^2$$

 $C_0 = 8441, C_1 = -482, C_2 = 6,37$

График Т (σ₃) от 50 до 0

Вывод:

Уравнения состояния необходимо уточнять с помощью зависимости $T(\sigma_3)$.

Спасибо за внимание!