$$D_2$$

$$P\left[D_1=2\right]=\frac{6}{36}$$

$$P\left[D_1 + D_2 \le 5\right] = \frac{10}{36}$$

$$P\left[(D_1 = 2) \cap (D_1 + D_2 \le 5) \right] = \frac{3}{36}$$

$$P\left[D_1 = 2 \mid D_1 + D_2 \le 5 \right] = \frac{3}{10}$$

$$P\left[\begin{array}{c|c}D_{1}=2 & D_{1}+D_{2} \leq 5\end{array}\right] = \begin{array}{c|c}P\left[\begin{array}{c|c}(D_{1}=2) & D_{1}+D_{2} \leq 5\end{array}\right] \\ \hline P\left[\begin{array}{c|c}D_{1}+D_{2} \leq 5\end{array}\right] \end{array} = \begin{array}{c|c}\frac{3/36}{10/36} & =\frac{3}{10}\end{array}$$

$$P[A \mid B] = \frac{P[A \cap B]}{P[B]} \qquad P[A \cap B] = P[A \mid B] P[B]$$

Conditional Probability

Multiplication Rule

Conditional Probability
$$P[A | B] = \frac{P[A \cap B]}{P[B]}$$

Multiplication Rule
$$P[A \cap B] = P[A \mid B] P[B]$$

		Win		
		False	True	
Century	False	160	154	314
	True	16	30	46
		176	184	360

$$P[W|C] = \frac{P[W \cap C]}{P[C]} = \frac{30/360}{46/360} = \frac{30}{46}$$

$$P[W|C] = \frac{P[W \cap C]}{P[C]}$$

$$P[W \cap C] = P[W|C] P[C] = \frac{30}{46} \frac{46}{360} = \frac{30}{360}$$

$$P[W] = \frac{184}{360} \qquad P[C] = \frac{46}{360} \qquad P[W \cap C] = \frac{30}{360}$$

$$P[W|C] = \frac{30}{46}$$

$$P[C|W] = \frac{30}{184}$$

$$P[C|W] = \frac{P[W \cap C]}{P[W]} = \frac{30/360}{184/360} = \frac{30}{184}$$

$$P[C|W] = \frac{P[W \cap C]}{P[W]}$$

$$P[W \cap C] = P[C|W] P[W] = \frac{30}{184} \frac{184}{360} = \frac{30}{360}$$

$$P[W|C] P[C] = P[C|W] P[W]$$

$$P[W|C] = \frac{P[C|W] P[W]}{P[C]}$$

$$P[B|A] = \frac{P[A|B] P[B]}{P[A]}$$

Bayes Theorem

Conditional Probability
$$P[A | B] = \frac{P[A \cap B]}{P[B]}$$

Multiplication Rule
$$P[A \cap B] = P[A \mid B] P[B]$$

Bayes Theorem
$$P[B | A] = \frac{P[A | B] P[B]}{P[A]}$$

Among 30 faculty members in a department, 5 are females and 25 are males. 3 females and 12 males have a PhD

$$P[F] = \frac{5}{30}$$

$$P\left[F\bigcap \text{phd}\right] = 0$$

$$P[F] = \frac{5}{30}$$
 $P[M] = \frac{25}{30}$ $P[F \cap \text{phd}] = \frac{3}{30}$ $P[M \cap \text{phd}] = \frac{12}{30}$ $P[\text{phd}] = \frac{15}{30}$

$$P\left[\text{phd}\right] = \frac{15}{30}$$

Among those who have done PhD, what fraction are female?

F M M M M M Among those who have done
$$P = \frac{1}{15} = \frac{3}{15} = \frac{3}{3+12}$$

$$P\left[F \mid \text{phd}\right] = \frac{P\left[\text{phd} \mid F\right] P[F]}{P\left[\text{phd}\right]} = \frac{P\left[\text{phd} \mid F\right] + \left[\text{phd}\right]}{P\left[\text{phd}\right]}$$

$$\longrightarrow P \left[\text{ phd } \middle| F \right] P[F] \longrightarrow P \left[F \bigcap \text{ phd } \right]$$

$$\longrightarrow P \left[\text{ phd } \middle| M \right] P[M] \longrightarrow P \left[M \bigcap \text{ phd } \right]$$

$$P \left[\text{phd} \right] = P \left[\text{phd} \mid F \right] P \left[F \right] + P \left[\text{phd} \mid M \right] P \left[M \right]$$

$$P \left[\text{phd} \right] = P \left[F \cap \text{phd} \right] + P \left[M \cap \text{phd} \right]$$

$$\frac{3}{5} \frac{5}{30} + \frac{12}{25} \frac{25}{30} = \frac{3}{30} + \frac{12}{30} = \frac{15}{30}$$

$$P[B] = P[B | A] P[A] + P[B | A^c] P[A^c]$$

 $P[B] = P[B \cap A] + P[B \cap A^c]$

Law of Total probability

Conditional Probability
$$P[A \mid B] = \frac{P[A \cap B]}{P[B]}$$

Multiplication Rule
$$P[A \cap B] = P[A \mid B] P[B]$$

Bayes Theorem
$$P[B|A] = \frac{P[A|B] P[B]}{P[A]}$$

Law of Total probability
$$P[B] = P[B|A] P[A] + P[B|A^c] P[A^c]$$

$$P[B] = P[B \cap A] + P[B \cap A^c]$$

In a university, 30% of faculty members are females. Of the female faculty members, 60% have a PHD. Of the male faculty members, 40% have a PHD.

What is the probability that a randomly chosen faculty member is a female and has PHD?

What is the probability that a randomly chosen faculty member is a male and has PHD?

What is the probability that a randomly chosen faculty member has a PHD?

What is the probability that a randomly chosen PHD holder is female?

$$P[F] = 0.3$$
 $P[\text{ phd } | F] = 0.6$ $P[\text{ phd } \cap F] = P[\text{ phd } | F]$ $P[F] = 0.6 * 0.3 = 0.18$
 $P[M] = 0.7$ $P[\text{ phd } | M] = 0.4$ $P[\text{ phd } \cap M] = P[\text{ phd } | M]$ $P[M] = 0.4 * 0.7 = 0.28$
 $P[\text{ phd }] = P[\text{ phd } \cap F] + P[\text{ phd } \cap M] = 0.18 + 0.28 = 0.46$
 $P[\text{ phd }] = P[\text{ phd } | F]$ $P[F] + P[\text{ phd } | M]$ $P[M] = 0.6 * 0.3 + 0.4 * 0.7 = 0.46$

$$P[F | \text{phd}] = \frac{P[F \cap \text{phd}]}{P[\text{phd}]} = \frac{0.18}{0.46} = 0.39$$

$$P[F| \text{ phd }] = \frac{P[\text{ phd } | F] P[F]}{P[\text{ phd }]} = \frac{P[\text{ phd } | F] P[F]}{P[\text{ phd } | F] P[F] + P[\text{ phd } | M] P[M]} = \frac{0.6*0.3}{0.6*0.3 + 0.4*0.7} = 0.39$$

$$P[F] = 0.3$$
 $P[phd | F] = 0.6$
 $P[M] = 0.7$ $P[phd | M] = 0.4$

$$P[F| \text{ phd }] = \frac{P[\text{ phd } |F] P[F]}{P[\text{ phd } |F] P[F] + P[\text{ phd } |M] P[M]}$$

