K₂ = RATE DETERMINING STEP

$$E+S \stackrel{\mathrm{k}_1}{\rightleftharpoons} ES \stackrel{\mathrm{k}_2}{\rightleftharpoons} EP \stackrel{\mathrm{k}_3}{\rightleftharpoons} E+P \stackrel{\mathrm{k}_3}{\rightleftharpoons} E+P$$

- k_2 = Rate Determining Step
- k_2 = Rate of Catalysis ($k_2 = k_{cat}$)
- ▶ We get a build-up of enzyme-substrate complex (sitting there waiting to be used)
- The slowest step is the rate determining step
- ▶ The process of converting enzyme-substrate complex into enzyme + product = the rate determining step in Michaelis-Menten Kinetics
- In a Multi-Step Reaction, the slowest step or smallest reaction rate constant determines the overall reaction rate.

- ▶ k_{cat} often contains units per second or per minute
- $k_{cat} = "turn over" number$
- k_{cat} = number of reactions in a given amount of time
 - > This number relates to how many substrate molecules are converted to product per unit of time
- $\frac{k_{cat}}{K_M}$ = a measure of enzyme efficiency
 - It is not enough to consider K_M or k_{cat} independently.
 - We must consider both the enzyme rate and the number of substrate molecules needed (concentration) in order to achieve that rate
 - Remember, the calculation for K_{M} contains the value for k_{cat}

$$K_{M} = \frac{k_{-1} + k_{cat}}{k_{1}}$$