Sam Grayson's Notebook (with LATEX) January 21, 2015

- 1.1 ma = b Definition of 'divides' na = c Definition of 'divides' na + ma = b + c Algebra (n + m)a = b + c Algebra a|(b + c) Definition of 'divides'
- 1.2 Let d = -c a|(b+d) Theorem 1.1 a|(b-c) substitution
- 1.3 ma = b Definition of 'divides' na = c Definition of 'divides' mana = bc Algebra a|bc Definition of 'divides' \blacksquare
- 1.4 mana = bc see last proof $a^2|bc$ Definition of 'divides' \blacksquare
- 1.5 If a|b then $a|b^n$ b = ka $b^n = (ka)^n = kk^{(n-1)}a^n$ Algebra $k|b^n$ Definition of 'divides'
 Definition of 'divides'
- 1.6 ka = b Definition of 'divides' ack = bc Algebra a|bc Definition of 'divides'
- 1.7 1. $45 9 = 36 = 9 \cdot 4$. True 2. $37 - 2 = 35 = 7 \cdot 5$. True 3. 37 - 3 = 34. False 4. $37 - (-3) = 40 = 8 \cdot 5$. True
- 1.8 let k be all the numbers where $k \equiv b \pmod{3}$
 - 3|(k-b) Definition of 'mod' Definition of 'divides'
 - 3n + k = n Algebra
 - 1. 3*n*
 - 2. 3n + 1
 - 3. 3n + 2
 - 4. 3n
 - 5. 3n + 1
- 1.9 a-a=0=0n Arithmetic n|(a-a) Definition of 'divides' $a\equiv 0\pmod n$ Definition of 'mod'

- 1.10 n|(a-b) Definition of 'mod' kn = a b Definition of 'divides' -kn = b a Algebra Definition of 'divides' $b \equiv a \pmod{n}$
- 1.11 n|(a-b) Definition of 'mod' n|(b-c) Definition of 'mod' n|(a-b+b-c) Theorem 1.1 n|(a-c) Algebra $a \equiv c \pmod{n}$ Definition of 'mod' \blacksquare
- 1.12 n|(a-b) Definition of 'mod' n|(c-d) Definition of 'mod' n|(a+c-b-d)) Theorem 1.1 n|((a+c)-(b+d)) Algebra $a+c\equiv b+d\pmod{n}$ definion 'mod'
- 1.13 let e = -c and f = -d $a + e \equiv b + f$ Theorem 1.12 $a - c \equiv b - d$ substitution
- 1.14 n|(a-b) Definition of 'mod' n|(c-d) Definition of 'mod' n|(a-b)(c-d) Theorem 1.3
- 1.15 $a \equiv b \pmod{n}$ Premise $a^2 \equiv b^2 \pmod{n}$ Theorem 1.14
- 1.16 $a \equiv b \pmod{n}$ Premise $a^2 \equiv b^2 \pmod{n}$ Theorem 1.15 $a^2 a \equiv b^2 b \pmod{n}$ Theorem 1.14 $a^3 \equiv b^3 \pmod{n}$ Algebra
- 1.17 $a \equiv b \pmod{n}$ Premise $a^{k-1} \equiv b^{k-1} \pmod{n}$ Premise $a^{k-1}a \equiv b^{k-1}b \pmod{n}$ Theorem 1.14 $a^k \equiv b^k \pmod{n}$ Algebra
- 1.18 Base case: $a \equiv b \pmod{n}$ Premise Inductive Hypothesis: $a^{k-1} \equiv b^{k-1} \pmod{n}$ (assumption) Inductive step: $a^{k-1}a \equiv b^{k-1}b \pmod{n}$ Theorem 1.14 $a^k \equiv b^k \pmod{n}$ Algebra Conclusion: $a^k \equiv b^k \pmod{n}$ inductively \blacksquare
- 1.19 12. $6 \equiv 2 \pmod{4}$ $5 \equiv 1 \pmod{4}$

$$6 + 5 \equiv 2 + 1 \pmod{4}$$

13.
$$6 - 5 \equiv 2 - 1 \pmod{4}$$

14.
$$6 \cdot 5 \equiv 2 \cdot 1$$

15.
$$6^2 \equiv 2^2 \pmod{4}$$

16.
$$6^3 \equiv 2^3 \pmod{4}$$

17.
$$6^4 \equiv 2^4 \pmod{4}$$

18.
$$6^k \equiv 2^k \pmod{4}$$

1.20 No

Consider the case wehre $n=4,\,c=0,\,a=1,$ and b=2. $ac\equiv bc\pmod n$ $a\neq b$

- 1.21 See 1.22 and 1.23
- 1.22 3|a Premise (Base Case) 3|b Let b be an integer where...(Inductive Hypothesis) 3|9 Arithmetic
 - 3|9 Arithmetic $3|(9b_k10^{k-1})$ Theorem 1.3
 - $3|(b-9b_k10^{k-1})$ Theorem 1.2
 - $3|(b_{k-1}+b_k)b_{k-2}\dots b_0$ Algebra* (Inductive Step)
 - $3|(a_k + a_{k-1} + a_{k-2} + \dots a_1 + a_0)$ Inductive axiom

Here is the algebra I used in the step labeled 'Algebra*':

$$\begin{array}{rcl} b - b_k 910^{k-1} & = \\ b - b_k (10 - 1)10^{k-1} & = \\ b + (-b_k 10 \cdot 10^{k-1} + b_k 110^{k-1}) & = \\ b + (-b_k 10^k + b_k 10^{k-1}) & = \\ b_k & b_{k-1} & b_{k-2} \dots b_0 \\ + & (-b_k) & b_k & 0 \dots 0 & = \\ \hline & (b_k + b_{k-1}) & b_{k-2} \dots b_0 \end{array}$$

- 1.23 3|a Premise (Base Case) $3|(b_k + b_{k-1} + \ldots + b_0)$ Assumption (Inductive Hypothesis) 3|9 Arithmetic $3|(b_k 9c)$ where c is k ones in a row Theorem 1.3 $3|(b_k + b_{k-1} + \ldots + b_0 + b_k 9c)$ Theorem 1.2
 - $3|(b_k + b_{k-1} + \ldots + b_0 + b_k 9c)$ Theorem $3|(b_k 10^k + b_{k-1} + \ldots + b_0)$ Algebra*
 - $3|(a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_0 10^0)$ $3|(a_k a_{k-1} \dots a_0)$

Inductive Axiom
Definition of digits

Here is the algebra I used in the step labeled 'Algebra*':

$$\begin{array}{rcl} b_k + b_{k-1} + \ldots + b_0 + b_k 9c & = \\ b_k + b_{k-1} + \ldots + b_0 + b_k d & = & \text{where d is a number with } k \text{ nines} \\ b_k + b_{k-1} + \ldots + b_0 + b_k (10^k - 1) & = \\ b_k + b_{k-1} + \ldots + b_0 + b_k 10^k - b_k & = \\ b_{k-1} + \ldots + b_0 + b_k 10^k & \end{array}$$

- 1.24 4|a if and only if $4|(a_1 + a_3 + ...)(a_0 + a_2 + a_4 + ...)$
- 1.25 1. m = nq + r where m = 25, n = 7, q = 3, and r = 4
 - 2. m = 277, n = 4, q = 66, and r = 1
 - 3. m = 33, n = 11, q = 3, r = 0
 - 4. m = 33, n = 45, q = 0, r = 33

1.26 Setup:

Make a list of multiples of n that are greater than m and choose the smallest one to define n(q + 1).

$$A := \{k | k \in \mathbb{N} \land kn > m\}$$

$$\exists a \ni (a \in A \land an > m \land \forall k \in A(a \le k))$$

$$q := a - 1$$

$$r := m - nq$$

Well-ordering Principle

Proving r satisfies upper bound:

If it didn't, then a wouldn't be an element of A, but we know that a is in A.

$$r > n - 1$$

$$r \ge n$$

$$\exists j \ni (r - n = j \land j \ge 0)$$

$$nq + r = m$$

$$nq + (n + j) = m$$

$$n(q + 1) + j = m$$

$$n(q + 1) \le m$$

$$n(q + 1) > m$$

$$\therefore r \le n - 1$$

Assume for contradiction Property of inequalities (over \mathbb{Z}) Property of inequalities Algebra (from definition of r) Algebra (from definition of j) Algebra Property of inequalities Algebra (from definition of a) Contradiction

Proving r satisfies lower bound:

If it didn't, then there would be another element smaller than a in A, but a is the least element in A.

$$\begin{split} r &< 0 \\ nq + r &= m \\ nq &> m \\ q &\in A \\ \forall k(k \in A \rightarrow q+1 \leq k) \\ q+1 &\leq q \\ \therefore r &\geq 0 \end{split}$$

Assume for contradiction Algebra (from definition of r) Property of inequalities $q \in \mathbb{N} \land nq > m$ is the condition for A Definition of a (smallest element in A) Universal instantiation Contradiction

Proving q and r are integers:

They all came from sets that only contain integers.

$A \subset \mathbb{N} \subset \mathbb{Z}$		
$a \in A$		
$a \in \mathbb{Z}$		
$q \in \mathbb{Z}$		
$r \in \mathbb{Z}$		

Stuff I learned
Definition of aProperty of sets
Closure (Definition of q)
Closure (definition of r)

1.27
$$\exists q', r' \in \mathbb{Z}(m = q'n + r' \land r' \neq r \land q' \neq q \land 0 \leq r \leq \text{Assume for contradiction } q' - 1)$$

q'n + n > m

$$n(q'+1) > m$$

$$q'+1 \in A$$

 $q' + 1 \neq q + 1$

q' + 1 > q + 1

 $q' \ge q + 1$

qn + r = m

qn + n > m

$$(q+1)n > m$$
 $q'n > m$

$$q'n + r' > m$$

Assumption (restriction on r')

Property of inequalities (because q'n + r =

m)

Algebra

Definition of A

Property of inequalities

Definition of a (smallest element in A)

Property of inequalities (over \mathbb{Z})

Definition of r

Contradiction

Property of inequalities (replace r with

something greater-than r)

Algebra

Property of inequalities (replace q+1 with something greater-than-or-equal to it)

Property of inequalities (add a positive number to the bigger side and it is still bigger)

$$\neg \exists q', r' \in \mathbb{Z}(m = q'n + r' \land r' \neq r \land q' \neq q \land 0 \leq r \leq q' - 1)$$

1.28
$$n|(a-b)$$
 Definition of modulo $a-b=cn$ Definition of divides

$$b = dn + e \land 0 \le e \le n - 1$$
 Division algorithm $a - dn - e = cn$ Algebra

$$a - an - e = cn$$
 Algebra $a = (c + d)n + e \wedge 0 \le e \le n - 1$ Algebra

This satisfies the division algorithm

$$(c+d)n + e - b = cn$$
 Algebra $b = dn + e \wedge 0 \le e \le n-1$ Algebra

Therefore, same remainder (namely e)

$$a = cn + r$$
 Let

$$b = dn + r$$
 Let

$$a-b=cn-dn=(c-d)n$$
 Algebra

$$a-b=cn-an=(c-a)n$$
 Algebra $n|(a-b)$ Definition of divides

1.29 Yes. 1

1.30 No. There are a finite number of integer factors.

- 1.31 1. No
 - 2. No
 - 3. No
 - 4. Yes
 - 5. Yes
 - 6. Yes

```
1.32 a - nb = r Algebra (from premise)

k|nb Theorem 1.3

k|(a - nb) Theorem 1.2

k|r Substitution
```

1.33 Lemma: Let a = nb + r. k|b and k|r imply k|a.

$$k|nb$$
 Theorem 1.3
 $k|(nb+r)$ Theorem 1.1
 $k|a$ Substitution \blacksquare

$$(a,b) = k$$
 Let

k|a Definition of k (GCD) k|b Definition of k (GCD) $k|r_1$ Theorem 1.32

At this point, we know that k is a common divisor. Assume for the sake of contradiction that k is not the greatest common divisor.

$$\begin{array}{ll} (b,r_1)=m\wedge m>k & \text{Assume for contradiction} \\ m|a & \text{Lemma} \\ m|b & \text{Definition of GCD} \\ (b,r_1)>m\wedge m>k & \text{Definition of GCD} \\ (b,r_1)=k & \text{Contradiction} \end{array}$$

$$1.34 \quad (51,15) = (51 - 3 \cdot 15, 15) = (6,15) = (6,15 - 2 \cdot 6) = (6,3) = (6 - 2 \cdot 3,3) = (0,3)$$

1.35 1. Let a and b be arguments of GCD where (WLOG) a > b.

2. If
$$b = 0$$
, $(a, b) = a$.

3. If
$$b = 1$$
, $(a, b) = 1$.

4. Else divide a by b such that $(a = nb + r \text{ and } 0 \le r \le n - 1)$

5.
$$(a,b) = (r,b)$$

1.36 1.16

1.37
$$x = 9, y = -47$$

1.38 IDK

1.39
$$(a,b) = c$$
 Let $c|a \wedge c|b$ Definition of GCD $a = dc \wedge b = ec$ Definition of divides $ax + by = 1$ Premise $dcx + ecy = (dx + ey)c = 1$ Algebra $c = 1$ Multiplication over integers

1.40
$$(a,b) = c$$

 $c|a \wedge c|b$
 $a = dc \wedge b = ec \wedge (d,e) = 1$
 $\exists x, y \ni (dx + ey = 1)$
 $ax + by = dcx + ecy = (dx + ey)c = 1c = c$
 $ax + by = (a,b)$

Let
Definition of GCD
Definition of divides
Theorem 1.38
c Algebra
Substitution