Géométrie Discrète

II. Droites discrètes

Christophe Fiorio

LIRMM UMR CNRS-UMII

Master Imagina

- 1 L'espace discret à 2 dimensions
- 2 Sur une question de J. Bernoulli
- 3 Code de Freeman
- 4 Les droites arithmétiques
- 5 Connexité des droites arithmétiques

Définition : Droite de Bernoulli (72)

suite des points d'abscisse entière n et d'ordonnée $(\lfloor \alpha n + \rho \rfloor)_{n \in \mathbb{Z}}$, où |x| désigne le plus grand entier inférieur à $x \in \mathbb{R}$

Approximation d'une droite par des points entiers approche de J. Bernoulli

Bern

Définition : Droite de Bernoulli (72)

suite des points d'abscisse entière n et d'ordonnée $(\lfloor \alpha n + \rho \rfloor)_{n \in \mathbb{Z}}$, où |x| désigne le plus grand entier inférieur à $x \in \mathbb{R}$

Conjecture

La suite $(\lfloor \alpha(n+1) + \rho \rfloor - \lfloor \alpha n + \rho \rfloor)_{n \in \mathbb{Z}}$ est périodique si et seulement si α est rationnel

Définition : Droite de Bernoulli (72)

suite des points d'abscisse entière n et d'ordonnée $(|\alpha n + \rho|)_{n \in \mathbb{Z}}$, où |x| désigne le plus grand entier inférieur à $x \in \mathbb{R}$

Conjecture

La suite $(\lfloor \alpha(n+1) + \rho \rfloor - \lfloor \alpha n + \rho \rfloor)_{n \in \mathbb{Z}}$ est périodique si et seulement si α est rationnel

Théorème (A. Markoff en 1982)

Soit $\alpha \in \mathbb{R}$. La suite $(|\alpha(n+1) + \rho| - |\alpha n + \rho|)_{n \in \mathbb{Z}}$ est périodique si et seulement si α est rationnel.

Bernouil

En 1970, H. Freeman introduit une méthode pour coder une courbe 8-connexe dans \mathbb{Z}^2 :

À chacune des directions , il associe un entier compris entre 0 et 7 selon le schéma suivant :

Soit $\alpha = (\alpha_k)_{k \in [0,n]}$ un arc discret fini. Alors α est un segment discret, si :

- son codage ne contient que deux codes différents et ceux-ci ne diffèrent que de 1 modulo 8;
- un de ces deux codes est toujours isolé dans le codage;
- 3 ce code isolé apparaît dans le codage le plus uniformément possible.

Definition

Un ensemble de pixels \mathcal{E} vérifie la propriété de la corde si :

$$\forall (P,Q) \in \mathcal{E}^2, \, \forall M \in [P,Q], \exists N \in \mathcal{E}, d_{\infty}(M,N) < 1.$$

Definition

Un ensemble de pixels ${\mathcal E}$ vérifie la propriété de la corde si :

$$\forall (P,Q) \in \mathcal{E}^2, \, \forall M \in [P,Q], \exists N \in \mathcal{E}, d_{\infty}(M,N) < 1.$$

Theorem

Un ensemble fini de pixels 0-connexe est un morceau de droite discrète si et seulement s'il vérifie la propriété de la corde.

Definition

Un ensemble de pixels ${\mathcal E}$ dans le premier octant est dit *régulier* si :

$$\forall (A, B, C, D) \in \mathcal{E}^4, |x_A - x_B| = |x_C - x_D| \implies ||y_A - y_B| - |y_D - y_C|| \le 1.$$

Definition

Un ensemble de pixels $\mathcal E$ dans le premier octant est dit *régulier* si :

$$\forall (A,B,C,D) \in \mathcal{E}^4, |x_A-x_B| = |x_C-x_D| \implies ||y_A-y_B|-|y_D-y_C|| \leq 1.$$

Theorem

Un ensemble fini de pixels 0-connexe est un morceau de droite discrète si et seulement s'il est régulier.

9/15

Definition

Une droite discrète de paramètres (a, b, μ) et d'épaisseur arithmétique ω (avec a, b, μ et ω dans \mathbb{Z} et a et b premiers entre eux), notée $\mathfrak{D}(a, b, \mu, w)$, est définie comme l'ensemble des points entiers (x, y) vérifiant la double inégalité : $0 < ax - by + \mu < w$.

Les droites arithmétiques

Definition

Une droite discrète de paramètres (a, b, μ) et d'épaisseur arithmétique ω (avec a, b, μ et ω dans \mathbb{Z} et a et b premiers entre eux), notée $\mathfrak{D}(a, b, \mu, w)$, est définie comme l'ensemble des points entiers (x, y) vérifiant la double inégalité : $0 < ax - by + \mu < w$.

Une droite arithmétique naïve et une droite standard

Les droites arithmétiques

Connexité des droites arithmétiques

Il est usuel de représenter un point de $\mathbf{x} \in \mathbb{Z}^2$, appelé *pixel*, par un carré unité fermé et centré en \mathbf{x}

Theorem

Les droites naïves sont les droites les plus fines à être connexes. Autrement dit, pour tout $(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$, pour tout $\mu \in \mathbb{R}$ et tout $w \in \mathbb{R}_+$:

$$\mathfrak{D}(\mathbf{v}(\mathbf{a},\mathbf{b}),\mu,w)$$
 est connexe $\iff w \geq \|(\mathbf{a},\mathbf{b})\|_{\infty}$.

ou

$$\mathfrak{D}(\mathbf{v}(\mathbf{a}, \mathbf{b}), \mu, w)$$
 est connexe $\iff w \ge \max(|\mathbf{a}|, |\mathbf{b}|)$.

Topologie des droites arithmétiques

Connexité des droites arithmétiques

Théorème (Réveillès (1991)

Soit $\mathfrak{D} = \mathfrak{D}(a, b, \mu, \omega)$ une droite discrète.

- ① Si $\omega = \|(\mathbf{a}, \mathbf{b})\|_{\infty}$, alors la droite discrète $\mathfrak{D}(\mathbf{a}, \mathbf{b}, \mu, \omega)$ est 0-connexe.
- ② Si $\omega < \|(\mathbf{a}, \mathbf{b})\|_{\infty}$, alors la droite discrète $\mathfrak{D}(a, b, \mu, \omega)$ est déconnectée.
- ③ Si $\omega = \|(\mathbf{a}, \mathbf{b})\|_1$, alors la droite discrète $\mathfrak{D}(a, b, \mu, \omega)$ est 1-connexe.
- Si ||(a, b)v||_∞ < ω < ||(a, b)||₁, alors la droite discrète D(a, b, μ, ω) est *-connexe : elle possède des 1-connexités et des 0-connexités.

Exemples de droites arithmétiques à différentes épaisseurs Les droites arithmétiques de vecteur normal 7e₁ + 10e₂

Fonctionnalité des droites naïves

Soit
$$\pi: \mathfrak{D}(a, b, \mu, ||\mathbf{v}||_{\infty}) \longrightarrow \mathbb{Z}$$

$$\begin{array}{cccc} \pi & : & \mathfrak{D}\left(\mathbf{a}, \mathbf{b}, \mu, \|\mathbf{v}(\mathbf{a}, \mathbf{b})\|_{\infty}\right) & \longrightarrow & \mathbb{Z} \\ & & \left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & \mapsto & \chi_{1}, \end{array}$$

 π est une bijection.

Géométriquement, cette propriété signifie que pour tout $k \in \mathbb{Z}$, la droite arithmétique naïve $\mathfrak{D}(a,b,\mu,w)$, où $0 \le a \le b$, possède exactement un et un seul point d'abscisse k.

Fonctionnalité des droites naïves

Soit
$$\pi: \mathfrak{D}(a, b, \mu, \|\mathbf{v}\|_{\infty}) \longrightarrow \mathbb{Z}$$

 π est une bijection.

Géométriquement, cette propriété signifie que pour tout $k \in \mathbb{Z}$, la droite arithmétique na $\~ve \mathfrak{D}(a,b,\mu,w)$, où $0 \le a \le b$, possède exactement un et un seul point d'abscisse k.

Fonctionnalité Berthe, Fiorio, Jamet (2005)

Soit $\mathfrak{D}=\mathfrak{D}(a,b,\mu,\omega)$ une droite discrète. Pour tout $(\alpha_1,\alpha_2)\in\mathbb{R}^2$, notons $\pi_{(\alpha_1,\alpha_2)}$ la projection orthogonale suivant le vecteur (α_1,α_2) sur la droite d'équation $\alpha_1x_1-\alpha_2x_2=0$ et $\Gamma_{\alpha}=\pi_{\alpha}(\mathbb{Z}^2)$. Soit $(\alpha_1,\alpha_2)\in\mathbb{Z}^2$ avec $\operatorname{pgcd}(\alpha_1,\alpha_2)=1$.

La fonction $\pi_{\alpha}: \mathfrak{D} \longrightarrow \Gamma_{\alpha}$ est une bijection si et seulement si $|(\alpha_1, \alpha_2), (\mathbf{a}, \mathbf{b})| = \omega$.