UNIVERSIDADE DO MINHO

Álgebra Linear

2º Teste - A

LEI

Duração: 2 horas

Nome: ______ Nº: _____

Ι

Relativamente às questões deste grupo indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), colocando uma circunferência no símbolo correspondente. As respostas incorrectamente assinaladas têm cotação negativa.

1. a) Existem valores $a, b, c \in \mathbb{R}$, para os quais a matriz $\begin{pmatrix} a & b \\ ac & bc \end{pmatrix}$ é invertível. V

b) Se
$$\begin{vmatrix} x & y & z \\ 5 & 0 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 1$$
 então $\begin{vmatrix} 5x & 5y & 5z \\ 1 & 0 & 3/5 \\ 1 & 1 & 1 \end{vmatrix} = 1$.

- c) Se B é uma matriz de ordem n tal que $B=(A^TA^{-1})^2$ então |B|=1. V
- d) A matriz A (ordem n) é invertível se e só se A^TA for uma matriz invertível.V F

2. Seja
$$A = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

a) O polinómio característico da matriz A é $p(\lambda) = (1 - \lambda)^2 (-1 - \lambda)^2$.

V F

b) A matriz A tem $\begin{pmatrix} 0\\1\\1\\2 \end{pmatrix}$ como vector próprio associado ao valor próprio $\lambda=1.$ V F

$$\mathbf{c}) |A| = 1$$
 V F

d) As matrizes diagonais $\begin{pmatrix} 1 & & \\ & 1 & \\ & & 2 \end{pmatrix}$ e $\begin{pmatrix} 1 & & \\ & 2 & \\ & & 2 \end{pmatrix}$ são semelhantes. V F

3. Seja
$$A = \begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
.

 \mathbf{a}) A matriz A é diagonalizável.

V F

- **b**) O conjunto $U_{\lambda} = \{(0,0,\alpha) : \alpha \in \mathbb{R}\}$ é um subespaço próprio associado ao valor próprio $\lambda = 3$ de A.
- c) Relativamente à matriz A, a multiplicidade aritmética do valor próprio $\lambda=3$ é igual a sua multiplicidade geométrica. V F
- d) Seja A uma matriz de ordem n e $U_{\lambda 1}$ $U_{\lambda 2}$, dois subespaços próprios associados a dois valores próprios distintos $\lambda 1$ e $\lambda 2$, e tendo-se $v \in U_{\lambda 1}$ e $u \in U_{\lambda 2}$. Os vectores $v, \alpha u$ são vectores linearmente independentes, com $\alpha \in \mathbb{R} \setminus \{0\}$.

 \mathbf{II}

Para cada questão deste grupo, complete, justificando, as respectivas afirmações.

1. Considere a seguinte matriz,

$$A = \begin{pmatrix} 1+x & 1 & 1\\ 1 & 1+x & 1\\ 1 & 1 & 1+x \end{pmatrix}, \text{com } x \in \mathbb{R}.$$

a) Os valores de $x \in \mathbb{R}$ para os quais |A| = 0 são:

b) Considerando x = 1 tem-se que: adj(A) =

$$A^{-1} =$$

2. Considere a seguinte matriz,

$$A = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 3 & 2 & -1 & 2 \end{array}\right)$$

a) Os valores $\lambda \in \mathbb{R}$ para os quais a matriz $A - \lambda I_4$ tem inversa são:

 ${f b})$ Os valores próprios da matriz A e respectivas multiplicidade algébrica são:

 $\mathbf{c})$ O subespaço próprio associado ao valor próprio de A, de maior módulo é

 \mathbf{d}) Averigue se a matriz A é diagonalizável (justifique a sua resposta).

Responda à questão deste grupo **justificando** a sua resposta e apresentando todos os cálculos efectuados.

1. Seja A uma matriz de ordem n invertível. Prove que

$$det(adj(A)) = (det(A))^{n-1}.$$

2. Seja A uma matriz quadrada de ordem n.

Determine os possíveis valores próprios de A, considerando:

- (a) A uma matriz idempotente, ou seja $A^2 = A$,
- (b) A uma matriz nilpotente, ou seja $A^2=O$, sendo O a matriz nula.

Cotações:

Parte I	Parte II	Parte III
6	1.5+1.5+1; $1.5+1+1+1.5$	2; 1.5+1.5