Cálculo Diferencial em ℝ

Cálculo para Engenharia

Maria Elfrida Ralha

Licenciatura em Engenharia Informática

- 1 Derivada de uma função (real de uma variável real) num ponto
 - Taxas de variação e Retas Tangentes a Curvas
 - Derivadas Laterais
- 2 Interpretação geométrica da Derivada
 - Retas tangente e normal
- Funções deriváveis
- 4 Propriedades das funções deriváveis
 - Teoremas de Fermat, de Rolle e de Lagrange
- Derivadas de ordem superior
- Derivação Implícita

Galileu (1564-1642) e a queda livre de objetos

Lei de Galileu: Sendo a gravidade a única força que atua sobre o objeto e f(t) a distância ao chão (em metros), depois de t segundos,

$$f(t) = 4.9 t^2$$
.

Nestas condições, a velocidade média do objeto, no intervalo $\left[t_{1},t_{2}\right]$ é dada por

$$\frac{\text{distância percorrida}}{\text{tempo decorrido}} = \frac{f(t_2) - f(t_1)}{t_2 - t_1} = \frac{\Delta f}{\Delta t}$$

Exercício:: Queda de rochas do topo de uma arriba

Velocidade média nos primeiros 2 segundos:: ...

 $9.8 \frac{m}{s}$

Velocidade média desde o segundo 1 até ao 2:: ...

ate ao 2:: ... $14.7 \frac{m}{2}$

Nestas condições, a $\underline{\text{velocidade m\'edia do objeto}}, \text{ no intervalo 'pequeno' } [t_0,t_0+h] \'e dada por$

$$\frac{\Delta f}{\Delta t} = \frac{f(t_0 + h) - f(t_0)}{h},$$

fórmula esta que NÃO pode ser usada para calcular a velocidade instantânea, em t_0 .PORQUÊ?

• Qual a velocidade média em intervalos cujo incío é $t_0 = 1$? E $t_0 = 2$? E quando $h \to 0$?

Taxa de variação Média:: Razão Incremental

A razão incremental da função f, real de variável real, definida por y=f(x), no intervalo $[x_1,x_2]$, é

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \qquad h \neq 0.$$

Geometricamente,

é o declive da reta (secante) que passa pelos pontos

 $P(x_1, f(x_1))$ e $Q(x_2, f(x_2))$. À medida que o ponto Q, percorrendo a curva, se aproxima de P....

Derivada de uma função (real de uma variável real) num ponto

Sejam
$$f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$$
 e $a \in (D \cap D')$.

• Diz-se que a função f é derivável no ponto $a \in (D \cap D')$ quando existe o limite da "razão incremental", isto é,quando existe

$$\lim_{h\to 0}\,\frac{f(a+h)-f(a)}{h}.$$

Este limite representa-se por f'(a) e diz-se

derivada de f em ai.

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

e que resulta imediatamente quando se toma x=a+h, na definição anterior.

¹Uma forma equivalente de definir a derivada de f em a é

 derivada à esquerda de f em a (quando a é ponto de acumulação à esquerda)

$$f'_{-}(a) = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0^{-}} \frac{f(a + h) - f(a)}{h};$$

derivada à direita de f em a (quando a é ponto de acumulação à direita)

$$f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h}$$
.

Nota

Quando $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D \cap D'_- \cap D'_+$ tem-se, naturalmente e uma vez que estamos a lidar com "limites", que f é derivável em a se e só se existirem e forem iguais as derivadas laterais $f'_-(a)$ e $f'_+(a)$.

Índice

- 🕕 Derivada de uma função (real de uma variável real) num ponto
 - Taxas de variação e Retas Tangentes a Curvas
 - Derivadas Laterais
- 2 Interpretação geométrica da Derivada
 - Retas tangente e normal
- 3 Funções deriváveis
- 4 Propriedades das funções deriváveis
 - Teoremas de Fermat, de Rolle e de Lagrange
- Derivadas de ordem superior
- Derivação Implícita

O declive m da reta tangente à curva y = f(x) no ponto de coordenadas (a, f(a)) é o limite dos sucessivos declives das retas secantes definidas por A e X, à medida que X se aproxima de A,

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} .$$

Nota

O ponto X pode estar à direita ou à esquerda.

Exercício

Na figura, representa-se uma experiência conduzida, durante 50 dias com uma população de moscas da fruta (contada em intervalos de tempo 'regulares').

Exercício

Considere-se a parábola, definida por $y = x^2$, e o ponto P(2,4).

- Determinem-se os declives das retas secantes que passam por P.
- Qual será, então, o declive da reta tangente à parábola, no ponto P?
- Defina-se a reta tangente à parábola em P.

Exercício

Considerem-se as funções f e g e h, reais de variável real, definidas por

$$f(x) = \begin{cases} x^2 \operatorname{sen}\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}; \quad g(x) = \begin{cases} x \operatorname{sen}\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}; \quad h(x) = \sqrt[3]{x}$$

Terão os gráficos destas funções, tangentes na origem?

Retas tangente e normal ao gráfico da função

Seja $f:D\subset\mathbb{R}\longrightarrow\mathbb{R}$ uma função diferenciável em $a\in D$.

• A reta tangente ao gráfico de f em (a, f(a)) está definida pela equação

$$y = f(a) + f'(a)(x - a).$$

- A reta normal ao gráfico de f em (a, f(a)) quando
 - $f'(a) \neq 0$, define-se por

$$y = f(a) - \frac{1}{f'(a)}(x - a)$$

• f'(a) = 0, define-se por

$$x = a$$

Nota

- Dizemos que uma curva (contínua) admite uma tangente vertical no ponto de abcissa x₀, quando o limite da correspondente razão incremental for um infinitamente grande.
- ② A reta normal ao gráfico de f em (a, f(a)) é a reta perpendicular à reta tangente ao gráfico nesse ponto.

Quando f é derivável em a

i) a curva definida por y = f(x) é "suave" em x = a, isto é, o ponto (a, f(a)) não é um ponto anguloso;

Ex.:
$$f(x) = |x|, x \in \mathbb{R}; a = 0.$$

- ii) a reta tangente definida por y = f(a) + f'(a)(x a) "confunde-se" com a curva (que representa f), numa vizinhança de a;
- iii) o polinómio definido por f(a) + f'(a)(x a), de grau ≤ 1 , pode usar-se como aproximação para f perto de a.

Exemplos: funções que NÃO têm derivada, em um ponto (cont.)

Índice

- 🔟 Derivada de uma função (real de uma variável real) num ponto
 - Taxas de variação e Retas Tangentes a Curvas
 - Derivadas Laterais
- 2 Interpretação geométrica da Derivada
 - Retas tangente e normal
- § Funções deriváveis
- 4 Propriedades das funções deriváveis
 - Teoremas de Fermat, de Rolle e de Lagrange
- Derivadas de ordem superior
- Derivação Implícita

Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$, $a, b \in D$ e $A \subset D$.

- Diz-se que
 - f é derivável em [a, b] quando f é derivável em qualquer $x \in]a, b[$ e existem as derivadas laterais $f'_+(a)$ e $f'_-(b)$;
 - f é derivável em A quando f é derivável em qualquer $a \in A$;
 - f é derivável quando f é derivável em todo o domínio D.
- Se f é derivável, a função

$$f': D \longrightarrow \mathbb{R}$$

 $x \mapsto f'(x)$

diz-se a função derivada de f.

Índice

- 🕕 Derivada de uma função (real de uma variável real) num ponto
 - Taxas de variação e Retas Tangentes a Curvas
 - Derivadas Laterais
- 2 Interpretação geométrica da Derivada
 - Retas tangente e normal
- 3 Funções deriváveis
- 4 Propriedades das funções deriváveis
 - Teoremas de Fermat, de Rolle e de Lagrange
- Derivadas de ordem superior
- 6 Derivação Implícita

Algumas propriedades das funções deriváveis

Teorema (Continuidade de funções deriváveis)

Se $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ é derivável em $a \in D \cap D'$,

então f é contínua em a.

[Regras básicas de derivação]

Sejam $f,g:D\subset\mathbb{R}\longrightarrow\mathbb{R}$ funções de domínio D, deriváveis no ponto $a\in D$.

Então:

(a)
$$(f \pm g)'(a) = f'(a) \pm g'(a)$$
;

(b)
$$(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a);$$

(c)
$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}$$
, desde que $g(a) \neq 0$.

Para $x \in \mathbb{R}$ tem-se

- senh'x = cosh x;
- $\operatorname{cosech}' x = -\operatorname{cosech} x \operatorname{coth} x$;
- $\cosh' x = \sinh x$;
- $\operatorname{sech}' x = -\operatorname{sech} x \operatorname{tgh} x$
- $tgh'x = \frac{1}{\cosh^2 x} = \operatorname{sech}^2 x$;
- $\operatorname{cotgh}' x = \frac{1}{\operatorname{senh}^2 x} = \operatorname{cosech}^2 x$, $x \neq 0$.

[Sugestão:] Demonstre as igualdades anteriores.

Regra da Cadeia

Teorema (Derivada da função composta)

Sejam $u:D\longrightarrow \mathbb{R},\ g:B\longrightarrow \mathbb{R}$, com $u(D)\subset B\subset \mathbb{R}$, $a\in D\cap D'$ e $b=u(a)\in B$.

Se u é derivável em a e g é derivável em b,

então $g \circ u$ é derivável em a, tendo-se

$$(g \circ u)'(a) = g'(u(a)) \cdot u'(a)$$

• Calcule a derivada das funções

1
$$f(x) = 2^x, x \ge 0;$$

2
$$g(x) = x^x, x > 0.$$

Prove que

$$\frac{d}{dx}|x| = \begin{cases} 1, & x > 0\\ \text{N\tilde{a}o Existe}, & x = 0\\ -1, & x < 0 \end{cases}$$

[Sugestão:] Tome $|x| = \sqrt{x^2}$, e derive uma função 'composta'.

Dada uma função derivável u = u(x), tem-se

- $[\operatorname{sen} u(x)]' = u'(x) \cdot \cos u(x)$
- $[\csc u(x)]' = -u'(x) \cdot \csc u(x) \cdot \cot u(x)$
- $[\cos u(x)]' = -u'(x) \cdot \sin u(x)$
- $[\sec u(x)]' = u'(x) \cdot \sec u(x) \cdot \operatorname{tg} u(x)$
- $[\operatorname{tg} u(x)]' = u'(x) \cdot \frac{1}{\cos^2 u(x)} = u'(x) \cdot \sec^2 u(x)$
- $[\cot u(x)]' = -u'(x) \cdot \frac{1}{\sin^2 u(x)} = -u'(x) \cdot \operatorname{cosec}^2 u(x)$

Teorema (Derivada da função inversa)

Seja $f: D \longrightarrow B$, com $D, B \subset \mathbb{R}$, uma função bijectiva.

Se f

- é derivável no ponto $a \in D \cap D'$,
- $f'(a) \neq 0$,
- f^{-1} é contínua em b = f(a),

então f^{-1} é derivável em b, tendo-se

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$$
.

- Recordando queⁱⁱ
 - $f: \mathbb{R} \longrightarrow]0, +\infty[, f(x) = e^x \text{ \'e bijectiva e } f'(x) = e^x \neq 0;$
 - $f^{-1}(y) = \ln y$, $y \in]0, +\infty[$ é contínua
- Pelo teorema da derivada da função inversa, sendo y = f(x), temos

$$(\ln y)' = (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{f'(\ln y)} = \frac{1}{e^{\ln y}} = \frac{1}{y}.$$

Ou seja

$$(\ln y)' = \frac{1}{y}, \quad y \in]0, +\infty[$$

^{II} A função logaritmo natural é a função inversa da função exponencial de base *e*.

•
$$\arcsin' x = \frac{1}{\sqrt{1-x^2}}, \quad x \in]-1,1[;$$

•
$$\operatorname{arccosec}' x = \frac{-1}{x\sqrt{x^2 - 1}}, \quad x \notin [-1, 1];$$

•
$$\arccos' x = \frac{-1}{\sqrt{1-x^2}}, \quad x \in]-1,1[;$$

•
$$\operatorname{arcsec}' x = \frac{1}{x\sqrt{x^2 - 1}}, \quad x \notin [-1, 1];$$

$$ullet$$
 arctan' $x=rac{1}{1+x^2}\;,\quad x\in\mathbb{R}$;

•
$$\operatorname{arccotg} x = \frac{-1}{1+x^2}$$
, $x \in \mathbb{R}$.

• Pelo teorema da derivada da função inversa tomando

$$f(x) = \operatorname{sen} x, \qquad f^{-1}(y) = \operatorname{arcsen} y$$

vem

$$\arcsin' y = (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{\cos(\arcsin y)};$$

• Como $\cos z = \sqrt{1 - \sin^2 z}$ (porquê?) tem-se

$$cos(arcsen y) = \sqrt{1 - sen^2(arcsen y)} = \sqrt{1 - y^2}.$$

Assim,

$$\arcsin' y = \frac{1}{\sqrt{1-y^2}}, \quad \text{para } y \in]-1,1[.$$

Teorema de Fermat

Teorema (Fermat)

Seja $f: D \longrightarrow \mathbb{R}$ uma função derivável em $a \in D \cap D'$.

Se a é um extremante de f,

então f'(a) = 0.

Nota

• O recíproco do Teorema de Fermat é falso, isto é,

$$f'(a) = 0 \implies f(a)$$
 extremo local de f .

• Exemplo?

Teorema (Rolle)

Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função contínua que é derivável em]a,b[. Se f(a)=f(b), então

$$\exists c \in]a,b[: f'(c) = 0.$$

Figura: Interpretação geométrica do Teorema de Rolle

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua e derivável em]a,b[.

- 1. Entre dois zeros de f existe, pelo menos, um zero de f'.
- 2. Entre dois zeros consecutivos de f' existe, quando muito, um zero de f.
- 3. Não há mais do que um zero de f inferior ao menor zero de f', nem mais do que um zero de f superior ao maior zero de f'.

Teorema (Lagrange)

Se $f:[a,b]\longrightarrow \mathbb{R}$ é uma função contínua que é derivável em]a,b[, então

$$\exists c \in]a, b[: f'(c) = \frac{f(b) - f(a)}{b - a}$$

Figura: Interpretação geométrica do Teorema de Lagrange

Corolários do teorema de Lagrange

[Ideia: olhar para f' como o declive de uma reta]

- **1** Se $f:[a,b] \longrightarrow \mathbb{R}$ é contínua e f'(x) = 0, $\forall x \in]a,b[$, então f é constante.
- ② Se $f,g:[a,b] \longrightarrow \mathbb{R}$ são contínuas e tais que $f'(x)=g'(x), \ \forall x \in]a,b[$, então existe uma constante $C \in \mathbb{R}$ tal que $f(x)=g(x)+C, \ \forall x \in]a,b[$.
- [Monotonia das funções reais]

Seja $f: I \longrightarrow \mathbb{R}$ derivável no intervalo I. Tem-se:

- $f'(x) \ge 0$, $\forall x \in I$, se e só se f é crescente em I
- 2 $f'(x) \le 0$, $\forall x \in I$, se e só se f é decrescente em I
- 3 se f'(x) > 0, $\forall x \in I$, então f é estritamente crescente em I
- se f'(x) < 0, $\forall x \in I$, então f é estritamente decrescente em I.

Exemplos

$$g(x) = \begin{cases} -1 & \text{se } -1 \le x < 0 \\ 1 & \text{se } 0 \le x \le 1 \end{cases}$$

g apresenta uma descontinuidade de salto. g não possui a propriedade do valor intermédio.

Então g não pode ser a derivada de função alguma $f:[-1,1]\longrightarrow \mathbb{R}$.

$$h(x) = \begin{cases} x^2 \cos(\frac{1}{x}) & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

Esta função é contínua e diferenciável em $\mathbb R$ tendo-se

$$h'(x) = \begin{cases} 2x \cos(\frac{1}{x}) + \sin(\frac{1}{x}) & \text{se} \quad x \neq 0\\ 0 & \text{se} \quad x = 0. \end{cases}$$

Índice

- 🕕 Derivada de uma função (real de uma variável real) num ponto
 - Taxas de variação e Retas Tangentes a Curvas
 - Derivadas Laterais
- 2 Interpretação geométrica da Derivada
 - Retas tangente e normal
- Funções deriváveis
- 4 Propriedades das funções deriváveis
 - Teoremas de Fermat, de Rolle e de Lagrange
- Derivadas de ordem superior
- 6 Derivação Implícita

Derivadas de ordem superior

Sejam $f: D \longrightarrow \mathbb{R}$ e $a \in D \cap D'$.

Seja D^1 o subconjunto de D formado por todos os pontos onde f é derivável; isto é D^1 é o domínio de f'.

- Diz-se que f é duas vezes derivável em $a \in D^1$, ponto interior de D^1 , se f' for derivável em a.
- Chama-se segunda derivada de f em a à derivada (f')'(a);
- Usam-se, ainda, as notações

$$f''(a), f^{(2)}(a) ou D^2 f(a)$$

Observações

Nota

 De modo análogo define-se a derivada de ordem n de uma função que se denota por

$$f^{(n)}$$
 ou $D^{(n)}f$.

• Por convenção, considera-se

$$f^{(0)}=f.$$

Funções de classe \mathcal{C}^k (& de classe \mathcal{C}^{∞})

Seja $D \subset \mathbb{R}$, não vazio, tal que $D \subseteq D'$.

• Dado $k \in \mathbb{N}_0$, chama-se conjunto das funções de classe \mathcal{C}^k de D em \mathbb{R} ao conjunto

$$\mathcal{C}^k(D) = \{ f : D \to \mathbb{R} : f \in k \text{ vezes derivável em } D \in f^{(k)} \in \text{contínua} \}$$

ullet Chama-se conjunto das funções de classe \mathcal{C}^{∞} de D em $\mathbb R$ ao conjunto

$$\mathcal{C}^{\infty}(D) = \{ f : D \to \mathbb{R} : f \text{ admite derivada de qualquer ordem em } D \}$$

Índice

- 🕕 Derivada de uma função (real de uma variável real) num ponto
 - Taxas de variação e Retas Tangentes a Curvas
 - Derivadas Laterais
- 2 Interpretação geométrica da Derivada
 - Retas tangente e normal
- 3 Funções deriváveis
- Propriedades das funções deriváveis
 - Teoremas de Fermat, de Rolle e de Lagrange
- Derivadas de ordem superior
- Derivação Implícita

Derivação Implícita:

Exemplo

EXEMPLO: sabendo que $y^2 = x$, calcular $\frac{dy}{dx}$.

1 Sabendo que a equação $y^2 = x$, define duas funções diferenciáveis:

$$y_1 = \sqrt{x}$$
 e $y_2 = -\sqrt{x}$,

podemos, facilmente, calcular

$$\frac{dy_1}{dx} = \dots = \frac{1}{2\sqrt{x}} \qquad e \qquad \frac{dy_2}{dx} = \dots = -\frac{1}{2\sqrt{x}}.$$

② Mas suponhamos que a equação $y^2 = x$, definia y como uma ou mais funções diferenciáveis de x (para x > 0) e não sabíamos exatamente que funções eram essas.

Poderíamos, mesmo assim, calcular $\frac{dy}{dx}$?

A resposta é afirmativa: bastando, para tal, derivar ambos os membros da equação $y^2 = x$, em ordem a x, tratando y = f(x) como uma função f derivável de x:

$$\frac{d}{dx}(y^2) = \frac{d}{dx}(x) \Longleftrightarrow \cdots \Longleftrightarrow \frac{dy}{dx} = \frac{1}{2y}$$

Derivação Implícita

Calcular $\frac{dy}{dx}$.

- Derivar ambos os membros da equação, em ordem à variável independente x; tratando a outra variável, y, como dependente de uma função derivável (y = f(x), com f derivável)
- 2 Resolver a equação em ordem a $\frac{dy}{dx}$.

EXERCÍCIO: Calcular $\frac{d^2y}{dx^2}$, sabendo que $2x^3 - 3y^2 = 8$..