Trabalho de Algoritmos e Grafos Curso de Engenharia da Computação Universidade Federal do Ceará - Campus Sobral Samuel Hericles Souza Silveira - 389118

November 28, 2019

1 Definição

1.1 Isomorfismo entre os grafos G_1 e G_2 .

Sabemos que isomorfismo dos grafos G_1 e G_2 é uma bijeção entre os conjuntos de vértices de G_1 e G_2 :

$$f: V(G_1) => V(G_2) \tag{1}$$

E para quaisquer dois vértices u e v de G_1 , que são adjacentes em G_1 , temos que f(u) e f(v), que são vértices de G_2 , são adjacentes em G_2 .

2 Provas dos algoritmos

2.1 Mesma quantidade de vértices

Quantidade de vértices dos grafos. Se a quantidade de vértices de G_1 for diferente da quantidade de vértices de G_2 , isso implica que G_1 não é um isomorfo de G_2 .

Prova

A definição de isomorfismo afirma que há uma bijeção entre os conjuntos de vértices de G_1 e G_2 . Uma bijeção entre os dois conjuntos implica que a quantidade de vértices de G_1 é a mesma de G_2 :

$$|V(G_1)| = |V(G_2)| \tag{2}$$

Logo, se a quantidade de vértices de G_1 for diferente da quantidade de vértices de G_2 , temos que G_1 não é um isomorfo de G_2 .

2.2 Mesma quantidade de arestas

Quantidade de arestas dos grafos.

Se a quantidade de arestas de G_1 for diferente da quantidade de arestas de G_2 , isso implica que G_1 não é um isomorfo de G_2 .

Prova

A definição de isomorfismo afirma que para cada aresta u ϵ E(G_1), temos a aresta f(u)f(v) \in E(G_2), logo, também existe uma bijeção nos conjuntos de arestas de G_1 e de G_2 :

$$h: E(G_1) => E(G_2)$$
 (3)

Uma bijeção implica na mesma quantidade de arestas dos conjuntos:

$$|E(G_1)| = |E(G_2)|$$
 (4)

Logo, se a quantidade de arestas de G_1 for diferente da quantidade de arestas de G_2 , temos que G_1 não é um isomorfo de G_2 .

2.3 Verificar se são conexos

Se os grafos são conexos ou desconexos. Se G_1 for conexo e G_2 for desconexo, ou G_1 for desconexo e G_2 for conexo, isso implica que G_1 não é um isomorfo de G_2 .

Prova

Analisando o primeiro caso, se G_1 for conexo e G_2 for desconexo: Usando as Provas 1 e 2, para G_1 ser isomorfos de G_2 , temos que ter o mesmo número de vértices e o mesmo número de arestas em G_1 e G_2 , logo:

$$|E(G1)| = |E(G2)|e|V(G1)| = |V(G2)| \tag{5}$$

Suponha que G_1 , que é conexo, é isomorfo de G_2 , que é desconexo, então:

Para cada aresta (u,v) ϵ $E(G_1)$ tem que existir f(u)f(v) ϵ $E(G_2)$. Como G_1 ϵ conexo, entre quaisquer u e v ϵ $V(G_1)$, existe um caminho k que conecta quaisquer u e v. No caminho k temos que o conjunto de arestas que pertencem a esse caminho estão contidas em $E(G_1)$:

(x,y) são as arestas que pertencem ao caminho k, $(x,y) \subseteq E(G_1)$.

Como afirmamos que G_1 é isomorfo de G_2 , temos que arestas do caminho k, $(x,y) \subseteq E(G_1)$, então $f(x)f(y) \subseteq E(G_2)$, como o caminho k, é o caminho entre quaisquer x e y $\in V(G_1)$, temos existe um caminho entre quaisquer f(x) e f(y) $\in V(G_2)$, isso implica que G_2 é conexo, o que é um absurdo, logo, a suposição é falsa, e G_1 , que é conexo, não é isomorfo de G_2 , que é desconexo.

2.4 Quantidade de componentes conexas

Se G_1 tiver X componentes conexas, e G_2 , Y componentes conexas, com X \neq Y, isso implica que G_1 não é isomorfo de G_2 .

Prova Suponha G_1 isomorfo de G_2 , com X \neq Y. Usando as Provas 1 e 2, para G_1 ser isomorfos de G_2 , temos:

$$|E(G_1)| = |E(G_2)|e|V(G_1)| = |V(G_2)| \tag{6}$$

 G_1 tem X_K caminhos, um K_i para cada componente conexa, (u,v) pertence ao caminho K_i , que u,v $V(G_1)$ e $(u,v) \in E(G_1)$, então como são isomorfos, $f(u),f(v) \in V(G_1)$ e $f(u)f(v) \in E(G_2)$. Logo, existem Y_K caminhos em G_2 , com Y = X, o que é um absurdo, portanto G_1 não é isomorfo de G_2 .

2.5 Mesma quantidade de graus de cada vértices

Se for criado um vetor w, onde em cada posição desse vetor está armazenada o grau de cada vértice de G1, e z com os graus dos vértices de G2, depois de ordenados os vetores, se w for diferente de z, isso implica que G1 não é isomorfo de G2.

Prova Usando as Provas 1 e 2, para G_1 ser isomorfos de G_2 , temos:

$$|E(G_1)| = |E(G_2)|e|V(G_1)| = |V(G_2)| \tag{7}$$

O vetor w deve ser do mesmo tamanho de z.

O vetor w, tem a seguinte estrutura: [..., a, ..., ...] de posições 1 à $V(G_1)$ e o vetor z: [..., ..., a , ...] de posições 1 à $V(G_2)$.

w = ordena(w) e z = ordena(z) w terá a estrutura: [..., a, ... ,...]; e z: [..., a, ..., ...], se w \neq z.

Suponha que G_1 é isomorfo de G_2 , com o vetor w ordenado diferente de z ordenado. Tome $v_i, ..., v_j \in V(G_1)$, tal que $d(v_i) = a$, sabemos que $f(v_i), ..., f(v_j)$ $V(G_2)$, tal que $d(f(v_i)) = a$.

Para ser isomorfo, w tem que ter os mesmos elementos de z, porque

 $E(G_1) = (E(G_2)), \sum d(V(G_1)) = 2.(E(G_1)) e \sum d(V(G_2)) = 2(E(G_2))t.$ Logo depois de ordenado w e z devem ser iguais para ser isomorfo.

$$|E(G_1)| = |E(G_2)|$$
 (8)

$$\sum d(V(G_1)) = 2|E(G_1)| \tag{9}$$

$$\sum d(V(G_2)) = 2|E(G_2)| \tag{10}$$

Logo depois de ordenando w e z devem ser iguais para ser isomorfo. Portanto, isso prova que os grafos devem possui a mesma quantidade de graus para cada aresta.

Figure 1: Grafos que parecem isomorfos mas não são.

3 Circuitos em grafos

Se G_1 tiver algum circuito e G_2 não tiver circuitos, ou G_2 tiver algum circuito e G_1 não tiver circuitos, isso implica que G_1 não é um isomorfo de G_2 .

Prova

Analisando o primeiro caso, G_1 tiver algum circuito e G_2 não tiver circuitos. Usando as Provas 1 e 2, para G_1 ser isomorfos de G_2 , temos:

$$|E(G_1)| = |E(G_2)|e|V(G_1)| = |V(G_2)| \tag{11}$$

Suponha que G_1 , que apresenta algum circuito, é isomorfo de G_2 , que não tem circuitos, então:

Para cada aresta (u,v) ϵ $E(G_1)$ tem que existir $f(u)f(v) \in E(G_2)$,então como G_1 tem circuito, existe algum vértice v_0 ϵ $V(G_1)$, com um caminho k $(v_0,v_1,v_2,...,v_n,v_0)$ que sai de v_0 , passa por no mínimo mais 2 vértices diferentes de v_0 , e voltam para v_0 . No caminho k temos que o conjunto de arestas que pertencem a esse caminho estão contidas em $E(G_1)$: v_iv_j são as arestas que pertencem ao caminho k, $v_iv_j \subseteq E(G_1)$, i, j = 0 ... n .

Como afirmamos que G1 é isomorfo de G_2 , com as arestas do caminho k, $v_iv_j \subseteq E(G_1)$, e os vértices do caminho $k, v_0, v_1, v_2, ..., v_n, v_0 \in V(G_1)$, então $f(v_i)f(v_j) \subseteq E(G_2)$, e $f(v_0),f(v_1),f(v_2),...,f(v_n),f(v_0) \in V(G_2)$, então existe um caminho que sai de $f(v_0)$ passa por no mínimo mais 2 vértices diferentes de $f(v_0)$, e voltam para $f(v_0)$, implicando em um circuito em G_2 , o que é um absurdo, logo, a suposição é falsa, e G_1 , que tem algum circuito, não é isomorfo de G_2 , que não tem circuitos.

4 Tabela de Comparação dos Tempos de Execução:

n é o número de vértices; p é a probabilidade de gerar uma aresta.

	n = 8	n = 12	n = 16
p = 1/4	0.01662 ms	$0.03796~\mathrm{ms}$	0.0987 ms
p = 2/4	$0.037963~\mathrm{ms}$	$0.16506~\mathrm{ms}$	0.05863 ms
p = 3/4	$0.22835~\mathrm{ms}$	$0.60626~\mathrm{ms}$	0.37593 ms

Table 1: Tempo médio com teste por 100 repetições.

Obs: Média realizada com 100 repetições, analisando os 6 testes de características. O tempo calculado inclui apenas os testes e as saídas de sistema (prinft) das funções de testes, não foram incluídos as criações dos grafos. Configurações da máquina de teste:

• Processador: Intel intel Core i3 2º Geração CPU 2.20 GHz;

• Memória RAM: 4 GB DDR3;

• Sistema Operacional: Arch Linux, 64 bits.