Using a Python Script in Spyder:

1. Explore and Read the Data File

Load the attached dataset file, "data_mass_raw.txt", into the script. Store its contents in appropriate NumPy variables.

Hint: This file contains time-series data (in days) of a mass-related quantity, referred to as x.

2. Data Analysis

- o Determine the number of time data points.
- o Display the following in the console:
 - Number of data points.
 - Minimum and maximum values of x.
 - The final time value (ensuring it is less than 500 days).

3. Data Visualization

Create a well-designed 1D plot to illustrate the data described above.

4. Model Implementation

Analyze the data using the given model:

$$rac{dx}{dt} = a \cdot x \cdot \ln \left(rac{K}{x}
ight)$$

- Start with the constants a=0.07 and K=700.
- Numerically solve x(t)x(t)x(t) using the algorithm :

$$x_{k+1} = x_k + \Delta t \cdot a \cdot x_k \cdot \ln \left(rac{K}{x_k}
ight)$$

- Parameters:
 - \circ Time step: $\Delta t=0.05$.
 - o Initial value: x0=16.
- Compute x(t) values until the time matches the last point in the dataset.
- Overlay the approximation x(t) on the known data in a graph.

5. Interpolation

- With thousands of computed x values, use Scipy to interpolate them onto a less refined grid matching the dataset's time points.
- Ensure the interpolation creates a smooth curve with second derivative continuity.
- Plot the original data, the computed approximation, and the interpolated curve for comparison.

6. Solver Fonction

- Implement a function mon solver that automates the numerical solution:
 - o Inputs: a, K, x0, Δt .
 - Outputs: Approximated x values sampled at the dataset's time points.
- Test the function with the parameters a=0.07, K=700, x0=16, $\Delta t=0.05$.
- Plot the original data and the function's result for verification.