NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI – 620015 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

B.Tech (CSE) - Cycle Test 1 – January – May 2022 CSPC41– Automata and Formal languages

Semester: IV Curriculum: NITTUGCSE20

Max Marks: 20 Time: 1 hour

Date of Exam: 8th March 2023

1. Design a finite automata for the following subsets of languages over {0,1}* (2)

a. The language of all strings having odd number 0's.

b. The language of all strings ending with 010 or 0010.

Construct a DFA equivalent to the following NFA defined as ({1, 2, 3, 4}, {a, b}, δ, 1, {1}) where δ is given by

State	a	b
→ 1	{2}	{5}
2	Φ	{3}
3	{4}	{3}
4	{3, 5}	Φ
*5	Φ	{1}

3. Construct a regular expression using Kleene's theorem for the following DFA (4)

State	0	1	
→ A	В	В	
*B	В	C	
C	В	A	

- Using the properties of regular languages, construct a DFA that accepts the language over {0,1}* not containing the substring 000.
- Can every regular language not containing ε be accepted by an NFA having only one accepting state? Prove your answer.

Construct a Mealy machine equivalent to the following Moore machine.

State	Next State		Output
	0	1	
→ A	В	C	A
В	D	C	В
C	C	В	c
D	A	D	0