

CREDIT ANALYSIS: LOAN DEFAULTS

Machine Learning Engineer Take Home Test

Problem Overview

Predicting loan defaults is an extremely common use case for machine learning in banking, one of DataRobot's main target industries. As a loan officer, you are responsible for determining which loans are going to be the most profitable and worthy of lending money to. Based on a loan application from a potential client, you would like to predict whether the loan will be paid back in time.

Data

You will be working with a loan dataset from LendingClub.com (<u>source</u>), a US peer-to-peer lending company. Download the dataset from the following URL:

 $\underline{https://s3.amazonaws.com/datarobot_public_datasets/DR_Demo_Lending_Club.csv}$

The data dictionary is given below. Your classification target is **is_bad**:

Column Name	Туре	Description	Category
addr_state	Categorical	2-letter code for the USA state of residence of the loan applicant	Customer
annual_inc	Numeric	Annual Income of the loan applicant	Customer
collections_12_mths_ex_med	Numeric	Number of debt collections against the loan applicant in the 12 months previous to the loan inception	Customer
debt_to_income	Numeric	Ratio of debt to income	Loan
delinq_2yrs	Numeric	Number of times the loan applicant has missed a loan repayment during the past 2 years	Customer
earliest_cr_line	Date	Date of the applicant's earliest line of credit	Customer
emp_length	Numeric	Applicant's length of time with current employer, in years	Customer
emp_title	Text	Name of the loan applicant's employer	Customer
home_ownership	Categorical	Whether the loan applicant owns, rents, or has a mortgage on their home	Customer

Id	Numeric	Database row ID of the loan applicant	Identifier
initial_list_status	Categorical	Whether the data is for a whole loan (vs. a fractional)	Loan
inq_last_6mths	Numeric	Credit enquiries about the applicant during the past 6 months	Customer
is_bad	Numeric	Whether the loan defaulted or payments were missed	Target
mths_since_last_delinq	Numeric	Number of months since the load applicant last missed a loan repayment	Customer
mths_since_last_major_derog	Numeric	Months since the last time seriously negative / derogatory information was placed on the applicant's credit record	Customer
mths_since_last_record	Numeric	Number of months since the loan applicant's last public record court judgement	Customer
Notes	Text	Notes taken by the administrator	Loan
open_acc	Numeric	Number of accounts the loan applicant has opened	Customer
pymnt_plan	Categorical	Whether the loan applicant has been placed on a payment plan to bring their existing loans back to current status	Customer
policy_code	Categorical	Which version of Lending Club's lending criteria is applied	Loan
pub_rec	Numeric	The number of public record judgements against the loan applicant	Customer
purpose	Text	Description of the purpose of the loan	Loan
purpose_cat	Categorical	Purpose category for the loan	Loan
revol_bal	Numeric	Balance on the loan applicant's revolving credit facility	Customer
revol_util	Numeric	Loan applicant's percentage utilization of their revolving credit facility, rounded to one decimal place	Customer
total_acc	Numeric	Total number of accounts for the loan applicant	Customer
verification_status	Categorical	Whether the income source is verified	Loan
zip_code	Categorical	3-digit zip code of the applicant's residential address	Customer

Task

- 1. Partition your data into a holdout set and 5 stratified CV folds.
- 2. Pick **any two** machine learning algorithms from the list below, and build a binary classification model with each of them:
 - Regularized Logistic Regression (scikit-learn)
 - Gradient Boosting Machine (scikit-learn, XGBoost or LightGBM)
 - Neural Network (Keras), with the architecture of your choice
- 3. Both of your models must make use of numeric, categorical, text, and date features.
- 4. Compute out-of-sample LogLoss and F1 scores on cross-validation and holdout.
- 5. Which one of your two models would you recommend to deploy? Explain your decision.
- 6. (Advanced, optional) Which 3 features are the most impactful for your model? Explain your methodology.

Submission

Implement your solution as a Python script using Python 3.6 or above. Make sure the results are reproducible. Alternatively, you can use a Jupyter notebook.

Submit a zip archive with your source code and comments to the URL mentioned in the email.

Please submit the test within one week after receiving.

Questions and Clarifications

The test is designed to be completed in about one evening. Some of the tasks have a lot of room for experimentation and iterative improvement, but we do not expect state-of-the-art accuracy, so a baseline implementation is OK. If you have any ideas for further improvement, you can mention them in a readme file.

One of our engineers will be at your disposal (yuriy.guts@datarobot.com) while you are working on the task. Note that they can answer during business hours only.