Dériver une base de données d'images en une nouvelle version plus cohérente et équilibrée pour de l'apprentissage profond

Cyril Barrelet¹, Marc Chaumont^{1,3}, Gérard Subsol¹, Vincent Creuze¹, Marc ¹Equipe ICAR, LIRAMNI, LIRAM ²Equipe DEXTER, LIRMM, Univ Montpellier, France ³Univ Nîmes, France

Introduction

- Peu de bases de données sous-marines
- Peu utilisées donc rarement mises à jour
- TrashCan − 7212 images et 8634 labels
 - o Images consécutives (312 videos)
 - Catégories non équilibrées (16 catégories)
 - Annotations de mauvaise qualité
 - Métadonnées écrites sur les images

Construction de UNO

- Regroupement des catégories en "Non naturel"
- Suppression du texte automatique
- Relocalisation et ajout de labels
- Suppression des images non significatives

Méthode d'équilibrage Fold 4 Fold 5 Fold 3 Fold 2

Problème du bin packing

 $f^* = arg \min_{f \in \left\{1..k
ight\}^N} \! \left(\left(1 - lpha
ight) \sigma_F + lpha \, \sigma_L
ight)$

k : nombre de blocs N : nombre de vidéos

f : un N-uplet

 σ_F : écart type du nombre de frames

 σ_{1} : écart-type du nombre de labels

α : coefficient de pondération

		Blocs				3.6		
		1	2	3	4	5	Moyenne	Ecart-type
	Vidéos	63	64	49	44	57	55.4	7.81
	Frames	1180	1182	1185	1179	1176	1189.2	3.00
	Labels	2159	2137	2152	2163	2162	2154.6	9.60

Résultats et expérimentations

Modèle et hyper-paramètres

YOLOv5m pré-entraîné

- Optimiseur SGD
- Planificateur OneCycle
- Taille du lot : 28

Augmentations

Transformations de couleur, rotations, translations, mise à l'échelle, flips horizontaux et verticaux, mosaïc, mixup

Entraînemen	Evaluation	Répartition	F1-score	mAP@.50	
t					
TrashCan	TrashCan	Aléatoire	79,7	80,8	
TrashCan	TrashCan	K-blocs	$58,4 \pm 4,2$	56,6 ± 6,3	
UNO	UNO UNO <i>Test du décala</i>		67,3 ± 1,5 1r AOUALC	68,8 ± 1,2	
		Encrassement marin			
Forme des	objets	Encras			

]	Entraînemen	Evaluation	Répartition	F1-score	mAP@.50
	t				
	TrashCan	AQUALOC	K-blocs	55,7 ± 1,6	52,5 ± 1,9
	UNO	AQUALOC	K-blocs	58.4 ± 4.2	56.6 ± 4,7

Conclusion

- 1. Nouvelle base de données sous-marine d'objets non-naturels
- 2. Méthode pour obtenir des k-blocs équilibrés
- 3. Comparaison équitable de TrashCan et UNO à l'aide de YOLOv5m
- 4. Evaluation de l'efficacité de l'apprentissage en condition de déploiement

