SRN [
-------	--	--	--	--	--	--	--	--	--	--	--	--

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE16CS251

DECEMBER 2021: END SEMESTER ASSESSMENT (ESA) B TECH 4th SEMESTER UE16CS251—Design and Analysis of Algorithms

Time: 3 Hrs Answer All Questions Max Marks: 100

1	a)	Fill in the Blanks:	4
		i) Indicate order of growth $3n^2 \log n + n = $	
		ii) if $t1(n) \in \Omega(g1(n))$ and $t2(n) \in \Omega(g2(n))$, then $t1(n) + t2(n) \in$	
		Describer	
		Describe: iii) "Stable" and "In Place" keyword with respect to sorting algorithm	
		in stable and in race keyword with respect to sorting digorithm	
	b)	i) Setup recurrence equation for given algorithm and solve the equation for time	6
		complexity	
		. int fun1(int n) {	
		if (n == 1)	
		return n;	
		else	
		return(fun1(n-1) + fun1(n-1));	
		}	
		ii) Compare order of growth using limits: n² (n-1) and 3n³	
	c)	Solve $T(n) = 2T(n^{1/2}) + 1$, given $T(1)=0$	4
	d)	Write algorithm to check whether all the elements in a given array are distinct, set up the relation and find efficiency.	6
Г		the rotation and find emotioney.	
2	a)	Write Naïve string matching algorithm, Identify the basic operation, Analyze the best, worst and average case time efficiency of the algorithm.	6
	b)	i) Time taken by improved bubble sort in the best case	4
		ii) Time taken by Strassen's matrix multiplication algorithm	
		iii) $T(n) = 4T(n/2) + n^3 \Rightarrow T(n) \in \underline{\hspace{1cm}}$	
		iv) Time taken by Knapsack solved by Exhaustive search technique is	
	c)	Write Quick Sort partition algorithm.	6
	d)	Write an algorithm to compute the number of leaves in a binary tree.	4
3	a)	Apply heap sort on the given input to sort only for 3 iterations (Show the steps neatly) 3,7,1,8,2,5,9,4,6	6
	b)	Derive best, average and worst-case time complexity of the Insertion Sort.	4
	c)	Construct AVL tree for the following input 5,7,1,15,3,2,6,8,4,9	6

		SRN	
	d)	What is the next 4 permutation generated for the following sequence using Jhonson trotter? $4 \leftarrow, 3 \rightarrow, 2 \rightarrow, 1 \leftarrow$	4
4	a)	List the properties of B-Tree	5
	b)	Apply Floyd Warshall's algorithm on the given graph	4
		$ \begin{array}{c c} 4 & 2 & 2 \\ \hline 1 & 7 & 3 \end{array} $	
		6	
	c)	Apply Horspool's string matching algorithm for the text: A C G T T A G C A G C G C A G C G C and Pattern: AGCGC	6
	d)	Decode the binary bits "01100100100101111001001111111001" using Huffman coding and probabilities are A=11, B=6, C=2, D=10, E=7,=10	5
	_		-
5	a)	Find solution for Knapsack problem using dynamic programming where the W=8 is the capacity of the knapsack, weights and values of items are w= {2,3,4,5} V= {1,2,5,6} respectively.	7
	b)	Explain the concept of backtracking with the help of a state space tree. Find out all 3-bit binary numbers for which the sum of all 1's is greater than or equal to 2 using backtracking algorithm. (Represent solution in terms of state space tree)	7
	c)	Define the following with an example: i) Class P ii) Class NP iii) NP-Complete.	6