Trabalho Final de Laboratório de Sistemas Microprocessados

Abajur Inteligente

Alunos:

Gabriel Matheus - 17/0103498 Guilherme Braga - 17/0162290

Professor: Daniel Café Entrega: 05/12/2019 Link para o Github:

https://github.com/therealguib545/Trabalho_Final_Sistemas_Microprocessados

Abstract- Este documento tem como finalidade documentar o último trabalho da matéria de Laboratório de Sistemas Microprocessados, expondo o projeto de um "Abajur Inteligente" que responde a inputs de luminosidade e de proximidade.

1 - Introdução

O objetivo desse projeto é criar um abajur inteligente que funcionará de duas formas distintas: a partir de um sensor de distância e de um sensor de luminosidade. Primeiramente o abajur poderá ser configurado para acender sozinho de acordo com a luminosidade do ambiente em que se encontra, servindo assim como uma luz auxiliar. O abajur também poderá ser ligado sempre que detectar a presença da mão do usuário a uma curta distância do seu sensor, assim mostrando ser uma aplicação prática e simples de se utilizar. No github está disponível um vídeo com a demonstração do projeto em estágios de teste.

- 2 Material Utilizado
- **2.1** Microcontrolador

Para o projeto utilizamos a launchpad MSP-EXP430FR2355 da Texas Instruments, um dispositivo que se justifica por conta de seu baixo consumo e versatilidade. Contando com 32KB de FRAM internos (Ferroelectric Random Access Memory), uma memória não-volátil de uso dinâmico, 40 pinos, 2 LEDs internos e 2 botões internos para fácil interação com o usuário e diversos periféricos.

2.2 - Sensor HC-SR04

Esse sensor de distância ultrassônico possui um circuito com emissor e receptor acoplados e 4 pinos utilizados para medição (VCC, Trigger, ECHO, GND) sendo capaz de medir distâncias de 2 centímetros até 4 metros utilizando-se de uma comunicação digital.

Para realizar a medição iremos colocar o pino Trigger em nível alto por mais de 10us para o sensor emitir uma onda sonora, que rebaterá no primeiro obstáculo que encontrar e voltará em direção ao módulo. O pino ECHO ficará em nível alto durante todo o tempo de emissão e recebimento do sinal. Dessa forma podemos calcular a distância de um obstáculo contando o número de batidas do um clock enquanto o pino ECHO está acionado. Para o SMCLK em modo contínuo, testes nos mostraram que mais ou menos 80 batidas equivalem a 1 centímetro entre o sensor e seu obstáculo de teste. Para este trabalho, o acionamento da funcionalidade desejada pelo sensor se dá ao detectar um objeto a mais ou menos 6 centímetros de distância do sensor. A seguir podemos ver um diagrama que mostra a comunicação deste aparato.

2.3 - LDR 5mm

Esse sensor de luminosidade varia sua resistência de acordo com a intensidade da luz, sendo que quanto mais luz incidir sobre o componente, menor será a sua resistência. O alimentamos com 3.3 volts e lemos sua saída, assim descobrindo a luz ambiente.

2.4 - Potenciômetro

O potenciômetro é um aparato que possui uma resistência elétrica regulável, nos permitindo manipular valores de saída de sua tensão. Neste trabalho, normalizamos os outputs deste sensor em 5 opções de acordo com a tabela a seguir. O valor 0 é a posição no potenciômetro mais à esquerda, e o valor 5 é a posição contrária.

Posição lida no potenciômetro	LED
0 ~ 1	Luzes desligadas
1~2	Azul
2~3	Verde
3 ~ 4	Vermelho
4 ~ 5	Branco (todas as cores acesas)

2.5 - LED RGB

Cada LED tem 4 entradas e segue os inputs como na figura abaixo. No total utilizamos dois LEDs RGB (anodo) para a iluminação.

3 - O uso do projeto

Podemos dividir fisicamente a construção deste trabalho em 3 partes: a protoboard externa que faz contato com o usuário e seu ambiente (potenciômetro e sensor LDR de 5mm), a protoboard interna que abriga os LEDs RGB (junto da própria MSP430) e o sensor de proximidade. Utilizamos protoboards distintas para duas regiões do projeto para que a luz do LED não influencie em nada na detecção de luz ambiente do sensor LDR. Esta também é a justificativa principal da cúpula que envolve a protoboard dos LEDs e a MSP430: assim podemos garantir que a luz de um LED não irá influenciar na leitura da luz ambiente do sensor LDR.

Para acionar a luz em um ambiente claro, basta posicionar um obstáculo perto do sensor. Após a mudança de um dos leds, o usuário saberá que seu input foi detectado. Ao se retirar o obstáculo após a confirmação visual do input, o sensor então mudará o estado dos LEDs dentro de poucos segundos. O delay se justifica por conta da lógica de barramento de falsos positivos, já que esta se mostrou a forma mais eficaz de acionar o abajur. Se o usuário continua com a sua mão na frente do sensor, o input será barrado, e o LED de comunicação irá indicar que o programa está esperando para que o usuário saia da frente do sensor. Caso o sensor de luz detecte que a luz ambiente está baixa, então a luz ligará automaticamente, e a rotina do sensor de proximidade não será executada até que a luz volte. Caso o acionamento por falta de luz seja ativado, mas o usuário não queira que a luz esteja ligada, pode-se desligar a luz utilizando o potenciômetro. O potenciômetro também serve para mudar a cor do LED. Temos como opções de cor as mais básicas: vermelho, verde, azul e branco (todas as cores acesas).

4 - Conexões

MSP430	LED 1
P6.0	RED
5V	VCC
P6.1	GREEN
P6.2	BLUE

MSP430	LED 2
P5.1	RED
5V	VCC
P5.3	GREEN
P1.4	BLUE

MSP430	Potenciômetro (de frente)
GND	Entrada à direita
P1.0	Entrada do meio
3.3V	Entrada à esquerda

MSP430	LDR (5mm)
GND	Input
3.3V	Resistor de 10k ohm ligado ao output
P1.0	Output

MSP430	HC-SR04
VCC	5V
GND	GND
TRIGGER	P2.0
ЕСНО	P2.2

5 - Imagens

Foto 1- O trabalho montado

Foto 2- Teste de LED

Foto 3- Cúpula onde fica a MSP430

Fotos 4 e 5 - os LEDs em sua montagem final e a protoboard externa em sua montagem final

Fontes-

http://www.circuitdb.com (para o LDR 5mm)

Guia do usuário do HC-SR04

https://electronicshobbyists.com (para o LED RGB)

http://www.ti.com/