TEST 10 QUESTIONS

Questions 1. Given the sequence (u_n) has $\lim u_n = 3$, and the sequence (v_n) has $\lim v_n = 5$. What is the $\lim (u_n \cdot v_n) = ?$

A. 15.

B. 8.

C. 5.

D. 3.

Questions 2. For sequences (u_n) , (v_n) and $\lim u_n = a$, $\lim v_n = +\infty$ then $\lim \frac{u_n}{v_n}$ equals

A. 1.

B. 0.

 \mathbf{C}_{\bullet} $-\infty$.

 \mathbf{D} . $+\infty$.

Questions 3. Which statement below is incorrect?

A. $\lim u_n = c$ ($u_n = c$ is a constant sequence).

B. $\lim q^n = 0 (|q| > 1).$

C. $\lim_{n \to \infty} \frac{1}{n} = 0$.

D. $\lim \frac{1}{n^k} = 0 \ (k > 1)$.

Questions 4. Given the sequence (u_n) satisfying $\lim u_n = -5$. The value of $\lim (u_n - 2)$ is

A. 3

B. –7

C. 10

D. -10

Questions 5. Calculate $L = \lim \frac{n-1}{n^3 + 3}$.

A. L = 1.

B. L = 0.

C. L = 3.

D. L = 2.

Questions 6. The limit of $\lim \frac{3n+5}{2n-4}$ is

A. $\frac{3}{2}$.

B. $-\frac{5}{4}$.

C. 3.

D. –4.

Questions 7. The limit of the sequence is $\lim \frac{2n^2 - 3n + 1}{n^2 + 2n}$

A. 3.

B. 2.

C. 1.

D. $-\frac{3}{2}$.

Questions 8. Find a such that $\lim \frac{an^2 - 3n}{9n^2 + 5} = \frac{2}{3}$.

A. a = 4.

B. a = 6.

C. a = 8.

D. a = 9.

Questions 9. The limit of $\lim \frac{\sqrt{4n^2+1}-\sqrt{n+2}}{2n-3}$ equals

A. $\frac{3}{2}$.

B. 2.

C. 1.

D. +∞

Questions 10. Given a square ABCD with side length a. Construct square $A_1B_1C_1D_1$ inside ABCD with its side length being $\frac{1}{2}$ of the diagonal of square ABCD; then construct square $A_2B_2C_2D_2$ inside $A_1B_1C_1D_1$ with its side length being $\frac{1}{2}$ of the diagonal of square $A_1B_1C_1D_1$ and continue this process indefinitely. If the process of construction can go on infinitely and the total area S of all these squares ABCD, $A_1B_1C_1D_1$, $A_2B_2C_2D_2$... equals S, then S0 equals

A. 2

B. $\sqrt{2}$

C. $\sqrt{3}$

D. $2\sqrt{2}$