Exercices sur les nombres complexes

(Solutions en dernière page)

Exercice 1:

Déterminer le conjugué de chaque nombre complexe et donner sa forme algébrique.

1.
$$z = (3 + i)(-13-2i)$$

2.
$$z = i(1 - i)^3$$

3.
$$z = \frac{2-3i}{8+5i}$$

4.
$$z = \frac{2}{i+1} - \frac{3}{1-i}$$

Exercice 2:

Résoudre dans $\mathbb C$ chacune des équations suivantes.

1.
$$2z^2$$
– $6z+5=0$

2.
$$z^2 + z + 1 = 0$$

3.
$$z^2 + 2\overline{z} + 1 = 0$$

Exercice 3:

 $A,\,B$ et C sont les points d'affixes respectives :

$$z_A = -1 + \mathrm{i}, z_B = 2 + \mathrm{i}, z_C = -rac{1}{2} - rac{1}{2} \mathrm{i}.$$

1. Placer les points A, B et C.

2. Calculer les affixes des vecteurs \vec{AB} , \vec{AC} et \vec{BC} .

3. En déduire les longueurs AB, AC et BC. Le triangle ABC est-il rectangle en C?

Liste d'exercices plus difficiles

Exercice 4:

Soit $z=x+\mathrm{i} y$, x et y étant deux réels tels que $(x;y)\neq (1;0)$.

On pose
$$Z=rac{z+2\mathrm{i}}{z\!-\!1}.$$

Déterminer l'ensemble des points d'affixe z tel que :

- 1. Z soit un nombre réel.
- 2. Z soit un imaginaire pur.

Exercice 5:

Dans chaque cas, trouver l'ensemble des points dont l'affixe z satisfait la condition indiquée.

1.
$$|z-3| = |z-1+i|$$

2.
$$|z + 2 - \mathbf{i}| = \sqrt{5}$$

3.
$$|z+3-\mathrm{i}|\leqslant 2$$

Exercice 6:

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$. On note A le point d'affixe i. A tout point M du plan, distinct de A, d'affixe z, on associe le point M' d'affixe

$$z' = \frac{iz}{z - i} .$$

- 1. **a**. Déterminer les points M tels que M=M'.
 - **b.** Déterminer l'affixe du point B' associé au point B d'affixe 1.
 - ${f c}.$ Déterminer l'affixe du point C tel que l'affixe de son image C' soit ${f 2}.$
- 2. Étant donné un nombre complexe z, distinct de i, on pose z=x+iy et z'=x'+iy' le nombre nombre complexe associé, avec x,x',y,y' réels.
 - **a.** Déterminer x' et y' en fonction de x et y.
 - **b**. Déterminer l'ensemble Γ des points M, distincts de A, pour lesquels z' est réel.
 - **c**. Placer A, B, B', C, C' et représenter Γ sur une figure (unité graphique 4 cm).
- 3. Soit z un nombre complexe différent de i.
 - **a.** Montrer que l'on a z'– $\mathbf{i} = \frac{-1}{z$ – \mathbf{i} .
 - **b.** On suppose que M, d'affixe z, appartient au cercle γ de centre A et de rayon 1. Montrer que M' appartient à γ .

Réponses :

Exercice 1:

$$-37 + 19i$$

$$2 + 2i$$

$$\frac{1}{89} + \frac{4}{89}i$$

$$-\frac{1}{2} + \frac{5}{2}i$$

Exercice 2:

$$\begin{aligned} &\frac{3}{2} - \frac{1}{2}i, \frac{3}{2} + \frac{1}{2}i \\ &-\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i \\ &-1, 1 + 2i, 1 - 2i \end{aligned}$$

Exercice 3:

3

$$\frac{1}{2} - \frac{3}{2}i$$

$$-\frac{5}{2} - \frac{3}{2}i$$

ABCn'est pas rectangle