Математический Анализ 2 семестр

Данил Заблоцкий

29 июня 2023 г.

Оглавление

1	Дис	фференциальное исчисление	2
	1.1	Первообразная и неопределенный интеграл	2
		1.1.1 Интегрирование рациональных дробей	4
		1.1.2 Интегрирование рациональных дробей	4
		1.1.3 Разложение рациональной дроби на простые	6
		1.1.4 Метод неопределенных коэф-ов (следствия лемм)	7
		1.1.5 Метод Остроградского	8
2	Инт	гегральное исчисление	10
	2.1	Интеграл Римана	10
	2.2	Базы. Предел функции по базе	11
	2.3	Разбиение. Интеграл Римана (v.2)	13
	2.4		15
		2.4.1 Суммы Дарбу	15
			18
		2.4.3 Свойства интегрируемых функций	19

Глава 1

Дифференциальное исчисление

1.1 Первообразная и неопределенный интеграл

Определение 1.1.1 (Первообразная функция). Пусть X - промежуток, $f: X \to \mathbb{R}$. Функция F(x) называется первообразной f(x), если производная F'(x) = f(x), при этом F(x) дифференцируема и непрерывна.

Пример 1. $f(x) = 2x \implies F(x) = x^2$. В самом деле, F'(x) = f(x).

Утверждение 1.1.1. (О первообразной)

- 1. Если F(x) первообразная функции f(x) на промежутке X, и $\Phi(x)=F(x)+C,\ c\in\mathbb{R},$ то $\Phi(x)$ тоже первообразная.
- 2. Если F(x) и $\Phi(x)$ две первообразные для f(x) на промежутке X, то $\exists C=const,\ c\in\mathbb{R}$ такая, что $\Phi(x)=F(x)+C$.

Доказательство. (Утверждения о первообразной)

- 1. $\Phi'(x) = (F(x) + C)' = F'(x) = f(x) \implies \Phi(x)$ первообразная для f(x).
- 2. Так как F(x) и $\Phi(x)$ первообразные для f(x), то F'(x) = f(x), $\Phi'(x) = f(x)$. Рассмотрим функцию $\phi = \Phi(x) F(x)$, $\forall x \in X$: $\phi'(x) = \Phi'(x) F'(x) = f(x) f(x) = 0$. Рассмотрим $\forall x_1, x_2 \in X$, по теореме Лагранжа, $\exists \xi \in (x_1, x_2) : \phi(x_1) \phi(x_2) = \phi'(\xi)(x_1 x_2) = 0 \implies \phi(x_1) = \phi(x_2) \implies \phi(x) = const$ для $\forall x \in X$.

Определение 1.1.2 (Неопределенный интеграл). Совокупность всех первообразных для функции f(x) на промежутке X называется **неопределенным интегралом** и обозначается:

$$\int f(x)dx$$

Таким образом, $\int f(x)dx = \{F(x) + C, \text{ где } F'(x) = f(x), \ C \in \mathbb{R}\}$, или:

$$\int f(x)dx = F(x) + C$$

Замечание. (Для неопределенного интеграла)

- $(\int f(x)dx)'_x = (F(x) + C)'_x = F'(x) = f(x);$
- $d(\int f(x)dx) = d(F(x) + C) = (F(x) + C)'dx = F'(x)dx = f(x)dx;$
- $\int d(F(x)) = \int F'(x)dx = \int f(x)dx = F(x) + C, C \in \mathbb{R}.$

Определение 1.1.3 (интегрирование). Операция нахождения первообразной функции f(x) называется ее **интегрированием**.

Утверждение 1.1.2. (Основные методы интегрирования) Пусть $f: X \to \mathbb{R}, \ g: X \to \mathbb{R}, \ X$ - промежуток:

- 1. Пусть $\alpha, \beta \in \mathbb{R} = const$, тогда: $\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx.$
- 2. Формула интегрирования по частям: $udv = uv \int u dv, \ u = u(x), v = v(x).$
- 3. Интегрирование подстановкой: Пусть T промежуток, X = X(t) дифференцируема на T. Тогда $\int f(X(t)) * X'(t) dt = F(X(t)) + C = \int f(x) dx + C$.

Доказательство. (Утверждения об основных методах интегрирования)

- 1. Возьмем производную по x от обеих частей равенства: $\int (\alpha f(x) + \beta g(x))_x' = \alpha f(x) + \beta g(x) = \alpha F'(x) + \beta G'(x) = \alpha (\int f(x) dx)_x' + \beta (\int g(x) dx)_x'$ является производной для $\alpha \int f(x) dx + \beta \int g(x) dx$.
- 2. Рассмотрим $d(uv)=vdu+udv:\int d(uv)=\int vdu+\int udv.$ Так как d(uv)=uv, то из того, что $\int d(uv)=\int vdu+\int udv\implies\int udv=uv-\int vdu.$
- 3. $f(X(t)) * X'(t)dt = \int f(X(t))dx(t) = \int f(x)dx = F(x) + C = F(X(t)) + C$; $(F(X(t)) + C)'_t = F'_t * X'_t = f(x) * X'(t) = (\int f(X(t)) * X'(t)dt)'_t$.

Пример 2. (Интегрирование функций)

3

1.
$$\int x^3 dx = \frac{x^4}{4} + C$$

2.
$$\int \ln x dx = \begin{vmatrix} u = \ln x, & dv = dx, & du = d(\ln x) = \frac{dx}{x} \implies \\ \Rightarrow \int dv = \int dx \implies v = x \end{vmatrix} = x \ln x - \int x \frac{dx}{x} = x \ln x - x + C$$

3.
$$\int \sqrt{1-x^2} dx = \begin{vmatrix} x = \sin t, \ dx = \\ = d(\sin t) = \cos t dt \end{vmatrix} = \int \cos^2 t dt = \int \frac{1}{2} (1 + \cos 2t) dt = \frac{1}{2} \int dt + \frac{1}{2} \int \cos 2t dt = \frac{t}{2} + \frac{1}{4} \int \cos 2t d(2t) = \frac{t}{2} + \frac{1}{4} \sin 2t + C = \frac{\arcsin x}{2} + \frac{1}{2} x \sqrt{1-x^2} + C$$

Пример 3. (Неинтегрируемые функции)

$$\int \frac{x}{\ln x} dx; \quad \int \frac{e^x}{x} dt; \quad \int e^{x^2} dx$$

1.1.1 Интегрирование рациональных дробей

Определение 1.1.4 (Рациональная дробь). Функция вида $\frac{P(x)}{Q(x)}$, где P(x), Q(x) - многочлены, называется **рациональной дробью**, или рациональной функцией.

Если $\deg P(x) < \deg Q(x),$ то дробь называется **правильной**, иначе - **неправильной**.

Если дробь $\frac{P(x)}{Q(x)}$ - неправильная, то ее можно представить в виде $\frac{P(x)}{Q(x)} = M(x) + \frac{P_1(x)}{Q_1(x)}$, где $\frac{P_1(x)}{Q_1(x)}$ - правильная дробь. Поэтому достаточно уметь интегрировать правильную дробь.

Определение 1.1.5 (Простые дроби). **Простыми дробями** будем называть дроби следующих четырех видов:

1.
$$\frac{A}{x-a}$$
, $A, a \in \mathbb{R}$

2.
$$\frac{A}{(x-a)^k}$$
, $A, a \in \mathbb{R}, k > 1$

3.
$$\frac{Ax+B}{x^2+px+q}$$
, $A, B, p, q \in \mathbb{R}, p^2 - 4q < 0$

4.
$$\frac{Ax+B}{(x^2+px+q)^k}$$
, $A, B, p, q \in \mathbb{R}$, $k > 1$, $p^2 - 4q < 0$

1.1.2 Интегрирование рациональных дробей

1.
$$\int \frac{A}{x-a} dx = A \int \frac{d(x-a)}{x-a} = \left| \int \frac{dt}{t} dt \right| = A \ln|x-a| + C$$

2.
$$\int \frac{A}{(x-a)^k} dx = A \int (x-a)^{-k} dx = A \int (x-a)^{-k} d(x-a) = \left| \int t^n dt = \frac{t^{n+1}}{n+1} \right| = A \frac{(x-a)^{-k+1}}{-k+1} + C = \frac{A}{(x-a)^{k-1}(1-k)} + C$$

$$3. \int \frac{Ax+B}{x^{2}+px+q} dx = \begin{vmatrix} x^{2}+px+q = (x^{2}+2\frac{p}{2}x+\frac{p^{2}}{4}) - \frac{p^{2}}{4} + q = \\ = (x+\frac{p}{2})^{2} - \frac{p^{2}-4q}{4}, \ (-\frac{p^{2}-4q}{4} = C > 0) \end{vmatrix} = \int \frac{Ax+B}{(x+\frac{p}{2})^{2}+C} dx = \\ A \int \frac{xdx}{(x+\frac{p}{2})^{2}+C} + B \int \frac{dx}{(x+\frac{p}{2})^{2}+C} = \begin{vmatrix} d((x+\frac{p}{2})^{2}+C) = \\ = 2(x+\frac{p}{2}dx) \end{vmatrix} = \dots$$

$$A \int \frac{xdx}{(x+\frac{p}{2})^{2}+C} = \frac{A}{2} \int \frac{(2(x+\frac{p}{2})-p)dx}{(x+\frac{p}{2})^{2}+C} = \frac{A}{2} \int \frac{2(x+\frac{p}{2})dx}{(x+\frac{p}{2})^{2}+C} - \\ \frac{Ap}{2} \int \frac{dx}{(x+\frac{p}{2})^{2}+C} = \begin{vmatrix} \int \frac{dx}{(x+\frac{p}{2})^{2}+C} = I \end{vmatrix} = \\ \frac{A}{2} \int \frac{d((x+\frac{p}{2})^{2}+C)}{(x+\frac{p}{2})^{2}+C} - \frac{Ap}{2}I = \frac{A}{2} \ln|(x+\frac{p}{2})^{2}+C| - \frac{Ap}{2}I;$$

$$I = \frac{dx}{(x+\frac{p}{2})^{2}+C} = \frac{1}{C} \int \frac{\sqrt{C}d(\frac{x}{\sqrt{C}} + \frac{p}{2\sqrt{C}})}{(\frac{x}{\sqrt{C}} + \frac{p}{2\sqrt{C}})^{2}+1} = \\ \left| \int \frac{dt}{t^{2}+1} = \arctan t + C \right| = \frac{1}{\sqrt{C}}\arctan(\frac{x+2p}{2\sqrt{C}}) + C_{1};$$

$$\frac{1}{C}(x+\frac{p}{2})^{2} = (\frac{1}{\sqrt{C}})^{2}(x+\frac{p}{2})^{2} = (\frac{1}{\sqrt{C}}(x+\frac{p}{2}))^{2} = (\frac{x}{\sqrt{C}+\frac{p}{2\sqrt{C}}})^{2};$$

$$\dots = \frac{A}{2} \ln |(x + \frac{p}{2})^2 - \frac{p^2 - 4q}{4}| + (B - \frac{Ap}{2}) \frac{1}{\sqrt{C}} \arctan(\frac{x + 2p}{2\sqrt{C}}) + C_1$$

$$4. \int \frac{Ax+B}{(x^2+px+q)^k} dx = \begin{vmatrix} d(x^2+px+q) = \\ = 2x+p \end{vmatrix} = \int \frac{\frac{A}{2}(2x+p)+B-\frac{Ap}{2}}{(x^2+px+q)^k} dx = \frac{A}{2} \int \frac{d(x^2+px+q)}{(x^2+px+q)^k} + \\ (B-\frac{Ap}{2}) \int \frac{dx}{((x+\frac{p}{2})^2+(\frac{-p^2+4a}{4}))^k} = \frac{A}{2(1-k)} \frac{1}{(x^2+px+q)^{k-1}} + \frac{(B-\frac{Ap}{2})}{(-\frac{p^2+4q}{4})^k} \int \frac{dx}{((\frac{x+\frac{p}{2}}{\sqrt{-p^2+4q}})^2+1)^k} = \\ \frac{A}{2(1-k)} \frac{1}{(x^2+px+q)^{k-1}} + \frac{(B-\frac{Ap}{2})\sqrt{-p^2+4q}}{(\frac{-p^2+4q}{4})^k} \int \frac{d\left(\frac{x+\frac{p}{2}}{\sqrt{-p^2+4q}}\right)}{\left(\left(\frac{x+\frac{p}{2}}{\sqrt{-p^2+4q}}\right)^2+1\right)^k}$$

Таким образом, чтобы вычислить интеграл 4., нужно вычислить интеграл
$$\int \frac{dt}{(t^2+1)^k} = \left| \begin{array}{c} u = \frac{1}{(t^2+1)^k}; \ du = d((t^2+1)^k) = -k(t^2+1)^{-k-1}2tdt \\ dv = dt \implies v = t \end{array} \right| = \frac{t}{(t^2+1)^k} - \int \frac{-2kt^2}{(t^2+1)^{k+1}}dt = \frac{t}{(t^2+1)^k} + 2k(\int \frac{t^2+1}{(t^2+1)^{k+1}}dt - \int \frac{dt}{(t^2+1)^{k+1}});$$

$$\int \frac{dt}{(t^2+1)^k} = \frac{t}{(t^2+1)^k} + 2k\int \frac{dt}{(t^2+1)^k} - 2k\int \frac{dt}{(t^2+1)^{k+1}} \left| \begin{array}{c} \frac{dt}{(t^2+1)^k} = I_k \\ \frac{dt}{(t^2+1)^{k+1}} = I_{k+1} \end{array} \right|;$$

$$2kI_{k+1} = \frac{t}{(t^2+1)^k} + (2k-1)I_k; \quad I_{k+1} = \frac{t}{2k(t^2+1)^k} + \frac{2k-1}{2k}I_k, \ k=1,\dots$$

1.1.3 Разложение рациональной дроби на простые

Лемма 1.1.1. Пусть $\frac{P(x)}{Q(x)}$ - правильная рациональная дробь (несократимая). Причем $Q(x)=(x-a)^kQ_1(x)$, где $Q_1(x)$ не делится на (x-a). Тогда \exists многочлен $P_1(x)$ из $\exists A\in\mathbb{R}: \frac{P(x)}{Q(x)}=\frac{A}{(x-a)^k}+\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$. При этом дробь (рациональная) $\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$ - правильная.

 \mathcal{A} оказательство. Рассмотрим $\frac{A}{(x-a)^k}+\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}=\frac{Q_1(x)A+(x-a)P_1(x)}{Q(x)}.$ Нужно доказать, что $\frac{Q_1(x)A+(x-a)P_1(x)}{Q(x)}=\frac{P(x)}{Q(x)}.$

Отсюда следует, что для выполнения леммы, многочлен P(x) должен расскладываться: $P(x) = Q_1(x) + (x-a)P_1(x) \Longrightarrow P_1(x) = \frac{P(x) - AQ_1(x)}{x-a}$. Чтобы существовал многочлен $P_1(x)$, нужно, чтобы $P(x) - AQ_1(x)$ делилась на x-a. Для этого точка a должна быть корнем $P(x) - AQ_1(x)$, то есть чтобы $P(a) - AQ_1(a) = 0 \Longrightarrow A = \frac{P(a)}{Q(a)}; \quad Q_1(a) \neq 0$ по условию. Таким образом, при $A = \frac{P(a)}{Q_1(a)}$, функция $P_1(x)$ будет являться многочленом $P_1(x) = \frac{P(x) - \frac{P(a)}{Q_1(a)}Q_1(x)}{x-a}$.

Покажем, что дробь $\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$ - правильная, то есть $\deg P_1(x) < \deg[(x-a)^{k-1}Q_1(x)]$. Имеем, $P_1(x) = \frac{P(x) - AQ_1(x)}{x-a}; \quad \deg P_1(x) \leqslant \max(\deg P(x), \deg Q_1(x)) - 1$. Тогда $\deg P_1(x) \leqslant \deg P(x) - 1 < \deg Q(x) - 1 = \deg[(x-a)^{k-1}Q_1(x)]$.

Если
$$\deg Q_1(x)\geqslant \deg P(x) \Longrightarrow \deg P_1(x)\leqslant \deg Q_1(x)-1<\deg Q(x)-1=\deg[(x-a)^{k-1}Q_1(x)].$$
 Дробь $\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$ - правильная.

Лемма 1.1.2. Пусть $\frac{P(x)}{Q(x)}$ - правильная дробь. При этом $Q(x)=(x^2+px+q)^kQ_1(x)$, здесь $p^2-4q<0$. Тогда $\exists M,N\in\mathbb{R}$ и \exists многочлен $P_1(x)$: $\frac{P(x)}{Q(x)}=\frac{Mx+N}{(x^2+px+q)^k}+\frac{P_1(x)}{(x^2+px+q)^{k-1}Q_1(x)}$. При этом $Q_1(x)$ не делится на x^2+px+q . Дробь $\frac{P_1(x)}{(x^2+px+q)^{k-1}Q_1(x)}$ - правильная.

Доказательство. Если разложение $\frac{P(x)}{Q(x)} = \frac{Mx+N}{(x^2+px+q)^k} + \frac{P_1(x)}{(x^2+px+q)^{k-1}Q_1(x)}$ верно, то: $\frac{P(x)}{Q(x)} = \frac{(Mx+N)Q_1(x)+P_1(x)(x^2+px+q)}{Q(x)}$, следовательно P(x) должен выражаться как: $P(x) = (Mx+N)Q_1(x) + P_1(x)(x^2+px+q) \implies P_1(x) = \frac{P(x)-(Mx+N)Q_1(x)}{x^2+px+q}$.

Так как нужно, чтобы $P_1(x)$ был многочленом, то $P(x) - (Mx + N)Q_1(x)$ должно делиться на $x^2 + px + q$.

Рассмотрим остаток от деления P(x) на $x^2 + px + q$ в форме $\alpha x + \beta$ и остаток от деления $Q_1(x)$ на $x^2 + px + q$ в форме $\gamma x + \delta$.

Таким образом, $P(x) = (x^2 + px + q)P_2(x) + (\alpha x + \beta);$ $Q_1(x) = (x^2 + px + q)Q_2(x) + (\gamma x + \delta).$

Отсюда достаточно показать, что на $x^2 + px + q$ делится многочлен $\alpha x + \beta - (Mx + N)(\gamma x + \delta) = -M\gamma x^2 + x(-N\gamma - M\delta + \alpha) + (\beta - N\delta).$

Поделим полученный выше многочлен на $x^2+px+q: \frac{-M\gamma x^2+x(-N\gamma-M\delta+\alpha)+(\beta-N\delta)}{x^2+px+q}=-M\gamma+(\alpha-N\gamma-M\delta+M\gamma p)x+(\beta-N\delta+M\gamma q).$

Для целого деления необходимо, чтобы:

$$\left\{ \begin{array}{l} \alpha - N\gamma - M\delta + M\gamma p = 0 \\ \beta - N\delta + M\gamma q = 0 \end{array} \right. \implies \left\{ \begin{array}{l} -(\delta - \gamma p)M - \gamma N = -\alpha \\ \gamma qM - \delta N = -\beta \end{array} \right.$$

где M, N - неизвестные;

$$\left\{ \begin{array}{ll} \alpha - N\gamma - M\delta + M\gamma p = 0 \\ \beta - N\delta + M\gamma q = 0 \end{array} \right. \; ; \; \left| \begin{array}{ll} \delta - \gamma p & \gamma \\ \gamma q & -\delta \end{array} \right| = -\delta^2 + \gamma p\delta - \gamma^2 q.$$

Заметим, что α и β , а так же γ и δ одновременно в 0 не обращаются. $p^2-4q<0\implies q\neq 0, \quad -(\delta^2+\gamma^2q)+\gamma p\delta$:

- 1. $\gamma = 0$, $\delta = 0$ невозможно;
- 2. $\gamma = 0, \ \delta \neq 0 \implies -\delta^2 \neq 0;$
- 3. $\gamma \neq 0$, $\delta = 0 \implies -\gamma^2 q \neq 0$;
- 4. $\gamma \neq 0, \ \delta \neq 0$

Тогда, если $-(\delta^2+\gamma^2q)+\gamma p\delta=0 \implies \gamma p\delta=\delta^2+\gamma^2q;$ $p^2-4q<0,\ p^2<4q\implies 0\leqslant \frac{p^2}{4}< q$

 $\gamma \neq 0$: если $(\frac{\delta}{\gamma})^2 + (-\frac{\delta}{\gamma})p + q = 0$, то $x = \frac{\delta}{\gamma}$ - корень многочлена $x^2 + px + q \implies$ противоречие с тем, что $x^2 + px + q$ не имеет вещественных корней $\implies \Delta \neq 0 \implies \exists M, N$ и \exists многочлен $P_1(x)$.

1.1.4 Метод неопределенных коэф-ов (следствия лемм)

Если $\frac{P(x)}{Q(x)}$ - правильная дробь и $Q(x)=(x-a_1)^{k_1}*\ldots*(x-a_s)^{k_s}*(x^2+p_1x+q_1)^{m_1}*\ldots*(x^2+p_rx+q_r)^{m_r}$, то верно следующее разложение:

$$\frac{P(x)}{Q(x)} = \sum_{i=0}^{k_1 - 1} \frac{A_i}{(x - a_i)^{k_1 - i}} + \dots + \sum_{i=0}^{k_s - 1} \frac{A_i^s}{(x - a_s)^{k_s - i}} + \sum_{i=0}^{m_1 - 1} \frac{M_i x + N_i}{(x^2 + p_1 x + q_1)^{m_1 - i}} + \dots + \sum_{i=0}^{m_r - 1} \frac{M_i^r x + N_i^r}{(x^2 + p_r x + q_r)^{m_r - i}},$$

где $A_i, \ldots, A_i^s, M_i, N_i, \ldots, M_i^r, N_i^r \in \mathbb{R}$.

Пример 4. $Q(x) = (x-1)^3(x+2)^2(x^2+x+1)^3$

$$\frac{x^5 - x^3 + 1}{Q(x)} = \frac{A_0^1}{(x-3)^3} + \frac{A_1^1}{(x-3)^2} + \frac{A_2^1}{(x-3)} + \frac{A_0^2}{(x+2)^2} + \frac{A_1^2}{(x+2)} + \frac{M_0x + N_0}{(x^2 + x + 1)^3} + \frac{M_1x + N_1}{(x^2 + x + 1)^2} + \frac{M_2x + N_2}{(x^2 + x + 1)}$$

Приведем в $\frac{P(x)}{Q(x)} = \sum_{i=0}^{k_1-1} \frac{A_i}{(x-a_i)^{k_1-i}} + \dots$ правую часть к общему знаменателю и получим: $\frac{P(x)}{Q(x)} \equiv \frac{R(x)}{Q(x)};$ $\deg Q(x) = k_1 + \dots + k_s + 2m_1 + \dots + 2m_r = n;$

$$l = \deg R(x) = \deg P(x) \leqslant \deg Q(x) - 1.$$

Количество неизвестных коэф. у множества R(x) равно n штук, приравнивая коэф. при соответствующих степенях x (в том числе при x^0) получим n уравнений с n неизвестными (старшая степень x множества R(x) равна n-1).

1.1.5 Метод Остроградского

Теорема 1.1.1. Пусть $\frac{P(x)}{Q(x)}$ - правильная несократимая дробь.

Тогда $\int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx$. Дроби $\frac{P_1(x)}{Q_1(x)}$ и $\frac{P_2(x)}{Q_2(x)}$ - правильные. $Q(x) = Q_1(x)Q_2(x)$ и многочлен $Q_2(x)$ представляет собой произведение всех линейных и квадратичных множителей многочлена Q(x), взятых в первой степени.

Пример 5.
$$\int \frac{x^2+2x+5}{(x-2)(x^2+1)^2} dx = \frac{P_1(x)}{x^2+1} + \int \frac{P_2(x)}{(x-2)(x^2+1)} dx = \frac{Ax+B}{x^2+1} + \int \frac{Cx^2+Dx+E}{(x-2)(x^2+1)} dx$$

Доказательство. Рассмотрим $\int \frac{A}{(x-a)^k} dx = \frac{A}{1-k} \frac{1}{(x-a)^{k-1}};$

$$\int \frac{Mx+N}{(x^2+px+q)^k} dx = \frac{A}{(x^2+px+q)^{k-1}} + B \int \frac{dx}{(x^2+px+q)^k} = \frac{A}{(x^2+px+q)^{k-1}} + \frac{C}{(x^2+px+q)^{k-1}} + D \int \frac{dx}{(x^2+px+q)^{k-1}} = \frac{A}{(x^2+px+q)^{k-1}} + \ldots + \frac{V}{(x^2+px+q)^2} + W \int \frac{dx}{x^2+px+q}.$$

Представим Q(x) в виде $Q(x)=(x-a_1)^{k_1}*\ldots*(x-a_s)^{k_s}*(x^2+p_1x+q_1)^{m_1}*\ldots*(x^2+p_rx+q_r)^{m_r}$, тогда:

$$Q_2(x) = (x - a_1) * \dots * (x - a_s) * (x^2 + p_1 x + q_1) * \dots * (x^2 + p_r x + q_r);$$

$$Q_1(x) = (x - a_1)^{k_1 - 1} * \dots * (x - a_s)^{k_s - 1} * (x^2 + p_1 x + q_1)^{m_1 - 1} * \dots * (x^2 + p_r x + q_r)^{m_r - 1};$$

Из метода неопределенных коэффициентов и того, что $\int \frac{Mx+N}{(x^2+px+q)^k} dx = \frac{A}{(x^2+px+q)^{k-1}} + \ldots + \frac{V}{(x^2+px+q)^2} + W \int \frac{dx}{x^2+px+q} \implies \int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx.$

Как найти $P_1(x)$ и $Q_1(x)$?

Продифференцируем $\int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx$:

$$\frac{P(x)}{Q(x)} = \frac{P_1'(x)Q_1(x) - P_1(x)Q_1'(x)}{Q_1^2} + \frac{P_2(x)}{Q_2(x)}. \text{ Рассмотрим: } \frac{P_1'(x)Q_1(x) - P_1(x)Q_1'(x)}{Q_1^2} = \frac{P_1'(x) - P_1(x)\frac{Q_1'(x)}{Q_1(x)}}{Q_1(x)} = \frac{P_1'(x)Q(x) - P_1(x)\frac{Q_1'(x)Q_2(x)}{Q_1(x)}}{Q_1(x)Q_2(x)}.$$

Пусть $H(x) = \frac{Q_1'(x)Q_2(x)}{Q_1(x)}$ - многочлен (нужно показать).

Пусть $Q_1(x)$ имеет среди своих множителей многочлен вида $(x-a)^n$, тогда $Q_1'(x)$ будет иметь в своем составе $(x-a)^{n-1}$, а $Q_2(x)$ только содержит в себе выражение $(x-a) \implies H(x)$ - многочлен.

Коэффициенты многочленов $P_1(x)$ и $P_2(x)$ можно найти с помощью метода неопределенных коэффициентов из выражения $\frac{P(x)}{Q(x)} = \frac{Mx+N}{(x^2+px+q)^k} + \frac{P_1(x)}{(x^2+px+q)^{k-1}Q_1(x)}$.

Глава 2

Интегральное исчисление

2.1 Интеграл Римана

Определение 2.1.1 (интеграл Римана). Пусть $f:[a;b] \to \mathbb{R}$. Разобьем отрезок [a;b] на n частей точками $a=x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. В каждом таком кусочке выберем точку $\xi_i \in [x_{i-1};x_i], \ i=1,\ldots,n$.

 $\Delta i = [x_{i-1}, x_i], \quad \Delta x = x_i - x_{i-1}$ - длина отрезка Δi .

Составим сумму $S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$, где $f(\xi_i)$ - высота i-го прямоугольника и Δx_i - ширина i-го прямоугольника.

 S_n - площадь ступенчатой фигуры, составленной из прямоугольников под графиком функции f(x).

Говорят, что функция f интегрируема на [a;b], если существует предел интегральных сумм S_n , то есть $\exists \lim_{\max \Delta x_i \to 0} S_n$, причем этот предел не зависит ни от способа разбиения отрезка [a;b], ни от способа выбора точек ξ_i .

Этот предел называется **интегралом Римана** функции f на [a;b]. Класс интегрируемых функций на отрезке [a;b] будем обозначать R([a;b]).

2.2 Базы. Предел функции по базе

Определение 2.2.1 (база множества). Пусть X - произвольное множество.

Система β подмножеств множества X называется **базой** на X, если:

- 1. $\forall \beta \in \beta \quad \beta \neq \emptyset$
- 2. $\forall \beta_1, \beta_2 \in \beta \ \exists \beta_3 \in \beta : \beta_3 \subset \beta_1 \cap \beta_2$

Пример 6 (баз множества). 1. $\beta = \{X\}$ - база

- 2. $X = \mathbb{R}, \quad \beta = \{\beta_n = (-\frac{1}{n}; \frac{1}{n}), \ n \in \mathbb{N}\}\$
- 3. $X=\mathbb{R},\quad \beta=\{\beta_\epsilon=\{x:\ 0<|x|<\epsilon\},\epsilon>0\}$ (выколотые окрестности нуля)

Определение 2.2.2 (предел по базе). Пусть $f: X \to \mathbb{R}, \ \beta$ - база на X

Число $A \in \mathbb{R}$ называется **пределом** функции f по базе β , если $\forall \epsilon > 0$ \exists элемент базы $\beta \in \beta$: $|f(x) - A| < \epsilon$.

$$\lim_{\beta} f(x)$$

Определение 2.2.3 (предел по базе (МП)). Пусть (Y,d) - МП, $f:X\to Y,\ \beta$ - база на X.

 $y \in Y$ называется **пределом** функции f(x) **по базе** β , если $\forall \epsilon > 0 \ \exists \beta \in \beta \ \forall x \in \beta : \ d(f(x), y) < \epsilon$, или, что то же самое, $\forall V_Y(y) \ \exists \beta \in \beta \ f(\beta) \subset V_Y(y)$, где V_Y - окрестность метрического пространства Y.

Теорема 2.2.1 (основные свойства предела по базе). Пусть $f: X \to \mathbb{R}, \ \beta$ - база на X:

- 1. Если $\exists \underset{\beta}{\lim} f(x),$ то $\exists \beta \in \beta: \ f$ ограничена на β
- 2. Если $\underset{\beta}{\lim} f(x) = A$ и $\underset{\beta}{\lim} f(x) = B$, то A = B

Теорема 2.2.2 (связь предела по базе с арифметическими операциями). Пусть $f: X \to \mathbb{R}, \ g: X \to \mathbb{R}, \ \beta$ - база на $X, \lim_{\beta} f(x) = A, \lim_{\beta} g(x) = B$:

- 1. $\exists \lim_{\beta} (f(x) \pm g(x)) = A \pm B$
- 2. $\exists \lim_{\beta} (f(x)g(x)) = AB$
- 3. $\exists \lim_{\beta} (\frac{f(x)}{g(x)}) = \frac{A}{B}$, если $g(x) \neq 0$, $\beta \neq 0$

Теорема 2.2.3 (связь предела функции по базе с неравенствами). Пусть $f: X \to \mathbb{R}, \ g: X \to \mathbb{R}, \ \beta$ - база на X:

- 1. Если $\exists \beta \in \beta: \quad \forall x \in \beta \ f(x) \leqslant g(x), \ \text{то} \ \lim_{\beta} f(x) \leqslant \lim_{\beta} g(x)$
- 2. Если $\lim_{\beta} f(x) < \lim_{\beta} g(x)$, то $\exists \beta \in \beta \ \forall x \in \beta \quad f(x) < g(x)$

Если $\lim_{\beta} f(x) \geqslant \lim_{\beta} g(x)$, то $\exists \beta \in \beta \ \forall x \in \beta \quad f(x) \geqslant g(x)$

3. Если $h:X\to\mathbb{R}$ и $\exists \beta\in\beta:\ \forall x\in\beta\ f(x)\leqslant h(x)\leqslant g(x)$ И $A=\lim_{\beta}f(x)=\lim_{\beta}g(x),$ то $\lim_{\beta}h(x)=A$

Теорема 2.2.4 (критерий Коши существования предела по базе). Существуют две формулировки:

- 1. Пусть $f:X\to\mathbb{R},\ \beta$ база на X. Функция f(x) имеет предел по базе $\beta\iff \forall \epsilon>0\ \exists \beta\in\beta:\ \ \forall x_1,x_2\in\beta\ |f(x_1)-f(x_2)|<\epsilon$
- 2. Пусть (Y,d) МП (полное), $f: X \to Y, \ \beta$ база на Y. Функция f(x) имеет предел по базе $\beta \iff \forall \epsilon > 0 \exists \beta \in \beta: \ \forall x_1, x_2 \in \beta \ d(f(x_1), f(x_2)) < \epsilon$

Доказательство. (критерия Коши ∃ предела по базе)

" — " Пусть $\exists \lim_{\beta} f(x) = A$. Покажем, что $\forall \epsilon > 0 \exists \beta \in \beta: \forall x_1, x_2 \in \beta \ |f(x_1) - f(x_2)| < \epsilon$. Рассмотрим $|f(x_1) - f(x_2)| = |f(x_1 - A) + (A - f(x_2))| \leqslant |f(x_1) - A| + |f(x_2) - A| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

" — "Пусть $\forall \epsilon > 0 \; \exists \beta \in \beta : \quad \forall x_1, x_2 \in \beta \; |f(x_1) - f(x_2)| < \epsilon.$ Покажем, что $\exists \liminf_{\beta} f(x)$. Возьмем $\beta_1 \in \beta : \quad \forall x_1, x_2 \in \beta_1 \; |f(x_1) - f(x_2)| < 1.$ Возьмем $\beta_1' \in \beta : \quad \forall x_1, x_2 \in \beta_1' \; |f(x_1) - f(x_2)| < \frac{1}{2}.$ Пусть $\beta_2 \subset \beta_1 \cap \beta_1'$ и так далее.

Таким образом построим систему вложенных множеств: $\beta_1\supset\beta_2\supset\ldots\supset$ $\beta_n \supset \dots$, при этом $\forall x_1, x_2 \in \beta_n |f(x_1) - f(x_2)| < \frac{1}{2^{n-1}}$. Воспользуемся полнотой пространства, то есть в нем $\exists \lim f(x)$, если f(x) - фундаментальная.

 $\forall n \in \mathbb{N}$ рассмотрим $x_n \in \beta_n$. Тогда, если $n < m \ (m \in \mathbb{N})$, то для $x_n \in \beta_n$ и $x_m \in \beta_n |f(x_n) - f(x_m)| < \frac{1}{2^{n-1}}$.

Таким образом последовательность $f(x_n)$ - фундаментальная \Longrightarrow $\exists \lim_{n \to \infty} f(x_n) = A$. Покажем, что $A = \lim_{\beta} f(x)$. Пусть $\epsilon > 0$ задано. Выберем $n \in \mathbb{N}$: $\frac{1}{2^{n-1}} < \frac{\epsilon}{2}$. Возьмем m > n : $|f(x_m) - A| < \frac{\epsilon}{2}$. Возьмем $\beta = \beta_n$. Тогда $\forall x \in \beta |f(x) - A| = |f(x) - f(m) + f(x_m) - A| \le |f(x)| + |f(x)|$ $|f(x) - f(x_m)| + |f(x_m) - A| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

Следовательно,
$$\exists \lim_{\beta} f(x) = A$$
.

Разбиение. Интеграл Римана (v.2) 2.3

Определение 2.3.1 (разбиение). Пусть дан отрезок [a;b]. **Разбиением** Pотрезка [a;b] называется набор точек $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. То есть $P = \{x_0, \dots, x_n\}$. Отрезки $[x_{i-1}; x_i] = \Delta_i$. $x_i - x_{i-1} = \Delta x_i$ - длина i-го отрезка разбиения $\lambda(P)=\max_{i=\overline{0,n}}\{\Delta x_i\}$. Величины $\Delta_i,\Delta x_i,\lambda(P)$ - параметры ограничения.

Определение 2.3.2 (разбиение с отмеченными точками). Разбиением с отмеченными точками называется пара наборов

$$P(\xi) = \{x_0, \dots, x_n\}, \{\xi_0, \dots, \xi_n\},$$
 где $a = x_0 < \dots < x_n = b, \; \xi_i \in [x_{i-1}; x_i].$

 ξ_1 ξ_2 ξ_n Пусть $\Re_{\xi} = \{(P, \xi)\}$ - семейство всевозможных разбиений с отмеченными точками отрезка [a, b].

Рассмотрим $\beta_{\delta} = \{(P, \xi) : \lambda(P) < \delta\}, \beta_{\delta} \subset P_{\varepsilon}$:

Утверждение 2.3.1. Множество $\beta = \{\beta_{\delta} : \delta > 0\}$ является базой на \Re_{ε} . Доказательство. (утверждения 2.3.1.).

1. $\forall \delta > 0 \beta_{\delta}$ - непусто.

В самом деле, пусть отрезок [a;b] поделен на n равных частей, причем n выбирается из соображений, чтобы $\Delta x_i = \Delta x \quad \forall i = 1, n \ (1, \dots, n), \ \Delta x < n$

Пусть $\xi_i \in [x_{i-1}; x_i]$ - середины отрезков $[x_{i-1}; x_i]$.

2. Покажем, что $\forall \beta_{\delta_1}, \beta_{\delta_2} \in \beta \exists \beta_{\delta_3} \subset \beta_{\delta_1} \cap \beta_{\delta_2}$.

Пусть заданы $\delta_1 > 0, \delta_2 > 0$. Покажем, что $\exists \beta_3 > 0$: $\beta_{\delta_3} \subset \beta_{\delta_1} \cap \beta_{\delta_2}$. Если $\delta_1 < \delta_2$, то $\delta_3 = \delta_1$ или $\delta_3 = \frac{\delta_1}{2}$

Определение 2.3.3 (!). Пусть $f:[a;b]\to\mathbb{R},\;(P,\xi)$ - разбиение отрезка [a;b] с отмеченными точками. Составим сумму:

$$\sigma(f, (P, \xi)) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Можно смотреть на σ для фиксированной функции f(x) как на функцию, сопоставляющую разбиение $(P,\xi) \in \Re_{\xi}$ сумме $\sum_{k=1}^{n} f(\xi_k) \Delta x_k$, то есть $\sigma_f:\Re_\xi\to\mathbb{R}$ (то есть (P,ξ) - аргумент функции σ).

Говорят, что функция $f:[a;b]\to\mathbb{R}$ интегрируема по Риману на [a;b], если:

$$\exists \lim_{\lambda(P)\to 0} \sigma_f((P,\xi)) = \lim_{\lambda(P)\to 0} \sum_{k=1}^n f(\xi_k) \Delta x_k$$

Или, что то же самое, если $\forall \epsilon > 0 \; \exists \delta > 0$ и соответствующий элемент $\beta_{\delta} \in \beta$: \forall разбиения (P, ξ) : $\lambda(P) < \delta$ выполняется неравенство $|\sigma_f((P,\xi)) - I| < 0$:

$$I = \lim_{\lambda(P) \to 0} \sigma_f((P, \xi)) = \int_a^b f(x) dx$$

Обозначим базу β из утверждения 2.3.1. как $\lambda(P) \to 0$.

Теорема 2.3.1 (необходимое условие интегрируемости функции). * * Если $f:[a;b]\to\mathbb{R}$ интегрируема на [a;b] (то есть $f\in\mathbb{R}[a;b]$), то f ограничена на [a;b].

Доказательство. От противного:

Допустим, что f интегрируема на [a;b], но неограничена, то есть: $\forall M>$ $0 \exists x \in [a;b]: |f(x)| > M$. Покажем, что функция $\sigma((P,\xi))$ не имеет предела по базе на [a;b].

То есть $\exists \epsilon > 0$: $\forall \delta > 0$ $\exists (P',\xi')$ и (P'',ξ'') : $\lambda(P') < \delta, \ \lambda(P'') < \delta$ $\delta (\lambda(P'') = \max \Delta x_i)$, Ho $(\sigma(P'', \xi'') - \sigma(P'', \xi'')) \geqslant \epsilon$.

Положим, $\epsilon = 1$. Пусть $\delta > 0$ задана. Выберем разбиение с отмеченными точками (P',ξ') такое, что $\lambda(P')<\delta,\ P'=\{a=x_0,x_1,\ldots,x_n=x_n\}$ b}, $\epsilon_i \in [x_1, \ldots, x_n]$. Поскольку функция f неограничена на [a; b], то существует хотя бы один элемент разбиения $[x_{i-1}, x_i] = \Delta i$: функция fнеограничена на (? Спасибо Максим). В качестве P^n возьмем $P',\ \xi''=$ $\{\xi_1',\xi_2',\ldots,\xi_i'',\ldots,\xi_n'\},\ \lambda(P'')<\delta$ и $|f(\xi_i'')-f(\xi_i')|>rac{1}{\Delta x_i}$. Разбиения P' и P'' совпадают, точки разбиения так же совпадают, кроме ξ_i'' . Рассмотрим $|\sigma((P'',\xi''))-\sigma((P',\xi'))|=|\sum_{k=1}^n \Delta x_k f(\xi_k')-\sum_{k=1}^n \Delta x_k f(\xi_k'')|=|\Delta x_i(f(\xi_i'')-f(\xi_i'))|>rac{\Delta x_i}{\Delta x_i}=1=\epsilon$.

2.4 Критерий интегрируемости

2.4.1 Суммы Дарбу

Определение 2.4.1 (нижняя/верхняя суммы Дарбу). Пусть $f[a;b] \to \mathbb{R}, P$ - произвольное разбиение отрезка [a;b]. Числа $\underline{S}(P) = \sum_{k=1}^n m_k \Delta x_k$ и $\overline{S}(P) = \sum_{k=1}^n M_k \Delta x_k$, где $m_k = \inf_{\xi \in \Delta k} f(\xi), \ M_k = \sup_{\xi \in \Delta k} f(\xi)$, называются нижней и верхней суммами Дарбу, отвечающими разбиению P.

Теорема 2.4.1 (свойства сумм Дарбу). Свойства:

- 1. $\forall (P,\xi) \ \underline{S}(P) \leqslant \sigma_f((P,\xi)) \leqslant \overline{S}(P)$
- 2. Если разбиение P' получено из разбиения P добавлением новых точек, то $\underline{S}(P')\geqslant \underline{S}(P)$ и $\overline{S}(P')\leqslant \overline{S}(P)$
- 3. $\forall P_1, P_2 \quad \underline{S}(P_1) \leqslant \overline{S}(P_2)$

Доказательство. (теоремы 2.4.1)

- 1. $\underline{S}(P)=\sum_{k=1}^n m_k \Delta x_k\leqslant \sum_{k=1}^n f(\xi_k) \Delta x_k\leqslant \sum_{k=1}^n M_k \Delta x_k=\overline{S}(P)$, где $f(\xi_k)=\sigma((P,\xi))$, вроде
- 2. Пусть P произвольное разбиение отрезка [a;b]. Построим P'. Добавим на элемент разбиения Δi новую точку $x' \in [x_{i-1};x_i]$.

Пусть $m_i' = \inf_{\xi \in [x_{i-1},x_i]} f(\xi)$ и $m_i'' = \inf_{\xi \in [x_i',x_i]} f(\xi)$, $m_i = \inf_{\xi \in [x_{i-1};x_i]} f(\xi)$, имеем $m_i \leqslant m_i'$, $m_i \leqslant m_i''$.

Тогда $\underline{S}(P') - \underline{S}(P) = \sum_{k=1}^{i-1} \Delta x_k m_k + m_i' |x' - x_{i-1}| + m_i'' |x_i - x'| + \sum_{k=i+1}^n m_k \Delta x_k - \sum_{k=1}^n \Delta x_k m_k = m_i' |x' - x_{i-1}| + m_i'' |x_i - x'| - m_i \Delta x_i \geqslant 0 \Longrightarrow \underline{S}(P') \geqslant S(P)$ (вероятно, куча индексов - неправильные).

Аналогично доказывается для $\overline{S}(P') \leqslant \overline{S}(P)$.

3. Пусть P_1, P_2 - произвольные разбиения отрезка [a;b].

Возьмем разбиение $P=P_1\cap P_2$. Тогда, с одной стороны, P получено из P_1 добавлением точек, а с другой стороны - из P_2 добавлением точек.

Тогда $\underline{P_i} \leqslant \underline{S}(P)$ и $\overline{S}(P_i) \geqslant S(P)$.

Тогда верно, что $\underline{S}(P_2) \leqslant \underline{S}(P)$ и $\overline{S}(P_2) \geqslant \overline{S}(P) \implies \underline{S}(P_1) \leqslant \underline{S}(P) \leqslant$ $\overline{S}(P) \leqslant \overline{S}(P_2)$.

Следствие. Множество нижних сумм Дарбу ограничено сверху. Множество верхних сумм Дарбу ограничено снизу.

Определение 2.4.2 (верхний/нижний интеграл Дарбу). Числа $\mathfrak{I} = \sup \underline{S}(P)$ и $\mathfrak{I}=\inf \widehat{S}(P)$ называются нижним и верхним интегралом Дарбу.

Рассмотрим множество разбиений с отмеченными точками отрезка [a;b] \Re $\{(P,\xi)\}$. Построим функцию $\underline{S}:\Re_\xi\to\mathbb{R}$ и $\underline{S}((P,\xi))=\underline{S}(P)$. Аналогично определим $\overline{S}: \Re_{\xi} \to \mathbb{R}$ и $\overline{S}((P,\xi)) = \overline{S}(P)$.

Таким образом сумму Дарбу можно представить как функции на множестве разбиений с отмеченными точками отрезка [a;b].

Теорема 2.4.2 (критерий интегрируемости). Функция $f:[a;b] \to \mathbb{R}$ интегрируема на $[a;b] \iff \lim_{\lambda(P)\to 0} (\overline{S}(P) - \underline{S}(P)) = 0.$

Доказательство. (теоремы 2.4.2)

" \rightarrow " Пусть $f \in \mathbb{R}$ ([a;b]) (то есть интегрируема на [a;b]), то есть $\forall \epsilon >$ $0 \ \forall (P,\xi): \ \lambda(P) < \delta \implies |\sigma_f((P,\xi)) - I| < \epsilon.$

Лемма 2.4.1.
$$\forall P$$
 $\underline{S}(P) = \inf_{\xi} \sigma_f((P,\xi))$ и $\overline{S}(P) = \sup_{\xi} \sigma_f((P,\xi))$

Доказательство. (леммы 2.4.1)

 $\forall P \ S(P) \leqslant \sigma_f((P,\xi)).$

Покажем, что $\forall \epsilon>0$ $\exists \xi=\{\xi_1,\xi_2,\ldots,\xi_n\}:\ \underline{S}(P)+\epsilon>\sigma_f(P,\xi).$

Выберем $\xi_1, \xi_2, \dots, \xi_n$: $f(\xi_i) < m_i + \frac{\epsilon}{b-a}$.

Тогда $\sigma_f(P, \xi) = \sum_{k=1}^n f(\xi_k) \Delta x_k < \sum_{k=1}^n (m_k + \frac{\epsilon}{b-a}) \Delta x_k = \sum_{k=1}^n m_k \Delta x_k + \frac{\epsilon}{b-a} \sum_{k=1}^n \Delta x_k = \underline{S}(P) + \epsilon \implies \underline{S}(P) = \inf_{\xi} \sigma_f(P, \xi)$.

Аналогично для
$$\overline{S}(P) = \sup_{\xi} \sigma_f(P, \xi)$$
.

 $I-\epsilon < \sigma_f(P,\xi) < I+\epsilon, \ I-\frac{\epsilon}{2} < \sigma_f(P,\xi) < I+\frac{\epsilon}{2}.$ Из леммы 2.4.1: $\underline{S}(P)+\epsilon > \sigma_f(P,\xi) \implies \underline{S}(P) > \sigma_f(P,\xi) - \epsilon > \sigma_f(P,\xi) - \frac{\epsilon}{2} \ (I = \lim_{\lambda(P) \to 0} \sigma_f(P,\xi))$

Рассмотрим $I - \frac{2\epsilon}{3} < I - \frac{\epsilon}{2} \leqslant \underline{S}(P) \leqslant \sigma_f(P,\xi) \leqslant \overline{S}(P) < \sigma_f(P,\xi) + \epsilon < I + \frac{\epsilon}{2} + \epsilon = I + \frac{3\epsilon}{2} (\overline{S}(P) - \epsilon < \sigma_f(P,\xi))$ Тогда $I - \frac{3\epsilon}{2} < \underline{S}(P) \leqslant \overline{S}(P) < I + \frac{3\epsilon}{2}$, так как $\underline{S}(P) \leqslant \overline{S}(P) \implies 0 \leqslant$

 $\overline{S}(P) - \underline{S}(P),$

$$\overline{S}(P) < I + \frac{3\epsilon}{2} + \\ -\underline{S}(P) < -I + \frac{3\epsilon}{2}$$

$$0 \leqslant \overline{S}(P) - \underline{S}(P) < 3\epsilon \implies \lim_{\lambda(P) \to 0} (\overline{S}(P) - \underline{S}(P)) = 0$$
" \(\times \text{" \(\Times_{\lambda(P) \to 0}} \) \((\overline{S}(P) - \overline{S}(P)) = 0. \)

Пусть $\epsilon>0$ задана. Выберем $\delta>0$: $0\leqslant \overline{S}(P)-S(P)<\epsilon \ \forall (P,\xi)$: $d(P) < \delta$.

. Покажем, что $\exists I=\int_a^b f(x)dx=\lim_{\lambda(P)\to 0}\sigma_f(P,\xi)$. Имеем $\overline{S}(P)-\underline{S}(P)<\epsilon$ и $S(P) \leqslant I \leqslant \overline{S}(P)$.

Из неравенств следует, что $\overline{S}(P) < S(P) + \epsilon \leqslant I + \epsilon$, $S(P) > \overline{S}(P) - \epsilon \geqslant$ $I - \epsilon$.

Пусть (P,ξ) - произвольное разбиение: $\lambda(P) < \delta$. Тогда $I - \epsilon < \underline{S}(P) \leqslant$ $\sigma_f(P,\xi) \leqslant \overline{S}(P) < I + \epsilon \implies I - \epsilon < \sigma_f(P,\xi) < I + \epsilon \implies |\sigma_f(P,\xi) - I| < \epsilon \implies I = \lim_{\lambda(P) \to 0} \sigma_f(P,\xi) \implies f \in \mathbb{R}[a;b].$

Определение 2.4.3. Обозначим $M_i - m_i = \sup_{\xi \in \Delta i} f(\xi) - \inf_{\xi \in \Delta i} f(\xi) = \sup_{x_1, x_2 \in \Delta i} |f(x_1) - f(x_2)|$ $|f(x_2)| = \omega_i = \omega_i(f, \Delta i).$

 ω_i называется колебанием функции f(x) на отрезке Δi . $\overline{S}(P)-\underline{S}(P)=\sum_{i=1}^n\omega_i\Delta x_i$

Следствие. (из критерия интегрируемости) $f \in \mathbb{R}[a;b] \iff \lim_{\lambda(P) \to 0} \sum_{i=1}^n \omega_i \Delta x_i = 0$

Теорема 2.4.3 (Дарбу). Для любой ограниченной функции $f:[a;b] \to \mathbb{R}$ выполняются равенства:

$$\underline{\mathfrak{I}} = \lim_{\lambda(P) \to 0} \underline{S}(P); \ \overline{\mathfrak{I}} = \lim_{\lambda(P) \to 0} \overline{S}(P)$$

Лемма 2.4.2. Пусть $f:[a;b]\to\mathbb{R}$ ограничена на [a;b], то есть $\exists L>0$: $\forall x \in [a;b] | f(x) | < L$. Разбиение P' получено из разбиения P добавлением m точек. Тогда $\overline{S}P - \overline{S}(P') \leqslant 2L\lambda(P)m$

Доказательство. (леммы 2.4.2)

Пусть P - производное разбиение, $\lambda(P)$.

Рассмотрим случай, что P' получено добавлением k точек на i-тый отрезок разбиения P. (график, посмотреть у Максима). $\overline{S}(P) - \overline{S}(P') = \sum_{j=1}^{n} M_j \Delta x_j (\sum_{j=1}^{i-1} M_j \Delta x_j + \sum_{j=1}^k M'_{ij} \Delta x_{ij} + \sum_{j=i+1}^n M_j \Delta x_j) = M_i \Delta x_i - \sum_{j=1}^k M'_{ij} \Delta x_{ij} = M_i \sum_{j=1}^k \Delta x_{ij} - \sum_{j=1}^k M'_{ij} \Delta x_{ij} = \sum_{j=1}^k M_i \Delta x_{ij} - \sum_{j=1}^k M'_{ij} \Delta x_{ij} = \sum_{j=1}^k (M_i - M'_{ij}) \Delta x_{ij} \leqslant \sum_{j=1}^k 2L \Delta x_{ij} = (\text{вспомним, что } \lambda(P) = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_n\})$ $=2L\sum_{j=1}^k \Delta x_{ij}=2L\Delta x_i\leqslant 2L\lambda(P)$ Теперь, если P' получено из P добавлением m точек, то они попадут

самое большее на m промежутков. Тогда $\overline{S}(P) - \overline{S}(P') \leqslant 2L\lambda(P)m$

Доказательство. (теоремы 2.4.3, Дарбу)

$$\underline{\mathfrak{I}} \stackrel{def}{=} \sup_{P} \underline{S}(P), \ \overline{\mathfrak{I}} \stackrel{def}{=} \inf_{p} \overline{S}(P)$$

Пусть $\epsilon > 0$ задано. Выберем разбиение P' такое, что $\overline{\Im} + \epsilon > \overline{S}(P')$ (**) (определение inf). Положим, что $\delta = \frac{\epsilon}{2Lm}$.

Пусть P - произвольное разбиение: $\lambda(P) < \delta$.

Покажем, что $0 \leqslant \overline{S}(P) - \overline{\Im} < \epsilon$.

Построим разбиение $P'' = P' \cup P$. Тогда P'' получено из P добавлением m точек $\Longrightarrow \overline{S}(P) - \overline{S}(P'') \leqslant 2L\lambda(P)m$, где L>0 : $\forall x \in [a;b]|f(x)| < L$. Далее, $\overline{S}(P) - \overline{S}(P'') \leqslant 2L\lambda(P)m < 2Lm\delta = \frac{2Lm\epsilon}{2Lm} = \frac{\epsilon}{2}$. Кроме того, P''получено из P' добавлением некоторого количества точек.

$$\overline{S}(P'') \leqslant \overline{S}(P') \overset{(**)}{\leqslant} \overline{\mathfrak{I}} + \frac{\epsilon}{2} \implies \overline{S}(P'') - \frac{\epsilon}{2} < \overline{\mathfrak{I}}$$
 Рассмотрим $0 \leqslant \overline{S}(P) - \overline{\mathfrak{I}} < \overline{S}(P) - \overline{S}(P'') + \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

2.4.2Классы интегрируемых функций

Теорема 2.4.4 (интегрируемость непрерывных функций). Пусть $f:[a;b] \to$ \mathbb{R} непрерывна на $[a;b] \implies f$ - интегрируема на [a;b] , то есть $f \in \mathbb{R}[a;b]$.

Доказательство. (теоремы 2.4.4)

Так как f - непрерывна на $[a;b] \implies f$ - равномерно непрерывна на [a;b]. Это значит, что если $\epsilon > 0$ задано, то $\exists \delta > 0: \ \forall x_1, x_2 \in [a;b]: \ |x_1 - x_2| < \delta$ $\delta \implies |f(x_1) - f(x_2)| < \frac{\epsilon}{b-a}$.

По критерию интегрируемости: $f \in \mathbb{R}[a;b] \iff \lim_{\lambda(P) \to 0} (\overline{S}(P) - \underline{S}(P)) =$

$$0 \ \forall (P;\xi)$$
 - разбиение.
$$\overline{S}(P) - \underline{S}(P) = \sum \omega_i \Delta x_i, \text{ где } \omega_i = \sup_{x_1, x_2 \in \Delta i} |f(x_1) - f(x_2)|.$$

$$\overline{S}(P) = \sum M_i \Delta x_i, M_i = \sup_{x_1, x_2 \in \Delta i} |f(x_1) - f(x_2)|.$$

$$\overline{S}(P) = \sum M_i \Delta x_i, \ M_i = \sup_{\xi \in \mathcal{S}} f(\xi).$$

$$\overline{S}(P) = \sum M_i \Delta x_i, \ M_i = \sup_{\xi \in \Delta x_i} f(\xi).$$

$$\omega_i = M_i - m_i = \sup_{\xi \in \Delta i} f(\xi) - \inf_{\xi \in \Delta i} f(\xi) = \sup_{x_1, x_2 \in \Delta i} |f(x_1) - f(x_2)|.$$

$$\overline{S}(P) - \underline{S}(P) = \sum M_i \Delta x_i - \sum m_i \Delta x_i = \sum \omega_i \Delta x_i.$$

$$\overline{S}(P) - \underline{S}(P) = \sum M_i \Delta x_i - \sum m_i \Delta x_i = \sum \omega_i \Delta x_i$$

Таким образом критерий интегрируемости: f - интегрируема на $[a;b] \iff$ $\lim_{\lambda(P)\to 0}\sum \omega_i \Delta x_i = 0, \text{ то есть } \forall \epsilon>0 \ \exists \delta>0: \ \forall (P;\xi): \ \lambda(P)<\delta \implies 0 \leqslant \infty$ $\sum \omega_i \Delta x_i < \epsilon$.

Пусть $\epsilon>0$ задано. Возьмем $(P;\xi)$ - разбиение такое, что $\lambda(P)<\delta$. Тогда $\sum \omega_i \Delta x_i = \sum \sup_{x_1, x_2 \in \Delta i} |f(x_1) - f(x_2)| \Delta x_i \leqslant \sum \frac{\epsilon}{b-a} \Delta x_i = \frac{\epsilon}{b-a} \sum \Delta x_i = \sum \Delta x_$ $\frac{\epsilon}{b-a}(b-a) = \epsilon$

Теорема 2.4.5 (интегрируемость функций с конечным числом точек разрыва). Пусть $f:[a;b]\to\mathbb{R}$ - ограничена и имеет на [a;b] конечное число точек разрыва. Тогда $f \in \mathbb{R}[a;b]$ интегрируема на [a;b].

Доказательство. (теоремы 2.4.5)

Пусть L > 0: $\forall x \in [a; b] |f(x)| < L$ (ограничена). Пусть f имеет k точек разрыва на [a;b].

Пусть $\epsilon>0$ задано. Возьмем $\delta_1=\frac{\epsilon}{16Lk}$. Для каждой точки разрыва построим δ_1 -окрестность.

Пусть U - множество таких окрестностей. U - открытое множество. Рассмотрим $V = [a;b] \setminus U \implies V$ - замкнутое (так как его дополнение открытое). Из того, что V - ограничено и замкнуто $\implies V$ - компактное. Функция f - непрерывна на $V \implies$ из того, что V - компактно и f - непрерывна на $V\implies f$ - равномерно непрерывна на $V\implies orall \epsilon>0$ $\exists \delta_2>0:\ orall x_1,x_2\in V:$ $|f(x_1) - f(x_2)| < \frac{\epsilon}{2(b-a)}.$

Положим, что $\delta = \min\{\delta_1, \delta_2\}$. Пусть P - произвольное разбиение отрезка

Рассмотрим $\sum \omega_i \Delta x_i = \sum' \omega_i \Delta x_i + \sum'' \omega_i \Delta x_i \leqslant |\sum'$ берется по всепм отрезкам разбиения, k-тые пересекаются с U, \sum'' - по всем остальным $|\leqslant \sum' \omega_i \Delta x_i + \sum'' \frac{\epsilon}{2(b-a)} \Delta x_i \leqslant 2L2\delta_1 k + \frac{\epsilon}{2(b-a)} \sum'' \Delta x_i < \frac{4Lk\epsilon}{8Lk} + \frac{\epsilon}{2(b-a)} (b-a) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

— Дополнение: $(\overline{S}(P) - \overline{S}(P') \leqslant 2L\lambda(P)m, \sum M_i \Delta x_i - \sum M_i' \Delta x_i). \sum' \omega_i \Delta x_i = \sum \sup_{x_1, x_2 \in \Delta i \cap k} |f(x_1) - f(x_2)| \Delta x_i \leqslant 2L2\delta_1 k$

ГРАФИКИ НАДО НАРИСОВАТЬ

Теорема 2.4.6 (интегрируемость монотонных функций). Пусть $f:[a;b] \to$ \mathbb{R} - монотонна на $[a;b] \implies f$ - интегрируема на [a;b].

Доказательство. (теоремы 2.4.6)

Пусть f - не убывает на [a;b]. Пусть $\epsilon>0$ задано. Возьмем $\delta=\frac{\epsilon}{f(b)-f(a)}$. Тогда, если P - произвольное разбиение $[a;b]: \lambda(P) < \delta$, то $\sum \omega_i \Delta x_i \stackrel{monoton.}{=} \sum (f(x_i) - f(x_{i-1})) \Delta x_i < \delta \sum (f(x_i) - f(x_{i-1})) = \delta(f(b) - f(a)) = \epsilon.$

2.4.3Свойства интегрируемых функций

Теорема 2.4.7. Пусть $f \in \mathbb{R}[a;b], g \in \mathbb{R}[a;b]$. Тогда:

- 1. $f \pm g \in R[a;b]$.
- 2. $\alpha f \in R[a;b], \ \alpha \in \mathbb{R}$.
- 3. $f * q \in R[a; b]$.
- 4. $|f| \in R[a; b]$, при этом:
 - $\int_a^b (f \pm g) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$
 - $\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$
 - $|\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx$

Доказательство. (теоремы 2.4.7)

- 1. $\int_a^b (f(x) \pm g(x)) dx = \lim_{\lambda(P) \to 0} \sum (f(\xi_i) \pm g(\xi_i)) \Delta x_i = \lim_{\lambda(P) \to 0} \sum f(\xi_i) \Delta x_i = \int_a^b f(x) dx + \int_a^b g(x) dx.$
- 2. Аналогично.
- 3. Покажем, что если $f \in R[a;b]$, то $f^2 \in R[a;b]$. Рассмотрим $|f^2(x_1) f^2(x_2)| = |(f(x_1) f(x_2))(f(x_1) f(x_2))| \leqslant |f(x_1) f(x_2)|(|f(x_2)| + |f(x_2)|) < 2L|f(x_1) f(x_2)|$, где L > 0: $\forall x \in [a;b] |f(x)| < L$ (интегрируема \Longrightarrow ограничена).

Пусть P - произвольное разбиение. Пусть $\epsilon>0$ задано. Возьмем $\delta>0$ и $P:~\lambda(P)<\delta~~\omega_i(f^2,\Delta_i)\leqslant 2L\omega_i(f,\Delta_i)$