Selects binary input from many input lines.

(input: output 3 211, 4:1, 8:1, 16:1, ---).

output 'y' can be connected to only one enput (I)[1] at a time (to depends on solect um).

(u) eg: if e=0, y=10.

)f 2=1, y= [1

Here, Y= PoI+ II

if no of select lines=n, then, input lines = 2".

20	٥,	4	, Y=	2 02 or	+ I, 20	02,47,20	g, +	, 202 E T
0	0	Po.	١					

0	0	Po.
0)	71
	O	27
1	1	13.

				71
	20	9,	22	Y
-	0	0	0	Io
	0	0	1	II
	0	1	0	12
	0	1	1	I3
	l	0	0	14
	1	0	1 ,	I 5
1	1	1	0	14
	l	1) 1	77

Enable: (eg: for u:1 Mux)

~			
E	00	8, /	У.
0	×	×	0
\ \	0	0	I o
	0	1	I
1	١	b	77
)	١	1	7.3

we can have enables for 8:1 /16:1 --- multiplexers.

De- on Hiplexers:

(input: output =) 1:2,1:4; 1:8, 1:16 ---)

for 1.4 De-MUX: 9:

[4]	50	5, (50	21	11	13	
1(0)	0	0	10)	Х	×	X	
1(0)	D	1	×	1(0)	×	K	
1 (0)	1	o	Ж	х	1(0)	1	
1(0)	1	1	У	×	<i>x</i>	10	

I6 = 48081 52

input gets connected to any one of the outpule. Outputs: Io = yIoE, ; I, = yTo P, ; Iz=Y coE, ; I3 = Y coL,

eg: for 1:8 De-MUX:

eg: for 1:8 De-MUX.	
In I	
Y 20 21 32 40 11	
1 0 0 0 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	
1 0 1 0 1 0	1
	Λ <u>0</u> .
11	Is = y co 2, cz
Jo = 480 51 82	T 4808152

1/2/21 problems on multiplexers:

(1) Implement &(x, y, z) = T(243, 4, 7) using 2:1 NUX, 4:1 NUX, 8:1 MUX.

U519

2

Ç

(

1

Sequencial circuite

A combinational circuit along with a memory element is called sequencial circuits.

SR latch:

er latches: NOR bould, NAND Based. Sp two types There are

Noe bould;

cerous coupled circuit)

NOR gate: oulpul-Input 0

0

0

 \circ

If any one of the inpute is high the output is 0-

Q O 0 0 0 0 0 0 ١ 0 0 O

0 0

D 0 0

not possible)

Being in 0 0 state de cet same as being in memory étate for the se latch. The output donot charge when e e e ave in 0 0 state.

Here i bit is stored in the output 'a' (or a').

er tatch (Nano):

inp	ा प्र	oulpul	-
0	0	\	
0	10	11 -	
1	1	0	

S R Q Q' For NAND based SR later 11 be the

1 1 × ×. (don't know) memory state.

_ 1	1	0	1	
1	1	O	١.	(invalid)
. ^	0	١	1	(invalid)

1	3	R	a a'
	1	1	woword
١	0	1	10
	١ ١	0	0 1
	1000		invalid
	1		

, \$	Dona
erable (F)	
R - LO	W .

$$\chi = \overline{S \cdot E} = \overline{S} + \overline{E}$$

$$y = \overline{R \cdot E} = \overline{R} + \overline{E}$$

when enable=0, x=y=1 (in memory state)
when enable=1, x=5, y=R

it strately thanks

J- K latch:

$$\chi = \overline{J \cdot E \overline{O}} = \overline{J + \overline{E} + Q}$$

$$\chi = \overline{L + \overline{E} + \overline{Q}}$$

$$\chi = \overline{L + \overline{E} + \overline{Q}}$$

2f enable = 0; x = y = 1 (in memory etali)

2f enable = 1; x = J + Q, y = E + Q

inputs

input

1

0

O

0

1

210 01 101 27801 20

0

J=k=0=) memory state

J=1, k=0=) 0=1 0=0

J=0, k=1=) 0=0, 0=1

J=k=1=) 0 is complement of

previous output 0

L> socing condition

iste a mis

when clk goes to 0, I = k = 1, a complements its previous value. To get a positive edge Ik flipflop, Just interchange the clock signal apputs (a) tot clk - given to it Ik flipflop & clk - given to 2nd Ik flipflop.

latch

us Enable sugnal

(2) level sensitive

Mipflop

un elk signal

a) edge sensitive | level sensitive

when j, k combine to be a single input, it resulte 20 9- flipflop.

T=0 (J=k=0) -> circuit is in memory state P=1(J=k=1) -> output toggles

Country! !! In BCD to 7-segment decoder, the output changes according to the enput the numbers itself (012345) ---). Counters can count

without changing inpots. Applications: digital clock (2-60) (2-60) min) (0-12) hrs) sec, min, his all have different frequencles.

Aligning of a counter:

-> We use 7- flipflops.

There are two types of counters:

ciacynchonous counter (or) ripple counter (2) synchronous counter.

Complexity

VCC

Clk

Both

Poth

be

clk-

23/2/21 Counter: Syn chronous PS [QLH) Ng. [O(tt)) QA Qc QB QA QB Pc QL 90 1= AP 0 O 10-1 QA Pc = QA.QB 0 g 9c = QcQBQA+QcQBQA 0 0 0 9c = OAQB(Qt OL) 0 RE QAQB 0 0 Upcounter - Qc -ve or the edge thipflop. for -> The circuit remains same Down counter: (NS) PA TB 90 Qc QB QA QL Q A 1 = A? 0 0 AD = BP O b Te = OcOA QB+QCOB JA 0 0 0 1 0 0 O = 0 , QB 0 1 1 0 1 2 (OA + OB) 0 ١ 0 1 0 0 O O ١ 0 0 0 0 0 1. 1. 1. 1 1 O 0 0

26/2/21

John son counter:

Lynchronous counters:

-> Divided into two types:

- (1) seguential (0-3,0-4,...)
- 2) Non- requential Cetapping some nois in b/w).

· soft not on the sign

and rough of an in