CIS 678 - Machine Learning

Introduction to Unsupervised Learning

Supervised Learning

- We learned about **Classification** and **Regression**
- These are examples of **supervised** learning

Supervised (Discriminative) Learning

f(y='diabetes'|X=['age', 'bmi'])

Supervised (Discriminative) Learning

f(y='diabetes'|X=['age', 'bmi'])

f(y|X)

Essentially we are learning the relationship between *X* and *y*

Supervised (Discriminative) Learning

$$y \in R$$

- Insurance cost : y ∈ R
- House price: y ∈ R
- Weather prediction: **Y** ∈ **R**
- Energy consumption: $y \in R$
- Sales forecasting: y ∈ R

Regression

$$y \in \{....\}$$

- Cat vs dog: $y \in \{cat, dog\}$
- Spam filter: $y \in \{\text{spam, not-spam}\}$
- Digit classification: $y \in \{0,1,....9\}$
- Sentiment classification: y ∈ {happy, sad, confused, angry ...}

note: has to be from a closed set

Classification

Supervised Learning

- We learned about **Classification** and **Regression**
- These are examples of **supervised** learning
- In your data you have both X(features) and y(Labels)

Label (y) is predefined

\Box
0
+-
σ
ပ
-
4
ഗ
ഗ
$\boldsymbol{\sigma}$
()

X	$y \in \{cat, dog, rabbit\}$
$x_1, x_2, \cdots x_m$	· · · · cat
$x_1, x_2, \cdots x_m$	rabbit
• • •	
$x_1, x_2, \cdots x_m$	dog

	J ' - ' ~
X ($y \in R$
$x_1, x_2, \cdots x_n$	1.9
	• • •
$x_1, x_2, \cdots x_n$	2.5

Regression

Unsupervised Learning

- In contrast, in **Unsupervised learning**, we have to learn meaningful **representations/models** from **X(features)** only.
- Clustering is an example of unsupervised learning

		_			
x_1 ,	x_2 ,	•	•	•	x_o
		٠			
$\overline{x_1}$	$\overline{x_2}$				x_o

No concept of data label (y)

Unsupervised Learning

- In contrast, in **Unsupervised learning**, we have to learn meaningful **representations/models** from **X(features)** only.
- Clustering is an example of unsupervised learning

No concept of data label (y)

Clustering

- A medical study involving
 - Average number of symptoms per week
 - Average severity

Clustering

- A medical study involving
 - Average number of symptoms per week
 - Average severity

Clustering

- What is clustering?
- Clustering algorithms:
 - K-Means: Centroid Based
 - Hierarchical clustering: Distance connectivity based
 - o **GMM**: Distribution based
 - o **DBSCAN**: Density Based

• Identifying the number of clusters?

- Grouping of data points based on some features (X). Group indices are the output
- An example of unsupervised learning

We can use features such as **X** {size, color} to group apples on the right

https://www.codeproject.com/Articles/1273113/Apple-tron-an-Al-for-farmers

- Grouping of data points based on some features (X). Group indices are the output
- An example of unsupervised learning

- Labeling a test case:

Output: group index 1

Based on color

- Grouping of data points based on some features (X). Group indices are the output
- An example of unsupervised learning

Labeling a test case:

Output: group index 3

Based on size

What if we want use both features: size and color?

- Grouping of data points based on some features (X). Group indices are the output
- An example of unsupervised learning

We can use features such as **X** {size, color} to group apples on the right

https://www.codeproject.com/Articles/1273113/Apple-tron-an-Al-for-farmers

Usages of Clustering

Clustering has a myriad of uses in a variety of industries. Some common applications for clustering include the following:

- market segmentation
- social network analysis
- search result grouping
- medical imaging
- image segmentation
- anomaly detection

Usages of Clustering

Clustering has a myriad of uses in a variety of industries. Some common applications for clustering include the following:

- Market segmentation
- Social network analysis
- Search result grouping
- Medical imaging
- Image segmentation
- Anomaly detection

Usages of Clustering

Clustering has a myriad of uses in a variety of industries. Some common applications for clustering include the following:

- Market segmentation
- Social network analysis
- Search result grouping
- Medical imaging
- Image segmentation
- Anomaly detection

QA