МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»

Институт компьютерных наук и кибербезопасности Направление: 02.03.01 Математика и компьютерные науки

Отчет по дисциплине: «Основы архитектуры ЦВМ»

«Анализ и синтез комбинированных узлов ЭВМ. Дешифратор»

Студент, группы 5130201/40003		Адиатуллин Т. Р.
Руководитель, Преподаватель		Вербова Н. М.
	«»	2025 г.

1 Цель работы

Изучить принципы работы и функционирования дешифратора. Изучить принцип работы схемы К155ИД4 в разных режимах.

2 Синтез схемы дешифратора с использованием базовых компонентов

Для реализации трех-разрядного дешифратора была использована таблица истенности, представленная ниже. Где в зависимости от набора сигналов x_0, x_1, x_2 в таблице истенности активен только один выходной сигнал $y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7,$

No	x_2	x_1	x_0	y ₀	y_1	<i>y</i> ₂	<i>у</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇
0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
2	0	1	0	0	0	1	0	0	0	0	0
3	0	1	1	0	0	0	1	0	0	0	0
4	1	0	0	0	0	0	0	1	0	0	0
5	1	0	1	0	0	0	0	0	1	0	0
6	1	1	0	0	0	0	0	0	0	1	0
7	1	1	1	0	0	0	0	0	0	0	1

Таблица 1. Переключательная функция для 3-х разрядного дешифратора

Рис. 1: Функциональная схема дешифратора

Схема дешифратора 3 на 8 была разработана и протестирована в среде NI Multisim. Дешифратор корректно функционирует для всех восьми возможных комбинаций входных ключей, отображая правильные выходные сигналы, соответствующие значениям десятичной системы счисления.

Рис. 2: Дешифратор 3 на 8, использующий базовые компоненты

3 Синтез схемы дешифратора с использованием схемы K155 M Д4

Во второй части лабораторной работы был изучен принцип действия схемы K155 N Д4 (74155 N), принцип работы которой представлен на рисунке ниже.

На базе микросхемы K155ИД4 (74155N) была реализована схема дешифратора 3-в-8. Для её построения использовались два дешифратора 2-в-4, встроеные в данную микросхему, что позволило обеспечить декодирование всех восьми возможных комбинаций входных сигналов. Такая конфигурация демонстрирует принципы построения более сложных дешифраторов с использованием стандартных логических элементов.

Микросхема К155ИД4 содержит два независимых дешифратора с активным низким уровнем на выходах. При подаче высокого уровня на информационный вход 1 и низкого уровня на вход строб-импульса 2, на выходе, соответствующем текущему состоянию адресных входов, устанавливается низкий уровень, тогда как на остальных выходах сохраняется высокий. Аналогично, при подаче низкого уровня на информационный вход 15 и вход строб-импульса 14, низкий уровень появляется на одном выходе согласно адресу, остальные остаются в высоком состоянии.

Важно учитывать, что при использовании микросхемы в режиме двойного

Рис. 3: Схема работы К155ИД4 (74155N)

Рис. 4: Схема двойного дешифратора 2 на 4

дешифратора не допускается одновременная подача одинаковых значений на входы 1 и 15. В противном случае схема переходит в режим дешифратора 3-в-8, что может привести к некорректной работе.

Рис. 5: Синтезированная схема дешифратора 3 на 8

4 Вывод

В ходе лабораторной работы были изучены принципы построения и функционирования дешифраторов 2-в-4 и 3-в-8. Сначала была разработана функциональная схема дешифратора, после чего реализована её модель в среде NI Multisim с использованием только базовых логических компонентов. Далее был собран дешифратор 3-в-8 на базе микросхемы К155ИД4 (74155N), содержащей два встроенных дешифратора 2-в-4. Разработанная исследовательская схема дала возможность экспериментально подтвердить правильность функционирования всех режимов микросхемы. Также, в ходе работы были получены практические навыки проектирования и анализа цифровых устройств, а также освоены современные инструменты схемотехнического моделирования.