可能是全宇宙最通俗易懂的通信课

网优RF优化方法

@捻叶成剑

引子:我们前面讲了很多理论,接下来我们可以基于之前讲过的一些东西,来进行简单的实操起来。

在操练起来之前,先了解一个概念

为了了解一个城市的<mark>道路信号</mark>如何,网络优化可以通过DT的方式<mark>采集数据</mark>然后,通过对采集的数据分析,提出解决方案,然后解决掉,提升网络质量水平,让用户用的更爽。(初级)

DT: Drive Test 路测

设备:PC+软件+测试手机+GPS

贪吃蛇一样的路测数据

接下来,就可以对采集的数据,干点啥了。。

RF优化:

就是无线覆盖优化,主要手段是通过调整天线下倾角,方位角,发射功率等手段,解决覆盖和干扰等问题

今天我们主要讨论几个问题:

- 弱覆盖
- 越区覆盖
- 重叠覆盖

这几个问题我们按照发现问题,分析问题,解决问题三个步骤来搞清楚

其中,发现问题:核心在于<mark>问题的定义</mark>,问题定义清楚了,就能发现问题。 分析问题:由于这几个都属于简单问题,不属于 "流程类"问题,方法是原因罗列+排除法 解决问题:针对不同的原因,有针对性的解决方案。

弱覆盖

发现问题----定义: RSRP<-100dbm (服务小区) 如果你在这些区域摆摊卖菜。。。。

1	鴖
9	FΧ

LTE W	CDMA GS	М					
Type	EARFCN	PCI	MOD3	RSRP(dBm)	RSRQ(dB)	SINR(dB)	RSSI(dBm)
PCell	1825	320	2	-104.19	-11.19	3.599	-72.62
	1825	276	0	-109.00	-15.75		-83.62
	1825	277	1	-119.43	-30.00		-80.43
	1825	32	2	-120.68	-30.00		-81.68
	1825	130	1	-121.12	-30.00		-82.12
	1825	147	0	-121.50	-30.00		-82.43
	1825	131	2	-122.43	-30.00		-83.43
	1825	278	2	-122.62	-30.00		-83.62
	100	139	1	-126.81	-15.68		-102.06
	100	140	2	-130.18	-17.93		-102.87

Type	EARFCN	PCI	MOD3	RSRP(dBm)	RSRQ(dB)	SINR(dB)	RSSI(dBm)	ECI	TAC	Distance(n
	1825	120	0	-88.81	-11.12		-67.50			1210.27
	1825	188	2	-92.50	-14.31		-68.18			622.80
	1825	233	2	-100.75	-13.75		-76.43			1964.79
	1825	226	1	-101.06	-21.50		-70.50			1077.87
PCell	1825	217	1	-103.31	-17.31	-2.099	-66.50	215578673	52610	1127.66
	1825	200	2	-108.62	-30.00		-69.56			2389.53
	1825	228	0	-109.12	-30.00		-70.12			742.99
	1825	252	0	-109.43	-30.00		-70.37			2470.26

弱覆盖问题,本质上就是这个区域没有一个信号强的小区信号

而虚假的弱覆盖,往往是因为切换问题导致

假若真时真亦假

LTC							
LTE	WCDMA GS	М					
Type	EARFCN	PCI	MOD3	RSRP(dBm)	RSRQ(dB)	SINR(dB)	RSSI(dBm)
PCell	1825	320	2	-104.19	-11.19	3.599	-72.62
	1825	276	0	-109.00	-15.75		-83.62
	1825	277	1	-119.43	-30.00		-80.43
	1825	32	2	-120.68	-30.00		-81.68
	1825	130	1	-121.12	-30.00		-82.12
	1825	147	0	-121.50	-30.00		-82.43
	1825	131	2	-122.43	-30.00		-83.43
	1825	278	2	-122.62	-30.00		-83.62
	100	139	1	-126.81	-15.68		-102.06
	100	140	2	-130.18	-17.93		-102.87

当测试人员测试方法不对,比如把测试手机放在屁股地下测试,则会出现连续的弱覆盖,这种情况,非网络问题。但是在现象上看,会以为是弱覆盖。

或者有时候UE连续测试,导致UE发烫,个别性能不好的测试手机,可能会出现连续弱覆盖的情况

真若假时假亦真

若强信号来源于越区过来的小区信号,则大概率为真弱覆盖*

弱覆盖

分析问题:原因罗列+排除法

- 1、周边没有基站
- 2、基站是否故障—告警(让基站不发射信号)
- 3、阻挡
- 4、基站高度太低
- 5、方位角不合理
- 6、下倾角不合理
- 7、功率参数设置不合理

假弱覆盖:

- 1、切换重选问题(邻区有更好的信号)
- 2、测试方法问题 3、UE问题(现象上与真弱覆盖一样)

III

▼ 今休 □ ▼ 背見 □ ▼ ■

弱覆盖

解决方案:

- 1、周边没有基站-----建议加站
- 2、基站是否故障—告警-----代维处理
- 3、阻挡-----调整方位角或RRU拉远或别的站点覆盖
- 4、基站高度太低-----搬迁或别的站点覆盖
- 5、方位角不合理----调整方位角
- 6、下倾角不合理----调整下倾角
- 7、功率参数设置不合理-----加功率

假弱覆盖:

- 1、切换重选问题(邻区有更好的信号)
- 2、测试方法问题 3、UE问题(现象上与真弱覆盖一样)

越区覆盖

<mark>发现问题----定义:</mark>指的是某小区的覆盖超过了规划的覆盖范围,在其他小区覆盖区域形成主导小区(或者强度比服务小区强,或者差不多)

大部分新手的困惑,画圈这几个越不越区?

答案: 不越区

因为没影响

PCI=1和PCI=2两个小区信号, 强于服务小区

假越区

为啥B基站会建在楼后面?

越区覆盖

分析问题:原因罗列+排除法

- 1. 基站太高
- 2. 下倾角太小
- 3. 方位角不合理----产生波导效应
- 4. 基站发射功率太大
- 5. 水面反射

越区覆盖

解决方案:

基站太高
 下倾角太小
 方位角不合理----产生波导效应
 基站发射功率太大
 水面反射

增大下倾角
调整方位角
降低功率
添加邻区

为啥不选择降低天线高度?

为啥不选择降低天线高度?

降低天线高度一般是指将天线挂高降低,一般楼顶抱杆是3米到6米的高度,而抱杆在楼顶上,

一般最多降低2-3米左右(毕竟楼不能降低),而这点高度的降低,对于整体覆盖缩小,没有什么帮助。

降低2米的天线高度,覆盖范围仅减少不到100米

天线压2度,却能缩小300米的距离

重叠覆盖

发现问题----定义

与最强小区RSRP的差值在6dB范围内的小区(不含最强小区)数量≥3,同时最强小区RSRP>=-100dBm。

- ① 小区个数:4个
- ② 最强小区RSRP>-100dbm
- ③ 这4个小区里面的最弱小区与最强小区强度差值小于6db

一个经验:若存在弱覆盖,则永远优先级最高

以下是不是重叠覆盖?

LTE	WCDMA G	SM							
Туре	EARFO	N PCI	MOD3	RSRP(dBm)	RSRQ(dB)	SINR(dB)	RSSI(dBm)	ECI	TAC
	1825	1	1	-82.31	-11.75		-59.56		
	1825	243	0	-82.43	-9.56		-59.93		
	1825	2	2	-84.56	-14.00		-59.56		
PCell	1825	10	1	-85.31	-13.13	0.8	-51.69	215558449	52610
	1825	82	1	-91.87	-19.93		-62.87		

<u>an in the second of the secon</u>									
Туре	EARFCN	PCI	MOD3	RSRP(dBm)	RSRQ(dB)	SINR(dB)	RSSI(dBm)	ECI	TAC
PCell	1825	2	2	-87.81	-8.25	3.599	-60.81	215571762	52610
	1825	41	2	-92.37	-14.81		-64.25		
	1825	11	2	-92.68	-17.12		-66.31		
	1825	320	2	-94.31	-10.68		-72.87		
	1825	9	0	-95.31	-16.81		-69.43		
	1825	39	0	-95.75	-19.37		-64.31		
	1825	131	2	-99.87	-18.75		-72.06		

以下是不是重叠覆盖?

Туре	EARFCN	PCI	MOD3	RSRP(dBm)	RSRQ(dB)	SINR(dB)	RSSI(dBm)	ECI	TA
	1825	32	2	-100.37	-12.81		-78.56		
PCell	1825	276	0	-101.19	-15.00	-0.6	-66.06	215560496	526
	1825	278	2	-104.37	-18.37		-76.31		
	1825	82	1	-104.75	-17.25		-78.43		
	1825	277	1	-106.06	-19.81		-78.43		
	1825	243	0	-108.50	-21.00		-78.43		
	1005	190	٥	100.19	20.60		70.50		

Type	EARFCN	PCI	MOD3	RSRP(dBm)	RSRQ(dB)	SINR(dB)	RSSI(dBm)	ECI
PCell	1825	112	1	-84.13	-11.81	12.899	-53.56	215
	1825	243	0	-86.18	-9.06		-61.37	
	1825	234	0	-99.12	-30.00		-60.06	
	1825	1	1	-99.25	-30.00		-60.18	
	1825	236	2	-100.12	-30.00		-61.12	
	1825	3	0	-100.31	-30.00		-61.31	
	1825	319	1	-102.00	-30.00		-62.93	
	1825	322	1	-102.31	-30.00		-63.25	

重叠覆盖

分析问题:

重叠覆盖主要原因是因为城区站点密集,基站方位角下倾角不合理,导致信号重叠到一起

解决方案:

核心思想:确立一个主小区

当多个小区的RSRP都大于-85dbm时,则减弱多个小区信号,留一个 当多个小区的RSRP都小于-85dbm是,则增强一个小区信号,作为主小区

可以作为主小区的标准:

- ① 离得近
- ② 没有阻挡
- ③ 基站高度合适

RSRP>-85dbm案例

RSRP<-85dbm案例

希望大家多多支持我的5G付费课程

可能是全宇宙最通俗易懂的通信课

5G核心原理进阶

@捻叶成剑出品

腾讯课堂链接 https://ke.qq.com/course/3922159

电脑或者安卓手机打开链接,苹果不支持

一键三连啊!老铁!