

Feuille de TD 9: IMP et sa sémantique

Où l'on touche aux bases fondamentales

Exercice 1 Familiarisation avec IMP

Les programmes IMP ne renvoyant pas de résultat, on sauvegardera le résultat demandé dans la variable

Écrire un programme qui :	
(1) Calcule le max de x et y	P1.1
Somme les entiers naturels de 1 à k	P1.2
Calcula la factorialla da h	D1 9

₩ >

Exercice 2 Première prise de conscience

Soit les programmes :

n.

if b then c_1 else c_2	P2.1
if b then c_1 else skip; if not b then skip else c_2	P2.2
while b_1 or b_2 do c	P2.3
while b_1 do c ; while b_2 do c	P2.4

Les programmes P2.1 et P2.2 sont-ils équivalents?

Même question avec P2.3 et P2.4

Exercice 3 Expressions arithmétiques

Dans cet exercice, on ne traitera pas la soustraction de deux nombres, la multiplication et la division.

Rappeler la grammaire des expressions arithmétiques.

(2) Proposer des règles d'inférences pour les expressions arithmétiques.

Exercice 4 On plante des arbres?

Soit σ_1 $(a \mapsto 1, b \mapsto 2, c \mapsto 3, d \mapsto 4), \ \sigma_2(x \mapsto 3, y \mapsto 5) \ \text{et} \ \sigma_3(x \mapsto 4, y \mapsto 1)$

(1) Dérivez l'arbre de preuve pour $\sigma_1, (a+c) \times (d-b) \hookrightarrow 8$

Dérivez l'arbre de preuve pour σ_1 , $a + (b + (c + d)) \hookrightarrow 10$

Reprenez le programme P1.1 et dérivez les arbres de preuve de σ_2 , P1.1 ψ ?₂ σ_3 , P1.1 ψ ?₃ en précisant les états mémoire en sortie.

Exercice 5 Tu termines?

Comment traduire le fait qu'un programme (ne) termine (pas) de manière formelle?

Exercice 6 Parenthèses

Démontrer que les commandes S_1 ; $(S_2; S_3)$ et $(S_1; S_2)$; S_3 sont sémantiquement équivalentes pour tout S_1, S_2, S_3 . (C'est-à-dire pour tout état mémoires σ_1, σ_2 , on a σ_1, S_1 ; $(S_2; S_3) \Downarrow \sigma_2 \Leftrightarrow \sigma_1, (S_1; S_2)$; $S_3 \Downarrow \sigma_2$)

Raphaël Charrondière ⇒ raphael.charrondière@inria.fr Semaine 13 - échéance S14

Exercice 7 Déterminisme des expressions arithmétiques

£1 Écrire le schéma général d'une preuve par induction sur les expressions arithmétiques.

(2) Appliquer ce schéma sur le déterminisme des expressions arithmétiques.

Nous avons vu qu'un programme IMP peut ne pas terminer, qu'en est-il de l'évaluation des expressions arithmétiques?

(4) Pouvez-vous le prouver? (Essayez de trouver une idée)

