Stochastic Mirror Descent

A Brief Overview

Nithin Shrigyan Arsh

Indian Institute of Technology Madras

Group 1

Gradient Descent: a Proximal View

• Gradient Descent Update Rule

$$x_{t+1} = x_t - \eta \cdot \nabla f_t(x_t) \tag{1}$$

Proximal view

$$x_{t+1} \leftarrow \operatorname{argmin}_{x} \{ \eta \cdot \langle \nabla f_t(x_t), x_t \rangle + \frac{1}{2} ||x - x_t||^2 \}$$
 (2)

Taking the gradient and setting to zero

$$\eta \cdot \nabla f_t(x_t) + (x_{t+1} - x_t) = 0$$
(3)

$$\Rightarrow x_{t+1} = x_t - \eta \cdot \nabla f_t(x_t) \tag{4}$$

Interpretation of the Proximal View

$$x_{t+1} \leftarrow \operatorname{argmin}_{x} \{ f_t(x_t) + \eta \cdot \langle \nabla f_t(x_t), x - x_t \rangle + \frac{1}{2} ||x - x_t||^2 \}$$
 (5)

- The goal is to minimise the function $f_t(x)$ iteratively using small steps.
- So minimise it's linear approximation $f_t(x_t) + \langle \nabla f_t(x_t), x x_t \rangle$
- Regularise the step size $\frac{1}{2}||x-x_t||^2$ to make the linear approximation valid.

Bregman Divergence

Definition (Bregman Divergence)

Given a strictly convex function $h(\cdot)$, The Bregman divergence from x to y with respect to function $h(\cdot)$ is :

$$D_h(y||x) = h(y) - h(x) - \langle \nabla h(x), y - x \rangle \tag{6}$$

• Interpret $D_h(y||x)$ as the error in the first order approximation.

Bregman Divergence examples

• For $h(x) = \frac{1}{2}||x||^2$ from $R^n \to R$, associated Bregman Divergence is squared Euclidean Distance.

$$D_h(y||x) = \frac{1}{2}||y - x||^2 \tag{7}$$

2 For $h(x) = \sum_{i=1}^{n} (x_i \ln x_i - x_i)$

$$D_h(y||x) = \sum_{i=1}^n (y_i \ln \frac{y_i}{x_i} - y_i + x_i)$$
 (8)

The special case when $\sum_{i=1} y_i = \sum_{i=1} x_i = 1$ gives the Kullback-Leibler (KL) divergence between probability distributions.

Mirror descent Algorithm

$$x_{t+1} \leftarrow \operatorname{argmin}_{x} \{ f_{t}(x_{t}) + \eta \cdot \langle \nabla f_{t}(x_{t}), x - x_{t} \rangle + D_{h}(x||x_{t}) \}$$
 (9)

• Taking the gradient and setting to zero

$$\eta \cdot \nabla f_t(x_t) + \nabla h(x_{t+1}) - \nabla h(x_t) = 0$$
 (10)

$$\nabla h(x_{t+1}) = \nabla h(x_t) - \eta \cdot \nabla f_t(x_t) \tag{11}$$

$$\Rightarrow x_{t+1} = \nabla h^{-1}(\nabla h(x_t) - \eta \cdot \nabla f_t(x_t)) \tag{12}$$

• If $\theta_t = \nabla h(x_t)$ very similar to Gradient Descent.

$$\theta_{t+1} = \theta_t - \eta \cdot \nabla f_t(x_t) \tag{13}$$

Mirror descent Algorithm

$$x_{t+1} \leftarrow \operatorname{argmin}_{x} \{ f_{t}(x_{t}) + \eta \cdot \langle \nabla f_{t}(x_{t}), x - x_{t} \rangle + D_{h}(x||x_{t}) \}$$
 (9)

• Taking the gradient and setting to zero

$$\eta \cdot \nabla f_t(x_t) + \nabla h(x_{t+1}) - \nabla h(x_t) = 0$$
 (10)

$$\nabla h(x_{t+1}) = \nabla h(x_t) - \eta \cdot \nabla f_t(x_t) \tag{11}$$

$$\Rightarrow x_{t+1} = \nabla h^{-1}(\nabla h(x_t) - \eta \cdot \nabla f_t(x_t)) \tag{12}$$

• If $\theta_t = \nabla h(x_t)$ very similar to Gradient Descent.

$$\theta_{t+1} = \theta_t - \eta \cdot \nabla f_t(x_t) \tag{13}$$

Is there a connection? Yes!

Mirror Descent: Mirror Map View

The four basic steps in each iteration of the mirror descent algorithm

• The Dual Space acts as a Mirror Image of the Primal Space[2].

Connection to Preconditioned Gradient Descent

• Mirror Descent Update Rule :

$$x_{t+1} = \nabla h^{-1} (\nabla h(x_t) - \eta \cdot \nabla f_t(x_t))$$
 (14)

$$x_{t+1} = x_t - \nabla h^{-1}(\eta \cdot \nabla f_t(x_t)) \tag{15}$$

• Very similar to Newton Method if Hessian $H_f = \nabla h$.

$$x_{t+1} = x_t - H_f^{-1}(\eta \cdot \nabla f_t(x_t))$$
 (16)

We trade-off between robustness and rate of convergence.

Application to Deep Learning

Problem Setup:

- For highly over parameterized Neural Networks: number of parameters ≫ number of training data points
- Training loss may have infinitely many global minima!
- The interpolating solution we converge depends on the initialization point and the algorithm used.
- From these multiple solutions, we want to find the solution that performs the best on unseen data.

Application to Deep Learning

Problem Setup:

- For highly over parameterized Neural Networks: number of parameters ≫ number of training data points
- Training loss may have infinitely many global minima!
- The interpolating solution we converge depends on the initialization point and the algorithm used.
- From these multiple solutions, we want to find the solution that performs the best on unseen data.

How does Stochastic Mirror Descent (SMD) help?

 Helps us compare generalization performance using different potential functions.

Implicit Regularisation of SMD[3]

Theorem

For highly overparameterized nonlinear models, under reasonable assumptions:

- the SMD algorithm for any particular potential converges to the global minimum.
- **2** the global minimum obtained by SMD is approximately the closest one to the initialization in the Bregman divergence corresponding to the potential.

Performance on MNIST using Vanilla CNN

 l_3 -norm is the best choice of Bregman Potential for this example.

Performance on CIFAR-10 using ResNet-18

Test Error of SMD under differnt norms

- I_{10} ans I_{14} norms generalise the best.
- Choice of Bregman Potential clearly is problem dependent.

• The Learning Problem is not equivalent to just optimizing training loss but we need to arrive at a solution that generalises well to unseen data.

- The Learning Problem is not equivalent to just optimizing training loss but we need to arrive at a solution that generalises well to unseen data.
- SMD converges to a global minimum, which is approximately the closest to the initialization in Bregman divergence sense, under reasonable assumptions.

- The Learning Problem is not equivalent to just optimizing training loss but we need to arrive at a solution that generalises well to unseen data.
- SMD converges to a global minimum, which is approximately the closest to the initialization in Bregman divergence sense, under reasonable assumptions.
- Choosing a suitable Bregman Divergence will help our model generalise better.

- The Learning Problem is not equivalent to just optimizing training loss but we need to arrive at a solution that generalises well to unseen data.
- SMD converges to a global minimum, which is approximately the closest to the initialization in Bregman divergence sense, under reasonable assumptions.
- Choosing a suitable Bregman Divergence will help our model generalise better.
- Domain Knowledge may help in choosing the right Bregman Potential for our Optimisation Problem.

Eg: One might choose I_1 -norm for Compressed Sensing Applications.

Open Problems to think about

- What is the right choice of Bregman Potential
 - Is it dependent on architecture of Neural Network?
 - Is it dependent on the training data?

¹Y. Li and Y. Liang, "Learning overparameterized neural networks via stochastic gradient descent on structured data," in Proc. Adv. Neural Inf.Process. Syst., 2018,

Open Problems to think about

- What is the right choice of Bregman Potential
 - Is it dependent on architecture of Neural Network?
 - Is it dependent on the training data?
- Why do over parameterised Neural Networks generalise better?¹
 - Contradicts our ideas about over-fitting.

¹Y. Li and Y. Liang, "Learning overparameterized neural networks via stochastic gradient descent on structured data," in Proc. Adv. Neural Inf.Process. Syst., 2018,

References

- [1] Anupam Gupta. "15-850: Advanced Algorithms, Fall 2020 Notes". In: CMU (2020).
- [2] A. Nemirovski and D. Yudin. "Problem Complexity and Method Efficiency in Optimization.". In: John Wiley, New York. (1983).
- [3] Navid Azizan Ruhi, Sahin Lale, and Babak Hassibi. "Stochastic Mirror Descent on Overparameterized Nonlinear Models: Convergence, Implicit Regularization, and Generalization". In: CoRR abs/1906.03830 (2019). arXiv: 1906.03830.