\mathcal{T} iempo: 2 horas \mathcal{P} untaje \mathcal{T} otal: 33 puntos \mathcal{J} unio de 2 013

\mathcal{E} xamen de \mathcal{R} eposición

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar **todos** los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No son procedentes reclamos en exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

- 1. Sea A alguna matriz de orden n; si $A^2 = \mathcal{I}_n$, se dice que A es involutiva y si $A^2 = A$, se dice que A es idempotente.
 - (a) Determine si la matriz $A=\begin{pmatrix} \frac{1}{3} & \frac{-2}{3} & \frac{-2}{3} \\ \frac{-2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{-2}{3} & \frac{-2}{3} & \frac{1}{3} \end{pmatrix}$ es involutiva, idempotente o si no es de alguno de los tipos mencionados. (2 pts)
 - (b) Demuestre que si B es alguna matriz de orden n, tal que B es idempotente, entonces la matriz $C = 2B \mathcal{I}_n$ es involutiva. (2 pts)
- 2. Considere las matrices $A = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & 0 \\ 0 & -2 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} -2 & 0 & -2 \\ 0 & -2 & 0 \\ -2 & 0 & -2 \end{pmatrix}$. Determine, sin resolver sistemas de ecuaciones, la matriz P que satisfaga $AP B = \mathcal{I}_3$ (4 pts)
- 3. Si se sabe que el siguiente sistema lineal posee infinito número de soluciones, determine su conjunto solución utilizando el método de Gauss-Jordan. (4 pts)

$$\begin{cases} a-2b+c-d+2e=10\\ 2a-4b+4d+2e=8\\ -4a+8b+c-11d-2e=-10 \end{cases}$$

4. Sea $(\mathcal{G},*)$ un grupo cuyo elemento neutro es e y sea a un elemento fijo de \mathcal{G} . Si $\mathcal{H} = \left\{ x \in \mathcal{G} \middle/ x * a = a * x \right\}$, demuestre que $(\mathcal{H},*)$ es subgrupo de $(\mathcal{G},*)$ (4 pts)

- 5. Sea $\mathcal{U} = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \middle/ x, y \in \mathbb{R} \right\}$. Si se sabe que $(\mathcal{U}, +, \cdot)$ es anillo, verifique que es conmutativo y con elemento unidad. (3 pts)
- 6. Sea $W = \{(x, y) \in \mathbb{R}^2 / 2x 3y = 0\}$. Determine si W es subespacio de \mathbb{R}^2 (3 pts)
- 7. Sean $\mathcal{T}: \mathcal{P}_1(\mathbb{R}) \to \mathbb{R}^2$ una función definida por $\mathcal{T}(a+bx) = (b-a,a-b), \mathcal{B}_1 = \{-x,1\}$ y $\mathcal{B}_2 = \{(0,-1),(1,0)\}$ bases de $\mathcal{P}_1(\mathbb{R})$ y \mathbb{R}^2 , respectivamente.
 - (a) Verifique que \mathcal{T} es transformación lineal. (3 pts)
 - (b) Determine una base del núcleo de \mathcal{T} y una base de la imagen de \mathcal{T} (3 pts)
 - (c) Obtenga la matriz representativa de \mathcal{T} relativa a las bases \mathcal{B}_1 y \mathcal{B}_2 (3 pts)
 - (d) Determine $[\mathcal{T}(4x-3)]_{\mathcal{B}_2}$ utilizando la matriz del inciso c. (2 pts)