Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods

笔记本: Technique

创建时间: 2019/11/14 10:30 **更新时间:** 2019/11/14 11:36

作者: ming71

2019.10.14

旋转数据的处理方法

1. Introduction

CNN的平移不变性,是因为平移的特征和卷积滑动响应是一样的,尽管位置不一样,但是特征响应相同。但旋转后就不是,因为实际上卷积参数不是对称的,应该叫相关,<u>对于旋转的物体获取的特征是不一样的</u>,不具有不变性。

(□很简单直观的一个思路:用卷积而不是相关,但是这样也只能提供局部的不变性,因为旋转实际是连续的;此外,此举会使得模型效率降低一半,效果是否合适还值得商榷。而且现在的卷积都封装起来了,不好动,像DCN这样都得改cuda加速,挺麻烦)

2. Fomal Definitions

- invariance和equivalent的定义,欧拉公式线性组合的steerability可以 先放一放,有需要再看。
- Polar coordinates的思路很有意思,可以参考一个极坐标实例分割的工作

3. Approaches That Guarantee Exact Rotation Equivariance

- 旋转带来的效应,可以设法通过某些函数设计来抹除。文中的例子是 PCA等消除旋转影响。
- 旋转响应的计算:

解决思路:a.**旋转卷积核** b.**旋转特征图**

问题: (1) 作者认为这种变换等价于数据增强。真是如此,那么数据端的变换将是最有效和便捷的,那么两种计算都没有很大的意义。

(2) 旋转角度的连续性导致欧式空间上计算量的二次倍增。

4. Approaches To Learn Approximate Rotation Equivariance

- 使网络学习特定的响应消除函数
- 软约束, 缺点是利用loss存在优化过程的不确定性。
- DCN的偏移学习。

5. Overview of Method

只看2D数据的方法,相关文献及方法在zetero中找笔记。

Method	Input	Approach	Property	Group	Cardinality
Many	*	Learned (Data augmentation)	* .:	*	*
Transformation Equivariant Boltzmann Machine (Kivinen and Williams, 2011)	Pixel grid	Exact	Equivariance	SE(2)	Discretized (any angle)
Equivariant Filters and Kernel Weighted Mapping (Liu et al., 2012)	Pixel grid	Exact	Equivariance	SE(2)	Continuous
Spatial Transformer Networks (Jaderberg et al., 2015)	Pixel grid	Learned pose normalization)	Invariance	SE(2)	Continuous
Cyclic Symmetry in CNNs (Dieleman et al., 2016)	Pixel grid	Exact	Equivariance	SE(2)	Discretized (90° angles)
Group Equivariant CNNs (Cohen and Welling, 2016)	Pixel grid	Exact	Equivariance	SE(2)	Discretized (90° angles)
Harmonic Networks (Worrall et al., 2017)	Pixel grid	Exact	Equivariance	SE(2)	Continuous
Vector Field Networks (Marcos et al., 2017)	Pixel grid	Exact	Equivariance	SE(2)	Discretized (any angle)
Oriented Response Networks (Zhou et al., 2017)	Pixel grid	Exact	Equivariance	SE(2)	Discretized (any angle)
Deformable CNNs (Dai et al.) 2017)	Pixel grid	Learned (Deformable convolution)	Equivariance	SE(2)	Continuous
Polar Transformer Networks (Esteves et al., 2018b)	Pixel grid ^a	Learned (Learned pose normalization)	Equivariance	SE(2)	Continuous
Steerable Filter CNNs (Weiler et al., 2018b)	Pixel grid	Exact	Equivariance	SE(2)	Discretized (any angle)
Learning Invariance with Weak Supervision (Coors et al., 2018)	Pixel grid	Learned (Soft constraints)	Invariance	SE(2)	Continuous
Roto-Translation Covariant CNNs (Bekkers et al., [2018)	Pixel grid	Exact	Invariance	SE(2)	Discretized (any angle)
RotDCF: Decomposition of Convolutional Filters (Cheng et al., 2019)	Pixel grid	Exact	Equivariance	SE(2)	Discretized (any angle)
Siamese Equivariant Embedding (Véges et al., 2018)	Pixel grid	Learned (Soft constraints)	Equivariance	SO(2)	Continuous
CNN model of primary visual cortex (Ecker et al., [2019])	Pixel grid	Exact	Equivariance	SE(2)	Discretized (any angle)

此外,有一个旋转不变性的loss度量问题,作者被归纳了几个,常见的就是第一类,在output计算,度量方式是几何距离或者p范数。此外还有中间层度量、自编码器度量,比较有意思。参见论文原文笔记和3D数据的表。