# P8106\_midterm

lz2951

2024-03-28

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.3
                                  2.1.4
                      v readr
## v forcats 1.0.0
                    v stringr
                                  1.5.0
## v ggplot2 3.4.3 v tibble
                                  3.2.1
## v lubridate 1.9.2
                       v tidyr
                                  1.3.0
              1.0.2
## v purrr
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(ggcorrplot)
library(pheatmap)
```

### Import Data

```
load("recovery.RData")
str(dat)
## 'data.frame': 3000 obs. of 16 variables:
## $ id
               : int 1 2 3 4 5 6 7 8 9 10 ...
               : num 56 70 57 53 59 60 56 58 60 60 ...
## $ age
## $ gender
               : int 0 1 1 0 1 1 0 1 0 1 ...
## $ race
               : Factor w/ 4 levels "1", "2", "3", "4": 1 1 1 1 1 3 1 1 1 1 ...
               : Factor w/ 3 levels "0", "1", "2": 3 2 1 1 3 2 1 1 2 1 ...
## $ smoking
## $ height
               : num 170 170 168 167 174 ...
## $ weight
               : num 78.7 73.1 77.4 76.1 70.2 75.1 79.1 62.6 81.8 75.7 ...
                : num 27.2 25.4 27.3 27.4 23.3 28.4 27.5 26.8 28.8 27.3 ...
## $ bmi
## $ hypertension : num 0 1 1 0 0 0 0 1 1 0 ...
## $ diabetes : int 0 0 0 0 0 1 0 0 0 ...
## $ SBP
                : num 120 134 131 115 127 129 122 134 136 127 ...
## $ LDL
               : num 97 112 88 87 118 104 66 104 126 123 ...
## $ vaccine
               : int 0010100111...
## $ severity
               : int 000100010...
## $ study
               : chr "A" "A" "A" "A" ...
## $ recovery_time: num 31 44 29 47 40 34 31 41 50 33 ...
```

```
## 'data.frame': 3000 obs. of 16 variables:
          : int 1 2 3 4 5 6 7 8 9 10 ...
## $ id
## $ age
                : num 56 70 57 53 59 60 56 58 60 60 ...
## $ gender
               : Factor w/ 2 levels "0", "1": 1 2 2 1 2 2 1 2 1 2 ...
## $ race
                : Factor w/ 4 levels "1", "2", "3", "4": 1 1 1 1 3 1 1 1 1 ...
## $ smoking
                : Factor w/ 3 levels "0","1","2": 3 2 1 1 3 2 1 1 2 1 ...
## $ height
                : num 170 170 168 167 174 ...
## $ weight
                : num 78.7 73.1 77.4 76.1 70.2 75.1 79.1 62.6 81.8 75.7 ...
## $ bmi
                : num 27.2 25.4 27.3 27.4 23.3 28.4 27.5 26.8 28.8 27.3 ...
## $ hypertension : Factor w/ 2 levels "0","1": 1 2 2 1 1 1 1 2 2 1 ...
## $ diabetes : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 1 ...
## $ sbp
                : num 120 134 131 115 127 129 122 134 136 127 ...
## $ ldl
                : num 97 112 88 87 118 104 66 104 126 123 ...
## $ vaccine
                : Factor w/ 2 levels "0","1": 1 1 2 1 2 1 1 2 2 2 ...
## $ severity
                 : Factor w/ 2 levels "0", "1": 1 1 1 2 1 1 1 1 2 1 ...
                 : Factor w/ 2 levels "A", "B": 1 1 1 1 1 1 1 1 1 1 ...
## $ study
## $ recovery_time: num 31 44 29 47 40 34 31 41 50 33 ...
```

### Exploratory analysis and data visualization

```
skimr::skim(recovery) |>
select(-numeric.hist)
```

Table 1: Data summary

| Name<br>Number of rows | recovery 3000 |
|------------------------|---------------|
| Number of columns      | 16            |
| Column type frequency: |               |
| factor                 | 8             |
| numeric                | 8             |
| Group variables        | None          |

Variable type: factor

| skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts                      |
|---------------|-----------|---------------|---------|----------|---------------------------------|
| gender        | 0         | 1             | FALSE   | 2        | 0: 1544, 1: 1456                |
| race          | 0         | 1             | FALSE   | 4        | 1: 1967, 3: 604, 4: 271, 2: 158 |
| smoking       | 0         | 1             | FALSE   | 3        | 0: 1822, 1: 859, 2: 319         |
| hypertension  | 0         | 1             | FALSE   | 2        | 0: 1508, 1: 1492                |
| diabetes      | 0         | 1             | FALSE   | 2        | 0: 2537, 1: 463                 |
| vaccine       | 0         | 1             | FALSE   | 2        | 1: 1788, 0: 1212                |
| severity      | 0         | 1             | FALSE   | 2        | 0: 2679, 1: 321                 |
| study         | 0         | 1             | FALSE   | 2        | A: 2000, B: 1000                |

#### Variable type: numeric

| skim_variable          | n_missing | complete_ra | te | mean    | $\operatorname{sd}$ | p0    | p25    | p50     | p75     | p100   |
|------------------------|-----------|-------------|----|---------|---------------------|-------|--------|---------|---------|--------|
| id                     | 0         | 1           | 1  | 1500.50 | 866.17              | 1.0   | 750.75 | 1500.50 | 2250.25 | 3000.0 |
| age                    | 0         | 1           | 1  | 60.20   | 4.48                | 42.0  | 57.00  | 60.00   | 63.00   | 79.0   |
| height                 | 0         | 1           | 1  | 169.90  | 5.97                | 147.8 | 166.00 | 169.90  | 173.90  | 188.6  |
| weight                 | 0         | 1           | 1  | 79.96   | 7.14                | 55.9  | 75.20  | 79.80   | 84.80   | 103.7  |
| bmi                    | 0         | 1           | 1  | 27.76   | 2.79                | 18.8  | 25.80  | 27.65   | 29.50   | 38.9   |
| $\operatorname{sbp}$   | 0         | 1           | 1  | 130.47  | 7.97                | 105.0 | 125.00 | 130.00  | 136.00  | 156.0  |
| ldl                    | 0         | 1           | 1  | 110.45  | 19.76               | 28.0  | 97.00  | 110.00  | 124.00  | 178.0  |
| ${\tt recovery\_time}$ | 0         | 1           | 1  | 42.17   | 23.15               | 2.0   | 31.00  | 39.00   | 49.00   | 365.0  |

## Analysis between numeric predictors

```
recovery_numeric =
  recovery |>
  select(where(is.numeric), -id)

# recovery_numeric

ggcorrplot(cor(recovery_numeric), lab = T)
```



```
recovery_numeric_long =
  recovery_numeric |>
  gather(key = "predictor", value = "value", -recovery_time)

# recovery_numeric_long

ggplot(recovery_numeric_long, aes(x = value, y = recovery_time)) +
  geom_point(alpha = 0.5) +
  facet_wrap(~predictor, scales = "free")
```



#### Analysis between factor predictors

```
recovery_factor =
  recovery |>
  select(where(is.factor), recovery_time)
# recovery_factor
recovery_factor_nonresp =
  recovery |>
  select(where(is.factor))
# recovery_factor_nonresp
chi_sq_matrix <- matrix(NA, ncol = ncol(recovery_factor_nonresp), nrow = ncol(recovery_factor_nonresp))</pre>
for (i in 1:(ncol(recovery_factor_nonresp)-1)) {
  for (j in (i+1):ncol(recovery_factor_nonresp)) {
    cross_table <- table(recovery_factor_nonresp[,i], recovery_factor_nonresp[,j])</pre>
    chi_sq_matrix[i,j] <- chisq.test(cross_table)$p.value</pre>
  }
}
rownames(chi_sq_matrix) <- colnames(recovery_factor_nonresp)</pre>
colnames(chi_sq_matrix) <- colnames(recovery_factor_nonresp)</pre>
```



```
recovery_factor_long =
  recovery_factor |>
  gather(key = "predictor", value = "value", -recovery_time)
```

## Warning: attributes are not identical across measure variables; they will be ## dropped

```
# recovery_factor_long

ggplot(recovery_factor_long, aes(x = value, y = recovery_time)) +
  geom_violin() +
  facet_wrap(~predictor, scales = "free")
```



Analysis between