Фильтрация выравнивания перед построением дерева

- Gblocks: популярный, (но) давно не обновлённый и консервативный
- 2. trimAI: можно несколько выравниваний, лучше для большого объёма данных
- 3. GUIDANCE2: только веб-форма, сам выравнивает.
- 4. Aliscore: локальное качество, счёт для каждой позиции.
- 5. AL2CO: только белки, чаще используют для оценки консервативности, а не для фильтрации.
- 6. Zorro aka Probmask: тоже оценивает каждую позицию, более сложная модель оценки.

Определение расстояния между последовательностями

▶ p-distance (наблюдаемое расстояние)

Lemey P., Salemi M., Vandamme A-M. The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press; 2009.

https://en.wikipedia.org/wiki/Transversion

Автор(ы), название	Частоты	Частоты	Свободных
	нуклеотидов	переходов	параметров
Jukes-Cantor (JC69)	равные	равные	0

Автор(ы), название	Частоты	Частоты	Свободных
	нуклеотидов	переходов	параметров
Jukes-Cantor (JC69)	равные	равные	0
Kimura (K80=K2P)	равные	$Ts \neq Tv$	1

Автор(ы), название	Частоты	Частоты	Свободных
	нуклеотидов	переходов	параметров
Jukes-Cantor (JC69)	равные	равные	0
Kimura (K80=K2P)	равные	$Ts \neq Tv$	1
Felsenstein (F81)	$\pi_{A} \neq \pi_{C} \neq \pi_{T} \neq \pi_{G}$	равные	3

Автор(ы), название	Частоты	Частоты	Свободных
	нуклеотидов	переходов	параметров
Jukes-Cantor (JC69)	равные	равные	0
Kimura (K80=K2P)	равные	$Ts \neq Tv$	1
Felsenstein (F81)	$\pi_{A} \neq \pi_{C} \neq \pi_{T} \neq \pi_{G}$	равные	3
Felsenstein (F84) & Hasegawa-Kishono- Yano (HKY85)	$\pi_A \neq \pi_C \neq \pi_T \neq \pi_G$	$Ts \neq Tv$	4

Автор(ы), название	Частоты	Частоты	Свободных
	нуклеотидов	переходов	параметров
Jukes-Cantor (JC69)	равные	равные	0
Kimura (K80=K2P)	равные	$Ts \neq Tv$	1
Felsenstein (F81)	$\pi_{A} \neq \pi_{C} \neq \pi_{T} \neq \pi_{G}$	равные	3
Felsenstein (F84) & Hasegawa-Kishono- Yano (HKY85)	$\pi_{A} \neq \pi_{C} \neq \pi_{T} \neq \pi_{G}$	$Ts \neq Tv$	4
Tamura-Nei (TN93)	$\pi_A \neq \pi_C \neq \pi_T \neq \pi_G$	$Ts_R \neq Ts_Y \neq Tv$	5

Автор(ы), название	Частоты	Частоты	Свободных
	нуклеотидов	переходов	параметров
Jukes-Cantor (JC69)	равные	равные	0
Kimura (K80=K2P)	равные	$Ts \neq Tv$	1
Felsenstein (F81)	$\pi_{A} \neq \pi_{C} \neq \pi_{T} \neq \pi_{G}$	равные	3
Felsenstein (F84) & Hasegawa-Kishono-	$\pi_A \neq \pi_C \neq \pi_T \neq \pi_G$	$Ts \neq Tv$	4
Yano (HKY85)			
Tamura-Nei (TN93)	$\pi_A \neq \pi_C \neq \pi_T \neq \pi_G$	$Ts_R \neq Ts_Y \neq Tv$	5
Tavaré (GTR)	$\pi_A \neq \pi_C \neq \pi_T \neq \pi_G$	6 переходов	8

Автор(ы), название	Частоты	Частоты	Свободных
	нуклеотидов	переходов	параметров
Jukes-Cantor (JC69)	равные	равные	0
Kimura (K80=K2P)	равные	$Ts \neq Tv$	1
Felsenstein (F81)	$\pi_{A} \neq \pi_{C} \neq \pi_{T} \neq \pi_{G}$	равные	3
Felsenstein (F84) &	$\pi_A \neq \pi_C \neq \pi_T \neq \pi_G$	$Ts \neq Tv$	4
Hasegawa-Kishono-			
Yano (HKY85)			
Tamura Nai (TNO2)	$\pi_A \neq \pi_C \neq \pi_T \neq \pi_G$		5
Tamura-Nei (TN93)		Tv	
Tavaré (GTR)	$\pi_{A} \neq \pi_{C} \neq \pi_{T} \neq \pi_{G}$	6 переходов	8

jModelTest2

Классификация методов

- 1. Методы расстояний:
 - ▶ (невзвешенного попарного среднего, UPGMA);
 - ▶ присоединения ближайшего соседа, NJ;
 - ► (наименьших квадратов, LS);
 - ► (минимальной эволюции, ME).

2. Дискретные методы:

- ▶ максимальной парсимонии, MP;
- ▶ максимального правдоподобия, ML;
- ▶ Байесовский подход, ВІ.

Методы расстояний: Unweighted pair group method with arithmetic mean (UPGMA)

- 1. Находим два самых близких значения в матрице.
- 2. Объединяем соответствующие узлы в группу.
- 3. Перерасчитываем расстояния до остальных узлов как среднее расстояние до первого и второго членов группы.
- 4. Строим новую матрицу (-1 строка, -1 столбец).
- 5. Если в матрице >1 значения, см. п. 1.

	Α	В	С	D	Е
Α	-				
В	2	-			
С	9	9	-		
D	10	10	3	-	
Е	12	12	13	13	-

Методы расстояний: UPGMA

- 1. Находим два самых близких значения в матрице.
- 2. Объединяем соответствующие узлы в группу.
- 3. Перерасчитываем расстояния до остальных узлов как среднее расстояние до первого и второго членов группы.
- 4. Строим новую матрицу (-1 строка, -1 столбец).
- 5. Если в матрице >1 значения, см. п. 1.

	AB	С	D	Ε
AB	-			
С	9	-		
D	10	3	-	
E	12	13	13	-

Методы расстояний: UPGMA

- 1. Находим два самых близких значения в матрице.
- 2. Объединяем соответствующие узлы в группу.
- 3. Перерасчитываем расстояния до остальных узлов как среднее расстояние до первого и второго членов группы.
- 4. Строим новую матрицу (-1 строка, -1 столбец).
- 5. Если в матрице >1 значения, см. п. 1.

	AB	CD	Ε
AB	-		
CD	9.5	-	
E	12	13	-

Методы расстояний: UPGMA

- 1. Находим два самых близких значения в матрице.
- 2. Объединяем соответствующие узлы в группу.
- 3. Перерасчитываем расстояния до остальных узлов как среднее расстояние до первого и второго членов группы.
- 4. Строим новую матрицу (-1 строка, -1 столбец).
- 5. Если в матрице >1 значения, см. п. 1.

Иногда UPGMA ошибается

UPGMA не подходит, если скорость эволюции в разных ветвях разная!

Felsenstein, Joseph. Inferring phylogenies. Vol. 2. Sunderland: Sinauer associates, 2004

Методы расстояний: Neighbor joining (NJ)

1. Выбираем два случайных узла, объединяем их, всё остальное — второй узел.

- 2. Определяем расстояния в матрице.
- 3. Повторяем со всеми остальными вариантами.
- 4. Минимальное расположение фиксируем.
- 5. Строим новую матрицу (-1 строка, -1 столбец).
- 6. Если в матрице >1 значения, см. п. 1.

Yang Z, Rannala B. Molecular phylogenetics: principles and practice. Nature Reviews Genetics. 2012 May 1;13(5):303-14.

Методы расстояний: NJ

- 1. Выбираем два случайных узла, объединяем их, всё остальное второй узел.
- 2. Определяем расстояния в матрице.
- 3. Повторяем со всеми остальными вариантами.
- 4. Минимальное расположение фиксируем.
- 5. Строим новую матрицу (-1 строка, -1 столбец).
- 6. Если в матрице >1 значения, см. п. 1.

Методы расстояний: NJ

- 1. Выбираем два случайных узла, объединяем их, всё остальное второй узел.
- 2. Определяем расстояния в матрице.
- 3. Повторяем со всеми остальными вариантами.
- 4. Минимальное расположение фиксируем.
- 5. Строим новую матрицу (-1 строка, -1 столбец).
- 6. Если в матрице >1 значения, см. п. 1.

Наиболее используемая модификация: BioNJ Основное достоинство: высокая скорость работы.

Дискретные методы: метод максимальной парсимонии (МР)

Идея: эволюция экономна. Ищем дерево, в котором как можно меньше изменений.

Mount DW. Maximum parsimony method for phylogenetic prediction. Cold Spring Harbor Protocols. 2008 Apr 1;2008(4):pdb-top32.

Эвристики для поиска в пространстве деревьев

- 1. Последовательное добавление (stepwize addition).
- 2. Обмен ближайшими соседями (nearest neighbor interchange, NNI).
- «Обрезка и прививка» ветви (subtree pruning and regrafting, SPR).
- 4. Деление дерева пополам с последующим воссоединением (tree bisection and reconnection, TBR).

Актуально для MP и ML

Дискретные методы: МР

Достоинства:

- 1. используем больше данных, чем в случае NJ;
- 2. всё ещё достаточно быстро.

Недостатки:

- 1. не самая адекватная модель с точки зрения биологии;
- 2. нет информации о длинах ветвей;
- 3. не учитываем двойные и более замены => эффект притяжения длинных ветвей.

Проблема притяжения длинных ветвей (long branch attraction)

По http://evolution-textbook.org/content/free/figures/ch27.html Актуально и для МР, и для МL.

Дискретные методы: метод максимального правдоподобия (ML)

Финкция правдоподобия для монетки и выравнивания (ЈС69).

$$L(\tau, \Sigma) = Pr(Data|\tau, \Sigma) = Pr(alignment|tree, model)$$

Schmidt HA, von Haeseler A. Phylogenetic inference using maximum likelihood methods. The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. 2009.

Дискретные методы: ML

$$L(\tau, \Sigma) = Pr(Data|\tau, \Sigma) = Pr(alignment|tree, model)$$

Достоинства:

наиболее биологически оправданный.

Недостатки:

- 1. время- и ресурсоёмкость;
- 2. сильно зависит от выбранной модели.

Программы

http://evolution.genetics.washington.edu/
phylip/software.html

- ► Mesquite
- ► MEGA
- ► PhyML
- ► RAxML
- ▶ Garli