August 13, 2020

1

 $I_{BP} = \begin{cases} 1, BP \ge \overline{B} & \text{w } BP + RC + DP = M \land BP \ne 0; \\ 0, & \cdot & \cdot \end{cases}$

 $_{\rm 1}$ $_{\rm 2}$ $_{\rm 2}$ $_{\rm 34}$

$${f 1}^{12}\ ^3\mu\ \hat{Y}\ \hat{g}^{\mathfrak{d}}$$

Table 1 \pm

. Ω	Ω		
i, j	¶ Ľű, $i, j = 1, \dots, A$		
t	1/4		
i′¦μĺόμ			
R_{ij}	´« i jµijµ		
BP	$\mu\pm \check{\jmath}\mu \pm \tilde{\jmath}$ $\hat{\jmath}$ $\hat{\jmath}$ $\hat{\jmath}$ $\hat{\jmath}$		
RC	μ±j ¦μĻμ³μ		
DP	$\mu\pm \check{\jmath}\mu \pm \widetilde{v} \cdot \hat{w} \dot{L} \mu^3 \mu$		

Table 2 2 \pm

2		Ĭ
A		2
M	μ	6
β		0.3
P_{ij}	´ iμ½jμ	
$ ho_{ij}$	′i ½jµ	
γ	»	1.0
\overline{B}	»	1
μ	μ¥·	1.0
N		1
δ	•	1.0
\overline{D}		2

$$I_{DP} = \begin{cases} 1, DP \geq \overline{D} & \text{\ast} BP + RC + DP = M \land DP \neq 0; \\ 0, & \cdot & \cdot \end{cases}$$

Á \circ $^ I_{s'}$ £ \neg \circ , ϕ ģ \neg ' 11£ \neg 2» ' 10.

$$I_{s'} = \begin{cases} 1, \sum\limits_{i \in [1,A]} (N_i + \sum\limits_{j \in [1,A]} R_{ij}) + BP + RC + DP = M; \\ N_i, R_{ij}, BP, RC, DP \ are \ integers \ in \ [0,M]; \\ 0, & \cdot & \cdot \end{cases}$$

ί t
μ ¬ μ Ι ½΄ μ μij x³³³ °£Ϊ ງ¶" μ ¶"» ·¸³Ŀ ± ¸³
$$B = \begin{cases} BP, BP + RC + DP = M \wedge BP \neq 0; \\ \overline{B}, & \cdot \end{cases}$$

 $\ddot{y}' \cdot \hat{w}$ 3

$$D = \begin{cases} DP, BP + RC + DP = M \land DP \neq 0; \\ \overline{D}, & . \end{cases}$$

Q

$$\sum_{s \in S} \pi_s = 1$$

 1 jbje $^{1/3}$ $\tilde{o}^{1/2}$ ' | \ddot{y} , $\mu ij \times ^{3}$ $j \pounds$, $^{3/4}$ \tilde{n} i $\tilde{o}^{1/2}$ μIJ $j \pounds$

3.2 \pm

,
34
 $\mu ij \, \mathbb{m}^{3}$, $^{-14}$ ' $|$ \ddot{y} , μ \pm £ $^{-}$; \tilde{o}^{1} /2 \hat{n} \hat{j} \pm

3.2.1 ${}^{\circ}$ óµ;¢» μ^{3} µ±

$$όμο μ3μμι ; Íόμ$$

3.2.2 ¹

$$μ± ij$$
, \hat{u} όμ £¬ $μ½$ ΄ \hat{L} «» $μ$ 1 \hat{u} όμμ \hat{L} 1 ½΄ \hat{L} 1 ½΄ c \tilde{o} ½ $μ\hat{L}$ $± i£$ 1 ¶ 1 4 3 4 1 4΄ 2 5
$$E[^1 \qquad] = \frac{1}{M} \sum_{s \in S} \pi_s \sum_{N_i \in s} I(N_i) \lambda_i / \sum_{i \in [1,A]} \lambda_i$$

4 μ xx ¾

3.2.3

$$\hat{J}|_{\dot{\mathcal{U}}} \quad \cdot \quad \text{i.e.} \\ \hat{J}|' \quad \hat{J} \\ Y^3 \mu$$

3.2.4 » ¢ ¢ · ų μ ±

»
$$\mathfrak e$$
 $\mathfrak e$ · $\mathfrak q \mathfrak p$ \pm '4' $\mathfrak q$ $\mathfrak e$ $\mathfrak e$ · $\mathfrak q$ $\mathfrak p$ $\mathfrak p$

4

4.1 ²

4.2

4.2.1 f

4.2.2 1

$$\pm {}^3\!\!4^2$$
; \cdot ij \cdot \pm \P μ , \ddot{y} , ${}^1\!\!4$; $\pm \hat{y}$ \oplus \hat{y} \hat{y} , \hat{y}

5 ½

 $^{1} \frac{1}{2} \frac{1}{2} e^{12} \frac{3}{4} \mu \dot{k} - \frac{3}{4} \mu^{3} \dot{\mu} - \frac{1}{3} - \hat{Y} \frac{3}{4} e^{12} \frac{3}{4} \mu \dot{\mu} - \frac{1}{2} e^{i3} - \hat{Y} - \frac{11}{2} e^{i3} - \hat{Y} - \frac{11}{2} e^{i2} - \frac{1}{4} e^{i4} - \frac{1}{4} e^{$

$$\Delta\beta = \frac{\beta^* - \beta_0}{\beta_0} = \frac{m\rho(\frac{\varphi_1^2}{\sigma_1^2} + \frac{\varphi_2^2}{\sigma_2^2} + \frac{\varphi_3^2}{\sigma_3^2})}{\lambda^2 + m\rho(\sigma^2 - \frac{\varphi_1^2}{\sigma_1^2} - \frac{\varphi_2^2}{\sigma_2^2} - \frac{\varphi_3^2}{\sigma_2^2})},\tag{1}$$

$$\Delta e = \frac{e^* - e_0}{e_0} = \frac{m\rho(\frac{\varphi_1^2}{\sigma_1^2} + \frac{\varphi_2^2}{\sigma_2^2} + \frac{\varphi_3^2}{\sigma_3^2})}{\lambda^2 + m\rho(\sigma^2 - \frac{\varphi_1^2}{\sigma_1^2} - \frac{\varphi_2^2}{\sigma_2^2} - \frac{\varphi_3^2}{\sigma_3^2})},\tag{2}$$

$$\Delta E(v) = \frac{E(v)^* - E_0(v)}{E_0(v)} = \frac{\lambda^4 m \rho (\frac{\varphi_1^2}{\sigma_1^2} + \frac{\varphi_2^2}{\sigma_2^2} + \frac{\varphi_3^2}{\sigma_3^2})}{(\lambda^2 + m \rho (\sigma^2 - \frac{\varphi_1^2}{\sigma_1^2} - \frac{\varphi_2^2}{\sigma_2^2} - \frac{\varphi_3^2}{\sigma_3^2}))(\lambda^4 - 2\overline{\mu} m (\lambda^2 + m \rho \sigma^2))},$$
(3)

$$\Delta AC = \frac{AC_0 - AC}{AC_0} = \frac{\lambda^2 (\frac{\varphi_1^2}{\sigma_1^2} + \frac{\varphi_2^2}{\sigma_2^2} + \frac{\varphi_3^2}{\sigma_3^2})}{\sigma^2 (\lambda^2 + m\rho(\sigma^2 - \frac{\varphi_1^2}{\sigma_1^2} - \frac{\varphi_2^2}{\sigma_2^2} - \frac{\varphi_3^2}{\sigma_3^2}))}.$$
 (4)

± : ° ° ° ¬ 1/4¶± , ¶ 1/4¶± $^{1}\!4\Psi \pm$, : 2; 2.1; 2.1.1 μ . $\frac{3}{4}$ [?]. 2 1/4 1/4 : $\mu \quad \dot{g}^{o} \quad (\check{j}^{o}). \quad E[J]., \quad 34 \quad () \pounds^{o} \quad 34 \quad ^{2} 14 \quad [?,?,?,?,?,?,?].$ $\label{eq:continuous_problem} \dot{l}^- \qquad \quad \pounds^{\Omega} \qquad (\ \dot{j}^{\ \Omega}). \qquad \qquad [M_{\mbox{\scriptsize i}}\mbox{\scriptsize c}\mbox{\scriptsize C}]// \qquad \qquad (\). \qquad . : \ ^{3}\mbox{\scriptsize \neg} \ ^{\Omega 3} \ ^{3} \qquad .$ μ . 2 ½ [?,?,?]. $\cdot^2 \cdot \mathring{\mathbf{n}} \ll \mathring{\xi}^{a3}$ Ļ $\frac{1}{4}$ 8, , $\frac{2}{6}$ μ , $\mu \ll \P$ $\frac{1}{6}$. 6° ; \pm $, \pm \mu \cdot \frac{1}{2}, \mu 4\frac{1}{2}.$ $\pm : \pm , : '\frac{1}{4} \pm \hat{u} ,$ (\ddot{I}), \hat{o} , $; ; \P ^{3}4 \pm ^{3}4 , ^{3}4 \ll _{J}\P$. 1 $\frac{1}{2}2$. $\mu 5 \frac{1}{2}$.

6 $\hat{\mathbf{u}} \cdot \frac{3}{4}^3$

 $\stackrel{\leftarrow}{\mathbf{H}}_{s}, \quad \stackrel{\cdots}{\mathbf{u}} \stackrel{3}{\mathbf{4}^{3}}$ $\stackrel{\leftarrow}{\mathbf{u}} \quad \mathbf{1} \qquad (e_{k}^{(1)}(t), e_{k}^{(2)}(t)) \in S, \qquad \stackrel{1}{\mathbf{b}} \quad b$ $e_{k+1}^{(1)}(t) = G_{i}e_{k}^{(1)}(t) + F_{i}(x_{k+1}^{(1)}(t) - x_{k}^{(1)}(t)), \qquad (5)$

$$G_{1} = I - (I - C_{12}\hat{C}_{2}^{-1}C_{1})DL_{1},$$

$$G_{2} = I - (I + C_{12}C_{22}^{-1}C_{2}^{-1}C_{1})^{-1}DL_{1},$$

$$F_{1} = -C_{11} + C_{12}\hat{C}_{2}^{-1}\hat{C}_{1},$$

$$F_{2} = (I + C_{12}C_{22}^{-1}C_{2}^{-1}C_{1})^{-1}(-C_{11}C_{22}^{-1}C_{21}),$$

I ĵ′; I

1 . , $1^{-\Omega}$. $^{\Omega}$ 2

$$u_{k+1} = u_k + Le_k, \ k = 1, 2, \cdots,$$
 (6)

$$e_k = y_d - y_k, y_d$$
 , y_k k' $u_k \mu^{-1/4}$. LI $3/4$, °
$$||I - DL|| < 1, \quad > \rho(I - DL) < 1.$$
 (7)

6 $\mu xx ^{3}4$

$$1 i = 1, 2\mu , \|x_{k+1}^{(1)}(t) - x_k^{(1)}(t)\|^{-1} <$$

$$\|x_{k+1}^{(1)} - x_k^{(1)}\|_{\lambda} \le \frac{1}{1 - h_1(i)} \|x_{k+1}^{(1)}(0) - x_k^{(1)}(0)\| + \frac{h_2(i)}{1 - h_1(i)} \|e_k^{(1)}\|_{\lambda} + \rho(Q),$$

$$(8)$$

$$\begin{split} \rho(Q)\mathbf{I}\% \quad Q\mu \quad . & \text{`} \quad (1); \;, \qquad \mbox{$\%$} \quad L \;\; \mu \ DL \hat{\mathbf{u}} \qquad . \qquad , \quad \lambda \not \odot \quad I - DL \mu \qquad , \quad \|I - DL\| < 1, \; |\lambda| < 1. \\ \mathbf{1} \qquad & (2), \qquad C_1, \; C_2, \; L_1 \; \mu \; \|G_i\| + h < 1 (\mbox{\Rightarrow} \; \rho(G_i) + h < 1), \; i = 1, 2; \quad (e_k^{(1)}(t), e_k^{(2)}(t)) \in S \; , \\ & \lim_{k \to \infty} e_k^{(1)}(t) = \lim_{k \to \infty} e_k^{(2)}(t) = 0, t \in [0, T], \end{split}$$

 ${}^{1}\!\!\!/4' \quad S \qquad (2)\mu \quad . \qquad h \quad (3) \quad \P \ .$

¶" 1 ¶" 3

$$y_1 = C_{11}x_1 + C_{12}x_2 + D_{11}u_1. (9)$$

7 ¹« μ

.½ \pm £õĹ« μ I^{2-3}

7.1 1

 3 4, μ k 1 / 2

$$\begin{cases} \dot{x}(t) = A^c x(t) + B^c u(t) + E^c d(t) \\ z(t) = C^c x(t), \\ t \in \mathbb{R}^+. \end{cases}$$

(10)

7.2

 3 » μ .

(1 ; ·

$$\begin{pmatrix} a_{11} \ a_{12} \dots a_{1n} \\ a_{21} \ a_{22} \dots a_{2n} \\ \vdots \ \vdots \ \ddots \ \vdots \\ a_{n1} \ a_{n2} \dots a_{nn} \end{pmatrix} . \tag{11}$$

2) ³/₄ μ

$$A_1 = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix},\tag{12}$$

$$A_2 = \begin{bmatrix} 1.1 & -2.7 \\ -2.3 & 4.6 \end{bmatrix}. \tag{13}$$

3) μ^{-1} « μ .

\displaystyle ; $\mu \acute{\mathbf{L}} \ll . \ f(z) \approx \frac{1 + \frac{1}{2}z + z^2 + \frac{1}{2}z^3}{1 - \frac{1}{2}z + z^2}. \quad \ \check{\mathbf{j}} \qquad \mu \quad .$

\textstyle i ~ .

$$\mathbf{z}^{\mathrm{T}}(t)\{A_{q}^{\mathrm{T}}[P(t)+I]A_{q}-[P(t)+I]\}\mathbf{z}(t)+\sum_{i=1}^{m} \mathbf{z}^{\mathrm{T}}(s)\{A_{q}^{\mathrm{T}}A_{q}-I\}\mathbf{z}(s)\mathrm{d}s\leqslant0. \tag{14}$$

4) ¹« μι .

 $\tilde{\text{oL}} \text{``} \pm . \P \text{``} \text{ limit} \text{``} \text{begin} \{equation\} \dots \text{'} \text{end} \{equation\} \text{``} \text{``} \text{begin} \{eqnarray\} \dots \text{'} \text{end} \{eqnarray\}$

8 ² (Figures)

1

Fig. 1 Title of figure

$9 \pm \text{(Tables)}$

٠ .

 $\begin{array}{ccc} & \pm & 1 & \mbox{\'g}^{\alpha} \ \mbox{\'e} \\ & \mbox{Table 1} & \mbox{Fuzzy control rules} \end{array}$

		Δe						
e	NB	NM	NS	ZO	PS	PM	РВ	
NM	NB	NM	NS	ZO	$_{\mathrm{PS}}$	PM	РВ	
NS	NB	NM	NS	ZO	$_{\mathrm{PS}}$	$_{\mathrm{PM}}$	$_{\mathrm{PB}}$	
NO	NB	NM	NS	ZO	$_{\mathrm{PS}}$	$_{\mathrm{PM}}$	$_{\mathrm{PB}}$	
NM	NB	NM	NS	ZO	$_{\mathrm{PS}}$	$_{\mathrm{PM}}$	$_{\mathrm{PB}}$	
NM	NB	NM	NS	ZO	$_{\mathrm{PS}}$	$_{\mathrm{PM}}$	PB	

 \pm 2 $^{\circ}$ IJ $^{[?]}$

Table 2 The parameters used in Monkey Algorithm

2	
о 1 ģ	M = 5
$2lac{1}{2}$ ¤	a = 0.001
4	$N_c = 50$
3 ¤ \P	b = 0.3
1/4	[c,d] = [-1,1]
»·′	N = 60

2 1/4 :

- [1] Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robotics by learning[J]. Journal of Robotic Systems, 1984, 12(2): 123–140.
- [2] , , , . . , ĵ ′ ¿ ½· ¨[J]. ± ¹π ±¨. 2004, 25(3): 330–334.

 Yao Zhongshu, Wang Hongfei, Yang Chengwu. A sort of iterative learning control algorithm for tracking of robot trajectory[J]. Acta Armamentarii, 2004, 25(3): 330–334. (in Chinese)
- [3] Dofruel M, Ozgunzer U. Stability of hybrid systems[C]// Proceedings of the 1994 IEEE International Symposium on Intelligent Control. New York: IEEE Press, 1994, 8: 129–134.
- [4] Wang D. A simple iterative learning controller for manipulators with flexible joints[J]. Automatica, 1995, 31(9): 1341–1344.
- [5] Li B. The main algorithm research on financial time series data mining[D]. Hefei: University of Science and Technology of China, 2001.
- [6] ¶", 3 Ö. MATLAB [M], μ 2°. ±±¾©: ′ ³ , 2008.
 Xue Dingyu, Chen Yangquan. Advanced Applied Mathematical Problem Solutions with MATLAB[M]. 2nd Edition.
 Beijing: Tsinghua University Press, 2008. (in Chinese)

8 $\mu xx^{\frac{3}{4}}$

- [7] Haykin S, Brockett R W. Adaptive Filtering Theory[M]. New York, America: Prentice Hall, 1996.
- [8] , » | ¼ . μ ′ ¿ [M]. ±±¾©: ¹ · 9 ¤ ³ , 1999.
 Sun Mingxuan, Huang Baojian. Iterative Learning Control[M]. Beijing, China: National Defence Industry Press, 1999.
 (in Chinese)
- [9] Xie Z D. Learning algorithm and convergence of tracking control[J]. Systems Engineering and Electronics, 1998, 20(10): 4–8
- [10] , , T, . · · ¹/₄² L± ¿ [J]. ¬»¬±", 1999, 25(5): 627–632. Xie Shengli, Xie Zhendong, Wei Gang. Learning algorithm for tracking control of nonlinear distributed parameter systems[J]. Acta Automatica Sinica, 1999, 25(5): 627–632. (in Chinese)
- [11] Freuder E, Wallace R. Partial constraint satisfaction[J]. Artificial Intelligence, 1992, 58(1/3): 21–70.
- [12] Liu B, Liu Y. Expected value of fuzzy variable and fuzzy expected value model[J]. IEEE Transactions on Fuzzy Systems, 2002, 10(4): 445–450.
- [13] ÷. ³ «
- [14] Li P, Lin Y P. A further approach on hypercube-based pairwise key establishment in sensor networks[C]// Proceedings of the Third International Conference on Ubiquitous Intelligence and Computing. Berlin: Springer-Verlag, 2006: 883–892.
- [15] Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 2000.
- [16] , $^{\alpha}$ c . μ g^{α} E ''g [J]. 1 α^{3} ± '', 2010, 25(3): 415–420. Zhao Ruiqing, Hao Shipeng. Modeling and solving a novel class of fuzzy constraint satisfaction problems[J]. Journal of Systems Engineering, 2010, 25(3): 415–420. (in Chinese)

•

$$\frac{\partial \Delta E(v)}{\partial \lambda} = -\frac{\lambda^3 m \rho (\frac{\varphi_1^2}{\sigma_1^2} + \frac{\varphi_2^2}{\sigma_2^2} + \frac{\varphi_3^2}{\sigma_3^2})}{(\lambda^4 - 2\overline{\mu} m (\lambda^2 + m \rho \sigma^2))^2}.$$

 1 : » \hat{Y} \hat{L}^{2} $^{3}\mu$ » $\mu^{3}\mu$ \cdot

<u>μ</u> x

g

2500′ »·¾³½

3 ² ± ¹