

GUARDA AVANTI

Big Data, nuove competenze per nuove professioni

(Progetto rivolto a laureati in tutte le aree disciplinari, co-finanziato dal Fondo Sociale Europeo Plus 2021-2027 Regione Emilia-Romagna)

Programma della lezione

- Supervised Learning Vs Unsupervised Learning
- Clustering
- K-Means
- DBSCAN

Supervised Learning

- Finora abbiamo imparato modelli di ML che imparano prendendo in input dati etichettati
 - Esempio: prevedere il prezzo della casa data la dimensione e il numero di letti
- Questi tipi di modelli si chiamano supervisionati per questo motivo

Features		Label
		,
Dimension	#bedrooms	Price
1000	3	300
1000	4	400
500	5	700

Unsupervised Learning

- Questo paradigma cambia con il unsupervised learning
- Un modello non supervisionato impara a estrarre informazioni dei dati
 - senza ricevere risposte da cui imparare
- Esempio: suddividere e dividere i clienti in gruppi in base a caratteristiche specifiche, per permettere all'azienda di lanciare campagne di marketing specializzate

Classical Machine Learning

Obj: Predications & Predictive Models

Pattern/ Structure Recognition

Clustering

- Trovare similarità nei dati in base a caratteristiche presenti e raggruppare i dati simili in cluster
- Applicazioni
 - Biologia
 - Marketing
 - Clima
 - Economia
 - Geologia
- Tool di pre-processing
 - Sintesi di dati
 - Compressione
 - Outlier detection

Come si valuta la qualità del clustering

- Qualità del clustering
 - Alta similarità intra-custer.
 - Alta dissimilarità inter-cluster
- La similarità viene espressa tramite una funzione di distanza
 - che cambia in base al tipo di dato

Esempio: vogliamo raggruppare 19 osservazioni

Esempio: vogliamo raggruppare 19 osservazioni

K-means Clustering

- Perché questo nome?
 - divide i dati in K gruppi, o clusters
 - Quindi k rappresenta il numero di clusters che si passano in input al modello
 - Means perché ogni cluster è rappresentato da un centroide, un punto centrale, ottenuto facendo la media aritmetica di tutti i punti all'interno del cluster

Step 1: Seleziono il numero di Clusters, k

- In questo caso, fissiamo k=3
 - Quindi vogliamo identificare 3 clusters

Step 2: Seleziono k punti in modo casuale

Step 3: Misuro la distanza tra ogni punto e il centroide

Step 4: Assegno ogni punto al cluster più vicino

Step 5: Calcolo il nuovo centroide di ogni cluster

Step 6: Valuto la qualità di ogni cluster

Calcoliamo la Within-Cluster Sum of Squares

WCSS =
$$\sum_{C_k}^{C_n} (\sum_{d_i in \ C_i}^{d_m} distance(d_i, C_k)^2)$$

Where,

C is the cluster centroids and d is the data point in each Cluster.

Step 6: Ripeto Step 3 - 6

- L'algoritmo continuerà finché
 - I cluster con il minimo di WCSS non cambiano

Come scelgo k?

Elbow plot

Vantaggi

- Semplice
- Facile da applicare
- Ma ... ci sono anche svantaggi
 - Bisogna passare il numero di clusters k, non lo impara da solo
 - Assume che i cluster sono sferici, ma può capitare che i cluster abbiano diversa dimensione e densità

DBSCAN

- DBSCAN è il diminutivo di Density-based spatial clustering of applications with noise
- Perché questo nome?
- Identifica i cluster basandosi sulla densità dei punti
- Assume che i cluster siano regioni ad alta densità
- Ci sono anche essere outlier, punti che non appartengono ad alcun cluster, che sono a bassa densità

Esempio: vogliamo raggruppare questi punti

Gli outlier tendono a essere regioni ad bassa densità

Contare il numero di punti vicini ad ogni punto

Contare il numero di punti vicini ad ogni punto

Nota:

 Il raggio del cerchio rosso, chiamato eps, è definito dall'utente

Contare il numero di punti vicini ad ogni punto

Nota:

- In questo esempio definiamo un core point come punto vicino ad almeno 4 punti.
- Come prima, questo numero di punti vicino al core point è definito dall'utente

Seguendo la definizione di prima ...

Seguendo la definizione di prima ...

Notazione

- Eps è il raggio del cerchio rosso
- Core point è un punto che vicino ad almeno un numero definito di punti
- Non-Core points sono i punti rimanenti

Step 1: Prendo un core point in modo casuale e lo assegno al primo cluster

Step 2: Assegno al primo cluster i punti vicini al core point

Step 2: Assegno al primo cluster i punti vicini al core point

Step 3: Si aggiungono i core point vicini al primo cluster

Step 4: Si continua ad aggiungere i core points vicini al primo cluster

Step 5: Si aggiungono al cluster i **non core points** vicini a un core point

Step 5: Si aggiungono al cluster i **non core points** vicini a un core point

Step 6: Prendo un core point in modo casuale e lo assegno al secondo cluster

Step 7: Assegno al cluster i core points vicini al secondo cluster

Step 8: Assegno al cluster i non core points vicini a un core point del secondo cluster

Risorse:

- Statistical Learning di Trevor Hastie
- k-Means Clustering: Explain It to Me Like I'm 10
- DBSCAN Clustering: Break it Down for Me
- Hierarchical Clustering: Explain It to Me Like I'm 10
- <u>Distanze per Clustering</u>