Binary Search Trees

CS 580U Fall 17

A Better ADT

- Vectors make working with arrays easier, but no real performance improvements
- Linked list improves the array, but slow on random access
 - using nodes gives us memory flexibility
- How can we improve?
 - What if we add additional node pointers to each node
 - we can divide the problem in half

The Tree ADT

Definition:

A finite set of nodes such that one node is designated as the root. All other nodes are partitioned into sets, each of which is a tree.

Terminology

- Root node
 - The 'top'-most node in the tree
- Branch
 - the connection to a child node that may or may not contain a subtree
- Subtree
 - subnode that contains subnodes

Properties of a Tree

- max # of leaves
 - all nodes that do not have branches
- max # of nodes
 - all nodes in the tree
- Height for a tree
 - o path depth
 - The number of branches between the current node and the farthest leaf
 - max depth
 - The number of branches between the root node and and the farthest leaf

A Binary Node

Parents and Children

- Parent Node
 - The immediate predecessor node in the tree structure
- Child Node
 - the immediate following node in the tree structure

Height

- A tree's depth is the number of 'steps' to get to a leaf
 - Only count branches, not nodes
 - O What is the depth of A? H?
- A tree's height is based on its maximum depth
 - What is the tree's height?

Binary Search Tree

Binary Search Tree

- Common Tree Data Structure
 - Each node has two branches
 - Branches may point to another node, or NULL
 - all data in every node of the left subtree are less than the data in the node
 - all data in every node of the right subtree are greater than the data in the node
 - All data in a BST is unique

Implementation

- Array
 - You can use an array to implement your tree
- left child index = 2*(*Parent Index*)+1
- right child index = 2*(*Parent Index*)+2
- parent index = (Child Index-1)/2 (truncate)

- Linked
 - o a linked list using structs and pointers
- a data field
- a left child field with a pointer to a node
- a right child field with a pointer to a node
 - ...additional pointers if not a binary tree
- a parent field with a pointer to the parent node

Compare

- Array
 - o Pros:
 - Constant time Access
 - Cons:
 - Complexity
 - Array Max Size must be known

- Linked Nodes
 - o Pros:
 - Dynamic Memory size
 - o Cons:
 - Complexity
 - Linked Traversal

The BST ADT

Made up of two structs:

- Tree
 - Node * root
- Node
 - Node * left
 - Node * right
 - Data * data
 - Node * parent (optional, but recommended)

BST's use recursion

- Recursion is the process of a function calling itself to perform iteration
 - Basically, using the stack as your loop
- Why use recursion
 - Simplifies code greatly
- Why not use recursion?
 - Uses more memory
 - Can be very slow

Formal Def. of Recursion

Recursion is an iterative procedure that defines the value of a function, argument n, by using the value of the previous argument n – 1

$$pd(n) = \begin{cases} 0 & \text{if } n=0 \text{ or } n=1 \\ \\ pd(n-1) & \text{otherwise} \end{cases}$$

Recursion has two parts

- Recursion requires two parts within the recursive function:
 - A base case that defines the simplest objects in S
 - an end to the recursion.
 - A recursive step that defines how objects in S can be modified, reduced, or combined to produce another object closer to the final result

Recursion Rules

- Every recursive method must have a base case -- a condition under which no recursive call is made -- to prevent infinite recursion.
- Every recursive method must make progress toward the base case to prevent infinite recursions

Classwork

Recursion

```
int toZero(int num){
    printf("%d\n", num);
    if(num == 0)
        return;
    else
        (num > 0) ? toZero(num-1):
        toZero(num+1);
}
```

Tree Traversal

- Traversal, whether for insertion, deletion, or read, uses recursion
 - each can be completed iteratively as well, but it is slightly more complex
- A method is recursive if it can call itself directly or indirectly
 - A function, foo(), is indirectly recursive if it calls, bar(), which in turn calls foo()

Recursive Insert

Recursive insert

- Check if value is greater than or less than the value in the current node
 - If greater, go right, check again
 - If less, go left, check again
 - o If null, add a leaf to the tree
 - o if equal, NOOP
 - All values in a tree should be unique

Inserting a node into an existing tree

- Operations:
 - Use recursion to traverse through the tree
 - Insert node as a leaf
- What information do you need?
 - Data inserted
 - current node visited
 - with access to child nodes

Insert (pseudocode)

```
insert(node, data){
      if (data < node.data)
            if(node.left == NULL)
                  addLeaf(node, data);
            else
                  insert(node.left, data)
      else if (data > node.data)
            if(node.right == NULL)
                  addLeaf(node, data);
            else
                  insert (node.right, data)
```


^{*}must handle special case where tree is empty

Problems

- How to choose the root node?
 - What happens if you choose a bad root node?
 - Becomes a linked list
- Insertion (with a well chosen root)
 - Best Case?
 - constant time
 - O Worst Case?
 - size of the list

Recursive Read

- Almost identical to insert
 - Requires a return statement
 - Reference or pointer
- Check if value is greater than or less than the value in the current node
 - If greater, go right, check again
 - If less, go left, check again
 - If equal, return data
 - If null, error message

Read (pseudocode)

```
read(node, data){
      if(data == node.data)
            return node.data
      else if (data < node.data)
            if(node.left == NULL)
                  print("value not found");
            else
                  return read(node.left, data)
      else if (data > node.data)
            if(node.right == NULL)
                  print("value not found");
            else
                  return read (node.right, data)
```


^{*}must handle special case where tree is empty

Delete

- Basic Deletion process
 - Remove the pointer to the node
 - delete node
- Operations required
 - Tree Traversal to find the node
 - Must always keep track of the parent node
 - This is where maintaining a parent pointer in the node is helpful

Delete - 3 Scenarios

- What are the primary cases for deleting a node?
 - Delete a leaf node easy
 - set parent node pointer to null
 - delete node
 - Delete a 1 branch parent node
 - Can't just delete the node, because then our tree would "fall apart."
 - Delete a 2 branch parent node
 - We must promote one of the children to become the new parent.

Delete Algorithm

```
remove(7)
node = findNode(data);
if ( node not in BST )
     return;
else if ( node has no subtrees ){
      deleteLeaf(node);
}else if ( node has 1 tree ) {
      shortCircuit(node);
                                                                                       before deletion
                                                                                                           after deletion
}else if(node has 2 subtrees){
      promotion(node);
                                                                                                        remove(2)
```

Deleting Leaf Nodes

DeleteLeaf Pseudocode

```
void removeLeaf(Node * leaf)
    if leaf->parent->right == leaf
        leaf->parent->right = NULL
    else
        leaf->parent->left = NULL
    delete leaf
```

What if the leaf is the root?

Delete root

Set root to null to signify an empty tree

Short Circuit Algorithm

- The Short Circuit Algorithm sets the child node's child to be the child of the parent, then deletes the extra leaf node
- When deleting a parent node in a BST, you must ensure that the new parent is:
 - bigger than all the other children in the left tree
 - smaller than all the other children in the right tree

You must maintain the BST structure

Deleting Single Branch Nodes

Short Circuit Pseudocode

```
void shortCircuit(Node * node)
      if( node->parent->right == node)
            if node->right == NULL
                  parent->right = node->left
                  node->left->parent = node->parent
            else
                  parent->right = node->right
                  node->right>parent = node->parent
      else
      delete node
```

What if the node to be delete is the root?

We have to promote the child node to become the root

Classwork: Max Or Min

```
Node* searchMin(Node * node){
     if(node->left != NULL)
           return searchMin(node->left);
     else
           return node;
Node* searchMax(Node * node){
      while(node->right != NULL)
           node = node->right;
     return node;
```

Deleting 2 Child Nodes

Promotion

- We must promote a node to a higher space in the tree
- There are at most two possible candidates:
 - the rightmost child of the left subtree
 - Traverse left once, then right as far as possible
 - the leftmost child of the right subtree
 - Traverse right once, then left as far as possible
- It doesn't matter which one we pick,
 - both choices will maintain the BST structure
 - Successor node
 - the node in the right subtree that is min value -or-
 - the node in the left subtree that is max value

Promote Successor

Promotion Selection

- functions needed
 - Node * getMaxNode(Node * node)
 - Node * getMinNode(Node * node)
- What if the min or max is not a leaf node?
 - We call our short circuit algorithm
 - min value has right subtree?
 - Run single subtree (short-circuit) algorithm
- What if the delete node is the root node?
 - Special case: must promote leftmost max or rightmost min to root node

Promotion Algorithm

```
void promotion(Node * n){
    Node * d_node = searchMin(n->right);
    n->data = d node->data;
    //Leaf
    if(d_node->left==NULL && d_node->right==NULL){
         removeLeaf(d_node);
         //one branch
    }else{
         shortCircuit(d_node);
```


Depth First Traverse

- Depth First travels down the tree structure to find a value
- Basic Algorithm:
 - Start at the root node,
 - traverse down the left until finding a leaf
 - traverse back up until finding a right branch
 - repeat until no right branch

PreOrder

- Process each node as you reach it in traversal order
- Algorithm:
 - preorderTraversal(node):process(node)
 - preorderTraversal(node->left)
 - preorderTraversal(node->right)

InOrder

- Visit each node in ascending order
- Algorithm:
 - inorderTraversal(node):
 inorderTraversal(node->left)
 process(node)
 inorderTraversal(node->right)

PostOrder

- Visit each node as you reach it in traversal order
- Algorithm:

```
    postorderTraversal(node):
        postorderTraversal(node->left)
        postorderTraversal(node->right)
        process(node)
```


Classwork

Tree Traversal

- 5,3,2,1,4,8,6,7,9
- 1,2,3,4,5,6,7,8,9
- 1,2,4,3,7,6,9,8,5
- Post Order delete
- In Order sort
- Pre Order copy

Use Cases

- Basic required Tree operations:
 - Deep Copy Tree
 - Delete Tree
 - Sorted Print
- Depth First Search
 - Traverse as far as possible down a single path
- Determine use case for each DFS Operation
 - *PreOrder:* copy of the tree
 - InOrder: gives nodes in non-decreasing order
 - PostOrder: used to delete the tree

Breadth First Search

- Visit every node on a particular level before going to the next level
 - Also called Level order
- How to Implement?
 - Not really a recursive algorithm
 - Can still implement recursively, but not traditionally done with recursion
 - With a helper Data Structure to store the next level
 - need to store each node in order, and ensure they are accessed in the same order
 - Which data structure would work best?

Breadth First Helper ADT

- A Queue
 - Enforces first in first out
- Assume we have a Tree ADT
 - Child nodes are stored in an array within the Node class

Breadth First Search Algorithm

 Assume a tree where each node has an unknown number of children