

Hit record

Applications using Ngrams

Collocations / Multi-word Expressions

Post Office

Nuclear family

Collocations: Idioms

Kick the bucket

Pain in the neck

Black and blue

Collocations

- 1. press releases
- 2. real estate notices

We walked past the white house.

Looking at the distribution of ngrams in the corpus can help us determine which is being referred to.

Terminology/Ontology Building

Topic Identification

Feature Selection

Spelling Correction

A lot of these tasks

Use the probability of an n-gram occurring in the text:

we already know how to rank n-grams based on their relative frequency

Ngram Probability – last lecture

	i	want	to	eat	chinese	food	lunch	spend	<start></start>	<end></end>
i	0.002	0.33	0	0.0036	0	0	0	0.00079	0	0
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0064	0.0011	0	0
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087	0	0
eat	0	0	0.0027	0	0.021	0.0027	0.056	0	0	0.011
chinese	0.0063	0	0	0	0	0.52	0.0063	0	0	0.008
food	0.014	0	0.014	0	0.00092	0.0037	0	0	0	0.004
lunch	0.0059	0	0	0	0	0.0029	0	0	0	0.003
spend	0.0036	0	0.0036	0	0	0	0	0	1	0.006
<start></start>	0.015	0	0.01	0	0.005	0.003	0.001	0	0	0
<end></end>	0	0	0	0	0.001	0.007	0.002	0.011	0	0

Relative Frequency Table

Another way to look at this

Likelihood the tokens in the n-gram tend to occur together more often than one would expect by chance

Ngram Statistics

Ngram statistics

Statistical measures are computed using various

co-occurrence

and

individual frequency counts

Contingency Table

Table 3: Contingency Table for Bigrams

	token2	¬ token2	Totals
token1	n_{11}	n_{12}	n_{1p}
¬ token1	n_{21}	n_{22}	n_{2p}
Totals	n_{p1}	n_{p2}	n_{pp}

Contingency Table

```
n_{11} = the number of times the bigram occurs n_{12} = the number of token 1 occurs without token 2 n_{21} = the number of token 2 occurs without token 1 n_{22} = the number of times neither tokens are in the bigram n_{p1} = the number of times token 2 occurs n_{p2} = the number of times token 2 does not occur n_{1p} = the number of times token 1 occurs n_{2p} = the number of times token 1 does not occur n_{2p} = the number of times token 1 does not occur n_{pp} = the total number of bigrams
```

Table 3: Contingency Table for Bigrams

	token2	¬ token2	Totals
token1	n_{11}	n_{12}	n_{1p}
¬ token1	n_{21}	n_{22}	n_{2p}
Totals	n_{p1}	n_{p2}	n_{pp}

Example: white rabbit

	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Okay so we have our frequency counts ...

Now what?

The next step is:

to approximate the expected value of the n-gram if it occurred by chance in the corpus

Table 5: Contingency Table for Expected Values

	token2	¬ tokens2	Totals
token1	$m_{11} = \frac{n_{1p} * n_{p1}}{n_{pp}}$	$m_{12} = \frac{n_{1p} * n_{p2}}{n_{pp}}$	n_{1p}
¬ token1	$m_{21} = \frac{np1 * n_{2p}}{n_{pp}}$	$m_{22} = \frac{n_{p2} * n_{2p}}{n_{pp}}$	n_{2p}
Totals	n_{p1}	n_{p2}	n_{pp}

Table 5: Contingency Table for Expected Values

	token2	¬ tokens2	Totals
token1	$m_{11} = \frac{n_{1p} * n_{p1}}{n_{pp}}$	$m_{12} = \frac{n_{1p} * n_{p2}}{n_{pp}}$	n_{1p}
¬ token1	$m_{21} = \frac{np1 * n_{2p}}{n_{pp}}$	$m_{22} = \frac{n_{p2}*n_{2p}}{n_{pp}}$	n_{2p}
Totals	n_{p1}	n_{p2}	n_{pp}

	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
¬white	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Seen values	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Expected values	rabbit	$\neg rabbit$	
white	$m_{11} = ?$	$m_{12} = ?$	$n_{1p} = 26$
$\neg white$	$m_{21} = ?$	$m_{22} = ?$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Seen values	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Expected values	rabbit	eg rabbit	
white	$m_{11} = ?$	$m_{12} = ?$	$n_{1p} = 26$
$\neg white$	$m_{21} = ?$	$m_{22} = ?$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

$$m_{11} = \frac{n_{1p} * n_{p1}}{n_{np}} = \frac{23 * 26}{3785} = 0.1579$$

Seen values	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Expected values	rabbit	eg rabbit	
white	$m_{11} = 0.1579$	$m_{12} = ?$	$n_{1p} = 26$
$\neg white$	$m_{21} = ?$	$m_{22} = ?$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

$$m_{11} = \frac{n_{1p} * n_{p1}}{n_{np}} = \frac{23 * 26}{3785} = 0.1579$$

Seen values	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Expected values	rabbit	eg rabbit	
white	$m_{11} = 0.1579$	$m_{12} = ?$	$n_{1p} = 26$
¬white	$m_{21} = ?$	$m_{22} = ?$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

$$m_{12} = \frac{n_{1p} * n_{p2}}{n_{pp}} = \frac{23 * 3762}{3785} = 22.8602$$

Seen values	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Expected values	rabbit	eg rabbit	
white	$m_{11} = 0.1579$	$m_{12} = 25.8602$	$n_{1p} = 26$
$\neg white$	$m_{21} = ?$	$m_{22} = ?$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

$$m_{12} = \frac{n_{1p} * n_{p2}}{n_{pp}} = \frac{23 * 3762}{3785} = 25.8602$$

Seen values	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Expected values	rabbit	eg rabbit	
white	$m_{11} = 0.1579$	$m_{12} = 25.8602$	$n_{1p} = 26$
$\neg white$	$m_{21} = ?$	$m_{22} = ?$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

$$m_{21} = \frac{n_{2p} * n_{p1}}{n_{pp}} = \frac{3759 * 23}{3785} = 25.8420$$

Seen values	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Expected values	rabbit	eg rabbit	
white	$m_{11} = 0.1579$	$m_{12} = 22.8602$	$n_{1p} = 26$
$\neg white$	$m_{21} = 22.8420$	$m_{22} = ?$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

$$m_{21} = \frac{n_{2p} * n_{p1}}{n_{np}} = \frac{3759 * 23}{3785} = 22.8420$$

Seen values	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Expected values	rabbit	eg rabbit	
white	$m_{11} = 0.1579$	$m_{12} = 22.8602$	$n_{1p} = 26$
$\neg white$	$m_{21} = 22.8420$	$m_{22} = ?$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

$$m_{22} = \frac{n_{2p} * n_{p2}}{n_{pp}} = \frac{3759 * 3762}{3785} = 3736.1579$$

Seen values	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Expected values	rabbit	$\neg rabbit$	
white	$m_{11} = 0.1579$	$m_{12} = 22.8602$	$n_{1p} = 26$
$\neg white$	$m_{21} = 22.8420$	$m_{22} = 3736.1579$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

$$m_{22} = \frac{n_{2p} * n_{p2}}{n_{pp}} = \frac{3759 * 3762}{3785} = 3736.1579$$

Likelihood

Now we have our known values and we have our expected values

Next: we can calculate the likelihood the tokens in the n-gram have occurred together by chance

Measures of Association

Number of measures of association

- Mutual Information
- Log Likelihood
- Chi Squared
- Dice co-efficient

.... the list goes on

Log Likelihood Ratio (G^2)

$$G^2 = 2 * \sum_{i}^{J} n_{ij} * \log(\frac{n_{ij}}{m_{ij}})$$

Basic idea

We are taking the log ratio of our known values over our expected values

Seen values	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
⊣white	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$
Expected values	rabbit	eg rabbit	
white	$m_{11} = 0.1579$	$m_{12} = 22.8602$	$n_{1p} = 26$
¬white	$m_{21} = 22.8420$	$m_{22} = ?$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

$$G^2 = 2 * \sum_{i}^{j} n_{ij} * \log(\frac{n_{ij}}{m_{ij}})$$

i, j = { 1, 2}We have:Seen valuesExpected values

Seen values	rabbit	$\neg rabbit$	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$
Expected values	rabbit	eg rabbit	
white	$m_{11} = 0.1579$	$m_{12} = 22.8602$	$n_{1p} = 26$
$\neg white$	$m_{21} = 22.8420$	$m_{22} = ?$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

$$G^2 = 2 * \sum_{i}^{j} n_{ij} * \log(\frac{n_{ij}}{m_{ij}})$$

i, j = { 1, 2}We have:Seen valuesExpected values

$$G^{2} = 2 * (\left(n_{11} * \log\left(\frac{n_{11}}{m_{11}}\right)\right) + \left(n_{12} * \log\left(\frac{n_{12}}{m_{12}}\right)\right) + \left(n_{21} * \log\left(\frac{n_{21}}{m_{21}}\right)\right) + \left(n_{22} * \log\left(\frac{n_{22}}{m_{22}}\right)\right)$$

Seen values	rabbit	$\neg rabbit$	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$
Expected values	rabbit	eg rabbit	
white	$m_{11} = 0.1579$	$m_{12} = 22.8602$	$n_{1p} = 26$
$\neg white$	$m_{21} = 22.8420$	$m_{22} = ?$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

$$G^2 = 2 * \sum_{i}^{j} n_{ij} * \log(\frac{n_{ij}}{m_{ij}})$$

i, j = { 1, 2}
We have:
Seen values
Expected values

$$G^{2} = 2 * (\left(n_{11} * \log\left(\frac{n_{11}}{m_{11}}\right)\right) + \left(n_{12} * \log\left(\frac{n_{12}}{m_{12}}\right)\right) + \left(n_{21} * \log\left(\frac{n_{21}}{m_{21}}\right)\right) + \left(n_{22} * \log\left(\frac{n_{22}}{m_{22}}\right)\right)$$

$$G^{2} = 2 * \left(\left(21 * \log \left(\frac{21}{0.1579} \right) \right) + \left(5 * \log \left(\frac{5}{22.8602} \right) \right) + \left(2 * \log \left(\frac{2}{22.8420} \right) \right) + \left(3767 * \log \left(\frac{3757}{3762} \right) \right) = 221.0014$$

bridget@caterpillar: ~/clas File Edit View Search Terminal Help 3785 mock<>turtle<>59 59 61 march<>hare<>31 31 31 thought<>alice<>26 30 82 white<>rabbit<>21 26 23 alice<>thought<>12 143 13 poor<>alice<>11 28 82 my<>dear<>11 54 20 sat<>down<>9 14 85 alice<>did<>9 143 22 poor<>little<>9 28 30 alice<>replied<>9 143 27 anv<>rate<>8 25 8 tell<>me<>8 11 45 let<>me<>8 10 45 alice<>looked<>8 143 14 beautiful<>soup<>8 10 10 little<>thing<>8 113 36 same<>thing<>7 18 36 soo<>oop<>7 7 7 looked<>down<>7 16 85 alice<>began<>7 143 22 cried<>alice<>7 7 82 oh<>dear<>7 10 20 few<>minutes<>6 9 7 found<>herself<>6 9 33 down<>here<>6 23 19 three<>gardeners<>6 21 7 great<>hurry<>6 34 6 qolden<>key<>6 8 7 little<>door<>6 113 8 mary<>ann<>6 6 6 cheshire<>cat<>5 7 8 another<>moment<>5 21 8 should<>think<>5 21 10 came<>upon<>5 21 27 should<>like<>5 21 33 alice<>went<>5 143 29 little<>golden<>5 113 7 white<>kid<>5 26 5 yer<>honour<>5 5 5 right<>size<>5 17 10 play<>croquet<>5 5 6 next<>witness<>5 18 6 kid<>gloves<>5 5 6 trembling<>voice<>5 6 27 alice<>felt<>5 143 5 feet<>high<>5 5 14 --More--(1%)

bridget@caterpillar: ~/class File Edit View Search Terminal Help 3785 mock<>turtle<>1 590.5000 59 59 61 march<>hare<>2 359.6439 31 31 31 white<>rabbit<>3 221.0014 21 26 23 thought<>alice<>4 184.9358 26 30 82 soo<>oop<>5 102.0875 7 7 beautiful<>soup<>6 94.5189 8 10 10 mary<>ann<>7 89.3550 6 6 6 any<>rate<>8 83.1894 8 25 8 yer<>honour<>9 76.2870 5 5 5 golden<>key<>10 74.6171 6 8 7 alice<>thought<>11 72.6410 12 143 13 few<>minutes<>12 72.1577 6 9 7 play<>croquet<>13 70.8803 5 5 6 kid<>gloves<>13 70.8803 5 5 6 mv<>dear<>14 68.5555 11 54 20 oh<>dear<>15 63.9931 7 10 20 ootiful<>soo<>16 62.8158 4 4 4 beau<>ootiful<>16 62.8158 4 4 4 caucus<>race<>16 62.8158 4 4 4 let<>me<>17 62.4435 8 10 45 tell<>me<>18 59.5803 8 11 45 three<>gardeners<>19 58.4940 6 21 7 feet<>high<>20 58.0378 5 5 14 rose<>tree<>21 57.8118 4 4 5 great<>hurry<>22 57.6670 6 34 6 cheshire<>cat<>23 57.3294 5 7 8 guinea<>pigs<>24 55.1777 4 6 4 lobster<>quadrille<>24 55.1777 4 6 4 poor<>little<>25 55.1228 9 28 30 cried<>alice<>26 54.2515 7 7 82 sat<>down<>27 51.2520 9 14 85 white<>kid<>28 50.8303 5 26 5 next<>witness<>29 49.6169 5 18 6 poor<>alice<>30 48.9469 11 28 82 saucepan<>flew<>31 48.8388 3 3 3 dead<>silence<>32 48.2527 4 5 7 old<>fellow<>33 46.7675 4 13 4 found<>herself<>34 46.6476 6 9 33 whole<>pack<>35 46.0643 4 14 4 trembling<>voice<>36 45.0170 5 6 27 fast<>asleep<>37 44.3401 3 3 4 that<>s <>37 44.3401 3 3 4 croquet<>ground<>37 44.3401 3 4 3 hand<>bit<>38 44.0915 4 8 6 jury<>box<>38 44.0915 4 8 6 crowded<>round<>39 43.5023 5 6 31 same<>thing<>40 42.7329 7 18 36 -More--(1%)

Left hand column: frequency Right hand column: Log Likelihood

bridget@caterpillar: ~/clas File Edit View Search Terminal Help 3785 mock<>turtle<>59 59 61 march<>hare<>31 31 31 thought<>alice<>26 30 82 white<>rabbit<>21 26 23 alice<>thought<>12 143 13 poor<>alice<>11 28 82 my<>dear<>11 54 20 sat<>down<>9 14 85 alice<>did<>9 143 22 poor<>little<>9 28 30 alice<>replied<>9 143 27 anv<>rate<>8 25 8 tell<>me<>8 11 45 let<>me<>8 10 45 alice<>looked<>8 143 14 beautiful<>soup<>8 10 10 little<>thing<>8 113 36 same<>thing<>7 18 36 soo<>oop<>7 7 7 looked<>down<>7 16 85 alice<>began<>7 143 22 cried<>alice<>7 7 82 oh<>dear<>7 10 20 few<>minutes<>6 9 7 found<>herself<>6 9 33 down<>here<>6 23 19 three<>gardeners<>6 21 7 great<>hurry<>6 34 6 qolden<>key<>6 8 7 mary<>ann<>6 6 6 cheshire<>cat<>5 7 8 another<>moment<>5 21 8 should<>think<>5 21 10 came<>upon<>5 21 27 should<>like<>5 21 33 alice<>went<>5 143 29 little<>golden<>5 113 7 white<>kid<>5 26 5 yer<>honour<>5 5 5 right<>size<>5 17 10 play<>croquet<>5 5 6 next<>witness<>5 18 6 kid<>gloves<>5 5 6 trembling<>voice<>5 6 27 alice<>felt<>5 143 5 feet<>high<>5 5 14 --More--(1%)

```
bridget@caterpillar: ~/class
File Edit View Search Terminal Help
3785
mock<>turtle<>1 590.5000 59 59 61
march<>hare<>2 359.6439 31 31 31
white<>rabbit<>3 221.0014 21 26 23
thought<>alice<>4 184.9358 26 30 82
soo<>oop<>5 102.0875 7 7
beautiful<>soup<>6 94.5189 8 10 10
mary<>ann<>7 89.3550 6 6 6
any<>rate<>8 83.1894 8 25 8
yer<>honour<>9 76.2870 5 5 5
golden<>key<>10 74.6171 6 8 7
alice<>thought<>11 72.6410 12 143 13
few<>minutes<>12 72.1577 6 9 7
play<>croquet<>13 70.8803 5 5 6
kid<>gloves<>13 70.8803 5 5 6
mv<>dear<>14 68.5555 11 54 20
oh<>dear<>15 63.9931 7 10 20
ootiful<>soo<>16 62.8158 4 4 4
beau<>ootiful<>16 62.8158 4 4 4
caucus<>race<>16 62.8158 4 4 4
let<>me<>17 62.4435 8 10 45
tell<>me<>18 59.5803 8 11 45
three<>gardeners<>19 58.4940 6 21 7
feet<>high<>20 58.0378 5 5 14
rose<>tree<>21 57.8118 4 4 5
great<>hurry<>22 57.6670 6 34 6
cheshire<>cat<>23 57.3294 5 7 8
guinea<>pigs<>24 55.1777 4 6 4
lobster<>quadrille<>24 55.1777 4 6 4
poor<>little<>25 55.1228 9 28 30
cried<>alice<>26 54.2515 7 7 82
sat<>down<>27 51.2520 9 14 85
white<>kid<>28 50.8303 5 26 5
next<>witness<>29 49.6169 5 18 6
poor<>alice<>30 48.9469 11 28 82
saucepan<>flew<>31 48.8388 3 3 3
dead<>silence<>32 48.2527 4 5 7
old<>fellow<>33 46.7675 4 13 4
found<>herself<>34 46.6476 6 9 33
whole<>pack<>35 46.0643 4 14 4
trembling<>voice<>36 45.0170 5 6 27
fast<>asleep<>37 44.3401 3 3 4
that<>s <>37 44.3401 3 3 4
croquet<>ground<>37 44.3401 3 4 3
hand<>bit<>38 44.0915 4 8 6
jury<>box<>38 44.0915 4 8 6
crowded<>round<>39 43.5023 5 6 31
same<>thing<>40 42.7329 7 18 36
 -More--(1%)
```

3

Left hand column: frequency Right hand column: Log Likelihood


```
bridget@caterpillar: ~/clas
File Edit View Search Terminal Help
3785
mock<>turtle<>59 59 61
march<>hare<>31 31 31
thought<>alice<>26 30 82
white<>rabbit<>21 26 23
alice<>thought<>12 143 13
poor<>alice<>11 28 82
my<>dear<>11 54 20
sat<>down<>9 14 85
alice<>did<>9 143 22
poor<>little<>9 28 30
alice<>replied<>9 143 27
anv<>rate<>8 25 8
tell<>me<>8 11 45
let<>me<>8 10 45
alice<>looked<>8 143 14
beautiful<>soup<>8 10 10
little<>thing<>8 113 36
same<>thing<>7 18 36
soo<>oop<>7 7 7
looked<>down<>7 16 85
alice<>began<>7 143 22
cried<>alice<>7 7 82
oh<>dear<>7 10 20
few<>minutes<>6 9 7
found<>herself<>6 9 33
down<>here<>6 23 19
three<>gardeners<>6 21 7
great<>hurry<>6 34 6
golden<>key<>6 8 7
little<>door<>6 113 8
mary<>ann<>6 6 6
cheshire<>cat<>5 7 8
another<>moment<>5 21 8
should<>think<>5 21 10
came<>upon<>5 21 27
should<>like<>5 21 33
alice<>went<>5 143 29
little<>golden<>5 113 7
white<>kid<>5 26 5
yer<>honour<>5 5 5
right<>size<>5 17 10
play<>croquet<>5 5 6
next<>witness<>5 18 6
kid<>gloves<>5 5 6
trembling<>voice<>5 6 27
alice<>felt<>5 143 5
feet<>high<>5 5 14
--More--(1%)
```

```
bridget@caterpillar: ~/class
File Edit View Search Terminal Help
3785
mock<>turtle<>1 590.5000 59 59 61
march<>hare<>2 359.6439 31 31 31
white<>rabbit<>3 221.0014 21 26 23
thought<>alice<>4 184.9358 26 30 82
soo<>oop<>5 102.0875 7 7
beautiful<>soup<>6 94.5189 8 10 10
mary<>ann<>7 89.3550 6 6 6
any<>rate<>8 83.1894 8 25 8
yer<>honour<>9 76.2870 5 5 5
golden<>key<>10 74.6171 6 8 7
alice<>thought<>11 72.6410 12 143 13
few<>minutes<>12 72.1577 6 9 7
play<>croquet<>13 70.8803 5 5 6
kid<>gloves<>13 70.8803 5 5 6
my<>dear<>14 68.5555 11 54 20
oh<>dear<>15 63.9931 7 10 20
ootiful<>soo<>16 62.8158 4 4 4
beau<>ootiful<>16 62.8158 4 4 4
caucus<>race<>16 62.8158 4 4 4
let<>me<>17 62.4435 8 10 45
tell<>me<>18 59.5803 8 11 45
three<>gardeners<>19 58.4940 6 21 7
feet<>high<>20 58.0378 5 5 14
rose<>tree<>21 57.8118 4 4 5
great<>hurry<>22 57.6670 6 34 6
cheshire<>cat<>23 57.3294 5 7 8
guinea<>pigs<>24 55.1777 4 6 4
lobster<>quadrille<>24 55.1777 4 6 4
poor<>little<>25 55.1228 9 28 30
cried<>alice<>26 54.2515 7 7 82
sat<>down<>27 51.2520 9 14 85
white<>kid<>28 50.8303 5 26 5
next<>witness<>29 49.6169 5 18 6
poor<>alice<>30 48.9469 11 28 82
saucepan<>flew<>31 48.8388 3 3 3
dead<>silence<>32 48.2527 4 5 7
old<>fellow<>33 46.7675 4 13 4
found<>herself<>34 46.6476 6 9 33
whole<>pack<>35 46.0643 4 14 4
trembling<>voice<>36 45.0170 5 6 27
fast<>asleep<>37 44.3401 3 3 4
that<>s <>37 44.3401 3 3 4
croquet<>ground<>37 44.3401 3 4 3
hand<>bit<>38 44.0915 4 8 6
jury<>box<>38 44.0915 4 8 6
crowded<>round<>39 43.5023 5 6 31
same<>thing<>40 42.7329 7 18 36
 -More--(1%)
```

Left hand column: frequency Right hand column: Log Likelihood

So it is weighting the ngram based on its distribution with respect to the other tokens in the ngram

white rabbit from two different corpora

Seen values	rabbit	eg rabbit	
white	$n_{11} = 21$	$n_{12} = 5$	$n_{1p} = 26$
$\neg white$	$n_{21} = 2$	$n_{22} = 3757$	$n_{2p} = 3759$
	$n_{p1} = 23$	$n_{p2} = 3762$	$n_{pp} = 3785$

Seen values	rabbit	$\neg rabbit$	
white	$n_{11} = 1$	$n_{12} = 82$	$n_{1p} = 83$
$\neg white$	$n_{21} = 23$	$n_{22} = 9289$	$n_{2p} = 9312$
	$n_{p1} = 24$	$n_{p2} = 9371$	$n_{pp} = 9395$

$$G^2 = 1.5601$$

Application: Feature Selection

bridget@caterpillar: ~/class File Edit View Search Terminal Help mock<>turtle<>1 590.5000 59 59 61 march<>hare<>2 359.6439 31 31 31 white<>rabbit<>3 221.0014 21 26 23 thought<>alice<>4 184.9358 26 30 82 soo<>oop<>5 102.0875 7 7 7 beautiful<>soup<>6 94.5189 8 10 10 mary<>ann<>7 89.3550 6 6 6 any<>rate<>8 83.1894 8 25 8 ver<>honour<>9 76.2870 5 5 golden<>key<>10 74.6171 6 8 7 alice<>thought<>11 72.6410 12 143 13 few<>minutes<>12 72.1577 6 9 7 play<>croquet<>13 70.8803 5 5 6 kid<>gloves<>13 70.8803 5 5 6 my<>dear<>14 68.5555 11 54 20 oh<>dear<>15 63.9931 7 10 20 ootiful<>soo<>16 62.8158 4 4 4 beau<>ootiful<>16 62.8158 4 4 4 caucus<>race<>16 62.8158 4 4 4 let<>me<>17 62.4435 8 10 45 tell<>me<>18 59.5803 8 11 45 three<>gardeners<>19 58.4940 6 21 7 feet<>high<>20 58.0378 5 5 14 rose<>tree<>21 57.8118 4 4 5 great<>hurry<>22 57.6670 6 34 6 cheshire<>cat<>23 57.3294 5 7 8 guinea<>pigs<>24 55.1777 4 6 4 lobster<>quadrille<>24 55.1777 4 6 4 poor<>little<>25 55.1228 9 28 30 cried<>alice<>26 54.2515 7 7 82 sat<>down<>27 51.2520 9 14 85 white<>kid<>28 50.8303 5 26 5 next<>witness<>29 49.6169 5 18 6 poor<>alice<>30 48.9469 11 28 82 saucepan<>flew<>31 48.8388 3 3 3 dead<>silence<>32 48.2527 4 5 7 old<>fellow<>33 46.7675 4 13 4 found<>herself<>34 46.6476 6 9 33 whole<>pack<>35 46.0643 4 14 4 trembling<>voice<>36 45.0170 5 6 27 fast<>asleep<>37 44.3401 3 3 4 that<>s <>37 44.3401 3 3 4 croquet<>ground<>37 44.3401 3 4 3 hand<>bit<>38 44.0915 4 8 6 jury<>box<>38 44.0915 4 8 6 crowded<>round<>39 43.5023 5 6 31 same<>thing<>40 42.7329 7 18 36 -More--(1%)

Threshold Cutoff

Application: Context Sensitive Spelling Correction

We went to Paris and stayed (their there)? eleven days

P(stayed their eleven) vs P(stayed there eleven)

Backoff model

Avg(P(stayed their), P(their eleven)) vs Avg(P(stayed there), P(there eleven))

Application: Context Sensitive Spelling Correction

We went to Paris and stayed (their there)? eleven days

P(stayed their eleven) vs P(stayed there eleven)

Backoff model

Avg(P(stayed their), P(their eleven)) vs Avg(P(stayed there), P(there eleven))

	i	want	to	eat	chinese	food	lunch	spend	<start></start>	<end></end>
i	0.002	0.33	0	0.0036	0	0	0	0.00079	0	0
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0064	0.0011	0	0
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087	0	0
eat	0	0	0.0027	0	0.021	0.0027	0.056	0	0	0.011
chinese	0.0063	0	0	0	0	0.52	0.0063	0	0	0.008
food	0.014	0	0.014	0	0.00092	0.0037	0	0	0	0.004
lunch	0.0059	0	0	0	0	0.0029	0	0	0	0.003
spend	0.0036	0	0.0036	0	0	0	0	0	1	0.006
<start></start>	0.015	0	0.01	0	0.005	0.003	0.001	0	0	0
<end></end>	0	0	0	0	0.001	0.007	0.002	0.011	0	0

Relative Frequency Table

G^2Table

```
bridget@caterpillar: ~/class
File Edit View Search Terminal Help
mock<>turtle<>1 590.5000 59 59 61
 march<>hare<>2 359.6439 31 31 31
white<>rabbit<>3 221.0014 21 26 23
thought<>alice<>4 184.9358 26 30 82
 500<>00D<>5 102.0875 7 7 7
beautiful<>soup<>6 94.5189 8 10 10
mary<>ann<>7 89.3550 6 6 6
yer<>honour<>9 76.2870 5 5 5
golden<>key<>10 74.6171 6 8 7
alice<>thought<>11 72.6410 12 143 13
few<>minutes<>12 72.1577 6 9 7
play<>croquet<>13 70.8803 5 5 6
 kid<>gloves<>13 70.8803 5 5 6
 y<>dear<>14 68.5555 11 54 20
 oh<>dear<>15 63.9931 7 10 20
ootiful<>soo<>16 62.8158 4 4 4
 oeau<>ootiful<>16 62.8158 4 4 4
 let<>me<>17 62.4435 8 10 45
tell<>me<>18 59.5803 8 11 45
three<>gardeners<>19 58.4940 6 21 7
feet<>high<>20 58.0378 5 5 14
rose<>tree<>21 57.8118 4 4 5
great<>hurry<>22 57.6670 6 34 6
 cheshire<>cat<>23 57.3294 5 7 8
uinea<>pigs<>24 55.1777 4 6 4
 oor<>little<>25 55.1228 9 28 30
 ried<>alice<>26 54.2515 7 7 82
sat<>down<>27 51.2520 9 14 85
 vhite<>kid<>28 50.8303 5 26 5
 ext<>witness<>29 49.6169 5 18 6
 oor<>alice<>30 48.9469 11 28 82
saucepan<>flew<>31 48.8388 3 3 3
 ead<>silence<>32 48.2527 4 5 7
old<>fellow<>33 46.7675 4 13 4
found<>herself<>34 46.6476 6 9 33
 whole<>pack<>35 46.0643 4 14 4
trembling<>voice<>36 45.0170 5 6 27
fast<>asleep<>37 44.3401 3 3 4
 roquet<>around<>37 44.3401 3 4 3
 nand<>bit<>38 44.0915 4 8 6
 iurv<>box<>38 44.0915 4 8 6
crowded<>round<>39 43.5023 5 6 31
same<>thing<>40 42.7329 7 18 36
--More--(1%)
```

Application: Context Sensitive Spelling Correction

We went to Paris and stayed (their there)? eleven days

Backoff model

Avg(P(stayed their), P(their eleven)) vs Avg(P(stayed there), P(there eleven))

 $Avg(G^2(stayed their), G^2(their eleven))$ vs $Avg(G^2(stayed there), G^2(there eleven))$

Application: Collocations, Terms and Multiword Expressions?

Ngrams that are collocations, terms and mwes are more likely to occur together than by chance

```
bridget@caterpillar: ~/class
File Edit View Search Terminal Help
l3785
mock<>turtle<>1 590.5000 59 59 61
march<>hare<>2 359.6439 31 31 31
white<>rabbit<>3 221.0014 21 26 23
thought<>alice<>4 184.9358 26 30 82
soo<>oop<>5 102.0875 7 7
beautiful<>soup<>6 94.5189 8 10 10
mary<>ann<>7 89.3550 6 6 6
```

Application: Topic Identification

Terms

provide more specific contextual information

▼ bridget@cate - + × File Edit View Search Termir 12872 alice<>404 little<>132 ldown<>106 know<>87 llike<>87 again<>85 herself<>83 aueen<>81 lwent<>81 thought<>73 see<>67 me<>64 king<>63 did<>62 lturtle<>61 mock<>59 my<>58 lbegan<>57 hatter<>56 quite<>55 gryphon<>55 head<>54 lll<>54 rabbit<>53

than individual words

```
bridget@caterpillar: ~/cla
File Edit View Search Terminal Help
3785
mock<>turtle<>1 590.5000 59 59 61
march<>hare<>2 359.6439 31 31 31
white<>rabbit<>3 221.0014 21 26 23
thought<>alice<>4 184.9358 26 30 82
soo<>oop<>5 102.0875 7 7 7
beautiful<>soup<>6 94.5189 8 10 10
mary<>ann<>7 89.3550 6 6 6
any<>rate<>8 83.1894 8 25 8
yer<>honour<>9 76.2870 5 5 5
golden<>key<>10 74.6171 6 8 7
alice<>thought<>11 72.6410 12 143 13
few<>minutes<>12 72.1577 6 9 7
play<>croquet<>13 70.8803 5 5 6
kid<>gloves<>13 70.8803 5 5 6
my<>dear<>14 68.5555 11 54 20
oh<>dear<>15 63.9931 7 10 20
ootiful<>soo<>16 62.8158 4 4 4
beau<>ootiful<>16 62.8158 4 4 4
caucus<>race<>16 62.8158 4 4 4
```

Questions?

Ngram: Tokenization

Extracting Relevant Contextual information from the text

Alice in Wonderland

and

Bigrams

N-gram Extractor

bridget@caterpillar: ~/class

File Edit View Search Terminal Help 32867 ,<>and<>1 1457.3545 490 2444 899 mock<>turtle<>2 846.3665 59 59 61

said<>the<>3 663.9441 211 466 1676 don<>t<>4 620.7031 60 60 217 ,<>said<>5 577.9117 225 2444 466 said<>alice<>6 533.8303 115 466 403 march<>hare<>7 473.5838 31 34 31 i<>m<>8 443.9968 57 522 62 the<>gueen<>9 407 4693 75 1676 81

the<>queen<>9 407.4693 75 1676 81 went<>on<>10 386.5964 47 81 191

in<>a<>11 364.6575 99 383 649 the<>king<>12 361.0673 62 1676 63

a<>little<>13 304.9718 61 649 132 the<>gryphon<>14 300.0905 53 1676 55

.<>i<>15 289.4790 116 1017 522

the<>mock<>16 289.3467 54 1676 59 she<>had<>17 284.6907 62 556 180

the<>hatter<>18 282.6445 52 1676 56 you<>know<>19 282.6369 45 399 87

of<>the<>20 250.5836 134 523 1676

it<>was<>21 247.6654 74 603 353

;<>and<>22 246.5375 68 198 899

white<>rabbit<>23 243.1178 21 30 53 the<>duchess<>24 241.5998 42 1676 43

to<>herself<>25 237.2455 46 757 83

as<>she<>26 231.2743 62 264 556

i<>ve<>27 226.3519 33 522 44

it<>s<>28 220.8583 57 603 210

won<>t<>29 217.1130 24 29 217 did<>not<>30 215.6460 27 62 140

to<>be<>31 211.1520 53 757 152

!<>said<>32 198.8397 65 456 466

!<>said<>32 198.8397 65 456 466 there<>was<>33 192.6939 35 100 353

out<>of<>34 184.7397 40 119 523

of<>course<>35 181.1068 24 523 27

the<>dormouse<>36 179.3941 35 1676 40

i⇔ll⇔37 176.8172 30 522 54

doesn<>t<>38 172.0503 17 17 217 the<>the<>39 169.0912 1 1676 1676

;<>but<>40 168.3603 32 198 173

can<>t<>41 166.5136 24 57 217

such<>a<>42 161.9726 28 45 649 she<>could<>43 161.9636 32 556 75

?<>said<>44 161.0593 43 211 466 ,<>but<>45 160.9052 73 2444 173

--More--(0%)_

These ngrams are a little different than we saw before

N-gram Extractor

bridget@caterpillar: ~/class

File Edit View Search Terminal Help

32867

,<>and<>1 1457.3545 490 2444 899 mock<>turtle<>2 846.3665 59 59 61 said<>the<>3 663.9441 211 466 1676 don<>t<>4 620.7031 60 60 217 ,<>said<>5 577.9117 225 2444 466 said<>alice<>6 533.8303 115 466 403 march<>hare<>7 473.5838 31 34 31 i<>m<>8 443.9968 57 522 62 the<>queen<>9 407.4693 75 1676 81 went<>on<>10 386.5964 47 81 191 in<>a<>11 364.6575 99 383 649 the<>king<>12 361.0673 62 1676 63 a<>little<>13 304.9718 61 649 132 the<>gryphon<>14 300.0905 53 1676 55 .<>i<>15 289.4790 116 1017 522 the<>mock<>16 289.3467 54 1676 59 she<>had<>17 284.6907 62 556 180 the<>hatter<>18 282.6445 52 1676 56 you<>know<>19 282.6369 45 399 87 of<>the<>20 250.5836 134 523 1676 it<>was<>21 247.6654 74 603 353 ;<>and<>22 246.5375 68 198 899 white<>rabbit<>23 243.1178 21 30 53 the<>duchess<>24 241.5998 42 1676 43 to<>herself<>25 237.2455 46 757 83 as<>she<>26 231.2743 62 264 556 i<>ve<>27 226.3519 33 522 44 it<>s<>28 220.8583 57 603 210 won<>t<>29 217.1130 24 29 217 did<>not<>30 215.6460 27 62 140 to<>be<>31 211.1520 53 757 152 !<>said<>32 198.8397 65 456 466 there<>was<>33 192.6939 35 100 353 out<>of<>34 184.7397 40 119 523 of<>course<>35 181.1068 24 523 27 the<>dormouse<>36 179.3941 35 1676 40 i<>ll<>37 176.8172 30 522 54 doesn<>t<>38 172.0503 17 17 217 the<>the<>39 169.0912 1 1676 1676 ;<>but<>40 168.3603 32 198 173 can<>t<>41 166.5136 24 57 217 such<>a<>42 161.9726 28 45 649 she<>could<>43 161.9636 32 556 75 ?<>said<>44 161.0593 43 211 466 ,<>but<>45 160.9052 73 2444 173

-More--(0%)

Uh oh – what is the Problem?

Lots of punctuation And Non-content tokens

Stopwords

These are often words that do not provide any contextual information for the task at hand

Stop words

From Wikipedia, the free encyclopedia

Not to be confused with Safeword.

In computing, **stop words** are words which are filtered out before or after processing of natural language data (text).^[1] There is no single universal list of stop words used by all processing of natural language tools, and indeed not all tools even use such a list. Some tools specifically avoid removing these **stop words** to support phrase search.

e.g. if we were analyzing clinical notes the token *patient* is often removed because it provides no contextual information – all the notes are about patients.

Punctuation

Is often included in the stopword list

Example Stopword

- They are in regular expression form
 - Makes them powerful
 - •E.g. /\b\d+\b/ -> removes a series of digits without having
 - to enumerate over all the digits
- •@stop.mode
 - •OR
 - •Do not include ngram if either word is a stopword
 - •AND
 - •Do not include ngram if both words are a stopword

```
@stop.mode=OR
/\ba\b/
/\babout\b/
/\bafter\b/
/\ball\b/
/\balso\b/
/\ban\b/
/\band\b/
/\bare\b/
/\bas\b/
/\bat\b/
/\bback\b/
/\bbe\b/
/\bbecause\b/
/\bbeen\b/
/\bbefore\b/
/\bbeing\b/
/\bbetween\b/
/\bbut\b/
/\bby\b/
/\bcan\b/
/\bcould\b/
/\bdo\b/
/\beven\b/
/\bfirst\b/
/\bfor\b/
/\bfrom\b/
/\bget\b/
/\bgood\b/
/\bhad\b/
/\bhas\b/
/\bhave\b/
/\bhe\b/
-:--- stoplist
or information ab
```


N-gram Modeler

```
bridget@caterpillar: ~/class
File Edit View Search Terminal Help
3785
mock<>turtle<>1 590.5000 59 59 61
march<>hare<>2 359.6439 31 31 31
white<>rabbit<>3 221.0014 21 26 23
thought<>alice<>4 184.9358 26 30 82
soo<>oop<>5 102.0875 7 7 7
beautiful<>soup<>6 94.5189 8 10 10
mary<>ann<>7 89.3550 6 6 6
any<>rate<>8 83.1894 8 25 8
yer<>honour<>9 76.2870 5 5 5
golden<>key<>10 74.6171 6 8 7
alice<>thought<>11 72.6410 12 143 13
few<>minutes<>12 72.1577 6 9 7
play<>croquet<>13 70.8803 5 5 6
kid<>gloves<>13 70.8803 5 5 6
my<>dear<>14 68.5555 11 54 20
oh<>dear<>15 63.9931 7 10 20
ootiful<>soo<>16 62.8158 4 4 4
beau<>ootiful<>16 62.8158 4 4 4
caucus<>race<>16 62.8158 4 4 4
let<>me<>17 62.4435 8 10 45
tell<>me<>18 59.5803 8 11 45
three<>gardeners<>19 58.4940 6 21 7
feet<>high<>20 58.0378 5 5 14
rose<>tree<>21 57.8118 4 4 5
great<>hurry<>22 57.6670 6 34 6
cheshire<>cat<>23 57.3294 5 7 8
guinea<>pigs<>24 55.1777 4 6 4
lobster<>quadrille<>24 55.1777 4 6 4
poor<>little<>25 55.1228 9 28 30
cried<>alice<>26 54.2515 7 7 82
sat<>down<>27 51.2520 9 14 85
white<>kid<>28 50.8303 5 26 5
next<>witness<>29 49.6169 5 18 6
poor<>alice<>30 48.9469 11 28 82
saucepan<>flew<>31 48.8388 3 3 3
dead<>silence<>32 48.2527 4 5 7
old<>fellow<>33 46.7675 4 13 4
found<>herself<>34 46.6476 6 9 33
whole<>pack<>35 46.0643 4 14 4
trembling<>voice<>36 45.0170 5 6 27
fast<>asleep<>37 44.3401 3 3 4
croquet<>ground<>37 44.3401 3 4 3
that<>s <>37 44.3401 3 3 4
iurv<>box<>38 44.0915 4 8 6
hand<>bit<>38 44.0915 4 8 6
 -More--(1%)
```

Compare the outputs

What can you see

The likelihood score of the top bigrams has decreased

But

 he contextual information of the top bigrams has increased

bridget@caterpillar: ~/class File Edit View Search Terminal Help ,<>and<>1 1457.3545 490 2444 899 mock<>turtle<>2 846.3665 59 59 61 said<>the<>3 663.9441 211 466 1676 don<>t<>4 620.7031 60 60 217 .<>said<>5 577.9117 225 2444 466 said<>alice<>6 533.8303 115 466 403 march<>hare<>7 473.5838 31 34 31 i<>m<>8 443.9968 57 522 62 the<>queen<>9 407.4693 75 1676 81 went<>on<>10 386.5964 47 81 191 in<>a<>11 364.6575 99 383 649 the<>king<>12 361.0673 62 1676 63 a<>little<>13 304.9718 61 649 132 the<>qryphon<>14 300.0905 53 1676 55 .<>i<>15 289.4790 116 1017 522 the<>mock<>16 289.3467 54 1676 59 she<>had<>17 284.6907 62 556 180 the<>hatter<>18 282.6445 52 1676 56 vou<>know<>19 282.6369 45 399 87 of<>the<>20 250.5836 134 523 1676 it<>was<>21 247.6654 74 603 353 ;<>and<>22 246.5375 68 198 899 white<>rabbit<>23 243.1178 21 30 53 the<>duchess<>24 241.5998 42 1676 43 to<>herself<>25 237.2455 46 757 83 as<>she<>26 231.2743 62 264 556 i<>ve<>27 226.3519 33 522 44 it<>s<>28 220.8583 57 603 210 won<>t<>29 217.1130 24 29 217 |did<>not<>30 215.6460 27 62 140 to<>be<>31 211.1520 53 757 152 !<>said<>32 198.8397 65 456 466 there<>was<>33 192.6939 35 100 353 out<>of<>34 184.7397 40 119 523 of<>course<>35 181.1068 24 523 27 the<>dormouse<>36 179.3941 35 1676 40 i<>ll<>37 176.8172 30 522 54 doesn<>t<>38 172.0503 17 17 217 the<>the<>39 169.0912 1 1676 1676 :<>but<>40 168.3603 32 198 173 can<>t<>41 166.5136 24 57 217 such<>a<>42 161.9726 28 45 649 she<>could<>43 161.9636 32 556 75 ?<>said<>44 161.0593 43 211 466 ,<>but<>45 160.9052 73 2444 173 -More--(0%)

```
bridget@caterpillar: ~/class
 File Edit View Search Terminal Help
3785
 mock<>turtle<>1 590.5000 59 59 61
march<>hare<>2 359.6439 31 31 31
white<>rabbit<>3 221.0014 21 26 23
thought<>alice<>4 184.9358 26 30 82
soo<>oop<>5 102.0875 7 7
beautiful<>soup<>6 94.5189 8 10 10
mary<>ann<>7 89.3550 6 6 6
any<>rate<>8 83.1894 8 25 8
yer<>honour<>9 76.2870 5 5
golden<>key<>10 74.6171 6 8 7
alice<>thought<>11 72.6410 12 143 13
few<>minutes<>12 72.1577 6 9 7
play<>croquet<>13 70.8803 5 5 6
kid<>gloves<>13 70.8803 5 5 6
my<>dear<>14 68.5555 11 54 20
oh<>dear<>15 63.9931 7 10 20
ootiful<>soo<>16 62.8158 4 4 4
 beau<>ootiful<>16 62.8158 4 4 4
caucus<>race<>16 62.8158 4 4 4
let<>me<>17 62.4435 8 10 45
tell<>me<>18 59.5803 8 11 45
three<>gardeners<>19 58.4940 6 21 7
feet<>high<>20 58.0378 5 5 14
rose<>tree<>21 57.8118 4 4 5
great<>hurry<>22 57.6670 6 34 6
cheshire<>cat<>23 57.3294 5 7 8
guinea<>pigs<>24 55.1777 4 6 4
lobster<>quadrille<>24 55.1777 4 6 4
poor<>little<>25 55.1228 9 28 30
cried<>alice<>26 54.2515 7 7 82
sat<>down<>27 51.2520 9 14 85
|white<>kid<>28 50.8303 5 26 5
next<>witness<>29 49.6169 5 18 6
|poor<>alice<>30 48.9469 11 28 82
saucepan<>flew<>31 48.8388 3 3 3
dead<>silence<>32 48.2527 4 5 7
|old<>fellow<>33 46.7675 4 13 4
found<>herself<>34 46.6476 6 9 33
|whole<>pack<>35 46.0643 4 14 4
trembling<>voice<>36 45.0170 5 6 27
fast<>asleep<>37 44.3401 3 3 4
croquet<>ground<>37 44.3401 3 4 3
 that<>s <>37 44.3401 3 3 4
jury<>box<>38 44.0915 4 8 6
hand<>bit<>38 44.0915 4 8 6
 -More--(1%)
```

Creating a Stoplist

A bit of art ... with trial and error.

```
bridget@caterpillar: ~/class
File Edit View Search Terminal Help
mock<>turtle<>1 590.5000 59 59 61
march<>hare<>2 359.6439 31 31 31
white<>rabbit<>3 221.0014 21 26 23
thought<>=14ce<>4_184.9358 26 30 82
soo<>oop<>5 102.0875 7 7 7
beautiful<>soup<>6 94.5189 8 10 10
mary<>ann<>7 89.3550 6 6 6
any<>rate<>8 83.1894 8 25 8
yer<>honour<>9 76.2870 5 5 5
golden<>key<>10 74.6171 6 8 7
alice<>thought<>11 72.6410 12 143 13
few<>minutes<>12 72.1577 6 9 7
play<>croquet<>13 70.8803 5 5 6
kid<>gloves<>13 70.8803 5 5 6
my<>dear<>14 68.5555 11 54 20
oh<>dean<>15 63.9931 7 10 20
ootiful<>soo<>16 62.8158 4 4 4
beau<>ootiful<>16 62.8158 4 4 4
caucus<>race<>16 62.8158 4 4 4
let<>me<>17 62.4435 8 10 45
tell<>me<>18 59.5803 8 11 45
three<>gardeners<>19 58.4940 6 21 7
feet<>high<>20 58.0378 5 5 14
rose<>tree<>21 57.8118 4 4 5
great<>hurry<>22 57.6670 6 34 6
cheshire<>cat<>23 57.3294 5 7 8
guinea<>pigs<>24 55.1777 4 6 4
lobster<>guadrille<>24 55.1777 4 6 4
poor<>little<>25 55.1228 9 28 30
cried<>alice<>26 54.2515 7 7 82
sat<>down<>27 51.2520 9 14 85
white<>kid<>28 50.8303 5 26 5
next<>witness<>29 49.6169 5 18 6
poor<>alice<>30 48.9469 11 28 82
saucepan<>flew<>31 48.8388 3 3 3
dead<>silence<>32 48.2527 4 5 7
old<>fellow<>33 46.7675 4 13 4
found<>herself<>34 46.6476 6 9 33
whole<>pack<>35 46.0643 4 14 4
trembling<>voice<>36 45.0170 5 6 27
fast<>asleep<>37 44.3401 3 3 4
croquet<>ground<>37 44.3401 3 4 3
that<>s <>37144 3401 3 3 4
jury<>box<>38 44.0915 4 8 6
hand<>bit<>38 44.0915 4 8 6
 -More--(1%)
```


NLP Application that is using both:
Rules and Probability
Information

```
3785
mock<>turtle<>59
march<>hare<>31
thought<>alice<>26
white<>rabbit<>21
alice<>thought<>12
poor<>alice<>11
my<>dear<>11
poor<>little<>9
alice<>did<>9
sat<>down<>9
alice<>replied<>9
any<>rate<>8
let<>me<>8
little<>thing<>8
tell<>me<>8
alice<>looked<>8
beautiful<>soup<>8
looked<>down<>7
oh<>dear<>7
alice<>began<>7
soo<>oop<>7
same<>thing<>7
cried<>alice<>7
golden<>key<>6
few<>minutes<>6
great<>hurry<>6
little<>door<>6
mary<>ann<>6
down<>here<>6
three<>gardeners<>6
found<>herself<>6
play<>croquet<>5
      alice.2
                      Top L
Wrote /home/bridget/alice.2
```

Stoplists are commonly used

But ... would we necessarily want to use one with our Spelling Correction Application?

We went to Paris and stayed (their there)? eleven days

 $Avg(G^2(stayed their), G^2(their eleven))$ vs $Avg(G^2(stayed there), G^2(there eleven))$

Ngrams

- we are going to modify our definition slightly
- a continguous or non-continguous sequence of tokens that occur in some proximity to each other in a corpus

Ngrams

- We are going to modify our definition slightly
- a continguous or non-continguous sequence of tokens that occur in some proximity to each other in a corpus

to be or not to be

Our unique tokens: to be or not to be

Ngrams

- We are going to modify our definition slightly
- a continguous or non-continguous sequence of tokens that occur in some proximity to each other in a corpus

to be or not to be

Our unigrams are: to be or not to be

Ngrams

- We are going to modify our definition slightly
- a continguous or non-continguous sequence of tokens that occur in some proximity to each other in a corpus

to be or not to be

Our bigrams are: to be be or or not not to be

Ngrams

- we are going to modify our definition slightly
- a contiguous or non-contiguous sequence of tokens that occur in some proximity to each other in a corpus

to be or not to be

These are contiguous ngrams – the are situated next to each other in the text

Our bigrams are:

to be be or or not not to be

We open up the window under which an n-gram can occur while still maintaining order

to be or not to be

Our bigrams with a *window* size of three are:

to be to or

We open up the window under which an n-gram can occur while still maintaining order

Our bigrams with a *window* size of three are:

to be to or

We open up the window under which an n-gram can occur while still maintaining order

to be or not to be

Our bigrams with a *window* size of three are:

to be to or be not

We open up the window under which an n-gram can occur while still maintaining order

to be or not to be

Our bigrams with a *window* size of three are:

to be to or be not

We open up the window under which an n-gram can occur while still maintaining order

to be or not to be

Our bigrams with a *window* size of three are:

to be to or be or be not or not or to

We open up the window under which an n-gram can occur while still maintaining order

to be or not to be

Our bigrams with a *window* size of three are:

to be to or be or be not or not or to not be to be

We may think about this with feature selection

Why do this?

- Sparsity
 - Increases the number of tokens seen in the data set while still making them reasonable
- Expands the context

Term, Collocation or MWE Identification?

Term, Collocation or MWE Identification?

Probably Not

Spelling Correction

We went to Paris and stayed (their there)? eleven days

 $Avg(G^2(stayed their), G^2(their eleven))$ vs $Avg(G^2(stayed there), G^2(there eleven))$

Spelling Correction

We went to Paris and stayed (their there)? eleven days

 $Avg(G^2(stayed their), G^2(their eleven))$ vs $Avg(G^2(stayed there), G^2(there eleven))$

? Maybe?

Spelling Correction

How about smoothing?

We went to Paris and stayed (their there)? eleven days

 $Avg(G^2(stayed their), G^2(their eleven))$ vs $Avg(G^2(stayed there), G^2(there eleven))$

Questions?