Assignment 7

Assignment 7

For this assignment, I want you to use the Census ACS API to download and plot data. Complete the following steps:

1. Download data for all of the counties in Georgia on education levels.

```
# Get your own key and save as my_acs_key.txt
#my_acs_key<-readLines("my_acs_key.txt",warn = FALSE)
#acs_key<-my_acs_key
acs_key<-"a0f3f8cc65205f8040f93b4e9168f0f09a4cfdbb"
census_api_key(acs_key,install=FALSE,overwrite =TRUE)</pre>
```

To install your API key for use in future sessions, run this function with 'install = TRUE'.

```
# OR just paste it here.
```

2. Compute the proportion of the population in each county that has a bachelor's degree or above by county.

```
## Getting data from the 2015-2019 5-year ACS
```

Downloading feature geometry from the Census website. To cache shapefiles for use in future session

Loading ACS5 variables for 2019 from table B15003. To cache this dataset for faster access to ACS ta

```
## |
```

- 3. Download data for all of counties in Georgia for family income.
- 4. Compute the proportion of the population in each county that has family income above 75,000.

Getting data from the 2015-2019 5-year ACS

Downloading feature geometry from the Census website. To cache shapefiles for use in future session

Loading ACS5 variables for 2019 from table B19001. To cache this dataset for faster access to ACS ta

```
## Spread, so that each level of education gets its own column
income_vars<-income_vars%>%
   select(GEOID,NAME,variable,estimate)%>%
   spread(key=variable,value = estimate)

## rename to be all lower case
names(income_vars)<-str_to_lower(names(income_vars))</pre>
```

- 5. Download data for all of the counties in Georgia on health insurance coverage status.
- 6. Calculate the proportion of the population in each county that does not have health insurance.

- ## Getting data from the 2015-2019 5-year ACS
- ## Downloading feature geometry from the Census website. To cache shapefiles for use in future session
- ## Loading ACS5 variables for 2019 from table B27010. To cache this dataset for faster access to ACS ta

7. Plot the proportion uninsured as a function of education, and then as a function of income.

```
educ_vars_2<-educ_vars%>%as_tibble()%>%select(geoid,name,prop_bach)
income_vars_2<-income_vars%>%as_tibble()%>%select(geoid,name,prop_75p)
```

```
insurance_vars_2<-insurance_vars%>%as_tibble()%>%select(geoid,name,prop_without_health_ins)
combined<-left_join(educ_vars_2,income_vars_2,by=c("geoid","name"))
combined<-left_join(combined,insurance_vars_2,by=c("geoid","name"))</pre>
```

```
combined%>%
  ggplot(aes(x=prop_bach,y=prop_without_health_ins))+
  geom_point()
```



```
combined%>%
  ggplot(aes(x=prop_75p,y=prop_without_health_ins))+
  geom_point()
```


8. Model the proportion uninsured as a function of education and income.

```
mod1<-lm(prop_without_health_ins~prop_bach+prop_75p,data=combined)
summary(mod1)</pre>
```

```
##
## Call:
   lm(formula = prop_without_health_ins ~ prop_bach + prop_75p,
##
       data = combined)
##
## Residuals:
##
                    1Q
                          Median
                                        3Q
  -0.080145 -0.018971 -0.002199 0.016900 0.075749
##
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.19427
                           0.00744 26.112 < 2e-16 ***
## prop_bach
               -0.01596
                           0.04313 -0.370
                                              0.712
               -0.17160
                           0.04008 -4.282 3.23e-05 ***
## prop_75p
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.0297 on 156 degrees of freedom
## Multiple R-squared: 0.2789, Adjusted R-squared: 0.2697
## F-statistic: 30.17 on 2 and 156 DF, p-value: 8.383e-12
```