

Talleres de Análisis Político I

Sesión 4 11/12/2023

Pau Vall-Prat pau.vall@uc3m.es

Ejercicios

- Combinad la base de datos de resultados electorales con información sociodemográfica a nivel municipal del INE
 - Provad con distintos tipos de join()
 - ¿Por qué los resultados son distintos?
- Combinad datos de censo y votantes a nivel provincial con información a nivel provincial sobre votos por correo

Modificar la estructura de una base de datos

El paquete tidyr

Datos tidy

-HADLEY WICKHAM

In tidy data:

- each variable forms a column
- each observation forms a row
- each cell is a single measurement

each col	umnav	ariable	
~	/ \	V	
id	name	color	
1	floof	gray	K
2	max	black	each row an
3	cat	orange	Mobservatio
4	donut	gray	2//
5	merlin	black	4/
6	panda	calico	1

- En la filosofía tidy cada fila debe representar una observación.
- Muchas veces la estructura de los datos no es esta
- En una encuesta panel
 - Fila: individuo y columnas variables para cada ola
 - Fila: individuo <u>y ola</u>: columnas variables Idealmente, *con filosofía tidy*
 - Fila: individuo, ola y pregunta: una única columna con datos

Reestructurar los datos

- A veces nos puede interesar tener los datos en formato
- Ancho (wide)
 - Una fila, una unidad/observación

id	r1	r2	r3
A1	1	3	5
A2	2	4	6

- Se usa el paquete tidyr
- Especialmente las funciones
 - pivot_longer(): de wide a long
 - pivot_wider(): de long a wide

•	Largo	(long)
	Laigu	loligi

Una fila, un dato

id	r	valor
A1	r1	1
A1	r2	3
A1	r3	5
A2	r1	2
A2	r2	4
A2	r3	6

pivot_longer

- Principales argumentos
 - data: indicar nombre del objeto con los datos
 - cols: indicar los nombres de las variables/columnas que queremos que pasen a ser filas
 - En el ejemplo anterior: r1 y r2
 - names_to: especificar el nombre nuevo de la variable que identificará valores de columnas
 - En el ejemplo anterior: "r"
 - values_to: especificar el nombre de la variable con los valores
 - En el ejemplo anterior: "valor"

Cómo seleccionar columnas

- Según rango de la r1 a la r3 con: r1:r3
- Según característica de la columna: starts_with("...")
- Según las posiciones: 2:4
- Según un vector: c(r1, r2, r3)
- Según la clase de la columna: where(is.numeric)
- Combinando criterios con los operadores habituales (! & |)

pivot_wider

- Principales argumentos
 - data: indicar nombre del objeto con los datos
 - names_from: especificar el nombre la variable cuyos distintos valores identificarán nuevos nombres de columnas
 - En el ejemplo anterior: "r"
 - values_from: especificar el nombre de la variable con los valores que deben rellenar las celdas de las columnas
 - En el ejemplo anterior: "valor"

Ejercicio (15-20')

 Queremos conocer la posición del PP en el ranquin de partido más votado para cada municipio.
 Queremos una variable que lo indique.

Recomendación: seleccionad las variables imprescindibles

Pistas:

- Reshape wide → long
- Group_by, arrange, mutate [Pista: row_number()]
- Reshape long→wide
- Join!

Regresiones

Definición

- Una regresión consiste en buscar la línea que pase lo más cerca posible de los puntos en un diagrama de dispersión
- Muestra el vínculo en términos matemáticos entre una variable dependiente y una variable independiente
- Este vínculo es lineal
- Permite estimar un valor promedio condicional en la variable dependiente a partir de ciertos valores de las variables independientes.

Regresión: representación matemática

Idealmente

En la práctica

Todos estos elementos van a aparecer en los resultados de una tabla de regresión

Ventajas de la regresión OLS

- Informa de muchos aspectos de la relación entre variables
 - Dirección
 - Fuerza
 - Magnitud
 - Significación estadística
- Permite estimar rápidamente valores para cualquier rango
- Supuestos básicos fáciles de entender y comunicar
- Es parsimoniosa

Una tabla de medias condicionales también sería informativa, pero menos parsimoniosa

Regresiones con VI dicotómica

```
colony
                      peace
 <fct>
                      <dbl>
 Never colony
                      1.85
Colony
                        2.20
Call:
lm(formula = gpi_gpi ~ colony, data = qog)
Residuals:
   Min
           10 Median 30
                                Max
-0.8920 -0.3134 -0.1074 0.2016 1.7446
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.84740 0.05793 31.892 < 2e-16 ***
colonyColony 0.34859 0.07502 4.647 7.03e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.467 on 159 degrees of freedom
  (33 observations deleted due to missingness)
Multiple R-squared: 0.1196, Adjusted R-squared: 0.114
F-statistic: 21.59 on 1 and 159 DF, p-value: 7.031e-06
```

peace: indicador de "pacificidad" (presencia de conflicto en un país, en escala 1-5)

colony: indica si el país fue o es una colonia (variable dicotómica: 0 no, 1 sí)

Interpretar una tabla de regresión

	(1)	(2)
	Left-Right	Left-Right
Woman	-0.274***	
	(0.0282)	
Age		0.000211
		(0.000780)
Constant	5.372***	5.217***
	(0.0205)	(0.0422)
N	28445	28254
R-Square	0.00332	0.00000259
Adj. R-Square	0.00329	-0.0000328

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

Regresión multivariante

- Los modelos de regresión multivariante modelizan una relación lineal entre
 - Una variable dependiente
 - Dos o más variables independientes

$$Y = \alpha + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \dots + \epsilon$$

• Recordad, en la práctica

$$\widehat{Y} = \widehat{\alpha} + \widehat{\beta_1} \cdot x_1 + \widehat{\beta_2} \cdot x_2$$

Interpretación

- Al añadir más elementos en los modelos de regresión la interpretación de los coeficientes cambia ligeramente
- Constante: Valor de y cuando x_1 y x_2 son iguales a 0
- β_1 : efecto de x_1 sobre y siempre que x_2 se mantenga constante
- β_2 : efecto de x_2 sobre y siempre que x_1 se mantenga constante
- * se mantenga constante = cláusula ceteris paribus
- Hay que cuidar el lenguaje y distinguir la interpretación de coeficientes en función de regresiones bivariadas o multivariantes

Ejemplo

```
Call:
                             lm(formula = cabinet size ~ num parties + left cabinet, data = rcs)
Queremos entender por qué hay
                             Residuals:
                                          10 Median
variación en el número de
                                 Min
                                                          3Q
                                                                 Max
                             -4.6269 -1.6269 -0.2862 1.1358 5.3731
consejerías de las CCAA
                             Coefficients:
H1: A mayor número de partidos,
                                          Estimate Std. Error t value Pr(>|t|)
más consejerías
                                                       0.3061 33.343
                                                                        <2e-16 ***
                             (Intercept)
                                           10.2050
Para acomodar cargos para todos num_parties 0.4220
                                                       0.1872 2.254 0.0249 *
los partidos
                             left_cabinet
                                            0.2373
                                                       0.2504 0.948
                                                                        0.3441
                                             0 (***, 0.001 (**, 0.01 (*, 0.05 (, 0.1 ( , 1
                             Signif. codes:
H2: Los gobiernos de izquierdas
tendrán más consejerías
                             Residual standard error: 2.08 on 278 degrees of freedom
Tienden a gastar más
                             Multiple R-squared: 0.02088, Adjusted R-squared: 0.01384
                             F-statistic: 2.964 on 2 and 278 DF, p-value: 0.05324
```

Fuente de los datos: Vall-Prat & Rodon (2017)

Ejercicios

- Haced regresiones con la base de datos de resultados electorales de 2019 combinada con datos sociodemográficos
 - 1. Una regresión simple
 - 2. Una regresión múltiple

En la próxima sesión

Interpretar interacciones...