

1/23

FIG. 1

3/23

A**B**

FIG. 3

4/23

FIG. 4

A

5/23

B**C****FIG. 5**

6/23

FIG. 6

7/23

FIG. 7

8/23

FIG. 8

9/23

FIG. 9

10/23

FIG. 10

11/23

HR-N (916-950)

(native)

Ac-IQESLTTTSTAGKLQDVVNQNAQALNTLVKQLSS-amide

(Ala, Lys and Arg substituted)

Ac-IQAALTKTSAALGKLQAAVNRNAAAALNKLVKALSS-amide

(Aib=B substituted)

Ac-IQESLTBTSTAGKLQDVVNBNAQALNBLVKQLSS-amide

(Dxg=Z substituted)

Ac-IQESLTZTSTAGKLQDVVNZNAQALNZLVKQLSS-amide

HR-C (1151-1185)

(native)

Ac-ISGINASVVNIQKEIDRLNEVAKNLNESLIDDLQEL-amide

(Ala, Lys and Arg substituted)

Ac-IAAINKSVAAIQKEIARLNEVAKALNASLIRLQAL-amide

(Aib=B substituted)

Ac-ISGINBSVVNIQKEIDRLNBVAKNLNBSLIDDLQEL-amide

(Dxg=Z substituted)

Ac-ISGINZSVVNIQKEIDRLNZVAKNLNZSLIDDLQEL-amide

FIG. 11

HR-N (916-950)

Ac-IQESLTTTSTALGKLQDVVNQNAQALNTLVKQLSS-amide

1 i,i+4 lactam bridge

Ac-IQESLTTTSTALGKLQEVVNQNAQALNTLVKQLSS-amide

2 i,i+4 lactam bridge

Ac-IQESLTETSTKLGKLQDVVNQNAQALNELVKKLSS-amide

1 i,i+7 bridge

Ac-IQESLTTTSTALGELQDVVNENAQALNTLVKQLSS-amide

HR-C (1151-1185)

Ac-ISGINASVVNIQKEIDRLNEVAKNLNESLIDLQEL-amide

1 i,i+4 lactam bridge

Ac-ISGINASVVNIQKEIERLNKVAKNLNESLIDLQEL-amide

2 i,i+4 lactam bridge

Ac-ISGINESVVKIQKEIDRLNEVAKNLNESLIKLQEL-amide

1 i,i+7 bridge

Ac-ISGINASVVNIQEEIDRLNEVAKNLNESLIDLQEL-amide

 = covalent bond

FIG. 12

HR-N (916-950)

Ac-IQESLTTSTALGKLQDVVNQNAQALNTLVKQLSS-amide

(Ile and Leu substituted into the hydrophobic core)

Ac-IIESLTTITALGKLIDVLNQNIQALNTLIKQLSS-amide

HR-C (1151-1185)

Ac-ISGINASVVNIQKEIDRLNEVAKNLNESLIDLQEL-amide

(Ile substituted into the hydrophobic core)

Ac-ISGINASIVNIQKEIDRLNEVIKNLNESLIDLQEL-amide

FIG. 13

FIG. 14

FIG. 15

FIG. 16A

FIG. 16B

FIG. 17

18/23

HR-N peptides, HR-N1 to HR-N17.

Nucleotide sequences for SARS peptides. The amino acid region is shown in brackets.

HR-N1 (882-973)

ATGCAAATGGCATATAGTTCAATGGCATTGGAGTTACCCAAAATGTTCTCTATGAGAACCA
AAAACAAATGCCAACCAATTAAACAAGGCGATTAGTCAAATTCAAGAACACTTACAACAA
CATCAACTGCATTGGCAAGCTGCAAGACGTTAACCAGAACATGCTCAAGCATTAAACACA
CTTGTAAACAACCTAGCTCAATTGGTGCAATTCAAGTGTGCTAAATGATATCCTTC
GCGACTTGATAAAGTCGAGGCAGGTA

HR-N2 (916-973)

ATTCAAGAACACTTACAACAAACATCAACTGCATTGGCAAGCTGCAAGACGTTAACCA
GAATGCTCAAGCATTAAACACACTTGTAAACAACTTAGCTCTAATTGGTGCAATTCAA
GTGTGCTAAATGATATCCTTCGCGACTTGATAAAGTCGAGGCAGGTA

HR-N3 (927-973)

TTGGCAAGCTGCAAGACGTTAACCAAGAACATGCTCAAGCATTAAACACACTTGTAAACA
ACTTAGCTCTAATTGGTGCAATTCAAGTGTGCTAAATGATATCCTTCGCGACTTGATA
AAGTCGAGGCAGGTA

HR-N4 (974-1011)

CAAATTGACAGGTTAATTACAGGCAGACTTCAAAGCCTCAAACCTATGTAACACAAACACT
AATCAGGGCTGCTGAAATCAGGGCTCTGCTAATCTGCTGCTACTAAATG

HR-N5 (882-916)

ATGCAAATGGCATATAGTTCAATGGCATTGGAGTTACCCAAAATGTTCTCTATGAGAACCA
AAAACAAATGCCAACCAATTAAACAAGGCGATTAGTCAAATT

HR-N6 (888-922)

TTCAATGGCATGGAGTTACCCAAAATGTTCTCTATGAGAACCAAAACAAATGCCAACCA
ATTAAACAAGGCGATTAGTCAAATTCAAGAACACTTACAACA

HR-N7 (895-929)

CAAAATGTTCTCTATGAGAACCAAAACAAATGCCAACCAATTAAACAAGGCGATTAGTC
AATTCAAGAACACTTACAACAACATCAACTGCATTGGCAAG

FIG. 18A

19/23

HR-N8 (902-936)

CAAAAACAAATGCCAACCAATTAAACAAGGCGATTAGTCAAATTCAAGAATCACTTACAAC
AACATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAACCGAG

HR-N9 (909-943)

TTTAACAAGGCGATTAGTCAAATTCAAGAATCACTTACAACAAACATCAACTGCATTGGGCAA
GCTGCAAGACGTTGTTAACCGAGATGCTCAAGCATTAAACACA

HR-N10 (916-950)

ATTCAAGAATCACTTACAACAAACATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAACCA
GAATGCTCAAGCATTAAACACACTTGTAAACAAACTTAGCTCT

HR-N11 (923-957)

ACATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAACCGAGATGCTCAAGCATTAAACAC
ACTTGTAAACAACTTAGCTCTAATTTGGTGCAATTCAAGT

HR-N12 (931-965)

CAAGACGTTGTTAACCGAGATGCTCAAGCATTAAACACACTTGTAAACAAACTTAGCTCTAA
TTTGGTGCAATTCAAGTGTGCTAAATGATATCCTTCGCGA

HR-N13 (938-972)

GCTCAAGCATTAAACACACTTGTAAACAACTTAGCTCTAATTTGGTGCAATTCAAGTGT
GCTAAATGATATCCTTCGCGACTTGATAAAGTCGAGGCAGGAG

HR-N14 (945-979)

GTTAAACAACTTAGCTCTAATTTGGTGCAATTCAAGTGTGCTAAATGATATCCTTCGCG
ACTTGATAAAGTCGAGGCAGGAGGTACAAATTGACAGGTTAATT

HR-N15 (952-986)

TTTGGTGCAATTCAAGTGTGCTAAATGATATCCTTCGCGACTTGATAAAGTCGAGGCAGGAG
GGTACAAATTGACAGGTTAATTACAGGCAGACTTCAAAGCCTT

HR-N16 (959-993)

CTAAATGATATCCTTCGCGACTTGATAAAGTCGAGGCAGGAGGTACAAATTGACAGGTTAAT
TACAGGCAGACTTCAAAGCCTTCAAACCTATGTAACACAAACAA

HR-N17 (966-1000)

CTTGATAAAGTCGAGGCAGGAGGTACAAATTGACAGGTTAATTACAGGCAGACTTCAAAGCCT
TCAAACCTATGTAACACAAACAACTAATCAGGGCTGCTGAAATC

FIG. 18B

20/23

HR-C peptides, HR-C1 to HR-C4

Nucleotide sequences for SARS peptides. The amino acid region is shown in brackets.

HR-C1 (1147-1185)

GATGTTGATCTGGCGACATTCAAGGCATTAACGCTCTGTCGTCAACATTCAAAAAGAAAT
TGACCGCCTCAATGAGGTCGCTAAAAATTAAATGAATCACTCATTGACCTTCAAGAATTG

HR-C2 (1165-1185)

ATTGACCGCCTCAATGAGGTCGCTAAAAATTAAATGAATCACTCATTGACCTTCAAGAATT
G

HR-C3 (1158-1185)

GTCGTCAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTCGCTAAAAATTAAATGAATC
ACTCATTGACCTTCAAGAATTG

HR-C4 (1151-1185)

ATTCAGGCATTAACGCTCTGTCGTCAACATTCAAAAAGAAATTGACCGCCTCAATGAGGT
CGCTAAAAATTAAATGAATCACTCATTGACCTTCAAGAATTG

Amino acid sequence for SARS peptide HR-C1

HR-C1 (1147-1185)

DLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQEL

FIG. 19

HR-N

Nucleotide sequences for SARS peptides. The amino acid region is shown in brackets.

HR-N (882-1011)

```
ATGCAAATGGCATATAGGTTCAATGGCATTGGAGTTACCCAAAATGTTCTCTATGAG  
AACCAAAAAACAAATGCCAACCAATTAAACAAGGCATTAGTCAAATTCAAGAATCACTTAC  
AACAAACATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAACCAGAATGCTCAAGCATTAA  
ACACACCTGTTAAACAACCTAGCTCTAATTTGGTGCAATTCAAGTGTGCTAAATGATATC  
CTTCGCGACTTGATAAAGTCGAGGCAGGTACAAATTGACAGGTTAATTACAGGCAGACT  
TCAAAGCCTTCAAACCTATGTAACACAACTAATCAGGGCTGCTGAAATCAGGGCTTCTG  
CTAATCTTGCTGCTACTAAAATG
```

FIG. 20

ATGTTATTTCTTATTATTCTACTCTCACTAGTGGTAGTGACCTGACCGGTGCACCACTTTGATG
ATGTTCAAGCTCCTAATTACACTCAACACATACTCATCTATGAGGGGGTTACTATCCTGATGAAATT
TAGATCAGACACTCTTATTAACTCAGGATTATTCTTCCATTATTCTAATGTTACAGGGTTCAT
ACTATTAATCATACGTTGGCAACCCTGTACACCTTTAAGGATGGTATTATTGCTGCCACAGAGA
AATCAAATGTTGCCGGTTGGTTCTACCATGAACAACAAGTCACAGTCGGTATTATT
TAACAATTCTACTAATGTTGTTACAGAGCATGTAACCTTGAATTGTGTGACAACCCTTCTGCTGTT
TCTAAACCCATGGGTACACAGACACATACTATGATATTGATAATGCATTAAATTGCACTTCGAGTACA
TATCTGATGCCTTTCGCTTGATGTTCAGAAAAGTCAGGTAATTAAACACTTACGAGAGTTGTGTT
AAAAAATAAAGATGGGTTCTCATGTTATAAGGGCTACACCTATAGATGTAGTCGTGATCTACCT
TCTGGTTTAACACTTGAAACCTATTAAAGTTGCCTTGGTATTAACATTACAAATTAGAGCCA
TTCTTACAGCCTTTCACCTGCTCAAGACATTGGGCACGTACAGTCAGCCTATTGTTGGCTATT
AAAGCCAACATACATTATGCTCAAGTATGATGAAAATGGTACAATCACAGATGCTGTTGATTGTTCTCAA
AATCCACTTGCTGAACCTAACATGCTGTAAAGAGCTTGAGATTGACAAGGAATTACAGACCTCTA
ATTTCAGGGTTGTTCCCTCAGGAGATGTTGAGATTCCCTAATATTACAAACTTGTGTCCTTGGAGA
GGTTTTAATGCTACTAAATTCCCTCTGTCTATGCATGGAGAGAAAAAAATTCTAATTGTTGCT
GATTACTCTGTGCTCTACAACTCAACATTTCACCTTAAGTGTATGGCTATGGCTTCTGCCACTAAGT
TGAATGATCTTGCTTCCAATGTCATGCAGATTCTTGTAGTCAGGGAGATGATGTAAGACAAAT
AGCGCCAGGACAAACTGGTGTATTGCTGATTATAATTAAATTGCCAGATGATTTCATGGGTTGTGTC
CTGCTTGGAAATACTAGGAACATTGATGCTACTCAACTGGTAATTATAATTAAATATAGGTATCTTA
GACATGGCAAGCTTAGGCCCTTGAGAGAGACATATCTAATGTGCTTCTCCCCTGATGGCAAACCTG
CACCCCCACCTGCTCTAATTGTATTGCCATTAAATGATTATGGTTTACACCAACTGGCATTGGC
TACCAACCTTACAGAGTTGAGACTTCTTTGAACCTTAAATGCACCGGCCACGGTTGACCAA
AATTATCCACTGACCTTATTAAGAACAGTGTCAATTAAATTAAATGGACTCACTGGTACTGGT
GTTAACTCCTCTTCAAAGAGATTCAACCATTCAACAATTGGCGTATGTTCTGATTCACTGAT
TCCGTTGAGATCCTAAACATCTGAAATTAGACATTACCTTGCTCTTGGGGGTGTAAGTGTAA
TTACACCTGGAACAAATGCTCATCTGAAGTTGCTTCTATATCAAGATGTTACTGCACTGATGTT
TACAGCAATTCTGCAACTCACACCAGCTGGCGCATATTACTGGAAACATGTATTCCAG
ACTCAAGCAGGCTGTCTATAGGAGCTGAGCATGTCGACACTTCTTATGAGTGCACATTCTATTGGAG
CTGGCATTGCTAGTACCATACAGTTCTTATTACGTAGTACTAGCaaaaATCTATTGTGGCTTA
TACTATGCTTCTTAGGTGCTGATAGTTCAATTGCTTACTCTAATAACACCATTGCTATACCTACTA
TCAATTAGCATTACTACAGAAGTAATGCCCTGTTCTATGGCTAAACCTCCGTAGATTGTAATATGTACA
TCTGCGGAGATTCTACTGAATGTGCTAATTGCTTCTCCAATATGGTAGCTTGCACACAACAAATCG
TGCACCTCAGGTATTGCTGCAACAGGATCGAACACACAGTGAAGTGTGCTCAAGTCACAAACAAATG
TACAAAACCCAACTTGAATATTGGGTTTAATTTCACAAATATTACCTGACCCCTCTAAAGC
CAACTAAGAGGTCTTTATTGAGGACTTGCTTTAATAAGGTGACACTCGCTGATGCTGGCTCATGAA
GCAATATGGCAATGCCCTAGGTGATATTAAATGCTAGAGATCTATTGTGCGAGAAGTTCAATGGACTT
ACAGTGTGCCACCTGCTCACTGATGATATGATTGCTGCCTACACTGCTGCTAGTTAGTGGTACTG
CCACTGCTGGATGGACATTGGTGTGCTGGCGCTGCTCTCAAATACCTTGTATGCAAATGGCATATAG
GTTCAATGGCATGGAGTTACCCAAATGTTCTATGAGAACCAAAACAAATGCCAACCAATTAAAC
AAGGCATTAGTCAAATTCAAGAACACTTACAACACATCAACTGCATTGGCAAGCTGCAAGACGTTG
TTAACCGAAATGCTCAAGCATTAAACACACTTGTAAACAACATTAGCTCTAATTGGTCAATTCAAG
TGTGCTAAATGATATCCTTCGCGACTGATAAAGTCGAGGCGGAGGTACAAATTGACAGGTTAATTACA
GGCAGACTTCAAAGCCTCAAAACCTATGTAACACAAACAACTATCAGGGCTGCTGAAATCAGGGCTTCTG
CTAATCTGCTGCTACTAAAATGTCAGTGTGTTCTGGACAATCAAAAGAGTTGACTTTGTGGAAA
GGGCTACCACCTATGCTTCTCCACAAGCAGCCCCGATGGTGTCTTACATGTCACGTATGTG
CCATCCCAGGAGAGGAACCTCACACAGCGCCAGCAATTGTCATGAAGGCAAAGCATACTTCCCTCGTG
AAGGTGTTTGTGTTAATGGCACTTCTGGTTATTACACAGAGGAACCTCTTTCTCCACAAATAAT
TACTACAGACAATACATTGCTCAGGAAATTGTGATGTCGTTATTGGCATCTAACACACAGTTAT
GATCCTCTGCAACCTGAGCTGACTCATCAAAGAAGAGCTGGACAAGTACTCTAAACATACATCAC
CAGATGTTGATCTGGCGACATTCAAGGCATTAACGCTTCTGTCGTCAACATTCAAAAGAAATTGACCG
CCTCAATGAGGTGCTAAAATTTAAATGAATCACTCATTGACCTTCAAGAATTGGAAAATATGAGCAA
TATATTAAATGGCCTGGTATGTTGGCTGGCTCATTGCTGGACTAATTGCCATGTCATGGTACAA
TCTTGCTTGTGCACTGACTAGTTGTCAGTTGCCTCAAGGGTGCATGCTCTGTTGCTGCAA
GTTTGATGAGGATGACTCTGAGCCAGTCTCAAGGGTGTCAAATTACACATAA

FIG. 21

HR-C Native (SEQ ID NO:48).

1150	1161	1171	1181
DISGINASVNV	I<u>QKEIDRLNE</u>	VAKNLNE SLI	DLQEL
ga d a d	a d	a d a	d

HR-C Analogue 1 (SEQ ID NO:67). Modulation of the “a” residue position

1150	1161	1171	1181
DISGINASVNV	I<u>QKEIDRLNE</u>	V<u>IKNLNE</u> SLI	DLQEL

HR-C Analogue 2 (SEQ ID NO:68). Change of Helical propensity

1150	1161	1171	1181
DISGINASVNV	I<u>QKEIARLNE</u>	VAKALNE SLI	DLQEL

HR-C Analogue 3 (SEQ ID NO:69). Change of Helical propensity and modulation of “a” position

1150	1161	1171	1181
DISGINASVNV	I<u>QKEIARLNE</u>	V<u>IKALNE</u> SLI	DLQEL

HR-C Analogue 4 (SEQ ID NO:70). Change of Helical propensity

1150	1161	1171	1181
DI <u>AA</u> INASV <u>AN</u>	I<u>QKEIARLNE</u>	VAKALNE SL <u>A</u>	<u>ALQAL</u>

HR-C Analogue 5 (SEQ ID NO:71). Introduction of lactam

1150	1161	1171	1181
DISGINASVNV	I<u>QKEI</u><u>ERLNK</u>	VAKNLNE SLI	DLQEL
	[]		

HR-C Analogue 6 (SEQ ID NO:72). Introduction of salt bridge

1150	1161	1171	1181
DISGINASVNV	I<u>QKEI</u><u>ERLNK</u>	VAKNLNE SLI	DLQEL

HR-C Analogue 7 (SEQ ID NO:73).

1150	1161	1171	1181
DI <u>EE</u> IN <u>KKV</u> <u>EE</u>	I<u>QK</u><u>KIEELNK</u>	KAEELNK <u>KK</u> <u>LE</u>	<u>ELQ</u> KK

HR-C Analogue 8 (SEQ ID NO:74). Introduction of salt bridges

1150	1161	1171	1181
DISGINASV <u>VE</u>	I<u>QK</u><u>KKIEELNK</u>	KAEELNK <u>KK</u> <u>LI</u>	DLQEL