AlxImpact Competition 2022 Healthcare Track

COSMO

A redesigned response to future pandemics

Vietnam failed to control the fourth wave of Delta variant due to late and ineffective interventions compared to previous waves.

The first three waves were contained primarily by **early** social distancing, contact tracing, and lockdown.

In the 4th wave alone, total cases and deaths account for the majority of all waves combined ...

Cases:

Deaths: **99.0%**

... since Government intervened too late and ineffectively over a long period of time.

Policy failure due to existing problems of current models could be prevented by a more comprehensive simulation model informed by analytics.

Predictive analytics predicts future circumstances based on past pandemic trends...

BUT it has the data quality problem:

Too reliant on limited historical data

Less reliable assumptionbased scenarios **Predictive simulation** gives intervention recommendations by simulating real-world interactions...

BUT it has the **model sophistication problem**:

Oversimplified policy recommendations

No supporting data for policy effectiveness

Our approach, COSMO, helps solve the weaknesses of current models by using analytics to support a redesigned simulation model to recommend intervention stages to policy makers.

A recommendation model powered by OxCGRT data, based on the existing Pandemic Simulator, and enhanced by Reinforcement Learning.

Intervention Effectiveness Scorer scores feature importance for each intervention measure based on the country.

Source: The Oxford Covid-19 Government Response Tracker

Projection Simulator customizes multi-level government interventions to simulate covid-19 progression in a data-efficient way.

Weighted Average Scores

Policy	Score
C1	0.25
C2	0.56
C4	0.95
H1	0.8
H7	0.15

Formulated Intervention Stages Based On Selected Policies

Stage 1: C1, H7

Stage 3: C1, C2, C4, H1, H7

Population Demographics Parameters:

- **Demographics**
- Personal routine
- Location-based interactions(supermarket, gym, public transport, etc)
- **Event-based** interactions(public holidays)

Testing Contact Tracing Vaccination

Daily Observations:

- Infection summary
- Testing summary
- Economic openness

Source: Pandemic Simulator (Sony AI)

Pandemic Simulator

Persons

24 hourly steps

SEIR Infection Model

Reinforcement Learning learns from simulated observations and recommends interventions that are timely, effective and balance competing objectives.

Н

M

Meaningful recommendations shorten decision-making time lag, enable prompt intervention and reduce the number of infected cases and deaths.

Infected Cases

time (days)

Late Intervention

Earlier Intervention: 20 days

Reduced Cases:

250++

Reduced Deaths:

15++

time (days)

Late Intervention

Hospitalized Cases

20

40

time (days)

Timely Intervention

60

80

: Intervention Delay (Days) (*) Population size: 1000

time (days)

Timely Intervention

APPROACH TEAM MODEL FLOW **IMPACT PROBLEM**

We are a diverse team of computer, data science, economics and business backgrounds, who are passionate about creating meaningful human-centric innovations.

Duong Pham (Computer Science) NUS

Hao Lam (Business) FUV

Dung Nguyen (Economics) FUV

Hung Nham (Data Science) NUS

Thank You!

Discussion

