Integrais triplos em coordenadas retangulares

- 1. Calcule o valor dos seguintes integrais:
 - (a) $\iiint_P (xyz) dV$ onde P é o paralelepípedo $[0,1] \times [-1,1] \times [1,2]$.
 - (b) $\iiint_R f \, dV$ onde f é uma função real de 3 variáveis definida por $f(x,y,z) = x^2 + 5y^2 z$ e R é a região definida por $0 \le x \le 1, \ 1 \le y \le 2, \ -1 \le z \le 1$.
- 2. Coloque os limites de integração no integral $\iiint_R f(x,y,z) dV$ onde a região R é definida da forma:
 - (a) R é o cilindro $x^2 + y^2 \le 1$, limitado pelos planos z = 0 e z = 1.
 - (b) R é o sólido contido no cilindro $x^2 + y^2 \le 1$ e limitado pelos planos z = 0, z = 1, y = 0 e y = 1.
 - (c) R é o tetraedro limitado pelos planos x + y + z = 1, x = 0, y = 0 e z = 0.
- 3. Calcule os volumes dos sólidos:
 - (a) limitado pelo plano z=x, pela superfície $z=x^2$ e os planos definidos por y=0 e y=2.
 - (b) do tetraedro do exercício anterior.

Integrais triplos em coordenadas cilíndricas e esféricas

- 1. Usando coordenadas cilíndricas, calcule $\iiint_R f \, dV$ onde $f(x,y,z) = x^2 + y^2 + z^2$ e R é definido por $0 \le r \le 4$, $\frac{\pi}{2} \le \theta \le \pi$, $-1 \le z \le 1$.
- 2. Usando coordenadas cilíndricas, escreva o integral iterado que lhe permite calcular o volume do:
 - (a) sólido limitado pelo cilindro $x^2 + y^2 = 4$, z = 0 e z = 2.
 - (b) sólido limitado pelo cilindro $x^2 + z^2 = 4$, y = -1 e y = 1.
 - (c) sólido limitado pelo parabolóide $z = x^2 + y^2$ e z = 4.
 - (d) sólido limitado pelo parabolóide $z = 16 x^2 y^2$ e z = 0.
 - (e) sólido limitado pelos cones $z = \sqrt{8 x^2 y^2}$ e $z = \sqrt{x^2 + y^2}$.
- 3. Usando coordenadas esféricas, escreva o integral iterado que lhe permite calcular o volume:
 - (a) de uma esfera de raio 2.
 - (b) de uma semi-esfera de raio 1.
 - (c) da parte da esfera de raio 1 que se encontra no 1º octante.
 - (d) do sólido limitado pela esferas de raio 1 e raio 2 que se encontra acima do plano XOY.