Neural Network Parameters: Weights, Biases, and Total Parameters

1. Basic Terminology

Before diving into calculations, let's understand the fundamental concepts:

- **Neuron**: The basic unit in a neural network that receives inputs, applies a weighted sum, adds a bias, and passes the result through an activation function.
 - Formula: $z = w_1x_1 + w_2x_2 + \dots + w_nx_n + b$
 - w_i : Weight for input x_i
 - *b*: Bias for the neuron
- Layer: A collection of neurons operating together. Layers are categorized as:
 - Input Layer: Where the data enters the network (no weights/biases here).
 - Hidden Layers: Intermediate layers between input and output layers.
 - Output Layer: Produces the final prediction/output.
- Parameters: Trainable variables in the network.
 - Weights: One for each connection between neurons in consecutive layers.
 - Biases: One bias for each neuron (except input neurons).

2. Calculating Parameters

To calculate the total number of parameters in a neural network, we need to compute weights and biases layer by layer.

Weight Calculation

The number of weights is determined by the connections between neurons in two consecutive layers:

Number of weights = (Number of neurons in previous layer) × (Number of neurons in current layer)

Bias Calculation

Each neuron (except input neurons) has one bias associated with it:

Number of biases = (Number of neurons in current layer)

Example Neural Network

Suppose we have the following architecture:

- 1. **Input Layer**: 4 neurons (x_1, x_2, x_3, x_4)
- 2. **Hidden Layer 1**: 5 neurons $(h_1, h_2, h_3, h_4, h_5)$
- 3. Hidden Layer 2: 3 neurons (h_6, h_7, h_8)
- 4. Output Layer: 2 neurons (y_1, y_2)

Step-by-Step Calculation

Layer 1 (Input → Hidden Layer 1)

- Weights:
 - Connections between 4 input neurons and 5 hidden neurons:

$$4 \times 5 = 20$$

- Biases:
 - 1 bias for each of the 5 neurons in Hidden Layer 1:

5

Layer 2 (Hidden Layer 1 → **Hidden Layer 2)**

- Weights:
 - Connections between 5 neurons in Hidden Layer 1 and 3 neurons in Hidden Layer 2:

$$5 \times 3 = 15$$

- Biases:
 - 1 bias for each of the 3 neurons in Hidden Layer 2:

3

Layer 3 (Hidden Layer 2 → **Output Layer)**

- Weights:
 - Connections between 3 neurons in Hidden Layer 2 and 2 neurons in the Output Layer:

$$3 \times 2 = 6$$

- Biases:
 - 1 bias for each of the 2 neurons in the Output Layer:

Total Parameters

Add all the weights and biases across layers:

Total Weights =
$$20 + 15 + 6 = 41$$

Total Biases =
$$5 + 3 + 2 = 10$$

Total Parameters =
$$41 + 10 = 51$$

General Formula for Total Parameters

For a neural network with \boldsymbol{L} layers:

1. Weights:

Total Weights =
$$\sum_{i=1}^{L}$$
 (neurons in layer i) × (neurons in layer $(i+1)$)

2. Biases:

Total Biases =
$$\sum_{i=1}^{L}$$
 (neurons in layer $(i + 1)$)

3. Total Parameters:

Total Parameters = Total Weights + Total Biases

Conceptual Notes

- **Increasing Parameters**: Adding more neurons or layers increases the parameters, which makes the model more expressive but risks overfitting.
- Bias Role: Bias shifts the activation function, enabling the network to model data better.
- Weight Updates: During training, weights and biases are adjusted using optimization algorithms (e.g., Gradient Descent).