$MA1522\ Notes\ (AY24/25\ Sem1)$

Michael Yang

September 3, 2024

Chapter 2: Matrix Algebra

- 2.1 Definition and Special types of Matrices
- 2.2 Matrix Algebra
- 2.3 Linear System and Matrix Equation
- 2.4 Inverse of Matrices
- 2.5 Elementary Matrices
- 2.6 Equivalent Statements for Invertibility
- 2.7 LU Factorization
- 2.8 Determinant by Cofactor Expansion
- 2.9 Determinant by Reduction
- 2.10 Properties of Determinant

Chapter 3: Euclidean Vector Spaces

3.1 Euclidian Vector Spaces

Definition

A (real) n-vector is a collection of n ordered real numbers,

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}, where \ v_i \in \mathbb{R} \ for \ i = 1, \dots, n.$$

The real number v_i is called the *i*-th coordinate of the vector \mathbf{v} . The **Euclidean** n-space, denoted \mathbb{R}^n , is the collection of all n-vectors

$$\mathbb{R}^{n} = \left\{ v = \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{pmatrix} \middle| v_{i} \in \mathbb{R} \text{ for } i = 1, \dots, n. \right\}$$

Properties of Vector Addition and Scalar Multiplication

Since vectors are matrices (column vectors are $n \times 1$ matrices and row vectors are $1 \times n$ matrices), the properties of matrix addition and scalar multiplication holds for vectors. For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and scalars $a, b \in \mathbb{R}$,

- 1. The sum $\mathbf{u} + \mathbf{v}$ is a vector in \mathbb{R}^n
- 2. (Commutative) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. (Associative) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- 4. (Zero vector) $\mathbf{0} + \mathbf{v} = \mathbf{v}$.
- 5. The negative $-\mathbf{v}$ is a vector in \mathbb{R}^n such that $\mathbf{v} \mathbf{v} = \mathbf{0}$.
- 6. (Scalar multiple) $a\mathbf{v}$ is a vector in \mathbb{R}^n .
- 7. (Distribution) $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$.
- 8. (Distribution) $(a + b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$.
- 9. (Associativity of scalar multiplication) $(ab)\mathbf{u} = a(b\mathbf{u})$.
- 10. If $a\mathbf{u} = \mathbf{0}$, then either a = 0 or $\mathbf{u} = \mathbf{0}$.

Definition

A linear combination of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in \mathbb{R}^n$ is $c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k$ for some $c_1, c_2, \dots, c_k \in \mathbb{R}^k$.

4

Definition

A set V equipped with addition and scalar multiplication is said to be a vector space over \mathbb{R} if it satisfies the following axioms.

- 1. For any vectors \mathbf{u}, \mathbf{v} in V, the sum $\mathbf{u} + \mathbf{v}$ is in V.
- 2. (Commutative) For any vectors \mathbf{u}, \mathbf{v} in $V, \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. (Associative) For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in $V, \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- 4. (Zero vector) There is a vector $\mathbf{0}$ in V such that $\mathbf{0} + \mathbf{v} = \mathbf{v}$ for all vectors \mathbf{v} in V.
- 5. (Negative) For any vector \mathbf{u} in V, there exists a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For any scalar a in \mathbb{R} and vector \mathbf{v} in V, $a\mathbf{v}$ is a vector in V.
- 7. (Distribution) For any scalar a in \mathbb{R} and vector \mathbf{u}, \mathbf{v} in V, $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$.
- 8. (Distribution) For any scalars a, b in \mathbb{R} and vector \mathbf{u} in V, $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$.
- 9. (Associativity of scalar multiplication) For any scalars a, b in \mathbb{R} and vector \mathbf{u} in V, $a(b\mathbf{u}) = (ab)\mathbf{u}$.
- 10. For any vector \mathbf{u} in V, $1\mathbf{u} = \mathbf{u}$.

3.2 Dot Product, Norm, Distance

Definition

The inner product (or dot product) of vectors $\mathbf{u} = (u_i)$ and $\mathbf{v} = (v_i)$ in \mathbb{R}^n is defined to be

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2, + \dots + u_n v_n.$$

Define the **norm** of a vector $\mathbf{u} \in \mathbb{R}^n$, $\mathbf{u} = (u_i)$, to be the square root of the inner product of \mathbf{u} with itself, and is denoted as $||\mathbf{u}||$,

$$||u|| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}.$$

This is also known as the **length** or **magnitude** of the vector.

Properties of inner product and norm

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ be vectors and $a, b, c \in \mathbb{R}$ be real numbers.

1. Inner product is **symmetric**,

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
.

2. Inner product **commutes** with scalar multiple,

$$c\mathbf{u} \cdot \mathbf{v} = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}).$$

3. Inner product is **distributive**,

$$\mathbf{u} \cdot (a\mathbf{v} + b\mathbf{w}) = a\mathbf{u} \cdot \mathbf{v} + b\mathbf{u} \cdot \mathbf{w}$$

- 4. Inner product is **positive definite**, $\mathbf{u} \cdot \mathbf{u} \ge 0$ with equality if and only if $\mathbf{u} = \mathbf{0}$.
- 5. $||c\mathbf{u}|| = |c| ||\mathbf{u}||$.

Definition

A vector $\mathbf{u} \in \mathbb{R}^n$ is a **unit vector** if its norm is 1,

$$||\mathbf{u}|| = 1$$

Normalizing a vector

Let **u** be a nonzero vector $\mathbf{u} \neq \mathbf{0}$. By multiplying by the reciprocal of the norm, we get a unit vector,

$$u \longrightarrow \frac{u}{||u||}$$

This is called **normalizing u**.

Definition

The **distance** between two vectors \mathbf{u} and \mathbf{v} , denoted as $d(\mathbf{u}, \mathbf{v})$, is defined to be

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||.$$

Define the angle θ between two nonzero vectors, $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$ to be such that

$$\frac{\mathbf{u}\cdot\mathbf{v}}{||\mathbf{u}||\;||\mathbf{v}||}$$

6

3.3 Linear Combinations and Linear Spans

Definition

A linear combination of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in \mathbb{R}^n$ is

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k$$
, for some $c_1, c_2, \ldots c_k \in \mathbb{R}$.

The scalars $c_1, c_2, \dots c_k$ are called **coefficients**.

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ be vectors in \mathbb{R}^n . The **span** (or **linear span**) of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ is the subset of \mathbb{R}^n containing all the linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$,

$$\operatorname{span}\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\} = \{c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k \mid c_1, c_2, \dots, c_k \in \mathbb{R}\}.$$

Algorithm to Check for Linear Combination

3.4 Subspaces

- 3.5 Linear Independence
- 3.6 Basis and Coordinates
- 3.7 Dimensions

Theorem

Let V be a subspace of \mathbb{R}^n and B a basis for V. Suppose B contains k vectors, |B| = k. Let v_1, v_2, \ldots, v_k be vectors in V. Then

- 1. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is linearly independent if and only if $[\mathbf{v}_1]_B, [\mathbf{v}_2]_B, \dots, [\mathbf{v}_k]_B$ is linearly independent (respectively, dependent) in \mathbb{R}^k ; and
- 2. $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ spans V if and only if $[\mathbf{v}_1]_B, [\mathbf{v}_2]_B, \dots, [\mathbf{v}_k]_B$ spans \mathbb{R}^k .

Corolalry

Let V be a subspace of \mathbb{R}^n and V a basis for B. Suppose B contains k vectors, |B| = k.

- 1. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a subset of V with m > k, then S is linearly dependent.
- 2. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a subset of V with m < k, then S cannot span V.

Corolalry

Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ and $T = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ are bases for a subspace $V \subseteq \mathbb{R}^n$. Then k = m.

Definition

Let V be a subspace of \mathbb{R}^n . The **dimension** of V, denoted by $\dim(V)$, is defined to be the number of vectors in any basis of V.

Theorem

(Dimension of solution space) Let **A** be a $m \times n$ matrix. The **number of non-pivot columns** in the reduced row-echelon form of A is the **dimension** of the solution space

$$V = \{ \mathbf{u} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{u} = \mathbf{0} \}.$$

Theorem

(Spanning Set Theorem) Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a subset of vectors in \mathbb{R}^n , and let V = span(S). Suppose V is not the zero space, $V \neq \{\mathbf{0}\}$. Then there must be a subset of S that is a basis for V.

Theorem

(Linear Independence Theorem) Let V be a subspace of \mathbb{R}^n and $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ a linearly independent subset of V, $S \subseteq V$. Then there must be a set T containing S, $S \subseteq T$ such that T is a basis for V.

3.8 Transition Matrices

Definition

Let V be a subspace of \mathbb{R}^n . Suppose $S = \{u_1, \ldots, u_k\}$ and $T = \{v_1, \ldots, v_k\}$ are **basis** for the subspace V. Define the **transition matrix** from T to S to be

$$\mathbf{P} = ([\mathbf{v}_1]_S \quad [\mathbf{v}_2]_S \quad \dots \quad [\mathbf{v}_k]_S),$$

the matrix whose columns are the coordinates of the vectors in T relative to the basis S.

Theorem

(Transition Matrix) Let V be a subspace of \mathbb{R}^n . Suppose $S = \{u_1, \dots, u_k\}$ are **bases** for the subspace V. Let **P** be the transition matrix from T to S. Then for any vector w in V,

$$[\mathbf{w}]_S = \mathbf{P}[\mathbf{w}]_T.$$

Algorithm to find Transition Matrix

Let $S = \{u_1, \ldots, u_k\}$ and $T = \{v_1, \ldots, v_k\}$ be a basis for a subspace V in \mathbb{R}^n . To find \mathbf{P} , the transition matrix from T to S,

$$("S"|"T") = (u_1 \quad u_2 \quad \dots u_k \quad | \quad v_1 \quad v_2 \quad \dots v_k) \xrightarrow{\operatorname{rref}} \begin{pmatrix} \mathbf{I}_k & \mathbf{P} \\ \mathbf{0}_{(n-k)\times k} & \mathbf{0}_{(n-k)\times k} \end{pmatrix}$$

Theorem

(Inverse of Transition Matrix) Suppose $S = \{u_1, \ldots, u_k\}$ and $T = \{v_1, \ldots, v_k\}$ are **bases** for a subspace V of \mathbb{R}^n . Let **P** be the transition matrix from T to S. Then P^{-1} is the transition matrix from S to T.

8

Chapter 4: Subspaces Associated to a Matrix

- 4.1 Column Space, Row Space, and Nullspace
- 4.2 Rank