What is Al

- Thinking humanly
- Thinking Rationally
- Acting Humanly: Turing test. A computer passes the test of intelligence. if it can fool a human interrogator
- Acting Rationally

Basic Search

- Problem Formulation
 - o States: all reachable states from the initial state by any sequence of actions
 - Initial state: the state where the problem starts
 - Actions: legal actions on state
 - Next state: a description of what each actions does, Result(s, a)
 - Goal test: determine whether a given state is a goal state.
 - Path cost: function that assigns a numeric cost to each other.
- Search Methods: Performance Metrics
 - o Completeness: Does it always find a solution if it exists
 - o Optimality: Does it always find the least-cost solution
 - o Time complexity: nodes generated expanded
 - o maximum nodes in memory
- Uniformed Search Methods
 - o BFS: Breadth-first search
 - Costs in the search tree is same
 - Expand the shallowest unexpanded node
 - o UCS: Uniform-cost search
 - Expand the cheapest unexpected node
 - the costs in the search tree may be different
 - o DFS: Depth-first search
 - expand the deepest unexpanded node
 - not complete, not optimal
 - o DLS: Depth-limited search
 - nodes at depth *l* have no successors
 - Limit *l* is defined based on domain knowledge
 - IDS: Iterative deepening search(IDS)
 - Apply DLS with increasing limits
 - IDS is the preferred uninformed search method when the search space is large and the depth of the solution is unknown

- o Bidirectional search
 - search from forward and backward directions simultaneously

Heuristic Search

Basic search: use no domain knowledge

Heuristic Search: use domain knowledge

Heuristic function h(n) estimates the cheapest cost from n to Goal

- (1) h(n) = 0 if n is the goal node
- (2) nonnegative
- (3) problem-specific

A 'good' heuristic can be powerful only it is a 'good' quality. It should be admissible

admissible: never overestimates the cheapest cost from n to goal

Heuristic Search Methods

- Greedy Best-first Search:
 - o expand the node that seems closest to the Goal
 - expand node n that has the minimal f(n) = h(n)
 - It is not complete, can stuck in loops. And it is not optimal.
- A* Search:
 - \circ expand node n has the minimal f(n) = h(n) + g(n)
 - It is complete. And it is optimal.
 - the prove of optimality if A*
- Generate admissible heuristics
 - o from relaxed problems
 - o from sub-problem
 - o from experience

Optimization

- Unconstrained Optimization
 - Steepest descent
 - lacksquare Iterative algorithm: $x^{k+1} = x^k lpha^k igtriangledown f(x^k)$
 - Step size α^k is important: high -> jumping ; low-> little progress
 - step size selection ???
 - o Zig-zagging
 - why?
 - Newton's method
 - Newton's method to solve the formula
 - $lacksquare x^{k+1} = x^k (igtriangledown^2 f(x^k))^{-1} igtriangledown f(x^k)$

Steepest descent: the most basic method, used very often, needs $\nabla f(x) \in \mathbb{R}^n$

Newton Method: Extremely fast convergence (x^* is the optimal), needs second-order derivate $abla^2 f(x) \in \mathbb{R}^{n*m}$

- Constrained Optimization
 - o consider them directly (projected gradients)
 - first steepest descent
 - second keeps feasibility
 - Lagrangian duality
 - KKT conditions

$$egin{aligned} & minimize \ f(x) \ & subject \ to \ egin{cases} g_i(x) \leq 0, i=1,\ldots,I \ h_j(x) = 0, j=1,\ldots J \end{cases}$$

- Define the Lagrangian function $L(x; \lambda, \mu) = f(x) + \lambda^T g(x) + \mu^T h(x)$
- conditions

$$L(x;\lambda,\mu) = f(x) + \lambda^T g(x) + \mu^T h(x)$$

$$\left\{egin{aligned} \lambda_j g_j(x) &= 0 \ h_i(x) &= 0 \ g_j(x) &\leq 0 \ eta_j &\geq 0 \end{aligned}
ight.$$

- KKT example (homework) 🐯
- <u>KKT reference</u> 🗑
- SQP method (sequential quadratic programming)

Optimization without derivatives

- Bisection method: if F(a)F(b) < 0, then a solution exists
- Golden -section search

$$x_1,x_2,x_3$$
 with $f(x_2) < min(f(x_1),f(x_3))$, test $x_4 \in [x_2,x_3]$ if $f(x_4) < f(x_2)$, pass to inteval $[x_2,x_3]$ ortherwise pass to $[x_3,x_3]$

- Nelder-Mead method
 - o reflected, expanded, contracted
- Simulated annealing

if
$$f(y^k) < f(x^k)$$
 set $x^{k+1}=y^k$ if $f(y^k) > f(x^k)$ set $x^{k+1}=y^k$ with probability $P(x^k,y^k,T^k)$, and $x^{k+1}=x^k$ with probability $1-P(x^k,y^k,T^k)$

Evolutionary algorithm

```
set initial population P(0)
for k=0,1...K do
  evaluate the fitness of all individuals in P(k)
  based on fitness select the parrents
  generate offsprings using crossover, mutation,...
  form new population P(k+1)
  if terminatin satisfied then
    break
  end if
end for
```

Exploration: move to unknown territories, discover better

Exploitation: stay close and explore the neighborhood

Individual representation:

Crossover: between two or more parents

Mutation: single parent variation, small random changes to individual genes

Selection:

- \circ Fitness proportionate selection: select individual with probability $p_i = rac{F(x_i)}{\sum F(x_j)}$ (Roulette wheel selection)
- \circ ranking selection: sort population, for each individual assign probability $p_i = G(i)$
- tournament selection: randomly pick k individuals from the population select the highest fitness

Niching

motivation: close points does not contribute to the algorithm much

Goal: spread points across the whole search space

basic techniques:

- o sharing: modified the raw fitness by considering near points
- o crowding: removes nearby individuals (or prevents their creation)

• Constraint handling approaches:

Penalty function: penalize the constraint violation (5)

Repair approach: similar to the projection approach

Purist approach: Reject all infeasible points

Separatist approach: Consider the objective and constraints separately

Hybrid approach: Combination of the methods above

• Multi-objective programming

Dominance: $\forall i \in \{1, \dots, n\}, a \leq b \text{ and } \exists \in \{1, \dots, n\}, a < b\}$

non-dominated: there is no point x_2 such that x_2 dominates x_1

Pareto front: set of all non-dominated points

Method:

o reformulate into one objective

scalarization : $minimize \sum w_m f_m(x)$

- simple
- difficult to choose parameters
- only finds one point at a time

arepsilon - constrained method: $minimize\ f_{m_0}(x)\ subject\ to\ f_m(x) \le arepsilon_m$ for $m
eq m_0$

Goal programming

- Multi-object genetic algorithms
- NSGA-II (Non-dominated Sort Genetic Algorithm II)

Initialize population of size n

Non-dominated sort:

- 1. find pareto front in current population
- 2. From the rest find all non-dominated individuals and form second front
- 3. repeat till points remain

Fitess evaluation and crowding distance

- 1. assign fitness as the rank of the front
- 2. crowding distance measures the distance from "neighboring" points Selection
- 1. tournament selection with k=2
- 2. first criterion is the fitness, thus lower front rank
- 3. when equal, individual with lower crowding distance is selected Genetic operators
- 1. apply crossover and mutation based on the data representation and possibily on the ${\tt knowledge}$

Merge parents and offspring into one population with 2n individuals

Reduce the population size by selecting n individuals by criteria specified above

Machine Learning

• Types:

Supervised learning unsupervised learning

semi-supervised learning

- Under-fitting: high training error and high test error
 - o deal: set a more complex model

Over-fitting: low training error and high test error

- o set a less complex model
- o regularization: penalize certain parts of the parameter space
- o get more data

• Linear Model (detail) 🚳

Univariate Linear Regression (ULR)

Model Formulation: Linear Model $h_w(x) = w_0 + w_1 x$

Optimization: $min_wL(w)=rac{1}{2}\sum_{n=1}^N[y^n-(w_1x^n+w_0)]^2$

- closed form solution: First order equations equal to zero
- Iterative solution:

Batch GD: update w once with all training data

Stochastic GD: update w N times with one training data at a time

Mini-batch GD: update w several times with a subset of D for one update

Multivariate Linear Regression (MLR)

Model Formulation: Linear model $h_w(x) = w_0 + w_1 x + \ldots + w_m x_m = \mathbf{w}^T \mathbf{x}$

Optimization: $min_{\mathbf{w}}L(\mathbf{w}) = \frac{1}{2}\sum_{n=1}^{N}[y^n - \mathbf{w}^T\mathbf{x}^n]^2$

- closed-form solution: $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
- (how about the solution when adding the regularization) $\ref{eq:partial}$

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}$$

Iterative Solution

Over-fitting for MLR: Regularization: $min_wL_{tr}(w)+\lambda\Omega(w)$ and $\Omega(w)=\sum_i|w_i|^p$

Multivariate Linear Classification (MLC)

Aim: find the optimal W fitting the observations in D

Optimization: $min_wL(w)=rac{1}{2N}\sum_{n=1}^N[y^n-h_w(x^n)]^2$

MLR Model: $h_w(x) = w^T x$

Problem: can not constrain 0/1 output

- Hard-threshold Linear Classifier
- Logistic Regression (Soft-threshold)
- Tree Model (detail)
 - Decision Tree
 - o Information Gain: Good Feature Heuristics

Entropy: $H(Y) = -\sum_k p(y_k)log_2p(y_k)$

Conditional entropy: $H(Y|X) == \sum_j p(X=x_j) H(Y|X=x_j)$

Information Gain: IG(X) = H(Y) - H(Y|X)

Decision Tree construction

When to stop:

- all records in current subset have the same label
- all records have the same set input features
- all features have small information gain

Tree Over-fitting: Decision Pruning

- Decision tree for Regression
- Neural Networks
 - Loss function
 - o Partial derivate for any w: "chain rule"
 - Back propagation to train ANN
- K nearest neighbour
 - For classification: find k nearest neighbours of the testing point and take a vote
 - For regression: take mean or median of the k nearest neighbours, or do a local regression on them.
 - o Distance metric: Manhattan Distance; Euclidean distance
 - Advantage: training is very fast, Learn complex target functions; do not lose information

 Disadvantage: slow at query time; Easily fooled by irrelevant attributes.
- Support Vector Machine

Theory of Learning

- Bias-variance trade-off
 - o Difference between Optimization and Learning

Optimization:

- assumes all data are deterministic
- Computes it with high accuracy

Learning:

- assumes the data are stochastic (random)
- performance on the test set is more important
- often large datasets than in optimization
- Low precision usually sufficient
- $\circ \ L(x) = \sigma^2 + var \ \widehat{f}(x) + bias^2 \ \widehat{f}(x)$
 - Loss function consists of three terms

Irreducible error: Uncertainty in the data

Squared bias: error due to simplification in the model, performance in the model.

o Complexity choice

- Model selection
 - Learning process
 - What to do when something is wrong

Bad performance on the training set? → more complex, different model,...

Good performance on the training set, bad in validation set? → over-fitting

Good on training set, good in dev set ? → done.

- o Orthogonalization
 - design hyper parameters which have only one function, make tuning simpler
- Input normalization
 - lacksquare instead x_1, x_2, \ldots, x_n consider $z_1, \ldots z_n$

$$z_i = rac{x_i - \mu}{\sigma}$$
 where $\mu = rac{1}{n} \sum x_i$ and $\sigma^2 = rac{1}{n-1} \sum (x_i - \mu)^2$

- o Increase training set size: individuals observations have smaller impact
 - how to add observations?
 - Gather them
 - add artificial observations: for example flip or rotate image.
- o Regularization
 - possible regularization: zero-norm, one-norm (LASSO), two-norm
- Feature selection
 - lacksquare Goal: reduce the number of features, set some w_j to zero
 - Regularization:

 $oldsymbol{l_2}$ regularization shrinks $oldsymbol{w_j}$ towards to zero

 \emph{l}_1 regularization set $\emph{w}_\emph{j}$ to zero if below a certain threshold

 l_0 regularization counts non-zeros in w_j and tries to set as many of them to zero as possible

- Filter methods: select the active features based on some criterion
- Wrapper methods: run the model repeatedly and subsequently add or remove features
- Implementation issues
 - Early stopping
 - don't run the algorithm for the whole time
 - Hyper parameters choice
 - how: fixed or randomly
 - Convexity
 - lacksquare convex: if all x_1,x_2 and $t\in (0,1)f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$
 - if f is differentiable, then f is convex if and only if $\nabla^2 f(x)$ is positive semi-definite for all x.
 - lacksquare A set $A\in\mathbb{R}$ is convex if all $x_1,x_2\in A$ and $t\in(0,1)$, $tx_1+(1-t)x_2\in A$
 - all linear function f are convex since $\nabla^2 f = 0$
 - why convexity is important
 - the set of global minima is convex set
 - there are no local minima
 - For strictly convex functions (linear regression), the global minimal is unique
- Other topics
 - Boosting
 - combine several weal classifiers to create a stronger one
 - PAC learning
 - learning studies how many examples are needed to show that all consistent hypotheses are "good"