Graph Theory - Sheet 6 - November 28, 2013 J. Batzill (1698622), M. Franzen (1696933), J. Labeit (1656460)

Problem 21

Theorem 1.1. Every planar triangulation G on at least four vertices contains a vertex whose neighborhood induces a cycle.

Proof. Let v be a vertex which does not lie on the outer bound of G which exists after lemma 21.1. Let $N(v) = p_1, p_2, ..., p_n$ be the neighborhood of v. N(v) induces a cycle if all p_i are connected to a cycle. For the sake of contradiction let's assume this is not the case, hence there is p_i and p_{i+1} which are not connected. This is either a contradiction with v not lying on the outer bound of G, or with G being a maximal planar graph. Because if v_i and v_{i+1} are not connected and v is not on the outer bound of G there is a face bounded by v, p_i, p_{i+1} and at least one additional vertex. This face could be again devided into to smaller faces by adding an edge, hence G is no triangulation.

Theorem 1.2.	Every n-vertex planar graph has at mose $3n-8$ triangles.	
Proof.		

Problem 22