Revisiting Unemployment with an Intensive Margin

Christine Braun University of Warwick

Motivation

- Unemployment is measured using "in or out" approach
 - one active effort to find job in past 4 weeks & available

Question Is the "in or out" approach a good measure of labor underutilization?

- Unemployment is measured using "in or out" approach
 - one active effort to find job in past 4 weeks & available

Question Is the "in or out" approach a good measure of labor underutilization?

	Not seasonally adjusted Status in current month					
Status in previous month	Employed	Unemployed	Not in labor force	Other outflows(1)		
Total, 16 years and over						
Employed	152,964	1,296	4,193	25		
Unemployed	1,402	2,686	1,375	2		
Not in labor force	4,604	1,523	89,365	202		
Other inflows(2)	96	5	336	-		

- Two observations
 - (1) Large oscillations between U and O
 - (2) Large flows $O \rightarrow E$

Answer: no.

- Unemployment is measured using "in or out" approach
 - one active effort to find job in past 4 weeks & available

Two Main Problems

- 1. Measurement Issues: misclassification between LM states
 - Solutions:
 - (1) estimate misclassification probabilities and move people around Abowd & Zellner (1985), Poterba & Summers (1986), Feng & Hu (2013), Elsby, Hobijn & Sahin (2015), Krueger, Mas & Niu (2017), Shibata (2019WP), Ahn & Hamilton (2019WP)

Definitions

- (2) BLS broader measures of unemployment
- Misses on Problem # 2

- Unemployment is measured using "in or out" approach
 - one active effort to find job in past 4 weeks & available

Two Main Problems

- 2. No Heterogeneity: changes in the unemployment rate driven by compositional changes of the pool of unemployed
 - Solution:
 - (1) adjust using labor force shift share Perry (1970), Gordon (1982), Summers (1986), Shimer (1998), Barnichon & Mesters (2018), Crump, Giannoni, Eusepi, & Sahin (2019)
 - Misses on Problem # 1

Continuous Definition of Labor Force Attachment

Discrete LF attachment

Continuous LF attachment

$$U_t = \sum_{i \in N_t} \mathbb{1} (ext{search \& avail.}) wgt_i$$

$$ilde{U}_t = \sum_{i \in N_t} extstyle{P_{it}} wgt_i$$

- $N_t = \text{not employed}$
- wgt_i = sampling weight
- P_{it} = estimated search effort
 - $P_{it} \in (0,1)$
 - ⇒ addresses Problem # 1
 - estimated using demographic characteristics
 - ⇒ addresses Problem # 2
 - positively correlated with emp. prob. & hours worked

Note: we already do this for emp. (full/part time, total hours, full time equivalents)

How I do it

Data Sources

- (1) American time use survey (ATUS) 2003-2018
 - contains job search information for everyone
- (2) Current Population Survey 1980-2018
 - used to calculate all aggregate labor market stats

Empirical Strategy

- (1) Machine Learning to best predict job search in ATUS
- (2) Predict job search in CPS from 1980-2018
- (3) Construct continuous labor market statistics

What Comes Out

- volatility of cont. unemployment rate is $\sim 30\%$ less
- downward trend in unemployment rate
- Application: no flattening of Phillips Curve

Data

- American Time Use Survey 2003-2017
 - Interviews CPS respondents 2-5 months after CPS
 - Asks about labor force status again
 - categorizes identically to CPS
 - Asks people what, where, with whom, and how long they did activities throughout the day
 - job search activities

Who is Searching?

Search Effort	. by	Labor	Force	Status

		Age 16+	
	Daily	Monthly	Minutes
	Probability	Probability	Per Day
Employed	0.6	16.8	113.4
Unemployed	17.1	99.6	145.8
Out of the Labor Force	0.4	11.9	132.9
N	189,314	189,314	2,122

		Age 25-55	
	Daily	Monthly	Minutes
	Probability	Probability	Per Day
Employed	0.6	15.5	123.2
Unemployed	23.0	99.9	155.2
Out of the Labor Force	1.0	25.4	136.3
N	108,505	108,505	1,506

• Logistic function for prob. job search $(y_i = 1)$

$$P(y_i = 1|x_i) = \frac{\exp(\beta_0 + x_i^T \beta)}{1 - \exp(\beta_0 + x_i^T \beta)}$$

Net-elastic regularization

$$\min_{\beta_0,\beta} - \left[\frac{1}{N} \sum_{i=1}^{N} y_i (\beta_0 + x_i^T \beta) - \ln[1 - \exp(\beta_0 + x_i \beta)] \right] + \lambda \left[(1 - \alpha) \sum_{k \in K} \beta_k^2 + \alpha \sum_{k \in K} |\beta_k| \right]$$

$$\alpha = 0.95 \Rightarrow$$
 close to LASSO

- λ chosen by cross validation of 10 folds to maximize the area under receiver operating characteristic curve
- K is the set of predictors with penalty
- Estimated on each labor market state separately

- Predictors without penalty
 - Demographics: female, age, age², education, child, married, race, full/part time
 - Day of the week fixed effects
 - Economy variable and state fixed effects
- Interactions with penalty
 - female by demographic variables and economy
 - education by demographic variables and economy

- State coincidence index from the Philadelphia FED
 - combines 4 state-level labor market indicators into index
 - trend is set to match long term state level GDP growth
- Coincidence index per capita cipc_{st}

$$\ln cipc_{st} = \delta_s + \alpha_1 t + \alpha_2 t \times 1(S = s) + \varepsilon_{st}$$

• Final economy variable is the residual $\hat{\varepsilon}_{st}$

Interactions included for Employed - 13

Female \times College, Female \times Child, Female \times Part Time, Some College \times Economy, Less than HS \times Married, College \times Race - Other, Some College \times Race - Other, High School \times Race - White, High School \times Child, Some College \times Child, College \times Part Time, High School \times Part Time, Some College \times Part Time

Interactions included for Unemployed - 9

Female \times Some College, Female \times Married, Economy \times College, Economy \times Less than HS, Some College \times Married, College \times Race - Other, High School \times Race-Other, Some College \times Race - Other, Some College \times Child

Interactions included for Out of the Labor Force - 16

Female \times Married, Female \times Race - White Female \times Child, Economy \times College, Economy \times Less than HS, Economy \times High School, Economy \times Some College, Less than HS \times Married, Some College \times Married, High School \times Age², College \times Race - Other, Less than HS \times Race-Other, Some College \times Race - Other, High School \times Child, Less than HS \times Child, Some College \times Child

Predicted Probabilities

- Data: CPS 1980-2018
- Contains all the same demographic variables
- Predicted search probabilities
 - Daily probability

$$\hat{p}_d$$
 for Monday -Sunday

Weekly probability

$$\hat{
ho}_i^w=1-\prod_{d=1}^7(1-\hat{
ho}_d)$$

Monthly probability

$$\hat{P}_i = 1 - (1 - \hat{p}_i^w)^{4.17}$$

Predicted Probabilities

	Employed	Unemployed	Out of the Labor Force
5th Percentile	0.0051	0.7184	0.0000
10th Percentile	0.0180	0.8402	0.0000
25th Percentile	0.0459	0.9560	0.0012
50th Percentile	0.0924	0.9944	0.0239
75th Percentile	0.1633	0.9997	0.1261
90th Percentile	0.2668	1.0000	0.3097
95th Percentile	0.3690	1.0000	0.4695

Labor Force Attachment

- If P_{it} is a measurement for attachment
 - higher effort should imply more hours
 - more likely to work full time
 - higher job finding probability
- Subset all transition from non-employment to employment

$$y_{it} = \beta \hat{P}_{i,t-1} + \delta_t + \varepsilon_{it}$$

	Job Finding Prob.		Hours \	Hours Worked		Change in Hours	
Search Probability	0.174	0.176	7.397	7.554	18.542	18.502	
	(0.000)	(0.000)	(0.065)	(0.065)	(0.230)	(0.229)	
Mean	0.037	0.037	30.33	30.33	0.33	0.33	
$Month \times Year FE$		\checkmark		\checkmark		\checkmark	
Observations	17608693	17608693	345967	345967	188130	188130	
Sample	Full	Full	Nonemp.	Nonemp.	Emp. Job	Emp. Job	
Sample	i uii	i uii	Job Finders	Job Finder	Switchers	Switchers	

Total Number of Searchers

• Total number of searchers per BLS defined group

$$E_t^s = \sum_{i \in E_t} weight_{it} imes \hat{P}_{it}$$
 $U_t^s = \sum_{i \in U_t} weight_{it} imes \hat{P}_{it}$
 $O_t^s = \sum weight_{it} imes \hat{P}_{it}$

Fraction of Searchers

Fraction of unemployed searching is on average 96

Unemployment and Participation

Standard Rates

$$u = \frac{U}{U+E}$$
 $p = \frac{U+E}{U+O+E}$

Continuous Rates

$$\tilde{u} = \frac{U^s + O^s}{U + O + E} \qquad \tilde{p} = \frac{U^s + O^s + E}{U + O + E} \qquad \tilde{s} = \frac{U^s + O^s + E^s}{U + O + E}$$

Unemployment and Participation

- Continuous unemployment rate is on average 2.1pp higher
- Counter cyclical participation

Application: Phillips Curve

Estimate backward looking inflation Phillips Curve

Standard unemployment rate

$$\pi_t = \phi_1(u_t - u_t^*) + \gamma_1 \bar{\pi}_t + \phi_2(u_t - u_t^*) \times Post + \gamma_2 \bar{\pi}_t \times Post + \varepsilon_t$$

Continuous unemployment & total searcher rate

$$\pi_t = \alpha_1 + \phi x_t + \gamma_1 \overline{\pi}_t + \phi_2 u_t \times Post + \gamma_2 \overline{\pi}_t \times Post + \alpha_2 Post + \varepsilon_t$$

- π_t : CPI annualized quarterly growth rate
- u*: Natural unemployment rate, CBO
- $\bar{\pi}_t = \frac{1}{4}(\pi_{t-1} + \pi_{t-2} + \pi_{t-3} + \pi_{t-4})$
- $Post = \mathbb{I}[t > 2007Q2]$

Application: Phillips Curve

Estimate backward looking wage Phillips Curve

Standard unemployment rate

$$\Delta w_t = \phi_1(u_t - u_t^*) + \gamma_1 \bar{\pi}_t + \phi_2(u_t - u_t^*) \times Post + \gamma_2 \bar{\pi}_t \times Post + \varepsilon_t$$

Continuous unemployment & total searcher rate

$$\Delta w_t = \alpha_1 + \phi x_t + \gamma_1 \bar{\pi}_t + \phi_2 u_t \times Post + \gamma_2 \bar{\pi}_t \times Post + \alpha_2 Post + \varepsilon_t$$

- Δw_t : annualized quarterly wage growth rate
- π_t : PCE annualized quarterly growth rate
- u*: Natural unemployment rate, CBO
- $\bar{\pi}_t = \frac{1}{4}(\pi_{t-1} + \pi_{t-2} + \pi_{t-3} + \pi_{t-4})$
- Post = I[t > 2007Q2]

Application: Phillips Curve

	1980Q1 - 2018Q4						
		ge Hourly E	arnings	Consumer Price Index			
<i>U</i> -Gap	-0.072**			-0.309*			
	(0.033)			(0.177)			
U-Gap $ imes$ Post	0.087*			0.755*			
	(0.051)			(0.398)			
Ũ		-0.066***			-0.371**		
		(0.022)			(0.150)		
$\tilde{\it U} imes$ Post		0.011			0.066		
		(0.027)			(0.422)		
S		, ,	-0.061***		, ,	-0.595***	
			(0.021)			(0.184)	
$S \times Post$			0.007			0.301	
			(0.027)			(0.432)	
$\bar{\pi}_{t-1}^{PCE}$	0.205***	0.076***	0.047*			, ,	
	(0.024)	(0.027)	(0.025)				
$\bar{\pi}_{t-1}^{PCE} \times Post$	0.034	-0.071*	-0.042				
	(0.072)	(0.038)	(0.036)				
$\bar{\pi}_{t-1}^{CPI}$				0.971***	0.622***	0.566***	
				(0.047)	(0.133)	(0.119)	
$\bar{\pi}_{t-1}^{CPI} \times \text{Post}$				-0.441	-0.878**	-0.822**	
				(0.292)	(0.404)	(0.401)	
Intercept		0.008***	0.014***	, ,	0.047***	0.126***	
		(0.002)	(0.004)		(0.013)	(0.034)	
Post		0.003	0.002		0.034	-0.016	
		(0.002)	(0.005)		(0.048)	(0.091)	

Summing Up

- Introduce continuous approach to classifying individuals
 - changes low and high frequency properties of urate
- Application to Phillips Curve no change post-2007
- Other Points in the Paper
 - Labor market flows

Educational attainment is the main driver of the increase in OLF search

Abowd & Zellner

- Abowd & Zellner (1985)
 - reinterview surveys to correct for misclassification
 - time invariant and at the aggregate level

Abowd and Zellner (1985) estimates of classification errors (%).

Status determined on reinterview			
Employed	Non- participant		
98.78 0.18	1.91 88.57	0.50 0.29 99.21	
	Employed 98.78	98.78 1.91 0.18 88.57	

CPS Out of the Labor Force

Source: Matched monthly files from the Current Population Survey. Data is seasonally adjusted.

Decomposition Back

Decomposition of OLF Hires

Percent OLF hires by Demographics							
	1980-1989	1990-1999	2000-2009	2010-2017			
Men	38.6	41.1	42.7	44.7			
Women	61.4	58.9	57.3	55.3			
Age 16-24	41.1	38.5	36.8	34.4			
Age 25-55	41.1	43.3	43.8	42.0			
Age 56+	17.7	18.1	19.3	23.6			
White	85.6	82.1	79.2	76.9			
Black	11.3	12.8	13.6	13.7			
Other	3.1	5.1	7.1	9.4			
House	55.2	50.1	47.3	44.9			
School	28.5	30.5	32.3	32.2			
Retired	14.6	15.5	15.2	17.2			
Disabled	1.7	4.0	5.3	5.7			

What are they doing?

Percent of Time by Activity

	-	Age 16-	-	A	ge 25-	 55
	E U O			E	U	0
Active Job Search	81.8	91.1	85.8	82.2	92.8	89.7
Interviewing	14.9	6.8	9.7	14.2	5.1	5.4
Other	3.2	2.1	4.5	3.6	2.1	4.9
N	579	1,344	199	421	959	126

Unemployment Alternatives

Goodness of Fit

Margin Error Adjustment

- Define the following
 - $\bullet \ \tilde{U}_t = U_t^S + O_t^S$
 - $\bullet \ \tilde{O}_t = O_t O_t^S$
 - $\Delta S_t = [E_t \ \tilde{U}_t]' [E_{t-1} \ \tilde{U}_{t-1}]'$
- The write the change in the current state as

$$\Delta \mathbf{S}_{t} = \begin{bmatrix} -E_{t-1} & -E_{t-1} & \tilde{U}_{t-1} & 0 & 0 \\ E_{t-1} & 0 & -\tilde{U}_{t-1} & -\tilde{U}_{t-1} & \tilde{O}_{t-1} \end{bmatrix} \times \begin{bmatrix} p_{EU} \\ p_{EO} \\ p_{UE} \\ p_{UO} \\ p_{OU} \end{bmatrix}$$

$$\Delta \mathsf{S}_t = \mathsf{X}_{t-1}\mathsf{p}$$

Margin Error Adjustment

• Let $\hat{\mathbf{p}}$ be the estimated transition probabilities and $\hat{\mathbf{W}}$ be the covariance matrix. Then apply weighted restricted least squares to solve for \mathbf{p}

$$\min(\mathbf{p} - \hat{\mathbf{p}})'\hat{\mathbf{W}}^{-1}(\mathbf{p} - \hat{\mathbf{p}})$$
 s.t. $\Delta \mathbf{S}_t = \mathbf{X}_{t-1}\mathbf{p}$

• The Lagrangian

$$\mathcal{L} = (\mathbf{p} - \hat{\mathbf{p}})' \hat{\mathbf{W}}^{-1} (\mathbf{p} - \hat{\mathbf{p}}) - 2\mu [\Delta \mathbf{S}_t - \mathbf{X}_{t-1} \mathbf{p}]$$

Solution

$$\begin{bmatrix} \boldsymbol{p} \\ \boldsymbol{\mu} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{W}} & \mathbf{X}_{t-1}' \\ \mathbf{X}_{t-1} & 0 \end{bmatrix}^{-1} \times \begin{bmatrix} \hat{\mathbf{W}} \hat{\mathbf{p}} \\ \Delta \mathbf{S}_{t} \end{bmatrix}$$

- Standard Calculation: match CPS, count number of people that transition between states
- New Calculation: predict job search prop. \hat{P}_{it} for t = 1, 2
 - Employment to
 - Unemployment: $weight_{it} \times \hat{P}_{i2}$
 - ullet Out of the Labor Force: $\textit{weight}_{\textit{it}} imes (1 \hat{P}_{\textit{i2}})$
 - Not Employed
 - $U \rightarrow E$: weight_{it} $\times \hat{P}_{i1}$
 - $U \rightarrow O$: weight_{it} × $|\min{\{\hat{P}_{i2} \hat{P}_{i1}, 0\}}|$
 - $O \rightarrow U$: weight_{it} $\times \max\{\hat{P}_{i2} \hat{P}_{i1}, 0\}$
 - $O \rightarrow E$: 0 by construction

1. Seasonally Adjusted: X13ARIMA

2. Margin Error Adjustment

 restricts the estimated worker flows to be consistent with the evolution of the labor market stocks Math

4. Aggregate to quarterly

Employment to

Unemployment

Out of the Labor Force

Out of the Labor Force

Fixed Demographic Shares OLF Search

