1 Preliminary

$$\operatorname{card}(X) < \operatorname{card}(\mathcal{P}(X))$$

 $\operatorname{card}(\mathcal{P}(\mathbb{N})) = \operatorname{card}(\mathbb{R})$

Every nonempty open set \mathcal{O} in \mathbb{R} can be written as at most countable union of pairwise disjoint open intervals. that is, $\mathcal{O} = \bigsqcup_{j=1}^{\infty} (a_j, b_j)$ such that $(a_i, b_i) \cap (a_j, b_j) = \emptyset$ for all $i \neq j$. Some intervals may be empty, if empty intervals are ignored, the repersentation is unique.

2 Measure Theory

2.1 Motivation

Theorem 2.1 (Axiom of Choice) Let \mathcal{F} be a nonempty family of nonempty sets. Then there exists a choice function f on \mathcal{F} such that for each set $F \in \mathcal{F}$, $f(F) \subset F$.

Theorem 2.2 (Fact) There does not exist a set function $\mu : \mathcal{P}(\mathbb{R}^d) \to [0,\infty]$ such that

- $\mu(\bigsqcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \mu(E_j)$ for all pairwise disjoint $E_j \subseteq \mathbb{R}^d$ for $j \in \mathbb{N}$.
- If E is congruent to F (E can be transformed into F by translations, rotations, and reflections), then $\mu(E) = \mu(F)$.
- $\mu([0,1)^d) = 1$

There is a known non-measurable subset $\mathcal{N} \subseteq [0,1)$. Known $f_j(x) \uparrow f(x)$ for all $x \in [0,1]$. f_j are Riemann integrable with $\int_{[0,1]} f_j = 0$ but $\lim_{j \to \infty} \int_{[0,1]} f_j = 0$ but f is not Riemann integrable.

2.2 σ -algebras and Borel sets

Definition 2.1. Let X be a set. A nonempty subset S of $\mathcal{P}(X)$ is called a σ -algebra if

- $A \in \mathcal{S} \implies A^c \in \mathcal{S}$
- $A_j \in \mathcal{S}, j \in \mathbb{N} \implies \bigcup_{j=1}^{\infty} A_j \in \mathcal{S}$

Definition 2.2 (Borel σ -algebra). For a metric space X, the Borel σ -algebra is the smallest algebra that contains all the open subsets of X.

Definition 2.3. (X, M) is a measurable space if $M \subseteq \mathcal{P}(X)$ is a σ -algebra. A measure μ on (X, M) is a set $\mu : M \to [0, \infty]$ satisfying

- 1. $\mu(\varnothing) = 0$
- 2. $\mu(\bigsqcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \mu(E_j)$

Definition

- 1. μ is called finite if $\mu(X) < \infty$
- 2. μ is σ -finite if $X = \bigcup_{n=1}^{\infty} X_n$, $X_n \subseteq X_{n+1}$ and $\mu(X_n) < \infty$.
- 3. μ is semifinite if for each $E \in M$, there is $F \subseteq E$ such that $0 < \mu(F) < \infty$.

Theorem 2.3 (Properties of measure) If either

- 1. $E_1 \supseteq E_2 \ldots$, and $\mu(E_{j_0}) < \infty$ for some j.
- $2. E_1 \subseteq E_2 \dots$

then the limit is the same as the union or intersection.

Definition 2.4 (Outer measure). set function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ such that

- 1. $\mu^*(\emptyset) = 0$
- 2. if $A \subseteq B$, then $\mu^*(A) \le \mu^*(B)$
- 3. $\mu^*(\cup) \leq \sum \mu^*$

A set E is μ^* measurable if

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

for all $A \subseteq X$

Theorem 2.4 (Carathéodory's Theorem) Let μ^* be an outer measure on X and let $\mathcal{M}(X, \mu^*)$ be the collection of all μ^* -measurable subsets of X. Then $\mathcal{M}(X, \mu^*)$ is a σ -algebra and $(X, \mathcal{M}(X, \mu^*), \mu)$ is a complete measure space, where $\mu := \mu^*|_{\mathcal{M}(X, \mu^*)}$.

Figure 1:

Lemma 2.5 If $(X, \mathcal{M}(X, \mu^*), \mu)$ is the complete measure space derived from an outer measure μ^* on X, then for any pairwise disjoint μ^* -measurable sets E_j , $j \in \mathbb{N}$,

$$\mu^*(A \cap (\sqcup_{j=1}^{\infty} E_j)) = \sum_{j=1}^{\infty} \mu^*(A \cap E_j), \quad \forall A \subseteq X.$$

Figure 2:

Definition: For any subset $A \subseteq \mathbb{R}^d$, define

$$m^*(A) = \inf \Big\{ \sum_{j=1}^\infty |R_j| \quad \Big| \quad A \subseteq \cup_{j=1}^\infty R_j, \text{ each } R_j \text{ is a half-open rectangle in } \mathbb{R}^d \Big\}.$$

Note that the above infimum is taken over all possible countable coverings $A \subseteq \bigcup_{j=1}^{\infty} R_j$ by all possible half-open rectangles R_j . By Theorem 2.6, the above m^* is the (Lebesgue) **outer measure**.

Figure 3:

Theorem 2.11 Let $\mathcal E$ denote the collection of all half-open rectangles in $\mathbb R^d$. Let $\mathcal A$ be the collection of all finite disjoint unions of members in $\mathcal E$. Define a set function $\mu_0:\mathcal A\to [0,\infty]$ by

$$\mu_0(A) := \sum_{j=1}^n |R_j|, \qquad A = \bigsqcup_{j=1}^n R_j \in \mathcal{A} \quad with \quad R_1, \dots, R_n \in \mathcal{E}.$$

Then \mathcal{E} is an elementary family, \mathcal{A} is an algebra, μ_0 is a well-defined extension of $|\cdot|$ from \mathcal{E} to \mathcal{A} and is a premeasure on \mathcal{A} . Moreover, the Lebesgue outer measure m^* is the same outer measure induced by $\mu_0: \mathcal{A} \to [0, \infty]$.

Figure 4:

Theorem 2.13 Let $E \subseteq \mathbb{R}^d$. The following are equivalent:

- (1) E is measurable;
- (2) For any given $\varepsilon > 0$, there exists an open set $\mathscr{O} \supseteq E$ such that $m^*(\mathscr{O} \backslash E) < \varepsilon$;
- (3) For any given $\varepsilon > 0$, there exists a closed set $F \subseteq E$ such that $m^*(E \backslash F) < \varepsilon$;
- (4) There exists a G_{δ} set $G = \bigcap_{n=1}^{\infty} \mathscr{O}_n$, with all \mathscr{O}_n open, such that $G \supseteq E$ and $m^*(G \setminus E) = 0$;
- (5) There exists an F_{σ} set $F = \bigcup_{n=1}^{\infty} F_n$, with all F_n closed, such that $F \subseteq E$ and $m^*(E \setminus F) = 0$.
- (6) There exists a Borel set B such that $E\subseteq B$ and $m^*(B\backslash E)=0$. [or $B\subseteq E$ and $m^*(E\backslash B)=0$.]

If $m^*(E) < \infty$, then any of the above statements is also equivalent to

- (7) For any $\varepsilon > 0$, there exists a finite union $U = \sqcup_{j=1}^{N} R_{j}$ of pairwise disjoint bounded half-open cubes (or almost disjoint bounded closed/open rectangles) such that $m^{*}(E\Delta U) < \varepsilon$.
- (8) For any $\varepsilon > 0$, there exists a compact set K such that $K \subseteq E$ and $m^*(E \backslash K) < \varepsilon$.

Figure 5:

Theorem 3.5 Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of measurable functions from X to $\overline{\mathbb{R}}$. Then

- (1) $g_1(x):=\sup_{n\in\mathbb{N}}f_n(x)$ and $g_2(x):=\inf_{n\in\mathbb{N}}f_n(x)$ are measurable;
- (2) $\liminf_{n\to\infty} f_n$ and $\limsup_{n\to\infty} f_n$ are measurable;
- (3) If $f(x) = \lim_{n \to \infty} f_n(x)$ for every $x \in X$, then f is measurable.
- (4) If $f(x) = \lim_{n \to \infty} f_n(x)$ for μ -a.e. $x \in X$ and if (X, \mathcal{M}, μ) is complete, then f is measurable.

Figure 6:

Theorem 3.7 Let (X,\mathcal{M}) be a measurable space. Let $f:X\to\overline{\mathbb{R}}$ be a measurable function. Then

If f is nonnegative (i.e., f(x) ≥ 0 ∀x ∈ X), then there exists (φ_n)_{n∈N} of nonnegative (M-measurable) simple functions such that 0 ≤ φ_n(x) ↑ f(x) for all x ∈ X. Moreover, φ_n → f uniformly on any set on which f is bounded;

22

(2) There exists $(\phi_n)_{n\in\mathbb{N}}$ of real-valued (M-measurable) simple functions such that $|\phi_n(x)| \leq |\phi_{n+1}(x)| \leq |f(x)|$ for all $n\in\mathbb{N}$ and $\lim_{n\to\infty}\phi_n(x)=f(x)$ for all $x\in X$. Moreover, $\phi_n\to f$ uniformly on any set on which f is bounded.

Figure 7:

Theorem 3.8 (Egorov) Let (X, \mathcal{M}, μ) be a measure space. Suppose $(f_n)_{n \in \mathbb{N}}$ is a sequence of (complex-valued) measurable functions defined on a measurable set E with $\mu(E) < \infty$, and assume that $\lim_{n \to \infty} f_n(x) = f(x), \mu\text{-a.e.} \ x \in E$. Then for any given $\varepsilon > 0$, there is a subset $F \subseteq E$ such that $F \in \mathcal{M}, \mu(E \backslash F) < \varepsilon$ and $f_n \to f$ uniformly on F as $n \to \infty$.

Figure 8:

Definition: Let $\varphi: X \to \mathbb{R}$ be a nonnegative simple function with the canonical representation $\varphi = \sum_{j=0}^n c_j \chi_{E_j}$. Define

$$\int \varphi = \int \varphi d\mu = \int_X \varphi(x) d\mu(x) := \sum_{j=0}^n c_j \mu(E_j).$$

If $E \in \mathcal{M}$ is a measurable set, then define

$$\int_{E} \varphi = \int_{E} \varphi d\mu = \int \varphi \chi_{E} d\mu = \sum_{j=0}^{n} c_{j} \mu(E_{j} \cap E).$$

Figure 9:

The Monotone Convergence Theorem (MCT): Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of nonnegative measurable functions in $\mathcal{M}^+(X,\mu)$ such that $f_n(x)\uparrow f(x)$ as $n\to\infty$ for all $x\in X$ (or μ -a.e. $x\in X$ and f is measurable). Then

$$\lim_{n\to\infty}\int_X f_n d\mu = \int \lim_{n\to\infty} f_n d\mu = \int_X f d\mu.$$

Figure 10:

Fatou's Lemma: If $(f_n)_{n\in\mathbb{N}}$ is a sequence of nonnegative measurable functions in $\mathcal{M}^+(X,\mu)$, then

$$\int_X \liminf_{n \to \infty} f_n d\mu \leqslant \liminf_{n \to \infty} \int_X f_n d\mu.$$

Figure 11:

Definition: Let $f, f_n : X \to \overline{\mathbb{R}}$ (or \mathbb{C}) be measurable functions for $n \in \mathbb{N}$.

- (1) $f_n \to f$ in $\mathcal{L}_1(X, \mathcal{M}, \mu)$ (denoted by $f_n \xrightarrow{\mathcal{L}_1} f$) if $\lim_{n \to \infty} \int_X |f_n f| d\mu = 0$;
- $(2) \ \ f_n \to f \text{ in measure } (f_n \xrightarrow{\mu} f) \text{ if for every } \varepsilon > 0, \\ \lim_{n \to \infty} \mu(\{x \in X \ : \ |f_n(x) f(x)| \geqslant \varepsilon\}) = 0;$
- (3) $(f_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in measure if for each $\varepsilon>0$ such that $\lim_{m,n\to\infty}\mu(\{x\in X:|f_m(x)-f_n(x)|\geqslant\varepsilon\})=0;$

Figure 12:

Theorem 4.11 Let $f, f_n : X \to \overline{\mathbb{R}}$ (or \mathbb{C}) be measurable functions.

(1) Tchebychev's Inequality: For $f \in \mathcal{L}_1(X, \mathcal{M}, \mu)$,

$$\mu(\lbrace x \in X : |f(x)| \geqslant \lambda \rbrace) \leqslant \frac{1}{\lambda} \int_{Y} |f| d\mu, \quad \text{for all } \lambda > 0.$$

- (2) If $f_n \xrightarrow{\mathcal{L}_1(X,\mathcal{M},\mu)} f$, then $f_n \xrightarrow{\mu} f$;
- (3) If $f_n \to f$ μ -a.e. and $\mu(X) < \infty$, then $f_n \xrightarrow{\mu} f$;
- (4) If (f_n)_{n∈N} is a Cauchy sequence in measure, then there is a measurable function f such that f_n ^µ→ f, and there is a subsequence (f_{nk})_{k∈N} such that f_{nk} → f µ-a.e..

Figure 13:

Generalized (Lebesgue) Dominated Convergence Theorem: Let $(f_n)_{n\in\mathbb{N}}$ and $(g_n)_{n\in\mathbb{N}}$ be measurable functions in $\mathcal{M}(X,\mu)$ such that $\lim_{n\to\infty}g_n(x)=g(x)$ for μ -a.e. $x\in X$ with $g,g_n\in\mathcal{L}_1(X,\mathcal{M},\mu)$ for all $n\in\mathbb{N}$, and $\lim_{n\to\infty}f_n=f$ μ -a.e. (or $f_n\stackrel{\mu}{\to}f)$ and f is measurable. If $|f_n|\leqslant g_n$ μ -a.e. for all $n\in\mathbb{N}$ and $\lim_{n\to\infty}\int_Xg_nd\mu=\int_Xgd\mu$, then

$$\lim_{n\to\infty}\int_X f_n d\mu = \int_X \lim_{n\to\infty} f_n d\mu = \int_X f d\mu.$$

Figure 14:

(Lebesgue) Dominated Convergence Theorem: Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of measurable functions on X and $\lim_{n\to\infty} f_n = f$ μ -a.e. (or $f_n \stackrel{\mu}{\to} f$) and f is measurable. If there is a nonnegative function $g \in \mathcal{L}_1(X, \mathcal{M}, \mu)$ such that $|f_n| \leq g$ μ -a.e. for all $n \in \mathbb{N}$, then

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu.$$

Figure 15:

Theorem 4.13 (Absolutely Continuity of Integrals) Let $f \in \mathcal{L}_1(X, \mathcal{M}, \mu)$.

(i) For any given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\int_{A} |f| < \varepsilon, \quad \text{whenever } A \in \mathcal{M} \text{ with } \mu(A) < \delta.$$

(ii) If $X = \bigcup_{n=1}^{\infty} X_n$ such that $X_n \in \mathcal{M}$ and $X_n \subseteq X_{n+1}$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} \int_{X \setminus X_n} |f| = 0$.

Figure 16:

Theorem 4.14 Let $f \in \mathcal{L}_1(\mathbb{R}^d)$ and $\varepsilon > 0$. Then

- (1) There is a compactly supported integrable simple function φ such that $\int_{\mathbb{R}^d} |f \varphi| < \varepsilon$;
- (2) There is an integrable step function ψ such that $\int_{\mathbb{R}^d} |f \psi| < \varepsilon$;
- (3) There is a compactly supported continuous function h such that $\int_{\mathbb{R}^d} |f h| < \varepsilon$.

Figure 17:

Definition: The x-section A_x and y-section A^y of a subset $A \subseteq X \times Y$ are

$$A_x := \{ y \in Y \ : \ (x,y) \in A \}, \qquad A^y := \{ x \in X \ : \ (x,y) \in A \}.$$

For a function $f: X \times Y \to \mathbb{C}$, the x-section f_x and y-section f^y are

$$f_x(y) = f^y(x) = f(x, y).$$

Figure 18:

Definition: $\mathcal{C} \subseteq \mathcal{P}(X)$ is a **monotone class** on X if it is closed under countable increasing unions and countable decreasing intersections, that is, for $E_j \in \mathcal{C}, j \in \mathbb{N}$, if $E_j \uparrow$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{C}$; if $E_j \downarrow$, then $\bigcap_{i=1}^{\infty} E_i \in \mathcal{C}$.

Figure 19:

The Monotone Class Lemma: If \mathcal{A} is an algebra of subsets of X, then the monotone class \mathcal{C} generated by \mathcal{A} coincides with the σ -algebra $\sigma(\mathcal{A})$ generated by \mathcal{A} .

Figure 20:

Theorem 5.3 Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite measure spaces. If $E \in \mathcal{M} \times \mathcal{N}$, then the function $x \mapsto \nu(E_x)$ is \mathcal{M} -measurable and the function $y \mapsto \mu(E^y)$ is \mathcal{N} -measurable, and

$$\mu \times \nu(E) = \int_X \nu(E_x) d\mu(x) = \int_Y \mu(E^y) d\nu(y).$$

Figure 21:

Theorem 5.4 (The Fubini-Tonelli Theorem) Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite measure spaces. Define

$$g(x) := \int f_x d\nu$$
 and $h(y) = \int f^y d\mu$. (5.1)

Tonelli: If $f: X \times Y \to [0, \infty]$ is a nonnegative $\mathcal{M} \times \mathcal{N}$ -measurable function, then g and h are nonnegative measurable functions, and

$$\int_{X\times Y} f(x,y) d(\mu \times \nu) = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x) = \int_Y \left(\int_X f(x,y) d\mu(x) \right) d\nu(y). \tag{5.2}$$

Fubini: If $f \in L_1(X \times Y, \mathcal{M} \times \mathcal{N}, \mu \times \nu)$, then $f_x \in L_1(Y, \mathcal{N}, \nu)$ for μ -a.e. $x \in X$, $f^y \in L_1(X, \mathcal{M}, \mu)$ for ν -a.e. $y \in Y$, the a.e.-defined functions $g \in L_1(X, \mathcal{M}, \mu)$, $h \in L_1(Y, \mathcal{N}, \nu)$, and (5.2) holds.

Figure 22:

Theorem 5.5 (The Fubini-Tonelli Theorem for Complete Measure) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be complete, σ -finite measure spaces, and let $(X \times Y, \overline{\mathcal{M} \times \mathcal{N}}, \mu \times \nu)$ be the completion of $(X \times Y, \mathcal{M} \times \mathcal{N}, \mu \times \nu)$. If f is $\overline{\mathcal{M} \times \mathcal{N}}$ -measurable and either (i) $f \geqslant 0$ or (ii) $f \in L_1(X \times Y, \overline{\mathcal{M} \times \mathcal{N}}, \mu \times \nu)$, then f_x is \mathcal{N} -measurable for a.e. $x \in X$ and f^y is \mathcal{M} -measurable for a.e. $y \in Y$. For (ii), f_x and f^y are also integrable for a.e. x and y. Moreover, the a.e.-defined functions g and h in (5.1) are measurable and for (ii), $g \in L_1(X, \mathcal{M}, \mu)$, $h \in L_1(Y, \mathcal{N}, \nu)$, and

$$\int_{X\times Y} fd(\mu\times\nu) = \int_Y \int_X f(x,y) d\mu(x) d\nu(y) = \int_X \int_Y f(x,y) d\nu(y) d\mu(x).$$

Figure 23:

Definition: For a partition $\Gamma = \{x_0, \dots, x_n\}$ of [a, b] and a real-valued function f, define

$$P(f,\Gamma) := \sum_{j=1}^n [f(x_j) - f(x_{j-1})]^+, \qquad N(f,\Gamma) := \sum_{j=1}^n [f(x_j) - f(x_{j-1})]^-,$$

where $x^+ = \max(x,0)$ and $x^- := \max(-x,0)$.

Definition: The positive and negative variations of f on [a,b] are defined by

 $P_a^b(f) := \sup\{P(f,\Gamma) \ : \ \text{all partitions} \ \Gamma \ \text{of} \ [a,b]\}, \quad N_a^b(f) := \sup\{N(f,\Gamma) \ : \ \text{all partitions} \ \Gamma \ \text{of} \ [a,b]\}.$

Lemma 6.2 Let $f:[a,b] \to \mathbb{R}$. Then

$$\begin{split} P_a^x(f) &= \frac{1}{2}(V_a^x(f) + f(x) - f(a)), \qquad N_a^x(f) = \frac{1}{2}(V_a^x(f) - f(x) + f(a)), \qquad \forall \ x \in [a,b]. \\ &\text{In particular, } V_a^x(f) = P_a^x(f) + N_a^x(f) \ \text{ and } f(x) - f(a) = P_a^x(f) - N_a^x(f) \text{ for all } x \in [a,b]. \end{split}$$

Figure 24:

Definition: Let $f:[a,b]\to\mathbb{R}$. For a partition $\Gamma=\{x_0,x_1,\ldots,x_n\}$ (that is, $a=x_0< x_1<\cdots< x_{n-1}< x_n=b)$ of [a,b], define

$$V(f,\Gamma) := \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})|.$$

The **total variation** of f over [a,b] is defined to be

$$V_a^b(f) := \sup\{V(f, \Gamma) : \text{ all partitions } \Gamma \text{ of } [a, b]\}$$

If $V_a^b(f) < \infty$, then f is said to be of **bounded variation** on [a,b], written as $f \in BV[a,b]$.

Figure 25:

Theorem 6.3 A real-valued function $f \in BV[a,b] \iff f$ can be written as the difference of two increasing functions on [a,b].

Figure 26:

Theorem 6.4 (Vitali Covering Theorem) Let $E \subseteq \mathbb{R}^d$ such that $m^*(E) < \infty$. Let \mathcal{C} be a collection of closed balls (or cubes) that covers E in the sense of Vitali. Then for any given $\varepsilon > 0$, there is a finite collection $\{B_1, \ldots, B_N\}$ of pairwise disjoint balls/cubes in \mathcal{C} such that

$$m^*(E\setminus(\sqcup_{j=1}^N B_j))<\varepsilon.$$

Moreover, there is an at most countable collection $(B_j)_{j\in\mathbb{N}}$ of pairwise disjoint balls in \mathcal{C} such that $m^*(E\setminus \bigsqcup_{j=1}^\infty B_j)=0$.

Figure 27:

Definition:

$$\begin{split} D^+f(x) &:= \limsup_{t\to 0^+} \frac{f(x+t) - f(x)}{t} = \lim_{t\to 0^+} \sup_{0 < s \leqslant t} \frac{f(x+s) - f(x)}{s}, \\ D_+f(x) &:= \liminf_{t\to 0^+} \frac{f(x+t) - f(x)}{t} = \lim_{t\to 0^+} \inf_{0 < s \leqslant t} \frac{f(x+s) - f(x)}{s}, \\ D^-f(x) &:= \limsup_{t\to 0^+} \frac{f(x) - f(x-t)}{t}, \qquad D_-f(x) &:= \liminf_{t\to 0^+} \frac{f(x) - f(x-t)}{t}. \end{split}$$

Note that there exists a sequence $(t_n)_{n=1}^\infty$ such that $t_n \to 0^+$ and $\lim_{n \to \infty} \frac{f(x+t_n)-f(x_n)}{t_n} = D^+f(x)$. This also holds for other one-sided derivatives.

Figure 28:

Example: Let $f:[0,1] \to [0,1]$ be the Cantor function. Then f is increasing and continuous. But f'=0 a.e.

Figure 29:

Lemma 6.6 For $f \in \mathcal{L}_1([a,b])$ such that $\int_a^x f = 0$ for all $x \in [a,b]$, then f = 0 a.e. in [a,b].

Figure 30:

Lemma 6.9 If f is absolutely continuous on [a,b], then f is uniformly continuous and f is of bounded variation on [a,b].

Figure 31:

Theorem 6.10 If f is absolutely continuous on [a,b] and f'=0 a.e. on [a,b], then f must be a constant.

Figure 32:

Theorem 6.11 (i) If $F(x) = \int_a^x f + C$, $x \in [a,b]$ for some $f \in L_1([a,b])$, then F is absolutely continuous on [a,b], F' = f a.e., and C = F(a).

(ii) If f is absolutely continuous on [a,b], then

$$f(x) = f(a) + \int_a^x f', \quad \forall x \in [a, b].$$

(iii) (Integration by parts for absolutely continuous functions) If both f and g are absolutely continuous on [a,b], then fg is absolutely continuous on [a,b] and

$$\int_{[a,b]} f(x)g'(x)dx = [f(b)g(b) - f(a)g(a)] - \int_{[a,b]} f'(x)g(x)dx.$$

Figure 33: