인 공 지 능

[0. 과목 안내]

소프트웨어융합대학 소프트웨어학부

본 자료는 해당 수업의 교육 목적으로만 활용될 수 있음. 일부 내용은 다른 교재와 논문으로부터 인용되었으며, 모든 저작권은 원 교재와 논문에 있음.

수업소개

- 시간 및 장소
 - 02분반
 - 월/수 12:00-13:15
 - 7호관 336호
- 담당: 이재구 교수
 - email: jaekoo@kookmin.ac.kr
 - 연구실: 생활관 B동 609호
- 면담시간: 목 15:00-17:00
 - 장소, 시간: email 사전 약속 요망
- 조교: 허성실
 - email: seonsil@kookmin.ac.kr
 - 연구실: 7호관 7층 KLAB

간단 소개

■ 연구 주제

■ 7호관 7층 KLAB

Bio or health-care analysis IoT (e.g. sensor) analysis

self-driving car or drone

Security

Artificial intelligence

Machine (deep) learning

System (Robot) for intelligence

수업소개

- 교재: 수업 강의 자료
 - 기본도서
 - 기계학습, 오일석
 - 참고도서
 - Machine Learning: a Probabilistic Perspective by K. Murphy

• Deep Learning by Goodfellow, Bengio, and Courville

- Stanford CS231N 강의자료
- 수업자료
 - ecampus.kookmin.ac.kr 수업 게시판 공유 예정

수업목표와 선수과목

■ 수업목표

- 기초 기계학습machine learning과 인공지능artificial intelligence의 이해
- 딥러닝deep learning의 포괄적인 이해
- 고급 소프트웨어 응용 실습 (Python with PyTorch) **라이브코딩 도입 예정**
- 최신 인공지능 기술 흐름 파악
- 인공지능 관련 Kaggle 과제 수행

■ 선수과목

- 프로그래밍 (Python) [필수]
- 선형대수linear algebra 및 확률통계probability and statistics, 정보이론information theory

학사일정

■ 총 15주 진행

2019년 9월	
09.01(일)	제73회 개교일
09.02(월)	2학기 개강일
09.02(월) - 09.06(금)	2학기 수강신청 변경/포기 기간
09.10(화) - 09.17(화)	부전공 신청 및 다전공 변경/포기 기간

2019년 10월	
10.14(월) - 10.17(목)	1전공 신청/변경 및 다전공 신청 기간
10.18(금)	개교 73주년 기념일 휴교일
10.21(월) - 10.25(금)	2학기 중간시험 기간 수업 8주차

휴일 대체 보강 필수

- 환경 설정
- PyTorch 기초
- → 세부 일정 TBD

sun	mon	TUE	WED	тни	FRI	SAT
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

2019년 12월	
12.04(수) - 12.06(금)	동계 계절학기 수강신청 기간
12.09(월) - 12.20(금)	전부(과) 신청 기간
12.09(월) - 12.13(금)	2학기 기말시험 기간 수업 15주차
12.10(화) - 12.12(목)	동계 계절학기 등록 기간
12.11(수) - 12.26(목)	2학기 성적 입력 기간

수업계획, 평가방법

주차	내용	참고	비고
1	과목 안내 및 환경 소개		
2	인공지능artificial intelligence 및 기계학습machine learning 소개	[과제 계획서 제출]	
3	기계학습과 수학 (e.g. 선형대수linear algebra)		Foundations
4	기계학습과 수학(e.g. 확률probability, 통계 ^{statistics} , 정보이론 ^{information theory})		
5	신경망neural networks 기초 (e.g. 다층 퍼셉트론multilayer perceptron)		
6	딥러닝deep learning 기초	[HW 1 제출]	
7	딥러닝 기초		
8	중간시험	[과제 초기보고서 제출]	Deep learning
9	딥러닝 최적화optimization		
10	딥러닝 최적화		
11	비지도학습unsupervised learning	[HW 2 제출]	
12	준지도학습semi-supervised learning과 전이학습transfer learning		Advanced deep learning
13	순환신경망recurrent neural networks		
14	순환신경망	[HW 3 제출]	
15	기말시험	[과제 최종보고서 제출]	Wrap up

평가방법 (라이브 코딩 적용시)

숙제 3회 (24%[†]) 중간/기말 2회 (20%*2=40%[†]) 최종 프로젝트 (20%[†]) **라이브코딩** (10%) 출석 (6%[†])

† 평가 비율

X No negotiation for your final grade!!

인공지능 어디까지 할 수 있나?

앞으로 수업에서 다루고 싶은 이야기

http://www.ebs.co.kr/tv/show?prodId=124333&lectId=10794476

