

Mise en service de la cheville du robot NAO – 20 minutes

0bjectifs	 D1-01: Mettre en œuvre un système en suivant un protocole D2-01: Choisir le protocole en fonction de l'objectif visé. D2-02: Choisir les configurations matérielles et logicielles du système en fonction de l'objectif visé par l'expérimentation. D2-03: Choisir les réglages du système en fonction de l'objectif visé par l'expérimentation. D2-04: Choisir la grandeur physique à mesurer ou justifier son choix.
-	

Expérimenter e analyser

Activité 1

- ☐ Prendre connaissance de la Fiche 1 (Présentation générale).
- ☐ Prendre connaissance de la Fiche 2 (Mise en œuvre de la cheville NAO).
- ☐ Proposer un schéma cinématique minimal du système.

Activité 2

Expérimenter et analyser

☐ Réaliser deux essais dans les conditions suivantes (Fiche 3)

- Asservissement cheville (ou réducteur);
- Réglage du correcteur de l'axe de tangage : $K_p = 200$;
- Consigne : sinus d'amplitude 5° et période 0,54 s puis période de 2,16 s.
- ☐ Justifier ces choix d'essai. On pourra s'appuyer sur l'exigence 1.2 (Fiche 4).
- ☐ Afficher la courbe de consigne et l'angle réducteur de l'axe de tangage.
- ☐ Commenter le courbe obtenue.

Expérimenter et analyser

Activité 3

- Prendre connaissance de la Fiche 4 (Ingénierie Systèmes Diagramme des exigences).
- ☐ Les exigences 2.2.1 et 2.2.2 sont-elles respectées ?

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Expliquer brièvement le contexte industriel du système.
- Expliquer brièvement le fonctionnement du système de laboratoire.
- Réaliser une synthèse de l'activité 2.
- Réaliser une synthèse de l'activité 3.

Synthè

Pour XENS - CCINP - Centrale :

garder des copies d'écran dans PowerPoint ou Word

Pour CCMP:

• Rédiger les éléments de synthèse sur feuille, imprimer et annoter les courbes nécessaires.

Chaine fonctionnelle – 20 minutes

Objectifs	A3-01	Associer les fonctions aux constituants.
	A3-02	Justifier le choix des constituants dédiés aux fonctions d'un système.
	A3-03	Identifier et décrire les chaines fonctionnelles du système.
	A3-04	Identifier et décrire les liens entre les chaines fonctionnelles.
	A3-05	Caractériser un constituant de la chaine de puissance.
	A3-06	Caractériser un constituant de la chaine d'information.
	D1-02	Repérer les constituants réalisant les principales fonctions des chaines fonctionnelles.
	D1-03	Identifier les grandeurs physiques d'effort et de flux.

Expérimenter et analyser

Activité 1

- ☐ Etablir la chaîne fonctionnelle de la cheville du robot NAO.
- Donner les grandeurs nécessaires au fonctionnement du système réel. Donner les grandeurs mesurées et celles qui sont calculées.
- □ Préciser le fonctionnement des capteurs angulaires. Leur résolution est-elle en accord avec l'exigence 2.2.1 ?

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Présenter la chaîne fonctionnelle sous forme de blocs.
- Préciser la nature des flux transitant entre les blocs.
- Lors de la présentation à l'examinateur, désigner les constituants sur le système.

Pour XENS – CCINP – Centrale :

garder des copies d'écran dans PowerPoint ou Word

Pour CCMP:

• Rédiger les éléments de synthèse sur feuille, imprimer et annoter les courbes nécessaires.

Modélisation d'un chaîne de solides – 25 minutes

ည	B2-12	Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique.
Ē	B2-15	Simplifier un modèle de mécanisme.
bjectifs	B2-16	Modifier un modèle pour le rendre isostatique.
ō	E2-05	Produire des documents techniques adaptés à l'objectif de la communication.

Activité 1

Analyser et modéliser

- ☐ Proposer un graphe de structure modélisant l'architecture du réducteur de l'axe de tangage.
- ☐ Donner le schéma cinématique associé.
- ☐ Donner le degré d'hyperstatisme de modèle proposé.
- ☐ Justifier les choix technologiques qui ont été réalisés.
- ☐ Si votre modèle est hyperstatique, proposer un modèle isostatique.

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Présenter l'architecture de la liaison avec un schéma cinématique et ou un graphe de structure.
- Justifier le degré d'hyperstatisme de cette architecture.

ynthèse

Pour XENS - CCINP - Centrale - CCMP:

- Donner l'objectif de l'activité.
- Réaliser un schéma cinématique en couleur et le graphe de liaison associé.
- Déterminer en justifiant l'hyperstatisme.
- Conclure (justification du besoin d'avoir un système hyperstatique, préciser les conditions d'assemblage ou de réglage de la liaison).

Modélisation des frottements dans la cheville NAO – 60 minutes

Objectifs pédagogiques

□ **B3-01** Vérifier la cohérence du modèle choisi en confrontant les résultats analytiques et/ou numériques aux résultats expérimentaux.

Objectif

En vue de pouvoir modéliser le comportement du système, on souhaite modéliser et quantifier les frottements.

Activité 1

Expérimenter

- ☐ Ouvrir le modèle « ChevilleNAO_Complete.slx ».
- Décrire le modèle multiphysique.
- Réaliser un essai de type échelon de 10° avec un gain proportionnel de Kp = 400.
- ☐ Vérifier que les conditions de simulation sont les mêmes que les conditions expérimentales.
- ☐ Confronter les résultats expérimentaux et les résultats issus de la simulation.

Modéliser le comportement

Activité 2

- ☐ Le logiciel de mesure permet-il d'avoir accès au couple fourni par le moteur ?
- Quelle est l'unité physique du coefficient de frottement visqueux ?
- Proposer un protocole expérimental permettant d'étudier les effets du frottement visqueux ou du frottement sec.
- ☐ Comment pourrait-on prendre en compte le frottement dans le modèle ?

On choisit d'ajouter dans le modèle un bloc Rotation friction dans lequel on renseigne un couple d'adhérence de 5 mNm (Breakaway friction torque) et un couple de frottement en utilisant le modèle de Coulomb de 5 mNm (Coulomb friction torque).

– Pour cela décommenter le bloc sur le modèle –

Modéliser le comportement

Activité 3

☐ En utilisant la documentation, modifier le modèle et observer l'évolution de la position de la cheville.

xpérimente

Activité 4

☐ Modifier le modèle pour simuler le comportement de la cheville en marche lente puis en marche rapide. Les résultats des simulations reflètent-ils le comportement réel de la cheville ?

Réaliser une synthèse dans le but d'une préparation orale :

- Présenter les points clés de la modélisation analytique et de la simulation associée;
- Comparer les résultats de la simulation et les résultats expérimentaux.
- Conclure.

Pour XENS – CCINP – Centrale :

- Donner l'objectif des activités.
- Présenter les points clés de la modélisation.
- Présenter les points clés de la résolution utilisant Capytale.
- Présenter le protocole expérimental.
- Présenter la courbe illustrant les résultats expérimentaux et ceux de la résolution.
- Analyser les écarts.

Pour CCMP:

- Synthétiser les points précédents sur un compte rendu.
- Imprimer le graphe o ù les courbes sont superposées.