An Accelerated Variance Reducing Stochastic Method with Douglas-Rachford Splitting

Jingchang Liu¹, Linli Xu¹, Shuheng Shen¹, Qing Ling²

¹School of Computer Science and Technology, University of Science and Technology ²School of Data and Computer Science, Sun Yat-Sen University

Background

Formulation

- Regularized ERM: $\min_{x \in \mathcal{R}^d} f(x) + h(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) + h(x)$.
- $f_i: \mathbb{R}^d \to \mathbb{R}$: empirical loss of *i*-th sample, convex.
- h: regularization term, convex but possibly non-smooth.
- Examples: LASSO, sparse SVM, ℓ_1, ℓ_2 -Logistic Regression.

Definition

- Proximal operator:

$$\operatorname{prox}_f^{\gamma}(x) = \operatorname{argmin}_{y \in \mathbb{R}^d} \left(f(y) + \frac{1}{2\gamma} \|y - x\|^2 \right).$$

- Gradient mapping: $f(x) = \frac{1}{\gamma}(x \operatorname{prox}_f^{\gamma}(x))$.
- -Subdifferential: $\partial f(x) = \{g \mid g^{\mathsf{T}}(y-x) \leq f(y) f(x), \forall y \in \text{dom } f\}.$
- Strongly convex: $f(y) \ge f(x) + \langle g, y x \rangle + \frac{\mu}{2} \|y x\|^2$.
- L-smooth: $f(y) \leq f(x) + \langle \nabla f(x), y x \rangle + \frac{L}{2} ||y x||^2$.

Exsiting Algorithm: $\operatorname{prox}_h^{\gamma}(x-\gamma\cdot\Box)$, where \Box can be obtained from:

- GD: $\square = \nabla f(x)$, more calculations needed in each iteration.
- SGD: $\square = \nabla f_i(x)$, small stepsize deduces slow convergence.
- Variance reduction (VR): $\Box = \nabla f_i(x) \nabla f_i(\bar{x}) + \nabla f(x)$, such as SVRG, SAGA, SDCA.

Accelerated Technique

- III condition: L/μ , the condition number, is large.
- Methods: Acc-SDCA, Catalyst, Mig, Point-SAGA.
- Drawbacks: More parameters need to be tuned.

Convergence Rate

- VR stochastic methods: $\mathcal{O}\left((n+L/\mu)\log(1/\epsilon)\right)$.
- Acc-SDCA, Mig, Point-SAGA: $\mathcal{O}((n + \sqrt{nL/\mu}) \log(1/\epsilon))$.
- When $L/\mu \gg n$, accelerated technique makes the convergence much faster.

Aim: Design a simpler accelerate VR stochastic method which can achieve the fastest convergence rate.

Moreau Envelop and Douglas-Rachford (DR) Splitting

Moreau Envelop:
$$f^{\gamma}(x) = \inf_{y} \left\{ f(y) + \frac{1}{2\gamma} \|x - y\|^2 \right\}$$
.

 $-f^{\gamma}$ is continuously differentiable even when f is non-differentiable,

$$\nabla f^{\gamma}(x) = (x - \operatorname{prox}_f^{\gamma}(x))/\gamma.$$

Moreover, f^{γ} is $1/\gamma$ -smooth.

- If f: μ -strongly convex, then f^{γ} : $\mu/(\mu\gamma+1)$ -strongly convex.
- The condition number of f^{γ} is $(\mu\gamma+1)/\mu\gamma$, which may better than L/μ of f.
- Application: Point-SAGA, which is used when $\it h$ is absent. At step $\it k+1$:

$$egin{align} z_j^k &= x^k + \gamma (g_j^k - \sum_{i=1}^n g_i^k/n), \ x^{k+1} &= ext{prox}_{f_j}^{\gamma}(z_j^k) \ g_i^{k+1} &= (z_i^k - x^{k+1})/\gamma, \end{aligned}$$

which is equivalent to $x^{k+1} = x^k - \gamma (g_j^{k+1} - g_j^k + \sum_{i=1}^n g_i^k / n)$, where g_i^{k+1} is the gradient mapping of f at z_i^k .

DR Splitting

- Formulation: $\min_{x} f(x) + h(x)$.
- Aim: Splitting the proximal operators of f and h.
- Iteration:

$$y^{k+1} = -x^k + y^k + \text{prox}_f^{\gamma}(2x^k - y^k),$$

 $x^{k+1} = \text{prox}_h^{\gamma}(y^{k+1}).$

Methods

The Proposed Algorithm

Algorithm 1 Prox2-SAGA

- 1: **Input**: $x^0 \in \mathbb{R}^d$, g_i^0 (i = 1, 2, ..., n), step size $\gamma > 0$.
- 2: **for** $k = 0, 1, \dots$ **do**
- 3: Uniformly randomly pick j from 1 to n.
- 4: Calculate g_j^{k+1} :

$$z_j^k = x^k + \gamma \left(g_j^k - \frac{1}{n} \sum_{i=1}^n g_i^k \right),$$

$$g_j^{k+1} = \frac{1}{\gamma} ((z_j^k + x^k - y^k) - \operatorname{prox}_{f_j}^{\gamma} (z_j^k + x^k - y^k)).$$

5: Update x:

$$y^{k+1} = z_j^k - \gamma g_j^{k+1},$$

 $x^{k+1} = \text{prox}_h^{\gamma}(y^{k+1}).$

6: Update g_i (i = 1, 2, ..., n) in the table:

$$g_i^{k+1} = \begin{cases} g_j^{k+1}, & \text{if } i = j, \\ g_i^k, & \text{otherwise.} \end{cases}$$

7: end for 8: Output: x^{k+1} .

Figure 1: Prox2-SAGA Algorithm

Remarks

- Prox2-SAGA is under the algorithm framework of SAGA; it also involves two proximal operators. So it gets its name.
- When h = 0,
 Prox2-SAGA is simplified to
 Point-SAGA.
- When n = 1, Prox2-SAGA is simplified to DR-Splitting.

Main Iterations:

$$y^{k+1} = x^k - \gamma \left(g_j^{k+1} - g_j^k + \sum_{i=1}^n g_i^k / n \right), \quad x^{k+1} = \operatorname{prox}_h^{\gamma}(y^{k+1}),$$

where g_j^{k+1} , which is stored in a table, is the gradient mapping of f at $z_j^k + x^k - y^k$.

Main Theories

- **Proposition:** Suppose that $(y^{\infty}, \{g_i^{\infty}\}_{i=1,...,n})$ is the fixed point of the Prox2-SAGA iteration. Then $x^{\infty} = \operatorname{prox}_h^{\gamma}(y^{\infty})$ is a minimizer of the proposed problem.
- **Non-strongly convex case:** f_i : convex and L-smooth, h: convex. Denote $\bar{g}_j^k = \frac{1}{k} \sum_{t=1}^k g_j^t$, then for Prox2-SAGA with step size $\gamma \leq 1/L$, at any time k > 0 it holds

$$\mathbb{E} \|\bar{g}_{j}^{k} - g_{j}^{*}\|^{2} \leq \frac{1}{k} \Big(\sum_{i=1}^{n} \|g_{i}^{0} - g_{i}^{*}\|^{2} + \|\frac{1}{\gamma} (y^{0} - y^{*})\|^{2} \Big).$$

-Strongly convex case: f_i : μ -strongly convex and L-smooth, h: convex. Then for Prox2-SAGA with stepsize $\gamma = \min\left\{\frac{1}{\mu n}, \frac{\sqrt{9L^2+3\mu L}-3L}{2\mu L}\right\}$, for any time k>0 it holds

$$\mathbb{E}\|x^{k}-x^{*}\|^{2} \leq \left(1-\frac{\mu\gamma}{2\mu\gamma+2}\right)^{k} \cdot \frac{\mu\gamma-2}{2-n\mu\gamma} \left\{ \sum_{i=1}^{n} \left\|\gamma(g_{i}^{0}-g_{i}^{*})\right\|^{2} + \|y^{0}-y^{*}\|^{2} \right\}.$$

- Remarks:
- When the stepsize $\gamma = \min\left\{\frac{1}{\mu n}, \frac{\sqrt{9L^2+3\mu L}-3L}{2\mu L}\right\}$, then $\mathcal{O}(n+L/\mu)\log(1/\epsilon)$ steps are required to achieve $\mathbb{E}||x^k-x^*||^2 \leq \epsilon$.
- When f_i is ill-conditioned, then a large stepsize $\gamma = \min\left\{\frac{1}{\mu n}, \frac{6L + \sqrt{36L^2 6(n-2)\mu L}}{2(n-2)\mu L}\right\}$ is possible, under which the required steps is $\mathcal{O}(n + \sqrt{nL/\mu})\log(1/\epsilon)$.

Experiments

Figure 2: Comparison of several algorithms with $\ell_1\ell_2$ -Logistic Regression

Figure 3: Comparison of several algorithms with sparse SVMs.

- Figure 2 shows that Prox2-SAGA has the accelerated effect when f_i 's are ill-conditioned.
- Figure 3 shows that Prox2-SAGA would also work when f_i 's are non-smooth.