

Outline

- Why Ensemble?
- Components in an ensemble
- Ensemble Based Systems
 - Bagging
 - Boosting
 - AdaBoost
- How much classification improvements with an ensemble?

diddle Tennessee State University

Why Ensemble?

- Making important decisions
 - Expert panel, Lifeline (opinion of expert "friends")
- Reasons:
 - Statistical reason
 - Training vs. generalization
 - Algorithm/System vs. data
 - Large volumes of data
 - Too little data
 - Divide and conquer
 - Data fusion

fiddle Tennessee State University

Why Ensemble? Training Data Examples Training Data Examples Complete Decision Complete Decision Complete Decision Conservation Measurements Feature 1 Divide and Conquer Averaging over an ensemble of classifiers

Two components in an Ensemble

- A strategy to create the classifiers
- A strategy to combine the classifiers

.....

Components in an Ensemble

- A strategy to build an ensemble as diverse as possible
 - Disjoint data -- k-fold data splitting
 - Bagging
 - Boosting

iddle Tennessee State Universit

Bagging

- Main idea:
 - Form different training data to train each classifier
 - How?
 - Create bootstrapped training data-- randomly pick a certain percent of data from the original data with replacement
 - The classifiers are combined with majority vote

liddle Tennessee State Universit

Algorithm: Bagging Input: In Training data S with correct labels $\omega_t \in \Omega = \{\omega_1, \dots, \omega_C\}$ representing C classes Weak learning algorithm WeakLearn, In Integer T specifying number of iterations. Percent (or fraction) F to create bootstrapped training data Do $t = 1, \dots, T$ 1. Take a bootstrapped replica S_t by randomly drawing F percent of S. 2. Call WeakLearn with S_t and receive the hypothesis (classifier h_t . 3. Add h_t to the ensemble, Ξ . End Test: Simple Majority Voting - Given unlabeled instance \mathbf{x} 1. Evaluate the ensemble $E = \{h_1, \dots, h_T\}$ on \mathbf{x} . 1. Evaluate the ensemble $E = \{h_1, \dots, h_T\}$ on \mathbf{x} . 2. Let $v_{t,t} = \{1, \dots, t_T\}$ on \mathbf{x} . 3. Obtain total vote exceived by each class $V_t = \sum_{t=1}^T v_{t,t}, \ t = 1, \dots, C$ 4. Choose the class that receives the highest total vote as the final classification.

Boosting

- Considered as one of the most important developments in the recent history of machine learning.
- Freund and Schapire, 1997
- Many variations
 - General boosting
 - Adaboost
 - Adaboost.R
 - Adaboost.M1

iddle Tennessee State Universit

General Boosting

- Basic ideas: create three weak classifiers:
 - classifier C1 trained with a random subset of the available training data.
 - C2 is trained on a training data only half of which is correctly classified by C1 ,and the other half is misclassified.
 - The third classifier C3 is trained with instances on which C1 and C2 disagree.
 - The three classifiers are combined through a threeway majority vote.
- No replacement allowed

Middle Tennessee State University

Algorithm: Boosting Input: Training data S of size N with correct labels ω_l $\in \Omega = \{\omega_l, \omega_2\}$: Weak learning algorithm WeakLearn. Training: 1. Select, $N_l < N$ patterns without replacement from S to create data subset S_1 . 2. Call WeakLearn and train with S_1 to create classifier C_1 . 3. Create dataset S_2 as the most informative dataset, given C_1 , such that half of S_2 is correctly classified N_1 does not conclude the other half is misclassified. To do so: a. Filp a fair coin. If Head, select samples from S_1 and present them to S_2 . Train the second classifier C_2 with S_2 . Text—Given a test instance S_3 .

AdaBoost

- · Basic ideas:
 - Consecutive classifiers' training data are geared towards increasingly hard-to-classify instances.
 - · How?
 - Train each weak classifier using instances drawn from an iteratively updated distribution of the training data.
 - This distribution update ensures that instances misclassified by the previous classifier are more likely to be included in the training data of the next classifier.
 - Weighted majority vote

Middle Tennessee State University

AdaBoost Algorithm AdaBoost.M1 Input: Input: Sequence of N examples $S = \{(\mathbf{x}_i, y_i)\}, i = 1, \dots, N$ with labels $y_i \in \Omega, \Omega = \{\omega_1, \dots, \omega_C\}$: Weak learning algorithm WeakLearn; Integer T specifying number of iterations. 5. Update distribution $D_{t}: D_{t+1}(i) = \frac{D_{t}(i)}{Z_{t}} \times \begin{cases} \beta_{t} & \textit{if } h_{t}(\mathbf{x}_{i}) = y_{i} \\ 1, & \textit{otherwise} \end{cases} \tag{14}$ Initialize $D_1(i) = \frac{1}{N}$, $i = 1, \dots, N$ where $Z_t = \sum_i D_t(i)$ is a normalization constant chosen so that D_{t+1} becomes a proper 1. Select a training data subset S_t , drawn from the distribution D_t . distribution function. Test - Weighted Majority Voting: Given an unla-beled instance x, 1. Obtain total vote received by each class 2. Train WeakLearn with St. receive hypothe-3. Calculate the error of h_l : $\varepsilon_l = \sum_{i:h_l(\mathbf{x}_l) \neq y_i} D_l(i)$. $V_j = \sum_{t:h_t(\mathbf{x})=\omega_j} \log \frac{1}{\beta_t}, j=1,\ldots,C.$ If $\varepsilon_t > 1/2$, **abort**. 4. Set $\beta_t = \varepsilon_t/(1 - \varepsilon_t)$. 2. Choose the class that receives the highest (13)total vote as the final classification

Boosting

• It has been proven: "the error of this threeclassifier ensemble is <u>bounded</u> above, and it is <u>less than</u> the error of the best classifier in the ensemble, provided that each classifier has an error rate that is less than 0.5."

liddle Tennessee State Universit

Two components in an Ensemble

- A strategy to create the classifiers
- A strategy to combine the classifiers

diddle Tennessee State Universit

Combining Classifiers

- A strategy to combine the output of individual classifiers → amplify correct decisions and cancel out incorrect ones:
 - Majority vote
 - Weighted majority vote
 - Combining numeric outputs
 - Others:
 - Behavior knowledge space, Borda count

liddle Tennessee State Universit