练习3.1

2. 设 $\alpha_1=(2,5,1,3)$, $\alpha_2=(10,1,5,10)$, $\alpha_3=(4,1,-1,1)$, 且 向 量 α 满 足 $3(\alpha_1-\alpha)+2(\alpha_2+\alpha)=5(\alpha_3+\alpha)$, 求 α .

练习3.2

2. 设 $\alpha_1 = (1,0,0)$, $\alpha_2 = (1,1,0)$, $\alpha_3 = (1,1,1)$; $\beta_1 = (2,3,4)$, $\beta_2 = (a,b,c)$. 问 β_1,β_2 能否由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示?若能线性表示,求出具体的表达式.

解 对下列矩阵施行初等行变换:

$$\begin{pmatrix}
1 & 1 & 1 & 2 & a \\
0 & 1 & 1 & 3 & b \\
0 & 0 & 1 & 4 & c
\end{pmatrix}
\xrightarrow{r_1 - r_2}
\xrightarrow{r_2 - r_3}
\begin{pmatrix}
1 & 0 & 0 & -1 & a - b \\
0 & 1 & 0 & -1 & b - c \\
0 & 0 & 1 & 4 & c
\end{pmatrix},$$

故有

$$\beta_1 = -\alpha_1 - \alpha_2 + 4\alpha_3$$
, $\beta_2 = (a-b)\alpha_1 + (b-c)\alpha_2 + c\alpha_3$.

3. 已知 α_1 , α_2 , α_3 线性无关,证明 $2\alpha_1 + 3\alpha_2$, $\alpha_2 - \alpha_3$, $\alpha_1 + \alpha_2 + \alpha_3$ 线性无关.

解 本题可以用定义证明,这里略去. 下面通过矩阵来证明. 因

$$\left(2\boldsymbol{\alpha}_1+3\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_2-\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3\right) = \left(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3\right) \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix},$$

而行列式
$$\begin{vmatrix} 2 & 0 & 1 \\ 3 & 1 & 1 \\ 0 & -1 & 1 \end{vmatrix} = 1 \neq 0$$
,故矩阵 $\begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$ 可逆,从而 $2\alpha_1 + 3\alpha_2$, $\alpha_2 - \alpha_3$,

 $lpha_1+lpha_2+lpha_3$ 与 $lpha_1$, $lpha_2$, $lpha_3$ 具有相同的线性相关性,从而 $2lpha_1+3lpha_2$, $lpha_2-lpha_3$, $lpha_1+lpha_2+lpha_3$ 线性无关.

4. 设 α_1, α_2 线性相关, β_1, β_2 也线性相关,问 $\alpha_1 + \beta_1, \alpha_2 + \beta_2$ 是否一定线性相关? 试举例说明之.

解 不一定.例如: $\alpha_1 = (1,1)^T$, $\alpha_2 = (-1,-1)^T$ 线性相关, $\beta_1 = (1,0)^T$, $\beta_2 = (2,0)^T$ 线性相关,但 $\alpha_1 + \beta_1 = (2,1)^T$, $\alpha_2 + \beta_2 = (1,-1)^T$ 线性无关.

5. 设 A 为 3 阶矩阵, α_1 , α_2 , α_3 为 3 维列向量,若 $A\alpha_1$, $A\alpha_2$, $A\alpha_3$ 线性无关,证明: α_1 , α_2 , α_3 线性无关,且 A 为可逆矩阵.

下面用定义证明. 设
$$k_1$$
 α_1 + k_2 α_2 + k_3 α_3 = $\boldsymbol{0}$, 两边同时左乘 \boldsymbol{A} , 有
$$\boldsymbol{A}(k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + k_3\boldsymbol{\alpha}_2) = k_1\boldsymbol{A}\boldsymbol{\alpha}_1 + k_2\boldsymbol{A}\boldsymbol{\alpha}_2 + k_3\boldsymbol{A}\boldsymbol{\alpha}_2 = \boldsymbol{0}$$
 ,

因 $A\pmb{lpha}_1, A\pmb{lpha}_2, A\pmb{lpha}_3$ 线性无关,故 $k_1=k_2=k_3=0$,从而 \pmb{lpha}_1 , \pmb{lpha}_2 , \pmb{lpha}_3 线性无关.

因
$$(A\alpha_1, A\alpha_2, A\alpha_3) = A(\alpha_1, \alpha_2, \alpha_3)$$
 ,且 $A\alpha_1, A\alpha_2, A\alpha_3$ 线性无关,故

 $|A\boldsymbol{\alpha}_1, A\boldsymbol{\alpha}_2, A\boldsymbol{\alpha}_3| = |A| \cdot |(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)| \neq 0$,故 $|A| \neq 0$, A 为可逆矩阵.

- 7. 举例说明下列各命题是错误的:
 - (1) 若向量组 α_1 , α_2 ,..., α_m 是线性相关的,则 α_1 可由 α_2 ,..., α_m 线性表示.
- (2) 若有不全为 0 的数 λ_1 , λ_2 , … , λ_m , 使 $\lambda_1\alpha_1 + \dots + \lambda_m\alpha_m$ + $\lambda_1\beta_1 + \dots + \lambda_m\beta_m = 0$ 成立,则 $\alpha_1, \dots, \alpha_m$ 线性相关, β_1, \dots, β_m 亦线性相关.
- (3) 若只有当 λ_1 , λ_2 , …, λ_m 全为 0 时, 等式 $\lambda_1\alpha_1 + \dots + \lambda_m\alpha_m + \lambda_1\beta_1 + \dots + \lambda_m\beta_m = 0$ 才能成立,则 α_1 , …, α_m 线性无关, β_1 , …, β_m 亦线性无关.
- (4) 若 $\alpha_1, \dots, \alpha_m$ 线性相关, β_1, \dots, β_m 亦线性相关,则有不全为 0 的数, $\lambda_1, \lambda_2, \dots, \lambda_m$ 使 $\lambda_1, \alpha_1 + \dots + \lambda_m \alpha_m = \mathbf{0}$, $\lambda_1 \beta_1 + \dots + \lambda_m \beta_m = \mathbf{0}$ 同时成立.
 - 解 (1) 例如 $\alpha_1 = 0$, $\alpha_2 \neq 0$;
 - (2) 取 $\boldsymbol{\beta}_i = -\boldsymbol{\alpha}_i$, $i = 1, 2, \dots, m$, 而 $\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m$ 线性无关即可;
 - (3) 取 $\alpha_1, \dots, \alpha_m$ 线性无关,而 $\beta_i = 0$, $i = 1, 2, \dots, m$,即可;
- (4) 取 $\boldsymbol{\alpha}_1 = (1,0)^{\mathrm{T}}$, $\boldsymbol{\alpha}_2 = (-1,0)^{\mathrm{T}}$, 则 $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 = \boldsymbol{0}$. 取 $\boldsymbol{\beta}_1 = (0,1)^{\mathrm{T}}$, $\boldsymbol{\beta}_2 = (0,2)^{\mathrm{T}}$,则 $2\boldsymbol{\beta}_1 \boldsymbol{\beta}_2 = \boldsymbol{0}$, 可以验证.
- 8. 下列命题是否正确,说明理由:
- (1) 若 $\alpha_1, \alpha_2, \dots, \alpha_r$ 是一组线性相关的 n 维向量,则对于任意不全为零的 k_1, k_2, \dots, k_r ,均有 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r = \mathbf{0}$.
- (2) 若 $\alpha_1, \alpha_2, \dots, \alpha_r$ 是一组线性无关的 n 维向量,则对于任意不全为零的 k_1, k_2, \dots, k_r ,均有 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r \neq 0$.
- (3) 如果向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ $(r \ge 2)$ 中任取m (m < r) 个向量,所组成的部分向量组都线性无关,则这个向量组本身也是线性无关的.
- (4) 若 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关,且只有 k_1, k_2, \dots, k_r 全为零时,等式 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r + k_1\beta_1 + k_2\beta_2 + \dots + k_r\beta_r = 0$ 才成立,则 $\beta_1, \beta_2, \dots, \beta_r$ 线性无 亲
 - (5) 在线性相关的向量组中,去掉若干个向量后所得向量组仍然线性相关.
 - (6) 在线性无关的向量组中,去掉每个向量的最后一个分量后仍然线性无关.
 - 解 (1) 显然错误, 容易举例. 注意定义中仅要求存在某一组数使其成立即可.
 - (2) 正确. 这与原始的定义等价.
 - (3) 错误. 例如: $\alpha_1 = (1,0)^T, \alpha_2 = (0,1)^T, \alpha_3 = (1,1)^T$.
- (4) 错误.例如: $\alpha_1 = (1,0)^{\mathrm{T}}$, $\alpha_2 = (0,1)^{\mathrm{T}}$, $\beta_1 = (0,0)^{\mathrm{T}}$, $\beta_2 = (1,1)^{\mathrm{T}}$, 满足条件,但 β_1,β_2 线性相关.
 - (5) 错误. 举例同(3).
- (6) 错误. 例如: $\alpha_1 = (1,1,0)^{\mathrm{T}}$, $\alpha_2 = (1,1,1)^{\mathrm{T}}$ 线性无关,但去掉第 3 个分量后线性相关.
- **9.** 若 α_1 , \cdots , α_r 线性无关,而 α_{r+1} 不能由 α_1 , \cdots , α_r 线性表示,试证 α_1 , \cdots , α_r , α_{r+1}

必线性无关.

证

否则,设存在不全为零的数 k_1,k_2,\cdots,k_{r+1} ,使得

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_r \alpha_r + k_{r\perp 1} \alpha_{r\perp 1} = 0$$
,

则 $k_{r+1} = 0$. 否则由上式可得

$$\boldsymbol{\alpha}_{r+1} = -\frac{1}{k_{r+1}} \big(k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_r \boldsymbol{\alpha}_r \big)$$
 ,

从而 α_{r+1} 能由 α_1 ,…, α_r 线性表示,与题设矛盾.此时即有不全为零的数 $k_1,k_2,…,k_r$,使得 $k_1\alpha_1+k_2\alpha_2+…+k_r\alpha_r=0$,得 α_1 ,…, α_r 线性相关,再与题设矛盾,故 α_1 ,…, α_r , α_r , α_{r+1} 线性无关.

10. 设有两向量组

$$\begin{cases} \boldsymbol{\alpha}_1 = (1,0,2,1) \\ \boldsymbol{\alpha}_2 = (1,2,0,1) \\ \boldsymbol{\alpha}_3 = (2,1,3,0) \\ \boldsymbol{\alpha}_4 = (2,5,-1,4) \end{cases} \quad \text{fil} \quad \begin{cases} \boldsymbol{\beta}_1 = (1,-1,3,1) \\ \boldsymbol{\beta}_2 = (0,1,-1,3) \\ \boldsymbol{\beta}_3 = (0,-1,1,4) \end{cases}$$

证明上述两向量组等价.

解

设
$$\boldsymbol{A} = \left(\boldsymbol{\alpha}_1^{\mathrm{T}}, \boldsymbol{\alpha}_2^{\mathrm{T}}, \boldsymbol{\alpha}_3^{\mathrm{T}}, \boldsymbol{\alpha}_4^{\mathrm{T}}\right)$$
 , $\boldsymbol{B} = \left(\boldsymbol{\beta}_1^{\mathrm{T}}, \boldsymbol{\beta}_2^{\mathrm{T}}, \boldsymbol{\beta}_3^{\mathrm{T}}\right)$, 若能证

 $R(\mathbf{A}, \mathbf{B}) = R(\mathbf{A}) = R(\mathbf{B})$, 即说明两向量组等价.

$$\begin{pmatrix} 1 & 1 & 2 & 2 & | & 1 & 0 & 0 \\ 0 & 2 & 1 & 5 & | & -1 & 1 & -1 \\ 2 & 0 & 3 & -1 & | & 3 & -1 & 1 \\ 1 & 1 & 0 & 4 & | & 1 & 3 & 4 \end{pmatrix} \xrightarrow{r_3 - 2r_1} \begin{pmatrix} 1 & 1 & 2 & 2 & | & 1 & 0 & 0 \\ 0 & 2 & 1 & 5 & | & -1 & 1 & -1 \\ 0 & -2 & -1 & -5 & | & 1 & -1 & 1 \\ 0 & 0 & -2 & 2 & | & 0 & 3 & 4 \end{pmatrix}$$

故 $R(\mathbf{A}, \mathbf{B}) = R(\mathbf{A}) = R(\mathbf{B}) = 3$. 得证.