MAT 300 4-09 HW

ID: 1213399809

Name: Lucas Saldyt (lsaldyt@asu.edu)

Collaborators: \varnothing

Problem 1.	5.5.21	1
Problem 2.	6.1.4	2
Problem 3.	6.2.10	3
Problem 4.	6.2.3	4
Problem 5.	6.2.8	5

Problem 1. 5.5.21

Let A be a set, and (s_i) be a sequence in A.

- (a) If (s_i) is constant, every subsequence of (s_i) is constant.
- (b) If (s_i) has distinct terms, then every subsequence of (s_i) has distinct terms.

Solution

Part (a)

Proof Suppose there existed a non-constant subsequence of s_i , call it s_{a_k} . Then, by definition, $s_{a_i} \neq s_{a_j}$ for distinct natural numbers i and j. Evaluate a_i , and a_j , which will be natural numbers. Call them x and y respectively. This means that $s_x s_y$ for distinct x and y (x and y must be distinct because, if they were not, then s_{a_i} would equal s_{a_j}). This leads to a contradiction, namely that $s_x \neq s_y$ for distinct x and y, or the original subsequence would be constant. By contradiction, every subsequence of a constant sequence must also be constant.

Proof Suppose that there existed a non-distinct subsequence of s_i . Call this subsequence s_{a_k} . By negating the definition of distinct, $s_{a_i} = s_{a_j}$ for some distinct i and j. Evaluate a_i and a_j to natural numbers x and y, so that $s_x = s_y$ for distinct x and y. This is a contradiction with the fact that s_i is distinct, so it is not possible to have a constant subsequence of a distinct sequence.

Problem 2. 6.1.4

Use the well-ordering of \mathcal{N} (Every non-empty set of natural numbers contains a least element) to prove the following:

- (a) Every nonempty subset of \mathcal{Z} that has a lower bound has a least element.
- (b) Every nonempty subset of \mathcal{Z} that has a lower bound has a greatest element.

Solution

In each of these solutions, the subset on \mathcal{Z} must be converted to a subset of \mathcal{N} .

- Part (a)
- Part (b)

Problem 3. 6.2.10

Prove the following about the partial ordering on \mathcal{N} .

- (a) Prove that \mathcal{N} is partially ordered under the relation |.
- (b) Is | a total order on \mathcal{N} ? Explain.
- (c) Draw a lattice diagram the depicts the order | on the set $\{1, 2...15\}$.
- (d) Does {2, 3, 4, 5..} have any minimal or maximal elements with respect to the order |?

Solution

- Part (a)
- Part (b)
- Part (c)
- Part (d)

Problem 4. 6.2.3

Let a, b be natural numbers. Suppose a = qb + r with $0 \le r < b$. What does the division algorithm yield when -a is divided by b? Justify your answer. Those natural numbers n that, when divided into m using the division algorithm, yield a remainder of zero have a special status with respect to m. We say that n divides m evenly or simply that n divides m.

Solution

Part (a)

Problem 5. 6.2.8

Let a, b, c be integers.

- (a) If a|b and b|a, then a = +/-b.
- (b) If a|b and b|c, then a|c.

Solution

Part (a)