PROBLEMS (variable anderation, a linear eaugalor motion & tangential & normal an elevation)

The angle of rotation of a body is given by the equation, $0=2t^3-5t^2+8t+6$ where 0 is in Radians and t in recouds. Determine angular velocity and angular auderation of the body, when to 0 \$ \$t:45.

Solution

At
$$t = 4 \implies \omega = 6x(4)^2 - 10x4 + 8 = 64 \text{ rad/s}$$

 $x = 12x4 - 10^2 = 38 \text{ rad/s}^2$

The angle of hotation of a body is given as a function of time by the equation, $0 = 0 + at + bt^2$ where 0 is initial angular displacement and a + b are constants. Obtain the general expression for a angular velocity; b) angular acceleration, if initial angular velocity be 3T rad/s and after 2 sec, the angular velocity is 8 Trad/s. Determine the constants a + b.

Solution

$$\theta = \theta_0 + \alpha t + b t^2$$

At
$$t \cdot 2s$$
; $\omega \cdot 8\pi \text{ rad/s}$.
 $8\pi \cdot 3\pi + 2bx4$
 $5\pi \cdot 4b$
 $b \cdot 5\pi$
 4
 $0 = 0 + 3\pi t + 5\pi t^2$
 $\omega \cdot 3\pi + 5\pi t$

$$\alpha = \frac{5}{2}T$$

(3) The motion of a gear is defined by the relation $0 = 4t^3 - 6t^2 + 9t + 20$, where 0 is in radians and t is in S. Determine the angular displacement, angular velocity and angular acceleration at time, t = 3 sec Solution

$$0 > 4t^3 - 6t^2 + 9t + 20$$

At
$$t = 3 \sec 3 \implies 0 = 4 \times (3)^{3} - 6 \times (3)^{2} + 9 \times 3 + 20$$

$$\omega = 12 \times (3)^2 - 12 \times 3 + 9$$

$$\alpha = 24 \times 3 - 12 = 60 \text{ rad/s}^2$$

The angular acceleration of a wheel is given by $\alpha = 12 - t$, where α is in radis and t in seconds. If the angular velocity of the wheel is 60 radis at the end of 4 sec. Determine the angular velocity at the end of 6 sec. How many hevolutions take place in this 6 sec. Solution

$$\omega = \int (12-t) dt = 12t - \frac{t^2}{2} + C_1$$

$$0 = 12\frac{t^{2}}{2} - \frac{t^{3}}{6} + C_{1}t + C_{2}$$
At, $t=0$; $0=0$

$$0 = 0 + C_{2} \Rightarrow C_{2} = 0$$
At, $t=4$; $\omega = 60$ radls.
$$60 = 12 \times 4 - \frac{(4)^{2}}{2} + C_{1}$$

$$C_{1} = 20$$
4; $\omega = 12t - \frac{t^{2}}{2} + 20$
At $t=6$ sec $\Rightarrow \omega = 12 \times 6 - \frac{6^{2}}{2} + 20$

$$= \frac{74 \text{ radls}}{2}$$

$$0 = 12\frac{t^{2}}{2} - \frac{t^{3}}{6} + 20t + 0$$
At $t=6$ sec; $\Rightarrow 0 = 12 \times \frac{6^{2}}{2} - \frac{6^{3}}{6} + 20 \times 6$

$$= \frac{300 \text{ rad}}{2\pi}$$
No. $\oint \text{revolutions} = \frac{360 \cdot 47.75 \text{ rev}}{2\pi}$

B A motor has an angular acceleration which is directly proportional to the time. The initial angular velocity is zero. After 4 sec from start, the motor has completed 6 revolutions. Obtain the equation of motion of the motor and determine the angular velocity at the end of 2 sec.

$$\alpha \propto t$$

$$\alpha = kt$$

$$\omega = \frac{kt^2 + c_1}{2}$$

$$0 = \frac{kt^3}{6} + c_1t + c_2$$
At $t = 0$; $0 = 0$.
$$0 = 0 + 0 + c_2 \implies c_2 = 0$$

$$1\dot{e}$$
; $6 \times 2\pi = \frac{k \times (4)^3}{6} + 0$

At
$$t: 2eec$$
; $\Rightarrow \omega = 3.53 \frac{t^2}{2} = 3.53 \times \frac{2}{2}$

$$= 7.06 \text{ rad/s}$$

- 6 A passenger car is travelling at 65 kmlhr on a lovel good. The distance from the road to the centre of the wheel is 30 cm. Determine;
 - a) the magnitude of angular velocity of the wheels
 - b) the magnitude of the constant angular deceleration of the wheels, if the cars is brought to rest in 150m.

a)
$$\omega \cdot \frac{v}{\gamma} = \frac{18.06}{0.3} = \frac{60.2 \text{ rad/s}}{}$$

$$\alpha = \frac{a}{3} - \frac{1.087}{0.3} = \frac{3.6237adls^2}{}$$

a=ra

The step pulley shown in figure starts from rest and accelerates at 2 rad/s². How much time is required forblock A to move 20m? Find also the velocity of A and B at that time.

Solution

when block A moves by 20m, o is given by;

S - 70

20 = 1×0

: 0 = 20 radians.

α = 2 radls2; ω,=0

0 = wot + 1/2 xt2

20 = 0 + 1/2 ax 2x t2

t = 4.472 8

Velouty of pulley at this time

ω : ω + α t

= 0 + 2 x 4.4 + 2 = 8.944 rad/s

Velocity of A; VA = 9.00. = 1 × 8.944 = 8.944 m/s

velocity 4 B; VB = 10 = 0.75 × 8.944 = 6.708 mls

Solution

Radius, & = 1.2 . 0.6m

w0 ≥0

x = 0.8 radls

w. wo +at

At t=5 sec = W = 0 + 0.8 x 5 = 4 rodls.

· hiwar velocity of the point on the periphery of wheel, V= TW

= 0.6 ×4

9

A pulley 2m in diameter is convicted to a shaft which make 240 spm. Find the linear velocity of a particle on the persphery of the pulley.

Solution

Linear velocity, V- VW - 1x25.1 = 25.1 m/s

6

A car travelling with a constant speed of 36 km/hr enters a curved portion of a road of radius 200m. Calculate the acceleration of the car in normal and tangential direction. Solution

Sence can is travelling with constant speed, dv=0: Tangential acceleration, $a_t = \frac{dv}{dt} \cdot 0$ Normal acceleration, $a_n = \frac{v^2}{r} \cdot \frac{(10)^2}{200} = \frac{0.5 \, \text{m/s}^2}{200}$

$$a_{t} = \frac{dv}{dt} = vx$$

$$a_{n} = vx = v^{2}$$

$$a_{t} = \omega^{2}y$$

$$a_{t} = \sqrt{a_{t}^{2} + a_{n}^{2}}$$

$$\alpha = tan^{2}(\frac{a_{t}}{a_{n}})$$

Destarting from rest a particle moves along circular path of radius r, so that the distance travelled is given by the relation S: kt², where k is a constant. Find the tangential and normal component of the acceleration of a particle.

Solution

$$Co = 0$$

$$S \cdot kt^{2}$$

$$V = \frac{ds}{dt}, 2kt$$

$$a_{t} = \frac{dv}{dt} = \frac{2k}{2kt}$$

$$a_{n} = \frac{V^{2}}{\gamma} = \frac{(2kt)^{2}}{\gamma}, \frac{4k^{2}t^{2}}{\gamma}$$

accelerates at a uniform rate of 1 mls? Determine the distance travelled when the total acceleration reaches 2 mls?

Solution

$$x^{2} = 100m ; a_{t}^{2} = 1mls^{2}$$

$$a^{2} = 2mls^{2}$$

$$a^{2} = \sqrt{a_{t}^{2} + a_{n}^{2}}$$

$$2^{2} = \sqrt{1 + a_{n}^{2}} \Rightarrow a_{n}^{2} = \sqrt{3} mls^{2}$$

$$a_{n}^{2} = \frac{\sqrt{2}}{7} \Rightarrow \sqrt{3} = \frac{\sqrt{2}}{100} \Rightarrow \sqrt{-13.16}mls$$

$$\sqrt{2} = u^{2} = 2a_{t}s; \quad u = 0$$

$$(13.16)^{2} - 0 = 2 \times 1 \times 5$$

$$\therefore a_{t}^{2} = 2a_{t}s; \quad u = 0$$

$$(13.16)^{2} - 0 = 2 \times 1 \times 5$$

$$\therefore a_{t}^{2} = 2a_{t}s; \quad u = 0$$

(B) A car enters a curve of 2.450m at a speed of 19 km/hr. 9f the car increases its speed at a rate of 4.5 m/s, what will be its total acceleration when It has travelled 450m along the write?

Solution

8 = 450 m u = 19 km/by = 5.3 m/s $a_{z} = 4.5 \text{ m/s}^{2}$ s : 450 m $v^{2} = u^{2} = 2 a_{z} 5$ $v^{2} = (5.3)^{2} = 2 \times 4.5 \times 450$ v = 63.86 m/s $a_{n} = \frac{v^{2}}{\gamma} = \frac{(63.86)^{2}}{450} = \frac{9.06 \text{ m/s}^{2}}{450}$ Total acceleration, $a_{z} = \sqrt{a_{z}^{2} + a_{u}^{2}} = \sqrt{4.5} + (9.00)^{2} = \frac{10.11 \text{ m/s}^{2}}{450}$

A car is travelling on a curred read of radius 1000m at a speed of 180 km/hr. The brakes are suddenly applied causing the car to slow down at a uniform rate. After 10 sec, speed is reduced to 100 km/hr. Determine the deceleration inmediately after the brakes are applied.

Solution

6.
$$8 = 1000 \text{ m}$$
 $u = 180 \text{ km/br} = 50 \text{ m/s}$
 $v = 100 \text{ km/br} = 27.7 \text{ m/s}$
 $t = 10 \text{ sec.}$
 $v = u + a_t t \Rightarrow a_t = v - u$
 $v = u + a_t t \Rightarrow a_t = v - u$
 $v = \frac{27.7 - 50}{1000} = -2.23 \text{ m/s}^2$
 $v = \frac{27.7 - 50}{1000} = 2.5 \text{ m/s}^2$

V92+02 = JE2.23+(2.5) = 3.35 mls

A horizontal bar of 1.5m length and of small cls rotates about a restical axis through one end. It accelerates uniformity from 1200 spm to 1500 spm in 5 seconds. What is the linear velocity at the beginning and at the end of 5 sec. What are the normal and tangential component of acceleration of the medpoint of the box after 4 seconds? Solution

@ 8 = 1.5 m

t 25 sec

Lewar velocity at the beginning, U= 8000=1.5×4011 = 60TT = 188,5 mls

Linear rebuilty at the end of 5 sec, V2 8W 2 1.5x 50T 275T = 235.62mb

Tangential acceleration, a = xx.

at at the midpoint of the bar (ie m= 1.5)

Normal acceleration: an = w2r.

2 40T1 + 2TT X4

4811 radls

:. an at the midpoint of the bar after 4 sec;

(6) A flywheel starts to rotate with uniform angular acceleration, reaches 2400 rpm in 40 sec. Betermine the angular acceleration and no. of revolutions made by the flywheel after 2 sec. Also determine the senior valouity and total acceleration of a point on the rim of the flywheel after 2s. Beameter of the flywheel is 2m. Solution

 $\omega = 0$; t = 40 sec $\omega = 2400 \text{ pm} = \frac{2400 \times 211}{60} = 80 \text{ Tradls}$ $\alpha = \frac{\omega - \omega_0}{t} = \frac{80 \text{ T} - 0}{40} = 2 \text{ Tradls}^2$

angular relocity after t=28ec; > co=co+xt

0 = wot + 1/2 xt2.

2 0 + 1/2 x 2T x (2) 2 4T rad.

No g revolution = $\frac{4\pi}{2\pi} = \frac{2}{2\pi}$

lenear velocity, V = 8W = 1×4T.

at = ra = 1 x 2TT = 2TT = 6.283 mls2

an = γω2 = 1x(4π)2 = 157,91 mls2

total acceleration, a = Vai+an

2 158.03 mls²

. 4T radls

A flywheel 0.5 m in diameter accelerates uniformly from rust to 360 spm in 125. Determine the velocity and acceleration of a point on the run rim of flywheel 0.18 after it

Solution

has started from rest.

$$\frac{\alpha = \omega - \omega_0}{t} = \frac{12\pi - 0}{12} = \frac{\pi \text{ rad } ls^2}{}$$

augular velouity at t:0.1800;

A string is wrapped round a pulley of 60 cm diameter. One end is tied to the pulley and a weight is freely attached to the other end of the string. The weight travels a dislance of 8m within 4s after attaching the weight. Find out

b) Jenal angular velocity of pulley c) total distance travelled by the weight when pulley rotates at 300 rpm.

Solution

a) angular acceleration of pulley

$$0_{t}$$
 2 7 $\alpha \Rightarrow \alpha = \alpha_{t/\gamma} = \frac{1}{0.3} = \frac{3.33}{3.33}$ 7 3

a): angular acceleration q pulley; a = 3.33 rod/s2

Total distance travelled by the weight when pulley rotates at 300 spm.

- A wheel of 120 cm diameter is mounted on a shaft and the shaft is supported b/w 2 bearings. The wheel is rotated from rest applying moment at the rown of the wheel and wheel starts rotating at 120 rpm within 12 mm. Determine:
 - a) No & revolutions made by the wheel during this line.
 - D'Augular acceleration q elu wheel

 1) Peripheral velocity q the wheel in mls at 120 r,

Solution

Dangular autebration, $\alpha = \frac{\omega - \omega_0}{t} = \frac{4\pi - 0}{720} = \frac{\pi}{180}$ rad/s² $= 0.0174 \text{ rad/s}^2$

a)
$$0 = \omega_{0}t + 1/2 x t^{2}$$

$$= 0 + 1/2 x \frac{\pi}{180} x (720)^{2} = 1440 \pi \text{ rad}.$$

No. 4 revolutions = 1440T = 720

c) Periphery velocity of the wheel, V. 8W = 0.6 x 4T = 7.539 mls

An equation of motion of a body rotating along a circle of radius 10m is given by s. 18t + 3t²- 2t³; where s is the distance covered from starting in meters and t is in seconds. Wetermene:-

a) the angular velocity and angular acceleration at start b) the time when the body eaches maximum angular velocity.

c) the maximum angular velocity of the particle.

Solution.

$$a_t = \frac{dv}{dt} = 6 - 12t$$

a) when
$$t = 0 \Rightarrow V = 18 \text{ m/s}$$
, $4 q_t = 6 \text{ m/s}^2$.

but; $V = 7\omega \Rightarrow \omega = \frac{18}{10} = \frac{1.8 \text{ michls}}{10}$
 $a_t = 7\alpha \Rightarrow \alpha = \frac{4}{10} = \frac{6}{10} = \frac{0.6 \text{ rad/s}}{10}$