PATENT ABSTRACTS OF JAPAN

(11)Publication number:

61-208041

(43) Date of publication of application: 16.09.1986

(51)Int.CI.

G03B 21/62 H04N 5/74

(21)Application number: 60-047936

(71)Applicant: MITSUBISHI RAYON CO LTD

SUZUKI SHINGO

(22)Date of filing:

11.03.1985

(72)Inventor: YADA YUKIO

(54) BACK FACE PROJECTION SCREEN

(57)Abstract:

PURPOSE: To scale down a device and to attain a uniform and bright screen by installing plural prism groups extending in an arc-like shape on the back face of the screen and forming the prescribed total reflecting surface thereon.

CONSTITUTION: Plural prisms 1, which extend in an arc-like shape and are arrayed, are installed on the back face side of a back face projecting screen S, and each prism 1 has an incident surface 1B and a reflecting surface 1A. Then on the reflecting surface 1A a total reflecting surface is formed so that an incident light beam from the incident surface 1B can be total-reflected and can emit to the side of an observation surface. With this constitution, a light beam incident from backward the screen at an acute angle comes out uniformly and efficiently on the observation surface with the aid of the shape of the prism and the action of the total reflection. Accordingly the relative position of a projector becoming a light source can be located

obliquely backward so as to scale down the device, and the uniform and bright screen can be obtained.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

Best Available Copy

® 日本国特許庁(JP)

卵特許出願公開

砂 公 開 特 許 公 報 (A)

昭61-208041

@Int.Cl.4

識別記号

庁内整理番号

❸公開 昭和61年(1986)9月16日

G 03 B 21/62 H 04 N 5/74 8306-2H 7245-5C

審査請求 未請求 発明の数 1 (全6頁)

公発明の名称 背面投影スクリーン

②特 願 昭60-47936

登出 願 昭60(1985) 3月11日

個 発明者 矢田

幸 男

東京都中央区京橋二丁目3番19号 三菱レイヨン株式会社

内

79発明者 鈴木

信 吾

川崎市多摩区登戸3816番地 三菱レイヨン株式会社内

願 人 三菱レイヨン株式会社

弁理士 吉沢 敏夫

東京都中央区京橋2丁目3番19号

明 紐 春

1. 発明の名称

OH!

の代 理

背面投影ス.クリーン

- 2. 特許請求の範囲
 - 1. 背面倒から光を急角度で入射させて像を観察するスクリーンであつて、この入射面に円弧状に延びる多数のブリズム群を散けると共に、該ブリズム群を構成する個々のブリズムに全反射面を設け、入射した光が全反射面で全反射して観察側に出射するように構成したことを特徴とする背面投影スクリーン。
 - 2. 多数のプリズム群の円弧が同心円状である ことを特徴とする特許請求の範囲第1項記載 の背面投影スクリーン。
 - 3. 投影用の光源をP・スクリーンを含む平面 上での円弧の中心をOとしたとき、額分OP が上記スクリーンを含む平面に対して垂直で あることを特徴とする特許線次の範囲第2項 記載の背面投影スクリーン。

- 4. 観察側に出射する光線が、すべてスクリーン面に対して軽値となる平行光であることを特徴とする特許請求の範囲第1項.第2項または第3項記載の背面投影スクリーン。
- 5. 観察側に垂直方向に延びるレンチャユラー レンズ面を形成したことを特徴とする特許 求の範囲第1項、第2項、第3項または第4 項記載の背面投影スクリーン。
- 6. 金皮射面を備えたレンチャユラーレンズ面を形成したことを特徴とする特許請求の範囲 8.5 項記載の背面投影スクリーン。
- 7. 観察側にサーキユラーフレネルレンズを形成したことを特徴とする特許開求の範囲第1項、第2項、第3項、第4項、第5項または第6項記載の背面投影スクリーン。
- 8. スクリーンを構成する基材に光拡散手段を 施したことを特徴とする特許請求の範囲第1 項、第2項、第3項、第4項、第5項、第6 項または第7項記載の背面投影スクリーン。
- 9. レンチキユラーレンズ面を有する別体のシ

特別昭61-208041(2)

ートと組合せたことを特徴とする特許請求の 類囲第1項、第2項、第3項、第4項、第6項、第6項、第7項または第8項記載の背面 投影スクリーン。

10. 別体のシートに光拡散手段を施したことを 特徴とする特許請求の範囲第9項記載の背面 投影スクリーン。

4. 発明の詳細な説明

本発明は、ビデオプロジェクションテレビ等 に用いる背面投影式のスクリーンに関するもの である。

ビデオプロジェクションテレビのような背面 投影接置は、原理的には第1回に示すように、 CRT等からの光源即から出射する光を適宜レ ンズ系心によつて拡大し、スクリーン図の関す面 例から投影し、このスクリーン図の反対面の 観察するようになつている。ところが、このように光源即からスクリーン図までの距離を長く すると、投影発量が大型になるため、突際には

類能となるばかりでなく、2枚間の光のフレア で画面がほけ、また光の利用効率も低下するき らいがあつた。

また投影装置の奥行を小さくすることのできるスクリーン装置として、特開昭 5 8 - 5 7 1 2 0 号公報や特開昭 5 9 - 9 6 4 9 号公報が知られており、スクリーンに対して針め方向から入射させて、投影系の奥行を小さくすることが提案されているが、これらはレンズの屈折を利用しているため、入射角度を大きくすることに関系があった。

このような点を改善するため、本発明者等は 背面側から光を急角度で入射させて像を観察するスクリーンであつて、この入射面に平行な多数のブリズム群を設けると共に、該ブリズム群を検放する個々のブリズムに全反射面を設け、 入射した光が全反射面で全反射して観察傷に出 射するように構成した背面投影スクリーンについて既に提案している(特顧昭 5 9 ~ 2 9 9 6 4 号)。 (発明が解決しようとする問題点) 第2図(A)・(B)・(C)に示すように1ないし3枚の ミラーMを組合せ、一旦反射させてから投影す る方式が採用されている。しかしながら、何図 (A)の方式では装置の高さが大きくなり、また(B)・ (C)においても高さ、臭行の点で小型化したとは いいきれない面があつた。

上記の我々の提案により、奥行きおよび高さ 方向の寸法を小さくして装置を小型化し、しか も解像力を低下させない明るい背面投影スクリ ーンを提供できるようになつたが、光の一軸方 向、例えば上下方向の規制はできても、同時に 左右方向の光の規制がなしえない離点があつた。

そこで本発明においては、同時に上下左右方 同の光を規制すべく検討した結果、本発明を完 取したものである。

(問題点を解決するための手段)

すなわち本発明は上記の目的を選成するため、 でなれたもので、その要旨とするところは終了 るスクリーンであつて、この入射面に円弧状に 延びる多数のブリズム群を設けると共に全反射面 を設け、入射した光が全反射面で全反射で を設け、入射した光が全反射面で全反射で を設け、入射した光が全反射面で全反射で を関に出射するように構成したことを特徴とす る背面投影スクリーンにある。

以下本発明を実施例の図面に従つて説明する。

特開昭61-208041(3)

第4図は本発明の背面投影スクリーンの基本 的構成を説明するための概略図で、PDがCR すの光源、Uがレンズ系、SDが背面投影スクリーンの背面に急角度に入射するように入射するとここで背面投影スクリーン(S)に入射する。ここで背面投影スクリーン(S)に入射する。ときの光濃(P)がら背面投影スクリーン(S)は発来の方式と同じであるが、新聞(B)は発来の方式と同じであるが、新聞に光源(P)が位置するため、実行き方向の距離 (&*)は

A' - Boose

となりまに比べてきわめて小さくすることがで きる。

しかしながらこれでは高さが必ずしも小さいとはいえないため、実際には第 8 図(A)のように 1 枚のミラー (M₁)を用いることにより、高さを小さくし臭行き方向の長さも小さくすることが望ましい。また一層高さを小さくし全体的に小型化するためには、第 5 図(B)の如く 2 枚のミラ

逆向きとなる。

そしてこの場合、投影用のCRT等の光源をP・スクリーン(S)を含む平面(F)上でめ円弧の中心をOとしたとき、この線分OPが上記を中心対して野直にすると、例一円弧上の各円弧上でがから、関Pから等距離になることにより、では、のプリズム所面とでの出射角が等しくなり、計が容易になるはかりでなる。上下方向の光も規制してスクリーン(S)が実現できる。

いま光深 P の位置が、 第 7 図に示すようにスクリーン(S)の後方ェ、スクリーン(S)の中心から下方yであるとし、スクリーン(S)の中心を選る 野鷹軸上の中心から r (上向きに正)の点での プリズムの頂角を 01、 プリズム入射面の傾き 62 とすると、平行出射の場合の 62 は次式①で求めることができる(a は基材の風折率)。

$$\tan \theta \, 2 = \left\{ \frac{(r+y)}{(x^2+(r+y)^2} + n \sin 2\theta \, 1 \right\} / \frac{x}{\sqrt{x^2+(r+y)^2}} - n \cos 2\theta \, 1 \right\}$$

第6図は本発明の背面投影スクリーンの一部を示すもので、この例においては背面投影スクリーンの背面側に同一形状からなるブリズム群を多数けている。すなわちこのブリズム群は円弧成立れたブリズム(1)の多数はより構面(1B)と反射面(1A)とを有している。それているの反射面(1A)には、入射面(1B)からてたが全反射面が形成されている。

このプリスム(1)の光学特性について第6図および第7図に基づいて説明すると、本発明の背面投影スクリーン(3)には、水平方向に延びる円弧状のプリズム(1)群が形成されている。なお、この例では光を斜後方から投影するようになっているので、プリズム(1)群は上方に凸の円弧状となっているが、斜上方から投影する場合は、

プリズム(1)の断面形状を上記ので扱わされる形状にすると、スクリーン(3)面から出射する光線はすべてスクリーン (3)に対して垂直な平行光となる。これにより、従来のフレネルレンズを備えたスクリーンに比べて、よりコンパクトでしかも均一な明るさのスクリーンが入手できる。

特別昭61-208041(4)

における全反射面を有するレンチャユターレンズ面 (1F).(1G) の構成および作用については、同一出額人の特顧昭 5 6 - 5 1 1 9 4 号、特顧昭 5 6 - 9 1 8 9 6 号、特顧昭 5 6 - 2 1 2 5 8 4 号、特顧昭 5 6 - 2 9 1 7 8 号、特顧昭 5 7 - 5 9 3 8 9 号に評述されているので、ここでの説明は省略する。

第13図および影14図は、第9図の背面投 影スクリーンの観察側にさらに別体のシート(2) を組合せた例を示するレンチャユラーレンズ面 (2A)が、また観像面に第12図とプキュラーは (2B)が形成に集りのレンテト(2)を向け でズではよって、カート(2)を向け でズボり、これによって、カーンのでする。またで、カーンズ面 大なとができる。また、第14回は投影ので また観察側に また観察側に また観察側に ない、チャユラーレンズ面 また観察側に ない、チャユラーレンズ面 また観察側に また観察側に

なお本発明の背面投影スクリーンに使用する 素材としては、アクリル樹脂が最も適している。 が、これは光学特性及び成形加工性の点点。 クリル樹脂が特に後れているからである。 し、これに換えて塩化ビニール樹脂、ステル がおいて、カート樹脂、オレンス樹脂、ステレス が料を用いることもでき、これらの合成で 材料を用いるときは、押出し成形、加熱でス 材料を用いるときな、神出し成形、加熱でス おるいは射出成形によって、本発明に係る。 投影スクリーンを製作することができる。

また本発明の背面投影スクリーンを構成する 蓋材あるいは別体のシートに、光拡散性を一層 向上させるたみの光拡散手段を講じるとよい。 この光拡散手段としては、蓋材を構成する合成 樹脂、例えばアクリル樹脂に SiO₂. CaCO₃. Ad₂O₃. TiO₃. BaSO₄. 2nO. Ad(OH)₃. ガラス 微粉末あるい は有機拡散剤等の液状合成樹脂媒体に酸解また は化学変化をしない拡散物質の1 種または2 種 以上の醤加物を媒体中に一様に温入分散分布す るか、またはこれらの拡散物質を含む層を形成 (2D)と外光吸収層(2E)とが形成された別体のシート 8)を組合せたもので、これによつて水平方向の光拡散性とコントラストを向上させることが可能となる。

なお、上記の実施例では、ブリズム(1) 鮮を水平方向に延びるように連設しているがこれを90° 変換して垂直方向に延びるように構成してもよい。勿論この場合はプロジェクターは横方向に 設置することとなる。

本発明の背面投影スクリーンは、斜め受力から像を投影することとなるため、スクリーンの像に歪が生じ、しかも像のボケを招くこととなるが、これらは次の投影系の措置により解決できる。すなわち像の歪気回路で補正すれば、各部のはよいのでは、レンズ系からスクリーンとでの理解の差によって生じるため、CRTからとなって生じるため、CRTからとなるたせ、スクリーン上に等しい焦点距離となるようにすればよい。

するとよい。また投影側の面および/または観察側の面に微細なマット面を形成することも有効である。このように光拡散性を付与する手段を講ずると、スクリーンの水平方向と垂直方向の拡散性が補われ、均一性を高めることができることとなる。

(寒疱 例)

慰折率 1.49 の透明アクリル樹脂シート(厚さ3 mm)を無ブレス成形し、円弧状のプリズム群を有する背面投影スクリーンを製作した。

この実施例におけるプリズムの仕様および設 置した光環の位置関係は次の通りである(男7 図参原)。

光 塚 の 位 筐 スクリーンの 接方 #=600 mm スクリーン中心から下方 y=1000 mm

(スクリーン中央へスクリーン平面に対して 60°で入射)

下方1000=

プリズムの頂角 01 = 5 C プリズム円弧の中心 スクリーン中心から垂直軸上

特開昭61-208041(5)

プリズムのピッチ P=0.5 ==

メクリーンサイズ たて700m よこ900m

各プリズムの傾斜角82は、(1)式により算出された角度とし、この条件ですべてスクリーン平面に垂直な平行出射となるようにした。

上記のような構成で、スクリーンに対して中心で 60°という急角度で入射する 先をプリ ズムの 反射面で全反射させて 観察側に効率よく 出射させ、この 光線利用率を 爾定したところ。 スクリーンの中心および上方で 100%、下海の分で 90%であり、利用率が高くて左右方向の光の規制が十分で 均一性があり、しかも投影 奥行き 距離をきわめて小さくすることができることが確認できた。

(発明の効果)

本発明は以上詳述した如き構成からなるものであり、スクリーン後方に急角度で入射した光をプリズムの形状と全反射の作用により効率よく 観察面に均一に出射させることができるため、本発明による背面投影スクリーンを採用すると

きは光顔となるプロジェクターの相対位置を斜め段方に位置させ、投影製置全体を小型化する ことができ、しかも均一で明るい背面投影スク リーンを簡便に提供しうる利点がある。

4. 図面の簡単な説明

第1図ないし第2図は従来の背面投影スクリーンに対するプロジェクターからの光路の説明図、第3図は従来の背面投影スクリーンに用いられるフレネルレンズの部分側面図、第4図とは、第5図は本発明の背面投影スクリーンを用いた場合のプロジェクターからの光路の説明図、第6図は本発明のレンズ形状を設計するための説明図、第9図ないし第14図は本発明の実施例を示するのな針模図である。

(S) … スクリーン、 [P) … C R T、 [J … レンズ為、'
(M₁)、(M₂)、(M₃) … ミラー、(1) … ブリズム、

(1A) ··· 反射面。(1B) ··· 入射面

特許出顧人 三菱レイヨン株式会社 代理人 弁理士 吉 沢 散 夫

特開昭61-208041 (6)

