Chapitre 8 Complexité

(Programme de khôlles)

Groupes A, B & C (CCINP et Mines-Telecom)

- 1. Définition de la complexité d'un algorithme, du problème.
- 2. Définition de la classe *P*.
- 3. Définition d'un problème vérifiable.
- 4. Définition de la classe NP.
- 5. Exemple fondalemental 1 : SAT \in NP. (démo)
- 6. Exemple fondalemental 2 : Pour tout $k \in \mathbb{N}$, $k \ge 2$, on a k-color $\in NP$. (démo)
- 7. Définition d'une réduction polynomiale.
- 8. Exemple fondalemental 3 : 3SAT \leq_p Clique. (démo)
- 9. Définition d'un problème NP-complet.
- 10. Proposition : Soit $A \in NP$ et B NP-complet tq. $B \leq_p A$ alors A est NP-complet. (énoncé)
- 11. Méthode pour montrer qu'un problème est NP-complet.
- 12. SAT, 3SAT, Clique, IndependantSet et VertexCover sont NP-complets. (énoncés)
- 13. Définition d'un problème de recherche, d'un problème de décision associé, d'un problème d'optimisation associé. (donner des exemples)

Groupes B & C (Mines, Centrale, X)

- 14. $P \subset NP$
- 15. Théorème : Si $A_1 \le_p A_2$ et $A_2 \in P$ alors $A_1 \in P$.
- 16. Proposition : Soit $A \in NP$ et B NP-complet tq. $B \le_p A$ alors A est NP-complet. (démo)
- 17. Clique, IndependantSet et VertexCover sont NP-complets. (démos)

Groupe C (ENS)

- 18. Proposition : Si il existe un problème C NP-complet et dans P, alors P = NP. (démo)
- 19. 3SAT est NP-complet. (démo)

MPI* Prime 1 MPI* Faidherbe 2023-2025