Machine Learning, with scikit-learn

> Jeffrey Skonhovd

Introduction

Learning

Learning: Scikit-learn

Learning:

Conclusion

Machine Learning, with scikit-learn

Jeffrey Skonhovd

Georgia Institute of Technology

May 19, 2014

Outline

Machine Learning, with scikit-learn

> Jeffrey Skonhovd

Introductio

Learning

Supervised Learning: Scikit-learn

Unsupervised Learning: Scikit-learn

- 1 Introduction
- 2 Machine Learning
- 3 Supervised Learning: Scikit-learn
- 4 Unsupervised Learning: Scikit-learn
- 5 Conclusion

Who am I?

Machine Learning, with scikit-learn

> Jeffrey Skonhovd

Introduction

Machine Learning

Supervised Learning:

Unsupervise Learning:

Conclusion

Jeffrey Skonhovd

■ Works at FTN Financial

■ Twitter: @jskonhovd

■ Github: jskonhovd

Overview

Machine Learning, with scikit-learn

> Jeffrey Skonhovd

Introduction

Learning Supervised

Supervised Learning: Scikit-learn

Unsupervise Learning: Scikit-learn

- What is Machine Learning?
 - Machine Learning is the study of computer algorithms that improve automatically through experience.
- How should I go about learning Machine Learning?
 - MOOCs
 - Don't get caught up in the implementations.
- Tools
 - WEKA
 - scikit-learn

Types

Machine Learning, with scikit-learn

> Jeffrey Skonhovd

Introduction

Machine

Learning
Supervised

Supervised Learning: Scikit-learn

Learning: Scikit-learn

Conclusion

Supervised Learning

- Supervised Learning is the task of inferring a function from labeled training data.
- Unsupervised Learning
 - Unsupervised Learning is the tasks of finding hidden structure in unlabeled data.
- Reenforcement Learning
 - Reenforcement Learning is concerned with how agents ought to take actions in an environment as to maximize some notion of cumulative reward.

Some Boring, but important Definitions.

Machine Learning, with scikit-learn

> Jeffrey Skonhovd

Introduction
Machine

Learning Supervised

Learning: Scikit-learn

Unsupervised Learning: Scikit-learn

Conclusion

Inductive Bias

- The inductive bias of a learning algorithm is the set of assumptions that the learner uses to predict outputs given inputs that it has not encountered.
- Occam's Razor assumes that the hypotheses with the fewest assumptions should be selected.
- Cross-validation
 - The basic idea of Cross-validation to leave out some of the data when fitting the model.

Scikit-learn

Machine Learning, with scikit-learn

> Jeffrey Skonhovd

Introduction

Machine Learning

Supervised Learning: Scikit-learn

Unsupervise Learning: Scikit-learn

- Scikit-learn is a set of simple and efficient tools for data mining and data analysis.
- Uses Python!!!
- http://scikit-learn.org/

Decision Trees

Machine Learning, with scikit-learn

> Jeffrey Skonhovd

Introductio

Supervised

Learning: Scikit-learn

Unsupervise Learning: Scikit-learn

- Decision Tree learning is a method for approximating discrete-valued target functions, in which the learned function is represented a decision tree.
- Maximize Information Gain
 - Information Gain measures how well a given attribute separates the training examples according to their target classification.

Decision Trees: Example

```
Machine
Learning, with
scikit-learn
```

Jeffrey Skonhovd

Introduction

Learning

Supervised Learning: Scikit-learn

Learning: Scikit-learn

```
import numpy as np
import pylab as pl
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
# Parameters
# Load data
iris = load_iris()
clf = DecisionTreeClassifier()
X = iris.data[:, [1, 2]]
v = iris.target
clf = clf.fit(X, y)
plotCustom(X, y, [1, 2], clf)'
```

kNN: Example

Machine Learning, with scikit-learn

> Jeffrey Skonhovd

Introductio

Machine Learning

Supervised Learning: Scikit-learn

Unsupervised Learning: Scikit-learn

```
from sklearn import neighbors
import numpy as np
import pylab as pl
from sklearn import cross_validation
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data[:, [1, 2]]
y = iris.target
clf = neighbors.KNeighborsClassifier(3, 'distance')
plotCustom(X, y, [1,2], clf)
```

SVM

```
Machine
Learning, with
scikit-learn
```

Jeffrey Skonhovd

Introductio

Machine Learning

Supervised Learning: Scikit-learn

Unsupervised Learning: Scikit-learn

```
from sklearn import svm
import numpy as np
import pylab as pl
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data[:, [1, 2]]
y = iris.target
C = 1.0
rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C)
rbf_svc.fit(X,y)
plotCustom(X, y, [1,2], rbf_svc)
```

kMeans

```
Machine
Learning, with
scikit-learn
```

Skonhovd

Introductio

Learning

Supervised Learning: Scikit-learn

Unsupervised Learning: Scikit-learn

```
import numpy as np
import pylab as pl
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
n_digits = len(np.unique(y))
kmeans = KMeans(init='k-means++', n_clusters=n_digits
kmeans.fit(X)
kmeans_plots(X,y,[2, 3],kmeans)
```

Machine Learning, with scikit-learn

Jeffrey Skonhovd

Introduction

Machine Learning

Learning: Scikit-learn

Unsupervised Learning: Scikit-learn

Conclusion

Resources