Table des matières

1.	Simulation	1
	1.1. Pourquoi simuler un système?	2
	1.2. Génération de nombres aléatoires	
2.	Génération de nombres aléatoires	2
3	Cánáration de varibales alástoires	3

1. Simulation

1.1. Pourquoi simuler un système?

La simulation permet de modéliser le comportement d'un système réel, souvent complexe. Cependant, elle présente plusieurs difficultés:

- le choix, la conception et la validation d'un modèle sont autant d'étapes délicates
- la collecte et l'analyse des données est une phase cruciale pour obtenir des résultats utilisables
- la mise en œuvre informatique peu demander passablement de temps
- le risque de bugs est toujours présent
- l'analyse statistique des résultats doit être faite avec rigueur
- la convergence est parfois (voire souvent) lente

Pour obtenir des résultats corrects et suffisamment précis, la simulation est **gourmande en temps** de conception, de développement, de validation et de calcul.

1.2. Génération de nombres aléatoires

Un ordinateur étant déterministe, il ne peut pas générer de nombres aléatoires. On utilise donc des **pseudo-nombres aléatoires** (PRNG: Pseudo-Random Number Generator) qui sont générés par des algorithmes à partir d'une **graine** (seed). Si on utilise la même graine, on obtient la même séquence de nombres pseudo-aléatoires.

2. Génération de nombres aléatoires

3. Génération de varibales aléatoires