Elementary Number Theory: Primes and their Distribution

Arjun Vardhan

† Created: 8th April 2022 Last updated: 21st June 2022

1 The Fundamental Theorem of Arithmetic

- An integer p > 1 is said to be prime if its only positive divisors are 1 and p. An integer greater than 1 which is not prime is called composite.
- If p is a prime and $p \mid ab$, then $p \mid a$ or $p \mid b$. Proof: If $p \mid a$, then we are done, so let $p \not\mid a$. Then gcd(a, p) = 1 and so by Euclid's lemma, $p \mid b$.
- If $p \mid a_1 a_2 ... a_n$, then $p \mid a_k$ for some k, where $1 \le k \le n$. Proof: If n = 1 then this is obviously true. If n = 2 then this is equivalent to the theorem right above. Suppose this statement is true for up to n 1 factors, where n > 2. Now let $p \mid a_1 a_2 ... a_n$. Then either $p \mid a_n$ (in which case we are done) or $p \mid a_1 a_2 ... a_{n-1}$, in which case by the induction hypothesis, $p \mid a_k$ for some k where $1 \le k \le n 1$.
- Corollary: If $p, q_1, q_2, ..., q_n$ are all primes and $p \mid q_1q_2...q_n$, then $p = q_k$ for some k, where $1 \le k \le n$. Proof: By the theorem above, $p \mid q_k$ for some k. As q_k is prime, we have $p = q_k$.
- Fundamental Theorem of Arithmetic: Every integer greater than 1 is a prime or a product of primes and its representation as a product of primes is unique. Proof: If n is prime then we are done, so let n be composite. There must exist an integer d such that $d \mid n$ and 1 < d < n. Let p_1 be the smallest such integer. Then p_1 must be prime, for if it was not, then it would have an even smaller divisor which would be a contradiction. Then $n = p_1 n_1$, with $1 < n_1 < n$. If n_1 is prime, then we are done. Otherwise the same process above is repeated to get $n = p_1 p_2 n_2$ with $1 < n_2 < n_1$. The decreasing sequence $1 > n_1 > n_2 > \dots$ cannot continue indefinitely, so this process must terminate. Thus after a finite number of steps n_{k-1} is prime and we call it p_k . Finally we have our prime factorization $n = p_1 p_2 \dots p_k$. Now suppose $n = p_1 p_2 \dots p_k$ and $n = q_1 q_2 \dots q_s$ with $n \le s$, $n \le$
- Corollary: Any integer n > 1 can be written uniquely in a canonical form $n = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ where each p_i is prime, each k_i is a positive integer and $p_1 < p_2 < ... < p_r$.

2 Distribution of Primes

- There is an infinite number of primes. Proof: Let $p_1 = 2$, $p_2 = 3$, $p_3 = 5$... be the sequence of prime numbers in ascending order. Suppose there is a last prime, called p_n . Consider $P = p_1 p_2 ... p_n + 1$. As P > 1, by the fundamental theorem of arithmetic, there exists some prime p that divides P. But $p_1, p_2, ..., p_n$ are all the prime numbers, so p must be equal to one of them. Since $p \mid P$ and $p \mid p_1 p_2 ... p_n$, we have $p \mid P p_1 p_2 ... p_n = 1$. Then $p = \pm 1$, which is a contradiction. Thus any finite list of prime numbers will have a prime that is not on the list. ■
- If p_n is the *n*th prime number, then $p_n \leq 2^{2^{n-1}}$. Proof: Clearly true for n = 1. Suppose that it holds for all integers up to n. Then
- Corollary: For $n \ge 1$, there are at least n+1 primes less than 2^{2^n} .

3 The Goldbach Conjecture