

aicas technology

Deep Learning Applications in the Embedded Space

Mike Elliott Software Engineer aicas GmbH

Learning

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

- Tom Mitchell (1997)
- Tasks
 - Classification
 - Quantization
- Deep Learning
 - Use of multiple layers of nonlinear processing

Machine Learning

At the highest level, is a computer process that extracts specific features from data to solve predictive problems:

- Self-driving cars
- Classifying objects such as tumors
- Detecting pedestrians
- Detecting anomalies to prevent network intrusion or fraud
- Scanning social media sentiment and perception for marketing purposes
- Image interpretation

Algorithms

- Linear Regression
- Logistic Regression
- Neural Network (deep learning)
 - Modeled on biological neuron (dendrites, soma, axon)
- Convolved Neural Network (CNN)
 - Synthesized vision
 - Multi-stage Hubel-Weisel architecture
 - Work on a cat's primary visual cortex (1962)
- Training and inference

Linear Regression

- Quantization
 - Predict housing price
 - Multiple features
 - Square footage, number of floors, etc.

- Plot some points
 - Lay a meter stick on the points to find the straight line
 - Okay, least squares does better
 - Multiple dimensions

Logistic Regression

- Classification
 - Is the tumor malignant?
 - Is this image a 7?
- Yields a probability
- Sigmoid function
 - Easy to calculate derivative
- The term regression is retained for historical reasons

Neural Network

- Modeled on actual neural tissue
 - Dendrites, soma, axon
- Multi-layer perceptron
 - Input Layer
 - Hidden Layer (or layers)
 - Output Layer
- Convolutional Neural Network (image recognition)
- Training through back propagation and gradient descent

Languages

- Algorithm Development
 - Octave, Matlab, R, Python (NumPy)
- Production
 - C/C++
 - OpenCL, CUDA
 - Java (or any JVM language)
 - Java, Scala, Clojure, etc.
 - OpenCL, CUDA

Hardware Constraints

- Power, Cooling, Memory
 - Ideally on the order of 1 W
- Processor
 - CPU (Central Processing Unit)
 - GPGPU (General Purpose Graphical Processing Unit)
 - FPGA (Field Programmable Gate Array)
 - ASIC (Application Specific Integrated Circuit)
- Sensors
 - I/O bandwith

GPGPU

- Well understood
 - CUDA (NVidia)
 - OpenCL (Apple)
 - Parallelism inherent
 - Every processor executes every instruction
- Power hungry
- Adjunct to CPU
 - Limited data bandwidth

FPGA

- Can reduce power consumption by 1 or 2 orders of magnitude
- Parallelization with Digital Signal Processors (DSPs)
 - More power efficient than signal processing on CPUs
- High I/O rate and bandwidth
 - 1000+ pins
- Block RAM can be used for an internal feature model
- Dynamically configure hardware at startup/runtime
 - Switch image filters

Software Development Considerations

- Ease of programming
- Ease of deployment
- Ease of maintenance
- Systems training
- Simulation
- Portability
 - Code
 - Data
 - Trained model

Real-Time Constraints

- Determinism
 - Deadlines, jitter, latency
- Task partitioning
- Security
 - Civil airspace: DO-326, DO-355, DO-356
- Safety
 - Civil airspace: DO-178C, DO-322
 - Automotive: ISO 26262
- Inherent language safety is important

Latency and Pixel Streaming

EXILINX > ALL PROGRAMMABLE,

Performance and Scaling

		Xilinx ZU9	Xilinx ZU5	Nvidia TX1
GoogLeNet @ batch = 1	Images/s	370.0	155.0	70
	Power (W)	7.0	4.5	7.9
	Images/s/watt	53.0	34.5	8.9
CV:: StereoLBM @1080p		Xilinx ZU9	Xilinx ZU5	nVidia TX1
	Frames/s	700	296	28
	Power (W)	4.8	3.3	7.9
	Frames/s/watt	145.8	89.7	3.5
CV:: LK Dense Optical Flow @720p		Xilinx ZU9	Xilinx ZU5	nVidia TX1
	Frames/s	170	73	7
	Power (W)	4.8	3.3	7.9
	Frames/s/watt	35.4	22.1	0.9

Inference Models and Analysis

- Training can be (and usually is) separate from inference
- CNNs only capture spatial patterns in data.
 - If data is just as useful when exchanging columns, CNNs are wrong
- Tuning
 - Number of features, size of features
 - Window size, window stride
 - Number of neurons
 - How many layers and what type

Model Training

- Can be computationally expensive
 - Parallel processing FPGA, GPGPU
- Distributed processing
 - Map reduce (Hadoop)
- Real-Time training
 - Unsupervised learning
 - Not only feedback, but an interpretation of correctness

CNN/DNN toolkits

- Deeplearning4j (Skymind)
 - Ready to run now using Real-time Java
- Caffe (Berkeley Vision and Learning Center)
- CNTK (Microsoft)
- Theano (University of Montreal, et. al.)
- TensorFlow (Google)
- Torch (Ronan Collobert)

References

- Scaling up Machine Learning (various)
- Deep Learning Demystified (Rohrer)
- Stanford CS 231 Course Notes (Karpathy)
- UMich EECS 598 Course Notes (Lee)
- The Black Magic of Deep Learning (Markou)
- Conv Nets, a Modular Perspective (Olah)
- Neural Information Processing Systems (NIPS) Proceedings

Product Lines

Presenter

Michael Elliott

aicas GmbH Emmy-Noether-Str. 9 76131 Karlsruhe Germany

elliott@aicas.de

+49 721 663 968-63 +1 562 645-3355 Michael Elliott is a software engineer with a deep passion for modern software practice, embedded systems architectures and safety- and security-critical software. His recent work has involved embedded systems running Java Virtual Machines (JVMs) and JVM languages with a focus on both safety critical aspects of software and image recognition with convolutional neural networks. Additionally, Mike was a member of the committee creating the standard for software used in aircraft operating in civil airspace (DO-178C) and modern software practices in airborne software (DO-332) along with airborne security standards including DO-326 and DO-355.

Mike has a Bachelor of Science in Information and Computer Science from the University of California, Irvine and a Master of Science in Software Engineering from Edinburgh University, Edinburgh, Scotland.