Sparklint a Tool for Identifying and Tuning Inefficient Spark Jobs Across Your Cluster

Simon Whitear
Principal Engineer @ Groupon

Why Sparklint?

- A successful Spark cluster grows rapidly
- Capacity and capability mismatches arise
- Leads to resource contention
- Tuning process is non-trivial
- Current UI operational in focus

We wanted to understand application efficiency

Sparklint provides:

- Live view of batch & streaming application stats or
- Event by event analysis of historical event logs
- Stats and graphs for:
 - Idle time
 - Core usage
 - Task locality

Sparklint Listener:

EUROPE 2016

Sparklint Listener:

Sparklint Server:

EUROPE 2016

Demo...

- Simulated workload analyzing site access logs:
 - read text file as JSON
 - convert to Record(ip, verb, status, time)
 - countByIp, countByStatus, countByVerb

Sample_16cores application_1472176676028_544163

Job took 10m7s to finish

Application finished in 10 minutes (2016-10-20T01:48:30.390Z -> 2016-10-20T01:58:37.632Z)

Already pretty good distribution; low idle time indicates good worker usage, minimal driver node interaction in job

4 Executors

But overall utilization is low

Which is reflected in the common occurrence of the IDLE state (unused cores)

Sample_8cores application_1472176676028_544172

Job took 15m14s to finish

Application finished in 15 minutes (2016-10-20T01:49:17.941Z -> 2016-10-20T02:04:31.009Z)

Core usage increased, job is more efficient, execution time increased, but the app is not cpu bound

Sample_DynamicAllocation application_1472176676028_544292

Job took 11m34s to finish

Application finished in 12 minutes (2016-10-20T02:05:58.773Z -> 2016-10-20T02:17:32.291Z)

Core utilization remains low, the config settings are not right for this workload.

Sample_32cores_parallel application_1472176676028_555209

Job took 5m6s to finish

Application finished in 5 minutes (2016-10-21T03:39:10.199Z -> 2016-10-21T03:44:16.894Z)

Core utilization decreases, trading execution time for efficiency again here

Future Features:

- Increased job & stage detail in UI
- History Server event sources
- Inline recommendations
- Auto-tuning
- Streaming stage parameter delegation

The Credit:

- Lead developer is Robert Xue
- https://github.com/roboxue
- SDE @ Groupon

Contribute!

Sparklint is OSS:

https://github.com/groupon/sparklint

THANK YOU.

swhitear@groupon.com

