Dealing with non-linearity

(Fractional) Polynomial Regression and Regression Splines

Matthias Mittner

Institute for Psychology, University of Tromsø, Norway

12.05.2017

UNIVERSITETET I TROMSØ UIT

Overview

- Nonlinear relationships
- Polynomial Regression
- Bias-Variance tradeoff
 - predictive accuracy
 - model-selection
- Fractional Polynomial Regression
- Regression Splines

Nonlinear Relationships

- so far: linear regression only
- what if relationship between variables is not linear?
- can you think of examples of non-linear relationships?

Examples of non-linearities due to growth

Age and IQ

Nonlinearities

Examples of non-linearities due to growth

Development of body height and weight with age

Data from https://osf.io/2rm5b/

How do we detect non-linearities?

- look a the regression residuals (lower plot)
- is there any structure in the residuals?

How do we detect non-linearities?

- adding a smoother to the plot can help to detect non-linearities
- when non-linearity is suspected, fit a non-linear model and compare it to the linear one (model-selection)

Nonlinear Regression

- in principle, we can assume any (parametrized) curve-shape and fit it to data
- in these example, we could "tweak" the parameter a to best account for the data
- this is called "Nonlinear regression"
- linear regression: $y = b_0 + b_1 x + \epsilon$
- non-linear regression: $y = f(x; \theta) + \epsilon$

Linearization

- in practice: general nonlinear regression can be hard (fitting the function can be difficult)
- ullet smart to stick to functions that can be linearized o least-squares fitting from linear regression can be used!
- polynomials are useful because they can be decomposed linearly

Polynomials

Definition

$$f(x) = a_0 + a_1x + a_2x^2 + ... + a_mx^m$$

- the highest power m in the polynomial is called the "degree" or "order" of the polynomial
- some coefficients can be zero $a_i = 0$, then the term is left out of the equation
- the constant function $f(x) = a_0$ is a polynomial (degree 0)
- the linear function $f(x) = a_0 + a_1 x$ is a polynomial (degree 1)

Polynomial of degree 2: $f(x) = x^2 - x - 2$ = (x + 1)(x - 2)

Polynomial of degree 3: $f(x) = x^3/4 + 3x^2/4 - 3x/2 - 2$ = 1/4 (x + 4)(x + 1)(x - 2)

Polynomial of degree 4: f(x) = 1/14 (x + 4)(x + 1)(x - 1)(x - 3) + 0.5

Polynomial of degree 5: f(x) = 1/20 (x + 4)(x + 2)(x + 1)(x - 1)(x - 3) + 2

Polynomial of degree 6: $f(x) = 1/100 (x^6 - 2x^5 - 26x^4 + 28x^3 + 145x^2 - 26x - 80)$

Polynomial of degree 7: f(x) = (x-3)(x-2)(x-1)(x)(x+1)(x+2) (x+3)

Linearization and polynomial regression

Linearization:

$$y = f(x; \theta) + \epsilon = f_1(x; \theta_1) + f_2(x; \theta_2) + \ldots + f_m(x; \theta_m) + \epsilon$$

Polynomial regression

$$y = f(x; b_0, ..., b_m) + \epsilon = b_0 + b_1 x + b_2 x^2 + ... + b_m x^m + \epsilon$$

- polynomials can be linearized
- one predictor x is "spread out" over many variables $(x, x^2, x^3, ...)$
- this extended, multiple regression model can be fit as usual

Polynomial Regression

What is an appropriate degree for the polynomial?

- ullet a polynomial of degree m can only have m-1 turning points
- it is not always obvious from the data what an appropriate degree is
- for additional degree, we add an additional variable to the regression model

Polynomial regression: Problems

- bad behaviour at the extremes of the predictor variable
- very bad out-of-sample behaviour (go off to infinity)
- coefficients become increasingly difficult to interpret
- easy to "overfit"

Overfitting

Bias-Variance tradeoff

Predictive accuracy

Within-sample vs. out-of sample prediction

Which graph best predicts the datapoints?

- what is best?
- https://ipsuit.shinyapps.io/splinedemo/

out-of-sample prediction

- calculate error
- leave-one-out cross-validation

Model-selection

- FPs allow a large class of candidate models
- each of these models is fitted to produce the best parameters for this model
- how can we distinguish which of the many models is most appropriate?

Likelihood

The "likelihood", $p(x|\theta)$ is the conditional probability that the data x will be observed given a model structure and a set of parameters θ .

 usually, the logarithm is used and expressed as a function of the parameters

$$L(\theta) = \log p(x|\theta)$$

and we want to find the parameters that maximize this likelihood (maximum-likelihood)

$$\hat{\theta} = \operatorname{argmax}_{\theta} L(\theta).$$

Likelihood

Likelihood

The "likelihood", $p(x|\theta)$ is the conditional probability that the data x will be observed given a model structure and a set of parameters θ .

Likelihood

Examples:

- calculating the mean and standard deviation of a sample is a maximum-likelihood estimation (we find $\hat{\theta}=(\mu,\sigma)$ that are most likely to underly the data)
- fitting a simple linear regression model is maximum-likelihood estimation, $\hat{\theta} = (b_0, b_1)$
- most other models are fit using ML estimation

Comparing Likelihoods across models

- assume two types of model, here:
 - ullet a single normal distribution (blue) o parameters μ,σ
 - ullet mixture of two normal distributions (red) o parameters $\mu_1, \sigma_1, \mu_2, \sigma_2$
- get ML estimate for each of the two model-types, LL_1, LL_2
- we can compare the likelihoods of those fits
- likelihood-ratio: $\frac{LL_1}{LL_2}$ quantifies difference

Problem:

- if fit with ML, a model with more parameters is guaranteed to have higher LL
- \bullet choosing always the model with higher LL \to always choose more complicated model
- results in always choosing a "saturated model"

- model that predicts each point perfectly always has highest LL
- however, this model needs N parameters (one for each datapoint)
- maybe we want something simpler?

Logic:

- adding more parameters always results in higher LL
- so $\frac{LL_2}{LL_1} > 1$ when model 2 has more parameters than model 1
- How much increase in LL would be expected *given that the real model* is the simpler model?
- the likelihood-ratio test, tests whether the increase in LL is significantly stronger than that

Fractional Polynomial Regression

Royston et al. 1994

- extends the idea of polynomial regression
- basic procedure restricts powers to a subset -2, -1, -0.5, 0, 0.5, 1, 2, 3

Fractional Polynomials

Summary: Fractional Polynomial Regression

- simultaneous selection of variables and transformations
- sometimes more parsimoneous:
 - variables that might be included to account for non-linearity can be dropped
- conservative test of non-linearity (can be emphasized by select-parameter)

References I

References I

Royston, Patrick and Douglas G Altman (1994). "Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling." In: Applied statistics, pp. 429–467.