BS1820: Maths and Statistics Foundations for Analytics

Linear Algebra 2

Zhe Liu

Imperial College Business School Email: zhe.liu@imperial.ac.uk

Outline

Section 2: Matrices
Matrices
Range and Rank
Determinant
Matrix Inverse

2.1 Matrices

Matrices are rectangular arrays of numbers. For example:

•
$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix}$$
 is a 2×3 matrix

• $\mathbf{B} = \begin{bmatrix} 2 & 3 & 7 \end{bmatrix}$ is a 1×3 matrix \equiv row vector

$$\bullet \ \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \text{ is an } \mathbf{m} \times \mathbf{n} \text{ matrix } \in \mathbb{R}^{\mathbf{m} \times \mathbf{n}}$$

$$\bullet \ \mathbf{I}_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \text{ is the } n \times n \text{ Identity matrix}$$

Vectors are clearly also matrices — a special case with one column.

2.2 Matrix Operations: Transpose

Transpose: $\mathbf{A} \in \mathbb{R}^{m \times d}$

$$\mathbf{A}^{\top} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1d} \\ a_{21} & a_{22} & \dots & a_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{md} \end{bmatrix}^{\top} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1d} & a_{2d} & \dots & a_{md} \end{bmatrix} \in \mathbb{R}^{d \times m}$$

• Transpose of a row vector is a column vector

Examples:

•
$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix}$$
 a 2×3 matrix and $\mathbf{A}^{\top} = \begin{bmatrix} 2 & 1 \\ 3 & 6 \\ 7 & 5 \end{bmatrix}$ a 3×2 matrix

•
$$\mathbf{v} = \begin{bmatrix} 2 \\ 6 \\ 4 \end{bmatrix}$$
 a column vector and $\mathbf{v}^{\top} = \begin{bmatrix} 2 & 6 & 4 \end{bmatrix}$ a row vector

2.2 Matrix Operations: Elementwise

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 8 & 7 \end{bmatrix}$$

Elementwise operations:

1. Addition:
$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 3 & 6 & 9 \\ 5 & 14 & 12 \end{bmatrix}$$

2. Subtraction:
$$\mathbf{A} - \mathbf{B} = \begin{bmatrix} 1 & 0 & 5 \\ -3 & -2 & -2 \end{bmatrix}$$

3. Scalar multiplication:
$$\mathbf{5A} = \begin{bmatrix} 10 & 15 & 35 \\ 5 & 30 & 25 \end{bmatrix}$$

4. Hadamard product:
$$\mathbf{A} \circ \mathbf{B} = \begin{bmatrix} 2 & 9 & 14 \\ 4 & 48 & 35 \end{bmatrix}$$

5. Hadamard power:
$$\mathbf{A}^{\circ 2} = \begin{bmatrix} 4 & 9 & 49 \\ 1 & 36 & 25 \end{bmatrix}$$

 $A \in \mathbb{R}^{m \times d}$, $B \in \mathbb{R}^{d \times p}$ then $C = AB \in \mathbb{R}^{m \times p}$ with

$$c_{ij} = \left[\begin{array}{cccc} a_{i1} & a_{i2} & \dots & a_{id} \end{array} \right] \left[\begin{array}{c} b_{1j} \\ b_{2j} \\ \vdots \\ b_{dj} \end{array} \right]$$

Properties:

• Inner product: $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^{\mathsf{T}} \mathbf{w}$

$$\textbf{E.g.} \begin{bmatrix} 2 \\ 6 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 2 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 4 \end{bmatrix} \begin{bmatrix} 7 \\ 2 \\ 8 \end{bmatrix} = 2 \times 7 + 6 \times 2 + 4 \times 8 = 58$$

 $\bullet \ (\mathbf{A}\mathbf{B})^\top = \mathbf{B}^\top \mathbf{A}^\top$

E.g. Consider
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. We have
$$(\mathbf{A}\mathbf{B})^T = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}^T = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = \mathbf{B}^T \mathbf{A}^T$$

• $AI_n = I_m A = A$ for any $A \in \mathbb{R}^{m \times n}$

Example A production manager is scheduling 2 products using 3 machines. Each product can be manufactured by any of the three machines. The time (in hours) required to produce each product with each machine is given below:

Machine hours

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix}$$

Assume the following production schedule:

		Production (in units)	
	ı	Product 1	Product 2
Machine	Α 💍	5	10
	В	10	0
	ه م	0	3

Production plan

$$\mathbf{B} = \begin{bmatrix} 5 & 10 \\ 10 & 0 \\ 0 & 3 \end{bmatrix}$$

Question: What are the total machine hours spent for each product?

We calculate the total machine hours for each product by multiplying the hours needed by each machine (rows of matrix \mathbf{A}) and the production made on each machine (columns of matrix \mathbf{B}): the diagonal elements of \mathbf{AB} .

Facts:

1. Not any two matrices can be multiplied; the dimensions should be conforming: # columns of the left matrix = # rows of the right matrix.

E.g.
$$\begin{bmatrix} 2 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 21 \\ 30 \end{bmatrix}$$
 but $\begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix}$ is infeasible.

- 2. Matrix multiplication is not commutative, i.e. $AB \neq BA$. E.g. See above.
- 3. Matrix multiplication is associative, i.e. (AB)C = A(BC).
- 4. Matrix multiplication is distributive wrt addition, e.g. A(B+C) = AB + AC.

Exercises

Question 1: Write the following linear equations in matrix multiplication form.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = y_1 \\ a_{21}x_1 + a_{22}x_2 = y_2 \end{cases}$$

Question 2: Find a matrix that, through matrix multiplication, transforms the following 3×2 matrix to another whose two columns are the sum and difference of the original two columns, respectively.

$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1+4 & 1-4 \\ 2+5 & 2-5 \\ 3+6 & 3-6 \end{bmatrix}$$

Exercises

Question 1: Write the following linear equations in matrix multiplication form.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = y_1 \\ a_{21}x_1 + a_{22}x_2 = y_2 \end{cases}$$

Answer:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Question 2: Find a matrix that, through matrix multiplication, transforms the following 3×2 matrix to another whose two columns are the sum and difference of the original two columns, respectively.

$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1+4 & 1-4 \\ 2+5 & 2-5 \\ 3+6 & 3-6 \end{bmatrix}$$

Answer: Right multiplied by

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, then for any $\mathbf{x} \in \mathbb{R}^n$

$$\mathbf{A}\mathbf{x} = x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n$$

where \mathbf{a}_i is the i^{th} column of \mathbf{A} and x_i the i^{th} component of \mathbf{x} .

Hence Ax is a linear combination of the columns of A.

Example: Consider
$$\mathbf{A} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$
 with $\mathbf{a}_1 = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$ and $\mathbf{a}_2 = \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}$.

Definition. The range of $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted by $\mathcal{R}(\mathbf{A})$, is the set of vectors in \mathbb{R}^m that can be obtained as a linear combination of the columns of \mathbf{A} :

$$\mathcal{R}(\mathbf{A}) := \{ \mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{R}^n \}.$$

Clearly $\mathcal{R}(\mathbf{A}) = \operatorname{span}(\{\mathbf{a}_1, \dots, \mathbf{a}_n\})$ and is a subspace of \mathbb{R}^m . The dimension of this subspace is the rank of \mathbf{A} .

Running example: $span(\{a_1, a_2\}) = \mathbb{R}^2$, rank(A) = 2.

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}, \quad \mathsf{range}(\mathbf{A}) = \left\{ \lambda \begin{bmatrix} 1 \\ 2 \end{bmatrix} : \lambda \in \mathbb{R} \right\}, \quad \mathsf{rank}(\mathbf{A}) = 1$$


```
Properties: For \mathbf{A} \in \mathbb{R}^{m \times n},

Column rank of \mathbf{A} = \max number of linearly independent columns of \mathbf{A}

= \text{size of the basis (dimension) of column space } \mathcal{R}(\mathbf{A})

Row rank of \mathbf{A} = \max number of linearly independent rows of \mathbf{A}

= \text{size of the basis (dimension) of row space } \mathcal{R}(\mathbf{A}^T)
```

Rank := Column rank of $\mathbf{A} \equiv \text{Row rank of } \mathbf{A} \leq \min\{m, n\}.$

Rank := Column rank of $\mathbf{A} \equiv \text{Row rank of } \mathbf{A} \leq \min\{m, n\}.$

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$$

2.4 Null Space

Recall: the column vectors of matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ span the column space (range):

$$\mathcal{R}(\mathbf{A}) = \operatorname{span}(\{\mathbf{a}_1, \dots, \mathbf{a}_n\}) = \{\mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\}.$$

How about the vectors $\mathbf{x} \in \mathbb{R}^n$ that satisfy $\mathbf{A}\mathbf{x} = \mathbf{0}$?

The space spanned by such vectors is called the **null space (kernel)** of **A**:

$$\mathcal{N}(\mathbf{A}) := \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

Fact: Dimension of column space $(rank(\mathbf{A}))$ + dimension of null space = # of columns:

$$\dim(\mathcal{R}(\mathbf{A})) + \dim(\mathcal{N}(\mathbf{A})) = n.$$

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix} \quad \Rightarrow \quad \mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^3 : x_1 + 2x_2 + 3x_3 = 0 \}$$

It is a plane! $\dim(\mathcal{N}(\mathbf{A})) = 2$.

2.5 Determinant

Consider a 2×2 square matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}.$$

The determinant of A, denoted by det(A), is defined as

$$\det(\mathbf{A}) := a_{11}a_{22} - a_{12}a_{21}.$$

Any $\mathbf{x} \in \mathbb{R}^2$ is transformed/mapped to $\mathbf{y} \in \mathbb{R}^2$ by $\mathbf{A}\mathbf{x} = \mathbf{y}$. The unit square in \mathbb{R}^2 gets mapped to a parallelogram in \mathbb{R}^2 with area $= |\mathbf{det}(\mathbf{A})|$.

Figure 3.7 from Calafiore and El Ghaoui's's Optimization Models: Linear mapping of the unit square.

2.5 Determinant

Definition. For a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, its determinant is defined *inductively* via the formula

$$\det(\mathbf{A}) = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det(\mathbf{A}_{(i,j)}), \quad \text{for any } i=1,\dots,n,$$

where $\mathbf{A}_{(i,j)} \in \mathbb{R}^{(n-1)\times (n-1)}$ is \mathbf{A} with its i^{th} row and j^{th} column removed.

- For $\mathbf{A} \in \mathbb{R}^{3 \times 3}$, a unit cube \mapsto a parallelotope in \mathbb{R}^3 with volume $|\det(\mathbf{A})|$.
- Generally, $\mathbf{A} \in \mathbb{R}^{n \times n}$ maps a unit cube in $\mathbb{R}^n \mapsto$ to a parallelotope in \mathbb{R}^n with volume $|\det(\mathbf{A})|$.

2.5 Determinant: Properties

Definition. A square matrix **A** is singular if $det(\mathbf{A}) = 0$, non-singular otherwise.

For **A**, $\mathbf{B} \in \mathbb{R}^{n \times n}$ and $\alpha \in \mathbb{R}$ we have:

1.
$$\det(\mathbf{A}) = \det(\mathbf{A}^{\top}).$$

 $\mathbf{E.g.} \ \mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow \det(\mathbf{A}) = a \times d - b \times c,$
 $\mathbf{A}^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \Rightarrow \det(\mathbf{A}^T) = a \times d - b \times c$

- 2. $det(\mathbf{AB}) = det(\mathbf{BA}) = det(\mathbf{A})det(\mathbf{B})$.
- 3. $det(\alpha \mathbf{A}) = \alpha^n det(\mathbf{A})$.
- 4. $\det(\mathbf{I}_n)=1$. $\mathbf{E.g.}~\mathbf{I}_2=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ and $\det(\mathbf{I}_2)=1\times 1-0\times 0=1$

Exercise: Pick square matrices **A** and **B** to check properties 2 and 3.

2.6 Matrix Inverse

Definition. We say a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible if there exists a matrix $\mathbf{A}^{-1} \in \mathbb{R}^{n \times n}$ such that

$$A^{-1}A = AA^{-1} = I_n.$$

Such a matrix (if exists) is unique and is called the inverse of A.

Theorem. For a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ the following are equivalent:

- 1. **A** is invertible.
- 2. **A** has full rank, i.e. $rank(\mathbf{A}) = n$.
- 3. The column space of **A** is \mathbb{R}^n , i.e. $\mathcal{R}(\mathbf{A}) = \mathbb{R}^n$. The null space of **A** only contains the zero vector, i.e. $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$.
- 4. The determinant of **A** is non-zero (non-singular), i.e. $det(\mathbf{A}) \neq 0$.