数分例题整理

目 录

目录			自然数与其定义	
第一部分 实数基本定理与 极限	1		实数的定义 实数基本定理	
第一章 实数的定义	1	第二章	数列极限与相关计算 数列极限与相关计算 .	

I

目 录 1

第一部分 实数基本定理与极限

第一章 实数的定义

§ 1.1 自然数与其定义

一、自然数的定义

定义 1.1.1 (Peano 公理) (略)

定义 1.1.2 (自然数加法与乘法) **自然数加法**定义为映射 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, 满足以下性质:

- a+b=b+a
- a + 1 = S(a)
- a + S(b) = S(a+b)

自然数的乘法定义为映射 $\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, 满足以下性质:

- $a \cdot b = b \cdot a$
- $a \cdot 1 = a$
- $a \cdot S(b) = a + (a \cdot b)$

定义 1.1.3 (自然数的大小关系) a < b 当且仅当存在 $c \in \mathbb{N}, b = a + c$.

§ 1.2 实数的定义

(略)

§ 1.3 实数基本定理

例 1.3.1 证明: ℝ 不可列.

使用闭区间套定理. 证明

反证法. 假设 \mathbb{R} 可列, 记 $\mathbb{R} = \{x_1, x_2, \cdots, x_n, \cdots\}$.

- (1) 取 $[a_1, b_1]$ 使得 $x_1 \notin [a_1, b_1]$.
- (2) 三分 $[a_1,b_1]$ 得三个小区间, 三者必有其一不含 x_2 . 记为 $[a_2,b_2]$:

由此得到一个闭区间套 $\{[a_n,b_n]\}_{n=1}^{\infty}$. 由闭区间套定理, $\exists \xi \in \mathbb{R}, \forall n \in \mathbb{N}, \xi \in \mathbb{R}$

但对 $\forall k \in \mathbb{N}, x_k \notin [a_k, b_k]$, 所以 $x_k \notin \bigcap_{n=1}^{\infty} [a_n, b_n]$. 故 $\mathbb{R} \cap \left(\bigcap_{n=1}^{\infty} [a_n, b_n]\right) = \varnothing$, 矛盾!

第二章 数列极限与相关计算

§ 2.1 数列极限与相关计算

例 2.1.1 证明: $\lim_{n\to\infty} \sqrt[n]{n} = 1$. 证明 令 $\sqrt[n]{n} = 1 + y_n$, 有

$$n = (1 + y_n)^n > 1 + \frac{n(n-1)}{2}y_n.$$

故

$$\left|\sqrt[n]{n}-1\right|=|y_n|<\sqrt{\frac{2}{n}}, \forall n\in\mathbb{N}.$$

对任意 $\varepsilon > 0$, 取 $N = \left\lceil \frac{2}{\varepsilon^2} \right\rceil + 1$, 则对 n < N 有 $\left\lceil \sqrt[n]{n} - 1 \right\rceil < \varepsilon$

例 2.1.2 判断以下命题是否正确. 若正确, 给出证明; 若不正确, 给出反例: 数列 a_n 收敛的充要条件是,对任意正正数 p,都有 $\lim_{n\to\infty} |a_n-a_{n+p}|=0$. 反例如下: $\diamondsuit a_n = \sqrt{n}$, 则 $\forall p > 0$

解 反例如下: 令
$$a_n = \sqrt{n}$$
, 则 $\forall p > 0$
$$|a_{n+p} - a_n| = \frac{p}{\sqrt{n+p} + \sqrt{n}} \to 0,$$
 但显然该数列不收敛.