Analyse de graphes

Dario Colazzo

Plan

- Link analysis
- Graph database management Neo4J
- Link prediction

Fouille des liens web

Basé sur le chapitre 5 du livre MMDS, et sur du materiel de Richard Khoury.

Outline

- PageRank
- Problèmes avec PageRank
- Implémentation de PageRank

Introduction

- Les premiers engins de recherche web utilisaient une variété de techniques
 - Robots d'indexation (web crawler) indexaient les mots clefs
 - Facilement manipulés en ajoutant une liste de mots clefs sans pertinence au site web
 - « J'aime » retourné par les utilisateurs après une requête
 - Utilisé de manière inconsistante
 - Sites cliqués par les utilisateurs après une requête
 - Utilisateurs facilement distraits par des liens sans pertinence à la requête mais intéressants
 - Combinaison de résultats de plusieurs outils de recherche
 - Inutile lorsqu'un outil de recherche est toujours meilleur que les autres

Introduction

Problème

- L'internet est un ensemble de sites indépendants
- L'information pourrait se trouver n'importe où!
- C'est faux...
 - L'internet est un ensemble de sites interconnectés
 - L'information se trouve sur les sites plus fortement connectés

Introduction

- Sites fortement connectés (SFC)
 - Sites les plus intéressants du réseau
- Composantes entrantes (CE)
 - Sites qui peuvent atteindre les SFC
- Composantes sortantes (CS)
 - Sites qui peuvent être atteints par les SFC mais ne peuvent pas les atteindre
- Attaches sortantes
 - Sites atteints des CE qui ne peuvent pas atteindre les SFC
- Attaches entrantes
 - Sites qui atteignent les CS mais ne peuvent pas atteindre les SFC
- Tubes
 - Pages liant les CE et les CS qui sautent les SFC
- Composantes isolées
 - Ne peuvent pas atteindre ni être atteintes du reste du réseau

- Juger une page des SFC par son importance et sa pertinence à une requête
 - Pertinence: mots-clefs de la requête apparaissent autour de liens d'autres sites vers la page
 - Importance: nombre de liens d'autres sites vers la page
- Simuler un internaute aléatoire
 - Internaute vote « avec ses pieds », quitte les pages moins importantes/pertinentes pour aller aux pages importantes/pertinentes
 - On peut calculer la probabilité qu'un internaute se retrouve aléatoirement sur chaque page

- Exemple simple de SFC
- La matrice de transitions mesure la probabilité de sauter d'une page à l'autre
 - Matrice stochastique: la somme de chaque colonne est 1

Quitte de
A B C D

A
$$\begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 0 & 1/3 & 1/2 & 0 & 0 \end{bmatrix} = \mathbf{M}$$

- L'internaute est représenté par un processus de Markov
 - Pour un graph connecté
 - Des nœuds connectés par des liens directionnels avec des probabilités associées
 - Si on connait la probabilité d'être sur chaque nœuds à un moment précis
 - Et on connait la probabilité de transition aux autres nœuds par les liens directionnels
 - Alors on peut prédire où on sera probablement au moment suivant

 Simuler l'internaute aléatoire par un processus de Markov:

$$\mathbf{v}_i = \mathbf{M}\mathbf{v}_{i-1}$$

- v_i est le vecteur de probabilités d'être sur chaque site à l'itération i
- Calculer jusqu'à convergence
 - □ Typiquement i ≈ 50
 - Ou utiliser les vecteurs propres de M
 - Ou factoriser l'équation:

$$\mathbf{v}_i = \mathbf{M}^i \mathbf{v}_0$$

- Où est-ce que l'internaute commence?
 - N'importe où! C'est aléatoire
 - Probabilité égale pour chaque site
 - Pour k sites:

$$\mathbf{v}_0 = \begin{bmatrix} 1/k \\ 1/k \\ \dots \\ 1/k \end{bmatrix}$$

PageRank (exemple)

Où se trouvera l'internaute après 0, 1, et 2 itérations?

$$\begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

$$\mathbf{v}_0 = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix}^T$$

$$\mathbf{v}_{1} = \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \end{bmatrix} = \begin{bmatrix} 9/24 \\ 5/24 \\ 5/24 \\ 5/24 \end{bmatrix}$$

$$\mathbf{v}_{2} = \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 9/24 \\ 5/24 \\ 5/24 \end{bmatrix} = \begin{bmatrix} 15/48 \\ 11/48 \\ 11/48 \\ 11/48 \end{bmatrix}$$

PageRank (exemple)

Convergence de l'exemple sur 50 itérations

Problèmes sur le réseau

- Ne pas atteindre les SFC
- Culs-de-sac (pages sans liens)
- Pièges dans la toile (pages qui liens à euxmêmes)
- Spam de liens (faux liens entrants)

Ne pas atteindre les SFC

- Problème #1: Tous les sites ne peuvent pas atteindre les SFC
 - Les attaches entrantes et sortantes, les composantes sortantes, les tubes, et les composantes isolées
 - Mais c'est seulement 16% des sites
- Problème #2: Des liens des composantes entrantes ne mènent pas au SFC
 - Mènent aux attachent sortantes et aux tubes
 - Mais c'est une minorité des liens

Cul-de-sac

- PageRank suppose que l'internet est un graph entièrement connecté
- Que ce passe-t'il en cas de cul-de-sac?
 - Page sans liens sortants
 - L'internaute de peut pas partir
 - L'algorithme converge-t'il?

Cul-de-sac

- Ajoutons un cul-de-sac
- La matrice n'est plus stochastique! (substochastique)

 $\sum v_3 = 114 / 288 = 0.40$

Cul-de-sac

Où va l'internaute?

 $\mathbf{v}_3 = \begin{bmatrix} 21/288 & 31/288 & 31/288 & 31/288 \end{bmatrix}$

Cul-de-sac

- Où va l'internaute?
 - La probabilité d'être sur n'importe quelle page converge à zéro
 I 'internaute quitte
 - L'internaute quittel'internet!

Cul-de-sac

- Comment régler le problème des culs-de-sac?
- Taxation (on verra plus tard)
- Suppression
 - 1. Supprimer récursivement les culs-de-sac
 - Récursivement car supprimer les noeux peut créer de nouveaux culs-de-sac
 - Il ne reste que des pages connectées
 - 2. Calculer PageRank sur le graph connecté
 - 3. Estimer la probabilité des nœuds supprimés

$$P_{Cul-de-sac} = \sum_{Parents} \frac{\text{Probabilité PageRank du parent}}{\text{Nombre d'enfants du parent}}$$

Cul-de-sac (exemple)

- Supprimer récursivement les culs-de-sac
- 2. Calculer PageRank sur le graph connecté
 - Résultat est
- 3. Estimer la probabilité des nœuds supprimés

$$P(C) = \frac{P(A)}{Enfants(A)} + \frac{P(D)}{Enfants(D)} = \frac{2/9}{3} + \frac{3/9}{2} = 13/54$$

$$P(E) = \frac{P(C)}{Enfants(C)} = \frac{13/54}{1} = 13/54$$

Cul-de-sac

- Remarquez que la somme des probabilités des pages est maintenant plus grande que 1
 - Mais ça marche

- Et si quelqu'un essaye de capturer notre internaute?
 - Crée un lien sortant qui ramène à la même page
 - C'est un piège!

Ajoutons un piège

La matrice est toujours stochastique!

- L'internaute peut toujours marcher
- Mais il ne peut jamais quitter la page C
- PageRank converge
 à P(C) = 1 et la
 probabilité d'être
 ailleurs = 0

- On ajoute une constante de taxation β
- Représente la probabilité que l'internaute décide aléatoirement d'arrêter tout et de recommencer la recherche
- Probabilité de β que l'internaute continue à marcher, $(1-\beta)$ qu'il abandonne et recommence

$$\mathbf{v}_i = \beta \mathbf{M} \mathbf{v}_{i-1} + (1 - \beta) \mathbf{v}_0$$

- Fonctionne aussi contre les culs-de-sac
 - $-(1-\beta)v_0$ empêche la probabilité de tomber à zéro

Pièges dans la toile(exemple)

Où se trouvera l'internaute après 0, 1, et 2 itérations?

$$\mathbf{v}_{0} = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix}^{T}$$

$$(A, [B, C, D])$$

$$(B, [D, A])$$

$$(D, [B, C])$$

$$(C, [C])$$

$$\mathbf{v}_{1} = 0.8 \begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 1 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \end{bmatrix} + 0.2 \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \end{bmatrix} = \begin{bmatrix} 9/60 \\ 13/60 \\ 25/60 \\ 13/60 \end{bmatrix}$$

$$\beta = 0.8$$

$$\begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 1 & 1/2 \end{bmatrix}$$

$$\mathbf{v}_2 = 0.8 \begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 1 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 9/60 \\ 13/60 \\ 25/60 \\ 13/60 \end{bmatrix} + 0.2 \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \end{bmatrix} = \begin{bmatrix} 41/300 \\ 53/300 \\ 153/300 \\ 53/300 \end{bmatrix}$$

Pièges dans la toile(exemple)

- La page C reste la plus probable
- Mais les autres pages ne sont pas à zéro

Spam de liens

- Si quelqu'un crée beaucoup de liens vers leur site sur d'autres pages
 - Utilise des bots pour écrire des commentaires sur des forums/blogs avec le lien
- Le site va dominer dans les probabilités!
 - On doit détecter et éliminer ces pages
 - Mais des pages légitimes ont la même structure (Wikipedia, gouvernement, etc.)
- Quoi faire?

Spam de liens

- Option 1: <u>TrustRank</u>
- Définir une liste de « sites de confiance » S qui ne sont probablement pas du spam
 - Sites qui contrôlent et limitent qui peut ajouter du contenu: universités, gouvernements, compagnies, médias, etc.
 - Nombre de pages dans S = (|S|)
- Le vecteur de probabilités initiales est:

$$\mathbf{v}_0 = \begin{cases} 0 & \text{si la page n'est pas dans } S \\ \frac{1}{|S|} & \text{si la page est dans } S \end{cases}$$

- Crée une marche aléatoire biaisée en faveur des sites pertinents
 - Sont les seuls sites renforcés par taxation
 - Plus de probabilités propagées sur les liens partant de ces pages

Spam de liens

- Option 2: Filtrage de masse de spam
- On calcule la probabilité de chaque page k par TrustRank (t_k) et PageRank (p_k)
- On calcule la masse de spam de la page:
- On filtre les pages ayant une masse plus grande qu'un seuil

Spam de liens (exemple)

- $S = \{B, D\}, \beta = 0.8$
- Quelle sera la masse de spam des pages?

TrustRank: $\mathbf{v}_0 = \begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \end{bmatrix}^T$

Spam de liens (exemple)

- $S = \{B, D\}, \beta = 0.8$
- Quelle sera la masse de spam des pages? (RPR-RTR)/RPR

Page	PageRank	TrustRank	Masse de spam
A	0.09	0.11	-0.22
В	0.08	0.20	-1.50
C	0.16	0.15	0.06
D	0.08	0.20	-1.50
E	0.21	0.12	0.43
F	0.15	0.08	0.47
G	0.22	0.13	0.41

Problèmes sur le réseau

- Remarquez que les problèmes que PageRank rencontrent sont résolus par des constantes et des listes
 - Constante de taxation
 - Liste de sites de confiance
 - Seuil de masse de spam
- L'implémentation de Google a plus de 250 valeurs ajustées précisément

Sujets dans PageRank

- On a calculé PageRank avec l'importance des pages
- On a fait la supposition que toutes les pages sont également pertinentes
 - Vecteur de probabilités initiales donne une valeur égale à toutes les pages
- Ce n'est pas la réalité
 - L'internaute est intéressé à un sujet spécifique
 - Il commence sur une page pertinente
 - Il clique sur des liens pertinents
 - Il finit sur une page pertinente
- Comment diriger la recherche vers les pages pertinentes?

Sujets dans PageRank

- Suppose qu'on peut déterminer le sujet des pages
- On définit un « ensemble de téléportation » S de pages pertinente à chaque sujet
 - □ Nombre de pages dans S = |S|
- Le vecteur de probabilités initiales est:

$$\mathbf{v}_0 = \begin{cases} 0 & \text{si la page n'est pas dans } S \\ \frac{1}{|S|} & \text{si la page est dans } S \end{cases}$$
 • Crée une marche aléatoire biaisée en faveur des sites

pertinents

Sujets dans PageRank (exemple)

- $S = \{B, D\}, \beta = 0.8$
- Où se trouvera l'internaute après 0, 1, et 2 itérations?

$$\mathbf{v}_0 = \begin{bmatrix} 0 & 0.5 & 0 & 0.5 \end{bmatrix}^T$$

$$\mathbf{v}_{1} = 0.8 \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1/2 \\ 0 \\ 1/2 \end{bmatrix} + 0.2 \begin{bmatrix} 0 \\ 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 2/10 \\ 3/10 \\ 2/10 \\ 3/10 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \quad \mathbf{v}_2 = 0.8 \begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2/10 \\ 3/10 \\ 2/10 \\ 3/10 \end{bmatrix} + 0.2 \begin{bmatrix} 0 \\ 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 42/150 \\ 41/150 \\ 26/150 \\ 41/150 \end{bmatrix}$$

Sujets dans PageRank (exemple)

 Il est plus probable que l'internaute se retrouve sur les pages pertinentes!

Sujets dans PageRank

- Comment déterminer le sujet des pages?
- Premièrement, définir un lexique
 - La première version de PageRank indexait 14 millions de mots
 - Exclut les mots vides (stopwords) et les mots trop rares
- Deuxièmement, créer des liens
 - Pour chaque mot, lier à une liste des pages où il apparaît

Sujets dans PageRank

- Troisièmement, mesurer l'importance des mots pour la page
 - Texte spécial (fancy hits)
 - URL, titre, meta tags du HTML
 - Texte ancre: texte des liens html de d'autres pages qui mènent à cette page
 - Bonus: permet de cataloguer les images et autres documents sans texte
 - Sont naturellement important
 - Texte ordinaire (plain hits)
 - Le reste du contenu de la page
 - Importance dépend des majuscules, de la taille, et de la position sur la page

- Deux gros problèmes
 - Implémentation efficace de la matrice de transitions
 - Calcul efficace des itérations

0	1/2	1	0
1/3	0	0	1/2
1/3	0 1/2	0	1/2
1/3	1/2	0	0

- La matrice est creuse (sparse)
 - On perdra beaucoup d'espace à emmagasiner des zéros
- Solution standard: emmagasiner uniquement les positions et valeurs différentes de zéro
- On peut faire mieux
 - Chaque élément différent de zéro dans une colonne est 1 divisé par le nombre d'éléments différents de zéro

В		
	2	A,D
C	1	A
D	2	В,С

Emmagasiner:

- Page actuelle
- Nombre de liens sortants
- Liste de destinations de liens

Rechercher:

- De la page en cours, vérifier dans la liste si la page cible est une destination valide
- Si oui, la valeur est 1 / nombre
- Si non, la valeur est 0

Calcul des itérations

$$\mathbf{v}_{i} = \beta \mathbf{M} \mathbf{v}_{i-1} + (1 - \beta) \mathbf{v}_{0}$$

- M et v sont trop gros pour entrer en mémoire
 - Sinon on n'aurait aucuns problèmes à les multiplier
- Solution: diviser M et v en sous-matrices et sous-vecteurs, calculer des résultats partiels, puis les combiner
 - Bonus: le calcul est parallélisable ou peut être fait par MapReduce

Résumé

- PageRank
 - Matrice de transitions
 - Internaute aléatoire avec processus de Markov
- Améliorations
 - Culs-de-sac: suppression
 - Pièges dans la toile: taxation
 - Spam de liens: filtrage par masse de spam
 - Pertinence des sujets: ensemble de téléportation
- Implémentation
 - Représentation de la matrice
 - Distribution des calculs