Homework 3

ALECK ZHAO

September 23, 2016

1. A population consists of N individuals. Each individual has a certain number of friends. Suppose the count of individuals in the population with a given number of friends is as in the following table:

k	number in population with k friends
0	1
1	1
M	N-4
2M - 1	1
2M	1

where $M \geq 3$ is an unknown positive integer and $N \geq 7$. A sample if size 3 is drawn without replacement and the numbers of friends for the *i* sampled individual is denoted by X_i , for i = 1, 2, 3.

- (a) Let S denote the 3-tuple of elements X_1, X_2, X_3 that are drawn but written in increasing order. Write down a list of the 15 possible values S can take on.
- (b) Make a table giving the PMF of S.
- (c) Compute the PMF of $Y = X_1 + X_2 + X_3$. Note that Y is a function of S the set that is drawn.
- (d) Compute the PMF of $\bar{X} = (X_1 + X_2 + X_3)/3$ and use this to determine $E[\bar{X}]$.
- (e) Compute the population variance σ^2 . Compute $Var(\bar{X})$.
- (f) If we use \bar{X} to estimate M, what is the mean square error $E[(\bar{X}-M)^2]$?
- (g) Let T denote the sample median. Compute the PMF of T and determine E[T].
- (h) Find an expression for Var(T) and simplify it.
- (i) If we use T to estimate M, what is the mean squared error $E[(T-M)^2]$?
- (j) Suppose we will decide which estimator of M to use (sample mean or sample median) based on which has a smaller MSE. Define the *efficiency* of the sample median *relative* to the sample mean to be

eff =
$$\frac{E[(\bar{X} - M)^2]}{E[(T - M)^2]}$$
.

Show that this expression can be written as the product of two terms, one which is linear in N and the other which is a ratio of two quadratics in M.

- (k) Describe situations (for some integers M and N with $M \ge 3$ and $N \ge 7$) when the sample mean has a smaller MSE than the sample median. If N > 12, show that the sample median has a smaller MSE than the sample mean no matter what M is (as long as it is at least 3).
- 2. Complete the following:
 - (a) Show that if X_i are iid Bernoulli random variables with success probability p for some $p \in (0,1)$, then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \to p$$

as $n \to \infty$.

- (b) In R, get an approximation to the expected value of the length of the longest run in n flips of a fair coin for $n = 10, 20, 30, \dots, 250$.
- (c) Plot the expected value in (a) vs n and try to fit a curve of the form $y = c \log n$ for some c to the data.
- (d) Use your fit in (c) to predict the expected value when n = 500. Then approximate the value you get using simulation and compare.
- (e) Now, consider a Monte-Carlo approximation of the variance of a random variable. Explain why the expression

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2$$

can be used to approximate $E[X^2]$, and thus why

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} X_i\right)^2 \approx E[X^2] - \mu^2 = \text{Var}(X).$$

(f) From the previous part, explain why, for large n, we can approximate Var(X) using the sample variance of the values X_1, \dots, X_n

$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

- (g) Take X to be the length of the longest run in n trials. Estimate Var(X) for $n = 10, 20, 30, \dots, 250$, and plot Var(X) vs n.
- 3. Consider sampling with replacement using a sample of size n from a population of size N where each individual i has two attributes x_i, y_i . Let

$$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$

denote the population covariance between x and y where μ_x and μ_y denote the population means. Let (X_i, Y_i) , $i = 1, \dots, n$ denote the (x, y) values for the individuals sampled.

Show that the sample covariance

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

is unbiased for σ_{xy} .

Chapter 7: Survey Sampling

- 45. In the population of hospitals, the correlation of the number of beds and the number of discharges is $\rho = 0.91$. To see how $\text{Var}(\bar{Y}_R)$ would be different if the correlation were different, plot $\text{Var}(\bar{Y}_R)$ for n = 64 as a function of ρ for $-1 < \rho < 1$.
- 46. Use the central limit theorem to sketch the approximate sampling distribution of \bar{Y} for n=64 for the population of hospitals. Compare to the approximate sampling distribution of \bar{Y} .

48. A simple random sample of 100 households located in a city recorded the number of people living in the household, X, and the weekly expenditure for food, Y. it is known that there are 100000 households in the city. In the sample,

$$\sum X_i = 320$$

$$\sum Y_i = 10000$$

$$\sum X_i^2 = 1250$$

$$\sum Y_i^2 = 1100000$$

$$\sum X_i Y_i = 36000$$

Neglect the finite population correction in answering the following.

- a. Estimate the ratio $r = \mu_y/\mu_x$.
- b. Form an approximate 95% confidence interval for μ_y/μ_x .
- c. Using only the data on Y estimate the total weekly food expenditure, τ , for households in the city and form a 90% confidence interval.

Chapter 4: Expected Values

102. Two sides, x_0 and y_0 of a right triangle are independently measured as X and Y, where $E[X] = x_0$ and $E[Y] = y_0$ and $Var(X) = Var(Y) = \sigma^2$. The angle between the two sides is then determined as

$$\Theta = \tan^{-1} \left(\frac{Y}{X} \right).$$

Find the approximate mean and variance of Θ .