Solucionário de Introdução à Álgebra

Andre Kowacs

7 de dezembro de 2018

Capítulo 3

3.2

Ex.1)

De fato, sejam $x, y, \in \cap_{i \in \mathbb{N}} B_i$. Então $x, y \in B_i \forall i$. Logo, $x + y, x \cdot y \in B_i \forall i$. Logo, $x + y, x \cdot y \in \cap_{i \in \mathbb{N}} B_i$.

Ex.2)

De fato, sejam $x,y\in \cup_{i\in \mathbb{N}}B_i$ então $x\in B_j,\,y\in B_k,\,j,k\in \mathbb{N}$. Suponha, sem perda de generalidade, que $k\geq j$. Então $B_j\subset B_k\implies x\in B_k$. Logo $x+y,x\cdot y\in B_k\implies x+y,x\cdot y\in \cup_{i\in \mathbb{N}}B_i$

Ex.3)

De fato,

$$\bar{1} +_{\mathbb{Z}_3} \bar{2} = \bar{3} \notin \mathbb{Z}_3$$

Ex.4)

De fato, sejam $x, y \in B$. Então:

$$(x+y) \cdot a = x \cdot a + y \cdot a = a \cdot x + a \cdot y = a \cdot (x+y)$$

 $x \cdot y \cdot a = x \cdot a \cdot y = a \cdot x \cdot y$

Logo $x + y, x \cdot y \in B$.

Ex.5) Análogo ao anterior

Ex.6)

De fato, $x, y \in B \implies (x+y) \cdot a = x \cdot a + y \cdot a = 0 + 0 = 0$ e $x \cdot y \cdot a = x \cdot 0 = 0$, logo $x+y, x \cdot y \in B$.

Ex.7)

Análogo ao Ex.1

Ex.8)

Análogo ao Ex.2

Ex.9) Do Ex.7 temos que P é subcorpo. Por definição, se P' também é subcorpo, segue que $P \subset P'$, logo é o menor (no sentido de inclusão).

Ex.10)

$$A = \{\bar{0}, \bar{2}, \bar{4}, \bar{6}, \bar{8}, \bar{10}\}, B = \{\bar{0}, \bar{3}, \bar{6}, \bar{9}\}, X = \{\bar{0}, \bar{4}, \bar{8}\}, E = \{\bar{0}, \bar{6}\}$$

Ex.11)

a) De fato, suponha pa=0 para algum
 $0\neq a\in D.$ Então:

$$(pa) \cdot x = 0, \ \forall x \in D \iff (px) \cdot a = 0, \ \forall x \in D$$

Como $a \neq 0$ e D domínio de integridade, segue que $px = 0, \forall x \in D$. b)De fato, suponha característica de $D \neq 0$, isto é, $\exists p > 0, px = 0, \forall x \in D$. Suponha que k|p. Então p = km, para algum $m \in \mathbb{N}$., logo:

$$(km)x = 0 \forall x \in D$$

$$k(mx) = 0, \forall x \in D(*)$$

Mas $k, m | p \implies k, m \le p$. Suponha k > 1. Então m < p. Mas daí $mx = y \in D$ e (*) implica que

$$ky = 0$$

Assim ou $y=0, \forall x\in D$, da onde $mx=0 \forall x\in D$, contradição com p ser o menor inteiro com tal propriedade, ou então k=p, nesse caso m=1 e p primo.

Ex.12

De fato, dados $a, b \in A$:

$$a \oplus -1 = a + (-1) + 1 = a, : -1 = 0_{\oplus}$$

$$a \oplus -a - 1 = a + (-a)(-1) + 1 = 0 \log_{-a} a = -a - 1$$

Comutatividade segue da comutatividade de +.

Distributividade:

$$(a \oplus b) \odot c = (a + b + 1) \odot c$$

$$= (a + b + 1)c + a + b + 1 + c$$

$$= ac + bc + c + a + b + 1 + c$$

$$= ac + a + c + bc + b + c$$

$$= a \odot c \oplus b \odot c$$

3.3

Ex.1

De fato, sejam I,J ideais, $x,y\in I\cap J,\,a\in A$. Então $x-y\in I,J,\,ax,ay\in I,J,$ logo $x-y,ax,ay\in I\cap J,$ logo é ideal.

Ex.2)

Análogo para subanel e subcorpo.

Capítulo 4

4.1

Ex.2)

De fato, provemos por indução no grau de p. Se $\partial p(x) = 0$, então basta tomar g(x) = 0, r(x) = p(x). Suponha que vale para $\partial p(x) = n$. Seja p(x) tal que $\partial p(x) = n + 1$. E seja:

$$q(x) = b_0 + \dots + b_{m-1}x^{m-1} + 1x^m.$$

Se n < m, tome g(x) = 0, r(x) = p(x).

Se $n \geq m$, seja:

$$p_1(x) = p(x) - a_n x^{n-m} q(x).$$

Então $\partial p_1(x) < \partial p(x) = n+1$, logo pela hipótese de indução $\exists g_1(x), r_1(x)$ com $r_1(x) < \partial q(x)$:

$$p_1(x) = g_1(x)q(x) + h(x)$$

E então:

$$p(x) = (a_n x^{n-m} + g_1(x))q(x) + r_1(x)$$

Ex.3

Segue logo da demonstração da proposição 4.1, observando que $f(x) \in L[x]$.

Ex.4

De fato, tome $f(x) = x^2 + 1$.

Ex.5)TVI

Ex.6) Análogo a proposição 4.1 aplicada n vezes

Ex.9)

De fato, suponha que existam p(x), $q(x) \neq 0 \in D[x]$, p(x)q(x) = 0, seja:

$$p(x) = a_0 + ... + a_n x^n, q(x) = b_0 + ... + b_m x^m.$$

Mas $p(x), q(x) \neq 0 \implies a_n, b_m \neq 0$. Então $p(x)q(x) = c_0 + ... + c_{n+m}x^{n+m}$ onde $c_{n+m} = a_n b_m \neq 0$, contradição. Logo D[x] é domínio de integridade

Ex.10

De fato, é claro que 1 é unidade de A[x] e comutatividade é clara, vem da comutatividade de A.

Ex.12)

De fato, sejam $a, b \in K[\alpha]$, $a = a_0 + ... + a_n \alpha^n$, $b = b_0 + ... + b_m \alpha^m$. Assim:

$$a \cdot b = a_0 b_0 + (a_1 b_0 + a_0 b_1) + \dots + (a_n b_m) \alpha^{n+m}$$

$$a \cdot b = c_0 + \dots + c_{n+m} \alpha^{n+m}$$