Quantifying the Return on Investment (ROI) of Campaign Contributions

Hope Mullins

University of Central Florida

July 14, 2025

Update: Contribution Amount Distribution

Update: Class Imbalance

Days	W Count	W %	L Count	L %
360	4713	80%	1188	20%
240	4924	72%	1910	28%
120	5129	59%	3567	41%
60	5157	55%	4227	45%
30	5165	54%	4458	46%
14	5167	53%	4526	47%
7	5168	53%	4557	47%
1	5169	53%	4567	47%

Recap

- ☼ Timing of contributions matters.
- † Individual contributions deliver highest marginal returns, whereas committee money is weaker or mixed.
- [↑] Generalized additive models uncover non-monotonic saturation points.
- [↑] Money explains only a portion of outcome variation.

MLE Logistic Elasticities

Days	Elasticity
360	-0.011
240	-0.007
120	0.176
60	0.579
30	1.130
14	1.744
7	1.677
1	1.706

Logistic Raw Elasticities

Logistic Normalized Elasticities

GAM Logistic Elasticities

Days	Elasticity
360	-0.029
240	0.012
120	0.084
60	-0.069
30	0.370
14	0.040
7	0.405
1	0.690

Elasticity Points

- ☆ Elasticity Unit-free measure of responsiveness.
- Raw elasticities measure percent change in probability of winning from a one percent increase in spending at a particular cutoff.
- A one percent reallocation of total spending among time periods changes total spending by zero, so it can't change the outcome in first order.

GAM Logistic Odds-Ratio Trend

GAM Logistic Raw Elasticities

GAM Logistic Normalized Elasticities

Linear Elasticities

Days	Elasticity
360	-0.059
240	-0.053
120	-0.018
60	0.018
30	0.094
14	0.135
7	0.136
1	0.171
ш	

GAM Linear Elasticities

Days	Elasticity
360	-0.002
240	-0.001
120	0.010
60	0.020
30	0.015
14	-0.004
7	-0.007
1	-0.006

Win Probability Maximization

$$\max_{\{b_t \ge 0\}} \sigma \left(\alpha + \sum_t \beta_t \log(1 + b_t) \right)$$

- ★ Maximize candidate's probability of winning a single race in single district.
- \clubsuit Total spending cannot exceed budget B; daily spend b_t is non-negative.
- α reflects factors unrelated to spending; adjusts final win probability, but not optimal timing of spending.

Win Probability Maximization (Continued)

- Solver converged to solution where first-order conditions and budget constraint are satisfied.
- **☆** Code minimizes −Pr(win).

Win Probability Maximization (Continued)

Days	Spend
22	\$10,101.13
28	\$928.32
23	\$672.75
12	\$657.99
26	\$625.58
29	\$559.54
44	\$557.22
25	\$501.78
17	\$496.87
36	\$477.98

Win Probability Maximization (Continued)

- Focus largest spends about 3-6 weeks before election.
- **\$** Earlier and much later spending is less efficient per these ROI estimates.

Alternative Decision Problems (1)

- > Assume D districts.
- ➤ Maximize Expected Wins:

$$\max_{\{b_{it} \geq 0\}} \sum_{i=1}^{D} \sigma \left(\alpha_i + \sum_{t=1}^{T} \beta_t \log(1 + b_{it}) \right)$$

 \rightarrow b_{it} is dollars in district i at time t; β_t is the ROI curve; a_i is baseline logodds for district i; σ is logistic link.

Alternative Decision Problems (2)

- > Assume *D* districts.
- ➤ Maximize Threshold Wins:

$$\max_{\{b_{it}\}} \Pr\Big(\sum_{i=1}^{D} W_i \geq M\Big)$$

- \succ *M* is the number of seats.
- $ightharpoonup W_i \sim \operatorname{Bernoulli}(p_i(b_i))$

Alternative Decision Problems

In either case, when district-specific α_i and β_t are available, form each district's win probability term just as done in the one-race GAM.

Contrast

- Expected Wins: FOCs imply equalizing every district-time's marginal gain per dollar across all i, t.
- Threshold Wins: Moving a district's p_i from, say, 0.45 to 0.55 has a bigger effect than moving 0.8 to 0.9; one "overinvests" in mid-range p_i .
- Thus, under threshold objective, resources flow disproportionately to swing districts/times; under expected wins they spread more evenly.

Theory and Uncertainty

- > Treat each estimated β_t as a random variable $B_t \sim N(\hat{\beta}_t, \sigma_t^2)$
- $ightharpoonup \operatorname{Problem:} \max_{t} \mathbb{E}[\sum_{i} \sigma(\alpha_{i} + \sum_{t} B_{t} \log(1 + b_{it}))]$
- ➤ Worst-case Problem:

$$\max_{\{b_{it}\}} \min_{eta_t \in [\hat{eta}_t \pm \Delta_t]} \sum_i \sigma \Big(lpha_i + \sum_t eta_t \log (1 + b_{it}) \Big)$$

Key Findings

- ✓ Back-loading: Majority of first-order effect comes in last 30 days.
- Diminishing returns fit the data well; spend beyond a certain window adds little.
- \checkmark Elasticity framework translates β_t curves into unit-free shares (normalized elasticities sum to 1 by construction).

Practical Implications

- ★ Campaign manager should concentrate resources in 14 30 day window to maximize win probability under fixed budget.
- * Under uncertainty, a robust allocation (using lower-bound β_t) further favors that same window, but more conservatively.
- Limitations: Current work is for a single race; district-level data would let us optimize across multiple seats.

Conclusion

By quantifying time-varying ROI and embedding it in a clear decision framework, we are able to let campaigns know not just what matters, but when and how much to spend for maximal impact.

References I

 Bonica, Adam. Database on Ideology, Money in Politics, and Elections: Public version 4.0 [Computer file]. http://data.stanford.edu/dime. Stanford University Libraries, Stanford, CA, 2024.