Linear Programming

17 October 2018 11:36

Standard Form:

- aim is to minimise
- equality constraints as linear functions
 - o RHS are non-negative
- decision variables are non-negative

$$z = c_1 x_1 + \dots + c_n x_n$$

$$a_{11}x_1 + \cdots + a_{1n}x_n = b_1$$

$$a_{1m}x_1 + \dots + a_{1m}x_n = b_m$$

•
$$b_i \ge 0$$
, $find x_i$

Place a_{ij} into a matric A; b, x, c into vectors

LP - minimise subject to:

- $z = c^T x$
- Ax = b
- $x \ge 0$

If Rank(A) is full, then only unique point to satisfy IP

• If this is not feasible, feasible set is empty

Decision Variables - Value taken by variables we control

Objective Function - Optimise goal which depends on controlled (decision) variables Feasible Set - Set of values of Decision Variables that meet constraints

LP Model must be bounded

Can solve using Simplex algorithm to find optimal vertex

Standardising LPs:

- Max -> Min
 - \circ new obj = -f(x)
 - o change final sign
- Negative RHS (b's)
 - o multiply constraint by -1
 - \circ $-b_i \geq 0$
 - o inequality flips
- <= Inequality -> Equality
 - \circ introduce new slack variables $s_m \geq 0$
 - \circ LHS \leq RHS \rightarrow LHS + $S_i = RHS$
 - $\circ Ax + s = b$
- >= Inequality -> Equality
 - \circ introduce new surplus variables $s_m \geq 0$
 - \circ LHS \leq RHS \rightarrow LHS $-S_i = RHS$
 - $\circ Ax s = b$
- Free Variables
 - 1st approach
 - replace free variable x_i with $x_i^+ x_i^-$
 - $x_i^+ \ge 0 \text{ and } x_i^- \ge 0$
 - not a 1-1 mapping
 - o 2nd approach
 - eliminate the free variable
 - use any equality constraint involving the free var
 - substitute to remove it

LP Models

23 October 2018 14:44

Demand: must meet Supply: Must not go over

Resource Allocation Models

- variables how many resources each use requires
- constraints resource availability

Blending Models

- similar to allocation but focus on combining resources
- variables how much to include of each resource
- constraints limit on properties in the blend

Operations planning models

- variables products, activities, processing facilities
- constraints balance between input and output of the activities

Shift scheduling models

- variable employees that start shift at certain date/time
- constraints allocate workers to cover requirements

Time-phased models

- variables returns (revenue) and state at given time
- constraints balance based on a time in future

Flow Conservation:

- When using intermediate locations
 - Like a warehouse
- Flow into the intermediate has to be same as flow out of intermediate

Notes Page 2

Basic Feasible Solutions

17 October 2018 16:40

Basic Solutions:

- assume an LP in standard form
 - o number of variables **n** >= number of equations m
 - o rows of A are linearly independent: rank(A)=m
- select a subset of **m** columns from A that are **linearly independent**
 - o To test row reduction no free vars
 - o index set I set of the indexes of these columns
 - o Basis matrix B matrix of these columns
 - \circ if $x_i = 0$ for i **not in** I, the **x** is a **basic solution (BS)** to Ax = b with respect to index set I
- Feasible solution (FS)
 - o x satisfying both Ax=b and x >= 0
 - o if also basic, then this becomes a basic feasible solution (BFS)
 - □ which are the vertices of the feasible set
 - optimal always achieved at a BFS
- columns in B are linearly independent
 - $\circ Bx_B = b$ is invertible
 - $\circ x_B = B^{-1}b$ unique solution
 - o back to Ax=b, covering the columns not in x_B , to be 0 in x
 - x is the unique basic solution to Ax=b with respect to I

Fundamental theorem of LP:

For an LP in standard form, with $rank(A)=m \le n$

- if there is a feasible solution, there must be a BFS
- if there is an optimal solution, there must be an optimal BFS

At most
$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$
 BFS's

• usually less as B(I) may be singular (non-invertible) and B may not be feasible

Basic Variables:

- $i \in I, x_i is \ a \ BV$
- $i \notin I$, x_i is a NBV (non basic variable)(all = 0)

Basic representations:

- express the objective function value (z) and each BV as a linear function of the NBVs
- Ax = b, $Ax = Bx_B + Nx_N$
- $z = c^T \mathbf{x} = c_B^T \mathbf{x}_B + c_N^T \mathbf{x}_N$
- since **B** is invertible, can rearrange to get

•
$$z - (c_N - N^T B^{-T} c_B)^T x_N = c_B^T B^{-1} b$$

•
$$x_B + B^{-1}Nx_N = B^{-1}b$$

 $\circ c_N - N^T B^{-T} c_B - reduced\ cost\ vector\ - sensitivity\ of\ z\ to\ NBV$ • helps to determine if BFS is optimal, I ff r>=0

Simplex Algorithm

17 October 2018 16:40

Simplex Tableau:

BV	All Variables	RHS
Z	$-(c_N - N^T B^{-T} c_B)^T (\beta' s)$	$c_B^T B^{-1} b$
x_B	$(B^{-1}N)$	$B^{-1}b$

- top row called objective row
- all $RHS \ge 0$, apart from objective row
- coefficients of NBV -> negative reduced costs

Pivoting:

- if vertex x is not optimal, a neighbouring vertex will be more optimal
- x_p leaves the basis, x_q enters the basis
 row operations
- the pair (p,q) is called a pivot ($\neq 0$)
- 1. divide row p by pivot element y_{pq}
 - a. relabel as row q
- 2. for other rows in I
 - a. subtract original $row \ p \ * rac{y_{iq}}{y_{pq}}$
- 3. objective row
 - a. subtract original $row p * \frac{y_{zq}}{y_{pq}}$

Pivot Selection:

- Entering value better obj value
 - o new obj vale < current obj value
 - \circ need any NBV where $\beta > 0$
 - if one exists, pick this one
 - if more than one exists,
 - \Box pick one with largest β_q
 - if several have same largest,pick one with smallest I
- Leaving variable feasibility
 - RHS of row ≥ 0
 - Express as leaving variable (as λ)
 - Choose one which gives smallest λ
 - □ Can't make others negative

Simplex Algorithm:

- 0. Find initial BFS and its basic representation
- 1. STOP if $\beta_i \leq 0$ for all $i \notin I$
- 2. STOP if $\beta > 0$ for any NBV j
 - a. AND for **ALL** BV, i, $y_{ij} \leq 0$
 - b. As no finite min exists
- 3. Choose entering NBV, q, with largest β
- 4. Choose exiting value
 - a. Express in terms of q (as λ)
- 5. Pivot on y_{pq}
 - a. Now go back to step 1

BV	z	x_1		x_p	 x_q	 x_n	RHS
Z	1	β_1		β_p	 β_q	 β_n	β_0
:	:	:		:	:	:	:
x_p	0	y_{p1}	• • •	y_{pp}	 y_{pq}	 y_{pn}	<i>y</i> _p 0
:	:	:		:	:	:	:

Finite Termination & Degeneracies

23 October 2018 18:06

Degenerate BS: one or more BV are zero Non-Degenerate BS: all BV's are non-zero

Finite Termination Theorem:

- if all BFS's are non-degenerate
 - o simplex algorithm must terminate after a finite number of steps
 - with an optimal solution
 - or with a proof that the problem is *unbounded*
- Proof
 - o RHS for BV are > 0 if non-degenerate
 - o then new objective value is always decreasing
 - unless optimal or unboundness if caught in STEP 1 or 2
 - o will terminate no BS will ever be repeated
 - at most, n choose m solutions
 - cannot run indefinably

Degeneracy and Simplex:

- if pivot on (p,q) where y_{p0}=0
 - o new BFS obj value same
 - no improvement
 - o finite termination theorem breaks
 - o pivot is called degenerate

Cycling and Bland's Rule:

- can cause cycling if using degenerate pivots
 - o necessary, but not sufficient
- Bland's Rule:
 - o choose the **left-most** column **q** with positive cost
 - From initial tableau
 - And do until end
 - $(\beta_i > 0)$
 - o choose **p** same as you would normally
 - o removes cycling
 - finite

Two Phase Simplex

29 October 2018 01

Initial BFS:

- All slack variables
 - Not always an obvious initial BFS
 - If we have <=, >= inequalities etc.
- · Artificial variables
 - \circ For == and >= , add ξ_{av}
 - o Now have a BS, with the AVs acting as BVs
 - Auxiliary LP:
 - Minimize $\zeta = sum \, \xi_{av}$
 - □ Add equations involving AVs to obj
 - Solve using Simplex
 - Must terminate, with two cases
 - $\zeta = 0 \rightarrow provides BFS for original LP$
 - $\zeta > 0 \rightarrow original LP$ is infeasible

Two Phase Simplex Method:

- Phase 1:
 - o Modify for negative RHS
 - o **Identify** equality and >= inequalities
 - Modify for inequalities (slack variables)
 - Add Artificial variables (for those in Step 2)
 - o Get Auxiliary LP
 - Solve using Simplex
 - o Type equation here.
- Phase 2:
 - o Case 1:
 - $\zeta 1 > 0$ original LP is infeasible
 - o Case 2:
 - $\zeta = 0$ and all ξ_i are nonbasic (= 0)
 - Remove all AVs from tableau
 - Derive basic representation for z
 - ☐ Using I from end of Phase 1
 - Now solve using Simplex algorithm
 - o Case 3:
 - $\zeta = 0$ and and at least one ξ_i is basic
 - \Box Since $\zeta = 0$ then all $\xi_i = 0$
 - □ So we have a basic variable =0
 - ☐ Phase 1 given a degenerate BFS
 - Pivot on y_{pq} , ξ_p and x_q while keeping $\zeta = 0$
 - \Box Can now remove all ξ_i
 - ☐ Solve using Simplex

30 October 2018 20:09

Non-linear programs can sometimes be reformulated into:

- a single LP
- a sequence of LP problems

Min-Max (game theory):

•
$$MM: y_i(x) = c(i)^T x + d(i)$$

 $\circ set \varphi(x) = \max c(i)^T x + d(i)$
 $\circ \min \varphi(x)$
 $\circ s.t. Ax = b, x \ge 0$
• LP: $\min z$
• $s.t$
 $z \ge c(i)^T x + d(i) \forall i$
 $Ax = b$

- $x \geq 0, z \ free$ optimal in LP: $\left(x_{LP}^*, z_{LP}^*\right)$
- then MM has optimal value $\phi(x_{LP}^*)=z_{LP}^*$

Proof by contradiction:

- let (x_{LP}^*, z_{LP}^*) be optimal in LP
- assume not optimal in MM
 - \circ then $\phi(x_{MM}^*) < \phi(x_{LP}^*)$
- but then x_{MM}^* must be feasible in LP
- by constraints of the LP, $z_{LP}^* \ge \phi(x_{LP}^*)$
 - $\circ z_{LP}^* \ge \phi(x_{LP}^*) > \phi(x_{MM}^*)$
 - $\circ (x_{MM}^*)$ would give a better obj value in LP
 - \circ but this can't happen as x_{LP}^* is optimal
 - so other point cannot exist

Min-Min:

•
$$MM$$
: $y_i(x) = c(i)^T x + d(i)$
 $\circ set \psi(x) = \min c(i)^T x + d(i)$
 $\circ \min \psi(x)$
 $\circ s.t. Ax = b, x \ge 0$
• LP 's:
 $\min z_i = c(i)^T x(i) + d(i) \quad LP(i)$
s.t. $Ax(i) = b$
 $x(i) \ge 0$
 $\circ z_j^* = \min z_i \quad LP(j)$
• then $x^*(j)$ is optimal in MM
• $\psi^* = \psi(x^*(j)) = z_j^*$

Goal Programming:

- replace absolute values with a summation
- |...| = U V
- in obj, U + V
 - o then add new constraint

Replace Max function Max(A,x)

- new variable V
- V>A

Fractional LP:

- · Assume that feasible set is bounded
- Denominator of objective function is strictly positive
- Homogenisation:

• For each
$$x_i$$
 create a y_i and a y_0
• $\alpha - num \ coeff$
• $\beta - den \ coeff$
• $\min \alpha_0 y_0 + \alpha_1 y_1 + \dots + \alpha_n y_n$
• $s.t \ \beta_0 y_0 + \sum_{j=1}^n \beta_j y_j = 1$

 $\circ Ay = 1$

 $\circ \ y_{0\dots n} \geq 0$

Integer Programming

29 October 2018

Discrete Integer Values

Can mix - MILP

For min problem,

 $f(x)_{MILP} \ge f(x)_{LP}$

• either the same or worse

MILP Standard form:

• slack and excess in MILP are continuous

Pure IP Standard form:

- apply LP rules apart from slack and excess
- scale to get integer coefficients
- · insert slack and excess variables

Finite-Valued Variables

- $x_i \in \{p_1, ..., p_m\}$
- replace x_i
 - \circ with z_{ij}
 - $\circ x_i = p_i z_{ij}$
 - $\circ \ j \in \{1, \dots, m\}$

Knapsack Problem:

- items have weight w_i , $j \in \{1, ..., n\}$
- items have value v_i , $j \in \{1, ..., n\}$
- $x_i = 1$ if items is packed
- 'knapsack' has capacity W

•
$$\max z = \sum_{i=1}^{n} v_i x_i$$

•
$$\max z = \sum_{j=1}^{n} v_j x_j$$

• $s.t.$

$$\sum_{j=1}^{n} w_j x_j \le W$$

$$x_i \in \{0,1\} \quad \forall j \in \{1,...,n\}$$

Bin-Packing Problem:

- items have weight w_j , $j \in \{1, ..., n\}$
- k bins of capacity W

$$y_i = 1$$
 if bin i is used

- x_{ij} = 1 if item j assigned to bin i
 minimise number of bins

•
$$\min z = \sum_{i=1}^{k} y_i$$

$$\begin{array}{l} s.t. \\ \sum_{j=1}^{n} w_{j} x_{ij} \leq W y_{i} \\ \sum_{i=1}^{k} x_{ij} = 1 & \forall j \in \{1, \dots, n\} \\ x_{ij}, y_{i} \in \{0, 1\} & \forall i \in \{1, \dots, k\}, \forall j \in \{1, \dots, n\} \end{array}$$

Cutting Plane

10 November 2018 21:35

Continuous Relaxation:

- LP relaxation:
 - o replace all integer variables with continuous
 - o Solve
- if optimal is integer done
- else tighten LP relaxation and repeat

Gomory mixed-integer cuts:

- f = x x
- RHS for a BV in tableau is not integer
- for LHS get f part * x_i (NBV)
 - o sum of these >= fraction part of RHS
 - add this as new row
 - □ after standardising
 - use two-phase to solve

$$\Box + \xi_1 - x_i$$

Cutting Plane Algorithm:

- 0. Write ILP in standard form
- 1. Solve LP relaxation
- 2. if optimal is integer STOP
- 3. Generate a cut
 - a. knocks out optimal vertex
 - b. only removes non-integer solutions
- 4. Add cut to LP relaxation Step 1

Knapsack cover cuts:

- add constraints to get rid of infeasible solutions
 - o when BV set to 1 and not 0
 - $SUM i x terms \le i 1$
 - min cover cut break down above
- e.g. $5x_2 + 4x_3 \le 8$
 - $x_2 + x_3 \le 1$

Finite bound for variables, min and max

For MILP

Divide and Conquer to MILP:

Notation:

- P_i : ith subproblem
 - o drop ILP, each are LPs
- $x^*(P_i)$: optimal solution to the ith subproblem

Application:

- Solve LP relaxation of problem $P_0 \Rightarrow x^*(P_0)$ (original MILP)
- Stop if solution satisfies integrality constraints
- Otherwise choose non-integer $x_p^* \in x^*(P_0), p \in Z$ (integer x's)
 - o Divide: (branch)
 - create two subproblems by adding constraints to P₀

$$\Box P_1: x_p \leq \frac{x_p^*}{\overline{x_p^*}} (floor)$$
$$\Box P_2: x_p \geq \frac{\overline{x_p^*}}{\overline{x_p^*}} (ceiling)$$

- Conquer: (bound)
 - if optimal for subproblem is worse than any known feasible solution for P₀ - stop with that branch
 - as any solution of P₀ satisfying integrality constraints is feasible in one of P₁ and P₂ - hence can solve P₀ by solving P₁ and P₂

Branch and Bound Steps:

- 1. Initialise
 - a. $OPT = \infty$
 - b. Solve P₀
 - c. if $x^*(P_0)$ is feasible, STOP
 - d. else list of problems = $\{P_0\}$
- 2. Problem Selection
 - a. from list of problems,extract P_i having opt < OPT
 - b. if non exists, STOP
- 3. Variable Selection
 - a. choose x_p to divide on
- 4. Branch
 - a. create subproblems P^{\prime} and $P^{\prime\prime}$
 - i. (see left)
- 5. Bound P':
 - a. find $x^*(P')$
 - b. if opt < OPT
 - i. if feasible for P₀ (integer..)
 - 1) OPT = opt
 - ii. else add P' to list of problems
- 6. Bound P"
- 7. go back to step 2

Duality

15 November 2018 22:30

Dual LP:

Primal LP

$$\begin{array}{lll} \max_{x_1,x_2} z = & x_1 + 6x_2 & \min_{y_1,y_2,y_3} & 200y_1 + 300y_2 + 400y_3 \\ \text{s.t.} & x_1 & \leq 200 & \text{s.t.} & y_1 + y_3 \geq 1 \\ & x_2 & \leq 300 & \text{s.t.} & y_1 + y_3 \geq 6 \\ & x_1 + x_2 & \leq 400 & y_2 + y_3 \geq 6 \\ & x_1,x_2 \geq 0 & y_1,y_2,y_3 \geq 0 \end{array}$$

$$\max \ \left\{ c^T x \, : \, Ax \leq b, \, x \geq 0 \right\} \qquad \min \ \left\{ b^T y \, : \, A^T y \geq c, \, y \geq 0 \right\}$$

P_{max}	D_{min}	P_{min}	D_{max}
const	R var	const	var
var	const	var	R const

Comment on rules when transforming

Weak Duality:

- · both Primal and Dual are feasible
- $c^T x \leq b^T y$
 - o Dual is upper bound for Primal
- for P max

Strong Duality:

- both Primal and Dual are feasible
- B is optimal basis for Primal
- $y^* = (B^{-1})^T c_B$ $c^T x^* = b^T y^*$

Direct Conversion:

- 1.
- a. primal constraint -> dual variable
- b. primal variable -> dual constraint
- - a. constraints coefficients given by A^T
 - b. dual costs = primal RHS
 - c. dual RHS = primal costs
- 3. If primal max, dual is min
 - a. primal constraint $[\ge, =, \le]$
 - i. dual variable $[y \le 0, y \in \mathcal{R}, y \ge 0]$
 - b. primal variable $[x \ge 0, x \in \mathcal{R}, x \le 0]$
 - i. dual constraint $[\geq, =, \leq]$
- 4. If primal min, dual is max
 - a. primal constraint $[\ge, =, \le]$
 - i. dual variable $[y \ge 0, y \in \mathcal{R}, y \le 0]$
 - b. primal variable $[x \ge 0, x \in \mathcal{R}, x \le 0]$
 - i. dual constraint $[\leq, =, \geq]$

Indirect Conversion:

- 1. Make into form of P or D
 - a. replace $x_i \in \mathbb{R}$ with $x_i^+ x_I^$ i. $x_i^+, x_i^- \ge 0$
 - b. replace equality with two inequality
 - c. if necessary
 - i. change directions of inequality
 - ii. change obj max/min
- 2. Obtain Dual
- 3. Simplify (Optional)
 - a. replace variables pairs that appear in all constraints as $\alpha y_i - \beta y_j$
 - b. replace matching inequality with equality

20 November 2018 11:01

Uncertainty in a RHS in LP: (perturbation - value function)

- Optimal solution is can be affected by this value
- v(RHS) optimal value depending on p
 - o As RHS increases from 0
 - \circ v(RHS) improves
 - o Piecewise linear

Evaluate from final Simplex tableau:

- If a $\operatorname{row} \mathbf{t}$ had a slack variable x_s
- Then $\Pi_t = \beta_s$ from final tableau

Shadow Prices:

- Is a vector
 - $\circ \Pi = \left(B^{-1}\right)^T c_B$
 - o Doesn't have to be unique
 - o Give info about the **sensitivity** of v(RHS)

Behaviour of value function:

•
$$v(p) = v(b) + \Pi^T(p-b)$$

• If
$$B^{-1}p \ge 0$$

$$\circ \ v(p) = c_B^T B^{-1} p + c_B^T B^{-1} b - c_B^T B^{-1} b$$

$$= c_B^T B^{-1} b + c_B^T B^{-1} (p - b)$$

•
$$v(b) + \Pi^T(p-b)$$

Global Behaviour:

- In general
 - $v(p) \ge v(b) + \Pi^{T}(p-b)$ for all p
 - reversed for max problems
 - o PRROF>

23 November 2018 11:26

Games:

- Players must guess what other players will do
- Outcome depends on combination of players strategies

Two Person Zero-Sum Games:

- Row Player (RP) and Column Player (CP)
- RP chooses one out of m strategies
- CP chooses one out of n strategies
- Zero-Sum RP + CP gains = 0 (one has 'negative gain')
- Assumptions
 - Each player knows game setting
 - RP and CP available strats
 - Payoff matrix values
 - Moves are made simultaneously
 - Not turn by turn
 - Players play to get best

Payoff Matrix:

- Rows strats available to RP
- Columns strats available to CP
- Element i,j gain for RP
- Eliminate rows/columns that RP/CP should never play
 - Eliminate 'dominated rows'
 - Dominant Strategy Equilibria:
 - If after removing all dominated strategies
 - Left with one strategy for each player
 - ☐ This pair is DSE

When no DSE:

AFTER ELIMINATING DOMINATED R/C

Minimum Row Payoff - maxmin

- $\alpha_i = \min row \ element$
- RP chooses **i** with $\max \alpha_i$

Maximum Column Payoff - minmax

- $\beta_i = \max column \ element$
- CP chooses **j** with **min** β_i

Nash Equilibria:

- No player has any incentive to unilaterally deviate from strategy pair if told strategy of other player
- Occurs when
 - $\circ \max \alpha_i = \min \beta_i$

Mixed Strategies

25 November 2018 19:54

No Nash Equilibria exists

- So randomly play strategies

Mixed Strategy:

- RP plays strat **i** with prob p_i
- CP plays strat \mathbf{j} with prob q_i
- Payoff = $\sum_{i=1}^{m} \sum_{j=1}^{n} p_i q_i a_{i,j}$
 - Non-linear optimization
- RP seeks p_i's that maximize payoff
- CP seeks q_j's that minimize loss

Minimax Theorem:

- For every two-person zero sum games
- The RP and CP LP's have the same optimal value
 - $\circ V^* = V_{RP}^* = V_{CP}^*$
 - -> Nash equilibrium always exists for mixed strategies
 - Extends to M players

Column Player's Perspective:

- For all possible combination of q_i
 - \circ Select max $\alpha_i = \sum_{1}^{n} q_j a_{ij}$
- Then select the set of q_i with min(max α_i)
- Equivalent LP:

$$\begin{array}{l}
\cdot \quad V_{CP} = \min_{\tau, q_1, \dots, q_n} \tau \\
\circ \quad \tau \ge \sum_{j=1}^n q_j a_{ij} \quad \forall i = 1 \dots m \\
\circ \quad \sum_{j=1}^n q_j = 1 \qquad q_j \ge 0, \forall j = 1 \dots n
\end{array}$$

Row Player's Perspective:

- For all possible combination of p_i
 - \circ Select min $\beta_i = \sum_{1}^{m} p_i a_{ij}$
- Then select the set of p_i with max(min β_i)
- Equivalent LP:

$$V_{RP} = \max_{\substack{\tau, p_1, ..., p_m \\ m}} \tau$$

$$\tau \leq \sum_{j=1}^m p_i a_{ij} \quad \forall j = 1 ... n$$

$$\sum_{i=1}^m p_i = 1 \qquad p_i \geq 0, \forall i = 1 ... m$$

Case Study 1

17 October 2018 17:39

If Upper Bound > Activity, then that row is limited

- In this case,
 - o Sulphur and nitrate are the limiting factors for the production

Case Study 2

17 October 2018 17:39

GLPK by default doesn't need std form

Case Study 3 - Klee and Minty

30 October 2018 20:09

Visit all vertices of feasible set before finding Optimal

• Worst case of Simplex

Classical problem:

- Obj value = -10^{2n-2}
- $(x_1, ..., x_n) = (0, ..., 10^n)$
- has no degenerate BFS

Numerical issues:

- Solution became infeasible due to round-off errors
- Or, LU transformation failed
- Or, cannot fit number, too large

Fix with --exact

• Detrimental to performance

Steepest Edge:

- Select the NBV entering in the pivot process
- No improvement when using --exact

Interior Point method:

Proportional to polynomial of n

30 October 2018 20:09

Hyper-plane that divides two sets of point in d-dimensions

$$a_1 x_1^{(i)} + \dots + a_d x_d^{(i)} = b$$
 splits the two sets

Then

$$a_1 x_1^{(i)} + \dots + a_d x_d^{(i)} < b \quad \forall i = 1, \dots, N (N \text{ points})$$

 $a_1 y_1^{(j)} + \dots + a_d y_d^{(j)} > b \quad \forall j = 1, \dots, M (M \text{ points})$

Add a small positive ϵ

$$\begin{array}{l} a_1 x_1^{(i)} + \cdots + a_d x_d^{(i)} \leq b - \epsilon \quad \forall i = 1, \dots, N \left(N \; points \right) \\ a_1 y_1^{(j)} + \cdots + a_d y_d^{(j)} \geq b + \epsilon \quad \forall j = 1, \dots, M \left(M \; points \right) \end{array}$$

Divide both sides by ϵ ($\alpha' = \alpha/\epsilon$)

$$\begin{aligned} &a'_1 x_1^{(i)} + \dots + a'_d x_d^{(i)} \leq b' - 1 \quad \forall i = 1, \dots, N \\ &a'_1 y_1^{(j)} + \dots + a'_d y_d^{(j)} \geq b' + 1 \quad \forall j = 1, \dots, M \end{aligned}$$

Finally

$$\begin{aligned} &a'_1 x_1^{(i)} + \dots + a'_d x_d^{(i)} &-b' \leq -1 \quad \forall i = 1, \dots, N \\ &-a'_1 y_1^{(j)} - \dots - a'_d y_d^{(j)} + b' \leq 1 \quad \forall j = 1, \dots, M \end{aligned}$$

Objective function is constant,

Just want to find a feasible solution
i.e. the tuple (a₁, ..., a๗, b)

Case Study 5 - Totally Unimodular

10 November 2018 21:35

Unimodular matrix => det = +-1
Totally unimodular matrix => all square non-singular sub matrices are unimodular

if A is totally unimodular, the ILP can be solved with LP methods

Case Study 6 - Network flow

15 November 2018 22:30

Max flow = min cut strong duality

Case Study 7

15 November 2018 22:30

RP and CP LPs have strong duality