

拓扑学笔记

作者: 吕浩哲 (Lucas Shen)

时间: January 15, 2024

封面: https://www.pixiv.net/artworks/100631860

目录

第1章	拓扑空间与连续性	1
1.1	拓扑空间	1
	1.1.1 拓扑基	3
	1.1.2 乘积拓扑	4
	1.1.3 序拓扑	5
1.2	连续映射	5
	1.2.1 同胚	7
		_
	重要拓扑性质	8
2.1	分离公理	8
	2.1.1 分离公理间的关系	9
2.2	•//	10
	1 2 4 4 4	10
		10
	2.2.3 第二可数空间	11
	2.2.4 Sorgenfrey 拓扑	13
2.3	Urysohn 引理及其应用	13
	2.3.1 Urysohn 引理	13
	2.3.2 Tietze 扩张定理	15
	2.3.3 Urysohn 度量化定理	15
2.4	紧致性	17
	2.4.1 度量空间中的紧性	17
	2.4.2 Hausdorff 空间中的紧性	18
	2.4.3 乘积空间的紧性	19
	2.4.4 其它紧性	20
2.5	连通性与道路连通性	21
		21
	· - · - · -	24
第3章	商空间与闭曲面	26
3.1	144141	26
	3.1.1 常见闭曲面	26
	3.1.2 商拓扑与商映射	26
	3.1.3 诱导拓扑与余诱导拓扑	29
3.2	拓扑流形与闭曲面	30
	3.2.1 拓扑流形	30
	3.2.2 闭曲面	31
	3.2.3 贴空间与连通和	31
	3.2.4 闭曲面分类定理	32
tota a bi	ET IA LAND LUDI	. .
	· · · · · · · · · · · · · · · · · · ·	34
4.1	同伦	34

4.1.1	映射的同伦	34
4.1.2	拓扑空间的同伦	36
道路同]伦与基本群	38
4.2.1	道路同伦	38
4.2.2	基本群	39
4.2.3	同伦不变性	40
基本群	的计算	41
4.3.1	$S^n(n \geqslant 2)$ 的基本群	41
4.3.2	S^1 的基本群 \dots	41
基本群	f理论的应用	43
Van-Ka	ampen 定理	44
4.5.1	群的自由积	44
4.5.2	Van-Kampen 定理	45
4.5.3	Van-Kampen 定理的应用	46
覆叠空	· 间	51
		51
5.1.1		52
5.1.2	V-7.7.2 —	55
5.1.3	覆叠空间的同构	56
泛覆叠	· · · · · · · · · · · · · · · · · · ·	57
5.2.1		57
5.2.2	泛覆叠空间	57
覆叠变	E换与正则覆叠空间	59
5.3.1	覆叠变换	59
5.3.2	正则覆叠空间	60
覆叠映	·射与群作用	61
应用.		62
补充内	1	63
		63
•	,	63
		64
	•	64
		66
		66
		67
	4.1.2 届 4.2.1 4.2.2 4.2.3 基 4.3.1 4.3.2 基 Van-K 4.5.1 4.5.2 4.5.3 覆叠 5.1.1 5.1.2 5.1.3 覆 15.2.2 叠 17.2 5.2.2 叠 17.3 元	4.1.2 拓扑空间的同伦 道路同伦与基本群 4.2.1 道路同伦 4.2.2 基本群 4.2.3 同伦不变性 基本群的计算 4.3.1 S [∞] (n≥2)的基本群 4.3.2 S ¹ 的基本群 基本群理论的应用 Van-Kampen 定理 4.5.1 群的自由积 4.5.2 Van-Kampen 定理 4.5.3 Van-Kampen 定理 4.5.1 提升定理 5.1.1 提升定理 5.1.1 提升定理 5.1.1 提升定理 5.1.2 一般提升的存在性 5.1.1 提升定理 5.1.2 一般提升的存在性 5.1.3 覆空间的同构 泛覆查空间 5.2.1 半单连通与局部半单连通 5.2.2 泛覆叠空间 覆音变换与正则覆叠空间 5.3.1 覆叠变换 5.3.2 正则覆叠空间 覆音映射与群作用 应用 补充内容 Tychonoff 定理 A.1.1 定理的证明与选择公理 A.1.2 Tychonoff 定理的应用 拓扑群 映射空间的拓扑

第1章 拓扑空间与连续性

1.1 拓扑空间

定义 1.1 (拓扑空间)

- 2. ▼ 对任意并封闭.
- 3. 7 对有限交封闭.

小和,是一个拓扑,其中的元素称为开集,(X,T) 称为一个拓扑空间.

注

- 1. 有时默认取一个拓扑后, 会简称 X 为拓扑空间.
- 2. 称 A 是拓扑空间 (X, \mathcal{T}) 中的闭集,若 A^c 是其中的开集.
- 3. 对 X 的两个拓扑 $\mathcal{T}_1, \mathcal{T}_2$,若 $\mathcal{T}_1 \subset \mathcal{T}_2$,则称 \mathcal{T}_1 比 \mathcal{T}_2 更粗糙 (更弱),或 \mathcal{T}_2 比 \mathcal{T}_1 更精细 (更强).

例 1.1

- 1. 对任意 $X \neq \emptyset$, $\{\emptyset, X\}$, 2^X 都是其上的拓扑,称为 X 上的**平凡拓扑**与**离散拓扑**,它们分别是 X 上最粗糙、**。**最精细的拓扑。
- 2. 由 \mathbb{R} 上所有开区间的任意并构成的拓扑 \mathcal{T}_e 称为**欧式拓扑**.
- 3. 设 X 为无限集,定义 $\mathcal{T}_f = \{A \subset X : A \neq \mathbb{R}\}$,则这是一个拓扑,称为 X 上的**余有限拓扑**.
- 4. 设 X 为不可数集,定义 $\mathcal{T}_c = \{A \subset X : A$ 不可数 $\}$,则这是一个拓扑,称为 X 上的**余可数拓扑**.

定义 1.2 (邻域与内部)

设 $x \in A \subset X$, 若存在开集U使得 $x \in U \subset A$, 则称 $x \to A$ 的内点, $A \to x$ 的邻域. 记A的内点的全体 为 A° , 称为A的内部.

命题 1.1

- 1. $A \subset A \Rightarrow A^{\circ} \subset B^{\circ}$.
- 2. $A^{\circ} = \bigcup_{\{U \in T: U \subset A\}} U$, 说明 A° 是开集, 并且是 A 所包含的最大开集.
- 3. A 为开集当且仅当 $A^{\circ} = A$.
- 4. $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.
- 5. $(A \cup B)^{\circ} \supset A^{\circ} \cup B^{\circ}$.

证明

- 1. 对任意 $x \in A^{\circ}$, 存在开集 U 使得 $x \in U \subset A \subset B$, 故 $x \in B^{\circ}$, 得证.
- 2. 对任意 $x \in U \in \{U \in \mathcal{T} : U \subset A\}$, 都有 U 使得 $x \in U \subset A$, 故 $\bigcup_{\{U \in \mathcal{T} : U \subset A\}} U \subset A^{\circ}$. 另一方面根据定义,对任意 $x \in A^{\circ}$,存在开集 U 使得 $x \in U \subset A$,即 $A^{\circ} \subset \bigcup_{\{U \in \mathcal{T} : U \subset A\}} U$.
- 3. 若 A 为开集则显然 $A = A^{\circ}$, 反之若 $A = A^{\circ}$, 则 A° 为开集说明 A 为开集.
- 4. 一方面

$$A \cap B \subset A, B \Rightarrow (A \cap B)^{\circ} \subset A^{\circ} \cap B^{\circ}, \tag{1.1}$$

另一方面 $A^{\circ} \cap B^{\circ} \subset A \cap B$ 为开集,故 $(A \cap B)^{\circ} \supset A^{\circ} \cap B^{\circ}$.

5. $A^{\circ} \cup B^{\circ} \subset A \cup B$ 为开集,故 $(A \cup B)^{\circ} \supset A^{\circ} \cup B^{\circ}$. 考虑闭集,可以给出对偶的定义/性质.

定义 1.3 (聚点与闭包)

设 $x \in X$, 若 x 的任何邻域都与 $A \setminus \{x\}$ 有交,则称 x 为 A 的聚点.A 的聚点集 A' 称为导集,称 $\overline{A} = A \cup A'$ 为 A 的闭包.

注 容易看出闭包与内部之间有关系: $\overline{A}^c = (A^c)^\circ$.

命题 1.2

 $x \in \overline{A} \iff$ 对任意包含 x 的开集 $U, U \cap A \neq \emptyset$.

命题 1.3

- 1. $A \subset A \Rightarrow \overline{A} \subset \overline{B}$.
- 2. $\overline{A} = \bigcap_{\{U^c \in T: U \supset A\}} U$, 说明 \overline{A} 是闭集, 并且是包含 A 最小开集.
- 3. A 为闭集当且仅当 $\overline{A} = A$.
- 4. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 5. $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

定义 1.4 (稠密与可分)

例 1.2

- 1. $(\mathbb{R}, \mathcal{T}_f)$ 可分,它的任一无穷子集都是稠密的.
- 2. $(\mathbb{R}, \mathcal{T}_c)$ 不可分,因为它的任一可数集都是闭集.
- 3. $(\mathbb{R}, \mathcal{T}_e)$ 可分,它有可数稠密子集 \mathbb{Q} .

定义 1.5 (序列收敛)

设 $\{x_n\} \subset X$,若对于 $x \in X$ 的任一邻域 U,存在 N 使得当 n > N 时 $x_n \in U$,则称 $\{x_n\}$ 收敛到 x,记为 $x_n \to x$.

在一些拓扑下,序列收敛会得到一些"反直觉"的事实.

例 1.3

- 1. 在 $(\mathbb{R}, \mathcal{T}_f)$ 中, $\{1/n\}$ 收敛到任意 $x \in \mathbb{R}$,这时因为对 x 的任意邻域 N, N^c 有限,因此存在 N,当 n > N 时 $1/n \notin N^c$, $1/n \in N$.
- 2. 在 $(\mathbb{R}, \mathcal{T}_c)$ 中, $\{1/n\}$ 不收敛,对任意 $x \in \mathbb{R}$,考虑邻域 $N = \{x\} \cup (\mathbb{R} \setminus \{1/n : n \in \mathbb{N}\})$ 即可.

定义 1.6 (子空间拓扑)

设 $A \subset X$ 非空,则 $T_A = \{U \cap A : U \in T\}$ 为 A 上的一个拓扑,称为 T 导出的(A 上的)子空间拓扑.

注

- 1. 容易验证对任意 $B \subset A \subset X$, $\mathcal{T}_B = (\mathcal{T}_A)_B$.
- 2. 开集是相对的, A 的子空间拓扑下的开集未必是 X 的开集, 例如考虑 (0,1) 之于 \mathbb{R}, \mathbb{R}^2 .

命题 1.4

在 $A \subset X$ 考虑子空间拓扑,则

- 1. 设 $C \subset A \subset X$, 则 $C \to A$ 的闭集当且仅当 $C \in A \hookrightarrow X$ 中某个闭集的交集.
- 2. 设 $B \subset A \subset X$,则

- (a). $B \neq X$ 的开 (闭) 集 \Rightarrow $B \neq A$ 的开 (闭) 集.
- (b). $A \neq X$ 的开(闭)集, $B \neq A$ 的开(闭)集 $\Rightarrow B$ 也是 X 的开(闭)集.

证明

- 1. C 为 A 的闭集当且仅当 $A \setminus C = A \cap C^c$ 为 A 的开集,即存在开集 $U \subset X$ 使得 $A \cap C^c = A \cap U$,因此 $C = A \cap U^c$.
- 2. (a). 开集的情形是显然的, 若 $B \to X$ 的闭集,则由上一条可知 $B = A \cap B \to A$ 的闭集.
 - (b). $B \to A$ 的开集说明存在 X 的开集 U 使得 $B = A \cap U$,根据 A 的开性可知 $B \not\in X$ 的开集,闭集同理.

1.1.1 拓扑基

对于 X 的子集族 S 有

定义 1.7 (拓扑基)

称 X 的子集族 S 为 X 的一个拓扑基,若 \overline{S} 是 X 上的一个拓扑; 称为 (X,T) 的一个拓扑基,若 $\overline{S}=T$.

命题 1.5

 $S \to X$ 的一个拓扑基当且仅当 $\bigcup_{B \in S} B = X$,且对任意 $B_1, B_2 \in S$, $B_1 \cap B_2 \in \overline{S}$ (或者说对任意 $x \in B_1 \cap B_2$,存在 $B \in S$ 使得 $x \in B \cap B_2$).

证明 ⇒: 第一条显然, 第二条由拓扑对有限交的封闭性可得.

 \Leftarrow : 显然 $\emptyset, X \in \overline{S}$ 且 \overline{S} 对任意闭并封闭,设 $U_1 = \bigcup_i B_{1i}, U_2 = \bigcup_i B_{2i} \in \overline{S}$,则

$$U_1 \cap U_2 = \bigcup_i B_{1i} \cap \bigcup_j B_{2j} = \bigcup_{i,j} B_{1i} \cap B_{2j} \in \overline{\mathcal{S}}, \tag{1.3}$$

即 \overline{S} 对有限交封闭.

例 1.4

- 1. 设 (X,d) 为度量空间,令 $B(x,r) = \{y \in X : d(x,y) < r\}$,则 $S = \{B(x,r) : x \in X, r > 0\}$ 是 X 的一个拓扑基(这里的 r 也可以取所有的正有理数).
- 2. \mathbb{R} 中所有左闭右开区间的全体 \mathcal{S} 是 \mathbb{R} 的一个拓扑基,并且它生成的拓扑比欧式拓扑更大.

命题 1.6 (拓扑基的判定)

 \mathcal{S} 是 (X,\mathcal{T}) 的拓扑基当且仅当 $\mathcal{S} \subset \mathcal{T} \subset \overline{\mathcal{S}}$, 或者说对任意 $x \in U \in \mathcal{T}$, 存在 $B \in \mathcal{S}$ 使得 $x \in B \subset U$.

推论 1.1

设 $S \in (X,T)$ 的拓扑基, $A \subset X$, 则 $S_A = \{A \cap B : B \in S\}$ 是 (A,T_A) 的拓扑基.

证明 显然 $S_A \subset T_A$,对任意 $U = A \cap V \in T_A$,设 $V = \bigcup_i B_i \in \overline{S}$,则 $U = A \cap B = \bigcup_i (A \cap B_i) \in \overline{S_A}$,即 $T_A \subset \overline{S_A}$,得证.

借助拓扑基这个更小的集族,可以更方便描述邻域.设S是(X,T)的拓扑基,则

$$A$$
为 X 的邻域 $\Leftrightarrow \exists U \in \mathcal{T} : x \in U \subset A \Leftrightarrow \exists U \in \mathcal{S} : x \in U \subset A.$ (1.4)

拓扑基是满足某些条件的集族,而对于任意的集族,可以定义拓扑子基,首先定义生成拓扑.

定义 1.8 (集族生成拓扑)

设 $S \rightarrow X$ 的子集族,则称X上包含S的最小的拓扑为S生成的拓扑,也即

$$\mathcal{T}_{\mathcal{S}} = \bigcap_{\mathcal{T} \text{ on } X: \mathcal{S} \subset \mathcal{T}} \mathcal{T}. \tag{1.5}$$

这种定义与群、环等代数结构中的"生成"类似,它并没有给S 附加任何限制,但是上面也只是隐性定义了这一概念,下面来讨论生成拓扑的结构. 若B 为一个拓扑基,则显然有

$$\mathcal{T}_{\mathcal{B}} = \overline{\mathcal{B}},\tag{1.6}$$

因此如果可以先找到 S "生成"的拓扑基,就可以得到 S 生成的拓扑.

引理 1.1

设S为X的子集族,考虑

$$\mathcal{B} = \{ \mathcal{S} \in \mathfrak{P} \in \mathfrak{S} \in \mathfrak{S} : \forall x \in B, \exists S_1, \cdots, S_m \in \mathcal{S} : x \in \bigcap_{i=1}^m S_i \subset B \}, \tag{1.7}$$

若 $\bigcup_{S \in \mathcal{S}} S = X$,则 $\mathcal{B} \in X$ 的一个拓扑基,并且 $\mathcal{T}_{\mathcal{S}} = \mathcal{T}_{\mathcal{B}}$.

证明 显然 $\bigcup_{B\in\mathcal{B}}B=X$,对任意 $B_1=\bigcap_{i=1}^nS_i,B_2=\bigcap_{j=1}^mS_j\in\mathcal{B}$,都有 $B_1\cap B_2\in\mathcal{B}$,因此 \mathcal{B} 为 X 的拓扑基,注意到对任何包含 \mathcal{S} 的拓扑 \mathcal{T} ,都有 $\mathcal{B}\subset\mathcal{T}$,因此 $\mathcal{T}_{\mathcal{S}}=\mathcal{T}_{\mathcal{B}}$.

定义 1.9 (拓扑子基)

若 $\bigcup_{S \in S} S = X$,则称 $S \in X$ 的一个拓扑子基,称 T_S 为由其生成的拓扑.

根据前面的引理,可以给出一个子基生成拓扑的判定.

命题 1.7 (拓扑子基生成定理的判定)

设 (X,T) 为拓扑空间,S 为 X 的拓扑子基,则 $T_S=T$ 当且仅当 $S\subset T$ 并且对任意 $x\in U\in T$,存在 $S_1,\cdots,S_m\in \mathcal{S}$ 使得 $x\in \bigcap_{i=1}^m S_i\subset U$.

对比拓扑基与拓扑子基可知,基生成拓扑的过程更简便(只需考虑任意并),但是对基本身有要求;子基生成拓扑的过程略显繁琐(需要考虑其有限交的任意并),但它可以对任意子集族定义.不过二者的共性在于"偷懒",某些拓扑性质的证明可以归结到验证该性质对基或子基成立.

1.1.2 乘积拓扑

设 X_1, X_2 为集合,则可定义投影映射 $\pi_i: X_1 \times X_2 \to X_i$,并且对 $A_i, B_i \subset X_i$ 有

$$(A_1 \times A_2) \cap (B_1 \times B_2) = (A_1 \cap B_1) \times (B_1 \cap B_2), \tag{1.8}$$

根据这一条性质,可以定义两个拓扑空间的乘积拓扑,首先给出引理

引理 1.2

设 $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2)$ 为拓扑空间, 令

$$\mathcal{T} = \{ U_1 \times U_2 \subset X_1 \times X_2 : U_i \in \mathcal{T}_i \},\tag{1.9}$$

则 T 为 $X_1 \times X_2$ 上的一个拓扑基,或者说 \overline{T} 为其上的一个拓扑.

定义 1.10 (乘积拓扑)

设 $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2)$ 为拓扑空间, 令

$$\mathcal{T} = \{ U_1 \times U_2 \subset X_1 \times X_2 : U_i \in \mathcal{T}_i \}, \tag{1.10}$$

则 \overline{T} 是 $X_1 \times X_2$ 上的一个拓扑, 称为二者的乘积拓扑.

注 同理可定义有限个拓扑空间的积拓扑.

例 1.5 $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$,因此借助 \mathbb{R} 上的标准度量可以诱导 \mathbb{R}^n 上的一个积拓扑,并且易证它与 \mathbb{R}^n 上标准度量诱导的拓扑等价.

对于无穷个拓扑空间 $(X_{\lambda}, \mathcal{T}_{\lambda}), \lambda \in \Lambda$, 定义其积为

$$\prod_{\lambda \in \Lambda} X_{\lambda} = \{ f : \Lambda \to \bigsqcup_{\lambda \in \Lambda} X_{\lambda} : f(\lambda) \in X_{\lambda}, \forall \lambda \in \Lambda \},$$
(1.11)

其上可以定义两个拓扑, 分别由基

$$\mathcal{B}_1 = \{ \prod_{\lambda \in \Lambda} U_\lambda : U_\lambda \in \mathcal{T}_\lambda \}, \quad \mathcal{B}_2 = \{ \prod_{\lambda \in \Lambda} U_\lambda : U_\lambda \in \mathcal{T}_\lambda \text{且除去有限个\lambda 外均有} U_\lambda = X_\lambda \}, \tag{1.12}$$

生成,它们分别称为 $\prod_{\lambda \in \Lambda} X_{\lambda}$ 上的**箱拓扑** \mathcal{T}_{box} 与**积拓扑** \mathcal{T}_{prod} ,前者构造更为简单直观,但后者具有更好的性质. 容易看出,积拓扑有一个拓扑子基

$$\bigcup_{\lambda \in \Lambda} \{ \pi_{\lambda}^{-1}(U) : U \in \mathcal{T}_{\lambda} \}. \tag{1.13}$$

1.1.3 序拓扑

设X = (X, <)为全序集,则可以类比 \mathbb{R} 上的欧式拓扑,构造出X上的拓扑,称为序拓扑。

定义 1.11 (序拓扑)

设 X 为全序集, B 包含如下集合

- 1. X 中的开区间 (a, b).
- 2. 左闭右开区间 $[a_0,b)$, 其中 a_0 为 X 的最小元.
- 3. 左闭右开区间 $(a, b_0]$, 其中 b_0 为 X 的最大元.

则由B生成的拓扑称为X上的序拓扑.

 $\dot{\mathbf{z}}$ 若 X 无最小元,则 $\boldsymbol{\beta}$ 中无第二类集合,第三类同理.

例 1.6 ℝ 上的欧式拓扑实际上就是序拓扑.

1.2 连续映射

研究拓扑的重要意义就是研究连续映射.

定义 1.12 (连续映射)

设 X,Y 为拓扑空间, $f:X\to Y$ 为映射,称 f 在 $x\in X$ 处连续,当且仅当对任意 $f(x)\in Y$ 的邻域 V, $f^{-1}(V)$ 为 x 的邻域. 若 f 在任意 $x\in X$ 处连续,则称 f 在 X 上连续,或者说 f 为连续映射.

注 显然恒同映射是连续映射(这里的恒同不仅要求定义域,还要求其上的拓扑相同).

定理 1.1

 $f: X \to Y$ 为连续映射当且仅当 f^{-1} 将 Y 中的任意开集拉回到 X 中的开集,也当且仅当 f^{-1} 将 Y 中的任意闭集拉回到 X 中的闭集.

证明 只证明前半部分. 若 f^{-1} 将开集拉回为开集,则对任意 $x \in X$,设 V 为 f(x) 的邻域,设 $U \subset V$ 为包含 f(x) 的开集,则 $f^{-1}(U)$ 为包含 x 的开集, $f^{-1}(U) \subset f^{-1}(V)$ 说明 $f^{-1}(V)$ 为 x 的邻域,故 f 在 x 处连续,根据 x 的任意性可知 f 连续.

反之若 f 连续,则对任意开集 $V \subset Y$ (不妨设 $f^{-1}(V) \neq \emptyset$),任取 $x \in f^{-1}(V)$, $f(x) \in V$ 说明 $V \not\in f(x)$ 的邻域,因此 $f^{-1}(V)$ 为 x 的邻域,即存在开集 $U \subset X$ 使得 $x \in U \subset f^{-1}(V)$,因此 x 是内点, $f^{-1}(V)$ 为开集 (所有点都是内点).

推论 1.2

设 $f: X \to Y, g: Y \to Z$,若 f, g 分别在 $x \in X, f(x) \in Y$ 连续,则 $g \circ f$ 在 x 连续.

 \sim

连续映射可以反映上一节中定义的许多拓扑的"动机".

命题 1.8 (嵌入映射与子空间拓扑)

设 $A \to X$ 的子集,则嵌入映射 $\iota_A: A \hookrightarrow X$ 在子空间拓扑下是连续的,并且子空间拓扑是使得 ι 连续的最弱的拓扑.

证明 对任意 $U \subset X$, $\iota_A^{-1}(U) = A \cap U$, 因此连续性显然,并且任何使 ι_A 连续的拓扑必然包含 T_A , 故子空间拓扑是满足条件的最弱的拓扑.

推论 1.3

设 $f: X \to Y, A \subset X, f|_A: A \to Y$, 则对任意 $x \in A$, f 在 x 处连续蕴含 $f|_A$ 在 x 处连续.

 \sim

定理 1.2 (粘接引理)

设 $\{A_1, \dots, A_n\}$ 是 X 的一个有限闭覆盖, 若 $f: X \to Y$ 在每个 A_i 上的限制都连续, 则 f 连续.

 \odot

注 从下面的证明可以看出,"有限闭覆盖"也可以改为"任意开覆盖".

证明 对任意闭集 $B \subset Y$ 有

$$f^{-1}(B) = \bigcup_{i=1}^{n} (f^{-1}(B) \cap A_i) = \bigcup_{i=1}^{n} f|_{A_i}^{-1}(B),$$
(1.14)

因此若每个限制映射都连续,则 $f|_{A_i}^{-1}(B)$ 为 A_i 上的闭集,但是 A_i 为闭集说明该集合为 X 的闭集,得证. 借助连续映射,也可以更好地理解积拓扑与箱拓扑之间的差异.

命题 1.9 (投影映射与积拓扑)

- 1. 有限情形: 投影映射在乘积拓扑下连续, 并且乘积拓扑是使得投影映射连续的最弱的拓扑.
- 2. 无限情形: 投影映射在箱拓扑与积拓扑下都连续, 并且积拓扑是使得投影映射连续的最弱的拓扑.

借助拓扑基/子基也可以刻画连续性

定理 1.3

设 \mathcal{B}, \mathcal{S} 为 (Y, \mathcal{T}_Y) 的基、子基,则下述等价

- 1. $f: X \to Y$ 连续.
- 2. 对任意 $B \in \mathcal{B}$, $f^{-1}(B)$ 为 X 中的开集.
- 3. 对任意 $S \in S$, $f^{-1}(S)$ 为 X 中的开集.

 \sim

1.2.1 同胚

定义 1.13 (同胚)

 $\overleftarrow{z}f: X \to Y$ 为双射,且 f, f^{-1} 均连续,则称 f 为一个同胚映射,X, Y 同胚,记作 $X \cong Y$.

拓扑空间同胚说明两个空间在拓扑意义下是"相同"的,同胚之于拓扑有如同构之于代数.

例 1.7

- 1. \mathbb{R}^n 同胚于 \mathbb{D}^n 的内部,这里 \mathbb{D}^n 表示 \mathbb{E}^n 中的单位球.
- 2. 球极投影给出了 $S^2 \setminus \{(0,0,1)\}$ 与 \mathbb{R}^2 之间的同胚.
- 3. 任何两个凸多边形同胚,并且它们都与 \mathbb{D}^2 同胚.

定义 1.14 (拓扑概念/性质)

称同胚下保持不变的概念、性质称为拓扑概念、拓扑性质.

第2章 重要拓扑性质

2.1 分离公理

定义 2.1 (分离性公理)

设X为拓扑空间.

- T1: 对任意 $x \neq y$,存在开集 U, V 使得 $x \in U \setminus V, y \in V \setminus U$,T1 空间也称 Frechet 空间.
- T2: 对任意 $x \neq y$, 存在无交开集 U, V 使得 $x \in U, y \in V$, T2 空间也称 Hausdorff 空间.
- T3: 对任意闭集 $A, x \notin A$, 存在无交开集 U,V 使得 $A \subset U, x \in V$, T3 空间也称正则空间.
- T4: 对任意无交闭集 A, B, 存在无交开集 U, V 使得 $A \subset U, B \subset V$, T3 空间也称正规空间.

注 有时候会称"对任意 $x \neq y$,存在开集只包含其中一点"为 T0 公理(注意,这里并不确定该开集包含哪个点,显然 T1 蕴含 T0,取有限子集 $X = \{a,b\}$ 上的拓扑 $\mathcal{T} = \{\emptyset, \{a\}, \{a,b\}\}$ 可得满足 T0 但不满足 T1 的例子).

上面每个公理都有一个等价刻画

命题 2.1 (分离公理等价刻画)

设 (X,T) 为拓扑空间,则

- 1. X 满足 T1 当且仅当 X 中任意有限子集是闭集.
- 2. X 满足 T2 当且仅当对角集 $\Delta = \{(x,x) : x \in X\}$ 是 $X \times X$ 中的闭集.
- 3. X 满足 T3 当且仅当对任意 $x \in X$ 以及开集 $U \ni x$, 存在开集 V 使得 $x \in V \subset \overline{V} \subset U$.
- 4. X 满足 T4 当且仅当对任意闭集 $A \subset X$ 以及开集 $U \supset A$, 存在开集 V 使得 $A \subset V \subset \overline{V} \subset U$.

证明

1. ⇒: 只需证明单点集为闭集,对任意 $x \in X, y \in \{x\}^c$,根据 T1 公理可知存在开集 V 包含 y 但不包含 x, 因此 $y \in V \subset \{x\}^c$,即 $\{x\}^c$ 为开集, $\{x\}$ 为闭集.

 \Leftarrow : 对任意 $x \neq y \in X$, 由于 $\{x\}, \{y\}$ 均为闭集, 因此存在开集 U, V 使得

$$x \in U \subset \{y\}^c, y \in V \subset \{x\}^c \Rightarrow x \in U \setminus V, y \in V \setminus U, \tag{2.1}$$

即 X 满足 T1.

- 2. ⇒: 任取 $(x,y) \in X \times X, x \neq y$, 根据 T2 公理可知存在无交开集 $U,V \in \mathcal{T}$ 使得 $x \in U,y \in V$, 因此 $X \times X$ 中包含 (x,y) 的开集 $U \times V$ 与 Δ 无交, 故 $(x,y) \notin \Delta'$, 因此 $\Delta = \Delta'$, 即 Δ 为闭集.
 - \Leftarrow : 对任意 $x \neq y \in X$, $(x,y) \in \Delta^c$ 说明存在 $U \times V \subset X \times Y$ 使得 $(x,y) \in U \times V \subset \Delta^c$ 并且 $U,V \in \mathcal{T}$ (拓扑基), 因此 $x \in U, y \in V$ 且 U,V 无交, 即得满足 T2 公理的两个开集.
- 3. ⇒: 对于 $x \in X$ 以及开集 $O \ni x$,考虑 x, O^c ,根据 T3 公理,存在无交开集 U, V 满足 $x \in U, O^c \subset V$,因此(注意到 $U \subset V^c$)

$$x \in U \subset \overline{U} \subset V^c \subset O. \tag{2.2}$$

 \Leftarrow : 对于 $x \in X$ 以及不含 x 的开集 U, 考虑 x, U^c 同理.

4. 略.

分离公理有一些推论

推论 2.1

- 1. 设 X 为 T1 空间, $A \subset X, x \in A'$,则 x 的任一邻域与 A 的交集为无穷集.
- 2. Hausdorff 空间中收敛序列的极限唯一.
- 3. $T2 \Longrightarrow T1$.

证明

- 1. 若不然则存在 x 的邻域 U, $U \cap A$ 为有限集, 不妨设 U 为开集, 则 $B = (U \cap A) \setminus \{x\}$ 为有限集, 因此为闭集, 故 $U \setminus B = U \cap B^c$ 为 x 的开邻域, 但它与 $A \setminus \{x\}$ 无交, 与 $x \in A'$ 矛盾.
- 2. 略.
- 3. 显然.

2.1.1 分离公理间的关系

前面证明了 T2 蕴含 T1,实际上除此之外分离公理无其它直接蕴含关系

命题 2.2

- 1. T1⇒T2,T3,T4.
- 2. T4⇒T1,T2,T3.
- 3. T3⇒T1,T2.
- 5. T3⇒T4.

证明

- 1. 考虑余有限拓扑 $(\mathbb{R}, \mathcal{T}_f)$.
- 2. 考虑 $(\mathbb{R}, \mathcal{T})$, 其中 $\mathcal{T} = \{(-\infty, a) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$
- 3. 考虑 $(\mathbb{R}, \mathcal{T})$, 其中 \mathcal{T} 由基 $\mathcal{B} = \{[n, n+1) : n \in \mathbb{Z}\}$ 生成.
- 4. 考虑 $(\mathbb{R}, \mathcal{T})$, 其中 \mathcal{T} 由子基 $\mathcal{S} = \{(a,b) : a,b \in \mathbb{Q}\} \cup \{\mathbb{Q}\}$ 生成.
- 5. 考虑 Sorgenfrey 平面 $(\mathbb{R}, \mathcal{T}_{sorgenfrey}) \times (\mathbb{R}, \mathcal{T}_{sorgenfrey})$, 其中 $\mathcal{T}_{sorgenfrey}$ 由基 $\mathcal{B} = \{[a,b) : a,b \in \mathbb{R}\}$ 生成. 容易证明,在添加 T1 后,可以加强分离性

命题 2.3

- 1. T1+T4⇒⇒T3.
- 2. $T1+T3 \Longrightarrow T2$.
- 3. T1+T4 \Longrightarrow T2.

证明 添加 T1 后单点集是闭集,因此 Ti 变成了 Ti+1 的特例.

命题 2.4

度量空间 (X,d) 满足 T1,T2,T3,T4.

证明 度量空间中的单点集是闭集,故满足 T1,因此只需证明其满足 T4 即可.设 A,B 为无交闭集,则对任意 $x \in X$, $d_A(x) + d_B(x) > 0$,因此定义连续函数 $(d_A(x)$ 连续)

$$f(x) = \frac{d_A(x)}{d_A(x) + d_B(x)},$$
(2.3)

易知 f(A) = 0, f(B) = 1, 因此任取 $t \in (0,1), f^{-1}((-\infty,t)), f^{-1}((t,\infty))$ 为包含 A, B 的无交开集,得证.

2.2 可数公理

2.2.1 一个反例

定义 2.2 (序列极限点)

设 $A \subset X$, $x \in X$, 若存在点列 $\{x_n\} \subset A$ 使得 $x_n \to x$, 则称 $x \to A$ 的一个序列极限点.

考虑如下命题

命题 2.5 (闭集总对序列极限封闭)

设 F 为拓扑空间 X 中的闭集, 若 $\{x_n\} \subset F, x_n \to x \in X$, 则 $x \in F$.

命题 2.6 (度量空间中的闭集)

F 为度量空间 X 中的闭集当且仅当对任意 $\{x_n\} \subset F, x_n \to x \in X$ 都有 $x \in F$.

证明 只需证明 \Leftarrow : 若 F 不是闭集,则 F^c 不是开集,即存在 $x_0 \in F^c$,对任意 $n \in \mathbb{N}$, $B(x_0, 1/n) \cap F \neq \emptyset$,因 此取 $x_n \in B(x_0, 1/n) \cap F$ 可知 $x_n \to x_0 \Rightarrow x_0 \in F$,矛盾.

在度量空间中,闭集可以通过"对序列极限封闭"刻画,在一般拓扑空间如何?

例 2.1 设 $X = \mathcal{M}([0,1],\mathbb{R})$,考虑逐点收敛拓扑 $(X,\mathcal{T}_{p.c.})$,令

$$A = \{ f \in X : \text{Q对可数多的} x \in [0, 1] \hat{q} f(x) \neq 0 \},$$
 (2.4)

则若 $\{f_n\}\subset A, f_n\to f_0$,则

$$\{x: f_0(x) \neq 0\} \subset \bigcup_{n=1}^{\infty} \{x: f_n(x) \neq 0\}$$
 (2.5)

说明 $f_0 \in A$, 但 A 不是 X 中的闭集, 或者说 A^c 不是开集, 任取 $g \in A^c$, U 为 g 任意开邻域, 存在 $x_1, \dots, x_n, \varepsilon > 0$ 使得 $\omega(g; x_1, \dots, x_n; \varepsilon) \subset U$, 但是若定义

$$\tilde{g}(x) = \begin{cases} g(x), & x \in \{x_1, \dots, x_n\} \\ 0, & x \notin \{x_1, \dots, x_n\} \end{cases}$$
(2.6)

则 $\tilde{g} \subset A \cap \omega(g; x_1, \dots, x_n; \varepsilon) \subset A \cap U$,即 $g \in A^c$ 的任意开邻域 U 都包含 A 中元素,故 A^c 不是开集,A 不是闭集.

这里的问题在于,对一般的拓扑空间无法刻画"**越来越小的邻域**"这一概念,由此也可以看出, $x \in \overline{A}$ 并不意味 A 中存在收敛到 x 的子列. 但二者在结合第一可数性后可以得到一些补救.

2.2.2 第一可数空间

定义 2.3 (邻域基)

设 $\mathcal{N}(x)$ 为 x 邻域的集合,称 $\mathcal{U} \subset \mathcal{N}(x)$ 为 x 的一个邻域基,若 x 的任意邻域都包含某个 \mathcal{U} 中的元素,或者说对任意 $N \in \mathcal{N}(x)$,存在 $U \in \mathcal{U}$ 使得 $U \subset N$.

 $\mathbf{\dot{L}}$ 若 \mathcal{B} 为 X 的拓扑基,则 $\mathcal{B}_x = \{B \subset \mathcal{B} : x \in B\}$ 是 x 的一个邻域基.

定义 2.4 (第一可数空间 (A1/C1 公理))

若拓扑空间 (X,T) 的每一点都有可数邻域基,则称其为第一可数 $(A1 \stackrel{.}{o} C1)$ 空间.

根据 A1 公理, 可以刻画"越来越小的邻域"这一概念.

命题 2.7

若 X 在 x 处有可数邻域基,则 x 有可数邻域基 $\{V_n\}$ 使得 m > n 时有 $V_m \subset V_n$.

证明 设 x 的可数邻域基为 $\{U_n\}$, 令 $V_n = \bigcap_{i=1}^n U_i$, 则 $\{V_n\}$ 满足条件.

有了这一刻画,可以将闭集与序列极限联系起来.

命题 2.8

若 X 为 A1 空间, $A \subset X, x \in \overline{A}$, 则 A 中存在收敛到 x 的序列.

证明 取 x 的满足上一命题的可数邻域基 $\{V_n\}$, $x \in \overline{A}$ 说明 $V_n \cap A \neq \emptyset$, 取 $x_n \in V_n$, 由于对任意 x 的邻域 U, 存在 $V_N \subset U$, 因此当 n > N 时 $x_n \in V_n \subset V_N \subset U$, 即 $x_n \to x$.

类似地,可以将序列连续与连续性等同起来(注意连续性显然蕴含序列连续).

推论 2.2

若 X 为 A1 空间,则 $f: X \to Y$ 在 x_0 处连续当且仅当其序列连续.

C

证明 假设 f 在 x_0 不连续,则存在 $f(x_0)$ 的邻域 V 使得 $f^{-1}(V)$ 不是 x_0 的邻域,即 $x_0 \in \overline{(f^{-1}(V))^c}$,即存在序列 $\{x_n\} \subset (f^{-1}(V))^c$ 使得 $x_n \to x_0$,根据序列连续性可知 $f(x_n) \to f(x_0) \in V$,因此当 n 充分大时 $f(x_n) \in V \Rightarrow x_n \in f^{-1}(V)$,矛盾.

2.2.3 第二可数空间

定义 2.5 (第二可数空间 (A2/C2 公理))

若拓扑空间 (X,T) 存在一个可数基,则称其为第二可数 $(A2 \stackrel{.}{o})$ 空间.

•

注 显然 A2⇒A1.

命题 2.9 (A2⇒ 可分)

A2 空间包含一个可数稠密子集.

证明 设 $\{U_n: n \in \mathbb{N}\}$ 为 X 的可数基,对任意 n,取 $x_n \in U_n$,令 $A = \{x_n: n \in \mathbb{N}\}$,下证 $\overline{A} = X$.对任意 $x \in X$ 以及任意开邻域 $U \ni x$,存在 n 使得 $x \in U_n \subset U$,因此 $U \cap A \neq \emptyset \Rightarrow x \in \overline{A}$,得证.

度量空间具有较好的分离性质.

命题 2.10

- 1. 度量空间是 A1 的.
- 2. 可分度量空间是 A2 的.

证明

- 1. 对任意 $x \in X$, $\{B(x, 1/n) : n \in \mathbb{N}\}$ 是它的可数邻域基(或者取 $\{B(x, r) : r \in \mathbb{Q}_+\}$).
- 2. 设 A 为可分度量空间的稠密子集,下证 $\mathcal{B} = \{B(a,1/n): a \in A, n \in \mathbb{N}\}$ 为 X 的拓扑基. 对任意 $x \in B(x,r)$,存在 $a \in A$ 使得 d(x,a) < r/5,因此 $x \in B(a,r/3) \subset B(x,r)$,得证(注意 $\{B(x,r): x \in X, r > 0\}$ 为度量空间的拓扑基).

考虑一个反例:

例 2.2 离散拓扑(离散度量诱导的拓扑)不是 A2 的.

该反例也可以加以改造,说明可分性一般不蕴含 A2.

例 2.3 设 $(X,2^X)$ 为离散度量空间 (X 不可数),取定 $x \in X$,定义

$$\mathcal{T} = \{ U \cup \{x\} : U \in 2^X \} \cup \{\emptyset\}, \tag{2.7}$$

则易见 (X, \mathcal{T}) 为拓扑空间,令 $A = \{x\}$,则 \mathcal{T} 中任何非空集合都与 A 有交,因此 $\overline{x} = X$,说明 (X, \mathcal{T}) 可分,但它显然无可数拓扑基(因为对每个 $y \in X$ 以及邻域 $\{x,y\} \in \mathcal{T}$,必须有拓扑基中元素 B 使得 $y \in B \subset \{x,y\}$,因此 $B = \{x,y\}$,但 X 不可数).

例 2.4

- 1. \mathbb{R}^n 为 A2 空间,因为它是有可数稠密子集 \mathbb{Q}^n 的度量空间.
- 2. 在 $\ell^2(\mathbb{R})$ 中定义内积

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n \tag{2.8}$$

它诱导 ℓ^2 度量,该空间称为 **Hilbert 空间**, $A = \{x : x_n \in \mathbb{Q}, \text{Q有限位不为0}\}$ 是它的可数稠密子集,因此 Hilbert 空间可分.

定理 2.1 (Lindelof)

 $C2+T3 \Longrightarrow T4$.

 \Diamond

注 定理中的 C2 可以替换为 "X 中任何开覆盖都有可数子覆盖",这被称为 Lindelof 条件.

证明 设 \mathcal{B} 为 (X,T) 的可数拓扑基, $A,B \subset X$ 为闭集,根据 T3,对任意 $x \in A$,存在 $V_x \in \mathcal{B}$ 使得 $x \in V_x \subset \overline{V_x} \subset B^c$,将所有 V_x 取并, \mathcal{B} 的可数性保证

$$A \subset \bigcup_{n=1}^{\infty} V_n \subset B^c. \tag{2.9}$$

同理可得

$$B \subset \bigcup_{m=1}^{\infty} U_m \subset A^c. \tag{2.10}$$

令

$$G_n = V_n \setminus \left(\bigcup_{i=1}^n \overline{U_i}\right), \quad H_n = U_n \setminus \left(\bigcup_{i=1}^n \overline{V_i}\right),$$
 (2.11)

则有

$$A \subset \left(\bigcup_{n=1}^{\infty} V_n\right) \cap \left(\bigcap_{i=1}^{\infty} \overline{U_i}^c\right) \subset \bigcup_{n=1}^{\infty} (V_n \cap \bigcap_{i=1}^n \overline{U_i}^c) = \bigcup_{n=1}^{\infty} G_n := G, \tag{2.12}$$

同理可得

$$B \subset \bigcup_{m=1}^{\infty} H_m := H. \tag{2.13}$$

由于对任意 $n, m, G_n \cap H_m = \emptyset$, 因此 $G \cap H = \emptyset$, 故 A, B 可被 G, H 分离, 得证.

定义 2.6 (遗传性与可乘性)

若 X 具有某个拓扑性质 P 时其任何子空间都具有该性质,则称 P 具有遗传性. 若 X,Y 具有某个拓扑性质 P 时 $X \times Y$ 也具有该性质,则称 P 具有可乘性.

常见遗传性与可乘性总结如下:

	可分	T1	T2	Т3	T4	A1	A2
可乘性					×		$\sqrt{}$
遗传性	×				×		

这里仅说明最反直觉的 T4 情形.

2.2.4 Sorgenfrey 拓扑

定义 2.7 (Sorgenfrey 拓扑)

设 $X = \mathbb{R}, \mathcal{T} = \mathcal{T}_{sorgenfrey}$, 这是由基 $\mathcal{B} = \{[a,b) : a,b \in \mathbb{R}\}$ 生成的拓扑.

注 容易验证 *B* 一个拓扑基.

显然 $[a,b),(-\infty,b),[a,\infty)$ 均为 $\mathcal T$ 中的开集,利用一些小技巧可得

$$(a,b) = \bigcup_{n=1}^{\infty} [a+1/r,b), [a,b)^c = (-\infty,a) \cup [b,\infty) \in \mathcal{T},$$
(2.14)

这说明 [a,b) 既是该拓扑下的开集,也是其中的闭集,并且 Sorgenfrey 拓扑强于欧式拓扑 \mathcal{T}_e .

命题 2.11

- 1. (X,T) 是 T1,T2,T3,T4 空间.
- 2. (X, T) 是 A1 的, 不是 A2 的.
- 3. (X,T) 是可分的.

证明

- 1. 只需证明它是 T1,T4 空间, $\{x\} = \bigcap_{i=1}^{\infty} [a, a+1/n)$ 说明它是 T1 的. 对任意无交闭集 $A, B \subset X$,任意 $a \in A$,可取与 B 无交的开集 $[a, a+r_a)$,同理对任意 $b \in B$,也可取与 A 无交的开集 $[b, b+r_b)$,令 $U = \bigcup_{a \in A} [a, a+r_a), V = \bigcup_{b \in B} [b, b+r_b)$,则 U, V 即为分割 A, B 的无交开集.
- 2. 对任意 $x \in \mathbb{R}$, $\{[x, x+1/n): n \in \mathbb{N}\}$ 是 x 的可数邻域基,假设 U 为 (X, \mathcal{T}) 的基,则对任意 [x, x+1),存在 $U_x \in \mathcal{U}$ 使得 $x \in \mathcal{U}_x \subset [x, x+1)$,因此 $x \in \mathcal{U}_x$ 中的最小元,由此可知对任意 $x \neq y$ 有 $U_x \neq U_y$,这种双射说明 U 不可数.
- 3. Q.

命题 2.12

称 $(X,T)^2$ 为 Sorgenfrey 平面,则它是 T3 的,不是 T4 的.

 $\frac{1}{12}$ 这里同时说明了两个事实: T3 不蕴含 T4 以及 T4 不具有遗传性. 根据这一命题以及 Lindelof 定理,也可以反过来证明 X 不是 A2 的.

证明 根据 T3 的可乘性是显然的. 假设 X^2 是 T4 空间,令 $L = \{(x, -x) : x \in \mathbb{R}\}$,则 $L \to X^2$ 的闭子集,并且 子空间拓扑 T_L 是离散拓扑 (根据 X 的基可知不能选择对角集),因此对任意 L 的(闭)子集 A, L-A 也是闭集 (L 闭说明它们同时是 L 以及 X^2 中的闭集),由 T4 可知存在无交开集 U_A, V_A 分离 A, L-A. 由于 $\mathbb{Q}^2 \to X^2$ 的可数稠密子集,定义映射

$$\theta: 2^L \longrightarrow 2^{\mathbb{Q}^2} \tag{2.15}$$

$$A \longmapsto \mathbb{Q}^2 \cap U_A \tag{2.16}$$

对任意不同集合 $A,B \subset L$,必然存在非公共点,不妨设 $x \in A, x \notin B, x \in L-B$,因此 $x \in U_A \cap V_B$,因此 $x \notin U_B$,即 $U_A \neq U_B$,说明 θ 是单射. 而 \mathbb{Q}^2 可数,故 $2^{\mathbb{Q}^2}$ 与 \mathbb{R} 等势,进而与 L 等势,因此 θ 可以延拓为 2^L 到 L 的单射,这显然是不可能的.

2.3 Urysohn 引理及其应用

2.3.1 Urysohn 引理

Urysohn 引理说明,用无交开集分离无交闭集等价于用连续函数"分离"无交闭集.

定理 2.2 (Urysohn 引理)

X 为 T4 空间当且仅当对其中任意两个无交闭集 A, B, 存在连续函数 $f: X \to [0,1]$ 使得

$$f(A) = 0, \quad f(B) = 1.$$
 (2.17)

注 过去使用过度量空间上的 Urysohn 引理,它的构造为 $f(x) = d_A(x)/(d_A(x) + d_B(x))$.

证明 \Leftarrow : 对任意无交闭集 $A, B \subset X$, 设 f 为满足条件的连续函数,则 $f^{-1}(-\infty, 1/3), f^{-1}(2/3, \infty)$ 为 X 中的无交开集,它们分别包含 A, B.

⇒: 分两步进行.

Step 1. 设 $\mathbb{Q}_I = \mathbb{Q} \cap [0,1]$, 首先归纳构造开集族 $\{U_r : r \in \mathbb{Q}_I\}$ 使得

- 1. $r < r' \ \text{th} \ \overline{U}_r \subset U_{r'}$.
- 2. 对任意 $r \in \mathbb{Q}_I$, $A \subset U_r \subset B^c$.

将 \mathbb{Q}_I 随意排列为 $r_1=1, r_2=0, r_3, \cdots$,首先令 $U_{r_1}=B^c$,根据 T4 可取 A 的开邻域 U_{r_2} 使得 $A\subset U_{r_2}\subset \overline{U_{r_2}}\subset U_{r_1}$. 当 U_{r_1},\cdots,U_{r_n} 已构造后,记

$$r_{i(n)} = \max\{r_l : l \leqslant n, r_l < r_{n+1}\}, r_{u(n)} = \min\{r_l : l \leqslant n, r_l > r_{n+1}\},$$
(2.18)

则 $r_{i(n)} < r_{n+1} < r_{u(n)}$ (即取出了"最大下界"与"最小上界"),根据 T4 可取 $U_{r_{n+1}}$ 使得

$$U_{r_{i(n)}} \subset U_{r_{n+1}} \subset \overline{U_{r_{n+1}}} \subset U_{r_{u(n)}}, \tag{2.19}$$

此时新序列 $U_{r_1}, \cdots, U_{r_{n+1}}$ 仍满足条件.

Step 2. 下面构造满足条件的函数,令

$$f(x) = \sup\{r \in \mathbb{Q}_I : x \notin U_r\} = \inf\{r \in \mathbb{Q}_I : x \in U_r\},\tag{2.20}$$

则显然 $f|_A = 0$, $f|_B = 1$, 下证 f 连续. 根据定义可知若 $x \in U_r$, 则 $f(x) \leq r$; 若 $x \notin U_r$ 则 $f(x) \geq r$. 设 $x \in f^{-1}((a,b))$ (拓扑基),则 a < f(x) < b,分如下情况

- 1. 若 f(x) = 0 则 a < 0 < b, 取 $r \in \mathbb{Q}_I, r < b$, 则 U_r 即为 $f^{-1}((a,b))$ 中包含 x 的邻域.
- 2. 若 f(x) = 1 则 a < 1 < b, 取 $r, s \in \mathbb{Q}_I$, a < r < s, 则 $\overline{U_r}^c$ 即为 $f^{-1}((a,b))$ 中包含 x 的邻域.
- 3. 若 0 < f(x) < 1,取 $r, s \in \mathbb{Q}_I$,a < r < s < b,则 $U_s \setminus \overline{U_r}$ 即为 $f^{-1}((a,b))$ 中包含 x 的邻域. 得证.

一个自然的问题是: T3 空间是否有类似的性质? 答案是否定的,至少无法沿用上面的证法(因为 T3 无法构造出集族 $\{U_i\}$).

定义 2.8 (完全正则空间)

若对任意 $x \in X$ 以及闭集 $A \subset X$,都存在连续函数 f 使得

$$f(x_0) = 0, \quad f(A) = 1,$$
 (2.21)

则称 X 为完全正则空间.

Urysohn 定理还有更强的版本,它需要添加一些额外的条件,首先考虑这样的问题: 如何刻画连续函数的零点集? 首先 $\{0\}$ 为闭集,因此 $f^{-1}(0)$ 为闭集,另一方面

$$\{0\} = \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right) \Rightarrow f^{-1}(0) = \bigcap_{n=1}^{\infty} f^{-1}\left(\left(-\frac{1}{n}, \frac{1}{n}\right)\right),\tag{2.22}$$

因此它还必须是一个 G_δ 集.

引理 2.1

设 X 为 T4 空间,则存在连续函数 $f: X \to [0,1]$ 使得 $A = f^{-1}(0)$ 当且仅当 A 为 X 中的 G_{δ} 集.

证明 一边已经分析过,设 $A = \bigcup_{n=1}^{\infty} U_n$ 为闭 G_{δ} 集,根据 Urysohn 定理,存在连续函数 g_n 使得

$$A \subset g_n^{-1}(0), \quad U_n^c \subset g_n^{-1}(1),$$
 (2.23)

令 $f(x) = \sum_{n=1}^{\infty} 2^{-n} g_n(x)$, 则 f(A) = 0, 并且对任意 $x \in A^c$, 存在 n 使得 $x \in U_n^c \Rightarrow g_n(x) = 1$, 因此 $f^{-1}(0) = A$, 得证.

定理 2.3 (变体 Urysohn 引理)

设 X 为 T4 空间, $A,B \subset X$, 则存在连续函数 $f:X \to [0,1]$ 使得

$$f^{-1}(0) = A, \quad f^{-1}(1) = B,$$
 (2.24)

当且仅当 $A, B \neq X$ 中的无交闭 G_{δ} 集.

证明 只需对任意无交闭 G_{δ} 集 A, B,构造满足条件的连续函数. 根据引理,存在连续函数 $f_1, f_2: X \to [0,1]$ 使得 $A = f_1^{-1}(0), B = f_2^{-1}(0), A \cap B = \emptyset$ 说明 $f_1 + f_2 > 0$,因此定义

$$f(x) = \frac{f_1(x)}{f_1(x) + f_2(x)} \tag{2.25}$$

即可满足条件.

2.3.2 Tietze 扩张定理

定理 2.4 (Tietze 扩张定理)

设X为T4空间,则定义在X的闭子集F上的连续函数可以连续扩张到X上.

m

证明 STEP1. 有界情形.

设连续函数 $f: F \to \mathbb{R}$ 且不妨设 $f(F) \subset [-1,1]$, 记 $A = f^{-1}([-1,-1/3])$, $B = f^{-1}([1/3,1])$, 则根据 Urysohn 引理,存在连续函数 $\varphi_1: X \to \mathbb{R}$ 使得 $\varphi_1|_A = -1/3$, $\varphi_1|_B = 1/3$. 令 $f_1 = f - \varphi_1|_F$,则 $f_1(F) \subset [-2/3,2/3]$,重 复上述过程可得连续函数 $\varphi_2: X \to \mathbb{R}$ 使得 $f_2 = f_1 - \varphi_2 \subset [-4/9,4/9]$,重复上述过程可得连续函数列 $\{\varphi_n\}$ 满足

- 1. $\varphi_n(X) \subset [-2^{n-1}/3^n, 2^{n-1}/3^n].$
- 2. 对任意 $x \in F$, $|f(x) \sum_{i=1}^{n} \varphi_i(x)| \leq 2^n/3^n$.

因此 $\tilde{f} = \sum_{n} \varphi$ 是有意义的 (Weierstrass) 并且 $\tilde{f} = f$ (一致收敛).

STEP 2. 一般 (可能无界) 情形.

设连续函数 $f: F \to \mathbb{R}$ 不一定有界,则设 $f'(x) = 2/\pi \arctan(f(x)) \subset (-1,1)$,由 Step1,f' 可以延拓为 $\tilde{f}': X \to \mathbb{R}$,此时 $\tilde{f}'(X) \subset [-1,1]$,记 $E = (\tilde{f}')^{-1}(\{-1,1\})$ (闭集),并且 $F \cap E = \emptyset$,根据 Urysohn 引理,存在 X 上的连续函数 h 使得 $h(X) \subset [0,1]$,并且 $h|_E = 0, h|_F = 1$. 因此 $h(x)\tilde{f}'(x) \in (-1,1)$,令

$$\tilde{f}(x) = \tan\left(\frac{\pi}{2}\tilde{f}'(x)\right) \Rightarrow \tilde{f}|_{F}(x) = \tan(\arctan(f(x))) = f(x),$$
 (2.26)

故 \tilde{f} 为f的扩张.

2.3.3 Urysohn 度量化定理

定义 2.9 (可度量化)

称拓扑空间 (X,T) 是可度量化的,若存在 X 上的度量 d 使得 $T=T_d$.

命题 2.13

X可度量化当且仅当存在X到某个度量空间的嵌入映射.

证明 \Rightarrow : X 可以嵌入到自身.

 \Leftarrow : 设 $f: X \to (Y, d)$ 为嵌入映射,设 $B = f(X), d_B = d|_B$,则 $f: X \to (B, d_B)$ 为同胚,可定义 X 上的度量 $\rho(x, y) = d_B(f(x), f(y))$,容易验证 $\mathcal{T} = \mathcal{T}_{\rho}$.

由于度量空间满足四条分离公理以及 A1, 因此可度量化的空间必须要满足这些性质.

定理 2.5 (Urysohn 度量化定理)

设X为T1,T4,A2空间,则X可以嵌入到Hilbert空间中.

 \Diamond

注 根据条件易知 X 满足 T1T2T3T4A1A2.

证明 STEP 1. 分隔集合:

设 $\mathcal{B} = \{B_n : n \in \mathbb{N}\}$ 为可数基,对任意 $x \in X$ 及其开邻域 U,首先取 B_m 使得 $x \in B_m \subset U$,由于 $\{x\}$ 为闭集,由 T4 可知存在开集 V 使得

$$x \in V \subset \overline{V} \subset B^m, \tag{2.27}$$

借助拓扑基的性质可知存在 B_n 使得 $x \in B_n \subset V$, 因此 (m,n) 满足

$$B_n \subset \overline{B_n} \subset B_m. \tag{2.28}$$

记所有满足这种关系的指标集为 $I = \{n = (n_1, n_2) : B_{n_2} \subset \overline{B_{n_2}} \subset B_{n_1} \}$ (这是一个可数集).

STEP 2. 构造嵌入:

根据 Urysohn 引理, 对任意 $n \in \mathbb{N}$, 存在 $f_n: X \to [0,1]$ 使得

$$f_n|_{\overline{B_{n_1}}} = 0, \quad f_n|_{B_{n_2}^c} = 1,$$
 (2.29)

定义函数

$$f: X \longrightarrow \ell^2$$
 (2.30)

$$x \longmapsto (f_1(x), f_2(x)/2, \cdots, f_n(x)/n, \cdot)$$
(2.31)

根据每个 f_n 像的有界性可知

$$||f||_2^2 = \sum_{n=1}^{\infty} \left(\frac{f(x)}{n}\right)^2 \leqslant \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty,$$
 (2.32)

故 f 确实将 X 映到 ℓ^2 中. 并且对任意 $x \neq y \in X$,存在 $B_i \in \mathcal{B}$ 使得 $x \in B_i, y \notin B_i$,进一步存在 $B_j \in \mathcal{B}$ 使得 $x \in B_j \subset \overline{B_i} \subset B_j$,设 $m = (i, j) \in I$,则 $f_m(x) = 0, f_m(y) = 1$,即得 $f(x) \neq f(y)$,说明 f 为单射.

Step 3. 证明同胚 (A1 使我们可以用序列极限刻画连续性):

设 $x_n \to x$,则对任意 $\varepsilon > 0$,存在 N 使得 $\sum_{n>N} 1/n^2 < \varepsilon^2/2$,根据 f_1, \cdots, f_N 连续性可知存在 K,当 $k > K, i \leq N$ 时 $|f_i(x_k) - f_i(x)| < \varepsilon/\sqrt{2N}$,因此当 k > K 时

$$\rho(f(x_k), f(x)) < \sqrt{\frac{\varepsilon^2}{2N} \cdot N + \frac{\varepsilon^2}{2}} = \varepsilon, \tag{2.33}$$

即 f 连续.

反之若 $x_n \not\to x$, 则取 x 的开邻域 $B_i \in \mathcal{B}$, 使得对无穷多个 k 有 $x_k \notin B_i$, 可取 $m = (i,j) \in I$ 使得 $x \in B_j \subset \overline{B_j} \subset B_i$, 则对无穷多个 k 有 $f_m(x_k) - f_m(x) = 1$, 因此 $\rho(f(x_k), f(x)) \ge 1/m$, 说明 $f(x_k) \not\to f(x)$, 因此 f^{-1} 连续, 即 f 为开映射.

2.4 紧致性

定义 2.10 (各种紧性)

- 列紧性: 称 X 列紧, 若其中任意序列都有收敛子列.
- 紧性: 称 X 紧致, 若其任何开覆盖都有有限子覆盖.
- 极限点紧: 称 X 极限点紧, 若其任何无穷子集都有极限点.

 $\dot{\mathbf{L}}$ 称 $A \subset X$ 满足某种紧性,若其在子空间拓扑是满足某种紧性的空间.

命题 2.14

 $A \rightarrow X$ 的紧集当且仅当 $A \leftarrow X$ 中的任一开覆盖有有限子覆盖.

证明 \Rightarrow : 设 \mathscr{U} 为 A 在 X 中的开覆盖,则 \mathscr{U}_A 为 A 的开覆盖,A 紧说明存在有限子覆盖 $\{U_1 \cap A, \cdots, U_n \cap A\}$,因此 $\{U_1, \cdots, U_n\}$ 为 \mathscr{U} 的有限子覆盖.

 \Leftarrow : 设 $\mathscr V$ 为 A 的开覆盖,则根据子空间拓扑的定义,存在 X 中的开集族 $\mathscr U$ 使得 $\mathscr V=\mathscr U_A$,同理可证. 借助拓扑基或拓扑子基可以给出紧性的刻画.

命题 2.15

设 B 为 X 的拓扑基,则 X 紧当且仅当其任意基覆盖都有有限子覆盖.

证明 ⇒: 显然.

 \Leftarrow : 设 $\{U_{\alpha}\}$ 为 X 的开覆盖,则对任意 $x \in X$,存在 $B_x \in \mathcal{B}$ 以及某个 U_{α} 满足 $x \in \mathcal{B} \subset U_{\alpha}$,由此即得 X的一个子基覆盖,根据条件可知其中存在有限子覆盖,取对应的 U_{α} 即可得 $\{U_{\alpha}\}$ 的有限子覆盖,即 X 紧.

定理 2.6 (Alexander 子基定理)

设 S 为 X 的拓扑子基,则 X 紧当且仅当其任意子基覆盖都有有限子覆盖.

这一定理看似与前一条相似,但其证明要复杂很多,并且该定理实际上等价于选择公理.

命题 2.16

- 1. 紧空间中的闭集是紧集.
- 2. 连续函数将紧集映为紧集,将列紧集映为列紧集.

推论 2.3

紧空间上的连续函数有界,且能取到最大、最小值.

定义 2.11 (逆紧映射)

设 X,Y 为拓扑空间,若 $f:X\to Y$ 将任意紧集 $B\subset Y$ 拉回为紧集 $f^{-1}(B)\subset X$,则称 f 为逆紧映射.

2.4.1 度量空间中的紧性

命题 2.17

紧致 A1 空间是列紧的.

证明 设 $\{x_n\}$ 是紧致 A1 空间 X 的序列, 假设对任意 $x \in X$, 存在开邻域 U_x 使得它只含 $\{x_n\}$ 的有限多项, 因此 $\{U_x\}$ 是 X 的开覆盖, 由紧致性, 存在有限子覆盖, 因此必然有某个开集包含无穷多个 $\{x_n\}$ 中的点, 矛盾, 因此

存在 x 使得其任意邻域都含 $\{x_n\}$ 的无穷多项,根据 A1 可知 x 有可数邻域基 $\{U_m\}$ 使得当 m > n 时 $U_m \subset U_n$,取 $x_{n_i} \in U_i$ 使得 $n_{i+1} > n_i$,则 $\{x_{n_i}\}$ 即为收敛子列 (收敛到 x),故 X 列紧.

定义 2.12 (网与完全有界性)

度量空间的子集 A 称为 X 的 δ -网,若 $X=\bigcup_{a\in A}B(a,\delta)$. 若对任意 $\varepsilon>0$,X 存在有限 δ -网,则称 X 是 完全有界的.

注 完全有界蕴含有界, 考虑 1-网即可.

命题 2.18

列紧度量空间是完全有界的.

证明 假设存在 $\delta > 0$ 使得 X 无有限 δ 网,则任取 $x_1 \in X$,存在 $x_2 \in X \setminus B(x_1, \delta)$,也存在 $x_3 \in X \setminus (B(x_1, \delta) \cup B(x_2, \delta))$,以此类推可得序列 $\{x_n\}$,其中任意两点距离大于 δ ,故无收敛子列,与列紧性矛盾.

命题 2.19 (Lebesgue 数引理)

设 X 为列紧度量空间,则对 X 的任意开覆盖 \mathcal{U} ,存在 $\delta > 0$ 使得对任意 A , $\operatorname{diam}(A) < \delta$,都存在 U 使 得 $A \subset U \in \mathcal{U}$,这里的 δ 称为覆盖 \mathcal{U} 的 Lebesgue 数,记为 $L(\mathcal{U})$.

证明 若不然,假设存在某个开覆盖 $\mathscr U$ 使得对任意 $n \in \mathbb N$,存在 $C_n \subset X$ 使得 $\operatorname{diam}(C_n) < 1/n$ 但其不能被任何 一个 $\mathscr U$ 中的集合覆盖,从每个 C_n 中任取一个 x_n ,则 $\{x_n\}$ 有收敛点列 $x_{n_k} \to x_0 \in X$,因此存在 $U \in \mathscr U$ 使得 $x_0 \in U$,取 $\varepsilon > 0$ 使得 $B(x_0, \varepsilon) \subset U$ 以及 n_k 使得

$$\frac{1}{n_k} < \frac{\varepsilon}{2}, d(x_{n_k}, x_0) < \frac{\varepsilon}{2} \Rightarrow C_{n_k} \subset B(x_{n_k}, \frac{1}{n_k}) \subset B(x_0, \varepsilon) \subset U, \tag{2.34}$$

矛盾.

推论 2.4

度量空间中的列紧与紧致性等价.

证明 度量空间是 A1 的,因此其中紧致蕴含列紧;反之设 $\mathscr U$ 为 X 的开覆盖,则取 $\delta < L(\mathscr U)$,列紧空间的完全有界性保证了 X 有 δ 网

$$N_{\delta} = \{a_1, \dots, a_n\}, \quad X = \bigcup_{i=1}^{n} B(a_i, \delta),$$
 (2.35)

根据 Lebesgue 数的定义可知对每个 i,存在 $U \in \mathcal{U}$ 使得 $B(a_i, \delta) \subset U_i$,因此 $\{U_1, \dots, U_n\}$ 即为 X 的有限子覆盖,得证.

2.4.2 Hausdorff 空间中的紧性

最基本的结果是,紧性可以"加强"分离性.

命题 2.20

- 紧 Hausdorff 空间是 T3 的.
- 紧 T3 空间是 T4 的.
- 紧 Hausdorff 空间是 T4 的.

证明

1. 设 X 为紧 Hausdorff 空间,则对 $x \in X$ 以及不包含它的闭集 $A \subset X$,对任意 $y \in A$,存在无交开集

 $U_y \ni x, V_y \ni y$, A 紧说明存在 y_1, \dots, y_n 使得 V_{y_1}, \dots, V_{y_n} 覆盖 A, 因此令

$$U = \bigcap_{i=1}^{n} V_{y_i}, \quad V = \bigcup_{i=1}^{n} V_{y_i}, \tag{2.36}$$

则 $U \cap V = \emptyset$, 它们分别分离 x, A.

2. 设 X 为紧 T3 空间, A, B 为无交闭集,则对任意 $x \in A$,存在无交开集 $U_x \ni x$, $V_x \supset B$, A 紧说明存在 y_1, \dots, y_n 使得 V_{y_1}, \dots, V_{y_n} 覆盖 A,因此令

$$U = \bigcup_{i=1}^{n} V_{y_i}, \quad V = \bigcap_{i=1}^{n} V_{y_i}, \tag{2.37}$$

则 $U \cap V = \emptyset$, 它们分别分离 A, B.

上面的证明只用到了紧空间中的闭集是紧集,如果直接对紧集使用相同的手法,可以将其外部的点与之分离,因此可得推论

推论 2.5

- Hausdorff 空间中的紧集都是闭集.
- \overline{A} A, B 为 Hausdorff 空间中的无交紧集,则存在无交开集 U, V 分离 A, B.

事实上, Hausdorff 性与紧性有一些对偶关系.

命题 2.21

- 1. 若 (X,T) 为紧空间,则
 - X 中的闭子集都是紧集.
 - 若 $T' \subset T$, 则 (X,T') 为紧空间.
 - $(X, \mathcal{T}_{trivial})$ 总是紧空间.
- 2. $\Xi(X, \mathcal{T})$ 为 Hausdorff 空间,则
 - X 中的紧子集都是闭集.
 - 若 $\mathcal{T}' \supset \mathcal{T}$,则 (X, \mathcal{T}') 为 Hausdorff 空间.
 - $(X, \mathcal{T}_{discrete})$ 总是 Hausdorff 空间.

由此可以看出,紧拓扑较"弱", Hausdorff 拓扑较"强", 因此从紧空间到 Hausdorff 空间的连续映射具有较好的性质.

引理 2.2

设 X 为紧空间, Y 为 Hausdorff 空间,则任意连续映射 $f: X \to Y$ 既是闭映射,也是逆紧映射.

证明

- 任意 X 的闭子集 A 都是紧集,因此 $f(A) \subset Y$ 为紧集,故为 Y 的闭子集,因此 f 为闭映射.
- 任意 Y 的紧集 B 都是闭集,因此 $f^{-1}(B) \subset X$ 为闭集,故为 X 的紧子集,因此 f 为逆紧映射.

推论 2.6

设 X 为紧空间, Y 为 Hausdorff 空间,则任意连续双射 $f: X \to Y$ 是同胚.

2.4.3 乘积空间的紧性

一般紧集不具有遗传性,例如在欧式同胚下考虑 $(a,b) \subset [a,b]$,但它满足遗传性.

引理 2.3 (管形邻域引理)

设 $x_0 \in X, B \subset Y$ 为紧集,则对 $\{x_0\} \times B$ 在 $X \times Y$ 中的任意开邻域 N,都存在 $\{x_0\}, B$ 的开邻域 U, V 使得 $\{x_0\} \times B \subset U \times V \subset N$.

引理 2.4 (方形邻域引理)

设 $A\subset X, B\subset Y$ 为紧集,则对 $A\times B$ 在 $X\times Y$ 中的任意开邻域 N,都存在 A,B 的开邻域 U,V 使得 $A\times B\subset U\times V\subset N$.

命题 2.22 (紧集的乘积)

设 $A \subset X, B \subset Y$ 为紧集,则 $A \times B$ 为 $X \times Y$ 的紧集.

证明 设 \mathcal{W} 为 $A \times B$ 的开覆盖,则对任意 $x \in A$, $\{x\} \times B$ 为紧集,存在 $W_1^x, \cdots, W_{k_x}^x \in \mathcal{W}$ 使得

$$\{x\} \times B \subset W_1^x \cup \dots \cup W_{k_-}^x, \tag{2.38}$$

根据管形邻域引理,存在包含x的开集 U_x 使得

$$U_x \times B \subset W_1^x \cup \dots \cup W_{k_x}^x, \tag{2.39}$$

使用 A 的紧性可得存在 x_1, \cdots, x_m 使得 $A \subset U_{x_1} \cup \cdots \cup U_{x_m}$, 因此

$$A \times B \subset (\bigcup_{i=1}^{m} U_{x_i}) \times B \subset \bigcup_{\substack{1 \le i \le m \\ 1 \le j \le k_{x_i}}} W_j^{x_i}, \tag{2.40}$$

得证.

对于无穷乘积情形,有如下定理.

定理 2.7 (Tychonoff 定理)

若对任意 α , X_{α} 都是紧空间,则 ($\prod_{\alpha} X_{\alpha}$, \mathcal{T}_{prod}) 为紧空间.

这是点集拓扑的重要结论之一,它与选择公理等价,更多讨论见附录.

2.4.4 其它紧性

紧致性是一个很强的概念,因此有时会考虑一些更弱的紧性.

定义 2.13 (局部紧致性)

称拓扑空间 X 为局部紧致的, 若任意 x \in X 都有紧致邻域, 或者说存在开集 U 和紧集 K 使得 x \in U \subset K. ●

注 欧式空间都是局部紧的.

局部紧常与 Hausdorff 性相结合,得到一些结果,常简记它为 LCH 空间.

命题 2.23

设X为LCH空间,则

- 1. X 是 T3 的.
- 2. 对任意 $x \in X$, x 的紧致邻域构成它的邻域基.
- 3. X 的开子集也是局部紧致的.

证明

1. 设 U 为 x 的开邻域, K 为其紧邻域, 则 $K \cap U$ 为紧 Hausdorff 空间 K 中 x 的邻域, 由其中的 T3 可知存

在 K 中的开集 V 使得

$$x \in V \subset \overline{V} \subset K \cap U \subset K, U, \tag{2.41}$$

令开集 $W = V \cap K^{\circ}$, 则 $\overline{W} \subset \overline{V} \subset U$ 满足要求,得证 (注意, K 为闭集说明 V 在 K 中的闭包等于它在 X 中的闭包).

2. 设 $\mathcal{K}(x)$ 为 $x \in X$ 的紧致邻域的全体,对任意 $N \in \mathcal{N}(x)$, 取 $K \in \mathcal{K}(x)$,则 $K \cap N$ 为 x 的邻域,由 T3 可得存在开集 V 使得

$$x \in V \subset \overline{V} \subset K \cap N \subset K, N, \tag{2.42}$$

因此 $\overline{V} \subset N$ 就是 x 的一个紧邻域 (K) 为紧集,紧集的闭子集是紧的).

3. 由 2 得.

命题 2.24 (LCH 空间中紧集与闭集的分离)

设 X 为 LCH 空间, $K \subset X$ 为紧集,U 为 X 中包含 K 的开集,则存在开集 V 使得 \overline{V} 为紧集,并且 $K \subset V \subset \overline{V} \subset U$.

证明 若 $K = \{x\}$ 为单点集,由 T3 首先存在开集 W 使得 $K \subset W \subset \overline{W} \subset U$,由于 x 的紧邻域构成邻域基,因此存在紧邻域 $F \subset W$,并且

$$K \subset F^{\circ} \subset \overline{F} \subset \overline{W} \subset U, \tag{2.43}$$

即 $V = F^{\circ}$ 满足要求.

对于一般情形,对任意 $x \in K$ 都存在开集 V_x 满足单点的要求, K 的紧性说明存在有限个 V_1, \dots, V_n 覆盖 K, 因此 $V = \bigcup_{i=1}^n V_i$ 满足要求 (紧集的有限并还是紧集).

定义 2.14 (局部有限覆盖)

称拓扑空间 X 的覆盖 \mathcal{U} 是局部有限的、若任意 $x \in X$ 存在邻域 V、它只与 \mathcal{U} 中的有限个成员相交.

定义 2.15 (覆盖的加细)

设 $\mathcal{U}, \mathcal{U}'$ 为X的覆盖,若 \mathcal{U}' 的成员都包含在 \mathcal{U} 的成员中,则称 \mathcal{U}' 为 \mathcal{U} 的加细.

定义 2.16 (仿紧性)

称拓扑空间 X 为仿紧的, 若其任意开覆盖都有局部有限的开加细.

注 容易验证紧致空间、度量空间都是仿紧的.

命题 2.25

紧致空间是仿紧的

2.5 连通性与道路连通性

2.5.1 连通性

定义 2.17 (连通性)

称拓扑空间 X 是连通的,若它不能分解为两个非空无交开集的并. 若 X 中的非平凡连通子集仅有单点集,则称 X 是完全不连通集.

- 注 容易验证连通有如下等价定义:
 - X 不能分解为两个非空无交闭集的并.

• X 中的既开又闭集合只有 X 和 \emptyset .

例 2.5

- $(\mathbb{R}, \mathcal{T}_f), (\mathbb{R}, \mathcal{T}_c)$ 都是连通的,因为其任意两个非空开集都相交.
- (\mathbb{R} , \mathcal{T}_e) 是连通的,设 A 是它的非空真闭集,不妨设 $0 \notin A$ 且 A 含正数,记 a 为 A 中正数的下确界,A 为 闭集说明 $a \in A$,并且 $(0,a) \cap A = \emptyset$,因此 a 不是 A 的内点,说明 A 不是开集.

命题 2.26

连续映射将连通空间映为连通空间.

例 2.6

- S^1 是连通的,因为有连续满射 $f: \mathbb{R} \to S^1, f(t) = e^{2\pi i t}$.
- $(\mathbb{R}, \mathcal{T}_e)$ 的子集 A 连通当且仅当它是区间.

若 A 连通但非区间,则存在 a < b < c 使得 $a, c \in A, b \notin A$,因此 $A_1 = A \cap (-\infty, b), A_2 = A \cap (b, \infty)$ 非空 且满足 $A_1 \cap A_2 \neq \emptyset, A = A_1 \cap A_2$.

反之若 A 是区间,开区间是显然的(它同胚于全空间),半开半闭空间同胚于 $[0,\infty)$,因此考虑映射 f(x)=|x| 可得;对闭区间 [a,b] 考虑

$$g(x) = \begin{cases} a, & x \leqslant a \\ x, & a \leqslant x \leqslant b \\ b, & b \leqslant x \end{cases}$$
 (2.44)

推论 2.7

连通空间上的连续函数可取一切中值.

C

引理 2.5

若 X_0 是X的既开又闭子集,A为X的连通集,则必有 $A \cap X_0 = \emptyset$ 或 $A \subset X_0$.

 \circ

证明 $A \cap X_0 \neq A$ 的既开又闭子集,因此 A 的连通性保证了 $A \cap X_0 = \emptyset$ 或 $A \cap X_0 = A$.

命题 2.27

若X有连通稠密子集,则X连通.

证明 设 $A \to X$ 的连通稠密子集,假设存在 $X_0 \to X$ 的非空既开又闭真子集,则 $A \cap X_0 \neq \emptyset$,因此 $A \subset X_0, X = \overline{A} \subset \overline{X_0} = X_0$ (注意 X_0 既开又闭),即 $X_0 = X$, X 连通.

推论 2.8

设 $A \to X$ 的连通子集, $\exists A \subset Y \subset \overline{A}$, 则 Y 连通. 特别地, 连通集的闭包也是连通的.

 \sim

命题 2.28 (并的连通性)

- 1. 星形并:设 $\{A_{\alpha}\}$ 为 X 的非空连通子集族,若 $\bigcap_{\alpha} A_{\alpha} \neq \emptyset$,则 $\bigcup_{\alpha} A_{\alpha}$ 连通.
- 2. 链形并:设 $A_1, A_2, \cdots, A_N (N \leq \infty)$ 是连通的,且对任意 n < N 有 $A_n \cap A_{n+1} \neq \emptyset$,则 $\bigcup_{n=1}^N A_n$ 连通.

证明

1. 记 $Y = \bigcup_{\alpha} A_{\alpha}$, 设 $Y = Y_1 \cup Y_2, Y_1 \cap Y_2 = \emptyset$ 且 $Y_i = Y \cap U_i$, $U_i \to X$ 中的开集. 任取 $x \in \bigcap_{\alpha} A_{\alpha}$, 不妨设

 $x \in Y_1 = Y \cap U_1$,则对任意 α 有 $A_{\alpha} \cap U_1 \neq \emptyset$,由于有无交开集分解

$$A_{\alpha} = (A_{\alpha} \cap U_1) \cup (A_{\alpha} \cap U_2), \tag{2.45}$$

根据 A_{α} 的连通性有 $A_{\alpha} \cap U_2 = \emptyset$, 因此 $Y_2 = \emptyset$.

2. 设 $B_n = A_1 \cup \cdots \cup A_n$, 则 $\bigcap_{n=1}^N B_n \neq \emptyset$, 因此 $\bigcup_{n=1}^N A_n = \bigcup_{n=1}^N B_n$ 连通.

命题 2.29

若X有一个连通覆盖 \mathscr{U} (其中任何集合连通),并且X存在连通子集A与 \mathscr{U} 中每个成员相交,则X连通.

证明 设 X_0 为 X 的既开又闭子集,若 $A \cap X_0 = \emptyset$,则对任意 $U \in \mathcal{U}$ 有 $U \not\subset X_0$,由引理可得 $U \cap X_0 = \emptyset$,但 $\bigcup_{U \in \mathcal{U}} U$ 为 $X_0 \subset X$ 的覆盖,故必有 $X_0 = \emptyset$.

若 $A \subset X_0$, 则每个 $U \in \mathcal{U}$ 与 X_0 有交, 因此 $U \subset X_0$, 因此 $X_0 = X$.

推论 2.9 (连通性是可乘的)

若X,Y连通,则 $X\times Y$ 连通.

证明 $\{X \times \{y\} : y \in Y\}$ 是 $X \times Y$ 的连通覆盖,取 $x \in X$,则连通集 $\{x\} \times Y$ 与每个 $X \times \{y\}$ 有交,因此 $X \times Y$ 连通

例 2.7

- ℝⁿ, [0,1]ⁿ 连通.
- S^n 连通,因为 $S^n \setminus \{x\} \cong (\mathbb{R}^n, \mathcal{T}_e), S^n = \overline{S^n \setminus \{x\}}.$ 事实上,上述命题对任意并的情形也成立(借助选择公理).

推论 2.10

一族连通空间的乘积 $\prod_{\alpha \in \Lambda} X_{\alpha}$ 也是连通的.

证明 从每个 X_{α} 中取一个 x_{α} , 则

$$\left\{ \prod_{\alpha \in K} X_{\alpha} \times \prod_{\alpha \notin K} \{x_{\alpha}\} : K \subset \Lambda \neq \mathbb{R} \right\}$$
 (2.46)

是 $\prod_{\alpha \in \Lambda} X_{\alpha}$ 的连通覆盖,并且它们的交集为 $\prod_{\alpha} \{x_{\alpha}\}$ 非空,因此由星形并的连通性可知其连通.

定义 2.18 (连通分支)

称 X_0 \subset X 为一个连通分支,若 X_0 连通且不为 X 中任何连通子集的真子集.

注 易知连通分支必为闭集,并且 X 连通当且仅当其仅有一个连通分支.

命题 2.30

X的每个非空连通子集必然包含在唯一一个连通分支中.

证明 设 $A \to X$ 的非空连通子集,记 $F = \{F \subset X : F$ 连通, $F \cap A \neq \emptyset\}$, $Y = \bigcup_{F \in \mathcal{F}} F$,则 $A \subset Y$,并且 $Y \in \mathcal{F}$,一个连通分支(若存在包含 Y 的连通子集 B,则 $B \in \mathcal{F}$, $B \subset Y$).假设 Y' 也是包含 A 的连通分支,则 $Y' \in \mathcal{F}$,故 $Y' \subset Y$,由 Y' 的极大性可知 Y' = Y.

综上,连通分支实际上给出了 X 的一个划分,这种划分自然诱导了等价关系: $x \sim y$ 当且仅当存在 X 的连通子集 A 同时包含 x,y.

注意连通分支一定是闭集,但未必是开集,例如 $\mathbb Q$ 在 $\mathcal T_c$ 的子空间拓扑下,任何连通分支都是单点集.

定义 2.19 (局部连通性)

称拓扑空间 X 为局部连通的,若对任意 $x \in X$, x 的所有连通邻域构成其邻域基.

*

注意连通空间与局部连通是完全不等价的.

例 2.8 考虑"篦形子集" $X = (E^1 \times \mathbb{Q}) \cup (\{0\} \times E^1)$,它连通但不是局部连通的.

命题 2.31

局部连通空间的连通分支是开集.

2.5.2 道路连通

定义 2.20 (道路)

设 X 为拓扑空间,称连续映射 $a:[0,1]\to X$ 为 X 上的一条道路,a(0),a(1) 分别称为道路的起点与终点,统称端点. 称起点与终点相同的道路为闭路. 特别地,称 $a:[0,1]\to X, a(t)\equiv x$ 为点道路,记为 e_x .

道路之间可以进行运算:

定义 2.21 (道路的逆与积)

- 设 $a:[0,1] \to X$ 为道路, 称其逆为 $\bar{a}(t) = a(1-t)$.
- 设 a, b 为道路且 a(1) = b(0), 则称其乘积为

$$ab(t) = \begin{cases} a(2t), & 0 \le t \le \frac{1}{2} \\ b(2t-1), & \frac{1}{2} \le t \le 1. \end{cases}$$
 (2.47)

注 道路积的连续性由粘接引理保证.

定义 2.22 (道路连通性)

称拓扑空间 X 是道路连通的,若对任意 $x,y \in X$,存在 X 中分别以 x,y 为起点和终点的道路.

例 2.9

- E^n 为道路连通的.
- "拓扑学家正弦曲线"是连通的,但不是道路连通的.

命题 2.32

- 1. 道路连通空间一定连通.
- 2. 连续映射将道路连通空间映为道路连通空间.

证明

- 1. 对任意 $x,y \in X$, x,y 都在同一连通子集 a(I) 中,因此它们属于同一连通分支,根据任意性可得 X 只有一个连通分支,故 X 是连通的.
- 2. 设 $f: X \to Y$ 连续,则对任意 $y_0, y_1 \in f(X)$,取 $x_i \in f^{-1}(y_i)$,则存在道路 a 连接 x_0, x_1 ,则 $f \circ a$ 连接 y_0, y_1 ,即证 f(X) 道路连通.

类似连通性,可以对道路连通证明(这里的证明甚至要更简单一些):

命题 2.33 (并的道路连通性)

- 1. 星形并:设 $\{A_{\alpha}\}$ 为X的非空道路连通子集族,若 $\bigcap_{\alpha}A_{\alpha}\neq\emptyset$,则 $\bigcup_{\alpha}A_{\alpha}$ 道路连通连通.
- 2. 链形并: 设 $A_1, A_2, \dots, A_N (N \leq \infty)$ 是道路连通的, 且对任意 n < N 有 $A_n \cap A_{n+1} \neq \emptyset$, 则 $\bigcup_{n=1}^N A_n$ 道路连通.

定理 2.8

一族道路连通空间的乘积 $\prod_{\alpha \in \Lambda} X_{\alpha}$ 也是道路连通的.

类似连通性, 道路连通性更直接地诱导一个等价关系: $x \sim y$ 当且仅当存在连接 x, y 的道路, 由此可定义道 路连通分支.

定义 2.23 (道路连通分支)

称拓扑空间 X 在上述等价关系下的等价类为道路连通分支(简称道路分支).

这种定义存在一点小问题,即道路连通分支本身是否道路连通? 等价关系是借助 X 中的道路定义的,这种 道路未必在该分支中,不过答案是肯定的.

命题 2.34

拓扑空间的道路分支是它的极大道路连通子集.

证明 设 $A \to X$ 的道路分支,对任意 $x_0, x_1 \in A$,首先存在 X 上的道路 a 使得 $a(i) = x_i$, a(I) 道路连通说明 a(I) 必然包含于某个道路连通分支,而 $a(0), a(1) \in A$,因此 $a(I) \subset A$,因此这是 A 中连接 x_0, x_1 的道路. 再证极大性,设 $A \subset B$, B 道路连通,则B 所在的道路分支就是A,即得A = B.

定义 2.24 (局部道路连通)

称拓扑空间 X 局部道路连通,若对任意 $x \in X$,其道路连通邻域构成 x 的邻域基.

注 道路连通空间不一定是局部道路连通的,同样考虑篦形子集.

引理 2.6

若 X 中的每一点都有邻域 U_x 使得 x 与 U_x 中的每一点都可用 X 中的道路连接,则 X 的道路分支是既开 又闭的,并且其连通分支就是道路分支.

证明 首先x 的邻域 U_x 与 x 处于同一道路分支中,因此每个道路分支都是开集,并且道路分支的补集是其它道 路分支的并集,也为开集,故道路分支是既开又闭的.

设 A 为道路分支, B 为包含 A 的连通分支, 则 $A \neq B$ 的既开又闭非空子集, 故 A = B.

命题 2.35

若连通空间 X 是局部道路连通的,则 X 道路连通.

证明 任取 $x \in X$,考虑 $A = \{y \in X : y \sim x\} \neq \emptyset$ (即 x 所在的道路分支),由局部道路连通性可知 A 为开集 (对任意 $y \in A$, 存在一个邻域包含于 A), 也为闭集 (对任意 $z \in A^c$, 存在一个邻域包含于 A^c), 因此 A = X, 得证.

例 2.10 对于 E^n 中的开集,连通性与道路连通性是等价的.

第3章 商空间与闭曲面

3.1 商拓扑

3.1.1 常见闭曲面

为了描述一些闭曲面的拓扑,需要给出商拓扑的概念.

3.1.2 商拓扑与商映射

定义 3.1 (商拓扑)

设 (X,\mathcal{T}) 为拓扑空间, \sim 为 X 上的等价关系, $p:X\to X/\sim$ 为粘合映射,定义 X/\sim 上的商拓扑 $\mathcal{T}_\sim=\{V\subset X/\sim:p^{-1}(V)\in\mathcal{T}\}.$

注

- 1. 根据定义可知, p 在商拓扑下连续.
- 2. 由于满射会自然诱导等价关系,因此商拓扑也可以直接由满射 p 出发给出.

命题 3.1 (粘合映射与商拓扑)

设 (X,T) 为拓扑空间, \sim 为其上的等价关系,则商拓扑是 X/\sim 上使得粘合映射 $p:X\to X/\sim$ 连续的最强的拓扑.

证明 设 T' 为 X/\sim 上另一个使得 $p:X\to X/\sim$ 连续的拓扑,则对任意 $O'\in T'$ 有 $p^{-1}(O')\in T$,根据定义可得 $O'\in T_{\sim}$,故 $T'\subset T_{\sim}$.

命题 3.2

设 X,Y 为拓扑空间, \sim 为 X 上的等价关系,则映射 $g:X/\sim\rightarrow Y$ 连续当且仅当 $g\circ p$ 连续,其中 $p:X\to X/\sim$ 为粘合映射.

证明 显然 g 连续蕴含 $g \circ p$ 连续. 若 $g \circ p$ 连续,则对任意 $O \in \mathcal{T}_Y$ 有 $(g \circ p)^{-1}(O) = p^{-1}(g^{-1}(O)) \in \mathcal{T}_\sim$,即 $g^{-1}(O) \in \mathcal{T}_\sim$,即 g 连续.

上述性质实际上唯一确定了商拓扑.

定理 3.1 (商拓扑的泛性质)

设 X 为拓扑空间, X/\sim 赋商拓扑,假设存在 X/\sim 上的另一个拓扑 T' 满足上述性质,则必有 $T'=T_{\sim}$.

证明 考虑下面两个交换图(其中p,p'为相同映射,只是像空间的拓扑不同,故作此区分)

• 图 1 中 p 连续说明 Id 连续.

- 图 2 中 Id 连续说明 p' 连续.
- 图 3 中 p' 连续说明 Id 连续.

即得证.

上述过程可以汇总在一个图中:

对于商拓扑 X/\sim ,若连续映射 $f:X\to Y$ 在每个 $p^{-1}(a)$ 上取相同值,则它可以延拓为良定的映射 $\tilde{f}=f\circ p^{-1}:X/\sim\to Y$,满足 $f=\tilde{f}\circ p$,因此由泛性质可得 \tilde{f} 为连续的.

例 3.1 环面 设 $X = I \times I$,考虑等价类

$$\begin{cases}
\{(0,y),(1,y)\}, \\
\{(x,0),(x,1)\}, \\
\{(x,y)\}, \\
\{(0,0),(0,1),(1,1),(1,0)\},
\end{cases}$$
(3.1)

设 p 为粘合映射,考虑 $f: X \to T^2 = S^1 \times S^1, (x,y) \mapsto (e^{2\pi i x}, e^{2\pi i y})$,则 f 连续说明 $g: X/ \sim T^2$ 为连续的,并且 x 紧说明 $p(X) = X/ \sim$ 紧,因此 g 为从紧空间到 Hausdorff 空间的连续双射,即为同胚.

例 3.2 拓扑锥与几何锥 设 $A \subset X$, $X/A = \{A, \{x\} : x \notin A\}$ 为将 A 捏为一点的等价关系,用这种方法可以构造 出**拓扑锥** $CX = X \times I/X \times \{1\}$. 若 $X \subset E^n$,则取 $a \in E^{n+1} \setminus E^n$,定义 X 上以 a 为顶点的几何锥为

$$aX := \{ ta + (1-t)x : t \in I, x \in X \}, \tag{3.2}$$

命题 3.3

若 X 为 E^n 中的紧集,则 $aX \cong CX$.

证明 设 $p: X \times I \to CX$ 为粘合映射, 定义连续映射

$$f: X \times I \longrightarrow aX$$
 (3.3)

$$(x,t) \longmapsto ta + (1-t)x \tag{3.4}$$

X 为紧集说明 $X \times I$ 为紧空间,而 aX 为 Haudorff 空间, $f(X \times \{1\}) = a$ 说明 f 可以自然诱导一个映射 $\tilde{f}: CX \to aX$ 且满足 $f = \tilde{f} \circ p$,根据商拓扑的泛性质可知 \tilde{f} 也连续,它是紧空间 $CX = p(X \times I)$ 到 Hausdorff 空间 aX 的连续双射,故为同胚.

例 3.3 考虑 $X = E^1$, $a = (0,1) \in E^2$, 则 $aX \not\cong CX$. 因为考虑 $\{(0,1)\}$ 为中心的半圆,则它是 aX 的开集,但不是 CX 的开集(该集合在粘合下的原像包含 $E^1 \times \{1\}$ 和一块半圆区域).

将粘合映射的性质抽离出来,可以给出商映射的概念.

定义 3.2 (商映射)

设 X,Y 为拓扑空间,称 $f:X\to Y$ 为商映射,若 f 为连续满射,并且对任意 $B\subset Y$,若 $f^{-1}(B)\in\mathcal{T}_X$,则 $B\in\mathcal{T}_Y$.

注

- 1. 粘合映射是商映射.
- 2. 商映射的条件中开集也可改为用闭集刻画.

- 3. 简单来说, f 为商映射当且仅当它是满射, 并且 $B \in \mathcal{T}_Y \Leftrightarrow f^{-1}(B) \in \mathcal{T}_X$.
- 4. 易见商映射的复合也是商映射.

定理 3.2

若 $f: X \to X'$ 为商映射, $g: X' \to Y$ 为映射, 则 g 连续当且仅当 $g \circ f$ 连续.

 \odot

由于满射 $f: X \to Y$ 可以自然诱导等价关系 \sim_f (相当于用 $f^{-1}(y)$ 划分 X),并且由此得到的商空间 X/\sim_f 与 Y 之间存在——对应,因此商映射很多时候就成为了判断同胚的利器.

命题 3.4

若 $f: X \to Y$ 为商映射,则 $X/\sim_f \cong Y$.

证明 设 $p: X \to X/\sim_f$ 为粘合映射,自然有双射 $g: X/\sim_f \to Y$ 使得 $g \circ p = f$ 以及 $g^{-1} \circ f = p$,则由商拓扑与商映射的性质可得 g, g^{-1} 均连续,故 $X/\sim_f \cong Y$.

在特定条件下,可以说明连续满映射是商映射.

命题 3.5

- 若连续满映射 $f: X \to Y$ 是开映射或闭映射,则它是商映射.
- 若 X 紧, Y 为 Hausdorff 空间,则连续满映射 $f: X \to Y$ 一定为商映射.

•

例 3.4 设 D^2 为二维圆盘,其边界为 S^1 ,则有 $D^2/S^1 \cong S^2$.

考虑映射

$$f: D^2 \longrightarrow S^2 \tag{3.5}$$

$$re^{i\theta} \longmapsto (2\sqrt{r(1-r)}\cos\theta, 2\sqrt{r(1-r)}\sin\theta, 2r-1),$$
 (3.6)

则它是连续满射,将 $S^1\subset D^2$ 捏成一点可得 $D^2/S^1\cong S^2$,此时 $f\circ p^{-1}$ 为同胚(紧 \to Hausdorff). 同理可证 $D^n/S^{n-1}\cong S^n$.

例 3.5 实射影平面可定义为 $RP^2 = E^3 - \{0\}/\sim$,其中 $x \sim y$ 当且仅当存在 $\lambda \in \mathbb{R}$ 使得 $x = \lambda y$,即将空间中过原点的直线的等价类. 可以定义其上的度量 $d(l_1, l_2)$ 为 l_1, l_2 的夹角(并且上面的商拓扑是由该度量诱导的),由此可以说明实射影平面是 Hausdorff 空间.

另一方面, $f: S^2 \hookrightarrow E^3 - \{0\} \to P^2$ 是连续满射,将球面上对径点捏起来可得射影平面的等价定义 $RP^2 \cong S^2/\{\pm 1\}$. 借助类似的方法也可以将上半球面通过某种粘合给出射影平面.

最后给出一个关于商映射的定理.

定理 3.3

设 $f: X \to Y$ 为商映射, Z 为 LCH 空间, 则

$$f \times \text{Id}: X \times Z \longrightarrow Y \times Z$$
 (3.7)

$$(x,z) \longmapsto (f(x),z)$$
 (3.8)

也是商映射.

 $^{\circ}$

证明 记 $F = f \times Id$, 它显然是连续满映射, 只需验证当 $F^{-1}(W)$ 为开集时, 有 W 为开集即可. 任取 $(y_0, z_0) \in W$, 下证它是 W 的内点.

取 $x_0 \in f^{-1}(y_0) \subset W$,则 $(x_0, z_0) \in F^{-1}(W)$,因此存在 z_0 的邻域 B 使得 $\{x_0\} \times B \subset F^{-1}(W)$,即得 $\{y_0\} \times B \subset W$.因为 Z 为 LCH 空间,因此可不妨设 B 为其紧邻域,令

$$V = \{ y \in Y : \{ y \} \times B \subset W \}, \tag{3.9}$$

则 $(y_0, z_0) \in V \times B \subset W$, 只需证明 V 为开集, 等价于证明 $U = f^{-1}(V)$ 为开集 (f) 为商映射).

注意到
$$F(\{x\} \times B) = \{f(x)\} \times B$$
,因此 $y = f(x) \in V$ 当且仅当 $\{x\} \times B \subset F^{-1}(W)$,这就说明
$$U = \{x \in X : \{x\} \times B \subset F^{-1}(W)\}, \tag{3.10}$$

由于 B 紧致, $F^{-1}(W)$ 开,因此对任意 $x \in U$,管型邻域引理说明存在邻域 U_x 使得 $U_x \times B \subset F^{-1}(W)$,即 $U_x \subset U$,因此 U 为开集,V 为开集,得证.

由于 E^1 , I 都是 LCH 空间,后面常在这些情形下使用这一定理.

3.1.3 诱导拓扑与余诱导拓扑

到此为止,我们已经接触到了点集拓扑中构造拓扑的常见方法(子空间拓扑、乘积拓扑、序拓扑、商拓扑), 并且已经证明:

- 子空间拓扑是使得嵌入映射 ι 连续的最弱的拓扑.
- 乘积拓扑是使得所有投影映射 π_i 连续的最弱的拓扑.
- 商拓扑是使得粘合映射连续的最强的拓扑。这种定义可以一般化、得到诱导拓扑以及余诱导拓扑的概念。

定义 3.3 (诱导拓扑)

设 $\{(Y_{\alpha}, T_{\alpha})\}$ 为一族拓扑空间, $F = \{f_{\alpha}: X \to Y_{\alpha}\}$ 为一族映射,则称 X 上使得所有映射都连续的最弱的拓扑为这一族映射的诱导拓扑,记为 T_F .

由于赋 X 以离散拓扑后任何映射都连续,因此诱导拓扑是存在的,并且根据定义可知诱导拓扑是由如下子基生成的拓扑

$$S = \bigcup_{\alpha} \{ f_{\alpha}^{-1}(V) : V \in \mathcal{T}_{\alpha} \}. \tag{3.11}$$

特别的, 若 α 只有一个元素, 那么 S 就是一个拓扑.

例 3.6

- 子空间拓扑是由嵌入映射诱导的拓扑.
- 乘积拓扑是由所有投影映射 $\{\pi_{\alpha}\}$ 诱导的拓扑.
- 度量诱导拓扑是由所有 $d_x(y) = d(x,y)$ 诱导的拓扑.
- 逐点收敛拓扑 $T_{p,c}$ 是由赋值映射 $ev_x(f) = f(x)$ 诱导的拓扑.

定理 3.4 (诱导拓扑的泛性质)

设 $\{(Y_{\alpha}, \mathcal{T}_{\alpha})\}$ 为一族拓扑空间, $F = \{f_{\alpha}: X \to Y_{\alpha}\}$ 为一族映射,赋予 F 诱导的拓扑,则对任意拓扑空间 Z, $f: Z \to X$ 连续当且仅当每个 $f_{\alpha} \circ f: Z \to Y_{\alpha}$ 连续. 进一步,F 诱导的拓扑是 X 上唯一满足这一性质的拓扑.

定义 3.4 (余诱导拓扑)

设 $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}$ 为一族拓扑空间, $\mathcal{F} = \{f_{\alpha}: X_{\alpha} \to Y\}$ 为一族映射,则称 Y 上使得所有映射都连续的最强的拓扑为这一族映射的余诱导拓扑.

同样地,可以给出余诱导拓扑的显式表达

$$\mathcal{T} = \bigcap_{\alpha} \{ V \subset Y : f_{\alpha}^{-1}(V) \in \mathcal{T}_{\alpha} \}. \tag{3.12}$$

容易看出, 商拓扑实际上就是粘合映射的余诱导拓扑.

定理 3.5 (余诱导拓扑的泛性质)

设 $\{(X_{\alpha}, T_{\alpha})\}$ 为一族拓扑空间, $F = \{f_{\alpha}: X_{\alpha} \to Y\}$ 为一族映射,赋予 F 余诱导的拓扑,则对任意拓扑空间 Z, $f: Y \to Z$ 连续当且仅当每个 $f \circ f_{\alpha}: X_{\alpha} \to Z$ 连续. 进一步,F 诱导的拓扑是 X 上唯一满足这一性质的拓扑.

3.2 拓扑流形与闭曲面

3.2.1 拓扑流形

定义 3.5 (拓扑流形)

称 Hausdorff 空间 X 为 n 维拓扑流形,若 X 的任一点都有一个同胚于 E^m 或 $E^m_+=\{x\in E^n:x_n\geqslant 0\}$ 的 开邻域.

注

- 1. Brauwer 维数不变定理保证了拓扑流形的维数是良定的.
- 2. 有时候也会定义流形为 A2 的.
- 3. 同胚于 E_{+}^{m} 的流形称为带边流形.

定义 3.6 (内点/边界点)

设M为n维流形,若 $x \in M$ 有同胚于 E^n 的开邻域,则称x为内点,否则称为边界点,内点的全体称为内部,边界点集记为 ∂M .

命题 3.6 (二维流形的边界点)

设 $x \in X$, V 为x 的同胚于 E_+^2 的开邻域(设同胚为f且f(x)=0),则x没有同胚于 E^2 的开邻域.

证明 假设存在开邻域 $U \cong E^2$,同胚为 g,则 E_+^2 中 0 的开邻域 $f(U \cap V)$ 同胚于 E^2 中的开集 $g(U \cap V)$,取 $B(0,\varepsilon) \cap E_+^2 \subset f(U \cap V)$,则 $B(0,\varepsilon) \cap E_+^2$ 与某个开集 W 同胚,因此 $B(0,\varepsilon) \setminus \{0\}$ 与 W 挖去一点同胚,而后者不可缩(非单连通),矛盾.

命题 3.7

设 M 为 n 维流形且有边界点,则 ∂M 是一个无边界点的 n-1 维流形.

证明 根据定义,任意 $x \in \partial M$ 都有一个同胚于 E_+^n 的开邻域 U,并且 x 被映到 $E_0^n = \{x \in E^n : x_n = 0\} \cong E^{n-1}$ 上,因此 $U \cap \partial M$ 就是 x 在 ∂M 中的开邻域,它同胚于 $E_0^n \cong E^{n-1}$,故 ∂M 为 n-1 维流形,其内点都有同胚于 E_0^{n-1} 的开邻域,说明 ∂M 无边界点.

命题 3.8

- 流形是 A1 的, 局部道路连通以及局部紧致的, 也是 T3 的.
- 紧致流形是 A2 的.

证明 易证.

3.2.2 闭曲面

定义 3.7 (闭曲面)

称二维流形为曲面, 称没有边界点的紧致连通曲面称为闭曲面.

命题 3.9

射影平面 RP^2 是闭曲面.

证明 紧致性、连通性、Hausdorff 性是显然的,只需验证它局部同胚于 E^2 . 将其视为 D^2 粘合边界 S^1 上对径点得到的商空间,设 $p: D^2 \to RP^2$ 为粘合映射,对任意 $y \in RP^2$,若 $p^{-1}(y) \subset (D^2)^\circ$,则 $p((D^2)^\circ) = (D^2)^\circ \cong E^2$ 为 y 的开邻域;若不然则必有 $p^{-1}(y) = \{x, x'\} \subset S^1$,即为一对对径点,取 $U = (B(x, \varepsilon) \cup B(x', \varepsilon)) \cup D^2, \varepsilon < 1$,则 $p(U) \cong E^2$ 是 y 的开邻域.

同理可证,Klein 瓶是闭曲面. 更一般的,对于偶数边的多边形 Γ ,若将边成对粘接,得到的商空间也是闭曲面.

3.2.3 贴空间与连通和

定义 3.8 (无交并)

设 X,Y 为集合,记其无交并为 $X\sqcup Y=\{a_x,b_y:a\in X,b\in Y\}$,即 X,Y 中的所有元素在 $X\sqcup Y$ 中都视 为不同的,即使它们在 $X\cup Y$ 中相同.

定义 3.9 (拓扑和)

设 $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2)$ 为拓扑空间, 在 $X_1 \sqcup X_2$ 中规定拓扑

$$\mathcal{T} = \{ U \subset X_1 \sqcup X_2 : U \cap X_i \in \mathcal{T}_i \}, \tag{3.13}$$

称 $(X_1 \sqcup X_2, T)$ 为两个拓扑空间的拓扑和, 记为 X + Y.

定义 3.10 (贴空间)

设 X,Y 为拓扑空间, $A \subset X$, $f:A \to Y$ 连续, 在 X+Y 中规定等价关系 \sim , 使得等价类为如下形式

- X\A 中的单点.

则商空间 $(X+Y)/\sim$ 称为 f 的贴空间,记为 $X\cup_f Y$.

借助贴空间,可以给出"粘合不同空间"的刻画.

定义 3.11 (连通和)

设 M_1, M_2 为 n 维连通流形,从中各去掉一个小球 B_1, B_2 ,再通过同胚 $f: \partial B_1 \to \partial B_2$ 粘合两个小球的 边界,所得商空间称为 M_1, M_2 的连通和,即

$$M_1 \# M_2 = (M_1 - B_1) \cup_f (M_2 - B_2).$$
 (3.14)

3.2.4 闭曲面分类定理

定理 3.6 (闭曲面分类定理)

 $\{nT^2\}, \{mP^2\}$ 不重复地列出了闭曲面的所有拓扑类型.

 \Diamond

这一定理包含两个结论:

- 任一闭曲面都必然是 $\{nT^2\}$ 或 $\{mP^2\}$ 中的某个.
- 对任意 $m, n, nT^2 \neq mP^2$,并且当 $n \neq n'$ 时 $nT^2 \neq n'T^2$,对 mP^2 同理. 下面主要证明前者.

定义 3.12 (多边形表示)

一个偶数边的多边形 Γ ,将边成对粘接得到的商空间为闭曲面. 若 Γ 在 φ 下的商空间同胚于闭曲面 S,则 称 (Γ, φ) 是 S 的一个多边形表示.

引理 3.1

任一闭曲面都有多边形表示.

 \bigcirc

2n 边形表示可以通过 n 对边的字母表示,一般取定 Γ 的顶点以及方向,依次写出标在各边上的字母,并通过逆来表示反向,最终写出表示 $\langle S|A\rangle$. 例如 $\langle a,b|aba^{-1}b^{-1}\rangle$ 就是环面的多边形表示. 注意到同一闭曲面可能有不同表示,因此首先讨论多边形的初等变换(即保持最终粘合曲面不变的变换):

- 轮换: $\langle S|a_1a_2\cdots a_m\rangle = \langle S|a_ma_1a_2\cdots a_{m-1}\rangle$ (这对应了对多边形的旋转).
- 反射: $\langle S|a_1a_2\cdots a_m\rangle = \langle S|a_m^{-1}\cdots a_1^{-1}\rangle$ (这对应了多边形的翻转).
- 折叠 & 展开: $\langle S, e | e e^{-1} a_3 \cdots a_m \rangle = \langle S | a_3 \cdots a_m \rangle$.
- 剪切 & 粘合: $\langle S|A_1A_2\rangle = \langle S, e|A_1e, e^{-1}A_2\rangle$.
- 合并:

$$\langle S, e_1, e_2 | A_1 e_1 e_2 A_2 e_1 e_2 A_3 \rangle = \langle S, e | A_1 e A_2 e A_3 \rangle$$
 (3.15)

$$\langle S, e_1, e_2 | A_1 e_1 e_2 A_2 e_2^{-1} e_1^{-1} A_3 \rangle = \langle S, e | A_1 e A_2 e^{-1} A_3 \rangle$$
 (3.16)

• 连通和: $\langle S_1 S_2 | A_1 A_2 \rangle = \langle S_1 | A_1 \rangle \# \langle S_2 | A_2 \rangle$.

上面的变换中,轮换与反射式显然的;折叠与展开实际上是改变了粘合顺序;剪切与粘合是将多边形一分为二与二合一的过程;最后的合并也是显然的.连通和给我们提供了分类的思路,因为简单的表示

$$\langle a|aa\rangle, \langle a, b|aba^{-1}b^{-1}\rangle$$
 (3.17)

就分别代表射影平面与环面. 为了给出最后的分类,我们希望将每一种多边形表示都通过初等变换转化为这样的标准**多边形表示**.

定义 3.13 (标准多边形表示)

称形如

$$\langle S|a_1b_1a_1^{-1}b_1^{-1}\cdots a_nb_na_n^{-1}b_n^{-1}\rangle = \langle a_1b_1|a_1b_1a_1^{-1}b_1^{-1}\rangle \#\cdots \#\langle a_nb_n|a_nb_na_n^{-1}b_n^{-1}\rangle$$
(3.18)

$$\langle S|a_1a_1a_2a_2\cdots a_ma_m\rangle = \langle a_1|a_1a_1\rangle \#\cdots \#\langle a_m|a_ma_m\rangle \tag{3.19}$$

的多边形表示为标准多边形表示(它们分别表示 nT^2 和 mP^2).

.

接下来证明,任一表示都等价于标准多边形表示.

定理 3.7

闭曲面的任一多边形表示都能化归到一个标准多边形表示.

证明

• 若表示有 ··· a ··· a ··· 的情形,则

$$\langle S, a | A_1 a A_2 a \rangle = \langle S, a, b | A_1 a b, b^{-1} A_2 a \rangle \tag{3.20}$$

$$= \langle S, a, b | bA_1 a, a^{-1} A_2^{-1} b \rangle \tag{3.21}$$

$$= \langle b|bb\rangle \# \langle S|A_1 A_2^{-1}\rangle, \tag{3.22}$$

即可以分出来一个 P^2 .

• 经过前一步, 取表示中距离其逆最近的字母, 不妨设为 a,a^{-1} , 则必然存在 b 使得表示可以轮换为

$$\cdots a \cdots b \cdots a^{-1} \cdots b^{-1} \tag{3.23}$$

的形式 (若相邻边互逆,则可直接消去),因此有

$$\langle S, a, b | A_1 a A_2 b A_3 a^{-1} A_4 b^{-1} \rangle = \langle S, a, b, c | A_1 a A_2 c, c^{-1} b A_3 a^{-1} A_4 b^{-1} \rangle$$
(3.24)

$$= \langle S, a, b, c | A_2 c A_1 a, a^{-1} A_4 b^{-1} c^{-1} b A_3 \rangle$$
 (3.25)

$$= \langle S, b, c | A_2 c A_1 A_4 b^{-1} c^{-1} b A_3 \rangle \tag{3.26}$$

$$= \langle S, b, c, d | c^{-1}bA_3A_2cd, d^{-1}A_1a_4b^{-1} \rangle$$
 (3.27)

$$= \langle S, b, c, d | A_3 A_2 c d c^{-1} b, b^{-1} d^{-1} A_1 A_4 \rangle$$
(3.28)

$$= \langle S, c, d | A_3 A_2 c d c^{-1} d^{-1} A_1 A_4 \rangle \tag{3.29}$$

$$= \langle c, d | cdc^{-1}d^{-1} \rangle \# \langle S | A_4 A_3 A_2 A_1 \rangle \tag{3.30}$$

即可以分出一个 T^2 .

上面的第一步可以将 m 对同方向相粘的边分出来得到 mP^2 , 第二步可以将 k 对两两交叉反方向相粘的边分出来得到 kT^2 (并且两种操作都没有增加表示长度), 因此任何表示都能表示为 $mP^2\#kT^2$ 的形式, 这距离最后的结果之差一点观察: $P^2\#T^2=3P^2$, 这是因为

$$\langle a, b, c | aabcb^{-1}c^{-1} \rangle = \langle a, b, c, d | abcd, d^{-1}b^{-1}c^{-1}a \rangle = \langle a, b, c, d | abcd, a^{-1}cbd \rangle$$

$$(3.31)$$

$$= \langle a, b, c, d | bcda, a^{-1}cbd \rangle = \langle a, b, c, d | bcdcbd \rangle$$
(3.32)

$$= \langle b, c, d | cbdbcd \rangle = \langle b, c, d | cdcbdb \rangle \tag{3.33}$$

$$= \langle b|bb\rangle \# \langle c, d|cdcd^{-1}\rangle \tag{3.34}$$

$$= \langle b|bb\rangle \# \langle c, d|dc^{-1}d^{-1}c^{-1}\rangle \tag{3.35}$$

$$= \langle b|bb\rangle \# \langle c|cc\rangle \# \langle d|dd\rangle \tag{3.36}$$

这里用到了两次第一种情形的结果.

第4章 同伦与基本群

拓扑中的一个基本操作就是"连续形变",可以如此刻画:元素 a 的连续形变是指一个从某参数空间 T 到该空间的连续映射,使得对某个 $t_0 \in T$ 有 $f(t_0) = a$. 很多时候会取 T = I 或 \mathbb{R} ,例如对 X 中连接 x_0, x_1 的道路,其端点固定的连续形变就是连续映射

$$F: I \to \Omega(X; x_0, x_1) = \{ \gamma \in C(I, X) : \gamma(0) = x_0, \gamma(1) = x_1 \}, \tag{4.1}$$

且满足 $F(0) = \gamma$, $F(t)(0) = x_0$, $F(t)(1) = x_1$. 这时赋予 $\Omega(X; x_0, x_1)$ 紧开拓扑.

连续形变相当于C(T,C(X,Y))中的映射,这在概念上比较复杂,事实上其中元素都——对应了一个更简单的元素

$$G \in \mathcal{M}(X \times T, Y), \quad G(x,t) := F(t)(x).$$
 (4.2)

如下命题说明了二者之间连续性的关系.

命题 4.1

设X,Y,T为拓扑空间,考虑对应关系

$$\mathcal{M}(T, \mathcal{M}(X, Y)) \longleftrightarrow \mathcal{M}(X \times T, Y)$$
 (4.3)

$$F(t)(x) \longleftrightarrow G(x,t) := F(t)(x)$$
 (4.4)

则

- $\not\equiv G \in C(T \times X, Y)$, $\not\bowtie F \in C(T, C(X, Y))$.
- 若 X 是 LCH 空间,则 $F \in C(T, C(X, Y))$ 当且仅当 $G \in C(X \times T, Y)$.

证明

4.1 同伦

4.1.1 映射的同伦

定义 4.1 (映射的同伦)

设 X,Y 为拓扑空间,对 $f,g \in C(X,Y)$,若有连续映射 $H: X \times I \to Y$ 使得 H(x,0) = f(x), H(x,1) = g(x),则称 f,g 同伦,记为 $f \sim g$.

例 4.1

• \emptyset $f,g \in C(X,E^n)$, 则可构造二者之间的同伦(直线同伦)为

$$H(x,t) = (1-t)f(x) + tg(x). (4.5)$$

• 若 $f,g \in C(X,S^n)$ 且对任意 $x \in X, f(x) \neq -g(x)$,则可构造二者之间的同伦为

$$H(x,t) = \frac{(1-t)f(x) + tg(x)}{||(1-t)f(x) + tg(x)||}.$$
(4.6)

• 若 $f,g \in C(X,S^1)$ 使得对任意 $x \in X, f(x) = -g(x)$,则可构造二者间的同伦为

$$H(x,t) = e^{i\pi t} f(x). \tag{4.7}$$

命题 4.2

同伦是 C(X,Y) 中的一种等价关系,在此关系下的等价类 $[X,Y]=C(X,Y)/\sim$ 称为同伦类,任意 $f\in C(X,Y)$ 的同伦类记为 [f].

*

证明

- 自反性:显然.
- 对称性: 构造 G(x,t) = H(x,1-t).
- 传递性:设 $f \sim g \sim k$, H_1, H_2 为同伦, 规定乘积 $H_1H_2: X \times I \rightarrow Y$ 为

$$H_1 H_2(x,t) = \begin{cases} H_1(x,2t), & 0 \leqslant t \leqslant 1/2, \\ H_2(x,2t-1), & 1/2 \leqslant t \leqslant 1, \end{cases}$$
(4.8)

则 $H_1H_2: f \sim k$.

命题 4.3 (复合、拉回、前推不依赖代表元的选取)

- $g_i \in C(X,Y), g_i \in C(Y,Z), f_0 \sim f_1, g_0 \sim g_1, \text{ } g_0 \circ f_0 \sim g_1 \circ f_1.$
- ig $\varphi \in C(X_0, X_1), f_i \in C(X_1, Y), f_0 \sim f_1, \text{ } \emptyset \text{ } f_0 \circ \varphi \sim f_1 \circ \varphi.$
- $\mathfrak{F}_{i} \psi \in C(Y_{0}, Y_{1}), f_{i} \in C(X, Y_{0}), f_{0} \sim f_{1}, \quad \mathfrak{N}_{i} \psi \circ f_{0} \sim \psi \circ f_{1}.$

证明

$$G \circ H(x,0) = G(f_0(x),0) = g_0 \circ f_0(x), \tag{4.9}$$

$$G \circ H(x,1) = G(f_1(x),1) = g_1 \circ f_0(x). \tag{4.10}$$

2. 设 $F: f_0 \sim f_1$, 由于 $\varphi \times \mathrm{Id}_I$ 连续, 因此

$$F \circ (\varphi \times \mathrm{Id}_I)(x,0) = F(\varphi(x),0) = f_0 \circ \varphi(x), \tag{4.11}$$

$$F \circ (\varphi \times \mathrm{Id}_I)(x,1) = F(\varphi(x),1) = f_1 \circ \varphi(x). \tag{4.12}$$

3. 设 $F: f_0 \sim f_1$, 由于 ψ 连续, 因此

$$\psi \circ F(x,0) = \psi \circ F(x,0) = \psi \circ f_0(x), \tag{4.13}$$

$$\psi \circ F(x,1) = \psi \circ F(x,1) = \psi \circ f_1(x). \tag{4.14}$$

定义 4.2 (零伦)

若 $f \in C(X,Y)$ 同伦于一个常值映射,则称f是零伦的.

例 4.2

- $C(\{x\},Y) \cong Y$,此时对任意 $y \in Y$,设 $f_y \in C(\{x\},Y), f_y(x) = y$,则 $f_{y_1} \cong f_{y_2}$ 当且仅当 y_1, y_2 在 Y 的同一道路分支中,因此 $[\{x\},Y]$ 实际上就是 Y 中的道路分支的集合.
- 考虑 C(I,Y),并且对任意 $f \in C(I,Y)$,考虑同伦 H(x,t) = f((1-t)x),可得 $f \cong e_{f(0)}$,因此 $C(I,Y) \cong C(\{x\},Y)$,[I,Y] 也是 Y 中的道路分支的集合.
- 设 X 为 E^n 的凸集(或者说"星形域"),则 Id_X 零伦(此时可直接构造直线同伦),即 $\mathrm{Id}_X \sim e$ (e 为 X 到自身某点的常值映射). 进一步根据前述命题可知,对任意 $f \in C(X,Y)$, $f = f \circ \mathrm{Id}_X \sim f \circ e$,因此 C(X,Y) 中任意映射零伦,[X,Y] 也为 Y 中道路分支的集合(同理可证 C(Z,X) 中的映射零伦).

定义 4.3 (相对同伦)

设 $A \subset X$, $f,g \in C(X,Y)$, 若存在 f 到 g 的同伦 H 使得对任意 $a \in A, t \in I, H(a,t) = f(a) = g(a)$, 则 称 f,g 相对 A 同伦, 记为 $f \sim g(\operatorname{rel} A)$.

注 相对同伦实际上是保持某些像相同的点不变的同伦.

命题 4.4

- 设 $A \subset X$,则C(X,Y)中相对A的同伦也是等价关系.
- 诶 $f_0 \sim f_1: X \to Y(\operatorname{rel} A), g_0 \sim g_1: Y \to Z(\operatorname{rel} B), \ \text{ \'H L } f_0(A) \subset B, \ \ \mathbb{N} \ g_0 \circ f_0 \sim g_1 \circ f_1: X \to Z.$

4.1.2 拓扑空间的同伦

定义 4.4 (拓扑空间的同伦)

设 X,Y 为拓扑空间, 若存在连续映射 $f:X\to Y,q:Y\to X$ 使得

$$f \circ g \sim \mathrm{Id}_Y, \quad g \circ f \sim \mathrm{Id}_X,$$
 (4.15)

则称 X,Y 同伦,记作 $X \sim Y$, f,g 互为同伦逆.

注

- 1. 显然同伦为弱于同胚的等价关系.
- 2. 定义中 f,g 仅在同伦意义下互逆,并不要求其本身可逆.
- 3. 绝大多数拓扑性质都不能在同伦下保持.

例 4.3

• $\mathbb{R} \sim \mathbb{R}^2$,考虑 $r: \mathbb{R}^2 \to \mathbb{R}$, r(x,y) = x; $\iota: \mathbb{R} \to \mathbb{R}^2$, $\iota(x) = (x,0)$,则 $r \circ \iota = \mathrm{Id}_{\mathbb{R}}$, $\iota \circ r: (x,y) \mapsto (x,0)$,考虑 $H: \mathbb{R}^2 \times I \to \mathbb{R}^2$, H(x, y, t) = (x, ty), (4.16)

则它给出了 $\iota \circ r$ 到 $\mathrm{Id}_{\mathbb{R}^2}$ 的同伦.

• $S^n \sim \mathbb{R}^{n+1} \setminus \{0\}$,考虑 $\iota: S^n \to \mathbb{R}^{n+1} \setminus \{0\}$ 为嵌入, $g: \mathbb{R}^{n+1} \setminus \{0\} \to S^n, x \mapsto x/|x|$,则 $g \circ \iota = \mathrm{Id}_{S^n}, \iota \circ g:$ $x \mapsto x/|x|$, 可构造直线同伦

$$F(x,t) = tx + (1-t)\frac{x}{|x|}. (4.17)$$

• 对任意拓扑空间 $X, X \times I \cong X$.

下面给出形变收缩的概念,包括上面的例子在内,许多同伦等价都与之有关.

定义 4.5 (形变收缩)

设 $A \subset X, \iota: A \to X$ 为嵌入映射, 若存在收缩映射 $r: X \to A$ (即 $r \circ \iota = \mathrm{Id}_A$) 使得 $\iota \circ r \sim \mathrm{Id}_X$, 则称 $A \to X$ 的形变收缩核. 称 $H: Id_X \sim \iota \circ r \to X$ 到 A 的一个形变收缩.

注

- 1. 显然形变收缩 H 满足 $H(x,0) = x, H(x,1) = \iota(r(x)) \in A, H(a,1) = a, \forall x \in X, a \in A.$
- 2. X 与其形变收缩核是同伦的.

例 4.4

- 乘积空间 $X \times I$ 的子集 $X_s = X \times \{s\}$ 称为其 s-切片,则每个 $\{s\}$ -切片都是形变收缩核.
- 根据前述例子, S^n 为 $\mathbb{R}^{n+1}\setminus\{0\}$ 的形变收缩核, \mathbb{R} 为 \mathbb{R}^2 的形变收缩核.
- $D^n \times \{0\} \cup S^{n-1} \times I$ 是 $D^n \times I$ 的形变收缩核,考虑以 $P(0,0,\cdots,2) \in \mathbb{R}^{n+1}$ 为中心的中心投影 r,将 $D^n \times I$ 上各点映射到 $D^n \times \{0\} \cup S^{n-1} \times I$ 上,则 r 为满足要求的收缩映射.

伦型最简单的空间就是与单点同伦的空间, 称为可缩空间.

定义 4.6 (可缩空间)

与单点空间同伦等价的拓扑空间称为可缩空间.

例 4.5

- 可缩空间必然是道路连通的,并且是单连通的.
- 对于 E^n 中的凸集,CX 是可缩的. 如果形变收缩的过程中始终保持形变收缩核中的点不动,则称该收缩为**强形变收缩**.

定义 4.7 (强形变收缩)

设 $H: X \times I \to X$ 连续, $A \subset X$, 满足

- 1. 对任意 $x \in X$, H(x,0) = x.
- 2. 对任意 $x \in X$, $H(x,1) \in A$.
- 3. 对任意 $a \in A, t \in I$, H(a,t) = a.

则称 H 是一个强形变收缩, A 为 H 的强形变收缩核.

注 形变收缩只要求最终保持 A 中点不变, 但强形变收缩要求全过程保持 A 中点不变.

定义 4.8 (映射柱)

设 $f: X \to Y$ 连续, $M_f := (X \times I \sqcup Y)/\sim$,等价关系为 $f(x) \sim (x,1)$,则称 M_f 为映射柱(相当于将 $X \times \{1\}$ 与 $f(X) \subset Y$ 粘起来).

若定义

$$\widetilde{H}: (X \times I \sqcup Y) \times I \longrightarrow X \times I \sqcup Y$$
 (4.18)

$$(x, s, t) \longmapsto (x, (1 - t)s + t) \tag{4.19}$$

$$(y,t) \longmapsto y \tag{4.20}$$

则 \widetilde{H} 是 M_f 到 Y 的强形变收缩.

例 4.6 设 $X = (\mathbb{Q} \times \mathbb{R}) \cup (\mathbb{R} \times \{0\})$ 为篦形子集, $A = \{0\} \times \mathbb{R}$ 为 y 轴,则 A 为 X 的形变收缩核,可考虑

$$H(x,y,t) = \begin{cases} (x,(1-3t)y), & 0 \le t \le \frac{1}{3} \\ ((2-3t)x,0), & \frac{1}{3} \le t \le \frac{2}{3} \\ (0,(3t-2)y), & \frac{2}{3} \le t \le 1 \end{cases}$$
(4.21)

但不存在 X 到 A 的强形变收缩.

下述命题给出了一个构造商空间形变收缩的方法.

命题 4.5

设 $f: X \to Y$ 为商映射, $A \subset X, B = f(A)$,若 H 为 X 到 A 的(强)形变收缩,并且当 $x \sim_f x'$ 时,对 任意 $t \in I$ 有 $H(x,t) \sim_f H(x',t)$,则存在 Y 到 B 的(强)形变收缩 G.

$$\begin{array}{ccc} X \times I & \xrightarrow{H} & X \\ & \downarrow^{f \times \mathrm{Id}} & & \downarrow^{f} \\ Y \times I & \xrightarrow{G} & Y \end{array}$$

证明 令 $G: Y \times I \to Y$ 为 $G(y,t) = f(H(f^{-1}(x),t))$ (根据条件可知 G 是良定的),则 $G \circ (f \times Id) = f \circ H.f:$ $X \to Y$ 为商映射,I 为 LCH 空间说明说明 $f \times Id: X \times I \to Y \times I$ 为商映射,因此 $f \circ H$ 连续说明 $G \circ (f \times Id)$ 连续,进而说明 G 连续. 由于 H 为强形变收缩,因此对任意 $g \in Y, a \in A, t \in I$ 有

$$G(y,0) = f(H(f^{-1}(y),0)) = f(f^{-1}(y)) = y,$$
 (4.22)

$$G(y,1) = f(H(f^{-1}(y),1)) \in f(A) = B,$$
 (4.23)

$$G(a,t) = f(H(f^{-1}(a),t)) = f(f^{-1}(a)) = a, (4.24)$$

因此 G 为强形变收缩, 得证.

例 4.7 拓扑锥强形变收缩到锥顶 设 $CX = X \times I/X \times \{1\}$, 记 $f: X \times I \to CX$ 为粘合映射, 作 $X \times I$ 到 $X \times \{1\}$

的强形变收缩

$$H: (X \times I) \times I \to X \times I, \quad H(x, s, t) = (x, (1 - t)s + t), \tag{4.25}$$

则由它可以得到 CX 到锥顶 $f(X \times \{1\})$ 的强形变收缩.

最后给出一个同伦的判别方法.

定义 4.9 (映射柱邻域)

若 $A \subset X$ 有邻域 N, 存在 $f: Z \to A$ 使得 $N \cong M_f$ $(h: M_f \to N)$ 为同胚), $h|_A = \mathrm{Id}_A$, $h(M_f \setminus Z)$ 为 A 的开邻域,则称 N 为 A 的映射柱邻域,

注 这里将 Z 嵌入 M_f 中的 $Z \times \{0\}$ 部分.

命题 4.6

若 $A \subset X$ 单连通且有映射柱邻域,则 $g: X \to X/A$ 为同伦等价.

4.2 道路同伦与基本群

4.2.1 道路同伦

接下来考虑特殊的映射空间 C(I,X), 即 X 上全体道路构成的空间,不过该空间在定义运算是并不良好,因此往往考虑道路的等价类的空间. 首先给出如下观察:

引理 4.1

设 $\gamma_1, \gamma_2 \in C(I, X)$,若存在连续映射 $f \in C(I, I)$ 使得 $\gamma_2 = \gamma_1 \circ f$,则 $\gamma_1 \sim \gamma_2$.

 $^{\circ}$

 $\dot{\mathbf{L}}$ 这里的 f 也称为 γ_1 的重新参数化.

证明 利用 I 的凸性, 直接考虑直线同伦 $F(s,t) = \gamma_1(tf(s) + (1-t)s)$.

一般道路不能直接当作元素建立群的结构,一方面并非任何两条道路都能相乘,另一方面道路乘法没有结合律.上面的观察给出了前者的解决方案:只要考虑道路类即可,对于后者,则可以通过端点进行分类,再建立类之间的运算,下面首先考虑具有相同端点道路的同伦,这样的同伦也称为**道路同伦**.

定义 4.10 (道路同伦)

令 $\gamma_0, \gamma_1 \in C(I, X)$ 为具有相同端点 x, y 的两条道路, 若存在 $H \in C(I \times I, X)$ 满足

$$H(s,0) = \gamma_0(s), H(s,1) = \gamma_1(s), \forall s \in [0,1]$$
(4.26)

$$H(0,t) = x, H(1,t) = y, \forall t \in [0,1]$$
(4.27)

则称 γ_0, γ_1 道路同伦,记为 $\gamma_0 \simeq \gamma_1$.

注

- 1. 在尤书上, 道路同伦称为定端同伦.
- 2. 记道路 γ 的逆为 $\bar{\gamma}(t) = \gamma(1-t)$,两个道路的乘积为 $\gamma_1 * \gamma_2$ (如果它们可乘).

引理 4.2 (道路的运算与同伦)

- 1. 对于 $\gamma_i \in \Omega(X; x_i, x_{i+1})$ 有 $(\gamma_1 * \gamma_2) * \gamma_3 \simeq \gamma * (\gamma_2 * \gamma_3)$.
- 2. 对于 $\gamma \in \Omega(X; x_1, x_2)$ 有 $e_{x_1} * \gamma \simeq \gamma, \gamma * e_{x_2} \simeq \gamma$.
- 3. 对于 $\gamma \in \Omega(X; x_1, x_2)$ 有 $\bar{\gamma} * \gamma \sim e_{x_1}, \gamma * \bar{\gamma} \simeq e_{x_2}$.
- 4. 若 γ_2 是 γ_1 的重新参数化,则 $\gamma_2 \simeq \gamma_1$.
- 5. 若 $f \in C(X,Y)$ 且在 $X + \gamma_1 \simeq \gamma_2$,则在 $Y + f \circ \gamma_1 \simeq f \circ \gamma_2$.

6. 若
$$f \in C(X,Y), \gamma_1 \in \Omega(X;x_1,x_2), \gamma_2 \in \Omega(X;x_2,x_3), \ \ \mathbb{M} \ (f \circ \gamma_1) * (f \circ \gamma_2) \simeq f \circ (\gamma_1 * \gamma_2).$$
7. 若 $f \in C(X,Y), \gamma \in \Omega(X;x_1,x_2), \ \ \mathbb{M} \ \overline{f \circ \gamma} \simeq f \circ \overline{\gamma}.$

记 $\pi(X; x, y)$ 为 X 中以 x, y 为起终点的道路所在道路类的全体(它可以看作 $\Omega(X; x, y)$ 的商集),上述引理表明,道路同伦类之间可以定义良定的代数运算,下面给出其中运算的定义。

命题 4.7 (道路同伦类上的运算)

道路同伦类可定义乘法与取逆

$$m: \pi(X; x_1, x_2) \times \pi(X; x_2, x_3) \to \pi(X; x_1, x_3), \quad ([\gamma_1], [\gamma_2]) \mapsto [\gamma_1 * \gamma_2] := [\gamma_1] * [\gamma_2]$$
(4.28)

$$i: \pi(X; x_1, x_2) \to \pi(X; x_2, x_1), \quad [\gamma] \mapsto [\bar{\gamma}] := [\gamma]^{-1}$$
 (4.29)

并且上述运算是良定的,即

$$\gamma_i \simeq \gamma_i' \Rightarrow \gamma_1 * \gamma_2 \simeq \gamma_1' * \gamma_2' \tag{4.30}$$

$$\gamma \simeq \gamma' \Rightarrow \bar{\gamma} \simeq \bar{\gamma'} \tag{4.31}$$

证明

- 设 $H_i \in C(I \times I, X)$ 为 γ_i 与 γ'_i 之间的道路同伦,则 $H = H_1 * H_2$ 就是 $\gamma_1 * \gamma_2$ 与 $\gamma'_1 * \gamma'_2$ 的道路同伦.
- 设 $H \in C(I \times I, X)$ 为哦 $\gamma = \gamma'$ 之间的道路同伦,则 $\overline{H}(s,t) = H(s,1-t)$ 为 $\overline{\gamma} = \overline{\gamma}'$ 之间的道路同伦.

推论 4.1 (道路同伦类运算的性质)

- 1. 道路同伦类的乘法是结合的.
- 2. $\pi(X; x_1, x_2)$ 中的左、右单位元为 $[e_{x_1}], [e_{x_2}].$
- 3. 任意道路类都有逆.

可以看出,道路类 $\pi(X) = \bigcup_{x,y \in X} \pi(X;x,y)$ 距离群已经很近了,但一开始的问题还没有解决:并非任意两个道路类都可以定义运算,但是注意到若 $x_1 = x_2$,则 $\pi(X;x_1,x_2)$ 中的元素是可以任意相乘的,出于这种观察,可以给出基本群的定义.

4.2.2 基本群

- $\Re \pi(X), \pi(X; x_0, x_1)$ 都不是群,但是若 $x_0 = x_1$,则 $\pi_1(X, x_0) := \pi(X; x_0, x_0)$ 是一个群,因为
- $\pi_1(X, x_0)$ 中有单位元 $e = [e_{x_0}]$.
- 任意 $[\gamma] \in \pi(X, x_0)$ 都是可逆的.
- 任意 $[\gamma_1], [\gamma_2] \in \pi(X, x_0)$ 可相乘得到 $[\gamma_1] * [\gamma_2] = [\gamma_1 * \gamma_2] \in \pi_1(X, x_0)$.

因此在道路类的乘法下,就得到了拓扑空间中的一个群结构,它最早由 Poincare 引入,称为基本群.

定义 4.11 (基本群)

称 $\pi_1(X,x_0)$ 为以 x_0 为基点的基本群.

命题 **4.8** (π₁ 的函子性)

• 设 $f \in C(X,Y)$, 则有群同态

$$\pi_1(f) = f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0)), \quad f_*([\gamma]) = [f \circ \gamma].$$
 (4.32)

• $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \oplus \pi_1(Y, y_0).$

 $\dot{\mathbf{L}}$ 这一命题说明, π_1 是带点拓扑空间范畴到群范畴的函子,其良定性包含在前面的结果中.

推论 4.2 (基本群是拓扑不变量)

若 $f: X \to Y$ 为同胚,则 f_* 是基本群 $\pi_1(X,x_0)$ 和 $\pi_1(Y,f(x_0))$ 之间的同构,也即基本群是拓扑不变量.

基本群与过去接触的拓扑性质有一些区别,例如基本群带有一个基点,下面就来讨论空间的基本群与基点 选取之间的关系.

- 首先设 X_0 为 $x_0 \in X$ 所在的道路分支,则 $\Omega(X, x_0) = \Omega(X_0, x_0)$ (注意 $x, y \in X$ 道路连通当且仅当其在某个道路分支中道路连通),进而 $\pi(X, x_0) = \pi(X_0, x_0)$,这就说明**不道路连通的两点的基本群没有关系**.
- 若 x_0, x_1 在 X 的同一道路连通分支中,则任意 $\omega \in \Omega(X; x_0, x_1)$ 都诱导了一个映射

$$\Gamma_{\omega}: \pi_1(X, x_0) \to \pi_1(X, x_1), \quad [\gamma] \mapsto [\bar{\omega} * \gamma * \omega],$$
 (4.33)

下证:

命题 4.9 (基本群的基点无关性)

设 x_0, x_1 位于 X 的同一道路连通分支中,则对任意 $\omega \in \Omega(X; x_0, x_1)$, Γ_ω 是一个群同构.

注 对于两条道路 ω_1, ω_2 ,它们诱导出的同构 $\Gamma_{\omega_1} = \Gamma_{\omega_2}$ 当且仅当 $[\omega_1 * \bar{\omega}_2] = [e_{x_0}]$. 证明 显然 Γ_{ω} 是可逆的 (因为 $(\Gamma_{\omega})^{-1} = \Gamma_{\bar{\omega}}$),只需证明 Γ_{ω} 是同态,计算可得

$$\Gamma_{\omega}([\gamma_1] * [\gamma_2]) = \Gamma_{\omega}([\gamma_1 * \gamma_2]) = [\bar{\omega} * \gamma_1 * \gamma_2 * \omega] = [\bar{\omega} * \gamma_1 * \omega] * [\bar{\omega} * \gamma_2 * \omega] = \Gamma_{\omega}([\gamma_1]) * \Gamma_{\omega}([\gamma_2]). \tag{4.34}$$

根据上述命题,在研究基本群时,往往假设空间是道路连通的,因此对任意 $x_0, x_1 \in X$ 有

$$\pi_1(X, x_0) \cong \pi_1(X, x_1),$$
(4.35)

即 X 的基本群与基点的选取无关,因此甚至可以省略基点,将基本群记为 $\pi_1(X)$. 但 $\pi_1(X)$ 中的元素没有确定的几何意义,只能视为一个"群同构类"(因为 Γ_ω 依赖道路 ω 的选取).

4.2.3 同伦不变性

本章前面大篇幅讨论同伦,就是因为在研究道路类、基本群等内容时它具有很良好的不变性. 例如对任意 $f \in C(X,Y)$,它诱导同态 $f_*: \pi_1(X,x_0) \to \pi_1(Y,f(x_0))$. 假设 $f_1,f_2 \in C(X,Y)$ 且 $f_1 \sim f_2$,固定 $x_0 \in X$,令 $F: X \times I \to Y$ 为二者之间的同伦,则

$$\lambda(t) = F(x_0, t), \quad t \in I \tag{4.36}$$

是从 $y_1 = f_1(x_0)$ 到 $y_2 = f_2(x_0)$ 的道路,因此可诱导群同态

$$\Gamma_{\lambda}: \pi_1(Y, y_1) \to \pi_1(Y, y_2), \quad [\gamma] \mapsto [\bar{\lambda} * \gamma * \lambda],$$

$$(4.37)$$

下证

引理 4.3 (诱导映射的"同伦不变性")

设 $f_1, f_2 \in C(X,Y)$ 且 $f_1 \sim f_2$, 则作为从 $\pi_1(X,x_0)$ 到 $\pi_1(Y,y_2)$ 的群同态有 $(f_2)_* = \Gamma_\lambda \circ (f_1)_*$.

证明 对任意 $[\gamma] \in \pi_1(X, x_0)$,只需构造 $f_2 \circ \gamma = \bar{\lambda} * (f_1 \circ \gamma) * \lambda$ 之间的道路同伦,先考虑 $f_1 \circ \gamma = f_2 \circ \gamma$ 之间的同伦

$$G: I \times I \to Y, \quad G(s,t) = F(\gamma(s),t),$$
 (4.38)

再取 λ_t 为 $\lambda(t)$ 到 $\lambda(1) = y_2$ 的沿 λ 的道路 (重新作适当参数化即可), 则将其接起来可得 $\bar{\lambda}_t * G(s,t) * \lambda_t$ 为从 $\bar{\lambda} * (f_1 \circ \gamma) * \lambda$ 到 $f_2 \circ \gamma$ 的道路同伦.

不止是诱导映射,基本群也具有同伦不变性.

定理 4.1 (基本群的同伦不变性)

若 $X \sim Y$, 则 $\pi_1(X) \cong \pi_1(Y)$.

证明 设 $f \in C(X,Y), g \in C(Y,X)$ 满足 $f \circ g \sim \mathrm{Id}_Y, g \circ f \sim \mathrm{Id}_X$,则

$$\Gamma_{\lambda} \circ f_* \circ g_* = \text{Id} : \pi_1(Y, f(x_0)) \to \pi_1(Y, f(x_0)),$$
 (4.39)

$$\Gamma_{\bar{\lambda}} \circ g_* \circ f_* = \operatorname{Id} : \pi_1(X, x_0) \to \pi_1(X, x_0), \tag{4.40}$$

由 Γ_{λ} 为同构可知 g_* 单 f_* 满, 同理 f_* 单 g_* 满, 故 f_* 为同构.

推论 4.3

若 A 为 X 的形变收缩核,则 $\pi_1(A) \cong \pi_1(X)$.

 \Diamond

借助基本群可以更细致刻画"连通性".

定义 4.12 (单连通空间)

设 X 道路连通, 若其基本群是平凡群, 即 $\pi_1(X) \cong \{e\}$, 则称 X 为单连通空间.

•

例 4.8 欧式空间中的凸集、星形域都是单连通的.

推论 4.4

任意可缩空间都是单连通的.

 \odot

4.3 基本群的计算

4.3.1 $S^n(n \ge 2)$ 的基本群

利用两极作球极投影, S^n 可以分解为两个单连通开集的并,即 $U=S^n\setminus\{(0,\cdots,1)\}$ 和 $V=S^n\setminus\{(1,\cdots,0)\}$,因此只需证明如下命题:

命题 4.10 (并集的单连通性)

设 $X = U \cup V$, U, V 为X 的单连通开集且 $U \cap V$ 道路连通,则X 是单连通的.

证明 取 $x_0 \in U \cap V$ 为基点,令 $\gamma \in \Omega(X, x_0)$,则 $\gamma^{-1}(U), \gamma^{-1}(V)$ 是 [0,1] 的开覆盖,由 Lebesgue 数引理,存在划分 $0 = t_0 < t_1 < \dots < t_n = 1$ 使得 $\gamma([t_i, t_{i+1}]) \subset U$ 或V,对任意 i, $U, V, U \cap V$ 的道路连通性保证可取 $\lambda_i \in \Omega(x_0, \gamma(t_i))$ 且 $\lambda_i \in \gamma(t_i)$ 位于同一 U 或 V 中,令 $\gamma_i \not \to \gamma([t_{i-1}, t_i])$ 重新参数化后的曲线,则

 $\gamma \simeq \gamma_1 * \gamma_2 * \cdots * \gamma_n \simeq (\gamma_1 * \bar{\lambda}_1) * (\lambda_1 * \gamma_2 * \bar{\lambda}_2) * \cdots * (\lambda_{n-1} * \gamma_n) \sim e_{x_0} * e_{x_0} * \cdots e_{x_0} \sim e_{x_0},$ 因此 X 是单连通的.

推论 4.5

- $\forall n \geq 2, \ \pi_1(S^n) \cong \{e\}.$
- 对任意 $n \ge 3$ 有 $\pi_1(\mathbb{R}^n \setminus \{0\}) \cong \{e\}$.

 \sim

4.3.2 S¹ 的基本群

我们将 S^1 嵌入 \mathbb{C} 中,取基点 $x_0 = 1$,对任意 $n \in \mathbb{Z}$,考虑沿 S^1 逆时针匀速转动 n 周的圈(正负可视为方向)

$$\gamma_n: [0,1] \to S^1, \quad t \mapsto e^{2\pi i n t},$$

$$\tag{4.42}$$

下面将证明,这些圈对应的等价类 $[\gamma_n]$ 恰好构成了 S^1 的基本群,也就是说

定理 4.2 (S¹ 的基本群)

 $\pi_1(S^1, x_0) \cong \mathbb{Z}$, 其生成元为 $[\gamma_1], [\gamma_{-1}]$.

直接处理 S^1 比较麻烦,注意到 $S^1 \cong \mathbb{R}/\mathbb{Z}$,商映射为 $p(x) = e^{2\pi i x}$,因此可以将 S^1 中以 $x_0 = 1$ 为基点的对象 "提升"为 \mathbb{R} 上以 0 为基点的对象(因为 \mathbb{R} 是单连通的).

定义 4.13 (映射的提升)

设 X 为拓扑空间, $f: X \to S^1$ 连续, 若存在映射 $\tilde{f}: X \to \mathbb{R}$ 满足 $p \circ \tilde{f} = f$, 则称 \tilde{f} 是 f 的一个提升.

这里的过程将在后面被推广到覆叠空间中. 下面会用到一些提升性质, 也将在未来证明.

引理 4.4 (道路提升性质)

 S^1 中任意以 1 为起点的道路 $\gamma \in C(I, S^1)$, 可唯一提升为 \mathbb{R} 中一条起点为 0 的道路 $\tilde{\gamma}$.

\sim

引理 4.5 (同伦提升性质)

任意 S^1 中固定起点为 1 的同伦 F,可唯一提升为 $\mathbb R$ 中固定起点为 0 的同伦 $\widetilde F$. 特别地,若 F 是道路同伦 (即有固定终点 x_0),则 $\widetilde F$ 也是道路同伦 (即存在 $x\in p^{-1}(x_0)$ 使得 $\widetilde F(1,t)=x$) .

证明 【 S^1 基本群的证明】我们希望证明 $\Phi: \mathbb{Z} \to \pi_1(S^1, x_0), n \mapsto [\gamma_n]$ 是同构.

【STEP 1. 证明 Φ 是同态】

记平移映射 $T_m: \mathbb{R} \to \mathbb{R}, T_m(x) = x + m$,根据 \mathbb{R} 的单连通性可得 $\tilde{\gamma}_{m+n} \simeq \tilde{\gamma}_m * (T_m \circ \tilde{\gamma}_n)$,因此

$$\gamma_{m+n} = p \circ \tilde{\gamma}_{m+n} \simeq p \circ (\tilde{\gamma}_m * (T_m \circ \tilde{\gamma}_n)) = (p \circ \tilde{\gamma}_m) * (p \circ T_m \circ \tilde{\gamma}_n) = \gamma_m * \gamma_n, \tag{4.43}$$

这就说明 $\Phi(m+n) = [\gamma_{m+n}] = [\gamma_m * \gamma_n] = [\gamma_m] * [\gamma_n] = \Phi(m) * \Phi(n)$.

【STEP 2. 证明 Φ 是满射】

设 $\gamma \in \Omega(S^1;1)$, 由道路提升引理可知存在提升 $\tilde{\gamma} \in C(I,\mathbb{R})$ 使得 $\gamma = p \circ \tilde{\gamma}$, 并且 $\tilde{\gamma}(1) = n \in \mathbb{Z}$, \mathbb{R} 单连通说明 $\tilde{\gamma} \simeq \tilde{\gamma}_n$, 因此

$$\gamma = p \circ \tilde{\gamma} \simeq p \circ \tilde{\gamma}_n = \gamma_n, \tag{4.44}$$

即 $[\gamma] = [\gamma_n] = \Phi(n)$, 得证.

【STEP 3. 证明 Φ 是单射.】

假设 $\Phi(n) = \Phi(m)$, 即存在连接 γ_n, γ_m 的道路同伦 $F: I \times I \to S^1$, 由同伦提升引理可得提升 $\widetilde{F}: I \times I \to \mathbb{R}$ 使得 $F = p \circ \widetilde{F}$, 且满足 $\widetilde{F}(0,0) = \widetilde{F}(0,1) = 0$, 由道路提升的唯一性可知

$$\widetilde{F}(s,0) = \widetilde{\gamma}_n(s) = ns, \quad \widetilde{F}(s,1) = \widetilde{\gamma}_m(s) = ms,$$

$$(4.45)$$

而 F 为道路同伦,由提升引理的后半部分可得

$$n = \tilde{\gamma}_n(1) = \widetilde{F}(1,0) = \widetilde{F}(1,1) = \widetilde{\gamma}_m(1) = m,$$
 (4.46)

得证.

4.4 基本群理论的应用

¶Brouwer 不动点定理

定理 4.3 (Brouwer 不动点定理)

设 f 为 D^n 到自身的连续映射,则存在 $x \in D^n$ 使得 f(x) = x.

借助基本群,可以证明二维情形.

证明 【二维情形的不动点定理】若不然,考虑连续映射

$$g: D^n \to S^{n-1}, \quad g(x) = \frac{x - f(x)}{||x - f(x)||},$$
 (4.47)

显然 $g|_{S^{n-1}} = \mathrm{Id}_{S^{n-1}}$, 若设 $\iota: S^{n-1} \to D^n$ 为嵌入,则 $g \circ \iota = \mathrm{Id}_{S^{n-1}}$,因此

$$(g \circ \iota)_* = g_* \circ \iota_* = \mathrm{Id} : \pi_1(S^{n-1}) \to \pi_1(S^{n-1}),$$
 (4.48)

这就说明 $g_*: \pi_1(D^n) \to \pi_1(S^{n-1})$ 为满同态,但当 n=2 时 $\pi_1(D_2) \cong \{e\}, \pi_1(S^1) \cong \mathbb{Z}$,矛盾.

¶代数基本定理

定理 4.4 (代数基本定理)

€上的次数大于0的多项式必有根.

 \Diamond

证明 假设 $P(z) = \sum_{i=0}^{n} a_i z^i$ 在 \mathbb{C} 中无根,不妨设 $a_0 \neq 0, a_n = 1$,对任意 r > 0,令

$$f_r: S^1 \to S^1, \quad f_r(z) = \frac{P(rz)}{||P(rz)||},$$
 (4.49)

则显然对任意 r 有 $f_r \sim f_0$,而 $f_0(z) = \frac{a_0}{||a_0||}$ 为常值映射,说明 f_r 零伦,而 $\lim_{r\to\infty} f_r(z) = h_n(z) = z^n$,因此当 r 充分大时 $|f_r - h|$ 充分小,即有连接 f_r, h_n 的同伦

$$H(z,t) = \frac{tf_r(z) + (1-t)h(z)}{||tf_r(z) + (1-t)h(z)||},$$
(4.50)

但 h_n 不是零伦的 (诱导同态非平凡), 矛盾.

¶Borsuk-Ulam 定理

定理 4.5 (Borsuk-Ulam)

对任意连续映射 $f: S^n \to \mathbb{R}^n$,存在 $x_0 \in S^n$ 使得 $f(x_0) = f(-x_0)$.

对于一维情形,考虑奇函数 F(x) = f(x) - f(-x),若 F 存在零点则得证,否则对于某个 a,F(a), $F(-a) = -F(a) \in F(S^1)$,由中值定理即得. 下面借助基本群证明二维情形.

证明 【二维 Borsuk-Ulam 定理】若不然,设 $f:S^2\to\mathbb{R}^2$ 使得对任意 $x\in S^2$ 都有 $f(x)\neq f(-x)$,考虑连续映射

$$g: S^2 \to S^1, \quad g(x) = \frac{f(x) - f(-x)}{||f(x) - f(-x)||},$$
 (4.51)

显然 g(-x)=-g(x), 设 $\iota:S^1\to S^2$ 为嵌入映射 (将赤道嵌入球面), $h=g\circ\iota:S^1\to S^1$, 不妨设 h(1)=1, 则对任意 $[\gamma]\in\pi_1(S^1,1)$ 有

$$h_*([\gamma]) = [h \circ \gamma] = [g \circ \iota \circ \gamma] = g_*([\iota \circ \gamma]) = g_*([e_1]) = e_1,$$
 (4.52)

因此由映射提升引理,存在提升 $\tilde{h}: S^1 \to \mathbb{R}$ 使得 $p \circ \tilde{h} = h$,并且对任意 $x \in S^1$ 有

$$p \circ \tilde{h}(-x) = h(-x) = -h(x) = -p \circ \tilde{h}(x),$$
 (4.53)

由此可得 $\tilde{h}(-x) - h(x) \in \mathbb{Z} + \frac{1}{2}$, 由连续性可知存在 $n \in \mathbb{Z}$ 使得 $\tilde{h}(-x) - h(x) = n + \frac{1}{2}$. 令 $F = \tilde{h} \circ p$ 可得

$$F(x+\frac{1}{2}) = \tilde{h} \circ p(x+\frac{1}{2}) = \tilde{h}(-p(x)) = \tilde{h}(p(x)) + n + \frac{1}{2} = F(x) + m + \frac{1}{2}, \tag{4.54}$$

令 x = 1/2 可得 $F(0) \neq F(1)$, 即 $p(0) \neq p(1)$, 矛盾.

由此可得,不存在 S^2 到 \mathbb{R}^2 的连续单射,因此有

推论 4.6

 \mathbb{R}^2 中不存在同胚于 S^2 的子集.

 \Diamond

4.5 Van-Kampen 定理

4.5.1 群的自由积

定义 4.14 (群的自由积)

设G, H 为群,定义其自由积为

$$G * H = \{g_1 \cdots g_n : g_i \in G \not \preceq H\}, \tag{4.55}$$

其中 $g_1 \cdots g_n$ 称为字,是形式上的乘积,它们在连接和反转取逆构成群 (类比群的表现).

注

- 1. 自由积实际上是群范畴中的余积.
- 2. 若 G_{α} 有表现 $\langle S_{\alpha} | R_{\alpha} \rangle$, 则 $*_{\alpha} G_{\alpha} = \langle \bigcup_{\alpha} S_{\alpha} | \bigcup_{\alpha} R_{\alpha} \rangle$.

例 4.9

- 交换群的自由积可能非交换: $\mathbb{Z} * \mathbb{Z} = \langle a, b \rangle$.
- 有限群的自由积可能无限: $\mathbb{Z}/3\mathbb{Z} * \mathbb{Z}/4\mathbb{Z} = \langle a, b | a^3 = b^4 = 1 \rangle$.
- $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} = \langle a, b | a^2 = b^2 = 1 \rangle = \{1, a, b, ab, ba, aba, bab, abab, \cdots \}.$
- 对任意集合 S, $\langle S \rangle = *_{s \in S} \mathbb{Z}$.

命题 4.11 (自由积的泛性质)

对于群 H 以及一族同态 $\varphi_{\alpha}: G_{\alpha} \to H$, 存在唯一同态 $\varphi: *_{\beta}G_{\beta} \to H$, 使得对任意 $g_{k} \in G_{\alpha_{k}}$ 都有

$$\varphi(g_1 \cdots g_n) = \varphi_{\alpha_1}(g_1) \cdots \varphi_{\alpha_n}(g_n). \tag{4.56}$$

后文中用[·]表示"生成的正规子群".

定义 4.15 (群的融合自由积)

设 F, G, H 为三个群,有同态 $\varphi: F \to G, \psi: F \to H$,记 $N = [\varphi(a)\psi(a)^{-1}: a \in F]$,称

$$G *_F H := (G * H)/F$$
 (4.57)

为 G, H 相对于同态 φ, ψ 的融合自由积.

 $\dot{\mathbf{L}}$ 融合自由积的定义可以推广到一族群 G_{α} 以及一族映射 $\varphi: F \to G_{\alpha}$ 上.

根据定义,融合自由积实际上是在G*H中模掉关系 $\varphi(a)=\psi(a), \forall a\in S$ 得到的商群.

4.5.2 Van-Kampen 定理

设 $X = \bigcup_{\alpha} A_{\alpha}$,其中每个 A_{α} 均为道路连通开集,取 $x_0 \in \bigcap_{\alpha} A_{\alpha}$,设嵌入映射 $A_{\alpha} \hookrightarrow X$, $A_{\alpha} \cap A_{\beta} \hookrightarrow A_{\alpha}$ 诱导的基本群同态为

$$j_{\alpha}: \pi_1(A_{\alpha}, x_0) \to \pi_1(X, x_0), \quad \iota_{\alpha\beta}: \pi_1(A_{\alpha} \cap A_{\beta}, x_0) \to \pi_1(A_{\alpha}, x_0),$$
 (4.58)

根据自由积的泛性质,所有的 j_{α} 诱导了唯一同态

$$\Phi: *_{\alpha}\pi_1(A_{\alpha}, x_0) \to \pi_1(X, x_0), \tag{4.59}$$

Van-Kampen 定理说明了这一映射的性质,进而给出了计算 $\pi_1(X,x_0)$ 的一种方法.

定理 4.6 (Van-Kampen 定理 (一般版本))

设 $X=\bigcup_{\alpha}A_{\alpha}, x_{0}\in\bigcap_{\alpha}A_{\alpha}$,每个 A_{α} 为道路连通开集, $j_{\alpha}, \iota_{\alpha\beta}, \Phi$ 如上定义,则

- 1. 若任意两个 A 的交集道路连通,则 Φ 是满同态.
- 2. 若任意三个 A 的交集道路连通,则

$$\pi_1(X, x_0) \cong *_{\alpha} \pi_1(A_{\alpha}, x_0)/N,$$
(4.60)

其中 $N = [\iota_{\alpha\beta}(\omega)\iota_{\beta\alpha}(\omega)^{-1}]$, 即由所有形如 $\iota_{\alpha\beta}(\omega)\iota_{\beta\alpha}(\omega)^{-1}$ 的元素生成的正规子群.

C

第一部分的证明与计算 $S^n(n \ge 2)$ 的基本群的过程类似.

证明 【Van-Kampen 定理-Part 1】设 $\gamma: I \to X$ 为以 x_0 为基点的圈,由 Lebesgue 数引理,存在划分

$$0 = s_0 < s_1 < \dots < s_n = 1, \exists A_i, \gamma([s_i, s_{i+1}]) \subset A_i, \tag{4.61}$$

取 λ_i 为 $U_i \cap U_{i+1}$ 中连接 $x_0, \gamma(s_i)$ 的道路,则

$$\gamma \simeq (\gamma_1 * \bar{\lambda}_1) * (\lambda_1 * \gamma_2 * \bar{\lambda}_2) * \cdots * (\lambda_{n-1} * \gamma_n), \tag{4.62}$$

由于每个 $\lambda_i * \gamma_{i+1} * \bar{\lambda}_{i+1} \subset A_{\alpha}$, 因此 $[\gamma] \in \text{Im}(\Phi)$, 即 Φ 为满射.

证明 【Van-Kampen 定理-Part 2】

【STEP 1. 问题的转化】

设 $k_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to X$ 为嵌入,则 $(k_{\alpha\beta})_* = j_{\alpha} \circ \iota_{\alpha\beta} = j_{\beta} \circ \iota_{\beta\alpha} = (k_{\beta\alpha})_*$,因此

$$\phi(\iota_{\alpha\beta}(\omega)\iota_{\alpha\beta}(\omega)^{-1}) = j_{\alpha} \circ \iota_{\alpha\beta}(\omega)j_{\beta} \circ \iota_{\beta\alpha}(\omega)^{-1} = (k_{\alpha\beta})_{*}(\omega)(k_{\alpha\beta})_{*}(\omega)^{-1} = e, \tag{4.63}$$

因此 $N \subset \text{Ker } \Phi$, 由同态定理可知存在满同态

$$\overline{\Phi}: *_{\alpha}\pi_1(U_{\alpha}, x_0)/N \to \pi_1(X, x_0), \tag{4.64}$$

只需证明 $\overline{\Phi}$ 为单射,考虑 $*_{\alpha}\pi_{1}(U_{\alpha},x_{0})$ 中字的如下操作:

操作 1: 若字的相邻两项 $[\gamma_i]$, $[\gamma_{i+1}]$ 在同一个 $\pi_1(U_\alpha, x_0)$ 中,则用 $[\gamma_i * \gamma_{i+1}]$ 替换它.

操作 2: 若字中含有 $[\gamma_i] \in \pi_1(U_\alpha, x_0)$, 并且 $\gamma_i \in U_\alpha \cap U_\beta$ 中的圈,则可将其替换为 $[\gamma_i] \in \pi_1(U_\beta, x_0)$.

上述两种操作不会改变字在 $*_{\alpha}\pi_{1}(U_{\alpha},x_{0})/N$ 中的像,因此只需证明: 若 $\Phi([\gamma_{1}]\cdots[\gamma_{M}])=\Phi([\gamma'_{1}]\cdots[\gamma'_{N}])$,则 $[\gamma_{1}]\cdots[\gamma_{M}]$ 可以通过有限步上述操作变为 $[\gamma'_{1}]\cdots[\gamma'_{N}]$

【STEP 2. 砖块分解】

设 $\Phi([\gamma_1]\cdots[\gamma_M]) = \Phi([\gamma_1']\cdots[\gamma_N']) = [\gamma]$, 则在 X 中有(根据定义, Φ 实际上是将这些道路类嵌入 X 中后 再相乘)

$$\gamma_1 * \dots * \gamma_M \simeq \gamma \simeq \gamma_1' * \dots * \gamma_N', \tag{4.65}$$

其中每个 γ_i, γ_i' 都是某个 U_α 中的自环,设 $F: I \times I \to X$ 为连接 $\gamma_1 * \cdots * \gamma_M$ 和 $\gamma_1' * \cdots * \gamma_N'$ 的道路同伦,则由 Lebesgue 数引理,可以将 $I \times I$ 分割为"砖块墙",即有限个小矩形 $R_{ij} = [s_j^i, s_{j+1}^i] \times [t_i, t_{i+1}]$,其中 $0 = t_0 < \cdots < t_K = 1$, $0 = s_0^i < \cdots < s_{k(i)}^i = 1$,并且满足:

- 每个 $F(R_{ij})$ 包含在某个 U_{α} 中, 记为 U_{ij} .
- k(0) = M, k(K) = N, 并且 $s_i^0 = \frac{j}{M}, s_i^K = \frac{j}{N}$ (或者说顶底两层的分割是均匀的).

• $I \times I$ 中的点至多位于三个矩形 R_{ij} 中.

图 4.1: 砖块分解

注意到如下事实:

- 1. 由于 F 为道路同伦,因此它将左、右两边都映为 x_0 ,因此若 λ 是 $I \times I$ 中一条从左边到右边的道路,则 $F|\lambda$ 是一个以 x_0 为基点的圈.
- 2. 由于每点 v 至多位于三个矩形中,因此其像 F(v) 属于至多三个 U_{ij} 的交集中,这样的集合道路连通,因此存在一条连接 x_0 , F(v) 的道路 λ_v (若 $F(v)=x_0$, 则取为常值道路).

【STEP 3. 自下而上证明】

方便起见,可以将砖块从左到右,从下到上编号为 R_1, \cdots, R_L ,对每个 $0 \le r \le L$,记 λ_r 为将前 r 个矩形与剩余矩形分开的道路,它包含至多一条竖直边和若干条水平边,根据对于 λ_r 经过的每个顶点 v,仿照满射的证明,可以添加一些道路 $\mu_v, \bar{\mu}_v$ 将 F_{λ_r} 分解为若干以 x_0 为基点的自环,并且每个圈都在某个 U_α 中,因此每条折线都给出了 $*_\alpha\pi_1(U_\alpha, x_0)$ 的一个字,在这种观点下,恰有 $\lambda_0 = [\gamma_1] \cdots [\gamma_M], \lambda_L = [\gamma_1'] \cdots [\gamma_M']$,因此只需证明,每个 λ_r 可以通过有限步操作变为 λ_{r+1} .

注意到 λ_r, λ_{r+1} 之间的差别只是将 R_{r+1} 中的上右边替换为左下边,借助操作 2,可以将上右边(对于边上的每个顶点 v,添加一些 $\lambda_v, \bar{\lambda}_v$)转化为 R_{r+1} 所在 U_{r+1} 中的道路,再通过操作 1 连接起来,而 $F|_{R_{r+1}}$ 可以在 U_{r+1} 中将上右边同伦到左下边,再借助操作 1 的逆,将其分解即可.

有时候为了方便起见,会使用一些约化版本的 Van-Kampen 定理.

定理 4.7 (Van-Kampen 定理 (约化版本))

设 $X = A_1 \cup A_2, x_0 \in A_1 \cup A_2$,其中 $A_1, A_2, A_1 \cap A_2$ 道路连通,则

$$\pi_1(X, x_0) \cong \pi_1(A_1, x_0) *_{\pi_1(A_1 \cap A_2, x_0)} \pi_1(A_2, x_0).$$
 (4.66)

特别地有

- 若 A_2 单连通,则 $\pi_1(X, x_0) \cong \pi_1(A_1, x_0)/[j_1(\omega) : \omega \in \pi_1(A_1, x_0)].$

4.5.3 Van-Kampen 定理的应用

¶楔和

定义 4.16 (楔和)

对于拓扑空间 X,Y,定义其楔和为 $X \vee Y = X \sqcup Y/\{x_0 \sim y_0\}$,即将 X 中的一点和 Y 中的一点粘合起来的空间.

注 楔和也称为"一点和",可推广到任意一族拓扑空间,即在每个空间中取一点,将它们粘合.

例 4.10 圆周楔和的基本群 设 $X = S^1 \vee S^1$, $A_1 = X \setminus \{x\} \sim S^1$, $A_2 = X \setminus \{y\} \sim S^1$, $A_1 \cap A_2 = X \setminus \{x,y\} \sim pt$, 因此

$$\pi_1(A_1 \cap A_2) = \{e\} \Rightarrow N = \{e\}, \pi_1(X, x_0) \cong \mathbb{Z} * \mathbb{Z}.$$
 (4.67)

借助上面的方法可得 n 的 S^1 的楔和 $S^1 \vee \cdots \vee S^1$ 的基本群同构于 $*_{k=1}^n \mathbb{Z}$. 这种方法可以进行一些推广:

命题 4.12 (楔和的基本群)

设 $x_{\alpha} \in X_{\alpha}$, 将所有 x_{α} 粘合得到 $\bigvee_{\alpha} X_{\alpha}$, 并且每个 x_{α} 有可缩邻域 N_{α} , 则 $\pi_{1}(\bigvee_{\alpha} X_{\alpha}) = *_{\alpha}\pi_{1}(X_{\alpha})$.

٨

证明 令 $A_{\alpha} = X_{\alpha} \cup (\bigcup_{\beta \neq \alpha} N_{\beta}) \subset \bigvee_{\alpha} X_{\alpha}$, 则 $A_{\alpha} \cap A_{\beta} = \bigcup_{\gamma} N_{\gamma}$, 因此任意三个 A_{α} 的交(恰好是所有 N_{γ} 的交)道路连通,而任意 $A_{\alpha} \cap A_{\beta}$ 可缩说明 $N = \{e\}$,由 Van-Kampen 定理即得.

¶ 闭曲面分类定理

借助 Van-Kampen 定理,可以完成闭曲面分类定理的证明.

引理 4.6

- $\pi_1(T^2) = \mathbb{Z} \oplus \mathbb{Z} = \langle a, b | ab = ba \rangle$.
- $\pi_1(P^2) = \mathbb{Z}/2\mathbb{Z} = \langle a|a^2 = 1 \rangle$.

证明

1. 考虑其多边形表示 X,任取内部一点 x,令 $X_1=X\setminus\{x\}, X_2=(D^2)^\circ$ 为包含 x 且在 X 内部的圆盘,则 $X=X_1\cup X_2$,易得

$$X_1 \sim S^1 \vee S^1 \Rightarrow \pi_1(X_1) \cong \mathbb{Z} * \mathbb{Z}, X_2 \sim pt \Rightarrow \pi_1(X_2) \cong \{e\}, X_1 \cap X_2 \sim S^1 \Rightarrow \pi_1(X_0) \cong \mathbb{Z}, \tag{4.68}$$

由 Van-Kampen 定理

$$\pi_1(X) \cong \pi_1(X_1) *_{\pi_1(X_1 \cap X_2)} \pi_1(X_2) = \mathbb{Z} * \mathbb{Z}/[j_1(\omega) : \omega \in \pi_1(X_1)], \tag{4.69}$$

其中 $\iota_{12}: \pi_1(X_1 \cap X_2) \to \pi_1(X_1)$,并且 $\pi_1(X_1 \cap X_2)$ 的生成元可以被形变到边界环路 $aba^{-1}b^{-1}$,其中 a,b 也是 $\pi_1(X_1)$ 的生成元,因此 $\iota_{12}(1) = aba^{-1}b^{-1}$,即得

$$\pi_1(T^2) \cong \langle a, b | aba^{-1}b^{-1} = 1 \rangle \cong \mathbb{Z} \oplus \mathbb{Z}. \tag{4.70}$$

2. 类似地,考虑其多边形表示 X,任取内部一点 x,令 $X_1 = X \setminus \{x\}, X_2 = (D^2)^\circ$ 为包含 x 且在 X 内部的圆盘,则 $X = X_1 \cup X_2$,易得

$$X_1 \sim S^1 \Rightarrow \pi_1(X_1) \cong \mathbb{Z}, X_2 \sim pt \Rightarrow \pi_1(X_2) \cong \{e\}, X_1 \cap X_2 \sim S^1 \Rightarrow \pi_1(X_0) \cong \mathbb{Z}, \tag{4.71}$$

由 Van-Kampen 定理

$$\pi_1(X) \cong \pi_1(X_1) *_{\pi_1(X_1 \cap X_2)} \pi_1(X_2) = \mathbb{Z} * \mathbb{Z}/[j_1(\omega) : \omega \in \pi_1(X_1)], \tag{4.72}$$

其中 $\iota_{12}: \pi_1(X_1 \cap X_2) \to \pi_1(X_1)$, 并且 $\pi_1(X_1 \cap X_2)$ 的生成元可以被形变到边界环路 aa, 其中 $a \not\in \pi_1(X_1)$ 的生成元,因此 $\iota_{12}(1) = a^2$,即得

$$\pi_1(P^2) \cong \langle a|a^2 = 1\rangle \cong \mathbb{Z}/2\mathbb{Z}.$$
 (4.73)

借助上面引理可以计算 nT^2 , mP^2 的基本群, 以 $X=2T^2=T^2\#T^2$ 为例, 它可以分解为两部分 $X=X_1\cup X_2$, 并且

$$\pi_1(X_1) \cong \mathbb{Z} * \mathbb{Z} = \langle a_1, b_1 \rangle, \pi_1(X_2) \cong \mathbb{Z} * \mathbb{Z} = \langle a_2, b_2 \rangle, \pi_1(X_1 \cap X_2) \cong \mathbb{Z}, \tag{4.74}$$

包含映射的两个诱导同态分别由

$$\iota_{12}(1) = a_1 b_1 a_1^{-1} b_1^{-1}, \iota_{21}(1) = b_2 a_2 b_2^{-1} a_2^{-1}$$

$$(4.75)$$

给出,因此

$$\pi_1(2T^2) \cong \langle a_1, b_1, a_2, b_2 | a_1 b_1 a_1^{-1} b_1^{-1} a_2 b_2 a_2^{-1} b_2^{-1} = 1 \rangle, \tag{4.76}$$

进一步归纳可得, nT^2 , mP^2 的基本群在形式上与其多边形表示相同.

定理 4.8 (闭曲面的基本群)

- $\pi_1(nT^2) \cong \langle a_1, b_1, \cdots, a_n, b_n | a_1b_1a_1^{-1}b_1^{-1} \cdots a_nb_na_n^{-1}b_n^{-1} = 1 \rangle$.
- $\pi_1(mP^2) \cong \langle a_1, \cdots, a_n | a_1^2 \cdots a_m^2 = 1 \rangle$.

有时候比较不同群的自由积比较麻烦(一些简单群的自由积也会比较复杂),类似借助基本群比较拓扑空间的不同,可以借助**交换化函子**将群范畴中的问题转化到 Abel 群范畴.

定义 4.17 (群的交换化)

设 G 为群, $G' = \langle aba^{-1}b^{-1} : a,b \in G \rangle$ 为其导群, 称 G/G' 为 G 的交换化, 可记为 Ab(G).

注 易知 $G' \triangleleft G$, 并且 G/G' 为交换群.

推论 4.7 (Ab 的函子性)

- 若 $G \cong H$, 则 $Ab(G) \cong Ab(H)$.
- $Ab(*_{\alpha}G) \cong \bigoplus_{\alpha} G$.
- $Ab(G/H) \cong Ab(G)/Ab(H)$.
- 若设 $j_i:G_i\to G_i/G_i'=Ab(G_i),\widetilde{\pi}=Ab(\pi)$,则下图可交换

$$G_1 \xrightarrow{\pi} G_2$$

$$\downarrow^{j_1} \qquad \qquad \downarrow^{j_2}$$

$$Ab(G_1) \xrightarrow{\widetilde{\pi}} Ab(G_2)$$

 $^{\circ}$

命题 4.13

- $Ab(\langle a_1, b_1, \cdots, a_n, b_n | [a_1, b_1] \cdots [a_n, b_n] = 1 \rangle) = \mathbb{Z}^{2n}$.
- $Ab(\langle a_1, \cdots, a_n | a_1^2 \cdots a_n^2 = 1 \rangle) = \mathbb{Z}^{n-1} \oplus \mathbb{Z}/2\mathbb{Z}.$

证明 注意到由 $[a_1,b_1]\cdots[a_n,b_n]\in *_{i=1}^{2n}\mathbb{Z}$ 生成群的交换化是平凡群,而由 $a_1^2\cdots a_n^2\in *_{i=1}^n\mathbb{Z}$ 生成群的交换化是 $2\mathbb{Z}$.

上面的命题说明: $\{n\mathbb{T}^2, m\mathbb{P}^2\}$ 对闭曲面完成了完全分类.

¶ 更多例子

例 4.11 环面加射影平面 $\pi_1(T^2 \# P^2) \cong \pi_1(3P^2)$.

设 $X = X_1 \cup X_2$,其中 X_1 为包含中心 Mobius 环的小圆盘, X_2 为外围区域, $X_1 \cap X_2 \sim \mathbb{Z}$. 则

$$\pi_1(X_1) = \mathbb{Z}, \pi_1(X_2) = \mathbb{Z} * \mathbb{Z} = \langle a, b \rangle, \pi_1(X_1 \cap X_2) = \mathbb{Z}, \tag{4.77}$$

若设中心 Mobius 带的边为 cc,则 $\iota_{12}(1) = c^{-2}$, $\iota_{21}(1) = aba^{-1}b^{-1}$,因此

$$\pi_1(T^2 \# P^2) = \langle a, b, c | aba^{-1}b^{-1}c^2 = 1 \rangle \cong \langle a, b, c | a^2b^2c^2 = 1 \rangle = \pi_1(3P^2). \tag{4.78}$$

例 4.12

¶由群构造拓扑空间

任意拓扑空间都有基本群,那么反过来,对任意群 G,能否构造拓扑空间 X 使得 $\pi_1(X) \cong G$?答案是肯定的. 由于任意群都是自由群的商群,因此

¶ 拓扑群的基本群

¶Jordan 曲线定理

本节将证明一个显然而不易证的定理.

定义 4.18 (Jordan 曲线)

称平面或球面上同胚于 S^1 的子集称为 Jordan 曲线.

•

定理 4.9 (Jordan 曲线定理)

 $^{\circ}$

引理 4.7 (曲线分割圆盘)

 D^2 上连接边界 S^1 上两不同点,并且不经过 S^1 的其它点的道路 γ 分割 D^2 (即 $D^2 \backslash \gamma(I)$ 不道路连通) .

证明 由于 $D^2 \cong I \times I$,因此只需考虑 $I \times I$ 的情形,并不妨设 γ 为从 (0,1) 到 (1,0) 的道路,不经过其它边界点. 只需证明从 (0,0) 到 (1,1) 的任意道路 λ 都与 γ 相交,即存在 $s,t \in I$ 使得 $\gamma(s) = \lambda(t)$,则二者处于不同道路分支.

若不然,对任意 s,t 都有 $a(s) \neq b(t)$,考虑连续映射

$$f: I \times I \to S^1, \quad f(s,t) = \frac{\gamma(s) - \lambda(t)}{||\gamma(s) - \lambda(t)||},$$
 (4.79)

则 f(0,0) = 1, f(1,0) = i, f(1,1) = -1, f(0,1) = -i, 记这四点决定的四条弧为 m_1, m_2, m_3, m_4 , $I \times I$ 四条边所在道路为 c_1, c_2, c_3, c_4 , 并且 $f \circ c_i \subset m_i$, 则一方面 $c = f \circ (c_1 * c_2 * c_3 * c_4)$ 在 S^1 中道路同伦于 γ_1 , 但 $I \times I$ 单连通, $c_1 * c_2 * c_3 * c_4$ 零伦,因此 $f \circ (c_1 * c_2 * c_3 * c_4)$ 也零伦,矛盾.

证明 【Jordan 曲线定理的证明】【STEP 1. 证明 $\mathbb{R}^2 \setminus J$ 不道路连通】

设 $A, B \in J$ 使得 $d(A, B) = \operatorname{diam}(J)$ (J 为紧集故必能取到), 作矩形 M 使得 A, B 恰各为一边中点, 并且 将 J 包含在 M 中, 只有 A, B 两点在边界上. 把 J 被 A, B 分割成的两段记为 J_1, J_2 , 它们都同胚于 I, 设 C, D 为上下边中点.

图 4.2: 示意图

根据引理,线段 \overline{CD} 与 J_1, J_2 相交,不妨设 $P_1 \in J_1, P_2 \in J_2$ 分别为最高、最低交点 (若不妨设 $P_1 \in J_1$,则 必有 $P_2 \in J_2$,否则可构造出与 J_2 无交的道路 $C \stackrel{down}{\longrightarrow} P_1 \stackrel{J_1}{\longrightarrow} P_2 \stackrel{down}{\longrightarrow} D$),再记 $P_3, P_4 \not \in \overline{CD}$ 与 J_1, J_2 相交的最低、最高点,则 $\overline{P_3P_4}$ 与 J 无交,任取其中一点 $Q \notin J$,下证在 \mathbb{R}^2 中,Q 与 M 外部不道路连通.

若不然,则存在道路 γ 与 J 无交,使得 $\gamma(0) = Q, \gamma(1) \in Outside(M)$,则 γ 必与 M 边界相交,不妨设交点 E 在上半部分,构造 M 中由 D 到 C 的道路: $D \stackrel{up}{\rightarrow} P_2 \stackrel{J_3}{\rightarrow} P_4 \stackrel{up}{\rightarrow} Q \stackrel{\gamma}{\rightarrow} E \stackrel{\partial M}{\rightarrow} C$,它显然与 J_1 无交,这与引理矛盾.

【STEP 2. 证明 $\mathbb{R}^2 \setminus J$ 的每个连通分支都以 J 为边界】

设 U 为 $\mathbb{R}^2 \setminus J$ 的一个有界连通分支,则 $\partial U = \overline{U} \cap U^c$,由于 $\mathbb{R}^2 \setminus J$ 的每个连通分支都是开集(因为它局部道路连通),因此其余连通分支都与 \overline{U} 无交,进而与 ∂U 无交,即得 $\partial U \subset J$,假设 $\partial U \neq J$,则由于 $J \cong S^1$, ∂U

为其闭子集,则存在 J 的闭弧 $L \cong I$ 使得 $\partial U \subset L$. 由 Tietze 扩张定理,对于 \mathbb{R}^2 的闭集 L, $\mathrm{Id}_L: L \to L$ 可扩张 为收缩映射 $r: \mathbb{R}^2 \to L$,构造连续映射 (注意 $f|_{\partial U} = \mathrm{Id}_{\partial U}$ 说明它良定):

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \quad f(x) = \begin{cases} \iota \circ r(x), & x \in \overline{U}, \\ x, & x \in U^c, \end{cases}$$
 (4.80)

其中 $\iota: L \to \mathbb{R}^2$ 为嵌入, $\overline{U} \cup L$ 有界,不妨设它在 D^2 内部,则 $f_0 = f|_{D^2}: D^2 \to D^2$ 给出了 D^2 到自身的映射,它在 S^1 上不动(因为 $S^1 \subset U^c$),并且 f_0 不是满射(因为 $U \subset D^2$,并且对任意 x, $f(x) \notin U$),与引理矛盾.

【STEP 3. 证明 $\mathbb{R}^2 \setminus J$ 只有两个分支】

否则存在 $\mathbb{R}^2 \backslash J$ 的分支 V,使得 $Q \notin V \subset M$. 考虑 M 中由 C 到 D 的道路 γ : $C \stackrel{down}{\longrightarrow} P_1 \stackrel{J_1}{\longrightarrow} P_3 \stackrel{down}{\longrightarrow} P_4 \stackrel{J_2}{\longrightarrow} P_2 \stackrel{down}{\longrightarrow} D$,则该道路不经过 V,或者说 $V \subset M \backslash \gamma(I)$,由引理,A,B 在 $M \backslash \gamma(I)$ 的不同分支中,但二者都在 $J \subset \overline{V}$ 中,矛盾.

第5章 覆叠空间

5.1 覆叠空间及基本性质

定义 5.1 (覆叠空间)

设 X,E 为拓扑空间, $p:E\to X$ 为连续映射,并且对任意 $x\in X$,存在 x 的开邻域 U (称为基本邻域) 满足

- 1. $p^{-1}(U) = \bigcup_{\alpha} V_{\alpha}$, 其中 V_{α} 为 E 中的不交开集.
- 2. 对任意 α , $p_{\alpha} = p|_{V_{\alpha}} : V_{\alpha} \to U$ 为同胚.

则称 (E,p) 为 X 上的覆叠空间,p 为覆叠映射,对任意 $x \in X$, $p^{-1}(x)$ 称为该覆叠映射在 X 处的纤维.

 $\dot{\mathbf{L}}$ 为处理方便,通常假设 X, E 是道路连通且局部道路连通的,在 X 道路连通的条件下可以证明:

- p 总是满射
- 对任意 $x \in X$,纤维 $p^{-1}(x)$ 的都有相同的势,这称为覆叠空间的**叶数**(或层数). 若 $|p^{-1}(x)| = n$,则称 该覆叠为 n 重覆叠.

例 5.1

- X 的自同胚 $f: X \to X$ 是一重覆叠映射.
- \mathbb{R} 是 S^1 的覆叠空间,覆叠映射为 $p(x) = e^{2\pi i x}$.
- S^1 是 S^1 的覆叠空间,对任意 $n \in \mathbb{N}$,有不同覆叠映射 $p_n(z) = z^n$,其中 (S^1, p_n) 为 n 重覆叠.
- 类似地,复指数映射 exp : $C^* \to C^*$ 也是覆叠映射,对任意 $z = re^{i\theta} \in C^*$ 有

$$\exp^{-1}(z) = \{ \log r + (2k\pi + \theta)i : k \in \mathbb{Z} \}.$$
(5.1)

- 若将环面视为 $S^1 \times S^1$,则 $p: \mathbb{R}^2 \to T^2$, $(x,y) \mapsto (e^{2\pi i x}, e^{2\pi i y})$ 为覆叠映射.
- 例 4

命题 5.1 (有限重覆叠映射的构造)

设 X 道路连通且局部道路连通的 Hausdorff 空间, $f: X \to X$ 为同胚,并且 $f^n = \mathrm{Id}_X$,对任意 0 < m < n, f^m 无不动点,定义 X 上的等价关系 $x \sim x' \Leftrightarrow \exists l, f^l(x) = x'$,则粘合映射 $p: X \to X/\sim = X/f$ 为 n 重覆叠映射.

证明 对任意 $y \in X/f$, $p^{-1}(y) = \{x, f(x), \dots, f^{n-1}(x)\}$, 由于 X 是 Hausdorff 空间, 因此可取 x 的开邻域 V 使得 $V, f(V), \dots, f^{n-1}(V)$ 两两不相交(首先存在无交开集 $U_1 \ni x, U_2 \ni f(x)$,令 $V = U_1 \cap f^{-1}(U_2)$ 则 $x \in V$,并且 V, f(V) 无交,进一步可推广到 n 个点). 记 U = p(V),则 $p(f^l(V)) = p(V) = U$,进一步 $p^{-1}(U) = \bigcup_{l=0}^{n-1} f^l(V)$,因此 U 为开集(商映射),并且 $p|_{f^l(V)}: f^l(V) \to U$ 为同胚(连续满射显然,单射由于 无交,开是因为 $p^{-1}(p(O)) = \bigcup_{l=0}^{n-1} (f^l)(O)$ (或许不太准确,大概就这意思)),故 U 为 y 的基本邻域.

例 5.2 设 $f: 2T^2 \to 2T^2$ 为中心对称映射,则 $2T^2/f$ 为 $3P^2$ 型曲面(相当于将两个 T^2 重叠,中间的缺口粘一个 Mobius 带,即 $P^2\#T^2=3P^2$),根据上述命题可知 $p: F \to F/f$ 为从 $2T^2$ 到 $3P^2$ 的覆叠映射. 类似可构造从 nT^2 到 $(n+1)P^2$ 的二重覆叠映射.

¶ 覆叠映射的一些结论

命题 5.2 (覆叠映射是开映射)

设 $p: E \to B$ 为覆叠映射,则p是开映射(因此为商映射).

证明 设 $O \subset E$ 为开集,对任意 $b \in p(O)$,取基本开邻域 U_b ,设 $p^{-1}(U_b) = \bigcup_{\alpha} V_{\alpha}$, $e_{\alpha} \in V_{\alpha}$ 使得 $p(e_{\alpha}) = b$. 设某个 $e_{\alpha} \in O$,则取 e_{α} 的开邻域 $O_{\alpha} \subset O \cap V_{\alpha}$, p_{α} 为同胚说明 $p_{\alpha}(O_{\alpha}) \subset p(O) \cap U_b$ 是 b 的开邻域,这就说明 p(O) 为开集.

命题 5.3 (覆叠映射的可乘性)

设 $p_i: E_i \to B_i$ 为覆叠映射,则 $p_1 \times p_2: E_1 \times E_2 \to B_1 \times B_2$ 是覆叠映射.

命题 5.4 (覆叠映射的局部同胚性)

设 $p:E\to B$ 为覆叠映射,则 p 是局部同胚的,即对任意 $e\in E$,存在开邻域 V 使得 $p|_V:V\to p(V)$ 为同胚.

注 反之并非所有局部同胚都是覆叠映射.

证明 设 $U ext{ } ext{ } p(e)$ 的基本开邻域, $p^{-1}(U) = \bigcup_{\alpha} V_{\alpha}$,则其中只有一个 V 包含 e,显然 V 即为所求.

引理 5.1

设 $p: E \to B$ 为覆叠映射, $U \to E$ 中开集, 则 $p|_U: U \to p(U)$ 为连续开映射.

证明 只证开,设 O 为 U 中开集,则对任意 $b = p(e) \in p(O)$,由 p 的局部同胚性,存在 e 的开邻域 V 使得 $p|_V:V\to p(V)$ 为同胚,不妨设 $V\subset O$,则 $p(V)\subset p(U)$ 为 B 中包含 p(e) 的开集 (由于 $p(V)=p(V)\cap p(U)$,因此它也是 p(U) 的相对开集),因此 p(e) 是 p(O) 的内点,得证.

命题 5.5

设 $p:E\to B$ 为覆叠映射.

- 若U 是B 的道路连通子集,V 为 $p^{-1}(U)$ 的一个道路分支,则p(V)=U.
- 若 V 为 E 的道路连通开子集 , U=p(V) , $\iota:U\to B$ 诱导零同态 $\iota_*:\pi_1(U)\to\pi_1(B)$, 则 $p|_V:V\to U$ 为同胚.

证明

- 1. 取定 $e \in V, b = p(e) \in U$, 对任意 $b' \in U$, 设 γ 为连接 b, b' 的道路,则它可被唯一提升为以 e 为起点的道路 $\tilde{\gamma}$,并且 $e' = \tilde{\gamma}(1) \in p^{-1}(b')$,因此 $b' \in p(V), U \subset p(V)$,得证.
- 2. 只需证明 $p|_{V}$ 单,假设存在 $e_{1},e_{2} \in V, p(e_{1}) = p(e_{2}) = b \in U$,取 $\tilde{\gamma}$ 为连接 e_{1},e_{2} 的道路,则 $\gamma = p \circ \tilde{\gamma}$ 为 以 b 为基点的自环, ι_{*} 平凡说明 $\iota_{*}([\gamma]) = [\iota \circ \gamma] = [\gamma] = [e_{b}] \in \pi_{1}(B)$,即 γ 在 B 中道路同伦与一点,根据同伦提升引理,其提升 $\tilde{\gamma}$ (提升的唯一性) 也道路同伦于一点,因此必有 $e_{1} = e_{2}$,得证.

5.1.1 提升定理

定理 5.1 (一般提升定理)

设 $p: E \to B$ 为覆叠映射, $\tilde{f}: X \to E$ 和 $F: X \times I \to B$ 连续且 $F(x,0) = p \circ \tilde{f}(x)$, 则存在 F 的提升 $\tilde{F}: X \times I \to E$ 使得 $\tilde{F}(x,0) = \tilde{f}(x)$, 并且这样的提升是唯一的.

$$X \times I \xrightarrow{\widetilde{F}} B$$

$$E \downarrow p$$

$$X \times I \xrightarrow{F} B$$

注 也就是说任意具有初始提升的映射可以整体提升.

证明 【STEP 1. 在任意 $x \in X$ 局部构造提升】

设 $\{U_{\alpha}\}$ 为 B 的基本邻域的集合,它们构成 B 的开覆盖. 对任意 $x \in X$, $\{F^{-1}(U_{\alpha})\}$ 为 $\{x\} \times I$ 的一个开覆盖,因此由 Lebesgue 数引理,存在划分

$$0 = t_0 < t_1 < \dots < t_n = 1 \tag{5.2}$$

使得 $F(\{x\} \times [t_i, t_{i+1}]) \subset U_i$,由管形邻域引理,存在 x 的开邻域 V_x 使得 $F(V_x \times [t_i, t_{i+1}]) \subset U_i$. 设 $p^{-1}(U_i) = \bigcup_{\alpha} V_{\alpha}^i$,并且 $p_{\alpha}^i = p|_{V_{\alpha}^i} : V_{\alpha}^i \to U_i$ 为同胚.

首先由于 $p \circ \tilde{f}(x) = F(x,0) \in U_0$, 因此存在 α 使得 $\tilde{f}(x) \in V_{\alpha}^0$, 并且存在 V_x 中 x 的开邻域 V_0 使得 $\tilde{f}(V_0) \subset V_{\alpha}^0$ (连续性), 由于 $p_{\alpha}^0: V_{\alpha}^0 \to U_0$ 为同胚, 因此可定义连续映射

$$\widetilde{F}_1: V_0 \times [0, t_1] \to V_{\alpha}^0, \quad \widetilde{F}_1 = (p_{\alpha}^0)^{-1} \circ F|_{V_0 \times [0, t_1]},$$
(5.3)

容易验证 $\widetilde{F}_1|_{V_0\times\{0\}}=\widetilde{f}$. 此时将 $\widetilde{F}(V_0,t_1)$ 代替 $\widetilde{F}(V_0,0)$ 作为新初值,存在开邻域 $V_1\subset V_0$ 和连续映射

$$\widetilde{F}_2: V_1 \times [0, t_2] \to V_{\beta}^1, \quad \widetilde{F}_2 = (p_{\beta}^0)^{-1} \circ F|_{V_1 \times [t_1, t_2]},$$
(5.4)

使得 $\widetilde{F}_2|_{V_1 \times \{t_1\}} = \widetilde{F}_1|_{V_1 \times \{t_2\}}$,以此类推可得一串 \widetilde{F}_i 以及 V_i ,取 $\widetilde{V}_x = \bigcap_{i=1}^n V_i \subset V_x$, \widetilde{F} 可以粘合为连续函数 $\widetilde{F}_x : \widetilde{V}_x \times I \to B$,使得 $\widetilde{F}_x|_{V_x \times \{0\}} = \widetilde{f}$, $p \circ \widetilde{F} = F|_{\widetilde{V}_x \times I}$,即为 F 在 x 局部的提升.

【STEP 2. 证明一点附近提升的唯一性】

对任意 $x\in X$,设 F 在 $\{x\}\times I$ 附近有两个提升 $\widetilde{F},\widetilde{F}'$ 满足 $\widetilde{F}(x,0)=\widetilde{F}'(x,0)=\widetilde{f}(x)$,令

$$S = \{ t \in I : \widetilde{F}(x,t) = \widetilde{F}'(x,t) \}, \tag{5.5}$$

则

- $0 \in S$ 说明 S 非空.
- \widetilde{F} , \widetilde{F}' 连续说明 S 为闭集 (I 是 A1 的,可用极限刻画连续).
- S 为开集: 对任意 $t \in S$ 有 $\widetilde{F}(x,t) = \widetilde{F}'(x,t) \in E$,设 $F(x,t) \in U_i$,则 $\widetilde{F}(x,t) \in p^{-1}(U_i)$,设 $\widetilde{F}(x,t) \in p^{-1}(F(x,t)) \in V_{\alpha}^i$,由连续性,存在 t 的开邻域 W 使得 $\widetilde{F}(x,W) = \widetilde{F}'(x,W) \subset V_{\alpha}^i$,而 $p_{\alpha}^i : V_{\alpha}^i \to U_i$ 为同 胚,因此

$$p_{\alpha}^{i} \circ \widetilde{F}|_{\{x\} \times W} = F|_{\{x\} \times W} = p_{\alpha}^{i} \circ \widetilde{F}'|_{\{x\} \times W} \Rightarrow \widetilde{F}|_{\{x\} \times W} = \widetilde{F}'|_{\{x\} \times W}, \tag{5.6}$$

因此 $W \subset S$, 说明 S 为开集.

因此由 I 的连通性可知 S = I, 即 $\widetilde{F} = \widetilde{F}'$.

【STEP 3. 构造整体提升并证明其良定性】

对任意 $z \in \widetilde{V}_x \cap \widetilde{V}_y$, 考虑

$$\widetilde{F}_{x,z}:\widetilde{F}_{x}|_{\{z\}\times I}\to E,\quad \widetilde{F}_{y,z}:\widetilde{F}_{y}|_{\{z\}\times I}\to E,$$

$$(5.7)$$

则它们都是 $F|_{\{z\}\times I}:\{z\}\times I\to B$ 的提升,由上一步可知 $\widetilde{F}_{x,z}=\widetilde{F}_{y,z}$,因此直接定义 $\widetilde{F}:X\times I\to E$ 为对每个 $x\in X$ 都满足

$$\widetilde{F}|_{V_x \times I} = \widetilde{F}_x : V_x \times I \to E$$
 (5.8)

的映射,则它是良定的,由粘接引理可知它是连续的,并且为F的提升. 此时若还存在其它提升 \widetilde{F}' ,则它在每个 $\{x\} \times I$ 上的限制与 \widetilde{F} 相同,因此二者是相同的.

分别取 X 为单点集或 I 时,定理有如下形式:

推论 5.1 (道路提升定理)

设 $p: E \to B$ 为覆叠映射, $\gamma: I \to B$ 为以 $\gamma(0) = x_0$ 为起点的道路,则对任意 $\tilde{x}_0 \in p^{-1}(x_0)$,存在唯一以 \tilde{x}_0 为起点的道路 $\tilde{\gamma}: I \to E$ 使得 $\gamma = p \circ \tilde{\gamma}$ (即 $\tilde{\gamma}$ 为 γ 的提升).

 $\dot{\mathbf{L}}$ 一般圈的提升不再是圈,但若 γ 在 E 中道路同伦于一点,则其提升 $\tilde{\gamma}$ 依然是圈.

推论 5.2 (同伦提升定理)

设 $p:E\to B$ 为覆叠映射,则

- 1. 对 X 中任意具有固定起点 $F(0,t)=x_0$ 的同伦 $F:I\times I\to X$ 以及任意 $\tilde{x}_0\in p^{-1}(x_0)$,存在唯一具有固定起点 $\tilde{F}(0,t)=\tilde{x}_0$ 的同伦 $\tilde{F}:I\times I\to E$ 使得 $F=p\circ \tilde{F}$ (即 \tilde{F} 为 F 的提升).
- 2. 若 F 为道路同伦,即具有固定终点 $F(1,t)=x_1$,则 \widetilde{F} 也是道路同伦,即存在 $\tilde{x}_1\in p^{-1}(x_1)$ 使得 $\widetilde{F}(1,t)=\tilde{x}_1$.

注 同伦提升引理中起点可以任取,但此时终点已唯一确定(此时终道路也被唯一提升). 与道路类似,圈的道路同伦提升后未必是圈的道路同伦,但若是收缩到一点的道路同伦,则提升后仍然为圈的道路同伦.

对于一般的提升(即不要求具有初始提升,但要求连通性),也是唯一的.

命题 5.6 (提升的唯一性)

设 $p: E \to B$ 为覆叠映射, $f: X \to B$ 连续, $\tilde{f}_1, \tilde{f}_2: X \to E$ 为 f 的两个提升, 若 X 连通, 且存在 $x_0 \in X$ 使得 $\tilde{f}_1(x_0) = \tilde{f}_2(x_0)$, 则 $\tilde{f}_1 = \tilde{f}_2$.

证明 对任意 $x \in X$,取 $f(x) \in X$ 的基本开邻域 U 使得 $p^{-1}(U) = \bigcup_{\alpha} V_{\alpha}, p_{\alpha} = p|_{V_{\alpha}} : V_{\alpha} \to U$ 为同胚,并且设包含 $\tilde{f}_1(x), \tilde{f}_2(x)$ 的开集为 V_1, V_2 ,下面同样用连通性论证说明 $\tilde{f}_1 = \tilde{f}_2.$ 令 $X_0 = \{x \in X : \tilde{f}_1(x) = \tilde{f}_2(x)\}$,则

- $x_0 ∈ X_0$ 说明 X_0 非空.
- X_0 为闭集: 若 $x \notin X_0$, $\tilde{f}_1(x) \neq \tilde{f}_1(x)$, 由于 $p \circ \tilde{f}_1(x) = p \circ \tilde{f}_2(x) = f(x)$, 因此 $V_1 \neq V_2$, 由连续性,存在 x 的开邻域 N 使得 $\tilde{f}_i(N) \subset V_i$, 因此 $N \subset X_0^c$, 即 X_0^c 开, X_0 闭.
- X_0 为开集:设 $x \in X_0$,则 $V_1 \cap V_2 \neq \emptyset$, $V_1 = V_2 = V$,同理存在 x 的开邻域 N 使得 $f_1(N) \subset V$,并且 $p|_V$ 为同胚, $p|_V \circ \tilde{f}_1|_N = p|_V \circ \tilde{f}_2|_N$ 说明 $\tilde{f}_1|_N = \tilde{f}_2|_N$,因此 $N \subset X_0$,即 X_0 开.

因此由 X 的连通性可知 $X_0 = X$, 即 $\tilde{f}_1 = \tilde{f}_2$.

¶ 覆叠映射诱导的基本群同态

命题 5.7 (覆叠映射诱导基本群的单同态)

设 $p: E \to B$ 为覆叠映射, p(x) = y, 则 $p_*: \pi_1(E, x) \to \pi_1(B, y)$ 为单同态.

证明 设 $\tilde{\gamma} \in \Omega(E, x)$ 且 $p_*([\tilde{\gamma}]) = [p \circ \tilde{\gamma}] = [e_y]$,即 $p \circ \tilde{\gamma} \simeq e_y$,根据同伦提升引理可得 $\tilde{\gamma} \simeq e_x$, $[\tilde{\gamma}] = [e_x]$ (这里固定起点 x,则 $p \circ \tilde{\gamma}$ 的提升必然是 $\tilde{\gamma}$, e_y 的提升是一个圈,但这个圈位于 $p^{-1}(y)$ 中,因此恰好为点道路 e_x). 若令 $H_e = p_*(\pi_1(E, e))$,则它是 $\pi_1(B, b)$ 的子群 (b = p(e)),并且有

命题 5.8

- $[\pi_1(E,e): H_e]$ 等于覆叠空间 (E,p) 的叶数.
- $\{H_e: e \in p^{-1}(b)\}\$ 构成 $\pi_1(B,b)$ 的一个子群共轭类.

证明

1. 若设 L(e) 为 E 上以 e 为起点,终点在 $p^{-1}(b)$ 中的道路类的集合,则 $p_*: L(e) \to \pi_1(B,b)$ 为一一对应,若

 $[\gamma_1], [\gamma_2] \in L(e)$ 有相同终点,则

$$p_*([\gamma_1]) * p_*([\gamma_2])^{-1} = p_*([\gamma_1] * [\gamma_2]^{-1}) \in H_e, \tag{5.9}$$

即 $p_*([\gamma_1]), p_*([\gamma_2])$ 在 H_e 的同一个右陪集中,因此定义对应

$$\eta: p^{-1}(b) \to \pi_1(B, b)/H_e, \quad e' \mapsto H_e p_*([\alpha]) := [p_*([\alpha])],$$
(5.10)

其中 $[\alpha]$ 是 L(e) 中终点在 e 的道路类 (或者说其像是以 e' 为终点的道路类构成的陪集),易知 η 为满射. 若 $e', e'' \in p^{-1}(b)$ 使得 $\eta(e') = \eta(e'')$,取 $[\alpha], [\beta] \in L(e)$ 分别以 e', e'' 为终点,则存在 $[\gamma] = p_*([\gamma']) \in H_e$ 使得

$$p_*([\beta]) = [\gamma] * p_*([\alpha]) = p_*([\gamma']) * p_*([\alpha]) = p_*([\gamma' * \alpha]), \tag{5.11}$$

但 p_* 是单射,因此 $[\beta] = [\gamma' * \alpha]$,即 e' = e'',说明 η 单,即 η 为一一对应,因此 $|p^{-1}(b)| = [\pi_1(E,e): H_e]$. 2. 设 $e, e' \in p^{-1}(b)$,取 $\alpha \in \Omega(E; e, e')$,则有交换图

$$\pi_1(E,e) \xrightarrow{\Gamma_{\alpha}} \pi_1(E,e')$$

$$\downarrow^{p_*} \qquad \qquad \downarrow^{p_*}$$

$$\pi_1(B,b) \xrightarrow{\Gamma_{p \circ \alpha}} \pi_1(B,b)$$

其中g为 $\pi_1(B,b)$ 的一个自同构,因此

$$H_{e'} = p_* \circ \Gamma_{\alpha}(\pi_1(E, e)) = \Gamma_{p \circ \alpha} \circ p_*(\pi_1(E, e)) = \Gamma_{p \circ \alpha}(H_e), \tag{5.12}$$

即 H'_e, H_e 共轭,反之若 $\pi_1(B,b)$ 的子群 G 与 H_e 共轭,则存在 $[\alpha] \in \pi_1(B,b)$ 使得 $G = [\alpha] * H_e * [\alpha]^{-1} = \Gamma_{\alpha}(H_e)$,可取 $[\gamma] \in L(e)$ 使得 $p_*([\gamma]) = [\alpha]$ (道路提升性质),记 e' 为 $[\gamma]$ 终点,则重复上面的讨论可知 $G = H_{e'}$.

5.1.2 一般提升的存在性

定理 5.2 (映射提升引理)

设 $p: E \to B$ 为覆叠映射,X 道路连通且局部道路连通, $f: X \to B$ 连续, $x_0 \in X, b_0 = f(x_0), e_0 \in p^{-1}(b_0)$,则 f 有提升 \tilde{f} 使得 $\tilde{f}(x_0) = e_0$ 当且仅当 $f_*(\pi_1(X,x_0)) \subset H_{e_0} = p_*(\pi_1(E,e_0))$.

$$(X, x_0) \xrightarrow{\exists \tilde{f}} (E, e_0)$$

$$\downarrow^p$$

$$(B, b_0)$$

证明 \Rightarrow : 若提升存在则 $p \circ \tilde{f} = f$, $p_* \circ \tilde{f}_* = f_*$, 说明

$$f_*(\pi_1(X, x_0)) = p_*(\tilde{f}_*(\pi_1(X, x_0))) \subset p_*(\pi_1(E, e_0)) = H_{e_0}. \tag{5.13}$$

 \Leftarrow : 对任意 $x \in X$, 设 γ 为连接 x_0, x 的道路,则 $f \circ \gamma$ 是以 b_0 为起点的道路,因此可以被唯一提升为 E 中以 e_0 为起点的道路 $f \circ \gamma$,定义

$$\tilde{f}:(X,x_0)\to (E,e_0),\quad \tilde{f}(x)=\widetilde{f\circ\gamma}(1),$$
 (5.14)

下证 \tilde{f} 即为所求提升.

【STEP 1. 证明 \tilde{f} 的良定性】设 γ' 是另一条连接 x_0, x 的道路,则 $(f \circ \gamma') * (\overline{f \circ \gamma}) = f \circ (\gamma' * \overline{\gamma})$ 是 X 中以 x_0 为基点的圈,并且

$$[(f \circ \gamma') * (\overline{f \circ \gamma})] = f_*([\gamma' * \overline{\gamma}]) \in f_*(\pi_1(X, x_0)) \subset p_*(\pi_1(E, e_0)), \tag{5.15}$$

因此存在 $\tilde{\gamma}_1 \in \Omega(E, e_0)$ 使得 $(f \circ \gamma') * (\overline{f \circ \gamma}) \simeq \gamma_1 = p \circ \tilde{\gamma}_1$, 设 $F: I \times I \to B$ 为该同伦,则它可以被提升为以 e_0 为起点的道路同伦 $\tilde{F}: I \times I \to E$,并且

• $\widetilde{F}(s,0)$ 是以 b_0 为起点道路 $(f \circ \gamma') * (\overline{f} \circ \gamma)$ 的唯一提升,因此 $\widetilde{F}(s,0) = (f \circ \gamma') * (\overline{f} \circ \gamma)(s)$,其中 $\overline{f} \circ \gamma$ 为 道路 $\overline{f} \circ \gamma$ 的以 $f \circ \gamma'(1)$ 为起点的唯一提升.

• 同理 $\widetilde{F}(s,1)$ 为 γ_1 的以 b_0 为起点的唯一提升,因此 $\widetilde{F}(s,1)=\widetilde{\gamma}_1(s)$. F 为道路同伦说明 \widetilde{F} 为道路同伦,因此 $\widetilde{F}(1,0)=\widetilde{F}(1,1)$,即有

$$\widetilde{\overline{f \circ \gamma}}(1) = (\widetilde{f \circ \gamma'}) * (\widetilde{\overline{f \circ \gamma}})(1) = \widetilde{F}(1,0) = \widetilde{F}(1,1) = \widetilde{\gamma}_1(1) = e_0, \tag{5.16}$$

因此 $\frac{}{f \circ \gamma}$ 是以 e_0 为起点的 $f \circ \gamma$ 的提升,由道路提升的唯一性可得 $\frac{}{f \circ \gamma} = \widetilde{f \circ \gamma}$,这就说明

$$\widetilde{f \circ \gamma}(1) = \overline{\widetilde{f \circ \gamma}}(1) = \widetilde{f \circ \gamma}(0) = \widetilde{f \circ \gamma'}(1), \tag{5.17}$$

说明 \tilde{f} 是良定的.

【STEP 2. 证明 \tilde{f} 的连续性】根据粘接引理,只需证明对任意 $x \in X$,存在开邻域 V 使得 $\tilde{f}|_V$ 连续. 对任意 $x \in X$,固定一条连接 x_0, x 的道路 γ ,取 $f(x) \in B$, $\tilde{f}(x) \in E$ 的邻域 U, \tilde{U} 使得 $p|_{\tilde{U}}: \tilde{U} \to U$ 为同胚. 由于 X 局 部道路连通,因此存在 x 的道路连通开邻域 $V \subset f^{-1}(U)$,对任意 $x' \in V$,设 γ' 为 V 中连接 x, x' 的道路,则 $f \circ \gamma' \subset U \subset B$,其提升恰好为 $\tilde{f} \circ \gamma' = (p|_{\tilde{U}})^{-1} \circ (f \circ \gamma')$.

由于 $(f \circ \gamma) * (f \circ \gamma') = f \circ (\gamma * \gamma')$ 为 B 中以 $f(x_0)$ 为起点的道路,因此可以被唯一提升为 E 中以 $\tilde{f}(x_0)$ 为起点的道路

$$\widetilde{f \circ (\gamma * \gamma')} = (\widetilde{f \circ \gamma}) * (\widetilde{f \circ \gamma'}) \tag{5.18}$$

因此

$$\widetilde{f}(x') = f \circ (\gamma * \gamma')(1) = \widetilde{f} \circ \gamma'(1) = (p|_{\widetilde{U}})^{-1} \circ f(\gamma'(1)) = (p|_{\widetilde{U}})^{-1} \circ f(x'), \tag{5.19}$$

这说明 $\tilde{f}|_{V}=(p|_{\tilde{U}})^{-1}\circ f$ 连续, 得证.

例 5.3

- 设 $p: S^n \to P^n$ 为覆叠映射, $f: P^n \to P^n$ 连续,则存在 $\tilde{f}: S^n \to S^n$ 使得 $p \circ \tilde{f} = f \circ p$,也即 $f \circ p$ 有提升 \tilde{f} ,这是因为 $(f \circ p)_*(\pi_1(S^n))$ 平凡.
- 当 $n \ge 2$ 时,从 S^n 到 S^1 的连续映射只有一个映射类. 设 $f,g:S^n \to S^1$, $p:\mathbb{R} \to S^1$, $t\mapsto e^{2\pi it}$ 为覆叠映射,则 f,g 有提升 \tilde{f},\tilde{g} 使得 $p\circ \tilde{f}=f,p\circ \tilde{g}=g$, $\tilde{f}\sim \tilde{g}$ 说明 $f\sim g$ (注意 \mathbb{R} 为凸集).

$$S^n \xrightarrow{\tilde{f} \tilde{g}} S^2$$

• P^2 到 S^1 的连续映射零伦. 设 $f: P^2 \to S^1$ 连续,则 $f_{\pi}: \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}$ 必然是平凡的,因此存在提升 $\tilde{f}: P^2 \to \mathbb{R}$, \tilde{f} 零伦说明 f 零伦.

5.1.3 覆叠空间的同构

定义 5.2 (覆叠空间的同态)

设 $(E_1, p_1), (E_2, p_2)$ 为 B 上的覆叠空间,若 $h: E_1 \to E_2$ 满足 $p_1 \circ h = p_2$,则称 h 为 (E_1, p_1) 到 (E_2, p_2) 的一个同态. 特别当 h 为同胚时,称为覆叠空间的同构,也称两个覆叠空间等价.

命题 5.9 (覆叠空间等价的刻画)

设 (E_i,p_i) , i=1,2 为 B 上的覆叠空间, $b\in B$,则 (E_1,p_1) , (E_2,p_2) 等价当且仅当它们决定 $\pi_1(B,b)$ 的同一个子群共轭类(即它们共轭).

证明 \Rightarrow : 设 $h: E_1 \to E_2$ 为同胚,则对任意 $e_1 \in p_1^{-1}(b), e_2 = h(e_1)$ 有

$$H_{1e_1} = p_{1*}(\pi_1(E_1, e_1)) = p_{2*} \circ h_*(\pi_1(E_1, e_1)) = p_{*2}(\pi_1(E_2, e_2)) = H_{2e_2},$$
 (5.20)

即 $(E_1, p_1), (E_2, p_2)$ 所决定的子群共轭类 $\{H_{1e}: e \in p_1^{-1}(b)\}, \{H_{2e}: e \in p_2^{-1}(b)\}$ 相同.

 \Leftarrow : 取 $e_1 \in p_1^{-1}(b), e_2 \in p_2^{-1}(b)$ 使得 $p_{1*}(\pi_1(E_1, e_1)) = p_{2*}(\pi_1(E_2, e_2))$,则存在两个提升 h, k满足下图

$$(E_1, e_2) \xrightarrow{h} \downarrow^{p_2} (E_1, e_1) \xrightarrow{p_1} (B, b)$$

因此 $h \circ k(e_2) = e_2, k \circ h(e_1) = e_1$,根据提升的唯一性可知 $h \circ k = \mathrm{Id}_{E_2}, k \circ h = \mathrm{Id}_{E_1}$,故两个空间同构.

5.2 泛覆叠空间

5.2.1 半单连通与局部半单连通

定义 5.3 (半单连通 & 局部半单连通)

- 称 X 的子集 A 半单连通,若 A 道路连通且嵌入映射诱导的同态 $\iota_*: \pi_1(A) \to \pi_1(X)$ 为平凡的.
- 若 X 的每一点都有半单连通邻域,则称其局部半单连通.

注 局部半单连通是一个较弱的概念,它确保了没有"任意小的洞".

命题 5.10

设 $p: E \to B$ 为覆叠映射, $A \to B$ 的半单连通开子集, 则 $A \not\in B$ 的基本邻域.

证明 设 $p^{-1}(A) = \bigcup_{\alpha} V_{\alpha}$, 其中每个 V_{α} 都是一个道路分支 ($p^{-1}(A)$ 局部道路连通说明其道路分支既开又闭),则根据前面的结论有 $p(V_{\alpha}) = A$, 并且此时诱导同态平凡说明 $p_{\alpha}: V_{\alpha} \to A$ 为同胚,得证.

命题 5.11 (局部半单连通与覆叠的传递性)

设 $p: E \to B$ 为覆叠映射, B 局部半单连通, 则

- · E 也是局部半单连通的.
- 若 $\tilde{p}: E_1 \to E$ 也是覆叠映射,则 $p \circ \tilde{p}: E_1 \to B$ 也是覆叠映射.

证明

- 1. 设 U 为 B 的半单连通开子集,则 $p^{-1}(U)$ 的每个道路分支都是半单连通的,因此 E 局部半单连通.
- 2. 显然 E, E_1 都是局部半单连通的,设 U 为 B 的半单连通开子集, $p^{-1}(U) = \bigcup_{\alpha} V_{\alpha}$,则每个 V_{α} 都是 E 的 半单连通开子集,因此 $\tilde{p}^{-1}(V_{\alpha})$ 也可以分解为一系列半单连通开子集的无交并,故 $p \circ \tilde{p}$ 为覆叠映射. 借助类似的方法可以证明:

命题 5.12

设 $E_1 \stackrel{p}{\to} E \stackrel{p}{\to} B$ 为覆叠映射, p是有限叶的, 则 $p \circ \tilde{p}$ 也是覆叠映射.

证明 设 $p^{-1}(b) = \{e_1, \dots, e_n\}$, 可取 b 的基本邻域 U 使得 $p^{-1}(U)$ 的每个分支恰好在 E 的基本邻域中.

5.2.2 泛覆叠空间

定义 5.4 (泛覆叠空间)

设 $p: E \to B$ 为覆叠映射、若 E 单连通、则称 E 为 B 的泛覆叠空间、p 为泛覆叠映射。

引理 5.2 (泛覆叠映射与局部半单连通)

若 $p: E \to B$ 为泛覆叠映射,则 B 必为局部半单连通的.

证明 对任意 $b \in B$,取其基本邻域 U,设 $p^{-1}(U) = \bigcup_{\alpha} V_{\alpha}$,则 $p_{\alpha} : V_{\alpha} \to U$ 为同胚,因此 $p_{\alpha}^{-1} : U \to V_{\alpha} \subset E$ 是 $\iota : U \to B$ 的提升,而 $\pi_1(E) = \{e\}$ 说明 $\iota_* = p_* \circ (p_{\alpha}^{-1})_* : \pi_1(U) \to \pi_1(E) \to \pi_1(B)$ 是平凡的.

$$U \xrightarrow{p_{\alpha}^{-1}} B$$

$$U \xrightarrow{\iota} B$$

定理 5.3 (泛覆叠空间存在性定理)

若B道路连通、局部道路连通、局部半单连通,则B有泛覆叠空间.

 \Diamond

证明 【STEP 1. 构造 E 以及满射 $p: E \to B$ 】取 $b_0 \in B$,令 $E = \{ [\gamma] \in \gamma(0) = b_0 \}$, $p: E \to B, p([\gamma]) = \gamma(1)$,B 单连通说明 p 为满射.

【STEP 2. 赋予 E 拓扑结构】令 $\mathcal{U} = \{U \in \mathcal{T}_B : U$ 道路连通, $\pi_1(U) \to \pi_1(B)$ 平凡},下证 \mathcal{U} 为拓扑基. 对任意 $b \in B$ 以及其邻域 V,B 局部道路连通、局部半单连通说明存在 b 的道路连通开邻域 $U' \in \mathcal{T}_B$ 使得 $\pi_1(U') \to \pi_1(B)$ 平凡,即存在 $U \in \mathcal{U}$ 使得 $x \in U \subset V$,故 $\mathcal{U} \to B$ 的拓扑基.

【STEP 3.】对任意 $U \in U$, 设 $\gamma \to b_0$ 到 U 中一点的道路, 令

$$U_{[\gamma]} = \{ [\gamma * \eta] : \eta \in C(I, U), \eta(0) = \gamma(1) \} \subset U, \tag{5.21}$$

则 $U_{[\gamma]}$ 只与 $[\gamma]$, U 有关. 它有如下性质:

- $p|_{U_{[\gamma]}}:U_{[\gamma]}\to U$ 为满射: 因为 U 道路连通.
- $p|_{U_{[\gamma]}}: U_{[\gamma]} \to U$ 为单射: 若 $p([\gamma * \eta]) = p([\gamma * \eta'])$ 则 $\eta(1) = \eta'(1)$, 因此 $\eta * \bar{\eta'}$ 为 U 中的闭路, $\pi_1(U, \gamma(1)) \to \pi_1(B, \gamma(1))$ 平凡说明在 $B + \eta * \bar{\eta'} \simeq e_{\gamma(1)}, \eta \simeq \eta'$, 因此在 $[\gamma * \eta] = [\gamma * \eta']$.
- 若 $[\gamma'] \in U_{[\gamma]}$,则 $U_{[\gamma']} = U_{[\gamma]}$:此时存在 $\eta, \eta(0) = \gamma(1)$ 使得 $[\gamma'] = [\gamma * \eta]$,则 $U_{[\gamma']}$ 中元素可写作 $[\gamma' * \rho] = [\gamma * \eta * \rho] \in U_{[\gamma]}$,同理 $U_{[\gamma]}$ 中元素可写作 $[\gamma * \rho] = [\gamma' * \bar{\eta} * \rho] \in U_{[\gamma']}$,得证.

【STEP 4. 赋予 E 拓扑结构】设 $\mathcal{H} = \{U_{[\gamma]} : U \in \mathcal{U}\}$,下证 \mathcal{F} 为 E 的拓扑基. 一方面其中所有集合之并可以 覆盖 E,另一方面对任意 $U_{[\gamma]}, V_{[\gamma']} \in \mathcal{H}$,对任意 $[\gamma''] \in U_{[\gamma]} \cap V_{[\gamma']}$,由上面的性质可得

$$U_{[\gamma]} = U_{[\gamma'']}, \quad V_{[\gamma']} = V_{[\gamma'']}, \gamma''(1) \in U \cap V \in \mathcal{U},$$
 (5.22)

 \mathcal{U} 为拓扑基说明存在 $W \in \mathcal{U}$ 使得 $\gamma''(1) \in W \subset \mathcal{U} \cap V$, 则 $[\gamma''] \in W_{[\gamma'']} \subset U_{[\gamma'']} \cap V_{[\gamma'']} = U_{[\gamma]} \cap V_{[\gamma']}$, 得证.

【STEP 5. 证明 p 为连续开映射】根据拓扑基的性质,只需证明 $p|_{U_{[\gamma]}}:U_{[\gamma]}\to U$ 为同胚,这只需证明 p 把每个 $\{V_{[\gamma']}:V_{[\gamma']}\subset U_{[\gamma']}\}$ 中的元素——映为 $\{V\in\mathcal{U}:V\subset U\}$ 中的元素.

• 一方面

$$V_{[\gamma']} \subset U_{[\gamma']} \Rightarrow V = p(V_{[\gamma']}) \subset p(U_{[\gamma']}) = U. \tag{5.23}$$

• 另一方面对任意 $V \in \mathcal{U}, V \subset \mathcal{U}$,存在 $[\gamma'] \in \mathcal{U}_{[\gamma]}$ 使得 $\gamma'(1) \in V$,则 $V_{[\gamma']} \subset \mathcal{U}_{[\gamma']} = \mathcal{U}_{[\gamma]}$,因此 $p(V_{[\gamma']}) = V$. 【STEP 6. 证明 p 为覆叠映射】对任意 $x \in B$,存在 $U \in \mathcal{U}$ 作为它的开邻域, $p^{-1}(U) = \bigcup_{[\gamma] \in p^{-1}(U)} \mathcal{U}_{[\gamma]}$,并且必有 $U_{[\gamma]} = \mathcal{U}_{[\gamma']}$ 或 $U_{[\gamma']} \cap \mathcal{U}_{[\gamma']} = \emptyset$,因此这里实际上是将 $p^{-1}(U)$ 分为无交并,并且前面已经证明了 $p|_{\mathcal{U}_{[\gamma]}} : \mathcal{U}_{[\gamma]} \to \mathcal{U}$ 为同胚,故 p 为覆叠映射.

【STEP 7. 证明 E 道路连通】对任意 $[\gamma] \in E$,令 $\gamma_t : I \to B, \gamma_t(s) = \gamma(ts)$ (相当于某种截断),令 $\tilde{\gamma} : I \to E, t \mapsto [\gamma_t]$,则 $\tilde{\gamma} \to E$ 中从 $[\gamma_0] = [e_{\gamma(0)}]$ 到 $[\gamma_1] = [\gamma]$ 的一条道路,因此 E 道路连通.

【STEP 8. 证明 E 单连通,或者说证明 $\pi_1(E, [e_b])$ 平凡】设 $H = p_{\pi}(\pi_1(E, [e_b]))$, $[\gamma] \in H$, $\gamma \in \Omega(B, b)$,设 $\tilde{\gamma}: I \to E$ 为其提升,则 $\tilde{\gamma}(t) = \gamma_t$,并且 $\tilde{\gamma}(0) = [e_b]$, $\tilde{\gamma}(1) = [\gamma] = [e_b]$,因此 H 平凡,说明 E 单连通.

推论 5.3 (一般覆叠空间的存在性)

若 B 道路连通、局部道路连通、局部半单连通,则对任意 $b \in B, G \leq \pi_1(B,b)$,存在覆叠空间 (E_G,p) 及 $e \in p^{-1}(b)$ 使得 $H_e = p_*(\pi_1(E_G,e)) = G$.

证明 令 $E_G = E/\sim$,其中 $[\gamma] \sim [\gamma']$ 当且仅当 $\gamma(1) = \gamma'(1)$ 且 $[\gamma * \overline{\gamma'}] \in G$ (这显然是等价关系),并且若 $[\gamma] \sim [\gamma']$,则对任意 η 有 $[\gamma * \eta] \sim [\gamma * \eta]$,因此 $U_{[\gamma]}$ 中的点与 $U_{[\gamma']}$ 中的点一一等价,并且同一 $U_{[\gamma]}$ 中的点两两不等价(终点不同),因此

$$p^{-1}(U)/\sim = \bigcup_{[\gamma] \in p^{-1}(U)} U_{[\gamma]}/\sim = \bigcup_{[\gamma] \in p^{-1}(U)} U_{[\gamma]}$$
(5.24)

因此 $p: E_G \to B$ 为覆叠映射,下证 $p_*(\pi_1(E_G, [e_b])) = G$,对任意 $[\gamma] \in p_*(\pi_1(E_G, [e_b]))$, γ 为 B 中以 b_0 为基点的闭路,记其提升为 $\tilde{\gamma}: I \to E, \tilde{\gamma}(t) = [\gamma_t]$,再设 $\tilde{\gamma}_G: I \to E_G, \tilde{\gamma}_G(t) = [[\gamma_t]]$ 为 γ 在 E_G 中的提升, $\tilde{\gamma}_G$ 为闭路当且仅当 $[[\gamma_1]] = [[\gamma_0]]$,即 $[\gamma] \in G$,因此 $p_*(\pi_1(E_G, [e_b])) = G$.

5.3 覆叠变换与正则覆叠空间

5.3.1 覆叠变换

定义 5.5 (覆叠变换)

设 $p: E \to B$ 为覆叠映射, 若 E 的自同胚 h 满足 $p \circ h = p$, 则称之为 (E, p) 的一个覆叠变换.

 $\dot{\mathbf{L}}$ 所有覆叠变换在映射复合下构成群,称为 (E,p) 的覆叠变换群,记为 D(E,p).

一个基本的问题是覆叠变换群中有多少元素? 设 $h \in D(E,p), e \in E, b = p(e)$,则 $h(e) \in p^{-1}(b)$,由于 E 道路连通,根据一般提升的唯一性可知当 $h \neq h'$ 时 $h(e) \neq h'(e)$. 若 $h(e) = e' \in p^{-1}(b)$,则 h 为同胚说明 $\pi_1(E,e') = \pi_1(E,e)$,因此(或者考虑带点交换图,借助 π_1 的函子性)

$$p_*(\pi_1(E,e)) = H_e = H_{e'} = p_*(\pi_1(E,e')). \tag{5.25}$$

进一步有如下命题

命题 5.13 (覆叠变换的存在性)

设 $e' \in p^{-1}(b)$,则存在覆叠变换 h 使得 h(e) = e' 当且仅当

$$p_*(\pi_1(E,e)) = H_e = H_{e'} = p_*(\pi_1(E,e')). \tag{5.26}$$

证明 ⇒: 已证.

 \Leftarrow : 若 $H_e = H_{e'}$, 则由映射提升引理,存在 $p: E \to B$ 的提升 $h, h': E \to E$ 使得 h(e) = e', h'(e') = e, 则 $h' \circ h$ 也是 $p: E \to B$ 的提升,根据唯一性可知 $h' \circ h = h \circ h' = \mathrm{Id}_E$,因此 $h \to h$ 同胚.

推论 5.4 (泛覆叠映射的泛性)

设 $p_0: E_0 \to B$ 为泛覆叠映射, $p: E \to B$ 为覆叠映射,则存在覆叠映射 $\tilde{p}: E_0 \to E$ 使得 $p \circ \tilde{p} = p_0$.

$$E_0 \xrightarrow{\exists \tilde{p}} B$$

$$E_0 \xrightarrow{p_0} B$$

 \Diamond

定理 5.4 (覆叠空间与基本群的 Galois 对应)

设 B 为道路连通、局部道路连通、局部半单连通空间,则有一一对应:

$$\{\pi_1(B,b)$$
的子群 $\} \longleftrightarrow \{B$ 上覆叠空间的同构类 $\}.$ (5.27)

5.3.2 正则覆叠空间

定义 5.6 (正则覆叠映射)

设 $p:E\to B$ 为覆叠映射,若存在 $e\in E$ 使得 $H_e=p_*(\pi_1(E,e)) \triangleleft \pi_1(B,p(e))$,则称 p 为正则覆叠映射, (E,p) 为正则覆叠空间.

$$\begin{array}{ccc}
\pi_1(E,e) & \xrightarrow{\Gamma_{\gamma}} & \pi_1(E,e') \\
\downarrow^{p_*} & & \downarrow^{p_*} \\
\pi_1(B,p(e)) & \xrightarrow{\Gamma_{p \circ \gamma}} & \pi_1(B,p(e'))
\end{array}$$

例 5.4

- 设 $p: X \to X/f$ 为覆叠映射,则其覆叠变换群为 $\mathbb{Z}/n\mathbb{Z}$.
- 泛覆叠映射总是正则的.

命题 5.14 (正则覆叠映射的存在性)

 $p: E \to B$ 为正则覆叠映射当且仅当对任意 $b \in B, e, e' \in p^{-1}(b)$, 存在覆叠变换 h 使得 h(e) = e'.

证明 \Rightarrow : 若 $p: E \to B$ 为正则覆叠映射,则 $H_e, H_{e'} \triangleleft \pi_1(B, b)$,由于 $H_e, H_{e'}$ 在同一个子群共轭类中,因此 $H_e = H_{e'}$,存在覆叠变换 h 使得 h(e) = e'.

 \Leftarrow : 对任意 $e' \in p^{-1}(b)$, 存在覆叠变换 h 使得 h(e) = e', 则 $H_e = H_{e'}$, 但 $\{H_e : e \in p^{-1}(b)\}$ 构成一个子群共轭类, 因此它所在的共轭类只有它本身, 即 $H_e \triangleleft \pi_1(B,b)$.

定理 5.5

设 $p: E \to B$ 为正则覆叠映射, $b \in B$,则 $D(E, p) \cong \pi_1(B, b)/H_b$.

证明 记 $[\alpha] \in \pi_1(B,b)$ 在 $\pi_1(B,b)/H_b$ 中的类为 $[[\alpha]]$,取定 $e \in p^{-1}(b)$,令

$$\Phi: D(E, p) \to p^{-1}(b), \quad h \mapsto h(e), \tag{5.28}$$

则 Φ 为一一对应 (提升的唯一性说明单,前述命题说明满),另外有一一对应

$$\eta: p^{-1}(b) \to \pi_1(B, b)/H_e, \quad e' \mapsto H_e p_*([\alpha]) := [p_*([\alpha])],$$
(5.29)

因此 $\theta: \eta \circ \Phi: D(E,p) \to \pi_1(B,b)/H_b$ 为一一对应,并且对任意 $h_1, h_2 \in D(E,p)$,设 $[\alpha_1], [\alpha_2] \in L(e)$ 分别以 $h_1(e), h_2(e)$ 为终点,则 $\theta(h_i) = \eta(h_i(e)) = [p_*([\alpha_i])]$,而 L(e) 中以 $h_1(h_2(e))$ 为终点的道路类恰好为 $[\alpha_1*(h_1\circ\alpha_2)]$,由于 $p \circ h_2 = p$,因此

$$\theta(h_1 \circ h_2) = \eta(h_1(h_2(e))) = [p_*([\alpha_1] * [h_1 \circ \alpha_2])] = [p_*([\alpha_1]) * p_*([\alpha_2])] = \theta(h_1)\theta(h_2), \tag{5.30}$$

故 θ 为同态,得证.

上述定理有一般形式:

定理 5.6

设 $p:E \to B$ 为覆叠映射, $e \in E$, 则 $D(E,p) \cong N(H_e)/H_e$.

 \Diamond

证明 证明思路还是固定 $e \in p^{-1}(b)$, 考虑一一对应

$$D(E, p) \to \{e' \in p^{-1}(b) : H_e = H_{e'}\} \to N(H_e)/H_e$$
 (5.31)

借此可以通过基本群计算覆叠变换群,也可以通过覆叠变换群计算基本群.

例 5.5

- $p: \mathbb{R} \to S^1, p(x) = e^{2\pi i x}$ 为覆叠映射,显然 $D(\mathbb{R}, p) \cong \mathbb{Z} \cong \pi_1(S^1)$.
- 粘合对径点 $p: S^n \to P^n$ 为覆叠映射,并且 $D(S^n, p) = \{ \mathrm{Id}, -\mathrm{Id} \} \cong \mathbb{Z}/2\mathbb{Z} \cong \pi_1(P^n)$.

例 5.6 透镜空间 将 S^3 视为 \mathbb{C}^2 中的单位球面,考虑连续映射

$$f: S^3 \to S^3, \quad (z_1, z_2) \mapsto (e^{2\pi i/p} z_1, e^{2\pi i q/p} z_2),$$
 (5.32)

其中 p,q 互素,f 为周期同胚, $f^p = \mathrm{Id}$,并且当 $1 \leq r < p$ 时 f^r 无不动点,商空间 S^3/f 称为**透镜空间**,记为 L(p,q),此时粘合映射 $p:S^3 \to L(p,q)$ 为 p 重覆叠映射,因此 $D(S^3,p) \cong \mathbb{Z}/p\mathbb{Z} \cong \pi_1(L(p,q))$. 特别地, $L(2,1)=P^3$.

例 5.7 透镜空间的推广 透镜空间可以推广为 $L(p;q_1,\cdots,q_n)=S^{2n+1}/f$,其中 $\gcd(p,q_i)=1$,

$$f: S^{2n+1} \to S^{2n+1}, \quad (z_1, \dots, z_n) \mapsto (e^{2\pi i/p} z_1, e^{2\pi i q_1/p} z_2, \dots, e^{2\pi i q_n/p} z_n),$$
 (5.33)

则 $p: S^{2n+1} \to L(p; q_1, \dots, q_n)$ 仍然为 p 重覆叠映射,故依然有 $\pi_1(L(p; q_1, \dots, q_n)) \cong \mathbb{Z}/p\mathbb{Z}$.

借助透镜空间以及 π_1 的函子性可证明: 任意有限生成 Abel 群都是某个流形的基本群(考虑透镜空间的积空间即可).

5.4 覆叠映射与群作用

定义 5.7 (群在拓扑空间上的作用)

设 G 为群, \widetilde{X} 为拓扑空间,称 G 到 $\mathrm{Aut}\,(\widetilde{X})$ 的同态为一个群作用. 记 $\widetilde{X}/G:=\widetilde{X}/\sim$ 为轨道空间, $x\sim y$ 当且仅当存在 $g\in G$ 使得 x=gy.

此时自然出现商映射 $p: \widetilde{X} \to X$,一个自然的问题是:该映射是否为覆叠映射?首先若 p 为覆叠映射,则 X 中有基本开邻域 U 使得 $p^{-1}(U) = \bigcup_{g \in G} gV$ 为无交并,即对任意 $e \neq g \in G$ 都有 $gV \cap V = \emptyset$,事实上满足类似条件的作用确实会诱导出一个覆叠映射.

定义 5.8 (纯不连续作用)

设 G 作用在 \widetilde{X} 上, $X=\widetilde{X}/G$, 若对任意 $\widetilde{x}\in\widetilde{X}$, 存在开邻域 \widetilde{U} 使得对任意 $e\neq g\in G$ 都有 $(g\widetilde{U})\cap\widetilde{U}=\emptyset$, 则称该作用是纯不连续的.

命题 5.15 (群作用诱导覆叠映射)

若 G 在 \widetilde{X} 上的作用是纯不连续的,则商映射 $p:\widetilde{X}\to X$ 为覆叠映射.

证明 对任意 $x \in X$, 取 $\tilde{x} \in p^{-1}(x)$, 设 \tilde{U} 为 \tilde{x} 的满同条件的开邻域,记 $p(\tilde{U}) = U$,下证 U 为 x 的基本开邻域. 首先有无交分解

$$p^{-1}(U) = \bigcup_{g \in C} g\widetilde{U},\tag{5.34}$$

右边均为开集,根据商映射定义可知 U 为开集,并且 $p|_{\widetilde{U}} \to U$ 为连续满射,纯不连续作用的定义说明它是单射,借助前面的相同方法可知它为开映射,故为同胚. 此外 $p|_{a\widetilde{U}} = p_{\widetilde{U}} \circ g$,因此也为同胚,因此 p 是覆叠映射.

5.5 应用

引理 5.3

图同伦与圆束, 因此其基本群为自由群.

\sim

定理 5.7 (Nielsen-Schreier)

自由群的子群依然为自由群.

证明 设 F 为自由群,H 为其子群,则取线性图 G 使得 $\pi_1(G)\cong F$,容易验证 G 道路连通、局部道路连通、局部半单连通,因此存在覆叠映射 $p:\widetilde{G}\to G$ 使得 $\pi_1(\widetilde{G})\cong H$,但 \widetilde{G} 也是线性图,故 H 也是自由群.

附录 A 补充内容

A.1 Tychonoff 定理

A.1.1 定理的证明与选择公理

根据定义, 乘积拓扑由如下子基生成

$$S = \bigcup_{\alpha} \{ \pi_{\alpha}^{-1}(U_{\alpha}) : U_{\alpha} \in \mathcal{T}_{\alpha} \}, \tag{A.1}$$

因此可以借助 Alexander 子基定理证明 Tychonoff 定理.

定理 A.1 (Alexander 子基定理)

(X,T) 是紧的当且仅当其任意子基覆盖有有限子覆盖.

证明 【Tychnoff 定理的证明】设 $\mathscr{A} = \{\pi_{\alpha}^{-1}(U) : U \in \mathscr{A}_{\alpha}\} \ \, \forall \ \, X = \prod_{\alpha} X_{\alpha} \ \, \text{的子基覆盖,其中 } \mathscr{A}_{\alpha} \subset \mathcal{T}_{\alpha} \ \, \forall - \chi \in \mathcal{T}_{\alpha} \}$ 开集,首先存在 α_0 使得 \mathscr{A}_{α_0} 的覆盖,否则

$$\forall \alpha, X_{\alpha} \setminus \bigcup_{U \in \mathscr{A}_{\alpha}} U \neq \emptyset \Longrightarrow \prod_{\alpha} (X_{\alpha} \setminus \bigcup_{U \in \mathscr{A}_{\alpha}} U) \neq \emptyset, \tag{A.2}$$

说明 \mathscr{A} 不是 X 的覆盖,矛盾 X_{α_0} 的紧性说明 \mathscr{A}_{α_0} 有有限子覆盖 $\{U_1, \dots, U_m\}$,因此 $\{\pi_{\alpha_0}^{-1}(U_1), \dots \pi_{\alpha_0}^{-1}(U_m)\}$ 是 \mathscr{A} 的有限子基覆盖,即得.

下面证明 Alexander 子基定理, 其证明需要用到 Zorn 引理.

证明 【Alexander 子基定理的证明】假设 X 非紧,但其任意子基覆盖都有有限子覆盖,下面通过 Z orn 引理构造 - 个无有限子覆盖的子基覆盖. 令

$$\boxed{ |A| = \{ \mathscr{A} \subset \mathcal{T} : \mathscr{A} \to X \text{的开覆盖但无有限子覆盖} \} \subset 2^{2^{2^{X}}}, \tag{A.3} }$$

则它是一个集合包含关系下的偏序集,且X非紧保证它非空,取其全序子集 \mathfrak{K} ,则

- 1. $\mathscr{E} = \bigcup_{\mathscr{A} \in \mathscr{A}} \mathscr{A} \subset \mathcal{T}$.
- 2. *ℰ* 为 *X* 的开覆盖.
- 3. 8 为 系的一个上界.
- 4. $\mathscr{E} \in \mathbb{A}$, 若不然,则其存在有限子覆盖 $\{A_1, \dots, A_n\}$,并且存在 \mathscr{A}_i 使得 $A_i \in \mathscr{A}_i$,而 \mathfrak{K} 为全序集,因此存在 $k \in \{1, \dots, n\}$ 使得每个 $\mathscr{A}_i \subset \mathscr{A}_k$,即得 \mathscr{A}_k 有有限子覆盖,矛盾.

因此根据 Zorn 引理, $\boxed{ \text{ | |}}$ 有极大元 \mathscr{A} . 对于子基 \mathscr{S} ,下证 $\mathscr{S} \cap \mathscr{A}$ 为 X 的开覆盖,则一方面它必有有限子基覆盖,但另一方面它无有限子覆盖,即得矛盾.

对任意 $x \in X$, 存在 $A \in \mathscr{A}$ 使得 $x \in A$, 根据子基的定义, 存在 $S_1, \dots, S_m \in \mathcal{S}$ 使得 $x \in S_1 \cap \dots \cap S_m \subset A$, 下证存在 $1 \leq k \leq m$ 使得 $S_k \in \mathscr{A}$, 即得 $x \in S_k \in \mathcal{S} \cap \mathcal{A}$.

若不然,则对每个 k 都有 $\mathscr{A} \subset \mathscr{A}_k := \mathscr{A} \cup \{S_k\}$,根据 \mathscr{A} 的极大性可知 $\mathscr{A}_k \notin [\Lambda]$,因此它有有限子覆盖 $\{S_k, A_{k,1}, \cdots, A_{k,j(k)}\}$,故

$$X = \bigcap_{k=1}^{m} (S_k \cup A_{k,1} \cup \dots \cup A_{k,j(k)}) = (S_1 \cap \dots \cap S_m) \cup (\bigcup_{k,j} A_{k,j}), \tag{A.4}$$

因此 $\{A, A_{k,j}: 1 \le k \le m, 1 \le j \le j(k)\}$ 是 \mathscr{A} 的有限子覆盖,矛盾.

事实上,借助 Tychonoff 定理可以证明选择公理,又由于选择公理可证 Alexander 子基定理,因此三者是等价的.

命题 A.1 (Tychonoff 定理蕴含选择公理)

若 Tychonoff 定理成立,则对一族非空集合 $\{X_{\alpha}\}$ 有 $\prod_{\alpha} X_{\alpha} \neq \emptyset$.

证明 设 $\widetilde{X}_{\alpha} = X_{\alpha} \cup \{\infty_{\alpha}\}$,赋拓扑 $\widetilde{T}_{\alpha} = \{\emptyset, X_{\alpha}, \{\infty_{\alpha}\}, \widetilde{X}_{\alpha}\}$,则 \widetilde{X}_{α} 是紧空间(可以看作是平凡拓扑的一点紧化),由 Tychonoff 定理, $X = \prod_{\alpha} \widetilde{X}_{\alpha}$ 是紧集,并且 $\{\pi_{\alpha}^{-1}(X_{\alpha})\}$ 是 X 中的一族闭集,且任意交

$$\bigcap_{i=1}^{k} \pi_{\alpha_i}^{-1}(X_{\alpha_i}) \supset X_{\alpha_1} \times \dots \times X_{\alpha_k} \times \prod_{\alpha \neq \alpha_1, \dots, \alpha_k} \{\infty_{\alpha}\}$$
(A.5)

非空,由其紧性可知 $\bigcap_{\alpha} \pi_{\alpha}^{-1}(X_{\alpha}) \neq \emptyset$,而该集合中的任意元素都是 $\prod_{\alpha} X_{\alpha}$ 中的元素,得证.

上面证明的巧妙之处在于向每个集合添加了一个点 ∞_{α} , 否则说明 $\pi_{\alpha}^{-1}(X_{\alpha})$ 的"任意有限交非空"会产生循环论证.

A.1.2 Tychonoff 定理的应用

命题 A.2

可数多个列紧空间的乘积仍然是列紧的.

证明 考虑 $X^{\mathbb{N}}$ 中的一列元素 $\{a^n\}$, 则 $a^n = (a_1^n, a_2^n, \cdots)$ 为 X 中的序列. 所有 $\{a_1^n : n \in \mathbb{N}\}$ 构成一个序列,X 的 列紧性保证了 $\{a_1^n\}$ 存在子列 $a^{n(1,i)}$ 使得 $a_1^{n(1,i)}$ 收敛到 a_1^{∞} , 对 $a_2^{n(1,i)}$ 使用列紧性可知存在 $a^{n(1,i)}$ 的子列 $a^{n(2,i)}$ 使得 $a_2^{n(2,i)}$ 收敛到某个 a_2^{∞} , 重复这里过程可得方阵 $a^{n(i,j)}$, 取对角线 $a^{n(i,i)}$ 可知它是 $\{a^n\}$ 在乘积拓扑(或者说逐点收敛拓扑下的收敛子列).

借助 Tychonoff 定理可以给出紧致性与列紧性不等价的反例.

例 A.1 紧 \Rightarrow **列紧** 根据定理可知 ($[0,1]^{[0,1]}$, \mathcal{T}_{prod}) = ($\mathcal{M}([0,1],[0,1])$, $\mathcal{T}_{p.c.}$) 为紧空间,但它不是列紧的. 定义 $f_n:[0,1]\to[0,1]$ 为将 x 映为其二进制表示的第 n 为的映射,下证其无收敛子类,对任意子列 { f_{n_k} },取 x_0 满足其二进制的 n_{2k} 位为 0, n_{2k+1} 位为 1, 则

$$f_{n_{2k}}(x_0) = 0, f_{n_{2k+1}}(x_0) = 1,$$
 (A.6)

因此它在 x₀ 处不收敛, 故不是逐点收敛的.

例 A.2 列紧 \Rightarrow **紧** 设 A 为 ($\mathcal{M}([0,1],[0,1])$, $\mathcal{T}_{p.c.}$) 的由仅在可数个点非零的函数构成的子集,则它列紧,但非紧. 首先对 A 中任意点列 { f_n },集合 $S = \{x : \exists n, s.t. f_n(x) \neq 0\}$ 是可数集,在考虑其逐点收敛情形时,可认为 $f_n \in [0,1]^S$,但 $[0,1]^S \cong \mathcal{C}$ 是列紧的,因此 f_n 有收敛子列.

其次对任意 $t \in [0,1]$,记 $A_t = \{f \in A : f(t) = 1\}$,则 $\{A_t\}$ 为一族闭集,并且其任意有限并非空,因此 $\bigcap_{t \in [0,1]} A_t \neq \emptyset$,但根据定义这是不可能的.

A.2 拓扑群

定义 A.1 (拓扑群)

称群 G 为拓扑群, 若它同时具有群和拓扑空间的结构, 并且乘法运算与求逆运算

$$\mu: (x,y) \mapsto xy, \quad \nu: x \mapsto x^{-1}$$
 (A.7)

都是连续的.

定义 A.2 (拓扑群同构)

设 G,H 为拓扑群,若 $\varphi:G\to H$ 既是群同态也是连续映射,则称之为连续同态,若其逆存在且也为连续映射,则称 φ 为同构以及两个拓扑群同构.

定义 A.3 (齐性空间)

称拓扑空间 X 是齐性的, 若对任意 $a,b \in X$, 存在 X 的同胚将 a 映为 b.

命题 A.3

拓扑群是齐性空间.

证明 设 $r_s: G \to G, r_s(x) = xs, l_s: G \to G, l_s(x) = sx$ 分别为右乘与左乘映射,则它们是拓扑群的自同构 (同胚),故命题显然.

命题 A.4

设G为拓扑群,A,B为G的子集,则

- 1. \dot{A} $\dot{A$
- 2. 若 A 为开集,则 AB, BA 都是开集.
- 3. 若 A 为闭集, B 为有限集, 则 AB, BA 都是闭集.
- 4. 若 A, B 都是紧集,则 AB 是紧集.

证明

- 1. 注意到 r_x, l_x 为同胚.
- 2. 显然.
- 3. 显然.
- 4. 由于 $A \times B$ 为 $G \times G$ 的紧集, 因此 $AB = \mu(A \times B)$ 为紧集.

对于拓扑群而言,首要的是刻画其中的邻域,或者说邻域基/拓扑基. 由于拓扑群是齐性空间,因此只需讨论单位元 e 的邻域基.

命题 A.5

设 罗 为拓扑群 G 的单位圆的邻域基,则

- 1. 设 $U, V \in \mathcal{F}$,则存在 $W \in \mathcal{F}$ 使得 $W \subset U \cap V$.
- 2. 设 $a \in U \in \mathscr{F}$,则存在 $V \in \mathscr{F}$ 使得 $Va \subset U$.
- 3. 设 $U \in \mathcal{F}, x \in G$,则存在 $V \in \mathcal{F}$ 使得 $x^{-1}Vx \subset U$.
- 4. 设 $U \in \mathscr{F}$,则存在 $V \in \mathscr{F}$ 使得 $V^{-1}V \subset U$.
- 5. 设 $U \in \mathscr{F}$,则存在 $V \in \mathscr{F}$ 使得 $V^{-1} \subset U$.
- 6. 设 $U \in \mathcal{F}$,则存在 $W \in \mathcal{F}$ 使得 $WW \subset U$.

证明

- 2. 由于 Ua^{-1} 是包含 e 的邻域,因此必然包含 $V \in \mathcal{F}$,即得 $Va \subset U$.
- 3. 过程同 2.
- 4. 考虑连续映射 $\varphi(a,b) = a^{-1}b$,U 为开集说明 $\varphi^{-1}(U)$ 为开集,并且 $(e,e) \in \varphi^{-1}(U)$,因此存在 $A,B \in \mathscr{F}$ 使得 $A \times B \subset \varphi^{-1}(u)$,并且存在 $V \in \mathscr{F}$ 使得 $V \subset A \cap B$,因此 $V \times V \subset \varphi^{-1}(U)$,即得 $V^{-1}V \subset U$.
- 5. 根据上一条,存在 $V \in \mathcal{F}$ 使得 $V^{-1}V \subset U$,而 $e \in V$,因此 $V^{-1} \subset V^{-1}V \subset U$.
- 6. 过程同 4.

事实上,上述性质完全决定了拓扑群的基.

命题 A.6

设 G 为抽象群, \mathscr{F} 为 G 的非空子集,每个集合都包含 e,若 \mathscr{F} 满足上述命题中的 1,2,3,4,则 G 中存在 唯一拓扑,它以 \mathscr{F} 为 e 的邻域基,使 G 为拓扑群.

证明 令 $\mathcal{B} = \{Ug : U \in \mathcal{F}, g \in G\}$,只需证明 \mathcal{B} 为拓扑基. 首先显然 $\bigcup_{B \in \mathcal{B}} B = G$,根据齐性,设 $Ua, Vb \in \mathcal{B}, e \in Ua \cap Vb$,则由 2,存在 U', V' 使得

$$e \in U' \subset Ua, \quad e \in V' \subset Vb,$$
 (A.8)

再由 1 可得 $W \in \mathcal{F}, W \subset U' \cap V'$,即得 $e \in W \subset Ua \cap Vb$,因此 $Ua \cap Vb$ 实际上是 \mathcal{B} 中一些集合的并,故 \mathcal{B} 为拓扑基.

下面说明 $\varphi(b,c) = b^{-1}c$ 为连续映射,即对任意 $Ua \in \mathcal{B}$, $\varphi^{-1}(Ua)$ 为 $G \times G$ 中的开集,设 $b^{-1}c = ua \in Ua$,则存在 $V \in \mathcal{F}$ 使得 $Vu \subset U$,存在 $W \in \mathcal{F}$ 使得 $b^{-1}Wb \subset V$,存在 $Z \in \mathcal{F}$ 使得 $Z^{-1}Z \subset W$,因此

$$b^{-1}Z^{-1}Zbua \subset b^{-1}Wbua \subset Vua \subset Ua \Rightarrow (Zb)^{-1}(Zc) \subset Ua, \tag{A.9}$$

命题 A.7

若拓扑群 G 是 T1 的, 那么它也是 T2,T3 的.

证明 只需证明 T3, 而根据齐性只需证明 e 与不包含 e 的闭集 F 可分离. 由于 F^c 为 x 的开邻域,因此存在开集 V 使得 $e \in V^{-1}V \subset F^c$,因此 $V^{-1}V \cap F = \emptyset$,说明 $V \cap VF = \emptyset$,因此 V, VF 即为分离 x, F 的无交开集.

命题 A.8

局部可数紧 T3 空间是第二纲集.

注 局部可数紧是指对任意 x,存在其邻域 U 使得 \overline{U} 为可数紧集. 该命题对局部紧 Hausdorff 空间也成立. 证明 假设存在可数个稠密开集 D_n 使得 $\bigcap_{n=1}^{\infty} D_n = \emptyset$,首先取开集 $U_0 \subset X$ 使得 $\overline{U_0}$ 为紧集,则对任意 $x \in U_0 \cap D_1$,根据 T3 可知存在开集 V 使得

$$x \in V \subset \overline{V} \subset D_1, \tag{A.10}$$

令 $U_1 = V \cap U_0$,则 $\overline{U_1} \subset D_1 \cap \overline{U_0}$,同理可得非空开集 U_2, U_3, \cdots 满足

$$\overline{U_{n+1}} \subset D_{n+1} \cap \overline{U_n} \Rightarrow U_{n+1} \subset U_n, \tag{A.11}$$

因此 $\emptyset \neq \bigcap_{n=0}^{\infty} \overline{U_n} \subset \bigcap_{n=0}^{\infty} D_n$,矛盾.

推论 A.1

设 G 是局部紧 σ -紧 T3 群,H 为正则局部可数紧群,若 $\varphi:G\to H$ 为连续满同态,则 φ 是开映射.

A.3 映射空间的拓扑

A.3.1 三种拓扑

对于集合 X 以及拓扑空间 Y,考虑从 X 到 Y 的映射构成的空间 $\mathcal{M}(X,Y)$,如果只作为集合,其上可以定义离散拓扑、平凡拓扑、余可数拓扑、余有限拓扑等,但是考虑映射的含义可知 $\mathcal{M}(X,Y)=Y^X$,因此首先可以给出两种乘积空间的拓扑:

• 乘积拓扑: 由子基

$$S_{prod} = \{ \pi_x^{-1}(B_Y(y_x, r_x)) : x \in X, y_x \in Y, r_x > 0 \}$$
(A.12)

生成,这恰好是逐点收敛拓扑 ($\mathcal{M}(X,Y),\mathcal{T}_{p.c.}$).

• 箱拓扑: 由基

$$\mathcal{B}_{box} = \left\{ \prod_{x \in X} B_Y(y_x, r_x) : y_x \in Y, r_x > 0 \right\}$$
(A.13)

生成,这在研究连续映射是并不方便.

如果 Y 为度量空间,则 Y 上的度量 d 诱导了度量

$$d_u(f,g) = \sup_{x \in X} \frac{d(f(x), g(x))}{1 + d(f(x), g(x))},$$
(A.14)

并且 $\{f_n\}$ 在 X 上一致收敛到 f 当且仅当 $\{f_n\}$ 在 $(\mathcal{M}(X,Y),d_u)$ 中度量收敛到 f , 因此可定义

定义 A.4 (一致度量/一致收敛拓扑)

称上面的 d_u 为 $\mathcal{M}(X,Y)$ 上的一致度量,由该度量诱导的拓扑 $\mathcal{T}_{u.c.}$ 称为 $\mathcal{M}(X,Y)$ 上的一致收敛拓扑.

 $\dot{\mathbf{L}}$ 一致收敛拓扑需要 Y 的度量结构,并且 $\mathcal{T}_{p.c.} \subset \mathcal{T}_{u.c.} \subset \mathcal{T}_{box}$.

命题 A.9

若 Y 为完备度量空间,则 d_u 为 $\mathcal{M}(X,Y)$ 上的完备度量.

若 X 为拓扑空间, Y 为度量空间, 令 C(X,Y) 表示二者之间连续映射的全体, 它在 $\mathcal{T}_{p,c}$ 中不是闭集, 但在 $T_{u.c.}$ 中是闭集(因为连续函数的一致极限还是连续的),因此

命题 A.10

若 X 为拓扑空间, Y 为完备度量空间, 则 $(C(X,Y),d_u)$ 为完备度量空间.

若要研究连续函数列的收敛性,则上面的三种拓扑都有缺点:逐点收敛拓扑太弱(不能保证极限函数的连 续性), 而一致拓扑与箱拓扑太强(连续性是"局部"概念, 它强于"点态", 弱于"整体"), 因此需要考虑"局 部"的一致收敛.

A.3.2 紧收敛拓扑与紧开拓扑

仿照前面三种拓扑,对X的紧集K可定义

$$B(f; K, \varepsilon) = \{ g \in \mathcal{M}(X, Y) : \sup_{x \in X} d(f(x), g(x)) < \varepsilon \}, \tag{A.15}$$

由此可引出紧收敛拓扑.

引理 A.1

设X为拓扑空间, (Y,d)为度量空间,则

是 M(X,Y) 的一个拓扑基,并且它生成的拓扑 $T_{c.c.}$ 中的收敛性等价于在所有紧集上的一致收敛性

定义 A.5 (紧收敛拓扑)

上述引理中定义的拓扑称为紧收敛拓扑,记为 $T_{c.c.}$

命题 A.11 (限制映射的连续性)

对任意 $A \subset X$, 限制映射

$$r_A: C(X,Y) \to C(A,Y), \quad f \mapsto f|_A$$
 (A.17)

关于 $T_{p.c.}$, $T_{c.c.}$, $T_{u.c.}$ 都是连续的.

证明 只需证明 $r_A: \mathcal{M}(X,Y) \to \mathcal{M}(A,Y)$ 连续,再将其限制在 C(X,Y) 即可(若设 $\iota: A \to X$ 为嵌入,则 $r_A(f) = f \circ \iota \text{ if } g r_A(C(X,Y)) \subset C(A,Y)$.

证明其连续性只需证明它将C(A,Y)中的每个子基(或基)拉回为C(X,Y)中的开集,首先考虑 $\mathcal{T}_{p.c.}$ 有

$$r_A^{-1}(\pi_x^{-1}(B^Y(y_x, r_x))) = (\pi_x \circ r_A)^{-1}(\pi_x^{-1}(B^Y(y_x, r_x))), \tag{A.18}$$

由于积拓扑是投影映射的诱导拓扑,因此 r_A 连续当且仅当

如果函数列 $\{f_n\}$ 在某个紧子集K上一致收敛到f,则f在K上是连续的,为了将f在每个紧集上的连续 性推广到全空间,需要局部紧致性.

命题 A.12

若局部紧空间 X 上的函数列 $\{f_n\} \subset C(X,Y)$ 紧收敛到 f, 则 $f \in C(X,Y)$.

证明 取 X 的紧邻域覆盖,则由 $\{f_n\}$ 在 $\mathcal{T}_{c.c.}$ 中的收敛可得其在每个紧邻域内的一致收敛,即得. 紧收敛拓扑定义要求 Y 为度量空间,对一般的拓扑空间 Y,将度量球替换为开集就能定义类似的**紧开拓扑**.

定义 A.6 (紧开拓扑)

设X,Y为拓扑空间,对任意紧集 $K \subset X$ 和开集 $V \subset Y$,记

$$S(K,V) = \{ f \in \mathcal{M}(X,Y) : f(K) \subset V \},\tag{A.19}$$

称 M(X,Y) 上由子基

$$S_{c.o.} = \{ S(K, V) : K \subset X \%, V \subset Y \mathcal{H} \}$$
(A.20)

生成的拓扑 $T_{c.o.}$ 为 M(X,Y) 的紧开拓扑.

命题 A.13 (紧收敛拓扑为紧开拓扑)

若Y为度量空间,则在C(X,Y)上 $\mathcal{T}_{c.o.} = \mathcal{T}_{c.c.}$

证明 注意到 $S(K, B(f, \varepsilon)) = B(f; K, \varepsilon)$.

命题 A.14 (复合的连续性)

设X,Y,Z为拓扑空间,Y为LCH空间,在紧开拓扑下,复合映射

$$\circ: C(X,Y) \times C(Y,Z) \to C(X,Z), \quad (f,g) \mapsto g \circ f \tag{A.21}$$

是连续的.

证明 根据 LCH 空间中紧集与开集的分离易得,对任意 $(f,g) \in \circ^{-1}(S(K,V))$,存在开集 U 使得 $(f,g) \in S(K,U) \times S(f(K),V) \subset \circ^{-1}(S(K,V))$.

如果 X = pt 为单点空间,则容易验证 $(C(pt,Y), \mathcal{T}_{c.o.}) \cong (Y, \mathcal{T}_Y)$,在这种观点下可得推论

推论 A.2 (赋值的连续性)

设X为LCH空间,Y为一般拓扑空间,考虑(C(X,Y), $\mathcal{T}_{c.o.}$),则赋值映射

$$e: X \times C(X,Y) \to Y, \quad (x,f) \mapsto e(x,f) = f(x) \in Y$$
 (A.22)

为连续映射.

证明 此时赋值映射恰好为复合映射 $\circ: C(pt,X) \times C(X,Y) \to C(pt,Y)$.