Christophe Viroulaud

Terminale NSI

Prédire la variété d'un iris

·

Présentation graphique des

Prédire la varié

Algorithme kNN

résentation

Construction de l'algorithme

Problématique

Utiliser les données Présentation graphique des informations

Prédire la variét

Algorithme kNN

onstruction de l'algorit

En 1936, le biologiste *Ronald Fisher* a rassemblé les mesures de trois espèces d'iris.

Iris versicolor

Iris virginica

Problématique

Utiliser les données

informations

Algorithme kNN

résentation

Comment prédire une information nouvelle à partir de données brutes ?

 $\operatorname{Figure}-\text{Variét\'es d'iris en fonction de leurs mesures}$

Problématique

Utiliser les données

Présentation graphique des informations

Prédire la variét

Algorithme kNN

esentation

Utiliser les données pour prédire

Activité 1:

1. Déterminer la variété des iris suivants :

longueur	1	6	5.1	2.5
largeur	0.5	2.5	1.55	0.85

2. Proposer une méthode pour effectuer un choix dans les cas ambigus.

Prédire la variété d'un iris

Problématique

Présentation graphique des informations

Prédire la variété

Algorithme kNN

resentation

Correction

longueur	1	6	5.1	2.5
largeur	0.5	2.5	1.55	0.85
variété	setosa	virginica	ambigu	ambigu

Prédire la variété d'un iris

Problématique

Jtiliser les données
Présentation graphique des

Prédire la variété

Algorithme kNN

ésentation

Méthode des k plus proches voisins

Pour déterminer la variété d'un iris inconnu :

regarder la variété d'un nombre k de voisins,

Prédire la variété

Problématique

Utiliser les données Présentation graphique des informations

Présentation

Méthode des k plus proches voisins

Pour déterminer la variété d'un iris inconnu :

regarder la variété d'un nombre k de voisins,

▶ attribuer à la fleur inconnue, la variété la plus présente parmi ses *k* voisins.

Prédire la variété d'un iris

Problématique

Jtiliser les données Présentation graphique des informations

Algorithme kNN

Présentation

Choix de k

FIGURE – Détermination de l'iris (5.05, 1.5) pour k=3

Prédire la variété d'un iris

Problématique

Utiliser les données Présentation graphique des informations

Algorithme kNN

Présentation

Choix de k

FIGURE – Détermination de l'iris (5.05, 1.5) pour k=7

Prédire la variété d'un iris

Problématique

Utiliser les données
Présentation graphique des
informations

Algorithme kNN

Présentation

Complément

L'algorithme *kNN* est une méthode d'apprentissage *su-pervisé* : l'algorithme reçoit un ensemble de données déjà étiquetées sur lequel il va pouvoir s'entraîner et définir un modèle de prédiction.

Prédire la variété d'un iris

Problèmatique

Jtiliser les données Présentation graphique des informations

A.L. ... L. B.IB.I

Présentation

Calcul de la distance

Le plus naturel ici est de prendre la distance à vol d'oiseau ou plus formellement la distance euclidienne.

$$d = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

FIGURE - distance euclidienne

Prédire la variété d'un iris

Problématique

tiliser les données Présentation graphique des informations

Prédire la variéte

Algorithme kiVIV

Présentation

Calcul de la distance

$$d = |x_A - x_B| + |y_A - y_B|$$

FIGURE – distance de Manhattan

Prédire la variété d'un iris

Problématiqu

tiliser les données Présentation graphique des informations

Algorithme kNN

Activité 2 : Écrire en langage naturel, l'algorithme kNN.

Prédire la variété d'un iris

Problematique

Présentation graphique des informations

Algorithme KIVIV
Présentation

Construction de l'algorithme

Construction de l'algorithme

- Charger les données dans le programme.
- Choisir k.
- Stocker les mesures de la fleur inconnue.
- Calculer la distance euclidienne entre la fleur inconnue et tous les autres iris.
- Sélectionner les k plus proches iris (en distance) de la fleur inconnue.
- Affecter la variété majoritaire des k plus proches iris (en distance) à la fleur inconnue.

Problematique

Présentation graphique des informations

Algorithme kNN

ésentation

Construction de l'algorithme Implémentation

Pour charger les données on utilisera la bibliothèque csv.

Activité 3:

- 1. Télécharger le dossier compressé *iris.zip* sur le site https://cviroulaud.github.io
- 2. Ouvrir le fichier *data-iris.csv* avec un tableur pour observer les données.
- 3. Ouvrir le fichier iris-eleve.py.

Prédire la variété d'un iris

Problematique

Otiliser les données Présentation graphique des informations

Predire la varieti

Algorithme kNN

netruction do l'algor

Correction

petal_length	petal_width	species
1.4	0.2	setosa
1.4	0.2	setosa
1.3	0.2	setosa

Prédire la variété d'un iris

Problématique

Jtiliser les données Présentation graphique des informations

Algorithme kNN

résentation

Activité 3:

- 4. Compléter la fonction *charger_donnees* en utilisant les informations du fichier *csv*.
- Compléter la fonction distance qui calcule le carré de la distance euclidienne entre deux points du plan.
- 6. Compléter la fonction calculer_distances.
- Compléter enfin la fonction trouver_variete. Le dictionnaire compteur_voisins compte le nombre d'apparitions de chaque variété parmi les k voisins.

Problématique

Jtiliser les données Présentation graphique des nformations

rredire la varieu

Algorithme kNN

1

3

5

6

10 11

Construction de l'algorithm

```
def charger_donnees(nom_fichier: str) -> dict:
    fichier = open(nom fichier)
    data iris = csv.DictReader( fichier, delimiter = ",")
    dico varietes = {"setosa": [], "versicolor": [],
        virginica ": []}
    # Pour chaque ligne de données
    for iris in data iris:
        # Stocke la longueur et la largeur sous forme de
            tuple de flottants
        dico_varietes [ iris ["species"]]. append(
            (float (iris ["petal_length"]), float (iris ["
                petal_width"])))
    fichier . close ()
    return dico_varietes
```

Correction

```
Prédire la variété d'un iris
```

Problématique

Utiliser les données

Présentation graphique des
informations

Prédire la variéte

Algorithme kNN

ésentation

Construction de l'algorithme

2

5

8

9

10

Prédire la variéte

Igorithme kNN

sentation

Construction de l'algorithme

```
def calculer_distances (donnees: dict , inconnu: tuple) ->
    list:
    distances = []
    for nom, mesures in donnees.items():
        for iris in mesures:
            d = distance( iris , inconnu)
            distances .append((nom, d))
    # trie les iris en fonction de la distance
    distances . sort (key=lambda fleur: fleur [1])
    return distances
```

3

5

6

9 10 11

12

13

14

15

16

17 18 Jaorithme kNN

contation

Construction de l'algorithme

Implémentation

```
# compte le nombre d'occurences de chaque variété
compteur voisins = \{\}
for i in range(k):
    nom = distances[i][0]
    if nom in compteur_voisins:
        compteur voisins[nom] += 1
    else:
        compteur\_voisins[nom] = 1
# recherche la variété avec la plus grande valeur
   dans compteur voisins
maxi = 0
nom maxi = 0
for nom, quantite in compteur voisins.items():
    if quantite > maxi:
        maxi = quantite
        nom maxi = nom
return nom maxi
```

def trouver_variete(k: int, distances: list) -> str:

Activité 3:

- 8. Tester la fonction avec k=3 puis k=7, puis pour les autres iris de l'activité 1.
- 9. Pour les plus avancés : Modifier le code pour tester un ensemble de 10 iris inconnus. De plus chaque iris déterminé sera ajouté au dictionnaire varietes afin d'augmenter l'apprentissage de l'algorithme.

Prédire la variété d'un iris

Problèmatique

Utiliser les données
Présentation graphique des informations

Prédire la variéte

Algorithme KININ
Présentation

Correction

```
k = 3
cible = (5.1, 1.55)

varietes = charger_donnees("data-iris.csv")
distances_cible = calculer_distances (varietes, cible)
variete = trouver_variete(k, distances_cible)

print ("La variété est ", variete)
```

Prédire la variété d'un iris

Problématique

Jtiliser les données Présentation graphique des informations

Prédire la variété

lgorithme kNN

sentation

Construction de l'algorithm

4 5

8

9

10

11

12

Prédire la variét

Algorithme kNI

onstruction de l'algorit

```
k = 3
cibles = [(1,0.5),(6,2.5),(5.1, 1.55),(2.5,0.85),(3,2),
          (6.1.2) (2.1.1) (3.2.1.5) (3.5.2.5) (4.1)
varietes = charger_donnees("data-iris.csv")
for iris_inconnu in cibles:
   # trouve la variété
    distances cible = calculer distances (varietes,
       iris inconnu)
    variete = trouver variete(k, distances cible)
    print(f"La variété de { iris inconnu } est { variete }.")
    # ajout de cible au dictionnaire des données
    varietes [variete].append(iris inconnu)
```