Laboratorium Sterowania Robotów Manipulacyjnych

Raport z ćwiczeń Z7, Z8

Szymon Kacperek, Adrianna Kręglewska, Adam Banaszczyk

AiR, studia stacjonarne II stopnia, specjalność SSiR, rok akademicki 2019/2020

1 Sterowanie w podprzestrzeni typu hiperkula

Dla modelu manipulatora PM2R z silnikami zaprojektowany został regulator ROOS dla ograniczonej podprzestrzeni sterowań: hiperkuli. Układ sterowania wyrażony jest wprost dla napięć wraz ze wzmacniaczem mocy, ograniczającym napięcia zasilania dla obu silników. Symulacje przebiegają dla zerowych warunków początkowych (manipulator wyprostowany w prawo).

Z założeń wynika, iż regulator ROOS jest odporny na nieznajomość strukturalną i parametryczną modelu, zatem dla celów symulacji wprowadzono niepewności parametryczne: 10% dla długości pierwszego oraz drugiego ramienia oraz 10% dla masy drugiego ramienia. Silnik został zamodelowany według danych maxon DC motor FF2260, 883 oraz dwóch przekładni 110507 o przełożeniu $\eta=1/181$. Wartości współczynników diagonalnych macierzy wzmocnie dla $\epsilon=0,9$ przyjęto eksperymentalnie oraz ograniczono napięcia zasilania aktuatorów:

$$\Lambda = \begin{bmatrix} 2, 3 & 0 \\ 0 & 2, 2 \end{bmatrix}, \quad D = \begin{bmatrix} 0, 05 & 0 \\ 0 & 0, 05 \end{bmatrix}, \quad u_{max} = \begin{bmatrix} 24 \\ 24 \end{bmatrix} [V]$$
 (1)

Podstawowym ograniczeniem podprzestrzeni typu hiperkula jest ograniczenie napięcia sterującego $u_{HKmax} = \min\{u_{max}\}$. Efekt ograniczenia widoczny jest na rys. 1. W przypadku nierównych napięć zasilania, sygnał sterujący bazuje na najmniejszym z ograniczeń, zwiększając czas ustalania odpowiedzi układu, maksymalny moment napędowy. W takiej konfiguracji, zmieniając doświadczalnie napięcie zasilania τ_{1max} , do wartości $\overline{\tau_{1max}} = 16$ [V], przebieg uchybu przestał zbiegać asymptotycznie do otoczenia zera.

1.1 Prezentacja wyników

Rysunek 1: Wyniki symulacji dla zmniejszonego napięcia zasilania $u_{2max} = 12$ [V] o wymuszeniu $Q_d = [1 1]$: przebiegi a) pozycji ogniw wraz z zadanym sygnałem referencyjnym, b) uchybów pozycji i prędkości, c) napięć sterujących oraz odpowiadające im momenty generowane na wałach silników.

1.2 Wnioski

Z obserwacji wynika, iż zjawisko chatteringu staje się intensywniejsze, gdy wartość współczynnika ϵ maleje. Dla dobranych nastaw (1) występują miejscowe peaki o wartości ok. 0,15[V]. Przyjmując za $\epsilon=0$, zjawisko znacznie się intensyfikuje, oscylując między granicznymi wartościami napięć sterujących z wysoką częstotliwością. Uniemożliwia to poprawne sterowanie obiektem i może doprowadzić do zniszczenia części mechanicznych.

Dla wymuszenia Q_{d1} błędy śledzenia zbiegają do wartości ok. $e_1 = 0,04$ oraz $e_2 = -0,01$. i ich wartość jest zależna od współczynnika ϵ - im jest większy, tym błędy śledzenia rosną. Dla wymuszenia Q_{d3} wartości uchybów również zbiegają asymptotycznie do zera, aż do momentu, gdy sygnał referencyjny pozycji zadanej rośnie zbyt szybko, by manipulator mógł nadążyć. Dla wymuszenia Q_{d2} , błędy śledzenia oscylują wokół zera, tworząc tunel.

Dla wymuszenia Q_{d1} , zmniejszając napięcie zasilania do $\overline{u_{1max}}=16[V]$ błędy śledzenia przestały zbiegać do zera.

Mimo niepewności parametrycznej, odpowiedź modelu manipulatora odwzorowuje zadane wartości referencyjne. Kluczowym ograniczeniem jest zmniejszenie maksymalnej wartości sterowania w przypadku wystąpienia dwóch różnych napięć zasilających aktuatory - prowadzi to do zwiększenia czasu ustalenia odpowiedzi manipulatora oraz ogranicza możliwości sterowania.

Rysunek 2: Wyniki symulacji dla $u_{HKmax} = 24$ [V]. Przebiegi (a, d, g) pozycji ogniw wraz z zadanym sygnałem referencyjnym, (b, e, h) uchybów pozycji i prędkości, (c, f, i) napięć sterujących oraz odpowiadające im momenty generowane na wałach silników, o wymuszeniu:

a-c: $Q_{d1} = [1 \ 1];$

d-f: $Q_{d2} = [\sin(0, 6t); \sin(0, 7t)];$

g-i: $Q_{d3} = [0,0025t^3 + 0,0020t^2 + 0,0015t + 0,001].$

2 Sterowanie w podprzestrzeni typu hiperprostopadłościan

Podstawowym założeniem sterowania w podprzestrzeni typu hiperprostopadłościan jest usunięcie ograniczenia wynikającego z doboru minimalnej wartości u_{max} . Regulator ma zapewnić lepszą jakość sterowania, w przypadku wystąpienia różnych napięć zasilających aktuatory. Symulacje przebiegają z identycznymi nastawami regulatorów (1).

2.1 Prezentacja wyników

Rysunek 3: Wyniki symulacji dla $u_{2max} = 12$ [V] o wymuszeniu $Q_d = [1 1]$: przebiegi a) pozycji ogniw wraz z zadanym sygnałem referencyjnym, b) uchybów pozycji i prędkości, c) napięć sterujących oraz odpowiadające im momenty generowane na wałach silników.

Rysunek 4: Wyniki symulacji dla $u_{HKmax} = 24$ [V]. Przebiegi a) pozycji ogniw wraz z zadanym sygnałem referencyjnym, b) uchybów pozycji i prędkości, c) napięć sterujących oraz odpowiadające im momenty generowane na wałach silników, o wymuszeniu: $Q_d = \begin{bmatrix} 1 & 1 \end{bmatrix}$

2.2 Wnioski

Błędy śledzenia w przypadku wymuszenia skokowego (rys. 4b) zmierzają asymptotycznie do zera. Jakość sterowania, w tym przypadku, jest identyczna dla obu podprzestrzeni. Różnica wynika natomiast po ograniczeniu napięcia sterującego: $u_{2max} = 12 \text{ V}$, wartość sterowania nie uległa zmniejszeniu jak w przypadku regulatora ROOS w podprzestrzeni typu hiperkula (rys. 1c, rys. 3c).

Zmniejszenie wartości napięcia zasilania do $\overline{u_{1max}} = 16[V]$ w przypadku podprzestrzeni typu hiperprostopadłościan spowodowało, iż błędy śledzenia zbiegały asymptotycznie do zera w odróżnieniu do podprzestrzeni typu hiperkula. Czas ustalania się odpowiedzi manipulatora uległ wydłużeniu.

Podsumowując, zmiana podprzestrzeni pozwala uniknąć zasadniczej wady. Manipulator może wykorzystać pełne możliwości zainstalowanych aktuatorów.

3 Asymptotycznie stabilny regulator adaptacyjny

Celem implementacji algorytmu jest identyfikacja dynamicznych parametrów modelu manipulatora PM2R (bez silników i przekładni) za pomocą regulatora zaproponowanego przez Slotine i Li. Według założeń wspomniany algorytm jest odporny na niepewności

parametryczne.

Jako model matematyczny manipulatora przyjęto sparametryzowaną wersję modelu: $Y^Tp = \tau$. Zaimplementowano regulator Slotine i Li wraz z Generatorem Trajektorii Wirtualnej. W celu sprawdzenia założeń projektowych przyjęto niepewność parametryczną 10% dla masy drugiego ramienia oraz 10% długości obu ramion. Przyjęto parametry:

$$\Lambda = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}, \quad K_V = \begin{bmatrix} 800 & 0 \\ 0 & 800 \end{bmatrix}, \quad \delta = \begin{bmatrix} 5000 & 0 \\ 0 & 5000 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}, \quad \hat{p}_0, \quad \Gamma$$
(2)

gdzie $\Gamma \in \mathbb{R}^{7x7}$ jest macierzą diagonalną o współczynnikach $\gamma = 100$, a wektor parametrów początkowych $\hat{p}_0 \in \mathbb{R}^{1x7}$ posiada współczynniki równe 0,1. Niezerowy uchyb pozycji $e \neq 0$ przyjęto poprzez ustalenie warunków początkowych dla pozycji ramion $q = [\pi/2 \quad \pi/2]$.

3.1 Wnioski

Niezerowe warunki początkowe $e \neq 0$ znacząco wpłynęły na przebieg momentów napędowych τ , przy ich redukcji proporcjonalnie malała wartość szczytowa przebiegu sygnałów sterujących. Dla dynamicznej macierzy K_V , na zmniejszenie błędów śledzenia korzystnie wpływa zmniejszenie współczynnika γ oraz zwiększanie wartości δ . Wiąże się to jednak ze wzrostem szczytowego momentu napędowego, który występuje na początku.

Jakość regulacji dla obu przypadków postaci macierzy K_V nie wykazuje istotnych różnic, poza możliwym wystąpieniem zjawiska *chatteringu* w przypadku dynamicznej wersji macierzy K_V .

Zwiększając macierz Γ , wektor parametrów estymowanych \hat{p} znacznie szybciej osiągał końcowe wartości, zmniejszeniu ulegały również ich oscylacje. Niezależnie jednak od rodzaju wymuszenia oraz warunków początkowych, estymaty parametrów \hat{p} znacząco różniły się od parametrów p.

Wszelkie operacje zmniejszające uchyb znacząco wpływają na wartości szczytowe momentów napędowych, aż do wartości które przekraczają możliwości przekładni redukcyjnych - koniecznym może być zastosowanie stosownego ogranicznika mocy.

Podsumowując, mimo wprowadzonych niepewności parametrycznych regulator oddawał zadane trajektorie referencyjne.

3.2 Prezentacja wyników

Rysunek 5: Wyniki symulacji dla wymuszenia $Q_{d1} = \begin{bmatrix} 1 & 1 \end{bmatrix}$ oraz $e_0 = 0$. Przebiegi a) pozycji ogniw wraz z zadanym sygnałem referencyjnym, b) uchybów pozycji i prędkości, c) sygnałów sterujących.

Rysunek 6: Wyniki symulacji dla $e_0 \neq 0$ oraz statycznej wersji K_V . Przebiegi a) pozycji ogniw wraz z zadanym sygnałem referencyjnym, b) uchybów pozycji i prędkości, c) sygnałów sterujących, dla wymuszeń:

a-c: $Q_{d2} = [\sin(0,6t); \sin(0,7t)];$ **d-f:** $Q_{d3} = [0,0025t^3 + 0,0020t^2 + 0,0015t + 0,001].$

Rysunek 7: Wyniki symulacji dla $K_V = \delta \hat{M}(q)$, $e_0 = 0$. Przebiegi (a, d, g) pozycji ogniw wraz z zadanym sygnałem referencyjnym, (b, e, h) uchybów pozycji i prędkości, (c, f, i) napięć sterujących oraz odpowiadające im momenty generowane na wałach silników, o wymuszeniu:

```
a-c: Q_{d1} = \begin{bmatrix} 1 & 1 \end{bmatrix};

d-f: Q_{d2} = [\sin(0,6t); \sin(0,7t)];

g-i: Q_{d3} = \begin{bmatrix} 0,0025t^3 + 0,0020t^2 + 0,0015t + 0,001 \end{bmatrix}.
```


Rysunek 8: Wyniki symulacji dla $K_V = \delta \hat{M}(q)$, $e_0 = 0$. Przebiegi (a, d, g) pozycji ogniw wraz z zadanym sygnałem referencyjnym, (b, e, h) uchybów pozycji i prędkości, (c, f, i) napięć sterujących oraz odpowiadające im momenty generowane na wałach silników, o wymuszeniu:

```
a-c: Q_{d1} = \begin{bmatrix} 1 & 1 \end{bmatrix};

d-f: Q_{d2} = [\sin(0,6t); \sin(0,7t)];

g-i: Q_{d3} = [0,0025t^3 + 0,0020t^2 + 0,0015t + 0,001].
```


Rysunek 9: Wyniki symulacji dla $K_V = \delta \hat{M}(q)$, $e_0 = 0$. Przebiegi (a, d, g) pozycji ogniw wraz z zadanym sygnałem referencyjnym, (b, e, h) uchybów pozycji i prędkości, (c, f, i) napięć sterujących oraz odpowiadające im momenty generowane na wałach silników, o wymuszeniu:

```
a-c: Q_{d1} = \begin{bmatrix} 1 & 1 \end{bmatrix};

d-f: Q_{d2} = [\sin(0, 6t); \sin(0, 7t)];

g-i: Q_{d3} = \begin{bmatrix} 0,0025t^3 + 0,0020t^2 + 0,0015t + 0,001 \end{bmatrix}.
```