Complexité des algorithmes

Serge Miguet

Algorithmes et structures de données

 ${\mathcal P}$: un problème

 ${\mathcal M}$: une méthode pour résoudre le problème ${\mathcal P}$

Algorithme : description de la méthode \mathcal{M} dans un langage algorithmique

du nom du mathématicien perse Al Khuwarizmi (780 - 850)

Algorithmes et structures de données

 ${\mathcal P}$: un problème

 ${\mathcal M}$: une méthode pour résoudre le problème ${\mathcal P}$

Algorithme: description de la méthode \mathcal{M} dans un

langage algorithmique

du nom du mathématicien perse Al Khuwarizmi (780 - 850)

Structure de données : manière d'organiser et de stocker les données (supposée rendre efficace certaines opérations)

Structures algorithmiques

Structures de contrôle

- séquence
- embranchement (ou sélection)
- boucle (ou itération)

Supports pour les structures de données

- constantes, variables
- tableaux
- structures récursives (listes, arbres, graphes)

Complexité des algorithmes

On veut

- \blacksquare Evaluer l'efficacité de la méthode \mathcal{M}
- Comparer \mathcal{M} avec une autre méthode \mathcal{M}'

indépendamment de l'environnement (machine, système, compilateur, ...)

Complexité des algorithmes

Evaluation du nombre d'opérations élémentaires en fonction

- de la taille des données (par exemple le nombre d'éléments à trier)
- de la nature des données (provoquant par exemple la sortie d'une boucle)

Notations:

- ightharpoonup n: taille des données,
- \blacksquare T(n): nombre d'opérations élémentaires

Configurations caractéristiques

- meilleur cas,
- pire des cas,
- cas moyen.

Evaluation de T(n) (séquence)

Somme des coûts.

Traitement 1
$$T_1(n)$$

$$T(n) = T_1(n) + T_2(n)$$
 Traitement 2 $T_2(n)$

Evaluation de T(n) (embranchement)

Max des coûts.

$$T_c(n) + max(T_1(n), T_2(n))$$

Evaluation de T(n) (boucle)

Somme des coûts des passages successifs

$$ant que < condition > faire C_i(n)$$
Traitement $T_i(n)$

fin faire

$$\sum_{i=1}^{k} (C_i(n) + T_i(n)) + C_{k+1}(n)$$

 $T_i(n)$: coût de la $i^{\text{\`e}me}$ itération

souvent défini par une équation récursive

Evaluation de T(n) (fonctions récursives)

fonction FUNCTIONRECURSIVE (n)

- si (n > 1) alors
- 2 FUNCTIONRECURSIVE (n/2), coût T(n/2)
- Traitement(n), coût C(n)
- 4 FUNCTIONRECURSIVE (n/2), coût T(n/2)

Equation récursive

$$T(n) = 1 + 2 \times T(n/2) + C(n)$$

Exemple:

$$\operatorname{si} C(n) = 1 \operatorname{alors} T(n) = K \times n$$

$$\operatorname{si} C(n) = n \operatorname{alors} T(n) = K \times n \times \log n$$

Notation de Landau O(f(n))

Caractérise le comportement asymptotique (i.e. quand $n \to \infty$).

$$T(n) = O(f(n))$$
 si $\exists c \ \exists n_0 \text{ tels que } \forall n > n_0, \ T(n) \le c \times f(n)$

Notation $\Theta(f(n))$

$$T(n) = \Theta(f(n))$$
 si $\exists c_1, c_2, n_0$ tels que

$$\forall n > n_0, \ c_1 \times f(n) \le T(n) \le c_2 \times f(n)$$

Exemples

$$T(n) = n^3 + 2 \ n^2 + 4 \ n + 2 = O(n^3)$$
 (si $n \ge 1$ alors $T(n) \le 9 \times n^3$)

Exemples

$$T(n) = n^3 + 2 \ n^2 + 4 \ n + 2 = O(n^3)$$
 (si $n \ge 1$ alors $T(n) \le 9 \times n^3$)

$$T(n) = n \log n + 12 n + 2 = O(n \log n)$$

Exemples

$$T(n) = n^3 + 2 \ n^2 + 4 \ n + 2 = O(n^3)$$
 (si $n \ge 1$ alors $T(n) \le 9 \times n^3$)

$$T(n) = n \log n + 12 n + 2 = O(n \log n)$$

$$T(n) = 2 n^{10} + n^7 + 12 n^4 + \frac{2^n}{100} = O(2^n)$$

Les principales classes de complexité

O(1) temps constant

 $O(\log n)$ logarithmique

O(n) linéaire

 $O(n \times \log n)$ tris (par comparaisons)

 $O(n^2)$ quadratique, polynomial

 $O(2^n)$ exponentiel (problèmes très difficiles)

Exemple: permutation

fonction PERMUTATION (S, i, j)

1
$$tmp := S[i],$$
 coût c_1

2
$$S[i] := S[j],$$
 coût c_2

3
$$S[j] := tmp$$
, coût c_3

4 renvoyer S coût c_4

Coût total

$$T(n) = c_1 + c_2 + c_3 + c_4 = O(1)$$

Exemple : recherche séquentielle

fonction RECHERCHE_SEQUENTIELLE(x, S[1, ..., n])

1
$$i := 1$$
, (c_1)

2 tant que
$$((i < n)$$
 et $(S[i] \neq x))$ faire (c_2)

$$3 i := i + 1,$$
 (c_3)

4 renvoyer
$$(S[i] = x)$$
 (c_4)

Pire des cas : n fois la boucle

$$T(n) = c_1 + c_2 + \sum_{i=1}^{n} (c_3 + c_2) + c_4 = O(n)$$

Exemple: tri à bulle

fonction TRI_A_BULLES $(S[1,\ldots,n])$

```
pour i:=n à 2 faire  \text{pour } j:=1 à i-1 faire  \text{si } (S[j]>S[j+1]) \text{ alors } i-1 \text{ fois }   \text{PERMUTER}(S,j,j+1), \qquad C_{perm}
```

$$T(n) = C_{perm} \times \sum_{i=1}^{n-1} i = \frac{C_{perm} \times n \times (n-1)}{2} = O(n^2)$$

Equations récursives

Boucles itératives, fonctions récursives (approches de type diviser pour régner notamment)

Cas général

$$T(n) = a \times T(n/b) + f(n)$$

- méthode par substitution,
- méthode par développement itératif,
- méthode générale.

Méthode par substitution

Principe : on vérifie une intuition

$$T(n) = a \times T(n/b) + f(n) \text{ et } T(1) = c$$

Hypothèse

$$T(n) = g(n)$$
 (intuition)

Conclusion

$$a \times g(n/b) + f(n) = g(n)$$
 et $g(1) = c$

à démontrer en fixant les constantes

Méthode par substitution [recherche dichotomique]

fonction RECHERCHE_DICHOTOMIQUE (x, S[1, ..., n])

1
$$g:=0, d:=n+1,$$
 $g< position \leq d$
2 $ext{tant que } (g < d-1) ext{ faire}$ $termine quand $g=d-1$
3 $ext{si } (x > S[(g+d)/2]) ext{ alors}$ $g<(g+d)/2 < d$
4 $g:=(g+d)/2,$ $et \ donc \ g < position \leq d$
5 $ext{sinon}$
6 $d:=(g+d)/2,$ $et \ donc \ g < position \leq d$
7 $ext{renvoyer } d,$ $g < position \leq d \ et \ g=d-1$$

Nombre d'itérations
$$T(n) = 1 + T(n/2)$$

Méthode par substitution [recherche dichotomique]

$$T(n) = 1 + T(n/2)$$
 et $T(1) = 1^*$

$$T(n) = O(\log_2 n)$$

Hypothèse

$$T(n) = a \times \log_2 n + c$$

 $\operatorname{donc} T(n/2) = a \times \log_2 n - a + c$

en substituant on a $T(n) = 1 + a \times \log_2 n - a + c = a \times \log_2 n + c$

donc 1 - a = 0 et a = 1, et puisque T(1) = 1 donc c = 1

Conclusion

$$T(n) = \log_2 n + 1 = O(\log_2 n)$$

* s'il y a un élément on fera une itération

Méthode itérative : rappel sommations

$$\sum_{i=1}^{n-1} i = \frac{n \times (n-1)}{2} = O(n^2)$$

$$\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1}$$

en particulier quand x vaut 2

$$\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$$

fonction Tri_Par_fusion (S)

si $(|S| \le 1)$ alors
renvoyer Sdécomposer S en S_1 et S_2 , n $S_1 := \mathsf{TRI_PAR_FUSION}(S_1), \quad T(\lceil n/2 \rceil)$ $S_2 := \mathsf{TRI_PAR_FUSION}(S_2), \quad T(\lceil n/2 \rceil)$ $S_3 := \mathsf{FUSIONNER}(S_1, S_2), \quad n$ renvoyer S

$$T(n) = 1 + n + 2 \times T(n/2) + n$$
 et $T(1) = 1$

$$T(1) = 1$$

 $T(n) = 2 n + 1 + 2 T(n/2)$

$$T(1) = 1$$

 $T(n) = 2 n + 1 + 2 T(n/2)$

donc T(n/2) = n + 1 + 2 T(n/4)

$$T(1) = 1 \\ T(n) = 2 \; n + 1 + 2 \; T(n/2) \\ \operatorname{donc} T(n/2) = n + 1 + 2 \; T(n/4) \\ T(n) = (2 \; n + 1) + (2 \; n + 2) + 4 \; T(n/4)$$

$$T(1) = 1$$

$$T(n) = 2 \ n + 1 + 2 \ T(n/2)$$

$$\operatorname{donc} T(n/2) = n + 1 + 2 \ T(n/4)$$

$$T(n) = (2 \ n + 1) + (2 \ n + 2) + 4 \ T(n/4)$$
 or
$$T(n/4) = n/2 + 1 + 2 \ T(n/8)$$

$$T(1) = 1$$

$$T(n) = 2 \ n + 1 + 2 \ T(n/2)$$

$$\operatorname{donc} T(n/2) = n + 1 + 2 \ T(n/4)$$

$$T(n) = (2 \ n + 1) + (2 \ n + 2) + 4 \ T(n/4)$$

$$\operatorname{or} T(n/4) = n/2 + 1 + 2 \ T(n/8)$$

$$T(n) = (2 \ n + 1) + (2 \ n + 2) + (2 \ n + 4) + 8 \ T(n/8)$$

Cours complexité – Stéphane Grandcolas – p. 24/29

$$T(1) = 1$$

$$T(n) = 2 \ n + 1 + 2 \ T(n/2)$$

$$\operatorname{donc} T(n/2) = n + 1 + 2 \ T(n/4)$$

$$T(n) = (2 \ n + 1) + (2 \ n + 2) + 4 \ T(n/4)$$

$$\operatorname{or} T(n/4) = n/2 + 1 + 2 \ T(n/8)$$

$$T(n) = (2 \ n + 1) + (2 \ n + 2) + (2 \ n + 4) + 8 \ T(n/8)$$

$$T(n) = \sum_{i=0}^{\log n-1} (2 \ n + 2^i) + 2^{\log n} \times T(1)$$

$$T(1) = 1$$

$$T(n) = 2 \ n + 1 + 2 \ T(n/2)$$

$$\operatorname{donc} T(n/2) = n + 1 + 2 \ T(n/4)$$

$$T(n) = (2 \ n + 1) + (2 \ n + 2) + 4 \ T(n/4)$$
 or
$$T(n/4) = n/2 + 1 + 2 \ T(n/8)$$

$$T(n) = (2 n + 1) + (2 n + 2) + (2 n + 4) + 8 T(n/8)$$

. .

$$T(n) = \sum_{i=0}^{\log n-1} (2 n + 2^i) + 2^{\log n} \times T(1)$$

$$T(n) = 2n \log n + \sum_{i=0}^{\log n-1} 2^i + n$$

$$T(1) = 1$$

$$T(n) = 2 n + 1 + 2 T(n/2)$$

$$\operatorname{donc} T(n/2) = n + 1 + 2 T(n/4)$$

$$T(n) = (2 n + 1) + (2 n + 2) + 4 T(n/4)$$

$$\operatorname{or} T(n/4) = n/2 + 1 + 2 T(n/8)$$

$$T(n) = (2 n + 1) + (2 n + 2) + (2 n + 4) + 8 T(n/8)$$

$$T(n) = \sum_{i=0}^{\log n - 1} (2 n + 2^i) + 2^{\log n} \times T(1)$$

$$T(n) = 2n \log n + \sum_{i=0}^{\log n - 1} 2^i + n$$

$$\operatorname{et comme} \sum_{i=0}^{n} 2^i = 2^{n+1} - 1, \text{ on a } \sum_{i=0}^{\log n - 1} 2^i = 2^{\log n} - 1$$

$$T(n) = 2n \log n + 2n - 1 = O(n \log n)$$

O(k) traitements pour décomposer et fusionner une suite de longueur k

$$T(n) = 2 \times n \times \lceil \log_2 n \rceil$$

Méthode générale [Equations récursives]

$$T(n) = a \times T(n/b) + f(n)$$

avec $a \ge 1$, b > 1 et f(n) est positive asymptotiquement.

- si $\exists \epsilon > 0, \ f(n) = O(n^{\log_b a \epsilon}) \text{ alors } T(n) = \Theta(n^{\log_b a}),$
- si $f(n) = \Theta(n^{\log_b a})$ alors $T(n) = \Theta(n^{\log_b a} \times \lg n)$,
- ullet si $\exists \epsilon > 0, \ f(n) = \Omega(n^{\log_b a + \epsilon})$ et si $\exists c < 1, \ \exists n_0, \ \forall n > n_0, \ a \times f(n/b) \leq c \times f(n)$ alors $T(n) = \Theta(f(n))$

Méthode générale [Equations récursives]

$$T(n) = a \times T(n/b) + f(n)$$

avec $a \ge 1$, b > 1 et f(n) est positive asymptotiquement.

- si $\exists \epsilon > 0, \ f(n) = O(n^{\log_b a \epsilon}) \text{ alors } T(n) = \Theta(n^{\log_b a}),$
- si $f(n) = \Theta(n^{\log_b a})$ alors $T(n) = \Theta(n^{\log_b a} \times \lg n)$,

Le tri par fusion (T(n) = 2n + 1 + 2 T(n/2)) est dans le cas 2 :

$$a = b = 2$$
 et $f(n) = 2n + 1 = \Theta(n)$ et $T(n) = \Theta(n \log n)$

Méthode par substitution [tri par fusion]

$$T(n) = 2n + 1 + 2 T(n/2)$$
 et $T(1) = 1$

Hypothèse :
$$T(n) = O(n \log n) = an \log n + bn + c$$

et donc
$$T(n/2) = a/2 \ n \log n + (b-a)n/2 + c$$

$$T(n) = 2n + 1 + 2T(n/2) = 2n + 1 + an \log n + (b - a)n + 2c$$
$$= an \log n + (b - a + 2)n + 2c + 1$$

(1)
$$b = b - a + 2$$
 et $a = 2$

(2)
$$c = 2c + 1$$
 et $c = -1$

(3)
$$T(1) = b + c = 1$$
 et donc $b = 2$

et finalement $T(n) = 2n \log n + 2n - 1 = O(n \log n)$

Temps de calcul

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\log_2 n$	n	$n\log_2 n$	n^2	2^n
10	0.003ms	0.01ms	0.03ms	0.1ms	1ms
100	0.006ms	0.1ms	0.6ms	10ms	$10^{14} siecles$
1000	0.01ms	1ms	10ms	1s	
10^{4}	0.013ms	10ms	0.1s	100s	
10^{5}	0.016ms	100ms	1.6s	3 heures	
10^{6}	0.02ms	1s	20s	10jours	

pour un processeur qui effectue 10^6 traitements par seconde

Temps de calcul [simulation]

nTs	2^n	n^2	$n\log_2 n$	n	$\log_2 n$
10^{6}	20	1000	63000	10^{6}	10^{300000}
10^{7}	23	3162	600000	10^{7}	$10^{3000000}$
10^{9}	30	31000	4.10^{7}	10^{9}	
10^{12}	40	10^{6}	3.10^{10}		

nTs =nombre d'instructions par seconde