Método de Euler

José Ramón Pérez Navarro

November, 2019

0.1. Código Utilizado

En esta actividad nos centramos en resolver la ecuación del movimiento del péndulo simple de una masa (m) suspendida en un hilo de longitud (l). A continuación se mostrara el código que se uso para resolver la ecuación del

oscilador armónico utilizando el método de Euler.

```
Program Euler
 implicit none
!declaracion de variables
  real:: ANG, h, B, t, y, w_0
  integer:: j
  real, dimension(2):: M
  real, parameter:: g = 9.81
  real, parameter:: 1 = 9.81
  !open
 open(1, file="euler.dat")
   w_0 = sqrt(g/1)
   print*," Ingrese el angulo y el numero de pasos"
   read(*,*) ANG, h
   do j=0,5000
    t=float(j)* h
     if(t>6.3) exit
      y=ANG*cos(w_0*t)
       print*, t, y
        write(1,*) t,y,1
   end do
  write(1,*) " "
  ANG=B
   do j=0,5000
   t=float(j)*h
    if(t>6.3) exit
   call Matriz(ANG, w_0, h, l, g, M)
     write(1,*) t, M(1), 2
```

```
ANG = M(1)
    w_0 = M(2)
   end do
  close(1)
!error
print*, "Error", abs((B-ANG)/B)
End Program Euler
subroutine Matriz(ANG, w_0, h, g, 1, M)
  implicit none
  real, intent(in):: ANG, w_0, h, g, l
  real,dimension(2),intent(out):: M
  real:: a_1, a_2, w_2, w
  real,dimension(2):: P_1
  real,dimension(2):: P_2
  a_1 = ANG
    W = W_0
     a_2 = h*w
      w_2 = -h * g / 1 *a
      P_1 = (/a, w/)
       P_2 = (/a_2, w_2/)
    M = P_1 + P_2
```

end subroutine Matriz

Ángulo 15, h= 0.1, error = 0.377411783

Figura 1:

Ángulo 30, h=0.1, error = 0.373036563

Figura 2:

Ángulo 45, h=0.1, error = 0.371578217

Ángulo 15, h=0.01, error = 3.35168205E-02

Figura 4:

Ángulo 30, h=0.01, error = 3.26011665E-02

Figura 5:

Ángulo 45, h=0.01, error = 3.22956517E-02

Figura 6:

Ángulo 15, h=0.001, error = 4.18752013E-03

Figura 7:

Ángulo 30, h=0.001, error = 3.59172816E-03

Ángulo 45, h=0.001, error = 3.39516532E-03

Figura 9:

CONCLUSIÓN

Esta actividad consistió en resolver el caso de un péndulo que se soltaba desde distintos ángulos, hacer varias corridas para distintos valores de h y obtener el error relativo para posteriormente graficarlo, a su vez, logramos resolver la ecuación del oscilador armónico usando el método de Euler y a la hora de desarrollar el código aprendimos a usar los arreglos y matrices dentro del lenguaje Fortran.