(Exam 2 Review	
BI	Egenvalues and Eigenvectors	
	- Eigenvalue: AU = AV OF (A-ZI) V = 0	
	- Hulhplicity of I quarantees eigenvector that is linearly independent	
1	- Characteristic polynomial is found by det (* - x I), solve for eigenvalue	
T d	- Determinant of a matrix is also product of eigenvalues.	
b	det (PAP) = det (D)	
B	det (A) = det (b)	
	$= \lambda_1 \cdot \lambda_2 \cdots \lambda_n$	
til.		
	-An non matrix is diagonalizable iff it has a linearly independent eigenvectors	
	-P'AP = Diff (A is diagonalizable)	
	- The columns of P are in Imearly independent eigenvectors of A	
	The diagonal comes of D are the eigenvalues corresponding to those	
	cigarycetors	
	- venty by checking if P 11 invertible and AP=PD	V
	Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	- P-1 AO - D [2, 00] K [2, K 0 0]	
B	A = PDP ' 0 12 0 = 0 12 0	
13	- mal kin power of alragonalizably matrix: - $P^{-1}AP = D$ $A = PDP^{-1}$ $A^{2} = (PDP^{-1})(PDP^{-1})$ $A = PDP^{-1}$	
M	A2 = PD2P"	
D		
T	Ar = Porp.	
*	Vector Spaces	
	- Ex: Is the set of vectors { <s, 2t,82="" t,=""> for t,s, 1R3 a vector space?</s,>	
5	No: s=t=1 <1,1,2,2> ×2= <2,2,4,47	
	5=t=2 <2,2,4,4> Chot equal. not closed under scalar m	uth ofication
	- All victor spaces are clusted under addition and scalar mystiplicipion	
	- A Subspace is a victor space, at with the o vector	
*L	inear Independence, Span, and Basis	
100	- Span. Set of all scalar multiples of vector ?	
	- Check if n vectors span R" if they are inventy independent	

99999999 - Linear Independence - The trivial solution is the only solution to the homogeneous system (is invertible!) + t, J + tz vz + ... tx vx = 0 has only the trivial solution (Can find coordinates by solving linear system [v, v, ... v][= v -Basis: Set of rectors used in linear combinations to form rector space - and # of bases determine dimension of a subspace of Rn 7 * Row, Column, and Nullspace 1 - Rowspace: space spanned by rows of A 1 - Columnspace. Space spanned by columns of A 1 - NUMSFACE IS SOLUTIONS to homogeneous system AV = 0 2 2 1 -44 - 28,000 -3 3 1 -45 3 3 1 -45]-38, 0 0 1-42 -RZ 000 [DI O -1] RREF! :. row (A) = {<1,1,0,-17, <0,0,1,-42>} 0 0 1 -42 (o) (A) = { <2, 1, 3>, <1, 0, 1>3 0000 null (+) = {<-1,1,0,0>, <1,0,42,1>} x, = -x2 + x4 1 rank = 2 nullspace = 2 x3 = 42 x 4 1 - Rank: # of leading 1's rank+ nullspace - total # columns - Nullity: # of nonleading 1's -If I is now then rank (A) + dim (null (A)) = n - Nullspace is orthogonal to rowspace: doto products equal o ---1 0 3

与