Programação Quadrática Sequencial

M. Fernanda P. Costa

Departamento de Matemática Universidade do Minho

Outline

- Programação Quadrática Sequencial
 - Método SQP Local
 - Método SQP
 - Método SQP (restrições de desigualdade)
 - Pré-visualização de Métodos SQP práticos
 - Hessiana da Lagrangeana: aproximações Quasi-Newton
 - Funções Mérito
 - ullet Função de penalidade ℓ_1
 - Um método SQP de procura unidirecional prático

Introdução:

- O Método da Programação Quadrática Sequencial (do inglês Sequential Quadratic Programming (SQP)) é um dos métodos mais eficazes para otimização não linear com restrições, de grande ou pequena dimensão.
- O método SQP é uma técnica sequencial, na qual a direção de procura é obtida resolvendo subproblemas de Programação Quadrática (PQ).
- A função objetivo do problema original é substituída por uma aproximação quadrática e as funções de restrição por funções lineares.

Método SQP Local

Considere, inicialmente, o problema do otimização não linear com restrições de igualdade:

$$\begin{array}{ll} \underset{w \in \mathbb{R}^{\mathrm{I}}}{\text{minimizar}} & F(w) \\ \text{sujeito a} & c_n(w) = 0, \quad n \in \mathcal{E} \end{array} \tag{P1}$$

- A ideia subjacente ao método SQP é modelar o problema (P1) no iterando atual $w^{(k)}$ por um subproblema de Programação Quadrática e, em seguida, usar o minimizante deste subproblema para definir um novo iterando $w^{(k+1)}$.
- O desafio é projetar o subproblema de PQ de modo a que este produza boas direções de procura para o problema de otimização não linear.
- Talvez a dedução mais simples dos métodos SQP, que vamos já de seguida apresentar, os veja como uma aplicação do método de Newton às condições de otimalidade KKT para (P1).

A função Lagrangeana para o problema (P1) é:

$$L(w,\lambda) = F(w) - \sum_{n \in \mathcal{E}} \lambda_n c_n(w) \iff L(w,\lambda) = F(w) - c(w)^T \lambda$$
 (1)

As condições KKT de 1ª ordem para problema (P1) são:

$$\begin{cases} \nabla_w L(w,\lambda) &= 0 \\ \nabla_\lambda L(w,\lambda) &= 0 \end{cases} \Leftrightarrow \begin{cases} \nabla F(w) - A(w)^T \lambda &= 0 \\ c(w) &= 0 \end{cases}$$
 (2)

- $c(w) = (c_1(w), \dots, c_m(w))^T$ é o vetor das funções de restrição; $\lambda = (\lambda_1, \dots, \lambda_m)^T$ é o vetor dos multiplicadores de Lagrange; $m = |\mathcal{E}|$ denota o número de restrições;
- A(w) é a matriz do Jacobiano das restrições:

$$A(w)^T = [\nabla c_1(w), \dots, \nabla c_m]$$

• o sistema (2) é não linear de I+m equações em I+m incógnitas $w\in\lambda$.

- Qualquer solução (w^*, λ^*) do problema com restrições de igualdade (P1) para o qual $A(w^*)$ tem característica completa por linhas, satisfaz (2).
- Um método que se sugere é resolver o sistema não linear (2) pelo método de Newton (descrito no Capítulo 11 em [1]).

Para usar o método de Newton, precisamos de formar a matriz do Jacobiano de (2) que é dada por

$$\begin{bmatrix} \frac{\partial(\nabla F(w) - A(w)^{T}\lambda)}{\partial w} & \frac{\partial(\nabla F(w) - A(w)^{T}\lambda)}{\partial \lambda} \\ \frac{\partial c(w)}{\partial w} & \frac{\partial c(w)}{\partial \lambda} \end{bmatrix} = \begin{bmatrix} \nabla_{ww}^{2} L(w, \lambda) & -A(w)^{T} \\ A(w) & 0 \end{bmatrix}$$
(3)

onde
$$\nabla^2_{ww} L(w, \lambda) = \nabla^2 F(w) - \sum_{n \in S} \lambda_n \nabla^2 c_n(w)$$

Assim, o passo de Newton a partir do iterando $(w^{(k)}, \lambda^{(k)})$ é dado por:

$$w^{(k+1)} = w^{(k)} + s^k \lambda^{(k+1)} = \lambda^{(k)} + s^k_{\lambda}$$
 (4)

onde as direções de procura s^k e s^k_λ são a solução do sistema Newton-KKT:

$$\begin{bmatrix} \nabla_{ww}^{2} L\left(w^{(k)}, \lambda^{(k)}\right) & -A(w^{(k)})^{T} \\ A(w^{(k)}) & 0 \end{bmatrix} \begin{bmatrix} s^{k} \\ s_{\lambda}^{k} \end{bmatrix} = -\begin{bmatrix} \nabla F\left(w^{(k)}\right) - A\left(w^{(k)}\right)^{T} \lambda^{(k)} \\ c\left(w^{(k)}\right) \end{bmatrix}$$
(5)

- A iteração de Newton (4)-(5) está bem definida se a matriz KKT em (5) é não-singular.
- A matriz KKT é não singular se as hipóteses seguintes, se verificam para $(w, \lambda) = (w^{(k)}, \lambda^{(k)})$:

Hipóteses:

- (H1) O Jacobiano das restrições A(w) tem característica completa por linhas.
- (H2) A matriz $\nabla^2_{ww} L(w,\lambda)$ é definida positiva no espaço tangente das restrições, isto é, $s^T \nabla^2_{ww} L(w,\lambda)$ $s \ge 0$ para todo $s \ne 0$ tal que A(w)s = 0.
 - Se estas hipóteses se verificam, é possível mostrar que iteração de Newton (4)-(5) converge quadraticamente e constitui um excelente algoritmo para resolver problemas com restrições de igualdade, desde que o ponto inicial $w^{(0)}$ esteja suficientemente próximo de w^* .

nota:

- A hipoótese H1 é a qualificação da restrição de independência linear (do inglês linear independence constraint qualification - LICQ), que assumimos.
- \triangleright A hipótese H2 verifica-se sempre que (w, λ) está próximo do ótimo (w^*, λ^*) , e a condição suficiente de $2^{\underline{a}}$ ordem é satisfeita no ótimo.

Método SQP

Há uma forma alternativa de ver a iteração (4)-(5). Suponhamos que no iterando $(w^{(k)}, \lambda^{(k)})$ modelamos o problema (P1) usando o seguinte programa quadrático:

onde

• F_k , ∇F_k , $\nabla^2_{ww} L_k$, A_k e c_k denotam respetivamente $F(w^{(k)})$, $\nabla F(w^{(k)})$, $\nabla^2_{ww} L(w^{(k)}, \lambda^{(k)})$, $A(w^{(k)})$ e $C(w^{(k)})$.

A função Lagrangeana para o problema (Q1) é:

$$L(s,\pi) = F_k + \nabla F_k^T s + \frac{1}{2} s^T \nabla_{ww}^2 L_k s - (A_k s + c_k)^T \pi$$

• $\pi = (\pi_1, \dots, \pi_m)$ é o vetor dos multiplicadores de Lagrange associados às restrições em (Q1).

As condições KKT de 1ª ordem para o problema (Q1) são:

$$\begin{cases}
\nabla_s L(s,\pi) = 0 \\
\nabla_{\pi} L(s,\pi) = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\nabla F_k + \nabla^2_{ww} L_k s - A_k^T \pi = 0 \\
A_k s + c_k = 0
\end{cases}$$
(6)

Se as hipóteses H1 e H2 se verificam, o problema (Q1) tem uma única solução (s^k, π^k) que satisfaz (6), ou seja,

$$\begin{bmatrix} \nabla_{ww}^2 L_k & -A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} s^k \\ \pi^k \end{bmatrix} = -\begin{bmatrix} \nabla F_k \\ c_k \end{bmatrix}$$
 (7)

Uma observação importante é que os vetores s^k e π^k podem ser identificados com a solução das equações de Newton (5). Vejamos: se subtrairmos $A_k^T \lambda^{(k)}$ a ambos os lados da primeira equação de (5), tem-se

$$\nabla^{2}_{ww} L_{k} s^{k} - A_{k}^{T} s_{\lambda}^{k} - A_{k}^{T} \lambda^{(k)} = -\nabla F_{k} + A_{k}^{T} \lambda^{(k)} - A_{k}^{T} \lambda^{(k)} \Leftrightarrow$$
$$\Leftrightarrow \nabla^{2}_{ww} L_{k} s^{k} - A_{k}^{T} (\lambda^{(k)} + s_{\lambda}^{k}) = -\nabla F_{k}$$

e por (4) obtemos

$$\nabla_{ww}^2 L_k s^k - A_k^T \lambda^{(k+1)} = -\nabla F_k$$

◆ロト ◆卸ト ◆差ト ◆差ト 差 めの(

- ▶ Assim, pela não singulariedade da matriz dos coeficientes, temos que:
 - $\lambda^{(k+1)} = \pi^k$ e
 - s^k é solução de (Q1) e (5).
- ightharpoonupPortanto, o novo iterando $(w^{(k+1)},\lambda^{(k+1)})$ pode ser definido como a solução do subproblema quadrático (Q1) ou como o iterando gerado pelo método de Newton (4)-(5) aplicado às condições de otimalidade do problema.
- ▷ Ambos os pontos de vista são úteis. Do ponto de vista de Newton facilita a análise de convergência, enquanto o método SQP permite deduzir algoritmos práticos e estender a técnica para problemas com restrições de desigualdade.

Apresentamos o método SQP na sua forma mais simples.

Algoritmo1: Algoritmo SQP Local - Restrições de Igualdade

- Dar: o par inicial $(w^{(0)}, \lambda^{(0)})$
- **Para** k = 0, 1, ...
- ① Calcular F_k , ∇F_k , $\nabla^2_{ww} L_k$, c_k , A_k
- Resolver o sistema (7) para obter (s^k, π^k) (solução, multiplicadores de Lagrange)
- **3** Fazer $w^{(k+1)} = w^{(k)} + s^k \in \lambda^{(k+1)} = \pi^k$
- **Se** $(w^{(k+1)}, \lambda^{(k+1)})$ satisfaz o critério de paragem para o problema (P1) Parar com a solução $(w^{(k+1)}, \lambda^{(k+1)})$ fim se

(nota: resolver o subproblema quadrático (Q1) é equivalente a resolver o sistema (7))

Alguns comentários:

- No subproblema quadrático (Q1) poderíamos substituir o termo linear $\nabla F_k^T s$ por $\nabla_w L(w^{(k)}, \lambda^{(k)})^T s$, já que a restrição de (Q1) torna as duas escolhas equivalente. (ver nota)
 - Neste caso, a função objetivo de (Q1) é uma aproximação quadrática da função Lagrangeana.
- Este facto motiva a escolha do modelo quadrático (Q1): primeiro substitui-se o problema (P1) pelo problema de minimizar a função Lagrangeana sujeita às restrições de igualdade de (P1), depois faz-se uma aproximação quadrática da Lagrangeana e uma aproximação linear das restrições para obter (Q1).

nota: considerando a expansão em série de Taylor até à 2ª ordem da função $L(w,\lambda^{(k)})$ para $w=w^{(k)}+s$ numa vizinhança de $w^{(k)}$ tem-se:

$$\begin{array}{ll} L\left(w^{(k)} + s, \lambda^{(k)}\right) & \approx & L\left(w^{(k)}, \lambda^{(k)}\right) + \nabla_w L\left(w^{(k)}, \lambda^{(k)}\right)^T s + \frac{1}{2} s^T \nabla_{ww}^2 L\left(w^{(k)}, \lambda^{(k)}\right) s \\ & = & F_k - \lambda^{(k)T} c_k + \nabla F_k^T s - \lambda^{(k)T} A_k s + \frac{1}{2} s^T \nabla_{ww}^2 L_k s \\ & = & F_k - \lambda^{(k)T} (A_k s + c_k) + \nabla F_k^T s + \frac{1}{2} s^T \nabla_{ww}^2 L_k s \\ & = & F_k + \nabla F_k^T s + \frac{1}{2} s^T \nabla_{ww}^2 L_k s \end{array}$$

Exercício1: Considere o problema

minimizar
$$F(w) = (w_1 - 2)^2 + (w_2 - 1)^2$$
 sujeito a $w_1^2 + (w_2 - 1)^2 - 1 = 0$

Aplique o método SQP para resolver o problema, com $w^{(0)} = (-0.8, -0.8)^T$ e $\lambda^{(0)} = -0.9$.

Método SQP (restrições de desigualdade)

O método SQP pode ser facilmente estendido a um problema de otimização não linear com restrições de igualdade e desigualdade:

minimizar
$$F(w)$$

sujeito a $c_n(w) = 0, \quad n \in \mathcal{E}$
 $c_n(w) \ge 0, \quad n \in \mathcal{I}$ (P2)

Para modelar este problema, no iterando $(w^{(k)}, \lambda^{(k)})$, linearizamos ambas as restrições de igualdade e desigualdade sendo o programa quadrático dado por:

minimizar
$$F_k + \nabla F_k^T s + \frac{1}{2} s^T \nabla_{ww}^2 L(w^{(k)}, \lambda^{(k)}) s$$
sujeito a
$$\nabla c_n (w^{(k)})^T s + c_n (w^{(k)}) = 0 \quad n \in \mathcal{E}$$

$$\nabla c_n (w^{(k)})^T s + c_n (w^{(k)}) \ge 0 \quad n \in \mathcal{I}$$
(Q2)

- O problema de PQ (Q2) pode ser resolvido por um algoritmo de Programação Quadrática (ver Capítulo 16 em [1]).
- Assim obtida a solução (s^k, π^k) de (Q2), o novo iterando é dado por: $w^{(k+1)} = w^{(k)} + s^k$, $\lambda^{(k+1)} = \pi^k$.

Algoritmo2: Algoritmo SQP Local - Restrições de Desigualdade

- Dar: o par inicial $(w^{(0)}, \lambda^{(0)})$
- **Para** k = 0, 1, ...
- Resolver o subproblema quadrático (Q2) para obter (s^k, π^k) (solução, multiplicadores de Lagrange)
- **3** Fazer $w^{(k+1)} = w^{(k)} + s^k \in \lambda^{(k+1)} = \pi^k$
- **Se** $(w^{(k+1)}, \lambda^{(k+1)})$ satisfaz o critério de paragem para o problema (P2) **Parar** com a solução $(w^{(k+1)}, \lambda^{(k+1)})$ **fim se**

4□ > 4□ > 4□ > 4□ > 3□

- Neste método SQP-restrições de desigualdade, o conjunto de restrições ativas A_k na solução do problema (Q2), constitui uma estimativa do conjunto ativo na solução do problema (P2).
- Se o método SQP for capaz de identificar corretamente este conjunto ativo ótimo (e não o altera nas iterações seguintes), então comporta-se como o método de Newton(4)-(5) para otimização com restrições de igualdade e convergirá rapidamente.
- O resultado seguinte dá as condições em que este comportamento desejável se verifica. Recordar que, dizemos que a complementaridade estrita verifica-se na solução (w^*,λ^*) se não existir nenhum índice $n\in\mathcal{I}$ tal que $\lambda_n^*=c_n(w^*)=0$.

Teorema 1

Suponha que w^* é uma solução local de (P2) na qual as condições KKT são satisfeitas para algum λ^* . Suponha-se, também, que a qualificação da restrição de independência linear (LICQ), a condição de complementaridade estrita, e as condições suficientes de segunda ordem se verificam em (w^*, λ^*) . Então se $(w^{(k)}, \lambda^{(k)})$ está suficientemente próximo de (w^*, λ^*) , existe uma solução local do subproblema (Q2) cujo conjunto ativo A_k é o mesmo que o conjunto ativo $A(w^*)$ do problema (P2) em w^* .

Pré-visualização de Métodos SQP práticos

Para ser prático, um método SQP deve ser capaz de convergir a partir de pontos de iniciais distantes e para qualquer problema não convexo.

Vamos descrever como a estratégia SQP local pode ser adaptada para atingir estes objetivos:

► Começamos por fazer uma analogia com a otimização sem restrições. Na sua forma mais simples, a iteração de Newton para minimizar uma função F dá um passo para o minimizante do modelo quadrático

$$m_k(s) = F_k + \nabla F_k^T s + \frac{1}{2} s^T \nabla^2 F(w^{(k)}) s$$

- Este método é útil perto da solução, onde a Hessiana $\nabla^2 F(w^{(k)})$ é normalmente definida positiva e o modelo quadrático tem um minimizante bem definido.
- No entanto, quando $w^{(k)}$ não está próximo da solução, a função m_k pode não ser convexa. Os métodos de procura unidirecional modificam a Hessiana em $m_k(s)$ para a tornar definida positiva (possivelmente substituindo-o por uma aproximação quasi-Newton B_k), para garantir que s^k é uma direção de descida para F.

- ▶ Nos métodos SQP usam-se estratégias idênticas para a sua globalização.
- ⊳ Se $\nabla^2_{ww} L(w^{(k)}, \lambda^{(k)})$ é definida positiva no espaço tangente das restrições ativas, o subproblema quadrático (Q1) tem uma solução única.
- \triangleright No entanto, quando $\nabla^2_{ww} L(w^{(k)},\lambda^{(k)})$ não é definida positiva, os métodos SQP de procura unidirecional ou
 - ullet substituem $abla_{ww}^2 L(w^{(k)},\lambda^{(k)})$ por uma aproximação definida positiva B_k ou
 - modificam $\nabla^2_{ww} L(w^{(k)}, \lambda^{(k)})$ diretamente durante o processo de fatorização da matriz.

Em qualquer um destes casos, o subproblema (Q1) fica bem definido.

- ► A técnica utilizada para aceitar ou rejeitar iterandos/pontos também tem impacto na eficiência dos métodos SQP.
- \triangleright Na otimização sem restrições, a função mérito é a própria função objetivo F, e permanece fixa durante todo o processo de minimização.
- De Para problemas com restrições, usamos uma função mérito (ou um filtro). Os parâmetros devem ser atualizados de forma a garantir que a direção procura, é uma direção de descida para esta função .

Aproximações Quasi-Newton

• A Hessiana da Lagrangeana $\nabla^2_{ww} L\left(w^{(k)}, \lambda^{(k)}\right)$ é formada pelas segundas derivadas da função objetivo e das funções de restrição:

$$\nabla^2_{ww} L\left(w^{(k)}, \lambda^{(k)}\right) = \nabla^2 F(w^{(k)}) - \sum_{n \in \mathcal{E}} \lambda_n \nabla^2 c_n(w^{(k)}) - \sum_{n \in \mathcal{I}} \lambda_n \nabla^2 c_n(w^{(k)})$$

- ▶ Em algumas aplicações, esta informação não é fácil de calcular.
- \triangleright Além disso, a matriz $\nabla^2_{ww} L\left(w^{(k)}, \lambda^{(k)}\right)$ pode não ser definida positiva no espaço tangente das restrições ativas.
- Esta dificuldade pode ser ultrapassada substituindo a $\nabla^2_{ww}L\left(w^{(k)},\lambda^{(k)}\right)$ em (Q2) por uma aproximação quasi-Newton.
- Como as fórmula BFGS provou ser bem sucedida no contexto da otimização sem restrições, podemos usá-la aqui também.

• A fórmula de atualização para B_k , que resulta do passo do iterando k para o iterando k+1, usa os vetores s_k e y_k definidos da seguinte forma:

$$s_k = w^{(k+1)} - w^{(k)}, \quad y_k = \nabla_w L(w^{(k+1)}, \lambda^{(k+1)}) - \nabla_w L(w^{(k)}, \lambda^{(k+1)})$$
 (8)

e calculamos a nova aproximação B_{k+1} usando a fórmula BFGS.

Fórmula BFGS:

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{s_k^T y_k}$$

Nota:

- Podemos ver este processo como a aplicação da atualização quasi-Newton ao caso em que a função objetivo é dada pela função Lagrangeana $L(w, \lambda)$ (com λ fixo). Este ponto de vista de imediato revela a força e a fragilidade destas aproximações.
- \triangleright Se $\nabla^2_{\mu\nu}L$ é definida positiva na região onde se encontra o minimizante, então a aproximação B_k quasi-Newton BFGS refletirá alguma da informação sobre a curvatura do problema, e o processo iterativo irá convergir de forma robusta e rápida, tal como no método BFGS sem restrições.
- \triangleright Se, no entanto, $\nabla^2_{ww}L$ tem valores próprios negativos, então o método BFGS de aproximá-la por uma matriz definida positiva pode ser problemática.
 - De facto, a atualização BFGS exige que s_k e y_k satisfaçam a condição de curvatura $s_k^T y_k > 0$, o que pode não se verificar, quando s_k e y_k são dados por (8), mesmo quando os iterandos estão próximos da solução.

Apresenta-se a seguir duas estratégias para ultrapassar esta dificuldade.

Estratégia de skipping

Esta estratégia consiste em não atualizar B_k se a condição

$$s_k^T y_k \ge \gamma s_k^T B_k^T s_k$$

não é satisfeita, onde γ é um parâmetro positivo ($\gamma = 10^{-2}$, por exemplo).

Esta estratégia pode, por vezes, produzir um desempenho fraco ou mesmo falhar, portanto não pode ser vista como adequada para algoritmos SQP de uso geral.

Estratégia damped

Esta estratégia consiste em modificar a definição de y_k de modo a garantir que a atualização BFGS esteja sempre bem definida.

Procedimento: Atualização BFGS damped

- Dar: matriz simétrica e definida positiva B_k
- Definir s_k e y_k como em (8) e fazer

$$r_k = \theta_k y_k + (1 - \theta_k) B_k s_k,$$

onde o escalar θ_k é definido por

$$\theta_{k} = \begin{cases} 1 & \text{se } s_{k}^{T} y_{k} \ge 0.2 s_{k}^{T} B_{k} s_{k}, \\ \frac{0.8 s_{k}^{T} B_{k} s_{k}}{s_{k}^{T} B_{k} s_{k} - s_{k}^{T} y_{k}} & \text{se } s_{k}^{T} y_{k} < 0.2 s_{k}^{T} B_{k} s_{k}. \end{cases}$$
(9)

- Atualizar B_k da seguinte forma:

$$B_{k+1} = B_k - \frac{B_k s_k s_k^{\mathsf{T}} B_k}{s_k^{\mathsf{T}} B_k s_k} + \frac{r_k r_k^{\mathsf{T}}}{s_k^{\mathsf{T}} r_k}$$
(10)

(nota: A fórmula (10) é simplesmente a fórmula BFGS standard, com y_k substituído por r_k . Garante que B_{k+1} é definida positiva, uma vez que é fácil mostrar que quando $\theta_k \neq 1$ temos $s_k^T r_k = 0.2 s_k^T B_k s_k > 0$)

- Para compreender melhor esta estratégia, notar que a escolha $\theta_k=0$ dá $B_{k+1}=B_k$, enquanto $\theta_k=1$ dá a matriz (possivelmente indefinida) produzida pela atualização BFGS não modificada.
- ightharpoonup Um valor de $heta_k \in (0,1)$ produz assim uma matriz entre a aproximação atual B_k e a matriz produzida pela fórmula BFGS não modificada.
- \triangleright A escolha de θ_k assegura que a nova aproximação B_{k+1} se mantém suficientemente próxima da aproximação atual B_k para garantir a positividade.

Nota:

• Todas as aproximações quasi-Newton B_k apresentadas são matrizes $I \times I$ densas que podem ser dispendiosas de armazenar e manipular no caso de problemas de grande dimensão. A fórmula de atualização de memória reduzida (do inglês *limited-memory update*) é útil neste contexto e é frequentemente implementada em pacotes de software.

Funções Mérito

- Para garantir que o método SQP com procura unidirecional convirja a partir de qualquer ponto inicial, é frequentemente usado no algoritmo SQP uma função mérito para controlar o tamanho do passo.
 - O comprimento do passo, η_k , será aceite se o novo ponto $w^{(k+1)}=w^{(k)}+\eta_k s^k$ produzir uma redução significativa no valor da função mérito.
- Uma variedade de funções mérito têm sido usadas em métodos SQP, nomeadamente funções de penalidade exatas não suaves e Lagrangeanas aumentadas.
 - Apenas apresentamos aqui as funções mérito exatas não suaves, tipificada pela função mérito ℓ_1 .
- Na descrição que se segue, consideramos o problema com restrições de igualdade (P1), uma vez que as restrições de desigualdade podem ser convertidas em restrições de igualdade pela introdução de variáveis de folga.

```
(nota: c(w) \geq 0 converter em \overline{c}(w,v) = c(w) - v = 0, onde v \geq 0 é o vetor das variáveis de folga; a condição v \geq 0 é tipicamente não monitorizada pela função mérito.)
```

Função de penalidade ℓ_1

A função mérito ℓ_1 para (P1) é definida por:

$$\phi_1(w; \mu) = F(w) + \mu ||c(w)||_1 \tag{11}$$

Num método de procura unidirecional, o comprimento do passo η_k será aceite se a seguinte condição de redução significativa se verifica:

$$\phi_1(w^{(k)} + \eta_k s^k; \mu_k) \le \phi_1(w^{(k)}; \mu_k) + \delta \eta_k D(\phi_1(w^{(k)}; \mu_k); s^k)$$
(12)

onde

- $D(\phi_1(w^{(k)};\mu_k);s^k)$ denota a derivada direcional de ϕ_1 na direção de s^k
- $\delta \in]0,1[.$
- \triangleright A condição (12) é análoga a condição de Armijo para otimização sem restrições desde que s^k seja uma direção de descida para ϕ_1 , ou seja,

$$D(\phi_1(w^{(k)}; \mu); s^k) < 0$$

Teorema 2

Sejam s^k e $\lambda^{(k+1)}$ gerados pela iteração SQP (7). Então a derivada direcional de ϕ_1 na direção s^k satisfaz

$$D(\phi_1(w^{(k)}; \mu); s^k) = \nabla F_k^T s^k - \mu ||c_k||_1$$
 (13)

Além disso,

$$D(\phi_1(w^{(k)}; \mu); s^k) = -(s^k)^T \nabla^2_{ww} L_k s^k - (\mu - ||\lambda^{(k+1)}||_{\infty}) ||c_k||_1$$
 (14)

onde
$$\|\lambda^{k+1}\| = \max_{i} |\lambda_i^{k+1}|$$

Demonstração: (Teorema 18.3) em [1]

De (14) conclui-se que s^k será uma direção de descida para ϕ_1 , se $s^k \neq 0$, $\nabla^2_{ww} L_k$ for definida positiva e

$$\mu > \|\lambda_{k+1}\|_{\infty} \tag{15}$$

(nota: uma análise mais cuidada mostra que a hipótese sobre $\nabla^2_{ww} L_k$ pode ser relaxada, sendo apenas necessário que a Hessiana reduzida $Z_k^T \nabla^2_{ww} L_k Z_k$ seja definida positiva.)

Uma estratégia alternativa, baseada em (13), é exigir que a derivada direcional seja suficientemente negativa no sentido de que

$$D(\phi_1(w^{(k)}; \mu); s^k) = \nabla F_k^T s^k - \mu ||c_k||_1 \le -\rho \mu ||c_k||_1$$

para $\rho \in]0,1[$. Esta desigualdade verifica-se se

$$\mu \ge \frac{\nabla F_k^T s^k}{(1 - \rho) \|c_k\|_1} \tag{16}$$

Esta escolha não depende dos multiplicadores de Lagrange e apresenta um desempenho adequado na prática.

 \triangleright Na prática, é desejável que os parâmetros μ_k da função mérito permaneçam inalterados à medida que os iterandos convergem para a solução.

Uma estratégia para escolher o novo valor de μ é a seguinte. Se o valor de μ da iteração anterior satisfaz (16) (ou (15)), o valor de μ não é alterado. Caso contrário, μ é incrementado de modo a satisfazer a desigualdade (16) (ou (15)) com alguma margem. Esta regra é dada por:

$$\mu_{k} = \begin{cases} \mu_{k-1} & \text{se } \mu_{k-1} \ge \gamma_{k} + \delta \\ \gamma_{k} + 2\delta & \text{caso contrário} \end{cases}$$
 (17)

onde $\delta > 0$ ($\delta = 10^{-2}$, por exemplo), e γ_k é dado por

$$\gamma_k = \begin{cases} \lambda^{(k+1)} & \text{se (15)} \\ \frac{\nabla F_k^T s^k}{(1-\rho)|c_k||_1} & \text{se (16)} \end{cases}$$

Algoritmo: Algoritmo SQP de procura unidirecional

- Dar: $\delta \in]0, 0.5[, \mu_0 > 0, e \text{ o par inicial } (w^{(0)}, \lambda^{(0)})$
- Dar: uma matriz B_0 simétrica definida positiva $I \times I$ (caso contrário $\nabla^2_{ww} L_0$)
- Calcular F_0 , ∇F_0 , c_0 , A_0
- Para k = 0, 1, ...
- Resolver o subproblema quadrático (Q2) (ou (Q1)) para obter (s^k, π^k) 0
- Fazer $\lambda^{(k+1)} = \pi^k$ 2
- Escolher μ_k usando a regra (17) **(3)**
- 4 Fazer $\alpha_k = 1$
- **Enquanto** $\phi_1(w^{(k)} + \alpha_k s^k; \mu_k) > \phi_1(w^{(k)}; \mu_k) + \delta \alpha_k D(\phi_1(w^{(k)}; \mu_k); s^k)$ 6 Fazer $\alpha_k = \frac{\alpha_k}{2}$

Se $\alpha_{\nu} ||s^{k}|| < 10^{-8}$ parar com $\alpha_{\nu} = 1$

fim

- Fazer $w^{(k+1)} = w^{(k)} + \alpha_k s^k$ **6**
- Se $(w^{(k+1)}, \lambda^{(k+1)})$ satisfaz o critério de paragem para (P2) (ou (P1)) **Parar** com a solução $(w^{(k+1)}, \lambda^{(k+1)})$

- Calcular F_{k+1} , ∇F_{k+1} , c_{k+1} , A_{k+1} (e possivelmente $\nabla^2_{ww} L_{k+1}$)
- Se é usada uma aproximação quasi-Newton, fazer $s_k = w^{(k+1)} w^{(k)}$, $y_k = \nabla_w L(w^{(k+1)}, \lambda^{(k+1)}) - \nabla_w L(w^{(k)}, \lambda^{(k+1)})$ e obter B_{k+1} usando uma fórmula quasi-Newton.

J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006.