

Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology

Research Areas

MR-Fluid and its Applications

MR-Fluid??

Magneto Rheolocical Fluid

ferromagnetic particles of micron size

deformation and flow of matter in applied force

Carrier Liquids

- Front load Washing machine (Shear mode)
- Recoil system (flow Mode)
- **Driver seat Suspension System (Flow mode)**
- Military vehicle Suspension system (Flow mode)
- Suspension system of Four wheeler (Flow mode)
- Seismic Vibration absorber (Flow mode)
- Railway vibration absorber (Flow mode)

Temperature Sensitive Magnetic Fluid and its Applications in Heat Transfer Devices

- (i) flow control by magnetic field and
- (ii) Generation of fluid motion by thermal or magnetic means without moving any technical part

Collaborators PLASVAC, A'bad /SAS, Slovakia

Operating Range ∂ M/∂ T of current ferrites Magnetization k=heat transfer co-efficient ∂ M/∂ T A=cross sectional area of desired Q=heat flux materials Δx=height of cell ∆T=temp difference Тн TL Temperature

Transformer coolant

Kinnari Parekh et. al International Journal of Thermal Sciences 103 (2016) 35-40. 114 (2017) 64-71.

Future collaborations

Need CFD /COMSOL multiphysics for fluid dynamics study / Enhance electrical resistivity / field study

Interdisciplinary Research

Tribology study

Four Ball Tester

600

200

-200

-400 -600

-800

£ 400

MR Damper

Mechanical Engineering

doi:10.1088/1757-899X/992/1/012004

8 catilian Journal of Physics https://doi.org/10.1007/s13538-019-00711-3

Mata. Res. Espessa (2019) 01:5707

Displacement (mm)

Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology

Research Areas

Engineering of Nanomaterials

Theoretical Physics (Condensed Mater and High Energy Physics)

OPTICAL CLOAKING

Optics and applications of nanoparticles and magnetic fluids

Characterization facilities

Research Areas: Engineering of Nanomaterials: Applications, devices and systems

Dr. C. K. Sumesh & group

Our expertise:

Synthesis of size and morphology tuneable
 Nano-heterostructures for multifunctional applications
 (Optoelectronic, electrochemical applications, antimicrobial activities).

2D TMDC and analogous materials

Quality Parameters:

- Tunable optical bandgap
- High surface area
- Easy to functionalize
- complementary material to graphene

Transition metal dichalcogenides (TMDC) (eg. MoS₂, WS₂, and WSe₂)
Transition Metal Oxides (TMO) (eg. MoO₃, WO₃, Cu based Oxides)

W W 2H structure of WSe,

HRTEM image of the WSe₂ nanosheet represents the honeycomb structure Prepared by

Clusters/ bulk powder of WS_2 is uniformly exfoliated in to thin and isolated-sheets of WS_2 nanosheets with an average lateral size of sheets are the size of ~ 1 µm are obtained with decoration of Ag particles

Results

SEM Image of WO₃ nanoflowers Prepared by chemical route method

I-T curves of WSe₂ nanosheets photodetector with and without illumination

- **Synthesis Methods**
- **Chemical Route**
- Solvo/Hydro-thermal
- Microwave
- Direct Vapour Transport
- > Vacuum deposition, etc

Main features

- Easy synthesis methods
- Possibility to fabricate heterostructure
- Optimization in various properties such as optical, electrical, etc
- Contemporary device fabrication such as photodetectors, gas sensors, electronic devices, biosensors

Scope for collaboration

 Anti-cancerous & biological activities using various metal oxides

Dr. Nilesh Pandey, CIPS

- Corrosion testing
- Photocatalysis

Dr. Kamlesh Chauhan, CSPIT

Dr. Sanni Kapatel

Research in Theoretical Physics

Research Areas : Astrophysics and Cosmology

- Black-hole Physics
- Small scale structure formation
- Gravitational Wave
- Digital Image Processing
- > Gravitational collapse of stars
- Gravitational lensing and shadows
- Astrometry
- Engineering applications in the field of cosmology

To investigate properties of materials at Nanoscale..

Dr. Shweta Dabhi

Theoretical High Energy Physics, Hadron Physics

<u>Area of Interest:</u>

- Mass spectra of Meson
- Decay properties of Meson
- > Exotics states
- Masses of tetraquark states in the hidden charm sector

Optical Characterization Facility

Lasers:

- ➤ He-Ne Red laser (632 nm, 5mW)
- ➤ Diode Green laser (532 nm, 30mW)
- **▶** He-Cd laser (442 nm, 30mW)

Portable spectrophotometer (Make: Ocean optics)

- FLAME-S-XR1-ES Spectrophotometer, detection range, λ = 200nm-1100nm,
- Tungsten Halogen Source,HL-2000-LL, wavelength Range, λ=360nm-2000nm
- 400µm UV/VIS optical fibre and cuvette holder

- Inverted Metallurgical Microscope (Make: Meiji, Japan- IM7200)
- Calibrated Scale
- Polarizer
- Color CCD camera (make: Jenoptik, German, Resolution: 2080×1542 pixel)

Magnetic Fluid based Tunable

Diffraction Grating

Magnetic field induced chain formation – Microscopic image

White light spectroscopy – MF as monochromator

OPTICAL CLOAKING

- One-way cloaking
- Two-way cloaking

Magnetic Fluid Mirror

Ms ~ 280 G H = 750 G

Reflected diverged Beam (without focusing lens (2))

Reflected focused beam (with focusing lens(2))

Reflection due to the spherical curvature in the mirror leads to diverged the reflected beam. External lens is needed to focus the beam.

Ms ~ 70 G H = 750 G

Incident light

Reflected Beam

Reflection due to the plane surface of the mirror leads to focused beam (without lens).

Michelson Interferometer: An application

Adaptive Liquid Lens

Side view of Curvatures at different magnetic fields

H= 750 G

H= 430 G

Scope for collaboration

- to interface magnetic field and full set-up.
- > Feedback and control loop
- Simulation of the experiment
- > To prepare miniaturized fully automated device

Inverted Metallurgical Microscope – University users

Dr. Mayur Sutaria & Group, Mechanical Engineering, CSPIT, CHARUSAT

Variable Polarization •

Inverted Metallurgical Microscope (Make: Meiji, Japan- IM7200) equipped with CCD camera (make: Jenoptik, German, Resolution: 2080×1542 pixel)

Sand Particles

Image Analysis

Structure identification

Inter-chain distance determination

Time dependent data extracted from the video

9

- Analysis of images using ImageJ software Java based script
- Method developed for the analysis of structure identification & interstructure distance. The method will be submitted to github, and hence can be added as plug-in in the ImageJ software

Scope for collaboration:

- Interest to explore different types of structure (particle shape, size, distance) identification
- Study internal cell structure and subsequently analysis of various parameters

Urvesh Soni et al

Michelson Interferometer

Laser power: 5 mW
Beam diameter: 0.3 cm

Michelson Interferometer: Applications

Simulated Interference pattern

1.50

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Data obtained using image analysis fitted with Lorentz function (solid line)

Experimental Interference pattern

Effect of applied frequency on the interference pattern

Collaborator: Dr. Dipanjan Dey, Dr. Pankaj S Joshi, ICC, Charusat

Refractive Index measurement

Collaborator: Dr. Vaibhav Patel & Group, Department of Chemical Sciences, PDPIAS, CHARUSAT

3-stage translational and a rotational motorized system for optical elements

XYZ Stage

Rotary Stage

Investigators: Maulik shah & Axat patel CSRTC, Charusat

Machine Learning for Image Generation: GAN

Collaborator: Dr. Parth Shah, Department of Information Technology, CSPIT, CHARUSAT

Magnetic field induced diffraction pattern

Biological Applications of Magnetic Nanoparticles

Total Protein Extraction

Collaborator: Dr. C N Ramchand

Protein Purification

Collaborators:

- Dr. Darshan H Patel, CIPS, Charusat
- Dr. Ruchi Chaturvedi, Dept. of Biological Sciences, PDPIAS, Charusat

Enzyme Immobilization

Collaborator: Dr. Bhavtosh A. Kikani, Dept. of Biological Sciences, PDPIAS, Charusat

Exploring antimicrobial activity of MgO nanoparticles on antibiotic resistant strains

Figure 14 Antimicrobial activity on MRSA

Multi-drug resistantstrains (MDR)	Antibacterial concentration of MgO NPs	Sensitive strains	Antibacterial of MgO NPs
MRSA	20 mg	MSSA	11 mg to 20 mg
E.coli(ESBL)	11 mg	E.coli	7 mg and 10 mg inhibitory concentration. Lethal concentration11 mg 20 mg
Pseudomonas.aeru ginosa	18 mg to 20 mg	Proteus mirabilis	13 mg 20 mg

Table 3 Result of antimicrobial activity

Figure 17 Antimicrobial activity on E.coli (ESBL)

Antimicrobial activity on microorganism of discarded tips

