UW-99501.ST25.txt SEQUENCE LISTING

<110> Cox, Michael Lusetti, Shelley Eggler, Aimee <120> RecA Mutants

<160> 5

<170> PatentIn version 3.2

960296.99501

<210> 1 <211> 335

<130>

<212> PRT

<213> Escherichia coli

<400> 1

Ala Ile Asp Glu Asn Lys Gln Lys Ala Leu Ala Ala Leu Gly Gln 1 5 10 15

Ile Glu Lys Gln Phe Gly Lys Gly Ser Ile Met Arg Leu Gly Glu Asp 20 25 30

Arg Ser Met Asp Val Glu Thr Ile Ser Thr Gly Ser Leu Ser Leu Asp 35 40 45

Ile Ala Leu Gly Ala Gly Gly Leu Pro Met Gly Arg Ile Val Glu Ile
50 55 60

Tyr Gly Pro Glu Ser Ser Gly Lys Thr Thr Leu Thr Leu Gln Val Ile
65 70 75 80

Ala Ala Ala Gln Arg Glu Gly Lys Thr Cys Ala Phe Ile Asp Ala Glu 85 90 95

His Ala Leu Asp Pro Ile Tyr Ala Arg Lys Leu Gly Val Asp Ile Asp 100 105 110

Asn	Leu	Leu 115	Cys	Ser	Gln	Pro	Asp 120	Thr	Gly	Glu	Gln	Ala 125	Leu	Glu	Ile
Cys	Asp 130	Ala	Leu	Ala	Arg	Ser 135	Gly	Ala	Val	Asp	Val 140	Ile	Val	Val	Asp
Ser 145	Val	Ala	Ala	Leu	Thr 150	Pro	Lys	Ala	Glu	Ile 155	Glu	Gly	Glu	Ile	Gly 160
Asp	Ser	His	Met	Gly 165	Leu	Ala	Ala	Arg	Met 170	Met	Ser	Gln	Ala	Met 175	Arg
Lys	Leu	Ala	Gly 180	Asn	Leu	Lys	Gln	Ser 185	Asn	Thr	Leu	Leu	Ile 190	Phe	Ile
Asn	Gln	Ile 195	Arg	Met	Lys	Ile	Gly 200	Val	Met	Phe	Gly	Asn 205	Pro	Glu	Thr
Thr	Thr 210	Gly	Gly	Asn	Ala	Leu 215	Lys	Phe	Tyr	Ala	Ser 220	Val	Arg	Leu	Asp
Ile 225	Arg	Arg	Ile	Gly	Ala 230	Val	Lys	Glu	Gly	Glu 235	Asn	Val	Val	Gly	Ser 240
Glu	Thr	Arg	Val	Lys 245	Val	Val	Lys	Asn	Lys 250	Ile	Ala	Ala	Pro	Phe 255	Lys
Gln	Ala	Glu	Phe 260	Gln	Ile	Leu	Tyr	Gly 265	Glu	Gly	Ile	Asn	Phe 270	Tyr	Gly
Glu	Leu	Val 275	Asp	Leu	Gly	Val	Lys 280	Glu	Lys	Leu	Ile	Glu 285	Lys	Ala	Gly
Ala	Trp 290	Tyr	Ser	Tyr	Lys	Gly 295	Glu	Lys	Ile	Gly	Gln 300	Gly	Lys	Ala	Asn

Ala	Thr	Ala	Trp	Leu	Lys	Asp	Asn	Pro	Glu	Thr	Ala	Lys	Glu	Ile	Glu
305					310					315					320

Lys Lys Val Arg Glu Leu Leu Ser Asn Pro Asn Ser Thr Pro 325 330 335

<210> 2 <211> 1011 <212> DNA <213> Esc	l nerichia col	li				
<400> 2 atggctatcg 60	acgaaaacaa	acagaaagcg	ttggcggcag	cactgggcca	gattgagaaa	
caatttggta 20	aaggctccat	catgcgcctg	ggtgaagacc	gttcaatgga	tgtggaaacc	1
atctctaccg 80	gttcgctttc	actggatatc	gcgcttgggg	caggtggtct	gccgatgggc	1
cgtatcgtcg 40	agatctacgg	accggaatct	tccggtaaaa	ccacgctgac	gctgcaggtg	2
atcgccgcag 00	cgcagcgtga	aggtaaaacc	tgtgcgttta	tcgatgctga	acacgcgctg	3
gacccaatct 60	acgcacgtaa	actgggcgtc	gatatcgaca	acctgctgtg	ctcccagccg	3
gacaccggcg 20	agcaggcact	ggaaatctgt	gacgccctgg	cgcgttctgg	cgcagtagac	4
gttatcgtcg 80	ttgactccgt	ggcggcactg	acgccgaaag	cggaaatcga	aggcgaaatc	4
ggcgactctc 40	acatgggcct	tgcggcacgt	atgatgagcc	aggcgatgcg	taagctggcg	5
ggtaacctga 00	agcagtccaa	cacgctgctg	atcttcatca	accagatccg	tatgaaaatt	6
ggtgtgatgt 60	tcggtaaccc	ggaaaccact	accggtggta	acgcgctgaa	attctacgcc	6

tctgt 20	tcgt	c tcga	catco	cg to		cggc					gcgaa	aaa (egtgg	gtgggt	7
agcga 80	aacc	c gcgt	gaaa	gt gg	gtgaa	agaad	c aaa	aatc	gctg	cgc	cgtti	caa a	acago	gctgaa	7
ttcca 40	agatc	c tcta	cggc	ga ag	ggtat	caad	c tto	ctaco	ggcg	aact	ggti	cga d	cctg	ggcgta	8
aaaga 00	agaag	c tgat	cgaga	aa ag	gcago	gegeg	g tgg	gtaca	agct	acaa	aaggt	cga g	gaaga	atcggt	9
caggg 60	gtaaa	g cgaa	tgcga	ac to	gaatg	ggatg	g aaa	agata	aacc	cgga	aaac	cgc (gaaag	gagatc	9
gagaa 11	agaaa	g tacg	tgagi	tt go	ctgct	tgago	c aad	ccga	aact	caa	egac	gta a	ā		10
<210><211><211><212><213>	> 33 > PR		hia (coli											
<400>	• 3														
Ala I 1	le A	sp Glu	Asn 5	Lys	Gln	Lys	Ala	Leu 10	Ala	Ala	Ala	Leu	Gly 15	Gln	
Ile G	3lu L	ys Gln 20	Phe	Gly	Lys	Gly	Ser 25	Ile	Met	Arg	Leu	Gly 30	Glu	Asp	
Arg S	Ger M 3	et Asp 5	Val	Lys	Thr	Ile 40	Ser	Thr	Gly	Ser	Leu 45	Ser	Leu	Asp	
	Ala L 50	eu Gly	Ala	Gly	Gly 55	Leu	Pro	Met	Gly	Arg 60	Ile	Val	Glu	Ile	
Tyr G 65	Sly P	ro Glu	Ser	Ser 70	Gly	Lys	Thr	Thr	Leu 75	Thr	Leu	Gln	Val	Ile 80	
Ala A	.la Δ	la Gln	Ara	Glu	Glv	Lys	Thr	Cys	Ala	Phe	Ile	Asp	Ala	Glu	

Page 4

His	Ala	Leu	Asp 100	Pro	Ile	Tyr	Ala	Arg 105	Lys	Leu	Gly	Val	Asp 110	Ile	Asp
Asn	Leu	Leu 115	Cys	Ser	Gln	Pro	Asp 120	Thr	Gly	Glu	Gln	Ala 125	Leu	Glu	Ile
Cys	Asp 130	Ala	Leu	Ala	Arg	Ser 135	Gly	Ala	Val	Asp	Val 140	Ile	Val	Val	Asp
Ser 145	Val	Ala	Ala	Leu	Thr 150	Pro	Lys	Ala	Glu	Ile 155	Glu	Gly	Glu	Ile	Gly 160
Asp	Ser	His	Met	Gly 165	Leu	Ala	Ala	Arg	Met 170	Met	Ser	Gln	Ala	Met 175	Arg
Lys	Leu	Ala	Gly 180	Asn	Leu	Lys	Gln	Ser 185	Asn	Thr	Leu	Leu	Ile 190	Phe	Ile
Asn	Gln	Ile 195	Arg	Met	Lys	Ile	Gly 200	Val	Met	Phe	Gly	Asn 205	Pro	Glu	Thr
Thr	Thr 210	Gly	Gly	Asn	Ala	Leu 215	Lys	Phe	Tyr	Ala	Ser 220	Val	Arg	Leu	Asp
Ile 225	Arg	Arg	Ile	Gly	Ala 230	Val	Lys	Glu	Gly	Glu 235	Asn	Val	Val	Gly	Ser 240
Glu	Thr	Arg	Val	Lys 245	Val	Val	Lys	Asn	Lys 250	Ile	Ala	Ala	Pro	Phe 255	Lys
Gln	Ala	Glu	Phe 260	Gln	Ile	Leu	Tyr	Gly 265	Glu	Gly	Ile	Asn	Phe 270	Tyr	Gly
Glu	Leu	Val 275	Asp	Leu	Gly	Val	Lys 280	Glu Page		Leu	Ile	Glu 285	Lys	Ala	Gly

Ala Trp Tyr Ser Tyr Lys Gly Glu Lys Ile Gly Gln Gly Lys Ala Asn 290 295 300														
Ala Thr Ala Trp Leu Lys Asp Asn Pro Glu Thr Ala Lys Glu Ile Glu 305 310 315 320														
Lys Lys Val Arg Glu Leu Leu Ser Asn Pro Asn Ser Thr Pro 325 330 335														
<210> 4 <211> 1011 <212> DNA <213> Escherichia coli														
<400> 4 atggctatcg acgaaaacaa acagaaagcg ttggcggcag cactgggcca gattgagaaa 60														
caatttggta aaggeteeat eatgegeetg ggtgaagaee gtteeatgga tgtgaaaaee 20	1													
atctctaccg gttcgctttc actggatatc gcgcttgggg caggtggtct gccgatgggc 80	1													
cgtatcgtcg agatctacgg accggaatct tccggtaaaa ccacgctgac gctgcaggtg 40	2													
atcgccgcag cgcagcgtga aggtaaaacc tgtgcgttta tcgatgctga acacgcgctg	3													
gacccaatct acgcacgtaa actgggcgtc gatatcgaca acctgctgtg ctcccagccg	3													
gacaccggcg agcaggcact ggaaatctgt gacgccctgg cgcgttctgg cgcagtagac 20	4													
gttatcgtcg ttgactccgt ggcggcactg acgccgaaag cggaaatcga aggcgaaatc 80	4													
ggcgactete acatgggeet tgeggeaegt atgatgagee aggegatgeg taagetggeg 40	5													
ggtaacctga agcagtccaa cacgctgctg atcttcatca accagatccg tatgaaaatt	6													

Page 6

ggtgtgatgt 60	teggtaacce	ggaaaccact	accggtggta	acgcgctgaa	attctacgcc	6
tctgttcgtc 20	tcgacatccg	tcgtatcggc	gcggtgaaag	agggcgaaaa	cgtggtgggt	7
agcgaaaccc 80	gcgtgaaagt	ggtgaagaac	aaaatcgctg	cgccgtttaa	acaggctgaa	7
ttccagatcc 40	tctacggcga	aggtatcaac	ttctacggcg	aactggttga	cctgggcgta	8
aaagagaagc 00	tgatcgagaa	agcaggcgcg	tggtacagct	acaaaggtga	gaagatcggt	9
cagggtaaag 60	cgaatgcgac	tgcctggctg	aaagataacc	cggaaaccgc	gaaagagatc	9
gagaagaaag 11	tacgtgagtt	gctgctgagc	aacccgaact	caacgccgta	a	10

<210> 5

<211> 352

<212> PRT

<213> Escherichia coli

<400> 5

Ala Ile Asp Glu Asn Lys Gln Lys Ala Leu Ala Ala Leu Gly Gln 1 5 10 15

Ile Glu Lys Gln Phe Gly Lys Gly Ser Ile Met Arg Leu Gly Glu Asp 20 25 30

Arg Ser Met Asp Val Glu Thr Ile Ser Thr Gly Ser Leu Ser Leu Asp 35 40 45

Ile Ala Leu Gly Ala Gly Gly Leu Pro Met Gly Arg Ile Val Glu Ile 50 55 60

Tyr Gly Pro Glu Ser Ser Gly Lys Thr Thr Leu Thr Leu Gln Val Ile Page 7

90

95

Ala Ala Ala Gln Arg Glu Gly Lys Thr Cys Ala Phe Ile Asp Ala Glu

85

His Ala Leu Asp Pro Ile Tyr Ala Arg Lys Leu Gly Val Asp Ile Asp 100 105 110

Asn Leu Cys Ser Gln Pro Asp Thr Gly Glu Gln Ala Leu Glu Ile 115 120 125

Cys Asp Ala Leu Ala Arg Ser Gly Ala Val Asp Val Ile Val Val Asp 130 135 140

Ser Val Ala Ala Leu Thr Pro Lys Ala Glu Ile Glu Gly Glu Ile Gly 145 150 155 160

Asp Ser His Met Gly Leu Ala Ala Arg Met Met Ser Gln Ala Met Arg
165 170 175

Lys Leu Ala Gly Asn Leu Lys Gln Ser Asn Thr Leu Leu Ile Phe Ile 180 185 190

Asn Gln Ile Arg Met Lys Ile Gly Val Met Phe Gly Asn Pro Glu Thr 195 200 205

Thr Thr Gly Gly Asn Ala Leu Lys Phe Tyr Ala Ser Val Arg Leu Asp 210 215 220

Ile Arg Arg Ile Gly Ala Val Lys Glu Gly Glu Asn Val Val Gly Ser 225 230 235 240

Glu Thr Arg Val Lys Val Val Lys Asn Lys Ile Ala Ala Pro Phe Lys 245 250 255

Gln Ala Glu Phe Gln Ile Leu Tyr Gly Glu Gly Ile Asn Phe Tyr Gly
Page 8

						_		-	~						
			260					265					270		
Glu	Leu	Val 275	Asp	Leu	Gly	Val	Lys 280	Glu	Lys	Leu	Ile	Glu 285	Lys	Ala	Gly
Ala	Trp 290	Tyr	Ser	Tyr	Lys	Gly 295	Glu	Lys	Ile	Gly	Gln 300	Gly	Lys	Ala	Asn
Ala 305	Thr	Ala	Trp	Leu	Lys 310	Asp	Asn	Pro	Glu	Thr 315	Ala	Lys	Glu	Ile	Glu 320
Lys	Lys	Val	Arg	Glu 325	Leu	Leu	Leu	Ser	Asn 330	Pro	Asn	Ser	Thr	Pro 335	Asp
Phe	Ser	Val	Asp	Asp	Ser	Glu	Gly	Val	Ala	Glu	Thr	Asn	Glu	Asp	Phe

SEQUENCE LISTING

<110> Cox, Michael Lusetti, Shelley Eggler, Aimee <120> RecA Mutants <130> 960296.99501 <160> 5 <170> PatentIn version 3.2 <210> 1 <211> 335 <212> PRT <213> Escherichia coli <400> 1 Ala Ile Asp Glu Asn Lys Gln Lys Ala Leu Ala Ala Leu Gly Gln 1 5 10 15 Ile Glu Lys Gln Phe Gly Lys Gly Ser Ile Met Arg Leu Gly Glu Asp 20 25 30 Arg Ser Met Asp Val Glu Thr Ile Ser Thr Gly Ser Leu Ser Leu Asp 35 40 45 ile Ala Leu Gly Ala Gly Gly Leu Pro Met Gly Arg Ile Val Glu Ile

50

55

60

Tyr Gly Pro Glu Ser Ser Gly Lys Thr Thr Leu Thr Leu Gln Val lle 65 70 75 80

Ala Ala Ala Gln Arg Glu Gly Lys Thr Cys Ala Phe Ile Asp Ala Glu 85 90 95

His Ala Leu Asp Pro Ile Tyr Ala Arg Lys Leu Gly Val Asp Ile Asp 100 105 110

Asn Leu Cys Ser Gln Pro Asp Thr Gly Glu Gln Ala Leu Glu IIe 115 120 125

Cys Asp Ala Leu Ala Arg Ser Gly Ala Val Asp Val Ile Val Val Asp 130 135 140

Ser Val Ala Ala Leu Thr Pro Lys Ala Glu lle Glu Gly Glu lle Gly 145 150 155 160

Asp Ser His Met Gly Leu Ala Ala Arg Met Met Ser Gln Ala Met Arg 165 170 175

Lys Leu Ala Gly Asn Leu Lys Gln Ser Asn Thr Leu Leu Ile Phe Ile 180 185 190

Asn Gln IIe Arg Met Lys IIe Gly Val Met Phe Gly Asn Pro Glu Thr 195 200 205

Thr Thr Gly Gly Asn Ala Leu Lys Phe Tyr Ala Ser Val Arg Leu Asp

lle Arg Arg Ile Gly Ala Val Lys Glu Gly Glu Asn Val Val Gly Ser

Glu Thr Arg Val Lys Val Val Lys Asn Lys IIe Ala Ala Pro Phe Lys

Gln Ala Glu Phe Gln Ile Leu Tyr Gly Glu Gly Ile Asn Phe Tyr Gly

Glu Leu Val Asp Leu Gly Val Lys Glu Lys Leu Ile Glu Lys Ala Gly

Ala Trp Tyr Ser Tyr Lys Gly Glu Lys Ile Gly Gln Gly Lys Ala Asn

Ala Thr Ala Trp Leu Lys Asp Asn Pro Glu Thr Ala Lys Glu lle Glu

Lys Lys Val Arg Glu Leu Leu Ser Asn Pro Asn Ser Thr Pro

<210> 2

<211> 1011

<212> DNA

<213> Escherichia coli

<400> 2

atggctatcg acgaaaacaa acagaaagcg ttggcggcag cactgggcca gattgagaaa 60 caatttggta aaggeteeat eatgegeetg ggtgaagace gtteaatgga tgtggaaace 120 atctctaccg gttcgctttc actggatatc gcgcttgggg caggtggtct gccgatgggc 180 cgtatcgtcg agatctacgg accggaatct tccggtaaaa ccacgctgac gctgcaggtg 240 atcgccgcag cgcagcgtga aggtaaaacc tgtgcgttta tcgatgctga acacgcgctg 300 gacccaatct acgcacgtaa actgggcgtc gatatcgaca acctgctgtg ctcccagccg 360 gacaccggcg agcaggcact ggaaatctgt gacgccctgg cgcgttctgg cgcagtagac 420 gttatcgtcg ttgactccgt ggcggcactg acgccgaaag cggaaatcga aggcgaaatc 480 ggcgactctc acatgggcct tgcggcacgt atgatgagcc aggcgatgcg taagctggcg 540 ggtaacctga agcagtccaa cacgctgctg atcttcatca accagatccg tatgaaaatt 600 ggtgtgatgt tcggtaaccc ggaaaccact accggtggta acgcgctgaa attctacgcc 660 tctgttcgtc tcgacatccg tcgtatcggc gcggtgaaag agggcgaaaa cgtggtgggt 720 agcgaaaccc gcgtgaaagt ggtgaagaac aaaatcgctg cgccgtttaa acaggctgaa 780 ttccagatcc tctacggcga aggtatcaac ttctacggcg aactggttga cctgggcgta 840 aaagagaagc tgatcgagaa agcaggcgcg tggtacagct acaaaggtga gaagatcggt 900 cagggtaaag cgaatgcgac tgcctggctg aaagataacc cggaaaccgc gaaagagatc 960 1011 gagaagaaag tacgtgagtt gctgctgagc aacccgaact caacgccgta a

<210> 3

```
<212> PRT
```

<213> Escherichia coli

<400> 3

Ala Ile Asp Glu Asn Lys Gln Lys Ala Leu Ala Ala Leu Gly Gln

Ile Glu Lys Gln Phe Gly Lys Gly Ser Ile Met Arg Leu Gly Glu Asp

Arg Ser Met Asp Val Lys Thr IIe Ser Thr Gly Ser Leu Ser Leu Asp

lle Ala Leu Gly Ala Gly Gly Leu Pro Met Gly Arg lle Val Glu lle

Tyr Gly Pro Glu Ser Ser Gly Lys Thr Thr Leu Thr Leu Gln Val Ile

Ala Ala Ala Gln Arg Glu Gly Lys Thr Cys Ala Phe Ile Asp Ala Glu

His Ala Leu Asp Pro Ile Tyr Ala Arg Lys Leu Gly Val Asp Ile Asp

Asn Leu Cys Ser Gln Pro Asp Thr Gly Glu Gln Ala Leu Glu Ile

Cys Asp Ala Leu Ala Arg Ser Gly Ala Val Asp Val Ile Val Val Asp 130 135 140

Ser Val Ala Ala Leu Thr Pro Lys Ala Glu lle Glu Gly Glu lle Gly 145 150 155 160

Asp Ser His Met Gly Leu Ala Ala Arg Met Met Ser Gln Ala Met Arg 165 170 175

Lys Leu Ala Gly Asn Leu Lys Gln Ser Asn Thr Leu Leu Ile Phe Ile 180 185 190

Asn Gln lle Arg Met Lys lle Gly Val Met Phe Gly Asn Pro Glu Thr 195 200 205

Thr Thr Gly Gly Asn Ala Leu Lys Phe Tyr Ala Ser Val Arg Leu Asp 210 215 220

lle Arg Arg Ile Gly Ala Val Lys Glu Gly Glu Asn Val Val Gly Ser 225 230 235 240

Glu Thr Arg Val Lys Val Val Lys Asn Lys lle Ala Ala Pro Phe Lys 245 250 255

Gln Ala Glu Phe Gln IIe Leu Tyr Gly Glu Gly IIe Asn Phe Tyr Gly 260 265 270

Glu Leu Val Asp Leu Gly Val Lys Glu Lys Leu Ile Glu Lys Ala Gly

275 280 285

Ala Trp Tyr Ser Tyr Lys Gly Glu Lys Ile Gly Gln Gly Lys Ala Asn 290 295 300

Ala Thr Ala Trp Leu Lys Asp Asn Pro Glu Thr Ala Lys Glu Ile Glu
305 310 315 320

Lys Lys Val Arg Glu Leu Leu Ser Asn Pro Asn Ser Thr Pro 325 330 335

<210> 4

<211> 1011

<212> DNA

<213> Escherichia coli

<400> 4

atggctatcg acgaaaacaa acagaaagcg ttggcggcag cactgggcca gattgagaaa 60
caatttggta aaggctccat catgcgcctg ggtgaagacc gttccatgga tgtgaaaacc 120
atctctaccg gttcgctttc actggatatc gcgcttgggg caggtggtct gccgatgggc 180
cgtatcgtcg agatctacgg accggaatct tccggtaaaa ccacgctgac gctgcaggtg 240
atcgccgcag cgcagcgtga aggtaaaacc tgtgcgttta tcgatgctga acacgcgctg 300
gacccaatct acgcacgtaa actgggcgtc gatatcgaca acctgctgtg ctcccagccg 360
gacaccggcg agcaggcact ggaaatctgt gacgccctgg cgcgttctgg cgcagtagac 420
gttatcgtcg ttgactccgt ggcggcactg acgccgaaag cggaaatcga aggcgaaatc 480

ggcgactctc acatgggcct tgcggcacgt atgatgagcc aggcgatgcg taagctggcg 540

ggtaacctga agcagtccaa cacgctgctg atcttcatca accagatccg tatgaaaatt 600

ggtgtgatgt tcggtaaccc ggaaaccact accggtggta acgcgctgaa attctacgcc 660

tctgttcgtc tcgacatccg tcgtatcggc gcggtgaaag agggcgaaaa cgtggtgggt 720

agcgaaaccc gcgtgaaagt ggtgaagaac aaaatcgctg cgccgtttaa acaggctgaa 780

ttccagatcc tctacggcga aggtatcaac ttctacggcg aactggttga cctgggcgta 840

aaagagaagc tgatcgagaa agcaggcgcg tggtacagct acaaaggtga gaagatcggt 900

cagggtaaag cgaatgcgac tgcctggctg aaagataacc cggaaaccgc gaaagagatc 960

gagaagaaag tacgtgagtt gctgctgagc aacccgaact caacgccgta a 1011

<210> 5

<211> 352

<212> PRT

<213> Escherichia coli

<400> 5

Ala Ile Asp Glu Asn Lys Gln Lys Ala Leu Ala Ala Leu Gly Gln 1 5 10 15

Ile Glu Lys Gln Phe Gly Lys Gly Ser Ile Met Arg Leu Gly Glu Asp 20 25 30

Arg Ser Met Asp Val Glu Thr Ile Ser Thr Gly Ser Leu Ser Leu Asp 35 40 45

Ile Ala Leu Gly Ala Gly Gly Leu Pro Met Gly Arg Ile Val Glu Ile 50 55 60

Tyr Gly Pro Glu Ser Ser Gly Lys Thr Thr Leu Thr Leu Gln Val Ile
65 70 75 80

Ala Ala Ala Gin Arg Glu Gly Lys Thr Cys Ala Phe Ile Asp Ala Glu 85 90 95

His Ala Leu Asp Pro Ile Tyr Ala Arg Lys Leu Gly Val Asp Ile Asp 100 105 110

Asn Leu Cys Ser Gln Pro Asp Thr Gly Glu Gln Ala Leu Glu Ile 115 120 125

Cys Asp Ala Leu Ala Arg Ser Gly Ala Val Asp Val Ile Val Val Asp 130 135 140

Ser Val Ala Ala Leu Thr Pro Lys Ala Glu Ile Glu Gly Glu Ile Gly 145 150 155 160

Asp Ser His Met Gly Leu Ala Ala Arg Met Met Ser Gln Ala Met Arg

165 170 175

Lys Leu Ala Gly Asn Leu Lys Gln Ser Asn Thr Leu Leu IIe Phe IIe 180 185 190 Asn Gln Ile Arg Met Lys Ile Gly Val Met Phe Gly Asn Pro Glu Thr 195 200 205

Thr Thr Gly Gly Asn Ala Leu Lys Phe Tyr Ala Ser Val Arg Leu Asp 210 215 220

lle Arg Arg Ile Gly Ala Val Lys Glu Gly Glu Asn Val Val Gly Ser 225 230 235 240

Glu Thr Arg Val Lys Val Val Lys Asn Lys IIe Ala Ala Pro Phe Lys 245 250 255

Gin Ala Glu Phe Gin Ile Leu Tyr Gly Glu Gly Ile Asn Phe Tyr Gly 260 265 270

Glu Leu Val Asp Leu Gly Val Lys Glu Lys Leu lle Glu Lys Ala Gly 275 280 285

Ala Trp Tyr Ser Tyr Lys Gly Glu Lys Ile Gly Gln Gly Lys Ala Asn 290 295 300

Ala Thr Ala Trp Leu Lys Asp Asn Pro Glu Thr Ala Lys Glu Ile Glu 305 310 315 320

Lys Lys Val Arg Glu Leu Leu Ser Asn Pro Asn Ser Thr Pro Asp 325 330 335

Phe Ser Val Asp Asp Ser Glu Gly Val Ala Glu Thr Asn Glu Asp Phe