Exponent and Logarithm Rules

Exponent Rules $a^{x} \cdot a^{y} = a^{x+y}$	Logarithm Rules $x = log_{a}y \Leftrightarrow y = a^{x} (if y > 0)$	euler's number,
$\frac{a^x}{a^y} = a^{x-y} \text{ and } a^{-y} = \frac{1}{a^y}$	α	$e \simeq 2.71828$ $log = log_{10}$
$(a^x)^y = a^{xy}$ $(ab)^x = a^x b^x$	$ylog_{a}x = log_{a}x^{y}$	$ ln = log_e \\ log_a 1 = 0 $
$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$	$log_a b = \frac{log_c b}{log_c a}$, if $c = e$ then $log_a b = \frac{ln b}{ln a}$ $log_b a = \frac{1}{log_b b}$	$\log_a^a a = 1$
$a^{x/y} = \sqrt[y]{a^x}$ $a^0 = 1$	$a^{\log_a x} = x (if x > 0)$	
	$\log_a a^x = x$	

Instantaneous rate of change of f at x: $f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$

Average rate of change of f with respect to x over [x, x + h]: $f'(x) = \lim_{h \to h} \frac{f(x+h) - f(x)}{h}$

 $\frac{dy}{dx}|_{(a,b)}$ denotes the value of $\frac{dy}{dx}$ at (a,b)

Equation of the tangent line to the curve y = y(x) at the point (x_0, y_0) is given by:

$$y - y_0 = y'(x_0) (x - x_0)$$

Elasticity of Demand: $E(p) = -\frac{p f'(p)}{f(p)}$

- Demand is **elastic** at p_0 when $E(p_0) > 1$.
 - small increase in price ⇔ bigger decrease in revenue
- Demand is **unitary** at p_0 when $E(p_0) = 1$.
 - o small increase in price ⇔ same increase in revenue (1:1 ratio)
- Demand is **inelastic** at p_0 when $E(p_0) < 1$.
 - o small increase in price ⇔ smaller increase in revenue

Implicit differentiation:

Step ①: Replace y with y(x).

Step 2: Differentiate both sides.

Step ③: Isolate for $\frac{dy}{dx}$.

What's the difference between $\frac{d}{dx}$ and $\frac{dy}{dx}$? Think of $\frac{d}{dx}$ like a verb, it is telling you to find the derivative. $\frac{dy}{dx}$ is like a noun, it is the result after taking the derivative.

Rules of Differentiation

Nules of Differentiation		
Derivative of a Constant	$\frac{d}{dx}c = 0$	
Power Rule	$\frac{d}{dx}(x^r) = r x^{r-1}$	
Derivative of a Constant Multiple of a Function	$\frac{d}{dx}\left[cf(x)\right] = c\frac{d}{dx}f(x)$	
Sum Rule	$\frac{d}{dx}\left[f(x) \pm g(x)\right] = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$	
Derivative of Exponential Function	$\frac{\frac{d}{dx}(a^{x}) = a^{x} \ln a}{\frac{d}{dx}e^{x} = e^{x} \ln e = e^{x}}$	
Derivative of Logarithmic Function	$\frac{d}{dx}log_{a} x = \frac{1}{x \ln a} \qquad \text{when } x \neq 0$ $\frac{d}{dx}ln x = \frac{1}{x \ln e} = \frac{1}{x} \qquad \text{when } x \neq 0$	
Product Rule	$\frac{d}{dx}\left[f(x)g(x)\right] = f'(x)g(x) + f(x)g'(x)$	
Quotient Rule	$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x) g(x) - f(x) g'(x)}{\left[g(x) \right]^2} \qquad \text{when } g(x) \neq 0$	
Chain Rule (for composite functions) $y(x) = f(g(x))$	$\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$	
	If you decompose $y(x)$ into $g(x) = u$ and $f(u)$, then: $\frac{d}{dx} [f(g(x))] = f'(u) \cdot g'(x)$	

Applications of Chain Rule

Chain Rule for Power functions $y(x) = [f(x)]^n$	$\frac{d}{dx} [f(x)]^n = n[f(x)]^{n-1} \cdot f'(x)$
Chain Rule for Exponential functions $y(x) = a^{f(x)}$ where $a > 0$, $a \ne 1$	$\frac{d}{dx}a^{f(x)} = a^{f(x)} \cdot \ln a \cdot f'(x)$ $\frac{d}{dx}e^{f(x)} = e^{f(x)} \cdot f'(x)$
Chain Rule for Logarithmic functions $y(x) = log_a f(x)$ where $a > 0$, $a \ne 1$	$\frac{d}{dx}\log_a y(x) = \frac{1}{f(x) \cdot \ln a} \cdot y'(x) = \frac{f'(x)}{f(x) \cdot \ln a}$ $\frac{d}{dx}\ln f(x) = \frac{1}{f(x)} \cdot f'(x) = \frac{f'(x)}{f(x)}$

Function is **increasing** when f'(x) > 0, and is **decreasing** when f'(x) < 0.

Critical points: x values where f'(x) = 0

x values where f'(x) not defined (IF AND ONLY IF f(x) IS DEFINED at x)