### **Dream Fusion**

Text-to-3D с помощью 2D диффузии

#### Идея

- Инициализируем 3D-модель
- Оптимизируем градиентным спуском, уменьшая ошибку 2Dрендеринга со случайных углов



#### Что мы хотим?

- 3D модель (которая генерируют фигуры исходя из ее параметров, которые мы будем оптимизировать)
- Предобученную text-to-image диффузионку (чтобы сравнивать проекции 3D модели с результатами диффузионной модели)
- Функцию потерь

# NeRF (3D модель)



# NeRF (3D модель)



### Imagen (txt-2-img diffusion model)



### Функция потерь

$$\nabla_{\theta} \mathcal{L}_{SDS}(\phi, \mathbf{x} = g(\theta)) = \nabla_{\theta} \mathbb{E}_{t} \left[ \sigma_{t} / \alpha_{t} w(t) KL(q(\mathbf{z}_{t} | g(\theta); y, t) || p_{\phi}(\mathbf{z}_{t}; y, t)) \right]$$

 $\phi$  - параметры диффузионной модели

 $x=g(\theta)$  - изображение сгенерированное NeRF с параметрами  $\theta$ 

t - временной шаг

 $\sigma,\alpha$ из диффузионной модели

w(t) - вес

p,q - вероятнотсные распределения из диффузионной модели

#### Эксперименты

Table 1: Evaluating the coherence of DreamFusion generations with their caption using different CLIP retrieval models. We compare to the ground-truth MS-COCO images in the object-centric subset of Jain et al. (2022) as well as Khalid et al. (2022). †Evaluated with only 1 seed per prompt. Metrics shown in parentheses may be overfit, as the same CLIP model is used during training and eval.

| Method       | R-Precision ↑ |      |           |                     |                   |                   |
|--------------|---------------|------|-----------|---------------------|-------------------|-------------------|
|              | CLIP B/32     |      | CLIP B/16 |                     | CLIP L/14         |                   |
|              | Color         | Geo  | Color     | Geo                 | Color             | Geo               |
| GT Images    | 77.1          | 100  | 79.1      | 8 <del>7 -</del> 80 | <del>1</del> .00  | 70.5              |
| Dream Fields | 68.3          | 350  | 74.2      | -                   |                   | - <del>8-</del> 4 |
| (reimpl.)    | 78.6          | 1.3  | (99.9)    | (0.8)               | 82.9              | 1.4               |
| CLIP-Mesh    | 67.8          | 500  | 75.8      | 8-8                 | 74.5 <sup>†</sup> | <u>329</u> 8      |
| DreamFusion  | 75.1          | 42.5 | 77.5      | 46.6                | 79.7              | 58.5              |



Figure 5: Qualitative comparison with baselines.

### Эксперименты



Figure 6: An ablation study of DreamFusion. **Left**: We evaluate components of our unlit renderings on albedo, full shaded and illuminated renderings and textureless illuminated geometry using CLIP L/14 on object-centric COCO. **Right**: visualizations of the impact of each ablation for "A bulldog is wearing a black pirate hat." on albedo (top), shaded (middle), and textureless renderings (bottom). The base method (i) without view-dependent prompts results in a multi-faced dog with flat geometry. Adding in view-dependent prompts (ii) improves geometry, but the surfaces are highly non-smooth and result in poor shaded renders. Introducing lighting (iii) improves geometry but darker areas (e.g. the hat) remain non-smooth. Rendering without color (iv) helps to smooth the geometry, but also causes some color details like the skull and crossbones to be "carved" into the geometry.

