Count-based Language Models

CS 4417B

The University of Western Ontario

Statistical Language Models

[BCC Ch. 1.3.4] give prediction based on the probability

learns from previous waters;

• Attempt to capture probabilities

Lor pus needed

- - Of observing a term or sequence of terms
 - Usually given some context
- Captures the sequential structure of a language
 - Grammar/word choice
 - "There are" more likely than "Their are"
 - Idioms
 in wy, this one has higher possibility.
 "Raining cats and dogs" more likely than "Raining dogs and cats"
 - Topics
 - "peas and carrots" more likely than "peas and briefcases"

use statistics vo refer probability.

Add'l reading: [https://web.stanford.edu/~jurafsky/slp3/4.pdf]

Uses

- Predictive text
- Language generation
- Grammar checking

- hye amount of data required.
- Evaluating machine-generated text
 - 他 **向** 记者 介绍了 内容 主要 to reporters introduced main content
 - "He, to reporters, introduced the main content."
 - "He introduced reporters to the main contents."
 - "He briefed to reporters the main contents."
 - "He briefed reporters on the main contents."
- Internals of language models are often useful representations for words and documents

Distribution over terms

- Suppose we choose a position uniformly randomly from a corpus.
 - What is the probability that the term at that position is "the"?
 - What is the probability that the term at that position is "coconut"?
- "Term model" provides estimate of P(t).

• If there are *m* terms in our vocabulary, how many numbers do we need to store to describe this distribution?

**The control of the control

Conditional Models

- Suppose we choose a position uniformly randomly from a corpus, excluding the last position...
- ...and we're told the word (e.g. "the")
 - What is the probability that the next word is "coconut?"
 - What is the probability that the next word is "the?"
- "(Conditional) bigram model" provides estimate of $P(t_2|t_1)$ rext one's prossibility. giving the current word .e.g. "Locomet", feeting
- If there are *m* terms in our vocabulary, how many numbers do we need to store this distribution?

More complex models

• $P(t_1 | t_2, t_3, t_4)$

How many parameters? (iClicker)

- A) m-1
- B) m*(m-1)
- C) m*m*(m-1)
- D) m*m*m*(m-1)
- E) m*m*m*(m-1)

More complex models

• $P(t_1 | t_2, t_3, t_4)$

How many parameters?

- Suppose a 10000-word vocabulary (modest.)
 - There are 10¹⁶ 4-grams
 - English Wikipedia has about 10^{9.5} words
 - Best-case scenario, 99.9999% of 4-grams never occur

Language Model Sparsity

- Often, we want a language model to generalize beyond the corpus it was learned from
 - E.g. for evaluating sentences/text in that language, and to be able to create new text
- Good sparsity: n-grams that don't make sense have probability 0. ("he you bird now")
- Bad sparsity: Plausible *n*-grams that happen not to be present in the corpus get probability zero.
- More data reduces bad sparsity.

Simplifying Assumptions

• Suppose we choose to represent $P(t_1,t_2)$ like so:

•
$$P(t_1,t_2) = P(t_1) P(t_2)$$

 When would this model give exactly the right probability? (What property of language?)

this one 25 the probability for t, and to are independent

• How many parameters? To each other

Independence Model

• $P(t_1, t_2, t_3, ..., t_k) = P(t_1) P(t_2) P(t_3) ... P(t_k)$

- This is an independence assumption.
 - Knowing t_1 tells us nothing about what $P(t_2)$ will be, etc.
- Note under this assumption $P(t_1, t_2) = P(t_2, t_1)$
 - All order information is lost; much like Bag of Words

(Markov) Bigram Model

$$P(\langle s \rangle, t_1, t_2, ..., t_k, \langle s \rangle)$$

$$= P(t_1 | \langle s \rangle) P(t_2 | t_1) ... P(t_{k-1} | t_k) P(\langle s \rangle | t_k)$$

- <s>, </s> are special tokens for start and end of sentence
 - This kind of model is only used on whole sentences.
- Probability of next term only depends on term immediately before
- Assigns probabilities to sequences of arbitrary length
- Number of parameters fixed: $m \times (m-1)$

Trigram Model

$$P(\langle s \rangle, \langle s \rangle, t_1, t_2, ..., t_k, \langle s \rangle)$$

$$= P(t_1 | \langle s \rangle, \langle s \rangle) P(t_2 | t_1, \langle s \rangle) ... P(t_k | t_{k-1}, t_{k-2}) P(\langle s \rangle | t_k)$$

Probability of next term only depends previous two terms

• 4-gram, 5-gram, ... are similar.

Estimating models from data

•
$$P(t_k | t_1, t_2, t_3, ..., t_{k-1}) = P(t_1, t_2, t_3, ..., t_k) / P(t_1, t_2, t_3, ..., t_{k-1})$$

• $P(t_k | t_1, t_2, t_3, ..., t_{k-1}) \approx C(t_1, t_2, t_3, ..., t_k) / C(t_1, t_2, t_3, ..., t_{k-1})$

Smoothing

- Zero probabilities cause problems.
 - In our Markov/bigram/trigram/ngram models, if just one of the probabilities is zero, the whole sequence is given probability zero
- "Smoothing" modifies our probability estimates to avoid zero probabilities.

Laplace Smoothing

 So far, all probability estimates we have seen are derived from counts (of terms, bigrams, trigrams, etc.)

 Laplace smoothing adds 1 to each count before normalizing appropriately.

 Avoids zero probabilities, but doesn't work that well.

Back-off

- If we encounter a never-before-seen 3-gram, maybe we have seen the 2-gram. (Or the term.)
- E.g. never seen "mustard ice cream" but have seen "ice cream"
- "Back-off" methods default to simpler models if the more complicated ones do not have reliable estimates.
 - Note we can't just "substitute" simpler model or things won't normalize correctly. "Katz back-off" is one strategy
 - "Stupid back-off" ignores this problem; works well on large COrpora. Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J. (2007). Large language models in machine translation. In EMNLP/CoNLL 2007.

Context-based Smoothing

- Suppose want P(T|reading) but "reading" was not in our corpus.
- Which of our known words are more likely to appear after an unknown word?
 - "San Francisco"
 - "safety glasses"
 - "drinking glasses"
 - "water glasses"
 - •
- Kneser-Ney smoothing boosts these "likely continuations"

Applications

Text generation

Filtering output from other systems

Intelligent "spell checking"

Corpus membership classification

Babbling

- Given a distribution over words, it's possible to draw a word according to that distribution.
 - If P(coconut = 0.75) and P(pear = 0.25), "coconut" will appear about 3 times out of 4, and pear about 1 out of 4.
- "Babbling" is drawing a sequence of words, always conditioning on the most recently generated word(s) to produce the next one.
- Gives a sense of what structure is captured by the model.

1 gram	 To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have Hill he late speaks; or! a more to leg less first you enter
2 gram	-Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.-What means, sir. I confess she? then all sorts, he is trim, captain.
3 gram	-Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.-This shall forbid it should be branded, if renown made it empty.
4 gram	-King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;-It cannot be but so.
Figure 13	Fight sentences randomly generated from four N grams computed from Shakespeare's works All

Figure 4.3 Eight sentences randomly generated from four *N*-grams computed from Shakespeare's works. All characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected for capitalization to improve readability.

Filtering

- Statistical machine translation methods often produce several plausible translations
 - We can get the translation model to "babble" likely sentences
 - Choose the one with the highest probability under the language model
- Speech-to-text also produces statistical models over possible sentences
- Language modeling allows both of these to be improved with huge amounts of "unlabeled" data

Intelligent "spell checking"

Class will end in five minuets.

Corpus membership classification

- "Generative" model for classification.
- E.g., classify passage as Stephen King or Shakespeare:
 - Build language model for Stephen King
 - Build language model for Willy Shakes
 - Ask probability of passage belonging to each, see which one gives higher probability.

Summary

- Language models that predict next word given past context – (sometimes called "causal" language models)
- Challenge to naïve approaches: Data sparsity
- Applications
 - Generation create new text
 - Evaluation assess whether text is plausible
 - Classification assess relative likelihood of authorship
 - Many more

End of the session