So if we can show that the output (V, T) of Kruskal's Algorithm is in fact a spanning tree of G, then we will be done. Clearly (V, T) contains no cycles, since the algorithm is explicitly designed to avoid creating cycles. Further, if (V, T) were not connected, then there would exist a nonempty subset of nodes S (not equal to all of V) such that there is no edge from S to V - S. But this contradicts the behavior of the algorithm: we know that since G is connected, there is at least one edge between S and V - S, and the algorithm will add the first of these that it encounters.

(4.19) Prim's Algorithm produces a minimum spanning tree of G.

Proof. For Prim's Algorithm, it is also very easy to show that it only adds edges belonging to every minimum spanning tree. Indeed, in each iteration of the algorithm, there is a set $S \subseteq V$ on which a partial spanning tree has been constructed, and a node v and edge e are added that minimize the quantity $\min_{e=(u,v):u\in S} c_e$. By definition, e is the cheapest edge with one end in S and the other end in V-S, and so by the Cut Property (4.17) it is in every minimum spanning tree.

It is also straightforward to show that Prim's Algorithm produces a spanning tree of *G*, and hence it produces a minimum spanning tree. ■

When Can We Guarantee an Edge Is Not in the Minimum Spanning Tree? The crucial fact about edge deletion is the following statement, which we will refer to as the Cycle Property.

(4.20) Assume that all edge costs are distinct. Let C be any cycle in G, and let edge e = (v, w) be the most expensive edge belonging to C. Then e does not belong to any minimum spanning tree of G.

Proof. Let T be a spanning tree that contains e; we need to show that T does not have the minimum possible cost. By analogy with the proof of the Cut Property (4.17), we'll do this with an exchange argument, swapping e for a cheaper edge in such a way that we still have a spanning tree.

So again the question is: How do we find a cheaper edge that can be exchanged in this way with e? Let's begin by deleting e from T; this partitions the nodes into two components: S, containing node v; and V - S, containing node w. Now, the edge we use in place of e should have one end in S and the other in V - S, so as to stitch the tree back together.

We can find such an edge by following the cycle C. The edges of C other than e form, by definition, a path P with one end at v and the other at w. If we follow P from v to w, we begin in S and end up in V - S, so there is some

Chapter 4 Greedy Algorithms

Figure 4.11 Swapping the edge e' for the edge e in the spanning tree T, as described in the proof of (4.20).

edge e' on P that crosses from S to V-S. See Figure 4.11 for an illustration of this.

Now consider the set of edges $T' = T - \{e\} \cup \{e'\}$. Arguing just as in the proof of the Cut Property (4.17), the graph (V, T') is connected and has no cycles, so T' is a spanning tree of G. Moreover, since e is the most expensive edge on the cycle C, and e' belongs to C, it must be that e' is cheaper than e, and hence T' is cheaper than T, as desired.

The Optimality of the Reverse-Delete Algorithm Now that we have the Cycle Property (4.20), it is easy to prove that the Reverse-Delete Algorithm produces a minimum spanning tree. The basic idea is analogous to the optimality proofs for the previous two algorithms: Reverse-Delete only adds an edge when it is justified by (4.20).

(4.21) The Reverse-Delete Algorithm produces a minimum spanning tree of G.

Proof. Consider any edge e = (v, w) removed by Reverse-Delete. At the time that e is removed, it lies on a cycle C; and since it is the first edge encountered by the algorithm in decreasing order of edge costs, it must be the most expensive edge on C. Thus by (4.20), e does not belong to any minimum spanning tree.

So if we show that the output (V, T) of Reverse-Delete is a spanning tree of G, we will be done. Clearly (V, T) is connected, since the algorithm never removes an edge when this will disconnect the graph. Now, suppose by way of

contradiction that (V, T) contains a cycle C. Consider the most expensive edge e on C, which would be the first one encountered by the algorithm. This edge should have been removed, since its removal would not have disconnected the graph, and this contradicts the behavior of Reverse-Delete.

While we will not explore this further here, the combination of the Cut Property (4.17) and the Cycle Property (4.20) implies that something even more general is going on. *Any* algorithm that builds a spanning tree by repeatedly including edges when justified by the Cut Property and deleting edges when justified by the Cycle Property—in any order at all—will end up with a minimum spanning tree. This principle allows one to design natural greedy algorithms for this problem beyond the three we have considered here, and it provides an explanation for why so many greedy algorithms produce optimal solutions for this problem.

Eliminating the Assumption that All Edge Costs Are Distinct Thus far, we have assumed that all edge costs are distinct, and this assumption has made the analysis cleaner in a number of places. Now, suppose we are given an instance of the Minimum Spanning Tree Problem in which certain edges have the same cost – how can we conclude that the algorithms we have been discussing still provide optimal solutions?

There turns out to be an easy way to do this: we simply take the instance and perturb all edge costs by different, extremely small numbers, so that they all become distinct. Now, any two costs that differed originally will still have the same relative order, since the perturbations are so small; and since all of our algorithms are based on just comparing edge costs, the perturbations effectively serve simply as "tie-breakers" to resolve comparisons among costs that used to be equal.

Moreover, we claim that any minimum spanning tree T for the new, perturbed instance must have also been a minimum spanning tree for the original instance. To see this, we note that if T cost more than some tree T^* in the original instance, then for small enough perturbations, the change in the cost of T cannot be enough to make it better than T^* under the new costs. Thus, if we run any of our minimum spanning tree algorithms, using the perturbed costs for comparing edges, we will produce a minimum spanning tree T that is also optimal for the original instance.

Implementing Prim's Algorithm

We next discuss how to implement the algorithms we have been considering so as to obtain good running-time bounds. We will see that both Prim's and Kruskal's Algorithms can be implemented, with the right choice of data structures, to run in $O(m \log n)$ time. We will see how to do this for Prim's Algorithm