

Задача Реакции

🟅 2.5 sec. 💾 256 MB

Ники провежда експерименти върху химическа реактивност. Той е подготвил N експеримента, които са индексирани от 0 до N-1. Сега той трябва да избере началния си експеримент и след това ще проведе всички експерименти с индекси, по-големи или равни на този на избрания. С други думи, ако реши да започне от експеримент с индекс S, той ще проведе експерименти $S, S+1, \dots, N-1$ в този ред.

Преди началото на експеримента, той има контейнер с разтвор. Температурата на разтвора е равна на 0 градуса. По време на i-ия експеримент ($0 \le i \le N-1$), той изпълнява следните две стъпки в този ред:

- 1. Променя температурата на контейнера с дадено цяло число градуси (тя може да се увеличи или намали с произволна стойност или да остане същата);
- 2. Извършва експеримент и проверява дали протича реакция.

Известно е, че за i-тия експеримент температурата се променя с D_i градуса – температурата се увеличава, ако $D_i > 0$, намалява, ако $D_i < 0$, или остава същата, ако $D_{i} = 0$. Освен това, реакцията в *i*-тия експеримент протича само ако текущата температура (след промяната) е по-голяма или равна на T_i . Обърнете внимание, че промяната на температурата от първата стъпка се запазва, независимо дали реакцията протича или не.

Ники иска да има възможно най-голям брой реакции, за да може да събере колкото се може повече данни. Помогнете му, като изчислите това число.

🕙 Детайли по имплементацията

Трябва да имплементирате функцията reactions:

int reactions(int N, std::vector<int> D, std::vector<long long> T)

- *N*: брой планирани експеримента;
- D: вектор от N цели числа, където D_i представлява промяната в температурата за i-тия експеримент;
- T: вектор от N цели числа, където T_i представлява минималната температура на разтвора, при която протича реакция по време на i-тия експеримент.

Тази функция ще бъде извикана веднъж за всеки тест. Тя трябва да върне максималния брой реакции, които могат да възникнат, ако началният експеримент е избран правилно.

1 Ограничения

- $1 \le N \le 500\ 000$
- $-10^9 \le D_i \le 10^9$
- $-10^{15} \le T_i \le 10^{15}$

२ Подзадачи

Подзадача	Точки	Необходими подзадачи	Допълнителни ограничения
0	0	_	Примерите.
1	15	0	$N \le 2000$
2	15	0	Има най-много 20 индекса i , за които $D_i < 0$.
3	20	_	$D_i \leq 0$ за всяко $0 \leq i < N$
4	20	0	Отговорът е най-много 20.
5	30	0 - 4	_

Пример 1

Помислете за следното извикване:

Ако Ники избере да започне от експеримент с индекс 3, температурата на разтвора ще стане 1, което удовлетворява ограниченията за протичане на тази реакция. По време на следващия експеримент температурата се повишава до 2 и реакцията протича отново. Тъй като няма начин да се случат повече от 2 реакции, функцията трябва да върне 2.

🕙 Пример 2

Помислете за следното извикване:

Функцията трябва да върне 4, защото започвайки от експеримент с индекс 0, Ники ще наблюдава реакции по време на експериментите с индекси 0, 1, 3 и 4. Температурата започва от 0 градуса и по време на всеки експеримент температурата е: 1, -2, -2, 1, 3.

Примерен грейдър

Входният формат е следния:

- ред 1: едно цяло число стойността на N.
- ред 2: N цели числа D_0, D_1, \dots, D_{N-1} .
- ред 3: N цели числа T_0, T_1, \dots, T_{N-1} .

Изходния формат е следния:

• ред 1: едно цяло число - върнатата стойност от извикването.