Projective and Inversive Geometry (S)

Jongmin Lim (December 2023

1 Various inversions

1.1 Inversion

Definition. An inversion with respect to a given circle with centre O and radius r is a function ϕ which takes a point X and outputs another point $X' = \phi(X)$ such that $X' \in \overrightarrow{OX}$ and $|OX| \times |OX'| = r^2$.

Here are some properties of inversion. Try to prove them yourself!

- 1. Inversion is an involution (i.e. f(f(x)) = x)
- 2. If an inversion ϕ maps A to A' and B to B', then ABA'B' is cyclic.
- 3. If A, B, C are collinear, then OA'B'C' is cyclic. Thus, a line is mapped to a circle passing through the centre of inversion, under inversion.
- 4. If A, B, C, D is cyclic on circle which does not contain O, then A'B'C'D' is also cyclic on a circle which does not contain O. Thus, a circle is mapped to another circle as long as it does not contain the centre.
- 5. If two circles are tangent, then they are tangent after inversion.
- 6. (Inversion preserves cross ratios) If ABCD is on a circle/line such that AB/BC = AD/DC (i.e. harmonic), then A'B'C'D' is also harmonic.

1.2 \sqrt{bc} -inversion

Definition. Given $\triangle ABC$, a \sqrt{bc} -inversion centred on A is an inversion with radius $\sqrt{|AB| \times |AC|}$ centred on A, composed with a reflection over the angle bisector of $\angle BAC$.

Here are some properties of the \sqrt{bc} -inversion. Try to prove them yourself!

- 1. \sqrt{bc} -inversion is an involution.
- 2. If it maps X to Y, then $\triangle ABX \sim \triangle AYC$ as a spiral similarity.
- 3. B maps to C.
- 4. AB is mapped to AC.
- 5. BC is mapped to the circumcircle of $\triangle ABC$.

1.3 Poles and Polars

Definition. Given a circle ω with centre O and a point X, if X inverts to X', then consider the line ℓ_X which is perpendicular to OX' and passes through X'. ℓ_X is the polar of point X, and vice versa.

Here are some properties of poles and polars. Try to prove them yourself!

- 1. Poles and polars are an involution.
- 2. If ℓ_X passes through Y, then ℓ_Y passes through X.
- 3. If $\ell_X \cap \ell_Y = Z$, then $X, Y \in \ell_Z$.
- 4. Consider two points $A, B \in \omega$ such that A, B, X are collinear. Then $AB \cap \ell_X = Y$, where A, X, B, Y are harmonic. Hint: If M is the midpoint of AB, try prove $YB \times YA = YX \times YM$.

2 Problems

- 1. What happens to parallel lines after inversion?
- 2. Harmonic quadrilaterals
 - (a) Let triangle ABC have circumcircle ω . Let the tangents at B, C intersect at T. Let AT intersect the circle again at D. Show that ABDC is a harmonic quadrilateral.
 - (b) Let us invert the diagram at point B and let the images of A, C, D be A', C', D' respectively. Show that A'C' = C'D'.
- 3. Let a circle γ be internally tangent to circle ω at point A, and tangent to chord XY of ω at point B. Let M be the midpoint of arc XY not containing point A. Show that M, A, B are collinear.
- 4. Let the circumcircle of $\triangle ABC$ be Γ . Consider a circle ω which is tangent to the circumcircle internally at T and sides AB and AC at X,Y.
 - (a) What happens to ω under \sqrt{bc} -inversion?
 - (b) Show that the incentre I of $\triangle ABC$ is the midpoint of XY.
 - (c) Let E be the A-excircle touch point on BC. Show that $\triangle ABT \sim \triangle AEC$.
 - (d) Let D be the incircle touch point on BC. Show that $\triangle TBD \sim \triangle TAC$.
 - (e) TB is tangent to the circumcircle of ABE.
 - (f) If $M \in \Gamma$ such that AM is the angle bisector of $\angle BAC$, then MD, AT, OI are concurrent.
- 5. Let ABCD be a quadrilateral with an inscribed circle ω which is tangent to the sides AB, BC, CD, DA at points P, Q, R, S respectively. We want to show that AC, BD, PR, QS meet at one point.
 - (a) Let $PR \cap QS = X$. Let CX meet the circle again at points G and H. Why is QGRH a harmonic quadrilateral?

- (b) Describe an inversion which maps $P \to R, Q \to S$. What happens to G and H?
- (c) Why is A, C, G, H collinear? Finish the problem from here.
- 6. For quadrilateral ABCD, show that $AB \times CD + AD \times BC \ge AC \times BD$, where equality holds when ABCD is cyclic.
- 7. Consider four points A, B, C, D on a semicircle with diameter AD and centre O. Let $BC \cap AD = K$. Let the intersection of the circumcircles of $\triangle ABO$ and $\triangle CDO$ be T. Show that $\angle OTK = 90^{\circ}$.
- 8. (The Big Diagram) Let ABCD be a cyclic quadrilateral on circle ω with centre O. $AB \cap CD = X$, $AD \cap BC = Y$, $AC \cap BD = Z$.
 - (a) Let $XZ \cap AD = P$, $XZ \cap BC = Q$. Show APDY harmonic. Show BQCY harmonic.
 - (b) Hence show that Y is the pole of XZ.
 - (c) Hence show that XY is the pole of Y.
 - (d) Show that BODZ, AOCZ is cyclic (Hint: invert a line).
 - (e) Show that OZ is the angle bisector of $\angle AZC$.
 - (f) Show that XADZ, XBCZ, YZAB, YZDC cyclic.
 - (g) Show that Z is the Miguel point of ABCD.
- 9. Let ABCD be a quadrilateral with an inscribed circle ω which is tangent to the sides AB, BC, CD, DA at points P, Q, R, S respectively.
 - (a) What is the pole of lines AC and BD?
 - (b) Let $PR \cap QS = Z$. What is the polar of Z?
 - (c) Hence prove again that AC, BD, PR, QS are concurrent.
- 10. (Butterfly theorem) Consider a cyclic quadrilateral ABCD on circle ω and centre O and let $AC \cap BD = Z$. Choose a line $\ell \perp OZ$ passing through Z. Let $\ell \cap AD = P$, $\ell \cap BC = Q$. Show that PZ = QZ.