上海交通大學

SHANGHAI JIAO TONG UNIVERSITY

计算机视觉课程报告

题目:	基于多层次视觉与任务的车牌号识别算法
评分:	

学生姓名:	 朱楷文
学生学号:	520030910178
专业:	计算机科学与技术(IEEE 试点班)

学院(系): 电子信息与电气工程学院

目 录

第一章 实验要求分析
第二章 相关工作
2.1 目标检测
2.2 图像分类
第三章 算法原理
3.1 方法论
3.1.1 多层次视觉
3.1.2 多层次任务
3.2 各子任务算法原理
3.2.1 车牌定位和字符分割
3.2.2 视角矫正
3.2.3 字符识别
第四章 整体流程
4.1 车牌定位
4.2 视角矫正
4.3 字符分割
4.4 字符识别
第五章 实验过程与结果
5.1 实验测试
5.1.1 车牌定位
5.1.2 视角矫正
5.1.3 字符分割
5.1.4 字符识别
5.2 结果与分析
5.2.1 实验结果
5.2.2 评价指标
5.2.3 讨论10
参考文献1
谢辞1

第一章 实验要求分析

给定含有中国大陆中小型汽车(含新能源汽车)车牌号的图像,本实验要求设计算法识别出其中的车牌号。按识别难度划分,给出的图像有三种类型: easy, medium 和 difficult, 其中 easy 类型的图像为只包含车牌的正视图,medium 类型的图像为车头或车尾的正视图,difficult 类型的图像为车头或车尾的斜视图(包含背景),并具有一定的透视投影效果。

自然地,我们可以将该任务分成多个层次的子任务:

- (1) 车牌定位:找到图像中车牌的位置,将其分割出来;
- (2) 视角矫正:将车牌的图像矫正为正视图;
- (3) 字符分割: 将车牌号中的各个字符分割开来;
- (4) 字符识别:分别识别每个分割出的字符。

对于 easy 类型的图像,完成第 (3)、(4) 个子任务即可;对于 medium 类型的图像,需要完成第 (1)、(3)、(4) 个子任务;对于 difficult 类型的图像,四个子任务均需完成。

第二章 相关工作

本实验的主要难点在于目标检测和分类两个经典任务,即定位车牌和将字符识别(分类)为特定的汉字、字母或数字。这两个任务一直是计算机视觉领域研究的重点,尤其是深度学习兴起以来,发展出了许多卓有成效的算法。

2.1 目标检测

目标检测的发展历史可以划分为两个阶段: 传统算法阶段 (1998-2014) 和深度学习算法阶段 (2014-今)^[1]。在传统算法阶段,基于阈值的二值分割的算法得到广泛应用,常常需要手动设计特征并进行调参。在深度学习算法阶段,发展出了两条路线: anchor-based 方法和 anchor-free 方法,其中 anchor-based 方法又可以分为 one-stage 和 two-stage 两种。Anchor-free 方法的著名模型有 CornerNet (2018), CenterNet (2019) 等,one-stage 方法的著名模型有 YOLO (2016),SSD (2016) 等,two-stage 方法的著名模型有 RCNN (2014), FPN (2017) 等^[1]。最近,Meta AI 发布了 Segment Anything (2023) 模型,证明通用大模型在目标检测、图像分割任务中能够达到优异的性能^[2]。

2.2 图像分类

图像分类任务中,常见的流程一般是先编码图像特征,然后通过分类器进行分类。特征提取的经典方法有 SIFT (Scale-Invariant Feature Transform), HOG (Histogram of Oriented Gradient), LBP (Local Bianray Pattern) 等。传统的方法中,表现较好的分类器有支持向量机、随机森林、K-Nearest Neighbors 等算法。深度学习兴起以来,AlexNet (2012), VGG (2014), GoogLeNet (2014), ResNet (2015) 等模型取得了很好的表现,分类精度甚至可以超越人类。

第三章 算法原理

受限于数据和计算资源,本实验采用的算法不使用深度学习,而是充分利用人类认知中的图像特征,包括颜色、形状和纹理等等。

3.1 方法论

本算法的主要指导思想是将视觉和任务层次化,这是符合人类的认知逻辑的,有较好的可解释性,并且有利于调试和改进。这正是可信人工智能的一大目标。

3.1.1 多层次视觉

David Marr 将视觉信息处理分为三个层次:底层视觉、中层视觉和高层视觉^[3]。大致而言,底层视觉指对作为原始信号(像素的排列)的输入图像进行改造,转换为人类希望看到的自然图像,例如去噪、增强等;中层视觉指将图像转换为中等抽象的图像,例如分割、拟合等;高层视觉指将图像转换为高度抽象的语义,理解其内容,例如识别等。对于车牌号识别任务,视觉的层次化可以得到很好的体现:首先根据具体任务改造图像,如去噪、平滑、二值化,此为底层视觉;然后分割出车牌,进而分割出车牌上的字符,此为中层视觉;最后识别字符,此为高层视觉。

3.1.2 多层次任务

近年来随着深度学习的兴起,端到端的算法越来越流行,即,输入原始数据后,通过 算法处理后直接输出任务需要的结果,从外部来看没有明显的模块化。但更符合人类认知 逻辑的流程是,将整个任务分解为多层次的子任务,各个子任务相对独立、环环相扣。如 第一章所述,本算法采用后一种流程,将车牌号识别分解为车牌定位、视角矫正、字符分 割、字符识别四个子任务。同时,对每个子任务,也会从多个层次的视觉出发进行思考。

3.2 各子任务算法原理

3.2.1 车牌定位和字符分割

为了分割出车牌和其上的字符,本算法主要利用了目标的颜色与形状特征:

- (1) 颜色:考虑到车牌为蓝底白字或绿-白渐变底黑字,可以直接将相应的颜色提取出来,过滤掉其它的颜色,这样可以极大地排除干扰。进行颜色提取前,还需将原来的 RGB 颜色转化为 HSV 颜色。这是因为,相较于适应于人类识别的 RGB 颜色,HSV 颜色编码了色调、饱和度、明度,更适合计算机进行处理[4]。
- (2) 形状:形态学操作是一种针对几何结构的处理,适合处理二值图。本算法利用了两种基本形态学操作:腐蚀和膨胀。这两种操作使用一个结构元(常为小正方形),在其上选择一个锚点(常为几何中心),令锚点遍历图像中的像素,如果结构元与图像重叠的像素存在黑色(腐蚀)/白色(膨胀),则令锚点处的像素变黑(腐蚀)/白(膨胀)^[5]。腐蚀/膨胀的效果是令图像的黑色/白色部分扩张,可以用来去噪、平滑等。结合目标特征,就可以用这样的操作对图像施加理想的变换以便后续处理。

通过以上底层视觉的操作后,就可以得到增强目标特征而抑制非目标特征的二值化图像,然后从中层视觉的观点考虑就可以很容易地分割出目标。

具体地,对于车牌定位,首先通过中值滤波平滑图像,然后提取出蓝色、绿色、白色

并膨胀,车牌就会变为标准的四边形,其它物体则很难获得这样的形状,此时对每个轮廓拟合多边形,并找到最大的四边形即可。值得一提的是,完成底层视觉的操作后,为了拟合出四边形以分割出车牌,我尝试了 Canny 边缘检测、Hough 变换直线检测和 Harris 角点检测,但效果均不理想。这可能是因为图像中存在较多的非目标物体的轮廓,造成了较多的假阳错误。而直接对每个轮廓拟合多边形并筛选出四边形可以得到很好的结果。可见,关于形状的先验知识可以极大地帮助中层视觉的处理。

对于字符分割,首先仍使用中值滤波平滑图像,然后通过 OTSU 自适应阈值算法将图像二值化(此时若图像白色多于黑色,说明是绿-白渐变底黑字的车牌,需要进一步处理,可以将原图像的黑色部分提取出来;之所以不对蓝底白字车牌进行颜色提取的操作,是因为白色的字符容易脏污,不易提取)。二值化后,通过腐蚀去除噪点,再通过膨胀使每个字符连通为整体,计算出每个轮廓的外接矩形框,筛选出具有合适大小和宽高比的矩形框作为字符区域即可。最后,还可以通过中值滤波进一步去噪、平滑。此外,对于第一个字符以外的字符,考虑到它们均为字母或数字,是连通的整体,可以利用这一点进一步去噪:在图像中拟合外围轮廓,如果轮廓数量大于一,只保留所围面积最大的轮廓。

3.2.2 视角矫正

在小孔成像系统中,相机通过线性变换将空间中的 3D 物点转换为成像平面上的 2D 像点。形式地,将一个透视投影矩阵作用在物点的齐次坐标上,就可以得到对应的像点的 齐次坐标。投影矩阵取决于相机内参和姿态(即成像平面的位置)[6]。对于同一相机拍摄下的同一物体,视角(相机姿态)不同,投影矩阵就会不同,进而得到的图像就会不同。

在视角矫正任务中,我们希望对于同样的车牌,将视角转变为正面,即,使得成像平面平行于车牌平面。变换前后的差别在于,对于同样的物点,施加了不同的投影矩阵。因此该变换是一个线性变换,只需要施加一个矩阵即可。要计算出这个矩阵,需要有四组变换前后的对应点,而车牌的四个顶点恰好可以满足这个要求,这正是可以由此前的车牌定位任务得到的。

3.2.3 字符识别

- (1) 特征编码:本实验采用的特征编码方法为 HOG (Histogram of Oriented Gradients) 描述子。HOG 算法描述了图像各个局部的特征,其基本思路是,将图像划分为多个子块,对各个子块的梯度幅值和方向进行投票统计,形成基于梯度特性的直方图作为特征,然后将各子块的局部特征拼接起来作为总特征^[7]。由于是在各个子块中统计梯度,该算法提供了一定的位置不变性,并且可以很好地刻画边缘和角点的特征。
- (2) 分类算法:本实验采用的分类算法为 KNN (K-Nearest Neighbors) 算法。假设已有标注好的样本(高维向量),预测一个新的样本的标签时,考察距其最近的 K 个样本的标签,将它们的众数作为新样本标签的预测值^[8]。对于样本间距离的度量,本实验采用的是余弦相似度。

第四章 整体流程

本算法的整体流程如下,大多步骤可以直接调用 OpenCV 的函数完成。

4.1 车牌定位

- (1) 对图像进行中值滤波以平滑图像。
- (2) 提取出图像中的蓝色、绿色、白色部分,将其转换为白色,其余部分转换为黑色。
- (3) 对图像进行膨胀操作使得各对象更加平滑、连通。
- (4) 找出图像中的所有外围轮廓。
- (5) 对所有轮廓拟合多边形,筛选出最大的四边形。
- (6) 用最小的四边平行于图像边框的矩形将筛选出的四边形框住,作为车牌区域返回, 同时返回该四边形的四个顶点。

4.2 视角矫正

- (1) 将源点设为车牌定位任务返回的四边形的四个顶点,对应的目标点设为图像边框的四个顶点,由此计算相应的透视变换矩阵。
- (2) 将计算出的变换矩阵作用在车牌图像上,返回得到的矫正后的图像。

4.3 字符分割

- (1) 对图像进行中值滤波以平滑图像。
- (2) 通过 OTSU 自适应阈值算法将图像二值化,若白色多于黑色,则将原图像的黑色部分变为白色,其余部分变为黑色。
- (3) 对图像进行腐蚀以去除噪点。
- (4) 对图像进行膨胀以使各对象连通。
- (5) 找出图像中的所有外围轮廓。
- (6) 计算出每个轮廓的外接矩形框,筛选出具有合适大小和宽高比的矩形框作为字符区域。
- (7) 对每个字符图像,进行中值滤波以去噪、平滑。
- (8) 对于左起第一个字符以外的字符,拟合外围轮廓,若轮廓数量大于一,则去除轮廓 所围面积不是最大的对象。
- (9) 对每个字符图像去除四边的黑色边界,将结果返回。

4.4 字符识别

- (1) 加载有标签的训练数据(标签为:中国大陆 31 个省级行政区的汉字简称,除 I 和 O 的 24 个大写英文字母,阿拉伯数字 0-9;每个标签含有 7 张图像),对每个样本计算其 HOG 描述子(计算 HOG 描述子前,首先将图像大小调整至一固定值,然后在其四周添加固定大小的黑色边界,这是因为图像中的字符紧贴边缘,填充黑色边界可以更充分地利用字符边缘的信息,下面计算待预测字符的描述子时同样需要这一操作)。
- (2) 对于一个需要预测标签的字符图像, 计算其 HOG 描述子。
- (3) 通过 KNN 算法进行预测,将结果返回。

第五章 实验过程和结果

5.1 实验测试

下面以测试数据中的 3-3.jpg 图像为例,参照前一章叙述的流程展示本算法识别车牌号的过程。

- 5.1.1 车牌定位
- (1) 图 1 展示了原图像和中值滤波后的图像,可见中值滤波操作有效地平滑了图像, 使车牌作为蓝色平行四边形的特征更鲜明。

(a) 原图像

(b) 中值滤波后的图像

图 1 平滑前后的图像

(2) 图 2 展示了提取蓝色、绿色、白色并二值化后的图像,可见大部分无关元素被排除了。

图 2 提取部分颜色并二值化后的图像

(3) 图 3 展示了膨胀操作后的图像,可见各个对象变得更加平滑、连通,尤其是车牌的平行四边形形状更为标准,易于识别。

图 3 膨胀操作后的图像

(4) 图 4 展示了原图像上画出的识别到的轮廓。

图 4 识别到的轮廓

(5) 图 5 展示了对找到的轮廓拟合多边形的结果,可见车牌对应最大的四边形。

图 5 对轮廓拟合多边形的结果

(6) 图 6 展示了分割出的车牌区域及车牌边缘,这是车牌定位的结果。

图 6 车牌定位的结果

5.1.2 视角矫正

图 7 展示了将车牌图像矫正为正视图的结果。

图 7 将车牌图像矫正为正视图的结果

- 5.1.3 字符分割
- (1) 图 8 展示了二值化后的车牌图像。

图 8 二值化后的车牌图像

(2) 图 9 展示了腐蚀、膨胀后的图像,可见腐蚀操作去除了部分噪点,膨胀使得各个字符连通为整体。

(a) 腐蚀后的图像

(b) 膨胀后的图像

图 9 形态学操作后的图像

(3) 图 10 展示了图像中各轮廓的外接矩形框,可见各字符均被完全框住,但还有一些 冗余元素需要去除。

图 10 各轮廓的外接矩形框

(4) 图 11 展示了筛选出的各字符图像。

(5) 图 12 展示了进一步处理后的各字符(包括中值滤波,从左起第二个字符开始去除面积较小元素,去除黑色边界)。与图 11 对比可见,处理后的字符更平滑,且部分冗余元素被去除,如两图中的子图 (f)、(g) 所示。这是字符分割的结果。

5.1.4 字符识别

计算出标注好的训练数据与待识别字符的 HOG 描述子,使用 KNN 算法进行分类,得到识别结果"皖 SJ6M07",正确。图 13 展示了通过 t-SNE 算法将训练数据和待识别字符描述子降至 2 维后的结果,其中彩色标记对应训练数据,黑色标记对应待识别字符,其旁边的文字为真实值(同时也是识别结果),可见相同的字符呈现出明显的聚集现象,这说明 HOG 描述子确实可以有效捕捉到图像特征以供 KNN 算法正确分类。

5.2 结果与分析

5.2.1 实验结果

在提供的 9 张图像 (车牌号真实值如表 1 所示)上进行测试,识别结果如表 2 所示,可见只有图像 3-1.jpg 中的"沪"被错误识别成了"浙",其余识别结果均正确。

	-PC2 0/3	W.W. # 1 /11 4 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1			
难度	图像 1	图像 2	图像 3		
easy	沪 E • WM957	沪 A·F02976	鲁 N•BK268		
medium	沪 E • WM957	豫 B•20E68	沪 A • 93S20		
difficult	沪 E • WM957	沪 A • DE6598	皖 S•J6M07		

表1 测试数据车牌号真实值

表2	识别结果	
	** ***********************************	

难度	图像 1	图像 2	图像 3
easy	沪 E • WM957	沪 A·F02976	鲁 N•BK268
medium	沪 E • WM957	豫 B•20E68	沪A•93S20
difficult	浙 E•WM957	沪 A • DE6598	皖 S•J6M07

×	0	×	7	+	Е	+	M	+	U	A	京	A	晋	A	湘	A	蒙	A	鄂
×	1	×	8	+	F	+	N	+	٧	A	冀	A	桂	A	琼	A	藏	A	闽
×	2	×	9	+	G	+	Р	+	W	A	吉	A	沪	A	甘	A	豫	A	陕
×	3	+	Α	+	Н	+	Q	+	Χ	A	宁	A	津	A	皖	A	贵	A	青
×	4	+	В	+	J	+	R	+	Υ	A	Ш	A	浙	A	粤	A	赣	A	鲁
×	5	+	С	+	K	+	S	+	Z			A							黑
×	6	+	D	+	L	+	Т	A	云		-371		1113		21.	_	~		,,,,,

图 13 经 t-SNE 算法降维后的训练数据及测试数据的 HOG 描述子

5.2.2 评价指标

从应用的角度来看,对于算法最直接的评价指标是识别车牌号的准确率,即正确识别的车牌号数量与车牌号总数之比。在提供的 9 张图像上,本算法的准确率为 8/9 ≈ 88.9%。

然而,算法是在字符级别上进行识别的,因此,车牌号的评价粒度过大,在字符级别的评价能更精细地衡量算法性能。考虑到算法未必能准确分割出所有的字符,其识别出的字符数量不一定正确,因此不能直接计算识别字符的准确率,只能比较两个序列(车牌号真实值与识别结果)。

为了衡量两个序列的相似度,我们将序列转换为允许包含重复元素的集合,然后考察集合的相似度。一个常用的集合相似度指标是 Jaccard 相似度,它是交集的势与并集的势之比^[9]。而对于允许包含重复元素的集合,我们将其表示为键值对的集合,其中键为原集合的元素,值为该键在原集合中出现的次数,各个键值对的键互不相同。两个这样的集合的交集定义为,其键是两个集合的键的交集,对应的值是该键在两个集合中的值的最小值;并集定义为,其键是两个集合的键的并集,对应的值是该键在两个集合中的值的最大值(如果集合不包含某键,则称该键在该集合中的值为 0)。集合的势定义为所有键值对的值的和。

至于如何将序列转换为集合,最简单的方法是转换为包含序列中所有字符的集合。但

这样会丢失序列中字符顺序的信息。另一种方法是,对于某正整数 n,将序列转换为序列中所有 n-gram 的集合,其中 n-gram 指序列中连续的 n 个字符形成的整体(n=1 时即为字符)。由于车牌号长度较短,令 n 取 1、2 即可。

表 3、表 4 分别展示了 n 取 1、2 时,在提供的每张测试图像上,由两个序列(车牌号真实值与识别结果)转换成的 n-gram 的集合的 Jaccard 相似度,其平均值分别约为 0.972、0.968。

表 3	字符集合的	Jaccard	相似度

	*** * ***		~
难度	图像 1	图像 2	图像 3
easy	1	1	1
medium	1	1	1
difficult	0.75	1	1

表 4 2-gram 集合的 Jaccard 相似度

	*		
难度	图像 1	图像 2	图像 3
easy	1	1	1
medium	1	1	1
difficult	0.714	1	1

5.2.3 讨论

从以上评价指标来看,本算法达到了令人满意的性能。这得益于算法设计过程中,在 多层次视觉、多层次任务思想的指导下,我们能够充分利用图像在颜色、形态、纹理等方 面的特征,排除干扰、筛选目标,出现问题时,能够精准定位到问题所属的视觉和任务层 次,采取针对性措施解决问题,最终达到理想效果。

在提供的 9 张测试图像上,唯一的错误出现在 3-1.jpg 中的"沪"字的识别上。图 14 展示了对 3-1.jpg 进行车牌定位的结果,图 15 展示了字符分割后左起第一个字符的图像。可见,识别错误的主要原因很可能是图像左边存在来自车牌边缘的白边。想要避免这样的错误,可以改进车牌定位算法,使得定位区域能够进一步缩小范围,避开车牌边缘,也可以改进字符分割算法,使得算法能够对噪点有更强的鲁棒性。

图 14 车牌定位的结果

图 15 字符分割后左起第一个字符的图像

参考文献

- [1] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, Jieping Ye. Object Detection in 20 Years: A Survey[J/OL]. CoRR abs/1905.05055, 2019.
- [2] Alexander Kirillov, Eric Mintun et al. Segment Anything[J/OL]. arXiv: 2304.02643, 2023.
- [3] David Marr. Vision[M]. Massachusetts: MIT Press, 2010.
- [4] Wikimedia Foundation Inc. HSL and HSV[OL]. 2023-4-11[2023-5-4]. https://en.wikipedia.org/wiki/HSL and HSV.
- [5] Wikimedia Foundation Inc. Mathematical morphology[OL]. 2023-3-20[2023-5-4]. https://en.wikipedia.org/wiki/Mathematical_morphology.
- [6] Andrea Fusiello, Emanuele Trucco, Alessandro Verri. A compact algorithm for rectification of stereo pairs[J]. *Machine Vision and Applications*, 12(1):16–22, 2000-7.
- [7] Wikimedia Foundation Inc. Histogram of oriented gradients[OL]. 2023-1-28[2023-5-4]. https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients.
- [8] Wikimedia Foundation Inc. k-nearest neighbors[OL]. 2023-4-29[2023-5-4]. https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm.
- [9] Wikimedia Foundation Inc. Jaccard index[OL]. 2023-3-12[2023-5-4]. https://en.wikipedia.org/wiki/Jaccard_index.

谢辞

感谢赵老师的授课,在计算机视觉领域的哲学、架构、方法等多个层次给予了我深刻的教诲与启发,让我对计算机视觉乃至人工智能有了更深入的理解。感谢助教的辛勤付出和耐心答疑。