Lecture Note on Terwilliger Algebra

P. Terwilliger, edited by H. Suzuki

2022-11-18

Contents

About this lecturenote		5
	Setting	5
	Another Host	6
1	Subconstituent Algebra of a Graph	7
2	Perron-Frobenius Theorem	13
3	Cayley Graphs	19
4	Examples	25
5	T-Modules of $H(D,2)$, I	31
6	T-Modules of $H(D,2)$, II	37

4 CONTENTS

About this lecturenote

Setting

sudo This note is created by bookdown package on RStudio.

For bookdown See (Xie, 2015), (Xie, 2017), (Yihui Xie, 2018).

- 1. Log-in to my GitHub Account
- 2. Go to RStudio/bookdown-demo repository: https://github.com/rstudio/bookdown-demo
- 3. Use This Template
- 4. Input Repository Name
- 5. Select Public default
- 6. Create repository from template
- 7. From Code download ZIP
- 8. Move the extracted folder into a favorite directory
- 9. Open RStudio Project in the folder
- 10. Use Terminal in the buttom left pane
 - confirm that the current directory is the home directry of the project by pwd
- 11. (failed to proceed by ssh)
- 12. Use Console
 - 1. library(usethis)
 - 2. use_git()
 - 3. use_github() Error
 - 4. gh_token_help()
 - 5. create_github_token(): create a token in the github page. Copy the token
 - 6. gitcreds::gitcreds_set(): paste the token, the token is to be expired in 30 days
- 13. Use Terminal
 - 1. git remote add origin https://github.com/icu-hsuzuki/t-alagebra.git
 - $2.\,$ git push -u origin main
 - 3. type in the password of the computer
- 14. Use GIT in R Studio

6 CONTENTS

Another Host

- 1. create a project by version control git
- 2. git init
- 3. git remote add origin git@github.com:/.git
- 4. git branch -r
- 5. git fetch
- 6. git pull origin main

Chapter 1

Subconstituent Algebra of a Graph

Wednesday, January 20, 1993

A graph (undirected, without loops or multiple edges) is a pair $\Gamma=(X,E),$ where

$$X = \text{finite set (of vertices)}$$
 (1.1)

$$E = \text{set of (distinct) 2-element subsets of } X \ (= \text{edges of }) \ \Gamma.$$
 (1.2)

vertices x and $y \in X$ are adjacent if and only if $xy \in E$.

Example 1.1. Let Γ be a graph. $X = \{a, b, c, d\}, E = \{ab, ac, bc, bd\}.$

Set n = |X|, the order of Γ .

Pick a field K (= \mathbb{R} or \mathbb{C}). Then $\mathrm{Mat}_X(K)$ denotes the K algebra of all $n \times n$ matrices with entries in K. (rows and columns are indexed by X)

 $Adjacency\ matrix\ A\in {\rm Mat}_X(K)$ is defined by

$$A_{xy} = \begin{cases} 1 & \text{if } xy \in E \\ 0 & \text{else} \end{cases}$$
 (1.3)

Example 1.2. Let a, b, c, d be labels of rows and columns. Then

$$A = b \begin{pmatrix} a & b & c & d \\ a & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ c & 1 & 1 & 0 & 0 \\ d & 0 & 1 & 0 & 0 \end{pmatrix}$$

The subalgebra M of $\mathrm{Mat}_X(K)$ generated by A is called the Bose-Mesner algebra of $\Gamma.$

Set $V = K^n$, the set of *n*-dimensional column vectors, the coordinates are indexed by X.

Let $\langle \ , \ \rangle$ denote the Hermitean inner product:

$$\langle u, v \rangle = u^{\top} \cdot v \quad (u, v \in V)$$

V with \langle , \rangle is the standard module of Γ .

M acts on V: For every $x \in X$, write

$$\hat{x} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

where 1 is at the x position.

Then

$$A\hat{x} = \sum_{y \in X, xy \in E} \hat{y}.$$

Since A is a real symmetrix matrix,

$$V = V_0 + V_1 + \dots + V_r \quad \text{ some } r \in \mathbb{Z}^{\geq 0},$$

the orthogonal direct sum of maximal A-eigenspaces.

Let $E_i \in \operatorname{Mat}_X(K)$ denote the orthogonal projection,

$$E_i: V \longrightarrow V_i$$
.

Then E_0, \ldots, E_r are the primitive idempotents of M.

$$M = \operatorname{Span}_K(E_0, \dots, E_r),$$

$$E_i E_j = \delta_{ij} E_i$$
 for all $i, j, E_0 + \dots + E_r = I$.

Let θ_i denote the eigenvalue of A for V_i in \mathbb{R} . Without loss of generality we may assume that

$$\theta_0 > \theta_1 > \dots > \theta_r$$
.

Let

 $m_i = \text{the multiplicity of } \theta_i = \text{dim} V_i = \text{rank} E_i.$

Set

$$\operatorname{Spec}(\Gamma) = \begin{pmatrix} \theta_0, & \theta_1, & \cdots, & \theta_r \\ m_0, & m_1, & \cdots, & m_r \end{pmatrix}.$$

Problem. What can we say about Γ when Spec(Γ) is given?

The following Lemma 1.1, is an example of Problem.

For every $x \in X$,

$$k(x) \equiv \text{ valency of } x \equiv \text{ degree of } x \equiv |\{y \mid y \in X, xy \in E\}|.$$

Definition 1.1. The graph Γ is regular of valency k if k = k(x) for every $x \in X$.

Lemma 1.1. With the above notation,

- $\begin{array}{l} (i) \ \theta_0 \leq \max\{k(x) \mid x \in X\} = k^{\max}. \\ (ii) \ \textit{If} \ \Gamma \ \textit{is regular of valency} \ k, \ then \ \theta_0 = k. \end{array}$

Proof.

(i) Without loss of generality we may assume that $\theta_0 > 0$, else done. Let $v := \sum_{x \in X} \alpha_x \hat{x}$ denote the eivenvector for $\theta_0.$

Pick $x \in X$ with $|\alpha_x|$ maximal. Then $|\alpha_x| \neq 0$.

Since $Av = \theta_0 v$,

$$\theta_0 \alpha_x = \sum_{y \in X, xy \in E} \alpha_y.$$

So,

$$\theta_0|\alpha_x| = |\theta_0\alpha_x| \leq \sum_{y \in X, xy \in E} |\alpha_y| \leq k(x)|\alpha_x| \leq k^{\max}|\alpha_x|.$$

(ii) All 1's vector $v = \sum_{x \in X} \hat{x}$ satisfies Av = kv.

Subconstituent Algebra

Let $x, y \in X$ and $\ell \in \mathbb{Z}^{\geq 0}$.

Definition 1.2. A path of length ℓ connecting x, y is a sequence

$$x=x_0,x_1,\dots,x_\ell=y,\quad x_i\in X,\ 0\leq i\leq \ell$$

such that $x_i x_{i+1} \in E$ for $0 \le i \le \ell - 1$.

Definition 1.3. The distance $\partial(x,y)$ is the length of a shortest path connecting x and y.

$$\partial(x,y) \in \mathbb{Z}^{\geq 0} \cup \{\infty\}.$$

Definition 1.4. The graph Γ is connected if and only if $\partial(x,y) < \infty$ for all $x,y \in X$.

From now on, assume that Γ is connected with $|X| \geq 2$.

Set

$$d_{\Gamma} = d = \max\{\partial(x,y) \mid x,y \in X\} \equiv \text{the diameter of } \Gamma.$$

Fix a 'base' vertex $x \in X$.

Definition 1.5.

$$d(x) =$$
the diameter with respect to $x = \max\{\partial(x,y) \mid y \in X\} \le d$.

Observe that

$$V = V_0^* + V_1^* + \dots + V_{d(x)}^* \quad \text{(orthogonal direct sum)},$$

where

$$V_i^* = \operatorname{Span}_K(\hat{y} \mid \partial(x, y) = i) \equiv V_i * (x)$$

and $V_i^* = V_i^*(x)$ is called the *i*-the subconstituent with respect to x.

Let $E_i^* = E_i^*(x)$ denote the orthogonal projection

$$E_i^*: V \longrightarrow V_i^*(x).$$

View $E_i^*(x) \in \operatorname{Mat}_X(K)$. So, $E_i^*(x)$ is diagonal with yy entry

$$(E_i^*(x))_{yy} = \begin{cases} 1 & \text{if } \partial(x,y) = i \\ 0 & \text{else,} \end{cases} \quad \text{ for } y \in X.$$

Set

$$M^*=M^*(x)\equiv \operatorname{Span}_K(E_0^*(x),\dots,E_{d(x)}^*(x)).$$

Then $M^*(x)$ is a commutative subalgebra of $\mathrm{Mat}_X(K)$ and is calle the dual Bose-Mesner algebra with respect to x.

Definition 1.6 (Subconstituent Algebra). Let $\Gamma = (X, E), x, M, M^*(x)$ be as above. Let T = T(x) denote the subalgebra of $\operatorname{Mat}_X(K)$ generated by M and $M^*(x)$. T is the *subconstituent algebra* of Γ with respect to x.

Definition 1.7. A T-module is any subspace $W \subset V$ such that $aw \in W$ for all $a \in T$ and $w \in W$.

T-module W is *irreducible* if and only if $W \neq 0$ and W does not properly contain a nonzero T-module.

For any $a \in \operatorname{Mat}_X(K)$, let a^* denbote the conjugate transpose of a.

Observe that

$$\langle au, v \rangle = \langle u, a^*v \rangle$$
 for all $a \in \operatorname{Mat}_X(K)$, and for all $u, v \in V$.

Lemma 1.2. Let $\Gamma = (X, E)$, $x \in X$ and $T \equiv T(x)$ be as above.

- (i) If $a \in T$, then $a^* \in T$.
- (ii) For any T-module $W \subset V$,

$$W^{\perp} := \{ v \in V \mid \langle w, v \rangle = 0, \text{ for all } w \in W \}$$

 $is\ a\ T$ -module.

(iii) V decomposes as an orthogonal direct sum of irreducible T-modules.

Proof.

(i) It is becase T is generated by symmetric real matrices

$$A, E_0^*(x), E_1^*(x), \dots, E_{d(x)(x)}^*.$$

(ii) Pick $v \in W^{\perp}$ and $a \in T$, it suffices to show that $av \in W^{\perp}$. For all $w \in W$,

$$\langle w, av \rangle = \langle a^*w, v \rangle = 0$$

as $a^* \in T$.

(iii) This is proved by the induction on the dimension of T-modules. If W is an irreducible T-module of V, then

$$V = W + W^{\perp}$$
 (orthogonal direct sum).

Problem. What does the structure of the T(x)-module tell us about Γ ?

Study those Γ whose modules take 'simple' form. The Γ 's involved are highly regular.

Remark.

- 1. The subconstituent algebra T is semisimple as the left regular representation of T is completely reducible. See Curtis-Reiner 25.2 (Charles W. Curtis, 2006).
- 2. The inner product $\langle a, b \rangle_T = \operatorname{tr}(a^{\top} \bar{b})$ is nondegenerate on T.

- 3. In general,
 - $T \colon \text{Semisimple}$ and Artinian $\Leftrightarrow T \colon \text{Artinian with } J(T) = 0$
 - $\Leftarrow T :$ Artinian with nonzero nilpotent element
 - $\Leftarrow T \subset \operatorname{Mat}_X(K) \text{ such that for all } a \in T \text{ is normal.}$

Chapter 2

Perron-Frobenius Theorem

Friday, January 22, 1993

In this lecture we use the Perron Frobenius theory of nonnegative matrices to obtain information on eigenvalues of a graph.

Let $K = \mathbb{R}$. For $n \in \mathbb{Z}^{>0}$, pick a symmetrix matrix $C \in \text{Mat}_n(\mathbb{R})$.

Definition 2.1. The matrix C is reducible if and only if there is a bipartition $\{1, 2, ..., n\} = X^+ \cup X^-$ (disjoint union of nonempty sets) such that $C_{ij} = 0$ for all $i \in X^+$, and for all $j \in X^-$, and for all $j \in X^+$, i.e.,

$$C \sim \begin{pmatrix} * & O \\ O & * \end{pmatrix}$$
.

Definition 2.2. The matrix C is bipartite if and only if there is a bipartition $\{1, 2, ..., n\} = X^+ \cup X^-$ (disjoint union of nonempty sets) such that $C_{ij} = 0$ for all $i, j \in X^+$, and for all $i, j \in X^-$, i.e.,

$$C \sim \begin{pmatrix} O & * \\ * & O \end{pmatrix}$$
.

Note.

1. If C is bipatite, for every eigenvalue θ of C, $-\theta$ is an eigenvalue of C such that $\operatorname{mult}(\theta) = \operatorname{mult}(-\theta)$.

Indeed, let $C = \begin{pmatrix} O & A \\ B & O \end{pmatrix}$,

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \theta \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{pmatrix} O & A \\ B & O \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = -\theta \begin{pmatrix} x \\ -y \end{pmatrix},$$

where $Ay = \theta x$ and $Bx = \theta y$.

- 2. If C is bipartite, C^2 is reducible.
- 3. The matrix C is irreducible and C^2 is reducible, if $C_{ij} \geq 0$ for all i, j and C is reducible. (Exercise)

Remark. Note 1. Even if C is not symmetric

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \theta \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{pmatrix} O & A \\ B & O \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = -\theta \begin{pmatrix} x \\ -y \end{pmatrix}$$

holds. So the geometrix multiplicities coincide. How about the algebraic multiplicities?

Note 3. Set $x \sim y$ if and only if $C_{xy} > 0$. So the graph may have loops. Then

$$(C^2)_{xy} > 0 \Leftrightarrow \text{ if there exists } z \in X \text{ such that } x \sim z \sim y.$$

Note that C is irreducible if and only if $\Gamma(C)$ is connected. Let

$$X^{+} = \{ y \mid \text{there is a path of even length from } x \text{ to } y \}$$
 (2.1)

$$X^{-} = \{y \mid \text{there is no path of even length from } x \text{ to } y\} \neq \emptyset.$$
 (2.2)

If there is an edge $y \sim z$ in X^+ and $w \in X^-$. Then there would be a path from x to y of even length. So $e(X^+, X^+) = e(X^-, X^-) = 0$..

Theorem 2.1 (Perron-Frobenius). Given a matrix C in $Mat_n(\mathbb{R})$ such that

- (a) C is symmetric.
- (b) C is irreducible.
- (c) $C_{ij} \geq 0$ for all i, j.

Let θ_0 be the maximal eigenvalue of C with eigenspace $V_0 \subseteq \mathbb{R}^n$, and let θ_r be the maximal eigenvalue of C with eigenspace $V_r \subseteq \mathbb{R}^n$. Then the following hold.

$$(i) \ \textit{Suppose} \ 0 \neq v = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \in V_0. \ \textit{Then} \ \alpha_0 > 0 \ \textit{for all} \ i, \ \textit{or} \ \alpha_i < 0 \ \textit{for all} \ i.$$

- $(ii) \dim V_0 = 1.$
- (iii) $\theta_r \geq -\theta_0$.
- (iv) $\theta_r = \theta_0$ if and only if C is bipartite.

First, we prove the following lemma.

Lemma 2.1. Let $\langle \ , \ \rangle$ be the dot product in $V = \mathbb{R}^n$. Pick a symmetric matrix $B \in \operatorname{Mat}_n(\mathbb{R})$. Suppose all eigenvalues of B are nonnegative. (i.e., B is positive semidefinite.) Then there exist vectors $v_1, v_2, \ldots, v_n \in V$ such that $B_{ij} = \langle v_i, v_j \rangle$ for $(1 \le i, j \le n)$.

Proof. By elementary linear algebra, there exists an orthonormal basis w_1, w_2, \ldots, w_n of V consisting of eigenvectors of B. Set the i-th column of P is w_i and $D = \operatorname{diag}(\theta_1, \ldots, \theta_n)$. Then $P^\top P = I$ and BP = PD.

Hence,

$$B = PDP^{-1} = PDP^{\top} = QQ^{\top},$$

where

$$Q = P \cdot \mathrm{diag}(\sqrt{\theta_1}, \sqrt{\theta_2}, \dots, \sqrt{\theta_n}) \in \mathrm{Mat}_n(\mathbb{R}).$$

Now, let v_i be the i-th column of $Q^\top.$ Then

$$B_{ij} = v_i^\top \cdot v_j^- = \langle v_i, v_j \rangle.$$

Now we start the proof of Theorem 2.1.

Proof of Theorem 2.1(i)

Let \langle , \rangle denote the dot product on $V = \mathbb{R}^n$. Set

$$B = \theta I - C \tag{2.3}$$

= symmetric matrix with eigenvalues
$$\theta_0 - \theta_i \ge 0$$
 (2.4)

$$= (\langle v_i, v_j \rangle)_{1 \le i, j \le n} \tag{2.5}$$

with the same $v_1, \dots, v_n \in V$ by Lemma 2.1.

Observe: $\sum_{i=1}^{n} \alpha_i v_i = 0$.

Pf.

$$\|\sum_{i=1}^{n} \alpha_i v_i\|^2 = \langle \sum_{i=1}^{n} \alpha_i v_i, \sum_{i=1}^{n} \alpha_i v_i \rangle$$

$$(2.6)$$

$$= \begin{pmatrix} \alpha_1 & \dots & \alpha_n \end{pmatrix} B \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \tag{2.7}$$

$$= v^{\top} B v \tag{2.8}$$

$$=0, (2.9)$$

since $Bv = (\theta_0 I - C)v = 0$.

Now set

s =the number of indicesi, where $\alpha_i > 0$.

Replacing v by -v if necessary, without loss of generality we may assume that $s \ge 1$. We want to show s = n.

Assume s < n. Without loss of generality, we may assume that $\alpha_i > 0$ for $1 \le s \le s$ and $\alpha_i = 0$ for $s+1 \le i \le n$. Set

$$\rho = \alpha_1 v_1 + \dots + \alpha_s v_s = -\alpha_{s+1} v_{s+1} - \dots - \alpha_n v_n.$$

Then, for $i = 1, \dots, s$,

$$\langle v_i, \rho \rangle = \sum_{j=s+1}^n -\alpha_j \langle v_i, v_j \rangle \quad (\langle v_i, v_j \rangle = B_{ij}, B = \theta_0 I - C) \eqno(2.10)$$

$$= \sum_{j=s+1}^{n} (-\alpha_{ij})(-C_{ij}) \tag{2.11}$$

$$\leq 0. \tag{2.12}$$

Hence

$$0 \leq \langle \rho, \rho \rangle = \sum_{i=1}^{s} \alpha_i \langle v_i, \rho \rangle \leq 0,$$

as $\alpha>0$ and $\langle v_i,\rho\rangle\leq 0$. Thus, we have $\langle ,\rho,\rho\rangle=0$ and $\rho=0$. For $j=s+1,\dots,n,$

$$0 = \langle \rho, v_j \rangle = \sum_{i=1}^s \alpha_i \langle v_i, v_j \rangle \le 0,$$

as $\langle v_i, v_j \rangle = -C_{ij}$.

Therefore,

$$0 = \langle v_i, v_j \rangle = -C_{ij} \text{ for } 1 \leq i, \leq s, \; s+1 \leq j \leq n.$$

Since C is symmetric,

$$C = \begin{pmatrix} * & O \\ O & * \end{pmatrix}$$

Thus C is reducible, which is not the case. Hence s=n.

Proof of Theorem 2.1 (ii).

Suppose dim $V_0 \ge 2$. Then,

$$\dim \left(V_0 \cap \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{\perp} \right) \geq 1.$$

So, there is a vector

$$0 \neq v = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in V_0$$

with $\alpha_1 = 0$. This contradicts 1.

Now pick

$$0 \neq w = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \in V_r.$$

Proof of Theorem 2.1 (iii).

Suppose $\theta_r < -\theta_0$. Since the eigenvalues of C^2 are the squares of those of C, θ_r^2 is the maximal eigenvalue of C^2 .

Also we have $C^2w = \theta_r^2w$.

Observe that C^2 is irreducible. (As otherwise, C is bipartite by Note 3, and we must have $\theta_r=-\theta_0$.) Therefore, $\beta_i>0$ for all i or $\beta_i<0$ for all i. We have

$$\langle v, w \rangle = \sum_{i=1}^{n} \alpha_i \beta_i \neq 0.$$

This is a contradiction, as $V_0 \perp V_r$.

Proof of Theorem 2.1 (iv)

 \Rightarrow : Let $\theta_r = -\theta_0$. Then $\theta = \theta_1^2 = \theta_0^2$ is the maximal eigenvalue of C^2 , and v and w are linearly independent eigenvalues for θ for C^2 . Hence, for C^2 , mult $(\theta) \geq 2$.

Thus by 2, C^2 must be reducible. Therefore, C is bipartite by Note 3.

 \Leftarrow : This is Note 1. \square

Let $\Gamma = (X, E)$ be any graph.

Definition 2.3. Γ is said to be *bipartite* if the adjacency matrix A is bipartite. That is, X can be written as a disjoint union of X^+ and X^- such that X^+ , X^- contain no edges of Γ .

Corollary 2.1. For any (connected) graph Γ with

$$\operatorname{Spec}(\Gamma) = \begin{pmatrix} \theta_0 & \theta_1 & \cdots & \theta_r \\ m_1 & m_1 & \cdots & m_r \end{pmatrix} \ \ \text{with} \ \ \theta_0 > \theta_1 > \cdots > \theta_r.$$

Let V_i be the eigenspace of θ_i . Then the following holds.

- 1. Supppose $0 \neq v = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in V_0 \in \mathbb{R}^n$. Then $\alpha_i > 0$ for all i or $\alpha_i < 0$ for all i
- 2. $m_0 = 1$.
- 3. $\theta_r \geq -\theta_0$ if and only if Γ is bipartite. In this case,

$$-\theta_i = \theta_{r-i} \ and \ m_i = m_{r-i} \quad (0 \leq i \leq r)$$

Proof. This is a direct consequences of Theorem 2.1 and Note 3. \Box

Chapter 3

Cayley Graphs

Monday, January 25, 1993

Given graphs $\Gamma = (X, E)$ and $\Gamma' = (X', E')$.

Definition 3.1. A map $\sigma: X \to X'$ is an $isomorphism \setminus index\{isomorphism of graphs whenever;$

- i. σ is one-to-one and onto,
- ii. $xy \in E$ if and only if $\sigma x \sigma y \in E'$ for all $x, y \in X$.

We do not distinguish between isomorphic graphs.

Definition 3.2. Suppose $\Gamma = \Gamma'$. Above isomorphism σ is called an *automorphism* of Γ . Then set $\operatorname{Aut}(\Gamma)$ of all automorphisms of Γ becomes a finite group under composition.

Definition 3.3. If $Aut(\Gamma)$ acts transitive on X, Γ is called *vertex transitive*.

Example 3.1. A Cayley graphs:

Definition 3.4 (Cayley Graphs). Let G be any finite group, and Δ any generating set for G such that $1_G \notin \Delta$ and $g \in \Delta \to g^{-1} \in \Delta$. Then Cayley graph $\Gamma = \Gamma(G, \Delta)$ is defined on the vetex set X = G with the edge set E define by the following.

$$E = \{(h_1, h_2) \mid h_1, h_2 \in G, h_1^{-1}h_2 \in \Delta\} = \{(h, hg) \mid h \in G, g \in \Delta\}$$

Example 3.2. $G = \langle a \mid a^6 = 1 \rangle, \ \Delta = \{a, a^{-1}\}.$

Example 3.3. $G = \langle a \mid a^6 = 1 \rangle, \Delta = \{a, a^{-1}, a^2, a^{-2}\}.$

Example 3.4. $G = \langle a, b \mid a^6 = 1, b^2, ab = ba \rangle, \ \Delta = \{a, a^{-1}, b\}.$

Remark. $\operatorname{Aut}(\Gamma) \simeq D_6 \times \mathbb{Z}_2$ contains two regular subgroups isomorphic to D_6 and $\mathbb{Z}_5 \times \mathbb{Z}_2$ and Γ is obtained as Cayley graphs in two ways.

Cayley graphs are vertex transitive, indeed.

Theorem 3.1. The following hold.

(i) For any Cayley graph $\Gamma = \Gamma(G, \Delta)$, the map

$$G \to \operatorname{Aut}(\Gamma) \ (g \mapsto \hat{g})$$

is an injective homomorphism of groups, where

$$\hat{g}(x) = gx$$
 for all $g \in G$ and for all $x \in X(=G)$.

Also, the image \hat{G} is regular on X. i.e., the image \hat{G} acts transitively on X with trivial vertex stabilizers.

(ii) For any graph $\Gamma = (X, E)$, suppose there exists a subgroup $G \subseteq \operatorname{Aut}(\Gamma)$ that is regular on X. Pick $x \in X$, and let

$$\Delta = \{ g \in G \mid \langle x, g(x) \in E \}.$$

Then $1 \notin \Delta$, $g \in \Delta \to g^{-1} \in \Delta$, and Δ generates G. Moreover, $\Gamma \simeq \Gamma(G, \Delta)$.

Proof. (i) Let $g \in G$. We want to show that $\hat{g} \in \operatorname{Aut}(\Gamma)$. Let $h_1, h_2 \in X = G$. Then,

$$(h_1, h_2) \in E \to h_1^{-1} h_2 \in \Delta \tag{3.1}$$

$$\to (gh_1)^{-1}(gh_2) \in \Delta \tag{3.2}$$

$$\rightarrow (gh_1,gh_2) \in E \tag{3.3}$$

$$\to (\hat{g}(h_1), \hat{g}(h_2)) \in E. \tag{3.4}$$

Hence, $\hat{g} \in \text{Aut}(\Gamma)$.

Observe: $g \mapsto \hat{g}$ is a homomorphism of groups:

$$\hat{1}_G = 1$$
, $\widehat{g_1g_2} = \widehat{g_1}\widehat{g_2}$.

Observe: $g \mapsto \hat{g}$ is one-to-one:

$$\widehat{g_1} = \widehat{g_2} \rightarrow g_1 = \widehat{g_1}(1_G) = \widehat{g_2}(1_G) = g_2.$$

Observe: \hat{G} is regular on X: Clear by construction.

(ii) $1_G \notin \Delta$: Since Γ has not loops, $(x, 1_G x) \notin E$.

 $g \in \Delta \to g^{-1} \in \Delta$:

$$a \in \Delta \to (x, g(x)) \in E \to E \ni (g^{-1}(x), g^{-1}(g(x))) = (g^{-1}(x), x).$$

 Δ generates G: Suppose $\langle \Delta \subsetneq G$. Let $\hat{X} = \{g(x) \mid g \in \langle \Delta \rangle\} \subsetneq X$. $(\hat{X} \subsetneq X \text{ as } G \text{ acts regularly on } X.)$

Since Γ is connected, there exists $y \in \hat{X}$ and $z \in X$ \hat{X} with $yz \in E$.

Let
$$y = g(x), g \in \langle \Delta \rangle, z \in h(x), h \in G \langle \Delta \rangle$$
. Then

$$(y,z) = (q(x),h(x)) \in E \to (x,q^{-1}h(x)) \in E \to q^{-1}h \in \langle \Delta \rangle \to h \in \langle \Delta \rangle.$$

This is a contradition. Therefore, Δ generates G.

Let $\Gamma' = (X', E')$ denote $\Gamma(G, \Delta)$. We shall show that

$$\theta: X' \to X \ (g \mapsto g(x))$$

is an isomorphism of graphs.

 θ is one-to-one: For $h_1, h_2 \in X' = G$,

$$\theta(h_1) = \theta(h_2) \to h_1(x) = h_2(x) \to h_2^{-1}h_1(x) = x \to h_2^{-1}h_1 \in \operatorname{Stab}_G(x) = \{1_G\} \to h_1 = h_2.$$

$$(\operatorname{Stab}_G = \{g \in G \mid g(x) = x\}.)$$

 θ is onto: Since G is transitive,

$$X = \{g(x) \mid g \in G\} = \theta(X') = \theta(G).$$

 θ respects adjacency: For $h_1, h_2 \in X' = G$,

$$(h_1,h_2)\in E' \leftrightarrow h_1^{-1}h_2\in \Delta \leftrightarrow (x,h_1^{-1}h_2(x))\in E \leftrightarrow (h_1(x),h_2(x))\in E \leftrightarrow (\theta(h_1),\theta(h_2))\in E.$$

Therefore θ is an isomorphism between graphs $\Gamma(G, \Delta)$ and $\Gamma(X, E)$.

How to compute the eigenvalues of the Cayley graph of and abelian group.

Let G be any finite abelian group. Let \mathbb{C}^* be the multiplicative group on \mathbb{C} $\{0\}$.

Definition 3.5. A (linear) G-character is any group homomorphism $\theta: G \to \mathbb{C}^*$.

Example 3.5. $G = \langle a \mid a^3 = 1 \rangle$ has three characters, $\theta_0, \theta_1, \theta_2$.

$$\begin{array}{c|cccc} \theta_i(a^j) & 1 & a & a^2 \\ \hline \theta_0 & 1 & 1 & 1 \\ \theta_1 & 1 & \omega & \omega^2 \\ \theta_2 & 1 & \omega^2 & \omega \end{array}, \quad \text{with } \omega = \frac{-1 + \sqrt{-3}}{2}.$$

Here ω is a primitive cube root pf q in \mathbb{C}^* , i.e., $1 + \omega + \omega^2 = 0$.

For arbitrary group G, let X(G) be the set of all characters of G.

Observe: For $\theta_1, \theta_2 \in X(G)$, one can define product -1 :

$$\theta_1\theta_2(g) = \theta_1(g)\theta_2(g)$$
 for all $g \in G$.

Then $\theta_1\theta_2 \in X(G)$.

Observe: X(G) with this product is an (abelian) group.

Lemma 3.1. The groups G and X(G) are isomorphic for all finite abelian groups G.

Proof. G is a direct sum of cyclic groups;

$$G = G_1 \oplus G_2 \oplus \cdots \oplus G_m, \quad \text{where} \ \ G_i = \langle a_i \mid a_i^{d_i} = 1 \rangle \quad (1 \leq i \leq m).$$

Pick any alement ω_i of order d_i in \mathbb{C}^* , i.e., a primitive d_i -the root of 1. Define

$$\theta_i:G\to\mathbb{C}^*\quad (a_1^{\varepsilon_1}\cdots a_m^{\varepsilon_m}\mapsto \omega_i^{\varepsilon_i}\quad \text{where }\ 0\le \varepsilon_i< d_i, 1\le i\le m).$$

Then $\theta_i \in X(G)$. (Exercise)

Claim: There exists an isomorphism of groups $G \to X(G)$ that sends a_i to θ_i .

Observe: $\theta_i^{d_i} = 1$. For every $g = a_1^{\varepsilon_1} \cdots a_m^{\varepsilon_m} \in G$,

$$\theta_i^{d_i}(g) = (\theta_i(g))^{d_i} = (\omega_i^{\varepsilon_i})^{d_i} = (\omega_i^{d_i})^{\varepsilon_i} = 1.$$

Observe: If $\theta_1^{\varepsilon_1}\theta_2^{\varepsilon_2}\cdots\theta_m^{\varepsilon_m}=1$ for some $0\leq \varepsilon_i < d_i, 1\leq i\leq m$. Then $\varepsilon_1=\varepsilon_2=\cdots=\varepsilon_m=0$.

 $\begin{array}{l} \textit{Pf. } 1 = \theta_1^{\varepsilon_1} \theta_2^{\varepsilon_2} \cdots \theta_m^{\varepsilon_m}(a_i) = \omega_i^{\varepsilon_i}, \text{ Since } \omega_i \text{ is a primitive } d_i\text{-th root of } 1, \, \varepsilon_i = 0 \text{ for } 1 < i < m. \end{array}$

Observe: $\theta_1, \dots, \theta_m$ generate X(G). Pick $\theta \in X(G)$. Since $a_i^{d_i} = 1$, $1 = \theta(a_i^{d_i}) = \theta(a_i)^{d_i}$.

Hence $\theta(a_i) = \omega^{\varepsilon_i}$ for some ε_i with $0 \le \varepsilon_i < d_i$.

Now $\theta = \theta_1^{\varepsilon_1} \cdots \theta_m^{\varepsilon_m}$, since these are both equal to $\omega_i^{\varepsilon_i}$ at a_i for $1 \leq i \leq m$.

Therefore,

$$G \to X(G) \quad (a_i \mapsto \theta_i)$$

is an isomorphism of groups.

Note. The correspondence above is clearly a group homomorphism.

Chapter 4

Examples

Wednesday, January 27, 1993

Theorem 4.1. Given a Cayley graph $\Gamma = \Gamma(G, \Delta)$. View the standard module $V \equiv \mathbb{C}G$ (the group algebra), so

$$\left\langle \sum_{g \in G} \alpha_g g, \; \sum_{g \in G} \beta_g g \right\rangle = \sum_{g \in G} \alpha_g \overline{\beta_g}, \quad \text{with } \alpha_g, \beta_g \in \mathbb{C}.$$

For any $\theta \in X(G)$, write

$$\hat{\theta} = \sum_{g \in G} \theta(g^{-1})g.$$

Then the following hold.

- $\begin{array}{l} (i)\ \langle \hat{\theta_1}, \hat{\theta_2} \rangle = |G|\ \ \emph{if}\ \theta_1 = \theta_2\ \ \emph{and}\ \ 0\ \ \emph{othewise}\ \ \emph{for}\ \ \theta_1, \theta_2 \in X(G). \ \ \emph{In particular}, \\ \{\hat{\theta}\ |\ \theta \in X(G)\}\ \ \emph{forms}\ \ a\ \ \emph{basis}\ \ \emph{for}\ \ V. \end{array}$
- (ii) $A\hat{\theta} = \Delta_{\theta}\hat{\theta}$ for $\theta \in X(G)$, where A is the adjacency matrix and

$$\Delta_{\theta} = \sum_{g \in \Delta} \theta(g).$$

In particular, the eigenvalues of Γ are precisely

$$\Delta_{\theta} \mid \theta \in X(G) \}.$$

Proof.

(i) Claim: For every $\theta \in X(G)$, let

$$s:=\sum_{g\in G}\theta(g^{-1})=\begin{cases} |G| & \text{if } \theta=1\\ 0 & \text{if } \theta\neq 1. \end{cases}$$

Pf. Clear if $\theta = 1$.

Let $\theta \neq 1$. Then $\theta(h) \neq 1$ for some $h \in G$.

$$s\cdot\theta(h) = \left(\sum_{g\in G}\theta(g^{-1})\right)\theta(h) = \sum_{g\in G}\theta(g^{-1}h) = \sum_{g'\in G}\theta(g'^{-1}) = s.$$

Since $\theta(h) \neq 1$, s = 0.

Claim. $\theta(g^{-1}) = \overline{\theta(g)}$ for every $\theta \in X(G)$ and every $g \in G$.

Since $\theta(g) \in \mathbb{C}$ is a root of 1,

$$|\theta(g)|^2 = \theta(g)\overline{\theta(g)} = 1.$$

On the other hand, since θ is a homomorphism,

$$\theta(g)\theta(g^{-1}) = \theta(1) = 1.$$

Hence $\theta(g^1) = \overline{\theta(g)}$.

Now

$$\langle \widehat{\theta_1}, \widehat{\theta_2} \rangle = \sum_{g \in G} \theta_1(g^{-1}) \overline{\theta_2(g^{-1})} \tag{4.1}$$

$$= \sum_{g \in G} \theta_1(g^{-1})\theta_2(g)$$

$$= \sum_{g \in G} \theta_1\theta_2^{-1}(g^{-1})$$
(4.2)

$$=\sum_{g\in G}\theta_1\theta_2^{-1}(g^{-1})\tag{4.3}$$

$$= \begin{cases} |G| & \text{if} \quad \theta_1 \theta_2^{-1} = 1\\ 0 & \text{if} \quad \theta_1 \theta_2^{-1} \neq 1. \end{cases}$$
 (4.4)

Since |G|=|X(G)| by Lemma 3.1, and $\widehat{\theta_i}$'s are orthogonal nonzero elements in V, thet form a basis of V.

(ii) Let
$$\Delta = \{g_1, \dots, g_r\}$$
. Then

$$A\hat{\theta} = A\left(\sum_{g \in G} \theta(g^{-1}g)\right) \tag{4.5}$$

$$= \sum_{g \in G} \theta(g^{-1})(gg_1 + \dots + gg_r) \quad (\Gamma(g) = \{gg_1, \dots, gg_r\}) \tag{4.6}$$

$$=\sum_{i=1}^r \left(\sum_{g\in G} \theta(g^{-1})(gg_i)\right) \tag{4.7}$$

$$= \sum_{i=1}^{r} \left(\sum_{g \in G} \theta(g_i g_i^{-1} g^{-1})(g g_i) \right)$$
(4.8)

$$=\sum_{i=1}^r \left(\sum_{g\in G} \theta(g_i)\theta((gg_i)^{-1})gg_i\right) \tag{4.9}$$

$$= \sum_{i=1}^{r} \theta(g_i) \sum_{h \in G} \theta(h^{-1})h \tag{4.10}$$

$$= \Delta_{\theta} \cdot \hat{\theta}. \tag{4.11}$$

Since $\{\hat{\theta} \mid \theta \in X(G)\}$ forms a basis, the eigenvalues of Γ are precisely,

$$\{\Delta_{\theta} \mid \theta \in X(G)\}.$$

This completes the proof.

Example 4.1. Let $G = \langle a \mid a^6 = 1 \rangle$, and $\Delta = \{a, a^{-1}\}$. Pick a primitive 6-th root of 1, ω . Then

$$X(G) = \{\theta^i \mid 0 \leq i \leq 5\} \quad \text{such that} \quad \theta(a) = \omega, \ \omega + \omega^{-1} = 1.$$

$$\begin{array}{c|cccc} \varphi \in X(G) & \varphi(a) & \Delta_{\varphi} = \theta(a) + \theta(a)^{-1} \\ \hline 1 & 1 & 2 \\ \theta & \omega & \omega + \omega^{-1} = 1 \\ \theta^2 & \omega^2 & -1 \\ \theta^3 & \omega^3 = -1 & -2 \\ \theta^4 & \omega^4 & -1 \\ \theta^5 & \omega^5 & 1 \\ \hline \end{array}$$

$$\operatorname{Spec}(\Gamma) = \begin{pmatrix} 2 & 1 & -1 & -2 \\ 1 & 2 & 2 & 1 \end{pmatrix}.$$

Example 4.2. D-cube, H(D, 2). Let

$$X = \{(a_1, \dots, a_D) \mid a_i \in \{1, -1\}, \ 1 \le i \le D\},\$$

 $E = \{xy \mid x, y \in X, \ x, y \colon \text{different in exactly one coordinate}\}.$

Also H(D,2) is a Cayley graph $\Gamma(G,\Delta)$, where

$$G=G_1\oplus G_2\oplus \cdots \oplus G_D,$$

$$G_i = \langle a_i \mid a_i^2 = 1 \rangle, \quad \Delta = \{a_1, \dots, a_D\}.$$

Homework: The spectrum of H(D, 2) is

$$\begin{pmatrix} \theta_0 & \theta_1 & \cdots & \theta_D \\ m_0 & m_1 & \cdots & m_D \end{pmatrix},$$

where

$$\theta_i = D - 2i \quad (0 \leq i \leq D), \quad m_i = \binom{D}{i}.$$

Remark. Let $\theta \in X(G)$. Then $\theta : X \to \{\pm 1\}$. If

$$\nu(\theta) = |\{i \mid \theta(a_i) = -1\}|,$$

then $\Delta_{\theta} = D - 2i.$ Since there are $\binom{D}{i}$ such $\theta,$ we have te assertion.

We want to compute the subconstituent algebra for H(D, 2). First, we make a few observations about arbitrary graphs.

Let $\Gamma=(X,E)$ be any graph, A, the adjacemcy matrix of Γ , and V, the standard module over $K=\mathbb{C}$.

Fix a base $x \in X$. Write $E_i^* = E_i^*(x)$, and

$$T \equiv T(x) =$$
the algebra generated by A, E_0^*, E_1^*, \dots

Definition 4.1. Let W be any orreducible T-module ($\subseteq V$). Then the endpoint $r \equiv r(W)$ satisfied

$$r = \min\{i \mid E_i^* W \neq 0\}.$$

The diameter d = d(W) satisfied

$$d = |\{i \mid E_i^*W \neq 0\}| - 1.$$

Lemma 4.1. With the above notation, let W be an irreducible T-module. Then

- $\begin{array}{l} (i) \ E_i^*AE_j^* = 0 \ \ if \ |i-j| = 1, \quad \neq 0 \ \ if \ |i-j| = 1, \quad 0 \leq i, j \leq d(x). \\ (ii) \ AE_j^*W \subseteq E_{j-1}^*W + E_j^*W + E_{j+1}^*W, \ 0 \leq j \leq d(x). \ \ (E_i^*W = 0 \ \ if \ i < j \ \ or \end{array}$

Proof.

(i) Pick $y \in X$ with $\partial(x,y) = j$. We want to find $E_i^* A E_j^* \hat{y}$. Note,

$$E_j^* \hat{y} = \begin{cases} 0 & \text{if } \partial(x.y) \neq j \\ \hat{y} & \text{if } \partial(x,y) = j. \end{cases}.$$

$$E_i^* A E_j^* \hat{y} = E_i^* A \hat{y} \tag{4.12}$$

$$=E_i^* \sum_{z \in X, yz \in E} \hat{z} \tag{4.13}$$

$$= \sum_{z \in X, yz \in E, \partial(x,z)=i} \hat{z} \qquad (*)$$

$$(4.14)$$

$$= 0$$
 if $|i - j| > 1$ by triangle inequality. (4.15)

If |i-j|=1, there exist $y,y'\in X$ such that $\partial(x,y)=j,\ \partial(x,y')=i,\ yy'\in E$ by connectivity of Γ . Hence (*) contains $\widehat{y'}$ and $* \neq 0$

(ii) We have

$$AE_{j}^{*}W = \left(\sum_{i=0}^{d(x)} E_{i}^{*}\right) AE_{j}^{*}W \tag{4.16}$$

$$= E_{j-1}^* A E_j^* W + E_j^* A E_j^* W + E_{j+1}^* A E_j^* W$$
(4.17)

$$\subseteq E_{i-1}^*W + E_i^*W + E_{i+1}^*W.$$
 (4.18)

(iii) Suppose $E_j^*W = 0$ for some j $(r \le j \le r + d)$. Then r < j by the definition of r. Set

$$\tilde{W} = E_r^*W + E_{r+1}^*W + \dots + E_{j-1}^*W.$$

Observe $0 \subsetneq \tilde{W} \subsetneq W$. Also $A\tilde{W} \subseteq \tilde{W}$ by (ii) and $E_i^*\tilde{W} \subseteq \tilde{W}$ for every i by construction.

Thus $T\tilde{W}\subseteq \tilde{W},$ contradicting W beging irreducible.

Chapter 5

T-Modules of H(D, 2), I

Friday, January 29, 1993

Let $\Gamma = (X, E)$ be a graph, A the adjacency matrix, and V the standard module over $K = \mathbb{C}$.

Fix a base $x \in X$ and write $E_I^* \equiv E_i^*(x)$, and $T \equiv T(x)$.

Let W be an irreducible T-module with endpoint $r := \min\{i \mid E_i^*W \neq 0\}$ and diameter $d := |\{i \mid E_i^*W \neq 0\}| - 1$.

We have

$$\begin{split} E_i^*W \neq 0 & r \leq i \leq r+d \\ = 0 & 0 \leq i < r \text{ or } r+d < i \leq d(x). \end{split} \tag{5.1}$$

Claim: $E_i^*AE_j^*W\neq 0$ if |i-j|=1 for $r\leq i,j\leq r+d.$ (See Lemma 4.1.)

Suppose $E_{j+1}^*AE_j^*W = 0$ for some j with $r \leq j < r + d$. Observe that

$$\tilde{W} = E_r^* W + \cdot E_j^* W$$

is T-invariant with

$$0 \subsetneq \tilde{W} \subsetneq W.$$

Becase $A\tilde{W}\subseteq \tilde{W}$ since $AE_j^*W\subseteq E_{j-1}^*W+E_j^*W,$

$$E_k^* \tilde{W} \subseteq \tilde{W}$$
 for all k ,

we have $T\tilde{W} \subseteq W$.

Suppose $E_{i-1}^*AE_i^*W = 0$ for some i with $r \le i < r+d$.

Similarly,

$$\tilde{W} = E_i^* W + \cdot E_{r+d}^* . W$$

is a T-module with $0 \subseteq \tilde{W} \subseteq W$.

Definition 5.1. Let Γ , E_i^* , and T be as above. Irreducible T-modules W and W' are isomorphic whenever there is an isomorphism $\sigma:W\to W'$ of vector spaces such that $a\sigma=\sigma a$ for all $a\in T$.

Recall that the standard module V is an orthogonal direct sum of irreducible T-modules $W_1 \oplus W_2 \oplus \cdots$. Given W in this list, the multiplicity of W in V is

$$|\{j\mid W_j\simeq W\}|.$$

Remark. It is known that the multiplicity does not depend on the decomposition.

Now assume that Γ is the *D*-cube, H(D,2) with $D \geq 1$. Vew

$$X = \{a_1 \cdots a_D \mid a_i \in \{1, -1\}, 1 \le i \le D\},\tag{5.3}$$

$$E = \{xy \mid x, y \in X, \ x, y \ \text{ differ in exactly 1 coordinate.} \}. \tag{5.4}$$

Find T-modules.

Claim: H(D,2) is bipartite with a partition $X=X^+\cup X^-$, where

$$X^+ = \{a_1 \cdots a_D \in X \mid \prod a_i > 0\} \tag{5.5}$$

$$X^{-} = \{a_{1} \cdots a_{D} \in X \mid \prod a_{i} < 0\} \tag{5.6}$$

Observe: for all $y, z \in X$,

 $\partial(y,z)=i\Leftrightarrow y,z$ differ in exactly in i coordinates with $0\leq i\leq D.$

Here, the diameter of H(D,2)=D=d for all $x\in X$.

Theorem 5.1. Let $\Gamma = H(D,2)$ be as above. Fix $x \in X$, and write $E_i^* = E_i^*(x)$, and T = T(x).

Let W be an irreducible T-module with endpoint r, and diameter d with $0 \le r \le r + d \le D$.

(i) W has a basis w_0, w_1, \dots, w_d with $w_i \in E_{i+r}^*W$ for $0 \le i \le d$. With respect to which the matrix representing A is

$$\begin{pmatrix} 0 & d & 0 & \cdots & 0 & 0 & 0 \\ 1 & 0 & d-1 & \cdots & 0 & 0 & 0 \\ 0 & 2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 3 & \cdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & 2 & 0 \\ 0 & 0 & 0 & \cdots & d-1 & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & d & 0 \end{pmatrix}$$

- (ii) d= D 2r. In particular, $0 \le r \le D/2$.
- (iii) Let W' denote an irreducible T-module with endpoint r'. Then W and W' are isormorphic as T-modules if and only if r = r'.
- (iv) The multiplicity of the irreducible T-module with endpoint r is

$$\binom{D}{r} - \binom{D}{r-1} \quad \text{if } 1 \le r \le R/2,$$

and 1 if r = 0.

Proof. Recall that Γ is vertex transitive. It is a Cayley graph.

Hence without loss of generality, we may assume that $x = \overbrace{11 \cdots 1}^{D}$.

Notation: Set $\Omega = \{1, 2, \dots, D\}$. For every subset $S \subseteq \Omega$, let

$$\hat{S} = a_1 \cdot a_d \in X \quad a_i = \begin{cases} -1 & \text{if } i \in S \\ 1 & \text{if } i \notin S. \end{cases}$$

In particular, emptyset = x and

$$|S| = i \Leftrightarrow \partial(x, \hat{S}) = i \Leftrightarrow \hat{S} \in E_i^* V.$$

For all $S, T \subseteq \Omega$, we say S covers T\$ if and only if $S \supseteq T$ and |S| = |T| + 1.

Observe that \hat{S}, \hat{T} are adjacent in Γ if and only if either T coverse S or S coverr T

Define the 'raising matrix'

$$R = \sum_{i=0}^{D} E_{i+1}^* A E_i^*.$$

Observe that

$$RE_i^*V \subseteq E_{i+1}^*V$$
 for $0 \le i \le D$, and $E_{D+1}^*V = 0$.

Indeed for any $S \subseteq \Omega$ with |S| = i,

$$R\hat{S} = RE_i^* \hat{S} \tag{5.7}$$

$$=E_{i+1}^* A \hat{S} \tag{5.8}$$

$$= \sum_{T_1 \subseteq \Omega, S \text{ covers } T_1} E_{i+1}^* \widehat{T}_1 + \sum_{T \subseteq \Omega, T \text{ covers } S} E_{i+1}^* \widehat{T}$$
 (5.9)

$$= \sum_{T \subseteq \Omega, T \text{ covers } S} E_{i+1}^* \hat{T}. \tag{5.10}$$

Define the 'lowering matrix'

$$L = \sum_{i=0}^{D} E_{i-1}^* A E_i^*.$$

Observe that

$$LE_i^*V \subseteq E_{i-1V}^*$$
 for $0 \le i \le D$, and $E_{-1}^*V = 0$.

Indeed for any $S \subseteq \Omega$,

$$L\hat{S} = \sum_{T \subseteq \Omega, S \text{ covers } T} \hat{T}.$$

Observe that A = L + R.

For convenience, set

$$A^* = \sum_{i=0}^{D} (D - 2i) E_i^*.$$

Claim: The following hold.

- (a) $LR RL = A^*$.
- (b) $A * L LA^* = 2L$.
- (c) $A^*R RA^* = -2R$.

In particular Span (R, L, A^*) is a 'representation of Lie algebra $sl_2(\mathbb{C})$.

Remark (Lie Algebra sl2(C)).

$$sl_2(\mathbb{C}) = \{ X \mid Mat(\mathbb{C} \mid tr(X) = 0 \}.$$

For $X, Y \in sl_2(\mathbb{C})$, define a binary operation [X, Y] = XY - YX.

$$A^* \sim \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad L \sim \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad R \sim \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Then these satisfy the relations (a) - (c) above.

Proof of Claim. Apply both sides to \hat{S} $(S \subseteq \Omega)$. Say |S| = i. Proof of (a):

$$(LR - RL)\hat{S} = L\left(\sum_{\substack{T \subseteq \Omega, T \text{ covers } S\\ (D-i \text{ of them})}} \hat{T}\right) - R\left(\sum_{\substack{U \subseteq \Omega, S \text{ covers } U\\ (i \text{ of them})}} \hat{T}\right)$$
(5.11)

$$= (D-i)\hat{S} + \sum_{V \subseteq \Omega, |V|=i, |S \cap V|=i-1} \hat{V} - \left(i\hat{S} + \sum_{V \subseteq \Omega, |V|=i, |S \cap V|=i-1} \hat{V}\right)$$
(5.12)

$$= (D - 2i)\hat{S} \tag{5.13}$$

$$=A^*\hat{S}. (5.14)$$

Proof of (b):

$$\begin{split} (A^*L - LA^*)\hat{S} &= (D - 2(i-1))L\hat{S} - (D - 2i)L\hat{S} \quad (\text{since } L\hat{S} \in E_{i-1}^*V) \quad (5.15) \\ &= 2L\hat{S}. \end{split}$$

Proof of (c):

$$(A^*R - RA^*)\hat{S} = (D - 2(i+1))R\hat{S} - (D - 2i)R\hat{S} \quad \text{(since } R\hat{S} \in E^*_{i+1}V) \tag{5.17}$$

$$=2R\hat{S}. (5.18)$$

Let W be an irreducible T-module with endpoint r and diameter d $(0 \le r \le r + d \le D)$.

Proof of (i) and (ii):

Pick $0 \neq w \in E_r^*W$.

Claim: LRw = (D-2r)w.

Pf.

$$LRw = (A^* + RL)w \quad \text{(by Claim } (a)) \tag{5.19}$$

$$= A^* w \quad (Lw \in E_{r-1}^* W = 0) \tag{5.20}$$

$$(D-2r)w. (5.21)$$

Define

$$w_i = \frac{1}{i!} R^i w \in E^*_{r+i} W \quad (0 \leq i \leq d).$$

Then,

$$Rw_i = (i+1)w_{i+1} \quad (0 \le i \le d) \tag{5.22}$$

$$Rw_d = 0$$
 (by definition of d) (5.23)

Claim: $Lw_0 = 0$ and

$$Lw_i = (D-2r-i+1)w_{i-1} \quad (1 \leq i \leq d).$$

Pf. We prove by induction on i. The case i=0 is trivial, and the case i=1 follows from above claim. Let $i \geq 2$,

$$Lw_i = \frac{1}{i}LRw_{i-1} = \frac{1}{i}(A^* + RL)w_{i-1}$$
 (by Claim (a)) (5.24)

$$=\frac{1}{i}((D-2(r+i-1))w_{i-1}+(D-2r-(i-1)+1)Rw_{i-2} \quad (Rw_{i-2}=(i-1)w_{i-1}) \\ \qquad \qquad (5.26)$$

$$=\frac{1}{i}i(D-2r-i+1)w_{i-1} \tag{5.27}$$

$$= (D - 2r - i + 1)w_{i-1}. (5.28)$$

Claim: w_0, \dots, w_d is a basis for W.

 $P\!f\!.$ Let $W'=\operatorname{Span}\{w_0,\dots,w_d\}.$ Then W' is R and L invariant. So it is A=R+L invariant.

Also it is E_i^* -invariant for every i.

Hence W' is a T-module.

Since W is irreducible, W' = W.

As w_i 's are orthogonal, they are linearly independent. Note that $w_i \neq 0$ by the definition of d and Lemma 4.1 (iv).

Claim: d = D - 2r.

Pf. By (a),

$$0 = (LR - RL - A^*)w_d (5.29)$$

$$= 0 - (D - 2r - d + 1)Rw_{d-1} - (D - 2(r + d))w_d$$
 (5.30)

$$= -d(D-2r-d+1)w_d - (D-2(r+d))w_d \eqno(5.31)$$

$$= (-dD + 2rd + d^2 - d - D + 2r + 2d)w_d (5.32)$$

$$= (d^2 + (2r - D + 1)d + 2r - D)w_d (5.33)$$

$$= (d+2r-D)(d+1)w_d. (5.34)$$

Hence d = D - 2r.

Therefore, with respect to a bais $w_0, w_1, \dots, w_d, A = L + R, w_{-1} = w_{d+1} = 0,$

$$Lw_i = (d-i+1)w_{i-1}, \quad Rw_i = (i+1)w_{i+1}.$$

$$L = \begin{pmatrix} 0 & d & 0 & \cdots & 0 & 0 \\ 0 & 0 & d-1 & \cdots & 0 & 0 \\ & & \cdots & & \cdots & & \\ & & & & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}, \qquad R = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 2 & 0 & \cdots & & & \\ & & & & & 0 & 1 \\ 0 & 0 & 0 & \cdots & d & 0 \end{pmatrix}.$$

This completes the proof of (i) and (ii).

Chapter 6

T-Modules of H(D, 2), II

Monday, February 1, 1993

Proof of Theorem 5.1 Continued.

(iii) Let
$$r = r'$$
,

 $w_0, \dots, w_d :$ a basis for W with $w_i \in E_i^*W,$ and

 $w_0', \dots, w_d' {:}$ a basis for W' with $w_i' \in E_i^* W'.$

Then d = D - 2r = D - 2r' = d', and

$$\sigma: W \to W' \quad (w_i \mapsto w_i')$$

is an isomorphism of T-modules by (i).

If $r \neq r'$, then

$$d = D - 2r \neq D - 2r' = d',$$

hence, $\dim W \neq \dim W'$.

(iv) Let W_i be the irreducible T-module with endpoint i. Then

$$\dim E_r^*V = \binom{D}{r} = \sum_{i=0}^r \operatorname{mult}(W_i).$$

Hence, we have that

$$\operatorname{mult}(W_r) = \binom{D}{r} - \binom{D}{r-1}$$

by induction on r.

Bibliography

- Charles W. Curtis, I. R. (2006). Representation Theory of Finite Groups and Associative Algebras. Chelsea Pub Co, uk edition. 978-1138359420.
- Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. 978-0821840665.
- Xie, Y. (2017). bookdown: Authoring Books and Technical Documents with R Markdown. Chapman and Hall/CRC, Boca Raton, Florida, 1st edition. ISBN 978-1138469280.
- Yihui Xie, J.J Allaire, G. G. (2018). *R Markdown: The Definitive Guide*. Chapman and Hall/CRC, Boca Raton, Florida, 1st edition. 978-1138359420.

Index

```
automorphism, 19
bipartite, 13, 17
Cayley graph, 19
character, 22
connected, 10
diameter, 29
distance, 10
endpoint, 29
graph, 7
isomorphic, 32
module,\,10
multiplicity, 32
path, 9
reducible, 13
regular, 9
subconstituent algebra, 10
valency, 9
vertex transitive, 19
```