Содержание

1 Постановка задачи	5
2 Определение устойчивости неизменяемой части системы	6
3 Синтез регулятора	7
3.1 Построение желаемой ЛАЧХ	7
3.2 Построение ЛАЧХ и ЛАФХ желаемой передаточной функции	9
3.3 Получение передаточной функции регулятора	10
4 Моделирование полученной системы	11
5 Реализация регулятора	13
Список использованных источников	16

Изм.	Лист	№ докум.	Подп.	Дата	КСУИ.144.Р3340.001 ПЗ				
Разр Проц	0	<u>Ким А.А.</u> Григорьев В.В.			Синтез последовательного регулятора для замкнутой	/lum. Унив	<i>Лист</i> 4 ерситет	<i>Листов</i> 16 ИТМО	
Н.ко Утв	,				следящей системы методом желаемых ЛАЧХ	Университет ИТМО Кафедра СУИ Группа Р3340			

1 Постановка задачи

Задан объект управления, описание которого определяется Wнч(s) – передаточной функцией неизменяемой части системы. Структурная схема следящей системы представлена на рисунке 1.

Требуется спроектировать регулятор, включенный последовательно с неизменяемой частью системы в контуре ошибки с передаточной функцией Wper(s), который обеспечивает в замкнутой следящей системе с единичной обратной связью заданный набор показателей качества.

Рисунок 1 – Структурная схема следящей системы

Таблица 1 – Исходные данные для проектирования системы

$W_H(s)$	K	T_1, c	q	$t_{ m m}$	σ	\dot{g}_{max}, c^{-1}	e_{max}
K	195	0.228	0.19	0.15	23	6	0.040
$(T_1^2 * s^2 + 2qT_1 * s + 1)s$	173	0.220	0.17	0.13	23	U	0.040

Ли	Изм.	№ докум.	Подп.	Дат

2 Определение устойчивости неизменяемой части системы

На рисунке 2 приведена схема моделирования неизменяемой части системы, график переходного процесса на рисунке 3.

Рисунок 2 – Схема моделирования неизменяемой части

Рисунок 3 – График переходного процесса неизменяемой части

По графику переходного процесса видно, что система неустойчива. Так же это можно определить по корням переходной функции.

Ли	Изм.	№ докум.	Подп.	Дат

3 Синтез регулятора

3.1 Построение желаемой ЛАЧХ

Для построения желаемой ЛАЧХ будем использовать номограммы Солодовникова (рисунок 4, 5). Номограммы Солодовникова устанавливают связь между величиной перерегулирования σ %, временем переходного процесса tper, максимальным значением вещественной части АФЧХ Ртах и частотой среза ω_{cp} .

Рисунок 4 – Диаграмма Солодовникова для построения среднечастоной асимптоты

Исходя из заданного значения перерегулирования σ , по рисунке 4 можно определить $t_{\rm per}$. $t_{\rm per}=\frac{3\pi}{\omega n}$; $\omega n=\frac{3\pi}{t_{\rm per}}$. Исходя из соотношения $\omega_{cp}=(0.6...0.9)\omega_n$, найдем частоту среза. $\omega_{cp}=50c^{-1}$. Требуемый коэффициент усиления рассчитывается по формуле:

$$K_{\mathbf{x}} = \frac{\dot{g}_{max}}{e_{max}} = 150 \tag{1}$$

Ли	Изм.	№ докум.	Подп.	Дат

Низкочастотная асимптота имеет в точке $\omega=1c^{-1}$ ординату равную $20 \log(k) = 45.8$ и наклон -20дБ/дек.

Среднечастотная и низкочастотная асимптоты сопрягаются в том интервале частот, в котором Lж<L γ . $L\gamma$ =20дБ определена по рисунку 5.

Рисунок 5 – график для определения $\mathrm{L}\gamma$

На основании этих данных построим желаемую асимптотическую логарифмическую амплитудно частотную характеристику. График желаемой ЛАЧХ приведен на рисунке 6.

Рисунок 6 – Желаемая ЛАЧХ

По желаемой ЛАЧХ можно определить значения. $\omega_1=4.5c^{-1}$, $\omega_2=$

Ли	Изм.	№ докум.	Подп.	Дат

$$17c^{-1}, \omega_3 = 150c^{-1}.$$

Зная эти значения, можно построить желаемую передаточную функцию:

$$W_{\mathbf{x}} = \frac{K_{\mathbf{x}}(\frac{1}{\omega_2}s+1)}{(\frac{1}{\omega_1}s+1)(\frac{1}{\omega_3}s+1)s} = \frac{150(\frac{1}{17}s+1)}{(\frac{1}{4.5}s+1)(\frac{1}{150}s+1)s}$$
(2)

$$W_{\mathbf{x}} = \frac{5955.88s + 101250}{s^3 + 154.5s^2 + 675s} \tag{3}$$

3.2 Построение ЛАЧХ и ЛАФХ желаемой передаточной функции

Для проверки правильности составления желаемой передаточной функции, построим ее ЛАЧХ и ЛФЧХ. Для этого воспользуемся командой Matlab - bode(w). Полученные графики представлены на рисунке 7.

Рисунок 7 – ЛАЧХ и ЛФЧХ желаемой передаточной функции

По графикам видно соответствие желаемым характеристикам.

Ли	Изм.	№ докум.	Подп.	Дат

3.3 Получение передаточной функции регулятора

Исходя из найденной передаточной функции можно найти передаточную функцию регулятора по формуле:

$$W_{\rm per} = \frac{W_{\rm m}}{W_{\rm Hy}} \tag{4}$$

$$W_{\text{per}} = \frac{5955.88s + 101250}{s^3 + 154.5s^2 + 675s} * \frac{0.0754 * s^3 + 0.5048s^2 + s}{195}$$
 (5)

При приведении к нормальному виду, получаем функцию регулятора:

$$W_{\text{per}} = \frac{449s^3 + 10640.8s^2 + 57066.9s^1 + 101250}{195s^3 + 30127.5s^2 + 131625s} \tag{6}$$

4 Моделирование полученной системы

Произведем моделирование системы с соединенными последовательно неизменяемой частью и регулятором, охваченных отрицательной обратной связью. Схема моделирования представлена на рисунке 8.

Рисунок 8 – Схема моделирования системы с регулятором

Полученный график переходного процесса выходного сигнала представлен на рисунке 9.

Рисунок 9 – График переходного процесса выходной переменной

По графику определим время переходного процесса и перерегулирование: $t_{\rm nn}=0.15c, \sigma=19\%$. Данные показатели соответствуют требуемым.

Ли	Изм.	№ докум.	Подп.	Дат

Так же произведем моделирование системы с линейно возрастающим входным воздействем, тем самым определим ошибку системы с максимальной постоянной скоростью. График ошибки представлен на рисунке 10.

Рисунок 10 – График переходного процесса ошибки

Как видно по графику, что при воздействии с максимальной скоростью $\dot{g}_{max}=6c^{-1}$ ошибка не превышает максимально значения e=0.04.

Ли	Изм.	№ докум.	Подп.	Дат

5 Реализация регулятора

Для реализации регулятора, представим его передаточную функцию в виде произведения типовых звеньев, для которых уже разработаны электрические схемы [1] и соединим их последовательно. Так как коэффициент q не сильно меньше 1, пренебрежём им и получим передаточную функцию регулятора следующего вида:

$$W_p(s) = \frac{K_p(T_2s+1)(T_1s+1)^2}{s(T_3s+1)^2}. (7)$$

Разбив на множители, получим

$$W_p(s) = \frac{T_2 s + 1}{T_0 s} \cdot \sqrt{K_p} \frac{T_1 s + 1}{T_3 s + 1} \cdot \sqrt{K_p} \frac{T_1 s + 1}{T_3 s + 1}.$$
 (8)

Тогда электрическая схема регулятора принет вид, представленный на рисунке 11.

Рисунок 11 – Электрическая схема реализации регулятора

На представленной схеме выполняются равенства

$$\begin{cases}
R_3 = R_5 \\
R_4 = R_6 \\
C_2 = C_3
\end{cases}$$
(9)

Ли	Изм.	№ докум.	Подп.	Дат

Рассчитаем значения элементов схемы.

$$\begin{cases}
T_0 = R_1 C_1 = 1 \\
T_2 = R_2 C_1 = 0.059 \\
T_1 = R_3 C_1 = 0.22 \\
T_3 = \frac{R_3 * R_4}{R_3 + R_4} * c_2 = 0.0067 \\
\sqrt{K_p} = \frac{R_4}{R_3 + R_4} = 0.066
\end{cases} \tag{10}$$

Как можно заметить, в первой системе 2 уравнения и 3 неизвестных, поэтому решим эту систему, приняв $R_2=1.$ Тогда получим

$$\begin{cases}
R_2 = 10M \\
C_1 = \frac{0.059}{1} = 0.059 \Phi \\
R_1 = \frac{1}{0.059} = 16.94 \text{ OM} \\
C_2 = \frac{0.22}{R_3} \Phi \\
R_4 = 0.07R_3 \text{ OM} \\
\frac{R_6*0.07R_6}{R_6+0.07R_6} * C_2 = 0.0067
\end{cases}$$
(11)

Решив вторую систему получим следующие значения для всех элементов схемы:

$$\begin{cases} R_1 = 16.94 \text{ OM} \\ R_2 = 1 \text{ OM} \\ R_3 = R_5 = 2 \text{ Om} R_4 = R_6 = 0.14 \text{ OM} \\ C_1 = 0.059 \Phi \\ C_2 = C_3 = \Phi \end{cases}$$
 (12)

Схема была составлена в среде разработки P-CAD 2006.

Пи	Изм.	№ докум.	Подп.	Лат

Заключение

В результате работы методом желаемой ЛАЧХ был спроектирован последовательный регулятор для системы управления, который обеспечивает необходимые показатели качества на выходе замкнутой системы при воздействии на неё сигналом с ограниченной скоростью и ускорением. Получены следующие показатели качества:

- $t_p = 0.15c$, при единичном входном воздействии;
- $\sigma = 19\%$, при единичном входном воздействии;
- -e = 0.04, при линейно возрастающем входном воздействии;

Данные характеристики полностью удовлетворяют требуемым. Использование метода желаемой логарифмической амплитудной ча- стотой характеристики позволяет быстро синтезировать регулятор и задать системе необходимые параметры качества. Также, путём разбиения сложной передаточной функции регулятора на более простые функции, соединённые последовательно, была составлена электрическая схема реализации регулятора и рассчитаны её параметры.

Список используемых источников

- 1 Бесекерский В.А., Попов Е.П. Теория систем автоматического управления СПб.: Профессия, 2003. 752 с.
- 2 Блинников А.А., Бойков В.И., Быстров С.В., Николаев Н.А., Нуйя О.С. Правила оформления пояснительной записки и конструкторской документации. СПб.: Университет ИТМО, 2014. 55с.
- 3 Воронов А.А., Теория автоматического управления, Ч 1. М.: Высшая школа, 1986. 376с.

Ли	Изм.	№ докум.	Подп.	Дат