$f:=\psi_1-\psi_2$ is different from zero. If $f=f^+-f^-$ is the Jordan decomposition of f, then f^+ and f^- are elements of Fix(7) , whence faithful. Since the support projections of these two normal linear functionals are orthogonal, we obtain $f^+=0$ or $f^-=0$ which implies $\psi_1 \leq \psi_2$ or $\psi_2 \leq \psi_1$. Consequently $\psi_2 = \psi_1$. Since Fix(7) is positively generated (Corollary 1.5), Fix(7) = $\mathbb{C} \phi$ for some faithful normal state ϕ .

Let $\mu \in \mathbb{R}_+$ and $\alpha \in \mathbb{R}$ such that $i\alpha \in P\sigma(A)$. If $\psi_\alpha = u_\alpha |\psi_\alpha|$ is a normalized eigenvector of A pertaining to $i\alpha$, then $\phi = |\psi_\alpha| = |\psi_\alpha^*|$ by Corollary 1.5 and the above considerations. Hence $u_\alpha u_\alpha^* = u_\alpha^* u_\alpha^* = s(\phi) = 1$. Since

$$(\mu - i\alpha) R(\mu, A) \psi_{\alpha} = \psi_{\alpha}$$

and

$$\mu R(\mu, A) |\psi_{\alpha}| = |\psi_{\alpha}|$$

we obtain by Lemma 1.2.b that

(1)
$$\mu R(\mu, A) = V_{\alpha} \circ \mu R(\mu + i\alpha, A) \circ V_{\alpha}^{-1}$$
,

where V_{α} is the map $(x \to xu_{\alpha})$ on M . Similarly for $i\beta \in P\sigma(A)$, we find V_{β} such that $1 = u_{\beta}u_{\beta}^* = u_{\beta}u_{\beta}^*$ and

(2)
$$\mu R(\mu, A) = V_{\beta} \circ \mu R(\mu + i\beta, A) \circ V_{\beta}^{-1}$$
.

Hence

(3)
$$\mu R(\mu, A) = V_{\alpha\beta} \circ \mu R(\mu + i(\alpha + \beta), A) \circ V_{\alpha\beta}^{-1}$$
,

where $V_{\alpha\beta}:=V_{\alpha}\circ V_{\beta}$. Since u_{α} is unitary in M , it follows from (1) that i_{α} is an eigenvalue which is simple because $Fix(T)=Fix(\mu R(\mu,A))$ is one dimensional. From (3) it follows that $i(\alpha+\beta)\in P\sigma(A)$ since $0\in P\sigma(A)$ and $V_{\alpha\beta}$ is bijective. From the identity (1) we conclude that $\sigma(R(\mu,A))=\sigma(R(\mu+i_{\alpha}))$, which proves

$$\sigma(A) + (P\sigma(A) \cap i\mathbb{R}) \subset \sigma(A)$$
.

The other inclusion is trivial since $0 \in P_{\sigma}(A)$.