PRÁCTICA PROFESIONAL II

EL5901-2 PRÁCTICA PROFESIONAL II

Diego Campanini García

ACTIVIDAD DURANTE LA PRÁCTICA

Realizar un sistema de detección de acciones de personas

METODOLOGÍA

- Investigar sobre el estado del arte en detección de acciones de personas
- Caffe

- 2. Buscar implementaciones disponibles en la red
- Instalar el framework Caffe
- 4. Probar modelos encontrados
- 5. Caracterizar estadísticamente el sistema implementado
- 6. Implementar el sistema tal que funcione con una cámara

MODELO IMPLEMENTADO

- ➤ Utiliza CNN mediante el framework caffe y corresponde al trabajo de Georgia Gkioxari et al [1], de la Universidad de Berkeley, USA.
- La CNN consiste en redes neuronales que realizan una convolución sobre la imagen para extraer características y poder clasificar las clases para las cuales se entrena la red
- La red cuenta con 16 capas, divididas en convolucionales, pooling, normalización, full conecction y softmax.

RESULTADOS

- 1. Primero se cortaron las imágenes tal que solo se consideren personas
- 2. Se etiquetó la base de datos prueba de 5360 imágenes
- 3. Obtención del average precisión y de la matriz de confusión del sistema

BASE DE DATOS DE PRUEBA

Acción	N° Imágenes	%
Hablar por teléfono	455	8.48
Tocar un Instrumento	636	11.86
Leer	552	10.29
Andar en Bicicleta o Motocicleta	594	11.08
Montar a caballo	540	10.07
Correr	583	10.87
Tomar una fotografía	453	8.45
Usar computador	449	8.37
Caminar	601	11.21
Saltar	497	9.27

Tabla 1: Distribución de las clases en el conjunto de prueba

RESULTADOS

	Hablar	Tocar	Leer	Andar	Montar	Comer Tomar		Usar	Cominor	Colton	m A D
	por teléfono	Instrumento		en Bicicleta	${\it a}$ caballo	Correr	Fotografía	Computador	Caminar	Saitai	mAP
AP	43.0	70.5	37.7	86.1	82.5	79.9	44.1	52.0	56.6	69.9	62.23

Tabla 2: Average Precision del sistema medido en el conjunto de prueba del desafió PASCAL VOC 2012

,	Hablar	Tocar		Andar	Montar Correr	Tomar U	Usar	Cominon	Saltar	mAP	
	por teléfono	Instrumento	Leer	en Bicicleta	a caballo	Correr	Fotografía	Computador	Caminar	Saitar	ШАГ
Standford	75.7	44.8	66.6	44.4	93.2	94.2	87.9	38.4	70.6	75.6	69.1
Oxford	77.0	50.4	65.3	39.5	94.1	95.9	87.7	42.7	68.8	74.5	69.6
Oquad et al [4]	74.8	46.0	75.6	45.3	93.5	95.0	86.5	49.3	66.7	69.5	70.2
Action R-CNN	76.2	47.4	77.5	42.2	94.9	94.3	87.0	52.9	66.5	66.5	70.5

Tabla 3: Average Precision de otros sistemas para PASCAL VOC 2012

RESULTADOS

Predicho											
	1	2	3	4	5	6	7	8	9	10	
1	237	41	44	5	13	5	48	27	25	10	
1	(4.42%)	(0.76%)	(0.82%)	(0.09%)	(0.24%)	(0.09%)	(0.89%)	(0.50%)	(0.46%)	(0.18%)	
2	27	460	44	11	18	3	10	30	19	14	
2	(0.50%)	(8.58%)	(0.82%)	(0.20%)	(0.33%)	(0.05%)	(0.18%)	(0.55%)	(0.35%)	(0.26%)	
9	54	70	213	6	31	8	18	122	16	15	
3	(0.98%)	(1.30%)	(3.97%)	(0.11%)	(0.57%)	(0.14%)	(0.33%)	(2.27%)	(0.29%)	(0.27%)	
4	1	10	8	505	34	5	3	3	17	8	
4	(0.01%)	(0.18%)	(0.14%)	(9.42%)	(0.63%)	(0.09%)	(0.05%)	(0.05%)	(0.31%)	(0.14%)	
E .	5	10	9	45	441	1	10	7	7	5	
5	(0.09%)	(0.18%)	(0.16%)	(0.83%)	(8.22%)	(0.01%)	(0.18%)	(0.13%)	(0.13%)	(0.09%)	
6	6	3	20	12	17	419	15	3	70	18	
0	(0.11%)	(0.05%)	(0.37%)	(0.22%)	(0.31%)	(7.81%)	(0.27%)	(0.05%)	(1.30%)	(0.33%)	
7	45	55	22	20	35	6	192	20	42	16	
'	(0.83%)	(1.02%)	(0.41%)	(0.37%)	(0.65%)	(0.11%)	(3.58%)	(0.37%)	(0.78%)	(0.29%)	
8	35	43	73	2	8	5	15	257	5	6	
0	(0.65%)	(0.80%)	(1.36%)	(0.03%)	(0.14%)	(0.09%)	(0.27%)	(4.79%)	(0.09%)	(0.11%)	
9	19	21	18	41	32	52	27	14	349	28	
Э	(0.35%)	(0.39%)	(0.33%)	(0.76%)	(0.59%)	(0.97%)	(0.50%)	(0.26%)	(6.51%)	(0.52%)	
10	9	17	15	25	15	23	15	9	27	342	
10	(0.16%)	(0.31%)	(0.27%)	(0.46%)	(0.27%)	(0.42%)	(0.27%)	(0.16%)	(0.50%)	(6.38%)	

Tabla 4: Matriz de confusión del sistema implementado

1:Hablar por teléfono, 2:Tocar un Instrumento, 3:Leer, 4: Andar en Bicicleta, 5: Montar a caballo, 6: Correr, 7: Tomar fotografía, 8: Usar Computador, 9: Caminar, 10: Saltar

Real

SISTEMA IMPLEMENTADO

```
diego@diego-hp: ~/caffe-master/examples/code_action
               diego@diego-hp: ~/caffe-master/examples/code_action 79x22
I0520 13:28:41.322113 4877 net.cpp:752] Ignoring source layer loss
Predicted class is #4.
Real class is #4.
Predicted class is #5.
Real class is #5.
Predicted class is #6.
Real class is #8.
Predicted class is #8.
Real class is #5.
Predicted class is #0.
Real class is #5.
Predicted class is #2.
Real class is #2.
Predicted class is #4.
Real class is #4.
diego@diego-hp:~/caffe-master/examples/code action$
```

SISTEMA IMPLEMENTADO

diego@diego-hp: ~/caffe-mast
diego@diego-hp: ~/caffe
Predicted class is #0.
Hablando por teléfono
diego@diego-hp:~/caffe-master/exampl

CONCLUSIONES

- Las CNN son capaces de mejorar los resultados previos en la clasificación de acciones de personas en el desafío PASCAL VOC 2012
- Se comprobó que se obtienen resultados inferiores al utilizar solamente CNN para la clasificación. Se logra mejores resultados al utilizar CNN como extractor de características y SVM para clasificar.
- Trabajo futuro implementar un detector de personas, más el sistema de detección de acciones.

BIBLIOGRAFÍA

- Georgia Gkioxari, Bharath Hariharan, Ross Girshick and Jitendra Malik.
 R-CNNs for Pose Estiamtion and Action Detection
- 2. Yann LeCunn, Léon Bottou, Yoshua Bengio, and Patrick Haffner Gradient-Based Learning Applied to Document Recognition.