

4.1 Description et propriétés

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , on note $\mathbb{K}(X)$ le corps des fractions de l'anneau intègre $\mathbb{K}[X]$, et c'est l'ensemble des fractions rationnelles de $\mathbb{K}[X]$, c'est-à-dire les éléments $F = \frac{P}{Q}$ tels que $P, \ Q \neq 0 \in \mathbb{K}[X]$.

Définition 4.1 On dit que la fraction rationnelle $F = \frac{P}{Q}$ est une forme irréductible lorsque

$$pgcd(P,Q) = 1.$$

Les opérations sur $\mathbb{K}(X)$ sont analogues à celles dans \mathbb{Q} , par exemple, dans $\mathbb{C}(X)$ on a

$$X+i+\frac{X^2-3}{X+2}=\frac{(X+i)(X+2)+X^2-3}{X+2}=\frac{2X^2+(2+i)X-3+2i}{X+2}\,.$$

Remarque

- 1. Les deux fractions rationnelles $F = \frac{P}{Q}$ et $F' = \frac{R}{S}$ sont dites égaux lorsque PS = QR.
- 2. Toute fraction $F = \frac{P}{Q}$ admet une forme irréductible. En effet, si $D = \operatorname{pgcd}(P,Q)$ alors

$$F = \frac{P}{O} = \frac{DR}{DS} = \frac{R}{S}$$
 avec $pgcd(R, S) = 1$.

Exemple. On considère la fraction rationnelle $F = \frac{X^2 - 3X + 2}{X^4 - 1} \in \mathbb{R}(X)$, alors

-
$$\frac{X^2 - 3X + 2}{X^4 - 1}$$
, $\frac{X^3 - 3X^2 + 2X}{X^5 - X}$ et $\frac{X - 2}{(X + 1)(X^2 + 1)}$ sont des formes de F .

-
$$\frac{X-2}{(X+1)(X^2+1)}$$
 est la forme irréductible de F dans $\mathbb{R}(X)$.

Définition 4.2 — Racines et pôles. Soit $F = \frac{P}{Q}$ une fraction rationnelle irréductible, alors

- on appelle racine (resp. pôle) de la fraction F toute racine du polynôme P (resp. Q).
- l'ordre de multiplicité d'une racine (resp. un pôle) a de la fraction $F \neq 0$, est l'ordre de multiplicité de a en tant que racine du polynôme P (resp. Q).

Remarque Un élément $a \in \mathbb{K}$ ne peut pas être à la fois racine et pôle d'une fraction rationnelle de forme irréductible $F = \frac{P}{Q}$, sinon on aurait P(a) = Q(a) = 0 et donc les polynômes P et Q seraient divisibles par (X - a). Ce qui contredirait le caractère irréductible de F.

Les racines et les pôles d'une fraction rationnelle ne peuvent être obtenus qu'à partir d'une forme irréductible. Par exemple, 1 n'est ni racine, ni pôle de $F = \frac{X(X^3 - 1)}{X^2 - 1}$, puisque $pgcd(X^3 - 1, X^2 - 1) = X - 1$. La forme irréductible à utilisée est

$$F = \frac{X (X^2 + X + 1)}{X + 1}.$$

Exemple. 1. La fraction $F = \frac{X(X^3 - 1)}{X^2 - 1}$ admet la forme irréductible

$$F = \frac{X(X^2 + X + 1)}{X + 1}.$$

Les racine de F dans $\mathbb C$ sont 0, $\frac{-1+i\sqrt{3}}{2}$ et $\frac{-1-i\sqrt{3}}{2}$. Et dans $\mathbb R$, F n'a qu'une racine 0.

2. La fraction rationnelle $F = \frac{X^2 - 3X + 2}{X^4 - 1}$ a la forme irréductible

$$F = \frac{X - 2}{(X + 1)(X^2 + 1)}.$$

Les pôles de F dans \mathbb{C} sont -1, i et -i. Par contre, dans \mathbb{R} la fraction F n'a qu'un pôle 1.

4.2 Décomposition en éléments simples

Définition 4.3 — Partie entière. Soient $F = \frac{P}{Q}$ une fraction rationnelle et P = QE + R la division euclidienne de P par Q. Le polynôme E est dit la partie entière de F et on a

$$F = E + \frac{R}{Q}.$$

Exemple. La partie entière de $F = \frac{X^5 + 1}{X(X - 1)^2}$ est le polynôme $E = X^2 + 2X + 3$ et on a

$$F = X^2 + 2X + 3 + \frac{4X^2 - 3X + 1}{X(X - 1)^2}.$$

Propriétés 4.1 Soit $(F_i)_{i=1..n}$ des fractions de parties entières respectives $(E_i)_{i=1..n}$, alors

$$E = \sum_{i=1}^{n} E_i$$
 est la partie entière de $F = \sum_{i=1}^{n} F_i$.

Théorème 4.1 Soit $F = \frac{A}{B_1 B_2 \cdots B_n}$ une fraction de partie entière E. Si les B_1, \dots, B_n sont deux à deux premiers, alors il existe une unique famille de polynômes A_1, \dots, A_n tels que

$$F = E + \sum_{i=1}^{n} \frac{A_i}{B_i}$$
 avec $\forall i = 1,...,n : \deg(A_i) < \deg(B_i)$.

Corollaire 4.1 — Séparation des pôles. Soit $F = \frac{A}{B}$ une fraction de partie entière E. Si B est scindé, c'est-à-dire

$$B = \prod_{i=1}^{p} (X - a_i)^{m_i}$$
 où les b_i sont deux à deux distincts,

alors, il existe une famille unique de polynômes A_1, \dots, A_p tels que

$$F = E + \sum_{i=1}^{p} \frac{A_i}{(X - a_i)^{m_i}}$$
 avec $\forall i = 1, ..., n, \deg(A_i) < m_i$.

La fraction $\frac{A_i}{(X-a_i)^{m_i}}$ est appelé la partie polaire relative au pôle a_i .

Théorème 4.2 — Décomposition d'une partie polaire. Pour $F=\dfrac{A}{(X-a)^n}\in \mathbb{K}(X)$ avec $\deg(A)< n$, il existe une famille unique $\alpha_1,\cdots,\alpha_n\in \mathbb{K}$ tels que

$$F = \frac{\alpha_1}{(X-a)} + \frac{\alpha_2}{(X-a)^2} + \cdots + \frac{\alpha_n}{(X-a)^n}.$$

Exemple. — Méthode pratique pour déterminer la partie polaire.

1. Si a est un pôle d'ordre 1 de $F = \frac{A}{B}$, on peut écrire B = (X - a)Q avec $Q(a) \neq 0$ et alors

$$F = \frac{A}{(X-a)\,Q} = \underbrace{\frac{\alpha}{X-a}}_{\begin{subarray}{c} \text{partie} \\ \text{polaire} \\ \text{relative à a.} \end{subarray}} + \frac{C}{D} \quad \text{avec} \quad \alpha \in \mathbb{K} \ \text{ et } D(a) \neq 0 \, .$$

En multipliant cette égalité par X - a, on obtient

$$\frac{A}{O} = \alpha + \frac{(X-a)C}{D}.$$

Ce qui en prenant X = a donne $\alpha = \frac{A(a)}{Q(a)}$. Pour trouver Q(a), on peut remarquer que

$$B = (X - a) Q \implies B' = Q + (X - a) Q' \implies B'(a) = Q(a).$$

Et donc on obtient

$$\alpha = \frac{A(a)}{B'(a)}$$
.

2. Si a est un pôle d'ordre 2 de $F = \frac{A}{B}$, on peut écrire $B = (X - a)^2 Q$ avec $Q(a) \neq 0$ et alors

$$F = \frac{A}{(X-a)^2 Q} = \underbrace{\frac{\alpha}{(X-a)^2} + \frac{\beta}{X-a}}_{\text{partie polaire relative à } a.} + \frac{C}{D} \text{ avec } \alpha, \beta \in \mathbb{K} \text{ et } D(a) \neq 0.$$

En multipliant cette égalité par $(X - a)^2$, on obtient

$$\frac{A}{Q} = \alpha + \beta (X - a) + \frac{(X - a)^2 C}{D}.$$

Ce qui en prenant X = a donne $\alpha = \frac{A(a)}{Q(a)}$. Pour trouver Q(a), on peut remarquer que

$$B = (X - a)^2 Q \implies B^{(2)} = 2Q + 4(X - a)Q' + (X - a)^2 Q^{(2)} \implies B^{(2)}(a) = 2Q(a).$$

Et donc on obtient

$$lpha = rac{2A(a)}{B^{(2)}(a)}$$
 .

Pour calculer β , on peut remarquer que

$$F - \frac{\alpha}{(X-a)^2} = \frac{A}{B} - \frac{\alpha}{(X-a)^2} = \boxed{\frac{A - \alpha Q}{B} = \frac{\beta}{X-a} + \frac{C}{D}}.$$

En plus, comme on a $A(a) - \alpha Q(a) = 0$ alors $A - \alpha Q = (X - a)A_1$ et donc

$$\frac{A_1}{(X-a)Q} = \frac{\beta}{X-a} + \frac{C}{D}.$$

Et cela nous ramène au premier cas.

3. Si *a* est un pôle d'ordre *r* de $F = \frac{A}{B}$, on peut écrire $B = (X - a)^r Q$ avec $Q(a) \neq 0$ et alors

$$F = \frac{A}{(X-a)^r Q} = \underbrace{\frac{\alpha_r}{(X-a)^r} + \dots + \frac{\alpha_1}{X-a}}_{\text{partie polaire relative à } a} + \frac{C}{D} \text{ avec } \alpha_1, \dots, \alpha_r \in \mathbb{K} \text{ et } D(a) \neq 0.$$

En multipliant par $(X - a)^r$ et puis en prenant X = a, on obtient

$$lpha_r = rac{A(a)}{Q(a)} = rac{r! A(a)}{B^{(r)}(a)}$$
 .

En plus, on remarque que

$$F - \frac{\alpha_r}{(X-a)^r} = \frac{A}{B} - \frac{\alpha_r}{(X-a)^r} = \boxed{\frac{A - \alpha_r Q}{B} = \frac{\alpha_{r-1}}{(X-a)^{r-1}} + \dots + \frac{\alpha_1}{X-a} + \frac{C}{D}}.$$

En plus, comme on a $A(a) - \alpha_r Q(a) = 0$ alors $A - \alpha_r Q = (X - a)A_1$ et donc

$$\frac{A_1}{(X-a)^{r-1}Q} = \frac{\alpha_{r-1}}{(X-a)^{r-1}} + \dots + \frac{\alpha_1}{X-a} + \frac{C}{D}.$$

et on recommence pour calculer α_{r-1} . En réitérant ce procédé, on obtient tous coefficients.

Exemple. La fraction $F = \frac{A}{B} = \frac{X^5 + 1}{X(X - 1)^2}$ admet le pôle simple 0 et le pôle double 1, alors

- la partie polaire de F relative à 0 est $\frac{\alpha}{X}$ avec $\alpha = \frac{1!A(0)}{B^{(1)}(0)} = \frac{1}{1} = 1$.
- $\text{ la partie polaire de } F \text{ relative à 1 est } \frac{\beta_1}{X-1} + \frac{\beta_2}{(X-1)^2} \text{ avec } \beta_2 = \frac{2!A(1)}{B^{(2)}(1)} = 2 \ \frac{2}{2} = 2.$

Et comme
$$F - \frac{\beta_2}{(X-1)^2} = \frac{X^5 - 2X + 1}{(X-1)^2 X} = \frac{P = X^4 + X^3 + X^2 + X - 1}{Q = (X-1)X}$$
 On en déduit que
$$\beta_1 = \frac{1!P(1)}{Q^{(1)}(1)} = \frac{3}{1} = 3.$$

Théorème 4.3 — Décomposition en éléments simples dans $\mathbb{C}(X)$.

Soit $F \in \mathbb{C}(X)$ une fraction rationnelle irréductible, admettant les pôles distincts $a_1, \dots, a_n \in \mathbb{C}$ d'ordres de multiplicité respectifs r_1, \dots, r_n . Alors F s'écrit d'une manière unique sous la forme

$$F = \underbrace{E}_{\substack{\text{partie} \\ \text{entière} \\ \text{de } F.}} + \underbrace{\sum_{i=1}^{n} \underbrace{\left(\sum_{k=1}^{r_i} \frac{\alpha_{i,k}}{(X-a_i)^k}\right)}_{\substack{\text{partie polaire} \\ \text{relative à } a_i}} \text{ où les } \alpha_{i,k} \text{ sont des complexes.}$$

Exemple. D'après les exemples précédents la décomposition de $F = \frac{X^5 + 1}{X(X - 1)^2}$ dans $\mathbb{C}[X]$ est

$$F = \underbrace{X^2 + 2X + 3}_{\text{partie}} + \underbrace{\frac{1}{X}}_{\text{partie}} + \underbrace{\frac{3}{(X-1)} + \frac{2}{(X-1)^2}}_{\text{partie}}$$

$$\text{partie}_{\text{polaire}}$$

$$\text{polaire}_{\text{relative à 0.}}$$

$$\text{polaire}_{\text{relative à 1.}}$$

Remarque Pour calculer les coefficient de la décomposition de F, il est plus simple d'utiliser :

- 1. **Parité de** F : on en déduit des relations entre les coefficients de la décomposition de F.
- 2. **Utilisation de** $\lim_{+\infty} xF(x)$: supposons $\deg(P) < \deg(Q)$ alors si $\lim_{+\infty} xF(x)$ est finie, on peut obtenir des relations entre les coefficients des termes en $\frac{1}{X-a_i}$ dans la décomposition de F.

- 3. **S'il ne reste qu'un ou deux coefficients à déterminer :** On peut substituer à *X* une ou deux valeurs simples.
- 4. Si F est une fraction de $\mathbb{R}(\mathbf{X})$: Si a est pôle non réel de F d'ordre r, alors \overline{a} est aussi un pôle d'ordre r et les coefficients des parties polaires associées à a et \overline{a} sont deux à deux conjuguées.

Exemple. La fraction $F = \frac{4}{(X^2 - 1)^2}$ se décompose en éléments simples sous la forme

$$F = \frac{a}{X-1} + \frac{b}{X+1} + \frac{c}{(X-1)^2} + \frac{d}{(X+1)^2}.$$

Comme *F* est une fraction paire alors F(X) = F(-X) et donc

$$F = \frac{a}{-X-1} + \frac{b}{-X+1} + \frac{c}{(-X-1)^2} + \frac{d}{(-X+1)^2}$$
$$= \frac{-a}{X+1} + \frac{-b}{X-1} + \frac{c}{(X+1)^2} + \frac{d}{(X-1)^2}.$$

L'unicité de la décomposition implique que a = -b et c = d. De plus, on a

$$c = \frac{2!A(1)}{B^{(2)}(1)} = \frac{2\cdot 4}{8} = 1.$$

Posons X = 0, il vient 4 = F(0) = -a + b + c + d = 2b + 2 et donc les coefficients de F sont

$$a = -1$$
, $b = 1$ et $c = d = 1$.

Finalement, on obtient

$$F = \frac{-1}{X-1} + \frac{1}{X+1} + \frac{1}{(X-1)^2} + \frac{1}{(X+1)^2}.$$

Exemple. La décomposition de la fraction $F = \frac{4X^3}{(X^2 - 1)^2}$ en éléments simples est

$$F(X) = \frac{a}{X-1} + \frac{b}{X+1} + \frac{c}{(X-1)^2} + \frac{d}{(X+1)^2}.$$

Comme *F* est impaire, alors F(-X) = -F(X) et donc

$$\frac{-a}{X+1} + \frac{-b}{X-1} + \frac{c}{(X+1)^2} + \frac{d}{(X-1)^2} = \frac{-a}{X-1} + \frac{-b}{X+1} + \frac{-c}{(X-1)^2} + \frac{-d}{(X+1)^2} \,.$$

L'unicité de la décomposition assure que b = a et d = -c. De plus, on a

$$c = \frac{2!A(1)}{B^{(2)}(1)} = \frac{2\cdot 4}{8} = 1,$$

et puisque $\lim_{x \to a} XF(X) = 4 = a + b$, on a 2a = 4. Finalement,

$$F = \frac{2}{X-1} + \frac{2}{X+1} + \frac{1}{(X-1)^2} - \frac{1}{(X+1)^2}.$$

Exemple. La décomposition de la fraction $F = \frac{X^4 + 1}{(X+1)^2(X^2+1)}$ en éléments simples est

$$F = 1 + \frac{a}{X+1} + \frac{b}{(X+1)^2} + \frac{c}{X-i} + \frac{\overline{c}}{X+i}$$

On trouve

$$c = \frac{1!A(i)}{B^{(1)}(i)} = \frac{i^4 + 1}{2i(1+i)^2} = -\frac{1}{2} \quad \text{ et } \quad b = \frac{2!A(-1)}{B^{(2)}(-1)} = 1.$$

En posant X = 0, on obtient $1 = 1 + a + b - \frac{c}{i} + \frac{\overline{c}}{i} = 2 + a$ et donc a = -1. Finalement,

$$F = \frac{X^4 + 1}{(X+1)^2(X^2+1)} = 1 - \frac{1}{X+1} + \frac{1}{(X+1)^2} - \frac{1}{2(X-i)} - \frac{1}{2(X+i)}.$$

Théorème 4.4 — Décomposition en éléments simples dans $\mathbb{R}(X)$.

Soit $F = \frac{A}{B}$ une fraction irréductible de $\mathbb{R}(X)$ et $B = b \prod_{i=1}^{p} (X - a_i)^{r_i} \prod_{j=1}^{q} (X^2 + s_j X + t_j)^{\beta_j}$ la décomposition de B en éléments irréductibles dans $\mathbb{R}[X]$. Alors, F s'écrit d'une manière unique :

$$F = E + \sum_{i=1}^{p} \left(\sum_{k=1}^{r_i} \frac{\alpha_{i,k}}{(X - a_i)^k} \right) + \sum_{j=1}^{q} \left(\sum_{k=1}^{\beta_j} \frac{\lambda_{j,k} + \gamma_{j,k} X}{(X^2 + s_j X + t_j)^k} \right).$$

où E est la partie entière de F et les $\alpha_{i,k}$, $\lambda_{j,k}$ et $\gamma_{j,k}$ sont des nombres réels.

Exemple. Dans $\mathbb{C}(X)$, la DES de $F = \frac{10X^3}{(X^2+1)(X^2-4)}$ s'écrit sous la forme :

$$F = \frac{a}{X - i} + \frac{b}{X + i} + \frac{c}{X - 2} + \frac{d}{X + 2},$$

avec
$$a = \frac{A(i)}{B'(i)} = 1$$
, $b = \overline{a} = 1$, $c = \frac{A(2)}{B'(2)} = 4$ et $d = \frac{A(-2)}{B'(-2)} = 4$ et alors

$$F = \frac{1}{X-i} + \frac{1}{X+i} + \frac{4}{X-2} + \frac{4}{X+2}$$
 dans $\mathbb{C}(X)$.

Et la DES de F dans $\mathbb{R}(X)$ est obtenue donc en sommant les termes à pôles conjugués

$$F = \frac{2X}{X^2 + 2} + \frac{4}{X - 2} + \frac{4}{X + 2}.$$

Dans l'exemple précédent, la DES dans $\mathbb{R}(X)$ est obtenue à partir de la DES dans $\mathbb{C}(X)$. On verra, dans les exemples suivants, qu'elle peut être obtenue directement dans $\mathbb{R}(X)$ sans passer par $\mathbb{C}(X)$.

Exemple. La DES de $F = \frac{2X(2X+1)}{(X^2+1)^2}$ dans $\mathbb{R}(X)$ s'écrit sous la forme

$$F = \frac{aX + b}{(X^2 + 1)} + \frac{cX + d}{(X^2 + 1)^2}.$$

Évaluons $(X^2+1)^2 F$ en X=i (la racine de X^2+1), on obtient 2i-4=ci+d d'où

$$c = 2$$
 et $d = -4$.

La limite de XF(X) en $+\infty$ fournit a=0 et l'évaluation de F en 0 entraı̂ne b+d=0 et alors

$$b = -d = 4$$
.

Par suite, on obtient

$$F = \frac{4}{(X^2+1)} + \frac{2X-4}{(X^2+1)^2}.$$

Exemple. La DES de $F = \frac{1}{(X+1)(X^2+X+1)^2}$ dans $\mathbb{R}(X)$ s'écrit sous la forme

$$F = \frac{a}{X+1} + \frac{bX+c}{(X^2+X+1)} + \frac{dX+e}{(X^2+X+1)^2} \quad \text{avec } a = \frac{A(-1)}{B'(-1)} = 1.$$

Évaluons $(X^2 + X + 1)^2 F$ en $X = j = \frac{-1 + i\sqrt{3}}{2}$ racine de $X^2 + X + 1$, on obtient

$$dj + e = \frac{1}{1+j} = \frac{-1}{\overline{j}} = \frac{-j}{|j|} = \frac{-j}{||j||^2} = -j.$$

Puisque $\{1, j\}$ est une base du \mathbb{R} -espace vectoriel \mathbb{C} , on déduit que

$$d = -1$$
 et $e = 0$.

D'autre part, l'évaluation de F en 0 et la limite $\lim_{+\infty} XF(X)$ impliquent

$$\begin{cases} a+c+e=1\\ a+b=0 \end{cases}$$

donc c = 0 et b = -1. Finalement,

$$F = \frac{1}{X+1} - \frac{X}{(X^2 + X + 1)} - \frac{X}{(X^2 + X + 1)^2}.$$

Exercice 4.1 Donner la DES dans $\mathbb{R}(X)$, puis dans $\mathbb{C}(X)$ des fractions rationnelles suivantes

$$F_1 = \frac{1}{(X^2 + X + 1)(X^2 + 1)(X^2 - 1)}$$
; $F_2 = \frac{X + 1}{(X^2 + X + 1)(X^2 - X + 1)}$.