Stata Intermedio Sesión 1.1

Juan Carlos Abanto Orihuela j.abanto@giddea.com

Grupo IDDEA Consulting

Abril - 2018

Parte I

Valores Atípicos

• Tratamiento de Valores Atípicos

- Tratamiento de Valores Atípicos
- Puntos Leverage

- Tratamiento de Valores Atípicos
- Puntos Leverage
- Puntos Outliers

- Tratamiento de Valores Atípicos
- Puntos Leverage
- Puntos Outliers
- Puntos de Influencia

Puntos de Leverage

 Algunas observaciones podrian tener influencia inusual en determinados parámetros estimados y predicciones del modelo. Estas observaciones de influencia podrían ser detectadas usando una de varias medidas cuando observamos un amplio residuo.

Puntos de Leverage

- Algunas observaciones podrian tener influencia inusual en determinados parámetros estimados y predicciones del modelo. Estas observaciones de influencia podrían ser detectadas usando una de varias medidas cuando observamos un amplio residuo.
- La medida de leverage de la i-esima observación, denotado por h_i es igual al i-esimo elemento de la diagonal de la matriz $H = X(X'X)^{-1}X'$. Si h_i es amplio, entonces y_i tiene una gran influencia sobre las predicciones del MCO \hat{y}_i porque $\hat{y} = Hy$.

Puntos de Leverage

- Algunas observaciones podrian tener influencia inusual en determinados parámetros estimados y predicciones del modelo. Estas observaciones de influencia podrían ser detectadas usando una de varias medidas cuando observamos un amplio residuo.
- La medida de leverage de la i-esima observación, denotado por h_i es igual al i-esimo elemento de la diagonal de la matriz $H = X(X'X)^{-1}X'$. Si h_i es amplio, entonces y_i tiene una gran influencia sobre las predicciones del MCO \hat{y}_i porque $\hat{y} = Hy$.
- El punto umbral que marca a los puntos leverage es 2(k/n)

Residuos Studentizados

 En algunos casos, la existencia de amplios residuos tendrán un efecto determinante sobre el cálculo de la desviación estandar del parámetro por lo que finalmente afectaria a la inferencia del parámetro.

Residuos Studentizados

- En algunos casos, la existencia de amplios residuos tendrán un efecto determinante sobre el cálculo de la desviación estandar del parámetro por lo que finalmente afectaria a la inferencia del parámetro.
- Una forma de detectar a los outliers es mediante el cálculo de los residuos studentizados, $r_i = \frac{\epsilon_i}{\sigma \sqrt{1-h_i}}$

Residuos Studentizados

- En algunos casos, la existencia de amplios residuos tendrán un efecto determinante sobre el cálculo de la desviación estandar del parámetro por lo que finalmente afectaria a la inferencia del parámetro.
- Una forma de detectar a los outliers es mediante el cálculo de los residuos studentizados, $r_i = \frac{\epsilon_i}{\sigma \sqrt{1-h_i}}$
- Aquellos valores que resulten mayores a 2 implicarán la existencia de outliers.

Medidas de Influencia

Cook's D

- Resulta deseable considerar tanto la ubicación del punto en el espacio X y la respuesta de la variable como medida de influencia.
- Cook (1977, 1979) sugiere usar una medida de la distancia cuadrática entre la estimación mínimo cuadrática basada sobre una estimación de n-puntos y las estimación de borrar el i-esimo punto.

$$D_i = \frac{\sum_{j=1}^n (\hat{y}_j - \hat{y}_{j(i)})^2}{kMSE}$$

$$D_i = rac{e_i^2}{kMSE} \left[rac{h_{ii}}{(1-h_{ii})^2}
ight]$$

$$D_{i} = \frac{(\hat{\beta}_{(i)} - \hat{\beta})'(X'X)(\hat{\beta}_{(i)} - \hat{\beta})}{(1+k)s^{2}}$$

• Los puntos de influencia son tomados para aquellas observaciones donde $D_i > 4/n$.

Medidas de Influencia

DFITS

 Welsch y Kuh (1977) introducen dos medidas de detección de los puntos de influencia

$$DFITS_i = r_i \sqrt{\frac{h_{ii}}{1 - h_{ii}}}$$

- \bullet Donde r_i es el residuo Studentizado.
- Se sugiere que los valores de los DFITS que superen los valores de $2\sqrt{k/n}$ serán clasificados como puntos de influencia.

Medidas de Influencia

Distancia Welsch

 Otra medida útil para detectar los puntos de influencia es basarse en las medidas de distancia de Welsch, cuyo calculo puede ser planteado de la siguiente manera.

$$W_i = DFITS_i \sqrt{rac{n-1}{1-h_{ii}}}$$

• Se sugiere que los valores de los Welsch que superen los valores de $3\sqrt{k}$ serán clasificados como puntos de influencia.

COVRATIO

 Belsley, Kuh y Welsch (1980) midieron los puntos de influencia de la i-esima observación considerandoel efecto de la matriz de varianza y covarianza de las estimaciones. La medida es el ratio de los determinantes de la matriz de covarianzas con y sin la i-esima observación.

$$COVRATIO_i = rac{1}{1-h_{ii}}(rac{n-k-\hat{\epsilon}_i^2}{n-k-1})^k$$

- Donde $\hat{\epsilon}_i$ es el residuo estandarizado.
- Para las observaciones que no son de influencia, el valor del COVRATIO es proximo a 1. Mayores valores del residuo o de los valores del leverage causaran desviaciones por lo que se sugiere que el punto de corte sea considerado a aquellos valores en los que $|covratio_i-1| \geq 3k/n$

DFBETA

 En estas medidas podemos identificar el parámetro asociado al punto de influencia.

DFBETAS_{j,i} =
$$\frac{(\hat{\beta}_j - \hat{\beta}_{j(i)})}{s_{(i)}^2 C_{jj}}$$

- Donde C_{ij} es el j-esimo elemento de la diagonal de $(X'X)^{-1}$.
- Para el punto de corte se considera aquellos valores por encima de 2/√(n) como influenciados.
- Una alternativa al calculo del DFBETA podría ser:

$$extit{DFBETA}_j = rac{r_j \mu_j}{\sqrt{U^2(1-h_{jj})}}$$

• Donde μ_j es el residuo obtenido de la regresión de x_i sobre los restantes X, y $U^2 = \sum_i \mu_i^2$.

