PROB 140

Spring 2021

WEEK 3 STUDY GUIDE

The Big Picture

This week is largely about two of the principal families of distributions: the binomial and the Poisson.

- Random samples often result in random counts, such as the number of voters who favor a candidate. The distribution of the count depends on the method of sampling.
- If the sample is a fixed number of i.i.d. success/failure trials, the distribution of the number of successes is *binomial*. The shape of the distribution can be understood by using consecutive odds ratios.
- In some situations, the binomial distribution is well approximated by a *Poisson* distribution. The Poisson is our first distribution on infinitely many values.
- Randomizing parameters can have dramatic effects on dependence and independence. A Poisson number of i.i.d. success/failure trials has beautiful and powerful properties.

Week At a Glance

Mon 2/1	Tue 2/2	Wed 2/3	Thu 2/4	Fri 2/5
	Instructor's Session		Instructor's Session	
		GSIs' Sessions		GSIs' Sessions
Checkpoint Week 3 (Due Wed 2/3)		Checkpoint Week 3 Due		
HW 2 Party 7PM HW 2 Due HW 3 (Due Mon 2/8)				
Lab 1B due Lab 2A (Due Mon 2/8)				Lab 2A Party 5PM
Skim 6.1 through 6.4	Read/watch 6.5, 6.6	Read Chapter 6	Skim 7.1, 7,2	Read Ch 7

Reading, Practice, and Live Sessions

Chapter	Topic	Live Sessions: Prof. A.	Live Sessions: GSIs	Recommended Practice
Ch 6	Binomial and its relatives - 6.1: a fixed number of i.i.d. success/failure trials; the number of successes has a binomial distribution - 6.2: examples you should read - 6.3 extends the binomial to the multinomial case where each trial has several possible outcomes, not two - 6.4 compares the number of successes when sampling with replacement (binomial) and the number of successes when sampling without replacement (hypergeometric) - 6.5 examines the shape of the binomial histogram, and identifies the mode, by studying odds ratios - 6.6 uses odds ratios to show that under some conditions the binomial has a Poisson limit	Tue 2/2 - Straightforward but important observations about success counts - Deeper dive into the math to explain what we see - An approximation, leading to a new class of distributions Checkpoint is based on Chapter 6	Wed 2/3 - Ch 6 Ex 2 - Lab 2A Part I: a new look at total variation distance - Ch 6 Ex 5	Chapter 6 1, 4, 11, 12
Ch 7	Poissonization - 7.1 has properties of the Poisson distribution - 7.2 asks the same questions as 6.1, but with a Poisson number of trials - 7.3 extends this to trials with more than two categories, analogous to 6.3	Thu 2/2 Poissonization: - Beautiful calculations with surprising results - Pay attention to the math because you'll need the methods again	Fri 2/5 Poisson approx and Poissonization: - Ch 6 Ex 10 - Ch 7 Ex 2 - Ch 7 Ex 8 Relations with other exercises	Chapter 7 3, 4, 5

Lab 2 is about measuring the quality of the Poisson approximation in 6.6.