Insurance Claim Status Prediction using ML Classification Models

Machine Learning 1, DS&BA, UW

Agenda

1	Project Objective	4	Feature Engineering

Exploratory Data Analysis (ÉDA)

Feature Selection

Models Consideration

Prediction

Project Objective

By training on the given sample, best algorithm should be found for predicting the travel insurance claim outcome (target variable claim_status: 1 – Approved / O – Not approved) on unseen data.

- Training Sample: 56993 observations including target variable
- Test Sample: 6333 observations without target variable
- 14 features in total including target variable

- No missing values and duplicates
- 3 numeric variables (revenue, reward, customer_score)
- 3 discrete variables (trip_length, person_age, support_interactions)
- 7 nominal variables (person_gender, entity_type, channel, agent_id, entity a, location, product id)
- 1 binary variable (claim_status)

The data is heavily imbalanced.

For trip length and person's age:

- Strongly right-skewed, especially for trip length
- Extreme outliers (e.g. max 4856 and min 1 for trip length).

Further binning and transformation have to be considered for modeling.

For commission values, net sales values and customer scores:

Unevenly distributed referring to claim status

Further transformation have to be considered for modeling.

For agent ID, entity type, entity ID, support interactions, gender and channel, it seems there are duplicated, meaningless and unimpactful variables to target.

For location:

- Over 140+ countries in observations
- Only 20+ being approved for claims
- Rare distributions (e.g. 11942 observed for Singapore and more than half are below 100 observed)

For insurance product:

- Around 20+ types in observations
- Rare distributions (e.g. 16795 for most popular choices but some plans are only few observed)
- Approval ratio is random

Train / Validation / Test split on training sample (insurance_train.csv)

Before feature selection & engineering:

- Train Set (60%), Validation Set (20%), and Internal Test Set (20%) split
- Avoid data leakage while feature selected and engineered based on train split only
- stratify = insurance['claim_status'] used to ensure all splits maintain the same proportion of Os and 1s
- Validation and interval testing helping better estimate of generalization and stable / reliable model on minority class

Feature Selection

Cramer's V for categorical target and categorical inputs:

- support_interactions -> nearly 0 importance to all
- entity_a, entity_type and agent_id -> identical, perfectly one-to-one and consistent (coefficient = 1)
- channel -> highly associated to product_id and entity (coefficient > 0.95) and 0 association to target

Feature Selection

<u>Variable</u>	p-value
<u>revenue</u>	2.986475e-140
<u>reward</u>	4.529682e-71
trip_length	6.592646e-42
customer_score	4.212666e-23
person_age	3.990284e-04

ANOVA for categorical target and continuous inputs:

All features are statistically significant.

In short, following variables will be removed:

entity_a
entity_type
channel
support_interactions

No zero values

Original skewness of trip_length: 23.84

Log Skewness: -0.01 Box-Cox Skewness (λ = 0.00): -0.00 Yeo-Johnson Skewness (λ = -0.07): 0.01

Log transformation is chosen.

Including zero values

Original skewness of reward: 3.97

Log Skewness: 0.67 Yeo-Johnson Skewness (λ = -0.42): 0.39

Yeo-Johnson transformation is chosen.

Including zero and negative values

Original skewness of revenue: 3.21

Yeo-Johnson Skewness (λ = 0.91): 1.33

Yeo-Johnson transformation is chosen.

Based on EDA, **Jenk's natural break** for person_age to 8 classes as ordinal (last group is merged with previous group due to small size)

Based on EDA, **frequency binning** as ordinal for location to 4 groups of popularity

Age binning	Counts	Encoded as
17.999, 26.0	2301	1
26.0, 32.0	4457	2
32.0, 36.0	10600	3
36.0, 42.0	7845	4
42.0, 51.0	4494	5
<u>51.0, 62.0</u>	2783	6
62.0, 100.0	1715	7

<u>Location</u> <u>binning</u>	Counts	Encoded as
Most popular	>= 1000	4
<u>Moderate</u> <u>popular</u>	>= 100	3
<u>Less popular</u>	>= 10	2
<u>Least popular</u>	<10	1
One-hot Encoding as Dummy	person_gender, agent_id, product_id (names with "Family" grouped as "Other" due to small size)	

Models Training

4 continuous variable, 2 ordinal variables, and 41 dummy variables

SVM

KNN

Logistic Reg. (Elastic Net)

- RBF
- Polynomial
- Linear

StandardScaler()

perform better if 0
mean and unit variance

MinMaxScaler()

 Deal with the sensitivity of distance in the same range [0, 1]

- L1 Lasso (1)
- L2 Ridge (0)

StandardScaler()

help with magnitude

To handle imbalance dataset, four sampling techniques are considered and only fit to training split.

Each model will try with each sampling techniques to compare the differences.

	SMOTE	SMOTETomek	Over Sampling	Under Sampling
•	Create synthetic samples for class 1	 Same functions as SMOTE 	 Undersample class 0 which will case severe info. Loss 	 Risk of overfitting
•	Keep class 0	 Clean overlapping samples from both classes 	Not good to	due to simple oversampling
•	Better generalization	Reduce noise in the decision boundary area	SVM/KNN if requires sufficient data	existing class 1
			Not preferred but	still add for comparison

Always apply the sampling method before scaling

Sampler

Preprocessor
Scaler + Remainder

Model

2. Add a preprocessor to ensure only the numeric features being scaled

- 3. Fit the models with modified grids
 - RandomizedSearchCV(): reduce computational time
 - StratifiedKFold(n = 5): ensure each fold has the same proportion of observations with target
 - Scoring = balanced accuracy (prioritized)

Using SMOTETomek:

0.74

0.75

Logistic Regression (Elastic Net)	KNN(SMOTE)	SVM(Poly)	SVM(Linear)	SVM (RBF)
Train:	Train:	Train:	Train:	Train:
- AUC: 0.82	- AUC: 0.82	- AUC: 0.82	- AUC: 0.81	- AUC: 0.81
Validation:	Validation	Validation:	Validation:	Validation:
- BA: 0.72	- BA: 0.71	- BA: 0.73	- BA: 0.73	- BA: 0.73
- AUC: 0.78	- AUC: 0.76	- AUC: 0.76	- AUC: 0.79	- AUC: 0.78
Expected Value for each model (mean cross-validated BA scores)				

0.75

0.75

0.75

By considering:

- Model overall stability
- Computational efficiency
- Scalability (data with heavy dummies and less numeric features)
- Interpretability
- Comparison of other metrics (Recall and F1-score for class 1)
- Risk of overfitting (prone to overfit minority class)

Final expected value / BA: 0.75

Selected model: **SVM (Linear)**

On Interval Test split:

- Train BA: 0.75
- Internal Test BA: 0.75
- Train AUC: 0.81
- Internal Test AUC: 0.80

Classification Report based on Test:				
	precision	recall	f1-score	support
0	0.99	0.84	0.91	11232
1	0.06	0.65	0.11	167
accuracy			0.84	11399
macro avg	0.53	0.75	0.51	11399
weighted avg	0.98	0.84	0.90	11399

Prediction

Based on same feature engineering methods and pipeline:

Predicted Claim Status	Counts	Ratio
<u>Class 0</u>	5266	83.15%
<u>Class 1</u>	1067	16.85%

THANK YOU