CLAIMS

What is claimed is:

1	1. A method of patterning a recording medium comprising:
2	selectively thermally coupling said recording medium and a heat source
3	alter a chemical composition of said recording medium.
1	2. The method according to claim 1, wherein said chemical composition is
2	altered according to a predetermined pattern.
1	3. The method according to claim 2, wherein said predetermined pattern
2	comprises one of concentric circles and parallel tracks.
1	4. The method according to claim 1, wherein altering said chemical
2	composition causes an altered magnetic order of said recording medium.
1	5. The method according to claim 1, wherein altering said chemical
2	composition causes an altered dielectric constant of said recording medium.

- 1 6. The method according to claim 5, wherein altering said dielectric
- 2 constant causes an altered reflectivity of said recording medium.
 - 7. The method according to claim 1, wherein altering said chemical

1

2

3

4

1

2

2	composition	causes ar	n altered	electrical	conductivity	of said	l recording	medium.
					•			

- 8. The method according to claim 7, wherein altering said electrical conductivity causes an altered electron transport property of said recording medium.
- The method according to claim 1, wherein altering said chemical
 composition causes an altered thermal conductivity of said recording medium.
 - 10. The method according to claim 1, further comprising: depositing said recording medium on a substrate.
 - 11. The method according to claim 1, wherein said selectively thermally coupling comprises selectively directing an incident thermal wave from said heat source to said recording medium to form a direct thermal coupling between said heat source and said recording medium.
 - 12. The method according to claim 1, wherein said medium comprises cobalt and chromium.
- 1 13. The method according to claim 1, wherein said substrate comprises one of glass, silicon, quartz, sapphire, AlMg and a ceramic substrate.

3

- 1 14. The method according to claim 1, wherein said heat source comprises one of a near-field thermal probe and a nanoheater.
- 1 15. The method according to claim 1, wherein said heat source physically contacts said recording medium.
- 1 16. The method according to claim 1, wherein said heat source is physically separated from said recording medium.
 - 17. The method according to claim 1, wherein said chemical composition is altered by one of interfacial mixing, interfacial reactions, selective oxidation, structural relaxation, phase segregation and phase change.
- 1 18. The method according to claim 1, wherein altering said chemical composition transforms said medium from a paramagnetic medium to a ferromagnetic medium.
- 1 19. The method according to claim 1, wherein altering said chemical composition transforms said medium from a ferromagnetic medium to a paramagnetic medium.

- 1 20. The method according to claim 1, wherein altering said chemical
- 2 composition alters a magnetic axis orientation of said medium.
- 1 21. The method according to claim 1, wherein altering said chemical
- 2 composition reduces at least one of magnetization and coercivity of said medium.
- 1 The method according to claim 1, wherein said selectively thermally 22.
- 2 coupling comprises selective near-field radiative coupling of blackbody radiation 3
- from said heat source to said recording medium.
- 1 The method according to claim 1, wherein said medium comprises 23.
- 2 Co_xCr_{1-x} , where x is in a range from 0.63 to 0.75.
- The method according to claim 1, wherein thermal energy is transferred 24.
- 2 to said medium by conductive heating.
- 1 The method according to claim 1, wherein thermal energy is transferred 25.
- 2 to said medium by radiative heating.
- 1 26. An apparatus for patterning a recording medium, comprising:
- 2 a heat source for generating and directing an incident thermal wave to a
- recording medium, said thermal wave altering a chemical composition of a 3

2

31.

4	recor	ding medium; and				
5		a controller for coordinating a mutual position of said incident thermal				
6	wave	wave and said recording medium so as to thermally couple said heat source and				
7	said r	said recording medium.				
1	27.	The apparatus according to claim 26, wherein said heat source comprises:				
2		a heating plate for developing a thermal energy field which couples said				
3	heat s	heat source to said recording medium; and				
4		a heat sink connected to said heating plate.				
1	28.	The apparatus according to claim 27, wherein said heating plate comprises				
2	a tip fo	or concentrating and directing a thermal energy.				
1	29.	The apparatus according to claim 27, further comprising:				
2		an optical waveguide coupled to said heat sink, for carrying a focused laser				
3	beam.					
1	30.	The apparatus according to claim 29, wherein said optical waveguide				
2	compri	comprises an optical fiber.				

comprises a planar optical waveguide.

The apparatus according to claim 29, wherein said optical waveguide

1	32. The apparatus according to claim 27, further comprising:				
2	a resistive heating element thermally coupled to said heat s	ink.			
1	33. The apparatus according to claim 26, wherein said heat sou	rce comprise			
2	an atomic force microscope probe.				
1	34. The apparatus according to claim 26, wherein said heat sou	rce comprises			
2	one of a nanoheater and a near-field thermal probe.				
1	35. The apparatus according to claim 26, wherein said controlle	r coordinates			
2	said mutual position of said incident thermal wave and said recording medium to				
3	induce a direct thermal coupling that subsumes at least one portion				
4	near-field.				
1	36. A read/write head assembly, comprising:				
2	a read/write head;				
3	a heat source connected to said read/write head for generatin	g and			
4	directing an incident thermal wave to a recording medium, said there				
5	altering a chemical composition of a recording medium; and				
6	a controller for coordinating a mutual position of said incider	nt thermal			
7	wave and said recording medium so as to thermally couple said heat	source and			
8	said recording medium.				

2

3

4

5

1

2

2

3

4

1	37.	The read/write head assembly according to claim 36, wherein heat source
2	compri	ses one of a nanoheater and a near field thermal probe.
1	38.	The read/write head assembly according to claim 36, wherein said

- 38. The read/write head assembly according to claim 36, wherein said chemical composition is altered according to a predetermined pattern, and wherein said heat source patterns said recording medium during a read/write operation of said read/write head assembly.
- 39. A patterned recording medium, comprising:

a substrate; and

a single layer medium formed on said substrate having a portion which has been patterned by altering a chemical composition of said medium using selective thermal coupling.

- 40. A method for manufacturing a patterned magnetic disk. comprising:

 depositing a recording medium on a substrate;

 selectively thermally coupling said recording medium and a heat source so
 as to alter a chemical composition of said recording medium, and

 depositing a protective coating on said recording medium.
- 41. A programmable storage medium tangibly embodying a program of machine-readable instructions executable by a digital processing apparatus to

- 3 perform a method for patterning a recording medium, said method comprising:
- 4 selectively thermally coupling said recording medium and a heat source to
- 5 alter a chemical composition of said recording medium.