6. 확률 표본과 추정

6.1 확률 표본과 중심 극한 정리

확률 표본 (Random Sample)

모집단을 구성하는 모든 구성원들이 표본으로 뽑힐 확률이 동일하게 되도록 추출한 표본

Random이란 무작위라는 의미, 모든 구성원이 뽑힐 확률이 동일하다는 것과 동일한 개념

6.1 확률 표본과 중심 극한 정리

중심 극한 정리 (Central Limit Theorem)

모집단의 분포를 모르는 경우, 모수의 추정량에 대한 확률계산이 불가했으나 모집단의 분포와 상관없이 표본 평균을 이용하면

정규 분포를 활용하여 확률의 계산이 가능

추정 (Estimation)

추정이라는 것은 모르는 것, 미지의 숫자, 모수 등이 이것일 것이라고 얘기해주는 것 통계학에서는 모르는 것을 추정하는 주제로는 점 추정, 구간 추정, 분포 추정으로 구분 6.2 점 추정

점 추정 (Point Estimation)

관심의 대상은 모수이며, 모수를 추정하는 통계량이 추정량이므로, 모수가 어떤 특정 값일 것이다라고 추정

6.2 점 추정

점 추정을 하는 추정량이 가져야 할 성질

불편성 (Unbiasedness) : $E(\hat{\theta}) = \theta$

최소 분산성 (Minimum Variance) : $\hat{\theta}$ 가 여러 개 있을 때 분산이 제일 작은 것을 선택

cf. 일반적으로 표본 평균이 대표값인 이유는 표본 평균은 불편 추정량을 만족하지만 중위수나 최빈값은 동일하지 않기 때문

구간 추정 (Interval Estimation)

모평균과 표본 평균이 일치할 확률은 매우 낮을 수 있으며 이를 보완하기 위해

특정 값이 아닌 일정 구간에 속할 확률로 표현할 필요가 있음

구간추정은 신뢰구간 (Confidence Interval)과 같은 의미

6.3 구간 추정

모수 θ 의 95% 신뢰구간이란?

크기가 동일한 100개의 서로 다른 표본에서 동일한 구간 계산 공식에 따라 100개의 신뢰구간을 구하면

이 가운데 95개의 신뢰구간이 모수 θ 를 포함한다는 것을 의미

$$P(a < \theta < b) = 0.95 = 95\%$$

신뢰구간 변환

$$1 - \alpha = P\left(-Z_{\frac{\alpha}{2}} < Z < Z_{\frac{\alpha}{2}}\right)$$

$$= P\left(-Z_{\frac{\alpha}{2}} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < Z_{\frac{\alpha}{2}}\right)$$

$$= P\left(-Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \bar{X} - \mu < Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$= P\left(\bar{X} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$