Bianca da Silva Dias Matrícula: 83278 Disciplina: INF110

Professor: André Santos

Relatório de resultados do cálculo de π utilizando séries infinitas em C++

O uso de séries infinitas possui inúmeras aplicações dentro da matemática. Dentre essas aplicações, diversos matemáticos nos apresentaram séries que, quanto maior o número de repetições, ela vai nos retornando um valor cada vez mais preciso do π . Sendo algumas convergindo mais rapidamente e outras, mais lentamente.

Nesse trabalho vamos apresentar uma comparação entre as séries de Euler, Leibniz e Wallis, observando a velocidade de sua convergência. O programa escrito em C++ foi pensado para calcular infinitamente cada uma dessas séries, de acordo com a quantidade desejada pelo usuário, porém ele estimará no máximo até a 10^a casa decimal do π. Aqui apresento o cálculo até a quinta casa decimal.

1 - Euler

Euler			
Termos	PI	Precisão	
1	2,4494897428		
5	2,9633877010		
7	3,0117739478	fixou o primeiro digito	
23	3,1006973014	fixou a primeira casa	
600	3,1400020270	fixou a segunda casa	
1611	3,1410000258	fixou a terceira casa	
10307	3,1415000081	fixou a quarta casa	
359857	3,1415900000	fixou a quinta casa	

Conforme podemos observar na tabela acima, a série de Euler só começa a nos estimar o valor de Pi a partir do sétimo termo, onde fixa o primeiro digito. No entanto, o conhecido 3,14 só aparece ao realizarmos o somatório 600 vezes. A quinta casa, formando o 3,14159 só surge após somarmos 359857 termos.

2 – Leibniz

Leibniz			
Termos	PI	Precisão	
1	2,6666666667		
5	2,9760461760		
6	3,2837384847	fixou o primeiro dígito	
26	3,1786170110	fixou a primeira casa	
626	3,1431875489	fixou a segunda casa	
2450	3,1411848233	fixou a terceira casa	
136121	3,1415853072	fixou a quarta casa	
376840	3,1415953072	fixou a quinta casa	

Ao iniciarmos a série de Leibniz, nos sentimos um tanto animados pois, no 6º termo, a série já nos da o primeiro digito do número Pi. Um termo a menos que observamos em Euler. No entanto, a partir da 1ª casa decimal já vemos que não é bem isso pois ele só se fixa no 26º termo. O 3,14 só aparece após 626º termo e a quinta casa decimal só aparece após somarmos 376.840 termos. Sendo essa a série que converge mais lentamente dentre as estudas aqui.

3 - Wallis

Wallis			
Termos	PI	Precisão	
1	2,6666666667		
5	3,0021759546	fixou o primeiro digito	
19	3,1015776340	fixou a primeira casa	
493	3,1400015713	fixou a segunda casa	
1325	3,1410001797	fixou a terceira casa	
8477	3,1415000099	fixou a quarta casa	
295970	3,1415900000	fixou a quinta casa	

Temos aqui a série que converge mais rapidamente que todas vistas até agora. Logo no quinto termo já temos o primeiro digito e ao repetir 19 vezes já temos a primeira casa decimal. O 3,14 aparece no 493º termo e a quinta casa se fixa ao repetir 295.970 vezes.

Assim, a série de Wallis foi a mais eficiente observada até a quinta casa do π . Se ela permanece assim, só poderíamos dizer se observássemos algumas centenas de casas decimais para tirarmos alguma conclusão.