2.8.12. cublasGemmEx()

```
cublasStatus t cublasGemmEx(cublasHandle t handle,
                           cublasOperation t transa,
                           cublasOperation t transb,
                           int m,
                           int n,
                           int k,
                           const void     *alpha,
const void     *A,
                           cudaDataType t Atype,
                           int lda,
                           const void *B,
                           cudaDataType t Btype,
                           int ldb,
                           const void *beta,
                           void *C,
                           cudaDataType t Ctype,
                           int ldc,
                           cudaDataType t computeType,
                            cublasGemmAlgo t algo)
```

This function is an extension of cublas<t>gemm that allows the user to individally specify the data types for each of the A, B and C matrices, the precision of computation and the GEMM algorithm to be run. Currently supported combinations of arguments are listed further down in this section.

$$C = \alpha \text{ op } (A) \text{ op } (B) + \beta C$$

where α and β are scalars, and A, B and C are matrices stored in column-major format with dimensions op (A) m $\times k$, op (B) k $\times n$ and C m $\times n$, respectively. Also, for matrix A

and op (B) is defined similarly for matrix B.

Param.	Memory	In/out	Meaning
handle		input	handle to the cuBLAS library context.
transa		input	operation op(A) that is non- or (conj.) transpose.
transb		input	operation op(B) that is non- or (conj.) transpose.
m		input	number of rows of matrix op(A) and C.
n		input	number of columns of matrix op(B) and C.

Param.	Memory	In/out	Meaning
k		input	number of columns of op(A) and rows of op(B).
alpha	host or device	input	scalar scaling factor for A*B; of same type as computeType.
A	device	input	<pre><type> array of dimensions lda x k with lda>=max(1,m) if transa == CUBLAS_OP_N and lda x m with lda>=max(1,k) otherwise.</type></pre>
Atype		input	enumerant specifying the datatype of matrix A.
lda		input	leading dimension of two-dimensional array used to store the matrix A.
В	device	input	<pre><type> array of dimension ldb x n with ldb>=max(1,k) if transa == CUBLAS_OP_N and ldb x k with ldb>=max(1,n) otherwise.</type></pre>
Btype		input	enumerant specifying the datatype of matrix B.
ldb		input	leading dimension of two-dimensional array used to store matrix B.
beta	host or device	input	scalar scaling factor for C; of same type as computeType. If beta==0, C does not have to be a valid input.
С	device	in/out	<pre><type> array of dimensions ldc x n with ldc>=max(1,m).</type></pre>
Ctype		input	enumerant specifying the datatype of matrix C.
ldc		input	leading dimension of a two-dimensional array used to store the matrix C.
computeType		input	enumerant specifying the computation type for cublasGemmEx.
algo		input	enumerant specifying the algorithm for cublasGemmEx.

Computation type supported by ${\tt cublasGemmEx}$ are listed below :

computeType
CUDA_R_16F

compu	ıte	Гуре
CUDA_	_R_	_32F
CUDA_	_R_	_32I
CUDA_	_R_	_64F
CUDA_	_C_	_32F
CUDA	_C_	64F

For CUDA_R_16F computation type the matrix types combinations supported by ${\tt cublasGemmEx}$ are listed below:

A	В	C	
CUDA_R_16F	CUDA_R_16F	CUDA_R_16F	

For CUDA_R_32I computation type the matrix types combinations supported by cublasGemmEx are listed below. This path is only supported with alpha, beta being either 1 or 0; A, B being 32-bit aligned; and lda, ldb being multiples of 4.

A	В	C
CUDA_R_8I	CUDA_R_8I	CUDA_R_32I

For CUDA_R_32F computation type the matrix types combinations supported by ${\tt cublasGemmEx}$ are listed below

A	В	C	
CUDA_R_16F	CUDA_R_16F	CUDA_R_16F	
CUDA_R_16F	CUDA_R_16F	CUDA_R_32F	
CUDA_R_8I	CUDA_R_8I	CUDA_R_32F	
CUDA_R_32F	CUDA_R_32F	CUDA_R_32F	

For CUDA_R_64F computation type the matrix types combinations supported by ${\tt cublasGemmEx}$ are listed below:

A		В			C			
CUDA_	_R_	64F	CUDA	_R_	64F	CUDA_	_R_	64F

For CUDA_C_32F computation type the matrix types combinations supported for ${\tt cublasGemmEx}$ are listed below:

A	В	C		
CUDA_C_8I	CUDA_C_8I	CUDA_C_32F		
CUDA_C_32F	CUDA_C_32F	CUDA_C_32F		

For CUDA_C_64F computation type the matrix types combinations supported by ${\tt cublasGemmEx}$ are listed below:

A	В	C	
CUDA_C_64F	CUDA_C_64F	CUDA_C_64F	

cublasGemmEx routine is run for the following algorithm.

CublasGemmAlgo_t	Meaning
CUBLAS_GEMM_DFALT	Apply Heuristics to select the GEMM algorithm
CUBLAS_GEMM_ALGO0 to CUBLAS_GEMM_ALGO13	Explicitly choose an algorithm
CUBLAS_GEMM_DEFAULT_MATRIX_MATH	Apply Heuristics to select the GEMM algorithm, while allowing the library to use multi-element dot product math operations if supported by hardware

The possible error values returned by this function and their meanings are listed below.

Error Value	Meaning
CUBLAS_STATUS_SUCCESS	the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED	the library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH	cublasCgemmEx is only supported for GPU with architecture capabilities equal or greater than 5.0
CUBLAS_STATUS_NOT_SUPPORTED	the combination of the parameters Atype, Btype and Ctype and the algorithm type, algo is not supported
CUBLAS_STATUS_INVALID_VALUE	the parameters m, n, k<0

Error Value	Meaning
CUBLAS_STATUS_EXECUTION_FAILED	the function failed to launch on the GPU

For references please refer to:

 $Read\ more\ at:\ \underline{http://docs.nvidia.com/cuda/cublas/index.html\#ixzz4hgK5yKE2}$

Follow us: @GPUComputing on Twitter | NVIDIA on Facebook