Re-cap of L16: basics of Sep of Vars for multi-dimensional PDE problems

2-D heat eqn, cold hom BC's u=0, hot IC u=F(x,y) problem:

$$u_t = u_{xx} + u_{yy}$$
 $0 \le x \le L$ $0 \le y \le H$

- Problem is homogeneous, dont need to cut anything, and will be able to use shortcut (no PDE-projection or IBP part needed)
- 1. SV trial solution $u_k(x,y,t)=f(x)g(y)h(t)$, separate variables
- 2. First, got $h(t) = ce^{-\lambda t}$ (no info on λ yet)
- 3. Next, can separate x's from y's, get $f_k(x)$ eig-fcns and $\mu_k=(k\pi/L)^2$
- 4. Finally, got eig-fcns for $g_m(y)$ and $\gamma_m=(m\pi/H)^2$
- 5. Then combining separation constants, get $\lambda_{k,m}=\mu_k+\gamma_m$ and overall soln is

$$u(x,y,t) = \sum_k \sum_m c_{k,m} e^{-\lambda_{k,m}t} \sin(k\pi x/L) \sin(m\pi y/H)$$

6. Last step: apply IC at t=0 to pick $c_{k,m}$ coefficients

$$F(x,y) = \sum_{k} \sum_{m} c_{k,m} \sin(k\pi x/L) \sin(m\pi y/H)$$

Multi-D expansion coefficients: version 1.0

1-D nested expansions: sum of sums, one variable at a time

$$F(x,y) = \sum_{m} \left(\sum_{k} c_{k,m} \sin(\frac{k\pi x}{L}) \right) \sin(\frac{m\pi y}{H})$$

$$= \sum_{m} A_{m}(x) \sin(\frac{m\pi y}{H}) \qquad A_{m}(x) = \sum_{k} c_{k,m} \sin(\frac{k\pi x}{L})$$

$$= \sum_{m} \left(\frac{2}{H} \int_{0}^{H} F(x,\tilde{y}) \sin(\frac{m\pi \tilde{y}}{H}) d\tilde{y} \right) \sin(\frac{m\pi y}{H})$$

$$A_{m}(x) = \sum_{k} c_{k,m} \sin(\frac{k\pi x}{L}) \qquad c_{k,m} = \frac{2}{L} \int_{0}^{L} A_{m}(x) \sin(\frac{k\pi x}{L}) dx$$

$$c_{k,m} = \frac{2}{L} \int_{0}^{L} \left(\frac{2}{H} \int_{0}^{H} F(x,y) \sin(\frac{m\pi y}{H}) dy \right) \sin(\frac{k\pi x}{L}) dx$$

$$c_{k,m} = \frac{4}{LH} \int_{0}^{L} \int_{0}^{H} F(x,y) \sin(\frac{m\pi y}{H}) \sin(\frac{k\pi x}{L}) dy dx$$

For 3-D, it would be like

$$F(x,y,z) = \sum_n \left(\sum_m \sum_k c_{k,m,n} \sin(k\pi x) \sin(m\pi y)\right) \sin(n\pi z)$$

with $A_{m{n}}(x,y)$ and $B_{m{m}m{n}}(x)$

Multi-D expansion coefficients: version 2.0 (MUCH better/shorter)

Multi-D eigenfcn expansion perspective: no need for slicing/nesting

$$F(x,y) = \sum_{m} \sum_{k} c_{k,m} \underbrace{\sin(\frac{k\pi x}{L}) \sin(\frac{m\pi y}{H})}_{k}$$
$$= \sum_{km} c_{km} \phi_{k,m}(x,y)$$

usual expansion, now with double integrals...

$$egin{array}{lll} c_{km} &=& rac{\langle \langle F(x,y),\phi_{km}
angle
angle}{\langle \langle \phi_{km},\phi_{km}
angle
angle} \ &=& rac{1}{||\phi_{km}||^2} \int_0^L \int_0^H F(x,y)\phi_{km}(x,y) \, dy dx \end{array}$$

With separation of variables, $\phi_{km}(x,y)=f_k(x)g_m(y)$ then

$$||\phi_{km}||^2 = ||f_k||^2 ||g_m||^2 = \frac{L}{2} \frac{H}{2}$$

Today's theme: SV can give single-variable ODE probs, but multi-var calc will give us powerful tools and a better handle on the bigger picture....

Overview: basics of Sep of Vars for multi-dimensional PDE problems

- 1. SV for PDE problems with N-independent variables yields solns with N-1 separation constants
- 2. CANNOT make an eigenvalue problem in time: t has only IC's not BC's [space-time sep const (and dynamics) controlled by spatial eigenmodes]
- 3. Sums will only use the indices for spatial modes (f_n,g_m)
- 4. Shortcut: If $\sigma \equiv 1$ then Strict (one var at a time) SV \implies "simultaneous SV":

If can write separated PDE
$$\implies$$
 $H(t) = F(x) + G(y) + E(z)$

Then can write each term as a sep const, $H=\lambda$, $F=lpha,G=eta,\cdots$

5. For directions/variables with homogeneous BC's, pick sep const to make the separated ODE BVP an eigenvalue problem to determine specific α_n eig-values

$$rac{L_x f(x)}{\sigma_x(x) f(x)} = lpha \qquad \Longrightarrow \qquad L_x f_n = -\lambda_n \sigma_x f_n \qquad ext{for } lpha = -\lambda_n \sigma_x f_n$$

6. $u=\sum_k c_k \phi_k$, c_k const coeffs determined by orth projection of IC's onto ϕ_k 's

$$c_k = rac{\langle \langle F(x,y), \phi_k
angle
angle_\sigma}{\langle \langle \phi_k, \phi_k
angle
angle_\sigma} = rac{1}{||f_n||^2_{\sigma_x} ||g_m||^2_{\sigma_x}} \iint_D F f_n g_m \sigma_x \sigma_y \, dy \, dx$$

(H Ch 7.3)

$$u_{tt} = u_{xx} + u_{yy}$$
 \rightarrow $fgh'' = f''gh + fg''h$

Separate variables

$$rac{h''}{h}=rac{f''}{f}+rac{g''}{g} \qquad
ightarrow \qquad rac{d^2h}{dt^2}=lpha h, \qquad rac{d^2f}{dx^2}=-eta f, \qquad rac{d^2g}{dy^2}=-\gamma g.$$

Solve ODE BVP eigenvalue problems

$$f_n(x)=\sin(n\pi x/L)$$
 with $\beta_n=(n\pi/L)^2$, then $g_m(y)=\sin(m\pi y/H)$ with $\gamma_m=(m\pi/H)^2=-\alpha-\beta$ Then get $\alpha_{n,m}=-\beta_n-\gamma_m<0$. Let $\alpha=-\omega^2$ for

$$h_{nm}(t) = A_{nm}\cos(\omega_{nm}t) + B_{nm}\sin(\omega_{nm}t)$$

So re-assembled full soln is

$$u(x,y,t) = \sum_n \sum_m [A_{nm}\cos(\omega_{nm}t) + B_{nm}\sin(\omega_{nm}t)]f_n(x)g_m(y)$$

Then use IC's

IC:
$$u(x,y,0)=F(x,y)=\sum_{n,m}A_{nm}\phi_{nm}$$
 $ightarrow$ $A_{nm}=rac{\langle F,\phi_{nm}
angle}{LH/4}$

IC:
$$\partial_t u(x,y,0) = G(x,y) = \sum_{n,m} \omega_{nm} B_{nm} \phi_{nm} \quad o \quad B_{nm} = \frac{\langle G,\phi_{nm} \rangle}{\omega_{nm} LH/4}$$

More background for multi-dimensional PDE problems

ullet A linear homogeneous PDE for u(x,y,t) is separable if substituting

$$u_k(x, y, t) = f(x)g(y)h(t)$$

separates the PDE into three ODE's for f(x), g(y), and h(t) then the equation(part 1) is separable (formally separable).

- Separable BC's(part 2) depend on having **separable domains**, where each part of the boundary has one variable being constant on each edge.
- The whole problem is a **fully** separable PDE problem if the equation **and** the BC's are separable to give ODE sub-problems with simple BC's for each of the ODE problems.

Example: Solving $u_t = u_{xx} + u_{yy}$ The PDE is formally separable since

(with
$$\alpha = -\beta - \gamma$$
)

$$rac{h'}{h}=rac{f''}{f}+rac{g''}{g} \qquad
ightarrow \qquad rac{dh}{dt}=lpha h, \qquad rac{d^2f}{dx^2}=-eta f, \qquad rac{d^2g}{dy^2}=-\gamma g.$$

But this soln also depends on the shape of the (x,y) domain of the problem...

Ex: Here we used rectangle $[0 \le x \le L] \times [0 \le y \le H]$ being separable.

Background for multi-dimensional PDE problems (cont)

 Even if full separation is not possible, partial separation can still work. Can try to separate time from space variables (Haberman Chapter 7.2):

$$u_k(x, y, t) = \phi(x, y)h(t)$$

ullet Example: Solving $u_t =
abla^2 u$ becomes

$$\phi(x,y) \frac{dh}{dt} = h(t) \nabla^2 \phi(x,y)$$

$$rac{1}{h(t)}rac{dh}{dt}=rac{
abla^2\phi(x,y)}{\phi(x,y)}=-\lambda$$

so separation yields the ODE in time $oldsymbol{t}$

[space-time sep const $\lambda = \mathsf{PDE}$ eigval]

$$rac{dh}{dt} = -\lambda h \qquad
ightarrow h(t) = Ce^{-\lambda t}$$

and PDE problem: $\left| oldsymbol{
abla}^2 \phi = - \lambda \phi \right|$ called the $\left| oldsymbol{\mathsf{Helmholtz}} \right|$ (eigenvalue) eqn.

Brief intro to Dynamics: If ANY u_k mode present in soln has h(t) that grows in time, then system is **unstable**. If $\underline{\mathsf{ALL}}\ h(t)$'s decay then sys is **stable**.

If the domain is separable, then solns can be worked out in formulas, but what's always true: linear theory framework still applies even if $\phi(x,y)$ eigenfunctions have to be computed numerically...

The Helmholtz eigenvalue PDE $abla^2\phi = -\lambda\phi$

Problems leading to the Helmholtz equation:

- ullet Multi-D version of ${
 m L}u\equiv d^2u/dx^2$ operator and $\phi^{\prime\prime}(x)=-\lambda\phi(x)$ eigen eqn
- ullet Separation of space/time variables $u(\vec{\mathbf{x}},t)=\phi(\vec{\mathbf{x}})h(t)$ in the heat equation (Haberman 7.2) and wave equation (H 7.2, H 8.5)

$$\partial_t u = \nabla^2 u + S(\vec{x}, t)$$
 $\partial_{tt} u = \nabla^2 u + S(\vec{x}, t)$

Poisson equation (Haberman 8.6)

$$\nabla^2 u = S(\vec{\mathbf{x}})$$

Extension of linear operator theory to 2-D (a brief review of multi-variable calculus)^a

$$L^2$$
 inner product (in 2-D) : $\langle f(x,y),g(x,y)
angle \equiv \iint_D f(x,y)g(x,y)\,dy\,dx$

1-D domain: interval a < x < b

boundary = endpoints: x = a, x = b

2-D domain: region D in xy plane

boundary = closed curve C (counter-clockwise)

3-D domain: region in xyz space

boundary = closed surface S

^aAlso see the Vector Calculus review sheet

Definition of the adjoint operator (adjoint relation) $|\langle v, Lu \rangle = \langle L^*v, u \rangle|$

$$\overline{\langle v, \mathrm{L} u
angle = \langle \mathrm{L}^* v, u
angle}$$

1-D via Integration by Parts and eliminating the boundary terms

$$\int_a^b vu'' dx = (vu' - v'u) \Big|_a^b + \int_a^b v''u dx$$

Q: 2-D equivalent of IBP for $L = \nabla^2$? A: Derived from the Divergence Theorem **Divergence Theorem**: For any smooth vector fcn $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$

 $\left| \oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \nabla \cdot \mathbf{F} \, dA \right| = \iint_D \left[\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial u} \right] dy \, dx$

where $oldsymbol{C}$ is the boundary curve around domain $oldsymbol{D}$ and ${f n}$ is the unit-vector $\perp C$ pointing out of ${f D}$ (the unit outer normal)

1. Pick $\mathbf{F_1} = v(x,y)\nabla u(x,y)$, then $\nabla \cdot \mathbf{F_1}$ on the RHS is

$$\nabla \cdot \mathbf{F}_1 = \nabla \cdot (v \nabla u) = \underline{\nabla v \cdot \nabla u} + v \nabla^2 u$$

2. Pick $\mathbf{F_2} = u(x,y) \nabla v(x,y)$, then $\nabla \cdot \mathbf{F_2}$ on the RHS is

$$abla \cdot \mathbf{F_2} =
abla \cdot (u
abla v) = \underline{\nabla u \cdot \nabla v} + u
abla^2 v$$

3. Pick $\mathbf{F} = \mathbf{F_1} - \mathbf{F_2}$ and plug into Div Thm:

to get what is called "Green's second identity" (Haberman eqn 7.5.7, p 289):

$$\left|\oint_C \left(v
abla u - u
abla v
ight) \cdot \mathrm{n} \, ds = \iint_D \left(v
abla^2 u - u
abla^2 v
ight) \, dA
ight|$$

Re-arrange, IBP-like and match up to adjoint relation for $\mathbf{L} \equiv \nabla^2$:

$$\underbrace{\iint_D v \nabla^2 u \, dA}_{ \langle v, \mathbf{L} u \rangle_{\mathbf{2}}} = \underbrace{\oint_C \left(v \nabla u - u \nabla v \right) \cdot \mathbf{n} \, ds}_{ \text{boundary terms}} + \underbrace{\iint_D u \nabla^2 v \, dA}_{ \langle u, \mathbf{L}^* v \rangle_{\mathbf{2}}}$$

Conclusion #1: The Laplacian operator is formally self-adjoint.

Boundary terms: $\mathbf{n} \cdot \mathbf{\nabla} f$ is the <u>directional derivative</u> in the normal direction, also called

the "Neumann derivative":
$$\dfrac{\partial f}{\partial n} \equiv \mathbf{n} \cdot \mathbf{\nabla} f$$
, so bdry terms $\left| \oint_C \left(v \dfrac{\partial u}{\partial n} - u \dfrac{\partial v}{\partial n} \right) \; ds \right|$.

Conclusion #2: ∇^2 with hom. Dir./Neu./Rob. BC's is fully self-adjoint on any D.

Sturm-Liouville-type results for $abla^2\phi=-\lambda\phi$ on any finite domain D

- 1. λ 's are real
- 2. λ_k are discrete and $\lambda_k \to \infty$ (multiple roots possible (symmetry of D's shape))
- 3. $\phi_k(x,y)$ are a complete self-orthogonal basis in weighted inner prod with $\sigma \equiv 1$

$$F(x,y) = \sum_{"k"} c_k \phi_k(x,y)$$
 $c_k = rac{\langle F,\phi_k
angle_\sigma}{||\phi_k||^2_\sigma}$ " k " multi-index $=(m,n)$

4. To show $\lambda \geq 0$, take inner product of $\nabla^2 \phi = -\lambda \phi$ with ϕ

$$\langle \phi, \nabla^2 \phi \rangle \ = \ -\lambda \langle \phi, \phi \rangle$$

$$\iint_D \phi \nabla^2 \phi \, dA \ = \ -\lambda ||\phi||^2 \quad \text{product rule}$$

$$\underbrace{\iint_D \nabla \cdot (\phi \nabla \phi) \, dA - \iint_D \nabla \phi \cdot \nabla \phi \, dA}_{D} \ = \ -\lambda ||\phi||^2 \quad uv' = (uv)' - u'v$$

$$\oint_C \phi \left(\nabla \phi \cdot \mathbf{n} \right) \, ds - ||\nabla \phi||^2 \ = \ -\lambda ||\phi||^2 \quad \text{Div. Thm.}$$

$$\left(||\nabla \phi||^2 - \oint_C \phi \frac{\partial \phi}{\partial n} \, ds \right) \Big/ ||\phi||^2 \right) \ = \ \lambda \quad \underline{\text{Rayleigh quotient}}$$

 $\lambda \geq 0$ for Dirichlet $(\phi = 0)$ or Neumann $(\partial \phi/\partial n = 0)$ BC's (H, Ch 7.6)