Review of vector terms

- ▶ A *D*-vector over \mathbb{F} is a function with domain *D* and co-domain \mathbb{F} . \mathbb{F} must be a field.
- ▶ The set of such vectors is written \mathbb{F}^D (recall from *The Function*)
- ▶ An *n*-vector over \mathbb{F} is a function with domain $\{0, 1, 2, ..., n-1\}$ and co-domain \mathbb{F} . Can also represent as an *n*-element list.

Vector algebraic properties

Addition

- ► Addition is associative: (u + v) + w = u + (v + w)
- ▶ Addition is commutative: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

Scalar-vector multiplication

► Scalar-vector multiplication is associative: $(\alpha \beta) \mathbf{v} = \alpha (\beta \mathbf{v})$

Both addition and scalar-vector multiplication

► Scalar-vector multiplication distributes over addition: $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$

Dot-product

- ▶ Dot-product is commutative: $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- **▶ Dot-product is homogeneous:** $(\alpha \mathbf{u}) \cdot \mathbf{v} = \alpha (\mathbf{u} \cdot \mathbf{v})$
- ▶ Dot-product distributes over addition: $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

Solving a triangular system of linear equations

How to find solution to this linear system?

Write
$$\mathbf{x} = [x_1, x_2, x_3, x_4]$$
. System becomes

Solving a triangular system of linear equations: Backward substitution

Solution strategy:

- ▶ Solve for x_4 using fourth equation.
- ▶ Plug value for x_4 into third equations and solve for x_3 .
- ▶ Plug values for x_4 and x_3 into second equation and solve for x_2 .
- ▶ Plug values for x_4, x_3, x_2 into first equation and solve for x_1 .

The Vector Space

[3] The Vector Space

Linear Combinations

is a *linear combination* of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$.

An expression

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$$

The scalars $\alpha_1, \ldots, \alpha_n$ are the *coefficients* of the linear combination.

The scalars $\alpha_1, \ldots, \alpha_n$ are the *coefficients* of the linear combination.

Example: One linear combination of [2, 3.5] and [4, 10] is
$$-5 [2, 3.5] + 2 [4, 10]$$

which is equal to
$$[-5 \cdot 2, -5 \cdot 3.5] + [2 \cdot 4, 2 \cdot 10]$$

Another linear combination of the same vectors is

which is equal to the zero vector [0,0].

$$0[2, 3.5] + 0[4, 10]$$

Definition: A linear combination is *trivial* if the coefficients are all zero.

Linear Combinations: JunkCo

The JunkCo factory makes five products:

using various resources.

	metal	concrete	plastic	water	electricity
garden gnome	0	1.3	0.2	8.0	0.4
hula hoop	0	0	1.5	0.4	0.3
slinky	0.25	0	0	0.2	0.7
silly putty	0	0	0.3	0.7	0.5
salad shooter	0.15	0	0.5	0.4	8.0

For each product, a vector specifying how much of each resource is used per unit of product.

For making one gnome:

 $\mathbf{v}_1 = \{ \text{metal:0, concrete:1.3, plastic:0.2, water:.8, electricity:0.4} \}$

Linear Combinations: JunkCo

For making one gnome:

 $\mathbf{v}_1 = \{ \text{metal:0, concrete:1.3, plastic:0.2, water:0.8, electricity:0.4} \}$ For making one hula hoop:

 $\mathbf{v}_2 = \{ \text{metal:0, concrete:0, plastic:1.5, water:0.4, electricity:0.3} \}$

For making one slinky:

 $\mathbf{v}_3 = \{\text{metal: 0.25, concrete: 0, plastic: 0, water: 0.2, electricity: 0.7} \}$ For making one silly putty:

 $\mathbf{v}_4 = \{ \text{metal:0, concrete:0, plastic:0.3, water:0.7, electricity:0.5} \}$

For making one salad shooter:

 $\mathbf{v}_5 = \{ \text{metal:1.5, concrete:0, plastic:0.5, water:0.4, electricity:0.8} \}$

Suppose the factory chooses to make α_1 gnomes, α_2 hula hoops, α_3 slinkies, α_4 silly putties, and α_5 salad shooters.

Total resource utilization is $\mathbf{b} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5$

Linear Combinations: JunkCo: Industrial espionage

Total resource utilization is $\mathbf{b} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5$

Suppose I am spying on JunkCo.

I find out how much metal, concrete, plastic, water, and electricity are consumed by the factory. That is, I know the vector \mathbf{b} . Can I use this knowledge to figure out how many gnomes they are making?

Computational Problem: Expressing a given vector as a linear combination of other given

vectors

- ▶ input: a vector **b** and a list $[\mathbf{v}_1, \dots, \mathbf{v}_n]$ of vectors
- output: a list $[\alpha_1, \dots, \alpha_n]$ of coefficients such that $\mathbf{b} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$ or a report that none exists.

Question: Is the solution unique?

Lights Out

Button vectors for 2 × 2 *Lights Out*:

For a given initial state vector $\mathbf{s} = \begin{bmatrix} \bullet \\ \bullet \end{bmatrix}$, Which subset of button vectors sum to \mathbf{s} ?

Reformulate in terms of linear combinations.

Write

$$= \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_4$$

What values for $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ make this equation true?

Solution: $\alpha_1 = 0, \alpha_2 = 1, \alpha_3 = 0, \alpha_4 = 0$

Solve an instance of *Lights Out*

Find subset of
$$GF(2)$$
 vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ whose sum equals \mathbf{s}

ctors
$$\Rightarrow$$
 Express \mathbf{s} as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_n$

Which set of button vectors sum to **s**?

Lights Out

We can solve the puzzle if we have an algorithm for

Computational Problem: Expressing a given vector as a linear combination of other given vectors

Span

Definition: The set of all linear combinations of some vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ is called the *span* of these vectors

Written Span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$.

Span: Attacking the authentication scheme

If Eve knows the password satisfies

$$\mathbf{a}_1 \cdot \mathbf{x} = \beta_1$$

 \vdots
 $\mathbf{a}_m \cdot \mathbf{x} = \beta_m$

Then she can calculate right response to any challenge in Span $\{a_1, \ldots, a_m\}$:

Proof: Suppose
$$\mathbf{a} = \alpha_1 \mathbf{a}_1 + \cdots + \alpha_m \mathbf{a}_m$$
. Then

Proof: Suppose
$$\mathbf{a} = \alpha_1 \, \mathbf{a}_1 + \cdots + \alpha_m \, \mathbf{a}_m$$
. Then

Suppose
$$\mathbf{u} = u_1 \mathbf{u}_1 + \dots + u_m \mathbf{u}_m$$
. Then

$$\mathbf{a} \cdot \mathbf{x} = (\alpha_1 \, \mathbf{a}_1 + \dots + \alpha_m \, \mathbf{a}_m) \cdot \mathbf{x}$$

= $\alpha_1 \, \mathbf{a}_1 \cdot \mathbf{x} + \dots + \alpha_m \, \mathbf{a}_m \cdot \mathbf{x}$ by distributivity

$$= \alpha_1 (\mathbf{a}_1 \cdot \mathbf{x}) + \dots + \alpha_m (\mathbf{a}_m \cdot \mathbf{x})$$
$$= \alpha_1 \beta_1 + \dots + \alpha_m \beta_m$$

by homogeneity

Question: Any others? Answer will come later.

Span: GF(2) vectors

Quiz: How many vectors are in Span $\{[1,1],[0,1]\}$ over the field GF(2)?

Answer: The linear combinations are

$$egin{aligned} 0\,[1,1] + 0\,[0,1] &= [0,0] \ 0\,[1,1] + 1\,[0,1] &= [0,1] \ 1\,[1,1] + 0\,[0,1] &= [1,1] \ 1\,[1,1] + 1\,[0,1] &= [1,0] \end{aligned}$$

Thus there are four vectors in the span.

Span: GF(2) vectors

Question: How many vectors in Span $\{[1,1]\}$ over GF(2)?

Answer: The linear combinations are

$$0[1,1] = [0,0]$$

 $1[1,1] = [1,1]$

Thus there are two vectors in the span.

Question: How many vectors in Span {}?

Answer: Only one: the zero vector

Question: How many vectors in Span $\{[2,3]\}$ over \mathbb{R} ?

Answer: An infinite number: $\{\alpha[2,3] : \alpha \in \mathbb{R}\}$ Forms the line through the origin and (2,3).

Generators

Definition: Let \mathcal{V} be a set of vectors. If $\mathbf{v}_1, \dots, \mathbf{v}_n$ are vectors such that

 $\mathcal{V} = \mathsf{Span} \; \{ \mathbf{v}_1, \dots, \mathbf{v}_n \} \; \mathsf{then}$

- we say $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a *generating set* for \mathcal{V} ;
- we refer to the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ as generators for \mathcal{V} .

Example: $\{[3,0,0],[0,2,0],[0,0,1]\}$ is a generating set for \mathbb{R}^3 .

- **Proof:** Must show two things:
 - 1. Every linear combination is a vector in \mathbb{R}^3 .
 - 2. Every vector in \mathbb{R}^3 is a linear combination.

First statement is easy: every linear combination of 3-vectors over \mathbb{R} is a 3-vector over \mathbb{R} , and \mathbb{R}^3 contains all 3-vectors over \mathbb{R} .

Proof of second statement: Let [x, y, z] be any vector in \mathbb{R}^3 . I must show it is a linear combination of my three vectors....

$$[x, y, z] = (x/3)[3, 0, 0] + (y/2)[0, 2, 0] + z[0, 0, 1]$$

Generators

Claim: Another generating set for \mathbb{R}^3 is $\{[1,0,0],[1,1,0],[1,1,1]\}$

Another way to prove that every vector in \mathbb{R}^3 is in the span:

- We already know $\mathbb{R}^3 = \text{Span } \{[3,0,0],[0,2,0],[0,0,1]\},$
- ▶ so just show [3,0,0], [0,2,0], and [0,0,1] are in Span $\{[1,0,0],[1,1,0],[1,1,1]\}$

Why is that sufficient?

- ightharpoonup We already know any vector in \mathbb{R}^3 can be written as a linear combination of the old vectors.
- ▶ We know each old vector can be written as a linear combination of the new vectors.
- ▶ We can convert a linear combination of linear combination of new vectors into a linear combination of new vectors.

Generators

We can convert a linear combination of linear combination of new vectors into a linear combination of new vectors.

• Write [x, y, z] as a linear combination of the old vectors:

$$[x, y, z] = (x/3)[3, 0, 0] + (y/2)[0, 2, 0] + z[0, 0, 1]$$

▶ Replace each old vector with an equivalent linear combination of the new vectors:

$$[x, y, z] = (x/3) (3[1, 0, 0]) + (y/2) (-2[1, 0, 0] + 2[1, 1, 0])$$

 $+ z (-1[1, 1, 0] + 1[1, 1, 1])$

Multiply through, using distributivity and associativity:

$$[x, y, z] = x[1, 0, 0] - y[1, 0, 0] + y[1, 1, 0] - z[1, 1, 0] + z[1, 1, 1]$$

► Collect like terms, using distributivity:

$$[x, y, z] = (x - y)[1, 0, 0] + (y - z)[1, 1, 0] + z[1, 1, 1]$$

Solving a triangular system of linear equations: Backward substitution

$$1x_3 = -4 - 5x_4 = -4 - 5(3) = -19$$

so $x_3 = -19/1 = -19$

$$3x_2 = 3 - 3x_3 - 2x_4$$

so $x_4 = 6/2 = 3$

$$1x_3 = -4 - 5x_4 = -4 - 5(3) = -19$$

so $x_3 = -19/1 = -19$
 $3x_2 = 3 - 3x_3 - 2x_4 = 3 - 2(3) - 3(-19) = 54$
so $x_2 = 54/3 = 18$

$$1x_1 = -8 - 0.5x_2 + 2x_3 - 4x_4 = -8 - 4(3) + 2(-19) - 0.5(18) = -67$$

so $x_1 = -67/1 = -67$

Backsub Quiz

Use Back Substitution to solve the following triangular system of linear equations.

$$\begin{array}{rclrcrcr}
2x_1 & + & 2x_2 & - & 6x_3 & = & 0 \\
& & -5x_2 & + & 4x_3 & = & 7 \\
& & & 2x_3 & = & 1
\end{array}$$

Solving a triangular system of linear equations: Backward substitution Hack to implement backward substitution using vectors:

- Initialize vector x to zero vector.
- Procedure will populate x entry by entry.
- ▶ When it is time to populate x_i , entries $x_{i+1}, x_{i+2}, \dots, x_n$ will be populated, and other entries will be zero.
- ► Therefore can use dot-product:

return x

```
• Suppose you are computing x_2 using [0, 3, 3, 2] \cdot [x_1, x_2, x_3, x_4] = 3
```

• So far, vector
$$\mathbf{x} = [x_1, x_2, x_3, x_4] = [0, 0, -19, 3].$$

▶
$$x_2 := (3 - ([0,3,3,2] \cdot x))/3$$
 def triangular_solve(rowlist, b):

x = zero_vec(rowlist[0].D)
for i in reversed(range(len(rowlist))):
 x[i] = (b[i] - rowlist[i] * x)/rowlist[i][i]

Solving a triangular system of linear equations: Backward substitution

```
def triangular_solve(rowlist, b):
    x = zero_vec(rowlist[0].D)
    for i in reversed(range(len(rowlist))):
        x[i] = (b[i] - rowlist[i] * x)/rowlist[i][i]
    return x
```

Observations:

- ▶ If rowlist[i][i] is zero, procedure will raise ZeroDivisionError.
- ▶ If this never happens, solution found is the *only* solution to the system.

Solving a triangular system of linear equations: Backward substitution

```
def triangular_solve(rowlist, b):
    x = zero vec(rowlist[0].D)
    for i in reversed(range(len(rowlist))):
        x[i] = (b[i] - rowlist[i] * x)/rowlist[i][i]
    return x
Our code only works when vectors in rowlist have domain D = \{0, 1, 2, \dots, n-1\}.
For arbitrary domains, need to specify an ordering for which system is "triangular":
def triangular_solve(rowlist, label_list, b):
    x = zero vec(set(label list))
    for r in reversed(range(len(rowlist))):
        c = label list[r]
        x[c] = (b[r] - x*rowlist[r])/rowlist[r][c]
    return x
```