STAINLESS STEI	EL POWDER FOR SINTERING	
Patent Number:	JP7242903	
Publication date:	1995-09-19	
Inventor(s):	KONO TOMIO; others: 02	
Applicant(s):	DAIDO STEEL CO LTD	
Requested Patent:	□ <u>JP7242903</u>	
Application Number:	JP19940074616 19940413	
Priority Number(s):		
IPC Classification:	B22F1/00; C22C38/00; C22C38/48	
EC Classification:		
Equivalents:	JP3555165B2	
	Abstract	-
consisting of an auste CONSTITUTION: Ni phase+martensite pha compsn. contg. <=0.5	ce stainless steel powder improved in sinterability by adding a specific ratio of Nb to a stainless steel enter phase or austenite phase+martensite phase as a main phase and pulverizing this stainless steel, so thin is added at 0.01 to 2.0% to the stainless steel consisting of the austenite phase, austenite use or the martensite phase as the main phase and this stainless steel is pulverized. The steel sheet has a 5%C, 32.0% Si, <=2.0% Mn, 9.5 to 21.5% Ni and 11.5 to 26.0% Cr and the balance substantially Fe. As a y of the stainless steel is improved and the steel powder which yields products having a higher sintering	

Data supplied from the esp@cenet database - 12

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-242903

(43)公開日 平成7年(1995)9月19日

(51) Int.CL*	識別配号 庁内整理番号	FI	技術表示箇所
B 2 2 F 1/00	T		
C 2 2 C 38/00	304		
38/48		,	

審査請求 未請求 請求項の数7 OL (全 6 頁)

			•
(21)出願番号	特顏平6-74616	(71)出願人	000003713
	,		大同特殊解株式会社
(22)出願日	平成6年(1994)4月13日		愛知県名古屋市中区錦一丁目11番18号
		(72)発明者	河野 富夫
(31)優先権主張番号	特顏平6-1773		愛知県名古屋市天白区土原3-905-2
(32) 優先日	平6 (1994) 1 月12日	(72)発明者	近藤 鉄也
(33)優先権主張国	日本 (JP)		愛知県名古屋市中川区戸田4-1809
		(72)発明者	山本 知己
			愛知県東海市加木屋町南鹿持18
		(74)代理人	弁理士 須賀 総夫
	•		

(54) 【発明の名称】 焼結用ステンレス鋼粉末

(57)【要約】

件を緩和することができる。

:【構成】 オーステナイト相またはオーステナイト相+ マルテンサイト相を主相とする焼結用のステンレス鋼粉 末において、適量のNbを添加した鋼を材料とする。 【効果】 焼結性が改善されたステンレス鋼粉末が得ら れ、より高い焼結密度が実現し、焼結部品の性能が向上 する。 または、従来と同じ焼結製品を得るのに焼結条

【特許請求の範囲】

【請求項1】 オーステナイト相、オーステナイト相+ マルテンサイト相またはマルテンサイト相を主相とする ステンレス鋼に対してNb:0.01~2.0%を添加し て粉末化して成る、焼結性を改善した焼結用ステンレス 鋼粉末。

【請求項2】 ステンレス鋼が、C:0.5%以下、S i:2.0%以下、Mn:2.0%以下、Ni:9.5 ~21.5%およびCr:11.5~26.0%を含有 し、残部が実質上Feである請求項1の焼結用ステンレ 10 ス鋼粉末。

【請求項3】 ステンレス鋼が、C:0.03%以下、 Si:2.0%以下、Mn:2.0%以下、Ni:3. 0~22.0%、Cr:16.0~28.0%およびM o:1.0~3.0%を含有し、残部が実質上Feであ る請求項1の焼結用ステンレス鋼粉末。

【請求項4】 ステンレス鋼が、C:0.03%以下、 Si:2.0%以下、Mn:2.0%以下、Ni:3... 0~11.5%、Cr:15.5~20.0%およびC る請求項1の焼結用ステンレス鋼粉末。

【請求項5】 ステンレス鋼が、C:0.03%以下、 Si:2.0%以下、Mn:2.0%以下、Ni:9. 5~11.5%、Cr:18.5~20.0%およびS n:0.5~1.0%を含有し、残部が実質上Feであ る請求項1の焼結用ステンレス鋼粉末。

【請求項6】 ステンレス鋼が、C:0.03%以下、 Si:2.0%以下、Mn:2.0%以下、Ni:1 2. 0~14. 0%, Cr:16. 0~18. 0%, S 含有し、残部が実質上Feである請求項1の焼結用ステ ンレス鋼粉末。

【請求項7】 ステンレス鋼が、C:1.2%以下、S i:2.0%以下、Mn:2.0%以下、Ni:2.0 %以下、Cr:20.0%以下およびMo:1.0%以 下を含有し、残部が実質上Feである請求項1の焼結用 ステンレス鋼粉末。

【発明の詳細な説明】

[0001]

*【産業上の利用分野】本発明は、焼結用ステンレス鋼粉 末の改良に関し、改善された焼結性を有するステンレス 鋼粉末を提供する。

[0002]

【従来の技術】オーステナイト相またはオーステナイト 相+マルテンサイト相を主相とするステンレス鋼の粉末 が、焼結により各種の部品を製造するために使用されて

【0003】しかし、オーステナイト相を主相とするス テンレス鋼粉末は、拡散速度が遅いため焼結性がよいと はいえず、焼結密度を高くできない。 オーステナイト 相+マルテンサイト相を主相とするものは、焼結性はそ れよりよいが、粉末の成形性が低いためにやはり焼結密 度が低い。 マルテンサイト相を主相とするステンレス 鋼は、焼結時の温度(1200℃以上)ではオーステナ イト相になっていて、焼結性が良くない。

[0004]

【発明が解決しようとする課題】本発明の目的は、オー ステナイト相、オーステナイト相+マルテンサイト相ま u:3.0~5.0%を含有し、残部が実質上Feであ 20 たはマルテンサイト相を主相とする焼結用ステンレス鋼 粉末において、焼結性を改善し、より高い焼結密度の製 品を与える鋼粉末を提供することにある。

[0005]

【課題を解決するための手段】本発明の焼結性を改善し た焼結用ステンレス鋼粉末は、オーステナイト相、オー ステナイト相+マルテンサイト相またはマルテンサイト 相を主相とするステンレス鋼に対し、Nb:0.01~ 2.0%を添加して粉末化して成るものである。

【0006】Cを含有するマルテンサイト相のステンレ n:0.5~1.0% およびMo:2.0~3.0% を 30 ス鋼は、Cを含まない(または一部だけ含む)ブレアロ イ粉末に必要量のC粉末(黒鉛粉末など)を混合したも のであってもよく、このような態様も本発明に含まれ

> 【0007】本発明のステンレス鋼には、つぎのような 合金組成の鋼が含まれる。

> 【0008】1) C: 0.5%以下、Si: 2.0%以 下、Mn:2.0%以下、Ni:9.5~21.5%およ びCr:11.5~26.0%を含有し、残部が実質上 Feからなるもの。 具体例は、つぎのとおり:

鎦	種	С	Si	Mn	Ni	Сr
304	L	≦0.03	≦2.0	≦2.0	9.5~11.5	18.5~20.0
308	L	≦0.03	≦2.0	≦2.0	9.5~11.5	19.0~21.0
309	L	≦0.03	≦2.0	≦2.0	12.0~14.0	22.0~24.0
310	L	≦0.03	≦2.0	≦2.0	19.5~21.5	24.0~26.0
310	Modify	≦0.5	≦2.0	≦2.0	19.5~21.5	24.0~26.0

S含有量を1.15%以上に高めた303Lもこのグル ープに属する。

【0009】2)C:0.03%以下、Si:2.0% 以下、Mn:2.0%以下、Ni:3.0~22.0 ※ ※%、Cr:16.0~28.0%およびMo:1.0~ 3.0%を含有し、残部が実質上Feであるもの。 具 体例は、

鋼種 C Si Mn Νi

316 L $\leq 0.03 \leq 2.0 \leq 2.0 \quad 12.0\sim 14.0 \quad 16.0\sim 18.0 \quad 2.0\sim 3.0$ $329 \text{ J} 1 \leq 0.03 \leq 2.0 \leq 2.0$ 3.0~6.0 23.0~28.0 1.0~3.0

である。

【0010】3) C:0. 03%以下、Si:2. 0% 以下、Mn:2.0%以下、Ni:3.0~11.5 *

*%、Cr:15.5~20.0%およびCu:3.0~ 5.0%を含有し、残部が実質上Feであるもの。 具 体例は、

鋼種 C Si Mn Νi 304 L Modify $\leq 0.03 \leq 2.0 \leq 2.0$ 9.5~11.5 18.5~20.0 3.0~5.0 3.0~5.0 15.5~17.5 3.0~5.0 .≦0.03 ≦2.0 ≦2.0 630

である。

以下、Mn:2.0%以下、Ni:9.5~11.5 %、Cr:18.5~20.0%およびSn:0.5~ 1. 0%を含有し、残部が実質上Feであるもの。 具 体例は、304Lの変更鋼種がある。

【0012】5) C:0. 03%以下、Si:2. 0% 以下、Mn:2.0%以下、Ni:12.0~14.0%

【0011】4) C:0.03%以下、Si:2.0% 10 0%およびMo:2.0~3.0%を含有し、残部が実 質上Feからなるもの。 具体例は、316L変更鋼種 である。

%%, Cr: 16. 0~18. 0%, Sn: 0. 5~1.

【0013】6)C:1.2%以下、Si:2.0%以 下、Mn:2.0%以下、Ni:2.0%以下、Cr:2 0.0%以下およびMo:1.0%以下を含有し、残部 が実質上Feからなるもの。 具体例は、

	C	Si	Mn	Ni	C r	Mo
SUS 420J1	0.16~0.25	≦2.0	≦2.0	≦2.0	12.0~14.0	
SUS 420J2	0.26~0.40	≦2.0	≦2.0	≦2.0	12.0~14.0	_
SUS 440C	0.45~1.20	≦2.0	≦2.0	≦2.0	16.0~18.0	≦0.75

である。

[0014]

【作用】上記の各鋼にNbを添加することにより、鋼粉 末の製造時に結晶組織の微細なものが得られる。 結晶 粒内に存在する空孔には、粒径が小さければ粒界に移動 することが容易であって、焼結に際して消失しやすい。

また、オーステナイト相中での拡散速度は、1200 ℃において、Fe ,CrおよびNiがそれぞれ4.27× 10⁻¹⁵m²/秒、7.35×10⁻¹⁵m²/秒および2. 25×10⁻¹⁵m²/秒であるのに対し、Nbは4.04 30 【0018】 ×10⁻¹'m'/秒と、約10倍速い。

【0015】その結果、このステンレス鋼粉末を従来と 同じ焼結温度で焼結したときにはより高い焼結密度が得 られ、一方、同等の焼結密度で足りる場合は従来より低 温で焼結することができる。

【0016】 この効果は、Nb:0.01%程度の添加 で認められ、0.2~1.5%程度で顕著になる。

★ 5%を超えると、添加量を増しても効果の増大が鈍り、 2.0%で飽和する。 Nbにはこのほか、Cを固定し て粒界に折出するCを減らす作用もあり、高温強度の向

【0017】本発明のステンレス鋼粉末は、常用の溶湯 噴霧法により製造できる。 成形性の観点からは、水噴 霧粉の方がよい。 使用は、圧粉成形、粉末射出成形な ど、あるいはHIP法、CIP法など粉末鋼の加工技術 に従って行なえばよい。

上にも寄与する。

【実施例】

〔実施例1〕表1に示す合金組成(残部Fe、以下同 じ) のステンレス鋼 (オーステナイト相+マルテンサイ ト相のSUS630鋼:17Cr-4Ni-4Cu-F・ eをベース)を溶製し、水噴霧法により粉末化して、1 .00メッシュ通過の粉末を集めた。

[0019]

No.	区分	C	Si	Mn	Cr	Νi	Сu	N b
1	実施例	0.02	0.8	0. 2	17.5	4. 2	4. 2	0.03
2	実施例	0.02	0.8	0.2	17.6	4. 1	4. 1	0.1
3	実施例	0.02	0.8	0.2	17.5	4.1	4. 1	0.3
4	実施例	0.02	0.8	0.2	17.3	4. 0	4. 0	0.8
5	実施例	0.02	0.8	0.2	16.6	3.9	3. 9	1. 7
6	比較例	0.02	0.8	0.2	16.7	4.0	4.0	-

表1

No. 6はNbを含有しない比較例である。

【0020】7 t/cm²の圧力でプレスし、径11mm×長 さ10㎜の円柱状の圧粉成形体とした。 圧粉密度を測 定し、5 Torrの窒素ガス雰囲気中、1200℃または1☆ ☆250℃に1時間加熱した。 得られた焼結体の焼結密 度を、圧粉密度とともに、表2に示す。

[0021]

	5			6
No.	区分	圧粉密度	焼結密度	(g/cm³)·
		(g/cm²)	1200℃	1250°C
l	実施例	6.31	6.90	7, 25
2	実施例	6.30	6.95	7.28
3	実施例	6.30	7.01	7.30
4	実施例	6.28	7.00	7.30
5	実施例	6.28	7.00	7.30
6	比較例	6.29	6.80	7.09

Nbの添加による焼結密度の向上が認められる。

*レス鋼 (2.5 C r - 2 0 N i - F e をベース) を溶製

【0022】 〔実施例2〕 表3 に示す合金組成のステン*10 し、

表3

No.	区分	C	Si	Mn	Сr	Νi	Nb
7	実施例	0.31	0.91	0.24	24.0	20.5	0. 51
8	実施例	0.30	1.02	0.22	24.6	20.2	1. 33
9	実施例	0.30	1.08	0.86	24.5	20.3	1.26
10	比較例	0.31	0.87	0.25	24.5	20.3	_

水噴霧法により粉末化して、30メッシュ通過の粉末を 採取した。

※は1310℃に3時間加熱する焼結を行なった。 焼結 体の密度を測定するとともに引張試験を行なって、表4 に示す結果を得た。

【0023】粉末射出成形により、長さ120mm×厚さに示す結果を4mm×幅12mm(平行部の幅7.5mm)の板状引張試験20【0024】

片を成形し、成形体を脱脂後、真空中で1275 Cまた※

表4

No.	区分	127	75℃焼結		13100	焼結	
		密度	引張強さ	伸び	密度	引張強さ	伸び
		(g/cm ₃)	(N/mm _z)	(%)	(g/cm,)	(N/mm _k)	(%)
7	実施例	7.45	553	32.4	7.61	597	40.1
8	実施例	7.47	574	36.0	7. 6Ż	602	41.6
9	実施例	7.45	545	32.0	7.62	601	41.3
10	比較例	7.35	505	22.4	7.37	516	25.4

この場合もNbの添加による焼結性の改善がみられる。 とくに、焼結温度を高めても比較例では焼結密度の向 上がほとんど望めないのに対し、実施例では向上してい

ることが明らかである。

30★【0025】〔実施例3〕表5に示す合金組成のステンレス鋼を溶製し、水噴霧法により粉末化した。 【0026】

*

表5 Mn Ni Cr Mo No. C Si S n N b 11 A 0.02 11.0 19.1 0.8 0.2 0.5 11 B 0.02 0.9 0.2 11.1 19.0 12 A 0.02 0.8 0.2 20.9 25.6 0.3 12 B 0.02 0.8 0.2 21.0 25.3 13 A 0.02 0.8 0.2 13.0 16.9 2.0 0.7 13 B 0.02 0.8 0.2 13.2 16.9 2.1 14 A 0.03 0.7 0.2 4.6 25.5 2.0 0.4 14 B 0.03 0.8 0.2 4.6 25.5 2.1 15 A 0.02 0.9 0.2 10.8 19.2 3.8 1.0 11.0 19.1 15 B 0.02 0.9 0.2 3.9 16 A 0.03 0.8 0.2 10.6 19.8 3.9 0.7 16 B 0.02 0.9 0.2 10.4 19.6 4.0 0.7 17 A 13.2 17.0 2.3 0.02 0.8 0.2 2.0 0.7 17 B 0.02 0.8 0.2 13.0 17.1 2.3 2.0

各No. の「A」は実施例であり、「B」はNbを含有し 50 ない比較例である。

Ź.

【0027】100メッシュ通過の粉末を採取し、実施例1と同様にプレス成形して圧粉密度を測定したのち、温度1250℃で焼結を行なって、焼結性を評価した。*

* 焼結体の密度を、圧粉密度および焼結温度とともに、 表6に示す。

[0028]

表6.

	• • •	
No.	圧粉密度	焼結密度
	(g/cm³)	(g/cm²)
11 A	6.61	7.00
11 B	6.62	6.90
12 A	6.55	6.99
12 B	6.55	6.88
13 A	6.68	7.12
13 B	6.69	6.99
14 A	6.35	6.95
14 B	6.32	. 6. 80
15 A	6.69	7.10
15 B	6.70	6.95
16 A	6.65	7.05
16 B	6.65	6.95
17 A	6.75	7.15
17 B	6.74	7.04

〔実施例4〕表7に示す合金組成のステンレス鋼を溶製※ ※し、

表7

No.	区分	С	Si	Mn	Сr	Νi	Мо	Νb
		0.017						
19	実施例	0.021	1.32	1.21	17.5	12.3	2.21	0.53
20	比較例	0.019	0.74	0.46	17.5	12.7	2.17	_

水噴霧法により粉末化した。

【0029】粉末射出成形(バインダー8.5重量%) により、実施例2と同様な板状引張試験片を成形し、成 ★結した。 焼結体の密度および引張特性は、表8 に示す とおりである。

[0030]

により、美趣例2と同様な板状引張試験片を成形し、成 (003 形体を脱脂後、真空中で1350°Cに2時間加熱して焼★30

表8

No.	区分	焼結密度(g/cm。)	引張強さ(N/mm。)	伸び (%)
18	実施例	7.73	515	53.0
19	実施例	7.74	517	51.5
20	比較例	7.61	490	46.3

この例においても、Nb添加の効果が明らかである。 【0031】〔実施例5〕表9に示す合金組成のマルテ☆

☆ンサイト系ステンレス鋼(0.3C-13Cr-Fe) を溶製して、

表9

No.	区分	C	<u>S</u> i	Mn	Сr	Νi	N b
		0.32					
22	実施例	0.31	0.69	0.35	13.6	0.18	0.66
	•	0.32					

水噴霧法により粉末化 (30μm以下) した。

【0032】粉末射出成形(バインダー9.0重量%) により、実施例2と同様な板状引張試験片を成形し、成 形体を脱脂後、真空中で1325℃または1370℃に 2時間加熱して焼結した。 各焼結体の密度を測定して◆

◆から、950℃×30分→油冷の焼入れと、550℃× 1時間の焼戻し処理を行なって、引張試験に供した。そ れらの結果を、まとめて表10に示す。

[0033]

表10

No. 区分 1325 C焼結

1370℃焼結

密度・ 引張強さ 伸び 密度 引張強さ 伸び

	9					10	
		(g/cm ₁)	(N/mm_k)	(%)	(g/cm _s)	(N/mm ₂)	(%)
		7.44					
22	実施例	7.48	779	14.1	7.63	898	17.1
23	比較例	7.21	698	7. 2	7.32	750	11.1

前掲表9の餌粉末は所定のCを含有するブレアロイ粉末であるが、それらに代えて13Cr-Feの粉末に黒鉛粉末を0.3%添加して使用した場合にも、同様な結果が得られた。

[0034]

【発明の効果】本発明に従ってオーステナイト相または 10 オーステナイト相+マルテンサイト相を主相とするステンレス鋼に適量のNbを添加した鋼の粉末は、改善された焼結性を示し、同じ焼結条件ならNb無添加のものよ

り高い焼結密度を達成することができる。 より高い焼 結密度が、焼結部品の性能の向上をもたらすことはもち ろんである。

【0035】従来と同じ焼結密度でよければ、低い焼結 温度や短い加熱時間で足りる。 この緩和された焼結条 件で足りるということは、焼結のために消費エネルギー の節減だけでなく、加熱炉の設備費にも影響が大きく、 全体として焼結部品の製造コストの低減に寄与する。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

3
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS .
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.