数学新星问题征解

第十五期 (2016.06)

主持: 牟晓生

第一题. 设 z_1, z_2, z_3 是单位复数. 证明存在单位复数 z 使得:

$$\frac{1}{|z-z_1|^2} + \frac{1}{|z-z_2|^2} + \frac{1}{|z-z_3|^2} \leq \frac{9}{4}.$$

(湖北武钢三中学生 王逸轩, 上海大学 冷岗松 供题)

第二题. 如图, D 是正三角形 ABC 的边 BC 上一点, BD > CD. 记 O_1, I_1 为 $\triangle ABD$ 的外心与内心, O_2, I_2 为 $\triangle ACD$ 的外心与内心. 圆 I_1 与圆 I_2 除 BC 外的另一条外公切线交 AB, AC 于 P, Q. 设直线 PI_1 与 QI_2 交于 R, 而直线 O_1I_1 与 O_2I_2 交于 T. 证明: $AT^2 = AR^2 + AD \cdot BC$.

(广西钦州 卢圣 供题)

第三题. 给定正整数 m, n, 考虑在 $m \times n$ 白棋盘上先将一些格染成黑色. 在之后的每一时刻, 若存在一个白格至少与两个黑格相邻, 则可将它也染成黑色. 求最初至少要染多少个黑色格才能在某一时刻染黑整个棋盘?

(哈佛大学 牟晓生 供题)

第四题. ABC 是一个三角形, 而 P,Q,R 分别是 BC,CA,AB 上的点。证明 $\triangle PQR$ 的周长不小于 $\triangle AQR,\triangle BRP,\triangle CPQ$ 周长的最小值.

(哈佛大学 牟晓生 供题)