機器學習 HW02

PART1 圖片:

Accuracy=0.943077

Accuracy 0.906667

Accuracy= 0.942308

Accuracy = 0.909333

Part2 圖片:

Accuracy= 0.924615

Accuracy= 0.897333

Accuracy= 0.853077

Accuracy= 0.842667

觀察與討論

生成模型與判別模型的差異

• 生成模型:

•

- 學習數據的聯合概率 P(X,Y)P(X,Y), 捕捉數據分佈。
- 比較不會有過擬合的問題。
- 由於生成模型需要生成 Y 的分佈函數,這個分佈函數可能會受到一些異常點的影響,變得不那麼準確。生成模型在學習數據的聯合概率分佈 P(X,Y)P(X,Y) 時,會嘗試理解整個數據集的特徵與標籤之間的關係,這使它們對於異常值或是噪聲數據特別敏感。如果數據中包含異常點,這些點可能會對模型學習的整體數據分佈產生不成比例的影響,從而導致模型的預測性能下降。

• 判別模型:

- 估計條件概率 $P(Y \mid X)P(Y \mid X)$, 關注類別之間的邊界。
- 如圖所示,為橫切面且未包含所有數據點導致準確率不夠準。
- 在邊緣區分沒那麼明顯的數據表現較差

推測可能是我使用 logistic regression 線性模型影響,我另外使用 svf 非線性模型來做判別模型則會表現較好,如圖所示:

得到的準確度稍微提升,且圖中也可明顯看出有邊界明顯分類出不同隊伍。 Training Accuracy: 0.9453846153846154

Testing Accuracy: 0.9106666666666666

以上為寄信與助教討論過的內容,因此在報告中呈現出來。

Code 實現方法:

生成模型

生成模型通過學習數據的聯合概率分布 P(X,Y)P(X,Y) 來進行預測。在這個例子中,使用了朴素貝葉斯分類器,這是一種簡單且有效的生成模型,它假設各特徵間條件獨立。

1. 模型創建與訓練:

- 使用 GaussianNB() 來創建一個朴素貝葉斯模型的實例。
- 調用 fit() 方法來訓練模型,使用訓練數據 X_train(攻擊和防守特徵)和 y_train(隊伍標籤)。

•

2. 進行預測:

• 使用 predict() 方法對訓練數據和測試數據進行預測,得到 y_pred_train_gnb 和 y_pred_test_gnb。

3. 性能評估:

• 計算模型在訓練集和測試集上的準確率,並生成混淆矩陣,以評估模型的性能。

判別模型(邏輯回歸)

判別模型直接學習輸入 XX 到輸出 YY 的映射關係 $P(Y \mid X)P(Y \mid X)$,專注於決定邊界。

1. 模型創建與訓練:

- 使用 LogisticRegression() 來創建一個邏輯回歸模型的實例,指 定 multi_class='multinomial' 以支持多類分類,並使用 lbfgs 求解器。
- 通過 fit() 方法訓練模型,同樣使用 X_train 和 y_train。

2. 進行預測:

使用 predict() 方法對訓練和測試數據進行預測,得到 y_pred_train_lr 和 y_pred_test_lr。

3. 性能評估:

• 計算模型在訓練集和測試集上的準確率,並生成混淆矩陣。

繪制決策邊界

代碼中還包含了一個繪制決策邊界的功能,這有助於視覺化每種模型如何在特 徵空間中區分不同的隊伍。此功能通過生成一個格點,並在格點上計算模型預 測的類別,然後將這些類別顏色編碼顯示出來,最後加上原始數據點的散點 圖。