Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе №10

Дисциплина: Телекоммуникационные технологии **Тема:** Линейные стационарные системы

Работу выполнил: Ляшенко В.В. Группа: 3530901/80201 Преподаватель: Богач Н.В.

Оглавление

1	Упр	ажне	ние 10.1	4
	1.1	Выстр	рел	4
	1.2	Скриг	ıка	6
2	Упр	ажне	ние 10.2	8
	2.1	Импул	пьсная характеристика —	8
	2.2	Работа	а с записью	9
		2.2.1	Умножение ДПФ на фильтр	10
		2.2.2	Свёртка записи с импульсной характеристикой	11
3	Вы	воды		13

Список иллюстраций

1.1	Сигнал выстрела
1.2	Спектр сигнала выстрела
1.3	Сигнал скрипки
1.4	Спектр сигнала скрипки
2.1	Полученный сигнал
2.2	Спектр полученного сигнала
2.3	Логарифмическое представление спектра
2.4	Полученный сигнал пианино
2.5	Пианино до обработки
2.6	Пианино после обработки

Листинги

1.1	Дополнение нулями
1.2	Получение спектра сигнала
1.3	Получение спектра сигнала
2.1	Получение сигнала
2.2	Получение сигнала пианино
2.3	Сокращение длины записи пианино
2.4	Умножение ДПФ на фильтр
2.5	Свёртка

Глава 1

Упражнение 10.1

В разделе "Акустическая характеристика" используется круговая свёртка, в результате которой можно заметит, что на выходе, в начале фрагмента, слышна лишняя нота, "затекшая" из конца этого фрагмента.

Решить эту проблему можно, если перед вычислением ДПФ добавить достаточно нулей в конец сигнала. Тогда эффекта "заворота" получится избежать.

Изменим пример chap10. ipynb и убедимся, что дополнение нулями устраняет лишнюю ноту в начале фрагмента.

Сократим оба сигнала до 2^{16} элементов, а затем дополню их нулями до 2^{17} .

1.1 Выстрел

```
Hачнём с сигнала выстрела (Рис.1.1).

from thinkdsp import read_wave

response = read_wave('180960__kleeb__gunshot.wav')

start = 0.12

response = response.segment(start=start)

response.shift(-start)

response.truncate(2**16)

response.zero_pad(2**17)

response.normalize()

response.plot()

decorate(xlabel='Time (s)')

Листинг 1.1: Дополнение нулями
```


Рис. 1.1: Сигнал выстрела

Его спектр будет следующим (Рис.1.2).

```
transfer = response.make_spectrum()
transfer.plot()
decorate(xlabel='Frequency (Hz)', ylabel='Amplitude')
Листинг 1.2: Получение спектра сигнала
```


Рис. 1.2: Спектр сигнала выстрела

1.2 Скрипка

Теперь проделаем тоже самое для скрипки (Рис.1.3).

Рис. 1.3: Сигнал скрипки

Получим спектр сигнала (Рис.1.4).

```
spectrum = violin.make_spectrum()
output = (spectrum * transfer).make_wave()
output.normalize()
output.plot()
```

Листинг 1.3: Получение спектра сигнала

Рис. 1.4: Спектр сигнала скрипки

При прослушивании получившегося сигнала мы убеждаемся, что "затекшей"ноты в начале больше нет.

Глава 2

Упражнение 10.2

2.1 Импульсная характеристика

Скачаем из библиотеки Open AIR импульсную характеристику. Это будет запись из женского клуба с частотой дискретизации 44100 (Puc.2.1).

```
response = read_wave('sounds/spokane_womans_club_ir.wav')
start = 0
duration = 5
response = response.segment(duration=duration)
response.shift(-start)

response.normalize()
response.plot()
decorate(xlabel='Time (s)')
```

Листинг 2.1: Получение сигнала

Рис. 2.1: Полученный сигнал

Получим спектр данного сигнала (Рис.2.2).

Рис. 2.2: Спектр полученного сигнала

И его логарифмическое представление (Рис.2.3).

Рис. 2.3: Логарифмическое представление спектра

2.2 Работа с записью

Найдём короткую запись с такой же частотой дискретизации. Получилось найти запись с игрой на пианино (Рис.2.4).

```
wave = read_wave('sounds/186942__lemoncreme__piano-melody.wav')
start = 0.0
wave = wave.segment(start=start)
wave.shift(-start)

wave.truncate(len(response))
wave.normalize()
wave.plot()
decorate(xlabel='Time (s)')
```

Листинг 2.2: Получение сигнала пианино

Рис. 2.4: Полученный сигнал пианино

Обрежем запись пианино до той же длины, что и у импульсной характеристики.

```
spectrum = wave.make_spectrum()
len(spectrum.hs), len(transfer.hs)
```

Листинг 2.3: Сокращение длины записи пианино

2.2.1 Умножение ДПФ на фильтр

Смоделируем звучание пианино в пространстве с помощью умножения ДПФ записи на вычисленный фильтр, соответствующий импульстной характеристики.

```
output = (spectrum * transfer).make_wave()
output.normalize()
```

Листинг 2.4: Умножение ДПФ на фильтр

Построим графики до обработки (Рис.2.5) и после (Рис.2.6).

Рис. 2.5: Пианино до обработки

Рис. 2.6: Пианино после обработки

Послушаем получившуюся запись. Звук пианино действительно звучит в том женском клубе.

2.2.2 Свёртка записи с импульсной характеристикой

Теперь воспользуемся свёрткой.

```
convolved = wave.convolve(response)
convolved.normalize()
```

convolved.make_audio()

Листинг 2.5: Свёртка

Звучит так же, как и в предыдущем случае.

Глава 3

Выводы

В результате выполнения данной работы мы изучили линейные стационарные системы.

Также мы научились моделировать звучание в пространстве двумя способами: свёрткой записи с импульсной характеристикой и умножением ДПФ записи на вычисленный фильтр, соответствующий импульсной характеристике.