

Chapitre 3

Précision des systèmes

Cours

Savoirs et compétences :

- Res2.C10: précision des SLCI: erreur en régime permanent
- Res2.C11: précision des SLCI: influence de la classe de la fonction de transfert en boucle ouverte
- Res2.C10.SF1: déterminer l'erreur en régime permanent vis-à-vis d'une entrée en échelon ou en rampe (consigne ou perturbation)
- Res2.C11.SF1: relier la précision aux caractéristiques fréquentielles

Système non perturbé

Définition La précision est l'écart entre la valeur de consigne et la valeur de la sortie. Pour caractériser la précision d'un système, on s'intéresse généralement à l'écart en régime permanent.

Attention à bien s'assurer que, lors d'une mesure expérimentale par exemple, les grandeurs de consigne et de sortie sont bien de la même unité (et qualifient bien la même grandeur physique).

Pour un système non perturbé dont le schéma-blocs est celui donné ci-contre, on caractérise l'écart en régime permanent par :

$$E(p) \longrightarrow F(p)$$

$$R(p) \longrightarrow G(p)$$

$$\varepsilon_{\text{permanent}} = \lim_{t \to +\infty} \varepsilon(t) \iff \varepsilon_{\text{permanent}} = \lim_{p \to 0} p \varepsilon(p)$$

Définition Un système est précis pour une entrée lorsque $\varepsilon_{\mathrm{permanent}} = 0$.

Définition

Le nom de l'écart dépend de l'entrée avec lequel le système est sollicité :

- écart statique, système sollicité par une entrée échelon : $e(t) = E_0$ et $E(p) = \frac{E_0}{n}$;
- écart en vitesse ou en poursuite, système sollicité par une rampe : e(t) = Vt et $E(p) = \frac{V}{n^2}$;
- écart en accélération : système sollicité par une parabole, $e(t) = At^2$ et $E(p) = \frac{A}{n^3}$.

Petit développement ...

Calculons l'écart statique pour le système précédent. On a : $\varepsilon(p) = E(p) - R(p) = E(p) - \varepsilon(p)F(p)G(p)$. En conséquences, $\varepsilon(p) = E(p) - \varepsilon(p)F(p)G(p) \Longleftrightarrow \varepsilon(p)\left(1 + F(p)G(p)\right) = E(p) \Longleftrightarrow \varepsilon(p) = \frac{E(p)}{1 + F(p)G(p)}$.

$$\varepsilon(p) = \frac{E(p)}{1 + \text{FTBO}(p)}$$

Poursuivons ...

On a FTBO(
$$p$$
) = $\frac{K_{BO}(1 + a_1p + ... + a_mp^m)}{p^{\alpha}(1 + b_1p + ... + b_np^n)}$ avec $m < n$.

FTBO de classe nulle

- O de classe nulle
 Pour une entrée échelon : $\varepsilon_{\text{permanent}} = \lim_{p \to 0} p \frac{E_0}{p} \frac{1}{1 + \text{FTBO}(p)} = \frac{E_0}{1 + K_{BO}}$.
 Pour une entrée de type rampe : $\varepsilon_{\text{permanent}} = \lim_{p \to 0} p \frac{V}{p^2} \frac{1}{1 + \text{FTBO}(p)} = +\infty$.
- Pour une entrée de type parabole : $\varepsilon_{\text{permanent}} = \lim_{p \to 0} p \frac{A}{p^3} \frac{1}{1 + \text{FTBO}(p)} = +\infty$.

FTBO de classe 1

• Pour une entrée échelon :
$$\varepsilon_{\text{permanent}} = \lim_{p \to 0} p \frac{E_0}{p} \frac{1}{1 + \frac{K_{BO} \left(1 + a_1 p + \dots + a_m p^m\right)}{p \left(1 + b_1 p + \dots + b_n p^n\right)}} = 0.$$

- $\text{ Pour une entrée de type rampe}: \varepsilon_{\text{permanent}} = \lim_{p \to 0} p \frac{V}{p^2} \frac{1}{1 + \frac{K_{BO} \left(1 + a_1 p + \ldots + a_m p^m\right)}{p \left(1 + b_1 p + \ldots + b_n p^n\right)}} = \frac{V}{K_{BO}}.$ $\text{ Pour une entrée de type parabole}: \varepsilon_{\text{permanent}} = \lim_{p \to 0} p \frac{A}{p^3} \frac{1}{1 + \frac{K_{BO} \left(1 + a_1 p + \ldots + a_m p^m\right)}{p \left(1 + b_1 p + \ldots + b_n p^n\right)}} = +\infty.$

FTBO de classe 2

- $\bullet \text{ Pour une entrée échelon}: \varepsilon_{\text{permanent}} = \lim_{p \to 0} p \frac{E_0}{p} \frac{1}{1 + \frac{K_{BO} \left(1 + a_1 p + \ldots + a_m p^m\right)}{p^2 \left(1 + b_1 p + \ldots + b_n p^n\right)}} = 0.$ $\bullet \text{ Pour une entrée de type rampe}: \varepsilon_{\text{permanent}} = \lim_{p \to 0} p \frac{V}{p^2} \frac{1}{1 + \frac{K_{BO} \left(1 + a_1 p + \ldots + a_m p^m\right)}{p^2 \left(1 + b_1 p + \ldots + b_n p^n\right)}} = 0.$ $\bullet \text{ Pour une entrée de type parabole}: \varepsilon_{\text{permanent}} = \lim_{p \to 0} p \frac{A}{p^3} \frac{1}{1 + \frac{K_{BO} \left(1 + a_1 p + \ldots + a_m p^m\right)}{p^2 \left(1 + b_1 p + \ldots + a_m p^m\right)}} = \frac{A}{K_{BO}}.$

Résultat

Classe	Consigne échelon $e(t) = E_0$	Consigne en rampe $e(t) = V t$	Consigne parabolique $e(t) = At^2$
	$E(p) = \frac{E_0}{p}$	$E(p) = \frac{V}{p^2}$	$E(p) = \frac{A}{p^3}$
0	$\varepsilon_S = \frac{E_0}{1 + K_{BO}}$	$arepsilon_V = +\infty$	$arepsilon_A = +\infty$
1	$arepsilon_S = 0$	$\varepsilon_V = \frac{V}{K_{BO}}$	$arepsilon_A = +\infty$
2	$arepsilon_S = 0$	$arepsilon_V = 0$	$\varepsilon_A = \frac{A}{K_{BO}}$

L'écart statique est nul si la boucle ouverte comprend au moins une intégration. À défaut, l'augmentation du gain statique de la boucle ouverte provoque une amélioration de la précision.

Système perturbé

Soit le schéma-blocs suivant :

L'écart est caractérisé par le soustracteur principal, c'est-à-dire celui situé le plus à gauche du schéma-blocs.

Par lecture directe, on a : $\varepsilon(p) = E(p) - R(p)S(p) = E(p) - R(p)\left(H_2(p)\left(P(p) + \varepsilon(p)H_1(p)\right)\right) \iff \varepsilon(p) = E(p) - R(p)H_2(p)P(p) - R(p)H_1(p)H_2(p)\varepsilon(p) \iff \varepsilon(p)\left(1 + R(p)H_1(p)H_2(p)\right) = E(p) - R(p)H_2(p)P(p) \iff \varepsilon(p) = \frac{E(p)}{1 + R(p)H_1(p)H_2(p)}$

$$\frac{R(p)H_2(p)}{1+R(p)H_1(p)H_2(p)}P(p).$$
On a donc : $\varepsilon(p)=\underbrace{\frac{1}{1+\mathrm{FTBO}(p)}E(p)}_{\text{Écart vis-à-vis de la consigne}} - \underbrace{\frac{R(p)H_2(p)}{1+\mathrm{FTBO}(p)}P(p)}_{\text{Écart vis-à-vis de la perturbation}}$

Résultat Il faut au moins un intégrateur en amont d'une perturbation constante pour annuler l'écart vis-à-vis de cette perturbation. Un intégrateur placé en aval n'a aucune influence.

Quand ce n'est pas le cas, un gain K_1 important en amont de la perturbation réduit toujours l'écart vis-à-vis de cette perturbation.

Références

- [1] Frédéric Mazet, Cours d'automatique de deuxième année, Lycée Dumont Durville, Toulon.
- $[2] \ Florestan \ Mathurin, \textit{Pr\'ecision des SLCI, Lyc\'ee Bellevue, Toulouse}, \\ \texttt{http://florestan.mathurin.free.fr/}.$

l'Ingénieur

Activation

Cellule d'assemblage pour avion Falcon

D'après concours E3A - PSI 2015.

Savoirs et compétences :

Présentation

Le tronçon central du fuselage du Falcon 7X est assemblé par rivetage grâce à un robot 6 axes. Les rivets sont stockés dans des cassettes rangées verticalement. Un chariot de sélection se déplace verticalement pour déplacer une buse d'aspiration qui permettra d'acheminer les rivets contenus dans la cassette vers l'effecteur (robot). Le chariot fait l'objet de cette étude.

Objectif Vérifier que les correcteurs proposés permettent ou non d'obtenir un écart statique nul et un écart en vitesse nul.

Étude du modèle simplifié

Afin de faciliter les calculs, le schéma bloc à retour unitaire est donné figure suivante. Le couple résistant C_r dû à l'action de pesanteur est supposé constant.

Avec:

$$H_{M}(p) = \frac{K_{M}}{(1 + T_{E}p)(1 + T_{M}p)} \text{ et } H_{C}(p) = \frac{\frac{(R + Lp)K_{M}}{K_{C}}}{(1 + T_{E}p)(1 + T_{M}p)}.$$

Question 1 *Donner l'expression de* $\varepsilon(p)$.

Question 2 On souhaite déterminer l'erreur en position du système. Calculer l'écart statique pour $C(p) = K_p$. Pouvait-on prévoir le résultat?

Question 3 On souhaite déterminer l'erreur en position du système. Calculer l'écart statique pour $C(p) = \frac{K_i}{p}$. Pouvait-on prévoir le résultat?

Question 4 On souhaite déterminer l'erreur en vitesse du système. Calculer l'erreur pour $C(p) = \frac{K_i}{p}$. Pouvait-on prévoir le résultat?

Question 5 On souhaite déterminer l'erreur pour un entrée en position du système avec une perturbation de type rampe. Calculer l'erreur pour $C(p) = \frac{K_i}{p}$. Pouvait-on prévoir le résultat?

l'Ingénieur

Sciences

Application

Application

Savoirs et compétences :

On considère le schéma-blocs suivant.

On a $H_r(p) = K_r \frac{1+0,492p}{1+10,34p+5,1p^2}$ et $K_r = 0,37 \, \mathrm{rad} \, \mathrm{s}^{-1} \, \mathrm{N}^{-1} \, \mathrm{m}^{-1}$. $H_m(p) = \frac{0,5}{\left(1+10p\right)\left(1+0,5p\right)}$. Le gain du capteur est de $a = 2 \, \mathrm{V} \, \mathrm{rad}^{-1} \, \mathrm{s}$.

On considère que $C(p) = K_P$ et que $C_r(p) = 0$.

Question 1 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_P$ et que $C_r(p)$ est une perturbation de type échelon.

Question 2 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_p + \frac{1}{T_i p}$ et que $C_r(p) = 0$.

Question 3 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_p + \frac{1}{T_i p}$ et que $C_r(p)$ est une perturbation de type échelon.

Question 4 Déterminer l'écart statique et l'écart de traînage.

Fauteuil dynamique de cinéma

Concours Centrale-Supélec TSI 2015

Savoirs et compétences :

Présentation du système

Ce concept a été inventé au Canada en 2008, et s'est étendu à toute l'Amérique du Nord avant de traverser l'Atlantique pour proposer un cinéma dynamique avec une quantité d'effets spéciaux et spatiaux. Le fauteuil dynamique de cinéma est principalement destiné à l'industrie du divertissement et de la simulation.

Mise en situation

Le siège dynamique est constitué:

- du dosseret qui permet d'agir directement sur la tête du spectateur afin d'amplifier la sensation d'accélération (via l'oreille interne);
- de l'assise du siège qui permet d'obtenir un mouvement de tangage et un mouvement de roulis du spectateur.

Dosseret

Les trois motorisations (une pour le dosseret et deux pour l'assise) sont composées chacune d'un moteur à courant continu à aimants permanents et d'un réducteur de vitesse. Chaque moteur est alimenté par un variateur de vitesse dont la structure de puissance est un hacheur. Un capteur de courant interne au variateur est utilisé par ce dernier pour réaliser un asservissement de courant, donc implicitement de couple. Une génératrice tachymétrique accouplée à l'axe de chaque moteur est utilisée par le variateur correspondant pour réaliser un asservissement de vitesse. Un codeur incrémental accouplé aussi sur l'axe de chaque moteur est utilisé par une carte à base de microcontrôleur pour réaliser un asservissement de position, une sortie analogique de cette carte étant reliée à l'entrée de consigne du variateur de vitesse.

Exigence fonctionnelle « amplifier la sensation d'accélération »

Objectif Proposer un modèle de comportement des éléments réalisant l'exigence fonctionnelle « amplifier la sensation d'accélération » puis valider les performances attendues listées par le cahier des charges.

Exigence: amplifier la sensation d'accélération

- Précision statique de la boucle d'asservissement de position :
 - erreur statique de position < 1%;
 - erreur statique de traînage < 1%;
 - erreur statique d'accélération < 1%.
- Rapidité pour un échelon de consigne d'accélération :
 - temps de montée de 0 à 100% de la consigne <
 5 ms :
 - dépassement < 20%.

Comportement de l'ensemble variateur et moteur du dosseret

Objectif

- Établir un modèle simplifié de l'asservissement de courant.
- Établir un modèle simplifié de l'asservissement de vitesse.
- Analyser la précision de l'asservissement de position.

Modélisation de l'asservissement de vitesse

Les 3 premières questions n'ont pas vraiment d'intérêt. Je les ai laissées car elles apparaissaient dans le sujet initial.

L'étude suivante consiste à obtenir un modèle simplifié de la boucle d'asservissement de vitesse (figure suivante) au regard des réglages effectués et de l'influence d'une perturbation de type échelon sur le dosseret. En effet, vu la courte durée des sollicitations, la perturbation sur le dosseret, dont l'origine peut être une action du spectateur sur ses muscles cervicaux, peut être modélisée par un échelon.

Modèle de la boucle d'asservissement de vitesse

On a
$$C_{\Omega}(p) = k_1 \left(1 + \frac{1}{T_1 p}\right)$$
. De plus : $K = 0.115 \,\mathrm{N\,mA^{-1}}$; $R = 1\,\Omega$; $L = 1.1 \,\mathrm{mH}$; $K_{rI} = 0.5 \,\mathrm{VA^{-1}}$; $r = 1/50$; $f = 4.1 \times 10^{-4} \,\mathrm{N\,m\,s\,rad^{-1}}$; $J = 0.16 \times 10^{-3} \,\mathrm{kg\,m^2}$.

Question 1 Exprimer la fonction de transfert de la boucle de vitesse $H_{\Omega}(p) = \Omega(p)/U_{C\Omega}(p)$, lorsque $C_R(p) = 0$. Le résultat sera mis sous une forme canonique.

Question 2 T_1 étant égal à J/f, montrer alors que la fonction de transfert en boucle fermée peut se mettre sous la forme $\frac{b}{\tau p+1}$. Calculer les valeurs numériques des termes b et τ .

Question 3 En déduire, à l'aide de la figure précédente, $\theta(p)/C_R(p)$ lorsque $\theta_C(p)=0$. Calculer ensuite la valeur finale de $\theta(t)$ lorsque $c_R(t)$ est un échelon unitaire. Conclure quant à l'action, en régime permanent, du correcteur proportionnel et intégral sur les effets d'une perturbation $c_R(t)$ de type échelon.

Modélisation de la boucle d'asservissement de position

Après toutes les simplifications précédentes, est obtenu le modèle de la figure suivante où seul le comportement en réponse à la consigne $\theta_{\rm C}$ est abordé.

Modèle simplifié de la boucle d'asservissement de position

Question 4 Exprimer la fonction de transfert $\theta(p)/\theta_C(p)$. Déterminer ensuite la valeur numérique de a pour avoir un facteur d'amortissement égal à 0,7. Justifier le choix de ce facteur d'amortissement. (Pour ce calcul et les calculs suivants prendre $b=63 \, \mathrm{rad} \cdot \mathrm{s}^{-1} \cdot \mathrm{V}^{-1}$, $\tau=2,2 \, \mathrm{ms}$, $c=40 \, \mathrm{rad}^{-1}$.)

Analyse de la précision du système

Un aspect important pour la simulation sensorielle du siège dynamique est la capacité du système à reproduire fidèlement la consigne de position issue du programme de simulation sensorielle du siège dynamique. Dans un premier temps, l'étude se limite à la précision statique en utilisant le modèle défini à la figure précédente. L'erreur représente la différence entre l'entrée $\theta_C(t)$ et la sortie $\theta(t)$ et est définie par la variable $\mu(t) = \theta_C(t) - \theta(t)$.

Question 5 Exprimer dans un premier temps $\mu(p)$ en fonction de $\theta_C(p)$, puis déterminer de façon littérale et numérique l'erreur de position μ_p , l'erreur de trainage μ_v et l'erreur en accélération μ_a . Conclure quant à la précision statique du système suite aux différentes consignes $\theta_C(p)$ de type échelon, rampe et accélération.

Validation et optimisation de la performance simulée en accélération du dosseret

Objectif Valider la performance simulée en accélération au regard du cahier des charges fonctionnel.

La figure suivante représente la structure d'une correction par anticipation qui permet d'améliorer la précision statique du système

Structure avec anticipation

Question 6 Déterminer l'erreur de position μ_p puis l'erreur de traînage μ_v . Conclure sur l'erreur de position au regard du cahier des charges.

Question 7 D'après l'erreur de traînage μ_{ν} déterminée à la question précédente, calculer la valeur numérique de d qui permet d'annuler cette erreur de traînage. En prenant en compte la valeur numérique de d et de b, déterminer l'expression de l'erreur en accélération $\mu_{\rm a}$. Calculer ensuite sa valeur numérique et conclure au regard du cahier des charges.

Un aspect important pour la simulation sensorielle du siège dynamique est la capacité du système à reproduire rapidement les consignes d'accélération. À l'aide d'une simulation, la variable accélération $\ddot{\theta}_d$ possède les deux comportements donnés figure suivante pour la période transitoire, et ce lorsque la consigne vaut $\theta_{\rm Cd}(t) = \frac{t^2}{2} u(t)$.

Accélération du dosseret avec et sans anticipation

Question 8 Conclure quant au respect du cahier des charges vis-à-vis des accélérations produites par le dosseret du siège dynamique de cinéma.

Exigence fonctionnelle « incliner le spectateur suivant l'axe de tangage et de roulis »

Objectif Valider le choix de conception pour la réalisation de la commande simultanée des deux moteurs de l'assise du siège.

En mode simultané (figure suivante), les consignes de vitesse de chaque variateur sont issues d'un calculateur numérique : a, d et c sont identiques. En revanche, le réglage du retour vitesse des cartes variateur est effectué à l'aide d'un potentiomètre et celui-ci peut ne pas avoir été réglé avec précision. En imposant le réglage du retour vitesse de la motorisation 1 à 5 V pour 3000 tr min⁻¹ et celui de la motorisation 2 à 5,5 V pour 3000 tr min⁻¹,

les calculs donnent $b_1 = 62.8 \text{ rad.s}^{-1}.\text{V}^{-1}$ et $b_2 = 57.1$ rad.s⁻¹.V⁻¹. Les inerties au niveau de chaque moteur, supérieures à celle au niveau du moteur de dosseret, peuvent fluctuer en fonction de la position du spectateur.

En tenant compte d'une variation d'inertie de 10%, les calculs donnent $\tau_1 = 1/366$ s et $\tau_2 = 1/447$ s. On prendra a = 0.09 V, $c = 40 \text{ rad}^{-1}$ et $d = 0.016 \text{ V rad}^{-1}$ s.

Commande simultanée des deux moteurs

Question 9 En réutilisant éventuellement les calculs effectués aux questions 6 et 7 et en tenant compte des différences de réglage de retour vitesse et des différences d'inertie entre les deux motorisations, exprimer la valeur finale de $\theta_1(t) - \theta_2(t)$ lorsque la consigne $\theta_C(t)$ est respectivement égale à u(t), $t \cdot u(t)$ puis $\frac{t^2}{2}u(t)$, u(t) étant la fonction échelon unité.

La figure 10 représente le résultat d'une simulation de $\theta_1(t) - \theta_2(t)$ pour une consigne $\theta_C(t) = \frac{t^2}{2}U(t)$

Question 10 Conclure quant à l'erreur en accélération lors de la commande simultanée.

 $\theta_1 - \theta_2$ en fonction du temps

Éléments de correction

ements de correction
$$\frac{\frac{1}{K_{\Omega}} (1 + T_{1}p)}{\frac{T_{1}K_{rI}J}{K_{\Omega}k_{1}K}} p^{2} + \left(\frac{fK_{rI}}{K_{\Omega}k_{1}K} + 1\right)T_{1}p + 1$$
2. $b = \frac{1}{K_{\Omega}} = 20\pi = 62,8 \, \text{rad s} - 1\text{V}^{-1} \, \text{et } \tau = \frac{K_{ri}J}{k_{1}KK_{\Omega}} = 2,17 \times 10^{-3} \, \text{s.}$
3. $-\frac{T_{1}K_{ri}p}{k_{1}(T_{1}p+1)K} \cdot \frac{b}{p(1+\tau p)+abc} \, \text{et } \lim_{t \to \infty} \theta(t) = 1.$

2.
$$b = \frac{1}{K_{\Omega}} = 20\pi = 62.8 \,\text{rad s} - 1\text{V}^{-1} \text{ et } \tau = \frac{K_{ri}J}{k_1 K K_{\Omega}} = 2.17 \times 10^{-3} \,\text{c}$$

3.
$$-\frac{T_1 K_{ri} p}{k_1 (T_1 p + 1) K} \cdot \frac{b}{p (1 + \tau p) + abc}$$
 et $\lim_{t \to \infty} \theta(t) = 1$

4.
$$a = \frac{1}{4b c \tau \xi^2} = 0,092.$$

$$4bc\tau\xi^{2}$$
5. $\mu(p) = \frac{p(1+\tau p)}{p(1+\tau p)+abc}\theta_{c}(p), \mu_{p} = 0, \mu_{v} = \frac{1}{abc}$ et $\mu_{a} = \infty$.

6. $\mu_{p} = 0$ et $\mu_{v} = \frac{1-bd}{ab}$.

6.
$$\mu_p = 0$$
 et $\mu_v = \frac{1 - bd}{ab}$

- 8. ...
- 9. ...
- 10. ...

Sciences

TD 02

Segway

Editions Vuibert.

Savoirs et compétences :

Analyser le besoin et la structure du système

Le Segway® est un moyen de transport motorisé qui permet de se déplacer en ville. En terme de prestations, il est moins rapide qu'une voiture ou qu'un scooter, plus maniable, plus écologique, moins encombrant et nettement plus moderne.

La conduite du Segway® se fait par inclinaison du corps vers l'avant ou vers l'arrière, afin d'accélérer ou freiner le mouvement. Les virages à droite et à gauche sont, quant à eux, commandés par l'inclinaison du guidon.

La spécificité de ce véhicule est d'avoir deux roues qui ont le même axe de rotation, avec son centre de gravité situé au-dessus de l'axe commun des roues, si bien qu'on se demande comment rester à l'équilibre une fois monté sur la plate-forme. Tout comme le cerveau permet à l'homme de tenir debout sans tomber grâce à l'oreille interne, le système comporte un dispositif d'asservissement d'inclinaison, maintenant la plate-forme du véhicule à l'horizontale ou encore la barre d'appui, supposée orthogonale à cette plate-forme, à la verticale.

Cahier des charges

Les exigences attendues pour le Segway® sont listées sur le diagramme de la figure suivante.

Diagramme des exigences du Segway®.

Le diagramme BDD de la figure ci-après montre les constituants du Segway®.

Objectif La difficulté essentielle de ce système est d'être capable de maintenir le chariot stable tout en ayant de bonnes performances. L'objectif du travail proposé est de vérifier qu'un asservissement correctement réglé permet de respecter les critères de stabilité, précision et rapidité définis dans le diagramme des exigences.

Diagramme de définition des blocs du Segway®.

Modéliser le système

On donne le schéma-blocs proche de l'architecture retenue pour le système.

Schéma-blocs fonctionnel du Segway®.

Les équations (simplifiées) caractérisant les différents sous-systèmes sont les suivantes :

- ensemble amplificateur et motoréducteur : $C_m(t) = K_m u(t)$ avec $K_m = 2 \text{ NmV}^{-1}$;
- ensemble chariot + conducteur : $a \frac{d^2 \chi(t)}{dt^2} = b C_m(t) + c \chi(t)$ (avec a, b et c constantes positives);

• gyromètre : $u_v(t) = k_v \frac{\mathrm{d}\chi(t)}{\mathrm{d}t}$; • pendule : $u_p(t) = k_p \chi(t)$.

1 Déterminer, à l'aide des équations de chaque constituant, les fonctions de transfert de chaque bloc du schéma-blocs.

Schéma-blocs du Segway®.

Question 2 Mettre la fonction de transfert du chariot H(p) sous la forme canonique $H(p) = \frac{K_1}{\frac{p^2}{2}-1}$. On prendra pour la suite $K_1 = 0.12 \,\text{rad}\,\text{N}\,\text{m}^{-1}$ et $\omega_1 = 4.1 \,\text{rad}\,\text{s}^{-1}$.

Question 3 Justifier que le chariot seul est un système instable.

Paramétrer la FTBO

Question 4 Déterminer la Fonction de Transfert en Boucle Ouverte du système FTBO $(p) = \frac{\Psi(p)}{\varepsilon(p)} = C(p)F(p)$ où l'on précisera F(p) en fonction des paramètres K_m , K_1 , ω_1 , k_v et k_p .

Question 5 Pour pouvoir appliquer le critère du revers, il faut que la FTBO ne possède que des pôles à partie réelle négative. Quelle condition doit-on avoir sur les coefficients de F(p)? Ya-t-il d'autres conditions à respecter pour que le système ainsi asservi soit stable de façon absolue (sans vérifier si les valeurs des marges sont suffisantes) si on prend C(p) = 1?

Les paramètres k_v et k_p sont choisis de manière à assurer, non seulement la stabilité du système, mais aussi sa rapidité.

Question 6 À partir de l'expression de F(p), déterminer les paramètres k_v et k_p permettant d'assurer une rapidité optimale en boucle ouverte en prenant une pulsation $\omega_0 = 1.5\omega_1$.

Dans la suite, la fonction F(p) utilisée sera la suivante $F(p) = \frac{0.12}{1 + 0.23p + 0.026p^2}.$

On choisit un correcteur proportionnel $C(p) = K_c$.

Question 7 Déterminer analytiquement la pulsation et le gain correspondant à une phase de -135°. Que dire de la marge de gain en fonction de la valeur de K_c .

Question 8 En déduire la valeur à prendre pour K_c de manière à respecter le cahier des charges vis-à-vis de la stabilité (marge de phase).

Caractériser les performances du système complet

Afin d'assurer l'asservissement, la régulation d'inclinaison du Segway® délivre une consigne ψ_c nulle. Cette

régulation est satisfaisante si, quelle que soit l'inclinaison α du conducteur, la sortie ψ converge vers ψ_c , de valeur nulle ici. Le paramètre α peut donc être considéré comme une perturbation.

Question 9 Déterminer la fonction de transfert $H_r(p) =$

Diagrammes de Bode de la FTBO corrigée.

Question 10 Calculer l'inclinaison ψ du châssis en régime permanent, lorsque la perturbation α est un échelon d'amplitude $\alpha_0 = 20^{\circ}$ pour le correcteur K_c défini précédemment. Le cahier des charges est-il satisfait?

Question 11 On utilise alors un correcteur proportionnel intégral de la forme $C(p) = K_i \frac{1+T_i p}{T_i p}$ (le réglage d'un tel correcteur sera vu dans un chapitre ultérieur) avec $K_i = 31,7$ et $T_i = 0,93$ s. Justifier que ce correcteur améliore la robustesse ainsi que la précision.

Les diagrammes de Bode de la nouvelle FTBO sont donnés sur la figure suivante.

Question 12 Vérifier que la stabilité est toujours respectée avec ce réglage de correcteur.

Retour sur le cahier des charges

Réponse temporelle $\chi(t)$ pour une entrée en échelon $\alpha = 20^{\circ}$.

La courbe précédente correspond à l'évolution de l'angle $\chi(t)$ au cours du temps pour une consigne en échelon $\alpha = 20^{\circ}$ pour le correcteur retenu. Vérifier que les critères de stabilité, rapidité, précision et dépassement du cahier des charges sont respectés.

Éléments de correction

Eléments de correction

1.
$$H_{\Omega}(p) = \frac{\frac{1}{K_{\Omega}}(1+T_{1}p)}{\frac{T_{1}K_{rI}J}{K_{\Omega}k_{1}K}p^{2} + (\frac{fK_{rI}}{K_{\Omega}k_{1}K}+1)T_{1}p + 1}$$
.

2. $b = \frac{1}{K_{\Omega}} = 20\pi = 62,8 \, \text{rad} \, \text{s} - 1 \text{V}^{-1} \, \text{et} \, \tau = \frac{K_{ri}J}{k_{1}KK_{\Omega}} = \frac{2,17 \times 10^{-3} \, \text{s}}{k_{1}(T_{1}p+1)K} \cdot \frac{b}{p(1+\tau p)+b} \, \text{et} \, \lim_{t \to \infty} \theta(t) = 1.$

3. $\frac{T_{1}K_{ri}p}{k_{1}(T_{1}p+1)K} \cdot \frac{b}{p(1+\tau p)+b} \, \text{et} \, \lim_{t \to \infty} \theta(t) = 1.$

4. $a = \frac{1}{4bc\tau\xi^{2}} = 0,092$.

5. $\mu(p) = \frac{p(1+\tau p)}{p(1+\tau p)+abc} \, \theta_{c}(p), \mu_{p} = 0, \mu_{v} = \frac{1}{abc} \, \text{et}$

6. $\mu_{p} = 0 \, \text{et} \, \mu_{v} = \frac{1-bd}{ab}$.

7. ...

8. ...

9. ...

10. ...

3.
$$\frac{T_1 K_{ri} p}{k_1 (T_1 p + 1) K} \cdot \frac{b}{p (1 + \tau p) + b} \text{ et } \lim_{t \to \infty} \theta(t) = 1.$$

4.
$$a = \frac{1}{4 h c \tau \xi^2} = 0,092$$

5.
$$\mu(p) = \frac{p(1+\tau p)}{p(1+\tau p)+abc}\theta_c(p), \mu_p = 0, \mu_v = \frac{1}{abc}$$
 et $\mu_a = \infty$.

6.
$$\mu_p = 0$$
 et $\mu_v = \frac{1 - b d}{a h}$.