

MSP430FR5739-EP

SLVSCN6A - NOVEMBER 2014-REVISED DECEMBER 2014

MSP430FR5739-EP Mixed-Signal Microcontrollers

1 Device Overview

1.1 Features

- · Embedded Microcontroller
 - 16-Bit RISC Architecture up to 24-MHz Clock
 - Wide Supply Voltage Range (2 to 3.6 V)
 - 55°C to 85°C Operation
- · Optimized Ultra-Low-Power Modes
 - Active Mode: 81.4 μA/MHz (Typical)
 - Standby (LPM3 With VLO): 6.3 µA (Typical)
 - Real-Time Clock (LPM3.5 With Crystal): 1.5 μA (Typical)
 - Shutdown (LPM4.5): 0.32 µA (Typical)
- Ultra-Low-Power Ferroelectric RAM (FRAM)
 - Up to 16KB of Nonvolatile Memory
 - Ultra-Low-Power Writes
 - Fast Write at 125 ns per Word (16KB in 1 ms)
 - Built-In Error Correction Coding (ECC) and Memory Protection Unit (MPU)
 - Universal Memory = Program + Data + Storage
 - 10¹⁵ Write Cycle Endurance
 - Radiation Resistant and Nonmagnetic
- Intelligent Digital Peripherals
 - 32-Bit Hardware Multiplier (MPY)
 - Three-Channel Internal DMA
 - Real-Time Clock (RTC) With Calendar and Alarm Functions
 - Five 16-Bit Timers With up to Three Capture/Compare Registers
 - 16-Bit Cyclic Redundancy Checker (CRC)
- High-Performance Analog
 - 16-Channel Analog Comparator With Voltage Reference and Programmable Hysteresis
 - 14-Channel 10-Bit Analog-to-Digital Converter With Internal Reference and Sample-and-Hold
 - 200 ksps at 100-μA Consumption
- Enhanced Serial Communication
 - eUSCI_A0 and eUSCI_A1 Support:
 - UART With Automatic Baud-Rate Detection
 - IrDA Encode and Decode
 - SPI at Rates up to 10 Mbps
 - eUSCI_B0 Supports:
 - I²C With Multiple Slave Addressing
 - SPI at Rates up to 10 Mbps

- Hardware UART Bootstrap Loader (BSL)
- Power Management System
 - Fully Integrated LDO
 - Supply Voltage Supervisor for Core and Supply Voltages With Reset Capability
 - Always-On Zero-Power Brownout Detection
 - Serial On-Board Programming With No External Voltage Needed
- Flexible Clock System
 - Fixed-Frequency DCO With Six Selectable Factory-Trimmed Frequencies (Device Dependent)
 - Low-Power Low-Frequency Internal Clock Source (VLO)
 - 32-kHz Crystals (LFXT)
 - High-Frequency Crystals (HFXT)
- · Development Tools and Software
 - Free Professional Development Environment (Code Composer Studio[™] IDE)
 - Low-Cost Full-Featured Kit (MSP-EXP430FR5739)
 - Full Development Kit (MSP-FET430U40A)
 - Target Board (MSP-TS430RHA40A)
- Family Members
 - Variants and Available Packages Summarized in
 - For Complete Module Descriptions, See the MSP430FR57xx Family User's Guide (SLAU272)
- Supports Defense, Aerospace, and Medical Applications
 - Controlled Baseline
 - One Assembly and Test Site
 - One Fabrication Site
 - Available in Extended (-55°C to 85°C)
 Temperature Range
 (Some Noted Parameters Specified for -40°C to 85°C Only)
 - Extended Product Life Cycle
 - Extended Product-Change Notification
 - Product Traceability

1.2 Applications

- Home Automation
- Security

- Sensor Management
- Data Acquisition

CAUTION These products use FRAM nonvolatile memory technology. FRAM retention is sensitive to extreme temperatures, such as those experienced during reflow or hand soldering. See *Absolute Maximum Ratings* for more information.

System-level ESD protection must be applied in compliance with the device-level ESD specification to prevent electrical overstress or disturb of data or code memory. See the application report MSP430TM System-Level ESD

Considerations (SLAA530) for more information.

1.3 Description

CAUTION

The Texas Instruments MSP430FR573x family of ultra-low-power microcontrollers consists of multiple devices that feature embedded FRAM nonvolatile memory, ultra-low-power 16-bit MSP430™ CPU, and different peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption. Peripherals include a 10-bit analog-to-digital converter (ADC), a 16-channel comparator with voltage reference generation and hysteresis capabilities, three enhanced serial channels capable of I²C, SPI, or UART protocols, an internal DMA, a hardware multiplier, an RTC, five 16-bit timers, and digital I/Os.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE ⁽²⁾			
MSP430FR5739-EP	VQFN (40)	6.00 mm × 6.00 mm			

- (1) For the most current part, package, and ordering information, see the Package Option Addendum in Section 9, or see the TI web site at www.ti.com.
- (2) The dimensions shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 9.

1.4 Functional Block Diagram

This section shows the functional block diagram for the MSP430FR5739 device in the RHA package.

Table of Contents

1	Devi	ce Overview	. <u>1</u>		4.31	REF, External Reference	30
	1.1	Features	<u> 1</u>		4.32	REF, Built-In Reference	30
	1.2	Applications	. 2		4.33	REF, Temperature Sensor and Built-In V _{MID}	31
	1.3	Description	. 2		4.34	Comparator_D	32
	1.4	Functional Block Diagram	. 2		4.35	FRAM	32
2	Revi	sion History	_		4.36	JTAG and Spy-Bi-Wire Interface	33
3		Configuration and Functions	_	5	Deta	iled Description	
	3.1	Pin Diagram	_		5.1	Functional Block Diagram	
	3.2	Signal Descriptions	_		5.2	CPU	
4		cifications	_		5.3	Operating Modes	
•	4.1	Absolute Maximum Ratings			5.4	Interrupt Vector Addresses	
	4.2	Recommended Operating Conditions			5.5	Memory Organization	
	4.3	Thermal Information	_		5.6	Bootstrap Loader (BSL)	
	4.4	Active Mode Supply Current Into V _{CC} Excluding	10		5.7	JTAG Operation	
	4.4	External Current	11				
	4.5	Low-Power Mode Supply Currents (Into V _{CC})			5.8	FRAM	
		Excluding External Current	<u>13</u>		5.9	Memory Protection Unit (MPU)	
	4.6	Schmitt-Trigger Inputs – General Purpose I/O		_	5.10	Peripherals	
		(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to		6	_	t/Output Schematics	60
	4.7	P4.1, PJ.0 to PJ.5, RST/NMI)	<u>14</u>		6.1	Port P1, P1.0 to P1.2, Input/Output With Schmitt	ec
	4.7	Inputs – Ports P1 and P2 (P1.0 to P1.7, P2.0 to P2.7)	1.4		6.2	Port P1, P1.3 to P1.5, Input/Output With Schmitt	00
	4.8	Leakage Current – General Purpose I/O	17		0.2	Trigger	62
	4.0	(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to			6.3	Port P1, P1.6 to P1.7, Input/Output With Schmitt	
		P4.1, PJ.0 to PJ.5, RST/NMI)	<u>14</u>			Trigger	64
	4.9	Outputs – General Purpose I/O			6.4	Port P2, P2.0 to P2.2, Input/Output With Schmitt	
		(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to	45			Trigger	65
	4.40	P4.1, PJ.0 to PJ.5)	<u>15</u>		6.5	Port P2, P2.3 to P2.4, Input/Output With Schmitt	
	4.10	Output Frequency – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to				Trigger	66
		P4.1, PJ.0 to PJ.5)	15		6.6	Port P2, P2.5 to P2.6, Input/Output With Schmitt	60
	4.11	Typical Characteristics – Outputs	16		6.7	Trigger	
	4.12	Crystal Oscillator, XT1, Low-Frequency (LF) Mode	18		6.7 6.8	Port P2, P2.7, Input/Output With Schmitt Trigger Port P3, P3.0 to P3.3, Input/Output With Schmitt	68
	4.13	Crystal Oscillator, XT1, High-Frequency (HF) Mode	_		0.0	Trigger	70
			<u>19</u>		6.9	Port P3, P3.4 to P3.6, Input/Output With Schmitt	70
	4.14	Internal Very-Low-Power Low-Frequency Oscillator			0.0	Trigger	72
		(VLO)	<u>20</u>		6.10		
	4.15	DCO Frequencies	<u>21</u>		6.11	Port P4, P4.0, Input/Output With Schmitt Trigger	
	4.16	MODOSC	<u>21</u>			Port P4, P4.1, Input/Output With Schmitt Trigger	
	4.17	PMM, Core Voltage	22			Port J, J.0 to J.3 JTAG pins TDO, TMS, TCK,	
	4.18	PMM, SVS, BOR	22		0.10	TDI/TCLK, Input/Output With Schmitt Trigger or	
	4.19	Wake-Up from Low Power Modes	22			Output	76
	4.20	Timer_A	23		6.14	, ,	
	4.21	Timer_B	23		_	Trigger	
	4.22	eUSCI (UART Mode) Recommended Operating		7	Devi	ce Descriptors (TLV)	81
		Conditions	23	8	Devi	ce and Documentation Support	84
	4.23	eUSCI (UART Mode)	23		8.1	Device Support	84
	4.24	eUSCI (SPI Master Mode) Recommended			8.2	Documentation Support	86
		Operating Conditions	<u>24</u>		8.3	Community Resources	87
	4.25	eUSCI (SPI Master Mode)	<u>24</u>		8.4	Trademarks	87
	4.26	eUSCI (SPI Slave Mode)	26		8.5	Electrostatic Discharge Caution	
	4.27	eUSCI (I ² C Mode)	28		8.6	Glossary	
	4.28	10-Bit ADC, Power Supply and Input Range	_	9		hanical Packaging and Orderable	
		Conditions	<u>29</u>	•		mation	87
	4.29	10-Bit ADC, Timing Parameters	<u>29</u>		9.1	Packaging Information	
	4.30	10-Bit ADC, Linearity Parameters	<u>29</u>				-

2	Revision	History
_	Kevision	HISLUI V

Changes from Original (November 2014) to Revision A					
Undated device status to production data					

3 Pin Configuration and Functions

3.1 Pin Diagram

Figure 3-1 shows the pin diagram for the MSP430FR5739-EP device in the 40-pin RHA package.

Figure 3-1. 40-Pin RHA Package (Top View)

www.ti.com

3.2 Signal Descriptions

Table 3-1 describes the signals.

Table 3-1. Signal Descriptions

PIN		(4)						
NAME	NO.	I/O ⁽¹⁾	DESCRIPTION					
P1.0/TA0.1/DMAE0/ RTCCLK/A0/CD0/VeREF-	1	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA0 CCR1 capture: CCI1A input, compare: Out1 External DMA trigger RTC clock calibration output Analog input A0 – ADC (not available on devices without ADC) Comparator_D input CD0 External applied reference voltage (not available on devices without ADC)					
P1.1/TA0.2/TA1CLK/ CDOUT/A1/CD1/VeREF+	2	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA0 CCR2 capture: CCl2A input, compare: Out2 TA1 input clock Comparator_D output Analog input A1 – ADC (not available on devices without ADC) Comparator_D input CD1 Input for an external reference voltage to the ADC (not available on devices without ADC)					
P1.2/TA1.1/TA0CLK/ CDOUT/A2/CD2	3	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA1 CCR1 capture: CCl1A input, compare: Out1 TA0 input clock Comparator_D output Analog input A2 – ADC (not available on devices without ADC) Comparator_D input CD2					
P3.0/A12/CD12	4	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 Analog input A12 – ADC (not available on devices without ADC) Comparator_D input CD12					
P3.1/A13/CD13	5	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 Analog input A13 – ADC Comparator_D input CD13					
P3.2/A14/CD14	6	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 Analog input A14 – ADC (not available on devices without ADC) Comparator_D input CD14					
P3.3/A15/CD15	7	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 Analog input A15 – ADC (not available on devices without ADC) Comparator_D input CD15					
P1.3/TA1.2/UCB0STE/ A3/CD3	8	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA1 CCR2 capture: CCI2A input, compare: Out2 Slave transmit enable – eUSCI_B0 SPI mode Analog input A3 – ADC (not available on devices without ADC) Comparator_D input CD3					

Table 3-1. Signal Descriptions (continued)

PIN		U2 (1)	DESCRIPTION					
NAME	NO.	I/O ⁽¹⁾	DESCRIPTION					
P1.4/TB0.1/UCA0STE/ A4/CD4	9	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB0 CCR1 capture: CCI1A input, compare: Out1 Slave transmit enable – eUSCI_A0 SPI mode Analog input A4 – ADC (not available on devices without ADC) Comparator_D input CD4					
P1.5/TB0.2/UCA0CLK/ A5/CD5	10	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB0 CCR2 capture: CCI2A input, compare: Out2 Clock signal input – eUSCI_A0 SPI slave mode, Clock signal output – eUSCI_A0 SPI master mode Analog input A5 – ADC (not available on devices without ADC) Comparator_D input CD5					
PJ.0/TDO/TB0OUTH/ SMCLK/CD6 (2)	11	I/O	General-purpose digital I/O Test data output port Switch all PWM outputs high impedance input – TB0 SMCLK output Comparator_D input CD6					
PJ.1/TDI/TCLK/TB1OUTH/ MCLK/CD7 ⁽²⁾	12	I/O	General-purpose digital I/O Test data input or test clock input Switch all PWM outputs high impedance input – TB1 (not available on devices without TB1) MCLK output Comparator_D input CD7					
PJ.2/TMS/TB2OUTH/ ACLK/CD8 ⁽²⁾	13	I/O	General-purpose digital I/O Test mode select Switch all PWM outputs high impedance input – TB2 (not available on devices without TB2) ACLK output Comparator_D input CD8					
PJ.3/TCK/CD9 ⁽²⁾	14	I/O	General-purpose digital I/O Test clock Comparator_D input CD9					
P4.0/TB2.0	15	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB2 CCR0 capture: CCl0B input, compare: Out0 (not available on devices without TB2)					
P4.1	16	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5					
P2.5/TB0.0/UCA1TXD/ UCA1SIMO	17	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB0 CCR0 capture: CCI0A input, compare: Out0 Transmit data – eUSCI_A1 UART mode, Slave in, master out – eUSCI_A1 SPI mode (not available on devices without UCSI_A1)					
P2.6/TB1.0/UCA1RXD/ UCA1SOMI	18	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB1) Receive data – eUSCI_A1 UART mode, Slave out, master in – eUSCI_A1 SPI mode (not available on devices without UCSI_A1)					

Table 3-1. Signal Descriptions (continued)

PIN		Table 5-1. digital Descriptions (continued)							
NAME	NO.	I/O ⁽¹⁾	DESCRIPTION						
TEST/SBWTCK (2) (3)	19	I	Test mode pin – enable JTAG pins Spy-Bi-Wire input clock						
RST/NMI/SBWTDIO (2) (3)	20	I/O	Reset input active low Non-maskable interrupt input Spy-Bi-Wire data input/output						
P2.0/TB2.0/UCA0TXD/ UCA0SIMO/TB0CLK/ACLK ⁽³⁾	21	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB2 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB2) Transmit data – eUSCI_A0 UART mode Slave in, master out – eUSCI_A0 SPI mode TB0 clock input ACLK output						
P2.1/TB2.1/UCA0RXD/ UCA0SOMI/TB0.0 ⁽³⁾	22	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB2 CCR1 capture: CCl1A input, compare: Out1 (not available on devices without TB2) Receive data – eUSCl_A0 UART mode Slave out, master in – eUSCl_A0 SPI mode TB0 CCR0 capture: CCl0A input, compare: Out0						
P2.2/TB2.2/UCB0CLK/ TB1.0	23	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB2 CCR2 capture: CCl2A input, compare: Out2 (not available on devices without TB2) Clock signal input – eUSCI_B0 SPI slave mode, Clock signal output – eUSCI_B0 SPI master mode TB1 CCR0 capture: CCl0A input, compare: Out0 (not available on devices without TB1)						
P3.4/TB1.1/TB2CLK/ SMCLK	24	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB1 CCR1 capture: CCl1B input, compare: Out1 (not available on devices without TB1) TB2 clock input (not available on devices without TB2) SMCLK output						
P3.5/TB1.2/CDOUT	25	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB1 CCR2 capture: CCl2B input, compare: Out2 (not available on devices without TB1) Comparator_D output						
P3.6/TB2.1/TB1CLK	26	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) TB2 CCR1 capture: CCl1B input, compare: Out1 (not available on devices without TB2) TB1 clock input (not available on devices without TB1)						
P3.7/TB2.2	27	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB2 CCR2 capture: CCl2B input, compare: Out2 (not available on devices without TB2)						
P1.6/TB1.1/UCB0SIMO/ UCB0SDA/TA0.0	28	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB1 CCR1 capture: CCl1A input, compare: Out1 (not available on devices without TB1) Slave in, master out – eUSCI_B0 SPI mode I2C data – eUSCI_B0 I2C mode TA0 CCR0 capture: CCl0A input, compare: Out0						

(3) See Section 5.6 and Section 5.7 for use with BSL and JTAG functions.

Table 3-1. Signal Descriptions (continued)

PIN		I/O ⁽¹⁾	DESCRIPTION					
NAME	NO.	1/0 (1)	DESCRIPTION					
			General-purpose digital I/O with port interrupt and wake up from LPMx.5					
P1.7/TB1.2/UCB0SOMI/			TB1 CCR2 capture: CCl2A input, compare: Out2 (not available on devices without TB1)					
UCB0SCL/TA1.0	29	I/O	Slave out, master in - eUSCI_B0 SPI mode					
			I2C clock - eUSCI_B0 I2C mode					
			TA1 CCR0 capture: CCI0A input, compare: Out0					
VCORE (4)	30		Regulated core power supply (internal use only, no external current loading)					
DVSS	31		Digital ground supply					
DVCC	32		Digital power supply					
P2.7	33	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5					
			General-purpose digital I/O with port interrupt and wake up from LPMx.5					
	34		TA0 CCR0 capture: CCI0B input, compare: Out0					
P2.3/TA0.0/UCA1STE/ A6/CD10		I/O	Slave transmit enable – eUSCI_A1 SPI mode (not available on devices without eUSCI_A1)					
			Analog input A6 – ADC (not available on devices without ADC)					
			Comparator_D input CD10					
			General-purpose digital I/O with port interrupt and wake up from LPMx.5					
			TA1 CCR0 capture: CCI0B input, compare: Out0					
P2.4/TA1.0/UCA1CLK/ A7/CD11	35	I/O	Clock signal input – eUSCI_A1 SPI slave mode, Clock signal output – eUSCI_A1 SPI master mode (not available on devices without eUSCI_A1)					
			Analog input A7 – ADC (not available on devices without ADC)					
			Comparator_D input CD11					
AVSS	36		Analog ground supply					
			,					
PJ.4/XIN	37	I/O	General-purpose digital I/O					
			Input terminal for crystal oscillator XT1					
PJ.5/XOUT	38	I/O	General-purpose digital I/O					
			Output terminal of crystal oscillator XT1					
AVSS	39		Analog ground supply					
AVCC	40		Analog power supply					
QFN Pad	Pad		QFN package pad. Connection to VSS recommended.					

⁽⁴⁾ VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, C_{VCORE}.

4 Specifications

4.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Voltage applied at V _{CC} to V _{SS}	-0.3	4.1	٧
Voltage applied to any pin (excluding VCORE) (2)	-0.3	V _{CC} + 0.3 V	V
Diode current at any device pin		±2	mA
T _J Maximum junction temperature		95	°C
T _{stg} Storage temperature range ⁽³⁾ (4) (5)	-55	125	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltages referenced to V_{SS}. V_{CORE} is for internal device use only. No external DC loading or voltage should be applied.
- (3) Data retention on FRAM memory cannot be ensured when exceeding the specified maximum storage temperature, T_{stg}.
- (4) For soldering during board manufacturing, it is required to follow the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.
- (5) Programming of devices with user application code should only be performed after reflow or hand soldering. Factory programmed information, such as calibration values, are designed to withstand the temperatures reached in the current JEDEC J-STD-020 specification.

4.2 Recommended Operating Conditions

Typical values are specified at $V_{CC} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

			MIN	NOM	MAX	UNIT		
V_{CC}	Supply voltage during program ex	upply voltage during program execution and FRAM programming (AVCC = DVCC) (1)						
V_{SS}	Supply voltage (AVSS = DVSS)		0		V			
T _A	Operating free-air temperature	-55		85	°C			
T_{J}	Operating junction temperature	-55		85	ů			
C _{VCORE}	Required capacitor at VCORE (2)		470		nF			
C _{VCC} / C _{VCORE}	Capacitor ratio of VCC to VCORE		10					
		No FRAM wait states ⁽⁴⁾ , 2 V ≤ V _{CC} ≤ 3.6 V	0		8.0			
fSYSTEM	Processor frequency (maximum MCLK frequency) (3)	With FRAM wait states $^{(4)}$, NACCESS = $\{2\}$, NPRECHG = $\{1\}$, $2 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$	0		24.0	MHz		

⁽¹⁾ It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation.

4.3 Thermal Information

		MSP430FR5739-EP	
	THERMAL METRIC ⁽¹⁾	VQFN	UNIT
		40 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	37.8	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	27.4	
$R_{\theta JB}$	Junction-to-board thermal resistance	12.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.4	C/VV
Ψ_{JB}	Junction-to-board characterization parameter	12.6	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	3.6	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

10

⁽²⁾ A capacitor tolerance of ±20% or better is required.

⁽³⁾ Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.

⁽⁴⁾ When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common system frequencies.

Active Mode Supply Current Into V_{CC} Excluding External Current

over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3)

			Frequency $(f_{MCLK} = f_{SMCLK})^{(4)}$												
PARAMETER	EXECUTION MEMORY	V _{cc}	1 MHz		4 MHz		8 MHz		16 MHz		20 MHz		24 MHz		UNIT
	III ZIII GITT		TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
I _{AM, FRAM_UNI} (5)	FRAM	3 V	0.27		0.58		1.0		1.53		1.9		2.2		mA
I _{AM,0%} (6)	FRAM 0% cache hit ratio	3 V	0.42	0.75	1.2	1.7	2.2	2.9	2.3	3.0	2.8	3.7	3.45	4.3	
I _{AM,50%} (6) (7)	FRAM 50% cache hit ratio	3 V	0.31		0.73		1.3		1.75		2.1		2.5		
I _{AM,66%} (6) (7)	FRAM 66% cache hit ratio	3 V	0.27		0.58		1.0		1.55		1.9		2.2		mA
I _{AM,75%} (6) (7)	FRAM 75% cache hit ratio	3 V	0.25		0.5		0.82		1.3		1.6		1.8		
I _{AM,100%} ⁽⁶⁾ (7)	FRAM 100% cache hit ratio	3 V	0.2	0.44	0.3	0.56	0.42	0.81	0.73	1.17	0.88	1.32	1.0	1.53	
I _{AM, RAM} (7) (8)	RAM	3 V	0.2	0.41	0.35	0.56	0.55	0.77	1.0	1.27	1.20	1.47	1.45	1.8	mA

- All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.
- The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.
- Characterized with program executing typical data processing.
- (4) At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency, $f_{\text{MCLK,eff}}$, decreases. The effective MCLK frequency is also dependent on the cache hit ratio. SMCLK is not affected by the number of wait states or the cache hit ratio. The following equation can be used to compute $f_{\text{MCLK,eff}}$. $f_{\text{MCLK,eff,MHZ}} = f_{\text{MCLK,MHZ}} \times 1 / [\# \text{ of wait states } x ((1 - \text{ cache hit ratio percent/100})) + 1]$
- Program and data reside entirely in FRAM. No wait states enabled. DCORSEL = 0, DCOFSELx = 3 (f_{DCO} = 8 MHz). MCLK = SMCLK.
- Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 25% ratio implies one of every four accesses is from cache, the remaining are FRAM accesses.
 - For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 ($f_{\rm DCO}$ = 8 MHz). MCLK = SMCLK. No wait states enabled. For 16 MHz, DCORSEL = 1, DCOFSELx = 0 ($f_{\rm DCO}$ = 16 MHz). MCLK = SMCLK. One wait state enabled.

 - For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (f_{DCO} = 20 MHz). MCLK = SMCLK. Three wait states enabled.
 - For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (f_{DCO} = 24 MHz). MCLK = SMCLK. Three wait states enabled.
- See Figure 4-1 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best linear fit using the typical data shown in Section 4.4.
 - $f_{\rm ACLK}$ = 32786 Hz, $f_{\rm MCLK}$ = $f_{\rm SMCLK}$ at specified frequency. No peripherals active. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.
- All execution is from RAM.
 - For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (f_{DCO} = 8 MHz). MCLK = SMCLK.

 - For 16 MHz, DCORSEL = 1, DCOFSELx = 0 ($f_{\rm DCO}$ = 16 MHz). MCLK = SMCLK. For 20 MHz, DCORSEL = 1, DCOFSELx = 2 ($f_{\rm DCO}$ = 20 MHz). MCLK = SMCLK.
 - For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (f_{DCO} = 24 MHz). MCLK = SMCLK.

Figure 4-1. Typical Active Mode Supply Currents, No Wait States

4.5 Low-Power Mode Supply Currents (Into V_{CC}) Excluding External Current

	DADAMETED	V	-55	°C	25°	С	85°C		LINIT	
	PARAMETER	V _{CC}	TYP	MAX	TYP	MAX	TYP	MAX	UNIT	
I _{LPM0,1MHz}	Low-power mode 0 (3) (4)	2 V, 3 V	166		175		225		μΑ	
LPM0,8MHz	Low-power mode 0 ⁽⁵⁾ ⁽⁴⁾	2 V, 3 V	170		177	244	225	360	μΑ	
LPM0,24MHz	Low-power mode 0 ⁽⁶⁾ ⁽⁴⁾	2 V, 3 V	274		285	340	340	455	μΑ	
I _{LPM2}	Low-power mode 2 ⁽⁷⁾ ⁽⁸⁾	2 V, 3 V	56		61	80	110	210	μΑ	
I _{LPM3,XT1LF}	Low-power mode 3, crystal mode ⁽⁹⁾ (8)	2 V, 3 V	3.4		6.4	15	48	150	μA	
I _{LPM3,VLO}	Low-power mode 3, VLO mode (10) (8)	2 V, 3 V	3.3		6.3	15	48	150	μΑ	
I _{LPM4}	Low-power mode 4 (11) (8)	2 V, 3 V	2.9		5.9	15	48	150	μΑ	
I _{LPM3.5}	Low-power mode 3.5 ⁽¹²⁾	2 V, 3 V	1.3		1.5	2.2	2.8	5.0	μΑ	
I _{LPM4.5}	Low-power mode 4.5 ⁽¹³⁾	2 V, 3 V	0.3		0.32	0.66	0.57	2.55	μΑ	

- (1) All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.
- The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.
- (3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = 1 MHz. DCORSEL = 0, DCOFSELx = $3 (f_{DCO} = 8 \text{ MHz})$
- Current for brownout, high-side supervisor (SVS_H) and low-side supervisor (SVS_L) included.
- Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), $f_{ACLK} = 32768$ Hz, $f_{MCLK} = 0$ MHz, $f_{SMCLK} = 8$ MHz. DCORSEL = 0, DCOFSELx = $3 (f_{DCO} = 8 \text{ MHz})$
- (6) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). $\text{CPUOFF} = 1, \text{SCGO} = 0, \text{SCG1} = 0, \text{OSCOFF} = 0 \text{ (LPM0)}, \\ f_{\text{ACLK}} = 32768 \text{ Hz}, \\ f_{\text{MCLK}} = 0 \text{ MHz}, \\ f_{\text{SMCLK}} = 24 \text{ MHz}. \text{ DCORSEL} = 1, \\ \text{DCORSEL} = 1, \\$ DCOFSELx = $3 (f_{DCO} = 24 \text{ MHz})$
- (7) Current for watchdog timer (clocked by ACLK) and RTC (clocked by XT1 LF mode) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). $\mathsf{CPUOFF} = \mathsf{1}, \, \mathsf{SCG0} = \mathsf{0}, \, \mathsf{SCG1} = \mathsf{1}, \, \mathsf{OSCOFF} = \mathsf{0} \, (\mathsf{LPM2}), \, f_{\mathsf{ACLK}} = \mathsf{32768} \, \, \mathsf{Hz}, \, f_{\mathsf{MCLK}} = \mathsf{0} \, \, \mathsf{MHz}, \, f_{\mathsf{SMCLK}} = f_{\mathsf{DCO}} = \mathsf{0} \, \, \mathsf{MHz}, \, \mathsf{DCORSEL} = \mathsf{0}, \, \mathsf{MCLK} = \mathsf{0} \, \, \mathsf{MHz}, \, \mathsf{0} \, \, \mathsf{0} \, \mathsf{0$
- DCOFSELx = 3, DCO bias generator enabled. (8) Current for brownout, high-side supervisor (SVS_H) included. Low-side supervisor disabled (SVS_I).
- (9) Current for watchdog timer (clocked by ACLK) and RTC (clocked by XT1 LF mode) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 MHz (10) Current for watchdog timer (clocked by ACLK) included. ACLK = VLO.
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), $f_{ACLK} = f_{VLO}$, $f_{MCLK} = f_{SMCLK} = f_{DCO} = 0$ MHz (11) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), $f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0$ MHz (12) Internal regulator disabled. No data retention. RTC active clocked by XT1 LF mode.

- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM3.5), $f_{\rm DCO} = f_{\rm ACLK} = f_{\rm MCLK} = f_{\rm SMCLK} = 0$ MHz
- (13) Internal regulator disabled. No data retention. $\text{CPUOFF} = 1, \text{SCG0} = 1, \text{SCG1} = 1, \text{OSCOFF} = 1, \text{PMMREGOFF} = 1 \text{ (LPM4.5)}, \\ f_{\text{DCO}} = f_{\text{ACLK}} = f_{\text{MCLK}} = f_{\text{SMCLK}} = 0 \text{ MHz}$

4.6 Schmitt-Trigger Inputs – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V	Docitive going input threshold voltage		2 V	0.7		1.7	V
V _{IT+}	Positive-going input threshold voltage		3 V	1.45		2.12	V
\/	Negative-going input threshold voltage		2 V	0.41		1.101	V
V _{IT}	Negative-going input tilleshold voltage		3 V	0.72		1.68	V
\/	Input valtage hyptoresis (V V)		2 V	0.24		0.855	V
V_{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})		3 V	0.27		1.02	V
R _{Pull}	Pullup or pulldown resistor	For pullup: $V_{IN} = V_{SS}$ For pulldown: $V_{IN} = V_{CC}$		19	35	51	kΩ
C_{l}	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		pF

4.7 Inputs – Ports P1 and P2 (1) (P1.0 to P1.7, P2.0 to P2.7)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
t _(int)	External interrupt timing (2)	External trigger pulse duration to set interrupt flag	2 V, 3 V	20		ns

⁽¹⁾ Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.

4.8 Leakage Current – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
I _{lkg(Px.x)}	High-impedance leakage current	(1) (2)	2 V, 3 V	-65	65	nA

¹⁾ The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted.

⁽²⁾ An external signal sets the interrupt flag every time the minimum interrupt pulse duration t_(int) is met. It may be set by trigger signals shorter than t_(int).

⁽²⁾ The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled.

Outputs – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
	$I_{(OHmax)} = -1 \text{ mA}^{(1)}$		2 V	V _{CC} - 0.25	V_{CC}	
.,	V_{OH} High-level output voltage $ \frac{I_{(OHmax)} = -3 \text{ mA}^{(2)}}{I_{(OHmax)} = -2 \text{ mA}^{(1)}} $	2 V	$V_{CC} - 0.60$	V_{CC}	V	
VOH		V _{CC} - 0.25	V^{CC}	V		
		$I_{(OHmax)} = -6 \text{ mA}^{(2)}$	3 V	V _{CC} - 0.60	V_{CC}	
		$I_{(OLmax)} = 1 \text{ mA}^{(1)}$	0.17	V _{SS}	$V_{SS} + 0.25$	
.,		I _(OLmax) = 3 mA ⁽²⁾	2 V	V _{SS}	V _{SS} + 0.60	.,
V _{OL}	V _{OL} Low-level output voltage	I _(OLmax) = 2 mA ⁽¹⁾	2.1/	V _{SS}	V _{SS} + 0.25	V
		I _(OLmax) = 6 mA ⁽²⁾	3 V	V _{SS}	V _{SS} + 0.60	

⁽¹⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop

4.10 Output Frequency – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN MAX	UNIT
£	Port output frequency	Px.y (1) (2)	2 V	16	MHz
J _{Px.y} (with load)	Fx.y V/V/	3 V	24	IVITIZ	
r	Clock output fragues ov	ACLK, SMCLK, or MCLK at configured output port,	2 V	16	MHz
J Port_CLK	Clock output frequency	$C_L = 20 \text{ pF}, \text{ no DC loading}^{(2)}$	3 V	24	IVITZ

A resistive divider with 2 \times 1.6 k Ω between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider. C_L = 20 pF is connected from the output to V_{SS} . The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified.

4.11 Typical Characteristics – Outputs

Figure 4-2. Typical Low-Level Output Current vs Low-Level Output Voltage

Figure 4-3. Typical Low-Level Output Current vs Low-Level Output Voltage

 $V_{CC} = 2.0 \text{ V}$ Measured at Px.y

Figure 4-4. Typical High-Level Output Current vs High-Level Output Voltage

 $V_{CC} = 3.0 \text{ V}$ Measured at Px.y

Figure 4-5. Typical High-Level Output Current vs High-Level Output Voltage

4.12 Crystal Oscillator, XT1, Low-Frequency (LF) Mode⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		$f_{OSC} = 32768 \text{ Hz}, \text{ XTS} = 0, \\ \text{XT1BYPASS} = 0, \text{ XT1DRIVE} = \{1\}, \\ \text{C}_{\text{L,eff}} = 9 \text{ pF}, \text{T}_{\text{A}} = 25^{\circ}\text{C},$	3 V		60		
ΔI _{VCC.LF}	Additional current consumption XT1 LF mode from lowest drive setting	$\begin{split} f_{\text{OSC}} &= 32768 \text{ Hz, XTS} = 0,\\ \text{XT1BYPASS} &= 0, \text{XT1DRIVE} = \{2\},\\ \text{T}_{\text{A}} &= 25^{\circ}\text{C, C}_{\text{L,eff}} = 9 \text{ pF} \end{split}$	3 V		90		nA
		$f_{OSC} = 32768 \text{ Hz}, \text{ XTS} = 0, \\ \text{XT1BYPASS} = 0, \text{XT1DRIVE} = \{3\}, \\ \text{T}_{A} = 25^{\circ}\text{C}, \text{C}_{L,\text{eff}} = 12 \text{ pF}$	3 V		140		
$f_{XT1,LF0}$	XT1 oscillator crystal frequency, LF mode	XTS = 0, XT1BYPASS = 0			32768		Hz
$f_{XT1,LF,SW}$	XT1 oscillator logic-level square- wave input frequency, LF mode	XTS = 0, XT1BYPASS = 1 (3) (4)		10	32.768	50	kHz
0.0	Oscillation allowance for	XTS = 0, XT1BYPASS = 0, XT1DRIVE = $\{0\}$, $f_{\text{XT1,LF}} = 32768 \text{ Hz}$, $C_{\text{L,eff}} = 6 \text{ pF}$		210			kΩ
OA _{LF}	LF crystals ⁽⁵⁾	XTS = 0, XT1BYPASS = 0, XT1DRIVE = $\{3\}$, $f_{\text{XT1,LF}} = 32768 \text{ Hz}$, $C_{\text{L,eff}} = 12 \text{ pF}$			300		K12
	Duty cycle, LF mode	XTS = 0, Measured at ACLK, $f_{\text{XT1,LF}}$ = 32768 Hz		30		70	%
$f_{Fault,LF}$	Oscillator fault frequency, LF mode (6)	XTS = 0 ⁽⁷⁾		10		10000	Hz
	Startup time, LF mode ⁽⁸⁾	$f_{OSC} = 32768 \text{ Hz}, \text{ XTS} = 0, \\ \text{XT1BYPASS} = 0, \text{ XT1DRIVE} = \{0\}, \\ \text{T}_{A} = 25^{\circ}\text{C}, \text{ C}_{\text{L,eff}} = 6 \text{ pF}$	3 V	1000		ma	
t _{START,LF}	Startup time, Er mode ማ	$f_{OSC} = 32768 \text{ Hz}, \text{ XTS} = 0, \\ \text{XT1BYPASS} = 0, \text{ XT1DRIVE} = \{3\}, \\ \text{T}_{A} = 25^{\circ}\text{C}, \text{ C}_{\text{L,eff}} = 12 \text{ pF}$	3 V	1000			ms
$C_{L,eff}$	Integrated effective load capacitance, LF mode ⁽⁹⁾ (10)	XTS = 0			1		pF

- (1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - Keep the trace between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
- -40°C to 85°C
- When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet.
- Maximum frequency of operation of the entire device cannot be exceeded.
- Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:

 - For XT1DRIVE = {0}, $C_{L,eff} \le 6$ pF. For XT1DRIVE = {1}, 6 pF $\le C_{L,eff} \le 9$ pF. For XT1DRIVE = {2}, 6 pF $\le C_{L,eff} \le 10$ pF.
 - For XT1DRIVE = $\{3\}$, 6 pF \leq C_{L,eff} \leq 12 pF.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- Measured with logic-level input frequency but also applies to operation with crystals.
- Includes startup counter of 4096 clock cycles.
- Requires external capacitors at both terminals.
- Values are specified by crystal manufacturers. Include parasitic bond and package capacitance (approximately 2 pF per pin). Recommended values supported are 6 pF, 9 pF, and 12 pF. Maximum shunt capacitance of 1.6 pF.

4.13 Crystal Oscillator, XT1, High-Frequency (HF) Mode⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		$f_{\rm OSC}$ = 4 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {0}, T _A = 25°C, C _{L,eff} = 16 pF			175		
	XT1 oscillator crystal current HF	$\begin{split} f_{OSC} = 8 \text{ MHz}, \\ \text{XTS} = 1, \text{ XOSCOFF} = 0, \\ \text{XT1BYPASS} = 0, \text{ XT1DRIVE} = \{1\}, \\ \text{T}_{A} = 25^{\circ}\text{C}, \text{ C}_{L,\text{eff}} = 16 \text{ pF} \end{split}$	3 V		300		μΑ
VCC,HF	mode	$\begin{split} f_{OSC} &= 16 \text{ MHz}, \\ \text{XTS} &= 1, \text{ XOSCOFF} = 0, \\ \text{XT1BYPASS} &= 0, \text{ XT1DRIVE} = \{2\}, \\ T_{A} &= 25^{\circ}\text{C}, \text{ C}_{\text{L,eff}} = 16 \text{ pF} \end{split}$	3 V		350		μА
		$f_{OSC} = 24 \text{ MHz},$ XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {3}, $T_A = 25^{\circ}\text{C}, C_{L,eff} = 16 \text{ pF}$ XTS = 1,					
$f_{XT1,HF0}$	XT1 oscillator crystal frequency, HF mode 0	XTS = 1, XT1BYPASS = 0, XT1DRIVE = $\{0\}$ (3)		4		6	MHz
$f_{XT1,HF1}$	XT1 oscillator crystal frequency, HF mode 1	XTS = 1, XT1BYPASS = 0, XT1DRIVE = {1} (3)		6		10	MHz
$f_{XT1,HF2}$	XT1 oscillator crystal frequency, HF mode 2	XTS = 1, XT1BYPASS = 0, XT1DRIVE = {2} (3)		10		16	MHz
$f_{XT1,HF3}$	XT1 oscillator crystal frequency, HF mode 3	XTS = 1, XT1BYPASS = 0, XT1DRIVE = $\{3\}$ (3)		16		24	MHz
$f_{XT1,HF,SW}$	XT1 oscillator logic-level square- wave input frequency, HF mode	XTS = 1, XT1BYPASS = 1 (4) (3)		1		24	MHz
		$ \begin{split} &XTS = 1, \\ &XT1BYPASS = 0, XT1DRIVE = \{0\}, \\ &f_{XT1,HF} = 4 \; MHz, C_{L,eff} = 16 \; pF \end{split} $			450		
OA _{HE}	Oscillation allowance for	$ \begin{split} &XTS = 1, \\ &XT1BYPASS = 0, XT1DRIVE = \{1\}, \\ &f_{XT1,HF} = 8 \; MHz, C_{L,eff} = 16 \; pF \end{split} $			320		Ω
OAHF	HF crystals ⁽⁵⁾	$ \begin{array}{l} XTS = 1, \\ XT1BYPASS = 0, \ XT1DRIVE = \{2\}, \\ f_{XT1,HF} = 16 \ MHz, \ C_{L,eff} = 16 \ pF \end{array} $			200		22
		$ \begin{array}{l} XTS = 1, \\ XT1BYPASS = 0, \ XT1DRIVE = \{3\}, \\ f_{XT1,HF} = 24 \ MHz, \ C_{L,eff} = 16 \ pF \end{array} $			200		
	Startup time HE made (6)	$ \begin{aligned} f_{OSC} &= 4 \text{ MHz, XTS} = 1, \\ \text{XT1BYPASS} &= 0, \text{XT1DRIVE} = \{0\}, \\ T_{A} &= 25^{\circ}\text{C, C}_{L,\text{eff}} = 16 \text{ pF} \end{aligned} $	3.1/		8		m 0
t _{START,HF}	Startup time, HF mode ⁽⁶⁾	$f_{OSC} = 24 \text{ MHz}, \text{ XTS} = 1, \\ \text{XT1BYPASS} = 0, \text{XT1DRIVE} = \{3\}, \\ \text{T}_{A} = 25^{\circ}\text{C}, \text{ C}_{L,\text{eff}} = 16 \text{ pF}$	3 V		2		ms

- (1) To improve EMI on the XT1 oscillator the following guidelines should be observed.
 - Keep the traces between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
- 2) -40°C to 85°C
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- (4) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet.
- 5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.
- (6) Includes startup counter of 4096 clock cycles.

Crystal Oscillator, XT1, High-Frequency (HF) Mode⁽¹⁾ (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
$C_{L,eff}$	Integrated effective load capacitance (7) (8)	XTS = 1			1		pF
	Duty cycle, HF mode	$XTS = 1$, Measured at ACLK, $f_{XT1,HF2} = 24$ MHz		40	50	60	%
$f_{Fault,HF}$	Oscillator fault frequency, HF mode (9)	XTS = 1 (10)		145		900	kHz

- (7) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- (8) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- (10) Measured with logic-level input frequency but also applies to operation with crystals.

4.14 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
$f_{\sf VLO}$	VLO frequency	Measured at ACLK	2 V to 3.6 V	4.3	8.3	13.3	kHz
$\mathrm{d}f_{\mathrm{VLO}}/\mathrm{d_{\mathrm{T}}}$	VLO frequency temperature drift	Measured at ACLK (1)	2 V to 3.6 V		0.5		%/°C
df _{VLO} /dV _C	VLO frequency supply voltage drift	Measured at ACLK (2)	2 V to 3.6 V		4		%/V
$f_{VLO,DC}$	Duty cycle	Measured at ACLK	2 V to 3.6 V	35%	50%	65%	

- $Calculated \ using \ the \ box \ method: \ (MAX(-55 \ to \ 85^{\circ}C) MIN(-55 \ to \ 85^{\circ}C)) \ / \ MIN(-55 \ to \ 85^{\circ}C) \ / \ (85^{\circ}C (-55^{\circ}C)) \ / \ MIN(-55 \ to \ 85^{\circ}C) \ / \ (85^{\circ}C (-55^{\circ}C)) \ / \ MIN(-55 \ to \ 85^{\circ}C) \ / \ (85^{\circ}C (-55^{\circ}C)) \ / \ MIN(-55 \ to \ 85^{\circ}C) \ / \ (85^{\circ}C (-55^{\circ}C)) \ / \ MIN(-55 \ to \ 85^{\circ}C) \ / \ (85^{\circ}C (-55^{\circ}C)) \ / \ MIN(-55 \ to \ 85^{\circ}C) \ / \ (85^{\circ}C (-55^{\circ}C)) \ / \ MIN(-55 \ to \ 85^{\circ}C) \ / \$
- Calculated using the box method: (MAX(2.0 to 3.6 V) MIN(2.0 to 3.6 V)) / MIN(2.0 to 3.6 V) / (3.6 V 2 V)

4.15 DCO Frequencies

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC} T _A	MIN	TYP	MAX	UNIT
f	DCO frequency low, trimmed	Measured at ACLK, DCORSEL = 0	2 V to 3.6 V -55°C to 85°C		5.37	±5%	MHz
$f_{DCO,LO}$		Measured at ACLK, DCORSEL = 1	2 V to 3.6 V -55°C to 85°C		16.2	±5%	MHz
£	DCO fraguency mid trimmed	Measured at ACLK, DCORSEL = 0	2 V to 3.6 V -55°C to 85°C		6.67	±5%	MHz
$f_{DCO,MID}$	DCO frequency mid, trimmed	Measured at ACLK, DCORSEL = 1	2 V to 3.6 V -55°C to 85°C		20	±5%	MHz
£	DCO fraguency high trimmed	Measured at ACLK, DCORSEL = 0	2 V to 3.6 V -55°C to 85°C		8	±5%	MHz
<i>f</i> дсо,ні	DCO frequency high, trimmed	Measured at ACLK, DCORSEL = 1	2 V to 3.6 V -55°C to 85°C		23.8	±5%	MHz
$f_{DCO,DC}$	Duty cycle	Measured at ACLK, divide by 1, No external divide, all DCO settings	2 V to 3.6 V -55°C to 85°C	35%	50%	65%	

4.16 MODOSC

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
I _{MODOSC}	Current consumption	Enabled	2 V to 3.6 V		44		μΑ
f_{MODOSC}	MODOSC frequency		2 V to 3.6 V	4.2	5.0	5.7	MHz
$f_{MODOSC,DC}$	Duty cycle	Measured at ACLK, divide by 1	2 V to 3.6 V	35%	50%	65%	

4.17 PMM, Core Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CORE} (AM)	Core voltage, active mode	2 V ≤ DV _{CC} ≤ 3.6 V		1.5		V
V _{CORE} (LPM)	Core voltage, low-current mode	2 V ≤ DV _{CC} ≤ 3.6 V		1.5		V

4.18 PMM, SVS, BOR

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{SVSH,AM}	SVS _H current consumption, active mode	V _{CC} = 3.6 V		5		μΑ
I _{SVSH,LPM}	SVS _H current consumption, low power modes	V _{CC} = 3.6 V		0.8		μΑ
V _{SVSH} -	SVS _H on voltage level, falling supply voltage		1.81	1.88	1.95	٧
V _{SVSH+}	SVS _H off voltage level, rising supply voltage		1.85	1.93	2	٧
t _{PD,SVSH, AM}	SVS _H propagation delay, active mode	$dV_{CC}/dt = 10 \text{ mV/}\mu\text{s}$		10		μs
t _{PD,SVSH, LPM}	SVS _H propagation delay, low power modes	$dV_{CC}/dt = 1 \text{ mV/}\mu\text{s}$		30		μs
I _{SVSL}	SVS _L current consumption			0.3		μΑ
V _{SVSL}	SVS _L on voltage level			1.42		V
V _{SVSL+}	SVS _L off voltage level			1.47		>

4.19 Wake-Up from Low Power Modes

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC} T _A	MIN	TYP	MAX	UNIT
twake-up LPM0	Wake-up time from LPM0 to active mode ⁽¹⁾		2 V, 3 V -55°C to 85°C		0.58	1.1	μs
t _{WAKE-UP LPM12}	Wake-up time from LPM1, LPM2 to active mode $^{(1)}$		2 V, 3 V -55°C to 85°C		12	25	μs
t _{WAKE-UP LPM34}	Wake-up time from LPM3 or LPM4 to active mode $^{(1)}$		2 V, 3 V -55°C to 85°C		78	165	μs
	Wake-up time from LPM3.5 or		2 V, 3 V 0°C to 85°C		310	575	μs
^t WAKE-UP LPMx.5	LPM4.5 to active mode (1)		2 V, 3 V –55°C to 85°C		310	1100	μs
twake-up reset	Wake-up time from $\overline{\text{RST}}$ to active mode $^{(2)}$	V _{CC} stable	2 V, 3 V –55°C to 85°C		230		μs
t _{WAKE-UP} BOR	Wake-up time from BOR or power-up to active mode	dV _{CC} /dt = 2400 V/s	2 V, 3 V -55°C to 85°C		1.6		ms
t _{RESET}	Pulse duration required at RST/NMI terminal to accept a reset event ⁽³⁾		2 V, 3 V -55°C to 85°C	4			ns

⁽¹⁾ The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is executed.

22

The wake-up time is measured from the rising edge of the RST signal until the first instruction of the user program is executed.

Meeting or exceeding this time makes sures a reset event occurs. Pulses shorter than this minimum time may or may not cause a reset event to occur.

4.20 Timer_A

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f_{TA}	Timer_A input clock frequency	Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ± 10%	2 V, 3 V			24	MHz
t _{TA,cap}	Timer_A capture timing	All capture inputs, Minimum pulse duration required for capture	2 V, 3 V	20			ns

4.21 Timer_B

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f_{TB}	Timer_B input clock frequency	Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ± 10%	2 V, 3 V			24	MHz
t _{TB,cap}	Timer_B capture timing	All capture inputs, Minimum pulse duration required for capture	2 V, 3 V	20			ns

4.22 eUSCI (UART Mode) Recommended Operating Conditions

	PARAMETER	CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
$f_{ m eUSCI}$	eUSCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10%				$f_{ exttt{SYSTEM}}$	MHz
f_{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)					5	MHz

4.23 eUSCI (UART Mode)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		UCGLITx = 0		5	15	20	
	LIADT receive dealitch time (1)	UCGLITx = 1	2 1/ 2 1/	20	45	60	
ι _t	UART receive deglitch time ⁽¹⁾	UCGLITx = 2	2 V, 3 V	35	80	120	ns
		UCGLITx = 3		50	110	180	

⁽¹⁾ Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time.

4.24 eUSCI (SPI Master Mode) Recommended Operating Conditions

PARAMETER	CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
T USOL BUSINESS COCK TRACILEDON	Internal: SMCLK, ACLK Duty cycle = 50% ± 10%				f_{SYSTEM}	MHz

4.25 eUSCI (SPI Master Mode)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	CTF load time CTF active to clock	UCSTEM = 0, UCMODEx = 01 or 10	2 V, 3 V	1			UCxCLK
t _{STE,LEAD}	STE lead time, STE active to clock	UCSTEM = 1, UCMODEx = 01 or 10	2 V, 3 V	1			cycles
.	STE lag time, Last clock to STE	UCSTEM = 0, UCMODEx = 01 or 10	2 V, 3 V	1			UCxCLK
t _{STE,LAG}	inactive	UCSTEM = 1, UCMODEx = 01 or 10	2 V, 3 V	1			cycles
t	STE access time, STE active to SIMO	UCSTEM = 0, UCMODEx = 01 or 10	2 V, 3 V			55	ns
t _{STE,ACC}	data out	UCSTEM = 1, UCMODEx = 01 or 10	2 V, 3 V			35	115
+	STE disable time, STE inactive to	UCSTEM = 0, UCMODEx = 01 or 10	2 V, 3 V			40	ns
t _{STE,DIS}	SIMO high impedance	UCSTEM = 1, UCMODEx = 01 or 10	2 V, 3 V			30	115
	COMI input data autum tima		2 V	35			
t _{SU,MI}	SOMI input data setup time		3 V	35			ns
	OOM Consult data had disa		2 V	0			
t _{HD,MI}	SOMI input data hold time		3 V	0			ns
	SIMO output data valid time (2)	UCLK edge to SIMO valid,	2 V			30	
t _{VALID,MO}	SIMO output data valid time (2)	$C_L = 20 \text{ pF}$	3 V			30	ns
	SIMO output data hald time (3)	C 20 x E	2 V	0			20
t _{HD,MO}	SIMO output data hold time (3)	C _L = 20 pF	3 V	0			ns

 ⁽¹⁾ f_{UCXCLK} = 1/2t_{LO/HI} with t_{LO/HI} = max(t_{VALID,MO(eUSCI)} + t_{SU,SI(Slave)}, t_{SU,MI(eUSCI)} + t_{VALID,SO(Slave)}).
 For the slave's parameters t_{SU,SI(Slave)} and t_{VALID,SO(Slave)} see the SPI parameters of the attached slave.
 (2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams

in Figure 4-6 and Figure 4-7.

Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 4-6 and Figure 4-7.

Figure 4-6. SPI Master Mode, CKPH = 0

Figure 4-7. SPI Master Mode, CKPH = 1

4.26 eUSCI (SPI Slave Mode)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	CTF load time. CTF active to alcale		2 V	7			20
t _{STE,LEAD}	STE lead time, STE active to clock		3 V	7			ns
	CTF los times I set alsole to CTF insetting		2 V	0			
t _{STE,LAG}	STE lag time, Last clock to STE inactive		3 V	0			ns
	CTF access times CTF active to COMI data and		2 V			65	
t _{STE,ACC}	STE access time, STE active to SOMI data out		3 V			40	ns
	STE disable time, STE inactive to SOMI high		2 V			40	
t _{STE,DIS}	impedance		3 V			35	ns
	CIMO insult data active time		2 V	2			
t _{SU,SI}	SIMO input data setup time		3 V	2			ns
	CIMO insust data hald time		2 V	5			
t _{HD,SI}	SIMO input data hold time		3 V	5			ns
	COMP and the data walled there (2)	UCLK edge to SOMI valid,	2 V			30	
t _{VALID,SO}	SOMI output data valid time (2)	C _L = 20 pF	3 V			30	ns
	COM sustant data hald time (3)	0 20 = 5	2 V	4			
t _{HD,SO}	SOMI output data hold time (3)	$C_L = 20 \text{ pF}$	3 V	4			ns

 $f_{\text{UCxCLK}} = 1/2t_{\text{LO/HI}}$ with $t_{\text{LO/HI}} \ge \max(t_{\text{VALID,MO(Master}}) + t_{\text{SU,SI(eUSCI)}}, t_{\text{SU,MI(Master)}}) + t_{\text{VALID,SO(eUSCI)}})$. For the master's parameters $t_{\text{SU,MI(Master)}}$ and $t_{\text{VALID,MO(Master)}}$ see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams

in Figure 4-8 and Figure 4-9.

Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 4-8 (3)and Figure 4-9.

Figure 4-8. SPI Slave Mode, CKPH = 0

Figure 4-9. SPI Slave Mode, CKPH = 1

4.27 eUSCI (I²C Mode)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP MAX	UNIT
$f_{ t eUSCI}$	eUSCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10%			$f_{ exttt{SYSTEM}}$	MHz
$f_{\sf SCL}$	SCL clock frequency		2 V, 3 V	0	400) kHz
	Hold time (repeated) START	$f_{\rm SCL}$ = 100 kHz	2.1/.2.1/	4.0		
t _{HD,STA}	Hold time (repeated) START	$f_{\rm SCL}$ > 100 kHz	2 V, 3 V	0.6		μs
	Catual time for a reported CTART	$f_{\rm SCL}$ = 100 kHz	2 1/ 2 1/	4.7		
t _{SU,STA}	Setup time for a repeated START	$f_{\rm SCL}$ > 100 kHz	2 V, 3 V	0.6		μs
t _{HD,DAT}	Data hold time		2 V, 3 V	0		ns
t _{SU,DAT}	Data setup time		2 V, 3 V	250		ns
	Catua time for CTOD	$f_{\rm SCL}$ = 100 kHz	2 1/ 2 1/	4.0		
t _{SU,STO}	Setup time for STOP	$f_{\rm SCL}$ > 100 kHz	2 V, 3 V	0.6		μs
		UCGLITx = 0		50	600) ns
	Pulse duration of spikes suppressed by	UCGLITx = 1	2 V, 3 V	25	300) ns
t _{SP}	input filter	UCGLITx = 2	2 V, 3 V	12.5	150) ns
		UCGLITx = 3		6.25	75	5 ns
		UCCLTOx = 1			27	ms
$t_{TIMEOUT}$	Clock low timeout	UCCLTOx = 2	2 V, 3 V		30	ms
		UCCLTOx = 3			33	ms

Figure 4-10. I²C Mode Timing

4.28 10-Bit ADC, Power Supply and Input Range Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
AV_{CC}	Analog supply voltage	AV_{CC} and DV_{CC} are connected together, AV_{SS} and DV_{SS} are connected together, $V_{(AVSS)} = V_{(DVSS)} = 0 \text{ V}$		2.0		3.6	V
$V_{(Ax)}$	Analog input voltage range	All ADC10 pins		0		AV_CC	V
	Operating supply current into	$f_{\text{ADC10CLK}} = 5 \text{ MHz}, \text{ADC10ON} = 1,$	2 V		90	150	
I _{ADC10_} A	AVCC terminal, reference current not included	REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0	3 V		100 170	μΑ	
C _I	Input capacitance	Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad	2.2 V		6		pF
R _I	Input MUX ON resistance	$AV_{CC} \ge 2 \text{ V}, 0 \text{ V} \le V_{Ax} \le AV_{CC}$				36	kΩ

4.29 10-Bit ADC, Timing Parameters

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
$f_{ADC10CLK}$		For specified performance of ADC10 linearity parameters	2 V to 3.6 V	0.45	5	5.5	MHz	
$f_{\sf ADC10OSC}$	Internal ADC10 oscillator (MODOSC)	ADC10DIV = 0, $f_{ADC10CLK} = f_{ADC10OSC}$	2 V to 3.6 V	4.2	4.5	5.7	MHz	
tCONVERT	Conversion time	REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode, $f_{\rm ADC10OSC}$ = 4.5 MHz to 5.5 MHz	2 V to 3.6 V	2.18		2.67	μs	
001112111		External $f_{\rm ADC10CLK}$ from ACLK, MCLK, or SMCLK, ADC10SSEL $\neq 0$	2 V to 3.6 V		(1)		'	
t _{ADC10ON}	Turn on settling time of the ADC	The error in a conversion started after t _{ADC10ON} is less than ±0.5 LSB, Reference and input signal already settled				100	ns	
	Sampling time	Sampling time $ \begin{array}{c} R_S = 1000~\Omega,~R_1 = 36000~\Omega,~C_1 = 3.5~pF, \\ \text{Approximately eight Tau (t) are required to get an} \\ \text{error of less than } \pm 0.5~LSB \end{array} $		2 V	1.5			
t _{Sample}			3 V	2.0			μs	

⁽¹⁾ $12 \times ADC10DIV \times 1/f_{ADC10CLK}$

4.30 10-Bit ADC, Linearity Parameters

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
г	Integral	1.4 V ≤ (V _{eREF+} − V _{REF} _/V _{eREF} _)min ≤ 1.6 V	0.01/	-1.4		1.4	LSB
E _I	linearity error	1.6 V < $(V_{eREF+} - V_{REF-}/V_{eREF-})$ min $\leq V_{AVCC}$	3.6 V	-1.3		1.3	LOD
E _D	Differential linearity error	$(V_{eREF+} - V_{REF-}/V_{eREF-})$ min $\leq (V_{eREF+} - V_{REF-}/V_{eREF-})$	3.6 V	-1.2		1.2	LSB
Eo	Offset error	$(V_{eREF+} - V_{REF-}/V_{eREF-})$ min $\leq (V_{eREF+} - V_{REF-}/V_{eREF-})$	3.6 V		±2.5		mV
E _G	Gain error, external reference	$(V_{eREF+} - V_{REF-}/V_{eREF-})$ min $\leq (V_{eREF+} - V_{REF-}/V_{eREF-})$	3.6 V	-1.4		1.4	LSB
	Gain error, internal reference ⁽¹⁾				±4		
_	Total unadjusted error, external reference	$(V_{eREF+} - V_{REF-}/V_{eREF-})$ min $\leq (V_{eREF+} - V_{REF-}/V_{eREF-})$	3.6 V		±2.3		LSB
E _T	Total unadjusted error, internal reference ⁽¹⁾				±4		

⁽¹⁾ Error is dominated by the internal reference.

4.31 REF, External Reference

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V _{eREF+}	Positive external reference voltage input	$V_{eREF+} > V_{eREF-}$ (2)		1.4		AV_{CC}	V
V _{eREF}	Negative external reference voltage input	$V_{eREF+} > V_{eREF-}$ (3)		0		1.2	V
(V _{eREF+} – V _{REF-} /V _{eREF-})	Differential external reference voltage input	V _{eREF+} > V _{eREF-} ⁽⁴⁾		1.4		AV_{CC}	V
Iveref+, Iveref-	Chatia input aumant	$\begin{array}{l} 1.4~\text{V} \leq \text{V}_{\text{eREF+}} \leq \text{V}_{\text{AVCC}}, \\ \text{V}_{\text{eREF-}} = 0~\text{V}, \\ f_{\text{ADC}10\text{CLK}} = 5~\text{MHz}, \\ \text{ADC}10\text{SHTx} = 1\text{h}, \\ \text{Conversion rate 200 ksps} \end{array}$	2.2 V, 3 V		±6		μΑ
	Static input current	$ \begin{array}{l} 1.4~\text{V} \leq \text{V}_{\text{eREF+}} \leq \text{V}_{\text{AVCC}}, \\ \text{V}_{\text{eREF-}} = 0~\text{V}, \\ f_{\text{ADC}10\text{CLK}} = 5~\text{MHz}, \\ \text{ADC}10\text{SHTx} = 8\text{h}, \\ \text{Conversion rate 20 ksps} \\ \end{array} $	2.2 V, 3 V		±1		μА
C _{VREF+} , C _{VREF-}	Capacitance at VREF+ or VREF- terminal (5)				10		μF

⁽¹⁾ The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.

4.32 REF, Built-In Reference

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		REFVSEL = {2} for 2.5 V, REFON = 1	3 V	2.39	2.5	2.61	
V_{REF+}	Positive built-in reference voltage output	REFVSEL = {1} for 2 V, REFON = 1	3 V	1.91	2.0	2.09	V
	voltago oatpat	REFVSEL = {0} for 1.5 V, REFON = 1	3 V	1.43	1.5	1.57	
	AVCC minimum voltage,	REFVSEL = {0} for 1.5 V		2.0			
$AV_{CC(min)}$	Positive built-in reference	REFVSEL = {1} for 2 V		2.2			V
	active	REFVSEL = {2} for 2.5 V		2.7			
I _{REF+}	Operating supply current into AVCC terminal (1)	$f_{\rm ADC10CLK}$ = 5 MHz, REFON = 1, REFBURST = 0	3 V		33		μΑ
T _{REF+}	Temperature coefficient of built-in reference	REFVSEL = (0, 1, 2), REFON = 1			±35		ppm/ °C
	Power supply rejection ratio (DC)	$\begin{array}{l} AV_{CC} = AV_{CC~(min)} - AV_{CC(max)}, \\ T_A = 25^{\circ}C, REFON = 1, \\ REFVSEL = (0) for 1.5 V \end{array}$			1600		
PSRR_DC		$ \begin{array}{l} AV_{CC} = AV_{CC~(min)} - AV_{CC(max)}, \\ T_A = 25^{\circ}C, REFON = 1, \\ REFVSEL = (1) for 2 V \end{array} $			1900		μV/V
		$\begin{aligned} &AV_{CC} = AV_{CC}_{(min)} \cdot AV_{CC(max)}, \\ &T_A = 25^\circC, REFON = 1, \\ &REFVSEL = (2) for 2.5 V \end{aligned}$			3600		
t _{SETTLE}	Settling time of reference voltage (2)	$\begin{array}{l} AV_{CC} = AV_{CC \; (min)} \text{-} \; AV_{CC(max)}, \\ REFVSEL = (0, 1, 2\}, REFON = 0 \to 1 \end{array}$			30		μs

The internal reference current is supplied by terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.

⁽²⁾ The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.

The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.

The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_B. Also see the MSP430FR57xx Family User's Guide (SLAU272).

The condition is that the error in a conversion started after t_{REFON} is less than ± 0.5 LSB.

4.33 REF, Temperature Sensor and Built-In V_{MID}

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V _{SENSOR}	See ⁽¹⁾	ADC10ON = 1, INCH = 0Ah, $T_A = 0$ °C	2 V, 3 V		790		mV
TC _{SENSOR}		ADC10ON = 1, INCH = 0Ah	2 V, 3 V		2.55		mV/°C
	Sample time required if channel 10 is selected (2)	ADC10ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB	2 V	30			
tSENSOR(sample)			3 V	30			μs
V	AV divider et channel 11	ADC10ON = 1, INCH = 0Bh, V_{MID} is ~0.5 × V_{AVCC}	2 V	0.96	1.0	1.04	V
V _{MID}	AV _{CC} divider at channel 11		3 V	1.43	1.5	1.57	
t _{VMID(sample)}	Sample time required if channel 11 is selected (3)	ADC10ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB	2 V, 3 V	1000			ns

⁽¹⁾ The temperature sensor offset can vary significantly. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor.

⁽³⁾ The on-time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}; no additional on time is needed.

Figure 4-11. Typical Temperature Sensor Voltage

⁽²⁾ The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time t_{SENSOR(on)}.

4.34 Comparator_D

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Overdrive = 10 mV, VIN- = (VIN+ - 400 mV) to (VIN+ + 10 mV)	49	100	202	ns
t _{pd}	Propagation delay, AVCC = 2 V to 3.6 V	Overdrive = 100 mV, VIN- = (VIN+ - 400 mV) to (VIN+ + 100 mV)		80		ns
		Overdrive = 250 mV, (VIN+ - 400 mV) to (VIN+ + 250 mV)		50		ns
		CDF = 1, CDFDLY = 00	0.28	0.5	1.1	μs
	Filter timer added to the	CDF = 1, CDFDLY = 01	0.49	0.9	1.8	μs
t _{filter}	propagation delay of the comparator	CDF = 1, CDFDLY = 10	0.85	1.6	3.31	μs
		CDF = 1, CDFDLY = 11	1.59	3.0	6.5	μs
V _{offset}	Input offset	AVCC = 2 V to 3.6 V	-26		26	mV
V _{ic}	Common mode input range	AVCC = 2 V to 3.6 V	0		AVCC – 1	V
I _{comp(AVCC)}	Comparator only	CDON = 1, AVCC = 2 V to 3.6 V		28		μΑ
I _{ref(AVCC)}	Reference buffer and R-ladder	CDREFLx = 01, AVCC = 2 V to 3.6 V		20		μΑ
t _{enable,comp}	Comparator enable time	CDON = 0 to CDON = 1, AVCC = 2 V to 3.6 V		1.1	2.3	μs
t _{enable,rladder}	Resistor ladder enable time	CDON = 0 to CDON = 1, AVCC = 2 V to 3.6 V		1.1	2.3	μs
V _{CB_REF}	Reference voltage for a tap	VIN = voltage input to the R-ladder, n = 0 to 31	VIN × (n + 0.49) / 32	VIN × (n + 1) / 32	VIN × (n + 1.51) / 32	V

4.35 FRAM

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DV _{CC(WRITE)}	Write supply voltage		2.0		3.6	V
t _{WRITE}	Word or byte write time				120	ns
t _{ACCESS}	Read access time (1)				60	ns
t _{PRECHARGE}	Precharge time (1)				60	ns
t _{CYCLE}	Cycle time, read or write operation (1)		120			ns
	Read and write endurance		10 ¹⁵			cycles
		T _J = 25°C	100			
t _{Retention}	Data retention duration	$T_J = 70^{\circ}C$	40			years
		T _J = 85°C	10			

⁽¹⁾ When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common system frequencies.

4.36 JTAG and Spy-Bi-Wire Interface

	PARAMETER	V _{CC}	MIN	TYP	MAX	UNIT
f_{SBW}	Spy-Bi-Wire input frequency	2 V, 3 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2 V, 3 V	0.025		15	μs
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1)	2 V, 3 V			1	μs
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time		18		37	μs
f _{TCK} TCK	TOV input fragues A wire ITAC (2)	2 V	0		5	MHz
	TCK input frequency, 4-wire JTAG ⁽²⁾	3 V	0		10	MHz
R _{internal}	Internal pulldown resistance on TEST	2 V, 3 V	19	35	51.5	kΩ

⁽¹⁾ Tools accessing the Spy-Bi-Wire interface must wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

5 Detailed Description

5.1 Functional Block Diagram

This section shows the functional block diagram for the MSP430FR5739-EP in the RHA package.

5.2 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data.

5.3 Operating Modes

The MSP430 has one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from low-power modes LPM0 through LPM4, service the request, and restore back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.

The following eight operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK active
 - MCLK disabled
 - SMCLK optionally active
 - Complete data retention
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - ACLK active
 - MCLK disabled
 - SMCLK optionally active
 - DCO disabled
 - Complete data retention
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - ACLK active
 - MCLK disabled
 - SMCLK optionally active
 - DCO disabled
 - Complete data retention

- Low-power mode 3 (LPM3)
 - CPU is disabled
 - ACLK active
 - MCLK and SMCLK disabled
 - DCO disabled
 - Complete data retention
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK, MCLK, SMCLK disabled
 - Complete data retention
- Low-power mode 3.5 (LPM3.5)
 - RTC operation
 - Internal regulator disabled
 - No data retention
 - I/O pad state retention
 - Wakeup from RST, general-purpose I/O, RTC events
- Low-power mode 4.5 (LPM4.5)
 - Internal regulator disabled
 - No data retention
 - I/O pad state retention
 - Wakeup from RST and general-purpose I/O

5.4 Interrupt Vector Addresses

The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 5-1. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power-Up, Brownout, Supply Supervisors External Reset RST Watchdog Timeout (Watchdog mode) WDT, FRCTL MPU, CS, PMM Password Violation FRAM double bit error detection MPU segment violation Software POR, BOR	SVSLIFG, SVSHIFG PMMRSTIFG WDTIFG WDTIFG WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW DBDIFG MPUSEGIIFG, MPUSEG2IFG, MPUSEG3IFG PMMPORIFG, PMMBORIFG (SYSRSTIV) (1) (2)	Reset	OFFFEh	63, highest
System NMI Vacant Memory Access JTAG Mailbox FRAM access time error FRAM single, double bit error detection	VMAIFG JMBNIFG, JMBOUTIFG ACCTIMIFG SBDIFG, DBDIFG (SYSSNIV) ⁽¹⁾	(Non)maskable	0FFFCh	62
User NMI External NMI Oscillator Fault	NMIIFG, OFIFG (SYSUNIV) ⁽¹⁾ ⁽²⁾	(Non)maskable	0FFFAh	61
Comparator_D	Comparator_D interrupt flags (CBIV) (1) (3)	Maskable	0FFF8h	60
TB0	TB0CCR0 CCIFG0 (3)	Maskable	0FFF6h	59
TB0	TB0CCR1 CCIFG1 to TB0CCR2 CCIFG2, TB0IFG (TB0IV) (1) (3)	Maskable	0FFF4h	58
Watchdog Timer (Interval Timer Mode)	WDTIFG	Maskable	0FFF2h	57
eUSCI_A0 Receive and Transmit	UCA0RXIFG, UCA0TXIFG (SPI mode) UCA0STTIFG, UCA0TXCPTIFG, UCA0RXIFG, UXA0TXIFG (UART mode) (UCA0IV) (1) (3)	Maskable	0FFF0h	56
eUSCI_B0 Receive and Transmit	UCB0STTIFG, UCB0TXCPTIFG, UCB0RXIFG, UCB0TXIFG (SPI mode) UCB0ALIFG, UCB0NACKIFG, UCB0STTIFG, UCB0STPIFG, UCB0RXIFG0, UCB0TXIFG0, UCB0RXIFG1, UCB0TXIFG1, UCB0TXIFG2, UCB0TXIFG2, UCB0TXIFG2, UCB0TXIFG3, UCB0CNTIFG, UCB0BIT9IFG (I2C mode) (UCB0IV) (1) (3)	Maskable	OFFEEh	55
ADC10_B	ADC10OVIFG, ADC10TOVIFG, ADC10HIIFG, ADC10LOIFG ADC10INIFG, ADC10IFG0 (ADC10IV) (1) (3) (4)	Maskable	0FFECh	54
TA0	TA0CCR0 CCIFG0 (3)	Maskable	0FFEAh	53
TA0	TA0CCR1 CCIFG1 to TA0CCR2 CCIFG2, TA0IFG (TA0IV) (1) (3)	Maskable	0FFE8h	52

⁽¹⁾ Multiple source flags

⁽²⁾ A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.

(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

³⁾ Interrupt flags are located in the module.

⁽⁴⁾ Only on devices with ADC, otherwise reserved.

Table 5-1. Interrupt Sources, Flags, and Vectors (continued)

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
eUSCI_A1 Receive and Transmit	UCA1RXIFG, UCA1TXIFG (SPI mode) UCA1STTIFG, UCA1TXCPTIFG, UCA1RXIFG, UXA1TXIFG (UART mode) (UCA1IV) (1) (3)	Maskable	0FFE6h	51
DMA	DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) ^{(1) (3)}	Maskable	0FFE4h	50
TA1	TA1CCR0 CCIFG0 (3)	Maskable	0FFE2h	49
TA1	TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) ^{(1) (3)}	Maskable	0FFE0h	48
I/O Port P1	P1IFG.0 to P1IFG.7 (P1IV) ⁽¹⁾ ⁽³⁾	Maskable	0FFDEh	47
TB1	TB1CCR0 CCIFG0 (3)	Maskable	0FFDCh	46
TB1	TB1CCR1 CCIFG1 to TB1CCR2 CCIFG2, TB1IFG (TB1IV) ^{(1) (3)}	Maskable	0FFDAh	45
I/O Port P2	P2IFG.0 to P2IFG.7 (P2IV) (1) (3)	Maskable	0FFD8h	44
TB2	TB2CCR0 CCIFG0 (3)	Maskable	0FFD6h	43
TB2	TB2CCR1 CCIFG1 to TB2CCR2 CCIFG2, TB2IFG (TB2IV) (1) (3)	Maskable	0FFD4h	42
I/O Port P3	P3IFG.0 to P3IFG.7 (P3IV) (1) (3)	Maskable	0FFD2h	41
I/O Port P4	P4IFG.0 to P4IFG.2 (P4IV) ^{(1) (3)}	Maskable	0FFD0h	40
RTC_B	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) ^{(1) (3)}	Maskable	0FFCEh	39
			0FFCCh	38
Reserved	Reserved (5)		i i	1
			0FF80h	0, lowest

⁽⁵⁾ Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, it is recommended to reserve these locations.

5.5 Memory Organization

Table 5-2 describes the memory organization.

Table 5-2. Memory Organization (1)(2)

		MSP430FR5739-EP
Memory (FRAM) Main: interrupt vectors Main: code memory	Total Size	15.5 KB 00FFFFh-00FF80h 00FF7Fh-00C200h
RAM		1 KB 001FFFh-001C00h
Device Descriptor Info (TLV) (FRAM)		128 B 001A7Fh-001A00h
	N/A	0019FFh-001980h Address space mirrored to Info A
Information manage (FDAM)	N/A	00197Fh-001900h Address space mirrored to Info B
Information memory (FRAM)	Info A	128 B 0018FFh–001880h
	Info B	128 B 00187Fh–001800h
	BSL 3	512 B 0017FFh–001600h
Bootstrap loader (BSL) memory	BSL 2	512 B 0015FFh–001400h
(ROM)	BSL 1	512 B 0013FFh-001200h
	BSL 0	512 B 0011FFh-001000h
Peripherals	Size	4 KB 000FFFh–0h

⁽¹⁾ N/A = Not available

⁽²⁾ All address space not listed in this table is considered vacant memory.

5.6 **Bootstrap Loader (BSL)**

The BSL enables users to program the FRAM or RAM using a UART serial interface. Access to the device memory by the BSL is protected by an user-defined password. Use of the BSL requires four pins (see Table 5-3). BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User's Guide (SLAU319).

	•
DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
TEST/SBWTCK	Entry sequence signal
P2.0	Data transmit
P2.1	Data receive
VCC	Power supply
VSS	Ground supply

Table 5-3. BSL Pin Requirements and Functions

5.7 **JTAG Operation**

5.7.1 JTAG Standard Interface

The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. The JTAG pin requirements are summarized in Table 5-4. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320).

Table 5-4. JTAG Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION
PJ.3/TCK	IN	JTAG clock input
PJ.2/TMS	IN	JTAG state control
PJ.1/TDI/TCLK	IN	JTAG data input, TCLK input
PJ.0/TDO	OUT	JTAG data output
TEST/SBWTCK	IN	Enable JTAG pins
RST/NMI/SBWTDIO	IN	External reset
VCC		Power supply
VSS		Ground supply

5.7.2 Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire interface pin requirements are summarized in Table 5-5. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320).

Table 5-5. Spy-Bi-Wire Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION
TEST/SBWTCK	IN	Spy-Bi-Wire clock input
RST/NMI/SBWTDIO	IN, OUT	Spy-Bi-Wire data input and output
VCC		Power supply
VSS		Ground supply

5.8 FRAM

The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. Features of the FRAM include:

- Low-power ultra-fast write nonvolatile memory
- Byte and word access capability
- Programmable and automated wait state generation
- Error Correction Coding (ECC) with single bit detection and correction, double bit detection

For important software design information regarding FRAM including but not limited to partitioning the memory layout according to application-specific code, constant, and data space requirements, the use of FRAM to optimize application energy consumption, and the use of the Memory Protection Unit (MPU) to maximize application robustness by protecting the program code against unintended write accesses, see the application report MSP430[™] FRAM Technology – How To and Best Practices (SLAA628).

5.9 **Memory Protection Unit (MPU)**

The FRAM can be protected from inadvertent CPU execution or write access by the MPU. Features of the MPU include:

- Main memory partitioning programmable up to three segments
- Each segment's (main and information memory) access rights can be individually selected
- Access violation flags with interrupt capability for easy servicing of access violations

5.10 Peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430FR57xx Family User's Guide (SLAU272).

5.10.1 Digital I/O

There are up to four 8-bit I/O ports implemented:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Programmable pullup or pulldown on all ports.
- Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all ports.
- Read and write access to port-control registers is supported by all instructions.
- Ports can be accessed byte-wise or word-wise in pairs.

Detailed Description

5.10.2 Oscillator and Clock System (CS)

The clock system includes support for a 32-kHz watch crystal oscillator XT1 (LF mode), an internal very-low-power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT1 (HF mode). The clock system module is designed to meet the requirements of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The clock system module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1 LF mode), a high-frequency crystal (XT1 HF mode), the internal VLO, or the internal DCO.
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by the same sources
 made available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by the same sources made available to ACLK.

5.10.3 Power Management Module (PMM)

The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the primary and core supplies.

5.10.4 Hardware Multiplier (MPY)

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations.

5.10.5 Real-Time Clock (RTC_B)

The RTC_B module contains an integrated real-time clock (RTC) (calendar mode). Calendar mode integrates an internal calendar which compensates for months with fewer than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. RTC operation is available in LPM3.5 mode to minimize power consumption.

5.10.6 Watchdog Timer (WDT A)

The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

5.10.7 System Module (SYS)

The SYS module handles many of the system functions within the device. These include power-on reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators, bootstrap loader entry mechanisms, and configuration management (device descriptors). It also includes a data exchange mechanism using JTAG called a JTAG mailbox that can be used in the application.

Table 5-6. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	ADDRESS	INTERRUPT EVENT	VALUE	PRIORITY
SYSRSTIV,	019Eh	No interrupt pending	00h	
System Reset		Brownout (BOR)	02h	Highest
		RSTIFG RST/NMI (BOR)	04h	
		PMMSWBOR software BOR (BOR)	06h	
		LPMx.5 wake up (BOR)	08h	
		Security violation (BOR)	0Ah	
		SVSLIFG SVSL event (BOR)	0Ch	
		SVSHIFG SVSH event (BOR)	0Eh	
		Reserved	10h	
		Reserved	12h	
		PMMSWPOR software POR (POR)	14h	
		WDTIFG watchdog timeout (PUC)	16h	
		WDTPW password violation (PUC)	18h	
		FRCTLPW password violation (PUC)	1Ah	
		DBDIFG FRAM double bit error (PUC)	1Ch	
		Peripheral area fetch (PUC)	1Eh	
		PMMPW PMM password violation (PUC)	20h	
		MPUPW MPU password violation (PUC)	22h	
		CSPW CS password violation (PUC)	24h	
		MPUSEGIIFG information memory segment violation (PUC)	26h	
		MPUSEG1IFG segment 1 memory violation (PUC)	28h	
		MPUSEG2IFG segment 2 memory violation (PUC)	2Ah	
		MPUSEG3IFG segment 3 memory violation (PUC)	2Ch	
		Reserved	2Eh	
		Reserved	30h to 3Eh	Lowest
SYSSNIV, System NMI	019Ch	No interrupt pending	00h	
		DBDIFG FRAM double bit error	02h	Highest
		ACCTIMIFG access time error	04h	
		Reserved	0Eh	
		VMAIFG Vacant memory access	10h	
		JMBINIFG JTAG mailbox input	12h	
		JMBOUTIFG JTAG mailbox output	14h	
		SBDIFG FRAM single bit error	16h	
		Reserved	18h to 1Eh	Lowest
SYSUNIV, User NMI	019Ah	No interrupt pending	00h	
		NMIFG NMI pin	02h	Highest
		OFIFG oscillator fault	04h	
		Reserved	06h	
		Reserved	08h	
		Reserved	0Ah to 1Eh	Lowest

5.10.8 DMA Controller

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC10_B conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral.

Table 5-7. DMA Trigger Assignments (1)

TRIGGER	CHANNEL 0	CHANNEL 1	CHANNEL 2
0	DMAREQ	DMAREQ	DMAREQ
1	TA0CCR0 CCIFG	TA0CCR0 CCIFG	TA0CCR0 CCIFG
2	TA0CCR2 CCIFG	TA0CCR2 CCIFG	TA0CCR2 CCIFG
3	TA1CCR0 CCIFG	TA1CCR0 CCIFG	TA1CCR0 CCIFG
4	TA1CCR2 CCIFG	TA1CCR2 CCIFG	TA1CCR2 CCIFG
5	Reserved	Reserved	Reserved
6	Reserved	Reserved	Reserved
7	TB0CCR0 CCIFG	TB0CCR0 CCIFG	TB0CCR0 CCIFG
8	TB0CCR2 CCIFG	TB0CCR2 CCIFG	TB0CCR2 CCIFG
9	TB1CCR0 CCIFG (2)	TB1CCR0 CCIFG (2)	TB1CCR0 CCIFG (2)
10	TB1CCR2 CCIFG (2)	TB1CCR2 CCIFG (2)	TB1CCR2 CCIFG (2)
11	TB2CCR0 CCIFG (3)	TB2CCR0 CCIFG (3)	TB2CCR0 CCIFG (3)
12	TB2CCR2 CCIFG (3)	TB2CCR2 CCIFG (3)	TB2CCR2 CCIFG (3)
13	Reserved	Reserved	Reserved
14	UCA0RXIFG	UCA0RXIFG	UCA0RXIFG
15	UCA0TXIFG	UCA0TXIFG	UCA0TXIFG
16	UCA1RXIFG (4)	UCA1RXIFG (4)	UCA1RXIFG (4)
17	UCA1TXIFG (4)	UCA1TXIFG (4)	UCA1TXIFG (4)
18	UCB0RXIFG0	UCB0RXIFG0	UCB0RXIFG0
19	UCB0TXIFG0	UCB0TXIFG0	UCB0TXIFG0
20	UCB0RXIFG1	UCB0RXIFG1	UCB0RXIFG1
21	UCB0TXIFG1	UCB0TXIFG1	UCB0TXIFG1
22	UCB0RXIFG2	UCB0RXIFG2	UCB0RXIFG2
23	UCB0TXIFG2	UCB0TXIFG2	UCB0TXIFG2
24	UCB0RXIFG3	UCB0RXIFG3	UCB0RXIFG3
25	UCB0TXIFG3	UCB0TXIFG3	UCB0TXIFG3
26	ADC10IFGx (5)	ADC10IFGx (5)	ADC10IFGx (5)
27	Reserved	Reserved	Reserved
28	Reserved	Reserved	Reserved
29	MPY ready	MPY ready	MPY ready
30	DMA2IFG	DMA0IFG	DMA1IFG
31	DMAE0	DMAE0	DMAE0

⁽¹⁾ If a reserved trigger source is selected, no trigger is generated.

⁽²⁾ Only on devices with TB1, otherwise reserved

⁽³⁾ Only on devices with TB2, otherwise reserved

⁴⁾ Only on devices with eUSCI_A1, otherwise reserved

⁽⁵⁾ Only on devices with ADC, otherwise reserved

5.10.9 Enhanced Universal Serial Communication Interface (eUSCI)

The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I²C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each eUSCI module contains two portions, A and B.

The eUSCI_An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, or IrDA.

The eUSCI_Bn module provides support for SPI (3 pin or 4 pin) or I2C.

The MSP430FR5739-EP series include one or two eUSCI_An modules (eUSCI_A0, eUSCI_A1) and one eUSCI_Bn module (eUSCI_B).

5.10.10 TAO, TA1

TA0 and TA1 are 16-bit timers/counters (Timer_A type) with three capture/compare registers each. Each can support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 5-8. TA0 Signal Connections

INPUT PIN NUMBER	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PIN NUMBER
3-P1.2	TA0CLK	TACLK				
	ACLK (internal)	ACLK	Timer	N/A	N/A	
	SMCLK (internal)	SMCLK	Timer	IN/A	IN/A	
3-P1.2	TA0CLK	TACLK				
28-P1.6	TA0.0	CCI0A				28-P1.6
34-P2.3	TA0.0	CCI0B	CCRO TAO	TA0	T40.0	34-P2.3
	DV _{SS}	GND		TA0.0		
	DV _{cc}	V _{cc}				
1-P1.0	TA0.1	CCI1A			TA0.1	1-P1.0
	CDOUT (internal)	CCI1B	CCR1	TA1		ADC10 (internal) (1) ADC10SHSx = {1}
	DV _{SS}	GND				
	DV _{cc}	V _{cc}				
2-P1.1	TA0.2	CCI2A				2-P1.1
	ACLK (internal)	CCI2B		TA0	TAO 0	
	DV _{SS}	GND	- CCR2	TA2	TA0.2	
	DV _{CC}	V _{cc}	1			

⁽¹⁾ Only on devices with ADC

Table 5-9. TA1 Signal Connections

INPUT PIN NUMBER	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PIN NUMBER
2-P1.1	TA1CLK	TACLK				
	ACLK (internal)	ACLK	Timer	N/A	N/A	
	SMCLK (internal)	SMCLK	Timer	IN/A	N/A	
2-P1.1	TA1CLK	TACLK				
29-P1.7	TA1.0	CCI0A		TAO TA1.0	TA1.0	29-P1.7
35-P2.4	TA1.0	CCI0B	0000			35-P2.4
	DV _{SS}	GND	- CCR0			
	DV _{cc}	V _{cc}				
3-P1.2	TA1.1	CCI1A				3-P1.2
	CDOUT (internal)	CCI1B	CCR1	TA1	TA1.1	
	DV _{SS}	GND	CCRT	IAI	IAI.I	
	DV _{CC}	V _{CC}				
8-P1.3	TA1.2	CCI2A				8-P1.3
	ACLK (internal)	CCI2B	CCR2	TAO	TA1.2	
	DV _{SS}	GND	- CCR2	TA2	1A1.2	
	DV _{cc}	V _{cc}	1			

5.10.11 TB0, TB1, TB2

TB0, TB1, and TB2 are 16-bit timers/counters (Timer_B type) with three capture/compare registers each. Each can support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 5-10. TB0 Signal Connections

INPUT PIN NUMBER	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PIN NUMBER
21-P2.0	TB0CLK	TBCLK				
	ACLK (internal)	ACLK	Timer	N/A	N/A	
	SMCLK (internal)	SMCLK	Timer	IN/A	IN/A	
21-P2.0	TB0CLK	TBCLK				
22-P2.1	TB0.0	CCI0A				22-P2.1
17-P2.5	TB0.0	CCI0B			TB0.0	17-P2.5
	DV _{SS}	GND	CCR0	TB0		ADC10 (internal) (1) ADC10SHSx = {2}
	DV _{CC}	V _{cc}				
9-P1.4	TB0.1	CCI1A			TB0.1	9-P1.4
	CDOUT (internal)	CCI1B	CCR1	TB1		ADC10 (internal) (1) ADC10SHSx = {3}
	DV _{SS}	GND				
	DV _{CC}	V _{cc}				
10-P1.5	TB0.2	CCI2A				10-P1.5
	ACLK (internal)	CCI2B	CCR2	TB2	TDO 2	
	DV _{SS}	GND	CORZ	I DZ	TB0.2	
	DV _{CC}	V _{cc}				

⁽¹⁾ Only on devices with ADC

Table 5-11. TB1 Signal Connections (1)

INPUT PIN NUMBER	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PIN NUMBER
26-P3.6	TB1CLK	TBCLK				
	ACLK (internal)	ACLK	Timer	N/A	N/A	
	SMCLK (internal)	SMCLK	Timer	IN/A	IN/A	
26-P3.6	TB1CLK	TBCLK				
23-P2.2	TB1.0	CCI0A				23-P2.2
18-P2.6	TB1.0	CCI0B	CCR0	TB0	TB1.0	18-P2.6
	DV _{SS}	GND	CCRU	160	150 151.0	
	DV _{CC}	V _{CC}				
28-P1.6	TB1.1	CCI1A				28-P1.6
24-P3.4	TB1.1	CCI1B	CCR1 TB1 TB1.1	24-P3.4		
	DV _{SS}	GND	CCKT	IDI	IDI.I	
	DV _{CC}	V _{CC}				
29-P1.7	TB1.2	CCI2A				29-P1.7
25-P3.5	TB1.2	CCI2B	CCR2	TD0	TD4.2	25-P3.5
	DV _{SS}	GND	CCR2	TB2	TB1.2	
	DV _{CC}	V _{CC}				

⁽¹⁾ TB1 is not present on all device types.

Table 5-12. TB2 Signal Connections (1)

INPUT PIN NUMBER	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PIN NUMBER
24-P3.4	TB2CLK	TBCLK				
	ACLK (internal)	ACLK	T :	N/A N/	NI/A	
	SMCLK (internal)	SMCLK	Timer	IN/A	N/A	
24-P3.4	TB2CLK	TBCLK				
21-P2.0	TB2.0	CCI0A				21-P2.0
15-P4.0	TB2.0	CCI0B	CCR0	TDO	TB2.0	15-P4.0
	DV _{SS}	GND	CCRU	TB0	162.0	
	DV _{CC}	V _{cc}				
22-P2.1	TB2.1	CCI1A				22-P2.1
26-P3.6	TB2.1	CCI1B	CCR1	TB1	TD0.4	26-P3.6
	DV _{SS}	GND	CCRT	IBI	TB2.1	
	DV _{cc}	V _{cc}				
23-P2.2	TB2.2	CCI2A				23-P2.2
27-P3.7	TB2.2	CCI2B	CCR2	TB2	TD2.2	27-P3.7
	DV _{SS}	GND	- CCR2		TB2 TB2.2	
	DV _{cc}	V _{cc}				

⁽¹⁾ TB2 is not present on all device types.

www.ti.com

5.10.12 ADC10 B

The ADC10_B module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and a conversion result buffer. A window comparator with a lower limit and an upper limit allows CPU-independent result monitoring with three window comparator interrupt flags.

5.10.13 Comparator D

The primary function of the Comparator_D module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals.

5.10.14 CRC16

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.

5.10.15 Shared Reference (REF)

The reference module (REF) is responsible for generation of all critical reference voltages that can be used by the various analog peripherals in the device.

5.10.16 Embedded Emulation Module (EEM)

The EEM supports real-time in-system debugging. The S version of the EEM implemented on all devices has the following features:

- · Three hardware triggers or breakpoints on memory access
- One hardware trigger or breakpoint on CPU register write access
- Up to four hardware triggers can be combined to form complex triggers or breakpoints
- · One cycle counter
- · Clock control on module level

5.10.17 Peripheral File Map

Table 5-13 provides the base address and offset range of all available peripherals.

Table 5-13. Peripherals

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE
Special Functions (see Table 5-14)	0100h	000h-01Fh
PMM (see Table 5-15)	0120h	000h-010h
FRAM Control (see Table 5-16)	0140h	000h-00Fh
CRC16 (see Table 5-17)	0150h	000h-007h
Watchdog (see Table 5-18)	015Ch	000h-001h
CS (see Table 5-19)	0160h	000h-00Fh
SYS (see Table 5-20)	0180h	000h-01Fh
Shared Reference (see Table 5-21)	01B0h	000h-001h
Port P1, P2 (see Table 5-22)	0200h	000h-01Fh
Port P3, P4 (see Table 5-23)	0220h	000h-01Fh
Port PJ (see Table 5-24)	0320h	000h-01Fh
TA0 (see Table 5-25)	0340h	000h-02Fh
TA1 (see Table 5-26)	0380h	000h-02Fh
TB0 (see Table 5-27)	03C0h	000h-02Fh
TB1 (see Table 5-28)	0400h	000h-02Fh
TB2 (see Table 5-29)	0440h	000h-02Fh
Real-Time Clock (RTC_B) (see Table 5-30)	04A0h	000h-01Fh
32-Bit Hardware Multiplier (see Table 5-31)	04C0h	000h-02Fh
DMA General Control (see Table 5-32)	0500h	000h-00Fh
DMA Channel 0 (see Table 5-32)	0510h	000h-00Ah
DMA Channel 1 (see Table 5-32)	0520h	000h-00Ah
DMA Channel 2 (see Table 5-32)	0530h	000h-00Ah
MPU Control (see Table 5-33)	05A0h	000h-00Fh
eUSCI_A0 (see Table 5-34)	05C0h	000h-01Fh
eUSCI_A1 (see Table 5-35)	05E0h	000h-01Fh
eUSCI_B0 (see Table 5-36)	0640h	000h-02Fh
ADC10_B (see Table 5-37)	0700h	000h-03Fh
Comparator_D (see Table 5-38)	08C0h	000h-00Fh

Submit Documentation Feedback Product Folder Links: MSP430FR5739-EP

Table 5-14. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 5-15. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM Control 0	PMMCTL0	00h
PMM interrupt flags	PMMIFG	0Ah
PM5 Control 0	PM5CTL0	10h

Table 5-16. FRAM Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
FRAM control 0	FRCTLCTL0	00h
General control 0	GCCTL0	04h
General control 1	GCCTL1	06h

Table 5-17. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC data input reverse byte	CRCDIRB	02h
CRC initialization and result	CRCINIRES	04h
CRC result reverse byte	CRCRESR	06h

Table 5-18. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

Table 5-19. CS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CS control 0	CSCTL0	00h
CS control 1	CSCTL1	02h
CS control 2	CSCTL2	04h
CS control 3	CSCTL3	06h
CS control 4	CSCTL4	08h
CS control 5	CSCTL5	0Ah
CS control 6	CSCTL6	0Ch

Table 5-20. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh
Bus Error vector generator	SYSBERRIV	18h
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

Table 5-21. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Shared reference control	REFCTL	00h

Table 5-22. Port P1, P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 pullup/pulldown enable	P1REN	06h
Port P1 selection 0	P1SEL0	0Ah
Port P1 selection 1	P1SEL1	0Ch
Port P1 interrupt vector word	P1IV	0Eh
Port P1 complement selection	P1SELC	16h
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 pullup/pulldown enable	P2REN	07h
Port P2 selection 0	P2SEL0	0Bh
Port P2 selection 1	P2SEL1	0Dh
Port P2 complement selection	P2SELC	17h
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 5-23. Port P3, P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 pullup/pulldown enable	P3REN	06h
Port P3 selection 0	P3SEL0	0Ah
Port P3 selection 1	P3SEL1	0Ch
Port P3 interrupt vector word	P3IV	0Eh
Port P3 complement selection	P3SELC	16h
Port P3 interrupt edge select	P3IES	18h
Port P3 interrupt enable	P3IE	1Ah
Port P3 interrupt flag	P3IFG	1Ch
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 pullup/pulldown enable	P4REN	07h
Port P4 selection 0	P4SEL0	0Bh
Port P4 selection 1	P4SEL1	0Dh
Port P4 complement selection	P4SELC	17h
Port P4 interrupt vector word	P4IV	1Eh
Port P4 interrupt edge select	P4IES	19h
Port P4 interrupt enable	P4IE	1Bh
Port P4 interrupt flag	P4IFG	1Dh

Table 5-24. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ pullup/pulldown enable	PJREN	06h
Port PJ selection 0	PJSEL0	0Ah
Port PJ selection 1	PJSEL1	0Ch
Port PJ complement selection	PJSELC	16h

Table 5-25. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
TA0 counter register	TA0R	10h
Capture/compare register 0	TA0CCR0	12h
Capture/compare register 1	TA0CCR1	14h
Capture/compare register 2	TA0CCR2	16h
TA0 expansion register 0	TA0EX0	20h
TA0 interrupt vector	TAOIV	2Eh

Table 5-26. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter register	TA1R	10h
Capture/compare register 0	TA1CCR0	12h
Capture/compare register 1	TA1CCR1	14h
Capture/compare register 2	TA1CCR2	16h
TA1 expansion register 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

Table 5-27. TB0 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
TB0 register	TB0R	10h
Capture/compare register 0	TB0CCR0	12h
Capture/compare register 1	TB0CCR1	14h
Capture/compare register 2	TB0CCR2	16h
TB0 expansion register 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

Table 5-28. TB1 Registers (Base Address: 0400h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB1 control	TB1CTL	00h
Capture/compare control 0	TB1CCTL0	02h
Capture/compare control 1	TB1CCTL1	04h
Capture/compare control 2	TB1CCTL2	06h
TB1 register	TB1R	10h
Capture/compare register 0	TB1CCR0	12h
Capture/compare register 1	TB1CCR1	14h
Capture/compare register 2	TB1CCR2	16h
TB1 expansion register 0	TB1EX0	20h
TB1 interrupt vector	TB1IV	2Eh

Table 5-29. TB2 Registers (Base Address: 0440h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB2 control	TB2CTL	00h
Capture/compare control 0	TB2CCTL0	02h
Capture/compare control 1	TB2CCTL1	04h
Capture/compare control 2	TB2CCTL2	06h
TB2 register	TB2R	10h
Capture/compare register 0	TB2CCR0	12h
Capture/compare register 1	TB2CCR1	14h
Capture/compare register 2	TB2CCR2	16h
TB2 expansion register 0	TB2EX0	20h
TB2 interrupt vector	TB2IV	2Eh

Table 5-30. Real-Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control 0	RTCCTL0	00h
RTC control 1	RTCCTL1	01h
RTC control 2	RTCCTL2	02h
RTC control 3	RTCCTL3	03h
RTC prescaler 0 control	RTCPS0CTL	08h
RTC prescaler 1 control	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds, RTC counter register 1	RTCSEC, RTCNT1	10h
RTC minutes, RTC counter register 2	RTCMIN, RTCNT2	11h
RTC hours, RTC counter register 3	RTCHOUR, RTCNT3	12h
RTC day of week, RTC counter register 4	RTCDOW, RTCNT4	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh
Binary-to-BCD conversion register	BIN2BCD	1Ch
BCD-to-binary conversion register	BCD2BIN	1Eh

Table 5-31. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 x 16 result low word	RESLO	0Ah
16 x 16 result high word	RESHI	0Ch
16 x 16 sum extension register	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 × 32 result 0 – least significant word	RES0	24h
32 x 32 result 1	RES1	26h
32 x 32 result 2	RES2	28h
32 x 32 result 3 – most significant word	RES3	2Ah
MPY32 control register 0	MPY32CTL0	2Ch

Table 5-32. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA channel 0 control	DMA0CTL	00h
DMA channel 0 source address low	DMA0SAL	02h
DMA channel 0 source address high	DMA0SAH	04h
DMA channel 0 destination address low	DMA0DAL	06h
DMA channel 0 destination address high	DMA0DAH	08h
DMA channel 0 transfer size	DMA0SZ	0Ah
DMA channel 1 control	DMA1CTL	00h
DMA channel 1 source address low	DMA1SAL	02h
DMA channel 1 source address high	DMA1SAH	04h
DMA channel 1 destination address low	DMA1DAL	06h
DMA channel 1 destination address high	DMA1DAH	08h
DMA channel 1 transfer size	DMA1SZ	0Ah
DMA channel 2 control	DMA2CTL	00h
DMA channel 2 source address low	DMA2SAL	02h
DMA channel 2 source address high	DMA2SAH	04h
DMA channel 2 destination address low	DMA2DAL	06h
DMA channel 2 destination address high	DMA2DAH	08h
DMA channel 2 transfer size	DMA2SZ	0Ah
DMA module control 0	DMACTL0	00h
DMA module control 1	DMACTL1	02h
DMA module control 2	DMACTL2	04h
DMA module control 3	DMACTL3	06h
DMA module control 4	DMACTL4	08h
DMA interrupt vector	DMAIV	0Ah

Table 5-33. MPU Control Registers (Base Address: 05A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
MPU control 0	MPUCTL0	00h
MPU control 1	MPUCTL1	02h
MPU Segmentation Register	MPUSEG	04h
MPU access management	MPUSAM	06h

Table 5-34. eUSCI_A0 Registers (Base Address: 05C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_A control word 0	UCA0CTLW0	00h
eUSCI _A control word 1	UCA0CTLW1	02h
eUSCI_A baud rate 0	UCA0BR0	06h
eUSCI_A baud rate 1	UCA0BR1	07h
eUSCI_A modulation control	UCA0MCTLW	08h
eUSCI_A status	UCA0STAT	0Ah
eUSCI_A receive buffer	UCA0RXBUF	0Ch
eUSCI_A transmit buffer	UCA0TXBUF	0Eh
eUSCI_A LIN control	UCA0ABCTL	10h
eUSCI_A IrDA transmit control	UCA0IRTCTL	12h
eUSCI_A IrDA receive control	UCA0IRRCTL	13h
eUSCI_A interrupt enable	UCA0IE	1Ah
eUSCI_A interrupt flags	UCA0IFG	1Ch
eUSCI_A interrupt vector word	UCA0IV	1Eh

Table 5-35. eUSCI_A1 Registers (Base Address: 05E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_A control word 0	UCA1CTLW0	00h
eUSCI _A control word 1	UCA1CTLW1	02h
eUSCI_A baud rate 0	UCA1BR0	06h
eUSCI_A baud rate 1	UCA1BR1	07h
eUSCI_A modulation control	UCA1MCTLW	08h
eUSCI_A status	UCA1STAT	0Ah
eUSCI_A receive buffer	UCA1RXBUF	0Ch
eUSCI_A transmit buffer	UCA1TXBUF	0Eh
eUSCI_A LIN control	UCA1ABCTL	10h
eUSCI_A IrDA transmit control	UCA1IRTCTL	12h
eUSCI_A IrDA receive control	UCA1IRRCTL	13h
eUSCI_A interrupt enable	UCA1IE	1Ah
eUSCI_A interrupt flags	UCA1IFG	1Ch
eUSCI_A interrupt vector word	UCA1IV	1Eh

Table 5-36. eUSCI_B0 Registers (Base Address: 0640h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_B control word 0	UCB0CTLW0	00h
eUSCI_B control word 1	UCB0CTLW1	02h
eUSCI_B bit rate 0	UCB0BR0	06h
eUSCI_B bit rate 1	UCB0BR1	07h
eUSCI_B status word	UCB0STATW	08h
eUSCI_B byte counter threshold	UCB0TBCNT	0Ah
eUSCI_B receive buffer	UCB0RXBUF	0Ch
eUSCI_B transmit buffer	UCB0TXBUF	0Eh
eUSCI_B I2C own address 0	UCB0I2COA0	14h
eUSCI_B I2C own address 1	UCB0I2COA1	16h
eUSCI_B I2C own address 2	UCB0I2COA2	18h
eUSCI_B I2C own address 3	UCB0I2COA3	1Ah
eUSCI_B received address	UCB0ADDRX	1Ch
eUSCI_B address mask	UCB0ADDMASK	1Eh
eUSCI I2C slave address	UCB0I2CSA	20h
eUSCI interrupt enable	UCB0IE	2Ah
eUSCI interrupt flags	UCB0IFG	2Ch
eUSCI interrupt vector word	UCB0IV	2Eh

Table 5-37. ADC10_B Registers (Base Address: 0700h)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC10_B Control register 0	ADC10CTL0	00h
ADC10_B Control register 1	ADC10CTL1	02h
ADC10_B Control register 2	ADC10CTL2	04h
ADC10_B Window Comparator Low Threshold	ADC10LO	06h
ADC10_B Window Comparator High Threshold	ADC10HI	08h
ADC10_B Memory Control Register 0	ADC10MCTL0	0Ah
ADC10_B Conversion Memory Register	ADC10MEM0	12h
ADC10_B Interrupt Enable	ADC10IE	1Ah
ADC10_B Interrupt Flags	ADC10IGH	1Ch
ADC10_B Interrupt Vector Word	ADC10IV	1Eh

Table 5-38. Comparator_D Registers (Base Address: 08C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Comparator_D control register 0	CDCTL0	00h
Comparator_D control register 1	CDCTL1	02h
Comparator_D control register 2	CDCTL2	04h
Comparator_D control register 3	CDCTL3	06h
Comparator_D interrupt register	CDINT	0Ch
Comparator_D interrupt vector word	CDIV	0Eh

6 Input/Output Schematics

6.1 Port P1, P1.0 to P1.2, Input/Output With Schmitt Trigger

Table 6-1. Port P1 (P1.0 to P1.2) Pin Functions

DIN NAME (D4 v)		FUNCTION -	CONTROL BITS/SIGNALS			
PIN NAME (P1.x)	X		P1DIR.x	P1SEL1.x	P1SEL0.x	
P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREF-	0	P1.0 (I/O)	I: 0; O: 1	0	0	
		TA0.CCI1A	0	_	4	
		TA0.1	1	0	1	
		DMAE0	0		0	
		RTCCLK	1	1	0	
		A0 (1) (2) CD0 (1) (3) VeREF- (1) (2)	Х	1	1	
P1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+	1	P1.1 (I/O)	I: 0; O: 1	0	0	
		TA0.CCI2A	0	0	1	
		TA0.2	1			
		TA1CLK	0		0	
		CDOUT	1	1	0	
		A1 (1) (2) CD1 (1) (3) VeREF+ (1) (2)	х	1	1	
P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2	2	P1.2 (I/O)	I: 0; O: 1	0	0	
		TA1.CCI1A	0	0	4	
		TA1.1	1	0	1	
		TA0CLK	0	1	0	
		CDOUT	1			
		A2 (1) (2) CD2 (1) (3)	Х	1	1	

⁽¹⁾ Setting P1SEL1.x and P1SEL0.x disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

 ⁽²⁾ Not available on all devices and package types.
 (3) Setting the CDPD.x bit of the comparator disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.

6.2 Port P1, P1.3 to P1.5, Input/Output With Schmitt Trigger

Table 6-2. Port P1 (P1.3 to P1.5) Pin Functions

DIN NAME (D4 v)		FUNCTION	CONT		TROL BITS/SIGNALS		
PIN NAME (P1.x)	X	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x		
P1.3/TA1.2/UCB0STE/A3/CD3	3	P1.3 (I/O)	I: 0; O: 1	0	0		
		TA1.CCI2A	0	_	4		
		TA1.2	1	0	1		
		UCB0STE	X ⁽¹⁾	1	0		
		A3 ⁽²⁾ ⁽³⁾ CD3 ⁽²⁾ ⁽⁴⁾	Х	1	1		
P1.4/TB0.1/UCA0STE/A4/CD4	4	P1.4 (I/O)	I: 0; O: 1	0	0		
		TB0.CCI1A	0	- 0			
		TB0.1	1		1		
		UCA0STE	X ⁽⁵⁾	1	0		
		A4 ⁽²⁾ ⁽³⁾ CD4 ⁽²⁾ ⁽⁴⁾	Х	1	1		
P1.5/TB0.2/UCA0CLK/A5/CD5	5	P1.5(I/O)	I: 0; O: 1	0	0		
		TB0.CCI2A	0	0	4		
		TB0.2	1	0	1		
		UCA0CLK	X ⁽⁵⁾	1	0		
		A5 ^{(2) (3)} CD5 ^{(2) (4)}	Х	1	1		

⁽¹⁾ Direction controlled by eUSCI_B0 module.

⁽²⁾ Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ Not available on all devices and package types.

⁽⁴⁾ Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit

⁽⁵⁾ Direction controlled by eUSCI_A0 module.

6.3 Port P1, P1.6 to P1.7, Input/Output With Schmitt Trigger

Table 6-3. Port P1 (P1.6 to P1.7) Pin Functions

DIN NAME (D4 v)		FUNCTION	CONTROL BITS/SIGNALS			
PIN NAME (P1.x)	Х	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x	
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0	6	P1.6 (I/O)	l: 0; O: 1	0	0	
		TB1.CCI1A (1)	0	_	4	
		TB1.1 ⁽¹⁾	1	0	1	
		UCB0SIMO/UCB0SDA	X ⁽²⁾	1	0	
		TA0.CCI0A	0	1	1	
		TA0.0	1			
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0	7	P1.7 (I/O)	l: 0; O: 1	0	0	
		TB1.CCI2A (1)	0	_	,	
		TB1.2 ⁽¹⁾	1	0	1	
		UCB0SOMI/UCB0SCL	X ⁽²⁾	1	0	
		TA1.CCI0A	0	4	4	
		TA1.0	1	1 1	1	

⁽¹⁾ Not available on all devices and package types.

⁽²⁾ Direction controlled by eUSCI_B0 module.

6.4 Port P2, P2.0 to P2.2, Input/Output With Schmitt Trigger

Table 6-4. Port P2 (P2.0 to P2.2) Pin Functions

DIN NAME (DO)		FUNCTION	CONT	ROL BITS/SIG	SNALS
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK	0	P2.0 (I/O)	I: 0; O: 1	0	0
		TB2.CCI0A (1)	0		4
		TB2.0 ⁽¹⁾	1	0	ı
		UCA0TXD/UCA0SIMO	X ⁽²⁾	1	0
		TB0CLK	0	1	4
		ACLK	1		. !
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0	1	P2.1 (I/O)	I: 0; O: 1	0	0
		TB2.CCI1A (1)	0	0	1
		TB2.1 ⁽¹⁾	1		
		UCA0RXD/UCA0SOMI	X ⁽²⁾	1	0
		TB0.CCI0A	0	_	4
		TB0.0	1		ı
P2.2/TB2.2/UCB0CLK/TB1.0	2	P2.2 (I/O)	I: 0; O: 1	0	0
		TB2.CCI2A (1)	0	0	4
		TB2.2 ⁽¹⁾	1	0	1
		UCB0CLK	X (3)	1	0
		TB1.CCI0A (1)	0	4	4
		TB1.0 ⁽¹⁾	1	1	1

⁽¹⁾ Not available on all devices and package types.

⁽²⁾ Direction controlled by eUSCI_A0 module.

⁽³⁾ Direction controlled by eUSCI_B0 module.

6.5 Port P2, P2.3 to P2.4, Input/Output With Schmitt Trigger

Table 6-5. Port P2 (P2.3 to P2.4) Pin Functions

DIN NAME (DO 11)		FUNCTION	CONT	CONTROL BITS/SIGNALS			
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x		
P2.3/TA0.0/UCA1STE/A6/CD10	3	P2.3 (I/O)	I: 0; O: 1	0	0		
		TA0.CCI0B	0	0	4		
		TA0.0	1	0	1		
		UCA1STE	X ⁽¹⁾	1	0		
		A6 ^{(2) (3)} CD10 ^{(2) (4)}	Х	1	1		
P2.4/TA1.0/UCA1CLK/A7/CD11	4	P2.4 (I/O)	I: 0; O: 1	0	0		
		TA1.CCI0B	0	- 0	4		
		TA1.0	1		1		
		UCA1CLK	X ⁽¹⁾	1	0		
		A7 ⁽²⁾ ⁽³⁾ CD11 ⁽²⁾ ⁽⁴⁾	Х	1	1		

Direction controlled by eUSCI_A1 module.
Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when (2)applying analog signals.

Not available on all devices and package types.

Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.

6.6 Port P2, P2.5 to P2.6, Input/Output With Schmitt Trigger

Table 6-6. Port P2 (P2.5 to P2.6) Pin Functions

PIN NAME (P2.x)		FUNCTION	COI	CONTROL BITS/SIGNALS			
PIN NAME (PZ.X)	Х	FUNCTION	P2DIR.	x P2SEL1.x	P2SEL0.x		
P2.5/TB0.0/UCA1TXD/UCA1SIMO	5	P2.5(I/O) ⁽¹⁾	I: 0; O:	1 0	0		
		TB0.CCI0B (1)	0		4		
		TB0.0 ⁽¹⁾	1	0	1		
		UCA1TXD/UCA1SIMO (1)	X ⁽²⁾	1	0		
P2.6/TB1.0/UCA1RXD/UCA1SOMI	6	P2.6(I/O) ⁽¹⁾	I: 0; O:	1 0	0		
		TB1.CCI0B (1)	0		4		
		TB1.0 ⁽¹⁾	1	0	1		
		UCA1RXD/UCA1SOMI (1)	X ⁽²⁾	1	0		

⁽¹⁾ Not available on all devices and package types.

⁽²⁾ Direction controlled by eUSCI_A1 module.

6.7 Port P2, P2.7, Input/Output With Schmitt Trigger

Table 6-7. Port P2 (P2.7) Pin Functions

PIN NAME (P2.x)	,	FUNCTION	CONTROL BITS/SIGNALS			
	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x	
P2.7	7	P2.7(I/O) ⁽¹⁾	l: 0; O: 1	0	0	

(1) Not available on all devices and package types.

6.8 Port P3, P3.0 to P3.3, Input/Output With Schmitt Trigger

Table 6-8. Port P3 (P3.0 to P3.3) Pin Functions

PIN NAME (P3.x)		FUNCTION	CONTR	ROL BITS/SIGNALS		
PIN NAME (P3.X)	Х	FUNCTION	P3DIR.x	P3SEL1.x	P3SEL0.x	
P3.0/A12/CD12	0	P3.0 (I/O)	I: 0; O: 1	0	0	
		A12 ⁽¹⁾ ⁽²⁾ CD12 ⁽¹⁾ ⁽³⁾	Х	1	1	
P3.1/A13/CD13	1	P3.1 (I/O)	I: 0; O: 1	0	0	
		A13 ⁽¹⁾ ⁽²⁾ CD13 ⁽¹⁾ ⁽³⁾	Х	1	1	
P3.2/A14/CD14	2	P3.2 (I/O)	I: 0; O: 1	0	0	
		A14 ⁽¹⁾ ⁽²⁾ CD14 ⁽¹⁾ ⁽³⁾	Х	1	1	
P3.3/A15/CD15	3	P3.3 (I/O)	I: 0; O: 1	0	0	
		A15 ⁽¹⁾ ⁽²⁾ CD15 ⁽¹⁾ ⁽³⁾	Х	1	1	

⁽¹⁾ Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽²⁾ Not available on all devices and package types.

⁽³⁾ Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.

6.9 Port P3, P3.4 to P3.6, Input/Output With Schmitt Trigger

Table 6-9. Port P3 (P3.4 to P3.6) Pin Functions

DIN NAME (D2)		FUNCTION	CONTR	ROL BITS/SI	GNALS
PIN NAME (P3.x)	Х	FUNCTION	P3DIR.x	P3SEL1.x	P3SEL0.x
P3.4/TB1.1/TB2CLK/SMCLK	4	P3.4 (I/O) ⁽¹⁾	I: 0; O: 1	0	0
		TB1.CCI1B (1)	0	0	4
		TB1.1 ⁽¹⁾	1	U	ı
		TB2CLK (1)	0	1	1
		SMCLK (1)	1		
P3.5/TB1.2/CDOUT	5	P3.5 (I/O) ⁽¹⁾	I: 0; O: 1	0	0
		TB1.CCI2B (1)	0	0	1
		TB1.2 ⁽¹⁾	1		
		CDOUT (1)	1	1	1
P3.6/TB2.1/TB1CLK	6	P3.6 (I/O) ⁽¹⁾	I: 0; O: 1	0	0
		TB2.CCI1B (1)	0	0	4
		TB2.1 ⁽¹⁾	1	0	1
		TB1CLK (1)	0	1	1

⁽¹⁾ Not available on all devices and package types.

6.10 Port P3, P3.7, Input/Output With Schmitt Trigger

Table 6-10. Port P3 (P3.7) Pin Functions

DIN NAME (D2 v)	,	FUNCTION	CONTROL BITS/SIGNALS			
PIN NAME (P3.x)	X		P3DIR.x	P3SEL1.x	P3SEL0.x	
P3.7/TB2.2	7	P3.7 (I/O) ⁽¹⁾	I: 0; O: 1	0	0	
		TB2.CCI2B (1)	0	0	4	
		TB2.2 ⁽¹⁾	1	0	1	

(1) Not available on all devices and package types.

6.11 Port P4, P4.0, Input/Output With Schmitt Trigger

Table 6-11. Port P4 (P4.0) Pin Functions

PIN NAME (P4.x)	,	FUNCTION	CONTROL BITS/SIGNALS		
FIN NAME (F4.X)	X	FUNCTION	P4DIR.x	P4SEL1.x	P4SEL0.x
P4.0/TB2.0	0	P4.0 (I/O) ⁽¹⁾	I: 0; O: 1	0	0
		TB2.CCI0B (1)	0	0	4
		TB2.0 ⁽¹⁾	1	U	1

(1) Not available on all devices and package types.

6.12 Port P4, P4.1, Input/Output With Schmitt Trigger

Table 6-12. Port P4 (P4.1) Pin Functions

PIN NAME (P4.x)	x FUNCTION		CONTROL BITS/SIGNALS		
FIN NAME (F4.X)	X	FUNCTION	P4DIR.x	P4SEL1.x	P4SEL0.x
P4.1	1	P4.1 (I/O) ⁽¹⁾	l: 0; O: 1	0	0

(1) Not available on all devices and package types.

6.13 Port J, J.0 to J.3 JTAG pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output

Table 6-13. Port PJ (PJ.0 to PJ.3) Pin Functions

PIN NAME (PJ.x)		FUNCTION	CONTROL BITS/ SIGNALS (1)			
		FUNCTION	PJDIR.x	PJSEL1.x	PJSEL0.x	
PJ.0/TDO/TB0OUTH/SMCLK/CD6	0	PJ.0 (I/O) (2)	I: 0; O: 1	0	0	
		TDO (3)	Х	Х	Х	
		TB0OUTH	0	0	4	
		SMCLK	1	0	1	
		CD6	Х	1	1	
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7	1	PJ.1 (I/O) ⁽²⁾	I: 0; O: 1	0	0	
		TDI/TCLK (3) (4)	Х	Х	Х	
		TB1OUTH	0	0	1	
		MCLK	1			
		CD7	Х	1	1	
PJ.2/TMS/TB2OUTH/ACLK/CD8	2	PJ.2 (I/O) ⁽²⁾	I: 0; O: 1	0	0	
		TMS (3) (4)	Х	Х	Х	
		TB2OUTH	0	0		
		ACLK	1	0	1	
		CD8	Х	1	1	
PJ.3/TCK/CD9	3	PJ.3 (I/O) ⁽²⁾	I: 0; O: 1	0	0	
		TCK (3) (4)	Х	Х	Х	
		CD9	Х	1	1	

⁽¹⁾ X = Don't care

⁽²⁾ Default condition

⁽³⁾ The pin direction is controlled by the JTAG module. JTAG mode selection is made by the SYS module or by the Spy-Bi-Wire four-wire entry sequence. PJSEL1.x and PJSEL0.x have no effect in these cases.

⁽⁴⁾ In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.

6.14 Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt Trigger

Table 6-14. Port PJ (PJ.4 and PJ.5) Pin Functions

			CONTROL BITS/SIGNALS (1)						
PIN NAME (P7.x)	x	FUNCTION	PJDIR.x	PJSEL1.5	PJSEL0.5	PJSEL1.4	PJSEL0.4	XT1 BYPASS	
PJ.4/XIN	4	PJ.4 (I/O)	I: 0; O: 1	Х	Х	0	0	Х	
		XIN crystal mode (2)	Х	Х	Х	0	1	0	
		XIN bypass mode (2)	Х	Х	Х	0	1	1	
PJ.5/XOUT	5	PJ.5 (I/O)	I: 0; O: 1	0	0	0	0	Х	
		XOUT crystal mode	Х	Х	Х	0	1	0	
		PJ.5 (I/O) ⁽³⁾	I: 0; O: 1	Х	Х	0	1	1	

X = Don't care

Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass operation and PJ.5 is configured as general-purpose I/O. When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.

7 Device Descriptors (TLV)

Table 7-1 and Table 7-2 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type.

Table 7-1. Device Descriptor Table (1)

			FR5739	FR5738	FR5737	FR5736	FR5735
	Description	Address	Value	Value	Value	Value	Value
Info Block	Info length	01A00h	05h	05h	05h	05h	05h
	CRC length	01A01h	05h	05h	05h	05h	05h
	CDC value	01A02h	per unit				
	CRC value	01A03h	per unit				
	Device ID	01A04h	03h	02h	01h	77h	76h
	Device ID	01A05h	81h	81h	81h	81h	81h
	Hardware revision	01A06h	per unit				
	Firmware revision	01A07h	per unit				
Die Record	Die Record Tag	01A08h	08h	08h	08h	08h	08h
	Die Record length	01A09h	0Ah	0Ah	0Ah	0Ah	0Ah
		01A0Ah	per unit				
	Lot/Mofor ID	01A0Bh	per unit				
	Lot/Wafer ID	01A0Ch	per unit				
		01A0Dh	per unit				
	Die X position	01A0Eh	per unit				
	Die X position	01A0Fh	per unit				
	Die Y position	01A10h	per unit				
		01A11h	per unit				
	Test results	01A12h	per unit				
		01A13h	per unit				
ADC10 Calibration	ADC10 Calibration Tag	01A14h	13h	13h	13h	05h	13h
	ADC10 Calibration length	01A15h	10h	10h	10h	10h	10h
	ADC Coin Footor	01A16h	per unit	per unit	NA	NA	per unit
	ADC Gain Factor	01A17h	per unit	per unit	NA	NA	per unit
	ADC Offset	01A18h	per unit	per unit	NA	NA	per unit
	ADC Oliset	01A19h	per unit	per unit	NA	NA	per unit
	ADC 1.5-V	01A1Ah	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 30°C	01A1Bh	per unit	per unit	NA	NA	per unit
	ADC 1.5-V	01A1Ch	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 85°C	01A1Dh	per unit	per unit	NA	NA	per unit
	ADC 2.0-V	01A1Eh	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 30°C	01A1Fh	per unit	per unit	NA	NA	per unit
	ADC 2.0-V	01A20h	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 85°C	01A21h	per unit	per unit	NA	NA	per unit
	ADC 2.5-V	01A22h	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 30°C	01A23h	per unit	per unit	NA	NA	per unit

Table 7-1. Device Descriptor Table (1) (continued)

	December	A -1 -1	FR5739	FR5738	FR5737	FR5736	FR5735
	Description	Address	Value	Value	Value	Value	Value
	ADC 2.5-V	01A24h	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 85°C	01A25h	per unit	per unit	NA	NA	per unit
REF Calibration	REF Calibration Tag	01A26h	12h	12h	12h	12h	12h
	REF Calibration length	01A27h	06h	06h	06h	06h	06h
	REF 1.5-V	01A28h	per unit				
	Reference	01A29h	per unit				
	REF 2.0-V	01A2Ah	per unit				
	Reference	01A2Bh	per unit				
	REF 2.5-V	01A2Ch	per unit				
	Reference	01A2Dh	per unit				

Table 7-2. Device Descriptor Table (1)

	D	A .1.1	FR5734	FR5733	FR5732	FR5731	FR5730
	Description	Address	Value	Value	Value	Value	Value
Info Block	Info length	01A00h	05h	05h	05h	05h	05h
	CRC length	01A01h	05h	05h	05h	05h	05h
	CDC value	01A02h	per unit				
	CRC value	01A03h	per unit				
	Device ID	01A04h	00h	7Fh	75h	7Eh	7Ch
	Device ID	01A05h	81h	80h	81h	80h	80h
	Hardware revision	01A06h	per unit				
	Firmware revision	01A07h	per unit				
Die Record	Die Record Tag	01A08h	08h	08h	08h	08h	08h
	Die Record length	01A09h	0Ah	0Ah	0Ah	0Ah	0Ah
		01A0Ah	per unit				
	Lot/Wafer ID	01A0Bh	per unit				
		01A0Ch	per unit				
		01A0Dh	per unit				
	Die X position	01A0Eh	per unit				
	Die X position	01A0Fh	per unit				
	Die V position	01A10h	per unit				
	Die Y position	01A11h	per unit				
	Took noovike	01A12h	per unit				
	Test results	01A13h	per unit				
ADC10 Calibration	ADC10 Calibration Tag	01A14h	13h	13h	13h	05h	13h
	ADC10 Calibration length	01A15h	10h	10h	10h	10h	10h
	ADC Cain Factor	01A16h	per unit	NA	NA	per unit	per unit
	ADC Gain Factor	01A17h	per unit	NA	NA	per unit	per unit
	ADC Offeet	01A18h	per unit	NA	NA	per unit	per unit
	ADC Offset	01A19h	per unit	NA	NA	per unit	per unit
	ADC 1.5-V	01A1Ah	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 30°C	01A1Bh	per unit	NA	NA	per unit	per unit

⁽¹⁾ NA = Not applicable

Table 7-2. Device Descriptor Table (1) (continued)

	December the co	A .1.1	FR5734	FR5733	FR5732	FR5731	FR5730
	Description	Address	Value	Value	Value	Value	Value
	ADC 1.5-V	01A1Ch	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 85°C	01A1Dh	per unit	NA	NA	per unit	per unit
	ADC 2.0-V	01A1Eh	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 30°C	01A1Fh	per unit	NA	NA	per unit	per unit
	ADC 2.0-V	01A20h	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 85°C	01A21h	per unit	NA	NA	per unit	per unit
	ADC 2.5-V	01A22h	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 30°C	01A23h	per unit	NA	NA	per unit	per unit
	ADC 2.5-V	01A24h	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 85°C	01A25h	per unit	NA	NA	per unit	per unit
REF Calibration	REF Calibration Tag	01A26h	12h	12h	12h	12h	12h
	REF Calibration length	01A27h	06h	06h	06h	06h	06h
	REF 1.5-V	01A28h	per unit				
	Reference	01A29h	per unit				
	REF 2.0-V	01A2Ah	per unit				
	Reference	01A2Bh	per unit				
	REF 2.5-V	01A2Ch	per unit				
	Reference	01A2Dh	per unit				

8 Device and Documentation Support

8.1 Device Support

8.1.1 Getting Started

TI provides all of the hardware platforms and software components and tooling you need to get started today! Not only that, TI has many complementary components to meet your needs. For an overview of the MSP430™ MCU product line, the available development tools and evaluation kits, and advanced development resources, visit the MSP430 Getting Started page.

8.1.2 Development Tools Support

All MSP430[™] microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.

8.1.2.1 Hardware Features

See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features.

MSP430 Architecture	4-Wire JTAG	2-Wire JTAG	Break- points (N)	Range Break- points	Clock Control	State Sequencer	Trace Buffer	LPMx.5 Debugging Support
MSP430Xv2	Yes	Yes	3	Yes	Yes	No	No	Yes

8.1.2.2 Recommended Hardware Options

8.1.2.2.1 Target Socket Boards

The target socket boards allow easy programming and debugging of the device using JTAG. They also feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the JTAG programmer and debugger included. The following table shows the compatible target boards and the supported packages.

Package	Target Board and Programmer Bundle	Target Board Only	
40-pin VQFN (RHA)	MSP-FET430U40A	MSP-TS430RHA40A	

8.1.2.2.2 Experimenter Boards

Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional hardware components and connectivity for full system evaluation and prototyping. See www.ti.com/msp430tools for details.

8.1.2.2.3 Debugging and Programming Tools

Hardware programming and debugging tools are available from TI and from its third party suppliers. See the full list of available tools at www.ti.com/msp430tools.

8.1.2.2.4 Production Programmers

The production programmers expedite loading firmware to devices by programming several devices simultaneously.

Part Number	PC Port	Features	Provider
MSP-GANG	Serial and USB	Program up to eight devices at a time. Works with PC or standalone.	Texas Instruments

8.1.2.3 Recommended Software Options

8.1.2.3.1 Integrated Development Environments

Software development tools are available from TI or from third parties. Open source solutions are also available.

This device is supported by Code Composer Studio™ IDE (CCS).

8.1.2.3.2 MSP430Ware

MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware also includes a high-level API called MSP430 Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware is available as a component of CCS or as a standalone package.

8.1.2.3.3 Command-Line Programmer

MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher can be used to download binary files (.txt or .hex) files directly to the MSP430 microcontroller without the need for an IDE.

8.1.3 Device and Development Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430 MCU devices and support tools. Each MSP430 MCU commercial family member has one of three prefixes: MSP, PMS, or XMS (for example, MSP430F5259). Texas Instruments recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools).

Device development evolutionary flow:

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

PMS – Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification

MSP - Fully qualified production device

Support tool development evolutionary flow:

MSPX – Development-support product that has not yet completed Texas Instruments internal qualification testing.

MSP - Fully-qualified development-support product

XMS and PMS devices and MSPX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZP) and temperature range (for example, T). Figure 8-1 provides a legend for reading the complete device name for any family member.

Figure 8-1. Device Nomenclature

8.2 Documentation Support

The following documents describe the MSP430FR5739-EP MCU. Copies of these documents are available on www.ti.com.

SLAU272	MSP430FR57xx Family User's Guide. Detailed description of all modules and peripherals
	available in this device family.

- **SLAZ392 MSP430FR5739 Device Erratasheet.** Describes the known exceptions to the functional specifications for each silicon revision of this device.
- <u>SLAZ391</u> *MSP430FR5738 Device Erratasheet.* Describes the known exceptions to the functional specifications for each silicon revision of this device.
- <u>SLAZ390</u> *MSP430FR5737 Device Erratasheet.* Describes the known exceptions to the functional specifications for each silicon revision of this device.
- **SLAZ389 MSP430FR5736 Device Erratasheet.** Describes the known exceptions to the functional specifications for each silicon revision of this device.
- **SLAZ388 MSP430FR5735 Device Erratasheet.** Describes the known exceptions to the functional specifications for each silicon revision of this device.
- **SLAZ387** MSP430FR5734 Device Erratasheet. Describes the known exceptions to the functional

	specifications for each silicon revision of this device.
<u>SLAZ386</u>	MSP430FR5733 Device Erratasheet. Describes the known exceptions to the functional specifications for each silicon revision of this device.
<u>SLAZ385</u>	MSP430FR5732 Device Erratasheet. Describes the known exceptions to the functional specifications for each silicon revision of this device.
SLAZ384	MSP430FR5731 Device Erratasheet. Describes the known exceptions to the functional specifications for each silicon revision of this device.
SLAZ383	MSP430FR5730 Device Erratasheet. Describes the known exceptions to the functional specifications for each silicon revision of this device.

8.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

8.4 Trademarks

Code Composer Studio, MSP430, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical Packaging and Orderable Information

9.1 Packaging Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
M430FR5739SRHATEP	Active	Production	VQFN (RHA) 40	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 85	M430 FR5739EP
M430FR5739SRHATEP.A	Active	Production	VQFN (RHA) 40	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 85	M430 FR5739EP
V62/14644-01XE	Active	Production	VQFN (RHA) 40	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 85	M430 FR5739EP

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 23-May-2025

OTHER QUALIFIED VERSIONS OF MSP430FR5739-EP:

● Catalog : MSP430FR5739

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 6-Feb-2015

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
M430FR5739SRHATEP	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2

www.ti.com 6-Feb-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
M430FR5739SRHATEP	VQFN	RHA	40	250	210.0	185.0	35.0

6 x 6, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated