### Child Mind Institute - Detect Sleep States

Detect sleep onset and wake from wrist-worn accelerometer data

Feriel ABDI Manel BENKORTEBI Cassandra GBABOUA Inès LEBIB



M2- Bio-Informatique Université Paris Cité 27/10/2023

### **SOMMAIRE**

- I. Introduction
- II. Matériels et méthodes
- III. Analyses préliminaires
- IV. Deep Learning
  - V. Conclusion et perspectives

# INTRODUCTION

Contexte du projet

### CONTEXTE DU PROJET

Meilleure compréhension des mécanismes et des conséquences du sommeil sur la santé.

Détection avec précision les phases d'endormissement et de réveil chez les enfants et adolescents

<u>Objectif</u>: mettre en place un système innovant capable de déterminer l'état de sommeil chez les jeunes en se basant sur ces données.



-> Apprentissage automatique et analyse des données

Prédiction de deux types d'événements:

- 'wakeup' (réveil)
- 'onset' (endormissement).

# MATERIELS & METHODES

### DATA

Train\_series:

Données d'entraînement

 series\_id
 step
 timestamp
 anglez
 enmo

 31011ade7c0a
 0 2017-08-15 16:45:00
 -82.680603 0.0000

 31011ade7c0a
 1 2017-08-15 16:45:05
 -82.680603 0.0000

Train\_events:

Evenements 'onset' et 'wakeup'

| series_    | id | night | event  | step    | timestamp                |
|------------|----|-------|--------|---------|--------------------------|
| 038441c925 | bb | 1     | onset  | 4992.0  | 2018-08-14T22:26:00-0400 |
| 038441c925 | bb | 1     | wakeup | 10932.0 | 2018-08-15T06:41:00-0400 |

Test\_series:

Données pour la prédiction

| series_id    | step | timestamp                | anglez   | enmo   |
|--------------|------|--------------------------|----------|--------|
| 038441c925bb | 0    | 2018-08-14T15:30:00-0400 | 2.636700 | 0.0217 |
| 038441c925bb | 1    | 2018-08-14T15:30:05-0400 | 2.636800 | 0.0215 |

### Méthodes - Preprocessing

- Fusion du data 'Train' avec les événements associés 'Events'
- Nettoyage des données
- Filtrage des données avec pas de 50
- Normalisation des données
- Transformation de la variable 'event' en binaire :
  - 0 : onset
  - 1: wakeup

|                    | series_id   | step | timestamp           | anglez     | enmo   | event  |
|--------------------|-------------|------|---------------------|------------|--------|--------|
| 3                  | 1011ade7c0a | 0    | 2017-08-15 16:45:00 | -82.680603 | 0.0000 | wakeup |
| 3                  | 1011ade7c0a | 1    | 2017-08-15 16:45:05 | -82.680603 | 0.0000 | wakeup |
| 14 334 881 données |             |      |                     |            |        |        |

| series_id    | step | timestamp           | anglez   | enmo     | event |
|--------------|------|---------------------|----------|----------|-------|
| 31011ade7c0a | 0    | 2017-08-15 16:45:00 | 0.040663 | 0.000000 | 1     |
| 31011ade7c0a | 1    | 2017-08-15 16:45:05 | 0.040663 | 0.000000 | 1     |

286 298 données

### Méthodes - Analyses

Préliminaires

ANALYSE EN COMPOSANTE PRINCIPALE

Visualition des données

REGRESSION LOGISTIQUE

- Structure et tendances des données

Deep Learning

RESEAUX DE NEURONES RECURENTS (RNN)

- Apprend à partir de données passées

LONG SHORT-TERM MEMORY (LSTM)

- Mémorise informations sur une longue période

# ANALYSES PRELIMINAIRES

Données, ACP et Régression Logistique

### Visualisation des données

9 312 336 de wakeup

5 022 545 de onset



### Analyse en Composante Principale (ACP)

Wakeup en jaune & Onset en violet

PC1 explique 51,3% de la variabilité

PC2 explique 48,7% de la variabilité

Trajectoire diagonale marquée dominée par wakeup, particulièrement dans la zone où la variable enmo est mise en évidence

Evénements onset moins présents et semblent plus dispersés (zone périphérique du graphique)



### Régression Logistique

0,49 : Vrais Négatifs

0,51 : Faux Positifs

0,18 : Faux Négatifs

0,82 : Vrais Positifs



### Régression Logistique

#### AUC de 0.62

La courbe s'écarte progressivement de la diagonale, ce qui indique que le modèle a une certaine capacité à discriminer nos classes

Cependant le modèle montre une capacité modérée à classer correctement les échantillons 'onset' et 'wakeup'



## DEEP LEARNING

**RNN ET LSTM** 

### Réseaux de Neurones Récurrents (RNN)



### Long Short-Term Memory (LSTM)



Train 0.69250 Test 0.69225 0.69200 0.69175 0.69150 0.69125 0.69100 0.69075 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 Epoch

Model loss

Accuracy: 0.65 Loss: 0.69

### Focus sur le RNN



Prédiction de 12 741 onset et 88 142 wakeup

### Focus sur le RNN

06.66: Vrais Négatifs

93.34 : Faux Positifs

16.53 : Faux Négatifs

83.47 : Vrais Positifs



### Focus sur le RNN



### Focus sur l'individu 31011ade7c0a





Dispose du nombre de lignes le plus élevé dans notre ensemble de validation  $\rightarrow$  plus de données pour une prédiction précise.

Tendance observée dans l'ensemble des données est observée ici: bonne prédiction des 'wakeup' mais prédiction plus complexes des 'onset'

# **CONCLUSION**

#### Nos modèles:

Accuracy des modèles entre 64 et 65% et les loss ne convergent pas malgré une diminution progressive tout au long de l'entraînement du modèle.

Pas de discrimination possible entre nos deux classes avec la méthode ACP.

Bonnes prédictions de wakeup (83%) mais prédictions plus complexes pour onset (6%)

#### Perspectives:

Revoir pre-processing

Faire k-means ou UMAP

Faire CNN

# REFERENCES

https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states