Graph

เนื้อหาส่วนที่นำมาจาก ดร.ภิญโญ จะปรากฏข้อความจากต้นฉบับไม่มีการปรับเปลี่ยน

รู้จักกับกราฟ

- กราฟเป็นโครงสร้างข้อมูลแบบหนึ่ง
- โดยตัวของมันเองไม่ใช่อัลกอริทึม ซึ่งจุดนี้จะต่างกับ ...
 - Greedy Algorithm
 - Divide and Conquer
 - Dynamic Programming
- โครงสร้างข้อมูลมักจะประกอบด้วยของสองส่วนหลักคือ
 - โหนด / จุดยอด (Node / Vertex)
 - เส้นเชื่อม / ขอบ (Edge)
 - 🗖 เส้นเชื่อมอาจจะมีทิศทาง (directional edge)
 - 📱 เส้นเชื่อมอาจจะมีน้ำหนัก (weight) หรือค่าใช้จ่าย (cost) กำหนดไว้ด้วย

ภาพจาก Competitive Programming 2nd Edition

มโนภาพของโครงสร้างข้อมูลแบบกราฟ

ตัวอย่างกราฟที่เส้นเชื่อมไม่มีทิศทาง

• ตัวอย่างกราฟที่เส้นเชื่อมมีทิศทางกำหนด

ประเภทของกราฟ

- เราสามารถแบ่งกราฟได้เป็นหลายประเภท
 - ขึ้นอยู่กับมุมมองที่เราเลือกใช้สำหรับการแบ่งประเภท
 - แต่ในระดับพื้นฐาน เรามักแบ่งตามลักษณะของเส้นเชื่อม
 - ก้าเส้นเชื่อมมีทิศทางกำหนดเรามักเรียกกราฟว่ากราฟมีทิศทาง (directional graph) ไม่เช่นนั้นจะเรียกว่ากราฟไม่มีทิศทาง (undirectional graph)
- แต่วิธีแบ่งประเภทกราฟก็มีอีกหลากหลาย เช่น
 - ถ้ากราฟมีทิศทาง เราก็อาจแบ่งว่ามีวังวน (cycle) ในกราฟหรือไม่ ถ้าไม่มี เราเรียกว่า Directional Acyclic Graph (DAG)
 - โหนดคู่ใด ๆ ในกราฟมีเส้นเชื่อมได้มากกว่า 1 เส้นหรือไม่ ถ้ามีเราเรียกว่า Multigraph

ภาพตัวอย่างกราฟแบบต่าง ๆ

- กราฟบางแบบก็มีเส้นเชื่อมที่วกเข้าหาตัวเอง (self loop) [เส้นเชื่อมสีน้ำเงิน]
- ชุดเส้นเชื่อมที่ทำให้เป็น multigraph คือเส้นเชื่อมสีแดง

Directed Acyclic Graph (DAG)

การอธิบายโครงสร้างกราฟ

- เราสามารถแบ่งกราฟได้เป็นหลายประเภท
 - ขึ้นอยู่กับมุมมองที่เราเลือกใช้สำหรับการแบ่งประเภท
 - แต่ในระดับพื้นฐาน เรามักแบ่งตามลักษณะของเส้นเชื่อม
 - ก้าเส้นเชื่อมมีทิศทางกำหนดเรามักเรียกกราฟว่ากราฟมีทิศทาง (directional graph) ไม่เช่นนั้นจะเรียกว่ากราฟไม่มีทิศทาง (undirectional graph)
- แต่วิธีแบ่งประเภทกราฟก็มีอีกหลากหลาย เช่น
 - ถ้ากราฟมีทิศทาง เราก็อาจแบ่งว่ามีวังวน (cycle) ในกราฟหรือไม่ ถ้าไม่มีเรา เรียกว่า Directional Acyclic Graph (DAG)
 - โหนดคู่ใด ๆ ในกราฟมีเส้นเชื่อมได้มากกว่า 1 เส้นหรือไม่ ถ้ามีเราเรียกว่า Multigraph
- lacktriangle เรามักแทนเซ็ตของโหนดด้วย Vและเซ็ตของเส้นเชื่อมด้วย E

Directed & Undirected Graph

Undirected Graph แสดงสาย การบินของ Air Asia

Undirected Graph แสดงโหนดและเส้น เชื่อมของกราฟรูปหนึ่ง

- เราเห็นการอธิบายกราฟด้วย Edge listing กับ Adjacency list มาแล้ว
 - แต่คำถามก็คือว่าเราจะเก็บข้อมูลพวกนี้ในหน่วยความจำอย่างไร (How to keep graph description in memory?)
 - แล้วเราจะทำอะไรกับข้อมูลพวกนี้บ้าง (What operations are we going to do with a graph?)
- ธรรมชาติของโครงสร้างข้อมูลที่ดีก็คือว่า มันต้องสามารถทำในสิ่งที่เรา ต้องการทำบ่อย ๆ ได้อย่างมีประสิทธิภาพ
 - เรามักถามว่าโหนดหมายเลข x มีเส้นเชื่อมต่อกับโหนดหมายเลข y หรือไม่
 - เรามักถามว่ามีเส้นทางจาก โหนดหมายเลข x ไปโหนดหมายเลข y หรือไม่

ประโยชน์ของกราฟ (Routing การหาเส้นทาง)

 สายการบิน (การเชื่อมต่อของสายการบิน ตารางบิน)

ประโยชน์ของกราฟ (Routing การหาเส้นทาง)

- Network (การเชื่อมต่อของอุปกรณ์ Router)
- เพื่อใช้ในการรับส่งข้อมูลในเครือข่าย

ประโยชน์ของกราฟ (Algorithm Design)

 Map Coloring คือวิธีการระบายสีในแผนที่โดย ใช้สีน้อยที่สุด

พื้นที่ติดกันห้ามใช้สีเดียวกัน

Representing Graphs

- A graph G = (V, E)
 - -V = set of vertices
 - -E = set of edges = subset of $V \times V$
 - $\text{Thus } |E| = O(|V|^2)$
- Assume $V = \{1, 2, ..., n\}$
- Adjacency matrix n x n matrix A
 - -A[i, j] = 1 if edge $(i, j) \in E$ (or weight of edge) = 0 if edge $(i, j) \notin E$

Graphs: Adjacency Matrix

• Example:

Α	1	2	3	4
1				
2				
3			??	
4				

Graphs: Adjacency Matrix

• Example:

Α	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Graphs: Adjacency List

- Adjacency list: for each vertex v ∈ V, store a list of vertices adjacent to v
- Example:

$$- Adj[1] = \{2,3\}$$

- $Adj[2] = {3}$
- $Adj[3] = {}$
- $Adj[4] = {3}$


```
0 1
1 0 2 3
2 13
3 1 2 4
4 3
5
6 78
7 6
8 6
```

```
public class GraphStructDemo {
  int[][] arNode;
 private void prepareSpace() {
   arNode = new int[9][]: -
   arNode[0] = new int[1];
   arNode[1] = new int[3];
   arNode[2] = new int[2];
   arNode[3] = new int[3];
   arNode[4] = new int[1];
   arNode[5] = new int[0];
   arNode[6] = new int[2];
   arNode[7] = new int[1];
   arNode[8] = new int[1];
```

ประกาศอาเรย์สำหรับเก็บข้อมูล การเชื่อมต่อไว้

เริ่มสร้างอาเรย์ แต่อย่าเพิ่งรีบบอก ขนาดของมิติที่สอง เก็บไว้ทำทีหลัง ได้ (ทำแบบนี้ได้จริง ๆ นะ)

ระบุขนาดของลิสต์การเชื่อมต่อของ แต่ละโหนดทีละอันตามปริมาณที่ ต้องใช้จริง

ไฟล์ GraphStructDemojava

ป้อนข้อมูลเข้า Adjacency list

```
private void insertData() {
    arNode[0][0] = 1;
    arNode[1][0] = 0;    arNode[1][1] = 2;    arNode[1][2] = 3;
    arNode[2][0] = 1;    arNode[2][1] = 3;
    arNode[3][0] = 1;    arNode[3][1] = 2;    arNode[3][2] = 4;
    arNode[4][0] = 3;

    //arNode[5][];    // No edge to insert
    arNode[6][0] = 7;    arNode[6][1] = 8;
    arNode[7][0] = 6;
    arNode[8][0] = 6;
}
```


ตรวจว่าโหนดเชื่อมกันหรือไม่

การตรวจดูว่าโหนด x เชื่อมกับโหนด y หรือไม่

```
public boolean isLinked(int x, int y)
  int numNodes = arNode[x].length;
  for(int i = 0; i < numNodes; ++i) {
   if(arNode[x][i] == y) {
      return true; // y is found
  return false; // y not found
```

เนื่องจากอาเรย์ของแต่ละ โหนดมีความยาวไม่เท่ากัน เราจึงต้องหาความยาวลิสต์ ของโหนดมาเก็บไว้ก่อน

จากโครงสร้างของลูป เราเห็นได้ว่าการจะตรวจการเชื่อมต่อของโหนด ในกรณีที่แย่ที่สุด เกิดขึ้นเมื่อไม่พบการเชื่อมต่อ (return false) เพราะเราจะต้องหาตั้งแต่เริ่มจนจบ

```
มีวิธีที่ทำให้ฟังก์ชันนี้ทำงานเร็วขึ้นหรือไม่ ?
```

หน่วยความจำที่ต้องใช้ในการอธิบายโครงสร้างกราฟ

- การใช้ Edge listing หรือ Adjacency list เหมาะกับกราฟที่มีเส้นเชื่อม
 น้อยเมื่อเทียบกับจำนวนโหนด (เหมาะกับ Sparse Graph)
- ลองพิจารณากราฟที่มีเส้นเชื่อมสมบูรณ์ (Complete Graph)

กราฟมี 7 โหนด 21 เส้นเชื่อม

Edge listing ใช้พื้นที่เก็บเลขจำนวนเต็ม 2 ตัวต่อเส้นเชื่อม

- 👈 ใช้ integer 42 ตัว (168 bytes)
- → ถ้าเส้นเชื่อมมาก ปริมาณหน่วยความจำที่ต้องใช้จะ เพิ่มขึ้นมากตาม

- แล้วถ้าเป็น Adjacency matrix ล่ะ
 - เนื่องจากเป็นอาเรย์สองมิติ เราเห็นได้ชัดว่าใช้หน่วยความจำ $O(|V|^2)$
 - แต่ว่าเราไม่จำเป็นต้องเก็บเลขจำนวนเต็มเหมือนกับการใช้ลิสต์
 - ถ้าเราใช้ boolean เราจะเสียพื้นที่ต่อช่อง 1 ไบต์ (ถ้าเป็นจำนวนเต็มแบบ ลิสต์จะใช้ 4 ไบต์)
 - ถ้าเราใช้ java.util.BitSet เราจะใช้พื้นที่ต่อช่องแค่ 1 บิต
- ด้วยเทคนิคด้านการจัดการหน่วยความจำ ถ้ากราฟมีเส้นเชื่อมมาก ๆ การ ใช้ Adjacency matrix เป็นทางออกที่ดีที่สุดอย่างไม่ต้องสงสัย
 - ตอบคำถามเรื่องการเชื่อมต่อได้เร็วกว่า เข้าใจง่ายกว่า
 - ถ้าเส้นเชื่อมมากพอ มักจะใช้หน่วยความจำน้อยกว่าด้วย

การไปถึงกันได้ระหว่างโหนด

- ก่อนหน้านี้เราพูดถึงการเชื่อมกันของโหนดแบบเชื่อมโดยตรง
- แต่กราฟมักไม่ได้ถูกสร้างมาเพื่อถามเกี่ยวกับการเชื่อมต่อโดยตรง
 ที่เรามักถามกันบ่อยจริง ๆ คือถามว่า เราสามารถเดินทางจากโหนด x ไปโหนด y ได้หรือไม่
 - เช่นถามว่า เราสามารถเดินทางจากโหนด 0 ไปโหนด 4 ได้หรือไม่
 - หรือ เราสามารถเดินทางจากโหนด 2 ไปโหนด 5 ได้หรือไม่

■ เราเรียกการไปถึงกันได้ของโหนดสองโหนดว่า reachable

- ใช้วิธีการค้นหา ซึ่งวิธีพื้นฐานก็คือการใช้ Breadth-First Search (BFS)
 หรือ Depth-First Search (DFS) จากโหนด x แล้วคอยตรวจดูว่าใน
 ระหว่างการค้นหามันเคยเจอโหนด y หรือเปล่า
- ถ้าต้องเขียนโค้ดเอง BFS มีแนวโน้มจะเขียนง่ายกว่า เข้าใจง่ายกว่า
- DFS มักถูกอธิบายในทางหลักการออกมาเป็นแบบ recursive
 - ทำให้มือใหม่งงจนทำอะไรไม่ถูก
 - แต่ที่จริงไม่ต้องทำเป็นรีเคอร์ซีฟก็ได้ (แต่ก็ทำให้งงและยุ่งยากกว่าเดิม)
- เราจะเรียนวิธีเขียนโปรแกรมกับทั้งสองแบบเพราะ
 - BFS เป็นพื้นฐานของ Dijkstra's algorithm (หนึ่งในอัลกอริทึมที่ฮิตที่สุด)
 - DFS เป็นพื้นฐานของ Topological sorting

Graph Searching

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - Note: might also build a *forest* if graph is not connected

Breadth-First Search

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the *breadth* of the frontier
- Builds a tree over the graph
 - Pick a source vertex to be the root
 - Find ("discover") its children, then their children, etc.

Breadth-First Search

- Again will associate vertex "colors" to guide the algorithm
 - White vertices have not been discovered
 - All vertices start out white
 - Grey vertices are discovered but not fully explored
 - They may be adjacent to white vertices
 - Black vertices are discovered and fully explored
 - They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search

```
BFS(G,s) {
  initialize vertices;
  Q = \{s\};
  while (Q not empty) {
   u = Dequeue(Q);
    for each v adjacent to u do {
      if (color[v] == WHITE) {
        color[v] = GRAY:
        d[v] = d[u]+1; // compute d[]
        p[v] = u; // build BFS tree
        Enqueue (Q, v);
  color[u] = BLACK;
```


Q: s

Q: x v u

Q: v u y

Q: *u y*

Q: y

Q: Ø

Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
 - Shortest-path distance $\delta(s,v)$ = minimum number of edges from s to v, or ∞ if v not reachable from s
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
 - Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

Some problems

http://uva.onlinejudge.org/external/3/336.html
 336 - A Node Too Far

- http://uva.onlinejudge.org/external/4/439.html
- 439 Knight Moves
- http://uva.onlinejudge.org/external/100/10067.html
- 10067 Playing with Wheels