|          | Name: Yash Sarang. Scot no: 7128542  Roll no: 47 Class: DIAD |
|----------|--------------------------------------------------------------|
| <u> </u> | Subject : Engineering Mothematics 1 Signature: Granggeh      |
|          | Page no : 1/5                                                |
|          |                                                              |
|          |                                                              |
|          |                                                              |
| 7        |                                                              |
|          |                                                              |
|          |                                                              |
|          |                                                              |
|          |                                                              |
|          |                                                              |
|          |                                                              |
|          |                                                              |
|          |                                                              |
| Contact  | FOR EDUCATIONAL USE                                          |

Sundaram)

Jash Jaray, 7128542, 47-DIAD, EM1 Pg. no. 2/5 If cos 60 = acos 0 + bcos 0 sin 0 + ccos 0 sin 0 + dsin 0 (cos 0 + isin 0) = Co cos 0 + C, cos 0 sin 0: - 6C, cos 40 sin 20 - 6C, cos 30 sin 30? + "Cy cos Osin" + "C, cos Osin "O; - "C, cos"O sin"O (680 - 156540sin20+156320 sin40 - sin60) + 1 (6000 0 sin 0 - 20 000 0 0 in 10 + 6000 0 in 10) = cos 60 + 9 sin 60 = (cos 0 - 15 cos 0 sin 20 + 15 cos 2 sin 40 - sin 60) + 1 (6cos Osin 0 - 20 cos 30 sin 30 + 6cos Osin 50) is from real parts, cos 60 = cos 0 - 15 cos 0 sin 20 + 15 cos 0 sin 40 - sin 40. comparing with cos 60 = a cos 60 + b cos 40 sin 20 + c cos 20 sin 40 + d sin 60 a=1; b=-15; c=15; d=-1.

FOR EDUCATIONAL USE



|           | Yosh Savarg, 7128542, 47-DIAD, EM1, Pg. no. 4/5                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 92.<br>F. | If u = f(x2-y2, y2-z2, z2-x2), then prove that 1 du +1 du + 1 du =0.                                                                                                                                                                                                                                                                                                                                                                                            |
| -7        | Let, $x^2-y^2=p$ ; $y^2-z^2=q$ ; $z^2-x^2=x^2$ .<br>$z^2-x^2=x^2$ .                                                                                                                                                                                                                                                                                                                                                                                             |
|           | $\frac{\partial x}{\partial v} = \frac{\partial p}{\partial v} \times \frac{\partial p}{\partial x} + \frac{\partial q}{\partial v} \times \frac{\partial x}{\partial x} + \frac{\partial v}{\partial v} \times \frac{\partial x}{\partial x}$ $= \frac{\partial p}{\partial v} \times \frac{\partial p}{\partial x} + \frac{\partial q}{\partial v} \times \frac{\partial q}{\partial x} + \frac{\partial v}{\partial v} \times \frac{\partial x}{\partial x}$ |
|           | $\frac{x}{1} \frac{\partial x}{\partial \sigma} = 3\left(\frac{\partial b}{\partial \sigma} - \frac{\partial k}{\partial \sigma}\right) - 0$                                                                                                                                                                                                                                                                                                                    |
|           | Similarly, we can get $ \frac{1}{2} \frac{\partial u}{\partial y} = 2 \left( \frac{\partial u}{\partial q} - \frac{\partial u}{\partial p} \right) - 0 $ $ \frac{1}{2} \frac{\partial u}{\partial y} = 2 \left( \frac{\partial u}{\partial q} - \frac{\partial u}{\partial p} \right) - 0 $ $ \frac{1}{2} \frac{\partial u}{\partial z} = 2 \left( \frac{\partial u}{\partial r} - \frac{\partial u}{\partial q} \right) - 0 $                                  |
|           | Now, adding @ @ and @,                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sundaram  | FOR EDUCATIONAL USE                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|            | Yash Sarang, 7128542, 47-DIAD, EM1, Pg. no. 5/5                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                  |
| E.         | Divide 24 into 3 parts such that the continued product of the first, square of second and cube of the third is maximum, using Lagrange's method. |
|            | Lagranges method.                                                                                                                                |
|            | Let, the three parts be x,y, z, respectively.  Let, u = f(x,y,z) = xy^2 z^3                                                                      |
|            | Let, u = f(x,y,z) = xy2z3                                                                                                                        |
|            | and $\phi = x + y + z - 24 = 0$ for Lagrange's function, $F = u + \lambda \phi$                                                                  |
|            | β = χ+y+z-24 =0 (2)                                                                                                                              |
|            | $F = u + \lambda \Phi$                                                                                                                           |
|            | $F = xy^2z^3 + \lambda(x+y+z-24).$                                                                                                               |
| A PUR      |                                                                                                                                                  |
|            | $\therefore \frac{\partial F}{\partial x} = 0  y^2 z^3 + \lambda = 0  0$                                                                         |
|            |                                                                                                                                                  |
|            | $\partial F = 0$ , $\partial xyz^3 + \lambda = 0$                                                                                                |
| Э          | $\frac{\partial F}{\partial z} = 0$ , $\frac{\partial xy^2z^2 + \lambda}{\partial z} = 0$                                                        |
|            |                                                                                                                                                  |
|            | $\therefore y^{2}z^{3} = 2xyz^{3} = 3xy^{2}z^{2}$ $\therefore 1 = 2 = 3 = k.  \therefore x = 1/k, y = 2/k, z = 3/k = 6$                          |
|            | $\therefore 1 + 2 + 3 = 24 \qquad \left(\text{from } \mathbb{Q} \text{ and } \mathbb{Q}\right) \stackrel{\cdot}{\cdot} k = \frac{1}{4}$          |
|            | x=4, y=8, z=12.                                                                                                                                  |
|            | The three required parts are 4,8 and 12.                                                                                                         |
| Sunda ra m | FOR EDUCATIONAL USE                                                                                                                              |