P525/2
CHEMISTRY
(THEORY)
Paper 2
July/August 2023
2½ hours

' MASAKA DIOCESAN EXAMINATIONS BOARD

Uganda Advanced Certificate of Education
Joint Mock Examinations 2023
CHEMISTRY
(THEORY)
Paper 2
2 hours '30 minutes

INSTRUCTIONS TO CANDIDATES:

Answer five questions including three questions from section A and any two from section B.

Write the answers on the answer sheets provided.

Begin each question on a fresh page.

Mathematical tables and graph papers are provided.

Silent-non programmable scientific electronic calculators may be used.

Use equations where necessary to illustrate your answers.

Where necessary use the following:

$$(H = 1, C = 12, O = 16), S = 32)$$

Universal molar gas constant is 8.31Jmol⁻¹k⁻¹ molar gas volume at s.t.p is 22.4dm³

Page 1 of 5

© 2023 Masaka Diocesan Examinations Board

SECTION A: (60 marks)

Answer three questions from this section. Any additional question answered will not be marked.

- 1. (a) State what is meant by the term;
 - **Eutectic** mixture i)

(01 mark)

Eutectic temperature

(01 mark)

iii) Phase

(01 mark)

(b) The table below shows the melting points and composition of various mixtures of cadmium and bismuth

Composition						
Composition of bismuth (%) Melting point (°C)	5	20	35	50	65	80
Wetting point (°C)	300	242	184	156	189	265

Draw a labeled phase diagram of the bismuth cadmium system.

(c) Using the diagram in (b) above;

(05 marks)

- Determine melting points of bismuth and cadmium.
- (01 mark)
- State the melting point and composition of the eutectic mixture.
- iii) Describe what happens when a liquid mixture containing 10% cadmium is cooled from 350°C to 100°C. (04 marks)
- iv) Work out the mass of cadmium crystallized when 200g of a mixture containing 15% bismuth was cooled from 300°C to 200°C.
- (d) Write down two differences and two similarities between eutectic mixtures and compounds. (02 marks)
- 2. Complete the equation and outline a mechanism for the reaction.
 - (c) CH₃COCl $CH_3CH_2NH_2$

(03 marks)

(d)
$$\longleftrightarrow$$
 COCH₃ + H₂NOH \longrightarrow \longleftrightarrow

(05 marks)

(e)
$$\bigcirc$$
 + CH₃COBr \longrightarrow FeBr₃

(3½ marks)

Page 2 of 5

© 2023 Masaka Diocesan Examinations Board

- n cm/ you chent/thomas >
- (g) (CH4), CB(CH7CH4 CH4CH7G7CH7A47अई भव्य
- (h) CH_4 Cone H_2SO_4 Heat
- 3. (a) The elements fluorine, chlorine, bromine and iodine are group (VII) member in the periodic table.

State the trend in the acid strength of their hydrides and explain your super-

- (b) Describe the reactions of fluorine and bromine with;
 - i) water

CB Tarc

Carate.

ii) sodium hydroxide

(07 mark:

- (c) Explain the following observations;
 - The electronegativities of fluorine and chlorine are -333 and -343 KJmol⁻¹, respectively. (2); <u>_aats</u>
 - ii) Hydrogen fluoride is a gas at 19°C but hydrogen iodide is a gas.

4. (a) i) What is an alkaline buffer?

(01 mark

ii) Briefly describe the action of an alkaline buffer.

604 **met**u

- (b) Methylamine is a weak alkali
 - Write equation for the dissociation of methylamine in water.
 - Calculate the PH of a 0.02M methylamine.

(1°: marks (83 marks)

(c) 50cm3 of a 0.05M methylamine was added to 30cm3 of a 0.05M hydrochloric acid. Calculate the pH of the resultant solution. (kb of methylamine is $1.8 \times 10^{-3} \text{ moldm}^{-3}$ at 25° C Kw = $1.0 \times 10^{-34} \text{ mol}^{-2}$

(31: marks)

- (d) 50cm3 of a 0.02M methylamine was added to an equal volume of a 0.02M nitric acid.
 - Calculate the pH of the solution formed. i)

(05 marks)

ii) Explain your answer in d(i) above.

(02 marks)

Page 3 of 5

2023 Masaka Diocesan Examinations Board

0 :

SECTION B: (40 marks)

Answer two questions from this section.

Any additional question answered will not be marked.

5.	(a)	Write the electronic configuration of manganese. (atomic number = 25)						
	(b)	Explain why manganese;	(½ mark)					
		 i) is a transition metal. ii) has variable oxidation states. iii) forms complex ions. iv) is a d-block element. 	(1½ marks) (02 marks) (02 marks) 902 marks)					
	(c)	Describe the reactions of manganese with;						
		i) water.ii) sulphuric acid	(02 marks) (04 marks)					
	(d)	d) State the observations made and explain the reactions of manganese chloride with;						
		 i) sodium hydroxide ii) a mixture of nitric acid and sodium bismuthate. 	(3½ marks) (2½ marks)					
6.	Wri reag	rite equations to show how the following conversions can be effected. Indicate agents and conditions.						

(a) Calcium carbide to benzoylchloride. (03 marks)

(b) CO₂CH₂CH₃ from benzene (3½ marks)

(c) Propyne to CH₃CHCH₃

 $\dot{N}H_2$ (03 marks)

(d) Propan-1-ol from bromo ethane (3½ marks)

(e) Ethanol to CH₃Br (3½ marks)

(f) Ethylamine from propan-2-ol (3½ marks)

Page 4 of 5

- 7. Explain the following observations. Write equations for the reactions that take place where necessary.
 - (a) When a saturated solution of potassium carbonate is added to a solution of potassium chromium (III) sulphate (K₂SO₄.Cr₂(SO₄)₃.18H₂O), a green precipitate is formed with effervescence of a colourless gas. (4½ marks)
 - (b) Sodium methanoate reacts with ammoniacal silver nitrate solution to form a silver mirror but sodium ethanoate does not. (04 marks)
 - (c) The first ionization energy of period 3 elements in the periodic table increases with increasing atomic number but the first ionization energy of phosphorus is higher than that of sulphur. (P = 15, Cl = 17) (05 marks)
 - (d) The acid dissociation constant of methanoic acid, Ka is 1.75 x 10⁻⁴ moldm³ but ka for ethanoic acid is 1.8 x 10⁻⁵ moldm⁻³. (03 marks)
 - (e) When chlorocyclohexane is reacted with hot sodium hydroxide solution and dilute nitric acid added followed by aqeous silver nitrate a white precipitate forms but when chlorobenzene is treated in the same way, there is no observable change.

 (3½ marks)
- 8. (a) i) Starting with iron pyrites, describe the manufacture of sulphuric acid by the contact process. (7½ marks)
 - ii) State two uses of sulphuric acid other than the manufacture of fertilizers.
 (01 mark)
 - (b) Concentrated sulphuric acid is 98% acid with a density of 1.84g/cm³
 - i) Work out the molar concentration of the acid. (2½ marks)
 - ii) Calculate the volume of the acid needed to prepare a 0.2M solution of this acid using a 250cm³ volumetric flask. (2½ marks)
 - iii) Write equation to show how sulphuric acid is used to prepare superphosphate fertilizer. (01 mark)
 - (c) Describe the reaction of sulphuric acid with;
 - i) Copper

(1½ marks)

ii) Iron

(04 marks)

Page 5 of 5

END.

è ic