• 침전 반응 (precipitation reaction)

NaCl
$$(aq)$$
 + AgNO<sub>3</sub> $(aq)$   $\longrightarrow$  NaNO<sub>3</sub> $(aq)$  + AgCl $(s)$  가용성 염 난용성 염(침전)

• 침전 반응 (precipitation reaction)

NaCl
$$(aq)$$
 + AgNO<sub>3</sub> $(aq)$   $\longrightarrow$  NaNO<sub>3</sub> $(aq)$  + AgCl $(s)$  가용성 염 난용성 염(침전)

#### 염(salt)

보통 소금(NaCl)이라고 단정하여 생각할 수 있으나,

양이온과 음이온이 결합된 화합물을 염(이온 결합 화합물)이라고 정의한다.

염은 물에 용해되었을 때 양이온과 음이온으로

해리되는 가용성 염과

해리되지 않는 불용성 염(난용성 염)으로 분류된다.

$$\begin{array}{c} & \text{precipitate} \\ \downarrow \\ \text{Pb(NO}_3)_2 \ (aq) + 2\text{Nal} \ (aq) \longrightarrow \begin{array}{c} \text{Pbl}_2 \ (s) \\ \end{array} + 2\text{NaNO}_3 \ (aq) \end{array}$$

Precipitation of Lead Iodide

$$Pb^{2+} + 2l^{-} \longrightarrow Pbl_2(s)$$

예제 6.5

질산 은  $(AgNO_3)$  수용액과 탄산 소듐  $(Na_2CO_3)$ 수용액이 혼합되었을 때의 침전 반응식을 쓰시오.

표 6.2 대표적인 용해도 규칙(■ 불용성)

|                                                                   | NO <sub>3</sub> | Cl¯                                                         | SO <sub>4</sub> <sup>2-</sup>                        | OH_                 | CO <sub>3</sub> <sup>2-</sup> | PO <sub>4</sub> <sup>3-</sup> |
|-------------------------------------------------------------------|-----------------|-------------------------------------------------------------|------------------------------------------------------|---------------------|-------------------------------|-------------------------------|
| 1족 양이온 및<br>NH <sub>4</sub> +                                     |                 |                                                             |                                                      |                     |                               |                               |
| 2족 양이온                                                            |                 |                                                             | BaSO <sub>4</sub>                                    | Mg(OH) <sub>2</sub> |                               |                               |
| 전이 금속<br>양이온, Pb <sup>2+</sup><br>및 Hg <sub>2</sub> <sup>2+</sup> |                 | AgCl* PbCl <sub>2</sub> * Hg <sub>2</sub> Cl <sub>2</sub> * | PbSO <sub>4</sub><br>Ag <sub>2</sub> SO <sub>4</sub> |                     |                               |                               |

<sup>\*</sup>이들 양이온의 브로민화물과 아이오딘화물도 역시 불용성이다.

표 6.2 대표적인 용해도 규칙(■ 불용성)

|                                                                   | NO <sub>3</sub> | Cl¯                                                         | SO <sub>4</sub> <sup>2-</sup>                        | OH_                 | CO <sub>3</sub> <sup>2-</sup> | PO <sub>4</sub> <sup>3-</sup> |
|-------------------------------------------------------------------|-----------------|-------------------------------------------------------------|------------------------------------------------------|---------------------|-------------------------------|-------------------------------|
| 1족 양이온 및<br>NH <sub>4</sub> <sup>+</sup>                          |                 |                                                             |                                                      |                     |                               |                               |
| 2족 양이온                                                            |                 |                                                             | BaSO <sub>4</sub>                                    | Mg(OH) <sub>2</sub> |                               |                               |
| 전이 금속<br>양이온, Pb <sup>2+</sup><br>및 Hg <sub>2</sub> <sup>2+</sup> |                 | AgCl* PbCl <sub>2</sub> * Hg <sub>2</sub> Cl <sub>2</sub> * | PbSO <sub>4</sub><br>Ag <sub>2</sub> SO <sub>4</sub> |                     |                               |                               |

<sup>\*</sup>이들 양이온의 브로민화물과 아이오딘화물도 역시 불용성이다.

• 용해도를 기준으로 한 분류 (가용성, 약 가용성, 불용성)



◀ 대부분의 고체 용질의 경우 온도가 증가하면 물에 대한 용해도가 증가 하지만, 예외적인 결과를 보이는 고 체 용질도 분명 존재한다.

• 분자 반응식, 이온반응식, 알짜 이온 반응식

NaCl(aq) + AgNO<sub>3</sub>(aq) 
$$\longrightarrow$$
 NaNO<sub>3</sub>(aq) + AgCl(s)  $\downarrow$  Na+ (aq), Cl- (aq)  $\longrightarrow$  지aNO<sub>3</sub>(aq) + AgCl(s)  $\downarrow$  가용성 염 난용성 염(침전)  $\longrightarrow$  Ag+ (aq), NO<sub>3</sub>- (aq)  $\longrightarrow$  Na+ (aq), NO<sub>3</sub>- (aq)

구경꾼 이온 제거: 
$$Na^+(aq) + Cl^-(aq) + Ag^+(aq) + NO_3^-(aq)$$
 
$$\longrightarrow Na^+(aq) + NO_3^-(aq) + AgCl(s)$$



알짜 이온 반응식:  $Ag^+(aq) + Cl^-(aq) \longrightarrow AgCl(s)$ 

• 분자 반응식, 이온반응식, 알짜 이온 반응식

- (1) 주어진 반응에 대한 균형 잡힌 분자 반응식을 쓴다.
- (2) 용액에서 형성되는 이온으로 반응식을 다시 쓴다. 용액에 녹을 때, 모든 강전해 질은 완전히 음이온과 양이온으로 해리한다고 가정한다. 이 과정의 결과가 이온 반응식이다.
- (3) 알짜 이온 반응식을 만들기 위해 양쪽의 구경꾼 이온을 모두 삭제한다.

예제 6.6

다음 각 상황에서 침전 반응이 일어나는지를 밝히고, 알짜 이온 반응식을 쓰시오.

(a) 
$$ZnCl_2(aq) + K_2CO_3(aq)$$

(b) 
$$NaCI(aq) + NH_4OH(aq)$$

(c) 
$$NiCl_2(aq) + (NH_4)_2S(aq)$$

(d) 
$$AgCIO_4(aq) + CaBr_2(aq)$$

표 6.2 대표적인 용해도 규칙(■ 불용성)

|                                                                   | NO <sub>3</sub> | СГ                                                          | SO <sub>4</sub> <sup>2-</sup>                        | OH_                 | CO <sub>3</sub> <sup>2-</sup> | PO <sub>4</sub> <sup>3-</sup> |
|-------------------------------------------------------------------|-----------------|-------------------------------------------------------------|------------------------------------------------------|---------------------|-------------------------------|-------------------------------|
| 1족 양이온 및<br>NH <sub>4</sub> +                                     |                 |                                                             |                                                      |                     |                               |                               |
| 2족 양이온                                                            |                 |                                                             | BaSO <sub>4</sub>                                    | Mg(OH) <sub>2</sub> |                               |                               |
| 전이 금속<br>양이온, Pb <sup>2+</sup><br>및 Hg <sub>2</sub> <sup>2+</sup> |                 | AgCl* PbCl <sub>2</sub> * Hg <sub>2</sub> Cl <sub>2</sub> * | PbSO <sub>4</sub><br>Ag <sub>2</sub> SO <sub>4</sub> |                     |                               |                               |

<sup>\*</sup>이들 양이온의 브로민화물과 아이오딘화물도 역시 불용성이다.

## • 문제 풀이

#1. 아래 반응의 <u>이온반응식</u>과 <u>알짜 반응식</u>을 각각 쓰시오.

$$2AgNO_3$$
 (aq) +  $Na_2CO_3$  (aq)  $\rightarrow 2NaNO_3$  (aq) +  $Ag_2CO_3$  (s)