MATH 178 Homework #2 Tamir Enkhjargal April 2019

NT

3.

$$73 = 2 * 35 + 3 \tag{1}$$

$$35 = 11 * 3 + 2 \tag{2}$$

$$3 = 1 * 2 + 1 \tag{3}$$

$$1 = 1 * 1 + 0 \tag{4}$$

$$1 = 3 - 1 * 2 \tag{5}$$

$$1 = 3 - 1 * (35 - 11 * 3) \tag{6}$$

$$1 = 12 * 3 - 1 * 35 \tag{7}$$

$$1 = 12 * (73 - 2 * 35) - 1 * 35 \tag{8}$$

$$1 = 12 * 73 - 25 * 35 \tag{9}$$

$$-25 + 73 = 48 \equiv 1 * 35^{-1} \pmod{73} \tag{10}$$

The gcd(35,73) is 1. 35^{-1} in $\mathbb{Z}/73\mathbb{Z}$ is 48.

Because mod "respects" arithmetic functions, if we were to find $ax*x\equiv 1 \pmod{73}$ is the same as running the mod then multiplying by x again.

$$48 * 48 \equiv 1 * 35^{-1} * 35^{-1} (mod 73)$$
 (1)

$$48^2 \equiv 1 * 35^{-2} \pmod{73} \tag{2}$$

$$32 \equiv 1 * 35^{-2} \pmod{73} \tag{3}$$

4.

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	0 1 2 3 4 5	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Table 1: Addition Table in Mod 6

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0 0 0 0 0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Table 2: Multiplication Table in Mod 6

5.

Z^*	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	7
7	7	5	7	1

Table 3: Modular Multiplication Modulo 8

Z^*	1	3	7	9
1	1	3	5	9
3	3	9	1	7
7	5	1	1	3
9	9	7	3	1

Table 4: Modular Mulitplication Modulo 10

6.

After handwriting and brute-forcing through the combinations, the results are:

n	Elements in Range
2	6
3	4
4	3
5	12
6	2
7	12
8	3
9	4
10	6
11	12

Table 5: Table of inputs into $f_n(x)$ and number of elements in ranges Modulo 12

This can be broken down into a single function.

Number of Elements in Range = $12/\gcd(n,12)$

7.

$$27 \equiv 5 \pmod{m} \tag{1}$$

$$\equiv m \mid (27 - 5) \tag{2}$$

$$\equiv m = 22 \tag{3}$$

Therefore, m can be any of its factors, 1, 2, 11, or 22.

8.

Since 13 is a prime number, this means that all numbers between 1-12 have a gcd of 1.

$(x*1) \bmod 13 = 1$	$x = 1 = 1^{-1}$	(1)
$(x*2) \bmod 13 = 1$	$x = 7 = 2^{-1}$	(2)
$(x*3) \bmod 13 = 1$	$x = 9 = 3^{-1}$	(3)
$(x*4) \bmod 13 = 1$	$x = 10 = 4^{-1}$	(4)
$(x*5) \bmod 13 = 1$	$x = 8 = 5^{-1}$	(5)
$(x*6) \bmod 13 = 1$	$x = 11 = 6^{-1}$	(6)
$(x*7) \bmod 13 = 1$	$x = 2 = 7^{-1}$	(7)
$(x*8) \bmod 13 = 1$	$x = 5 = 8^{-1}$	(8)
$(x*9) \bmod 13 = 1$	$x = 3 = 9^{-1}$	(9)
$(x*10) \bmod 13 = 1$	$x = 4 = 10^{-1}$	(10)
$(x*11) \bmod 13 = 1$	$x = 6 = 11^{-1}$	(11)
$(x*12) \bmod 13 = 1$	$x = 12 = 12^{-1}$	(12)