Support Vector Machines

Florence d'Alché-Buc

Contact: florence.dalche@telecom-paristech.fr, Télécom Paris France

Outline

Rappels

SVM linéaires

Passage au cas non linéaire et noyaux

Pour aller plus loin: Support Vector Regression

Conclusion et References

Classification binaire supervisée

Cadre probabiliste et statistique 1/2

- Soit X un vecteur aléatoire de $\mathcal{X} = \mathbb{R}^p$
- Y une variable aléatoire discrète $\mathcal{Y} = \{-1, 1\}$
- Soit ℙ la loi de probabilité jointe de (X,Y)
- Soit $\mathcal{S}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$, i.i.d. sample from \mathbb{P} .

Classification binaire supervisée

Cadre probabiliste et statistique 2/2

- Soit $f: \mathbb{R}^p \to \{-1, +1\}$ une fonction de classification binaire: f(x) = sign(h(x)) avec $h: \mathbb{R}^p \to \mathbb{R} \in \mathcal{H}$
- Soit $\ell: \{-1, +1\} \times \mathbb{R} \to \mathbb{R}$ une fonction de perte
- Risque empirique $R_n(h) = \frac{1}{n} \sum_i \ell(y_i, h(x_i))$ et un terme régularisateur $\Omega(h)$ qui mesure la *complexité* de h.
- On cherche : $\hat{h} = \arg\min_{h \in \mathcal{H}} R_n(h) + \lambda \Omega(h)$

- Définir
 - l'espace de représentation des entrées

- Définir
 - l'espace de représentation des entrées
 - la classe des fonctions de classification binaire considérées

- Définir
 - l'espace de représentation des entrées
 - la classe des fonctions de classification binaire considérées
 - la fonction de coût à minimiser pour obtenir le meilleur classifieur dans cette classe

- Définir
 - l'espace de représentation des entrées
 - la classe des fonctions de classification binaire considérées
 - la fonction de coût à minimiser pour obtenir le meilleur classifieur dans cette classe
 - l'algorithme de minimisation de cette fonction de coût

- Définir
 - l'espace de représentation des entrées
 - la classe des fonctions de classification binaire considérées
 - la fonction de coût à minimiser pour obtenir le meilleur classifieur dans cette classe
 - l'algorithme de minimisation de cette fonction de coût
 - une méthode de sélection de modèle pour définir les hyperparamètres

Outline

Rappels

SVM linéaires

Passage au cas non linéaire et noyaux

Pour aller plus loin: Support Vector Regression

Conclusion et References

Séparateur linéaire

Définition

Soit $\mathbf{x} \in \mathbb{R}^p$

$$h(\mathbf{x}) = \operatorname{signe}(\mathbf{w}^T \mathbf{x} + b)$$

L'équation : $\mathbf{w}^T \mathbf{x} + b = 0$ définit un hyperplan dans l'espace euclidien \mathbb{R}^p

Figure 1: Exemple: données d'apprentissage en 3D et séparateur linéaire

N.B.: C'est aussi l'équation d'un perceptron !

Cas de données linéairement séparables

Exemple en 2D: quelle droite choisir ?

Critère de marge

Critère de marge

Notion de marge géométrique

- Pour séparer les données, on considère un triplet d'hyperplans:
 - H: $\mathbf{w}^T \mathbf{x} + b = 0$, $H_1 : \mathbf{w}^T \mathbf{x} + b = 1$, $H_{-1} : \mathbf{w}^T \mathbf{x} + b = -1$
- On appelle marge géométrique, $\rho(\mathbf{w})$ la plus petite distance entre les données et l'hyperplan H, ici donc la moitié de la distance entre H_1 et H_{-1}
- Un calcul simple donne : $\rho(\mathbf{w}) = \frac{1}{||\mathbf{w}||}$.

9

Nouvelle fonction de coût à optimiser

Comment déterminer w et b?

- Maximiser la marge $\rho(\mathbf{w})$ tout en séparant les données de part et d'autre de H_1 et H_{-1}
- Séparer les données bleues $(y_i = 1)$: $\mathbf{w}^T \mathbf{x}_i + b \ge 1$
- Séparer les données rouges $(y_i = -1)$: $\mathbf{w}^T \mathbf{x}_i + b \le -1$

SVM linéaire: cas séparable

Optimisation dans l'espace primal

minimiser
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 sous la contrainte $y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \ge 1, \ i = 1, ..., n.$

Référence

Boser, B. E.; Guyon, I. M.; Vapnik, V. N. (1992). "A training algorithm for optimal margin classifiers". Proceedings of the fifth annual workshop on Computational learning theory - COLT '92. p. 144.

Programmation quadratique sous contraintes d'inégalités affines

Problème primal:

minimiser
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 sous la contrainte $1 - y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \le 0, \ i = 1, ..., n.$

Programmation quadratique sous contraintes d'inégalités affines

On peut définir une nouvelle fonction objectif: la somme de la fonction à minimiser + la somme des contraintes multipliées par des coefficients positifs , dits de Lagrange

Lagrangien

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i} \alpha_i (1 - y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}))$$

$$\forall i, \alpha_i \ge 0$$

La solution de **ce** problème convexe sous contraintes d'inégalités **affines** peut être obtenue en résolvant un problème de point de selle : $\min_{\mathbf{w}} \max_{\alpha} \mathcal{L}(\mathbf{w}, \alpha)$. Lorsque la fonction est convexe en \mathbf{w} (b) et concave en α , nous pouvons intervertir le min et le max.

Conditions de Karush-Kunh-Tucker

En l'extremum, on a

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} = 0$$

$$\nabla_{b} \mathcal{L}(b) = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\forall i, \alpha_{i} \geq 0$$

$$\forall i, \alpha_{i} [1 - y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b)] = 0$$

Obtention des α_i : résolution dans l'espace dual

$$\mathcal{L}(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$

- Maximiser \mathcal{L} sous les contraintes $\alpha_i \geq 0, \forall i = 1, ..., n$ et $\sum_i \alpha_i y_i = 0,$
- Faire appel à un solveur quadratique

SVM linéaires ou Optimal Margin Hyperplan

Supposons que les multiplicateurs de Lagrange α_i soient déterminés :

Equation d'un SVM linéaire

$$f(\mathbf{x}) = \operatorname{signe}(\sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b)$$

Pour classer une donnée \mathbf{x} , ce classifier combine linéairement les valeurs de classe y_i des données support avec des poids du type $\alpha_i \mathbf{x}_i^T \mathbf{x}$ dépendant de la ressemblance entre \mathbf{x} et les données support au sens du produit scalaire.

Vecteurs "supports"

Les données d'apprentissage \mathbf{x}_i telles que $\alpha_i \neq 0$ sont sur l'un ou l'autre des hyperplans H_1 ou H_{-1} . Seules ces données dites vecteur de support comptent dans la définition de $\mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$

NB : b est obtenu en choisissant une donnée support $(\alpha_i \neq 0)$

Problème: dans le cas données non séparables

Si on applique un solveur quadratique à des données du type:

alors, l'algorithme ne peut pas réussir à satisfaire les contraintes...

Introduire une variable d'écart ξ_i pour chaque donnée:

Problème dans le primal

$$\min_{\mathbf{w},b,\xi} \qquad \qquad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$
 sous les contraintes
$$y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \ge 1 - \xi_i \ i = 1, \dots, n.$$

$$\xi_i \ge 0 \ i = 1, \dots, n.$$

Notion de marge douce

Problème dans le dual

$$\begin{split} \max_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\ \text{sous les contraintes} & 0 \leq \alpha_{i} \leq \textit{C} \ \textit{i} = 1, \ldots, \textit{n}. \\ & \sum_{i} \alpha_{i} y_{i} = 0. \end{split}$$

Conditions de Karush-Kuhn-Tucker (KKT)

Soit α^* la solution du problème dual:

$$\forall i, [y_i f_{w^*, b^*}(x_i) - 1 + \xi_i^*] \le 0 \tag{1}$$

$$\forall i, \alpha_i^* \ge 0 \tag{2}$$

$$\forall i, \alpha_i^* [y_i f_{w^*, b^*}(x_i) - 1 + \xi_i^*] = 0 \tag{3}$$

$$\forall i, \mu_i^* \ge 0 \tag{4}$$

$$\forall i, \mu_i^* \xi_i^* = 0 \tag{5}$$

$$\forall i, \alpha_i^* + \mu_i^* = C \tag{6}$$

$$\forall i, \xi_i^* \ge 0 \tag{7}$$

$$\mathbf{w}^* = \sum_i \alpha_i^* y_i \mathbf{x}_i \tag{8}$$

$$\sum_{i} \alpha_{i}^{*} y_{i} = 0 \tag{9}$$

(10)

Différents cas de figure

Soit α^* la solution du problème dual:

- si $\alpha_i^* = 0$, alors $\mu_i^* = C > 0$ et donc, $\xi_i^* = 0$: x_i^* est bien classé mais n'intervient pas dans le paramétrage de la fonction de décision
- si $0<\alpha_i^*< C$, alors $\mu_i^*>0$ et donc $\xi_i^*=0$: x_i^* est sur un des hyperplans H_1 ou H_{-1} ., est support
- si $\alpha_i^* = C$, alors $\mu_i^* = 0$, $\xi_i^* = 1 y_i f_{w^*,b^*}(x_i) \ge 0$, x_i^* est support

 ${\rm NB}$: on calcule b^* en utilisant un i tel que 0 < $\alpha_i^* < {\it C}$

Quelques remarques

- certaines données support peuvent donc être de l'autre côté des hyperplans H.
- C est un hyperparamètre qui contrôle le compromis entre la complexité du modèle et le nombre d'erreurs de classification du modèle.

SVM: approche par régularisation

Optimisation dans l'espace primal

$$\min_{\mathbf{w},b} \quad \sum_{i=1}^{n} (1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))_+ + \lambda \frac{1}{2} \|\mathbf{w}\|^2$$

Avec:
$$(z)_+ = max(0, z)$$

 $f(\mathbf{x}) = \text{signe}(h(\mathbf{x}))$
Fonction de coût: Hinge loss $L(\mathbf{x}, y, h(\mathbf{x})) = (1 - yh(\mathbf{x}))_+$
 $yh(\mathbf{x})$ est appelée marge du classifieur

Approche régularisée: comparaison des termes de pertes

References

Historiques:

- BOSER, Bernhard E., Isabelle M. GUYON, and Vladimir N.
 VAPNIK, 1992. A training algorithm for optimal margin classifiers.
 In: COLT 92: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. New York, NY, USA: ACM Press.
- CORTES, Corinna, and Vladimir VAPNIK, 1995. Support-vector networks. Machine Learning, 20(3).

Revue:

 Article vraiment sympa, complet (un peu de maths): A tutorial review of RKHS methods in Machine Learning, Hofman, Schoelkopf, Smola, 2005

(https://www.researchgate.net/publication/228827159_A_ Tutorial_Review_of_RKHS_Methods_in_Machine_Learning)

Outline

Rappels

SVM linéaires

Passage au cas non linéaire et noyaux

Définition des noyaux

Retour aux SVM

Pour aller plus Ioin: Support Vector Regression

Conclusion et References

Support Vector Machine : le cas non linéaire

On voudrait pouvoir séparer non linéairement des données comme ici:

Remarque

Le problème de l'hyperplan de marge optimale ne fait intervenir les données d'apprentissage qu'à travers de produits scalaires.

$$\begin{aligned} \max_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\ \text{sous les contraintes} & 0 \leq \alpha_{i} \leq C \ i = 1, \dots, n. \\ & \sum_{i} \alpha_{i} y_{i} = 0. \end{aligned}$$

Idée 1/2

Si je transforme les données à l'aide d'une fonction ϕ (non linéaire), et que je pose le problème suivant dans l'espace primal:

Problème dans le primal

$$\min_{\mathbf{w},b,\xi} \qquad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$
 sous les contraintes $y_i(\mathbf{w}^T \phi(\mathbf{x}_i) + \mathbf{b}) \ge 1 - \xi_i \ i = 1, \dots, n.$
$$\xi_i > 0 \ i = 1, \dots, n.$$

.. je peux apprendre une fonction de séparation non linéaire.

Idée 2/2

et si je sais calculer les produits scalaires $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$, je peux résoudre le problème dual suivant:

$$\begin{aligned} \max_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j}) \\ \text{sous les contraintes} & 0 \leq \alpha_{i} \leq C \;, i = 1, \dots, n. \\ & \sum_{i} \alpha_{i} y_{i} = 0 \;. \end{aligned}$$

Pour classer une nouvelle donné \mathbf{x} , je n'ai besoin que de savoir calculer $\phi(\mathbf{x}_i)^T \phi(\mathbf{x})$:

$$f(\mathbf{x}) = \operatorname{signe}(\sum_{i} \alpha_{i} y_{i} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}) + b)$$

Astuce du noyau

Au lieu de définir ϕ , je remplace $\mathbf{x}_i^T \mathbf{x}_j$ par l'image par une fonction k: $k(\mathbf{x}_i, \mathbf{x}_j)$ telle qu'il existe un espace de re-description (feature space) \mathcal{F} et une fonction de re-description (feature map) $\phi: \mathcal{X} \to \mathcal{F}$ et $\forall (\mathbf{x}, \mathbf{x}') \in \mathcal{X}, k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$, alors je peux appliquer le même algorithme d'optimisation (résolution dans le dual) et j'obtiens : $f(\mathbf{x}) = \text{signe}(\sum_{i=1}^n \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b)$ Des telles fonctions k existent et sont appelées noyaux.

Exemple: noyau polynomial

Exemple: noyau polynomial

Astuce du noyau

On remarque que $\phi(\mathbf{x}_1)^T \phi(\mathbf{x}')$ peut se calculer sans travailler dans \mathbb{R}^3 Je peux définir $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}') = (\mathbf{x}^T \mathbf{x}')^2$

Outline

Rappels

SVM linéaires

Passage au cas non linéaire et noyaux

Définition des noyaux

Retour aux SVM

Pour aller plus Ioin: Support Vector Regression

Conclusion et References

Noyaux

Définition

Soit \mathcal{X} un ensemble. Soit $k:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$, une fonction symétrique. La fonction k est appelée *noyau* positif défini si et seulement si quel que soit le sous-ensemble fini $\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$ de \mathcal{X} et le vecteur colonne \mathbf{c} de \mathbb{R}^m , $\mathbf{c}^T K \mathbf{c} = \sum_{i,i=1}^m c_i c_j k(x_i,x_j) \geq 0$

N.B.: on impose donc que toute matrice construite à partir d'un nombre fini d'éléments de $\mathcal X$ soit semi-définie positive.

Propriété des noyaux

Théorème de Moore-Aronzajn (simplifié)

Soit K un noyau positif défini. Alors, il existe un espace de Hilbert \mathcal{F} , appelé espace de redescription et une fonction $\phi: \mathcal{X} \to \mathcal{F}$, appelée fonction de redescription (en anglais, feature map) telle que: $\langle \phi(x), \phi(x') \rangle_{\mathcal{F}} = k(x, x')$.

Propriété des noyaux

Théorème de Moore-Aronzajn

Soit K un noyau positif défini. Alors, il existe un espace de Hilbert \mathcal{F} , appelé espace de redescription et une fonction $\phi: \mathcal{X} \to \mathcal{F}$, appelée fonction de redescription (en anglais, feature map) telle que: $\langle \phi(x), \phi(x') \rangle_{\mathcal{F}} = k(x, x')$.

Il existe un unique espace de redescription \mathcal{F} ,appelé espace de Hilbert à noyau autoreproduisant k, qui a la propriété suivante Pour tout x, la fonction $t \to k(t,x)$ appartient à \mathcal{F} , et k vérifie la propriété autoreproduisante

$$\langle f, k(\cdot, x) \rangle_{\mathcal{F}} = f(x)$$

II s'agit de :
$$\mathcal{F} = \overline{\{x
ightarrow \sum_{i \in I} k(x, z_i), z_i \in \mathcal{X}\}}$$
.

Noyaux

Noyaux entre vecteurs

 $\forall \mathsf{x}, \mathsf{x}' \in \mathbb{R}^p$

- Noyau linéaire : $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$
- Noyau polynomial : $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^d$
- Noyau gaussien : $k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} \mathbf{x}'||^2)$

Construction de noyaux

Propriétés de fermeture

Soient k_1 et k_2 deux noyaux sur $\mathcal{X} \times \mathcal{X}$. Soit $g : \mathcal{X} \to \mathbb{R}$. Soit $a \in \mathbb{R}^+$.

$$k(x, x') = k_1(x, x') + k_2(x, x')$$

$$k(x, x') = ak_1(x, x')$$

$$k(x, x') = k_1(x, x')k_2(x, x')$$

$$k(x, x') = g(x)g(x')$$

$$k(x, x') = k_1(g(x), g(x'))$$

Les fonctions k ainsi définis sont des noyaux.

Autre usage des noyaux

On peut construire des noyaux pour des données structurées : graphes, séquences, arbres et appliquer les SVM !

- Classifier des molécules
- Classifier des documents structurés
- Traiter des séquences biologiques
- ...

Outline

Rappels

SVM linéaires

Passage au cas non linéaire et noyaux

Définition des noyaux

Retour aux SVM

Pour aller plus loin: Support Vector Regression

Conclusion et References

Support Vector Machine : séparateur non linéaire par noyau gaussien

$$f(\mathbf{x}) = \operatorname{signe}(\sum_{i=1}^{n} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b)$$

Cas du noyau gaussien : rôle de γ

En plus de l'hyperparamètre ${\cal C}$, il faudra aussi régler la valeur du paramètre γ

Dans chacun des cas, on trouve un minimum différent pour C. Utiliser la Validation Croisée pour sélectionner γ et C.

Comment définir un noyau pour une application spécifique ?

- Utiliser les propriétés de fermeture pour construire de nouveaux noyaux
- Important: les noyaux peuvent être utilisés pour comparer de différents types de données
 - Données structurées: (sets), graphs, trees, sequences, . . .
- Apprentissage de noyaux:
 - Apprentissage d'hyperparamètre: voir Chapelle et al. 2002
 - Apprentissage de noyau multiple: étant donnés k_1, \ldots, k_m , apprendre une combinaison convexe $\sum_i \beta_i k_i$ de noyaux (voir SimpleMKL Rakotomamonjy et al. 2008, ou Kloft et al. 2010)

Outline

Rappels

SVM linéaires

Passage au cas non linéaire et noyaux

Pour aller plus Ioin: Support Vector Regression

Conclusion et References

Régression

Cadre probabiliste et statistique

Soit X un vecteur aléatoire de $\mathcal{X} = \mathbb{R}^p$

Y une variable aléatoire continue $\mathcal{Y}=\mathbb{R}$

Soit P la loi de probabilité jointe de (X,Y), loi fixée mais inconnue

Supposons que $S_{app} = \{(x_i, y_i), i = 1, ..., n\}$ soit un échantillon i.i.d. tiré

de la loi P

Régression

Cadre probabiliste et statistique

- A partir de S_{app} , déterminer la fonction $f \in \mathcal{F}$ qui minimise $R(f) = \mathbb{E}_P[\ell(X, Y, f(X))]$
- é étant une fonction de coût local qui mesure à quel point la vraie cible et la prédiction par le classifieur sont différentes

Pb: la loi jointe n'est pas connue : on ne peut pas calculer R(f)

Support Vector Regression

- Extend the idea of maximal soft margin to regression
- Impose an ϵ -tube : perte ϵ -insensible $|y'-y|_{\epsilon}=\max(0,|y'-y|-\epsilon)$

Support Vector Regression

SVR in the primal space

Given C and ϵ

$$\min_{w,b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i + \xi_i^*)$$

S.C.

$$\forall i = 1, \dots, y_i - f(x_i) \le \epsilon + \xi_i$$

$$\forall i = 1, \dots, f(x_i) - y_i \le \epsilon + \xi_i^*$$

$$\forall i = 1, \xi_i \geq 0, \xi_i^* \geq 0$$

with
$$f(x) = w^T \phi(x) + b$$

General case : ϕ is a feature map associated with a positive definite kernel k.

Solution in the dual

$$\begin{aligned} \min_{\alpha,\alpha^*} \sum_{i,j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) k(x_i, x_j) + \epsilon \sum_i (\alpha_i + \alpha_i^*) - \sum_i y_i (\alpha_i - \alpha_i^*) \\ \text{s.c. } \sum_i (\alpha_i - \alpha_i^*) = 0 \text{ and } 0 \leq \alpha_i \leq C \text{ and } 0 \leq \alpha_i^* \leq C \\ w = \sum_{i=1}^n (\alpha_i - \alpha_i^*) \phi(x_i) \end{aligned}$$

Solution

$$f(x) = \sum_{i=1}^{n} (\alpha_i - \alpha_i^*) k(x_i, x) + b$$

Support Vector Regression: example in 1D

Identical machine parameters ($\varepsilon = 0.2$), but different amounts of noise in the data.

B. Schölkopf, Canberra, February 2002

Outline

Rappels

SVM linéaires

Passage au cas non linéaire et noyaux

Pour aller plus loin: Support Vector Regression

Conclusion et References

Conclusion 1

Classification supervisée par Support Vector Machine:

Avantages

- 1 unique minimum, programmation quadratique sous contraintes linéaires: c'est vraiment le premier l'intérêt !
- Avec noyau universel comme le noyau Gaussien : c'est un approximateur universel
- Flexible : adapter le noyau au type de données, souvent l'unique solution dans le cas de données structurées
- Multi-classe: M classifieurs une classe contre toutes les autres, on prend le meilleur score (marge).
- Statistique : algorithme inspiré des résultats théoriques de Vapnik et Chervonenkis

Conclusion 2

Classification supervisée par Support Vector Machine:

Désavantages

- Choix du noyau, pas d'apprentissage du noyau en tant que tel, seulement sélection de poids d'un noyau multiple
- Algorithme d'optimisation coûteux en temps et en mémoire
- Pour vraiment passer à l'échelle (au de la de 5000 données): passer par des approximations Nystrom (approximation de rang faible de la matrice de Gram) ou Random Fourier Features (approximation spectrale du noyau)

Conclusion

Astuce du noyau en général

- s'applique à d'autres algorithmes
- PCA → Kernel PCA (vous verrez cela avec Slim Essid, dans le Module Apprentissage non supervis/'e)
- ullet CCA o Kernel CCA

S'applique en sortie!

- traiter des fonctions à sorties complexes et non à valeurs réelles
- requiert d'utiliser en entrée des noyaux à valeurs opérateurs (ex:matrices)

References

Historiques:

- BOSER, Bernhard E., Isabelle M. GUYON, and Vladimir N.
 VAPNIK, 1992. A training algorithm for optimal margin classifiers.
 In: COLT â92: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. New York, NY, USA: ACM Press.
- CORTES, Corinna, and Vladimir VAPNIK, 1995. Support-vector networks. Machine Learning, 20(3).

Revue:

 Article vraiment sympa, complet (un peu de maths): A tutorial review of RKHS methods in Machine Learning, Hofman, Schoelkopf, Smola, 2005

(https://www.researchgate.net/publication/228827159_A_ Tutorial_Review_of_RKHS_Methods_in_Machine_Learning)