Aerospace Propulsion

Lecture 21
Rocket Propulsion IV

Rocket Propulsion: Part IV

- Liquid Propellant Rocket Engines
- Propellant and Storage
- Feed Systems
- Injectors
- Thrust Chamber Cooling

Liquid Propellant Rocket Engines

- LPRE made from several components
 - Storage tanks (not pictured)
 - Liquid propellant
 - Rocket engine (pictured)
 - Thrust chamber
 - Feed mechanism
 - Supply propellants to thrust chamber
 - Power source
 - Power feed mechanism
 - Plumbing
 - Control devices
 - E.g., valves to control propellent flow

Space Shuttle Main Engine

- Energy source for thrust, which is liquid in a LPRE
 - Types of liquid propellants
 - <u>Bipropellant</u> Separate liquid oxidizer and fuel mixed in combustion chamber
 - <u>Hypergolic</u> Self ignites on contact between oxidizer and fuel
 - Non-hypergolic Requires an ignition source
 - Monopropellant Fuel + oxidizer in a single liquid substance
 - Can be a mixture of compounds or a single homogenous substance (Lecture 6)
 - Cold gas propellant Stored at high pressure but non-reacting gas
 - Cryogenic propellant Liquified gas stored at low temperatures (e.g., LO2/LH2)
 - Storable propellant Liquid at ambient temperatures and modest pressures
 - Gelled propellant Liquid with gelling additive (experimental)

3 Oxidizer

- Propellant Storage
 - Bipropellants stored in separate tanks
 - Monopropellants stored in same tank
 - Tank shape and location is important
 - Rocket center of mass shifts as fuel is used changing its dynamics
 - Tanks are never fully filled
 - Space reserved for propellant thermal expansion (3-10%) and gases
 - Residual (trapped) propellant up to 3% spherical tanks

- Propellant Storage
 - Storing liquids for rapid side acceleration and low gravity is difficult
 - Sloshing
 - Imagine shaking a glass with water
 - Vortexing
 - Imagine the vortex that forms when flushing a toilet
 - Gravity-free environments
 - Gases will no longer be "above" the liquid
 - Issues related to the above:
 - Allowing gas into the combustor affects rocket operation
 - Sudden motion can lead to direction changes and tank failure

- Solutions to these problems
 - Positive expulsion devices
 - Mechanically separate gas from liquids
 - Surface tension devices
 - Woven stainless steel wire that pulls liquid along
 - Only useful at low acceleration where surface tension can overcome inertia
 - Acceleration
 - Brief acceleration can overcome issues with gravity free environments

Feed Systems

- Liquid propellants are fed to combustion chamber in one of two ways
 - Gas pressure feed system
 - Pressurized gases are used to move propellant
 - Efficient when total impulse, chamber pressure, and mission velocity are low
 - Turbopump feed system
 - Turbine + pump are used to move propellant
 - Efficient when total impulse, chamber pressure, and mission velocity are high

Feed Systems

- Gas pressure feed system
 - Uses gases to feed liquid through piping
 - Gas pressure regulator feed
 - Additional high-pressure gas supply tank onboard
 - Supply tank connected to propellant tanks
 - Constant pressure applied to propellants
 - Heavy additional tank
 - Blow-down feed system
 - Propellant tanks are only filled ~2/3rds
 - Remaining space is filled with pressured gas
 - Gas pressure decreases as propellants expelled

Feed Systems

- Turbopump feed system
 - Liquid propellants are fed using a pump
 - Pumps are powered by turbine(s)
 - Turbine exhaust fed to nozzle or expelled
 - Turbine start/stop is relatively slow so not great for rapid changes in flow rate
 - Remember, energy used to power turbine is energy not used for thrust!

- Three major components in a standard thrust chamber
 - Injector
 - Efficiently inject propellants for combustion
 - Liquids are being injected
 - Combustor
 - Efficiently burn propellent
 - Liquids converted to gases
 - Nozzle
 - Efficiently accelerate high energy exhaust
 - Gases are exhausted

- Injector
 - Three main goals of injector
 - Introduce propellant into thrust chamber
 - Break up liquid into small droplets
 - Droplets are pure fuel/oxidizer so don't burn
 - Mix propellants before combustion
 - Unmixed propellants will ultimately lead to incomplete combustion
 - Liquid rocket injectors generally utilize many holes to inject propellants

- Injector
 - Straight propellant stream is bad
 - Slow droplet breakdown
 - Poor mixing of propellants
 - Multiple strategies for improving droplet breakdown and mixing
 - Impinging propellent jets
 - Improves breakdown and mixing
 - Swirling injector flow
 - Improves mixing
 - Splash plate
 - Improves breakdown and mixing

- Rocket thrust chambers need to be cooled
 - Rockets usually operate near stoichiometric for maximum performance, massive temperatures
 - Combustion temperatures up to 4000 K possible
 - Many cooling techniques will be familiar from airbreathing engines
 - Film cooling is used extensively
 - However, air is no longer "free"
 - More common to inject fuel through holes in nozzle
 - With good design, this fuel still reacts and contributes energy to the fluid

- Internal ceramic coatings are <u>not</u> used commonly
 - Temperatures are so high that thermal expansion of materials leads to cracking and separation
 - Asbestos was used for some time but no longer
 - Cancer causing
 - Ongoing research efforts
 - E.g., Rhenium coatings

- Regenerative cooling
 - Before entering the combustion chamber, fuel is circulated along the nozzle
 - Cold (cryogenic) fuel is warmed up
 - This provides more energy to the flow
 - Outside of hot nozzle is cooled down
 - Injectors often also regeneratively cooled
 - Note that this technique is also often used in Ram/Scramjets operating with LH2

- Radiative Cooling
 - Radiation
 - Electromagnetic energy exchanged by a substance with its environment mostly in the infrared range
 - Occurs most efficiently in a vacuum (no absorbing media in the way)
 - $E \propto AT^4$
 - Increasing area increases energy lost to radiation
 - Increasing temperature <u>dramatically</u> increases energy lost to radiation
 - Rocket thrust chambers are <u>extremely</u> hot (often glowing), meaning effect of radiation is strong
 - At 4000 K, about 40% of heat loss is through radiation

SpaceX Merlin in space