Combinación lineal. De n vectores de m dimensiones. Ejemplo:	Matriz por Vector. De m renglones y n columnas. Ejemplo:	Transformación matricial. $T: \mathbb{R}^n \to \mathbb{R}^m$ Ejemplo:	Sistema de ecuaciones. De m ecuaciones con n incógnitas. Ejemplo:
$x_0 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + x_1 \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$	$T\left(\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}\right) = \begin{bmatrix} 1x_0 + -1x_1 \\ 0x_0 + 1x_1 \\ 2x_0 + 3x_1 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 & : & b_0 \\ 0 & 1 & : & b_1 \\ 2 & 3 & : & b_1 \end{bmatrix}$
Espacio Generado.	Б	Imagen de la transfor-	
$Gen \left(\left\{ \overline{u_0}, \dots, \overline{u_{(n-1)}} \right\} \right)$ $= \left\{ x_0 \overline{u_0} + \dots + x_{(n-1)} \overline{u_{(n-1)}} \right.$ $\mid x_0 \cdots x_{(n-1)} \in \mathbb{R} \right\}$	Espacio columna. $Col\left(A\right)=\left\{ A\overline{x}\mid\overline{x}\in\mathbb{R}^{n}\right\}$	mación. $Im(T) = \{T\left(\overline{x}\right) \mid \overline{x} \in \mathbb{R}^n\}$	
Dimensión de espacio generado	Rango de A, $\rho(A)$ Número de pivotes de A	Rango de T , $\rho(T)$	
Genera todo el espacio $Gen(\{v_0, \dots, v_{(n-1)}\}) = \Re^m$ $Dim(Gen(S)) = m$	■ $Col(A) = \Re^m$. ■ A <u>tiene una pos.</u> <u>de pivote en cada</u> <u>renglón.</u> A tiene m pos. de pivotes.	■ T es sobre. ■ $\rho(T) = m$.	 [A: b] es consistente para cualquier b ∈ ℝ^m. Si B ~ A entonces B no tienen renglones de ceros.
	$\bullet \ \rho(A) = m.$	T	Solucionar el sistema.
Encontrar coeficientes. Ejemplo:	Encontrar \overline{x} . Ejemplo:	Imagen inversa. Ejemplo:	Ejemplo:
$\begin{bmatrix} 1\\0\\2 \end{bmatrix} + x_1 \begin{bmatrix} -1\\1\\3 \end{bmatrix} = \begin{bmatrix} -2\\-1\\-1 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$	$T^{-1} \left(\begin{bmatrix} -2\\-1\\-1 \end{bmatrix} \right)$	$\begin{bmatrix} 1 & -1 & : & -2 \\ 0 & 1 & : & -1 \\ 2 & 3 & : & -1 \end{bmatrix}$
Coeficientes que dan cero. Ejemplo:	Espacio nulo.	Núcleo de T .	Solución del sistema homogéneo. Ejemplo:
$x_0 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + x_1 \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$Nu(A) = \{ \overline{x} \mid A\overline{x} = \overline{0} \}$	$Nu(T) = \{ \overline{x} \mid T(\overline{x}) = \overline{0} \}$	$\begin{bmatrix} 1 & -1 & : & 0 \\ 0 & 1 & : & 0 \\ 2 & 3 & : & 0 \end{bmatrix}$
-	Nulidad de A , $\nu(A)$ (# columnas)-(# pivotes)	Nulidad de T , $\nu(T)$	# de parámetros

 Vectores Linealmente Independientes. Ningún vector se puede escribir como combinación lineal de los otros. 	 A tiene una pos. de pivote en cada columna. A tiene n pos. de pivotes. La solución de Ax̄ = 0 es {0}. Nu{A} = {0} 	$ Nu\{T\} = {\overline{0}} $ $ \nu\{T\} = 0$ $ T \text{ es 1-1.} $	 ■ [A: b] no tiene variables libres. ■ [A: b] no tiene infinitas soluciones. ■ La única solución de [A: 0] es la trivial (x = 0).
■ Los vectores forman una base de \Re^n (son L.I. y generan \mathbb{R}^n).	 A es invertible (Existe B tal que AB = I = BA). Ax = b tiene solución única para todo b. A es cuadrada de orden n con n pivotes. A es el producto de matrices elementales. 	 T_A es un isomorfismo de ℝⁿ en ℝⁿ. Existe T_A⁻¹ tal que T_A⁻¹(T_A(x̄)) = x̄ y T_A(T_A⁻¹(ȳ)) = ȳ. 	 A es equivalente a la identidad. [A : b] tiene solución única para todo b.

- 1. Ejemplos 2.3.{22, 23} (pg 90), 2.3.{25, 26, 27} (pg 91) y 2.3.28 (pg 92) de [NJ99].
- 2. Ejemplos 2.4.{31, 33} (pg 97) y 2.4.{34,36} (pg 98) de [NJ99].
- 3. Ejemplos 5.3.26 (pg 332), 5.3.27 (pg 333) y 5.3.34 (pg 338) de [NJ99]

4. Sea
$$T(\overline{x}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \overline{x}$$
.

- a) Encuentre el dominio y el codominio de T.
- b) Encuentre Nu(T) y $\nu(T)$.

 \bullet det(A) \neq 0.

c) Encuentre Im(T) y $\rho(T)$.

- d) Dibuje una casa de 1 de frente y 1 de altura e indique el núcleo.
- e) Dibuje la transformación de la casa e indique la imagen.
- f) ¿Es T sobre o es 1-1 o es un isomorfismo?
- $g) \downarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in Nu(T)?$
- $h) \ \ \ \ \ \ \ \ \left[\begin{array}{c} 2\\1\\0 \end{array}\right] \in Im(T)?$
- 5. Sean A y B dos matrices cuadradas de orden n=3 y sean A' y B' sus matrices equivalentes en forma escalón reducida. Se sabe que A es invertible y que B no lo es. Para cada una de las preguntas diga cual matriz cumple el enunciado, cual matriz no lo cumple y cual matriz no se sabe si cumple o no lo cumple. En el enunciado M remplaza cada una de las matrices A, A', B y B'
 - a) Sus columnas son linealmente dependientes.
 - b) La solución de [M:0] tiene parámetros
 - c) La única solución del sistema homogéneo $M\overline{x} = 0$ es $\overline{x} = 0$?
 - d) El sistema $M\overline{x} = \overline{b}$ tiene solución única para cualquier $b \in \mathbb{R}^n$?
 - e) La transformación T_M es 1-1.
 - f) Todas las columnas tienen lugares pivotes (Puede considerar los lugares pivotes de A' y B' como lugares pivotes

de A y de B respectivamente)

- g) El sistema $M\overline{x} = \overline{b}$ es consistente para cualquier $b \in \mathbb{R}^n$?
- h) Las columnas de M generan a \mathbb{R}^n .
- i) M tiene al menos un renglón de ceros.
- j) La transformación T_M es sobre.
- k) Todos los renglones tienen lugares pivotes (Puede considerar los lugares pivotes de A' y B' como lugares pivotes de A y de B respectivamente)
 - l) Tiene 3 lugares pivotes (Puede considerar los lugares pivotes de A' y B' como lugares pivotes de A y de B respectivamente)
- m) Es el producto de matrices elementales.
- n) Es la identidad.
- \tilde{n}) La transformación T_M es un isomorfismo.
- o) Las columnas forman una base de \mathbb{R}^n
- 6. Encuentre tres puntos en cada conjunto generado y grafique dicho conjunto.
 - $a) \ Gen(\left\lceil \frac{1}{2} \right\rceil)$
 - $b) \ Gen(\begin{bmatrix} 2\\0\\3 \end{bmatrix})$
 - $c) \ Gen(\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix})$

$$d) \ Gen(\begin{bmatrix} 2\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix})$$

Determine si $\begin{bmatrix} 2\\1\\4 \end{bmatrix}$ pertenece a cada uno se los conjuntos de los tres últimos incisos.

- 7. Para cada una de las transformaciones asociadas a las siguientes matriciales, encuentre la imagen (y grafíquela) y el núcleo (escríbalo como el generado de un conjunto de vectores y grafíquelo).
 - $a) \begin{bmatrix} 2 & 2 \\ 8 & 8 \end{bmatrix}$
 - $b) \begin{bmatrix} 2 & 2 & 0 \\ 8 & 8 & 0 \end{bmatrix}$
 - $c) \begin{bmatrix} 2 & 2 \\ 8 & 8 \\ 0 & 0 \end{bmatrix}$
- 8. Para cada inciso grafique el conjunto solución de cada sistema y compárelos.
 - a) $[1 \ 2 : 0]$ y $[1 \ 2 : 3]$

b)
$$\begin{bmatrix} 3 & -1 & : & 0 \\ -6 & 2 & : & 0 \end{bmatrix}$$
 y $\begin{bmatrix} 3 & -1 & : & -2 \\ -6 & 2 & : & 4 \end{bmatrix}$

c)
$$\begin{bmatrix} 1 & 0 & : & 0 \\ -2 & 0 & : & 0 \\ 8 & 0 & : & 0 \end{bmatrix}$$
 y
$$\begin{bmatrix} 1 & 0 & : & -1 \\ -2 & 0 & : & 2 \\ 8 & 0 & : & -8 \end{bmatrix}$$

Que concluye de los tres sistemas anteriores.

- 9. Para cada inciso grafique el conjunto solución de cada sistema y compárelos.
 - $a) [1 \ 2 \ 0 : 0] y [1 \ 2 \ 0 : 3]$

b)
$$\begin{bmatrix} 3 & -1 & 0 & : & 0 \\ -6 & 2 & 0 & : & 0 \end{bmatrix}$$
 y $\begin{bmatrix} 3 & -1 & 0 & : & -2 \\ -6 & 2 & 0 & : & 4 \end{bmatrix}$

Bibliografía

- [Blo00] E. D. Bloch, *Proofs and Fundamental*, Birkhäuser, Boston, 2000.
- [Ant06] H. Anton, Álgebra Lineal, Editorial Limusa, 3a. edición, Mexico 2006.
- [Len13] E. Lengyel, *Matemáticas para videojuegos*, Editorial Cengage Learning, 2a. edición, 2013
- [Gro05] S. A. Grossman, Álgebra Lineal, Mc Graw Hill, 5a. edición, Mexico 2005.
- [NJ99] Nakos, Joyner, Álgebra Lineal con aplicaciones, Editorial Thomson 1999.
- [Str03] G. Strang, Introduction to Linear Algebra, 3a. edición, Wellesley Cambridge Press.