Исследование PBM для фильтрации нелинейных искажений в оптоволокие

РВМ модель задется следующим выражением (для поляризации X):

$$y_X[k] = a_0 x_X[k] + \sum_{m=-M}^{M} \sum_{n=-M}^{M} a_{m,n} x_X[k-m] x_X^*[k-m-n] x_X[k-n] + \sum_{m=-M}^{M} \sum_{n=-M}^{M} b_{m,n} x_X[k-m] x_Y^*[k-m-n] x_Y[k-n]$$

$$(1)$$

Необходимо найти коэфициенты a_0 , $a_{m,n}$ и $b_{m,n}$. Для нахождения коэфициентов сформируем следующую матрицу:

$$U = \begin{bmatrix} x_X[0] & - & u_{m,n}^a[0] & - & u_{m,n}^b[0] & - \\ x_X[1] & - & u_{m,n}^a[1] & - & u_{m,n}^b[1] & - \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_X[N-1] & - & u_{m,n}^a[N-1] & - & u_{m,n}^b[N-1] & - \end{bmatrix}$$

$$u_{m,n}^a[k] = x_X[k-m]x_X^*[k-m-n]x_X[k-n]$$

$$u_{m,n}^b[k] = x_X[k-m]x_Y^*[k-m-n]x_Y[k-n]$$
(2)

Матрица U имеет размер: $N \times (1 + 2(2M + 1)^2)$. Первый столбец матрицы U – это отчеты сигнала $x_X[k]$. Этот столбец позволяет найти коэфициент a_0 . Для нахождения коэфициентов a_0 , $a_{m,n}$ и $b_{m,n}$ неоходимо решить переопределенную систему уравнений: Uc = y Для решения системы в работе была использована функция numpy.linalg.lstsq.

На рисунке 1 (a) приведено созвездие для исходного сигнала и условные средние для каждой точки созвездия. На рисунке 1 (б) приведены созвездие до фильтрации и после (только X поляризация)

Рис. 1: Созвездия

В таблице 1 приведены занчения BER, SER, NMSE и ${\bf Q}$ для разных значений параметра ${\bf M}$. По таблице построны графики, приведнные на рисунке ${\bf 2}$.

Таблица 1: Производительность РВМ

Метрика	,	M			
	без PBM	3	5	10	15
BER	7.47e-3	6.01e-3	5.37e-3	4.21e-3	3.38e-3
SER	2.95e-2	2.38e-2	2.13e-2	1.67e-2	1.35e-2
NMSE, dB	-12.61	-12.95	-13.07	-13.37	-13.64

Рис. 2: Влияние параметра М на результат фильтрации