ROOTS OF THE AFFINE CREMONA GROUP

ALVARO LIENDO

ABSTRACT. Let $\mathbf{k}^{[n]} = \mathbf{k}[x_1, \dots, x_n]$ be the polynomial algebra in n variables and let $\mathbb{A}^n = \operatorname{Spec} \mathbf{k}^{[n]}$. In this note we show that the root vectors of the affine Cremona group $\operatorname{Aut}(\mathbb{A}^n)$ with respect to the diagonal torus are exactly the locally nilpotent derivations $\mathbf{x}^{\alpha} \frac{\partial}{\partial x_i}$, where \mathbf{x}^{α} is any monomial not depending on x_i . This answers a question due to Popov.

Introduction

Letting \mathbf{k} be an algebraically closed field of characteristic zero, we let $\mathbf{k}^{[n]} = \mathbf{k}[x_1, \dots, x_n]$ be the polynomial algebra in n variables, and $\mathbb{A}^n = \operatorname{Spec} \mathbf{k}^{[n]}$ be the affine space. The Cremona group $\operatorname{Aut}(\mathbb{A}^n)$ is the group of automorphisms of \mathbb{A}^n , or equivalently, the group of \mathbf{k} -automorphisms of $\mathbf{k}^{[n]}$. We define $\operatorname{Aut}^*(\mathbb{A}^n)$ as the subgroup of volume preserving automorphisms i.e.,

$$\operatorname{Aut}^*(\mathbb{A}^n) = \left\{ \gamma \in \operatorname{Aut}(\mathbb{A}^n) \mid \det \left(\frac{\partial}{\partial x_i} \gamma(x_j) \right)_{i,j} = 1 \right\}.$$

The groups $\operatorname{Aut}(\mathbb{A}^n)$ and $\operatorname{Aut}^*(\mathbb{A}^n)$ are infinite dimensional algebraic groups [Sha66, Kam79].

It follows from [BB66, BB67] that the maximal dimension of an algebraic torus contained in $\operatorname{Aut}^*(\mathbb{A}^n)$ is n-1. Moreover, every algebraic torus of dimension n-1 contained in $\operatorname{Aut}^*(\mathbb{A}^n)$ is conjugated to the diagonal torus

$$\mathbf{T} = \{ \gamma = \operatorname{diag}(\gamma_1, \dots, \gamma_n) \in \operatorname{Aut}^*(\mathbb{A}^n) \mid \gamma_1 \dots \gamma_n = 1 \}.$$

A **k**-derivation ∂ on an algebra A is called locally nilpotent (LND for short) if for every $a \in A$ there exists $k \in \mathbb{Z}_{\geq 0}$ such that $\partial^k(a) = 0$. If $\partial : \mathbf{k}^{[n]} \to \mathbf{k}^{[n]}$ is an LND on the polynomial algebra, then $\exp(t\partial) \in \operatorname{Aut}^*(\mathbb{A}^n)$, for all $t \in \mathbf{k}$ [Fre06]. Hence, ∂ belongs to the Lie algebra Lie(Aut*(Aⁿ)).

In analogy with the notion of root from the theory of algebraic groups [Spr98], Popov introduced the following definition. A non-zero locally nilpotent derivation ∂ on $\mathbf{k}^{[n]}$ is called a root vector of $\operatorname{Aut}^*(\mathbb{A}^n)$ with respect to the diagonal torus \mathbf{T} if there exists a character χ of \mathbf{T} such that

$$\gamma \circ \partial \circ \gamma^{-1} = \chi(\gamma) \cdot \partial$$
, for all $\gamma \in \mathbf{T}$.

The character χ is called the root of $\operatorname{Aut}^*(\mathbb{A}^n)$ with respect to **T** corresponding to ∂ .

Letting $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$, we let $\mathbf{x}^{\boldsymbol{\alpha}}$ be the monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$. In this note we apply the results in [Lie10] to prove the following theorem. This answers a question due to Popov [FR05].

Theorem 1. If ∂ is a root vectors of $\operatorname{Aut}^*(\mathbb{A}^n)$ with respect to the diagonal torus \mathbf{T} , then

$$\partial = \lambda \cdot \mathbf{x}^{\alpha} \cdot \frac{\partial}{\partial x_i} \,,$$

Date: October 21, 2010.

²⁰¹⁰ Mathematics Subject Classification: 14R10, 14R20, 14L30,13N15.

Key words: affine Cremona group, roots of an algebraic group, torus actions, locally nilpotent derivation.

for some $\lambda \in \mathbf{k}^*$, some $i \in \{1, ..., n\}$, and some $\alpha \in \mathbb{Z}_{\geq 0}^n$ such that $\alpha_i = 0$. The corresponding root is the character

$$\chi: \mathbf{T} \to \mathbf{k}^*, \quad \gamma = \operatorname{diag}(\gamma_1, \dots, \gamma_n) \mapsto \gamma_i^{-1} \prod_{j=1}^n \gamma_j^{\alpha_j}.$$

1. Proof of the Theorem

It is well known that the set $\operatorname{Char}(\mathbf{T})$ of characters of \mathbf{T} forms a lattice isomorphic to $M = \mathbb{Z}^{n-1}$. It is customary to fix an isomorphism $M \simeq \operatorname{Char}(\mathbf{T})$ and to denote the character corresponding to m by χ^m . The natural \mathbf{T} -action on \mathbb{A}^n gives rise to an M-grading on $\mathbf{k}^{[n]}$ given by

$$\mathbf{k}^{[n]} = \bigoplus_{m \in M} B_m$$
, where $B_m = \left\{ f \in \mathbf{k}^{[n]} \mid \gamma(f) = \chi^m(\gamma)f, \, \forall \gamma \in \mathbf{T} \right\}$.

An LND ∂ on $\mathbf{k}^{[n]}$ is called homogeneous if it send homogeneous elements into homogeneous elements. Let $f \in \mathbf{k}^{[n]} \setminus \ker \partial$ homogeneous. We define the degree of ∂ as $\deg \partial = \deg(\partial(f)) - \deg(f) \in M$ [Lie10, Section 1.2].

Lemma 2. An LND on $\mathbf{k}^{[n]}$ is a root vectors of $\mathrm{Aut}^*(\mathbb{A}^n)$ with respect to the diagonal torus \mathbf{T} if and only if ∂ is homogeneous with respect to the M-grading on $\mathbf{k}^{[n]}$ given by \mathbf{T} . Furthermore, the corresponding root is the character $\chi^{\deg \partial}$.

Proof. Let ∂ be a root vector of Aut*(\mathbb{A}^n) with root χ^e , so that $\partial = \chi^{-e}(\gamma) \cdot \gamma \circ \partial \circ \gamma^{-1}$, $\forall \gamma \in \mathbf{T}$. We consider a homogeneous element $f \in B_{m'}$ and we let $\partial(f) = \sum_{m \in M} g_m$, where g_m is homogeneous, so that

$$\sum_{m \in M} g_m = \partial(f) = \chi^{-e}(\gamma) \cdot \gamma \circ \partial \circ \gamma^{-1}(f) = \chi^{-e-m'}(\gamma) \sum_{m \in M} \chi^m(\gamma) \cdot g_m, \quad \forall \gamma \in \mathbf{T}.$$

This equality holds if and only if $g_m = 0$ for all but one $m \in M$ i.e., if ∂ is homogeneous. In this case, $\partial(f) = g_m = \chi^{-e-m'+m}(\gamma) \cdot \partial(f)$, and so $e = m - m' = \deg(\partial(f)) - \deg(f) = \deg \partial$.

In [AH06], a combinatorial description of a normal affine M-graded domain A is given in terms of polyhedral divisors, and in [Lie10] a description of the homogeneous LNDs on A is given in terms of these combinatorial data in the case where tr. deg $A = \operatorname{rank} M + 1$. In the following we apply these results to compute the homogeneous LNDs on the M-graded algebra $\mathbf{k}^{[n]}$. First, we give a short presentation of the combinatorial description in [AH06] in the case where tr. deg $A = \operatorname{rank} M + 1$. For a more detailed treatment see [Lie10, Section 1.1].

Let N be the dual lattice of M. The combinatorial description in [AH06] deals with the following data: A pointed polyhedral cone $\sigma \in N_{\mathbb{Q}} := N \otimes \mathbb{Q}$ dual to the weight cone $\sigma^{\vee} \subseteq M_{\mathbb{Q}} := M \otimes \mathbb{Q}$ of the M-grading; a smooth curve C; and a divisor $\mathfrak{D} = \sum_{z \in C} \Delta_z \cdot z$ on C whose coefficients Δ_z are polyhedra in $N_{\mathbb{Q}}$ having tail cone σ . Furthermore, if C is projective we ask for the polyhedron $\sum_{z \in C} \Delta_z$ to be a proper subset of σ . For every $m \in \sigma^{\vee} \cap M$ the evaluation of \mathfrak{D} at m is the \mathbb{Q} -divisor given by

$$\mathfrak{D}(m) = \sum_{z \in C} \min_{p \in \Delta_z} p(m).$$

We define the M-graded algebra

$$A[\mathfrak{D}] = \bigoplus_{m \in \sigma^{\vee} \cap M} A_m \chi^m, \quad \text{where} \quad A_m = H^0(C, \mathcal{O}_C(\mathfrak{D}(m))),$$
 (1)

and χ^m is the corresponding character of the torus Spec $\mathbf{k}[M]$ seen as a rational function on Spec A via the embedding Frac $\mathbf{k}[M] \hookrightarrow \operatorname{Frac} A[\mathfrak{D}] = \operatorname{Frac} \mathbf{k}(C)[M]$.

It follows from [AH06] that $A[\mathfrak{D}]$ is an normal affine domain and that every normal affine M-graded domain A with tr. deg $A = \operatorname{rank} M + 1$ is equivariantly isomorphic to $A[\mathfrak{D}]$ for some polyhedral divisor on a smooth curve, see also [Lie10, Theorem 1.4].

We turn back now to our particular case where we deal with the polynomial algebra $\mathbf{k}^{[n]}$ graded by Char(**T**). First, we need to fix an isomorphism $M \simeq \operatorname{Char}(\mathbf{T})$. Let $\{\mu_1, \ldots, \mu_{n-1}\}$ be the canonical basis of M. We define the isomorphism $\mu_i \mapsto \chi^{\mu_i}$, $i \in \{1, \ldots, n-1\}$, where

$$\chi^{\mu_i}: \mathbf{T} \to \mathbf{k}^*, \quad \gamma = \operatorname{diag}(\gamma_1, \dots, \gamma_n) \mapsto \gamma_i.$$

Since for every $\gamma \in \mathbf{T}$ we have $\gamma_n = \gamma_1^{-1} \cdots \gamma_{n-1}^{-1}$, the character mapping $\operatorname{diag}(\gamma_1, \dots, \gamma_n) \mapsto \gamma_n$ is given by χ^{-1} , where $1 := \mu_1 + \dots + \mu_{n-1}$. Under this isomorphism, the algebra $\mathbf{k}^{[n]}$ is graded by M via $\operatorname{deg} x_i = \mu_i$, for all $i \in \{1, \dots, n-1\}$ and $\operatorname{deg} x_n = -1$.

Let now $\{\nu_1, \ldots, \nu_{n-1}\}$ be a basis of N dual to the basis $\{\mu_1, \ldots, \mu_{n-1}\}$ of M. We also let Δ be the standard (n-1)-simplex in $N_{\mathbb{Q}}$ i.e., the convex hull of the set $\{\nu_1, \ldots, \nu_{n-1}, \bar{0}\}$.

Lemma 3. The M-graded algebra $\mathbf{k}^{[n]}$ is equivariantly isomorphic to $A[\mathfrak{D}]$, where \mathfrak{D} is the polyhedral divisor $\mathfrak{D} = \Delta \cdot [0]$ on \mathbb{A}^1 .

Proof. By [AH06], the M-graded algebra $\mathbf{k}^{[n]}$ is isomorphic to $A[\mathfrak{D}]$ for some polyhedral divisor \mathfrak{D} on a smooth curve C. Since the weight cone σ^{\vee} of $\mathbf{k}^{[n]}$ is $M_{\mathbb{Q}}$, the coefficients of \mathfrak{D} are just bounded polyhedra in $N_{\mathbb{Q}}$.

Since \mathbb{A}^n is a toric variety and the torus \mathbf{T} is a subtorus of the big torus, we can apply the method in [AH06, Section 11]. In particular, C is a toric curve. Thus $C = \mathbb{A}^1$ or $C = \mathbb{P}^1$. Furthermore, the graded piece $B_{\bar{0}} \supseteq \mathbf{k}$ and so C is not projective by (1). Hence $C = \mathbb{A}^1$.

The only divisor in \mathbb{A}^1 invariant by the big torus is [0], so $\mathfrak{D} = \Delta \cdot [0]$ for some bounded polyhedron Δ in $N_{\mathbb{Q}}$. Finally, applying the second equation in [AH06, Section 11], a routine computation shows that Δ can be chosen as the standard (n-1)-simplex.

Remark 4. Letting $\mathbb{A}^1 = \operatorname{Spec} \mathbf{k}[t]$, it is easily seen that the isomorphism $\mathbf{k}^{[n]} \simeq A[\mathfrak{D}]$ is given by $x_i = \chi^{\mu_i}$, for all $i \in \{1, \ldots, n-1\}$, and $x_n = t\chi^{-1}$.

In [Lie10] the homogeneous LNDs on an normal affine M-graded domain are classified into 2 types: fiber type and horizontal type. In the case where the weight cone is $M_{\mathbb{Q}}$, there are no LNDs of fiber type. Thus, $\mathbf{k}^{[n]}$ only admits homogeneous LNDs of horizontal type. The homogeneous LNDs of horizontal type are described in [Lie10, Theorem 3.28]. In the following, we specialize this result to the particular case of $A[\mathfrak{D}] \simeq \mathbf{k}^{[n]}$.

Let $v_i = \nu_i$, $i \in \{1, ..., n-1\}$ and $v_n = \overline{0}$, so that $\{v_1, ..., v_n\}$ is the set of vertices of Δ . For every $\lambda \in \mathbf{k}^*$, $i \in \{1, ..., n\}$, and $e \in M$ we let $\partial_{\lambda, i, e} : \operatorname{Frac} A[\mathfrak{D}] \to \operatorname{Frac} A[\mathfrak{D}]$ be the derivation given by

$$\partial_{\lambda,i,e}(t^r \cdot \chi^m) = \lambda(r + v_i(m)) \cdot t^{r - v_i(e) - 1} \cdot \chi^{m + e}, \quad \forall (m,r) \in M \times \mathbb{Z}.$$

Lemma 5 ([Lie10, Theorem 3.28]). If ∂ is a non-zero homogeneous LND of $A[\mathfrak{D}]$, then $\partial = \partial_{\lambda,i,e}|_{A[\mathfrak{D}]}$ for some $\lambda \in \mathbf{k}^*$, some $i \in \{1,\ldots,n\}$, and some $e \in M$ satisfying $v_j(e) \geq v_i(e)+1$, $\forall j \neq i$. Furthermore, e is the degree $\deg \partial$.

Proof of Theorem 1. By Lemma 2 the root vectors of $\mathbf{k}^{[n]}$ correspond to the homogeneous LNDs in the M-graded algebra $\mathbf{k}^{[n]}$. But the homogeneous LNDs on $A[\mathfrak{D}] \simeq \mathbf{k}^{[n]}$ are given in Lemma 5, so we only need to translate the homogeneous LND $\partial = \partial_{\lambda,i,e}|_{A[\mathfrak{D}]}$ in Lemma 5 in terms of the explicit isomorphism given in Remark 4.

Let $e = (e_1, \dots, e_{n-1})$ and $i \in \{1, \dots, n-1\}$, so that $v_i = \mu_i$. The condition $v_j(e) \ge v_i(e) + 1$ yields $e_i \le -1$ and $e_j \ge e_i + 1$, $\forall j \ne i$. Furthermore, $\partial(x_k) = \partial(\chi^{\mu_k}) = 0$, for all $k \ne i$, $k \in \{1, \dots, n-1\}$,

 $\partial(x_n) = \partial(t\chi^{-1}) = 0$, and

$$\partial(x_i) = \partial(\chi^{\mu_i}) = \lambda t^{-e_i - 1} \chi^{e + \mu_i} = \lambda t^{-e_i - 1} \chi^{(e_i + 1)\mathbb{1}} \chi^{e + \mu_i - (e_i + 1)\mathbb{1}} = \lambda \mathbf{x}^{\boldsymbol{\alpha}},$$

where $\alpha_i = 0$, $\alpha_n = -e_i - 1 \ge 0$, and $\alpha_k = e_k - e_i - 1 \ge 0$, for all $k \ne i$, $k \in \{1, \dots, n-1\}$. Hence, $\partial = \lambda \cdot \mathbf{x}^{\boldsymbol{\alpha}} \cdot \frac{\partial}{\partial x_i}$, for some $\lambda \in \mathbf{k}^*$, some $i \in \{1, \dots, n\}$, and some $\boldsymbol{\alpha} \in \mathbb{Z}_{\ge 0}^n$ such that $\alpha_i = 0$.

Let now $e = (e_1, \ldots, e_{n-1})$ and i = n, so that $v_n = 0$. The condition $v_j(e) \ge v_n(e) + 1$ yields $e_j \ge 1, \forall j \in \{1, \ldots, n-1\}$. Furthermore, $\partial(x_k) = \partial(\chi^{\mu_k}) = 0, k \in \{1, \ldots, n-1\}$, and

$$\partial(x_n) = \partial(t\chi^{-1}) = \lambda\chi^{e-1} = \lambda\mathbf{x}^{\alpha},$$

where $\alpha_n = 0$, and $\alpha_k = e_k - 1 \ge 0$, for all $k \in \{1, ..., n - 1\}$. Hence, $\partial = \lambda \cdot \mathbf{x}^{\alpha} \cdot \frac{\partial}{\partial x_n}$, for some $\lambda \in \mathbf{k}^*$, some $i \in \{1, ..., n\}$, and some $\alpha \in \mathbb{Z}_{>0}^n$ such that $\alpha_n = 0$.

The last assertion of the theorem follows easily from the fact that the root corresponding to the homogeneous LND ∂ is the character $\chi^{\deg \partial}$.

Finally, we describe the characters that appear as a root of $\operatorname{Aut}^*(\mathbb{A}^n)$.

Corollary 6. The character $\chi \in \text{Char}(\mathbf{T})$ given by $\text{diag}(\gamma_1, \ldots, \gamma_n) \mapsto \gamma_1^{\beta_1} \cdots \gamma_n^{\beta_n}$ is a root of $\text{Aut}^*(\mathbb{A}^n)$ with respect to the diagonal torus \mathbf{T} if and only if the minimum of the set $\{\beta_1, \ldots, \beta_n\}$ is achieved by one and only one of the β_i .

Proof. By Theorem 1, the roots of $\operatorname{Aut}^*(\mathbb{A}^n)$ are the characters $\operatorname{diag}(\gamma_1,\ldots,\gamma_n)\mapsto \gamma_1^{\beta_1}\cdots\gamma_n^{\beta_n}$, where $\beta_i=-1$ for some $i\in\{1,\ldots,n\}$ and $\beta_j\geq 0\ \forall j\neq i$. The corollary follows from the fact that $\gamma_1\cdots\gamma_n=1$.

ACKNOWLEDGMENT

The author is grateful to Ivan Arzhantsev who pointed out this problem to us.

References

- [AH06] Klaus Altmann and Jürgen Hausen. Polyhedral divisors and algebraic torus actions. *Math. Ann.*, 334(3):557–607, 2006.
- [BB66] A. Białynicki-Birula. Remarks on the action of an algebraic torus on k^n . Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 14:177–181, 1966.
- [BB67] A. Białynicki-Birula. Remarks on the action of an algebraic torus on k^n . II. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 15:123–125, 1967.
- [FR05] G. Freudenburg and P. Russell. Open problems in affine algebraic geometry. In Affine algebraic geometry, volume 369 of Contemp. Math., pages 1–30. Amer. Math. Soc., Providence, RI, 2005.
- [Fre06] Gene Freudenburg. Algebraic theory of locally nilpotent derivations. Encyclopaedia of Mathematical Sciences 136. Invariant Theory and Algebraic Transformation Groups 7. Berlin: Springer, 2006.
- [Kam79] T. Kambayashi. Automorphism group of a polynomial ring and algebraic group action on an affine space. *J. Algebra*, 60(2):439–451, 1979.
- [Lie10] Alvaro Liendo. Affine T-varieties of complexity one and locally nilpotent derivations. *Transform. Groups*, 15(2):389–425, 2010. Preprint at arXiv:0812.0802v1 [math.AG], 31p.
- [Sha66] I. R. Shafarevich. On some infinite-dimensional groups. Rend. Mat. e Appl. (5), 25(1-2):208-212, 1966.
- [Spr98] T. A. Springer. Linear algebraic groups, volume 9 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, second edition, 1998.

MATHEMATISCHES INSTITUT, UNIVERSITÄT BASEL, RHEINSPRUNG 21, CH-4051 BASEL, SWITZERLAND. $E\text{-}mail\ address:}$ alvaro.liendo@unibas.ch