Tutorial – Mathematics for Social Scientists

PSX_1234567. Pdf

Winter semester 2024/25

Differentiation

To do

- Weekly recap
- Real world applications
- Hands on practice
- Questions

Chapter 5 | Differentiation

Derivatives and change

Discrete change

- change between two measures of a concept at two distinct, discrete moments in time
- first difference between two observations over a discrete interval

Instantaneous change

- change at a specific point in time
- derivative of function f(x) with respect to x tells us the instantaneous rate of change of the function at each point

(First) derivative

describes reactivity to change in function's output based on input argument x

Secants and tangents

Note: ,secare' means to intersect and ,tangere' means to touch in Latin!

- secants graphically represent discrete change
 - f(x) = mx + b
 - intercept b as point 1
 - find mx to reach point 2
- tangents graphically represent instantaneous change at x=a
 - $t(x) = f'(a) \cdot (x a) + f(a)$
 - f(a) function f evaluated at a
 - f'(a) first derivative of function f evaluated at a

Hands on — Secants and tangents

Hint: $= m \cdot (x-a) + b$

- $t(x) = f'(a) \cdot (x a) + f(a)$
- f(a) function f evaluated at a
- f'(a) first derivative of function fevaluated at a

Task: Find the tangent of $f(x) = x^3 + 2x^2 + 5x - 4$ at x = 5

$$f(5) = 5^{3} + 2.5^{7} + 5.5 - 4 = 125 + 50 + 25 - 4 = 186$$

$$t(x) = mx + 6$$

$$f'(x) = 3x^2 + 4x^1 + 5$$

$$f'(x) = 3.5^2 + 4.5 + 5 = 3.25 + 20 + 5 = 7.5 + 20 + 5 = 100$$

$$+(x) = 100 \cdot (x-5) + 136$$

$$+(x) = 100 \times -304$$

$$q(x) = x^2$$

$$(x^n f'(x)) \stackrel{\text{rel}}{\longrightarrow} (x^n + x^n) \stackrel{\text{rel$$

Hands on – Secants and tangents

$$f(x) = x^3 + 2x^2 + 5x - 4$$

$$t(x) = f'(a) \cdot (x - a) + f(a)$$

•
$$f(5) = 5^3 + 2 \cdot 5^2 + 5 \cdot 5 - 4 = 125 + 50 + 25 - 4 = 196$$

•
$$f'(x) = 3x^2 + 4x + 5$$

•
$$f'(5) = 3 \cdot 5^2 + 4 \cdot 5 + 5 = 75 + 20 + 5 = 100$$

The first derivative and secants

derivative of function f(x)
 with respect to x tells us
 the instantaneous rate of
 change of the function at
 each point

Slope =
$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

Derivatives, tangents and secants

Slope of secant

$$\frac{f(x+h)-f(x)}{h}$$

Slope of tangent

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Real world applications – motion time graphs

position:
$$s = \Delta distance$$

velocity:
$$v = \frac{\Delta distance}{\Delta time}$$

acceleration:
$$a = \frac{\Delta \ distance}{\Delta \ time^2}$$

Let's think derivatives:

- let s(t) be the position of an object
- then:
 - v(t) = s'(t)
 - a(t) = v'(t) or s''(t)

- let $s(t) = 4t^2 + 3t + 7$
- then v(t) = 8t + 3
- and a(t) = 8

Real world applications – motion time graphs

Task: Team up with a partner

- 1) Discuss why the graph looks the way it does!
- 2) Find s(t), v(t) and a(t)!

$$s(t) = 5t + 0$$

$$v(t) = 5$$

$$a(t) = 0$$

Real world applications – motion time graphs

Task: Team up with a partner

- 1) Discuss why the graph looks the way it does!
- 2) Find s(t), v(t) and a(t)!

$$s(t) = 3$$

$$v(t) = 0$$

$$a(t) = 0$$

Hands on – definition of derivative

Task: Solve using the definition of derivative

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Task: Solve using the definition of derivative
$$dx^{3}(x) = \frac{1}{h^{-3}}$$

1) $\frac{d}{dx}(3x^{2}) = \frac{1}{h^{-3}}(x) = \frac{3(x^{2} + 2xh + h^{2}) - 3x^{2}}{h}$

$$(2)\frac{d}{dx}x^3$$

3)
$$\frac{d}{dx} 4x^3 - x + 1$$

$$\frac{3}{x} = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0}$$

$$= 3x^2 + 3x \cdot 0 + 0^2 = 3x^2 - f'(x)$$

$$\frac{3x^2+6xh+3h^2-3x^2}{4}$$
 - h-70 K

$$= \lim_{h \to 0} 6x + 3h^{2} = 6x \cdot 30 = 6x = f'(x)$$

$$\frac{d}{dx}x^{3}$$

$$=\lim_{h\to 0} 6x + 3h^{2} = 6x \cdot 30 = 6x = f'(x)$$

$$3)\frac{d}{dx}4x^{3} - x + 1$$

$$\lim_{h\to 0} (x+h)^{3} - x^{3} = \lim_{h\to 0} \frac{(x+h)^{3} - x^{3}}{h} = \lim_{h\to 0} \frac{x^{2} + 3xh^{2} + h^{3} - x^{3}}{h} = \lim_{h\to 0} 3x^{2} + 3xh + h^{2}$$

$$\lim_{h\to 0} 3x^{2} + 3xh^{2} + h^{3} = \lim_{h\to 0} 3x^{2} + 3xh + h^{2}$$

Hands on – definition of derivative

1)
$$\frac{d}{dx} 3x^2$$
 2) $\frac{d}{dx} x^3$
= $\lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h} = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 3x^2}{h} = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$
= $\lim_{h \to 0} \frac{6xh + 3h^2}{h} = \lim_{h \to 0} 6x + 3h = 6x + 3 \cdot 0$ = $\lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$
= $6x$
= $\lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h} = \lim_{h \to 0} 3x^2 + 3xh + h^2$
= $3x^2 + 3x \cdot 0 + 0^2 = 3x^2$

Hands on – definition of derivative

3)
$$\frac{d}{dx} 4x^3 - x + 1 = \lim_{h \to 0} \frac{4(x+h)^3 - (x+h) + 1 - (4x^3 - x + 1)}{h}$$

$$= \lim_{h \to 0} \frac{4x^3 + 12x^2h + 12xh^2 + 4h^3 - x - h + 1 - 4x^3 + x - 1}{h}$$

$$= \lim_{h \to 0} \frac{12x^2h + 12xh^2 + 4h^3 - h}{h}$$

$$= \lim_{h \to 0} 12x^2 + 12xh + 4h^2 - 1$$

$$= 12x^2 + 12x \cdot 0 + 4.0^2 - 1$$

$$= 12x^2 - 1$$

Notation

Leibniz

- $\frac{d}{dx}f(x)$ or $\frac{dy}{dx}$ or $\frac{df}{dx}$
- $\frac{d^n}{dx^n}f(x)$

Newton

- $y = f(x) \rightarrow \dot{y}$ and \ddot{y}
- Lagrange
 - f'(x) and f''(x)
- Euler
 - $D_x f(x)$

Chapter 6 | Rules of Differentiation

Hands on – rules of differentiation

Task: Come up with two functions to differentiate on your own – swap with a partner and find their derivatives!

Table 6.1: List of Rules of Differentiation

(f(m) + a(m))/ = f/(m) + a/(m)

(f(x) + g(x))' = f'(x) + g'(x)
(f(x) - g(x))' = f'(x) - g'(x)
f'(ax) = af'(x)
(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$
(g(f(x))' = g'(f(x))f'(x)
$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$
(a)' = 0
$(x^n)' = nx^{n-1}$
$(e^x)' = e^x$
$(a^x)' = a^x(\ln(a))$
$(\ln(x))' = \frac{1}{x}$
$(\log_a(x))' = \frac{1}{x(\ln(a))}$
$(\sin(x))' = \cos(x)$
$(\cos(x))' = -\sin(x)$
$(\tan(x))' = 1 + \tan^2(x)$
Treat each piece separately

Moore & Siegel, 2013, p.130

Hands on – Product rule

Rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

$$f(x) = \int_{S'(x)}^{S'(x)} f(x) dx$$

Example:

$$\frac{d}{dx} \left((x^3 + 2x)(2x^2 - x) \right) = (3x^2 + 2)(2x^2 - x) + (x^3 + 2x)(4x - 1)
= (6x^4 - 3x^3 + 4x^2 - 2x) + (4x^4 - x^3 + 8x^2 - 2x)
= 10x^4 - 4x^3 + 12x^2 - 4x$$

Hands on – Product rule

Rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

Task: Find the first derivatives using the product rule!

1)
$$\frac{d}{dx}(4x+1)\cdot(2x^2-2x)$$

2)
$$\frac{d}{dx}x^3 \cdot e^x$$

Hands on – Product rule

Rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

1)
$$\frac{d}{dx} = (4x + 1) \cdot (2x^2 - 2x) = 4(2x^2 - 2x) + (4x + 1)(4x - 2)$$

= $24x^2 - 12x - 2$

1)
$$\frac{d}{dx} = x^3 \cdot e^x = 3x^2 e^x + x^3 e^x$$

Hands on – Quotient rule

Rule:

$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x) \right)^2}$$

Example:

$$\frac{d}{dx} \left(\frac{x^2}{3x - 6} \right) = \frac{(2x)(3x - 6) - 3(x^2)}{(3x - 6)^2}$$

$$= \frac{6x^2 - 12x - 3x^2}{(3x - 6)^2}$$

Hands on – Quotient rule

Rule:

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}$$

Task: Find the first derivatives using the quotient rule!

1)
$$\frac{d}{dx}\left(\frac{x^2+6}{2x-7}\right)$$

2)
$$\frac{d}{dx} \left(\frac{e^x}{x} \right)$$

Hands on – Quotient rule

Rule:

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}$$

1)
$$\frac{d}{dx} \left(\frac{x^2 + 6}{2x - 7} \right) = \frac{2x \cdot (2x - 7) - 2(x^2 + 6)}{(2x - 7)^2} = \frac{2(x^2 - 7x - 6)}{(2x - 7)^2} = \frac{2x^2 - 14x - 12}{(2x - 7)^2}$$

2)
$$\frac{d}{dx} \left(\frac{e^x + x}{x} \right) = \frac{(e^x + 1)(x) - 1(e^x + x)}{x^2} = \frac{xe^x - e^x}{x^2}$$

Hands on – Chain rule

1. take 1st of order, leave inner undanged 2. take 1st of inner, multiply

Rule:

$$\frac{d}{dx}\left(g(f(x))\right) = g'(f(x))f'(x)$$

$$f'(x)$$

Example:

$$\frac{d}{dx}(3x^2+2x)^2 = 2(3x^2+2x)\cdot(6x+2)$$

Hands on — Chain rule

Rule:

$$\frac{d}{dx}(g(f(x))) = g'(f(x))f'(x)$$

Task: Find the first derivatives using the chain rule

1)
$$\frac{d}{dx} (4x^2 + x)^3$$

2) $\frac{d}{dx} e^{4x+1}$

2)
$$\frac{d}{dx} e^{4x+1}$$

Hands on — Chain rule

Rule:

$$\frac{d}{dx}(g(f(x))) = g'(f(x))f'(x)$$

1)
$$\frac{d}{dx}(4x^2 + x)^3 = 3(4x^2 + x)^2 \cdot (8x + 1)$$

2)
$$\frac{d}{dx} e^{4x+1} = 4e^{4x+1}$$

Hands on – rules of differentiation

Task: Apply the rules of differentiation to find the derivatives of...

1)
$$f(x) = 6$$

2)
$$f(x) = x^8$$

3)
$$f(x) = 27x^3 + 5x^2 - x + 13$$

4)
$$f(x) = ax^n - 1$$

5)
$$f(x) = (5x + 1)^3$$

6)
$$f(x) = e^{3x}$$

7)
$$f(x) = \frac{x^2+1}{x+1}$$

7)
$$f(x) = \frac{x^2 + 1}{x + 1}$$

8) $f(x) = \left(\frac{2x^2 + 3}{x + 5}\right)^2$

Hands on – rules of differentiation

1)
$$f'(x) = 0$$

2)
$$f'(x) = 8x^7$$

3)
$$f'(x) = 81x^2 + 10x - 1$$

4)
$$f'(x) = anx^{n-1}$$

5)
$$f'(x) = 3(5x + 1)^2 \cdot 5 = 15(5x + 1)^2$$

6)
$$f'(x) = 3e^{3x}$$

7)
$$f'(x) = \frac{2x(x+1)-1(x^2+1)}{(x+1)^2} = \frac{x^2+2x-1}{(x+1)^2}$$

7)
$$f'(x) = \frac{2x(x+1)-1(x^2+1)}{(x+1)^2} = \frac{x^2+2x-1}{(x+1)^2}$$

8) $f'(x) = 2\left(\frac{2x^2+3}{x+5}\right) \cdot \left(\frac{4x(x+5)-1(2x^2+3)}{(x+5)^2}\right) = \frac{2(2x^2+3)(2x^2+20x-3)}{(x+5)^3}$

Partial derivatives

- we are interested in the slope in direction of x, while keeping y fixed – and vice versa
- same rules, treat every variable as a constant to whose respect we are **not** differentiating!
- to denote a **partial derivative**, we either use $\frac{\partial}{\partial x}$ or $f'_{x}(x)$

$$f(x, y, z) = 3y^2z^4 - 5xz^2 + 2x^3$$

$$f'_{x}(x, y, z) = -5z^{2} + 6x^{2}$$

$$f'_{y}(x, y, z) = 6yz^{4}$$

$$f'_{z}(x, y, z) = 12y^{2}z^{3} - 10xz$$

Hands on – partial derivatives

Task: Find the partial first derivative with respect to z!

1)
$$\frac{\partial}{\partial z} 9x^2 + 3z^2$$

2)
$$\frac{\partial}{\partial z} 8xyz^2 + 10x^2y^2 + 12x^2y + 14x^2z^2$$

Hands on – partial derivatives

1)
$$\frac{\partial}{\partial z} 9x^2 + 3z^2 = 6z$$

2)
$$\frac{\partial}{\partial z} 8xyz^2 + 10x^2y^2 + 12x^2y + 14x^2z^2 = 28x^2z + 16xyz$$

Throwback: Limits – Rule of L'Hospital

Have you seen limits like these ones?

1)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 3x + 2} = \frac{2^2 + 2 - 6}{2^2 - 3 \cdot 2 + 2} = \frac{0}{0}$$

2)
$$\lim_{x \to \infty} \frac{1}{x} \cdot \ln(x) = \frac{1}{\infty} \cdot \ln(\infty) = 0 \cdot \infty$$

To find the limit, we will apply the rule of L'Hospital!

Finding the limit might look impossible...but that is not always the case!

Throwback: Limits – Rule of L'Hospital

Rule of L'Hospital:

- indeterminate limits of the form $\frac{0}{0}$ and $\frac{\infty}{\infty}$ can at times be solved by differentiation of the expression!
 - → instead of evaluating the limit at argument x right away, we differentiate both numerator and denominator separately and plug in x afterwards!
- if the limit is still of form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, we may try again
 - → try to find patterns should we keep differentiating or stop?
 - \rightarrow we may simplify expressions to 'reach' $\frac{0}{0}$ and $\frac{\infty}{\infty}$ and apply L'Hospital (example 2)

Throwback: Limits – Rule of L'Hospital

Examples:

1)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 3x + 2} = \lim_{x \to 2} \frac{\frac{d}{dx}x^2 + x - 6}{\frac{d}{dx}x^2 - 3x + 2} = \lim_{x \to 2} \frac{2x + 1}{2x - 3} = \frac{2 \cdot 2 + 1}{2 \cdot 2 - 3} = \frac{5}{1} = \frac{5}{1}$$

2)
$$\lim_{x \to \infty} \frac{1}{x} \cdot \ln(x) = \lim_{x \to \infty} \frac{\frac{d}{dx} \ln(x)}{\frac{d}{dx} x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x} = \frac{1}{\infty} = 0$$

Hands on – L'Hospital

Question: Can we apply the rule of L'Hospital to find

$$\lim_{x \to 4} = \frac{4x + 3}{2x - 8} ?$$

Answer: Nope, plugging in x = 4 yields: $\frac{4 \cdot 4 + 3}{2 \cdot 4 - 8} = \frac{19}{0} \neq \frac{0}{0}$ or $\frac{\infty}{\infty}$

Time for your questions

- Any questions during the week?
 - joerdis.strack@uni-konstanz.de

