1

Q-10.13.3.10

Yash Patil - EE22BTECH11058

Question: Eight coins are tossed together. The probability of getting exactly 3 heads is

- 1) $\frac{1}{250}$
- 2) $\frac{7}{32}$
- 3) $\frac{3}{32}$ 4) $\frac{3}{22}$

Solution: Defining variables:

Parameter	Value	Description	
n	8	Number of coins tossed	
p	0.5	probability of getting heads	
$\mu = np$	4	mean of the distribution	
$\sigma^2 = np(1-p)$	2	variance of the distribution	
Y	0-8	denotes number of heads obtained	

1) Binomial distribution: the probability of getting exactly 3 heads is

$$= \binom{8}{3} \times 0.5^3 \times 0.5^5 \tag{1}$$

$$=0.21875$$
 (2)

: option 2 is correct.

2) Gaussian Distribution:

The gaussian distribution for Y is

$$p_Y(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$
 (3)

For getting 3 exactly heads

$$Y = 3 \tag{4}$$

Substituting in equation (3), probability for getting exactly 3 heads is

$$Y = 3 \tag{5}$$

$$p_Y(3) = \frac{1}{\sqrt{2\pi \times 2}} e^{\frac{-(3-4)^2}{2\times 2}} \tag{6}$$

$$=0.35206$$
 (7)

Fig. 1. Binomial distribution vs Gaussian distribution

3) Using Q function: Defining a gaussian random variable Z such that

$$Z \sim \mathcal{N}(\mu, \sigma^2)$$
 (8)

Due to continuity correction, Pr(Z = x) can be approximated as

$$p_Z(x) \approx \Pr(x - 0.5 \le Z < x + 0.5)$$
 (9)

$$\approx \Pr(Z < x + 0.5) - \Pr(Z < x - 0.5) \tag{10}$$

$$\approx F_Z(x+0.5) - F_Z(x-0.5) \tag{11}$$

CDF of Z is defined as

$$F_Z(x) = \Pr(Z < x) \tag{12}$$

$$=\Pr\left(\frac{Z-\mu}{\sigma}<\frac{x-\mu}{\sigma}\right) \tag{13}$$

As

$$\frac{Z - \mu}{\sigma} \sim \mathcal{N}(0, 1) \tag{14}$$

$$\implies F_Z(x) = 1 - \Pr\left(\frac{Z - \mu}{\sigma} > \frac{x - \mu}{\sigma}\right) \tag{15}$$

$$= \begin{cases} 1 - Q(\frac{x - \mu}{\sigma}) & x \ge \mu \\ Q(\frac{\mu - x}{\sigma}) & x < \mu \end{cases}$$
 (16)

Probability in terms of Q function is

$$p_Z(x) \approx Q\left(\frac{(x-0.5) - \mu}{\sigma}\right) - Q\left(\frac{(x+0.5) - \mu}{\sigma}\right)$$
(17)

 \therefore Gaussian approximation for Pr(Z = 3) is

$$p_Z(3) \approx Q(0.3536) - Q(1.0608)$$
 (18)

$$= 0.2174$$
 (19)

4) Comparing all three techniques:

Event	Binomial	Gaussian	Q function
Getting exactly 3 heads	0.21875	0.35206	0.2174