FUNDAMENTOS TEÓRICOS DA COMPUTAÇÃO --- SISTEMAS FORMAIS ---

Linguagem

Uma **linguagem** sobre um alfabeto Σ é um subconjunto (possivelmente infinito) de **todas as possíveis palavras** (combinações) sobre Σ

Uma **linguagem** define **quais palavras** sobre Σ são "válidas" segundo algum critério preestabelecido

O tamanho de uma linguagem L, representado por |L|, é o número de palavras da linguagem (possivelmente **infinito**)

Exemplo (1)

Dada a linguagem L1 definida como "todas as palavras sobre o alfabeto Σ = {0,1} com no máximo 3 símbolos"

 $L1 = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111\}$

Comprimento (ou tamanho) de L1 é dado por |L1| = 15

Linguagem

Exemplo (2)

Dada a linguagem L2 definida como "todos os números binários com um dígito que começam com 0 e terminam com 1"

$$L2 = \bigcirc$$

Tamanho de L2 é dado por |L2| = 0

Exemplo (3)

E caso a linguagem seja $L3 = \{\varepsilon\}$ qual seria o |L3|?

R:
$$|L3| = 1$$

Note que aqui é o tamanho da linguagem

Linguagem

O alfabeto $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$ <u>pode</u> representar números naturais (na base decimal)

Todas as palavras sobre Σ representam um número?

Todas as palavras sobre Σ são válidas?

Não e sim. ε algumas vezes também chamada de (λ) é uma palavra sobre Σ , mas não é um número natural!

A linguagem dos números naturais é definida por:

 $LN = \{ p \text{ \'e uma palavra sobre } \Sigma : |p| > 0 \}, \text{ e } \Sigma = \{0,1,2,3,4,5,6,7,8,9 \}$

Note que $\varepsilon \notin LN$ e

$$|LN| = \infty$$

Repetição

O operador de repetição aparece como um "expoente" após um símbolo e indica o número de repetições desse símbolo

```
0<sup>2</sup> é uma sequência de dois "0"s: 00
```

1⁵ é uma sequência de cinco "1 "s: 11111

 z^3 é uma sequência de três "z"s: zzz

 k^0 é uma sequência de zero "k"s: λ

O operador de repetição é muito útil na definição de linguagens

$$L = \{a^k | k < 5\}$$

"Conjunto de sequências de a's com menos de 5 letras"

$$L = \{\lambda, a, aa, aaa, aaaa\}$$

Repetição

O operador de repetição também pode ser aplicado sobre conjuntos, onde, neste caso, gera-se conjuntos de palavras

 $L = \{0,1\}^2$ é o conjunto de todas as palavras sobre $\{0,1\}$ que possuem tamanho 2

 $L = \{00, 01, 10, 11\}$

 $L = \{0,1\}^0$ é o conjunto de todas as palavras sobre $\{0,1\}$ que possuem tamanho 0

 $L = \{\lambda\}$

Só existe uma palavra de tamanho $O(\lambda)$, independentemente do alfabeto!

Repetição

Exemplo 1

$$L = \{ p \in \{0,1\}^n | n \le 2 \}$$

"Conjunto de palavras sobre {0,1} com no máximo dois dígitos"

$$L = \{\lambda, 0, 1, 00, 01, 10, 11\}$$

Exemplo 2

$$L = \{ p \in \{0,1\}^n | n > 0 \}$$

"Conjunto de palavras sobre {0,1} com pelo menos um símbolo"

$$L = \{0, 1, 00, 01, 10, 11, 000, 001, ...\}$$

Pode ser lido como "Conjunto de números binários"

Note que esta linguagem possui infinitas palavras, i.e., $|L| = \infty$

Fecho de Kleene

As repetições "zero ou mais vezes" e "uma ou mais vezes" são tão comuns que há operadores específicos para elas

O Fecho de Kleene, representado por "elevado a asterisco", aplicado a um conjunto significa "repetido zero ou mais vezes"

```
Exemplo 1 L = \{s\}^* Ou seja, L = \{\lambda, s, ss, sss, ssss, sssss, ...\}
```

```
Exemplo2
L = \{a, b, c\}^*
L = \{\lambda, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, \dots\}
```

Fecho de Kleene

Fecho Positivo de Kleene é o "elevado a mais"

Se aplica a um conjunto repetido <u>uma</u> ou mais vezes

```
Exemplo 1
L = \{0\}^+
L = \{0, 00, 000, 0000, 00000, \dots\}
```

λ não faz parte de L

```
Exemplo 2 L = \{0,11\}^+ L = \{0,11,00,011,110,1111,000,0011,...\} \lambda não faz parte de L
```

Hierarquia de Chomsky

Hierarquia de Chomsky

Nível	Linguagem	Gramática	Reconhecedor
0	Linguagens Recursivamente Enumeráveis	Gramática Irrestrita	Máquina de Turing
1	Linguagens Sensíveis ao Contexto	Gramática Sensível ao Contexto	Autômato Linearmente Limitado (Máquina de Turing com Fita Limitada)
2	Linguagens Livre de Contexto	Gramática Livre de Contexto	Autômato com Pilha
3	Linguagens Regulares	Gramáticas Regulares	Autômato Finito

Hierarquia de Chomsky

```
TODAS AS LINGUAGENS
                                      \overline{A_{MT}}
LINGUAGENS LIVRES
                                      A_{MT}
TURING-RECONHECÍVEIS
                                      {a^nb^nc^n:n\geq 0}
  LINGUAGENS LIVRES
  TURING-DECIDÍVEIS
                                      \{0^p: p \text{ \'e primo }\}
                                      {a^nb^n:n\geq 0}
   LINGUAGENS LIVRES
                                      \{\omega\omega^R:\omega\in\{0,1\}^*\}
   DE CONTEXTO
                                      {a^n : n \ge 0}
     LINGUAGENS
     REGULARES
                                       \{0^p: p \text{ é par }\}
```

Referências

Newton José Vieira. Introdução aos Fundamentos da Computação. Editora Thompson, 2006.

SIPSER, M. Introdução à Teoria da Computação. São Paulo: Thomson Pioneira, 2007

MENEZES, P. B. Linguagens Formais e Autômatos. 6 ed. Porto Alegre: Artmed, 2011.

