

TÉCNICO I ISROA Lógica para Programação

Repescagem do Segundo Teste

1 de Julho de 2014

15:00-16:30

- 1. **(1.5)** Para cada uma das seguintes questões, indique se é verdadeira ou falsa. Cada resposta certa vale 0.5 valores e *cada resposta errada desconta 0.2 valores*.
 - (a) Num OBDD não podem existir caminhos com ordenações incompatíveis.

Resposta:

Verdadeira

(b) As ordenações para BDDs [P, Q, S] e [R, P, T, Q, S] são compatíveis.

Resposta:

Verdadeira

(c) Em lógica de primeira ordem, uma interpretação é uma função que tem como domínio as entidades da conceptualização e como contradomínio as entidades da linguagem.

Resposta:

Falsa

2. **(0.5)** Escolha a *única* resposta *correcta* para a seguinte questão. A resposta certa vale 0.5 valor e *uma resposta errada desconta 0.2 valores*.

No PROLOG, o predicado da unificação (=):

- A. Tem sucesso apenas se os dois termos forem iguais.
- B. Avalia a expressão do lado direito e unifica com a expressão do lado esquerdo.
- C. Avalia a expressão do lado esquerdo e unifica com a expressão do lado direito.
- D. Tem sucesso se os dois termos forem unificáveis.

Resposta:

D

3. **(1.0)** Para a seguinte figura em que a oval exterior corresponde ao conjunto de todas as *fbfs*, indique quais a regiões que correspondem a *fbfs* tautológicas, contraditórias, satisfazíveis e falsificáveis. Cada resposta certa vale 0.25 valores e *cada resposta errada desconta 0.1 valores*.

Resposta:

A: Tautológicas

B: Contraditórias

C: Satisfazíveis

D: Falsificáveis

- 4. **(1.0)** Sendo α_1 , α_2 e α_3 *fbfs* da Lógica Proposicional, escolha a única alternativa que torna *incorreta* a seguinte afirmação: " $\Delta = \{\alpha_1, \alpha_2, \alpha_3\}$ não é satisfazível se e só se ...". A resposta certa vale 1 valor e *uma resposta errada desconta 0.4 valores*.
 - A. Nenhuma das fbfs de Δ é satisfazível.
 - B. A *fbf* $\alpha_1 \wedge \alpha_2 \wedge \alpha_3$ não é satisfazível.

$$\mathsf{C}. \{\alpha_1, \alpha_2\} \models \neg \alpha_3$$
."

Resposta:

Resposta: A

5. **(1.5)** Considere a conceptualização (D, F, R) em que:

$$D = \{\diamondsuit, \Box, \odot\}$$

$$F = \{\}$$

$$R = \{\ldots\}.$$

Considere a interpretação I: $\{a,b,c,P,S\} \mapsto D \cup F \cup R$, tal que:

$$I(a) = \diamondsuit$$

$$I(b) = \square$$

$$I(c) = \odot$$

Preencha a tabela abaixo, de forma a que a interpretação $\it I$ seja um modelo do conjunto de $\it fbfs$

$$\Delta = \{ P(c), P(a), \neg P(b), \forall x, y [S(x, y) \leftrightarrow x = a] \}.$$

I(P)	
I(S)	

Resposta:

I(P)	$\{(\odot),(\diamondsuit)\}$
I(S)	$\{(\diamondsuit,\diamondsuit),(\diamondsuit,\odot),(\diamondsuit,\Box)\}$

6. Considere a *fbf* $(A \land B) \lor \neg C$.

(a) (0.5) Construa a sua árvore de decisão binária. Resposta:

(b) (1.0) Determine o seu BDD reduzido, indicando todos os passos. Resposta:

(c) (1.0) Com base no BDD reduzido, indique os seus modelos. Resposta:

Os seus modelos correspondem aos caminhos desde a raíz até à folha \overline{V} :

- I(A) = I(B) = V e I(C) qualquer;
- I(A) = I(C) = F e I(B) qualquer; I(A) = V e I(C) = I(B) = F.
- 7. Considere o seguinte DAG ao qual foi aplicado o algoritmo de propagação de marcas.

(a) (1.0) Introduza na tabela que se segue as marcas propagadas como resultado da aplicação do algoritmo de teste de nós. Por exemplo, a primeira linha representa o cenário em que a marca F é temporariamente atribulda ao nó com rótulo C. (Se existirem nós sem marcas coloque 'X' na posição respectiva.)

A	В	С	D
		F	
V			
F			

Resposta:

A	В	С	D
V/F	V	F	F
V	F	V	X
F	F	V	X

(b) **(0.5)** Analisando o conteúdo da primeira linha da tabela anterior, o que pode concluir quanto ao nó com rótulo C? Justifique.

Resposta:

Como é encontrada uma contradição após a atribuição da marca F ao nó com rótulo C, podemos concluir que o nó com rótulo C tem que ser marcado com V.

(c) **(0.5)** Analisando o conteúdo das duas últimas linhas da tabela anterior, o que pode concluir quanto aos nós com rótulos B e C? Justifique.

Resposta:

Comparando as marcas obtidas nos dois testes do nó com rótulo A, podemos passar a permanentes as marcas temporárias comuns aos dois testes, ou seja, a marca F para o nó com rótulo B e a marca V para o nó com rótulo C.

- 8. Considere o conjunto de cláusulas $\Delta = \{\{P,Q,\neg R\}, \{\neg P\}, \{Q,\neg R\}, \{\neg Q,\neg R\}\}\}$ e o algoritmo de Davis-Putnam (DP).
 - (a) (1.5) Introduza a informação em falta resultante da aplicação do algoritmo DP.

$$\exists P(\Delta) =$$

$$\exists Q(\exists P(\Delta)) =$$

```
\exists R(\exists Q(\exists P(\Delta))) =
```

Resposta:

```
\exists P(\Delta) = \{ \{Q, \neg R\}, \{\neg Q, \neg R\} \}\exists Q(\exists P(\Delta)) = \{ \{\neg R\} \}\exists R(\exists Q(\exists P(\Delta))) = \{ \}
```

(b) (1.0) O que pode concluir em relação à satisfazibilidade de Δ após a aplicação do algoritmo DP? Justifique.

Resposta:

O conjunto de cláusulas Δ é satisfazível porque obtemos um conjunto vazio de cláusulas como resultado da aplicação do algoritmo DP.

- 9. Complete a implementação dos seguintes predicados:
 - (a) (0.5) listaMenor (L1, L2) que tem o valor verdadeiro quando o número de elementos da lista L1 é estritamente inferior ao número de elementos da lista L2.

```
/* Escreva aqui a condição de paragem em falta */
```

```
listaMenor([_|T1],[_|T2]) :- listaMenor(T1,T2).
Resposta:
listaMenor([],[_|]).
listaMenor([_|T1],[_|T2]) :- listaMenor(T1,T2).
```

(b) (0.5) ordenada (L) que tem o valor verdadeiro quando os elementos da lista L estão ordenados por ordem crescente, assumido que os elementos da lista são números.

```
ordenada([]).
ordenada([_]).
/* Escreva aqui a cláusula em falta */
```

Resposta:

```
\begin{split} &\text{ordenada([]).}\\ &\text{ordenada([\_]).}\\ &\text{ordenada([X,Y|R])} :- & X = < & Y, & \text{ordenada([Y|R]).} \end{split}
```

10. (1.0) Considere o seguinte programa em PROLOG:

```
xpto_aux([], L, L).
xpto_aux([P|R], L1, [P|L2]) :- xpto_aux(R, L1, L2).
xpto([], []).
xpto([P|R], I) :- xpto(R, I1), xpto_aux(I1, [P], I).
```

Escolha a única resposta correcta para as seguintes questões. Cada resposta certa vale 0.5 valores e *cada resposta errada desconta 0.2 valores*.

- (a) A resposta ao objectivo ?- xpto([4, 5, 6], [2, 5, 6]). é:
 - A. false.
 - B. true.
 - C. Um ciclo infinito.
 - D. Nenhuma das anteriores.

Resposta:

Α

(b) A resposta ao objectivo ?- xpto([2, 3, 4], [X, Y, 2]). é:

A.
$$X = [], Y = [3, 4].$$

B.
$$Y = 3$$
, $X = 4$.

$$C. X = 4, Y = 3.$$

D. Nenhuma das anteriores.

Resposta:

C

11. **(1.5)** Explique por palavras o funcionamento do predicado xpto da pergunta anterior.

Resposta:

xpto(A, B) afirma que B é a lista que resulta de inverter a lista A.

12. (1.0) Considere a seguinte expressão em PROLOG: Vis Exp. Qual a semântica desta expressão? Qual a razão por que a utilização da avaliação "estraga" a propriedade dos predicados em PROLOG poderem ser utilizados com qualquer argumento como dado ou como resultado?

Resposta:

Ao avaliar um literal da forma V is Exp, se a expressão Exp é avaliada sem erros, produzindo um valor, então se este valor é unificável com V a avaliação tem sucesso devolvendo a substituição adequada; em caso contrário, a avaliação falha.

Uma vez que numa avaliação se avalia o termo antes da ligação do seu valor à variável, as variáveis que eventualmente existam no termo devem estar instanciadas no momento da sua avaliação. Isto significa que com a introdução da avaliação, perdemos a possibilidade de utilizar qualquer dos argumentos como variável.

13. Considere o seguinte programa em PROLOG.

```
interruptorDesligado1(X) :- desligado(X), interruptor(X). interruptorDesligado2(X) :- interruptor(X), desligado(X). desligado(X) :- not(ligado(X)).
```

```
interruptor(i1).
interruptor(i2).
ligado(i1).
```

(a) (0.5) Indique qual o resultado de avaliar interruptorDesligado1(X). Resposta:

false.

(b) (0.5) Indique qual o resultado de avaliar interruptorDesligado2(X). Resposta:

X = i2.

14. Considere o projecto que implementou este ano em LP (na figura pode relembrar como é identificada cada posição).

(top, left)	(top, middle)	(top, right)
(center, left)	(center, middle)	(center, right)
(bottom, left)	(bottom, middle)	(bottom, right)

(a) (1.0) Imagine a pista top/2 que recebe uma peça e um tabuleiro e indica que esta pode ser colocada nas posições do topo do tabuleiro (isto é, posição 1, 2 e 3 da lista que representa o tabuleiro). Supondo que o predicado coloca está implementado como no projecto, uma implementação possível desta pista seria: (Escolha a única resposta correcta. Uma resposta errada desconta 0.4 valores.)

```
A. top(Peca, Tabuleiro):-
coloca(Peca, Linha, Coluna, Tabuleiro).
B. top(Peca, Tabuleiro):-
coloca(Peca, _, _, Tabuleiro).
C. top(Peca, Tabuleiro):-
coloca(Peca, top, _, Tabuleiro).
D. top(Peca, Tabuleiro):-
coloca(Peca, top, right, Tabuleiro).
coloca(Peca, top, left, Tabuleiro).
E. Nenhuma das anteriores
```

Resposta:

C

(b) (1.0) Relembre a pista cantoTopLeft do projecto (figura 1) e considere o predicado meio/2, implementado como se segue:

cantoTopLeft

Figure 1: Pista cantoTopLeft.

Uma implementação possível desta pista seria: (Escolha a única resposta correcta. Uma resposta errada desconta 0.4 valores.)

```
A. cantoTopLeft(Peca, Linha, Coluna, Tabuleiro):-
(coloca(Peca, Linha, Coluna, Tabuleiro);
meio(Peca, Tabuleiro);
coloca(Peca, center, Coluna, Tabuleiro)).
```

- E. Nenhuma das anteriores

Resposta:

C