A Method of Fine Resolution Frequency Estimation from 3 DFT Samples Cagatay Candan

Group 8 - Harish Umasankar(2020102067), Dosapati Sri Anvith(2020102015)

ABSTRACT

- Proposing a non-linear relation between 3 DFT samples to estimate the frequency of a signal
- Proposing Bias Correction for Jacobsen Estimator

MOTIVATION

- 1. Improve accuracy of Jacobsen Estimator by providing a Bias Correction Factor
- 2. Achieving a more unbiased estimator for Frequency Estimation
- 3. Reduce complexity of operations for Frequency Estimation
- 4. Justifying the expression for δ obtained from Jacobsen Estimator

APPLICATIONS

- 1. Radar Signal Processing
- 2. Speech Processing
- 3. Communication Systems

THEORY

1. What is Signal Estimation?
Process of extracting useful information from noisy signals is called Signal Estimation

2. Estimator

Set of rules/algorithm to calculate the value about a quantity based on observed data

3. Bias

Expected value of difference in estimate and actual value of the parameter

- 4. Characteristics of a good estimator
 - Unbiased
 - Minimum Variance
 - Consistent

METHOD

- 1. Standard Method of Frequency Estimation
 - 1. Find a Coarse Frequency Estimate to get Peak Frequency
 - 2. Fine Search around the Peak Frequency
- 2. Candan's Estimator Steps
 - Calculate FFT of signal
 - Calculate index for maximum magnitude of R[k], called kpeak Frequency of the signal $\omega = \frac{2\pi}{N}(k_p + \delta)$
 - Compute value of bias using value of FFT at index: kpeak, kpeak-1, kpeak+1
- 3. Method for Numerical Comparison for the signal in the Prescence of noise
 - Calculate the power of signal
 - For every SNR ratio for chosen range
 - Calculate power of noise from SNR and power of signal
 - Generate Gaussian Noise for the calculated power using randn()
 - Calculate the bias for each SNR over T trials

RESULT

Bias of δ estimate for a Noiseless Signal The estimators have behave similarly in the absence of noise.

RMSE of δ estimate for N = 8 and δ = 0.25 for varying levels of Input SNR Proposed estimator follows Cramer Rao Bound

CONCLUSION

Closely in high SNR Region

- 1. From the observations, we can conclude that the proposed estimator and bias correction values have improved the estimator, by decreasing the bias and RMSE.
- 2. The proposed estimator is more efficient in computing the frequency of signals.

Bias of δ estimate for a Noisy Signal The bias of the estimators approach 10^{-3} , which coincides with the value for bias for noiseless case when $\delta = 0.25$

RMSE of δ estimate for N = 32 and δ = 0.25 for varying levels of Input SNR The floor of the RMSE value occurs at a lower SNR value for higher N (N=32)

REFERENCES

- 1. M.A.Richards, Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.
- 2. E. Jacobsen and P. Kootsookos, "Fast, accurate frequency estimators," IEEE Signal Process. Mag., vol. 24, pp. 123-125, May 2007.
- 3. NPTEL Course: Signal Detection & Estimation Theory(Figures used)