Дано:
$$D = \{(d_{ij} = [l_{ij}, u_{ij}]) \mid i, j = 1,...,n\}$$
 $0 < l_{ij} \le u_{ij}$

- обернено симетрична ІМПП

Знайти:
$$w = \{w_i \mid i = 1,...,n\}$$
 - вектор чітких ваг альтернатив $w_i \in \Re \ w_i > 0$

ІМПП називається **нечітко узгодженою**, якщо

$$\exists w = (w_1, ..., w_n), w_i > 0, w_i \in \Re$$
 $\sum_i w_i = 1$

такий що
$$l_{ij} \leq w_i \, / \, w_j \leq u_{ij}$$
 для $i < j$

де ≤ - нечітке відношення нестрогої переваги

Допускаємо порушення чітких нерівностей з деяким ступенем

$$\begin{cases} w_i - u_{ij} w_j \leq 0 & i < j \\ -w_i + l_{ij} w_j \leq 0 & m = n(n-1) \end{cases}$$

$$R \in \Re^{m \times n}$$

$$Rw \leq 0$$

k-ий рядок системи: $R_k w \le 0$ k = 1, 2, ..., m

$$\mu_k(R_k w) = \begin{cases} 1, & R_k w \leq 0, & d_k \text{ - параметр} \\ 1 - \frac{R_k w}{d_k}, & 0 < R_k w \leq d_k, \\ 0, & R_k w > d_k, \end{cases} \qquad \begin{array}{l} d_k \text{ - параметр} \\ \text{ наближеного} \\ \text{ задоволення} \\ \text{ чіткої нерівності} \\ R_k w \leq 0 \end{cases}$$

- функції приналежності нечітких обмежень на множині:

$$T^{n-1} = \left\{ (w_1, \dots, w_n) \mid w_i > 0, \sum_{i=1}^n w_i = 1 \right\}$$

Нечіткою допустимою областю \widetilde{A} на множині T^{n-1} називається нечітка множина, яка є перетином всіх нечітких обмежень:

$$\tilde{A} = \bigcap_{k=1}^{m} \leq \mu_{\tilde{A}}(w) = \left\{ \min\{\mu_{1}(R_{1}w), ..., \mu_{m}(R_{m}w)\} \mid w_{i} \in R^{+}, \sum_{i=1}^{n} w_{i} = 1 \right\}$$

Максимізуючим розв'язком називається вектор

$$w^* = \arg \max_{w} \mu_{\widetilde{A}}(w)$$

$$w^* = \arg \max_{w} \left\{ \min \{ \mu_1(R_1 w), ..., \mu_m(R_m w) \} \mid \sum_{i=1}^n w_i = 1 \right\}$$

$$\min \{ \mu_1(R_1 w), ..., \mu_m(R_m w) \} = \lambda \qquad \lambda \le \mu_k(R_k w) \qquad k = 1, 2, ..., m$$

$$d_k \lambda + R_k w \le d_k$$

$$\max \lambda$$
 при обмеженнях
$$d_k \lambda + R_k w \leq d_k \qquad k=1,2,...,m$$

$$\sum_{i=1}^n w_i = 1$$

$$w_i > 0 \qquad i=1,2,...,n$$

розв'язок :
$$(w^*, \lambda^*)$$
 w^* - максимізуючий розв'язок
 $\lambda^* = \mu_{\widetilde{A}}(w^*)$ - рівень задоволення розв'язком

Індексом узгодженості CI (FPP) називається $\lambda^* = \mu_{\widetilde{A}}(w^*)$, де w^* - максимізуючий розв'язок.

 $CI = \lambda^* \ge 1$ т.т.т.к. ІМПП узгоджена

Твердження. Якщо ІМПП узгоджена, то $\lambda^* \ge 1$

Доведення

ІМПП узгоджена
$$\Rightarrow \exists w = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_j \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_i \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_i \le u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_i = u_{ij} \Rightarrow w_i = \{w_i \in R^+\} : l_{ij} \le w_i / w_i = u_{ij} \Rightarrow w_i =$$

$$\forall k = 1, 2, ..., 2m : R_k w \le 0 \Rightarrow \forall k = 1, 2, ..., 2m : \mu_k(R_k w) \ge 1 \Rightarrow$$

$$\mu_{\tilde{P}}(w) = \min(\mu_1(R_1w), ..., \mu_{2m}(R_{2m}w) \mid w_i \in R^+, \sum_{i=1}^n w_i = 1) \ge 1 \Longrightarrow \lambda^* \ge 1, \text{ de } w^* = w$$

Твердження. Якщо ІМПП неузгоджена, то $\lambda^* \in (0,1)$

Доведення

IМПП неузгоджена
$$\Rightarrow \exists w = \{w_i \in R^+\} : l_{ij} \leq w_i \ / \ w_j \leq u_{ij} \ \forall i < j \Rightarrow m_i \leq w_i$$

$$\exists (i,j): w_i - w_j u_{ij} > 0 \quad \text{afo} \quad -w_i + w_j l_{ij} > 0 \Rightarrow \exists k \in \{1,2,...,2m\}: R_k w > 0 \Rightarrow$$

$$\exists k \in \{1, 2, ..., 2m\} : \mu_k(R_k w) < 1 \Rightarrow \mu_{\tilde{P}}(w) = \min(\mu_1(R_1 w), ..., \mu_{2m}(R_{2m} w)) < 1$$
 $\lambda^* \in (0, 1)$, де $w^* = w$

$$A = \{a_1, a_2\} \qquad \tilde{d}_{12} = (l_{12}, m_{12}, u_{12}) - \text{трикутне нечітке число (ТНЧ)}$$

$$l_{12}(\alpha) \leq w_1 / w_2 \leq u_{12}(\alpha) \qquad l_{12}(\alpha) = \alpha(m_{12} - l_{12}) + l_{12}$$

$$u_{12}(\alpha) = \alpha(m_{12} - u_{12}) + u_{12}$$

Задача розрахунку ваг на кожному $\, lpha \,$ - рівні:

$$\begin{cases} \lambda \to \max \\ d_1 \lambda + R_1 w \le d_1 \\ d_2 \lambda - R_2 w \le d_2 \\ w_1 + w_2 = 1 \\ w_1, w_2 > 0 \end{cases} \qquad R = \begin{pmatrix} 1 & -u_{12}(\alpha) \\ -1 & l_{12}(\alpha) \end{pmatrix} \implies \begin{cases} \lambda \to \max \\ d_1 \lambda + w_1 - u_{12}(\alpha) w_2 \le d_1 \\ d_2 \lambda - w_1 + l_{12}(\alpha) w_2 \le d_2 \\ w_1 + w_2 = 1 \\ w_1, w_2 > 0 \end{cases}$$

Твердження. Якщо $\tilde{d}_{12}=(l_{12},m_{12},u_{12})$ - симетричне ТНЧ і параметри $d_1=d_2=d$, то розв'язок задачі (*) не залежить від значення d.

Твердження. Нехай $\tilde{d}_{12}=(l_{12},m_{12},u_{12})$ - симетричне ТНЧ і параметри $d_1=d_2=d$. Розв'язок задачі (*) не залежить від значення d.

Доведення.

$$\lambda \to \max; \ d_1\lambda + w_1 - u_{12}w_2 \le d; \ d_2\lambda - w_1 + l_{12}w_2 \le d; \ w_1 + w_2 = 1, w_1, w_2 > 0$$

$$2d\lambda + l_{12}w_2 - u_{12}w_2 \le 2d; \quad \lambda \to \max \Rightarrow \lambda = \frac{u_{12} - l_{12}}{2d}w_2 + 1$$

$$1.d + w_2 \frac{u_{12} - l_{12}}{2d} + w_1 - u_{12}w_2 \le d \Rightarrow \frac{w_1}{w_2} \le \frac{u_{12} - l_{12}}{2}$$

$$2.d + w_2 \frac{u_{12} - l_{12}}{2d} - w_1 + l_{12}w_2 \le d \Rightarrow \frac{w_1}{w_2} \ge \frac{u_{12} - l_{12}}{2} \Rightarrow \frac{w_1}{w_2} = \frac{u_{12} - l_{12}}{2}$$

$$A = \{a_1, a_2\}$$
 $\tilde{d}_{12} = (1, 2, 3)$ - симетричне ТНЧ

$$\alpha = 0$$
 $d_{12}(\alpha) = [1,3]$ параметри $d_1 = d_2 = d$

Твердження. Нехай $\tilde{d}_{12}=(l_{12},m_{12},u_{12})$ - несиметричне ТНЧ, $d_1=d_2=d$. Відношення w_1^*/w_2^* дорівнюють середнім значенням інтервалів α – рівнів .

Доведення.

$$\begin{split} \lambda &\to \max; \ d_1\lambda + w_1 - u_{12}(\alpha)w_2 \leq d; \ d_2\lambda - w_1 + l_{12}(\alpha)w_2 \leq d; \ w_1 + w_2 = 1, w_1, w_2 > 0 \\ 2d\lambda + l_{12}(\alpha)w_2 - u_{12}(\alpha)w_2 \leq 2d; \quad \lambda &\to \max \Rightarrow \lambda = \frac{u_{12}(\alpha) - l_{12}(\alpha)}{2d}w_2 + 1 \\ 1.d + w_2 \frac{u_{12}(\alpha) - l_{12}(\alpha)}{2d} + w_1 - u_{12}(\alpha)w_2 \leq d \Rightarrow \frac{w_1}{w_2} \leq \frac{u_{12}(\alpha) - l_{12}(\alpha)}{2} \\ 2.d + w_2 \frac{u_{12}(\alpha) - l_{12}(\alpha)}{2d} - w_1 + l_{12}(\alpha)w_2 \leq d \Rightarrow \frac{w_1}{w_2} \geq \frac{u_{12}(\alpha) - l_{12}(\alpha)}{2} \Rightarrow \frac{w_1}{w_2} = \frac{u_{12}(\alpha) - l_{12}(\alpha)}{2} \end{split}$$

Розв'язок задачі (*) не залежить від значення d.

$$A = \{a_1, a_2\}$$
 $\tilde{d}_{12} = (0.5, 1, 3)$ - несиметричне ТНЧ параметри $d_1 = d_2 = d = 1$

α	l_{12}	u_{12}	w_1^*	w_2^*	w_1^* / w_2^*	λ^*
0	0.50	3.0	0.636	0.364	1.75	1.455
0.3	0.65	2.4	0.604	0.396	1.525	1.347
0.5	0.75	2.0	0.579	0.421	1.375	1.263
$0.5 (d_1 = 1,$	0.75	2.0	0.579	0.421	1.375	1.132
$d_2 = 0.5$)						
0.8	0.90	1.4	0.535	0.465	1.150	1.116
1.0	1.00	1.0	0.5	0.5	1	1

$$A = \{a_1, a_2, a_3\}$$
 $d_{12} = (1.5, 2, 2.5)$ $d_{13} = (4, 5, 6)$ $d_{23} = (2.5, 3, 3.5)$

$$d_{12} = (1.5, 2, 2.5)$$

$$d_{13} = (4, 5, 6)$$

$$d_{23} = (2.5, 3, 3.5)$$

Задача розрахунку ваг на α - рівні:

$$\begin{cases} \lambda \to \max \\ d_1 \lambda + w_1 - u_{12}(\alpha) w_2 \le d_1 \\ d_2 \lambda - w_1 + l_{12}(\alpha) w_2 \le d_2 \\ d_3 \lambda + w_2 - u_{23}(\alpha) w_3 \le d_3 \\ d_4 \lambda - w_2 + l_{23}(\alpha) w_3 \le d_4 \\ d_5 \lambda + w_1 - u_{13}(\alpha) w_3 \le d_5 \\ d_6 \lambda - w_1 + l_{13}(\alpha) w_3 \le d_6 \\ w_1 + w_2 + w_3 = 1 \\ w_1, w_2, w_3 > 0 \end{cases}$$

Максимізуючий розв'язок:

α	w_1^*	w_2^*	w_3^*	λ^*
0	0.5556	0.3333	0.1111	1.056
0.3	0.5699	0.3226	0.1075	1.038
0.5	0.5748	0.3171	0.1081	1.020
0.8	0.5802	0.3099	0.1099	0.991
1.0	0.5833	0.3056	0.1111	0.972

параметри
$$d_1 = d_2 = d_3 = d_4 = d_5 = d_6 = 1$$

 $d_{12} = (1,2,3)$ - симетричне трикутне нечітке число

$$\alpha = 0$$
 параметри $d_1 = d_2 = d$ = 0.1, 0.3, 0.5, 1.0, 10

	a1	a2	Ваги
a1	1	[1, 3]	0.667
a2		1	0.333

$$\alpha = 1$$
 параметри $d_1 = d_2 = d = 0.1$, 0.3, 0.5, 1.0, 10

	a1	a2	Ваги
a1	1	2	0.667
a2		1	0.333

Метод FPP (Fuzzy Preference Programming) Приклад 1 (продовження)

 $d_{12} = (1, 2, 3)$ - симетричне трикутне нечітке число

$$\alpha = 0.5$$
 параметри $d_1 = d_2 = d$ = 0.1, 0.3, 0.5, 1.0, 10

	a1	a2	Ваги
a1	1	[1.5, 2.5]	0.667
a2		1	0.333

 $d_{12} = (1.5, 2, 2.5)$ симетричні трикутні нечіткі числа

$$d_{23} = (2.5, 3, 3.5)$$
 $d_{13} = (4, 5, 6)$

 $\alpha = 0$ ІМПП узгоджена

параметри $d_1 = d_2 = d_3 = d_4 = d_5 = d_6 = 1$

	a1	a2	а3	Ваги
				(максимізуючий розв'язок)
a1	1	[1.5, 2.5]	[4, 6]	0.5556
a2		1	[2.5, 3.5]	0.3333
аЗ			1	0.1111

6.5. **Метод GPM** (Goal Programming Method)

Дано:
$$A = \{(a_{ij} = [l_{ij}, u_{ij}]) | i, j = 1,...,n\}$$
 $0 < l_{ij} \le u_{ij}$

- обернено симетрична ІМПП

Знайти:
$$w = \{(w_i) | w_i = [w_i^L, w_i^U], i = \overline{1,n}\}$$
 - вектор інтервальних ваг $0 < w_i^L \le w_i^U$

ІМПП А представимо двома додатними матрицями:

$$A_L = \{(l_{ij})\}$$
 $A_U = \{(u_{ij})\}$

Існує нормований вектор $w = \{(w_i) | w_i = [w_i^L, w_i^U], i = 1, n\}$, близький до A:

$$a_{ij} = \frac{\left[w_i^L, w_i^U\right]}{\left[w_j^L, w_j^U\right]} \varepsilon_{ij} \qquad \forall i, j = \overline{1, n}$$

Розглянемо узгоджену ІМПП $\tilde{a}_{ij} = \frac{[w_i^L, w_i^U]}{[w_j^L, w_j^U]} = \left[\frac{w_i^L}{w_j^U}, \frac{w_i^U}{w_j^L}\right]$

Представимо її за допомогою двох чітких додатних матриць

$$\tilde{A}_L = \begin{bmatrix} w_i^L \\ \overline{w}_j^U \end{bmatrix} \qquad \tilde{A}_U = \begin{bmatrix} w_i^U \\ \overline{w}_j^L \end{bmatrix} \qquad \tilde{A}_L W_U = W_U + (n-1)W_L$$

$$\tilde{A}_U W_L = W_L + (n-1)W_U$$

Для неузгодженої ІМПП А введемо вектори відхилень:

$$E = (A_L - I)W_U - (n - 1)W_U$$

$$\Gamma = (A_U - I)W_U - (n - 1)W_U$$

IМПП A узгоджена тттк $\varepsilon_i = \gamma_i = 0$ для всіх $i = \overline{1,n}$

Модель 1

 $i=1, i\neq i$

 $W_I \ge 0$

 $W_{II} - W_{I} \ge 0$

Мінімізувати $J = \sum_{i=1}^{n} (|\varepsilon_i| + |\gamma_i|)$ при обмеженнях

$$E = (A_L - I)W_U - (n-1)W_L$$

$$\Gamma = (A_{II} - I)W_{I} - (n-1)W_{II}$$

$$\sum_{j=1, j \neq i}^{n} w_{j}^{U} + w_{i}^{L} \geq 1 \quad \text{умови} \\ + \text{пормування} \\ \sum_{j=1, j \neq i}^{n} w_{j}^{L} + w_{i}^{U} \leq 1 \quad \text{вектору ваг}$$

Заміна змінних:

$$\varepsilon_i^+ = \frac{\varepsilon_i + |\varepsilon_i|}{2}$$

$$\varepsilon_i^- = \frac{-\varepsilon_i + |\varepsilon_i|}{2}$$

$$\gamma_i^+ = \frac{\gamma_i + |\gamma_i|}{2}$$

$$\gamma_i^- = \frac{-\gamma_i + |\gamma_i|}{2}$$

$$\varepsilon_i^+ \ge 0$$
, $\varepsilon_i^- \ge 0$, $\gamma_i^+ \ge 0$ if $\gamma_i^- \ge 0$, $i = \overline{1,n}$

Модель 2

Мінімізувати
$$J = \sum_{i=1}^n (\varepsilon_i^+ + \varepsilon_i^- + \gamma_i^+ + \gamma_i^-) = e^T (\mathbf{E}^+ + \mathbf{E}^- + \mathbf{\Gamma}^+ + \mathbf{\Gamma}^-)$$
 при обмеженнях

$$\begin{split} \mathbf{E}^{+} + \mathbf{E}^{-} &= (A_{L} - I)W_{U} - (n - 1)W_{L} \\ \Gamma^{+} + \Gamma^{-} &= (A_{U} - I)W_{L} - (n - 1)W_{U} \\ \sum_{j=1, j \neq i}^{n} w_{j}^{U} + w_{i}^{L} &\geq 1 \\ \sum_{j=1, j \neq i}^{n} w_{j}^{U} + w_{i}^{U} &\leq 1 \end{split} \quad \begin{array}{l} \mathsf{УМОВИ} \\ \mathsf{НОРМУВАННЯ} \\ \mathsf{IHTЕРВАЛЬНОГО} \\ \mathsf{ВЕКТОРУ} \ \mathsf{BAL} \\ \end{split}$$

$$W_U - W_L \ge 0$$

$$W_L, E^+, E^-, \Gamma^+, \Gamma^- \ge 0$$

IМПП узгоджена тттк $J^* = 0$

6.6. **Метод LUAM** (Lower and Upper Approximation Models)

Метод LUAM

Дано:
$$A = \{(a_{ij} = [l_{ij}, u_{ij}]) | i, j = 1,...,n\}$$
 $0 < l_{ij} \le u_{ij}$

- обернено симетрична ІМПП

Знайти:
$$w = \{(w_i) | w_i = [w_i^L, w_i^U], i = \overline{1,n}\}$$
 - вектор інтервальних ваг $0 < w_i^L \le w_i^U$

Існує нормований вектор $w = \{(w_i) \mid w_i = [w_i^L, w_i^U], i = \overline{1,n}\}$,

близький до А:

$$a_{ij} = \frac{\left[w_i^L, w_i^U\right]}{\left[w_j^L, w_j^U\right]} \varepsilon_{ij} \qquad \forall i, j = \overline{1, n}$$

Побудуємо: $c_{ij}\subseteq a_{ij}$ - нижню апроксимацію ІМПП А $a_{ij}\subseteq d_{ij}$ - верхню апроксимацію ІМПП А

де $c_{ij},\ d_{ij}$ - оцінки лівого і правого кінців інтервальних оцінок для відношень ваг

Метод LUAM

Позначимо: $w1_i = [w1_i^L, w1_i^U]$ - нижні інтервальні ваги $w2_i = [w2_i^L, w2_i^U]$ - верхні інтервальні ваги

$$(c_{ij} \subseteq a_{ij}) \Leftrightarrow \left(\frac{w1_{i}^{L}}{w1_{j}^{U}} \ge l_{ij}\right) \wedge \left(\frac{w1_{i}^{U}}{w1_{j}^{L}} \le u_{ij}\right) \qquad (d_{ij} \supseteq a_{ij}) \Leftrightarrow \left(\frac{w2_{i}^{L}}{w2_{j}^{U}} \le l_{ij}\right) \wedge \left(\frac{w2_{i}^{U}}{w2_{j}^{L}} \ge u_{ij}\right)$$

Метод LUAM

Нижня модель

$$J1 = \sum_{i=1}^{n} (w1_i^U - w1_i^L) \rightarrow \max$$

при обмеженнях:

$$w1_{i}^{L} \geq l_{ij}w1_{j}^{U}, \ \forall i,j,i \neq j$$
 $w1_{i}^{U} \leq u_{ij}w1_{j}^{L}, \ \forall i,j,i \neq j$

$$\sum_{j=1,j\neq i}^{n} w1_{j}^{U} + w1_{i}^{L} \geq 1 \qquad i = \overline{1,n} \quad \text{умови } \quad \text{нормування } \quad \text{інтервального } \quad \text{вектору ваг} \quad w1_{i}^{U} - w1_{i}^{L} \geq 0 \qquad i = \overline{1,n} \quad w1_{i}^{L} > 0 \qquad i = \overline{1,n}$$

умови нормування

Верхня модель

$$J2 = \sum_{i=1}^{n} (w2_i^U - w2_i^L) \rightarrow \min$$

при обмеженнях:

$$w2_{i}^{L} \leq l_{ij}w2_{j}^{U}, \ \forall i, j, i \neq j$$

$$w2_{i}^{U} \geq u_{ij}w2_{j}^{L}, \ \forall i, j, i \neq j$$

$$\sum_{j=1, j \neq i}^{n} w2_{j}^{U} + w2_{i}^{L} \geq 1 \qquad i = \overline{1, n}$$

$$\sum_{j=1, j \neq i}^{n} w2_{j}^{L} + w2_{i}^{U} \leq 1 \qquad i = \overline{1, n}$$

$$w2_{i}^{U} - w2_{i}^{L} \geq 0 \qquad i = \overline{1, n}$$

$$w2_{i}^{L} > 0 \qquad i = \overline{1, n}$$

6.7. Двохетапна модель TLGP

Модель TLGP

Якщо ІМПП узгоджена, то існує вектор ваг:

$$l_{ij} \le w_i / w_j \le u_{ij} \qquad \ln l_{ij} \le \ln w_i - \ln w_j \le \ln u_{ij}$$

В загальному випадку: $\ln l_{ij} - p_{ij} \le \ln w_i - \ln w_j \le \ln u_{ij} + q_{ij}$

$$p_{ij} \ge 0$$
 $q_{ij} \ge 0$ — величини відхилень

$$J = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (p_{ij} + q_{ij}) \rightarrow \min$$

$$\ln w_i - \ln w_j + p_{ij} \ge \ln l_{ij}$$
 $i, j = 1,...,n$

$$\ln w_i - \ln w_j - q_{ij} \le \ln u_{ij}$$
 $i, j = 1,...,n$

$$\sum_{i=1}^{n} \ln w_i = 0$$

$$p_{ij} \ge 0 \quad q_{ij} \ge 0 \qquad i, j = 1, \dots, n$$

Заміна змінних:

$$x_i = \frac{\ln w_i + \left| \ln w_i \right|}{2}$$

$$y_i = \frac{-\ln w_i + \left| \ln w_i \right|}{2}$$

Модель TLGP

Етап 1:

$$J = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (p_{ij} + q_{ij}) \rightarrow \min$$

$$x_i - y_i - x_j + y_j + p_{ij} \ge \ln l_{ij} \quad i < j$$

$$x_i - y_i - x_j + y_j - q_{ij} \le \ln u_{ij} \quad i < j$$

$$\sum_{i=1}^{n} (x_i - y_i) = 0$$

$$x_i, y_i \ge 0 \quad i = 1, ..., n$$

$$p_{ij} \ge 0 \quad q_{ij} \ge 0 \quad i < j$$

Шукані інтервальні ваги:

$$w_i^L = \exp\left(\ln w_i^L\right) \quad w_i^U = \exp\left(\ln w_i^U\right)$$

Етап 2:

$$\ln w_i = x_i - y_i \rightarrow \min/\max \ \forall i$$

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (p_{ij} + q_{ij}) = J^*$$

$$x_i - y_i - x_j + y_j + p_{ij} \ge \ln l_{ij} \quad i < j$$

$$x_i - y_i - x_j + y_j - q_{ij} \le \ln u_{ij} \quad i < j$$

$$\sum_{i=1}^{n} \left(x_i - y_i \right) = 0$$

$$x_i, y_i \ge 0$$
 $i = 1, ..., n$

$$p_{ij} \ge 0 \quad q_{ij} \ge 0 \qquad i < j$$

Приклад

$$A = \begin{pmatrix} 1 & [1,3] & [3,5] & [5,7] & [5,9] \\ [\frac{1}{3},1] & 1 & [1,4] & [1,5] & [1,4] \\ [\frac{1}{5},\frac{1}{3}] & [\frac{1}{4},1] & 1 & [\frac{1}{5},5] & [2,4] \\ [\frac{1}{7},\frac{1}{5}] & [\frac{1}{5},1] & [\frac{1}{5},5] & 1 & [1,2] \\ [\frac{1}{9},\frac{1}{5}] & [\frac{1}{4},1] & [\frac{1}{4},\frac{1}{2}] & [\frac{1}{2},1] & 1 \end{pmatrix}$$

Модель	GPM	LUAM нижня	LUAM верхня	EM
Ваги		модель	модель	
w1	0.4527	[0.4225, 0.5343]	[0.2909, 0.4091]	0.4771
w2	[0.1397, 0.3321]	[0.1781, 0.2817]	[0.1364, 0.2909]	0.2199
w3	[0.0818, 0.2097]	0.1409	[0.0273, 0.1818]	0.1306
w4	[0.0591, 0.1347]	[0.0763, 0.0845]	[0.0364, 0.1364]	0.1001
w5	0.0633	0.0704	[0.0455, 0.1364]	0.0724
Показник узгодженості	J* = 0.4442	J* = 0.2235	J* =0.6182	CR = 0.0264
Слабке збере- ження порядку	+	+	-	+