Convex Optimization

Karthik Srinivasan

February 5, 2023

Contents

1	Convex Sets		
	1.1	Affine Sets	2
	1.2	Common Sets	3
	1.3	Norm balls and Norm Cones	4
	1.4	Operations that preserve convexity	4
	1.5	Generalized Inequalities	5
	1.6	Dual cones and Generalized Inequalities	6
2	Convex Functions		
	2.1	Restriction of convex function to a line	8
	2.2	Conditions	8
	2.3	Epigraph and Sublevel Set	9
	2.4	Preservation of Convexity	9
	2.5	Conjugate Function	10
	2.6	Quasiconvex Functions	10
3	Duality 1		11
	3.1	Lagrangian	11
	3.2	Least-Norm Solution of Linear Equations	12
	3.3		13
	3.4		14
	3.5		14

Chapter 1

Convex Sets

1.1 Affine Sets

Theorem 1.1.1 (Affine).

$$x = \theta x_1 + (1 - \theta)x_2.$$

Definition 1.1.1 (Affine Set). Contains the line through any two distinct points in a set

Example 1.1.1. Solution of set of linear equations x|Ax=b is an affine set.

Proof.

$$Ax_1 = b$$

$$Ax_2 = b$$

$$Ax = A(\theta x_1 + (1 - \theta)x_2) =$$

$$\theta Ax_1 + (1 - \theta)Ax_2$$

$$= \theta b + (1 - \theta)b = b.$$

Definition 1.1.2 (Line Segment).

$$x = \theta x_1 + (1 - \theta_2)x_2, 0 \le \theta \le 1.$$

Definition 1.1.3 (Convex Set). Contains line segment between any two poitns in the set:

$$x1, x2 \in C, 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C.$$

Remark 1.1.1. This is analogous to a clear line path between any two points in the set

Definition 1.1.4 (Convex Combination). Convex combination of x_1, \ldots, x_n : any point x of the form:

$$x = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_k x_k.$$

with $\theta_1 + \ldots + \theta_k = 1$, $\theta_i \ge 0$

Definition 1.1.5 (Convex Hull). Set of all convex combinations of points in a set S

Remark 1.1.2. The convex hull of a set S is denoted $\mathbf{conv}S$

Think of the convex hull as the smallest convext region encompassing a set

Definition 1.1.6 (Conic (nonnegative) combination). The conic combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2.$$

with $\theta_1 \geq 0, \theta_2 \geq 0$

Definition 1.1.7 (Convex Cone). Set that contains all conic combinations of points in the set

1.2 Common Sets

Definition 1.2.1 (Hyperplane). Set of the form $\{x|a^Tx=b\}(a\neq 0)$

Remark 1.2.1. In \mathbb{R}^2 , this is a line

Definition 1.2.2 (Halfspace). set of the form $\{x|a^Tx \leq b\}(a \neq 0)$

- 1. a is the normal vector
- 2. hyperplanes are affine and convex, halfspaces are convex

Definition 1.2.3 (Euclidean Ball).

$$B(x_c, r) = \{x | ||x - x_c||_2 \le r\} = \{x_c + ru | ||u||_2 \le 1\}.$$

Definition 1.2.4 (Ellipsoid). Set of the form:

$$\{x|(x-x_c)^T P^{-1}(x-x_c) \le 1\}.$$

with $P \in S_{++}^n$ (i.e. P is symmetric positive definite)

 $Remark\ 1.2.2.$ Square roots of the eigenvalues of P are the lengths of the semi-axis of the ellipse

Norm balls and Norm Cones 1.3

Definition 1.3.1 (Norm). a function that satisfies:

- 1. $||x|| \ge 0 : ||x|| = 0 \iff x = 0$
- 2. ||tx|| = |t|||x|| for $t \in \mathbb{R}$
- 3. $||x + y|| \le ||x|| + ||y||$

Definition 1.3.2 (Norm Ball). with center x_c and radius r:

$${x \mid ||x - x_c|| \le r}.$$

Definition 1.3.3 (Norm Cone).

$$\{(x,t) \mid ||x|| \le t\}.$$

 $x\in\mathbb{R}^n,t\in\mathbb{R}$

Remark 1.3.1. These are convex

Definition 1.3.4 (Polyhedra). Solution set of finitely many lienar inequalities and equalities:

$$Ax \leq b, Cx = d.$$

 $(A \in \mathbb{R}^{m \times n}, \leq \text{ is componentwise inequality})$

Remark 1.3.2. Think of this as an intersection of a finite number of halfspaces

Definition 1.3.5 (Positive Semidefinite Cone). Notation:

- 1. S^n is a set up symmetric $n \times n$ matrices
- 2. $S^n_+ = \{X \in S^n \mid X \ge 0\}$: positive definite $n \times n$ matrices

$$X \in S^n_+ \iff z^T X z \ge 0 \text{ for all } z.$$

 S^n_+ is a convex cone $S^n_{++} = \{X \in S^n \mid X > 0\} \text{: positive definite } n \times n \text{ matrices}$

Example 1.3.1.

$$\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in S_+^2.$$

Operations that preserve convexity 1.4

- 1. Apply original definition: $\theta x_1 + (1 \theta)x_2 \in C$
- 2. Show that C is obtained from eximple convex sets by operations that preserve convexity:
 - (a) intersection

- (b) affine functions
- (c) perspective function
- (d) linear fractional functions

Theorem 1.4.1 (Intersection). The intersection of any number of convex sets is convex

Definition 1.4.1 (Affine Function). Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$

1. the image of a convex set under f is convex

$$S \in \mathbb{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex.}$$

2. the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \in \mathbb{R}^m$$
 convex $\implies f^{-1}(C) = \{x \in \mathbb{R}^n \mid f(x) \in C\}$ convex.

Remark 1.4.1. $f^{-1}(C)$ does not require that f is invertible, rather all points that have an image in C will be included even if they map to the same element in C

Definition 1.4.2 (Perspective function). $P: \mathbb{R}^{n+1} \to R^n$:

$$P(x,t) = \frac{x}{t}$$
, $dom P = \{(x,t) \mid t > 0\}$.

images and inverse images of convex sets underp erspective are convex

Remark 1.4.2. This has the effect of normalizing by the last component

1.5 Generalized Inequalities

Definition 1.5.1 (Proper cone). A convex cone $K \in \mathbb{R}^n$ is a proper cone if:

- 1. K is closed
- 2. K is solid (has nonempty interior)
- 3. K is pointed (contains no line, i.e. a ray and its negative cannot both be in the cone)

Definition 1.5.2 (Generalized inequality defined by proper cone K).

$$x \leq_K y \iff y - x \in K, \ x \leq_K y \iff y - x \in \mathbf{int}K.$$

Definition 1.5.3 (Minimum Element). $x \in S$ is minimum with respect to \leq_K if

$$y \in S \implies x \leq_K y$$
.

Definition 1.5.4 (Minimal Element). $x \in S$ is the minimal element of S with respect to \leq_K if

$$y \in S, y \leq_K x \implies y = x.$$

Remark 1.5.1. Minimal implies that if you are in the set **and** comparible to the point, then you are greater than or equal to the point that is being compared

Theorem 1.5.1 (Separating Hyperplane Theorem). if C and D are disjoint convex sets, then there exists $a \neq 0, b$ such that:

$$a^T x \leq b \text{ for } x \in C, \ a^T x \geq b \text{ for } x \in D.$$

the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

Remark 1.5.2. This is a linear clasifier in machine learning

Theorem 1.5.2 (Supporting Hyperplane Theorem). supporting hyperplane to a set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}.$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

Remark 1.5.3. This implies that there is a halfspace of the supporting hyperplane that contains ${\cal C}$

1.6 Dual cones and Generalized Inequalities

Definition 1.6.1 (Dual Cone). dual cone of a cone K:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

set of all vectors that make a non-negative inner product with all vectors in K

Example 1.6.1. Few examples:

- 1. $K = \mathbb{R}^n_+ : K * = \mathbb{R}^n_+$
- 2. $K = S_+^n : K * = S_+^n$

Chapter 2

Convex Functions

Definition 2.0.1 (Convex Function). $f: \mathbb{R}^n \to \mathbb{R}$ is convex if $\mathbf{com} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

for all $x, y \in \mathbf{dom} f$, $0 \le \theta \le 1$

Remark 2.0.1. properties:

- 1. f is concave if -f is convex
- 2. f is strictly convex if $\mathbf{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y).$$

for $x, y \in \mathbf{dom} f, x \neq y, 0 < \theta < 1$

Example 2.0.1. Convex:

- 1. affine: ax + b on \mathbb{R}
- 2. exponential: e^{ax} for $a \in \mathbb{R}$
- 3. powers: x^{α} on \mathbb{R}_{++} for $\alpha \geq 1$ or $\alpha \leq 0$
- 4. powers of absolute values: $|x|^p$ on \mathbb{R}
- 5. negative entropy: $x \log(x)$ on R_{++}

Concave:

- 1. affine: ax + b
- 2. powers: x^{α} on R_{++} for $0 \le \alpha \le 1$
- 3. logarithm: $\log(x)$ on R_{++}

2.1 Restriction of convex function to a line

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the function $g: \mathbb{R} \to \mathbb{R}$:

$$g(t) = f(x+tv), \mathbf{dom} \ g = \{t \mid x+tv \in \mathbf{dom}f\}.$$

is convex (in t) for any $x \in \mathbf{dom} f, v \in \mathbb{R}^n$

This is to say that we check the convexity of f by checking convexity of functions of one variable repeatedly.

2.2 Conditions

f is **differentiabile** if $\mathbf{dom} f$ is open and the gradient

$$\nabla f(x) = (\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}).$$

exists at each $x \in \mathbf{dom} \ f$

Definition 2.2.1 (First Order Condition). differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \mathbf{dom} f$.

Remark 2.2.1. This gradient term is the first order approximation of f, called a global underestimator

Definition 2.2.2 (Twice Differentiable). f is twice differentiable if **dom**f is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \ i, j = 1, \dots, n.$$

exists at each $x \in \mathbf{dom} f$

Definition 2.2.3 (Second Order Conditions). For twice differentable f with convex domain:

1. f is convex iff

$$\nabla^2 f(x) \ge 0$$
 for all $x \in \mathbf{dom} f$.

2. if $\nabla^2 f(x) > 0$ for all $x \in \mathbf{dom} f$ then f is strictly convex

Example 2.2.1. Examples of second order conditions being met:

1. quadratic function: $f(x) = (\frac{1}{2})x^T P x + q^T x + r$ (with $P \in S^n$)

$$\nabla f(x) = Px + q, \ \nabla^2 f(x) = P.$$

convex if $P \geq 0$

2. Least Squares Objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^{T}(Ax - b), \nabla^{2} f(x) = 2A^{T}A.$$

convex for any A

3. Quadratic over linear: $f(x,y) = \frac{x^2}{y}$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \ge 0.$$

2.3 Epigraph and Sublevel Set

Definition 2.3.1 (Alpha-Sublevel Set). α -sublevel set of $f: \mathbb{R}^n \to R$:

$$C_{\alpha} = \{ x \in \mathbf{dom} f \mid f(x) \le \alpha \}.$$

sublevel sets of convex functions are convex (converse is false)

Definition 2.3.2 (Epigraph). Epigraph of $f: \mathbb{R}^n \to \mathbb{R}$

$$\mathbf{epi} f = \{(x, t) \in \mathbb{R}^{n+1} \mid x \in \mathbf{dom} f, f(x) \le t\}.$$

f is convex iff **epi** f is a convex set

2.4 Preservation of Convexity

- 1. Nonnegative multiple: αf is convex if f is convex and $\alpha \geq 0$
- 2. Sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)
- 3. Composition with affine function: f(Ax + b) is convex if f is convex
- 4. **Pointwise Maximum:** if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex
- 5. Composition of Scalar Functions: $g: \mathbb{R}^n \to \mathbb{R}$, and $h: \mathbb{R} \to \mathbb{R}$:

$$f(x) = h(g(x)).$$

f is convex if g convex, h convex, extended value extention of h is non-decreasing.

6. Vector Composition: composition of $g: \mathbb{R}^n \to \mathbb{R}^k$ and $h: \mathbb{R}^k \to \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x)).$$

f is convex if g_i convex, h convex, extended value extention of h is non-decreaseing in each argument

7. **Minimization**: if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y).$$

is convex

2.5 Conjugate Function

Definition 2.5.1 (Conjugate). The conjugate of a function f is

$$f^*(y) = \sup_{x \in \mathbf{dom} f} (y^T x - f(x)).$$

Theorem 2.5.1 (Convexity of the Conjugate). f^* is convex, as $y^Tx - f(x)$ is affine, thus we are taking the supremum with respect to x of a family of affine (convex) functions, which is inherently convex.

2.6 Quasiconvex Functions

Definition 2.6.1 (Quasi-Convex). $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if $\operatorname{dom} f$ is convex and the sublevel sets:

$$S_{\alpha} = \{ x \in \mathbf{dom} f \mid f(x) \le \alpha \}.$$

are convex for all α

- 1. f is quasiconcave if -f is quasiconvex
- 2. f is quasilinear if it is quasiconvex and quasiconcave

Remark 2.6.1. In \mathbb{R}^n , this has the interpretation of being monotone decreasing up to some point, then monotone increasing after that point

Definition 2.6.2 (Log Concave). a positive function f is log-concave if $\log(f)$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$.

f is log-convex if $\log f$ is convex

Remark 2.6.2. Almost all statistical densities are log-concave

Chapter 3

Duality

3.1 Lagrangian

We start with the standard form problem, but this time we don't restrict the objective $f_0(x)$ or the constraints, $f_i(x)$ to be convex:

Definition 3.1.1 (Lagrangian). $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ with $\mathbf{dom} L = D \times \mathbb{R}^m \times \mathbb{R}^p$

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x).$$

This is a weighted sum of objective and constraint functions, where λ_i is the Lagrange multiplier associated with $f_i(x) \leq 0$ and ν_i is the Lagrange multiplier associated with $h_i(x) = 0$. Think of $h_i(x)$ as a residual - 0 if the constraint is satisfied.

Definition 3.1.2 (Lagrange Dual Function). $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathbb{D}} L(x, \lambda, \nu)$$

= $\inf_{x \in \mathbb{D}} (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)).$

g is concave, can be $-\infty$ for some λ, ν

Remark 3.1.1. One interpretation of this is the optimal cost with the prices λ_i , ν_i

Corollary 3.1.0.1. g is concave even if the original problem is non-convex

Proof. g is the infimum over a family of affine functions, and is thus convex as proved last chapter

Theorem 3.1.1 (Lower Bound Property). if $\lambda \geq 0$, then $g(\lambda, n) \leq p^*$ where p^* is the optimal solution

Proof. If is feasible and $\lambda \geq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in D} L(x, \lambda, \nu) = g(\lambda, \nu).$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$

3.2 Least-Norm Solution of Linear Equations

minimize
$$x^T x$$

subject to $Ax = b$.

Dual Function:

- 1. Lagrangian is $L(x, \nu)x^Tx + \nu^T(Ax + b)$
- 2. to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \implies x = -(\frac{1}{2})A^T \nu.$$

3. plug in L to obtain g:

$$g(\nu) = L((-\frac{1}{2})A^T\nu, \nu) = -\frac{1}{4}\nu^T A \cdot A^T\nu - b^T\nu.$$

a concave function of ν

Lower Bound Property:

$$p^* \geq -(\frac{1}{4})\nu^T A \cdot A^T \nu - b^T \nu \text{ for all } \nu.$$

Example 3.2.1.

minimize
$$f_0(x)$$

subject to $Ax \le b, Cx = d$.

Dual Function:

$$g(\lambda, x) = \inf_{x \in \mathbf{dom} f_0} (f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu.$$

Recall that the definition of conjugate $f^*(y) = \sup_{x \in \mathbf{dom} f} (y^T x - f(x))$ Simpliefies derivation of dual if conjuage of f_0 is known

3.3 The Dual Problem

Definition 3.3.1 (Lagrange Dual Problem).

Maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \geq 0$.

- Finds best lower bound on p^* obtained from Lagrange dual function
- A convex optimization problem, optimal value d^*
- λ, ν are dual feasible if $\lambda \geq 0, (\lambda, \nu) \in \mathbf{dom}g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \mathbf{dom}g$

Theorem 3.3.1 (Weak Duality).

$$d^* < p^*$$
.

- Always holds (for convex or nonconvex)
- Can be used to find nontrivial lower bounds for difficult problems

Theorem 3.3.2 (Strong Duality).

$$d^* = p^*$$
.

- Does not hold in general
- Usually holds for convex problems
- Constraint qualitifications guarantee strong duality

Remark 3.3.1. $p^* - d^*$ is known as the duality gap

Definition 3.3.2 (Complimentary Slackness). Assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x (f_0(x) + \sum_{i=0}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu^* h_i(x))$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*).$$

thus, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^* f_i(x^*)$ for i = 1, ..., m (known as complementary slackness):

$$\lambda_i^* > 0 \implies f_i(x^*) = 0, \qquad f_i(x^*) < 0 \implies \lambda_i^* = 0.$$

3.4 KKT Conditions

The following conditions are KKT conditions for a problem with differentiable f_i, h_i :

- 1. primal constraints: $f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p$
- 2. dual constraints: $\lambda \geq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0.$$

If strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions

The converse also holds: if $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence, $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$

3.5 Perturbation and Sensitivity Analysis

Unperturbed optimization problem and its dual:

mimimize
$$f_0(x)$$
 maximize $g(\lambda, \nu)$
subject to $f_i(x) \leq 0$, $i = 1, ..., m$ subject to $\lambda \geq 0$
 $h_i(x) = 0$, $i = 1, ..., p$.

Perturbed problem and its dual:

mimimize
$$f_0(x)$$
 maximize $g(\lambda, \nu) - u^T \lambda - v^T \nu$
subject to $f_i(x) \le u_i, \quad i = 1, \dots, m$ subject to $\lambda \ge 0$
 $h_i(x) = v_i, \quad i = 1, \dots, p.$

- x is primal variable; u, v are parameters
- $p^*(u,v)$ is optimal value as a function of u,v
- We want info about $p^*(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual

Global Sensitivity: Assume strong duality holds for unperturbed problem, and that λ^*, ν^* are dual optimal for unperturbed problem:

Apply weak duality to perturbed problem:

$$p^*(u, v) \ge g(\lambda^*, \nu^*) - u^T \lambda^* - v^T \nu^*$$

= $p^*(0, 0) - u^T \lambda^* - v^T \nu^*$.

Sensitivity Interpretation:

- if λ_i^* large: p^* increases greatly if we tighten constraint i, $(u_i < 0)$
- if λ_i small: p^* does not decrease much is we loosen constraint i, $(u_i > 0)$
- if ν_i large and positive: p^* increases greatly if we take $v_i < 0$; if ν_i large and negative: p^* increases greatly if we take $v_i > 0$
- if ν_i small and positive: p^* does not decrease much if we take $v_i > 0$; if ν_i^* small and negative: p^* does not decrease much if we take $v_i < 0$

Local Sensitivity: if, in addition, $p^*(u, v)$ is differentiable at (0, 0), then:

$$\lambda_i^* = -\frac{\partial p^*(0,0)}{\partial u_i}, \qquad \nu_i^* = -\frac{\partial p^*(0,0)}{\partial v_i}.$$

Proof. From global sensitivity result:

$$\frac{\partial p^*(0,0)}{\partial u_i} = \lim_{t \searrow 0} \frac{p^*(te_i,0) - p^*(0,0)}{t} \ge -\lambda_i^*$$
$$\frac{\partial p^*(0,0)}{\partial u_i} = \lim_{t \nearrow 0} \frac{p^*(te_i,0) - p^*(0,0)}{t} \le -\lambda_i^*.$$

hence, equality