

计算机原理

COMPUTER PRINCIPLE

第四章 第三节 (1) 多周期处理器的设计思想

□单周期处理器:时钟周期以最复杂指令所需时间为准,太长!

- □单周期处理器:时钟周期以最复杂指令所需时间为准,太长!
- □解决思路
 - a) 把指令执行分成多个阶段,每个阶段都在一个时钟周期内完成

- □单周期处理器:时钟周期以最复杂指令所需时间为准,太长!
- □解决思路
 - a) 把指令执行分成多个阶段,每个阶段都在一个时钟周期内完成
 - 口时钟周期以最复杂阶段所花时间为准
 - 口尽量分成大致相等的若干阶段
 - 口每个阶段内最多只能完成:1次访存 或 读/写寄存器 或 ALU运算

- □时钟周期以最复杂指令所需时间为准,太长!
- □解决思路
 - ■把指令执行分成多个阶段,每个阶段都在一个时钟周期内完成
 - ■每个阶段的结果都保存在专用的内部寄存器中

2. 多周期处理器的好处

- □时钟周期短
- □不同指令所用周期数可以不同
 - ■Load: 5 Cycles, Jump: 3 Cycles
- □允许功能部件在一条指令执行过程中被重复使用
 - ■加法器+ALU(多周期时只用一个ALU,在不同周期可重复使用)
 - ■指令/数据存储器(多周期时合用一个存储器,不同周期重复使用)

3. 单周期和多周期的对比

□以Load指令LW RT, RS, Imm16为例

在单周期处理器上的微操作	在多周期处理器上的微操作	
M[PC];取指令 Addr←R[rs]+SignExt(imm16);计算访存地址 R[rt]←M[Addr];访存并将结果写回 PC←PC+4;计算下一条指令的地址	取指	IR←M[PC] PC←PC+4
	译码	A←R[rs] Imm←SignExt(imm16)
	执行	ALUOutput←A+Imm
	访存	LMD←M[ALUOutput]
	写回	R[rt]←LMD

共同点:

■ 指令独占整个数据通路,直至执行结束

多周期处理器:

- 1. 指令分为五个阶段,顺序执行
- 2. 同一阶段内的操作是可以同时发生的
- 3. 每个阶段的结果保存在内部寄存器中