

## EEE 6212 Semiconductor Materials

Lecture 3: Semiconductor crystals



EEE 6212 - Semiconductor Materials

2

## Lecture 3: Semiconductor crystals

- relationship between cubic & hexagonal closepacking (partial repeat)
- coordination numbers of fcc & hcp lattices
- bond lengths and lattice spacings in fcc & hcp
- filling of interstices in close-packed arrays and atomic positions
- semiconductor crystals as examples of structures based on filling of interstices
- polymorphism and stacking faults





















EEE 6212 - Semiconductor Materials

12

## relation between cubic & hexagonal close-packing

AB(ABAB): hexagonal close-packed (hcp) along c-axis

and

ABC(ABC): cubic close-packed or face-centred cubic (fcc) along <111> direction only differ in their stacking sequence!







#### EEE 6212 - Semiconductor Materials

15

# semiconductor crystals: examples of structures based on filling of interstices

8x tetrahedral type (T)

diamond structure:

fill 4/8 T sites with same atoms, i.e.

atoms also at

 $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}),$ 

 $(\frac{3}{4}, \frac{3}{4}, \frac{1}{4}),$ 

 $(\frac{1}{4}, \frac{3}{4}, \frac{3}{4}),$ 

 $(\frac{3}{4}, \frac{1}{4}, \frac{3}{4})$ 





#### EEE 6212 - Semiconductor Materials

16

# semiconductor crystals: examples of structures based on filling of interstices

8x tetrahedral type (T)

diamond structure:

fill 4/8 T sites with same atoms, i.e.

atoms also at

 $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}),$ 

 $(\frac{3}{4}, \frac{3}{4}, \frac{1}{4}),$ 

 $(\frac{1}{4}, \frac{3}{4}, \frac{3}{4}),$ 

 $(\frac{3}{4}, \frac{1}{4}, \frac{3}{4})$ 





#### EEE 6212 - Semiconductor Materials

17

### **Semiconductor crystals**



1. diamond ( $\underline{C}$ , Si, Ge,  $\alpha$ -Sn)

consists of two face-centred cubic crystals shifted by ¼ of the body diagonal; all 8 atoms are identical and connected via 4 neighbours via bonds forming tetrahedra.

space group 227:  $Fd\overline{3}m$  1 atom at corners: 8 x  $^{1}/_{8}$ 

3 atoms at centre of faces:  $6 \times \frac{1}{2}$  4 atoms at tetrahedral sites:  $4 \times 1$ 

a=0.381nm (C), 0.543nm (Si), 0.566nm (Ge)



EEE 6212 - Semiconductor Materials

18

# semiconductor crystals: examples of structures based on filling of interstices

sphalerite structure:

## fill 4/8 T sites with

different atoms, i.e. different atoms at

(1/4, 1/4, 1/4),

 $(\frac{3}{4}, \frac{3}{4}, \frac{1}{4}),$ 

 $(\frac{1}{4}, \frac{3}{4}, \frac{3}{4}),$ 

(3/4, 1/4, 3/4)

### 8x tetrahedral type (T)













23

### polymorphism and stacking faults

As hcp and fcc structures are so similar, many materials can adopt both, and their energetics are rather similar, as shown here for a GaAs nanowire imaged along <110> zone axis. Changing from hcp to fcc (or back) produces stacking faults.



T. Walther & A.B. Krysa, Cryst. Res. Technol. (2014) DOI: 10.1002/crat. 201400166



The University Of Sheffield.

EEE 6212 - Semiconductor Materials

24

## Summary

- hcp and fcc differ in their stacking sequence (ABAB... vs. ABCABC...) but have the same coordination numbers and space filling efficiency (which is why they are both called 'close-packed').
- Semiconductor crystals exist in 3 modifications:
- (i) The **diamond** structure is based on two identical fcc lattices shifted by 1/4 of the body diagonal, which fills 4/8 of the tetrahedral interstices.
- (ii) The **sphalerite** structure is an ordered version of the diamond structure.
- (iii) The **wurtzite** structure is based on two hcp lattices shifted by uc (with  $u\approx^3/_8+\delta$ ) along the <u>c</u>-axis.
- Changing from fcc to hcp stacking, or vice versa, produces stacking faults. Crystals that exist in both modifications are called polymorphs.