Problem 1. Consider the merging problem in our PRAM discussion. Let A_1 be the array (1, 17, 28, 29, 55, 61, 69, 80) and A_2 be the array (10, 13, 25, 33, 38, 56, 72, 75). Give the content of array B_1 .

Problem 2. Consider the sorting problem in EM. Let A be the input file of n integers (which is stored in O(n/B) blocks). Give an algorithm to produce O(n/M) files satisfying all the following requirements:

- Each file stores at most M integers of A in ascending order using O(M/B) blocks.
- All the files are mutually disjoint.
- The union of all the files is the set of integers in A.

Your algorithm must terminate in O(n/B) I/Os.

Problem 3. This question concerns the PRAM model. Suppose that we have already obtained a sorting algorithm \mathcal{A} finishing in f(n) steps when the number p of CPUs equals n (recall that n is the number of integers to sort). Consider now the scenario where p < n. Describe how to use \mathcal{A} to design an algorithm that finishes in $O(\frac{n}{p} \cdot f(n))$ steps.

Problem 4. Give a PRAM algorithm that settles the sorting problem in $O(\frac{n}{p}\log^2 n)$ steps.