QCM Intelligence Artificielle

Voici un autre sujet d'examen différent, toujours basé sur ton cours d'Intelligence Artificielle, mais avec un nouveau QCM et un exercice avec les algorithmes génétiques cette fois-ci .
EXAMEN D'INTELLIGENCE ARTIFICIELLE — BAC+2
Durée : 2h — Total : 20 points
✓ PARTIE I — QCM (10 points)
Choisissez la (ou les) bonne(s) réponse(s). Certaines questions peuvent avoir plusieurs bonnes réponses.
1. Le Deep Learning est principalement utilisé pour : (1 pt) □ Créer des bases de données
☐ Résoudre des équations différentielles
☐ Traiter des images, sons ou vidéos
□ Construire des fonctions trigonométriques
2. Quelle est la principale différence entre optimisation continue et optimisation
combinatoire ? (1 pt)
☐ L'optimisation combinatoire travaille sur un ensemble fini et discret
☐ L'optimisation continue utilise des entiers uniquement
☐ L'optimisation combinatoire ne trouve jamais de solution
□ L'optimisation continue ne peut pas être modélisée mathématiquement

3. Les métaheuristiques sont particulièrement utiles pour : (1 pt) Les problèmes à solution triviale Les problèmes d'optimisation simples Les problèmes NP-difficiles où les méthodes classiques échouent Résoudre uniquement des équations algébriques
 4. Quelle méthode est inspirée du comportement des colonies d'insectes ? (1 pt) Recuit simulé Recherche tabou Algorithmes de colonies de fourmis Descente de gradient
5. Un problème NP-complet est : (1 pt) ☐ Facile à résoudre avec des équations simples ☐ Résoluble rapidement en toutes circonstances ☐ Difficile à résoudre en temps raisonnable quand la taille du problème augmente ☐ Toujours impossible à résoudre
 6. Quelle est la condition pour qu'une solution soit un optimum global dans un problème de minimisation ? (1 pt) □ Elle est trouvée au hasard □ Elle satisfait ∀s ∈ S, f(s*) ≤ f(s) □ Elle ne dépend pas des contraintes □ Elle maximise la fonction coût

7. L'algorithme de sélection par tournoi dans un AG (algorithme génétique) : (1 pt)
□ Sélectionne toujours le plus faible
□ Ne prend jamais les meilleurs
□ Sélectionne parmi un sous-ensemble d'individus les plus adaptés
☐ Est moins influencé par les valeurs extrêmes que la roulette
8. Quel est le rôle de la mutation dans les algorithmes génétiques ? (1 pt)
□ Elle détruit la population
□ Elle augmente la diversité génétique
□ Elle est obligatoire à chaque génération
□ Elle n'est jamais utilisée
9. Un algorithme génétique fonctionne généralement avec : (1 pt) Une seule solution unique Une population de solutions qui évolue Des calculs exacts uniquement Des itérations sans aucune règle
 10. Le rôle de la fonction de performance (fitness) est de : (1 pt) ☐ Générer aléatoirement des individus ☐ Évaluer la qualité/adaptation d'un individu ☐ Calculer la température ☐ Créer des mutations

PARTIE II — EXERCICE (10 points)

Sujet : Algorithme génétique simple pour un problème de minimisation

On veut minimiser la fonction suivante :

Nombre de bits à 1 dans un individu binaire (fonction $w_i = \Sigma x_i$)

Données: Population initiale

```
population = [
    [1, 0, 0, 1, 1, 1],
    [0, 1, 0, 0, 1, 0],
    [1, 1, 1, 0, 1, 1],
    [1, 0, 1, 1, 0, 0],
    [0, 0, 1, 0, 0, 0],
    [0, 1, 0, 1, 1, 1]
]
```

Objectifs:

- 1. Écrire une fonction fitness(individu) qui retourne le nombre de bits à 1. (2 pts)
- 2. Implémenter une sélection par tournoi pour choisir les parents. (2 pts)
- 3. Appliquer un **croisement à un point** entre deux parents. (2 pts)
- 4. Appliquer une **mutation** avec une probabilité de 0.2 par bit. (2 pts)
- 5. Générer une **nouvelle population**, et afficher l'individu le plus adapté (ayant le moins de 1). (2 pts)

Souhaites-tu que je te donne le corrigé Python de cette partie pratique aussi?