合 肥 工 业 大 学 试 卷 (A)

共 1 页第 1 页

2022~2023 学年第<u>二</u>学期 课程代码<u>1400071B</u> 课程名称<u>线性代数</u> 学分<u>2.5</u> 课程性质: 必修☑选修□限修□ 考试形式: 开卷□闭卷☑ 专业班级(教学班) 考试日期 2023 年 5 月 14 日 19:00-21:00 命题教师 集体 系(所或教研室)主任审批签名 √∂ 呵(客

一、填空题(每题 3 分, 共 18 分)

- 1. \boldsymbol{A} 为 3 阶实方阵, 交换 \boldsymbol{A} 的第 1 行与第 2 行得到矩阵 \boldsymbol{B} . 若 $|\boldsymbol{A}|=\sqrt{2}$, 则 $|\boldsymbol{A}\boldsymbol{B}|=$
- 2. A 为 3 阶非零实方阵且 $A^2 = O$, 则 R(A) =_____
- 3. 向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关. 若向量组 $\alpha_1 \alpha_2, \alpha_2 2k\alpha_3, \alpha_3 \alpha_1$ 线性相关,则 k =
- 4. $(-1,1,0)^T$, $(-1,0,1)^T$ 是齐次线性方程组 $\mathbf{A}\mathbf{x}=\mathbf{0}$ 的一组基础解系, 若 $\boldsymbol{\alpha}=(1,2,a)^T$ 满足 $\mathbf{A}\boldsymbol{\alpha}=\mathbf{0}$, 则 a=
- 5. \boldsymbol{A} 为 2 阶实方阵, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 为线性无关的 2 维实列向量组. 若 $\boldsymbol{A}\boldsymbol{\alpha}_1 = \boldsymbol{0}, \boldsymbol{A}\boldsymbol{\alpha}_2 = 3\boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2$, 则 \boldsymbol{A} 的非零特征值为______.
- **6.** 若二次型 $f(x_1, x_2) = ax_1^2 + 2ax_1x_2 + 2x_2^2$ 正定, 则 a 的取值范围是

二、单项选择题(每题3分,共18分)

- 1. A, B 皆为 n 阶实方阵 $(n \ge 2)$,下列说法错误的是 ()
 - A. AB = O 当且仅当 BA = O
- B. AB 可逆当且仅当 A 与 B 皆可逆
- C. AB 可逆当且仅当 BA 可逆
- D. AB = E 当且仅当 BA = E
- **2. A** 是 n 阶可逆矩阵 $(n \ge 2)$, 交换 **A** 的第 1 行与第 2 行得到矩阵 **B**. **A***, **B*** 分别是 **A**, **B** 的伴随矩阵, 则 **B*** 可由 () 所得.
 - A. 交换 **A*** 的第 1 行与第 2 行
- B. 交换 **A*** 的第 1 列与第 2 列
- C. 交换 $-\mathbf{A}^*$ 的第 1 行与第 2 行
- D. 交换 -A* 的第 1 列与第 2 列
- 3. 向量组 α_1, α_2 线性无关,则向量组 $a\alpha_1 + b\alpha_2, b\alpha_1 + a\alpha_2$ 线性无关的充分必要条件是() A. $a \neq b$ B. $a \neq -b$ C. a, b 不全为 0 D. $a \neq \pm b$
- **4. A** 是 3×4 的实矩阵, 按列分块为 **A** = $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$. 若齐次线性方程组 **Ax** = **0** 的通解 为 $k(2,0,2,3)^T$, 其中 k 为任意常数. 下列说法**错误**的是 ()
 - A. α_1 可由向量组 $\alpha_2, \alpha_3, \alpha_4$ 线性表示
- B. α_2 可由向量组 $\alpha_1, \alpha_3, \alpha_4$ 线性表示

C. A 的行向量组线性无关

D. 线性方程组 $A^T y = 0$ 只有零解

5. A, B 皆为 3 阶实方阵. 下列选项 () 一定能得出 A 可对角化.

A. $A = B^2$

B. $\boldsymbol{A} = \boldsymbol{B} + \boldsymbol{B^T}$

C. AB = BA

D. \mathbf{A} 的特征值有正有负

6.
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix}$, 其中 a 是非零实数. 则 $\mathbf{A} \subseteq \mathbf{B}$ ()

A. 相似且合同

B. 相似但不合同

C. 合同但不相似

D. 既不相似也不合同

三、(本题 12 分)
$$D = \begin{vmatrix} 1 & k_1 & k_2 & k_3 \\ k_1 & 1 & 0 & 0 \\ k_2 & 0 & 1 & 0 \\ k_3 & 0 & 0 & 1 \end{vmatrix}$$
, 其中 k_i 为实数, $i = 1, 2, 3$.

四、(本题 10 分) 求解矩阵方程 $AX = A^*X + E$. 其中 $A = \begin{pmatrix} 2 & 0 \\ 2 & 3 \end{pmatrix}$, A^* 是 A 的伴随矩阵.

五、(本题 12 分) 若向量组 $\alpha_1 = (1,1,0)^T$, $\alpha_2 = (0,1,a)^T$, $\alpha_3 = (1,0,1)^T$ 线性相关.

- (1) 求 a;
- (2) 求上述向量组的秩以及一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.

六、(本题 12 分)
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 1 & a \\ 1 & -a & -1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} -4 \\ 4 \\ -a^2 \end{pmatrix}$$
. 讨论 a 取何值时线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$

无解,有唯一解,有无穷多解?并在有无穷多解时求其通解.

七、(本题 12 分) 已知二次型 $f(x_1, x_2, x_3) = x_1^2 + ax_2^2 + x_3^2 + 2bx_1x_2 + 2x_1x_3 + 2x_2x_3$ 经过正交变换 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = P \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ 变为 $y_2^2 + 4y_3^2$. (1) 求 a, b; (2) 求正交矩阵 P.

八、**(本题 6 分)** A 是 n 阶非零实方阵. 证明: 线性方程组 Ax = b 有解的充分必要条件是 齐次线性方程组 $A^Ty = 0$ 与 $\begin{pmatrix} A^T \\ b^T \end{pmatrix} y = 0$ 的解集相同.