2주차 3차시 LAN 구동방식 2 - 토큰 링과 토큰 버스

[학습목표]

- 1. LAN 구동방식 중에 토큰 링의 동작과정에 대해 설명할 수 있다.
- 2. LAN 구동방식 중에 토큰 버스의 동작과정에 대해 설명할 수 있다.

학습내용1 : 토큰 링

1. 개요 및 정의

- * 개요
 - 각 스테이션이 교대로 데이터를 보내게 함으로써 공유 매체의 충돌 방지
 - IEEE 802.5

* 정의

- 링 형태로 네트워크를 구성하고, 토큰 패싱 방식을 사용하여 매체를 접근하는 방식
- 토큰(Token)이라는 짧은 길이의 프레임을 사용하여 데이터를 보낼 수 있는 자격을 한정하며 스테이션은 자신의 차례가 되어서야 데이터를 전송

2. IEEE 802.5와 IBM의 프레임 형식

- 데이터 프레임
- 토큰 프레임
- 중지 프레임

1 byte 1 byte 1 byte 6 bytes 6 bytes ~ 4500 bytes 4 bytes 1 byte 1 byte

SD AC FC DA SA DSAP SSAP Control Info CRC ED FS

a. 일반적인 데이터 프레임 형식

1 byte 1 byte 1 byte 1 byte SD AC ED SD ED

b. 토큰 프레임 형식 c, 중지 프레임 형식

3. 토큰 패싱(Token Passing)						
- 네트워크에서의 토큰 순환을 조절하는 메커니즘						
	A	В	A	В		
	free token					
				Data(A->E)		
	E	С	E	C		
	D		D			
	a. 네트워크 상에 free toke	1 순환 중	D b. E로 전송할 데이터를 가지고 있는 B가 free token을 잡고, 데이터를 E로 전송함			
	A	В	A	В		
Data(A->E)			free token			
	E Data(A->E)	C	E	C		
	D		D			
c. E는 수신한 프레임을 복사하고 다시 네트워크로 전송함			d. B는 수신한 프레임을 페기하고 free token을 네트워크로 전송함			
	" 2	_				

4. 특징

- * 특징
- 이더넷과 마찬가지로 NIC의 6바이트 주소를 이용해 주소를 지정
- 차등 맨체스터 디지털 부호화 방식을 사용
- 4Mbps에서 최고 16Mbps까지의 데이터 전송률을 지원
- * 우선순위와 예약
- 사용자가 정의하거나 높은 우선순위를 갖는 스테이션이 더욱 많이 네트워크를 사용할 수 있게 하기 위해 우선순위를 부여함
- 동작원리
 - 높은 우선 순위를 가진 스테이션은 낮은 우선순위 예약을 삭제하고, 자신의 우선 순위로 대체
 - 동일한 우선 순위를 갖는 스테이션들 간에는 먼저 예약한 스테이션이 토큰을 확보
 - 예약을 한 스테이션은 'free' 토큰이 생기면 전송

5. 링관리

프레임 종류	기능				
Duplicate address test(DAT)	토큰링 네트워크를 초기화하는 과정에서 자신의 주소를 네트워크의 다른 스테이션들이 사용하고 있지 않은지를 판단할 때 사용한다.				
Standby monitor present(SMP)	DAT와 같이 토큰링 네트워크를 초기화하는 과정에 사용되는 것으로 토큰링 네트워크 내에서 논리적인 자신의 이전 스테이션(Success)를 찿는다.				
Active monitor present(AMP)	이러한 종류의 프레임은 현재 액티브 모니터에 의해 정해진 시간에 전송되는 것으로 각 스테이션은 이러한 메시지를 계속적으로 감시함으로써 정상 동작 여부를 판단하게 된다.				
Claim token(CT)	토큰이나 AMP 프레임이 주기적으로 감지되지 않을 때 토큰을 요구할 때 사용되는 토큰으로 새로운 액티브 모니터를 결정할 때 사용된다.				
Purge(PRG)	새로운 액티브 모니터가 모든 스테이션을 초기화할 때 사용된다.				
Beacon(BCN)	링에서 케이블이 절단되는 등의 심각한 장애가 발생했을 때 사용된다.				

6. IEEE 802.5 물리 매체 규격

전송 속도(Mbps)	4 Mbps	16 Mbps	100 Mbps		
전송 매체	UTP, STP, Fiber	UTP, STP, Fiber	UTP, STP, Fiber		
전송 신호 방식	Differential Manchester	Differential Manchester	MLT-3 Or 4B5B/NRZI		
프레임의 최대 크기(Byte)	4550	18,200	18,200		
MAC	TP 혹은 DTR	TP 혹은 DTR	DTR		

[TP: 토큰 패싱, DTR: Dedicated 토큰 링]

7. IBM의 토큰 링과 IEEE 802.5의 차이점

- 연결할 수 있는 스테이션의 수

- IBM은 브리지를 이용한 소스 라우팅 기능이 있는 반면, IEEE 802.5는 가지고 있지 않다.

학습내용2 : 토큰 버스

1. 개요 및 정의

- 이더넷과 토큰 링의 특징을 결합한 형태
- 물리적으로는 버스 접속형태이지만 논리적으로는 토큰 패싱 방식을 사용하여 매체를 제어하는 방식
- 스테이션들은 논리적인 링 형태로 구성
- 실시간(real-time) 처리가 요구되는 공장 자동화와 같은 응용에 적용

2. 특징

- 주로 동축케이블을 전송매체로 사용
- 기저대역 모드나 캐리어 대역 모드(Carrier Band Mode)에서 동작
- 캐리어 대역 모드

이진수 1

의미없는 데이터

이진수 0

정상적인 데이터

1 bit time

1 bit time

1 bit time

3. 프레임 형식

1 ~ bytes	1 byte	1 byte	6 bytes	6 bytes	~ 8191 bytes				4 bytes	1 byte
Preamble	SD	FC	DA	SA	DSAP	SSAP	Control	Info	CRC	ED

4. 동작 과정

- (1) 이전 스테이션으로부터 토큰을 수신한 스테이션은 정의된 제한 시간 동안 대기한 후 프레임 전송한다.
- (2) 프레임 전송이 끝난 스테이션은 다음 스테이션으로 토큰을 넘긴다.
- (3) 각 스테이션은 토큰을 전달한 다음 이전 스테이션의 주소를 알고 있어야 한다.
- (4) 토큰 전달에 실패하면 다음 스테이션을 찾는 회복 과정을 수행한다.
- (5) 다음 스테이션을 찾지 못할 경우 네트워크 초기화 과정을 수행하거나 또는 네트워크 관리 행위를 수행하다.

$$P = Predecessor$$

$$S = Successor$$

$$P = D$$

$$S = A$$

$$S = E$$

$$D$$

[학습정리]

- 1. LAN은 IEEE에서 802 시리즈로 제정되어 있으며, CSMA/CD 방식은 IEEE 802.3, 토큰 버스는 IEEE 802.4, 토큰 링은 IEEE 802.5의 명칭으로 표준화되어 있다.
- 2. 토큰 링은 토큰(Token)이라는 짧은 길이의 프레임을 사용하여 데이터를 보낼 수 있는 자격을 한정하며 스테이션은 자신의 차례가 되어서야 데이터를 전송하며, 네트워크의 구성은 링 형태로써, 토큰 패싱 방식을 사용하여 매체를 접근하도록 되어 있다.
- 3. 토큰 버스는 이더넷과 토큰 링의 특징을 결합한 형태로 물리적으로는 버스 접속 형태이지만 논리적으로는 토큰 패싱 방식을 사용하여 매체를 제어하며, 스테이션들은 논리적인 링 형태로 구성된 방식으로 되어 있다.