

PDSCH基本信息

PDSCH: 物理下行共享信道

作用:下行数据传输,可以传输paging,随机接入,信令,用户数据等

调制方式:QPSK、16QAM、64QAM和256QAM

最大可以采用8层传输

PDSCH的时域资源分配

时域资源分配

下行PDSCH时域资源分配有两种类型:

- typeA:在一个时隙当中,PDSCH的符号从{0,1,2,3}符号位置开始,符号长度3-14个符号。
- · typeB:在一个时隙内,PDSCH占用的符号,从0-12的符号位置开始,但是符号长度限定为2,4,7个符号。

typeA是基于时隙的调度方式,大带宽场景,现网使用。 typeB是mini slot方式,也就是超低时延场景。

时域资源分配

PDSCH的时域调度,主要取决于4个核心参数:

- 时隙偏移值K0
- 时域起始符号S和时域符号数L
- mapping type: 时域分配类型, typeA或者typeB

由于现网mapping type都是typeA,因此,重点研究KO,S,和L。

时隙偏移值K0

PDSCH的时隙偏移,是针对当前UE接收到DCI的slot所言的。由于在NR下行中,支持 跨slot调度,因此PDSCH和PDCCH既有可能在同一slot传输,也可能不在同一slot传输。

PDSCH调度的slot索引计算如下

$$n \cdot \frac{2^{\mu_{PDSCH}}}{2^{\mu_{PDCCH}}} + K_0$$

n表示DCI的调度slot; μ_PDSCH表示PDSCH传输的SCS; μ_PDCCH表示PDCCH传输的SCS, 由于现网这两个SCS相等,因此,公式就变成N+K0,K0就代表相对DCI偏移几个时隙。

K0=0表示PDSCH与PDCCH在同一个slot上, K0=1表示PDSCH在PDCCH后面一个slot上,依次类推。

时域起始符号S和时域符号数L

举个例子

S和L的取值范围

PDSCH	ı	Normal cycli	c prefix	Extended cyclic prefix			
mapping type	S	L	S+L	S	L	S+L	
Type A	{0,1,2,3} (Note 1)	{3,,14}	{3,,14}	{0,1,2,3} (Note 1)	{3,,12}	{3,,12}	
Туре В	{0,,12}	{2,4,7}	{2,,14}	{0,,10}	{2,4,6}	{2,,12}	
Note 1: S = 3 is applicable only if dmrs-TypeA-Posiition = 3							

UE如何获取KO,S,L的配置

分为两种情况:

- 1. 待机状态,可通过DCI确定的查表索引查询默认表格直接获取到K0、mapping type、S和L;
- 2. RRC连接态时,高层参数pdsch-Config中的PDSCH-TimeDomainResourceAllocation获取配置,然后结合DCI确定的查表索引获取 K0、mapping type、SLIV,再进一步计算出S和L。

DCI1-0和DCI1-1是调度PDSCH的,在PDCCH里面讲过了。

待机状态查表获取KO,S,L

Table 5.1.2.1.1-2:	Default PDSCH time	domain resource	allocation A for normal Cl	Ρ
--------------------	--------------------	-----------------	----------------------------	---

Row index	dmrs-TypeA Position	PDSCH mapping type	K ₀	S	L
1	2	Type A	0	2	12
	3	Type A	0	3	11
2	2	Type A	0	2	10
	3	Type A	0	3	9
3	2	Type A	0	2	9
	3	Type A	0	3	8
4	2	Type A	0	2	7
	3	Type A	0	3	6
5	2	Type A	0	2	5
	3	Type A	0	3	4
6	2	Type B	0	9	4
	3	Type B	0	10	4
7	2	Type B	0	4	4
	3	Type B	0	6	4
8	2,3	Type B	0	5	7
9	2,3	Type B	0	5	2
10	2,3	Type B	0	9	2
11	2,3	Type B	0	12	2
12	2,3	Type A	0	1	13
13	2,3	Type A	0	1	6
14	2,3	Type A	0	2	4
15	2,3	Type B	0	4	7
16	2,3	Type B	0	8	4

有4个表格 这里的是A

UE待机状态下,查询默认表格,根据 DCI相应字段的数值+1,获得表的行数, 再根据dmrs-typeA-position来确定具体的 行数,查表获取到K0,S,L,mapping type 4个参数

```
其中,dmrs-typeA-position是来源于MIB。
```

```
MIB ::= SEQUENCE {
    systemFrameNumber 6bit
    subCarrierSpacingCommon 1bit
    ssb-SubcarrierOffset 4it
    dmrs-TypeA-Position 1bit
    pdcch-ConfigSIB1 8bit
    cellBarred 1bit
    intraFreqReselection 1bit
    spare 1bit
```

DCI中的Time domain resource assignment字段会指示PDSCH的时域位置。

该字段共4个bit,所以其值为0-15,假设其值为m,则m+1指示了一个时域资源分配表格的row index(行索引)

举个例子

假设使用的A表

DCI: Time domain resource assignment=1

Row index=
$$1+1=2$$

MIB: dmrs-typeA-position 2

Table 5.1.2.1.1-2: Default PDSCH time domain resource allocation A for normal CP

Row index	dmrs-TypeA- Position	PDSCH mapping type	K ₀	S	L
1	2 /	Type A	0	2	12
	3	Type A	0	3	11
2	2	Type A	0	2	10
	3	Type A	0	3	9
3	2	Type A	0	2	9
	3	Type A	0	3	8
4	2	Type A	0	2	7
	3	Type A	0	3	6
5	2	Type A	0	2	5
	3	Type A	0	3	4
6	2	Type B	0	9	4
	3	Type B	0	10	4
7	2	Type B	0	4	4
	3	Type B	0	6	4
8	2,3	Type B	0	5	7
9	2,3	Type B	0	5	2
10	2,3	Type B	0	9	2
11	2,3	Type B	0	12	2
12	2,3	Type A	0	1	13
13	2,3	Type A	0	1	6
14	2,3	Type A	0	2	4
15	2,3	Type B	0	4	7
16	2,3	Type B	0	8	4

表A-扩展cp

Table 5.1.2.1.1-3: Default PDSCH time domain resource allocation A for extended CP

Row index	dmrs-TypeA- Position	PDSCH mapping type	K ₀	S	L
1	2	Type A	0	2	6
	3	Type A	0	3	5
2	2	Type A	0	2	10
	3	Type A	0	3	9
3	2	Type A	0	2	9
	3	Type A	0	3	8
4	2	Type A	0	2	7
	3	Type A	0	3	6
5	2	Type A	0	2	5
	3	Type A	0	3	4
6	2	Type B	0	6	4
	3	Type B	0	8	2
7	2	Type B	0	4	4
	3	Type B	0	6	4
8	2,3	Type B	0	5	6
9	2,3	Type B	0	5	2
10	2,3	Type B	0	9	2
11	2,3	Type B	0	10	2
12	2,3	Type A	0	1	11
13	2,3	Type A	0	1	6
14	2,3	Type A	0	2	4
15	2,3	Type B	0	4	6
16	2,3	Type B	0	8	4

Table 5.1.2.1.1-4: Default PDSCH time domain resource allocation B

Row index	dmrs-TypeA- Position	PDSCH mapping type	K ₀	S	L			
1	2,3	Type B	0	2	2			
2	2,3	Type B	0	4	2			
3	2,3	Type B	0	6	2			
4	2,3	Type B	0	8	2			
5	2,3	Type B	0	10	2			
6	2,3	Type B	1	2	2			
7	2,3	Type B	1	4	2			
8	2,3	Type B	0	2	4			
9	2,3	Type B	0	4	4			
10	2,3	Type B	0	6	4			
11	2,3	Type B	0	8	4			
12 (Note 1)	2,3	Type B	0	10	4			
13 (Note 1)	2,3	Type B	0	2	7			
14 (Note 1)	2	Type A	0	2	12			
	3	Type A	0	3	11			
15	2,3	Type B	1	2	4			
16		Reserved						

Note 1: If the PDSCH was scheduled with SI-RNTI in PDCCH Type0 common search space, the UE may assume that this PDSCH resource allocation is not applied

Table 5.1.2.1.1-5: Default PDSCH time domain resource allocation C

Row index	dmrs-TypeA- Position	PDSCH mapping type	K ₀	S	L
1 (Note 1)	2,3	Type B	0	2	2
2	2,3	Type B	0	4	2
3	2,3	Type B	0	6	2
4	2,3	Type B	0	8	2
5	2,3	Type B	0	10	2
6			Reserved		
7			Reserved		
8	2,3	Type B	0	2	4
9	2,3	Type B	0	4	4
10	2,3	Type B	0	6	4
11	2,3	Type B	0	8	4
12	2,3	Type B	0	10	4
13 (Note 1)	2,3	Type B	0	2	7
14 (Note 1)	2	Type A	0	2	12
	3	Type A	0	3	11
15 (Note 1)	2,3	Type A	0	0	6
16 (Note 1)	2,3	Type A	0	2	6

Note 1: The UE may assume that this PDSCH resource allocation is not used, if the PDSCH was scheduled with SI-RNTI in PDCCH Type0 common search space

UE如何知道查哪个表?

■ RNTL ₁	PDCCH	SS/PBCH	pdsch-	pdsch-Config	PDSCH time
	search	block and	ConfigCommon	includes pdsch-	domain resource
	space.	CORESET multiplexin	includes pdsch- TimeDomainAlloca	TimeDomainAllocati	allocation to apply.
		g pattern.	tionList.	onList.	
 SI-RNTI 	Type0	1 a	7.1	1	Default A for normal
.1	common.1				CP.1
		2.1	1	1	Default B.1
		3.1	1	7.1	Default C.1
 SI-RNTI.₁ 	Type0A	1a	No.1	7.1	Default A.
	common.	2.1	No.1	7.1	Default B.,
		3.1	No.1	7.1	Default C.
		1,2,3.	Yes.	7.1	pdsch-
					TimeDomainAllocati
					onList provided in
					pdsch-
BA BNT	Towned	4.2.2	N _a		ConfigCommon.
RA-RNTI,	Type1	1, 2, 3.,	No.1	1	Default A.
TC-RNTI.	common.	1, 2, 3.,	Yes.	1	pdsch-
					TimeDomainAllocati
					onList provided in
					pdsch- ConfigCommon.
■ P-RNTL ₃	Type2	1.1	No.1	1	Default A.
1-10011.5	common.	2.1	No.1		Default B.
	Commons	3.1	No.1	1	Default C.
		1,2,3.,	Yes.	1	pdsch-
		1,2,5.1	103.1	,	TimeDomainAllocati
					onList provided in
					pdsch-
					ConfigCommon.
 C-RNTI, 	Any common	1, 2, 3.,	No.1	1	Default A.
MCS-C-	search	1, 2, 3,	Yes.	-1	pdsch-
RNTI, CS-	space	-1-1			TimeDomainAllocati
		I	ı	I I	

UE需要的哪种信息,就会使用相应的 RNTI,如果是待机状态,则根据SSB 与coreset的相对位置,查询不同类型 表格

(**38.214** Table 5.1.2.1.1-1)

RRC连接状态通过信令获取获取K0,S,L

```
PDSCH-Config ::=
                                        SEQUENCE {
    dataScramblingIdentityPDSCH
                                        INTEGER (0..1007)
                                                             OPTIONAL.
    dmrs-DownlinkForPDSCH-MappingTypeA
                                            SetupRelease { DMRS-DownlinkConfig } OPTIONAL,
                                            SetupRelease { DMRS-DownlinkConfig } OPTIONAL,
    dmrs-DownlinkForPDSCH-MappingTypeB
   tci-StatesToAddModList
                                            SEQUENCE (SIZE(1..maxNrofTCI-States))
                                                OF TCI-State OPTIONAL, -- Need N
   tci-StatesToReleaseList
                                            SEQUENCE (SIZE(1..maxNrofTCI-States))
                                                OF TCI-StateId OPTIONAL, -- Need N
   vrb-ToPRB-Interleaver
                                            ENUMERATED {n2, n4},
                                            ENUMERATED { resourceAllocationType0,
   resourceAllocation
                                                         resourceAllocationType1,
                                                         dynamicSwitch},
    pdsch-AllocationList
                                   SEQUENCE (SIZE(1..maxNrofDL-Allocations))
                                     OF PDSCH-TimeDomainResourceAllocation
                                                                               OPTIONAL.
    pdsch-AggregationFactor
                                            ENUMERATED { n2, n4, n8 } OPTIONAL,
   rateMatchPatternToAddModList
                                            SEQUENCE (SIZE (1..maxNrofRateMatthPatterns))
                                                 OF RateMatchPattern
                                                                        OPTIONAL, -- Need N
   rateMatchPatternToReleaseList
                                            SEQUENCE (SIZE (1..maxNrofRateMatthPatterns))
                                                                           OPTIONAL, -- Need N
                                                 OF RateMatchPatternId
                      pdsch-AllocationList {
  配置列表
                           PDSCH-TimeDomainResourceAllocation { ← 详细配置 k0 omit // the UE applies the value 0.
                   Row 0 - mappingType typeA,
startSymbolAndLength '00111010'B => 58(Dec)
                           PDSCH-TimeDomainResourceAllocation { 
                              mappingType typeA,
startSymbolAndLength '00111000'B => 56(Dec)
```

RRC信令中pdsch-Config中的 PDSCH-Allocationlist获取配置参数列表

> 具体选择哪一种配置,取决于DCI字段 Time domain resource assignment ,这里字段的取值,不用+1

在这种情况下,不是直接获取到S和L 这两个参数,而是获取了SLIV,通过 反向计算来获取S和L

SLIV---起始和长度指示值

时域起始符号S和时域符号数L可通过公式计算出SLIV;反过来获得了SLIV,也可以反向计算出S和L

。具体SLIV的计算方式如下

if
$$(L-1) \le 7$$
 then
$$SLIV = 14 \cdot (L-1) + S$$
else
$$SLIV = 14 \cdot (14 - L + 1) + (14 - 1 - S)$$

之所以可以反向计算,是因为S和L都有取值范围,不是随意取值,还得是整数。

1	Normal cycli	c prefix	Extended cyclic prefix			
S	L	S+L	S	L	S+L	
{0,1,2,3} (Note 1)	{3,,14}	{3,,14}	{0,1,2,3} (Note 1)	{3,,12}	{3,,12}	
{0,,12}	{2,4,7}	{2,,14}	{0,,10}	{2,4,6}	{2,,12}	
	\$ {0,1,2,3} (Note 1)	S L {0,1,2,3} {3,,14} (Note 1)	{0,1,2,3} {3,,14} {3,,14}	S L S+L S {0,1,2,3} (Note 1) {3,,14} (3,,14) {0,1,2,3} (Note 1)	S L S+L S L {0,1,2,3} (Note 1) {3,,14} (Note 1) {0,1,2,3} (Note 1) {3,,12}	

Note 1:

S = 3 is applicable only if dmrs-TypeA-Posiition = 3

SLIV与S和L计算对应表

S	L	L-1	Last Symbol	SLIV	Valid Mapping Type (Normal CP) PDSCH	Mapping Type (Normal CP) 所有的SLIV值与S和L的对应关系 PUSCH							
0							s	L	L-1	Last	SLIV	Valid Mapping Type (Normal CP)	Valid Mapping Type (Normal CP)
	3	2	2	28	<u>Type A</u>	Туре В				Symbol		PDSCH	PUSCH
	4	3	3	42	Type A, <u>Type B</u>	Type A,Type B							
	5	4	4	56	<u>Type A</u>	Type A,Type B	2						
	6	5	5	70	<u>Type A</u>	Type A,Type B			-				
	7	6	6	84	<u>Type A</u> ,Type B	Type A,Type B		3	2	4	30	<u>Type A</u>	Туре В
	8	7	7	98	<u>Type A</u>	Type A,Type B		4	3	5	44	Type A, <u>Type B</u>	Туре В
	9	8	8	97	<u>Type A</u>	Type A,Type B		5	4	6	58	<u>Type A</u>	Туре В
	10	9	9	83	<u>Type A</u>	Type A,Type B		6	5	7	72	<u>Type A</u>	Туре В
	11	10	10	69	<u>Type A</u>	Type A,Type B		7	6	8	86	<u>Type A</u> ,Type B	Туре В
	12	11	11	55	<u>Type A</u>	Type A,Type B		8	7	9	100	<u>Type A</u>	Туре В
	13	12	12	41	<u>Type A</u>	Type A,Type B		9	8	10	95	<u>Type A</u>	Туре В
	14	13	13	27	<u>Type A</u>	Type A,Type B		10	9	11	81	<u>Type A</u>	Туре В
1								11	10	12	67	<u>Type A</u>	Туре В
								12	11	13	53	<u>Type A</u>	Туре В
	3	2	3	29	<u>Type A</u>	Туре В	3						
	4	3	4	43	Type A, <u>Type B</u>	Туре В							
	5	4	5	57	<u>Type A</u>	Туре В		3	2	5	31	<u>Type A</u>	Туре В
	6	5	6	71	<u>Type A</u>	Туре В		4	3	6	45	Type A, <u>Type B</u>	Туре В
	7	6	7	85	<u>Type A</u> ,Type B	Туре В		5	4	7	59	<u>Type A</u>	Туре В
	8	7	8	99	<u>Type A</u>	Туре В		6	5	8	73	<u>Type A</u>	Туре В
	9	8	9	96	<u>Type A</u>	Туре В		7	6	9	87	<u>Type A</u> ,Type B	Туре В
	10	9	10	82	<u>Type A</u>	Type B		8	7	10	101	<u>Type A</u>	Туре В
	11	10	11	68	<u>Type A</u>	Type B		9	8	11	94	<u>Type A</u>	Туре В
	12	11	12	54	<u>Type A</u>	Type B		10	9	12	80	<u>Type A</u>	Туре В
	13	12	13	40	<u>Type A</u>	Туре В		11	10	13	66	<u>Type A</u>	Type B

举个例子

```
pdsch-AllocationList {
                           - PDSCH-TimeDomainResourceAllocation {
                              kO omit // the UE applies the value O.
                   Row 0 - mappingType typeA,
    startSymbolAndLength '00111010'B => 58(Dec)
                           PDSCH-TimeDomainResourceAllocation {
                           mappingType typeA,
startSymbolAndLength '00111000'B => 56(Dec)
DCI:
  Time domain resource assignment = 1
                  slot n
                                                               Slot n+1
                             9 | 10 | 11 | 12 | 13
                                                                            10 11 12 13
PDCCH
                                                 PDSCH
                                                 K0 = 1
                                                 SLIV = 56
                                                  => S=0, L=5
PDCCH monitoring pattern:
  first symbol of the slot{'1000000000000'B}
CORESET time duration : 2 symbols
```

PDSCH的频域资源分配

PDSCH的频域资源分配

5G NR的频域资源分配,分为两种类型: type0和type1

Type0: bitmap(位图),指示的资源位置既可以是集中连续的,又可以是根据信道需要灵活分散的

Type1: RIV(开始RB+连续RB长度),在频域RB上集中连续分配的

DCI与分配类型

DCI1-0调度的PDSCH,仅仅支持type1

DCI1-0主要用于待机状态 DCI1-1主要用户连接态

DCI1-1调度的PDSCH,类型由高层信令PDSCH-config中的resource Allocation字段来配置,

Format 1_1

This is used for the scheduling of PDSCH in one cell.

Field (Item)	Bits	Reference
Carrier indicator	0,3	
Identifier for DCI formats	1	Always set to 1, indicating a DL DCI format
Bandwidth part indicator	0,1,2	
Frequency domain resource assignment	Variable	Variable with <u>Resource Allocation Type</u>
		Carries the row index of the items

DCI1-1中的

Frequency domain resource assignment字段来进行频域资源分配类型的指示(最高位bit为0代表type0,为1代表type1)

什么时候使用类型type0

首先必须是使用DCI1-1格式来调度PDSCH

第一种情况 PDSCH-config中的resource Allocation字段为type0

第二种情况: 当PDSCH-config中的resource Allocation字段为dynamicswitch, DCI Frequency domain resource assignment字段最高位bit为0

```
PDSCH-Config ::=
                                        SEQUENCE {
    dataScramblingIdentityPDSCH
                                        INTEGER (0..1007)
                                                             OPTIONAL.
   dmrs-DownlinkForPDSCH-MappingTypeA
                                            SetupRelease { DMRS-DownlinkConfig } OPTIONAL.
   dmrs-DownlinkForPDSCH-MappingTypeB
                                            SetupRelease { DMRS-DownlinkConfig } OPTIONAL,
   tci-StatesToAddModList
                                            SEQUENCE (SIZE(1..maxNrofTCI-States))
                                                OF TCI-State OPTIONAL, -- Need N
   tci-StatesToReleaseList
                                            SEQUENCE (SIZE(1..maxNrofTCI-States))
                                                OF TCI-StateId OPTIONAL,
   vrb-ToPRB-Interleaver
                                            ENUMERATED {n2, n4},
   resourceAllocation
                                            ENUMERATED { resourceAllocationType0,
                                                         resourceAllocationType1,
                                                         dynamicSwitch},
                                   SEQUENCE (SIZE(1..maxNrofDL-Allocations))
    pdsch-AllocationList
                                     OF PDSCH-TimeDomainResourceAllocation
                                                                               OPTIONAL.
    ndsch-AggregationEactor
                                            ENTIMEDATED { n2 n4 n8 } OPTIONAL
```

频域资源分配类型type0

Type 0使用bitmap指示PDSCH所使用的RBG。

bitmap存储在DCI1-1的Frequency domain resource assignment字段中

一个RBG是一个VRB group,由P个连续的VRB组成,具体个数由高层参数rbg-Size和BWP带宽决定:

< 38.214 - Table 5.1.2.2.1-1: Nominal RBG size P, Table 6.1.2.2.1-1: Nominal RBG size P >

Bandwidth Part Size	Configuration 1	Configuration 2		
1 - 36	2	4		
37 - 72	4	8		
73 - 144	8	16		
145 - 275	16	16		

从表中可以看出: RBG最小是2个RB,最大是16个RB

VRB与PRB

VRB(虚拟资源块)的设定 便于用户资源的调度。

类似考试,考生不需要跟每一个椅子(PRB) 一一绑定,给每一个考生一个 座位号(VRB),考生通过座位号就可以 找到自己的位置。

当我们想重新排列考生的位置时,只需要把贴在桌子上的座位号变更一下,而不需要重新挪动椅子。

RBG的编号问题

假设一个RBG占用4个VRB的情况下

CRB19				
CRB17	PRB12		RBG3	
CRB16	PRB11			
CRB15	PRB10		RBG2	
CRB14	PRB9		NBG2	
CRB13	PRB8			
CRB12	PRB7			
CRB11	PRB6	⊢ BWP	RBG1	⊢ BWP
CRB10	PRB5		KBG1	
CRB9	PRB4			
CRB8	PRB3			
CRB7	PRB2		RBG0	
CRB6	PRB1		KBGU	
CRB5	PRB0	J		J
CRB4				
CRB3				
CRB2				
CRB1				
CRB0				

···.				
CRB19				
CRB18				
CRB17	PRB12]	DDCO	
CRB16	PRB11		RBG3	
CRB15	PRB10			
CRB14	PRB9		RBG2	
CRB13	PRB8		KDGZ	
CRB12	PRB7			
CRB11	PRB6	- BWP		⊢ BWP
CRB10	PRB5		RBG1	
CRB9	PRB4		KDGI	
CRB8	PRB3			
CRB7	PRB2			
CRB6	PRB1		RBG0	
CRB5	PRB0			
CRB4				
CRB3				
CRB2				
CRB1				
CRB0				

错误的RBG编号

正确的RBG编号

VRB与PRB映射的问题

分为交织与非交织映射

下图为非交织映射,VRB与PRB是一一对应的

···.				
CRB19				
CRB18				_
CRB17	PRB12	RBG3	VRB12	
CRB16	PRB11	RDG3	VRB11	
CRB15	PRB10		VRB10	
CRB14	PRB9	RBG2	VRB9	
CRB13	PRB8	RDG2	VRB8	
CRB12	PRB7		VRB7	D14/D
CRB11	PRB6 - BWP		VRB6	- BWP
CRB10	PRB5	RBG1	VRB5	
CRB9	PRB4	KDGI	VRB4	
CRB8	PRB3		VRB3	
CRB7	PRB2		VRB2	
CRB6	PRB1	RBG0	VRB1	
CRB5 ←	PRB0		VRB0	J
CRB4				
CRB3				
CRB2				
CRB1				
CRB0				

VRB与PRB映射的问题

下图为交织映射,VRB与PRB不是一一对应的,具体取决于交织算法。

CRB19									
CRB18									
CRB17		PRB12			RBG3		VRB12		
CRB16		PRB11			NBGS		VRB11		
CRB15		PRB10					VRB10		
CRB14		PRB9		/	RBG2		VRB9		
CRB13		PRB8			RDGZ		VRB8		
CRB12		PRB7					VRB7	D14/D	
CRB11	BWP-	PRB6					VRB6	– BWP	,
CRB10		PRB5			DDC1	·	VRB5		
CRB9		PRB4	K		RBG1		VRB4		
CRB8		PRB3		,			VRB3		
CRB7		PRB2					VRB2		
CRB6		PRB1			RBG0		VRB1		
CRB5	←	PRB0					VRB0		
CRB4									
CRB3									
CRB2									
CRB1									
CRB0									

RRC信令中的rbg

```
PDSCH-Config ::=
                                        SEQUENCE {
    dataScramblingIdentityPDSCH
                                        INTEGER (0..1007)
                                                             OPTIONAL.
    dmrs-DownlinkForPDSCH-MappingTypeA
                                            SetupRelease { DMRS-DownlinkConfig }
                                                                                  OPTIONAL.
    dmrs-DownlinkForPDSCH-MappingTypeB
                                            SetupRelease { DMRS-DownlinkConfig } OPTIONAL,
    tci-StatesToAddModList
                                            SEQUENCE (SIZE(1..maxNrofTCI-States))
                                                OF TCI-State
                                                                OPTIONAL. -- Need N
    tci-StatesToReleaseList
                                            SEQUENCE (SIZE(1..maxNrofTCI-States))
                                                OF TCI-StateId OPTIONAL. -- Need N
    vrb-ToPRB-Interleaver
                                            ENUMERATED {n2, n4},
                                            ENUMERATED { resourceAllocationType0.
    resourceAllocation
                                                         resourceAllocationType1,
                                                         dynamicSwitch},
    pdsch-AllocationList
                                   SEQUENCE (SIZE(1..maxNrofDL-Allocations))
                                     OF PDSCH-TimeDomainResourceAllocation
                                                                               OPTIONAL.
    pdsch-AggregationFactor
                                            ENUMERATED { n2, n4, n8 } OPTIONAL,
    rateMatchPatternToAddModList
                                            SEQUENCE (SIZE (1..maxNrofRateMatchPatterns))
                                                 OF RateMatchPattern
                                                                      OPTIONAL, -- Need N
                                            SEQUENCE (SIZE (1..maxNrofRateMatchPatterns))
    rateMatchPatternToReleaseList
                                                 OF RateMatchPatternId
                                                                           OPTIONAL, -- Need N
                                            SEQUENCE (SIZE (1..maxNrofRateMatchPatterns))
    rateMatchPatternGroup1
                                                 OF RateMatchPatternId
                                                                           OPTIONAL, -- Need R
                                            SEQUENCE (SIZE (1..maxNrofRateMatchPatterns))
    rateMatchPatternGroup2
                                                 OF RateMatchPatternId
                                                                          OPTIONAL, -- Need R
    rbq-Size
                                            ENUMERATED {config1, config2},
                                            ENUMERATED {qam64, qam256},
    mcs-Table
    maxNrofCodeWordsScheduledByDCI
                                            ENUMERATED {n1, n2} OPTIONAL,
                                                                            -- Need R
    prb-BundlingType
                                        CHOICE {
        static
                                                SEQUENCE {
            bundleSize
                                                    ENUMERATED { n4, wideband } OPTIONAL
```

RBG与bitmap

Bitmap第一位为最高位,对应的RBG0,顺序映射

假设bitmap为 "010101。。。。。

	Bandwidth Size (1-35)		Bandwidth Size (37-72)			th Size 144)	Bandwidth Size (145-275)		
PRB #	Config 1	Config 2	Config 1	Config 2	Config 1	Config 2	Config 1	Config 2	
0	RBG 00								
1	KBG 00	RBG 00	RBG 00						
2	RBG 01	KBG 00	KBG 00					RGB 00	
3	KBG 01			RBG 00	RBG 00				
4	RBG 02			KBG 00	KBG 00		RGB 00		
5	KBG 02	RBG 01	RBG 01						
6	RBG 03	KBG 01							
7	KBC 03					RGB 00			
8	RBG 04					NGD 00			
9	KBG 04	RBG 02	RBG 02						
10	RBG 05	KBG 02	KBG 02						
11	KBG 03			RBG 01	RBG 01				
12	RBG 06			KBG OI	KBG 01				
13	KBG 00	RBG 03	RBG 03						
14	RBG 07	KBG 03	KBG US						
15	KBG 07								

资源分配Type0举例1

假设:

PDSCH-config中

resource Allocation字段为type0

rbg-Size: configuration 1

RRC信令获取BWP带宽: 273RB

DCI1-1中:

bitmap为 "010101010100000010" 非交织映射

可知RBG=16个VRB

< 38.214 - Table 5.1.2.2.1-1: Nominal RBG size P, Table 6.1.2.2.1-1: Nominal RBG size P >

Bandwidth Part Size	Configuration 1	Configuration 2
1 - 36	2	4
37 - 72	4	8
73 - 144	8	16
145 - 275	16	16

273RB

资源分配Type0举例2

假设:

PDSCH-config中

resource Allocation字段为dynamicswitch

rbg-Size: configuration 1

RRC信令获取BWP带宽: 273RB

DCI1-1中:

bitmap为 "**0**010101010100000010" 非交织映射

可知RBG=16个VRB

< 38.214 - Table 5.1.2.2.1-1: Nominal RBG size P, Table 6.1.2.2.1-1: Nominal RBG size P >

Bandwidth Part Size	Configuration 1	Configuration 2
1 - 36	2	4
37 - 72	4	8
73 - 144	8	16
145 - 275	16	16

273RB

什么时候使用类型type1

DCI1-0调度的PDSCH

DCI1-0主要用于待机状态 DCI1-1主要用户连接态

DCI1-1调度的PDSCH

- PDSCH-config中的resource Allocation字段为type1
- 当PDSCH-config中的resource Allocation字段为dynamicswitch, DCI1-1 Frequency domain resource assignment字段最高位bit为1

Type1的频域资源分配

Type1类型下,只要知道映射的RB起始位置S和映射的连续RB个数L,即可完成映射。而这两个值,与RIV(Resource Indication Value)有换算关系。UE首先得到了RIV,然后反推S和L

<u>这里要注意,在type1中,是按照VRB为单位来分配资源的,type0使用的是RBG,type1分配资源更</u>精细。

RIV 在DCI的 Frequency domain resource assignment字段中

if
$$(L_{RBs} - 1) \le \lfloor N_{BWP}^{size} / 2 \rfloor$$
 then

$$RIV = N_{BWP}^{size}(L_{RBs} - 1) + RB_{start}$$

else

$$RIV = N_{BWP}^{size} \left(N_{BWP}^{size} - L_{RBs} + 1 \right) + \left(N_{BWP}^{size} - 1 - RB_{start} \right)$$

在type0中,这个字段表示bitmap,每一个bit都代表了一个RBG的占用位置

在type1中,这个字段主要是RIV的值虽然还是2进制bit,但是主要是在于换算出来的十进制数值RIV。

比如假设字段是: 100101 换算成十进制是37, 也就是RIV=37

RB_Start表示PDSCH调度的VRB起始RB索引,L_RBs表示VRB的数目

RIV计算举例子

$$N_{BWP}^{size} = 50 \quad (L_{RBs} - 1) \le \lfloor N_{BWP}^{size} / 2 \rfloor$$

		L _{RBs} =1		$L_{RBs}=2$			 I	L _{RBs} =26		
RB _{Start}	0	1	49	0	1	48	 0	1	24	
RIV	0	1	49	50	51	98	 1250	1251	1274	

$$(L_{RBs}-1)>\left\lfloor N_{BWP}^{size}/2\right
floor$$

	L _{RBs} =27			I	$L_{\rm RBs}=48$		L _{RBs} =49		L _{RBs} =50	
RB _{Start}	0	1	23	•••	0	1	2	0	1	0
RIV	1249	1248	1226		199	198	197	149	148	99

Type1的频域资源分配举例子

假设

PDSCH-config中 resource Allocation字段为type1

RRC信令获取BWP带宽: N=50RB

DCI1-1中:

Frequency domain resource assignment:110011

110011转换成十进制RIV=51

反推得到S=1,L=2

VRB49		
VRB48		
VRB12		
VRB11		
VRB10		
VRB9	– BV	VΡ
VRB8	DV	V .
VRB7		
VRB6		
VRB5		
VRB4		
VRB3		
VRB2		
VRB1		
VRB0		

PDSCH中的DMRS

PDSCH的DMRS分类

Front Loaded DMRS,前置DMRS,1~2符号,默认需要配置

Additional DMRS,额外DMRS,1~3符号,由高层配置;UE高速移动场景下进行更精准的信道估计

Front Loaded DMRS时域符号起始位

PDSCH 时域分布采用Type A的时候(现网):

Front Loaded DMRS(前置DMRS)的时域符号起始位置,由MIB里面的dmrs-Type A-Position字段决定可以是符号2或者符号3(pos2, pos3)。

```
MIB ::= SEQUENCE {
    systemFrameNumber
                                        BIT STRING (SIZE (6)),
                                        ENUMERATED {scs15or60, scs30or120},
    subCarrierSpacingCommon
    ssb-SubcarrierOffset
                                        INTEGER (0..15),
    dmrs-TypeA-Position
                                        ENUMERATED {pos2, pos3},
    pdcch-ConfigSIB1
                                       INTEGER (0..255),
    cellBarred
                                        ENUMERATED {barred, notBarred},
    intraFreqReselection
                                        ENUMERATED {allowed, notAllowed},
                                        BIT STRING (SIZE (1))
    spare
```


Front Loaded DMRS时域占用符号数

Front Loaded DMRS(前置DMRS)的时域占用符号数,由高层信令PDSCH-Config => DMRS-DownlinkConfig => maxLength决定(len1、len2)

```
PDSCH-Config ::=
                                        SEQUENCE {
                                           SetupRelease { DMRS-DownlinkConfiq }
    dmrs-DownlinkForPDSCH-MappingTypeA
                                           SetupRelease { DMRS-DownlinkConfig }
    dmrs-DownlinkForPDSCH-MappingTypeB
DMRS-DownlinkConfig ::=
                                      SEQUENCE {
   dmrs-Type
                                 ENUMERATED {type2}
                                                                         OPTIONAL,
                                                                                     -- Need R
    dmrs-AdditionalPosition
                                 ENUMERATED {pos0, pos1, pos3}
                                                                         OPTIONAL,
                                                                                     -- Need R
    dmrs-group1
                                 BIT STRING (SIZE (12))
                                                                         OPTIONAL,
                                                                                     -- Need R
    dmrs-group2
                                 BIT STRING (SIZE (12))
                                                                         OPTIONAL.
                                                                                     -- Need R
   maxLength
                                                                                     -- Need R
                                 ENUMERATED {len2}
                                                                         OPTIONAL.
    scramblingID0
                                 INTEGER (0..65535)
                                                                         OPTIONAL.
                                                                                     -- Need S
    scramblingID1
                                 INTEGER (0..65535)
                                                                         OPTIONAL.
                                                                                     -- Need S
                                 SetupRelease { PTRS-DownlinkConfig
    phaseTrackingRS
                                                                                     -- Need M
```


Front Loaded DMRS频域分布

DMRS频域映射方式分为 type 1和 type 2两种,由高层信令PDSCH-Config => DMRS-DownlinkConfig => drms-Type指示.如果该field未配置,则默认为 type 1。

Type1,频域上间隔一个符号

Type2频域上连续2个符号做间隔

PDSCH天线端口

由于5G支持多天线模式(MIMO),对于UE来说,不同的数据流通过不同的天线端口发射, 为了更好的区分不同天线端口的数据流,不同天线端口所发送数据的DMRS位置做了一定的区分。

举例说明:假设DMRS以Type1类型分布,下行4流发射信息

如何区分DMRS位置相同的两个天线端口

NR使用了最基本的码分复用,来区分DMRS位置相同的两个不同天线端口。

占用相同的位置的天线端口,他们的DMRS使用相同码组(CDM)里面的不同码,来给DMRS做区分。

PDSCH有几个天线端口?

天线端口数量,与DMRS时域上占用几个符号,以及频域上是使用type0还是type1有关

新的问题?

对于某一个天线端口,频域上到底映射到哪个位置?----答案是: 取决于映射公式, 以及配置表格

DMRS频域映射公式

DMRS频域分布通过如下公式映射到RE

$$k = \begin{cases} 4n + 2k' + \Delta & \text{Configuration type 1} \\ 6n + k' + \Delta & \text{Configuration type 2} \end{cases}$$
 $k' = 0,1$ $n = 0,1,...$ K值就是频域位置

< 38.211 - Table 7.4.1.1.2-1: Parameters for PDSCH DM-RS configuration type 1 >

		7, F. C.									
	р	CDM group	Δ	$w_{\rm f}(k')$		$w_{t}(l')$					
				k' = 0	k'=1	l' = 0	l' = 1				
L	1000	0	0	+1	+1	+1	+1				
	1001	0	0	+1	-1	+1	+1				
	1002	1	1	+1	+1	+1	+1				
	1003	1	1	+1	-1	+1	+1				
	1004	0	0	+1	+1	+1	-1				
	1005	0	0	+1	-1	+1	-1				
	1006	1	1	+1	+1	+1	-1				
	1007	1	1	+1	-1	+1	-1				

< 38.211 - Table 7.4.1.1.2-2: Parameters for PDSCH DM-RS configuration type 2 >

p	CDM group	Δ	$w_{\rm f}(k')$		w	t(<i>l</i> ')
			k' = 0	k' = 1	l' = 0	l' = 1
1000	0	0	+1	+1	+1	+1
1001	0	0	+1	-1	+1	+1
1002	1	2	+1	+1	+1	+1
1003	1	2	+1	-1	+1	+1
1004	2	4	+1	+1	+1	+1
1005	2	4	+1	-1	+1	+1
1006	0	0	+1	+1	+1	-1
1007	0	0	+1	-1	+1	-1
1008	1	2	+1	+1	+1	-1
1009	1	2	+1	-1	+1	-1
1010	2	4	+1	+1	+1	-1
1011	2	4	+1	-1	+1	-1

举例子 假设使用Type1,天线端口1000,

查表得知 $\Delta = 0$

当K'=0 K=4n,因为n=0,1,2…得到K=0,4,8,12,16… 当K'=1 K=4n+2,因为n=0,1,2…得到K=2,6,10,14…

所以,天线端口1000,的DMRS频域位置就是:0.2.4.6…

天线端口1000的频域分布图

频域分布Type1,天线端口1000,的DMRS频域位置就是: 0.2.4.6.8.10…

接下来我们把所有的天线端口对应的DMRS图全部画出来

DMRS type1

- 端口0,1码分复用,属于CDM组0
- 端口2,3码分复用,属于CDM组1

- 端口0,1,4,5码分复用,属于CDM组0
- 端口2,3,6,7码分复用,属于CDM组1

DMRS type2

- 端口0,1码分复用,属于CDM组0
- 端口2,3码分复用,属于CDM组1
- 端口4,5码分复用,属于CDM组2

- 端口0,1,6,7码分复用,属于CDM组0
- 端口2,3,8,9码分复用,属于CDM组1
- 端口4,5,10,11码分复用,属于CDM组2

Front Loaded DMRS时域符号起始位

PDSCH 时域分布采用Type B的时候(mini slot):

时域位置一般在PDSCH的第一个符号,由于mini-slot时域上最长也只能占用7个符号,因此,在这种情况下,front loaded DMRS 主要占用1个符号。

如果刚好在PDSCH区域有PDCCH,则 DMRS位置向后挪

Additional DMRS

Additional DMRS (额外DMRS) 为UE高速移动场景下进行更精准的信道估计。

由高层参数PDSCH-Config=>DMRS-DownlinkConfig=>dmrs-Additional Position配置。

dmrs-Additional Position取值: pos0, pos1, pos2, pos3(代表数值0,1,2,3)

```
PDSCH-Config ::=
                                        SEQUENCE {
    dmrs-DownlinkForPDSCH-MappingTypeA
                                           SetupRelease { DMRS-DownlinkConfig }
    dmrs-DownlinkForPDSCH-MappingTypeB
                                           SetupRelease { DMRS-DownlinkConfig }
DMRS-DownlinkConfig ::=
                                       SEQUENCE {
    dmrs-Type
                                 ENUMERATED {type2}
                                                                          OPTIONAL,
                                                                                      -- Need R
   dmrs-AdditionalPosition
                                 ENUMERATED {pos0, pos1, pos3}
                                                                          OPTIONAL.
                                                                                      -- Need R
    dmrs-group1
                                 BIT STRING (SIZE (12))
                                                                          OPTIONAL,
                                                                                      -- Need R
    dmrs-group2
                                 BIT STRING (SIZE (12))
                                                                          OPTIONAL.
                                                                                      -- Need R
    maxLength
                                 ENUMERATED {len2}
                                                                          OPTIONAL.
                                                                                      -- Need R
    scramblingID0
                                 INTEGER (0..65535)
                                                                          OPTIONAL,
                                                                                      -- Need S
    scramblingID1
                                 INTEGER (0..65535)
                                                                          OPTIONAL.
                                                                                      -- Need S
    phaseTrackingRS
                                 SetupRelease { PTRS-DownlinkConfig }
                                                                          OPTIONAL.
                                                                                      -- Need M
```

参数代表additional DMRS的位置,需要查表来查询。

DMRS单符号表

Table 7.4.1.1.2-3: PDSCH DM-RS positions \bar{l} for single-symbol DM-RS.

$l_{ m d}$ in symbols	DM-RS positions \bar{l}									
		PDSCH mapping type B								
		PDSCH mapping type A dmrs-AdditionalPosition				rs-Addi	tionalPos	ition		
	0	1	2	3	0	1	2	3		
2	-	-	-	-	l_0	l_0				
3	l_0	l_0	l_0	l_0	-	-				
4	l_0	l_0	l_0	l_0	l_0	l_0				
5	l_0	l_0	l_0	l_0	-	-				
6	I_0	l_0	l_0	l_0	l_0	l ₀ ,4				
7	l_0	l_0	l_0	l_0	l_0	l ₀ ,4				
8	l_0	l ₀ , 7	l ₀ ,7	l ₀ , 7	-	-				
9	l_0	l ₀ , 7	l ₀ ,7	l ₀ , 7	-	-				
10	l_0	l ₀ ,9	l ₀ , 6, 9	l ₀ , 6, 9	-	-				
11	l_0	l ₀ , 9	l ₀ , 6, 9	l ₀ , 6, 9	-	-				
12	l_0	l ₀ , 9	l ₀ , 6, 9	l ₀ , 5, 8, 11	-	-				
13	I_0	l_0 , l_1	l ₀ , 7,	l ₀ , 5, 8, 11	-	-				
			11							
14	l_0	l_0 , l_1	l ₀ , 7,	l ₀ , 5, 8, 11	-	-				
			11							

举个例子

Table 7.4.1.1.2-3: PDSCH DM-RS positions \bar{l} for single-symbol DM-RS.

$l_{ m d}$ in symbols	DM-RS positions $ar{l}$								
		PDSCH mapping type B							
	PDSCH mapping type A dmrs-AdditionalPosition				dm	rs-Addi	tionalPos	ition	
	0	1	2	3	0	1	2	3	
2	-	-	-	-	l_0	l_0			
3	l_0	l_0	l_0	l_0	-	-			
4	l_0	l_0	l_0	l_0	l_0	l_0			
5	l_0	l_0	l_0	l_0	-	-			
6	l_0	l_0	l_0	l_0	I_0	l ₀ ,4			
7	l_0	l_0	l_0	l_0	l_0	l ₀ ,4			
8	l_0	l ₀ , 7	l ₀ , 7	l ₀ ,7	-	-			
9	l_0	l ₀ , 7	l ₀ , 7	l ₀ , 7	-	-			
10	l_0	l_0 , 9	l ₀ , 6, 9	l ₀ , 6, 9	-	-			
11	l_0	l ₀ , 9	l ₀ , 6, 9	l ₀ , 6, 9	-	-			
12	l_0	l ₀ , 9	l ₀ , 6, 9	l ₀ , 5, 8, 11	-	-			
13	l_0	l_0 , l_1	l ₀ , 7,	l ₀ , 5, 8, 11	-	-			
			11						
14	l_0	l_0 , l_1	l ₀ , 7,	l ₀ , 5, 8, 11	-	-			
			11						

假设:

PDSCH使用typeA模式(时隙调度模式)

Dmrs时域使用的是单符号

dmrs-TypeA-Position =2

PDSCH占用symbol = 1~9

dmrs-Additional Position: 1, 结果如图所示

DMRS双符号表

$l_{ m d}$ in symbols	DM-RS positions $ar{l}$							
	PDSCH mapping type A			PDSCH mapping type B				
	dmrs-AdditionalPosition			dmrs-AdditionalPosition				
	0	1	2	0	1	2		
<4				-	-			
4	l_0	l_0		-	-			
5	l_0	l_0		-	-			
6	l_0	l_0		l_0	l_0			
7	l_0	l_0		l_0	l_0			
8	l_0	l_0		-	-			
9	l_0	l_0		-	-			
10	l_0	l ₀ ,8		-	-			
11	l_0	l ₀ ,8		-	-			
12	l_0	l ₀ ,8		-	-			
13	l_0	l ₀ , 10		-	-			
14	l_0	l ₀ , 10		-	-	perde malifest to Da		

PDSCH typeA DMRS全景图

Front Loaded DMRS

Additional DMRS

PDSCH typeB DMRS全景图

Front Loaded DMRS

Additional DMRS

PDSCH占用7个符号 (*扩展CP占用6个符号)

