Cox Proportional Hazards Model using SAS

Brent Logan, PhD
Division of Biostatistics
Medical College of Wisconsin

Adjusting for Covariates

- Univariate comparisons of treatment groups ignore differences in patient characteristics which may affect outcome
 - Disease status, etc.
- Regression methods are used to adjust treatment comparisons for patient characteristics or to identify prognostic factors for outcome
 - Multiple linear regression (continuous outcomes)
 - Logistic regression (binary outcomes)
 - Cox proportional hazards regression (time to event data)

What does Cox regression tell us?

- Models (cause-specific) hazard rate
 - What is the likelihood that an individual alive at time t (with a specific set of covariates) will experience the event of interest in the next very small time period
- Gives us relative hazard (risk) the likelihood of experiencing event for patients with versus without specific factors
- Relative risk of 1 indicates no difference between groups
- Does not directly tell us the absolute incidence of an event

Cox Proportional Hazards Model

- Model for hazard rate at time t for a patient with covariate values Z
 - Suppose Z=1 if patient in group A, Z=0 if patient in group B

$$h(t \mid \mathbf{Z}) = h_0(t) \exp(\beta' \mathbf{Z})$$

where ho(t) is a baseline hazard function

• Relative Risk (Hazard Ratio):

$$\frac{h(t \mid Z = 1)}{h(t \mid Z = 0)} = \frac{h_0(t) \exp(\beta(1))}{h_0(t) \exp(\beta(0))} = \exp(\beta)$$

 $\exp(\beta)$ = Relative Risk of event occurring for patients in group A compared to patients in group B

Fitting the Cox model in SAS

- PHREG procedure: Need to specify
 - Time to event variable (intxsurv)
 - Censoring indicator variable (dead)
 - Censoring value (Dead=0 means censored)
 - Covariate(s): danhlagrp2
 - 0=HLA matched sibling donor tx
 - 1=well-matched unrelated donor tx

Basic Syntax

libname in '/home/klein/shortcourse'; options linesize=80;

ods rtf file='model1.rtf';

proc phreg data=in.short_course;

model intxsurv*dead(0)=danhlagrp2;

run;

Basic Output

Model Information							
Data Set	IN.SHORT_COURSE						
Dependent Variable	INTXSURV						
Censoring Variable	DEAD						
Censoring Value(s)	0						
Ties Handling	BRESLOW						

Basic Output

Number of Observations Read	866
Number of Observations Used	866

Summary of the Number of Event and Censored Values					
Total	Event	Censored	Percent Censored		
866	483	383	44.23		

Basic Output

Convergence Status						
Convergence criterion (GCONV=1E-8) satisfied.						

Lack of convergence indicates a problem with the model

Model Fit Statistics							
Criterion	Without Covariates	With Covariates					
-2 LOG L	6071.368	6054.332					
AIC	6071.368	6056.332					
SBC	6071.368	6060.512					

Lower values indicate better fit. We will discuss more later

Basic Output

Testing Global Null Hypothesis: BETA=0									
Test	Chi-Square	DF	Pr > ChiSq						
Likelihood Ratio	17.0360	1	<.0001						
Score	17.1286	1	<.0001						
Wald	16.9285	1	<.0001						

These are 3 similar tests of whether the collective model (all variables) is better than no variables in the model

Main Result

Analysis of Maximum Likelihood Estimates												
Parameter	Pr > ChiSq	Hazard Ratio										
danhlagrp2	1	0.37647	0.09150	16.9285	<.0001	1.457						
β P-value												

- •Patients receiving well-matched unrelated donor transplants are 1.457 times more likely to experience mortality at any time after transplant than patients receiving matched sibling donor transplants.
- •This difference is statistically significant (p<0.0001).

Obtaining Confidence Intervals

■ Use risk limits option /rl

proc phreg data=in.short_course; model intxsurv*dead(0)=danhlagrp2 /rl;

Obtaining Confidence Intervals

	Analysis of Maximum Likelihood Estimates										
Parameter	DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio	Conf	azard atio idence mits			
danhlagrp2	1	0.37647	0.09150	16.9285	<.0001	1.457	1.218	1.743			

The hazard ratio for mortality for patients receiving well-matched unrelated donor transplant vs. those receiving matched sibling donor transplant is 1.457, with a 95% confidence interval of [1.218-1.743]

Modelling continuous covariates

- Year of transplant can be modeled continuously
- Exp(β) is interpreted as the hazard ratio or relative risk associated with a one unit increase in covariate value
 - One year increase in year of transplant

proc phreg data=in.short_course; model intxsurv*dead(0)=yeartx/rl; run;

Modelling continuous covariates

Analysis of Maximum Likelihood Estimates										
Parameter	DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio	95% Hazard Ratio Confidence Limits			
yeartx	1	0.0007970	0.03276	0.0006	0.9806	1.001	0.939	1.067		

- •Each increase in year of transplant is associated with a 1.001 fold increase in risk of death (95% CI 0.939-1.067)
- •This effect is not statistically significant (p=0.9806)

Checking the functional form

- Linearity of continuous covariate
 - $h(t \mid Z) = h_o(t) \exp[\beta g(Z)]$
 - What is the functional form of g(Z)?
- Plot of cumulative Martingale residuals against levels of covariate
 - Unusually large values suggest a problem with the functional form
- ASSESS statement in SAS includes
 - Plot of randomly generated residual processes to allow for graphic assessment of the observed residuals in terms of what is "too large"
 - Formal hypothesis test based on simulation

Checking the functional form

proc phreg data=in.short_course;
model intxsurv*dead(0)=yeartx/rl;
assess var=(yeartx)/resample;
run;

Checking the functional form

■ No evidence of problems with linearity

Categorical Covariates

- Sex: 1=Male, 2=Female
- Conditioning Regimen (regimp): 1=NMA, 2=RIC, 4=MYE
- Putting these variables into a model as continuous predictors gives uninterpretable results
- Sex could be recoded as an indicator variable (1=Male, 0=Female)
- Conditioning Regimen could be recoded as multiple indicator variables
- Automatically implemented using CLASS statement

Categorical Covariates

proc phreg data=in.short_course;
class regimp;
model intxsurv*dead(0)=regimp/rl;
run;

Categorical Covariates: Output

Class Level Information								
Class Value Design Variables								
regimp	1	1	0					
	2	0	1					
	4	0	0					

- •Sets up two indicator variables
 - $\bullet Z_1 = 1$ if regimp=1 (NMA)
 - $\bullet Z_2$ =1 if regimp=2 (RIC)
- •Baseline group is 4 (MA)
- •Default baseline group is highest value

Categorical Covariates: Output

		Type 3 Tests	
		Wald	
Effect	DF	Chi-Square	Pr > ChiSq
regimp	2	6.5865	0.0371

- •Type 3 tests are an "overall" test of whether there are any differences in event rate across any of the levels of the covariate
- •Here p=0.0371, indicating that there are significant differences in mortality between the three conditioning regimens
- •Doesn't tell you which groups are different

Categorical Covariates: Output

Analysis of Maximum Likelihood Estimates											
Parameter		DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio	Confid	atio		
regimp	1	1	0.38114	0.14925	6.5217	0.0107	1.464	1.093	1.961		
regimp	2	1	0.08043	0.11737	0.4696	0.4932	1.084	0.861	1.364		

- •Hazard Ratios are interpreted relative to the baseline group (MA)
 - Patients receiving NMA conditioning are 1.46 times more likely to experience death at any time after tx than patients receiving MA regimens (p=0.0107)
 - •There is no significant difference in mortality between RIC conditioning and MA conditioning (RR=1.08, p=0.4932)

Other pairwise comparisons

- Default output tells you about hazard ratios relative to the baseline group
- Other pairwise comparisons (e.g. RIC vs. NMA conditioning) can be obtained through
 - Changing the baseline group
 - /hazardratios option: Produces confidence intervals for RR for all pairwise comparisons
 - Contrast statement: Hypothesis test for any comparison of interest

Changing the Baseline group

- Default baseline group is ref=last
- Use ref=first to set the baseline group to the one with the lowest value

proc phreg data=in.short_course; class regimp (ref=first); model intxsurv*dead(0)=regimp/rl;

- Global change to baseline group for all class variables class regimp /ref=first;
- Can also specify a particular value for the baseline group class regimp (ref='1');

Changing the Baseline group

Analysis of Maximum Likelihood Estimates												
Parameter		DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio	95% Hazard Ratio Confidence Limits				
regimp	2	1	-0.30071	0.17346	3.0053	0.0830	0.740	0.527	1.040			
regimp	4	1	-0.38114	0.14925	6.5217	0.0107	0.683	0.510	0.915			

- •Baseline group is now regimp=1 (NMA)
- •Patients receiving RIC conditioning are 0.74 times as likely to experience mortality at any time post transplant compared to those receiving NMA regimens.
- •This difference is not statistically significant (p=0.0830)

HazardRatios option

proc phreg data=in.short_course; class regimp; model intxsurv*dead(0)=regimp/rl; hazardratios regimp; rum;

Hazardratios option: Output

Hazard Ratios for regimp									
Description	Point Estimate	95% Wald Confidence Limits							
regimp 1 vs 2	1.351	0.961	1.898 .						
regimp 1 vs 4	1.464	1.093	1.961						
regimp 2 vs 4	1.084	0.861	1.364						

Patients receiving NMA regimens are 1.351 times more likely to experience mortality than patients receiving RIC conditioning (95% CI 0.961-1.898)

Contrast statement

 \blacksquare Contrast: Linear function of the β parameters

$$C = \sum c_i \beta_i$$

- Interested in testing the null hypothesis that the contrast is equal to 0
- \blacksquare Z₁=1 if NMA, 0 o/w
- Z₂=1 if RIC, 0 o/w
- lacksquare eta_1 and eta_2 correspond to Z_1 and Z_2
- Hazard Ratio for NMA vs. RIC

$$\frac{h(t \mid NMA)}{h(t \mid RIC)} = \frac{h_0(t) \exp(\beta_1)}{h_0(t) \exp(\beta_2)} = \exp(\beta_1 - \beta_2)$$

Contrast Statement

- Testing whether the RR for NMA vs. RIC is equal to 1 is equivalent to testing H₀:β₁-β₂=0
- Contrast coefficients (ci's) are 1 and -1

proc phreg data=in.short_course; class regimp; model intxsurv*dead(0)=regimp/rl; contrast 'NMA vs. RIC' regimp 1 -1 /estimate=exp; run;

Contrast Statement

Contrast Test Results									
Contrast	DF	Wald Chi-Square	Pr > ChiSq						
NMA vs. RIC	1	3.0053	0.0830						

There is no statistically significant difference in mortality between NMA and RIC conditioning regimens (RR=1.351, 95% CI=[0.9615-1.8978], p=0.0830)

	Contrast Rows Estimation and Testing Results											
				Standar				Wald Chi-				
	Тур	Ro	Estimat	d		Confidence		Squar	Pr >			
Contrast	е	w	е	Error	Alpha	Limits		е	ChiSq			
NMA vs.	EXP	1	1.3508	0.2343	0.05	0.961	1.897	3.0053	0.0830			

Model Assumptions

- Cox model assumes that hazard ratios or relative risks are constant over time (proportional hazards)
- May be violated if one group has higher early risk of death, while other group has higher late risk of death
 - autotx vs. allotx
- Need to assess for each covariate whether this assumption of proportional hazards is reasonable
- · If non-proportional hazards are present
 - Use separate relative risks for early and late (timedependent covariate approach)
 - · Stratified model

Assessing proportional hazards

- Assess statement in PROC PHREG
- Plot of standardized score residuals over time.
 - If the residuals get unusually large at any time point, this suggests a problem with the proportional hazards assumption
- SAS includes
 - Plot of randomly generated score processes to allow for graphic assessment of the observed residuals in terms of what is "too large"
 - Formal hypothesis test based on simulation

Assessing proportional hazards

■ Check for non-proportional hazards with covariate graftype (1=BM, 22=PB)

proc phreg data=in.short_course;
class graftype;
model intxsurv*dead(0)=graftype/rl;
assess ph/resample;
run;

Assessing proportional hazards

- Observed score residual is too large relative to randomly generated sample processes
- P-value=0.021
- This indicates proportional hazards assumption does not hold when comparing BM vs. PB

Dealing with Non-Proportional Hazards

- Stratified Cox model h(t|Z, Strata=m)=h_{om}(t) exp[β**Z**], m=1,...,M
- Notes
 - Strata refers to graftype, Z refers to other covariates in model
 - Same β for all strata
 - Same effect of covariate in each strata
 - Baseline hazard function varies across strata
 - Easy to implement in SAS using strata statement Strata graftype;
 - Adjusts for but does not directly tell you about the effect of the strata variable

Time Dependent Covariates

- Z(t) depends on time
- $\blacksquare h(t \mid Z) = h_o(t) \exp[\beta Z(t)]$
- Need to know Z(t) at each event time for each person still at risk
- Must be coded inside PHREG procedure in SAS

Examples of Time Dependent Covariates

- Z(t)=most recent weight
- Z(t)=change in weight from last visit
- Z(t)=most recent chimerism percentage
- Z(t)=1 if history of aGVHD at time t; 0 o/w

Time-dependent covariates for nonproportional hazards

- Model early and late effects of z with timedependent covariates
 - $Z_1(t)=z$ if $t \le c$; 0 otherwise
 - \blacksquare $\mathbb{Z}_2(t)=z$ if t>c 0 otherwise
- Model $h(t|z)=h_0(t)\exp\{\beta_1 Z_1(t)+\beta_2 Z_2(t)\}$
- exp{β₁}—Relative risk of z in those alive with t<c (EARLY EFFECT)
- exp{β₂}—Relative risk of z in those alive with t>c (LATE EFFECT)

Time-dependent covariates

```
proc phreg data=in.short_course;
title1 'Cutpoint at 6 months';
class graftype;
model intxsurv*dead(0)=pbe pbl/rl;
cutpt=6;
if intxsurv>cutpt then do;
pbe=0;
pbl=(graftype=22);
end;
else if intxsurv<=cutpt then do;
pbe=(graftype=22);
pbl=0;
end;
run;
```

Selecting the best cutpoint

	ooint at 6 mo del Fit Statis		Cutpoint at 9 months Model Fit Statistics				
Criterion	Without Covariate s	With Covariate s	Criterion	Without Covariate s	With Covariates		
-2 LOG L	6071.368	6067.094	-2 LOG L	6071.368	6066.215		
AIC	6071.368	6071.094	AIC	6071.368	6070.215		
SBC	6071.368	6079.454	SBC	6071.368	6078.576		
	oint at 12 mo del Fit Statis		Cutpoint at 15 months Model Fit Statistics				
Criterion	Without Covariate s	With Covariates	Criterion	Without Covariate s	With Covariate s		
-2 LOG L	6071.368	6061.749	-2 LOG L	6071.368	6065.264		
AIC	6071.368	6065.749	AIC	6071.368	6069.264		
SBC	6071.368	6074.109	SBC	6071.368	6077.624		

Results of time-dependent covariates

	Analysis of Maximum Likelihood Estimates												
		Paramete	Standar	Chi-			95% Hazard Ratio Confidenc						
Paramete		r	d	Squar	Pr > ChiS	Hazard	е						
r	DF	Estimate	Error	е	q	Ratio	Limits						
pbe	1	-0.28957	0.11622	6.2085	0.0127	0.749	0.596	0.94					
-								0					
pbl	1	0.38013	0.20645	3.3903	0.0656	1.462	0.976	2.19					
	l .							2					

- •In the first 12 months after transplant, patients receiving PBSC are 0.75 times as likely to experience mortality compared to those receiving BM
- •In patients surviving > 12 months, those who received PBSC are 1.46 times more likely to experience mortality.

Building a model with multiple covariates

- Forward selection
 - Enter variables, one at a time
 - Minimum entry criteria (p-value<alpha)
 - Enter based on smallest p-value
- Backwards selection
 - Remove variables, one at a time
 - Removal criteria (p-value>alpha)
 - Remove based on largest p-value
- Stepwise model building
 - Start by adding variables, but can also remove variables

Stepwise selection

- Enter variables as factors
- Can force inclusion of one or more variables in model

proc phreg data=in.short_course; title1 'Stepwise Selection'; class regimp (ref='4') yeartx sex disease agedec graftype kps (ref='1') danhlagrp2/ref=first; model intxsurv*dead(0)=regimp yeartx sex disease agedec graftype kps danhlagrp2 /include=1 selection=stepwise;

run;

Stepwise Selection: Output

 The following effects are included in each model: regimp

	Summary of Stepwise Selection											
	Effect				Score							
Step	Entered	Remove d	DF	Number In	Chi- Squar e	Wald Chi- Square	Pr > ChiS					
1	danhlagrp 2		1	2	15.5080		<.0001					
2	kps		2	3	19.2232		<.0001					
3	disease		1	4	4.5510		0.0329					

Stepwise Selection: Final Model

■ Add graftype as time-dependent covariate back into the model

proc phreg data=in.short_course;
titlel 'Final model';
class regimp (ref='4') yeartx sex disease agedec
graftype kps (ref='1') danhlagrp2/ref=first;
model intssurv*dead(0)=regimp disease kps danhlagrp2 pbe pbl/d;
cutp=12;
if intssurv>cutpt then do;
pbc=0;
pbl=(graftype=22);
end;
clse if intssurv<=cutpt then do;
pbe=(graftype=22);
pbl=0;
end;
graftype=test pbe=pbl=0;
run;

Stepwise Selection: Final Model

Type 3 Tests									
Effect	DF	Wald Chi-Square	Pr > ChiSq						
regimp	2	3.8312	0.1473						
disease	1	4.3102	0.0379						
kps	2	18.2293	0.0001						
danhlagrp2	1	12.9382	0.0003						
pbe	1	4.4112	0.0357						
pbl	1	3.7253	0.0536						

 No significant effect of conditioning regimen (p=0.1473), after controlling for disease, KPS, HLA matching, and graft type

Stepwise	Selection:	Final Model	

	Analysis of Maximum Likelihood Estimates													
Paramete r		DF	Paramete r Estimate	Standar d Error	Chi- Squar e	Pr > ChiSq	Hazard Ratio	95% Hazard Ratio Confidence Limits						
regimp	1	1	0.28272	0.15357	3.3891	0.0656	1.327	0.982	1.793					
regimp	2	1	0.11931	0.11962	0.9948	0.3186	1.127	0.891	1.424					
disease	50	1	0.19956	0.09612	4.3102	0.0379	1.221	1.011	1.474					
kps	0	1	0.42082	0.10177	17.097 1	<.0001	1.523	1.248	1.859					
kps	99	1	-0.02661	0.16927	0.0247	0.8751	0.974	0.699	1.357					
danhlagr p2	1	1	0.35672	0.09917	12.938 2	0.0003	1.429	1.176	1.735					
pbe		1	-0.26064	0.12410	4.4112	0.0357	0.771	0.604	0.983					
pbl		1	0.40667	0.21070	3.7253	0.0536	1.502	0.994	2.270					