{tikz-feynman}

Feynman diagrams with TikZ

Version 0.1 1 May 2014

by Joshua Ellis


```
\begin{tikzpicture}
  \graph [feynman, node distance=2.5cm, edges={thick}, vertical= e to f]
  {
    a - [fermion] b - [photon] c - [fermion] d,
    b - [fermion] e - [fermion] c,
    e - [gluon] f,
    h - [fermion] f - [fermion] i;
  };
  \end{tikzpicture}
```

Contents			3 Examples		5
1	Introduction	2	4 Do	ocumentation	8
	1.1 Installation	2	4.1	Graph Drawing	8
2	$\mathbf{U}\mathbf{sage}$		4.2	Edge Styles	
	2.1 Automatic Placement	3	4 3	Vertex Styles	
	2.2 Semi-automatic Placement	3	1.0	volues buyles	
	2.3 Manual Placement	4	Index		11

1 Introduction

This package provides a set of pre-defined styles in order to draw Feynman diagrams using TikZ more easily and consistently. The set of styles defined here were originally inspired by this answer on http://tex.stackexchange.com, so due credit must go to Jake.

If you have any suggestions or have found any bugs, please feel free to create a new issue or pull request on the Github page: https://www.github.com/JP-Ellis/tikz-feynman.

1.1 Installation

This package is *not* currently offered on CTAN as it is just a personal project of mine; however, if enough people find it useful, I will look into making it available through CTAN.

In order to use this as it is, simply download tikz-feynman.sty and place it in the same directory as your TEX file and include it using the usual \usepackage{tikz-feynman}. Alternatively, it is also possible to install tikz-feynman system-wide by placing it inside TEX's search path (which will vary based on your operating system).

In v3.0.0 of TikZ, there is a bug in the Lua component of the graphdrawing library which prevents it from handling coordinate nodes properly. This bug does not seem to affect the usual TikZ drawing library. If you wish to use the **\graph** command with any of the options that require Lua, you will need to apply the following patch:

```
--- a/generic/pgf/graphdrawing/lua/pgf/gd/interface/InterfaceToDisplay.lua
+++ b/generic/pgf/graphdrawing/lua/pgf/gd/interface/InterfaceToDisplay.lua
@@ -263,6 +263,13 @@ end

function InterfaceToDisplay.createVertex(name, shape, path, height, binding_infos, anchors)

+ -- The path should never be empty, so we create a trivial path in the provided
+ -- path is empty. This occurs with the 'coordinate' shape for example.
+ if #path == 0 then
+ path:appendMoveto(0, 0)
+ path:appendClosepath()
+ end
+
-- Setup
local scope = InterfaceCore.topScope()
local binding = InterfaceCore.binding
```

2 Usage

tikz-feynman has three ways of setting up the Feynman diagram. The placement of vertices can either be fully-automated using some algorithm; specified related to other vertices; or fully manual using coordinates. Each method is mostly compatible with the others, so it is possible to specify a an initial set of vertices using one of the graph algorithms, and then place additional vertices relative to these.

There is one exception: a \graph with feynman spring layout or feynman electrical layout must consist entirely of new nodes and cannot anchor to nodes defined outside the graph.

The three methods of placing nodes are illustrated below and see also the examples for uses in different contexts.

2.1 Automatic Placement

The TikZ graphdrawing library offers the ability to automatically position the vertices of a Feynman diagram by following an algorithm. For some of these algorithm, $LuaT_EX$ is required as the edges are modelled by springs, and the vertices may be given charges.

tikz-feynman pre-defines three graph styles: feynman spring layout, feynman electrical layout and feynman layered layout. By default, when using \graph [feynman], the spring layout is used which models each edge as springs.


```
\tikz \graph [feynman, horizontal'=a to b] {
    a1 - [fermion, edge label=|(e^{-}|)] a [label=70:|(g|)] - [fermion, edge label=|(e^{+}|)] a2,
    a - [photon, edge label=|(|gamma|)] b,
    b1 - [fermion, edge label=|(e^{+}|)] b - [fermion, edge label=|(e^{-}|)] b2;
};
```

2.2 Semi-automatic Placement

TikZ also provides the ability to place vertices relative to other previously labelled vertices using various above=of name, left=of name, and similar keys. tikz-feynman also provides the command \vertex which just a shorthand for \node[vertex]. In the future, \vertex is intended to intelligently recognize when a vertex has a name and adapt the style to display the name.

Once the nodes have been placed, it is possible to use a simple \graph environment in order to draw in the edges, or alternatively, using the \draw command.


```
\begin{tikzpicture} [feynman]
  \vertex [label=70:|(g|)] (a) {};
  \vertex (b) [right=of a] {};
  \vertex (a1) [above left=of a] {};
  \vertex (a2) [below left=of a] {};
  \vertex (b1) [above right=of b] {};
  \vertex (b2) [below right=of b] {};
  \vertex (b2) [below right=of b] {};
  \graph {
      (a1) - [fermion, edge label=|(e^{-}|)] (a) [label=70:|(g|)] - [fermion, edge label=|(e^{-}|+)] (a2),
      (a) - [photon, edge label=|(|gamma|)] (b);
      (b1) - [fermion, edge label*|(e^{-}|+)|) (b) - [fermion, edge label*|(e^{-}|-)|)] (b2);
  };
  \end{tikzpicture}
```

2.3 Manual Placement

Lastly, it is possible to fully specify each vertex' coordinates.

3 Examples


```
\begin{tikzpicture}
  \graph [feynman, horizontal=b1 to b3]
{
    ai - [fermion] a - [fermion] af,
    a - [photon] b1,
    b3 - [photon] c,
    ci - [fermion] c - [fermion] cf;
    {[edges={fermion, looseness=1}]
        b1
        - [out=90, in=180] b2
        - [out=0, in=90] b3
        - [out=-90, in=0] b4
        - [out=180, in=-90] b1,
    };
};
\draw[gluon] (b2) - (b4);
\end{tikzpicture}
```



```
\begin{tikzpicture}
  \graph [feynman, vertical=e to f]
{
    a - [fermion] b - [photon] c - [fermion] d,
    b - [fermion] e - [fermion] c,
    e - [gluon] f,
    h - [fermion] f - [fermion] i;
};
\end{tikzpicture}
```



```
\begin{tikzpicture} [feynman]
  \graph [feynman layered layout, grow=right, edges={fermion}] {
    a - b - c - d - e
};
  \vertex (v) [below=of c] {};
  \vertex (h) [below=of v] {};

  \draw[charged scalar] (b) to [out=-90, in=180] (v);
  \draw[charged scalar] (v) to [out=0, in=-90] (d);
  \draw[scalar] (v) to (h);

\end{tikzpicture}
```



```
\begin{tikzpicture}
  \graph [feynman electrical layout, horizontal=a to b] {
    { [edges={charged scalar}]
        a - b - c - d - a
     },
        a1 -[fermion] a,
        b1 -[anti fermion] b,
        c1 -[fermion] c,
        d1 -[anti fermion] d;
    };
  \end{tikzpicture}
```



```
\begin{tikzpicture} [feynman]
  \vertex (a1) {};
  \vertex (a2) [right=of a1] {};
  \vertex (a3) [right=\( \chi cm \) of a2] {};
  \vertex (b2) [above=\( 1cm \) of b2] {};
  \vertex (b1) [left=\( 2.5cm \) of b2] {};
  \vertex (c) [above=\( 0.5cm \) of b2] {};
  \vertex (s1) [below=\( 0.5cm \) of a1] {};
  \vertex (s2) [below=\( 0.5cm \) of a3] {};

  \graph {
    {[edges=\( fermion \) ]
        (a1) - (a2) - (a3),
        (b1) - (b2),
        (b1) - (c),
        (s1) - (s2),
    },
        (a2) - [scalar] (b1),
    };
  \end{\tikzpicture}
```



```
\begin{tikzpicture} [feynman]
  \vertex (a1) {};
  \vertex (a2) [right=of a1] {};
  \vertex (a3) [right=4cm of a2] {};
  \vertex (b2) [below=0.5cm of a3] {};
  \vertex (b1) [below left=0.75cm and 3cm of b2] {};
  \vertex (b3) [below=1.5cm of b2] {};
  \vertex (b3) [below=2.5cm of a1] {};
  \vertex (s1) [below=2.5cm of a1] {};
  \vertex (s2) [below=2.5cm of a3] {};

  \graph {
    {[edges={fermion}]]
        (a1) - (a2) - (a3),
        (b1) - (b2),
        (b1) - (b3),
        (s1) - (s2),
    },
        (a2) - [scalar] (b1),
    };
  \end{tikzpicture}
```



```
\begin{tikzpicture} [feynman]
  \vertex (a1) {};
  \vertex (a2) [below = 4cm of a1] {};
  \vertex (b1) [below right=1cm and 2cm of a1] {};
  \vertex (b2) [above right=1cm and 2cm of a2] {};
  \vertex (c1) [right=5cm of a1] {};
  \vertex (c2) [right=5cm of a2] {};
  \vertex (c2) [right=5cm of a2] {};
  \graph {
      { [edges=fermion] (a1) - (b1), (c2) - (b1), (b2) - (a2), (b2) - (c1), },
      { (b1) - [photon] (b2), };
  \end{tikzpicture}
```

4 Documentation

/tikz/feynman (no value)

Sets certain options within the scope to be so that they work consistently across the various positioning methods. Note that any \graph

Sets the below=of name spacing to values consistent with the way graphs will place the nodes.

4.1 Graph Drawing

The following keys are defined for the \graph command. Please refer to the graphdrawing documentation in the main TikZ manual for additional information.

/tikz/graphs/feynman

(no value)

The default style for Feynman diagrams; simply a shorthand for feynman spring layout.

/tikz/graphs/every feynman

(no value)

Provides the basic underlying style to all Feynman diagrams created using \graph.


```
\tikzset{graphs/every feynman/.append style={edges={red, thick}}}
% ...
\tikz \graph [feynman, horizontal=c to d] {
    {a, b} - c - [photon] d - {e, f}
};
```

/tikz/graphs/feynman spring layout

(no value)

Models each edge as a spring when determining the final placement of the vertices. This requires $LuaT_EX$.


```
\tikz \graph [feynman spring layout, horizontal=c to d] {
    {a, b} - c - [photon] d - {e, f}
};
```

/tikz/graphs/feynman electrical layout

(no value)

Models each edge as a spring and gives each vertex a charge when determining the final placement of the vertices. This requires LuaT_FX.


```
\tikz \graph [feynman electrical layout, horizontal=c to d] {
    {a, b} - c - [photon] d - {e, f}
};
```

/tikz/graphs/feynman layered layout

(no value)

Models each edge as a spring and gives each vertex a charge when determining the final placement of the vertices. This requires LuaT_EX.


```
\tikz \graph [feynman layered layout, grow=right] {
    {a, b} - c - [photon] d - {e, f}
};
```

4.2 Edge Styles

/tikz/with arrow (no value)

Adds an arrow in the middle of edge.

/tikz/with reversed arrow

(no value)

Adds an arrow in the middle of edge pointing backwards.

/tikz/photon (no value)

Sinusoidal line for photons.

\tikz \draw[photon] (0, 0) - (2, 0);

/tikz/scalar (no value)

Dashed line for scalars.

\tikz \draw[scalar] (0, 0) - (2, 0);

/tikz/charged scalar

(no value)

Dashed line with an arrow for charged scalars.

---- \tikz \draw[charged scalar] (0, 0) - (2, 0);

/tikz/anti charged scalar

(no value)

Dashed line with an reversed arrow for charged scalars.

---- \tikz \draw[anti charged scalar] (0, 0) - (2, 0);

/tikz/fermion (no value)

Solid line with an arrow for fermions.

\tikz \draw[fermion] (0, 0) - (2, 0);

/tikz/anti fermion (no value)

Solid line with a reversed arrow for fermions.

\tikz \draw[anti fermion] (0, 0) - (2, 0);

/tikz/gluon (no value)

Coils for gluons.

\tikz \draw[gluon] (0, 0) - (2, 0);

4.2.1 Edge Modifiers

/tikz/semi-left (no value)

Causes the edge to turn left and complete a semicircle until it reaches the next node.

/tikz/semi-right (no value)

Same as /tikz/semi-left, but going around the other way.

4.3 Vertex Styles

/tikz/vertex (no value)

The base node style used in Feynman diagram.

/tikz/every vertex (no value)

A style applied to all vertices in a Feynman diagram.

```
\tikzset{every vertex/.style={red, shape=circle}}
% ...
\tikz \graph[feynman, horizontal=a to b] {a - b};
```

 $/\text{tikz/particle} = \langle name \rangle$ (no default)

Place the particle $\langle name \rangle$ at the location of the vertex. This should only be used for terminal vertices.

```
e^{-} \longrightarrow e^{-}  \tikz \graph[feynman, horizontal=a to b] {
   a [particle=|(e^{-}}|)] - [fermion] b [particle=|(e^{-}}|)]
};
```

/tikz/blob (no value)

Style the vertex as a blob.


```
\tikz \graph[feynman layered layout, grow=right] {
    {a, b} - c [blob] - {d, e, f}
};
```

Index

This index only contains automatically generated entries. A good index should also contain carefully selected keywords. This index is not a good index.

```
anti charged scalar key, 9
anti fermion key, 9
blob key, 10
charged scalar key, 9
every feynman key, 8
every vertex key, 10
fermion key, 9
feynman key, 8
feynman electrical layout key, 8
feynman layered layout key, 8
{\tt feynman \ spring \ layout \ key}, \ 8
{\tt gluon~key},~9
particle key, 10
photon key, 9
scalar key, 9
semi-left key, 10
semi-right key, 10
/tikz/
     \verb"anti charged scalar", 9
     \verb"anti fermion", 9
     blob, 10
     charged scalar, 9
     every vertex, 10
     fermion, 9
     feynman, 8
     gluon, 9
     graphs/
       \mathtt{every} \ \mathtt{feynman}, \ 8
       feynman, 8
       {\tt feynman\ electrical\ layout},\ 8
       feynman layered layout, 8
       {\tt feynman \ spring \ layout}, \, 8
     particle, 10
     photon, 9
     scalar, 9
     {\tt semi-left},\,10
     {\tt semi-right},\ 10
     vertex, 10
     with arrow, 9
     with reversed arrow, 9\,
vertex key, 10
with arrow key, 9
with reversed arrow key, 9
```