50.034 - Introduction to Probability and Statistics

Week 12 - Lecture 21

January-May Term, 2019

Outline of Lecture

- Expectation of unbiased sample variance
- ▶ *t*-test
- One-sided versus two-sided t-test
- ► Significance level and *p*-values for *t*-test
- ► Non-central *t*-distribution
- ► Two-sample *t*-statistic
- ► Two-sample *t*-test

R.V.'s with unknown mean and unknown variance

Let $\{X_1, \ldots, X_n\}$ be a random sample with **unknown mean** μ and **unknown variance** σ^2 .

Question: How do we use the observed values of X_1, \ldots, X_n to get information about μ and σ^2 ?

- We know the sample mean \overline{X}_n is approximately μ for large n.
 - (Lecture 11) By the law of large numbers, $\overline{X}_n \stackrel{p}{\to} \mu$.
- We also know that the unbiased sample variance s_n^2 is approximately σ^2 for large n.
 - (Lecture 18) The unbiased sample variance of $\{X_1, \ldots, X_n\}$ is

$$s_n^2 = s_n^2(X_1, \dots, X_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

- Note: The unbiased sample variance is defined for all random samples, not just random samples consisting of normal R.V.'s.
- (Lecture 18) $s_n^2 \stackrel{p}{\rightarrow} \sigma^2$.
- ► Theorem: $\mathbb{E}[s_n^2] = \sigma^2$ for every n > 1.
 - We shall see a proof on the next slide.

Expectation of unbiased sample variance

Theorem: Let $\{X_1, \dots, X_n\}$ be **any** random sample with sample mean \overline{X}_n and unbiased sample variance s_n^2 . Let μ and σ^2 be the mean and variance of each X_i . Then $\mathbf{E}[s_n^2] = \sigma^2$ for all n > 1.

Proof: First, we shall compute $\mathbf{E} \Big[\sum_{i=1}^{n} (X_i - \overline{X}_n)^2 \Big]$.

$$\mathbf{E}\Big[\sum_{i=1}^{n}(X_{i}-\overline{X}_{n})^{2}\Big] = \mathbf{E}\Big[\sum_{i=1}^{n}(X_{i}^{2}-2X_{i}\overline{X}_{n}+\overline{X}_{n}^{2})\Big]$$

$$= \mathbf{E}\Big[\Big(\sum_{i=1}^{n}\left[X_{i}^{2}-\frac{2}{n}X_{i}(X_{1}+\cdots+X_{n})\right]\Big)+\frac{1}{n}(X_{1}+\cdots+X_{n})^{2}\Big].$$

Note that

$$\sum_{i=1}^{n} \left[X_i^2 - \frac{2}{n} X_i (X_1 + \dots + X_n) \right] = \sum_{i=1}^{n} \left[\frac{n-2}{n} X_i^2 - \frac{2}{n} \sum_{\substack{1 \le j \le n \\ j \ne i}} X_i X_j \right].$$

$$(X_1 + \dots + X_n)^2 = \sum_{i=1}^n \left[X_i^2 + \sum_{\substack{1 \le j \le n \\ k \ne j}} X_i X_j \right]$$

Expectation of unbiased sample variance (continued)

Thus, $\mathbf{E} \left| \sum_{i=1}^{n} (X_i - \overline{X}_n)^2 \right|$ equals

$$\begin{split} \mathbf{E} \bigg[\sum_{i=1}^{n} \bigg(\frac{n-2}{n} X_{i}^{2} - \frac{2}{n} \sum_{1 \leq j \leq n} X_{i} X_{j} + \frac{1}{n} X_{i}^{2} + \frac{1}{n} \sum_{1 \leq j \leq n} X_{i} X_{j} \bigg) \bigg] \\ &= \sum_{i=1}^{n} \bigg[\frac{n-1}{n} \mathbf{E}[X_{i}^{2}] - \frac{1}{n} \sum_{1 \leq j \leq n} \mathbf{E}[X_{i}] \mathbf{E}[X_{j}] \bigg] \\ &= \bigg(\sum_{i=1}^{n} \bigg[\frac{n-1}{n} (\mathbf{E}[X_{i}^{2}] - \mathbf{E}[X_{i}]^{2}) + \frac{n-1}{n} \mu^{2} \bigg] \bigg) - \frac{1}{n} (n(n-1)) \mu^{2} \\ &= \bigg(\sum_{i=1}^{n} \frac{n-1}{n} \mathrm{var}(X_{i}) \bigg) + (n-1) \mu^{2} - (n-1) \mu^{2} \\ &= (n-1) \sigma^{2}. \end{split}$$

Therefore, $\mathbf{E}[s_n^2] = \mathbf{E}\left[\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X}_n)^2\right] = \sigma^2$, for n>1.

Recall: Main Theorem on t-distributions

Let $\{X_1, \ldots, X_n\}$ be a random sample of observable **normal** R.V.'s with mean μ and variance σ^2 . Let \overline{X}_n and s_n^2 be the sample mean and the **unbiased sample variance** respectively.

Most Important Theorem on t-distributions:

 $\frac{\sqrt{n}(\overline{X}_n-\mu)}{s_n}$ has the *t*-distribution with (n-1) degrees of freedom.

Useful Properties of the t-distribution:

Suppose Z has the t-distribution with m degrees of freedom. Let f(z) be the pdf of Z, and let F(z) be the cdf of Z.

- ▶ The graph of f(z) is symmetric about the point z = 0.
- ▶ F(-z) = 1 F(z) for all real numbers z.
- ▶ $F^{-1}(p) = -F^{-1}(1-p)$ for all real numbers 0 .

(Properties are similar to the properties of the standard normal distribution.)

Recall: Hypothesis Test

Model set-up: Let X_1, \ldots, X_n be observable R.V.'s with unknown parameter θ . Let Ω be the parameter space of θ .

- ▶ Goal: Perform hypothesis testing on the parameter θ .
- 1. Specify some **null hypothesis** $H_0: \theta \in \Omega_0$.
 - $\Omega_0 \subseteq \Omega$ is a subset chosen based on your specific application.
 - ▶ You wish to test whether the "true" value of θ is not in Ω_0 .
- 2. Specify some **test statistic** $T = T(X_1, ..., X_n)$.
 - Your final decision will depend on the observed value of T.
- 3. Specify some **rejection region** $R \subseteq \mathbb{R}$.
 - ▶ This represents the region for where to reject H_0 .
 - ▶ Note: R can be different from the complement of Ω_0 .
- Collect experimental evidence
 - Get observed values $X_1 = x_1, \dots, X_n = x_n$.
- 5. Final decision: To reject or not to reject?
 - "Reject H_0 " if $T(x_1, \ldots, x_n) \in R$.
 - ▶ "Do not reject H_0 " if $T(x_1, ..., x_n) \notin R$.

The entire test procedure is collectively called a hypothesis test.

t-test

Definition: A t-test is a hypothesis test \mathcal{H} satisfying the following:

- ▶ The null hypothesis of \mathcal{H} is $H_0: \theta \in \Omega_0$, where θ is the **mean**.
- ► The test statistic of \mathcal{H} would have the **t-distribution** on the condition that $\theta = \theta_0$ for some specific θ_0 in Ω_0 .

Note: There are many different kinds of *t*-tests!

Three most important examples of t-tests:

Let $\{X_1, \ldots, X_n\}$ be a random sample of **normal** observable R.V.'s with **unknown mean** μ and **unknown variance** σ^2 . Let \overline{X}_n , s_n^2 be the sample mean and the **unbiased sample variance** respectively.

Let μ_0 be some real constant, and define the R.V. $T = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{s_n}$.

- ▶ If \mathcal{H} is a hypothesis test with null hypothesis $H_0: \mu \leq \mu_0$, test statistic \mathcal{T} , and rejection region $[c, \infty)$, then \mathcal{H} is a t-test.
- ▶ If \mathcal{H} is a hypothesis test with null hypothesis $H_0: \mu \geq \mu_0$, test statistic T, and rejection region $(-\infty, c]$, then \mathcal{H} is a t-test.
- ▶ If \mathcal{H} is a hypothesis test with null hypothesis $H_0: \mu = \mu_0$, test statistic $|\mathcal{T}|$, and rejection region $[c, \infty)$, then \mathcal{H} is a t-test.

One-sided versus two-sided t-tests

Same assumptions as before:

Let $\{X_1, \ldots, X_n\}$ be a random sample of **normal** observable R.V.'s with **unknown mean** μ and **unknown variance** σ^2 . Let \overline{X}_n , s_n^2 be the sample mean and the **unbiased sample variance** respectively. Let μ_0 be some real constant, and define the R.V. $T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{s_n}$.

Definition:

- ▶ If \mathcal{H} is a t-test with test statistic T and null hypothesis either $H_0: \mu \leq \mu_0$ or $H_0: \mu \geq \mu_0$ (with corresponding rejection region either $[c, \infty)$ or $(-\infty, c]$ respectively for some $c \in \mathbb{R}$), then we say that \mathcal{H} is a one-sided t-test.
- ▶ If \mathcal{H} is a t-test with test statistic |T| and null hypothesis $H_0: \mu = \mu_0$ (with corresponding rejection region $[c, \infty)$ for some $c \in \mathbb{R}$), then we say that \mathcal{H} is a two-sided t-test.

Significance level of one-sided *t*-tests

Let $\{X_1, \dots, X_n\}$ be a random sample of **normal** observable R.V.'s with unknown mean μ and unknown variance σ^2 . Let \overline{X}_n , s_n^2 be the sample mean and the unbiased sample variance respectively. Let μ_0 and c_0 be fixed real numbers, and define $T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{\varepsilon}$.

Theorem: Suppose that c_0 is the $100(1-\alpha_0)$ -percentile of the t-distribution with n-1 degrees of freedom.

- ▶ If \mathcal{H} is a *t*-test with null hypothesis $H_0: \mu \leq \mu_0$, test statistic T, and rejection region $[c, \infty)$, then \mathcal{H} has significance level α_0 if and only if $c > c_0$.
- ▶ If \mathcal{H} is a *t*-test with null hypothesis $H_0: \mu \geq \mu_0$, test statistic T, and rejection region $(-\infty, c]$, then H has significance level α_0 if and only if $c < c_0$.

Intuition:

- ▶ If H_0 : $\mu \leq \mu_0$ is true, then any observed value T = t should satisfy t < "some small value".
- ▶ If $H_0: \mu \ge \mu_0$ is true, then any observed value T=t should satisfy t > "some small value".

Significance level of two-sided *t*-tests

Let $\{X_1,\ldots,X_n\}$ be a random sample of **normal** observable R.V.'s with **unknown mean** μ and **unknown variance** σ^2 . Let \overline{X}_n , s_n^2 be the sample mean and the **unbiased sample variance** respectively. Let μ_0 and c_0 be fixed real numbers, and define $T = \left|\frac{\sqrt{n}(\overline{X}_n - \mu_0)}{s_n}\right|$.

Theorem: Suppose that c_0 is the $100(1-\frac{\alpha_0}{2})$ -percentile of the t-distribution with n-1 degrees of freedom. If $\mathcal H$ is the t-test with null hypothesis $H_0: \mu=\mu_0$, test statistic $\mathcal T$, and rejection region $[c,\infty)$, then $\mathcal H$ has significance level α_0 if and only if $c\geq c_0$.

Intuition: If $H_0: \mu = \mu_0$ is true, then any observed value T=t should be approximately zero (remember that $T=\big|\frac{\sqrt{n}(\overline{X}_n-\mu_0)}{s_n}\big|$), so t should be less that "some small positive value".

► Thus the null hypothesis *H*₀ should be rejected if *t* is at least "some small positive value".

Example 1

Let $\{X_1,\ldots,X_9\}$ be a random sample of normal observable R.V.'s with unknown mean μ and unknown variance σ^2 .

Let $\mathcal{H}=\{\mathcal{H}_c\}_{c\in\mathbb{R}}$ be a collection of t-tests, where each \mathcal{H}_c has the null hypothesis $H_0:\mu\leq 1$, the test statistic $T=\frac{\sqrt{n}(\overline{X}_n-1)}{s_n}$, and the rejection region $[c,\infty)$, where \overline{X}_n denotes the sample mean, and s_n denotes the unbiased sample standard deviation.

- 1. Find the value of c that maximizes the power of \mathcal{H}_c among all level 0.05 t-tests in \mathcal{H} .
- 2. Suppose we are given the observed value $\mathcal{T}=1.11.$ What is the p-value of \mathcal{H} ?

Example 1 - Solution

- 1. Notice that each \mathcal{H}_c is a one-sided t-test. If $\mu = 1$, then T has the t-distribution with 8 degrees of freedom.
 - Note that 100(1-0.05) = 95.
 - From the table of values for t-distributions, the 95th percentile of the t-distribution with 8 degrees of freedom is c = 1.860.
 - ▶ Thus, \mathcal{H}_c has significance level 0.05 if and only if $c \ge 1.860$.

Table of the t Distribution

If *X* has a *t* distribution with *m* degrees of freedom, the table gives the value of *x* such that $Pr(X \le x) = p$.

m	p = .55	.60	.65	.70	.75	.80	.85	.90	.95	.975	.99	.995
1	.158	.325	.510	.727	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657
2	.142	.289	.445	.617	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925
3	.137	.277	.424	.584	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841
4	.134	.271	.414	.569	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604
5	.132	.267	.408	.559	.727	.920	1.156	1.476	2.015	2.571	3.365	4.032
6	.131	.265	.404	.553	.718	.906	1.134	1.440	1.943	2.447	3.143	3.707
7	.130	.263	.402	.549	.711	.896	1.119	1.415	1.895	2.365	2.998	3.499
8	.130	.262	.399	.546	.706	.889	1.108	1.397	1.860	2.306	2.896	3.355
9	.129	.261	.398	.543	.703	.883	1.100	1.383	1.833	2.262	2.821	3.250
10	.129	.260	.397	.542	.700	.879	1.093	1.372	1.812	2.228	2.764	3.169

Example 1 - Solution (continued)

- 1. (continued) To maximize the power of \mathcal{H}_c among all level 0.05 t-tests in \mathcal{H} , we need to find the smallest possible c satisfying c > 1.860, therefore c = 1.860.
- 2. Given T = 1.11, the *t*-test \mathcal{H}_c rejects \mathcal{H}_0 whenever $c \leq 1.11$.
 - From the table of values for t-distributions, 1.108 is the 85th percentile of the t-distribution with 8 degrees of freedom, which corresponds to the significance level 1-0.85=0.15.
 - ▶ Therefore the *p*-value of \mathcal{H} is ≈ 0.15 .

Table of the t Distribution

If *X* has a *t* distribution with *m* degrees of freedom, the table gives the value of *x* such that $Pr(X \le x) = p$.

m	p = .55	.60	.65	.70	.75	.80	.85	.90	.95	.975	.99	.995
1	.158	.325	.510	.727	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657
2	.142	.289	.445	.617	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925
3	.137	.277	.424	.584	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841
4	.134	.271	.414	.569	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604
5	.132	.267	.408	.559	.727	.920	1.156	1.476	2.015	2.571	3.365	4.032
6	.131	.265	.404	.553	.718	.906	1.134	1.440	1.943	2.447	3.143	3.707
7	.130	.263	.402	.549	.711	.896	1.119	1.415	1.895	2.365	2.998	3.499
8	.130	.262	.399	.546	.706	.889	1.108	1.397	1.860	2.306	2.896	3.355
_												

Example 2

Let $\{X_1,\ldots,X_7\}$ be a random sample of normal observable R.V.'s with unknown mean μ and unknown variance σ^2 .

Let $\mathcal{H}=\{\mathcal{H}_c\}_{c\in\mathbb{R}}$ be a collection of t-tests, where each \mathcal{H}_c has the null hypothesis $H_0: \mu=-4$, the test statistic $T=\big|\frac{\sqrt{n}(\overline{X}_n+4)}{s_n}\big|$, and the rejection region $[c,\infty)$, where \overline{X}_n denotes the sample mean, and s_n denotes the unbiased sample standard deviation.

- 1. Find the value of c that maximizes the power of \mathcal{H}_c among all level 0.05 t-tests in \mathcal{H} .
- 2. Suppose we are given the observed value T=3.14. What is the *p*-value of \mathcal{H} ?

Example 2 - Solution

- 1. Notice that each \mathcal{H}_c is a two-sided t-test. If $\mu = -4$, then the R.V. $\frac{\sqrt{n}(\overline{X}_n + 4)}{\epsilon_-}$ has the t-distribution with 6 degrees of freedom.
 - Note that $100(1 \frac{0.05}{2}) = 97.5$.
 - From the table of values for t-distributions, the 97.5th percentile of the t-distribution with 6 degrees of freedom is c = 2.447.
 - ▶ Thus, \mathcal{H}_c has significance level 0.05 if and only if $c \ge 2.447$.

Table of the t Distribution

If *X* has a *t* distribution with *m* degrees of freedom, the table gives the value of *x* such that $Pr(X \le x) = p$.

m	p = .55	.60	.65	.70	.75	.80	.85	.90	.95	.975	.99	.995
1	.158	.325	.510	.727	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657
2	.142	.289	.445	.617	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925
3	.137	.277	.424	.584	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841
4	.134	.271	.414	.569	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604
5	.132	.267	.408	.559	.727	.920	1.156	1.476	2.015	2.571	3.365	4.032
6	.131	.265	.404	.553	.718	.906	1.134	1.440	1.943	2.447	3.143	3.707
7	.130	.263	.402	.549	.711	.896	1.119	1.415	1.895	2.365	2.998	3.499
8	.130	.262	.399	.546	.706	.889	1.108	1.397	1.860	2.306	2.896	3.355
9	.129	.261	.398	.543	.703	.883	1.100	1.383	1.833	2.262	2.821	3.250
10	129	260	397	542	700	879	1.093	1 372	1.812	2 228	2 764	3 169

Example 2 - Solution (continued)

- 1. (continued) To maximize the power of \mathcal{H}_c among all level 0.05 t-tests in \mathcal{H} , we need to find the smallest possible c satisfying c > 2.447, therefore c = 2.447.
- 2. Given T = 3.14, the *t*-test \mathcal{H}_c rejects H_0 whenever $c \leq 3.14$.
 - From the table of values for t-distributions, 3.143 is the 99th percentile of the t-distribution with 6 degrees of freedom, which corresponds to the significance level 2(1 0.99) = 0.02.
 - ▶ Therefore the *p*-value of \mathcal{H} is ≈ 0.02 .

Table of the t Distribution

If X has a t distribution with m degrees of freedom, the table gives the value of x such that Pr(X < x) = p.

m	p = .55	.60	.65	.70	.75	.80	.85	.90	.95	.975	.99	.995
1	.158	.325	.510	.727	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657
2	.142	.289	.445	.617	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925
3	.137	.277	.424	.584	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841
4	.134	.271	.414	.569	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604
5	.132	.267	.408	.559	.727	.920	1.156	1.476	2.015	2.571	3.365	4.032
6	.131	.265	.404	.553	.718	.906	1.134	1.440	1.943	2.447	3.143	3.707
7	.130	.263	.402	.549	.711	.896	1.119	1.415	1.895	2.365	2.998	3.499
8	.130	.262	.399	.546	.706						2.896	

p-values of *t*-tests

Let $\{X_1, \ldots, X_n\}$ be a random sample of **normal** observable R.V.'s with **unknown mean** μ and **unknown variance** σ^2 . Let \overline{X}_n , s_n^2 be the sample mean and the **unbiased sample variance** respectively. Let μ_0 be a fixed real number, and define $T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{s_n}$.

Theorem:

- (One-sided t-test) Let $\mathcal H$ be a t-test with null hypothesis $H_0: \mu \leq \mu_0$ or $H_0: \mu \geq \mu_0$, and test statistic T. Given the observed value T=t, suppose that t is the $100(1-\alpha_0)$ -th percentile of the t-distribution with n-1 degrees of freedom. Then the p-value of $\mathcal H$ is α_0 .
- ▶ (Two-sided t-test) Let \mathcal{H} be a t-test with null hypothesis $H_0: \mu = \mu_0$ and test statistic |T|. Given the observed value T = t, suppose that |t| is the $100(1 \frac{\alpha_0}{2})$ -th percentile of the t-distribution with n-1 degrees of freedom. Then the p-value of \mathcal{H} is α_0 .

A closer look at the test statistic of the t-test

Let $\{X_1, \ldots, X_n\}$ be a random sample of **normal** R.V.'s with mean μ and variance σ^2 . Let \overline{X}_n and s_n^2 be the sample mean and the **unbiased sample variance** respectively. Let $\mu_0 \in \mathbb{R}$ be fixed.

- Consider a *t*-test with test statistic $T = \frac{\sqrt{n}(X_n \mu_0)}{S_n}$.
 - ▶ What we know: If $\mu = \mu_0$, then T has the t-distribution with (n-1) degrees of freedom.
 - ▶ **Question:** What if $\mu \neq \mu_0$? What then can we say about the distribution of T?

Key observation: We can rewrite $\frac{\sqrt{n}(\overline{X}_n - \mu_0)}{s_n}$ as $\frac{\frac{\sqrt{n}(X_n - \mu_0)}{\sigma}}{\frac{S_n}{\sigma}}$.

- ► The numerator $\frac{\sqrt{n}(X_n \mu_0)}{\sigma}$ has the normal distribution with mean $\frac{\sqrt{n}(\mu \mu_0)}{\sigma}$ and variance 1.
- If $\hat{\sigma}_n^2$ is the biased sample variance of $\{X_1, \dots, X_n\}$, then $\frac{n\hat{\sigma}_n^2}{\sigma^2} = \frac{(n-1)s_n^2}{\sigma^2} \sim \chi^2(n-1)$.
- ► Thus, the denominator $\frac{s_n}{\sigma}$ equals $\sqrt{\frac{Y}{n-1}}$, where $Y \sim \chi^2(n-1)$.

Non-central t-distribution

Recall: If X is a continuous R.V., then X has a t-distribution if there is some positive integer m such that

$$X = \frac{Z}{\sqrt{\frac{Y}{m}}},$$

where $Z \sim N(0,1)$, and $Y \sim \chi^2(m)$.

▶ This is one of the two equivalent definitions of *t*-distribution.

Definition: A R.V. X is said to have a non-central t-distribution if there exist a positive integer m and a real number ψ such that

$$X = \frac{Z}{\sqrt{\frac{Y}{m}}},$$

where $Z \sim N(\psi, 1)$, and $Y \sim \chi^2(m)$.

- \blacktriangleright m is the degree of freedom. ψ is the non-centrality parameter.
- ▶ We say that X has the t-distribution with m degrees of freedom and non-centrality parameter ψ .

The distribution of the test statistic of the *t*-test

Let $\{X_1,\ldots,X_n\}$ be a random sample of **normal** R.V.'s with mean μ and variance σ^2 . Let \overline{X}_n and s_n^2 be the sample mean and the **unbiased sample variance** respectively. Let $\mu_0 \in \mathbb{R}$ be fixed.

Consider a *t*-test with test statistic $T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{s_n}$.

Theorem: T has the non-central t-distribution with n-1 degrees of freedom and non-centrality parameter $\psi = \frac{\sqrt{n(\mu - \mu_0)}}{\sigma}$.

Remark: There are many statistical software that can "compute" the cdf of a non-cental *t*-distribution.

In this course, we shall not be computing non-central t-distributions, but it is good to know that the distribution of the test statistic T can actually be computed numerically for any value of μ_0 .

Two-sample *t*-statistic

Note: *t*-tests also make sense on two random samples.

- Let $\{X_1, \ldots, X_n\}$ be a random sample of **normal** observable R.V.'s with **unknown mean** μ_X and **unknown variance** σ^2 .
 - ▶ Let \overline{X}_n , s_X^2 be the sample mean and the **unbiased sample** variance respectively.
- Let $\{Y_1, \ldots, Y_m\}$ be a random sample of **normal** observable R.V.'s with **unknown mean** μ_Y and **unknown variance** σ^2 .
 - Let \overline{X}_n , s_X^2 be the sample mean and the **unbiased sample** variance respectively.
- ▶ Here, we assume every X_i and Y_j have the same variance σ^2 .

Definition: The two-sample *t*-statistic of $\{X_1, \ldots, X_n\}$ and $\{Y_1, \ldots, Y_m\}$ is the R.V.

$$T = \frac{\sqrt{n+m-2}(\overline{X}_n - \overline{Y}_m)}{\sqrt{\frac{1}{n} + \frac{1}{m}}\sqrt{(n-1)s_X^2 + (m-1)s_Y^2}}$$

Theorem: If $\mu_X = \mu_Y$, then the **two-sample t-statistic** has the *t*-distribution with m + n - 2 degrees of freedom.

Two-sample *t*-test

Definition: A two-sample t-test is a t-test that uses the two-sample t-statistic (or its absolute value) as the test statistic.

Three most important examples of two-sample t-tests: Let $\{X_1, \dots, X_n\}$ and $\{Y_1, \dots, Y_m\}$ be two random samples of **normal** observable R.V.'s, where each X_i has **unknown mean** μ_X , each Y_i has **unknown mean** μ_{Y_i} , and all of the X_i 's and Y_i 's have a **common unknown variance** σ^2 . Let $c \in \mathbb{R}$, and let T be the **two-sample t-statistic** of $\{X_1, \ldots, X_n\}$ and $\{Y_1, \ldots, Y_m\}$.

- ▶ The t-test with null hypothesis $H_0: \mu_X \leq \mu_Y$, test statistic T, and rejection region $[c, \infty)$ is a two-sample t-test.
- ▶ The *t*-test with null hypothesis $H_0: \mu_X \ge \mu_Y$, test statistic T, and rejection region $(-\infty, c]$ is a two-sample t-test.
- ▶ The t-test with null hypothesis $H_0: \mu_X = \mu_Y$, test statistic |T|, and rejection region $[c, \infty)$ is a two-sample t-test.

Note: The first two two-sample t-tests are called one-sided, while the third two-sample *t*-test is called two-sided.

Significance level of two-sample t-test

Let $\{X_1, \ldots, X_n\}$ and $\{Y_1, \ldots, Y_m\}$ be two random samples of **normal** observable R.V.'s, where each X_i has **unknown mean** μ_X , each Y_i has **unknown mean** μ_Y , and all of the X_i 's and Y_i 's have a **common unknown variance** σ^2 . Let $c_0 \in \mathbb{R}$, and let T be the **two-sample t-statistic** of $\{X_1, \ldots, X_n\}$ and $\{Y_1, \ldots, Y_m\}$.

Theorem: Suppose that c_0 is the $100(1-\alpha_0)$ -percentile of the t-distribution with n + m - 2 degrees of freedom.

- ▶ If \mathcal{H} is a *t*-test with null hypothesis $H_0: \mu_X \leq \mu_Y$, test statistic T, and rejection region $[c, \infty)$, then \mathcal{H} has significance level α_0 if and only if $c > c_0$.
- ▶ If \mathcal{H} is a t-test with null hypothesis $H_0: \mu_X \geq \mu_Y$, test statistic T, and rejection region $(-\infty, c]$, then H has significance level α_0 if and only if $c < c_0$.

Theorem: Suppose that c_0 is the $100(1-\frac{\alpha_0}{2})$ -percentile of the *t*-distribution with n+m-2 degrees of freedom. If \mathcal{H} is the *t*-test with null hypothesis $H_0: \mu_X = \mu_Y$, test statistic T, and rejection region $[c,\infty)$, then \mathcal{H} has significance level α_0 if and only if $c \geq c_0$.

p-values of two-sample t-tests

Let $\{X_1, \ldots, X_n\}$ and $\{Y_1, \ldots, Y_m\}$ be two random samples of **normal** observable R.V.'s, where each X_i has **unknown mean** μ_X , each Y_i has **unknown mean** μ_Y , and all of the X_i 's and Y_i 's have a **common unknown variance** σ^2 . Let $c_0 \in \mathbb{R}$, and let T be the **two-sample t-statistic** of $\{X_1, \ldots, X_n\}$ and $\{Y_1, \ldots, Y_m\}$.

Theorem:

- ▶ (One-sided two-sample t-test) Let \mathcal{H} be a t-test with null hypothesis $H_0: \mu_X \leq \mu_Y$ or $H_0: \mu_X \geq \mu_Y$, and test statistic T. Given the observed value T = t, suppose that t is the $100(1-\alpha_0)$ -th percentile of the *t*-distribution with n+m-2degrees of freedom. Then the *p*-value of \mathcal{H} is α_0 .
- ▶ (Two-sided two-sample t-test) Let \mathcal{H} be a t-test with null hypothesis $H_0: \mu_X = \mu_Y$ and test statistic |T|. Given the observed value T=t, suppose that |t| is the $100(1-\frac{\alpha_0}{2})$ -th percentile of the *t*-distribution with n + m - 2 degrees of freedom. Then the *p*-value of \mathcal{H} is α_0 .

Summary

- Expectation of unbiased sample variance
- ▶ t-test
- One-sided versus two-sided t-test
- Significance level and p-values for t-test
- Non-central t-distribution
- ► Two-sample *t*-statistic
- ► Two-sample *t*-test

Reminders:

There is mini-quiz 4 (15mins) this week during Cohort Class.

► Final mini-quiz! Tested on all materials from Lectures 15–20 and Cohort classes weeks 9–11. Today's lecture is Lecture 21.

Make-up class for this week's Friday's Cohort Class

- Originally on 19th April (Good Friday).
- ► Make-up: On 17th April (Wednesday), 2–4pm, CC14 (2.507).
 - So your mini-quiz 4 will be on Wednesday!
- This Thursday's cohort classes are on as usual.

