ÉCOLE POLYTECHNIQUE Promotion x2014 Dimitri Lozeve

Rapport de stage de recherche

RECONSTRUCTION DE TRAJECTOIRE À PARTIR DE DONNÉES INERTIELLES

Modélisation statistique et apprentissage en temps réel appliqués à l'embarqué

Rapport confidentiel

Option Département de Mathématiques Appliquées Champ Modélisation probabiliste et statistique (MAP594)

Enseignants référents Vincent Bansaye, Stéphane Gaïffas

Tuteur de stage Marc Grelet

Dates du stage 27 mars 2017 — 4 août 2017

Adresse de l'organisme sysnav

57 rue de Montigny 27200 Vernon — France

Déclaration d'intégrité relative au plagiat

Je soussigné, Dimitri Lozeve, certifie sur l'honne	eur:
 que les résultats décrits dans ce rapport sont l' que je suis l'auteur de ce rapport; que je n'ai pas utilisé de sources ou résultats tiers selon les règles bibliographiques préconisées. 	
Je déclare que ce travail ne peut pas être suspecté d	de plagiat.
Date	Signature
30 juin 2017	Day

Résumé

La géolocalisation a joué un rôle extrêmement important dans de multiples secteurs technologiques, et principalement dans les transports. Cependant, il reste difficile d'appliquer les technologies existantes, et particulièrement les systèmes GPS, à l'environnement piéton. En effet, la résolution du GPS reste limitée à quelques mètres dans le meilleur des cas, et reste dépendante d'une connexion satellite permanente, ce qui exclut son utilisation dans des milieux défavorables, mais fréquents pour des individus à pied (intérieur des bâtiments, souterrains par exemple).

La démocratisation des capteurs de données inertielles (accélération et vitesse angulaire) à travers le développement des smartphones et autres objets connectés favorise une solution de reconstruction de trajectoire à partir de ces seules données, ce qui ne nécessite aucune connexion vers l'extérieur. Ce projet a pour objectif d'utiliser des techniques statistiques et algorithmiques pour reconstruire une trajectoire en temps réel, directement sur un dispositif embarqué au niveau de la cheville. Des techniques traditionnelles dans le domaine de la navigation, comme le filtrage de Kalman, sont combinées avec des méthodes d'apprentissage statistique et d'optimisation qui permettent d'obtenir une précision inférieure au mètre. La trajectoire obtenue est capable de distinguer des pas individuels dans de multiples situations complexes (escaliers, sauts).

ABSTRACT

A vast array of modern technologies has come to rely on precise geolocalization, particularly in the transport industry. However, existing technologies based on the GPS cannot be applied directly to pedestrian navigation. GPS resolution is limited to a few meters in best-case scenarios and depends on permanent satellite communication. Of these two restrictions, the former renders GPS nearly useless for pedestrian navigation in urban environments, while the latter excludes common scenarios where radio communications are unavailable, such as buildings and tunnels.

The widespread adoption of inertial data sensors (acceleration and angular speed) through the development of smartphones and other connected devices leads to a new navigation approach using only this data, that do not require any external communication. This project uses statistical and algorithmic methods to render a trajectory in real-time on a foot-mounted embedded device. Traditional navigation methods such as Kalman filtering are combined with machine learning and optimization to get a precision smaller than a metre. The resulting trajectory is able to distinguish individual steps in complex situations like staircases and jumps.

Table des matières

Ré	Résumé			iii		
Abstract			iii			
1	Géo	localis	ation	1		
	1.1	Techn	ologies Sysnav	1		
	1.2	Object	tifs du stage	1		
2	Algorithmes					
	2.1	Descri	iption générale de l'algorithme temps réel	2		
		2.1.1	Objectifs de l'algorithme	2		
		2.1.2	Structure globale	2		
		2.1.3	Données	3		
	2.2	Repré	sentation des rotations	5		
	2.3	Filtre	de Kalman	7		
		2.3.1	Simple	7		
		2.3.2	Étendu	10		
		2.3.3	En racine carrée	11		
		2.3.4	Filtres de vitesse et d'attitude	11		
		2.3.5	Lissage	12		
	2.4		tion des phases de la marche : machine à états finis	13		
	-	2.4.1	Intérêt	13		
		2.4.2	Limitations	14		
		2.4.3	Adaptations	15		
	2.5		tion des phases de la marche : méthodes d'apprentissage	16		
	3	2.5.1	Le problème : détection des périodes pied au sol	16		
		2.5.2	Choix de la méthode	17		
		2.5.3	Récupération des données	17		
		2.5.4	Implémentation et tests	18		
	2.6	0 1	zuche : le problème de la marche à pied	19		
		2.6.1	Zero Update Velocity	19		
		2.6.2	Bras de levier autour de l'axe de la cheville : les zuches	20		
	2.7		aintes du temps réel : le problème de la causalité	20		
	/	2.7.1	Modifications de l'algorithme existant	20		
		2./.1	Would attoris de l'argorithme existant	20		

		2.7.2 Difficultés rencontrées et solutions	22				
	2.8	Résultats	22				
3	Emb	Embarqué					
	3.1	Besoins et objectifs	25				
	3.2	Aspect matériel	25				
		3.2.1 Capteurs	25				
		3.2.2 Microcontrôleurs	26				
		3.2.3 Entrées et sorties	27				
	3.3	Difficultés liées à l'environnement embarqué	28				
		3.3.1 Limitation puissance de calcul	28				
		3.3.2 Limitation en mémoire	28				
		3.3.3 Limitation en transfert de données	29				
		3.3.4 Organisation complexe du code	29				
	3.4	Solutions	30				
	0 1	3.4.1 Structure FIFO	30				
		3.4.2 Limitation du nombre d'états du filtre de Kalman	30				
4	Rec	Reconstruction d'une vérité terrain pour la marche					
	4.1	Objectifs	32 32				
	4.2						
		4.2.1 Positionnement	32 32				
		4.2.2 Caméras	33				
		4.2.3 Logiciel	33				
		4.2.4 Calibration	34				
	4.3	Algorithme d'harmonisation	34				
	1.3	4.3.1 Transformation entre repères et référentiels	34				
		4.3.2 Optimisation	35				
	4.4	Résultats	36				
Co	nclu	ion	38				
Bi	Bibliographie						