CYTOSCAPE — SHORT TUTORIAL

THE NETWORK FILES

- Intro to Cytoscape (https://cytoscape.org/)
- Files on https://github.com/krabberod/BIO9905MERG1_V21/tree/main/Networks
- The commands for a typical run
 - eLSA_starting_script.sh
- Input data
 - eLSA_otu_table.tsv
 - eLSA_top100_otus.tsv

THE NETWORK FILES

- Output from eLSA
 - eLSA_network_top100.perm.d0.tsv eLSA_network_top100.perm.d1.tsv eLSA_network.d0.tsv eLSA_network.d1.tsv
- eLSA_node_annotation_relabund.tsv
- eLSA_node_annotation_tax.tsv
- eLSA_for_cytoscape.cys (can be opened directly in cytoscape)

open Cytsocape, import eLSA_network_top100.perm.d0.tsv

 Define target and source node (this is an undirected networks so the order of the nodes doesn't matter)

USING CYTOSCAPE

Setting up a filter for P value (repeat for Q value) How many edges are left?

Choose a layout - Circular is fastest Edge-weighted Spring Embedded Layout (LS) looks better©

Now choose 'Style' and then 'Edge' to change the color of the edges

Use *Stroke Color* to make the positive edges green and the negative edges red

Column: LS

Mapping type: Continuous

ADD ANNOTATIONS TO THE NODES- IMPORT TABLE

- Two annotation files:
 - 1) Relative abundance (eLSA_annotation_relabund.tsv)
 - 2) Taxonomic assignment (blastn vs MAS from UParse pipeline)

 Change the name, shape, color and/or size of the nodes based on the relative abundance and the taxonomic assignment of the OTUs

Choose 'select'
and then 'node' to change
the color, shape etc of the nodes

- Searching for Modules:
- Install ClusterViz from the App Manager

- Searching for Modules:
- (Save your project before moving on, just in case)
- Remove the negative edges, then search for Modules using MCODE in the ClusterViz App.

 Searching for Hubs (species that are highly connected, or have a high Degree). MCODE added the Degree for each node to the Node table.

