Lecture 3

July 1, 2025

Restricted null space property (RNS)

Define

$$\mathbb{C}(\mathcal{S}) := \{ \Delta \in \mathbb{R}^d : \|\Delta_{\mathcal{S}^c}\|_1 \leq \|\Delta_{\mathcal{S}}\|_1 \}.$$

Theorem

The following two are equivalent:

- For any $\theta^* \in \mathbb{R}^d$ with support $\subset S$, the basis pursuit program applied to the data $(X, y = X\theta^*)$ has unique solution $\hat{\theta} = \theta^*$.
- The restricted null space (RNS) property holds, i.e.,

$$\mathbb{C}(S) \cap \ker(X) = \{0\}.$$

Recall that $ker(X) = \{\theta \in \mathbb{R}^d : X\theta = 0\}.$

▶ $[d] = \{1, ..., d\}.$

- $ightharpoonup [d] = \{1, \ldots, d\}.$
- ▶ For a matrix $X \in \mathbb{R}^{n \times}$ let X_j be its jth column for $j \in [d]$.

- \triangleright [d] = {1,...,d}.
- ▶ For a matrix $X \in \mathbb{R}^{n \times}$ let X_i be its jth column for $j \in [d]$.
- ▶ The pairwise incoherence of *X* is defined as

$$\delta_{PW}(X) = \max_{i,j \in [d]} \left| \frac{\langle X_i, X_j \rangle}{n} - 1_{\{i=j\}} \right|.$$

- ▶ $[d] = \{1, ..., d\}.$
- ▶ For a matrix $X \in \mathbb{R}^{n \times}$ let X_j be its jth column for $j \in [d]$.
- ▶ The pairwise incoherence of *X* is defined as

$$\delta_{PW}(X) = \max_{i,j \in [d]} \left| \frac{\langle X_i, X_j \rangle}{n} - 1_{\{i=j\}} \right|.$$

▶ If $\delta_{PW}(X)$ is small then

$$\langle X_i/\sqrt{n}, X_j/\sqrt{n} \rangle \approx \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{otherwise.} \end{cases}$$

▶ Alternative form: X^TX is the Gram matrix of X.

▶ Alternative form: X^TX is the Gram matrix of X.

 \blacktriangleright $(X^{\top}X)_{i,j} = \langle X_i, X_i \rangle$, and

$$\delta_{PW}(X) = \|\frac{X^{\top}X}{n} - I_d\|_{\infty}$$

where $\|\cdot\|_{\infty}$ is the vector ℓ_{∞} norm of a matrix.

- Alternative form: $X^{\top}X$ is the Gram matrix of X.
- \blacktriangleright $(X^{\top}X)_{i,j} = \langle X_i, X_i \rangle$, and

$$\delta_{PW}(X) = \|\frac{X^{\top}X}{n} - I_d\|_{\infty}$$

where $\|\cdot\|_{\infty}$ is the vector ℓ_{∞} norm of a matrix.

where $\|\cdot\|_{\infty}$ is the vector ℓ_{∞} norm of a matrix. • **Proposition.** (Uniform) restricted nullspace holds for all *S*

with
$$|\mathcal{S}| \leq s$$
 if $\delta_{PW}(X) \leq rac{1}{3s}.$

$$(heta_S)_i = egin{cases} heta_i & ext{if} & i \in S \ 0 & ext{Otherwise}. \end{cases}$$

$$(\theta_{\mathcal{S}})_i = egin{cases} heta_i & ext{if} & i \in \mathcal{S} \ 0 & ext{Otherwise}. \end{cases}$$

$$\left\| \frac{X\theta_{\mathcal{S}}}{\sqrt{n}} \right\|_{2}^{2} = \theta_{\mathcal{S}}^{\top} \frac{X^{\top}X}{n} \theta_{\mathcal{S}}$$

$$(heta_{\mathcal{S}})_i = egin{cases} heta_i & ext{if} & i \in \mathcal{S} \ 0 & ext{Otherwise}. \end{cases}$$

$$\left\| \frac{X\theta_{\mathcal{S}}}{\sqrt{n}} \right\|_{2}^{2} = \theta_{\mathcal{S}}^{\top} \frac{X^{\top} X}{n} \theta_{\mathcal{S}}$$
$$= \theta_{\mathcal{S}}^{\top} \left(\frac{X^{\top} X}{n} - I_{\mathcal{G}} \right) \theta_{\mathcal{S}} + \|\theta_{\mathcal{S}}\|_{2}^{2}$$

$$(heta_{\mathcal{S}})_i = egin{cases} heta_i & ext{if} & i \in \mathcal{S} \ 0 & ext{Otherwise}. \end{cases}$$

$$\begin{aligned} \left\| \frac{X\theta_{\mathcal{S}}}{\sqrt{n}} \right\|_{2}^{2} &= \theta_{\mathcal{S}}^{\top} \frac{X^{\top} X}{n} \theta_{\mathcal{S}} \\ &= \theta_{\mathcal{S}}^{\top} \left(\frac{X^{\top} X}{n} - I_{d} \right) \theta_{\mathcal{S}} + \|\theta_{\mathcal{S}}\|_{2}^{2} \\ &\geq -\| \frac{X^{\top} X}{n} - I_{d} \|_{\infty} \cdot \|\theta_{\mathcal{S}}\|_{1}^{2} + \|\theta_{\mathcal{S}}\|_{2}^{2} \end{aligned}$$

$$(\theta_S)_i = egin{cases} heta_i & ext{if} & i \in S \ 0 & ext{Otherwise}. \end{cases}$$

$$\begin{aligned} \left\| \frac{X\theta_{S}}{\sqrt{n}} \right\|_{2}^{2} &= \theta_{S}^{\top} \frac{X^{\top} X}{n} \theta_{S} \\ &= \theta_{S}^{\top} \left(\frac{X^{\top} X}{n} - I_{d} \right) \theta_{S} + \|\theta_{S}\|_{2}^{2} \\ &\geq -\left\| \frac{X^{\top} X}{n} - I_{d} \right\|_{\infty} \cdot \|\theta_{S}\|_{1}^{2} + \|\theta_{S}\|_{2}^{2} \\ &\geq -\delta_{PW}(X) \cdot \|\theta_{S}\|_{1}^{2} + \|\theta_{S}\|_{2}^{2} \end{aligned}$$

$$(\theta_{\mathcal{S}})_i = egin{cases} heta_i & ext{if} & i \in \mathcal{S} \ 0 & ext{Otherwise}. \end{cases}$$

$$\begin{aligned} \left\| \frac{X\theta_{S}}{\sqrt{n}} \right\|_{2}^{2} &= \theta_{S}^{\top} \frac{X^{\top} X}{n} \theta_{S} \\ &= \theta_{S}^{\top} \left(\frac{X^{\top} X}{n} - I_{d} \right) \theta_{S} + \|\theta_{S}\|_{2}^{2} \\ &\geq -\| \frac{X^{\top} X}{n} - I_{d} \|_{\infty} \cdot \|\theta_{S}\|_{1}^{2} + \|\theta_{S}\|_{2}^{2} \\ &\geq -\delta_{PW}(X) \cdot \|\theta_{S}\|_{1}^{2} + \|\theta_{S}\|_{2}^{2} \\ &\geq -\delta_{PW}(X) \cdot S \|\theta_{S}\|_{2}^{2} + \|\theta_{S}\|_{2}^{2} \end{aligned}$$

$$(heta_{\mathcal{S}})_i = egin{cases} heta_i & ext{if} & i \in \mathcal{S} \ 0 & ext{Otherwise}. \end{cases}$$

Notice that

$$\begin{aligned} \left\| \frac{X\theta_{S}}{\sqrt{n}} \right\|_{2}^{2} &= \theta_{S}^{\top} \frac{X^{\top} X}{n} \theta_{S} \\ &= \theta_{S}^{\top} \left(\frac{X^{\top} X}{n} - I_{d} \right) \theta_{S} + \|\theta_{S}\|_{2}^{2} \\ &\geq -\left\| \frac{X^{\top} X}{n} - I_{d} \right\|_{\infty} \cdot \|\theta_{S}\|_{1}^{2} + \|\theta_{S}\|_{2}^{2} \\ &\geq -\delta_{PW}(X) \cdot \|\theta_{S}\|_{1}^{2} + \|\theta_{S}\|_{2}^{2} \\ &\geq -\delta_{PW}(X) \cdot S\|\theta_{S}\|_{2}^{2} + \|\theta_{S}\|_{2}^{2} \end{aligned}$$

 $> \|\theta_{S}\|_{2}^{2}(1-s\delta_{PW}(X))$

$$(heta_{\mathcal{S}})_i = egin{cases} heta_i & ext{if} & i \in \mathcal{S} \ 0 & ext{Otherwise}. \end{cases}$$

Notice that

$$\begin{aligned} \left\| \frac{X\theta_{S}}{\sqrt{n}} \right\|_{2}^{2} &= \theta_{S}^{\top} \frac{X^{\top}X}{n} \theta_{S} \\ &= \theta_{S}^{\top} \left(\frac{X^{\top}X}{n} - I_{d} \right) \theta_{S} + \|\theta_{S}\|_{2}^{2} \\ &\geq -\|\frac{X^{\top}X}{n} - I_{d}\|_{\infty} \cdot \|\theta_{S}\|_{1}^{2} + \|\theta_{S}\|_{2}^{2} \\ &\geq -\delta_{PW}(X) \cdot \|\theta_{S}\|_{1}^{2} + \|\theta_{S}\|_{2}^{2} \\ &\geq -\delta_{PW}(X) \cdot s \|\theta_{S}\|_{2}^{2} + \|\theta_{S}\|_{2}^{2} \\ &\geq \|\theta_{S}\|_{2}^{2} (1 - s\delta_{PW}(X)) \end{aligned}$$

where the first inequality follows from the inequality $u^T M v \leq \|M\|_{\infty} \|u\|_1 \|v\|_1$, and the third from the inequality $\|\theta_S\|_1 \leq \sqrt{s} \|\theta_S\|_2$.

$$\left\| \frac{X\theta_{S}}{\sqrt{n}} \right\|_{2}^{2} = \left\| \left\langle \frac{X\theta_{S}}{\sqrt{n}}, \frac{-X\theta_{S}c}{\sqrt{n}} \right\rangle \right\|$$

$$\begin{aligned} \left\| \frac{X\theta_{\mathcal{S}}}{\sqrt{n}} \right\|_{2}^{2} &= \left| \left\langle \frac{X\theta_{\mathcal{S}}}{\sqrt{n}}, \frac{-X\theta_{\mathcal{S}^{c}}}{\sqrt{n}} \right\rangle \right| \\ &= \left| \theta_{\mathcal{S}}^{\top} \left(\frac{X^{\top}X}{n} - I_{d} \right) \theta_{\mathcal{S}^{c}} + \theta_{\mathcal{S}}^{\top} \theta_{\mathcal{S}^{c}} \right| \end{aligned}$$

$$\begin{aligned} \left\| \frac{X\theta_{\mathcal{S}}}{\sqrt{n}} \right\|_{2}^{2} &= \left| \left\langle \frac{X\theta_{\mathcal{S}}}{\sqrt{n}}, \frac{-X\theta_{\mathcal{S}^{c}}}{\sqrt{n}} \right\rangle \right| \\ &= \left| \theta_{\mathcal{S}}^{\top} \left(\frac{X^{\top}X}{n} - I_{d} \right) \theta_{\mathcal{S}^{c}} + \theta_{\mathcal{S}}^{\top} \theta_{\mathcal{S}^{c}} \right| \\ &= \left| \theta_{\mathcal{S}}^{\top} \left(\frac{X^{\top}X}{n} - I_{d} \right) \theta_{\mathcal{S}^{c}} \right| \end{aligned}$$

$$X heta_{\mathcal{S}} = -X heta_{\mathcal{S}^c}.$$
 Thus, $\left\|rac{X heta_{\mathcal{S}}}{\sqrt{n}}
ight\|_2^2 = \left\|\left\langlerac{X heta_{\mathcal{S}}}{\sqrt{n}},rac{-X heta_{\mathcal{S}^c}}{\sqrt{n}}
ight
angle
ight\|$

$$\begin{aligned} \left\| \frac{X\theta_{S}}{\sqrt{n}} \right\|_{2}^{2} &= \left| \left\langle \frac{X\theta_{S}}{\sqrt{n}}, \frac{-X\theta_{S^{c}}}{\sqrt{n}} \right\rangle \right| \\ &= \left| \theta_{S}^{\top} \left(\frac{X^{\top}X}{n} - I_{d} \right) \theta_{S^{c}} + \theta_{S}^{\top} \theta_{S^{c}} \right| \\ &= \left| \theta_{S}^{\top} \left(\frac{X^{\top}X}{n} - I_{d} \right) \theta_{S^{c}} \right| \\ &< \delta_{PW}(X) \cdot \|\theta_{S}\|_{1} \cdot \|\theta_{S^{c}}\|_{1} \end{aligned}$$

▶ On the other hand, if $X\theta = 0$ then $X(\theta_S + \theta_{S^c}) = 0$ or

$$S_{S} = -X heta_{S^c}.$$
 Thus, $\left\|rac{X heta_S}{\sqrt{n}}
ight\|_2^2 = \left\|\left\langlerac{X heta_S}{\sqrt{n}},rac{-X heta_{S^c}}{\sqrt{n}}
ight
angle
ight\|_2^2$

 $\leq \delta_{PW}(X) \cdot \|\theta_S\|_1 \cdot \|\theta_{S^c}\|_1$ $< \delta_{PW}(X) \cdot \sqrt{s} \|\theta_S\|_2 \cdot \|\theta_{S^c}\|_1$

$$\begin{split} X\theta_{\mathcal{S}} &= -X\theta_{\mathcal{S}^c}. \text{ Thus,} \\ & \left\| \frac{X\theta_{\mathcal{S}}}{\sqrt{n}} \right\|_2^2 &= \left| \left\langle \frac{X\theta_{\mathcal{S}}}{\sqrt{n}}, \frac{-X\theta_{\mathcal{S}^c}}{\sqrt{n}} \right\rangle \right| \\ &= \left| \theta_{\mathcal{S}}^\top \left(\frac{X^\top X}{n} - I_d \right) \theta_{\mathcal{S}^c} + \theta_{\mathcal{S}}^\top \theta_{\mathcal{S}^c} \right| \\ &= \left| \theta_{\mathcal{S}}^\top \left(\frac{X^\top X}{n} - I_d \right) \theta_{\mathcal{S}^c} \right| \end{split}$$

$$\begin{aligned} \left\| \frac{X\theta_{S}}{\sqrt{n}} \right\|_{2}^{2} &= \left| \left\langle \frac{X\theta_{S}}{\sqrt{n}}, \frac{-X\theta_{S^{c}}}{\sqrt{n}} \right\rangle \right| \\ &= \left| \theta_{S}^{\top} \left(\frac{X^{\top}X}{n} - I_{d} \right) \theta_{S^{c}} + \theta_{S}^{\top} \theta_{S^{c}} \right| \\ &= \left| \theta_{S}^{\top} \left(\frac{X^{\top}X}{n} - I_{d} \right) \theta_{S^{c}} \right| \\ &\leq \delta_{PW}(X) \cdot \|\theta_{S}\|_{1} \cdot \|\theta_{S^{c}}\|_{1} \\ &\leq \delta_{PW}(X) \cdot \sqrt{s} \|\theta_{S}\|_{2} \cdot \|\theta_{S^{c}}\|_{1} \end{aligned}$$

Therefore

$$\|\theta_S\|_2^2(1-s\delta_{PW}(X)) \leq \left\|\frac{X\theta_S}{\sqrt{n}}\right\|_2^2 \leq \delta_{PW}(X)\cdot\sqrt{s}\|\theta_S\|_2\cdot\|\theta_{S^c}\|_1.$$

$$\begin{aligned} \left\| \frac{X\theta_{S}}{\sqrt{n}} \right\|_{2}^{2} &= \left| \left\langle \frac{X\theta_{S}}{\sqrt{n}}, \frac{-X\theta_{S^{c}}}{\sqrt{n}} \right\rangle \right| \\ &= \left| \theta_{S}^{\top} \left(\frac{X^{\top}X}{n} - I_{d} \right) \theta_{S^{c}} + \theta_{S}^{\top} \theta_{S^{c}} \right| \\ &= \left| \theta_{S}^{\top} \left(\frac{X^{\top}X}{n} - I_{d} \right) \theta_{S^{c}} \right| \\ &\leq \delta_{PW}(X) \cdot \|\theta_{S}\|_{1} \cdot \|\theta_{S^{c}}\|_{1} \\ &\leq \delta_{PW}(X) \cdot \sqrt{S} \|\theta_{S}\|_{2} \cdot \|\theta_{S^{c}}\|_{1} \end{aligned}$$

Therefore

$$\|\theta_{\mathcal{S}}\|_2^2(1-s\delta_{PW}(X)) \leq \left\|\frac{X\theta_{\mathcal{S}}}{\sqrt{n}}\right\|_2^2 \leq \delta_{PW}(X)\cdot\sqrt{s}\|\theta_{\mathcal{S}}\|_2\cdot\|\theta_{\mathcal{S}^c}\|_1.$$

► Hence,

$$rac{1}{\sqrt{s}}\| heta_S\|_1 \leq \| heta_S\|_2 \leq rac{\sqrt{s}\delta_{PW}(X)}{(1-s\delta_{PW}(X))}\| heta_{S^c}\|_1$$

And so

and so
$$\| heta_{\mathcal{S}}\|_1 \leq rac{s\delta_{PW}(X)}{(1-s\delta_{PW}(X))}\| heta_{\mathcal{S}^c}\|_1.$$

And so

And so
$$\| heta_{\mathcal{S}}\|_1 \ \le rac{s\delta_{PW}(X)}{(1-s\delta_{PW}(X))} \| heta_{S^c}\|_1.$$

▶ Thus, we have proven that if $\delta_{PW}(X) \leq \frac{1}{3s}$ then $\theta \in \text{Ker}(X)$ implies

implies
$$\|\theta_{\mathcal{S}}\|_1 \leq \frac{1}{2}\|\theta_{\mathcal{S}^c}\|_1,$$

And so
$$\|\theta_S\|_1 \ \le \frac{s\delta_{PW}(X)}{(1-s\delta_{PW}(X))}\|\theta_{S^c}\|_1.$$

▶ Thus, we have proven that if $\delta_{PW}(X) \leq \frac{1}{3s}$ then $\theta \in \text{Ker}(X)$ implies

implies
$$\| heta_{\mathcal{S}}\|_1 \ \leq rac{1}{2} \| heta_{\mathcal{S}^c}\|_1,$$

which means $\mathbb{C}(S) \cap \operatorname{Ker}(X) = \{0\}$, since

$$\mathbb{C}(S) := \{\Delta \in \mathbb{R}^d : \|\Delta_{S^c}\|_1 < \|\Delta_{S^c}\|_1 \}$$

$$\mathbb{C}(\mathcal{S}) \,:=\, \{\Delta \in \mathbb{R}^d \,:\, \|\Delta_{\mathcal{S}^c}\|_1 \leq \|\Delta_{\mathcal{S}}\|_1 \}$$

And so

$$\|\theta_{\mathcal{S}}\|_1 \leq \frac{s\delta_{PW}(X)}{(1-s\delta_{PW}(X))}\|\theta_{\mathcal{S}^c}\|_1.$$

▶ Thus, we have proven that if $\delta_{PW}(X) \leq \frac{1}{3s}$ then $\theta \in \operatorname{Ker}(X)$ implies

$$\| heta_{\mathcal{S}} \|_1 \ \leq rac{1}{2} \| heta_{\mathcal{S}^c} \|_1,$$

which means $\mathbb{C}(S) \cap \operatorname{Ker}(X) = \{0\}$, since

$$\mathbb{C}(\mathcal{S}) \,:=\, \{\Delta \in \mathbb{R}^d \,:\, \|\Delta_{\mathcal{S}^c}\|_1 \leq \|\Delta_{\mathcal{S}}\|_1 \}$$

and so $\Delta \in \mathbb{C}(S) \cap \operatorname{Ker}(X)$ would imply $\|\Delta_{S^c}\|_1 \leq \|\Delta_S\|_1$ and $\|\Delta_S\|_1 \leq \|\Delta_{S^c}\|_1/2$.

▶ **Definition.** $X \in \mathbb{R}^{n \times d}$ satisfies a restricted isometry property (RIP) of order s with constant $\delta_s(X) > 0$ if

$$\|\frac{X_S^{\top}X_S}{n} - I\|_{op} \leq \delta_s(X)$$
, for all S with $|S| \leq s$.

▶ **Definition.** $X \in \mathbb{R}^{n \times d}$ satisfies a restricted isometry property (RIP) of order s with constant $\delta_s(X) > 0$ if

$$\|\frac{X_S^\top X_S}{n} - I\|_{op} \le \delta_s(X)$$
, for all S with $|S| \le s$.

▶ PW incoherence is close to RIP with s = 2.

▶ **Definition.** $X \in \mathbb{R}^{n \times d}$ satisfies a restricted isometry property (RIP) of order s with constant $\delta_s(X) > 0$ if

$$\|\frac{X_{\mathcal{S}}^{\top}X_{\mathcal{S}}}{n} - I\|_{op} \leq \delta_{s}(X), \text{ for all } S \text{ with } |S| \leq s.$$

- ▶ PW incoherence is close to RIP with s = 2.
- In general, for any s > 2, it holds that

$$\delta_{PW}(X) < \delta_{S}(X) < s\delta_{PW}(X).$$

Proposition (HDS Prop. 7.2). (Uniform) restricted null space holds for all S with $|S| \le s$ if

$$\delta_{2s}(X) \leq \frac{1}{3}.$$

Proposition (HDS Prop. 7.2). (Uniform) restricted null space holds for all S with $|S| \le s$ if

$$\delta_{2s}(X) \leq \frac{1}{3}.$$

▶ Compare this with the condition $\delta_{PW}(X) \leq \frac{1}{3s}$.

▶ Proposition (HDS Prop. 7.2). (Uniform) restricted null space holds for all S with $|S| \le s$ if

$$\delta_{2s}(X) \leq \frac{1}{3}.$$

- ▶ Compare this with the condition $\delta_{PW}(X) \leq \frac{1}{3s}$.
- Consider a sub-Gaussian matrix X with i.i.d. entries and $\mathbb{E}(X_{ij}) = 0$ and $\mathbb{E}(X_{ij}^2) = 1$ (Exercise 7.7):
 - We have that

$$n \gtrsim s^2 \log d \implies \delta_{PW}(X) \leq \frac{1}{3s}, w.h.p.$$

Proposition (HDS Prop. 7.2). (Uniform) restricted null space holds for all S with $|S| \le s$ if

$$\delta_{2s}(X) \leq \frac{1}{3}.$$

- ▶ Compare this with the condition $\delta_{PW}(X) \leq \frac{1}{3s}$.
- Consider a sub-Gaussian matrix X with i.i.d. entries and $\mathbb{E}(X_{ij}) = 0$ and $\mathbb{E}(X_{ii}^2) = 1$ (Exercise 7.7):
 - We have that

$$\begin{array}{ll} n \gtrsim s^2 \log d \implies \delta_{PW}(X) \leq \frac{1}{3s}, \ w.h.p. \\ n \gtrsim s \log(\frac{ed}{s}) \implies \delta_s(X) \leq \frac{1}{3}, \ w.h.p. \end{array}$$

RIP gives sufficient conditions:

▶ Proposition (HDS Prop. 7.2). (Uniform) restricted null space holds for all S with $|S| \le s$ if

$$\delta_{2s}(X) \leq \frac{1}{3}.$$

- ▶ Compare this with the condition $\delta_{PW}(X) \leq \frac{1}{3s}$.
- Consider a sub-Gaussian matrix X with i.i.d. entries and $\mathbb{E}(X_{ij}) = 0$ and $\mathbb{E}(X_{ij}^2) = 1$ (Exercise 7.7):
 - We have that

$$\begin{array}{ll} n \gtrsim s^2 \log d \implies \delta_{PW}(X) \leq \frac{1}{3s}, \ w.h.p. \\ n \gtrsim s \log(\frac{ed}{s}) \implies \delta_s(X) \leq \frac{1}{3}, \ w.h.p. \end{array}$$

Sample complexity requirement for RIP is milder.

Recall the model

$$y = X\theta^* + w$$

where θ^* is the parameter of interest and w is a vector of noise errors.

Recall the model

$$y = X\theta^* + w$$

where θ^* is the parameter of interest and w is a vector of noise errors.

A very popular estimator is the ℓ_1 -regularized least squares:

$$\hat{\theta} \in \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \left\{ \frac{1}{2n} \|y - X\theta\|_2^2 + \lambda \|\theta\|_1 \right\}. \tag{1}$$

► Recall the model

$$y = X\theta^* + w$$

where θ^* is the parameter of interest and w is a vector of noise errors.

A very popular estimator is the ℓ_1 -regularized least squares:

$$\hat{\theta} \in \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \left\{ \frac{1}{2n} \| y - X\theta \|_2^2 + \lambda \| \theta \|_1 \right\}. \tag{1}$$

▶ The idea: minimizing ℓ_1 norm leads to sparse solutions.

Recall the model

$$y = X\theta^* + w$$

where θ^* is the parameter of interest and w is a vector of noise errors.

A very popular estimator is the ℓ_1 -regularized least squares:

$$\hat{\theta} \in \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \left\{ \frac{1}{2n} \| y - X\theta \|_2^2 + \lambda \| \theta \|_1 \right\}. \tag{1}$$

- ▶ The idea: minimizing ℓ_1 norm leads to sparse solutions.
- (1) is a convex program; global solution can be obtained efficiently.

Recall the model

$$y = X\theta^* + w$$

where θ^* is the parameter of interest and w is a vector of noise errors.

A very popular estimator is the ℓ_1 -regularized least squares:

$$\hat{\theta} \in \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \left\{ \frac{1}{2n} \| y - X\theta \|_2^2 + \lambda \| \theta \|_1 \right\}. \tag{1}$$

- ▶ The idea: minimizing ℓ_1 norm leads to sparse solutions.
- ▶ (1) is a convex program; global solution can be obtained efficiently.
- Other options: constrained form of lasso

$$\min_{\|\theta\|_1 \le R} \frac{1}{2n} \|y - X\theta\|_2^2$$


```
library(almnet)
# Simulate data
set.seed(42)
n <- 200 # number of observations
p <- 500 # number of predictors
X <- matrix(rnorm(n * p), nrow = n, ncol = p)
beta \leftarrow c(rep(3, 5), rep(0, p - 5)) # sparse true coefficients
y <- X %*% beta + rnorm(n)</pre>
# Fit Lasso regression (alpha=1 for Lasso)
lasso_fit <- glmnet(X, y, alpha = 1)</pre>
# Plot solution paths
plot(lasso_fit, xvar = "lambda", label = TRUE)
title("Lasso Coefficient Paths")
# Cross-validation to select best lambda
cv_fit \leftarrow cv.qlmnet(X, y, alpha = 1)
plot(cv_fit)
title("Cross-Validation Error")
```



```
# Cross-validation to select best lambda
cv_fit <- cv.glmnet(X, y, alpha = 1)
plot(cv_fit)
title("Cross-Validation Error")
# Best lambda value</pre>
```

best_lambda <- cv_fit\$lambda.min
cat("Best lambda:", best_lambda, "\n")</pre>

```
# Coefficients at best lambda
beta_hat = coef(cv_fit, s = "lambda.min")
plot(beta_hat)
plot(beta_hat[1:50])
```


Restricted eigenvalue condition

For a constant $\alpha \geq 1$, we define

$$\mathbb{C}_{\alpha}(S) := \left\{ \Delta \in \mathbb{R}^d : \|\Delta_{S^c}\|_1 \le \alpha \|\Delta_S\|_1 \right\}.$$

Restricted eigenvalue condition

▶ For a constant $\alpha \ge 1$, we define

$$\mathbb{C}_{\alpha}(\mathcal{S}) \, := \, \left\{ \Delta \in \mathbb{R}^d \, : \, \|\Delta_{\mathcal{S}^c}\|_1 \leq \alpha \|\Delta_{\mathcal{S}}\|_1 \right\}.$$

▶ **Definition.** A matrix X satisfies the restricted eigenvalue (RE) condition over S with parameters (κ, α) if

$$\frac{1}{n}\|X\Delta\|_2^2 \geq \kappa\|\Delta\|_2^2 \ \forall \Delta \in \mathbb{C}_{\alpha}(S).$$

Restricted eigenvalue condition

▶ For a constant $\alpha \ge 1$, we define

$$\mathbb{C}_{\alpha}(S) := \left\{ \Delta \in \mathbb{R}^d : \|\Delta_{S^c}\|_1 \le \alpha \|\Delta_S\|_1 \right\}.$$

▶ **Definition.** A matrix X satisfies the restricted eigenvalue (RE) condition over S with parameters (κ, α) if

$$\frac{1}{n}\|X\Delta\|_2^2 \geq \kappa \|\Delta\|_2^2 \ \forall \Delta \in \mathbb{C}_{\alpha}(S).$$

Recall that RNS corresponds to $\mathbb{C}_1(S) \cap \ker(X) = \{0\}$. Thus.

$$\frac{1}{n}\|X\Delta\|_2^2 > 0$$

for all $\Delta \in \mathbb{C}_1(S) \setminus \{0\}$.

Theorem

Assume that $y = X\theta^* + w$, where $X \in \mathbb{R}^{n \times d}$, $\theta^* \in \mathbb{R}^d$ and

Theorem

Assume that $y = X\theta^* + w$, where $X \in \mathbb{R}^{n \times d}$, $\theta^* \in \mathbb{R}^d$ and

▶ θ^* is supported on $S \subset [d]$ with $|S| \leq s$.

Theorem

Assume that $y = X\theta^* + w$, where $X \in \mathbb{R}^{n \times d}$, $\theta^* \in \mathbb{R}^d$ and

- ▶ θ^* is supported on $S \subset [d]$ with $|S| \leq s$.
- \blacktriangleright X satisfies RE(κ ,3) over S.

Theorem

Assume that $y = X\theta^* + w$, where $X \in \mathbb{R}^{n \times d}$, $\theta^* \in \mathbb{R}^d$ and

- ▶ θ^* is supported on $S \subset [d]$ with $|S| \leq s$.
- ▶ X satisfies $RE(\kappa,3)$ over S.

Let us define $z = X^T w/n$. Then we have the following:

Theorem

Assume that $y = X\theta^* + w$, where $X \in \mathbb{R}^{n \times d}$, $\theta^* \in \mathbb{R}^d$ and

- ▶ θ^* is supported on $S \subset [d]$ with $|S| \leq s$.
- ightharpoonup X satisfies $RE(\kappa,3)$ over S.

Let us define $z = X^T w/n$. Then we have the following:

▶ Any solution of Lasso (1) with $\lambda \ge 2\|z\|_{\infty}$ satisfies

$$\|\hat{\theta} - \theta^*\|_2 \leq \frac{3}{\kappa} \sqrt{s \lambda}.$$

Theorem

Assume that $y = X\theta^* + w$, where $X \in \mathbb{R}^{n \times d}$, $\theta^* \in \mathbb{R}^d$ and

- ▶ θ^* is supported on $S \subset [d]$ with $|S| \leq s$.
- ightharpoonup X satisfies $RE(\kappa,3)$ over S.

Let us define $z = X^T w/n$. Then we have the following:

▶ Any solution of Lasso (1) with $\lambda \ge 2\|z\|_{\infty}$ satisfies

$$\|\hat{\theta} - \theta^*\|_2 \le \frac{3}{\kappa} \sqrt{s \lambda}.$$

▶ Any solution of constrained Lasso with $R = \|\theta^*\|_1$ satisfies

$$\|\hat{\theta} - \theta^*\|_2 \le \frac{4}{\kappa} \sqrt{s} \|z\|_{\infty}.$$

Assume that $y = X\theta^* + w$, where $w \sim N(0, \sigma^2 I_n)$.

- ▶ Assume that $y = X\theta^* + w$, where $w \sim N(0, \sigma^2 I_n)$.
- $X \in \mathbb{R}^{n \times d}$ fixed and satisfying RE condition and normalization

$$\max_{j=1,\dots,d}\frac{\|X_j\|}{\sqrt{n}}\leq C$$

where X_j is the *j*th column of X.

- ▶ Assume that $y = X\theta^* + w$, where $w \sim N(0, \sigma^2 I_n)$.
- $X \in \mathbb{R}^{n \times d}$ fixed and satisfying RE condition and normalization

$$\max_{j=1,\dots,d} \frac{\|X_j\|}{\sqrt{n}} \le C$$

where X_j is the *j*th column of X.

- Assume that $y = X\theta^* + w$, where $w \sim N(0, \sigma^2 I_n)$.
- $X \in \mathbb{R}^{n \times d}$ fixed and satisfying RE condition and normalization

$$\max_{j=1,\dots,d}\frac{\|X_j\|}{\sqrt{n}}\leq C$$

where X_j is the *j*th column of X.

- ► Recall $z = X^T w/n$.
- It is easy to show that w.p. $\geq 1 2 \exp(-n\delta^2/2)$

$$\|z\|_{\infty} \le C\sigma \left(\sqrt{\frac{2\log d}{n}} + \delta\right)$$

- Assume that $y = X\theta^* + w$, where $w \sim N(0, \sigma^2 I_n)$.
 - $X \in \mathbb{R}^{n \times d}$ fixed and satisfying RE condition and normalization

$$\max_{j=1,\dots,d} \frac{\|X_j\|}{\sqrt{n}} \le C$$

- where X_j is the *j*th column of X.
- ► Recall $z = X^T w/n$.

It is easy to show that w.p.
$$\geq 1 - 2 \exp(-n\delta^2/2)$$

$$\|z\|_{\infty} \leq C\sigma \left(\sqrt{\frac{2\log d}{n}} + \delta\right)$$

► Thus, setting
$$\lambda = 2C\sigma\left(\sqrt{\frac{2\log d}{n}} + \delta\right)$$
, Lasso solution satisfies

$$\|\hat{\theta} - \theta^*\|_2 \le \frac{6C\sigma}{\kappa} \sqrt{s} \left(\frac{2\log d}{n} + \delta \right)$$

$$\|\hat{ heta} - heta^*\|_2 \lesssim \sigma \sqrt{rac{\mathsf{slog}\ extit{d}}{n}}$$

w.h.p. (i.e., at least $1 - 2d^{-1}$).

$$\|\hat{\theta} - \theta^*\|_2 \lesssim \sigma \sqrt{\frac{\mathsf{slog}\,d}{n}}$$

- w.h.p. (i.e., at least $1 2d^{-1}$).
- This is the typical high-dimensional scaling in sparse problems.

$$\|\hat{\theta} - \theta^*\|_2 \lesssim \sigma \sqrt{\frac{\mathsf{slog}\,d}{n}}$$

- w.h.p. (i.e., at least $1 2d^{-1}$).
- This is the typical high-dimensional scaling in sparse problems.
- Had we known the support S in advance, our rate would be (w.h.p.)

$$\|\hat{\theta} - \theta^*\|_2 \lesssim \sigma \sqrt{\frac{s}{n}}$$

$$\|\hat{\theta} - \theta^*\|_2 \lesssim \sigma \sqrt{\frac{\mathsf{slog}\,d}{n}}$$

w.h.p. (i.e., at least $1 - 2d^{-1}$).

- ► This is the typical high-dimensional scaling in sparse problems.
- Had we known the support S in advance, our rate would be (w.h.p.)

$$\|\hat{\theta} - \theta^*\|_2 \lesssim \sigma \sqrt{\frac{s}{n}}$$

► The log d factor is the price for not knowing the support.

Let us simplify the loss $L(\theta) = \frac{1}{2n} ||y - X\theta||_2^2$.

- Let us simplify the loss $L(\theta) = \frac{1}{2n} ||y X\theta||_2^2$.
- ▶ Setting $\Delta = \theta \theta^*$,

$$L(\theta) = \frac{1}{2n} ||X(\theta - \theta^*) - w||_2^2$$

- Let us simplify the loss $L(\theta) = \frac{1}{2n} ||y X\theta||_2^2$.
- ▶ Setting $\Delta = \theta \theta^*$,

$$L(\theta) = \frac{1}{2n} ||X(\theta - \theta^*) - w||_2^2$$

= $\frac{1}{2n} ||X\Delta - w||_2^2$

- Let us simplify the loss $L(\theta) = \frac{1}{2n} ||y X\theta||_2^2$.
- ▶ Setting $\Delta = \theta \theta^*$,

$$\begin{array}{rcl} L(\theta) & = & \frac{1}{2n} \| X(\theta - \theta^*) - w \|_2^2 \\ & = & \frac{1}{2n} \| X\Delta - w \|_2^2 \\ & = & \frac{1}{2n} \| X\Delta \|_2^2 - \frac{1}{n} \langle X\Delta, w \rangle + \text{const.} \end{array}$$

- Let us simplify the loss $L(\theta) = \frac{1}{2n} ||y X\theta||_2^2$.
- ▶ Setting $\Delta = \theta \theta^*$,

$$\begin{array}{rcl} L(\theta) & = & \frac{1}{2n} \| X(\theta - \theta^*) - w \|_2^2 \\ & = & \frac{1}{2n} \| X \Delta - w \|_2^2 \\ & = & \frac{1}{2n} \| X \Delta \|_2^2 - \frac{1}{n} \langle X \Delta, w \rangle + \text{const.} \\ & = & \frac{1}{2n} \| X \Delta \|_2^2 - \frac{1}{n} \langle \Delta, X^\top w \rangle + \text{const.} \end{array}$$

- Let us simplify the loss $L(\theta) = \frac{1}{2n} ||y X\theta||_2^2$.
- ▶ Setting $\Delta = \theta \theta^*$,

$$\begin{array}{rcl} L(\theta) & = & \frac{1}{2n} \| X(\theta - \theta^*) - w \|_2^2 \\ & = & \frac{1}{2n} \| X \Delta - w \|_2^2 \\ & = & \frac{1}{2n} \| X \Delta \|_2^2 - \frac{1}{n} \langle X \Delta, w \rangle + \text{const.} \\ & = & \frac{1}{2n} \| X \Delta \|_2^2 - \frac{1}{n} \langle \Delta, X^\top w \rangle + \text{const.} \\ & = & \frac{1}{2n} \| X \Delta \|_2^2 - \langle \Delta, z \rangle + \text{const.} \end{array}$$

where $z = X^{\top} w/n$.

Proof of Theorem

- Let us simplify the loss $L(\theta) = \frac{1}{2n} ||y X\theta||_2^2$.
- ▶ Setting $\Delta = \theta \theta^*$,

$$\begin{array}{rcl} L(\theta) & = & \frac{1}{2n} \| X(\theta - \theta^*) - w \|_2^2 \\ & = & \frac{1}{2n} \| X \Delta - w \|_2^2 \\ & = & \frac{1}{2n} \| X \Delta \|_2^2 - \frac{1}{n} \langle X \Delta, w \rangle + \text{const.} \\ & = & \frac{1}{2n} \| X \Delta \|_2^2 - \frac{1}{n} \langle \Delta, X^\top w \rangle + \text{const.} \\ & = & \frac{1}{2n} \| X \Delta \|_2^2 - \langle \Delta, z \rangle + \text{const.} \end{array}$$

where $z = X^{T}w/n$. Hence,

$$L(\theta) - L(\theta^*) := \frac{1}{2n} ||X\Delta||^2 - \langle \Delta, z \rangle.$$

▶ By optimality of $\hat{\theta}$ and feasibility of θ^* ,

$$L(\hat{\theta}) \leq L(\theta^*).$$

▶ By optimality of $\hat{\theta}$ and feasibility of θ^* ,

$$L(\hat{\theta}) \leq L(\theta^*).$$

• Error vector $\hat{\Delta} = \hat{\theta} - \theta^*$ satisfies the basic inequality

$$\frac{1}{2n} \|X\hat{\Delta}\|^2 \leq \langle \hat{\Delta}, z \rangle$$

▶ By optimality of $\hat{\theta}$ and feasibility of θ^* ,

$$L(\hat{\theta}) \leq L(\theta^*).$$

• Error vector $\hat{\Delta} = \hat{\theta} - \theta^*$ satisfies the basic inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \langle \hat{\Delta}, z \rangle$$

Using Holder inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \|z\|_{\infty}\|\hat{\Delta}\|_1.$$

▶ By optimality of $\hat{\theta}$ and feasibility of θ^* ,

$$L(\hat{\theta}) \leq L(\theta^*).$$

• Error vector $\hat{\Delta} = \hat{\theta} - \theta^*$ satisfies the basic inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \langle \hat{\Delta}, z \rangle$$

Using Holder inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \|z\|_{\infty}\|\hat{\Delta}\|_1.$$

Since $\|\hat{\theta}\|_1 \le \|\theta^*\|_1$, we have that $\hat{\Delta} = \hat{\theta} - \theta^* \in \mathbb{C}_1(S)$: $\|\theta_S^*\|_1 = \|\theta^*\|_1$

▶ By optimality of $\hat{\theta}$ and feasibility of θ^* ,

$$L(\hat{\theta}) \leq L(\theta^*).$$

• Error vector $\hat{\Delta} = \hat{\theta} - \theta^*$ satisfies the basic inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \langle \hat{\Delta}, z \rangle$$

Using Holder inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \|z\|_{\infty}\|\hat{\Delta}\|_1.$$

▶ Since $\|\hat{\theta}\|_1 \le \|\theta^*\|_1$, we have that $\hat{\Delta} = \hat{\theta} - \theta^* \in \mathbb{C}_1(S)$:

$$\|\theta_{S}^{*}\|_{1} = \|\theta^{*}\|_{1} \ge \|\theta^{*} + \hat{\Delta}\|_{1}$$

▶ By optimality of $\hat{\theta}$ and feasibility of θ^* ,

$$L(\hat{\theta}) \leq L(\theta^*).$$

• Error vector $\hat{\Delta} = \hat{\theta} - \theta^*$ satisfies the basic inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \langle \hat{\Delta}, z \rangle$$

Using Holder inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \|z\|_{\infty}\|\hat{\Delta}\|_1.$$

▶ Since $\|\hat{\theta}\|_1 \le \|\theta^*\|_1$, we have that $\hat{\Delta} = \hat{\theta} - \theta^* \in \mathbb{C}_1(S)$:

$$\|\theta_{\mathcal{S}}^*\|_1 = \|\theta^*\|_1 \ge \|\theta^* + \hat{\Delta}\|_1 = \|\theta_{\mathcal{S}}^* + \hat{\Delta}_{\mathcal{S}}\|_1 + \|\theta_{\mathcal{S}^c}^* + \hat{\Delta}_{\mathcal{S}^c}\|_1$$

▶ By optimality of $\hat{\theta}$ and feasibility of θ^* ,

$$L(\hat{\theta}) \leq L(\theta^*).$$

• Error vector $\hat{\Delta} = \hat{\theta} - \theta^*$ satisfies the basic inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \langle \hat{\Delta}, z \rangle$$

Using Holder inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \|z\|_{\infty}\|\hat{\Delta}\|_1.$$

▶ Since $\|\hat{\theta}\|_1 \leq \|\theta^*\|_1$, we have that $\hat{\Delta} = \hat{\theta} - \theta^* \in \mathbb{C}_1(S)$:

$$\begin{split} &\|\theta_{\mathcal{S}}^*\|_{1} = \|\theta^*\|_{1} \geq \|\theta^* + \hat{\Delta}\|_{1} = \|\theta_{\mathcal{S}}^* + \hat{\Delta}_{\mathcal{S}}\|_{1} + \|\theta_{\mathcal{S}^c}^* + \hat{\Delta}_{\mathcal{S}^c}\|_{1} \\ &= \|\theta_{\mathcal{S}}^* + \hat{\Delta}_{\mathcal{S}}\|_{1} + \|\hat{\Delta}_{\mathcal{S}^c}\|_{1} \end{split}$$

▶ By optimality of $\hat{\theta}$ and feasibility of θ^* ,

$$L(\hat{\theta}) \leq L(\theta^*).$$

• Error vector $\hat{\Delta} = \hat{\theta} - \theta^*$ satisfies the basic inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \langle \hat{\Delta}, z \rangle$$

Using Holder inequality

$$\frac{1}{2n}\|X\hat{\Delta}\|^2 \leq \|z\|_{\infty}\|\hat{\Delta}\|_1.$$

▶ Since $\|\hat{\theta}\|_1 \leq \|\theta^*\|_1$, we have that $\hat{\Delta} = \hat{\theta} - \theta^* \in \mathbb{C}_1(S)$:

$$\begin{aligned} &\|\theta_{S}^{*}\|_{1} = \|\theta^{*}\|_{1} \geq \|\theta^{*} + \hat{\Delta}\|_{1} = \|\theta_{S}^{*} + \hat{\Delta}_{S}\|_{1} + \|\theta_{S^{c}}^{*} + \hat{\Delta}_{S^{c}}\|_{1} \\ &= \|\theta_{S}^{*} + \hat{\Delta}_{S}\|_{1} + \|\hat{\Delta}_{S^{c}}\|_{1} \geq \|\theta_{S}^{*}\|_{1} - \|\hat{\Delta}_{S}\|_{1} + \|\hat{\Delta}_{S^{c}}\|_{1} \end{aligned}$$

▶ Since $\hat{\Delta} = \hat{\theta} - \theta^* \in \mathbb{C}_1(S)$,

$$\|\hat{\Delta}\|_{1} = \|\hat{\Delta}_{S^{c}}\|_{1} + \|\hat{\Delta}_{S}\|_{1} \leq 2\|\hat{\Delta}_{S}\|_{1} \leq \frac{2\sqrt{s}}{\|\hat{\Delta}\|_{2}}.$$

▶ Since $\hat{\Delta} = \hat{\theta} - \theta^* \in \mathbb{C}_1(S)$,

$$\|\hat{\Delta}\|_{1} = \|\hat{\Delta}_{S^{c}}\|_{1} + \|\hat{\Delta}_{S}\|_{1} \leq 2\|\hat{\Delta}_{S}\|_{1} \leq \frac{2\sqrt{s}}{\|\hat{\Delta}\|_{2}}.$$

▶ Combined with RE condition ($\hat{\Delta} \in \mathbb{C}_1(S) \subset \mathbb{C}_3(S)$ as well)

$$\frac{1}{2}\kappa \|\hat{\Delta}\|_{2}^{2} \leq \frac{1}{2n} \|X\hat{\Delta}\|^{2} \leq \|z\|_{\infty} \|\hat{\Delta}\|_{1} \leq \|z\|_{\infty} 2\sqrt{s} \|\hat{\Delta}\|_{2}$$

which gives the desired result.

Let

$$L(\theta) := \frac{1}{2n} \|y - X\theta\|_2^2 + \lambda \|\theta\|_1$$

be the regularized loss.

Let

$$L(\theta) := \frac{1}{2n} \|y - X\theta\|_2^2 + \lambda \|\theta\|_1$$

be the regularized loss.

Basic inequality is

$$L(\hat{\theta}) \leq L(\theta^*).$$

Let

$$L(\theta) := \frac{1}{2n} \|y - X\theta\|_2^2 + \lambda \|\theta\|_1$$

be the regularized loss.

Basic inequality is

$$L(\hat{\theta}) \leq L(\theta^*).$$

Rearranging

$$\frac{1}{2n}\|X\hat{\Delta}\|_2^2 \leq \langle z,\hat{\Delta}\rangle + \lambda(\|\theta^*\|_1 - \|\hat{\theta}\|_1)$$

Let

$$L(\theta) := \frac{1}{2n} \|y - X\theta\|_2^2 + \lambda \|\theta\|_1$$

be the regularized loss.

Basic inequality is

$$L(\hat{\theta}) \leq L(\theta^*).$$

Rearranging

$$\frac{1}{2n}\|X\hat{\Delta}\|_2^2 \leq \langle z, \hat{\Delta} \rangle + \lambda(\|\theta^*\|_1 - \|\hat{\theta}\|_1)$$

We have

$$\|\theta^*\|_1 - \|\hat{\theta}\|_1 = \|\theta_S^*\|_1 + \|\theta_{S^c}^*\|_1 - \|\theta_S^* + \hat{\Delta}_S\|_1 - \|\theta_{S^c}^* + \hat{\Delta}_{S^c}\|_1$$

Let

$$L(\theta) := \frac{1}{2n} \|y - X\theta\|_2^2 + \lambda \|\theta\|_1$$

be the regularized loss.

▶ Basic inequality is

$$L(\hat{\theta}) \leq L(\theta^*).$$

Rearranging

$$\frac{1}{2n}\|X\hat{\Delta}\|_2^2 \leq \langle z, \hat{\Delta} \rangle + \lambda(\|\theta^*\|_1 - \|\hat{\theta}\|_1)$$

We have

$$\begin{aligned} \|\theta^*\|_1 - \|\hat{\theta}\|_1 &= \|\theta_S^*\|_1 + \|\theta_{S^c}^*\|_1 - \|\theta_S^* + \hat{\Delta}_S\|_1 - \|\theta_{S^c}^* + \hat{\Delta}_{S^c}\|_1 \\ &= \|\theta_S^*\|_1 - \|\theta_S^* + \hat{\Delta}_S\|_1 - \|\hat{\Delta}_{S^c}\|_1 \end{aligned}$$

Let

$$L(\theta) := \frac{1}{2n} \|y - X\theta\|_2^2 + \lambda \|\theta\|_1$$

be the regularized loss.

Basic inequality is

$$L(\hat{\theta}) \leq L(\theta^*).$$

Rearranging

$$\frac{1}{2n}\|X\hat{\Delta}\|_2^2 \leq \langle z, \hat{\Delta} \rangle + \lambda(\|\theta^*\|_1 - \|\hat{\theta}\|_1)$$

We have

$$\begin{aligned} \|\theta^*\|_{1} - \|\hat{\theta}\|_{1} &= \|\theta_{S}^*\|_{1} + \|\theta_{S^c}^*\|_{1} - \|\theta_{S}^* + \hat{\Delta}_{S}\|_{1} - \|\theta_{S^c}^* + \hat{\Delta}_{S^c}\|_{1} \\ &= \|\theta_{S}^*\|_{1} - \|\theta_{S}^* + \hat{\Delta}_{S}\|_{1} - \|\hat{\Delta}_{S^c}\|_{1} \\ &< \|\hat{\Delta}_{S}\|_{1} - \|\hat{\Delta}_{S^c}\|_{1} \end{aligned}$$

$$\frac{1}{2n}\|X\hat{\Delta}\|_2^2 \leq \langle z,\hat{\Delta}\rangle + \lambda(\|\hat{\Delta}_S\|_1 - \|\hat{\Delta}_{S^c}\|_1).$$

$$\frac{1}{2n}\|X\hat{\Delta}\|_2^2 \leq \langle z,\hat{\Delta}\rangle + \lambda(\|\hat{\Delta}_S\|_1 - \|\hat{\Delta}_{S^c}\|_1).$$

$$\frac{1}{n} \|X\hat{\Delta}\|_2^2 \leq 2\langle z, \hat{\Delta} \rangle + 2\lambda(\|\hat{\Delta}_S\|_1 - \|\hat{\Delta}_{S^c}\|_1)$$

$$\frac{1}{2n}\|X\hat{\Delta}\|_2^2 \leq \langle z,\hat{\Delta}\rangle + \lambda(\|\hat{\Delta}_S\|_1 - \|\hat{\Delta}_{S^c}\|_1).$$

$$\frac{1}{n} \|X\hat{\Delta}\|_{2}^{2} \leq 2\langle z, \hat{\Delta} \rangle + 2\lambda(\|\hat{\Delta}_{\mathcal{S}}\|_{1} - \|\hat{\Delta}_{\mathcal{S}^{c}}\|_{1})
\leq 2\|z\|_{\infty} \|\hat{\Delta}\|_{1} + 2\lambda(\|\hat{\Delta}_{\mathcal{S}}\|_{1} - \|\hat{\Delta}_{\mathcal{S}^{c}}\|_{1})$$

$$\frac{1}{2n}\|X\hat{\Delta}\|_2^2 \leq \langle z,\hat{\Delta}\rangle + \lambda(\|\hat{\Delta}_S\|_1 - \|\hat{\Delta}_{S^c}\|_1).$$

$$\begin{array}{lll} \frac{1}{n} \| X \hat{\Delta} \|_{2}^{2} & \leq & 2 \langle z, \hat{\Delta} \rangle + 2 \lambda (\| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1}) \\ & \leq & 2 \| z \|_{\infty} \| \hat{\Delta} \|_{1} + 2 \lambda (\| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1}) \\ & \leq & \lambda \| \hat{\Delta} \|_{1} + 2 \lambda (\| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1}) \end{array}$$

$$\frac{1}{2n}\|X\hat{\Delta}\|_2^2 \leq \langle z,\hat{\Delta}\rangle + \lambda(\|\hat{\Delta}_S\|_1 - \|\hat{\Delta}_{S^c}\|_1).$$

$$\frac{1}{n} \| X \hat{\Delta} \|_{2}^{2} \leq 2 \langle z, \hat{\Delta} \rangle + 2 \lambda (\| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1}) \\
\leq 2 \| z \|_{\infty} \| \hat{\Delta} \|_{1} + 2 \lambda (\| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1}) \\
\leq \lambda \| \hat{\Delta} \|_{1} + 2 \lambda (\| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1}) \\
= \lambda (\| \hat{\Delta}_{S} \|_{1} + \| \hat{\Delta}_{S^{c}} \|_{1}) + 2 \lambda (\| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1})$$

$$\frac{1}{2n}\|X\hat{\Delta}\|_2^2 \leq \langle z,\hat{\Delta}\rangle + \lambda(\|\hat{\Delta}_S\|_1 - \|\hat{\Delta}_{S^c}\|_1).$$

$$\begin{array}{lll} \frac{1}{n} \| X \hat{\Delta} \|_{2}^{2} & \leq & 2 \langle \mathbf{z}, \hat{\Delta} \rangle + 2 \lambda (\| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1}) \\ & \leq & 2 \| \mathbf{z} \|_{\infty} \| \hat{\Delta} \|_{1} + 2 \lambda (\| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1}) \\ & \leq & \lambda \| \hat{\Delta} \|_{1} + 2 \lambda (\| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1}) \\ & = & \lambda (\| \hat{\Delta}_{S} \|_{1} + \| \hat{\Delta}_{S^{c}} \|_{1}) + 2 \lambda (\| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1}) \\ & = & \lambda (3 \| \hat{\Delta}_{S} \|_{1} - \| \hat{\Delta}_{S^{c}} \|_{1}) \end{array}$$

$$\frac{1}{2n}\|X\hat{\Delta}\|_2^2 \leq \langle z,\hat{\Delta}\rangle + \lambda(\|\hat{\Delta}_{\mathcal{S}}\|_1 - \|\hat{\Delta}_{\mathcal{S}^c}\|_1).$$

▶ This implies, since $\lambda \ge 2||z||_{\infty}$,

$$\begin{array}{lll} \frac{1}{n} \| X \hat{\Delta} \|_{2}^{2} & \leq & 2 \langle \mathbf{z}, \hat{\Delta} \rangle + 2 \lambda (\| \hat{\Delta}_{\mathcal{S}} \|_{1} - \| \hat{\Delta}_{\mathcal{S}^{c}} \|_{1}) \\ & \leq & 2 \| \mathbf{z} \|_{\infty} \| \hat{\Delta} \|_{1} + 2 \lambda (\| \hat{\Delta}_{\mathcal{S}} \|_{1} - \| \hat{\Delta}_{\mathcal{S}^{c}} \|_{1}) \\ & \leq & \lambda \| \hat{\Delta} \|_{1} + 2 \lambda (\| \hat{\Delta}_{\mathcal{S}} \|_{1} - \| \hat{\Delta}_{\mathcal{S}^{c}} \|_{1}) \\ & = & \lambda (\| \hat{\Delta}_{\mathcal{S}} \|_{1} + \| \hat{\Delta}_{\mathcal{S}^{c}} \|_{1}) + 2 \lambda (\| \hat{\Delta}_{\mathcal{S}} \|_{1} - \| \hat{\Delta}_{\mathcal{S}^{c}} \|_{1}) \\ & = & \lambda (3 \| \hat{\Delta}_{\mathcal{S}} \|_{1} - \| \hat{\Delta}_{\mathcal{S}^{c}} \|_{1}) \end{array}$$

• We obtain that $\hat{\Delta} \in \mathbb{C}_3(S)$ ($\|\hat{\Delta}_{S^c}\|_1 \leq 3\|\hat{\Delta}_S\|_1$) and the rest of the proof follows.

Key condition: Restricted eigenvalue condition

For a constant $\alpha \geq 1$, we define

$$\mathbb{C}_{\alpha}(S) := \left\{ \Delta \in \mathbb{R}^d : \|\Delta_{S^c}\|_1 \le \alpha \|\Delta_{S}\|_1 \right\}.$$

▶ **Definition.** A matrix X satisfies the restricted eigenvalue (RE) condition over S with parameters (κ, α) if

$$\frac{1}{n}\|X\Delta\|_2^2 \geq \kappa\|\Delta\|_2^2 \ \forall \Delta \in \mathbb{C}_{\alpha}(S).$$

Recall that RNS corresponds to $\mathbb{C}_1(S) \cap \ker(X) = \{0\}$. Thus,

$$\frac{1}{n}\|X\Delta\|_2^2 > 0$$

for all $\Delta \in \mathbb{C}_1(S) \setminus \{0\}$.

Deviation bounds under RE

Theorem

Assume that $y = X\theta^* + w$, where $X \in \mathbb{R}^{n \times d}$, $\theta^* \in \mathbb{R}^d$ and

- ▶ θ^* is supported on $S \subset [d]$ with $|S| \leq s$.
- ightharpoonup X satisfies $RE(\kappa,3)$ over S.

Let us define $z = X^T w/n$. Then we have the following:

▶ Any solution of Lasso (1) with $\lambda \ge 2||z||_{\infty}$ satisfies

$$\|\hat{\theta} - \theta^*\|_2 \le \frac{3}{\kappa} \sqrt{s} \lambda.$$

▶ Any solution of constrained Lasso with $R = \|\theta^*\|_1$ satisfies

$$\|\hat{\theta} - \theta^*\|_2 \le \frac{4}{\kappa} \sqrt{s} \|z\|_{\infty}.$$

RE condition for anisotropic design

► For a PSD matrix Σ, let $ρ^2(Σ) = \max_{i,j} Σ_{ij}$.

Theorem

Let $X \in \mathbb{R}^{n \times d}$ withrows i.i.d. from $N(0, \Sigma)$. Then, there exist universal constants $0 < c_1 < 1 < c_2$ such that

$$\frac{1}{n}\|X\theta\|_2^2 \geq c_1\|\sqrt{\Sigma}\theta\|_2^2 - c_2\rho^2(\Sigma)\frac{\log d}{n}\|\theta\|_1^2, \quad \forall \theta \in \mathbb{R}^d \quad (2)$$

with probability at least $1 - e^{-n/32}/(1 - e^{-n/32})$.

RE condition for anisotropic design

► For a PSD matrix Σ, let $ρ^2(Σ) = \max_{i,j} Σ_{ij}$.

Theorem

Let $X \in \mathbb{R}^{n \times d}$ withrows i.i.d. from $N(0, \Sigma)$. Then, there exist universal constants $0 < c_1 < 1 < c_2$ such that

$$\frac{1}{n} \|X\theta\|_{2}^{2} \geq c_{1} \|\sqrt{\Sigma}\theta\|_{2}^{2} - c_{2}\rho^{2}(\Sigma) \frac{\log d}{n} \|\theta\|_{1}^{2}, \quad \forall \theta \in \mathbb{R}^{d}$$
 (2)

with probability at least $1 - e^{-n/32}/(1 - e^{-n/32})$.

ightharpoonup (2) implies RE condition over $\mathbb{C}_3(S)$ uniformly over all subsets of cardinality

$$|S| \leq \frac{c_1}{32c_2} \frac{\gamma_{\min}(\Sigma)}{\rho^2(\Sigma)} \frac{n}{\log d}.$$

RE condition for anisotropic design

► For a PSD matrix Σ, let $ρ^2(Σ) = \max_{i,j} Σ_{ij}$.

Theorem

Let $X \in \mathbb{R}^{n \times d}$ withrows i.i.d. from $N(0, \Sigma)$. Then, there exist universal constants $0 < c_1 < 1 < c_2$ such that

$$\frac{1}{n}\|X\theta\|_2^2 \geq c_1\|\sqrt{\Sigma}\theta\|_2^2 - c_2\rho^2(\Sigma)\frac{\log d}{n}\|\theta\|_1^2, \quad \forall \theta \in \mathbb{R}^d \quad (2)$$

with probability at least $1 - e^{-n/32}/(1 - e^{-n/32})$.

(2) implies RE condition over $\mathbb{C}_3(S)$ uniformly over all subsets of cardinality

$$|S| \leq \frac{c_1}{32c_2} \frac{\gamma_{\min}(\Sigma)}{\rho^2(\Sigma)} \frac{n}{\log d}.$$

▶ In other words, $n \gtrsim s \log d$ \implies RE over $\mathbb{C}_3(S)$ for all |S| < s.