WHONE STRUTTURLE

Definitamo BTie come TIEBTIE & TIEBTIE => Dranch (II] = BTIER Goods Drenotu Ta Ta

Definismo m: BTree -> N conto i nodi di un albero

 $\int m(fogli\theta) = 1$ $\int m(fogli\theta) = 1$ $\int m(fogli\theta) = 1$ $\int m(fogli\theta) = 1$ Definition o h: BTree N colcola l'altersa dell'allano h(foglia) = 0 h(foglia) =

Dimostrore per industrore strutturole du

Bose Dollo ano dimostrore 18 per gli elementi figlia T = fooline m(T) = m(fooline) = 1n(t) = h (foplie) = 0

Colcoliano $2^{h(t)+\frac{1}{2}} 1 = 2^{0+1} - 1 = 1$

dimospheric che
$$\underline{m(T)} \subseteq \underline{M(T)}^{-1}$$
 $m(T) = 1 + m(T_1) + m(T_2)$ $\underline{(h(T))} = (M^{-1} - M^{-1}) + h(T_2)$
 $m(T) = 1 + m(T_2) + m(T_2) \subseteq 1 + 2h(T_2) + 1 - 1 + 2h(T_2) + 1 - 1$
 $par def di m$
 $par d$

 $M(T) = 2^{h(T)+1} - 1$

Posso indultivo: T= branch (F1, T2)

Supponiamo pez Mp. md. che

 $\begin{array}{c} H_{0} \rightarrow \\ & \text{M}(T_{2}) \leq 2^{h(T_{2})+1} - 1 \\ & \text{M}(T_{2}) \leq 2^{h(T_{2})+1} - 1 \end{array}$

Bose: T= fodo : P(t)=1 1 ≤ 2°=1 V htt)=0 Posso industrio T= branch (T1,T2) Hp. Ind: PCTI) = 2/102) = 2/102) Dobbuono obmodinare du $(2LT) \leq 2^{h(T)}$ e(t)= e(ti)+ e(ti2) h(t)= 1+mox (h(ti), h(ti2)) ect) = ecti) + ect2) = (2htiz) (htiz) N = Mex (hti), htis h(T1) = h per def di l (172) ≤h $\leq 2^h + 2^h = 2(2^h) = 2^{h+1} = 2^{h(T)}$ (espressioni) definite induttrionente aritmetica ME EXP def. di exp e1, e2 & exp e2 & exp Def. $VOC: Exp \rightarrow Pl$ Numero of numer, w bleseny, in | Val (m)=1 | Val (121+62)= Val (121-62)= Val (02)+ Val (02) Def op: Exp→M numero di operatosi in onp (+,-) $op(e_1+e_2) = op(e_1-e_2) = op(e_1) + op(e_2) + 1$

Dimoshore the value =
$$q(e) + 1$$
 Vector

Pase: $e = n$ Value = $q(e) + 1$ Vector

 $q(e) = q(e) = 0$ $1 = 0 + 1$ V

Paso ind: $e_1 + e_2$ ($e_1 - e_2$ independent of the distribution of the particle of the distribution of the particle of the distribution of the particle of the distribution of the value = $q(e) + 1$

Deliberate distribution = $q(e) + 1$

Value = $q(e) + q(e) + 1$

Particle = $q(e) + 1$

Value = $q(e) + 1$

Particle = $q(e) + 1$

Value = $q(e) + 1$

Particle = $q(e) + 1$

Value = $q(e) + 1$

Particle = $q(e) + 1$

Value = $q(e) + 1$

Particle = $q(e) + 1$

Value = $q(e) + 1$

Particle = $q(e) + 1$

Value = $q(e) + 1$

Value = $q(e) + 1$

Particle = $q(e) + 1$

Value = $q(e) + 1$

Value = $q(e) + 1$

Particle = $q(e) + 1$

Value = $q(e) + 1$

9=2+4;

Scoping statice

Main
$$\Rightarrow B \Rightarrow C \Rightarrow A$$

Scoping statice

Main $\Rightarrow B$

Chiamato Mean $\Rightarrow B$

Chiam

Chiemata C -> A

Scaping dinomico

Chiemeta C->A

gurdion (3,6,9)
Gundhoure ((369), ())
→ function rc((G9), concot(3,())) <
Function ((9), cond((6), (3))
Spurchance ((), concot (9, (63)))
(9,6,3)