Cálculo del tipo de homotopía de complejos simpliciales

Rafael Villarroel Flores

Universidad Autónoma del Estado de Hidalgo

Introducción

Complejos simpliciales

Los complejos simpliciales proporcionan una manera sencilla de involucrar la topología en diversas construcciones combinatorias. Sea *G* la gráfica diamante:

Figura 1: Gráfica *G*

Un complejo simplicial (X, Δ) consta de un conjunto X de vértices y un conjunto de subconjuntos de X (llamados simplejos), tal que si $\sigma \in \Delta$ y $\tau \subseteq \sigma$, entonces $\tau \in \Delta$.

Construcciones

El complejo de vecindades

Se tiene un complejo simplicial $\mathcal{N}(G)$ (ver [1]), donde:

- el conjunto de vértices es V(G),
- $\sigma \subseteq V(G)$ es un simplejo si los vértices de σ tienen un vecino común.

Figura 2: Complejo $\mathcal{N}(G)$

El complejo de independencia

Se tiene un complejo simplicial I(G) donde:

- el conjunto de vértices es V(G),
- $\sigma \subseteq V(G)$ es simplejo si no existen aristas entre vértices de σ .

Figura 3: Complejo *I*(*G*)

El complejo de completas

Se tiene un complejo simplicial $\Delta(G)$ donde:

- el conjunto de vértices es V(G),
- $\sigma \subseteq V(G)$ es simplejo si σ induce una subgráfica completa de G.

Figura 4: Complejo $\Delta(G)$

El complejo de grado acotado

Sean G una gráfica con vértices $V(G) = (v_1, v_2, ..., v_n)$ y $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$ una sucesión de enteros no negativos. Se tiene un complejo simplicial $BD^{\lambda}(G)$ donde:

- el conjunto de vértices es E(G),
- $H \subseteq E(G)$ es simplejo si el grado de v_i en la gráfica inducida G[H] es menor o igual a λ_i .

Figura 5: Complejo $BD^{\lambda}(G)$, con $\lambda = (1, 2, 2, 1)$

Herramientas para el cálculo

Subespacio contraíble

Vértices dominados (ver [2])

Teoría discreta de Morse (ver [3])

Bibliografía

- [1] Lovsáz (1978): Kneser's conjecture, chromatic number and homotopy.
- [2] Prisner (1992): Convergence of iterated clique graphs.
- [3] Forman (1998): Morse theory for cell complexes.
- [4] Larrión, Pizaña, V., (2013): Iterated clique graphs and bordered compact surfaces.