6) Несобственные интегралы от неотрицательных функций (лемма и признак сравнения). Критерий Коши сходимости интеграла (с доказательством). Абсолютно сходящиеся интегралы (определение и теорема о сходимости абсолютно сходящегося интеграла)

Лемма 1. Пусть $f(x) \ge 0$ на полуинтервале [a,b). Интеграл $\int_a^b f(x) dx$ сходится тогда и только тогда, когда существует c > 0 такое, что для любого $\eta \in [a,b)$ выполняется неравенство $\int_a^{\eta} f(x) dx \le c$.

Теорема 1. (Признак сравнения).

Пусть $0 \le g(x) \le f(x)$, $x \in [a, b)$. Тогда:

- 1) Если Интеграл $\int_a^b f(x) dx$ -сходится, то сходится и интеграл $\int_a^b g(x) dx$;
- 2) если Интеграл $\int_a^b g(x) dx$ -расходится, то расходится и интеграл $\int_a^b f(x) dx$

Следствие 1.(Признак сравнения в предельной форме)

Пусть $0 \le g(x)$ и $0 \le f(x)$, для любого $x \in [a, b)$ и существует (\exists) конечный или бесконечный

$$\lim_{x \to b} \frac{f(x)}{g(x)} = k.$$

Тогда:

- 1) Если $0 \le k < +\infty$, то $\int_a^b f(x) dx$ и $\int_a^b g(x) dx$ сходятся или расходятся одновременно;
- 2) Если k=0 o из сходимости $\int_a^b g(x) dx$ следует сходимость $\int_a^b f(x) dx$;
- 3) Если $k=+\infty$, тогда из расходимости интеграла $\int_a^b f(x)dx$ следует расходимость;

Теорема 2.(Критерий Коши)

Несобственный интеграл $\int_a^b f(x) dx$ сходится, тогда и только тогда, когда для любого(\forall) ϵ > 0 существует(\exists) $\eta \in [a, b)$, что для любых η' , η'' , $\eta < \eta' < \eta''$,

$$\left|\int_{\eta'}^{\eta''} f(x)dx\right| < \varepsilon$$

Доказательство. По определению несобственного интеграла $\int_a^b f(x)dx = \lim_{\eta \to \beta - 0} \int_a^\eta f(x)dx = \lim_{\eta \to \beta - 0} \varphi(\eta)$ по критерию Коши существование $\lim_{\eta \to \beta - 0} \varphi(\eta) \exists \Leftrightarrow \forall \varepsilon > 0 \; \exists \; a < \eta < b \; : \; \forall \; \eta', \eta'',$

$$\eta < \eta' < \eta''$$
 выполняется неравенство $|\varphi(\eta') - \varphi(\eta'')| < \epsilon$ $|\varphi(\eta') - \varphi(\eta'')| = \int_a^b f(x) dx - \int_a^{\eta'} f(x) dx = \int_{\eta'}^{\eta''} f(x) dx \Leftrightarrow \left| \int_{\eta'}^{\eta''} f(x) dx \right| < \epsilon.$

Абсолютно сходящиеся интегралы

Определение Несобственный интеграл $\int_a^b f(x) dx$ называется абсолютно сходящимся, если сходится интеграл $\int_a^b |f(x)| dx$.

Теорема 3. Если несобственный интеграл $\int_a^b f(x) dx$ абсолютно сходится, то он сходится.

Замечание!!!!

Утверждение обратное теореме 3 неверное, то есть из обычной сходимости не следует абсолютная сходимость.

Замечание!! Если интеграл $\int_a^b f(x) dx$ абсолютно сходится, а функция g(x) интегрируема по Риману на любом отрезке [a, η], $\forall \eta \in (a,b)$ и ограничена на [a, b). Тогда $\int_a^b f(x)g(x)dx$ абсолютно сходится.