Rate-compatible Polar Coding and HARQ

11-11-2017

Rate compatible polar codes

- {C1,C2...CN} be a compound channel with R1>R2>R3...>RN, and block lengths n1<n2...<nN
- Then the set is rate compatible if codeword for Ci can be built by removing nj-ni bits from codewords of code Cj ,j>i
- Can be constructed by puncturing low rate codes.
- Polar codes for degraded channels is inherently RCP

HARQ = ARQ+FEC

Type -I

- 1. Send **MSG+ED+EC**
- 2. If recoverable with EC do so.
- Else use ED to detect error and Retransmit
- •Use *Chase combining* (like MRC) to decode finally

•Effective SNRs for each Tx add.

Type -II

- 1. Send **MSG+ED**
- 2. if decodable do so.
- 3. Else Send *EC incrementally*
- 4. Decode using all the previous information.
- 5. Repeat from 3 if not decodable
- •Incremental Redundancy
- •Data sent on step 3 is RV or redundancy vector, can be chosen appropriately
- Coding Gain obtained

HARQ for polar codes need a RCP and a HARQ scheme

Scheme 1 (Kai chen)

 K information (msg) bits to be sent

RCP

- Use N₀ (block length of a low rate polar code)
- Puncture to create $N_1 < N_2 < N_3 ... < N_T < N_0$
- T is the maximum number of repeats

M (polar bits)	N-M repetition bits
K information bits	Chosen from the K bits

Scheme 1 (Kai chen)

HARQ

- A Type II ARQ (IR)
- First Transmission N1 polar bits are sent
- 2^{nd} onwards till 'T'th transmission N_t-N_{t-1} repetitions bits are sent.(N_t , K, M) RCPs constructed on each iteration.
- i.e, The RVs are repetition bits chosen as follows

Selection of repetition bits

- 1. Choose the most error prone channel among the K bits, repeat this bit.
- 2. Step 1 increases the reliability, which is recalculated.
- 3. Repeat from step 1.

Scheme 2 (Kai chen, Incremental freezing)

- A improvement over the previous scheme.
- Uses reliability ordering to create puncturing patterns, thus the RCP.
- Applicable to degraded channels only.
- RV is repetition bits, choice of repetition bits is based on reliability ordering.
- Extended to general channels by Mondelli, Hassani, using universal polarization (scheme 2a)
- We have implemented this.

Scheme 3(Tavildar)

RCP

Uses <u>Subset Polar codes</u> as RCP

Subset Polar code

- Start with (N,K) polar code mother code
- Create (M,K) subset code by puncturing, N>M, as follows:
 - 1. Fix a BLER
 - 2. puncture 1 bit
 - 3. estimate BLER
 - 4. change rate to get fixed BLER
 - repeat from step 1 till (M,K) reached

Scheme 3(Tavildar)

HARQ

Uses <u>Uses Equivalent subset polar code</u> as RV.

Equivalent subset Polar codes

Let $S = \{s1, s2, ..., sM\}$ and $T = \{t1, t2, ..., tM\}$ be two (N M, K) subset polar codes. We say S is equivalent to T if $si = ti \oplus x \forall i, 1 \leq i \leq M$ for some integer x, where $1 \leq x \leq N$

cont...

Scheme 3(Tavildar)

Equivalent subset polar codes create redundancy as:

If S, T are equivalent subset polar codes, then channels $W^{(i)}N$, S and $W^{(i)}N$, T are equivalent for each $1 \le i \le N$.

Where , bit channel equivalence is defined as follows:

Let W1 and W2 be two binary input channels with output alphabets Y1 and Y2 respectively. We define the two channels are equivalent, W1 \sim W2, if there exists an invertible function f : Y1 \rightarrow Y2 such that W1(y1|x) = W2(f(y1)|x).

Simulations suggest this beats previous schemes in terms of reliability under joint decoding.

Use of CRC(DLC layer artefact) as ED

- CRC is supposedly used or ED in all mentioned schemes.
- Rateloss is negligible but not if short blocklengths are used.
- Has other adverse effects like complexity due to cross layer cooperation.
- Mukhtar et al. proposed CRC free HARQ with Turbo product codes using inherent ED capability of TPC.

We are trying to get CRC-free HARQ with polar codes

Proposition 1:

If we can estimate the expected value of the abs(LLRs) of all the channels from some analytical expression(eg, Z) then ED is Binary Hypothesis testing between exactly 2 LLR vectors in each step. Further we can try ML decoding of this received LLR vector using some gaussian approximation of the LLR distribution(which looked like gaussian).

Proposition 2:

Errorchecking using frozen bits as mentioned here:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142331