

词性标注 (Part-Of-Speech Tagging)

王小捷 智能科学与技术中心 北京邮电大学

大纲

- ■引言:短语结构问题
- ■词性标注集(POS Tagset)
- ■词性标注 (POS Tagging)
- ■基于规则的词性标注方法
- ■基于统计的词性标注方法
- ■总结

计算内容
(语法、
语义、
语用)

计算单元(词、短语(句子)、篇章)

词法分析	短语(句子) 结构分析	篇章结构 分析
词汇语义 分析	短语(句子) 语义分析	篇章语义 分析
词汇语用 分析	短语(句子) 语用分析	篇章语用 分析

订算内容 计算单元(词、短语(句子)、篇章)

词法分析

短语(句子) 结构分析

篇章结构 分析

- ■词的外部边界
- ■词的内部结构

语义 语用

(语法

计算内容	
(语法、	
语义、	
语用)	

计算单元(词、短语(句子)、篇章)

词法分析	短语(句子) 结构分析	篇章结构 分析
词汇语义	短语(句子)	篇章语义
分析	语义分析	分析
词汇语用	短语(句子)	篇章语用
分析	语用分析	分析

订算内容

(语法

语义 语用 计算单元(词、短语(句子)、篇章)

词法分析

短语(句子) 结构分析

篇章结构 分析

- ■短语(句子)的外部边界
- ■短语(句子)的内部结构

■句子边界:连续出现的n个词 $w_1, w_2, ..., w_n$ 是否构成一个句子?

- ■基于标点符号:大部分情况是平凡问题
- ■标号:。?!;:很可能是句子的分隔符
- ■点号: ""()...-- 也可能是句子的分隔符, 但是《》、着重号等等一般不是句子分隔符
- ■符号: *等等一般不是句子分隔符
 - ■5月3日,那天一大早,我就听见外面刮着狂风。

- ■子句边界: 句子中子句边界
 - ■我看见你了,你出来吧。(逗号)
- ■很多情况下仅基于标点不能实现
 - ■You know what I mean.
 - ■我认为你这样做是不对的。

- ■引导词?动词?
- ■子句边界实际上又是一个句子内部结构的问题!

- ■句子内部结构:
- ■粗略地说:句子中的词单元是如何构成句子的,即句子中词的结合关系
- $\blacksquare w_1, w_2, \dots w_n$ 是 $(w_1, w_2), \dots w_n$)还是 $(w_1, (w_2, \dots w_n)$ 等等
 - ■((我和他)((一起)((看)(球))))
 - ■(I (saw ((a boy) (with a telescope))))
 - \blacksquare (I ((saw) (a boy) (with a telescope)))

■短语边界

- ■He gave me /a couple of books/.
- ■我们约在/五月的一天/
- ■/那个带眼镜的人/在看书
- ■识别短语边界:名词短语、动词短语、...
- **?**

- ■短语结构:
- ■短语中词的关系
- ■ w_i 和 w_j 的关系,是以 w_i 为主还是 w_j 为主,还是别的?
 - ■偏正结构:旧世界、美丽心灵、......
 - ■述谓结构:开动脑筋、写论文......
 - ■并列结构:学习学习、老人与海、......

- ■短语或句子内部结构(构成方式)
- ■语言学的角度
 - ■引入一个中间概念:词性,给短语中的每一个词赋予一个词性,通过词性序列来帮助揭示语言中的结构信息:
 - ■例如:
 - ■影响 团结 (动词 名词): 述谓结构
 - ■重大 影响(形容词 名词): 偏正

- ■词性(POS\词类\词汇范畴\)
 - ■POS (Part-Of-Speech)
 - ■词的聚合关系:具有相似语法性质的词构成一类
 - ■I\you\she\we\...; apple\table\room\street\...

	语法	语义
聚合	词性(POS\词类\词汇范畴\)	同义
组合	句法结构	语义结构

- ■两个子任务
 - ■选择词性标注集(POS Tagset)
 - ■对一个语言(任务)而言有多少POS: 确定POS tagset
 - ■对每个词而言有多少个不同的POS可能
 - ■或不为每个词分别指定一个POS子集,而直接认为每个词都可以取所有可能的POS
 - ■词性标注(POS Tagging)
 - ■在上下文中为词指派POS

Part-Of-Speech(POS)

- ■通常的
 - ■名词:人民、学校
 - ■动词:打动、袭击
 - ■形容词:美丽的、善良的
 - . . .
- ■更多的
 - ■名词细分: 专有名词、集合名词...
 -

词性标注(POS tagging) ■任务

■Secretariat is expected to race tomorrow.

■Secretariat/N is/V expected/V to/Prep race/V tomorrow/N

词性标注(POS tagging)

- ■任务
 - ■受 暖湿 气流 影响,

■受/V 暖湿/ADJ 气流/N 影响/V, /w

词性标注的一些作用

- ■词性是短语结构和句子结构分析的基础
 - ■后面句法分析可以进一步看到
- ■对很多NLP应用的性能提高有帮助
 - ■机器翻译
 - ■不同词性意义不同:例如:"hide":兽皮(N),隐藏(V)
 - ■信息检索
 - ■尤其是语言学习时:例如:找出play的常见搭配
 - 使用 Play + N 检索可以避免找出play a, play the
 - ■...

大纲

TOSIS AND THE STATE OF THE STAT

- ■引言:短语结构问题
- ■词性标注集(POS Tagset)
- ■词性标注 (POS Tagging)
- ■基于规则的词性标注方法
- ■基于统计的词性标注方法
- ■总结

POS标注集 (POS tagset)

■例子: 一个简单POS tagset{Noun, Verb, Adj, Other}

■人民: Noun, Verb, Adj, Other

■创造: Noun, Verb, Adj, Other

■. : Noun, Verb, Adj, Other

■...

■或通过使用额外的语言知识获得,即使如此也有词有多个可能的POS

■人民: Noun

■创造: Noun, Verb

• : other

■...

POS标注集 (POS tagset)

- ■多样性
 - ■不同的语言学家有不同的
 - ■动词/名词
 - ---
 - ■不同的任务可以设计不同的
 - ■名词/人名/时间词
 - ■动词/及物动词/不及物动词
 - - -

一些有代表性的标注集

英语			
语料库	标注集大小		
Brown语料	87		
Penn 树库(Treebank)	45		
Lancaster UCREL C5(BNC)	61		
Lancaster C7	146		
汉语			
Penn 汉语树库(Treebank)	33		
北京大学	39		

Penn 树库标注集

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	66	Left quote	(' or ")
POS	Possessive ending	's	,,	Right quote	(' or '')
PP	Personal pronoun	I, you, he	(Left parenthesis	([, (, {, <)
PP\$	Possessive pronoun	your, one's)	Right parenthesis	$(],),\},>)$
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(:; -)
RP	Particle	up, off			200 22. 22.

Penn 树库 POS示例

superlative or plural

possessive

NN	noun	JJ	adjective
NNP	proper noun	CC	coord conj
DT	determiner	CD	cardinal number
IN	preposition	PRP	personal pronoun
VB	verb	RB	adverb
-R	comparative		

Penn 树库 POS示例: 动词

VBP	base present	take
	DUJU PIUJUIL	

VB infinitive take

VBD past took

VBG present participle taking

VBN past participle taken

VBZ present 3sg takes

MD modal can, would

UCREL C5

Tag	Description	Example
PNX	reflexive pronoun	itself, ourselves
POS	possessive 's or '	
PRF	the preposition of	
PRP	preposition (except of)	for; above, to
PUL	punctuation - left bracket	(or [
PUN	punctuation - general mark	. ! , : ; - ?
PUQ	punctuation - quotation mark	٤ > >>
PUR	punctuation - right bracket) or]
TO0	infinitive marker to	
UNC	unclassified items (not English)	
VBB	base forms of be (except infinitive)	am, are
VBD	past form of be	was, were
VBG	-ing form of be	being
VBI	infinitive of be	(2-23)
VBN	past participle of be	been
VBZ	-s form of be	is, 's
VDB	base form of do(except infinitive)	does
VDD	past form of do	did
VDG	-ing form of do	doing
VDI	infinitive of do	to do
VDN	past participle of do	done
VDZ	-s form of do	does
VHB	base form of have (except infinitive)	have
VHD	past tense form of have	had, 'd
VHG	-ing form of have	having
VHI	infinitive of have	500000000000000000000000000000000000000
VHN	past participle of have	had
VHZ	-s form of have	has, 's
VM0	modal auxiliary verb	can, could, will, 'll
VVB	base form of lexical verb (except infin.)	take, live
VVD	past tense form of lexical verb	took, lived
VVG	-ing form of lexical verb	taking, living
VVI	infinitive of lexical verb	take, live
VVN	past participle form of lex. verb	taken, lived
VVZ	-s form of lexical verb	takes, lives
XX0	the negative not or n't	
ZZ0	alphabetical symbol	A, B, c, d

Brown语料中的POS标签

Television/NN has/HVZ yet/RB to/TO work/VB out/RP a/AT living/RBG arrangement/NN with/IN jazz/NN ,/, which/VDT comes/VBZ to/IN the/AT medium/NN more/QL as/CS an/AT uneasy/JJ guest/NN than/CS as/CS a/AT relaxed/VBN member/NN of/IN the/AT family/NN ./.

BNC基于SGML的POS标记

- <div1 complete=y org=seq>
- <head>
- <s n=00040> <w NN2>TROUSERS <w VVB>SUIT
- </head>
- <caption>
- <s n=00041> <w EX0>There <w VBZ>is <w PNI>nothing <w AJ0>masculine
- <w PRP>about <w DT0>these <w AJ0>new <w NN1>trouser <w NN2-</p>
- VVZ>suits <w PRP>in <w NN1>summer<w POS>'s <w AJ0>soft <w
- NN2>pastels<c PUN>.
- <s n=00042> <w NP0>Smart <w CJC>and <w AJ0>acceptable <w PRP>for
- <w NN1>city <w NN1-VVB>wear <w CJC>but <w AJ0>soft <w AV0>enough
- <w PRP>for <w AJ0>relaxed <w NN2>days
- </caption>

北京大学标注集

■Ag: 形语素

 \blacksquare Bg

■d:副词

■h:前接成分

■1:习用语

■n:名词

 $\blacksquare Nx$

 $\blacksquare Qg$

■s:处所词

■u:助词

■Vn:名动词

■y:语气词

a:形容词

b:区别词

e:叹词

i:成语

Mg:数语素

nr:人名

nz:其他专名

q:量词

Tg:时语素

Vg:动语素

w:标点符号

z:状态词

ad:副形词

c:连词

f:方位词

j:简称略语

m:数词

ns:地名

o:拟声词

Rg:代语素

t:时间词

v:动词

x:非语素字

an:名形词

Dg:副语素

g:语素

k:后接成分

Ng:名语素

nt:机构团体

p:介词

r:代词

Ug:助语素

vd:副动词

Yg:语气语素

汉语语素

- ■语素是最小的音义结合体
- ■依所含音节数来划分,可分为:
 - ■单音节语素
 - ■大多数汉字是一个语素: 我、飞、过
 - ■双音节语素
 - ■琵琶、蜻蜓、葡萄、蹊跷
 - ■多音节语素
 - ■主要是拟声词、专用名词、音译外来词: 噼里啪啦、葡萄牙、喜马拉雅、中华人民共和国
 - ■非音节语素
 - ■儿化音节:花儿huor

■依构词能力来划分,可分为:

- ■自由语素
 - ■能独立成词: 你,好
- ■半自由语素
 - ■不能单独成词,可以在前后加上别的语素组成一个词语。如 民:人民、民众
- ■不自由语素
 - ■不能单独成词,可以在固定位置加上别的语素组成一个词语。 如阿:阿爸、阿妈

- ■语素与字的区别
 - ■大多数汉字都是语素: 我、飞、过
 - ■但并非每个汉字都是语素: 蜻、蜓
- ■语素与词的区别
 - ■词:能独立使用的最小音义结合体
 - ■词一定是语素构成的
 - ■由一个语素构成的词成为单纯词:好
 - ■由多个语素构成的词成为复合词:正确
 - ■语素不一定是词
 - ■浩、鸿・・・

北京大学语料的POS标记 示例

■19980105-04-007-004/m 慕/nr 凌飞/nr 先生/n 一生/n 热衷/v 于/p 社会/n 公 益/n 事业/n , /w 在/p [毛/nr 主席/n 纪念堂/n]ns 、/w [天安门/ns 城楼 /n]ns 、/w [周/nr 恩来/nr 邓/nr 颖超/nr 纪念馆/n]ns 、/w [平津战役/nz 纪 念馆/n]ns 等/u 处/n , /w 均/d 留/v 有/v 他/r 的/u 鸿/Ag 幅/Ng 巨制/n 。 /w 赈灾/v 义卖/v 、/w 支/v 教/Ng 助残/v , /w 甚至/d 对/p 劳教/vn 人员/n 帮教/v , /w 慕/nr 凌飞/nr 都/d 以/p 饱满/a 的/u 热情/an , /w 慈善/a 的/u 心地/n , /w 予以/v 真诚/a 无私/b 的/u 贡献/n 。/w 据/p 不/d 完全/a 统计 /v , /w 慕/nr 凌飞/nr 以/p 各种/r 名义/n 捐赠/v 书画/n 1500/m 多/m 件/q , /w 被/p 誉为/v 德/n 艺/Ng 双/m 馨/Ng 的/u 画家/n 。/w

POS标注集的影响

- ■标注集的选择极大影响标注任务的难度
 - ■45 v 146
 - ■哪个难? 为何?

- ■标注集选择时需要平衡:
 - ■信息丰富程度
 - ■不会太难标

大纲

TOUR SAME TO SAME THE SAME THE

- ■引言:短语结构问题
- ■词性标注集(POS Tagset)
- ■词性标注 (POS Tagging)
- ■基于规则的词性标注方法
- ■基于统计的词性标注方法
- ■总结

标注(Tagging)

- ■标注中的问题
 - ■影响 暖湿 气流 走向,

- 影响/V 暖湿/ADJ 气流/N 走向/N, /w
- 影响V 与 影响V &N

标注(Tagging)

- ■标注中的问题
 - ■歧义(Ambiguity)
 - ■当一个词有多个可能的POS时,如何为之指派合适的POS
 - ■影响/? 暖湿 气流 走向
 - ■暖湿 气流 给该地区带来巨大 影响/?

POS标注中的歧义

- ■广泛存在
- ■大多数高频词都有多个可能的POS

- ■Brown语料中:
 - 11.5% 的word type 是有多个POS的
 - 40% 的word tokens是有多个POS的

■汉语

■吕叔湘"汉语800词": 22.5% 有2个以上词性.

■汉语高频词

词	可能的POS
的	助词、名次、形容词
了	动词、副词
我	代词(主格、宾格)
是	动词、名词、代词、形容词、叹词
_	数词、副词、名词
在	动词、副词、名词(姓氏)
不	副词
他	代词(主格、宾格)
人	名词

词性标注的另一个问题

- ■OOV(未登录词)
 - ■词典未见,未规定词性

- ■所有可能的词性中的一个
 - ■名词多:命名实体

标注方法

- ■确定一个词的词性需要什么知识?
 - ■该词可能的词性
 - ■不同词性之间的搭配约束(上下文)

标注方法

- ■基于规则的方法
 - **■**Engtwol
- ■基于统计的方法: POS tagging是典型的序标问题
 - ■HMM(Hidden Markov Model)
 - ■MEMM
 - **CRF**
 - ■RNN/LSTM
- ■结合规则与统计的方法
 - ■Transformation-based Learning

大纲

TOUSIS AND THE SECOND S

- ■引言: 短语结构问题
- ■词性标注集(POS Tagset)
- ■词性标注 (POS Tagging)
- ■基于规则的词性标注方法
- ■基于统计的词性标注方法
- ■总结

- ■基于规则的方法:两步
 - ■为每个词打上其所有可能的POS标记
 - ■对于有多个POS的词,基于一些规则从中选择一个POS
 - ■规则预先手工制定

■规则示例

- ■合力: V, N
- ■if POS(x₋₁)=Verb then POS(合力)=N
- ■Engtwol(now ENGCG-2): 1100 规则
 - http://archive.is/Vakmz
 - ■早期在Brown corpus上取得 70%的准确率

大纲

TOSIS AND THE STATE OF THE STAT

- ■引言:短语结构问题
- ■词性标注集(POS Tagset)
- ■词性标注 (POS Tagging)
- ■基于规则的词性标注方法
- ■基于统计的词性标注方法
 - ■HMM (Hidden Markov Model)
- ■总结

HMM: 五元组

- ■状态集: $q_t \in S = \{s_1, s_2...s_N\}$
- **■观测集:** $o_t \in V = \{v_1, v_2,v_M\}$
- ■状态转移概率:

$$A = (a_{ij})_{N \times N}$$
 $a_{ij} = P(q_{t+1} = s_j | q_t = s_i)$

■状态-观测输出概率(发射概率)

(隐含假设: 当

前一时刻状态)

$$B = (b_i(o_t))_{N \times M}$$
 $b_i(o_t) = P(o_t = v_k \mid q_t = s_i)$

■初始状态: q_0 , 终止状态: q_{end}

$$a_{0i} = P(q_1 = i \mid q_0)$$

$$q_{i,end} = P(q_{end} \mid q_T = i)$$

HMM模型参数: λ=(A, B)

HMM: 图表示

■(隐)状态序列具有马氏性

■盒中取粉笔问题:

TOSTS AND THE PARTY OF THE PART

■粉笔颜色: 观测

■盒编号:状态

■选盒: 状态转移A

■取笔: 发射概率B

$$X_1, X_2, ... X_5 \subseteq \text{boxset} = \{1, 2, 3\}$$

 $o_1, o_2, ... o_5 \subseteq \text{chalkset} = \{\text{red,blue,green}\}$

■天气考古问题

- 冰淇淋数量:观测
- 天气(冷/热): 状态
- 天气变化: 状态转移
- 什么天气吃多少冰淇淋:发射概率

TOTAL STAND

■共性

- ■观测构成的序列
- ■状态构成的序列(隐变量)
- ■观测由状态决定
- ■状态间存在马氏性

如何用HMM建模POS tagging

- ■语言生成的假设
 - ■N-gram: $o_t \rightarrow o_{t+1}$ (以bigram为例)
- ■语言生成的另一种假设:以q记POS标签
 - $\blacksquare q_t \rightarrow o_t$
 - $\blacksquare q_i \rightarrow q_{i+1}$
- ■与HMM比较:
 - ■词:观测
 - ■POS: 状态
 - ■POS间存在马氏转移: 状态转移
 - ■词由当前POS概率决定:发射概率

■HMM模型描述POS和词的关系:

- $\blacksquare q_1, q_2, ..., q_n$ 取值于 POS集S,存在转移: $a_{ij} = p(q_{t+1} = s_j \mid q_t = s_i)$
- $\blacksquare o_1, o_2, \dots o_n$ 取值于单词表V,存在发射概率: $b_i(o_t) = P(o_t = v_k \mid q_t = s_i)$
- ■POS tagging问题:
 - ■已知 $o_1,o_2,...o_n$,求解出最优的 $q_1,q_2,...q_n$?

从Bayes推断开始给出数学描述:

■词序列: *O*₁...*O*_n

■POS序列: $q_1 \dots q_n$

■POS tagging任务的概率模型:

$$(\hat{q}_1,\ldots,\hat{q}_n) = \underset{\forall q_t \in S, t=1,\ldots,n}{argmax} P(q_1..q_n \mid o_1..o_n)$$

TO POSTS AND THE POST OF THE P

■使用Bayes法则

$$(\hat{q}_1..\hat{q}_n) = argmax \frac{p(o_1..o_n \mid q_1..q_n)p(q_1..q_n)}{p(o_1..o_n)}$$

■进一步

$$(\hat{q}_1..\hat{q}_n) = argmax \ p(o_1..o_n \mid q_1..q_n)p(q_1..q_n)$$

$(\hat{q}_1..\hat{q}_n) = argmax \ p(o_1..o_n \mid q_1..q_n)p(q_1..q_n)$

似然(Likelihood):

$$p(o_1..o_n \mid q_1..q_n) = p(o_{1,n} \mid q_{1,n}) = p(o_1^n \mid q_1^n)$$

先验(prior):

两种不同缩 写记号

$$p(q_1..q_n) = p(q_{1,n}) = p(q_1^n)$$

如何计算?难!

在HMM下: 运用其中的假设

- ■假设1(马尔科夫假设): 当前POS只依赖于前N个POS (一般N=1)
- ■假设2(独立性假设): 当前词只依赖于其POS
- ■推出:
- ■假设3(条件独立性假设): 词之间是条件独立的
- ■基于真实语言的简化

$$(\hat{q}_1..\hat{q}_n) = argmax \ p(o_1..o_n \mid q_1..q_n)p(q_1..q_n)$$

$$p(o_1, \ldots, o_n \mid q_1, \ldots, q_n) = \prod_{t=1}^n p(o_t \mid q_1, \ldots, q_n)$$

$$= \prod_{t=1}^n p(o_t \mid q_t)$$

$$p(q_{1}, \ldots, q_{n}) = p(q_{n} \mid q_{1}, \ldots, q_{n-1})p(q_{n-1} \mid q_{1}, \ldots, q_{n-2}) \ldots p(q_{2} \mid q_{1})p(q_{1} \mid q_{0})$$

$$= \bigoplus_{t=1}^{n} p(q_{n} \mid q_{n-1})p(q_{n-1} \mid q_{n-2}) \ldots p(q_{2} \mid q_{1})p(q_{1} \mid q_{0})$$

$$= \prod_{t=1}^{n} p(q_{t} \mid q_{t-1})$$

$$\hat{q}_{1,n} = \arg \max \prod_{t=1}^{n} p(o_t \mid q_t) p(q_t \mid q_{t-1})$$

简化后如何计算?

$$\hat{q}_{1,n} = \arg \max \prod_{t=1}^{n} p(o_t | q_t) p(q_t | q_{t-1})$$

如果有训练数据(?),则可用ML估计:

$$P(o_t = w_i \mid q_t = s_j) = \frac{C(w_i, s_j)}{C(s_j)} \qquad P(q_t = s_i \mid q_{t-1} = s_j) = \frac{C(s_j, s_i)}{C(s_j)}$$

之后,对每一种可能的POS序列 $(q_1,\ldots,q_t,\ldots,q_n)$

计算一个:
$$\prod_{t=1}^{n} p(o_{t} \mid q_{t}) p(q_{t} \mid q_{t-1})$$

使该值最大的POS序列就是所求。

计算时的问题 $\hat{q}_{1,n} = \arg \max \prod_{t=1}^{n} p(o_t \mid q_t) p(q_t \mid q_{t-1})$

■对于8个词的句子,如每个词有2个可能的POS,则可能的POS序列是: 2**8

$$q_{1,n}^{1} = p(o_{1} | q_{1}^{1}) p(q_{2}^{1} | q_{1}^{1}) p(o_{2} | q_{2}^{1}) p(q_{3}^{1} | q_{2}^{1}) \dots$$

$$q_{1,n}^{2} = p(o_{1} | q_{1}^{2}) p(q_{2}^{1} | q_{1}^{1}) p(o_{2} | q_{2}^{1}) p(q_{3}^{1} | q_{2}^{1}) \dots$$
.....

- ■总共需要计算 28 个乘积项
- ■其中包含大量重复计算

如何优化? → HMM下的Viterbi解码算法

Viterbi算法之前先区分一下一种局部最有:

- ■另一种可能的标准:
 - ■给定观测序列O的最优状态序列Q:Q是由每一个时刻t时最有可能处于的状态 q_t 所构成的。
 - ■在这种标准下的*q*_t为:

$$\hat{q}_t = \arg \max P(q_t \mid o_1, \dots o_t) \quad for t = 1 \dots T$$

- ■一个一个时刻分别找q的最优
- ■对比:

$$(\hat{q}_1,\ldots,\hat{q}_n) = \underset{\forall q_t \in S, t=1,\ldots,n}{argmax} P(q_1..q_n \mid o_1..o_n)$$

■问题

■可能得到某些不可能出现的状态序列为最优序

列:某些状态之间的转移概率为0。

■问题示例:下页

■例: Box1、box2

Box1	
颜色	数量
白	3
红	7

Box2	
颜色	数量
白	7
红	3

转移概 率	box1	Box2
box1	1	0
box2	0	1

- ■观测粉笔序列:红-白
 - ■t=1时观测为红, p(红/box1)>p(红/box2), 则 q1=box1
 - ■t=2时观测为白, p(白/box1)<p(白/box2), 则 q2=box2,
 - ■则最优解(状态序列): box1-box2
- ■不可能: p(box2/box1)=0

■原因

■该最优标准仅考虑在每一个孤立时刻位于某一状态的可能,而没有考虑整个内部状态序列是否存在出现的可能性

■而

$$\hat{Q} = \arg \max P(Q \mid \lambda, O) \quad \sharp + Q = (q_1, ..., q_T), \ O = (o_1, ..., o_T)$$

是状态序列在观察序列o的条件下,最可能的内部状态序列

(一个完整的最优路经),是HMM建模下Viterbi算法要求解的

TOSIS AND THE STATE OF THE STAT

■前面已经进行转化得到

$$(\hat{q}_1,...,\hat{q}_T) = \operatorname{argmax} P(q_1..q_T \mid o_1..o_T; \lambda)$$

$$Bayes$$
公式 $argmax P(o_1..o_T | q_1..q_T; \lambda)P(q_1..q_T)$

独立性假设
$$\underset{i}{\underline{\text{argmax}}} \prod_{i} P(o_i \mid q_i) P(q_i \mid q_{i-1})$$

- 但存在计算中的效率问题: 重复计算!
- 解决方案: Viterbi算法(动态规划)
- 定义状态以保留中间结果,相同的只计算一次
- 基于状态变化的递推关系推进计算

■定义Viterbi变量 (状态的值)

$$v_t(i) = \max_{1 \le k \le N} P(o_1, o_2...o_t, q_1, q_2, ..., q_{t-1} = s_k, q_t = s_i \mid \lambda)$$

- ■即: 所有可能的前一个状态下最优的当前状态
 - ■当前最优 + 考虑历史
- ■状态间有递推关系:

$$v_{t+1}(j) = \max_{1 \le i \le N} v_t(i) a_{ij} b_j(o_{t+1})$$

- ■基于Viterbi变量的Viterbi算法
 - ■1前向递推计算Viterbi变量
 - ■2反向回溯获得最优状态序列

POSTS AMP

■例子:

■HMM的参数

■观测空间: 词表(5个词)

■状态空间: POS表(5个POS)

■转移概率矩阵: A

■发射概率矩阵: B

■状态初始和结束转移概率:

 $P(.|q_0):$ (0.2,0.2,0.3,0.1,0)

 $P(q_{end}|.)$: (0.3,0.2,0.4,0.1,0)

A	代	动	名	形	助	• • •
代	0.05	0.2	0.1	0.05	0.2	• • •
动	0.2	0.1	0.3	0.2	0.1	• • •
名	0.05	0.3	0.2	0.1	0.25	• • •
形	0.2	0	0.5	0	0.1	• • •
助	0.1	0	0.3	0.15	0	• • •

В	这	是	我	的	选择	• • •
代	0.025	0.002	0.1	0.01	0	•••
动	0	0.03	0	0	0.1	•••
名	0	0.02	0	0.005	0.07	• • •
形	0	0.001	0.003	0	0	• • •
助	0	0	0	0.2	0	• • •

任务:为句子进行POS tagging:这是我的选择

■构建结构

■状态:每个时刻的每个词性,为每一个词性计算其Viterbi变量,并记录产生该Viterbi变量的前一时刻状态

t=0	这 t=1	是 t=2	我 t=3	的 t=4	选 择 t=5	
q_0	代	代	代	代	代	Qend
	定力	动	动	动	园	
	名	名	名	名	名	
	形	形	形	形	形	
	助	助	助	助	助	

■初始化

助	助	助	助	助

$$u_0(0)=1$$
 q_0
 \Re
 \Re

■前向计算

助

助

助

助

助

 $v_1(4)=0$

形

 $v_1(3)=0$

形

名

形

形

形

■1时刻之前的0时刻只有一个状态:

$$v_1(1)=v_0(0)*a_{01}b_1(\grave{x})$$

=1*0.2.*0.025=0.005

$$bt_1(1)=0$$

$$v_1(2)=v_0(0)*a_{02}b_2(\grave{X})$$

=1*0.2*0=0

$$bt_1(2)=0$$

动

动

名

动

名

动

名

t=0

代

代

 $v_1(3) = v_0(0) * a_{03}b_3(\dot{\mathbf{X}})$ =1*0.3*0=0

$$bt_1(3)=0$$

 $\widetilde{t=2}$

我 $\widetilde{t=3}$

的 t=4 选 择 t=5

■前向计算

■2时刻之前的1时刻有5个状态, 以下以2时刻的第二个状态为例:

$$v_2(2)$$
=max {
$$v_1(1)*a_{12}b_2(运力)=0.005*0.2*0.03 = 3*10^{-5}, \\ v_1(2)*a_{22}b_2(运力)=0, \\ v_1(3)*a_{32}b_2(运力)=0, \\ v_1(4)*a_{42}b_2(运力)=0, \\ v_1(5)*a_{52}b_2(运力)=0 \\ } = 3*10^{-5}$$
 $bt_2(2)=1$

■前向计算

■3时刻之前的2时刻有5个状态, 以下以3时刻的第二个状态为 例:

$$v_3(4)=\max\{$$

 $v_2(1)*a_{14}b_3(形),$
 $v_2(2)*a_{24}b_3(形),$
 $v_2(3)*a_{34}b_3(形),$
 $v_2(4)*a_{44}b_3(形),$
 $v_2(5)*a_{54}b_3(形),$
 $\}$
 $= X$
 $bt_3(4)=Y$

■前向计算

■T时刻之前的时刻有5个状态,T时刻只有一个状态

q_{end}: $v_{\rm T}({\rm end})={\rm max}\{$ $v_5(1)*a_{1,q_{end}},$ $v_5(2)*a_2,q_{end},$ $v_5(3)*a_3,q_{end},$ $v_5(4)*a_4,q_{end},$ $v_5(5)*a_5,q_{end}$ =XX $bt_T(end)=3$

反向回溯

	$v_1(5)=0$	$V_2(5)$	$V_3(5)$	$V_4(5)$	$V_5(5)$	
	助	助	助	助	助	
	$v_1(4)=0$	$V_2(4)$	$V_3(4)$	$\int \mathcal{V}_4(4)$	$v_{5}(4)$	
	形	形	形	形	形	
	$v_1(3)=0$	$V_2(3)$	$V_3(3)$	$V_4(3)$	$V_5(3)$	
	名	名	名	名	名	
	$v_1(2)=0$	$V_2(2)$	$V_3(2)$	$V_4(2)$	$v_{5}(2)$	
	动	动	动	动	定力	
$v_0(0)=1$	$v_1(1)=0.005$	$v_2(1)$	$V_3(1)$	$V_4(1)$	$v_5(1)$	$v_{\rm T}({\rm end})$
q_0	代	代	代	代	代	q _{end}
t=0	这 t=1	是 t=2	我 t=3	的 t=4	选 择 t=5	t

TOSIS AND THE STATE OF THE STAT

■Viterbi算法总结

■初始化:

$$v_1(j) = a_{0j}b_j(o_1)$$
 $1 \le j \le N$
 $bt_1(j) = 0$

■递推:

$$\begin{split} v_t(j) &= \max_{1 \leq i \leq N} v_{t-1}(i) \ a_{ij} b_j(o_t) & 1 \leq j \leq N, 1 < t < T \\ bt_t(j) &= \operatorname{argmax}_{1 \leq i \leq N} v_{t-1}(i) \ a_{ij} b_j(o_t) & 1 \leq j \leq N, 1 < t < T \end{split}$$

- ■回溯:
 - ■最优概率为: $P^* = \max_{1 \leq i \leq N} v_{T-1}(i) a_{iq_{end}}$
 - ■最优路径(回溯第一开始点): $qT^* = \underset{1 \le i \le N}{\operatorname{argmax}} bt_T(i)$
 - ■按回溯点回溯到起点q₀,获得最优状态序列。

■基于HMM的词性标注

■例: 求The plan flies的最优POS序列

■参数:

初始	N		\mathbf{V}		D	ET
q0	0.5		0		0.	.5
转移	N		V		D	ET
N	0.2		0.8		0	
V	0.6		0		0.	.4
DET	1		0		0	
发射	the	plar	1	fly		•••
N	0	0.2		0.1		•••
V	0	0.1		0.3		•••
DET	0.5	0		0		•••

■基于HMM, 还可以计算句子概率: 评估问题

评估问题

- ■给定 $O = (o_1, o_2, ..., o_T)$ 和 HMM $\lambda = (A, B, \pi)$, 计算 $P(O | \lambda)$
- ■₀₁的两步生成过程
 - ■状态转移: $q_{t-1} \rightarrow q_t$ (依据转移阵A, 可能 q_{t-1} 的每一个可能状态取值都可以生成 q_t 的一个状态)
 - ■输出: $q_t \rightarrow o_t$ 依据发射矩阵B
- ■为此定义前项变量:

■前向变量

$$\alpha_{t}(j) = P(o_{1}, o_{2}...o_{t}, q_{t} = s_{j} | \lambda)$$

- ■为何?
- ■当t=T时,有:
- ■对所有可能的 s_j 求和即为所求:

$$\alpha_T(j) = P(o_1, o_2 ... o_T, q_T = s_j \mid \lambda)$$

$$\sum_{j=1}^{N} \alpha_{T}(j) = \sum_{j=1}^{N} P(o_{1}, o_{2}...o_{T}, q_{T} = s_{j} \mid \lambda)$$

$$= P(o_{1}, o_{2}...o_{T} \mid \lambda)$$

$$= P(O \mid \lambda)$$

- ■直接求 $\alpha_T(j)$ 难,要用 $\alpha_t(j)$ 的递推关系:
 - ■初始化:

$$\alpha_1(j) = P(o_1, q_1 = s_j) = a_{0j}b_j(o_1), \quad 1 \le j \le N$$

■有递推关系:

$$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j o(t),$$
 $1 \le j \le N, \ 1 < t \le T$

- ■推导:
 - **?**
- ■图示见下页

 $\widetilde{t}=1$

t=0

前向变量--递推关系图示

- $a_1(5)=0$ $a_2(5)$ $a_{3}(5)$ 助 助 助 助 助 $a_1(4)=0$ $a_2(4)$ $a_{3}(4)$ 形 形 形 形 形 $a_1(3)=0$ $a_2(3)$ $a_{3}(3)$ 名 名 名 名 名 $a_2(2)$ $a_1(2)=0$ $a_3(2)$ 动 动 动 动 动 $a_1(1)=0.005$ $a_2(1)$ $a_3(1)$ 代 代 代 代 代 q_0 q_{end} 选 择 t=5 这 是 t=2 我 的
- ■3时刻之前的2时刻有5个 状态,以下以3时刻的第 二个状态为例:

$$a_3(4)$$
=Sigma {
 $a_2(1)*a_{14}b_3(形)$,
 $a_2(2)*a_{24}b_3(形)$,
 $a_2(3)*a_{34}b_3(形)$,
 $a_2(4)*a_{44}b_3(形)$,
 $a_2(5)*a_{54}b_3(形)$)
}

■前向计算

- ■T时刻之前的时刻有5个状态,T时刻只有一个状态
 - q_{end}:

$$a_{T}(\text{end}) = \text{Sigma} \{$$
 $a_{5}(1) * a_{1}, q_{\text{end}},$
 $a_{5}(2) * a_{2}, q_{\text{end}},$
 $a_{5}(3) * a_{3}, q_{\text{end}},$
 $a_{5}(4) * a_{4}, q_{\text{end}},$
 $a_{5}(5) * a_{5}, q_{\text{end}},$
 $\}$

=XX

■此即为观测序列的概率!

基于后向变量的评估问题求解

■类似定义后向变量:

$$\beta_t(j) = P(o_{t+1}, o_{t+2}...o_T \mid q_t = j, \lambda)$$

■递推公式:

$$\beta_{t}(i) = \sum_{j=1}^{N} a_{ij} b_{j} o(t+1) \beta_{t+1}(j) \qquad 1 \le i \le N, \ 1 \le t < T$$

$$P(O/\lambda) = \beta_1(q_0) = \sum_{j=1}^{N} a_{0j} b_j(o_1) \beta_1(j)$$

■综合前后向:

$$P(O \mid \lambda)$$

$$= \sum_{i=1}^{N} P(O, q_i = i \mid \lambda)$$

$$= \sum_{i=1}^{N} \alpha_i(i) \beta_i(i)$$

参数估计A $(\hat{a}_{ij})_{N\times N}$ 、B $(\hat{b}_i(v_k))_{N\times M}$

- ■有训练数据是的估计:MLE
- ■无训练数据时的估计
 - ■Baum-Welch法(等价于Estimation-Maximization法)
 - ■核心思想:构建一个逐步迭代求精的过程
 - ■估计一个A,B
 - ■在已知A,B下依据某个方式重估A,B

■构建

$$\begin{split} &\xi_t(i,j) \\ &= P(q_t = i, q_{t+1} = j \mid O, \lambda) \\ &= \frac{\alpha_t(i) a_{ij} b_{t+1}(j) \beta_{t+1}(j)}{\sum\limits_{i=1}^{N} \alpha_t(i) \beta_t(i)} \end{split}$$

■另一方面

$$\hat{a}_{ij}$$

$$= \frac{\text{从状态i转移到j的次数}}{\text{从状态i转出的次数}}$$

$$= \frac{\text{从状态i转移到j的期望次数}}{\text{从状态i转出的期望次数}}$$

$$\frac{\sum_{t} \xi_{t}(i,j)}{\sum \sum_{t} \xi_{t}(i,j)}$$

$$\begin{split} \hat{b_i}(v_k) \\ &= \frac{M \text{ 状态} i \text{ 发射} \$ l l v_k \text{ 的次数}}{\text{ 在状态} i \text{ 的次数}} \\ &= \frac{M \text{ 状态} i \text{ 发射} \$ l l v_k \text{ 的期望次数}}{\text{ 在状态} i \text{ 的期望次数}} \\ &= \frac{\sum_{t=1:s.t.o_t=v_k}^{T} \sum_{j} \xi_t(i,j)}{\sum_{j} \sum_{t} \xi_t(i,j)} \end{split}$$

TOSTS AND THE STATE OF THE STAT

- ■算法:
- ■初始化一个A, B,
- $\blacksquare k=0$
- ■进行如下循环:
- ■{ E-step: 由第k个A, B求 $\xi_{\iota}(i,j)$
- M-step: 由 $\xi_{\iota}(i,j)$ 求第k+1 个A,B }
- ■终止条件: 第k+1个A, B与第k个A, B相比 差别在预定范围。
- ■输出此时的A, B即为所求。

总结: HMM三问题求解关键

■模型参数估计

$$\xi_{t}(i,j) = P(q_{t} = i, q_{t+1} = j \mid O, \lambda)$$

■解码问题,最优状态序列

$$v_t(i) = \max_{1 \le j \le N} P(o_1, o_2...o_t, q_1, q_2,..., q_{t-1} = s_j, q_t = s_i \mid \lambda)$$

■评估问题:哪组参数合适,观测序列概率估计

$$\alpha_t(j) = P(o_1...o_{t-1}, o_t, q_t = s_j | \lambda)$$

TOSIS AND THE PROPERTY OF THE

回顾与比较: MC(n-gram) vs HMM

	隐状态	观测
MC(N-gram)	无	有,观测间有马氏性
HMM	有,状态间有马氏性	有,观测间无之间关联,当 前观测由当前状态决定

- ■基于HMM模型中所用知识:
 - ■POS之间的转移概率
 - ■POS到词的发射概率
- ■可能不够: 例如

- ■例子:包的词性
 - 请/把/这/些/文件/N 包/V 好/。
 - ■本/网络/限制/用户/发/文件/N包/N。
 - 这/个/软件/开发/V 包/V 在/我/身上
 - ■可以/下载/免费/ 开发/V 包/N。
- ■HMM用的局部信息难以区别上例
- ■利用更多信息的能力?更多的上下文:把+V、发+N的可能信息的帮助
 - ■增加马氏性的阶数:有效,但是,有时只是远距离某个特定词有关,高阶增加复杂性的同时也增加了噪声。

■极大熵(MaxEnt)模型是一个能综合丰富上下文特征的模型,但是是一个分类模型,每个样本的标签是独立的,而序列标注可以说是序列分类问题,标签间存在关联约束, MaxEnt不能建模这种序列之间的关联

■MaxEnt + Markov模型

TO THE SAME THE SAME

■ MaxEnt

■基于多特征建模条件概率

$$p(y \mid x) = \frac{1}{Z_{\lambda}(x)} \exp(\sum_{i} \lambda_{i} f_{i}(x, y))$$

$$Z_{\lambda}(\mathbf{x}) = \sum_{y} \exp(\sum_{i} \lambda_{i} f_{i}(\mathbf{x}, y))$$

■MEMM-序列标注

$$\hat{T} = \arg\max p(t_1, t_2, \dots, t_n / w_1, w_2, \dots, w_n)$$

$$\hat{T} \approx \arg\max \prod_i p(t_i \mid w_i, t_{i-1})$$

■其中的条件概率 $p(t_i \mid W_i, t_{i-1})$ 采用MaxEnt来进行 建模

$$p(t_i \mid w_i, t_{i-1}) = \frac{1}{Z} \exp(\sum_j w_j f_j(w, t))$$

■HMM vs MEMM

 $HMM \qquad \hat{T} = \arg\max\prod_{i} p(word_{i} / tag_{i}) \prod_{i} p(tag_{i} | tag_{i-1})$ $MEMM \qquad \hat{T} = \arg\max\prod_{i} p(tag_{i} | word_{i}, tag_{i-1})$

■MEMM解码

■可用与HMM中类似的Viterbi算法。

■MEMM参数估计

■可用和MaxEnt中类似的方法(L-BFGS...)。

■MEMM的问题: 使用更多上下文信息

- ■后面的信息也有价值
 - ■把这个包/V一下
 - ■把这个包/N给/V 我

■MEMM的问题:模型偏置

THE POSTS AND THE

■最优: 1-1-1-1

■MEMM: 1-2-2-2

State 1 Observation 2 Observation 3 Observation 4 State 1 State 2 State 3 State 4 Observation 2 Observation 3 Observation 4 0.4 0.4 0.4 0.5 0.5 0.1 0.2 0.1 0.2 0.1 0.2 0.3 0.3 0.3 0.3 0.3 State 4

■局部归一化

$$\hat{T} = \arg\max_{i} \prod_{i} p(t_i \mid t_{i-1}, w_1, w_2...w_n)$$

$$= \arg\max_{i} \frac{1}{Z} \exp\left(\sum_{i} \lambda_{i} f_{i}(t_{i-1}, t_{i}, w_{1}, w_{2} \dots w_{n})\right)$$

$$Z = \sum_{t_{i-1}, w_1, \dots, w_n} \exp(\sum_{i} \lambda_i f_i(t_{i-1}, t_i, w_1, \dots, w_n))$$

TOUSIS AND THE SECOND S

■条件随机场(Conditional Random Field:CRF)

$$P(t_1,..t_n \mid w_1,...,w_n;\lambda) = \frac{1}{Z(w_1,...,w_n)} \exp(\sum_i \lambda_i f_i(t_1,...,t_i,w_1,w_2...w_n))$$

CRF的问题

■特征可以很丰富:上下文及其组合均可以用

$$f_1 = \begin{cases} 1 & w_1 = Can \land pos_1 = AUX \\ 0 & other \end{cases} \qquad f_2 = \begin{cases} 1 & pos_1 = v \land w_n = ? \\ 0 & other \end{cases}$$

■但是,都需要人工设计:特征工程

■近年来,利用深层神经网络学习特征,之后 再用于CRF进行序标

- ■RNN网络常用于提取句子序列的特征
- ■循环神经网络(RNN: Recurrent NN)
 - ■简单RNN (SRN, Elman型RNN):

RNN

RNN

RNN

RNN(在时间上展开)

■前向计算

- **■***t* 时刻:
- $\blacksquare h_t = g(Uh_{t-1} + Wx_t + b)$
- $\blacksquare y_t = f(Vh_t)$
 - $\blacksquare h_t = \tanh(Uh_{t-1} + Wx_t + b)$
 - $\blacksquare y_t = \operatorname{softmax}(Vh_t)$
- ■反向误差反传
 - ■BPTT(back propagation through time)

将RNN用于序列标注

- ■利用输出进行分类获得标签,输出的维数定义为标签数
 - ■对于POS标注任务,是POS数(N\V\...),也可以用于NER等序列标注任务中(B-PER\I-PER\B-LOC\I-LOC\...)。

将RNN用于序列标注

■但是,每个标签是单独分类的结果,标签间的关系没有直接 建模,可能出现矛盾标签序列,例如,对于NER任务: w_i 标 B-PER, w_{i+1} 标 I-LOC

■增加标签关联信息

TOSIS AND THE PROPERTY OF THE

■例如(Lample2016NAACL-HLT:增加一个关联层)

$$X = (x_1, x_2, \dots, x_n) \in \mathbb{R}^{m \times n}$$

$$H = (H_{i,j}) \in \mathbb{R}^{k \times n}$$

$$A = (A_{i,j}) \in R^{(k+2) \times (k+2)}$$

■n: 词表大小

■m: 词向量维度

■k+2: 实际标签数 + #{s,end}

■ $A_{i,j}$: 标签 t_i 转移到 t_i 的概率

■ $H_{i,j}$: i为第i个标签, j为第j个词,

为第j个词取到第i个标签的初始分

■定义一个得分函数建模标签关联:

$$s(X,ti) = \sum_{i=0}^{n} A_{t_i,t_{i+1}} + \sum_{i=1}^{n} H_{t_i,i}$$

■基于此定义一个softmax分类

$$p(t_i|X) = \frac{e^{s(X,ti)}}{\sum_{t'} e^{s(X,t')}}$$

- ■RNN采用 LSTM\GRU\BiLSTM等单 元的RNN模型
- ■H层和CRF层间加一个隐 层

- ■序列标注模型
 - ■HMM、MEMM、CRF、RNN、RNN-CRF...
- ■序列标注模型能做什么?
 - ■切分
 - ■命名实体识别
 - **■**POS tagging
 - ■组块分析(后面会再提到)
 - ■语义剖析(槽填充,后面会再提到)

■应用举例:电子病历的结构化

主诉: 右耳突发性听力下降, 伴耳鸣

现病史:患者3天前感冒,出现右耳听力下降,伴有持续性右耳耳鸣,为高音调蝉鸣声,当时自行服用敏使朗、银杏叶片,效果欠佳。无发热、咳嗽、咳痰,今日患者出现头晕,呕吐一次,呕吐物为胃内内容,无视物旋转。

既往史: 否认肝炎、结核、疟疾等传染病史, 否认 高血压、心脏病史, 否认糖尿病、脑血管疾病病史, 否认手术史, 否认外伤史, 否认输血史, 否认药物、 食物过敏史, 预防接种史不详。

家族史:父亲已故,母亲健在,有1姐体健,家族 无传染病及遗传病史

体格检查: 体温36.3度,脉搏76次/分,呼吸18次/分,血压110/72mmHg,身高170cm,体重80kg。发育正常,营养良好,双侧膝、跟腱反射正常,双侧Rabinglei呈原数

			SALMIN DY
	名称	类别	状态
	耳鸣	症状	有
	感冒	疾病	有
	听力下降	症状	有
	高血压	疾病	无
1	心脏病	疾病	无
	敏使朗	药物	有
	音叉检查	检验	无
	呼吸	指标	18次/分
	体温	指标	36.3度
	• • •		• • •

大纲

TOSIS AND THE STATE OF THE STAT

- ■引言:短语结构问题
- ■词性标注集(POS Tagset)
- ■词性标注 (POS Tagging)
- ■基于规则的词性标注方法
- ■基于统计的词性标注方法
- ■总结

总结

- ■序列标注模型
 - ■HMM、MEMM、CRF...统计序列标注模型
 - ■手工设计特征
 - ■结合神经网络模型的序标模型
 - ■神经网络自动提取多层次表示(特征)
 - ■传统方法显式建模标签关系

谢谢!