

Tugas Python (Fungsi Rekursif)

Pesantren PeTIK II Jombang YBM PLN

Denanyar Utara, Plosogeneng, Kec. Jombang, Kabupaten Jombang, Jawa Timur

Pengertian Fibonacci

Fibonacci adalah sebuah deret bilangan yang mana setiap anggotanya adalah hasil penjumlahan dari 2 bilangan sebelumnya. Bilangan fibonacci selalu diawali oleh 2 angka, yaitu 0 dan 1.

Dan mulai bilangan ke-3, barulah setiap anggota deret fibonacci dikalkulasikan berdasarkan penjumlahan dua angka sebelumnya.

Rancangan sebuah fungsi rekursif suku ke-n barisan Fibonacci menggunakan Bahasa python!

```
deret = [0, 1]
N = 10

panjangDeret = input ("Masukkan panjang deret : ")
for i in range(N-2):
    elemen = deret[-2] + deret[-1]
    deret.append(elemen)

print(deret)
```

```
PS E:\Mr_ruf file\software\Python> e:; cd
ython'; & 'C:\Users\DM-2\AppData\Local\Prog
on.exe' 'c:\Users\DM-2\.vscode\extensions\m
ythonFiles\lib\python\debugpy\launcher' '62
software\Python\Latihan6\Fibonacci.py'
Masukkan panjang deret : 10
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
PS E:\Mr_ruf file\software\Python>
```


fungsi rekursif untuk menentukan Faktorial dari nilai n, menggunakan bahasa Python!

```
1  n = int(input('Masukkan nilai n: '))
2  faktorial = 1
3
4  for i in range(1, n + 1):
5     faktorial *= i
6
7  print(f'{n}! = {faktorial}')
```

```
PS E:\Mr_ruf file\software\Python> e:; cd '\Python'; & 'C:\Users\DM-2\AppData\Local\Propython.exe' 'c:\Users\DM-2\.vscode\extension .8.1\pythonFiles\lib\python\debugpy\launcher uf file\software\Python\Latihan6\Faktorial1.

Masukkan nilai n: 7
7! = 5040
PS E:\Mr_ruf file\software\Python> [
```


Fungsi rekursif untuk menentukan besar dan **kecilnya sebuah** bilangan menggunakan bahasa python!

```
1  a = [5, 10, 15, 20, 25, -30, -35]
2
3
4  print(a)
5  print('Nilai terbesar : ', max(a))
6  print('Nilai terkecil : ', min(a))
```

```
PS E:\Mr_ruf file\software\Python> e:; cd
ebugpy\launcher' '62185' '--' 'e:\Mr_ruf fi
[5, 10, 15, 20, 25, -30, -35]
Nilai terbesar : 25
Nilai terkecil : -35
PS E:\Mr_ruf file\software\Python>
```


Pengertian faktorial

Faktorial merupakan perkalian berulang dari tiap angka positif dimulai dari 1 hingga angka itu sendiri.

Faktorial dari bilangan **n** adalah perkalian bilangan positif dari angka 1 sampai bilangan itu sendiri. Bilangan faktorial sendiri biasa disimbolkan dengan tanda seru (!).

Aturan Fungsi Rekursif

Aturan fungsi rekursif

- 1. Masalah yang ingin diselesaikan memiliki base case
- 2. Recursive case mengarah ke base case
- 3. Pemanggilan rekursif dapat diasumsikan memberi hasil yang benar

Perbedaan Rekursif & Iterative

- 1. Iteratif menggunakan FOR, WHILE, DO-WHILE sedangkan rekursif hanya menggunakan IF.
- Iteratif dapat berjalan pada program yang terdiri dari prosedur (Tidak terdapat fungsi) sedangkan Rekursif merupakan fungsi

Pengertian Rekursif

Rekursif adalah suatu proses atau prosedur dari fungsi yang memanggil dirinya sendiri secara berulang-ulang.

3 perulangan(looping) dalam Bahasa pemograman

1. While Loop

While digunakan untuk mengeksekusi kode program secara berulang-ulang selama kondisi yang ditentukan benar.

2. Do...While

Perintah do...while bekerja dengan mengeksekusi blok kode terlebih dulu, kemudian memeriksa kondisi, dan menjalankan blok kode ketika kondisi yang ditentukan benar.

3. For Loop

Struktur perulangan ini akan mengulang-ulang eksekusi beberapa baris kode program di dalamnya berdasarkan perubahan isi sebuah variabel. Jika isi variabel yang di acu sudah sampai titik akhir, maka perulangan akan berhenti.

fungsi rekursif mengandung dua macam kasus

- 1. satu atau lebih kasus yang pemecahan masalahnya dilakukan dengan menyelesaikan masalah serupa yg lebih sederhana (menggunakan recursive call).
- 2. satu atau lebih kasus pemecahan masalahnya dilakukan tanpa recursive call. Kasus ini disebut kasus dasar atau penyetop.

Penutup

Terima Kasih...

