tar2

Part 1:

```
data <- read.xlsx("data_and_headers_processed.xlsx", 1, stringsAsFactors=T)</pre>
```

- 2. Possible problems:
- Hebrew mixed with English we took this problem and fixed the input file to include only english letters
- The sex feature have 2 missing values. You can see it here:

summary(data\$Sex)

```
## C1 C2 NA's
## 190 120 2
```

• The features don't really distribute noramly (i.e according to normal distribution) - it's not a problem by unless we assume it should distribute normaly. Here are few exmaples

```
numeric.feature.names <- names(data)[c(which(names(data)=='QL1'):which(names(data)=='DI1'), which(names(data)=='DI1'), which
```

Histogram, Density, and Normal Fit

Create clarity, politeness, satisfaction variables

```
data$Age <- as.numeric(as.character(data$Age))

data.for.clarity <- cbind(data[,c("C1", "C2", "C3", "C5")], 8-data$C4, 8-data$C6)
    clarity <- apply(data.for.clarity, MARGIN = 1, FUN = mean)

data.for.politeness <- cbind(data[,c("P1", "P2", "P4", "P5", "P6")], 8-data$P3)
    politeness <- apply(data.for.politeness, MARGIN = 1, FUN = mean)

data.for.satisfaction <- cbind(data[,c("S1", "S2", "S3", "S5", "S6")], 8-data$S4)
    satisfaction <- apply(data.for.satisfaction, MARGIN = 1, FUN = mean)

#now adding them to the data frame
    data <- cbind(data, clarity = clarity, politeness = politeness, satisfaction = satisfaction)</pre>
```

Part 2

Descriptive statistics (2.1)

```
data$Age
```

```
par(mfrow=c(1,2))
combineSummaryFrame(data[data$System=='C',]$Age, data[data$System=='S',]$Age, rowNames = c('C', 'S'))
     Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## C
       18
               25
                      28 30.85
                                 32.75
                                          67
## S
       19
               26
                      28 31.82
                                 34.25
                                         75
                                                3
invisible(drawHist(data[data$System=='C',]$Age, br=20, main='C')) #suppress ## NULL
invisible(drawHist(data[data$System=='S',]$Age, br=20, main='S'))
```


 ${\rm data\$Sex}$

```
par(mfrow=c(1,2))
colnames <- c("men", "women")
combineSummaryFrame(data[data$System=='C',]$Sex, data[data$System=='S',]$Sex, colnames = colnames, rowN

## men women NA's
## C 104 67 2
## S 86 53 NA

invisible(drawPieChart(table(data[data$System=='C',]$Sex), colnames, main='C'))
invisible(drawPieChart(table(data[data$System=='S',]$Sex), colnames, main='S'))</pre>
```

C S

data\$Comp_Use_Freq

```
par(mfrow=c(1,2))
colnames <- c("2-5 hours", "5 hours", "less than one time", "less than 2 hours")
combineSummaryFrame(data[data$System=='C',]$Comp_Use_Freq, data[data$System=='S',]$Comp_Use_Freq, colname
## 2-5 hours 5 hours less than one time less than 2 hours
## C 27 130 4 12
## S 24 107 3 5

invisible(drawPieChart(table(data[data$System=='C',]$Comp_Use_Freq), colnames, main='C'))
invisible(drawPieChart(table(data[data$System=='S',]$Comp_Use_Freq), colnames, main='S'))</pre>
```

C S

data\$Comp_Use_Know

```
par(mfrow=c(1,2))
colnames <- c("beginner", "intermediate", "advanced", "expert")
combineSummaryFrame(data[data$System=='C',]$Comp_Use_Know, data[data$System=='S',]$Comp_Use_Know, colname</pre>
```

```
## beginner intermediate advanced expert
## C 46 19 67 41
## S 29 10 68 32
```

```
invisible(drawPieChart(table(data[data$System=='C',]$Comp_Use_Know), colnames, main='C'))
invisible(drawPieChart(table(data[data$System=='S',]$Comp_Use_Know), colnames, main='S'))
```

C S

data\$Selected_Software

```
par(mfrow=c(1,2))
combineSummaryFrame(data[data$System=='C',]$Selected_Software, data[data$System=='S',]$Selected_Software
     Android chrome eclipse Facebook Iphone iOS LinkedIn linux Mac iOS
##
## C
                          1
                                  56
                                               0
## S
          19
                 15
                          0
                                               7
                                    0
     No use any sap Skype snapchet Twitter ubuntu VB6 WhatsApp windows
## C
                  0
                                          1
                                                 0
                                                            105
invisible(barplot(table(data[data$System=='C',]$Selected_Software), las=2, col = 'red', main='C'))
invisible(barplot(table(data[data$System=='S',]$Selected_Software), las=2, col = 'red', main='S'))
```


Part 2.2

```
data_filtered <- data[data$System == 'C' & data$Age >= 18 & data$Age<=49,]

stat_data <- data_filtered[ ,names(data_filtered) %in% c("clarity", "politeness", "satisfaction")]

stat_res <- data.frame(
    apply(stat_data, 2, length),
    apply(stat_data, 2, mean, na.rm=TRUE),
    apply(stat_data, 2, sd, na.rm=TRUE),
    apply(stat_data, 2, min, na.rm=TRUE),
    apply(stat_data, 2, min, na.rm=TRUE),
    apply(stat_data, 2, kurtosis, na.rm=TRUE),
    apply(stat_data, 2, skewness, na.rm=TRUE))
)

colnames(stat_res) <- c('count', 'mean', 'sd', 'min', 'max', 'kurtosis', 'skewness')

stat_res</pre>
```

count mean sd min max kurtosis skewness

```
## clarity 161 5.408009 0.9030816 3.000000 7 2.589470 -0.29878680
## politeness 161 4.656926 1.0948544 1.666667 7 2.747956 -0.06905606
## satisfaction 161 5.146104 0.9488226 3.000000 7 2.401156 -0.07127015
```

Part 2.3

Part 2.4

```
lmodel1 = lm(satisfaction ~ Age+Sex, data = data_filtered)
summary(lmodel1)
##
## Call:
## lm(formula = satisfaction ~ Age + Sex, data = data_filtered)
## Residuals:
##
                 1Q
                     Median
                                   3Q
       Min
                                           Max
## -2.44683 -0.61155 0.01074 0.70608 2.07916
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.93795 0.38327 15.493
                                            <2e-16 ***
              -0.03178
                          0.01297 -2.450
                                            0.0154 *
## Age
## SexC2
               0.30350
                          0.15288
                                    1.985
                                          0.0489 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9252 on 151 degrees of freedom
     (7 observations deleted due to missingness)
## Multiple R-squared: 0.06159,
                                   Adjusted R-squared: 0.04916
## F-statistic: 4.956 on 2 and 151 DF, p-value: 0.008232
lmodel2 = lm(satisfaction ~ Age+Sex+clarity+politeness, data = data_filtered)
summary(lmodel2)
##
## Call:
```

lm(formula = satisfaction ~ Age + Sex + clarity + politeness,

```
##
      data = data_filtered)
##
## Residuals:
##
       Min
               1Q Median
                                  3Q
                                         Max
## -2.39337 -0.28880 -0.00726 0.40600 1.66216
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.10289 0.39514
                                 2.791 0.00594 **
             -0.01590
                         0.00810 -1.964 0.05144 .
## Age
## SexC2
              0.13132
                         0.09544
                                  1.376 0.17088
                                  9.095 5.58e-16 ***
## clarity
               0.55307
                         0.06081
                         0.04922
                                 6.354 2.41e-09 ***
## politeness 0.31275
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5712 on 149 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.6471, Adjusted R-squared: 0.6376
## F-statistic: 68.3 on 4 and 149 DF, p-value: < 2.2e-16
anova(lmodel1, lmodel2)
## Analysis of Variance Table
##
## Model 1: satisfaction ~ Age + Sex
## Model 2: satisfaction ~ Age + Sex + clarity + politeness
## Res.Df
             RSS Df Sum of Sq F Pr(>F)
## 1
       151 129.256
## 2
       149 48.611 2
                        80.645 123.59 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```