BT6270: Computational Neuroscience Assignment-3

Sapna R BS20B032

1.Complex Coupling of 2 Hopf Oscillators at same frequency

Calculations Involved:

Objective is to achieve a phase difference of ψ between the Hopf Oscillators.

The equations of the 2 oscillators are given by

Note: Bold notation below denotes the derivative of the variable

$$\mathbf{z}_1 = (\mu - |z_1|^2)z_1 + iw_1z_1 + Ae^{i\varphi}z_2$$

 $\mathbf{z}_2 = (\mu - |z_2|^2)z_2 + iw_2z_2 + Ae^{-i\varphi}z_1$

Representing in polar coordinates, we obtain

$$\begin{aligned} & \mathbf{r_1} = (\mu - {r_1}^2) r_1 + A r_2 cos(\theta_2 - \theta_1 + \phi) \\ & \mathbf{r_2} = (\mu - {r_2}^2) r_2 + A r_1 cos(\theta_2 - \theta_1 + \phi) \\ & \mathbf{\theta_1} = w_1 + A (r_2 / r_1) sin(\theta_2 - \theta_1 + \phi) \\ & \mathbf{\theta_1} = w_2 - A (r_1 / r_2) sin(\theta_2 - \theta_1 + \phi) \\ & \mathbf{\psi} = \mathbf{\theta_1} - \mathbf{\theta_2} \end{aligned}$$

Setting $\psi=0$, we obtain the equation,

$$(w_1-w_2)+A((r_1^2+r_2^2)/r_1r_2)\sin(\theta_2-\theta_1+\phi)$$

This implies that θ_2 - θ_1 + ϕ =0 or ϕ = ψ .

Thus the value of A is not of much significance as long as it is set to low enough value. The coupling angle φ must be set to the desired value ψ to be achieved.

Given that:

$$w_1 = w_2 = 5$$

Assumptions:

A = 0.2

 $\mu=1$

 $\theta_1(0) = 45^{\circ}$

 $\theta_2(0)=0^{\circ}$

 $r_1(0)=1$

 $r_2(0)=1$

The complex coupling coefficients for ψ =-47° and ψ =98° are thus given by 0.2(eⁱ⁽⁻⁴⁷⁾),0.2(eⁱ⁽⁴⁷⁾) and 0.2(e⁽⁻⁹⁸⁾),0.2(e⁽⁻⁹⁸⁾) respectively.

Phase Difference=-47°

Fig (a): Plot of Real(z) of the 2 oscillators

Fig (b): Plot of Imag(z) of the 2 oscillators

Plot Showing the trajectory of Psi: $\boldsymbol{\psi}$,i.e Phase difference between the 2 oscillators in time

Phase Difference=98°

Fig (a): Plot of Real(z) of the 2 oscillators

Fig (b): Plot of Imag(z) of the 2 oscillators

Plot Showing the trajectory of Psi: $\boldsymbol{\psi}$,i.e Phase difference between the 2 oscillators in time

2. Power Coupling of 2 Hopf Oscillators at different frequencies

Calculations Involved:

Objective is to achieve a normalized phase difference of ψ between the Hopf Oscillators.

The equations of the 2 oscillators are given by

Note: Bold notation below denotes the derivative of the variable

$$\mathbf{z}_1 = (\mu - |z_1|^2)z_1 + iw_1z_1 + Ae^{i\phi/w2}z_2^{(w1/w2)}$$

 $\mathbf{z}_2 = (\mu - |z_2|^2)z_2 + iw_2z_2 + Ae^{-i\phi/w1}z_1^{(w2/w1)}$

Representing in polar coordinates, we obtain

$$\begin{split} & \mathbf{r_1} \!\! = \!\! (\mu \!\! - \!\! \mathbf{r_1}^2) \mathbf{r_1} \!\! + \mathbf{A} \mathbf{r_2}^{(w_1/w_2)} \!\! \cos (w_1((\theta_2/w_2) \!\! - \!\! (\theta_1/w_1) \!\! + \!\! (\phi/w_1w_2))) \\ & \mathbf{r_2} \!\! = \!\! (\mu \!\! - \!\! \mathbf{r_2}^2) \mathbf{r_2} \!\! + \mathbf{A} \mathbf{r_1}^{(w_2/w_1)} \!\! \cos (w_2(\theta_2/w_2) \!\! - \!\! (\theta_1/w_1) \!\! + \!\! (\phi/w_1w_2)) \\ & \mathbf{\theta_1} \!\! = \!\! w_1 \!\! + \!\! \mathbf{A} (\mathbf{r_2}^{(w_1/w_2)} \!\! / \!\! \mathbf{r_1}) \!\! \sin (w_1(\theta_2/w_2) \!\! - \!\! (\theta_1/w_1) \!\! + \!\! (\phi/w_1w_2)) \\ & \mathbf{\theta_2} \!\! = \!\! w_2 \!\! - \!\! \mathbf{A} (\mathbf{r_1}^{(w_2/w_1)} \!\! / \!\! \mathbf{r_2}) \!\! \sin (w_2(\theta_2/w_2) \!\! - \!\! (\theta_1/w_1) \!\! + \!\! (\phi/w_1w_2)) \\ & \mathbf{\psi} \!\! = \!\! (\mathbf{\theta_1/w_1}) \!\! - \!\! (\mathbf{\theta_2/w_2}) \end{split}$$

Setting $\psi=0$, we obtain the equation,

$$(1-1)+(A/w_1)(r_2^{(w1/w2)}/r_1)\sin(w_1(\theta_2/w_2)-(\theta_1/w_1)+(\phi/w_1w_2))+(A/w_2)(r_1^{(w2/w1)}/r_2)\sin(w_2(\theta_2/w_2)-(\theta_1/w_1)+(\phi/w_1w_2)) \\ w_2)=0$$

This implies that $(\theta_2/w_2)-(\theta_1/w_1)+(\phi/w_1w_2)=0$ or $\phi/(w_1w_2)=\psi$.

Thus the value of A is not of much significance as long as it is set to low enough value. The coupling angle ϕ must be set to the desired value ψ to be achieved multiplied by w_1 and w_2 .

Given that:

 $w_1 = 5, w_2 = 15$

Assumptions:

A=0.2

 $\mu = 1$

 $\varphi = \psi * 75$

$$ψ=-47^{\circ},$$
 $ψ=98^{\circ}$
 $θ_{1}(0)=-60^{\circ}$ $θ_{1}(0)=360^{\circ}$
 $θ_{2}(0)=0^{\circ}$ $θ_{2}(0)=0$
 $r_{1}(0)=1$ $r_{2}(0)=1$ $r_{2}(0)=1$

The initial conditions have been chosen to avoid undesired solutions The power coupling coefficients for ψ =-47° and ψ =98° are thus given by 0.2(e^{i(-47/15)}), 0.2(e^{i(47/5)}) and 0.2(e^(-98/15)), 0.2(e^(-98/15)) respectively.

Normalized Phase Difference: -47°

Plot of Oscillator response in time (0-60 secs)

Real Part:

1.0 0.5 -0.5 -1.0 0 5 10 15 20 25 30

Imaginary Part:

Plot Showing the trajectory of Psi: ψ between the 2 oscillators in time

Normalized Phase Difference: 98°

Plot of Oscillator response in time (0-60 secs) Real Part

Imaginary Part:

Plot Showing the trajectory of Psi in time

