UNIT 1
Question 1
Complete Mark 0.00 out of 1.00
A search algorithm takes as an input and returns as an output.
a.
Parameters, sequence of actions
b.
Solution, problem
C.
Problem, solution
d.
Input, output
Question 2
Complete Mark 1.00 out of 1.00
Flag question
Question text
Which of the following definitions correctly defines the State-space in an AI system?
a.
A state space is the total space available for the agent in the state
b. A state space can be defined as the collection of all the problem states.
A state space can be defined as the collection of all the problem states
C.
A state space is a state which exists in environment which is in outer space
d. All of the above
All of the above
Question 3
Complete Mark 1.00 out of 1.00

Flag question
Question text In BFS the frontier is implemented as a queue. a. Random b. FIFO c. FILO d. LIFO
Question 4 Complete Mark 1.00 out of 1.00 Flag question
Question text Which of the following algorithm is online search algorithm? a. None of the mentioned b. Depth-first search algorithm c. Breadth-first search algorithm d. Hill-climbing search algorithm
Question 5

Complete Mark 1.00 out of 1.00
Flag question
Question text
Which algorithm are in more similar to backward chaining algorithm?
0
a. Hill-climbing search algorithm b. All of the mentioned c. Depth-first search algorithm d. Breadth-first search algorithm
Question 6 Complete Mark 4.00 out of 5.00
Flag question

Example 1: Considering the following game tree search space

•Which move should be chosen under min-max search procedure, if the first move is a maximizing move?

> Prepared by - Agriwesh Mishra, RCET, Butlar

1.99

The initial call starts from A. The value of alpha here is -INFINI At B it the minimizer must choose min of D and E and hence at D, it looks at its left child which is a leaf node. This node reto decide whether its worth looking at its right node or not, it D now looks at its right child which returns a value of 5.At D, a

Question **7**Complete
Mark 0.00 out of 5.00

Flag question

It is your turn to do some of the alpha-beta pruning. The tree below indicates the complete Minimax tree for a particular problem (first move by MIN, then MAX, and then MIN again – notice that is different from our previous examples, where MAX started). The number at each leaf p indicates the value of the static evaluation function e(p) if it were computed at that leaf.

MIN

MAX

MIN

a) Now your job is to check the boxes under those leaves that do not need to be created and evaluated thanks to the alpha-beta pruning.

the advantage of making this move over making the other one?

b) Which move (the left or right one) should MIN make, and why, i.e., what exactly is

Question **8**Complete
Mark 1.00 out of 1.00

Flag question

What is the heuristic function of greedy best-first search?
a.
f > h b.
f < h c.
f = h O d.
f != h
Question 9 Complete Mark 1.00 out of 1.00 Flag question
Question text Hill climbing sometimes called because it grabs a good neighbor state without thinking ahead about where to go next. a. Needy local search b. Optimal local search c. Heuristic local search d. Greedy local search
Question 10 Complete Mark 1.00 out of 1.00

Flag question
Question text Blind search is also called as a. Simple reflex search b. Initial Search c. Uninformed search d. Informed search
Question 11 Complete Mark 1.00 out of 1.00 Flag question
Question text Which search method takes less memory? a. Optimal search b. Linear Search c. Depth-First Search d. Breadth-First search
Question 12

Complete Mark 1.00 out of 1.00	
Flag question	
Question text	
In which state spaces does the online-dfs-agent will work?	
a.	
All of the mentioned •	
b.	
Reversible state spaces	
C.	
Irreversible state spaces	
O d.	
searchable state spacesQuestion 1	
Complete Mark 0 out of 1	
Mark o out of 1	
Flag question	
Question text	
This type of supervised network architecture does not contain a hidden layer.	
a. Genetic	
b. Self-organizing map	
O Sen organizing map	
C. Packaranagation	
Backpropagation O	
d.	
Perceptron	
Question 2	

Complete Mark 0 out of 1
Flag question
Question text
Given evidence E and hypothesis H. The likelihood of sufficiency is computed as
•
a. The conditional probability of E being false given H is true divided by the conditional probability of E being true given H is false.
b. The conditional probability of E being true given H is true divided by the conditional
probability of E being false given H is false.
The conditional probability of E being true given H is true divided by the conditional
probability of E being true given H is false.
d. The conditional probability of E being false given H is true divided by the conditional
probability of E being false given H is false.
Question 3
Complete
Mark 0 out of 1
Flag question
Flag question
Question text Machine learning techniques differ from statistical techniques in that machine learning
methods
a. Are better able to deal with missing and poiss data.
Are better able to deal with missing and noisy data.
b.
Typically assume an underlying distribution for the data.
O

c. Are not able to explain their behavior. d. Have trouble with large-sized datasets.
Question 4 Complete Mark 0 out of 1 Flag question
Question text Which statement is true about prediction problems?
a.
The output attribute must be categorical.
b. The output attribute must be numeric.
c. The resultant model is designed to determine future outcomes.
d. The resultant model is designed to classify current behavior.
Question 5 Complete Mark 0 out of 1
Flag question
Question text Supervised learning and unsupervised clustering both require at least one
Supervised learning and unsupervised clustering both require at least one
a.
Hidden attribute.
b.
Input attribute.

C. Categorical attribute.
d. Output attribute.
Question 6 Complete Mark 1 out of 1
Flag question
Question text
Classification problems are distinguished from estimation problems in that
a.Classification problems require the output attribute to be numeric.
b. Classification problems do not allow an output attribute. •
Classification problems require the output attribute to be categorical.
d. Classification problems are designed to predict future outcome.
Question 7 Complete Mark 0 out of 1
Flag question
Question text Supervised learning differs from unsupervised clustering in that supervised learning requires
a.
At least one output attribute.

b.At least one input attribute.c.
Input attributes to be categorical. O d.
Output attriubutes to be categorical.
Question 8 Complete Mark 1 out of 1
Flag question
Question text Two classes each of which is represented by the same pair of numeric attributes are linearly separable if a. At least one of the pairs of attributes shows a high positive correlation between the classes. b. At least one of the pairs of attributes shows a high positive correlation between the classes.
c. A straight line partitions the instances of the two classes. d. At least one of the pairs of attributes shows a curvilinear relationship between the
classes.
Question 9 Not answered Marked out of 1
Flag question

With Bayes theorem the probability of hypothesis H— specified by P(H) — is referred to
as a. An a priori probability b. A posterior probability
c. A bidirectional probability
d. A conditional probability
Question 10 Complete Mark 1 out of 1 Flag question
Question text
This technique associates a conditional probability value with each data instance. a. logistic regression b. simple regression c. linear regression d. multiple linear regression
Question 11 Complete Mark 0 out of 1

Flag question
Question text
Logistic regression is a regression technique that is used to model data having aoutcome. olimits a regression technique that is used to model data having aoutcome. olimits a regression technique that is used to model data having aoutcome. olimits a regression technique that is used to model data having aoutcome. olimits a regression technique that is used to model data having aoutcome.
Question 12 Complete Mark 1 out of 1 Flag question
Question text
With Bayes classifier, missing data items are a. Treated as equal compares.
b.
Treated as unequal compares. C.
Replaced with a default value. d.
Ignored.

$P(H E) + P(H \sim E) = 1$ d.
$P(H E) + P(\sim H E) = 0$
Question 15 Complete Mark 1 out of 1 Flag question
Question text
During backpropagation training, the purpose of the delta rule is to make weight adjustments so as to
a. Minimize the sum of squared error differences between computed and actual output.
b. Minimize the sum of absolute differences between computed and actual outputs.
c. Minimize the number of times the test data must pass through the network. d.
Minimize the number of times the training data must pass through the network.
Question 16 Complete Mark 4 out of 5
Flag question
Question text
ANSWER ANY ONE 1.a EXPLAIN THE HIDDEN MARKOV MODEL with an example or 1.b EXPLAIN ASSOCIATON RULES with an example
ANSWER:
AIS Algorithm

Candidate itemsets are generated and counted on-the-fly as the database is scanned.

For each transaction, it is determined which of the large itemsets of the previous pass are contained in this transaction.

New candidate itemsets are generated by extending these large itemsets with other items in this transaction.

The disadvantage of the AIS algorithm is that it results in unnecessarily generating and counting too many candidate itemsets that turn out to be small.

UNIT 2 AND 3

Question 1 Complete Mark 1 out of 1	lag question
	ag question
attempts to	Question text identify and remove branches, with Improving accuracy
a. tree pruning b. both of them c. decision tree d. none of above	
Question 2 Complete Mark 0 out of 1	lag question

Question text
How do we perform Bayesian classification when some features are missing?
a.
We assuming the missing values as the mean of all values.
b. Drop the features completely.
0
C.
We integrate the posteriors probabilities over the missing features.
d.
We ignore the missing features.
Question 3 Complete Mark 1 out of 1
Flag question
Question text
Functions of the second phase of the partition algorithm are
a.
None of these
b.
Frequent itemsets are identified
C. Actual support of item sets are generated
Actual support of item sets are generated
d.
Both (a) & amp; (b)
Question 4
Complete Mark 1 out of 1

Flag question
Question text
Which of the following is FALSE about Correlation and Covariance?
⊙
a.
Correlation and covariance values are the same.
b.
Correlation is the standardized version of Covariance.
C.
The covariance and correlation are always the same sign.
O. d.
A zero correlation does not necessarily imply independence between variables.
Question 5 Complete Mark 0 out of 1 Flag question
Question text
Which of the following statement is TRUE about the Bayes classifier?
O
a. Bayes classifier works on the Bayes theorem of probability.
b.
Bayes classifier is an unsupervised learning algorithm.
c. Bayes classifier is also known as maximum apriori classifier. O d.
It assumes the independence between the independent variables or features.
Question 6

Complete Mark 0 out of 1 Flag question
Question text
In the Naive Bayes algorithm, suppose that prior for class w1 is greater than class w2, would the decision boundary shift towards the region R1(region for deciding w1) or towards region R2(region for deciding w2)? o a. towards region R1. b. No shift in decision boundary. c. towards region R2. d. It depends on the exact value of priors.
Question 7 Complete Mark 1 out of 1
Flag question
Question text How do you choose the right node while constructing a decision tree? a. An attribute having high entropy •
b. An attribute having the highest information gain. c. An attribute having the lowest information gain.

d. An attribute having high entropy and information gain
Question 8 Complete Mark 1 out of 1
Flag question
Question text Hierarchical methods can be classified a. a. A and B b. Agglomerative Approach c. Divisive Approach d. None of these
Question 9 Complete Mark 1 out of 1 Flag question
Question text Which of the following statement is TRUE? a.
Outliers should be identified and removed always from a dataset. • b. The nature of our business problem determines how outliers are used. • • • • • • • • • • • • •
Outliers can never be present in the testing dataset.

O. d. Outliers is a data point that is significantly close to other data points.
Question 10 Complete Mark 1 out of 1 Flag question
Question text What kind of distance metric(s) are suitable for categorical variables to find the closest neighbors? a. Manhattan distance. b. Minkowski distance. c. Hamming distance. d. Euclidean distance.
Question 11 Complete Mark 1 out of 1 Flag question
Question text Classification and prediction method can be affected by:- a. All of the above b. Robustness & Damp; Scalability

c. Interpretability d. Accuracy & Decomposition of the content of
Question 12 Complete Mark 1 out of 1
Flag question
Question text Recursive Partitioning stops in Decision Tree when
a. There are no samples for the branch test. b. All samples for a given node belong to the same class. c. There are no remaining attributes on which samples may be further partitioned. d. All the above. Question 13 Complete
Mark 1 out of 1 Flag question
Question text
Unsupervised learning is an example of
 a. clustering b. Data Mining

c. Classification and prediction O
Classification and Regression
Question 14 Complete Mark 0 out of 1 Flag question
Question text In Regression modeling we develop a mathematical equation that describes how, (Predictor-Independent variable, Response-Dependent variable)
a.
All of these are correct.
b.
one response and one or more predictors are related.
C.
one predictor and one or more response variables are related.
d.
several predictors and several response variables response are related.
Question 15 Complete Mark 1 out of 1
Flag question
Question text
Which one of the following statements is TRUE for a Decision Tree?
a.
In a decision tree, the entropy of a node decreases as we go down a decision tree.
O

 b. In a decision tree, entropy determines purity. c. Decision tree is only suitable for the classification problem statement. d. Decision tree can only be used for only numeric valued and continuous attributes.
Question 16 Complete Mark 1 out of 1 Flag question
Question text
True or False: In a naive Bayes algorithm, when an attribute value in the testing record has no example in the training set, then the entire posterior probability will be zero. O a. Can't determined b. None of these. c. True O d. False
Question 17 Complete Mark 1 out of 1 Flag question

The robotic arm will be able to paint every corner in the automotive parts while minimizing the quantity of paint wasted in the process. Which learning technique is used in this problem?

a. Both (A) and (B).		
b. Supervised Learning. O		
c. Unsupervised Learning. •		
d. Reinforcement Learning.		
Question 18 Complete Mark 1 out of 1		
Flag question		
Question text		
Which of the following is FALSE about Deep Learning and Machine Learning algorithms?	?	
a. Feature Extraction needs to be done manually in both ML and DL algorithms.		
o. Deep Learning algorithms work efficiently on a high amount of data.		
c. Deep Learning algorithms require high computational power. O d.		
Deep Learning algorithms are best suited for unstructured data.		
Question 19 Complete Mark 1 out of 1		
Flag question		

In a decision tree internal node denotes a test on an attribute and Leaf nodes represent classes or class distributions
Question 20 Complete Mark 1 out of 1 Flag question
Question text
The process used to remove or reduce noise and the treatment of missing values
a. Data cleaning b. Data transformation c. Relevance analysis d. None of above
Question 21 Complete Mark 0 out of 1 Flag question
riag question
Question text
Decision tree is based on
a.

Top-down technique b. Bottom-down technique c. Divide-and-conquer manner d. Top-down recursive divide-and-conquer manner
Question 22 Complete Mark 1 out of 1 Flag question
Flag question
Question text Top-Down Approach is a. Divisive Approach b. Agglomerative Approach Question 23 Complete
Mark 1 out of 1 Flag question
Question text
Advantage of the Information-theoretic approach of the decision tree is
a. Maximizes the number of tests b.
Minimizes the number of Nodes ●

c. Minimizes the expected number of tests needed c. d. Maximizes the number of nodes
Question 24 Complete Mark 0 out of 1 Flag question
Question text
Which of the following logic function cannot be implemented by a perceptron having 2 inputs? a. OR. b. AND. c. NOR. C. NOR. NOR. XOR.
Question 25 Complete Mark 0 out of 1
Flag question
Question text Which of the following activation function output is zero centered? a.
Sigmoid. b.

Hyperbolic Tangent. c. Rectified Linear unit(ReLU). d. Softmax. Question 26
Complete Mark 1 out of 1 Flag question
Question text Test attribute for the current node in the decision tree is chosen on the basis of a. Lowest Attribute Gain b. Highest Information Gain c. Lowest entity gain d. Highest data gain
Question 27 Complete Mark 1 out of 1 Flag question
Question text
In the First Phase of the Partition Algorithm a. Not divides into partitions

b. Logically divides into a number of overlapping Partitions O
c. Divides into non-logically and non-overlapping Partitions o d.
Logically divides into a number of non-overlapping partitions
Question 28 Complete Mark 1 out of 1 Flag question
Question text Which are the two type of Hierarchical Clustering?
a. Agglomerative Hierarchical Clustering and Divisive Hierarchical Clustering b.
Agglomerative Hierarchical Clustering and Density Hierarchical Clustering C.
Divisive Hierarchical Clustering and Density Hierarchical Clustering d. None of the above
Question 29 Complete Mark 0 out of 1 Flag question
Question text To select the test attribute of each node in a decision tree we use a. Data Selection Measure

b.None of these
c. Information Gain Measure d. Entity Selection Measure
Question 30 Complete Mark 0 out of 1
Flag question
Question text
Partition Algorithm executes in
O .
a.
None of these
b. Two-Phase
O Section 1997
C.
Three phase
d.
One phase
UNIT 4
Question 1 Complete Mark 1.00 out of 1.00
Flag question
Overtion toyt

Question text Suppose the number of nodes in the input layer is 5 and the hidden layer is 10. The maximum number of connections from the input layer to the hidden layer would be-

a. Less than 50 b. None c. More than 50
d.50
Question 2 Complete Mark 1.00 out of 1.00
Flag question
Question text
Neural networks can be used in-
a. All of the above b. Classification problems c. Clustering problems
d.
Regression problems
Question 3 Complete Mark 1.00 out of 1.00
Flag question
Question text
In a neural network, which of the following causes the loss not to decrease faster? a.

Slow learning rate b. All of the above c. Stuck at a local minima d. High regularization parameter Question 4 Complete Mark 0.00 out of 1.00
Flag question
Question text The multi-armed bandit problem is a generalized use case for- a. All of the above b. Supervised learning c. Reinforcement learning d. Unsupervised learning
Question 5 Complete Mark 0.00 out of 1.00 Flag question
Question text
Which of the following is a deep learning library? a. Tensorflow

b. PyTorch
O
c. All of the above
O
d. Keras
Question 6 Complete Mark 1.00 out of 1.00
Flag question
Question text For a binary classification problem, which of the following activation function is used?
0
a.
Softmax ●
b.
Sigmoid O
c.
None O
d.
ReLu
Question 7 Complete Mark 1.00 out of 1.00
Flag question
Question text
Which of the following is a correct order for the Convolutional Neural Network operation?
a.
Max pooling -> convolution -> flattening -> full connection
b.
None

c. Convolution -> max pooling -> flattening -> full connection
d. Flattening -> max pooling -> convolution -> full connection
Question 8 Complete Mark 1.00 out of 1.00 Flag question
Question text Which of the following is true about bias?
a. None b. Bias impacts the output of the neurons c. Both A and B d. Bias is inherent in any predictive model Question 9 Complete Mark 1.00 out of 1.00
Flag question
Question text
Which of the following is true about reinforcement learning? a. The agent gets rewards or penalty according to the action b. All of the above
c.

It's an online learning O d. The target of an agent is to maximize the rewards
Question 10 Complete Mark 1.00 out of 1.00 Flag question
Question text Which of the following neural network model has a shared weight structure? a. Both A and B
b.
Recurrent Neural Network
O_
c. Convolution Neural Network
Convolution Neural Network
d.
None
Trone
Question 11 Complete Mark 0.00 out of 1.00 Flag question
Question text Thompson sampling is a-
a.
Probabilistic algorithm
b.
All of the above ●
C. Resed on Reves inference rule
Based on Bayes inference rule

d. Reinforcement learning algorithm
Question 12 Complete Mark 1.00 out of 1.00
Flag question
Question text Autoencoder is an example of- a. Deep learning b. Machine learning c. Data mining d. None
Question 13 Complete Mark 1.00 out of 1.00 Flag question
Question text
Which algorithm is used in robotics and industrial automation? a. Naive Bayes b. Thompson sampling c. Decision tree
d. All of the above

Question 14 Complete Mark 1.00 out of 1.00
Flag question
Question text
LSTM is a variation of-
O
a.
Multi Layer Perceptron Network
b.
None
O
c. Convolutional Neural Network
Total Network
d.
Recurrent Neural Network
Question 15 Complete Mark 1.00 out of 1.00 Flag question
Question text
Which of the following makes a neural network non-linear?
•
a.
Rectified linear unit
b.
Batch gradient descent
O
C.
All of the above
d.
Convolution function
Question 16
Complete

Mark 1.00 out of 1.00
Flag question
Question text What is gradient descent? a. Loss function b. Activation function c. Optimization algorithm d.
None
Question 17 Complete Mark 1.00 out of 1.00 Flag question
Question text
Which is the following is true about neurons? a. A neuron has multiple inputs and multiple outputs b. A neuron has a single input and only single output c. All of the above d. A neuron has a single input and multiple outputs
Question 18 Complete Mark 1.00 out of 1.00

Flag question
Question text Which of the following is an application of reinforcement learning?
a. Recommendation system b.
Pattern recognition c. Topic modeling d.
Image classification
Question 19 Complete Mark 1.00 out of 1.00 Flag question
Question text Which of the following steps can be taken to prevent overfitting in a neural network?
a. Dropout of neurons b. All of the above c. Early stopping d. Batch normalization
Question 20 Complete Mark 1.00 out of 1.00

Flag question
Question text Which of the following is a loss function? a. Sigmoid function b. All of the above c. ReLu d. Cross entropy
Question 21 Complete Mark 0.00 out of 1.00 Flag question
Question text Which of the following activation function can not be used in the output layer of an image classification model?
a. Softmax b. None c. ReLu d. Sigmoid
Question 22 Complete Mark 1.00 out of 1.00

Flag question
Question text Which of the following is false about Upper confidence bound?
a. It's a Deterministic algorithm b. It does not allow delayed feedback c.
It is not based on Bayes inference d. None
Question 23 Complete Mark 0.00 out of 1.00 Flag question
Question text What does a gradient descent algorithm do?
a. None b. Tries to find the parameters of a model that minimizes the cost function c. Adjusts the weights at the input layers d. Both A and B
Question 24 Complete Mark 1.00 out of 1.00

Flag question
Question text
For an image classification task, which of the following deep learning algorithm is best suited?
O
a. All of the above
b.
Recurrent Neural Network
c. Multi-Layer Perceptron
d. Convolution Neural Network
Question 25 Complete Mark 1.00 out of 1.00 Flag question
Question text Which of the following is true about dropout?
a. Applied in the output layer nodes
b. None c.
Applied in the hidden layer nodes O. d.
Both A and B
Question 26 Complete Mark 1.00 out of 1.00

Flag question
Question text Upper confidence bound is a a. None b. Reinforcement algorithm c. Unsupervised algorithm d. Supervised algorithm
Question 27 Complete Mark 1.00 out of 1.00 Flag question
Question text In a classification problem, which of the following activation function is most widely used in the output layer of neural networks?
a. Rectifier function b. All of the above c. Hyperbolic function d. Sigmoid function
Question 28 Complete Mark 0.00 out of 1.00

Flag question
Question text
Batch normalization helps to prevent-
a. None
O
b.
Both A and B
c.
activation functions to become too high or low
d.
the training speed to become too slow
Question 29 Complete
Mark 1.00 out of 1.00
Flag question
Question text Suppose you have a dataset from where you have to predict three classes. Then which of the
following configuration you should use in the output layer?
0
a.
Activation function = sigmoid, loss function = mean squared error
b.
Activation function = sigmoid, loss function = cross entropy
O
c. Activation function = softmax, loss function = mean squared error
•
d.
Activation function = softmax, loss function = cross entropy
Question 30
Complete Mark 0.00 out of 1.00

Flag question
Question text Hidden Markov Model is used in-
0
a. All of the above
O b.
Supervised learning •
c. Reinforcement learning
d. Unsupervised learning
Question 31 Complete Mark 1.00 out of 1.00
Flag question
Question text Reinforcement learning is-
0
a. None
b.
Supervised learning •
c. Award based learning
d. Unsupervised learning
Question 32
Complete Mark 1.00 out of 1.00

Flag question Question text Which of the following neural networks is the best for machine translation? 0 a. 1D Convolutional Neural Network b. 2D Convolutional Neural Network Recurrent Neural Network d. None ${\tt Question}~33$ Complete Mark 1.00 out of 1.00 Flag question Question text Which of the following neural networks has a memory? (a. **LSTM** 0 b. 1D CNN c. None 0 d. 2D CNN Question 34 Complete

Mark 1.00 out of 1.00

Flag question
Question text
Which of the following loss function is used in regression?
a.
Logarithmic loss
b.
Cross entropy
c.
Mean squared error
d.
None
Question 35 Complete
Mark 1.00 out of 1.00 Flag question
Question text
What is the purpose of a loss function?
a.
None O
b.
Calculate the error value of the forward network
c.
Optimize the error values according to the error rate •
d.
Both A and B
Question 36
Complete Mark 1.00 out of 1.00

Flag question Question text Which of the following is an example of deep learning? 0 a. Self-driving cars b. Natural language processing c. Pattern recognition d. All of the above Question 37 Complete Mark 1.00 out of 1.00 Flag question Question text Which of the following deep learning models uses back propagation? • a. Recurrent Neural Network Multilayer Perceptron Network All of the above 0 d. Convolutional Neural Network Question 38 Complete

Mark 1.00 out of 1.00

Flag question
Question text You have a task which is to show relative ads to target users. Which algorithm you should use for this task?
a.
K means clustering •
b. Upper confidence bound
c. Naive Bayes
d. Support vector machine
Question 39 Complete Mark 1.00 out of 1.00 Flag question
Question text Which of the following statement is not correct?
a. Neural networks mimic the human brain
b. None C.
It can be used in image processing d.
It can only work for a single input and a single output
Question 40 Complete Mark 0.00 out of 1.00

Flag question
Question text Convolutional Neural Network is used in-
a.
Computer vision
O b.
All of the above
0
c.
Text classification
d.
Image classification
Question 41
Not answered
Marked out of 5.00
Flag question
Question text

The network shown in Figure 1 is trained to recognize the characters H and T as shown below: What Deep learning algorithm could be used for this scenario and why? Elaborate the answer with its steps and working Example?(5 marks)

Question text

Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French?

Elaborate the process in steps to validate the answer.

Answer:

- 1.RNNs are designed to take sequences of text as inputs or return sequences of text as outputs, or both.
- 2. They're called recurrent because the network's hidden layers have a loop in which the output and cell state from each time step become inputs at the next time step.
- 3. This recurrence serves as a form of memory. It allows contextual information to flow through the network so that relevant outputs from previous time steps can be applied to network operations at the current time step.
- 1. Preprocessing: load and examine data, cleaning, tokenization, padding
- 2.Modeling: build, train, and test the model
- 3.Prediction: generate specific translations of English to French, and compare the output translations to the ground truth translations

Question 1 Complete Mark 0.00 out of 2.00 Flag question

Question text

You are designing a deep learning system to detect driver fatigue in cars. It is crucial that that your model detects fatigue, to prevent any accidents. Which of the following is the most appropriate evaluation metric: Accuracy, Precision, Recall, Loss Value. Explain your choice.

Answer: It is important that we do not miss any cases where the driver is tired

Question **2** Complete

Mark 0.00 out of 2.00

Flag question

Question text

You are given the following piece of code for forward propagation through a single hidden layer in a neural network. This layer uses the sigmoid activation. Identify and correct the error.

import numpy as np

def forward_prop(W, a_prev, b):

$$z = W*a_prev + b$$

$$a = 1/(1+np.exp(-z))$$
 #sigmoid

return a

Answer: z = np.matmul (W, a_prev) + b OR z = np.dot(W, a_prev) + b

Question **3** Complete

Mark 0.00 out of 1.00

Flag question
Question text TensorFlow is imported as?
0
a.
Run tf
0
b.
Import TensorFlow as tf
0
c.
Run TensorFlow
d.
Import TensorFlow
Question 4 Complete
Mark 1.00 out of 1.00
Flag question
Question text
Which, if any, of the following propositions is true about fully-connected neural networks (FCNN)?
O

a.
In a FCNN, the most common weight initialization scheme is the zero initialization, because it leads to faster and more robust training.
b.
None of the above
C The above
C.
In a FCNN, there are connections between neurons of a same layer.
d.
A FCNN with only linear activations is a linear network.
Question 5
Complete
Mark 1.00 out of 1.00
Flag question
Question text
The input image has been converted into a matrix of size 28 X 28 and a
kernel/filter of size 7 X 7 with a stride of 1. What will be the size of the convoluted matrix?
O STATE OF THE CONTROL OF THE CONTRO
a.
20x20
b.
21x21
O .

C.
25x25
d.
22x22
Question 6 Not answered
Marked out of 1.00
Flag question
Question text Assume a simple MLP model with 3 neurons and inputs = 1,2,3. The weights to the input neurons are 4,5 and 6 respectively. Assume the activation function is a linear constant
value of 3. What will be the output?
a.
96
b.
32
c.
128
O
d.
64
Question 7 Complete
Mark 1.00 out of 1.00

Flag question
Question text In CNN, having max pooling always decrease the parameters?
a.
False
0
b.
True
C.
Can be true or false
0
d.
Cannot say
Question 8
Complete
Mark 1.00 out of 1.00
Flag question
Question text
In which of the following applications can we use deep learning to solve the problem?
a.
Protein structure prediction
O

b.
Prediction of chemical reactions
C.
Detection of exotic particles
d.
All of the above
Question 9 Complete
Mark 1.00 out of 1.00
Flag question
Question text In which neural net architecture, does weight sharing occur?
0
a.
Convolutional neural Network
0
b.
Recurrent Neural Network
0
C.
Fully Connected Neural Network
d.
Both1 and 2
Question 10

Complete
Mark 0.00 out of 1.00 Flag question
Question text How many layers Deep learning algorithms are constructed?
0
a.
5
0
b.
2
C.
3
d.
4
Question 11 Complete
Mark 1.00 out of 1.00
Flag question
Question text Deep learning algorithms are more accurate than machine learning algorithm in image classification.

a.
0.41
b.
33%
C.
0.4
d.
0.37
Question 12 Complete
Mark 1.00 out of 1.00
Flag question
Question text Which of the following functions can be used as an activation function in the output layer if we wish to predict the probabilities of n classes (p1, p2pk) such that sum of p over all n equals to 1?
a.
Sigmoid
b.
Softmax
0
C.
Tanh

0
d.
ReLu
Question 13 Complete
Mark 1.00 out of 1.00
Flag question
Question text Which of the following statements is true when you use 1×1 convolutions in a CNN?
0
a.
It can help in dimensionality reduction
b.
It suffers less overfitting due to small kernel size
c.
All of the above
O
d.
It can be used for feature pooling
Question 14 Complete
Mark 1.00 out of 1.00
Flag question

Question text In a simple MLP model with 8 neurons in the input layer, 5 neurons in the hidden layer and 1 neuron in the output layer. What is the size of the weight matrices between hidden output layer and input hidden layer?
O
a.
[1 X 5] , [5 X 8]
b.
[5 x 1] , [8 X 5]
0
C.
[8 X 5] , [5 X 1]
d.
[8 X 5] , [1 X 5]
Question 15 Complete
Mark 0.00 out of 1.00
Flag question
Question text Which neural network has only one hidden layer between the input and output?
0
a.
Deep neural network
•
b.
Shallow neural network

C.
Feed-forward neural networks
O CONTRACTOR OF THE CONTRACTOR
d.
Recurrent neural networks
Question 16 Complete
Mark 1.00 out of 1.00
Flag question
Question text The number of nodes in the input layer is 10 and the hidden layer is 5. The maximum number of connections from the input layer to the hidden layer are
a.
50
50 O
0
b.
b. less than 50
b. less than 50
b. less than 50 C.
b. less than 50 c. more than 50
b. less than 50 c. more than 50
b. less than 50 c. more than 50 d.

Flag question
Question text Which of the following is/are Limitations of deep learning?
0
a.
Obtain huge training datasets
0
b.
Data labeling
C.
both 1 and 2
O
d.
None of the above
Question 18 Complete
Mark 1.00 out of 1.00
Flag question
Question text RNNs stands for?
a.
Recurrent neural networks
O

b.
Receives neural networks
O
C.
Receives neural networks
O CONTRACTOR OF THE CONTRACTOR
d.
Recording neural networks
Question 19 Complete
Mark 1.00 out of 1.00
Flag question
Question text Which of the following would have a constant input in each epoch of training a Deep Learning model?
a.
Weight between hidden and output layer
b.
Activation function of output layer
c.
Biases of all hidden layer neurons
◆d.

Question 20 Complete
Mark 1.00 out of 1.00
Flag question
Question text Which of the following is well suited for perceptual tasks?
0
a.
Reinforcement Learning
0
b.
Feed-forward neural networks
0
c.
Recurrent neural networks
•
d.
Convolutional neural networks
Question 21 Complete
Mark 0.00 out of 1.00
Flag question
Question text Which of the following methods DOES NOT prevent a model from overfitting to the training set? O

a.
Data augmentation
b.
Dropout
C.
Pooling
•
d.
Early stopping
Question 22 Complete
Mark 1.00 out of 1.00
Flag question Ougstion tout
Question text Sentiment analysis using Deep Learning is a many-to one prediction task
a.
False
b.
Can be true or false
O
C.
Cannot say
•

d.
True
Question 23 Complete
Mark 1.00 out of 1.00
Flag question
Question text Assume that your machine has a large enough RAM dedicated to training neural networks. Compared to using stochastic gradient descent for your optimization, choosing a batch size that fits your RAM will lead to::
a.
a less precise but faster update.
O
b.
a more precise and faster update.
C.
a less precise and slower update.
d.
a more precise but slower update.