B-Sufficient Condition

原案·解説:ReiVindicatio

北海道大学競技プログラミングサークル HCPC

September 26, 2021

- k を因数分解した時, $k = p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}$ と表せることにする.
- 条件を満たすような n が存在するか考える.
 - とりあえず存在したとして, $n^2 = q_1^{2f_1}q_2^{2f_2}\cdots q_t^{2f_t}$ とできたとする
- 少なくとも n^2 が k で割り切れなければならない $\rightarrow k$ の持つ各素因数 p_i を n^2 が持ってなければならない
- より具体的には
 - ① 全ての $i(=1,2,\cdots,s)$ に対して $p_i=q_i$ となるような q_i が存在
 - ② そのような (i,j) の組に対して $e_i \leq 2f_j$ を満たすであればよく、この時常に n^2 は k で割り切れる
- この時 $n=q_1^{f_1}q_2^{f_2}\cdots q_t^{f_t}$ が k で割り切れなくするためには条件 2 が 成り立たないようにすれば良い \rightarrow ある j について $f_j < e_i \leq 2f_j$ となるような j が少なくとも 1 つ存在するように n を構築

解法

- $oldsymbol{0}$ k を素因数分解し $k=p_1^{e_1}p_2^{e_2}\cdots p_s^{e_s}$ とする
- ② 各 e_i に対し $f \le e_i \le 2f$ となるような最小の f を見つける
 - $e_i = 1$ の時, $f = e_i$
 - $e_i \neq 1$ の時, $f = ceil(e_i/2) \neq e_i$
 - 各 f をかけ合わせて出力
 - 構築できない時は全ての f について $f = e_i$ の時
 - $\rightarrow e_1 = e_2 = \cdots = e_s = 1$ の時 -1