EE 101: Basic Electronics BJT Amplifiers

Nagarjuna Nallam

Department of EEE, IIT Guwahati, India

Biasing

Input should have a DC offset within (V_{IN1}, V_{IN2})

What iff it is not the case?

AC-coupled amplifier

Vout Vins Vin

AC-coupled amplifier

 C_h at the input blocks the DC in V_{in}

Amplifier can be biased at the max-gain point.

Amplifier gain for DC inputs is zero.

Mid-band equivalent circuit

Frequency Response

Biasing using a single supply

BJT configurations

(Biasing is not shown in the above circuits)

Biasing a discrete CE amplifier

Biasing using a resistive divider

Biasing using an emitter degeneration resistor R_E

CE amplifier

Typical AC equivalent circuit

Small-signal model

Input impedance $pprox R_1 || r_\pi$

Output impedance $\approx r_0 || R_C$

Voltage gain \approx - $g_m(r_0||R_C)$

CE amplifier with emitter degeneration

Input impedance
$$\approx r_\pi + (\beta+1)R_E$$

Output impedance $\approx R_C$
Voltage gain $\approx -\frac{g_mR_C}{1+g_mR_C}$

CB amplifier

CC circuit

$$R_{in} pprox R_B || (r_\pi + (1+eta)R_E)$$
 $R_{out} pprox rac{1}{g_m} || R_E$ $A_
u pprox + rac{g_m R_E}{1+g_m R_E}$

Summary

- DC and AC coupled amplifiers
- Biasing and frequency response of AC coupled amplifiers
- CE, CB and CC configurations
- ► CE amplifier: biasing, gain, input and output impedances
- ► CB amplifier: biasing, gain, input and output impedances
- CC buffer: biasing, gain, input and output impedances

Reference Book

[1] A. Sedra and K. C. Smith, "Microelectronic Circuits," 6th Ed., Oxford university press, 2011.