

SEQUENCE LISTING

<110> WIDMANN, Christian
YANG, Jiang-Yang
MICHOD, David

<120> RasGAP derived peptide for selectively killing cancer cells

<130> KZI-004US

<150> PCT/IB2004/002165
<151> 2004-06-29

<150> US 60/483,691

<151> 2003-06-30

<160> 17

<170> PatentIn version 3.1

<210> 1

<211> 249

<212> DNA

<213> Homo sapiens

<400> 1
gaagatagaa ggcgtgtacg agctattcta ccttacacaa aagtaccaga cactgatgaa 60
ataagttct taaaaggaga tatgttcatt gttcataatg aattagaaga tggatggatg 120
tgggttacaa atttaagaac agatgaacaa ggccttattg ttgaagacct agtagaagag 180
gtggggccggg aagaagatcc acatgaagga aaaatatggt tccatggaa gatttccaaa 240
caggaagct 249

<210> 2

<211> 204

<212> DNA

<213> Homo sapiens

<400> 2
gtacgagcta ttctacctta cacaaaagta ccagacactg atgaaataag tttctaaaaa 60
ggagatatgt tcattgttca taatgaatta gaagatggat ggatgtgggt tacaaattta 120
agaacagatg aacaaggcct tattgttcaa gacctagtag aagaggtggg ccgggaagaa 180
gatccacatg aaggaaaaat atgg 204

<210> 3

<211> 174

<212> DNA

<213> Homo sapiens

<400> 3
gtacgagcta ttctacctta cacaaaagta ccagacactg atgaaataag tttctaaaaa 60
ggagatatgt tcattgttca taatgaatta gaagatggat ggatgtgggt tacaaattta 120
agaacagatg aacaaggcct tattgttcaa gacctagtag aagaggtggg ccgg 174

<210> 4

<211> 30

<212> DNA

<213> Homo sapiens

<400> 4
tggatgtggg ttacaaattt aagaacagat 30

<210> 5

<211> 83

<212> PRT

<213> Homo sapiens

<400> 5

Glu	Asp	Arg	Arg	Arg	Val	Arg	Ala	Ile	Leu	Pro	Tyr	Thr	Lys	Val	Pro
1					5				10					15	

Asp	Thr	Asp	Glu	Ile	Ser	Phe	Leu	Lys	Gly	Asp	Met	Phe	Ile	Val	His
				20				25					30		

Asn	Glu	Leu	Glu	Asp	Gly	Trp	Met	Trp	Val	Thr	Asn	Leu	Arg	Thr	Asp
					35			40				45			

Glu	Gln	Gly	Leu	Ile	Val	Glu	Asp	Leu	Val	Glu	Glu	Val	Gly	Arg	Glu
					50			55			60				

Glu	Asp	Pro	His	Glu	Gly	Lys	Ile	Trp	Phe	His	Gly	Lys	Ile	Ser	Lys
					65			70			75			80	

Gln Glu Ala

<210> 6

<211> 69

<212> PRT

<213> Homo sapiens

<400> 6

Arg	Val	Arg	Ala	Ile	Leu	Pro	Tyr	Thr	Lys	Val	Pro	Asp	Thr	Asp	Glu
1					5				10				15		

Ile	Ser	Phe	Leu	Lys	Gly	Asp	Met	Phe	Ile	Val	His	Asn	Glu	Leu	Glu
				20				25				30			

Asp	Gly	Trp	Met	Trp	Val	Thr	Asn	Leu	Arg	Thr	Asp	Glu	Gln	Gly	Leu
					35			40				45			

Ile	Val	Glu	Asp	Leu	Val	Glu	Glu	Val	Gly	Arg	Glu	Glu	Asp	Pro	His
					50			55			60				

Glu	Gly	Lys	Ile	Trp
65				

<210> 7

<211> 59

<212> PRT

<213> Homo sapiens

<400> 7

Arg Val Arg Ala Ile Leu Pro Tyr Thr Lys Val Pro Asp Thr Asp Glu
1 5 10 15

Ile Ser Phe Leu Lys Gly Asp Met Phe Ile Val His Asn Glu Leu Glu
20 25 30

Asp Gly Trp Met Trp Val Thr Asn Leu Arg Thr Asp Glu Gln Gly Leu
35 40 45

Ile Val Glu Asp Leu Val Glu Val Gly Arg
50 55

<210> 8

<211> 10

<212> PRT

<213> Homo sapiens

<400> 8

Trp Met Trp Val Thr Asn Leu Arg Thr Asp
1 5 10

<210> 9

<211> 10

<212> PRT

<213> Bos taurus

<400> 9

Trp Met Trp Val Thr Asn Leu Arg Thr Asp
1 5 10

<210> 10

<211> 10

<212> PRT

<213> *Mus musculus*

<400> 10

Trp Met Trp Val Thr Asn Leu Arg Thr Asp
1 5 10

<210> 11

<211> 10

<212> PRT

<213> *Rattus norvegicus*

<400> 11

Trp Met Trp Val Thr Asn Leu Arg Thr Asp
1 5 10

<210> 12

<211> 10

<212> PRT

<213> *Anopheles albimanus*

<400> 12

Trp Leu Trp Val Thr Ala His Arg Thr Gly
1 5 10

<210> 13

<211> 10

<212> PRT

<213> *Drosophila melanogaster*

<400> 13

Trp Leu Trp Val Thr Ala His Arg Thr Gly
1 5 10

<210> 14

<211> 10

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> Xaa corresponds to an amino acid residue that can be changed by conservative or non-conservative amino-acid substitution.

<220>

<221> MISC_FEATURE

<222> (6)..(7)

<223> Xaa correspond to amino acid residues that can be changed by conservative or non-conservative amino-acid substitutions.

<220>

<221> MISC_FEATURE

<222> (10)..(10)

<223> Xaa corresponds to an amino acid residue that can be changed by conservative or non-conservative amino-acid substitution.

<220>

<221> MISC_FEATURE

<222> (10)..(10)

<223> Xaa corresponds to an amino acid residue that can be changed by conservative or non-conservative amino-acid substitution.

<400> 14

Trp Xaa Trp Val Thr Xaa Xaa Arg Thr Xaa
1 5 10

<210> 15

<211> 10

<212> PRT

<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 15
Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg
1 5 10

<210> 16
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 16
Gly Arg Lys Lys Arg Arg Gln Arg Arg Gly Gly Trp Met Trp Val
1 5 10 15
Thr Asn Leu Arg Thr Asp
20

<210> 17
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 17
Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser
1 5 10