Лекция 8. Электронная подпись I

1 Электронная подпись с закрытым ключом

Схема электронной подписи с закрытым ключом:

- ullet K генератор закрытого ключа d.
- S(m,d) = s подпись.
- $V(m,d,s) \in \{0,1\}$ верификатор.
- Корректность: $P(V(m, d, S(m, d)) = 1) \approx 1$.
- Атака происходит следующим образом: схема C несколько раз может сгенерировать сообщение x_i и получить подпись для него. После этого схема D пытается сгенерировать новое слово x, не встречавшееся среди запросов и подписать его так, чтобы верификатор принял подпись.

```
\begin{split} m_1 &= C(), s_1 = S(m_1,d),\\ m_2 &= C(s_2), s_2 = S(m_2,d),\\ \dots,\\ m_k &= C(s_1,\dots,s_{k-1}), s_k = S(m_k,d),\\ m_{k+1} &= C(s_1,\dots,s_k), s_{k+1} = D(s_1,\dots,s_k). \end{split} Условие неподделываемости: P(m_{k+1} \notin \{m_1,\dots,m_k\}, V(m_{k+1},d,s_{k+1}) = 1) \approx 0.
```

Если существует протокол подписи, то его можно использовать для задачи идентификации: сервер посылает клиенту случайное сообщение m на подпись и проверяет подпись под ним. Несложно увидеть, что атака на такой протокол это и есть атака на электронную подпись.

С закрытым ключом алгоритм довольно простой: пусть d — идентификатор псевдослучайной функции. Положим $S(m,d)=f_d(m), V(m,d,s)=I(s=f_d(m))$. Взломщик в таком случае получает значение псевдослучайной функции на полиномиальном числе входов. Однако семейство псевдослучайных функций вычислительно неотличимо от семейства всех функции, поэтому подписывая значение m_{k+1} он угадает с вероятностью, близкой к вероятности угадать значение случайной функции, которое не зависит от значений в предыдущих точках, то есть с экспоненциально малой вероятностью.

2 Электронная подпись с открытым ключом

- K генератор закрытого и открытого ключей d, e.
- S(m,d) = s подпись.
- $V(m,e,s) \in \{0,1\}$ верификатор.

- Корректность: $P(V(m, e, S(m, d)) = 1) \approx 1$.
- Атака происходит таким же образом, однако схемы C, D дополнительно получают аргумент e.

Условие неподделываемости: $P(m_{k+1} \notin \{m_1, \dots, m_k\}, V(m_{k+1}, e, s_{k+1}) = 1) \approx 0.$

Подпись одного бита можно сделать на базе любой односторонней функции $f.\ d=(x_0,x_1), e=(f(x_0),f(x_1))$ (нужно выбрать так, чтобы $f(x_0),\neq f(x_1)$).

 $m_1=\sigma=C(y_0,y_1), s_1=x_\sigma, m_2=1-\sigma, s_2=D(y_0,y_1,x_\sigma).$ Нужно показать, что $P(f(s_2)=y_{1-\sigma})\approx 0.$

Пусть существует алгоритм, взламывающий такую подпись, тогда построим алгоритм, обращающий одностороннюю функцию. Обратитель f будет действовать так:

- Получает y.
- Выбирает случайный x и случайный бит τ .
- На всякий случай проверяет $f(x) \neq y$ (если равно, то обратил).
- $y' = f(x'), y_{\tau} = y', y_{1-\tau} = y.$
- $C(y_0, y_1) = \tau \Rightarrow$ можно вернуть $D(y_0, y_1, x')$.
- В противном случае вернуть что угодно.

Так как вероятность последнего условия $\frac{1}{2}$, то вероятность обращения не меньше $\frac{1}{2}$ вероятности подделки подписи.

Построим теперь подпись одного сообщения фиксированной длины. Для этого переделаем схему подписи одного бита (K, S, V) в $(\hat{K}, \hat{S}, \hat{V})$, так что \hat{K} запускает k раз алгоритм K, генерируя $(d_1, e_1), \ldots, (d_k, e_k)$ то есть $d = (d_1, \ldots, d_k), e = (e_1, \ldots, e_k)$.

 $\hat{S}(\sigma_1,\ldots,\sigma_k)=S(\sigma_1,d_1)\ldots S(\sigma_k,d_k)$. Верификатор устроен очевидным образом.

Такая подпись работает только для фиксированной длины (нельзя даже брать слова длины $\leqslant k$, так как после любого сообщения можно корректно подписать любой его префикс), притом подпись одноразовая, поскольку подпись сообщений $0\dots 0$ и $1\dots 1$ позволяет подделать любую подпись.

Часть проблем решает беспрефиксным кодированием: например удваиваем каждый бит и дописываем в конце 01. Так, вместо длины ровно k мы сможем подписывать сообщения длины $\leq k$.

3 Снятие ограничений по длине и одноразовости

Идея: подпись под хеш-значением.

Определение 1. Семейство хеш-функций с трудно обнаружимыми коллизиями — $h: \{0,1\}^{p(n)} \times \{0,1\}^* \to \{0,1\}^{q(n)}$, такая что для схемы, ищущей коллизии $C(s) = \{x_1,x_2\}, x_1 \neq x_2, h_s(x_1) = h_s(x_2)$ верятность успеха близка к 0 при слуайно выбранном s.

Если такое семейство существует, то достаточно взять хеш-значение сообщения и подписать только его. Атакующий должен будет сделать одну из двух вещей — либо найти коллизию хеш-функции, либо использовать соощение с другим хешом, но подделать его подпись. В обеих ситуациях вероятность успеха мала.

Идея для многоразовой подписи: S,V интерактивны и хранят всю историю, взломщик прослушивает канал и может потом попытаться подделать подпись. S вместе с подписью присылает новый открытый ключ для следующего раунда, притом подпись распространяется и на него.

Идею интерактивности можно использовать для подписи слова произвольной длины. $m = \sigma_1 \dots \sigma_k$, (d_0, e_0) ключ для однократной подписи k-битов $e = (e_0, l)$. Генерируются $(d_1, e_1), s_1$ — подпись под $h_l(\sigma_1, e_1)$ при помощи d, $(d_2, e_2), s_2$ — подпись под $h_l(\sigma_2, e_2)$ при помощи d_1 и так далее.

Определение 2. Универсальное семейство односторонних хеш-функций — семейство, такое что трудно обнаружить коллизию для заранее заданного x.

Общая идея для многократной электронной подписи без внутренней памяти: вместо следующего ключа подписываются 2 следующих ключа: какой из них используется зависит от битов сообщения.