Indexação para dados não convencionais

Dados Escalares

- Dizemos que um valor é escalar para denotar um número ou valor simples
- Mais fáceis de manipular
 - Qual a média das notas dos alunos que moram em Uberlândia?
 - Quantos alunos moram na mesma cidade?

ld	UF	Cidade	Cidade Rede	
1	SP	Adamantina	Privada	624
2	SP	Adamantina	Pública	602
3	MG	Uberlândia	Privada	758
4	MG	Uberlândia	Pública	698
5	SP	São Carlos	Pública	702
6	MG	Uberaba	Privada	720

Dados Espaciais

- O Possuem informações sobre elementos em um espaço
 - Este espaço pode ser tanto a representação de um local físico ou um espaço criado digitalmente
 - O Podem representar locais de pontos no espaço, distâncias e formas geométricas
 - Permitem localização em um espaço
- Normalmente definidos por coordenadas (x,y,z ou latitude/longitude)
- Dados espaciais geralmente são acompanhados por dados não espaciais

Dados Espaciais

		Dados Esca	Dados Espaciais			
ld	UF	Cidade	Rede	Redação	Latitude	Longitude
1	SP	Adamantina	Privada	624	-21.6756	-51.063
2	SP	Adamantina	Pública	602	-21.6756	-51.063
3	MG	Uberlândia	Privada	758	-18.9113	-48.2622
4	MG	Uberlândia	Pública	698	-18.9113	-48.2622
5	SP	São Carlos	Pública	702	-22.0154	-47.8911
6	MG	Uberaba	Privada	720	-19.7502	-47.9325

Dados Espaciais

- São usados em muitas aplicações
 - O Computação gráfica, visão computacional, realidade virtual
 - Sistemas de informações geográficas (google maps, google Earth)
 - O Simulação / modelagem geométrica 2D ou 3D (AutoCAD, Google Sketchup)
 - O Games

Objetos espaciais

- Objetos espaciais são objetos que descrevem localizações ou formas geométricas
 - Localização de um hidrante ou um poço, estradas, rios, redes de esgotos, florestas, parques, municípios, lagos
- Os 3 tipos básicos de objetos espaciais são
 - O Ponto
 - Compare the com
 - Polígono

Objetos espaciais

- Modelagem de um único objeto
 - O Ponto: cidade
 - O Aspecto geométrico de um objeto para o qual apenas a sua localização é relevante, e não sua extensão
 - O Linha (polilinha): rio, cabo, estrada
 - O Movimento no espaço e conexões no espaço são relevantes
 - O Polígono (região): floresta, lago, cidade
 - O Abstração de um objeto com extensão é relevante

Objetos espaciais

- Modelagem de coleções de objetos relacionadas espacialmente:
 - O Partição
 - O Uso do solo, distritos, mapa de propriedade
 - Rede conectada espacialmente (grafo)
 - O Autoestradas, estradas, ferrovias, transporte público, rios, mapa de redes elétricas, mapa de redes de telefone

- Várias são as operações possíveis
 - União
 - Intersecção
 - Seleção
 - É vizinho de?
 - Menor retângulo envolvente

- Dado um Rio (ou bacia hidrográfica), um mapa dos municípios, e um mapa de relevo
 - O Por quais municípios esse rio passa?
 - Quais áreas seriam inundadas se o nível do rio subir 1 metro acima do nível do solo?

- Como fazer o teste de interseção?
- E se os polígonos tivessem milhões de pontos?
- Como fazer o teste de interseção mais rapidamente?

- Reduzindo a complexidade dos objetos
 - O Fazendo testes mais simples primeiro
 - Menor Retângulo Envolvente
- Se os retângulos têm interseção, em geral, não se pode inferir que objetos têm interseção
 - Após esse teste é necessário testar os objetos reais
 - Passo mais custoso

- De outra forma, se objetos não têm interseção, então seus retângulos não têm intersecção
- Não é necessário testar os objetos reais
 - Economia de tempo!

- Como comparar muitos objetos de forma eficiente?
- Solução: uso de índices

- Proposta por Guttman em 1984
- Indexação de dados em espaços métricos
- Entradas dos nós correspondem à retângulos em d-dimensões
- O Cada entrada de nó folha contém
 - O Ponteiro para objeto real
 - O Menor Retângulo do objeto

- Estrutura de dados hierárquica derivada da árvore B
 - O Todos os nós folha aparecem no mesmo nível (árvore balanceada)
 - Organiza os dados em páginas
 - Projetado para armazenamento em disco (como usado em bancos de dados)
 - Cada página pode conter um número máximo de entradas, muitas vezes indicadas como M

- Os maiores retângulos, ou seja, os nós mais próximos do nó raiz, contém todos os retângulos de seus nós filhos, e os nósfolha (os menores retângulos nesta hierarquia) são os objetos indexados
 - O retângulo R1 engloba os retângulos R3, R4 e R5.
 - O Já estes, englobam os retângulos abaixo na hierarquia e assim sucessivamente

- Parâmetros definindo o número mínimo e máximo de nós se aplicam
 - São escolhidos a fim do menor número de nós sejam visitados durante a busca
- O Importante
 - O Diferentemente da árvore B, nós diferentes podem ter sobreposição
 - Ou seja, os retângulos mapeados podem ter sobreposição

Árvores R - Inserção

- A estrutura da árvore-R depende da ordem em que os retângulos são inseridos e removidos
- O Algoritmo para inserção de um nó é análogo ao algoritmo de inserção em árvore B
 - Novos retângulos são adicionados a nós folha
 - O nó folha apropriado é determinado pela navegação na árvore iniciando no nó raiz
 - A cada passo escolhe-se a sub-árvore cujo retângulo correspondente terá o menor acréscimo de área possível
 - O Se ao inserir o nó ocorrer overflow, então executar split
 - O M+1 registros devem ser distribuídos entre dois nós
 - O Split pode se propagar até a raiz

Árvores R - Inserção

Problema

- O A operação de split pode ser feita de forma ineficiente
- O Comparação de divisões eficientes e ineficientes de cinco itens em dois grupos

Árvores R - Busca

- A busca na árvore R é semelhante à busca na árvore B
 - O Nossa busca irá descer recursivamente do nó raiz até os nós folhas, adicionando todas as entradas de folha que correspondem a critérios no conjunto de resultados
- O Problema
 - Uma grande quantidade de nós pode ter que ser examinada, pois um retângulo pode estar contido nos retângulos envolventes de muitos nós
 - O Mas o seu registro está contido em apenas um nó folha

Remoção: Árvore R x Árvore B

- O Na árvore B nós sofrem merge com nós adjacentes ou é feita redistribuição
- Na árvore-R nós são reinseridos
 - A exclusão de uma entrada de um nó pode exigir a atualização dos retângulos delimitadores dos nós pai
 - O No entanto, quando um nó está subcheio, ele não será balanceado com seus vizinhos.
 - O Em vez disso, o nó será dissolvido e todos os seus filhos (que podem ser subárvores, não apenas objetos folha) serão reinseridos
 - O A reinserção permite que a árvore dinamicamente reflita a mudança de estrutura espacial ao invés de gradualmente sofrer degradações o que poderia ocorrer mantendo parentesco durante o ciclo de vida da árvore

- O A quadtree é uma estrutura de dados utilizada para representar dados espaciais
 - Técnica simples
 - O Baseado no conceito de árvore binária
 - O Generalização multidimensional (2D ou 3D)
 - O Acelera o acesso a dados num espaço 2D ou 3D

- É uma árvore em que cada nó representa um quadrante da região espacial que o nó pai representa
 - O Cada nó possui 4 (2D), 8 (3D) ou nenhum filho
 - O Uma quadtree com 8 filhos é chamada octotree

- O espaço é dividido em 4 quadrantes (direções)
- Os quadrantes são nomeados: Noroeste, Nordeste, Sudeste e Sudoeste

Cada quadrante é dividido em quatro subquadrantes, e assim por diante, até que se chegue a uma profundidade prédeterminada ou até que cada quadrante contenha um número mínimo de pontos.

- A construção da quadtree começa com um nó raiz que representa toda a região espacial.
- Esse nó é dividido em quatro quadrantes, que se tornam os filhos do nó raiz.

- Cada nó folha da quadtree representa uma região espacial que contém pontos
 - Os pontos podem ser armazenados diretamente no nó folha
 - Podemos usar uma estrutura de dados associada a ele, como uma lista encadeada, para armazenar os dados

- Dessa forma, a quadtree permite acesso rápido aos pontos que estão dentro de uma região espacial específica.
 - O Consulta é simples em quadtree
 - Um único caminho é percorrido da raiz até a folha
 - Em cada nível, é escolhido um dos quadrantes que contém o ponto da consulta

- O Divisões do espaço devem ser realizadas segundo determinadas características ou regras
- Alguns tipos de quadtree
 - Region Quadtree
 - Point Quadtree
 - PointRegion Quadtree (PR Quadtree)
 - Quadtree para polígonos

Region Quadtree

- Representa uma partição do espaço em duas dimensões, decompondo a região em quatro quadrantes iguais, subquadrantes e assim por diante.
- Cada nó folha contém dados correspondentes a uma sub-região específica.

- O É uma adaptação de uma árvore binária
- Usada para representar dados de pontos bidimensionais
- Compartilha todas as características da quadtree, mas é uma verdadeira árvore, pois o centro de uma subdivisão está sempre em um ponto

• É muito eficiente na comparação de pontos de dados bidimensionais e ordenados, geralmente operando em tempo O(log n)

- Ponto sobre a linha de um quadrante
- Regra adotada
 - Limites inferior e esquerdo de cada bloco são fechados: NÃO pertence se estiver sobre a mesma linha
 - Limites superior e direito s\u00e4o abertos:
 pertence se estiver sobre a mesma linha

O Insere coordenada (1,1)

- O Insere coordenada (1,1)
- O Insere coordenada (5,7)

Point Quadtree

- O Insere coordenada (1,1)
- O Insere coordenada (5,7)
- O Insere coordenada (4,3)

Point Quadtree

- O Insere coordenada (1,1)
- O Insere coordenada (5,7)
- O Insere coordenada (4,3)
- Insere coordenada (3,3)

Point Quadtree

- O Insere coordenada (1,1)
- O Insere coordenada (5,7)
- O Insere coordenada (4,3)
- O Insere coordenada (3,3)
- Insere coordenada (7,6)

PointRegion Quadtree (PR Quadtree)

- Semelhante a Region Quadtree
- Representa uma coleção de pontos em duas dimensões, decompondo a região em quadrantes iguais, até que nenhum nó folha contenha mais de um único ponto

Quadtree para polígonos

- Uma QuadTree pode também ser utilizada para preencher polígonos
 - Subdividir o espaço
 - Se o quadrante for homogêneo ou se o nível de detalhe foi alcançado, para a divisão
 - O Caso contrário, continue dividindo

Quadtree para polígonos

Quadtree para polígonos

 As divisões são representadas na árvore como nós caso sejam quadrantes heterogêneos e como folhas caso sejam quadrantes homogêneos

O Aplicações

- O Análise de imagens satélite e o processamento de dados de sensores em sistemas de monitoramento
- O Processamento de imagens, algoritmos de compressão de imagens
- O Medicina ecografias, ajudando a identificar tumores pela cor na imagem
- O Videochamadas ajuda na melhora da velocidade da transmissão do vídeo ao transmitir só o que foi alterado na imagem
- O Jogos
 - O Detectar se um tiro de um personagem atingiu o adversário
 - O Detecção de colisões.

O Aplicações

- O Decomposição de uma imagem em regiões de cores homogêneas
- Útil em aplicações como compactação ou segmentação de imagens

- Aplicações
 - O Se eu der um tiro em determinada direção, quais objetos do ambiente vou acertar?
 - Qual objeto vou acertar primeiro?
 - Qual dano vou causar no cenário?

Vantagens

- Muito útil em compactação de imagens
- O Pode ser utilizada no processo de rotacionar imagens
- O Tem estrutura mais enxuta e robusta que árvores binárias (tamanho menor, menos nodos a se percorrer para chegar ao que se procura)
- Inserções constantes não afetam a performance da quadtree (se não precisar de rebalanceamento

O Desvantagens

- O Se a imagem tiver muitas cores diferentes, a árvore pode ficar tão complexa que a imagem compactada ficará maior que a original
- Imagens complexas geram uso alto de CPU para geração de uma quadtree
- O Somente imagens em duas dimensões (2D) podem ser indexadas com quadtrees (a árvore R, por exemplo, trabalha com 4 dimensões)
- Desperdício de memória, vários ponteiros podem não ser usados

Octree

- A mesma ideia da QuadTree para polígonos, mas no 3D
 - O Cada região é dividida em 8 novas regiões

Octree

- O Aplicações
 - O Nível de detalhes de renderização
 - O Indexação espacial
 - O Detecção de colisão eficiente em três dimensões
 - O Seleção de frustum
 - Estimativa de conjuntos

