Problem Set 8

Claire Goeckner-Wald

November 21, 2016

Primal versus Dual Problem

1. [d] a quadratic programming problem with d+1 variables

In the original formulation of the hard-margin SVM problem, we aim to minimize $\frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$ with the constraint $y_n(\boldsymbol{w}^T x_n + b) \geq 1$ for n = 1, 2, ..., N. Because y_n and x_n are given as input data, our only variables are \boldsymbol{w} and b. Note that in this scenario, $\boldsymbol{w} = (w_1, w_2, ..., w_d)$, and $b = w_0$. Thus, we have d + 1 variables, \boldsymbol{w} contributing d variables and b contributing one variable.

Polynomial Kernels

- **2.** [a] 0 versus all See attached code.
- 3. [a] 1 versus all See attached code.
- 4. [c] 1800 See attached code.
- **5.** [d] Maximum C achieves the lowest E_{in} See attached code.
- **6.** [b] When C = 0.001, the number of support vectors is lower at Q = 5. See attached code.

Cross Validation

- 7. [b] C = 0.001 is selected most often. See attached code.
- 8. [c] 0.005 See attached code.

RBF Kernel

- 9. [e] $C = 10^6$ See attached code.
- 10. [c] C = 100See attached code.