Київський національний університет імені Тараса Шевченка

Факультет комп'ютерних наук та кібернетики

ЗВІТ ДО ЛАБОРАТОРНОЇ РОБОТИ №3

З дисципліни "Чисельні методи"

Тема: Розв'язування системи нелінійних алгебраїчних рівнянь

Виконав студент 3-го курсу групи ТТП-31 Рісенгін Владислав

1 Постановка задачі

Придумати систему яка складається з 3 нелінійних рівнянь. І вектором правої частини $\overline{f}=(0,0,0).$

Розв'язати її методом простої ітерації, і модифікованим методом Ньютона

2 Вступ

Метою цієї лабораторної роботи є вивчення методів розв'язування системи нелінійних алгебраїчних рівнянь, які дають можливість вирішення багатьох наукових та інженерних задач.

У процесі виконання роботи будуть досліджені та реалізовані методи простої ітерації, модифікований метод Нютона.

3 Деталі реалізації

Лабораторна робота виконана використовуючи мову програмування Python, а також бібліотеку numpy.

4 Теоретичний опис методів

Метод простої ітерації

Метод грунтується на зведенні системи нелінійних рівнянь до вигляду $\overline{x} = \overline{\Phi}(\overline{x})$, де $\overline{\Phi}(\overline{x}) = \overline{x} - C^{-1}\overline{F}(\overline{x})$, де C – невироджена матриця. Початкове наближення обирається довільне. Ітераційний процес має вигляд:

$$\overline{x}^{k+1} = \overline{\Phi}(\overline{x}^k). \tag{24}$$

Достатня умова збіжності. Нехай відображення $\overline{\Phi}(\overline{x})$ визначено і неперервно диференційоване в деякій області G і є стискаючим з коефіцієнтом $q; \overline{x}^0 \in G; ||\overline{\Phi}'(\overline{x}^0)|| \leqslant q, 0 < q < 1$, де

$$\Phi'(\overline{x}) = \left(\frac{\partial \varphi_i}{\partial x_j}\right)_{i,j=1}^n = \begin{pmatrix} \frac{\partial \varphi_1(x)}{\partial x_1} & \frac{\partial \varphi_1(x)}{\partial x_2} & \dots & \frac{\partial \varphi_1(x)}{\partial x_n} \\ \frac{\partial \varphi_2(x)}{\partial x_1} & \frac{\partial \varphi_2(x)}{\partial x_2} & \dots & \frac{\partial \varphi_2(x)}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial \varphi_n(x)}{\partial x_1} & \frac{\partial \varphi_n(x)}{\partial x_2} & \dots & \frac{\partial \varphi_n(x)}{\partial x_n} \end{pmatrix} - \frac{\partial \varphi_n(x)}{\partial x_n}$$

матриця Якобі, тоді ітераційний процес (24) збігається, при

чому швидкість збіжності лінійна:

$$||\overline{x}^k - \overline{x}^*|| \leqslant \frac{q^k}{1-q} ||\overline{x}^1 - \overline{x}^0||.$$

Умова припинення: $||\overline{x}^{k+1} - \overline{x}^k|| \leq \varepsilon$.

Модифікований метод Ньютона

Ітераційний процес модифікованого методу Ньютона має вигляд:

$$\overline{x}^{k+1} = \overline{x}^k - A_0^{-1} \overline{F}(\overline{x}^k).$$

Обирається початкове наближення x^0 , для якого обчислюється матриця Якобі: $A_0 = \overline{F'}(\overline{x_0})$.

Умова припинення методу: $||\overline{x}^{k+1} - \overline{x}^k|| \leqslant \varepsilon$.

5 Результати роботи програми

Для методу простої ітерації будемо шукати розв'язок з точністю $\epsilon=10^{-4}$ Для модифікованого методу Ньютона будемо шукати розв'язок з точністю $\epsilon=10^{-6}$

Як критерій зупинки використовується $||\overline{x}^{k+1} - \overline{x}^k|| < \epsilon$

$$\|\overline{x}\| = \max(|x_1|, |x_2|, \dots, |x_n|)$$

Система F для розв'язання:

$$\begin{cases}
3x_1 - \sin(x_2) - \frac{1}{e^{x_3}} = 0, \\
5x_2 + \cos(x_1) - x_3^2 = 0, \\
4x_3 + x_1^2 - x_2 = 0.
\end{cases} \tag{1}$$

5.1 Метод простої ітерації

Оберемо початкове наближення $\overline{x}_0 = [0.5, -0.5, -0.5]$

$$\overline{x}^{k+1} = \overline{x}^k - C(\overline{x}^k)\overline{F}(\overline{x}^k)$$

$$\begin{bmatrix} 0.1 + x_1/1000 & 0 & 0\\ 0 & 0.1 + x_2/1000 & 0\\ 0 & 0 & 0.1 + x_3/1000 \end{bmatrix}$$
 (2)

5.1: Матриця С

Iteration	x_new	Norm
0	[0.500000 -0.500000]	-
1	[0.466764 -0.313694 -0.375625]	0.186305535
2	[0.441349 -0.232297 -0.278896]	0.096728962
3	[0.417988 -0.198866 -0.210238]	0.068657772
4	[0.396142 -0.186428 -0.163599]	0.046639121
5	[0.376461 -0.182800 -0.132546]	0.031053100
6	[0.359454 -0.182641 -0.112007]	0.020538869
7	[0.345256 -0.183673 -0.098404]	0.014197534
8	[0.333716 -0.184965 -0.089339]	0.011539822
9	[0.324525 -0.186165 -0.083242]	0.009191488
10	[0.317315 -0.187168 -0.079097]	0.007209433
11	[0.311726 -0.187965 -0.076246]	0.005589078
12	[0.307432 -0.188580 -0.074263]	0.004294377
13	[0.304155 -0.189049 -0.072868]	0.003277065
14	[0.301667 -0.189403 -0.071878]	0.002487609
15	[0.299786 -0.189669 -0.071168]	0.001880689
16	[0.298369 -0.189867 -0.070655]	0.001417404
17	[0.297303 -0.190016 -0.070282]	0.001065672
18	[0.296504 -0.190127 -0.070010]	0.000799736
19	[0.295904 -0.190209 -0.069810]	0.000599307
20	[0.295456 -0.190271 -0.069663]	0.000448615
21	[0.295120 -0.190317 -0.069555]	0.000335530

```
      22
      | [ 0.294869 -0.190351 -0.069474]
      | 0.000250789

      23
      | [ 0.294682 -0.190377 -0.069414]
      | 0.000187356

      24
      | [ 0.294542 -0.190396 -0.069370]
      | 0.000139915

      25
      | [ 0.294438 -0.190410 -0.069337]
      | 0.000104456

      26
      | [ 0.294360 -0.190421 -0.069313]
      | 0.000077966
```

Збіжність досягнута після 26 ітерацій.

Розв'язок: $\overline{x}=(0.2943597515255351,-0.1904209166651033,-0.0693127420138911)^T$ Перевірка результату:

 $\overline{F}(\overline{x}) = (5.8013008962065626e - 04, 7.9252417547879227e - 05, -1.8238807228646015e - 04)^{T}$

5.2 Модифікований метод Ньютона

Оберемо початкове наближення $\overline{x}_0 = [0.5, -0.5, -0.5]$

Обчислимо Якобіант

$$\begin{bmatrix} 3 & -\cos(x_2) & e^{x_3} \\ -\sin(x_1) & 5 & -2x_3 \\ 2x_1 & -1 & 4 \end{bmatrix}$$
 (3)

5.2: Матриця A_k

Підставимо x_0 в A_0

$$\begin{bmatrix} 3 & -0.8775825618903728 & 0.6065306597126334 \\ -0.479425538604203 & 5 & 1 \\ 1 & -1 & 4 \end{bmatrix}$$
 (4)

5.3: Матриця A_0

Знайдемо обернену матрицю

$$\begin{bmatrix} 0.3639665587739987 & 0.0503279020647002 & -0.0677711947678076 \\ 0.0505688577462176 & 0.1974686584895931 & -0.0570350552848302 \\ -0.0783494252569453 & 0.0367851891062232 & 0.2526840348707444 \end{bmatrix}$$
 (5)

5.4: Матриця A_0^{-1}

$$\overline{x}^{k+1} = \overline{x}^k - A_0^{-1} \overline{F}(\overline{x}^k)$$

Iteration	x_new	Norm
0	[0.500000 -0.500000 -0.500000]	-
1	[0.389156 -0.218273 -0.089357]	0.410642762
2	[0.293005 -0.197881 -0.063293]	0.096150894
3	[0.293152 -0.189542 -0.068885]	0.008339017
4	[0.294157 -0.190335 -0.069320]	0.001004910
5	[0.294144 -0.190465 -0.069245]	0.000129223
6	[0.294130 -0.190453 -0.069240]	0.000013820
7	[0.294130 -0.190452 -0.069241]	0.000001613
8	[0.294131 -0.190452 -0.069241]	0.00000188

Збіжність досягнута після 8 ітерацій.

Розв'язок: $\overline{x} = (0.2941306455006774, -0.1904520207886972, -0.0692412336722941)^T$

Перевірка результату:

 $\overline{F}(\overline{x}) = (-8.319434918746538e - 09, 8.433744491404688e - 08, -7.727783385425013e - 08)^T$

6 Висновок

У результаті роботи обох методів було досягнуто розв'язку з необхідною точністю.

Метод простої ітерації виявився менш ефективним, потребуючи 26 ітерацій для досягнення збіжності.

Розв'язок: $\overline{x}=(0.2943597515255351,-0.1904209166651033,-0.0693127420138911)^T$ пройшов перевірку, показавши значення функцій, близькі до нуля, що свідчить про правильність розв'язку.

З іншого боку, модифікований метод Ньютона виявився значно швидшим, досягнувши збіжності вже за 8 ітерацій.

Розв'язок: $\overline{x}=(0.2941306455006774,-0.1904520207886972,-0.0692412336722941)^T$ також продемонстрував значення функцій близькі до 0, підтверджуючи його коректність.

Отже, можна стверджувати, що модифікований метод Ньютона є більш ефективним у даному випадку, забезпечуючи швидшу збіжність і високу точність розв'язку в порівнянні з методом простої ітерації.

Це підкреслює важливість вибору відповідних чисельних методів для розв'язання нелінійних систем рівнянь, залежно від їхніх властивостей та вимог до точності.