Линейная алгебра, Коллоквиум

Бобень Вячеслав @darkkeks, GitHub

Большую часть исходного кода предоставила Левина Александра. Благодарность выражается Левину Александру за видеозаписи лекций.

2019 - 2020

"К коллоку можете даже не готовиться".

— Роман Сергеевич Авдеев

Содержание

L	Опр	пределения и формулировки					
	1.1	Сумма двух матриц, произведение матрицы на скаляр					
	1.2	Транспонированная матрица					
	1.3	Произведение двух матриц					
	1.4	Диагональная матрица, умножение на диагональную матрицу слева и справа					
	1.5	Единичная матрица, её свойства					
	1.6	След квадратной матрицы и его поведение при сложении матриц, умножении матрицы на скаляр и					
транспонировании							
	1.7	След произведения двух матриц					
	1.8	Совместные и несовместные системы линейных уравнений					
	1.9	Эквивалентные системы линейных уравнений					
	1.10	Расширенная матрица системы линейных уравнений					
	1.11	Элементарные преобразования строк матрицы					
	1.12						
	1.13						
	1.14	Теорема о виде, к которому можно привести матрицу при помощи элементарных преобразований строк					
	1.15	Общее решение совместной системы линейных уравнений					
	1.16	Сколько может быть решений у системы линейных уравнений с действительными коэффициентами?					
	1.17	The state of the s					
	1.18	$\mathbf{v}_{\mathbf{r}}$					
	1.19						
		соответствующей ей однородной системы					
	1.20						
	1.21	Перестановки множества $\{1,2,\ldots,n\}$					
	1.22	Инверсия в перестановке. Знак перестановки. Чётные и нечётные перестановки					
	1.23	Произведение двух перестановок					
	1.24	Тождественная перестановка и её свойства. Обратная перестановка и её свойства					
	1.25	Теорема о знаке произведения двух перестановок					
	1.26	Транспозиция. Знак транспозиции					
	1.27	Общая формула для определителя квадратной матрицы произвольного порядка					
	1.28	Определители 2-го и 3-го порядка					
	1.29	Поведение определителя при разложении строки (столбца) в сумму двух					
	1.30	Поведение определителя при перестановке двух строк (столбцов)					
	1.31	Поведение определителя при прибавлении к строке (столбцу) другой, умноженной на скаляр					
	1.32						
	1.33	Определитель верхнетреугольной (нижнетреугольной) матрицы					
	1.34	Определитель диагональной матрицы. Определитель единичной матрицы					
	1.35						
	1.36	Определитель произведения лвух матриц					

	1.37	Дополнительный минор к элементу квадратной матрицы	9	
	1.38	Алгебраическое дополнение к элементу квадратной матрицы	9	
	1.39	Формула разложения определителя по строке (столбцу)	9	
1.40 Лемма о фальшивом разложении определителя				
	1.41	Невырожденная матрица	10	
	1.42	Присоединённая матрица	10	
	1.43	Критерий обратимости квадратной матрицы	10	
	1.44		10	
	1.45		10	
	1.46		$\frac{10}{10}$	
	1.47		10	
	1.48	Алгебраическая форма комплексного числа. Сложение, умножение и деление комплексных чисел в	LU	
	1.40		11	
	1 40		11	
			11	
	1.51	Модуль комплексного числа и его свойства: неотрицательность, неравенство треугольника, модуль про-		
	4 50		11	
			11	
	1.53	Тригонометрическая форма комплексного числа. Умножение и деление комплексных чисел в тригоно-		
			11	
	1.54		12	
	1.55	Извлечение корней из комплексных чисел	12	
	1.56	Основная теорема алгебры комплексных чисел	12	
	1.57	Теорема Безу и её следствие	12	
	1.58	Кратность корня многочлена	12	
2	Воп		12	
	2.1	Операции над матрицами	12	
		2.1.1 Дистрибутивность произведения матриц по отношению к сложению	12	
		2.1.2 Ассоциативность произведения матриц	12	
		2.1.3 Некоммутативность произведения матриц	13	
			13	
			13	
			13	
	2.2		14	
		2.2.1 Эквивалентность систем линейных уравнений, получаемых друг из друга путём элементарных		
			14	
		2.2.2 Теорема о приведении матрицы к ступенчатому и улучшенному ступенчатому виду при помощи		
			14	
		2.2.3 Реализация элементарных преобразований строк матрицы при помощи умножения на подходя-	LT	
			14	
			$\frac{14}{15}$	
			19	
		· · · · · · · · · · · · · · · · · · ·	1.0	
			16	
			16	
	0.0		16	
	2.3	· ·	17^{-1}	
			17	
			17	
			17	
			17	
		2.3.5 Знак транспозиции	17	
	2.4	• • • • • • • • • • • • • • • • • • • •	18	
			18	
			18	
			18	
			19	
			19	
			$\frac{19}{19}$	
			20	
			$\frac{20}{20}$	
			21	
			21	
		2.1.10 I work on post of the composition of the com	-1	

	2.4.11	Лемма о фальшивом разложении определителя	21			
	2.4.12	Единственность обратной матрицы	22			
	2.4.13	Определитель обратной матрицы	22			
	2.4.14	Критерий обратимости квадратной матрицы и явная формула для обратной матрицы	22			
	2.4.15	Матрица, обратная к произведению двух матриц	22			
	2.4.16	Формулы Крамера	23			
2.5	Комплексные числа					
	2.5.1	Построение поля комплексных чисел	23			
	2.5.2	Свойства комплексного сопряжения (для суммы и произведения)	24			
	2.5.3	Свойства модуля комплексного числа: неотрицательность, неравенство треугольника (алгебраи-				
		ческое доказательство), модуль произведения двух комплексных чисел	24			
	2.5.4	Умножение, деление и возведение в степень комплексных чисел в тригонометрической форме,				
		формула Муавра	25			
	2.5.5	Извлечение корней из комплексных чисел	25			

1 Определения и формулировки

1. Сумма двух матриц, произведение матрицы на скаляр

Для любых $A, B \in \mathrm{Mat}_{m \times n}$

• Сложение
$$A+B:=(a_{ij}+b_{ij})=\begin{pmatrix} a_{11}+b_{11}&a_{12}+b_{12}&\dots&a_{1n}+b_{1n}\\ a_{21}+b_{21}&a_{22}+b_{22}&\dots&a_{2n}+b_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}+b_{m1}&a_{m2}+b_{m2}&\dots&a_{mn}+b_{mn} \end{pmatrix}$$

• Умножение на скаляр
$$\lambda \in \mathbb{R} \implies \lambda A := (\lambda a_{ij}) = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}$$

2. Транспонированная матрица

$$A \in \operatorname{Mat}_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$A^{T} \in \operatorname{Mat}_{n \times m} := \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix} - mpancnohupogahhas матрица.$$

3. Произведение двух матриц

1) Частный случай: умножение строки на столбец той же длинны

$$\underbrace{(x_1,\ldots,x_n)}_{1\times n}\underbrace{\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}}_{n\times 1} = x_1\cdot y_1 + \cdots + x_n\cdot y_n$$

2) Общий случай:

A - матрица размера $m \times \underline{n}$

B - матрица размера $n \times p$

 $AB := C \in \mathrm{Mat}_{m \times p}$, где

$$C_{ij} = A_{(i)}B^{(j)} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}.$$

Количество строк матрицы A равно количеству столбцов матрицы B — условие согласованности матриц.

4. Диагональная матрица, умножение на диагональную матрицу слева и справа

Определение. Матрица $A \in M_n$ называется *диагональной* если все ее элементы вне главной диагонали равны нулю $(a_{ij} = 0 \text{ при } i \neq j)$

Лемма. $A = diag(a_1, \ldots, a_n) \in M_n \implies$

1.
$$\forall B \in \operatorname{Mat}_{n \times p} \implies AB = \begin{pmatrix} a_1 B_{(1)} \\ a_2 B_{(2)} \\ \vdots \\ a_n B_{(n)} \end{pmatrix}$$

2.
$$\forall B \in \operatorname{Mat}_{m \times n} \implies BA = \begin{pmatrix} a_1 B^{(1)} & a_2 B^{(2)} & \dots & a_n B^{(n)} \end{pmatrix}$$

5. Единичная матрица, её свойства

Определение. Матрица $E = E_n = diag(1, 1, ..., 1)$ называется единичной матрицей порядка n.

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

4

Свойства:

- 1. $EA = A \quad \forall A \in \operatorname{Mat}_{n \times p}$
- 2. $AE = A \quad \forall A \in \text{Mat}_{p \times n}$
- 3. $AE = EA = A \quad \forall A \in M_n$

6. След квадратной матрицы и его поведение при сложении матриц, умножении матрицы на скаляр и транспонировании

Определение. Следом матрицы $A \in M_n$ называется число $trA = a_{11} + a_{22} + \cdots + a_{nn} = \sum_{i=1}^n a_{ii}$

Свойства:

- 1. $\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B$
- 2. $\operatorname{tr} \lambda A = \lambda \operatorname{tr} A$
- 3. $\operatorname{tr} A^T = \operatorname{tr} A$

7. След произведения двух матриц

$$tr(AB) = tr(BA)$$

 $\forall A \in \mathrm{Mat}_{m \times n}, B \in \mathrm{Mat}_{n \times m}$

8. Совместные и несовместные системы линейных уравнений

Определение. СЛУ называется

- совместной, если у нее есть хотя бы одно решение
- несовместной, если решений нет

9. Эквивалентные системы линейных уравнений

Определение. Две системы уравнений от одних и тех же неизвестных называются *эквивалентными*, если они имеют одинаковые множества решений.

10. Расширенная матрица системы линейных уравнений

Для СЛУ

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

её расширенной матрицей называется матрица

$$(A \mid b) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

11. Элементарные преобразования строк матрицы

тип	СЛУ	расширенная матрица
1.	К i -му уравнению прибавить j -ое, умноженное на $\lambda \in \mathbb{R} \ (i \neq j)$	$\Theta_1(i,j,\lambda)$
2.	Переставить i -е и j -е уравнения $(i \neq j)$	$\Im_2(i,j)$
3.	Умножить <i>i</i> -ое уравнение на $\lambda \neq 0$	$\Im_3(i,\lambda)$

- 1. $\Theta_1(i,j,\lambda)$: к *i*-ой строке прибавить *j*-ую, умноженную на λ (покомпонентно), $a_{ik} \mapsto a_{ik} + \lambda a_{jk} \ \forall k = 1, \dots, n,$ $b_i \mapsto b_i + \lambda b_i$.
- 2. $\Theta_2(i,j)$: переставить і-ую и ј-ую строки.
- 3. $\Theta_3(i,\lambda)$: умножить і-ю строку на λ (покомпонентно).

 $\Theta_1,\Theta_2,\Theta_3$ называются элементарными преобразованиями строк расширенной матрицы.

12. Ступенчатый вид матрицы

Определение. Строка (a_1, a_2, \dots, a_n) называется *нулевой*, если $a_1 = a_2 = \dots = a_n = 0$ и *ненулевой* иначе $(\exists i : a_i \neq 0)$.

Определение. Ведущим элементом ненулевой строки называется первый её ненулевой элемент.

Определение. Матрица $M \in \operatorname{Mat}_{m \times n}$ называется $\operatorname{cmynehvamo\hat{u}}$, или имеет ступенчатый вид, если:

- 1. Номера ведущих элементов её ненулевых строк строго возрастают.
- 2. Все нулевые строки стоят в конце.

$$M = \begin{pmatrix} 0 & \dots & 0 & \diamond & * & * & * & * & * & * \\ 0 & \dots & 0 & 0 & \dots & \diamond & * & * & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & \diamond & * & * \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & \diamond & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & \diamond \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

где $\diamond \neq 0$, * – что угодно.

13. Улучшенный ступенчатый вид матрицы

Определение. М имеет улучшенный ступенчатый вид, если:

- 1. М имеет обычный ступенчатый вид.
- 2. Все ведущие элементы равны 1.
- 3. В одном столбце с любым ведущим элементом стоят только нули.

14. Теорема о виде, к которому можно привести матрицу при помощи элементарных преобразований строк

Теорема.

- 1) Всякую матрицу элементарными преобразованиями можно привести к ступенчатому виду.
- 2) Всякую ступенчатую матрицу элементарными преобразованиями строк можно привести к улучшенному ступенчатому виду.

Следствие. Всякую матрицу элементарными преобразованиями строк можно привести к **улучшенному** ступенчатому виду.

15. Общее решение совместной системы линейных уравнений

Определение. Общим решением исходной СЛУ называется выражение главных неизвестных через свободные.

16. Сколько может быть решений у системы линейных уравнений с действительными коэффициентами?

Определение. Всякая СЛУ с действительными коэффициентами:

- либо не имеет решений (несовместна)
- либо имеет ровно одно решение
- либо имеет бесконечно много решений

17. Однородная система линейных уравнений. Что можно сказать про её множество решений?

Определение. СЛУ называется однородной (ОСЛУ), если все её правые части равны 0. Расширенная матрица: $(A \mid 0)$

Очевидный факт. Всякая ОСЛУ имеет нулевое решение $(x_1 = x_2 = \cdots = x_n = 0)$.

Следствие. Всякая ОСЛУ либо имеет ровно 1 решение (нулевое), либо бесконечно много решений.

18. Свойство однородной системы линейных уравнений, у которой число неизвестных больше числа уравнений

Следствие. Всякая ОСЛУ, у которой число неизвестных больше числа уравнений, имеет ненулевое решение

19. Связь между множеством решений совместной системы линейных уравнений и множеством решений соответствующей ей однородной системы

Утверждение. Пусть Ax = b – совместная СЛУ.

 x_0 – частное решение Ax = b

 $S \subset \mathbb{R}^n$ – множество решений ОСЛУ Ax = 0

 $L \subset \mathbb{R}^n$ – множество решений Ax = b.

Тогда, $L = x_0 + S$, где $x_0 + S = \{x_0 + v \mid v \in S\}$

20. Обратная матрица

Определение. Матрица $B \in M_n$ называется *обратной*, к A, если AB = BA = E.

Обозначение: $B = A^{-1}$

21. Перестановки множества $\{1, 2, ..., n\}$

Определение. Перестановкой множества $\{1, 2, ..., n\}$ называется упорядоченный набор $(i_1, i_2, ..., i_n)$, в котором каждое число от 1 до n встречается ровно один раз.

Обозначение: P_n – множество всех перестановок множества $\{1, 2, ..., n\}$.

Например, $(4, 2, 1, 3) \in P_4$.

Определение. Подстановкой на множестве $\{1,2,\ldots,n\}$ называется всякое биективное (взаимно однозначное) отображение множества $\{1,2,\ldots,n\}$ в себя.

$$\sigma: \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}.$$

$$\begin{pmatrix} 1 & 2 & 3 & \dots & n \\ i_1 & i_2 & i_3 & \dots i_n \end{pmatrix}$$

22. Инверсия в перестановке. Знак перестановки. Чётные и нечётные перестановки

Пусть $\sigma \in S_n, i, j \in \{1, 2, ..., n\}, i \neq j$

Определение. Пара $\{i,j\}$ (неупорядоченная) образует *инверсию* в σ , если числа i-j и $\sigma(i)-\sigma(j)$ имеют разный знак (то есть либо i < j и $\sigma(i) > \sigma(j)$, либо i > j и $\sigma(i) < \sigma(j)$).

Определение. Знак подстановки σ – это число $\mathrm{sgn}(\sigma) = (-1)^{<\mathrm{число}}$ инверсий в $\sigma>$.

Определение. σ называется четной, если $\text{sgn}(\sigma) = 1$ (четное количество инверсий), и нечетной если $\text{sgn}(\sigma) = -1$ (нечетное количество инверсий).

23. Произведение двух перестановок

Определение. Произведением (или композицией) двух подстановок $\sigma, \rho \in S_n$ называется такая постановка $\sigma \rho \in S_n$, что $(\sigma \rho)(x) := \sigma(\rho(x)) \ \forall x \in \{1, \dots, n\}.$

24. Тождественная перестановка и её свойства. Обратная перестановка и её свойства

Определение. Подстановка $id = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix} \in S_n$ называется тождественной перестановкой.

Свойства:

 $\forall \sigma \in S_n \quad id \cdot \sigma = \sigma \cdot id = \sigma.$

$$sgn(id) = 1.$$

Определение. $\sigma \in S_n, \ \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \implies$ подстановка $\sigma^{-1} := \begin{pmatrix} \sigma(1) & \sigma(2) & \dots & \sigma(n) \\ 1 & 2 & \dots & n \end{pmatrix}$ называется обратной к σ перестановкой.

Свойства: $\sigma \cdot \sigma^{-1} = id = \sigma^{-1} \cdot \sigma$

25. Теорема о знаке произведения двух перестановок

Теорема. $\sigma, \rho \in S_n \implies \operatorname{sgn}(\sigma \rho) = \operatorname{sgn} \sigma \cdot \operatorname{sgn} \rho$.

26. Транспозиция. Знак транспозиции

Пусть
$$i, j \in \{1, 2, ..., n\}, i \neq j$$
.

Рассмотрим перестановку $au_{ij} \in S_n$, такую что

$$\tau_{ij}(i) = j.$$

$$\tau_{ij}(j) = i$$
.

$$\tau_{ij}(k) = k \ \forall k \neq i, j.$$

Определение. Подстановки вида au_{ij} называются mpancnosuuциями.

Замечание. au – траспозиция $\implies au^2 = id, au^{-1} = au$.

Лемма. $\tau \in S_n$ – транспозиция $\implies \operatorname{sgn}(\tau) = -1$.

27. Общая формула для определителя квадратной матрицы произвольного порядка

Определение. Определителем матрицы $A \in M_n$ называется число

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

 $(\sum_{\sigma \in S_n}$ – сумма по всем перестановкам)

28. Определители 2-го и 3-го порядка

$$\bullet \quad n = 2$$

$$S_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$$

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\bullet$$
 $n=3$

$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}$$

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

29. Поведение определителя при разложении строки (столбца) в сумму двух

Если
$$A_{(i)}=A_{(i)}^1+A_{(i)}^2$$
, то $\det A=\det \begin{pmatrix} A_{(1)}\\ \vdots\\ A_{(i)}^1\\ \vdots\\ A_{(n)} \end{pmatrix} + \det \begin{pmatrix} A_{(1)}\\ \vdots\\ A_{(i)}^2\\ \vdots\\ A_{(n)} \end{pmatrix}.$

Пример:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ d_1 & d_2 & d_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ d_1 & d_2 & d_3 \end{vmatrix} + \begin{vmatrix} a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{vmatrix}$$

Аналогично, если $A^{(j)}=A_1^{(j)}+A_2^{(j)},$ то $\det A=\det(A^{(1)}\cdots A_1^{(j)}\cdots A^{(n)})+\det(A^{(1)}\cdots A_2^{(j)}\cdots A^{(n)}).$

30. Поведение определителя при перестановке двух строк (столбцов)

Если в A поменять местами две строки или два столбца, то $\det A$ поменяет знак.

31. Поведение определителя при прибавлении к строке (столбцу) другой, умноженной на скаляр

Если к строке (столбцу) прибавить другую строку (столбец), умноженный на скаляр, то $\det A$ не изменится.

32. Верхнетреугольные и нижнетреугольные матрицы

Определение. Матрица называется верхнетреугольной, если $a_{ij} = 0$ при i > j, нижнетреугольной, если $a_{ij} = 0$ при i < j.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{mn} \end{pmatrix} - \text{верхнетреугольная}$$

$$\begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & a_{32} & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix}$$
 – нижнетреугольная

33. Определитель верхнетреугольной (нижнетреугольной) матрицы

Если A верхнетреугольная или нижнетреугольная, то $\det A = a_{11}a_{22}\dots a_{nn}$.

34. Определитель диагональной матрицы. Определитель единичной матрицы

Так как матрица диагональна, она верхнетреугольна. Тогда, её определитель равен произведению элементов на диагонали:

$$\det A = a_{11} \cdot a_{22} \cdot \dots \cdot a_{nn}.$$

Значит, определитель единичной матрицы – 1.

$$\det E = 1 \cdot 1 \cdot \dots \cdot 1 = 1.$$

35. Матрица с углом нулей и её определитель

Предложение.

$$A = \left(\begin{array}{c|c} P & Q \\ \hline 0 & R \end{array} \right) \text{ или } A = \left(\begin{array}{c|c} P & 0 \\ \hline Q & R \end{array} \right), \ P \in M_k, \ R \in M_{n-k} \implies \det A = \det P \det R.$$

Матрица с углом нулей:

$$\left(\begin{array}{c|cccc}
 * & * & * & * \\
\hline
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right)$$

НЕ матрица с углом нулей:

$$\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
\hline
0 & * & * & * \\
0 & * & * & *
\end{pmatrix}$$

36. Определитель произведения двух матриц

Теорема. $A, B \in M_n \implies \det(AB) = \det A \det B$.

37. Дополнительный минор к элементу квадратной матрицы

Определение. Дополнительным минором к элементу a_{ij} называется определитель $(n-1) \times (n-1)$ матрицы, получающейся из вычеркиванием i-ой строки и j-го столбца.

Обозначение: \overline{M}_{ij} .

38. Алгебраическое дополнение к элементу квадратной матрицы

Определение. Алгебраическим дополнением к элементу a_{ij} называется число $A_{ij} = (-1)^{i+j} \overline{M}_{ij}$.

9

39. Формула разложения определителя по строке (столбцу)

Теорема. При любом фиксированном $i \in \{1, 2, \dots, n\}$,

$$\det A = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{i=1}^{n} a_{ij}A_{ij}$$
 – разложение по i-й строке.

Аналогично, для любого фиксированного $j \in \{1, 2, ..., n\}$,

$$\det A = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij}$$
 – разложение по j-у столбиу.

40. Лемма о фальшивом разложении определителя

Лемма.

- 1. При любых $i,k \in \{1,2,\dots,n\}: i \neq k \implies \sum_{j=1}^n a_{ij}A_{kj} = 0.$
- 2. При любых $j, k \in \{1, 2, \dots, n\} : j \neq k \implies \sum_{i=1}^{n} a_{ij} A_{ik} = 0$

41. Невырожденная матрица

Определение. Матрица $A \in M_n$ называется невырожденной, если $\det A \neq 0$, и вырожденной иначе (то есть $\det A = 0$).

42. Присоединённая матрица

Определение. Присоединенной к A матрицей называется матрица $\widehat{A} = (A_{ij})^T.$

43. Критерий обратимости квадратной матрицы

Теорема. А обратима (то есть $\exists A^{-1}$) \iff А невырождена ($\det A \neq 0$).

44. Явная формула для обратной матрицы

$$A^{-1} = \frac{1}{\det A} \widehat{A}$$

45. Критерий обратимости произведения двух матриц. Матрица, обратная к произведению двух матриц

Следствие. $A, B \in M_n \implies AB$ обратима \iff обе A, B обратимы. При этом $(AB)^{-1} = B^{-1}A^{-1}$.

46. Формулы Крамера

Пусть есть СЛУ
$$Ax = b(\star), A \in M_n, x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in \mathbb{R}^n, b = \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix} \in \mathbb{R}^n.$$

Также,
$$\forall i \in \{1, 2, \dots, n\}, A_i = (A^{(1)}, \dots, A^{(i-1)}, b, A^{(i+1)}, \dots, A^{(n)}).$$

Теорема. Если $\det A \neq 0$, то СЛУ (*) имеет единственное решение и его можно найти по формулам:

$$x_i = \frac{\det A_i}{\det A}.$$

47. Что такое поле?

Определение. Полем называется множество F, на котором заданы две операции "сложение" $((a,b) \to a+b)$ и "умножение" $((a,b) \to a \cdot b)$, причем $\forall a,b,c \in F$ выполнены следующие условия:

- 1. a + b = b + a (коммутативность сложения)
- 2. (a + b) + c = a + (b + c) (ассоциативность сложения)
- 3. $\exists 0 \in F : 0 + a = a + 0 = a$ (нулевой элемент)
- 4. $\exists (-a) \in F : a + (-a) = (-a) + a = 0$ (противоположный элемент) \uparrow абелева группа \uparrow
- 5. a(b+c) = ab + ac (дистрибутивность)
- 6. ab = ba (коммутативность умножения)
- 7. (ab)c = a(bc) (ассоциативность умножения)
- 8. $\exists 1 \in F \setminus \{0\} : 1a = a1 = a$ (единица)
- 9. Если $a \neq 0$, $\exists a^{-1} \in F : aa^{-1} = a^{-1}a = 1$ (обратный элемент)

48. Алгебраическая форма комплексного числа. Сложение, умножение и деление комплексных чисел в алгебраической форме

Определение. Представление числа $z \in \mathbb{C}$ в виде a + bi, где $a, b \in \mathbb{R}$ называется его *алгебраической формой*. Число i называется мнимой единицей.

 $a =: Re(z) - \partial e \ddot{u} c m e u m e$ льная часть числа z.

b =: Im(z) – мнимая часть числа z.

Сложение $(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2) i$

Умножение $(a_1+b_1i)(a_2+b_2i)=(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i$

Деление
$$\frac{a_1+b_1i}{a_2+b_2i}=\frac{a_1a_2+b_1b_2}{a_2^2+b_2^2}+\frac{a_2b_1-a_1b_2}{a_2^2+b_2^2}i$$

49. Комплексное сопряжение и его свойства: сопряжение суммы и произведения двух комплексных чисел

Определение. Число $\overline{z} := a - bi$ называется комплексно сопряженным к числу z = a + bi.

Операция $z \to \overline{z}$ называется комплексным сопряжением.

Свойства комплексного сопряжения

- $\bullet \ \overline{\overline{z}} = z.$
- $\bullet \ \overline{z+w} = \overline{z} + \overline{w}.$
- $\bullet \ \overline{zw} = \overline{z} \cdot \overline{w}.$

50. Геометрическая модель комплексных чисел, интерпретация в ней сложения и сопряжения

Числу z=a+bi соответствует точка (или вектор) на плоскости \mathbb{R}^2 с координатами (a,b). Сумме z+w соответствует сумма соответствующих векторов. Сопряжение $z\to \overline{z}$ – это отражение z относительно действительной оси.

51. Модуль комплексного числа и его свойства: неотрицательность, неравенство треугольника, модуль произведения двух комплексных чисел

Определение. Число $|z| = \sqrt{a^2 + b^2}$ называется *модулем числа* $z = a + bi \in \mathbb{C}$ (то есть длина соответствующего вектора).

Свойства

- 1. $|z| \ge 0$, причем $|z| = 0 \iff z = 0$.
- 2. $|z + w| \leq |z| + |w|$ (неравенство треугольника).
- 3. $z\overline{z} = |z|^2$.
- 4. |zw| = |z||w|.

52. Аргумент комплексного числа

Определение. Аргументом числа $z=a+bi\in\mathbb{C}\setminus\{0\}$ называется число $\varphi\in\mathbb{R}$, такое что

$$\cos \varphi = \frac{a}{|z|} = \frac{a}{\sqrt{a^2 + b^2}}.$$

$$\sin \varphi = \frac{b}{|z|} = \frac{b}{\sqrt{a^2 + b^2}}.$$

В геометрических терминах, φ есть угол между осью Ox и соответствующим вектором.

53. Тригонометрическая форма комплексного числа. Умножение и деление комплексных чисел в тригонометрической форме

Определение. Представление числа $z \in \mathbb{C}$ в виде $z = |z|(\cos \varphi + i \sin \varphi)$ называется его тригонометрической формой.

Предложение. Пусть $z_1 = |z_1|(\cos \varphi_1 + i \sin \varphi_1)$ и $z_2 = |z_2|(\cos \varphi_2 + i \sin \varphi_2)$, тогда

$$z_1 z_2 = |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)).$$

Следствие. В условиях предложения, предположим, что $z_2 \neq 0$.

Тогда
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)).$$

54. Формула Муавра

Пусть $z = |z|(\cos \varphi + i \sin \varphi)$. Тогда $\forall n \in \mathbb{Z}$,

$$z^n = |z|^n(\cos(n\varphi) + i\sin(n\varphi))$$
 – формула Муавра.

55. Извлечение корней из комплексных чисел

Пусть $z \in \mathbb{C}$, $n \in \mathbb{N}$, $n \geqslant 2$.

Определение. Корнем степени n (или корнем n-й степени) из числа z называется всякое число $w \in \mathbb{C}$, что $w^n = z$.

$$\sqrt[n]{z}=\{w_0,w_1,\ldots,w_{n-1}\}$$
, где $w_k=\sqrt[n]{|z|}\left(\cos\frac{\varphi+2\pi k}{n}+i\sin\frac{\varphi+2\pi k}{n}\right)$

Замечание. Числа w_0, w_1, \dots, w_{n-1} лежат в вершинах правильного n-угольника с центром в начале координат.

56. Основная теорема алгебры комплексных чисел

Теорема. Всякий многочлен степени $\geqslant 1$ с комплексными коэффициентами имеет комплексный корень.

57. Теорема Безу и её следствие

Частный случай деления многочлена f(x) на многочлен g(x) с остатком: g(x) = x - c, $\deg g(x) = 1$:

$$f(x) = q(x)(x-c) + r(x)$$
, где либо $r(x) = 0$, либо $\deg r(x) < g(x) = 1$

Значит, $r(x) \equiv r = const \in F$.

Теорема. r = f(c).

Следствие. Элемент $c \in F$ является корнем многочлена $f(x) \in F[x]$ тогда и только тогда, когда f(x) делится на (x-c).

58. Кратность корня многочлена

Определение. *Кратностью* корня $c \in F$ многочлена f(x) называется наибольшее целое k такое что, f(x) делится на $(x-c)^k$.

2 Вопросы на доказательство

2.1 Операции над матрицами

1. Дистрибутивность произведения матриц по отношению к сложению

$$\underline{\underline{A(B+C)}} = \underline{\underline{AB+AC}}$$
 — левая дистрибутивность.

Доказательство.

$$x_{ij} = A_{(i)}(B+C)^{(j)} = \sum_{k=1}^{n} a_{ik}(b_{kj} + c_{kj})$$

$$= \sum_{k=1}^{n} (a_{ik}b_{kj} + a_{ik}c_{kj})$$

$$= \sum_{k=1}^{n} a_{ik}b_{kj} + \sum_{k=1}^{n} a_{ik}c_{kj}$$

$$= A_{(i)}B^{(j)} + A_{(i)}C^{(j)} = y_{ij}.$$

Правая дистрибутивность доказывается аналогично.

2. Ассоциативность произведения матриц

$$(AB)C = A(BC)$$

Доказательство. (AB)C = x, A(BC) = y

$$x_{ij} = \sum_{k=1}^{n} u_{ik} \cdot c_{kj} = \sum_{k=1}^{n} \left(\sum_{l=1}^{p} a_{il} b_{lk} \right) c_{kj} = \sum_{k=1}^{n} \sum_{l=1}^{p} \left(a_{il} b_{lk} c_{kj} \right)$$
$$= \sum_{l=1}^{p} \sum_{k=1}^{n} \left(a_{il} b_{lk} c_{kj} \right) = \sum_{l=1}^{p} a_{il} \sum_{k=1}^{n} \left(b_{lk} c_{kj} \right) = \sum_{l=1}^{p} a_{il} v_{lj} = y_{ij}.$$

3. Некоммутативность произведения матриц

Умножение матриц не коммутативно

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

4. Транспонирование произведения двух матриц

$$\underbrace{(AB)^T}_{x} = \underbrace{B^T A^T}_{y}$$

Доказательство. $x_{ij} = [AB]_{ji} = A_{(j)}B^{(i)} = B_{(i)}^T(A^T)^{(j)} = y_{ij}$

5. Умножение на диагональную матрицу слева и справа

Лемма. $A = diag(a_1, \ldots, a_n) \in M_n \implies$

1.
$$\forall B \in \operatorname{Mat}_{n \times p} \implies AB = \begin{pmatrix} a_1 B_{(1)} \\ a_2 B_{(2)} \\ \vdots \\ a_n B_{(n)} \end{pmatrix}$$

2.
$$\forall B \in \operatorname{Mat}_{m \times n} \implies BA = \begin{pmatrix} a_1 B^{(1)} & a_2 B^{(2)} & \dots & a_n B^{(n)} \end{pmatrix}$$

Доказательство.

1.
$$[AB]_{ij} = \begin{pmatrix} 0 & \dots & 0 & a_i & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_i b_{ij}$$

2.
$$[BA]_{ij} = \begin{pmatrix} b_{i1} & b_{i2} & \dots & b_{im} \end{pmatrix} \begin{pmatrix} \vdots \\ 0 \\ a_{j} \\ 0 \\ \vdots \end{pmatrix} = b_{ij}a_{j}$$

6. След произведения двух матриц

$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$

 $\forall A \in \mathrm{Mat}_{m \times n}, B \in \mathrm{Mat}_{n \times m}$

Доказательство. $AB = x \in M_m, BA = y \in M_n$

$$\operatorname{tr} x = \sum_{i=1}^{m} x_{ii} = \sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij}b_{ji})$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{m} (b_{ji}a_{ij}) = \sum_{j=1}^{n} y_{jj} = \operatorname{tr} y.$$

Системы линейных уравнений 2.2

1. Эквивалентность систем линейных уравнений, получаемых друг из друга путём элементарных преобразований строк расширенной матрицы

Лемма. Элементарные преобразования СЛУ не меняют множество решений

Доказательство. Пусть мы получили $\mathrm{CJY}(\star\star)$ из $\mathrm{CJY}(\star)$ путем применения элементарных преобразований.

- 1. Всякое решение системы (\star) является решением ($\star\star$).
- 2. (\star) получается из $(\star\star)$ путем элементарных преобразований.

$$\begin{array}{c|cccc} (\star) \rightarrow (\star\star) & (\star\star) \rightarrow (\star) \\ \hline \Theta_1(i,j,\lambda) & \Theta_1(i,j,-\lambda) \\ \Theta_2(i,j) & \Theta_2(i,j) \\ \Theta_3(i,\lambda) & \Theta_3(i,\frac{1}{\lambda}) \\ \end{array}$$

Следовательно, всякое решение (**) является решением (*) \implies множества решений совпадают.

2. Теорема о приведении матрицы к ступенчатому и улучшенному ступенчатому виду при помощи элементарных преобразований строк

Теорема.

- 1) Всякую матрицу элементарными преобразованиями можно привести к ступенчатому виду.
- 2) Всякую ступенчатую матрицу элементарными преобразованиями строк можно привести к улучшенному ступенчатому виду.

Следствие. Всякую матрицу элементарными преобразованиями строк можно привести к улучшенному ступенчатому виду.

Доказательство.

- 1. Алгоритм. Если М нулевая, то конец. Иначе:
- Шаг 1: Ищем первый ненулевой столбец, пусть j его номер.
- Шаг 2: Переставляем строки, если нужно, добиваемся того, что $a_{1j} \neq 0$
- Шаг 3: Зануляем элементы в этом столбце используя первую строку $\Theta_1(2,1,-\frac{a_{2j}}{a_{1j}}),\ldots,\Theta_1(m,1,-\frac{a_{mj}}{a_{1j}})$. В результате $a_{ij} = 0$ при i = 2, 3, ... m.

Дальше повторяем все шаги для подматрицы M' (без первой строки и столбцов $1, \ldots, j$).

- 2. Алгоритм. Пусть $a_{1j_1}, a_{2j_2}, \dots, a_{rj_r}$ ведущие элементы ступенчатой матрицы.
- Шаг 1: Выполняем $\mathfrak{I}_3(1,\frac{1}{a_{1j_1}}),\dots,\mathfrak{I}_3(r,\frac{1}{a_{rj_r}})$, в результате все ведущие элементы равны 1. Шаг 2: Выполняем $\mathfrak{I}_1(r-1,r,-a_{r-1,\,j_r}),\mathfrak{I}_1(r-2,r,-a_{r-2,\,j_r}),\dots,\mathfrak{I}_1(1,r,-a_{1,\,j_r})$. В результате все элементы над a_{ri_r} равны 0.

Аналогично обнуляем элементы над всеми остальными ведущими.

Итог: матрица имеет улучшенный ступенчатый вид.

3. Реализация элементарных преобразований строк матрицы при помощи умножения на подходящую матрицу

Всякое элементарное преобразование строк матрицы реализуется умножением как умножение слева на подходящую "элементарную матрицу".

• $\vartheta_1(i,j,\lambda)$: $A \mapsto U_1(i,j,\lambda)A$, где

$$U_1(i,j,\lambda) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & \lambda & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, на i-м j-м месте стоит λ , остальные элементы нули)

• $\Im_2(i,j)$: $A \mapsto U_2(i,j)A$, где

$$U_2(i,j) = \begin{pmatrix} i & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, кроме i-го и j-го столбца (на i-м j-м и j-м и j-м местах стоит 1, остальные нули)

• Э $_3(i,\lambda)$: $A \mapsto U_3(i,\lambda)A$, где

$$U_3(i,\lambda) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & \lambda & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, кроме i-го столбца, там λ , остальные элементы нули)

Элементарные преобразования столбцов — умножение на соответствующую матрицу справа.

4. Метод Гаусса решения систем линейных уравнений

Дана СЛУ с расширенной матрицей $(A \mid b)$.

Прямой ход метода Гаусса.

Выполняя элементарные преобразования строк в (A|b), приведем A к ступенчатому виду:

$$\begin{pmatrix} 0 & \dots & 0 & a_{ij_1} & * & \dots & \dots & b_1 \\ 0 & \dots & 0 & 0 & a_{2j_2} & * & \dots & b_2 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & 0 & 0 & a_{rj_r} & b_r \\ 0 & \dots & 0 & 0 & 0 & 0 & 0 & b_{r+1} \\ 0 & \dots & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Случай 1 $\exists i \geqslant r+1 : b_i \neq 0$ (в A есть нулевая строка с $b_i \neq 0$)

Тогда в новой СЛУ i-е уравнение $0 \cdot x_1 + \dots + 0 \cdot x_n = b_i$, т.е. $0 = b_i \implies$ СЛУ несовместна.

Случай 2 либо r = m, либо $b_i = 0 \quad \forall i \geqslant r + 1$

Выполняя элементарные преобразования строк приводим матрицу к улучшенному ступенчатому виду – обратный ход метода Гаусса

$$\begin{pmatrix} 0 & \dots & 0 & 1 & * & 0 & * & 0 & 0 & b_1 \\ 0 & \dots & 0 & 0 & \dots & 1 & * & 0 & 0 & b_2 \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 1 & 0 & b_3 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 1 & b_r \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Неизвестные $x_{j_1}, x_{j_2}, \ldots, x_{j_r}$ называются главными, а остальные свободными, где j_i – индексы столбцов с ведущими элементами.

Подслучай 2.1 r=n, т.е. все неизвестные – главные

$$\begin{pmatrix} 1 & 0 & \dots & 0 & b_1 \\ 0 & 1 & \dots & 0 & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & b_r \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} \leftrightarrow \begin{cases} x_1 = b_1 \\ x_2 = b_2 \\ \vdots \\ x_r = b_r \end{cases} -$$
единственное решение.

Подслучай 2.2 r < n, т.е. есть хотя бы одна свободная неизвестная

Перенесем в каждом уравнении все члены со свободными неизвестными в правую часть, получаем выражения всех главных неизвестных через свободные, эти выражения называется общим решением $ucxodhoù\ CЛУ$.

5. Связь между множеством решений совместной системы линейных уравнений и множеством решений соответствующей ей однородной системы

Утверждение. Пусть Ax = b – совместная СЛУ.

 x_0 – частное решение Ax = b

 $S \subset \mathbb{R}^n$ – множество решений ОСЛУ Ax = 0

 $L \subset \mathbb{R}^n$ – множество решений Ax = b.

Тогда,
$$L = x_0 + S$$
, где $x_0 + S = \{x_0 + v \mid v \in S\}$

Доказательство.

- 1. Пусть $u\in L$ (u решение Ax=b), положим $v=u-x_0$ Тогда, $Av=A(u-x_0)=Au-Ax_0=b-b=0\implies v\in S\implies L\subseteq x_0+S$
- 2. Пусть $v \in S$ (v решение Ax=0), положим $u=x_0+v$. Тогда, $Au=A(x_0+v)=Ax_0+Av=b+0=b \implies u \in L \implies x_0+S \subseteq L$

Значит, $x_0 + S = L$.

6. Общий метод решения матричных уравнений вида ${\bf A}{\bf X}={\bf B}$ и ${\bf X}{\bf A}={\bf B}$

Два типа матричных уравнений:

- 1. AX = B
 - А и В известны, Х неизвестная матрица
- $2 \quad XA = C$

А и С известны, Х – неизвестная матрица

Из второго типа получается первый транспонированием матриц: $XA = C \iff A^TX^T = B^T$, то есть достаточно уметь решать только уравнения первого типа.

 $\underset{n\times m}{A}\underset{n\times p}{X}=\underset{n\times p}{B}$ – это уравнение равносильно системе

$$\begin{cases} AX^{(1)} = B^{(1)} \\ AX^{(2)} = B^{(2)} \\ \vdots \\ AX^{(p)} = B^{(p)} \end{cases}$$

Этот набор СЛУ надо решать одновременно методом Гаусса.

Записываем матрицу $(A \mid B)$ и элементарными преобразованиями строк с ней приводим A к улучшенному ступенчатому виду.

Получаем $(A' \mid B')$, где A' имеет улучшенный ступенчатый вид.

Остается выписать общее решение для каждой СЛУ

$$\begin{cases} A'x^{(1)} = B'^{(1)} \\ A'x^{(2)} = B'^{(2)} \\ \vdots \\ A'x^{(p)} = B'^{(p)} \end{cases}$$

7. Вычисление обратной матрицы при помощи элементарных преобразований

Факты:

1. Если $\exists A^{-1}$, то она определена однозначно

Доказательство. Пусть B, B' – две матрицы, обратные к A. Тогда B = B(AB') = (BA)B' = B'.

2. Если AB = E для некоторой $B \in M_n$, то BA = E автоматически и тогда $B = A^{-1}$ Доказательство.

$$AB = E \implies \det A \det B = 1 \implies \det A \neq 0 \implies \exists A^{-1}.$$

 $BA = EBA = (A^{-1}A)BA = A^{-1}(AB)A = A^{-1}A = E$

Следствие. A^{-1} является решение матричного уравнения AX = E (если решение существует)

2.3 Перестановки

1. Ассоциативность произведения перестановок

Утверждение. Умножение подстановок ассоциативно, то есть $\sigma(\tau\pi) = (\sigma\tau)\pi \ \forall \sigma, \tau, \pi \in S_n$.

Доказательство. $\forall i \in \{1, 2, \dots, n\}$ имеем

$$[\sigma(\tau\pi)](i) = \sigma((\tau\pi)(i)) = \sigma(\tau(\pi(i)))$$

$$[(\sigma\tau)\pi](i) = (\sigma\tau)(\pi(i)) = \sigma(\tau(\pi(i)))$$

2. Некоммутативность произведения перестановок

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}, \, \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

$$\sigma \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\rho\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$$

3. Теорема о знаке произведения двух перестановок

Теорема. $\sigma, \rho \in S_n \implies \operatorname{sgn}(\sigma \rho) = \operatorname{sgn} \sigma \cdot \operatorname{sgn} \rho$.

$$\alpha(i,j) = \begin{cases} 1, & \text{если } \{i,j\} \text{ образует инверсию в } \rho \\ 0, & \text{иначе} \end{cases}$$

$$eta(i,j) = egin{cases} 1, & \text{если } \{
ho(i),
ho(j) \} \ \text{образует инверсию в } \sigma \ 0, & \text{иначе} \end{cases}$$

$$\gamma(i,j) = egin{cases} 1, & \text{если } \{i,j\} \ \text{образует инверсию в } \sigma \rho \ 0, & \text{иначе} \end{cases}$$

"число инверсий в ρ " $= \sum_{1 \leqslant i < j \leqslant n} \alpha(i,j)$

"число инверсий в $\sigma \rho$ " = $\sum_{1\leqslant i < j \leqslant n} \gamma(i,j)$

"число инверсий в σ " = $\sum_{1 \le i < j \le n} \beta(i,j)$ – Почему?

Когда $\{i,j\}$ пробегает все неупорядоченные пары в $\{1,2,\ldots,n\}$, пара $\{\rho(i),\rho(j)\}$ тоже пробегает все неупорядоченные пары в $\{1,2,\ldots,n\}$.

Зависимость $\gamma(i,j)$ от $\alpha(i,j)$ и $\beta(i,j)$:

Вывод: $\alpha(i,j) + \beta(i,j) \equiv \gamma(i,j) \pmod{2}$.

Тогда
$$\operatorname{sgn}(\sigma\rho) = (-1)^{\sum \gamma(i,j)} = (-1)^{\sum \beta(i,j) + \sum \alpha(i,j)} = (-1)^{\sum \alpha(i,j)} \cdot (-1)^{\sum \beta(i,j)} = \operatorname{sgn} \sigma \cdot \operatorname{sgn} \rho.$$

4. Знак обратной перестановки

Следствие. $\sigma \in S_n \implies \operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$.

Доказательство.
$$\sigma \sigma^{-1} = id \implies \operatorname{sgn}(\sigma \sigma^{-1}) = \operatorname{sgn}(id) \implies \operatorname{sgn} \sigma \operatorname{sgn} \sigma^{-1} \implies \operatorname{sgn} \sigma = \operatorname{sgn} \sigma^{-1}.$$

5. Знак транспозиции

Лемма. $\tau \in S_n$ – транспозиция $\implies \operatorname{sgn}(\tau) = -1$.

Доказательство. Пусть $\tau = \tau_{ij}$, можем считать, что i < j.

$$\tau := \begin{pmatrix} 1 & \dots & i-1 & i & i+1 & \dots & j-1 & j & j+1 & \dots & n \\ 1 & \dots & i-1 & j & i+1 & \dots & j-1 & i & j+1 & \dots & n \end{pmatrix}$$

Посчитаем инверсии:

 $\{i, j\}$

 $\{i,k\}$ при $i+1 \le k \le j-1$, всего = j-i-1

 $\{k, j\}$ при $i + 1 \le k \le j - 1$, всего = j - i - 1

Значит, всего инверсий $2(j-i-1)+1\equiv 1\pmod 2\implies \mathrm{sgn}(\tau)=-1.$

2.4 Определители

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}. \tag{*}$$

1. Определитель транспонированной матрицы

 $\det A = \det A^T.$

Доказательство. Пусть $B = A^T$, тогда $b_{ij} = a_{ji}$.

$$\det A^T = \det B = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) b_{1\sigma(1)} b_{2\sigma(2)} \dots b_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)^{-1}} a_{2\sigma(2)^{-1}} \dots a_{n\sigma(n)^{-1}} \quad /\!/ \text{ замена } \sigma^{-1} = p \text{ }/\!/$$

$$= \sum_{p \in S_n} a_{1p(1)} a_{2p(2)} \dots a_{np(n)} = \det A.$$

2. Поведение определителя при умножении строки (столбца) на скаляр

Если в A все элементы одной строки или одного столбца домножить на одно и то же число λ , то $\det A$ тоже умножается на λ .

$$\begin{vmatrix} * & * & \dots & * \\ \dots & \dots & \dots & \dots \\ \lambda * & \lambda * & \lambda * & \lambda * \\ \dots & \dots & \dots & \dots \\ * & * & \dots & * \end{vmatrix} = \lambda \begin{vmatrix} * & * & \dots & * \\ \dots & \dots & \dots & \dots \\ * & * & * & * \\ \dots & \dots & \dots & \dots \\ * & * & \dots & * \end{vmatrix}$$

Доказательство. В связи со свойством Т можно доказать только для строк.

 $A_{(i)} o \lambda A_{(i)} \implies a_{ij} o \lambda a_{ij} \; \forall j \implies$ в (*) каждое слагаемое умножается на $\lambda \implies \det A$ умножается на λ .

3. Поведение определителя при разложении строки (столбца) в сумму двух

Если
$$A_{(i)} = A_{(i)}^1 + A_{(i)}^2$$
, то $\det A = \det \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)}^1 \\ \vdots \\ A_{(n)} \end{pmatrix} + \det \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)}^2 \\ \vdots \\ A_{(n)} \end{pmatrix}$.

Пример:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ d_1 & d_2 & d_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ d_1 & d_2 & d_3 \end{vmatrix} + \begin{vmatrix} a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{vmatrix}$$

Аналогично, если $A^{(j)}=A_1^{(j)}+A_2^{(j)}$, то $\det A=\det(A^{(1)}\cdots A_1^{(j)}\cdots A^{(n)})+\det(A^{(1)}\cdots A_2^{(j)}\cdots A^{(n)}).$

Доказательство. В связи со свойством Т можно доказать только для строк.

Пусть
$$A^1_{(i)}=(a'_{i1}a'_{i2}\cdots a'_{in}),\,A^2_{(i)}=(a''_{i1}a''_{i2}\dots a''_{in})\implies a_{ij}=a'_{ij}+a''_{ij}.$$

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots (a'_{i\sigma(i)} + a''_{i\sigma(i)}) \dots a_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a'_{i\sigma(i)} \dots a_{n\sigma(n)} + \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a''_{i\sigma(i)} \dots a_{n\sigma(n)}$$

$$= \det A_1 + \det A_2.$$

4. Определитель матрицы с двумя одинаковыми строками (столбцами)

Если в A есть две одинаковые строки (столбца), то $\det A = 0$.

Доказательство. В связи со свойством Т можно доказать только для строк.

При перестановке двух одинаковых строк (столбцов):

- A не изменится \implies det A не изменится
- по свойству 3: $\det A$ меняет знак

Значит, $\det A = -\det A \implies \det A = 0$.

5. Поведение определителя при прибавлении к строке (столбцу) другой, умноженной на скаляр

Если к строке (столбцу) прибавить другую строку (столбец), умноженный на скаляр, то $\det A$ не изменится.

Доказательство. В связи со свойством Т можно доказать только для строк.

$$A \to A' = \begin{pmatrix} \dots \\ A_{(i)} + \lambda A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{pmatrix}$$

$$|A'| = \begin{vmatrix} \dots \\ A_{(i)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} + \begin{vmatrix} \dots \\ \lambda A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} = |A| + \lambda \begin{vmatrix} \dots \\ A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} = |A| + \lambda 0 = |A|.$$

6. Поведение определителя при перестановке двух строк (столбцов)

Если в A поменять местами две строки или два столбца, то $\det A$ поменяет знак.

Доказательство. В связи со свойством Т можно доказать только для строк.

Пусть $A=(a_{ij})\in M_n,\ B=(b_{ij})\in M_n$ – матрица, полученная из A перестановкой p-ой и q-ой строк.

Пусть $\tau = \tau_{pq}$.

$$b(i,j)=a_{ au(i)j}=egin{cases} a_{ij}, & ext{если } i
eq p,q \ a_{qj}, & ext{если } i=p \ a_{pj}, & ext{если } i=q \end{cases}$$

$$b_{ij} = a_{\tau(i)j} \ \forall i, j \implies a_{\tau(i)\sigma(i)} = a_{\tau(i),(\sigma\tau)(\tau(i))}$$

$$\det B = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) b_{1\sigma(1)} b_{2\sigma(2)} \dots b_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\tau(1),\sigma(1)} a_{\tau(2),\sigma(2)} \dots a_{\tau(n),\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\tau(1),(\sigma\tau)(\tau(1))} a_{\tau(2),(\sigma\tau)(\tau(2))} \dots a_{\tau(n),(\sigma\tau)(\tau(n))}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1,(\sigma\tau(1))} a_{2,(\sigma\tau(2))} \dots a_{n,(\sigma\tau(n))}$$

$$= -\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma\tau) a_{1,(\sigma\tau(1))} a_{2,(\sigma\tau(2))} \dots a_{n,(\sigma\tau(n))} // \operatorname{замена} \rho = \sigma\tau //$$

$$= -\sum_{\rho \in S_n} \operatorname{sgn}(p) a_{1,\rho(1)} a_{2,\rho(2)} \dots a_{n,\rho(n)}$$

$$= -\det A.$$

7. Определитель верхнетреугольной (нижнетреугольной) матрицы

Если A верхнетреугольная или нижнетреугольная, то $\det A = a_{11}a_{22}\dots a_{nn}$.

Доказательство. В связи со свойством Т можно доказать только для строк.

Выделим в (\star) слагаемые, которые могут быть отличны от нуля.

$$a_{1,\sigma(1)} \dots a_{n-1,\sigma(n-1)} a_{n,\sigma(n)} \neq 0$$

$$\implies a_{n\sigma(n)\neq 0} \implies \sigma(n) = n.$$

$$\implies a_{n-1,\sigma(n-1)} \neq 0 \implies \sigma(n-1) \in \{n-1,n\},$$

но n уже занято, значит $\sigma(n-1) = n-1$, и так далее.

Рассуждая аналогично, получаем $\sigma(k) = k \ \forall k \implies \sigma = id$ – это единственное слагаемое в (*), которое может быть не равно 0.

$$\operatorname{sgn}(id) = +1 \implies \det A = a_{11}a_{22}\dots a_{nn}.$$

8. Определитель с углом нулей

Предложение.

$$A = \left(\begin{array}{c|c} P & Q \\ \hline 0 & R \end{array}\right)$$
 или $A = \left(\begin{array}{c|c} P & 0 \\ \hline Q & R \end{array}\right), \ P \in M_k, \ R \in M_{n-k} \implies \det A = \det P \det R.$

Матрица с углом нулей:

$$\left(\begin{array}{c|cccc}
 & * & * & * \\
\hline
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right)$$

НЕ матрица с углом нулей:

$$\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
\hline
0 & * & * & * \\
0 & * & * & *
\end{pmatrix}$$

Доказательство. В силу свойства Т достаточно доказать для строк.

- 1. Элементарными преобразованиями строк в A, приведем $(P \mid Q)$ к виду $(P' \mid Q')$, в котором P' имеет ступенчатый вид. При этом $\det A$ и $\det P$ умножаются на один и тот же скаляр $\alpha \neq 0$.
- 2. Элементарными преобразованиями строк в A, приведем $(0 \mid R)$ к виду $(0 \mid R')$, в котором R' имеет ступенчатый вид. При этом $\det A$ и $\det R$ умножаются на один и тот же скаляр $\beta \neq 0$.

$$\begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} - \text{верхнетреугольная} \implies \det \begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} = \det P' \det R'.$$

$$\alpha\beta \det A = \det \begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} = \det P' \det R' = (\alpha \det P)(\beta \det R) = \alpha\beta \det P \det R.$$

9. Определитель произведения двух матриц

Теорема. $A, B \in M_n \implies \det(AB) = \det A \det B$.

$$A \leadsto A' = UA.$$

Такое же преобразование строк с AB.

$$AB \rightsquigarrow U(AB) = (UA)B = A'B.$$

Таким образом, сначала выполнив элементарное преобразование и домножив на матрицу B, либо домножив на B и затем применив элементарное преобразование, получим тот же результат.

Тогда, цепочка элементарных преобразований строк:

 $A \leadsto C$ – улучшенный ступенчатый вид.

Так же цепочка для AB:

$$AB \leadsto CB$$
.

При этом, $\det A$ и $\det AB$ умножились на один и тот же скаляр $\alpha \neq 0$

$$\det C = \alpha \det A$$
.

$$\det CB = \alpha \det AB$$
.

Случай 1 Последняя строка состоит из нулей:

$$C_{(n)} = (0 \dots 0)$$

$$\implies [CB]_{(n)} = C_{(n)}B = (0 \dots 0)$$

$$\implies \det CB = 0 = 0 \cdot \det B = \det C \det B.$$

Случай 2 Последняя строка ненулевая:

$$C_{(n)} \implies C = E,$$

так как матрица C имеет улучшенный ступенчатый вид. Значит,

$$\det CB = \det B = 1 \cdot \det B = \det C \cdot \det B.$$

Из этих двух случаем следует, что $\det CB = \det C \det B$.

Сокращая α получаем,

$$\det CB = \det C \det B \implies \det AB = \det A \det B.$$

10. Разложение определителя по строке (столбцу)

Теорема. При любом фиксированном $i \in \{1, 2, ..., n\}$,

$$\det A = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{j=1}^{n} a_{ij}A_{ij}$$
 – разложение по i-й строке.

Аналогично, для любого фиксированного $j \in \{1, 2, ..., n\}$,

$$\det A = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij}$$
 – разложение по j-у столбиу.

Доказательство. В силу свойства Т достаточно доказать для строк.

$$A_{(i)} = (a_{i1}, 0, \dots, 0) + (0, a_{i2}, 0, \dots, 0) + \dots + (0, \dots, 0, a_{in}).$$

Требуемое следует из свойства 2 определителей и леммы.

11. Лемма о фальшивом разложении определителя

Лемма.

- 1. При любых $i, k \in \{1, 2, \dots, n\} : i \neq k \implies \sum_{j=1}^{n} a_{ij} A_{kj} = 0.$
- 2. При любых $j,k \in \{1,2,\dots,n\}: j \neq k \implies \sum_{i=1}^n a_{ij}A_{ik} = 0$

Доказательство. В силу свойства Т достаточно доказать для строк.

Пусть $B \in M_n$ – матрица, полученная из A заменой k-й строки на i-ю.

$$B = \begin{pmatrix} A_{(1)} \\ \dots \\ A_{(i)} \\ \dots \\ A_{(i)} \\ \dots \\ A_{(n)} \end{pmatrix}$$

В B есть две одинаковые строки $\implies \det B = 0$.

Разлагая $\det B$ по k-й строке, получаем

$$\det B = \sum_{j=1}^{n} b_{kj} B_{kj} = \sum_{j=1}^{n} a_{ij} A_{kj}.$$

12. Единственность обратной матрицы

Пусть дана $A \in M_n$.

Определение. Матрица $B \in M_n$ называется обратной к A, если AB = BA = E.

Обозначение: A^{-1} .

Лемма. Если $\exists A^{-1}$, то она единственна.

Доказательство. Пусть $B, C \in M_n$ такие, что AB = BA = E и AC = CA = E. Тогда,

$$B = BE = B(AC) = (BA)C = EC = C \Rightarrow B = B'.$$

13. Определитель обратной матрицы

Лемма. Если $\exists A^{-1}$, то det $A \neq 0$.

Доказательство. $AA^{-1} = E \implies \det(AA^{-1}) = \det E \implies \det A \det(A^{-1}) = 1.$

14. Критерий обратимости квадратной матрицы и явная формула для обратной матрицы

Теорема. А обратима (то есть $\exists A^{-1}$) \iff А невырождена ($\det A \neq 0$), при этом $A^{-1} = \frac{1}{\det A} \widehat{A}$.

Доказательство. Утверждение в одну сторону следует из леммы 2.

Пусть $\det A \neq 0$. Покажем, что $\frac{1}{\det A} \widehat{A} = A^{-1}$. Для этого достаточно доказать, что $A\widehat{A} = \widehat{A}A = \det(A) \cdot E$. Для $X = A\widehat{A}$ имеем

$$x_{ij} = \sum_{k=1}^n a_{ik} [\widehat{A}]_{kj} = \sum_{k=1}^n a_{ik} A_{jk} = \begin{cases} \det\!A, & \text{при } i = j \\ 0, & \text{при } i \neq j \end{cases}.$$

Для $Y = \widehat{A}A$ имеем

$$y_{ij} = \sum_{k=1}^n [\widehat{A}]_{ik} a_{kj} = \sum_{k=1}^n A_{ki} a_{kj} = \begin{cases} \det A, & \text{при } i = j \\ 0, & \text{при } i \neq j \end{cases}.$$

15. Матрица, обратная к произведению двух матриц

Следствие. $A, B \in M_n \implies AB$ обратима \iff обе A, B обратимы. При этом $(AB)^{-1} = B^{-1}A^{-1}$.

Доказательство. Эквивалентность (\iff) следует из условия $\det AB = \det A \det B$.

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = E.$$

16. Формулы Крамера

Пусть есть СЛУ
$$Ax = b(\star), A \in M_n, x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in \mathbb{R}^n, b = \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix} \in \mathbb{R}^n.$$

Также, $\forall i \in \{1, 2, \dots, n\}, A_i = (A^{(1)}, \dots, A^{(i-1)}, b, A^{(i+1)}, \dots, A^{(n)}).$

Теорема. Если $\det A \neq 0$, то СЛУ (*) имеет единственное решение и его можно найти по формулам:

$$x_i = \frac{\det A_i}{\det A}.$$

 ${\it Доказательство}.\ \det A \neq 0 \implies \exists A^{-1} \implies (\star) \iff x = A^{-1}b$ – единственное решение.

$$b = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 A^{(1)} + x_2 A^{(2)} + \dots + x_n A^{(n)}.$$

$$\det A_i = \det \left(A^{(1)}, \dots, A^{(i-1)}, x_1 A^{(1)} + \dots + x_n A^{(n)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$= x_1 \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(1)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$+ x_2 \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(2)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$+ \dots +$$

$$+ x_n \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(n)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$= x_i \det A \quad /\!/ \text{ Все слагаемые кроме i-го равны 0.}$$

2.5 Комплексные числа

1. Построение поля комплексных чисел

Цель — построить поле $\mathbb C$ комплексных чисел.

Неформально, \mathbb{C} – это наименьшее поле со следующими свойставми:

- 1 $\mathbb{C} \supset \mathbb{R}$
- 2. Многочлен $x^2 + 1$ имеет корень, то есть $\exists i : i^2 = -1$.

Формальная конструкция поля $\mathbb C$

$$\mathbb{C} = \mathbb{R}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}.$$

- $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$
- $(a_1,b_1)(a_2,b_2) = (a_1a_2 b_1b_2, a_1b_2 + a_2b_1)$

Неформально, каждой такой паре (a, b) соответствует комплексное число a + bi:

- $(a,b) \iff a+bi$
- $(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2)i$
- $(a_1 + b_1 i)(a_2 + b_2 i) = a_1 a_2 + a_1 b_2 i + a_2 b_1 i + b_1 b_2 \underbrace{i^2}_{=-1} = (a_1 a_2 b_1 b_2) + (a_1 b_2 + a_2 b_1) i$

Проверка аксиом

- 1, 2. Очевидны.
 - 3. 0 = (0, 0).
 - 4. -(a,b) = (-a,-b).
 - 5. Дистрибутивность

$$(a_1 + b_1 i)((a_2 + b_2 i) + (a_3 + b_3 i)) = (a_1 + b_1 i)((a_2 + a_3) + (b_2 + b_3)i)$$

$$= (a_1(a_2 + a_3) - b_1(b_2 + b_3)) + (a_1(b_2 + b_3) + b_1(a_2 + a_3))i$$

$$= a_1 a_2 + a_1 a_3 - b_1 b_2 - b_1 b_3 + (a_1 b_2 + a_1 b_3 + b_1 a_2 + b_1 a_3)i$$

$$= ((a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2)i) + ((a_1 a_3 + b_1 b_3) + (b_1 a_3 + a_1 b_3)i)$$

$$= (a_1 + b_1 i)(a_2 + b_2 i) + (a_1 + b_1 i)(a_3 + b_3 i)$$

6. Коммутативность умножения – из явного вида формулы.

$$(a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$

7. Ассоциативность умножения

$$(a_1, b_1)(a_2, b_2)(a_3, b_3) = (a_1a_2 - b_1b_2, a_1b_2 + a_2b_1)(a_3, b_3)$$

$$= (a_1a_2a_3 - b_1b_2a_3 - a_1b_2b_3 - b_1a_2b_3, a_1a_2b_3 - b_1b_2b_3 + a_1b_2a_3 + b_1a_2a_3)$$

$$= (a_1, b_1)(a_2a_3 - b_2b_3, a_2b_3 + b_2a_3)$$

$$= (a_1, b_1)(a_2, b_2)(a_3, b_3).$$

- 8. 1 = (1,0).
- 9. $(a,b) \neq 0 \implies a^2 + b^2 \neq 0$. Тогда, $(a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right)$. $(a,b) \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right) = \left(\frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2}, \frac{-ab}{a^2 + b^2} + \frac{ba}{a^2 + b^2}\right) = (1,0).$

Итак, \mathbb{C} – поле.

Проверка свойств

1. $a \in \mathbb{R} \leftrightarrow (a,0) \in \mathbb{C}$. $a + b \leftrightarrow (a,0) + (b,0) = (a+b,0)$. $ab \leftrightarrow (a,0)(b,0) = (ab,0)$

Значит, \mathbb{R} отождествляется в \mathbb{C} .

2.
$$i = (0,1) \implies i^2 = (0,1)(0,1) = (-1,0) = -1$$
.

- 2. Свойства комплексного сопряжения (для суммы и произведения)
 - $\bullet \ \overline{\overline{z}} = z.$
 - $\bullet \ \overline{z+w} = \overline{z} + \overline{w}.$
 - $\bullet \ \overline{zw} = \overline{z} \cdot \overline{w}.$

Доказательство.

- \bullet $\overline{\overline{z}} = \overline{\overline{a + bi}} = \overline{a bi} = a + bi = z.$
- $\bullet \ \overline{z+w} = \overline{(a_1+b_1i)+(a_2+b_2i)} = \overline{(a_1+a_2)+(b_1+b_2)i} = (a_1+a_2)-(b_1+b_2)i = (a_1-b_1i)+(a_2-b_2i) = \overline{z}+\overline{w}.$
- $\overline{z} \cdot \overline{w} = (a_1 b_1 i)(a_2 b_2 i) = (a_1 a_2 b_1 b_2) (a_1 b_2 + a_2 b_1)i = \overline{zw}.$
- 3. Свойства модуля комплексного числа: неотрицательность, неравенство треугольника (алгебраическое доказательство), модуль произведения двух комплексных чисел

Определение. Число $|z| = \sqrt{a^2 + b^2}$ называется *модулем числа* $z = a + bi \in \mathbb{C}$ (то есть длина соответствующего вектора).

Свойства

- 1. $|z| \ge 0$, причем $|z| = 0 \iff z = 0$.
- 2. $|z + w| \le |z| + |w|$ (неравенство треугольника).

3.
$$z\overline{z} = |z|^2$$
.
 $z\overline{z} = (a+bi)(a-bi) = a^2 - b^2i = a^2 + b^2 = |z|^2$

4.
$$|zw| = |z||w|$$

 $|zw|^2 = (zw) \cdot (\overline{zw}) = z \cdot w \cdot \overline{z} \cdot \overline{w} = |z|^2 |w|^2$

4. Умножение, деление и возведение в степень комплексных чисел в тригонометрической форме, формула Муавра

Предложение. Пусть $z_1=|z_1|(\cos\varphi_1+i\sin\varphi_1)$ и $z_2=|z_2|(\cos\varphi_2+i\sin\varphi_2)$, тогда

$$z_1 z_2 = |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)).$$

Доказательство.

$$z_1 z_2 = |z_1||z_2|(\cos\varphi_1 + i\sin\varphi_1)(\cos\varphi_2 + i\sin\varphi_2)$$

$$= |z_1||z_2|((\cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2) + i(\cos\varphi_1\sin\varphi_2 + \sin\varphi_1\cos\varphi_2))$$

$$= |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)).$$

Следствие. В условиях предложения, предположим, что $z_2 \neq 0$.

Тогда
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)).$$

Возведение в степень комплексных чисел в тригонометрической форме, формула Муавра

Следствие. Пусть $z = |z|(\cos \varphi + i \sin \varphi)$. Тогда $\forall n \in \mathbb{Z}$,

$$z^n = |z|^n(\cos(n\varphi) + i\sin(n\varphi))$$
 – формула Муавра.

5. Извлечение корней из комплексных чисел

Пусть $z \in \mathbb{C}$, $n \in \mathbb{N}$, $n \geqslant 2$.

Определение. Корнем степени n (или корнем n-й степени) из числа z называется всякое число $w \in \mathbb{C}$, что $w^n = z$

Положим $\sqrt[n]{z} := \{ w \in \mathbb{C} \mid w^n = z \}.$

Опишем множество $\sqrt[n]{z}$.

$$w = \sqrt[n]{z} \implies w^n = z \implies |w|^n = |z|.$$

Если
$$z=0$$
, то $|z|=0 \implies |w|=0 \implies w=0 \implies \sqrt[n]{0}=\{0\}.$

Далее считаем, что $z \neq 0$.

$$z = |z|(\cos\varphi + i\sin\varphi)$$

$$w = |w|(\cos \psi + i \sin \psi)$$

$$z = w^n = |w|^n(\cos(n\psi) + i\sin(n\psi))$$

Отсюда,

$$z=w^n\iff egin{cases} |z|=|w|^n \ n\psi=arphi+2\pi k,$$
 для некоторого $k\in\mathbb{Z} \end{cases}\iff egin{cases} |w|=\sqrt[n]{|z|} \ \psi=rac{arphi+2\pi k}{n},$ для некоторого $k\in\mathbb{Z}$

С точностью до $2\pi l, l \in \mathbb{Z}$, получается ровно n различных значений для ψ , при $k = 0, 1, \ldots, n-1$.

В результате
$$\sqrt[n]{z} = \{w_0, w_1, \dots, w_{n-1}\}$$
, где $w_k = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n}\right)$

Замечание. Числа w_0, w_1, \dots, w_{n-1} лежат в вершинах правильного n-угольника с центром в начале координат.