Two-Column Proof

Jonathan R. Bacolod

Sauyo High School

What is a Proof?

Proof: a form of logical reasoning in which each statement is organized and backed up by given information, definitions, axioms, postulates, or theorems

What is a Direct Proof?

What is a Direct Proof?

 is a sequence of statements which are either givens or deductions from previous statements, and whose last statement is the conclusion to be proved

What is a Direct Proof?

- is a sequence of statements which are either givens or deductions from previous statements, and whose last statement is the conclusion to be proved
- can be done in three ways: paragraph form, flowchart form, and two column form

How to Write a Direct Proof?

How to Write a Direct Proof?

1. Take the original conditional statement.

How to Write a Direct Proof?

- 1. Take the original conditional statement.
- 2. Assume that the hypothesis is true, and show that the conclusion is true.

How to Write a Two-Column Proof?

How to Write a Two-Column Proof?

 Write all the series of statements in the first column of the table in a logical order starting with the given statements and ends it with the statement that needs to be proven.

How to Write a Two-Column Proof?

- Write all the series of statements in the first column of the table in a logical order starting with the given statements and ends it with the statement that needs to be proven.
- 2. In a step-by-step manner, write all the reasons for each statement.

Given: $m\angle 1 + m\angle 2 = m\angle 2 + m\angle 3$

Prove: $m \angle 1 = m \angle 3$

Statements	Reasons
------------	---------

Given: $m\angle 1 + m\angle 2 = m\angle 2 + m\angle 3$

Prove: $m \angle 1 = m \angle 3$

Statements	Reasons
$1. m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$	1. Given

Given: $m\angle 1 + m\angle 2 = m\angle 2 + m\angle 3$

Prove: $m \angle 1 = m \angle 3$

Statements	Reasons
$1. \ m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$	1. Given
2. $m \angle 1 + m \angle 2 - m \angle 2 =$	2. Subtraction
<i>m</i> ∠2 − <i>m</i> ∠2 + <i>m</i> ∠3	Property

Given: $m\angle 1 + m\angle 2 = m\angle 2 + m\angle 3$

Prove: $m \angle 1 = m \angle 3$

Statements	Reasons
1. $m\angle 1 + m\angle 2 = m\angle 2 + m\angle 3$	1. Given
2. $m \angle 1 + m \angle 2 - m \angle 2 =$	2. Subtraction
$m\angle 2 - m\angle 2 + m\angle 3$	Property
$3. \ m \angle 1 = m \angle 3$	3. Simplification

Given: $m \angle 1 + m \angle 2 = 90^{\circ}$

 $m\angle 3 + m\angle 2 = 90^{\circ}$

Prove: $m\angle 1 = m\angle 3$

Statements	Reasons

Given: $m \angle 1 + m \angle 2 = 90^{\circ}$

 $m\angle 3 + m\angle 2 = 90^{\circ}$

Prove: $m \angle 1 = m \angle 3$

Statements	Reasons
1. $m\angle 1 + m\angle 2 = 90^{\circ}$	1. Given

Given: $m \angle 1 + m \angle 2 = 90^{\circ}$

 $m\angle 3 + m\angle 2 = 90^{\circ}$

Prove: $m\angle 1 = m\angle 3$

Statements	Reasons
1. $m\angle 1 + m\angle 2 = 90^{\circ}$	1. Given
2. $m\angle 3 + m\angle 2 = 90^{\circ}$	2. Given

Given: $m \angle 1 + m \angle 2 = 90^{\circ}$

 $m\angle 3 + m\angle 2 = 90^{\circ}$

Prove: $m \angle 1 = m \angle 3$

Statements	Reasons
1. $m\angle 1 + m\angle 2 = 90^{\circ}$	1. Given
2. $m\angle 3 + m\angle 2 = 90^{\circ}$	2. Given
$3. \ m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	3. Transitive Property

Given: $m \angle 1 + m \angle 2 = 90^{\circ}$

 $m\angle 3 + m\angle 2 = 90^{\circ}$

Prove: $m \angle 1 = m \angle 3$

Statements	Reasons
1. $m\angle 1 + m\angle 2 = 90^{\circ}$	1. Given
2. $m\angle 3 + m\angle 2 = 90^{\circ}$	2. Given
3. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	3. Transitive Property
4. $m \angle 1 + m \angle 2 - m \angle 2 =$	4. Subtraction
<i>m</i> ∠3 + <i>m</i> ∠2 − <i>m</i> ∠2	Property

Given: $m \angle 1 + m \angle 2 = 90^{\circ}$

 $m\angle 3 + m\angle 2 = 90^{\circ}$

Prove: $m \angle 1 = m \angle 3$

Statements	Reasons
1. $m\angle 1 + m\angle 2 = 90^{\circ}$	1. Given
2. $m\angle 3 + m\angle 2 = 90^{\circ}$	2. Given
3. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	3. Transitive Property
4. $m \angle 1 + m \angle 2 - m \angle 2 =$	4. Subtraction
$m\angle 3 + m\angle 2 - m\angle 2$	Property
5. $m\angle 1 = m\angle 3$	5. Simplification

Given: $\angle x$ and $\angle y$ are vertical angles

Prove: $\angle x \cong \angle y$ (Vertical Angles Thm.)

Statements Reasons

Given: $\angle x$ and $\angle y$ are vertical angles

Prove: $\angle x \cong \angle y$ (Vertical Angles Thm.)

Statements	Reasons
1. $m\angle x + m\angle b = 180^{\circ}$	1. Linear Pair Post.

Given: $\angle x$ and $\angle y$ are vertical angles

Prove: $\angle x \cong \angle y$ (Vertical Angles Thm.)

Statements	Reasons
$1. \ m \angle x + m \angle b = 180^{\circ}$	1. Linear Pair Post.
$2. m \angle y + m \angle b = 180^{\circ}$	2. Linear Pair Post.

Given: $\angle x$ and $\angle y$ are vertical angles

Prove: $\angle x \cong \angle y$ (Vertical Angles Thm.)

Statements	Reasons
1. $m\angle x + m\angle b = 180^{\circ}$	1. Linear Pair Post.
$2. m \angle y + m \angle b = 180^{\circ}$	2. Linear Pair Post.
3. $m\angle x + m\angle b = m\angle y + m\angle b$	3. Transitive Property

Given: $\angle x$ and $\angle y$ are vertical angles

Prove: $\angle x \cong \angle y$ (Vertical Angles Thm.)

Statements	Reasons
1. $m\angle x + m\angle b = 180^{\circ}$	1. Linear Pair Post.
$2. m \angle y + m \angle b = 180^{\circ}$	2. Linear Pair Post.
3. $m\angle x + m\angle b = m\angle y + m\angle b$	3. Transitive Property
4. $m\angle x + m\angle b - m\angle b =$	4. Subtraction
$m \angle y + m \angle b - m \angle b$	Property

Given: $\angle x$ and $\angle y$ are vertical angles

Prove: $\angle x \cong \angle y$ (Vertical Angles Thm.)

Statements	Reasons
$1. \ m \angle x + m \angle b = 180^{\circ}$	1. Linear Pair Post.
$2. m \angle y + m \angle b = 180^{\circ}$	2. Linear Pair Post.
3. $m\angle x + m\angle b = m\angle y + m\angle b$	3. Transitive Property
4. $m\angle x + m\angle b - m\angle b =$	4. Subtraction
$m \angle y + m \angle b - m \angle b$	Property
5. $m\angle x = m\angle y$	5. Simplification

Given: $\angle x$ and $\angle y$ are vertical angles

Prove: $\angle x \cong \angle y$ (Vertical Angles Thm.)

Statements	Reasons
1. $m\angle x + m\angle b = 180^{\circ}$	1. Linear Pair Post.
$2. m \angle y + m \angle b = 180^{\circ}$	2. Linear Pair Post.
3. $m\angle x + m\angle b = m\angle y + m\angle b$	3. Transitive Property
4. $m\angle x + m\angle b - m\angle b =$	4. Subtraction
$m \angle y + m \angle b - m \angle b$	Property
5. $m\angle x = m\angle y$	5. Simplification
6. ∠ <i>x</i> ≅ ∠ <i>y</i>	6. Definition of
$0. \ \angle \lambda = \angle y$	Congruent Angles

Given: 4(2x+3)+4=8

Prove: x = -1

|--|

Given: 4(2x+3)+4=8

Prove: x = -1

Statements	Reasons
1. $4(2x+3)+4=8$	1. Given

Given: 4(2x+3)+4=8

Prove: x = -1

Statements	Reasons
1. $4(2x+3)+4=8$	1. Given
$2. \ 8x + 12 + 4 = 8$	2. Distributive Prop.

Given: 4(2x+3)+4=8

Prove: x = -1

Statements	Reasons
1. $4(2x+3)+4=8$	1. Given
2. 8x + 12 + 4 = 8	2. Distributive Prop.
3. $8x + 16 = 8$	3. Simplification

Given: 4(2x+3)+4=8

Prove: x = -1

Statements	Reasons
1. $4(2x+3)+4=8$	1. Given
2. 8x + 12 + 4 = 8	2. Distributive Prop.
3. $8x + 16 = 8$	3. Simplification
4. 8x + 16 - 16 = 8 - 16	4. Subtraction Prop.

Given: 4(2x+3)+4=8

Prove: x = -1

Statements	Reasons
1. $4(2x+3)+4=8$	1. Given
$2.\ 8x + 12 + 4 = 8$	2. Distributive Prop.
3. $8x + 16 = 8$	3. Simplification
$4.\ 8x + 16 - 16 = 8 - 16$	4. Subtraction Prop.
5. $8x = -8$	5. Simplification

Given: 4(2x+3)+4=8

Prove: x = -1

Statements	Reasons
1. $4(2x+3)+4=8$	1. Given
$2. \ 8x + 12 + 4 = 8$	2. Distributive Prop.
3. $8x + 16 = 8$	3. Simplification
$4.\ 8x + 16 - 16 = 8 - 16$	4. Subtraction Prop.
5. $8x = -8$	5. Simplification
6. $\frac{8x}{8} = \frac{-8}{8}$	6. Division Prop.

Given: 4(2x+3)+4=8

Prove: x = -1

Statements	Reasons
1. $4(2x+3)+4=8$	1. Given
$2. \ 8x + 12 + 4 = 8$	2. Distributive Prop.
3. $8x + 16 = 8$	3. Simplification
$4.\ 8x + 16 - 16 = 8 - 16$	4. Subtraction Prop.
5. $8x = -8$	5. Simplification
6. $\frac{8x}{8} = \frac{-8}{8}$	6. Division Prop.
7. $x = -1$	7. Simplification

Thank you for watching.