100

60

Course: BTech Semester: 5

3

Prerequisite: Data structures, Fundamental of programming

0

0

3

0

Rationale: Analyze the asymptotic performance of algorithms. Write rigorous correctness proofs for algorithms. Demonstrate a familiarity with major algorithms and data structures. Apply important algorithmic design paradigms and methods of analysis. Synthesize efficient algorithms in common engineering design situations.

Teaching and Examination Scheme Teaching Scheme Examination Scheme Internal Marks External Marks Total Tutorial Lecture Lab Credit Hrs/Week Hrs/Week Hrs/Week | Hrs/Week Т CE Ρ Т Ρ

20

20 SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cour	Course Content W - Weightage (%) , T - Teaching h				
Sr.	Topics		w	Т	
1	Algorithm: I Techniques Asymptotic Case, Worst Analyzing co method, rec	n and Analysis of Algorithms: Definition, Properties, Types of Algorithms, Writing an AlgoritAlgorithm Analysis: Parameters, Design of Algorithms Analysis: Big Oh, Big Omega & Big Theta Notations, Lower Bound, Upper Bound and Tight Bound, Best Case, Average Case Introl statement, Loop invariant and the correctness of the algorithm, Recurrences- substitution ursion tree method, master method. Iniques with analysis: Bubble Sort, Selection Sort, Insertion sort.	20	20 10	
2	Structure of	vide & Conquer Algorithms: ucture of divide-and-conquer algorithms, examples: Binary search, quick sort, Merge sort, Strassen ultiplication; Max-Min problem		6	
3	- Minimum S	orithms: I, Elements of Greedy Strategy Spanning Tree: Kruskal's & Prim's Algorithm, Dijkstra's Algorithm, Knapsack Problem, Activity Selection Iffman Codes	20	8	
4		ogramming: Optimality, 0/1 Knapsack Problem, Making Change problem, Chain matrix multiplication, Longest bsequence, All pair shortest paths: Warshall's and Floyd's algorithms	20	8	
5		raphs: cion using graphs and games, Undirected Graph, Directed Graph, Traversing Graphs, Depth First Search, Search, Topological sort	5	3	
6		g and Branch & Bound: to Backtracking, Introduction to Branch & Bound, 0/1 Knapsack Problem, N-Queens Problem, Travelling oblem	5	4	
7	String Match - Introduction Matching us NP Complet	on to String Matching, Naive String Matching, Rabin-Karp Algorithm, Kruth-Morris-Pratt Algorithm, String ing Finite Automata	10	6	

Page 2 of 2

Reference Books

1.	Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill. (TextBook)
2.	Fundamentals of Algorithms – E. Horowitz et al. (TextBook)
3.	Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson
4.	Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.
5.	Algorithms—A Creative Approach,3RD Edition, UdiManber, Addison-Wesley, Reading, MA

Course Outcome

After Learning the Course the students shall be able to:

Course Outcome: After learning the course the students will be able to:

- 1. Develop the ability to analyze the running time of any given algorithm using asymptotic analysis and prove the correctness of basic algorithms.
- 2. Design efficient algorithms for computational problems, using various algorithm design techniques taught in the course.
- 3. Explain the major graph algorithms and their analyses. Employ graphs to model engineering problems, when appropriate.
- 4. Analyze String matching algorithms.
- 5. Explain the complexity classes P, NP, and NP-Complete, and demonstrate the NP-Completeness of a specific problems.

Miscellaneous

Exam Requirement

It consists of Assignments/Seminars/Presentations/Quizzes/Surprise Tests (Summative/MCQ) etc

Printed on: 31-05-2024 11:26 AM