Definition 0.1. Normal Extensions. Let $\iota: K \to L$ be a finite extension. Then the following are equivalent:

- 1. For all irreducible polynomials $f \in K[X]$ that have root in L, L splits f.
- 2. For all elements $a \in L$, L splits min(a, K).
- 3. There exists generators $a_1, \ldots, a_n \in L$ such that for all generators a_i , there exists a polynomial $f_i \in K[X]$ where a_i is a root and L splits f_i .
- 4. There exists some polynomial $f \in K[X]$ such that L is the splitting field of f.
- 5. For all K-extension $\iota_M: K \to M$ and K-extension morphisms $\phi, \psi: L \to M, \phi L = \psi L$.

If any of the above are true, $\iota: K \to L$ is called a **normal extension**. We also sometimes say L is **normal over** K.

Proof. $(1 \Rightarrow 2)$ Since finite extensions are algebraic, the second statement is well-defined. By minimal polynomials are irreducible and have a root in L, we are done.

 $(2 \Rightarrow 3)$ L is a finite extension so there exists $a_0, \ldots, a_{n-1} \in L$ such that $L = K(a_0, \ldots, a_{n-1})$. For each generator a_i , pick $f_i = \min(a, K)$.

 $(3 \Rightarrow 4)$ Let $f = \prod_{i \in n} f_i$. L clearly splits f and since the roots of f include the generators a_0, \ldots, a_{n-1}, L is generated by the roots of f.

 $(4 \Rightarrow 1)$ Let g be an irreducible polynomial over K with a root $a \in L$. We do not know whether g splits in L, but we know there exists a finite extension $\iota_M : L \to M$ that splits $\bar{\iota}g$, i.e. contains all the roots of g. We will show in that in this larger field, all the roots of g are already in L.

Let a_i be any root of g in M. The proof is contained in the following diagram.

We will show that $\iota_M L = L(a_i)$, i.e. the root a_i is already in L. Note that by $\iota_M : L \to L(a_i)$ being an injective K-vector space morphism, it suffices to show $\dim_K L = \dim_K L(a_i)$.

We already have $\dim_K L \leq \dim_K L(a_i)$. For the other inequality, note that by definition, L splits f and L is generated by the roots of f. This clearly implies $L(a_i)$ splits $\overline{\iota_M \circ \iota} f$ and is generated by the roots of $\overline{\iota_M \circ \iota} f$, i.e. $L(a_i)$ is the splitting field of $\overline{\iota_M \circ \iota} f$. Since a and a_i are galois conjugates, there exists a K-extension morphism $\phi: K(a_i) \to K(a), a_i \mapsto a$. So then $\phi: K(a_i) \to L$ is a $K(a_i)$ -extension that splits $\overline{\iota_M \circ \iota} f$. Hence by the minimal property of splitting fields, there exists a $K(a_i)$ -extension morphism $\overline{\phi}: L(a_i) \to L$. This

is clearly a K-extension morphism. In particular, $\bar{\phi}$ is an injective K-vector space morphism between finite dimensional K-vector spaces $L(a_i)$ and L. Hence $\dim_K L(a_i) \leq \dim_K L$.

 $(4 \Rightarrow 5)$ This is image invariance of splitting fields.

 $(5 \Rightarrow 1)$ We require the machinery of normal closures, which we will investigate below.

For now, we restrict the definition of normality to 1 to 4.

Example 0.2. Non-Normal Extensions.

The \mathbb{Q} -extension $\iota: \mathbb{Q} \to \mathbb{Q}(\sqrt[3]{2})$ is not normal, since

$$\bar{\iota}\min(\sqrt[3]{2},\mathbb{Q}) = X^3 - 2 = (X - \sqrt[3]{2})(X^2 + \sqrt[3]{2}X + \sqrt[3]{2}^2)$$

does not factorise further. In a sense, the other roots $\sqrt[3]{2}\omega$, $\sqrt[3]{2}\omega^2$ are "missing" from the field $\mathbb{Q}(\sqrt[3]{2})$.

This can be fixed by adding elements to the extension until the extension is normal. The "smallest" such extension will be the *normal closure*.

Lemma 0.3. Normality Lifts up.

Let $K \stackrel{\iota_L}{\to} L \stackrel{\iota_M}{\to} M$ be extensions and f a polynomial over K. Then $\iota_M \circ \iota_L : K \to M$ is the splitting field of f implies $\iota_M : L \to M$ is the splitting field of $\bar{\iota}_L f$. Consequently, $\iota_M \circ \iota_L : K \to M$ normal implies $\iota_M : L \to M$ normal.

Proof. Suppose $\iota_M \circ \iota_L : K \to M$ is the splitting field of f. Clearly, M splits $\bar{\iota}_L f$. Let S_f be the roots of f in M. S_f is also the roots of $\bar{\iota}_L f$ in M. Then the smallest subfield of M containing $\iota_M L$ and S_f also contains $\iota_M(\iota_L K)$, i.e. $M = K(S_f) \subseteq L(S_f) \subseteq M$. Hence M is generated by S_f as an L-extension. \square

Definition 0.4. Normal Closure.

Let $K \stackrel{\iota_L}{\longrightarrow} L \to \stackrel{\iota_N}{\longrightarrow} N$ be extensions. Then (N, ι_N) is called a **normal closure of** (L, ι_L) when it is a smallest normal K-extension containing $\iota_L : K \to L$ in the sense that $\iota_N \circ \iota_L : K \to N$ is normal and for any $\iota_M : L \to M$ such that $\iota_M \circ \iota_L : K \to M$ is normal, there exists a L-extension morphism $\bar{\iota}_M : N \to M$. Diagrammatically,

Note that we have not proved normal closures to be unique yet, hence the emphasis on "a normal closure" not "the normal closure".

Theorem 0.5. Existence and Uniqueness of Normal Closure of Finite Extensions.

Let $\iota_L: K \to L$ be a finite K-extension. Then there exists an L-extension $\iota_N: L \to N$ such that (N, ι_N) is a normal closure of (L, ι_L) . Furthermore, N is a finite extension and unique up to isomorphism, i.e. any other normal closure of $\iota_L: K \to L$ is isomorphic to N as a K-extension. Thus we denote N as $N(L, \iota_L)$ and refer to anything isomorphic to it as the normal closure of (L, ι) . If the extension ι_L is clear, we write N(L) instead.

Proof. Since L is a finite dimensional K-vector space, by existence of a basis, let a_0, \ldots, a_{n-1} be a finite set of generators of L, i.e. $L = K(a_0, \ldots, a_{n-1})$. Let $f = \prod_{i \in n} \min(a_i, K)$. There exists a K-extension $\iota_{\tilde{N}} : K \to \tilde{N}$ that splits f. Let N be the K-subextension of \tilde{N} generated by the roots of f, i.e. the splitting field of f. Since for all generators a_i of L, N splits $\min(a_i, K)$, we have a K-extension $\iota_N : L \to N$ by embedding via conjugates. Clearly, $\iota_N \circ \iota_L : K \to N$ is normal. We will now show that it has the minimal property of normal closures.

Let $\iota_M:L\to M$ be an L-extension such that $\iota_M\circ\iota_L:K\to M$ is normal. By lifting normality of N, $\iota_N:L\to N$ is the splitting field of $\bar\iota_L f$. For a generator a_i of L, $\min(a_i,K)=\min(\iota_M(a_i),K)$. So normality of M over K implies M splits f, consequently splitting $\bar\iota_L f$. Hence by the minimal property of splitting fields, there exists an L-extension morphism $\bar\iota_M:N\to M$ such that $\bar\iota_M\circ\iota_N=\iota_M$. Thus, (N,ι_N) is a normal closure of $\iota_L:K\to L$.

Now let (M, ι_M) be another normal closure of (L, ι_L) . Then by applying minimal property of normal closure twice, we have L-extension morphisms $\bar{\iota}_M: N \to M$ and $\bar{\iota}_N: M \to N$. These are also K-extension morphisms. Since N is a finite K-extension and $\bar{\iota}_N$ is an injective morphism of K-vector spaces from M to N, we have the dimension of M as finite and less than equal to that of N. Similarly, the dimension of N is less than equal to that of M. So $\dim_K N = \dim_K M$ and hence $\bar{\iota}_M: N \to M$ is actually a bijection. Thus N and M are isomorphic as L-extensions.

Remark. The following is a key property of normal extensions.

Theorem 0.6. Two Embeddings into a Normal Extension Differ by an Automorphism.

Let $K \xrightarrow{\iota_L} L \xrightarrow{\iota_N} N$ be extensions where $(N, \iota_N \circ \iota_L)$ is normal. Then for all K-extension morphisms $f: (L, \iota_L) \to (N, \iota_N \circ \iota_L)$, there exists a L-extension morphism $\bar{f}: (N, \iota_N) \to (N, f)$. Diagrammatically,

This can be seen as if L embeds in N in two ways that agree on K, then there is a field automorphism of N bringing one L to the other, preserving K. So in a sense, two embeddings into a normal extension differ by an automorphism.

Proof. $(N, \iota_N \circ \iota_L)$ being normal implies there exists a finite set of generators a_1, \ldots, a_n as a K-extension such that for all a_i , $(N, \iota_N \circ \iota_L)$ splits $\min(a_i, K)$. Then $N = K(a_1, \ldots, a_n) \subseteq L(a_1, \ldots, a_n) \subseteq N$ implies a_1, \ldots, a_n are also generators of N as an L-extension. By definition of being a K-extension morphism, $f \circ \iota_L = \iota_N \circ \iota_L$. So $(N, f \circ \iota_L) = (N, \iota_N \circ \iota_L)$ as K-extensions. Namely, $(N, f \circ \iota_L)$ is normal, which implies for all generators a_i , $(N, f \circ \iota_L)$ splits $\min(a_i, K)$. Hence, (N, f) splits $\min(a_i, L)$. Thus, by embedding via conjugates, we have an L-extension morphism $\bar{f}: (N, \iota_N) \to (N, f)$.

We are now ready to prove $5 \Rightarrow 1$.

Theorem 0.7. Image Invariance gives Splitting Irreducible Polynomials with Roots.

Let $\iota_L: K \to L$ be a K-extension such that for all K-extensions $\iota_M: K \to M$ and K-extension morphisms $\phi, \psi: L \to M$, $\phi L = \psi L$. Then for all irreducible polynomials $f \in K[X]$ that have a root $a \in L$, L splits f.

Proof. Let f be an irreducible polynomial over K with a root $a \in L$. We do not know whether L contains all the roots of f, but we do know that L's normal closure definitely does. So let $\iota_N : L \to N(L)$ be the normal closure of L. Then f is an irreducible polynomial with $\iota_N(a)$ as a root. So by normality, N(L) splits f. Let a_i be an arbitrary root of f in N(L). We seek to show that the root a_i is already in $\iota_N L$. The following diagram is the situation.

Since a_i is a galois conjugate of a, there exists a K-extension morphism $\phi: (K(a), \iota_L) \to (K(a_i), \iota_N \circ \iota_L)$ such that $a \mapsto a_i$. Then $\phi: (K(a), \iota_L) \to (N, \iota_N \circ \iota_L)$ is a K-extension morphism where $(N, \iota_N \circ \iota_L)$ is normal. Hence, there exists a K(a)-extension morphism $\bar{\phi}: (N, \iota_N) \to (N, \phi)$, since two embeddings into a normal extension differ by an automorphism. It follows that $\bar{\phi} \circ \iota_N: (L, \iota_L) \to (N, \iota_N \circ \iota_L)$ is a K-extension morphism. Since ι_N and $\bar{\phi} \circ \iota_N$ are both K-extension morphisms from L to $N, \iota_N L = \bar{\phi}(\iota_N L)$. But of course,

$$a_i = \phi(a) = \bar{\phi}(\iota_N(a)) \in \iota_N L$$

Thus, the root a_i is actually already in $\iota_N L$. This completes the proof.