Stellenbosch Camp December 2017 Senior Test 2 Solutions

- 1. Letting x = y = 0 yields f(0) = 0. For y = 0, we obtain $f(x^2) = x^2$ which implies f(x) = x for all $x \ge 0$. For x = 0, we obtain $f(-y^2) = -f(y^2) = -y^2$, which implies f(x) = x for all $x \le 0$. Hence f(x) = x for all $x \in \mathbb{R}$ which can easily be checked to be a solution.
- 2. Base case, n = 1: The snake can either face west or east, and hence can be lined up in 2 ways.

Clearly the snakes can always be lined up so that no snake can see another snake with a shorter tail length, since for example the snake trader can always line them up facing west in descending order. The number of suitable arrangements for n snakes is 2^n , which we prove using induction.

Inductive hypothesis, n = k: Assume that for n = k snakes, they can be lined up in 2^k ways.

Inductive step, n = k + 1: Since all snakes have distinct tail lengths, we can find and remove the tallest snake from the k + 1 snakes. The other k snakes can be lined up in 2^k ways, using our inductive hypothesis. The remaining snake can only be inserted on the far sides of any line of the k snakes, since if it is inserted between any two snakes it must be taller than both of them, and hence no matter which way it faces it would have a snake to eat. Similarly, on either the west or the east edge, the snake must face away from the other snakes, else again it would see a shorter snake. So there are 2 ways to add the last snake, and thus the total arrangements of snakes numbers 2^{k+1} .

Thus by induction, n snakes can be lined up in 2^n ways, so for 2017 snakes there are 2^{2017} arrangements.

3. Let l_C be the tangent at C to the circumcircle of $\triangle ABC$. As $CO \perp l_C$, the lines DE and l_C are parallel. Now we find that

$$\angle CDE = \angle (BC, l_C) = \angle BAC$$

hence the quadrilateral BDEA is cyclic. Analogously, we find that the quadrilateral CDFA is cyclic. As we now have $\angle CDE = \angle A = \angle FDB$, we conclude that the line BC is the external angle bisector of $\angle EDF$. Furthermore, $\angle EDF = 180^{\circ} - 2\angle A$. Since K is the circumcentre of $\triangle AEF$, $\angle FKE = 2\angle FAE = 2\angle A$. So $\angle FKE + \angle EDF = 180^{\circ}$, hence K lies on the circumcircle of $\triangle DEF$. As |KE| = |KF|, we have that K is the midpoint of the arc EF of this circumcircle. It is well known that this point lies on the internal angle bisector of $\angle EDF$. We conclude that DK is the internal angle bisector of $\angle EDF$. Together with the fact that BC is the external angle bisector of $\angle EDF$, this yields that $DK \perp BC$, as desired.

4. Let $P(x) = x^3 + \alpha x^2 + \beta x + \gamma$ where $\alpha, \beta, \gamma \in \mathbb{R}$. The condition that P(1) = 91 then becomes $1 + \alpha + \beta + \gamma = 91$ and P(-1) = -121 becomes $-1 + \alpha - \beta + \gamma = -121$. Adding the two equations yields $2\alpha + 2\gamma = -30$, hence $\alpha + \gamma = -15$.

By Vieta's formulae, we have: $\alpha = -(a+b+c)$, $\beta = ab+bc+ca$ and $\gamma = -abc$. Hence $abc+a+b+c=-\alpha-\gamma=15$ and $ab+bc+ca=\beta=(1+\alpha+\beta+\gamma)-(\alpha+\gamma)-1=91+15-1=105$. Thus

$$\frac{ab + bc + ca}{abc + a + b + c} = \frac{105}{15} = 7$$

which is, indeed, the *only* value that the fraction can attain.

5. Rearranging the equation, 2qn(p+1) = (n+2)(2pq+p+q+1). The left hand side is even, so either n+2 or p+q+1 is even, so either p=2 or q=2 since p and q are prime, or p is even.

If p = 2, 6qn = (n+2)(5q+3), so (q-3)(n-10) = 36. Considering the divisors of 36 for which q is prime, we find the possible solutions (p, q, n) in this case are (2, 5, 28) and (2, 7, 19) (both of which satisfy the equation).

If q = 2, 4n(p + 1) = (n + 2)(5p + 3), so n = pn + 10p + 6, a contradiction since n < pn, so there is no solution with q = 2.

Finally, suppose that n=2k is even. We may suppose also that p and q are odd primes. The equation becomes 2kq(p+1)=(k+1)(2pq+p+q+1). The left hand side is even and 2pq+p+q+1 is odd, so k+1 is even, so k=2l+1 is odd. We now have

$$q(p+1)(2l+1) = (l+1)(2pq+p+q+1)$$

or equivalently

$$lq(p+1) = (l+1)(pq+p+1)$$

Note that q|pq+p+1 if and only if q|p+1. Furthermore, because (p,p+1)=1 and q is prime, (p+1,pq+p+1)=(p+1,pq)=(p+1,q)>1 if and only if q|p+1.

Since l, l+1, we see that, if $q \not | p+1$, then l=pq+p+1 and l+1=q(p+1), so q=p+2 (and $(p, p+2, 2(2p^2+6p+3))$ satisfies the original equation). In the contrary case, suppose p+1=rq, so l(p+1)=(l+1)(p+r), a contradiction since l< l+1 and $p+1 \le p+r$.

Thus the possible values of q - p are 2, 3 and 5.

