Федеральное агентство по образованию Type your text

Московский государственный институт радиотехники, электроники и автоматики (технический университет)

Факультет «Кибернетика»

Кафедра Прикладной Математики

Проект оптимального рабочего места программиста

Выполнил: Студент группы ИП-4-03 Верещагин И. Г.

> Руководитель: Трубицин А.В.

Введение.

Целью данного курсового проекта является разработка программного обеспечения реализующее модель системы прогнозирования уровня моря на основе нейросетей. Данное ПО предназначено для работы в современной операционной системе Microsoft Windows XP. Благодаря простому и интуитивно понятному интерфейсу программа проста в использовании, а так же может быть применена без графического интерфейса или с любым другим графическим интерфейсом. ПО может быть использовано для изучения и прогнозирования других процессов, а так же для обучения студентов основам нейросетей и математическому моделированию в естествознании.

Рабочее место инженера-разработчика представляет собой помещение размером 5х7х3 метра, в нём располагается кресло, рабочий стол, системный блок компьютера, монитор, клавиатура, манипулятор типа «мышь». Все электрические элементы питаются от бытовой сети переменного тока 220 В частотой 50 Гц с заземленной нейтралью.

Создание оптимальных условия труда для инженера-разработчика, задача не простая и требующая рассмотрения многих факторов. Это связано с выполнением однообразной умственной работы, требующей значительного нервного напряжения и большого сосредоточения. Необходимость действий по оценке и оптимизации условий труда, продиктованы желанием работодателей получить максимальную отдачу от сотрудника во время рабочего процесса, а так же сохранением его морального и физического здоровья.

Карта условий труда на рабочем месте. Таблица 1.

	Показатели условий	Оценка		Длительность		Балл с
	труда.	показателей		воздействия		учетом
	Единицы измерения.	Абс.	Балл	МИН	доля	экспозиции.
					смены	
1,1	А. Псих	нагруз	ЗКИ І	1		
1	Напряжение зрения:	180	4	480	1	4
	освещенность РМ, лк				1	
	размеры объекта, мм	0.25	3	480	1	3
	разряд зрительной работы	3-4	2	480	1	2
	энтропия зрительной	8	1	480	1	1
	информации, бит/сигнал			400		
	число информационных сигналов в час	< 75	1	480	1	1
2	Напряжение слуха:		_			_
	уровень шума, дБ	ПДУ+	3	480	1	3
	,	6		400	1	2
	соотношение сигнал/шум,	70	2	480	1	2
	%	8	1	400	1	1
	энтропия слуховой информации, бит/сигнал	8	1	480	1	1
3	информации, оит/сигнал Напряжение внимания:					
	длительность	< 25	1	480	1	1
	сосредоточения внимания,	- 25	1	100	1	1
	% времени смены					
	число важных объектов	< 5	1	480	1	1
	наблюдения					
	- число движений пальцев в	< 360	1	480	1	1
	час					
4	Напряжение памяти:					
	необходимость помнить об	1	2	480	1	2
	элементах работы					
	свыше 2-х ч., число эл.	• •		400		
	поиск рассогласований в %	30	2	480	1	2
	от числа регулируемых					
5	параметров	1	1	480	1	1
)	Нервно-эмоциональное	1		480	1	1
	напряжение. Экспертная оценка.					
6	оценка. Интеллектуальное	1	1	480	1	1
	напряжение. Экспертная	1	1	700	1	1
	оценка.					
7	Статическая нагрузка в					
	течение смены, кгс*сек:					
	на одну руку	<	1	480	1	1
		18000				
	- на обе руки	<	1	480	1	1
		43000				_
	- на весь корпус	<	1	480	1	1
		61000				

	Показатели условий	Оценка		Длительность		Балл с
	труда.	показателей		воздействия		учетом
	Единицы измерения.	Абс.	Балл	МИН	доля	экспозиции.
					смены	
8	Рабочее место, поза, пере-	Поза	1	480	1	1
	мещение в пространстве.	свобод				
_	Экспертная оценка.	-ная	_			
9	Сменность	одна	1	480	1	
1	Продолжительность работы	8	2	480	1	2
0	в течение суток, ч				•	
1	Монотонность:					
1		10.6	2	400	1	
	число приемов в операции	10-6	2	480	1	2
	длительность повтора	-	1	480	1	1
,	операции, с	**	2	400		
1	Режим труда и отдыха	Не	3	480	1	3
2		обосно				
	F. Cover	ванны		110 1101101		
1		тарно-гиг 	иеническ 	ие услог І	вия 	
3	Температура воздуха на рабочем месте, С:					
'	раоочем месте, с . теплый период	18 - 20	3	480	1	1
	- холодный период	$\begin{vmatrix} 16 - 20 \\ 20 - 22 \end{vmatrix}$	3	480	1	1
,	-				_	- 1
1	Промышленная пыль,	ПДК	2	480	1	2
4	кратность превышения					
1	ПДК	< Π Π Χ /	1	480	1	1
1 5	Ультразвук в воздухе ПДУ	< ПДУ	1	480	1	1
1	+ превышение, дБ, Тепловое излучение, Вт/см	0	0	480	1	0
6	тепловое излучение, вт/см		U	400	1	U
1	Ионизирующие излучения,	<ПДУ	1	480	1	1
7	мр/ч	11743		100	•	1

Определение категории тяжести труда.

Существует несколько методов расчёта категории тяжести труда, мы воспользуемся методом арифметического усреднения баллов.

1. Найдем усредняющий бал:

$$\kappa_{\text{cp}} = \frac{1}{n} \cdot \sum \kappa$$

$$\kappa_{\text{cp}} = \frac{1}{4} \cdot \sum 13_{=3,25}$$

Затем определяем показатель интегральной оценки условий труда:

$$K_z=19,7 \cdot k_{cp}-1,6 \cdot (k_{cp})^2$$
 [1: ctp. 37]

$$K_z=19,7 \cdot k_{cp}-1,6 \cdot (k_{cp})^2$$

 $K_z=19,7 \cdot 3,25-1,6 \cdot (3,25)^2=47,1$

Из таблицы 2 [1: стр.38] определим категорию тяжести труда. В нашем случае она составляет 4 категорию. При таком значении категории тяжести труда, наблюдается инертность, ослабление реакции на информацию, так же возможны профессиональные заболевания. Проведём оптимизацию условий труда, для уменьшения данного показателя.

Оптимизация условий труда.

Из Таблицы 1, видно, что из всех параметров наивысший бал (4) имеет освещённость. В целях оптимизации условий труда инженера и снижения вредных воздействий на программиста, произведём расчёт освещения на рабочем месте.

Рациональное освещение рабочего места является одним из важнейших факторов, влияющих на эффективность трудовой деятельности человека, предупреждающих травматизм и профессиональные заболевания. Правильно организованное освещение создает благоприятные условия труда, повышает работоспособность и производительность труда. Освещение на рабочем месте программиста должно быть таким, чтобы работник мог без напряжения зрения выполнять свою работу.

В нашем случае мы будем производить расчёт искусственного освещения, в связи с тем, что на окнах помещения установлены жалюзи.

Расчет освещенности рабочего места сводится к выбору системы освещения, определению необходимого числа светильников, их типа и размещения. Искусственное освещение выполняется посредством электрических источников света двух видов: ламп накаливания и люминесцентных ламп. Будем использовать люминесцентные лампы, которые по сравнению с лампами накаливания имеют существенные преимущества:

- по спектральному составу света они близки к дневному,
 естественному освещению;
- -обладают более высоким КПД (в 1.5-2 раза выше, чем КПД ламп накаливания);
- -обладают повышенной светоотдачей (в 3-4 раза выше, чем у ламп накаливания);
- -более длительный срок службы.

Расчет освещения производится для комнаты площадью 35 m^2 , ширина которой 5 м., длина 7 м. высота - 3 м.

Из таблицы [4; п. 7.10] и [4; прил.11] для общего освещения нашего помещения выберем следующие светильники ЛПО13 (длина – 1.38 м, ширина – 0.275 м, толщина – 0.93 м) с двумя люминесцентными лампами типа ЛБ-40 (люминесцентная лампа белого света, мощностью – 40 Вт).

Для определения количества светильников определим световой поток, падающий на поверхность по формуле:

$$F = \frac{E \cdot K \cdot S \cdot Z}{n}$$
, где [2: cтp.20]

F - рассчитываемый световой поток, Лм;

 ${f E}$ - нормированная минимальная освещенность, Лк. Исходя из [4], для работы программиста необходима минимальная освещённость ${f E}=300~{
m Л}{
m K}$ при газоразрядных лампах;

S - площадь освещаемого помещения (в нашем случае S = 35 м2);

Z - отношение средней освещенности к минимальной (для люминесцентных ламп принимается равным 1.1); [2: стр. 20]

 ${\bf K}$ - коэффициент запаса, учитывающий уменьшение светового потока лампы в результате загрязнения светильников в процессе эксплуатации (для люминесцентных ламп ${\bf K}=1.5$) [4; п. 7.13]

n - коэффициент использования, (выражается отношением светового потока, падающего на расчетную поверхность, к суммарному потоку всех ламп и исчисляется в долях единицы; зависит от характеристик светильника, размеров помещения, окраски стен И потолка, характеризуемых коэффициентами отражения от стен (Рс) и потолка (Рп)), значение коэффициентов Рс и Рп определим по таблице зависимостей коэффициентов отражения от характера поверхности: Рс=50% (для побеленных стен), Рп=70%(для побеленного потолка). [3: табл. 5.1] . Значение **n** определим по таблице коэффициентов использования различных светильников. Для этого вычислим индекс помещения по формуле:

$$I = \frac{S}{h(A+B)}$$
, где [2: стр. 21]

S - площадь помещения, $S = 35 \text{ м}^2$;

 $h_{\scriptscriptstyle \Pi}$ – высота потолка, $h_{\scriptscriptstyle \Pi}$ =3 м;

 h_p – высота рабочей поверхности стола, над полом, h_n =0.8 м;

 h_c – свес светильника, $h_{\scriptscriptstyle \Pi}$ =0.093 м;

h - расчетная высота подвеса, h = 2.9 м;

A - ширина помещения, A = 5 м;

В - длина помещения, В = 7 м.

$$h$$
= h_{π} - h_{p} - h_{c} = $3-0.8$ - 0.093 = 2.1 м.

Подставив значения получим:

$$I = \frac{24}{2, 1 \cdot (5+7)} = 1.39$$

В качестве ламп для наших светильников мы выбрали ЛБ-40, световой поток которой составляет 3120 Лм.[3; табл 2-12]

Зная индекс помещения I, Pc и Pп, по таблице [2: табл 7 стр.22] находим n=0.5

Подставим все значения в формулу для определения светового потока F:

$$F = \frac{300 \cdot 1.5 \cdot 35 \cdot 1.1}{0.5} = 34650$$
 лм

Рассчитаем необходимое количество ламп по формуле:

$$N = \frac{F}{F\pi} = \frac{34650}{3120} = 12$$
, где

N - определяемое число ламп;

F - световой поток;

Fл- световой поток лампы.

Получаем 12 ламп, т.к. в каждом светильнике расположено по 2 лампы, то устанавливаем 6 светильников.

Определим расстояние между рядами светильников, L:

$$L/h_p=\xi$$
,

Выбираем ξ =1,5 [2: cmp. 21]

$$L = \xi \ h_p = 1.5*2.2 = 3.14 \text{ m}.$$

Светильники располагаем параллельно линии зрения наладчика [4, п. 7.9].

При ширине помещения A=5 м определяем число рядов светильников:

n = ((B-2*0,4*L)/L) + 1 = (5-2*0,4*3.15)/3.15 = 2,1 т.е. получаем 2 ряда светильников.

Таким образом устанавливаем светильники в 2 ряда по 3 штуки в каждом ряду. Расстояние между светильниками принимаем равным 0,75 м.

Электрическая мощность общей осветительной системы:

$$P_{o \delta u u} = 12*40 = 480 \text{ Bt.}$$

Оценка качественных показателей освещения.

От снятых параметров с экрана монитора может зависеть дальнейшее поведение манипулятора в пространстве, следовательно, характеристика зрительной работы требует высокой точности [2, табл. 5]. В помещениях, где работают подростки уровень нормируемой освещенности повышается на одну ступень шкалы освещенности.

В данном случае рекомендуется система общего равномерного освещения во избежание отраженной блесткости от поверхности стола и экрана монитора, поэтому местное освещение я не рассчитывал [4, п. 7.2].

Коэффициент пульсации освещённости K_{II} не должен превышать 5% [4, п. 7.14]. Для этого нужно включить три лампы ЛБ-40 в разные фазы [4, табл.

4]. Таким образом, мы получим K_{II} менее 5%. В соответствии с [4, п. 7.6] показатель дискомфорта не должен превышать 40%. Применяются светильники ЛПО13, относящиеся к группе eI [3, табл. 8.6]. Зная группу светильников для коэффициентов отражения отделочных материалов потолка, стен и рабочей поверхности, определяется индекс помещения I_{M} , при котором обеспечивается нормируемый максимальный допустимый показатель дискомфорта. Сравниваем $I_{M} = 2,5$ и $I_{R} = 1.2$ при максимально допустимом M = 40 [4, п. 7.6], т.к. $I_{M} > I_{R}$, то осветительная установка соответствует требованиям по дискомфорту.

Определение категории тяжести труда.

Определим категорию тяжести труда после оптимизации освещенности рабочего места.

1. Найдем усредняющий бал:

$$\kappa_{\rm cp} = \frac{1}{n} \bullet \sum \kappa$$

$$\kappa_{\rm cn} = \frac{1}{4} \bullet \sum 10_{=2.5}$$

Затем определяем показатель интегральной оценки условий труда:

$$K_z=19,7 \cdot k_{cp}-1,6 \cdot (k_{cp})^2$$

 $K_z=19,7 \cdot k_{cp}-1,6 \cdot (k_{cp})^2$
 $K_z=19,7 \cdot 2.5-1,6 \cdot (2.5)^2=39.25$

Из таблицы 2 [1; стр.38] определим категорию тяжести труда. В результате оптимизации она составляет 3 категорию, что находится в пределах допустимых норм.

Коэффициент работоспособности

Работа с видеотерминалом персонального компьютера (ПК) по степени нарастания общего утомления оператора стоит в одном ряду с такими профессиями, как водитель городского автобуса. У пользователей ПК возникают частные жалобы на головные боли, резь в глазах, боли в шейном и поясничном отделе позвоночника и др. Статические данные говорят о неблагоприятном течении беременности у женщин профессионально работающих за компьютером.

Состояние здоровья оператора определяется тремя составляющими трудового процесса: характером работы, имеющимся оборудованием, состоянием окружающей среды

ХАРАКТЕР РАБОТЫ

оператора ПК отличается:

- 1. *повышенной нагрузкой на зрительный анализатор* продолжительная работа с объектами различения малого размера;
 - 2. интеллектуальной нагрузкой –

необходимость быстрого принятия решений, творческая деятельность, постоянное восприятие и оценка новой информации, высокая степень сложности задания;

3. эмоциональной нагрузкой –

степень ответственности за выполняемое задание, дефицит времени, значимость ошибки;

4.монотонность трудового процесса –

многократное повторение однообразных действий, длительность сосредоточенного наблюдения;

5. гиподинамией –

длительным пребыванием оператора в одной позе без активных движений.

ПРИМЕНЯЕМОЕ ОБОРУДОВАНИЕ

1. видеодисплейный терминал (монитор)

Качество представляемой зрительной информации зависит от следующих параметров:

- яркость экрана;
- контраст объектов с фоном;
- отсутствие мерцаний, бликов, деформаций изображений.

Для создания благоприятных условий работы необходимо соответствие нормативам интенсивности электромагнитных полей и рентгеновского излучения, заряда статического электричества.

Условия безопасности должны обеспечиваться обеспечиваются наличием двойной электроизоляции корпуса и мерами по исключению поражения человека стеклянными осколками при разрушении колбы электроннолучевой трубки.

- <u>2. Клавиатура, мышь и подставка для бумаг,</u> располагаемые в удобном для оператора месте и соответствующие требованиям эргономики.
 - 3. Процессор, отвечающий требованиям электробезопасности.

4. Рабочая мебель:

- двухуровневый стол с основной столешницей и площадкой для расположения клавиатуры;
- динамическое кресло, позволяющее регулировать положение оператора, в пространстве;
 - подставка для ног способствующая снижения напряжения мышц ног и улучшению кровообращения.

СОСТОЯНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ

- достаточная площадь и объем помещения, где установлен компьютер (площадь не менее 6 м^2 , объем помещения не менее 20-24 м^3)
- показатели микроклимата рабочего помещения:
- -температура воздуха 23-25° C,
- -относительная влажность 40-60 %,
- -подвижность воздушной среды ≤0,2 м/с
 - параметры световой среды рабочего места и рабочей поверхности:
- -наличие естественного и искусственного освещения;
- -освещенность экрана монитора 100-200 лк,
- -освещенность горизонтальной поверхности стола 300-500 лк;
- -отсутствие прямой и отраженной слепящей блескости источников света;
- -отсутствие пульсации освещенности;
 - уровень шума и вибрации рабочих мест в пределах норм (уровень звука ≤50 дБА);
 - отсутствие в воздухе рабочей зоны вредных веществ достаточное количество аэроионов (1500-5000 пар ионов на 1см³)

ЗРИТЕЛЬНАЯ РАБОТОСПОСОБНОСТЬ

Для повышения работоспособности человека, в первую очередь, необходимо обеспечить комфортные условия для работы глаз, т.к. основной поток информации о внешнем мире поступает через зрение (~ 90%).

Восприятие информации для пользователя ПК с экрана дисплея отличается от привычного чтения с бумаги по нижеследующим причинам:

1. При работе с дисплеем пользователь во многом зависит от положения дисплея в пространстве, тогда как при чтении печатного текста легко найти положение листа для наиболее комфортного восприятия информации.

- 2. Экран, выполнен из стекла, обладает зеркальным иил смешанным отражением, является источником света и считается прибором активного контраста. При чтении с листа бумаги мы имеем дело с диффузно отраженным текстом, т.е. с пассивным контрастом, который в малой степени зависит от интенсивности освещения и угла падения потока света на бумагу;
- 3. Текст на бумаге является неизменным, а текст на экране периодически обновляется в процессе сканирования электронного луча по поверхности экрана. Достаточно низкая частота обновления (f<60 Гц) вызывает мерцание изображений. При частоте обновления превышающей 80 Гц операторы не замечают мерцания, однако, зрительная система человека испытывает повышенную нагрузку.

РЕКОМЕНДАЦИИ

Чтобы условия труда оператора были благоприятными, снизились нагрузки на зрение, плечевой пояс и позвоночник

рабочее место должно соответствовать требованиям:

- оптимальным является строго вертикальное или слегка наклоненное расположение дисплея, при этом уменьшаются блики на экране;
- самая верхняя используемая строка на экране должна
 располагаться на горизонтальной линии взгляда, так снижается напряженность шейных мышц;
- подставка для ног и подлокотники кресла способствуют меньшему напряжению мышц ног и рук и создают условия для лучшего кровообращения.

При работе с текстовой информацией наиболее благоприятным для зрительной работы оператора являются нижеследующие условия:

• стиль шрифта

В обычных случаях рекомендуется, как правило, прямой шрифт. Курсив может быть использован для выделения отдельных мест. Надписи, спецификации, инструкции и т.д. могут быть выполнены готическим, спартанским, каллиграфическим шрифтами (узкие, средние и полужирные варианты).

• размер шрифта

Кегль (высота шрифта) 10 пунктов предпочтительнее, но допустимы кегли от 9 до 12 пунктов (1 пункт = 0,376 мм)

• расстояние между строками

Не менее высоты шрифта

• для многоцветного представления информации рекомендуется использовать одновременно не более 6 цветов. При этом цвет символов и цвет фона не должны быть дополнительными цветами (пары дополнительных цветов: красный-зеленый, синий-оранжевый, желтый –фиолетовый).

Рабочее место программиста

Требования к организации и оборудованию рабочего места сотрудника ВЦ приведены в ГОСТ 12.2.032-78. Высота рабочей поверхности стола для пользователей должна регулироваться в пределах 680-800 мм; при отсутствии таковой возможности высота рабочей поверхности стола должна составлять 725 мм.

Модульными размерами рабочей поверхности стола для ПЭВМ, на основании которых должны рассчитываться конструктивные размеры, следует считать: ширину 800, 1200, 1400 мм, глубину 800 и 1000 мм при нерегулируемой высоте, равной 725 мм.

Рабочий стол должен иметь пространство для ног высотой не менее 600 мм, шириной — не менее 500 мм, глубиной на уровне колен — не менее 450 мм и на уровне вытянутых ног — не менее 650 мм.

Рабочий стул (кресло) должен быть подъемно-поворотным и регулируемым по высоте и углам наклона сиденья и спинки, а также – расстоянию спинки до переднего края сиденья.

Рабочее место необходимо оборудовать подставкой для ног, имеющей ширину не менее 300 мм, глубину не менее 400 мм, регулировку по высоте в

пределах до 150 мм и по углу наклона опорной поверхности подставки до 20 градусов. Поверхность подставки должна быть рифленой и иметь по переднему краю бортик высотой 10 мм.

Клавиатуру следует располагать на поверхности стола на расстоянии 100-300 мм от края, обращенного к пользователю, или на специальной регулируемой по высоте рабочей поверхности, отделенной от основной столешницы.

Список литературы:

- 1. Методические указания по дипломному проектированию раздела Охраны труда и окружающей среды. 1980
- 2. Самгин Э.Б. Освещение рабочих мест. Текст лекций. М.: МИРЭА, 1989 г.
- 3. Кнорринг Г.М. Справочная книга для проектирования электрического освещения. Л.: Энергия, 1976 г.
- 4. СанПиН 2.2.2.542-96. «Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организация работы». М.: Госкомсанэпиднадзор России, 1996 г.