

Solubilità e proprietà colligative

Soluzioni liquide

- Sistemi omogenei in cui un soluto è sciolto in un solvente
- Miscuglio formato da almeno due componenti diversi con proprietà, fisiche e chimiche costanti in ogni suo punto
 - Le proprietà di una soluzione dipendono dai componenti, dalla loro concentrazione e sono, in genere, diverse da quelle dei componenti puri
- Soluti
 - Liquidi
 - Aeriforme
 - Solido

Perché le sostanze si sciolgono?

Le **soluzioni** sono miscugli omogenei di due o più sostanze e possono essere solide, liquide o gassose.

Si formano a causa dell'agitazione termica delle particelle.

Soluto e solvente

- In genere si distinguono
 - Solvente, liquido e/o in maggiore quantità
 - Soluto, minore quantità
- Si interpreta il fenomeno come se il soluto si disperda uniformemente nel solvente

Terminologia sulle concentrazioni

- Esistono dei termini qualitativi per indicare le concentrazioni delle soluzioni
 - Diluita (quando contiene "poco" soluto)
 - Concentrata (quando contiene "molto" soluto)
- Un altro termine è più preciso
 - Satura (contiene la massima quantità di soluto)
- Viene chiamato anche punto di saturazione
 - Quantità di solvente
 - Temperatura

Una soluzione che contiene, a una data temperatura, una quantità di soluto superiore al valore di solubilità si chiama satura con corpo di fondo.

Solubilità

• È la quantità massima in grammi di una sostanza che può essere disciolta in 100 grammi di solvente ad una specifica temperatura

 Un solido è solubile in un solvente se ha un valore alto di solubilità; è insolubile se il valore è molto piccolo.

La solubilità dei solidi in acqua dipende dalla temperatura

La **solubilità di un solido** in acqua è la massa in grammi del solido che, a una data temperatura, può sciogliersi in 100 grammi di acqua.

La solubilità in acqua varia con la **temperatura**; è data dalla **curva di solubilità**.

Aumentando la temperatura, la solubilità di molti solidi ionici e molecolari *aumenta*;

Solubilità (qualitativo)

- Gas in acqua (solventi polari)
 - Dipende dal tipo di gas (soluto)
 - Dipende dalla temperatura
 - Aumentando la temperatura diminuisce la solubilità del gas
 - Dipende dalla pressione
 - Aumentando la pressione del gas sul liquido aumenta la solubilità

Interpretazione del fenomeno

- Nei due componenti A e B puri della soluzione ci sono le normali interazioni
 - A---A
 - B...B
- Quando si forma la soluzione queste interazioni vengono, in parte, sostituite da interazioni A~~B
- Quando due sostanze possono formare una soluzione?
 - Quando il sistema può raggiungere un livello di energia più basso (maggiore stabilità)

Solubilizzazione

- Composti ionici
 - Le molecole d'acqua si orientano sulla superficie del solido ionici
 - L'acqua cerca di penetrare nel reticolo ionico scalzando gli ioni
 - Gli ioni separati sono schermati da un certo numero di molecole d'acqua
 - Il fenomeno viene definito idratazione (solvatazione)

I **composti ionici** formano soluzioni acquose che conducono la corrente elettrica.

Si rompono i legami ionici tra gli ioni del soluto (dissociazione)

$$NaCl_{(s)} \xrightarrow{H_2O} Na^+_{(aq)} + Cl^-_{(aq)}$$

Elettroliti

- Tutte le sostanze che si dissociano in ioni quando sono poste in un liquido sono denominate appunto elettroliti
 - Sali solubili (composti ionici)
 - Acidi (composti covalenti polari)
 - Basi (composti covalenti polari)
- Elettroliti possono essere
 - Forti, dissociazione ionica completa (composti ionici)
 - Conducono molto bene la corrente
 - Deboli, dissociazione ionica parziale
 - Conducono parzialmente la corrente
 - Non elettroliti, molecole elettricamente neutre
 - Non conducono la corrente

Esempi di dissociazione

• Dissociazione di composti ionici

$$NaCl_{(s)} \rightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$$

$$NH_4Cl_{(s)} \rightarrow NH_4^+_{(aq)} + Cl_{(aq)}^-$$

$$Al_2(SO_4)_{3(s)} \rightarrow 2Al^{3+}_{(aq)} + 3SO_4^{2-}_{(aq)}$$

Solubilizzazione

- Sostanze molecolari si sciolgono in acqua per
 - Formazione di legami idrogeno
 - Interazioni dipolo-dipolo
- Tutte le sostanze che possiedono gruppi OH si sciolgono in acqua formando legami idrogeno
 - Etanolo
 - Glucosio Gruppo OH

 H H H

 etanolo

14

La solubilità dei liquidi in acqua dipende dalla loro polarità o apolarità

I **soluti liquidi** *polari* si sciolgono in solventi polari, mentre i soluti liquidi *apolari* si sciolgono nei solventi apolari.

Versando alcol etilico in acqua (entrambi **polari**) si formano legami a idrogeno alcol-acqua: i due liquidi sono *miscibili*.

La solubilità dei liquidi in acqua dipende dalla loro polarità o apolarità

RICORDA: I **volumi** di liquidi miscibili *non sono additivi*: il volume della soluzione è leggermente *inferiore* alla somma dei loro singoli volumi.

La solubilità

- Secondo la curva di solubilità del nitrato di sodio NaNO_{3,} come varia la sua solubilità all'aumentare della temperatura?
- Cosa succede se sciolgo 40g di NH₃ a 20° C, a 35° C e a 90° C?

La solubilità dei gas in acqua dipende dalla pressione e dalla temperatura

La **solubilità di un gas** in un liquido è la quantità in moli di gas che può sciogliersi in un litro di soluzione

Dipende dalla *pressione* esercitata dal gas e dalla *temperatura* della soluzione; si esprime in **moli/litro** (**mol/L**).

Valori di solubilità in acqua di alcuni gas a 25 ° C e 1 atm:

Gas apolari	Formula	s (mol/L)	
ossigeno	02	0,0013	
diossido di carbonio	CO ₂	0,076	
azoto	N ₂	0,001	

Gas polari	Formula	s (mol/L)	
ammoniaca	NH ₃	11	
solfuro di diidrogeno	H₂S	0,1	
cloruro di idrogeno	HCI	12	

La concentrazione di un soluto in una soluzione

La **concentrazione** di una soluzione esprime la quantità di soluto contenuta in una determinata quantità di soluzione o di solvente.

La concentrazione in parti per milione (C_{ppm}) indica le parti (in massa o in volume) di soluto disciolto in un milione di parti di soluzione:

$$C_{ppm} = \left[\frac{m_{\text{soluto}}(g)}{m_{\text{soluzione}}(g)}\right] \cdot 10^{6}$$

$$C_{ppm} = \left[\frac{V_{\text{soluto}}(mL)}{V_{\text{soluzione}}(mL)}\right] \cdot 10^{6}$$

Le proprietà colligative dipendono dal numero di ioni di soluto in soluzione

Le **proprietà colligative** di una soluzione sono proprietà fisiche che <u>dipendono solo dalla concentrazione</u> del soluto e <u>non dal tipo di soluto</u>.

Le proprietà colligative dipendono dal numero di ioni di soluto in soluzione

Se il soluto si divide in **ioni**, si moltiplica il numero di moli di soluto per il **coefficiente di van't Hoff** (*i*), che corrisponde al *numero di ioni* derivati da una singola molecola o unità formula di soluto.

Soluti che si dividono completamente in ioni sono i sali solubili, le basi dei metalli alcalini e alcalino-terrosi e alcuni acidi molto polari.

Basi	Acidi
LiOH	HNO₃
NaOH	H ₂ SO ₄
кон	HCIO ₄
Mg(OH)₃	HCI
Ca(OH)₂	HBr
Ba(OH)₂	HI

Le proprietà colligative dipendono dal numero di ioni di soluto in soluzione

L'idrossido di sodio si

$$C_6H_{12}O_{6(s)} \xrightarrow{H_2O} C_6H_{12}O_{6(aq)}$$
 $(i = 1)$
 $NaOH_{(s)} \xrightarrow{H_2O} Na^+_{(aq)} + OH^-_{(aq)}$ $(i = 2)$
 $CaCl_{2(s)} \xrightarrow{H_2O} Ca^{2+}_{(aq)} + 2 Cl^-_{(aq)}$ $(i = 3)$

La TENSIONE DI VAPORE

(= pressione in cui si ha equilibrio dinamico tra vapore e liquido)

di una soluzione è minore di quella del solvente

Consideriamo un solvente volatile (A) e una soluzione dello stesso solvente con soluto non volatile (B) che non si dissocia in ioni.

La **tensione di vapore** della soluzione (**p**) diminuisce all'aumentare della quantità di soluto.

Nella soluzione è minore il numero di molecole di acqua che può evaporare.

La TEMPERATURA DI EBOLLIZIONE

di una soluzione è maggiore di quella del solvente

La temperatura di ebollizione di un liquido è la temperatura alla quale la tensione di vapore diventa uguale alla pressione atmosferica.

La **temperatura di ebollizione** di una soluzione è *maggiore* di quella del solvente puro.

L'aumento è detto innalzamento ebullioscopico (Δt_{eb}) :

$$\Delta t_{
m eb} = t_{
m eb} \, {
m (soluzione)} - t_{
m eb} \, {
m (solvente)}$$

La temperatura di ebollizione

L'innalzamento ebullioscopico è una conseguenza dell'abbassamento della tensione di vapore, che dipende a sua volta dalla concentrazione.

L'innalzamento ebullioscopico

è direttamente proporzionale alla costante ebullioscopica $K_{\rm eb}$, alla concentrazione della soluzione espressa in molalità (m) e al numero di ioni (i) del soluto

Solvente	t _{eb} (°C)	K _{eb} (°C · mol ^{−1} · kg)
acqua	100	0,512
alcol etilico	78,2	1,22
benzene	80,2	2,53
cicloesano	80,74	2,69

$$\Delta t_{\rm eb} = K_{\rm eb} \cdot {\rm m} \cdot i$$

La TEMPERATURA DI CONGELAMENTO

di una soluzione è minore di quella del solvente

La temperatura di congelamento di un liquido è la temperatura alla quale diventa *solido*. In una soluzione gli ioni del soluto ostacolano la solidificazione.

La **temperatura di congelamento** di una soluzione è quindi *minore* di quella del solvente puro.

La diminuzione è detta abbassamento crioscopico (Δt_{cr}):

$$\Delta t_{\rm cr} = t_{\rm cr\,(solvente)} - t_{\rm cr\,(soluzione)}$$

La temperatura di congelamento

L'abbassamento crioscopico è direttamente proporzionale alla costante crioscopica K_{cr} , alla concentrazione della soluzione espressa in molalità (m) e al numero di ioni (i) del soluto:

$$\Delta t_{\rm cr} = K_{\rm cr} \cdot {\sf m} \cdot i$$

Solvente	<i>t</i> _{cr} (°C)	<i>K</i> _{cr} (°C∙mol ^{−1} ∙kg)	Solvente	<i>t</i> cr (°C)	<i>K</i> _{cr} (°C·mol ^{−1} ·kg)
acqua	0	1,86	benzene	5,50	5,12
alcol etilico	-117,3	1,99	cicloesano	6,55	20,2

Le proprietà colligative

Il soluto influisce sulle temperature di congelamento ed ebollizione secondo la seguente equazione:

Le costanti \mathbf{k}_{c} e \mathbf{k}_{eb} sono caratteristiche del solvente.

L'OSMOSI

si manifesta quando due soluzioni, una più concentrata e l'altra meno, sono separate da una membrana semipermeabile.

Il solvente passa sempre dalla soluzione più diluita a quella più concentrata.

La direzione dell'osmosi dipende solo dalla concentrazione delle soluzioni sui due lati della membrana e non dal tipo di soluto.

La pressione osmotica dipende dalla molarità e dalla temperatura della soluzione

flusso è il risultato della differenza tra il numero di molecole che attraversano la membrana nelle due direzioni. Quando il sistema si stabilizza, il *numero di molecole di* solvente che attraversano la membrana diventa *uguale*

La pressione osmotica dipende dalla molarità e dalla temperatura della soluzione

La differenza di livello esercita una pressione, detta pressione osmotica.

La pressione osmotica (π) di una soluzione è la pressione che si deve esercitare per raggiungere l'equilibrio osmotico, cioè per fermare il flusso, attraverso una membrana semipermeabile, del solvente verso la soluzione.

La pressione osmotica

Tra la pressione osmotica di una soluzione e la concentrazione di un soluto vale una relazione, chiamata equazione di van't Hoff:

La pressione osmotica dipende dalla molarità e dalla temperatura della soluzione

$$\pi = \frac{n}{V}R \cdot T \cdot i$$

Poiché n/V = M (molarità), dalla relazione precedente si ottiene:

$$\pi = M \cdot R \cdot T \cdot i$$

La pressione osmotica dipende anche dalla **temperatura**: aumentando la temperatura della soluzione, anche la pressione osmotica aumenta.

Esercizi

- A) 3,5·10⁻¹ g di citocromo C, un enzima della catena respiratoria, vengono sciolti in <u>acqua</u> ottenendo 45 ml di soluzione.

 Calcolare il peso (o massa) molare del citocromo sapendo che la pressione osmotica della soluzione a 37 °C è pari a 1,51·10⁻² atm.
- B) 18,6 gr di un soluto non elettrolita con peso molecolare 8940 sono sciolti in acqua fini ad ottenere 1 litro di una soluzione a 25°C. Qual'è la pressione osmotica della soluzione?
- C) 96 gr di un soluto non elettrolita sono sciolti in acqua fino ad ottenere 1 litro di una soluzione a 25°C. La pressione osmotica e' di 1315 mm Hg. Qual e' il peso (o massa) molecolare del soluto?