Classification des types d'instruments de musique

Avec Scikit learn

Le plan:

- 1. Introduction
- 2. L'origine des données
- 3. Exploration des données
- 4. Transformée de Fourier
- 5. Spectrogrammes
- 6. Conclusion

1. Introduction

1. Introduction

Seuil de satisfaction?

9.09%

11 types d'instruments :

 $1/11 \approx 0.0909 \approx 9.09\%$

2. Origine des données

Get Started Studio Demos

Blog Research Talks

Community

The NSynth Dataset

Apr 5, 2017

NSynth

A large-scale and high-quality dataset of annotated musical notes.

Download

Contents

- Motivation
- Description
- Format
 - Files

source: https://magenta.tensorflow.org/datasets/nsynth

2. Origine des données

Format

Files

The NSynth dataset can be download in two formats:

- TFRecord files of serialized TensorFlow Example protocol buffers with one Example proto per note.
- JSON files containing non-audio features alongside 16-bit PCM WAV audio files.

The full dataset is split into three sets:

- Train [tfrecord | json/wav]: A training set with 289,205 examples. Instruments do not overlap with valid or test.
- Valid [tfrecord | json/wav]: A validation set with 12,678 examples. Instruments do not overlap with train.
- Test [tfrecord | json/wav]: A test set with 4,096 examples. Instruments do not overlap with train.

Below we detail how the note features are encoded in the Example protocol buffers and JSON files.

source: https://magenta.tensorflow.org/datasets/nsynth

3. Exploration des données

Feature	Туре	Description
note	int64	A unique integer identifier for the note.
note_str	bytes	A unique string identifier for the note in the format <pre><instrument_str>-<pitch>-<velocity> .</velocity></pitch></instrument_str></pre>
instrument	int64	A unique, sequential identifier for the instrument the note was synthesized from.
instrument_str	bytes	A unique string identifier for the instrument this note was synthesized from in the format <instrument_family_str>-<instrument_production_str>-<instrument_name> .</instrument_name></instrument_production_str></instrument_family_str>
pitch	int64	The 0-based MIDI pitch in the range [0, 127].
velocity	int64	The 0-based MIDI velocity in the range [0, 127].
sample_rate	int64	The samples per second for the audio feature.
audio*	[float]	A list of audio samples represented as floating point values in the range [-1,1].
qualities	[int64]	A binary vector representing which sonic qualities are present in this note.
qualities_str	[bytes]	A list IDs of which qualities are present in this note selected from the sonic qualities list.
instrument_family	int64	The index of the instrument family this instrument is a member of.
instrument_family_str	bytes	The ID of the instrument family this instrument is a member of.
instrument_source	int64	The index of the sonic source for this instrument.
instrument_source_str	bytes	The ID of the sonic source for this instrument.

Durée: 4 sec

Échantillonnage : 16 kHz

source: https://magenta.tensorflow.org/datasets/nsynth

La transformation de Fourier est une opération qui transforme une fonction intégrable et continue sur \mathbb{R} en une autre fonction, décrivant le <u>spectre fréquentiel</u> de cette dernière.

Arbre de décision :

a. Exploration initiale - Decision Tree

Tous instruments 70% train, 30% test Tous les échantillons : 289 205

Précision: 56%

Tous instruments 90% train, 10% test

4000

1600

- 800

- 0

a. Exploration initiale

Qu'est-ce qu'un spectrogramme audio?

80% train, 20% test, sur toutes les diapositives suivantes

a. Exploration initiale - Decision Tree

b. Avec <u>normalisation</u> des spectrogrammes - Decision Tree

Pourquoi redimensionner les spectrogrammes ?

Taille d'origine : 129x285 = 36765 valeurs Taille corrigée : 95x43 = 4085 valeurs

Pourquoi redimensionner les spectrogrammes ?

Taille d'origine : 129x285 = 36765 valeurs

Taille corrigée : 95x43 = 4085 valeurs

90%

de valeurs en moins

c. Ajout de la réduction de la résolution - Decision Tree

c. Ajout de la réduction de la résolution - Decision Tree

c. Ajout de la réduction de la résolution - Random Forest

7 instruments: Brass, Flute, Mallet, Organ, Reed, Synth, Vocal

VS.

c. Ajout de la réduction de la résolution - Random Forest

Decision Tree

Random Forest

7 instruments: Brass, Flute, Mallet, Organ, Reed, Synth, Vocal

Tous les échantillons: 289 205

VS.

c. Ajout de la réduction de la résolution - Random Forest

Decision Tree Random Forest

Tous les instruments Tous les échantillons

Précision: 82.24% bass - 11062 guitar - 519 VS.

6. Conclusion

Première approche - Transformée de Fourier :

- Exploitation des données incomplète (manque l'intensité sur les fréquences sélectionnées)
- Notre algorithme actuel est très long pour extraire les fréquences (≈ 7h)

Seconde approche - Spectrogrammes:

- Plus fiable: meilleure précision sur nos tests
- Rapidité, grâce à la normalisation et la réduction de la résolution. (90% économie)

Decision Tree: (82.24%)

- Bons résultats, mais faussés à cause de la faible quantitée de certains instruments.

Random Forest: (91.75%)

 Comble la faiblesse due aux écarts dans le nombre d'échantillons de chaque classe en faisant une moyenne à partir de nombreux tirages (bootstrap).