

K

$$R_1 = R_2 = R_3 = 1 \text{ K}\Omega$$
$$I_0 = 1 \text{ mA}$$

Determinare i circuiti equivalenti Thevenin e Norton

L

$$C_1$$
 R
 C_2

R= 1KΩ, C_1 =50μF, C_2 =160nF

- 1) Determinare l'espressione letterale dell'impedenza equivalente.
- 2) Determinare il valore della corrente che attraversa il bipolo se ai suoi capi viene applicata una tensione sinusoidale V_Z di frequenza 1KHz e ampiezza picco-picco pari ad 1V

 \mathbf{M}

Determinare l'espressione letterale dell'impedenza equivalente.

Risposte:

I = -3 mAA

I=10 mA B

 $I=5 \text{ mA } V_X=15V$ \mathbf{C}

I=1mA $V_O=4V$ D

 $V_0 = -4V I = 1.6 \text{ mA}$ \mathbf{E}

I = -10 mA $P_{S1} = -100 \text{mW}$ $P_{S2} = 200 \text{mW}$ $P_{R} = 100 \text{mW}$ \mathbf{F}

 I_{CC} =15mA I_{GND} =15mA G

H I_2 =0.01 I_1 I_3 =0.1 I_1

I $V_1 = 8V$ $V_2 = 5V$

 $J V_L = V_S - R_S I_L$

K $V_{TH}=1V, R_{TH}=2K\Omega$ $I_{N}=500\mu A$, $G_{N}=500\mu S$

L
$$Z_{EQ} = \frac{1 + j\omega R(C_1 + C_2)}{j\omega C_1(1 + j\omega RC_2)}$$
 $i(t) = 707 \cdot \sin(\omega t + \pi/4) \,\mu A$

$$\mathbf{M} \qquad Z_{EQ} = \frac{3}{2}R \frac{1+j\omega \frac{4}{3}RC}{1+j\omega \frac{3}{2}RC}$$