Censored data

- Lecture notes are being supplemented with a clarification post on Ed. See here
- Situation when data is incomplete because we can't observe the tail end of data
 - E.g., a long-term studying examining life expectancy of a long-lived species
- Incorrect options for handling data
 - · Treating data as missing
 - The data we collect is still informative because we know it falls above (or below) a cutoff
 - · Replacing data with the cutoff value
 - Will introduce a bias
- Ex: device failure rate
 - · Let time until device failure be distributed Exponentially with an unknown rate parameter
 - Let us test n devices
 - Experiment stops at 7 months
 - If the device survives 7+ months, the survival data is censored
 - If t < 7, then we use the PDF of an exponential $\lambda e^{-\lambda t}$
 - If t > 7, then we use the complement of the CDF $e^{-7\lambda}$
 - Why do we mix the PDF and the CDF?
 - When we observe the time, we're observing a crystallization of a continuous r.v., where it's valid to
 use the PDF
 - If we only observe that the time is greater than some value, we're only observing a crystallization of an indicator r.v., and we obtain the probability of that indicator by using a CDF
 - Resulting likelihood

$$ullet L(\lambda) = \prod_{j=1}^n (\lambda e^{-\lambda t_j})^{\mathbb{1}(t_j < 7)} (e^{-7\lambda})^{\mathbb{1}(t_j \geq 7)}$$

- aL: Consider what would happen if we replaced the observations of t < 7 with indicators
 - What would our new MLE be?
 - How would this change the SE of the estimator?