EE3210 Signals and Systems

Part 2: Basics of Signals

Instructor: Dr. Jun Guo

DEPARTMENT OF ELECTRONIC ENGINEERING

What is a Signal?

A signal, which is represented mathematically as a function of one or more independent variables (e.g., time, space, distance, etc.), contains information about the behavior or nature of some phenomenon.

Examples:

- Voltage/current: A function of time, continuous
- Stock market index: A function of time, discrete
- Audio: A function of time, continuous/discrete
- Image: A function of space, continuous/discrete

Continuous-Time Signals

• Continuous-time signals are defined for a continuum of values x(t) as a function of the continuous-time independent variable t.

Discrete-Time Signals

- Discrete-time signals are defined only at discrete times n, i.e., for integer values of the independent variable, for a discrete set of values x[n].
 - $\blacksquare x[n]$ is also called a discrete-time sequence.
 - In the case of a very important class of discrete-time signals arising from the sampling of continuous-time signals, *n* is also called the sample number.

Energy and Power: Continuous-Time Signals

The total energy in a continuous-time signal x(t) over the time interval $t_1 \le t \le t_2$ is defined as

$$\int_{t_1}^{t_2} |x(t)|^2 dt$$

where |x| denotes the magnitude of the (possibly complex) number x.

■ The time-averaged power of x(t) is obtained as

$$\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} |x(t)|^2 dt$$

Energy and Power: Discrete-Time Signals

Similarly, the total energy in a discrete-time signal x[n] over the time interval $n_1 \le n \le n_2$ is defined as

$$\sum_{n=n_1}^{n_2} |x[n]|^2$$

■ The time-averaged power of x[n] is obtained as

$$\frac{1}{n_2 - n_1 + 1} \sum_{n=n_1}^{n_2} |x[n]|^2$$

Signal Transformations: Time Shift

For a continuous-time signal x(t), $x(t-t_0)$ represents a delayed (if t_0 is positive) or advanced (if t_0 is negative) version of x(t).

Signal Transformations: Time Shift (cont.)

Similar transformation can be defined for a discrete-time signal x[n] to obtain its time shifted version $x[n-n_0]$.

Signal Transformations: Time Reversal

For a continuous-time signal x(t), x(-t) is obtained from x(t) by a reflection about t=0.

Signal Transformations: Time Reversal (cont.)

Similar transformation can be defined for a discrete-time signal x[n] to obtain x[-n] by reversing x[n].

Signal Transformations: Time Scaling

- For a continuous-time signal x(t):
 - $\mathbf{x}(2t)$ is obtained by linearly compressing x(t).

 $\mathbf{x}(t/2)$ is obtained by linearly stretching x(t).

Can we obtain x[2n], x[n/2] from a discrete-time signal x[n]?

Combined Transformations: Example 1

Obtain x(-t+1) from x(t):

- We can do time shift first followed by time reversal.
- Can we do time reversal first followed by time shift?

Example 1 (cont.)

Rewrite x(-t+1) as x[-(t-1)]

Combined Transformations: Example 2

Obtain $x(\frac{3}{2}t+1)$ from x(t):

- We can do time shift first followed by time scaling.
- Can we do time scaling first followed by time shift?

Example 2 (cont.)

■ Rewrite $x(\frac{3}{2}t+1)$ as $x[\frac{3}{2}(t+\frac{2}{3})]$

Continuous-Time Periodic Signals

 \blacksquare A continuous-time signal x(t) is periodic if there is a positive value of T for which

$$x(t) = x(t+T) \tag{1}$$

for all values of t.

Fundamental period: The smallest positive value of T for which (1) holds.

Discrete-Time Periodic Signals

ullet A discrete-time signal x[n] is periodic with period N, where N is a positive integer, if

$$x[n] = x[n+N] \tag{2}$$

for all values of n.

Fundamental period: The smallest positive value of N for which (2) holds.

Analog Frequency versus Digital Frequency

- For a continuous-time periodic signal, its period T can be any real value in the range $(0,\infty)$. Therefore, its frequency f=1/T can be arbitrarily large, i.e., when $T\to 0,\, f\to \infty$.
- For a discrete-time periodic signal, since the smallest possible value of its period N is 1, its frequency f=1/N is bounded by 1, i.e., $f \in (0,1]$.

Even and Odd Signals

lacksquare A signal x(t) or x[n] is referred to as even if

$$x(-t) = x(t)$$
 or $x[-n] = x[n]$

lacksquare A signal x(t) or x[n] is referred to as odd if

$$x(-t) = -x(t)$$
 or $x[-n] = -x[n]$

- Any signal can be broken into a sum of two signals, one is even, and one is odd:
 - Even part: $\mathcal{E}\{x(t)\} = \frac{1}{2}[x(t) + x(-t)]$
 - Odd part: $\mathcal{O}\{x(t)\} = \frac{1}{2}[x(t) x(-t)]$
 - Same results apply in the discrete-time case.

Basic Signals

- Four basic continuous-time and discrete-time signals:
 - Unit step
 - Unit impulse
 - Sinusoidal
 - Complex exponential
- These signals can be used as basic building blocks for construction and representation of other signals.

Continuous-Time Unit Step

■ The continuous-time unit step signal, denoted by u(t), is defined as:

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

- Note: u(t) is discontinuous at t=0.
- The idealized signal u(t) can be approximated by $u_{\Delta}(t)$.

$$u(t) = \lim_{\Delta \to 0} u_{\Delta}(t)$$

Continuous-Time Unit Impulse

The continuous-time unit impulse signal, denoted by $\delta(t)$, is defined as:

$$\delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases}$$

which satisfies the identity:

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$

■ Note: $\delta(t)$ is not a function in the traditional sense.

Continuous-Time Unit Impulse (cont.)

■ The idealized signal $\delta(t)$ can be approximated by $\delta_{\Delta}(t)$.

- Sampling property: Consider a function x(t) that is continuous at an arbitrary point t_0 . Then,
 - $x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$

Relationship between u(t) and $\delta(t)$

• u(t) is the running integral of $\delta(t)$:

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau \tag{3}$$

■ By changing the variable of integration in (3) from τ to $\sigma = t - \tau$, we have:

$$u(t) = -\int_{\infty}^{0} \delta(t - \sigma) d\sigma = \int_{0}^{\infty} \delta(t - \sigma) d\sigma$$

 \bullet $\delta(t)$ is the first derivative of u(t):

$$\delta(t) = \frac{d u(t)}{d t}$$

Discrete-Time Unit Step

■ The discrete-time unit step signal, denoted by u[n], is defined as:

$$u[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$$

Discrete-Time Unit Impulse

■ The discrete-time unit impulse signal, denoted by $\delta[n]$, is defined as:

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

- lacksquare $\delta[n]$ is also referred to as the unit sample sequence.
- Sampling property:

$$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]$$

Relationship between u[n] and $\delta[n]$

■ u[n] is the running sum of $\delta[n]$:

$$u[n] = \sum_{m = -\infty}^{n} \delta[m] \tag{4}$$

■ By changing the variable of summation in (4) from m to k = n - m, we have:

$$u[n] = \sum_{k=\infty}^{0} \delta[n-k] = \sum_{k=0}^{\infty} \delta[n-k]$$

 \bullet $\delta[n]$ is the first difference of u[n]:

$$\delta[n] = u[n] - u[n-1]$$

Continuous-Time Sinusoidal

The continuous-time sinusoidal signal has the general form

$$x(t) = A\cos(\omega_0 t + \phi)$$

- Note: In this course, we use the notation ω for analog frequency.
- Note: With seconds as the units of t, the units of ϕ and ω_0 are radians and radians per second, respectively.

Properties

- Distinct signals x(t) for distinct values of ω_0 .
- The larger ω_0 , the higher is the rate of oscillation in x(t).
- x(t) is periodic for any value of ω_0 with the fundamental period T_0 given by $T_0 = 2\pi/\omega_0$.

Continuous-Time Complex Exponential

The continuous-time complex exponential signal is of the form

$$x(t) = Ce^{at}$$

where C and a are, in general, complex numbers.

- Let C be expressed in polar form: $C = |C|e^{j\theta}$
- Let a be expressed in Cartesian form: $a = r + j\omega_0$
- Then

$$x(t) = |C|e^{j\theta}e^{(r+j\omega_0)t} = |C|e^{rt}e^{j(\omega_0t+\theta)}$$
 (5)

Using Euler's formula, we can expand (5) further as

$$x(t) = |C|e^{rt}\cos(\omega_0 t + \theta) + j|C|e^{rt}\sin(\omega_0 t + \theta)$$
 (6)

Observations

- We observe in (6) that:
 - For r = 0, Re $\{x(t)\}$ and Im $\{x(t)\}$ are sinusoidal.
 - lacktriangleright For r>0, they are sinusoidal signals multiplied by a growing exponential.
 - For r < 0, they are sinusoidal signals multiplied by a decaying exponential.

Discrete-Time Sinusoidal

The discrete-time sinusoidal signal has the general form

$$x[n] = A\cos(\Omega_0 n + \phi)$$

- Note: In this course, we use the notation Ω instead of ω for digital frequency.
- Note: If we take n to be dimensionless, then both ϕ and Ω_0 have units of radians.

Properties

• x[n] at frequency $\Omega_0 + 2\pi k$ is the same as that at frequency Ω_0 for any integer k, since

$$A\cos[(\Omega_0 + 2\pi k)n + \phi] = A\cos(\Omega_0 n + \phi) \tag{7}$$

- We need only consider a frequency interval of length 2π in which to choose Ω_0 .
- We will use the interval $0 \le \Omega_0 \le 2\pi$ or the interval $-\pi < \Omega_0 < \pi$ on most occasions.

Properties (cont.)

- Implied by (7), the discrete-time sinusoidal signal does not have a continually increasing rate of oscillation with an increasing Ω_0 .
 - Consider Ω_0 in the interval $0 \le \Omega_0 \le 2\pi$. As illustrated in the figure on the next page:
 - For $0 \le \Omega_0 \le \pi$, the rate of oscillation \uparrow as $\Omega_0 \uparrow$.
 - For $\pi \leq \Omega_0 \leq 2\pi$, the rate of oscillation \downarrow as $\Omega_0 \uparrow$.
 - In particular, for $\Omega_0 = \pi$,

$$\cos(\pi n) = (-1)^n$$

so that this signal oscillates rapidly, changing sign at each point in time.

Properties (cont.)

Properties (cont.)

 For the discrete-time sinusoidal signal to be periodic, we must have

$$A\cos(\Omega_0 n + \phi) = A\cos(\Omega_0 n + \Omega_0 N + \phi)$$

where the period N is necessarily a positive integer.

- This requires that $\Omega_0 N = 2\pi k$, or equivalently, $\Omega_0/(2\pi) = k/N$, where k is an integer.
- Thus, the signal is periodic only if $\Omega_0/(2\pi)$ is a rational number.
- The fundamental period N_0 is given by $N_0 = 2\pi k/\Omega_0$ if N_0 and k have no factors in common.

Examples

- Is $x[n] = \cos(n/6)$ periodic?
 - Answer: $\Omega_0 = 1/6 \Rightarrow \Omega_0/(2\pi)$ is irrational \Rightarrow aperiodic.
- Is $y[n] = \cos(8\pi n/31)$ periodic?
 - Answer: $\Omega_0 = 8\pi/31 \Rightarrow \Omega_0/(2\pi)$ is rational \Rightarrow periodic.
- What is the fundamental period of y[n]?
 - Answer: $N_0 = 31$.

Discrete-Time Complex Exponential

The discrete-time complex exponential signal is defined by

$$x[n] = C\alpha^n$$

where C and α are, in general, complex numbers.

- Let C be expressed in polar form: $C = |C|e^{j\theta}$
- Let α be expressed in polar form: $\alpha = |\alpha|e^{j\Omega_0}$
- Then

$$x[n] = |C||\alpha|^n e^{j(\Omega_0 n + \theta)} \tag{8}$$

■ Using Euler's formula, we can expand (8) further as

$$x[n] = |C||\alpha|^n \cos(\Omega_0 n + \theta) + j|C||\alpha|^n \sin(\Omega_0 n + \theta)$$
 (9)

Observations

- We observe in (9) that:
 - For $|\alpha| = 1$, $\text{Re}\{x[n]\}$ and $\text{Im}\{x[n]\}$ are sinusoidal.
 - For $|\alpha| > 1$, they are sinusoidal sequences multiplied by a growing exponential.
 - For $|\alpha| < 1$, they are sinusoidal sequences multiplied by a decaying exponential.

