Lecture 5: Generalized Linear Models, MLP, and Back-Propagation

Tao LIN

March 16, 2023

Reading materials

- Chapter 3, Stanford CS 229 Lecture Notes, https://cs229.stanford.edu/notes2022fall/main_notes.pdf
- Lecture 4, Stanford CS 231n, http://cs231n.stanford.edu/schedule.html

Reference

• EPFL, CS-433 Machine Learning, https://github.com/epfml/ML_course

Table of Contents

- Review of Last Week
 - Generalization Gap and Model Selection
 - Bias-Variance Decomposition
 - Logistic Regression
- 2 Exponential Families and Generalized Linear Models
- 3 Multi-Layer Perceptron (MLP) and Back-Propagation (BP)

Table of Contents

- Review of Last Week
 - Generalization Gap and Model Selection
 - Bias-Variance Decomposition
 - Logistic Regression
- 2 Exponential Families and Generalized Linear Models
 - Motivation
 - Exponential family
 - Application in ML (Generalized Linear Models)
- 3 Multi-Layer Perceptron (MLP) and Back-Propagation (BP)
 - The Basic Structure of MLP
 - Training of NNs and BP

Generalization gap: How far is the test from the true error?

• True Error:

$$L_{\mathcal{D}}(f) = \mathbb{E}_{(y,\mathbf{x})\sim\mathcal{D}}\left[\ell\left(y,f(\mathbf{x})\right)\right]. \tag{1}$$

Test/Empirical Error:

$$L_{S_{\text{test}}}(f) = \frac{1}{|S_{\text{test}}|} \sum_{(\mathbf{x}_n, y_n) \in S_{\text{test}}} \ell(y_n, f(\mathbf{x}_n)). \tag{2}$$

• Generalization Error:

$$|L_{\mathcal{D}}(f) - L_{S_{\mathsf{test}}}(f)| . \tag{3}$$

In Expectation:

$$L_{\mathcal{D}}(f) = \mathbb{E}_{S_{\text{test}} \sim \mathcal{D}} \left[L_{S_{\text{test}}}(f) \right] , \tag{4}$$

Generalization gap: How far is the test from the true error? • True Error:

$$L_{\mathcal{D}}(f) = \mathbb{E}_{(y,\mathbf{x})\sim\mathcal{D}}\left[\ell\left(y,f(\mathbf{x})\right)\right]. \tag{1}$$

Test/Empirical Error:

$$L_{S_{\text{test}}}(f) = \frac{1}{|S_{\text{test}}|} \sum_{(\mathbf{x}, y_n) \in S_n} \ell(y_n, f(\mathbf{x}_n)). \tag{2}$$

Generalization Error:

$$|L_{\mathcal{D}}(f) - L_{S_{\mathsf{test}}}(f)|$$
 .

• In Expectation:

$$L_{\mathcal{D}}(f) = \mathbb{E}_{S_{\mathsf{test}} \sim \mathcal{D}} \left[L_{S_{\mathsf{test}}}(f) \right] \,,$$

The variation of the $|L_{\mathcal{D}}(f) - L_{S_{\mathsf{test}}}(f)|$ matters.

(3)

(4)

Given a model f and a test set $S_{\text{test}} \sim \mathcal{D}$ i.i.d. (not used to learn f) and a loss $\ell(\cdot, \cdot) \in [a, b]$:

$$\Pr\left[|L_{\mathcal{D}}(f) - L_{S_{test}}(f)| \ge \sqrt{\frac{(b-a)^2 \ln(2/\delta)}{2|S_{test}|}}\right] \le \delta \tag{5}$$

Given a model f and a test set $S_{\text{test}} \sim \mathcal{D}$ i.i.d. (not used to learn f) and a loss $\ell(\cdot, \cdot) \in [a, b]$:

$$\Pr\left[|L_{\mathcal{D}}(f) - L_{S_{test}}(f)| \ge \sqrt{\frac{(b-a)^2 \ln(2/\delta)}{2|S_{test}|}}\right] \le \delta$$
 (5)

• The error decreases as $\mathcal{O}\left(1/\sqrt{S_{\text{test}}}\right)$ with the number test points.

Given a model f and a test set $S_{\text{test}} \sim \mathcal{D}$ i.i.d. (not used to learn f) and a loss $\ell(\cdot, \cdot) \in [a, b]$:

$$\Pr\left[|L_{\mathcal{D}}(f) - L_{S_{test}}(f)| \ge \sqrt{\frac{(b-a)^2 \ln(2/\delta)}{2|S_{test}|}}\right] \le \delta \tag{5}$$

- The error decreases as $\mathcal{O}\left(1/\sqrt{S_{\text{test}}}\right)$ with the number test points.
- ⇒ The more data points we have, the more confident we are that the empirical loss we measure is close to the true loss.

Given a model f and a test set $S_{test} \sim \mathcal{D}$ i.i.d. (not used to learn f) and a loss $\ell(\cdot, \cdot) \in [a, b]$:

$$\Pr\left[|L_{\mathcal{D}}(f) - L_{S_{test}}(f)| \ge \sqrt{\frac{(b-a)^2 \ln(2/\delta)}{2|S_{test}|}}\right] \le \delta \tag{5}$$

- The error decreases as $\mathcal{O}\left(1/\sqrt{S_{\text{test}}}\right)$ with the number test points.
- The more data points we have, the more confident we are that the empirical loss we measure is close to the true loss.

Given a predictor f and a dataset S, we can control the expected risk:

$$\Pr\left[\underbrace{L_{\mathcal{D}}(f)}_{\text{not computable}} \ge \underbrace{L_{S_{\text{test}}}(f)}_{\text{computable}} + \underbrace{\sqrt{\frac{(b-a)^2 \ln(2/\delta)}{2 |S_{\text{test}}|}}}_{\text{deviation}}\right] \le \delta. \tag{6}$$

How far is each of the K test errors $L_{S_{test}}(f_k)$ from the true $L_{\mathcal{D}}(f_k)$?

Theorem 2

We can bound the maximum deviation for all K candidates, by

$$\Pr\left[\max_{k}|L_{\mathcal{D}}(f_{k})-L_{S_{test}}(f_{k})| \geq \sqrt{\frac{(b-a)^{2}\ln(2|\mathbf{K}|/\delta)}{2|S_{test}|}}\right] \leq \delta \tag{7}$$

How far is each of the K test errors $L_{S_{\text{test}}}(f_k)$ from the true $L_{\mathcal{D}}(f_k)$?

Theorem 2

We can bound the maximum deviation for all K candidates, by

$$\Pr\left[\max_{k} |L_{\mathcal{D}}(f_k) - L_{S_{test}}(f_k)| \ge \sqrt{\frac{(b-a)^2 \ln(2|K|/\delta)}{2|S_{test}|}}\right] \le \delta$$
 (7)

• The error decreases as $\mathcal{O}(1/\sqrt{|S_{\text{test}}|})$ with the number test points.

How far is each of the K test errors $L_{S_{\text{test}}}(f_k)$ from the true $L_{\mathcal{D}}(f_k)$?

Theorem 2

We can bound the maximum deviation for all K candidates, by

$$\Pr\left[\max_{k}|L_{\mathcal{D}}(f_{k})-L_{S_{test}}(f_{k})| \geq \sqrt{\frac{(b-a)^{2}\ln(2|K|/\delta)}{2|S_{test}|}}\right] \leq \delta$$
 (7)

- The error decreases as $\mathcal{O}(1/\sqrt{|S_{\text{test}}|})$ with the number test points.
- When testing *K* hyper-parameters, the error only goes up by $\sqrt{\ln(K)}$.

How far is each of the K test errors $L_{S_{\text{test}}}(f_k)$ from the true $L_{\mathcal{D}}(f_k)$?

Theorem 2

We can bound the maximum deviation for all K candidates, by

$$\Pr\left[\max_{k}|L_{\mathcal{D}}(f_{k})-L_{S_{test}}(f_{k})| \geq \sqrt{\frac{(b-a)^{2}\ln(2|K|/\delta)}{2|S_{test}|}}\right] \leq \delta$$
 (7)

- The error decreases as $\mathcal{O}(1/\sqrt{|S_{\text{test}}|})$ with the number test points.
- When testing *K* hyper-parameters, the error only goes up by $\sqrt{\ln(K)}$.
- ⇒ So we can test many different models without incurring a large penalty.

Issues: Splitting the data once into two parts (one for training and one for testing) is not the most efficient way to use the data!

K-fold cross-validation:

- Randomly partition the data into *K* groups
- 2 Train K times. Each time leave out exactly one of the K groups for testing and use the remaining K – 1 groups for training.
- 3 Average the K results

run 1 run 2 run 3 run 4

Benefits:

Issues: Splitting the data once into two parts (one for training and one for testing) is not the most efficient way to use the data!

K-fold cross-validation:

- Randomly partition the data into K groups
- 2 Train K times. Each time leave out exactly one of the K groups for testing and use the remaining K-1 groups for training.
- 3 Average the K results

Benefits:

 We have used all data for training, and all data for testing, and used each data point the same number of times.

Issues: Splitting the data once into two parts (one for training and one for testing) is not the most efficient way to use the data!

K-fold cross-validation:

- Randomly partition the data into K groups
- 2 Train K times. Each time leave out exactly one of the K groups for testing and use the remaining K-1 groups for training.
- 3 Average the K results

Benefits:

- We have used all data for training, and all data for testing, and used each data point the same number of times.
- Cross-validation returns an unbiased estimate of the generalization error and its variance.

Table of Contents

- Review of Last Week
 - Generalization Gap and Model Selection
 - Bias-Variance Decomposition
 - Logistic Regression
- 2 Exponential Families and Generalized Linear Models
 - Motivation
 - Exponential family
 - Application in ML (Generalized Linear Models)
- 3 Multi-Layer Perceptron (MLP) and Back-Propagation (BP)
 - The Basic Structure of MLF
 - Training of NNs and BP

Bias-Variance Decomposition

$$\begin{split} \mathbb{E}_{S_{\text{train}} \in \mathcal{D}} \left[L(f_{S_{\text{train}}}) \right] &= \text{Var}_{\boldsymbol{\epsilon} \sim \mathcal{D}_{\boldsymbol{\epsilon}}} [\boldsymbol{\epsilon}] & \text{(noise variance)} \\ &+ \left(f(\mathbf{x}_0) - \mathbb{E}_{S_{\text{train'}}} \left[f_{S_{\text{train'}}} (\mathbf{x}_0) \right] \right)^2 & \text{(Bias)} \\ &+ \mathbb{E}_{S_{\text{train}} \sim \mathcal{D}} \left[\left(\mathbb{E}_{S_{\text{train'}}} \left[f_{S_{\text{train'}}} (\mathbf{x}_0) \right] - f_{S_{\text{train}}} (\mathbf{x}_0) \right)^2 \right] \,, & \text{(Variance)} \end{split}$$

which always lower-bounds the true error.

Bias-Variance Decomposition

$$\begin{split} \mathbb{E}_{S_{\text{train}} \in \mathcal{D}} \left[L(f_{S_{\text{train}}}) \right] &= \text{Var}_{\boldsymbol{\epsilon} \sim \mathcal{D}_{\boldsymbol{\epsilon}}} [\boldsymbol{\epsilon}] & \text{(noise variance)} \\ &+ \left(f(\mathbf{x}_0) - \mathbb{E}_{S_{\text{train'}}} \left[f_{S_{\text{train'}}} (\mathbf{x}_0) \right] \right)^2 & \text{(Bias)} \\ &+ \mathbb{E}_{S_{\text{train}} \sim \mathcal{D}} \left[\left(\mathbb{E}_{S_{\text{train'}}} \left[f_{S_{\text{train'}}} (\mathbf{x}_0) \right] - f_{S_{\text{train}}} (\mathbf{x}_0) \right)^2 \right] \,, & \text{(Variance)} \end{split}$$

which always lower-bounds the true error.

 \Rightarrow To minimize the true error, we need to select a method that **simultaneously achieves** low bias and low variance.

Double descent curve in Deep Learning

Table of Contents

- Review of Last Week
 - Generalization Gap and Model Selection
 - Bias-Variance Decomposition
 - Logistic Regression
- 2 Exponential Families and Generalized Linear Models
 - Motivation
 - Exponential family
 - Application in ML (Generalized Linear Models)
- 3 Multi-Layer Perceptron (MLP) and Back-Propagation (BP)
 - The Basic Structure of MLF
 - Training of NNs and BP

The logistic function

Consider first of all the case of two classes.

The posterior probability for class C_1 :

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$
(8)

$$= \frac{1}{1 + \exp(-\eta)} = \sigma(\eta)$$
 (9)

Properties of the logistic function:

•
$$1 - \sigma(\eta) = \sigma(-\eta)$$

•
$$\sigma'(\eta) = \sigma(\eta) (1 - \sigma(\eta))$$

The logistic function

Consider first of all the case of two classes.

The posterior probability for class C_1 :

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$
(8)

$$=\frac{1}{1+\exp(-\eta)}=\sigma(\eta) \tag{9}$$

where we have defined

$$\eta = \ln rac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$
 and $\sigma(\eta) := rac{e^{\eta}}{1+e^{\eta}}$ (10)

Properties of the logistic function:

- $1 \sigma(\eta) = \sigma(-\eta)$
- $\sigma'(\eta) = \sigma(\eta) (1 \sigma(\eta))$

The logistic function

Consider first of all the case of two classes.

The posterior probability for class C_1 :

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$
(8)

$$=\frac{1}{1+\exp(-\eta)}=\sigma(\eta) \tag{9}$$

where we have defined

$$\eta=\lnrac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$
 and $\sigma(\eta):=rac{e^{\eta}}{1+e^{\eta}}$ (10)

For the case of K > 2 classes, we have

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_j p(\mathbf{x}|C_j)p(C_j)} = \frac{\exp(\eta_k)}{\sum_j \exp(\eta_j)}$$
(11)

Properties of the logistic function:

•
$$1 - \sigma(\eta) = \sigma(-\eta)$$

•
$$\sigma'(\eta) = \sigma(\eta) (1 - \sigma(\eta))$$

Logistic Regression

Given a "new" feature vector x, we predict the (posterior) probability of the two class labels given x by means of

$$p(1|\mathbf{x}) := \Pr\left[Y = 1|\mathbf{X} = \mathbf{x}\right] = \sigma\left(\mathbf{x}^{\top}\mathbf{w} + w_0\right)$$
(12)

$$p(0|\mathbf{x}) := \Pr\left[Y = 0|\mathbf{X} = \mathbf{x}\right] = 1 - \sigma\left(\mathbf{x}^{\mathsf{T}}\mathbf{w} + w_0\right), \tag{13}$$

where we predict a real value (a probability) and not a label.

MLE is a method of estimating the parameters of a statistical model

The MLE finds the parameters \mathbf{w}^* under which $\{\mathbf{y}, \mathbf{X}\}$ are the most likely:

$$\mathbf{w}^{\star} = \arg\max_{\mathbf{w}} \left(\mathcal{L}(\mathbf{w}) := \prod_{n=1}^{N} p(\{\mathbf{x}_{n}, y_{n}\} | \mathbf{w}) \right) = \arg\min_{\mathbf{w}} \left[-\log \mathcal{L}(\mathbf{w}) \right]. \tag{14}$$

MLE is a method of estimating the parameters of a statistical model

The MLE finds the parameters \mathbf{w}^* under which $\{\mathbf{y}, \mathbf{X}\}$ are the most likely:

$$\mathbf{w}^{\star} = \arg\max_{\mathbf{w}} \left(\mathcal{L}(\mathbf{w}) := \prod_{n=1}^{N} p(\{\mathbf{x}_{n}, y_{n}\} | \mathbf{w}) \right) = \arg\min_{\mathbf{w}} \left[-\log \mathcal{L}(\mathbf{w}) \right]. \tag{14}$$

The likelihood of the data $\{y, X\}$ given the parameter w, i.e., p(y, X|w).

$$p(\mathbf{y}, \mathbf{X}|\mathbf{w}) = p(\mathbf{X}|\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = p(\mathbf{X})p(\mathbf{y}|\mathbf{X}, \mathbf{w}),$$
(15)

where X does not depend on w.

MLE for Logistic Regression

For Logistic Regression, we have:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} p(y_n|\mathbf{x}_n) = \prod_{n:y_n=1} p(y_n = 1|\mathbf{x}_n) \prod_{n:y_n=0} p(y_n = 0|\mathbf{x}_n)$$

$$= \prod_{n=1}^{N} \sigma(\mathbf{x}_n^{\top} \mathbf{w})^{y_n} \left[1 - \sigma(\mathbf{x}_n^{\top} \mathbf{w})\right]^{1-y_n}$$
(16)

MLE for Logistic Regression

For Logistic Regression, we have:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} p(y_n|\mathbf{x}_n) = \prod_{n:y_n=1} p(y_n = 1|\mathbf{x}_n) \prod_{n:y_n=0} p(y_n = 0|\mathbf{x}_n)$$

$$= \prod_{n=1}^{N} \sigma(\mathbf{x}_n^{\top} \mathbf{w})^{y_n} \left[1 - \sigma(\mathbf{x}_n^{\top} \mathbf{w}) \right]^{1-y_n}$$
(17)

Minimizing $\mathcal{L}(\mathbf{w})$ through the property of stationary points.

$$\nabla \mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \left(\sigma(\mathbf{x}_n^{\top} \mathbf{w}) - y_n \right) = \frac{1}{N} \mathbf{X}^{\top} \left[\sigma(\mathbf{X} \mathbf{w}) - \mathbf{y} \right], \tag{18}$$

where $\mathbf{X} \in \mathbb{R}^{N \times d}$. It has no closed-form solution to $\nabla \mathcal{L}(\mathbf{w}) = 0$.

Last lecture:

- Generalization Gap and Model Selection
- Bias-Variance Decomposition
- Before Introducing Multilayer Perceptron: Logistic Regression

Last lecture:

- Generalization Gap and Model Selection
- Bias-Variance Decomposition
- Before Introducing Multilayer Perceptron: Logistic Regression

This lecture:

- Exponential Families and Generalized Linear Models
- Multi-Layer Perceptron
- Back-Propagation

Table of Contents

- 1 Review of Last Week
- 2 Exponential Families and Generalized Linear Models
 - Motivation
 - Exponential family
 - Application in ML (Generalized Linear Models)
- 3 Multi-Layer Perceptron (MLP) and Back-Propagation (BP)

Table of Contents

- 1 Review of Last Week
 - Generalization Gap and Model Selection
 - Bias-Variance Decomposition
 - Logistic Regression
- 2 Exponential Families and Generalized Linear Models
 - Motivation
 - Exponential family
 - Application in ML (Generalized Linear Models)
- 3 Multi-Layer Perceptron (MLP) and Back-Propagation (BP)
 - The Basic Structure of MLF
 - Training of NNs and BP

The Least-Squares can be defined in two different ways

Geometric way:

Minimizing the sum of the squares of the residuals:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2N} \sum_{n=1}^{N} (y_n - \mathbf{x}_n^{\top} \mathbf{w})^2$$
 (19)

The Least-Squares can be defined in two different ways

Geometric way:

Minimizing the sum of the squares of the residuals:

$$\hat{\mathbf{w}} = \operatorname*{arg\,min}_{\mathbf{w}} \frac{1}{2N} \sum_{n=1}^{N} (y_n - \mathbf{x}_n^{\top} \mathbf{w})^2$$
 (19)

Probabilistic way:

Assume the data follow a linear Gaussian model:

$$\mathbf{y} = \mathbf{x}^{\top} \mathbf{w} + \boldsymbol{\epsilon} \text{ where } \boldsymbol{\epsilon} \sim \mathcal{N}(0, \boldsymbol{\sigma}^2)$$
 (20)

The Least-Squares can be defined in two different ways

Geometric way:

Minimizing the sum of the squares of the residuals:

$$\hat{\mathbf{w}} = \operatorname*{arg\,min}_{\mathbf{w}} \frac{1}{2N} \sum_{n=1}^{N} (y_n - \mathbf{x}_n^{\top} \mathbf{w})^2$$
 (19)

Probabilistic way:

Assume the data follow a linear Gaussian model:

$$\mathbf{y} = \mathbf{x}^{\top} \mathbf{w} + \boldsymbol{\epsilon} \text{ where } \boldsymbol{\epsilon} \sim \mathcal{N}(0, \boldsymbol{\sigma}^2)$$
 (20)

Doing MLE recovers the LS estimator $\hat{\mathbf{w}}$.

• Features augmentations: add non-linear features $(x, x^2, x^3, ...)$

- Features augmentations: add non-linear features $(x, x^2, x^3, ...)$
- Different probabilistic models:

- Features augmentations: add non-linear features $(x, x^2, x^3, ...)$
- Different probabilistic models:
 - Least Squares: $y \sim \mathcal{N}\left(\mathbf{x}^{\top}\mathbf{w}, \boldsymbol{\sigma}^{2}\right)$

- Features augmentations: add non-linear features $(x, x^2, x^3, ...)$
- Different probabilistic models:
 - Least Squares: $y \sim \mathcal{N}\left(\mathbf{x}^{\top}\mathbf{w}, \boldsymbol{\sigma}^{2}\right)$
 - \Rightarrow The linear model predicts the mean of a distribution μ (from which the data are sampled).

- Features augmentations: add non-linear features $(x, x^2, x^3, ...)$
- Different probabilistic models:
 - Least Squares: $y \sim \mathcal{N}\left(\mathbf{x}^{\top}\mathbf{w}, \boldsymbol{\sigma}^{2}\right)$
 - \Rightarrow The linear model predicts the mean of a distribution μ (from which the data are sampled).
 - Logistic Regression: $y \sim \mathcal{B}\left(\sigma(\mathbf{x}^{\top}\mathbf{w})\right)$

- Features augmentations: add non-linear features $(x, x^2, x^3, ...)$
- Different probabilistic models:
 - Least Squares: $y \sim \mathcal{N}\left(\mathbf{x}^{\top}\mathbf{w}, \boldsymbol{\sigma}^{2}\right)$
 - \Rightarrow The linear model predicts the mean of a distribution μ (from which the data are sampled).
 - Logistic Regression: $y \sim \mathcal{B}\left(\sigma(\mathbf{x}^{\top}\mathbf{w})\right)$
 - \Rightarrow The linear model predicts another quantity $\eta := \mathbf{x}^{\top} \mathbf{w}$.

Logistic Regression models the probability of the two classes $\{0,1\}$ by

$$p(1|\eta) = \sigma(\eta) \text{ and } p(0|\eta) = 1 - \sigma(\eta),$$
 (21)

where $\eta = \mathbf{x}^{\top} \mathbf{w}$.

Logistic Regression models the probability of the two classes $\{0,1\}$ by

$$p(1|\eta) = \sigma(\eta) \text{ and } p(0|\eta) = 1 - \sigma(\eta),$$
 (21)

$$p(y|\eta) = \frac{e^{\eta y}}{1 + e^{\eta}} = \exp(\eta y - \ln(1 + e^{\eta}))$$
 (22)

Logistic Regression models the probability of the two classes $\{0,1\}$ by

$$p(1|\eta) = \sigma(\eta) \text{ and } p(0|\eta) = 1 - \sigma(\eta),$$
 (21)

where $\eta = \mathbf{x}^{\mathsf{T}}\mathbf{w}$. This can be compactly written as

$$p(y|\eta) = \frac{e^{\eta y}}{1 + e^{\eta}} = \exp(\eta y - \ln(1 + e^{\eta}))$$
 (22)

• The linear model predicts $\sigma(\eta)$ which is not the mean of the distribution.

Logistic Regression models the probability of the two classes $\{0,1\}$ by

$$p(1|\eta) = \sigma(\eta) \text{ and } p(0|\eta) = 1 - \sigma(\eta),$$
 (21)

$$p(y|\eta) = \frac{e^{\eta y}}{1 + e^{\eta}} = \exp(\eta y - \ln(1 + e^{\eta}))$$
 (22)

- The linear model predicts $\sigma(\eta)$ which is not the mean of the distribution.
- η is related to the mean μ by the non-linear relation

Logistic Regression models the probability of the two classes $\{0,1\}$ by

$$p(1|\eta) = \sigma(\eta) \text{ and } p(0|\eta) = 1 - \sigma(\eta),$$
 (21)

$$p(y|\eta) = \frac{e^{\eta y}}{1 + e^{\eta}} = \exp(\eta y - \ln(1 + e^{\eta}))$$
 (22)

- The linear model predicts $\sigma(\eta)$ which is not the mean of the distribution.
- η is related to the mean μ by the non-linear relation
- → The link function:

Logistic Regression models the probability of the two classes $\{0,1\}$ by

$$p(1|\eta) = \sigma(\eta) \text{ and } p(0|\eta) = 1 - \sigma(\eta),$$
 (21)

$$p(y|\eta) = \frac{e^{\eta y}}{1 + e^{\eta}} = \exp(\eta y - \ln(1 + e^{\eta}))$$
 (22)

- The linear model predicts $\sigma(\eta)$ which is not the mean of the distribution.
- η is related to the mean μ by the non-linear relation
- \Rightarrow The *link function*: the relation between (1) the value η we predict by the linear model and (2) the mean μ .

The distribution used in Logistic Regression can be written in a very specific form:

$$p(y|\eta) = \frac{e^{\eta y}}{1 + e^{\eta}} = \exp(\eta y - \ln(1 + e^{\eta}))$$
 (23)

The distribution used in Logistic Regression can be written in a very specific form:

$$p(y|\eta) = \frac{e^{\eta y}}{1 + e^{\eta}} = \exp(\eta y - \ln(1 + e^{\eta}))$$
 (23)

Goals: a unified framework to generalize other forms of distributions.

The distribution used in Logistic Regression can be written in a very specific form:

$$p(y|\eta) = \frac{e^{\eta y}}{1 + e^{\eta}} = \exp(\eta y - \ln(1 + e^{\eta}))$$
 (23)

Goals: a unified framework to generalize other forms of distributions.

• The discussion on a class of distributions, known as exponential families.

The distribution used in Logistic Regression can be written in a very specific form:

$$p(y|\eta) = \frac{e^{\eta y}}{1 + e^{\eta}} = \exp(\eta y - \ln(1 + e^{\eta}))$$
 (23)

Goals: a unified framework to generalize other forms of distributions.

- The discussion on a class of distributions, known as exponential families.
- Many distributions (but not all) fit into this framework and that distributions in this family have many nice properties.

Table of Contents

- 1 Review of Last Week
 - Generalization Gap and Model Selection
 - Bias-Variance Decomposition
 - Logistic Regression
- 2 Exponential Families and Generalized Linear Models
 - Motivation
 - Exponential family
 - Application in ML (Generalized Linear Models)
- 3 Multi-Layer Perceptron (MLP) and Back-Propagation (BP)
 - The Basic Structure of MLF
 - Training of NNs and BP

$$p(y|\boldsymbol{\eta}) = \underbrace{h(y)}_{>0} \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (24)

¹Assume that we are given independent samples from this distribution. We do know $\phi(y)$ and h(y) but not η . In order to optimally estimate η given these samples, all we need is the empirical average of the $\phi(y)$.

A distribution belongs to the exponential family if it can be written in the form

$$p(y|\boldsymbol{\eta}) = \underbrace{h(y)}_{>0} \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (24)

• natural or canonical parameter of the distribution η

¹Assume that we are given independent samples from this distribution. We do know $\phi(y)$ and h(y) but not η . In order to optimally estimate η given these samples, all we need is the empirical average of the $\phi(y)$.

$$p(y|\boldsymbol{\eta}) = \underbrace{h(y)}_{>0} \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (24)

- ullet natural or canonical parameter of the distribution η
- sufficient statistics $\phi(y)$ contains all the relevant information

¹Assume that we are given independent samples from this distribution. We do know $\phi(y)$ and h(y) but not η . In order to optimally estimate η given these samples, all we need is the empirical average of the $\phi(y)$.

$$p(y|\boldsymbol{\eta}) = \underbrace{h(y)}_{>0} \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (24)

- ullet natural or canonical parameter of the distribution η
- sufficient statistics $\phi(y)$ contains all the relevant information
- $A(\eta)$: log partition, the quantity $e^{-A(\eta)}$ is used as a normalization constant:

¹Assume that we are given independent samples from this distribution. We do know $\phi(y)$ and h(y) but not η . In order to optimally estimate η given these samples, all we need is the empirical average of the $\phi(y)$.

$$p(y|\boldsymbol{\eta}) = \underbrace{h(y)}_{>0} \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (24)

- ullet natural or canonical parameter of the distribution η
- sufficient statistics $\phi(y)$ contains all the relevant information
- $A(\eta)$: log partition, the quantity $e^{-A(\eta)}$ is used as a normalization constant:

$$\int p(y|\boldsymbol{\eta})dy = \int h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right] dy = 1$$
 (25)

¹Assume that we are given independent samples from this distribution. We do know $\phi(y)$ and h(y) but not η . In order to optimally estimate η given these samples, all we need is the empirical average of the $\phi(y)$.

$$p(y|\boldsymbol{\eta}) = \underbrace{h(y)}_{>0} \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (24)

- natural or canonical parameter of the distribution η
- sufficient statistics $\phi(y)$ contains all the relevant information
- $A(\eta)$: log partition, the quantity $e^{-A(\eta)}$ is used as a normalization constant:

$$\int p(y|\boldsymbol{\eta})dy = \int h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right] dy = 1$$
 (25)

$$\implies \int h(y) \exp \left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) \right] dy = \int h(y) \exp \left[A(\boldsymbol{\eta}) \right] dy = \exp \left[A(\boldsymbol{\eta}) \right].$$

¹Assume that we are given independent samples from this distribution. We do know $\phi(y)$ and h(y) but not η . In order to optimally estimate η given these samples, all we need is the empirical average of the $\phi(y)$.

$$p(y|\boldsymbol{\eta}) = \underbrace{h(y)}_{>0} \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (26)

$$p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (26)

• A fixed choice of $\phi(y)$, $A(\eta)$ and h(y) defines a family of distributions (parameterized by η).

$$p(y|\boldsymbol{\eta}) = \underbrace{h(y)}_{>0} \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (26)

- A fixed choice of $\phi(y)$, $A(\eta)$ and h(y) defines a family of distributions (parameterized by η).
- As we very η , we then get different distribution within this family.

$$p(y|\boldsymbol{\eta}) = \underbrace{h(y)}_{>0} \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (26)

- A fixed choice of $\phi(y)$, $A(\eta)$ and h(y) defines a family of distributions (parameterized by η).
- As we very η , we then get different distribution within this family.
- For some parameters η , there exists some $h(y) \exp \left[\eta^\top \phi(y) \right]$ that cannot be normalized.

$$p(y|\boldsymbol{\eta}) = \underbrace{h(y)}_{>0} \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (26)

- A fixed choice of $\phi(y)$, $A(\eta)$ and h(y) defines a family of distributions (parameterized by η).
- As we very η , we then get different distribution within this family.
- For some parameters η , there exists some $h(y) \exp \left[\eta^\top \phi(y) \right]$ that cannot be normalized.

For example, h(y) = 1, $\phi(y) = y^2$ and $\eta = 1$.

$$p(y|\boldsymbol{\eta}) = \underbrace{h(y)}_{>0} \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (26)

- A fixed choice of $\phi(y)$, $A(\eta)$ and h(y) defines a family of distributions (parameterized by η).
- As we very η , we then get different distribution within this family.
- For some parameters η , there exists some $h(y) \exp \left[\eta^\top \phi(y) \right]$ that cannot be normalized.

For example, h(y) = 1, $\phi(y) = y^2$ and $\eta = 1$.

We will exclude such parameters by only looking at the set of parameters

$$M := \left\{ \boldsymbol{\eta} : \int_{y} h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y)\right] dy < \infty \right\}$$
 (27)

Why?

$$p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right] \tag{28}$$

Recall: A distribution belongs to the exponential family if it can be written in the form

$$p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (28)

The Bernoulli distribution is the binary random variable such that for $\mu \in [0,1]$:

$$Pr(Y = 1) = \mu$$
 and $Pr(Y = 0) = 1 - \mu$ (29)

Recall: A distribution belongs to the exponential family if it can be written in the form

$$p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right] \tag{28}$$

The Bernoulli distribution is the binary random variable such that for $\mu \in [0,1]$:

$$Pr(Y = 1) = \mu$$
 and $Pr(Y = 0) = 1 - \mu$ (29)

Claim: the Bernoulli distribution is a member of the exponential family.

$$p(y|\mu) = \mu^y (1-\mu)^{1-y}$$
, where $\mu \in (0,1)$ (30)

$$= \exp\left\{ (\ln \frac{\mu}{1-\mu})y + \ln(1-\mu) \right\} = \exp\left\{ \eta \phi(y) - A(\eta) \right\}.$$
 (31)

Recall: A distribution belongs to the exponential family if it can be written in the form

$$p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (28)

The Bernoulli distribution is the binary random variable such that for $\mu \in [0,1]$:

$$Pr(Y = 1) = \mu$$
 and $Pr(Y = 0) = 1 - \mu$ (29)

Claim: the Bernoulli distribution is a member of the exponential family.

$$p(y|\mu) = \mu^y (1-\mu)^{1-y}$$
, where $\mu \in (0,1)$ (30)

$$= \exp\left\{ (\ln \frac{\mu}{1-\mu}) y + \ln(1-\mu) \right\} = \exp\left\{ \eta \phi(y) - A(\eta) \right\}.$$
 (31)

where we can identify:

$$\phi(y) = y$$
, $\eta = \ln \frac{\mu}{1-\mu}$, $A(\eta) = -\ln(1-\mu) = \ln(1+e^{\eta})$, $h(y) = 1$. (32)

Bernoulli distributions belong to the exponential family

Recall: A distribution belongs to the exponential family if it can be written in the form

$$p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
 (28)

The Bernoulli distribution is the binary random variable such that for $\mu \in [0,1]$:

$$\Pr(Y = 1) = \mu$$
 and $\Pr(Y = 0) = 1 - \mu$ (29)

Claim: the Bernoulli distribution is a member of the exponential family.

$$p(y|\mu) = \mu^y (1-\mu)^{1-y}$$
, where $\mu \in (0,1)$ (30)

$$= \exp\left\{ (\ln \frac{\mu}{1-\mu}) y + \ln(1-\mu) \right\} = \exp\left\{ \eta \phi(y) - A(\eta) \right\}.$$
 (31)

where we can identify:

$$\phi(y) = y$$
, $\eta = \ln \frac{\mu}{1-\mu}$, $A(\eta) = -\ln(1-\mu) = \ln(1+e^{\eta})$, $h(y) = 1$. (32)

$$\Rightarrow \eta = g(\mu) = \ln \frac{\mu}{1-\mu} \iff \mu = g^{-1}(\eta) = \frac{e^{\eta}}{1+e^{\eta}}$$
, and $g(\mu)$ links the mean of $\phi(y)$ to η .

Recall: A distribution belongs to the exponential family if it can be written in the form

$$p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right] \tag{33}$$

Recall: A distribution belongs to the exponential family if it can be written in the form

$$p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
(33)

Recall: A distribution belongs to the exponential family if it can be written in the form

$$p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
(33)

$$p(y|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, \qquad \mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+$$
(34)

$$= \exp\left[(\mu/\sigma^2, -1/(2\sigma^2))(y, y^2)^\top - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2) \right]. \tag{35}$$

Recall: A distribution belongs to the exponential family if it can be written in the form

$$p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right] \tag{33}$$

$$p(y|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, \qquad \mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+$$
(34)

$$= \exp\left[(\mu/\sigma^2, -1/(2\sigma^2))(y, y^2)^\top - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2) \right]. \tag{35}$$

$$\phi(y) = (y, y^2)^{\top}, \qquad \eta = (\eta_1 = \mu/\sigma^2, \eta_2 = -1/(2\sigma^2))^{\top},$$
 (36)

$$A(\eta) = -\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\ln(-\eta_2/\pi), \quad h(y) = 1.$$
 (37)

Recall: A distribution belongs to the exponential family if it can be written in the form

$$p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$$
(33)

$$p(y|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, \qquad \mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+$$
(34)

$$= \exp\left[(\mu/\sigma^2, -1/(2\sigma^2))(y, y^2)^\top - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2) \right]. \tag{35}$$

$$\phi(y) = (y, y^2)^{\top}, \qquad \eta = (\eta_1 = \mu/\sigma^2, \eta_2 = -1/(2\sigma^2))^{\top},$$
 (36)

$$A(\eta) = -\frac{\eta_1^2}{4m} - \frac{1}{2}\ln(-\eta_2/\pi), \quad h(y) = 1.$$
 (37)

Link function
$$(\eta := g(\mu))$$
: $\eta_1 = \frac{\mu}{\sigma^2}, \eta_2 = -\frac{1}{2\sigma^2} \iff \mu = -\frac{\eta_1}{2\eta_2}, \sigma^2 = -\frac{1}{2\eta_2}$.

• Cumulant $A(\eta)$ is convex.

- Cumulant $A(\eta)$ is convex.
- $\nabla A(\boldsymbol{\eta}) = \mathbb{E}\left[\boldsymbol{\phi}(y)\right]$

- Cumulant $A(\eta)$ is convex.
- $\nabla A(\boldsymbol{\eta}) = \mathbb{E}\left[\boldsymbol{\phi}(\boldsymbol{y})\right]$
- $\bullet \ \nabla^2 A(\boldsymbol{\eta}) = \mathbb{E}\left[\boldsymbol{\phi}(y)\boldsymbol{\phi}(y)^\top\right] \mathbb{E}\left[\boldsymbol{\phi}(y)\right]\mathbb{E}\left[\boldsymbol{\phi}(y)\right]^\top$

- Cumulant $A(\eta)$ is convex.
- $\nabla A(\boldsymbol{\eta}) = \mathbb{E}\left[\boldsymbol{\phi}(y)\right]$
- $\nabla^2 A(\boldsymbol{\eta}) = \mathbb{E}\left[\phi(y)\phi(y)^\top\right] \mathbb{E}\left[\phi(y)\right]\mathbb{E}\left[\phi(y)\right]^\top$
- There is a 1-1 relationship between the "mean" $\mu := \mathbb{E}\left[\phi(y)\right]$ and natural parameter η , defined using a so-called *link function* \mathbf{g} :

- Cumulant $A(\eta)$ is convex.
- $\nabla A(\boldsymbol{\eta}) = \mathbb{E}\left[\boldsymbol{\phi}(y)\right]$
- $\nabla^2 A(\boldsymbol{\eta}) = \mathbb{E}\left[\phi(y)\phi(y)^\top\right] \mathbb{E}\left[\phi(y)\right]\mathbb{E}\left[\phi(y)\right]^\top$
- There is a 1-1 relationship between the "mean" $\mu := \mathbb{E} \left[\phi(y) \right]$ and natural parameter η , defined using a so-called *link function* \mathbf{g} :

$$\eta = \mathbf{g}(\mu := \mathbb{E}[\phi(y)]) \Longleftrightarrow \mu = \mathbf{g}^{-1}(\eta) = \nabla A(\eta)$$
(38)

Table of Contents

- 1 Review of Last Week
 - Generalization Gap and Model Selection
 - Bias-Variance Decomposition
 - Logistic Regression
- 2 Exponential Families and Generalized Linear Models
 - Motivation
 - Exponential family
 - Application in ML (Generalized Linear Models)
- 3 Multi-Layer Perceptron (MLP) and Back-Propagation (BP)
 - The Basic Structure of MLF
 - Training of NNs and BP

Assume a set of iid samples $\{y_n\}_{n=1}^N$, sampled from a member of the exponential family with given h(y), sufficient statistics $\phi(y)$, but unknown parameter η .

Assume a set of iid samples $\{y_n\}_{n=1}^N$, sampled from a member of the exponential family with given h(y), sufficient statistics $\phi(y)$, but unknown parameter η .

Goal: Estimate the natural parameter η .

Assume a set of iid samples $\{y_n\}_{n=1}^N$, sampled from a member of the exponential family with given h(y), sufficient statistics $\phi(y)$, but unknown parameter η .

Goal: Estimate the natural parameter η .

How: MLE for $p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$.

Assume a set of iid samples $\{y_n\}_{n=1}^N$, sampled from a member of the exponential family with given h(y), sufficient statistics $\phi(y)$, but unknown parameter η .

Goal: Estimate the natural parameter η .

How: MLE for $p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$.

$$\mathcal{L}(\boldsymbol{\eta}) = -\frac{1}{N} \ln \left(p(y|\boldsymbol{\eta}) \right) \tag{39}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \left[-\ln\left(h(y_n)\right) - \boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y_n) + A(\boldsymbol{\eta}) \right]. \tag{40}$$

Assume a set of iid samples $\{y_n\}_{n=1}^N$, sampled from a member of the exponential family with given h(y), sufficient statistics $\phi(y)$, but unknown parameter η .

Goal: Estimate the natural parameter η .

How: MLE for $p(y|\boldsymbol{\eta}) = h(y) \exp\left[\boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y) - A(\boldsymbol{\eta})\right]$.

$$\mathcal{L}(\boldsymbol{\eta}) = -\frac{1}{N} \ln \left(p(y|\boldsymbol{\eta}) \right) \tag{39}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \left[-\ln\left(h(y_n)\right) - \boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y_n) + A(\boldsymbol{\eta}) \right]. \tag{40}$$

 \Rightarrow The cost function \mathcal{L} is a convex function in η since $A(\eta)$ is convex.

$$\mathcal{L}(\boldsymbol{\eta}) = \frac{1}{N} \sum_{n=1}^{N} \left[-\ln\left(h(y_n)\right) - \boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y_n) + A(\boldsymbol{\eta}) \right]$$
 (41)

²It says that we should pick η s.t. the expected value of the sufficient statistics is equal to its empirical value!

$$\mathcal{L}(\boldsymbol{\eta}) = \frac{1}{N} \sum_{n=1}^{N} \left[-\ln \left(h(y_n) \right) - \boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y_n) + A(\boldsymbol{\eta}) \right]$$
 (41)

Gradient:

$$\nabla_{\boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\eta}) = -\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{\phi}(y_n) + \mathbb{E}\left[\boldsymbol{\phi}(y)\right] , \qquad (42)$$

²It says that we should pick η s.t. the expected value of the sufficient statistics is equal to its empirical value!

Given the definition

$$\mathcal{L}(\boldsymbol{\eta}) = \frac{1}{N} \sum_{n=1}^{N} \left[-\ln(h(y_n)) - \boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y_n) + A(\boldsymbol{\eta}) \right]$$
 (41)

Gradient:

$$\nabla_{\boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\eta}) = -\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{\phi}(y_n) + \mathbb{E} \left[\boldsymbol{\phi}(y) \right] , \qquad (42)$$

Stationary point:2

²It says that we should pick η s.t. the expected value of the sufficient statistics is equal to its empirical value!

Given the definition

$$\mathcal{L}(\boldsymbol{\eta}) = \frac{1}{N} \sum_{n=1}^{N} \left[-\ln\left(h(y_n)\right) - \boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y_n) + A(\boldsymbol{\eta}) \right]$$
 (41)

Gradient:

$$\nabla_{\boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\eta}) = -\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{\phi}(y_n) + \mathbb{E} \left[\boldsymbol{\phi}(y) \right] , \qquad (42)$$

Stationary point:2

$$\mu := \mathbb{E}\left[\phi(y)\right] = \frac{1}{N} \sum_{n=1}^{N} \phi(y_n),$$
 (43)

²It says that we should pick η s.t. the expected value of the sufficient statistics is equal to its empirical value!

Given the definition

Closed-form: assume we have determined the link function $g(\mu) = \eta$

Gradient:

Stationary point:2

$$oldsymbol{\mu} := \mathbb{E}\left[oldsymbol{\phi}(y)
ight] = rac{1}{N} \sum_{n=1}^{N} oldsymbol{\phi}(y_n) \,,$$

 $\mathcal{L}(\boldsymbol{\eta}) = \frac{1}{N} \sum_{n=1}^{N} \left[-\ln \left(h(y_n) \right) - \boldsymbol{\eta}^{\top} \boldsymbol{\phi}(y_n) + A(\boldsymbol{\eta}) \right]$

 $\nabla_{\mathbf{n}} \mathcal{L}(\mathbf{n}) = -\frac{1}{N} \sum_{n=1}^{N} \phi(y_n) + \mathbb{E} \left[\phi(y)\right],$

 $\eta = \mathbf{g}\left(\frac{1}{N}\sum_{n=1}^{N}\phi(y_n)\right),$

(41)

(42)

(43)

(44)

and justify why we called $\phi(y)$ a sufficient statistics. ²It says that we should pick η s.t. the expected value of the sufficient statistics is equal to its empirical value!

Scenario:

• We would like to build a model to estimate the number *y* of customers arriving in a store.

- We would like to build a model to estimate the number *y* of customers arriving in a store.
- The Poisson distribution usually gives a good model for the number of visitors.

- We would like to build a model to estimate the number y of customers arriving in a store.
- The Poisson distribution usually gives a good model for the number of visitors.
- How can we come up with a model for our problem?

- We would like to build a model to estimate the number y of customers arriving in a store.
- The Poisson distribution usually gives a good model for the number of visitors.
- How can we come up with a model for our problem?
- Fortunately the Poisson is an exponential family distribution.

Scenario:

- We would like to build a model to estimate the number y of customers arriving in a store.
- The Poisson distribution usually gives a good model for the number of visitors.
- How can we come up with a model for our problem?
- Fortunately the Poisson is an exponential family distribution.

We can apply a Generalized Linear Model (GLM)!

To derive a GLM for a classification/regression problem (the conditional dist. of y given x):

To derive a GLM for a classification/regression problem (the conditional dist. of y given x):

1) The natural parameter η and the observed inputs \mathbf{x} are related linearly: $\eta = \mathbf{x}^{\top}\mathbf{w}$

To derive a GLM for a classification/regression problem (the conditional dist. of y given x):

- 1 The natural parameter η and the observed inputs \mathbf{x} are related linearly: $\eta = \mathbf{x}^{\top}\mathbf{w}$
- 2 The conditional mean μ is represented as a function $f(\eta)$ of the linear combination η

To derive a GLM for a classification/regression problem (the conditional dist. of y given x):

- 1 The natural parameter η and the observed inputs \mathbf{x} are related linearly: $\eta = \mathbf{x}^{\top}\mathbf{w}$
- 2 The conditional mean μ is represented as a function $f(\eta)$ of the linear combination η
- 3 The observed output y is assumed to be characterized by an exponential family distribution with conditional mean μ , i.e.,

To derive a GLM for a classification/regression problem (the conditional dist. of y given x):

- 1 The natural parameter η and the observed inputs \mathbf{x} are related linearly: $\eta = \mathbf{x}^{\top}\mathbf{w}$
- 2 The conditional mean μ is represented as a function $f(\eta)$ of the linear combination η
- 3 The observed output y is assumed to be characterized by an exponential family distribution with conditional mean μ , i.e.,

The condition probability is thus modeled as:

$$p(y|\mathbf{x}; \mathbf{w}) = h(y_n) \exp(\eta \phi(y) - A(\eta))$$
 for $\eta = g \circ f(\mathbf{x}^\top \mathbf{w})$ (45)

Negative log-likelihood estimation:

$$\mathcal{L}(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \ln p(y_n | \mathbf{x}_n^{\top} \mathbf{w})$$

$$= -\frac{1}{N} \sum_{n=1}^{N} (\ln(h(y_n)) + \eta_n \phi(y_n) - A(\eta_n))$$
(46)

Negative log-likelihood estimation:

$$\mathcal{L}(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \ln p(y_n | \mathbf{x}_n^{\top} \mathbf{w})$$

$$= -\frac{1}{N} \sum_{n=1}^{N} (\ln(h(y_n)) + \eta_n \phi(y_n) - A(\eta_n))$$
(46)

If we rewrite this sum by using the matrix notation, we get

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \phi(y_n) - \nabla_{\mathbf{w}} A(\eta_n)$$
 (48)

Negative log-likelihood estimation:

$$\mathcal{L}(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \ln p(y_n | \mathbf{x}_n^{\top} \mathbf{w})$$

$$= -\frac{1}{N} \sum_{n=1}^{N} (\ln(h(y_n)) + \eta_n \phi(y_n) - A(\eta_n))$$
(46)

If we rewrite this sum by using the matrix notation, we get

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \phi(y_n) - \nabla_{\mathbf{w}} A(\eta_n)$$
(48)

In the case of Logistic Regression:

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{N} \mathbf{X}^{\top} \left[\sigma(\mathbf{X} \mathbf{w}) - \mathbf{y} \right]$$
 (49)

Some examples

Gaussian distribution

Least Squares

Some examples

Gaussian distribution

 \Longrightarrow

Least Squares

Bernoulli distribution

 \Longrightarrow

Logistic Regression

Some examples

• Gaussian distribution

 \Longrightarrow

Least Squares

Bernoulli distribution

==;

Logistic Regression

Multi-nomial distribution

 \Longrightarrow

Softmax Regression

Table of Contents

- 1 Review of Last Week
- 2 Exponential Families and Generalized Linear Models
- 3 Multi-Layer Perceptron (MLP) and Back-Propagation (BP)
 - The Basic Structure of MLP
 - Training of NNs and BP

Table of Contents

- 1 Review of Last Week
 - Generalization Gap and Model Selection
 - Bias-Variance Decomposition
 - Logistic Regression
- 2 Exponential Families and Generalized Linear Models
 - Motivation
 - Exponential family
 - Application in ML (Generalized Linear Models)
- 3 Multi-Layer Perceptron (MLP) and Back-Propagation (BP)
 - The Basic Structure of MLP
 - Training of NNs and BP

MLP from a single neuron view

Figure: A simple MLP.

The output at the node j in layer l is denoted by $x_i^{(l)}$ and it is given by

$$x_j^{(l)} = \phi \Big(\sum w_{i,j}^{(l)} x_i^{(l-1)} + b_j^{(l)} \Big).$$

41/50

(50)

A NN can be decomposed into a feature extractor and the output layer.

A NN can be decomposed into a feature extractor and the output layer.

• Feature extractor $\mathbb{R}^d \to \mathbb{R}^K$: It transforms data into a suitable representation.

A NN can be decomposed into a feature extractor and the output layer.

• Feature extractor $\mathbb{R}^d \to \mathbb{R}^K$: It transforms data into a suitable representation.

This function is defined by

A NN can be decomposed into a feature extractor and the output layer.

• Feature extractor $\mathbb{R}^d \to \mathbb{R}^K$: It transforms data into a suitable representation.

This function is defined by

• The biases $\{\mathbf{b}^{(l)}\}_{l \in [L]}$ and weights $\{\mathbf{W}^{(l)}\}_{l \in [L]}$

A NN can be decomposed into a feature extractor and the output layer.

• Feature extractor $\mathbb{R}^d \to \mathbb{R}^K$: It transforms data into a suitable representation.

This function is defined by

- The biases $\{\mathbf{b}^{(l)}\}_{l \in [L]}$ and weights $\{\mathbf{W}^{(l)}\}_{l \in [L]}$
- The activation function σ we pick

A NN can be decomposed into a feature extractor and the output layer.

• Feature extractor $\mathbb{R}^d \to \mathbb{R}^K$: It transforms data into a suitable representation.

This function is defined by

- The biases $\{\mathbf{b}^{(l)}\}_{l \in [L]}$ and weights $\{\mathbf{W}^{(l)}\}_{l \in [L]}$
- The activation function σ we pick

In practice: both L and K are large — over-parameterized NNs.

A NN can be decomposed into a feature extractor and the output layer.

• Feature extractor $\mathbb{R}^d \to \mathbb{R}^K$: It transforms data into a suitable representation.

This function is defined by

- The biases $\{\mathbf{b}^{(l)}\}_{l \in [L]}$ and weights $\{\mathbf{W}^{(l)}\}_{l \in [L]}$
- The activation function σ we pick

In practice: both *L* and *K* are large — over-parameterized NNs.

• The last layer $\mathbb{R}^K \to \mathbb{R}$: It performs the desired ML task, either linear regression or classification.

Table of Contents

- 1 Review of Last Week
 - Generalization Gap and Model Selection
 - Bias-Variance Decomposition
 - Logistic Regression
- 2 Exponential Families and Generalized Linear Models
 - Motivation
 - Exponential family
 - Application in ML (Generalized Linear Models)
- 3 Multi-Layer Perceptron (MLP) and Back-Propagation (BP)
 - The Basic Structure of MLF
 - Training of NNs and BP

Training loss for a regression problem with $S_{\text{train}} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$:

$$\mathcal{L}(f) = \frac{1}{2N} \sum_{n=1}^{N} (y_n - f(\mathbf{x}_n))^2,$$
 (51)

Training loss for a regression problem with $S_{\text{train}} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$:

$$\mathcal{L}(f) = \frac{1}{2N} \sum_{n=1}^{N} (y_n - f(\mathbf{x}_n))^2,$$
 (51)

where

• *f* is the function represented by a NN.

Training loss for a regression problem with $S_{\text{train}} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$:

$$\mathcal{L}(f) = \frac{1}{2N} \sum_{n=1}^{N} (y_n - f(\mathbf{x}_n))^2,$$
 (51)

- *f* is the function represented by a NN.
- The overall function $y = f(\mathbf{x}^{(0)})$ can then be written as the composition:

$$f(\mathbf{x}^{(0)}) = f^{(L+1)} \circ \cdots \circ f^{(2)} \circ f^{(1)}(\mathbf{x}^{(0)}).$$

The function that is implemented by each layer in the form

$$\mathbf{x}^{(l)} = f^{(l)}(\mathbf{x}^{(l-1)}) = \phi((\mathbf{W}^{(l)})^{\top} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}).$$
 (52)

The function that is implemented by each layer in the form

$$\mathbf{x}^{(l)} = f^{(l)}(\mathbf{x}^{(l-1)}) = \phi((\mathbf{W}^{(l)})^{\top} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}).$$
 (52)

• Let $\mathbf{W}^{(l)}$ denote the *weight* matrix that connects layer l-1 to layer l.

The function that is implemented by each layer in the form

$$\mathbf{x}^{(l)} = f^{(l)}(\mathbf{x}^{(l-1)}) = \phi((\mathbf{W}^{(l)})^{\top} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}).$$
 (52)

- Let $\mathbf{W}^{(l)}$ denote the *weight* matrix that connects layer l-1 to layer l.
- The matrix $\mathbf{W}^{(1)}$ is of dimension $D \times K$, the matrices $\mathbf{W}^{(l)}$, $2 \le l \le L$, are of dimension $K \times K$, and the matrix $\mathbf{W}^{(L+1)}$ is of dimension $K \times 1$.

The function that is implemented by each layer in the form

$$\mathbf{x}^{(l)} = f^{(l)}(\mathbf{x}^{(l-1)}) = \phi((\mathbf{W}^{(l)})^{\top} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}).$$
 (52)

- Let $\mathbf{W}^{(l)}$ denote the *weight* matrix that connects layer l-1 to layer l.
- The matrix $\mathbf{W}^{(1)}$ is of dimension $D \times K$, the matrices $\mathbf{W}^{(l)}$, $2 \le l \le L$, are of dimension $K \times K$, and the matrix $\mathbf{W}^{(L+1)}$ is of dimension $K \times 1$.
- The entries of each matrix W are given by

$$\mathbf{W}_{i,j}^{(l)} = w_{i,j}^{(l)},\tag{53}$$

The function that is implemented by each layer in the form

$$\mathbf{x}^{(l)} = f^{(l)}(\mathbf{x}^{(l-1)}) = \phi((\mathbf{W}^{(l)})^{\top} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}).$$
 (52)

- Let $\mathbf{W}^{(l)}$ denote the *weight* matrix that connects layer l-1 to layer l.
- The matrix $\mathbf{W}^{(1)}$ is of dimension $D \times K$, the matrices $\mathbf{W}^{(l)}$, $2 \le l \le L$, are of dimension $K \times K$, and the matrix $\mathbf{W}^{(L+1)}$ is of dimension $K \times 1$.
- The entries of each matrix W are given by

$$\mathbf{W}_{i,j}^{(l)} = w_{i,j}^{(l)},\tag{53}$$

where $w_{i,j}^{(l)}$ is the edge weight that connects node i on layer l-1 to node j on layer l.

The back-propagation algorithm

Cost function:

$$\mathcal{L}_n = (y_n - f^{(L+1)} \circ \cdots \circ f^{(2)} \circ f^{(1)}(\mathbf{x}_n^{(0)}))^2$$
,

where
$$\mathbf{x}_n^{(l)} = f^{(l)}(\mathbf{x}_n^{(l-1)}) = \phi((\mathbf{W}^{(l)})^{\top} \mathbf{x}_n^{(l-1)} + \mathbf{b}^{(l)}).$$

The back-propagation algorithm

Cost function:

$$\mathcal{L}_n = \left(y_n - f^{(L+1)} \circ \cdots \circ f^{(2)} \circ f^{(1)}(\mathbf{x}_n^{(0)}) \right)^2 \,,$$
 where $\mathbf{x}_n^{(l)} = f^{(l)}(\mathbf{x}_n^{(l-1)}) = \phi((\mathbf{W}^{(l)})^\top \mathbf{x}_n^{(l-1)} + \mathbf{b}^{(l)}).$

Recall that we aim to compute:

$$rac{\partial \mathcal{L}_n}{\partial w_{i,j}^{(l)}}, \qquad l = 1, \cdots, L+1, \ rac{\partial \mathcal{L}_n}{\partial b_j^{(l)}}, \qquad l = 1, \cdots, L+1.$$

• Quantity computed in the forward pass:

$$\mathbf{z}^{(l)} = (\mathbf{W}^{(l)})^{\top} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}$$
 (54)

be the input at the l-th layer before applying the activation function, where $\mathbf{x}^{(l)} = \phi(\mathbf{z}^{(l)})$.

• Quantity computed in the forward pass:

$$\mathbf{z}^{(l)} = (\mathbf{W}^{(l)})^{\top} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}$$
(54)

be the input at the *l*-th layer before applying the activation function, where $\mathbf{x}^{(l)} = \phi(\mathbf{z}^{(l)})$.

• Quantity computed in the backward pass:

$$\delta_j^{(l)} = \frac{\partial \mathcal{L}_n}{\partial z_j^{(l)}} \tag{55}$$

$$=\sum_{k} \frac{\partial \mathcal{L}_{n}}{\partial z_{k}^{(l+1)}} \frac{\partial z_{k}^{(l+1)}}{\partial z_{i}^{(l)}}$$
(56)

$$= \sum_{l} \delta_k^{(l+1)} \mathbf{W}_{j,k}^{(l+1)} \phi'(z_j^{(l)}), \qquad (57)$$

$$\mathbf{z}^{(l)} = (\mathbf{W}^{(l)})^{\top} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)} \tag{54}$$
 be the input at the *l*-th layer before applying the activation function, where $\mathbf{x}^{(l)} = \phi(\mathbf{z}^{(l)})$.

Quantity computed in the backward pass:

$$\delta_{j}^{(l)} = \frac{\partial \mathcal{L}_{n}}{\partial z_{j}^{(l)}}$$

$$= \sum_{k} \frac{\partial \mathcal{L}_{n}}{\partial z_{k}^{(l+1)}} \frac{\partial z_{k}^{(l+1)}}{\partial z_{j}^{(l)}}$$

$$= \sum_{l} \delta_{k}^{(l+1)} \mathbf{W}_{j,k}^{(l+1)} \phi'(z_{j}^{(l)}) ,$$

$$(55)$$

In vector form, we can write this as

$$\delta^{(l)} = (\mathbf{W}^{(l+1)}\delta^{(l+1)})\odot\phi'(\mathbf{z}^{(l)}),$$

where \odot denotes the Hadamard product (the point-wise multiplication of vectors).

(58)

(54)

Now that we have both $\mathbf{z}^{(l)}$ and $\delta^{(l)}$ let us get back to our initial goal.

$$\frac{\partial \mathcal{L}_{n}}{\partial w_{i,j}^{(l)}} = \sum_{k} \frac{\partial \mathcal{L}_{n}}{\partial z_{k}^{(l)}} \frac{\partial z_{k}^{(l)}}{\partial w_{i,j}^{(l)}} = \underbrace{\frac{\partial \mathcal{L}_{n}}{\partial z_{j}^{(l)}}}_{\delta_{j}^{(l)}} \frac{\partial z_{j}^{(l)}}{\partial w_{i,j}^{(l)}} = \delta_{j}^{(l)} \mathbf{x}_{i}^{(l-1)}$$

$$\frac{\partial \mathcal{L}_{n}}{\partial b_{j}^{(l)}} = \sum_{k} \frac{\partial \mathcal{L}_{n}}{\partial z_{k}^{(l)}} \frac{\partial z_{k}^{(l)}}{\partial b_{j}^{(l)}} = \underbrace{\frac{\partial \mathcal{L}_{n}}{\partial z_{j}^{(l)}}}_{\partial b_{j}^{(l)}} \frac{\partial z_{j}^{(l)}}{\partial b_{j}^{(l)}} = \delta_{j}^{(l)} \cdot 1 = \delta_{j}^{(l)}.$$

Settings: We are given a NN with L hidden layers

Settings: We are given a NN with L hidden layers

• All weight matrices $\mathbf{W}^{(l)}$ and bias vectors $\mathbf{b}^{(l)}$, $l=1,\cdots,L+1$, are fixed.

Settings: We are given a NN with L hidden layers

- All weight matrices $\mathbf{W}^{(l)}$ and bias vectors $\mathbf{b}^{(l)}$, $l=1,\cdots,L+1$, are fixed.
- We are given in addition a sample (x_n, y_n) .

Settings: We are given a NN with *L* hidden layers

- All weight matrices $\mathbf{W}^{(l)}$ and bias vectors $\mathbf{b}^{(l)}$, $l=1,\cdots,L+1$, are fixed.
- We are given in addition a sample (x_n, y_n) .
- We want to compute the derivatives

$$rac{\partial \mathcal{L}_n}{\partial w_{i,j}^{(l)}}\,, \qquad rac{\partial \mathcal{L}_n}{\partial b_j^{(l)}}\,, \qquad l=1,\cdots,L+1\,,$$

$$\mathcal{L}_n = (y_n - f^{(L+1)} \circ \cdots \circ f^{(2)} \circ f^{(1)}(\mathbf{x}_n))^2.$$

Settings: We are given a NN with *L* hidden layers

- All weight matrices $\mathbf{W}^{(l)}$ and bias vectors $\mathbf{b}^{(l)}$, $l=1,\cdots,L+1$, are fixed.
- We are given in addition a sample (\mathbf{x}_n, y_n) .
- We want to compute the derivatives

$$rac{\partial \mathcal{L}_n}{\partial w_{i,j}^{(l)}}\,, \qquad rac{\partial \mathcal{L}_n}{\partial b_j^{(l)}}\,, \qquad l=1,\cdots,L+1\,,$$

$$\mathcal{L}_n = (y_n - f^{(L+1)} \circ \cdots \circ f^{(2)} \circ f^{(1)}(\mathbf{x}_n))^2.$$

Forward pass: Set
$$\mathbf{x}^{(0)} = \mathbf{x}_n$$
. Compute for $l = 1, \cdots, L+1$,
$$\mathbf{z}^{(l)} = (\mathbf{W}^{(l)})^{\top} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)} \,, \qquad \mathbf{x}^{(l)} = \phi(\mathbf{z}^{(l)}) \,.$$

Settings: We are given a NN with L hidden layers

- All weight matrices $\mathbf{W}^{(l)}$ and bias vectors $\mathbf{b}^{(l)}$, $l=1,\cdots,L+1$, are fixed.
- We are given in addition a sample (\mathbf{x}_n, y_n) .
- We want to compute the derivatives

$$rac{\partial \mathcal{L}_n}{\partial w_{i,j}^{(l)}}\,, \qquad rac{\partial \mathcal{L}_n}{\partial b_j^{(l)}}\,, \qquad l=1,\cdots,L+1\,,$$

$$\mathcal{L}_n = (y_n - f^{(L+1)} \circ \cdots \circ f^{(2)} \circ f^{(1)}(\mathbf{x}_n))^2.$$

Forward pass: Set
$$\mathbf{x}^{(0)} = \mathbf{x}_n$$
. Compute for $l = 1, \cdots, L+1$,
$$\mathbf{z}^{(l)} = (\mathbf{W}^{(l)})^{\top} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}, \qquad \mathbf{x}^{(l)} = \phi(\mathbf{z}^{(l)}).$$

Backward pass: Set
$$\delta^{(L+1)} = -2(y_n - \mathbf{x}^{(L+1)})\phi'(z^{(L+1)})$$
. Compute for $l = L, \cdots 1$,
$$\delta^{(l)} = (\mathbf{W}^{(l+1)}\delta^{(l+1)})\odot\phi'(\mathbf{z}^{(l)}).$$

Settings: We are given a NN with L hidden layers

- All weight matrices $\mathbf{W}^{(l)}$ and bias vectors $\mathbf{b}^{(l)}$, $l=1,\cdots,L+1$, are fixed.
- We are given in addition a sample (\mathbf{x}_n, y_n) .
- We want to compute the derivatives

$$rac{\partial \mathcal{L}_n}{\partial w_{i,i}^{(l)}}\,, \qquad rac{\partial \mathcal{L}_n}{\partial b_i^{(l)}}\,, \qquad l=1,\cdots,L+1\,,$$

where

$$\mathcal{L}_n = (y_n - f^{(L+1)} \circ \cdots \circ f^{(2)} \circ f^{(1)}(\mathbf{x}_n))^2.$$

Forward pass: Set
$$\mathbf{x}^{(0)} = \mathbf{x}_n$$
. Compute for $l = 1, \cdots, L+1$,
$$\mathbf{z}^{(l)} = (\mathbf{W}^{(l)})^{\top} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}, \qquad \mathbf{x}^{(l)} = \phi(\mathbf{z}^{(l)}).$$

Backward pass: Set
$$\delta^{(L+1)} = -2(y_n - \mathbf{x}^{(L+1)})\phi'(z^{(L+1)})$$
. Compute for $l = L, \cdots 1$, $\delta^{(l)} = (\mathbf{W}^{(l+1)}\delta^{(l+1)})\odot\phi'(\mathbf{z}^{(l)})$.

Final computation: For all parameters compute

This lecture:

- Exponential Families and Generalized Linear Models
- Multi-Layer Perceptron
- Back-Propagation

This lecture:

- Exponential Families and Generalized Linear Models
- Multi-Layer Perceptron
- Back-Propagation

Next lecture?