

Digital Transformation: Enhancing IoT-driven Solutions for Smart Islands

Security considerations for smart islands

Mostafa Nikpour Kermanian Certified Information Security Officer RQ Bank mostafa.nickpour@gmail.com

Mostafa Nikpour

- Master of Computer Science
- Information Security Consultant
- Producer of security sensors
- Security Hardening solution maker

https://www.linkedin.com/in/mostafa-nikpour-ba2729a7/

Security considerations for smart islands

What is the Internet of Things?

It's about connected devices, systems, and "things" ...

Gartner estimates 26 billion connected devices by 2020.

It's about data from the "things ...

IDC predicts IoT data will account for 10% of the world's data by 2020.

It's about new insights...

Business, engineering, scientific insights

What is the Internet of Things?

Collaboration & Analytics

Interconnect Operations Technology (OT) and Information Technology (IT) to enable Machine to Machine communication (M2M) and collaboration.

Collect all data and transform the business model with Analytics to gain new business insights.

One single breach though, can destroy the whole business model!

What are the main IoT Building Blocks that need to be secured?

What are the main Attack Scenarios and Risks?

What are the main Attack Scenarios and Risks?

Man-In-The-Middle Attacks (MitM) Attackers that sneak into the communication between two parties (e.g. IoT Edge and IoT Cloud) who believe they are directly communicating with each other, can cause immense damage to the

Denial-of-Service Attack (DoS)

IoT cloud services like Web(APIs) portals, VPN can be disrupted and made unavailable temporarily or indefinitely.

Unauthorized Access

whole IoT system.

By simulating the identity of authorized endpoints, rogue endpoints can sneak their way into the system.

What are the main Attack Scenarios and Risks?

Rogue Endpoints / Edge Devices

A rogue device (endpoint or edge computing device that has been installed on the IoT network without explicit authorization, added by a malicious person) whose data is accepted by the rest of the IoT infrastructure can cause immense damage by rendering the data useless and/or causing unwanted behavior in the whole system.

Compromised Endpoints / Edge Devices

Vulnerable Software on the devices may result in compromised systems. Especially lightweight and price sensitive endpoint devices are extremely hard to patch in a timely manner after a vulnerability has been detected.

Data Leakage

Data from the endpoint- and edge computing devices can hold sensitive information such as personally identifiable information (PII). Leakage of unprotected data can lead to financial and reputational damage.

UBUNTU OS for IOT

Attack Surface	Vulnerability
Ecosystem Access Control	 Implicit trust between components Enrollment security Lost access procedures
Device Memory	 Cleartext usernames Cleartext passwords Third-party credentials
Device Physical Interfaces	User CLIAdmin CLIPrivilege escalation
Device Web Interface	SQL InjectionXSSWeak Passwords
Device Firmware	 Hardcoded credentials Sensitive information disclosure Encryption keys

Attack Surface	Vulnerability
Device Network Services	 Denial of Service Buffer Overflow Poorly implemented encryption
Administrative Interface	 SQL Injection Account lockout Two-factor authentication
Local Data Storage	 Unencrypted data Data encrypted with discovered keys Lack of data integrity checks
Cloud Web Interface	SQL InjectionWeak passwordsUsername enumeration
Third-party Backend APIs	 Unencrypted PII sent Device information leaked Location leaked

Page: 12

Kubernetes Architecture

- Control Plane
 - API server
 - Scheduler
 - Controllers
 - Kubernetes
 - Cloud
 - Etcd

Kubernetes Architecture

- Nodes
 - Kubelet
 - Kube-proxy
 - cAdvisor
 - Container runtime

Pods

- Fundamental Kubernetes work unit
- Can run one or more containers
 - Why more than one?
- Pod containers share resources
 - Storage
 - Network (localhost)
 - Always run on the same Node

Kubernetes Security Checklist and Requirements

- Authentication. ...
- Authorization. ...
- Secure work with secrets. ...
- Cluster Configuration Security. ...
- Audit and Logging. ...
- Secure OS configuration. ...
- Network Security. ...
- Secure configuration of workloads.

Calico Cloud enables fine-grained, zero-trust workload access controls between your microservices and external databases, cloud services, APIs, and other applications. It also prevents the lateral movement of threats with identity-aware segmentation that works across all of your workload environments, including hosts, VMs, Kubernetes components, and services. Finally, Calico Cloud provides workload-based security controls for runtime intrusion detection and prevention, protection from DDoS attacks, deep packet inspection (DPI) and an envoy-based web application firewall (WAF) capability.

Data plane - Linux eBPF

Kubernetes Network Policy

High-performance scalable pod networking

Multi and Hybrid Cloud

Data plane - Linux iptables

Policy for Hosts, VMs, and Kubernetes

Advanced IP address management

On-premises

Data plane -Windows

Security Policy for Kubernetes Services

Direct infrastructure peering without the overlay

Data-in-transit encryption

Data plane - VPP

Security policy for high-connection workloads

Kubernetes Networking

