# Füllungsoptimierung I



### **Keywords**

- ✓ Downsizing (Prüfung)
- ✓ LSPI Low Speed-Pre-Ignition, Ursache
- √ Downsizing Motoren, Vorteile
- ✓ **Mehrventiltechnik**, Ziele, Vor- und Nachteile
- ✓ Dreiventiltechnik, Vorteile
- ✓ **Nockenwellenverstellung** variable Steuerzeiten, Vorteile, Ziele
- ✓ VarioCam (Audi, VW), Wie? Verstellbarer Kettenspanner, NW, UZS, spät/früh
- ✓ Vanos (BMW), Wie? steiles Gewinde, Verstellposition, spät/früh
- ✓ Flügelzellenversteller (Mercedes), Wie? Innen- und Außenrotor, Ölräume, Verdrehung der NW, spät/früh
- ✓ **Stufenweise variabler Ventiltrieb**, Vorteile, untere- u. obere Drehzahlbereich
- √ VTEC (Honda), Wie? Schlepphebeln, Verblocken, Öldruck, Sperrschieber, Nockenprofil
- ✓ VarioCam Plus (Porsche), Wie? Tassenstößel, Öldruck, zwei Stößel, Nocken
- ✓ Valvelift (Audi), Wie? Verstelleinheit, Metallstift, Spiralnut, Nockenprofil, Zylinderabschaltung
- ✓ **Stufenlos variabler Ventiltrieb**, Vorteile
- ✓ Valvetronic, Wie? Stellmotor, Exzenterwelle, Zwischenhebel, Leerweg, Ventilhub
- ✓ Elektrohydraulischer Ventiltrieb (MultiAir), Wie? Auslass-NW, Extranocken, Oldruck, Magnetventil close/offen, Druckspeicher
- ✓ Elektromagnetischer Ventiltrieb, Vorteile, Wie? Federn, Unterstützen, Abbremsen, halbgeöffnete Stellung

# 1 Downsizing (Prüfung)

Verkleinerung der Motoren (Hubraum und Zylinderzahl) bei gleicher Leistung.

# 2 LSPI - Low Speed-Pre-Ignition

LSPI = vorzeitige Zündung, betrifft hoch aufgeladene Downsizing Motoren <sup>1</sup>

### • Turbo aufgeladene Motoren

- geringes Verdichtungsverhältnis (7-8:1)
- vor verdichtete Luft wird in den Zylinder eingeblasen und verdichtet
- Ladedruckregelung (Lastwunsch)
- vorgewärmte Luft (Ladeluftkühlung)

#### • vs. hoch verdichtete Saugmotoren

- hohes Verdichtungsverhältnis (10-11:1), endet bei Klopfgrenze

#### Zwei Zündquellen, Ursache für die Selbstentzündung

- 1. Niedergeschlagen Kraftstoff in Verbindung mit sehr niedrig Viskoses Öl
  - ullet ein brennbares Gemisch entsteht, mit einer nicht ganz bekannten Selbstentzündungstemperatur
- 2. Ölkohlerückstände (Kraftstoffreste) im Bereich der Einspritzdüsen

Durch eine überhohe Verdichtung  $\rightarrow$  steigt Verdichtungsenddruck und damit Verdichtungstemperatur  $\rightarrow$  dadurch hohe thermische Belastung. Die Folge ist ein kapitaler Motorschaden.

Körnerschlag  $^2$  Kolbenschäden  $\rightarrow$  es entsteht eine Druckspritze bevor der Kolben OT erreicht, eine zweite Flammenfront entsteht, wenn jetzt zwei Flammfronten aufeinandertreffen, entstehen sehr hohe Druckspitzen, auch wenn der Kolben nach UT geht.

**Kavitation** <sup>3</sup> Dampfblasenbildung <sup>4</sup> z. B. Bootsschraube saugt Flüssigkeiten an, Druck fällt ab durch Unterdruck, wenn jetzt die Gasblasen implodieren, entstehen sog. Mikrojets  $\rightarrow$  Druckspitzen.

<sup>&</sup>lt;sup>1</sup>https://www.autobild.de/artikel/lspi-vorzeitige-zuendung-16385077.html

<sup>2</sup>https://cdn.germanscooterforum.de/monthly\_05\_2009/post-24449-1241606436.jpg

<sup>3</sup>https://prozesstechnik.industrie.de/wp-content/uploads/4/0/40278086.jpg

<sup>4</sup>https://www.youtube.com/watch?v=SEGTFbZ5RJ8

# 3 Vorteile von Downsizing Motoren

- 1. Geringere Pumpverluste (2 l vs. 1,2 l bei gleicher Leistung 150 PS)
- 2. geringere Reibungsverluste aufgrund der geringeren Größe
- 3. weniger Wärmeübertrag von Gasen zur Zylinderwandung

### 4 Mehrventiltechnik

Fachbuch (Respondeck [2] S. 141)

Um die Zylinderfüllung zu verbessern, werden drei oder mehr Ventile pro Zylinder in Verbrennungsmotoren eingesetzt.

#### Ziele von Mehrventiltechnik

• Öffnungsquerschnitt der Ventile vergrößern, ohne die Drehzahlfestigkeit durch größere und damit trägere Ventile (mehr Masse) zu mindern.

#### Vor- und Nachteile von Mehrventiltechnik

- bessere Zylinderfüllung
- Drehzahlfest
- innere Reibung steigt
- Abgaswärmeentzug
  - Der Katalysator kommt schlechter auf Betriebstemperatur, da sich die Abgase an den Abgasrohren abkühlen können.
  - Je mehr Auslassventile vorhanden sind, desto größer ist die Oberfläche der Abgase aus.

Honda NR 750 - Ovalkolben 5

#### **Dreiventiltechnik** (Vorteile)

- Verbrennungsdruck steigt (kürzere Flammwege)
- geringere Klopfneigung (weniger Zeit zur Gemischerwärmung vor Verbrennungsbeginn)
- Ausstoß unverbrannter Kohlenwasserstoffe verringert sich (Zündkerze ist in der Nähe der Zylinderwand, wo das Kondensat lagert)

<sup>5</sup>https://de.wikipedia.org/wiki/Honda\_NR\_750

• geringere NOx

Vgl. Kapitel »Motorsteuerung / Dreiventiltechnik mit zwei Zündkerzen«

# 5 Nockenwellenverstellung - variable Steuerzeiten

Fachbuch (Brand, Fischer, Gscheidle, Gscheidle, Heider, Hohmann, Keil, Lohuis, Mann, Renz, Schlögl und Wimmer [1] S. 249)

Verdrehen der Einlassnockenwelle bzw. der Ein- und Auslassnockenwelle, abhängig von der Motordrehzahl, Motorlast und Temperatur. Hierdurch lässt sich die *Länge der Ventil-überschneidung* anpassen.

### Warum machen wir eine Nockenwellenverstellung? (Vorteile)

- 1. Optimale Zylinderfüllung in den unterschiedlichen Last- und Drehzahlbereichen zu ermöglichen
- 2. inneres AGR

#### Ziele der Nockenwellenverstellung

- Wann das Ventil öffnet und schließt zu beeinflussen (variabel)
- bei gleichbleibenden Nocken, Dauer und Öffnungswinkel (Hub) ändern sich nicht
- Verdrehrichtung der Nockenwelle: Früh, Spät

### Verstellung der Einlassnockenwelle in Abhängigkeit vom Betriebszustand

Tab. 1

| Betriebszustand      | Leerlauf     | Teillast     | Volllast     |
|----------------------|--------------|--------------|--------------|
| Verstellrichtung NW  | Spät         | Früh         | Spät         |
| Ventilüberschneidung | klein        | groß         | klein        |
| Abgas                | CO sinkt     | NOx sinkt    |              |
| EV schließt          | weit nach UT | kurz nach UT | weit nach UT |

Merkmale (Vgl. Tabelle Verstellung der Einlassnockenwelle in Abhängigkeit vom Betriebszustand)

- Leerlauf Kein Überströmen von Frischgasen und Abgasen, besserer Verbrennungsverlauf
- **Teillast** Abgase strömen in den Einlasskanal und werden mit den Frischgasen angesaugt. Temperatur sinkt, NOx-Anteil sinkt

**Thema:** Füllungsoptimierung I

• Volllast Nachladeeffekt Frischgase strömen trotz aufwärts gehenden Kolben in den Zylinder nach

**Ausgangspunkt** → 90er-Jahre, erste Form des AGR (inneres AGR), Drei-Wege-Katalysator, Ottomotor, Euro 2, Teillast (höchste AGR-Rate, 80 km/h auf der Landstraße, keine Lastabfrage, Spritspareffekt, NOx-Anteil senken)

### 5.1 VarioCam - Verstellbarer Kettenspanner (Audi, VW)

ightarrow Verändern der Ventilöffnungszeit der Einlassnockenwelle

Wie? Vgl. Tabelle Verstellung der Einlassnockenwelle in Abhängigkeit vom Betriebszustand

- KW treibt Auslass-NW an und diese über einer Kette die Einlass-NW
- Kettenspanner spannt Kette nach oben (federbelastet)
- **NW** dreht sich **gegen UZS** (Uhrzeigersinn) in **Verstellposition** »spät« (Ausgangslage, Ventilüberschneidung klein)
- SG bestromt Magnetventil, Motoröl fließt in Kettenspanner.
- Kettenspanner spannt Kette nach unten (Hydraulikzylinder)
- **NW** dreht sich **im UZS** in **Verstellposition** »früh«, (Ventilüberschneidung groß)

# **5.2 Vanos - Variable Nockenwellensteuerung (BMW)**

- Nockenwellenrad und Nockenwelle sind über ein steiles Gewinde miteinander verbunden.
- Grundposition NW steht in Verstellposition »spät«
- SG bestromt ein Magnetventil (4/2-Wegeventil) → gibt den Ölzufluss zum Frühkanal frei
- NW verdreht sich gegen Uhrzeigersinn in Verstellposition »früh«
- Durch wechselseitigen Druckaufbau lässt sich die Position der Verstelleinheit halten.

## **5.3 Flügelzellenversteller (Mercedes)**

→ Verändern der Steuerzeiten

#### Wie?

- Innenrotor (fest mit NW) und Außenrotor (fest mit Kettenrad)
- ullet SG bestromt **Magnetventil** o die **Ölräume** zwischen den Rotorblättern können wechselseitig mit Öl befüllt werden
- Die Kraftübertragung vom Nockenwellenrad auf die NW erfolgt immer über das Öl.
- wird Ölraum rechts vom Innenrotorblatt mit Öl befüllt, kommt es zu einer **Verdrehung der NW gegen UZS** (Uhrzeigersinn) in Richtung »spät«
- wird Ölraum links vom Innenrotorblatt mit Öl befüllt, kommt es zu einer Verdrehung der NW im UZS in Richtung »früh«
- Durch wechselseitigen Druckaufbau lässt sich die Position der Verstelleinheit halten.

### 6 Variabler Ventiltrieb

#### 6.1 Stufenweise variabler Ventiltrieb

#### Vorteile

Bessere Zylinderfüllung durch zwei unterschiedliche Nockenprofile

- *obere Drehzahlbereich* → steiler Nocken
  - schnelles Öffnen, lange Öffnungsdauer, schnelles Schließen
- $untere\ Drehzahlbereich \rightarrow spitzer\ Nocken$ 
  - Verhinderung von ungewollter Abgasrückführung durch zu lange Ventilüberschneidung

#### 6.1.1 VTEC - Variable Valve Timing and Lift Electronic Control (Honda)

→ Verändern von Ventilhub und Ventilöffnungszeit

- Verstelleinheit liegt in den Schlepphebeln
- Umschaltung zwischen dem Nockenprofilen erfolgt durch Verblocken der Schlepphebel
- Schlepphebel entriegelt
  - Die beiden äußeren Nocken öffnen mithilfe der äußeren Schlepphebel die Ventile.
  - Spitzer Nocken
    - \* kleiner Ventilhub
    - \* kurze Ventilöffnungszeit
    - \* niedrige Drehzahlen
- SG bestromt Elektromagnet, Öldruck verschiebt die Sperrschieber und verblockt die Schlepphebel untereinander.
- Schlepphebel verriegelt
  - wenn der steile Nocken auf den mittleren Schlepphebel aufläuft, nimmt dieser die beiden äußeren Schlepphebel mit und diese öffnen die Ventile.
  - Steiler Nocken
    - \* großer Ventilhub
    - \* lange Ventilöffnungszeit
    - \* hohe Drehzahlen

#### 6.1.2 VarioCam Plus (Porsche)

→ Verändern von Ventilhub und Ventilöffnungswinkel

#### Wie?

- Verstelleinheit liegt im Tassenstößel
- SG bestromt Elektromagnet, damit wird der Tassenstößel mit Öldruck gesteuert
- Diese bestehen aus **zwei Stößeln**, die mithilfe eines **Bolzens** gegeneinander verriegelt werden können.
- innere Stößel  $\rightarrow$  kleinen Nocken
- äußere Stößel  $\rightarrow$  großen Nocken
- Stößel verriegelt  $\rightarrow$  große Ventilhub
  - Innere und äußere Stößel wird durch einen Bolzen verriegelt
- Stößel entriegelt  $\rightarrow$  kleiner Ventilhub
  - sinkt der Öldruck, wird durch die Federkraft der Bolzen zurückgeschoben

### 6.1.3 Valvelift (Audi, + Zylinderabschaltung)

- Änderung des Nockenprofils durch Verschieben der Verstelleinheit (Nockenstück) auf der NW
- SG bestromt Elektromagnet → Metallstift fährt aus in eine Spiralnut und verschiebt das Nockenstück
- damit schalte ich zwischen zwei Nockenprofilen um
- Arretierung des Nockenstücks erfolgt durch eine federbelastete Kugel.
- **Zylinderabschaltung** (Teillast)
  - Nockenprofil → Nockengrundkreis
  - Die Ventile bleiben bei abgeschaltetem Zylinder geschlossen.

#### 6.2 Stufenlos variabler Ventiltrieb

#### Vorteile

→ Verändern von Ventilhub in allen Drehzahlbereichen

Ziel im unteren Drehzahlbereich: Ein zündbares Gemisch zu realisieren.

#### Wie?

- Durch geringe Ventilöffnung und damit Erhöhung der Strömungsgeschwindigkeit der Frischgase
  - »Venturi-Prinzip« eine Verengung in einem Strömungskanal
    - \*  $\rightarrow$  höhere Strömungsgeschwindigkeit
    - \* → bessere Verwirbelung
    - \*  $\rightarrow$  bessere Verteilung des Kraftstoff-Luftgemisches
- Drosselklappe könnte wegfallen, wird aber weiterhin verbaut
- Wozu ist die Drosselklappe dann noch notwendig?
  - Schaltung des AGR (Abgasrückführung)
    - \* Aufbau eines Druckgefälles/Druckdifferenz, durch Schließen der Drosselklappe wird ein Unterdruck erzeugt, was dazu führt, dass die Abgase in den Ansaugtrakt einströmen können
- Notlauf

#### 6.2.1 Valvetronic

 $\rightarrow$  Verändern von Ventilöffnungswinkel (Hub) und Ventilöffnungsdauer (Nockenwellenverstellung)

- SG verdreht mithilfe eines **Stellmotors** eine **Exzenterwelle** (Halbmondförmig)
- Druck des Nockens wird zunächst auf einen Zwischenhebel übertragen
- Der Leerweg, den der Zwischenhebel von der Betätigung durch den Nocken bis zur Übertragung auf das Ventil durchläuft, ist mittels einer Exzenterwelle einstellbar.
- Je größer der Leerweg, desto kleiner der Ventilhub.
- Ventilhub 0,3 mm und 9,85 mm

#### 6.2.2 Elektrohydraulischer Ventiltrieb (MultiAir)

### Vorteil Vollvariable Steuerzeiten

 $\rightarrow$ stufenlose Veränderung von Ventilhub, Ventilöffnungsdauer und die Anzahl der Ventilhübe der EV

#### Wie?

- auf der **Auslassnockenwelle** gibt es einen **Extranocken**, über Schlepphebel wird ein **Pumpenelement** betätigt
  - $\rightarrow$  der erzeugt einen Öldruck, um die Einlassseite zu steuern,
- Magnetventil geschlossen Druck wird auf den Kolben übertragen, Ventil öffnen
- Magnetventil offen Ventil schließen. Der Öldruck fließt in den Druckspeicher ab.
- Vorteil Druckspeicher: von der Nockenwelle unabhängiger Zeitpunkt, mit Öffnung eines Magnetventils (SG) ein Öldruck aus dem Druckspeicher nutzen, der das Ventil öffnet/schließt
- **elektrohydraulisch-pneumatisch** (Ventile unabhängig von NW betätigen, noch nicht in der Großserie)
- chinesische Hersteller Qoros und der schwedische Luxussportwagenhersteller Königsegg

#### 6.2.3 Elektromagnetischer Ventiltrieb (noch nicht zur Serienreife geschafft)

#### Vorteile

- Vollvariable Steuerzeiten
- Anzahl der geöffneten Ventile pro Zylinder frei wählbar
- Zylinderabschaltung (ohne Gaswechselverluste möglich)
- Wegfall von Nockenwellen (Gewichtseinsparung)

- Unterstützung des Elektromagneten beim schnellen Öffnen und Schließen des Ventils.
- Abbremsen des Ventils kurz vor den Endstellungen geöffnet und geschlossen
- Ventile beim abgeschalteten oder defekten Systems in halbgeöffnete Stellung bringen, um Motorschäden durch Aufsetzen der Ventile zu verhindern.

### Literaturverzeichnis

[1] Monika Brand, Richard Fischer, Rolf Gscheidle, Tobias Gscheidle, Uwe Heider, Berthold Hohmann, Wolfgang Keil, Rainer Lohuis, Jochen Mann, David Renz, Bernd Schlögl und Alois Wimmer. *Fachkunde Kraftfahrzeugtechnik*. ger. 31., neubearbeitete Auflage, korrigierter Nachdruck. Europa-Fachbuchreihe für Kraftfahrzeugtechnik. Haan-Gruiten: Verlag Europa-Lehrmittel Nourney, Vollmer GmbH & Co. KG, 2020. ISBN: 9783808523254.

[2] Michael Respondeck. *Servicetechniker Band 1*. German. Vogel Business Media GmbH & Co. KG, 2019. ISBN: 9783834333759.