

IIT Madras ONLINE DEGREE

Sets

Madhavan Mukund https://www.cmi.ac.in/~madhavan

 $\begin{array}{c} \text{Mathematics for Data Science 1} \\ \text{Week 1} \end{array}$

Sets

- A set is a collection of items
 - Days of the week: {Sun,Mon,Tue,Wed,Thu,Fri,Sat}
 - Factors of 24: {1,2,3,4,6,8,12,24}
 - Primes below 15: {2,3,5,7,11,13}
- Sets may be infinite
 - Different types of numbers: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R}
- No requirement that members of a set have uniform type
 - Set of objects in a painting
 - Spot the dog!

Three Musicians, Pablo Picasso MOMA, New York

Order, duplicates, cardinality

- Sets are unordered
 - {Kohli, Dhoni, Pujara}
 - {Pujara, Kohli, Dhoni}
- Duplicates don't matter (unfortunately?)
 - {Kohli, Dhoni, Pujara, Kohli}
- Cardinality: number of items in a set
 - For finite sets, count the items
 - {1,2,3,4,6,8,12,24} has cardinality 8
 - May not be obvious that a set is finite
 - What about infinite sets?
 - Is Q bigger than Z?
 - Is ℝ bigger than ℚ?
 - Separate discussion

The Platonic solids Set of cardinality 5 Wikimedia

Describing sets, membership

- Finite sets can be listed out explicitly
 - {Kohli, Dhoni, Pujara}
 - **1**,2,3,4,6,8,12,24
- Infinite sets cannot be listed out
 - $\blacksquare \ \mathbb{N} = \{0,1,2,\ldots\}$ is not formal notation
- Not every collection of items is a set
 - Collection of all sets is not a set
 - Russell's Paradox: Separate discussion
- Items in a set are called elements
 - Membership: $x \in X$, x is an element of X
 - $5 \in \mathbb{Z}$, $\sqrt{2} \notin \mathbb{Q}$

Bertrand Russell © Dutch National Archives

Subsets

- X is a subset of Y Every element of X is also an element of Y
- Notation: $X \subseteq Y$
- Examples
 - $\qquad \mathsf{\{Kolhi,Pujara\}} \subseteq \mathsf{\{Kohli,Dhoni,Pujara\}}$
 - Primes $\subseteq \mathbb{N}$, $\mathbb{N} \subseteq \mathbb{Z}$, $\mathbb{Z} \subseteq \mathbb{Q}$, $\mathbb{Q} \subseteq \mathbb{R}$
- Every set is a subset of itself: $X \subseteq X$
 - \blacksquare X = Y if and only if $X \subseteq Y$ and $Y \subseteq X$
- Proper subset: $X \subseteq Y$ but $X \neq Y$
 - Notation: $X \subset Y$, $X \subsetneq Y$
 - $\blacksquare \ \mathbb{N} \subsetneq \mathbb{Z}, \ \mathbb{Z} \subsetneq \mathbb{Q}, \ \mathbb{Q} \subsetneq \mathbb{R},$

Venn Diagram

The empty set and the powerset

- The empty set has no elements ∅
- - Every element of \emptyset is also in X
- A set can contain other sets
- Powerset set of subsets of a set
 - $X = \{a, b\}$
 - Powerset is $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
- Set with n elements has 2^n subsets
 - $X = \{x_1, x_2, \dots, x_n\}$
 - In a subset, either include or exclude each xi
 - 2 choices per element, $2 \cdot 2 \cdot \cdots 2 = 2^n$ subsets n times

Subsets and binary numbers

- $X = \{x_1, x_2, \dots, x_n\}$
- n bit binary numbers
 - 3 bits: 000, 001, 010, 011, 100, 101, 110, 111
- Digit *i* represents whether x_i is included in a subset
 - $X = \{a, b, c, d\}$
 - 0101 is {*b*, *d*}
 - 0000 is ∅, 1111 is *X*
- $= 2^n$ *n* bit numbers