

Popularity Prediction on Social Platforms with Coupled Graph Neural Network

Qi Cao^{1,2}, Huawei Shen^{1,2}, Jinhua Gao¹, Bingzheng Wei³, Xueqi Cheng¹ {caoqi,shenhuawei,gaojinhua,cxq}@ict.ac.cn, coltonwei@tencent.com

¹CAS Key Laboratory of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences

²University of Chinese Academy of Sciences

³ WeChat, Tencent Inc

1. Motivation

1.1Network-aware popularity prediction problem

• Given active users within observation time and network structure, this problem is to predict future popularity of information at prediction time.

1.2 Existing methods

	Feature-based methods	Deep learning-based methods	Point process methods			
Characteristic	Extract features of early adopters	Represent the subgraph of early adopters	Use average #fans to approximate the impact of cascading effect			
Drawbacks	Only focus on early adopters, igno predict future popularity	ring the critical cascading effect to accurately	Only adopt statistics to approximate, ignoring the explicit network structure governing the cascading effect			

• There still lack an effective method utilizing network structure to precisely capture cascading effect and predict future popularity more accurately.

2. Method

2.1 Framework

- Cascading effect is the iterative interplay between state of neighbors and spread of influence over networks.
- We propose coupled graph neural networks (CoupledGNN) to capture such cascading effect and predict future popularity.

2.2 State Graph Neural Network

- Model the activation state of user over network in a successive manner
- Updated by the expected activation state from neighbors based on heterogeneous influence

2.3 Influence Graph Neural Network

- Model the diffusion of interpersonal influence in the social network
- Updated by the expected influence representation from neighbors gated by user's activation state

3. Experiment

3.1 Experiment settings

- Dataset: Synthetic Data Set & Sina Weibo Data Set
- Baselines: Feature-based (Cheng et al., WWW'14, Shulman et al., ICWSM'16, Gao et al., TKDD'19), DeepCas (Li et al., WWW'17), SEISMIC (Zhao et al., KDD'15).
- Evaluation metrics: MRSE, MAPE, Wrong Percentage Error (WroPerc)

3.2 Prediction performance

CoupledGNN outperforms all baselines with different observation time.

Observation Time 1 hour			2 hours				3 hours					
Evaluation Metric	MRSE	mRSE	MAPE	WroPerc	MRSE	mRSE	MAPE	WroPerc	MRSE	mRSE	MAPE	WroPerc
SEISMIC	_	0.2112	-	48.63%	_	0.1347	-	34.59%	-	0.0823	_	27.15%
Feature-based	0.2106	0.1254	0.3749	35.17%	0.1796	0.1041	0.3557	28.86%	0.1581	0.0804	0.3147	18.97%
DeepCas	0.2077	0.0930	0.3633	30.00%	0.1650	0.0670	0.3134	20.55%	0.1365	0.0361	0.2813	17.24%
CoupledGNN	0.1816	0.0946	0.3515	25.68%	0.1397	0.0519	0.2989	17.81%	0.1120	0.0333	0.2611	13.01%

3.3 Effectiveness of the coupled structure

 The coupled structure of activation state and influence representation significantly improves the prediction performance.

Observation Time 1 hour			2 hour			3 hour			
Evaluation Metric	MRSE	MAPE	WroPerc	MRSE	MAPE	WroPerc	MRSE	MAPE	WroPerc
Single-GCN	0.1964	0.3707	29.11%	0.1595	0.3201	22.26%	0.1230	0.2653	16.10%
Single-GAT	0.1999	0.3754	30.82%	0.1569	0.3199	20.55%	0.1222	0.2655	16.10%
CoupledGNN	0.1816	0.3515	25.68%	0.1397	0.2989	17.81%	0.1120	0.2611	13.01%

4. Summary

- We propose CoupledGNN model to precisely capture the cascading effect, improving the prediction performance of future popularity
 - View the cascading effect as the iterative interplay between two key components, i.e., the state of neighbors and the spread of influence over social networks.
 - Model the iterative interplay between node activation states and the spread of influence by two graph neural networks which coupled by gating mechanism