Omega-sequence Paradoxes

1 What is a Paradox?

A **paradox** is an argument that appears to be valid, and goes from seemingly true premises to a seemingly false conclusion. So we must:

- learn to live with the conclusion;
- learn to live without one of the premises; or
- show that the reasoning is invalid.

An **omega-sequence paradox** is a paradox based on an ω -sequence (||| . . .) or a reverse ω -sequence (. . . |||).

2 Zeno's Paradox¹ [Paradox Grade: 2]

You wish to walk from point A to point B. In order to do so, you must carry out an ω -sequence of tasks:

But it's impossible to complete infinitely many tasks in a finite amount of time. So movement is impossible.

¹This is a variant of one of several paradoxes attributed to ancient philosopher Zeno of Elea, who lived in the 5th Century BC.

3 Thomson's Lamp² [Paradox Grade: 3]

You have a lamp with a toggle button: press the button once and the lamp goes on, press it again and the lamp goes off. Here's what happens:

Time to midnight Status of lamp shortly thereafter

60s	of
30s	or
15s	of
7.5s	or
:	:
$\frac{60}{2^{2n}}s$	of
$\frac{60}{2^{2n+1}}s$	or
- : :	:

Is the lamp on or off at midnight?

- For every time the lamp gets turned off before midnight, there is a later time before midnight when it gets turned on. So the lamp can't be off at midnight.
- For every time the lamp gets turned on before midnight, there is a later time before midnight when it gets turned off. So the lamp can't be on at midnight.

4 The Demon's Game³ [Paradox Grade: 4]

 P_1, P_2, P_3, \ldots take turns answering *aye* or *nay*:

- If exactly n people say aye $(n \in \mathbb{N})$, each person gets n.
- If infinitely many people say *aye*, they all get nothing.

It seems rational for P_k to say aye: she can't hurt anyone and might help everyone. But if it's rational for P_k it's rational for everyone. So nobody gets anything.

²Thomson's Lamp was devised by the late James Thomson, who was a professor of philosophy at MIT (and was married to the great philosopher Judith Jarvis Thomson).

³I learned about this paradox from philosophers Frank Arntzenius, Adam Elga, and John Hawthorne.

5 The Bomber's Paradox⁴ [Paradox Grade: 6]

There are infinitely many bombs:

Bomb When bomb is set to go off
$$B_0$$
 12:00pm B_1 11:30am B_2 11:15am \vdots B_k $\frac{1}{2^k}$ hours after 11:00am \vdots

Should one of the bombs go off, it will instantaneously disable all other bombs. So a bomb goes off if and only if no bombs have gone off before it:

- (0) B_0 goes off $\leftrightarrow B_n$ fails to go off (n > 0).
- (1) B_1 goes off $\leftrightarrow B_n$ fails to go off (n > 1).
- (2) B_2 goes off $\leftrightarrow B_n$ fails to go off (n > 2).

:

- (k) B_k goes off $\leftrightarrow B_n$ fails to go off (n > k).
- (k+1) B_{k+1} goes off $\leftrightarrow B_n$ fails to go off (n > k+1).

Will any bombs go off?

⁴This paradox is due to Josh Parsons, who was a fellow at Oxford until shortly before his untimely death in 2017. (It is a version of Bernadete's Paradox.)

MIT OpenCourseWare https://ocw.mit.edu/

24.118 Paradox and Infinity Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.