ECE 6350

Grad-, Div-, and Curl-Conforming Bases on 2- and 3-D Simplexes

D. R. Wilton

University of Houston

Dimension-Independent Divergence Definition and Theorem

 $S = \partial V$

Definitions:

- J,D,B are flux vectors
- Domain $\mathcal{D} = \mathcal{P}, \mathcal{C}, \mathcal{S}, \mathcal{V}$ (point, curve, surface, volume)

• Boundary of
$$\mathcal{D} = \partial \mathcal{D} \equiv \mathcal{B} = \begin{cases} \mathcal{P} & \text{if } \mathcal{D} = \mathcal{C} \text{ (open),} \\ \mathcal{C} & \text{if } \mathcal{D} = \mathcal{S} \text{ (open),} \\ \mathcal{S} & \text{if } \mathcal{D} = \mathcal{V} \end{cases}$$

• "Measure" of
$$\mathcal{D} \equiv \operatorname{meas} \mathcal{D} = \begin{cases} \operatorname{length} \operatorname{of} \mathcal{C} \\ \operatorname{area} \operatorname{of} \mathcal{S} \\ \operatorname{volume} \operatorname{of} \mathcal{V} \end{cases}$$

- $\hat{\mathbf{u}}$ is normal to \mathcal{B} and "tangent" to \mathcal{D}
- Flux of a vector $\mathbf{F} = \oint_{\partial \mathcal{D}} \mathbf{F} \cdot \hat{\mathbf{u}} \, d\mathcal{B}$

• Divergence of a vector
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \lim_{\substack{\text{meas } \mathcal{D} \\ \to 0}} \frac{1}{\text{meas } \mathcal{D}} \oint_{\partial \mathcal{D}} \mathbf{F} \cdot \hat{\mathbf{u}} \, d\mathcal{B}$$

• Divergence Thm:
$$\int_{\mathcal{D}} \nabla \cdot \mathbf{F} \, d\mathcal{D} = \oint_{\partial \mathcal{D}} \mathbf{F} \cdot \hat{\mathbf{u}} \, d\mathcal{B}$$

Modeling Flux Quantities

In the EFIE:

• We selected Λ_i^e such that $\nabla \cdot \Lambda_i^e$ was constant, Λ_i^e has constant (unit) normal component on element subboundary

• Hence
$$\nabla \cdot \mathbf{\Lambda}_{i}^{e} = \frac{1}{\text{meas } \mathcal{D}} \int_{\mathcal{D}} \nabla \cdot \mathbf{\Lambda}_{i}^{e} d\mathcal{D} = \frac{1}{\text{meas } \mathcal{D}} \oint_{\partial \mathcal{D}} \mathbf{\Lambda}_{i}^{e} \cdot \hat{\mathbf{u}} d\mathcal{B}$$

 ⇒ Note the *consistent* modeling of divergence on both point and discrete (element) scales.
 This appears to be a strongly desirable condition for a good numerical scheme

Modeling Flux Quantities, cont'd

 We should alos be able to create a divergence-free basis function as a linear combination of ordinary divconforming basis functions

$$\Lambda_{loop} = \sum_{i} \alpha_{i} \Lambda_{i} \implies \nabla \cdot \Lambda_{loop} = 0$$
(choose α_{i} such that $q_{i+1} = q_{i}$)

Modeling Line Integral Quantities

Stokes's

- $\mathbf{E}, \mathbf{H}, \nabla \Phi$ are all line integral quantities \Rightarrow circulation of $\mathbf{F} = \oint_{\mathcal{C}} \mathbf{F} \cdot \hat{\ell} \, d\mathcal{C}$
- Associated bases Ω_i^e should be *curl conforming*
- Select Ω_i^e such that $\nabla \times \Omega_i^e$ is constant, Ω_i^e has constant (unit) tangential component on element subboundary

- Hence $\nabla \times \mathbf{\Omega}_{i}^{e} = \frac{1}{\text{meas } S} \int_{S} \nabla \times \mathbf{\Omega}_{i}^{e} \cdot \hat{\mathbf{n}} dS$ Theorem $= \frac{1}{\text{meas } S} \oint_{\partial S} \mathbf{\Omega}_{i}^{e} \cdot \hat{\boldsymbol{\ell}} dC, \ \hat{\boldsymbol{\ell}} = \hat{\mathbf{n}} \times \hat{\mathbf{u}}$
- ⇒ Hence the curl is modeled consistently on both point and discrete (element) scales. This is a strongly desirable condition for schemes involving the curl operator

Modeling of Line Integral Quantities, cont'd

 We should also be able to create a curl-free basis function as a linear combination of ordinary curlconforming basis functions

$$\mathbf{\Omega}_{vertex} = \sum_{i} \alpha_{i} \mathbf{\Omega}_{i} \Rightarrow \nabla \times \mathbf{\Omega}_{vertex} = 0$$
(choose α_{i} such that $\alpha_{i} \, \hat{\mathbf{n}} \cdot \nabla \times \mathbf{\Omega}_{i} = \alpha_{i+1} \hat{\mathbf{n}} \cdot \nabla \times \mathbf{\Omega}_{i+1}$)

Properties of ρ_i , $\hat{\mathbf{z}} \times \rho_i \mathbf{Vectors}$

	local	area	normal	tangential	div	curl
	coordinates	coordinates	comp., edge i	comp., edge i	$(abla \cdot)$	(abla imes)
ρ_i	$x\hat{\mathbf{x}} + y\hat{\mathbf{y}}$	$\xi_{i+1}\boldsymbol{\ell}_{i-1} - \xi_{i-1}\boldsymbol{\ell}_{i+1}$	$h_{_i}$		2	$0 + \delta$'s @ boundary
$\hat{\mathbf{z}} \times \mathbf{\rho}_i$	$x\hat{\mathbf{y}} - y\hat{\mathbf{x}}$	$2A^{e}\left(\xi_{i+1}\nabla\xi_{i-1}-\xi_{i-1}\nabla\xi_{i+1}\right)$		$h_{_i}$	$0 + \delta$'s @ boundary	$2\hat{\mathbf{z}}$

Character of Potential, Field, and Source Quantities

0- forms: scalar point functions: Φ,Ψ
1- forms: vector line-integral functions: ∫ E·dr, ∫ H·dr
2- forms: vector flux integral functions: ∫ B·dS, ∫ D·dS, ∫ J·dS, ∫ M·dS
3- forms: scalar density functions: ∫ qdV, ∫ mdV
p-forms represent quantities integrated over p-dimensions

Warnick, K.F., Russer, P., "Two, Three and Four-Dimensional Electromagnetics Using Differential Forms," http://journals.tubitak.gov.tr/elektrik/issues/elk-06-14-1/elk-14-1-14-0509-13.pdf

i+1

Interpolation of 2-D 0-, 1-, 2-, and 3-forms

- 0 form
- grad-conforming curl-conforming

$$\Phi = \sum_{i=1}^{3} V_i^e \ \Lambda_i^e$$

- 1 form
- $\Lambda_{i}^{e} = \xi_{i}, i = 1, 2, 3$ $\Omega_{i}^{e} = \frac{1}{\ell_{i}} (\xi_{i+1} \nabla \xi_{i-1} \xi_{i-1} \nabla \xi_{i+1})$, $\Lambda_{i}^{e} = \frac{\xi_{i+1} \ell_{i-1} \xi_{i-1} \ell_{i+1}}{h_{i}}$, $\Pi^{e} = 1, \mathbf{r} \in S^{e}$ $\Lambda_{i}^{e} = \frac{1}{\ell_{i}} (\xi_{i+1} \nabla \xi_{i-1} \xi_{i-1} \nabla \xi_{i+1})$, $\Lambda_{i}^{e} = \frac{\xi_{i+1} \ell_{i-1} \xi_{i-1} \ell_{i+1}}{h_{i}}$, $\Pi^{e} = 1, \mathbf{r} \in S^{e}$ $\Omega_{i+3}^{e} = \xi_{i} \hat{\mathbf{z}}, i = 1, 2, 3;$ $\Omega_{i}^{e} \cdot \hat{\boldsymbol{\ell}}_{j} \Big|_{\xi_{j} = 0} = \delta_{ij}$, $\Lambda_{i}^{e} \cdot \hat{\mathbf{h}}_{j} \Big|_{\xi_{j} = 0} = \delta_{ij}$ $\Omega_{i}^{e} \cdot \hat{\boldsymbol{\ell}}_{j} \Big|_{\xi_{j} = 0} = \delta_{ij}$

 - - $\mathbf{\Omega}_{i}^{e} \cdot \hat{\mathbf{z}} \Big|_{\xi_{i}=1} = \delta_{ij}$
- Example: $\begin{aligned}
 & \mathbf{\Omega}_{i}^{e} \cdot \hat{\mathbf{z}} \Big|_{\xi_{j}=1} = \delta_{ij} \\
 & \Phi = \sum_{i=1}^{3} V_{i}^{e} \Lambda_{i}^{e}, \\
 & \mathbf{r} \in S^{e}
 \end{aligned}$ $\begin{aligned}
 & \mathbf{\nabla} \times \mathbf{\Omega}_{i}^{e} = \frac{2\hat{\mathbf{z}}}{h_{i}}; \mathbf{\nabla} \times \mathbf{\Omega}_{i+3}^{e} = \frac{\ell_{i}}{2A^{e}} \\
 & \mathbf{Example:} \\
 & \mathbf{J} = \sum_{i=1}^{3} J_{i}^{e}
 \end{aligned}$

$$\mathbf{E} = \sum_{i=1}^{6} V_i^e \, \mathbf{\Omega}_i^e \,, \ \mathbf{r} \in S^e$$

- 2 form
- div-conforming
- $\bullet \quad \nabla \cdot \mathbf{\Lambda}_i^e = \frac{2}{h_i}$

$$\mathbf{J} = \sum_{i=1}^{3} J_i^e \mathbf{\Lambda}_i^e, \mathbf{r} \in S^e$$

- 3 form
- density function

$$q = Q^e \Pi^e, \mathbf{r} \in S^e$$

Interpolation of 3-D 0-, 1-, 2-, and 3-forms

- 0 form
- grad-conforming

•
$$\Lambda_i^e = \xi_i, i = 1, ..., 4$$

$$\bullet \quad \Lambda_i^e \Big|_{\xi_j = 1} = \delta_{ij}$$

•
$$\nabla \Lambda_i^e = \frac{-\hat{\mathbf{h}}_i}{h_i}$$

Example:

$$\Phi = \sum_{i=1}^{4} V_i^e \Lambda_i^e,$$

$$\mathbf{r} \in V^e$$

- 1 form
- curl-conforming

 $\mathbf{E} = \sum V_{ij}^{e} \, \mathbf{\Omega}_{ij}^{e}, \, \mathbf{r} \in V^{e},$

• div-conforming

• grad-conforming
• curl-conforming
• div-conforming
•
$$\Pi^e = 1, \quad \mathbf{r} \in V^e$$
• $\Lambda^e_i = \xi_i, i = 1, ..., 4$
• $\Omega^e_{ij} = \ell_{ij}(\xi_j \nabla \xi_i - \xi_i \nabla \xi_j), \quad \Lambda^e_i = \sum_{\alpha \in \{j,k,\ell\}} \frac{\xi_\alpha \ell_{\alpha i}}{h_i}, \quad \mathbf{r} \in V^e$
• $\Lambda^e_i = \delta_{ij}$
• $I^e = 1, \quad \mathbf{r} \in V^e$
• $I^e = 1, \quad \mathbf{$

$$i \in \{1, \dots, 4\}$$

$$\ell_{ij} = \mathbf{r}_{i}^{e} - \mathbf{r}_{j}^{e}, \ \mathbf{r} \in V^{e}$$

$$\ell_{ij} = \mathbf{r}_{i}^{e} - \mathbf{r}_{j}^{e}, \ \mathbf{r} \in V^{e}$$

$$\delta \mathbf{\Omega}_{ij}^{e} \cdot \hat{\ell}_{\alpha\beta} \Big|_{\xi_{k} = \xi_{\ell} = 0} = \delta_{i\alpha, j\beta}$$

$$\ell_{\alpha i} = \mathbf{r}_{\alpha}^{e} - \mathbf{r}_{i}^{e}, \ \mathbf{r} \in V^{e},$$

$$\delta \mathbf{\Lambda}_{i}^{e} \cdot \hat{\mathbf{h}}_{i} \Big|_{\xi_{k} = \xi_{\ell} = 0} = \delta_{i\alpha}$$

•
$$\mathbf{\Omega}_{ij}^{e} \cdot \ell_{\alpha\beta}|_{\xi_{k}=\xi_{\ell}=0} = \delta_{i\alpha,j\beta}$$
• $\mathbf{\nabla} \times \mathbf{\Omega}_{ij}^{e} = \frac{\ell_{ij}\ell_{k\ell}}{3V^{e}}$
• $\mathbf{\nabla} \cdot \mathbf{\Lambda}_{i}^{e} \cdot \hat{\mathbf{h}}_{j}|_{\xi_{j}=0} = \delta_{ij}$

Example:
$$\mathbf{E} = \sum_{ij} V_{i}^{e} \mathbf{\Omega}_{i}^{e} \cdot \mathbf{r} \in V^{e}$$
Example:

•
$$\nabla \cdot \Lambda_i^e = \frac{3}{h}$$

Example:

Example:

$$\mathbf{J} = \sum_{i=1}^{4} J_i^e \mathbf{\Lambda}_i^e, \mathbf{r} \in V^e$$

•
$$\Pi^e = 1$$
, $\mathbf{r} \in V^e$

• 3 – form

$$q = Q^e \Pi^e, \mathbf{r} \in V^e$$