Kompakt Dimming

Driver LCBI 10 W 180/350/500 mA PHASE-CUT/1-10 V SR

Baureihe BASIC

Produktbeschreibung

- Unabhängiges dimmbarer LED-Driver
- Konstantstrom-LED-Driver
- Ausgangsstrom 180, 350 oder 500 mA
- Max. Ausgangsleistung 10 W
- Nominale Lebensdauer bis zu 50.000 h
- SELV
- Dimmbar mittels Phasenan- und Phasenabschnittsdimmer
- Dimmbar mittels 1 ... 10 V
- Ausgang wird analog gedimmt (Stromamplitude)
- Dimmbereich typ. 10 100 % (abhängig vom Dimmer)
- Für Leuchten der Schutzklasse I und der Schutzklasse II
- Für Leuchten mit M und MM gemäß EN 60598, VDE 0710 und VDE 0711
- Temperaturschutz gemäß EN 61347-2-13 C5e
- 5 Jahre Garantie

Eigenschaften

- Gehäuse: Polycarbonat weifz
- Schutzart IP20
- Schraubklemmen

Funktionen

- Überlastschutz
- Kurzschlussschutz
- Leerlaufschutz
- Kein überschwingen des Ausgangsstromes bei ein- oder ausgeschaltetem Netz

Normen, Seite 3

Anschlussdiagramme und Installationsbeispiele, Seite 4

TRIDONIC

$\begin{array}{c|c} \text{IP20 SELV} & \hline \\ \text{\tiny POHS} \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \textcircled{\text{ROHS}} \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \textcircled{\text{ROHS}} \\ \end{array} \\ \begin{array}{c} \textcircled{\text{R$

Driver LCBI 10 W 180/350/500 mA PHASE-CUT/1-10 V SR

Baureihe BASIC

Technische Daten

Netzspannungsbereich	220 – 240 V
Wechselspannungsbereich	198 – 264 V
Typ. Nennstrom (bei 230 V, 50 Hz, Volllast)	0,058 A
Leistungsfaktor bei Volllast [®]	0,95
Leistungsfaktor bei min. Last [®]	0,9
Netzfrequenz	50 Hz
Überspannungsfestigkeit	300 V AC, 1 h
Max. Eingangsleistung	13 W
Ausgangsleistung	5 – 10 W
THD (bei 230 V, 50 Hz, Volllast)	< 20 %
THD (bei 230 V, 50 Hz, min. Last)	< 20 %
	1 10 V, Potentiometer 200 kΩ
Ausgangsstromtoleranz (bei 230 V, 50 Hz, Volllast)®	± 7,5 %
Ausgangsstromtoleranz (bei 230 V, 50 Hz, min. Last)®	± 10 %
Einschaltzeit (bei 230 V, 50 Hz, Volllast)	≤ 0,5 s
Abschaltzeit (bei 230 V, 50 Hz, Volllast)	≤ 0,2 s
Haltezeit bei Netzunterbrechung	0 s
Umgebungstemperatur ta	-20 +40 °C
Umgebungstemperatur ta (bei Lebensdauer 50.000 h)	40 °C
Max. Gehäusetemperatur tc	60 °C
Lagertemperatur ts	-40 +80 °C
Abmessung L x B x H	101,5 x 51 x 29,5 mm

Bestelldaten

Тур	Artikel- nummer	Verpackung Karton	Verpackung Kleinmengen		Gewicht pro Stk.
LCBI 10W 180mA PHASE-CUT/1-10 V SR	87500273	20 Stk.	280 Stk.	3.360 Stk.	0,088 kg
LCBI 10W 350mA PHASE-CUT/1-10 V SR	87500274	20 Stk.	280 Stk.	3.360 Stk.	0,086 kg
LCBI 10W 500mA PHASE-CUT/1-10 V SR	87500275	20 Stk.	280 Stk.	3.360 Stk.	0,085 kg

Spezifische technische Daten

Тур	Aus-	Wirkungs	- Wirkungs-	Min.	Max.	Max.	Max. Ausgangs-	Max. Ausgangs-	Max. Ausgangs-	-Max. Ausgangs-	Typ. Ausgangsstrom
	gangs-	grad bei	grad bei	Vorwärts-	Vorwärts-	Ausgangs-	dauerspitzen-	dauerspitzen-	stoßstrom bei	stoßstrom bei	Restwelligkeit (bei
	strom [®]	Volllast [®]	min. Last®	spannung®	spannung®	spannung	strom	strom bei min.	Volllast	min. Last	230 V, 50 Hz,
							bei Volllast	Last			Volllast)
LCBI 10W 180mA PHASE-CUT/1-10 V SR	180 mA	77 %	72 %	28 V	56 V	65 V	270 mA	320 mA	270 mA	320 mA	± 25 %
LCBI 10W 350mA PHASE-CUT/1-10 V SR	350 mA	76 %	72 %	14 V	28 V	45 V	510 mA	620 mA	580 mA	620 mA	± 30 %
LCBI 10W 500mA PHASE-CUT/1-10 V SR	500 mA	74 %	70 %	10 V	20 V	35 V	760 mA	890 mA	760 mA	890 mA	± 35 %

Testwert bei 230 V, 50 Hz ohne einen Dimmer angeschlossen.

[®] 1 ... 10 V DC mit doppelter oder verstärkter Isolierung in Bezug auf die Netzspannung. Max. Strom: 0,1 mA. Geeignet für passive und aktive Steuerung.

[®] Ausgangsstrom ist Mittelwert.

Normen

EN 55015

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 61547

EN 62384

Überlastschutz

Bei Überschreitung des Ausgangsspannungsbereiches wird der LED-Ausgangsstrom reduziert. Nach Behebung der Überlast erfolgt automatische Rückkehr in den nominalen Betrieb.

Verhalten bei Kurzschluss

Bei Kurzschluß am LED Ausgang, schaltet der LED-Driver ab. Nach Behebung des Kurzschlußes erfolgt automatische Rückkehr in den nominalen Betrieb.

Verhalten bei Leerlauf

Der LED-Driver arbeitet im Burst-Modus, um eine konstante Ausgangsspannung zu liefern, welche es einer Anwendung ermöglicht sicher zu arbeiten auch wenn ein LED-Strang wegen eines Fehlers offen ist.

Im Leerlauf liegt am Ausgang die maximale Ausgangsspannung an (siehe Seite 2).

Erwartete Lebensdauer

Тур	ta	40 °C	50 °C
LCBI 10W xxxmA PHASE-CUT/1-10 V SR	tc	60°C	×
ECDI IOW XXXIIIA FITASE-COT/T-TO V SK	Lebensdauer	50.000 h	×

Die LED Driver sind für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallswahrscheinlichkeit von kleiner 10 %.

Dimmbetrieb

Dimmbereich 10 % bis 100 %

Steuerung mit:

- Potentiometer
- 1...10 V
- Phasenanschnitt und 1 ... 10 V Dimmung an ein Gerät anzuschließen ist nicht gestattet, da es Flackern verursachen kann.
- In einer 1 ... 10 V Dimming Anwendung h\u00e4ngt es vom verwendeten Dimmer ab, ob das System SELV ist oder nicht. Wenn ein 1 ... 10 V Dimmer der SELV ist verwendet wird, dann ist auch das System SELV.
- Bei falscher Eingangspolarität an der 1-10 V Schnittstelle wird der LED-Driver beschädigt.

1... 10 V Funktion

Die Lichtintensität der LED's verhält sich proportional der angelegten Spannung.

Potentiometer Funktion

Beim Drehen des Potentiometers ändert sich die LED Lichtintensität proportional oder logarithmisch je nachdem was für ein Potentiometer verwendet wird

Es wird ein logarithmisches Potentiometer empfohlen.

Luftfeuchtigkeit: 5 % bis max. 85 %,

nicht kondensierend

(max. 56 Tage/Jahr bei 85 %)

Lagertemperatur: -40 °C bis max. +80 °C

Bevor die Geräte in Betrieb genommen werden, müssen sie sich wieder innerhalb des spezifizierten Temperaturbereiches (ta) befinden.

Glühdrahttest

nach EN 60598-1 mit erhöhter Temperatur von 850 °C bestanden.

Maximale Belastung von Leitungsschutzautomaten

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einsc	haltstrom
Installation Ø	1,5 mm ²	1,5 mm ²	1,5 mm²	2,5 mm ²	1,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	Imax	Pulsdauer
LCBI 10W 180mA PHASE-CUT/1-10 V SR	60	90	120	140	30	45	60	70	10 A	100 µs
LCBI 10W 350mA PHASE-CUT/1-10 V SR	60	90	120	140	30	45	60	70	10 A	100 µs
LCBI 10W 500mA PHASE-CUT/1-10 V SR	60	90	120	140	30	45	60	70	10 A	100 µs

Oberwellengehalt des Netzstromes (bei 230 V / 50 Hz und Volllast) in %

	THD	3.	5.	7.	9.	11.
LCBI 10W 180mA PHASE-CUT/1-10 V SR	20	9	10	7	5	3
LCBI 10W 350mA PHASE-CUT/1-10 V SR	20	10	10	7	5	3
LCBI 10W 500mA PHASE-CUT/1-10 V SR	20	11	10	7	5	3

Installationshinweis

Das LED-Modul und alle Kontaktstellen innerhalb der Verdrahtung ausreichend gegen 2,8 kV Überspannung isolieren. Luft- und Kriechstrecke einhalten

Austausch LED-Modul

- 1. Netz aus
- 2. LED-Modul entfernen
- 3. 20 Sekunden warten
- 4. LED-Modul wieder anschließen

Hot-Plug-In oder sekundäres Schalten der LEDs ist nicht erlaubt und kann zu sehr hohem Strom in den LEDs führen.

Leitungsart und Leitungsquerschnitt

Zur Verdrahtung können Litzendraht oder Volldraht verwendet werden. Für perfekte Funktion der Käfigzugbügelklemmen müssen die Eingangsleitungen

4 - 5 mm abisoliert werden.

Das max. Drehmoment an der Klemmschraube (M3) liegt bei 0,2 Nm.

Eingangsklemme (D2)

Ausgangsklemme (D1)

Um eine gut funktionierende Zugentlastung zu erreichen, schlagen wir vor den Durchmesser des Kabelmantels der Seite D2 2 mm größer zu wählen als den Manteldurchmesser der Seite D1. (Dieser Wert kann variieren wenn das verwendete Kabelmantelmaterial von Seite D2 zu D1 ein unterschiedliches Quetschverhalten aufweist).

Folgende Tabelle zeigt die Verwendung der Laschen der Zugentlastung in Bezug auf die Kabelmanteldurchmesserdifferenz zwischen Seite D2 und D1:

	Seit	e D1	Sei	Differenz				
Gehäu	seboden		Klemmenabdeckung					
Mit Lasche Ohne Lasche		Mit Lasche Ohne Lasche		Mit Lasche	Ohne Lasche	D2 - D1		
X	-	X	_	X	-	3,5 mm		
Х	-	X	_	-	X	5,5 mm		
X	-	-	×	-	X	3,5 mm		
-	×	X	_	-	X	3,5 mm		
-	×	-	×	-	X	1,5 mm		
Х	-	-	×	Х	-	1,5 mm		
-	×	X	_	Х	-	1,5 mm		
-	×	_	×	Х	_	-0,5 mm		

Verdrahtungsrichtlinien

- Alle Verbindungen möglichst kurz halten, um gutes EMV-Verhalten zu erreichen.
- Netzleitungen getrennt vom LED-Driver und anderen Leitungen führen (ideal 5 – 10 cm Abstand)
- Max. Länge der Ausgangsleitungen beträgt 2 m.
- Sekundäres Schalten ist nicht zulässig.
- Falsche Verdrahtung kann LED-Module zerstören.
- Die Verdrahtung muss vor mechanischer Belastung mit scharfkantigen Metallteilen (z.B. Leitungsdurchführung, Leitungshalter, Metallraster, etc.) geschützt werden.

Montageumgebung

Trocken; Säurefrei; Ölfrei; Fettfrei. Die am Gerät angegebene maximale Umgebungstemperatur (ta) darf nicht überschritten werden. Die unten angegebenen Mindestabstände sind Empfehlungen und von der eingesetzten Leuchte abhängig. Versorgungseinheit nicht für Montage direkt in der Ecke geeignet.

Anschlussdiagramm

Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V $_{DC}$ während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Nullleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,M\Omega$ betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V $_{AC}$ (oder 1,414 x 1500 V $_{DC}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

Zusätzliche Informationen

Weitere technische Informationen auf $\underline{www.tridonic.com} \rightarrow \mathsf{Technische}$ Daten

Garantiebedingungen auf <u>www.tridonic.com</u> → Services

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch dar. Keine Garantie wenn das Gerät geöffnet wurde!

Diagramme LCBI 10W 180mA PHASE-CUT/1-10 V SR

Wirkungsgrad in Abhängigkeit von der Last

THD in Abhängigkeit von der Last

Eingangsleistung in Abhängigkeit von der Last

Phase-cut Dimmungskurve (benötigt Dimmer) Ausgangsstrom in Abhängigkeit vom Dimmwinkel

Power Faktor in Abhängigkeit von der Last

Eingangsstrom in Abhängigkeit von der Last

Ausgangsstrom in Abhängigkeit vom Dimmwiderstand

1 – 10 V Dimmungskurve Ausgangsstrom in Abhängigkeit von der Dimmspannung

Diagramme LCBI 10W 350mA PHASE-CUT/1-10 V SR

Wirkungsgrad in Abhängigkeit von der Last

THD in Abhängigkeit von der Last

Eingangsleistung in Abhängigkeit von der Last

Phase-cut Dimmungskurve (benötigt Dimmer) Ausgangsstrom in Abhängigkeit vom Dimmwinkel

Power Faktor in Abhängigkeit von der Last

Eingangsstrom in Abhängigkeit von der Last

Ausgangsstrom in Abhängigkeit vom Dimmwiderstand

1 – 10 V Dimmungskurve Ausgangsstrom in Abhängigkeit von der Dimmspannung

Diagramme LCBI 10W 500mA PHASE-CUT/1-10 V SR

Wirkungsgrad in Abhängigkeit von der Last

THD in Abhängigkeit von der Last

Eingangsleistung in Abhängigkeit von der Last

Phase-cut Dimmungskurve (benötigt Dimmer) Ausgangsstrom in Abhängigkeit vom Dimmwinkel

Power Faktor in Abhängigkeit von der Last

Eingangsstrom in Abhängigkeit von der Last

Ausgangsstrom in Abhängigkeit vom Dimmwiderstand

1 – 10 V Dimmungskurve Ausgangsstrom in Abhängigkeit von der Dimmspannung

