Math3 CM

Tapé par C. THOMAS

 $2\ {\rm septembre}\ 2022$

Table des matières

1	Fon	$\operatorname{ctions}\operatorname{de}\mathbb{R}\operatorname{dans}\mathbb{R}$	5
	1.1	Limite	 Ę
		1.1.1 Adhérence	 Ę
		1.1.2 Limite	 F
		1.1.3 Fonctions négligeables	 Ę
		1.1.4 Croissance comparée	
		1.1.5 Fonctions Équivalentes	 6
		1.1.6 Opération sur les équivalents	 7
	1.2	Continuité	 7
	1.3	Dérivabilité	 8
		1.3.1 Dérivée successives	 8

Chapitre 1

Fonctions de $\mathbb R$ dans $\mathbb R$

Soit $D \in \mathbb{R}$, soit $f \in \mathbb{R}^D$

1.1 Limite

1.1.1 Adhérence

Définition 1.1.1 On appelle adhérence de D le plus petit ensemble fermé qui contient D. Noté \bar{D}

1.1.2 Limite

Soit f définie sur D, Soit $a \in \bar{D}$, Soit $l \in \mathbb{R}$

Définition 1.1.2 On dit que f a pour limite l quand x tends vers a si

$$\forall \varepsilon > 0, \exists \eta > 0 | |x - a| < \eta \Rightarrow |f(x) - l| < \varepsilon$$

1.1.3 Fonctions négligeables

Définition 1.1.3 Soit $f, g \in \mathbb{R}^D$ et $a \in \bar{D}$ on dit que $f = o_a(g)$ si $\frac{f(x)}{g(x)} \to_a 0$

$$\frac{f(x)}{g(x)} = \frac{x}{\sqrt{x}} \tag{1.1}$$

$$\rightarrow_{0^{+}} 0 \tag{1.2}$$

$$f = o_{O^+}(g) \tag{1.3}$$

Croissance comparée 1.1.4

Théorème 1.1.1 Croissances Comparées

Soient $(\alpha, \beta, \gamma) \in \mathbb{R}^{+*}$ avec $\gamma > 1$ avec

$$f: x \mapsto (\log x)^{\alpha}$$

$$g: x \mapsto x^{\beta}$$

$$h: x \mapsto \gamma^x$$

alors on a

$$g = o_{\infty}(f)$$

$$h = o_{\infty}(g)$$

c'est à dire

$$\frac{(\log x)^{\alpha}}{x^{\beta}} \to_{\infty} 0$$
$$\frac{x^{\beta}}{\gamma^x} \to_{\infty} 0$$

$$\frac{x^{\beta}}{\gamma^x} \to_{\infty} 0$$

Fonctions Équivalentes 1.1.5

Soit $f, g \in \mathbb{R}^D$ et $a \in \bar{D}$ on dit que f est équivalente à gDéfinition 1.1.4 quand x tends vers a si $\frac{J}{a} \rightarrow_a 1$.

On note $f \equiv_a g$

- Un polynome est équivalent à son monôme de plus haut degrès (resp bas) quand x tends vers ∞ (resp 0)
- $-\sin x \equiv_0 x$
- $-\ln(1+x) \equiv_0 x$

1.2. CONTINUITÉ 7

1.1.6 Opération sur les équivalents

Soient $f_1, g_1, f_2, g_2 \in \mathbb{R}^D$ soit $a \in \bar{D}$ soit $\alpha \in \mathbb{R}$ si

$$f_1 \equiv_a g_1$$
$$f_2 \equiv_a g_2$$

alors

$$f_1 \cdot f_2 \equiv_a g_1 \cdot g_2$$

$$\frac{f_1}{f_2} \equiv_a \frac{g_1}{g_2}$$

$$f_1^{\alpha} \equiv_a g_1^{\alpha}$$

 $f = o_a g \Rightarrow f + g \equiv_a g \tag{1.4}$

— Si $f \equiv_a g$ et $\lim_{x \to a} f(x) = l$ alors $\lim_{x \to a} g(x) = l$

Proposition 1.1.1 Si $f \equiv_a g$ et $\lim_a f \neq 1$ alors $\ln f \equiv_a \ln g$

Démonstration.

$$\frac{\log g(x)}{\log f(x)} - 1 = \frac{\log g(x) - \log f(x)}{\log f(x)} = \frac{\frac{\log g(x)}{\log f(x)}}{\log f(x)} to_a 0$$

Cas particulier où l=1

1.1.3 f(x) = 1 + x et $g(x) = 1 + \sqrt{x}$ on a bien $f \equiv_0 g$ et $f \to_0 1$ on a aussi $\log f(x) = \log 1 + x \equiv_0 x$ et $lng(x) = ln1 + \sqrt{x} \equiv_0 \sqrt{x}$ et $x \neq \sqrt{x}$

1.2 Continuité

Définition 1.2.1 Soit f définie sur un ouvert D de \mathbb{R} et $a \in D$. On dit que f est continue en a si et seulement si $\lim_a f(x) = f(a)$. On note \mathcal{C}^0 l'ensemble des fonctions continues, c'est un espace vectoriel.

1.3 Dérivabilité

Définition 1.3.1 Soit f définie sur un ouvert D de \mathbb{R} et $a \in D$. On dit que f est dérivable en a si et seulement si $\lim_a \frac{f(x) - f(a)}{x - a}$ existe dans \mathbb{R} . On note f' la fonction $x \mapsto \lim_a \frac{f(x) - f(a)}{x - a}$ définie sur l'ensemble des valeurs dérivables de f.

1.3.1 Dérivée successives

On peut ensuite étudier la dérivabilité des dérivées successives de f