chronic_ACH_exposition_metrics

June 19, 2025

0.1 Control Dataset Overview

This notebook analyzes spontaneous calcium activity in BxPC3 pancreatic cancer cells imaged under identical control conditions across six image sequences.

Experimental context: - Cell line: BxPC3 (pancreatic ductal adenocarcinoma) - Imaging: DIV2, seeded at 1.2 million cells per well (high confluence) - Ca² dye: Fluo-4 AM (standard loading protocol) - Nuclei: Hoechst 33342 (10 $\mu g/mL$) - Acquisition: FITC, 1 Hz, 30 ms exposure for 30 minutes - CHRONIC exposition to Ach in growth medium after seeding, during incubation & imaging at various concentration.

This is the **first run** of spontaneous activity under control conditions. The goal is to analyze cells' behaviors at different level and compare it to control datasets

0.2 Setup & Utilities

Standard scientific libraries (Pandas, NumPy, Seaborn) and custom plotting utilities are loaded. These functions enable streamlined metric visualization and layout control across multiple datasets.

```
[1]: # Libraries
     import seaborn as sns
     import numpy as np
     from pathlib import Path
     import sys
     # Add /Source to sys.path if not already present
     project_root = Path.cwd().parent
     source_path = project_root / "src"
     if source_path.exists() and str(source_path) not in sys.path:
         sys.path.insert(0, str(source_path))
     # Utility functions
     from calcium_activity_characterization.analysis.visualizers import_
      ⇒plot_metric_by_dataset, plot_category_distribution_by_dataset,_
      →plot_raster_plots_by_dataset
     from calcium_activity_characterization.analysis.loaders import⊔
      →load_and_merge_datasets
     sns.set(style="whitegrid")
```

```
# Define paths to control datasets
control_paths = {
    "1 - ACH 10uM - 1": "D:/Mateo/20250618/Output/IS1",
   "1 - ACH 10uM - 2": "D:/Mateo/20250618/Output/IS2",
    "2 - ACH 1uM - 1": "D:/Mateo/20250618/Output/IS3",
    "2 - ACH 1uM - 2": "D:/Mateo/20250618/Output/IS4",
   "3 - ACH 100nM - 1": "D:/Mateo/20250618/Output/IS5",
   "3 - ACH 100nM - 2": "D:/Mateo/20250618/Output/IS6",
   "4 - ACH 10nM - 1": "D:/Mateo/20250618/Output/IS7",
    "4 - ACH 10nM - 2": "D:/Mateo/20250618/Output/IS8",
}
# Load and merge datasets
peaks = load and merge datasets(control_paths=control_paths, file_name="peaks.
 ⇔csv")
cells = load_and_merge_datasets(control_paths=control_paths, file_name="cells.
 ⇔csv")
events = load and merge datasets(control paths=control paths, file name="events.
 ⇔csv")
```

0.3 Preprocessing

Before visual comparison, we normalize event labels (e.g., missing in_event entries set to 'individual') and compute additional derived fields (is_active, periodicity_score) to ensure consistent comparisons across all datasets.

These steps are crucial for **ensuring fair metric aggregation** and enabling downstream comparative analysis.

```
[2]: peaks["in_event"] = peaks["in_event"].fillna("individual").str.lower()

if "is_active" not in cells.columns:
    cells["is_active"] = cells["num_peaks"].apply(lambda x: 1 if x > 0 else 0)

if "periodicity_score" not in cells.columns:
    cells["periodicity_score"] = np.nan
```

0.4 Raster Plot Inspection

Raster plots provide a binary overview of calcium activity over time per cell.

Remarks: TODO

Use these plots to screen visually for anomalies or batch effects before statistical analysis.

```
n_cols=2
```


0.5 Peak Type Distribution

Pie charts quantify the proportion of detected calcium peaks classified as: - individual: isolated peaks - sequential: propagating local events - global: large-scale synchronized events

Interpretation:

The distribution of peaks by event type (global, sequential, individual) across First Run control datasets is highly consistent.

- Approximately 30-40% global events are consistently observed, except in image sequence 2025-04-04 IS3, where fewer global events were detected.
- Sequential and individual peaks maintain stable proportions across datasets, indicating reproducible spontaneous calcium signaling activity under standard conditions.

First run image sequences demonstrate reproducible and robust peak-type distribution, validating their reliability as control data.

```
[4]: peak_type_colors = {
        "global": "#66c2a5",
        "sequential": "#8da0cb"
}

plot_category_distribution_by_dataset(
        df=peaks,
        column="in_event",
        category_order=["global", "sequential", "individual"],
        colors=peak_type_colors,
        title="Distribution of Peaks by Event Type",
        n_cols=2
)
```

Distribution of Peaks by Event Type

0.6 Peak Metrics per Event Type

Metrics like duration, prominence, and symmetry are visualized per event type.

Interpretation:

- Global peaks: Characteristically long durations (~50 frames).
- Sequential peaks: Duration means around 26-28 frames; symmetry values around 0.9 ± 0.12 .
- Individual peaks: Duration around 26–27 frames, also with symmetry $\sim 0.9 \pm 0.12$.

Overall, the peak metrics in the First Run are stable, biologically plausible, and reproducible.

```
[5]: for event_type in ["global", "sequential", "individual"]:
    subset = peaks[peaks["in_event"] == event_type]
    print(f"\n# Peak Type: {event_type.title()} - {len(subset)} peaks")
    plot_metric_by_dataset(subset, "rel_duration", f"{event_type.title()} Peaks:
    Duration", bin_width=3, n_cols=2)
    plot_metric_by_dataset(subset, "prominence", f"{event_type.title()} Peaks:
    Prominence", bin_width=3, n_cols=2)
    plot_metric_by_dataset(subset, "rel_symmetry_score", f"{event_type.title()}
    Peaks: Symmetry", bin_count=30, n_cols=2)
```

Peak Type: Global - 35737 peaks

Peak Type: Sequential - 17127 peaks

Peak Type: Individual - 9321 peaks

0.7 Cell Metrics

We analyze: - Number of peaks per cell (activity) - Periodicity score (oscillatory behavior) - Proportion of active vs inactive cells

Interpretation:

Active cells: Nearly all cells (>99.9%) are active in every dataset. This indicates excellent signal integrity and robust experimental conditions. Activity is highly homogeneous across datasets.

Number of peaks per cell: High total peak count (>10,000 peaks per dataset), with a balanced and near-normal distribution. This reflects widespread and stable activity across the population.

Periodicity: Periodicity scores ($\sim 0.7 \pm 0.1$) remain consistent across both imaging runs. This suggests that rhythmic calcium oscillations are preserved, even when global excitability drops.

```
[6]: # Convert is_active to label for display purposes
    cells["active_label"] = cells["is_active"].map({1: "Active", 0: "Inactive"})

plot_category_distribution_by_dataset(
    df=cells,
    column="active_label",
    category_order=["Active", "Inactive"],
    colors={"Active": "#66c2a5", "Inactive": "#d3d3d3"},
    title="Active vs Inactive Cells per Dataset",
    n_cols=2
)
```



```
[7]: plot_metric_by_dataset(cells, "num_peaks", "Cell: Number of Peaks", u

shin_width=1, n_cols=2)

plot_metric_by_dataset(cells, "periodicity_score", "Cell: Periodicity Score", u

shin_width=0.02, n_cols=2)
```


0.8 Sequential Event Metrics

We focus on **spatiotemporal events**, extracting: - Mean communication time and speed - Geometric descriptors (elongation, radiality) - Graph depth, number of involved cells

Interpretation:

- Communication time: ~4.0 frames (STD ~2.5).
- Communication speed: ~6.2 units/frame.
- Cells involved: $\sim 3.2 \pm 2$ cells per event.

These metrics are consistent across datasets and define the propagation baseline for healthy spontaneous events.

Sequential Events: DAG Depth

1 - ACH 10uM - 1 (No Data)	1 - ACH 10uM - 2 (No Data)
2 - ACH 1uM - 1 (No Data)	2 - ACH 1uM - 2 (No Data)
3 - ACH 100nM - 1 (No Data)	3 - ACH 100nM - 2 (No Data)
4 - ACH 10nM - 1 (No Data)	4 - ACH 10nM - 2 (No Data)

0.9 Conclusion & Next Steps

0.9.1 Summary of Observations

- Visual Patterns: Briefly describe observed visual trends (raster plots, activity levels, etc.).
- Statistical Results: Mention key metrics or KS-test outcomes that stood out.

0.9.2 Dataset Reproducibility

- Which datasets appear consistent or divergent?
- Are any replicates potentially faulty or biologically distinct?

0.9.3 Actionable Decisions

Exclude dataset(s) due to technical issues	
Flag dataset(s) for further inspection	
Select representative samples for downstream analysis	is

0.9.4 Planned Deep-Dive

• Which direction will the next notebook take? (e.g., spatial clustering, propagation analysis, signal decomposition)

```
[]: from calcium_activity_characterization.analysis.report import_
export_current_notebook_to_pdf

#export_current_notebook_to_pdf("chronic_ACH_exposition_metrics.ipynb")
```

```
Notebook export error: Command '['jupyter', 'nbconvert', '--to', 'pdf', '--no-input', '--output', 'chronic_ACH_exposition_metrics', 'notebooks\\chronic_ACH_exposition_metrics.ipynb']' returned non-zero exit status 4294967295.
```

Failed to export notebook: Command '['jupyter', 'nbconvert', '--to', 'pdf', '-no-input', '--output', 'chronic_ACH_exposition_metrics', 'notebooks\\chronic_ACH_exposition_metrics.ipynb']' returned non-zero exit status 4294967295.