

Identifying Equivalence of FDs

Equivalence set of FDs

- F: {} G: {}
- i. Is F cover G? $G^+ \subseteq F^+$

Following steps are followed to determine whether F covers G or not-

- a. Take the functional dependencies of set G into consideration.
- b. For each functional dependency $X \rightarrow Y$ of G, find the closure of X using the functional dependencies of set F.
- c. If the functional dependencies of set F has determined all those attributes that were determined by the functional dependencies of set G, then it means F covers G.
- ii. Is G cover F? $F^+ \subseteq G^+$

iii. Are both equivalent? $G^+ \equiv F^+$

If F1 and F2 are said to be equivalent then all FDs in F1 must be covered by F2 and all FDs in F2 must be covered by F1.

Q. 1 F:
$$\{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$$
; G: $\{A \rightarrow BC, C \rightarrow D\}$

Take closure of L.H.S. attributes' of G from F's FD.

$$A^+ = \{A, B, C, D\}$$
 i.e., $A \rightarrow BC$ of G will be covered from A^+ .

$$C^+ = \{C, D\}$$
 i.e., $C \rightarrow D$ of G will be covered from C^+ .

Yes.

ii. Is G cover F?

Take closure of L.H.S. attributes' of F from G's FDs.

$$A^+ = \{A, B, C, D\}$$
 i.e., $A \rightarrow B$ of F will be covered from A^+ .

$$B^{+} = \{B\}$$

$$C^+ = \{C, D\}$$
 i.e., $C \rightarrow D$ of F will be covered from C^+ .

No. Because $B \rightarrow C$ can't be covered.

Q:
$$\{A \rightarrow BC, D \rightarrow AE\}$$

Is P cover Q?

Take closure of L.H.S. attributes' of Q from P's FD.

$$A^+ = \{A, B, C, D, E\}$$
 i.e., $A \rightarrow BC$ of Q will be covered from A^+ .

$$D^+ = \{D, A, E\}$$

 $D^+ = \{D, A, E\}$ i.e., $D \rightarrow AE$ of Q will be covered from D^+ .

Yes.

Is Q cover P?

Take closure of L.H.S. attributes' of P from Q's FDs.

$$A^{+} = \{A, B, C\}$$

i.e., $A \rightarrow B$ of P will be covered from A^+ .

$$AB^{+} = \{A, B, C\}$$

i.e., AB \rightarrow C of P will be covered from AB⁺.

$$D^+ = \{D, A, E, B, C\}$$

 $D^+ = \{D, A, E, B, C\}$ i.e., $D \rightarrow ACE$ of P will be covered from D^+ .

Yes. Thus, $P \equiv Q$.

Q. 3 F1 = {A
$$\rightarrow$$
 C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H}; F2 = {A \rightarrow CD, E \rightarrow AH}

Is F1 cover F2?

Take closure of L.H.S. attributes' of F2 from F1's FD.

$$A^+ = \{A, C, D\}$$

i.e., $A \rightarrow CD$ of F2 will be covered from A⁺.

$$E^+ = \{E, A, D, H, C\}$$

 $E^+ = \{E, A, D, H, C\}$ i.e., $E \rightarrow AH$ of F2 will be covered from E^+ .

Yes.

Is F2 cover F1?

Take closure of L.H.S. attributes' of F1 from F2's FDs.

$$A^+ = \{A, C, D\}$$

 $A^+ = \{A, C, D\}$ i.e., $A \rightarrow C$ of F1 will be covered from A^+ .

$$AC^{+} = \{A, C, D\}$$

 $AC^+ = \{A, C, D\}$ i.e., $AC \rightarrow D$ of F1 will be covered from AC^+ .

$$E^+ = \{D, A, E, H, C\}$$

 $E^+ = \{D, A, E, H, C\}$ i.e., $E \rightarrow AD, E \rightarrow H$ of F1 will be covered from E^+ .

Yes.

Thus, $F1 \equiv F2$.

Q. 4 Check the following sets F1 and F2 of FDs for the equivalence.

F1 =
$$\{XY \rightarrow W, Y \rightarrow Z, WZ \rightarrow P, WP \rightarrow QR, Q \rightarrow X\}$$

F2 = $\{XY \rightarrow Q, WX \rightarrow PZ, X \rightarrow ZP, Q \rightarrow ZR\}$

i. Is F1 cover F2?

Take closure of L.H.S. attributes' of F2 from F1's FD.

$$XY^+ = \{X, Y, W, Z, P, Q, R, X\}$$
 i.e., $XY \rightarrow Q$ of F2 will be covered from XY^+ . $WX^+ = \{W, X\}$ $X^+ = \{X\}$ $Q^+ = \{Q, X\}$

No. because FDs WX \rightarrow PZ, X \rightarrow ZP, Q \rightarrow ZR of F2 cant be covered from F1.

ii. Is F2 cover F1?

Take closure of L.H.S. attributes' of F1 from F2's FDs.

$$XY^{+} = \{X, Y, Q, Z, R, P\}$$

 $Y^{+} = \{Y\}$
 $WZ^{+} = \{W, Z\}$
 $WP^{+} = \{W, P\}$
 $Q^{+} = \{Q, Z, R\}$

No. none of the FDs of F1 covered from F2.

Thus, neither F1 covers F2, nor F2 covers F1.

