A

北京航空航天大学 2015-2016 学年第一学期期末

	-	考证	【统·	一月]答;	题册]	7.	
考试课	程	~元溦	积分		_ 任调	老师		V	<u> </u>
班级									
题目	~	:	1	四	五	☆	セ	^	定分
得		7	//*						
分									
阅		7							
表人									

2016年01月20日

- . 填空题(每小题4分,共20分)

- 1. 设函数 y = f(x) 由方程 $x + 2y = \sin y$ 确定,则 dy =
- 2. 曲线 $y = x^3 3x^2 + 24x 19$ 在拐点处的切线方程为
- 3. 设 $y = x + \ln x$, 则 $\frac{dx}{dy} =$ ______.
- 4. 若反常积分 $\int_0^1 \frac{\sin x}{x^{\alpha} \sqrt{1+x}} dx (\alpha > 0)$ 收敛,则 α 的取值范围是_
- 5. 有一细杆,位于x轴上区间 [0,1],已知细杆上任一点处的线密度为 $\rho(x)=x$,则当 $x = ______$ 时,[0,x]一段的质量为整个细杆质量的一半.

二. 单项选择题(每小题 4 分,共 20 分)

- 1. 若 $f(x) = \begin{cases} a + 2x, & x < 0 \\ e^{bx}, & x \ge 0 \end{cases}$ 在点 x = 0 处可导,则 a + 2b 的值为).
- (A) 5;

- (D) 2.
- 2. 当 $x \to 0$ 时,无穷小量 (1) $e^{x-x^2} 1$; (2) $\sqrt{1+x} \sqrt{1+\sin x}$; (3) $x + \ln(1-x)$; (4) $1 \cos x^2$ 从 低阶到高阶排列的顺序为(
- (A)(1)(2)(3)(4);
- (B) (3)(1)(2)(4);
- (C) (1)(3)(2)(4); (D) (1)(3)(4)(2).
- 3. 设函数 $f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ x, & 1 < x \le 2 \end{cases}$, 则 $\phi(x) = \int_0^x f(t) dt$ 在区间[0,2]上 (
- (A) 有第一类间断点; (B) 有第二类间断点;
- (C) 连续但不可导;
- (D) 可导.
- 4. 设函数 f(x) 连续, $F(x) = \frac{1}{2} \int_0^x (x-t)^2 f(t) dt$,则 F''(x) = (). (A) $\int_0^x f(t) dt$; (B) f(x); (C) $x \int_0^x f(t) dt$;

- (D) 0.

- 5. 设级数 $\sum_{n=0}^{\infty} u_n$ 收敛, 则下列结论中正确的是(
- (A) $\sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n}$ 收敛;

(B) $\sum_{n=1}^{\infty} u_n^2$ 收敛;

- (C) 若 $\lim_{n\to\infty}\frac{v_n}{u_n}=1$, 则 $\sum_{n=1}^{\infty}v_n$ 收敛;
- (D) $\sum_{n=1}^{\infty} (u_n + u_{n+1})$ 收敛.

三. 求极限 (每小题 6分, 共 12分)

$$1.\lim_{x\to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right)$$

$$2. \lim_{n\to\infty}\sum_{k=1}^n\frac{n}{(n+k)^2}$$

四. 求积分 (每小题 6 分, 共 12 分)

1.
$$\int_{0}^{\frac{\sqrt{2}}{2}} \frac{x^2 dx}{\sqrt{1-x^2}}$$

$$2. \int \frac{xe^x}{(1+e^x)^2} dx$$

五. (10 **分**) 设抛物线 $y = ax^2 + bx + c$ 通过原点 (0,0) , 且当 $x \in [0,1]$ 时, $y \ge 0$. 试确定 a,b,c 的值,使得抛物线 $y = ax^2 + bx + c$ 与直线 x = 1, y = 0 所围图形的面积为 $\frac{2}{3}$, 且使该图形绕 x 轴旋转而成的旋转体的体积最小,并求最小体积.

六. (10分) 判别下列级数的收敛性,并说明是条件收敛还是绝对收敛.

1.
$$\sum_{n=1}^{\infty} \frac{n}{2^n};$$

2.
$$\sum_{n=2}^{\infty} (-1)^{n-1} \frac{1}{n^p \ln n} (p > 0).$$

七. (10 分) 设函数 $f(x) = \frac{x}{(x-1)^2}$,填表并作图.

单增区间	
单减区间	
凹区间	
凸区间	
极值	
拐点	
渐近线	

八. (6分) 设 f(x)在[a,b] 上连续, 在(a,b)内可导.

(1) 证明存在 $\xi \in (a,b)$, 使得 $\int_a^b f(x) dx = f(\xi)(b-a)$.

(2) 若 f(a) = 0, $\int_a^b f(x) dx = 0$, 证明存在 $\eta \in (a,b)$, 使得 $f'(\eta) = 0$.