Pandas e Esteganografia

Imagem: https://clearbit.com/our-data

Transformação de Dados: Estudo de Caso do Autodiagnóstico da SGD

Α	В	С	D	Е	F	G
				3.1.1.2. Prontidão Organ		
2.Área de TI o	Universidade	Federal do Pa	2. INICIADO:	3. EMERGENTE: A Inst	3. EMERGEN	3. EMERGEN
2.Área de TI o	Universidade	Federal de Sá	3. EMERGEN	3. EMERGENTE: A Inst	3. EMERGEN	3. EMERGEN
	2			4. DESENVOLVIDO: A I		
		1		1. NÃO INICIADO: Parte		
3.Área de TI o	Instituto Fede	eral de Educaç	1. NÃO INICIA	1. NÃO INICIADO: Parte	2. INICIADO:	3. EMERGEN:
	<u>.</u>			INICIADO: A Instituiçã		
				1. NÃO INICIADO: Parte		
				3. EMERGENTE: A Inst		
_				2. INICIADO: A Instituiçã		
				1. NÃO INICIADO: Parte		
				3. EMERGENTE: A Inst		
				3. EMERGENTE: A Inst		
1.Área de TI f	Fundação Ca	sa de Rui Bar	EMERGEN	3. EMERGENTE: A Inst	1. NÃO INICIA	1. NÃO INICIA
1.Área de TI f	Empresa Bra	sileira de Infra	4. DESENVO	3. EMERGENTE: A Inst	4. DESENVO	4. DESENVO

Principais Alterações

- Extrair o valor numérico das categorias
 - "1. NÃO INICIADO", "2. INICIADO", "3. EMERGENTE", "4.
 DESENVOLVIDO", "5. OTIMIZADO"
- Despivotar a tabela

area	orgao	Pergunta	Valor	pria_matu	iado_matu	d_pergun	ciado_per	ano
2.Área de	Universio	3.1.1.1. Re	2	INICIADO	Na Institu	3.1.1.1.	Relevânci	2023
2.Área de	Universion	3.1.1.1. Re	3	EMERGEN	Na Institu	3.1.1.1.	Relevânci	2023
2.Área de	Fundação	3.1.1.1. Re	3	EMERGEN	Na Institu	3.1.1.1.	Relevânci	2023
3.Área de	Centro Fe	3.1.1.1. Re	1	NAO INIC	Na Institu	3.1.1.1.	Relevânci	2023
3.Área de	Instituto	3.1.1.1. Re	1	NAO INICI	Na Institu	3.1.1.1.	Relevânci	2023
2.Área de	Fundação	3.1.1.1. Re	3	EMERGEN	Na Institu	3.1.1.1.	Relevânci	2023
1.Área de	Instituto	3.1.1.1. R∈	3	EMERGEN	Na Institu	3.1.1.1.	Relevânci	2023
2.Área de	Universion	3.1.1.1. Re	4	DESENVO	A Instituiç	3.1.1.1.	Relevânci	2023
1			_					

Prompt como Compartilhamento de Conhecimento e Refactoring do Prompt

Processar arquivo 2024 ("/content/Autodiagnóstico 2024 Dados_Tratado_GD.xlsx"):

- 1. Renomear colunas especificadas por "3:" (ou seja df.columns[3:]) removendo o padrão r'(\d\.?)+\s?' do início.
- 2. Manter apenas o número (1 a 5) no início do texto das colunas especificadas por "3:" (ou seja df.columns[3:]), removendo o restante do texto.
- 3. Pivote as colunas especificadas por "3:" (ou seja df.columns[3:]) para uma coluna chamada Valor, criando o dataframe df_melted_2024.
- 4. Remover o padrão r'(\d\.?)+\s?' das colunas area e Pergunta.
- 5. Remover registros com valores nulos na coluna Valor.
- 6. Adicionar a coluna ano com o valor 2024.
- 7. Realizar merge com o arquivo /content/drive/MyDrive/empreender/ME/GovBr/Autodiagnostico/MapeamentoEix os.xlsx (contendo perguntas e eixos) e verificar se o resultado do inner join é igual ao outer join.

Prompt como Compartilhamento de Conhecimento e Refactoring do Prompt

Processar arquivo 2023 (/content/Resposta_40133199_results_survey998556.xlsx):

- 1. Renomear colunas especificadas por "3:" (ou seja df.columns[3:]) removendo o padrão r'(\d\.?)+\s?' do início.
- 2. Manter apenas o número (1 a 5) no início do texto das colunas especificadas por "3:" (ou seja df.columns[3:]), removendo o restante do texto.
- 3. Pivote as colunas especificadas por "3:" (ou seja df.columns[3:]) para uma coluna chamada Valor, criando o dataframe df_melted_2023.
- 4. Remover o padrão r'(\d\.?)+\s?' das colunas area e Pergunta.
- 5. Remover registros com valores nulos na coluna Valor.
- 6. Adicionar a coluna ano com o valor 2023.
- 7. Realizar merge com o arquivo /content/drive/MyDrive/empreender/ME/GovBr/Autodiagnostico/MapeamentoEixos.xlsx e verificar se alguma pergunta ficou sem eixo.

Finalizar:

1. Concatenar verticalmente df_melted_2023 e df_melted_2024.

Operação Join (Algebra Relacional)

Médico

D	rot	fess	or
	lOl	1622	OI.

CPF	Nome	Salario
11222731642	Jose Pereira	10
91498733332	Maria da Silva	20
81464221612	Pedro Martins	15

CPF	Nome	Salario
11222731642	Jose Pereira	6
91498733332	Maria da Silva	8
21564281600	Roberto Afonso	5

Join (ou inner join)

CPF	Nome	Salario_M	Salario_P	
11222731642	Jose Pereira	10	6	
91498733332	Maria da Silva	20	8	

Operação Left Join (Algebra Relacional)

Médico

CPF	Nome	Salario
11222731642	Jose Pereira	10
91498733332	Maria da Silva	20
81464221612	Pedro Martins	15

Professor

CPF	Nome	Salario
11222731642	Jose Pereira	6
91498733332	Maria da Silva	8
21564281600	Roberto Afonso	5

Left Join

CPF	Nome	Salario_M	Salario_P	
11222731642	Jose Pereira	10	6	\supset
91498733332	Maria da Silva	20	8	
81464221612	Pedro Martins	15		>

Operação Right Join (Algebra Relacional)

Médico

CPF	Nome	Salario
11222731642	Jose Pereira	10
91498733332	Maria da Silva	20
81464221612	Pedro Martins	15

Professor

CPF	Nome	Salario
11222731642	Jose Pereira	6
91498733332	Maria da Silva	8
21564281600	Roberto Afonso	5

Right Join

CPF	Nome	Salario_M	Salario_P	
11222731642	Jose Pereira	10	6	\geq
91498733332	Maria da Silva	20	8	
21564281600	Roberto Afonso		5	>

Operação Outer Join (Algebra Relacional)

Médico

CPF	Nome	Salario
11222731642	Jose Pereira	10
91498733332	Maria da Silva	20
81464221612	Pedro Martins	15

CPF	Nome	Salario
11222731642	Jose Pereira	6
91498733332	Maria da Silva	8
21564281600	Roberto Afonso	5

Outer Join

CPF	Nome	Salario_M	Salario_P	
11222731642	Jose Pereira	10	6	\geq
91498733332	Maria da Silva	20	8	
21564281600	Roberto Afonso		5	>
81464221612	Pedro Martins	15		

join (fundir/juntar)

- Faz o join de dois dataframes usando o índice
 - o como chave de junção

```
In [70]: left2
Out[70]:
                              In [73]: left2.join(right2, how='outer')
   Ohio Nevada
   1.0
                              Out[73]:
           2.0
a
c 3.0 4.0
                                  Ohio
                                        Nevada Missouri Alabama
   5.0
           6.0
                                  1.0
                                                      NaN
                                           2.0
                                                               NaN
                              a
In [71]: right2
                              b
                                  NaN
                                           NaN
                                                      7.0
                                                               8.0
Out[71]:
                                           4.0
                                                              10.0
                                  3.0
                                                      9.0
  Missouri Alabama
                              d
                                                     11.0
                                  NaN
                                           NaN
                                                              12.0
b
       7.0
               8.0
                                   5.0
                                           6.0
                                                              14.0
                                                     13.0
                              e
       9.0
              10.0
              12.0
      11.0
      13.0
              14.0
```

join (fundir/juntar)

- Com how='left' somente os registros do dataframe da esquerda
 - o aparecem no resultado

```
In [70]: left2
Out[70]:
  Ohio Nevada
a 1.0 2.0
c 3.0 4.0
e 5.0 6.0
In [71]: right2
Out[71]:
  Missouri Alabama
     7.0
          8.0
   9.0 10.0
   11.0 12.0
     13.0
            14.0
```

left2.join(right2, how='left')

	Ohio	Nevada	Missouri	Alabama
а	1.0	2.0	NaN	NaN
С	3.0	4.0	9.0	10.0
е	5.0	6.0	13.0	14.0

merge (fundir/juntar)

- Semelhante ao join, mas você precisa informar a coluna de junção
 - o pode ser inferida a partir do contexto da interseção entre as tabelas
 - √ Também pode ser especificada com o argumento on (Ex.: on='key')

```
In [37]: df1 In [38]: df2
                                    In [39]: pd.merge(df1, df2)
Out[37]:
       Out[38]:
                                    Out[39]:
  data1 key
                data2 key
                                      data1 key data2
                      a
```

Join vs Merge

- Ambos servem para combinar dataframes
- Join
 - Combina dataframes a partir dos seus indexes
 - ✓ Ou pode-se especificar uma coluna no dataframe onde se executa o método.

Merge

- Combina dataframes a partir de suas colunas
 - ✓ Pode validar o merge pelo tipo, com o argumento: validate
 - "1:1"
 - "1:m"
 - "m:1"
 - "m:m"

Maneiras de Armazenar vs Analisar os dados

Melhor para Armazenar

Melhor para Analisar

	Aluno	Disciplina	Objetiva	Discursiva	Disciplina	Geografia	HIstória	Matematica	Portugues
0	AlunoA	Portugues	8.5	6	Aluno				
1	AlunoA	Matematica	7.5	6.5	AlunoA	NaN	NaN	7.5	8.5
2	AlunoB	Geografia	9	7.5	AlunoB	9	10	NaN	NaN
3	AlunoB	HIstória	10	7					

Reshaping / Pivoting (Pivotar)

- Método pivot
 - 3 argumentos: index, columns, values
 - ✓ df.pivot(index='Aluno', columns='Disciplina', values='Objetiva')
 - a função melt() faz a operação de despivotar

E quando houver valores repetidos?

- Pivotar com o mesmo método pivot() gera exceção
 - Neste caso, use o método pivot_table

Dissipline Objetive Dissursive

✓ mean é a métrica padrão de cálculo sobre a de agregação

	Aluno	Disciplina	Objetiva	Discursiva
0	AlunoA	AlunoA Portugues		6.0
1	AlunoA	Matematica	7.5	6.5
2	AlunoA	Geografia	9.0	7.5
3	AlunoA	Geografia	10.0	7.0
4	AlunoA	História	9.0	8.0
5	AlunoB	Portugues	8.5	8.5
6	AlunoB	Matematica	7.5	7.5
7	AlunoB	Geografia	9.0	9.0
8	AlunoB	História	10.0	10.0

Disciplina	Geografia	História	Matematica	Portugues
Aluno				
AlunoA	9.5	9.0	7.5	8.5
AlunoB	9.0	10.0	7.5	8.5

Reshaping / Pivoting com Índice Hierárquico

- Método stack/unstack (Pivotar com índice hierárquico)
 - o stack = empilhar

ETL – Extract, Trasform and Load

- Extract (Extrair)
 - Coletar dados
- Transform (Transformar)
 - Transformar o dado num formato conveniente e útil
 - ✓ Limpeza / padronização
 - Sim/Não
 - YYYY-MM-DDThh:mm:ss.sTZ (ISO 8601)
 - ✓ Validação
 - ✓ Integração (join)
 - ✓ Reamostragem
- Load (Carregar/Inserir)
 - Inserir os dados numa base de dados de destino

Princípios de Gestão da Informação / Analogia com Princípios Orçamentários (PO)

- Repositório de dados único
 - Single Source Of Truth (SSOT)
 - ✓ PO: O orçamento deve ser uno.
- Dados Brutos/Originais
 - PO: Orçamento bruto.
 - ✓ Todas as parcelas da receita e da despesa devem aparecer no orçamento
 - em seus valores brutos, sem qualquer tipo de dedução.
- Utilidade
- Publicidade
 - Adequada
- Automação de Processos
- Controle Prévio

Cada tipo de problema tem uma ferramenta apropriada

- "With great power, comes great responsibility"
 - Saber/conhecer (uma ferramenta)
 - √ não implica em dever usá-la
 - Coletar dados para experimento vs Coletar dados para um Dashboard
 - Simplicidade
 - √ a arte de maximizar a quantidade de trabalho não realizado--é essencial

Orquestrador de workflows e pipelines

Dashboard do Preço do Bitcoin

DAG (Directed Acyclic Graph)

- Grafo acíclico direto
 - Sem laços
 - ✓ Tarefas sequenciais e paralelizáveis
- Operators
 - Building blocks do Airflow
 - ✓ Contém a lógica / implementação dos requisitos; e
 - ✓ Templates prontos pra configurar e usar.

Task (Airflow)

- Uma instância de um Operator
 - Configuram parâmetros de contexto
 - ✓ Por exemplo, quando executar o Operator

DAG simplificada

```
#### Extract
url = "https://github.com/alexlopespereira/dags/raw/refs/heads/main/data/pib_municipios.csv"
response = requests.get(url)
df = pd.read csv(pd.io.common.StringIO(response.text), sep=';')
#### Transform
pivoted data = df.melt(id vars=["Cód.", "Município"],
    value_vars=["2007", "2009", "2011", "2013", "2015", "2017"],
    var name="ano", value name="populacao")
# Rename columns to align with the specified format
pivoted_data.rename(columns={"Cód.": "Codigo", "Município": "Municipio"}, inplace=True)
#### Load
pg_hook = PostgresHook(postgres_conn_id='postgres')
engine = pg hook.get sqlalchemy engine()
pivoted_data.to_sql('pib_municipios', con=engine, if_exists='replace', index=False)
```

Dashboard do Preço do Bitcoin

Airflow no Atronomer.io - Requisitos

- No astronomer.io
 - Workspace
 - Deployment
 - Projeto Cloud IDE
- No GitHub
 - Fork do repositório <u>astro-dags-template</u>
- Um banco de dados (ex. postgres na Digital Ocean)
- Acesso ao Google Looker Studio

astronomer.io

- Ferramenta online para gerenciar clusters do Airflow
- Trial de 14 dias
 - Ferramenta paga
 - ✓ Num contexto produtivo, o custo é efetivo

Deploy com Cloud IDE e GitHub

Cloud IDE

Cádigo á opyindo do ID

Código é enviado da IDE para o GitHub

Astro
Deployment
(AWS, GCP, Azure)

Código é enviado para um container na nuvem

Astronomer.io e Airflow

- Tutorial sobre como https://youtu.be/sw-hATdQrBU
 - Configurar o Airflow no Astronomer;
 - Integrar com o github para fazer deploy automatizado;
 - Geração de código de DAGs
- Haverá um exercício valendo nota para
 - Sua DAG em código python;
 - Sua conta no Astronomer configurada;
 - Seu dashboard no Google Looker Studio

Prática no Colab Notebook

- Faça os exercícios da aula
 - A IA ainda não está boa para inferir os argumentos das funções do pandas que lêem arquivos e transformam num dataframe.
 - Você precisará, a priori, descobrir quais são esses argumentos e solicitar que a IA os utilize para ler os arquivos.