5.2 Korrespondenzsatz: Sei $\varphi:G\to H$ surjektive Grphomo, $U\le G$ mit $ker\varphi\le Uj$ und $V\le H$. Dann

a)
$$\varphi(U) = V \iff \varphi^{-1}(V) = U$$

b) Gilt
$$\varphi = V, dann : U \triangleleft G \iff V \triangleleft H$$

§4 Klassifikation der endlichen abelschen Gruppen

5.1 Satz: Ist G eine endliche abelsche Gruppe, so ist G isomorph zu \mathbb{Z} $n_1\mathbb{Z}\times\mathbb{Z}$ $n_2\mathbb{Z}\cdots\mathbb{Z}$ $n\mathbb{Z}$, wobei $|G|=n_1\cdots n_r$ und $n_i|n_{i-1}$

5.3 Lemma: Sei G eindlich und abelsch und p Primzahl mit $p|\,|G|$. Dann exist $g\in G$ mit o(g)=p

Beweis. (Induktion nach Anzahl von Teilen von |G| Induktionsanfang : $|G| = p \leadsto G \cong \mathbb{Z}$ $m\mathbb{Z}$ Induktionsschritt : Sei H max UG/NT von G. Dann gilt |G/H| = p' für eine Primzahl p' gilt p||H|, so exist $g \in H$ nach Induktionvoraussetzung \Longrightarrow Behauptung sonst p = |G/H|, da G| = |H| |G/H|

4.5 Lemma: Ist G eine abelsche (p-) Gruppe mit einer einzigen UG N der Ordnung p, so ist G zykelisch.

Beweis. Beweis nach |G|. Die Abbildung $f:G\to G$ mit $g\mapsto g^p$ ist eine Gruppenhomomorphismus. $\ker f$ besteht aus 1 und den Elementen der Ordnung p.