DESIGN & ANALYSIS OF ALGORITHM

PCC-CS402 CREDIT - 3

PRE-REQUISITES

- PROGRAMMING
- DATA STRUCTURE & ALGORITHM
- DISCRETE MATHEMATICS

DESIGN & ANALYSIS OF ALGORITHM SCHEDULE ----TOPIC WISE

	Topic	Sub Topic
1	INTRODUCTION	DESIGN OF ALGORITHM, ANALYSIS OF ALGORITHM,
		ALGORITHM PROPERTIES
2	FRAMEWORK FOR ALGORITHM	HOW TO COUNT EXECUTION TIME OF ALGORITHM, INPUT INSTANCES
	ANALYSIS	
3	ASYMPTOTIC NOTATION	BEST CASE, AVERAGE CASE, WORST CASE
4	SOLVING RECURRENCE RELATION	SUBSTITUTION METHOD, MASTER THEOREM
5	ALGORITHM DESIGN TECHNIQUES	DIVIDE & CONQUER, GREEDY, DYNAMIC PROGRAMMING,
		BACKTRACKING,
6	DISJOINT SET MANIPULATION	UNION ,FIND ALGORITHM & CYCLE DETCETION
7	NETWORK FLOW PROBLEM	FORD FULKERSON ALGORITHM
8	NP COMPLETENESS	NP,NP HARDALGORITHM
9	APPROXIMATION ALGORITHM	COMPLEXITY ANALYSIS OF NP COMPETE PROBLEM

BOOK

- Introduction to Algorithms, Thomas H. Cormen , Charles E. Leiserson, Ronald L. Rivest, Clifford Stein , MIT Press.
- "Fundamentals of Computer Algorithms(second edition)" by Sahni Horowitz
- "Design and Analysis of Computer Algorithms" by AHO

ALGORITHM

- A sequence of computational steps that transform the input into the output.
- Example sorting problem:
- **Input:** A sequence of n numbers al; a2; :::; an.

ALGORITHM AND PROGRAM

- ALGORITHM
- Design Phase
- Domain Knowledge
- No specific language
- System independent
- Analyse

PROGRAM

Implementation Phase

Programming Concept/ Domain knowledge is optional

Specific Programming language

System Dependent

Testing

HOW TO WRITE AN ALGORITHM

GCD PROBLEM Algorithm: GCD(M,N) // following algorithm calculates the gcd of m,n while(N % M !=0) R := N%M// R ← N%M N := MM := Rend while Return N

• }

PROPERTIES OF ALGORITHM

- Input
- Output
- Finiteness
- Definiteness
- Efficiency

PROPERTIES OF ALGORITHM

GCD(M,N)

Input-----

Euclidean Algorithm

■ Step I : r → N mod M

---- M,N numerical type

Output----

Step 2: N → M

---- gcd of M,N numerical type

■ Finiteness--

Step 3: M→ r

Step 4: Repeat step I to 3 while M doesn't divide N

---- for 36,48 it is 3

■ Definiteness- Step 5: return N

---- steps are definite

Efficiency ------O(Log min(a, b))

ALGORITHM: GREATEST COMMON DIVISOR

- Algorithm 1: Simple level, School level
- Algorithm 2: Euclid's

ALGORITHM I : GREATEST COMMON DIVISOR (M,N)

OBJECTIVE- Following algorithm will calculate the Greatest common divisor of M and N

Begin

- Step I : Factorize M i.e M :=mI * m2 * m3......
- Step 3: Identify the common factor/factors.
- Step 4: GCD:= multiplication of common factors.
- Step 5: return GCDEnd
- N.B- Simple level, School level

ALGORITHM I : GREATEST COMMON DIVISOR (M,N)

- GCD(36,48)
- Step I : M= 2*2*3*3
- Step 2: N= 2*2*2*3
- Step 3: Common Factor=2*2*3
- Step 4: GCD=12

Step I : Factorize M j.c M-mI * m2 * m3......

Step 2: Factorize N i.e N=n1 * n2 * n3......

Step 3: Identify the common factor/factors.

Step 4: GCD- multiplication of common factors.

Step 5: return GCD

ALGORITHM 2 : GREATEST COMMON DIVISOR (M,N) N>=M

OBJECTIVE- Following algorithm will calculate the Greatest common divisor of M and N

Begin

- Step I : r ← N mod M
- Step 2: N← M
- Step 3: M←—r
- Step 4: Repeat step I to 3 while M doesn't divide N
- Step 5: return N

End

N.B- Euclidean Algorithm

ALGORITHM 2 : GREATEST COMMON DIVISOR (M,N)

- Euclidean Algorithm GCD(36,48)
- Iteration I: GCD(36,48) r=12 N=36 M=12
- Iteration 2: GCD(12,36) r=0 N=12 M=0
- Iteration 3: GCD=12

- Step I : r ← N mod M
- Step 2: N ← M
- Step 3: M ← r
- Step 4: Repeat step I to 3 while M doesn't divide N
- Step 5: return N

ANALYSIS OF ALGORITHM I & 2 GREATEST COMMON DIVISOR (M,N)

- Euclidean Algorithm GCD(36,48)
- Iteration I: GCD(36,48) r=12 N=36 M=12
- Iteration 2: GCD(12,36) r=0 N=12 M=0
- Iteration 3: GCD=12

- GCD(36,48)
- Step I : M := 2*2*3*3
- Step 2: N := 2*2*2*2*3
- Step 3: Common Factor :=2,2,3
- Step 4: GCD=12

QUESTION

- **GCD**(434,966)
- Step I : M= 2*7*31
- Step 2: N= 2*7*139
- Step 3: Common Factor=2,7
- Step 4: GCD=2*7=14
- Number of division? a) 6 b) 7 c) 8 d) many

NEXT CLASS TOPIC-

■ Frame work for Algorithm Analysis.