Programming for Biology Protein Evolution / Similarity Searching

What BLAST Does / Why BLAST works

Bill Pearson wrp@virginia.edu

1

Protein Evolution/ Similarity Searching

- 9:00 Homology and Expectation value
- 10:30 Similarity searching workshop I
- 1:30 Practical Similarity Searching, improving sensititivty
- 3:00 Workshop II Parsing search results

Effective Similarity Searching

- Always search protein databases (possibly with translated DNA)
- 2. Use E()-values, not percent identity, to infer homology
 - E() < 0.001 is significant in a single search
- 3. Search smaller (comprehensive) databases
- 4. Change the scoring matrix for:
 - short sequences (exons, reads)
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - high identity (>50% alignments) to reduce over-extension
- 5. All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss

Sequence Similarity - Conclusions

- <u>Homologous</u> sequences share a common ancestor, but most sequences are <u>non-homologous</u>
- Always compare Protein Sequences
- Sequence Homology can be reliably inferred from statistically significant similarity (non-homology cannot from non-similarity)
- Homologous proteins share common structures, but not necessarily common functions
- Sequence statistical significance estimates are accurate (verify this yourself)10⁻⁶ < E() < 10⁻³ is statistically significant
- Scoring matrices set evolutionary look back horizons not every discovery is distant
- PSI-BLAST can be more sensitive, but with lower statistical accuracy

Establishing homology from statistically significant similarity Why BLAST works

- For most proteins, homologs are easily found over long evolutionary distances (500 My – 2 By) using standard approaches (BLAST, FASTA)
- Difficult for distant relationships or very short domains
- Most default search parameters are optimized for distant relationships and work well

5

Protein Evolution and Sequence Similarity

Similarity Searching I

- What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- · DNA vs protein comparison

Similarity Searching II

- · More effective similarity searching
 - Smaller databases
 - Appropriate scoring matrices
 - Using annotation/domain information

When can we infer non-homology?

Bovine trypsin (5ptp) Structure: E()<10⁻²³

 $\begin{array}{c} \text{RMSD 0.0 A} \\ \text{Sequence:} \quad \text{E()<10}^{-84} \end{array}$

100% 223/223

Non-homologous proteins have different structures

Subtilisin (1sbt) E() >100

E() >100 E() <280; 25% 159/275

Cytochrome c4 (1etp) E() > 100 E() < 5.5; 23% 171/190

9

Homology is confusing I: Homology defined Three(?) Ways

- Proteins/genes/DNA that share a common ancestor
- Specific positions/columns in a multiple sequence alignment that have a 1:1 relationship over evolutionary history
 - sequences are 50% homologous ???
- Specific (morphological/functional) characters that share a recent divergence (clade)
 - bird/bat/butterfly wings are/are not homologous

Homology from sequence similarity

- Sequences are inferred to share a common ancestor based on statistically significant excess similarity. Any evidence of excess similarity can be used to infer homology
- Lack of sequence evidence cannot be used to infer non-homology.
 - Proteins with different structures are nonhomologous
- There are always two alternative hypotheses: homology (common ancestry), or independence – one must weigh the evidence for each hypothesis (independence is the *null* hypothesis).

E. coli proteins vs Human – Ancient Protein Domains									
expect	+ %_id	+ alen	+ E coli descr	Human descr	+ sp_name				
2.7e-206 1.2e-176 3.8e-176 9.9e-173 1.8e-165 5.6e-159 8.1e-143 2.5e-134 3.3e-121 1.5e-113 4.4e-111 1.5e-109 3.6e-106 1.4e-102 3.8e-98 5.8e-96 2.1e-95 5.0e-91 9.5e-91 2.2e-89 6.5e-88	53.8 59.5 50.6 55.6 65.7 73.0 60.6 60.9 55.1 544.7 53.1 53.0 66.8 62.5 56.5 56.5 56.5 56.5 56.5 56.5 59.1 53.3 43.3	944	glycine decarboxylase, P methylmalonyl-CoA mutase glycogen phosphorylase [E B12-dependent homocystein carbamoyl-phosphate synth glucosephosphate isomeras aconitate hydrase [E Ech membrane-bound ATP syntha succinate dehydrogenase, putative aminotransferase fumarase C= fumarate hydr succinate-semialdehyde de maltodextrin phosphorylas NAD+-dependent betaine al pyridine nucleotide trans glycerol kinase [Escheric glyceraldehyde-3-phosphat alcohol dehydrogenase cla protein chain elongation methionine adenosyltransf enolase [Escherichia coli	Glycine dehydrogenase [de Methylmalonyl-CoA mutase, Glycogen phosphorylase, l 5-methyltetrahydrofolate-Carbamoyl-phosphate synth Glucose-6-phosphate isome Iron-responsive element b ATP synthase beta chain, Succinate dehydrogenase [Cysteine desulfurase, mit Fumarate hydratase, mitoc Succinate semialdehyde de Glycogen phosphorylase, m Aldehyde dehydrogenase, E NAD(P) transhydrogenase, Glycerol kinase, testis s Glyceraldehyde 3-phosphat Alcohol dehydrogenase cla Elongation factor Tu, mit S-adenosylmethionine synt Alpha enolase (2-phospho-NADA decodet malic carbice properties)	GCSP_HUMAN MUTA_HUMAN PHS1_HUMAN CPSM_HUMAN G6PI_HUMAN IRE1_HUMAN ATPB_HUMAN NFS1_HUMAN NFS1_HUMAN NFS1_HUMAN NFS2_HUMAN PHS2_HUMAN NNTM_HUMAN GKP2_HUMAN ADHX_HUMAN EFTU_HUMAN EFTU_HUMAN METK_HUMAN METK_HUMAN ENOA_HUMAN				
7.3e-86 5.2e-83	43.3 55.5 44.4	536 389 543	NAD-linked malate dehydro 2-amino-3-ketobutyrate Co degrades sigma32, integra	NADP-dependent malic enzy 2-amino-3-ketobutyrate co AFG3-like protein 2 (Para	MAOX_HUMAN KBL_HUMAN AF32_HUMAN				

Protein Evolution and Sequence Similarity

- · What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- · More effective similarity searching
 - Smaller databases
 - Appropriate scoring matrices
 - Using annotation/domain information

Inferring Homology from Statistical Significance

- Real UNRELATED sequences have similarity scores that are indistinguishable from RANDOM sequences
- If a similarity is NOT RANDOM, then it must be NOT UNRELATED
- Therefore, NOT RANDOM (statistically significant) similarity must reflect RELATED sequences

```
Query: atp6_human.aa ATP synthase a chain - 226 aa Library: 5190103 residues in 13351 sequences
The best scores are:
                                                      ( len) s-w bits E(13351) %_id %_sim alen
{\tt sp|P00846|ATP6\_HUMAN\ ATP\ synthase\ a\ chain\ (AT\ (\ 226)\ 1400\ 325.8\ 5.8e-90\ 1.000\ 1.000}
sp|P00847|ATP6\_BOVIN ATP synthase a chain (AT ( 226) 1157 270.5 2.5e-73 0.779 0.951
                                                                                                   226
sp P00848 ATP6_MOUSE ATP synthase a chain (AT ( 226) 1118 261.7 1.2e-70 0.757 0.916 sp P00849 ATP6_XENLA ATP synthase a chain (AT ( 226) 745 176.8 4.0e-45 0.533 0.847
sp|P00851|ATP6_DROYA ATP synthase a chain (AT ( 224)
                                                              473 115.0 1.7e-26 0.378 0.721
sp | P00854 | ATP6 YEAST ATP synthase a chain pre ( 259) 428 104.7 2.3e-23 0.353 0.694 sp | P00852 | ATP6 EMENI ATP synthase a chain pre ( 256) 365 90.4 4.8e-19 0.304 0.691
                                                                                                   230
sp|P14862|ATP6_COCHE ATP synthase a chain (AT ( 257) 353 87.7 3.2e-18 0.313 0.650
sp P68526 ATP6_TRITI ATP synthase a chain (AT ( 386) 309 77.6 5.1e-15 0.289 0.651
sp|P05499|ATP6\_TOBAC ATP synthase a chain (AT ( 395) 309 77.6 5.2e-15 0.283 0.635
sp P07925 ATP6 MAIZE ATP synthase a chain (AT ( 291)
                                                               283 71.7 2.3e-13 0.311 0.667
sp POAB98 ATP6_ECOLI ATP synthase a chain (AT ( 271)
                                                               178 47.9 3.2e-06 0.233 0.585
sp P0C2Y5 ATPI_ORYSA Chloroplast ATP synth (A ( 247) 144 40.1 0.00062 0.242 0.580 sp P06452 ATPI PEA Chloroplast ATP synthase a ( 247) 143 39.9 0.00072 0.250 0.586
sp|P27178|ATP6_SYNY3 ATP synthase a chain (AT ( 276)
                                                               142 39.7 0.00095 0.265 0.571
sp|P06451|ATPI_SPIOL Chloroplast ATP synthase ( 247)
                                                               138 38.8 0.0016 0.242 0.580
sp|P08444|ATP6_SYNP6 ATP synthase a chain (AT ( 261)
                                                               127 36.3 0.0095 0.263 0.557
                                                                                                   167
sp | P69371 ATPI ATRBE Chloroplast ATP synthase ( 247) sp | P06289 ATPI_MARPO Chloroplast ATP synthase ( 248)
                                                               126 36.0 0.01 0.221 0.571 231
                                                               126 36.0 0.011
sp|P30391|ATPI_EUGGR Chloroplast ATP synthase ( 251)
                                                              123 35.4 0.017 0.257 0.579 214
sp|P19568|TLCA_RICPR ADP,ATP carrier protein ( 498) 122 35.0 0.043 0.243 0.579 152
0.261 0.479
                                                                     31.0
sp|P03891|NU2M_HUMAN NADH-ubiquinone oxidored ( 347) 103 30.8 0.58
                                                                                    0.201 0.537
                                                      ( 380)
sp P00156 CYB_HUMAN Cytochrome b
                                                               102 30.5 0.74
                                                                                    0.268 0.585
sp|P15993|AROP_ECOLI Aromatic amino acid tr
                                                      (457)
                                                              103 30.7 0.78
                                                                                    0.234 0.622
                                                                                                   111
sp|P13993| AROP_ECOLI Aromatic amino acid tr
sp|P24965| CYB_TRANA Cytochrome b
sp|P29631| CYB_POMTE Cytochrome b
                                                      (379) 101 30.3 0.87
                                                                                    0.234 0.563
                                                              99 29.9 0.95
                                                      (308)
                                                                                    0.274 0.584
sp|P24953|CYB_CAPHI Cytochrome b
                                                      ( 379) 99 29.8 1.2
                                                                                    0.236 0.564
                                                                                                   140
```

Alberts is wrong about sequence similarity (three times in three claims)

"With such a large number of proteins in the database, the search programs find *many nonsignificant matches*, resulting in a background noise level that makes it very difficult to pick out all but the closest relatives. Generally speaking, *one requires a 30% identity* in sequence to consider that two proteins match. However, we know the function of many short signature sequences ("fingerprints"), and *these are widely used to find more distant relationships.*"

- Alberts, Molecular Biology of the Cell (5th ed) p. 139
- Sequences producing statistically significant alignments ALWAYS share a common structure
- Many significant alignments share < 30% identity (<25% identity is routine, and <20% identity can be significant)
- In the absence of significant similarity, "fingerprints" should never be trusted.

19

ATP-sunt. A

```
>>sp|P0AB98|ATP6_ECOLI ATP synthase a chain (ATPase protein 6) g (271 aa) s-w opt: 178 2-score: 218.2 bits: 47.9 E(): 3.2e-06
Smith-Waterman score: 178; 23.3% identity (58.5% similar) in 236 aa overlap (8-222:45-264)
                                                                                                                                                 10
                                                                                                                                                                               2.0
                                                                                                                        MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQO
human
                                                                                                                                               ... ..... ......
E coli nmtpQdyIghHlnnLQLDLRTfSLVDPQnppATFWTINIDSMfFSVVLGL---LFLVLFRSVAKKATSG-VPGKFQTAIE
                                                                                       30
                                                                                                                                                      50
                                10
                                                               20
                                                                                                                          40
                                                                                                                                                                                                 60
                                                                                   70
                                                                                                                   80
\verb| human | WLIKLTSKQMMTMHNTKGRTWSLMLVSLIIFIATTNLLGLLP------HSF------TPTTQLSMNLAMAIPLWAG | Fig. 1. | Fig.
                         E coli LVIGFVNGSVKDMYHGKSKLIAPLALTIFVWVFLMNLMDLLPIDLLPYIAEHVLGLPALRVVPSADVNVTLSMALGVF--
                                                                     100
                                                                                               110
                                                                                                                               120
                                                                     130
                                                                                                                  140
                                                                                                                                                 150
                                                                                                                                                                                160
\verb|human| TVIMGFRSKIKNALAHFLPQGTPTPL----IPMLVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINL| \\
190
                                                     200
                                                                                   210
                                                                                                                   220
human PSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT
E COLI NVPWAIFHILIIT------LQAFIFMVLTIVYLSMASEEH
                                                   250
                                                                                                            260
```

21

The PAM250 matrix

```
frequency of replace-
    2
Cys
                                             ment in homologs
Ser
Thr
    -2
Pro -1
                                     \lambda S = \log
Ala -2
            1
Glv -3 1
          0 -1
Asn -4 1
          0 -1
Asp
         0 -1
                                              frequency of align-
Glu -5 0
         0 -1
                                              ment by chance
Gln -5 -1 -1 0
              0 -1
His -3 -1 -1 0 -1 -2
Arg -4 0 -1 0 -2 -3 0 -1 -1
Lys -5 0 0 -1 -1 -2 1 0 0 1
Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2
Ile -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2
Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3
Val -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2
Phe -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0
```

>>sp|P30391|ATPI_EUGGR Chloroplast ATP synthase a chain precursor (251 aa) s-w opt: 123 Z-score: 151.3 bits: 35.4 E(): 0.017 Smith-Waterman score: 123; 25.7% identity (57.9% similar) in 214 aa overlap (21-222:50-243) 2.0 30 40 MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTM human ${\tt Euglena~VNMFISGIFQIANVEVGQHFYWSILGFQIHGQVLINSWIVILIIGF--LSIYTTKNL--TLVPANKQIFIELVTEFITDI~ACCUSATION CONTROL of the contro$ 30 40 70 10 20 50 60 100 HNTK-GRT----WSLMLVSLIIFIATTNLLG-LLPHSFT--PTTQL---SMNLAMAIPLWAGTVIMGFRSKI-KNALAHF human Euglena SKTQIGEKEYSKWVPYIGTMFLFIFVSNWSGALIPWKIIELPNGELGAPTNDINTTAGLAILTSLAYFYAGLNKKGLTYF 140 100 110 120 130 170 140 150 160 180 190 ${\tt Human} \qquad {\tt LPQGTPTPLIPMLVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVAL}$ 180 190 200 210 210 220 human IQAYVFTLLVSLYLHDNT ::: .:. : . :. Euglena IQALIFATLSGSYIGEAMEGHH 230 240 22

```
Query: atp6_human.aa ATP synthase a chain - 226 aa
                   Library: 5190103 residues in 13351 sequences
The best scores are:
                                                len)
                                                      s-w bits E(13351) %_id %_sim
sp|P00846|ATP6 HUMAN ATP synthase a chain (AT
                                              ( 226) 1400 325.8 5.8e-90 1.000 1.000
                                                                                     226
sp P00847 ATP6_BOVIN ATP synthase a chain (AT
                                               226)
                                                     1157 270.5 2.5e-73 0.779 0.951
                                                                                      226
sp|P00848|ATP6_MOUSE ATP synthase a chain (AT
                                               226) 1118 261.7 1.2e-70 0.757 0.916
                                                                                      226
sp|P00849|ATP6 XENLA ATP synthase a chain (AT ( 226)
                                                      745 176.8 4.0e-45 0.533 0.847
                                                                                      229
sp|P00851|ATP6_DROYA ATP synthase a chain (AT ( 224)
                                                      473 115.0 1.7e-26 0.378 0.721
                                                                                      222
sp P00854 ATP6_YEAST ATP synthase a chain pre
                                                259)
                                                      428 104.7 2.3e-23 0.353 0.694
sp|P00852|ATP6_EMENI ATP synthase a chain pre
                                              (256)
                                                      365 90.4 4.8e-19 0.304 0.691
                                                                                      230
sp|P14862|ATP6 COCHE ATP synthase a chain (AT
                                              ( 257)
                                                      353
                                                           87.7 3.2e-18 0.313 0.650
                                                                                      214
sp|P68526|ATP6_TRITI ATP synthase a chain (AT
                                                           77.6 5.1e-15 0.289 0.651
                                              (386)
sp|P05499|ATP6_TOBAC ATP synthase a chain (AT
                                              (395)
                                                      309
                                                           77.6 5.2e-15 0.283 0.635
                                                                                      233
sp|P07925|ATP6 MAIZE ATP synthase a chain (AT
                                              ( 291)
                                                      283
                                                           71.7 2.3e-13 0.311 0.667
                                                                                      180
sp|POAB98|ATP6_ECOLI ATP synthase a chain (AT (
                                                           47.9 3.2e-06 0.233 0.585
                                                271)
sp POC2Y5 ATPI_ORYSA Chloroplast ATP synth (A ( 247)
                                                           40.1 0.00062 0.242 0.580
                                                      144
                                                                                      231
                                               247)
sp|P06452|ATPI_PEA Chloroplast ATP synthase a
                                                      143
                                                           39.9 0.00072 0.250 0.586
                                                                                      232
                                                           39.7 0.00095 0.265 0.571
sp P27178 ATP6 SYNY3 ATP synthase a chain (AT ( 276)
                                                                                      170
                                                      142
sp|P06451|ATPI_SPIOL Chloroplast ATP synthase
                                                247)
                                                                 0.0016 0.242 0.580
                                                      138
                                                           38.8
                                                                                      231
                                                261)
sp P08444 ATP6_SYNP6 ATP synthase a chain (AT
                                                      127
                                                           36.3
                                                                 0.0095 0.263 0.557
                                                                                      167
sp|P69371|ATPI ATRBE Chloroplast ATP synthase ( 247)
                                                      126
                                                           36.0 0.01 0.221 0.571
                                                                                     231
sp P06289 ATPI_MARPO Chloroplast ATP synthase
                                                248)
                                                                 0.011
                                                                        0.240 0.575
                                                      126
                                                           36.0
                                                                                      167
sp P30391 ATPI_EUGGR Chloroplast ATP synthase ( 251)
                                                                 0.017
sp|P19568|TLCA RICPR ADP.ATP carrier protein ( 498)
                                                                        0.243 0.579
                                                      122
                                                           35.0
                                                                 0.043
                                                                                      152
sp P24966 CYB_TAYTA Cytochrome b
                                               (379)
                                                                        0.234 0.532
                                                      113
                                                           33.0
                                                                 0.13
                                                                                      158
sp|P03892|NU2M_BOVIN NADH-ubiquinone oxidored
                                                347)
                                                           31.7
                                                                         0.261 0.479
                                                379)
sp|P68092|CYB_STEAT Cytochrome b
                                                      104
                                                           31.0
                                                                 0.54
                                                                        0.277 0.547
                                                                                      137
sp|P03891|NU2M HUMAN NADH-ubiquinone oxidored
                                                347)
                                                      103
                                                           30.8
                                                                 0.58
                                                                        0.201 0.537
                                                                                      149
sp P00156 CYB_HUMAN Cytochrome b
                                                380)
                                                           30.5
                                                                         0.268 0.585
sp|P15993|AROP_ECOLI Aromatic amino acid tr
                                                457)
                                                      103
                                                           30.7
                                                                 0.78
                                                                        0.234 0.622
                                                                                      111
sp|P24965|CYB_TRANA Cytochrome b
                                                379)
                                                      101
                                                           30.3
                                                                 0.87
                                                                        0.234 0.563
                                                                                     158
sp|P29631|CYB POMTE Cytochrome b
                                               308)
                                                       99
                                                           29.9
                                                                 0.95
                                                                        0.274 0.584
                                                                                      113
sp P24953 CYB_CAPHI Cytochrome b
                                               (379)
                                                           29.8
                                                                 1.2
                                                                        0.236 0.564
                                                                                         23
```

```
Query: atp6 ecoli.aa ATP synthase a - 271 aa
                      Library: 5190103 residues in 13351 sequences
The best scores are: ( len) s-w bits E(13351) %_id %_sim sp|POAB98|ATP6_ECOLI ATP synthase a chain (AT ( 271) 1774 416.8 3.e-117 1.000 1.000
                                                                                            271
sp P06451 ATPI_SPIOL Chloroplast ATP synthase (
                                                   247)
                                                               70.4 5.8e-13 0.270 0.616
                                                          274
                                                                                            211
                                                   247)
sp P69371 ATPI_ATRBE Chloroplast ATP synthase (
                                                          271
                                                               69.7 9.3e-13 0.270 0.607
                                                                                            211
sp|P08444|ATP6_SYNP6 ATP synthase a chain (AT ( 261)
                                                          271
                                                                69.7 9.9e-13 0.267 0.600
                                                                                            240
sp P06452 ATPI PEA Chloroplast ATP synthase a (sp P30391 ATPI_EUGGR Chloroplast ATP synthase (
                                                                68.5 2.1e-12 0.274 0.614
sp|P0C2Y5|ATPI_ORYSA Chloroplast ATP synthase (
                                                   2471
                                                          260
                                                                67.2 5.4e-12 0.259 0.603
                                                                                            239
sp|P27178|ATP6 SYNY3 ATP synthase a chain (AT ( 276)
                                                               67.1 6.1e-12 0.264 0.578
                                                          260
                                                                                            258
sp | P06289 | ATPI_MARPO Chloroplast ATP synthase (
                                                   248)
                                                          250
                                                               64.8 2.7e-11 0.261 0.621
                                                                                            211
sp|P07925|ATP6_MAIZE ATP synthase a chain (AT (
                                                   291)
                                                                56.7 8.7e-09 0.259 0.578
sp|P68526|ATP6_TRITI ATP synthase a chain (AT (
                                                   386)
                                                          209
                                                                55.3 3.1e-08 0.259 0.603
                                                                                            239
sp|P00854|ATP6 YEAST ATP synthase a chain pre ( 259)
                                                                54.2 4.5e-08 0.235 0.578
                                                          204
sp P05499 ATP6 TOBAC ATP synthase a chain (AT (
                                                   395)
                                                          189
                                                                50.7 7.8e-07 0.220 0.582
                                                                                            268
sp P00846 ATP6 HUMAN ATP synthase a chain (AT ( 226)
                                                                48.2 2.5e-06 0.237 0.589
sp|P00852|ATP6 EMENI ATP synthase a chain pre ( 256)
                                                          178
                                                               48.2 2.8e-06 0.209 0.590
                                                                                            244
sp | P00849 | ATP6 | XENLA ATP synthase a chain (AT ( 226)
                                                          173
                                                                47.1 5.5e-06 0.261 0.630
                                                                                            165
sp|P00847|ATP6_BOVIN ATP synthase a chain (AT (
                                                                46.8 6.5e-06 0.233 0.581
                                                   226)
                                                          172
sp|P14862|ATP6_COCHE ATP synthase a chain (AT ( 257)
                                                          171
                                                               46.6 8.7e-06 0.204 0.608
                                                                                            265
sp P00848 ATP6 MOUSE ATP synthase a chain (AT (
                                                                45.5 1.7e-05 0.259 0.617
                                                   226)
                                                          166
                                                                                            193
sp|P00851|ATP6_DROYA ATP synthase a chain (AT ( 224)
                                                                     0.0013 0.225 0.549
sp|P24962|CYB STELO Cytochrome b
                                                   379)
                                                          125
                                                               35.9
                                                                      0.021
                                                                             0.223 0.575
                                                                                            193
sp|P09716|US17_HCMVA Hypothetical protein HVL ( 293)
                                                          109
                                                               32.3
                                                                      0.21
                                                                             0.260 0.565
                                                                                            131
sp P68092 CYB_STEAT Cytochrome b
                                                          109
                                                                32.2
                                                                              0.211 0.562
sp|P24960|CYB_ODOHE Cytochrome b
                                                   379)
                                                          104
                                                               31.1
                                                                      0.61
                                                                              0.210 0.555
                                                                                            200
sp|P03887|NU1M BOVIN NADH-ubiquinone oxidored ( 318)
                                                           98
                                                               29.7
                                                                      1.3
                                                                              0.287 0.545
                                                                                            167
sp P24992 CYB_ANTAM Cytochrome b
                                                                29.9
                                                                              0.192 0.565
                                                                                                24
```


Homology and Domains -Histone acetyltransferase KAT2B s-w bits E(454402) %_id %_sim alen KAT2B_HUMAN Histone acetyltransferase KAT2B (832) 3820 1456. 0 1.000 1.000 832 KAT2A_HUMAN Histone acetyltransferase KAT2A (837) 2747 1049. 0 0.721 0.870 GCN5_SCHPO Histone acetyltransferase gcn5 (454) 867 334.7 3e-90 0.483 0.768 354 GCN5_YEAST Histone acetyltransferase GCN5 (439) 792 306.2 1.1e-81 0.469 0.760 354 GCN5_ORYSJ Histone acetyltransferase GCN5 (511) 760 294.0 5.9e-78 0.436 0.755 GCN5 ARATH Histone acetyltransferase GCN5; (568) 719 278.4 3.3e-73 0.434 0.740 BPTF_HUMAN Nucleosome-remodeling factor sub (3046) 286 113.6 7.6e-23 0.495 0.804 97 NU301_DROME Nucleosome-remodeling factor su (2669) 276 109.8 9.1e-22 0.511 0.819 CECR2_HUMAN Cat eye syndrome critical regio (1484) 232 93.2 5e-17 0.371 0.790 BRD4_HUMAN Bromodomain-containing protein 4 (1362) 214 86.4 5.2e-15 0.379 0.698 116 BRD4_MOUSE Bromodomain-containing protein 4 (1400) 214 86.4 5.3e-15 0.379 0.698 BAZ2A_HUMAN Bromodomain adjacent to zinc fi (1905) 211 85.2 1.7e-14 0.382 0.683 123 BAZ2A XENLA Bromodomain adjacent to zinc fi (1698) 206 83.3 5.5e-14 0.350 0.684 117 FSH_DROME Homeotic protein female sterile; (2038) 205 82.9 8.8e-14 0.341 0.667 129 BAZ2A_MOUSE Bromodomain adjacent to zinc fi (1889) 204 82.5 1e-13 0.368 0.680 125

BRD3_HUMAN Bromodomain-containing protein 3 (726) 194 78.9 4.9e-13 0.362 0.664 116

BRDT_MACFA Bromodomain testis-specific prot (947) 197 80.0

26

3e-13 0.367 0.697

Protein Evolution and Sequence Similarity

- · What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- · More effective similarity searching
 - Smaller databases
 - Appropriate scoring matrices
 - Using annotation/domain information

29

DNA vs protein sequence comparison

The best scores	s are:	DNA E(188.018)	tfastx3 E(187,524)	prot. E(331,956)
DMGST	D.melanogaster GST1-1	1.3e-164	4.1e-109	1.0e-109
MDGST1	M.domestica GST-1 gene	2e-77	3.0e-95	1.9e-76
LUCGLTR	Lucilia cuprina GST	1.5e-72	5.2e-91	3.3e-73
MDGST2A	M.domesticus GST-2 mRNA	9.3e-53	1.4e-77	1.6e-62
MDNF1	M.domestica nf1 gene. 10	4.6e-51	2.8e-77	2.2e-62
MDNF6	M.domestica nf6 gene. 10	2.8e-51	4.2e-77	3.1e-62
MDNF7	M.domestica nf7 gene. 10	6.1e-47	9.2e-77	6.7e-62
AGGST15	A.gambiae GST mRNA	3.1e-58	4.2e-76	4.3e-61
CVU87958	Culicoides GST	1.8e-41	4.0e-73	3.6e-58
AGG3GST11	A.gambiae GST1-1 mRNA	1.5e-46	2.8e-55	1.1e-43
BMO6502	Bombyx mori GST mRNA	1.1e-23	8.8e-50	5.7e-40
AGSUGST12	A.gambiae GST1-1 gene	2.3e-16	4.5e-46	5.1e-37
MOTGLUSTRA	Manduca sexta GST	5.7e-07	2.5e-30	8.0e-25
RLGSTARGN	R.legominosarum gstA	0.0029	3.2e-13	1.4e-10
HUMGSTT2A	H. sapiens GSTT2	0.32	3.3e-10	2.0e-09
HSGSTT1	H.sapiens GSTT1 mRNA	7.2	8.4e-13	3.6e-10
ECAE000319	E. coli hypothet. prot.	_	4.7e-10	1.1e-09
MYMDCMA	Methyl. dichlorometh. DH	_	1.1e-09	6.9e-07
BCU19883	Burkholderia maleylacetate re	d.—	1.2e-09	1.1e-08
NFU43126	Naegleria fowleri GST	_	3.2e-07	0.0056
SP505GST	Sphingomonas paucim	_	1.8e-06	0.0002
EN1838	H. sapiens maleylaceto. iso.	_	2.1e-06	5.9e-06
HSU86529	Human GSTZ1	_	3.0e-06	8.0e-06
SYCCPNC	Synechocystis GST	_	1.2e-05	9.5e-06
HSEF1GMR	H.sapiens EF1g mRNA	_	9.0e-05	0.00065

Effective Similarity Searching

- 1. Always search protein databases (possibly with translated DNA)
- 2. Use E()-values, not percent identity, to infer homology
 - E() < 0.001 is significant in a single search (proteins)
- 3. Search smaller (comprehensive) databases
- 4. Change the scoring matrix for:
 - short sequences (exons, reads)
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - high identity (>50% alignments) to reduce over-extension
- 5. All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss

Computer lab: fasta.bioch.virginia.edu/mol_evol

- · Significant hits are homologous
- Non-significant hits? Homologous or not?
- Are all aligned residues homologous
- Are *unaligned* residues non-homologous
- Are domains really missing?