Mathematics Class Slides Bronx Early College Academy

Christopher J. Huson PhD

7-15 October 2020

BECA / Dr. Huson / Geometry Unit 1
1.9 Review vocabulary and segment calculations, 9 October

GQ: How do we measure line segments?

CCSS: HSG.CO.A.1 Know precise geometric definitions 1.9 Wednesday 9 Oct

Do Now: Assignments self-assessment

- 1. Check all assignments, they must be turned in today
- 2. Have you completed Deltamath? Khan Academy? the 1.5 worksheet?

Lesson: 1.5 worksheet

Construction of a perpendicular bisector

Review and practice of vocabulary, line segments, and congruence

1) Diagrams and notation

Given the points R and S, draw ray \overrightarrow{SR} .

K

2) Diagrams and notation

In circle O, which radius is longer? \overline{OB} or \overline{OC}

- 1. OB > OC
- 2. *OB* < *OC*
- 3. OB = OC

3) Diagrams and notation

Given isosceles $\triangle PQR$ with $\overline{PQ}\cong \overline{QR}$.

On the diagram mark the congruent line segments with tick marks.

4) Applying the segment addition postulate

Given \overline{TUV} , TU = 8.6, and TV = 20.2. Find UV.

Show your work by marking the diagram and writing an equation.

5) Applying the segment addition postulate

Find the perimeter of the isosceles $\triangle ABC$, given $\overline{AC}\cong \overline{BC}$, AB=11, and $AC=14\frac{1}{2}$

Show your work with an equation for full credit.

6) Applying the segment addition postulate

Given \overline{LMN} , LM = 5x + 3, MN = 30, LN = 43. Find x.

- 1. Write down an equation to represent the situation.
- 2. Solve for x.

Check your answer.

7) Applying the segment addition postulate

Given equilateral $\triangle ABC$ having perimeter of 40. Find the length of side \overline{AB} , x.

8) Finding lengths on the number line

Given G(-1) and H(4), as shown on the number line.

Find the length of the line segment \overline{GH} .

State an equation and the solution.

Check your work by counting the distance. Leave marks to show your work.

9) Finding lengths on the number line (spicy)

Given S(1) and T(3), as shown on the number line.

Find point U given that point T bisects \overline{SU} . Plot and label U on the number line.

10) Applying the segment addition postulate

Given M is the midpoint of \overline{AB} , AM = 2x + 5, MB = 13.

- 1. Mark the diagram with the values and tick marks
- 2. Write an equation and solve for x
- 3. Check your result

12) Applying the segment addition postulate

The points Q and R trisect the line segment \overline{PS} . $PS = 13\frac{1}{2}$.

- 1. Mark and label the approximate locations of Q and R.
- 2. Find *PQ*. State an equation for full credit.

