机器学习作业模板

姓名:边笛学号:2012668

• 专业: 计算机科学与技术

实验要求

题目:基于KNN 的手写数字识别实验条件:给定semeion手写数字数据集,给定kNN分类算法实验要求:

1. 基本要求:编程实现kNN算法;给出在不同k值(1,3,5)情况下,kNN算法对手写数字的识别精度(要求采用留一法)

2. 中级要求: 与weka机器学习包中的kNN分类结果进行对比

3. 提高要求: 将实验过程结果等图示展出

截止日期: 10月7日

• 以.ipynb形式的文件提交,输出运行结果,并确保自己的代码能够正确运行

• 发送到邮箱: <u>2120220594@mail.nankai.edu.cn</u> (mailto:2120220594@mail.nankai.edu.cn)

导入需要的包

In [1]: import numpy as np import operator

from collections import Counter

from sklearn.model_selection import train_test_split, cross_val_score

from sklearn.model_selection import LeaveOneOut
from sklearn.neighbors import KNeighborsClassifier

from tqdm import tqdm

import matplotlib.pyplot as plt

import time

导入数据集 semesion

```
In [2]: # 导入数据
         def Img2Mat(fileName):
             f = open(fileName)
             ss = f. readlines()
             1 = 1en(ss)
             f. close()
             returnMat = np. zeros ((1, 256)) \#1*256
             returnClassVector = np. zeros((1, 1))
             for i in range(1):
                  s1 = ss[i].split()
                  for j in range (256):
                      returnMat[i][j] = np.float64(s1[j])
                  c1Count = 0
                  for j in range (256, 266):
                      if s1[j] != '1':
                          c1Count += 1
                      else:
                          break
                  returnClassVector[i] = clCount
             return returnMat, returnClassVector
```

```
In [3]: X, y = Img2Mat('semeion.data')
    np. shape(X), np. shape(y)
Out[3]: ((1593, 256), (1593, 1))
```

基本要求

编程实现kNN算法;给出不同k值(1,3,5)情况下,kNN算法对手写数字的识别精度(模板中采用的是普通方法分割训练集和测试集,作业中需要用留一法)

```
In [4]: # KNN算法手动实现
        def MyKnnClassifier(data X, data y, neighbors):
           # 生成数据集和测试集
           loo = LeaveOneOut()
           testS = 0
           acc = 0
           for train_index, test_index in loo. split(X, y):
               X_train=X[train_index]
               X_test=X[test_index]
               y_train=y[train_index]
               y test=y[test index]
               trainShape = X train. shape[0] # 获得训练集的大小
               testShape = X_test.shape[0] # 获得测试集的大小
               testS += testShape
               testRes = [] # 存放测试结果
               for i in range(testShape): # 针对测试集中每一个样本进行预测
                  # 差异矩阵 = 该样本与训练集中所有样本之差构成的矩阵
                  testDiffMat = np. tile(X test[i], (trainShape, 1)) - X train
                  sqTestDiffMat = testDiffMat ** 2 # 将差异矩阵平方
                  # 方差距离为方差矩阵的整行求和,是一个一位列向量
                  sqTestDiffDis = sqTestDiffMat. sum(axis=1)
                  testDiffDis = sqTestDiffDis ** 0.5 # 开方生成标准差距离
                  sortIndex = np. argsort (testDiffDis) # 将标准差距离按照下标排序
                  labelCount = []
                  for j in range (neighbors): #考察k近邻属于哪些类
                      labelCount.append(y_train[sortIndex[j]][0])
                  classifyRes = Counter(labelCount)
                                                 # 把k近邻中最多的那个标签作为分类结
                  classifyRes = classifyRes.most_common(2)[0][0]
                  testRes.append(classifyRes)
                  if classifyRes == y test[i]: # 分类正确则将accRate+1
                      acc += 1
           accRate = acc / testS
           print ('k={0}时,测试个数为{1} 正确个数为: {2} 准确率为: {3}'. format (neighbors,
           return accRate
```

实验结果:

```
[5]: MyKnnClassifier(X, y, 1)
       MyKnnClassifier(X, y, 3)
       MyKnnClassifier(X, y, 5)
       k=1时,测试个数为1593
                          正确个数为: 1459 准确率为: 0.9158819836785939
       k=3时,测试个数为1593
                          正确个数为: 1464 准确率为: 0.9190207156308852
       k=5时,测试个数为1593
                          正确个数为: 1458 准确率为: 0.9152542372881356
Out[5]: 0. 9152542372881356
 [6]: MyKnnClassifier(X, y, 1)
       MyKnnClassifier(X, y, 3)
       MyKnnClassifier(X, y, 5)
       k=1时,测试个数为1593
                          正确个数为: 1459 准确率为: 0.9158819836785939
       k=3时,测试个数为1593
                          正确个数为: 1464 准确率为: 0.9190207156308852
       k=5时,测试个数为1593
                          正确个数为: 1458 准确率为: 0.9152542372881356
Out[6]: 0.9152542372881356
```

中级要求

模板中与sklearn机器学习包中的kNN分类结果进行对比(作业中需要与weka机器学习包中的kNN分类结果进行对比)

实验结果源于 weka 应用的测试结果:

利用 weka 测试了 k = range(1,30) 情况下的准确率,并记录在scores2中在此处具体展示k=1、3、5时的测试结果

	K = 1	K = 3	K = 5
Correlation coefficient	0.8929	0.908	0.9071
Mean absolute error	0.3427	0.4617	0.5423
Root mean squared error	1.33	1.2351	1.2528
Relative absolute error	13.7195%	18.4796%	21.7076%
Root relative squared error	46.3106%	43.0045%	43.6197%
Total Number of Instances	1593	1593	1593

Run information		Run information		Run information				
Scheme:	weka.classifiers.lazy.	IBK -K 1 -W 0 -	A Scheme:	weka.classifiers.lazy.	IBK -K 3 -W 0	-Ascheme:	weka.classifiers.lazy	7.1Bk -K 5 -W 0 -A
Relation:	semeion		Relation:	semeion		Relation:	semeion	
Instances:	1593		Instances:	1593		Instances:	1593	
Attributes:	257		Attributes:	257		Attributes:	257	
	[list of attributes on	itted]		[list of attributes om:	itted]		[list of attributes of	omitted]
Test mode:	1593-fold cross-valida	tion	Test mode:	1593-Fold cross-validat	.ion	Test mode:	1593-fold cross-valid	lation
=== Classifier model (full training set) ===		Classifier model (full training set)		=== Classifier model (full training set) ===				
TB1 instance-based classifier		IB1 instance-based classifier		IB1 instance-based classifier				
using 1 nearest neighbour(s) for classification		using 3 nearest neighbour(s) for classification			using 5 nearest neighbour(s) for classification			
Time taken to build model: 0 seconds		Time taken to build model: 0 seconds			Time taken to build model: 0 seconds			
Cross val	idation		Cross-val	idation ===		=== Cross-val	idation ===	
=== Summary =			=== Summary =			=== Summary =	==	
Correlation o	coefficient	0.0929	Correlation o	soctticient	0.908	Correlation o	coefficient	0.9071
Mcan absolute	crror	0.3427	Mean absolute	error	0.4617	Mean absolute	error	0.5423
Root mean squ	ared error	1.33	Root mean squ	ared error	1.2351	Root mean squ	ared error	1.2528
Relative abso	lute error	13.7195 %	Relative abso	olute error	18.4796 %	Relative abso	dute error	21.7076 %
Root relative	squared error	46.3106 %	Root relative	squared error	13.0045 %	Root relative	squared error	43.6197 %
Total Number	of instances	1593	Total Number	of Instances	1593	Total Number	of Instances	1593

实验结果:

In [7]: scores2 = [0.8929, 0.9082, 0.908, 0.907, 0.9071, 0.9081, 0.9106, 0.9071, 0.9048, 0.9025, 0.900

高级要求

将实验过程结果等图示展出

```
for k in range(1, 30):
    score1 = MyKnnClassifier(X, y, k)
    scores1.append(score1)
```

```
k=1时,测试个数为1593
                  正确个数为: 1459
                                准确率为: 0.9158819836785939
k=2时,测试个数为1593
                  正确个数为: 1459
                                准确率为: 0.9158819836785939
k=3时,测试个数为1593
                  正确个数为: 1464
                                准确率为: 0.9190207156308852
k=4时,测试个数为1593
                                准确率为: 0.9196484620213434
                  正确个数为: 1465
k=5时,测试个数为1593
                  正确个数为: 1458
                                准确率为: 0.9152542372881356
                  正确个数为: 1464
                                准确率为: 0.9190207156308852
k=6时,测试个数为1593
k=7时,测试个数为1593
                  正确个数为: 1469
                                准确率为: 0.9221594475831764
k=8时,测试个数为1593
                  正确个数为: 1472
                                准确率为: 0.9240426867545511
k=9时,测试个数为1593
                  正确个数为: 1471
                                准确率为: 0.9234149403640929
k=10时,测试个数为1593
                  正确个数为: 1465
                                准确率为: 0.9196484620213434
k=11时,测试个数为1593
                  正确个数为: 1456
                                 准确率为: 0.9139987445072191
                  正确个数为: 1460
k=12时,测试个数为1593
                                 准确率为: 0.9165097300690521
                  正确个数为: 1461
k=13时,测试个数为1593
                                 准确率为: 0.9171374764595104
k=14时,测试个数为1593
                  正确个数为: 1453
                                 准确率为: 0.9121155053358443
k=15时,测试个数为1593
                   正确个数为: 1446
                                 准确率为: 0.9077212806026366
k=16时,测试个数为1593
                   正确个数为: 1446
                                 准确率为: 0.9077212806026366
k=17时,测试个数为1593
                   正确个数为: 1442
                                 准确率为: 0.9052102950408035
k=18时,测试个数为1593
                  正确个数为: 1438
                                 准确率为: 0.9026993094789705
k=19时,测试个数为1593
                   正确个数为: 1436
                                 准确率为: 0.901443816698054
k=20时,测试个数为1593
                  正确个数为: 1435
                                 准确率为: 0.9008160703075957
                  正确个数为: 1436
                                 准确率为: 0.901443816698054
k=21时,测试个数为1593
k=22时,测试个数为1593
                  正确个数为: 1440
                                 准确率为: 0.903954802259887
k=23时,测试个数为1593
                   正确个数为: 1435
                                 准确率为: 0.9008160703075957
k=24时,测试个数为1593
                   正确个数为: 1427
                                 准确率为: 0.8957940991839297
k=25时,测试个数为1593
                   正确个数为: 1426
                                 准确率为: 0.8951663527934715
                                 准确率为: 0.8939108600125549
k=26时,测试个数为1593
                  正确个数为: 1424
k=27时,测试个数为1593
                  正确个数为: 1424
                                 准确率为: 0.8939108600125549
k=28时,测试个数为1593
                  正确个数为: 1417
                                 准确率为: 0.8895166352793471
k=29时,测试个数为1593
                  正确个数为: 1423
                                准确率为: 0.8932831136220967
```

对图表的一些文字说明...

```
plt.xlabel('k value:',fontsize=18)
plt.ylabel('accuracy',fontsize=18)
x_major_locator = plt.MultipleLocator(1)
ax = plt.gca()
ax.xaxis.set_major_locator(x_major_locator)
plt.xlim(0, 30)
plt.ylim(0.85, 0.95)
# 普通kNN分类精度
plt.plot(range(1,30),scores1,'r')
plt.plot(range(1,30),scores2,'b')
plt.show()
```

