

Job Queue

239 sites

Usage statistics

API ▼

Citations

<u>Help</u>

COVID-19

Blog

Classic

Fast Unconstrained Bayesian AppRoximation

results summary **INPUT DATA 6096240f238adf71a515f5a1 90** sequences

L Export ▼

FUBAR found evidence of

- episodic positive/diversifying selection at 1 sites
- episodic negative/purifying selection at 215 sites

with posterior probability of 0.9

See **here** for more information about the FUBAR method.

Please cite **PMID 23420840** if you use this result in a publication, presentation, or other scientific work.

Posterior rate distribution

This graph shows the posterior distribution over the discretized rate grid. The size of a dot is proportional to the posterior weight allocated to that gridpoint, and the color shows the intensity of selection. Site-specific distributions can be viewed by entering a site number in the input box above the figure. When this is empty, the alignment-wide distribution will be shown.

COVID-19

<u>Blog</u>

Classic

Positively selected sites with evidence are highlighted in green.

Negatively selected sites with evidence are highlighted in black.

Showing entries 1 through 20 out of 239.

<	ntries 1 through								
ite 🕏	Partition \$	α \$	β \$	β-α \$	Prob [α>β] \$	Prob [α<β] ♦	BayesFactor[α<β] ♦		
3	1	2.346	0.378	-1.967	0.810	0.161	0.627	0.000	0.00
4	1	2.133	0.788	-1.345	0.835	0.120	0.446	0.000	0.00
15	1	8.951	3.714	-5.238	0.815	0.012	0.039	0.000	0.00

Fitted tree

HYLOCEREUS_UNDATUS_SRR11190799_NC_002815 HYLOCEREUS_UNDATUS_SRR11190791_NC_002815 HYLOCEREUS_UNDATUS_SRR11190800_NC_002815 HYLOCEREUS_UNDATUS_SRR11603183_NC_002815 HYLOCEREUS_UNDATUS_SRR11603182_NC_002815 HYLOCEREUS_POLYRHIZUS_SRR11190798_NC_002815

INVI COEDELIO BOLVEUIZUO OBBALACCOCA NO COCCAE

Classic

HYLOCEREUS_POLYRHIZUS_SRR11190802_NC_002815 HYLOCEREUS_POLYRHIZUS_SRR11190796_NC_002815 LC128411

HYLOCEREUS_UNDATUS_SRR11603187_NC_002815 HYLOCEREUS_UNDATUS_SRR11603189_NC_002815 HYLOCEREUS_UNDATUS_SRR11603191_NC_002815 HYLOCEREUS_UNDATUS_SRR11603186_NC_002815 HYLOCEREUS_UNDATUS_SRR11603190_NC_002815

KU854929

HYLOCEREUS_POLYRHIZUS_SRR11190801_NC_011659 - HYLOCEREUS_POLYRHIZUS_SRR11190802_NC_011659 HYLOCEREUS_POLYRHIZUS_SRR11190798_NC_011659 HYLOCEREUS_UNDATUS_SRR11603187_NC_011659

HYLOCEREUS_UNDATUS_SRR11603184_NC_011659

AY366207

KP090203

HYLOCEREUS_UNDATUS_SRR11603189_NC_011659 HYLOCEREUS_UNDATUS_SRR11603183_NC_011659 HYLOCEREUS_POLYRHIZUS_SRR11190796_NC_024458 HYLOCEREUS_POLYRHIZUS_SRR11190797_NC_024458 HYLOCEREUS_UNDATUS_SRR11603191_NC_024458 HYLOCEREUS_UNDATUS_SRR11603189_NC_024458 HYLOCEREUS_UNDATUS_SRR11603186_NC_024458 HYLOCEREUS_UNDATUS_SRR11603190_NC_024458 HYLOCEREUS_POLYRHIZUS_SRR11190802_NC_024458

HYLOCEREUS_UNDATUS_SRR11190800_NC_024458

MG210801

HYLOCEREUS_UNDATUS_SRR11603184_NC_024458

COVID-19 Blog

<u>og</u> [

<u>C</u>Classic

JF930327 HYLOCEREUS_POLYRHIZUS_SRR11190798_NC_024458 HYLOCEREUS_UNDATUS_SRR11603183_NC_024458 L HYLOCEREUS_UNDATUS_SRR11190793_NC_024458 KM288845 HYLOCEREUS_POLYRHIZUS_SRR11190798_NC_006059 HYLOCEREUS_POLYRHIZUS_SRR11190801_NC_006059 HYLOCEREUS_POLYRHIZUS_SRR11190797_NC_006059 HYLOCEREUS POLYRHIZUS SRR11190802 NC 006059 AY366208 HYLOCEREUS_UNDATUS_SRR11603186_NC_006059 HYLOCEREUS_UNDATUS_SRR11603191_NC_006059 HYLOCEREUS_UNDATUS_SRR11603189_NC_006059 HYLOCEREUS_UNDATUS_SRR11603187_NC_006059 KM288844 JF930326 KM288843 KM288842 HYLOCEREUS_POLYRHIZUS_SRR11190796_NC_006059 JF937699 KX883791 KM288847 KM288846 SCHLUMBERGERA_TRUNCATA_15H03_CONS SCHLUMBERGERA_TRUNCATA_19JSF_STY_NC_002815 SCHLUMBERGERA_TRUNCATA_15H04_CONS SCHLUMBERGERA_TRUNCATA_15H06_CONS HYLOCEREUS_UNDATUS_SRR11190793_NC_002815 HYLOCEREUS_UNDATUS_SRR11190792_NC_002815

HYLOCEREUS_UNDATUS_SRR11603184_NC_002815

Model fits

A

Model	AIC _C	log L	Parameters	Rate distributions
Nucleotide GTR	26567.04	-13097.99	185	

This table reports a statistical summary of the models fit to the data. Here, **MG94** refers to the MG94xREV baseline model that infers a single ω rate category per branch.

Datamonkey is funded jointly by MIDAS and NIH award R01 GM093939

COVID-19

Blog

∠ Classic

