Analisi Matematica II

Mattia Martelli

Ir	ndice	
Ι	Introduzione alle equazioni differenziali del primo ordine	3
п	Equazioni differenziali fdel primo ordine a variabili separabili	4

Indice delle Definizioni e dei Teoremi

1	Definizione (Equazione differenziale ordinaria del primo ordine)	
2	Definizione (Forma normale di una EDO)	•
	Definizione (Integrale generale e particolare di una EDO)	

CAPITOLO I

Introduzione alle equazioni differenziali del primo ordine

Introduciamo il concetto di equazione differenziale.

Definizione 1 (Equazione differenziale ordinaria del primo ordine). Un'equazione differenziale ordinaria del primo ordine, per brevità EDO, è una relazione che coinvolge una funzione incognita y(x), dove $x \in \mathbb{R}$, e la sua derivata prima y'(x):

$$F(x, y(x), y'(x)) = 0$$

In altre parole, una EDO è un'equazione nella quale l'incognita non è un numero, ma una funzione.

Definizione 2 (Forma normale di una EDO). *Una EDO del primo ordine in forma normale è una EDO nella forma*

$$y'(x) = f(x, y(x))$$

Definizione 3 (Integrale generale e particolare di una EDO). Data la EDO

$$F(x, y(x), y'(x)) = 0$$

chiamiamo integrale generale dell'equazione, più raramente soluzione generale, l'insieme di tutte le sue soluzioni.

Si chiama **integrale particolare** dell'equazione, più raramente soluzione particolare, una specifica soluzione.

CAPITOLO ${f II}$

Equazioni differenziali fdel primo ordine a variabili separabili