Lecture 4: Gaussian measure

Tianpei Xie

Jul. 14th., 2015

Contents

1	Definitions		
	1.1	Probability measure on infinite dimensional function space	2
	1.2	Important functional, operators	3
	1.3	Gaussian measure	4
2	The	eorem	5
3	Exa	mples	6

1 Definitions

1.1 Probability measure on infinite dimensional function space

• Denote $\mathcal{B}^1 \equiv \mathcal{B}(\mathbb{R})$ as the Borel σ -algebra on \mathbb{R} and $\mathcal{B}^n \equiv \mathcal{B}(\mathbb{R}^n)$ as the Borel σ -algebra on $\mathbb{R}^n, n \geq 1$. Consider the sample space Ω as a locally convex Hausdorff topological space, where the algebra of cylinders \mathscr{C}_0 and cylindrical σ -algebra \mathscr{C} is defined. Note that \mathscr{C} is the σ -algebra generated by \mathscr{C}_0 and $\mathscr{C} \subset \mathscr{B} \equiv \mathcal{B}(\Omega)$, where $\mathcal{B}(\Omega)$ is the Borel σ -algebra on Ω . Let Ω^* be the dual space of continuous linear functionals on Ω consists of the random variable $\xi:\Omega\to\mathbb{R}$, which is $(\mathscr{B},\mathcal{B}^1)$ measureable. Here

Note that the cylinder set

$$C_{\xi}[A; t_1, \dots t_n] \equiv \{\omega \mid (\xi_{t_1}(\omega), \dots, \xi_{t_n}(\omega)) \in A\} \in \mathscr{C}; \quad A \in \mathcal{B}^n, \forall n \geq 1\}$$

- Here consider the random function as $\xi: T \times \Omega \to \mathbb{R}$, and for each subset $N = \{t_1, \dots t_n\}$, $\xi_N: (\Omega, \mathcal{B}) \to (\mathbb{R}^n, \mathcal{B}^n)$, $n \geq 1$. On the other hand, for fixed ω , the whole sample-path $\xi_t(\omega)$ is seen as a function in \mathbb{R}^T (usually smooth, or integrable functions s.t. structure of T). Therefore, the random function ξ is a mapping $(\Omega, \mathcal{B}) \to (\mathbb{R}^T, \mathcal{B}^T)$. Here $\mathcal{B}^T \equiv \mathcal{B}(\mathbb{R}^T)$ is the Borel σ -algebra on function space \mathbb{R}^T , with respect to which each coordinate functional (evaluation functional) $\pi_t: \mathbb{R}^T \to \mathbb{R}$, $\pi_t(x) = x(t)$, are $(\mathcal{B}^T, \mathcal{B}^1)$ measureable.
- We can define the probability measure \mathcal{P} on the cylindrical σ -algebra \mathscr{C} and for locally convex Hausdorff topological space Ω , \mathcal{P} can be uniquely extended to the Borel σ -algebra \mathscr{B} . Therefore, the probability measure \mathbb{P} on Borel set of \mathbb{R} can be induced from \mathcal{P} via the measureable function $\xi \in \Omega^*$; i.e.,

$$\mathbb{P}(A) \equiv \mathcal{P}\left\{\omega \in \Omega \mid \xi(\omega) \in A\right\} = \mathcal{P} \circ \xi^{-1}(A), \quad A \in \mathcal{B}^1, \tag{1}$$

• Similarly, the probability measure \mathbb{P} on function space \mathbb{R}^T can be induced from the measureable random function ξ .: $(\Omega, \mathcal{B}) \to (\mathbb{R}^T, \mathcal{B}^T)$; i.e.,

$$\mathbb{P}(A) \equiv \mathcal{P} \left\{ \omega \in \Omega \mid \xi_{\cdot} \equiv \xi(\cdot, \omega) \in A \right\} = \mathcal{P} \circ \xi_{\cdot}^{-1}(A), \quad A \in \mathcal{B}^{T}.$$

The above \mathbb{P} is said to be the distribution of random function $\xi \equiv \xi(\cdot, \omega)$.

• In particular, for any $n \geq 1$, any $A \in \mathcal{B}^n \subset \mathcal{B}^T$, \mathbb{P} can be defined via each n-dimensional cylinder set $C_{\mathcal{E}}[A; t_1, \dots t_n] \in \mathscr{C}$.

$$\mathbb{P}(A) \equiv \mathcal{P}\left(C_{\xi}[A_n; t_1, \dots t_n]\right)$$

$$= \mathcal{P}\left\{\omega \in \Omega \mid (\xi_{t_1}(\omega), \dots, \xi_{t_n}(\omega)) \in A_n\right\}$$

$$= \mathcal{P} \circ \xi_{T_n}^{-1}(A), \quad A_n \in \mathcal{B}^n$$

$$= \mathcal{P}\left[(\xi_{t_1}, \dots, \xi_{t_n}) \in A_n\right],$$
(2)

where $\xi_{T_n} = \xi_{\cdot} \circ \pi_{T_n}$, $\xi_{\cdot} : (\Omega, \mathscr{B}) \to (\mathbb{R}^T, \mathcal{B}^T)$ and $\pi_N : (\mathbb{R}^T, \mathcal{B}^T) \to (\mathbb{R}^n, \mathcal{B}^n)$ as $\pi_{T_n}(f) = (f_{t_1}, \dots, f_{t_n})$, $T_n = \{t_1, \dots, t_n\} \subset T$, $n \geq 1$ is the evaluation map. The above formula holds for all $n \geq 1$, $(t_1, \dots, t_n) \subset T$.

This is called a *finite n-dimensional joint distribution* of random function ξ .

Note that each cylinder set can be obtained from the evaluation map. Then

$$C_{\xi}[A; N] = (\hat{\pi}_{T_n}(\xi))^{-1}(A); A \in \mathcal{B}^n$$

where $\hat{\pi}_t : \mathbb{R}^{T \times \Omega} \to \mathbb{R}^{\Omega} : \xi \mapsto \xi_t$ is considered as the coordinate operator (evaluation operator).

• For a nondecreasing sequence of sets $A_n \uparrow A$, $A_n = \pi_{T_n} A_{n+1} \subset A_{n+1}$, $n \geq 1$ and $T_n = [t_1, \ldots, t_n] \uparrow T$, where $T_{n+1} = T_n \cup \{t_{n+1}\}$, the cylinder sets $C_{\xi}[A_n; T_n] \downarrow C_{\xi}[A; T] \equiv \bigcap_{n=1}^{\infty} C_{\xi}[A_n; T_n]$.

Therefore the distribution of random function ξ ., \mathbb{P} , is completely determined by all its finite n-dimensional joint distribution; i.e.,

$$\mathbb{P}(A) = \mathcal{P}\left(C_{\xi}[A;T]\right)$$

$$= \mathcal{P}\left(\lim_{n \to \infty} C_{\xi}[A_n;T_n]\right)$$

$$= \sum_{n \to \infty} \mathcal{P}\left(C_{\xi}[A_n;T_n]\right)$$

$$= \sum_{n \to \infty} \mathbb{P}(A_n),$$

where $A_n = \pi_{T_n} A$ for any $n \ge 1$, any $T_n \subset T$, any $A \in \mathcal{B}^T$.

1.2 Important functional, operators

• Define the barycenter $\omega_a \in \Omega$ of a measure \mathcal{P} if for any continuous linear functional (random variable) $\xi \in \Omega^*$,

$$\xi(\omega_a) = \int_{\Omega} \xi(\omega) \mathcal{P}(d\omega) \equiv m(\xi), \tag{3}$$

where $m \in \Omega^{**}$ is a linear functional on random variable $\xi \in \Omega^{*}$, called mean functional.

• The linear operator $K: \Omega^* \to \Omega$ is called the *covariance operator* of a measure \mathcal{P} if for any $\xi, \eta \in \Omega^*$, the following equality holds,

$$\xi(K(\eta)) = \int_{\Omega} \xi(\omega - \omega_a) \eta(\omega - \omega_a) \mathcal{P}(d\omega)$$

$$= \int_{\Omega} (\xi(\omega) - \xi(\omega_a)) (\eta(\omega) - \eta(\omega_a)) \mathcal{P}(d\omega)$$

$$= \int_{\Omega} (\xi(\omega) - m(\xi)) (\eta(\omega) - m(\eta)) \mathcal{P}(d\omega)$$
(4)

• For ξ and $\eta \in \Omega^*$, so $\xi(\omega) = \langle \omega, \xi \rangle$ and $\eta(\omega) = \langle \omega, \eta \rangle$, where $\langle \cdot, \cdot \rangle : \Omega \times \Omega^* \to \mathbb{R}$ is the duality bilinear products, so the covariance operator K corresponds to

$$\widehat{K}(\xi, \eta) = \int_{\Omega} \xi(\omega - \omega_a) \eta(\omega - \omega_a) \mathcal{P}(d\omega)$$

$$= \int_{\Omega} \langle \omega - \omega_a, \xi \rangle \langle \omega - \omega_a, \eta \rangle \mathcal{P}(d\omega)$$

$$= \langle K\eta, \xi \rangle \equiv \xi (K(\eta))$$
(5)

where $\widehat{K}: \Omega^* \times \Omega^* \to \mathbb{R}$ is a functional on $\Omega^* \times \Omega^*$.

- Note that K is self-adjoint, i.e. $\xi(K\eta) = \eta(K\xi)$, or $\langle K\eta, \xi \rangle = \langle K\xi, \eta \rangle$.
- Define the *characteristic functional* of measure \mathcal{P} as a complex-valued functional on Ω^* given by the formula,

$$\phi_{\mathcal{P}}(\xi) = \int_{\Omega} \exp(j \, \xi(\omega)) \, \mathcal{P}(d\omega). \tag{6}$$

1.3 Gaussian measure

• A measure \mathcal{P} defined on some algebra that contains \mathscr{C} is called *Gaussian* if the distribution for any (continuous) *linear* functional $\xi \in X^*$ with respect to the measure \mathcal{P} is a Gaussian distribution in \mathbb{R} ; i.e.,

$$\mathcal{P} \circ \xi^{-1} = \mathcal{N}(\omega_a, \sigma^2) \tag{7}$$

for some m, σ .

• For any finite-dimensional joint distribution, we see that

$$\mathcal{P} \circ \xi_T^{-1} = \mathcal{N}(m, K), \tag{8}$$

where m is the mean functional and K is covariance operator.

• Denote the class of all Radon Gaussian measures on the Borel σ -algebra \mathscr{B} of Ω as $\mathcal{G}(\Omega)$, and the subclass of all centered Radon Gaussian measures as $\mathcal{G}_0(\Omega)$.

2 Theorem

3 Examples