CLAIMS

An organic electroluminescent device comprising:
a pair of electrodes; and

at least one organic layer between the pair of electrodes, the at least one organic layer including a luminescent layer,

wherein the luminescent layer contains at least one electron injection/transport compound, at least one hole injection/transport compound, and at least one green or blue phosphorescent compound; and the electron injection/transport compound and the hole injection/transport compound each has a minimum triplet exciton energy value which is equal to or more than that of the green or blue phosphorescent compound.

- 2. The organic electroluminescent device of claim 1, wherein the hole injection/transport compound has an ionization potential of from 5.6 eV to 6.1 eV.
- 3. The organic electroluminescent device of claim 1, wherein the electron injection/transport compound has an electron affinity of from 2.0 eV to 3.5 eV.
- 4. The organic electroluminescent device of claim 1, wherein the green or blue phosphorescent compound is a transition metal complex capable of emitting light via a

triplet excitation state.

- 5. The organic electroluminescent device of claim 1, wherein the electron injection/transport compound, the hole injection/transport compound and the green or blue phosphorescent compound each has a T_1 value of 62 kcal/mole or more; and phosphorescence obtained from the green or blue phosphorescent compound has a λ max of not longer than 500 nm.
- 6. The organic electroluminescent device of claim 1, wherein the hole injection/transport compound is a substituted or unsubstituted pyrrole compound.
- 7. The organic electroluminescent device of claim 6, wherein the substituted or unsubstituted pyrrole compound is represented by the formula (1):

(1)

wherein R^{11} to R^{15} each represents a hydrogen atom or a substituent, and the substituents may be bonded to each other to form a ring structure.

8. The organic electroluminescent device of claim 7, wherein the formula (1) is represented by the formula (3):

(3)

$$L^{31} \underbrace{\left(-L^{32}\right)_{n^{32}}}_{R^{35}} \underbrace{R^{33}}_{R^{34}} = R^{34}$$

wherein R^{32} to R^{35} each represents a hydrogen atom or a substituent, and the substituents may be bonded to each other to form a ring structure; L^{31} represents a connecting group; L^{32} represents a di- or more valent connecting group; n^{31} represents an integer of 2 or more; and n^{32} represents an integer of from 0 to 6.

- 9. The organic electroluminescent device of claims 1, wherein the electron injection/transport compound is a heterocyclic compound containing at least two nitrogen atoms.
- 10. The organic electroluminescent device of claim 9, wherein the heterocyclic compound containing at least two nitrogen atoms is a compound represented by the formula (2):

(2)

$$R^{21}$$
 X^{22} X^{22} X^{23}

wherein R^{21} represents a hydrogen atom or a substituent; X^{21} , X^{22} , X^{23} , and X^{24} each represents a nitrogen atom or a substituted or unsubstituted carbon atom; and at least one X^{21} , X^{22} , X^{23} , and X^{24} represents a nitrogen atom.

11. The organic electroluminescent device of claim 10, wherein the formula (2) is represented by the formula (4):

(4)

$$L^{41} = \left(L^{42} \right)_{n^{42}} N N R^{42}$$

wherein R^{41} , R^{42} , and R^{43} each represents a hydrogen atom or a substituent; L^{41} represents a connecting group; n^{41} represents an integer of 2 or more; L^{42} represents a di- or more valent connecting group; and n^{42} represents an integer of from 0 to 6.

12. The organic electroluminescent device of claim 10, wherein the formula (2) is represented by the formula (5):

(5)

$$L^{51} \underbrace{\left(-L^{52}\right)_{n^{52}}}_{N} \underbrace{R^{52}}_{R^{53}} \underbrace{1}_{n^{51}}$$

wherein R^{52} , R^{53} , and R^{54} each represents a hydrogen atom or a substituent; L^{51} represents a connecting group; n^{51} represents an integer of 2 or more; L^{52} represents a di- or more valent connecting group; and n^{52} represents an integer of from 0 to 6.