

Generalized Additive Models (GAMs) with R

Examples and Featuresof GAMs

Day 4 Agenda (1 of 2)

- Theory versus 'Real World'?
- Pick up Theory 'Along the Way'
- Cherry Trees Again . . . Each purple line is a different example
 - Fit another GAM example with smooths of single variables.
 - Use Thin Plate Regression Splines (TPRS).
 - Vary the Dimension, k.
 - \circ Vary value of γ for GCV or UBRE scores.
 - Advantages, disadvantages of smoothing bases.
 - Smooths of several variables: TPRS.
 - Smooths of several variables: Tensor products.
 - Comparison of Tensor Product and TPRS.
 - Mixing parametric (factor) and smooth model terms.

Day 4 Agenda (2 of 2)

Brain Imaging Example

Each purple line is a different example

- Model medFPQ ~ smooths of Y, X without transformation
- Model m1 ~ isotropic smooth of Y, X with power transform
- Model m2 ~ isotropic smooth of Y, X with Gamma structure
- Model m3 ~ additive structure
- Model m4 ~ replaces m2 with completely nested structure
- Model tm ~ tensor product smooth in additive
- Model tm1~ isotropic smooth in additive
- Air Pollution in Chicago Example
 - Model ap0~ poisson, only one predictor (time) is smoothed
 - Model ap1~ smooth all predictor variables
 - Model ap2~ transform data, use 3-way tensor product
 - Model ap3~ transform data, use 2-way te() term
- Other GAM packages in R

Theory versus 'The Real World'?

Theory versus 'The Real World'?

GAM Theory Things We Missed...

- Other (Cubic Spline) Smoothing Bases:
 - Cyclic cubic regression spline
 - P-splines
 - Thin plate regression splines
 - Shrinkage smoothers
- Setting up GAMs as Penalized GLMs
- Justifying P-IRLS
- Degrees of Freedom and Residual Variance Estimation
- Smoothing Parameter Selection Criteria
 - Known scale parameter: UBRE
 - Unknown scale parameter: Cross Validation
 - Problems with ordinary cross validation
 - Generalized cross validation
 - GVC/UBRE/AIC in the generalized case

But!!! We will revisit many of these in the examples · · ·

Cherry Trees Again . . .

- We redo the example from Day 3:
- > library(mgcv)
- > data(trees)
- Fitting the Generalized Additive Model:

$$log(E[Volume_i]) = f_1(Height_i) + f_2(Girth_i)$$

where Volume ~ Gamma and f_j are smooth functions.

 \circ Degree of smoothness of f_i is estimated by GCV.

Cherry Trees Again . . .


```
We print and plot:
> ct1
Family: Gamma
Link function: log
                           2.42 DoF for Girth
            1 DoF for Height
Formula:
Volume ~ s (Height) + s (Girth)
Estimated degrees of freedom:
1.0000 2.4222 total = 4.422254
GCV score: 0.008082356
```

> par(mfrow=c(1,2))

> plot(ct1,residuals=TRUE)

1+2.42+1 = 4.42 total DoF

Cherry Trees Again . . .

Components of GAM model fits to cherry tree data:

Dashed lines are confidence intervals

Finer Control of GAM . . . Basis

- gam() call producing ct1 had many options set to default:
 - Default basis is thin plate regression splines.

```
> ct2 <- gam(Volume~s(Height,bs="cr")+s(Girth,</pre>
   bs="cr"),family=Gamma(link=log),data=trees)
```

> ct2

Family: Gamma

Link function: log

Formula:

```
Penalized cubic regression spline basis
```

Volume ~ s(Height, bs = "cr") + s(Girth, bs = "cr")

Estimated degrees of freedom:

 $1.0000 \ 2.4188 \ \text{total} = 4.418778$

GCV score: 0.008080514

Finer Control of GAM...Basis

- plot ct1 and ct2 next to each other:
- > par(mfrow=c(2,2))
- > plot(ct1,residuals=TRUE)
- > plot(ct2,residuals=TRUE)

Plots are indistinguishable

Finer Control of GAM . . . Dimension, k


```
> ct3 <- gam(Volume ~ s(Height)</pre>
         + s(Girth,bs="cr",k=20),
          family=Gamma(link=log), data=trees)
> ct3
Family: Gamma
Link function: log
Formula:
Volume \sim s(Height) + s(Girth, bs = "cr", k = 20)
```

GCV score: 0.008082974

Estimated degrees of freedom:

 $1.0000 \ 2.4243 \ \text{total} = 4.424292$

Finer Control of GAM . . . Gamma, γ

- Final default choice, value of γ in GCV or UBRE scores optimized to select degree of smoothness of each term
 - Default value is 1 which can cause overfitting.
 - Using $\gamma \approx 1.4$ has been suggested as corrective without compromising model fit.

GCV score: 0.009228008

Finer Control of GAM... Gamma, $\gamma \approx 1.4$

> par(mfrow=c(2,2)) <-

Plots 2 rows, 2 column in a frame

- > plot(ct1,residuals=TRUE)
- > plot(ct4,residuals=TRUE)

Smooths of More Than One Predictor

- gam () can model smooths of more than one predictor: $log(E[Volume_i]) = f(Height_i, Girth_i)$ where $Volume_i \sim Gamma$
- First function f is a smooth with an **isotropic thin plate** regression spline:

> ct5

```
Family: Gamma
Link function: log
```

Formula:

```
Volume \sim s(Height, Girth, k = 25)
```

Estimated degrees of freedom:

```
4.7911 total = 5.791102
```

GCV score: 0.009357594

Smooths of More Than One Predictor

- gam () can model smooths of more than one predictor: $log(E[Volume_i]) = f(Height_i, Girth_i)$ where $Volume_i \sim Gamma$
- Then we model function *f* as a *tensor product smooth*:

```
> ct6 <- gam(Volume ~ te(Height, Girth, k=5),</pre>
              family=Gamma(link=log), data=trees)
```

> ct6

```
Family: Gamma
```

Link function: log

Formula:

Volume ~ te(Height, Girth, k = 5)

Estimated degrees of freedom:

$$3.000175$$
 total = 4.000175

GCV score: 0.008197151

Only 3 DoF amounts to this model

Dimension for each marginal basis

 $log(E[Volume_i]) = \beta_0 + \beta_1 Height_i + \beta_2 Girth + \beta_3 Height_i Girth_i^{16}$

Advantages, Disadvantages of Package mgcv Smoothing Bases

bs	Description	Advantages	Disadvantages
"tp"	Thin plate regression splines (TPRS)	Can smooth w.r.t. any number of covariates. Invariant to rotation of covariate axes. Can select penalty order. No 'knots' and some optimality properties.	Computationally expensive for large data sets. Not invariant to covariate rescaling.
"ts"	TPRS with shrinkage	As TPRS, but smoothness selection can zero term completely.	As TPRS.
"cr"	Cubic regression spline (CRS)	Computationally cheap. Directly interpretable parameters.	Can only smooth w.r.t. on covariate. Knot based. Doesn't have TPRS optimality.

Advantages, Disadvantages of Package mgcv Smoothing Bases

bs	Description	Advantages	Disadvantages
"CS"	CRS with shrinkage	Can smooth w.r.t. any number of covariates. Invariant to rotation of covariate axes. Can select penalty order. No 'knots' and some optimality properties.	As CRS.
"cc"	Cyclic CRS	As CRS, but start point same as end point.	As CRS.
"ps"	P-splines	Any combination of basis and penalty order possible. Perform well in tensor products.	Based on equally spaced knots. Penalties awkward to interpret. No optimality properties available.

Plots of Thin Plate and Tensor Product Regression Spline Fits

Tensor Product (te) versus Thin Plate Regression Spline (s)

Tensor product, te	TPRS, s (,bs="tp")
Invariant to linear rescaling of covariates, but not to rotation of covariate space.	Invariant to rotation of covariate space (isotropic), but not to rescaling of covariates.
Good for smooth interactions of quantities measured in different units, or where very different degrees of smoothness appropriate relative to different covariates.	Good for smooth interactions of quantities measured in same units, such as spatial coordinates, where isotropy is appropriate.
Computationally inexpensive, provided TPRS bases are not used as marginal bases.	Computational cost can be high as it increase with square of number of data (can be avoided by approximation).
Apart from scale invariance, not much supporting theory.	Some optimality results available.

Parametric Model Terms

- For example, given that smooth of Height in ct1 is estimated as a straight line, we might as well fit the model:
- > gam(Volume ~ Height+s(Girth), Create a factor variable family=Gamma(link=log),data=trees)
- But with Height as categorical variable:
- Now we fit and plot a gam using Hclass as factor variable
- > par(mfrow=c(1,2))
- > plot(ct7,all.terms=T)

Plot of ct7, semi-parametric model

Parametric Model Terms


```
> anova(ct7)
Family: Gamma
Link function: log
Formula:
Volume ~ Hclass + s(Girth)
Parametric Terms:
      df F p-value
Hclass 2 6.965 0.00385
Approximate significance of smooth terms:
          edf Ref.df F p-value
s(Girth) 2.444 3.076 156.2 <2e-16
```

Parametric Model Terms


```
> AIC(ct7)
[1] 154.9267
> summary(ct7)
                                              Significance of individual
Family: Gamma
                                              levels of parametric term
Link function: log
Formula:
Volume ~ Hclass + s(Girth)
Parametric coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.12722 0.04841 64.593 < 2e-16 ***
Hclass[T.medium] 0.13415 0.05469 2.453 0.021332 *
Hclass[T.large] 0.23000 0.06180 3.722 0.000982 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
          edf Ref.df F p-value
s(Girth) 2.444 3.076 156.2 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

R-sq.(adj) = 0.967 Deviance explained = 96.9% GCV score = 0.012075 Scale est. = 0.0099548 n = 31

New terms

Brain Imaging Example

- Data from brain imaging by functional magnetic resonance scanning (Landau et al. 2003)
 - Data frame brain in package gamair.

```
> library(gamair)
                    Voxel locations
                                     Brain activity level
  data(brain)
 brain
                      region meanTheta
               medFPQ
         Y
     65
             3.923048
                           NA
                               2.838555
     60
        10
             0.492985
                               1.218145
3
                           NA 1.983947
     63 10
            2.759576
                                             medFPQ ~ X, Y
     65 10 0.000003
                            0 1.306030
5
     66 10 0.854175
                              -2.496284
                               1.648068
     54 11
            2.235795
                           NA
                      Voxel region
```

Each row corresponds to one voxel (Wikipedia)

25

Raw Brain Imaging Data

medFPQ is 'noisy,' try to partition into (1) smooth trend; and (2) 'random variability' components

Main gam Arguments for Controlling Smoothness Estimation Process

			_	
0		2	1	
3	L	a	┺	C

Controls use of UBRE/AIC or GCV for smoothing parameter selection.

scale > 0: known scale parameter: use UBRE/AIC.

scale < 0: unknown scale parameter: use GCV.</pre>

scale = 0: UBRE/AIC for Poisson or binomial, otherwise GCV.

gamma

Multiplies model degrees of freedom in GCV or UBRE/AIC criteria. As gamma increased from 1, the 'penalty' per degree of freedom increases in the GCV or UBRE/AIC criterion, producing increasingly smooth models. Increasing gamma to ~1.4 can reduce over-fitting without affecting prediction error performance.

sp

Supplied array of smoothing parameters. Negative (non-negative) elements suppress (are used as) smoothing parameters for corresponding term(s). Useful for selectively controlling the smoothness of some terms.

min.sp

Can supply minimum values for smoothing parameters with min.sp argument.

method

Argument usually set with gam.method, which controls numerical method used to estimate smoothing parameters.

Brain Imaging Outliers

- Will model medFPQ as function of x and Y
 - Get rid of two outliers: values of 3 x 10⁻⁶ and 4 x 10⁻⁷
 - Other 1565 voxels range from 0.003 and 20.
- > brain <- brain[brain\$medFPQ>=3e-5,] #exclude 2 outliers
- Then try Gaussian model without transformation:
- > m0 <- gam(medFPQ~s(Y,X,k=100),data=brain)</pre>
- > gam.check(m0)

Smoothing parameter selection converged after 6 iterations. The RMS GCV score gradiant at convergence was 5.724028e-05. The Hessian was positive definite.

The estimated model rank was 100 (maximum possible: 100)

Initial Brain Imaging Plots (model m0)

How is Variance Increasing with the Mean?

• If we assume $var(y_i) \propto \mu_i^{\beta}$ where $u_i = E(y_i)$ and β is some parameter, then we can estimate β with regression:

```
> e <- residuals(m0); fv <- fitted(m0)</pre>
```

```
> lm(log(e^2)~log(fv))
```

```
Call:
```

```
lm(formula = log(e^2) \sim log(fv))
```

Coefficients:

(Intercept)

-1.959

Could use log transform of medFPQ, but settle on fourth root transform and a log link function

log(fv)

1.919

So $\beta \approx 2$

Second Model Fit

- The following fits the model, based first on transforming the data, and then on the use of the Gamma distribution:
- > m1<-gam (medFPQ^.25~s(Y,X,k=100),data=brain)
 > gam.check(m1) Plots from gam.check on next slide
- > mean(fitted(m1)^4)
- > mean(fitted(m2)); mean(brain\$medFPQ)
- [1] 0.9838708 # m1 tends to under-estimate
- [1] 1.211685 # m2 is substantially better
- [1] 1.249506 # this is actually the mean

Model Checking Plots (m1)

Closer Look at model m2

Best model seems to be Gamma log link m2:

```
> m2
Family: Gamma
Link function: log
Formula:
medFPQ \sim s(Y, X, k = 100)
Estimated degrees of freedom:
                                 Too many DoF?
63.01 total = 64.00951
GCV score: 0.6006784
> vis.gam(m2,plot.type="contour",too.far=0.03,
        color="gray", n.grid=60, zlim=c(-1,2), main="model"
        m2 image plot and overlaid contours on scale of
        linear predictor")
```

Model m2 Image Plot with Contours

Experimentally stimulated region

model m2 image plot and overlaid contours on scale of linear predictor

Is an Additive Structure Better?

Large number of DoF in model m2 raises question of a better fit with a different, simpler model structure:

```
\log(E[medFPQ_i]) = f_1(Y_i) + f_2(X_i), where...medFPQ ~ Gamma
```

> m3

Family: Gamma

Link function: log

m2 deviance explained = 25.5% m3 deviance explained = 19.4%

Formula:

```
medFPQ \sim s(Y, k = 30) + s(X, k = 30)
```

Estimated degrees of freedom: 9.5515 19.6950 total = 30.24652

GCV score: 0.6825806 ← GCV higher

Compare with Analysis of Deviance

Additive Model Rejected

> anova(m3,m2,test="F")

Analysis of Deviance Table

```
Model 1: medFPQ \sim s(Y, k = 30) + s(X, k = 30)
Model 2: medFPQ ~ s(Y, X, k = 100) ← Looks Better
 Resid. Df Resid. Dev Df Deviance F
                                              Pr (>F)
    1534.8 979.79
    1501.0 903.32 33.763 76.462 3.931 5.628e-13 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
m4 < -gam(medFPQ \sim s(Y, k=30) + s(X, k=30) + s(Y, X, k=100), data=brain,
      family=Gamma(link=log), optimizer="perf")
# Compare models m3 and m4
anova (m3, m4, test="F") 
Same Result, m4 Better
> vis.gam(m3,plot.type="contour",too.far=0.03,
                                                            36
       color="gray", n.grid=60, zlim=c(-1,2), main="model"
       m2 image plot and overlaid contours on scale of
        linear predictor")
```

Additive Model m3 Image Plot

Isotropic or Tensor Product Smooths?

- Is worth checking what results look like if we use a scale invariant tensor product smooth of Y and X.
 - Are computationally efficient
- For example:

Tensor product of two cubic regression spline bases, rank 10 x rank 10 = rank 100

Purely additive model with two rank 10 cubic regression splines so tm1 nested within tm

 Fits a tensor product smooth to FPQ data, storing result in tm and then fits a purely additive model, storing results in tm1.

Isotropic or Tensor Product Smooths?

As with previous models, comparison of GCV scores suggests additive model not the best:

```
> tm1
Family: Gamma
Link function: log
                           Additive Model
Formula:
medFPQ \sim s(Y, k = 10, bs = "cr") + s(X, bs = "cr", k = 10)
Estimated degrees of freedom:
8.4569 \ 8.0810 \ \text{total} = 17.53793
GCV score: 0.7399581
> tm
Family: Gamma
Link function: log
Formula:
medFPQ \sim te(Y, X, k = 10) Tensor Product
Estimated degrees of freedom:
58.009 total = 59.0086
```

GCV score: 0.6175363

Looks Better

Isotropic or Tensor Product Smooths?

Similarly, an approximate test of the null hypothesis that the additive structure is appropriate suggests accepting tm:

> anova(tm1,tm,test="F")

```
Analysis of Deviance Table

Model 1: medFPQ ~ s(Y, k = 10, bs = "cr") + s(X, bs = "cr", k = 10)

Model 2: medFPQ ~ te(Y, X, k = 10)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 1547.5 1013.17

2 1506.0 914.56 41.471 98.613 4.0015 9.635e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Additive Model Rejected Again

Model tm Image Plot with Contours

Additive Model tm1 Image Plot

Air Pollution in Chicago Example

- Deals with relationship between air pollution and health.
- Air-pollution epidemiology data from Peng and Welty (2004).
 - Data Frame: chicago in package gamair

```
> library(mgcv)
                           Response variable: Daily death rate over a number of years
> data(chicago)
> chicago
     death
              pm10median
                            pm25median
                                             o3median
                                                          so2median
                                                                        time
                                                                               tmpd
       130
                                     NA -19.592337860
            -7.433544304
                                                        1.928042597 -2556.5
                                                                               31.5
       150
                                                       -0.985563116 -2555.5
                                                                               33.0
                                     NA -19.038613660
                       NA
       101
            -0.826530612
                                     NA -20.217337860 -1.891416086 -2554.5
                                                                               33.0
                                     NA -19.675671200
                                                        6.139341274 -2553.5
                                                                               29.0
       135
             5.566455696
       126
                                     NA -19.217337860
                                                        2.278464871 -2552.5
                                                                               32.0
                       NA
                                                                               40.0
       130
             6.566455696
                                     NA -17.634004530
                                                        9.858583914 -2551.5
```

Note: pm10median is particulate matter; o3median are levels of ozone; so2median levels of sulpher dioxide; tmpd is mean daily temperature.

Air Pollution in Chicago

Conventional approach: Assume observed number of deaths are **Poisson** random variables:

```
log(E[death_i]) = f(time_i) + \beta_1 pm10 median_i + \beta_2 so2 median_i + \beta_3 o3 median_i + \beta_4 tmpd_i
where death<sub>i</sub> follows a Poisson distribution and f is a smooth function.
```

- We check and fit the model:
- > gam.check(ap0)

Basic Model Checking Plots for the apo Air Pollution Mortality Model

Estimate of Smooth from Model apo With And Without Residuals

- > par(mfrow=c(2,1))
- > plot(ap0,n=1000) # n increased to make plot smooth
- > plot(ap0,residuals=TRUE,n=1000)

Air Pollution in Chicago Model ap1

- > chicago\$death[3111:3123]
- > [1] 112 97 122 119 116 121 226 411 287 228 159 142 123
- If we plot this section of data, we see the peak associated with very high temperatures and high ozone.
 - → Incorporate non-linear effect of temperature and ozone on death rate.
- Model becomes:

```
log(E[death_i]) = f_1(time_i) + f_2(pm10median_i) + f_3(so2median_i) + f_4(o3median_i) + f_5(tmpd_i)
where the f_j are smooth functions. We fit the model:
```

- > ap1<-gam(death~s(time,bs="cr",k=200)+s(pm10median,bs="cr")+
 s(so2median,bs="cr")+s(o3median,bs="cr")+s(tmpd,bs="cr"),
 data=chicago,family=poisson)</pre>
- > gam.check(ap1)

Basic Model Checking Plots for the ap1 Air Pollution Mortality Model

Air Pollution in Chicago

- Question becomes: What are the appropriate aggregations and lags of the covariates to predict mortality?
 - Focus on the *sum* of pollutant (ozone) and temperature levels over the four days up to and including each daily mortality reading.
- We create this function:

```
lag.sum <- function(a,10,11)
## 10 is minimum range of lag, l1 is maximum
{ n<-length(a)
  b<-rep(0,n-11)
  for (i in 0:(11-10)) b <- b + a[(i+1):(n-11+i)]
  b</pre>
```

Modified Chicago Air Pollution Data

- We modify the data for death (response) and time of day (predictor):
 o3 = ozone;
 tmp = temp;
- > death<-chicago\$death[4:5114]</pre>
- > time<-chicago\$time[4:5114]</pre>
- We use lag.sum() to modify other predictors:
- > o3 <- lag.sum(chicago\$o3median,0,3)</pre>
- > tmp <- lag.sum(chicago\$tmpd,0,3)</pre>
- > pm10 <- lag.sum(log(chicago\$pm10median+40),0,3)</pre>
- > so2 <- lag.sum(log(chicago\$so2median+10),0,3)
- Aggregate variables are used to predict death, for example:

$$o3_i = \sum_{j=i}^{r} o3 \text{median}_j$$
 Sum of daily ozone for four days

pm10 = part.;

so2 = sul diox;

Air Pollution in Chicago Model ap2

Still looking at a combination of high ozone and high temperature (with particulates):

 $\log(\mathrm{E}[\mathrm{death}_i]) = f_1(\mathrm{time}_i) + f_2(\mathrm{o3}_i, \mathrm{tmp}_i, \mathrm{pm10}_i)$

- where f_1 and f_2 are smooth functions. We fit and check the model: Note: This model is *very* slow to converge!
- > gam.check(ap2)

Basic Model Checking Plots for the ap2 Air Pollution Mortality Model

Greatly improved default checking plots

Air Pollution in Chicago Model ap3

Note: This model is also slow to converge!

- Simplify ap3 by separating out interaction of ozone and temperature: $\log(\mathrm{E}[\mathrm{death}_i]) = f_1(\mathrm{time}_i) + f_2(\mathrm{o3}_i, \mathrm{tmp}_i) + f_3(\mathrm{pm10}_i)$
- where f_1 , f_2 and f_3 are smooth functions. We fit the model:
- > ap3 <- gam(death ~ s(time,bs="cr",k=200) + te(o3,tmp,k=8) +
 s(pm10,bs="cr",k=6),family=poisson)</pre>
- By default, smoothness selection uses UBRE
 - ap3 has smallest UBRE
 - Adding so2 very marginally improves the UBRE, but with a very small effect (barely significant).
- We show estimates of components of ap3 on next slide.

Estimates of Components of Chicago Model ap3

Other GAM Packages

- Are other packages implementing GAMs:
 - Trevor Hastie's gam package
 - Chong Gu's gss package
 - assist package implements Wang & Wang (1998)
 - o gamlss package implements Rigby and Stasinopoulos (2004).
- Package gam
 - Implements the GAM framework of Hastie and Tibshirani (1990)
 - Package mgcv (Wood) preceded package gam and also has functions based closely on the S equivalent designed by Hastie (1993).
 - Thus, basic use of gam function is similar in mgcv and gam.
 - Main differences: (1) s() terms in gam::gam are cubic smoothing spline smooths of one var; (2) Smooths of any number of terms provided by lo() (loess) smooths; (3) gam::gam does not estimate degree of smoothness automatically.

Chicago Revisited with gam Package

- Fit a version of final Chicago air pollution example:
- > library(gam)
- > install.packages("akima")
- > library(akima) # needed for plotting
- > summary(bfm)
- We provide a default summary of the fit:

(Dispersion Parameter for poisson family taken to be 1)

Null Deviance: 9860.715 on 5110 degrees of freedom

Residual Deviance: 5823.157 on 4929.065 degrees of freedom

AIC: 39815.83

Continued on next slide . . .

Chicago Revisited with gam Package

- Fit a version of final Chicago air pollution example:
- > bfm <- gam(death~s(time,df=140)+lo(o3,tmp,span=.1), family=poisson,control=gam.control(bf.maxit=150))
- > summary(bfm)
- Continued default summary of the fit:

Continued from previous slide . . .

```
Number of Local Scoring Iterations: 20
```

DF for Terms and Chi-squares for Nonparametric Effects

```
Df Npar Df Npar Chisq P(Chi)

(Intercept) 1

s(time, df = 140) 1 139.0 1336.27 < 2.2e-16 ***

lo(o3, tmp, span = 0.1) 2 38.9 645.51 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

gss Package

- Implements General Smoothing Spline Approach of Wahba (1990) and Gu (2002)
 - Somewhat different from other gam functions.
 - Based on ANOVA decomposition of functions.
 - Air pollution model again:
- > install.packages("gss") Take a long coffee break . . .
- > library(gss)
- > ssm <- gssanoval(death~time+o3*tmp,family="poisson", nbasis=200) Main effects and 2 way
- gssanova1 () is a "computationally efficient reduced rank version" of function gssanova(), which fits generalized smoothing spline ANOVA models (Kim and Gu 2004).
- Model formula specifies a linear predictor with structure:

$$f_{i}(time) + f_{2}(o3) + f_{3}(tmp) + f_{4}(o3, tmp)$$