Technische Universität Ilmenau Institut für Mathematik

Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Übungsserie 7 (20.11.2023 - 24.11.2023)

Aufgabe 1:

Es sei $q \in \mathbb{R}$. Zeigen Sie mit Hilfe der Bernoulli-Ungleichung, dass gilt:

$$\lim_{k \to \infty} q^k = \begin{cases} \infty, & q > 1 \\ 1, & q = 1 \\ 0, & |q| < 1 \end{cases}$$

(Die Bernoulli Ungleichung besagt: Für alle $n \in \mathbb{N}$ und alle $x \ge -1$ gilt $(1+x)^n \ge 1+nx$.)

Aufgabe 2:

Untersuchen Sie die unten angegebenen Folgen $(a_n)_{n\in\mathbb{N}}$ auf Konvergenz und geben Sie im Falle der Konvergenz den Grenzwert $\lim_{n\to\infty}a_n$ an.

(a)^(*)
$$a_n = \left(\frac{99}{100}\right)^n$$
 (b) $a_n = \frac{1}{\sqrt{n}}$ (c) $a_n = (1 + \frac{1}{100})^n$ (d)^(*) $a_n = \frac{2n^2 + 10n - 202}{n^3 - 100}$ (e) $a_n = \frac{2n^3 - n^2 - n - 1}{3n^3 - 1}$ (f)^(*) $a_n = \frac{n^3 + 4n^2 - 2n}{n^2 - 2n + 4}$ (g) $a_n = (-1)^n \frac{n^2 + n + 1}{5n^2 - 2n + 3}$ (h) $a_n = 3^{-n}(2^n + (-2)^n)$ (i)^(*) $a_n = 2^{-n}(2^n + (-2)^n)$ (j) $a_n = \sqrt{n^2 + 23n + 5} - \sqrt{n^2 + 7n}$

Aufgabe 3:

Geometrische Reihe: Betrachtet wird die Zahlenfolge $(s_n)_{n\in\mathbb{N}}$ mit $s_n = \sum_{k=0}^n q^k$, wobei q eine beliebige reelle Zahl ist.

- (a) Rechnen Sie nach, dass $s_{n+1}=q^{n+1}+s_n$ und $s_{n+1}=1+qs_n$ für alle $n\in\mathbb{N}$ gilt.
- (b) Verwenden Sie (a), um zu zeigen:

$$s_n = \begin{cases} \frac{1 - q^{n+1}}{1 - q}, & q \neq 1\\ n + 1, & q = 1 \end{cases}.$$

- (c) Untersuchen Sie, für welche reellen Zahlen q die Folge $(s_n)_{n\in\mathbb{N}}$ mononton, beschränkt oder beides ist, und geben Sie den Grenzwert $\sum_{k=0}^{\infty} q^k$ an, falls dieser existiert.
- (d) Berechnen Sie $\lim_{n\to\infty} s_n$ für $s_n = \sum_{k=1}^n (\frac{2}{3})^k$.
- (e) Berechnen Sie $\sum_{k=0}^{\infty} (\frac{1}{3})^k$ und $\sum_{k=2}^{\infty} (\frac{1}{3})^k$.

Aufgabe 4:

Zinseszins: (*) Ein Konto bei einer Bank weist zum ersten Januar des Jahres x einen Stand von $S \in$ auf. Die Bank verzinst die Einlage jährlich mit α Prozent. Die Aufzinsung erfolgt jährlich jeweils am 31. Dezember.

- (a) Wie hoch ist der Kontostand am ersten Januar des Jahres x + n $(n \in \mathbb{N})$, wenn die Verzinsung über die gesamte Zeit konstant bleibt und keine weiteren Kontobewegungen stattfinden?
- (b) Was passiert, wenn die Aufzinsung halbjährlich, z.B. am 30. Juni und am 31. Dezember, erfolgt?

Aufgabe 5:

Es sei R>0 eine reelle Zahl. Betrachtet wird die durch

$$a_1 = 2R$$
 und $a_{n+1} = R + \frac{Ra_n}{R + a_n}$ für $n \in \mathbb{N}$

rekursiv gegebene Folge $(a_n)_{n\in\mathbb{N}}$.

- (a) Zeigen Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ monoton fallend ist.
- (b) Geben Sie eine untere Schranke für die Folge $(a_n)_{n\in\mathbb{N}}$ an.
- (c) Berechnen Sie den Grenzwert $\lim_{n\to\infty} a_n$.

Aufgabe 6:

(*) Untersuchen Sie die rekursiv definierte Folge (a_n) auf Konvergenz. Geben Sie, falls möglich, den Grenzwert an:

$$a_1 = 1, \ a_{n+1} = \sqrt{1 + a_n^2} \quad \forall n \in \mathbb{N}$$

Aufgabe 7:

(*) Betrachtet wird die durch

$$x_1 = 1$$
 und $x_{n+1} = \frac{1}{2}(x_n + \frac{2}{x_n})$ für $n \in \mathbb{N}$

rekursiv gegebene Folge $(x_n)_{n\in\mathbb{N}}$.

- (a) Zeigen Sie, dass $\frac{1}{2}(t+\frac{2}{t}) \ge \sqrt{2}$ für alle t > 0 gilt.
- (b) Zeigen Sie, dass $t \ge \frac{1}{2}(t + \frac{2}{t})$ für alle $t \ge \sqrt{2}$ gilt.
- (c) Zeigen Sie, dass die Folge $(x_n)_{n\in\mathbb{N}}$ ab dem zweiten Glied monoton fallend ist und $x_n \geq \sqrt{2}$ für alle $n \geq 2$ gilt.
- (d) Zeigen Sie, dass $\lim_{n\to\infty} x_n = \sqrt{2}$ gilt.

Aufgabe 8:

Gegeben sind die drei Zahlenfolgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ mit

$$a_n = \sqrt{n + 1000} - \sqrt{n}$$
, $b_n = \sqrt{n + \sqrt{n}} - \sqrt{n}$ und $c_n = \sqrt{n + \frac{n}{1000}} - \sqrt{n}$.

Zeigen Sie, dass $a_n > b_n > c_n$ für $1 \le n < 10^6$ sowie $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n < \lim_{n \to \infty} c_n$ gilt.