ADVANCED DATA ANALYSIS FOR PSYCHOLOGICAL SCIENCE

Part 1. Introduction to multilevel modeling

Luca Menghini Ph.D.

luca.menghini@unipd.it

Master degree in Developmental and Educational Psychology
University of Padova
2023-2024

Outline of Part 1

- LM recap: Short recap of linear regression modeling 🖢 🗭
- LMER: Introduction to multilevel modeling (linear mixed-effects regression)
- **Data processing**: How to approach a multilevel data structure? How to manipulate and pre-process multilevel data?
- **Descriptives:** Which descriptive stats should be reported from a multilevel dataset? How to compute and interpret them?
- Model fit: How to fit a multilevel model in R? How to inspect, report, visualize, and interpret the results of a multilevel model? \mathbf{Q}
- Model evaluation: Which are the assumptions of multilevel models? How to evaluate them? How to compare multiple models and select the best model? •
- Related: Summaries & in-depth topics related to multilevel modeling (e.g., generalized and Bayesian LMER, power analysis)

[■] not for the exam

LM recap: Linear regression models

Linear models (LM) allow to determinate the link between two variables as expressed by a linear function: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

- Such a function can be graphically represented as a straight line, where: • β_0 is the **intercept** (value assumed by y when x = 0)
 - β_1 is the **slope** (predicted change in y when x increases by 1 unit)
 - ϵ_i are the **errors** (distance between observation i and the regression line)

Linear model (LM) recap

•000000000

 x_i and y_i are the values of observation i for the casual variables x and y

 β_0 , β_1 , and ϵ_i are called "parameters", or "coefficients". They are estimated from the sampled data and generalized to the whole population.

Fitting linear models in R

```
data("children", package = "npregfast") # loading children dataset from npregfast pkg
```

R uses the lm() function to fit linear models with the arguments formula $(y \sim x1 + x2 + ...)$ and data (identifying the dataframe with the model variables).

Null model

[1] 243.9085

000000000

Children' height is only predicted by the model intercept β_0 = expected (i.e., mean) value of height in the sample, σ^2 is the variance of the residuals ϵ_i (deviations from the intercept).

```
m0 <- lm(formula = height ~ 1.
         data = children)
coefficients(m0) # model parameters
(Intercept)
   153.4013
summary(m0)$sigma^2 # residual variance
```

Simple regression model

height is now predicted by the intercept β_0 (mean value when age is 0), the slope β_1 (expected change for 1-unit increase in age). and the residual variance σ^2 .

```
m1 <- lm(formula = height ~ age.
         data = children)
coefficients(m1) # model parameters
(Intercept)
                    age
  94.904099
               4.388803
summary(m1)$sigma^2 # residual variance
[1] 56.19656
```

Multiple regression & interactions

LM also allow to include **multiple predictors** and the **interactions**¹ among them. This is done by estimating a separate slope (thus, a separate line) for each predictor by *holding constant* the value of the other predictors, which are fixed to zero.

Multiple regression model

```
eta_0 = 	ext{expected value in girls with age} = 0
eta_1 = 	ext{age effect}^2 	ext{ within the same sex}
eta_2 = 	ext{sex difference when age} = 0
	ext{m2} < - 	ext{lm(formula = height - age + sex,}
	ext{data = children)}
	ext{coefficients(m2)}
	ext{(Intercept)} 	ext{ age sexmale } 	ext{95.0075706} 	ext{ 4.3887983 } -0.2001025
```

Interactive model

104.25

```
eta_1 = 	ext{age effect in girls}
eta_2 = 	ext{sex difference in height when age} = 0
eta_3 = 	ext{sex difference in age effect (interaction)}
	ext{m3} < - 	ext{lm(formula = height - age * sex,}
	ext{data = children)}
	ext{round(coefficients(m3),2)}
(Intercept) age sexmale age:sexmale
```

3.70

-19.04

1.41

¹The interaction between x_1 and x_2 is computed as the product of x_1 and x_2 .

²In this context, "effect" is used as a synonym of "relationship" (not a *causal* effect).

Model comparison & model selection

Likelihood ratio test

Compares the fit of two nested models (i.e., predicting the same y variable, with the more complex model including all predictors included in the simpler model).

```
library(lmtest)
```

```
lrtest(m0,m1,m2,m3) # returns Chisq statistic
```

```
#Df LogLik Df Chisq Pr(>Chisq)
1 2 -10417.84 NA NA NA
2 3 -8582.42 1 3670.84 0.000000e+00
3 4 -8582.19 1 0.45 5.046155e-01
4 5 -8468.86 1 226.67 3.176229=51
```

Information criteria

The Akaike (AIC) and the Bayesian Information Criterion (BIC) compare multiple models in terms of fit & parsimony (the lower number of parameters the better)

```
AIC(m0,m1,m2,m3) # AIC: the lower the better
[1] 20839.68 17170.83 17172.39 16947.72

# Akaike weights: from 0 (-) to 1 (+)

MuMIn::Weights(AIC(m0,m1,m2,m3))

model weights
[1] 0 0 0 1
```

Here, model fit to the data is expressed by its likelihood = probability of observing the sampled data given the parameters estimated by the model, sometimes referred as the evidence of a model, or its ability to predict/forecast new data that are similar to the sampled data (see interactive visualization by Kristoffer Magnusson).

Parameter estimation in linear regression models

 β_0 , β_1 , and ϵ must be **estimated** based on data sampled from a population:

$$\hat{\beta}_0 = b_0; \, \hat{\beta}_1 = b_1; \, \hat{\epsilon} = e$$
).

Linear model (LM) recap

b There are several methods to estimate unknown parameters, such as:

- Ordinary least squares (OLS): finds the parameter values that minimize the sum of the squared residuals (default LM estimator)
- Maximum likelihood estimator (MLE): finds the parameter values that maximize the model likelihood, making the observed data the most probable under that model
- Bayesian estimator: finds the parameter posterior distributions based on prior knowledge/beliefs (prior) and observed data (likelihood)

Regardless of the used method, parameters values (or distributions) are always accompanied with a measure of the uncertainty/precision associated with their estimate:

Standard errors (SE) = predicted variability in the parameter estimate if the data were collected from different random samples from the same population.

SE are used for computing test statistics (Est/SE) & confidence intervals (Est \pm 1.96 \times SE)

0000000000

What are residuals?

Residuals are the model-based estimates of the population errors.

```
head(data.frame(observed = children$height,
Linear model:
                                                                  predicted = fitted(m3),
u_i = \beta_0 + \beta_1 x_i + \epsilon_i
                                                                  residuals = residuals(m3)
                                                                   squared = residuals(m3)^2 ))
Predicted values:
                                                  observed predicted residuals squared
\hat{y}_i = \beta_0 + \beta_1 x_i
                                                    150.77
                                                               152.90
                                                                           -2.13
                                                                                    4.55
                                                    170.59
                                                               156.61
                                                                           13.98 195.33
                                                    167.31
                                                               160.31
                                                                            7.00
                                                                                  49.01
                                                    165.72
                                                               165.52
                                                                            0.20
                                                                                    0.04
Observed values:
                                                5 171.67
                                                              160.31
                                                                           11.36 129.06
                                                    143.74
                                                               151.07
                                                                           -7.33
                                                                                   53.74
y_i = \hat{y}_i + \hat{\epsilon}_i
                                                sum(residuals(m3)^2) # sum of squared (SS) residuals
Residuals = observed - predicted
                                                ## [1] 128188.3
\hat{\epsilon}_i = y_i - \hat{y}_i
                                                var(residuals(m3)) # residual variance SIGMA2
```

[1] 51.29585

In LM, model parameters include:

- (1) intercept, (2) slope(s), and (3) **residual variance** σ^2
- \rightarrow How many parameters in the previous models? (= No. predictors + 2)

Statistical inference on regression coefficients

In the NHST approach, we can test the statistical **significance** of regression coefficients (two-tail t-test).

This is automatically done by R in the model summary.

summary(m3) # model results

Linear model (LM) recap

0000000000

	Estimate	Std.	Error	t value	Pr(> t)
(Intercept)	104.25		0.88	118.22	0.000000e+00
age	3.70		0.06	57.45	0.000000e+00
sexmale	-19.04		1.26	-15.14	1.237494e-49
age:sexmale	1.41		0.09	15.39	3.897810e-51

- Estimate = estimated parameter
- Std. Error = parameter standard error
- t value = test statistic computed as
- t = Estimate/Std.Error
- p-value = p corresponding to the t-value with No. Obs. - No. Coeff. - 1 degrees of freedom

Effect size:

Coefficient of determination

$$R^2 = 1 - SS_{residuals} / SS_{total}$$

```
summary(m3)$r.squared
```

Γ17 0.79

The model explains 79% of the variance in height.

Plotting effects:

siPlot::plot model(m3,type="pred",terms=c("age","sex"))

Hands on **R**

1. Download & read the dataset from the "Pregnancy during pandemics" study

```
depr = postnatal depression, age = mother's age, NICU = intensive care, threat = fear of COVID
library(osfr) # package to interact with the Open Science Framework platform
proj <- "https://osf.io/ha5dp/" # link to the OSF project
osf download(osf ls files(osf retrieve node(proj))[2, ],conflicts="overwrite") # download
preg <- na.omit(read.csv("OSFData Upload 2023 Mar30.csv", stringsAsFactors=TRUE)) # read data
colnames(preg)[c(2,5,12,14)] <- c("age", "depr", "NICU", "threat") # set variable names
```

- 2. Explore the the variables depr, threat, NICU, and age (descr., corr., & plots)
- 3. Fit a null model m0 of depr

Linear model (LM) recap

0000000000

- 4. Fit a simple regression model m1 with depr being predicted by threat
- 5. Fit a multiple regression model m2 also controlling for NICU and age
- 6 Fit an interactive model m3 to check whether age moderates the relationship between threat and depr.

- 7. Compare the models with AIC and likelihood ratio test: which is the best model?
- 8. Print & interpret the coefficients estimated by the selected model
- 9. Print & interpret the statistical significance of the estimated coefficients
- 10 Plot the effects of the selected model.
- 11. Compute the determination coefficient of the selected model

One step back: Linear model assumptions

Core assumptions:

- 1. Linearity: x_i and y_i are linearly associated \rightarrow the expected (mean) value of ϵ_i is zero
- 2. Normality: residuals ϵ_i are normally distributed with $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- 3. Homoscedasticity: ϵ_i variance is constant over the levels of x_i (homogeneity of variance)
- 4. Independence of predictors & errors: predictors x_i are unrelated to residuals ϵ_i
- **5.** Independence of observations: for any two observations i and j with $i \neq j$, the residual terms ϵ_i and ϵ_i are independent (no common disturbance factors)

Additional assumptions:

- 6. Absence of influential observations (multivariate outliers)
- 7. Absence of multicollinearity (for multiple regression):

lack of linear relationship between x_1 and x_2

Normality & linearity ©

hist(residuals(m3))

000000000

ggnorm(residuals(m3)): ggline(residuals(m3))

Homoscedasticity & independence $x, \epsilon \odot$

plot(residuals(m3) ~ children\$sex) plot(residuals(m3) ~ children\$age)

Independence of observations ?

Absence of influential cases

plot(m3,which=5)

Leverage

Im(height ~ age * sex) Absence of multicollinearity

siPlot::plot model(m3, "diag")[[1]]

Variance Inflation Factors (multicollinearity)

Are the unmeasured factors influencing y unrelated from one individual to another?

Cluster variables & nested data

In many cases, the sampling method creates clusters of individual observations

- students → schools
- children \rightarrow families \rightarrow neighborhoods \rightarrow cities \rightarrow regions \rightarrow states \rightarrow planets \P

Nested data structure (= multilevel or hierarchical data structure)

- = when data points at the **individual level** appear *in only one group* of the **cluster level** variable
- \rightarrow individual observations are *nested* within clusters

How do you imagine such a nested dataset?

Individual observation = statistical unit = individual entity within a sample or population that is the subject of data collection & analysis (not necessarily a person)

Case study: Innovative math teaching program 🗪

We're hired by a school principal to assess whether an innovative teaching program can improve math achievement in first-year high-school students.

```
# reading data
itp <- read.csv("data/studentData.csv")</pre>
# frequency table class by intervention
table(itp[,c("classID","tp")])
```

	tp			
intervention	control	classID		
0	30	A		
0	22	В		
27	0	C		
11	0	D		

boxp	lot(ma	th_grade ~	tp, data=itp)
math_grade	7.0 8.0 9.0		
		control	intervention
			tp

The teaching program tp was delivered over the first semester to 2 out of 4 classes and we got the students' end-of-semester math_grade (1-10).

Nested dataset: students are nested within classes, with each student only belonging to one class.

head(itp[,1:4],12)

	studID	classID	tp	math_grade
1	s1	A	control	7.74
2	s2	A	control	8.31
3	s3	A	control	7.09
4	s4	A	control	7.80
5	s5	A	control	7.21
6	s6	A	control	8.95
7	s7	A	control	7.48
8	s8	A	${\tt control}$	7.86
9	s9	A	control	7.85
10	s10	A	control	7.13
11	s11	A	${\tt control}$	7.87
12	s12	A	control	6.88

Non-independence of observations with nested data

Let's try with a linear regression model:

```
m <- lm(math_grade ~ tp, data=itp)</pre>
summary(m)$coefficients[,1:3]
                  Estimate Std. Error t value
##
## (Intercept)
                      7.85
                                 0.08
                                        97.60
## tpintervention
                      0.48
                                 0.12
                                         3.87
```

Model diagnostics (see slide #11):

```
hist(residuals(m)); qqnorm(residuals(m))
boxplot(residuals(m)~itp$tp); plot(m,5)
```


- Coefficient meaning?
- Linear model assumptions?
- Independent observations?

Are ϵ_i and ϵ_i independent for any $i \neq j$? Are the unmeasured factors influencing y unrelated from one individual to another?

NO: students are nested within classes and such cluster variable is likely to explain differences in the y variable (as well as in the relationship between x and y)

Thus, we cannot rely on linear models to analyze these data.

Local dependencies

Local dependencies = correlations that exist among observations within a specific cluster (but the software doesn't know that!)

e.g., grades from the same class will be more correlated than they are between different classes

Why is this a problem?

- 1) Can result in biased estimates of the standard errors \rightarrow underestimated p-values (+false positive)
- Potentially important variables at the cluster level are neglected e.g., teachers' characteristics, teaching CV, class social climate

When is this a problem?

clustering factors for both y and x

Virtually, any time that a cluster variable is potentially related to y Pragmatically, we cannot account for all potential clusters e.g., children \rightarrow families \rightarrow neighborhoods \rightarrow cities \rightarrow regions \rightarrow states \rightarrow planets \P Based on theory & logic, we should focus on what we consider the most influential

Mixed-effects models

Multilevel models are part of the largest linear mixed-effects regression (LMER) family that include additional variance terms for handling local dependencies.

Why 'mixed-effects'?

Because such additional terms come from the distinction between:

- Fixed effects: effects that remain constant across clusters, whose levels are
 exhaustively considered (e.g., gender, levels of a Likert scale) and generally
 controlled by the researcher (e.g., experimental conditions)
- Random effects: effects that vary from cluster to cluster, whose levels are randomly sampled from a population (e.g., schools)

b When individual observations can change cluster over time, it is still a mixed-effects model but not a multilevel model.

b Here, "levels" refers to the possible categories/classes of a categorical variable, but from now on we will use this term with a different meaning...

From LM to LMER

LM formula: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ Intercept and slope are constant across all individual observations i within the population; x, y, and the error term ϵ only variate across individual observations i

LMER formula: $y_{ij} = \beta_{0j} + \beta_{1i} x_{ij} + \epsilon_{ij}$ Intercept and slope have both a fixed (0/1)and a random component (j); y, x, and ϵ variate across individual observations ias well as across clusters j

$$y_{ij} = \beta_{0j} + \beta_{1j}x_{ij} + \epsilon_{ij} = (\beta_{00} + \lambda_{0j}) + (\beta_{10} + \lambda_{1j})x + \epsilon_{ij}$$

LMER are an extension of LM where the intercept and the slope are decomposed into the fixed components β_{00} and β_{10} referred to the whole sample, and the random components λ_{0j} and λ_{1j} randomly varying across clusters.

In LMER, x variables (predictors) always variate across clusters j, but not necessarily across individual observations i (e.g., school principals' age only variate across schools, whereas students' age variate across students within schools)

Random intercept

Let's start with an **intercept-only model** (i.e., *unconditional* or *null model*), where math grades (y_{ij}) are only predicted by the intercept β_{00} and the residuals ϵ_{ij}

- Linear model: $y_i = \beta_0 + \epsilon_i$ The intercept value β_0 is common to all individuals within the population
- Linear mixed-effects model: $y_{ij} = \beta_{0j} + \epsilon_{ij} = (\beta_{00} + \lambda_{0j}) + \epsilon_{ij}$
 - β_{00} is the fixed intercept (also called 'average' or 'general intercept') that applies to the whole population
 - λ_{0j} is the random intercept = cluster-specific deviation from the fixed intercept (i.e., mean class grade - fixed intercept)

Random slope

Let's now add a predictor: students' anxiety levels x_{ij} .

Random intercept model

$$y_{ij} = \beta_{0j} + \beta_1 x_{ij} + \epsilon_{ij}$$

= $(\beta_{00} + \lambda_{0j}) + \beta_1 x_{ij} + \epsilon_{ij}$

Math grades y_{ij} are predicted by the overall mean grade β_{00} , their average relationship with anxiety β_{10} , the random variation among clusters λ_{0i} (random intercept), and the random variation among individuals within clusters ϵ_{ij} (residuals).

Random slope

Let's now add a predictor: students' anxiety levels x_{ij} .

Random intercept model

$$y_{ij} = \beta_{0j} + \beta_1 x_{ij} + \epsilon_{ij}$$
$$= (\beta_{00} + \lambda_{0j}) + \beta_1 x_{ij} + \epsilon_{ij}$$

Math grades y_{ij} are predicted by the overall mean grade β_{00} , their average relationship with anxiety β_{10} , the random variation among clusters λ_{0j} (random intercept), and the random variation among individuals within clusters ϵ_{ij} (residuals).

Class A B C C C C D A A B A B A C C C D

Random intercept & random slope model

$$y_{ij} = \beta_{0j} + \frac{\beta_{1j}}{\beta_{1j}} x_{ij} + \epsilon_{ij}$$

= $(\beta_{00} + \lambda_{0j}) + (\beta_{10} + \frac{\lambda_{1j}}{\beta_{1j}}) x_{ij} + \epsilon_{ij}$

Since the effect of anxiety might not be the same across all classes, we partition β_1 into the overall $average\ relationship$ between anxiety and grades β_{10} ($fixed\ slope$) and the cluster-specific variation in the relationship λ_{1j} ($random\ slope$) - basically, an interaction between anxiety and class.

From LMER to multilevel modeling

LMER is often called 'multilevel modeling' due to the underlying variance decomposition of the y_{ij} variable into the within-cluster and the between-cluster levels.

That is, the LMER formula $y_{ij} = (\beta_{00} + \lambda_{0j}) + (\beta_{10} + \lambda_{1j}) + \epsilon_{ij}$ can be expressed in two separate levels:

Level 1 (within):
$$y_{ij} = \beta_{0j} + \beta_{1j}x_{ij} + \epsilon_{ij}$$

Level 2 (between): $\beta_{0j} = \beta_{00} + \lambda_{0j}$
 $\beta_{1j} = \beta_{10} + \lambda_{1j}$

b In some papers and textbooks, the coefficients β_{00} and β_{01} are indicated with γ_{00} and γ_{01} , while λ_{0j} and λ_{1j} are sometimes indicated with U_{0j} and U_{1j} , respectively.

That's all for now!

Questions?

Homework (optional):

- read the slides presented today and write in the Moodle forum if you have any doubts
- refresh your familiarity with **Q**: R-intro.pdf
- exe cises 1-3 from exeRcises.pdf

For each exercise, the solution (or one of the possible solutions) can be found in dedicated chunk of commented code within the exercises.Rmd file

In the last episode...

The problem

Sometimes the sampling method creates *clusters* of individual observations: **nested data structure** where individuals observations are *nested within* clusters.

$\rightarrow \ Local \ dependencies$

- = correlations among observations within a cluster, violating the LM assumption of independence.
- \rightarrow We cannot use ordinary LM

The solution

Linear mixed-effects regression (LMER) includes additional variance terms¹ to handle local dependencies.

$$y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + \epsilon_{ij}$$

= $(\beta_{00} + \lambda_{0j}) + (\beta_{10} + \lambda_{1j}) x_{ij} + \epsilon_{ij}$

These can be expressed in two separate levels:

Level 1 (within):
$$y_{ij} = \beta_{0j} + \beta_{1j}x_{ij} + \epsilon_{ij}$$

Level 2 (between): $\beta_{0j} = \beta_{00} + \lambda_{0j}$
 $\beta_{1j} = \beta_{10} + \lambda_{1j}$

¹The additional variance terms are the variance τ_{00}^2 of the random intercept λ_{0j} and the variance τ_{10}^2 of the random slope λ_{1j} . We will see this later...

Data processing 0.0000000

Multilevel modeling in longitudinal designs

Longitudinal assessments (or repeated-measure designs) involve the collection of multiple data from the same subjects at multiple time points.

- \rightarrow Observations from the same subject are not independent (local dependencies).
 - Individual observations = time points (level 1: within-subject)
 - Clusters = subjects (level 2: between-subjects)

⚠ If individuals are further nested within higher-level clusters, we can specify a 3-level model $(time\ points \rightarrow students \rightarrow classes)$

Case study: Adolescent insomnia

Sleep Health 9 (2023) 108-116 Contents lists available at ScienceDirect

Sleep Health

Journal of the National Sleep Foundation journal homepage: sleephealthjournal.org

Wearable and mobile technology to characterize daily patterns of sleep, stress, presleep worry, and mood in adolescent insomnia

Luca Menghini, PhD^a, Dilara Yuksel, PhD^b, Devin Prouty, PhD^b, Fiona C. Baker, PhD^{b,c}, Christopher King, PhDd, Massimiliano de Zambotti, PhDbs

passive recording

Bedtime electronic diary ratings of stress, worry, and mood

A sample of 93 US adolescents undertook a semi-structured clinical interview for DSM-5 insomnia symptomatology (insomnia vs. healthy sleepers).

Then, they were provided with a Fitbit wristband (recording sleep data) for 2 months. Over the same period, every evening they responded short questionnaires on their stress levels at bedtime.

We want to understand whether daily stress predicts lower sleep time (HP1); whether the stress impact on sleep is moderated by insomnia symptomatology (HP2).

Hands on **R**

1. Download & read the datasets from https://github.com/SRI-human-sleep/INSA-home

```
ID = subject ID, dayNr = day, stress = daily stress rating (1-5), TST = total sleep time (min),
insomnia = subject's group (insomnia vs. healthy)
```

```
repo <- "https://github.com/SRI-human-sleep/INSA-home" # loading datasets from GitHub
load(url(paste0(repo."/raw/main/Appendix%20D%20-%20Data/emaFINAL.RData")))
load(url(paste0(repo, "/raw/main/Appendix%20D%20-%20Data/demosFINAL.RData")))
# selecting columns
ema <- ema[.c("ID", "dayNr", "stress", "TST")] # ema = time-varying variables
demos <- demos[,c("ID", "insomnia")] # demos = time-invariant variables
```

- 2. Print the first rows of the datasets: How many rows per subject?
- 3 Which variable includes individual observations, which is the cluster variable, which is the predictor?
- 4. Which variable(s) at the within-cluster level (Level 1)? Which variable(s) at the between-cluster level (Level 2)

- 5. Explore (descript., correlations, plots)
- Compute the cluster mean for each level-1 variable using aggregate()
- 7. Join the cluster means to the demos dataset using cbind()
- 8. Join the cluster means to the ema dataset using plyr::join()
- 9 Subtract individual obs. from cluster means

Wide & Long data structure

Wide-form dataset

one row per cluster

```
clustMeans <- # computing cluster means
  aggregate(x = ema[.c("TST"."stress")].
   bv = list(ema$ID), FUN = mean, na.rm = T)
# join cluster means to the wide-form dataset
demos <- cbind(demos, clustMeans[,2:3])</pre>
colnames(demos)[3:4] <- c("TST.m", "stress.m")</pre>
head (demos)
```

ID insomnia TST.m stress.m 1 s001 0 466 1786 1 707317 2 s002 0 431.0745 2.175000 0 415.2059 1.872727 4 s005 5 s006 1 413 1111 3 393443 6 s007 0 445 7642 1 983333 7 s008 0 422.8468 3.045455

Level-2 (between) variables:

ID, insomnia, TST.m, stress.m

Long-form dataset

one row per individual observation

```
library(plyr)
ema <- # join lv-2 variables to long-form
  join(x = ema, # long-form dataset
       v = demos. # wide-form dataset
       by = "ID", # joining variable
       type = "left") # keep all x rows
head(ema)
```

```
ID dayNr stress
                      TST insomnia TST.m stress.m
1 s001
           1
                  3 507.0
                                  0.466.2
                                               1.7
2 s001
                  1 502.5
                                  0 466.2
                                               1.7
                  3 469.5
3 s001
                                  0 466.2
                                               1.7
4 s001
                                  0 466.2
                       NΑ
                                               1.7
5 s001
                       NA
                                  0 466.2
                 NΑ
                                               1.7
6 s001
                                  0 466.2
                                               1.7
                       NA
```

Level-1 (within) variables:

dayNr, stress, TST

Between & within cluster

Long-form dataset

one row per individual observation

head(ema[,-6], 20)						
	ID	dayNr	stress	TST	insomnia	stress.m
1	s001	1	3	507.0	0	1.7
2	s001	2	1	502.5	0	1.7
3	s001	3	3	469.5	0	1.7
4	s001	4	2	NA	0	1.7
5	s001	5	NA	NA	0	1.7
6	s001	6	3	NA	0	1.7
7	s001	7	1	NA	0	1.7
8	s001	8	2	NA	0	1.7
9	s001	9	1	NA	0	1.7
10	s001	10	2	NA	0	1.7
11	s001	11	2	NA	0	1.7
12	s001	12	1	NA	0	1.7
13	s001	13	2	NA	0	1.7
14	s001	14	1	NA	0	1.7
15	s001	15	1	NA	0	1.7
16	s001	16	NA	NA	0	1.7
17	s001	17	NA	NA	0	1.7
18	s001	18	NA	NA	0	1.7
19	s001	19	NA	510.5	0	1.7
20	s001	20	NA	515.5	0	1.7

Long-form data structures are needed to fit multilevel models.

Here, level-1 variables x_{ij} (stress) and y_{ij} (TST) change both between and within cluster.

In contrast, level-2 variables x_j (insomnia, stress.m) only change between clusters, whereas they keep identical values across all the rows associated with the same cluster.

Data centering

Data centering = subtracting the mean of a variable from each variable value.

- The mean of a centered variables is always 0.
- Its variance and covariances are equivalent to those of the original variable.
- Centered scores represent deviations from the mean.

In both LM and LMER, centering the predictors is useful to reduce collinearity (linear relationship between predictors) and for better interpreting a model intercept (= value of y when x is at its mean); but it does not affect the slopes.

```
demos$stress.gmc <- # grand-mean centering
  demos$stress.m - mean(demos$stress.m)
          Non-centered
                                           Centered
-requency
                               -requency
                                   0
            2.0
                3.0
           demos$stress m
                                        demos$stress.amc
```

```
# non-centered x: b0 = predicted u when x = 0
coefficients(lm(TST.m ~ stress.m,data=demos))
(Intercept)
               stress.m
421.474599
              -4.074498
# centered x: b0 = predicted y when <math>x = mean x
coefficients(lm(TST.m ~ stress.gmc,data=demos))
(Intercept)
             stress.gmc
412 447988
              -4 074498
```

Grand mean vs. Cluster mean centering

With LMER, we can distinguish two main ways to center the data:

1) Grand mean centering = subtracting the mean of the whole sample (grand-mean or grand-average) from each cluster's mean.

```
# qmc stress = mean cluster's stress - grand mean
demos$stress.gmc <- demos$stress.m - mean(demos$stress.m)</pre>
```

2) Cluster mean centering (or 'group mean centering') = subtracting the mean of the cluster (group mean) from each individual observation nested within that cluster.

```
# cmc stress = individual obs. - mean of the corresponding cluster
ema$stress.cmc <- ema$stress
                                  ema$stress.m
```


Hands on \mathbf{Q} : Compute the grand-mean-centered & the cluster-mean-centered values of stress and TST. Then, compute their Pearson's correlation with the cor() function

That's all for now!

Questions?

Homework (optional):

- read the slides presented today and write in the Moodle forum if you have any doubts
- exe cises 4-5 from exeRcises.pdf

For each exercise, the solution (or one of the possible solutions) can be found in dedicated chunk of commented code within the exercises.Rmd file

Credits

The present slides are partially based on:

- Altoè, G. (2023) Corso Modelli lineari generalizzati ad effetti misti 2023. https://osf.io/b7tkp/
- Beaujean, A. A. (2014) Latent Variable Modeling Using R. A Step-by-Step Guide. New york: Routledge
- Finch, W. H., Bolin, J. E., Kelley, K. (2014). Multilevel Modeling Using R (2nd edition). Boca Raton: CRC Press
- Pastore, M. (2015). Analisi dei dati in psicologie (e applicazioni in R). Il Mulino.

Useful resources on multilevel modeling

- Bates, D. (2022). lme4: Mixed-effects modeling with R. https://stat.ethz.ch/~maechler/MEMo-pages/lMMwR.pdf
- Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. *Journal of memory and language*, 59(4), 390-412.
- Bliese, P. (2022). Multilevel modeling in R (2.7).
 https://cran.r-project.org/doc/contrib/Bliese_Multilevel.pdf
- McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC.
- Pinheiro, J., & Bates, D. (2006). Mixed-effects models in S and S-PLUS. Springer science & business media.

Papers on specific topics

Information criteria

- Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705
- Vrieze, S. I. (2012). Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological methods, 17(2), 228. https://psycnet.apa.org/doi/10.1037/a0027127

 Jason Fernando (2023) R-Squared: Definition, Calculation Formula, Uses, and Limitations. Available at this link

Achronyms & Greek letters

- AIC = Akaike Information Criterion
- BIC = Bayesian Information Criterion
- LM = linear models
- CI = confidence intervals
- MLE = maximum likelihood estimator
- OLS = ordinary least squares
- NHST = null hypothesis significance testing
- SE = standard error
- SS = sum of squares

- β = beta, used to index population-level intercept (β₀) and slope (β₁, β₂, etc.)
 parameters
- $\epsilon = epsilon$, used to index population-level errors to be estimated based on model residuals
- $\lambda = lambda$, used to index random effects (cluster-specific deviation from fixed coefficients)
- σ = sigma, used to index the variance
 σ² of population-level errors (or model residual)
- N = capital nu, used to index that a variable is normally distributed

Achronyms & Greek letters

- AIC = Akaike Information Criterion
- BIC = Bayesian Information Criterion
- LM = linear models
- CI = confidence intervals
- MLE = maximum likelihood estimator
- OLS = ordinary least squares
- NHST = null hypothesis significance testing
- SE = standard error
- SS = sum of squares

- $\beta = beta$, used to index population-level intercept (β_0) and slope (β_1 , β_2 , etc.) parameters
- $\epsilon = epsilon$, used to index population-level errors to be estimated based on model residuals
- λ = lambda, used to index random effects (cluster-specific deviation from fixed coefficients)
- σ = sigma, used to index the variance
 σ² of population-level errors (or model residual)
- \[
 \mathcal{N} = \text{capital } nu, \text{ used to index that a variable is normally distributed}
 \]
- ciao