$d_0 = 2,0~{\it мм}$, их суммарная жесткость равна $k = 0,20\frac{H}{\it M}$. Смещение подвижной пластинки измеряется с погрешностью $\delta x \approx 1\cdot 10^{-2}~{\it мм}$.

Электрическая постоянная равна $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \frac{\Phi}{M}$.

В рассматриваемой задаче можно пренебречь краевыми эффектами, т.е. электрическое поле между пластинками можно считать однородным.

- 1. «Измеритель заряда». Пластинки соединяют проводником и подают на них суммарный заряд q. Какие заряды можно измерить с помощью описанного прибора? Чему равна относительная погрешность измерения заряда? Постройте график зависимости смещения подвижной пластинки от величины заряда поданного на прибор.
- 2. «Измеритель напряжения электростатический вольтметр». На пластинки подают постоянное электрическое напряжение U. Какие напряжения можно измерять с помощью описанного вольтметра? Постройте график зависимости смещения пластинки от приложенного напряжения.

Задание 3. «Кольцо на наклонной плоскости»

Однородный тонкостенный цилиндр радиуса R и массы m кладут на наклонную плоскость, образующую угол α с горизонтом. Коэффициент трения цилиндра о наклонную плоскость — μ .

- а) Найдите зависимость ускорения $a(\alpha)$ цилиндра от угла наклона плоскости α . Рассмотрите случаи движения цилиндра без проскальзывания и с проскальзыванием. Схематично постройте график полученной зависимости.
- б) Если к ободу цилиндра с его внутренней стороны прикрепить небольшой эксцентрик массы m_0 , то цилиндр при некоторых условиях сможет оставаться в состоянии равновесия на наклонной плоскости. Найдите эти условия. Укажите, в

каком положении может находиться в равновесии описанная система при различных значениях m_0 .

Трением качения пренебречь.

