Simple AAP VI

Goal

Create a simple VI that acquires, analyzes, and presents data.

Description

From a blank VI, the user must create a VI that takes an input of a signal and displays it. Then it must calculate, output and record the average value of the signal.

Design

The input for this problem is an analog channel of sine wave data. The outputs include a graph of the sine data and a file that logs the data.

Figure 1. Simple AAP VI Flowchart

Implementation

The folder that you need to complete this exercise is here:
<NI eLearning>\LV Core 1\Programming a Simple VI\
Exercise.

- 1. Open LabVIEW.
- 2. Open a blank VI
- 3. Save the VI as Simple AAP.vi.
 - ☐ Select File»Save.
 - ☐ Save the VI as Simple AAP.vi. in the <Exercise> directory.

In the following steps, you will build a front panel window similar to the one in Figure 2.

Figure 2. Acquire, Analyze and Present Front Panel

- 4. Add a waveform graph to the front panel window to display the acquired data.
 - ☐ Select **View**»**Controls** Palette.
 - ☐ Select the **Express** category.
 - ☐ Select the **Graph Indicators** category from within the **Express** category.
 - □ Select and drag the **Waveform Graph** onto the front panel.

5.	average value.	
		Collapse the Graph Indicators category by selecting Express on the Controls palette.
		Select the Numeric Indicators category from within the Express category.
		Select and drag the Numeric Indicator onto the front panel.
		Double-click the label of the numeric indicator.
		Enter the text Average Value.
6.	Op	en the block diagram of the VI.
		Select Window»Show Block Diagram.
7.	Ac	quire a sine wave for 0.1 seconds.
		Select View»Functions Palette from the LabVIEW menu.
		Select the Express category.
		Select the Input subcategory.
		Select and drag the Simulate Signal Express VI onto the block diagram.
		When the dialog box appears, select Sine for the signal type.
		Set the Signal frequency to 100.
		Set the Samples per second (Hz) to 1000.
		Deselect Automatic for the Number of samples.
		Set the Number of samples to 100.
		Select Simulate acquisition timing.
		Click OK.

Tip Reading 100 samples at a rate of 1,000 Hz retrieves 0.1 seconds worth of data.

		termine the average value of the data acquired by using the Statistics press VI.
		Collapse the Input palette by selecting Express on the Functions palette.
		Select the Signal Analysis palette.
		Select and drag the Statistics Express VI onto the block diagram to the right of the Simulate Signal Express VI.
		In the dialog box that appears, enable the Arithmetic mean checkbox.
		Click OK.
9.	Co	nvert the dynamic data to a numeric data type.
		Collapse the Signal Analysis palette by selecting Express on the Functions palette.
		Select the Signal Manipulation palette.
		Select and drag the Convert from Dynamic Data Express VI onto the block diagram to the right of the Statistics Express VI.
		In the dialog box that appears, select Single scalar .
		Click the OK button.
10.	Lo	g the generated sine data to a LabVIEW Measurement File.
		Select Express on the Functions palette.
		Select the Output category.
		Select and drag the Write to Measurement File Express VI onto the block diagram below the Statistics Express VI.
		Leave all settings as default.
		Click the OK button.

Figure 3. Acquire, Analyze, and Present Block Diagram

- 11. Wire the Sine output of the Signal Express VI to the Signal input of the Statistics Express VI.
- 12. Wire the Sine output of the Signal Express VI to the graph indicator.
- 13. Wire the Arithmetic Mean output of the Statistics Express VI to the Dynamic Data Type input of the Convert from Dynamic Data Express VI.
- 14. Wire the Scalar output of the Convert from Dynamic Data Express VI to the Average Value numeric indicator.
- 15. Wire the Sine output of the Signal Express VI to the Signals input of the Write to Measurement File Express VI.
- 16. Save the VI.
- 17. Select File»Save.

Note Future exercises do not detail the directions for wiring between objects.

Test

Switch to the front panel of the VI.
 Set the graph properties to be able to view the sine wave.
 Right-click the waveform graph and select X Scale» Autsoscale to disable autoscaling.
 Use the labeling tool to change the last number on the X Scale of the waveform graph to .1.
 Save the VI.
 Run the VI.
 Click the Run button on the front panel toolbar.
 The graph indicator should display a sine wave and the Average Value indicator should display a number around zero. If the VI does not run as

5. Close the VI.

expected, review the implementation steps.

End of Exercise

Notes

Notes