Sensor Fustan HW #1	DATE.	NO.
'Azimuth Angle (0)		21 (+10)
$Q = \tan^{-1} \left(\frac{y_c - p_y}{x_c - p_x} \right)$		
(Xc-Pox)		
$(0,0) 0_1 = \tan^{-1}\left(\frac{0-p_y}{0-p_x}\right)$		
(0-Px)		
$(L,0) \theta_2 = \tan^{-1}\left(\frac{D-Py}{L-Pa}\right)$		***
	100	+01
$(0,L) \theta_3 = \tan^{-1}\left(\frac{L-\rho_4}{o-\rho_z}\right)$		a (250 p
(11)	1-21-11	NE
(L, L) $O_4 = tan^{-1} \left(\frac{L - p_y}{L - p_x}\right)$	1-30/	
· Elevation (0)	1/24-11	ME
$\varphi = \tan^{-1}\left(\frac{8c - P_2}{\int (\chi_c - P_2)^2 + (\gamma_c - P_y)^2}\right)$	(-9-1	har l
1 (((((((((((((((((((1 1	
$(0,0,0)$ $\phi_1 = \tan^4 \left(\frac{0 - P_z}{\int P_z^2 + P_y^2} \right)$	(21-1	1,00
$\int_{2}^{2} p_{2}^{2} + p_{y}^{2}$		
(L,0,0)	11-1	7.72.3
$\varphi_2 = \tan^{-1} \left(\frac{-\rho_8}{\zeta} \right)$		
(L-Px) + Py2		
$(0, L, 0)$ $\theta_3 = \tan^{-1} \left(\frac{-\rho_z}{\int \rho_z^2 + (L - \rho_y)^2} \right)$		
	(411)	
(Py) (Py) (Py)	13/4/	
(1 1 . 1) */ (1	
$\varphi_g = \tan^{-1} \left(\frac{1}{(L-P_{2C})^2 + (L-1)^2} \right)$	12	
(.) (L-Pac) + (L-1	y)	

g(x) =	[O1 P1]	
	02 02	
	Θ ₃ Φ ₃	
	04 04	
	01.05	
	θ_2 θ_3 θ_1	
	[04 Ø8]	

y = g(x) +h

Value of the second of the second			
	$tan^{-1}\left(\frac{-P_y}{Px}\right)$ $tan^{-1}\left(\frac{-P_z}{\sqrt{Px^2+P_y^2}}\right)$		V1
	$tan^{-1}\left(\frac{-Py}{L-Px}\right)$ $tan^{-1}\left(\frac{-Pz}{J(L-Pa)^{\frac{1}{2}}Py^{\frac{2}{3}}}\right)$		Y2
	$tan^{-1}\left(\frac{L-Py}{-Pz}\right)$ $tan^{-1}\left(\frac{-Pz}{\int Pz^2 + (L-Py)^2}\right)$		Y3
	$tan^{-1}\left(\frac{L-Py}{L-Px}\right)$ $tan^{-1}\left(\frac{L-Px}{L-Px}\right)$	4	Y4
	$tan^{-1}\left(\frac{-\rho y}{-\rho z}\right) tan^{-1}\left(\frac{L-\rho z}{\sqrt{\rho x^2 + \rho y^2}}\right)$		Y 5
	· · · · · · · · · · · · · · · · · · ·		
			1
	$tan^{-1}\left(\frac{L-Py}{L-Pz}\right) tan^{-1}\left(\frac{L-Pz}{\int (L-Pz)^2 + (L-Py)^2}\right)$		[F8]