

A Virtual Machine Repacking in Clouds: Faster Live Migration Algorithms

Makhlouf Hadji and Paul Labrogère

Projet porté par

Campus Paris Saclay

Labellisation principale

Labellisations secondaires

Problem Definition: VMs Repacking in Clouds

VM Placement and Repacking Problem

Based on allocating and hosting **N VMs** on a physical infrastructure of **M Serveurs**, how to optimally re-place workloads to minimize different infrastructure costs? Thus, we seek repacking algorithms that **scale well**, minimize **SLA violations**, converge reasonably **fast** and provide the best possible tradeoffs between the number of used servers and

Benefits

- Resources optimization,
- Minimization of infrastructure costs,
- Energy consumption optimization.

Challenges of the problem:

Exponential number of feasible solutions to enumerate.

Define the best strategy to re-place VMs workloads leading to optimal infrastructure costs.

CONFIDENTIEL

Example of a Repacking Plan:

Simulation Results: b-Matching vs Bin-Packing Models

500

Number of available servers

700

[V]	[5]	b-Matching Time (sec)	Bin-Packing Time (sec)
1000	400	0.5	4.2
2000	700	2.0	36.0
3000	900	3.2	> 4H

