# Steiner forest





# Initialization: $x \leftarrow 0, y \leftarrow 0$



Iteration: while  ${\bf x}$  not satisfiable in parallel, raise every unfrozen ys with minimal S stopped by tight constraint (e)  ${\bf x_e} \leftarrow {\bf 1}$ 

freeze ys in tight constraints

Do we ever get stuck?

#### Do we ever get stuck? Suppose we do

cut: x not feasible?



If we cannot raise y(S)
it's because
some e in the cut is tight
and then we would have put x(e)
in solution

QED



# Initialization:

 $x \leftarrow 0, y \leftarrow 0$ 



Iteration: while  ${\bf x}$  not satisfiable in parallel, raise every unfrozen  ${\bf ys}$  with minimal  ${\bf S}$  stopped by tight constraint (e)  ${\bf x_e} \leftarrow {\bf 1}$ 

freeze ys in tight constraints

Fact: final x,y are feasible.



#### What about output cost?





Output cost 1+2+...+8+18 dual value 1+1+...+1+1+9=18 OPT

Bad!

18



# Observe: Many of the edges in the output are useless Idea: prune useless edges

# Modified algorithm

Consider set of edges defined by x remove unnecessary edges
Output resulting set



#### Initialization:

 $x \leftarrow 0, y \leftarrow 0$ 

Iteration: while x not satisfiable in parallel, raise every unfrozen  $y_s$  with s minimal stopped by tight constraint (e) s

freeze ys in tight constraints
Pruning: let F={edges defined by x}
for each edge e of F in reverse order
remove e if unnecessary



# Theorem



#### It's a 2-approximation for Steiner forest

# Steiner forest

