Appunti di Algoritmi e strutture dati

Riccardo Lo Iacono

Dipartimento di Matematica & Informatica Università degli studi di Palermo Sicilia a.a. 2022-2023

Indice.

1	Introduzione		
		Algoritmi e complessità	
${f 2}$		delli di computazione	3

Sezione 2 Introduzione

-1 - Introduzione.

Dato un problema, è importante chiedersi come trovare una soluzione allo stesso. Inoltre, supposto che esista una soluzione algoritmica A, è opportuno poter confrontarla con una soluzione B.

− 1.1 − Algoritmi e complessità.

La valutazione di algoritmi può essere effettuata secondo diversi criteri. In generale, di interesse sono la velocità di crescita in termini di *spazio* e *tempo*.

In generale, il tempo necessario ad un algoritmo, espresso come funzione della taglia del problema, è detta complessità di tempo. Dicasi complessità asintotica di tempo il comportamento limite della complessità di tempo, al crescere della taglia¹ del problema.

-1.2 - Notazioni asintotiche.

Le diverse complessità di un'algoritmo possono essere studiate secondo tre aspetti: caso ottimo, caso pessimo, caso medio.

- 1.2.1 - Caso ottimo: notazione Omega.

La notazione Omega Ω definisce un limite inferiore ad un funzione f(n). In generale, data una certa funzione g(n) si definisce $\Omega(g(n))$ come segue.

$$\Omega(g(n)) = \{ f(n) : \exists c \in \mathbb{R}, n_0 \in \mathbb{N}, c, n > 0 \mid 0 \le c \cdot g(n) \le f(n), \forall n \ge n_0 \}$$

- 1.2.2 - Caso pessimo: notazione O-grande.

La notazione O-grande definisce un limite superiore ad una funzione f(n). In generale, data una certa funzione g(n) si definisce $\mathcal{O}(g(n))$ come segue.

$$\mathcal{O}(g(n)) = \{ f(n) : \exists c \in \mathbb{R}, n_0 \in \mathbb{N}, c, n_0 > 0 \mid f(n) \le c \cdot g(n), \forall n \ge n_0 \}$$

- 1.2.3 - Caso medio: notazione Theta.

La notazione Theta Θ definisce dei limiti ad una funzione f(n). In generale, data una certa funzione g(n) si definisce $\Theta(g(n))$ come segue.

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2 \in \mathbb{R}, n_0 \in \mathbb{N} \mid c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n), \forall n \ge n_0 \}$$

¹Indica la misura della quantità di dati in input.

– 2 – Modelli di computazione.