Программная инженерия, ФКН НИУ ВШЭ

Математический анализ, 2023-24

Последовательность. Определение предела последовательности

- 1. Доказать ограниченность последовательности $a_n = \frac{2n^2-1}{2+n^2}$.
- 2. Доказать неограниченность последовательности $b_n = n^2 n$.
- 3. Последовательность $\{x_n\}$ неограничена. Доказать, что она содержить подпоследовательность $\{x_{n_k}\}$ такую, что $x_{n_k}\geqslant k$ для $k\in\mathbb{N}$, либо $x_{n_k}\leqslant -k$ для для $k\in\mathbb{N}$.
- 4. Сформулировать, используя кванторы, утверждения:
 - а) последовательность $\{x_n\}$ не является возрастающей;
 - b) последовательность $\{y_n\}$ не является убывающей;
- 5. Привести пример последовательностей $\{x_n\}$ и $\{y_n\}$, имеющих одно и то же множество значений и таких, что:
 - (a) $\{x_n\}$ и $\{y_n\}$ сходятся, но $\lim_{n\to\infty} x_n \neq \lim_{n\to\infty} y_n$,
 - (b) $\{x_n\}$ сходится, а $\{y_n\}$ расходится.
- 6. Пусть K множество всех сходящихся последовательностей, а K_1, K_2, \ldots, K_8 множества всех последовательностей, удовлетворяющих соответственно условиям:
 - 1) $\exists \varepsilon > 0 \ \exists N \ \exists n \geqslant N : \ |x_n| < \varepsilon;$
 - 2) $\exists \varepsilon > 0 \ \exists N \ \forall n \geqslant N : \ |x_n| < \varepsilon;$
 - 3) $\exists \varepsilon > 0 \ \forall N \ \exists n \geqslant N : \ |x_n| < \varepsilon;$
 - 4) $\forall \varepsilon > 0 \ \exists N \ \exists n \geqslant N : \ |x_n| < \varepsilon;$
 - 5) $\exists \varepsilon > 0 \ \forall N \ \forall n \geqslant N : \ |x_n| < \varepsilon;$
 - 6) $\forall \varepsilon > 0 \; \exists N \; \forall n \geqslant N : \; |x_n| < \varepsilon;$
 - 7) $\forall \varepsilon > 0 \ \forall N \ \exists n \geqslant N : \ |x_n| < \varepsilon;$
 - 8) $\forall \varepsilon > 0 \ \forall N \ \forall n \geqslant N : |x_n| < \varepsilon;$

Какие из следующих включений верны: а) $K_6 \subset K_2$; b) $K_2 \subset K_6$; c) $K_7 \subset K_2$;

d) $K_8 \subset K$; e) $K \subset K_8$;

7. Доказать по определению сходимости

a)
$$\lim_{n \to \infty} (\sqrt{n} - \sqrt{n-1}) = 0$$
; b) $\lim_{n \to \infty} \frac{3n^2}{n^2 + 4n + 3} = 3$ c) $\lim_{n \to \infty} \frac{\sqrt[3]{n^2} \sin n!}{n+1} = 0$.

8. Доказать, что последовательности расходятся

a)
$$x_n = (-1)^n$$
, b) $b_n = n^2$; c) $c_n = \sin n$;

Домашнее задание

- 1. Последовательность $\{x_n\}$ называется ограниченной сверху, если $\exists C \ \forall n: x_n < C$. Последовательность $\{x_n\}$ называется ограниченной снизу, если $\exists C \ \forall n: x_n > C$. Доказать, что последовательность ограничена тогда и только тогда, когда она ограничени сверху и снизу.
- 2. Пусть a некоторое вещественное число. Приведите пример последовательности $\{a_n\}$ (если такая существует), у которой:
 - (a) Есть предел, равный числу a.
 - (b) Есть предел равный a, но ни один из членов последовательности не равен a.
 - (c) Есть предел равный a, при этом бесконечно много членов последовательности равны a и бесконечно много членов последовательности не равны a.
 - (d) Число a не является пределом последовательности, при этом бесконечно много членов последовательности равны a.
- 3. Пусть $\lim_{n\to\infty} x_n=x$, а последовательность $\{y_n\}$ такова, что существуют натуральные p и n_0 такие, что $y_n=x_{n+p}$ (или $y_n=x_{n-p}$) для любого $n\geqslant n_0$. Доказать, что последовательность y_n сходится и $\lim_{n\to\infty} y_n=x$.
 - Иными словами, изменение (в частности отбрасывание или добавление) конечного числа членов сходящейся последовательности оставляет ее сходящейся к тому же пределу.
- 4. Доказать ограниченность последовательности $a_n = \frac{1-n}{\sqrt{n^2+1}}$.
- 5. Доказать неограниченность последовательности $a_n = n^{(-1)^n}$.
- 6. Доказать по определению следующие сходимости:

a)
$$\lim_{n \to \infty} \frac{1}{\sqrt{3n-11}} = 0$$
; b) $\lim_{n \to \infty} \frac{2n+3}{n^2} = 0$ c) $\lim_{n \to \infty} \frac{\cos n}{\sqrt{n}} = 0$.

Задачи для самостоятельного решения

- 1. Пусть K множество всех сходящихся последовательностей, а $K_1,\ K_2,\dots,K_8$ множества последовательностей из задачи 6.
 - 1) Для каких j = 1, 2, ..., 8 верно включение $K_i \subset K$.
 - 2) Какие из множеств K_j содержать как сходящиеся, так и расходящиеся последовательности.
 - 3) Какие из множеств K_i содержать неограниченные последовательности.
 - 4) Какому из условий 1)-8) удовлетворяет любая последовательность.
 - 5) Какие из множеств K_i совпадают.
- 2. Доказать ограниченность последовательности

a)
$$a_n = \frac{n^2 + 4n + 8}{(n+1)^2}$$
; b) $b_n = \sqrt{n^2 + 1} - n$; c) $c_n = \sqrt[n]{n}$.

3. Доказать неограниченность последовательности

a)
$$a_n = \frac{1-n}{\sqrt{n}}$$
; b) $b_n = n + (-1)^n n$; c) $c_n = \frac{3^n - 2^n}{2^n + 1}$.

4. Доказать по определению следующие сходимости:

a)
$$\lim_{n \to \infty} \frac{2n+1}{n^2 - 2n + 3} = 0$$
; b) $\lim_{n \to \infty} \sqrt{4 + \frac{1}{n}} = 2$.

- 5. * Пусть $x_n > 0$, $\lim_{n \to \infty} x_n = 0$. Доказать, что
 - 1) $\forall N \exists n_0 \geqslant N \ \forall n > n_0 : \ x_n < x_{n_0}$
 - 2) $\forall N \exists n_0 \geqslant N \ \forall n (1 \leqslant n < n_0) : \ x_n > x_{n_0}$