

DDA2001: Introduction to Data Science

Lecture 7: Continuous Random Variable

Zicheng Wang

Terminologies

Random Experiment: a repeatable procedure

• Sample Space: set of all possible outcomes S.

- Probability function, $P(\omega)$: how likely the outcome $\omega \in S$
 - Probability is between 0 and 1
 - Total probability of all possible outcomes is 1.

Sample space

- Discrete or continuous: countable (listable) or not?
- A sample space is discrete if it consists of a finite or countable infinite set of outcomes.
- A sample space is continuous if it contains an interval (or a union of multiple intervals) of real numbers.

Probability function

- Discrete:
 - ✓ Probability mass function.
 - \checkmark P(s): gives the probability for each outcome $\omega \in S$

Recap of Common Discrete RV

1.Bernoulli distribution

 Take value 1 with probability p and value 0 with probability 1 – p.

• $X \sim Bernoulli(p)$

- Mean=p
- Variance=p(1-p)

2.Binomial distribution

- N independent experiments
- Each experiment: success (with probability p)
 or failure (with probability 1 p).
- X: the number of success (failure).
- $X \sim Binomial(N, p)$
- Mean=Np
- Variance=Np(1-p)

3. Geometric distribution

- Continuously draw a Bernoulli R.V.
- The X-th sample is the first success.
- X follows a geometric distribution.
- $X \sim Geometric(p)$ or $X \sim Geo(p)$
- Mean=1/p
- Variance= $(1-p)/p^2$

Continuous Random Variable

How to calculate $\int_0^2 e^{x^2 + \cos(x)} dx$?

How to approximate $\int_0^2 e^{x^2 + \cos(x)} dx$?

Motivation Example

True or not?

• If P(E) = 0, then it is impossible to observe E.

What's the meaning of impossibility?

- Random Experiment: a repeatable procedure
- Sample space: set of all possible outcomes S.
- An event is a subset of possible outcomes.

- If P(E) = 0, then E is a zero-probability event.
- If E is empty, then E is impossible.

Is a zero-probability event impossible?

Example

- We have a probability model.
 - X represents the time a machine needs to complete a task.
 - The values X can take are within [0,1].
 - For any $x, y \in [0,1]$, we have P(X = x) = P(X = y)
 - $E = \{0.5\}$
 - Then what's the probability of P(E)?

Example

- We have a probability model.
 - X represents the time a machine needs to complete a task.
 - The values X can take are within [0,1].
 - For any $x, y \in [0,1]$, we have P(X = x) = P(X = y)
 - $E = \{0.5\}$
 - Then what's the probability of P(E)?

Although the impossible event has zero probability, not all zero-probability events are impossible.

Example

- We have a probability model.
 - X represents the time a machine needs to complete a task.
 - The values X can take are within [0,1].
 - For any $x, y \in [0,1]$, we have P(X = x) = P(X = y)
 - E = [0, 0.5]
 - Then what's the probability of P(E)?

General Case

- X is a random variable.
- Define its range as S.
- For any $x, y \in S$, we have $\frac{P(X=x)}{P(X=y)} = \frac{f(x)}{f(y)}$.
 - f(x) > 0 for any $x \in S$.
 - f(x) = 0 for any $x \notin S$.
- $E = [a, b] \subseteq S$
- Then what's the probability of P(E)?

General Case

- X is a random variable.
- Define its range as S.
- For any $x, y \in S$, we have $\frac{P(X=x)}{P(X=y)} = \frac{f(x)}{f(y)}$.
 - f(x) > 0 for any $x \in S$.
 - f(x) = 0 for any $x \notin S$.
- $E = [a, b] \subseteq S$
- Then what's the probability of P(E)?

An intuitive interpretation, but not rigorous

$$\frac{\int_{a}^{b} f(x) dx}{\int_{S} f(x) dx}$$

Continuous RVs

1. How to describe?

Continuous R.V.

- A continuous random variable can take any value within its range (an interval of a union of multiple intervals of real numbers).
- We cannot list all the possible values and their probabilities as in the discrete case.

How to describe the probability?

- For a continuous RV X, P(X=x) = 0 but $\{x\}$ is not an impossible event.
- We will not use the probability mass function (pmf), namely P(X=x).
- Instead, we introduce a function $f(\omega)$, called the probability **density** function (pdf).
 - $f(\omega) > 0$, if $\omega \in S$
 - $f(\omega) = 0$, if $\omega \notin S$
 - $\int_{-\infty}^{\infty} f(x) dx = 1.$

Probability of $X \in [a, b]$

In our course, for continuous RV, we mainly focus on the case where the range is only one interval, not a union of multiple intervals.

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Properties of PDF

• For x that is not in the sample space, f(x)=0

• A large value of f(x) means that the values around x is more likely to be observed. (remember this implication)

- As a pdf, f(x) can be larger than 1, while as a pmf, f(x) cannot be larger than 1.
 - $f(\omega) = 2$, if $\omega \in [0, 0.5]$
 - $f(\omega) = 0$, if $\omega \notin [0, 0.5]$

Continuous RVs

2. CDF, Mean, and Variance

CDF

• Recall: the CDF of a discrete random variable *X* is

$$F(x) = P(X \le x) = \sum_{\tilde{x} \le x} f(\tilde{x})$$

• CDF for continuous random variable is defined as:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

Recall: the CDF of a discrete random variable X is

$$F(x) = P(X \le x) = \sum_{\tilde{x} \le x} f(\tilde{x})$$

CDF for continuous random variable is defined as:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

- ✓ $0 \le F(x) \le 1$ ✓ If $x \le y$, then $F(x) \le F(y)$ For both discrete and continuous RVs

Mean and Variance

- Discrete:
 - ✓ Probability mass function.
- Continuous
 - ✓ Probability density function.

Summation ↔ **Integration**

Mean

$$E[X] = \sum x f(x)$$

Variance

$$Var[X] = \sum (x - E[X])^2 f(x)$$

Mean

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Variance

$$Var[X] = \int_{-\infty}^{\infty} (x - E(X))^2 f(x) dx$$

Expectation of g(X)

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$$

Continuous RVs

3. Common Distributions

• With the same probability, X takes a value within [a, b], where b>a.

Discrete version: toss a coin, roll a dice.

• What's the pdf?

• With the same probability, X takes a value within [a, b], where b>a.

• What's the pdf?

- $f(x) = c \text{ for } x \in [a, b] \text{ and } f(x) = 0 \text{ for } x \notin [a, b]$
- As $\int_{-\infty}^{\infty} f(x)dx = c(b-a) = 1$, we have $c = \frac{1}{b-a}$

Uniform Distribution

- With the same probability, X takes a value within [a, b]
- $X \sim Uniform(a, b)$

Mean=
$$(a + b)/2$$

Variance= $(b - a)^2/12$

Applications

- Given $X \sim Uniform(0,2)$
- What's the value of $E[2 e^{X^2 + \cos(X)}]$?

Applications

- Given $X \sim Uniform(0,2)$
- What's the value of $E[2 e^{X^2 + \cos(X)}]$?

- $f(x) = \frac{1}{2} \text{ for } x \in [0,2]$
- $E[2 e^{X^2 + \cos(X)}] = \int_0^2 2 e^{x^2 + \cos(x)} f(x) dx = \int_0^2 e^{x^2 + \cos(x)} dx$

How to approximate $\int_0^2 e^{x^2 + \cos(x)} dx$?

Given
$$X \sim Uniform(0,2)$$
, $E[2 e^{X^2 + \cos(X)}] = \int_0^2 e^{x^2 + \cos(x)} dx$

• Draw N samples of $X \sim Uniform(0,2)$: $X_1, X_2, X_3, \dots, X_N$

• Calculate
$$\frac{\sum_{i} 2 e^{X_{i}^{2} + \cos(X_{i})}}{N}$$

Why? Expectation can be approximated by long-run average.

General Case

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$$

- Draw N samples of X: X_1 , X_2 , X_3 ,, X_N
- Calculate $\frac{\Sigma_i g(X_i)}{N}$

General Case

• How to calculate $\int_a^b h(x) dx$?

- Draw N samples of $X \sim Uniform(a, b): X_1, X_2, X_3, \ldots, X_N$
- Calculate $\frac{\sum_{i}(b-a) h(X_{i})}{N}$

- Let $X \sim Uniform(a, b)$
- f(x) = 1/(b-a) for $x \in [a, b]$
- $E[(b-a)h(x)] = \int_a^b (b-a)h(x)f(x)dx = \int_a^b h(x)dx$

Exercise

• Estimation of π

Exercise

• Estimation of π

Draw a two-dimensional point from the square

$$X \sim Uniform(-1,1)$$

$$Y \sim Uniform(-1,1)$$

The sample proportion that $X^2 + Y^2 \le 1$ is approximately $\pi/4$

Most important: Normal distribution

- X can be any real number
- Parameters: μ and σ

$$f(x;\mu,\sigma) = rac{1}{\sigma\sqrt{2\pi}}\,\exp\!\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)$$
 .

• $X \sim Normal(\mu, \sigma)$

Why we have this distribution?

Normal Distribution: examples

Human Being's Height

There are not many tall people

Normal Distribution: examples

A large number of layers

 When a ball goes through each layer, it randomly goes left or right

An example

- Toss a die N times
- Let X be the sum
- A demo: $N = 1,2,\dots,100$, see the pmf of X

An example

- Flip a fair coin N times
- Let X be the sum (head: 1; tail: 2)
- A demo: $N = 1,2,\dots,100$, see the pmf of X

Normal Distribution

Central limit theorem

Lindeberg–Lévy CLT. Suppose $\{X_1,\ldots,X_n\}$ is a sequence of i.i.d. random variables with $\mathbb{E}[X_i]=\mu$ and $\mathrm{Var}[X_i]=\sigma^2<\infty$. Then as n approaches infinity, the random variables $\sqrt{n}(\bar{X}_n-\mu)$ converge in distribution to a normal $\mathcal{N}(0,\sigma^2)$: $\sqrt{n}\left(\bar{X}_n-\mu\right) \stackrel{d}{\to} \mathcal{N}\left(0,\sigma^2\right).$

no need to grasp!!!

What is the meaning of the parameters?

Mean and Variance

• Mean: μ

• Variance: σ^2

The Normal PDF

ne Normal

0.40 0.35 -0.30 -0.25 0.20 0.15 -0.10 -0.05 -0.00 $^{\perp}$ -10.0 -7.5 -5.0 -2.5 0.0 7.5 2.5 5.0 10.0 0.35 -0.30 -0.25 0.20 -0.15 -0.10 -0.05 -0.00 $^{\perp}$ -10.0 -7.5 -5.0 -2.50.0 2.5 5.0 7.5 10.0

