```
In [22]:

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5
6 from sklearn.cluster import KMeans
7 from sklearn.mixture import GaussianMixture
```

In [23]: 1 raw_data = pd.read_csv("./EmployeeAttrition.csv", index_col=0)

In [24]: 1 raw_data.head()

Out[24]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationField	Emplo
0	41	Yes	Travel_Rarely	Sales	1	2	Life Sciences	
1	49	No	Travel_Frequently	Research & Development	8	1	Life Sciences	
2	37	Yes	Travel_Rarely	Research & Development	2	2	Other	
3	33	No	Travel_Frequently	Research & Development	3	4	Life Sciences	
4	27	No	Travel_Rarely	Research & Development	2	1	Medical	

5 rows × 27 columns


```
In [26]: 1 two_mode_data = np.array(raw_data[["TotalWorkingYears", "MonthlyIncome"]]
In [27]: 1 kmeans_model = KMeans(n_clusters=3, random_state=100).fit(two_mode_data)
In [28]: 1 color_list = ["blue", "red", "yellow", "green", "black"]
```



```
In [30]:
               gmm_model = GaussianMixture(n_components=3, random_state=0).fit(two_mode]
           1
            2
               gmm_labels = gmm_model.predict(two_mode_data)
In [31]:
               for value, label in zip(two_mode_data, gmm_labels):
           1
           2
                   x = value[0]
           3
                   y = value[1]
           4
                   color = color_list[label]
           5
                   plt.scatter(x, y, color=color)
            6
               plt.show()
           20000
           17500
           15000
           12500
           10000
            7500
            5000
            2500
                  ò
                           10
                                15
                                     20
                                          25
                                               30
                                                    35
                                                         40
 In [ ]:
           1
```