

SECI1013: DISCRETE STRUCTURE SEM 1 20242025

Name	:			
Student ID	:	 Section	:	
Date	:			

Assignment 1 – Set Theory and Logic, Function Group of 3, Due date: 17 November 2024

- 1. Let A={ 1, 3, 5, 7}, B={ 3, 4, 5, 6}, and C={ 5, 6, 7, 8}.
 - a) Prove that $(A \cap B) \cup (B \cap C) \subseteq B$.
 - b) Prove or disprove: $(A \cup C) B = (A B) \cup (C B)$.
 - c) Find $A \oplus (B \cap C)$ and determine whether this result is equal to $(A \oplus B) \oplus C$.
- 2. Define the following sets:
 - $P=\{x \in Z \mid x \text{ is a prime number less than } 20 \}$
 - $E=\{x \in Z \mid x \text{ is an even number less than } 20 \}$
 - D={ $x \in Z \mid x \text{ is a divisor of } 36 \text{ and less than } 20$ }

Using these sets:

- a) Translate the statement: "All elements of PPP that are not in DDD are also in EEE" into a formal logic expression using quantifiers.
- b) Prove or disprove the above statement in (a) by checking each element.
- c) Prove that $(P \cap E) \cup D = D$ using set theory laws.
- 3. Let U be the universal set of all integers from 1 to 30. Define the following subsets of U:
 - $A=\{x \in U \mid x \text{ is a multiple of } 2\}$
 - B={ $x \in U \mid x \text{ is a multiple of 3}}$
 - $C=\{x \in U \mid x \text{ is a multiple of 5}\}$
 - a) Construct a Venn diagram that represents U, A, B, and C.
 - b) Identify the number of elements in each region of the Venn diagram (e.g., $A \cap B \cap C$, A-B-C, etc.).
- 4. Let X={ 0, 1, 2 } and Y={ a, b }.
 - a) Find the Cartesian product X×Y and list each ordered pair.
 - b) Define a relation $R \subseteq X \times X$ such that $(x, y) \in R(x, y)$ if and only if x + y is even. List all pairs in R.
 - c) Determine if R is reflexive, symmetric, or transitive, and provide proof for each property.

SECI1013: DISCRETE STRUCTURE SEM 1 20242025

Name	:		
Student ID Date	:	Section :	

- 5. Consider the following statements:
 - a) Prove the contrapositive of the following statement: "If $x \in Z$ is even and x^2 is also even, then x is a multiple of 4."
 - b) Determine whether the following statement is true or false. If true, prove it. If false, provide a counterexample:
 - o "For all integers *m* and *n*, if *mn* is even, then *m* is even or *n* is even."
 - c) Using a proof by contradiction, show that the square root of 3 is irrational.
- 6. Let $f: Z \to Z$ be defined by f(x) = 3x + 2.
 - a) Prove or disprove that f is one-to-one.
 - b) Prove or disprove that f is onto.
 - c) Find f-1(y), if it exists, for $y \in Z$, and determine the conditions under which f has an inverse function.
- 7. Let $g: R \to R$ be defined by $g(x) = x^2$ and h(x) = x + 1.
 - a) Compute $(g \circ h)(x)$ and $(h \circ g)(x)$.
 - b) Determine whether g o hg and h ogh are one-to-one, onto, or neither.
 - c) If possible, find the inverse of $(h \circ g)(x)$.