Matemática Discreta

Dirk Hofmann

Departamento de Matemática, Universidade de Aveiro dirk@ua.pt, http://sweet.ua.pt/dirk/aulas/

Gabinete: 11.3.10

OT: Quinta, 14:00 – 15:00, Sala 11.2.24 **Atendimento de dúvidas**: Segunda, 13:30 – 14:30

Introdução: o jogo do 15

O jogo

 \rightsquigarrow

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Notas

- O matemático americano Samuel Loyd publicou o problema em 1891.
- Há 15 peças quadradas (numeradas) e um espaço vazio que permite movimentos.
- O objetivo é ordenar os quadrados (da esquerda para a direita e de cima para baixo), o espaço vazio fica na última posição.

Introdução: o jogo do 15

 \rightsquigarrow

Notas

- O matemático americano Samuel Loyd publicou o problema em 1891.
- Há 15 peças quadradas (numeradas) e um espaço vazio que permite movimentos.
- O objetivo é ordenar os quadrados (da esquerda para a direita e de cima para baixo), o espaço vazio fica na última posição.
- O jogo não tem solução!! (Veremos em breve porquê.)

Índice

Noções básicas

2 Decomposição cíclica

3 A paridade de permutações

Definição

Uma função bijetiva $\pi\colon X\to X$ de um conjunto X (tipicamente finito) em si próprio diz-se permutação de X.

Definição

Uma função bijetiva $\pi\colon X\to X$ de um conjunto X (tipicamente finito) em si próprio diz-se permutação de X.

Nota

 Para cada conjunto X, a função identidade id_X: X → X é uma permutação de X (designada por permutação identidade).

Definição

Uma função bijetiva $\pi: X \to X$ de um conjunto X (tipicamente finito) em si próprio diz-se permutação de X.

Nota

- Para cada conjunto X, a função identidade id $_X \colon X \to X$ é uma permutação de X (designada por permutação identidade).
- Para cada permutação $\pi\colon X\to X$, a função inversa $\pi^{-1}\colon X\to X$ também é uma permutação de X.

Definição

Uma função bijetiva $\pi: X \to X$ de um conjunto X (tipicamente finito) em si próprio diz-se permutação de X.

Nota

- Para cada conjunto X, a função identidade id $_X \colon X \to X$ é uma permutação de X (designada por permutação identidade).
- Para cada permutação $\pi\colon X\to X$, a função inversa $\pi^{-1}\colon X\to X$ também é uma permutação de X.
- Para permutações $\pi, \sigma \colon X \to X$, a função composta $\sigma \circ \pi \colon X \to X$ é uma permutação.

Notaçõ<u>es</u>

Seja $\pi\colon X\to X$ uma permutação de um conjunto finito X.

Notações

Seja $\pi: X \to X$ uma permutação de um conjunto finito X.

• Para cada $x \in X$, escrevemos também π_x em lugar de $\pi(x)$.

Notações

Seja $\pi \colon X \to X$ uma permutação de um conjunto finito X.

- Para cada $x \in X$, escrevemos também π_x em lugar de $\pi(x)$.
- ullet Da forma mais legível, descrevemos a permutação π por

$$\begin{pmatrix} a & b & c & \dots \\ \pi_a & \pi_b & \pi_c & \dots \end{pmatrix}$$
, suponde que $X = \{a, b, c, \dots \}$.

Notações

Seja $\pi \colon X \to X$ uma permutação de um conjunto finito X.

- Para cada $x \in X$, escrevemos também π_x em lugar de $\pi(x)$.
- ullet Da forma mais legível, descrevemos a permutação π por

$$\begin{pmatrix} a & b & c & \dots \\ \pi_a & \pi_b & \pi_c & \dots \end{pmatrix}$$
, suponde que $X = \{a, b, c, \dots \}$.

• Ainda mais, se $X = [n] = \{1, 2, ..., n\}$, escrevemos simplesmente

$$(\pi_1,\pi_2,\ldots,\pi_n)$$

em lugar de

$$\left(\begin{array}{ccc} 1 & 2 & \dots & n \\ \pi_1 & \pi_2 & \dots & \pi_n \end{array}\right).$$

Notações

Seja $\pi: X \to X$ uma permutação de um conjunto finito X.

- Para cada $x \in X$, escrevemos também π_x em lugar de $\pi(x)$.
- ullet Da forma mais legível, descrevemos a permutação π por

$$\begin{pmatrix} a & b & c & \dots \\ \pi_a & \pi_b & \pi_c & \dots \end{pmatrix}$$
, suponde que $X = \{a, b, c, \dots \}$.

• Ainda mais, se $X = [n] = \{1, 2, ..., n\}$, escrevemos simplesmente

$$(\pi_1,\pi_2,\ldots,\pi_n)$$

em lugar de

$$\left(\begin{array}{ccc} 1 & 2 & \dots & n \\ \pi_1 & \pi_2 & \dots & \pi_n \end{array}\right).$$

• S_n denota o conjunto de todas as permutações de $\{1, 2, ..., n\}$. Temos $|S_n| = n!$.

Um exemplo

xemplo	

Um exemplo

Exemplo

 \bullet (4, 1, 3, 2) denota a permutação

$$\left(\begin{array}{ccc}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{array}\right)$$

em
$$\{1,2,3,4\}$$
; ou seja, $\pi(1)=4$, $\pi(2)=1$, $\pi(3)=3$ e $\pi(4)=2$.

Um exemplo

Exemplo

ullet (4,1,3,2) denota a permutação

$$\left(\begin{array}{ccc}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\right)$$

em
$$\{1,2,3,4\}$$
; ou seja, $\pi(1)=4$, $\pi(2)=1$, $\pi(3)=3$ e $\pi(4)=2$.

• A permutação inversa π^{-1} de permutação π acima obtém-se "trocando as linhas":

$$\left(\begin{smallmatrix}4&1&3&2\\1&2&3&4\end{smallmatrix}\right);$$

ou seja

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}.$$

Exemplo

Considerando as permutações

$$\pi$$
: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$ σ : $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$

$$\left(\begin{array}{cc} 1 & 2 & 3 & 4 \end{array}\right)$$
;

Exemplo

Considerando as permutações

$$\pi$$
: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$ σ : $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$

$$\left(\begin{smallmatrix}1&2&3&4\\1&&&\end{smallmatrix}\right);$$

Exemplo

Considerando as permutações

$$\pi$$
: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$ σ : $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & \end{pmatrix}$$
;

Exemplo

Considerando as permutações

$$\pi$$
: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$ σ : $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$

$$\left(\begin{smallmatrix}1&2&3&4\\1&3&4\end{smallmatrix}\right);$$

Exemplo

Considerando as permutações

$$\pi$$
: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$ σ : $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$

$$\left(\begin{smallmatrix}1&2&3&4\\1&3&4&2\end{smallmatrix}\right);$$

Exemplo

Considerando as permutações

$$\pi$$
: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$ σ : $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$

em $\{1,2,3,4\}$, a permutação composta $\sigma\circ\pi$ é dada por

$$\left(\begin{smallmatrix}1&2&3&4\\1&3&4&2\end{smallmatrix}\right);$$

e a permutação composta $\pi\circ\sigma$ é dada por

Exemplo

Considerando as permutações

$$\pi$$
: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$ σ : $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$

em $\{1,2,3,4\}$, a permutação composta $\sigma\circ\pi$ é dada por

$$\left(\begin{array}{cc}1&2&3&4\\1&3&4&2\end{array}\right);$$

e a permutação composta $\pi\circ\sigma$ é dada por

$$\left(\begin{array}{rrr}1&2&3&4\\3&1&2&4\end{array}\right).$$

Voltando ao jogo do 15

O início

O jogo do 15 começa com a permutação $\pi_0=(1,2,\ldots,13,15,14).$

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Voltando ao jogo do 15

O início

O jogo do 15 começa com a permutação $\pi_0=(1,2,\ldots,13,15,14)$.

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Fazendo uma jogada "vertical"

1	2	3	4
5	6	7	8
9	10	11	
13	15	14	12

obtemos π_1 : $\begin{pmatrix} 1 & 2 & \dots 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots 11 & 13 & 15 & 14 & 12 \end{pmatrix}$.

Voltando ao jogo do 15

O início

O jogo do 15 começa com a permutação $\pi_0=(1,2,\ldots,13,15,14)$.

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Fazendo uma jogada "vertical"

1	2	3	4
5	6	7	8
9	10	11	
13	15	14	12

obtemos
$$\pi_1$$
: $\begin{pmatrix} 1 & 2 & \dots & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots & 11 & 13 & 15 & 14 & 12 \end{pmatrix}$.

$$\begin{pmatrix}1\ 2\ ...11\ 12\ 13\ 14\ 15\\ 1\ 2\ ...11\ 13\ 15\ 14\ 12\end{pmatrix} = \begin{pmatrix}1\ 2\ ...11\ 12\ 13\ 14\ 15\\ 1\ 2\ ...11\ 12\ 13\ 15\ 14\end{pmatrix} \circ \begin{pmatrix}1\ 2\ ...11\ 12\ 13\ 14\ 15\ 12\end{pmatrix}$$

Decomposição cíclica

Teorema

Seja $\pi \in S_n$. Então, os conjuntos

$$X_1 = \{1, \pi(1), \pi(\pi(1))\}, \ldots, \}, X_2 = \{i, \pi(i), \pi(\pi(i)), \ldots\}, \ldots$$

($i \notin X_1$) definem uma partição $\{X_1, \ldots, X_k\}$ de $\{1, 2, \ldots, n\}$, designada por partição cíclica de π .

Teorema

Seja $\pi \in S_n$. Então, os conjuntos

$$X_1 = \{1, \pi(1), \pi(\pi(1))\}, \ldots, \}, X_2 = \{i, \pi(i), \pi(\pi(i)), \ldots\}, \ldots$$

($i \notin X_1$) definem uma partição $\{X_1, \ldots, X_k\}$ de $\{1, 2, \ldots, n\}$, designada por partição cíclica de π .

Exemplo

A partição cíclica da permutação

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 2 & 6 & 4 & 5
\end{pmatrix}$$

Teorema

Seja $\pi \in S_n$. Então, os conjuntos

$$X_1 = \{1, \pi(1), \pi(\pi(1))\}, \ldots, \}, X_2 = \{i, \pi(i), \pi(\pi(i)), \ldots\}, \ldots$$

($i \notin X_1$) definem uma partição $\{X_1, \ldots, X_k\}$ de $\{1, 2, \ldots, n\}$, designada por partição cíclica de π .

Exemplo

A partição cíclica da permutação

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 2 & 6 & 4 & 5
\end{pmatrix}$$

 \acute{e} dada por $\{\{1,3\}$

Teorema

Seja $\pi \in S_n$. Então, os conjuntos

$$X_1 = \{1, \pi(1), \pi(\pi(1))\}, \ldots, \}, X_2 = \{i, \pi(i), \pi(\pi(i)), \ldots\}, \ldots$$

($i \notin X_1$) definem uma partição $\{X_1, \ldots, X_k\}$ de $\{1, 2, \ldots, n\}$, designada por partição cíclica de π .

Exemplo

A partição cíclica da permutação

$$\left(\begin{array}{r}
1 \ 2 \ 3 \ 4 \ 5 \ 6 \\
3 \ 1 \ 2 \ 6 \ 4 \ 5
\right)$$

é dada por $\{\{1, 3, 2\}$

Teorema

Seja $\pi \in S_n$. Então, os conjuntos

$$X_1 = \{1, \pi(1), \pi(\pi(1))\}, \ldots, \}, X_2 = \{i, \pi(i), \pi(\pi(i)), \ldots\}, \ldots$$

($i \notin X_1$) definem uma partição $\{X_1, \ldots, X_k\}$ de $\{1, 2, \ldots, n\}$, designada por partição cíclica de π .

Exemplo

A partição cíclica da permutação

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 2 & 6 & 4 & 5
\end{pmatrix}$$

é dada por $\{\{1, 3, 2\},\$

Teorema

Seja $\pi \in S_n$. Então, os conjuntos

$$X_1 = \{1, \pi(1), \pi(\pi(1))\}, \ldots, \}, X_2 = \{i, \pi(i), \pi(\pi(i)), \ldots\}, \ldots$$

($i \notin X_1$) definem uma partição $\{X_1, \ldots, X_k\}$ de $\{1, 2, \ldots, n\}$, designada por partição cíclica de π .

Exemplo

A partição cíclica da permutação

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 2 & 6 & 4 & 5
\end{pmatrix}$$

é dada por $\{\{1,3,2\},\{4$

Teorema

Seja $\pi \in S_n$. Então, os conjuntos

$$X_1 = \{1, \pi(1), \pi(\pi(1))\}, \ldots, \}, X_2 = \{i, \pi(i), \pi(\pi(i)), \ldots\}, \ldots$$

($i \notin X_1$) definem uma partição $\{X_1, \ldots, X_k\}$ de $\{1, 2, \ldots, n\}$, designada por partição cíclica de π .

Exemplo

A partição cíclica da permutação

$$\left(\begin{array}{rrr}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 2 & 6 & 4 & 5
\end{array}\right)$$

é dada por $\{\{1,3,2\},\{4,6\}\}$

Teorema

Seja $\pi \in S_n$. Então, os conjuntos

$$X_1 = \{1, \pi(1), \pi(\pi(1))\}, \ldots, \}, X_2 = \{i, \pi(i), \pi(\pi(i)), \ldots\}, \ldots$$

($i \notin X_1$) definem uma partição $\{X_1, \ldots, X_k\}$ de $\{1, 2, \ldots, n\}$, designada por partição cíclica de π .

Exemplo

A partição cíclica da permutação

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 2 & 6 & 4 & 5
\end{pmatrix}$$

é dada por $\{\{1,3,2\},\{4,6,5\}$

Teorema

Seja $\pi \in S_n$. Então, os conjuntos

$$X_1 = \{1, \pi(1), \pi(\pi(1))\}, \ldots, \}, X_2 = \{i, \pi(i), \pi(\pi(i)), \ldots\}, \ldots$$

($i \notin X_1$) definem uma partição $\{X_1, \ldots, X_k\}$ de $\{1, 2, \ldots, n\}$, designada por partição cíclica de π .

Exemplo

A partição cíclica da permutação

$$\left(\begin{array}{rrr}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 2 & 6 & 4 & 5
\end{array}\right)$$

é dada por $\{\{1,3,2\},\{4,6,5\}\}.$

Teorema

Seja $\pi \in S_n$. Então, os conjuntos

$$X_1 = \{1, \pi(1), \pi(\pi(1))\}, \ldots, \}, X_2 = \{i, \pi(i), \pi(\pi(i)), \ldots\}, \ldots$$

($i \notin X_1$) definem uma partição $\{X_1, \ldots, X_k\}$ de $\{1, 2, \ldots, n\}$, designada por partição cíclica de π .

Exemplo

A partição cíclica da permutação

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 6 & 4 & 5 \end{smallmatrix}\right)$$

é dada por $\{\{1,3,2\},\{4,6,5\}\}$.

Nota

Para cada $j \le k$ e $x \in X$: $x \in X_j \implies \pi(x) \in X_j$; de facto, a partição cíclica é a partição *mais fina* com esta propriedade.

Permutações cíclicas

Nota

• Dada a partição cíclica $\{X_1,\ldots,X_k\}$ de uma permutação π , para cada $j\leq k$ escrevemos os elementos de X_k na forma

$$[x_1,x_2,\ldots,x_m]$$

onde
$$\pi(x_1) = x_2$$
, $\pi(x_2) = x_3$,..., $\pi(x_{m-1}) = x_m$, $\pi(x_m) = x_1$.

Permutações cíclicas

Nota

• Dada a partição cíclica $\{X_1,\ldots,X_k\}$ de uma permutação π , para cada $j\leq k$ escrevemos os elementos de X_k na forma

$$[x_1, x_2, \ldots, x_m]$$

onde
$$\pi(x_1) = x_2$$
, $\pi(x_2) = x_3$,..., $\pi(x_{m-1}) = x_m$, $\pi(x_m) = x_1$.

• Por outro lado, cada sequência $[x_1, x_2, \dots, x_m]$ podemos interpretar como uma permutação σ onde

$$\sigma(x_1) = x_2, \sigma(x_2) = x_3, \dots, \sigma(x_{m-1}) = x_m, \sigma(x_m) = x_1$$

e $\sigma(x) = x$ para cada outro x. Uma tal permutação diz-se permutação cíclica de comprimento m.

Permutações cíclicas

Nota

• Dada a partição cíclica $\{X_1,\ldots,X_k\}$ de uma permutação π , para cada $j\leq k$ escrevemos os elementos de X_k na forma

$$[x_1,x_2,\ldots,x_m]$$

onde
$$\pi(x_1) = x_2$$
, $\pi(x_2) = x_3$,..., $\pi(x_{m-1}) = x_m$, $\pi(x_m) = x_1$.

• Por outro lado, cada sequência $[x_1, x_2, \dots, x_m]$ podemos interpretar como uma permutação σ onde

$$\sigma(x_1) = x_2, \sigma(x_2) = x_3, \dots, \sigma(x_{m-1}) = x_m, \sigma(x_m) = x_1$$

- e $\sigma(x) = x$ para cada outro x. Uma tal permutação diz-se permutação cíclica de comprimento m.
- Um ciclo de comprimento 1 é a permutação identidade.

Exemplos

$$\left(\, 1 \,\, 2 \,\, 3 \,\, 4 \,\, 5 \,\, 6 \,\, 7 \,\, 8 \, \right) \,.$$

Exemplos

$$\left(\begin{smallmatrix}1&2&3&4&5&6&7&8\\3&&&&&\end{smallmatrix}\right).$$

Exemplos

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & & & & \end{smallmatrix}\right).$$

Exemplos

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & & & \end{smallmatrix}\right).$$

Exemplos

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & & & \end{smallmatrix}\right).$$

Exemplos

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 \end{smallmatrix}\right).$$

Exemplos

$$\left(\begin{array}{rrr}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\\3 & 2 & 7 & 4 & 5 & 6\end{array}\right).$$

Exemplos

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 2 \ 7 \ 4 \ 5 \ 6 \ 1\end{array}\right).$$

Exemplos

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{smallmatrix} \right)$$
 .

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

$$\left(\begin{smallmatrix}1&2&3&4&5&6&7&8\\3&&&&&\end{smallmatrix}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 7 & 4 & 2 \end{smallmatrix}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

$$\left(\begin{array}{rrr} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 7 & 4 & 2 & 6 & \end{array}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

$$\left(\begin{array}{rrr} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 7 \ 4 \ 2 \ 6 \ 1 \end{array}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

$$\left(\begin{array}{rrrr}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\\3 & 8 & 7 & 4 & 2 & 6 & 1 & 5\end{array}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 7 \ 4 \ 2 \ 6 \ 1 \ 5\right).$$

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{smallmatrix} \right)$$
.

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 7 \ 4 \ 2 \ 6 \ 1 \ 5\right).$$

$$\left(\begin{smallmatrix}1&2&3&4&5&6&7&8\\3&&&&&\end{smallmatrix}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 7 & 4 & 2 & 6 & 1 & 5 \end{smallmatrix}\right).$$

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & & & & \end{smallmatrix}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 7 \ 4 \ 2 \ 6 \ 1 \ 5\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 7 \ 4 \ 2 \ 6 \ 1 \ 5\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 7 \ 4 \ 2 \ 6 \ 1 \ 5\right).$$

$$\left(\begin{array}{rrr} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 2 & 4 & 5 \end{array}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 7 \ 4 \ 2 \ 6 \ 1 \ 5\right).$$

$$\left(\begin{array}{rrr}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\\3 & 8 & 2 & 4 & 5 & 6\end{array}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 7 \ 4 \ 2 \ 6 \ 1 \ 5\right).$$

$$\left(\begin{array}{rrr} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 2 \ 4 \ 5 \ 6 \ 1 \end{array}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 7 \ 4 \ 2 \ 6 \ 1 \ 5\right).$$

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 2 \ 4 \ 5 \ 6 \ 1 \ 7\end{array}\right).$$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 7 & 4 & 2 & 6 & 1 & 5 \end{smallmatrix}\right).$$

ullet A composta $[1,3,7]\circ[2,8,3]$ é a permutação

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 2 \ 4 \ 5 \ 6 \ 1 \ 7 \end{array}\right) \, .$$

• A composta $[1, 3, 7]^2 = [1,$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 7 & 4 & 2 & 6 & 1 & 5 \end{smallmatrix}\right).$$

ullet A composta $[1,3,7]\circ[2,8,3]$ é a permutação

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 2 & 4 & 5 & 6 & 1 & 7 \end{smallmatrix}\right).$$

• A composta $[1, 3, 7]^2 = [1, 7,$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{array}{rrr}1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 3 \ 8 \ 7 \ 4 \ 2 \ 6 \ 1 \ 5\right).$$

ullet A composta $[1,3,7]\circ[2,8,3]$ é a permutação

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 2 & 4 & 5 & 6 & 1 & 7 \end{smallmatrix}\right).$$

• A composta $[1,3,7]^2 = [1,7,3]$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 7 & 4 & 2 & 6 & 1 & 5 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,3]$ é a permutação

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 2 & 4 & 5 & 6 & 1 & 7 \end{smallmatrix}\right).$$

• A composta $[1,3,7]^2 = [1,7,3]$ e $[1,3,7]^3 =$

Exemplos

 A sequência [1,3,7] corresponde à permutação π do conjunto $\{1,2,3,4,5,6,7,8\}$ dada por

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 4 & 5 & 6 & 1 & 8 \end{smallmatrix}\right).$$

 \bullet A composta $[1,3,7]\circ[2,8,5]$ é a permutação

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 7 & 4 & 2 & 6 & 1 & 5 \end{smallmatrix}\right).$$

ullet A composta $[1,3,7]\circ[2,8,3]$ é a permutação

$$\left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 2 & 4 & 5 & 6 & 1 & 7 \end{smallmatrix}\right).$$

• A composta $[1,3,7]^2 = [1,7,3]$ e $[1,3,7]^3 = id$.

Voltando ao jogo do 15

Fazendo uma jogada "vertical"

1	2	3	4
5	6	7	8
9	10	11	
13	15	14	12

obtemos π_1 : $\begin{pmatrix} 1 & 2 & \dots 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots 11 & 13 & 15 & 14 & 12 \end{pmatrix}$.

$$\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 15 & 14 & 12 \end{pmatrix} = \begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 15 & 14 \end{pmatrix} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 14 & 15 & 12 \end{pmatrix}}_{1} = \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 14 & 15 & 12 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 14 & 15 & 12 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 14 & 15 & 12 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 14 & 15 & 12 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \end{pmatrix}}_{1} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\$$

Voltando ao jogo do 15

Fazendo uma jogada "vertical"

1	2	3	4
5	6	7	8
9	10	11	
13	15	14	12

obtemos π_1 : $\begin{pmatrix} 1 & 2 & \dots 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots 11 & 13 & 15 & 14 & 12 \end{pmatrix}$.

$$\begin{pmatrix} 1 & 2 & \dots & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots & 11 & 13 & 15 & 14 & 12 \end{pmatrix} = \begin{pmatrix} 1 & 2 & \dots & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots & 11 & 12 & 13 & 15 & 14 \end{pmatrix} \circ \underbrace{\begin{pmatrix} 1 & 2 & \dots & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots & 11 & 13 & 14 & 15 & 12 \end{pmatrix}}_{[12,13,14,15]}$$

Voltando ao jogo do 15

Fazendo uma jogada "vertical"

1	2	3	4
5	6	7	8
9	10	11	
13	15	14	12

obtemos π_1 : $\begin{pmatrix} 1 & 2 & \dots 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots 11 & 13 & 15 & 14 & 12 \end{pmatrix}$.

$$\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 15 & 14 & 12 \end{pmatrix} = \begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 12 & 13 & 15 & 14 \end{pmatrix} \circ \underbrace{\begin{pmatrix} 1 & 2 & ... & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & ... & 11 & 13 & 14 & 15 & 12 \end{pmatrix}}_{[12,13,14,15]}$$

De facto, cada "jogada vertical" corresponde a "composição à direita com um 4-ciclo" (e as "jogadas horizontais" não alteram a permutação).

Teorema

Seja $\pi \in S_n$ com a partição cíclica $\{X_1, \ldots, X_k\}$, e sejam $\sigma_1, \ldots \sigma_k \in S_n$ as correspondentes permutações cíclicas. Então,

$$\pi = \sigma_1 \circ \cdots \circ \sigma_k.$$

Teorema

Seja $\pi \in S_n$ com a partição cíclica $\{X_1, \ldots, X_k\}$, e sejam $\sigma_1, \ldots \sigma_k \in S_n$ as correspondentes permutações cíclicas. Então,

$$\pi = \sigma_1 \circ \cdots \circ \sigma_k.$$

A factorização acima designa-se por decomposição de π num produto de ciclos.

Teorema

Seja $\pi \in S_n$ com a partição cíclica $\{X_1,\ldots,X_k\}$, e sejam $\sigma_1,\ldots\sigma_k \in S_n$ as correspondentes permutações cíclicas. Então,

$$\pi = \sigma_1 \circ \cdots \circ \sigma_k.$$

A factorização acima designa-se por decomposição de π num produto de ciclos.

Definição

Seja $\pi=\sigma_1\circ\cdots\circ\sigma_k$ a decomposição de π num produto de cíclos e, para cada $i\in\{1,\ldots,n\}$, seja λ_i o número de ciclos de comprimento i nesta decomposição.

Teorema

Seja $\pi \in S_n$ com a partição cíclica $\{X_1, \ldots, X_k\}$, e sejam $\sigma_1, \ldots \sigma_k \in S_n$ as correspondentes permutações cíclicas. Então,

$$\pi = \sigma_1 \circ \cdots \circ \sigma_k.$$

A factorização acima designa-se por decomposição de π num produto de ciclos.

Definição

Seja $\pi=\sigma_1\circ\cdots\circ\sigma_k$ a decomposição de π num produto de cíclos e, para cada $i\in\{1,\ldots,n\}$, seja λ_i o número de ciclos de comprimento i nesta decomposição. Diz-se que π é do tipo

$$1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}$$
. Nota: $\sum_{i=1}^n i\lambda_i = n$.

Teorema

Seja $\pi \in S_n$ com a partição cíclica $\{X_1, \ldots, X_k\}$, e sejam $\sigma_1, \ldots \sigma_k \in S_n$ as correspondentes permutações cíclicas. Então,

$$\pi = \sigma_1 \circ \cdots \circ \sigma_k.$$

A factorização acima designa-se por decomposição de π num produto de ciclos.

Definição

Seja $\pi = \sigma_1 \circ \cdots \circ \sigma_k$ a decomposição de π num produto de cíclos e, para cada $i \in \{1, \ldots, n\}$, seja λ_i o número de ciclos de comprimento i nesta decomposição. Diz-se que π é do tipo

$$1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}$$
. Nota: $\sum_{i=1}^n i\lambda_i = n$.

Tipicamente não escrevemos os termos com $\lambda_i = 0$.

Exemplos

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

Exemplos

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Exemplos

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Assim, π é do tipo

Exemplos

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Assim, π é do tipo $1^12^14^1$.

Exemplos

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Assim, π é do tipo $1^12^14^1$.

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 2 & 4 & 1 \end{pmatrix}$.

Exemplos

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Assim, π é do tipo $1^12^14^1$.

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 2 & 4 & 1 \end{pmatrix}$. A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 6] \circ [2, 5, 4].$$

Exemplos

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Assim, π é do tipo $1^12^14^1$.

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 2 & 4 & 1 \end{pmatrix}$. A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 6] \circ [2, 5, 4].$$

Assim, π é do tipo

Exemplos

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Assim, π é do tipo $1^12^14^1$.

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 2 & 4 & 1 \end{pmatrix}$. A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 6] \circ [2, 5, 4].$$

Assim, π é do tipo 3^2 .

Exemplos

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Assim, π é do tipo $1^12^14^1$.

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 2 & 4 & 1 \end{pmatrix}$. A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 6] \circ [2, 5, 4].$$

Assim, π é do tipo 3^2 .

ullet O tipo da permutação identidade em $\{1,2,3\}$ é

Exemplos

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Assim, π é do tipo $1^12^14^1$.

• Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 2 & 4 & 1 \end{pmatrix}$. A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 6] \circ [2, 5, 4].$$

Assim, π é do tipo 3^2 .

• O tipo da permutação identidade em $\{1, 2, 3\}$ é 1^3 .

Teorema (Fórmula de Cauchy)

O número de permutações do tipo $1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}$ é

$$\frac{n!}{1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}\lambda_1!\dots\lambda_n!}.$$

Teorema (Fórmula de Cauchy)

O número de permutações do tipo $1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}$ é

$$\frac{n!}{1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}\lambda_1!\dots\lambda_n!}.$$

Indicamos primeiro os ciclos (digamos, temos k ciclos, (ordenados pelo comprimento)

]
$$\circ$$
 [

Teorema (Fórmula de Cauchy)

O número de permutações do tipo $1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}$ é

$$\frac{n!}{1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}\lambda_1!\dots\lambda_n!}.$$

Indicamos primeiro os ciclos (digamos, temos k ciclos, (ordenados pelo comprimento)

$$[x_1^1, x_2^1, \ldots, x_{n_1}^1] \circ [x_1^2, x_2^2, \ldots, x_{n_1}^2] \circ \cdots \circ [x_1^k, x_2^k, \ldots, x_{n_k}^k].$$

Há n! maneiras de "distribuir" $1, \ldots, n$.

Teorema (Fórmula de Cauchy)

O número de permutações do tipo $1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}$ é

$$\frac{n!}{1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}\lambda_1!\dots\lambda_n!}.$$

Indicamos primeiro os ciclos (digamos, temos k ciclos, (ordenados pelo comprimento)

$$[x_1^1, x_2^1, \dots, x_{n_1}^1] \circ [x_1^2, x_2^2, \dots, x_{n_1}^2] \circ \dots \circ [x_1^k, x_2^k, \dots, x_{n_k}^k].$$

Há n! maneiras de "distribuir" $1, \ldots, n$. Mas alguns destas denotam a mesma permutação. De facto:

Teorema (Fórmula de Cauchy)

O número de permutações do tipo $1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}$ é

$$\frac{n!}{1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}\lambda_1!\dots\lambda_n!}.$$

Indicamos primeiro os ciclos (digamos, temos k ciclos, (ordenados pelo comprimento)

$$[x_1^1, x_2^1, \dots, x_{n_1}^1] \circ [x_1^2, x_2^2, \dots, x_{n_1}^2] \circ \dots \circ [x_1^k, x_2^k, \dots, x_{n_k}^k].$$

Há n! maneiras de "distribuir" $1, \ldots, n$. Mas alguns destas denotam a mesma permutação. De facto:

• Em cada bloco do comprimento i, há i escolhas para o primeiro elemento, assim, para cada permutação dos blocos de comprimento i, i^{λ_i} correspondem à mesma permutação.

Teorema (Fórmula de Cauchy)

O número de permutações do tipo $1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}$ é

$$\frac{n!}{1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}\lambda_1!\dots\lambda_n!}.$$

Indicamos primeiro os ciclos (digamos, temos k ciclos, (ordenados pelo comprimento)

$$[x_1^1, x_2^1, \dots, x_{n_1}^1] \circ [x_1^2, x_2^2, \dots, x_{n_1}^2] \circ \dots \circ [x_1^k, x_2^k, \dots, x_{n_k}^k].$$

Há n! maneiras de "distribuir" $1, \ldots, n$. Mas alguns destas denotam a mesma permutação. De facto:

- Em cada bloco do comprimento i, há i escolhas para o primeiro elemento, assim, para cada permutação dos blocos de comprimento i, i^{λ_i} correspondem à mesma permutação.
- Há λ_i ! permutações dos blocos de comprimento i.

Exemplo

Consideramos o tipo 1^13^2 ; logo n =

Exemplo

Consideramos o tipo 1^13^2 ; logo n = 7.

Exemplo

```
[\ ]\circ[\ ]\circ[\ ]
```

Exemplo

[3]
$$\circ$$
 [] \circ []

Exemplo

$$[3] \circ [1,4,7] \circ [$$

Exemplo

$$[3] \circ [1,4,7] \circ [2,5,6]$$

Exemplo

$$[3] \circ [1,4,7] \circ [2,5,6] = [3] \circ [2,5,6] \circ [1,4,7]$$

Exemplo

$$[3] \circ [1,4,7] \circ [2,5,6] = [3] \circ [2,5,6] \circ [1,4,7]$$
$$= [3] \circ [4,7,1] \circ [2,5,6]$$

Exemplo

$$[3] \circ [1,4,7] \circ [2,5,6] = [3] \circ [2,5,6] \circ [1,4,7]$$
$$= [3] \circ [4,7,1] \circ [2,5,6] = [3] \circ [5,6,2] \circ [4,7,1]$$

Exemplo

Consideramos o tipo 1^13^2 ; logo n = 7. Por exemplo:

$$[3] \circ [1,4,7] \circ [2,5,6] = [3] \circ [2,5,6] \circ [1,4,7]$$
$$= [3] \circ [4,7,1] \circ [2,5,6] = [3] \circ [5,6,2] \circ [4,7,1]$$
$$= [3] \circ [4,7,1] \circ [5,6,2] = \dots$$

Exemplo

Consideramos o tipo 1^13^2 ; logo n = 7. Por exemplo:

$$\begin{aligned} &[3]\circ[1,4,7]\circ[2,5,6]=[3]\circ[2,5,6]\circ[1,4,7]\\ &=[3]\circ[4,7,1]\circ[2,5,6]=[3]\circ[5,6,2]\circ[4,7,1]\\ &=[3]\circ[4,7,1]\circ[5,6,2]=\ldots. \end{aligned}$$

Mas:

$$[3]\circ[2,5,6]\circ[1,4,7]\neq[2]\circ[3,5,6]\circ[1,4,7],$$

Exemplo

Consideramos o tipo 1^13^2 ; logo n = 7. Por exemplo:

$$[3] \circ [1,4,7] \circ [2,5,6] = [3] \circ [2,5,6] \circ [1,4,7]$$

$$= [3] \circ [4,7,1] \circ [2,5,6] = [3] \circ [5,6,2] \circ [4,7,1]$$

$$= [3] \circ [4,7,1] \circ [5,6,2] = \dots .$$

Mas:

[3]
$$\circ$$
 [2,5,6] \circ [1,4,7] \neq [2] \circ [3,5,6] \circ [1,4,7],
[3] \circ [2,5,6] \circ [1,4,7] \neq [3] \circ [5,2,6] \circ [1,4,7].

Exemplo

Consideramos o tipo 1^13^2 ; logo n = 7. Por exemplo:

$$\begin{aligned} &[3]\circ[1,4,7]\circ[2,5,6]=[3]\circ[2,5,6]\circ[1,4,7]\\ &=[3]\circ[4,7,1]\circ[2,5,6]=[3]\circ[5,6,2]\circ[4,7,1]\\ &=[3]\circ[4,7,1]\circ[5,6,2]=\ldots. \end{aligned}$$

Mas:

[3]
$$\circ$$
 [2,5,6] \circ [1,4,7] \neq [2] \circ [3,5,6] \circ [1,4,7],
[3] \circ [2,5,6] \circ [1,4,7] \neq [3] \circ [5,2,6] \circ [1,4,7].

Exemplo

Consideramos o tipo 1^13^2 ; logo n = 7. Por exemplo:

$$\begin{aligned} &[3]\circ[1,4,7]\circ[2,5,6]=[3]\circ[2,5,6]\circ[1,4,7]\\ &=[3]\circ[4,7,1]\circ[2,5,6]=[3]\circ[5,6,2]\circ[4,7,1]\\ &=[3]\circ[4,7,1]\circ[5,6,2]=\ldots. \end{aligned}$$

Mas:

[3]
$$\circ$$
 [2,5,6] \circ [1,4,7] \neq [2] \circ [3,5,6] \circ [1,4,7],
[3] \circ [2,5,6] \circ [1,4,7] \neq [3] \circ [5,2,6] \circ [1,4,7].

$$\frac{7!}{1^1 3^2 1! \, 2!} =$$

Exemplo

Consideramos o tipo 1^13^2 ; logo n = 7. Por exemplo:

$$[3] \circ [1,4,7] \circ [2,5,6] = [3] \circ [2,5,6] \circ [1,4,7]$$

$$= [3] \circ [4,7,1] \circ [2,5,6] = [3] \circ [5,6,2] \circ [4,7,1]$$

$$= [3] \circ [4,7,1] \circ [5,6,2] = \dots .$$

Mas:

$$[3] \circ [2,5,6] \circ [1,4,7] \neq [2] \circ [3,5,6] \circ [1,4,7],$$

$$[3] \circ [2,5,6] \circ [1,4,7] \neq [3] \circ [5,2,6] \circ [1,4,7].$$

$$\frac{7!}{1^1 3^2 \, 1! \, 2!} = \frac{7 \cdot 6 \cdot 5 \cdot 4}{3}$$

Exemplo

Consideramos o tipo 1^13^2 ; logo n = 7. Por exemplo:

$$[3] \circ [1,4,7] \circ [2,5,6] = [3] \circ [2,5,6] \circ [1,4,7]$$

$$= [3] \circ [4,7,1] \circ [2,5,6] = [3] \circ [5,6,2] \circ [4,7,1]$$

$$= [3] \circ [4,7,1] \circ [5,6,2] = \dots .$$

Mas:

[3]
$$\circ$$
 [2,5,6] \circ [1,4,7] \neq [2] \circ [3,5,6] \circ [1,4,7],
[3] \circ [2,5,6] \circ [1,4,7] \neq [3] \circ [5,2,6] \circ [1,4,7].

$$\frac{7!}{1^1 3^2 \, 1! \, 2!} = \frac{7 \cdot 6 \cdot 5 \cdot 4}{3} = 7 \cdot 2 \cdot 5 \cdot 4 = 280.$$

A paridade de permutações

Definição

Um ciclo de comprimento 2 diz-se transposição.

Definição

Um ciclo de comprimento 2 diz-se transposição.

Exemplo

Para cara i < n, [i, i+1] é uma transposição. Dada uma permutação $\pi = (\pi_1, \dots, \pi_n)$, então

$$\pi \circ [i, i+1] = (\pi_1, \ldots, \pi_{i-1}, \pi_{i+1}, \pi_i, \ldots, \pi_n).$$

Definição

Um ciclo de comprimento 2 diz-se transposição.

Exemplo

Para cara i < n, [i, i+1] é uma transposição. Dada uma permutação $\pi = (\pi_1, \dots, \pi_n)$, então

$$\pi \circ [i, i+1] = (\pi_1, \ldots, \pi_{i-1}, \pi_{i+1}, \pi_i, \ldots, \pi_n).$$

Nota

Para cada transposição τ , $\tau \circ \tau = \mathrm{id}_n$; ou seja, $\tau^{-1} = \tau$.

Definição

Um ciclo de comprimento 2 diz-se transposição.

Exemplo

Para cara i < n, [i, i+1] é uma transposição. Dada uma permutação $\pi = (\pi_1, \dots, \pi_n)$, então

$$\pi \circ [i, i+1] = (\pi_1, \ldots, \pi_{i-1}, \pi_{i+1}, \pi_i, \ldots, \pi_n).$$

Nota

Para cada transposição τ , $\tau \circ \tau = \mathrm{id}_n$; ou seja, $\tau^{-1} = \tau$.

Teorema

Cada permutação é uma composta de transposições.

Definição

Um ciclo de comprimento 2 diz-se transposição.

Exemplo

Para cara i < n, [i, i+1] é uma transposição. Dada uma permutação $\pi = (\pi_1, \dots, \pi_n)$, então

$$\pi \circ [i, i+1] = (\pi_1, \ldots, \pi_{i-1}, \pi_{i+1}, \pi_i, \ldots, \pi_n).$$

Nota

Para cada transposição τ , $\tau \circ \tau = \mathrm{id}_n$; ou seja, $\tau^{-1} = \tau$.

Teorema

Cada permutação é uma composta de transposições.

Para cada ciclo $\sigma = [x_1, x_2, \dots, x_k]$:

$$\sigma = [x_1, x_2] \circ [x_2, x_3] \circ \cdots \circ [x_{k-1}x_k].$$

Exemplo

Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

Exemplo

Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Nota: A partição cíclica de π é {{1, 3, 4, 7}, {2, 5}, {6}}.

Exemplo

Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Portanto:

$$\pi = [1, 3, 7, 4] \circ [2, 5]$$

Nota: A partição cíclica de π é $\{\{1,3,4,7\},\{2,5\},\{6\}\}.$

Exemplo

Consideramos a permutação π dada por $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 1 & 2 & 6 & 4 \end{pmatrix}$.

A decomposição de π num produto de ciclos é

$$\pi = [1, 3, 7, 4] \circ [2, 5] \circ [6].$$

Portanto:

$$\pi = [1, 3, 7, 4] \circ [2, 5]$$

= $[1, 3] \circ [3, 7] \circ [7, 4] \circ [2, 5].$

Nota: A partição cíclica de π é $\{\{1,3,4,7\},\{2,5\},\{6\}\}.$

Definição

Seja
$$\pi=(\pi_1,\ldots,\pi_n)$$
 uma permutação.

Definição

Seja $\pi=(\pi_1,\ldots,\pi_n)$ uma permutação.

• O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .

Definição

Seja $\pi=(\pi_1,\ldots,\pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.

Definição

Seja $\pi=(\pi_1,\ldots,\pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.
- O número $sgn(\pi) = (-1)^{I(\pi)}$ designa-se por sinal de π .

Definição

Seja $\pi=(\pi_1,\ldots,\pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.
- O número $\operatorname{sgn}(\pi) = (-1)^{I(\pi)}$ designa-se por sinal de π .
- Tipos de paridade:

Definição

Seja $\pi=(\pi_1,\ldots,\pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.
- O número $\operatorname{sgn}(\pi) = (-1)^{I(\pi)}$ designa-se por sinal de π .
- \bullet Tipos de paridade: a permutação π diz-se par quando $\mathrm{sgn}(\pi)=1$

O número das inversões é par.

Definição

Seja $\pi=(\pi_1,\ldots,\pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.
- O número $\operatorname{sgn}(\pi) = (-1)^{I(\pi)}$ designa-se por sinal de π .
- Tipos de paridade: a permutação π diz-se par quando $\operatorname{sgn}(\pi) = 1$ e π diz-se ímpar quando $\operatorname{sgn}(\pi) = -1$

O número das inversões é *ímpar*.

Definição

Seja $\pi = (\pi_1, \dots, \pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.
- O número $\operatorname{sgn}(\pi) = (-1)^{I(\pi)}$ designa-se por sinal de π .
- Tipos de paridade: a permutação π diz-se par quando $\operatorname{sgn}(\pi) = 1$ e π diz-se ímpar quando $\operatorname{sgn}(\pi) = -1$

Exemplo

Seja $\pi=(1,3,2,5,4,6)$. As inversões de π são

Definição

Seja $\pi=(\pi_1,\ldots,\pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.
- O número $\operatorname{sgn}(\pi) = (-1)^{I(\pi)}$ designa-se por sinal de π .
- Tipos de paridade: a permutação π diz-se par quando $\operatorname{sgn}(\pi) = 1$ e π diz-se ímpar quando $\operatorname{sgn}(\pi) = -1$

Exemplo

Seja $\pi = (1, 3, 2, 5, 4, 6)$. As inversões de π são (3, 2) e (5, 4),

Definição

Seja $\pi = (\pi_1, \dots, \pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.
- O número $sgn(\pi) = (-1)^{I(\pi)}$ designa-se por sinal de π .
- Tipos de paridade: a permutação π diz-se par quando $\operatorname{sgn}(\pi) = 1$ e π diz-se ímpar quando $\operatorname{sgn}(\pi) = -1$

Exemplo

Seja $\pi=(1,3,2,5,4,6)$. As inversões de π são (3,2) e (5,4), logo $I(\pi)=2$ e $\mathrm{sgn}(\pi)=1$; portanto, π é par.

Definição

Seja $\pi = (\pi_1, \dots, \pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.
- O número $\operatorname{sgn}(\pi) = (-1)^{I(\pi)}$ designa-se por sinal de π .
- Tipos de paridade: a permutação π diz-se par quando $\operatorname{sgn}(\pi) = 1$ e π diz-se ímpar quando $\operatorname{sgn}(\pi) = -1$

Exemplo

Seja k < m e consideramos a transposição $\tau = \begin{pmatrix} 1 & \dots & k & \dots & m & \dots & n \\ 1 & \dots & m & \dots & k & \dots & n \end{pmatrix}$. Temos as seguintes inversões:

Definição

Seja $\pi = (\pi_1, \dots, \pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.
- O número $sgn(\pi) = (-1)^{I(\pi)}$ designa-se por sinal de π .
- Tipos de paridade: a permutação π diz-se par quando $\operatorname{sgn}(\pi) = 1$ e π diz-se ímpar quando $\operatorname{sgn}(\pi) = -1$

Exemplo

Seja k < m e consideramos a transposição $\tau = \begin{pmatrix} 1 & \dots & k & \dots & m & \dots & n \\ 1 & \dots & m & \dots & k & \dots & n \end{pmatrix}$. Temos as seguintes inversões:

• Para cada $k \le l < m$: (m, l) (obtemos m - k inversões).

Definição

Seja $\pi = (\pi_1, \dots, \pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.
- O número $\operatorname{sgn}(\pi) = (-1)^{I(\pi)}$ designa-se por sinal de π .
- Tipos de paridade: a permutação π diz-se par quando $\operatorname{sgn}(\pi) = 1$ e π diz-se ímpar quando $\operatorname{sgn}(\pi) = -1$

Exemplo

Seja k < m e consideramos a transposição $\tau = \begin{pmatrix} 1 & \dots & k & \dots & m & \dots & n \\ 1 & \dots & m & \dots & k & \dots & n \end{pmatrix}$. Temos as seguintes inversões:

- Para cada $k \le l < m$: (m, l) (obtemos m k inversões).
- Para cara k < l < m: (l, k) (obtemos m k 1 inversões).

Definição

Seja $\pi = (\pi_1, \dots, \pi_n)$ uma permutação.

- O par (π_i, π_j) com i < j e $\pi_i > \pi_j$ diz-se por inversão de π .
- O número de todas as inversões de π denota-se por $I(\pi)$.
- O número $\operatorname{sgn}(\pi) = (-1)^{I(\pi)}$ designa-se por sinal de π .
- Tipos de paridade: a permutação π diz-se par quando $\operatorname{sgn}(\pi) = 1$ e π diz-se ímpar quando $\operatorname{sgn}(\pi) = -1$

Exemplo

Seja k < m e consideramos a transposição $\tau = \begin{pmatrix} 1 & \dots & k & \dots & m & \dots & n \\ 1 & \dots & m & \dots & k & \dots & n \end{pmatrix}$.

Temos as seguintes inversões:

- Para cada $k \le l < m$: (m, l) (obtemos m k inversões).
- Para cara k < l < m: (l, k) (obtemos m k 1 inversões).

Portanto, τ tem 2(m-l)-1 inversões, logo $sgn(\tau)=-1$.

Teorema

A função
$$\operatorname{sgn}\colon \mathcal{S}_{\mathbf{n}} \to \{-1,1\}$$
 satisfaz, para todos os $\pi,\sigma \in \mathcal{S}_{\mathbf{n}}$,

$$\operatorname{sgn}(\operatorname{id}_n) = 1$$
 e $\operatorname{sgn}(\pi \circ \sigma) = \operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\sigma)$.

Teorema

A função $\operatorname{sgn}\colon \mathcal{S}_{\mathbf{n}} \to \{-1,1\}$ satisfaz, para todos os $\pi,\sigma \in \mathcal{S}_{\mathbf{n}}$,

$$\operatorname{sgn}(\operatorname{id}_n) = 1 \quad e \quad \operatorname{sgn}(\pi \circ \sigma) = \operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\sigma).$$

Portanto:

Teorema

A função $\operatorname{sgn}\colon \mathcal{S}_{\mathsf{n}} \to \{-1,1\}$ satisfaz, para todos os $\pi,\sigma \in \mathcal{S}_{\mathsf{n}}$,

$$\operatorname{sgn}(\operatorname{id}_n) = 1$$
 e $\operatorname{sgn}(\pi \circ \sigma) = \operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\sigma)$.

Portanto:

• Para cada permutação π : $\operatorname{sgn}(\pi^{-1}) = \operatorname{sgn}(\pi)^{-1} = \operatorname{sgn}(\pi)$.

Teorema

A função $\operatorname{sgn}\colon \mathcal{S}_{\mathsf{n}} \to \{-1,1\}$ satisfaz, para todos os $\pi,\sigma \in \mathcal{S}_{\mathsf{n}}$,

$$\operatorname{sgn}(\operatorname{id}_n) = 1$$
 e $\operatorname{sgn}(\pi \circ \sigma) = \operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\sigma)$.

Portanto:

- Para cada permutação π : $sgn(\pi^{-1}) = sgn(\pi)^{-1} = sgn(\pi)$.
- ullet Recordamos: para cada transposição au, $\mathrm{sgn}(au) = -1$.

Teorema

A função sgn: $S_n \to \{-1,1\}$ satisfaz, para todos os $\pi, \sigma \in S_n$,

$$\operatorname{sgn}(\operatorname{id}_n) = 1$$
 e $\operatorname{sgn}(\pi \circ \sigma) = \operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\sigma)$.

Portanto:

- Para cada permutação π : $sgn(\pi^{-1}) = sgn(\pi)^{-1} = sgn(\pi)$.
- Recordamos: para cada transposição τ , sgn $(\tau) = -1$.
- Para cada ciclo σ de comprimento k, $\operatorname{sgn}(\sigma) = (-1)^{k-1}$ porque σ é composta de k-1 transposições.

Recordamos:

$$[x_1, x_2, \dots, x_k] = [x_1, x_2] \circ [x_2, x_3] \circ \dots \circ [x_{k-1}x_k].$$

Ainda sobre o sinal

Teorema

A função sgn: $S_n \to \{-1,1\}$ satisfaz, para todos os $\pi,\sigma \in S_n$,

$$\operatorname{sgn}(\operatorname{id}_n) = 1$$
 e $\operatorname{sgn}(\pi \circ \sigma) = \operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\sigma)$.

Portanto:

- Para cada permutação π : $sgn(\pi^{-1}) = sgn(\pi)^{-1} = sgn(\pi)$.
- Recordamos: para cada transposição τ , sgn $(\tau) = -1$.
- Para cada ciclo σ de comprimento k, $\operatorname{sgn}(\sigma) = (-1)^{k-1}$ porque σ é composta de k-1 transposições.
- Seja π uma permutação do tipo $1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}$. Então, $\operatorname{sgn}(\pi)=(-1)^{\lambda_2+\lambda_4+\dots}.$

Ainda sobre o sinal

Teorema

A função sgn: $S_n \to \{-1,1\}$ satisfaz, para todos os $\pi,\sigma \in S_n$,

$$\operatorname{sgn}(\operatorname{id}_n) = 1$$
 e $\operatorname{sgn}(\pi \circ \sigma) = \operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\sigma)$.

Portanto:

- Para cada permutação π : $sgn(\pi^{-1}) = sgn(\pi)^{-1} = sgn(\pi)$.
- Recordamos: para cada transposição τ , sgn $(\tau) = -1$.
- Para cada ciclo σ de comprimento k, $\operatorname{sgn}(\sigma) = (-1)^{k-1}$ porque σ é composta de k-1 transposições.
- Seja π uma permutação do tipo $1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}$. Então, $\mathrm{sgn}(\pi)=(-1)^{\lambda_2+\lambda_4+\dots}.$

Nota

Para cada $n \in \mathbb{N}$, definimos $P_n = \{\pi \in S_n \mid \pi \text{ \'e par}\}.$

Ainda sobre o sinal

Teorema

A função sgn: $S_n \rightarrow \{-1,1\}$ satisfaz, para todos os $\pi, \sigma \in S_n$,

$$\operatorname{sgn}(\operatorname{id}_n) = 1$$
 e $\operatorname{sgn}(\pi \circ \sigma) = \operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\sigma)$.

Portanto:

- Para cada permutação π : $sgn(\pi^{-1}) = sgn(\pi)^{-1} = sgn(\pi)$.
- Recordamos: para cada transposição τ , sgn $(\tau) = -1$.
- Para cada ciclo σ de comprimento k, $sgn(\sigma) = (-1)^{k-1}$ porque σ é composta de k-1 transposições.
- Seja π uma permutação do tipo $1^{\lambda_1}2^{\lambda_2}\dots n^{\lambda_n}$. Então, $\operatorname{sgn}(\pi)=(-1)^{\lambda_2+\lambda_4+\cdots}.$

Nota

Para cada $n \in \mathbb{N}$, definimos $P_n = \{\pi \in S_n \mid \pi \text{ é par}\}$. Para todos os $\pi, \sigma \in P_n$, também $\pi \circ \sigma \in P_n$ e $\pi^{-1} \in P_n$.

Missão impossível

Recordamos que o jogo do 15 começa com a permutação

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

$$\pi_0: \bigl(\begin{smallmatrix} 1 & 2 & \dots & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots & 11 & 12 & 13 & 15 & 14 \end{smallmatrix} \bigr).$$

Missão impossível

Recordamos que o jogo do 15 começa com a permutação

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

$$\pi_0: \left(\begin{smallmatrix} 1 & 2 & \dots & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots & 11 & 12 & 13 & 15 & 14 \end{smallmatrix} \right).$$

Nota:
$$sgn(\pi_0) = -1$$
 (π_0 tem só uma inversão).

Missão impossível

Recordamos que o jogo do 15 começa com a permutação

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

$$\pi_0: \begin{pmatrix} 1 & 2 & \dots 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots 11 & 12 & 13 & 15 & 14 \end{pmatrix}.$$

Nota: $sgn(\pi_0) = -1$ (π_0 tem só uma inversão).

Também recordamos que cada "jogada vertical" corresponde a "compor à direita com um 4-ciclo".

Missão impossível

Recordamos que o jogo do 15 começa com a permutação

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

$$\pi_0: \begin{pmatrix} 1 & 2 & \dots & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots & 11 & 12 & 13 & 15 & 14 \end{pmatrix}.$$

Nota: $sgn(\pi_0) = -1$ (π_0 tem só uma inversão).

Também recordamos que cada "jogada vertical" corresponde a "compor à direita com um 4-ciclo". Tal que o espaço vazio fica na última posição, o número de "jogadas verticais" tem de ser *par*.

Missão impossível

Recordamos que o jogo do 15 começa com a permutação

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

$$\pi_0: \begin{pmatrix} 1 & 2 & \dots & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots & 11 & 12 & 13 & 15 & 14 \end{pmatrix}.$$

Nota: $sgn(\pi_0) = -1$ (π_0 tem só uma inversão).

Depois de 2n jogadas verticais obtemos a permutação

$$\pi_0 \circ \sigma_1 \circ \cdots \circ \sigma_{2n}$$
 (com 4-ciclos σ_i), e

Missão impossível

Recordamos que o jogo do 15 começa com a permutação

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

$$\pi_0: \begin{pmatrix} 1 & 2 & \dots & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots & 11 & 12 & 13 & 15 & 14 \end{pmatrix}.$$

Nota: $sgn(\pi_0) = -1$ (π_0 tem só uma inversão).

Depois de 2n jogadas verticais obtemos a permutação

$$\pi_0 \circ \sigma_1 \circ \cdots \circ \sigma_{2n}$$
 (com 4-ciclos σ_i), e

$$\operatorname{sgn}(\pi_0 \circ \sigma_1 \circ \cdots \circ \sigma_{2n}) = \operatorname{sgn}(\pi_0) \cdot \operatorname{sgn}(\sigma_1) \cdot \cdots \cdot \operatorname{sgn}(\sigma_{2n})$$
$$= (-1) \cdot (-1)^{2n} = -1.$$

Missão impossível

Recordamos que o jogo do 15 começa com a permutação

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

$$\pi_0: \begin{pmatrix} 1 & 2 & \dots & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & \dots & 11 & 12 & 13 & 15 & 14 \end{pmatrix}.$$

Nota: $sgn(\pi_0) = -1$ (π_0 tem só uma inversão).

Depois de 2n jogadas verticais obtemos a permutação

$$\pi_0 \circ \sigma_1 \circ \cdots \circ \sigma_{2n}$$
 (com 4-ciclos σ_i), e

$$sgn(\pi_0 \circ \sigma_1 \circ \cdots \circ \sigma_{2n}) = sgn(\pi_0) \cdot sgn(\sigma_1) \cdot \cdots \cdot sgn(\sigma_{2n})$$
$$= (-1) \cdot (-1)^{2n} = -1.$$

Logo, não podemos obter a permutação id_{15} porque $sgn(id_{15})=1$.

Nota

O jogo do 15 é impossível se a permutação inicial é ímpar.

Nota

O jogo do 15 é impossível se a permutação inicial é ímpar. Pode-se mostrar que o jogo tem uma solução se a permutação inicial é par.

Nota

O jogo do 15 é impossível se a permutação inicial é ímpar. Pode-se mostrar que o jogo tem uma solução se a permutação inicial é par. Então, quantas permutações pares existem?

Nota

O jogo do 15 é impossível se a permutação inicial é ímpar. Pode-se mostrar que o jogo tem uma solução se a permutação inicial é par. Então, quantas permutações pares existem?

Teorema

Para cada $n \ge 2$, há tantas permutações pares como ímpares.

Nota

O jogo do 15 é impossível se a permutação inicial é ímpar. Pode-se mostrar que o jogo tem uma solução se a permutação inicial é par. Então, quantas permutações pares existem?

Teorema

Para cada $n \ge 2$, há tantas permutações pares como ímpares.

Demonstração.

A função

$$\operatorname{sgn}([1,2] \circ \pi) = (-1) \cdot \operatorname{sgn}(\pi)$$

$$P_n \longrightarrow \{\text{permutações impares}\}, \quad \pi \longmapsto \qquad \boxed{[1,2] \circ \pi}$$

$$\overbrace{[1,2]\circ\pi}$$

é invertível com a função inversa

{permutações ímpares}
$$\longrightarrow P_n, \quad \pi \longmapsto [1,2] \circ \pi.$$

Nota

O jogo do 15 é impossível se a permutação inicial é ímpar. Pode-se mostrar que o jogo tem uma solução se a permutação inicial é par. Então, quantas permutações pares existem?

Teorema

Para cada $n \ge 2$, há tantas permutações pares como ímpares. Portanto, para $n \ge 2$, $|P_n| = \frac{n!}{2}$.

Demonstração.

A função

$$\operatorname{sgn}([1,2] \circ \pi) = (-1) \cdot \operatorname{sgn}(\pi)$$

$$P_n \longrightarrow \{\text{permutações impares}\}, \quad \pi \longmapsto$$

$$[1,2]\circ\pi$$

é invertível com a função inversa

{permutações ímpares}
$$\longrightarrow P_n, \quad \pi \longmapsto [1, 2] \circ \pi.$$