# CISC 372 Advanced Data Analytics Instance-based Learning





## Tree[s]

- Tree Induction
- Information Gain/Gain Ratio/Gini Index
- ID3, CART, C4.5
- Splitting Numeric Attribute
- Feature Selection (is difficult)
- Random Forest (the easy way)
  - Built-in bootstrap sampling
- Regression Tree
- XGBoost



## Monday

- AutoDiff
- Neural Network
  - Nonlinearity
  - Learn feature mapping
- Convolutional Neural Network
  - Computational complexity
  - Position Invariance
  - Receptive Field

## Today

- NN Optimizers
- Parametric vs. Non-parametric model
- Instance-based Learning
- Lazy Learner vs. Eager Learner
- Nearest Neighbor Lookup
- Bayesian Learning

- Gradient Descend (GD)
- Stochastic Gradient Descend (SGD)
- SGD with Momentum
- Adadelta
- Adagrad
- Adam
- RSMProp
- Early Stopping

# GD



Total cost:

$$J = \Sigma (y' - y)^2$$

- Gradient Descend (GD)
  - 1 forward-backward pass with the whole dataset
- Stochastic Gradient Descend (SGD)
  - SGD
    - 1 forward-backward pass with 1 sample
    - 1 forward-backward pass with a mini-batch of sample
      - A subset that is small enough to fit the memory

- Every backward pass:
  - Calculate Gradient
  - Multiplied by a learning rate (\alpha)

#### GD

- Gradient based on the whole training set => most accurate
- Mini-batch: subset of samples to calculate gradient => sort-of accurate
- 1 sample SGD: hm.. A bit high variance. Still can get the job done but just takes a bit longer.





## Optimizers – when?

- Gradient Descend (GD)
  - Convex/smooth loss function
  - Small dataset/model
- Stochastic Gradient Descend (SGD)
  - SGD
    - 1 forward-backward pass with 1 sample
      - Fast. Low memory requirement
    - 1 forward-backward pass with a mini-batch of sample
      - Optimal subset that fits the memory

## SGD+momentum

- Accelerate!!
  - With the concept of `speed`



- Try this:
  - https://distill.pub/2017/momentum/

### SGD+momentum

- How?
  - Use a moving average of gradient.



$$w_t = w_t + \Delta w_t$$

## SGD+momentum

#### Momentum=0.5



#### Momentum=0.8



## Adagrad

- Use the idea of Momentum
- Scale learning rate according to the history of gradient
- Learning rate is reduced if the gradient is very large
- Different learning rate for different parameter
- Normalized by exponentially decaying average of past squared gradients
- Eliminate the need to manually tune the learning rate

$$g_t = g_{t-1} + \nabla_w E(w)^2$$

$$w_t = w_t - \frac{\varepsilon}{\sqrt{g_t} + \beta} \nabla_w E(w)^2$$

## AdaDelta

- Use the idea of Momentum
- Less aggressive than Adagrad
- Adagrad issues:
  - Accumulation of the squared gradients
  - learning rate is always decreasing
- AdaDelta tries to solve the above issue
- Restrict the history into a specific size
- No need to set initial learning rate

## RMSProp

- Use the idea of Momentum
- Also tries to solve Adagrad's issue
- Similar idea to AdaDelta:
  - Normalize learning rate by the magnitudes of recent gradient of a weight.
  - But with different formulations.

## Adaptive Moment Estimation (Adam)

- Similar idea to Adadelta and RMSprop
- Keep track of exponentially decaying average of past gradients
- Also keeps an exponentially decaying average of past gradients, similar to momentum

## Adaptive Moment Estimation (Adam)



## Parametric models

 Models that are parameterized by a fixed size vector/matrix. (Formally, it assumes a finite set of parameters independent of the dataset)

$$P(x|\theta,D) = P(x|\theta)$$

- Model structure (parameters) is pre-determined.
  - Linear regression, MLP, Convolutional NN etc.
  - Linear SVM

Minimize the loss function by adjusting the parameters.

## Non-Parametric models

- NO parameters at all
  - May have hyperparameters
  - Instance-based learning
- Or, No such a prior that dictates the parameterization of the model
  - Still there are parameters
  - Number/Structure of the parameters are flexible
  - Depends on the data
  - Kernel SVM (kernel matrix)
  - Topic Modeling (Part II)

## Instance-based Learning

- Non-parametric
  - Instance-based learning
- STORE all the training sample
- When a query comes in, predict/classify the query based on the aggregation of its nearest neighbors

# K-Nearest Neighbor (KNN)



#### Finding Neighbors & Voting for Labels



## Instance-based Learning

- Non-parametric
  - Instance-based learning
- STORE all the training sample
- When a query comes in, predict/classify the query based on the aggregation of its nearest neighbors
- Nearest => which measurement of distance?
- Neighbors => how many?
- Aggregation => how?
- Tie => how to deal with?

### Distance Measure

• Minkowski distance:

$$X=(x_1,x_2,\ldots,x_n) ext{ and } Y=(y_1,y_2,\ldots,y_n) \in \mathbb{R}^n$$

$$D\left(X,Y
ight) = \left(\sum_{i=1}^{n}\left|x_{i}-y_{i}
ight|^{p}
ight)^{rac{1}{p}}$$

- p=1: manhattan distance (I1)
- p=2: euclidean distance (l2)

### Distance Measure

- Chebyshev
- Cosine
- Jaccard
- Hamming

• ...



- A lot!
- Which to pick?
  - Domain (aka application) specific
  - Data Type specific
    - Nominal? Numeric? ...

## Voronoi Cell Visualization 1-NN



## KNN - 1



## KNN - 15



• Low K (e.g. k =1)

• High K (e.g. k =15)

$$K = 5.55$$

- Low K (e.g. k = 1)
  - Low bias, high variance

- High K (e.g. k =15)
  - High bias, high variance

- But what is considered low/high?
  - Data -> density? Boundary?

## Aggregation

- Classification Votes
  - Tie Reduce K until no tie is found
  - Scikit-Learn: whoever happens to come first in the original order of the dataset...
- Prediction/Regression
  - Average
  - Aka Local Interpolation



## Aggregation

• Weights (like kernel)

$$w_{q,x} = w(d(q,y))$$

- "uniform" => equally importance for voting/average
- "distance" => weighted by distance
  - Smoothing function
- "custom"

# Finding nearest neighbor? (average complexity)

- Given a data set of N points/samples/records...
  - Brute-force
    - Time O(N)
    - Space O(0)

# Finding nearest neighbor? (average complexity)

- Given a data set of N points/samples/records..
  - Brute-force
    - Time O(N)
    - Space O(0)
  - KD-tree
    - Time O(log(N))
    - Space O(N)



# Finding nearest neighbor? (average complexity)

- Given a data set of N points/samples/records..
  - Brute-force
    - Search Time O(N)
    - Space O(0)
  - KD-tree
    - Search Time O(log(N))
    - Space O(N)
  - Ball-tree
    - Search Time O(log(N))
    - Space O(N)
  - AUTO
    - Determine based on data



# Application

#### Scene completion

Figure 1: Given an input image with a missing region, we use matching scenes from a large collection of photographs to complete the image.



http://graphics.cs.cmu.edu/projects/scene-completion/scene\_comp\_cacm.pdf

## Why & Why not?

- Pros:
  - Interpretability explainable prediction
  - Fast training with the trade-off of storage

#### • Corns:

Man this could be very slow

## Lazy vs. Eager Learning

- Lazy vs. eager learning
  - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
  - Eager learning (the above discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting

# Bayesian Classification

$$P(B|A) = \frac{P(A|B) \times P(B)}{P(A)}$$

Given a person **X** is (age <=30, Income = medium, Student = yes Credit\_rating = Fair)

Predicts X belongs to class  $C_i$  iff the probability  $P(C_i|X)$  is the highest among all the  $P(C_i|X)$  for all classes.

| age  | income | student | credit_rating | buy |
|------|--------|---------|---------------|-----|
| <=30 | high   | no      | fair          | no  |
| <=30 | high   | no      | excellent     | no  |
| 3140 | high   | no      | fair          | yes |
| >40  | medium | no      | fair          | yes |
| >40  | low    | yes     | fair          | yes |
| >40  | low    | yes     | excellent     | no  |
| 3140 | low    | yes     | excellent     | yes |
| <=30 | medium | no      | fair          | no  |
| <=30 | low    | yes     | fair          | yes |
| >40  | medium | yes     | fair          | yes |
| <=30 | medium | yes     | excellent     | yes |
| 3140 | medium | no      | excellent     | yes |
| 3140 | high   | yes     | fair          | yes |
| >40  | medium | no      | excellent     | no  |

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

P(buy = yes | age  $\leq$  30  $\wedge$  medium  $\wedge$  student  $\wedge$  fair)

P(buy = no | age  $\leq$  30  $\wedge$  medium  $\wedge$  student  $\wedge$  fair)

## Naïve Bayesian Classifier An Example

```
P(C_i): P(buys_computer = "yes") = 9/14 = 0.643
P(buys_computer = "no") = 5/14= 0.357
```

#### Compute $P(X|C_i)$ for each class

```
P(age = "<=30" \mid buys\_computer = "yes") = 2/9 = 0.222 \\ P(age = "<=30" \mid buys\_computer = "no") = 3/5 = 0.6 \\ P(income = "medium" \mid buys\_computer = "yes") = 4/9 = 0.444 \\ P(income = "medium" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(student = "yes" \mid buys\_computer = "yes) = 6/9 = 0.667 \\ P(student = "yes" \mid buys\_computer = "no") = 1/5 = 0.2 \\ P(credit\_rating = "fair" \mid buys\_computer = "yes") = 6/9 = 0.667 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "no") = 2/5 = 0.4 \\ P(credit\_rating = "fair" \mid buys\_computer = "fair" \mid buys\_compu
```

X = (age <= 30, income = medium, student = yes, credit\_rating = fair)

```
 P(X|C_i) : P(X|buys\_computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044 \\ P(X|buys\_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019 \\ P(X|C_i) * P(C_i) : P(X|buys\_computer = "yes") \times P(buys\_computer = "yes") = 0.028 \\ P(X|buys\_computer = "no") \times P(buys\_computer = "no") = 0.007
```

Therefore, X belongs to class ("buys\_computer = yes")

| age  | income | student | credit_rating | _com |
|------|--------|---------|---------------|------|
| <=30 | high   | no      | fair          | no   |
| <=30 | high   | no      | excellent     | no   |
| 3140 | high   | no      | fair          | yes  |
| >40  | medium | no      | fair          | yes  |
| >40  | low    | yes     | fair          | yes  |
| >40  | low    | yes     | excellent     | no   |
| 3140 | low    | yes     | excellent     | yes  |
| <=30 | medium | no      | fair          | no   |
| <=30 | low    | yes     | fair          | yes  |
| >40  | medium | yes     | fair          | yes  |
| <=30 | medium | yes     | excellent     | yes  |
| 3140 | medium | no      | excellent     | yes  |
| 3140 | high   | yes     | fair          | yes  |
| >40  | medium | no      | excellent     | no   |

## Naïve Bayesian – Decision Boundary



## Naïve Bayesian Classifier: Comments

- Advantages
  - Easy to implement
  - Reasonably good results obtained in most of the cases
- Disadvantages
  - Assumption: class conditional independence, therefore loss of accuracy
  - Practically, dependencies exist among variables
    - E.g., hospitals: patients: Profile: age, family history, etc.
    - Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
    - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?
  - Bayesian Belief Networks