✓ 1. Thu thập dữ liệu hệ thống (Data Collection – Logging Phase)

Ghi lại hành vi hệ thống để tạo dữ liệu huấn luyện cho mô hình offline.

Dữ liệu cần thu thập:

- CPU usage
- Memory usage
- · Process priority
- IO wait time
- · Context switches
- Scheduling decisions (nếu có)

X Công cụ đề xuất:

- perf , dstat , vmstat , iotop , pidstat , top
- Tự ghi log bằng script Python/Bash hoặc eBPF tracing

Lưu ý:

- Đảm bảo các log có timestamp, tiến trình liên quan và nhãn "đúng" (nếu dùng supervised learning).
- Có thể bắt đầu từ việc chạy hệ thống Linux thật, sinh dữ liệu từ các workload benchmark (vd: stress-ng, sysbench).

2. Huấn luyện mô hình Machine Learning offline (Offline ML Training)

Dựa trên dữ liệu log ở bước 1, huấn luyện một mô hình dự đoán chính sách hệ thống (vd: phân loại tiến trình cần ưu tiên CPU).

★ Mô hình đề xuất:

- Gradient Boosting (XGBoost, LightGBM)
- Hoặc Random Forest, Decision Tree

X Công cụ:

• scikit-learn , xgboost , lightgbm , pandas , matplotlib

🔷 Lưu ý:

- Dùng mô hình này như baseline policy
- Mô hình phải nhẹ và dễ chuyển thành inference trong C/C++ nếu muốn tích hợp kernel module (hoặc convert sang ONNX/TFLite)

3. Tạo môi trường tương tác cho Reinforcement Learning (RL Environment)

Xây dựng môi trường mô phỏng hệ thống (hoặc thật) để RL agent có thể "chơi thử", học cách ra quyết định tối ưu.

🔃 Nôi dung cần xây dưng:

- Observation: [CPU usage, RAM usage, Priority,...]
- Action: thay đổi scheduler (ưu tiên tiến trình, preempt, delay...)
- Reward: throughput cao, latency thấp, CPU idle ít → càng tốt

X Công cụ:

- OpenAl Gym (hoặc gymnasium)
- Viết CPUSchedulerEnv custom class
- Mô phỏng nhỏ nếu chưa gắn thật vào kernel

Lưu ý:

- Reward function là chìa khóa → bạn phải thiết kế nó phản ánh mục tiêu hệ thống (hiệu suất, công bằng, tiết kiệm điện...)
- Có thể khởi tạo RL agent với policy từ bước 2 (warm start)

4. Chạy RL agent và tối ưu chính sách (RL Training & Fine-tuning)

Agent học cách tối ưu lịch trình hoặc phân bổ tài nguyên thông qua tương tác.

★ Thuật toán RL nên dùng:

- PPO (Proximal Policy Optimization)
- **DQN** (Deep Q-Network)
- A2C / A3C (nếu cần song song hóa)

X Công cụ:

- stable-baselines3 (Python)
- ray[rllib] nếu muốn huấn luyện phân tán
- torch hoặc tensorflow để build custom agent

🔷 Lưu ý:

- Có thể dùng mô hình từ bước 2 như no (baseline policy), rồi RL cải tiến dần
- Mô hình sau khi huấn luyện có thể:
 - Dùng trong môi trường ảo để benchmark
 - Chuyển sang mô-đun kernel (ONNX, C/C++, hoặc TinyML)

🧩 Tổng quan pipeline

```
text CopyEdit [Workload or Simulated System] \downarrow [Log Telemetry Data (Step 1)] \downarrow [Train Gradient Boosting Model (Step 2)] \rightarrow \pi_0 \downarrow [Design RL Env (Step 3)] + \pi_0 \downarrow [Train RL Agent (Step 4)] \downarrow [Deploy into kernel or monitor system impact]
```