Zadanie: MRAC vstupno-výstupný

Riadny termín odovzdania: do 18.05.2020 00:00

Odovzdanie po riadnom termíne sa pokutuje odčítaním bodov od výsledného hodnotenia. Za každý začatý deň po riadnom termíne sa odčítajú 3 body.

- 1. deň po riadnom termíne: H-3 body,
- 2. deň po riadnom termíne: H-6 body.
- 3. deň po riadnom termíne: H-9 bodov,
- 4. deň po riadnom termíne: H 12 bodov,
- 5. deň po riadnom termíne: H-15 bodov,

kde H je počet bodov pridelených referátu, H ako hodnotenie. Šesť a viac dní po riadnom termíne už nie je možné referát odovzdať a študent/študentka získa 0 bodov. Minimálny počet bodov za referát je 0 bodov. Maximálny počet bodov za referát je 20 bodov.

Znenie zadania

Navrhnite adaptívny riadiaci systém pre riadenie kurzu nákladnej lode. Riadenou (výstupnou) veličinou je kurz (uhol otočenia) lode, pričom táto veličina je merateľná a akčným zásahom je výchylka (uhol) kormidla. Pri návrhu využite prístup, ktorého základom je Lyapunovova teória stability. Vypracujte referát o návrhu adaptívneho riadiaceho systému pre riadenie kurzu nákladnej lode.

Pohyb lode opisuje diferenciálna rovnica v tvare [1]²

$$\ddot{\varphi}(t) + \left(\frac{\tau_1 + \tau_2}{\tau_1 \tau_2}\right) \ddot{\varphi}(t) + \left(\frac{1}{\tau_1 \tau_2}\right) \dot{\varphi}(t) = \frac{K}{\tau_1 \tau_2} \left(\tau_3 \dot{\delta}(t) + \delta(t)\right) \tag{1}$$

kde φ je uhol natočenia lode v radiánoch (azimut, kurz lode), δ je uhol vychýlenia kormidla v radiánoch. Parametre v rovnici (1) sú definované nasledovne

$$K = K_0 \frac{v}{L} \tag{2}$$

$$K = K_0 \frac{v}{L}$$

$$\tau_i = \tau_{i0} \frac{L}{v}$$

$$i = 1, 2, 3$$
(2)

kde v je rýchlosť lode v smere danom uhlom φ v metroch za sekundu, L je dĺžka lode v metroch a K_0 , τ_{10} , τ_{20} , τ_{30} sú konštanty závislé na veľkom množstve faktorov (typ lode atď.).

Požiadavky na dynamiku kormidlovania nákladnej lode nech sú definované referenčným modelom v tvare prenosovej funkcie:

$$\frac{y_m(s)}{r(s)} = \frac{0,0025}{s^2 + 0,1s + 0,0025} \tag{4}$$

kde r je referenčný kurz a y_m je požadovaná reakcia lode. Cieľom riadenia je zabezpečiť aby sa reakcia lode na referenčný signál zhodovala s reakciou referenčného modelu.

Pri simulačnom overovaní navrhnutého riadiaceho systému použite periodický referenčný signál s amplitúdou 5°, s periódou z intervalu 500 až 1000 sekúnd a so

¹Prvý deň po termíne odovzdania plynie, samozrejme, v pondelok 18.05.2020.

²http://www2.ece.ohio-state.edu/~passino/FCbook.pdf

sínusovým, obdĺžnikovým alebo pílovitým tvarom. Číselné hodnoty parametrov pre simulačný model lode sú:

$$L = 161$$

$$K_0 = -3,86$$

$$\tau_{10} = 5,66$$

$$\tau_{20} = 0,38$$

$$\tau_{30} = 0,89$$

$$v = 5$$

Literatúra

 $[\mbox{\sc i}]$ K. M. Passino and S. Yurkovich. Fuzzy Control. Addison Wesley Longman, Inc., 1998.