🖈 ثبت نام (/register) 🚨 ورود

(ار) (مرکز علوم مدیریت) (۱)

Menu **≡**

Home (/) تحلیل داده ها تصمیم گیری چند معیاره (/تحلیل-داده/تصمیم-گیری-چند-معیاره) لینک ها (/لینک-ها) آموزش ahp فازی (/لینک-ها/717-آموزش-ahp-فازی)

فازک Ahp اموزش

روش AHP فازی

مرحله 1: رسم نمودار سلسله مراتبی

مرحله 2: تعریف اعداد فازی به منظور انجام مقایسات زوجی

مرحله 3: تشكيل ماتريس مقايسات زوجي

مرحله 4: محاسبه ي S_i براي هر يک از سطرهاي ماتريس مقايسه زوجي

اگر اعداد فازي به صورت مثلثی باشد، به صورت $(l_i$, m_i , u_i نشان داده می شود در این صورت:

$$S_{i} = \sum_{j=1}^{m} M_{gi}^{j} \times \left[\sum_{i=1}^{n} \sum_{j=1}^{m} M_{gi}^{j} \right]^{-1}$$

$$\textstyle \sum_{j=1}^m \mathsf{M}_{\mathsf{gi}}^{\mathsf{j}} = \left(\sum_{j=1}^m l_j \;, \sum_{j=1}^m m_j \;, \sum_{j=1}^m u_j \;\right)$$

$$\textstyle \sum_{i=1}^n \sum_{j=1}^m \mathsf{M}_{\mathsf{gi}}^j = (\sum_{i=1}^n l_i \,, \sum_{i=1}^n m_i \,, \sum_{i=1}^n u_i \,)$$

$$\left[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathsf{M}_{\mathsf{gi}}^{\mathsf{j}} \right]^{-1} \! = \! \left(\! \frac{1}{\sum_{i=1}^{n} u_{i}} \; , \! \frac{1}{\sum_{i=1}^{n} m_{i}} \; , \! \frac{1}{\sum_{i=1}^{n} l_{i}} \! \right)$$

مرحله 5: محاسبه ي درجه بزرگي S نسبت به همديگر.

$$\text{V(M$_2$>M_1)$=hgr($M$_1$\capM_2)$=$\mu_{M_2}$($d$)$=} \begin{cases} 1 & if \ m_2 \geq m_1 \\ 0 & if \ l_1 \geq u_2 \\ \frac{(l_1-u_2)}{(m_2-u_2)-(m_1-l_1)} & otherwise \end{cases}$$

مرحله 6: محاسبه ي وزن معيارها و گزينه ها در ماتريس مقايسات زوجي

مرحله 7: محاسبه وزن بردار نهایی

مثال: رتبه بندي سـه فرودگاه بين المللی با استفاده از 4 شاخص به روش فرآيند تحليل سلسـله مراتبی فازي مرحله اول: رسـم نمودار سـلسـله مراتبی

مرحله دوم: تعریف اعداد فازی به منظور انجام مقایسات زوجی

فازی ahp آموزش

بسیار موافقم(بسیار زیاد)	۵	(عو۵و۴)
موافقم(زیاد)	۴	(۵و۴و۳)
متوسط	٣	(۴و۳و۲)
مخالفم(کم)	۲	(۳و۲و۱)
بسیار مخالفم(بسیار کم)	١	(۱و۱و۱)

معکوس این اعداد برای استفاده در ماتریس مقایسات زوجی به صورت زیر است:

بسیار موافقم(بسیار زیاد)	٠.٢	(۲۵. ۰و۲. ۰و۲. ۲۶۶ (۲۰. ۲۵)
موافقم(زیاد)	۵۲.۰	(۳۳. ۰و۲۵. ۰و۲. ۰)
متوسط	۰.۳۳	(۵. ۰و۳۳. ۰و۲۵. ۰)
مخالفم(کم)	۵. ۰	(١و۵.٥و٣٣.٠)
بسیار مخالفم(بسیار کم)	١	(1و(و()

مرحله 3: تشكيل ماتريس مقايسات زوجي

مرحله 4: محاسبه ي S_l براي هر يک از سطرهاي ماتريس مقايسه زوجى

$$\textstyle \sum_{j=1}^m \mathsf{M}_{\mathsf{gi}}^{\mathsf{j}} = \left(\sum_{j=1}^m l_j \;, \sum_{j=1}^m m_j \;, \sum_{j=1}^m u_j \;\right)$$

$$\sum_{i=1}^n \sum_{j=1}^m \mathsf{M}_{\mathsf{gi}}^j = (\sum_{i=1}^n l_i \,, \sum_{i=1}^n m_i \,, \sum_{i=1}^n u_i \,)$$

$$\left[\sum_{i=1}^{n} \sum_{\mathrm{j=1}}^{\mathrm{m}} \mathsf{M}_{\mathrm{gi}}^{\mathsf{j}} \right]^{-1} \! = \! \left(\! \frac{1}{\sum_{i=1}^{n} u_{i}} \; , \! \frac{1}{\sum_{i=1}^{n} m_{i}} \; , \! \frac{1}{\sum_{i=1}^{n} l_{i}} \! \right)$$

مرحله 5: محاسبه ي درجه بزرگی S_i ها نسبت به همديگر

$$\text{V(M}_2 > \text{M}_1) = \text{hgr}(\text{M}_1 \cap \text{M}_2) = \mu_{M_2}(d) = \begin{cases} 1 & \text{if } m_2 \geq m_1 \\ 0 & \text{if } l_1 \geq u_2 \\ \frac{(l_1 - u_2)}{(m_2 - u_2) - (m_1 - l_1)} & \text{otherwise} \end{cases}$$

مرحله 6: محاسبه ي وزن معيارها و گرينه ها در ماتريس مقايسات زوجی 1) ماتريس مقايسات زوجی معيارها

	ايمنى پرواز	رفتار خدمه	زمانبندی پرواز	امکانات رفاهی	
ايمنى پرواز	((1و(و()	(۳۳. ۰و۵. ۰و۱)	(۳و۲و۱)	(۴و۳و۲)	(٩و٥.٤و۴.٣٣)
رفتار خدمه	(۳و۲و۱)	(19191)	(۵و۴و۳)	(٣و٢و١)	(۱۲ووع)
زمانبندی پرواز	(١و٥.٠و٣٣)	(۳۳. ۱۰ و ۲۵. ۱۰ و ۲۰.۲)	(1و1و1)	(١و٥.٠و٣٣.٠)	(۳۳.۳و۲.۲۵و۲.۸۷)
امكانات رفاهي	(۵. ۰ و ۳۳. ۰ و ۲۵. ۰)	(١ و٥.٠ و٣٣.٠)	(۳و۲و۱)	(19191)	(۵.۵و ۸۳.۳و ۸۵.۲)

$$\textstyle \sum_{i=1}^n \sum_{j=1}^m \mathsf{M}_{\mathsf{g}i}^j = \; (\texttt{NF.VA}_{\texttt{g}} \texttt{YN.GA}_{\texttt{g}} \texttt{YN.GA}_{\texttt{g}} \texttt{YN.GA}_{\texttt{g}}$$

$$\left[\sum_{i=1}^{n}\sum_{j=1}^{m}\mathsf{M}_{\mathsf{g}i}^{j}\right]^{-1} = (\cdot.\mathtt{TTA}_{9}\cdot.\mathtt{FFT}_{9}\cdot.\mathtt{FYY})$$

 $\mathbf{S}_{1} = (\texttt{F}.\texttt{TT}_{9} \texttt{F}.\texttt{O}_{9} \texttt{P}) * (\texttt{P}.\texttt{TT}_{9} \cdot \texttt{PT}_{9} \cdot \texttt{PY}) = (\texttt{F}.\texttt{TT}_{9} \cdot \texttt{PT}_{9} \cdot \texttt{PY}) = (\texttt{F}.\texttt{TT}_{9} \cdot \texttt{PT}_{9} \cdot \texttt{PY}_{9})$

S_1	(۶۱، و ۳۰ و ۱۴، ۰)
S_2	(۸۱. ۰و۴۲. ۰و ۲۰. ۰)
S_3	(۲۳. ۰و ۱۰ .و ۲۰.۰۶)
S ₄	(۳۷.۰و۸۱.۰و۹۰.۰)

V(S1>S2)	V(S1>S3)	V(S1>S4)	V(S2>S1)	V(S2>S3)	V(S2>S4)
0.779	1	1	1	1	1

V(S3>S1)	V(S3>S2)	V(S3>S4)	V(S4>S1)	V(S4>S2)	V(S4>S3)
0.289	0.072	0.654	0.647	0.417	1

	ايمنى پرواز	رفتار خدمه	زمانیندی پرواز	امكانات رفاهى
وزن نرما <u>ل</u> نشده	0.779	1	0.072	0.417
وزن نرما <u>ل</u> شده	0.343	0.441	0.032	0.184

2) ماتریس مقایسات زوجی گزینه ها

معيار ايمنى پرواز	EMIRATES	TG	QATAR	$\sum_{j=1}^{m} M_{gi}^{j}$
EMIRATES	(19191)	(۳و۲و۱)	(19191)	(۵و۴و۳)
TG	(١و٥.٠و٣٣.٠)	(1و1و1)	(١و۵.٠و٣٣.٠)	(٣و٢و٢٠٧)
QATAR	(1و1و1)	(۳و۲و۱)	(1و1و1)	(۵و۴و۳)

$$\sum_{i=1}^{n} \sum_{j=1}^{m} M_{gi}^{j} = (r_{9}r_{9}\Delta) + (1.5r_{9}r_{9}) + (r_{9}r_{9}\Delta) = (7.5r_{9}) + (7.5r_{$$

$$\left[\sum_{i=1}^{n} \sum_{j=1}^{m} M_{gi}^{j}\right]^{-1} = \left(\frac{1}{13}, \frac{1}{10}, \frac{1}{7.67}\right) = (\cdot. \forall \forall_{9} \cdot . \forall_{9} \cdot . \forall \gamma)$$

S ₁	(۶۵. ۰و۴. ۰و۲۳. ۰)
S_2	(۳۹. ۰و ۲. ۰و ۱۳. ۰)
S_3	(۶۵.۰و۴.۰و۳۲.۰)

V(S1>S2)	V(S1>S3)	V(S1>S4)	V(S2>S1)	V(S2>S3)	V(S2>S4)	V(S3>S1)	V(S3>S2)	V(S3>S4)
1	1	1	0.445269	0.44526902	1	1	1	1

ايمنى پرواز	EMIRATES	TG	QATAR
وزن نرمال نشدہ	1	0.445	1
وزن نرمال شدہ	0.409	0.182	0.409

معيار رفتار خدمه	EMIRATES معيار		QATAR	
EMIRATES	(19191)	(۴و۳و۲)	(١و٥.٠و٣٣.٠)	(عو۵.4و۳.۳۳)
TG	(۵. ۰و ۳۳. ۰و ۲۵. ۰)	(اواوا)	(۳۳. ۰و۲۵ . ۰و۲. ۰	(۱.۸۳ و ۱۵۸ و ۱.۴۵)
QATAR	(۳و۲و۱)	(۵و۴و۳)	(19191)	(٩و٧و۵)

$$\textstyle \sum_{i=1}^{n} \sum_{j=1}^{m} \mathsf{M}_{\mathsf{gi}}^{\mathsf{j}} = \, (9.7 \lambda_{9}) \, 7... \lambda_{9} \, 18. \lambda_{9} \, 19. \lambda_{9} \,$$

$$\left[\sum_{i=1}^{n}\sum_{j=1}^{m}\mathsf{M}_{\mathsf{gi}}^{\mathsf{j}}\right]^{-1} = (\cdots \mathcal{S}_{\mathfrak{g}}\cdots \mathcal{S}_{\mathfrak{g}}\cdots$$

فازى ahp آموزش

V(S1>S2		V(S1>S4	V(S2>S1	V(S2>S3	V(S2>S4	V(S3>S1	V(S3>S2	V(S3>S4
)	V(S1>S3))))))))
	0.62336416							
1	5	1	0	0	1	1	1	1

رفتار خدمه	EMIRATES	TG	QATAR
وزن نرمال نشدہ	0.623	0	1
وزن نرمال شدہ	0.384	0	0.616

معیار زمانبندی پرواز	EMIRATES	TG	QATAR	
EMIRATES	(1و1و1)	(۳و۲و۱)	(۴و۳و۲)	(٨وعو۴)
TG	(۱و۵.۰و۳۳.۰)	(۱و۱و۱)	(۳و۲و۱)	(۵و۳.۵و۳۳.۲)
QATAR	(۵. ۰ و ۳۳. ۰ و ۲۵. ۰)	(۱و۵.۰و۳۳.۰)	(اواوا)	(۵.۲ و ۱.۵۸ و ۱.۵۸)

$$\textstyle \sum_{i=1}^n \sum_{j=1}^m \mathsf{M}_{\mathsf{g}i}^j = \; (\texttt{V.9T}_{9} \texttt{N.TT}_{9} \texttt{N} \texttt{\Delta.} \texttt{\Delta})$$

$$\left[\sum_{i=1}^{n}\sum_{j=1}^{m}\mathsf{M}_{\mathsf{gi}}^{\mathsf{j}}\right]^{-1} = (\cdots \mathcal{S}_{\mathfrak{g}}\cdots \mathcal{S}_{\mathfrak{g}}\cdots \mathcal{S}_{\mathfrak{g}}\cdots \mathcal{S}_{\mathfrak{g}})$$

S_1	(۱.۰۱و ۵۳. و ۲۶. ۰)
S_2	(۶۳. ۰و ۳۱. ۰و ۱۵. ۰)
S ₃	(۲۲. ۰ و ۱۶. ۰ و ۱۰. ۰

V(S1>S2)	V(S1>S3)	V(S1>S4)	V(S2>S1)	V(S2>S3)	V(S2>S4)	V(S3>S1)	V(S3>S2)	V(S3>S4)
1	1	1	0.629	1	1	0.136	0.529	1

زمانبندی پرواز	EMIRATES	TG	QATAR
وزن نرمال نشدہ	1	0.629	0.136
وزن نرمال شدہ	0.567	0.356	0.0769

معيار امكانات رفاهى	EMIRATES	TG	QATAR	
EMIRATES	(19191)	(19191)	(۳و۲و۱)	(۵و۴و۳)
TG	(1و1و1)	(1و1و1)	(۳و۲و۱)	(۵و۴و۳)
QATAR	(۱و۵.۰و۳۳.۰)	(١و٥.٠و٣٣.٠)	(19191)	(۳و۲و۲۶۷)

$$\textstyle \sum_{i=1}^n \sum_{j=1}^m \mathsf{M}_{\mathsf{g}i}^j = \; (\forall \mathcal{S} \forall_{\mathfrak{g}} \; \mathsf{N}_{\mathfrak{g}} \mathsf{N}_{\mathfrak{g}})$$

$$\left[\sum_{i=1}^{n}\sum_{\mathsf{j}=1}^{m}\mathsf{M}_{\mathsf{gi}}^{\mathsf{j}}\right]^{-1} = (\cdots \land_{\mathfrak{g}}\cdots \land_{\mathfrak{g}}\cdots \land_{\mathfrak{g}}\cdots \land_{\mathfrak{g}})$$

S_1	
S_2	
S_3	(۳۹. ۰و۲. ۰و۳۲. ۰)

V(S1>S2)	V(S1>S3)	V(S1>S4)	V(S2>S1)	V(S2>S3)	V(S2>S4)	V(S3>S1)	V(S3>S2)	V(S3>S4)
1	1	1	1	1	1	0.445	0.445	1

11/11/2017 فازی ahp آموزش

امكانات رفاهي	EMIRATES	TG	QATAR
وزن نرمال نشدہ	1	1	0.445
وزن نرمال شده	0.409	0.409	0.182

مرحله 7: محاسبه وزن بردار نهایی

این مرحله مانند تعیین وزن نهایی در فرآیند تحلیل سلسله مراتبی کلاسیک است.

$$W_1 = (0.343*0.409) + (0.411*0.384) + (0.032*0.567) + (0.184*0.409) = 0.403$$

$$W_2 = (0.343*0.182) + (0.411*0) + (0.032*0.356) + (0.184*0.409) = 0.149$$

$$W_3 = (0.343*0.409) + (0.411*0.616) + (0.032*0.769) + (0.184*0.182) = 0.448$$

دارای بیشترین مقدار می باشد. بنابراین هواپیمایی قطر در بین سه گزینه رتبه اول را کسب کرد. W_3

هادی شیرویه زاد

(google_plus#/) (twitter#/) (facebook#/) %2Fwww.ariamodir.com%2F%D9%84%DB%8C%D9%86%DA%A9-) %D8%B2%D8%B4-ahp-%D9%81%D8%A7%D8%B2%DB%8C%2F728-%D8%A2%D9%85%D9%88%D8%B2%D8%B4-ahp-3%D8%B2%D8%B4%20ahp%20%D9%81%D8%A7%D8%B2%DB%8C

تحلیل داده های آماری (تحلیل همبستگی و رگرسیون و آزمون های ناپارمتریک و ...) با نرم افزار spss تحليل عاملی تاييدی و مدل معادلات ساختاری با نرم افز ارهایLISREL و AMOS شناسایی و اولویت بندی شاخص ها به کمک روش های تصمیم گیری چند معیاره مانند AHP و ANP شناسایی روابط درونی میان شاخص ها با استفاده از روش DEMATEL اولویت بندی گزینه ها با استفاده از روش هایTOPSIS و VIKOR محاسبه میزان کارایی واحدها با استفاده از روش تحلیل پوششی داده ها DEA روش های فرا ابتکاری مانند الگوریتم ژنتیک، شبکه های عصبی و ... انجام پروژه های داده کاوی با نرم افزارهای Rapid Miner و ...

کپی برداری از مطالب سایت برای مقاصد تجاری بدون نام " آریا مدیر " ممنوع است : طراحی و توسعه توسط http://mtnweb2.ir//)

(http://www.webgozar.com/stats/3385696)

