Fontes principais

1. E. Cáceres, H. Mongeli, S. Song: Algoritmos paralelos usando CGM/PVM/MPI: uma introdução http://www.ime.usp.br/~song/papers/jai01.pdf

Modelos Realísticos

Modelos Realísticos

Anos 80: crise na área de computação paralela

- > Resultados desapontadores, quando implementados em máquinas reais.

Modelos Realísticos

Anos 90: Surgem os modelos computação de granularidade grossa

- ▷ BSP Bulk Synchronous Parallel Model.

O modelo BSP (Bulk Synchronous Parallel) foi proposto por Valiant em 1990

- ⊳ Foi um dos primeiros modelos a considerar custo de comunicação.

Um algoritmo BSP consiste de:

- - o passos de computação (computações locais), e;
- o passos de comunicação (através da transmissão e recebimentos de mensagens).

O modelo possui os seguintes parâmetros:

- $\triangleright n$: tamanho do problema;
- $\triangleright p$: número de processadores disponíveis, cada um com sua memória local;
 - $\triangleright L$: tempo mínimo de um superpasso (latência);
 - $\triangleright g$: taxa de eficiência da computação/comunicação.

Custo (superpasso
$$i$$
): w_i+gh_i+L , $w_i=\{L,t_1,t_2,\cdots,t_p\}$ e $h_i\{L,c_1,c_2,\cdots,c_p\}$

Custo Total:
$$W+gH+L$$
, $W=\sum_{i=0}^T w_i$ e $H=\sum_{i=0}^T h_i$, onde T é o número de superpassos

O modelo CGM foi proposto por Frank Dehne e é derivado do BSP. O CGM é definido em apenas dois parâmetros:

- 1. n: tamanho do problema
- 2. p: número de processadores P_1, P_2, \dots, P_p , cada um com uma memória local de tamanho O(n/p).

Um algoritmo CGM consiste de uma sequência alternada de **ro-dadas de computação** e **rodadas de comunicação** separadas por uma barreira de sincronização.

Na fase de comunicação quantidade de dados trocados por cada processador deve ser O(n/p).

O objetivo de um algoritmo CGM é minimizar o número de superpassos e a quantidade de computação local.

Seja A um vetor de ordem n, considere o problema de computar a soma $S = A(1) + \cdots + A(n-1)$ no modelo com p processadores, onde p << n.

Seja r=n/p. A é particionado como segue: $A=(A_1,A_2,\cdots,A_{p-1})$, onde cada A_i tem tamanho r.

Para determinar a soma S, cada processador P_i computa a i-ésima soma parcial $s_i = A_i((i-1)r+1) + \cdots + A_i(ir)$, para $1 \le i \le p$, e envia s_i , através de uma mensagem, para o processador P_1 , que computa o total das somas parciais.

Entrada:(1) O número do processador i; (2) O número p de processadores; (3) O i-ésimo sub-vetor B = A((i-1)r + 1 : ir) de tamanho r, onde r = n/p.

Saída: Processador P_i calcula o valor $S = s_1 + \cdots + s_i$ e envia o resultado para P_1 . Quando o algoritmo termina, P_1 terá a soma S.

Algoritmo

```
1 z := B[1] + \cdots B[r]
```

2 se i = 1 então S := zsenão $envia(z, P_1)$

```
3 se i=1 então

para i:=2 até p faça

recebe(z,P_i)

S:=S+z
```

Complexidade:

- ightharpoonup Passo 1: Cada P_i efetua r operações.
- \triangleright Passo 2: P_1 efetua uma operação e os demais processadores P_i enviam uma mensagem.
 - \triangleright Passo 3: P_1 recebe p-1 mensagens e efetua p-1 operações.

Complexidade:

- \triangleright Tempo de computação: O(n/p)
- $ightharpoonup P_1$ recebe p-1 mensagens, todas no mesmo superpasso(BSP) ou rodada(CGM), logo o algoritmo utiliza O(1) rodadas de comunicação.

A solução do problema de soma de prefixos no modelo BSP/CGM é semelhante ao da soma de n números.

A idéia é o de dividir a entrada em p (número de processadores) subconjuntos, cada um com n/p elementos e distribuir esses subconjuntos entre os processadores (um subconjunto para cada processador).

Entrada: (1) O número do processador i; (2) O número p de processadores; (3) O i-ésimo sub-vetor B = A((i-1)r + 1 : ir) de tamanho r, onde r = n/p.

Saída: Cada processador P_i contém o valor das somas de prefixos S[(i-1)*r+j], $1 \le j \le n/p$

Algoritmo

- $1 \quad s_i := B[1] + \cdots B[r]$
- 2 $broadcast(s_i, p_j \neq i)$
- 3 $S[(i-1)*r] := s_1 + \cdots + s_{i-1}$
- 4 para k := 1 até r faça

$$S[(i-1)*r+k] := S[(i-1)*r+k-1] + B[k]$$

Complexidade:

- \triangleright Passo 1: Cada P_i efetua r operações.
- ightharpoonup Passo 2: Os processadores executam um *broadcast* de s_i para os demais processadores. Essa comunicação pode ser feita em uma única rodada de comunicação.
- \triangleright Passo 3: Cada processador calcula o valor da soma dos A(1:(i-1)r) elementos do vetor.
- \triangleright Passo 4: Utiliza o valor computado no passo 3 para calcular as somas dos prefixos dos A((i-1)r+1:ir) elementos do vetor A.

Complexidade:

- \triangleright Tempo de computação: O(n/p)
- ightharpoonup Cada processador P_i tem que receber p-1 mensagens, todas no mesmo superpasso(BSP) ou rodada(CGM), logo o algoritmo utiliza O(1) rodadas de comunicação.

Algoritmo de ordenação no BSP/CGM

Algoritmo de ordenação split sort no BSP/CGM

O algoritmo $split\ sort$, ou ordenação por divisão, consiste em dividir um conjunto de números em cestos, e distribuir os cestos de forma adequada, para que se possa ordenar n números divididos em p processadores, utilizando O(1) rodadas de comunicação para $\frac{n}{p} \geq p^2$

Algoritmo de ordenação split sort no BSP/CGM

Na divisão dos cestos, utilizamos a idéia de calcular um conjunto de separadores (*splitters*), denominados de p-quartis, baseado no cálculo de medianas de um conjunto de elementos.

Algoritmo de ordenação split sort no BSP/CGM

Entrada: (1) Um vetor A com n elementos. (2) p processadores $p_0, p_1, p_2 \cdots, p_{p-1}$. (3) Os elementos do vetor A são distribuídos entre os p processadores (n/p elementos por processador).

Saída: Todos os elementos ordenados dentro de cada processador e por processador, ou seja, se i < j, temos que os elementos em p_i são menores que os elementos pertencentes a p_i .

Algoritmo

- 1 Compute um conjunto divisor $S = \{s_1, s_2, \dots, s_{p-1}\}$
- 2 $broadcast(S, p_i) > p_0$ envia S para todos os processadores
- 3 Particionar os elementos de p_i em buckets B_i^i de acordo com S
- 4 $envia(B^i_j,p_j)
 ightharpoonup$ cada processador P_i envia B^i_j para p_j , $1 \leq i,j \leq p$
- 5 Ordene $B_i^k = B_i^0 \cup B_i^1 \cup \dots \cup B_i^{p-1}$

É fácil veriricar que este algoritmo ordena qualquer entrada, visto que não foi efetuado nenhuma restrição ao tamanho dos buckets.

Como no modelo CGM temos que cada processador tem O(n/p) memória local, devemos escolher cuidadosamento o conjunto S, pois isso influenciará no tamanho dos buckets.

Vamos apresentar um algoritmo CGM para computar o conjunto S (conjunto splitter), que utiliza apenas O(p) espaço de memória por processador.

O método divide a entrada em p subconjuntos de mesmo tamanho como segue.

Definição 1. A **mediana** de um conjunto ordenado de n números é o (n+1)/2-ésimo elemento de n para n ímpar ou a média do n/2-ésimo com (n+1)/2-ésimo elemento para n par.

Split sort no BSP/CGM

Definição 2. Os **p**-quartis de um conjunto ordenado A de tamanho n são os p-1 elementos, de índice $\frac{n}{p}, \frac{2n}{p}, \cdots, \frac{(p-1)n}{p}$, que dividem A em p partes de igual tamanho.

Os p-quartis podem ser facilmente computados de forma sequencial usando um algoritmo recursivo em tempo $O(n \log p)$

Algoritmo p-quartis sequencial

Entrada: (1) Um vetor A com n elementos. (2) p o número de

quartis

Saída: O conjunto A dividido em p-quartis

Algoritmo p-quartis sequencial

Algoritmo

- 1 Compute a mediana de A
- 2 Usando a mediana, divida A em dois subconjuntos $A_{f 1}$ e $A_{f 2}$
- 3 Aplique o algoritmo recursivamente, até que p-1 splitter sejam encontrados

Entrada: (1) Um vetor A com n elementos. (2) p processadores p_0, p_1, \dots, p_{p-1} (3) Os elementos do vetor A são distribuídos entre os p processadores (n/p elementos por processador)

Saída: O conjunto A dividido em p-quartis

Algoritmo

1 $Q_i := p - quartis(A_i) \triangleright$ Cada processador p_i calcula \triangleright sequencialmente seus p - quartis2 $envia(Q_i, p_0) \triangleright$ Todos os processador p_i enviam Q_i para p_0 3 $\mathbf{se}\ i = 0\ \mathbf{então}\ S := Ordena(Q_0 \cup Q_1 \cup \cdots \cup Q_{p-1})$ 4 $broadcast(S, p_i)$

Algoritmo split-sort no Modelo BSP/CGM

Complexidade:

- ightharpoonup Tempo de computação local: $O(\frac{n\log p}{p})$, onde $\frac{n}{p} \geq p^2$
- \triangleright Rodadas de comunicação: O(1)

Complexidade:

- \triangleright Tempo de computação local: $O(\frac{n \log p}{p})$, onde $\frac{n}{p} \ge p^2$
- \triangleright Rodadas de comunicação: O(1)

Este tempo de computação local pode ser melhorado de tal forma que $\frac{n}{p} \geq p$

List Ranking no Modelo BSP/CGM

Seja L uma lista representada por um vetor s tal que s[i] é o nó sucessor de i na lista L, para u, o último elemento da lista L, s[u] = u. Denominamos i e s[i] por vizinhos.

A **distância** entre i e j, $d_L(i,j)$, é o número de nós entre i e j mais 1.

O problema do **list ranking** consiste em computar para cada $i \in L$, a distância entre i e o último elemento j, denotado por $dist_L(i) = d_L(i,j)$.

O número de nós da lista cujos sucessores não estão armazenados no mesmo processador pode variar de 0 a n/p.

Mesmo se todos os sucessores estiverem em um dado processador, após a aplicação da duplicação recursiva (*pointer jump-ing*), não há garantia que isto ocorra nos passos seguintes.

O número de rodadas de comunicação pode chegar a $O(\log n)$, uma vez que pode ser necessária a comunicação para obter o sucessor de um dos seus elementos.

A simples aplicação da duplicação recursiva não leva a um algoritmo CGM eficiente.

Para diminuir o número de rodadas de comunicação, a idéia é a de selecionar um conjunto de elementos $i^* \in L$ bem distribuido em L, de tal forma que a distância de qualquer $i \in L$ a i^* possa ser computada em $O(\log^k p)$ aplicações de pointer jumping.

r-ruling set

Um r-ruling set de L é um subconjunto de elementos selecionados da lista L com as seguintes propriedades:

- (1) Dois vizinhos nunca são selecionados.
- (2) A distância entre qualquer elemento não selecionado ao próximo elemento não selecionado é no máximo r.

r-ruling set

Uma lista L e um 3-ruling set.

Entrada: Uma lista ligada L de comprimento n onde cada processador armazena n/p elemento $i \in L$ e seus respectivos ponteiros $s_L[i]$.

Saída: Para cada elemento i seu $rank \ dist(i)$ em L.

- 1. Calcular $O(p^2)$ -ruling set R com |R| = O(n/p).
- 2. Fazer um *broadcast* de R para todos os processadores. O subconjunto R é uma lista ligada onde cada elemento i é atribuído um ponteiro para o próximo elemento j em R com respeito à ordem induzida por L.
- 3. Calcular sequencialmente em cada processador o List Ran-king de R, isto é, calcular para cada $j \in R$ seu $dist_L(j)$ em L

4. Obter para cada elemento $i \in L-R$ sua distância $d_L(i,s_R[i])$ ao próximo elemento $s_R[i]$ em R através da duplicação recursiva.

5. Calcular em cada processador os ranks dos seus elementos $i \in L-R$ com:

$$dist_L[i] = d_L(i, s_R[i]) + dist_L(s_R[i])$$

Para computar um $O(p^2)$ -ruling set em $O(\log p)$ rodadas de comunicação, usaremos uma técnica chamada **compressão determinística de lista**.

Na compressão determinística da lista aplica-se uma sequência alternada de fases de **compressão** e de **concatenação**.

Na fase de compressão, seleciona-se um subconjunto de elementos da lista L, utilizando um esquema de rotulação (*deterministic coin tossing*).

A fase de concatenação consiste da construção de uma lista ligada, através da duplicação recursiva, com os elementos selecionados na fase de compressão.

Um intervalo-s de comprimento k é uma sequencia $I=(i_1,i_2,\cdots,i_k)$ de elementos da lista tal que $s[i_j]=i_{j+1}$, $1\leq j\leq k-1$.

Os dois vizinhos n_1 e n_2 do intervalo-s I são tais que $s[n_1]=i_1$ e $s[i_k]=n_2$.

Um intervalo-s maximal I de elementos da lista cujos elementos estão todos no mesmo processador é dito intervalo-s local.

Um intervalo-s maximal I de elementos da lista tal que quaisquer dois elementos consecutivos não estão no mesmo processador é dito intervalo-s não-local.

O rótulo l(i), $\forall i \in L$, na fase de compressão é o número do processador p que armazena o nó i.

Neste esquema, cada elemento de L tem no máximo p rótulos distintos.

Seja $M = \{i, i+1, \dots, i+k\} \subseteq L$, tal que $l(i) \neq l(s[i])$, $\forall i \in L$, onde o s[i] é o máximo local se l(i) < l(s[i]) > l(s[s[i]]).

Selecionando apenas máximos locais não há garantia de distância menor que O(p).

Pode haver $L'=\{j,j+1,\cdots,j+k\}\subseteq L$, onde $l(s[i])=l(j), \forall j\in L'$ e k>p

Selecionamos todos os segundos elementos.

Algoritmo p^2 -ruling set

Entrada: L representada pelo vetor s.

Saída: $R \subset L$ de nós selecionados.

Algoritmo p^2 -ruling set

- (1) Cada processador localmente marca todos seus elementos como não-selecionado
- (2) Cada processador executa para cada um dos elementos armazenados:
 - (2.1) se l(i) < l(s[i]) > l(s[s[i]]) então s[i] é **selecionado**.
- (3) Cada processador localmente determina seus intervalos-s locais. Para cada intervalo-s de comprimento maior que dois, todo segundo elemento é marcado como **selecionado**. Se

algum intervalo-s tem comprimento menor que dois e nenhum de seus vizinhos tem um rótulo menor, então ambos elementos são marcados como **não-selecionados**.

- (4) para k = 1 até $\log p$ faça
 - (4.1) Cada processador localmente executa para cada elemento i da lista:
 - se s[i] é **não-selecionado** então s[i] = s[s[i]].
 - (4.2) Cada processador localmente executa para cada elemento i da lista
 - se (i, s[i] e s[s[i]] estão selecionados) E <math>(l(i) < l(s[i]) > l(s[s[i]])) E $(l(i) \neq l(s[i]))$ E $(l(s[i]) \neq l(s[i]))$ então marcar s[i] como não-selecionado.

- (4.3) Cada processador examina seus intervalos-s locais. Para cada intervalo-s de comprimento maior que dois, todo segundo elemento é marcado como **não-selecionado**. Se um intervalo-s tem comprimento dois e nenhum de seus vizinhos tem um rótulo menor, então ambos elementos são marcados como **não-selecionado**.
- (5) O processador que armazena o último elemento de L é marcado como **selecionado**.

Algoritmo p^2 -ruling set

O algoritmo computa um p^2 -ruling set R onde |R| = O(n/p) usando $O(\log^2 p)$ rodadas de comunicação e O(n/p) computação local por rodada.

O problema do list ranking para uma lista L com n vértices pode ser resolvido no modelo CGM com p processadores e O(n/p) memória local por processador usando $O(\log p)$ rodadas de comunicação e O(n/p) computação local por rodada.

Fim