506 Problem Set 4

Xiaohan Liu

Table of contents

Problem 1	. 2
(a)	. 2
(b)	. 6
Problem 2	. 6
Problem 3	. 8
(a)	. 9
(b)	. 10
(c)	. 10
(d)	. 11
(e)	. 11
Problem 4	. 12
(a)	. 12
(b)	. 12
(c)	. 14
(d)	. 14
(e)	. 15
(f)	. 15
(g)	. 17
$(\overset{\circ}{\mathrm{h}})$. 17

GitHub repository: https://github.com/EmiiilyLiu/STATS_506

setwd("F:/Desktop/STATS 506/STATS_506")

Problem 1

```
## Install and load package
  ## install.packages("nycflights13")
  #install.packages("tidyverse")
  library(nycflights13)
  library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr 1.1.3 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.3 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.0
          1.0.2
v purrr
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
  #data(package = "nycflights13")
(a)
  ## Departure table
  departure_delay <- flights %>%
    group_by(origin) %>%
    summarise(
      mean_delay = mean(dep_delay, na.rm = TRUE),
      median_delay = median(dep_delay, na.rm = TRUE)
    ) %>%
    arrange(-mean_delay) %>% ## Order in descending mean delay
     ## use the airport names not the airport codes
    left_join(airports, by = c("origin" = "faa")) %>%
    select(name, mean_delay, median_delay) %>%
    print(n = Inf) ## print all rows
```

A tibble: 3 x 3

```
## Arrival table
arrival_delay <- flights %>%
 group_by(dest) %>%
 summarise(
   total_flights = n(),
   mean_delay = mean(arr_delay, na.rm = TRUE),
   median_delay = median(arr_delay, na.rm = TRUE)
  ) %>%
 filter(total_flights >= 10) %>%
  arrange(-mean_delay) %>% ## Order in descending mean delay
  ## use the airport names not the airport codes
 left_join(airports, by = c("dest" = "faa")) %>%
  select(name, mean_delay, median_delay) %>%
  ## several airports exist in table "flights" with more than 10 records
  ## but not in table "airports", ignore them
  filter(!is.na(name)) %>%
  print(n = Inf) ## print all rows
```

A tibble: 98 x 3

	name	mean_delay med	ian delav
	<chr></chr>	<dbl></dbl>	•
1	"Columbia Metropolitan"	41.8	28
	"Tulsa Intl"	33.7	14
3	"Will Rogers World"	30.6	16
	"Jackson Hole Airport"	28.1	15
5	"Mc Ghee Tyson"	24.1	2
6	"Dane Co Rgnl Truax Fld"	20.2	1
7	"Richmond Intl"	20.1	1
8	"Akron Canton Regional Airport"	19.7	3
9	"Des Moines Intl"	19.0	0
10	"Gerald R Ford Intl"	18.2	1
11	"Birmingham Intl"	16.9	-2
12	"Theodore Francis Green State"	16.2	1
13	"Greenville-Spartanburg International"	15.9	-0.5
14	"Cincinnati Northern Kentucky Intl"	15.4	-3
15	"Savannah Hilton Head Intl"	15.1	-1

16	"Manchester Regional Airport"	14.8	-3
17	"Eppley Afld"	14.7	-2
18	"Yeager"	14.7	-1.5
19	"Kansas City Intl"	14.5	0
20	"Albany Intl"	14.4	-4
21	"General Mitchell Intl"	14.2	0
22	"Piedmont Triad"	14.1	-2
23	"Washington Dulles Intl"	13.9	-3
24	"Cherry Capital Airport"	13.0	-10
25	"James M Cox Dayton Intl"	12.7	-3
26	"Louisville International Airport"	12.7	-2
27	"Chicago Midway Intl"	12.4	-1
28	"Sacramento Intl"	12.1	4
29	"Jacksonville Intl"	11.8	-2
30	"Nashville Intl"	11.8	-2
31	"Portland Intl Jetport"	11.7	-4
32	"Greater Rochester Intl"	11.6	-5
33	"Hartsfield Jackson Atlanta Intl"	11.3	-1
34	"Lambert St Louis Intl"	11.1	-3
35	"Norfolk Intl"	10.9	-4
36	"Baltimore Washington Intl"	10.7	-5
37	"Memphis Intl"	10.6	-2.5
38	"Port Columbus Intl"	10.6	-3
39	"Charleston Afb Intl"	10.6	-4
40	"Philadelphia Intl"	10.1	-3
41	"Raleigh Durham Intl"	10.1	-3
42	"Indianapolis Intl"	9.94	-3
43	"Charlottesville-Albemarle"	9.5	-5
44	"Cleveland Hopkins Intl"	9.18	-5
45	"Ronald Reagan Washington Natl"	9.07	-2
46	"Burlington Intl"	8.95	-4
47	"Buffalo Niagara Intl"	8.95	-5
48	"Syracuse Hancock Intl"	8.90	-5
49	"Denver Intl"	8.61	-2
50	"Palm Beach Intl"	8.56	-3
51	"Bob Hope"	8.18	-3
52	"Fort Lauderdale Hollywood Intl"	8.08	-3
53	"Bangor Intl"	8.03	-9
54	"Asheville Regional Airport"	8.00	-1
55	"Pittsburgh Intl"	7.68	-5
56	"Gallatin Field"	7.6	-2
57	"NW Arkansas Regional"	7.47	-2
58	"Tampa Intl"	7.41	-4

59	"Charlotte Douglas Intl"	7.36	-3
	"Minneapolis St Paul Intl"	7.27	- 5
	"William P Hobby"	7.18	-4
	"Bradley Intl"	7.05	-10
	"San Antonio Intl"	6.95	-9
	"South Bend Rgnl"	6.5	-3.5
	"Louis Armstrong New Orleans Intl"	6.49	-6
	"Key West Intl"	6.35	7
	"Eagle Co Rgnl"	6.30	-4
68	"Austin Bergstrom Intl"	6.02	-5
69	"Chicago Ohare Intl"	5.88	-8
70	"Orlando Intl"	5.45	-5
71	"Detroit Metro Wayne Co"	5.43	-7
72	"Portland Intl"	5.14	-5
73	"Nantucket Mem"	4.85	-3
74	"Wilmington Intl"	4.64	-7
75	"Myrtle Beach Intl"	4.60	-13
76	"Albuquerque International Sunport"	4.38	-5.5
77	"George Bush Intercontinental"	4.24	-5
78	"Norman Y Mineta San Jose Intl"	3.45	-7
79	"Southwest Florida Intl"	3.24	-5
80	"San Diego Intl"	3.14	-5
81	"Sarasota Bradenton Intl"	3.08	-5
82	"Metropolitan Oakland Intl"	3.08	-9
83	"General Edward Lawrence Logan Intl"	2.91	-9
84	"San Francisco Intl"	2.67	-8
85	"Yampa Valley"	2.14	2
86	"Phoenix Sky Harbor Intl"	2.10	-6
87	"Montrose Regional Airport"	1.79	-10.5
88	"Los Angeles Intl"	0.547	-7
89	"Dallas Fort Worth Intl"	0.322	-9
90	"Miami Intl"	0.299	-9
91	"Mc Carran Intl"	0.258	-8
92	"Salt Lake City Intl"	0.176	-8
93	"Long Beach"	-0.0620	-10
94	"Martha\\\\'s Vineyard"	-0.286	-11
95	"Seattle Tacoma Intl"	-1.10	-11
96	"Honolulu Intl"	-1.37	-7
97	"John Wayne Arpt Orange Co"	-7.87	-11
98	"Palm Springs Intl"	-12.7	-13.5

(b)

Although Table planes has a "speed" column, most of the values in this column are NA. Therefore, in this problem, I choose to calculate the average flights using information from Table flights.

```
fastest model <- flights %>%
    ## Calculate the average speed for each model
    mutate(speed_mph = distance/(air_time/60)) %>%
    inner_join(planes, by = "tailnum") %>%
    group_by(model) %>%
    summarise(
      avg_speed_mph = mean(speed_mph, na.rm = TRUE),
      total_flights = n()
    arrange(-avg_speed_mph) %>%
    slice(1) %>%
    print()
# A tibble: 1 x 3
 model
         avg_speed_mph total_flights
                             <int>
 <chr>
                 <dbl>
1 777-222
                   483.
                                    4
```

Problem 2

```
nnmaps <- read.csv("chicago-nmmaps.csv")

#' get_temp - Compute the average temperature for a given month

#' using a specified averaging function

#' @param month either a numeric 1-12 or a string

#' @param year numeric year

#' @param data the data set to obtain data from

#' @param celsius logically indicating whether the results

#' should be in celsius. Default FALSE

#' @param average_fn a function with which to compute the mean. Default is mean

#' @return numeric vector of length 1 indicating

#' the average temperature for a given month

get_temp <- function(month, year, data, celsius = FALSE, average_fn = mean){

## Rename input parameters to avoid

## potential conflicts with column names in 'data'</pre>
```

```
input month <- month
  input_year <- year
  # Convert string months to numeric format
  # Convert string months to numeric format
  if (is.character(input_month)) {
    input_month <- case_when(</pre>
      input_month %in% c("Jan", "January")
                                             ~ 1,
      input_month %in% c("Feb", "February") ~ 2,
      input_month %in% c("Mar", "March")
      input_month %in% c("Apr", "April")
                                             ~ 4,
      input_month %in% c("May")
                                             ~ 5,
      input_month %in% c("Jun", "June")
                                             ~ 6,
      input_month %in% c("Jul", "July")
                                             ~ 7,
      input_month %in% c("Aug", "August")
      input_month %in% c("Sep", "September") ~ 9,
      input_month %in% c("Oct", "October")
                                             ~ 10,
      input_month %in% c("Nov", "November") ~ 11,
      input_month %in% c("Dec", "December") ~ 12,
      TRUE
                                             ~ -1 # Default case
    )
  }
  # Ensure month is between 1-12
  if (input_month < 1 || input_month > 12) {
    stop("Invalid month input. Please provide a valid month")
  }
  # Extract the relevant data
  temp data <- data %>%
    filter(month_numeric == input_month, year == input_year) %>%
   pull(temp)
  # Convert to Celsius if requested
  if (celsius) {
    temp_data <- (temp_data - 32) * (5/9)
  }
  # Return the average temperature using the provided function
  return(average_fn(temp_data))
}
```

```
get_temp("Apr", 1999, data = nnmaps)
[1] 49.8
  get_temp("Apr", 1999, data = nnmaps, celsius = TRUE)
[1] 9.888889
  get_temp(10, 1998, data = nnmaps, average_fn = median)
[1] 55
  # get_temp(13, 1998, data = nnmaps)
  # Error message for this case:
  # Error in get_temp(13, 1998, data = nnmaps) :
  # Invalid month input. Please provide a valid month
  get_temp(2, 2005, data = nnmaps)
[1] NaN
  get_temp("November", 1999, data =nnmaps, celsius = TRUE,
           average_fn = function(x) {
             x %>% sort -> x
             x[2:(length(x) - 1)] %>% mean %>% return
           })
[1] 7.301587
Problem 3
SAS output link: https://github.com/EmiiilyLiu/STATS_506
  /* import csv file */
  PROC IMPORT DATAFILE='/home/u63651235/sasuser.v94/recs2020_public_v5.csv'
              OUT=recs2020
```

```
DBMS=CSV;
  RUN;
  /* get some information about the data */
  /* I comment for the submitted version since the output is too long.
  proc print data=recs2020 (obs=5);
  run;
  proc contents data=recs2020;
  run;
  */
(a)
  /* (a) */
  proc sql noprint;
     /* weight of each state */
     create table state_weights as
     select state_name, sum(NWEIGHT) as total_weight
     from recs2020
     group by state_name;
     /* sum of weights of all states */
     select sum(NWEIGHT) into :totalWeight from recs2020;
     /* percentage of each state and sort */
     create table state_percent as
     select state_name,
            total_weight / &totalWeight as percentage
     from state_weights
     order by percentage desc;
  run;
  /* print the state with the highest percentage */
  proc print data=state_percent(obs=1);
  run;
```

/* print the percentage of Michigan */

where state_name = "Michigan";

proc print data=state_percent;

```
run;
```

(b)

```
/* (b) */
/* get records with strictly positive value of total electricity cost */
data positive_costs;
    set recs2020;
    if DOLLAREL > 0;
run;

/* plot the histogram */
proc sgplot data=positive_costs;
    histogram DOLLAREL;
    title "Histogram of Total Electricity Cost with Strictly Positive Values";
run;
```

(c)

```
/* (c) */
/* calculate the log of total elevtricity cost */
data positive_costs;
    set positive_costs;
    log_DOLLAREL = log(DOLLAREL);
run;

/* plot the histogram */
proc sgplot data=positive_costs;
    histogram log_DOLLAREL;
    title "Histogram of Log of Total Electricity Cost";
run;
```

(d)

```
/* (d) */
/* Use the sum of NCOMBATH, NHAFBATH and TOTROOMS as the number of rooms */
data positive_costs;
    set positive_costs;
    TOTAL_ROOM = NCOMBATH + NHAFBATH + TOTROOMS;
run;

/* linear regression */
proc glm data=positive_costs;
    where PRKGPLC1 ne -2; /* Exclude observations where PRKGPLC1 is -2(missing values) */
    class PRKGPLC1;
    model log_DOLLAREL = TOTAL_ROOM PRKGPLC1; /* response and predictors */
    weight NWEIGHT; /* weights */
    title "Linear Regression on Log of Total Electricity Cost";
    output out=predicted_data p=predicted_log; /* get predicted data for (e) */
run;
```

(e)

```
/* (e) */
data predicted_data;
    set predicted_data;
    predicted_DOLLAREL = exp(predicted_log);
run;

proc sgplot data=predicted_data;
    scatter x=DOLLAREL y=predicted_DOLLAREL;
    xaxis label="Actual Total Electricity Cost";
    yaxis label="Predicted Total Electricity Cost";
    title "Scatterplot of Predicted vs Actual Total Electricity Cost";
run;
```

Problem 4

(a)

The codebook contains the variable names, labels, and tabulations of responses for the questions asked in the survey.

(b)

```
/* (b) */
/* import csv file */
PROC IMPORT DATAFILE='/home/u63651235/sasuser.v94/public2022.csv'
            OUT=fulldata
            DBMS=CSV;
RUN;
/* get some information about the data */
proc print data=fulldata (obs=5);
run;
/* select needed variables */
proc sql;
    create table subsetData as
    select CaseID, weight_pop, B3, ND2, B7_b, GH1, race_5cat, educ_4cat
    from fullData;
run;
/* transformation */
proc format;
    value $B3fmt
    'Much worse off' = 1
    'Somewhat worse off' = 2
    'About the same' = 3
    'Somewhat better off' = 4
    'Much better off' = 5;
    value $ND2fmt
    'Much higher' = 1
    'Somewhat higher' = 2
    'About the same' = 3
    'Somewhat lower' = 4
```

```
'Much lower' = 5;
    value $B7_bfmt
    'Poor' = 1
    'Only fair' = 2
    'Good' = 3
    'Excellent' = 4;
    value $GH1fmt
    'Own your home with a mortgage or loan' = 1
    'Own your home free and clear (without a mortgage or loan)' = 2
    'Pay rent' = 3
    'Neither own nor pay rent' = 4;
    value $race_fmt
    'White' = 1
    'Black' = 2
    'Hispanic' = 3
    'Asian' = 4
    'Other' = 5;
    value $edu_fmt
    'Less than a high school degree' = 1
    'High school degree or GED' = 2
    'Some college/technical or associates degree' = 3
    "Bachelor's degree or more" = 4;
run;
data Data_trans;
    set subsetData;
    B3_trans = put(B3, B3fmt.);
    ND2_trans = put(ND2, ND2fmt.);
    B7_b_trans = put(B7_b, B7_bfmt.);
    GH1_trans = put(GH1, GH1fmt.);
    race_trans = put(race_5cat, race_fmt.);
    educ_trans = put(educ_4cat, edu_fmt.);
run;
```

(c)

```
/* (c) */
/* export the transformed data into Stata format */
proc sql;
    create table outputData as
    select CaseID, weight_pop, B3_trans, ND2_trans, B7_b_trans, GH1_trans, race_trans, edu
    from Data_trans;
run;
proc export data=outputData
    outfile="/home/u63651235/sasuser.v94/public2022.dta"
    dbms=stata replace;
run;

proc print data=outputData (obs=5);
run;
proc contents data=outputData;
run;
```

(d)

```
weight_pop double %12.0g
B3_trans
             str2
                    %2s
           str2
                    %2s
ND2_trans
            str2 %2s
B7_b_trans
GH1_trans
             str2 %2s
             str2 %2s
race_trans
                    %2s
educ trans
             str2
Sorted by:
```

There are total 11,667 observations, aligning with that in the codebook and 8 selected variables, aligning with output from SAS.

(e)

```
. * (e) transform response to a binary variable
. gen B3_bin = cond(inlist(B3_trans, "1", "2"), 0, 1)
```

(f)

. encode educ_trans, gen(educ_num)

.

. svy: logistic B3_bin i.ND2_num i.B7_b_num i.GH1_num i.race_num i.educ_num (running logistic on estimation sample)

Survey: Logistic regression

Number of strata = 1 Number of PSUs = 11,667 Number of obs = 11,667 Population size = 255,114,223 Design df = 11,666 F(17, 11650) = 57.08 Prob > F = 0.0000

Linearized B3_bin | Odds ratio std. err. t P>|t| [95% conf. interval] ND2_num |

 2 | 1.085264
 .1004103
 0.88
 0.377
 .9052586
 1.301062

 3 | 1.068285
 .0911387
 0.77
 0.439
 .9037764
 1.262738

 4 | 1.298803
 .2656084
 1.28
 0.201
 .8698664
 1.939252

 5 | 1.268982 .211473 1.43 0.153 .9153563 1.759224 B7_b_num | 2 | 3.023388 .1478851 22.62 0.000 2.746971 3.327619 3 | 6.053997 .4822353 22.61 0.000 5.178836 7.077051 4 | 11.91989 4.109229 7.19 0.000 6.064588 23.42845 GH1_num | 2 | .938628 .0530243 -1.12 0.262 .8402394 1.048538 3 | 1.025434 .0602294 0.43 0.669 .9139174 1.150559 0.000 1.171397 1.727545 1.422547 .140974 3.56 4 | race_num | 2.031276 .1647816 8.74 0.000 1.732648 2 | 2.381373 3 | 1.183977 .0847211 2.36 0.018 1.02903 1.362255 4 | 1.562447 .1970896 3.54 0.000 1.220175 2.000729 5 | .9875135 .163249 -0.08 0.939 .7141897 1.36544 educ_num |

```
1.119783
                     .1303859
                                  0.97
                                        0.331
                                                   .8912739
                                                                1.40688
   4 |
         1.360402
                                  2.77
                                         0.006
                      .15108
                                                   1.094276
                                                               1.691249
   S
         1.178032
     .1311927
                                  1.47
                                         0.141
                                                   .9470055
                                                               1.465419
_cons |
          .5763645
                     .0791819
                                -4.01
                                        0.000
                                                   .4402969
                                                               .7544819
```

Note: _cons estimates baseline odds.

.

All of the p-value of all categories of variable $ND2_NUM$ larger than 0.05, meaning statistically insignificant. Therefore, we have no enough evidence to conclude that long-term concerns about climate change impact current day concerns about financial stability, controlling other predictors.

(g)

```
. * (g) output data
. export delimited "K:\output.csv"
file K:\output.csv saved
.
end of do-file
```

(h)

```
library(survey)

Loading required package: grid

Loading required package: Matrix

Attaching package: 'Matrix'

The following objects are masked from 'package:tidyr':
    expand, pack, unpack
```

```
Loading required package: survival
Attaching package: 'survey'
The following object is masked from 'package:graphics':
    dotchart
  public2022 <- read.csv("output.csv")</pre>
  des <- svydesign(id = ~ CaseID, weight = ~ weight_pop, data = public2022)</pre>
  fit <- svyglm(B3_bin ~ factor(ND2_num) + factor(B7_b_num) + factor(GH1_num) +</pre>
                  factor(race_num) + factor(educ_num), design = des, family = quasibinomial(
  summary(fit)
Call:
svyglm(formula = B3_bin ~ factor(ND2_num) + factor(B7_b_num) +
    factor(GH1_num) + factor(race_num) + factor(educ_num), design = des,
    family = quasibinomial())
Survey design:
svydesign(id = ~CaseID, weight = ~weight pop, data = public2022)
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 -0.55101
                             0.13738 -4.011 6.09e-05 ***
factor(ND2_num)2
                             0.08182
factor(ND2_num)3
                 0.06605
                             0.08531 0.774 0.438791
factor(ND2_num)4
                  0.26144
                             0.20450 1.278 0.201119
factor(ND2_num)5
                             0.16665 1.429 0.152899
                  0.23822
factor(B7_b_num)2 1.10638
                             0.04891 22.619 < 2e-16 ***
factor(B7_b_num)3 1.80072
                             0.07966 22.606 < 2e-16 ***
factor(B7_b_num)4 2.47821
                             0.34473 7.189 6.94e-13 ***
factor(GH1_num)2 -0.06334
                             0.05649 -1.121 0.262241
factor(GH1_num)3
                 0.02512
                             0.05874 0.428 0.668936
factor(GH1_num)4
                             0.09910 3.557 0.000377 ***
                  0.35245
factor(race_num)2 0.70866
                             0.08112 8.736 < 2e-16 ***
factor(race_num)3 0.16888
                             0.07156 2.360 0.018287 *
```

3.538 0.000405 ***

0.12614

factor(race_num)4 0.44625

```
factor(race_num)5 -0.01257     0.16531     -0.076     0.939414
factor(educ_num)2     0.11314     0.11644     0.972     0.331254
factor(educ_num)4     0.30778     0.11106     2.771     0.005590 **
factor(educ_num)S     0.16385     0.11137     1.471     0.141255
---
Signif. codes:     0 '****'     0.001 '**'     0.05 '.'     0.1 ' ' 1

(Dispersion parameter for quasibinomial family taken to be 1.002519)

Number of Fisher Scoring iterations: 4

pseudo_R2 <- 1 - (fit$deviance / fit$null.deviance)
pseudo_R2</pre>
```