# Tutorial for the R package chapt

Youyi Fong

August 28, 2019

# 1 Introduction

There are many different types of threshold effects. Figure 1.1 shows some of them.



Figure 1.1: Types of threshold effects. Hinge, upper hinge and segmented are called continuous threshold models, while step and stegmented are called discontinuous threshold models.

The models fitted can be described as follows.

$$\eta = \alpha_{1} + \alpha_{2}^{T}z + \beta_{1}(x - e)_{+} + \gamma x$$
(segmented)
$$\eta = \alpha_{1} + \alpha_{2}^{T}z + \beta_{1}(x - e)_{+}$$
(hinge)
$$\eta = \alpha_{1} + \alpha_{2}^{T}z + \beta_{1}(x - e)_{-}$$
(upper hinge)
$$\eta = \alpha_{1} + \alpha_{2}^{T}z + \beta_{1}I(x > e)$$
(step)
$$\eta = \alpha_{1} + \alpha_{2}^{T}z + \beta_{1}(x - e)_{+} + \gamma x + \beta_{2}I(x > e) ,$$
(stegmented)

where e denote the threshold parameter, x is the predictor with threshold effect, and z denote a vector of additional predictors. Let I(x > e) = 1 if x > e and 0 otherwise;  $(x - e)_+ = x - e$  if  $x \ge e$  and 0 otherwise; and  $(x - e)_- = x - e$  if x < e and 0 otherwise.

# 2 Examples

The examples below are organized by type of threshold effects and regression models. Before we get into specific examples, here are some notes that are of general interest:

• The fitted model has a component named best.fit, which is the glm or coxph fit at the estimated threshold parameter. This could be useful to know if one would like to extract information from model.

# 2.1 Continuous threshold linear regression

For continuous threshold linear regression, we have developed a grid search method for estimation that is super fast (Fong, 2018). Together with the observation that bootstrap confidence intervals have better coverage than robust analytical confidence intervals (Fong et al., 2017b) for continuous threshold linear models, we recommend setting est.method="fastgrid" and var.type="bootstrap" in the call to chaptm.

### 2.1.1 Example 1. The MTCT dataset

To estimate a threshold linear regression model with a segmented-type change point for the relationship between  $V3\_BioV3B$  and  $NAb\_score$  in the MTCT dataset, we call

```
fit=chngptm (formula.1=V3_BioV3B~1, formula.2=~NAb_score, dat.mtct.2,
    type="segmented", family="gaussian",
    est.method="fastgrid", var.type="bootstrap", save.boot=TRUE)
```

- formula.2 and formula.1: threshold variable and the rest of the model
- type: type of threshold model to fit
- est.method defaults to fastgrid and is recommended
- var.type: bootstrap method is recommended here
- save.boot: saves bootstrap samples for plotting bootstrap distributions

Calling summary(fit), we get

```
Change point model type: segmented
```

Coefficients:

```
est p.value* (lower upper)
(Intercept) -22.33152 1.593423e-08 -30.07675 -14.58628
```

```
NAb_score 67.23925 2.212981e-14 49.98398 84.49452 (NAb_score-chngpt)+ -64.83129 3.692679e-14 -81.61413 -48.04845 Threshold:

est (lower upper) 0.4653923 0.4535000 0.4772845
```

Note that we there is an asterisk next to p.value. This is because bootstrap procedures to generate confidence intervals do not readily lead to p values. The presented p values are approximations, obtained assuming that the bootstrap sampling distributions are normal.

To get an estimate of the slope after threshold, we call

```
est=lincomb(fit, comb=c(0,1,1), alpha=0.05); print(est)
and get

95% 95%
2.40795883 -0.06780353 4.88372120
```

Calling plot(fit, which=1) and plot(fit, which=3), we get the two plots on the left-hand side of Figure 2.1. Changing est.method to smoothapprox in the model fit led us to the two plots on the right-hand side.

#### 2.1.2 Example 2. The trees dataset

To estimate a threshold linear regression model with a segmented-type change point in *Girth* for the *trees* dataset, we call

- formula.2 and formula.1: threshold variable and the rest of the model
- type: type of threshold model to fit
- var.type: bootstrap method is recommended for confidence interval
- weights can be supplied

Calling summary(fit), we get



Figure 2.1: This is a replicate of Fong (2018) Figure 1. Left: results by fast grid search; right: results by smooth approximation search. Top: scatterplots with fitted models (gray lines); bottom: bootstrap distributions of the threshold estimate from 10<sup>3</sup> replicates. The dashed lines correspond to the 95% symmetric bootstrap confidence interval.

Change point model type: segmented

### Coefficients:

```
est p.value* (lower upper)
(Intercept) -24.614440 1.985482e-04 -37.580354 -11.648527
Girth 3.993966 9.288973e-11 2.785558 5.202373
(Girth-chngpt)+ 4.266618 8.261144e-04 1.765770 6.767467
```

### Threshold:

```
est (lower upper)
16.0 12.9 19.1
```

Calling plot(fit), we get Figure 2.2.

To test whether there is a change point (Fong et al., 2015), we call

```
test=chngpt.test(formula.null=Volume\sim1, formula.chngpt=\simGirth, trees, type="segmented", family="gaussian")
```

When printed, we get





Figure 2.2: (a) Scatterplot of timber volume vs girth. The gray line shows the fitted segmented model. (b) Log likelihood of the submodel versus threshold parameter.

### Maximum of Likelihood Ratio Statistics

```
data: trees
Maximal statistic = 17.694, change point = 15.388, p-value = 0.00014
alternative hypothesis: two-sided
```

The first line gives the type of test carried out, and it is maximal likelihood ratio test here, which is the default. In addition, a plot function can be called on the test object to show the score or likelihood ratio statistic as a function of candidate change points.

# 2.2 Continuous threshold logistic regression

For continuous threshold logistic regression, a fast grid search method for estimation is not yet available. In addition, we have observed that bootstrap confidence intervals have similar coverage as robust analytical confidence intervals (Fong et al., 2017b). Thus, we recommend either var.type="bootstrap" or var.type="robust" in the call to chaptm. Note that when it is set to robust, an auxiliary fit needs to be supplied, which is generally a smooth parametric model with enough but not too many degrees of freedom.

To estimate a logistic regression model with a hinge-type change point in  $NAb\_SF162L$  for the MTCT dataset, we call

```
library(splines)
fit=chngptm(formula.1=y~birth, formula.2=~NAb_SF162LS, dat.mtct,
type="hinge", family="binomial",
est.method="smoothapprox", var.type="robust",
aux.fit=glm(y~birth + ns(NAb_SF162LS,3), dat.mtct, family="binomial"))
```

- formula.2 and formula.1: threshold variable and the rest of the model
- type: type of threshold model to fit
- est.method: smoothapprox is recommended
- var.type: robust is recommended for confidence interval
- aux.fit: required for robust variance estimation

Calling summary(fit), we get

Change point model type: hinge

#### Coefficients:

```
OR p.value (lower upper) (Intercept) 0.7026523 0.341429662 0.3388366 1.4571044 birthVaginal 1.2397649 0.523159883 0.6393632 2.4039809 (NAb_SF162LS-chngpt)+ 0.6712371 0.001332547 0.5270730 0.8548327
```

#### Threshold:

```
26.3% (lower upper)
7.373374 5.472271 8.186464
```

To test whether there is a change point (Fong et al., 2015), we call

```
test=chngpt.test(formula.null=y~birth, formula.chngpt=~NAb_SF162LS, dat.mtct, type="hinge", family="binomial", main.method="score")
```

When printed, we get

```
data: dat.mtct
Maximal statistic = 3.3209, change point = 7.0347, p-value = 0.00284
alternative hypothesis: two-sided
```

The first line gives the type of test carried out, and it may be maximal likelihood ratio test. In addition, a plot function can be called on the test object to show the score or likelihood ratio statistic as a function of candidate change points.

### 2.2.1 cbind

The chngptm function supports the use of cbind in the formula, as the glm function does. For example,

```
dat.2=sim.chngpt("thresholded", "step", n=200, seed=1, beta=1, alpha=-1,
    x.distr="norm", e.=4, family="binomial")
dat.2$success=rbinom(nrow(dat.2), 10, 1/(1 + exp(-dat.2$eta)))
dat.2$failure=10-dat.2$success
fit.2a=chngptm(formula.1=cbind(success,failure)~z, formula.2=~x,
    family="binomial", dat.2, type="step")
```

### 2.3 Continuous threshold Poisson regression

Only grid search method and bootstrap confidence intervals are supported, so getting the model fit with confidence intervals could take some time.

```
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- as.integer(gl(3,1,9))
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
fit.4=chngptm(formula.1=counts ~treatment, formula.2=~outcome, data=d.AD,
   family="poisson", type="segmented", var.type="bootstrap")
summary(fit.4)</pre>
```

### 2.4 Discontinuous threshold GLM

Confidence interval for discontinuous threshold regression models can be constructed by mout-of-n bootstrap. (The m.out.of.n argument is set to TRUE inside chaptem for the step and stegmented models.) For example,

```
fit=chngptm(formula.1=mpg~hp, formula.2=~drat, mtcars, type="step",
  family="gaussian", var.type="bootstrap", ci.bootstrap.size=100)
summary(fit)
```

The result:

Change point model threshold.type: step

#### Coefficients:

```
est p.value* (lower upper)
(Intercept) 27.29298302 3.412465e-20 21.48163370 33.10433234
hp -0.05692654 2.675802e-05 -0.08349583 -0.03035726
I(drat>chngpt) 5.24824935 8.914610e-03 1.31503967 9.18145903
```

#### Threshold:

```
est (lower upper)
4.08 3.07 5.09
```

### 2.5 Threshold Cox regression

The *chngpt* package also provides some support for estimation of threshold Cox regression models. What is missing, though, is confidence intervals for parameter estimates and hypothesis testing methods. See the help page on *chngpt* for an example.

### 2.6 Models with interaction terms

In the following example we fit a model with an interaction term.

```
fit=chngptm(formula.1=mpg ~hp, formula.2=~hp*drat, mtcars, type="segmented",
  family="gaussian", var.type="bootstrap", ci.bootstrap.size=100)
summary(fit)
```

The model being fitted is

$$\eta = \beta_1 + \beta_2 z + \beta_3 x + \beta_4 (x - e)_+ + \beta_5 z x + \beta_6 z (x - e)_+$$

The result:

Change point model threshold.type: segmented

#### Coefficients:

|                   | est         | p.value*  | (lower       | upper)      |
|-------------------|-------------|-----------|--------------|-------------|
| (Intercept)       | 71.0423961  | 0.5949231 | -190.8328276 | 332.9176199 |
| hp                | -0.5714405  | 0.4809352 | -2.1605786   | 1.0176976   |
| drat              | -14.3708279 | 0.7431579 | -100.3306292 | 71.5889735  |
| (drat-chngpt)+    | 21.6073593  | 0.6806816 | -81.3015235  | 124.5162420 |
| hp:drat           | 0.1658607   | 0.5333802 | -0.3560702   | 0.6877916   |
| hp:(drat-chngpt)+ | -0.1970979  | 0.5620552 | -0.8633923   | 0.4691965   |

#### Threshold:

```
est (lower upper) 3.23 2.35 4.11
```

In the following example we fit a model with two interaction terms.

```
fit=chngptm(formula.1=mpg~hp+wt, formula.2=~hp*drat+wt*drat, mtcars, type="step",
  family="gaussian", var.type="bootstrap", ci.bootstrap.size=100)
summary(fit)
```

The model being fitted is

$$\eta = \beta_1 + \beta_2 z_1 + \beta_3 z_2 + \beta_4 I(x > e) + \beta_5 z_1 I(x > e) + \beta_6 z_2 I(x > e)$$

The result:

Change point model threshold.type: step

#### Coefficients:

|                   | est         | p.value*     | (lower      | upper)     |
|-------------------|-------------|--------------|-------------|------------|
| (Intercept)       | 30.83332346 | 1.458455e-06 | 18.2870806  | 43.3795663 |
| hp                | -0.02389962 | 7.233212e-01 | -0.1562164  | 0.1084172  |
| wt                | -2.58756410 | 1.867228e-01 | -6.4287268  | 1.2535986  |
| I(drat>chngpt)    | 11.69827186 | 7.188926e-01 | -52.0030753 | 75.3996190 |
| hp:I(drat>chngpt) | -0.00894615 | 9.652991e-01 | -0.4119918  | 0.3940995  |
| wt:I(drat>chngpt) | -3.22148003 | 8.902722e-01 | -48.9891600 | 42.5461999 |

#### Threshold:

```
est (lower upper) 3.730 3.237 4.223
```

# 3 Further considerations

# 3.1 Model choice

The choice of threshold effects is typically through a combination of domain knowledge and modeling. One modeling approach is to first examine the relationship using local polynomial regression.

The *hinge* model is a special case of the *segmented* model with the slope before threshold fixed at 0. If the hinge model is reasonable, it is preferred over the segmented model because the model can be estimated with substantially higher precision (Fong et al., 2017b).

# 3.2 Implementation details

There are three types of search methods for finding the MLE (maximum likelihood estimator). Users generally do not need to worry about setting the argument, which is *est.method*, since the function chooses the most appropriate one by default. In the order of development, the three search methods are grid, smooth approximation, and fastgrid. The grid method is the most general and the slowest; it is recommended when other methods are not available. The smooth approximation method (Fong et al., 2017a) involves approximating the likelihood function with a differentiable function to allow gradient-based search; it is available for linear and logistic regression and mostly recommended for logistic regression only. Fastgrid (Fong, 2018) is a new method that is super fast and gives exact solutions; it is only available for continuous threshold linear regression now.

### 3.3 Statistical inference details

Robust confidence interval methods are described in Fong et al. (2017b). For linear regression, we recommend symmetric bootstrap confidence interval, as described in Fong (2018). Hypothesis testing methods are described in Fong et al. (2015, 2017a).

# Acknowledgement

We are grateful for questions and comments from researchers around the world who are interested in using *chnqpt*, which have led to great improvement to the package.

# References

- Fong, Y. (2018), "Fast Bootstrap Confidence Intervals for Continuous Threshold Linear Regression," *Journal of Computational and Graphical Statistics*, in press.
- Fong, Y., Di, C. and Permar, S. (2015), "Change point testing in logistic regression models with interaction term," *Statistics in medicine*, 34, 1483–1494.
- Fong, Y., Huang, Y., Gilbert, P. and Permar, S. (2017a), "chngpt: threshold regression model estimation and inference," *BMC Bioinformatics*, 18, 454–460.
- Fong, Y., Chong, D., Huang, Y. and Gilbert, P. (2017b), "Model-robust Inference for Continuous Threshold Regression Models," *Biometrics*, 73, 452–462.