Analiza 2a

20. oktober 2024

1 Funkcije več spremenljivk

1.1 Prostor \mathbb{R}^n

 \mathbb{R}^n je vektorski prostor nad \mathbb{R} . Če je $x, y \in \mathbb{R}^n$, potem $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$. Naj bo $\alpha \in \mathbb{R}$. Operaciji x + y in αx sta definirani po komponentah.

Definicija 1.1. Standardna baza prostora \mathbb{R}^n je množica $\{e_j; j=1,\ldots,n\}$, kjer $e_j=(0,\ldots,0,1_j,0,\ldots,0)$.

Opomba. V prostorah \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 ponavadi koordinate točk označimo z x, y, z.

Definicija 1.2. Standardna baza prostora \mathbb{R}^3 je množica $\{\vec{i}, \vec{j}, \vec{k}\}$.

Definicija 1.3. Standardni skalarni produkt vektrojev $x, y \in \mathbb{R}^n$ je $x \cdot y = \sum_{j=1}^n x_j y_j$.

Norma vektorja $x \in \mathbb{R}^n$ je $||x||_2 = \sqrt{x \cdot x} = \sqrt{x_1^2 + \ldots + x_n^2}$.

Razdalja med vektorjama $x, y \in \mathbb{R}^n$ je $d_2(x, y) = ||x - y||_2 = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}$.

Definicija 1.4. Odprta krogla s središčem v $a \in \mathbb{R}^n$ in polmerom r > 0 je množica $K(a,r) = \{x \in \mathbb{R}^n; \ d_2(x,a) < r\}$. Zaprta krogla s središčem v $a \in \mathbb{R}^n$ in polmerom r > 0 je množica $K(a,r) = \{x \in \mathbb{R}^n; \ d_2(x,a) \le r\}$. Sfera je množica $S(a,r) = \{x \in \mathbb{R}^n; \ d_2(x,a) = r\}$

Metrični prostor (\mathbb{R}^n, d_2) porodi topologijo na \mathbb{R}^n . Oznaki: D^{odp} je odprta množica, Z je zaprta množica.

Opomba. Metrična prostora (\mathbb{R}^n, d_2) in $(\mathbb{R}^n, d_{\infty})$ imata isto topologijo.

Trditev 1.1. Naj bo (M,d) metrični prostor in $K \subset M$. Če je K kompaktna, potem je zaprta in omejena.

Izrek 1.2. Naj bo $K \subset \mathbb{R}^n$, potem

K je kompaktna $\Leftrightarrow K$ je zaprta in omejena.

Definicija 1.5. Naj bo $a, b \in \mathbb{R}^n$, $a = (a_1, \dots, a_n)$, $b = (b_1, \dots, b_n)$. Definiramo:

$$a \le b \Leftrightarrow \forall j = 1, \dots, n \cdot a_j \le b_j.$$

 $a < b \Leftrightarrow \forall j = 1, \dots, n \cdot a_j < b_j.$

Definicija 1.6. Naj bo $a, b \in \mathbb{R}^n$, a < b. Odprti kvader (a, b) je množica $(a, b) = \{x \in \mathbb{R}^n; \ a < x < b\}$. Naj bo $a, b \in \mathbb{R}^n$, $a \le b$. Zaprti kvader [a, b] je množica $[a, b] = \{x \in \mathbb{R}^n; \ a \le x \le b\}$.

Opomba. Dolžine stranic kvadra [a,b] je b_j-a_j . Volumen kvadra [a,b] je $\Pi_{j=1}^n(b_j-a_j)$. Če so vse strani kvadra enaki, potem kvader je kocka.

1.2 Zaporedja v \mathbb{R}^n

Definicija 1.7. Zaporedje $v \mathbb{R}^n$ je preslikava $a : \mathbb{N} \to \mathbb{R}^n$. Namesto a(m) pišimo $a_m, a_m = (a_1^m, \dots, a_n^m)$.

Opomba. Zaporedje v \mathbb{R}^n porodi n zaporedij v \mathbb{R} .

Trditev 1.3. Naj bo $(a_m)_m$ zaporedje $v \mathbb{R}^n$, $a_m = (a_1^m, \dots, a_n^m)$. Velja:

Zaporedje $(a_m)_m$ konvergia \Leftrightarrow konvergira zaporedja $(a_1^m)_m, \ldots, (a_n^m)_m$.

V primeru konvergence velja:

$$\lim_{m \to \infty} a_m = (\lim_{m \to \infty} a_1^m, \dots, \lim_{m \to \infty} a_n^m).$$

Dokaz. Definicija limite.

1.3 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

1.3.1 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}

Opomba. Če je m=1, potem preslikave rečemo funkcija.

Definicija 1.8. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Naj bo $a\in D$. Preslikava f je zvezna v a, če

$$\forall \epsilon > 0 \, . \, \exists \delta > 0 \, . \, \forall x \in D \, . \, d(x,a) \Rightarrow d(f(x),f(a)).$$

Definicija 1.9. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Preslikava f je zvezna na D, če je zvezna v vsaki točki $a\in D$.

Definicija 1.10. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Preslikava f je enakomerno zvezna na D, če

$$\forall \epsilon > 0 . \exists \delta > 0 . \forall x, x' \in D . d(x, x') < \delta \Rightarrow d(f(x), f(x')) < \epsilon.$$

Opomba. Velja karakterizacija zveznosti v točki z zaporedji.

Opomba. Zvezna preslikava na kompaktne množice je enakomerno zvezna.

Trditev 1.4. Naj bosta $f, g: D \subset \mathbb{R}^n \to \mathbb{R}$ zvezni funkciji v $a \in D$. Naj bo $\lambda \in \mathbb{R}$. Tedaj so v a zvezni tudi funkcije:

$$f+g$$
, $f-g$, λf , fg .

Dokaz. Z zaporedji kot pri analizi 1.

Zgled. Nekaj primerov zveznih preslikav.

- Preslikava $\Pi_j(x_1,\ldots,x_n)=x_j$ je zvezna na \mathbb{R}^n za vsak $j=1,\ldots,n$.
- Vsi polinomi v n-spremenljivkah so zvezne funkcije na \mathbb{R}^n .
- Vse racionalne funkcije so zvezne povsod, razen tam, kjer je imenovalec enak 0.

Definicija 1.11. Preslikava $f:D\subset\mathbb{R}^n\to\mathbb{R}$ je funkcija n-spremenljivk.

Opomba. Naj bo (M,d) metrični prostor in $N \subset M$. Naj bo $f: M \to \mathbb{R}$ zvezna funkcija na M. Potem $f|_N$ je tudi zvezna funkcija na N.

Trditev 1.5. Naj bosta $D \subseteq \mathbb{R}^n$ in $D_j = \Pi_j(D)$. Naj bo $a \in D$, $a = (a_1, \dots, a_n)$ in $f : D \to \mathbb{R}$ zvezna v a. Tedaj za v sak $j = 1, \dots, n$ funkcija $\varphi_j : D_j \to \mathbb{R}$, $\varphi_j(t) = f(a_1, \dots, a_{j-1}, t, a_{j+1}, \dots, a_n)$ zvezna v a_j .

Dokaz. Definicija zveznosti v točki.

Opomba. Če je funkcija več spremenljivk zvezna v neki točki $a \in \mathbb{R}^n$, je zvezna tudi kot funkcija posameznih spremenljivk.

 $Zgled. \ \text{Naj bo} \ f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}. \ \text{Ali je} \ f \ \text{zvezna kot funkcija vsake spremenljivke posebej? Ali je} \ f \ \text{zvezna na} \ \mathbb{R}^2?$

 $Zgled. \text{ Naj bo } f(x,y) = \begin{cases} \frac{2x^2y}{x^4+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}. \text{ Ali je } f \text{ zvezna kot funkcija vsake spremenljivke posebej? Ali je } zvezna na vsaki premici? Ali je <math>f \text{ zvezna na } \mathbb{R}^2$?

1.3.2 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

Naj bo $D \subseteq \mathbb{R}^n$ in $F: D \to \mathbb{R}^m$ preslikava. Naj bo $x \in D$, potem $F(x) \in \mathbb{R}^m$, $F(x) = y = (y_1, \dots, y_m)$. Lahko pišemo $F(x) = (f_1(x), \dots, f_m(x))$. Torej F določa m funkcij n-spremenljivk.

Trditev 1.6. Naj bo $a \in D \subseteq \mathbb{R}^n$. Naj bo $F = (f_1, \dots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja:

Preslikava F je zvezna v $a \Leftrightarrow f_1, \ldots, f_m$ so zvezne v a.

Dokaz. Definicija zveznosti v točki.