Econ 139 Lecture 7

Andy Liu, Junqiao Wang, Ningyi Zheng

February 2019

1 Introduction

- 1. Expected Utility Theorem
- 2. Allais Paradox
- 3. Risk Aversion

Assumptions of Expected Utility Theorem A1 - A5:

A1. Rationality

There is a rational preference relation \succeq defined on L.

A2. Continuity

The preference relation is continuous in the following sense:

for any
$$L_{xy}, L_{vz}, L_{st} \in L$$
 where $L_{xy} \succeq L_{vz} \succeq L_{st}$:
 $\exists \alpha \in [0,1] \text{ s.t. } L_{vz} \sim \alpha L_{xy} + (1-\alpha)L_{st}$

A3. Independence Axiom

The preference relation \succeq on L is such that for all $L_{xy}, L_{vz}, L_{st} \in L$ and all $\alpha \in (0,1)$, we have $\alpha L_{xy} + (1-\alpha)L_{st} \succeq \alpha L_{vz} + (1-\alpha)L_{st}$.

If \succeq satisfies the independence axiom, then it can be shown:

$$L_{xy} \succ L_{vz} \iff \alpha L_{xy} + (1 - \alpha)L_{st} \succ \alpha L_{vz} + (1 - \alpha)L_{st}$$

$$L_{xy} \sim L_{vz} \iff \alpha L_{xy} + (1 - \alpha)L_{st} \sim \alpha L_{vz} + (1 - \alpha)L_{st}$$

A4. L is bounded

There is a best and a worst lottery in L :

$$\overline{L} = (b1, b2, \pi_{b_1})$$
 is the best lottery.
 $\underline{L} = (w1, w2, \pi_{w_1})$ is the worst lottery.

A5. For all payoff $X \in \mathcal{X}$, we make the following identification

$$\mathcal{U}(x, y, 1) \equiv u(x)$$

 $\mathcal{U}: \mathcal{L} \longrightarrow \mathbb{R}, u: \mathbb{X} \longrightarrow \mathbb{R}$

Proof:

Step 1:

By A2, there exist $\alpha_{xy}, \alpha_{vz} \in [0, 1]$ such that

$$L_{xy} \sim \alpha_{xy} \overline{L} + (1 - \alpha_{xy}) \underline{L}$$

$$L_{vz} \sim \alpha_{vz} \overline{L} + (1 - \alpha_{vz}) \underline{L}$$

Step 2:

We need to show that $L_{xy} \succeq L_{vz} \iff \alpha_{xy} \ge \alpha_{vz}$

Suppose
$$L_{xy} \succeq L_{vz}$$
,
 $\Rightarrow \alpha_{xy}\overline{L} + (1 - \alpha_{xy})\underline{L} \succeq \alpha_{vz}\overline{L} + (1 - \alpha_{vz})\underline{L}$
 $\Rightarrow (\alpha_{xy} - \alpha_{vz})\overline{L} \succeq (\alpha_{xy} - \alpha_{vz})\underline{L}$
 $\Rightarrow \alpha_{xy} \ge \alpha_{vz}$
Suppose $\alpha_{xy} \ge \alpha_{vz}$,
If $\alpha_{xy} = \alpha_{vz}$, we have indifference.
If $\alpha_{xy} > \alpha_{vz}$,
 $L_{xy} \sim \alpha_{xy}\overline{L} + (1 - \alpha_{xy})\underline{L}$

Define
$$\gamma = (\alpha_{xy} - \alpha_{vz})/(1 - \alpha_{vz}) \in [0, 1]$$
.

$$L_{xy} \sim \alpha_{xy}\overline{L} + (1 - \alpha_{xy})\underline{L} = \gamma\overline{L} + (1 - \gamma)(\alpha_{vz}\overline{L} + (1 - \alpha_{vz})\underline{L}) \succeq \gamma(\alpha_{vz}\overline{L} + (1 - \alpha_{vz})\underline{L}) + (1 - \gamma)(\alpha_{vz}\overline{L} + (1 - \alpha_{vz})\underline{L}) = \alpha_{vz}\overline{L} + (1 - \alpha_{vz})\underline{L} \sim L_{vz}$$
By transitivity, $L_{xy} \succeq L_{vz}$

Step 3: Since $L_{xy} \succeq L_{vz} \iff \alpha_{xy} \ge \alpha_{vz}$, define function \mathcal{U} such that $\mathcal{U}(L_{xy}) \equiv \alpha_{xy}, \mathcal{U}(L_{vz}) \equiv \alpha_{vz}$

Step 4:

By (A2) There exists scalars α_1, α_0 such that

$$L_1 = (x, y, 1) \sim \alpha_1 \overline{L} + (1 - \alpha_1) \underline{L}$$

$$L_0 = (x, y, 0) \sim \alpha_0 \overline{L} + (0 - \alpha_0) \underline{L}$$

Step 5: Observe that
$$L_{xy} = \pi_x L_1 + (1 - \pi_x) L_0$$

 $L_{xy} = \pi_x L_1 + (1 - \pi_x) L_0 \sim \pi_x [\alpha_1 \overline{L} + (1 - \alpha_1) \underline{L}] + (1 - \pi_x) [\alpha_0 \overline{L} + (1 - \alpha_0) \underline{L}] \sim (\pi_x \alpha_1 + (1 - \pi_x) \alpha_0) \underline{L} + (\pi_x (1 - \alpha_1) + (1 - \pi_x) (1 - \alpha_0)) \underline{L}$

Step 6:

$$\mathcal{U}(L_{xy}) = \alpha_{xy} = \pi_x \alpha_1 + (1 - \pi x)\alpha_0 = \pi_x \mathcal{U}((x, y, 1)) + (1 - \pi_x)\mathcal{U}((x, y, 0)) = \pi_x u(x) + (1 - \pi_x)u(y)$$

Where
$$\mathcal{U}:\mathcal{L}\longrightarrow\mathbb{R}$$

$$\mathcal{U}((x,y,1)) = u(x)$$

$$\mathcal{U}((x, y, 0)) = u(y)$$

$$\mathcal{W}\subseteq\mathbb{R}\longrightarrow\mathbb{R}$$

Thus,
$$L_{xy} \succeq L_{vz} \iff \mathcal{U}(L_{xy}) \geq \mathcal{U}(L_{vz})$$

2 Corollary

Suppose $U[(X,Y,\Pi x)]$ represents \succsim over \hbar , then $V[(X,Y,\Pi x]=\Pi xV(x)+(1-\Pi x)V(X)$ also represents \succeq iff there exists an a \wr 0 and B \in R such that V(x)=aU(x)+b

Jensen's inequality

$$E[f(u)] \le f(E[u])$$
 if f is concave $E[f(u)] = f(E[u])$ iff f''=0

$$R_A = -\frac{U''(x)}{U'(x)}$$
 thus for $V(x) = f(u(x))$

$$R_A = -\frac{V''(x)}{V'(x)} = -\frac{U''(x)}{U'(x)} \iff f'' = 0$$

$$v'(x) = f'(u(x))u"(x)$$

$$v''(x) = f'(x))u'(x) + f'(x)u''(x0)$$

$$-\frac{v''(x)}{v'(x)} = -\frac{f''(u(x))u'(x) + f'(u(x))u''(x)}{f'(u(x))u'(x)}$$

In this case, B is preferred to A

In this case, C is preferred to D

Independence says for any $\alpha \in (0,1)$ $C > D \iff \alpha C + (1-\alpha)E > \alpha D + (1-\alpha)$ let E be a degenerate lotteries that pays 0 for sure and let $\alpha = 0.1$

 $A = \alpha C + (1 - \alpha)E < B = \alpha D + (1 - \alpha)E$

Suppose A > B, D > C, But 0.11A + 0.89A = A > B = 0.11E + 0.89A0.11A + 0.89F = C < D = 0.11E + 0.89Fwhich is also a violation of independence

Two measures:

1, absolute risk aversion

$$R_A = -\frac{U''(x)}{U'(x)}$$

2, relative risk aversion

$$R_R(x) = -\frac{U''(x)}{U'(x)} * x = R_A(x) * x$$

3 Interpreting measures of risk aversion

Let x represent current wealth and consider an investment that pays off +h with probability π and -h with probability $1-\pi$

Let $\pi=\pi(x,h)$ be the probability that makes me in different between entering investment or not, we can show that $\pi(x,h)\approx 1/2+1/4hR_A(x)$ Note: $1/4hR_A(x)=o$ for risk neutral

Consider:

$$u(x) = -1/ve^{-vx}$$

$$R_A(x) = -(-ve^{-vx})/e^{-vx} = v$$

$$U(x) = \pi(x,h) - u(x+h) + (1-\pi)(x,h) - u(x-h)$$

By Taylor's Theorom:

$$u(x+h) = u(x) + hu'(x) + \frac{h^2}{2}u''(x) + H_1$$

$$u(x-h) = u(x) - hu'(x) + \frac{h^2}{2}u''(x) + H_2$$

$$u(x) \approx \pi(x,h)[u(x) + hu'(x) + \frac{h^2}{2}u''(x)] + (1-\pi(x,h))[u(x) - hu'(x) + \frac{h^2}{2}u''(x)])$$
Rearrangement gives:

$$u(x) \approx u(x) + (2\pi(x,h) - 1)hu'(x) + \frac{h^2}{2}u''(x)$$

$$2\pi(x,h)hu'(x) = hu'(x) - \frac{h^2}{2}u''(x)$$

$$\pi(x,h) \approx 1/2 + 1/4h[-\frac{u''(x)}{u'(x)}]$$

$$u(x) \approx \pi(x,h)[u(x) + hu'(x) + \frac{h^2}{2}u"(x)] + (1 - \pi(x,h)[u(x) - hu'(x) + \frac{h^2}{2}u"(x)])$$