INTRODUCCIÓN AL MODELAMIENTO DE DAÑO DE FORMACIÓN

SUBRED DE SINERGIAS EN DAÑO DE FORMACIÓN

Curso Programado en Asocio con Grupos de Investigación en Hidrocarburos y Química Aplicada de la Universidad Nacional de Colombia y la Universidad Industrial de Santander

Con el Apoyo Financiero de la VP de Innovación y Tecnología de Ecopetrol

Diciembre 1 y 2 de 2016

MODULO DE DIAGNÓSTICO DEL DAÑO POR FLUIDOS DE PERFORACIÓN Y COMPLETAMIENTO

SUBRED DE SINERGIAS EN DAÑO DE FORMACIÓN

Estudiante

Johanna Vargas Clavijo Ms.C jovargascl@unal.edu.co

Director

Sergio H. Lopera Ph.D shlopera@gmail.com

Diciembre 1 y 2 de 2016

AGENDA Daño por fluidos de perforación

'Fluido circulante utilizado en la perforación rotatoria para realizar cualquiera o la totalidad de las diversas funciones requeridas en las operaciones de perforación'

Zona de Daño

- 1. Invasión filtrado
- 2. Invasión partículas finas
- 3. Cake interno
- 4. Partículas de mayor tamaño
- 5. Cake Externo

Filtración Dinámica

MECANISMOS DE DAÑO | Daño por fluidos de perforación

RADIO DE INVASIÓN Y SKIN | Daño por fluidos de perforación

Zona Fuertemente invadida

Criterios de selección del tamaño de distribución del tamaño de partícula

Tiempo de exposición NO constante

Daño por fluidos de perforación

eoulon

Radio de Invasión y Reducción Permeabilidad

Daño por fluidos de perforación

Deformación de la roca

Los esfuerzos alrededor de la roca se intensifican, ocasionando deformación de la roca alterando las propiedades petrofísicas originales u ocasionando inestabilidad del pozo.

Changes in Effective Stress

Daño por fluidos de perforación

Efecto Combinado

La deformación de la roca y la invasión de filtrado y sólidos son dos eventos que se dan simultáneamente, además definen la magnitud del daño y la profundidad de invasión.

Alguno de los factores teóricos y experimentalmente son:

- a) Tipo y tamaño de la partícula del fluido de perforación
- b) Anisotropía
- c) Tamaño de garganta
- d) Los esfuerzos in situ existentes en las diferentes formaciones de roca
- e) Presión de sobrebalance
- f) Presión de poro

Daño por fluidos de perforación

Overbalance - Esfuerzos

Daño por fluidos de perforación

Overbalance - Esfuerzos

Sample	Effective stress (psi)	Overbalance (psi)	Ko (before damage)	Ko (after damage)	% Damage
12	1000	870	0.11	0.021	0.8090
13	3000	870	0.07	0.02	0.7142
14	1000	1070	0.11	0.017	0.8454
15	3000	1070	0.07	0.01	0.8571

Daño por fluidos de perforación

Permeabilidad - Porosidad

Alta K:

menor profundidad de invasión

<u>Baja K:</u>

mayor profundidad de invasión

Daño por fluidos de perforación

Permeabilidad – Porosidad – Sistema con Fracturas

Sample	Depth (ft)	Ko (before damage)	Ko (after damage)	% Damage
12	16248.4	0.11	0.021	80.90
13	16269.1	0.07	0.02	71.42
14	16248.4	0.11	0.017	84.54
15	16269.1	0.07	0.01	85.71

EVALUACIÓN DEL DAÑO | Evaluación del daño por fluido de perforación

Experimental y Numérico

- Prototipos Experimentales.
- Resultados: K, Kr, Tasa de filtración.
- Protocolos.
- Cuantificación del daño.

- Modelos macroscópicos
- Modelos microscópicos
- Determinación del skin y radio de invasión.
- Tasa de filtración

- Pérdidas de barriles de lodo.
- Skin inicial skin mecánico.
- Pronósticos de producción.
- Informes de pruebas experimentales.
- Propiedades petrofísicas.

fluido de perforación

MÉTODOS DE DIAGNÓSTICO — Base de datos | Daño por fluido de perforación

Campos - Barriles Invadidos

fluido de perforación

Campos - Radio de Invasión

MÉTODOS DE DIAGNÓSTICO — Base de datos | Daño por fluido de perforación

Pozos – Radios de Invasión

fluido de perforación

Pozos – Radios de Invasión

fluido de perforación

Pozos – Radios de Invasión

Campo III

fluido de perforación

Pozos – Radios de Invasión

fluido de perforación

Pozos – Radios de Invasión

fluido de perforación

Buenas prácticas y oportunidades de mejora en su control

de perforación

Generación del daño por fluido de perforación

Evaluación Experimental

Calculo del rd y skin

Bennion (2000), SPE 38154

- Agua.
- Aceite.
- Agua.

- Kabs.
- - Kw

- Agua.

Se obtiene: Permeabilidad inicial Ki, Permeabilidad al daño Kd, Curvas de filtración.

de perforación

Construcción herramienta predictiva

Evaluación Experimental

• Calculo
$$r_d$$

$$r_d = \left[r_w^2 + \frac{V}{\pi h \varphi (1 - S_{irr})} \right]^{0.5}$$

$$V = C * t^{1/2}$$

$$V = C * t^{1/2}$$
 \longrightarrow $C = dV/dt^{1/2}$ \longrightarrow $\frac{dV}{dt^{1/2}} = A * (K * P_{OB}) + B$

$$\frac{dV}{dt^{1/2}} = \mathbf{C} * (Suma D_S/K) + D$$

Calculo del rd y skin

$$V = (A * (K * P_{OB}) + B) * t^{1/2}$$

• Calculo Skin
$$S = \left(\frac{K_i}{K_d} - 1\right) \ln \frac{r_d}{r_w}$$

de perforación

Fase Perforación

Para cada intervalo de profundidad:

- 1. Calcular tiempo de exposición.
- 2. Calcular V a partir de

$$V = (A * (K * P_{OB}) + B) * t^{1/2}$$

- 3. Calcular rd
- 4. Calcular Skin.

Fase Perforación

5. Calcular V con un tiempo de cementación constante.

Datos de Entrada

Reservoir Pressure
Overbalance Pressure
Mud Density
Formation top depth
Formation base depth
Exposure Time
ROP at Reservoir
ROP Total
Friction Factor

Friction Factor
Hole diameter
Porosity (%):

Datos experimentales

k dP dV/dt^0.5

de perforación

EVALUACIÓN EXPERIMENTAL Y NUMÉRICA | Daño por fluido de perforación

Función dinámica de filtración

Sistema consolidado

$$V = [0.0074(K * P_{OB}) - 0.472] * t^{1/2}/A_f$$

0.45 $0.40 \text{ dV/dt}^{1/2} = 0.0074(\text{K*P}_{\text{OB}}) - 0.462$ 0.35 $R^2 = 0.9862$ 0.30 0.25 $dV/dt^{1/2}$ 0.20 0.15 0.10 0.05 0.00 50 70 90 110 130

Sistema no consolidado

$$V = [8x10^{-6}(K * P_{OB}) - 0.0398] * t^{1/2}/A_f$$

EVALUACIÓN EXPERIMENTAL Y NUMÉRICA | Daño por fluido de perforación

Sistema con alta influencia vs un sistema con baja influencia

IMPACTO EN LOS CAMPOS COLOMBIANOS Daño por fluidos

de perforación

Estimación de impacto en producción asociado al daño (bbl/d)

Producción Total de los Pozo sin skin 22875 (BPD)

La perforación de un pozo presenta una probabilidad de reducción de la permeabilidad de los siguientes niveles:

- Caída del 20% cuando, K > 100 mD
- Caída del 50% para, 10 mD < K < 100 mD
- Caída del 60% para, 1 mD < K < 10 mD
- Caída del 70% cuando, 1 mD < K < 10 mD

Pérdidas: En un 50 % la capacidad de flujo.

Producción actual neta de los Pozo 10105 (BPD)

Una producción incremental de 6500 Barriles/día

Producción Incremental asumiendo Reducción de Skin del 50% (BPD)

Se deja de producir: 12770 barriles/día

RETOS Y RECOMENDACIONES PARA EL DESARROLLO FUTURO Daño por fluido de perforación

Una Herramienta para la prevención y control del daño por fluido de perforación desde la fase de diagnóstico hasta la fase de tratamiento. Extender el uso de la herramienta a los niveles técnicos pertinentes, área yacimiento – área perforación, y proponer una continua optimización en el mejoramiento de procesos de toma de decisiones, proliferación de mejores prácticas y generación de conocimiento al interior, enfocados en los siguientes ítems.

- Diseño de fluidos de perforación.
- Cálculo del radio de invasión y skin.
- Árbol de decisiones/Plan de acción.
- Sistemas de remediación.

No solo queremos identificar el mejor fluido de perforación, sino también las condiciones operativas más óptimas durante la operación

GRACIAS

