Estratégias Evolucionárias

André Caetano

Roteiro

- Inspiração e Motivação
- Histórico
- Visão Geral
- Representação de Indivíduos
- Inicialização
- Auto-adaptação
- Operadores
- Estratégias
- Aplicações

Inspiração

 Teoria da evolução por seleção natural de Darwin (adaptação ao ambiente)
 "Mais aptos têm mais chances de sobreviver e reproduzir"

 A criação de novas estruturas se dá pela seleção natural, recombinação assexuada (mutação de um indivíduo gerando um descendente).

Motivação

Com quanto tempo você resolveria um quadrado mágico com dimensões 8x8?

Histórico

- Elas foram desenvolvidas por RECHENBERG (1965), SCHWEFEL (1965) e Bienert na Universidade Técnica de Berlim por volta de 1964.
- Criação dos mecanismos (μ,λ) (μ + λ) por volta de 1970.
- Os primeiros algoritmos de estratégia evolutiva operavam com um único indivíduo na população, sujeito à mutação e seleção.
- Uma idéia importante introduzida nos algoritmos mais recentes é a adaptação online (auto-adaptação) dos parâmetros da estratégia durante o processo evolutivo, através da introdução dos mesmos na representação genética dos indivíduos.

Visão Geral

- Desenvolvida: Universidade Técnica de Berlim por volta de 1964.
- Pioneiros: Rechenberg (1965), Schwefel (1965) e
 Bienert
- Aplicações típicas: Otimização Numérica
- Características
 - Velocidade de convergência
 - Bom otimizador para problemas de valores reais
 - Há muita teoria associada
- Especialidade
 - Auto-adaptação de parâmetros padrões (mutação)

Tabela Técnica

Representação	Vetores de valor real
Recombinação	Discreta ou Intermediária
Mutação	Perturbação Gaussiana
Seleção dos pais	Aleatória e Uniforme
Seleção de sobrevivência	(μ,λ) ou (μ+λ)
Especialidade	Auto-adaptação

Visão Geral

Visão Geral - Exemplo

- Tarefa: Otimizar a forma de uma haste de um móvel
- Abordagem: Mutação aleatória da forma + seleção

Forma Inicial

Forma Final

Representação de Indivíduos

- Os cromossomos consistem em três partes
 - Variáveis Objeto
 - X₁, X₂, ..., X_n
- Parâmetros da Estratégia
 - Passo da Mutação: σ₁,σ₂, ..., σ_{n_s}
 - Ângulos de Rotação α₁, α₂, ..., α_{nα}
- Não necessariamente todas as componentes existem!
- Tamanho total: $\langle x_1, ..., x_n, \sigma_1, ..., \sigma_n, \alpha_1, ..., \alpha_k \rangle$
- Onde k = n(n-1)/2 (no. dos pares i,j)

Inicialização

A inicialização consiste em atribuir valores aleatórios para cada gene do cromossomo de cada indivíduo, certificando-se de que seu genótipo esteja inicializado dentro das fronteiras de restrição do problema. Os parâmetros de estratégia também são inicializadas.

Auto-adaptação

- A expressão parâmetros da estratégia refere-se aos parâmetros que controlam o processo evolutivo de busca, como taxas de mutação, desvios padrões das mutações, probabilidades de recombinação, etc.
- A idéia de auto-adaptação consiste na evolução dos parâmetros da estratégia em adição à evolução dos atributos da estrutura de dados.

Auto-adaptação

• Dado um indivíduo $v = (x, \sigma, \alpha)$ composto pelo vetor de atributos x, os conjuntos σ e α de parâmetros da estratégia, o processo de autoadaptação é geralmente implementado efetuando-se primeiro (a recombinação e) mutação (de acordo com alguma função densidade de probabilidade) dos vetores de parâmetros σ e α , resultando em σ' e α' , e depois utilizando os vetores atualizados de parâmetros da estratégia σ' e a' para (recombinar e) mutar o vetor de atributos x, resultando em x'. 13 - 34

OPERADORES

- Principal mecanismo nas EE
 - Modificação dos valores pela adição aleatória de ruído guiado por uma distribuição normal
 - \rightarrow $x'_i = x_i + N(0,\sigma)$
- Idéia Chave:
 - \triangleright σ é parte do cromossomo < $x_1, ..., x_n, \sigma$ >
 - σ também é mutacionado dentro de σ'
- Portanto: o passo da mutação σ está coevoluindo com a solução x

Mutacione σ primeiro

- Efeito do processo de mutação:
 - $< x, \sigma > \rightarrow < x', \sigma' >$
- A ordem é importante!
 - Primeiro: $\sigma \rightarrow \sigma'$
 - Então: $x \rightarrow x' = x + N(0,\sigma')$
- A avaliação é feita em dois processos
 - Primeiro: x' é bom se f(x') é bom
 - Segundo: σ' é bom se o x' que este criou é bom
- Se a ordem é trocada, muito provavelmente o processo não funciona

Operadores: Exemplo do mecanismo de Mutação

- Os valores de Z são guiados por uma distribuição normal N(ξ,σ)
 - A média ξ é ajustada para 0
 - O Desvio Padrão σ é chamado tamanho do passo de mutação
- σ é variado durante o processo por "1/5 da regra de sucesso"
 - $\triangleright \sigma = \sigma / c \text{ if } p_s > 1/5$
 - $\triangleright \sigma = \sigma \cdot c \text{ if } p_s < 1/5$
 - ρ σ = σ if ρ_s = 1/5
- Onde p_s é o % de mutações com sucesso, e 0.8 ≤ c ≤ 1

- Há outras abordagens para a mutação como por exemplo:
- Um único desvio padrão para todos os atributos de x

Desvios padrões individuais para atributo de x

Desvios padrões individuais para atributo de x e mutação correlacionada.

Operadores: Recombinação

- Além da recombinação discreta (crossover uniforme) é usada mais duas abordagens:
- Recombinação intermediária global: média aritmética dos parâmetros de cada um dos pais.

Dados dois indivíduos a = (x_a, σ_a) e b = (x_b, σ_b)

$$x_i' = \frac{1}{2} (x_{a,i} + x_{b,i}), "i \in \{1,...,l\}$$

$$\sigma_{i}' = \frac{1}{2} (\sigma_{a,i} + \sigma_{b,i}), "i \in \{1,...,l\}$$

Operadores: Recombinação

 Recombinação intermediária local: combinação linear convexa dos vetores correspondentes aos pais

Dados dois indivíduos $a=(x_a,\sigma_a)$ e $b=(x_b,\sigma_b)$ $x_a'=ax_a+(1-a)x_b,$ $x_b'=(1-a)x_a+ax_b,$ "i \in {1,...,I}, e $a\in[0,1]$ é um número aleatório

Se aplica também a σ.

 Os operadores de recombinação podem gerar um ou mais indivíduos filhos partindo de dois ou mais pais.

Estratégias

- Dada uma população com μ indivíduos, λ filhos serão gerados.
 - \triangleright (μ+λ)-ΕΕ: de (μ+λ) indivíduos, μ serão selecionados.
 - \triangleright (μ, Λ) -EE: de Λ indivíduos, μ serão selecionados (Λ \ge μ).
- Os vários tipos de estratégias evolutivas:
 - ➤o Dois-membros: (1 + 1)-EE
 - > o Multimembros: (μ + 1)-EE
 - > o Multimembros: (μ + λ)-ΕΕ
 - > o Multimembros: (μ. λ)-EE

Dois Membros: (1 + 1)-EE

- A população é composta por um único indivíduo, e apenas o operador genético de mutação é utilizado.
- A representação do indivíduo da população

ao individuo da população tores reais, ou seja, $v = (x,\sigma)$.

As mutações são realizadas atualizando-se x da seguinte forma (Mutação Gaussiana) : x^{t+1} = x^t + N(0,σ)

Dois Membros: (1 + 1)-EE

- Este procedimento de mutação está de acordo com a observação biológica de que pequenas variações ocorrem com maior freqüência do que grandes variações, e de que os filhos herdam características dos pais, ou seja, são parecidos com eles.
- O filho (indivíduo mutado) é aceito na nova geração se e somente se ele possuir um fitness melhor do que o pai (e for factível).
- Apesar de existir um único indivíduo na população, este procedimento é denominado de estratégia evolutiva de dois membros pois o filho 34

Multimembros: $(\mu + 1)$ -EE

- Para introduzir o conceito de população no algoritmo, Rechenberg propôs as ES multimembros onde μ > 1 pais podem participar na geração de um único filho.
- Este operador é denominado de *operador de* recombinação discreto e é equivalente ao crossover uniforme em algoritmos genéticos e a mutação é idêntica a dois membros (1+1)-EE.
- O operador de seleção remove o indivíduo menos apto (com menor fitness) dentre os pais e o filho gerado.

26 - 34

Multimembros: $(\mu + \lambda)$ -EE

- A estratégia (μ+λ)-EE foi proposta inicialmente, onde μ pais produzem λ filhos e a população μ+λ é posteriormente reduzida para μ indivíduos. A seleção opera no conjunto união de pais e filhos.
- Assim, os pais sobrevivem até que filhos com fitness superiores a eles sejam produzidos. Esta característica leva a uma série de problemas com a estratégia (μ+λ)-ΕΕ

Multimembros: (μ, Λ) -EE

- Para evitar estes efeitos, SCHWEFEL (1995) investigou as propriedades de uma estratégia (μ, λ)-EE, onde somente os filhos sofrem seleção. Ou seja, o período de vida de cada indivíduo está restrito a uma geração.
- O período de vida restrito permite o "esquecimento" de parâmetros inapropriados
- A partir de agora o operador de mutação vai atuar diretamente em σ.

APLICAÇÕES

Onde Usar?

 N.A.S.A. O laboratório de Jato Propulsão utiliza um sistema equivalente a uma EE para o desenvolvimento de carenagens de foguetes

Onde Usar?

Esportes: F1 Algumas equipes de F1 tem sistemas baseados em EE para o

desenvolvimento de aero

Perspectivas Futuras e Considerações

- Tendência de uso de paralelismo
- Aplicação em problemas cada vez mais complexos com o passar do tempo (+ recursos)
- Ferramenta para novas invenções ou melhoria de soluções existentes

Paralelo entre EEs e Gas

- A ordem relativa dos procedimentos de seleção e recombinação é diferente nos dois algoritmos. Nas EEs, o processo de seleção ocorre depois da recombinação e mutação do indivíduo, enquanto nos GAs estes procedimentos ocorrem na ordem inversa.
- Nos algoritmos genéticos os parâmetros de variação genética (probabilidade de crossover e mutação) permanecem constante ao longo das gerações, enquanto as EEs alteram σ e α constantemente; eles sofrem mutação e recombinação juntamente com o vetor de³

Referências

- Eiben A.E., Smith J.D. Introduction to Evolutionary Computing (Springer, 2003)
- Prof. Tiago Ferreira Notas de aulas.
- Profs. Leandro de Castro/Fernando Von Zuben – Notas de aulas.
- Engelbrech A.P. Computacional Intelligence an introduction.