InPars: Data Augmentation for Information Retrieval using Large Language Models

04 de maio de 2023

Conceitos Importantes

Geração de dados sintéticos

Utilização de LLMs para gerar queries relevantes a partir de

passagens.

Contribuições do Artigo

- Relevante questão sobre o uso de LLMs em IR:
 - "Custo" computacional das tarefas de recuperação de informação.
- Buscadores densos, apesar de serem computacionalmente mais baratos, precisam de uma passagem de inferência para calcular a representação vetorial de cada documento da coleção.
- Outro desafio no desenvolvimento de modelos neurais para IR é a falta de dados de treinamento específicos do domínio.

Resultados

		MARCO	TREC-DL 2020		Robust04		NQ	TRECC
		MRR@10	MAP	nDCG@10	MAP	nDCG@20	nDCG@10	nDCG@10
	Unsupervised							
(1)	BM25	0.1874	0.2876	0.4876	0.2531	0.4240	0.3290	0.6880
(2)	Contriever (Izacard et al., 2021)	-	-	-	-	-	0.2580	0.2740
(3)	cpt-text (Neelakantan et al., 2022)	0.2270	-	-	-	5	-	0.4270
	OpenAI Search reranking 100 docs from BM25							
(4)	Ada (300M)	\$	0.3141	0.5161	0.2691	0.4847	0.4092	0.6757
(5)	Curie (6B)	\$	0.3296	0.5422	0.2785	0.5053	0.4171	0.7251
(6)	Davinci (175B)	\$	0.3163	0.5366	0.2790	0.5103	\$	0.6918
	InPars (ours)							
(7)	monoT5-220M	0.2585	0.3599	0.5764	0.2490	0.4268	0.3354	0.6666
(8)	monoT5-3B	0.2967	0.4334	$\boldsymbol{0.6612}$	0.3180	0.5181	0.5133	0.7835
	Supervised [> MARCO]							
(9)	Contriever (Izacard et al., 2021)	. 	-	-	-	5	0.4980	0.5960
(10)	cpt-text (Neelakantan et al., 2022)	2	2	121	_	2	2	0.6490
(11)	ColBERT-v2 (Santhanam et al., 2021)	0.3970	-	-	-	-	0.5620	0.7380
(12)	GPL (Wang et al., 2021)	-	-	-	-	=	-	0.7400
(13)	miniLM reranker	$^{\dagger}0.3901$	120	-	2	2	$^{\ddagger}0.5330$	$^{\ddagger}0.7570$
(14)	monoT5-220M (Nogueira et al., 2020)	0.3810	0.4909	0.7141	0.3279	0.5298	0.5674	0.7775
(15)	monoT5-3B (Nogueira et al., 2020)	0.3980	0.5281	0.7508	0.3876	0.6091	0.6334	0.7948
	InPars (ours) [▷ MARCO ▷ unsup in-domain]							
(16)	monoT5-3B	0.3894	0.5087	0.7439	0.3967	0.6227	0.6297	0.8471

Tópicos Avançados

- Devido à interação consulta/documento, cross-encoders (linhas 7-8)
 são mais eficazes (e contextuais) do que a consulta independente e codificação de documento de bi-encoders.
- As questões sintéticas geradas pelo InPars têm mais semelhança com as consultas que o retriever verá no momento da inferência do que as sentenças extraídas dos textos usados pelo Contriever e cpt-text.
- As novas consultas que geramos, combinadas com documentos que o modelo não usaria de outra forma, fornecem um conjunto de treinamento completamente novo com alta diversidade.

Obrigado

Manoel Veríssimo