Convolution, Correlation, & Eourier Transforms

James R. Graham 10/25/2005

Introduction

- A large class of signal processing techniques fall under the category of *Fourier transform* methods
 - These methods fall into two broad categories
 - Efficient method for accomplishing common data manipulations
 - Problems related to the Fourier transform or the power spectrum

Time & Frequency Domains

- A physical process can be described in two ways
 - In the *time domain*, by the values of some some quantity h as a function of time t, that is h(t), $-\infty < t < \infty$
 - In the *frequency domain*, by the complex number, H, that gives its amplitude and phase as a function of frequency f, that is H(f), with -∞ < f < ∞
- It is useful to think of h(t) and H(f) as two different representations of the same function
 - One goes back and forth between these two representations by Fourier transforms

Fourier Transforms

$$H(f) = \int_{-\infty}^{\infty} h(t)e^{-2\pi i f t} dt$$

$$h(t) = \int_{-\infty}^{\infty} H(f)e^{2\pi i f t} df$$

- If *t* is measured in seconds, then *f* is in cycles per second or Hz
- Other units
 - E.g, if h=h(x) and x is in meters, then H is a function of spatial frequency measured in cycles per meter

Fourier Transforms

- The Fourier transform is a linear operator
 - The transform of the sum of two functions is the sum of the transforms

$$h_{12} = h_1 + h_2$$

$$H_{12}(f) = \int_{-\infty}^{\infty} h_{12} e^{-2\pi i f t} dt$$

$$= \int_{-\infty}^{\infty} (h_1 + h_2) e^{-2\pi i f t} dt = \int_{-\infty}^{\infty} h_1 e^{-2\pi i f t} dt + \int_{-\infty}^{\infty} h_2 e^{-2\pi i f t} dt$$

$$= H_1 + H_2$$

Fourier Transforms

- h(t) may have some special properties
 - Real, imaginary
 - Even: h(t) = h(-t)
 - Odd: h(t) = -h(-t)
- In the frequency domain these symmetries lead to relations between H(f) and H(-f)

FT Symmetries

If	Then
h(t) real	$H(-f) = [H(f)]^*$
h(t) imaginary	$H(-f) = -[H(f)]^*$
h(t) even	H(-f) = H(f) (even)
h(t) odd	H(-f) = -H(f) (odd)
h(t) real & even	H(f) real & even
h(t) real & odd	H(f) imaginary & odd
h(t) imaginary & even	H(f) imaginary & even
h(t) imaginary & odd	H(f) real & odd

Elementary Properties of FT

$$h(t) \leftrightarrow H(f)$$
 Fourier Pair $h(at) \leftrightarrow \frac{1}{a} H(f/a)$ Time scaling $h(t-t_0) \leftrightarrow H(f) e^{-2\pi i f t_0}$ Time shifting

Convolution

- With two functions h(t) and g(t), and their corresponding Fourier transforms H(f) and G(f), we can form two special combinations
 - The *convolution*, denoted f = g * h, defined by

$$f(t) = g * h \equiv \int_{-\infty}^{\infty} g(\tau)h(t - \tau)d\tau$$

Convolution

• g*h is a function of time, and

$$g*h = h*g$$

- The convolution is one member of a transform pair

$$g * h \longleftrightarrow G(f)H(f)$$

- The Fourier transform of the convolution is the product of the two Fourier transforms!
 - This is the Convolution Theorem

Correlation

• The *correlation* of *g* and *h*

$$Corr(g,h) \equiv \int_{-\infty}^{\infty} g(\tau + t)h(t)d\tau$$

- The correlation is a function of *t*, which is known as the lag
 - The correlation lies in the time domain

Correlation

• The correlation is one member of the transform pair

$$Corr(g,h) \leftrightarrow G(f)H^*(f)$$

- More generally, the RHS of the pair is G(f)H(-f)
- Usually g & h are real, so $H(-f) = H^*(f)$
- Multiplying the FT of one function by the complex conjugate of the FT of the other gives the FT of their correlation
 - This is the Correlation Theorem

Autocorrelation

- The correlation of a function with itself is called its *autocorrelation*.
 - In this case the correlation theorem becomes the transform pair

$$Corr(g,g) \leftrightarrow G(f)G^*(f) = |G(f)|^2$$

- This is the **Wiener-Khinchin Theorem**

Convolution

- Mathematically the convolution of r(t) and s(t), denoted r*s=s*r
- In most applications *r* and *s* have quite different meanings
 - s(t) is typically a signal or data stream, which goes on indefinitely in time
 - -r(t) is a response function, typically a peaked and that falls to zero in both directions from its maximum

The Response Function

- The effect of convolution is to smear the signal s(t) in time according to the recipe provided by the response function r(t)
- A spike or delta-function of unit area in s which occurs at some time t_0 is
 - Smeared into the shape of the response function
 - Translated from time 0 to time t_0 as $r(t t_0)$

Convolution

- The signal s(t) is convolved with a response function r(t)
 - Since the response function is broader than some features in the original signal, these are smoothed out in the convolution

Fourier Transforms & FFT

- Fourier methods have revolutionized many fields of science & engineering
 - Radio astronomy, medical imaging, & seismology
- The wide application of Fourier methods is due to the existence of the **fast Fourier transform** (FFT)
- The FFT permits rapid computation of the discrete Fourier transform
- Among the most direct applications of the FFT are to the convolution, correlation & autocorrelation of data

The FFT & Convolution

- The convolution of two functions is defined for the continuous case
 - The convolution theorem says that the Fourier transform of the convolution of two functions is equal to the product of their individual Fourier transforms

$$g * h \leftrightarrow G(f)H(f)$$

- We want to deal with the discrete case
 - How does this work in the context of convolution?

Discrete Convolution

- In the discrete case s(t) is represented by its sampled values at equal time intervals s_i
- The response function is also a discrete set r_k
 - r_0 tells what multiple of the input signal in channel j is copied into the output channel j
 - $-r_1$ tells what multiple of input signal j is copied into the output channel j+1
 - $-r_{-1}$ tells the multiple of input signal j is copied into the output channel j-l
 - Repeat for all values of k

Discrete Convolution

• Symbolically the discrete convolution is with a response function of finite duration,

N, is
$$(s*r)_{j} = \sum_{k=-N/2+1}^{N/2} s_{k}r_{j-k}$$

$$(s*r)_{j} \longleftrightarrow S_{l}R_{l}$$

Discrete Convolution

- Convolution of discretely sampled functions
 - Note the response function for negative times wraps around and is stored at the end of the array r_k

Examples

- Java applet demonstrations
 - Continuous convolution
 - http://www.jhu.edu/~signals/convolve/
 - Discrete convolution
 - http://www.jhu.edu/~signals/discreteconv/