

Day-to-day responsibilities: Servers unable to properly prioritize tasks during a rush without knowing how much a table will reward them

Applicants: Unable to determine their potential salary

Hiring managers: Unable to properly advertise job openings

Who might care?

Current waitstaff

Job applicants

Hiring managers

What factors might affect a table's tips?

Quantitative Data (Kaggle Dataset)

- Table size
- Smoker present in group?
- Gender of person paying
- Total bill amount
- Day of week and time of day

Qualitative Data (may not be necessary)

- Customer service quality
- Customer satisfaction

Data Information

Data acquired over a few months

One server, one restaurant

Published in 1995

Number of records: 244

Number of fields: 7

Engineering Tip Percentage Amounts Feature From Tips Data

Divide tip amount from total bill amount

Data Exploration

Correlations

Pairplots

Sex

Smoker

Day

Time

Size

Correlations

Moderate correlation between tips and total bill

Weak correlation between group size and tip percentage

Pairplots

All numerical features skew right

Tips increase as total bill increases

Sex

Smoker

NO SIGNIFICANT DIFFERENCES IN EITHER TIP AMOUNT OF PERCENTAGES

Day

Significant difference found in tip amounts between different days

No significant differences found in tip percentages between different days

Time

Significant difference found in tip amounts between different shifts

No significant differences found in tip percentages between different shifts

Size

Significant difference found in tip amounts between different sizes

No significant differences found in tip percentages between different sizes

Type: Supervised learning

Machine Learning Modeling

Tools: Python's scikit-learn

Low amount of data: Bootstrapping reqiured

Modeling Steps

Pipeline

- Data Pre-Processing
 - 1. One-hot encoding
 - 2. Data splitting into training and test sets (80%-20%)
 - 3. Scaling
- Cross-Validation (CV) for Hyperparameter Tuning
 - 1. 5 fold CV
 - 2. Using scikit-learn's grid search method
 - 3. Evaluation metric: Mean absolute error

Performance evaluation using holdout dataset (20% of whole data)

Regression Algorithms Used

1. Linear Regression

2. Random Forest Regression

Model Comparisons

Model	Mean Absolute Error
Linear Regression - tips	~0.74
Random Forest - tips	almost zero
Linear Regression - tip percentage	~3.78
Random Forest - tip percentage	almost zero

Model Comparisons

Some Details on the Best Model

Best estimators: 10

Standard Scaling

Some Details on the Best Model

Total bill is most important feature for predicting tip amounts

Total bill and Day (Sunday) are best features for predicting tip percentages

Testing on Under-Sampled Test Data

Model	Mean Absolute Error
Linear Regression - tips	~0.72
Random Forest - tips	almost zero
Linear Regression - tip percentage	~3.74
Random Forest - tip percentage	almost zero

Testing on Under-Sampled Test Data

Input features used in Random Forest regression model

Use model pipeline on new data and predict tip amounts and tip percentages

Using the Model

Tip Percentage	
< 10%	Bottom priority
10% – 15%	Low Priority
15% – 18%	Medium Priority
18% - 20%	High Priority
> 20%	Top Priority

An Example of Model Usage: Possible Recommendations

Assumptions, Limitations, and Disclaimers

WE ASSUME THAT ALL TABLES ARE INDEPENDENT, THOUGH THAT WOULD NOT BE THE CASE FOR REGULARS

USED ONLY ONE SERVER'S DATA FROM ONE RESTAURANT OVER THE COURSE OF A FEW MONTHS THE MODEL MAY BEHAVE POORLY IF WE TRY TO PREDICT TIPS AND TIP PERCENTAGES OF OTHER RESTAURANTS

Diversify	Diversify information from a wider variety of establishments (casual, high-end, eateries)
Extract	Extract information from more servers/bartenders
Include	Include dates so monthly/annual salaries can be calculated from tips predictions

More Ideas to Improve the Model in the Future

Saint Gau

Email: transaintgau@gmail.com

https://www.linkedin.com/in/saintgau/

https://github.com/transaint/Professional-Portfolio

Final project report: https://github.com/transaint/Springboard-

Projects/blob/master/Springboard%20Projects/Predicting%20a%20Table's%20Tips/Final%20Proj

ect%20Report.ipynb