

Summer project presentation

Closed loop neurofeedback prototype for adaptive brain stimulation

Student: Zeca Buclet Supervisor:
Professor Marie-Hélène Boudrias

System overview

Summer project overview

Feasibility Study

Literature Review

- Brain stimulation and why use it in stroke recovery
- Task of interest & detectable features
- Neurofeedback and applications

Requirements

- Real time data access
- Low latency transmission
- Easy integration and system translation

Sicon Recorder Trigger UDP Input Settings Acquisition ~ Enabled Recording 127.0.0.1 Network 1000 Port Device Raw Data UDP Output Settings Enabled **~** 127.0.0.1 1002 Port Raw Data LSL Output Settings Enabled Streamname UnicornRecorderRawDataLSLStream Processed Data UDP Output Settings **~** Enabled 127.0.0.1 1001 Port Processed Data LSL Output Settings Enabled ~

UnicornRecorderLSLStream

Streamname

Feasibility study

Find appropriate data access protocol:

Option	Comments
BCPy2000	Outdated, complicated
NeurofeedbackLab	Matlab based, EEGLAB plugins
BrainVision RecView	Live processing, no control over data
LabStreamingLayer (LSL)	Modern, cross-compatible, Python API, low latency

✓ Chosen protocol: LabStreamingLayer

Feasibility study: Tools used

Hardware:

- Personal computer
- Unicorn Hybrid Black

- Wireless
- Dry electrodes
- Easy to use

- Noisier
- Lower sampling rate

Software:

- Unicorn Suite Hybrid Black
- Python
- LabStreamingLayer

Feature extraction: Record and log data

Detect alpha power shifts in real time → Compare eyes open and eyes closed recording

LSL protocol

- Data streamed from UnicornRecorderLSLStream (Processed data)
- Python script to access and log data into csv file

Feature extraction: Offline analysis alpha power

Alpha power change between tasks (eyes open/closed) relative to baseline

X Problems

- Data noisier than expected
- Big variability across trials
- Small baseline values ⇒ big changes

Clear alpha band increase

Feature extraction: Online extraction

3) Alpha power extraction online logic:

Pseudo code LOOP while streaming is active: Pull_sample_from_stream() if enough data to compute on a new window: if bad_window: BREAK Compute_Welch_PSD() Compute alpha_power() Log data to csv END LOOP

Parameters	Value
Sample rate	250Hz
Window size	2s
Buffer size	Window x sample rate
Step size	10% buffer (90% overlap)

Feature extraction: Online analysis alpha power

X Limitations

- Very noisy
- Large standard deviation

Results

- Successful real-time detection of state changes (20ms)
- Validated pipeline for recording, plotting, and feature extraction

Detect movement-related beta desynchronization (MRBD)

Method

- Extend alpha power pipeline to beta band
- 4 second gripping task 6s rest ⇒ 50 trials
- Morlet wavelet time frequency analysis over C3

- Clear 50% desynchronization.
- Post movement rebound

- No clear desynchronization.
- Possible noise/artifact issues

Movement vs No Movement comparison

Interpretation

- Task related signal is inexistent
- Beta power baseline is too small and data is too noisy which creates very large ERDs

NEXT STEPS

Recap & Next steps

Success

- Real-time feature extraction feasible (alpha)
- Mean alpha change computed live per task

Limitations

- MRBD detection harder than expected
- Higher-quality recordings required
- More robust analysis& protocol

Next steps

- Use BrainVision Cap for better data quality
- Optimize preprocessing (filtering, resampling)
- Improve experimental protocol

Optimal EEG setup for closed loop system

Current Opinion in Biomedical Engineering

Image source: Iturrate, I., Pereira, M., & Millán, J. R. (2018). Closed-loop electrical neurostimulation: Challenges and opportunities. *Current Opinion* 18 in Biomedical Engineering, 8, 28–37

Optimal EEG setup for closed loop system

Current Opinion in Biomedical Engineering

Optimal EEG setup for closed loop system

To Buy

• Soterix MxN Pro – fully software-controlled stimulation system

Current limitation: 4×1 HD-tDCS and 1×1 tES cannot be modulated via software.

To Develop

- Live MRBD computation
- Stimulation trigger

Images sources: 1) https://soterixmedical.com/static/images/mxn33/mxn-pro-main-3.png 2) https://upload.wikimedia.org/wikipedia/commons/c/c3/Python-logo-notext.svg

What I learned

- Real time processing pipeline using Python and LSL
- Online and offline feature extraction
- Hands on experience with EEG hardware

- Learned importance of iterative testing and refining methods
- Problem solving on real use cases
- Patience and resilience
- Unexpected results are as important as expected ones

Thank you for your attention!

References

Bibliography:

I. Iturrate, M. Pereira, and J. del R. Millán, "Closed-loop electrical neurostimulation: Challenges and opportunities," Current Opinion in Biomedical Engineering, vol. 8, pp. 28–37, 2018. doi: 10.1016/j.cobme.2018.09.007

Morales Fajardo K, Yan X, Lungoci G, Casado Sánchez M, Mitsis GD, Boudrias MH. The Modulatory Effects of Transcranial Alternating Current Stimulation on Brain Oscillatory Patterns in the Beta Band in Healthy Older Adults. Brain Sci. 2024 Dec 20;14(12):1284. doi: 10.3390/brainsci14121284

Images:

- 1) https://www.gtec.at/wp-content/uploads/2023/09/unicorn-hybrid-black-bundle.jpg
- 2) https://soterixmedical.com/static/images/mxn33/mxn-pro-main-3.png
- 3) https://upload.wikimedia.org/wikipedia/commons/c/c3/Python-logo-notext.svg