

JC20 Rec'd PCT/PTO SEP 28 2001

09/937779

TRANSMITTAL LETTER TO THE UNITED STATES

ATTORNEY'S DOCKET NUMBER 0093/000003

DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371

U.S. APPLICATION NO. (If known, see 37 CFR 1.5)

INTERNATIONAL APPLICATION NO.
PCT/EP 00/02701

INTERNATIONAL FILING DATE
12 OCT 2000

PRIORITY DATE CLAIMED
March 28, 2000

TITLE OF INVENTION: A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL
AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

APPLICANT(S) FOR DO/EO/US Anders DAHLQUIST; Ulf STAHL; Marit LENMAN; Antoni BANAS Hans RONNE; Sten STYMNE

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. /X/ This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
 2. // This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
 3. /X/ This express request to begin national examination procedures (35 U.S.C.371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
 4. / / A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
 5. /X/ A copy of the International Application as filed (35 U.S.C. 371(c)(2)).
 - a./X/ is transmitted herewith (required only if not transmitted by the International Bureau).
 - b./ / has been transmitted by the International Bureau.
 - c./ / is not required, as the application was filed in the United States Receiving Office (RO/USO).
 6. /X/ A translation of the International Application into English (35 U.S.C. 371(c)(2)).
 7. // Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)).
 - a./ / are transmitted herewith (required only if not transmitted by the International Bureau).
 - b./ / have been transmitted by the International Bureau.
 - c./ / have not been made; however, the time limit for making such amendments has NOT expired.
 - d./ / have not been made and will not be made.
 8. // A translation of the amendments to the claims under PCT Article 19(35 U.S.C. 371(c)(3)).
 9. /X/ An oath or declaration of the inventor(s)(35 U.S.C. 171(c)(4)).
 - 10.// A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).
- Items 11. to 16. below concern other document(s) or information included:
- 11./X/ An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
 - 12.// An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
 - 13./X/ A FIRST preliminary amendment.
// A SECOND or SUBSEQUENT preliminary amendment.
 - 14.// A substitute specification.
 - 15.// A change of power of attorney and/or address letter.
 - 16./X/ Other items or information.
International Search Report
International Preliminary Examination Report

JC05 Rec'd PCT/PTO

28 SEP 2001

09/937779

U.S. Appn. No. (If Known)

INTERNATIONAL APPLN. NO.
PCT/EP 00/02701

ATTORNEY'S DOCKET NO.
0093/000003

17. /X/ The following fees are submitted BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5)): Search Report has been prepared by the EPO or JPO.....	CALCULATIONS	PTO USE ONLY	
\$860.00	860.00		
International preliminary examination fee paid to USPTO (37 CFR 1.482).....\$690.00			
No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)).....\$710.00			
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO\$1000.00			
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied pro visions of PCT Article 33(2)-(4).....\$100.00			
ENTER APPROPRIATE BASIC FEE AMOUNT = \$ 860.00			
Surcharge of \$130.00 for furnishing the oath or declaration later than / / 20 / /30 months from the earliest claimed priority date (37 CFR 1.492(e)).			
<u>Claims</u>	<u>Number Filed</u>	<u>Number Extra</u>	<u>Rate</u>
Total Claims	22 -20	2	x\$18. 36.00
Indep. Claims	4 -3	1	x\$80. 80.00
Multiple dependent claim(s)(if applicable)			+270.
<u>TOTAL OF ABOVE CALCULATION</u>			= 116.00
Reduction of % for filing by small entity, if applicable. Verified Small Entity statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28).			
<u>SUBTOTAL</u>			= 976.00
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the earliest claimed priority date (37 CFR 1.492(f)). +			
<u>TOTAL NATIONAL FEE</u>			= 976.00
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) \$40.00 per property =			
<u>TOTAL FEES ENCLOSED</u>			= \$ 976.00
Amount to be <u>refunded:</u> \$ <u>Charged:</u> \$			

a./X/ A check in the amount of \$976.00 to cover the above fees is enclosed.

b./ / Please charge my Deposit Account No. _____ in the amount of \$ _____ to cover the above fees. A duplicate copy of this sheet is enclosed.

c./X/ The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 11-0345. A duplicate copy of this sheet is enclosed.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:
• KEIL & WEINKAUF
1101 Connecticut Ave., N.W.
Washington, D.C. 20036

H.B. Keil
SIGNATURE
Herbert B. Keil
NAME
18,967
Registration No.

09/937779
JC05 Rec'd PCT/PTO 28 SEP 2001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of)
DAHLQUIST et al.) **BOX PCT**
PCT/EP 00/02701)
Intl. Filing Date: March 28, 2000)
US Serial No.: TO BE ASSIGNED)
)

For: A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE
PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES
ENCODING THESE ENZYMES

Honorable Commissioner of
Patents and Trademarks
Washington, D.C. 20231

PRELIMINARY AMENDMENT

Sir:

Prior to examination of the above-identified U.S. National
Stage application, kindly amend the application as follows.

CLEAN VERSION OF ALL CLAIMS

Cancel claims 1-27, all the claims in this case, and substitute new claims 28-49 as follows:

28. An enzyme, designated as phospholipid:diacylglycerol acyltransferase (PDAT), catalyzing in an acyl-CoA-independent reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol and comprising an amino acid sequence as set forth in SEQ ID NO:2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.

29. An enzyme according to claim 28, comprising an amino acid sequence encoded through a nucleotide sequence as set forth in SEQ ID NO:1 or a homologous nucleotide sequence which is at least about 40% identical to a nucleotide sequence of SEQ ID NO. 1.

30. An enzyme according to claim 28, comprising an amino acid sequence as set forth in SEQ ID NO. 16, 20 or 22, or a functional fragment, derivate, allele, homolog or isoenzyme thereof.

31. An enzyme according to claim 28, comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 6, 8, 13, 14, 15, 17, 18, 25 and 27, a functional fragment, derivate, allele, homolog or isoenzyme thereof.

32. An enzyme according to claim 28, comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31, or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence.

33. A nucleotide sequence according to claim 32, selected

from the group consisting of sequences as set forth in SEQ ID NO. 1, 3, 4, 10, 11, 19, 21, 23, 24, 29 and 30, or a portion, derivate, allele or homolog thereof.

34. A partial nucleotide sequence corresponding to a full length nucleotide sequence according to claim 32, selected from the group consisting of sequences as set forth in SEQ ID NO. 5, 7, 9, 12, 25, 26, 28 and 31, or a portion, derivate, allele or homolog thereof.

35. A nucleotide sequence according to claim 32, comprising a nucleotide sequence which is at least 40% identical to a nucleotide sequence selected from the group consisting of those sequences set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31.

36. A gene construct comprising a nucleotide sequence as set forth in SEQ ID No. 1, or a homologous nucleotide sequence which is at least about 40% identical to the nucleotide sequence of SEQ ID No. 1, which is operably linked to a heterologous nucleic.

37. A vector comprising a gene construct according to claim 36, or the nucleotide sequence as set forth in SEQ ID No. 1, or a homologous nucleotide sequence which is at least about 40% identical to the nucleotide sequence of SEQ ID No. 1.

38. A vector according to claim 37, which is an expression vector.

39. A vector according to claim 37, further comprising a selectable marker gene and/or nucleotide sequences for the replication in a host cell or the integration into the genome of the host cell.

40. A transgenic cell or organism comprising one or more of the following:

- a) a nucleotide sequence a₁) to a₄),

b) a gene construct b₁), and

c) a vector c₁),

wherein

- a₁) is a nucleotide sequence as set forth in SEQ ID NO. 1 or a homologous nucleotide sequence which is at least about 40% identical to a nucleotide sequence of SEQ ID NO. 1,
- a₂) is a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31, or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence,
- a₃) is a partial nucleotide sequence which corresponds to a full length nucleotide sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 5, 7, 9, 12, 25, 26, 28 or 31, or a portion, derivate, allele or homolog thereof;
- a₄) is a nucleotide sequence which is at least 40% identical to a nucleotide sequence selected from the group consisting of those sequences set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31,
- b₁) is a gene construct comprising a nucleotide sequence a₁), operably linked to a heterologous nucleic acid, and
- c₁) is a vector comprising a gene construct b₁), or a nucleotide sequence a₁).

41. A transgenic cell or organism according to claim 40, which is an eucaryotic cell or organism.

42. A transgenic cell or organism according to claim 40, which is a yeast cell or a plant cell or a plant.

43. A transgenic cell or organism according to claim 40 having an altered biosynthetic pathway for the production of

triacylglycerol, characterized by the prevention of accumulation of undesirable fatty acids, which are harmful if present in high amounts in membrane lipids.

44. A transgenic cell or organism according to claim 40 having an altered, increased oil content.

45. A transgenic cell or organism according to claim 40, wherein the activity of PDAT is altered, characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme.

46. A process for the production of triacylglycerol, comprising growing a transgenic cell or organism according to claim 40 under conditions whereby the said nucleotide sequence

- a₁) is a nucleotide sequence as set forth in SEQ ID NO. 1 or a homologous nucleotide sequence which is at least about 40% identical to a nucleotide sequence of SEQ ID NO. 1,
- a₂) is a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31, or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence,
- a₃) is a partial nucleotide sequence which corresponds to a full length nucleotide sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 5, 7, 9, 12, 25, 26, 28 or 31, or a portion, derivate, allele or homolog thereof;
- a₄) is a nucleotide sequence which is at least 40% identical to a nucleotide sequence selected from the group consisting of those sequences set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31,
is expressed.

47. Triacylglycerols produced by a process according to claim
46.

48. Use of a nucleotide sequence selected from the group of
a₁) is a nucleotide sequence as set forth in SEQ ID NO. 1 or a
homologous nucleotide sequence which is at least about 40%
identical to a nucleotide sequence of SEQ ID NO. 1,
a₂) is a nucleotide sequence, a portion, derivate, allele or
homolog thereof selected from the group consisting of
sequences as set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11,
12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31, or a functional
fragment, derivate, allele, homolog or isoenzyme of the enzyme
encoding amino acid sequence,
a₃) is a partial nucleotide sequence which corresponds to a full
length nucleotide sequence selected from the group consisting
of sequences as set forth in SEQ ID NO. 5, 7, 9, 12, 25, 26,
28 or 31, or a portion, derivate, allele or homolog thereof;
a₄) is a nucleotide sequence which is at least 40% identical to a
nucleotide sequence selected from the group consisting of
those sequences set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10,
11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31,
or an enzyme selected from the group of
d₁) is an enzyme, designated as phospholipid:diacylglycerol
acyltransferase (PDAT), catalyzing in an acyl-CoA-independent
reaction the transfer of fatty acids from phospholipids to
diacylglycerol in the biosynthetic pathway for the production
of triacylglycerol and comprising an amino acid sequence as
set forth in SEQ ID NO. 2 or a functional fragment, derivate,
allele, homolog or isoenzyme thereof,
d₂) is an enzyme d₁), comprising an amino acid sequence as set
forth in SEQ ID NO. 16, 20 or 22, or a functional fragment,

derivate, allele, homolog or isoenzyme thereof,
d₃) is an enzyme d₁), comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 6, 8, 13, 14, 15, 17, 18, 25 and 27, or a functional fragment, derivate, allele, homolog or isoenzyme thereof, for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids, comprising medium chain fatty acids, hydroxylated fatty acids, epoxigenated fatty acids and acetylenic fatty acids.

49. Use of a nucleotide sequence selected from the group of
a₁) is a nucleotide sequence as set forth in SEQ ID NO. 1 or a homologous nucleotide sequence which is at least about 40% identical to a nucleotide sequence of SEQ ID NO. 1,
a₂) is a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31, or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence,
a₃) is a partial nucleotide sequence which corresponds to a full length nucleotide sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 5, 7, 9, 12, 25, 26, 28 or 31, or a portion, derivate, allele or homolog thereof;
a₄) is a nucleotide sequence which is at least 40% identical to a nucleotide sequence selected from the group consisting of those sequences set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31, or an enzyme selected from the group of
d₁) is an enzyme, designated as phospholipid:diacylglycerol acyltransferase (PDAT), catalyzing in an acyl-CoA-independent

reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol and comprising an amino acid sequence as set forth in SEQ ID NO. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof,

- d₂) is an enzyme d₁), comprising an amino acid sequence as set forth in SEQ ID NO. 16, 20 or 22, or a functional fragment, derivate, allele, homolog or isoenzyme thereof,
- d₃) is an enzyme d₁), comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 6, 8, 13, 14, 15, 17, 18, 25 and 27, or a functional fragment, derivate, allele, homolog or isoenzyme thereof, for the transformation of any cell or organism in order to be expressed in this cell or organism and result in an altered, preferably increased oil content of this cell or organism.

REMARKS

The claims have been amended to eliminate multiple dependency and to place them in better form for U.S. practice. Further, amendments made in the international stage, albeit not under Article 19, are also incorporated. The changes made in the claims were as follows:

- i. the subject-matter of claim 2 and 3 was included in claim 1 (now claim 28);
- ii. claim 29 was introduced according to the disclosed homologous nucleotide sequence on page 6 of the specification;
- iii. claims 7, 8 and 25 were deleted;
- iv. claims 30-42 essentially correspond to claims 4-6 and 9-18 of the international application;
- v. claim 23 was incorporated into claim 19, which is now claim 43;
- vi. claim 20, now 44, was amended by defining the altered oil content according to page 9, line 9;
- vii. claim 22 was incorporated into claim 21, which is now claim 45;
- viii. claim 46 essentially corresponds to claim 24 of the international application.
- ix. in claim 26, now 47, triacylglycerols with uncommon fatty acids were defined according to page 10, line 29;

DAHLQUIST et al. et al., oz 0093/000003

- x. claim 48 essentially corresponds to claim 27 of the international application;
 - xi. in the other claims, editorial amendments were made.
- Favorable action on the application is solicited.

Respectfully submitted,

KEIL & WEINKAUF

Herbert B. Keil
Reg. No. 18,967

1101 Connecticut Avenue, N.W.
Washington, D.C. 20036
(202) 659-0100
HBK/kas

JC09 Rec'd PCT/PTO 07 JUN 2002

POT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

O I P E SC109
JUN 07 2002
PATENT & TRADEMARK OFFICE
re Application of

DAHLQUIST et al.

Serial No. 09/937,779

Filed: September 28, 2001

For: NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE
PRODUCTION OF TRIACYCLOGLYCEROL AND RECOMBINANT DNA
MOLECULES ENCODING THESE ENZYMES

I hereby certify that this correspondence is being deposited with the
United States Postal Service as first class mail in an envelope
addressed to Commissioner of Patents and Trademarks,
Washington, D.C. 20231, on:

June 5, 2002
Date of Deposit
Karen Stamper
Person Making Deposit
Karen Stamper
Signature
June 5, 2002
Date of Signature

Honorable Commissioner of
Patents and Trademarks
Washington, D.C. 20231

PRELIMINARY AMENDMENT
AND
RESPONSE TO NOTIFICATION OF MISSING REQUIREMENTS UNDER 35 USC 371

Sir:

In response to the Notification of Missing Requirements under 35 USC 371, a copy of the Sequence Listing in computer readable form is attached hereto. The content of the paper copy of the Sequence Listing and the copy of the Sequence Listing in computer readable form is the same, and includes no new matter.

IN THE SPECIFICATION

Delete the sequence listing in the specification on pages 1/58 to 58/58 and substitute with the attached replacement sequence listing on separate pages 1-52.

REMARKS

It is believed that by submitting the present amendment and sequence listing diskette, the application now fully complies with the requirements of 37 CFR 1.821-1.825. Favorable action by the examiner is solicited.

Please charge any shortage in fees due in connection with the filing of this paper, including Extension of Time fees to Deposit Account No. 11-0345. Please credit any excess fees to such account.

Respectfully submitted,

KEIL & WEINKAUF

06/13/2002 HKAYPAGH 00000090 110345 09937779
01 FC:154 130.00 CH

Herbert B. Keil
Reg. No. 18,967

1350 Connecticut Ave., N.W.
Washington, D.C. 20036
(202)659-0100

HBK/DSK/kas

06/13/2002 HKAYPAGH 00000090 110345 09937779
02 FC:965 84.00 CH

6) PPTS

A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE
PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA
MOLECULES ENCODING THESE ENZYMES

- 5 The present invention relates to the isolation, identification and characterization of recombinant DNA molecules encoding enzymes catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.
- 10 Triacylglycerol (TAG) is the most common lipid-based energy reserve in nature. The main pathway for synthesis of TAG is believed to involve three sequential acyl-transfers from acyl-CoA to a glycerol backbone (1, 2). For many years, acyl-CoA : diacylglycerol acyltransferase (DAGAT), which catalyzes the third acyl transfer reaction, was thought to be the only unique enzyme involved in
- 15 TAG synthesis. It acts by diverting diacylglycerol (DAG) from membrane lipid synthesis into TAG (2). Genes encoding this enzyme were recently identified both in the mouse (3) and in plants (4, 5), and the encoded proteins were shown to be homologous to acyl-CoA : cholesterol acyltransferase (ACAT). It was also recently reported that another DAGAT exists in the oleaginous fungus
- 20 *Mortierella ramanniana*, which is unrelated to the mouse DAGAT, the ACAT gene family or to any other known gene (6).

The instant invention relates to novel type of enzymes and their encoding genes for transformation. More specifically, the invention relates to use of a

25 type of genes encoding a not previously described type of enzymes hereinafter designated phospholipid:diacylglycerol acyltransferases (PDAT), whereby this enzyme catalyses an acyl-CoA-independent reaction. The said type of genes expressed alone in transgenic organisms will enhance the total amount of oil (triacylglycerols) produced in the cells. The PDAT genes, in combination with a

30 gene for the synthesis of an uncommon fatty acid will, when expressed in transgenic organisms, enhance the levels of the uncommon fatty acids in the triacylglycerols.

There is considerable interest world-wide in producing chemical feedstock, such as fatty acids, for industrial use from renewable plant resources rather than non-renewable petrochemicals. This concept has broad appeal to manufacturers and consumers on the basis of resource conservation and 5 provides significant opportunity to develop new industrial crops for agriculture.

There is a diverse array of unusual fatty acids in oils from wild plant species and these have been well characterised. Many of these acids have industrial potential and this has led to interest in domesticating relevant plant species to 10 enable agricultural production of particular fatty acids.

Development in genetic engineering technologies combined with greater understanding of the biosynthesis of unusual fatty acids now makes it possible to transfer genes coding for key enzymes involved in the synthesis of a 15 particular fatty acid from a wild species into domesticated oilseed crops. In this way individual fatty acids can be produced in high purity and quantities at moderate costs.

In all crops like rape, sunflower, oilpalm etc., the oil (i.e. triacylglycerols) is the 20 most valuable product of the seeds or fruits and other compounds like starch, protein, and fibre is regarded as by-products with less value. Enhancing the quantity of oil per weight basis at the expense of other compounds in oil crops would therefore increase the value of crop. If genes, regulating the allocation of reduced carbon into the production of oil can be up-regulated, the cells will 25 accumulate more oil on the expense of other products. Such genes might not only be used in already high oil producing cells, such as oil crops, but could also induce significant oil production in moderate or low oil containing crops such as e.g. soy, oat, maize, potato, sugarbeets, and turnips as well as in micro-organisms.

Many of the unusual fatty acids of interest, e.g. medium chain fatty acids, hydroxy fatty acids, epoxy fatty acids and acetylenic fatty acids, have physical properties that are distinctly different from the common plant fatty acids. The 5 present inventors have found that, in plant species naturally accumulating these uncommon fatty acids in their seed oil (i.e. triacylglycerol), these acids are absent, or present in very low amounts in the membrane (phospho)lipids of the seed. The low concentration of these acids in the membrane lipids is most likely a prerequisite for proper membrane function and thereby for proper cell 10 functions. One aspect of the invention is that seeds of transgenic crops can be made to accumulate high amounts of uncommon fatty acids if these fatty acids are efficiently removed from the membrane lipids and channelled into seed triacylglycerols.

15 The inventors have identified a novel class of enzymes in plants catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the production of triacylglycerol through an acyl-CoA-independent reaction and that these enzymes (phospholipid:diacylglycerol acyltransferases, abbreviated as PDAT) are involved in the removal of hydroxylated, epoxigenated fatty acids, and 20 probably also other uncommon fatty acids such as medium chain fatty acids, from phospholipids in plants.

This enzyme reaction was shown to be present in microsomal preparations from baker's yeast (*Saccharomyces cerevisiae*). The instant invention further pertains to an enzyme comprising an amino acid sequence as set forth in SEQ 25 ID No. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof. A so called 'knock out' yeast mutant, disrupted in the respective gene was obtained and microsomal membranes from the mutant was shown to totally lack PDAT activity. Thus, it was proved that the disrupted gene encodes a PDAT enzyme (SEQ ID NO. 1 and 2). Furtherm, this PDAT enzyme is characterized through the amino acid sequence as set forth in SEQ ID NO 2 containing a lipase motif of the conserved sequence string FXKWVEA.

The instant invention pertains further to an enzyme comprising an amino acid sequence as set forth in SEQ ID NO. 16, 20 or 22 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.

Further genes and/or proteins of so far unknown function were identified and
5 are contemplated within the scope of the instant invention. A gene from Schizosaccharomyces pombe, SPBC776.14 (SEQ ID. NO. 3), a putative open reading frame CAA22887 of the SPBC776.14 (SEQ ID NO. 13) were identified. Further Arabidopsis thaliana genomic sequences (SEQ ID NO. 4, 10 and 11) coding for putative proteins were identified, as well as a putative open reading
10 frame AAC80628 from the A. thaliana locus AC 004557 (SEQ ID NO. 14) and a putative open reading frame AAD10668 from the A. thaliana locus AC 003027 (SEQ ID NO. 15) were identified.

Also, a partially sequenced cDNA clone from Neurospora crassa (SEQ ID NO. 9) and a Zea mays EST (Extended Sequence Tac) clone (SEQ ID NO. 7) and
15 corresponding putative amino acid sequence (SEQ ID NO. 8) were identified. Finally, two cDNA clones were identified, one Arabidopsis thaliana EST (SEQ ID NO. 5 and corresponding predicted amino acid sequence SEQ ID NO. 6) and a Lycopersicon esculentum EST clone (SEQ ID NO. 12) were identified. Further, enzymes designated as PDAT comprising an amino acid sequence
20 selected from the group consisting of sequences as set forth in SEQ ID NO 6, 17, 18, 25 or 27 containing a lipase motif FXKWVEA are contemplated within the scope of the invention. Moreover, an enzyme comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth
25 in SEQ ID No. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 or 31 or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence are included within the scope of the invention.

30 A functional fragment of the instant enzyme is understood to be any polypeptide sequence which shows specific enzyme activity of a phospholipid:diacylglycerol acyltransferase (PDAT). The length of the functional fragment can for example vary in a range from about 660 ± 10 amino acids to

660 ± 250 amino acids, preferably from about 660 ± 50 to 660 ±100 amino acids, whereby the „basic number“ of 660 amino acids corresponds in this case to the polypeptide chain of the PDAT enzyme of SEQ ID NO. 2 encoded by a nucleotide sequence according to SEQ ID NO. 1. Consequently, the „basic 5 number“ of functional fulllength enzyme can vary in correspondance to the encoding nucleotide sequence.

A portion of the instant nucleotide sequence is meant to be any nucleotide sequence encoding a polypeptid which shows specific activity of a phospholipid:diacylglycerol acyltransferase (PDAT). The length of the 10 nucleotide portion can vary in a wide range of about several hundreds of nucleotides based upon the coding region of the gene or a highly conserved sequence. For example the length varies in a range form about 1900 ± 10 to 1900 ± 1000 nucleotides, preferably form about 1900 ± 50 to 1900 ±700 and more preferably form about 1900 ± 100 to 1900 ± 500 nucleotides. whereby the 15 „basic number“ of 1900 nucleotides corresponds in this case to the encoding nucleotide sequence of the PDAT enzyme of SEQ ID NO. 1. Consequently, the „basic number“ of functional fulllength gene can vary.

An allelic variant of the instant nucleotide sequence is understood to be any 20 different nucleotide sequence which encodes a polypeptide with a functionally equivalent function. The alleles pertain naturally occuring variants of the instant nucleotide sequences as well as synthetic nucleotide sequences produced by methods known in the art. Contemplated are even altered nucleotide sequences which result in an enzyme with altered activity and/or regulation or 25 which is resistant against specific inhibitors. The instant invention further includes natural or synthetic mutations of the originally isolated nucleotide sequences. These mutations can be substitution, addition, deletion, inversion or insertion of one or more nucleotides.

30 A homologous nucleotide sequence is understood to be a complementary sequence and/or a sequence which specifically hybridizes with the instant nucleotide sequence. Hybridizing sequences include similar sequences selected from the group of DNA or RNA which specifically interact to the instant

nucleotide sequences under at least moderate stringency conditions which are known in the art. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-
5 65°C. This further includes short nucleotide sequences of e.g. 10 to 30 nucleotides, preferably 12 to 15 nucleotides. Included are also primer or hybridization probes.

A homologous nucleotide sequence included within the scope of the instant
10 invention is a sequence which is at least about 40%, preferably at least about 50 % or 60%, and more preferably at least about 70%, 80% or 90% and most preferably at least about 95%, 96%, 97%, 98% or 99% or more homologous to a nucleotide sequence of SEQ ID NO. 1.

All of the aforementioned definitions are true for amino acid sequences and
15 functional enzymes and can easily transferred by a person skilled in the art.

Isoenzymes are understood to be enzymes which have the same or a similar substrate specificity and/or catalytic activity but a different primary structure.

20 In a first embodiment, this invention is directed to nucleic acid sequences that encode a PDAT. This includes sequences that encode biologically active PDATs as well as sequences that are to be used as probes, vectors for transformation or cloning intermediates. The PDAT encoding sequence may encode a complete or partial sequence depending upon the intended use. All or 25 a portion of the genomic sequence, cDNA sequence, precursor PDAT or mature PDAT is intended.

Further included is a nucleotide sequence selected from the group consisting of sequences set forth in SEQ ID No. 1, 3, 4, 10, 11, 19, 21, 23, 24, 29 or 30 or a portion, derivate, allele or homolog thereof. The invention pertains a partial nucleotide sequence corresponding to a fulllength nucleotide sequence selected from the group consisting of sequences set forth in SEQ ID No. 5, 7, 9, 12, 25, 26, 28 or 31 or a portion, derivate, allele or homolog thereof. Moreover, a

nucleotide sequence comprising a nucleotide sequence which is at least 40% homologous to a nucleotide sequence selected from the group consisting of those sequences set forth in SEQ ID No. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 or 31 is contemplated within the scope of the invention.

5

The instant invention pertains to a gene construct comprising a said nucleotide sequences of the instant invention which is operably linked to a heterologous nucleic acid.

10 The term operably linked means a serial organisation e.g. of a promotor, coding sequence, terminator and/or further regulatory elements whereby each element can fulfill its original function during expression of the nucleotide sequence.

15 Further, a vector comprising of a said nucleotide sequence of the instant invention is contemplated in the instant invention. This includes also an expression vector as well as a vector further comprising a selectable marker gene and/or nucleotide sequences for the replication in a host cell and/or the integration into the genome of the host cell.

20 In a different aspect, this invention relates to a method for producing a PDAT in a host cell or progeny thereof, including genetically engineered oil seeds, yeast and moulds or any other oil accumulating organism, via the expression of a construct in the cell. Cells containing a PDAT as a result of the production of the PDAT encoding sequence are also contemplated within the scope of the invention.

25

Further, the invention pertains a transgenic cell or organism containing a said nucleotide sequence and/or a said gene construct and/or a said vector. The object of the instant invention is further a transgenic cell or organism which is an eucaryotic cell or organism. Preferably, the transgenic cell or organism is a yeast cell or a plant cell or a plant. The instant invention further pertains said transgenic cell or organism having an altered biosynthetic pathway for the production of triacylglycerol. A transgenic cell or organism having an altered oil content is also contemplated within the scope of this invention.

- Further, the invention pertains a transgenic cell or organism wherein the activity of PDAT is altered in said cell or organism. This altered activity of PDAT is characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme. Moreover, a transgenic cell or organism is included in the instant invention, wherein the altered biosynthetic pathway for the production of triacylglycerol is characterized by the prevention of accumulation of undesirable fatty acids in the membrane lipids.
- 10 In a different embodiment, this invention also relates to methods of using a DNA sequence encoding a PDAT for increasing the oil-content within a cell.
- Another aspect of the invention relates to the accommodation of high amounts of uncommun fatty acids in the triacylglycerol produced within a cell, by 15 introducing a DNA sequence producing a PDAT that specifically removes these fatty acids from the membrane lipids of the cell and channel them into triacylglycerol. Plant cells having such a modification are also contemplated herein.
- 20 Further, the invention pertains a process for the production of triacylglycerol, comprising growing a said transgenic cell or organism under conditions whereby the said nucleotide sequence is expressed and whereby the said transgenic cells comprising a said enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol forming triacylglycerol.
- 25 Moreover, triacylglycerols produced by the aforementioned process are included in scope of the instant invention.
- Object of the instant invention is further the use of an instant nucleotide sequence and/or a said enzyme for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids. The use of a said instant nucleotide sequence and/or a said enzyme of the instant invention for the transformation 30 of any cell or organism in order to be expressed in this cell or organism and

result in an altered, preferably increased oil content of this cell or organism is also contemplated within the scope of the instant invention.

A PDAT of this invention includes any sequence of amino acids, such as a protein, polypeptide or peptide fragment obtainable from a microorganism, animal or plant source that demonstrates the ability to catalyse the production of triacylglycerol from a phospholipid and diacylglycerol under enzyme reactive conditions. By „enzyme reactive conditions“ is meant that any necessary conditions are available in an environment (e.g., such factors as temperature, pH, lack of inhibiting substances) which will permit the enzyme to function.

Other PDATs are obtainable from the specific sequences provided herein. Furthermore, it will be apparent that one can obtain natural and synthetic PDATs, including modified amino acid sequences and starting materials for synthetic-protein modelling from the exemplified PDATs and from PDATs which are obtained through the use of such exemplified sequences. Modified amino acid sequences include sequences that have been mutated, truncated, increased and the like, whether such sequences were partially or wholly synthesised. Sequences that are actually purified from plant preparations or are identical or encode identical proteins thereto, regardless of the method used to obtain the protein or sequence, are equally considered naturally derived.

Further, the nucleic acid probes (DNA and RNA) of the present invention can be used to screen and recover „homologous“ or „related“ PDATs from a variety of plant and microbial sources.

Further, it is also apparent that a person skilled in the art can, with the information provided in this application, in any organism identify a PDAT activity, purify an enzyme with this activity and thereby identify a „non-homologous“ nucleic acid sequence encoding such an enzyme.

The present invention can be essentially characterized by the following aspects:

1. Use of a PDAT gene (genomic clone or cDNA) for transformation.
- 5 2. Use of a DNA molecule according to item 1 wherein said DNA is used for transformation of any organism in order to be expressed in this organism and result in an active recombinant PDAT enzyme in order to increase oil content of the organism.
- 10 3. Use of a DNA molecule of item 1 wherein said DNA is used for transformation of any organism in order to prevent the accumulation of undesirable fatty acids in the membrane lipids.
- 15 4. Use according to item 1, wherein said PDAT gene is used for transforming transgenic oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, such as medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.
- 20 5. Use according to item 1, wherein said PDAT gene is used for transforming organisms, and wherein said organisms are crossed with other oil accummulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, comprising medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.
- 25 6. Use according to item 1, wherein the enzyme encoded by said PDAT gene or cDNA is coding for a PDAT with distinct acyl specificity.
7. Use according to item 1 wherein said PDAT encoding gene or cDNA, is derived from *Saccharomyces cereviseae*, or contain nucleotide sequences coding for an amino acid sequence 30% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 30 8. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from *Saccharomyces cereviseae*, or contain nucleotide sequences coding for an amino acid sequence 40% or more *identical* to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.

9. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from *Saccharomyces cerevisiae*, or contain nucleotide sequences coding for an amino acid sequence 60% or more *identical* to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 5 10. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from *Saccharomyces cerevisiae*, or contain nucleotide sequences coding for an amino acid sequence 80% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 10 11. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from plants or contain nucleotide sequences coding for an amino acid sequence 40% or more identical to the amino acid sequence of PDAT from *Arabidopsis thaliana* or to the protein encoded by the fulllength counterpart of the partial *Zea mays*, *Lycopericon esculentum*, or *Neurospora crassa* cDNA clones.
- 15 12. Transgenic oil accumulating organisms comprising, in their genome, a PDAT gene transferred by recombinant DNA technology or somatic hybridization.
13. Transgenic oil accumulating organisms according to item 12 comprising, in their genome, a PDAT gene having specificity for substrates with a particular uncommon fatty acid and the gene for said uncommon fatty acid.
- 20 14. Transgenic organisms according to item 12 or 13 which are selected from the group consisting of fungi, plants and animals.
- 15 16. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants.
- 25 17. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a storage organ specific promotor.
18. Oils from organisms according to item 12 – 17.
- 30 19. A method for altering acyl specificity of a PDAT by alteration of the nucleotide sequence of a naturally occurring encoding gene and as a

consequence of this alternation creating a gene encoding for an enzyme with novel acyl specificity.

20. A protein encoded by a DNA molecule according to item 1 or a functional fragment thereof.
- 5 21. A protein of item 20 designated phospholipid:diacylglycerol acyltransferase.
22. A protein of item 21 which has a distinct acyl specificity.
- 10 23. A protein of item 13 having the amino acid sequence as set forth in SEQ, ID NO. 2, 13, 14 or 15 (and the proteins encoded by the fulllength or partial genes set forth in SEQ. ID. NO. 1, 3, 4, 5, 7, 9, 10, 11 or 12) or an amino acid sequence with at least 30 % homology to said amino acid sequence.
24. A protein of item 23 isolated from *Saccharomyces cerevisiae*.

15

20 General methods:

Yeast strains and plasmids. The wild type yeast strains used were either FY1679 (*MATa his3-Δ200 leu2-Δ1 trp1-Δ6 ura3-52*) or W303-1A (*MATa ADE2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1*) (7). The YNR008w::KanMX2 disruption strain FVKT004-04C(AL), which is congeneric to FY1679, was obtained from the Euroscarf collection (8). A 2751 bp fragment containing the YNR008w gene with 583 bp of 5' and 183 bp of 3' flanking DNA was amplified from W303-1A genomic DNA using *Taq* polymerase with 5'-TCTCCATCTTCTGCAAAACCT-3' and 5'-CCTGTCAAAACCTTCTCCTC-3' as primers. The resulting PCR product was purified by agarose gel electrophoresis and cloned into the *EcoRV* site of pBluescript (pbluescript-pdat). For complementation experiments, the cloned fragment was released from pBluescript by *HindIII-SacI* digestion and then cloned between the *HindIII* and *SacI* sites of pFL39 (9), thus generating pUS1. For overexpression of the PDAT

gene, a 2202 bp *Eco*RI fragment from the pBluscript plasmid which contains only 24 bp of 5' flanking DNA was cloned into the BamHI site of the *GAL1-TPK2* expression vector pJN92 (12), thus generating pUS4.

5 *Microsomal preparations.* Microsomes from developing seeds of sunflower (*Helianthus annuus*), *Ricinus communis* and *Crepis palaestina* were prepared using the procedure of Stobart and Stymne (11). To obtain yeast microsomes, 1g of yeast cells (fresh weight) was re-suspended in 8 ml of ice-cold buffer (20 mM Tris-Cl, pH 7.9, 10 mM MgCl₂, 1 mM EDTA, 5 % (v/v) glycerol, 1 mM DTT, 10 0.3 M ammonium sulfate) in a 12 ml glass tube. To this tube, 4 ml of glass beads (diameter 0.45-0.5 mm) were added, and the tube was then heavily shaken (3 x 60 s) in an MSK cell homogenizer (B. Braun Melsungen AG, Germany). The homogenized suspension was centrifuged at 20,000 x g for 15 min at 6°C and the resulting supernatant was again centrifuged at 100,000 x g 15 for 2 h at 6°C. The 100,000 x g pellet was resuspended in 0.1 M potassium phosphate (pH 7.2), and stored at -80°C. It is subsequently referred to as the crude yeast microsomal fraction.

20 *Lipid substrates.* Radio-labeled ricinoleic (12-hydroxy-9-octadecenoic) and vernolic (12,13-epoxy-9-octadecenoic) acids were synthesized enzymatically from [¹⁻¹⁴C]oleic acid and [¹⁻¹⁴C]linoleic acid, respectively, by incubation with microsomal preparations from seeds of *Ricinus communis* and *Crepis palaestina*, respectively (12). The synthesis of phosphatidylcholines (PC) or phosphatidylethanolamines (PE) with ¹⁴C-labeled acyl groups in the *sn*-2 position was performed using either enzymatic (13), or synthetic (14) acylation of [¹⁴C]oleic, [¹⁴C]ricinoleic, or [¹⁴C]vernolic acid. Dioleoyl-PC that was labeled in the *sn*-1 position was synthesized from *sn*-1-[¹⁴C]oleoyl-lyso-PC and unlabeled oleic acid as described in (14). *Sn*-1-oleoyl-*sn*-2-[¹⁴C]ricinoleoyl-DAG was synthesized from PC by the action of phospholipase C type XI from *B. Cereus* (Sigma Chemical Co.) as described in (15). Monovernoloyl- and divernoleoyl-DAG were synthesized from TAG extracted from seeds of *Euphorbia lagascae*, using the TAG-lipase (*Rizhopus arrhizus*, Sigma Chemical

Co.) as previously described (16). Monoricinoleoyl-TAG was synthesized according to the same method using TAG extracted from Castor bean.

Lipid analysis. Total lipid composition of yeast were determined from cells harvested from a 40 ml liquid culture, broken in a glass-bead shaker and extracted into chloroform as described by Bligh and Dyer (17), and then separated by thin layer chromatography in hexane/diethylether/acetic acid (80:20:1) using pre-coated silica gel 60 plates (Merck). The lipid areas were located by brief exposure to I_2 vapors and identified by means of appropriate standards. Polar lipids, sterol-esters and triacylglycerols, as well as the remaining minor lipid classes, referred to as other lipids, were excised from the plates. Fatty acid methylesters were prepared by heating the dry excised material at 85 °C for 60 min in 2% (v/v) sulfuric acid in dry methanol. The methyl esters were extracted with hexane and analyzed by GLC through a 50 m x 0.32 mm CP-Wax58-CB fused-silica column (Chrompack), with methylheptadecanoic acid as an internal standard. The fatty acid content of each fraction was quantified and used to calculate the relative amount of each lipid class. In order to determine the total lipid content, 3 ml aliquots from yeast cultures were harvested by centrifugation and the resulting pellets were washed with distilled water and lyophilized. The weight of the dried cells was determined and the fatty acid content was quantified by GLC-analyses after conversion to methylesters as described above. The lipid content was then calculated as nmol fatty acid (FA) per mg dry weight yeast.

Enzyme assays. Aliquots of crude microsomal fractions (corresponding to 10 nmol of microsomal PC) from developing plant seeds or yeast cells were lyophilized over night. ^{14}C -Labeled substrate lipids dissolved in benzene were then added to the dried microsomes. The benzene was evaporated under a stream of N_2 , leaving the lipids in direct contact with the membranes, and 0.1 ml of 50 mM potassium phosphate (pH 7.2) was added. The suspension was thoroughly mixed and incubated at 30°C for the time period indicated, up to 90 min. Lipids were extracted from the reaction mixture using chloroform and separated by thin layer chromatography in hexane/diethylether/acetic acid

(35:70:1.5) using silica gel 60 plates (Merck). The radioactive lipids were visualized and quantified on the plates by electronic autoradiography (Instant Imager, Packard, US).

5 Yeast cultivation. Yeast cells were grown at 28°C on a rotatory shaker in liquid YPD medium (1% yeast extract, 2% peptone, 2% glucose), synthetic medium (18) containing 2% (v/v) glycerol and 2% (v/v) ethanol, or minimal medium (19) containing 16 g/l of glycerol.

10 The instant invention is further characterized by the following examples which are not limiting:

15 Acy-CoA-independent synthesis of TAG by oil seed microsomes. A large number of unusual fatty acids can be found in oil seeds (20). Many of these fatty acids, such as ricinoleic (21) and vernolic acids (22), are synthesized using phosphatidylcholin (PC) with oleoyl or linoleoyl groups esterified to the *sn*-2 position, respectively, as the immediate precursor. However, even though PC can be a substrate for unusual fatty acid synthesis and is the major membrane lipids in seeds, unusual fatty acids are rarely found in the membranes. Instead, they are mainly incorporated into the TAG. A mechanism for efficient and selective transfer of these unusual acyl groups from PC into TAG must therefore exist in oil seeds that accumulate such unusual fatty acids. This transfer reaction was biochemically characterized in seeds from castor bean (*Ricinus communis*) and *Crepis palaestina*, plants which accumulate high levels of ricinoleic and vernolic acid, respectively, and sunflower (*Helianthus annuus*), a plant which has only common fatty acids in its seed oil. Crude microsomal fractions from developing seeds were incubated with PC having ¹⁴C-labeled oleoyl, ricinoleoyl or vernoloyl groups at the *sn*-2 position. After the incubation, lipids were extracted and analyzed by thin layer chromatography.

20 We found that the amount of radioactivity that was incorporated into the neutral lipid fraction increased linearly over a period of 4 hours (data not shown). The distribution of [¹⁴C]acyl groups within the neutral lipid fraction was analyzed after 80 min (Fig. 1). Interestingly the amount and distribution of radioactivity

25

30

between different neutral lipids were strongly dependent both on the plant species and on the type of [¹⁴C]acyl chain. Thus, sunflower microsomes incorporated most of the label into DAG, regardless of the type of [¹⁴C]acyl group. In contrast, *R. communis* microsomes preferentially incorporated [¹⁴C]ricinoleoyl and [¹⁴C]vernoloyl groups into TAG, while [¹⁴C]oleyl groups mostly were found in DAG. *C. palaestina* microsomes, finally, incorporated only [¹⁴C]vernoloyl groups into TAG, with [¹⁴C]ricinoleyl groups being found mostly as free fatty acids, and [¹⁴C]oleyl groups in DAG. This shows that the high *in vivo* levels of ricinoleic acid and vernolic acid in the TAG pool of *R. communis* and *C. palaestina*, respectively, can be explained by an efficient and selective transfer of the corresponding acyl groups from PC to TAG in these organisms.

The *in-vitro* synthesis of triacylglycerols in microsomal preparations of developing castor bean is summarized in table 1.

15

PDAT: a novel enzyme that catalyzes acyl-CoA independent synthesis of TAG. It was investigated if DAG could serve both as an acyl donor as well as an acyl acceptor in the reactions catalyzed by the oil seed microsomes. Therefore, unlabeled divernoloyl-DAG was incubated with either *sn*-1-oleoyl-*sn*-2-[¹⁴C]ricinoleoyl-DAG or *sn*-1-oleoyl-*sn*-2-[¹⁴C]ricinoleoyl-PC in the presence of *R. communis* microsomes. The synthesis of TAG molecules containing both [¹⁴C]ricinoleoyl and vernaloyl groups was 5 fold higher when [¹⁴C]ricinoleoyl-PC served as acyl donor as compared to [¹⁴C]ricinoleoyl-DAG (fig.1B). These data strongly suggests that PC is the immediate acyl donor and DAG the acyl acceptor in the acyl-CoA-independent formation of TAG by oil seed microsomes. Therefore, this reaction is catalyzed by a new enzyme which we call phospholipid : diacylglycerol acyltransferase (PDAT).

PDAT activity in yeast microsomes. Wild type yeast cells were cultivated under conditions where TAG synthesis is induced. Microsomal membranes were prepared from these cells and incubated with *sn*-2-[¹⁴C]-ricinoleoyl-PC and DAG and the ¹⁴C-labeled products formed were analyzed. The PC-derived [¹⁴C]ricinoleoyl groups within the neutral lipid fraction mainly were found in free

fatty acids or TAG, and also that the amount of TAG synthesized was dependent on the amount of DAG that was added to the reaction (Fig.2). The *in vitro* synthesis of TAG containing both ricinoleoyl and vernaloyl groups, a TAG species not present *in vivo*, from exogenous added *sn*-2-[¹⁴C]ricinoleoyl-PC and unlabelled vernaloyl-DAG (Fig. 2, lane 3) clearly demonstrates the existence of an acyl-CoA-independent synthesis of TAG involving PC and DAG as substrates in yeast microsomal membranes. Consequently, TAG synthesis in yeast can be catalyzed by an enzyme similar to the PDAT found in plants.

10 The PDAT encoding gene in yeast.

A gene in the yeast genome (YNR008w) is known, but nothing is known about the function of YNR008w, except that the gene is not essential for growth under normal circumstances. Microsomal membranes were prepared from the yeast strain FVKT004-04C(AL) (8) in which this gene with unknown function had been disrupted. PDAT activity in the microsomes were assayed using PC with radiolabelled fatty acids at the *sn*-2 position. The activity was found to be completely absent in the disruption strain (Fig. 2 lane 4). Significantly, the activity could be partially restored by the presence of YNR008w on the single copy plasmid pUS1 (Fig. 2 lane 5). Moreover, acyl groups of 20 phosphatidylethanolamine (PE) were efficiently incorporated into TAG by microsomes from the wild type strain whereas no incorporation occurred from this substrate in the mutant strain (data not shown). This shows that YNR008w encodes a yeast PDAT which catalyzes the transfer of an acyl group from the *sn*-2 position of phospholipids to DAG, thus forming TAG. It should be noted that no cholesterol esters were formed from radioactive PC even in incubations with added ergosterols, nor were the amount of radioactive free fatty acids formed from PC affected by disruption of the YNR008w gene (data not shown). This demonstrates that yeast PDAT do not have cholesterol ester synthesising or phospholipase activities.

30

Increased TAG content in yeast cells that overexpress PDAT. The effect of overexpressing the PDAT-encoding gene was studied by transforming a wild type yeast strain with the pUS4 plasmid in which the gene is expressed from

the galactose-induced *GAL1:TPK2* promoter. Cells containing the empty expression vector were used as a control. The cells were grown in synthetic glycerol-ethanol medium, and expression of the gene was induced after either 2 hours (early log phase) or 25 hours (stationary phase) by the addition of 5 galactose. The cells were then incubated for another 21 hours, after which they were harvested and assays were performed. We found that overexpression of PDAT had no significant effect on the growth rate as determined by the optical density. However, the total lipid content, measured as μmol fatty acids per mg yeast dry weight, was 47% (log phase) or 29% (stationary phase) higher in the 10 PDAT overexpressing strain than in the control. Furthermore, the polar lipid and sterolester content was unaffected by overexpression of PDAT. Instead, the elevated lipid content in these cells is entirely due to an increased TAG content (Fig. 3A,B). Thus, the amount of TAG was increased by 2-fold in PDAT overexpressing early log phase cells and by 40% in stationary phase cells. It is 15 interesting to note that a significant increase in the TAG content was achieved by overexpressing PDAT even under conditions (*i.e.* in stationary phase) where DAGAT is induced and thus contributes significantly to TAG synthesis. *In vitro* PDAT activity assayed in microsomes from the PDAT overexpressing strain was 7-fold higher than in the control strain, a finding which is consistent with the 20 increased levels of TAG that we observed *in vivo* (Fig. 3C). These results clearly demonstrate the potential use of the PDAT gene in increasing the oil content in transgenic organisms.

Substrate specificity of yeast PDAT. The substrate specificity of yeast 25 PDAT was analyzed using microsomes prepared from the PDAT overexpressing strain (see Fig. 4). The rate of TAG synthesis, under conditions given in figure 4 with di-oleoyl-PC as the acyl-donor, was 0.15 nmol per min and mg protein. With both oleoyl groups of PC labeled it was possible, under the given assay conditions, to detect the transfer of 11 pmol/min of [^{14}C]oleoyl 30 chain into TAG and the formation of 15 pmol/min of lyso-PC. In microsomes from the PDAT-deficient strain, no TAG at all and only trace amounts of lyso-PC was detected, strongly suggesting that yeast PDAT catalyses the formation of equimolar amounts of TAG and lyso-PC when supplied with PC and DAG as

substrates. The fact that somewhat more lyso-PC than TAG is formed can be explained by the presence of a phospholipase in yeast microsomes, which produces lyso-PC and unesterified fatty acids from PC.

5 The specificity of yeast PDAT for different acyl group positions was investigated by incubating the microsomes with di-oleoyl-PC carrying a [¹⁴C]acyl group either at the *sn*-1 position (Fig. 4A bar 2) or the *sn*-2 position (Fig. 4A bar 3). We found that the major ¹⁴C-labeled product formed in the former case was lyso-PC, and in the latter case TAG. We conclude that yeast
10 PDAT has a specificity for the transfer of acyl groups from the *sn*-2 position of the phospholipid to DAG, thus forming *sn*-1-lyso-PC and TAG. Under the given assay conditions, trace amounts of ¹⁴C-labelled DAG is formed from the *sn*-1 labeled PC by the reversible action of a CDP-choline : choline phosphotransferase. This labeled DAG can then be further converted into TAG
15 by the PDAT activity. It is therefore not possible to distinguish whether the minor amounts of labeled TAG that is formed in the presence of di-oleoyl-PC carrying a [¹⁴C]acyl group in the *sn*-1 position, is synthesized directly from the *sn*-1-labeled PC by a PDAT that also can act on the *sn*-1 position, or if it is first converted to *sn*-1-labeled DAG and then acylated by a PDAT with strict
20 selectivity for the transfer of acyl groups at the *sn*-2 position of PC. Taken together, this shows that the PDAT encoded by YNR008w catalyses an acyl transfer from the *sn*-2 position of PC to DAG, thus causing the formation of TAG and lyso-PC.

25 The substrate specificity of yeast PDAT was further analyzed with respect to the headgroup of the acyl donor, the acyl group transferred and the acyl chains of the acceptor DAG molecule. The two major membrane lipids of *S. cerevisiae* are PC and PE, and as shown in Fig. 4B (bars 1 and 2), dioleoyl-PE is nearly 4-fold more efficient than dioleoyl-PC as acyl donor in the PDAT-catalyzed reaction. Moreover, the rate of acyl transfer is strongly dependent on the type of acyl group that is transferred. Thus, a ricinoleoyl group at the *sn*-2 position of PC is 2.5 times more efficiently transferred into TAG than an oleoyl group in the same position (Fig. 4B bars 1 and 3). In contrast, yeast PDAT has

no preference for the transfer of vernaloyl groups over oleoyl groups (Fig. 4B bars 1 and 4). The acyl chain of the acceptor DAG molecule also affects the efficiency of the reaction. Thus, DAG with a ricinoleoyl or a vernaloyl group is a more efficient acyl acceptor than dioleoyl-DAG (Fig. 4B bars 1, 5 and 6). Taken 5 together, these results clearly show that the efficiency of the PDAT-catalyzed acyl transfer is strongly dependent on the properties of the substrate lipids.

PDAT genes. Nucleotide and amino acid sequences of several PDAT genes are given as SEQ ID No. 1 through 15. Further provisional and/or partial 10 sequences are given as SEQ ID NO 16 through 20 and 21 through 31, respectively. One of the *Arabidopsis* genomic sequences (SEQ ID NO. 4) identified an *Arabidopsis* EST cDNA clone; T04806. This cDNA clone was fully characterised and the nucleotide sequence is given as SEQ ID NO. 5. Based 15 on the sequence homology of the T04806 cDNA and the *Arabidopsis thaliana* genomic DNA sequence (SEQ ID NO 4) it is apparent that an additional A is present at position 417 in the cDNA clone (data not shown). Excluding this nucleotide would give the amino acid sequence depicted in SEQ ID NO. 12.

Increased TAG content in seeds of *Arabidopsis thaliana* that express the yeast PDAT. For the expression of the yeast PDAT gene in *Arabidopsis thaliana* an EcoRI fragment from the pBluescript-PDAT was cloned together with napin promotor (25) into the vector pGPTV-KAN (26). A plasmid (pGNapPDAT) having the yeast PDAT gene in the correct orientation was identified and transformed into *Agrobacterium tumefaciens*. These bacteria 25 were used to transform *Arabidopsis thaliana* columbia (C-24) plants using the root transformation method (27). Plants transformed with an empty vector were used as controls.

First generation seeds (T1) were harvested and germinated on kanamycin containing medium. Second generation seeds (T2) were pooled from individual 30 plants and their fatty acid contents analysed by quantification of their methyl esters by gas liquid chromatography after methylation of the seeds with 2% sulphuric acid in methanol at 85 °C for 1,5 hours. Quantification was done with heptadecanoic acid methyl esters as internal standard.

From the transformation with pGNapPDAT one T1 plant (26-14) gave raise to seven T2 plants of which 3 plants yielded seeds with statistically (in a mean difference two-sided test) higher oil content than seeds from T2 plants generated from T1 plant 32-4 transformed with an empty vector (table 2).

References cited in the description:

1. Bell, R. M. & Coleman, R. A. (1980) *Annu. Rev. Biochem.* **49**, 459-487.
2. Stymne, S. & Stobart, K. (1987) in *The biochemistry of plants: a comprehensive treatise*, Vol. 9, ed. Stumpf, P. K. (Academic Press, New York), pp. 175-214.
- 5 3. Cases, S. et al. (1998) *Proc. Natl. Acad. Sci. U S A* **95**, 13018-13023.
4. Hobbs, D. H., Lu, C. & Hills, M. J. (1999) *FEBS Lett.* **452**, 145-9
- 5 5. Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G. & Taylor, D. C. (1999)
10 *Plant J.* **19**, 645-653.
6. Lardizabal, K., Hawkins, D., Mai, J., & Wagner, N. (1999) Abstract presented at the Biochem. Mol. Plant Fatty Acids Glycerolipids Symposium, South Lake Tahoe, USA.
7. Thomas, B. J. & Rothstein, R. (1989) *Cell* **56**, 619-630.
- 15 8. Entian, K.-D. & Kötter, P. (1998) *Meth. Microbiol.* **26**, 431-449.
9. Kern, L., de Montigny, J., Jund, R. & Lacroute, F. (1990) *Gene* **88**, 149-157.
10. Ronne, H., Carlberg, M., Hu, G.-Z. & Nehlin, J. O. (1991) *Mol. Cell. Biol.* **11**,
4876-4884.
11. Stobart, K. & Stymne, S. (1990) in *Method in Plant Biochemistry*, vol 4,
20 eds. Harwood, J. L. & Bowyer, J. R. (Academic press, London), pp. 19-46.
12. Bafor, M., Smith, M. A., Jonsson, L., Stobrt, A. K. & Stymne, S. (1991)
Biochem. J. **280**, 507-514.
13. Banas, A., Johansson, I. & Stymne, S. (1992) *Plant Science* **84**, 137-144.
14. Kanda, P. & Wells, M. A. (1981) *J. Lipid. Res.* **22**, 877-879.
- 25 15. Ståhl, U., Ek, B. & Stymne, S. (1998) *Plant Physiol.* **117**, 197-205.
16. Stobart, K., Mancha, M. & Lenman M, Dahlqvist, A. & Stymne, S. (1997)
Planta **203**, 58-66.
17. Bligh, E. G. & Dyer, W. J. (1959) *Can. J. Biochem. Physiol.* **37**, 911-917.
18. Sherman, F., Fink, G. R. & Hicks, J. B. (1986) in *Laboratory Course Manual
30 for Methods in Yeast Genetics* (Cold Spring Harbor Laboratory)
19. Meesters, P. A. E. P., Huijberts, G. N. M. and Eggink, G. (1996) *Appl.
Microbiol. Biotechnol.* **45**, 575-579.
20. van de Loo, F. J., Fox, B. G. & Sommerville, C. (1993), in *Lipid metabolism
in plants*, ed. Moore, T. S. (CRC Press, Inc.), pp. 91-126.
- 35 21. van de Loo, F. J., Broun, P., Turner, S. & Sommerville, S. (1995) *Proc. Natl.
Acad. Sci. U S A* **95**, 6743-6747.
22. Lee, M., Lenman, M., Banas, A., Bafor, M., Singh, S., Schweizer, M.,
Nilsson, R., Liljenberg, C., Dahlqvist, A., Gummesson, P-O., Sjödahl, S.,

- Green, A., and Stymne, S. (1998) *Science* **280**, 915-918.
23. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997) *Nucl. Acids Res.* **24**, 4876-4882.
24. Saitou, N. & Nei, M. (1987) *Mol. Biol. Evol.* **4**, 406-425.
- 5 25. Stålberg, K., Ellerström, M., Josefsson, L., & Rask, L. (1993) *Plant Mol. Biol.* **23**, 671
26. Becker, D., Kemper, E., Schell, J., Masterson, R. (1992) *Plant Mol. Biol.* **20**, 1195
27. D. Valvekens, M. Van Montagu, and Van Lusbettens (1988) Proc. Natl. Acad. Sci. U.S.A. **85**, 5536
- 10

Description of Figures

FIG. 1.

Metabolism of ^{14}C -labeled PC into the neutral lipid fraction by plant microsomes. (A) Microsomes from developing seeds of sunflower, *R. communis* and *C. palaestina* were incubated for 80 min at 30°C with PC (8 nmol) having oleic acid in its *sn*-1 position, and either ^{14}C -labeled oleic, ricinoleic or vernolic acid in its *sn*-2 position. Radioactivity incorporated in TAG (open bars), DAG (solid bars), and unsterified fatty acids (hatched bars) was quantified using thin layer chromatography followed by electronic autoradiography, and is shown as percentage of added labeled substrate. (B) Synthesis *in vitro* of TAG carrying two vernaloyl and one $[^{14}\text{C}]$ ricinoleoyl group by microsomes from *R. communis*. The substrates added were unlabeled divernoloyl-DAG (5 nmol), together with either *sn*-1-oleoyl-*sn*-2-[^{14}C]ricinoleoyl-DAG (0.4 nmol, 7700 dpm/nmol) or *sn*-1-oleoyl-*sn*-2-[^{14}C]ricinoleoyl-PC (0.4 nmol, 7700 dpm/nmol). The microsomes were incubated with the substrates for 30 min at 30°C, after which samples were removed for lipid analysis as described in the section „general methods“. The data shown are the average of two experiments.

20

FIG. 2.

PDAT activity in yeast microsomes, as visualized by autoradiogram of neutral lipid products separated on TLC. Microsomal membranes (10 nmol of PC) from the wild type yeast strain FY1679 (lanes 1-3), a congeneric yeast strain (FVKT004-04C(AL)) that is disrupted for YNR008w (lane 4) or the same disruption strain transformed with the plasmid pUS1, containing the YNR008w gene behind its native promotor (lane 5), were assayed for PDAT activity. As substrates, we used 2 nmol *sn*-1-oleoyl-*sn*-2-[^{14}C]ricinoleoyl-PC together with either 5 nmol of dioleoyl-DAG (lanes 2, 4 and 5) or *rac*-oleoyl-vernoleoyl-DAG (lane 3). The enzymatic assay and lipid analysis was performed as described in Materials and Methods. The cells were precultured for 20 h in liquid YPD medium, harvested and re-suspended in an equal volume of minimal medium (19) containing 16 g/l glycerol. The cells were then grown for an additional 24 h

prior to being harvested. Selection for the plasmid was maintained by growing the transformed cells in synthetic medium lacking uracil (18). Abbreviations: 1-OH-TAG, monoricinoleoyl-TAG; 1-OH-1-ep-TAG, monoricinoleoyl-monovernoloyl-TAG; OH-FA, unesterified ricinoleic acid.

5

Fig. 3.

Lipid content (A,B) and PDAT activity (C) in PDAT overexpressing yeast cells. The PDAT gene in the plasmid pUS4 was overexpressed from the galactose-induced *GAL1-TPK2* promotor in the wild type strain W303-1A (7). Its expression was induced after (A) 2 hours or (B) 25 hours of growth by the addition of 2% final concentration (w/v) of galactose. The cells were then incubated for another 22 hours before being harvested. The amount of lipids of the harvested cells was determined by GLC-analysis of its fatty acid contents and is presented as μ mol fatty acids per mg dry weight in either TAG (open bar), polar lipids (hatched bar), sterol esters (solid bar) and other lipids (striped bar). The data shown are the mean values of results with three independent yeast cultures. (C) *In vitro* synthesis of TAG by microsomes prepared from yeast cells containing either the empty vector (vector) or the PDAT plasmid (+ PDAT). The cells were grown as in Fig. 3A. The substrate lipids dioleoyl-DAG (2.5 nmol) and *sn*-1-oleoyl-*sn*-2-[¹⁴C]-oleoyl-PC (2 nmol) were added to aliquots of microsomes (10 nmol PC), which were then incubated for 10 min at 28 °C. The amount of label incorporated into TAG was quantified by electronic autoradiography. The results shown are the mean values of two experiments.

25

FIG. 4.

Substrate specificity of yeast PDAT. The PDAT activity was assayed by incubating aliquots of lyophilized microsomes (10 nmol PC) with substrate lipids at 30°C for 10 min (panel A) or 90 min (panel B). Unlabeled DAG (2.5 nmol) was used as substrates together with different labeled phospholipids, as shown in the figure. (A) *Sn*-position specificity of yeast PDAT regarding the acyl donor substrate. Dioleoyl-DAG together with either *sn*-1-[¹⁴C]oleoyl-*sn*-2-[¹⁴C]oleoyl-PC (di-[¹⁴C]-PC), *sn*-1-[¹⁴C]oleoyl-*sn*-2-oleoyl-PC (*sn*1-[¹⁴C]-PC) or *sn*-1-oleoyl-*sn*-2-[¹⁴C]oleoyl-PC (*sn*2-[¹⁴C]-PC). (B) Specificity of yeast PDAT regarding

phospholipid headgroup and of the acyl composition of the phospholipid as well as of the diacylglycerol. Dioleoyl-DAG together with either *sn*-1-oleoyl-*sn*-2-[¹⁴C]oleoyl-PC (oleoyl-PC), *sn*-1-oleoyl-*sn*-2-[¹⁴C]oleoyl-PE (oleoyl-PE), *sn*-1-oleoyl-*sn*-2-[¹⁴C]ricinoleoyl-PC (ricinoleoyl-PC) or *sn*-1-oleoyl-*sn*-2-[¹⁴C]vernoloyl-PC (vernoloyl-PC). In the experiments presented in the 2 bars to the far right, monoricinoleoyl-DAG (ricinoleoyl-DAG) or mono-vernoloyl-DAG (vernoloyl-DAG) were used together with *sn*-1-oleoyl-*sn*-2-[¹⁴C]-oleoyl-PC. The label that was incorporated into TAG (solid bars) and lyso-PC (LPC, open bars) was quantified by electronic autoradiography. The results shown are the mean values of two experiments. The microsomes used were from W303-1A cells overexpressing the PDAT gene from the *GAL1-TPK2* promotor, as described in Fig. 3. The expression was induced at early stationary phase and the cells were harvested after an additional 24 h.

15

TAB.1:

In vitro synthesis of triacylglycerols in microsomal preparations of developing castor bean. Aliquots of microsomes (20 nmol PC) were lyophilised and substrate lipids were added in benzene solution: (A) 0.4 nmol [¹⁴C]-DAG (7760 dpm/nmol) and where indicated 1.6 nmol unlabelled DAG; (B) 0.4 nmol [¹⁴C]-DAG (7760 dpm/nmol) and 5 nmol unlabelled di-ricinoleoyl-PC and (C) 0.25 nmol [¹⁴C]-PC (4000 dpm/nmol) and 5 nmol unlabelled DAG. The benzene was evaporated by N₂ and 0.1 ml of 50 mM potassium phosphate was added, thoroughly mixed and incubated at 30 °C for (A) 20 min.; (B) and (C) 30 min.. Assays were terminated by extraction of the lipids in chloroform. The lipids were then separated by thin layer chromatography on silica gel 60 plates (Merck; Darmstadt, Germany) in hexan/diethylether/acetic 35:70:1.5. The radioactive lipids were visualised and the radioactivity quantified on the plate by electronic autoradiography (Instant Imager, Packard, US). Results are presented as mean values of two experiments.

Radioactivity in different triacylglycerols (TAG) species formed. Abbreviations used: 1-OH-, mono-ricinoleoyl; 2-OH, di-ricinoleoyl; 3-OH-, triricinoleoyl; 1-

OH-1-ver-, mono-ricinoleoyl-monovernoleoyl-; 1-OH-2-ver-, mono-ricinoleoyl-divernoleoyl-. Radiolabelled DAG and PC were prepared enzymatically. The radiolabelled ricinoleoyl group is attached at the sn-2-position of the lipid and unlabelled oleoyl group at the sn-1-position. Unlabelled DAG with vernoleoyl- or 5 ricinoleoyl chains were prepared by the action of TAG lipase (6) on oil of Euphorbia lagascae or Castor bean, respectively. Synthetic di-ricinoleoyl-PC was kindly provided from Metapontum Agribios (Italy).

10 TAB.2:

Total fatty acids per mg of T2 seeds pooled from individual *Arabidopsis thaliana* plants transformed with yeast PDAT gene under the control of napin promotor (26-14) or transformed with empty vector (32-4).

15 * = statistical difference between control plants and PDAT transformed plants in a mean difference two-sided test at $\alpha = 5$.

Description of the SEQ ID:

SEQ ID NO. 1: Genomic DNA sequence and suggested amino acid sequence of the *Saccharomyces cerevisiae* PDAT gene, YNR008w, with GenBank accession number Z71623 and Y13139, and with nucleotide ID number 1302481.

SEQ ID NO. 2: The amino acid sequence of the suggested open reading frame YNR008w from *Saccharomyces cerevisiae*.

SEQ ID NO. 3: Genomic DNA sequence of the *Schizosaccharomyces pombe* gene SPBC776.14.

SEQ ID NO. 4: Genomic DNA sequence of part of the *Arabidopsis thaliana* locus with GenBank accession number AB006704.

SEQ ID NO. 5: Nucleotide sequence of the *Arabidopsis thaliana* cDNA clone with GenBank accession number T04806, and nucleotide ID number 315966.

SEQ ID NO. 6: Predicted amino acid sequence of the *Arabidopsis thaliana* cDNA clone with GenBank accession number T04806.

SEQ ID NO. 7: Nucleotide and amino acid sequence of the *Zea mays* EST clone with GenBank accession number AI491339, and nucleotide ID number 4388167.

SEQ ID NO. 8: Predicted amino acid sequence of the *Zea mays* EST clone with GenBank accession number AI491339, and nucleotide ID number 4388167.

SEQ ID NO. 9: DNA sequence of part of the *Neurospora crassa* EST clone W07G1, with GenBank accession number AI398644, and nucleotide ID number 4241729.

SEQ ID NO. 10: Genomic DNA sequence of part of the *Arabidopsis thaliana* locus

with GenBank accession number AC004557.

SEQ ID NO. 11: Genomic DNA sequence of part of the *Arabidopsis thaliana* locus with GenBank accession number AC003027.

5

SEQ ID NO. 12: DNA sequencce of part of the *Lycopersicon esculentum* cDNA clone with GenBank accession number AI486635.

10 *SEQ ID NO. 13:* Amino acid sequence of the *Schizosaccharomyces pombe* putative open reading frame CAA22887 of the *Schizosaccharomyces pombe* gene SPBC776.14.

15 *SEQ ID NO. 14:* Amino acid sequence of the *Arabidopsis thaliana* putative open reading frame AAC80628 derived from the *Arabidopsis thaliana* locus with GenBank accession number AC004557.

SEQ ID NO. 15: Amino acid sequence of the *Arabidopsis thaliana* putative open reading frame AAD10668 derived from the *Arabidopsis thaliana* locus with GenBank accession number AC003027.

20

Further provisional and/or partial sequences are defined through the following SEQ IDs:

25 *SEQ ID NO. 16:* The amino acid sequence of the yeast ORF YNR008w from *Saccharomyces cerevisiae*.

SEQ ID NO. 17: Amino acid sequence of the region of the *Arabidopsis thaliana* genomic sequence (AC004557).

30 *SEQ ID NO. 18:* Amino acid sequence of the region of the *Arabidopsis thaliana* genomic sequence (AB006704).

BASF-NAE 3377/99 PCT

30

12.09.2000

SEQ ID NO. 19: The corresponding genomic DNA sequence and amino acid sequence of the yeast ORF YNROO8w from *Saccharomyces cerevisiae*.

5 *SEQ ID NO. 20:* The amino acid sequence of the yeast ORF YNROO8w from *Saccharomyces cerevisiae* derived form the corresponding genomic DNA sequence.

10 *SEQ ID NO. 21:* Genomic DNA sequence of the *Saccharomyces cerevisiae* PDAT gene, YNR008w, genebank nucleotide ID number 1302481, and the suggested YNR008w amino acid sequence.

15 *SEQ ID NO. 22:* The suggested amino acid sequence of the yeast gene YNR008w from *Saccharomyces cerevisiae*.

SEQ ID NO. 23: Genomic DNA sequence of the *Schizosaccharomyces pombe* gene SPBC776.14.

20 *SEQ ID NO. 24:* Genomic DNA sequence of part of the *Arabidopsis thaliana* locus with genebank accession number AB006704.

SEQ ID NO. 25: Nucleotide sequence and the corresponding amino acid sequence of the *Arabidopsis thaliana* EST-clone with genebank accession number T04806, and ID number 315966.

25 *SEQ ID NO. 26:* Nucleotide and amino acid sequence of the *Zea mays* cDNA clone with genebank ID number 4388167.

30 *SEQ ID NO. 27:* Amino acid sequence of the *Zea mays* cDNA clone with genebank ID number 4388167.

SEQ ID NO. 28: DNA sequence of part of the *Neurospora crassa* cDNA clone WO7G1, ID number 4241729.

SEQ ID NO. 29: Genomic DNA sequence of part of the *Arabidopsis thaliana* locus with genebank accession number AC004557.

- 5 *SEQ ID NO. 30:* Genomic DNA sequence of part of the *Arabidopsis thaliana* locus with genebank accession number AC003027.

SEQ ID NO. 31: DNA sequence of part of the *Lycopersicon esculentum* cDNA clone with genebank accession number AI486635.

Claims

1. An enzyme catalysing in an acyl-CoA-independent reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.
5
2. An enzyme according to claim 1, comprising an amino acid sequence as set forth in SEQ ID No. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
10
3. An enzyme according to claims 1 or 2 designated as phospholipid:diacylglycerol acyltransferase (PDAT).
15
4. An enzyme according to claims 1 to 3, comprising an amino acid sequence as set forth in SEQ ID No. 16, 20 or 22 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
20
5. An enzyme according to claims 1 to 4, comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID No. 6, 8, 13, 14, 15, 17, 18, 25 or 27 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
25
6. An enzyme according to claims 1 to 5, comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID No. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 or 31 or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence.
30
7. A nucleotide sequence encoding an enzyme catalysing in an acyl-CoA-independent reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.

8. A nucleotide sequence according to claim 7 encoding an enzyme designated as phospholipid:diacylglycerol acyltransferase (PDAT).
- 5 9. A nucleotide sequence according to claims 7 or 8, selected from the group consisting of sequences as set forth in SEQ ID No. 1, 3, 4, 10, 11, 19, 21, 23, 24, 29 or 30 or a portion, derivate, allele or homolog thereof.
- 10 10. A partial nucleotide sequence corresponding to a fulllength nucleotide sequence according to claims 7 to 9, selected from the group consisting of sequences as set forth in SEQ ID No. 5, 7, 9, 12, 25, 26, 28 or 31 or a portion, derivate, allele or homolog thereof.
- 15 11. A nucleotide sequence according to claims 7 to 10, comprising a nucleotide sequence which is at least 40% homologous to a nucleotide sequence selected form the group consisting of those sequences set forth in SEQ ID No. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 or 31.
- 20 12. A gene construct comprising a nucleotide sequence according to claims 7 to 11 operably linked to a heterologous nucleic acid.
13. A vector comprising a nucleotide sequence according to claims 7 to 11 or a gene construct according to claim 12.
- 25 14. A vector according to claim 13, which is an expression vector.
- 30 15. A vector according to claims 13 or 14, further comprising a selectable marker gene and/or nucleotide sequences for the replication in a host cell or the integration into the genome of the host cell.
16. A transgenic cell or organism containing a nucleotide sequence according to claims 7 to 11 and/or a gene construct according to claim 12 and/or a vector according to claims 13 to 15.

17. A transgenic cell or organism according to claim 16 which is an eucaryotic cell or organism.

5 18. A transgenic cell or organism according to claims 16 or 17 which is a yeast cell or a plant cell or a plant.

10 19. A transgenic cell or organism according to claims 16 to 18 having an altered biosynthetic pathway for the production of triacylglycerol.

15 20. A transgenic cell or organism according to claims 16 to 19 having an altered oil content.

20 21. A transgenic cell or organism according to claims 16 to 20 wherein the activity of PDAT is altered.

25 22. A transgenic cell or organism according to claims 16 to 21 wherein the altered activity of PDAT is characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme.

30 23. A transgenic cell or organism according to claims 16 to 22 wherein the altered biosynthetic pathway for the production of triacylglycerol is characterized by the prevention of accumulation of undesirable fatty acids in the membrane lipids.

35 24. A process for the production of triacylglycerol, comprising growing a transgenic cell or organism according to claims 16 to 23 under conditions whereby the said nucleotide sequence according to claims 7 to 11 is expressed.

40 25. Triacylglycerols produced by a process according to claim 24.

26. Use of a nucleotide sequence according to claims 7 to 11 and/or an enzyme according to claims 1 to 6 for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids.
- 5 27. Use of a nucleotide sequence according to claims 7 to 11 and/or an enzyme according to claims 1 to 6 for the transformation of any cell or organism in order to be expressed in this cell or organism and result in an altered, preferably increased oil content of this cell or organism.

Abstract of the Disclosure

The present invention relates to the isolation, identification and characterization
5 of nucleotide sequences encoding an enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol, to the said enzymes and a process for the production of triacylglycerols.

09/937779

Figures

Fig. 1:

12.09.2000

09/937779**Fig 2**

Fig 3:

09/937779

Fig.4:

09/937779

Tables

Tab. 1:

mol % of added [¹⁴C]-acyl group in TAG⁽¹⁾

Substrate added	[¹⁴ C]-lipid ⁽²⁾	unlabelled lipid ⁽²⁾	1-OH-TAG	2-OH-TAG	1-OH-1-ver-TAG	1-OH-2-ver-TAG	3-OH-TAG
A mono-[¹⁴ C]-ricinoleoyl-DAG	mono-ricinoleoyl-DAG	2,8	-	12,4	-	-	-
A mono-[¹⁴ C]-ricinoleoyl-DAG	mono-vernoleoyl-DAG	3,2	12,1	-	1,3	-	-
A mono-[¹⁴ C]-ricinoleoyl-DAG	di-vernoleoyl-DAG	4	10	0,5	-	1,2	-
A mono-[¹⁴ C]-ricinoleoyl-DAG	di-ricinoleoyl-PC	0,3	24,8	-	-	-	-
B mono-[¹⁴ C]-ricinoleoyl-PC	none	6,8	8,0	-	-	4,7	-
C mono-[¹⁴ C]-ricinoleoyl-PC	di-oleoyl-DAG	8,6	9,8	-	-	-	5,0
C mono-[¹⁴ C]-ricinoleoyl-PC	mono-ricinoleoyl-DAG	5,7	16,7	-	-	-	1,9
C mono-[¹⁴ C]-ricinoleoyl-PC	di-ricinoleoyl-DAG	4,5	9,4	-	-	-	9,5
C mono-[¹⁴ C]-ricinoleoyl-PC	mono-vernoleoyl-DAG	6,0	11,5	10,9	0,5	-	7,4
C mono-[¹⁴ C]-ricinoleoyl-PC	di-vernoleoyl-DAG	6,7	10,8	1,1	8,4	6,8	-

09/937779

09/937779

Tab. 2:

T1 plant	T2 plant number	nmol fatty acids per mg seed	standard deviation
32-4	1	1277	± 11 (n=2)
	4	1261	± 63 (n=3)
	5	1369	± 17 (n=3)
	6	1312	± 53 (n=4)
	7	1197	± 54 (n=5)
	8	1240	± 78 (n=4)
	9	1283	± 54 (n= 5)
26-14	10	1381	± 35 (n=5)
	1	1444	± 110 (n=4)
	2	1617*	± 109 (n=4)
	3	1374	± 37 (n=2)
	5	1562*	± 70 (n=4)
	6	1393	± 77 (n=4)
	7	1433	± 98 (n=4)
	8	1581*	± 82 (n=4)

Declaration, Power of Attorney and Petition

26474

PATENT & TRADEMARK OFFICE

Page 1 of 4
0093/000003

We (I), the undersigned inventor(s), hereby declare(s) that:

My residence, post office address and citizenship are as stated below next to my name,

We (I) believe that we are (I am) the original, first, and joint (sole) inventor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled

NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYCLOGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

the specification of which

[] is attached hereto.

[x] was filed on September 28, 2001 as

Application Serial No. 09/937,779

and amended on _____.

[x] was filed as PCT international application

Number PCT/EP/00/02701

on March 28, 2000

and was amended under PCT Article 19

on _____ (if applicable).

We (I) hereby state that we (I) have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

We (I) acknowledge the duty to disclose information known to be material to the patentability of this application as defined in Section 1.56 of Title 37 Code of Federal Regulations.

We (I) hereby claim foreign priority benefits under 35 U.S.C. § 119(a)-(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed. Prior Foreign Application(s)

Application No.	Country	Day/Month/Year	Priority Claimed
99106656.4	Europe	01 April 1999	[x] Yes [] No
99111321.8	Europe	10 June 1999	[x] Yes [] No
60/180687	United States of America	07 February 2000	[x] Yes [] No

1-^w
Anders Dahlqvist
NAME OF SOLE OR FIRST INVENTOR

Anders Dahlqvist
Signature of Inventor

Date 29.08.2001

Residence:
Hemmansvägen 2
24466 Furulund *SEX*
Sweden
Citizen of: Sweden
Post Office Address: same as residence

2-^w
Ulf Stahl
NAME OF SECOND JOINT INVENTOR

Ulf Stahl
Signature of Inventor

Date 29.08.2001

Residence:
Liljegatan 7b
75324 Uppsala *SEX*
Sweden
Citizen of: Sweden
Post Office Address: same as residence

3-^w
Marit Lenman
NAME OF THIRD JOINT INVENTOR

Marit Lenman
Signature of Inventor

Date 29.08.2001

Residence:
Revingegatan 13a
22359 Lund
Sweden
Citizen of: Sweden
Post Office Address: same as residence *SEX*

4-^w
Antoni Banas
NAME OF FOURTH JOINT INVENTOR

Banas Antoni
Signature of Inventor

Date 29.08.2001

Residence:
Violinowa 14
08110 Siedlce *PL*
Poland
Citizen of: Sweden *Poland*
Post Office Address: same as residence

5-^w
Hans Ronne
NAME OF FIFTH JOINT INVENTOR

Hans Ronne
Signature of Inventor

Date 29.08.2001

Residence:
Dirigentvägen 169
75654 Uppsala *SEX*
Sweden
Citizen of: Sweden
Post Office Address: same as residence

We (I) hereby claim the benefit under Title 35, United States Codes, § 119(e) of any United States provisional application(s) listed below.

(Application Number)	(Filing Date)
(Application Number)	(Filing Date)

We (I) hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s), or § 365(c) of any PCT International application designating the United States, listed below, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. § 112, I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR § 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application.

Application Serial No.	Filing Date	Status (pending, patented, abandoned)

 And we (I) hereby appoint **HERBERT. B. KEIL**, Registration Number 18,967; and **RUSSEL E. WEINKAUF**, Registration Number 18,495; the address of both being Messrs. Keil & Weinkauf, 1101 Connecticut Ave., N.W., Washington, D.C. 20036 (telephone 202-659-0100), our attorneys, with full power of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to sign the drawings, to receive the patent, and to transact all business in the Patent Office connected therewith.

We (I) declare that all statements made herein of our (my) own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Page 4 of 4
Declaration
0093/000003

6 Sten Stymne
NAME OF SIXTH JOINT INVENTOR

Signature of Inventor

Date 29.08.2001

Residence:
Torrlösa 1380
26990 Svalöv
Sweden *SEX*
Citizen of: Sweden
Post Office Address: same as residence

1

SEQUENCE LISTING

<110> Dahlquist, Anders,
Stahl, Ulf
Lenman, Marit
Banas, Antoni
Ronne, Hans
Stymne, Sten

<120> A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

<130> BASF-NAE-3377-99-Sept-2000

<140> US 09/937,779

<150> PCT/EP 00/02701
<151> 2000-03-23

<160> 31

<170> PatentIn Ver. 2.1

<210> 1
<211> 1986
<212> DNA
<213> *Saccharomyces cerevisiae*

<220>
<221> CDS
<222> (1)..(1983)

<400> 1

atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct 48
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
1 5 10 15

gat gaa aac aat aaa ggg ggt tct gtt cat aac aag cga gag agc aga 96
Asp Glu Asn Asn Lys Gly Ser Val His Asn Lys Arg Glu Ser Arg
20 25 30

aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt 144
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
35 40 45

att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat ttc gac agg 192
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
50 55 60

aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg 240
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
65 70 75 80

att ttc att ctt ggt gca ttc tta ggt gta ctt ttg ccg ttt agc ttt 288
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
85 90 95

ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt 336

Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe			
100	105	110	
gta aat ttt gat tca ctt aaa gtg tat ttg gat gat tgg aaa gat gtt			384
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val			
115	120	125	
ctc cca caa ggt ata agt tcg ttt att gat gat att cag gct ggt aac			432
Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn			
130	135	140	
tac tcc aca tct tct tta gat gat ctc agt gaa aat ttt gcc gtt ggt			480
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly			
145	150	155	160
aaa caa ctc tta cgt gat tat aat atc gag gcc aaa cat cct gtt gta			528
Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val			
165	170	175	
atg gtt cct ggt gtc att tct acg gga att gaa agc tgg gga gtt att			576
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile			
180	185	190	
gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg			624
Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp			
195	200	205	
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg			672
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp			
210	215	220	
ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac			720
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn			
225	230	235	240
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc			768
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile			
245	250	255	
gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att			816
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile			
260	265	270	
ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt			864
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu			
275	280	285	
gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag			912
Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys			
290	295	300	
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta			960
Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu			
305	310	315	320
att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg			1008
Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp			
325	330	335	

gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt		1056	
Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val			
340	345	350	
aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc		1104	
Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly			
355	360	365	
gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc		1152	
Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr			
370	375	380	
att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca		1200	
Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser			
385	390	395	400
aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca		1248	
Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser			
405	410	415	
atg cta cca aag gga gaa gag gtc att tgg ggg gat atg aag tca tct		1296	
Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser			
420	425	430	
tca gag gat gca ttg aat aac aac act gac aca tac ggc aat ttc att		1344	
Ser Glu Asp Ala Leu Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile			
435	440	445	
cga ttt gaa agg aat acg agc gat gct ttc aac aaa aat ttg aca atg		1392	
Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met			
450	455	460	
aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa		1440	
Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln			
465	470	475	480
aga aga gta cat gag cag tac tcg ttc ggc tat tcc aag aat gaa gaa		1488	
Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu			
485	490	495	
gag tta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg		1536	
Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met			
500	505	510	
gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac		1584	
Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr			
515	520	525	
ggg gtg aac aac cca act gaa agg gca tat gta tat aag gaa gag gat		1632	
Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp			
530	535	540	
gac tcc tct gct ctg aat ttg acc atc gac tac gaa agc aag caa cct		1680	
Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro			
545	550	555	560
gta ttc ctc acc gag ggg gac gga acc gtt ccg ctc gtg qcq cat tca		1728	
Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser			
565	570	575	

atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga	1776
Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly	
580 585 590	
att aac gtt act att gtg gaa atg aaa cac cag cca gat cga ttt gat	1824
Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp	
595 600 605	
ata cgt ggt gga gca aaa agc gcc gaa cac gta gac atc ctc ggc agc	1872
Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser	
610 615 620	
gcg gag ttg aac gat tac atc ttg aaa att gca agc ggt aat ggc gat	1920
Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp	
625 630 635 640	
ctc gtc gag cca cgc caa ttg tct aat ttg agc cag tgg gtt tct cag	1968
Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln	
645 650 655	
atg ccc ttc cca atg taa	1986
Met Pro Phe Pro Met	
660	
<210> 2	
<211> 661	
<212> PRT	
<213> <i>Saccharomyces cerevisiae</i>	
<400> 2	
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser	
1 5 10 15	
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg	
20 25 30	
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly	
35 40 45	
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg	
50 55 60	
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu	
65 70 75 80	
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe	
85 90 95	
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe	
100 105 110	
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val	
115 120 125	
Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn	
130 135 140	

Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
 145 150 155 160
 Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
 165 170 175
 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
 180 185 190
 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
 195 200 205
 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
 210 215 220
 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
 225 230 235 240
 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
 245 250 255
 Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
 260 265 270
 Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
 275 280 285
 Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
 290 295 300
 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
 305 310 315 320
 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
 325 330 335
 Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val
 340 345 350
 Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
 355 360 365
 Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
 370 375 380
 Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser
 385 390 395 400
 Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
 405 410 415
 Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser
 420 425 430
 Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
 435 440 445
 Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
 450 455 460

Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
 465 470 475 480

Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
 485 490 495

Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
 500 505 510

Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
 515 520 525

Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
 530 535 540

Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
 545 550 555 560

Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
 565 570 575

Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly
 580 585 590

Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
 595 600 605

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
 610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
 625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
 645 650 655

Met Pro Phe Pro Met
 660

<210> 3

<211> 2312

<212> DNA

<213> Schizosaccharomyces pombe

<400> 3

```

atggcgtctt ccaagaagag caaaaactcat aagaaaaaga aagaagtcaa atctcctatc 60
gacttaccaa attcaaagaa accaactcgc gctttgagtg agcaaccttc agcgccgaa 120
acacaatctg tttcaaataa atcaagaaaa tctaaatttg gaaaaagatt gaattttata 180
ttgggcgcta ttttggaaat atgcggtgct tttttttcg ctgttggaga cgacaatgct 240
gttttcgacc ctgctacgtt agataaattt gggatatgc taggctcttc agacttgttt 300
gatgacatta aaggatattt atcttataat gtgttaagg atgcaccttt tactacggac 360

```

aagccttcgc agtctcctag cgaaatgaa gttcaagttg gtcttgatat gtacaatgag 420
ggatatcgaa gtgaccatcc ttttattatg gttccgttg ttatcagctc aggattagaa 480
agttggtcgt ttaataattt ctcgattcct tacttttagga aacgtcttg gggtagctgg 540
tctatgctga aggcaatgtt ctttgacaag caatgctggc ttgaacattt aatgcttgat 600
aaaaaaaaaccg gcttgatcc gaaggaaatt aagctgcgag cagctcagg gttgaagca 660
gctgattttt ttatcacggg ctattggatt tggagtaaag taattgaaaa ctttgctgca 720
attggttatg agcctaataa catgttaagt gtttcttacg attggcggtt atcatatgca 780
aatttagagg aacgtgataa atattttca aagttaaaaa tgttcattga gtacagcaac 840
attgtacata agaaaaaggt agtgttgatt tctcactcca tgggttcaca ggtaacgtac 900
tatTTTTTA agtgggttga agctgaggc tacggaaatg gtggaccgac ttgggttaat 960
gatcatattt aagcattttt aaatgtgagt ctcgatggtt gtttactac gtttctaact 1020
tttgaataga tatcgggatc tttgattgga gcacccaaaa cagttggcagc gcttttatcg 1080
ggtaaatga aagatacagg tattgttaatt acattaaaca tgtaatatt taattttgc 1140
taaccgtttt aagctcaattt gaatcagttt tcggctatg ggtaagcaat aaattgttga 1200
gatttgttac taatttactg ttttagttgg aaaaattttt ttcccggttct gaggtatatt 1260
caaaaataca aatgtgctct acttttcta acttttaata gagagccatg atgggtcgca 1320
ctatggagg agtttagttct atgcttccta aaggaggcga tggttatgg ggaaatgcca 1380
gttggtaag aaatatgtgc tgtaatTTT ttattaatatt ttaggctcca gatgatctta 1440
atcaaacaaa ttttccaat ggtcaatta ttgcataatg agaagacatt gataaggacc 1500
acgatgaatt tgacatagat gatgcattac aattttaaa aatgttaca gatgacgatt 1560
ttaaagtcat gctagcgaaa aattattccc acggcttgc ttggactgaa aaagaagtgt 1620
taaaaaataa cgaaatgccg tctaaatgga taaatccgtt agaagtaaga acattaaagt 1680
tactaaatta tactaacca aatagactag tcttccttat gtcctgata tgaaaaattta 1740
ttgcgttcac ggggtcgaa aaccaactga gagaggttat tattatacta ataatcctga 1800
ggggcaacct gtcattgatt cctcggttaa tggatggaca aaagttgaaa atgtgagaga 1860
atTTATGTTT caaacattct attaactgtt ttattagggt attgttatgg atgatggta 1920
tggaaacttta ccaatattag cccttggttt ggtgtcaat aaagttggc aaacaaaaag 1980
gttaatcct gctaatacaa gtatcacaaa ttatgaaatc aagcatgaac ctgctgcgtt 2040
tgatctgaga ggaggaccc gctcggcaga acacgtcgat atacttggac attcagagct 2100
aaatgtatgt tcattttacc ttacaaattt ctattactaa ctcttggaaat aaggaaattha 2160

ttttaaaagt ttcatcaggc catggtgact cggtacccaa ccttatata tcagatatcc 2220
 agtacggaca taagtttgt agattgcaat taactaacta accgaacagg gaaataataa 2280
 atgagataaa tctcgataaa cctagaaatt aa 2312

<210> 4
 <211> 3685
 <212> DNA
 <213> Arabidopsis thaliana

<400> 4

atgcccccta ttcatcgaa aaagccgacg gagaaaccat cgacgccgcc atctgaagag 60
 gtgggtgcacg atgaggattc gcaaaaagaaa ccacacgaat cttccaaatc ccaccataag 120
 aaatcgaacg gaggagggaa gtggcgtgc atcgattctt gttgttggtt cattgggtgt 180
 gtgtgtgtaa cctggtggtt tcttctcttc ctttacaacg caatgcctgc gagttccct 240
 cagtatgtaa cggagcgaat cacgggtcct ttgcctgacc cgcccgggtgt taagctcaa 300
 aaagaaggta ttaaggcgaa acatcctgtt gtcttcattc ctgggattgt caccggtg 360
 ctcgagctt gggaggcaa acaatgcgt gatggtttat ttagaaaacg tttgtgggt 420
 ggaacttttgcgt gtaagtcta caaaaggtga gctcaacaat tctcactctt cctttatatt 480
 gggatttggta ttggatctga tgagatcagg cacttggcgt ttcttcaaca tcactcaa 540
 tttaattcca tgttgtctg tcttactctt tactttttt ttttttgat gtgaaacgct 600
 attttcttaa gagactattt ctgtatgtgt aaggtaagcg ttccaaggac gtaattggct 660
 tggactattt ctgtttgatt gtttaacttta ggatataaaa tagctgcctt ggaatttcaa 720
 gtcatcttata tgccaaatct gttgctagac atgcctaga gtccgttcat aacaagttac 780
 ttcccttact gtcgttgcgt gtagatttag ctttggtag cgtataatga agtagtg 840
 tatgtttgt tggaaataga gaagttctaa ctacatctgt ggaaagtgtg ttcaggctgt 900
 gatagaggac tggtgttta ttattcaact atgtatatgt gtaattaaag ctgttcctt 960
 ttgtatctt cagctcaatg tgctttctc aattttttc tcaatttcaa agtttcacat 1020
 cgagtttatt cacatgtctt gaatttcgtc catcctcggtt ctgttatcca gctttgaact 1080
 cctcccgacc ctgctatgga tatattaaaa aaaaagtgtt ttgtgggttg catcttgg 1140
 acgatctgca tcttcttctt tcggctcagt gttcatgttt ttgctatggt agagatgggc 1200
 aatgttattt tgatggtaa cagtggtata gttgatagta tcttaactaa tcaattatct 1260
 ctgttgcattca ggcctctatg ttgggtggaa cacatgtcac ttgacaatga aactgggttg 1320
 gatccagctg gtatttagt tcgagctgta tcaggactcg tggctgctga ctactttgct 1380

cctggctact ttgtctggc agtgctgatt gctaacctg cacatattgg atatgaagag 1440
aaaaatatgt acatggctgc atatgactgg cggcttcgt ttcagaacac agaggttctt 1500
ttctcatcg tctttctatt attctgttcc atgttacgtt tctttcttca ttacttaagg 1560
cttaaatatg tttcatgtt aattaatagg tacgtgatca gactcttagc cgtatgaaaa 1620
gtaatataga gttgatggtt tctaccaacg gtggaaaaaa agcagttata gttccgcatt 1680
ccatgggggt cttgtatTT ctacatTT tgaagtgggt tgaggcacca gtcctctgg 1740
gtggcggggg tggccagat tggtgtgcaa agtatattaa ggcggtgatg aacattggtg 1800
gaccatttct tggtgttcca aaagctgtt cagggctttt ctctgctgaa gcaaaggatg 1860
ttgcagttgc caggtattga atatctgctt atactttga tgatcagaac cttggctctg 1920
gaactcaaag ttattctact aaatatcaat tctaataaca ttgctatatt atcgctgcaa 1980
ctgacattgg ttgattatTT ttgctgctt tgaactgaa actctcttga gattagacaa 2040
atgatgaatt gataattctt acgcattgct ctgtgatgac cagtttctt gcttcgacga 2100
taacattgt catactgtct tttggagggc attgaatttt gctatggaaa gcgctggagc 2160
ttccatgctt gcattcttta ccaatttagcg ttattctgct tcttcaatt ttcttgtata 2220
tgcattctatg gtctttatt tcttcttaat taaagactcg ttggatttagt tgctcttata 2280
gtcacttggt tccttaatat agaactttac tttctcgaa aattgcagag cgattgcccc 2340
aggattctta gacaccgata tatTTtagact tcagacctt cagcatgtaa tgagaatgac 2400
acgcacatgg gactcaacaa tgtctatgtt accgaaggga ggtgacacga tatggggcgg 2460
gcttgattgg tcaccggaga aaggccacac ctgttgccc aaaaagcaaa agaacaacga 2520
aacttgggt gaagcaggtg aaaacggagt ttccaagaaa agtcctgtt actatggaag 2580
gatgatatct tttggaaag aagtagcaga ggctgcgcc tctgagatta ataatattga 2640
tttcgagta aggacatata aatcataata aaccttgcac atttgtgtat tgtatgtga 2700
atatctgtac atttatctg gtgaagggtt ctgtcaaagg tcagagtatc ccaaattcaca 2760
cctgtcgtga cgtgtggaca gagtaccatg acatggaaat tgctggatc aaagctatcg 2820
ctgagtataa ggtctacact gctgggtgaag ctatagatct actacattat gttgctccta 2880
agatgatggc gcgtgggtcc gctcatttct cttatggaaat tgctgtatgtat ttggatgaca 2940
ccaagtatca agatccaaa tactggtcaa atccgttaga gacaaagtaa gtgatttctt 3000
gattccaact gtatcctcg tcctgtatgca ttatcagtct ttttgggggg ggtcttgggt 3060
gatatggttt tcagctcaaag gcttacaaag ctgtttctga gcctttctca aaaaggctt 3120
ctcagtaata ttgaggtgct aaagttgata catgtgactc ttgcttataaa atcctccgtt 3180

tggtttgttc tgcttttca gattaccgaa tgctcctgag atggaaatct actcattata 3240
 cggagtgggg ataccaacgg aacgagcata cgtataacaag cttaccagg ctcccgacag 3300
 ttgcacatcccc tttcagatat tcacttctgc tcacgaggag gacgaagata gctgtctgaa 3360
 agcaggagtt tacaatgtgg atggggatga aacagtaccc gtcctaaggc ccgggtacat 3420
 gtgtgcaaaa gcgtggcgtg gcaagacaag attcaaccct tccggaatca agacttat 3480
 aagagaatac aatcactctc cgccggctaa cctgttggaa gggcgccggc cgtagactgg 3540
 tgcccatgtt gatatcatgg gaaactttgc tttgatcgaa gatatcatga gggttgccgc 3600
 cggaggtaac gggtctgata taggacatga ccaggtccac tctggcatat ttgaatggc 3660
 ggagcgtatt gacctgaagc tgtga 3685

<210> 5
 <211> 2427
 <212> DNA
 <213> Arabidopsis thaliana

<220>
 <221> unsure
 <222> 1..2427
 <223> n = a or g or c or t/u

<400> 5

agaaacagct ctttgtctct ctgcactgat ctaacaatcc ctaatctgtg ttctaaattc 60
 ctggacgaga tttgacaaag tccgtatagc ttaacctggg ttaatttcaa gtgacagata 120
 tgcccttat tcatcgaaa aagccgacgg agaaaccatc gacgcccggcca tctgaagagg 180
 tgggcacga tgaggattcg caaaagaaaac cacacgaaatc ttccaaatcc caccataaga 240
 aatcgaacgg aggagggaaag tggtcgtgca tcgatttttgc ttgttggttc attgggtgtg 300
 tgtgtgtaac ctggtggttt ctctcttcc tttacaacgc aatgcctgctg agcttccetc 360
 agtatgtaac ggagcgaatc acgggtcctt tgccctgaccc gcccgggttt aagctcaaaa 420
 aaagaaggc ttaaggcgaac acatccgttt gtcttcattc ctgggattgt caccgggtgg 480
 ctgcagctt gggaaaggc acaatgcgcgt gatggtttat ttagaaaacg ttgtgggtt 540
 ggaacttttgc gtgaagtcta caaaaggcct ctatgttggg tggAACACAT gtcacttgac 600
 aatgaaactg ggttggatcc agctggattt agagttcgag ctgtatcagg actcgtggct 660
 gctgactact ttgctcctgg ctactttgtc tggcagtgc tgattgctaa cttgcacat 720
 attggatatg aagagaaaaa tatgtacatg gctgcataatg actggcggct ttgcatttc 780
 aacacagagg tacgtgatca gactcttagc cgtatgaaaa gtaatataga gttgatgggtt 840
 tctaccaacg gtggaaaaaa agcagttata gttccgcatt ccatgggggtt cttgtat 900

ctacatTTTA tgaagtgggt tgaggcacca gctccTCTGG gtggcggggg tggccagat 960
 tggTGTGCAA agtatattaa ggCGGTGATG aacattggtg gaccatttct tggTGTtCCA 1020
 aaAGCTGTTG cagggcttt ctctgctgaa gcaaaggatg ttgcagttgc cagagcgatt 1080
 gcccaggat tcTTAGACAC cgatataATT agacttcaga cttgcagca tgtaatgaga 1140
 atgacacgca catggactc aacaatgtct atgttaccga agggaggtga cacgatatgg 1200
 ggcgggcttG attggTCACC ggagaaaggc cacacctgtt gtggaaaaaa gcaaaagaac 1260
 aacgaaaactt gtggTGAAGC aggtgaaaac ggagttCCA agaaaagtCC tggtaactat 1320
 ggaaggatga tatctttgg gaaagaagta gcagaggctg cgccatctga gattaataat 1380
 attgattttc gaggtgctgt caaaggTCAG agtataccaa atcacacctg tcgtgacgtg 1440
 tggacagagt accatgacat gggaaattgot gggatcaaag ctatcgctga gtataaggTC 1500
 tacactgctg gtgaagctat agatctacta cattatgttG ctcctaagat gatggcgcgt 1560
 ggtgccgctc atttcttta tggaaattgct gatgatttgg atgacaccaa gtatcaagat 1620
 cccaaatact ggtcaaatcc gtttagagaca aaattaccga atgctcctga gatggaaatc 1680
 tactcattat acggagtggg gataccaacg gaacgagcat acgtatacaa gcttaaccag 1740
 tctcccgaca gttgcataccc ctttcagata ttcacttctg ctcacgagga ggacgaagat 1800
 agctgtctga aagcaggagt ttacaatgtg gatggggatg aaacagtacc cgtcctaagt 1860
 gccgggtaca tgtgtcaaa agcgtggcgt ggcaagacaa gattcaaccc ttccggaatc 1920
 aagacttata taagagaata caatcactct ccgcccccta acctgttgg agggcgcggg 1980
 acgcagagtG gtgcccattgt tgatatcatg ggaaactttG ctttgatcga agatatcatg 2040
 agggttgccc ccggaggtaa cgggtctgat ataggacatg accaggtcca ctctggcata 2100
 tttgaatggT cggagegtat tgacactgaag ctgtgaatat catgatctt ttaagctgtc 2160
 ctgtcagctt atgtgaatcc aatactttga aagagagatc atcatcaatt catcatcatc 2220
 gtcatcatca tgatgctcaa ctcacaaga agcctgagaa tgatactttG gtgcgaaatt 2280
 ctcaataacct cttaatatt ctattgaat gtaaattata caatcctatc taatgtttga 2340
 acgataaacac aaaacttgct gcnGccatgt ttgtttgtct tgtcaaaagc atcaatttg 2400
 gggttaaaaa aaaaaaaaaa aaaaaaaaaa 2427

<210> 6
 <211> 671
 <212> PRT
 <213> Arabidopsis thaliana

<400> 6

Met	Pro	Leu	Ile	His	Arg	Lys	Pro	Thr	Glu	Lys	Pro	Ser	Thr	Pro	
1					5				10				15		
Pro	Ser	Glu	Glu	Val	Val	His	Asp	Glu	Asp	Ser	Gln	Lys	Lys	Pro	His
		20						25				30			
Glu	Ser	Ser	Lys	Ser	His	His	Lys	Lys	Ser	Asn	Gly	Gly	Lys	Trp	
		35					40				45				
Ser	Cys	Ile	Asp	Ser	Cys	Cys	Trp	Phe	Ile	Gly	Cys	Val	Cys	Val	Thr
	50					55				60					
Trp	Trp	Phe	Leu	Leu	Phe	Leu	Tyr	Asn	Ala	Met	Pro	Ala	Ser	Phe	Pro
	65				70				75			80			
Gln	Tyr	Val	Thr	Glu	Arg	Ile	Thr	Gly	Pro	Leu	Pro	Asp	Pro	Pro	Gly
		85						90				95			
Val	Lys	Leu	Lys	Lys	Glu	Gly	Leu	Lys	Ala	Lys	His	Pro	Val	Val	Phe
		100					105				110				
Ile	Pro	Gly	Ile	Val	Thr	Gly	Gly	Leu	Glu	Leu	Trp	Glu	Gly	Lys	Gln
	115					120					125				
Cys	Ala	Asp	Gly	Leu	Phe	Arg	Lys	Arg	Leu	Trp	Gly	Gly	Thr	Phe	Gly
	130					135				140					
Glu	Val	Tyr	Lys	Arg	Pro	Leu	Cys	Trp	Val	Glu	His	Met	Ser	Leu	Asp
	145				150				155			160			
Asn	Glu	Thr	Gly	Leu	Asp	Pro	Ala	Gly	Ile	Arg	Val	Arg	Ala	Val	Ser
		165				170				175					
Gly	Leu	Val	Ala	Ala	Asp	Tyr	Phe	Ala	Pro	Gly	Tyr	Phe	Val	Trp	Ala
		180				185				190					
Val	Leu	Ile	Ala	Asn	Leu	Ala	His	Ile	Gly	Tyr	Glu	Glu	Lys	Asn	Met
		195				200				205					
Tyr	Met	Ala	Ala	Tyr	Asp	Trp	Arg	Leu	Ser	Phe	Gln	Asn	Thr	Glu	Val
	210				215				220						
Arg	Asp	Gln	Thr	Leu	Ser	Arg	Met	Lys	Ser	Asn	Ile	Glu	Leu	Met	Val
	225				230				235			240			
Ser	Thr	Asn	Gly	Gly	Lys	Lys	Ala	Val	Ile	Val	Pro	His	Ser	Met	Gly
		245				250				255					
Val	Leu	Tyr	Phe	Leu	His	Phe	Met	Lys	Trp	Val	Glu	Ala	Pro	Ala	Pro
		260				265				270					
Leu	Gly	Gly	Gly	Gly	Pro	Asp	Trp	Cys	Ala	Lys	Tyr	Ile	Lys	Ala	
		275				280				285					
Val	Met	Asn	Ile	Gly	Gly	Pro	Phe	Leu	Gly	Val	Pro	Lys	Ala	Val	Ala
	290				295				300						
Gly	Leu	Phe	Ser	Ala	Glu	Ala	Lys	Asp	Val	Ala	Val	Ala	Arg	Ala	Ile
	305				310				315			320			

Ala Pro Gly Phe Leu Asp Thr Asp Ile Phe Arg Leu Gln Thr Leu Gln
 325 330 335

His Val Met Arg Met Thr Arg Thr Trp Asp Ser Thr Met Ser Met Leu
 340 345 350

Pro Lys Gly Gly Asp Thr Ile Trp Gly Gly Leu Asp Trp Ser Pro Glu
 355 360 365

Lys Gly His Thr Cys Cys Gly Lys Lys Gln Lys Asn Asn Glu Thr Cys
 370 375 380

Gly Glu Ala Gly Glu Asn Gly Val Ser Lys Lys Ser Pro Val Asn Tyr
 385 390 395 400

Gly Arg Met Ile Ser Phe Gly Lys Glu Val Ala Glu Ala Ala Pro Ser
 405 410 415

Glu Ile Asn Asn Ile Asp Phe Arg Gly Ala Val Lys Gly Gln Ser Ile
 420 425 430

Pro Asn His Thr Cys Arg Asp Val Trp Thr Glu Tyr His Asp Met Gly
 435 440 445

Ile Ala Gly Ile Lys Ala Ile Ala Glu Tyr Lys Val Tyr Thr Ala Gly
 450 455 460

Glu Ala Ile Asp Leu Leu His Tyr Val Ala Pro Lys Met Met Ala Arg
 465 470 475 480

Gly Ala Ala His Phe Ser Tyr Gly Ile Ala Asp Asp Leu Asp Asp Thr
 485 490 495

Lys Tyr Gln Asp Pro Lys Tyr Trp Ser Asn Pro Leu Glu Thr Lys Leu
 500 505 510

Pro Asn Ala Pro Glu Met Glu Ile Tyr Ser Leu Tyr Gly Val Gly Ile
 515 520 525

Pro Thr Glu Arg Ala Tyr Val Tyr Lys Leu Asn Gln Ser Pro Asp Ser
 530 535 540

Cys Ile Pro Phe Gln Ile Phe Thr Ser Ala His Glu Glu Asp Glu Asp
 545 550 555 560

Ser Cys Leu Lys Ala Gly Val Tyr Asn Val Asp Gly Asp Glu Thr Val
 565 570 575

Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Ala Trp Arg Gly Lys
 580 585 590

Thr Arg Phe Asn Pro Ser Gly Ile Lys Thr Tyr Ile Arg Glu Tyr Asn
 595 600 605

His Ser Pro Pro Ala Asn Leu Leu Glu Gly Arg Gly Thr Gln Ser Gly
 610 615 620

Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile Glu Asp Ile Met

625 630 635 640

Arg Val Ala Ala Gly Gly Asn Gly Ser Asp Ile Gly His Asp Gln Val
645 650 655

His Ser Gly Ile Phe Glu Trp Ser Glu Arg Ile Asp Leu Lys Leu
660 665 670

<210> 7

<211> 643

<212> DNA

<213> Zea mays

<220>

<221> CDS

<222> (1)...(402)

<221> unsure

<222> 1..643

<223> n= a or g or c or t/u

<400> 7

cgg gag aaa ata gct gct ttg aag ggg ggt gtt tac tta gcc gat ggt 48
Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
1 5 10 15

gat gaa act gtt cca gtt ctt agt gcg ggc tac atg tgt gcg aaa gga 96
Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly
20 25 30

tgg cgt ggc aaa act cgt ttc agc cct gcc ggc agc aag act tac gtg 144
Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val
35 40 45

aga gaa tac agc cat tcg cca ccc tct act ctc ctg gaa ggc agg ggc 192
Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
50 55 60

acc cag agc ggt gca cat gtt gat ata atg ggg aac ttt gct cta att 240
Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile
65 70 75 80

gag gac gtc atc aga ata gct gct ggg gca acc ggt gag gaa att ggt 288
Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly
85 90 95

ggc gat cag gtt tat tca gat ata ttc aag tgg tca gag aaa atc aaa 336
Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys
100 105 110

ttg aaa ttg taa cct atg gga agt taa aga agt gcc gac ccg ttt att 384
Leu Lys Leu
115

gcg ttc caa agt gtc ctg cctgagtgcactctggatt ttgtcaaatt 432

attgttaattt ttcacgcttc attcgtccct ttgtcaaatt tacatggac aggacgccaa 492

tgcgatacga tgggttacccg ctattttag cattgtatat taaactgtac aggtgtaagt 552
 tgcatttgcc agctgaaatt gtgttagtcgt tttctttacg atttaatanc aagtggcgga 612
 gcagtgcccc aagcnaaaaa aaaaaaaaaa a 643

<210> 8
 <211> 115
 <212> PRT
 <213> Zea mays

<400> 8

Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
 1 5 10 15

Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly
 20 25 30

Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val
 35 40 45

Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
 50 55 60

Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile
 65 70 75 80

Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly
 85 90 95

Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys
 100 105 110

Leu Lys Leu
 115

<210> 9
 <211> 616
 <212> DNA
 <213> Neurospora crassa

<220>
 <221> unsure
 <222> 1..616
 <223> n= a or g or c or t/u

<400> 9

ggggcgaag acganggcgg aagttggagg ctaacgagaa tgacnctcg agatggatct 60
 accctctaga gacacgacta ccnttgcacc cagcctaag gtntacngtt tntatggta 120
 ggaagccgac ggagcgagcc tacatctatc tggcgcggcga tcccgggacg acaacgcac 180
 tttagatgac gatcgatacg actttgactn aggggcacat tgaccacggt gtgattttgg 240
 gcgaggcga tggcacagtg aaccttatga gtttgggta cctgtgcaat aagggtgga 300

aaatgaagag atacaatcct gcgggctcaa aaataaccgt ggtcgagatg ccgcac 360
 cagaacgggtt caatccgaga ggagggccga atacggcggta tcacgtggat attcttagaa 420
 ggcagaatct aaacgagttac attcttaaag tggcggcagg tcgaggcgat acaattgagg 480
 attttattac tagtaatatt cttaaatatg tagaaaaggt tgaaatttat gaagagtaat 540
 taaatacggc acataggttta ctcaatagta tgactaatta aaaaaaaaaatt tttttctaa 600
 aaaaaaaaaa aaaaaaa

616

<210> 10
 <211> 1562
 <212> DNA
 <213> Arabidopsis thaliana

<400> 10

atgaaaaaaaa tatcttcaca ttattcggtt gtcatacgca tactcggtt ggtgacgatg 60
 acctcgatgt gtcaagctgt gggtagcaac gtgtaccctt tgattctggt tccaggaaac 120
 ggaggttaacc agctagaggt acggctggac agagaataca agccaagtag tgtctgggt 180
 agcagctggt tatatccgat tcataagaag agtggtggtt ggtttaggtt atggttcgat 240
 gcagcagtgt tattgtctcc cttcaccagg tgcttcagcg atcgaatgtt gttgtactat 300
 gaccctgatt tggatgatta cccaaatgct cctgggttcc aaaccgggt tcctcatttc 360
 gtttcacca aatcacttct atacctcgac cctcgctcc ggttagtact ttccaagata 420
 tatacattttgc ggacatttgc ataatgaaca aaatagacat aaatttgggg gattattgtt 480
 atatcaatat ccatttatgtt gtagtcggt aatgtgagtg ttatgttagt atagttatg 540
 tgagtgttat gtgattttcc atttaaatg aagctagaaa gttgtcggtt aataatgtt 600
 ctatgtcatg agaattataa ggacactatg taaatgttagc ttaataataa gtttgattt 660
 gcagagatgc cacatcttac atgaaacatt tggtaaaagc tctagagaaa aaatgcgggt 720
 atgttaacga cccaaaccatc ctaggagctc catatgattt caggtacggc ctggctgctt 780
 cggccaccc gtccccgttgc gcctcacagt tcctacaaga cctcaaacaa ttgggtggaaa 840
 aaactagcag cgagaacgaa gggaaagccag tgatactcct ctcctatgc ctaggaggac 900
 ttttcgtcct ccatttcctc aaccgtacca ccccttcatg gcccgcacag tacatcaaac 960
 actttgttgc actcgctgctc ccatgggttgc ggacgatctc ttagatgaag acatttgctt 1020
 ctggcaacac actcggtgtc ccttttagtta accctttgtt ggtcagacgg catcagagga 1080
 cctccgagag taaccaatgg ctacttccat ctaccaaagt gtttcacgac agaactaaac 1140
 cgcttgcgt aactccccag gttaactaca cagcttacga gatggatcgg tttttgcag 1200

acattggatt ctcacaagga gttgtgcctt acaagacaag agtgtgcct ttaacagagg 1260
 agctgatgac tccgggagtg ccagtcactt gcataatatgg gagaggagtt gatacaccgg 1320
 aggttttgcgtatggaaaa ggaggattcg ataagcaacc agagattaag tatggagatg 1380
 gagatgggac ggttaatttgcgtcgagttttgaa agtcgatagc ttgaacaccgg 1440
 tagagattga tggagtttcg catacatcta tacttaaaga cgagatcgca cttaaagaga 1500
 ttatgaagca gatttcaattt attaattatg aattagccaa tgttaatgcc gtcaatgaat 1560
 ga 1562

<210> 11
 <211> 3896
 <212> DNA
 <213> Arabidopsis thaliana

<400> 11

atgggagcga attcgaatc agtaacggct tccttcaccc tcatcgccgt ttttttcttg 60
 atttgcggtg gccgaactgc ggtggaggat gagaccgagt ttcacggcga ctactcgaag 120
 ctatcggtta taatcattcc gggatttgcg tcgacgcage tacgagcgtg gtcgatcctt 180
 gactgtccat acactccgtt ggacttcaat ccgctcgacc tcgtatggct agacaccact 240
 aagggtccgtg atcttcattt ctttcgtcc ttattctgtc ggtcgagtca cttgttgatg 300
 aattccaagc gaaatatagc aatgaagcat gtctcgctc tcttattgtat tcgttcatta 360
 gtcaacagtgc acgcttctga atctgagttt agagtcatat aaaacagctg actcggcgag 420
 tttttccat cgcttttgt tcgctaaatg tagcgaatg aatgtgtat tagtctgcgc 480
 tttttattca actagatctg caagttttc agagtgtca atagtagtta gaaaatgtta 540
 ggtcattttta cttgtgcatt gtgattctt tgggttgtc ttactgatcg acgtgatgga 600
 tggtttacag cttcttctg ctgtcaactg ctgggttaag tgtatgggtc tagatcctta 660
 taatcaaaca gaccatcccc agtgtaaatc acggcctgac agtggcttt cagccatcac 720
 agaattggat ccaggttaca taacaggttag tttcggattt ttctttctt tgagttttct 780
 tcaatttgat atcatcttgcgtatgataa tatggctaag ttcatatattt tggtcaattt 840
 tcaggtcctc ttctactgt ctggaaagag tggcttaagt ggtgtgttgc gtttggata 900
 gaagcaaatg caattgtcgc tggccatac gattggagat tgcaccaac caaattggaa 960
 gagcgtgacc ttactttca caagctcaag ttagtcctt tcaggctaat gtctttatc 1020
 ttctctttt atgtaagata agctaagagc tctggtcgtc ttcccttttgc caggttgacc 1080
 ttgaaactg cttaaaact ccgtggcgcc cttctatag tatttgccca ttcaatgggt 1140

aataaatgtct tcagatactt tctggaatgg ctgaggctag aaattgcacc aaaacattat 1200
ttgaagtggc ttgatcagca tatccatgct tatttcgctg ttggtaacgg cctactatcc 1260
ttaagttacc attttatTT ttctctaatt gggggagtt tgTTtgact tactggattg 1320
agctcgatac ctgatttGtt gttgatttag gagctcctct tcttgTTct gttgaggcaa 1380
tcaaatctac tctctctggT gtaacgTTg gcTTTcctgt ttctgaggtg acctctgact 1440
tctcttagt tttaagtagt tgatatcaac caggtcttat aactcactgg atttccTTT 1500
tgaaaagtatt acttttGTTa attgaactgc tgtacgcgat atggtatctg tagatcttga 1560
agtgcTAGTT atcaaagaac atattgtggg tagtataacct gtcagcggcc ttagctaata 1620
caaccaaacc acatgtacac tgatTTtagt ttcaGattat tatggtagac tttaagttga 1680
gaagaaactt tgactgaaat ctTTTtattt taataggcta tgatttGTTt attgaaatca 1740
tgtgacatAT tgacatgcgc ttctcatgtt tttgttggc aaggCTTCAG ggaactgctc 1800
ggTTgttGTC caattctttt gcgtcgTCat tgtggCTTat gccatttca aagaattgca 1860
agggtgataa cacattctgg acgcattttt ctgggggtgc tgcaaagaaa gataagcgcg 1920
tataccactg tgatgaagag gaatatcaat caaaatattc tggctggccg acaaataTTA 1980
ttaacattga aattcTTcc actagcggTT agactctgtA tatgcaactg taacactaac 2040
aaaagttca ccaagaatgt tcactctcat attcgttcc tttgatgtgt atccatcagt 2100
tacagaaaca gctctagtca acatgaccag catggaaatgt ggcTTccc ccTTTgtc 2160
tttcacagcc cgtgaactag cagatggac tctttcaaa gcaatagaag actatgaccc 2220
agatagcaag aggatgttac accagttaaa gaagtacgta ctttctttg tgataagaaa 2280
tattgctcat cgatcatcac ttgctggctt cttgtacgTC aaattgtttt gtttaatct 2340
ctataatcaat tggatcatatg ctttgcTTT cttaactataa gaaacaagta taatcagaaa 2400
ccttattatt gattatcagt tctctcTTa tattatggaa tgtctttc gtttacagt 2460
atgaatgcaa aaggGGGTat tttagtGtA tgattctcTC attctctagt ttgttttgc 2520
taatagcgTC aattttgttt ttctagcaaa tctttgtgaa ttatataaa catgctaact 2580
atactttca ggttgtatca tgatgaccct gttttaatc ctctgactcc ttgggagaga 2640
ccaccaataa aaaatgtatt ttgcataatat ggtgctcatc taaagacaga ggtatgatgc 2700
attctcaata tcacattatg cgTTgacttt gtTattatat tccccatttg gtttgcata 2760
tcttttGAA ttatgatttA tcttctccct tgcatcttA gctattaAGC gttaaaggta 2820
ctaaatgtat gaagctgtct gtcataGGTT ggttattact ttggccccaaAg tggcaaacct 2880
tacTCTgata attggatcat cacggatatac atttatqaaa ctqaaggTTc cctcqTqTca 2940

aggttaatttt ccgcaatggc agaagtaaaa caggaaggca aagtcttcgt tatcagtcta 3000
 gtggcatgtt atctcagttg cataagcaaa ttattaaaca actaaaattt aagtactttt 3060
 ttatcattcc ttttgagctt agtggatgtat cagtggctta aagtggaaag aggtgttgca 3120
 tgaaacatga cacttgtatc aaagataact agcaaaacaa aactaaccca tttctgaatt 3180
 tcatattatt aggagtagtc gtgcctttaa aaaatttgtt ttaagaaacc gaaaaactag 3240
 ttcatatctt gattgtgcaa tatctgcagg tctgaaactg tgggtatgg gaacgctgga 3300
 cctataactg gggatgagac ggtaagctca gaagttgggt tgaaattat cttcttgcaa 3360
 actactgaag actaagataa tacttgcttc tggaacactg cttgctatgt tctctagtagc 3420
 actgcaatat tgactctccg ctacttttat tgattatgaa attgatctct tataggtacc 3480
 ctatcattca ctctcttggc gcaagaattt gctcgaccc aaagtttaca taacaatggc 3540
 tccccaggta ctcttttta gttcctcacc ttatatacat caaactttaa gtgtactttt 3600
 ctggttatgt gttgatttac ctccaatttg ttcttctaa aaatcatata tctctgtact 3660
 cctcaagaac ttgtatataat ctaaacgaga ttctcattgg gaaaataaaaa caacagccag 3720
 aacacgatgg aagcgacgta catgtggAAC taaatgttga tcatgagcat gggtcagaca 3780
 tcatacgctaa catgacaaaaa gcaccaaggg ttaagtacat aaccttttat gaagactctg 3840
 agagcattcc gggaaagaga accgcagttt gggagcttga taaaagtggg tattaa 3896

<210> 12
 <211> 709
 <212> DNA
 <213> Lycopersicon esculentum

<400> 12

ctggggccaa aagtgaacat aacaaggaca ccacagtcag agcatgtat tcagatgtac 60
 aagtgcacatct aaatatacatg catcaacatg gtgaagatat cattccaaat atgacaaagt 120
 tacctacaat gaagtacata acctattatg aggattctga aagtttcca gggacaagaa 180
 cagcagtttggagcttgcataaaatc acaggaacat tgcagatct ccagcttgcata 240
 tgcggagct gtggcttgat atgtggcatg atattcatcc tgataaaaag tccaaatgg 300
 ttacaaaagg tgggtgtctga tcctcactat tttcttctat aaatgtttga gtttgtattt 360
 acattgttgcataaaatc acaggaacat tgcagatct ccagcttgcata 420
 tgggattacg ggaaagctcg atgtgcacatgg gctgaacatt gtgaatacag gtttagaatat 480
 tcaaattata ttttgcacaaa tattctctttt ttgtgtattt aggccaccc tccccggcata 540

20

caacgatgca gatatgtatt cggggatgtt cacctggac agagttgcag attgaagagt 600
tctacatctc acatcctgtc acactatgtg tgatatttaa gaaactttgt ttggcggaac 660
aacaagtttgcacaaacatt tgaagaagaa agcgaaatga ttcagagag 709

<210> 13
<211> 623
<212> PRT
<213> Schizosaccharomyces pombe

<400> 13

Met	Ala	Ser	Ser	Lys	Lys	Ser	Lys	Thr	His	Lys	Lys	Lys	Glu	Val	
1				5				10					15		
Lys	Ser	Pro	Ile	Asp	Leu	Pro	Asn	Ser	Lys	Lys	Pro	Thr	Arg	Ala	Leu
			20					25				30			
Ser	Glu	Gln	Pro	Ser	Ala	Ser	Glu	Thr	Gln	Ser	Val	Ser	Asn	Lys	Ser
			35				40				45				
Arg	Lys	Ser	Lys	Phe	Gly	Lys	Arg	Leu	Asn	Phe	Ile	Leu	Gly	Ala	Ile
	50				55				60						
Leu	Gly	Ile	Cys	Gly	Ala	Phe	Phe	Ala	Val	Gly	Asp	Asp	Asn	Ala	
			65			70			75			80			
Val	Phe	Asp	Pro	Ala	Thr	Leu	Asp	Lys	Phe	Gly	Asn	Met	Leu	Gly	Ser
			85					90				95			
Ser	Asp	Leu	Phe	Asp	Asp	Ile	Lys	Gly	Tyr	Leu	Ser	Tyr	Asn	Val	Phe
			100				105				110				
Lys	Asp	Ala	Pro	Phe	Thr	Thr	Asp	Lys	Pro	Ser	Gln	Ser	Pro	Ser	Gly
			115				120				125				
Asn	Glu	Val	Gln	Val	Gly	Leu	Asp	Met	Tyr	Asn	Glu	Gly	Tyr	Arg	Ser
			130			135				140					
Asp	His	Pro	Val	Ile	Met	Val	Pro	Gly	Val	Ile	Ser	Ser	Gly	Leu	Glu
			145			150				155			160		
Ser	Trp	Ser	Phe	Asn	Asn	Cys	Ser	Ile	Pro	Tyr	Phe	Arg	Lys	Arg	Leu
			165					170				175			
Trp	Gly	Ser	Trp	Ser	Met	Leu	Lys	Ala	Met	Phe	Leu	Asp	Lys	Gln	Cys
			180				185				190				
Trp	Leu	Glu	His	Leu	Met	Leu	Asp	Lys	Lys	Thr	Gly	Leu	Asp	Pro	Lys
			195			200				205					
Gly	Ile	Lys	Leu	Arg	Ala	Ala	Gln	Gly	Phe	Glu	Ala	Ala	Asp	Phe	Phe
			210			215				220					
Ile	Thr	Gly	Tyr	Trp	Ile	Trp	Ser	Lys	Val	Ile	Glu	Asn	Leu	Ala	Ala
			225			230				235			240		
Ile	Gly	Tyr	Glu	Pro	Asn	Asn	Met	Leu	Ser	Ala	Ser	Tyr	Asp	Trp	Arg
			245				250				255				
Leu	Ser	Tyr	Ala	Asn	Leu	Glu	Glu	Arg	Asp	Lys	Tyr	Phe	Ser	Lys	Leu
			260			265				270					
Lys	Met	Phe	Ile	Glu	Tyr	Ser	Asn	Ile	Val	His	Lys	Lys	Val	Val	

275	280	285
Leu Ile Ser His Ser Met Gly Ser Gln Val Thr Tyr Tyr Phe Phe Lys		
290	295	300
Trp Val Glu Ala Glu Gly Tyr Gly Asn Gly Gly Pro Thr Trp Val Asn		
305	310	315
Asp His Ile Glu Ala Phe Ile Asn Ile Ser Gly Ser Leu Ile Gly Ala		
325	330	335
Pro Lys Thr Val Ala Ala Leu Leu Ser Gly Glu Met Lys Asp Thr Gly		
340	345	350
Ile Val Ile Thr Leu Asn Ile Leu Glu Lys Phe Phe Ser Arg Ser Glu		
355	360	365
Arg Ala Met Met Val Arg Thr Met Gly Gly Val Ser Ser Met Leu Pro		
370	375	380
Lys Gly Gly Asp Val Ala Pro Asp Asp Leu Asn Gln Thr Asn Phe Ser		
385	390	395
Asn Gly Ala Ile Ile Arg Tyr Arg Glu Asp Ile Asp Lys Asp His Asp		
405	410	415
Glu Phe Asp Ile Asp Asp Ala Leu Gln Phe Leu Lys Asn Val Thr Asp		
420	425	430
Asp Asp Phe Lys Val Met Leu Ala Lys Asn Tyr Ser His Gly Leu Ala		
435	440	445
Trp Thr Glu Lys Glu Val Leu Lys Asn Asn Glu Met Pro Ser Lys Trp		
450	455	460
Ile Asn Pro Leu Glu Thr Ser Leu Pro Tyr Ala Pro Asp Met Lys Ile		
465	470	480
Tyr Cys Val His Gly Val Gly Lys Pro Thr Glu Arg Gly Tyr Tyr Tyr		
485	490	495
Thr Asn Asn Pro Glu Gly Gln Pro Val Ile Asp Ser Ser Val Asn Asp		
500	505	510
Gly Thr Lys Val Glu Asn Gly Ile Val Met Asp Asp Gly Asp Gly Thr		
515	520	525
Leu Pro Ile Leu Ala Leu Gly Leu Val Cys Asn Lys Val Trp Gln Thr		
530	535	540
Lys Arg Phe Asn Pro Ala Asn Thr Ser Ile Thr Asn Tyr Glu Ile Lys		
545	550	560
His Glu Pro Ala Ala Phe Asp Leu Arg Gly Gly Pro Arg Ser Ala Glu		
565	570	575
His Val Asp Ile Leu Gly His Ser Glu Leu Asn Glu Ile Ile Leu Lys		
580	585	590

Val Ser Ser Gly His Gly Asp Ser Val Pro Asn Arg Tyr Ile Ser Asp
595 600 605

Ile Gln Glu Ile Ile Asn Glu Ile Asn Leu Asp Lys Pro Arg Asn
610 615 620

```
<210> 14
<211> 432
<212> PRT
<213> Arabidopsis thaliana
```

<400> 14

```

Met Lys Lys Ile Ser Ser His Tyr Ser Val Val Ile Ala Ile Leu Val
   1          5          10          15

```

Val Val Thr Met Thr Ser Met Cys Gln Ala Val Gly Ser Asn Val Tyr
20 25 30

Pro Leu Ile Leu Val Pro Gly Asn Gly Gly Asn Gln Leu Glu Val Arg
35 40 45

Leu Asp Arg Glu Tyr Lys Pro Ser Ser Val Trp Cys Ser Ser Trp Leu
50 55 60

Tyr Pro Ile His Lys Lys Ser Gly Gly Trp Phe Arg Leu Trp Phe Asp
65 70 75 80

Ala Ala Val Leu Leu Ser Pro Phe Thr Arg Cys Phe Ser Asp Arg Met
85 90 95

Val Gln Thr Arg Val Pro His Phe Gly Ser Thr Lys Ser Leu Leu Tyr
115 120 125

Leu Asp Pro Arg Leu Arg Asp Ala Thr Ser Tyr Met Glu His Leu Val
130 135 140

Lys Ala Leu Glu Lys Cys Gly Tyr Val Asn Asp Gln Thr Ile Leu
145 150 155 160

Gly Ala Pro Tyr Asp Phe Arg Tyr Gly Leu Ala Ala Ser Gly His Pro
165 170 175

Lys Thr Ser Ser Glu Asn Glu Gly Lys Pro Val Ile Leu Leu Ser His
195 200 205

Ser Leu Gly Gly Leu Phe Val Leu His Phe Leu Asn Arg Thr Thr Pro
210 215 220

Ser Trp Arg Arg Lys Tyr Ile Lys His Phe Val Ala Leu Ala Ala Pro
225 230 235 240

Trp Gly Gly Thr Ile Ser Gln Met Lys Thr Phe Ala Ser Gly Asn Thr
 245 250 255
 Leu Gly Val Pro Leu Val Asn Pro Leu Leu Val Arg Arg His Gln Arg
 260 265 270
 Thr Ser Glu Ser Asn Gln Trp Leu Leu Pro Ser Thr Lys Val Phe His
 275 280 285
 Asp Arg Thr Lys Pro Leu Val Val Thr Pro Gln Val Asn Tyr Thr Ala
 290 295 300
 Tyr Glu Met Asp Arg Phe Phe Ala Asp Ile Gly Phe Ser Gln Gly Val
 305 310 315 320
 Val Pro Tyr Lys Thr Arg Val Leu Pro Leu Thr Glu Glu Leu Met Thr
 325 330 335
 Pro Gly Val Pro Val Thr Cys Ile Tyr Gly Arg Gly Val Asp Thr Pro
 340 345 350
 Glu Val Leu Met Tyr Gly Lys Gly Gly Phe Asp Lys Gln Pro Glu Ile
 355 360 365
 Lys Tyr Gly Asp Gly Asp Gly Thr Val Asn Leu Ala Ser Leu Ala Ala
 370 375 380
 Leu Lys Val Asp Ser Leu Asn Thr Val Glu Ile Asp Gly Val Ser His
 385 390 395 400
 Thr Ser Ile Leu Lys Asp Glu Ile Ala Leu Lys Glu Ile Met Lys Gln
 405 410 415
 Ile Ser Ile Ile Asn Tyr Glu Leu Ala Asn Val Asn Ala Val Asn Glu
 420 425 430

<210> 15
 <211> 552
 <212> PRT
 <213> Arabidopsis thaliana

<400> 15

Met Gly Ala Asn Ser Lys Ser Val Thr Ala Ser Phe Thr Val Ile Ala
 1 5 10 15
 Val Phe Phe Leu Ile Cys Gly Gly Arg Thr Ala Val Glu Asp Glu Thr
 20 25 30
 Glu Phe His Gly Asp Tyr Ser Lys Leu Ser Gly Ile Ile Ile Pro Gly
 35 40 45
 Phe Ala Ser Thr Gln Leu Arg Ala Trp Ser Ile Leu Asp Cys Pro Tyr
 50 55 60
 Thr Pro Leu Asp Phe Asn Pro Leu Asp Leu Val Trp Leu Asp Thr Thr
 65 70 75 80

Lys Leu Leu Ser Ala Val Asn Cys Trp Phe Lys Cys Met Val Leu Asp
 85 90 95
 Pro Tyr Asn Gln Thr Asp His Pro Glu Cys Lys Ser Arg Pro Asp Ser
 100 105 110
 Gly Leu Ser Ala Ile Thr Glu Leu Asp Pro Gly Tyr Ile Thr Gly Pro
 115 120 125
 Leu Ser Thr Val Trp Lys Glu Trp Leu Lys Trp Cys Val Glu Phe Gly
 130 135 140
 Ile Glu Ala Asn Ala Ile Val Ala Val Pro Tyr Asp Trp Arg Leu Ser
 145 150 155 160
 Pro Thr Lys Leu Glu Glu Arg Asp Leu Tyr Phe His Lys Leu Lys Leu
 165 170 175
 Thr Phe Glu Thr Ala Leu Lys Leu Arg Gly Gly Pro Ser Ile Val Phe
 180 185 190
 Ala His Ser Met Gly Asn Asn Val Phe Arg Tyr Phe Leu Glu Trp Leu
 195 200 205
 Arg Leu Glu Ile Ala Pro Lys His Tyr Leu Lys Trp Leu Asp Gln His
 210 215 220
 Ile His Ala Tyr Phe Ala Val Gly Ala Pro Leu Leu Gly Ser Val Glu
 225 230 235 240
 Ala Ile Lys Ser Thr Leu Ser Gly Val Thr Phe Gly Leu Pro Val Ser
 245 250 255
 Glu Gly Thr Ala Arg Leu Leu Ser Asn Ser Phe Ala Ser Ser Leu Trp
 260 265 270
 Leu Met Pro Phe Ser Lys Asn Cys Lys Gly Asp Asn Thr Phe Trp Thr
 275 280 285
 His Phe Ser Gly Gly Ala Ala Lys Lys Asp Lys Arg Val Tyr His Cys
 290 295 300
 Asp Glu Glu Glu Tyr Gln Ser Lys Tyr Ser Gly Trp Pro Thr Asn Ile
 305 310 315 320
 Ile Asn Ile Glu Ile Pro Ser Thr Ser Ala Arg Glu Leu Ala Asp Gly
 325 330 335
 Thr Leu Phe Lys Ala Ile Glu Asp Tyr Asp Pro Asp Ser Lys Arg Met
 340 345 350
 Leu His Gln Leu Lys Lys Tyr Val Pro Phe Phe Val Ile Arg Asn Ile
 355 360 365
 Ala His Arg Ser Ser Leu Ala Gly Phe Leu Leu Tyr His Asp Asp Pro
 370 375 380
 Val Phe Asn Pro Leu Thr Pro Trp Glu Arg Pro Pro Ile Lys Asn Val
 385 390 395 400

Phe Cys Ile Tyr Gly Ala His Leu Lys Thr Glu Val Gly Tyr Tyr Phe
 405 410 415
 Ala Pro Ser Gly Lys Pro Tyr Pro Asp Asn Trp Ile Ile Thr Asp Ile
 420 425 430
 Ile Tyr Glu Thr Glu Gly Ser Leu Val Ser Arg Ser Gly Thr Val Val
 435 440 445
 Asp Gly Asn Ala Gly Pro Ile Thr Gly Asp Glu Thr Val Pro Tyr His
 450 455 460
 Ser Leu Ser Trp Cys Lys Asn Trp Leu Gly Pro Lys Val Asn Ile Thr
 465 470 475 480
 Met Ala Pro Gln Ile Leu Ile Gly Lys Ile Lys Gln Gln Pro Glu His
 485 490 495
 Asp Gly Ser Asp Val His Val Glu Leu Asn Val Asp His Glu His Gly
 500 505 510
 Ser Asp Ile Ile Ala Asn Met Thr Lys Ala Pro Arg Val Lys Tyr Ile
 515 520 525
 Thr Phe Tyr Glu Asp Ser Glu Ser Ile Pro Gly Lys Arg Thr Ala Val
 530 535 540
 Trp Glu Leu Asp Lys Ser Gly Tyr
 545 550

<210> 16
 <211> 661
 <212> PRT
 <213> *Saccharomyces cerevisiae*

<400> 16

Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
 1 5 10 15
 Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
 20 25 30
 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
 35 40 45
 Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
 50 55 60
 Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
 65 70 75 80
 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
 85 90 95
 Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
 100 105 110

Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
 115 120 125
 Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
 130 135 140
 Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
 145 150 155 160
 Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
 165 170 175
 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
 180 185 190
 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
 195 200 205
 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
 210 215 220
 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
 225 230 235 240
 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
 245 250 255
 Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
 260 265 270
 Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
 275 280 285
 Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
 290 295 300
 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
 305 310 315 320
 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
 325 330 335
 Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val
 340 345 350
 Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
 355 360 365
 Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
 370 375 380
 Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser
 385 390 395 400
 Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
 405 410 415
 Met Leu Pro Lys Gly Glu Val Ile Trp Gly Asp Met Lys Ser Ser

420

425

430

Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
 435 440 445

Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
 450 455 460

Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
 465 470 475 480

Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
 485 490 495

Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
 500 505 510

Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
 515 520 525

Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
 530 535 540

Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
 545 550 555 560

Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
 565 570 575

Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly
 580 585 590

Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
 595 600 605

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
 610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
 625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
 645 650 655

Met Pro Phe Pro Met
 660

<210> 17

<211> 387

<212> PRT

<213> Arabidopsis thaliana

<400> 17

Val Gly Ser Asn Val Tyr Pro Leu Ile Leu Val Pro Gly Asn Gly Gly
 1 5 10 15

Asn Gln Leu Glu Val Arg Leu Asp Arg Glu Tyr Lys Pro Ser Ser Val

20	25	30	
Trp Cys Ser Ser Trp Leu Tyr Pro Ile His Lys Lys Ser Gly Gly Trp			
35	40	45	
Phe Arg Leu Trp Phe Asp Ala Ala Val Leu Leu Ser Pro Phe Thr Arg			
50	55	60	
Cys Phe Ser Asp Arg Met Met Leu Tyr Tyr Asp Pro Asp Leu Asp Asp			
65	70	75	80
Tyr Gln Asn Ala Pro Gly Val Gln Thr Arg Val Pro His Phe Gly Ser			
85	90	95	
Thr Lys Ser Leu Leu Tyr Leu Asp Pro Arg Leu Arg Asp Ala Thr Ser			
100	105	110	
Tyr Met Glu His Leu Val Lys Ala Leu Glu Lys Lys Cys Gly Tyr Val			
115	120	125	
Asn Asp Gln Thr Ile Leu Gly Ala Pro Tyr Asp Phe Arg Tyr Gly Leu			
130	135	140	
Ala Ala Ser Gly His Pro Ser Arg Val Ala Ser Gln Phe Leu Gln Asp			
145	150	155	160
Leu Lys Gln Leu Val Glu Lys Thr Ser Ser Glu Asn Glu Gly Lys Pro			
165	170	175	
Val Ile Leu Leu Ser His Ser Leu Gly Gly Leu Phe Val Leu His Phe			
180	185	190	
Leu Asn Arg Thr Thr Pro Ser Trp Arg Arg Lys Tyr Ile Lys His Phe			
195	200	205	
Val Ala Leu Ala Ala Pro Trp Gly Gly Thr Ile Ser Gln Met Lys Thr			
210	215	220	
Phe Ala Ser Gly Asn Thr Leu Gly Val Pro Leu Val Asn Pro Leu Leu			
225	230	235	240
Val Arg Arg His Gln Arg Thr Ser Glu Ser Asn Gln Trp Leu Leu Pro			
245	250	255	
Ser Thr Lys Val Phe His Asp Arg Thr Lys Pro Leu Val Val Thr Pro			
260	265	270	
Gln Val Asn Tyr Thr Ala Tyr Glu Met Asp Arg Phe Phe Ala Asp Ile			
275	280	285	
Gly Phe Ser Gln Gly Val Val Pro Tyr Lys Thr Arg Val Leu Pro Leu			
290	295	300	
Thr Glu Glu Leu Met Thr Pro Gly Val Pro Val Thr Cys Ile Tyr Gly			
305	310	315	320
Arg Gly Val Asp Thr Pro Glu Val Leu Met Tyr Gly Lys Gly Gly Phe			
325	330	335	

Asp Lys Gln Pro Glu Ile Lys Tyr Gly Asp Gly Asp Gly Thr Val Asn
 340 345 350

Leu Ala Ser Leu Ala Ala Leu Lys Val Asp Ser Leu Asn Thr Val Glu
 355 360 365

Ile Asp Gly Val Ser His Thr Ser Ile Leu Lys Asp Glu Ile Ala Leu
 370 375 380

Lys Glu Ile
 385

<210> 18
 <211> 389
 <212> PRT
 <213> Arabidopsis thaliana

<400> 18

Leu Lys Lys Glu Gly Leu Lys Ala Lys His Pro Val Val Phe Ile Pro
 1 5 10 15

Gly Ile Val Thr Gly Gly Leu Glu Leu Trp Glu Gly Lys Gln Cys Ala
 20 25 30

Asp Gly Leu Phe Arg Lys Arg Leu Trp Gly Gly Thr Phe Leu Cys Trp
 35 40 45

Val Glu His Met Ser Leu Asp Asn Glu Thr Gly Leu Asp Pro Ala Gly
 50 55 60

Ile Arg Val Arg Ala Val Ser Gly Leu Val Ala Ala Asp Tyr Phe Ala
 65 70 75 80

Pro Gly Tyr Phe Val Trp Ala Val Leu Ile Ala Asn Leu Ala His Ile
 85 90 95

Gly Tyr Glu Glu Lys Asn Met Tyr Met Ala Ala Tyr Asp Trp Arg Leu
 100 105 110

Ser Phe Gln Asn Thr Glu Arg Asp Gln Thr Leu Ser Arg Met Lys Ser
 115 120 125

Asn Ile Glu Leu Met Val Ser Thr Asn Gly Gly Lys Lys Ala Val Ile
 130 135 140

Val Pro His Ser Met Gly Val Leu Tyr Phe Leu His Phe Met Lys Trp
 145 150 155 160

Val Glu Ala Pro Ala Pro Leu Gly Gly Gly Gly Pro Asp Trp Cys
 165 170 175

Ala Lys Tyr Ile Lys Ala Val Met Asn Ile Gly Gly Pro Phe Leu Gly
 180 185 190

Val Pro Lys Ala Val Ala Gly Leu Phe Ser Ala Glu Ala Lys Asp Met
 195 200 205

20	25	30	
aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly	35	40	144
att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat ttc gac agg Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg	50	55	192
aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu	65	70	240
att ttc att ctt ggt gca ttc tta ggt gta ctt ttg ccg ttt agc ttt Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe	85	90	288
ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe	100	105	336
gta aat ttt gat tca ctt aaa gtg tat ttg gat gat ttg aaa gat gtt Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val	115	120	384
ctc cca caa ggt ata agt tcg ttt att gat gat att cag gct ggt aac Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn	130	135	432
tac tcc aca tct tct tta gat gat ctc agt gaa aat ttt gcc gtt ggt Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly	145	150	480
aaa caa ctc tta cgt gat tat aat atc gag gcc aaa cat cct gtt gta Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val	165	170	528
atg gtt cct ggt gtc att tct acg gga att gaa agc tgg gga gtt att Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile	180	185	576
gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp	195	200	624
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp	210	215	672
ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn	225	230	720
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile	245	250	768
		255	

gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270	816
ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285	864
gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300	912
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320	960
att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp 325 330 335	1008
gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val 340 345 350	1056
aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly 355 360 365	1104
gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr 370 375 380	1152
att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser 385 390 395 400	1200
aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 405 410 415	1248
atg cta cca aag gga gaa gag gtc att tgg ggg gat atg aag tca tct Met Leu Pro Lys Gly Glu Val Ile Trp Gly Asp Met Lys Ser Ser 420 425 430	1296
tcg gag gat gca ttg aat aac aac act gac aca tac ggc aat ttc att Ser Glu Asp Ala Leu Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 435 440 445	1344
cga ttt gaa agg aat acg agc gat gct ttc aac aaa aat ttg aca atg Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450 455 460	1392
aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 465 470 475 480	1440
aga aga gta cat gag cag tac tcg ttc ggc tat tcc aag aat gaa gaa Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 485 490 495	1488

275	280	285	
gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290	295	300	912
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305	310	315	960
att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp 325	330	335	1008
gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val 340	345	350	1056
aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly 355	360	365	1104
gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr 370	375	380	1152
att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser 385	390	395	1200
aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 405	410	415	1248
atg cta cca aag gga gaa gag gtc att tgg ggg gat atg aag tca tct Met Leu Pro Lys Gly Glu Val Ile Trp Gly Asp Met Lys Ser Ser 420	425	430	1296
tca gag gat gca ttg aat aac aac act gac aca tac ggc aat ttc att Ser Glu Asp Ala Leu Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 435	440	445	1344
cga ttt gaa agg aat acg agc gat gct ttc aac aaa aat ttg aca atg Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450	455	460	1392
aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 465	470	475	1440
aga aga gta cat gag cag tac tcg ttc ggc tat tcc aag aat gaa gaa Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 485	490	495	1488
gag tta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 500	505	510	1536
gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac			1584

Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr			
515	520	525	
ggg gtg aac aac cca act gaa agg gca tat gta tat aag gaa gag gat			1632
Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp			
530	535	540	
gac tcc tct gct ctg aat ttg acc atc gac tac gaa agc aag caa cct			1680
Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro			
545	550	555	560
gta ttc ctc acc gag ggg gac gga acc gtt ccg ctc gtg gcg cat tca			1728
Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser			
565	570	575	
atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga			1776
Met Cys His Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly			
580	585	590	
att aac gtt act att gtg gaa atg aaa cac cag cca gat cga ttt gat			1824
Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp			
595	600	605	
ata cgt ggt gga gca aaa agc gcc gaa cac gta gac atc ctc ggc agc			1872
Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser			
610	615	620	
gcg gag ttg aac gat tac atc ttg aaa att gca agc ggt aat ggc gat			1920
Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp			
625	630	635	640
ctc gtc gag cca cgc caa ttg tct aat ttg agc cag tgg gtt tct cag			1968
Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln			
645	650	655	
atg ccc ttc cca atg taa			1986
Met Pro Phe Pro Met			
660			

<210> 20
<211> 661
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 20

Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser			
1	5	10	15
Asp Glu Asn Asn Lys Gly Ser Val His Asn Lys Arg Glu Ser Arg			
20	25	30	
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly			
35	40	45	
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg			
50	55	60	

Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
 65 70 75 80

Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
 85 90 95

Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
 100 105 110

Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
 115 120 125

Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
 130 135 140

Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
 145 150 155 160

Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
 165 170 175

Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
 180 185 190

Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
 195 200 205

Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
 210 215 220

Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
 225 230 235 240

Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
 245 250 255

Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
 260 265 270

Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
 275 280 285

Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
 290 295 300

Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
 305 310 315 320

Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
 325 330 335

Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val
 340 345 350

Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
 355 360 365

Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
 370 375 380

Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser
 385 390 395 400

Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
 405 410 415

Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser
 420 425 430

Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
 435 440 445

Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
 450 455 460

Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
 465 470 475 480

Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
 485 490 495

Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
 500 505 510

Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
 515 520 525

Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
 530 535 540

Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
 545 550 555 560

Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
 565 570 575

Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly
 580 585 590

Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
 595 600 605

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
 610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
 625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
 645 650 655

Met Pro Phe Pro Met
 660

atg gtt cct ggt gtc att tct acg gga att gaa agc tgg gga gtt att Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile	576																																																																																												
180	185		190	gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp	624	195	200		205	gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp	672	210	215		220	ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn	720	225	230		235		240	ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile	768	245	250		255	gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile	816	260	265		270	ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu	864	275	280		285	gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys	912	290	295		300	gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu	960	305	310		315		320	att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008	325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415
	190																																																																																												
gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp	624																																																																																												
195	200		205	gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp	672	210	215		220	ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn	720	225	230		235		240	ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile	768	245	250		255	gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile	816	260	265		270	ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu	864	275	280		285	gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys	912	290	295		300	gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu	960	305	310		315		320	att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008	325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415						
	205																																																																																												
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp	672																																																																																												
210	215		220	ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn	720	225	230		235		240	ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile	768	245	250		255	gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile	816	260	265		270	ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu	864	275	280		285	gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys	912	290	295		300	gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu	960	305	310		315		320	att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008	325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415												
	220																																																																																												
ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn	720																																																																																												
225	230		235		240	ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile	768	245	250		255	gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile	816	260	265		270	ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu	864	275	280		285	gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys	912	290	295		300	gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu	960	305	310		315		320	att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008	325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																		
	235		240	ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile	768	245	250		255	gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile	816	260	265		270	ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu	864	275	280		285	gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys	912	290	295		300	gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu	960	305	310		315		320	att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008	325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																				
	240																																																																																												
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile	768																																																																																												
245	250		255	gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile	816	260	265		270	ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu	864	275	280		285	gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys	912	290	295		300	gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu	960	305	310		315		320	att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008	325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																										
	255																																																																																												
gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile	816																																																																																												
260	265		270	ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu	864	275	280		285	gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys	912	290	295		300	gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu	960	305	310		315		320	att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008	325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																																
	270																																																																																												
ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu	864																																																																																												
275	280		285	gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys	912	290	295		300	gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu	960	305	310		315		320	att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008	325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																																						
	285																																																																																												
gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys	912																																																																																												
290	295		300	gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu	960	305	310		315		320	att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008	325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																																												
	300																																																																																												
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu	960																																																																																												
305	310		315		320	att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008	325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																																																		
	315		320	att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008	325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																																																				
	320																																																																																												
att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	1008																																																																																												
325	330		335	gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056	340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																																																										
	335																																																																																												
gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val	1056																																																																																												
340	345		350	aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104	355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																																																																
	350																																																																																												
aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	1104																																																																																												
355	360		365	gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152	370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																																																																						
	365																																																																																												
gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	1152																																																																																												
370	375		380	att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200	385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																																																																												
	380																																																																																												
att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser	1200																																																																																												
385	390		395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																																																																																		
	395		400	aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248	405	410		415																																																																																				
	400																																																																																												
aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser	1248																																																																																												
405	410		415																																																																																										
	415																																																																																												

Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp			
195	200	205	
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg			672
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp			
210	215	220	
ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac			720
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn			
225	230	235	240
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc			768
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile			
245	250	255	
gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att			816
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile			
260	265	270	
ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt			864
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu			
275	280	285	
gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag			912
Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys			
290	295	300	
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta			960
Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu			
305	310	315	320
att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg			1008
Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp			
325	330	335	
gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt			1056
Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val			
340	345	350	
aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc			1104
Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly			
355	360	365	
gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc			1152
Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr			
370	375	380	
att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca			1200
Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser			
385	390	395	400
aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca			1248
Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser			
405	410	415	
atg cta cca aag gga gaa gag gtc att tgg ggg gat atg aag tca tct			1296
Met Leu Pro Lys Gly Glu Val Ile Trp Gly Asp Met Lys Ser Ser			
420	425	430	

tca gag gat gca ttg aat aac aac act gac aca tac ggc aat ttc att Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 435 440 445	1344
cga ttt gaa agg aat acg agc gat gct ttc aac aaa aat ttg aca atg Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450 455 460	1392
aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 465 470 475 480	1440
aga aga gta cat gag cag tac tcg ttc ggc tat tcc aag aat gaa gaa Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 485 490 495	1488
gag tta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 500 505 510	1536
gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 515 520 525	1584
ggg gtg aac aac cca act gaa agg gca tat gta tat aag gaa gag gat Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp 530 535 540	1632
gac tcc tct gct ctg aat ttg acc atc gac tac gaa agc aag caa cct Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro 545 550 555 560	1680
gta ttc ctc acc gag ggg gac gga acc gtt ccg ctc gtg gcg cat tca Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser 565 570 575	1728
atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly 580 585 590	1776
att aac gtt act att gtg gaa atg aaa cac cag cca gat cga ttt gat Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 595 600 605	1824
ata cgt ggt gga gca aaa aqc gcc gaa cac gta gac atc ctc ggc agc Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 610 615 620	1872
gcg gag ttg aac gat tac atc ttg aaa att gca agc ggt aat ggc gat Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 625 630 635 640	1920
ctc gtc gag cca cgc caa ttg tct aat ttg agc cag tgg gtt tct cag Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln 645 650 655	1968
atg ccc ttc cca atg taa Met Pro Phe Pro Met 660	1986

<210> 22
<211> 661
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 22

Met	Gly	Thr	Leu	Phe	Arg	Arg	Asn	Val	Gln	Asn	Gln	Lys	Ser	Asp	Ser	
1																15
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg																
								20		25						30
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly																
								35		40						45
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg																
								50		55						60
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu																
								65		70		75				80
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe																
								85		90						95
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe																
								100		105						110
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val																
								115		120		125				
Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn																
								130		135		140				
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly																
								145		150		155				160
Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val																
								165		170		175				
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile																
								180		185		190				
Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp																
								195		200		205				
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp																
								210		215		220				
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn																
								225		230		235				240
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile																
								245		250		255				
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile																
								260		265		270				

Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
 275 280 285
 Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
 290 295 300
 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
 305 310 315 320
 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
 325 330 335
 Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val
 340 345 350
 Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
 355 360 365
 Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
 370 375 380
 Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser
 385 390 395 400
 Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
 405 410 415
 Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser
 420 425 430
 Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
 435 440 445
 Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
 450 455 460
 Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
 465 470 475 480
 Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
 485 490 495
 Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
 500 505 510
 Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
 515 520 525
 Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
 530 535 540
 Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
 545 550 555 560
 Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
 565 570 575
 Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly

580	585	590
Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp		
595	600	605
Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser		
610	615	620
Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp		
625	630	635
Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln		
645	650	655
Met Pro Phe Pro Met		
660		

<210> 23
<211> 2312
<212> DNA
<213> Schizosaccharomyces pombe

<400> 23

atggcgtctt ccaagaagag caaaaactcat aagaaaaaga aagaagtcaa attcctatc 60
gacttaccaa attcaaagaa accaactcgc gctttgagtg agcaaccttc agcgccgaa 120
acacaatctg tttcaaataa atcaagaaaa tctaaatttg gaaaaagatt gaattttata 180
ttggccgcta ttttggaaat atgcgggtgt tttttttcg ctgttggaga cgacaatgct 240
gttttcgacc ctgctacggtt agataaattt ggaaatatgc taggctttc agacttgttt 300
gatgacatta aaggatattt atcttataat gtgttaagg atgcacctt tactacggac 360
aagccttcgc agtctcctag cggaaatgaa gttcaagttg gtcttgatat gtacaatgag 420
ggatatcgaa gtgaccatcc tgttattatg gttcctggtg ttatcagctc aggattagaa 480
agttggcgtt ttaataattt ctcgattcct tacttttagga aacgtctttg gggtagctgg 540
tctatgctga aggcaatgtt ccttgacaag caatgctggc ttgaacattt aatgcttgat 600
aaaaaaaaaccg gcttggatcc gaagggaaat aagctgcgag cagctcagg gtttgaagca 660
gctgattttt ttatcacggg ctattggatt tggagtaaag taattgaaaa ctttgctgca 720
atggttatg agcctaataa catgttaagt gcttcttacg attggcgggtt atcatatgca 780
aatttagagg aacgtgataa atattttca aagttaaaaa tggcattga gtacagcaac 840
atgtacata agaaaaaggt agtggatt tctcactcca tgggttcaca ggttacgtac 900
tatTTTTTta agtgggttga agctgagggc tacggaaatg gtggaccgac ttgggttaat 960
gatcatattt aagcattttt aaatgtgagt ctcgatgggtt gtttgactac gtttctaact 1020

tttgaataga tatcgggatc tttgatttga gcacccaaaa cagtggcagc gcttttatcg 1080
 ggtgaaatga aagatacagg tattgttaatt acattaaaca tgttaatatt taattttgc 1140
 taaccgtttt aagctcaatt gaatcagttt tcggctatg ggtaagcaat aaattgttga 1200
 gatttgttac taatttactg tttagtttgaaaatttt ttcccgttct gaggtatatt 1260
 caaaaataca aatgtgctct acttttcta acttttaata gagagccatg atggttcgca 1320
 ctatgggagg agttagttct atgcttccta aaggaggcga tggatggatgg ggaaatgcca 1380
 gttggtaag aaatatgtgc tgtaatattttt ttattaatat ttaggctcca gatgatctta 1440
 atcaaacaaa ttttccaat ggtcaatta ttcgatataag agaagacatt gataaggacc 1500
 acgatgaatt tgacatagat gatgcattac aattttaaa aatgttaca gatgacgatt 1560
 ttaaagtcat gctaggaaa aattattccc acggcttgc ttggactgaa aaagaagtgt 1620
 taaaaaataa cgaaatgccg tctaaatgga taaatccgct agaagtaaga acattaaagt 1680
 tactaaatta tactaaccct aatagactag tcttccttat gtcctgata tgaaaattta 1740
 ttgcgttcac ggggtcgaa aaccaactga gagaggttat tattatacta ataatcctga 1800
 gggcaacct gtcattgatt cctcggttaa tggatggaca aaagttgaaa atgtgagaga 1860
 atttatgtt caaacattct attaactgtt ttattaggtt attgttatgg atgatggta 1920
 tggaaacttta ccaatattag cccttggttt ggtgtcaat aaagttggc aaacaaaaag 1980
 gttaatcct gctaatacaa gtatcacaaa ttatgaaatc aagcatgaac ctgctgcgtt 2040
 tgatctgaga ggaggacctc gtcggcaga acacgtcgat atactggac attcagagct 2100
 aaatgtatgt tcattttacc ttacaaattt ctattactaa ctcttgaat aaggaaatta 2160
 ttttaaaagt ttcatcaggc catggtgact cggtacaaa ccgttatata tcagatatcc 2220
 agtacggaca taagtttgt agattgcaat taactaacta accgaacagg gaaataataa 2280
 atgagataaa tctcgataaa cctagaaatt aa 2312

<210> 24
 <211> 3685
 <212> DNA
 <213> *Arabidopsis thaliana*

<400> 24

atgccccctta ttcatcgaa aaagccgacg gagaaaccat cgacgcccgc atctgaagag 60
 gtgggtgcacg atgaggattc gcaaaagaaa ccacacgaat cttccaaatc ccaccataag 120
 aaatcgaacg gaggagggaa gtggcgtgc atcgattctt gttgttggtt cattgggtgt 180
 gtgtgtgtaa cctggtggtt tcttctcttc ctttacaacg caatgcctgc gagctccct 240

cagttatgtaa cggagcgaat cacgggtcct ttgcctgacc cgcccggtgt taagctcaaa 300
aaagaaggtc ttaaggcgaa acatcctgtt gtcttcattc ctgggattgt caccgggtgg 360
ctcgagctt gggaggcaa acaatgcgcgt gatggtttat tttagaaaacg tttgtggggt 420
ggaacttttg gtgaagtcta caaaagggtga gctcaacaat tctcactctt cctttatatt 480
gggatttgga ttggatctga tgagatcacg cacttggc ttcttcaaca tcactcaaac 540
ttaattcca tggatgtctg tcttactctt tactttttt tttttttagat gtgaaacgct 600
attttcttaa gagactattt ctgtatgtgt aaggttaagcg ttccaaggac gtaattggct 660
tggactattt ctggttgatt gtaacttta ggatataaaa tagctgcctt ggaatttcaa 720
gtcatcttat tgccaaatct gttgcttagac atgccctaga gtccgttcat aacaagttac 780
ttcccttact gtcgttgcgt gtagatttag ctttggtag cgtataatga agtagtggtt 840
tatgtttgt tggaaataga gaagttctaa ctacatctgt ggaaagtgtg ttcaggctgt 900
gatagaggac tggatgttta ttattcaact atgtatatgt gtaattaaag ctatgttctt 960
tttgcattt cagctcaatg tgctttctc aattttttc tcaatttcaa agtttcacat 1020
cgagtttatt cacatgtctt gaatttgcgc catcctcggtt ctgttatcca gctttgaact 1080
cctcccgacc ctgctatgga tatattaaaa aaaaagtgtt ttgtgggttg catctttgtt 1140
acgatctgca tcttcttctt tcggctcagt gttcatgttt ttgctatggt agagatgggc 1200
aatgttattt ttagatggtaa cagtggtata gttgatgtta tcttaactaa tcaattatct 1260
ctttgattca ggcctctatg ttgggtggaa cacatgtcac ttgacaatga aactgggttg 1320
gatccagctg gtatttagtgc tcggactcg tggctgctga ctactttgct 1380
cctggctact ttgtctggc agtgcgttgcatt gctaaccttg cacatattgg atatgaagag 1440
aaaaatatgt acatggctgc atatgactgg cggcttcgt ttcagaacac agaggttctt 1500
ttctcatcgt tctttctatt attctgttcc atgttacgtt tctttcttca ttacttaagg 1560
cttaaatatgt ttcatgttg aattaatagg tacgtatca gactcttagc cgtatgaaaa 1620
gtaatataga gttgatggtt tctacccaacg gtggaaaaaa agcagttata gttccgcatt 1680
ccatgggggtt cttgtatccc ctacattttt tgaagtgggt tgaggcacca gctccctctgg 1740
gtggcgccccat tgggtgtgcaa agtataattaa ggcgggtatg aacattggtg 1800
gaccatttct tgggtgttcca aaagctgttg cagggctttt ctctgctgaa gcaaaggatg 1860
ttgcagttgc caggtattga atatctgctt atactttga tgatcagaac cttggctctg 1920
gaactcaaag ttattctact aaatatcaat tctaataaca ttgctatatt atcgctgcaa 1980
ctgacattgg ttgattttt ttgtgtctta tgtaactgaa actctcttga gattagacaa 2040

atgatgaatt gataattctt acgcattgct ctgtgatgac cagttctta gcttcgacga 2100
taacatttgta catactgtct tttggagggc attgaatttt gctatggaaa gcgctggagc 2160
ttccatgctt gcattctta ccaatttagcg ttattctgct tctttcaatt ttcttgtata 2220
tgcacatctatg gtctttatt tcttcttaat taaagactcg ttggattagt tgctctatta 2280
gtcacattggt tccttaatat agaactttac tttctcgaa aattgcagag cgattgcccc 2340
aggattctta gacaccgata tatttagact tcagaccttg cagcatgtaa tgagaatgac 2400
acgcacatgg gactcaacaa tgtctatgtt accgaaggga ggtgacacga tatggggcgg 2460
gcttgattgg tcacccgaga aaggccacac ctgttgtggg aaaaagcaaa agaacaacga 2520
aacttgggtt gaagcaggtg aaaacggagt ttccaagaaa agtcctgtta actatggaag 2580
gatgatatact tttggaaag aagtagcaga ggctgcgcca tctgagatta ataatattga 2640
tttcgagta aggacatata aatcataata aacctgtac attttgtat tgtagatga 2700
atatctgtac attttatctg gtgaagggtg ctgtcaaagg tcagagtatc ccaaattcaca 2760
cctgtcgtga cgtgtggaca gagtaccatg acatggaaat tgctggatc aaagctatcg 2820
ctgagtataa ggtctacact gctggtaag ctatagatct actacattat gttgctccta 2880
agatgatggc gcgtgggcc gtcatttct cttatggaaat tgctgatgat ttggatgaca 2940
ccaagtatca agatccaaa tactggtaa atccgttaga gacaaagtaa gtgatttctt 3000
gattccaact gtatcctcg tcctgatgca ttatcagtct ttttgtttc ggtttgttg 3060
gatatggttt tcagctcaa gcttacaaag ctgtttctga gccttctca aaaaggcttg 3120
ctcagaata ttgagggtgct aaagttgata catgtgactc ttgcttataa atcctccgtt 3180
tggtttgttc tgcttttca gattaccgaa tgctcctgag atggaaatct actcattata 3240
cgaggtgggg ataccaacgg aacgagcata cgtataacaag cttaaccagt ctcccgacag 3300
ttgcattcccc ttccagatata tcacttctgc tcacgaggag gacgaagata gctgtctgaa 3360
agcaggagtt tacaatgtgg atggggatgaa aacagtaccc gtcctaagtg ccgggtacat 3420
gtgtgcaaaa gcgtggcgtg gcaagacaag attcaaccct tccgaaatca agacttataat 3480
aagagaataac aatcactctc cgccggctaa cctgttgaa gggcgccggaa cgcaagagtgg 3540
tgcccatgtt gatatcatgg gaaactttgc tttgatcgaa gatatcatgaa gggttgccgc 3600
cgaggttaac gggtctgata taggacatgaa ccaggtccac tctggcatat ttgaatggtc 3660
ggagcgtatt gacctgaagc tgtga 3685

<210> 25
<211> 402

<212> DNA
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (120)..(401)

<220>
 <221> unsure
 <222> 1..402
 <223> n= a or g or c or t/u
 <223> Xaa=unknown

<400> 25

agaaaacagct	ctttgtctct	ctcgactgat	ctaacaatcc	ctaattctgtg	ttctaaattc	60
ctggacgaga	tttgacaaag	tccgtatagc	ttaacctgg	ttaatttcaa	gtgacagat	119
atg ccc ctt att cat	cgg aaa aag	ccg acg gag	aaa cca tcg	acg ccg		167
Met Pro Leu Ile His Arg	Lys Lys Pro Thr	Glu Lys Pro Ser	Thr Pro			
1	5	10	15			
cca tct gaa gag	gtg gtg cac	gat gag	gat tcg	caa aag	aaa cca cac	215
Pro Ser Glu Glu Val	Val His Asp	Glu Asp Ser	Gln Lys Lys	Pro His		
20	25	30				
gaa tct tcc aaa tcc	cac cat aag	naa tcg aac	gga gga	ggg aag	tgg	263
Glu Ser Ser Lys Ser	His His Lys	Xaa Ser Asn	Gly Gly	Gly Lys	Trp	
35	40	45				
tcg tgc atc gat	tct tgt tgg	ttc att	ggg tgt	gtg tgt	gtc acc	311
Ser Cys Ile Asp Ser	Cys Trp Phe	Ile Gly	Cys Val	Cys Val	Thr	
50	55	60				
tgg tgg ttt ctt	ctc ttc ctt	tac aac	gca atg	cct gcg	agc ttc cct	359
Trp Trp Phe Leu	Leu Phe Leu	Tyr Asn Ala	Met Pro Ala	Ser Phe	Pro	
65	70	75	80			
cag tat gta acg	gag ccg aat	cac gng	tcc ttt	gcc tta	ccc g	402
Gln Tyr Val Thr	Glu Pro Asn His	Xaa Ser	Phe Ala	Leu Pro		
85	90					

<210> 26
 <211> 643
 <212> DNA
 <213> Zea mays

<220>
 <221> CDS
 <222> (1)..(402)

<220>
 <221> unsure
 <222> 1..643
 <223> n= a or g or c or t/u

<400> 26

cgg gag aaa ata gct gct ttg aag ggg ggt gtt tac tta gcc gat ggt	48
Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly	
1 5 10 15	
gat gaa act gtt cca gtt ctt agt gcg ggc tac atg tgt gcg aaa gga	96
Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly	
20 25 30	
tgg cgt ggc aaa act cgt ttc agc cct gcc ggc agc aag act tac gtg	144
Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val	
35 40 45	
aga gaa tac agc cat tcg cca ccc tct act ctc ctg gaa ggc agg ggc	192
Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly	
50 55 60	
acc cag agc ggt gca cat gtt gat ata atg ggg aac ttt gct cta att	240
Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile	
65 70 75 80	
gag gac gtc atc aga ata gct gct ggg gca acc ggt gag gaa att ggt	288
Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly	
85 90 95	
ggc gat cag gtt tat tca gat ata ttc aag tgg tca gag aaa atc aaa	336
Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys	
100 105 110	
ttg aaa ttg taa cct atg gga agt taa aga agt gcc gac ccg ttt att	384
Leu Lys Leu	
115	
gcg ttc caa agt gtc ctg cctgagtgcactctggatt ttgcttaat	432
attgttaattt ttcacgcttc attcgtccct ttgtcaaatt tacatttgac aggacgccaa	492
tgcgatacga tggtgtaccg ctatttcag cattgtatat taaaactgtac aggtgtaagt	552
tgcatttgcc agctgaaatt gtgttagtcgt tttctttacg atttaatanc aagtggcgga	612
gcagtgc(cccccc aagcnaaaaaa aaaaaaaaaa a	643

<210> 27
<211> 115
<212> PRT
<213> Zea mays

<400> 27

Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly	15
1 5 10	
Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly	30
20 25	
Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val	45
35 40	

Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
 50 55 60

Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile
 65 70 75 80

Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly
 85 90 95

Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys
 100 105 110

Leu Lys Leu
 115

<210> 28
<211> 516
<212> DNA
<213> Neurospora crassa

<220>
<221> unsure
<222> 1..516
<223> n= a or g or c or t/u

<400> 28

ggtggcgaag acganggcgg aagttggagg ctaacgagaa tgacnctcg agatggatct 60
accctctaga gacacgacta ccnttgcacc cagcctcaag gtntacngtt tntatggta 120
ggaagccgac ggagcgagcc tacatctatc tggcgcccga tccccggacg acaacgcac 180
tttagatgac gatcgatacg actttgactn aggggcacat tgaccacggt gtgattttgg 240
gcgaaggcga tggcacagtg aaccttatga gtttgggta cctgtgcaat aaggggtgga 300
aaatgaagag atacaatcct gcgggctcaa aaataaccgt ggtcgagatg ccgcataaac 360
cagaacggtt caatccgaga ggagggccga atacggcgga cttaaatatg tagaaaaggt 420
tcaaatttat gaagagtaat taaatacggc acataggta ctcaatagta tgactaatta 480
aaaaaaaaatt tttttctaa aaaaaaaaaa aaaaaaa 516

<210> 29
<211> 1562
<212> DNA
<213> Arabidopsis thaliana

<400> 29

ataaaaaaaa tatcttcaca ttattcggtt gtcatacgca tactcggtt ggtgacgatg 60
acctcgatgt gtcaagctgt gggtagcaac gtgtaccctt tgattctggt tccaggaaac 120
ggaggttaacc agctagaggt acggctggac agagaataca agccaagtag tgtctgggt 180

agcagctgg tataatccgat tcataagaag agtgggtggat gtttaggct atgggtcgat 240
 gcagcagtgt tattgtctcc cttcaccagg tgcttcagcg atcgaatgat gttgtactat 300
 gaccctgatt tggatgatta ccaaaatgct cctgggtgtcc aaacccgggt tcctcatttc 360
 ggttcgacca aatcacttct atacctcgac cctcgtctcc gtttagtact ttccaagata 420
 tatcattttg ggacatttgc ataatgaaca aaatagacat aaatttgggg gattattgtt 480
 atatcaatat ccatttatat gtagtcggt aatgtgagtg ttatgttagt atagttaatg 540
 ttagtgttat gtgatttcc attttaatg aagctagaaa gttgtcggtt aataatgtt 600
 ctatgtcatg agaattataa ggacactatg taaatgttagc ttaataataa ggtttgattt 660
 gcagagatgc cacatcttac atggaacatt tggtaaaagc tctagagaaa aaatgcgggt 720
 atgttaacga ccaaaccatc ctaggagctc catatgattt caggtacggc ctggctgctt 780
 cgggccaccc gtcgggtgtc gcctcacagt tcctacaaga cctcaaacaa ttggtgaaa 840
 aaactagcag cgagaacgaa ggaaagccag tgataactcct ctccccatagc ctaggaggac 900
 ttttcgtcct ccatttcctc aaccgtacca ccccttcatg gcccggcaag tacatcaaac 960
 actttgttgc actcgctgcg ccatgggtg ggacgatctc tcagatgaag acatttgctt 1020
 ctggcaacac actcggtgtc ccttagtta accctttgtt ggtcagacgg catcagagga 1080
 cctccgagag taaccaatgg ctacttccat ctaccaaagt gttcacgac agaactaaac 1140
 cgcttgcgt aactccccag gttaactaca cagttacga gatggatcgg tttttgcag 1200
 acattggatt ctcacaagga gttgtgcctt acaagacaag agtgttgctt ttaacagagg 1260
 agctgatgac tccgggagtg ccagtcactt gcatatatgg gagaggaggat gatacaccgg 1320
 aggtttgtat gtatggaaaa ggaggattcg ataagcaacc agagattaag tatggagatg 1380
 gagatgggac ggttaatttgc gggagcttag cagcttgaa agtgcatacg ttgaacaccg 1440
 tagagattga tggagtttcg catacatcta tacttaaaga cgagatcgcctt cttaaagaga 1500
 ttatgaagca gatttcaatt attaattatg aattagccaa tggtaatgcc gtcaatgaat 1560
 ga 1562

<210> 30
 <211> 3896
 <212> DNA
 <213> Arabidopsis thaliana

<400> 30

atgggagcga attcgaaatc agtaacggct tccttcaccg tcatgcgggt tttttcttgc 60
 atttgcgggt gccgaactgc ggtggaggat gagaccgagt ttcacggcga ctactcgaag 120

ctatcgggta taatcattcc gggatttgcg tcgacgcgc tacgagcggtg gtcgatcctt 180
gactgtccat acactccgtt ggacttcaat ccgctcgacc tcgtatggct agacaccact 240
aagggtccgtg atcttcattt ctttcgtcc ttattctgtc ggtcgagtca cttgttgatg 300
aattccaaggc gaaatatagc aatgaagcat gtctcgctc tcttattgtat tcgttcatta 360
gtcaacagtg acgcttctga atctgagttt agagtcatat aaaacagctg actcggcgag 420
tgtttccat cgcttttgt tcgctaaatg tagcgcaatg aatgtgtaat tagtctgcgc 480
tttttattca actagatctg caagttttc agagtgcgtca atagtagtta gaaaatgtta 540
ggtcatttta cttgtgcatt gtgattctt tggttggc ttactgatcg acgtgatgga 600
tggtttacag cttcttctg ctgtcaactg ctgggttaag tgtatggcgtc tagatcctta 660
taatcaaaca gaccatcccc agtgtaaatc acggcctgac agtggtctt cagccatcac 720
agaattggat ccaggttaca taacaggttag ttccggattt ttctttctt tgagtttct 780
tcaatttgat atcatcttgc tgtgatataa tatggctaag ttcatttattt tggtcaattt 840
tcaggtcctc tttctactgt ctggaaagag tggcttaagt ggtgtgttgc gtttggata 900
gaagcaaatg caattgtcgc tggccatac gattggagat tgtcaccaac caaattggaa 960
gagcgtgacc tttacttca caagctcaag ttagtcctt tcaggctaat gtcttttac 1020
ttctctttt atgtaagata agctaagagc tctggcgatc ttcccttttgc caggttgc 1080
tttggaaactg cttaaaact ccgtggcgcc cttctatag tatttgcctt ttcaatgggt 1140
aataatgtct tcagataactt tctggatgg ctgaggctag aaattgcacc aaaacattat 1200
ttgaagtggc ttgatcagca tatccatgct tatttcgttgc ttggtagccg cctactatcc 1260
ttaagttacc attttatttt ttctctaatt gggggagttt tggtgtgact tactggatttgc 1320
agctcgatac ctgattttgtt gttgatttag gagctcctt tcttggttct gttgaggcaa 1380
tcaaatactac tctctctgggt gtaacgtttgc gccttcgtt ttctgagggtt acctctgact 1440
tctctttatgt tttaagttgtt tgatataac caggctttat aactcaactgg attttcctt 1500
tgaaagtatt acttttgc ttgatcagca tgcgttgcgat atggtatctg tagatcttgc 1560
agtgttagtt atcaaagaac atattgtggg tagtataacct gtcagcggcc ttagctataa 1620
caaccaaacc acatgtacac tgatggat ttccatgattt tatggtagac tttaagttgc 1680
gaagaaactt tgactgaaat ctttttattt taataggctt tgattttttt attgaaatca 1740
tgtgacatat tgacatgcgc ttctcatgtt ttttggc aaggcttcag ggaactgctc 1800
gggttggcgtc caattttttt ggtcgatc tgggtttat gccatccat aagaattgca 1860
agggtgataa cacattctgg acgcattttt ctgggggtgc tgcaaagaaa gataagcgcg 1920

aacacgatgg aagcgacgta catgtggAAC taaATGTTGA tcATGAGCAT gggTCAGACA 3780
tcATAGCTAA catgacaaaa gcACCAAGGG tTAAGTACAT AACCTTTAT gaAGACTCTG 3840
agAGCATTCC gggGAAGAGA accgcAGTCT gggAGCTTGA taaaAGTGGG tattAA 3896

<210> 31
<211> 709
<212> DNA
<213> tomato

<400> 31

ctggggccaa aagtgaacat aacaaggaca ccacagtcaG agcatgatgt tcagatgtac 60
aagtgcATCT aaatataGAG catcaacatG gtgaagatAT cattccaaAT atgacaaAGt 120
tacctacaat gaagtacata accttattatG aggattctGA aagtTTCCA gggacaAGAA 180
cagcagTTG ggagcttgat aaagcaaATC acaggaacat tgcAGatCT ccagcttGA 240
tgcgggagct gtggcttgag atgtggcatG atattcatCC tgataAAAAG tccaAGTTG 300
ttacaaaagg tggtgtctGA tcctcaCTat ttcttctat aaatgttGA gtttgtattG 360
acattgtAAg tattGcaaca aaaagcaaAG cgtgggcTC tgaggGatGA ggactgctat 420
tgggattacG ggaaagctcg atgtgcATGg gctgaacatt gtgaatacAG gttagaatat 480
tcaaattata ttttgcaaaa tattctttt ttgtgtattt aggccacCTt tccccggtca 540
caacgatgca gatatgtatt cggggatGtt cacctggac agagttgcAG attgaagagt 600
tctacatctc acatcctgtc acactatgtG tgatattAA gaaactttgt ttggcggAAC 660
aacaagtttG cacaacatt tgaagaAGAA agcgaaatGA ttcagagAG 709

09/93779

JC05 Rec'd PCT/PTO 28 SEP 2001

SEQUENCE LISTENING

<110> BASF AG

<120> A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR
THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA
MOLECULES ENCODING THESE ENZYMES

<130> BASF-NAE-3377-99-Sept-2000

<140> PCT/EP 00/02701
<141> 2000-03-23

<160> 31

<170> PatentIn Ver. 2.1

<210> 1
<211> 1986
<212> genomic DNA
<213> *Saccharomyces cerevisiae*<220>
<221> CDS
<222> (1)..(1986)

<400> 1	48
atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct	
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser	
1 5 10 15	
gat gaa aac aat aaa ggg ggt tct gtt cat aac aag cga gag agc aga	96
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg	
20 25 30	
aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg cgt	144
Asn His Ile His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly	
35 40 45	
att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat ttc gac agg	192
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg	
50 55 60	
aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg	240
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu	
65 70 75 80	
att ttc att ctt ggt gca ttc tta ggt gta ctt ttg ccg ttt agc ttt	288
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe	
85 90 95	
ggc gct tat cat gtc cat aat agc gat agc gac ttt gac aac ttt	336
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe	
100 105 110	
gtt aat ttt gat tca ctt aaa gtg tat ttg gat gat tgg aaa gat gtc	384
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val	
115 120 125	

ctc cca caa ggt ata agt tcg ttt att gat gat att cag gct ggt aac		432	
Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn			
130	135	140	
tac tcc aca tct tct tta gat gat ctc agt gaa aat ttt gcc gtt ggt		480	
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly			
145	150	155	160
aaa caa ctc tta cgt gat tat aat atc gag gcc aaa cat cct gtt gta		528	
Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val			
165	170	175	
atg gtt cct ggt gtc att tct acg gga att gaa agc tgg gga gtt att		576	
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile			
180	185	190	
gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg		624	
Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp			
195	200	205	
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg		672	
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp			
210	215	220	
ttg aaa cat gta atg tta cat cct gaa aca ggt ctg gac cca ccg aac		720	
Leu Lys His Val Met Leu Asp Pro Gln Thr Gly Ile Asp Pro Pro Asn			
225	230	235	240
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc		768	
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile			
245	250	255	
gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att		816	
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile			
260	265	270	
ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt		864	
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu			
275	280	285	
gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag		912	
Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys			
290	295	300	
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta		960	
Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu			
305	310	315	320
att gga cat tct atg ggt tct cag att acc ttt tac ttt atg aaa tgg		1008	
Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp			
325	330	335	
gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt		1056	
Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val			
340	345	350	

aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc		1104	
Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly			
355	360	365	
gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc		1152	
Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr			
370	375	380	
att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca		1200	
Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser			
385	390	395	400
aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca		1248	
Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser			
405	410	415	
atg cta cca aag gga gaa gag gtc att tgg ggg gat atg aag tca tct		1296	
Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser			
420	425	430	
tca gag gat gca ttg aat aac aac act gac aca tac ggc aat ttc att		1344	
Ser Glu Asp Ala Leu Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile			
435	440	445	
cga ttt gaa agg aat acg agc gat gct ttc aac aaa aat ttg aca atg		1392	
Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met			
450	455	460	
aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa		1440	
Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln			
465	470	475	480
aga aga gta cat gag cag tac tcg ttc ggc tat tcc aag aat gaa gaa		1488	
Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu			
485	490	495	
gag cta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg		1536	
Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met			
500	505	510	
gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac		1584	
Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr			
515	520	525	
ggg gtg aac aac cca act gaa agg gca tat gta tat aag gaa gag gat		1632	
Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp			
530	535	540	
gac tcc tct gct ctg aat ttg acc atc gac tac gaa agc aag caa cct		1680	
Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro			
545	550	555	560
gta ttc ctc acc gag ggg gac gga acc gtt ccg ctc gtg gcg cat tca		1728	
Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser			
565	570	575	
atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga		1776	
Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly			
580	585	590	

att aac gtt act att gtg gaa atg aaa cac cag cca gat cga ttt gat 1824
Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
595 600 605

ata cgt ggt gga gca aaa agc gcc gaa cac gta gac atc ctc ggc agc 1872
Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
610 615 620

gcg gag ttg aac gat tac atc ttg aaa att gca agc ggt aat ggc gat 1920
Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
625 630 635 640

ctc gtc gag cca cgc caa ttg tct aat ttg agc cag tgg gtt tct cag 1968
Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
645 650 655

atg ccc ttc cca atg taa 1986
Met Pro Phe Pro Met
660

DRAFT Sequence

<210> 2
<211> 661
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 2
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
1 5 10 15
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
20 25 30
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
35 40 45
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
50 55 60
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
65 70 75 80
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
85 90 95
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
100 105 110
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
115 120 125
Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
130 135 140
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
145 150 155 160
Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
165 170 175
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
180 185 190
Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
195 200 205
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
210 215 220
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
225 230 235 240
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
245 250 255
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
260 265 270
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
275 280 285

Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
290 295 300

Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
305 310 315 320

Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
325 330 335

Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val
340 345 350

Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
355 360 365

Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
370 375 380

Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser
385 390 395 400

Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
405 410 415

Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser
420 425 430

Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
435 440 445

Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
450 455 460

Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
465 470 475 480

Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
485 490 495

Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
500 505 510

Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
515 520 525

Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
530 535 540

Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
545 550 555 560

Val Phe Leu Thr Glu Gly Asp Cys Thr Val Pro Leu Val Ala His Ser
565 570 575

Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly
580 585 590

Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
595 600 605

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
645 650 655

Met Pro Phe Pro Met
660

<210> 3
<211> 2312
<212> genomic DNA
<213> *Schizosaccharomyces pombe*

<210> 4
<211> 3685
<212> genomic DNA
<213> *Arabidopsis thaliana*

atgccccctta ttcatcgaa aaagccgacg cagaaaaccat cgacgcccgc acctgaagag 60
 gtgggtcact atgaggattc gcacaaagaaa ccacacgaat ctcccaaata ccaccataag 120
 aaatcgaaac gaggaggaa gtggctgtc atcgattctt gttgttggtt cattgggtgt 180
 gtgtgtgtaa cctgggtgtt tcttccttc ctttacaacg caatgcctgc gagcttccct 240
 cagtatgtaa cggagcgaat cacgggtctt ttgcgtgacc cggccgggtgt taagctaaa 300
 aaagaagtc ttaaggcgaa acatcctgtt gtcttcattc ctgggattgtt caccgggtgg 360
 ctcgagctt gggaaaggcaa acaatgcgt gatggtttat tttagaaaaacg tttgtgggt 420
 ggaatttttg gtggaaatcta caaaagggtg gtcacaaata ttcactctt cttttatatt 480
 gggattttgg tggatctga tgagatcagc cacttgtc ttcttcacaca tcactcaaac 540
 ttaatttcca tgggtgtctg tcttactctt tactttttt tttttttagt gtggaaacgt 600
 attttcttaa gagactattt ctgtatgtt aaggttaagcg ttccaaggac gtaattggct 660
 tggactattt ctgttgcatt gttaaacttta ggataaaaaa tagctgcctt ggaatttcaa 720
 gtcatcttac tgccaaatctt gttgcgtac atgcctaga gtccgttcat aacaagttac 780
 ttccttact gtggatgtgtt gtagatttag ctttgtgtg cgtataatga agtagtgtt 840
 tatgtttgtt tggaaataga gaagtctaa ctacatctgtt gggaaatgtgt ttcaggctgt 900
 gatagaggac tgggtgtttt ttattcaact atgtatatgtt gtaattaaag ctatgttctt 960
 tttgtatctt cagtcataatg tgccttttcc aatttttttcaattttca agtttacat 1020
 cgagtttattt cacaatgtttt gaaatccgtt catccctgtt ctgttacttca gctttgaaat 1080
 ccccccggacc ctgetatggaa tttataaaaa aaaaatgtttt ttgtgggtgtt catcttggtt 1140
 acatgttgc tttttttttt tgcgtctgtt gttcatgtttt ttgttactgtt agagatggc 1200
 aatgttattt tggatggtaa cagtggtataa gttgtatgtt tcttaactaa tcaatttac 1260
 cttttgatca ggcctctatg tgggtggaa cacatgtcac ttgacaatga aactgggttg 1320
 gatccagctg gtatttagatg tggagctgtt tcaggactcg tggctgtgtt ctactttgtt 1380
 cctggctact ttgtctggc agtgcgtattt gtcacacccgtt cacatattgg atatgaagag 1440
 aaaaatatgtt acatggctgc atatgactgg cggctttcgtt ttcagaaacac agagggttctt 1500
 ttcttcatgtt tttttttttt tttctgttttcc aatgttacgtt tcttttttca ttactttaagg 1560
 cttaaatatgt ttttcatgtt gaaaaatatttgg tacgtgtatca gactctttagc cgtatgaaaa 1620
 gtaatataaga gttgtatggtt tcttaccaacg gtggaaaaaaa agcagtatata gttccgcatt 1680
 ccatgggggtt ctgttattttt tttatattttt tggatgggtt tgaggccacca gtcctctgg 1740
 gtgggggggg tggggccatgtt tgggtgtcaaa agtataataa ggcgggtgtatg aacatgggtt 1800
 gaccatttttctt tgggtgtccaa aaagctgtt gcaaggctttt ctctgtgtt gcaaaaggatg 1860
 ttgcagtgtc caggtattgtt atatctgtttt atactttttaga tgatcagaac ctrggctctg 1920
 geactcaaaat ttatctactt aaatataatcaat tctaaataaca ttgttataattt atcgctgca 1980
 ctgacatgg tggattttttt ttgtgtgtttt tggatgtt gttaaactgtt actcttcttgc gatttagacaa 2040
 atgatgaattt gataattttt acgcattttgtt ctgtgalgac cagtttttttca gcttcgacgt 2100
 taacattttgtt catactgttcc tttggagggtt attgaattttt gctatggaaa ggcgtggggc 2160
 tttccatgtt gcatcttttta ccaattttggc ttatctgtt tcttttttcaattt ttttttgtata 2220
 tgcacatgtt gttttttttt tttttttttttaat taaagactgtt tggattttgt tgccttataat 2280
 gtcactttgtt tctttttttttaat agaacttttac ttttttttttcaat ttttttttttcaat ttttttttttcaat 2340
 aggatcttta gacaccgtat ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 2400
 acgcacatgg gacttcaaaa ttgtctatgtt accggaaaggga ggttgcacacgtt ttttttttttcaat 2460
 gcttgtatgg ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 2520
 aacttcttggt gaaacggatgtt aaaaacggatgtt ttttttttttcaat ttttttttttcaat ttttttttttcaat 2580
 gatgatgtt ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 2640
 ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 2700
 atatctgttcc ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 2760
 ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 2820
 ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 2880
 agatgttgc ggcgtgggttcc gtttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 2940
 ccaaggatca agatccccaaat ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 3000
 gatccactt gtttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 3060
 gatatgtttt ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 3120
 ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat ttttttttttcaat 3180

tggtttgttc	tgcttttca	gattaccgaa	tgctcttag	atggaaatct	actcattata	3240
cggagtgggg	ataccaacgg	aacgagcata	cgtatacaag	cttaaccagt	ctcccgacag	3300
ttgcaccccc	ttttagatat	tcacttctgc	tcacgaggag	gacgaagata	gctgtctgaa	3360
agcaggagtt	tacaatgtgg	atggggatga	aacagtaccc	gtcttaagtg	ccgggtacat	3420
gtgtgcaaaa	gcgtggcggtg	gcaagacaag	atcacaacct	ccggaaatca	agacttatat	3480
aagaagaatac	aatcaccttc	cgccggctaa	cctgttggaa	gggcgcggga	cgcagatgg	3540
tgcccatgtt	gatatacatgg	gaaactttgc	ttttagatcgaa	galatcatga	gggttgcgc	3600
cgaggttaac	gggttgtata	taggacatga	ccaggtccac	tctggcatat	ttgaatggtc	3660
ggagcgtatt	gacctaagaac	tgtga				3685

<210> 5
<211> 2427
<212> cDNA
<213> *Arabidopsis thaliana*

DRAFT - NOT FOR DISTRIBU

<210> 6
<211> 671
<212> PRT
<213> Arabidopsis thaliana

<400> 6
Met Pro Leu Ile His Arg Lys Lys Pro Thr Glu Lys Pro Ser Thr Pro
1 5 10 15
Pro Ser Glu Glu Val Val His Asp Glu Asp Ser Gln Lys Lys Pro His
20 25 30
Glu Ser Ser Lys Ser His His Lys Lys Ser Asn Gly Gly Gly Lys Trp
35 40 45
Ser Cys Ile Asp Ser Cys Cys Trp Phe Ile Gly Cys Val Cys Val Thr
50 55 60
Trp Trp Phe Leu Leu Phe Leu Tyr Asn Ala Met Pro Ala Ser Phe Pro
65 70 75 80
Gln Tyr Val Thr Glu Arg Ile Thr Gly Pro Leu Pro Asp Pro Pro Gly
85 90 95
Val Lys Leu Lys Lys Glu Gly Leu Lys Ala Lys His Pro Val Val Phe
100 105 110
Ile Pro Gly Ile Val Thr Gly Cys Leu Glu Leu Trp Glu Gly Lys Gln
115 120 125
Cys Ala Asp Gly Leu Phe Arg Lys Arg Leu Trp Gly Gly Thr Phe Gly
130 135 140
Glu Val Tyr Lys Arg Pro Leu Cys Trp Val Glu His Met Ser Leu Asp
145 150 155 160
Asn Glu Thr Gly Leu Asp Pro Ala Gly Ile Arg Val Arg Ala Val Ser
165 170 175
Gly Leu Val Ala Ala Asp Tyr Phe Ala Pro Gly Tyr Phe Val Trp Ala
180 185 190
Val Leu Ile Ala Asn Leu Ala His Ile Gly Tyr Glu Glu Lys Asn Met
195 200 205
Tyr Met Ala Ala Tyr Asp Trp Arg Leu Ser Phe Gln Asn Thr Glu Val
210 215 220
Arg Asp Gln Thr Leu Ser Arg Met Lys Ser Asn Ile Glu Leu Met Val
225 230 235 240
Ser Thr Asn Gly Gly Lys Iys Ala Val Ile Val Pro His Ser Met Gly
245 250 255
Val Leu Tyr Phe Leu His Phe Met Lys Trp Val Glu Ala Pro Ala Pro
260 265 270
Leu Gly Gly Gly Gly Pro Asp Trp Cys Ala Lys Tyr Ile Lys Ala
275 280 285

Val Met Asn Ile Gly Gly Pro Phe Leu Gly Val Pro Lys Ala Val Ala
290 295 300

Gly Leu Phe Ser Ala Glu Ala Lys Asp Val Ala Val Ala Arg Ala Ile
305 310 315 320

Ala Pro Gly Phe Leu Asp Thr Asp Ile Phe Arg Leu Gln Thr Leu Gln
325 330 335

His Val Met Arg Met Thr Arg Thr Trp Asp Ser Thr Met Ser Met Leu
340 345 350

Pro Lys Gly Gly Asp Thr Ile Trp Gly Gly Leu Asp Trp Ser Pro Glu
355 360 365

Lys Gly His Thr Cys Cys Gly Lys Lys Gln Lys Asn Asn Glu Thr Cys
370 375 380

Gly Glu Ala Gly Glu Asn Gly Val Ser Lys Lys Ser Pro Val Asn Tyr
385 390 395 400

Gly Arg Met Ile Ser Phe Gly Lys Glu Val Ala Glu Ala Ala Pro Ser
405 410 415

Glu Ile Asn Asn Ile Asp Phe Arg Gly Ala Val Lys Gly Gln Ser Ile
420 425 430

Pro Asn His Thr Cys Arg Asp Val Trp Thr Glu Tyr His Asp Met Gly
435 440 445

Ile Ala Gly Ile Lys Ala Ile Ala Glu Tyr Lys Val Tyr Thr Ala Gly
450 455 460

Glu Ala Ile Asp Leu Leu His Tyr Val Ala Pro Lys Met Met Ala Arg
465 470 475 480

Gly Ala Ala His Phe Ser Tyr Gly Ile Ala Asp Asp Leu Asp Asp Thr
485 490 495

Lys Tyr Gln Asp Pro Lys Tyr Trp Ser Asn Pro Leu Glu Thr Lys Leu
500 505 510

Pro Asn Ala Pro Glu Met Glu Ile Tyr Ser Leu Tyr Gly Val Gly Ile
515 520 525

Pro Thr Glu Arg Ala Tyr Val Tyr Lys Leu Asn Gln Ser Pro Asp Ser
530 535 540

Cys Ile Pro Phe Gln Ile Phe Thr Ser Ala His Glu Glu Asp Glu Asp
545 550 555 560

Ser Cys Leu Lys Ala Gly Val Tyr Asn Val Asp Gly Asp Glu Thr Val
565 570 575

Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Ala Trp Arg Gly Lys
580 585 590

Thr Arg Phe Asn Pro Ser Gly Ile Lys Thr Tyr Ile Arg Glu Tyr Asn
595 600 605

His Ser Pro Pro Ala Asn Leu Leu Glu Gly Arg Gly Thr Gln Ser Gly
610 615 620

Ala His Val Asp Ile Met Cys Asn Phe Ala Leu Ile Glu Asp Ile Met
625 630 635 640

Arg Val Ala Ala Cys Gly Asn Gly Ser Asp Ile Gly His Asp Gln Val
645 650 655

His Ser Gly Ile Phe Glu Trp Ser Glu Arg Ile Asp Leu Lys Leu
660 665 670

<210> 7
<211> 643
<212> cDNA
<213> Zea mays

<220>
<221> CDS
<222> (1) ..(402)

<400> 7
cgg gag aaa ata gct gct ttg aag ggg ggt gtt tac tta gcc gat ggt 48
Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
1 5 10 15
gat gaa act gtt cca gtt ctt agt ccg ggc tac atg tgt gcg aaa gga 96
Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly
20 25 30
tgg cgt ggc aaa act cgt ttc agc cct gcc ggc agc aag act tac gtg 144
Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val
35 40 45
aga gaa tac agc cat tcg cca ccc tct act ctc ctg gaa ggc agg ggc 192
Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
50 55 60
acc cag agc ggt gca cat gtt gat ata atg ccg aac ttt gct cta att 240
Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile
65 70 75 80
gag gac gtc atc aga ata gct gct ggg gca acc ggt gag gaa att ggt 288
Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly
85 90 95
ggc gat cag gtt tat tca gat ata ttc aag tgg tca gag aaa atc aaa 336
Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys
100 105 110
ttg aaa ttg taa cct atg gga agt taa aga agt gcc gac ccg ttt att 384
Leu Lys Leu
115
gcg ttc caa agt gtc ctg cctgagtgc aactctggatt ttgcttaat 432
attgttaatit ttcacgttc attcgtccct ttgtcaaatt tacatggac aggacgcca 492
tgcgatacga tggtgtaccg ctatttcag cattgtatata taaaactgtac aggtgtaaat 552
tgcatttgcc agctgaaatt gtgttagtcgt ttctttacg atttaatanc aagtggcgga 612
gcagtgcggcc aagcnaaaaa aaaaaaaaaa a 643

<210> 8
<211> 115
<212> PRT
<213> Zea mays

<400> 8
Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
1 5 10 15
Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly
20 25 30
Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val
35 40 45
Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
50 55 60
Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile
65 70 75 80
Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly
85 90 95
Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys
100 105 110
Leu Lys Leu
115

```
<210> 9  
<211> 616  
<212> cDNA  
<213> Neurospora crassa
```

```

<400> 9
ggggcgaag acgaggcg aagtggagg ctaacgagaa tgachctcg agatggatct 60
accctctaga gacacgacta ccnttgcacc cagcctcaag gntacngtt tntatggta 120
ggaagccgac ggagcgagcc tacatctatc tggccccga tccgggacg acaacgcac 180
tttagatgac gatcgatacg actttgactn agggcacat tgaccacygt gtgattttgg 240
gcgaaggcga tggcacagtg aaccttatga gtttgggta cctgtgcaat aaggggtgga 300
aatgaagag atacaatctt ggggctcaa aaataaccgt ggtcgagatg ccgcatgaa 360
cagaacgggtt caatccgaga ggagggccga atacggcga tcaactggat attcttagaa 420
ggcagaatct aaacgagtagc attcttaaag tggcgccagg tcgaggcgat acaattgagg 480
attttattac tagtaattat cttaaatatg tagaaaaggat taaaattat gaagagiaat 540
taaatacggc acataggta ctcaatagta tgactaatta aaaaaaaatt tttttctaa 600
aaaaaaaaaaaaaaa aaaaaaa 616

```

```
<210> 10
<211> 1562
<212> genomic DNA
<213> Arabidopsis thaliana
```

<400> 10
 atgaaaaaaaa tatcttcaca ttattcggta gtcatacgca tactcggtt ggtgacgatg 60
 acctcgatgt gtcaagctgt gggtagcaac gtgtaccctt tgattctggt tccaggaaac 120
 ggaggtaacc agctagaggt acggctggac agagaataca agccaagtag tgtctgggt 180
 agcagcttgt tataccgat tcataagaag agtgggtggat ggtttaggct atggttcgat 240
 gcagcagtgt tattgtctcc ctteaccagg tgcttcagcg atcgaatgt gttgtactat 300
 gaccctgatt tggatgatta caaaaatgtc cctgggtgtcc aaacccgggt tcctcattc 360
 ggttcgacca aatcacttct atacctcgac cctcgctcc ggtagtact ttccaagata 420
 tattcatttg ggacatttgc ataatgaaca aaatagacat aaatttgggg gattattgtt 480
 atataaatat ccatttatgt ctatgttactt aatgtgtggt ttatgttagt atatgttaatg 540
 tgatgtttat gtgatttcc attttaatgt aagcttagaaa gttgtcggtt aataatgttg 600
 ctatgtcatgt agaattataa gacactatgt taaatgtac ttaataataa ggtttgtt 660
 cgacagatgc cacatcttac atggaacatt tggtaaage tctagagaaa aatgcgggt 720
 atgttaacga ccaaaccatc cttaggagctc catatgattt caggtacggc ctggctgtt 780
 cgggccaccc gteccgtgta gcctcacagt tcctacaaga cctttaaacaa ttggggaaa 840
 aaactagcag cgagaacgaa gaaagccag tgatacttct ctccccatagc ctaggaggac 900
 ttttgcctt ccatttcctc aaccgtacca ccccttcatg acggccgcaag tacatcaaac 960
 actttgtgc actcgctgct ccatgggggt ggacgatctc tcagatgaag acatitgttt 1020
 ctggcaacac actcgggttc cttttagttt acccttttgtt ggtcagacgg catcagagga 1080
 cctccgagag taaccaatgg ctacttccat ctaccaaagi gtttcacgac agaactzaac 1140
 cgcttgtcgt aactccccag gtttaactaca cagttacga gatggatcg tttttgtcag 1200
 acatggatt ctcacaaggaa gttgtgcctt acaagacaaag agtgttgtt ttaacacagg 1260
 agctgtatgc tccggggatgt ccagtgactt gcatatatgg gagaggaggat gatacaccgg 1320
 aggtttttgt gtatggaaaa ggaggatttcg ataaagcaacc ayagattaag taroggatg 1380
 gagatggac ggttaatttg gcgagcttag cacccttggaa agtgcatacg tttgaacacccg 1440
 tagagatgtg tggatgtttcg catabatcta tacttaaaga cgagatcgca cttaaagaga 1500
 ttatgaagca gattcaattt attaattatgt aatttagccaa tggtaatgcc gtcaatgaat 1560
 ga 1562

<210> 11
<211> 3896
<212> genomic DNA
<213> Arabidopsis thaliana

<400> 11
atgggagcga attcgaaaatc agtaacggct tccttcaccg tcatcgccgt ttttttcttg 60
atttgcggtg gccgaactgc ggtggaggat gagaccyagt ttacggcga ctactcgaag 120
ctatcggtta taatcatccc gggatttgcg tcgacgcgc tacgagcgtg gtcgatcctt 180
gactgtccat acactccgtt ggacctcaat ccgctcgacc tcgtatggct agacaccact 240
aaggtcgtg atcttcattt ctttcgtctt ttatctgtc ggtcgagtca ctgtttgatg 300
aattccaagc gaaataatagc aatgaagcat gtctcgatc tcttattgtat tcgttcattt 360
gtcaacagtg acgcttctgt atctcgatgtt agactcatat aaaacagctg actcggcgag 420
tgtttccat cgctttttgt tcgctaaatg tagcgaatg aatgttataat tagtctgcgc 480
tttttattca actagatctg caaggttttc agagtyctca atagtagtta gaaaatgtta 540
ggtcattttt ctgtgtcattt gtgattctt tgggttgtgc ttactgtatc acgtgatgg 600
tggtttacag cttttttctg ctgtcaactg ctgggttaag tggatggatc tggatggatc 660
taatcaaaca gaccatccc agttaagtc acggcctgac aggggtttt cagccatcac 720
agaatggat ccaggttaca taacaggtt tttcgatatt ttctttttt tgatttttt 780
tcaatttgat atcatctgt tggatataa tatggcttaa ttcatatatt tggtcaattt 840
tcaggttctc ttcttactgt ctggaaagag tggcttaatg ggtgttgtga gtttggatata 900
gaagcaaatg caattgtcgc tggatcatac gatggatg tggatccaaac caaattggaa 960
gagcgtgacc ttatcttca caagtcgaag ttatcttca tcaaggcttaatc 1020
ttctttttt atgttaagata agtcgtatc tctgggtgtc ttctttttt cagggttgcac 1080
tttggaaactg cttaaaactt cctggcgcc cttttttatag tattttccca ttcaatgggt 1140
aataatgtct tcaatgtat tttttttatgg tggatcatac gatggatcacc aaaaacattat 1200
tggatgtgc ttgatcatac tttttttatgg tttttttatgg tttttttatgg cttttttatgg 1260
tttaagttacc attttttttt ttcttcaattt gggggatgtt tggatggatc tttttttatgg 1320
agccgtatc ctgtttttt gttgtttttt gatgtttttt tttttttatgg tttttttatgg 1380
tcaaatctac ttcttctgtt gtaacgtttt gttttttatgg tttttttatgg acctctgtact 1440
ttttttttatgg tttaagttatg tggatcatac cttttttatgg tttttttatgg aactcaatgg 1500
tgaaaagtatt acttttttttta attgaactgc tttttttatgg tttttttatgg tttttttatgg 1560
agtgtttatgtt atcaaaagaaat atatttttttta tttttttatgg tttttttatgg tttttttatgg 1620
caacccaaacc acatgtacac tttttttatgg tttttttatgg tttttttatgg tttttttatgg 1680
gaagaaactt tgactgaaat tttttttatgg tttttttatgg tttttttatgg tttttttatgg 1740
tggatgtttt tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 1800
ggccgttttgc caattttttt tttttttatgg tttttttatgg tttttttatgg tttttttatgg 1860
agggtttatgg cacattttttt tttttttatgg tttttttatgg tttttttatgg tttttttatgg 1920
tataaccactg tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 1980
tttaacattttt tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2040
aaaaggtttca ccaagaatgt tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2100
tacagaaaaca gttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2160
ttttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2220
egatagcaag aggatgtttt accatgtttt tttttttatgg tttttttatgg tttttttatgg 2280
tattttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2340
ctatatcaat tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2400
ccatgtttt tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2460
atgtatgtttt tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2520
taatagcgtt tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2580
atactttttt tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2640
ccaccttataa aaaatgtttt tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2700
atttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2760
ttttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2820
ttttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2880
ttttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 2940
ttttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 3000
ttttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 3060
ttttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 3120
ttttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg tttttttatgg 3180

tcatattatt aggagtagtc gtgttttaa aaaatttgtt ttaagaaacc gaaaaactag 3240
ttcatatctt gattgtgcaa tatctgcagg tctggaaactg tgggttatgg gaacgctgga 3300
cctataactg gggatgagac ggttaagctca gaagttggt ttgaaattat ctctttgcaa 3360
actactgaag actaagataa tacttgcttc tggaacactg ctgcgtatgt tctcttagtac 3420
actgcaatat tgactctccg ctactttat tgattatgaa attgatctt tataaggtaacc 3480
ctatcatca ctctcttggt gcaagaattt gctcggaacct aaagtttaaca taacaatggc 3540
tccccaggttta ctctttttta gttcctcacc ttatataat caaaccccaa gtgtactttt 3600
ctggttatgt gttgatttac ctccaatttg ttctttctaa aaatcatata tctctgtact 3660
cctcaagaac ttgttattaat cttaaacgaga ttcttcattgg gaaaataaaaa caacagccag 3720
aacacgatgg aagcgacgtt catgtggaaac taaatgttga tcattttttttt ggttcagaca 3780
tcatacgtaa catgacaaaaa gcaccaaggg ttaagtatcat aaccctttat gaagactctg 3840
agagcatccg gggaaagaga accggcagtctt gggagcttga taaaatgtggg tattaa 3896

<210> 12
<211> 709
<212> cDNA
<213> Lycopersicon esculentum

<400> 12
ctggggccaa aagtgaacat aacaaggaca ccacagtcag agcatgtatgt tcagatgtac 60
aagtgcattt aaatatagag catcaacatg gtgaagatat cattccaaat atgacaaaagt 120
tacctacaat gaagtacata accttattatg aggattctga aagttttcca gggacaagaa 180
cagcagtttg ggagcttgat aaagcaaattc acaggaacat tgtcagatct ccagcttga 240
tgcgggagct gtggcttgat atgtggcatg atattcatcc tgataaaaag tccaaagtttg 300
ttacaaaagg tgggtgttga tcctcaat tttcttctat aaatgtttga gtttgatattt 360
acattgttaag tattgcaaca aaaagcaaag cgtgggcctc tgagggatga ggactgctat 420
tgggattacg ggaaagctcg atgtgcatttgc gctgaacatt gtgaatacag gttagaataat 480
tcaattata ttttgcaaaa tattctcttt ttgtgtatggccacatttcccccggica 540
caacgatgc aatgttatttgcgatggatgtt caccggac aggttgcag attgaagagt 600
tctacatctc acatccgttc acactatgtg tgatatttaa gaaacttgtt ttggcggaaac 660
aacaagtttg cacaacatt tgaagaagaa agcgaaatga ttcagagag 709

<210> .13

<211> 623

<212> PRT

<213> Schizosaccharomyces pombe

<400> 13

Met	Ala	Ser	Ser	Lys	Lys	Ser	Lys	Thr	His	Lys	Lys	Lys	Glu	Val
1				5				10					15	
Lys Ser Pro Ile Asp Leu Pro Asn Ser Lys Lys Pro Thr Arg Ala Leu														
		20			25					30				
Ser Glu Gln Pro Ser Ala Ser Glu Thr Gln Ser Val Ser Asn Lys Ser														
		35			40					45				
Arg Lys Ser Lys Phe Gly Lys Arg Leu Asn Phe Ile Leu Gly Ala Ile														
		50			55				60					
Leu Gly Ile Cys Gly Ala Phe Phe Ala Val Gly Asp Asp Asn Ala														
		65			70				75			80		
Val Phe Asp Pro Ala Thr Leu Asp Lys Phe Gly Asn Met Leu Gly Ser														
		85			90				95					
Ser Asp Leu Phe Asp Asp Ile Lys Gly Tyr Leu Ser Tyr Asn Val Phe														
		100			105				110					
Lys Asp Ala Pro Phe Thr Thr Asp Lys Pro Ser Gin Ser Pro Ser Gly														
		115			120				125					
Asn Glu Val Gln Val Gly Leu Asp Met Tyr Asn Gln Gly Tyr Arg Ser														
		130			135				140					
Asp His Pro Val Ile Met Val Pro Gly Val Ile Ser Ser Gly Leu Glu														
		145			150				155			160		
Ser Trp Ser Phe Asn Asn Cys Ser Ile Pro Tyr Phe Arg Lys Arg Leu														
		165			170				175					
Trp Gly Ser Trp Ser Met Leu Lys Ala Met Phe Leu Asp Lys Gln Cys														
		180			185				190					
Trp Leu Glu His Leu Met Ile Asp Lys Lys Thr Gly Leu Asp Pro Lys														
		195			200				205					
Gly Ile Lys Leu Arg Ala Ala Gln Gly Phe Glu Ala Ala Asp Phe Phe														
		210			215				220					
Ile Thr Gly Tyr Trp Ile Trp Ser Lys Val Ile Glu Asn Leu Ala Ala														
		225			230				235			240		
Ile Gly Tyr Glu Pro Asn Asn Met Leu Ser Ala Ser Tyr Asp Trp Arg														
		245			250				255					
Leu Ser Tyr Ala Asn Leu Glu Glu Arg Asp Lys Tyr Phe Ser Lys Leu														
		260			265				270					

Lys Met Phe Ile Glu Tyr Ser Asn Ile Val His Lys Lys Lys Val Val
275 280 285

Leu Ile Ser His Ser Met Gly Ser Gln Val Thr Tyr Tyr Phe Phe Lys
290 295 300

Trp Val Glu Ala Glu Gly Tyr Gly Asn Gly Gly Pro Thr Trp Val Asn
305 310 315 320

Asp His Ile Glu Ala Phe Ile Asn Ile Ser Gly Ser Leu Ile Gly Ala
325 330 335

Pro Lys Thr Val Ala Ala Leu Leu Ser Gly Glu Met Lys Asp Thr Gly
340 345 350

Ile Val Ile Thr Leu Asn Ile Leu Glu Lys Phe Phe Ser Arg Ser Glu
355 360 365

Arg Ala Met Met Val Arg Thr Met Gly Gly Val Ser Ser Met Leu Pro
370 375 380

Lys Gly Gly Asp Val Ala Pro Asp Asp Leu Asn Gin Thr Asn Phe Ser
385 390 395 400

Asn Gly Ala Ile Ile Arg Tyr Arg Glu Asp Ile Asp Lys Asp His Asp
405 410 415

Glu Phe Asp Ile Asp Asp Ala Leu Gin Phe Leu Lys Asn Val Thr Asp
420 425 430

Asp Asp Phe Lys Val Met Leu Ala Lys Asn Tyr Ser His Gly Leu Ala
435 440 445

Trp Thr Glu Lys Glu Val Leu Lys Asn Asn Glu Met Pro Ser Lys Trp
450 455 460

Ile Asn Pro Leu Glu Thr Ser Leu Pro Tyr Ala Pro Asp Met Lys Ile
465 470 475 480

Tyr Cys Val His Gly Val Gly Lys Pro Thr Glu Arg Gly Tyr Tyr Tyr
485 490 495

Thr Asn Asn Pro Glu Gly Gln Pro Val Ile Asp Ser Ser Val Asn Asp
500 505 510

Gly Thr Lys Val Glu Asn Gly Ile Val Met Asp Asp Gly Asp Gly Thr
515 520 525

Leu Pro Ile Leu Ala Leu Gly Leu Val Cys Asn Lys Val Trp Gln Thr
530 535 540

Lys Arg Phe Asn Pro Ala Asn Thr Ser Ile Thr Asn Tyr Glu Ile Lys
545 550 555 560

His Glu Pro Ala Ala Phe Asp Leu Arg Gly Gly Pro Arg Ser Ala Glu
565 570 575

His Val Asp Ile Leu Gly His Ser Glu Leu Asn Glu Ile Ile Leu Lys
580 585 590
Val Ser Ser Gly His Gly Asp Ser Val Pro Asn Arg Tyr Ile Ser Asp
595 600 605
Ile Gln Glu Ile Ile Asn Glu Ile Asn Leu Asp Lys Pro Arg Asn
610 615 620

<210> 14
<211> 432
<212> PRT
<213> Arabidopsis thaliana

<400> 14
Met Lys Lys Ile Ser Ser His Tyr Ser Val Val Ile Ala Ile Leu Val
1 5 10 15
Val Val Thr Met Thr Ser Met Cys Gln Ala Val Gly Ser Asn Val Tyr
20 25 30
Pro Leu Ile Leu Val Pro Gly Asn Gly Gly Asn Gln Leu Glu Val Arg
35 40 45
Leu Asp Arg Glu Tyr Lys Pro Ser Ser Val Trp Cys Ser Ser Trp Leu
50 55 60
Tyr Pro Ile His Lys Lys Ser Gly Gly Trp Phe Arg Leu Trp Phe Asp
65 70 75 80
Ala Ala Val Leu Leu Ser Pro Phe Thr Arg Cys Phe Ser Asp Arg Met
85 90 95
Met Leu Tyr Tyr Asp Pro Asp Leu Asp Asp Tyr Gln Asn Ala Pro Gly
100 105 110
Val Gin Thr Arg Val Pro His Phe Gly Ser Thr Lys Ser Leu Leu Tyr
115 120 125
Leu Asp Pro Arg Leu Arg Asp Ala Thr Ser Tyr Met Glu His Leu Val
130 135 140
Lys Ala Leu Glu Lys Lys Cys Gly Tyr Val Asn Asp Gin Thr Ile Leu
145 150 155 160
Gly Ala Pro Tyr Asp Phe Arg Tyr Gly Leu Ala Ala Ser Gly His Pro
165 170 175
Ser Arg Val Ala Ser Gin Phe Leu Gln Asp Leu Lys Gln Leu Val Glu
180 185 190
Lys Thr Ser Ser Glu Asn Glu Gly Lys Pro Val Ile Leu Leu Ser His
195 200 205
Ser Leu Gly Gly Leu Phe Val Leu His Phe Leu Asn Arg Thr Thr Pro
210 215 220
Ser Trp Arg Arg Lys Tyr Ile Lys His Phe Val Ala Leu Ala Ala Pro
225 230 235 240
Trp Gly Gly Thr Ile Ser Gin Met Lys Thr Phe Ala Ser Gly Asn Thr
245 250 255
Leu Gly Val Pro Leu Val Asn Pro Leu Leu Val Arg Arg His Gln Arg
260 265 270
Thr Ser Glu Ser Asn Gln Trp Leu Leu Pro Ser Thr Lys Val Phe His
275 280 285

Asp Arg Thr Lys Pro Leu Val Val Thr Pro Gln Val Asn Tyr Thr Ala
290 295 300

Tyr Glu Met Asp Arg Phe Phe Ala Asp Ile Gly Phe Ser Gln Gly Val
305 310 315 320

Val Pro Tyr Lys Thr Arg Val Leu Pro Leu Thr Glu Glu Leu Met Thr
325 330 335

Pro Gly Val Pro Val Thr Cys Ile Tyr Gly Arg Gly Val Asp Thr Pro
340 345 350

Glu Val Leu Met Tyr Gly Lys Gly Gly Phe Asp Lys Gln Pro Glu Ile
355 360 365

Lys Tyr Gly Asp Gly Asp Gly Thr Val Asn Leu Ala Ser Leu Ala Ala
370 375 380

Leu Lys Val Asp Ser Leu Asn Thr Val Glu Ile Asp Gly Val Ser His
385 390 395 400

Thr Ser Ile Leu Lys Asp Glu Ile Ala Leu Lys Glu Ile Met Lys Gln
405 410 415

Ile Ser Ile Ile Asn Tyr Glu Leu Ala Asn Val Asn Ala Val Asn Glu
420 425 430

<210> 15
<211> 552
<212> PRT
<213> Arabidopsis thaliana

<400> 15
Met Gly Ala Asn Ser Lys Ser Val Thr Ala Ser Phe Thr Val Ile Ala
1 5 10 15
Val Phe Phe Leu Ile Cys Gly Gly Arg Thr Ala Val Glu Asp Glu Thr
20 25 30
Glu Phe His Gly Asp Tyr Ser Lys Leu Ser Gly Ile Ile Ile Pro Gly
35 40 45
Phe Ala Ser Thr Cln Leu Arg Ala Trp Ser Ile Leu Asp Cys Pro Tyr
50 55 60
Thr Pro Leu Asp Phe Asn Pro Leu Asp Leu Val Trp Leu Asp Thr Thr
65 70 75 80
Lys Leu Leu Ser Ala Val Asn Cys Trp Phe Lys Cys Met Val Leu Asp
85 90 95
Pro Tyr Asn Gln Thr Asp His Pro Glu Cys Lys Ser Arg Pro Asp Ser
100 105 110
Gly Leu Ser Ala Ile Thr Glu Leu Asp Pro Gly Tyr Ile Thr Gly Pro
115 120 125
Leu Ser Thr Val Trp Lys Glu Trp Leu Lys Trp Cys Val Glu Phe Gly
130 135 140
Ile Glu Ala Asn Ala Ile Val Ala Val Pro Tyr Asp Trp Arg Leu Ser
145 150 155 160
Pro Thr Lys Leu Glu Glu Arg Asp Leu Tyr Phe His Lys Leu Lys Leu
165 170 175
Thr Phe Glu Thr Ala Leu Lys Leu Arg Gly Gly Pro Ser Ile Val Phe
180 185 190
Ala His Ser Met Gly Asn Asn Val Phe Arg Tyr Phe Leu Glu Trp Leu
195 200 205
Arg Leu Glu Ile Ala Pro Lys His Tyr Leu Lys Trp Leu Asp Gln His
210 215 220
Ile His Ala Tyr Phe Ala Val Gly Ala Pro Leu Leu Gly Ser Val Glu
225 230 235 240
Ala Ile Lys Ser Thr Leu Ser Gly Val Thr Phe Gly Leu Pro Val Ser
245 250 255
Glu Gly Thr Ala Arg Leu Leu Ser Asn Ser Phe Ala Ser Ser Leu Trp
260 265 270
Leu Met Pro Phe Ser Lys Asn Cys Lys Gly Asp Asn Thr Phe Trp Thr
275 280 285

DRAFT

His Phe Ser Gly Gly Ala Ala Lys Lys Asp Lys Arg Val Tyr His Cys
290 295 300

Asp Glu Glu Glu Tyr Gln Ser Lys Tyr Ser Gly Trp Pro Thr Asn Ile
305 310 315 320

Ile Asn Ile Glu Ile Pro Ser Thr Ser Ala Arg Glu Leu Ala Asp Gly
325 330 335

Thr Leu Phe Lys Ala Ile Glu Asp Tyr Asp Pro Asp Ser Lys Arg Met
340 345 350

Leu His Gln Leu Lys Lys Tyr Val Pro Phe Phe Val Ile Arg Asn Ile
355 360 365

Ala His Arg Ser Ser Leu Ala Gly Phe Leu Leu Tyr His Asp Asp Pro
370 375 380

Val Phe Asn Pro Leu Thr Pro Trp Glu Arg Pro Pro Ile Lys Asn Val
385 390 395 400

Phe Cys Ile Tyr Gly Ala His Leu Lys Thr Glu Val Gly Tyr Tyr Phe
405 410 415

Ala Pro Ser Gly Lys Pro Tyr Pro Asp Asn Trp Ile Ile Thr Asp Ile
420 425 430

Ile Tyr Glu Thr Glu Gly Ser Leu Val Ser Arg Ser Gly Thr Val Val
435 440 445

Asp Gly Asn Ala Gly Pro Ile Thr Gly Asp Glu Thr Val Pro Tyr His
450 455 460

Ser Leu Ser Trp Cys Lys Asn Trp Leu Gly Pro Lys Val Asn Ile Thr
465 470 475 480

Met Ala Pro Gln Ile Leu Ile Gly Lys Ile Lys Gln Gln Pro Glu His
485 490 495

Asp Gly Ser Asp Val His Val Glu Leu Asn Val Asp His Glu His Gly
500 505 510

Ser Asp Ile Ile Ala Asn Met Thr Lys Ala Pro Arg Val Lys Tyr Ile
515 520 525

Thr Phe Tyr Glu Asp Ser Glu Ser Ile Pro Gly Lys Arg Thr Ala Val
530 535 540

Trp Glu Leu Asp Lys Ser Gly Tyr
545 550

<210> 16
<211> 661
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 16
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
1 5 10 15
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
20 25 30
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
35 40 45
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
50 55 60
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
65 70 75 80
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
85 90 95
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
100 105 110
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
115 120 125
Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
130 135 140
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
145 150 155 160
Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
165 170 175
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
180 185 190
Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
195 200 205
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
210 215 220
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
225 230 235 240
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
245 250 255
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
260 265 270
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
275 280 285

Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
290 295 300

Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
305 310 315 320

Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
325 330 335

Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val
340 345 350

Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
355 360 365

Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
370 375 380

Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser
385 390 395 400

Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
405 410 415

Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser
420 425 430

Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
435 440 445

Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
450 455 460

Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
465 470 475 480

Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
485 490 495

Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
500 505 510

Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
515 520 525

Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
530 535 540

Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
545 550 555 560

Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
565 570 575

Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly
580 585 590

Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
595 600 605

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
645 650 655

Met Pro Phe Pro Met
660

Gly Phe Ser Gln Gly Val Val Pro Tyr Lys Thr Arg Val Leu Pro Leu
290 295 300

Thr Glu Glu Leu Met Thr Pro Gly Val Pro Val Thr Cys Ile Tyr Gly
305 310 315 320

Arg Gly Val Asp Thr Pro Glu Val Leu Met Tyr Gly Lys Gly Gly Phe
325 330 335

Asp Lys Gln Pro Glu Ile Lys Tyr Asp Gly Asp Gly Thr Val Asn
340 345 350

Leu Ala Ser Leu Ala Ala Leu Lys Val Asp Ser Leu Asn Thr Val Glu
355 360 365

Ile Asp Gly Val Ser His Thr Ser Ile Leu Lys Asp Glu Ile Ala Leu
370 375 380

Lys Glu Ile
385

<210> 18
<211> 389
<212> PRT
<213> Arabidopsis thaliana

<400> 18
Leu Lys Lys Glu Gly Leu Lys Ala Lys His Pro Val Val Phe Ile Pro
1 5 10 15
Gly Ile Val Thr Gly Gly Leu Glu Leu Trp Glu Gly Lys Gln Cys Ala
20 25 30
Asp Gly Leu Phe Arg Lys Arg Leu Trp Gly Gly Thr Phe Leu Cys Trp
35 40 45
Val Glu His Met Ser Leu Asp Asn Glu Thr Gly Leu Asp Pro Ala Gly
50 55 60
Ile Arg Val Arg Ala Val Ser Gly Leu Val Ala Ala Asp Tyr Phe Ala
65 70 75 80
Pro Gly Tyr Phe Val Trp Ala Val Leu Ile Ala Asn Leu Ala His Ile
85 90 95
Gly Tyr Glu Glu Lys Asn Met Tyr Met Ala Ala Tyr Asp Trp Arg Leu
100 105 110
Ser Phe Gln Asn Thr Glu Arg Asp Gln Thr Leu Ser Arg Met Lys Ser
115 120 125
Asn Ile Glu Leu Met Val Ser Thr Asn Gly Gly Lys Lys Ala Val Ile
130 135 140
Val Pro His Ser Met Gly Val Leu Tyr Phe Leu His Phe Met Lys Tryp
145 150 155 160
Val Glu Ala Pro Ala Pro Leu Gly Gly Gly Gly Pro Asp Trp Cys
165 170 175
Ala Lys Tyr Ile Lys Ala Val Met Asn Ile Gly Gly Pro Phe Leu Gly
180 185 190
Val Pro Lys Ala Val Ala Gly Leu Phe Ser Ala Glu Ala Lys Asp Met
195 200 205
Arg Met Thr Arg Thr Trp Asp Ser Thr Met Ser Met Leu Pro Lys Gly
210 215 220
Gly Asp Thr Ile Trp Gly Gly Leu Asp Trp Ser Pro Glu Leu Pro Asn
225 230 235 240
Ala Pro Glu Met Glu Ile Tyr Ser Leu Tyr Gly Val Gly Ile Pro Thr
245 250 255
Glu Arg Ala Tyr Val Tyr Lys Leu Asn Gln Ser Pro Asp Ser Cys Ile
260 265 270
Pro Phe Gln Ile Phe Thr Ser Ala His Glu Glu Asp Glu Asp Ser Cys
275 280 285

Leu Lys Ala Gly Val Tyr Asn Val Asp Gly Asp Glu Thr Val Pro Val
290 295 300

Leu Ser Ala Gly Tyr Met Cys Ala Lys Ala Trp Arg Gly Lys Thr Arg
305 310 315 320

Phe Asn Pro Ser Gly Ile Lys Thr Tyr Ile Arg Glu Tyr Asn His Ser
325 330 335

Pro Pro Ala Asn Leu Leu Glu Gly Arg Gly Thr Gln Ser Gly Ala His
340 345 350

Val Asp Ile Met Gly Asn Phe Ala Leu Ile Glu Asp Ile Met Arg Val
355 360 365

Ala Ala Gly Gly Asn Gly Ser Asp Ile Gly His Asp Gln Val His Ser
370 375 380

Gly Ile Phe Glu Trp
385

<210> 19
<211> 1986
<212> DNA
<213> *Saccharomyces cerevisiae*

<220>
<221> CDS
<222> (1)..(1983)

<400> 19
 atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct 48
 Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
 1 5 10 15

 gat gaa aac aat aaa ggg ggt tct gtt cat aac aag cga gag agc aga 96
 Asp Glu Asn Asn Lys Gly Ser Val His Asn Lys Arg Glu Ser Arg
 20 25 30

 aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt 144
 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
 35 40 45

 att agt ggc agt gca aaa aga aat gag cgt ggc aza gat ttc gac agg 192
 Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
 50 55 60

 aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctt 240
 Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
 65 70 75 80

 att ttc att ctt ggt gca ttc tta ggt gta ctt ttg ccg ttt agc ttt 288
 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
 85 90 95

 ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt 336
 Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
 100 105 110

 gta aat ttt gat tca ctt aaa gtg tat ttg gat gat tgg aaa gac gtt 384
 Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
 115 120 125

 ctc cca caa ggt ata agt tcg ttt att gat gat att cag gct ggt aac 432
 Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
 130 135 140

 tac tcc aca tct tct tta gat gat ctc agt gaa aat ttt gcc gtt ggt 480
 Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
 145 150 155 160

 aaa caa ctc tta cgt gat tat aat atc gag gcc aza cat cct gtt gta 528
 Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
 165 170 175

 atg gtt cct ggt gtc att tct acg gga att gaa aac agc tgg gga gtt att 576
 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
 180 185 190

gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205	624
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215 220	672
ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccc aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 225 230 235 240	720
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255	768
gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270	816
ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285	864
gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300	912
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Giv Glu Lys Val Cys Leu 305 310 315 320	960
att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Phe Tyr Phe Met Lys Trp 325 330 335	1008
gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val 340 345 350	1056
aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly 355 360 365	1104
gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr 370 375 380	1152
att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser 385 390 395 400	1200
aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 405 410 415	1248
atg cta cca aag gga gaa gag gtc att tgg ggg gat atg aag tca tct Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser 420 425 430	1296

tca gag gat gca ttg aat aac aac act gac aca tac ggc aat ttc att Ser Glu Asp Ala Leu Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 435 440 445	1344
cga ttt gaa agg aat acg agc gat gct ttc aac aaa aat ttg aca atg Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450 455 460	1392
aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 465 470 475 480	1440
aga aga gta cat gag cag tac tcg ttc ggc tat tcc aag aat gaa gaa Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 485 490 495	1488
gag tta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 500 505 510	1536
gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 515 520 525	1584
ggg gtg aac aac cca act gaa egg gca tat gta tat aag gaa gag gat Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp 530 535 540	1632
gac tcc tct gct ctg aat ttg acc atc gac tac gaa agc aag caa cct Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro 545 550 555 560	1680
gta ttc ctc acc gag ggg gac gga acc gtt ccg ctc gtc gcg cat tca Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser 565 570 575	1728
atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga Met Cys His Lys Trp Ala Gin Gly Ala Ser Pro Tyr Asn Pro Ala Gly 580 585 590	1776
att aac gtc act att gtg gaa atg aaa cac cag cca gat cga ttc gat Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 595 600 605	1824
ata cgt ggt gga gca aaa agc gcc gaa cac gta gac atc ctc ggc agc Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 610 615 620	1872
gcg gag ttg aac gat tac atc ttg aaa att gca agc ggt aat ggc gat Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 625 630 635 640	1920
ctc gtc gag cca cgc caa ttg tct aat ctg agc cag tgg gtc tcc cag Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln 645 650 655	1968
atg ccc ttc cca arg taa Met Pro Phe Pro Met 660	1986

<210> 20
<211> 661
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 20
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
1 5 10 15
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
20 25 30
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
35 40 45
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
50 55 60
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
65 70 75 80
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
85 90 95
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
100 105 110
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
115 120 125
Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
130 135 140
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
145 150 155 160
Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
165 170 175
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
180 185 190
Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
195 200 205
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
210 215 220
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
225 230 235 240
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
245 250 255
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
260 265 270
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
275 280 285

Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
290 295 300

Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
305 310 315 320

Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
325 330 335

Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val
340 345 350

Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
355 360 365

Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
370 375 380

Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Ieu Glu Lys Phe Phe Ser
385 390 395 400

Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
405 410 415

Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser
420 425 430

Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
435 440 445

Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
450 455 460

Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
465 470 475 480

Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
485 490 495

Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
500 505 510

Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
515 520 525

Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
530 535 540

Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
545 550 555 560

Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
565 570 575

Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly
580 585 590

Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
595 600 605

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
645 650 655

Met Pro Phe Pro Met
660

<210> 21
<211> 1986
<212> DNA
<213> *Saccharomyces cerevisiae*

<220>
<221> CDS
<222> (1) . . (1983)

<400> 21
atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct 48
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
1 5 10 15

gat gaa aac aat aaa ggg ggt tct gtt cat aac aag cga gag agc zga	96	
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg		
20	25	30

```

aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt 144
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
          35           40           45

```

att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat ttc gac agg	192
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg	
50 55 60	

aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg 240
 Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
 65 70 75 80

att ttc att ctt ggt gca ttc tta ggt gta ctt ttg ccg ttt agc ttt 288
 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
 85 90 95

```

ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt 336
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
          100           105           110

```

gta aat ttt gat tca ctt aaa gtg tat ttg gat gat tgg aaa gat gtt 384
 Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
 115 120 125

ctc cca caa ggt ata agt tcg ttt att gat gat att cag gct ggt aac 432
 Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
 130 135 140

```

tac tcc aca tct tct tta gat gat ctc agt gaa aat ttt gcc gtt ggt 480
Tyr Ser Thr Ser Ser Ile Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
145           150           155           160

```

aaa caa ctc tta cgt gat tat aat atc gag gcc aaa cat cct gtt gta 528
 Lys Gin Leu Leu Arg Asp Tyr Asn Ile Clu Ala Lys His Pro Val Val
 165 179 175

atg gtc cct ggt gtc act tct acg gga att gaa agc tgg gga gtt att 576
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
180 185 190

gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205	624
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215 220	672
ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 225 230 235 240	720
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Ieu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255	768
gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270	816
ggc tat gaa ccc aat aaa atg acg agt gct gcg cat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285	864
gca tat tta gat cta gaa aga cgc gat egg tac ttt acg aag cta aag Ala Tyr Ieu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300	912
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320	960
att gga cat tct atg ggt tct cag att acc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp 325 330 335	1008
gic gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val 340 345 350	1056
aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly 355 360 365	1104
gct cca aag gca gtt cca gct cta att aat ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr 370 375 380	1152
att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gin Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser 385 390 395 400	1200
aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 405 410 415	1248
atg cta cca aag gga gaa gag gtc att egg ggg gat atg aag tca tct Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser 420 425 430	1296

tca gag gat gca ttg aat aac aac act gac aca tac ggc aat ttc att Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 435 440 445	1344
cga ttt gaa agg aat acg agc gat gct ttc aac aaa aat ttg aca atg Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450 455 460	1392
aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 465 470 475 480	1440
aga aga gta cat gag cag tac tcg ttc ggc tat tcc aag aat gaa gaa Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 485 490 495	1488
gag tta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 500 505 510	1536
gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 515 520 525	1584
ggg gtg aac aac cca act gaa agg gca tat gta tat aag gaa gag gat Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp 530 535 540	1632
gac tcc tct gct ctg aat ttg acc atc gac tac gaa agc aag caa cct Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro 545 550 555 560	1680
gta ttc ctc acc gag ggg gac gga acc gtt ccg ctc gtg gcg cat tca Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser 565 570 575	1728
atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga Met Cys His Trp Ala Cln Gly Ala Ser Pro Tyr Asn Pro Ala Gly 580 585 590	1776
att aac gtt act att gtg gaa atg aaa cac cag cca gat cga ttt gat Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 595 600 605	1824
ata cgt ggt gga gca aaa agc gcc gaa cac gta gac atc ctc ggc agc Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 610 615 620	1872
gcg gag ttg aac gat tac atc ttg aaa att gca agc ggt aat ggc gat Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 625 630 635 640	1920
ctc gtc gag cca cgc caa ttg tct aat ttg agc cag cgg gtt tct cag Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gin 645 650 655	1968
atg ccc ttc cca atg taa Met Pro Phe Pro Met 660	1986

<210> 22
<211> 661
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 22
Met Gly Thr Leu Phe Arg Arg Asn Val Gin Asn Gln Lys Ser Asp Ser
1 5 10 15
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
20 25 30
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
35 40 45
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
50 55 60
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
65 70 75 80
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
85 90 95
Cly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
100 105 110
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
115 120 125
Leu Pro Gln Cly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
130 135 140
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
145 150 155 160
Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
165 170 175
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
180 185 190
Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
195 200 205
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
210 215 220
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
225 230 235 240
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
245 250 255
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
260 265 270
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
275 280 285

Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
290 295 300

Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
305 310 315 320

Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
325 330 335

Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val
340 345 350

Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
355 360 365

Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
370 375 380

Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser
385 390 395 400

Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
405 410 415

Met Leu Pro Lys Gly Glu Val Ile Trp Gly Asp Met Lys Ser Ser
420 425 430

Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
435 440 445

Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
450 455 460

Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
465 470 475 480

Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
485 490 495

Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
500 505 510

Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
515 520 525

Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
530 535 540

Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
545 550 555 560

Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
565 570 575

Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly
580 585 590

Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
595 600 605

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
610 615 620
Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
625 630 635 640
Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
645 650 655
Met Pro Phe Pro Met
660

<210> 23
<211> 2312
<212> genomic DNA
<213> *Schizosaccharomyces pombe*

<210> 24
<211> 3685
<212> genomicDNA
<213> *Arabidopsis thaliana*

tggtttgttc tgcttttca gattaccgaa tgctcctgag atggaaatct actcattata 3240
cggagtgggg ataccaaacgg aacgagcata cgtataacaag cttaaccagt ctcccgacag 3300
ttgcattccc tttagatat tcacttctgc tcacgaggag gacgaagata gctgtctgaa 3360
agcaggagtt tacaatgtgg atggggatga aacagtaccc gtcctaagtg ccgggtacat 3420
gttgtcaaaa gcgtggcgtg gcaagacaag attcaaccct tccggaatca agacttatat 3480
aagagaatac aatcacitc cgcggctaa cctgttggaa gggcgccggc cgagagtg 3540
tgccccatgtt gatatcatgg gaaactttgc ttgtatcgaa gatatcatga gggtgccgc 3600
cgaggttaac gggctcgata taggacatga ccaggtccac tctggcatat ttgaatggtc 3660
ggagcgtatt gacctgaagc tgtga 3685

<210> 25
<211> 402
<212> cDNA
<213> Arabidop

<220>
<221> CDS
<222> (120) .. (401)

<400> 25

agaaaacagct ctttgtctct ctcgactgtat ctaacaatcc ctaatctgtg ttctaaattc 60

```

ctggacgaga tttgacaaag tccgtatagc ttaacctggt ttaatttcaa gtgacagat 119
atg ccc ctt att cat cgg aaa aag ccg acg gag aaa cca tcg acg ccg 167
Met Pro Leu Ile His Arg Lys Lys Pro Thr Glu Lys Pro Ser Thr Pro
   1           5             10            15

```

cca tct gaa gag gtg gtg cac gat gag gat tcg caa aag aaa cca cac 215
Pro Ser Glu Glu Val Val His Asp Glu Asp Ser Gln Lys Lys Pro His
20 25 30

gaa tct tcc aaa tcc cac cat aag naa tcg aac gga gga ggg aag tgg 263
 Glu Ser Ser Lys Ser His His Lys Xaa Ser Asn Gly Gly Gly Lys Trp
 35 40 45

tgc tgc atc gat tct tgt tgg ttc att ggg tgt gtg tgt gta acc 311
Ser Cys Ile Asp Ser Cys Cys Trp Phe Ile Gly Cys Val Cys Val Thr
50 55 60

tgg tgg ttt ctt ctc ttc ctt tac aac gca atg cct gcg agc ttc cct 359
Trp Trp Phe Leu Leu Phe Leu Tyr Asn Ala Met Pro Ala Ser Phe Pro
65 70 75 80

cag tat gta acg gag ccg aat cac gng tcc ttt gcc tta ccc g 402
 Gln Tyr Val Thr Glu Pro Asn His Xaa Ser Phe Ala Leu Pro
 85 90

<210> 27
<211> 115
<212> PRT
<213> Zea mays

<400> 30
Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
1 5 10 15
Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly
20 25 30
Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val
35 40 45
Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
50 55 60
Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile
65 70 75 80
Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly
85 90 95
Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys
100 105 110
Leu Lys Leu
115

<210> 28
<211> 516
<212> cDNA
<213> *Neurospora crassa*

<210> 29
<211> 1562
<212> genomic DNA
<213> *Arabidopsis thaliana*

<400> 29
atgaaaaaaaa tatcttcaca ttattcgta gtcataloga tactcggtgt ggtgacgatg 60
acctcgatgt gtcaagctgt ggtagcaac gtgtaccctt tgattctgggt tccaggaaac 120
ggaggttaacc agcttagaggt acggctggac agagaataca agccaagtag tgcgtgggt 180
agcagctggt tatatccgt tcataagaaga agtgggtggat ggttaggct atggttcgat 240
gcagcagtgt tattgtctcc ctteaccagg tgcttcagcg atcgaatgtat gttgtactat 300
gaccctgatt tggatgatta cccaaatgtct cctgggtgtcc aaacccgggt tcctcatttc 360
ggtcgacca aatcactct atacactcgac cctcgctctcc ggtagtact ttccaagata 420
tatcattttg ggcatttgc ataatgaaca aaatagacat aaatttgggg gattatttgtt 480
atataaatat ccatttatat gctagtcgtt aatgtgagtg ttatgttagt atagttatg 540
tgagtgttat gtgatttcc attttaatg aagctgaaaaa gttgtcgaaa aataatgttg 600
ctatgtcatg agaattataa ggacactatg taaatgttagc ttaataataa gttttgattt 660
gcagagatgc cacatcttac atgaaacatt tggtaaaagc tctagagaaa aaatgcgggt 720
atgttaacga ccaaaccatc ctaggagtc catatgattt caggtacggc ctggctgttt 780
cgggccaccc gtcccgtgt gcctcacagt tcctacaaga cctcaaaacaa ttgggtggaa 840
aaacttagcag cgagaaccaa ggaagccag tgataactctt ctccccatgc ctaggaggac 900
tttgcgtctt ccatttcctc aaccgttacca ccccttgcgt ggcgcgcac tacatcaaac 960
acttgcgtgc actcgctgcg ccatgggtgt ggacgatctc tcagatgaag acatttgctt 1020
ctggcaacac acctgggtgtc ccttagtta acctttgtt ggtcagacgg catcagagga 1080
cctccgagag taaccaatgg ctacttccat ctaccaaagt gtttacgcac agaactaaac 1140
cgcttgcgtt aactccccag gtttaactaca cagcttacga gatggatcggttttgcag 1200
acattggatt ctacacaagga gttgtgcctt acaagacaaag agtgcgtgc ttaacagagg 1260
agctgatgac tccgggagtg ccagtcactt gcataatgtt gagaggagtt gatacacccgg 1320
aaqttttgcgt qtatggaaaa ggaggattcg ataagcaacc agagatzaag tatggagatg 1380
gagatgggac ggttaatttg gcgagcttag cagcttggaa agtgcgtatgc ttgaacacccg 1440
tagagattga tggagttcg catacatcta tacttaaaga cgagatcgca cttaaagaga 1500
ttatgttgcata gatttcaattt attaattatg aattagccaa tggtaatgcgtcaatgaat 1560
ga 1562

<210> 30
<211> 3896
<212> genomic DNA
<213> *Arabidopsis thaliana*

<400> 30
atggggaggcgaa attcgaaatc agtaacggct tccttcaccg tcatacgccgt ttttttcttg 60
atttgcgggtg gccgaactgc ggtggaggat gagaccegagt ttacacggcgaa ctactcgaag 120
ctatcggtta taatcatccccc gggatttgcg tcgacgcagc tacgagcgtg gtcgatccct 180
gactgtccat acactccgtt ggacttcaat ccgetcgacc tcgtatggct agacaccact 240
aagggtccgtg atcttcattt ctttcgcctcc ttatttcgtc ggtcgagtc cttgttgcgt 300
aattccaagc gaaatatacg aatgaagcat gtctcgictc tcttattgtat tcgttccatta 360
gtcaacagtg aegcttctga atctcgatgtt agagtcatat aaaacagctg actcgccgag 420
tggttccat cgcttttgtt tcgctaaat tagcgcataa atgtgttaat tagtctgcgc 480
tttttattca actagatctg caagttttc agagtgctca atagtagtta gaaaatgtta 540
ggtcattttt cttgtgcattt gtgattctt tggttgcgtt tcactgtatcg acgtgtatgg 600
tggtttacag ctteccccgt ctgtcaactg ctgggttaag tggatggatc tagatoccta 660
taatcaaaca gccccatcccg aegtgtaagtc acggccgtc acgtgttctt cagccatcac 720
agaattggat ccaggttaca taacaggtag tttcggtttt ttctttctt tgagtttct 780
tcaattttatgtt atcatcttgc tttgtatataa tttggcttaag ttcttattt tggtcaattt 840
tcaggtccctt ttcttactgt ctggaaagag tggcttaagt ggtgtgttgc gtttggatata 900
gaagcaaaatg caattgtcgc ttttccatccatc gatggatgt ttttgcaccaac caaattggaa 960
gagcgtgacc ttatccatca caagctcaag ttatgtctta tcaggctaat gtctttatc 1020
tttctttttt atgtaaatg agctaaagac ctgtgtcgcc ttccctttttt caggttgacc 1080
tttggaaacty cttaaaact ccgtggccgc cttttttatag tttttggccca ttcaatgggt 1140
aataatytct tcagatactt ttttggaaatgg ctgaggcttag aaatttgaccc aaaacattat 1200
tttggatggc ttgtatcgtca ttttccatgt ttttgcgtt ttttgcgttgc ctttactatcc 1260
ttttaatgttacc atttttatcc ttcttcaattt gggggatgtt ttttgcgttact tactggattt 1320
agctcgatatac ctgttgcgtt gttgattttag gagctctct ttttgcgttgc gttgaggccaa 1380
tcaaaatctac tttttttttt gtaacgtttt gccttctgtt ttcttgcgttgc acctctgtact 1440
ttttttttttt tttttaatgttgc ttttgcgttgc ttttgcgttgc aacttactgg attttccctt 1500
tttggaaatgtt accttttgttta attgtactgc ttgtacgcgtt atggatctgt tagatcttgc 1560
agtgttagtt atcaaaagaaatc atattgtggg tagtatactt gtcaacggcc ttactataa 1620
caacccaaacc acatgtacac tttttttttt ttttgcgttgc ttttgcgttgc ttttgcgttgc 1680
gaagaaactt tgactgaaatcc tttttttttt ttttgcgttgc ttttgcgttgc ttttgcgttgc 1740
ttttttttttt ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc aaggcttcag ggaactgtctc 1800
ggttttttttt ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 1860
gggggtatataa casatccctgg acgtttttt ttttgcgttgc ttttgcgttgc ttttgcgttgc 1920
tataccactg tgatggatgg gaaatataatc ttttgcgttgc ttttgcgttgc ttttgcgttgc 1980
ttttaacatgtt aatttccctcc actacgggtt agactctgtt ttttgcgttgc ttttgcgttgc 2040
aaaaggttca ccaagaatgt ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2100
tacagaaaca gctcttagtca acatgaccac ttttgcgttgc ttttgcgttgc ttttgcgttgc 2160
tttccacagcc cttttttttt ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2220
agatagacaaatgg aggtgtttttt accgtttttt gaaatgttgc ttttgcgttgc ttttgcgttgc 2280
tattttttttt ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2340
ttttttttttt ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2400
ttttttttttt ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2460
atgtatgttca aagggggtttt ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2520
taatagcgcc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2580
atacttttttca ggttttttttca ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2640
ccacccatataa aaaaatgtttt ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2700
atccctcaata ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2760
tcttttttttca ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2820
tttttttttttca ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2880
tacccctgttca ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 2940
aggtaatttt ccgttttttttca ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3000
gtggcatgtt atccctgttca ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3060
tttttttttttca ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3120
tggaaatgttca caettttttttca ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3180

tcatattatt aggagtagtc gtgctttaa aaaatttgtt ttaagaaacc gaaaaactag 3240
ttcatatctt gattgtgcaa tatctgcagg tctggactg tggttgatgg gaacgctgga 3300
cctataactg gggatgagac ggttaagctca gaagtgggtt ttgaattat cttcttgcaa 3360
actactgaag actaagataa tacttgctc tggAACACTG CTTCTATGT TCTCTAGTAC 3420
actgcaatat tgactctccg ctactttat tgattatgaa attgatctct tataggtacc 3480
ctatcattca ctctcttgggt gcaagaattg gctcgaccc aaagtttaca taacaatggc 3540
tccccaggtt ctcttttttta gttccctcacc ttatataaat caaactttaa gtgtactttt 3600
ctggttatgt gttgatttac ctccaacttg ttctttctaa aaatcatata tctctgtact 3660
cctcaagaac ttgttattaat ctAAACGAGA TTCTCATGG GAAAATAAAA CAACAGCCAG 3720
aacacgatgg aagcgacgta catgtggAAC taaatgttga tcattgagcat gggtcagaca 3780
tcatalogctaa catgacaaaaa gcaccaaggg ttaagtacat aacctttat gaagactctg 3840
agagcattcc gggaaagaga accgcagtc gggagcttga taaaagtggg tattaa 3896

<210> 31
<211> 709
<212> cDNA
<213> tomato

<400> 31
ctggggccaa aagtgaacat aacaaggaca ccacagttag agcatgtat tcagatgtac 60
aagtgcatac aaataatacg catcaacatg gtgaagatat cattccaaat atgacaaagt 120
tacctacaat gaagtacata acctattatg aggattctga aagtttcca gggacaagaa 180
cagcagtttg ggagcttgat aaagcaaata acaggaacat tgcagatct ccagtttga 240
tgccggagct tggtgtcgat atgtggcatg atattcatcc tgataaaaaag tccaagttt 300
ttacaaaagg ttgtgtcgat tcctcaactat ttcttcctat aaatgttga gtttgtat 360
acattgttaag tattgcaaca aaaagcaaag cgtgggcctc tgaggatga ggactgctat 420
tgggattacg ggaaagctcg atgtgcattt gtcacattt gtgcatacg gttagaatat 480
tcaaattata ttttgcaaaa tattctttt ttgtgtatggccacett tccccggta 540
caacgatgca gatatgtatt cggggatgtt cacctggac agatgtcag attgaagagt 600
tctacatctc acatctgtc acactatgtg tgatatttaa gaaactttgt ttggcggAAC 660
aacaagtttg cacaaacatt tgaagaagaa agcgaaatga ttcagagag 709