based clustering?

A. the entropy function

B. the squared error function

Course	Name:	Mach	ine Lea	rning (H	1)	Exam	Duratio	n:	2 hou	rs
Dept.:	Depar	tment o	f Comp	uter Sc	ience aı	nd Engi	neering			
Exam Pa	aner Se	tter/Sig	nature).	•						
LX	арсі Ос	itor (Oig	ilatai o).							
Question			_	4	_		7	0	0	10
No.	1	2	3	4	5	6	7	8	9	10
Score	20	40	40	10						
This exar	n paper	contains	_4_ que	estions a	nd the s	core is _	<u>110</u> ir	total. (F	lease ha	and in
your exar	n paper.	answer s	sheet, an	d vour so	rap pape	er to the r	proctor w	hen the e	exam end	ls.)
you. ona.	раро.,			a	. op popo					,
Proble	m I Mı	ultiple	Choice	e (20 Pc	oints)					
(only one		_		-	,					
1. (2 pc	oints) Th	ree essen	tial comp	ponents o	of a learn	ing syste	m are	·		
	A. mod	el, gradie	ent desce	nt, learni	ng algori	thm				
	B. erro	r function	, model,	learning	algorith	n				
	C. accu	racy, sen	sitivity, s	pecificity	y					
	D. mod	el, error f	function,	cost fund	ction					
2. (2 pc	oints) Th	e objecti	ve of ma	chine lea	rning is t	o minimi	ze	_•		
	A. the l	KL diverg	gence bet	ween rea	l-world d	lata and t	he traine	d probab	ilistic mo	odel
	B. the l	the KL divergence between training data and the trained probabilistic model								
	C. the l	the KL divergence between real-world data and training data								
	D. the I	KL diverg	gence bet	ween trai	ning data	a and pre	diction d	ata		
3. (2 pc	oints) W	hat is the	loss fund	ction mos	st suited t	or linear	regressi	on?		
_		entropy fu			ot Builder	or inicar	regressi	on.		
		squared e		tion						
		cross-entr								
		number of								
4. (2 pc	oints) W	hat is the	loss fund	ction mos	st suited f	for proba	bilistic d	ensity mi	xture mo	odel

	C.	the likelihood function of complete data
	D.	the likelihood function of incomplete data
5.	(2 point	ts) The differences between the generative and discriminative approaches include
	A.	that the former has less parameters
	B.	that the former cannot add a new class
	C.	that the latter emphasizes the boundary among classes
	D.	that the latter can be trained faster
6.	(2 poin	ts) Neural networks can NOT be regularized by using
	A.	using a prior on model parameters
	B.	data augmentation
	C.	node dropping out
	D.	ReLU activation
7.	(2 point	ts) The advantages of the hidden Markov model DO NOT include
	A.	global convergence
	B.	fast estimation algorithm
	C.	unsupervised learning
	D.	capability of modeling both continuous and discrete data
8.	(2 poin	ts) The advantages of using ReLU as activation functions DO NOT include
	A.	reducing gradient vanishing
	В.	reducing gradient explosion
	C.	encouraging model sparsity
	D.	increasing computational efficiency
9.	(2 point	ts) Which of the following is NOT a way to reduce the model overfitting?
	A.	increase the amount of training data
	B.	improve the optimization algorithm being used for error minimization
	C.	decrease the model complexity
	D.	reduce the noise in the training data
10.	(2 point	ts) Which of the following statements is NOT true for Bellman equations?
	A.	it can be used to estimate state value functions
	B.	it is can be solved by using dynamic programing, Monti Carlo, and temporal
		difference approaches
	C.	solving Bellman equation requires environment models
	D.	its fixed point is the optimal policy

Problem II Numerical Calculation (40 Points)

- (1) **Linear Regression (5 points)**. For three points $\{(1, 4), (2, 8), (3, 14)\}$, what is the linear regression function for the least squared errors (assuming $y = a_2x^2 + a_1x + a_0$)?
- (2) **Supervised Classification (5 points)**. For class A of two points $\{(1, 2) (2, 1)\}$ and class B of two points $\{(4, 1) (3, 4)\}$, what are the labels for points $\{(2,2) (3,3)\}$ using the K-NN algorithm (*where K*=3)?
- (3) **Maximum margin classifier (5 points)**. For one class of two points {(1, 2) (2, 2)} and another class of two points {(4, 4) (5, 6)}, what are the support vectors and what is the decision boundary's function (*plot your answer*)?
- (4) **Clustering** (**5 points**). For four points with two classes, {(1, 2) (2, 2) (4, 4) (5, 6)}, how to achieve two cluster centers using the K-means algorithm (*outline the algorithm and show the details of one iteration*)?
- (5) **Factor Graph** (10 points). How to design a factor graph to solve the following linear Gaussian system: $[3\ 3]^T = [1\ 1\ 1;\ 0\ 2\ 1][x_1\ x_2\ x_3]^T$? Assuming the initial Gaussian distributions of X is $\{[m_1,\ \sigma_1],\ [m_2,\ \sigma_2],\ [m_3,\ \sigma_3]\}$, outline the whole computation procedure and show the details of one iteration.
- (6) **Hidden Markov Model (10 points)**. For a HMM, the states of latent variables are {bull, bear}, the states of observation variables are {rise, fall}, the initial state probability distribution π is $[0.5 \ 0.5]^T$, the transition probability distribution A is $[0.4 \ 0.7; \ 0.6 \ 0.3]$, and the observation probability distribution B is $[0.8 \ 0.1; 0.2 \ 0.9]$. If the observation sequence X is {fall fall rise}, please show the computation procedure for $p(z_1|X, \theta)$ and $p(z_1, z_2|X, \theta)$ using the forward-backward algorithm, where z_n is the latent variable at time n and $\theta = {\pi, A, B}$?

Problem III Theoretical Analysis (40 Points)

- (1) What is the EM procedure? When do we need the EM procedure for machine learning? Please give a specific example.
- (2) What is the EM procedure in terms of the Q function? Please give the detailed equations assuming that X is the observed variable, Z is the latent variable and θ is the model parameter.
- (3) What is the EM procedure in terms of likelihood and KL divergence? Please give the detailed equations and plots to illustrate the procedure.
- (4) What is the EM procedure in terms of optimization of non-convex function? Please give a plot to illustrate the procedure.
- (5) What is the EM procedure for the factor graph network model? Please give an example.

Course Name: Machine Learning (H)

Problem IV Reinforcement Learning (Bonus 10 Points)

- (1) What is the Bellman equation? How to solve the Bellman equation?
- (2) What are the differences between policy iteration and value iteration? What are their advantages and disadvantages respectively?
- (3) What is the model-free reinforcement learning? How to achieve the mode-free reinforcement learning? Please use specific examples to illustrate your points.
- (4) What are the differences between on-line and off-line RL? What are their advantages and disadvantages respectively? Please use specific examples to illustrate your points.
- (5) What are the differences between on-policy and off-policy RL? What are their advantages and disadvantages respectively? Please use specific examples to illustrate your points.