

LINEAR REGRESSION

Machine Learning Course Balázs Nagy, PhD

Linear regression with one variable

You have data for profits and populations from different cities. You would like to use this data to help you select which city to expand your food truck company.

One variable linear regression

You have data for profits and populations from different cities. You would like to use this data to help you select which city to expand your food truck company.

It can be a Supervised Learning Task

Model

- m number of training examples
- x input variable
- y output variable
- (x, y) one training example
- $(x^{(i)}, y^{(i)}) i^{th}$ training example

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Mean Squared

Error (MSE)

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Mean Squared

Error (MSE)

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$

Cost function

Gradient Descent method

- Have some cost function: $J(\Theta_0, \Theta_1)$
- Want to minimize cost function
- Outline:
 - Start with some Θ_{0} , Θ_{1} (Θ_{0} =0, Θ_{1} =0)
 - Keep changing Θ_{o} , Θ_{i} to reduce $J(\Theta_{o}, \Theta_{i})$ until we hopefully end up at a minimum.

Gradient Descent visualization

Gradient Descent visualization

Gradient Descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) }
```

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Learning rate

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

- If α is too **small**, gradient descent can be **slow**.
- If α is too **large**, gradient descent can **overshoot** the minimum. It may **fail to converge**, or even diverge.

Learning rate

2024. 08. 02.

Learning rate

- Gradient descent can converge to a local minimum, even with a fixed learning rate.
- As we approach a local minimum, gradient descent will automatically take smaller steps. No need to decrease α over time.

Modell integration

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
(for $j = 1$ and $j = 0$)
}

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Modell integration

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

where the hypothesis $h_{\theta}(x)$ is given by the linear model

$$h_{\theta}(x) = \theta^{T}x = \theta_{0} + \theta_{1}x_{1}$$

$$egin{aligned} heta_0 &:= heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) \ heta_1 &:= heta_1 - lpha rac{1}{m} \sum_{i=1}^m ((h_ heta(x_i) - y_i) x_i) \end{aligned}$$

 "Batch" Gradient Descent: Each step of gradient descent uses all the training examples.

Linear regression with multiple features

One variable

Size (feet²)	Price (\$1000)	
x	y	
2104	460	
1416	232	
1534	315	
852	178	
•••		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Linear regression with multiple features

One variable

Size (feet²)	Price (\$1000)	
x	y	
2104	460	
1416	232	
1534	315	
852	178	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple variables

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Linear regression with multiple features

 $x_{j}^{(i)}$ = value of feature j in the i^{th} training example

 $x^{(i)}$ = the input (features) of the i^{th} training example

m =the number of training examples

n =the number of features

$$X = \begin{bmatrix} - & (x^{(1)})^T & - \\ - & (x^{(2)})^T & - \\ \vdots & & \\ - & (x^{(m)})^T & - \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}.$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

$$h_{ heta}(x) = \left[egin{array}{cccc} heta_0 & & heta_1 & & \dots & & heta_n
ight] egin{bmatrix} x_0 \ x_1 \ dots \ x_n \end{bmatrix} = heta^T x$$

$$x_0^{(i)}=1 ext{ for } (i\in 1,\ldots,m).$$

$$J(\theta) = \frac{1}{2m} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

• This allows us to do matrix operations.

Modifying Gradient Descent algorithm

```
New algorithm (n \geq 1): Repeat \Big\{ \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} (simultaneously update \theta_j for j = 0, \dots, n)
```

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Feature Scaling

- If the variables have different ranges, it can slow down the convergence
 - For example: $x_1 = \text{size } (0-2000 \text{ m}^2)$ $x_2 = \text{number of bedrooms } (1-5)$
- Get every feature into approximately a -1... +1 range.
 - Feature scaling
 - Mean Normalization

$$x_i := \frac{x_i - \mu_i}{s_i}$$

Where μ_i is the **average** of all the values for feature (i) and s_i is the range of values (max - min), or s_i is the standard deviation.

Feature Scaling

Normalized features

Polynomial regression

- Sometimes the given features are not enough or sufficient
- Need more parameters

Normal Equation

Examples: m=4.

$$\theta = (X^T X)^{-1} X^T y$$

Overview

Gradient Descent

- Need to chosse α
- Needs many iterations
- Works well even when *n* is large

Normal Equation

- No need to chose α
- Don't need to iterate
- Need to compute $(X^TX)^{-1}$
- Slow if *n* is very large

Thank you for your attention!