	Sequence	z - transform
1	δ[n]	1
2	u[n]	
3	bn	
4	$b^{n-1}u[n-1]$	1 z - b
5	G _{TD}	$\frac{z}{z - a^2}$
6	n	$\frac{z}{(z-1)^{\frac{z}{2}}}$
7:	n²	$\frac{z(z+1)}{(z-1)^3}$
8	b ⁿ n	b z (z - b) ²
9	e ^{an} n	$\frac{z a^4}{(z - a^4)^2}$
10	sin (an)	$\frac{\sin(a)z}{z^2-2\cos(a)z+1}$
11	b ⁿ sin (an)	$\frac{\sin (a) b z}{z^2 - 2\cos (a) b z + b^2}$
12	cos (an)	z(z-cos(a)) z-2cos(a)z+1
13	b ⁿ cos (an)	$\frac{z (z-b \cos (a))}{z^2-2 \cos (a) b z + b^2}$

Table 9.1. z-transforms of some common sequences.

		Sequence	z - transform
	definition	$x_n = x[n]$	$X(z) = \sum_{n=0}^{\infty} x_n z^{-n}$
1	addition	$X_n + Y_n$	X (z) + Y (z)
2	constant multiple	C X _n	c X (z)
3	linearity	$c x_n + d y_n$	cX(z) + dY(z)
4	delayed unit step	u[n-m]	z ^{1-m} z-1
5	time delay 1 tap	$x_{n-1}u[n-1]$	1 X (z)
6	time delayed shift	$x_{n-m}u[n-m]$	z-m X (z)
7	forward 1 tap	X _{n+1}	z (X (z) - x ₀)
8	forward 2 taps	X _{n+ž}	$z^{2} (X (z) - x_{0} - x_{1} z^{-1})$
9	time forward	X _{D+m}	$z^{m}\left(X\left(z\right)-\sum_{i=0}^{m-1}x_{i}\;z^{-i}\right)$
10	complex translation	ean Xn	X (z e-4)
11	frequency scale	b ⁿ x _n	$X\left(\frac{s}{b}\right)$
12	differentiation	nxn	- z X ' (z)
13	integration	$\frac{1}{n} \times_n$	$-\int \frac{X(z)}{z} dlz$
14	integration shift	$\frac{1}{n+m} \times_n$	$-z^{-m}\int \frac{X(z)}{z^{m+1}} dlz$
15	discrete time convolution	$X_n \star Y_n = \sum_{i=0}^n X_i Y_{n-i}$	X (z) Y (z)
16	convolution with $y_n = 1$	$\sum_{i=0}^{n} x_{i}$	<u>z</u> X (z)
17	initial time	X ₀	lim _{z→∞} X (z)
18	final value	lim _{n→∞} x _n	$\lim_{z\to 1} (z-1) X(z)$

Table of Laplace Transforms

		Table of La	place	Transforms	
	$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\{f(t)\}\$		$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$
1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$
3.	t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	4.	t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{5}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
7.	sin(at)	$\frac{a}{s^2+a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$
17.	$\sinh(at)$	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$
19.	$\mathbf{e}^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$\mathbf{e}^{\omega}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
21.	$\mathbf{e}^{at}\sinh\left(bt\right)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$\mathbf{e}^{\omega}\cosh\left(bt\right)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$
23.	$t^n \mathbf{e}^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{\left(s-a\right)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
25.	$u_c(t) = u(t-c)$ Heaviside Function	$\frac{\mathbf{e}^{-cs}}{s}$	26.	$\delta (t-c)$ Dirac Delta Function	e^{-cs}
27.	$u_c(t) f(t-c)$	$e^{-cs}F(s)$	28.	$u_c(t)g(t)$	$e^{-cs} \mathcal{L} \{g(t+c)\}$
29.	$\mathbf{e}^{ct}f(t)$	F(s-c)	30.	$t^n f(t), n = 1, 2, 3, \dots$	$(-1)^n F^{(n)}(s)$
31.	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$	32.	$\int_0^t f(v)dv$	$\frac{F(s)}{s}$
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	f(t+T)=f(t)	$\frac{\int_0^T \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$
35.	f'(t)	sF(s)-f(0)	36.	f'(t)	$s^2F(s)-sf(0)-f'(0)$
37.	$f^{(n)}(t)$	AND THE RESERVE TO A SECOND PROPERTY.	$s^{n-1}f$	$(0) - s^{n-2} f'(0) \cdots - s f^{(n-2)}$	$f^{(n-1)}(0) = f^{(n-1)}(0)$
37.	$f^{(n)}(t)$	$s^n F(s) - s$	$s^{n-1}f($	0) $-s^{n-2}f'(0)\cdots-sf^{(n-2)}$	$f'(0) - f^{(n-1)}(0)$

$$L\{x\} = \bar{x} = X(s)$$

 $L\{\dot{x}\} = s\bar{x} - x_0$
 $L\{\ddot{x}\} = s^2\bar{x} - sx_0 - x_1$
 $L\{\ddot{x}\} = s^3\bar{x} - s^2x_0 - sx_1 - x_2$

Matrices RULES

Addition/Subtraction of Matrices

$$\begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & \dots & B_{1n} \\ B_{21} & B_{22} & \dots & B_{2n} \\ \dots & \dots & \dots & \dots \\ B_{m1} & B_{m2} & \dots & B_{mn} \end{bmatrix} = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \dots & A_{1n} + B_{1n} \\ A_{21} + B_{21} & A_{22} + B_{22} & \dots & A_{2n} + B_{2n} \\ \dots & \dots & \dots & \dots \\ A_{m1} + B_{m1} & A_{m2} + B_{m2} & \dots & A_{mn} + B_{mn} \end{bmatrix}$$

Matrix Multiplication

Matrix can be Multiplied two ways,

• Scalar Multiplication – It involves multiplying a scalar quantity to the matrix. Every element inside the matrix is to be multiplied by the scalar quantity to form a new matrix.

For example-

$$5 \times \begin{bmatrix} 5 & 7 \\ 12 & 3 \\ 6 & 2 \end{bmatrix} = \begin{bmatrix} 25 & 35 \\ 60 & 15 \\ 30 & 10 \end{bmatrix}$$

• Multiplication of a matrix with another matrix: Two matrices can be multiplied if the number of column of the first matrix is equal to the number of rows of the second matrix.

Consider two matrix M1 & M2, having order of $m_1 \times n_1$ and $m_2 \times n_2$.

The matrices can be multiplied if and only if $n_1 = m_2$.

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}_{1\times 3} \cdot \begin{bmatrix} 2 & 1 & 3 \\ 3 & 3 & 2 \\ 4 & 1 & 2 \end{bmatrix}_{3\times 3} = \begin{bmatrix} 1.2 + 2.3 + 3.4 & 1.1 + 2.3 + 3.1 & 1.3 + 2.2 + 3.2 \end{bmatrix}$$
$$= \begin{bmatrix} 20 & 10 & 13 \end{bmatrix}_{1\times 3}$$

The matrices, given above satisfies the condition for matrix multiplication, hence it is possible to multiply those matrices.

The resultant matrix obtained by multiplication of two matrices, is the order of m_1 , n_2 , where m_1 is the number of rows in the 1st matrix and n_2 is the number of column of the 2nd matrix.

Some rules:

The inverse rules of matrices are as follows:

- AI = IA = A
- $AA^{-1} = A^{-1}A = I$
- (A-1)-1 = A
- (AB)-1 = B-1A-1
- $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$
- $(A')^{-1} = (A^{-1})'$
- A+B=B+A
- c(A+B)=cA+cB
- A+(B+C)=(A+B)+C
- C(A+B)= CA+CB
- (A+B)C=AC+BC
- A(BC) = (AB)C
- AB≠BA

- A+B = B+A →Commutative Law of Addition
- A+B+C = A +(B+C) = (A+B)+C →Associative law of addition
- ABC = A(BC) = (AB)C → Associative law of multiplication
- A(B+C) = AB + AC → Distributive law of matrix algebra
- R(A+B) = RA + RB

Also, see here rules for transposition of matrices:

- (A')' = A
- (A+B)' = A'+B'
- (AB)' = B'A'
- (ABC) = C'B'A'

Find the inverse A-1 of the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

$$A^{-1} = adj(A) / det(A) = adj(A) / |A|$$

$$|A| = 2 \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} - 1 \begin{vmatrix} 3 & 1 \\ 2 & 2 \end{vmatrix} + 1 \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix}$$

$$|A| = 2(4-1) - 1(6-2) + 1(3-4) = 1$$

 $Adj(A): A_c$

$$A_c = \begin{bmatrix} (4-1) & -(6-2) & (3-4) \\ -(2-1) & (4-2) & -(2-2) \\ (1-2) & -(2-3) & (4-3) \end{bmatrix} = \begin{bmatrix} 3 & -4 & -1 \\ -1 & 2 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

transpose of the cofactor matrix

$$A_c^T = \begin{bmatrix} 3 & -1 & -1 \\ -4 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
$$A^{-1} = \frac{1}{1} \begin{bmatrix} 3 & -1 & -1 \\ -4 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & -1 \\ -4 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Factor in denominator	Term in partial fraction decomposition
ax+b	$\frac{A}{ax+b}$
$(ax+b)^k$	$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_k}{(ax+b)^k}, \ k = 1, 2, 3, \dots$
ax^2+bx+c	$\frac{Ax+B}{ax^2+bx+c}$
$\left(ax^2+bx+c\right)^k$	$\frac{ax^{2} + bx + c}{ax^{2} + bx + c} + \frac{A_{2}x + B_{2}}{\left(ax^{2} + bx + c\right)^{2}} + \dots + \frac{A_{k}x + B_{k}}{\left(ax^{2} + bx + c\right)^{k}}, k = 1, 2, 3, \dots$

S.No.	Form of the rational function	Form of the partial fraction
1.	$\frac{px+q}{(x-a)(x-b)}, a \neq b$	$\frac{A}{x-a} + \frac{B}{x-b}$
2.	$\frac{px+q}{(x-a)^2}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2}$
3.	$\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)}$	$\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$
4.	$\frac{px^2 + qx + r}{(x-a)^2 (x-b)}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$
5.	$\frac{px^2 + qx + r}{(x-a)(x^2 + bx + c)}$	$\frac{A}{x-a} + \frac{Bx + C}{x^2 + bx + c}$
	• where $x^2 + bx + c$ cann	not be factorised further

Trig Cheat Sheet

Definition of the Trig Functions

Right triangle definition

For this definition we assume that

$$0 < \theta < \frac{\pi}{2}$$
 or $0^{\circ} < \theta < 90^{\circ}$.

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$
 $\csc \theta = \frac{\text{hypotenus}}{\text{opposite}}$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$
 $\sec \theta = \frac{\text{hypotenus}}{\text{adjacent}}$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$
 $\cot \theta = \frac{\text{adjacent}}{\text{opposite}}$

Unit circle definition

For this definition θ is any angle.

$$\sin\theta = \frac{y}{1} = y \quad \csc\theta = \frac{1}{y}$$

$$\cos \theta = \frac{x}{1} = x$$
 $\sec \theta = \frac{1}{x}$

$$\tan \theta = \frac{y}{x}$$
 $\cot \theta = \frac{x}{y}$

Facts and Properties

Domain

The domain is all the values of θ that can be plugged into the function.

 $\sin \theta$, θ can be any angle

 $\cos\theta$, θ can be any angle

$$\tan \theta$$
, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, \dots$

 $\csc\theta$, $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2,...$

$$\sec \theta$$
, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, ...$

 $\cot \theta$, $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2,...$

Range

The range is all possible values to get out of the function.

$$-1 \le \sin \theta \le 1$$
 $\csc \theta \ge 1$ and $\csc \theta \le -1$

$$-1 \le \cos \theta \le 1$$
 $\sec \theta \ge 1$ and $\sec \theta \le -1$

$$-\infty < \tan \theta < \infty$$
 $-\infty < \cot \theta < \infty$

Pario

The period of a function is the number, T, such that $f(\theta + T) = f(\theta)$. So, if ω is a fixed number and θ is any angle we have the following periods.

$$\sin(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\cos(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$tan(\omega\theta) \rightarrow T = \frac{\pi}{\omega}$$

$$csc(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$sec(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\cot(\omega\theta) \rightarrow T = \frac{\pi}{\omega}$$

Formulas and Identities

Tangent and Cotangent Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

Reciprocal Identities

$$csc \theta = \frac{1}{\sin \theta} \qquad sin \theta = \frac{1}{\csc \theta}$$

$$sec \theta = \frac{1}{\cos \theta} \qquad cos \theta = \frac{1}{\sec \theta}$$

$$cot \theta = \frac{1}{\tan \theta} \qquad tan \theta = \frac{1}{\cot \theta}$$

Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

Even/Odd Formulas

$$\sin(-\theta) = -\sin\theta$$
 $\csc(-\theta) = -\csc\theta$
 $\cos(-\theta) = \cos\theta$ $\sec(-\theta) = \sec\theta$
 $\tan(-\theta) = -\tan\theta$ $\cot(-\theta) = -\cot\theta$

Periodic Formulas

If n is an integer.

$$\sin(\theta + 2\pi n) = \sin\theta \quad \csc(\theta + 2\pi n) = \csc\theta$$

 $\cos(\theta + 2\pi n) = \cos\theta \quad \sec(\theta + 2\pi n) = \sec\theta$
 $\tan(\theta + \pi n) = \tan\theta \quad \cot(\theta + \pi n) = \cot\theta$

Double Angle Formulas

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$= 2\cos^2\theta - 1$$

$$= 1 - 2\sin^2\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

Degrees to Radians Formulas

If x is an angle in degrees and t is an angle in radians then

$$\frac{\pi}{180} = \frac{t}{x}$$
 \Rightarrow $t = \frac{\pi x}{180}$ and $x = \frac{180t}{\pi}$

Half Angle Formulas (alternate form)

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}} \qquad \sin^2\theta = \frac{1}{2}(1-\cos(2\theta))$$

$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}} \qquad \cos^2\theta = \frac{1}{2}(1+\cos(2\theta))$$

$$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} \qquad \tan^2\theta = \frac{1-\cos(2\theta)}{1+\cos(2\theta)}$$

Sum and Difference Formulas

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$$

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$$

Product to Sum Formulas

$$\sin \alpha \sin \beta = \frac{1}{2} \Big[\cos (\alpha - \beta) - \cos (\alpha + \beta) \Big]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \Big[\cos (\alpha - \beta) + \cos (\alpha + \beta) \Big]$$

$$\sin \alpha \cos \beta = \frac{1}{2} \Big[\sin (\alpha + \beta) + \sin (\alpha - \beta) \Big]$$

$$\cos \alpha \sin \beta = \frac{1}{2} \Big[\sin (\alpha + \beta) - \sin (\alpha - \beta) \Big]$$

Sum to Product Formulas

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

Cofunction Formulas

Degrees to Radians Formulas
If x is an angle in degrees and t is an angle in radians then
$$\frac{\pi}{180} = \frac{t}{x} \implies t = \frac{\pi x}{180} \quad \text{and} \quad x = \frac{180t}{\pi}$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta \qquad \sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta \qquad \cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$

Inverse Trig Functions

Definition

$$y = \sin^{-1} x$$
 is equivalent to $x = \sin y$
 $y = \cos^{-1} x$ is equivalent to $x = \cos y$

$$y = \tan^{-1} y$$
 is equivalent to $y = \tan y$

$$y = \tan^{-1} x$$
 is equivalent to $x = \tan y$

Function Domain Range
$$y = \sin^{-1} x$$
 $-1 \le x \le 1$ $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

$$y = \cos^{-1} x$$
 $-1 \le x \le 1$ $0 \le y \le \pi$

$$y = \tan^{-1} x$$
 $-\infty < x < \infty$ $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Inverse Properties

$$\cos(\cos^{-1}(x)) = x \quad \cos^{-1}(\cos(\theta)) = \theta$$

$$\sin(\sin^{-1}(x)) = x$$
 $\sin^{-1}(\sin(\theta)) = \theta$

$$\tan(\tan^{-1}(x)) = x \qquad \tan^{-1}(\tan(\theta)) = \theta$$

Alternate Notation

$$\sin^{-1} x = \arcsin x$$

$$\cos^{-1} x = \arccos x$$

$$tan^{-1} x = \arctan x$$

Law of Sines, Cosines and Tangents

Ь

Law of Sines

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

Law of Cosines

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Mollweide's Formula

$$\frac{a+b}{c} = \frac{\cos\frac{1}{2}(\alpha - \beta)}{\sin\frac{1}{2}\gamma}$$

Law of Tangents

$$\frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(\alpha-\beta)}{\tan\frac{1}{2}(\alpha+\beta)}$$

$$\frac{b-c}{b+c} = \frac{\tan\frac{1}{2}(\beta - \gamma)}{\tan\frac{1}{2}(\beta + \gamma)}$$

$$\frac{a-c}{a+c} = \frac{\tan\frac{1}{2}(\alpha-\gamma)}{\tan\frac{1}{2}(\alpha+\alpha)}$$

$$\log_b(M) = X \leftrightarrow b^X = M$$

$$\log_{b}(b) = 1$$

$$\log_b(1) = 0$$

 $\log_b(0) \to \text{not defined}$

$$\log_b(b^k) = k \tag{1}$$

$$b\log_b(M) = M \tag{2}$$

$$if \log_b(M) = \log_b(N), \text{ then } M = N$$
 (3)

$$\log_b(M^k) = k \cdot \log_b(M) \tag{4}$$

$$b^{\log_b(M)} = M \tag{5}$$

$$\log_b\left(\frac{1}{M}\right) = \log_b(M^{-1}) = -1 \cdot \log_b(M) \tag{6}$$

$$\log_b\left(\frac{M}{N}\right) = \log_b(M) - \log_b(N) \tag{7}$$

$$\log_b(M \cdot N) = \log_b(M) + \log_b(N) \tag{8}$$

$$\log_b(M) = \frac{\log_c(M)}{\log_c(b)} \tag{9}$$

Exponential Laws

$$x^a \cdot x^b = x^{a+b}$$

$$\frac{x^a}{x^b} = x^{a-b}$$

$$(x^a)^b = x^{ab}$$

$$x^{-a} = \frac{1}{x^a}$$

$$x^{0} = 1$$

$$\log_b n = \mathop{\operatorname{and}}_{\text{b=base}} b^a = n$$

Differential rules

In the following formulas, let *a, b, c, n* be constants, and

	f(x), v = g(x); w = h(x)	υ, ι	, ii be constants, and	
	General	For	mulas	
1	$\frac{d}{dx}C = 0$		Constant Rule	
2	$\frac{d}{dx}cx = c$		Factor Rule	
3	$\frac{d}{dx}(cu) = c \frac{du}{dx}$		Factor Rule	
4	$\frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$		Sum Rule	
5	$\frac{d}{dx}(\mu\nu) = \frac{du}{dx}\nu + \mu\frac{d\nu}{dx}$		Product Rule	
6	$\frac{d}{dx}(uvw) = \frac{du}{dx}vw + u\frac{dv}{dx}w + uv$	<u>क्षेप</u> क्र	Product Rule	
7	$\frac{d}{dx}\left(u/v\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		Quotient Rule	
8	$\frac{du}{dx} = \frac{du}{dx} \frac{dy}{dx}$		Chain Rule	
9	$\frac{d}{dx}x^n = nx^{n-1}$		Power Rule	
10	$\frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx}$		Power Rule	
11	$\frac{du}{dx} = \frac{1}{dx / du}$			
	Exponential and Lo	gar	ithmic Functions	
\blacksquare	$\frac{d}{dx}e^{x}=e^{x}$	13	$\frac{d}{dx}a^{x} = a^{x} \ln a$	
14	$\frac{d}{dx}\ln x = \frac{1}{x}$	15	$\frac{d}{dx}\log_a x = \frac{1}{x \ln a}$	
16	$\frac{d}{dx}u^{\nu} = \nu u^{\nu-1}\frac{du}{dx} + u^{\nu}a^{x} \ln u \frac{dv}{dx}$	7		
Trigonometric Functions				
17	$\frac{d}{dx}\sin x = \cos x$	18	$\frac{d}{dx}\cos x = -\sin x$	

19	$\frac{d}{dx}\tan x = \sec^2 x$	20	$\frac{d}{dx}\cot x = -\csc^2 x$	
21	$\frac{d}{dx}\csc x = -\csc x \cot x$	22	$\frac{d}{dx}\sec x = \sec x \tan x$	
	Inverse Trigono	me	tric Functions	
23	$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$	24	$\frac{d}{dx}\cos^{-1}x = \frac{1}{\sqrt{1-x^2}}$	
25	$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$	26	$\frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}$	
27	$\frac{d}{dx}\csc^{-1}x = -\frac{1}{x\sqrt{x^2 - 1}}$	28	$\frac{d}{dx}\sec^{-1}x = \frac{1}{x\sqrt{x^2 - 1}}$	
	Hyperbolic Functions			
29	$\frac{d}{dx}\sinh x = \cosh x$	30	$\frac{d}{dx}\cosh x = \sinh x$	
31	$\frac{d}{dx}\tanh x = \operatorname{sech} x^2$	32	$\frac{d}{dx}\coth x = -\operatorname{csch}^2 x$	
33	$\frac{d}{dx}\operatorname{csch} x = -\operatorname{csch} x \operatorname{coth} x$	34	$\frac{d}{dx}\operatorname{sech} x = -\operatorname{sech} x \tanh x$	
	Inverse Hyper	bol	ic Functions	
35	$\frac{d}{dx}\sinh^{-1}x = \frac{1}{\sqrt{1+x^2}}$	36	$\frac{d}{dx}\cosh^{-1}x = \frac{1}{\sqrt{x^2 - 1}}$	
37	$\frac{d}{dx}\tanh^{-1}x = \frac{1}{1-x^2}$	38	$\frac{d}{dx}\coth^{-1}x = \frac{1}{1 - x^2}$	
39	$\frac{d}{dx}\operatorname{csch}^{-1}x = -\frac{1}{\mid x \mid \sqrt{x^2 + 1}}$	40	$\frac{d}{dx}\operatorname{sech}^{-1}x = -\frac{1}{x\sqrt{1-x^2}}$	

In the following formulas, let a, b, c, n be constants, and u = f(x), v = g(x); w = h(x)General Formulas $1 \mid \int a dx = ax + c$ $\int af(x)dx = a \int f(x)dx$ $\int x^n dx = \frac{1}{n+1}x^{n+1} + c \quad (n \neq -1)$ $4 \int (u \pm v \pm w) dx = \int u dx \pm \int v dx \pm \int w dx$ $\int u dv = uv - \int v du$ Integration by parts $6 \int F(u) dx = \int \frac{F(u)}{u'} du$ $7 \int \frac{1}{x} dx = \ln|x| + c$ $8 \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$ $9 \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c$ Trigonometric Functions $\int \sin x dx = -\cos x + c$ $\int \cos x dx = \sin x + c$ $\int \tan x dx = \ln|\sec x| + c$ $\int \cot x dx = \ln|\sin x| + c$ $\int \csc^2 x dx = -\cot x + c$ $\int \sec^2 x dx = \tan x + c$ $\int \tan^2 x dx = \tan x - x + c$ $\int \cot^2 x dx = \cot x - x + c$ $\int_{9}^{1} \csc x \cot x dx = -\csc x + c$ $\int \sec x \tan x dx = \sec x + c$ $\int \csc x dx = \ln|\csc x - \cot x| + c$ $\int \sec x dx = \ln|\sec x + \tan x| + c$ $\int \sin^2 x dx = \frac{1}{2}x - \frac{1}{4}\sin 2x + c \quad \begin{vmatrix} 2\\3 \end{vmatrix} \int \cos^2 x dx = \frac{1}{2}x + \frac{1}{4}\sin 2x + c$ $\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x dx$ $\int \cos^n x dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx$

Integration rules

	Hyperbolic Functions				
2 6	$\int \sinh x dx = \cosh x + c$	2 7	$\int \cosh x dx = \sinh x + c$		
2 8	$\int \tanh x dx = \ln \cosh x + c$	2 9	$\int \coth x dx = \ln \sinh x + c$		
3	$\int \operatorname{sech} x dx = \sin^{-1}(\tanh x) + c$	3 1	$\int \operatorname{csch} x dx = \ln \tanh \frac{x}{2} + c$		
3 2	$\int \operatorname{sech}^2 x dx = \tanh x + c$	3	$\int \operatorname{csch}^2 x dx = -\coth x + c$		
3 4	$\int \tanh^2 x dx = x - \tanh x + c$	3 5	$\int \coth^2 x dx = x - \coth x + c$		
3 6	$\int \operatorname{sech} x \tanh x dx = -\operatorname{sech} x + c$	3 7	$\int \operatorname{csch} x \operatorname{coth} x dx = -\operatorname{csch} x + c$		
3 8	$\int \sinh^2 x dx = \frac{\sinh 2x}{4} - \frac{x}{2} + c$	3	$\int \cosh^2 x dx = \frac{\sinh 2x}{4} + \frac{x}{2} + c$		
	Exponential and Logarithmic Functions				
			l -		
4 0	$\int e^{x} dx = e^{x} + c$		$\int a^x dx = \frac{a^x}{\ln a} + c$		
4 4 2	$\int e^{x} dx = e^{x} + c$ $\int \ln x dx = x(\ln x - 1) + c$		$\int a^{x} dx = \frac{a^{x}}{\ln a} + c$ $\int \log_{a} x dx = \frac{x}{\ln a} (\ln x - 1) + c$		
0	,	4			
0 4 2 4 4	$\int \ln x dx = x(\ln x - 1) + c$	4 3 4 5	$\int \log_a x dx = \frac{x}{\ln a} (\ln x - 1) + c$ $\int \frac{e^{ax}}{x} dx = \ln x + \sum_{i=1}^{\infty} \frac{(ax)^i}{i \cdot i!} + c$		
0 4 4 4 6	$\int \ln x dx = x(\ln x - 1) + c$ $\int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1) + c$	4 3 4 5	$\int \log_a x dx = \frac{x}{\ln \alpha} (\ln x - 1) + c$ $\int \frac{e^{\alpha x}}{x} dx = \ln x + \sum_{i=1}^{\infty} \frac{(\alpha x)^i}{i \cdot i!} + c$ c		
0 4 2 4 4 6 4 7	$\int \ln x dx = x(\ln x - 1) + c$ $\int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1) + c$ $\int x^2 e^{ax} dx = e^{ax} \left(\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3}\right)$	4 3 4 5 +	$\int \log_a x dx = \frac{x}{\ln a} (\ln x - 1) + c$ $\int \frac{e^{ax}}{x} dx = \ln x + \sum_{i=1}^{\infty} \frac{(ax)^i}{i \cdot i!} + c$ c dx		