Chapitre 7 : Arbres

Arbres : def. mathématique

Définition mathématique

Arbre A ensemble fini, non vide muni d'une relation binaire \prec t.q :

- $\exists ! r \in A \quad \forall x \in A \quad \neg (r \prec x)$. L'élément r s'appelle la racine de l'arbre.
- $\forall x \in A \setminus \{r\}$ $\exists ! t \in A$ $x \prec y$. On dit que y est le parent (ou père) de x, et x est un fils de y.
- $\forall x \in A \setminus \{r\}$ $\exists n > 0$ $\exists (x_1, \dots, x_n) \in A^n$ $x \prec x_1 \prec x_2 \prec \dots \prec x_n = r$.

Arbres : def. mathématique

Définition mathématique

Arbre A ensemble fini, non vide muni d'une relation binaire \prec t.q :

- $\exists ! r \in A \quad \forall x \in A \quad \neg (r \prec x)$. L'élément r s'appelle la racine de l'arbre.
- $\forall x \in A \setminus \{r\}$ $\exists ! t \in A$ $x \prec y$. On dit que y est le parent (ou père) de x, et x est un fils de y.
- $\forall x \in A \setminus \{r\}$ $\exists n > 0$ $\exists (x_1, \dots, x_n) \in A^n$ $x \prec x_1 \prec x_2 \prec \dots \prec x_n = r$.

Arbres : arité, feuilles, nœuds internes

Définitions

- arité d'un nœud : son nombre de fils ;
- nœud interne : arité > 0
- feuille : arité = 0;

Arbres : arité, feuilles, nœuds internes

Définitions

- arité d'un nœud : son nombre de fils ;
- nœud interne : arité > 0
- feuille : arité = 0;

Arbres: arbres binaires, binaires entiers

Définitions

- arbre binaire : arité ≤ 2 pour tout nœud;
- arbre binaire entier (strict): arité 0 ou 2 pour tout nœud;

Arbres: arbres binaires, binaires entiers

Définitions

- arbre binaire : arité ≤ 2 pour tout nœud;
- arbre binaire entier (strict) : arité 0 ou 2 pour tout nœud;

Arbres: profondeur / hauteur

Définitions

- avec r racine de l'arbre et x nœud : $\exists ! n \ge 0, \exists ! x_1, \dots, x_{n-1}$ tels que $x \prec x_1 \prec \dots \prec x_{n-1} \prec x_n = r$.
- Entier n : profondeur de x.
- hauteur de l'arbre = profondeur maximale de ses nœuds.

Arbres : profondeur / hauteur

Définitions

- avec r racine de l'arbre et x nœud : $\exists ! n \ge 0, \exists ! x_1, \dots, x_{n-1}$ tels que $x \prec x_1 \prec \dots \prec x_{n-1} \prec x_n = r$.
- Entier n: profondeur de x.
- hauteur de l'arbre = profondeur maximale de ses nœuds.

Prop.

A de hauteur h, arité max. a. Si a>1:

$$h+1 \le n \le \frac{a^{h+1}-1}{a-1}$$

Prop.

A de hauteur h, arité max. a. Si a > 1:

$$h+1 \le n \le \frac{a^{h+1}-1}{a-1}$$

 \sim Preuve.

Prop.

A de hauteur h, arité max. a. Si a > 1:

$$h+1 \le n \le \frac{a^{h+1}-1}{a-1}$$

 \sim Preuve.

Corollaire

Hauteur h d'un arbre à n nœuds tous d'arité au plus a>1 vérifie :

$$\log_a((a-1)n+1) - 1 \le h \le n-1$$

Prop.

A de hauteur h, arité max. a. Si a > 1:

$$h+1 \le n \le \frac{a^{h+1}-1}{a-1}$$

 \sim Preuve.

Corollaire

Hauteur h d'un arbre à n nœuds tous d'arité au plus a>1 vérifie :

$$\log_a((a-1)n+1)-1 \le h \le n-1$$

Corollaire

Soit A un arbre binaire à n nœuds. Sa hauteur h vérifie $\lfloor \log_2(n) \rfloor \leq h \leq n-1$

Prop.

A de hauteur h, arité max. a. Si a > 1:

$$h+1 \le n \le \frac{a^{h+1}-1}{a-1}$$

 \sim Preuve.

Corollaire

Hauteur h d'un arbre à n nœuds tous d'arité au plus a>1 vérifie :

$$\log_a((a-1)n+1) - 1 \le h \le n-1$$

Corollaire

Soit A un arbre binaire à n nœuds. Sa hauteur h vérifie $\lfloor \log_2(n) \rfloor \leq h \leq n-1$

$$ightharpoonup \mathsf{Preuve}: h \geq \log_2(n+1) - 1 > \log_2(n) - 1 \geq \lfloor \log_2(n) \rfloor - 1$$

Prop.

Un arbre binaire entier à p nœuds internes a p+1 feuilles.

Prop.

Un arbre binaire entier à p nœuds internes a p+1 feuilles.

 \sim Preuve : récurrence. $(n_g + 1) + (n_d + 1) = (n_g + n_d + 1) + 1$.

Prop.

Un arbre binaire entier à p nœuds internes a p+1 feuilles.

 \rightarrow Preuve : récurrence. $(n_g + 1) + (n_d + 1) = (n_g + n_d + 1) + 1$.

Corollaire

Un arbre binaire entier à p nœuds internes a au plus p+1 feuilles.

Prop.

Un arbre binaire entier à p nœuds internes a p+1 feuilles.

 \rightarrow Preuve : récurrence. $(n_g + 1) + (n_d + 1) = (n_g + n_d + 1) + 1$.

Corollaire

Un arbre binaire entier à p nœuds internes a au plus p+1 feuilles.

→ Preuve. Rajouter un fils (feuille) à chaque nœud d'arité 1.

Arbres en Caml

Arbres en Caml

Arbres en informatique

Arbre associé à
$$(3+4) \times (5-(2\times 6))$$

- ordonnancement des fils d'un nœud;
- les nœuds portent des étiquettes.

Arbres en Caml

Arbres en informatique

- Arbre associé à $(3+4) \times (5-(2\times 6))$
- ordonnancement des fils d'un nœud;
- les nœuds portent des étiquettes.

Choix d'implémentation

- Persistante : à la manière des listes chaînées
- Mutable : l'an prochain un peu.

Implémentation des arbres généraux

ldée

 $\mathsf{arbre} = \mathsf{\acute{e}tiquette} + \mathsf{liste} \; \mathsf{sous}\text{-}\mathsf{arbres} \; \mathsf{(\acute{e}ventuellement} \; \mathsf{vide)}$

Implémentation des arbres généraux

ldée

 $\mathsf{arbre} = \mathsf{\acute{e}tiquette} + \mathsf{liste} \; \mathsf{sous}\text{-}\mathsf{arbres} \; \mathsf{(\acute{e}ventuellement} \; \mathsf{vide)}$

Туре

type 'a arbre = \mathbb{N} of 'a * 'a arbre list;;

Implémentation des arbres généraux

Idée

arbre =étiquette + liste sous-arbres (éventuellement vide)

Type

#ex_arbre ;;

type 'a arbre = N of 'a * 'a arbre list;;


```
-: int arbre =
N (8,
[N (12, []);
N (5, [N (17, [N (0, []); N (6, [])]); N (1, [N (4, [])])]);
N (8, [N (14, []); N (4, []); N (3, [])]);
N (7, [])])
```

Exemple de fonction

Hauteur

```
let rec hauteur a=match a with
     | N(_,q) -> 1+max_h q
and max_h q=match q with
     | [] -> -1
     | x::p -> max (hauteur x) (max_h p)
;;
```

```
# hauteur ex_arbre ;;
- : int = 3
```

ldée

 $\mathsf{arbre} = \mathsf{feuille} \ \mathsf{ou} \ \mathsf{\acute{e}tiquette} + 2 \ \mathsf{sous-arbres}$

ldée

arbre = feuille ou étiquette + 2 sous-arbres

Type

```
type ('a, 'b) arbre =
    F of 'a | N of 'b*('a, 'b) arbre * ('a, 'b) arbre;;
```

ldée

arbre = feuille ou étiquette + 2 sous-arbres

Туре

```
type ('a, 'b) arbre =
    F of 'a | N of 'b*('a, 'b) arbre * ('a, 'b) arbre;;
```


Idée

arbre = feuille ou étiquette + 2 sous-arbres

Type

```
type ('a, 'b) arbre =
   F of 'a | N of 'b*('a, 'b) arbre * ('a, 'b) arbre;;
```


Exemple de fonction

```
let rec evalue e=match e with  \mid \text{F x } -> \text{ x} \\ \mid \text{N (op, a, b) } -> \text{ (traduit op) (evalue a) (evalue b)}
```

Exemple de fonction

```
let rec evalue e=match e with
    | F x -> x
    | N (op, a, b) -> (traduit op) (evalue a) (evalue b)
;;

# evalue ;;
- : (int, op) arbre -> int = <fun>
# evalue expr ;;
- : int = -49
```

ldée

arbre = vide (rien) ou étiquette + 2 sous-arbres

ldée

arbre = vide (rien) ou étiquette + 2 sous-arbres

ldée

arbre = vide (rien) ou étiquette + 2 sous-arbres

Type

type 'a arbre = Vide | N of 'a * 'a arbre * 'a arbre ;;

ldée

arbre = vide (rien) ou étiquette + 2 sous-arbres

Type

type 'a arbre = Vide | N of 'a \star 'a arbre \star 'a arbre ;;

Exemple

```
let ex_ab = N (14,
  N(7, N(3, N(1, Vide, Vide), Vide), N(10, Vide, Vide)),
  N(20, N(16, Vide, N(18, Vide, Vide)), Vide));;
```

Exemple: hauteur

Hauteur

```
let rec hauteur a=match a with
   | Vide -> -1
   | N(_,g,d) -> 1 + max (hauteur g) (hauteur d)
;;
```