Computational analysis of gene expression datasets to unravel the basis of graft versus host disease

Claire Winship, many others, Ron Chakraverty, Vincent Plagnol

UCL Genetics Institute

October 28, 2015

Graft versus host disease

- In malignant pathologies the donor immune system recognises tumour cells as foreign and eradicates them via immunological mechanisms which together are known as the graft vs tumour (GVT) effect
- Donor immune cells may also attack normal host tissue resulting in acute graft vs host disease (GVHD)
- The skin, liver and gastrointestinal tract are the most common tissues to be damaged in GVHD
- ■GVHD remains one of the most common post-transplant complications and represents a major barrier to the successful application of allo-HSCT
- A major risk factor involved in GVHD pathology is the use of HLA-mismatched, non related donors
- Acute GVHD involves alloreactive donor T-cell mediated cytotoxic response to the tissues of the recipient
- Tissue damage caused by cytotoxic T cells leads to recruitment of other effector cells including natural killer cells which further increases tissue injury and results in self perpetuating GVHD
- Mice represents the primary model animal for pre-clinical studies of GVHD
- Mouse models of acute GVHD usually involve a bone marrow transplant (BMT) which is supplemented with varying numbers/types of donor lymphocites into irradiated allogenic recipients who differ from donors in their MHC class 1 and/or class 2 molecules or in minor histocompatibility antigens

The ImmGene project

- some items
- ■some items
- ■some items
- some items

T-cell expression in multiple minor histocompatibility antigen-mismatched BMT model

Objective: In a polyclonal model, evaluate the differences in gene expression of effector T cells found in the lymphoid organs or in the peripheral tissues.

- PCA analysis of all samples reveals presence of outlier in the D7 dataset ($TM008_ko4$)
- some items
- some items

■ some items

gene name	fold change	pvalue
Ptbp2	0.8575669378	0.0002380649
Trappc1	-0.8105321657	0.0011522667
Mrpl32	-0.9482075354	0.0015174569
Ctso	0.6665616898	0.0015502065
Cib1	-0.5435813927	0.0022304297
Chordc1	-1.1641319443	0.0033252187
Actr6	-0.7619741241	0.0034636625
Pcgf5	-0.6144202783	0.0035618031
Llph	-0.797961394	0.0047160713
1810037I17Rik	-0.6327137658	0.0053622021
Cd46	1.2478436705	0.0077584292
Zfp455	-1.3221395229	0.0083646381

T-cell expression: Single minor histocompatibility antigen-mismatched BMT model

Objective: In a monoclonal model, evaluate the effect of depleting Langerhans cells on the gene expression of effector T cells found in the lymph nodes and in the skin.

- some items
- some items
- some items

■ Histogram of BMT male vs naive male p-values appears to show a more consistent distribution with the null hypothesis

Fisher's Exact Test p-values for association of the BMT_male_vs_naive_male differential gene expression dataset with the ImmGen Fine modules

Langerhans cell expression

Objective: Evaluate the differences in gene expression of Langerhans cells in the setting of an allogeneic BMT or a syngeneic BMT.

- some items
- some items
- some items
- some items

