Departamento de Produção e Sistemas Universidade do Minho

Exercícios de Investigação Operacional

1. Uma empresa utiliza 2 tipos de máquina (A e B) para a fabricação de 3 produtos diferentes. A gestão da empresa está a analisar a viabilidade de adquirir mais máquinas para aumentar a sua capacidade de produção anual, dispondo para esse efeito de 140 U.M..

As restrições que limitam a capacidade produtiva são as seguintes:

	Prod. 1	Prod. 2	Prod. 3	
máquina A	$4x_1$	+6x2	+2x3	≤ 50
máquina B	$5x_1$	$+3x_{2}$	$+4x_{3}$	≤ 60

A função que traduz os lucros da empresa é a seguinte:

Prod. 1 Prod. 2 Prod. 3 lucro
$$110x_1 + 150x_2 + 90x_3$$

Após uma análise do marcado, verificou-se existirem 2 máquinas adequadas do tipo A que permitiam aumentar a capacidade de produção de 6 e 10 unidades, respectivamente, sendo os seus preços de 50 e 70 U.M., respectivamente.

Também, 2 máquinas adequadas do tipo B que permitiam aumentar a capacidade de produção de 4 e 10 unidades, respectivamente, sendo os seus preços de 60 e 90 U.M., respectivamente.

A empresa não tem interesse de adquirir mais do que uma máquina de cada um dos tipos e encara também a hipótese de permanecer como está actualmente.

A empresa amortiza as máquinas em 10 anos, o que se traduz em ter custos anuais de utilização iguais a um décimo do seu custo.

- a) Formule o problema como um modelo de programação inteira.
- b) Determine a solução óptima usando um método computacional.
- c) Que máquinas deveriam ser adquiridas?
- d) Qual o incremento de lucro em relação à situação actual?
- 2. Considere o seguinte problema de planeamento de produção de 1000 unidades de um determinado produto. Existem 4 máquinas diferentes disponíveis, cujos custos fixos, custos variáveis e capacidades máximas são os indicados no quadro seguinte:

máquina	custos fixos	custos variáveis	capacidade máxima
1	20	7	500
2	40	4	200
3	10	8	400
4	70	1	600

Por razões técnicas, pelo menos uma das máquinas deve ficar inactiva para se proceder a operações de manutenção.

Sabe-se também que, para a máquina 4, que possui maiores custos fixos e menores custos variáveis, a quantidade mínima que interessa fabricar é de 500 unidades.

- a) Formule o problema como um modelo de programação inteira, explicando sucintamente cada uma das restrições.
- b) Determine a solução óptima usando um método computacional.
- c) Qual o plano de produção?