## À propos de "Bitwise Operations"

Le genre de maths que personne ne préfère. Qui aime les maths, d'ailleurs ?

- Il y a 2 écrans sur le module :
  - 1. Opérateur par bit (AND, OR, XOR, NOT)
  - 2. Entrée des résultats



• Utilisez les deux octets obtenus dans le tableau ci-dessous, et l'opérateur du premier affichage, pour déterminer la réponse. Dans ce tableau, MSB est le bit le plus significatif, LSB le bit le moins significatif.

| Octet 1                                            | Bit | Octet 2                           |  |
|----------------------------------------------------|-----|-----------------------------------|--|
| Pas de piles AA                                    | MSB | l pile D ou plus                  |  |
| Port parallèle                                     |     | 3 ports ou plus                   |  |
| Indicateur NSA allumé                              |     | 2 porte-piles ou plus             |  |
| Plus de modules que le temps<br>initial en minutes |     | Indicateur BOB allumé             |  |
| Plus d'un indicateur allumé                        |     | Plus d'un indicateur éteint       |  |
| Nombre de modules divisible par 3                  |     | Dernier chiffre du # Série impair |  |
| Moins de 2 piles D                                 |     | Nombre pair de modules            |  |
| Moins de 4 ports                                   | LSB | 2 piles ou plus                   |  |

Voici un tableau d'explications de chaque opérateur binaire:

| Info    | AND                                                                                                  | OR                                                                                                             | XOR                                                                                                                  | NOT                                                                           |
|---------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| COMMENT | En procédant<br>bit par bit,<br>si les deux<br>bits sont l,<br>le bit<br>renvoyé est<br>l. Sinon, O. | En procédant<br>bit par bit, si<br>l'un des bits (ou<br>les deux) est 1,<br>le bit renvoyé<br>est 1. Sinon, 0. | En procédant bit<br>par bit, si l'un<br>des bits (mais<br>pas les deux) est<br>1, le bit renvoyé<br>est 1. Sinon, 0. | Ignorer le second octet. En allant bit par bit, le bit renvoyé est l'inverse. |
| MATHS   | octl && oct2                                                                                         | oct1    oct2                                                                                                   | (oct1 && !oct2)   <br>(!oct1 && oct2)                                                                                | !octl                                                                         |