In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import seaborn as sb
from sklearn import preprocessing,svm
```

In [2]:

1 df=pd.read_csv(r"C:\Users\MY HOME\Desktop\datascience\used_cars_data.csv")

2 d1

Out[2]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Own
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	

7253 rows × 14 columns

In [3]:

```
1 df.describe()
```

Out[3]:

	S.No.	Year	Kilometers_Driven	Seats	Price
count	7253.000000	7253.000000	7.253000e+03	7200.000000	6019.000000
mean	3626.000000	2013.365366	5.869906e+04	5.279722	9.479468
std	2093.905084	3.254421	8.442772e+04	0.811660	11.187917
min	0.000000	1996.000000	1.710000e+02	0.000000	0.440000
25%	1813.000000	2011.000000	3.400000e+04	5.000000	3.500000
50%	3626.000000	2014.000000	5.341600e+04	5.000000	5.640000
75%	5439.000000	2016.000000	7.300000e+04	5.000000	9.950000
max	7252.000000	2019.000000	6.500000e+06	10.000000	160.000000

In [4]:

```
1 df.shape
```

Out[4]:

(7253, 14)

In [5]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	S.No.	7253 non-null	int64
1	Name	7253 non-null	object
2	Location	7253 non-null	object
3	Year	7253 non-null	int64
4	Kilometers_Driven	7253 non-null	int64
5	Fuel_Type	7253 non-null	object
6	Transmission	7253 non-null	object
7	Owner_Type	7253 non-null	object
8	Mileage	7251 non-null	object
9	Engine	7207 non-null	object
10	Power	7207 non-null	object
11	Seats	7200 non-null	float64
12	New_Price	1006 non-null	object
13	Price	6019 non-null	float64

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

In [6]:

1 df.describe()

Out[6]:

	S.No.	Year	Kilometers_Driven	Seats	Price
count	7253.000000	7253.000000	7.253000e+03	7200.000000	6019.000000
mean	3626.000000	2013.365366	5.869906e+04	5.279722	9.479468
std	2093.905084	3.254421	8.442772e+04	0.811660	11.187917
min	0.000000	1996.000000	1.710000e+02	0.000000	0.440000
25%	1813.000000	2011.000000	3.400000e+04	5.000000	3.500000
50%	3626.000000	2014.000000	5.341600e+04	5.000000	5.640000
75%	5439.000000	2016.000000	7.300000e+04	5.000000	9.950000
max	7252.000000	2019.000000	6.500000e+06	10.000000	160.000000

In [7]:

```
1 df=df[["Seats","Price"]]
2 df.columns=["Sea","pri"]
```

In [9]:

```
sb.lmplot(x="Sea",y="pri",data=df,order=2,ci=None)
```

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x169af193850>

In [10]:

1 df.describe()

Out[10]:

	Sea	pri
count	7200.000000	6019.000000
mean	5.279722	9.479468
std	0.811660	11.187917
min	0.000000	0.440000
25%	5.000000	3.500000
50%	5.000000	5.640000
75%	5.000000	9.950000
max	10.000000	160.000000

```
In [11]:
```

```
1 df.fillna(method="ffill",inplace=True)
```

C:\Users\MY HOME\AppData\Local\Temp\ipykernel_2336\1844562654.py:1: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method="ffill",inplace=True)

In [12]:

```
1 x=np.array(df["Sea"]).reshape(-1,1)
2 y=np.array(df["pri"]).reshape(-1,1)
```

In [13]:

```
1 df.dropna(inplace=True)
```

C:\Users\MY HOME\AppData\Local\Temp\ipykernel_2336\1379821321.py:1: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

In [14]:

```
1 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.50)
```

In [15]:

```
1  a=LinearRegression()
2  a.fit(x_train,y_train)
3  print(a.score(x_test,y_test))
4  y_pred=a.predict(x_test)
5  plt.scatter(x_test,y_test,color="b")
6  plt.plot(x_test,y_pred,color="g")
7  plt.show()
```

0.0025749661118111833

In [42]:

```
1 df500=df[:][:500]
2 sb.lmplot(x="Sea",y="pri",data=df500,order=2)
```

Out[42]:

<seaborn.axisgrid.FacetGrid at 0x169b3864b50>

In [37]:

1 df500.describe()

Out[37]:

	Sea	pri
count	500.00000	500.000000
mean	5.23200	10.345340
std	0.73434	12.123972
min	2.00000	0.550000
25%	5.00000	3.250000
50%	5.00000	5.500000
75%	5.00000	11.562500
max	8.00000	70.990000

In [38]:

```
df500.fillna(method='ffill',inplace=True)
```

In [40]:

```
1 x=np.array(df1000["Sea"]).reshape(-1,1)
2 y=np.array(df1000["pri"]).reshape(-1,1)
3
4
```

In [41]:

```
1 df500.dropna(inplace=True)
```

In [35]:

```
1 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
2 a=LinearRegression()
3 a.fit(x_train,y_train)
4 print(a.score(x_test,y_test))
5 y_pred=a.predict(x_test)
6 plt.scatter(x_test,y_test,color="g")
7 plt.plot(x_test,y_pred,color="b")
8 plt.show()
9
10
```

-0.005501993421027418

In []:		
1		
In []:		
1		