System Design Interview Questions on IP Addresses

1. How do IPv4 and IPv6 addresses differ?

Interviewers ask this to assess understanding of IP addressing. When answering, focus on:

Address Length

```
IPv4: 32-bit (e.g., 192.168.1.1)
IPv6: 128-bit (e.g., 2001:0db8:85a3::8a2e:0370:7334)
```

Address Format

- IPv4: Dotted decimal notation (x.x.x.x, where x ranges from 0-255)
- IPv6: Hexadecimal colon-separated notation (xxxx:xxxx:xxxx:xxxx:xxxx:xxxx)

Scalability

o IPv6 offers significantly more addresses and supports auto-configuration.

Security

 IPv6 includes built-in IPSec encryption, unlike IPv4, which requires additional configurations.

Example Response

IPv4 and IPv6 are the two primary internet protocols. IPv4, with a 32-bit address space, is limited, whereas IPv6, with a 128-bit space, offers a larger pool of addresses and better scalability. IPv6 also improves security with built-in encryption.

2. Why do we need private IPs in system design?

This question evaluates understanding of network structuring. Key points:

Address Conservation

 IPv4 addresses are limited; private IPs allow multiple organizations to reuse the same address ranges internally.

Security

 Private IPs keep internal systems isolated from the public internet, reducing the risk of attacks.

Cost Efficiency

 Organizations can assign many private IPs while using a single public IP for external communication.

Example Response

Private IPs allow organizations to efficiently manage internal networking without requiring a large number of public IPs. They provide security by isolating internal systems and reducing attack exposure.

3. How does NAT help in addressing the IPv4 shortage?

Network Address Translation (NAT) is widely used to extend IPv4 usability. Key points:

Address Reuse

NAT allows multiple devices to share a single public IP address.

• Security

o NAT hides internal IP addresses, reducing exposure to external threats.

Scalability

 NAT enables ISPs and enterprises to manage large networks with fewer public IPs.

Example Response

NAT mitigates IPv4 shortages by enabling multiple devices to share a single public IP. It improves security by masking internal IPs and is widely used in enterprise and ISP networks.

4. Explain how a load balancer distributes traffic using IPs.

Load balancers improve system performance by distributing traffic. Key points:

1. DNS Load Balancing

- Multiple IPs are assigned to a domain, and DNS directs traffic based on availability and location.
- 2. Layer 4 Load Balancing (Transport Layer)
 - o Traffic is distributed based on IP addresses and ports.
- 3. Layer 7 Load Balancing (Application Layer)
 - o Requests are routed based on HTTP headers, URLs, or session data.

Example Response

A load balancer ensures even distribution of network traffic across multiple servers, improving scalability and reliability. It operates at different layers, including DNS-based distribution and TCP/HTTP routing.

5. How does DNS resolve IP addresses in a large-scale system?

DNS resolution follows a multi-step process:

- 1. Client Queries DNS Resolver
 - The client requests the IP for a domain (e.g., example.com).
- 2. Resolver Checks Cache or Queries Root Server
 - o If cached, the IP is returned. Otherwise, the query is forwarded.
- 3. TLD Server Responds
 - o The . com TLD server points to the authoritative server.
- 4. Authoritative DNS Server Provides the IP
 - o The final IP is returned to the client.
- 5. Client Connects and Caches the Result
 - The client stores the IP to avoid repeated lookups.

Example Response

DNS resolution involves multiple steps, including querying root and authoritative servers. Large-scale systems optimize this process using caching and CDNs to reduce latency.

Conclusion

- IPv4 and IPv6 are the primary internet protocols, with IPv6 offering better scalability.
- Private IPs improve security and address conservation in system design.
- NAT enables efficient use of limited IPv4 addresses.
- Load balancers optimize traffic distribution across multiple servers.
- DNS plays a crucial role in resolving domain names to IP addresses, supporting high-scale architectures.

Final Thoughts & Key Takeaways

Best way to answer these questions in an interview:

- **Define the concept** (e.g., what IPv6 is).
- **Explain why it matters** (e.g., solves address exhaustion).
- Give real-world examples (e.g., AWS, Google, Netflix).

By mastering these topics, you'll be well-prepared for **technical system design interviews** at top tech companies.