При расчетах принять:

Модуль ускорения свободного падения $g = 10 \text{ м/c}^2$	Скорость света в вакууме $c = 3 \cdot 10^8 \text{ м/c}$			
Постоянная Авогадро $N_A = 6,02 \cdot 10^{23} \text{ моль}^{-1}$	Постоянная Больцмана $k = 1,38 \cdot 10^{-23} \text{Дж/K}$			
Электрическая постоянная $\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\Phi}{M}$; $\frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{K\pi^2}$	Элементарный заряд $e = 1,6 \cdot 10^{-19} \text{ Кл}$			
Универсальная газовая постоянная $R = 8,31 \frac{\mathcal{J} \mathcal{M}}{\text{моль} \cdot K}$	Гравитационная постоянная $G = 6,67 \cdot 10^{-11} \frac{H \cdot M^2}{\kappa z^2}$			
$1 \text{ эВ} = 1,6 \cdot 10^{-19} \text{ Дж}$ $\pi = 3,14;$ $\sqrt{2} = 1,41;$ $\sqrt{3} = 1,73;$ $\sqrt{5} = 2,24$	Постоянная Планка $h = 6.63 \cdot 10^{-34} \text{Дж} \cdot \text{с}$			

Множители и приставки для образования десятичных кратных и дольных единиц.

Множитель	10^{12}	10^{9}	10^{6}	10^{3}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
Приставка	тера	гига	мега	кило	санти	милли	микро	нано	пико
Обозначение приставки	T	Γ	M	К	c	M	МК	Н	П

Часть А

A1	Единицей массы в СИ является:	1) г; 2) кг; 3) т; 4) ц;
		5) пуд.
A2	Автомобиль равномерно движется по прямолинейной дороге. В момент времени	1) 10 m/c;
	$t_1 = 20$ с координата автомобиля равна $x_1 = 40$ м, а в момент времени $t_2 = 2$ мин его	2) 10,8 m/c;
	координата равна $x_2 = -1040$ м. Если автомобиль принять за материальную точку,	3) 7,7 m/c;
	то проекция v_x скорости этой материальной точки равна:	4) -10 m/c ;
		5) -10.8 M/c.
A3	Материальная точка движется прямолинейно с постоянным ускорением $a = 2 \text{ м/c}^2$.	1) 4 m/c;
	Определите модуль в конечной скорости точки, если известно, что на пути	2) 10 m/c;
	s = 2400 см скорость точки увеличилась в 5 раз.	3) 20 m/c;
		4) 80 m/c;
		5) 100 м/с.
A4	Материальная точка равномерно вращается по окружности радиуса $R = 10$ см так,	1) 10 рад;
	что ее центростремительное ускорение равно $a = 10 \text{ м/c}^2$. Угол ϕ поворота радиус	2) 100 рад;
	вектора за $t = 2,2$ с составит:	3) 22 рад;
		4) 2,2 рад;
		5) 1 рад.
A5	Если автомобиль массой $m = 1$ т, трогаясь с места и, двигаясь равноускоренно,	1) 20 кВт;
	проходит путь $s = 50$ м за $t = 5$ с, то мощность P развиваемая автомобилем в конце	2) 40 κBτ;
	пятой секунды своего движения равна:	3) 80 кВт;
	Сопротивлением движению автомобиля пренебречь.	4) 125 кВт;
		5) 160 кВт.
A6	Вычислите силу F гидростатического давления на дно бассейна, если его	1) 0,6 MH;
	площадь $S = 120 \text{ м}^2$, а глубина $h = 1 \text{ м}$. Плотность воды $\rho = 1000 \text{ кг/м}^3$.	2) 1,2 MH;
		3) 2,4 MH;
		4) 3,6 MH;
		5) 4,2 MH.
A7	Тело массой $m=2$ кг свободно падает без начальной скорости с высоты $h=5$ м на	
	горизонтальную поверхность и отскакивает от нее со скоростью $\upsilon = 5$ м/с.	2) 20 кг·м/с;
	Абсолютная величина $ \Delta p $ изменения импульса тела при ударе равна:	3) 25 кг⋅м/с;
		4) 30 кг·м/с;
		5) 40 кг·м/с.
A8	В баллоне вместимостью $V = 10$ л находится $v = 2$ кмоль аргона. Если средняя	1) 0,1 MΠa;
	кинетическая энергия атома аргона $\langle E_{\kappa} \rangle = 1,25 \cdot 10^{-24}$ Дж, то давление р газа на	2) 0,3 MΠa;
	стенки баллона равно:	3) 0,5 MПа;
	Civilari Odditiona padno.	4) 0,7 MΠa;
		5) 0,9 MΠa.
	1	

A19	Если наибольшая длина волны излучения, способного вызвать фотоэффект у платины, равна $\lambda_{max}=0.234$ мкм, то при облучении платины излучением с частотой $\nu=1.5\cdot 10^{15}$ Γ ц наибольшая кинетическая энергия E_{κ} вырываемых электронов будет равна:	2) 5,2·10 ⁻¹⁹ Дж;	
A20	Если ядро радиоактивного изотопа $^{210}_{82}Pb$ претерпело один α -распад, то массовое число A нового элемента равно	1) 78 2) 80 3) 86 4) 206 5) 208	

Ответы

Подготовка к ЦТ В – 3

№ задачи	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
№ ответа	2	5	2	3	3	2	4	1	5	4
№ задачи	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
№ ответа	1	5	4	2	3	2	5	2	5	4

№ задачи	B1	B2	В3	B4	B5	В6	В7	В8		B10	B11	B12
№ ответа	30	10	168	10	831	78	15	125	16	6	4	4