

MEDIDAS PRODUCTO

ALAN REYES-FIGUEROA TEORÍA DE LA MEDIDA E INTEGRACIÓN

(AULA 25) 03.MAYO.2023

Es el turno de estudiar medidas en espacios del tipo $X \times Y$, donde X, Y son espacios de medida.

Definición

Sean (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) espacios de medida. Un conjunto de la forma $A \times B \subseteq X \times Y$, con $A \in \mathcal{A}$, $B \in \mathcal{B}$, se llama un **rectángulo mesurable**.

Consideramos la colección

$$Z_{o} = \left\{ \bigcup_{i=1}^{n} A_{i} \times B_{i} : n \in \mathbb{N}, A_{i} \in \mathcal{A}, B_{i} \in \mathcal{B} \right\} \subseteq X \times Y.$$

Obs!

- Todo elemento de Z_o puede escribirse como unión disjunta de rectángulos mesurables.
- Z_0 es un álgebra de conjuntos (no es σ -álgebra).

Denotamos por $C = \sigma(Z_0)$ a la σ -álgebra generada por Z_0 . Queremos definir una medida π sobre C que satisfaga una identidad natural

$$\pi(A \times B) = \mu(A) \nu(B), \text{ para } A \in \mathcal{A}, B \in \mathcal{B}.$$
 (1)

Teorema (Existencia de la Medida Producto)

Sean (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) espacios de medida. Entonces, existe una medida π sobre $\mathcal{C} = \sigma(Z_0)$ tal que vale la identidad (1). Además, si ambas μ y ν son σ -finitas, entonces π es única.

Prueba: Supongamos que el rectángulo $A \times B \subseteq X \times Y$ es unión disjunta enumerable de rectángulos mesurables $\{A_k \times B_k\}_{k \geq 1}$, con $A_k \in \mathcal{A}$, $B_k \in \mathcal{B}$. Entonces

$$A \times B = \bigcup_{i \geq 1} A_j \times B_j.$$

Luego,
$$\mathbf{1}_{A}(x)\cdot\mathbf{1}_{B}(y)=\mathbf{1}_{A\times B}(x,y)=\mathbf{1}_{\cup_{k}A_{k}\times B_{k}}(x,y)=\sum_{k\geq 1}\underbrace{\mathbf{1}_{A_{k}}(x)\times\mathbf{1}_{B_{k}}(y)}_{\geq 0}.$$

Las sumas parciales de esta última serie forman una secuencia monótona tal que

$$\sum_{k=1}^{n} \mathbf{1}_{A_k}(x) \times \mathbf{1}_{B_k}(y) \nearrow \mathbf{1}_{A \times B}(x,y).$$

Por el Teorema de Convergencia Monótona, e integrando respecto de ν :

$$\begin{array}{lll} \mathbf{1}_{A}(\mathbf{X}) \cdot \nu(\mathbf{B}) & = & \mathbf{1}_{A}(\mathbf{X}) \int_{\mathbf{Y}} \mathbf{1}_{B}(\mathbf{y}) \, \nu(d\mathbf{y}) \, = \, \int_{\mathbf{Y}} \mathbf{1}_{A}(\mathbf{X}) \cdot \mathbf{1}_{B}(\mathbf{y}) \, \nu(d\mathbf{y}) \, = \, \int_{\mathbf{Y}} \sum_{k \geq 1} \mathbf{1}_{A_{k}}(\mathbf{X}) \cdot \mathbf{1}_{B_{k}}(\mathbf{y}) \, \nu(d\mathbf{y}) \\ & = & \int_{\mathbf{Y}} \lim_{n \to \infty} \sum_{k = 1}^{n} \mathbf{1}_{A_{k}}(\mathbf{X}) \cdot \mathbf{1}_{B_{k}}(\mathbf{y}) \, \nu(d\mathbf{y}) \, = \, \lim_{n \to \infty} \int_{\mathbf{Y}} \sum_{k = 1}^{n} \mathbf{1}_{A_{k}}(\mathbf{X}) \cdot \mathbf{1}_{B_{k}}(\mathbf{y}) \, \nu(d\mathbf{y}) \\ & = & \lim_{n \to \infty} \sum_{k = 1}^{n} \int_{\mathbf{Y}} \mathbf{1}_{A_{k}}(\mathbf{X}) \cdot \mathbf{1}_{B_{k}}(\mathbf{y}) \, \nu(d\mathbf{y}) \, = \, \lim_{n \to \infty} \sum_{k = 1}^{n} \mathbf{1}_{A_{k}}(\mathbf{X}) \cdot \nu(B_{k}) \, = \, \sum_{k \geq 1} \mathbf{1}_{A_{k}}(\mathbf{X}) \cdot \nu(B_{k}). \end{array}$$

De nuevo por el Teorema de Convergencia Monótona, pero integrando ahora respecto de μ :

$$\begin{split} \mu(A) \cdot \nu(B) &= \nu(B) \int_X \mathbf{1}_{A}(x) \, \mu(dx) \, = \, \int_X \mathbf{1}_{A}(x) \cdot \nu(B) \, \mu(dx) \, = \, \int_X \sum_{k \geq 1} \mathbf{1}_{A_k}(x) \cdot \nu(B_k) \, \mu(dx) \\ &= \, \int_X \lim_{n \to \infty} \sum_{k = 1}^n \mathbf{1}_{A_k}(x) \cdot \nu(B_k) \, \mu(dx) \, = \, \lim_{n \to \infty} \int_X \sum_{k = 1}^n \mathbf{1}_{A_k}(x) \cdot \nu(B_k) \, \mu(dx) \\ &= \, \lim_{n \to \infty} \sum_{k = 1}^n \int_X \mathbf{1}_{A_k}(x) \cdot \nu(B_k) \, \mu(dx) \, = \, \lim_{n \to \infty} \sum_{k = 1}^n \mu(A_k) \cdot \nu(B_k) \, = \, \sum_{k \geq 1} \mu(A_k) \cdot \nu(B_k). \end{split}$$

Sea $E \in Z_0$, sabemos que $E = \bigcup_{n \geq 1} A_n \times B_n$, con $A_n \in \mathcal{A}$, $B_n \in \mathcal{B}$. Definimos, $\pi(E) = \sum_{n \geq 1} \mu(A_n) \cdot \nu(B_n)$.

 π está bien definida sobre Z_o , y es enumerablemente aditiva. Por el Teorema de Extensión de Caratheódory, π se extiende a una medida π sobre todo $\mathcal{C} = \sigma(Z_o)$.

La condición de X y Y ser espacios σ -finitos, implican las condiciones para la unicidad. \Box

Notación:

- $\pi = \mu \times \nu$ es la **medida producto** de μ y ν .
- $C = \sigma(Z_0) = A \times B$ es la σ -álgebra producto de A y B.
- El **espacio producto** de (X, A, μ) y (Y, B, ν) es

$$(X \times Y, A \times B, \mu \times \nu).$$

Definición

Sean $E \subseteq X \times Y$ un subconjunto cualquiera, $\mathbf{x} \in X$, $\mathbf{y} \in Y$. La \mathbf{x} -sección de E es el conjunto

$$E_{\mathbf{x}} = \{ \mathbf{y} \in \mathsf{Y} : (\mathbf{x}, \mathbf{y}) \in \mathsf{E} \},\$$

y la **y-sección** de E es el conjunto

$$E^{\mathbf{y}} = \{ \mathbf{x} \in \mathbf{X} : (\mathbf{x}, \mathbf{y}) \in \mathbf{E} \}.$$

Definición

Sea $f: X \times Y \to \mathbb{R}$ una función arbitraria, $\mathbf{x} \in X$, $\mathbf{y} \in Y$. La \mathbf{x} -sección de f es la función

$$f_{\mathbf{x}}:\mathsf{Y} o\mathbb{R}$$
, con

$$f_{\mathbf{x}}(y) = f(\mathbf{x}, y),$$

mientras que la **y-sección** de f es la función $f^{\mathbf{y}}: X \to \mathbb{R}$, con

$$f^{\mathbf{y}}(x) = f(x, \mathbf{y}).$$

Observaciones:

- $E_{\mathbf{x}} = \pi_{\mathbf{Y}}(E \cap (\{\mathbf{x}\} \times \mathbf{Y})) \text{ y } E^{\mathbf{y}} = \pi_{\mathbf{X}}(E \cap (\mathbf{X} \cap \{\mathbf{y}\})).$
- Si consideramos los mapas de inclusión $i_{\mathbf{x}}: Y \to \{\mathbf{x}\} \times Y \text{ e } i^{\mathbf{y}}: X \to X \times \{\mathbf{y}\}$, entonces $E_{\mathbf{x}} = \pi_Y(E \cap i_{\mathbf{x}}(Y))$ y $E^{\mathbf{y}} = \pi_X(E \cap i^{\mathbf{y}}(X))$.
- Además, $f_x = f \circ i_x$ y $f^y = f \circ i^y$.

Proposición

- Si $E \subseteq X \times Y$ es mesurable (en la medida producto), entonces E_x y E^y son mesurables.
- Si $f: X \times Y \to \mathbb{R}$ es mesurable (en la medida producto), entonces f_x y f^y son mesurables.

Prueba: Ejercicio! ☐

Lema

Sean (X, \mathcal{A}, μ) y (Y, \mathcal{B}, ν) espacios de medida σ -finitos. Si $E = A \times B$, con $A \in \mathcal{A}$, $B \in \mathcal{B}$, entonces las funciones $f : X \to \mathbb{R}$ y $g : Y \to \mathbb{R}$, definidas por

$$f(\mathbf{x}) = \nu(\mathbf{E}_{\mathbf{x}}) \ \mathbf{y} \ g(\mathbf{y}) = \mu(\mathbf{E}^{\mathbf{y}}),$$

son mesurables, y

$$\int_{\mathsf{X}}\!f\,\mathsf{d}\mu=\int_{\mathsf{X} imes\mathsf{Y}}\!\mathbf{1}_{\mathsf{E}}\,\mathsf{d}\pi=\int_{\mathsf{Y}}\!g\,\mathsf{d}
u.$$

Prueba: Vamos a suponer, primero, que los espacios X y Y tienen medida finita. Sea $\mathcal{M} = \{E \in \mathcal{A} \times \mathcal{B} : \text{ el resultado del enunciado vale para } E\}.$

Vamos a mostrar que \mathcal{M} es una clase monótona y que contiene a la colección Z_o .

Observe que si $E = A \times B$, con $A \in \mathcal{A}$, $B \in \mathcal{B}$, entonces

$$f(\mathbf{x}) = \nu(E_{\mathbf{x}}) = \mathbf{1}_{A}(\mathbf{x}) \cdot \nu(B) \text{ y } g(\mathbf{y}) = \mu(E^{\mathbf{y}}) = \mu(A) \cdot \mathbf{1}_{B}(\mathbf{y}),$$

$$\int f \, d\mu = \int_X \mathbf{1}_A(\mathbf{x}) \, \nu(B) \, d\mu = \mu(A) \, \nu(B) = \pi(E) = \int_Y \mu(A) \, \mathbf{1}_B(\mathbf{y}) \, d\nu = \int g \, d\nu.$$

Esto muestra que $Z = \{A \times B : A \in \mathcal{A}, b \in \mathcal{B}\} \subseteq \mathcal{M}$. Como cada elemento de Z_0 es unión disjunta enumerable de elementos en Z, por σ -aditividad, tenemos que

$$\int f d\mu = \pi(E) = \int g d\nu, \ \ orall E \in Z_{\mathsf{O}},$$

lo que muestra que $Z_0 \subseteq \mathcal{M}$.

Mostramos ahora que \mathcal{M} es una clase monótona. Sea $\{E_n\}_{n\geq 1}$ una secuencia ascendente de elementos en \mathcal{M} , con $E_n\nearrow E=\bigcup_n E_n$.

Consideremos las secuencias de funciones mesurables $\{f_n\}_n$ y $\{g_n\}_n$, $f_n: Y \to \mathbb{R}$, $g_n:\to \mathbb{R}$, con $f_n(\mathbf{x})=\nu((E_n)_{\mathbf{x}})$ y $g_n(\mathbf{y})=\mu((E_n)^{\mathbf{y}})$.

Como cada $E_n \in \mathcal{M}$, vale

$$\int f_n \, \mathrm{d} \mu = \pi(E_n) = \int g_n \, \mathrm{d}
u, \ \ orall n \geq 1.$$

Además, $E_n \nearrow E \implies (E_n)_{\mathbf{x}} \nearrow E_{\mathbf{x}}, \ (E_n)^{\mathbf{y}} \nearrow E^{\mathbf{y}} \ \text{y por continuidad superior}$ $\nu \left((E_n)_{\mathbf{x}} \right) \nearrow \nu(E_{\mathbf{x}}), \quad \mu \left((E_n)^{\mathbf{y}} \right) \nearrow \mu(E^{\mathbf{y}}), \quad \pi(E_n) \nearrow \pi(E).$

Esto muestra que $f_n \nearrow f$ y $g_n \nearrow g$.

Usando el Teorema de Convergencia Monótona, tenemos

$$\int_{X} f d\mu = \int_{X} \lim_{n} f_{n} d\mu = \lim_{n} \int_{X} f_{n} d\mu = \lim_{n} \pi(E_{n}) = \pi(E)$$

$$= \lim_{n} \int_{Y} g_{n} d\nu = \int_{Y} \lim_{n} g_{n} d\nu = \int_{Y} g d\nu.$$

De ahí que $E \in \mathcal{M}$, y \mathcal{M} atrapa límites de secuencias ascendentes.

Como π es una medida finita (ya que μ y ν lo son), el mismo argumento muestra que $\mathcal M$ atrapa límites de secuencias descendentes. Portanto, $\mathcal M$ es una clase monótona.

Por el Lema de Clases Monótonas, $Z_0 \subseteq \mathcal{M} \ \Rightarrow \ \mathcal{C} = \sigma(Z_0) \subseteq \mathcal{M}$, y vale el resultado.

En el caso de espacios σ -finitos, basta tomar una secuencia de rectánculos (finitos) Z_n , con $\pi(Z_n) < +\infty$, tales que $Z_n \nearrow X \times Y$, y aplicar el Teorema de Convergencia Monótona a $E \cap Z_n$.

Teorema de Tonelli

Teorema (Teorema de Tonelli)

Sean (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) espacio de medida σ -finitos, y sea $F: X \times Y \to \mathbb{R}$ una función mesurable no-negativa. Entonces, las funciones $f: X \to \mathbb{R}$, $g: Y \to \mathbb{R}$ dadas por

$$f(\mathbf{x}) = \int_{\mathsf{Y}} \mathsf{F}_{\mathbf{x}} \, \mathsf{d}
u, \qquad g(\mathbf{y}) = \int_{\mathsf{X}} \mathsf{F}^{\mathbf{y}} \, \mathsf{d} \mu,$$

son mesurables y

$$\int_{X} f \, d\mu = \int_{X \times Y} F \, d\pi = \int_{Y} g \, d\nu.$$

En otras palabras

$$\int_{\mathsf{X}} \Big(\int_{\mathsf{Y}} \mathsf{F} \, \mathsf{d} \nu \Big) \, \mathsf{d} \mu = \iint_{\mathsf{X} \times \mathsf{Y}} \mathsf{F} \, \mathsf{d} (\mu \times \nu) = \int_{\mathsf{Y}} \Big(\int_{\mathsf{X}} \mathsf{F} \, \mathsf{d} \mu \Big) \, \mathsf{d} \nu.$$

Prueba: Si $F = \mathbf{1}_E$, con $E \in \mathcal{A} \times \mathcal{B}$, el Teorema de Tonelli se reduce al lema anterior

Teorema de Tonelli

pues

$$f(\mathbf{x}) = \int_{Y} F_{\mathbf{x}} d\nu = \int_{Y} (\mathbf{1}_{E})_{\mathbf{x}} d\nu = \int_{Y} \mathbf{1}_{E_{\mathbf{x}}} d\nu = \nu(E_{\mathbf{x}}) = \mathbf{1}_{A}(\mathbf{x}) \nu(B),$$

$$g(\mathbf{y}) = \int_{X} F^{\mathbf{y}} d\mu = \int_{X} (\mathbf{1}_{E})^{\mathbf{y}} d\mu = \int_{X} \mathbf{1}_{E^{\mathbf{y}}} d\mu = \mu(E^{\mathbf{y}}) = \mu(A) \mathbf{1}_{B}(\mathbf{y}),$$

$$\int_{X} f d\mu = \int_{X} \mathbf{1}_{A}(\mathbf{x}) \nu(B) d\mu = \mu(A) \nu(B) = \int_{Y} \mu(A) \mathbf{1}_{B}(\mathbf{y}) d\nu = \int_{Y} g d\nu.$$
(2)

Si F es una función simple, con representación estándar $F = \sum_{k=1}^{n} c_j \mathbf{1}_{E_j}$, entonces (2) vale por linealidad.

Finalmente, si F es mesurable y no-negativa, por el Lema del Sombrero, existe una secuencia de funciones simples $\{F_n\}_{n\geq 1}$ tales que $F_n\nearrow F$. Definimos

$$\varphi_n(\mathbf{x}) = \int_{\mathbf{Y}} (\mathsf{F}_n)_{\mathbf{x}} d\nu, \qquad \psi_n(\mathbf{y}) = \int_{\mathbf{X}} (\mathsf{F}_n)^{\mathbf{y}} d\mu.$$

Teorema de Tonelli

Por el Teorema de Convergencia Monótona,

$$\varphi_n = \int_{\mathsf{Y}} (\mathsf{F}_n)_{\mathbf{x}} \, \mathrm{d}\nu \nearrow \int_{\mathsf{Y}} \mathsf{F}_{\mathbf{x}} \, \mathrm{d}\nu = f, \qquad \psi_n = \int_{\mathsf{X}} (\mathsf{F}_n)^{\mathbf{y}} \, \mathrm{d}\mu \nearrow \int_{\mathsf{X}} \mathsf{F}^{\mathbf{y}} \, \mathrm{d}\mu = g.$$

Luego,

$$\int_{X} f \, d\mu = \int_{X} \lim_{n} \varphi_{n} \, d\mu = \lim_{n} \int_{X} \varphi_{n} \, d\mu$$

$$= \lim_{n} \int_{Y} \psi_{n} \, d\nu = \lim_{n} \int_{Y} \psi_{n} \, d\nu = \int_{Y} g \, d\nu. \square$$

Teorema de Fubini

Teorema (Teorema de Fubini)

Sean (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) espacio de medida σ -finitos, y sea $\pi = \mu \times \nu$ la medida producto en $X \times Y$. Si $F : X \times Y \to \mathbb{R}$ es π -integrable, $F \in L^1(\pi)$, entonces las funciones $f : X \to \mathbb{R}$, $g : Y \to \mathbb{R}$ dadas por

$$f(\mathbf{x}) = \int_{\mathsf{Y}} \mathsf{F}_{\mathbf{x}} \, d
u, \qquad g(\mathbf{y}) = \int_{\mathsf{X}} \mathsf{F}^{\mathbf{y}} \, d \mu,$$

son mesurables, tienen integral finita, y

$$\int_{\mathsf{X}} f \, \mathsf{d} \mu = \int_{\mathsf{X} \times \mathsf{Y}} \mathsf{F} \, \mathsf{d} \pi = \int_{\mathsf{Y}} \mathsf{g} \, \mathsf{d} \nu.$$

En otras palabras

$$\int_{X} \Big(\int_{Y} F \, d\nu \Big) \, d\mu = \iint_{X \times Y} F \, d(\mu \times \nu) = \int_{Y} \Big(\int_{X} F \, d\mu \Big) \, d\nu.$$

Teorema de Fubini

Prueba: Como F es integrable con respecto de π , entonces su componentes F^+ y F^- también son integrables respecto de π .

Aplicando el Teorema de Tonelli a F^+ y F^- , deducimos que las funciones

$$f^+ = \int_{\mathsf{Y}} (\mathsf{F}^+)_{\mathbf{X}} \, d\nu, \ \ g^+ = \int_{\mathsf{X}} (\mathsf{F}^+)^{\mathbf{y}} \, d\mu, \ \ f^- = \int_{\mathsf{Y}} (\mathsf{F}^-)_{\mathbf{X}} \, d\nu, \ \ g^- = \int_{\mathsf{X}} (\mathsf{F}^-)^{\mathbf{y}} \, d\mu,$$

poseen integrales finitas (f^+, f^- respecto de μ , y g^+, g^- respecto de ν), y vale

$$\begin{array}{rcl} \int_X f^+ &=& \int_{X\times Y} F^+ \, \mathrm{d}\pi \ = \ \int_Y g^+ \, \mathrm{d}\nu, \\ \int_X f^- &=& \int_{X\times Y} F^- \, \mathrm{d}\pi \ = \ \int_Y g^- \, \mathrm{d}\nu. \end{array}$$

Por linealidad, restando ambas ecuaciones tenemos

$$\int_X f = \int_{\mathsf{X} \times \mathsf{Y}} \mathsf{F} \, \mathsf{d} \pi \ = \ \int_{\mathsf{Y}} \mathsf{g} \, \mathsf{d} \nu. \ \ _{\square}$$