

**Verfahren und Steuereinrichtung zum Anzeigen von Diagnose-
daten eines Druckers oder Kopierers**

Die Erfindung betrifft ein Verfahren und eine Steuereinrichtung zum Verarbeiten und Anzeigen von Diagnosedaten eines Druckers oder Kopierers, die auch als Trace-Daten bezeichnet werden. Derartige Trace-Daten sind insbesondere Betriebszustandsdaten, die den aktuellen Betriebszustand des Druckers oder Kopierers beschreiben, sowie einzelnen Betriebsereignissen zugeordnete Nutzdaten, wie z.B. Druckdaten. Ein Drucker oder Kopierer, insbesondere ein Hochleistungsdrucker oder -kopierer mit einer Druckgeschwindigkeit von ≥ 100 Blatt A4/min. enthält eine Vielzahl von Baugruppen mit separaten Steuereinheiten. Diese Steuereinheiten sind z.B. mikroprozessorgesteuert oder enthalten einen Personalcomputer.

Bei bekannten Druckern oder Kopierern werden die Trace-Daten in jeder einzelnen Baugruppe separat gespeichert und können von einem Service-Techniker mit Hilfe eines direkt mit dieser Baugruppe verbundenen Service-Computers aus der jeweiligen Baugruppe direkt ausgelesen werden. Tritt ein kritischer Betriebszustand oder ein Fehler auf, so werden die Trace-Daten vom Service-Techniker aus der betreffenden Baugruppe bzw. aus den betreffenden Baugruppen einzeln ausgelesen und mit Hilfe eines speziellen Auswerteprogramms zum Auswerten von Diagnosedaten in der speziellen Steuereinheit verarbeitet. Die verarbeiteten Diagnosedaten werden beim Verarbeiten analysiert und in einer geeigneten voreingestellten Form auf einer Anzeige angezeigt, wodurch insbesondere Betriebszustände der Baugruppe sowie Nutz- und Steuerdaten angezeigt werden, um eine Fehlerursache zu ermitteln und Gegenmaßnahmen ergreifen zu können.

- 2 -

Zum Auslesen der Trace-Daten aus einer Baugruppe nach dem Auftreten eines kritischen Betriebszustands oder eines Fehlers ist es beim Stand der Technik erforderlich, dass ein allgemein technisch gut ausgebildeter Service-Techniker vor Ort am Drucker oder Kopierer den kritischen Betriebszustand bzw. den Fehler mit Hilfe der Trace-Daten zu analysieren. Bei bekannten Druckern oder Kopierern ist es zwar auch möglich, die Trace-Daten lokal auf einen Datenträger, wie z.B. einer Diskette, zu speichern und die gespeicherten Daten zu einem späteren Zeitpunkt, z.B. in einem Service-Center des Drucker-Herstellers auszuwerten. Jedoch ist zum Auswählen und Speichern der Trace-Daten einer speziellen Baugruppe des Druckers oder Kopierers schon erhebliches Fachwissen einer Bedienperson erforderlich, wodurch es im allgemeinen einer Bedienperson nicht zumutbar ist, die Trace-Daten einer speziellen Baugruppe auf einem Datenträger zu sichern.

Aus dem US-Patent 5,243,382 ist ein Steuersystem für einen Drucker oder Kopierer bekannt, bei dem ein tragbares Wartungsgerät mit einer Wartungsschnittstelle des Druckers oder Kopierers verbindbar ist. Mit Hilfe dieser Verbindung werden erste Daten mit Zustandsinformationen vom Drucker zum Wartungsgerät übertragen. Zusätzlich können dem Wartungsgerät zweite Daten eingegeben werden, die Zustandsinformationen enthalten. Mindestens ein Paar gespeicherter Steuerinformationen auf der Grundlage der ersten und zweiten Daten können mit Hilfe des Wartungsgerätes ausgegeben werden. Die gespeicherten Daten können ferner zu einer Datenverarbeitungsanlage übertragen werden.

Die Baugruppen des Druckers oder Kopierers werden auch als Komponente bezeichnet, wobei die Steuereinheit der Komponente jeweils Hardware, Firmware und Software enthält. Al-

- 3 -

le Komponenten des Druckers oder Kopierers bilden einen gemeinsamen technischen Prozess. Bei kritischen Betriebszuständen oder Fehlerzuständen einer Komponente sind diese mit Hilfe interner Betriebszustände, Steuerdaten und von 5 der Komponente verarbeitete Nutzdaten zu analysieren, um eine Fehlerursache zu ermitteln.

Aus dem Dokument US 5,412,452 ist ein System bekannt, bei 10 dem eine Diagnosesystemsteuerung jeweils einer einem Diagnoseclient zugeordneten Diagnoseroutine mit Hilfe des jeweiligen Diagnoseclients ausführt.

Aus dem Dokument US 5,243,382 ist eine Vorrichtung bekannt, die mit einem Drucker oder Kopierer verbindbar ist, 15 um Fehlerdaten aus dem Drucker oder Kopierer auszulesen.

Aus dem Dokument EP 0 927 933 A2 ist ein Fernüberwachungssystem bekannt, das mehrere Geräte satellitengestützt überwacht.

20 Aus dem Dokument DE 292 20 490 U1 ist ein Drucker oder Kopierer bekannt, der eine Datenkommunikationsschnittstelle hat, über die Daten des Druckers oder Kopierers auslesbar und schreibbar sind. Das Auslesen und Übertragen dieser 25 erfolgt vorzugsweise über ein Computernetzwerk.

Andere bekannte Hochleistungsdruck- und -kopiersysteme haben mehrere technische Prozesse, die auf verschiedenen Hardwareplattformen abgearbeitet werden. So werden von ei- 30 nem Host-Computer Druckdaten erzeugt und zum Drucker oder Kopierer übertragen. Der Drucker oder Kopierer enthält mehrere Hauptsteuereinheiten, wie z.B. einen Controller und eine Device-Elektronik. Die Hauptsteuereinheiten haben zumindest Substeuereinheiten, die jeweils eine Komponente

- 4 -

eines technischen Prozesses bilden. Der Controller hat beispielsweise ein Ein- und Ausgabemodul, ein Rastermodul sowie ein Schnittstellenmodul. Die Device-Elektronik hat ein Hauptmodul, mehrere Submodule sowie Satellitenmodule.

5

Beim Auftreten von kritischen Betriebszuständen oder Fehlern des Druckers werden Betriebszustände und aktuelle Daten der einzelnen Komponenten eines technischen Prozesses zum Ermitteln der Fehlerursache benötigt. Die Betriebszustände und aktuellen Daten werden allgemein als Trace-Daten bezeichnet. Eine zeitliche Zuordnung von Trace-Daten mehrerer Komponenten ist beim Stand der Technik nicht oder nur schwer möglich, da die Trace-Daten einzelner Komponenten mit unterschiedlichen Programmmodulen analysiert und angezeigt werden. Im allgemeinen sind sowohl die Prozessoren, die Betriebszustände und die Zeitbasen der einzelnen Komponenten verschieden. Eine komponentenübergreifende Analyse der Fehlerursache ist somit sehr schwierig.

20 Aufgabe der Erfindung ist es, ein Verfahren und eine Steuereinrichtung zum Anzeigen von Diagnosedaten eines Druckers oder Kopierers anzugeben, bei dem auch Diagnosedaten mehrerer Steuereinheiten einfach anzeigbar und analysierbar sind.

25

Die Aufgabe wird für ein Verfahren zum Anzeigen von Diagnosedaten eines Druckers oder Kopierers mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Patentansprüchen angegeben.

Durch dieses erfindungsgemäße Verfahren wird erreicht, dass die im Diagnosedatenstrom enthaltenen Daten jeweils mit einer geeigneten Auswertevorschrift verarbeitet wer-

- 5 -

den. Insbesondere durch eine modulartige Handhabung der einzelnen Auswertevorschriften ist eine einfache Anpassung und eine einfache Handhabung der Auswertung und Analyse möglich. Vorzugsweise werden die erste und/oder zweite 5 Auswertevorschrift nach der Analyse des Diagnosedatenstroms mit Hilfe einer weiteren Auswertevorschrift nachgeladen.

Bei einer Änderung der Trace-Datenstruktur einer Steuer- 10 einheit muss dadurch nur die eine Auswertevorschrift zum Auswerten der Trace-Daten dieser Komponente selbst angepasst werden. Das Auswerteprogramm und die Anzeigeprogramme zum Anzeigen der analysierten Trace-Daten können unverändert beibehalten werden. Ferner können auch mehrere Auswertevorschriften zum Verarbeiten der Trace-Daten einer 15 Steuereinheit vorgesehen sein, wobei dann die Trace-Daten mit Hilfe der ersten Auswertevorschrift analysiert und verarbeitet werden. Beim Verarbeiten der Trace-Daten mit Hilfe der ersten Auswertevorschrift wird eine in der ersten 20 Auswertevorschrift angegebene dritte Auswertevorschift nachgeladen, mit der dann zumindest ein Teil der verarbeiteten Trace-Daten weiter verarbeitet und weiter analysiert werden.

25 Ein zweiter Aspekt der Erfindung betrifft eine Vorrichtung zum Ausgeben von Daten eines Diagnosedatenstroms eines Druckers oder Kopierers, die eine Auswerteeinheit hat, die einen Diagnosedatenstrom mit ersten Daten eines ersten Datentyps und mit mindestens zweiten Daten eines zweiten Datentyps verarbeitet, wobei die ersten Daten und die zweiten Daten jeweils in dem jeweiligen Datentyp entsprechende Strukturdaten und Nutzdaten enthalten. Die Auswerteeinheit 30 arbeitet ein Auswerteprogramm zum Auswerten und Ausgeben der mit Hilfe des Diagnosedatenstroms zugeführten ersten

- 6 -

und zweiten Daten ab. Die Auswerteeinheit analysiert mit Hilfe des Auswerteprogramms die Strukturdaten der ersten Daten und der zweiten Daten, wobei die Auswerteeinheit eine für den ersten Datentyp charakteristische erste Kennung 5 und eine für den zweiten Datentyp charakteristische zweite Kennung ermittelt. Ferner wählt die Auswerteeinheit beim Ermitteln der ersten Kennung mit Hilfe des Auswerteprogramms eine erste Auswertevorschrift aus einer Vielzahl von Auswertevorschriften aus und lädt diese, wobei die 10 Auswerteeinheit mit Hilfe dieser geladenen Auswertevorschift die Nutzdaten der ersten Daten auswertet und ausgibt. Ferner wählt die Auswerteeinheit mit Hilfe des Auswerteprogramms beim Ermitteln der zweiten Kennung eine zweite Auswertevorschrift aus einer Vielzahl von Auswertevorschriften aus und lädt diese Auswertevorschrift, wobei die Auswerteeinheit die Nutzdaten der zweiten Daten mit Hilfe der ausgewählten Auswertevorschrift auswertet und ausgibt.

15

20 Durch eine solche erfindungsgemäße Vorrichtung ist eine einfache Handhabung von verschiedenen in einem Diagnosedatenstrom enthaltenen Daten auf einfache Art und Weise möglich. Insbesondere ist eine einfache Handhabung der Auswertevorschriften möglich.

25

Ein dritter Aspekt der Erfindung betrifft ein Verfahren zum Erzeugen von Diagnosedaten, bei dem mit Hilfe einer ersten Steuereinheit erste Diagnosedaten über das Auftreten von voreingestellten ersten Diagnoseereignissen ereignisweise in einem ersten Diagnosedatenstrom gespeichert werden. Ferner wird jeweils eine Zeitinformation des Zeitpunktes des Auftretens eines dieser Diagnoseereignisse erzeugt, im ersten Diagnosedatenstrom gespeichert und den Diagnosedaten des jeweiligen Diagnoseereignisses zugeord-

30

- 7 -

net. Mit Hilfe mindestens einer zweiten Steuereinheit werden zweite Diagnosedaten über das Auftreten von voreingestellten zweiten Diagnoseereignissen ereignisweise in einem zweiten Diagnosedatenstrom gespeichert. Es wird jeweils eine Zeitinformation des Zeitpunktes des Auftretens eines dieser zweiten Diagnoseereignisse erzeugt, im zweiten Diagnosedatenstrom gespeichert und den Diagnosedaten des jeweiligen Diagnoseereignisses zugeordnet. Zumindest die im ersten Diagnosedatenstrom und im zweiten Diagnosedatenstrom gespeicherten ersten und zweiten Diagnosedaten werden mit Hilfe eines Auswerteprogramms ausgewertet, wobei die Diagnosedaten zumindest von ausgewählten Diagnoseereignissen ereignisweise in der zeitlichen Reihenfolge ihres Auftretens ausgegeben werden.

15

Durch ein solches erfindungsgemäßes Verfahren können Daten unterschiedlicher Diagnosedatenströme zeitlich synchronisiert ausgegeben werden. Somit ist eine übersichtliche Darstellung des Auftretens einzelner Ereignisse möglich, wodurch Wechselwirkungen von unterschiedlichen Ereignissen einfacher und schneller erkannt werden können. Der Aufwand zum Auffinden von Fehlern und Fehlerursachen kann durch dieses erfindungsgemäße Verfahren erheblich reduziert werden.

25

Ein vierter Aspekt der Erfindung betrifft eine Vorrichtung zum Erzeugen von Diagnosedaten. Die Vorrichtung hat eine erste Steuereinheit, die erste Diagnosedaten mit Informationen über das Auftreten von voreingestellten ersten Diagnoseereignissen ereignisweise in einem ersten Diagnosedatenstrom speichert und die jeweils eine Zeitinformation des Zeitpunktes des Auftretens eines der ersten Diagnoseereignisse erzeugt, im ersten Diagnosedatenstrom speichert und die jeweils eine Zeitinformation des Zeitpunktes des

- 8 -

Auftretens eines der ersten Diagnoseereignisse erzeugt, im ersten Diagnosedatenstrom speichert und den Diagnosedaten des jeweiligen Diagnoseereignisses zuordnet. Mindestens eine zweite Steuereinheit speichert zumindest zweite Diagnosedaten mit Informationen über das Auftreten von voreingestellten zweiten Diagnoseereignissen ereignisweise in einem zweiten Diagnosedatenstrom. Die Steuereinheit erzeugt jeweils eine Zeitinformation des Zeitpunktes des Auftretens eines dieser zweiten Diagnoseereignisse, speichert diese Zeitinformation im zweiten Diagnosedatenstrom und ordnet den Diagnosedaten des jeweiligen Diagnoseereignisses diese Zeitinformation zu. Die Vorrichtung umfasst ferner eine Auswerteeinheit, die die im ersten Diagnosedatenstrom und zumindest die im zweiten Diagnosedatenstrom gespeicherten ersten und zweiten Diagnosedaten auswertet, wobei die Auswerteeinheit die Diagnosedaten zumindest von ausgewählten Diagnoseereignissen ereignisweise in der zeitlichen Reihenfolge ihres Auftretens ausgibt.

Durch eine solche erfindungsgemäße Vorrichtung können die in zwei unterschiedlichen Diagnosedatenströmen enthaltenen Diagnosedaten gemeinsam in der zeitlichen Reihenfolge ihres Auftretens ausgegeben werden, wodurch eine einfache und übersichtliche Darstellung der in dem ersten Diagnosedatenstrom und in dem zweiten Diagnosedatenstrom enthaltenen Informationen über aufgetretene Diagnoseereignisse übersichtlich darstellbar sind. Fehlerursachen können dadurch schnell erfasst werden, wodurch Stillstandszeiten vermieden werden.

30

Durch erfindungsgemäße Vorrichtung und Verfahren wird erreicht, dass die Trace-Daten mehrere Steuereinheiten des Druckers oder Kopierers einfach vom Drucker oder Kopierer zu einer Datenverarbeitungseinheit übertragen und dort

- 9 -

ausgewertet werden können. Ferner ist durch die Zuordnung der ersten Auswertevorschrift zu den ersten Diagnosedaten und der zweiten Auswertevorschrift zu den zweiten Diagnosedaten eine einfache Handhabung der Auswertevorschriften möglich.

Zum besseren Verständnis der vorliegenden Erfindung wird im Folgenden auf die in den Zeichnungen dargestellten Ausführungsbeispiele Bezug genommen, die anhand spezifischer Terminologie beschrieben sind. Es sei jedoch darauf hingewiesen, dass der Schutzmfang der Erfindung dadurch nicht eingeschränkt werden soll, da derartige Veränderungen und weitere Modifizierungen an den gezeigten Vorrichtungen und/oder den Verfahren sowie derartige weitere Anwendungen der Erfindung, wie sie darin aufgezeigt sind, als übliches derzeitiges oder künftiges Fachwissen eines zuständigen Fachmanns angesehen werden.

Die Figuren zeigen Ausführungsbeispiele der Erfindung, nämlich:

- Fig. 1 ein schematisches Blockschaltbild eines technischen Prozesses in einem Drucker;
- Fig. 2 ein Blockschaltbild eines Drucksystems mit angeschlossenen Wartungscomputern;
- Fig. 3 ein Blockschaltbild zum Verarbeiten und Anzeigen von Trace-Daten gemäß dem Stand der Technik;
- Fig. 4 ein Blockschaltbild zum erfindungsgemäßen Verarbeiten und Anzeigen von Trace-Daten eines Trace-Datenstroms;

- 10 -

Fig. 5 einen Ablaufplan zum Verarbeiten des Trace-Datenstroms; und

5 Fig. 6 einen Bildschirmausdruck zur Anzeige von Analysedaten des Trace-Datenstroms.

In Figur 1 ist ein technischer Prozess 10 eines Druckers dargestellt, der drei Komponenten 12, 14, 16 umfasst. Jede der Komponenten 12, 14, 16 enthält sowohl Hardwareelemente, eine Firmware sowie Programmelemente zum Bereitstellen von Steuerfunktionen und zum Verarbeiten von Daten, vor allem von Nutzdaten. Insbesondere durch unterschiedliche Datenverarbeitungseinheiten, z.B. unterschiedliche mikroprozessorgesteuerte Steuereinheiten oder Personalcomputer der einzelnen Komponenten, haben die durch die jeweilige Komponente erzeugten Trace-Daten eine unterschiedliche Datenstruktur. Die Trace-Daten enthalten vorzugsweise Informationen über Betriebszustände und zu verarbeitende Steuer- und Nutzdaten der jeweiligen Komponente. Durch die unterschiedliche Datenstruktur können die Trace-Daten nicht einfach zusammen analysiert und ausgewertet werden. Dieses Problem tritt insbesondere bei Hochleistungsdruckern auf, bei denen mehrere Komponenten unterschiedlicher Hersteller in einem Drucker enthalten sind.

25 Eine gemeinsame Auswertung der Trace-Daten mehrerer Komponenten ist dann beim Stand der Technik nicht möglich. Die Auswertung der Trace-Daten erfolgt somit beim Stand der Technik für jede Komponente separat. Für jeden Trace-Datentyp, d.h. für Trace-Daten mit einer vorbestimmten Datenstruktur, wird beim Stand der Technik ein separates Programmmodul gestartet und abgearbeitet, dass die Trace-Daten eines Trace-Datentyps einliest, analysiert und in einer geeigneten Art und Weise anzeigt.

- 11 -

Eine übergreifende Analyse von Trace-Daten mehrerer Komponenten ist nur visuell durch einen Entwicklungsingenieur möglich. Normale Service-Techniker sind insbesondere durch
5 die Vielzahl der zu wartenden Hochleistungsdrucker mit einer solchen visuellen Analyse oft überfordert. Die Querverbindung von Trace-Daten mehrerer Komponenten ist somit nur für Spezialisten erkennbar. Ferner ist keine einheitliche Zeitbasis der Trace-Daten gegeben, die eine exakte
10 Aussage über die Abfolge von Trace-Daten mehrerer Komponenten ermöglicht. Auch das Auslesen der Trace-Daten von einzelnen Komponenten des Druckers bedarf oft unterschiedlicher Bedienhandlungen, wodurch es für Bedienpersonen oft zu kompliziert ist, die Trace-Daten einer speziellen Komponente herunterzuladen und auf einem Datenträger zu speichern, um diesen dann dem Druckerhersteller zur Analyse zu
15 übersenden.

In Figur 2 ist ein Drucksystem 20 dargestellt, bei dem ein
20 Host-Computer 22 Druckdaten zum Drucker 24 überträgt. Der Drucker 24 enthält sowohl eine erste Steuereinheit, den sogenannten Controller, und eine zweite Steuereinheit, die sogenannte Device-Elektronik. Ferner überträgt der Drucker 24 dem Host-Computer 22 Statusdaten über einzelne vom
25 Host-Computer 22 übermittelte Druckaufträge. Zur Analyse von Trace-Daten ist ein Personalcomputer 26, ein sogenannter Wartungscomputer, temporär mit dem Drucker 24 verbunden. Mit Hilfe des Personalcomputers 26 wird eine Analyse-
software abgearbeitet, die zum Verarbeiten der vom Drucker
30 24 übertragenen Trace-Daten dient.

In Figur 3 ist ein Blockschaltbild eines Systems 30 zum Verarbeiten von Trace-Daten 32 mit Hilfe des Personalcomputers 26 nach Figur 2 gemäß dem Stand der Technik darge-

- 12 -

stellt. Trace-Daten 32 werden, wie bereits in Zusammenhang mit Figur 2 erläutert, vom Drucker 24 zum Personalcomputer 26 übertragen. Im Personalcomputer 26 werden die Trace-Daten 32 einer Verarbeitungssoftware 34 zum Verarbeiten und Analysieren der Trace-Daten 32 zugeführt. Die Verarbeitungssoftware enthält auch eine Analysevorschrift zum Analysieren und Verarbeiten der zugeführten Trace-Daten 32. Die mit Hilfe der Verarbeitungssoftware verarbeiteten Trace-Daten werden nach dem Verarbeiten einem Anzeigeprogrammmodul zugeführt, der die verarbeiteten Trace-Daten mit Hilfe einer Bedienoberfläche ausgibt.

Sollen Trace-Daten mit unterschiedlicher Datenstruktur, d.h. von unterschiedlichen Komponenten bzw. Steuereinheiten des Druckers mit Hilfe des Systems 30 analysiert und verarbeitet werden, so muss beim Stand der Technik der Personalcomputer 26 zuerst mit einer Schnittstelle der ersten Steuereinheit des Druckers 24 verbunden werden, wobei erste Trace-Daten ausgelesen werden. Die ersten ausgelesenen Trace-Daten werden mit dem Verarbeitungsprogrammmodul 34 verarbeitet und analysiert und die verarbeiteten Daten werden mit Hilfe der Anzeigesoftware 36, wie bereits beschrieben, auf einer Anzeigeeinheit des Personalcomputers 26 ausgegeben. Anschließend wird beim Stand der Technik der Personalcomputer 26 mit einer Schnittstelle der zweiten Steuereinheit des Druckers 24 verbunden, wobei zweite Trace-Daten aus dieser Steuereinheit ausgelesen worden ist. Anschließend ist ein zweites, vom ersten Verarbeitungsprogrammmodul 34 verschiedenes Verarbeitungsprogrammmodul geladen worden, mit dem die zweiten Trace-Daten verarbeitet und analysiert worden sind. Die verarbeiteten Daten sind einem zweiten Anzeigeprogramm zugeführt worden.

- 13 -

In Figur 4 ist ein System 40 zum erfindungsgemäßen Verarbeiten und Analysieren eines Trace-Datenstroms 42 dargestellt. Die Trace-Daten der einzelnen Steuereinheiten werden im Drucker oder Kopierer zu einem Trace-Datenstrom zusammengeführt, der in einer Datei gespeichert wird. Diese Datei mit den Trace-Daten mehrerer Steuereinheiten wird dann zur Analyse und Anzeige zum Wartungscomputer 26 übertragen. Im Wartungscomputer sind die Verarbeitungssoftware 46, die Analysevorschriften 44a bis 44d sowie die Anzeigeprogrammmodulen 48a bis 48c enthalten. Aufgrund der Dateiendung der übertragenen Datei mit dem Trace-Datenstrom wird von der Verarbeitungssoftware 46 die Analysevorschrift 44a ausgewählt, die den Trace-Datenstrom nach voreingestellten Datenfolgen, sogenannten Schlüsseln, durchsucht. Entsprechend der Analysevorschrift 44a ist die Länge der diesem Schlüssel zugeordneten Daten, d.h. der Speicherbereich, in dem diese Daten gespeichert sind, in einem festen voreingestellten Abstand zum Schlüssel enthalten. Diese Länge wird durch das Verarbeitungsprogramm 46 ausgelernt, wobei abhängig von dem konkreten ermittelten Schlüssel eine der weiteren Analysevorschriften 44b, 44c, 44d ausgewählt wird, um die dem jeweiligen Schlüssel zugeordneten Daten weiter zu verarbeiten.

Den von der ersten Steuereinheit erzeugten Trace-Daten ist ein erster Schlüssel und den von der zweiten Steuereinheit erzeugten zweiten Trace-Daten ist ein zweiter Schlüssel zugeordnet. Ermittelt die Verarbeitungssoftware 46 im Trace-Datenstrom den ersten Schlüssel, so werden die durch die angegebene Länge definierten zugehörigen Daten mit Hilfe der dem ersten Schlüssel zugeordneten Analysevorschrift 44b weiter verarbeitet. Die mit Hilfe des zweiten Schlüssels gekennzeichneten und von der zweiten Steuereinheit erzeugten Trace-Daten, die durch die angegebene dem

- 14 -

- zweiten Schlüssel zugeordnete Länge definiert sind, werden mit Hilfe der Analysevorschrift 44c, die dem zweiten Schlüssel zugeordnet ist, weiter verarbeitet. Anschließend werden die zweiten Trace-Daten mit Hilfe der Verarbei-
5 tungssoftware nach einem weiteren dritten Schlüssel durch-
sucht, wobei die durch diesen dritten Schlüssel gekenn-
zeichneten Daten beim Auffinden des Schlüssels dann mit
der Analysevorschrift 44d weiterverarbeitet und analysiert
werden. Die Trace-Daten enthalten vorzugsweise einen soge-
10 nannten Strukturbereich, der den Schlüssel und das Längen-
feld enthält, und einen sogenannten Datenbereich, dessen
Daten von Verarbeitungssoftware 46 abhängig vom Schlüssel
weiter verarbeitet werden.
- 15 Die mit Hilfe der Verarbeitungssoftware 46 verarbeiteten
Trace-Daten können mit Hilfe der Verarbeitungssoftware na-
hezu beliebig kombiniert werden, so dass auch eine exakte
zeitliche Abfolge von Betriebszuständen und Fehlerzustän-
den möglich und einfach darstellbar ist. Die verarbeiteten
20 Trace-Daten werden dann mit Hilfe der Anzeigeprogrammmodu-
le 48a, 48b und 48c, die die verarbeiteten Daten, insbeson-
dere in unterschiedlichen Datenformaten, z.B. als Bi-
närdaten, als hexadezimale Daten, als Bilddaten usw., auf
einer Anzeigeeinheit des Personalcomputers 26 ausgegeben.
25 Vorzugsweise werden die Daten auf einer graphischen Benut-
zeroberfläche ausgegeben, in der das Datenformat durch den
Benutzer, z.B. durch den Servicetechniker einfach auswähl-
bar ist.
- 30 Vorzugsweise werden die einzelnen Analysevorschriften 44a
bis 44d in separaten Dateien in einen Speicherbereich,
vorzugsweise auf einer Festplatte, des Personalcomputers
26 gespeichert. Dadurch können sehr einfach weitere Analy-
sevorschriften 44a bis 44d in das Bearbeitungs-Analyse-

- 15 -

und Anzeigesystem 40 integriert werden. Die Anpassung des Systems 40 beim Hinzukommen von weiteren Steuereinheiten des Druckers oder Kopierers bzw. dem Ändern der Datenstruktur der Trace-Daten, einzelner Steuereinheiten des
5 Druckers, ist dann sehr einfach möglich. Die Datenstruktur einzelner Trace-Daten ist somit in den Analysevorschriften 44a bis 44d enthalten. Sind mehr als zwei Steuereinheiten im Drucker oder Kopierer vorgesehen, die Trace-Daten erzeugen, so kann alternativ auch ein Trace-Datenstrom mit
10 Trace-Daten von ausgewählten Steuereinheiten erzeugt werden. Ferner können die in den Trace-Daten der einzelnen Steuereinheiten aufzuzeichnenden Betriebsereignisse und Nutzdaten für jede Steuereinheit individuell voreingestellt werden. Dadurch kann sehr einfach ein problemorientierter Trace-Datenstrom erzeugt werden.
15

Innerhalb des Trace-Datenstroms werden den darin enthaltenen Trace-Daten der einzelnen Steuereinheiten eindeutige Trace-Typenbezeichnungen, insbesondere mit Hilfe von
20 Schlüsseln, zugeordnet. Die Trace-Daten sind im Trace-Datenstrom in Strukturbereiche und in Datenbereiche gegliedert, wobei im Strukturbereich insbesondere Informationen über den Schlüssel und Informationen über die Länge des Datenbereichs enthalten sind.

25 Ferner ist es vorteilhaft, die von den einzelnen Steuer-Einheiten des Druckers erzeugten Trace-Daten dynamisch, d.h. kontinuierlich, zu kombinieren, wodurch immer ein aktueller Trace-Datenstrom im Drucker vorhanden ist und die
30 Trace-Daten zur Fehleranalyse nicht erst in einem Trace-Datenstrom zusammengefasst werden müssen. Durch das dynamische Kombinieren der Trace-Daten mehrerer Steuereinheiten ist zumindest die Reihenfolge der in den Trace-Daten enthaltenen Betriebszustände einfach ermittelbar. Zusätz-

- 16 -

lich können die von den Steuereinheiten erzeugten Trace-Daten einen von den Steuereinheiten erzeugten Zeitstempel enthalten, sowie zusätzlich oder alternativ einen Zeitstempel beim Hinzufügen der Trace-Daten in den Trace-Datenstrom enthalten. Trace-Daten, die älter als einen Tag sind, können bei einer Ausführungsform der Erfindung automatisch aus dem Trace-Datenstrom gelöscht werden. Bei anderen Ausführungsformen ist der Zeitraum, nach dem die Trace-Daten zu löschen sind, im Drucker oder Kopierer als Parameter voreinstellbar.

Durch das erfindungsgemäße Verarbeiten und Analysieren des Trace-Datenstroms des gesamten Druckers können die Trace-Daten mehrerer Steuereinheiten auch einfach problemorientiert zusammengefasst werden. Aufgrund einer gemeinsamen Zeitbasis können einzelne in den Trace-Daten enthaltene Ereignisse zeitlich miteinander in Verbindung gebracht werden, indem z.B. die in den Trace-Daten enthaltenen Betriebsereignisse in der zeitlichen Reihenfolge ihres Auftretens insbesondere in einer Liste ausgegeben werden. Dadurch ist ein sehr übersichtlicher zeitlicher Ablauf von Betriebsereignissen mehrerer Steuereinheiten des Druckers möglich. Vorzugsweise sind, wie bereits erwähnt, die Trace-Daten in mindestens jeweils einen Datenbereich und einen Strukturbereich eingeteilt. Im Strukturbereich ist insbesondere der Datentyp der im Datenbereich enthaltenen Daten und die Art der Datendarstellung enthalten. So ist insbesondere im Strukturbereich die Länge eines Datenfeldes, wie z.B. Byte oder word long, das Datenformat, z.B. ASCII, EBCDI oder HEX und die Art der Daten, z.B. Bild-, Ton-, Video- oder Statistikdaten, enthalten. Ferner enthält der Strukturbereich mindestens ein Längenfeld, durch das zumindest die Größe des Datenbereichs bestimmt ist. Ferner kann sowohl der Strukturbereich als auch der Daten-

- 17 -

bereich einen sogenannten Header enthalten, in dem weitere Angaben über die im Datenbereich und/oder im Strukturbereich gespeicherten Daten enthalten sind.

5 Die Art der Anzeige der im Datenbereich enthaltenen Daten wird vorzugsweise durch die voreingestellte Anzeigevorschrift 48a bis 48c in der Verarbeitungssoftware 46 und/oder in der Analysevorschrift 44a bis 44d für dieses Datenobjekt bestimmt. Die Verarbeitungssoftware 46 verwendet zur Anzeige mehrere Trace-Datentypen, das bereits erläuterte erfindungsgemäße Verfahren. Die Analysevorschriften 44a bis 44d sind in sogenannten Structure Define Language-Dateien (SDL-Dateien) gespeichert, die, wie bereits erläutert, von der Verarbeitungssoftware 46 zum Verarbeiten des Trace-Datenstroms 42 genutzt werden. Wie bereits in Zusammenhang mit den Analysevorschriften 44a bis 44d erläutert, können die Analysevorschriften kaskadiert und hierarchisch gegliedert sein, wodurch einzelne Trace-Daten mit mehreren Analysevorschriften 44a bis 44d verarbeitet 10 und analysiert werden. Insbesondere sind Analysevorschriften 44a bis 44d zum Verarbeiten und Analysieren von IPDS-Daten, von P-E-C-Daten, zur Analyse von Trace-Daten einer Steuereinheit zum Steuern des Einzelblatttransports, einer Steuereinheit zum Steuern eines Papierbahntriebs und 15 Trace-Daten zum internen Zeitverhalten des Druckers vorgesehen.

In Figur 5 ist ein Ablauf zum Verarbeiten und Analysieren eines Trace-Datenstroms 42 mit Hilfe des Systems 40 dargestellt. Im Schritt S 100 wird der Ablauf gestartet. Anschließend wird im Schritt S 102 eine Datei mit dem Trace-Datenstrom von der Verarbeitungssoftware 46 geladen. Dabei wird mit Hilfe der Verarbeitungssoftware 46 die Datei- 20 menserweiterung analysiert und überprüft, ob eine Analyse-

- 18 -

vorschrift 44a zum Verarbeiten von Dateien mit dieser Endung im Personalcomputer 46 vorhanden ist. Ist keine zur Dateinamenserweiterung der geladenen Datei geeignete Analysevorschrift 44a vorhanden, so ist der Ablauf im Schritt 5 S 116 beendet. Wird im Schritt S 104 jedoch festgestellt, dass eine geeignete Analysevorschrift 44a vorhanden ist, so wird anschließend im Schritt S 106 diese Analysevorschrift 44a ausgewertet. Die Analysevorschrift wird auch als Parser bezeichnet. Allgemein ist ein solcher Parser 10 ein Sprachanalysator, der Bestandteil eines Compilers ist. Dem Parser werden Querdaten zugeführt, die der Parser unter bestimmten Gesichtspunkten analysiert und als Ergebnis der Analyse Daten zur Weiterverarbeitung ausgibt. Mit Hilfe des Parsers werden die zugeführten Daten, wie bereits 15 beschrieben, schrittweise analysiert.

Der im Schritt S 106 ausgewählte Parser ist in einer Datei in einem Festplattenspeicher des Personalcomputers 26 gespeichert und wird im Schritt S 108 von der Verarbeitungssoftware 46 in einen Arbeitsspeicher des Personalcomputers 26 geladen. Durch das Laden der Analysevorschrift 44a in den Arbeitsspeicher hat die Verarbeitungssoftware 46 Zugriff auf die in der Datei gespeicherte Analysevorschrift 44a. Anschließend wird die Verarbeitungssoftware 25 46 mit Hilfe der Analysevorschrift 44a den zugeführten Trace-Datenstrom und interpretiert und analysiert dabei die im Diagnosedatenstrom enthaltenen Daten im Schritt S110. Dabei werden die Tracedaten mit Hilfe eines Parsers 30 in Trace-Objekte gegliedert. Ein Trace-Objekt enthält einen Offset, der die Entfernung vom Dateianfang angibt, eine Länge des Objekts, d.h. die Anzahl der Bytes des Trace-Objekts, das bevorzugte Anzeigeformat und einen Beschreibungstext für jedes Anzeigeelement. Mit Hilfe des bevorzugten Anzeigeformats erfolgt die Auswahl der Darstellung,

- 19 -

wobei Umsetzungstabellen ausgewählt werden, durch die die Tracedaten verarbeitet bzw. umgesetzt werden. Insbesondere werden Tracedaten im HEX-, EBCDII- und ASCII-Datenformat in das ASCII-Datenformat entsprechend der jeweiligen Umsetzungstabelle umgesetzt. Zusätzlich kann die Reihenfolge der Tracedaten verändert werden. So können z.B. die Byte der Dateiformate WORD und LONG gedreht werden, d.h. die LOW-Bytes und die HIGH-Bytes werden vertauscht, wodurch die Datenfolge 0010 im Intel-Datenformat in die Datenfolge 1000 umgewandelt wird. Nachfolgend wird im Schritt S 112 aufgrund der analysierten Daten ein Anzeigeprogramm 48a entsprechend der Anzeigeformatangabe in den Tracedaten zum Anzeigen der im Schritt S 110 verarbeiteten Daten ausgewählt. Alternativ wird das Anzeigeprogramm 48a mit Hilfe des beim Verarbeiten der Tracedaten verwendeten Tracedaten verwendeten Parsers ausgewählt. Weiterhin werden im Schritt S 112 die verarbeiteten anzuzeigenden Daten zum Anzeigeprogramm 48a übertragen. Nachfolgend wird im Schritt S 114 überprüft, ob die verarbeiteten Daten weitere Datenbereiche enthalten, die mit Hilfe einer weiteren Analysevorschrift 44b bis 44d verarbeitet, d.h. interpretiert und analysiert werden sollen. Ist das der Fall, so werden die Schritte S 106 bis S 112 wiederholt ausgeführt, wobei die Daten eines weiteren Datenbereichs beim wiederholten Ausführen der Schritte S 106 bis S 112 weiter verarbeitet werden. Ist das nicht der Fall, so ist der Ablauf anschließend im Schritt S 116 beendet.

In Figur 6 ist ein Bildschirmausdruck einer grafischen Benutzeroberfläche zum Anzeigen der Trace-Daten eines Trace-Datenstroms dargestellt, der mit dem System 40 nach Figur 4 sowie mit Hilfe des Ablaufs nach Figur 5 verarbeitet worden ist. Der analysierte Trace-Datenstrom ist auf einem Festplattenlaufwerk D als Datei CATMCS01.HII im Verzeich-

- 20 -

nis Trace/BMP_MC gespeichert. Mit Hilfe der ersten Analysevorschrift 44a ist, wie bereits in Zusammenhang mit Figur 5 beschrieben, der in der Datei CATMCS01.HII enthaltene Trace-Datenstrom analysiert worden. Die analysierten
5 Daten sind mit Hilfe der nicht aktivierten Registerkarte 52 der Bedienoberfläche 50 anzeigbar. Mit Hilfe der Analysevorschrift 44a ist im Trace-Datenstrom ein Datenbereich mit IPDS-Druckdaten ermittelt worden. Die IPDS-Druckdaten sind nachfolgend mit Hilfe der Analysevorschrift 44b durch
10 die Verarbeitungssoftware 46 analysiert und verarbeitet worden.

Die interpretierten und analysierten IPDS-Druckdaten des Trace-Datenstroms sind im Anzeigefeld 54 die in den IPDS-Druckdaten enthaltene Datenbereiche durch Aktivieren der Registerkarte 53 angezeigt, die mit Hilfe eines Markierungsbalkens 56 einzeln auswählbar und aktivierbar sind. Im Anzeigefeld 58 sind die im ausgewählten Datenbereich 56 enthaltenen Trace-Daten entsprechend ihrem Trace-Datentyp
20 angezeigt. Die Trace-Daten sind in der Spalte Trace-Daten in einer hexadezimalen Darstellung angegeben, wobei den Trace-Daten jeweils in einer Spalte Beschreibung Angaben zur Erläuterung der hexadezimalen Trace-Daten zugefügt sind. Bei einzelnen Daten, wie z.B. bei dem Datum Target
25 Pel Count, Target Scan Count, Source Pel Count, Source Scan Count sind die hexadezimalen Trace-Datenwerte zusätzlich als Dezimalwerte angegeben. Die Beschreibungstexte sind vorzugsweise in mindestens einer der Analysevorschriften 44a bis 44c enthalten. Die in den Trace-Daten
30 enthaltenen Bilddaten werden in dem Anzeigefeld 60 mit einem einstellbaren Zoomfaktor ausgegeben.

Bei anderen Ausführungsbeispielen ist eine weitere Analysevorschrift zum Verarbeiten der Bilddaten selbst erfor-

- 21 -

derlich, wodurch dann ein erster Parser zum Verarbeiten der IPDS-Druckdaten erforderlich ist und ein zweiter Parser zum Verarbeiten der in den IPDS-Druckdaten enthaltenen Bilddaten. Dadurch sind die Analysevorschriften kaskadiert
5 abzuarbeiten und miteinander verschachtelt. Die Diagnose-
daten bzw. die Trace-Daten der ersten und der zweiten
Steuereinheit sind in dem Trace-Datenstrom beliebig nach-
einander angeordnet, d.h. die von der Steuereinheit auf-
grund eines Betriebsereignisses erzeugten Trace-Daten wer-
10 den unmittelbar nach dem Erzeugen dem Trace-Datenstrom,
d.h. der Trace-Datei, hinzugefügt, wodurch über einen län-
geren Zeitraum im Trace-Dateistrom eine unregelmäßige An-
einanderreihung von Trace-Daten der ersten und zweiten
Steuereinheit erzeugt wird.

15

In den Analysevorschriften, d.h. in den Parsern, ist fer-
ner insbesondere angegeben, welche Verarbeitungsschritte
mit welchen Datentypen durchgeführt werden sollen und wel-
che Objekte mit welchen voreingestellten Verfahren verar-
beitet werden sollen. Vorzugsweise wird im Drucker ein so-
genannter User-Trace erzeugt, in den die Trace-Daten aller
oder von voreingestellten Komponenten bzw. Steuereinheiten
des Druckers fortlaufend gespeichert werden. Die Trace-
Daten enthalten zumindest zum Teil auch Nutzdaten, die zum
20 Analysieren und/oder Bewerten von Betriebs- und Fehlerzu-
ständen erforderlich sind. Eine solche Trace-Datei kann
eine Datenmenge von mehreren Megabyte bis zu einigen 10
Gigabyte enthalten. Aus der deutschen Patentanmeldung mit
dem amtlichen Aktenzeichen 102 50 193.9 sind ein Verfahren
25 und eine Steuereinrichtung zum Analysieren von Betriebsda-
ten eines Druckers bekannt. Der Inhalt dieser Patentanmel-
dung wird hiermit durch Bezugnahme in die vorliegende Be-
schreibung aufgenommen.

- 22 -

Obgleich in den Zeichnungen und in der vorhergehenden Beschreibung bevorzugte Ausführungsbeispiele der Erfindung aufgezeigt und detailliert beschrieben worden sind, sollte dies beispielhaft und die Erfindung nicht einschränkend 5 angesehen werden. Es wird darauf hingewiesen, dass nur die bevorzugten Ausführungsbeispiele dargestellt und beschrieben sind und sämtliche Veränderungen und Modifizierungen, die derzeit und künftig im Schutzmfang der Erfindung liegen, geschützt werden sollen.

10

- 23 -

Bezugszeichenliste

10	Technischer Prozess
12, 14, 16	Komponente
20	System
22	Host-Computer
24	Drucker
26	Personalcomputer
30	Auswertesystem
32	Trace-Daten
34	Verarbeitungssoftware und Analysevorschrift
36	Anzeigeprogramm
40	Analysesystem
42	Trace-Datenstrom
44a, 44b, 44c	Analysevorschrift
46	Verarbeitungsprogramm
48a, 48b, 48c	Anzeigeprogrammmmodul
50	Bedienoberfläche
52	Auswahlregister
54, 58, 60	Anzegebereich
56	Auswahlbalken
S 100 - S 116	Verfahrensschritte

Ansprüche

1. Verfahren zum Ausgeben von Daten eines Diagnosedatenstromes eines Druckers oder Kopierers,
5 bei dem der Diagnosedatenstrom (42) erste Daten eines ersten Datentyps und mindestens zweite Daten eines zweiten Datentyps umfasst,
10 wobei die ersten Daten und die zweiten Daten jeweils dem jeweiligen Datentyp entsprechende Strukturdaten und Nutzdaten enthalten,
15 der Diagnosedatenstrom (42) einen Auswerteprogramm einer Auswerteeinheit (26) zum Auswerten und Ausgeben der ersten und zweiten Daten zuführt,
20 mit Hilfe des Auswerteprogramms die Strukturdaten der ersten und der zweiten Daten analysiert werden, wobei eine für den ersten Datentyp charakteristische erste Kennung und eine für den zweiten Datentyp charakteristische zweite Kennung ermittelt wird,
25 beim Ermitteln der ersten Kennung mit Hilfe des Auswerteprogramms eine erste Auswertevorschrift (44b) aus einer Vielzahl von Auswertevorschriften ausgewählt und geladen wird, mit der die Nutzdaten der ersten Daten ausgewertet und ausgegeben werden,
30 und bei dem beim Ermitteln der zweiten Kennung mit Hilfe des Auswerteprogramms eine zweite Auswertevorschift (44c) aus einer Vielzahl von Auswertevorschriften ausgewählt und geladen wird, mit der die

- 25 -

Nutzdaten der zweiten Daten ausgewertet und ausgegeben werden.

2. Verfahren nach Anspruch 1, **dadurch gekennzeichnet**, dass die ersten und/oder zweiten Daten jeweils codierte Informationen enthalten.
- 10 3. Verfahren nach Anspruch 2, **dadurch gekennzeichnet**, dass die codierten Informationen jeweils mit Hilfe der ausgewählten Auswertevorschrift decodiert werden.
- 15 4. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass der Informationsgehalt eines Datums der ersten und/oder zweiten Daten mit Hilfe der ausgewählten Auswertevorschrift (44b, 44c) durch die Position des Datums in einer Datenfolge der ersten bzw. zweiten Diagnosedaten bestimmt wird.
- 20 5. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass der Datentyp die Reihenfolge der Informationen, die Kennzeichnung der Informationen und/oder die Codierung der Informationen betrifft.
- 25 6. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass die ersten und/oder zweiten Daten Binärdaten, numerische Daten, alphanumerische Daten und/oder Bilddaten enthalten.
- 30 7. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass die ersten und/oder zweiten Daten Zeitinformationen, Fehlercodes, Messwerte, Einstellwerte, Betriebszustandsinformationen, Statusinformationen, Eingabeparameter und/oder Ausgabeparameter enthalten.

- 26 -

8. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass die ersten Daten und die zweiten Daten gleichartige Informationen enthalten, die in unterschiedlicher Reihenfolge und/oder unterschiedlicher Codierung in diesen Daten enthalten sind.
5
9. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass die ersten Daten von den zweiten Daten verschiedenartig sind.
10
10. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass die ersten und/oder zweiten Daten mit Hilfe der jeweiligen Auswertevorschrift vor dem Anzeigen sortiert, umgewandelt und/oder mit Kommentaren versehen werden.
15
11. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass die ersten Daten durch eine erste Steuereinheit erzeugt werden, dass die zweiten Daten durch eine zweite Steuereinheit erzeugt werden, und dass die Steuereinheiten (12, 14) mehrere vorzugsweise parallele Prozesse steuern.
20
12. Verfahren Anspruch 11, **dadurch gekennzeichnet**, dass die erste und/oder zweite Steuereinheit (12, 14) eine Ein- und/oder Ausgabesteuereinheit, eine Druckdatenverarbeitungseinheit, eine Schnittstellensteuereinheit, eine Bedieneinheit, eine Hauptsteuereinheit und/oder eine Submodulsteuereinheit ist.
25
13. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass zumindest ein Teil der ersten und/oder zweiten Daten beim Auftreten voreingestellter Diagnoseereignisse erzeugt werden, wenn zumindest eine der Steuereinheiten ein oder mehrere nachfolgende Ereignisse feststellt:
30
35

- 27 -

- das Auftreten von Fehlern
 - das Auftreten von Betriebsereignissen
- 5 - das Verarbeiten von Druckdaten
- voreingestellte Speicherzustände und/oder
 - das Ändern von Softwareversionen.
- 10 14. Verfahren nach einem der vorhergehenden Ansprüche, **da-durch gekennzeichnet**, dass die ersten und/oder zweiten Daten Druckdaten und Daten mit Betriebszustandsinformation enthalten.
- 15 15. Verfahren nach einem der vorhergehenden Ansprüche, **da-durch gekennzeichnet**, dass der Diagnosedatenstrom (42) mit Hilfe einer Datenverarbeitungseinheit (26) analysiert und interpretiert wird,
- 20 und dass die verarbeiteten ersten und/oder zweiten Daten in einem voreingestellten Format angezeigt werden.
- 25 16. Verfahren nach einem der vorhergehenden Ansprüche, **da-durch gekennzeichnet**, dass der Diagnosedatenstrom (42) mit Hilfe der ersten Auswertevorschrift (44b, 44c) nach voreingestellten Datenfolgen durchsucht wird, und
- 30 dass abhängig von der ermittelten Datenfolge eine zweite Auswertevorschrift (44b) ausgewählt wird, wobei mit dieser voreingestellten Datenfolge im Diagnosestrom (42) zugeordneten weiteren Daten mit Hilfe der zweiten Auswertevorschrift verarbeitet wird.
- 35 17. Verfahren nach Anspruch 16, **dadurch gekennzeichnet**, dass die voreingestellte Datenfolge (42) Schlüsseldaten enthält, die angeben, ob es sich bei den diesen

- 28 -

Schlüsseldaten zugeordneten Daten um erste Daten oder um zweite Daten handelt.

18. Verfahren nach einem der vorhergehenden Ansprüche, **durch gekennzeichnet**, dass der Diagnosedatenstrom (42) in einer Datei enthalten ist, wobei die Datei einer Auswerteeinheit (26) zugeführt wird.
5
 19. Verfahren nach Anspruch 18, **dadurch gekennzeichnet**, dass eine weitere Auswertevorschrift (44a) abhängig von der Erweiterung des Dateinamens von der Datenverarbeitungseinheit (26) ausgewählt und geladen wird, wobei mit Hilfe dieser weiteren Auswertevorschrift (44a) die ersten Daten und die zweiten Daten im Diagnosedatenstrom (42) ermittelt werden, die dann mit Hilfe der ersten und/oder zweiten Auswertevorschrift (44b, 44c) weiterverarbeitet werden.
10
15
 20. Verfahren nach einem der vorhergehenden Ansprüche, **durch gekennzeichnet**, dass die Auswertevorschriften (44a, 44b, 44c) jeweils in einen separaten Datei gespeichert sind,
20
- und dass eine Auswerteeinheit (26) die erste Auswertevorschift zum Verarbeiten der ersten Diagnosedaten und die zweite Auswertevorschift zum Verarbeiten der zweiten Diagnosedaten in einem Arbeitsspeicher dieser Auswerteeinheit (26) geladen wird.
25
- 30 21. Verfahren nach einem der vorhergehenden Ansprüche, **durch gekennzeichnet**, dass abhängig von der Auswahl der Auswertevorschift (44a, 44b, 44c) und/oder von in der Auswertevorschift (44a, 44b, 44c) enthaltenen Informationen ein geeignetes Anzeigeformat ausgewählt wird, mit dem die verarbeiteten Diagnosedaten mit Hilfe einer Ausgabeeinheit ausgegeben werden.
35

- 29 -

22. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass die ersten Daten und die zweiten Daten eine voneinander verschiedene Datenstruktur und/oder ein voneinander verschiedenes Datenformat haben.
5
23. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass die Zuordnung der in dem Diagnosedatenstrom (42) enthaltenen ersten Daten zu der ersten Anzeigevorschrift mit Hilfe eines eindeutigen in dem Diagnosedatenstrom (42) enthaltenen ersten Schlüssels und der in dem Diagnosedatenstrom (42) enthaltenen zweiten Daten zu der zweiten Anzeigevorschrift mit Hilfe eines eindeutigen in dem Diagnosedatenstrom (42) enthaltenen zweiten Schlüssels erfolgt, wobei mit Hilfe der Schlüssel die dem jeweiligen Schlüssel zugeordneten Daten als erste Daten bzw. als zweite Daten gekennzeichnet werden und mit Hilfe dieser Schlüssel als erste Daten oder als zweite Daten erkannt werden.
10
15
20
24. Verfahren nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass der Diagnosedatenstrom (42) mit den ersten Daten und den zweiten Daten mit Hilfe einer Steuereinheit erzeugt wird, wobei mit Hilfe dieser Steuereinheit den ersten Diagnosedaten ein erster Schlüssel und den zweiten Diagnosedaten ein zweiter Schlüssel zugeordnet wird.
25
25. Verfahren nach Anspruch 24, **dadurch gekennzeichnet**, dass eine Datenmengeninformation als Längeninformation in einem vorbestimmten Abstand zum Schlüssel gespeichert wird, die die Speichermenge der jeweiligen Diagnosedaten im Diagnosedatenstrom (42) angibt.
30
35
26. Vorrichtung zum Ausgeben von Daten eines Diagnosedatenstroms eines Druckers oder Kopierers,

- 30 -

mit einer Auswerteeinheit, die einen Diagnosedatenstrom (42) mit ersten Daten eines ersten Datentyps und mit mindestens zweiten Daten eines zweiten Datentyps verarbeitet, wobei die ersten Daten und die zweiten Daten jeweils dem jeweiligen Datentyp entsprechende Strukturdaten und Nutzdaten enthalten,

10 bei der die Auswerteeinheit ein Auswerteprogramm zum Auswerten und Ausgeben der mit Hilfe des Diagnosedatenstroms (42) zugeführten ersten und zweiten Daten abarbeitet,

15 die Auswerteeinheit mit Hilfe des Auswerteprogramms die Strukturdaten der ersten und der zweiten Daten analysiert, wobei die Auswerteeinheit eine für den ersten Datentyp charakteristische erste Kennung und eine für den zweiten Datentyp charakteristische zweite Kennung ermittelt,

20 die Auswerteeinheit beim Ermitteln der ersten Kennung mit Hilfe des Auswerteprogramms eine erste Auswertevorschrift (44b) aus einer Vielzahl von Auswertevorschriften auswählt und lädt, wobei die Auswerteeinheit mit Hilfe dieser geladenen Auswertevorschrift (44b) die Nutzdaten der ersten Daten auswertet und ausgibt,

25 30 und bei der die Auswerteeinheit (26) mit Hilfe des Auswerteprogramms beim Ermitteln der zweiten Kennung eine zweite Auswertevorschift (44c) aus einer Vielzahl von Auswertevorschriften auswählt und lädt, wobei die Auswerteeinheit die Nutzdaten der zweiten Daten mit Hilfe der ausgewählten Auswertevorschift (44c) auswertet und ausgibt.

35

27. Verfahren zum Erzeugen von Diagnosedaten,

- 31 -

bei dem mit Hilfe einer ersten Steuereinheit erste Diagnosedaten über das Auftreten von voreingestellten ersten Diagnoseereignissen ereignisweise in einem ersten Diagnosedatenstrom gespeichert werden,

5

jeweils eine Zeitinformation des Zeitpunktes des Auftretens eines dieser ersten Diagnoseereignisse erzeugt und im ersten Diagnosedatenstrom gespeichert und den Diagnosedaten des jeweiligen Diagnoseereignisses zugeordnet wird,

10

mit Hilfe einer zweiten Steuereinheit zweite Diagnosedaten über das Auftreten von voreingestellten zweiten Diagnoseereignissen ereignisweise in einen zweiten Diagnosedatenstrom gespeichert werden,

15

jeweils eine Zeitinformation des Zeitpunktes des Auftretens eines dieser zweiten Diagnoseereignisse erzeugt, im zweiten Diagnosedatenstrom gespeichert und den Diagnosedaten des jeweiligen Diagnoseereignisses zugeordnet wird,

20

und bei dem zumindest die im ersten Diagnosedatenstrom und im zweiten Diagnosedatenstrom gespeicherten ersten und zweiten Diagnosedaten mit Hilfe eines Auswerteprogramms ausgewertet werden, wobei die Diagnosedaten zumindest von ausgewählten Diagnoseereignissen ereignisweise in der zeitlichen Reihenfolgen ihres Auftretens ausgegeben werden.

25

28. Verfahren nach Anspruch 27, **dadurch gekennzeichnet**, dass das Auswerteprogramm von der ersten oder zweiten Steuereinheit ausgeführt wird.

30

35 29. Verfahren nach Anspruch 27, **dadurch gekennzeichnet**, dass die Auswerteroutine von einer Auswerteeinheit ausgeführt wird.

30. Verfahren nach einem der Ansprüche 27 bis 29, **dadurch gekennzeichnet**, dass jeweils ein Zeitstempel mit der Zeitinformation erzeugt wird.
- 5
31. Verfahren nach einem der Ansprüche 27 bis 30, **dadurch gekennzeichnet**, dass bei jedem auftretenden Diagnoseereignis jeweils mindestens eine Zeitinformation erzeugt wird, vorzugsweise jeweils eine erste Zeitinformation beim Auftreten des Diagnoseereignisses und eine zweite Zeitinformation beim Beenden des Diagnoseereignisses.
- 10
32. Vorrichtung zum Erzeugen von Diagnosedaten, mit einer ersten Steuereinheit, die erste Diagnosedaten mit Informationen über das Auftreten von voreingestellten ersten Diagnoseereignissen ereignisweise in einem ersten Diagnosedatenstrom speichert und die jeweils eine Zeitinformation des Zeitpunktes des Auftretens eines 20 zweiten Diagnoseereignisses erzeugt, im ersten Diagnosedatenstrom speichert und den Diagnosedaten des jeweiligen Diagnoseereignisses zuordnet,
- 15
- mit mindestens einer zweiten Steuereinheit, die zweite Diagnosedaten mit Informationen über das Auftreten von voreingestellten zweiten Diagnoseereignissen ereignisweise in einem zweiten Diagnosedatenstrom speichert und die jeweils eine Zeitinformation des Zeitpunktes des Auftretens eines dieser zweiten Diagnoseereignisse erzeugt, im zweiten Diagnosedatenstrom speichert und den Diagnosedaten des jeweiligen Diagnoseereignisses zuordnet,
- 25
- 30
- mit einer Auswerteeinheit, die die im ersten Diagnosedatenstrom und zumindest die im zweiten Diagnosedatenstrom gespeicherten ersten und zweiten Diagnosedaten auswertet, wobei die Auswerteeinheit die Diagnosedaten
- 35

- 33 -

zumindest von ausgewählten Diagnoseereignissen ereignisweise in der zeitlichen Reihenfolge ihres Auftretens ausgibt.

5 33. Vorrichtung nach Anspruch 32, **dadurch gekennzeichnet**, dass die voreingestellten Diagnoseereignisse

- das Auftreten von Fehlern
- das Auftreten von Betriebsereignissen
- das Verarbeiten von Druckdaten
- voreingestellte Speicherzustände und/oder
- das Ändern von Software-Versionen

umfasst.

20 34. Vorrichtung nach einem der Ansprüche 32 oder 33, **dadurch gekennzeichnet**, dass die ersten und/oder zweiten Diagnosedaten Trace-Daten der jeweiligen Steuereinheit sind.

Fig. 1

Fig. 2

Stand der Technik

Fig. 3

4/6

Fig. 4

5/6

Fig. 5

BEST AVAILABLE COPY

ITF Daten-Analyse		Schließen
D:\TRACEBMP_MOCATMCS01.HII	52	Beschreibung
HII-Analyse IPDS-Mode	53	Tracedatei
<input type="checkbox"/> Ipds-Node analysis		L TRGS Command Length 0021.
<input type="checkbox"/> Begin Page ID 5580SD4		K Write Image Control D63D
<input checked="" type="checkbox"/> Write Image Control	56	G Flag CCID 400001.
<input type="checkbox"/> Write Image		G Target Pal. Count 1368... 0558
<input type="checkbox"/> Write Image		G Target Scan Count 1492... 05D4
<input type="checkbox"/> Write Image		G Source Pal. Count 1368... 0558
<input type="checkbox"/> Write Image		G Source Scan Count 1492... 05D4
<input type="checkbox"/> Write Image		G Uncompressed Input Image 00
<input type="checkbox"/> Write Image		G One Bit per Pal 00
<input type="checkbox"/> Write Image		G No Pal Magnification 01.
<input type="checkbox"/> Write Image		G No Scan Magnification 01.
<input type="checkbox"/> Write Image		G O Grav Inline 0000
<input type="checkbox"/> Write Image		G 9D Grav Baseline 2D00
<input type="checkbox"/> End		G Absolute I - Absolute B 00
<input type="checkbox"/> End Page ID 1		G Xm. Coordinate of Image... 000000
		G Reserved 00
	54	58
	59	60
		Index: 3 Offset: B FileOffset: B Zoom 25%

BEST AVAILABLE

Fig. 6