## 2021 백콘테스트 대회 설명

데이터 분석분야 퓨처스 리그

2021.7.



한국수자원공사 소개

#### 물순환 전과정에 대한 다양한 업무 영역

물(홍수조절 95%, 재이용 69%, 용수공급 60%, 수돗물 생산 31%), 신재생에너지(8.6%), 스마트시티, 해외사업



### 기존사업 공익성 강화와 함께 혁신적 물관리 위한 도약(퀀텀 점프) 추진



## 환경 빅데이터 플랫폼

## K-water는 환경부 산하 물 전문 공기업으로서 대국민 환경 빅데이터 접점, 활용 확대 공공성 실현 중!

#### 사업개요

❖ 과제명

환경 비즈니스 빅데이터 플랫폼 및 센터 구축사업

❖ 수행기관

K-water(주관기관), 플랫폼 참여기관(3개), 센터 참여기관(11개)

❖ 사업기간

2021. 1. 1 ~ 2021. 12. 31 (\* 총 사업기간 : 2019~2021)

❖ 수행내용

- ▶ 전문기업 협업을 통한 안정적 · 효율적 플랫폼 구축 및 운영
- ▶ 환경매체간·타 분야간 융합데이터 생산 · 제공으로 新 부가가치 창출
- ▶ 공공 · 민간 데이터 활용 기반 혁신서비스 발굴
- ▶ 데이터 유통 · 거래 가격산정 모델 개발, 정책 수립 및 시스템 구축
- ▶ 민간 신규 비즈니스 창출 지원 및 데이터 혁신 생태계 조성
- ▶ 환경 빅데이터 분석 전문인력 양성 및 범국가적 거버넌스 구축

❖ 최종목표

환경 현안문제 개선의 새로운 돌파구 마련 및 환경 분야 데이터 유통 거래 활성화로 환경 산업 육성 및 일자리 창출에 기여



## 환경 빅데이터 플랫폼

#### 물, 생활, 자연환경 분야 601 데이터종, 718 데이터상품, 8천여 데이터셋 제공

| 구분  | 데이터 명                  | 판매수   |
|-----|------------------------|-------|
| 1위  | 실내 공기질 데이터             | 2248건 |
| 2위  | 사후환경조사서                | 775건  |
| 3위  | 화학물질 기본정보              | 539건  |
| 4위  | 하수처리시설 방류 수질 현황        | 479건  |
| 5위  | 생태 전국 자연환경 조사(식생)      | 423건  |
| 6위  | 가뭄 예 경보 정보(기상 가뭄)      | 384건  |
| 7위  | 하수처리시설 슬러지 반출 정보       | 332건  |
| 8위  | 미세먼지 관련 질병 지역별 통계      | 308건  |
| 9위  | 지하수 관측소별 가뭄 분석정보       | 276건  |
| 10위 | 지자체 / 아파트 배출내역(시간별) 목록 | 265건  |



#### envbigdata 8 8 환경 데이터 마켓 데이터 서비스 지원 프로그램 플랫폼 소개 인기데이터 화학물질 실내 공기질 데이터 [원문]사후환경조사서 화학물질 기본 정보 ₩ ↓ ₩ 🕹 무료 2,249 (#미세먼지 ) (#수질 ) (#지하수 ) #다목적댐 운영 정보(10분) #토양 178 121 환경 플랫폼 <mark>에코봇</mark>입니다. 무엇을 도와드릴까요? 지역별 환경이슈 전국 환경이슈 키워드 쓰레기 연관어 분석

https://www.bigdata-environment.kr

## 환경 빅데이터 플랫폼

## 언론보도, 키워드 기반 지역별 환경이슈 트렌드 분석 서비스 제공



- 전국 지도 기반 실시간 환경 이슈 키워드 Top10 및 연관 검색어 제공
- ・ 환경 이슈 연관어 분석 및 트랜드 제공

홍수분석 모형 소개

## 물리 모델을 활용한 홍수 예측

### K-water는 댐 홍수 예측시 물리적 수치모형인 COSFIM을 개발 활용 中

\* 저류함수 이론에 기반한 물리적(집중형) 수치 모형





시스템 (COSFIM)

입력자료

예보·실적 강우량, 기저유량, 매개변수, 방류량 등

매개변수

지체시간(TI), 초기유출률(f1), 포화우량(Rsa), 하천경사(i)

### 물리 모델 한계

#### 물리 모형의 한계

- ☑ 몇 가지 변수로 자연 상태 홍수량을 정확히 예측하는데 한계
- ▼ 정확도 향상을 위해서 물리적 요소들을 추가 고려 필요하나 수식화 되지 않은 요소는 반영이 곤란





※ (참고) 수자원 분석모형 비교

#### 물리기반(수치해석) 모형

- 물리적인 과정을 고려한 상세 설계 가능
- 경계조건하에서 흐름 현상에 대한 명확한 특성 파악
- 흐름영역에서 상세한 흐름 특성 규명 가능

#### 자료기반(머신러닝) 모형

- 관측된 결과자료와 입력자료 연계 과정 우수
- 결측자료 보완 가능
- 복잡한 모의결과 재현 가능
- 물리기반 모형에서의 오차 최소화

단점

장점

- 모델링에 의한 정확한 지형 자료 필요
- 대상시스템의 물리현상이 규명되지 않거나 수식화 되지 않으면 모델링 불가
- 관측치와 모의치의 오차 처리 어려움

- 물리적 현상과 연계 과정에서 어려움 발생
- 충분한 학습 및 검증자료 확보 필요
- 입출력 관계의 규명을 위해서 대상시스템의 물리적 이해 필요

문제 설명

## 장마 및 태풍기간 동안 댐 주변 지역 강우량, 수위데이터 분석을 통해 댐에 유입되는 수량(水量)을 예측하여 홍수기 댐 운영 효율화





예측을 통한 댐운영 사전 대응



성과활용

기존 물리모형과 결합하여 홍수예측 모형 최적화로 댐 운영 활용 물 관리 분야 데이터 분석기술 활용, 검증으로 향후 통합물관리 도입 검토



K-댐의 수위는 상류 및 주변지역 5곳으로부터 유입되는 유량의 영향을 받으며 각 지역은 표와 같이 계측기기가 설치되어 있다.

| 지역         | 설치 계측기기 | 기기설명       |  |  |  |  |
|------------|---------|------------|--|--|--|--|
| A, B, C, D | 우량계     | 비가 온 양을 계측 |  |  |  |  |
| D, E       | 수위계     | 물의 높이를 계측  |  |  |  |  |

최근 10년간 발생했던 홍수사상(총 25개)을 대상으로 유입량에 영향을 미치는 관측소의 강우량 및 수위 데이터를 학습하여 **홍수사상 26의 댐 유입** 수량(水量)을 예측하시오.

- 홍수사상: 강우가 상대적으로 커 토양/지반이 포화된 후 댐으로 많은 양의 유량이 흘러 들어온 기간
  - ※ 강우가 적을 때는 땅에 침투되어 댐 유입량에 변화 없음

유역: 강수량이 모이는 모든 지역

|         |      |   |   |        |      | 1          |             |             |                      |             |             |             |            |             |             |             |             |             |             |  |
|---------|------|---|---|--------|------|------------|-------------|-------------|----------------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|--|
| 홍수사상 선호 |      |   |   |        | 0.01 |            | 데이터집단 I     |             |                      |             |             |             |            | 데이터집단 2     |             |             |             |             |             |  |
|         | 연    | 월 | 일 | 시<br>간 |      | 유역평<br>균강수 | 강우<br>(A지역) | 강우<br>(B지역) | 강우<br>( <b>C</b> 지역) | 강우<br>(D지역) | 수위<br>(E지역) | 수위<br>(D지역) | 유역평<br>균강수 | 강우<br>(A지역) | 강우<br>(B지역) | 강우<br>(C지역) | 강우<br>(D지역) | 수위<br>(E지역) | 수위<br>(D지역) |  |
| 26      | 2018 | 7 | I | 6      |      | 14.3       | 32.0        | 0.0         | 0.0                  | 0.0         | 1.9         | 120.5       | 11.0       | 32.0        | 0.0         | 0.0         | 0.0         | 1.9         | 120.5       |  |
| 26      | 2018 | 7 | I | 7      |      | 11.0       | 20.0        | 1.0         | 0.0                  | 0.0         | 1.9         | 120.5       | 7.9        | 20.0        | 1.0         | 0.0         | 0.0         | 1.9         | 120.5       |  |
| 26      | 2018 | 7 | I | 8      |      | 7.9        | 11.0        | 5.0         | 0.0                  | 0.0         | 1.9         | 120.5       | 7.9        | 12.0        | 5.0         | 0.0         | 0.0         | 1.9         | 120.5       |  |
| 26      | 2018 | 7 | I | 9      |      | 7.9        | 3.0         | 11.0        | 0.0                  | 0.0         | 1.9         | 120.5       | 13.3       | 13.0        | 11.0        | 1.0         | 0.0         | 1.9         | 120.5       |  |
| 26      | 2018 | 7 | I | 10     |      | 13.3       | 4.0         | 25.0        | 1.0                  | 8.0         | 1.9         | 120.5       | 20.1       | 18.0        | 25.0        | 14.0        | 8.0         | 1.9         | 120.5       |  |
| 26      | 2018 | 7 | I | 11     |      | 20.1       | 13.0        | 48.0        | 14.0                 | 24.0        | 2.0         | 120.5       | 27.0       | 20.0        | 48.0        | 19.0        | 24.0        | 2.0         | 120.5       |  |
| 26      | 2018 | 7 | I | 12     |      | 27.0       | 18.0        | 58.0        | 19.0                 | 33.0        | 2.0         | 120.5       | 34.5       | 22.0        | 58.0        | 22.0        | 33.0        | 2.0         | 120.5       |  |

예측해야 하는 26번 홍수사상의 종속변수인 유입량

## 데이터 설명(독립 및 종속변수)

- ❖ 데이터집단:종속변수(유입량)와 상관성이 높은 데이터 집단(총 6개 데이터 집단 (1번~6번)으로 구성)\*
- \* 성격 : 강우·수위관측소~댐 구간 거리, 시간 등을 달리 설정하여 얻은 독립변수 집단

| ÷ 4 11 11 | 홍수사상<br>번호<br>연 |   |    |        |       | 데이터집단 I    |             |             |             |             |             |             | 데이터집단 2    |             |             |             |             |             |             |
|-----------|-----------------|---|----|--------|-------|------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
|           |                 | 월 |    | 시<br>간 | 유입량   | 유역평<br>균강수 | 강우<br>(A지역) | 강우<br>(B지역) | 강우<br>(C지역) | 강우<br>(D지역) | 수위<br>(E지역) | 수위<br>(D지역) | 유역평<br>균강수 | 강우<br>(A지역) | 강우<br>(B지역) | 강우<br>(C지역) | 강우<br>(D지역) | 수위<br>(E지역) | 수위<br>(D지역) |
| 1         | 2006            | 7 | 10 | 8      | 189.1 | 6.4        | 7.0         | 7.0         | 7.0         | 8.0         | 2.5         | 122.6       | 6.3        | 7.0         | 7.0         | 7.0         | 8.0         | 2.5         | 122.5       |
| 1         | 2006            | 7 | 10 | 9      | 217.0 | 6.3        | 7.0         | 8.0         | 7.0         | 8.0         | 2.5         | 122.6       | 6.4        | 7.0         | 8.0         | 7.0         | 8.0         | 2.5         | 122.6       |
| 1         | 2006            | 7 | 10 | 10     | 251.4 | 6.4        | 7.0         | 9.0         | 7.0         | 8.0         | 2.5         | 122.6       | 7.3        | 7.0         | 9.0         | 7.0         | 8.0         | 2.5         | 122.6       |
| 1         | 2006            | 7 | 10 | H      | 302.8 | 7.3        | 7.0         | 10.0        | 7.0         | 8.0         | 2.5         | 122.6       | 8.2        | 7.0         | 10.0        | 8.0         | 8.0         | 2.5         | 122.6       |

- ❖ 홍수사상번호 : 홍수 고유번호
  - ❖ 유입량: K-댐에 흘러 들어오는 유량(종속변수)

- ❖ 유역평균강수 : 전체 유역 평균 누적강수량
- ❖ 강우 (A지역) :A관측소 누적강수량
- ❖ 강우 (B지역): B관측소 누적 강수량
- ❖ 강우 (C지역): C관측소 누적 강수량
- ❖ 강우 (D지역): D관측소 누적 강수량
- ❖ 수위(E지역):E관측소 수위
- ❖ 수위(D지역) : D관측소 수위

평가 방법

## 2018년 26번 홍수 사상에 대한 예측 결과 160개 데이터에 대하여 RMSE (Root Mean Square Error) 평가

RMSE = 
$$\sqrt{\sum_{i=1}^{160}} (\text{예측값}_i - \text{관측값}(\text{실제값})_i)^2$$



감사합니다!