more parameter scenarios

2020-03-10

Based on the results of the two settings:

	β_1	β_2	γ_1	γ_2
setting 1:	2	0.1	0.2	-0.2
setting 2:	0.1	0.1	0.2	-0.2

In setting one, the x_1 has a quite large effect relative to x_2 . In setting 2, the x_1 and x_1 have the same effect on the model. However, only in setting 1, dropping the x_1 may cause a bad estimation for the Cox PH model. Therefore, I set the $\beta_2 = 0.1$ and vary the value of β_1 to check how much is the effect of x_1 that can cause a bad estimation when it is missed in the model.

$$\gamma_1 = 0.1; \beta_2 = 0.1$$

Table 2: Time dependent AUC estimation

gamma2 = 0.2						gamma	$a^2 = 0.$	4		gamma	a2 = 0.	8	gamma2 = 1				
$_{ m time}$	x2	x12	m	mhat	x2	x12	m	mhat	x2	x12	m	mhat	x2	x12	m	mhat	
beta1 = 0.1																	
10	0.59	0.60	0.59	0.58	0.60	0.61	0.60	0.59	0.64	0.64	0.64	0.65	0.67	0.66	0.67	0.67	
25	0.56	0.57	0.56	0.57	0.58	0.59	0.58	0.59	0.65	0.64	0.65	0.65	0.68	0.66	0.68	0.68	
50	0.56	0.57	0.56	0.56	0.59	0.59	0.59	0.59	0.66	0.64	0.66	0.66	0.69	0.66	0.69	0.69	
75	0.58	0.60	0.58	0.58	0.62	0.63	0.62	0.62	0.70	0.68	0.70	0.70	0.73	0.70	0.73	0.73	
90	0.62	0.64	0.62	0.62	0.67	0.67	0.67	0.66	0.75	0.72	0.75	0.75	0.78	0.73	0.78	0.78	
beta1	= 0.3																
10	0.58	0.61	0.60	0.59	0.60	0.61	0.58	0.59	0.65	0.63	0.63	0.63	0.67	0.63	0.66	0.66	
25	0.56	0.59	0.57	0.57	0.58	0.60	0.56	0.56	0.64	0.61	0.62	0.62	0.67	0.62	0.66	0.66	
50	0.56	0.59	0.56	0.56	0.59	0.60	0.55	0.55	0.65	0.62	0.63	0.63	0.69	0.62	0.67	0.67	
75	0.58	0.63	0.58	0.58	0.62	0.65	0.56	0.57	0.70	0.66	0.67	0.67	0.73	0.66	0.70	0.70	
90	0.63	0.67	0.61	0.61	0.66	0.68	0.60	0.60	0.75	0.69	0.71	0.70	0.77	0.70	0.74	0.74	
beta1	L=0.5	5															
10	0.59	0.63	0.62	0.62	0.60	0.63	0.59	0.59	0.64	0.63	0.60	0.60	0.67	0.63	0.63	0.63	
25	0.57	0.62	0.60	0.60	0.58	0.62	0.56	0.57	0.64	0.63	0.59	0.59	0.67	0.63	0.62	0.62	
50	0.56	0.62	0.60	0.60	0.59	0.63	0.56	0.56	0.66	0.64	0.59	0.59	0.69	0.64	0.63	0.63	
75	0.58	0.66	0.63	0.63	0.62	0.67	0.56	0.56	0.70	0.67	0.61	0.61	0.73	0.68	0.65	0.65	
90	0.62	0.70	0.66	0.66	0.66	0.71	0.59	0.59	0.75	0.72	0.64	0.64	0.77	0.73	0.68	0.68	
beta1	L=0.7	7															
10	0.58	0.66	0.65	0.65	0.60	0.65	0.62	0.61	0.64	0.65	0.58	0.58	0.66	0.65	0.60	0.60	
25	0.56	0.65	0.64	0.64	0.58	0.65	0.60	0.60	0.64	0.65	0.56	0.56	0.66	0.65	0.58	0.59	
50	0.56	0.66	0.64	0.64	0.58	0.66	0.60	0.60	0.65	0.66	0.55	0.55	0.68	0.66	0.58	0.58	
75	0.58	0.69	0.67	0.67	0.62	0.70	0.62	0.61	0.70	0.70	0.56	0.56	0.72	0.70	0.59	0.60	
90	0.62	0.74	0.71	0.71	0.67	0.74	0.63	0.63	0.75	0.75	0.59	0.59	0.77	0.75	0.62	0.62	
beta1 = 0.9																	
10	0.58	0.67	0.67	0.67	0.60	0.67	0.64	0.64	0.63	0.67	0.59	0.59	0.66	0.67	0.59	0.59	
25	0.56	0.68	0.67	0.67	0.58	0.68	0.64	0.64	0.63	0.68	0.57	0.57	0.65	0.67	0.56	0.56	
50	0.56	0.69	0.68	0.68	0.58	0.69	0.64	0.64	0.64	0.69	0.55	0.55	0.67	0.69	0.55	0.55	
75	0.58	0.72	0.71	0.71	0.62	0.73	0.66	0.66	0.69	0.73	0.56	0.56	0.72	0.73	0.55	0.56	
90	0.61	0.77	0.75	0.75	0.66	0.77	0.68	0.68	0.74	0.77	0.58	0.58	0.77	0.78	0.58	0.59	
beta1	1 = 1.1	1															
10	0.59	0.71	0.70	0.70	0.59	0.70	0.68	0.68	0.63	0.69	0.61	0.61	0.65	0.70	0.59	0.59	

25	0.56	0.71	0.71	0.71	0.57	0.71	0.68	0.68	0.62	0.71	0.60	0.60	0.65	0.70	0.56	0.56
50	0.56	0.72	0.71	0.71	0.58	0.72	0.68	0.68	0.64	0.72	0.59	0.59	0.67	0.71	0.55	0.55
75	0.58	0.75	0.73	0.73	0.62	0.75	0.70	0.70	0.69	0.75	0.58	0.58	0.72	0.75	0.55	0.55
90	0.61	0.78	0.77	0.77	0.66	0.78	0.72	0.72	0.74	0.79	0.60	0.60	0.77	0.80	0.58	0.58

 $\gamma_1=0.1; \beta_2=0.1$

Table 3: Mean difference between S(t) and hat S(t)

	gamma2 = 0.2					gamma	a2 = 0.	4		gamma	a2 = 0.	8	gamma2 = 1				
$_{ m time}$	x2	x12	m	mhat	x2	x12	m	mhat	x2	x12	m	mhat	x2	x12	m	mhat	
beta1	L = 0.1	1															
10	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.01	0.00	0.02	0.02	
25	0.01	0.01	0.03	0.03	0.01	0.01	0.03	0.03	0.01	0.01	0.05	0.05	0.01	0.01	0.05	0.05	
50	0.02	0.01	0.05	0.05	0.02	0.01	0.06	0.06	0.02	0.01	0.09	0.09	0.02	0.01	0.11	0.11	
75	0.03	0.02	0.06	0.06	0.03	0.02	0.08	0.08	0.03	0.02	0.12	0.13	0.04	0.02	0.15	0.15	
90	0.04	0.02	0.06	0.06	0.04	0.02	0.09	0.09	0.04	0.02	0.14	0.14	0.04	0.02	0.16	0.16	
	= 0.3																
10	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.02	
25	0.03	0.01	0.03	0.03	0.03	0.01	0.04	0.04	0.03	0.01	0.05	0.05	0.03	0.01	0.06	0.06	
50	0.06	0.01	0.06	0.06	0.06	0.01	0.07	0.07	0.06	0.01	0.09	0.09	0.06	0.01	0.11	0.11	
75	0.08	0.02	0.07	0.07	0.08	0.02	0.09	0.09	0.08	0.02	0.13	0.13	0.08	0.02	0.15	0.15	
90	0.09	0.02	0.08	0.08	0.09	0.02	0.10	0.10	0.09	0.02	0.14	0.14	0.09	0.02	0.17	0.17	
	l = 0.5																
10	0.02	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.02	0.02	
25	0.05	0.01	0.04	0.04	0.05	0.01	0.04	0.04	0.05	0.01	0.05	0.05	0.04	0.01	0.06	0.06	
50	0.10	0.01	0.07	0.07	0.10	0.01	0.08	0.08	0.09	0.01	0.10	0.10	0.09	0.01	0.11	0.11	
75	0.13	0.02	0.09	0.09	0.13	0.02	0.11	0.11	0.13	0.02	0.14	0.14	0.13	0.02	0.16	0.16	
90	0.13	0.01	0.09	0.09	0.13	0.01	0.11	0.11	0.13	0.01	0.15	0.15	0.13	0.01	0.17	0.18	
	=0.7																
10	0.03	0.01	0.02	0.02	0.03	0.01	0.02	0.02	0.03	0.01	0.03	0.03	0.03	0.01	0.03	0.03	
25	0.07	0.01	0.05	0.05	0.07	0.01	0.05	0.05	0.07	0.01	0.06	0.06	0.06	0.01	0.06	0.06	
50	0.13	0.01	0.09	0.09	0.13	0.01	0.09	0.09	0.13	0.01	0.11	0.11	0.13	0.01	0.12	0.12	
75	0.18	0.01	0.11	0.11	0.18	0.01	0.12	0.12	0.17	0.01	0.15	0.15	0.17	0.01	0.17	0.17	
90	0.17	0.01	0.10	0.10	0.17	0.01	0.12	0.12	0.17	0.01	0.16	0.16	0.17	0.01	0.18	0.18	
	l = 0.9																
10	0.04	0.01	0.03	0.03	0.04	0.01	0.03	0.03	0.04	0.01	0.03	0.03	0.03	0.01	0.03	0.03	
25	0.09	0.01	0.06	0.06	0.09	0.01	0.06	0.06	0.09	0.01	0.07	0.07	0.08	0.01	0.07	0.07	
50	0.17	0.01	0.10	0.10	0.17	0.01	0.11	0.11	0.16	0.01	0.12	0.12	0.16	0.01	0.13	0.13	
75 00	0.21	0.01	0.12	0.12	0.21	0.01	0.13	0.13	0.21	0.01	0.16	0.16	0.21	0.01	0.18	0.18	
90	0.21	0.01	0.11	0.11	0.21	0.01	0.12	0.12	0.20	0.01	0.16	0.16	0.20	0.01	0.18	0.18	
	l=1.1		0.00	0.00	0.05	0.01	0.00	0.00	0.05	0.01	0.00	0.00	0.04	0.01	0.00	0.00	
10	0.05	0.01	0.03	0.03	0.05	0.01	0.03	0.03	0.05	0.01	0.03	0.03	0.04	0.01	0.03	0.03	
25	0.12	0.01	0.07	0.07	0.11	0.01	0.07	0.07	0.11	0.01	0.08	0.08	0.10	0.01	0.08	0.08	
50	0.20	0.01	0.11	0.11	0.20	0.01	0.12	0.12	0.19	0.01	0.13	0.13	0.19	0.01	0.14	0.14	
75 90	$0.24 \\ 0.23$	$0.01 \\ 0.01$	$0.13 \\ 0.11$	0.13	0.24 0.23	0.01	$0.14 \\ 0.12$	$0.14 \\ 0.12$	$0.24 \\ 0.23$	0.01	0.16	0.16	$0.24 \\ 0.23$	$0.01 \\ 0.01$	$0.18 \\ 0.18$	$0.18 \\ 0.18$	
90	0.23	0.01	0.11	0.11	0.23	0.01	0.12	0.12	0.23	0.01	0.16	0.16	0.23	0.01	0.18	0.18	