Supporting Information for the manuscript entitled "Classification of Disease Recurrence using Transition Likelihoods with EM algorithm"

by Huijun Jiang, Quefeng Li, Jessica T. Lin, Feng-Chang Lin

1 Out-of-Sample Prediction Comparison

In addition to the classification results shown in Table 1 of the main manuscript, we also report out-of-sample prediction comparison in 10-fold cross-validation using 90% of the sample as the training set and the remaining 10% as the testing set. Table S1 shows the operating characteristics of the classification results of the samples when they are in the testing set using the two-stage method and EM algorithm. We report the classification accuracy such as sensitivity, specificity, and overall accuracy like the manuscript. We also report the area under the receiver operating characteristic (ROC) curve, commonly known as AUC or c-statistics.

The prediction results are similar to Table 1 of the main manuscript. Both classifiers perform aggressively under a low transition probability, resulting in high sensitivity but low specificity. Both classifiers perform better under a high transition probability, reaching a high degree of accuracy in both sensitivity and specificity. When comparing the two classifiers, $P(Y_i = 2 | \mathcal{O}_i, \hat{\theta})$ has higher accuracy and AUC than $\hat{\xi}_i^{(1)}$, especially when the sample size n is small. When the sample size increases, the two-stage method $\hat{\xi}_i^{(1)}$ becomes more competitive and has a similar classification performance. This result is consistent with the in-sample classification performance from two classifiers.

2 Additional Simulation Results

Tables S2 to S5 present simulation results not shown in the main manuscript for regression coefficients β_6 to β_{10} under different scenarios. The bias (b), empirical standard error (σ) ,

Table S1: Out-of-sample prediction comparison between the two-stage method and EM algorithm using ten-fold cross-validation in sensitivity, specificity, overall accuracy, and AUC, area under the receiver operating characteristics (ROC) curve

			Two-	Two-Stage method $\hat{\xi}_i^{(1)} > 0.5$			EM algorithm $P(Y_i = 2 \mathcal{O}_i, \hat{\theta}) > 0.5$				
μ	γ_0	n	Sensitivity	Specificity	Overall	AUC	Sensitivity	Specificity	Overall	AUC	
-3	0	100	71.4%	41.4%	67.9%	53.4%	94.0%	58.0%	91.3%	61.2%	
		200	96.7%	43.3%	90.4%	69.5%	97.3%	59.0%	92.9%	72.3%	
		400	98.0%	53.1%	92.8%	74.2%	97.9%	59.7%	93.4%	75.0%	
	2.94	100	78.0%	45.7%	74.2%	57.3%	96.0%	84.2%	95.4%	68.0%	
		200	98.3%	71.0%	95.1%	86.9%	98.5%	86.2%	97.2%	88.1%	
		400	99.1%	82.9%	97.2%	90.7%	99.0%	87.3%	97.6%	90.5%	
-2	0	100	57.6%	56.6%	56.9%	55.1%	87.0%	67.8%	81.5%	70.8%	
		200	89.9%	59.0%	81.6%	72.1%	92.7%	70.9%	86.9%	76.2%	
		400	94.3%	66.7%	87.0%	77.2%	94.6%	71.8%	88.6%	78.2%	
	2.94	100	63.6%	62.3%	62.9%	61.3%	93.5%	85.1%	92.9%	89.2%	
		200	95.6%	81.1%	91.6%	88.1%	97.1%	91.4%	95.6%	91.2%	
		400	97.9%	88.6%	95.5%	92.1%	97.8%	91.9%	96.2%	92.4%	

estimated standard error $(\hat{\sigma})$, and coverage probability (CP) are defined in the same way as the corresponding table. The interpretation of the results follows what has been shown in the main manuscript.

3 Sensitivity Analyses for the Malaria Data

The reinfection parameter, $\mu = -3$, is decided based on the incidence rate of 5% for both northern and southern Cambodia data. In the first sensitivity analysis, we use a different value of μ to explore the robustness of the classification result in our main manuscript. Tables S6 and S7 present the classification results for northern and southern Cambodia data, respectively, based on the EM algorithm and two-stage method when using $\mu = -2$. The classification results are pretty similar to the main manuscript, indicating the classification result is robust under a different value of μ .

One can see that Table 9 of the main manuscript has some non-convergence issues in β coefficients of rare variants with a large standard error. Here, we conduct another sensitivity analysis removing rare variants with a prevalence of less than 0.02. Table S8 shows the estimation results by the EM algorithm when using only prevalent variants.

TT 11 CO	A 1 1 1 1	. 1	1, ,	1	•	TD 11 0	C	. 1	•	•	
Table S2	Additional	simillation	regults not	shown	1n	Table 2	\cap t	the	main	manuscrint	t.
Table 52.	riadioionai	DITITUTUTOTI	TODUIOD HOU	DIIOWII	TII	10010 2	OI	ULIC	11100111	mamascrip	U

									2 01 11			
μ	γ_0	n	b_6	b_7	b_8	b_9	b_{10}	σ_6	σ_7	σ_8	σ_9	σ_{10}
-3	0	100	-0.04	-0.08	-0.08	-0.10	-0.16	0.70	0.86	1.14	1.19	1.54
		200	-0.02	-0.02	-0.03	-0.01	-0.03	0.42	0.43	0.44	0.49	0.48
		400	-0.01	0.00	-0.02	0.00	-0.01	0.28	0.29	0.30	0.31	0.32
	2.94	100	-0.03	-0.07	-0.06	-0.05	-0.15	0.68	0.73	1.13	1.00	1.54
		200	-0.01	-0.02	-0.02	-0.01	-0.03	0.41	0.42	0.42	0.46	0.47
		400	-0.01	0.00	-0.02	-0.01	-0.01	0.27	0.28	0.29	0.30	0.31
-2	0	100	-0.08	-0.11	-0.11	-0.18	-0.24	-0.08	-0.11	-0.11	-0.18	-0.24
		200	-0.02	-0.02	-0.02	-0.03	-0.06	0.47	0.48	0.50	0.54	0.56
		400	-0.01	-0.01	-0.02	-0.01	-0.03	0.31	0.30	0.33	0.36	0.35
	2.94	100	-0.02	-0.03	-0.05	-0.11	-0.20	0.72	0.76	0.96	1.21	1.56
		200	-0.01	-0.02	-0.01	-0.03	-0.05	0.43	0.44	0.45	0.52	0.52
		400	0.01	-0.01	0.00	-0.01	-0.01	0.28	0.29	0.30	0.31	0.33
	γ_0	n	$\hat{\sigma}_6$	$\hat{\sigma}_7$	$\hat{\sigma}_8$	$\hat{\sigma}_9$	$\hat{\sigma}_{10}$	CP_6	CP_7	CP ₈	CP ₉	CP ₁₀
μ	γ_0	n	$\hat{\sigma}_{6}$	$\hat{\sigma}_7$	$\hat{\sigma}_8$	$\hat{\sigma}_9$	$\hat{\sigma}_{10}$	CP ₆	CP ₇	CP ₈	CP ₉	CP ₁₀
$\frac{\mu}{}$	γ_0	n 100	$\hat{\sigma}_{6}$ 0.61	$\hat{\sigma}_7$ 0.63	$\hat{\sigma}_8$ 0.65	$\hat{\sigma}_9$ 0.67	$\hat{\sigma}_{10}$ 0.71	CP ₆ 94.5	CP ₇	CP ₈ 96.0	CP ₉ 95.0	CP ₁₀ 94.3
									· .			
		100	0.61	0.63	0.65	0.67	0.71	94.5	94.0	96.0	95.0	94.3
		100 200	0.61 0.40	0.63 0.41	0.65 0.43	0.67 0.44	0.71 0.46	94.5 94.5	94.0 95.1	96.0 95.7	95.0 95.3	94.3 95.3
	0	100 200 400	0.61 0.40 0.27	0.63 0.41 0.28	0.65 0.43 0.29	0.67 0.44 0.30	0.71 0.46 0.31	94.5 94.5 94.4	94.0 95.1 93.8	96.0 95.7 94.9	95.0 95.3 94.9	94.3 95.3 94.2
	0	100 200 400 100	0.61 0.40 0.27 0.59	0.63 0.41 0.28 0.61	0.65 0.43 0.29 0.63	0.67 0.44 0.30 0.65	0.71 0.46 0.31 0.68	94.5 94.5 94.4 93.9	94.0 95.1 93.8 94.4	96.0 95.7 94.9 96.2	95.0 95.3 94.9 93.8	94.3 95.3 94.2 94.6
	0	100 200 400 100 200	0.61 0.40 0.27 0.59 0.39	0.63 0.41 0.28 0.61 0.40	0.65 0.43 0.29 0.63 0.42	0.67 0.44 0.30 0.65 0.43	0.71 0.46 0.31 0.68 0.45	94.5 94.5 94.4 93.9 94.5	94.0 95.1 93.8 94.4 94.9	96.0 95.7 94.9 96.2 95.6	95.0 95.3 94.9 93.8 94.7	94.3 95.3 94.2 94.6 94.8
	0	100 200 400 100 200	0.61 0.40 0.27 0.59 0.39	0.63 0.41 0.28 0.61 0.40	0.65 0.43 0.29 0.63 0.42	0.67 0.44 0.30 0.65 0.43	0.71 0.46 0.31 0.68 0.45	94.5 94.5 94.4 93.9 94.5	94.0 95.1 93.8 94.4 94.9	96.0 95.7 94.9 96.2 95.6	95.0 95.3 94.9 93.8 94.7	94.3 95.3 94.2 94.6 94.8
-3	0 2.94	100 200 400 100 200 400	0.61 0.40 0.27 0.59 0.39 0.27	0.63 0.41 0.28 0.61 0.40 0.27	0.65 0.43 0.29 0.63 0.42 0.28	0.67 0.44 0.30 0.65 0.43 0.29	0.71 0.46 0.31 0.68 0.45 0.30	94.5 94.5 94.4 93.9 94.5 94.9	94.0 95.1 93.8 94.4 94.9	96.0 95.7 94.9 96.2 95.6 95.6	95.0 95.3 94.9 93.8 94.7 95.2	94.3 95.3 94.2 94.6 94.8 95.1
-3	0 2.94 0	100 200 400 100 200 400 100 200 400	0.61 0.40 0.27 0.59 0.39 0.27 0.67 0.45 0.29	0.63 0.41 0.28 0.61 0.40 0.27 0.69 0.46 0.30	0.65 0.43 0.29 0.63 0.42 0.28 0.72 0.48 0.31	0.67 0.44 0.30 0.65 0.43 0.29 0.74 0.50 0.32	0.71 0.46 0.31 0.68 0.45 0.30 0.77 0.52 0.34	94.5 94.5 94.4 93.9 94.5 94.9	94.0 95.1 93.8 94.4 94.9 93.9 92.5 94.7 95.5	96.0 95.7 94.9 96.2 95.6 95.6 93.3 94.1 94.1	95.0 95.3 94.9 93.8 94.7 95.2 93.3 95.3	94.3 95.3 94.2 94.6 94.8 95.1
-3	0 2.94	100 200 400 100 200 400 100 400 100	0.61 0.40 0.27 0.59 0.39 0.27 0.67 0.45 0.29 0.62	0.63 0.41 0.28 0.61 0.40 0.27 0.69 0.46 0.30 0.63	0.65 0.43 0.29 0.63 0.42 0.28 0.72 0.48 0.31 0.65	0.67 0.44 0.30 0.65 0.43 0.29 0.74 0.50 0.32 0.68	0.71 0.46 0.31 0.68 0.45 0.30 0.77 0.52 0.34 0.71	94.5 94.5 94.4 93.9 94.5 94.9	94.0 95.1 93.8 94.4 94.9 93.9 92.5 94.7	96.0 95.7 94.9 96.2 95.6 95.6	95.0 95.3 94.9 93.8 94.7 95.2	94.3 95.3 94.2 94.6 94.8 95.1 95.3 95.9 94.2 95.5
-3	0 2.94 0	100 200 400 100 200 400 100 200 400	0.61 0.40 0.27 0.59 0.39 0.27 0.67 0.45 0.29	0.63 0.41 0.28 0.61 0.40 0.27 0.69 0.46 0.30	0.65 0.43 0.29 0.63 0.42 0.28 0.72 0.48 0.31	0.67 0.44 0.30 0.65 0.43 0.29 0.74 0.50 0.32	0.71 0.46 0.31 0.68 0.45 0.30 0.77 0.52 0.34	94.5 94.5 94.4 93.9 94.5 94.9	94.0 95.1 93.8 94.4 94.9 93.9 92.5 94.7 95.5	96.0 95.7 94.9 96.2 95.6 95.6 93.3 94.1 94.1	95.0 95.3 94.9 93.8 94.7 95.2 93.3 95.3	94.3 95.3 94.2 94.6 94.8 95.1 95.3 95.9 94.2

Table S3: Additional simulation results not shown in Table 3 of the main manuscript

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
-3 0 100 14.95 14.55 15.67 16.58 17.44 99.7 100.0 100.0 99.9 10
200 1.35 1.55 1.64 1.91 2.15 99.7 99.8 99.7 99.4 99.7 99.8 9
400 0.32 0.33 0.35 0.37 0.39 96.9 96.7 96.7 97.5 99.7 9
2.94 100 11.02 11.44 12.26 12.83 13.56 99.7 100.0 100.0 99.9 10
200 1.35 1.55 1.64 1.91 2.15 99.7 99.8 99.7 99.4 9
400 0.32 0.33 0.35 0.37 0.39 97.0 98.0 100.0 97.0 98.0 97.0
-2 0 100 21.95 23.92 24.11 26.20 26.37 99.1 99.3 98.8 98.4 9
-2 0 100 21.95 23.92 24.11 26.20 26.37 99.1 99.3 98.8 98.4 98.4 200 7.35 7.90 8.60 8.90 9.59 100.0 99.9 100.0 100.0 100.0
200 7.35 7.90 8.60 8.90 9.59 100.0 99.9 100.0 100.0 10 400 0.56 0.65 0.44 0.40 0.37 98.7 98.8 87.7 84.4 8 2.94 100 21.95 23.92 24.11 26.20 26.37 99.1 99.3 98.8 98.4 9
200 7.35 7.90 8.60 8.90 9.59 100.0 99.9 100.0 100.0 10 400 0.56 0.65 0.44 0.40 0.37 98.7 98.8 87.7 84.4 8

Table S4: Additional simulation results not shown in Table 4 of the main manuscript

ΊΈ	able S	4: Ad	lditiona	al simu	lation	results	not sh	own in	Table	e 4 of 1	the ma	ain ma	nuscri	.pt
μ	γ_0	n	b_5	b_6	b_7	b_8	b_9	b_{10}	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}
-3	0	100	-0.01	-0.07	-0.01	-0.01	-0.18	-0.13	0.92	1.27	0.76	0.92	1.33	1.44
		200	-0.02	-0.02	-0.01	-0.02	-0.02	-0.02	0.42	0.42	0.44	0.45	0.44	0.50
		400	-0.01	-0.01	0.00	0.00	-0.01	-0.01	0.27	0.27	0.29	0.30	0.30	0.32
	2.94	100	-0.03	-0.01	-0.02	0.01	-0.13	-0.09	0.65	0.67	0.85	0.70	1.16	1.28
		200	-0.01	-0.01	0.00	-0.02	-0.02	-0.02	0.40	0.41	0.42	0.43	0.43	0.49
		400	-0.01	0.00	0.00	0.00	-0.01	-0.01	0.26	0.26	0.28	0.29	0.29	0.31
-2	0	100	-0.02	-0.04	-0.04	-0.06	-0.25	-0.12	1.12	1.57	1.78	1.68	2.03	2.30
		200	0.01	-0.01	-0.02	0.00	-0.04	-0.03	0.44	0.45	0.48	0.49	0.62	0.53
		400	0.00	0.00	0.00	0.01	-0.01	-0.02	0.29	0.29	0.31	0.32	0.32	0.35
	2.94	100	-0.03	0.01	-0.01	-0.04	-0.11	-0.11	0.86	0.70	0.87	0.76	1.22	1.44
		200	0.01	-0.01	-0.01	0.00	-0.02	-0.03	0.40	0.41	0.45	0.45	0.46	0.48
		400	0.00	0.00	0.00	0.00	-0.01	-0.02	0.28	0.27	0.29	0.29	0.30	0.33
μ	γ_0	\overline{n}	$\hat{\sigma}_5$	$\hat{\sigma}_6$	$\hat{\sigma}_7$	$\hat{\sigma}_8$	$\hat{\sigma}_9$	$\hat{\sigma}_{10}$	CP_5	CP_6	CP_7	CP_8	CP_9	CP_{10}
•					•						· ·			
-3	0	100	0.60	0.61	0.63	0.65	0.67	0.71	94.9	93.4	94.7	93.4	96.2	94.7
		200	0.38	0.40	0.41	0.42	0.44	0.45	93.8	95.6	95.6	95.2	95.4	93.8
		400	0.26	0.27	0.28	0.29	0.30	0.31	95.3	95.4	94.8	94.6	95.8	94.3
	2.94	100	0.57	0.59	0.61	0.62	0.65	0.68	95.1	94.0	93.6	94.8	96.1	93.9
		200	0.38	0.39	0.40	0.41	0.43	0.44	93.6	95.2	95.9	95.3	95.8	93.4
		400	0.26	0.26	0.27	0.28	0.29	0.30	95.8	96.1	94.9	94.6	95.9	94.7
-2	0	100	0.66	0.67	0.70	0.73	0.74	0.77	93.2	93.4	93.7	93.4	95.8	93.4
		200	0.42	0.43	0.44	0.46	0.47	0.49	95.6	95.4	94.6	94.6	95.5	95.5
		400	0.28	0.29	0.30	0.31	0.32	0.33	94.0	95.3	95.9	94.3	95.4	95.0
	2.94	100	0.59	0.61	0.63	0.65	0.67	0.70	95.3	94.2	94.4	94.2	94.1	95.4
	2.94	100 200	$0.59 \\ 0.39$	$0.61 \\ 0.40$	0.63 0.41	$0.65 \\ 0.42$	0.67 0.44	$0.70 \\ 0.45$	95.3 95.0	94.2 95.3	94.4 95.0	94.2 93.9	94.1 95.5	95.4 94.5

Table S5: Additional simulation results not shown in Table 5 of the main manuscript

_Ta	able S	b: Ad	ditiona	al simu	lation	results	not sh	own in	Table	to d	the ma	ain ma	nuscri	pt
μ	γ_0	n	b_5	b_6	b_7	b_8	b_9	b_{10}	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}
-3	0	100	-0.01	-0.05	-0.02	-0.01	-0.18	-0.15	0.86	0.99	0.80	0.84	1.38	1.51
		200	-0.01	-0.02	-0.01	-0.02	-0.02	-0.02	0.41	0.42	0.43	0.45	0.44	0.50
		400	-0.01	-0.01	-0.01	0.00	-0.01	-0.01	0.26	0.27	0.29	0.30	0.30	0.32
	2.94	100	-0.03	-0.02	-0.01	0.02	-0.13	-0.09	0.65	0.67	0.69	0.70	1.19	1.30
		200	-0.01	-0.01	0.00	-0.01	-0.02	-0.02	0.39	0.41	0.41	0.43	0.43	0.49
		400	-0.01	0.00	0.00	0.00	-0.01	-0.01	0.26	0.26	0.28	0.29	0.29	0.31
-2	0	100	-0.03	-0.06	-0.04	-0.08	-0.23	-0.11	1.04	1.58	1.24	1.16	1.96	1.56
		200	0.02	-0.01	-0.02	-0.01	-0.03	-0.03	0.43	0.44	0.49	0.49	0.50	0.52
		400	0.00	0.00	0.00	0.01	-0.01	-0.02	0.29	0.29	0.31	0.32	0.32	0.35
	2.94	100	-0.02	0.01	-0.01	-0.04	-0.11	-0.10	0.86	0.69	0.86	0.75	1.23	1.35
		200	0.01	-0.01	-0.01	0.00	-0.02	-0.03	0.40	0.41	0.45	0.45	0.46	0.48
		400	0.00	0.00	0.00	0.00	-0.01	-0.01	0.28	0.27	0.29	0.29	0.30	0.33
μ	γ_0	n	$\hat{\sigma}_5$	$\hat{\sigma}_6$	$\hat{\sigma}_7$	$\hat{\sigma}_8$	$\hat{\sigma}_9$	$\hat{\sigma}_{10}$	CP_5	CP_6	CP_7	CP_8	CP_9	CP_{10}
-3	0	100	0.60	0.61	0.63	0.65	0.67	0.71	94.2	94.0	94.7	94.5	96.6	94.9
		200	0.38	0.40	0.41	0.42	0.44	0.45	94.3	95.5	95.8	95.1	95.5	93.3
		400	0.26	0.27	0.28	0.29	0.30	0.31	95.3	95.1	94.1	94.8	95.4	94.6
	2.94	100	0.57	0.59	0.61	0.63	0.65	0.68	95.5	94.2	93.5	94.8	96.2	94.1
		200	0.38	0.39	0.40	0.41	0.43	0.44	93.5	94.9	95.7	95.3	95.9	93.4
				0.00	0.10	0.11	0.10	0.11	00.0	0				
		400	0.26	0.26	0.27	0.28	0.29	0.30	95.7	96.5	94.8	94.5	95.8	94.5
-2	0	400 100												
-2	0		0.26	0.26	0.27	0.28	0.29	0.30	95.7	96.5	94.8	94.5	95.8	94.5
-2	0	100	$0.26 \\ 0.65$	$0.26 \\ 0.67$	$0.27 \\ 0.69$	$0.28 \\ 0.72$	$0.29 \\ 0.73$	$0.30 \\ 0.76$	95.7 94.7	96.5 94.0	94.8 93.8	94.5 93.8	95.8 95.0	94.5 94.0
-2	0 2.94	100 200	0.26 0.65 0.42	0.26 0.67 0.43	0.27 0.69 0.44	0.28 0.72 0.45	0.29 0.73 0.47	0.30 0.76 0.49	95.7 94.7 95.1	96.5 94.0 95.5	94.8 93.8 95.8	94.5 93.8 94.3	95.8 95.0 95.6	94.5 94.0 94.6
-2		100 200 400	0.26 0.65 0.42 0.28	0.26 0.67 0.43 0.29	0.27 0.69 0.44 0.30	0.28 0.72 0.45 0.30	0.29 0.73 0.47 0.32	0.30 0.76 0.49 0.33	95.7 94.7 95.1 94.0	96.5 94.0 95.5 94.7	94.8 93.8 95.8 95.4	94.5 93.8 94.3 94.2	95.8 95.0 95.6 95.6	94.5 94.0 94.6 94.7

Table S6: Classification of recurrence pairs based on the EM algorithm and two-stage method for the northern Cambodia data using $\mu=-2$

Recurrence Pair	Baseline Variants	$\pi_{i2}(x_i, \hat{\theta})$	Recurrence Variants	$P(Y_i = 2 \mathcal{O}_i, \hat{\theta})$	EM Class	Two-Stage Class
$10 \rightarrow 10R$	A	0.00	A	0.00	Reinfection	Relapse
$31 \to 31 R$	ECA	0.86		1.00	Relapse	Relapse
$36 \to 36 R$	JHGFEDCBA	0.69	HCB	0.97	Relapse	Relapse
$68 \rightarrow 68 R$	ECA	0.86		1.00	Relapse	Relapse
$80 \rightarrow 80 R$	JIFEA	0.00	IHGFDCBA	0.00	Reinfection	Reinfection
$81 \to 81 R$	BA	0.21	BA	0.90	Relapse	Relapse
$82 \rightarrow 82R$	EDA	0.81	DBA	0.96	Relapse	Relapse
$87 \to 87 R$	ICBA	1.00	IHA	1.00	Relapse	Relapse
$89 \to 89 R$	IGEA	1.00	JB	1.00	Relapse	Reinfection
$96 \rightarrow 96R$	IECA	1.00	DA	1.00	Relapse	Relapse
$112 \to 112 R$	HECBA	1.00	CBA	1.00	Relapse	Relapse
$118 \to 118 R$	I	0.00	CB	0.00	Reinfection	Reinfection
$123 \to 123 R$	CA	0.00	BA	0.00	Reinfection	Reinfection
$125 \to 125 R$	C	0.00	JECBA	0.00	Reinfection	Reinfection
$126 \to 126 R$	HGFEDCBA	0.69	HB	0.98	Relapse	Relapse
$130 \to 130 R$	EDCA	0.90	EA	0.99	Relapse	Relapse
$151 \to 151 R$	IFD	0.00	IA	0.00	Reinfection	Reinfection
$152 \to 152 R$	BA	0.21	HFBA	0.56	Relapse	Reinfection
$153 \to 153 R$	HEA	0.82	\mathbf{C}	0.96	Relapse	Relapse
$154 \to 154 R$	GA	0.00	GFD	0.00	Reinfection	Reinfection
$160 \to 160 R$	HEC	0.00	FDA	0.00	Reinfection	Reinfection
$177 \to 177 R$	HEA	0.82	В	0.98	Relapse	Relapse
$179 \to 179 R$	JHFD	0.00	В	0.00	Reinfection	Reinfection

Dominant variants with more than 50% frequency are presented in italic.

Table S7: classification based on the EM algorithm and two-stage method for the southern Cambodia data using $\mu=-2$

Recurrence Pair	Baseline Variants	$\pi_{i2}(x_i, \hat{\theta})$	Recurrence Variants	$P(Y_i = 2 \mathcal{O}_i, \hat{\theta})$	EM Class	Two-Stage Class
$4 \to 4R$	D S	0.16	D S	0.98	Relapse	Relapse
$7 \to 7 \mathrm{R}$	Н	0.72	Н	1.00	Relapse	Relapse
$10 \to 10 R$	H S	0.75	S	1.00	Relapse	Relapse
$11 \to 11 R$	C F S	0.21	$\mathrm{C}\;\mathrm{D}\;F\;\mathrm{G}\;S$	0.00	Reinfection	Reinfection
$16 \to 16 R$	CHS	0.52	СН	0.99	Relapse	Relapse
$17 \to 17 R$	CH	0.48	Н	1.00	Relapse	Relapse
$20 \rightarrow 20 R$	D G H S	0.75	DGS	1.00	Relapse	Relapse
$25 \to 25 R$	$\mathrm{C}\to\mathrm{F}\ G$	0.13	CG	0.77	Relapse	Relapse
$27 \to 27 R$	C D G S	0.11	G S	0.87	Relapse	Relapse
$28 \rightarrow 28 R$	$C \to G H$	0.38	$\mathrm{C}\;\mathrm{D}\;G$	0.00	Reinfection	Reinfection
$29 \to 29 R$	F S	0.43	F S	1.00	Relapse	Relapse
$30 \rightarrow 30 R$	G	0.37	FS	0.00	Reinfection	Reinfection
$42 \to 42 R$	GH	0.83	G	1.00	Relapse	Relapse
$44 \rightarrow 44 R$	$\mathrm{C}\;\mathrm{D}\;\mathrm{F}\;\mathrm{G}\;S$	0.21	$\mathrm{C}\;\mathrm{D}\;\mathrm{E}\;\mathrm{F}\;\mathrm{G}\;M$	0.00	Reinfection	Reinfection
$47 \to 47 R$	DG	0.23	$\mathrm{D} \to S$	0.00	Reinfection	Reinfection
$49 \to 49 R$	$\mathrm{C}\;\mathrm{D}\;\mathrm{F}\;\mathrm{H}\;S$	0.54	CDHS	0.99	Relapse	Relapse
$50 \to 50 R$	H	0.72	H	1.00	Relapse	Relapse
$51 \to 51 R$	$\mathrm{D} \; \mathrm{H} \; S$	0.61	H S	1.00	Relapse	Relapse
$52 \rightarrow 52R$	F S	0.43	S	0.99	Relapse	Relapse
$54 \to 54 R$	F	0.39	G S	0.00	Reinfection	Reinfection
$56 \to 56 R$	$\mathrm{C}\;\mathrm{D}\;G$	0.10	\mathbf{C}	0.41	Reinfection	Relapse
$57 \to 57 R$	$\to G$	0.19	$D \; G \; S$	0.01	Reinfection	Relapse
$59 \rightarrow 59R$	$\to G M N$	1.00	$\to G M N$	1.00	Relapse	Relapse
$62 \rightarrow 62R$	$\mathrm{D}\;\mathrm{F}\;\mathrm{G}\;S$	0.43	D G S	0.99	Relapse	Relapse
$63 \rightarrow 63R$	DHS	0.61	DHS	1.00	Relapse	Relapse
$66 \rightarrow 66 R$	C F G S	0.34	C F	0.90	Relapse	Relapse
$68 \to 68 R$	E G	0.17	$\mathrm{C}\;\mathrm{D}\;\mathrm{G}\;\mathrm{H}\;S$	0.00	Reinfection	Reinfection
$70 \rightarrow 70 R$	CDGS	0.11	C S	0.41	Reinfection	Relapse
$74 \rightarrow 74R$	H	0.72	EFNS	0.00	Reinfection	Reinfection
$75 \rightarrow 75R$	EFH	0.65	E	1.00	Relapse	Relapse
$77 \rightarrow 77R$	CD	0.05	CD	0.84	Relapse	Relapse
$78 \rightarrow 78R$	CH	0.48	CH	1.00	Relapse	Relapse
$80 \to 80R$	F	0.39	F	1.00	Relapse	Relapse
$83 \rightarrow 83R$	CF	0.19	F	0.98	Relapse	Relapse
$84 \rightarrow 84R$	S	0.27	C D S	0.00	Reinfection	Reinfection
$85 \rightarrow 85R$	C S	0.12	C S	0.93	Relapse	Relapse
$90 \rightarrow 90R$	G	0.37	G	1.00	Relapse	Relapse
$95 \rightarrow 95R$	D E F G R	0.67	D F R	1.00	Relapse	Relapse
$100 \to 100 R$	CDGR	0.51	CG	0.91	Relapse	Relapse
$101 \to 101 \mathrm{R}$	$C \to G K N$	0.48	$C \to N^8$	1.00	Relapse	Relapse
$104 \to 104 R$	H	0.72	Н	1.00	Relapse	Relapse
$105 \to 105 R$	Н	0.72	Н	1.00	Relapse	Relapse
$107 \to 107 R$	$B \subset F \subset G$	0.10	C F	0.66	Relapse	Relapse
$109 \to 109 R$	C F G H S	0.81	CDGH	0.05	Reinfection	Relapse

 $\label{eq:Dominant variants} \mbox{ Dominant variants are presented in italic.}$

The β coefficient estimation is close to Table 8 in the main manuscript. We assess the significance using a Wald-type test; variants G and H stay statistically significant as in the main manuscript. Table S9 shows the classification results for the southern Cambodia data using only prevalent variants. The EM algorithm classification results are the same as Table 8 in the main manuscript. The classification results using the two-stage method are similar as well. The similarity of the estimation and classification results indicates the robustness of our method. Since the variant information is biologically important and rare variants also have meaningful information for classification, we show the analysis with all variants in the main manuscript.

Table S8: Estimation of regression coefficients by the EM algorithm for the southern Cambodia data using only common variants

Variants	Prevalence	\hat{eta}	SE	<i>p</i> -value
В	0.033	-1.47	1.42	0.3
\mathbf{C}	0.582	-0.64	0.54	0.233
D	0.399	-0.59	0.59	0.317
\mathbf{E}	0.137	-0.05	0.92	0.953
\mathbf{F}	0.294	0.81	0.57	0.155
G	0.320	1.6	0.57	0.005
H	0.229	2.61	0.66	< 0.001
K	0.026	-0.16	1.58	0.922
N	0.039	1.58	1.53	0.302
\mathbf{R}	0.039	1.29	1.18	0.274
S	0.444	0.38	0.59	0.525

Table S9: classification based on the EM algorithm and two-stage method for the southern Cambodia data using only common variants

Recurrence Pair	Baseline Variants	$\pi_{i2}(x_i, \hat{\theta})$	Recurrence Variants	$P(Y_i = 2 \mathcal{O}_i, \hat{\theta})$	EM Class	Two-Stage Class
$4 \rightarrow 4 \text{ R}$	D S	0.12	D S	0.99	Relapse	Relapse
$7 \to 7~\mathrm{R}$	H	0.69	H	1.00	Relapse	Relapse
$10 \to 10~\mathrm{R}$	H S	0.77	S	1.00	Relapse	Relapse
$11 \to 11~\mathrm{R}$	C F S	0.22	$\mathrm{C}\;\mathrm{D}\;F\;\mathrm{G}\;S$	0.05	Reinfection	Reinfection
$16 \to 16~\mathrm{R}$	C H S	0.63	СН	1.00	Relapse	Relapse
$17 \to 17~\mathrm{R}$	CH	0.54	H	1.00	Relapse	Relapse
$20 \to 20~\mathrm{R}$	D G H S	0.90	D G S	1.00	Relapse	Relapse
$25 \to 25~\mathrm{R}$	$\mathrm{C}\to\mathrm{F}\ G$	0.48	C G	0.98	Relapse	Relapse
$27 \to 27~\mathrm{R}$	C D G S	0.26	G S	0.97	Relapse	Relapse
$28 \to 28~\mathrm{R}$	$C \to G H$	0.85	$\mathcal{C} \mathcal{D} G$	0.81	Relapse	Relapse
$29 \to 29~\mathrm{R}$	F S	0.35	F S	1.00	Relapse	Relapse
$30 \to 30~\mathrm{R}$	G	0.45	FS	0.09	Reinfection	Relapse
$42 \to 42~\mathrm{R}$	GH	0.92	G	1.00	Relapse	Relapse
$44 \to 44~\mathrm{R}$	$\mathrm{C}\;\mathrm{D}\;\mathrm{F}\;\mathrm{G}\;S$	0.44	CDEFG M	0.86	Relapse	Relapse
$47 \to 47~\mathrm{R}$	DG	0.31	$\mathrm{D} \to S$	0.13	Reinfection	Relapse
$49 \to 49~\mathrm{R}$	CDFHS	0.68	CDHS	1.00	Relapse	Relapse
$50 \to 50~\mathrm{R}$	H	0.69	H	1.00	Relapse	Relapse
$51 \to 51~\mathrm{R}$	$\mathrm{D}\;\mathrm{H}\;S$	0.64	HS	1.00	Relapse	Relapse
$52 \to 52~\mathrm{R}$	F S	0.35	S	0.99	Relapse	Relapse
$54 \to 54~\mathrm{R}$	F	0.27	G S	0.05	Reinfection	Reinfection
$56 \to 56~\mathrm{R}$	$\mathrm{C}\;\mathrm{D}\;G$	0.19	\mathbf{C}	0.81	Relapse	Relapse
$57 \to 57~\mathrm{R}$	$\to G$	0.53	$D \; G \; S$	0.87	Relapse	Relapse
$59 \to 59~\mathrm{R}$	$\to G M N$	0.79	$\to G M N$	1.00	Relapse	Relapse
$62 \to 62~\mathrm{R}$	$\mathrm{D} \; \mathrm{F} \; \mathrm{G} \; S$	0.60	$D \; G \; S$	1.00	Relapse	Relapse
$63 \rightarrow 63 \; \mathrm{R}$	DHS	0.64	DHS	1.00	Relapse	Relapse
$66 \to 66~\mathrm{R}$	C F G S	0.58	CF	0.98	Relapse	Relapse
$68 \to 68~\mathrm{R}$	E G	0.44	$C\;D\;G\;H\;S$	0.00	Reinfection	Reinfection
$70 \rightarrow 70 \text{ R}$	CDGS	0.26	$\subset S$	0.84	Relapse	Relapse
$74 \to 74~\mathrm{R}$	H	0.69	EFNS	0.01	Reinfection	Reinfection
$75 \to 75~\mathrm{R}$	EFH	0.83	E	1.00	Relapse	Relapse
$77 \to 77~\mathrm{R}$	CD	0.05	CD	0.90	Relapse	Relapse
$78 \to 78~\mathrm{R}$	CH	0.54	CH	1.00	Relapse	Relapse
$80 \to 80~\mathrm{R}$	\mathbf{F}	0.27	F	1.00	Relapse	Relapse
$83 \to 83~\mathrm{R}$	CF	0.16	F	0.99	Relapse	Relapse
$84 \to 84~\mathrm{R}$	S	0.19	C D S	0.02	Reinfection	Reinfection
$85 \to 85~\mathrm{R}$	C S	0.11	$\subset S$	0.96	Relapse	Relapse
$90 \to 90~\mathrm{R}$	G	0.45	G	1.00	Relapse	Relapse
$95 \to 95~\mathrm{R}$	$\mathrm{D}\;E\;F\;\mathrm{G}\;\mathrm{R}$	0.78	D F R	1.00	Relapse	Relapse
$100 \to 100~\mathrm{R}$	C D G R	0.46	$\subset G$	0.96	Relapse	Relapse
$101 \rightarrow 101 \; \mathrm{R}$	$C \to G K N$	0.63	$C \to M 0$	1.00	Relapse	Relapse
$104 \to 104~\mathrm{R}$	H	0.69	Н	1.00	Relapse	Relapse
$105 \to 105~\mathrm{R}$	H	0.69	Н	1.00	Relapse	Relapse
$107 \to 107~\mathrm{R}$	$B \subset F \subset G$	0.18	C F	0.89	Relapse	Relapse
$109 \to 109~\mathrm{R}$	CFGHS	0.95	CDGH	0.98	Relapse	Relapse

 $\label{eq:Dominant variants} \mbox{ Dominant variants are presented in italic.}$