Классические и продвинутые темы теории вероятностей и математической статистики

Подвойский А.О.

Здесь приводятся заметки по некоторым вопросам, касающимся машинного обучения, анализа данных, программирования на языках Python, R и прочим сопряженным вопросам так или иначе, затрагивающим работу с данными.

Краткое содержание

1	Эмпирическая и теоретическая функции распределения	2				
2	2 Доверительные интервалы					
3	Центральная предельная теорема	3				
4	Фактический (достигаемый) уровень значимости	4				
5	Теоретические и выборочные квантили	5				
6	Ошибки I и II рода	5				
7	Критерий Холлендера-Прошана	6				
C	писок литературы	6				
\mathbf{C}	одержание					
1	Эмпирическая и теоретическая функции распределения	2				
2	Доверительные интервалы	2				
3	Центральная предельная теорема	3				
4	Фактический (достигаемый) уровень значимости	4				
5	Теоретические и выборочные квантили	5				
6	Ошибки I и II рода	5				
7	Критерий Холлендера-Прошана	6				
\mathbf{C}_1	Список литературы					

1. Эмпирическая и теоретическая функции распределения

Построим по выборке X_1, X_2, \ldots, X_n случайную ступенчатую функцию $\hat{F}_n(x)$, возрастающую скачками величины 1/n в точках $X_{(i)}$ (i-ая порядковая статистика). Эта функция называется эмпирической функцией распределения. Чтобы задать значения в точках разрывов, формально определим ее так, чтобы она была непрерывна справа

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I_{\{X_{(i)} \le x\}} = \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le x\}}.$$

В отличие от эмпирической функции распределения выборки, интегральную функцию F(x) распределения генеральной совокупности называют теоретической функцией распределения.

Различие между эмпирической и теоретической функциями распределения F(x) состоит в том, что теоретическая функция определяет вероятность события $X_i \leq x$, а эмпирическая функция $\hat{F}_n(x)$ определяет относительную частоту этого события. Из теоремы Бернулли следует, что относительная частота события $X_i \leq x$, т.е. $\hat{F}_n(x)$ стремится по вероятности к вероятности F(x) этого события, т.е. $\hat{F}_n(x) \xrightarrow{\mathbf{P}} F(x)$. Другими словами числа $\hat{F}_n(x)$ и F(x) мало отличаются одно от другого [1, 191].

2. Доверительные интервалы

Доверительный интервал – интервал, покрывающий неизвестный скалярный параметр θ с заданной доверительной вероятностью $(1-\alpha)$

$$P(\hat{\theta}_1(X_1, X_2, \dots, X_n) < \theta < \hat{\theta}_2(X_1, X_2, \dots, X_n)) \ge 1 - \alpha,$$

где $\hat{\theta}_{1,2}$ – нижняя и верхняя граница доверительного интервала (*случайные величины*), α – уровень значимости (она же вероятность ошибки первого рода).

Наиболее часто уровень значимости принимают равным 0.05 или 0.01. Если, например, принят уровень значимости равный 0.05, то означает, что в пяти случаях из ста мы рискуем допустить ошибку первого рода (отвергнуть правильную гипотезу) [1, 284].

Границы доверительного интервала являются случайными величинами – функциями от выборки (или другими словами границы доверительного интервала являются статистиками) – поэтому правильнее говорить не о вероятности попадания θ в доверительный интервал, а о вероятности того, что доверительный интервал покроет неизвестный параметр θ [1, 216].

Интервалы в нормальной модели Допустим, что элементы выборки X_i распределены по закону $\mathcal{N}(\theta, \sigma^2)$, причем параметр масштаба σ известен, а параметр сдвига θ – нет. Эту модель часто применяют к данным, полученным при независимых измерениях некоторой величины θ с помощью прибора (или метода), имеющего известную среднюю погрешность (стандартную ошибку) σ .

Если случайная величина X распределена нормально $\mathcal{N}(\theta, \sigma^2)$, то выборочная средняя \bar{X} , найденная по независимым наблюдениям, также распределена нормально. Параметры распреде-

ления таковы [1]

$$\mathbf{E}(\bar{X}) = \theta, \sqrt{\mathbf{D}(\bar{X})} = \frac{\sigma}{\sqrt{n}} \rightarrow \bar{X} \sim \mathcal{N}(\theta, \sigma^2/n).$$

Для центрированной и нормированной случайной величины $\sqrt{n}(\bar{X}-\theta)/\sigma \sim \mathcal{N}(0,1)$ в качестве границ интервала с доверительной вероятности $1-\alpha$ можно взять

$$\hat{\theta}_1 = \bar{X} - \sigma / \sqrt{n} \, x_{1-\alpha/2}, \quad \hat{\theta}_2 = \bar{X} + \sigma / \sqrt{n} \, x_{1-\alpha/2}.$$

Таким образом, с вероятностью 0.95 истинное значение параметра сдвига θ находится в интервале $\bar{X} \pm 1.96 \, \sigma/\sqrt{n} \approx \bar{X} \pm 2 \, \sigma/\sqrt{n}$ (правило двух сигм) [2, 147].

На практике, если значение σ неизвестно, то его заменяют на состоятельную оценку $\hat{\sigma}=S,$ где $S^2=\frac{1}{2}\sum (X_i-\hat{X})^2.$

Оценка $\hat{\theta}$ параметра θ называется состоятельной, если для всех $\theta \in \Theta$ последовательность

$$\hat{\theta}_n = \hat{\theta}(X_1, \dots, X_n) \xrightarrow{\mathbf{P}} \theta, \quad n \to \infty.$$

Здесь $\xrightarrow{\mathbf{P}}$ обозначает cxodumocmb по вероятности

$$\forall \varepsilon > 0, \ \mathbf{P}(|\hat{\theta} - \theta| > \varepsilon) \to 0, \quad n \to \infty.$$

Состоятельность оценки (а точнее – последовательности оценок $\{\hat{\theta}_n\}$) означает концентрацию вероятностной массы около истинного значения параметра θ с ростом размера выборки n [2, 75].

3. Центральная предельная теорема

Пусть X_1, \dots, X_n – независимые одинаково распределенные случайные величины. Положим $S_n = X_1 + X_2 + \dots + X_n$.

Если $0 < \sigma^2 = \mathbf{D}X_1 < \infty$, то

$$S_n^* = \frac{S_n - \mathbf{E}S_n}{\sqrt{\mathbf{D}S_n}} = \frac{S_n - \mu n}{\sigma \sqrt{n}} \xrightarrow{d} Z, \quad n \to \infty,$$

где Z – стандартная нормальная случайная величина, $Z \sim \mathcal{N}(0,1)$.

Пример Пусть случайные величины Z_1, \ldots, Z_k распределены по закону $\mathcal{N}(0,1)$ и независимы. Тогда распределение случайной величины $R_k^2 = Z_1^2 + \cdots + Z_k^2$ называют распределением χ^2 с k степенями свободы (кратко $R_k^2 \sim \chi_k^2$).

Отметим, что каждое слагаемое имеет гамма-распределение с параметрами $\alpha=\lambda=1/2$, т.е. $Z_i^2\sim \Gamma(1/2,1/2).$

Поскольку R_k^2 — это сумма независимых и одинакового распределенных случайных величин Z_i^2 , то согласно центральной предельной теореме имеет место сходимость по распределению

$$(R_k^2 - \mathbf{E}R_k^2)/\sqrt{\mathbf{D}R_k^2} = (R_k^2 - k)/\sqrt{2k} \xrightarrow{d} Z \sim \mathcal{N}(0, 1), \quad k \to \infty.$$

Нормальное приближение является довольно точным уже при k > 30.

4. Фактический (достигаемый) уровень значимости

При проверке статистических гипотез в общем случае задается малое число α – вероятность, с которой мы можем позволить себе отвергнуть верную гипотезу (скажем, 0.05). Это число называют уровнем значимости.

Исходя из предположения, что гипотеза H верна, определяется haumenbuee (самое крайнее левое) значение $x_{1-\alpha}$, удовлетворяющее условию

$$\mathbf{P}(T(X_1,\ldots,X_n)\geqslant x_{1-\alpha}\,|\,H)=\int_{x_{1-\alpha}}^{+\infty}p_T(x)\,dx\leqslant\alpha.$$

Другими словами, вероятность события, состоящего в том, что статистика примет значение большее $(1-\alpha)$ -квантиля (вероятность маловероятного события) должна быть не больше заранее заданного уровня значимости α .

Если функция распределения статистики T непрерывна, то $x_{1-\alpha}$ является, очевидно, ее $(1-\alpha)$ -квантилью. Такое $x_{1-\alpha}$ называют *критическим значением*: гипотеза H отвергается, если

$$t_0 = T(x_1, \dots, x_n) \geqslant x_{1-\alpha}$$

(произошло маловероятное событие), и принимается – в противном случае.

При этом величина

$$\alpha_0 = \mathbf{P}(T(X_1, \dots, X_n) \geqslant t_0 \mid H) = \int_{t_0}^{+\infty} p_T(x) dx$$

задает фактический (достигаемый) уровень значимости. Он равен вероятности того, что статистика T (измеряющая степень отклонения полученной реализации от наиболее типичной) за счет случайности примет значение t_0 или даже больше. Другими словами, фактический (достигаемый) уровень значимости оценивает вероятность того, что случайная величина $T(X_1, \ldots, X_n)$ попадет в область $[t_0, +\infty)$, где t_0 – это значение статистики, найденное по выборке.

Фактический (достигаемый) уровень значимости – наименьший уровень, на котором проверяемая гипотеза принимается¹ [2, 161].

Фактический (достигаемый) уровень значимости – это вероятность получить значение статистики как в эксперименте или более экстремальное ее значение при условии справедливости нулевой гипотезы.

Подытожив сказанное выше, можно получить следующее правило: если фактический (достигаемый) уровень значимости α_0 меньше заранее заданного уровня значимости α , то говорят, что данные свидетельствуют против нулевой гипотезы H_0 в пользу альтернативной и у нас есть основания отвергнуть нулевую гипотезу

если
$$\alpha_0 < \alpha$$
 тогда $\mathcal{M}_{\mathbb{Q}}$

Критическое значение $x_{1-\alpha}$ допускается интерпретировать как квантиль уровня $(1-\alpha)$ только для статистик с непрерывной функцией распределения

¹Наверное, правильнее говорить *не отвергается*

Вычисление фактического (достигаемого) уровня значимости нередко позволяет избежать категоричных (и при этом ошибочных) выводов, сделанных только на основе сравнения наблюдаемого значения статистики t_0 с критическим значением $x_{1-\alpha}$, найденным для формально заданного α .

5. Теоретические и выборочные квантили

Пусть $\alpha \in (0,1)$. Для непрерывной функции распределения F теоретической α -квантилью x_{α} (или квантилью уровня α) называется решение уравнения $F(x_{\alpha}) = \alpha$, т.е. $x_{\alpha} = F^{-1}(\alpha)$.

Так же, как и в случае медианы $(\alpha = 1/2)$ это решение может быть не единственным.

Оценить x_{α} можно с помощью порядковой статистики $X_{([\alpha n]+1)}$, где $[\cdot]$ – обозначает целую часть. Эту оценку называют выборочной α -квантилью.

6. Ошибки I и II рода

Пример рассмотрим модель $X_i \sim \mathcal{N}(\theta, \sigma^2)$, где дисперсия известна, а математическое ожидание нет. Для проверки гипотезы $H_0: \theta = \theta_0$ можно применить критерий, основанный на статистике $T(X_1, \dots, X_n) = \bar{X}$.

Если H_0 верна, то $\bar{X} \sim \mathcal{N}(\theta_0, \sigma^2/n)$. Найдем критическое значение t_{α} из условия

$$\alpha = \mathbf{P}_{\theta_0}(\bar{X} \geqslant t_{\alpha}).$$

Тогда (центрируем и нормируем случайную величину \bar{X})

$$\alpha = \mathbf{P}\left(\frac{\sqrt{n}(\bar{X} - \theta_0)}{\sigma} \geqslant \frac{\sqrt{n}(t_{\alpha} - \theta_0)}{\sigma}\right) = 1 - \Phi\left(\frac{\sqrt{n}(t_{\alpha} - \theta_0)}{\sigma}\right), \text{ Tak kak } \frac{\sqrt{n}(\bar{X} - \theta_0)}{\sigma} \sim \mathcal{N}(0, 1),$$

где $\Phi(x)$ – функция распределения закона $\mathcal{N}(0,1)$.

Из последнего соотношения получаем критическое значение

$$t_{\alpha} = \theta_0 + \sigma \, x_{1-\alpha} / \sqrt{n}.$$

Если значение выборочного среднего $\bar{x} \geqslant t_{\alpha}$, то гипотеза H_0 отвергается. Если нулевая гипотеза верна, то неравенство $\bar{X} \geqslant t_{\alpha}$ выполняется с вероятностью α . Отвергая в этом случае верную гипотезу H_0 , мы совершаем $omu \delta \kappa y \ I \ poda$.

С другой стороны, может оказаться, что на самом деле верна не гипотеза H_0 , а ее альтернатива $H_1: \theta = \theta_1$. Если при этом случится, что $\bar{x} < t_{\alpha}$, то мы примем ошибочную гипотезу H_0 вместо H_1 , тем самым допустив *ошибку II рода*.

Найдем вероятность β ошибки II рода для рассматриваемой модели. Когда верна альтернативная гипотеза, выборочное среднее распределено по закону $\mathcal{N}(\theta_1, \sigma^2/n)$, поэтому

$$\beta = \mathbf{P}_{\theta_1}(\bar{X} < t_{\alpha}) = \Phi\left(\frac{\sqrt{n}(t_{\alpha} - \theta_1)}{\sigma}\right) = \Phi\left(x_{1-\alpha} - \frac{\sqrt{n}(\theta_1 - \theta_0)}{\sigma}\right).$$

$$\alpha=\mathbf{P}(\,\mathrm{Rej}\,H_0^+\,),\,\mathrm{ошибка}\,\,\mathrm{I}\,\,\mathrm{рода},$$

$$\beta=\mathbf{P}(\,\mathrm{Rej}\,H_0^+\,)=\mathbf{P}(\,\neg\mathrm{Rej}\,H_0^-\,),\,\mathrm{ошибка}\,\,\mathrm{II}\,\,\mathrm{рода}.$$

Гипотеза H_0 заключается в том, что $\theta \in \Theta_0$, а альтернатива H_1 – в том, что $\theta \in \Theta_1$. Когда множество $\Theta_0(\Theta_1)$ состоит из единственной точки, гипотеза H_0 (альтернатива H_1) называется простой, иначе – сложной.

7. Критерий Холлендера-Прошана

В задачах теории надежности экспоненциальное распределение наработки на отказ $f(x) = \lambda e^{-\lambda x}$ характеризуется значением параметра $\lambda = const$, т.е. постоянством интенсивности отказов изделия во времени.

Отсюда следует, что вероятность безотказной работы изделия за время Δt определяется только промежутком времени Δt и не зависит от того, работало изделие раньше или нет.

Другими словами, вероятность безотказной работы нового изделия и изделия, проработавшего часть времени, должна быть одинакова. Проверка этого обстоятельства и является целью критерия Холлендера-Прошана [3, 295].

Статистикой Холлендера-Прошана является величина [2, 182]

$$T_n = \sum_{i>j>k} \psi(X_{(i)}, X_{(j)} + X_{(k)}),$$

где

$$\psi(a,b) = \begin{cases} 1, & \text{если } a > b, \\ 1/2, & \text{если } a = b, \\ 0, & \text{если } a < b. \end{cases}$$

Суммирование здесь производится по всем n(n-1)(n-2)/6 упорядоченным тройками (i,j,k), для которых i>j>k.

Для достаточно большой выборки можно воспользоваться нормальным приближением (на основании центральной предельной теоремы)

$$\frac{T_n - \mathbf{E}T_n}{\sqrt{\mathbf{D}T_n}} \xrightarrow{d} \xi \sim \mathcal{N}(0, 1),$$

где

$$\mathbf{E}T_n = n(n-1)(n-2)/8, \ \mathbf{D}T_n = \frac{3}{2}n(n-1)(n-2)\left[\frac{5}{2592}(n-3)(n-4) + \frac{7}{432}(n-3) + \frac{1}{48}\right].$$

Список литературы

- 1. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, $1972.-368~\mathrm{c}.$
- 2. Лагутин М.Б. Наглядная математическая статистика. М.: БИНОМ, 2009. 472 с.

3.	Прикладная ма ЗМАТЛИТ, 201	статистика. Дл	ля инженеров	и научных	работни-