XP-002154017

P.D.	1998	
P.	A 813	

4714

EFFECT OF NUCLEOTIDES ON RAT LIVER & SKELETAL MUSCLE MITOCHONDRIA NON-PHOSPHORYLATING RESPIRATION & MEMBRANE POTENTIAL M. Jekabsons & B.A. Horwitz, Neurobiol. Physiol. & Behavior, Univ. Calif. Davis CA 95616.

Non-phosphorylating respiration (VO₂) is primarily controlled by proton (H*) leak across the inner mitochondrial membrane (IMM). Recently discovered genes whose predicted amino acid sequences place them in the same family as uncoupling protein-1 (UCP-1) may be the physical basis for this leak. To determine if the leak in isolated liver (L) and skeletal muscle (SM) mitochondria is regulated similarly to UCP-1, we measured effects of nucleotides on non-phosphorylating VO₂ with a Clark electrode and IMM-voltage (IMMV) with the voltage sensitive dye JC-1 (0.47μM). Mitochondria were incubated at 37C in a KCl based reaction buffer (pH 6.9) containing 3 μg/mL oligomycin, 5 μM rotenone, and 5 mM succinate. Nucleotide effects on VO₂ and IMMV are summarized in the table; percents are peak changes from the succinate induced value.

	GTP	ATR	AMP	CTP	CMP
L-VO2	-20%	-97%* (11.0) -13%	90%* (14.6)	,+75%* (4.43)
LIMMV	ND	-88%* (12.5	27%	-84%* (14.1)	-17%
SM VO		-99%* (11.2	34%*	··79%* (16.3)	+15%* (4.16)
SM IMM	VI ND	-96%* (131-1) -36%*	÷86%* (15.6)	-20%*

p≤0.05 for effect of the nucleotide (0.8-21mM) by one way ANOVA; IC_{so} (ATP, CTP) and EC_{so} (CMP) values in mM in (1); ND=not determined.

We conclude that VO₂ inhibition by ATP, CTP, and AMP reflects respiratory chain rather than leak inhibition (i.e., IMMV doesn't increase). In contrast, CMP stimulation of VO₂ and inhibition of IMMV suggest possible CMP regulation of H* leak in L and SM mitochondria. Regulation of this leak thus contrast from that mediated by UCP-1. [NIH DK-32907, T32-HL-07682]