

- Example
- R₁₂ is a regular expression from s₁ to s₂.
- We construct table to find the regular expression.
- As we need multiple columns in a table, we use a superscript in naming regular expression. For example R₁₂¹, R₆₄²,... R_{ij}^k, R_{ij}^{k-1} are just names of different regular expressions.
- The following tables gives the regular expression for different values of k, where k denotes the maximum number of states from state i to state j.

Column n is built from starting state to all possible final states.

	K=0	K=1	K=2	 K=n
R_{11}^{k}	R_{11}^{0}	R_{11}^{1}	R_{11}^{2}	 R_{11}^n
R_{12}^k	R_{12}^{0}	R_{12}^{1}	R_{12}^{2}	 R ₁₂ ⁿ
R_{21}^{k}	R_{21}^{0}	R_{21}^{1}	R_{21}^{2}	 R ₂₁ ⁿ
R_{22}^k	R_{22}^{0}	R_{22}^{1}	R_{22}^{2}	 R ₂₂ ⁿ

- Finally the regular expression is union of all the expressions in column n
- In the above table there are n rows and n+1 columns
- All pairs of numbers from state1 to state n will constitute n rows
- Now, build the table entries for k=0 columns

$$\bullet \ R_{ij} = \begin{cases} \{a \mid \delta \left(q_1, a\right) = \ q_j\}, \ i \neq j \\ \{a \mid \delta \left(q_1, a\right) = \ q_j\} + \varepsilon, \ i = j \end{cases}$$

- R_{i,j}^k could be Φ, ε, a, 0+1 or a+ ε
- Epsilon(ε) if there is transition over the same state
- Phi(Φ) If there is no transition between two different states

Minimization rules for regular expression

Minimization rules for regular expression

Rule	Expression	Rule	Expression
No.		No.	
1	$\Phi + R = R$	11	$(P+Q)^* = (P*Q^*)^* = (P^*+Q^*)^*$
2	$\Phi R = R \Phi = R$	12	(P+Q)R = PR + QR, R(P+Q) = RP + RQ
3	$\varepsilon R = R \varepsilon = R$	13	$R^*+\epsilon=R^*$
4	$\varepsilon * = \varepsilon$ and $\Phi * = \varepsilon$	14	$(R + \varepsilon)^* = R^*$
5	R + R = R	15	R*(a+b) + (a+b) = R*(a+b)
6	R*R* = R*	16	R*R+R=R*R
7	RR = R R	17	$(R+\varepsilon)R^* = R^*(R+\varepsilon) = R^*$
8	$(R^*)^* = R^*$	18	$(R+\epsilon)(R+\epsilon)^*(R+\epsilon) = R^*$
9	$\varepsilon + RR^* = R^* = \varepsilon + R^*R$	19	$\Phi + \varepsilon = \varepsilon$
10	(PQ)*P = P(QP)*		

 Note that there are no Kleene star or concatenation in this column. To build successive column corresponding to k=1, k=1,2,...n the recursive formula is used.

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1} (R_{kk}^{k-1}) R_{kj}^{k-1}$$

$$OR$$

$$R_{ij}^{k} = R_{ij}^{k-1} U R_{ik}^{k-1} (R_{kk}^{k-1}) R_{kj}^{k-1}$$

 Finally the regular expression is R_{ip}ⁿ + R_{iq}ⁿ + R_{1r}ⁿ where p,q,r are final states and 1 is the initial state where n represents number of states in FA.