Some for the Price of One: Vote Buying on a Network

Perry Carter

Joseph J. Ruggiero

December 15, 2022

Abstract

Social connections matter for vote buying, yet most analyses do not specify the nature of interdependence between actors explicitly. We provide a formal model of elections in which candidates may offer private transfers to policy-motivated voters connected on a social network. Investigation of deep parameters governing social structure allows for comparison across societies without the need to consider specific realizations. In equilibrium, transfers are determined primarily by group fractionalization and homophily, with density mattering only indirectly. Inequalities are driven by disproportionate targeting of minorities. Additionally, we consider heterogeneous information between candidates, clarifying the main role of density as a source of more precise information for candidates and demonstrating that homophily can endogenously generate in-group favoritism. These results highlight the importance of social structure, moving beyond the existing focus on individual targeting.

Keywords: Vote buying, game theory, social networks, electoral competition

Carter: Ph.D. Candidate in Politics, Princeton University. pjcarter@princeton.edu.

Ruggiero: Ph.D. Candidate in Politics, Princeton University. jruggiero@princeton.edu.

Why are varied levels of vote buying observed across similar institutional and cultural environments? The practice of vote buying has detrimental consequences for society, slowing development and undermining democracy (Schaffer 2007). Vote buying allocates public resources inefficiently: as an illicit activity perpetrated by candidates to improve their electoral performance, redistribution via vote buying is unlikely to correspond to an optimal redistribution mechanism. It also violates the logic of democratic processes, creating a preference aggregation problem where voters no longer choose the candidates they believe are most fit for office, but those who provide them with the most private favors (Groseclose and Snyder 1996; Banks 2000; Lizzeri and Persico 2001; Dekel, Jackson, and Wolinsky 2008).

Recent work in political science has emphasized the defining role of social network structure in both the form and efficacy of clientelist electoral linkages, especially vote buying (Holland and Palmer-Rubin 2015; Cruz, Labonne, and Querubin 2017; Ravanilla, Haim, and Hicken 2022). Even in the absence of direct inducements, social pressure can be a crucial determinant of vote choice (Fafchamps, Vaz, and Vicente 2020). While the usefulness of localized targeting is determined by the underlying social structure (Finan and Schechter 2012; Larson and Lewis 2017), the exact mechanisms have not been systematically theorized.

In this article, we study a networked model of a large election in which candidates¹ compete to influence policy-motivated voters with private transfers (i.e., bribes). Each candidate is associated with a policy and can extend private transfers to voters at the expense of a public good, which both candidates and voters care about. Voters belong to a group with distinct preferences and care about the welfare of their neighbors on the network, so that voting decisions are also informed by the electoral preferences of their social connections. The unique equilibrium transfer to a voter is proportional to their Katz-Bonacich centrality on a normalized network, capturing the core tradeoff between targeting voters who influence others and those who are easily influenced.

The sensitivity of any agent's centrality to small changes on the network, however, compli-

¹ While we use the term "candidate" to refer to the agents in our model, it may be more natural in many settings to think of them as local brokers acting on behalf of a candidate.

cates direct analysis of the role played by a society's underlying structural features. To overcome this problem, we eschew consideration of exact graphs in favor of a random generative model (specifically, a two-group stochastic block model). In particular, we apply techniques from random graph analysis (Chung and Radcliffe 2011) to a class of games on networks for which equilibrium strategies are proportional to the vector of Katz-Bonacich centralities (Katz 1953; Bonacich 1987; Ballester, Calvó-Armengol, and Zenou 2006). In doing so, we derive closed-form expressions for *expected* equilibrium strategies from a generative network model.

Although approximations, these strategies are arbitrarily close to those played on any realization in large societies. Since these expressions depend on the parameters of the generative model, and not on the arbitrary structure of a specific realization, they allow us to study the effects of deep features of societies on the efficacy of vote buying directly. A core advantage of this approach is that it allows systematic comparison across societies (either cross-sectionally or over time) based on stable underlying features of the social environment, without needing to consider a complete network in each case of interest. We focus on three network-level attributes that research on social networks has consistently highlighted:

- 1. density, or the ratio of realized to potential ties;
- 2. fractionalization, or the number and relative size of salient social groups;³ and
- 3. homophily, or the relative propensity of agents to form ties with members of their own group.

Our model suggests that diversion of public resources will be most prevalent when a relatively small minority can be efficiently targeted and when candidates are well-informed about voters' preferences. These predictions, while consistent with the literature, highlight

² This approach has provided a good empirical fit when compared to alternative measures of centrality (Calvó-Armengol, Patacchini, and Zenou 2009; Battaglini and Patacchini 2018).

³ See Alesina, Devleeschauwer, Easterly, Kurlat, and Wacziarg (2003) for a discussion of appropriate ways to conceptualize fractionalization.

important channels that have been largely overlooked. In our model, fractionalization matters not because of differences in preferences (Easterly and Levine 1997; Alesina, Baqir, and Easterly 1999) or between-group inequities (Baldwin and Huber 2010), but because it affects the proportion of ties that are within or between groups and, thus, the level of social persuasion that can be achieved. Similarly, although the importance of information about individual voters for contract enforcement is well-studied (Finan and Schechter 2012; Stokes, Dunning, Nazareno, and Brusco 2013), we highlight the value of information about "neighborhoods" of voters, as the precision of candidates' knowledge determines the weight they place on social persuasion effects of higher order in equilibrium.

Social segregation between groups, however, reduces the extent of vote buying: minorities are disproportionately targeted and the incentive to bribe is moderated as minorities become less connected to others on the network. This is consistent with previous work showing that segregation does not lead to increased ethnic favoritism (Franck and Rainer 2012) and suggests a countervailing effect that may explain the contradictory findings on the effects of ethnic diversity (Habyarimana, Humphreys, Posner, and Weinstein 2007; Baldwin and Huber 2010). While ethnic politics depend on the existence of socially distinct groups (Chandra 2007), social segregation also limits candidates' ability to benefit from cross-group influence.

Finally, when the quality of information is allowed to vary across candidates and voters, we find that the extent of vote buying is increasing in fractionalization when the candidate has low-precision information on minorities and is typically decreasing in homophily. Inequality, on the other hand, is typically decreasing in fractionalization and has a highly nonlinear relationship to homophily. These findings are in line with a large literature emphasizing the information-gathering role of brokers (Stokes et al. 2013; Frye, Reuter, and Szakonyi 2019; Ravanilla, Haim, and Hicken 2022), but indicate that the effects of information flow to candidates and between voters may be in tension.

These results suggest new directions for empirical studies of vote buying and clientelism.

While simple network properties such as density may matter indirectly through their as-

sociation with intergroup relations or information structure, our findings underscore the importance of attending to less obvious network features that may have counterintuitive effects.

Vote Buying and Social Influence

Vote buying is a prevalent feature of unconsolidated democracies and is associated with negative economic, social, and institutional outcomes (Hicken 2011). While the use of private inducements to influence voting may be effective (Rueda 2015), prospective vote buyers face several key challenges in implementing these strategies in large elections (Dekel, Jackson, and Wolinsky 2008).

Candidate uncertainty over voter preferences can make it difficult to employ vote buying strategies effectively. In large elections, no candidate is likely to have enough information, resources, or bureaucratic capacity to reliably identify, approach, and provide private goods to the optimal voters. Further, since the exchange is illegal and ballots are typically secret, politicians cannot be sure of compliance (Brusco, Nazareno, and Stokes 2004; Finan and Schechter 2012; Keefer and Vlaicu 2017). Social network connections to voters, however, can facilitate information gathering and monitoring (Calvo and Murillo 2013; Frye, Reuter, and Szakonyi 2019). The cultivation of political networks may therefore play a crucial role, as they facilitate targeting, relay information to politicians, and pressure highly-connected voters to follow through on agreements (Fafchamps and Labonne 2017; Cruz, Labonne, and Querubin 2017; Cruz 2019; Fafchamps, Vaz, and Vicente 2020; Ravanilla, Haim, and Hicken 2022).

While the importance of networks has emerged as a consistent theme, much of this work has focused on client-patron ties, monitoring, and the targeting of handouts to reciprocal voters (Finan and Schechter 2012; Cruz 2019; Ravanilla, Haim, and Hicken 2022). A growing literature, however, has begun to recognize another dimension of vote buying as an electoral strategy: handouts may serve to provide voters with information about the likely behavior

of the candidate once in office and activate peer pressure effects, acting as a multiplier on resources spent (Kramon 2016a,b; Auerbach 2019; Fafchamps and Labonne 2020; Fafchamps, Vaz, and Vicente 2020). With the exception of Fafchamps and Labonne (2020), however, no existing work explicitly considers the nature of network dependencies. Moreover, while considerable attention has been given to the problem of which voters are most likely to be targeted conditional on a given social network, almost nothing is known about the types of social environments that are most likely to experience vote buying.

A closely related difficulty can be found in the literature on the political economy of ethnicity, where the network density of ethnic groups is taken to be a defining feature that mediates between diversity and outcomes such as conflict, public goods provision, and the development of clientelism (Miguel and Gugerty 2005; Chandra 2007). For instance, while Fearon and Laitin (1996) explain the prevalence of cooperative equilibria in diverse societies by the relatively high probability of interaction among members of the same group in dense networks, Larson (2017) demonstrates using a formal model that "integration," not density, is the relevant feature. Examining this relationship empirically, moreover, Larson and Lewis (2017) find that dense ties are actually associated with greater diversity. To generate reliable predictions, we need to engage with network structure explicitly.

Given the inherent complexity of social networks, this issue is well-suited to a formal modeling approach. Few models of vote buying, however, have considered the role of connections between players—most models of vote buying assume continuous distributions of voters (Groseclose and Snyder 1996; Lizzeri and Persico 2001), for which results do not necessarily generalize to finite populations (Banks 2000; Dekel, Jackson, and Wolinsky 2008). This literature has generated important insights into the possibility of vote buying to induce inefficient supermajority coalitions (Groseclose and Snyder 1996; Banks 2000), the difficulty of overcoming private incentives by providing public goods (Lizzeri and Persico 2001), the role of varying commitment structures and institutions in mitigating the inefficiencies introduced by vote buying (Dal Bó 2007; Dekel, Jackson, and Wolinsky 2008), and the institutional

factors driving the mix of strategies chosen by clientelist machines (Gans-Morse, Mazzuca, and Nichter 2014). However, variation is driven either by individual factors or by institutional environments. Despite the prominent role afforded to ties between actors in empirical accounts, this aspect of the strategic environment has gone largely unexplored.

An important exception comes from Battaglini and Patacchini (2018), who study the problem of influencing members of a legislature through campaign contributions using a networked model. This work finds, following Ballester, Calvó-Armengol, and Zenou (2006), that the equilibrium transfers to voters (legislators) are proportional to their Katz-Bonacich centrality (Bonacich 1987) weighted by the equilibrium probability of pivotality. While the basic structure of their model is similar to ours, this paper differs in that we draw on recent advances in the analysis of random graphs to avoid the combinatoric complexity of fixed networks. By shifting attention from realized networks to an underlying generative model, we can draw sharp conclusions about the effects of social structure.

Model

We begin by assuming that voters care about policy in a unidimensional space and the provision of a public good, but that they can also be bribed with private transfers that influence their likelihood of voting for one candidate over another. Since we are primarily interested in elections where n is sufficiently large that the probability of pivotality is approximately zero, we assume expressive voting based on net preference after transfers. In order to retain our focus on the network-specific elements of the model, we treat transfers from both candidates as credible campaign promises (Dekel, Jackson, and Wolinsky 2008). These offers, therefore, are not a binding contract from the perspective of the voter: voters may receive promises from both candidates and will ultimately vote in accordance with their own preferences. As such, candidates are not buying a vote with certainty, but only an improved likelihood of

⁴ For instance, candidates may choose between offering voters jobs at a local school or investing in improving the school itself.

support, in line with existing findings highlighting the importance of voter reciprocity norms as a means of contract enforcement (Cruz 2019; Ravanilla, Haim, and Hicken 2022).

The key feature of this model is network dependence. In addition to being influenced by direct transfers and campaign promises, voters place some weight on their neighbors' expected votes. This approach to modeling dependency, which typically implies that agents take actions in proportion to their centrality (Ballester, Calvó-Armengol, and Zenou 2006), has been employed in a variety of applications capturing peer effects and found strong empirical support (Battaglini and Patacchini 2018; Fafchamps and Labonne 2020). While our primary interest is in the role played by aggregate network properties, in this section we take the network as fixed in order to characterize equilibrium strategies conditional on the network. In the following section, we shift our focus to social structure, assuming that the network is generated according to a stochastic block model and studying the effect of changes in its parameters.

Substantively, the network spillover mechanism has two main interpretations. First, voters can be thought of as communicating with their acquaintances about their intent to vote, which provides information about the candidate's desirability. A bribe paid to any voter on the network will positively affect all voters' likelihood of voting for a candidate on a connected graph, albeit with diminishing returns in social distance. Second, network spillovers may be a consequence of social pressure. Even if voters do not gain any payoff relevant information from their neighbors, they may still be intrinsically motivated to take the same action as a majority of them.

An important observation regarding network dependence is that we normalize the total social influence (i.e., the sum of edge weights) of any voter's connections to 1, so that all voters place equal weight on their neighbors' vote probabilities. Intuitively, this implies that the influence exerted on voter i by their network neighbor j is greater if j is i's only neighbor than it would have been were i connected to a hundred other voters.⁵ Equivalently, voters can be

⁵ In the baseline model, we constrain weights to be a function only of group membership and degree; however, our results are robust to more general weighting schemes.

thought of as making their decisions based on a weighted average of their neighbors' actions, and not a sum. This aspect of the model diverges somewhat from others in the literature who assume that the most connected voters are also the most easily influenced. This modeling choice reflects a desire to focus on the effect of the information environment: the standard approach without normalization implies that the marginal impact of an additional social tie is independent of a voter's degree, which is inconsistent with rational learning. Our approach, while not a full communication game in order to recover sharper results, reflects the assumption that voters aggregate across all of the information available to them.

Finally, candidates care about both their electoral performance and their "programmatic" commitment to provide a public good, but face a potential tradeoff between these two goals. The funds for private transfers to voters, which can provide an electoral advantage, must be diverted from the provision of the public good. In order to maximize the clarity of the results, we assume that candidates attempt to maximize vote share rather than to win a majority. This assumption is empirically appropriate in many cases, such as in authoritarian regimes, where incumbents frequently seek to achieve overwhelming vote shares (Reuter and Robertson 2012). It is also worth noting that, while we use the term "candidate," it may be more appropriate in many applications to view the agents as vote brokers, since they are assumed to have accurate knowledge of the local social network structure (Ravanilla, Haim, and Hicken 2022) but are uncertain of voters' final decisions.

Setup

Consider a game with n voters that need to make a choice between two candidates. All voters are located on a network \mathcal{G} , which is assumed to be connected. We use the terms network and graph interchangeably throughout the paper to refer to an undirected graph, which is an ordered pair $(\mathcal{V}, \mathcal{E})$ where \mathcal{V} is a set of n vertices and \mathcal{E} is a set of m edges such that $\mathcal{E} \subseteq \{\{x, x'\} : x, x' \in \mathcal{V} \land x \neq x'\}$. Each candidate k = 1, 2 is associated with a policy

⁶ See Jackson (2010) for a general primer on graph theory as it relates to games on social networks.

 $y_k = k$, where the policy space is a subset of \mathbb{R} , and each voter $i \in \mathcal{V}$ is endowed with a group membership $\ell_i = 1, 2$, which corresponds to an ideal policy $x_i = \ell_i$. Substantively, groups may be interpreted as corresponding to any grouping that is both socially and politically meaningful, such as political parties and ethnic or religious groups.

To gain vote share, candidate k can extend n private offers or bribes, $b_{ik} \geq 0$. These bribes, however, come at the expense of a public good, which the candidate also values. A candidate k's problem is to choose b_k that solves

$$\max_{\boldsymbol{b}_k} \ \alpha_k \sum_{i \in \mathcal{V}} \phi_{ik}(\boldsymbol{b}_k, \boldsymbol{b}_{-k}) - \boldsymbol{b}_k \cdot \boldsymbol{1}$$

subject to $b_{ik} \geq 0$ for all i

where $\phi_{ik}(\cdot)$ is the probability voter i votes for candidate k and α_k represents the value placed on one vote by candidate k. We thus normalize the value placed on a unit of public good by the candidate to 1 so that α_k can be interpreted as the candidate's relative degree of office motivation. In particular, an α_k of 0 corresponds to a fully programmatic candidate, who trivially prefers to offer no bribes and promise the full amount of the public good.

Voters support the candidate that offers them a higher total payoff.⁷ All voters care about policy according to a standard quadratic loss function and have $\gamma \geq 0$ value for a unit of public good, so that they incur a loss of γ for every unit of bribes offered by a candidate to any voter. Additionally, voters have private information unknown to the candidates and other voters in the form of a private valence shock for each candidate, $\varepsilon_{ik} \in \mathbb{R}$. Without loss of generality, we can normalize $\varepsilon_{i2} = 0$ and define $\varepsilon_i := \varepsilon_{i1}$, which we assume is an independent, uniformly distributed mean-zero random variable with support on $\left[\frac{1}{-2\theta}, \frac{1}{2\theta}\right]$, where we impose that the parameter $0 < \theta < 1$ to ensure that all solutions are well-defined.⁸ We interpret θ as the candidates' information, with smaller θ indicating less-informed candidates. θ can

⁷ There is no obligation to vote for a candidate who offered them a bribe.

⁸ Although this restriction is necessary, it is not sufficient. For technical reasons, we require two additional conditions that guarantee θ is sufficiently small. See Appendix A for a more precise statement.

also be taken as reflecting the intensity of the voters' commitment problem, as candidates with higher values can be more certain that transfers will actually secure votes.⁹

Social structure also matters. In particular, voters prefer to vote for the same candidate as their neighbors as defined by the network. Denote by $\phi_{ik}(\cdot)$ the probability voter i votes for candidate k given all bribes, but before the realization of the valence shock ε_i . Then, each voter i places weight $w_{ij} > 0$ on voter j's probability of voting for candidate k if i and j are connected, and 0 otherwise. In the graph \mathcal{G} , the set of a voter i's social ties is denoted by $\mathcal{T}_i(\mathcal{G}) \subseteq \mathcal{V}^{10}$. The total social influence on each voter is normalized to 1, so that the actual influence of each neighbor j on i's utility is equal to $\left(\sum_{h \in \mathcal{T}_i(\mathcal{G})} w_{ih}\right)^{-1} w_{ij}$, implying that more highly connected voters are less influenced by each individual neighbor. An immediate consequence is that network density only plays an indirect role on equilibrium behavior, as adding edges does not increase the total influence on the network. In much of the subsequent analysis, we will assume for simplicity that $w_{ij} \in \{w_L, w_H\}$ with $w_H \geq w_L$, where w_H is the weight placed on within-group connections and w_L on cross-group connections. All fixed-network results hold for the more general case, however.

The expected payoff voter i receives from candidate k can thus be expressed as

$$U_i(k) = -(x_i - y_k)^2 + u(b_{ik}) + \frac{\sum_{j \in \mathcal{T}_i(\mathcal{G})} w_{ij} \phi_{jk}(\boldsymbol{b})}{\sum_{h \in \mathcal{T}_i(\mathcal{G})} w_{ih}} - \gamma \sum_{m \in \mathcal{V}} b_{mk} + \varepsilon_{ik}$$
(1)

where $u(\cdot)$ is voter utility over bribes, which we assume is strictly increasing with diminishing marginal returns and that the rate of diminution is decreasing. Formally, utility over bribes satisfies $u'(\cdot) > 0$, $u''(\cdot) < 0$, and $u'''(\cdot) \ge 0$. Additionally, we assume $\lim_{b\to 0} u'(b) = \infty$ and $\lim_{b\to\infty} u'(b) = 0$. Together, these assumptions ensure that all solution objects are well-defined and rule out the possibility of corner solutions.

⁹ Equivalently, θ can be taken as a reflection of voters' reciprocity norms. We explore the consequences of systematic variation in this parameter in the heterogeneous information section.

¹⁰Here, \mathcal{G} is a fixed graph and may have any social structure provided that it is connected.

Timing

The timing of the game is as follows.

- 1. Nature randomly chooses a private valence shock for each voter, $\varepsilon_i \sim \mathcal{U}\left[\frac{-1}{2\theta}, \frac{1}{2\theta}\right]$
- 2. For all voters $i \in \mathcal{V}$, each candidate k = 1, 2 offers a bribe $b_{ik} \geq 0$, which determines the residual public good offered
- 3. Each voter $i \in \mathcal{V}$ casts a ballot for candidate 1, $v_i = 1$, or candidate 2, $v_i = 2$

Equilibrium

A voter will cast a ballot for candidate 1 if and only if $U_i(1) \geq U_i(2)$. Here, candidates will not be able to perfectly anticipate voting behavior due to their imperfect information over voter preferences. We can rewrite¹¹ the candidates' problem as

$$(\boldsymbol{J}[\boldsymbol{u}] - \boldsymbol{\Gamma})^{\top} \cdot (\boldsymbol{I} - 2\theta \tilde{\boldsymbol{A}})^{-1} \cdot \boldsymbol{1} = \frac{(1 - \boldsymbol{\lambda})}{\alpha_k \theta}$$
 (2)

where $J[\cdot]$ is a diagonal matrix with $u'(b_i)$ as the nonzero entries, Γ is an $n \times n$ square matrix such that every element of Γ is γ , I denotes the identity matrix, $\mathbf{1}$ denotes an n-vector of 1s, λ is an n-vector of Lagrange multipliers, and \tilde{A} is a normalized weighted adjacency matrix. Note that by assumption on θ being sufficiently small, $(I - 2\theta \tilde{A})$ is guaranteed to be invertible, so the problem is well-defined.

Definition 1. Consider a realized graph \mathcal{G} and a corresponding adjacency matrix \mathbf{A} such that for all $i, j \in \mathcal{V}$, $A_{ij} = 1$ if $j \in \mathcal{T}_i(\mathcal{G})$ and $A_{ij} = 0$ otherwise. Then, the **normalized** weighted adjacency matrix $\tilde{\mathbf{A}}$ is given by, for all $i, j \in \mathcal{V}$, 12

$$\tilde{A}_{ij} = \frac{w_{ij}A_{ij}}{\sum_{m \in \mathcal{V}} w_{im}A_{im}}.$$

¹¹See Appendix A for derivation.

¹²Note that since all weights are strictly positive, the assumption that \mathcal{G} is connected implies that the normalized weighted graph is strongly connected.

- (a) Example of a realized graph
- (b) Induced weighted directed graph

 $\overline{2w_H} + 2w_L$

 $w_H + w_L$

Figure 1: An example of a realized (undirected) network with n=5 and group labels $\ell_1=\ell_2=1$ and $\ell_3=\ell_4=\ell_5=2$ and the corresponding induced weighted directed network. In the weighted directed graph, thicker arrows indicate stronger influence, with $w_{ij}=w_H$ if $\ell_i=\ell_j$, $w_{ij}=w_L$ otherwise, and naturally $w_H>w_L$.

By employing the normalized weighted adjacency matrix, we can account for several important features of social interaction. First, a voter i may be more influenced by one social tie than another. Second, it will be more difficult to influence a highly connected voter than a relatively disconnected one, e.g., an incremental change in the probability that i's neighbor j votes for candidate 1 will have less of an effect on i's vote probability if i has hundreds of neighbors than if j is i's only neighbor.

From the candidates' problem in equation (4), we can recover the equilibrium bribe that voter i receives from candidate k,

$$b_{ik} = \left[u'\right]^{-1} \left(\gamma n + \frac{1}{\alpha_k \theta c_i(\boldsymbol{w}, \theta; \boldsymbol{\mathcal{G}})}\right), \tag{3}$$

where $c_i(\cdot)$, defined as the *i*th element of \boldsymbol{c} and $\boldsymbol{c} = (\boldsymbol{I} - 2\theta \tilde{\boldsymbol{A}})^{-1} \cdot \boldsymbol{1}$ is our measure of centrality. This measure is the Katz-Bonacich centrality on the weighted directed network corresponding to $\tilde{\boldsymbol{A}}$ with attenuation parameter 2θ . The nature of the strategic environment—specifically, the structure of social influence—can therefore be thought of as inducing a latent directed network with connections corresponding to the influence of i on j, which is decreasing in j's weighted degree and greatest when $\ell_i = \ell_j$. The value of a voter to a candidate is thus

proportional to their centrality on this latent network, which captures the weighted sum of directed walks of any length that include that voter.

By taking derivatives of the equilibrium bribes defined by equation (3), it is clear that equilibrium transfers offered by candidate k are weakly decreasing in γ and n, while they are weakly increasing in α_k and θ . These results are intuitively consistent with the basic strategic environment: the socially optimal bribes to voters would correspond to a transfer scheme such that the marginal value is equated with γ , but candidates provide additional transfers as a result of the network spillovers. The value of these spillovers is moderated by α_k —that is, more office-motivated candidates place higher value on the additional increase to expected vote share—and by θ , which determines the likelihood of their realization. Finally, it is also clear that transfers are decreasing in the number of voters, as scarce resources must be allocated across more individuals. However, this does not imply that vote buying necessarily becomes ineffective as the number of voters grows: the increase in n can be offset by a decrease in γ , which governs the efficiency of public good provision. Whether vote buying becomes ineffective in large societies therefore depends on the economies of scale in public good provision.

It is also of note that, if both candidates have identical degrees of office motivation (i.e., $\alpha_1 = \alpha_2 = \alpha$), then they will also choose the same transfer profile in equilibrium. This can be thought of as an analogue to the Median Voter Theorem for spatial models of competition (Downs 1957); it is optimal for both candidates to respond by extending offers to the most valuable voters, who are determined completely by their network positions. A further implication is then that vote buying only influences aggregate electoral outcomes if candidates diverge in their motivations or resources. When candidates are perfectly symmetric, their offers perfectly offset one another, so that voting decisions are determined entirely by ex ante preferences.

In this setting, it is straightforward to see why this might not hold true: for instance, if voters respond differently to offers from candidates belonging to their own group, then

incentives for in-group favoritism will exist. In a later section of the paper, we will take up the role played by heterogeneous information in this regard, while Appendix C considers the case when information and network structure are correlated.

To study the dependence of equilibrium strategy on social structure, we now transition to considering the underlying generating model that gave rise to the observed network.

Social Structure

This section studies the role of social structure and provides the main results of this paper. In particular, we employ tools from random graph theory to derive closed-form expressions for the centrality of voters in each group, yielding results in terms of the main features of social structure: group fractionalization, density, and homophily. These techniques¹³ allow us to consider centrality on the average graph only, permitting analysis of comparative statics explicitly in terms of social structure—that is, the underlying parameters that govern the social network generative process—rather than of a single realized graph.

While the resulting statements relate to expectations and therefore need not apply to specific network realizations, Theorem 1 guarantees that they hold with probability approaching one in large networks under moderate assumptions.¹⁴ These results, therefore, allow us to make empirically applicable predictions about how large societies behave that permit systematic comparison across space and time based on underlying commonalities, without needing to observe the complete centrality vector for every case of interest.

While a potential concern is that the observed network's properties have a higher probability of deviating dramatically from its expectation in small, isolated settlements of only a few hundred residents, this issue is mitigated by empirical work that has shown vote buying is also prevalent in urban and semi-urban environments where our asymptotic approximations

¹³Which are technical in nature and therefore reserved for Appendix D.

¹⁴ Specifically, we require that the minimum expected degree grows at a rate greater than $\ln(n)$, an assumption generally borne out empirically (Eubank, Kumar, Marathe, Srinivasan, and Wang 2004).

are guaranteed to hold, such as major cities in Argentina (Brusco, Nazareno, and Stokes 2004; Stokes 2005).

We now formalize the concept of an average network in the context of our model, which can be conveniently represented through its average adjacency matrix.

Definition 2. The average normalized weighted adjacency matrix \tilde{A} is given by, for all $i, j \in V$,

$$\bar{\tilde{A}}_{ij} = \frac{w_{ij}p_{ij}}{\sum_{m \in \mathcal{V}} w_{im}p_{im}}.$$

For the following results, we assume that the graph is drawn according to a two-group stochastic block model with share $s \geq \frac{1}{2}$ of group 1, a probability p_H of intra-group connection, and a probability $p_L \leq p_H$ of inter-group connection.¹⁵ That is, voters are assumed to be endowed with group membership ex ante and each possible dyad forms a tie independently and randomly with a probability that depends only on whether its members belong to the same group.

Although a simplification of real network formation dynamics, stochastic block models have been consistently shown to perform well in approximating real social networks, especially with regard to community structure and local clustering (Ghasemian, Hosseinmardi, and Clauset 2019; Vaca-Ramírez and Peixoto 2022). Importantly for the present application, moreover, they provide a simple and transparent parameterization of two key features of social networks – the baseline propensity to form ties, and the degree of in-group preference – which permits direct consideration of the role of structural features of interest without the introduction of extraneous parameters. Further, assume for simplicity that $w_{ij} = w_H$ for ingroup voters and $w_{ij} = w_L$ for out-group voters, with the natural assumption that $w_H \geq w_L$. Finally, we denote by $\delta \in (0,1)$ the ratio $\frac{w_L p_L}{w_H p_H}$, which thus captures the degree of homophily on the network (lower δ corresponds to more homophily).

Denoting $w_L p_L$ as \tilde{p}_L for simplicity (since weights and probabilities do not have separable

¹⁵ Notably, the parameter s captures all of the information provided by the Herfindahl-Hirschman index, which is a widely used empirical measure of concentration, especially in the literature on the political and economic consequences of ethnic diversity (Easterly and Levine 1997; Posner 2004).

effects on average), we can reparameterize the model by letting $\rho = \tilde{p}_H$ and hence $\tilde{p}_L = \delta \rho$, so that ρ captures the "baseline" propensity to form ties and δ reflects the extent of differential preference for in-group members. To see how these relate to network density, note that expected density is given approximately by $\rho (1 - 2s(1 - s)(1 - \delta))$ for large n.¹⁶ Here, the first term reflects the effect on density of a simple increase in connection probabilities, while the second reflects the attenuating impact of homophily as the degree of fractionalization changes, impacting the proportion of cross-group ties.

The main result, which draws on the asymptotic bounds on the average adjacency matrix derived in the previous section, allows us to obtain closed-form expressions for each voter's centrality that hold with high probability given large n. Define $\psi_{s,\delta} := s(1-s)(1-\delta) < 0$, implying that we can rewrite expected density as $\rho(1-2\psi_{s,\delta})$, so that $\psi_{s,\delta}$ captures the attenuating impact of fractionalization and homophily on density. Then we can state the following proposition.

Proposition 1 (Expected Centrality). Suppose that the assumptions of Theorem 1 hold, and consider a sequence of random graphs \mathcal{G}_n drawn from a stochastic block model. Then the centrality of a voter in party 1 and 2 is asymptotically equivalent to

$$c_1 = \frac{(1-s)(\delta - \psi_{s,\delta}(\delta(1+\theta) - 1 + \theta))}{sn((1-s)\delta + \psi_{s,\delta})(s(\delta + \theta - 1) + 1 - \theta)}$$

and

$$c_2 = \frac{\delta - \psi_{s,\delta}(\delta(1+\theta) - 1 + \theta)}{n(s - 1 + \psi_{s,\delta})(s(\delta + \theta - 1) - \delta)},$$

respectively, with probability approaching 1 as $n \to \infty$.

The proof of this result is presented in Appendix D. Unlike realized networks, the expected network is necessarily complete, since all voters have positive probability of being connected to all others. Note that this need not apply to any specific realization, as all possible networks on n vertices are in the support of the generating model. Instead, the completeness

 $^{^{16}\}mathrm{See}$ Appendix A for derivation.

of the *expected* network (more precisely, the strict positivity of the matrix of tie formation probabilities) allows us to study how changes in generative parameters affect equilibrium strategies.¹⁷ While it remains possible that realized networks will be drawn in such a way that the equilibrium strategy differs from these expressions, Proposition 1 guarantees that this will occur with vanishing probability in sufficiently large societies.

An immediate conclusion that follows from Proposition 1 is that, while centrality is a function of group sizes, information, and homophily, expected density does not directly relate to equilibrium transfers. While changes in δ and s influence density via $\psi_{s,\delta}$, which in turn relates to centrality, a "pure" increase in density via ρ does not have any impact on expected centrality, holding these parameters constant. That is, a uniform increase in connection probabilities between all voters would not influence equilibrium bribes in any way. Although their shared dependence on homophily and group share may induce a correlation between network density and transfers, Proposition 1 implies that density per se should not be expected to have a direct causal impact. Despite the prominence of density in many informal accounts of network effects, then, our model suggests this need not be a major determinant of the efficacy of vote buying, further highlighting the value in formally considering network dependence.

Also of note is that $c_i \leq c_j$ when group i is larger than group j—i.e., each individual member of the minority group will always receive a higher equilibrium transfer than a member of the majority. Intuitively, this is driven by the fact that the influence of each member of the minority group increases as the group becomes smaller, making them more valuable to target.¹⁸

These centralities are smoothly differentiable functions of all parameters almost everywhere. It is then straightforward to examine how the total spending of candidates, as well as

¹⁷In particular, while the adjacency matrix can be arbitrarily large, it only contains four unique values that correspond to directed connections within and between each group. Since this generates the structure of a block matrix, it is therefore possible to derive an explicit formula for its inverse, which in turn determines the value of each voter's centrality.

¹⁸ Assuming any positive degree of homophily. In the case that $\delta = 1$, members of each group are, on average, interchangeable and thus receive identical expected transfers.

the level of between-group inequality, depends on these parameters. Let B denote the sum of bribes across all voters and Q denote the level of inequality, specifically $Q := (1 - b_1/b_2)^2$, which ranges from 0 (perfect equality) to positive infinity. It is worth noting that although this index approaches 1 as $b_2 \to \infty$ and ∞ as $b_1 \to \infty$, an increase in Q always signifies a move towards greater inequality, so that the following comparative statics have straightforward interpretation. Since $u(\cdot)$ is assumed to be concave with convex first derivative, it is sufficient to consider the total centrality rather than examining bribes directly. Then, we have the following result.

Proposition 2 (Total bribes). For all
$$\theta \leq 2 - \sqrt{2}$$
, $\frac{\partial B}{\partial \delta} > 0$, $\frac{\partial B}{\partial s} > 0$, and $\frac{\partial B}{\partial \theta} > 0$.

Since θ needs to be small for the solution to be well-defined, the condition for these results will always hold for large n. The effect of θ here is intuitive: better information increases the expected return on bribes. The other two results are nonobvious, however. The effect of δ is counterintuitive: an increase in δ (i.e., a decrease in homophily) increases total spending. While the mechanism for this is straightforward—higher δ corresponds to stronger "weak ties," raising the value of transfers to all voters—it is again at odds with many informal descriptions of dense networks that are argued to be particularly amenable to vote buying due to their high degree of homophily.

Moreover, while it might be expected that more unequal group sizes lead to increased expenditure on vote buying, the mechanism is somewhat surprising. Increasing the size of the majority group leads to a relative increase in the individual-level transfers offered to members of the *minority* group (see below), which more than compensates for the reduction in its size.

It is similarly straightforward to study the effect of network parameters on inequality by taking derivatives of the negative of the ratio of the two centralities.

Proposition 3 (Group size and inequality). Let Q denote the total inequality, or $Q = (1 - \frac{b_1}{b_2})^2$. Then $\frac{\partial Q}{\partial \theta} \geq 0$, with equality if $s = \frac{1}{2}$ or s = 1, and $\frac{\partial Q}{\partial s} > 0$ for all parameter values. Moreover, $\frac{\partial Q}{\partial \delta} < 0$ only if $\delta \geq \sqrt{1 - \theta}$, and is positive otherwise.

Once again, the effects of information and group size are intuitive, suggesting that better informed candidates in more demographically uneven societies will concentrate their resources more intensely in the groups that provide the highest return. As with total spending, however, the effects of homophily are surprising. While higher homophily (lower δ) can increase inequality, this only holds for networks that exhibit extremely low degrees of homophily (since by assumption θ must be small). Since group membership is the primary determinant of policy ideal points by construction and homophily based on political preferences is generally quite strong (Huber and Malhotra 2017), this is unlikely to occur in real societies. In contrast, at more empirically plausible levels of homophily, increasing the relative influence of voters on members of their own group actually decreases the overall inequality of transfers from candidates.

This result is especially remarkable given that Dasaratha (2020) arrives at the opposite conclusion regarding Katz-Bonacich centrality on an undirected and unweighted network. In fact, the key to understanding this result is the tradeoff faced by candidates between targeting highly-connected voters, who influence many others, and voters whose neighbors are not highly connected, since they are more easily influenced. In the extreme, as δ approaches 0, the greater value of transfers to members of the minority is completely offset by their disconnectedness from the majority, such that the equilibrium bribes approach equality.

Heterogeneous Information

A key feature of the model studied thus far is that both candidates have identical and completely homogeneous information about the preferences of all voters, modeled as a single commonly known value of θ . Among the competing candidates, homogeneous information unsurprisingly results in homogeneous behavior. Preference for one group over another is also driven mainly by group share, with candidates tending to favor the (marginally more valuable) minority regardless of their own affiliation. In practice, however, this is unlikely to

hold true. Empirical research has consistently emphasized the crucial intermediary role of brokers who possess superior knowledge about particular groups of voters, and in competitive settings informational asymmetries across candidates may account for divergent strategies (Stokes 2005; Stokes et al. 2013; Calvo and Murillo 2013; Fafchamps and Labonne 2017; Cruz, Labonne, and Querubin 2017).

In this section, we study the consequences of relaxing this assumption, allowing the precision of candidates' information to vary arbitrarily across candidates and voters. While it still holds true that members of the minority group receive higher average transfers unless the groups are approximately equal in size, the impact of fractionalization (relative group share) on total expenditure is now conditional on the relative information available about both groups, with increased fractionalization associated with higher transfers when the minority group behaves unpredictably. In addition, while homophily continues to depress total transfers, it has a highly contingent effect on inequality.

Equilibrium

We begin from the setup of the baseline model, with the distinction that the information held by candidate k about voter i's preferences is allowed to vary. In particular, voter i's net preference for candidate 1, ε_i , is now drawn from one of two uniform distributions with density parameter $\theta_i \in \{\underline{\theta}, \overline{\theta}\}$ with $\overline{\theta} > \underline{\theta}$. We can think of θ_i as voter i's private type, which is unknown to candidates.

While the candidates do not know which distribution voter i's net preference was drawn from, they have common priors and receive signals about each voter's type $m_i \in \{\underline{\theta}, \overline{\theta}\}$ such that $m_i = \theta_i$ with a probability (assumed greater than half) that depends on the voter-candidate pair. In other words, candidates receive informative signals about the preferences of voters and those signals may be more precise for some voters than for others. After receiving signals $\mathbf{m} = (m_1, \dots, m_n)$, candidates form posterior beliefs $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$ where $\mu_i = \Pr(\theta_i = \underline{\theta} | m_i)$ and distribute bribes accordingly.

The full derivation of equilibrium behavior under heterogeneous information is similar to the baseline case and can be found in A.3. Equilibrium bribes can now be expressed as

$$b_{ik} = [u']^{-1} \left(\gamma n + \frac{1}{\alpha_k \hat{\theta}_{ik} c_i(\boldsymbol{w}, \underline{\theta}, \overline{\theta}; \mathcal{G})} \right),$$

where the only difference from the previous section is that bribes rely not only on the centrality measure c_i , but also on candidate k's belief about voter i's type, $\hat{\theta}_{ik} := \mathbb{E}_{\mu}[\theta_i]$. Since each candidate's posteriors are equal to their priors in expectation, they will act according to their (common) priors on average. Therefore, it is necessarily true that $\mathbb{E}[\hat{\theta}_{i1}] = \mathbb{E}[\hat{\theta}_{i2}] = \hat{\theta}_i$ for each voter i.

Now, because one candidate may have more informative signals than the other, it no longer holds true that otherwise identical candidates will choose the same offers. For a given network, the candidate with more accurate signals will be more responsive to the realized voter types, which means they will have an advantage over their opponent in the sense that they can better anticipate whether they should spend more or less on specific voters. However, as long as each candidate has well-specified prior beliefs about voter types, then both candidates will spend the same amount on each voter on average.

Further, the baseline model's result on electoral outcomes continues to hold for any realization when candidates have the same quality of information. By introducing an informational advantage to one candidate, the better-informed candidate should be able to improve their electoral performance in expectation by more precisely allocating bribes to the voters with the greatest marginal return. Nonetheless, gains in electoral performance via vote buying remain orthogonal to group membership to the extent the informational structure is also orthogonal to group membership.

Comparative Statics

A natural question is how the information available to candidates relates to the structure of society. There are two main sources of variation in information: cross-group differences in the prior distribution of types and network-dependent variations in posterior information. In this section, we study the first type of variation analytically, while Appendix C examines the impact of network dependencies through simulations.

Variation in information may arise due to systematic differences between the two groups and thus affect both candidates symmetrically. For instance, if partisanship is stronger in one party than another, then candidates may view those associated with the "weaker" group as more likely to be swing voters, since knowing their group label—the only information visible to the candidate in the model—is less informative about their ultimate decision. Intuitively, the first-order effect of this variation is to reduce the value of transfers to members of the less predictable group, as they are associated with a lower marginal value in expectation. Nevertheless, it is unclear a priori how this affects the comparative statics derived in the homogeneous case, as the reduced value of members of this group also reduces the significance of all flow-on effects in the network.

We begin by assuming without loss of generality that $\hat{\theta}_1 < \hat{\theta}_2$. This may be interpreted as reflecting a difference in prior distributions across groups, affecting both candidates symmetrically. Applying the same approach as for the baseline model, ¹⁹ we can recover explicit expressions for centrality:

Proposition 4. For n sufficiently large, the centrality of a voter in group 1 and 2 is asymptotically equivalent to

$$c_1 = \frac{\delta\left(-\hat{\theta}_1 + \hat{\theta}_2 - 1\right) + (\delta - 1)s^2\left(\delta\hat{\theta}_1 + \delta + \hat{\theta}_2 - 1\right) - s\left(\delta^2(\hat{\theta}_1 + 1) - 2\delta(\hat{\theta}_1 - \hat{\theta}_2 + 1) - \hat{\theta}_2 + 1\right)}{ns((\delta - 1)s - \delta)(-\hat{\theta}_2 + s(\delta + \hat{\theta}_2 - 1) + 1)}$$

¹⁹See Supplemental Materials for details and code.

and

$$c_2 = \frac{\delta - \left((\delta - 1)s^2 (\delta \hat{\theta}_2 + \delta + \hat{\theta}_1 - 1) \right) + s \left(\delta^2 (\hat{\theta}_2 + 1) - 2\delta - \hat{\theta}_1 + 1 \right)}{n(s - 1)((\delta - 1)s + 1)(s(\delta + \hat{\theta}_1 - 1) - \delta)},$$

respectively, with probability approaching 1.

Due to the greater complexity of these expressions, it is no longer feasible to provide explicit characterizations for the main comparative statics—in most cases, the sign of the relevant derivatives depends nonlinearly on the four parameters s, δ , $\hat{\theta}_1$, and $\hat{\theta}_2$. In this section, we therefore adopt the approach of evaluating each derivative at a fine grid of points in $(s, \delta, \hat{\theta}_1)$ space, holding $\hat{\theta}_2$ constant at a range of values, assuming without loss of generality that $\hat{\theta}_1 < \hat{\theta}_2$. In Figures 2, 3, and 4, we show the regions over which the main quantities of interest take positive and negative values assuming a moderate value $\hat{\theta}_2 = \frac{3}{4}$, while corresponding figures for other values of $\hat{\theta}_2$ can be found in Appendix B.

Unlike in the constant-information case, changes in parameters no longer have uniform effects. In particular, it is now possible for members of majority groups to have greater centrality on average, as shown in Figure 2. This kind of "flipping" only occurs when the groups are of approximately equal size—even with values of $\hat{\theta}_1$ and $\hat{\theta}_2$ arbitrarily close to 0 and 1, respectively, members of the minority group always receive more whenever |s-0.5|>0.04. However, it does serve to highlight the key difference from the baseline model: the greater marginal value of transfers to one group compared to the other, driven by prior type distribution, creates a countervailing influence whereby connections to the more predictable group become more valuable, regardless of group size. This effect is exactly reflected in Figure 4a, as changes in group size towards (away from) equality may now increase (decrease) inequality when the level of fractionalization is sufficiently close to 0.

Another clear illustration of this change from the baseline result can be seen in Figure 3a, which shows the effect of an increase in the size of group 1 on total expenditure. Whereas under homogeneous information an increase in the size of the majority group (greater fractionalization) always increases expenditures (see Proposition 2), this need not necessarily be

Figure 2: Relative size of expected centralities c_1 and c_2 as a function of s, δ , and $\hat{\theta}_1$ with $\hat{\theta}_2 = 0.75$. Note that the boundary at $s \approx 0.5$ is not a flat plane: for s sufficiently close to 0.5, there exist parameter values such that $c_1 \leq c_2$.

the case when information varies by group. In particular, when the less predictable (lower $\hat{\theta}_{\ell}$) group is in the minority, an increase in its size (reduction in fractionalization) can now lead to an increase in total expenditure, provided that its average posterior is sufficiently low. This is driven by a relatively higher rate of substitution into transfers to the majority group: as group sizes approach equality, members of the majority become relatively more valuable, while the increased number of cross-group ties offsets the reduction in transfers to the minority.

Finally, we consider the effect of a decrease in the level of homophily in the network (increase in δ), shown in Figures 3b and 4b. As in the baseline model, decreasing levels of homophily are uniformly associated with increases in expenditure unless at least one $\hat{\theta}_{\ell}$ is close to 1 and fractionalization is high. In other words, for an increase in homophily to be associated with an increase in spending, it is necessary that the corresponding relative decrease in cross-group ties actually be associated with an *increase* in the value of transfers to at least one group. Intuitively, this relies on two conditions: (1) the proportion of possible

Figure 3: Effects of changes in social structure on total transfers given heterogeneous information by group with $\hat{\theta}_2 = 0.75$. A positive change in δ corresponds to a reduction in homophily, so that Panel (b) should be interpreted as showing that, for most parameter combinations, greater homophily leads to a reduction in transfers.

cross-group ties is sufficiently low that a marginal reduction in their probability does not have too large an effect and (2) the members of at least one group have sufficiently high $\hat{\theta}_{\ell}$ and are sufficiently numerous that, on average, ties within that group are more valuable than cross-group ties.

The relationship between homophily and inequality, shown in Figure 4b, is highly contingent. Similarly to the baseline model, when the less-predictable group (here, group 1) is in the majority, increases in homophily are generally associated with decreases in inequality, except when δ and $\hat{\theta}_1$ are both close to 1, corresponding to high predictability and low homophily. In this region, low-level increases in homophily have the effect of further increasing c_2 and decreasing c_1 , exacerbating the existing inequality by weakening the equalizing effect of cross-group ties.

By contrast, when group 1 is the minority (and receiving higher average transfers), it is now possible for increases in homophily to cause increases in inequality even at low values of δ

Figure 4: Effects of changes in social structure on group inequality given heterogeneous information by group with $\hat{\theta}_2 = 0.75$. A positive change in δ corresponds to a reduction in homophily. Also note that the boundary at $s \approx 0.5$ in Panel (a) is not a flat plane: for s sufficiently close to 0.5, there exist parameter values such that $\frac{\partial Q}{\partial s} \leq 0$.

and $\hat{\theta}_1$. While increased homophily may increase c_1 if s is sufficiently close to 0 and δ to 1, for most parameter combinations increases in homophily decrease both c_1 and c_2 due to the loss of cross-group ties. However, when group 1 members are unpredictable compared to group 2 members, the net effect is to decrease c_2 by more than c_1 , as members of the majority lose more total influence than do members of the minority. There are many parameter combinations that generate this effect, however, indicating that when the smaller group is also the less predictable electorally, the effects of homophily on inequality of transfers are generally ambiguous.

Discussion

In this article, we provide a formal model of elections in which candidates may offer private transfers to policy-motivated voters connected on a social network, where each voter has a politically salient group identity and transfers come at the expense of a public good. The incorporation of network effects raises the marginal value of transfers to each voter, resulting in diversion of public resources that may greatly exceed the amount voters would prefer absent social pressure. Candidates prefer to make offers to voters who are connected to many easily-influenced neighbors, not simply to those with high degrees.

Our analytical framework allows us to overcome a major limitation of many network models: the need to begin by taking a highly complex discrete graph structure as granted. By employing techniques from spectral random graph theory to study the role of social structure, we are able to explicitly characterize expected equilibrium strategies, which almost surely approximate behavior in large societies. Further, our approach allows us to derive sharp comparative statics from which we can systematically compare variation in outcomes across societies based on stable underlying features of the social environment, without needing to observe a complete network in each case of interest.

Particularly noteworthy are our findings regarding network density and homophily. Contrary to arguments frequently found in the literature, density of ties relates to the level of group inequality and total spending only indirectly, through its association with inter-group interactions or candidate information. Homophily, meanwhile, actually decreases both for most plausible parameter values. Similarly, in line with recent reevaluations of the ethnic diversity-public good provision connection (Singh and Vom Hau 2016), we find that candidates actually face the strongest incentive to siphon public resources for targeted inducements under low fractionalization with high levels of social integration. Another implication of the model is that candidates will tend to disproportionately target minority group members regardless of their own group affiliation, although this incentive can be offset by a systematic informational advantage with respect to in-group members.

When candidates have heterogeneous information about voters, fractionalization can promote vote buying strategies when not much is known about minorities but reduces inequality in almost all contexts. Homophily, on the other hand, typically reduces the extent of vote buying but has a highly nonlinear relationship with the degree of inequality among groups.

A more general contribution of the varied information section is its implications for the dilemma of targeting "swing" versus "core" voters (Calvo and Murillo 2004; Stokes 2005). Here, swing voters are not necessarily those who are close to indifference, but instead those who have high variance in their random preference shock (i.e., $\theta_i = \overline{\theta}$). From the candidate's perspective, in other words, a strategically significant feature of swing voters is that their behavior on election day is difficult to predict, whether due to inherent features of the voters themselves (such as limited interest in politics) or a lack of knowledge by the candidate.

This perspective becomes particularly relevant when considering the role of the network, as when the type distribution correlates with observable group characteristics, swing voters may not only be high types themselves, but also connected to many other high types. Our model therefore indicates that a previously overlooked tradeoff for candidates engaging in vote buying is the extent to which they can be certain of positive spillovers from targeting specific social groups. These findings suggest that the social position of swing voters should also be considered; targeted redistribution may not only rely on individual characteristics, but also the way voters are embedded in society.

The somewhat surprising result that, holding all else constant, an increase in the number of ties in the network does not alter the optimal strategy comes directly from the tradeoff candidates face between seeking out the best-connected voters and those that have the
greatest influence over others, i.e., those that are connected to many isolated voters. A
counterfactual increase in density in a given society—that is, a symmetric increase in the
connection probabilities of all voters—will not affect centrality (and hence transfers) since
the increased number of connections is exactly offset by the reduction in the influence of
each individual tie. This remains true even when accounting for diverging quality of candidate information, unless information structures are directly reliant on the underlying social
network. The significance of this finding is that density in itself does not necessarily matter
for the reasons it is frequently assumed to. Simply adding more ties to a network does not
in itself have an effect on strategic behavior unless accompanied by a change in the strength

of those ties.

These results have direct implications for vote buying in a variety of political settings. For instance, we predict the most intense vote buying to occur in social contexts with a large majority and small minority but with relatively low levels of social segregation. At the same time, members of the minority group are likely to benefit disproportionately from vote buying, especially when candidates are well-informed about voter preferences. In the absence of strong in-group preferences, this will tend to occur regardless of the group affiliation of those dispensing resources and may lead to targeting voters that *ex ante* prefer the opposition.

While a lack of fine-grained comparative data on social network structure in locations where vote buying occurs makes it difficult to evaluate many of these predictions directly, the main observable implications of our model are borne out by the empirical literature. In Romania, for instance, vote buying tends to be particularly prevalent in areas with a large Romanian majority and small minority of moderately integrated Roma, but to a much lesser degree in areas with concentrated and isolated Hungarian minorities (Mares and Young 2019). Similarly, vote buying in contexts as diverse as Ukraine (Schlegel 2021) and Kenya (Gutiérrez-Romero 2014) tends to be organized around identifiable ethnic groups, with candidates targeting minorities, even out-groups.

Perhaps the most important implication of these findings is that empirical work on vote buying—and clientelism more broadly—ignores the role of social structure at its own peril. While it is now well-established that network position affects individual targeting, variations in meso- and macro-level features of social networks, especially homophily and information structures, strongly shape the strategic environment for would-be vote buyers. Moreover, we suggest that density of ties should neither be assumed a defining feature of ethnic groups nor a strategically relevant variable, further demonstrating the value of explicitly modeling network dependence.

References

- Alesina, Alberto, Arnaud Devleeschauwer, William Easterly, Sergio Kurlat, and Romain Wacziarg. 2003. "Fractionalization." *Journal of Economic growth* 8(2):155–194.
- Alesina, Alberto, Reza Baqir, and William Easterly. 1999. "Public goods and ethnic divisions." The Quarterly Journal of Economics 114(4):1243–1284.
- Auerbach, Adam Michael. 2019. Demanding development: The politics of public goods provision in India's urban slums. Cambridge University Press.
- Baldwin, Kate, and John D Huber. 2010. "Economic versus cultural differences: Forms of ethnic diversity and public goods provision." *American Political Science Review* 104(4):644–662.
- Ballester, Coralio, Antoni Calvó-Armengol, and Yves Zenou. 2006. "Who's who in networks. Wanted: The key player." *Econometrica* 74(5):1403–1417.
- Banks, Jeffrey S. 2000. "Buying supermajorities in finite legislatures." *American Political Science Review* 94(3):677–681.
- Battaglini, Marco, and Eleonora Patacchini. 2018. "Influencing connected legislators." *Journal of Political Economy* 126(6):2277–2322.
- Bonacich, Phillip. 1987. "Power and centrality: A family of measures." *American Journal of Sociology* 92(5):1170–1182.
- Brusco, Valeria, Marcelo Nazareno, and Susan C Stokes. 2004. "Vote buying in Argentina." Latin American research review pp. 66–88.
- Calvó-Armengol, Antoni, Eleonora Patacchini, and Yves Zenou. 2009. "Peer effects and social networks in education." *The Review of Economic Studies* 76(4):1239–1267.

- Calvo, Ernesto, and Maria Victoria Murillo. 2004. "Who delivers? Partisan clients in the Argentine electoral market." *American Journal of Political Science* 48(4):742–757.
- Calvo, Ernesto, and Maria Victoria Murillo. 2013. "When parties meet voters: Assessing political linkages through partisan networks and distributive expectations in Argentina and Chile." Comparative Political Studies 46(7):851–882.
- Chandra, Kanchan. 2007. Why ethnic parties succeed: Patronage and ethnic head counts in India. Cambridge University Press.
- Chung, Fan, and Mary Radcliffe. 2011. "On the spectra of general random graphs." *The Electronic Journal of Combinatorics* pp. P215–P215.
- Chung, Fan RK, and Fan Chung Graham. 1997. Spectral graph theory. Number 92 American Mathematical Soc.
- Cruz, Cesi. 2019. "Social networks and the targeting of vote buying." Comparative Political Studies 52(3):382–411.
- Cruz, Cesi, Julien Labonne, and Pablo Querubin. 2017. "Politician family networks and electoral outcomes: Evidence from the Philippines." *American Economic Review* 107(10):3006–37.
- Dal Bó, Ernesto. 2007. "Bribing voters." American Journal of Political Science 51(4):789–803.
- Dasaratha, Krishna. 2020. "Distributions of centrality on networks." Games and Economic Behavior 122:1–27.
- Dekel, Eddie, Matthew O Jackson, and Asher Wolinsky. 2008. "Vote buying: General elections." *Journal of Political Economy* 116(2):351–380.
- Downs, Anthony. 1957. "An economic theory of political action in a democracy." *Journal of political economy* 65(2):135–150.

- Easterly, William, and Ross Levine. 1997. "Africa's growth tragedy: policies and ethnic divisions." The quarterly journal of economics pp. 1203–1250.
- Eubank, Stephen, VS Anil Kumar, Madhav V Marathe, Aravind Srinivasan, and Nan Wang. 2004. Structural and algorithmic aspects of massive social networks. In *Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms*. pp. 718–727.
- Fafchamps, Marcel, Ana Vaz, and Pedro C Vicente. 2020. "Voting and peer effects: Experimental evidence from Mozambique." *Economic Development and Cultural Change* 68(2):567–605.
- Fafchamps, Marcel, and Julien Labonne. 2017. "Do politicians' relatives get better jobs? evidence from municipal elections." *The Journal of Law, Economics, and Organization* 33(2):268–300.
- Fafchamps, Marcel, and Julien Labonne. 2020. "Family networks and distributive politics." Journal of the European Economic Association 18(4):1697–1725.
- Fearon, James D, and David D Laitin. 1996. "Explaining interethnic cooperation." American Political Science Review 90(4):715–735.
- Finan, Frederico, and Laura Schechter. 2012. "Vote-buying and reciprocity." *Econometrica* 80(2):863–881.
- Franck, Raphael, and Ilia Rainer. 2012. "Does the leader's ethnicity matter? Ethnic favoritism, education, and health in sub-Saharan Africa." *American Political Science Review* 106(2):294–325.
- Frye, Timothy, Ora John Reuter, and David Szakonyi. 2019. "Vote brokers, clientelist appeals, and voter turnout: Evidence from Russia and Venezuela." World Politics 71(4):710–746.

- Gans-Morse, Jordan, Sebastian Mazzuca, and Simeon Nichter. 2014. "Varieties of clientelism: Machine politics during elections." *American Journal of Political Science* 58(2):415–432.
- Ghasemian, Amir, Homa Hosseinmardi, and Aaron Clauset. 2019. "Evaluating overfit and underfit in models of network community structure." *IEEE Transactions on Knowledge and Data Engineering* 32(9):1722–1735.
- Groseclose, Tim, and James M Snyder. 1996. "Buying supermajorities." American Political Science Review 90(2):303–315.
- Gutiérrez-Romero, Roxana. 2014. "An inquiry into the use of illegal electoral practices and effects of political violence and vote-buying." *Journal of Conflict Resolution* 58(8):1500–1527.
- Habyarimana, James, Macartan Humphreys, Daniel N Posner, and Jeremy M Weinstein. 2007. "Why does ethnic diversity undermine public goods provision?" American Political Science Review 101(4):709–725.
- Hicken, Allen. 2011. "Clientelism." Annual review of political science 14:289–310.
- Holland, Alisha C, and Brian Palmer-Rubin. 2015. "Beyond the machine: Clientelist brokers and interest organizations in Latin America." *Comparative Political Studies* 48(9):1186–1223.
- Huber, Gregory A, and Neil Malhotra. 2017. "Political homophily in social relationships: Evidence from online dating behavior." *The Journal of Politics* 79(1):269–283.
- Jackson, Matthew O. 2008. Average distance, diameter, and clustering in social networks with homophily. In *International Workshop on Internet and Network Economics*. Springer pp. 4–11.
- Jackson, Matthew O. 2010. Social and economic networks. Princeton university press.

- Katz, Leo. 1953. "A new status index derived from sociometric analysis." *Psychometrika* 18(1):39–43.
- Keefer, Philip, and Razvan Vlaicu. 2017. "Vote buying and campaign promises." *Journal of Comparative Economics* 45(4):773–792.
- Kramon, Eric. 2016a. "Electoral handouts as information: Explaining unmonitored vote buying." World Politics 68(3):454–498.
- Kramon, Eric. 2016b. "Where is vote buying effective? Evidence from a list experiment in Kenya." *Electoral Studies* 44:397–408.
- Larson, Jennifer M. 2017. "Networks and interethnic cooperation." *The Journal of Politics* 79(2):546–559.
- Larson, Jennifer M, and Janet I Lewis. 2017. "Ethnic networks." American Journal of Political Science 61(2):350–364.
- Lizzeri, Alessandro, and Nicola Persico. 2001. "The provision of public goods under alternative electoral incentives." *American Economic Review* 91(1):225–239.
- Mares, Isabela, and Lauren E Young. 2019. Conditionality & Coercion: Electoral Clientelism in Eastern Europe. Oxford University Press.
- Miguel, Edward, and Mary Kay Gugerty. 2005. "Ethnic diversity, social sanctions, and public goods in Kenya." *Journal of Public Economics* 89(11-12):2325–2368.
- Mostagir, Mohamed, Asuman Ozdaglar, and James Siderius. 2022. "When is society susceptible to manipulation?" *Management Science*.
- Mostagir, Mohamed, and James Siderius. 2021. "Centrality in stochastic networks." Working paper.

- Posner, Daniel N. 2004. "Measuring ethnic fractionalization in Africa." American journal of political science 48(4):849–863.
- Ravanilla, Nico, Dotan Haim, and Allen Hicken. 2022. "Brokers, social networks, reciprocity, and clientelism." *American Journal of Political Science* 66(4):795–812.
- Reuter, Ora John, and Graeme B Robertson. 2012. "Subnational appointments in authoritarian regimes: Evidence from Russian gubernatorial appointments." *The Journal of Politics* 74(4):1023–1037.
- Rueda, Miguel R. 2015. "Buying votes with imperfect local knowledge and a secret ballot."

 Journal of Theoretical Politics 27(3):428–456.
- Schaffer, Frederic Charles. 2007. Elections for sale: The causes and consequences of vote buying. Lynne Rienner Publishers Boulder, CO.
- Schlegel, Simon. 2021. "Identity Politics as Pretext and Prediction: Vote-Buying and Group Boundaries in Ukraine." *Demokratizatsiya: The Journal of Post-Soviet Democratization* 29(2):113–133.
- Singh, Prerna, and Matthias Vom Hau. 2016. "Ethnicity in time: Politics, history, and the relationship between ethnic diversity and public goods provision." Comparative Political Studies 49(10):1303–1340.
- Stokes, Susan C. 2005. "Perverse accountability: A formal model of machine politics with evidence from Argentina." *American Political Science Review* 99(3):315–325.
- Stokes, Susan C, Thad Dunning, Marcelo Nazareno, and Valeria Brusco. 2013. *Brokers, voters, and clientelism: The puzzle of distributive politics*. Cambridge University Press.
- Vaca-Ramírez, Felipe, and Tiago P Peixoto. 2022. "Systematic assessment of the quality of fit of the stochastic block model for empirical networks." *Physical Review E* 105(5):054311.

Online Appendix for "Some for the Price of One: Vote Buying on a Network"

Contents

A	Additional Model Details	37
	A.1 Assumptions	37
	A.2 Equilibrium Derivation of the Baseline Model	38
	A.3 Equilibrium Derivation with Heterogeneous Information	39
	A.4 Derivation of Expected Density	42
В	Additional Tables and Figures	43
	$\partial B/\partial s$	43
	$\partial B/\partial \delta$	44
	$\partial B/\partial E[\theta]$	44
	$\partial Q/\partial s$	45
	$\partial Q/\partial \delta$	46
	$\partial Q/\partial E[\theta_1]$	47
	$\partial Q/\partial E[\theta_2]$	48
С	Network-Dependent Information	49
D	Supplementary Propositions and Proofs	53
	Lemma 1	53
	Proof of Lemma 1	53
	Lemma 2 (Chung and Radcliffe (2011))	55
	Theorem 1	56
	Proof of Theorem 1	56

Proof of Proposition 1	59
Proof of Proposition 2	62
Proof of Proposition 3	62
Proof of Proposition 4	62
Lemma 3	62
Proof of Lemma 3	63
Lemma 4	64
Proof of Lemma 4	65

A Additional Model Details

A.1 Assumptions

In order for the solution to be well-defined, we must make two assumptions.

Assumption 1.
$$\max_{b_k} \theta\left(u(b_{ik}) + 1 - \gamma \sum_i b_{ik}\right) < \frac{1}{2} \text{ for all } k.$$

First, we assume all voters have an interior probability of voting for either candidate for any transfer profile. Specifically, suppose that i is connected to all other voters on the network and that all such voters have probability 1 of voting for the candidate. Our assumptions on $u(\cdot)$ ensure that this is well-defined and is thus equivalent to a condition that θ is sufficiently small.

Assumption 2. $I - 2\theta \tilde{A}$ is invertible.

Second, we require that the matrix $I - 2\theta \tilde{A}$ is invertible (see Battaglini and Patacchini (2018) for further discussion of this issue), which is likewise equivalent to assuming that θ is smaller than $\frac{1}{2\lambda_1}$, where λ_1 is the largest eigenvalue of the matrix \tilde{A} (Ballester, Calvó-Armengol, and Zenou 2006), which is guaranteed by normalization to be at most 1. We thus have as a sufficient condition that $\theta \leq \frac{1}{2}$.

A.2 Equilibrium Derivation of the Baseline Model

A voter will cast a ballot for candidate 1 if and only if $U_i(1) \geq U_i(2)$. Here, candidates will not be able to perfectly anticipate voting behavior due to their imperfect information over voter preferences. Using equation (1), we can rewrite this as a condition on the size of the valence shock,

$$\varepsilon_i \le (-1)^{x_i-1} + u(b_{i1}) - u(b_{i2}) + \frac{\sum_{j \in \mathcal{T}_i(\mathcal{G})} w_{ij} (2\phi_j - 1)}{\sum_{j \in \mathcal{T}_i(\mathcal{G})} w_{ij}} + \gamma \sum_{m \in \mathcal{V}} (b_{m2} - b_{m1}),$$

where we have denoted $\phi_i := \phi_{i1}(\boldsymbol{b}) = 1 - \phi_{i2}(\boldsymbol{b})$ the probability a voter i votes for candidate 1. Noting that $\varepsilon_i \sim \mathcal{U}\left[\frac{-1}{2\theta}, \frac{1}{2\theta}\right]$ implies $\Pr(\varepsilon_i \leq \varepsilon) = \frac{1}{2} + \theta \varepsilon$, we can correspondingly write each voter's probability for voting for candidate 1 (since θ is assumed to be sufficiently small that these probabilities are interior) as

$$\begin{pmatrix} \phi_1 \\ \vdots \\ \phi_n \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \theta \left((-1)^{x_1 - 1} + u(b_{11}) - u(b_{12}) + \frac{\sum_{j \in \mathcal{T}_1(\mathcal{G})} w_{1j}(2\phi_j - 1)}{\sum_{j \in \mathcal{T}_1(\mathcal{G})} w_{1j}} + \gamma \sum_{m \in \mathcal{V}} (b_{m2} - b_{m1}) \right) \\ \vdots \\ \frac{1}{2} + \theta \left((-1)^{x_n - 1} + u(b_{n1}) - u(b_{n2}) + \frac{\sum_{j \in \mathcal{T}_n(\mathcal{G})} w_{nj}(2\phi_j - 1)}{\sum_{j \in \mathcal{T}_n(\mathcal{G})} w_{nj}} + \gamma \sum_{m \in \mathcal{V}} (b_{m2} - b_{m1}) \right) \end{pmatrix}.$$

Here, ϕ gives the unique vector of vote probabilities given bribe profiles. While each voter's utility is subject only to their neighbor's vote probabilities, this system of equations necessarily implies that a single voter's probability of supporting candidate 1 is a function of all other voter's probability of supporting 1. This occurs because, for example, a voter i's probability ϕ_i is affected by i's neighbor j's probability ϕ_j , which in turn is affected by j's neighbor m's probability ϕ_m . Since we rule out disconnected components, ϕ_i will both affect and be affected by all other voting probabilities throughout the entire network.

In equilibrium, each candidate chooses a vector of bribes that maximizes their utility,

taking the other candidate's bribes as given. This gives rise to the n first-order conditions,

$$\sum_{j=1}^{n} \frac{\partial \phi_j}{\partial b_{ik}} = \frac{1 - \lambda_{ik}}{\alpha_k}$$

where λ_i is the Lagrangian multiplier associated with voter *i*'s nonnegativity constraint (see Battaglini and Patacchini (2018) for an analogous derivation). Differentiating ϕ_i with respect to a bribe from candidate 1 to another voter h, we have

$$\frac{\partial \phi_i}{\partial b_{h1}} = \theta \left(u'(b_{h1}) \mathbb{1}(i=h) + \frac{2 \sum_{j \in \mathcal{T}_i(\mathcal{G})} w_{ij} \phi'_j}{\sum_{j \in \mathcal{T}_i(\mathcal{G})} w_{ij}} - \gamma \right).$$

Then we can rewrite the candidates' problem as

$$(\boldsymbol{J}[\boldsymbol{u}] - \boldsymbol{\Gamma})^{\top} \cdot (\boldsymbol{I} - 2\theta \tilde{\boldsymbol{A}})^{-1} \cdot \boldsymbol{1} = \frac{(1 - \boldsymbol{\lambda})}{\alpha_k \theta}$$
(4)

where $J[\cdot]$ is a diagonal matrix with $u'(b_i)$ as the nonzero entries, Γ is an $n \times n$ square matrix such that every element of Γ is γ , I denotes the identity matrix, $\mathbf{1}$ denotes an n-vector of 1s, λ is an n-vector of Lagrange multipliers, and \tilde{A} is a normalized weighted adjacency matrix. Note that by Assumption 2, $(I - 2\theta \tilde{A})$ is guaranteed to be invertible, so the problem is well-defined.

A.3 Equilibrium Derivation with Heterogeneous Information

We begin from the setup of the baseline model, with the distinction that the information held by candidate k about voter i's preferences is allowed to vary. In particular, voter i's net preference for candidate 1, ε_i , is now drawn from one of two uniform distributions with density parameter $\theta_i \in \{\underline{\theta}, \overline{\theta}\}$ with $\overline{\theta} > \underline{\theta}$. We can think of θ_i as voter i's private type, which is unknown to candidates.

While the candidates do not know which distribution voter i's net preference was drawn from, they have common priors and receive signals about each voter's type $m_i \in \{\underline{\theta}, \overline{\theta}\}$ such

that $m_i = \theta_i$ with a probability (assumed greater than half) that depends on the votercandidate pair. In other words, candidates receive informative signals about the preferences of voters and those signals may be more precise for some voters than for others. After receiving signals $\mathbf{m} = (m_1, \dots, m_n)$, candidates form posterior beliefs $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$ where $\mu_i = \Pr(\theta_i = \underline{\theta} | m_i)$ and distribute bribes accordingly.

Incorporating uncertainty over voter types, we can rewrite the candidates' problem as

$$\max_{\boldsymbol{b}_k} \ \alpha_k \sum_{i \in \mathcal{V}} \mathbb{E}_{\mu}[\phi_{ik}(\boldsymbol{b}_k, \boldsymbol{b}_{-k})] - \boldsymbol{b}_k \cdot \mathbf{1}$$

subject to $b_{ik} \geq 0$ for all i.

Exactly as before, we can write each voter's probability for voting for candidate 1 as a function of all other voter's probability for voting for candidate 1,

$$\begin{pmatrix} \phi_1 \\ \vdots \\ \phi_n \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \theta_1 \left(V_1(\boldsymbol{b}) + \frac{\sum_{j \in \mathcal{T}_1(\mathcal{G})} w_{1j} (2\phi_j - 1)}{\sum_{j \in \mathcal{T}_1(\mathcal{G})} w_{1j}} \right) \\ \vdots \\ \frac{1}{2} + \theta_n \left(V_n(\boldsymbol{b}) + \frac{\sum_{j \in \mathcal{T}_n(\mathcal{G})} w_{nj} (2\phi_j - 1)}{\sum_{j \in \mathcal{T}_n(\mathcal{G})} w_{nj}} \right), \end{pmatrix}$$

where we denote i's net preference for candidate 1 short of network effects by $V_i(\mathbf{b})$ for notational convenience so that

$$V_i(\mathbf{b}) := (-1)^{x_i-1} + u(b_{i1}) - u(b_{i2}) + \gamma \sum_{m \in \mathcal{V}} (b_{m2} - b_{m1}).$$

Unlike the baseline case, however, candidates maximize an expected utility that now relies on their posterior beliefs of voter types. In particular, we need to characterize the candidates' expected vote share conditional on their signals. Using the above equation, this can be expressed as

$$\mathbb{E}_{\mu}[\phi_i] = \frac{1}{2} + \mathbb{E}_{\mu}[\theta_i] V_i(\boldsymbol{b}) + \frac{\sum_{j \in \mathcal{T}_i(\mathcal{G})} w_{ij} (2\mathbb{E}_{\mu}[\theta_i \phi_j] - \mathbb{E}_{\mu}[\theta_i])}{\sum_{j \in \mathcal{T}_i(\mathcal{G})} w_{ij}}.$$

For the remainder of this section, we restrict all edge weights to $w_{ij} = 1$ for all $i, j \in \mathcal{V}$. This assumption is without loss of generality as Proposition 1 establishes that, on average for large n, it is only the ratio $\frac{w_L p_L}{w_H p_H}$ that determines outcomes. Hence, as long as tie formation probabilities can vary freely, edge weights have no independent effect in the expected network, which is our focus in this section.

First, note that $\mathbb{E}_{\mu}[\theta_i] = \overline{\theta} - \mu_i(\overline{\theta} - \underline{\theta})$. This can be thought of as the candidate's net "information" about voter i, taking into account both first-order uncertainty about i's vote choice and second-order uncertainty over her type. Second, by Lemmas 3 and 4 in the Appendix, we know that unilateral changes in a particular voter's type has a negligible influence on changes in other voter's vote probabilities as the network grows sufficiently large; i.e, $\phi_j(\cdot|\boldsymbol{\theta}:\theta_i=\underline{\theta})\approx\phi_j(\cdot|\boldsymbol{\theta}:\theta_i=\overline{\theta})$ for $i\neq j$ as $n\to\infty$. Hence we can conclude that, asymptotically, $\mathbb{E}_{\mu}[\theta_i\phi_j]=(\overline{\theta}-\mu_i(\overline{\theta}-\underline{\theta}))\mathbb{E}_{\mu}[\phi_j]$. This allows us to recover n first-order conditions,

$$\frac{\partial \mathbb{E}_{\mu}[\phi_i]}{\partial b_{h1}} = \left(\overline{\theta} - \mu_i(\overline{\theta} - \underline{\theta})\right) \left(u'(b_{h1})\mathbb{1}(i = h) + \frac{2\sum_{j \in \mathcal{T}_i(\mathcal{G})} w_{ij}[\mathbb{E}[\phi_j]]'}{\sum_{j \in \mathcal{T}_i(\mathcal{G})} w_{ij}} - \gamma\right).$$

Hence it follows as in the baseline model that the optimality condition

$$(\boldsymbol{J}[\boldsymbol{u}] - \boldsymbol{\Gamma})^{\top} \cdot (\boldsymbol{I} - 2\Theta \tilde{\boldsymbol{A}})^{-1} \cdot \boldsymbol{1} = \Theta^{-1} \cdot \frac{(1 - \boldsymbol{\lambda})}{\alpha_k},$$
 (5)

where $\Theta := \overline{\theta} \mathbf{I} - (\overline{\theta} - \underline{\theta}) \mathbf{M}$ and \mathbf{M} is an $n \times n$ diagonal matrix with posteriors μ_i as nonzero elements. Equilibrium bribes can therefore be explicitly expressed

$$b_{ik} = [u']^{-1} \left(\gamma n + \frac{1}{\alpha_k \hat{\theta}_{ik} c_i(\boldsymbol{w}, \underline{\theta}, \overline{\theta}; \mathcal{G})} \right),$$

where the only difference from the previous section is that equilibrium bribes to a voter i from a candidate k rely not only on their centrality measure c_i , now the ith element of $\mathbf{c} = (\mathbf{I} - 2\Theta\tilde{\mathbf{A}})^{-1} \cdot \mathbf{1}$, but also on candidate k's belief about voter i's type, $\hat{\theta}_{ik} := \mathbb{E}_{\mu}[\theta_i]$. By

the law of iterated expectations, since each candidate's posteriors are equal to their priors in expectation, they will act according to their (common) priors on average. Therefore, it is necessarily true that $\mathbb{E}[\hat{\theta}_{i1}] = \mathbb{E}[\hat{\theta}_{i2}] = \hat{\theta}_i$ for each voter i.

Now, because one candidate may have more informative signals than the other, it no longer holds true that otherwise identical candidates will choose the same offers. For a given network, the candidate with more accurate signals will be more responsive to the realized voter types, which means they will have an advantage over their opponent in the sense that they can better anticipate whether they should spend more or less on specific voters. However, as long as each candidate has well-specified prior beliefs about voter types, then both candidates will spend the same amount on each voter on average.

Further, the baseline model's result on electoral outcomes continues to hold for any realization when candidates have the same quality of information. By introducing an informational advantage to one candidate, the better-informed candidate should be able to improve their electoral performance in expectation by more precisely allocating bribes to the voters with the greatest marginal return. Nonetheless, gains in electoral performance via vote buying remain orthogonal to group membership to the extent the informational structure is also orthogonal to group membership.

A.4 Derivation of Expected Density

The expected density is the expected number of ties within and across each group out of the total number of possible ties on the network, i.e.

$$\frac{(n-1)(sn(sn-1)\tilde{p}_H + (1-s)n((1-s)n-1)\tilde{p}_H + 2s(1-s)n^2\tilde{p}_L)}{n}$$

Substituting for $\rho = \tilde{p}_H$ and $\delta \rho = \tilde{p}_L$, and observing that as $n \to \infty$, $\frac{n}{n-1} \approx 1$, we then have that

$$\frac{\rho}{n-1} (2ns(\delta - \delta s - 1 + s) + n - 1) \approx \rho (2s(1-s)(\delta - 1) + 1).$$

B Additional Tables and Figures

Figure 5: $\frac{\partial B}{\partial s}$ as a function of parameters for varying values of $\hat{\theta}_2$. The *x*-axis is *s*, the *y*-axis is θ_1 , and the *z*-axis is δ . Color shading is blue if $\frac{\partial B}{\partial s} > 0$ and red if $\frac{\partial B}{\partial s} \leq 0$.

Figure 6: $\frac{\partial B}{\partial \delta}$ as a function of parameters for varying values of $\hat{\theta}_2$. The *x*-axis is *s*, the *y*-axis is θ_1 , and the *z*-axis is δ . Color shading is blue if $\frac{\partial B}{\partial \delta} > 0$ and red if $\frac{\partial B}{\partial \delta} \leq 0$.

Figure 7: Derivatives of total transfers with respect to information as a function of parameters. The x-axis is s, the y-axis is θ_1 , and the z-axis is δ . These derivatives are always positive and do not depend on parameter choice.

Figure 8: $\frac{\partial Q}{\partial s}$ as a function of parameters for varying values of $\hat{\theta}_2$. The *x*-axis is *s*, the *y*-axis is θ_1 , and the *z*-axis is δ . Color shading is blue if $\frac{\partial Q}{\partial s} > 0$ and red if $\frac{\partial Q}{\partial s} \leq 0$.

Figure 9: $\frac{\partial Q}{\partial \delta}$ as a function of parameters for varying values of $\hat{\theta}_2$. The *x*-axis is *s*, the *y*-axis is θ_1 , and the *z*-axis is δ . Color shading is blue if $\frac{\partial Q}{\partial \delta} > 0$ and red if $\frac{\partial Q}{\partial \delta} \leq 0$.

Figure 10: $\frac{\partial Q}{\partial \hat{\theta}_1}$ as a function of parameters for varying values of $\hat{\theta}_2$. The *x*-axis is *s*, the *y*-axis is θ_1 , and the *z*-axis is δ . Color shading is blue if $\frac{\partial Q}{\partial \hat{\theta}_1} > 0$ and red if $\frac{\partial Q}{\partial \hat{\theta}_1} \leq 0$.

Figure 11: $\frac{\partial Q}{\partial \hat{\theta}_2}$ as a function of parameters for varying values of $\hat{\theta}_2$. The *x*-axis is *s*, the *y*-axis is θ_1 , and the *z*-axis is δ . Color shading is blue if $\frac{\partial Q}{\partial \hat{\theta}_2} > 0$ and red if $\frac{\partial Q}{\partial \hat{\theta}_2} \leq 0$.

C Network-Dependent Information

It is natural to think network dependence and candidate information are mutually reinforcing: social connections between brokers and voters are important precisely because they provide information about voter preferences, facilitating more accurate targeting (Finan and Schechter 2012; Stokes et al. 2013). In this section, we therefore consider a special case of the heterogeneous information model in which candidates' posterior beliefs about voter behavior depend on their position in the network.

We now place the candidates on the network and assume that a voter's type θ_i depends on their position on the network. If voters whose shortest-path distance from a candidate is lower have a higher probability that $\theta_i = \overline{\theta}$, then a systematic relationship will exist between i's probability of connecting with candidates p_{ik} and their average posterior information $\hat{\theta}_i$.²⁰

In contrast to previous results, density may have a direct effect, as increases in edge density will increase the likelihood of all voters being type $\bar{\theta}$ through a decrease in their expected distance from any candidate, which will directly affect candidates' posterior beliefs and the corresponding equilibrium bribes. Consequently, changes in density will now affect expected equilibrium behavior by changing the prior distribution of types. Although $\theta_i = \bar{\theta}$ symmetrically increases a voter's value to both candidates, equilibrium electoral outcomes may be affected if candidates enjoy systematically more precise information about socially proximate voters. In the two-candidate case, candidates will not only target their own close neighbors but also their opponent's, since both are associated with higher posteriors.

For this reason, we focus on the one-candidate case, which arises naturally in many applications. For example, vote brokers typically rely heavily on personal connections with voters, as the preferences of more socially distant voters are less legible, and only one agent typically makes offers in a given locality (Stokes et al. 2013; Holland and Palmer-Rubin 2015).

²⁰Since θ_i measures the predictability of a voter's behavior given their observable characteristics, it is plausible that voters who are more connected to political candidates will vote more consistently.

Figure 12: Average transfers from candidate 1 by group as a function of group 1's share (s), by homophily (δ) .

Figures 12 and 13 show the results of model simulations. Since the asymptotic results in the preceding section require independence between θ_i and p_{ij} , we take the approach of estimating $\mathbb{E}[b_i]$ on a finite network directly through 1,000 repeated draws of networks from the stochastic block model. For each combination of parameters, we calculate the average transfers to members of each group, $\bar{b}_{\ell} = \mathbb{E}[b_i|\ell_i]$, the overall inequality, $Q = |1 - \bar{b}_1/\bar{b}_2|$, and the total transfers $B = \sum_i b_i$ at each draw. Estimates are then calculated as the average across all draws, along with bootstrapped 95% percentile confidence intervals.

Since our focus is primarily on social structure, we repeat the process over a grid of values between 0 and 1 for each of $\delta = \frac{p_L}{p_H}$ and $s = \frac{n_1}{n}$, which govern homophily and fractionalization. To reduce the computational burden, the remaining parameters are held constant at moderate values of n = 200, $\alpha_1 = \alpha_2 = 1$, $\gamma = \frac{1}{400}$, $u(b) = 200 \ln(b)$, while we assume for simplicity that candidate k's information decays in social distance according to a power law, $\hat{\theta}_i = 2^{-d(i,k)}$.

Figure 13: Total transfers from candidate 1 as a function of group 1's share (s), by homophily (δ)

Figure 14: Inequality of average transfers from candidate 1 as a function of group 1's share (s), by homophily (δ)

As Figure 12 demonstrates, the introduction of network dependence in a one-candidate environment introduces a distinct element of in-group favoritism, consistent with empirical observations across a variety of settings. As might be expected, this favoritism is entirely driven by homophily: when δ is close to 1 (low homophily), the two groups receive almost identical amounts on average, with consistently large differences emerging only when homophily is quite extreme. Intuitively, preference for the candidate's own group members is driven by lower social distance on average, amplified by greater separation between the groups, which leads to higher confidence that bribes to them will lead to an increase in vote share. In contrast to the independent case, this tendency to favor in-groups completely outweighs the preference for minorities. While the relative size of the groups has little effect on average on transfers to out-group members, when homophily is large transfers to the in-group are sharply increasing in group size. Under homophily, an increase in the size of the in-group further decreases the expected shortest path distance, thus raising the value of transfers to all group members. As a consequence, this also tends to increase the level of inequality (Figure 14) as more funds are diverted to the candidate's in-group members.

As can be seen in Figure 13, however, this effect is insufficient to completely offset the overall loss in network spillovers induced by an increase in homophily. While, for a given value of δ , expenditure on private transfers is highest when $s \to 1$, driven by increases in in-group spending, it is also increasing in δ for all values of s. In fact, as s approaches 1, the probabilities converge to the same values as when $\delta = 1$, so that in either case the candidate is, on average, as close as possible to all voters.

When information depends on network structure in this way, therefore, we would expect the greatest diversion of funds from public to private goods in societies that are either perfectly homogeneous or have minimal levels of social segregation.

D Supplementary Propositions and Proofs

The following lemma allows us to make asymptotic statements that will hold with high probability and therefore justifies the analysis of the expected, rather than the realized, network in the context of large elections.

Lemma 1. Under the assumptions of Theorem 1, in addition to assuming that the minimum expected degree \underline{d}_n grows at a rate greater than $\ln(n)$ and that the expected Laplacian matrix has second-smallest eigenvalue bounded away from zero, for any $\epsilon > 0$, $\lim_{n \to \infty} \Pr(\|\boldsymbol{c}^{(n)}(\tilde{\boldsymbol{A}}) - \boldsymbol{c}^{(n)}(\tilde{\boldsymbol{A}})\| > \epsilon) = 0$.

Proof of Lemma 1. Let $\mathcal{G}^{(n)}$ be a sequence of random graphs over n vertices, and denote by $\delta_{(n)}$ the smallest expected weighted degree, i.e., $\delta_{(n)} = \min_i \sum_j w_{ij}^{(n)} p_{ij}^{(n)}$. Further, let $\bar{w}_{(n)} = \max_{i,j} w_{ij}^{(n)}$ and $\bar{w}_{(n)} = \min_{i,j} w_{ij}^{(n)}$ be the largest and smallest individual weights, satisfying $\frac{\bar{w}_{(n)}}{\bar{w}_{(n)}} \leq \omega$ for some $\omega > 0$ for all n. Then if there exists a non-decreasing sequence of $k_{(n)} > 0$ such that $\delta_{(n)} \geq k_{(n)} \ln(n)$ and $\underline{w}_{(n)} \cdot \bar{w}_{(n)} = o\left(\sqrt{\frac{\delta_{(n)}}{\ln(n)}}\right)$, then the realized centrality vector centrality vector $\mathbf{c}^{(n)}(\tilde{\mathbf{A}})$ is with high probability close to the centrality of the average graph $\mathbf{c}^{(n)}(\tilde{\mathbf{A}})$ for large n.

Under the stated assumptions, we can apply Theorem 1 to conclude that for any $\xi > 0$, for all n we have

$$\Pr\left(||\boldsymbol{L}_W - \bar{\boldsymbol{L}}_W|| \le 4\sqrt{\frac{3\omega\ln(4n/\xi)}{\delta}}\right) \ge 1 - \xi$$

Furthermore, by the assumption on the growth rate of the minimum degree, $\lim_{n\to\infty} 4\sqrt{\frac{3\omega \ln(4n/\xi)}{\delta}} = 0$ regardless of the ξ chosen, so that under the 2-norm,

$$m{L}_W op ar{m{L}}_W$$

Now, for convenience call $\boldsymbol{B} = \boldsymbol{I} - \boldsymbol{L}_W$ and $\bar{\boldsymbol{B}}$ the expected equivalent. Now clearly also

 $B \to \bar{B}$, and furthermore we can write $B = D^{-1/2} A_W D^{-1/2} = D^{-1/2} \tilde{A} D^{1/2}$. So we can write, using properties of matrix norms (abusing notation in the second step slightly so that the maximum is over the norm of the matrices) and the above result,

$$\begin{split} \limsup_{n \to \infty} \|\tilde{\boldsymbol{A}} - \bar{\tilde{\boldsymbol{A}}}\| &= \limsup_{n \to \infty} \|\boldsymbol{D}^{1/2}\boldsymbol{B}\boldsymbol{D}^{-1/2} - \bar{\boldsymbol{D}}^{1/2}\bar{\boldsymbol{B}}\bar{\boldsymbol{D}}^{-1/2}\| \\ &\leq \limsup_{n \to \infty} \|\max\left\{\boldsymbol{D}^{1/2}, \bar{\boldsymbol{D}}^{1/2}\right\} (\boldsymbol{B} - \bar{\boldsymbol{B}}) \max\left\{\boldsymbol{D}^{-1/2}, \bar{\boldsymbol{D}}^{-1/2}\right\} \| \\ &\leq \limsup_{n \to \infty} \max\left\{\|\boldsymbol{D}^{1/2}\|, \|\bar{\boldsymbol{D}}^{1/2}\|\right\} \|\boldsymbol{B} - \bar{\boldsymbol{B}}\| \max\left\{\|\boldsymbol{D}^{-1/2}\|, \|\bar{\boldsymbol{D}}^{-1/2}\|\right\} \\ &\leq \limsup_{n \to \infty} \xi \max\left\{\|\boldsymbol{D}^{1/2}\|, \|\bar{\boldsymbol{D}}^{1/2}\|\right\} \max\left\{\|\boldsymbol{D}^{-1/2}\|, \|\bar{\boldsymbol{D}}^{-1/2}\|\right\} \end{split}$$

Now since ξ can be chosen to be arbitrarily small, it is sufficient to establish that both $\|\boldsymbol{D}^{1/2}\|_2\|\bar{\boldsymbol{D}}^{-1/2}\|_2$ and $\|\boldsymbol{D}^{1/2}\|_2\|\bar{\boldsymbol{D}}^{-1/2}\|_2$ are bounded by a constant almost surely. To see that they are, observe that

$$\|\boldsymbol{D}^{1/2}\|_{2}\|\bar{\boldsymbol{D}}^{-1/2}\|_{2} = \sqrt{\frac{\max_{i} \sum_{j} w_{ij} a_{ij}}{\max_{i} \sum_{j} w_{ij} p_{ij}}} \leq \sqrt{\frac{\bar{w}_{(n)}}{\underline{w}_{(n)}}} \max_{i} \sqrt{\frac{\sum_{j} a_{ij}}{\sum_{j} p_{ij}}} \leq \sqrt{\omega} \max_{i} \sqrt{\frac{\sum_{j} a_{ij}}{\sum_{j} p_{ij}}}$$

and similarly

$$\|\boldsymbol{D}^{1/2}\|_{2}\|\bar{\boldsymbol{D}}^{-1/2}\|_{2} = \sqrt{\frac{\max_{i} \sum_{j} w_{ij} p_{ij}}{\max_{i} \sum_{j} w_{ij} a_{ij}}} \leq \sqrt{\frac{\bar{w}_{(n)}}{\underline{w}_{(n)}}} \max_{i} \sqrt{\frac{\sum_{j} p_{ij}}{\sum_{j} a_{ij}}} \leq \sqrt{\omega} \max_{i} \sqrt{\frac{\sum_{j} p_{ij}}{\sum_{j} a_{ij}}}$$

But since the a_{ij} are distributed Bernoulli (p_{ij}) , (see, e.g., Mostagir and Siderius (2021)) both $\max_i \sqrt{\frac{\sum_j p_{ij}}{\sum_j a_{ij}}}$ and $\max_i \sqrt{\frac{\sum_j a_{ij}}{\sum_j p_{ij}}}$ converge in probability to 1, so that we have for any $\xi > 0$

$$\limsup_{n\to\infty} \|\tilde{\boldsymbol{A}} - \bar{\tilde{\boldsymbol{A}}}\| \le \xi\sqrt{\omega}$$

That is, the weighted adjacency matrix can be made arbitrarily close to its expected counterpart.

We now wish to show that, for arbitrary $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr(\|(\boldsymbol{I} - \theta \tilde{\boldsymbol{A}})^{-1} - (\boldsymbol{I} - \theta \tilde{\boldsymbol{A}})^{-1}\| \ge \epsilon) = 0$$

The key observation is that the above result implies that for any $\mu > 0$, there exists sufficiently large n such that with probability approaching 1, $\|\tilde{\boldsymbol{A}}^k - \bar{\tilde{\boldsymbol{A}}}^k\| \leq \mu$ for all k. Then it is straightforward to note that (since by model assumptions we have $\theta < 1$, so the formula for infinite geometric series can be applied),

$$\limsup_{n \to \infty} \| (\boldsymbol{I} - \theta \tilde{\boldsymbol{A}})^{-1} - (\boldsymbol{I} - \theta \tilde{\boldsymbol{A}})^{-1} \| = \limsup_{n \to \infty} \left\| \sum_{k=0}^{\infty} \theta^{k} \left(\tilde{\boldsymbol{A}}^{k} - \tilde{\boldsymbol{A}}^{k} \right) \right\| \\
\leq \limsup_{n \to \infty} \sum_{k=0}^{\infty} |\theta^{k}| \left\| \left(\tilde{\boldsymbol{A}}^{k} - \tilde{\boldsymbol{A}}^{k} \right) \right\| \\
\leq \sum_{k=0}^{\infty} \mu |\theta^{k}| \\
= \frac{\mu}{1 - \theta}$$

Since μ was chosen arbitrarily, this implies that for any $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr(\|\boldsymbol{c}^{(n)}(\tilde{\boldsymbol{A}}) - \boldsymbol{c}^{(n)}(\bar{\tilde{\boldsymbol{A}}})\| > \epsilon) = 0$$

Finally, note that $\theta > 0$ and the assumption on the eigenvalues of the Laplacian guarantee that the expected adjacency matrix has non-vanishing spectral gap, implying that the network is connected with high probability, so that the centrality is well-defined (Dasaratha 2020; Mostagir and Siderius 2021), completing the proof.

Lemma 2 (Chung and Radcliffe (2011)). Let X_1, \ldots, X_m be bounded independent random Hermitian matrices and set M > 0: $||X_i - \mathbb{E}(X_i)||_2 \leq M \ \forall i = 1, \ldots, m$. Then for any

a > 0,

$$\Pr(||\boldsymbol{X} - \mathbb{E}(\boldsymbol{X})||_2 > a) \le 2n \exp\left(-\frac{a^2}{2v^2 + 2Ma/3}\right)$$

where
$$X = \sum_{i=1}^{m} X_i$$
 and $v^2 = ||\sum_{i=1}^{m} \mathbb{V}(X_i)||^{21}$.

The following theorem is an extension of Theorem 2 from (Chung and Radcliffe 2011), which applies only to unweighted graphs, to symmetrically weighted graphs. Theorem 1 allows us to place tight bounds on the deviation of the realized normalized weighted adjacency matrix from its expected counterpart. A limitation of this result is that the bound depends on n and can thus be arbitrarily loose in large societies.

Theorem 1. Let \mathcal{G} be an undirected random graph such that all edge formation probabilities are jointly independent. Denote by \mathbf{A} the adjacency matrix, \mathbf{W} a symmetric matrix of weights, and \mathbf{A}_W the weighted adjacency matrix, such that $\mathbf{A}_W = \mathbf{W} \odot \mathbf{A}^{22}$ Let \mathbf{D}_W be the diagonal degree matrix such that $\{\bar{\mathbf{D}}_W\}_{ii} = \sum_j w_{ij} a_{ij}$, and denote by $\bar{\mathbf{A}}, \bar{\mathbf{D}}_W$ the expected equivalents. Finally, let $\mathbf{L}_W = \mathbf{I} - \mathbf{D}_W^{-1/2} \mathbf{A}_W \mathbf{D}_W^{-1/2}$ denote the normalized weighted Laplacian of \mathcal{G} , $\omega = \max_{i,j} w_{ij}$ be the largest total weight, $\alpha = \min_{i,j} w_{ij}$ the smallest, and $\delta = \min_i \{\bar{\mathbf{D}}_W\}_{ii}$ the smallest expected degree.

For any $\epsilon > 0$, there exists a k > 0 such that, for all i,

$$\Pr\left(||\boldsymbol{L}_W - \bar{\boldsymbol{L}}_W|| \le 4\sqrt{\frac{3\omega\ln(4n/\epsilon)}{\delta}}\right) \ge 1 - \epsilon$$

if $\underline{d} > k \ln(n)$ and $\alpha \omega \leq \sqrt{\frac{\delta}{3 \ln(4n/\epsilon)}}$, where α is the smallest total weight.²³

Proof of Theorem 1. Denote \bar{d}_i as the expected (weighted) degree of node i. By the triangle inequality, for any matrix C,

$$||oldsymbol{L}_W - ar{oldsymbol{L}}_W|| \leq ||oldsymbol{C} - ar{oldsymbol{L}}_W|| + ||oldsymbol{L}_W - oldsymbol{C}||$$

²¹ See Theorem 5 in Chung and Radcliffe (2011) for the proof.

²² Note that ⊙ indicates the Hadamard (element-wise) product.

²³ Note that this is distinct from α in candidate utility.

In particular, let $C = I - \bar{D}_W^{-1/2} A_W \bar{D}_W^{-1/2}$. Then since the degree matrices are diagonal, we have $C - \bar{L}_W = \bar{D}_W^{-1/2} (A_W - \bar{A}_W) \bar{D}_W^{-1/2}$. Denoting by A^{ij} the matrix that is equal to 1 in the i,jth and j,ith positions and 0 elsewhere, we can use the symmetry of weights to write the i,jth entry of $C - \bar{L}$ as

$$\boldsymbol{X}_{ij} = \bar{\boldsymbol{D}}_{W}^{-1/2} (w_{ij}(a_{ij} - p_{ij})\boldsymbol{A}^{ij}) \bar{\boldsymbol{D}}_{W}^{-1/2} = \frac{w_{ij}(a_{ij} - p_{ij})}{\sqrt{\bar{d}_{i}\bar{d}_{j}}} \boldsymbol{A}^{ij}$$

Then clearly $C - \bar{L} = \sum X_{ij}$, so Lemma 2 applies. Since $\mathbb{E}(a_{ij}) = p_{ij}$, we have that $\mathbb{E}(X_{ij}) = \mathbf{0}$, so that $v^2 = ||\sum \mathbb{E}(X_{ij}^2)||$. Also, each X_{ij} is bounded above by $||X_{ij}|| \leq \frac{\omega}{\delta}$ Now clearly

$$\mathbb{E}(\boldsymbol{X}_{ij}^{2}) = \begin{cases} \frac{w_{ij}^{2}}{\overline{d}_{i}\overline{d}_{j}}(p_{ij})(1 - p_{ij})(A^{ii} + A^{jj}) & i \neq j \\ \frac{w_{ii}^{2}}{\overline{d}_{i}^{2}}(p_{ij})(1 - p_{ij})A^{ii} & i = j \end{cases}$$

Now we can write

$$v^{2} = \left\| \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{w_{ij}^{2}}{\bar{d}_{i}\bar{d}_{j}} (p_{ij})(1 - p_{ij}) A^{ii} \right\|$$

$$= \max_{i} \left(\sum_{j=1}^{n} \frac{w_{ij}^{2}}{\bar{d}_{i}\bar{d}_{j}} (p_{ij})(1 - p_{ij}) \right)$$

$$\leq \max_{i} \left(\frac{\omega}{\delta} \sum_{j=1}^{n} \frac{w_{ij}}{\bar{d}_{i}} (p_{ij}) \right)$$

$$= \frac{\omega}{\delta}$$

For notational convenience denote $a = \sqrt{\frac{3\omega \ln(4n/\epsilon)}{\delta}}$ and δ so that a < 1. In particular, we must have $\delta > 3\omega(\ln(4) + \ln(n) - \ln(\epsilon))$, so that if $k \ge 3\omega(1 + \ln(4/\epsilon))$, $\delta \ge k \ln(n)$ guarantees

the result. Then from Lemma 2

$$\Pr(\|\boldsymbol{C} - \bar{\boldsymbol{L}}_W\| > a) \le 2n \exp\left(-\frac{\frac{3n\omega^2 \ln(4n/\epsilon)}{n\delta}}{2n\omega^2/\delta + 2an\omega^2/3\delta}\right)$$

$$= 2n \exp\left(-\frac{\frac{3n\omega^2 \ln(4n/\epsilon)}{\delta}}{2n\omega^2(3+a)/3\delta}\right)$$

$$= 2n \exp\left(-\frac{9\ln(4n/\epsilon)}{6+2a}\right)$$

$$\le 2n \exp\left(-\frac{9\ln(4n/\epsilon)}{9}\right)$$

$$= \frac{\epsilon}{2}$$

Now for the second term, note that d_i is a sum of random variables that are bounded between 0 and ω . Then by Hoeffding's Inequality, we have that, for any t,

$$\Pr(|d_i - \bar{d}_i| > t\bar{d}_i) \le 2\exp\left(-\frac{t^2\bar{d}_i^2}{n\omega^2}\right) \le 2\exp\left(-\frac{t^2\delta^2}{n\omega^2}\right)$$

Now in particular let $t = \sqrt{\frac{n\omega^2 \ln(4n/\epsilon)}{\delta^2}} = \sqrt{\frac{n\omega}{3\delta}}a$. We have t < a < 1 if $\delta > \frac{n\omega}{3}$. In our application, $\omega = \rho_H, \delta = n_0 p_L \rho_L + n_1 p_H \rho_H$., so that for all i we obtain

$$\Pr(|d_i - \bar{d}_i| > t\bar{d}_i) \le \frac{\epsilon}{2n}$$

Now note that

$$\left\| \bar{\boldsymbol{D}}_W^{-1/2} \boldsymbol{D}_W^{1/2} - \boldsymbol{I} \right\|_2 = \max_i \left| \sqrt{\frac{d_i}{\bar{d}_i}} - 1 \right|$$

To bound this, note that from (D) we can conclude that $\Pr\left(\left|\frac{d_i}{d_i}-1\right|>t\right)\leq \frac{\epsilon}{2n}$ and hence with probability at least $1-\frac{\epsilon}{2n}$,

$$\left\|\bar{\boldsymbol{D}}_{W}^{-1/2}\boldsymbol{D}_{W}^{1/2}-\boldsymbol{I}\right\|_{2}<\sqrt{\frac{n\omega^{2}\ln\left(4n/\epsilon\right)}{\delta^{2}}}$$

Finally, note that since $\|\boldsymbol{L}\|_2 \leq 2$ (Chung and Graham 1997), we have $\|\boldsymbol{I} - \boldsymbol{L}\|_2 \leq 1$. Now consider

$$\begin{split} \|\boldsymbol{L}_W - \boldsymbol{C}\| &= \|\boldsymbol{I} - \boldsymbol{D}_W^{-1/2} \boldsymbol{A}_W \boldsymbol{D}_W^{-1/2} - \boldsymbol{I} + \bar{\boldsymbol{D}}_W^{-1/2} \boldsymbol{A}_W \bar{\boldsymbol{D}}_W^{-1/2} \| \\ &= \|(\boldsymbol{I} - \boldsymbol{L}_W) \bar{\boldsymbol{D}}_W^{-1/2} \boldsymbol{D}_W^{1/2} \boldsymbol{D}_W^{-1/2} \boldsymbol{A}_W \boldsymbol{D}_W^{-1/2} \boldsymbol{D}_W^{1/2} \bar{\boldsymbol{D}}_W^{-1/2} \| \\ &= \|(\boldsymbol{I} - \boldsymbol{L}_W) \bar{\boldsymbol{D}}_W^{-1/2} \boldsymbol{D}_W^{1/2} (\boldsymbol{I} - \boldsymbol{L}) \boldsymbol{D}_W^{1/2} \bar{\boldsymbol{D}}_W^{-1/2} \| \\ &= \|(\bar{\boldsymbol{D}}_W^{-1/2} \boldsymbol{D}_W^{1/2} - \boldsymbol{I}) (\boldsymbol{I} - \boldsymbol{L}_W) \boldsymbol{D}_W^{1/2} \bar{\boldsymbol{D}}_W^{-1/2} + (\boldsymbol{I} - \boldsymbol{L}) (\boldsymbol{I} - \boldsymbol{D}_W^{1/2} \bar{\boldsymbol{D}}_W^{-1/2}) \| \\ &\leq \|\bar{\boldsymbol{D}}_W^{-1/2} \boldsymbol{D}_W^{1/2} - \boldsymbol{I}\| \|\boldsymbol{D}_W^{1/2} \bar{\boldsymbol{D}}_W^{-1/2}\| + \|\boldsymbol{I} - \boldsymbol{D}_W^{1/2} \bar{\boldsymbol{D}}_W^{-1/2}\| \\ &\leq t^2 + 2t \end{split}$$

Hence, finally,

$$||\mathbf{L}_{W} - \bar{\mathbf{L}}_{W}|| \leq ||\mathbf{C} - \bar{\mathbf{L}}_{W}|| + ||\mathbf{L}_{W} - \mathbf{C}||$$

$$\leq a + \frac{n\omega}{3\delta}a^{2} + \sqrt{\frac{4n\omega}{3\delta}}a$$

$$= a\left(\frac{\sqrt{3\delta} + 2\sqrt{n\omega}}{\sqrt{3\delta}} + \frac{n\omega}{3\delta}a\right)$$

$$= a\left(1 + \frac{2\sqrt{3n\omega\delta} + n\omega a}{3\delta}\right)$$

Now, choose k > 1 such that

$$\delta \ge \frac{1}{3} \left(2n\omega \frac{\sqrt{k} + k + 1}{(k-1)^2} \right).$$

Proof of Proposition 1. By the result established in Lemma 1, it is sufficient to consider centrality on the average network. Under the stochastic block model, letting s_i denote the share of i's group without loss of generality, we have that the expected degree of i can be

59

written as

$$\sum_{j=1}^{n} w_{ij} p_{ij} = s_i n w_H p_H + (1 - s_i) n w_L p_L = n \left(w_L p_L + s_i (w_H p_H - w_L p_L) \right),^{24}$$

For notational convenience, we denote $w_H p_H = \rho$, $w_L p_L = \delta \rho$ for some $0 < \delta < 1$. The key observation is that the actual value of ρ is irrelevant, since it appears in both the denominator and numerator of each entry of the expected adjacency matrix. Thus, all results depend only on δ , the *relative* expected weight placed on out-group connections.

Note now that we can write the matrix $\boldsymbol{I} - \theta \tilde{\boldsymbol{A}}$ as a 2×2 block matrix with blocks $\tilde{\boldsymbol{A}}_{11} = \boldsymbol{I} - \frac{\theta}{n(\delta + s_1(1 - \delta))} (\boldsymbol{1}_{s_1 n \times s_1 n} - \boldsymbol{I})$, $\tilde{\boldsymbol{A}}_{12} = -\frac{\theta \delta}{n(\delta + s_1(1 - \delta))} \boldsymbol{1}_{s_1 n \times s_2 n}$, $\tilde{\boldsymbol{A}}_{21} = -\frac{\theta \delta}{n(\delta + s_2(1 - \delta))} \boldsymbol{1}_{s_2 n \times s_1 n}$, and $\tilde{\boldsymbol{A}}_{22} = \boldsymbol{I} - \frac{\theta}{n(\delta + s_2(1 - \delta))} (\boldsymbol{1}_{s_2 n \times s_2 n} - \boldsymbol{I})$. To apply the formula for block inversion, we first want to identify $\tilde{\boldsymbol{A}}_{11}^{-1}$. We conjecture that

$$P = \tilde{\bar{A}}_{11}^{-1} = \begin{bmatrix} a_1 & b_1 & \cdots & b \\ b & a & \cdots & b \\ \vdots & \cdots & \ddots & \vdots \\ b & \cdots & \cdots & a \end{bmatrix}$$

Then we have that

$$\begin{bmatrix} 1 & -(n_1-1)\frac{\theta}{n(\delta+s_1(1-\delta))} \\ -\frac{\theta}{n(\delta+s_1(1-\delta))} & \left(1-(n_1-2)\frac{\theta}{n(\delta+s_1(1-\delta))}\right) \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

which indeed has a unique solution. The inverse of the bottom-right block is identical, swapping group indices. Hence, we can construct the centrality vector according to the

²⁴Technically this is an approximation since $p_{ii} = 0$, but the loss is insignificant for large n, which is assumed here.

formula:

$$c = \begin{bmatrix} \left(\tilde{\bar{A}}_{11} - \tilde{\bar{A}}_{12} \tilde{\bar{A}}_{22}^{-1} \tilde{\bar{A}}_{21} \right)^{-1} & 0 \\ 0 & \left(\tilde{\bar{A}}_{22} - \tilde{\bar{A}}_{21} \tilde{\bar{A}}_{11}^{-1} \tilde{\bar{A}}_{12} \right)^{-1} \end{bmatrix} \begin{bmatrix} I & -\tilde{\bar{A}}_{12} \tilde{\bar{A}}_{22}^{-1} \\ -\tilde{\bar{A}}_{21} \tilde{\bar{A}}_{11}^{-1} & I \end{bmatrix}$$
(A1)

The main-diagonal blocks in the first matrix again have the same structure, with a single value on the main diagonal and another value on the off-diagonal. This has a similar structure to the previous matrix, and the inverse can thus be calculated analogously by solving for main and off-diagonal elements a'_i, b'_i .²⁵

Remark. There is a substantive interpretation of a'_i and b'_i : a'_i is the weighted average of the number of paths back to a voter in group i through the network, while b'_i is the weighted average of the number of paths to someone else in your group through the network. Because in the expected network, all voters are connected to all others, i's centrality does not depend on paths to the other group, because a linear dependence is induced (all paths within group essentially correspond to an equivalent cross-party path).

Substituting these values into equation (A1), we then have that

$$c_i = (1 + n_{-i})a'_i + (1 + n_{-i})(n_i - 1)b'_i$$

or, without loss of generality,

$$c_{1} = n \left(-\delta\theta - \delta n + (\delta - 1)ns^{2}(\delta\theta + \delta + \theta - 1) - (\delta - 1)ns(\delta\theta + \delta + \theta - 1) + (\delta - 1)\theta s \right)$$

$$\cdot \left(-\theta^{2} + n^{3}s((\delta - 1)s - \delta)(-\theta + s(\delta + \theta - 1) + 1) + \theta n^{2}s(-\delta - \theta + s(2\delta + \theta - 2) + 1) + \theta n \left(\theta + \delta^{2}\theta s - \delta s + s - 1\right) \right)^{-1}.$$

²⁵ A unique solution again exists, but we suppress the exact expression as it is extremely complex. The mathematica file used to calculate these values is available upon request from the authors.

Since n is by assumption large, this expression is asymptotically equivalent to its leading term. We can thus simplify further, writing

$$c_1 \sim \frac{-\delta + (\delta - 1)s^2(\delta\theta + \delta + \theta - 1) - (\delta - 1)s(\delta\theta + \delta + \theta - 1)}{sn((\delta - 1)s - \delta)(-\theta + s(\delta + \theta - 1) + 1)}.$$

Simplifying and substituting for ψ yields the required expressions.

Proof of Proposition 2. Since we have closed-form expressions for c_1 and c_2 and given assumptions on $u(\cdot)$, it is sufficient to simply take derivatives of total centrality (which is invariant in n) with respect to each parameter. Since these are highly complex objects, they cannot be signed by inspection, so that we instead solve numerically over the permissible parameter space, yielding the given results. See the accompanying Wolfram Mathematica code for full derivation.

Proof of Proposition 3. Since we have closed-form expressions for c_1 and c_2 and given assumptions on $u(\cdot)$, it is sufficient to simply take derivatives of the ratio of centralities (which is invariant in n) with respect to each parameter. Since these are highly complex objects, they cannot be signed by inspection, so that we instead solve numerically over the permissible parameter space, yielding the given results. See the accompanying Wolfram Mathematica code for full derivation.

Proof of Proposition 4. It is straightforward to see that, replacing θ with Θ , the modified centrality of agents i is now equal to their DeGroot centrality (Mostagir, Ozdaglar, and Siderius 2022) on the normalized network. It then follows from Theorem 1 and from the proof of Theorem 1 in Mostagir and Siderius (2021) that we can again consider the expected network only. The result then follows from an analogous argument to the proof of the Proposition 1, calculated using the accompanying Wolfram Mathematica code.

Lemma 3. Define the following terms.

1.
$$\Delta_{ij} := \left| \phi_j(\cdot | \boldsymbol{\theta} : \theta_i = \underline{\theta}) - \phi_j(\cdot | \boldsymbol{\theta} : \theta_i = \overline{\theta}) \right|$$

2. W_{ij}^k the (weighted) sum of all length k walks beginning with i and ending with j

$$3. \ \mathcal{I}_{ij} := \frac{\sum_{k=1}^{\infty} \overline{\theta}^k W_{ij}^k}{\sum_{k} \sum_{k=1}^{\infty} \underline{\theta}^k W_{hj}^k}$$

Then, for any sequence of graphs $\mathcal{G}^{(n)}$ such that $(\bar{d}_n/\bar{\theta})^{\operatorname{diam}(\mathcal{G})} = o(n)$, there exists a $z_n > 0$ such that $\Delta_{ij}(\mathcal{G}^{(n)}) < z_n \mathcal{I}_{ij}(\mathcal{G}^{(n)})$ which satisfies $z_n = o(n)$.²⁶

Proof. Take a graph \mathcal{G} , a corresponding Δ_{ij} , and choose a constant $z_n \in \mathbb{R}$ where

$$z_n > z_n^* := \frac{\Delta_{ij}}{\mathcal{I}_{ij}}.$$

Note that the numerator is bounded by 1 and the denominator must be greater than 0, so it must be that z_n^* is finite. Then, z_n must satisfy $\Delta_{ij} < z_n \mathcal{I}_{ij}$. Moreover, it is clear that $z_n^* < \frac{1}{\mathcal{I}_{ij}}$.²⁷

Consider now the denominator of \mathcal{I}_{ij} . Since this reflects the sum of all walks of length k ending in j, $\sum_{k=1}^{\infty} \underline{\theta}^k W_{hj}^k$, it is straightforward to show by induction on the length of walks k that this must always equal $\underline{\theta}/(1-\underline{\theta})$.

To see this, note that first when k = 1, it is trivially true that there are d_j such walks (starting from each of j's neighbors), each with weight $\frac{1}{d_j}$, so that $\sum_h W_{hj}^1 = 1$.

Now assume that for arbitrary $k \geq 2$, $\sum_h W_{hj}^k = 1$. Then for any walk of length k+1 with start vertex h, the deletion of h from the walk produces a (not necessarily unique) walk of length k that begins from some h' adjacent to h. In particular, for each walk w_{hj}^k of length k beginning with vertex h there are d_h walks of length k+1, each with weight $\frac{1}{d_h}w_{hj}^k$.²⁸ The

²⁶ This assumption is consistent with the actual characteristics of "well-behaved" social network graphs, both theoretically and empirically (Jackson 2008).

²⁷ In fact, this inequality is necessarily extremely loose, since $\Delta_{ij} = 1$ would imply that a change in θ_i moves j from never voting for candidate 1 to voting for them with certainty, which cannot be true by construction.

²⁸Note that here w_{hj}^k refers to a particular k-length walk from h to j, which should not be confused with w_{hj} , the weight of j's influence on h's voting behavior from other sections of the paper.

sum of all of these walks can then be expressed

$$\sum_{h' \in \mathcal{T}_h(\mathcal{G})} \frac{1}{d_h} w_{ij}^k = w_{ij}^k.$$

But note that this enumeration is exhaustive; that is, there is no walk of length k+1 that cannot be constructed in this fashion, and no two distinct w_{ij}^k can be extended to produce the same w_{ij}^{k+1} . Hence, we have that $W^{k+1} = \sum_i w_{ij}^k = 1$ by the induction assumption.

Moreover, this implies that, regardless of n,

$$\sum_{h} \sum_{k=1}^{\infty} \underline{\theta}^{k} W_{hj}^{k} = \sum_{k=1}^{\infty} \underline{\theta}^{k} \sum_{h} W_{hj}^{k}$$
$$= \sum_{k=1}^{\infty} \underline{\theta}^{k}$$
$$= \frac{\underline{\theta}}{1 - \theta},$$

which implies

$$\mathcal{I}_{ij} = \frac{1 - \underline{\theta}}{\underline{\theta}} \sum_{k=1}^{\infty} \overline{\theta}^k W_{ij}^k.$$

Now observe that, defining by d(i,j) the unweighted shortest path distance from i to j, for any k < d(i,j), there by definition exist no walks from i to j of length k, so that clearly $W_{ij}^k = 0$. Then a trivial lower bound on \mathcal{I}_{ij} is $\overline{\theta}^{d(i,j)}W_{ij}^{d(i,j)}$. Moreover, by definition there exists at least one path of length d(i,j), which has minimal weight if all vertices on the path have the maximum degree on the network. Hence, a uniform lower bound for any pair i,j on \mathcal{G} is given by $(\overline{\theta}/\overline{d_n})^{\operatorname{diam}(\mathcal{G})}$. Hence, we have that

$$z_n < \frac{\underline{\theta}}{1-\theta} \left(\frac{\bar{d}_n}{\overline{\theta}}\right)^{\operatorname{diam}(\mathcal{G})} = o(n)$$

by assumption. \Box

Lemma 4. Suppose that \mathcal{G} is generated according to the stochastic block model and satisfies the assumptions of Theorem 1 and of Lemma 3 almost surely. Then Δ_{ij} converges in probability to 0 for all i, j as $n \to \infty$.

Proof. We aim to bound Δ_{ij} using Lemma 3. Now fix some $\epsilon > 0$. Then it follows from the preceding proof that we want to show that for any i, j, there exists N such that for any N > n, the probability that

$$\max_{i,j} \sum_{k=1}^{\infty} \overline{\theta}^k W_{ij}^k > \frac{\underline{\theta}\epsilon}{1 - \underline{\theta}} \tag{A2}$$

is arbitrarily small.

Now consider the left-hand side of (A2). Note that it follows from the proof of Lemma 1 that, under the given assumptions, we need only consider the average network, since the sum of walks from i to j is arbitrarily close with probability approaching unity for sufficiently large n. Now note that the expected network, defined as before, is simply a weighted complete graph K_n . Consequently, it is straightforward to enumerate all paths from i to j. We show that for all i, j, k, $\bar{W}_{ij}^K = O(n^{-1})$.

In general, the maximal weight for each connection i, j occurs when $\ell_i = \ell_j$ and for all other $h, \ \ell_h \neq \ell_i$, so that $w_{ij} < \frac{p_H}{(n-1)p_L}$. Since all walks are at their greatest when all weights are maximal, a (very loose) upper bound for \bar{W}_{ij}^K is the corresponding entry of the k^{th} power of $\frac{p_H}{(n-1)p_L}(\mathbf{1}_{n\times n} - \mathbf{I}_n)$. Now note that

$$\left[\left(\frac{p_H}{(n-1)p_L} \left(\mathbf{1}_{n \times n} - \boldsymbol{I}_n \right) \right)^k \right]_{ij} = \left[\frac{p_H^k}{(n-1)^k p_L^k} \left(\mathbf{1}_{n \times n} - \boldsymbol{I}_n \right)^k \right]_{ij} \\
\leq \left[\frac{p_H^k}{(n-1)^k p_L^k} \left(\mathbf{1}_{n \times n} \right)^k \right]_{ij} \\
= \frac{n^{k-1} p_H^k}{(n-1)^k p_L^k} \\
= O(n^{-1})$$

Hence, p- $\lim_{n\to\infty} \mathcal{I}_{ij} = 0$, and so by Lemma 3, it follows also that p- $\lim_{n\to\infty} \Delta_{ij} = 0$,

completing the proof.