Spectral Sequences for Applied Topology Thesis Defense

Ryan H. Lewis

Advisor: Gunnar Carlsson

May 19, 2016

The Agenda

Today we will present distributed algorithms for homology and

persistent homology, via spectral sequences.

- Motivation
- Background
- Persistent Homology an Sequence
- Homology from subcom Vietoris
- A distributed persistence

Recall: K^U has cells of the form $\sigma \times \tau$ with $\sigma \in K$ and $\tau \in N$ Difference is about ordering on cells: $\sigma \times \tau < \sigma' \times \tau'$

Recall: K^U has cells of the form $\sigma \times \tau$ with $\sigma \in K$ and $\tau \in N$ Difference is about ordering on cells: $\sigma \times \tau < \sigma' \times \tau'$ Picture 1: $\tau < \tau'$ then breaking ties by comparing $\sigma < \sigma'$.

Recall: K^U has cells of the form $\sigma \times \tau$ with $\sigma \in K$ and $\tau \in N$

Difference is about ordering on cells: $\sigma \times \tau < \sigma' \times \tau'$

Picture 1: $\tau < \tau'$ then breaking ties by comparing $\sigma < \sigma'$.

Picture 2: $\sigma < \sigma'$ then breaking ties by comparing $\tau < \tau'$

Recall: K^U has cells of the form $\sigma \times \tau$ with $\sigma \in K$ and $\tau \in N$

Difference is about ordering on cells: $\sigma \times \tau < \sigma' \times \tau'$

Picture 1: $\tau < \tau'$ then breaking ties by comparing $\sigma < \sigma'$.

Picture 2: $\sigma < \sigma'$ then breaking ties by comparing $\tau < \tau'$

Important Observation: If $\tau = \tau'$ then orders agree!

revisit the blowup

- 1. ∂_{K^U} in block form, according to incorrect filtration.
- 2. Reducing the matrix $\Pi' \cdot \partial_{K^U} \cdot \Pi$, where Π permutes between filtrations, results in the correct persistent homology.

All processors execute these operations with no communication! Step 1 Reduce all blocks (except I) of a fixed color independently. $\partial_i = R_i \cdot D_i$

All processors execute these operations with no communication!

Step 1 Reduce all blocks (except I) of a fixed color independently. $\partial_i = R_i \cdot D_i$

Step 2 Row reduce disjoint union $S^{-1}[R_i \mid L_i] \rightarrow [P_i \mid \tilde{L}_i]$

All processors execute these operations with no communication!

- Step 1 Reduce all blocks (except I) of a fixed color independently. $\partial_i = R_i \cdot D_i$
- Step 2 Row reduce disjoint union $S^{-1}[R_i \mid L_i] \rightarrow [P_i \mid \tilde{L}_i]$
- Step 3 Perform all **valid** columns adds from P_i into \tilde{L}_i (perfect parallelism).

All processors execute these operations with no communication!

- Step 1 Reduce all blocks (except I) of a fixed color independently. $\partial_i = R_i \cdot D_i$
- Step 2 Row reduce disjoint union $S^{-1}[R_i \mid L_i] \rightarrow [P_i \mid \tilde{L}_i]$
- Step 3 Perform all **valid** columns adds from P_i into \tilde{L}_i (perfect parallelism).
 - Sofar Not finished yet, but, have not done anything wrong.

Sparsity: Now each P_i has at most 1 nonzero per column.

Sparsity: Now each P_i has at most 1 nonzero per column.

Fill in: If D.U. has size m and total size is m + n then fill in is at most O(mn) down from $O((m+n)^2)$

Sparsity: Now each P_i has at most 1 nonzero per column.

Fill in: If D.U. has size m and total size is m + n then fill in is at

most O(mn) down from $O((m+n)^2)$

Issue: After permuting, naive reduction, could fill in entire matrix.

Sparsity: Now each P_i has at most 1 nonzero per column.

Fill in: If D.U. has size m and total size is m + n then fill in is at

most O(mn) down from $O((m+n)^2)$

Issue: After permuting, naive reduction, could fill in entire matrix.

Solution: Row operations to the rescue!

All columns with pivot in row m (after Π):

All columns with pivot in row m (after Π):

Observation row m is $\alpha \cdot e_m$!

All columns with pivot in row m (after Π):

Observation row m is $\alpha \cdot e_m!$

Fix Remove fill by using row m as a pivot row.

All columns with pivot in row m (after Π):

Observation row m is $\alpha \cdot e_m$!

Fix Remove fill by using row m as a pivot row.

theorem!

Theorem

In K is a complex with m simplices covered by U and K^U has size m + n then the mayer vietoris algorithm uses $O(mn^2)$ time and O(mn) space.

In practice

Figure: Times to compute persistence diagram for the $256^2\times512$ combustion data set. Credit: Dmitry Morozov.

In practice

Figure: Times to compute persistence diagram for the $256^2 \times 512$ combustion data set. Credit: Dmitry Morozov.

- ▶ An input of size of 1.3×10^6 while quite large, is still considerably smaller than what can be computed today.
- ▶ Interesting: memory usage is not closely tracking our space bound.
- Slowdown as number of processes increase matches our intuition, total size of intersection is getting much larger.

Future Directions

- 1. There is still some room to improve the space complexity of this algorithm, for example, by reducing the factor n in O(mn)
- 2. Algorithm is top heavy, eventually a large matrix is on one machine.
- We wanted to use M.V. to avoid this! Still some room for more cleverness here.

Mayer Vietoris Spectral Sequence

 $E_{p,q}^0 = \langle p$ -chains in a q-way intersection \rangle

Mayer Vietoris Spectral Sequence

 $E^0_{p,q}=\langle p ext{-chains in a } q ext{-way intersection}
angle$ The first two differentials:

$$d_0 = \partial_K$$
 and $d_1 = \partial_N$

Mayer Vietoris Spectral Sequence

$$E_{p,q}^0 = \langle p$$
-chains in a q -way intersection \rangle

The first two differentials:

$$d_0 = \partial_K \text{ and } d_1 = \partial_M$$

We can construct the blowup *chain complex* where $C_d = \bigoplus_{p+q=d} E_{p,q}^0$ with $\partial = d_0 + (-1)^q d_1$ Let's try an example!

10 / 11

1. Each of the three sets are a copy of $I\star S^1$

- 1. Each of the three sets are a copy of $I \star S^1$
- 2. Each of the three pairwise intersection is $\{pt\} \star S^1$

- 1. Each of the three sets are a copy of $I \star S^1$
- 2. Each of the three pairwise intersection is $\{pt\} \star S^1$
- 3. Single triple intersection is a copy of S^1 .

The E_1 page has terms with the following data:

$$3 \xleftarrow[\stackrel{1}{\underset{0}{\leftarrow} 1} \stackrel{1}{\underset{0}{\rightarrow} 0}]{3} \xleftarrow[\stackrel{1}{\underset{1}{\leftarrow} 1}]{1}$$

The E_2 page has terms of the following data:

The E_2 page has terms of the following data:

$$0 \leftarrow 0 \qquad 1$$

$$1 \qquad 0 \qquad 0$$

$$H_d(K^U) = \bigoplus_{p+q=d} E_{p,q}^{\infty}$$

$$H_0(S^1 \star S^1) \cong H_2(S^1 \star S^1) = 1$$