S01Z01

Skoro $\mu(\emptyset)=0$ to pozostało nam pokazać, że $A\subset\bigcup_{n=1}^\infty A_n\Longrightarrow \mu(A)\leq\sum_{n=1}^\infty \mu(A_n)$. Ustalmy $\epsilon>0$. Niech $\{A_n\}_{n\in N}$ $A_n\in P$ będzie dowolnym pokryciem zbioru A. Dla każdego A_n wybierzmy pokrycie $\{B_m^n\}_{m\in\mathbb{N}}$ takie żeby: $\mu(A_n)\geq \left(\sum_{m=1}^\infty \mu(B_m^n)\right)-\frac{\epsilon}{2^n}$. Mamy teraz $\sum_{n=1}^{\infty} \mu(A_n) \ge \left(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \mu(B_m^n)\right) - \epsilon$. Z drugiej strony $\{B_m^n\}_{m \in N}^{n \in N}$ także jest pokryciem A, tak więc, z definicji $\mu(A): \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \mu(B_m^n) \ge \mu(A)$. Ostatecznie $\sum_{n=1}^{\infty} \mu(A_n) \ge \mu(A) - \epsilon$ i wobec dowolności ϵ dowód jest zakończony. S01Z02

Oznaczam $\mathcal{P}_{\sigma\delta}$ przez R. Wybierzmy dowolny ϵ . Wiemy, że dla każdego n istnieje taki ciąg zbiorów (bo z definicji $\mu(A)$ jest inf po sumach tego rodzaju) $\{E_{nk}\}_{k=1}^{\infty} \in P$, że $\mu(A) + \frac{\epsilon}{2^n} \geq \sum_{k=1}^{\infty} \tau(E_{nk})$, $\bigcup_{k=1}^{\infty} E_{nk} \supset A$, $E_{nk} \in P$. Wybierając wtedy $B = \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} E_{nk}$ mamy $A \subset B$, gdyż $\forall A \subset \bigcup_{k=1}^{\infty} E_{nk}$, więc należy też do przecięcia. Wynika z tego, że $\mu(A) \leq \mu(B)$. Mamy także: $\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} E_{nk}$, zatem $\forall \mu(B) \leq \sum_{k=1}^{\infty} \tau(E_{nk}) \leq \mu(A) + \frac{\epsilon}{2^n}$, zatem musi być także: $\mu(B) \leq \mu(A)$. Co oznacza, że B jest dobrze wybrany

dobrze wybrany.

S01Z03

a) nierówność nie jest prawdziwa. Weźmy $A_n=(n,n+1]$ oraz miarę Lebega. Wtedy prawa strona nierówności jest równa 1. Natomiast $\mu(\bigcap_{k=1}^{\infty}\bigcup_{n=k}^{\infty}(n,n+1])=\mu(\bigcup_{k=1}^{\infty}(k,\infty))=\mu(\emptyset)=0$

S01Z04

Niech $A = \bigcup_{n=1}^{\infty} A_n$ z regularności miary, istnieje $B \supset A$ takie, że $\mu(B) = \mu(A)$ oraz $\forall \exists \mu(B_n) = \mu(A_n)$. Weźmy $C_n = B \cap B_n$, teraz $B_n \supset C_n \supset A_n$ czyli $\mu(C_n) = \mu(A_n)$, tak więc C_n jest mierzalną otoczką A_n , z drugiej strony: $\mu(A) \leq \mu(\bigcup_{n=1}^{\infty} C_n) \leq \mu(B) = \mu(A)$. Stąd $\bigcup_{n=1}^{\infty} C_n$ jest mierzalną otoczką $\bigcup_{n=1}^{\infty} A_n$.

Mierzalna otoczka A to taki zbiór B, że $A \subset B$, B jest μ -mierzalne i $\mu(A) = \mu(B)$. Weźmy teraz dowolne $C \subset B \setminus A$, mierzalne. Wtedy $\mu(B) = \mu(B \cap C) + \mu(B \setminus C) = \mu(C) + \mu(B \setminus C) \ge \mu(C) + \mu(A \setminus C) = \mu(C) + \mu(A) = \mu(C) + \mu(B)$, nierówność w drugą stronę jest oczywista. Po odjęciu $\mu(B)$ stronami otrzymuję $\mu(C) = 0$.

S01Z06

Niech B ma 3 elementy. Niech $\mu(B) = 2$ oraz $\mu(C) = 1$ dla każdego podzbioru właściwego zbioru B. Wtedy weźmy A jako dowolny podzbiór B mający 2 elementy. Wtedy $\mu(B\backslash A)$ jest zbiorem jednoelementowym, ponadto ten zbiór nie jest mierzalny, więc druga część zadania jest spełniona. Ale $\mu(A) \neq \mu(B)$

S01Z07

Kontrprzykładem jest zbiór Vitalego.

S01Z08

- a) Jeżeli X ma więcej niż jeden element to biorac $\emptyset \neq A \neq X$, wiemy, że A jest niemierzalne, bo $1 = \mu(X) = \mu(A) + \mu(X \setminus A) = \mu(A)$ 2, zatem jedynimi zbiorami mierzalnymi są: \emptyset i X (kiedy X ma 0 lub 1 element to jest to oczywiste). Wiemy, że $\{y\}$ jest borelowski, więc $f^{-1}(\{y\})$ musi być μ -mierzalny, zatem jest pusty lub równy X. dla dwóch różnych y nie może wyjść X (bo dla każdego elementu $x \in X$ f(x) nie może przyjąć dwóch wartości), dla pewnego musi wyjść. Więc są to funkcje stałe.
- b) Zbiory miary 0 są mierzalne, ich dopełnienia też są mierzalne. W tym wypadku zbiory nieprzeliczalne, lub te których dopełnienia są nieprzeliczalne, są niemierzalne (bo $1 = \mu(X) = \mu(A) + \mu(X \setminus A) = 2$).

Przeciwobrazy singletonów są mierzalne więc są przeliczalne, a jeden jest nieprzeliczalny. Pokażę teraz, że sytuacja kiedy B=f(X) jest nieprzeliczalny nie może mieć miejsca. Weźmy sobie podział $\mathbb R$ na odcinki $[k,\,k+1)$ wtedy wiemy, że istnieje takie k, $|[k,k+1)\cap B| = c$, nie mogą istnieć 2 bo wtedy ich przeciwobrazy nie były by mierzalne. Oznaczmy $C_0 = [k,k+1)$, dzieląc teraz C_k na dwie równe części znowu tylko jedna jest mocy kontinuum, i ją oznaczamy przez C_1 postępując analogicznie uzyskujemy ciąg zbiorów mocy c zstępujący o średnicach malejących do 0. spójrzmy teraz na zbiory $D_0 = B \cap (\mathbb{R} \setminus C_0), D_k = B \cap (C_{k-1} \setminus C_k),$ wiemy, że wszystkie są przeliczalne, jest to zatem rodzina zbiorów przeliczalnych których suma jest równa $\bigcup D_i = B \cap (\mathbb{R} \setminus \bigcap C_i)$, co jest równe B lub $B\setminus\{y\}$ (zależy czy $\bigcap C_i$ jest puste czy ma jeden punkt), zatem jest nieprzeliczalne co daje sprzeczność.

S01Z09

ta funkcja może być zarówno mierzalna jak i niemierzalna.

- 1. NIEMIERZALNA: niech μ jest miarą, która zbiorom skończonym przyporządkowuje 0 a nieskończonym 1. Zbiór A= $\mathbb{R}\setminus(0,1)$ jest zbiorem niemierzalnym (bo $\mu(\mathbb{R})\neq\mu(\mathbb{R}\setminus(0,1))+\mu(0,1)$). $f^{-1}((1,2))=(1,2)$, ale (1,2) nie jest mierzalny (bo $\mu(0,2) \neq \mu(0,1] + \mu(1,2)$
 - 2. MIERZALNA: niech $\mu(A) = \begin{cases} 0 & |A| = 0 \\ 1 & |A| = 1. \end{cases}$ Wtedy każdy zbiór skończony jest niemierzalny. Weźmy wtedy $A = \{0\}$.

Wtedy $f(x) = x$. mierzalne więc fun	. Przeciwobraz zbioru nkcja jest mierzalna.	otwartego jest	zbiorem o	twartym, v	więc nieskończony	vm. Ale zbiory	nieskończone	są