Mathematical Methods I

Assignment 4: Green's Functions

Total marks: 25

All questions are compulsory. Please hand in your answer sheets to one of the tutors no later than **5pm Friday 4 September 2015**.

1 Forced damped harmonic oscillator (12 marks)

Consider the differential equation

$$\ddot{x}(t) + 2\gamma \dot{x}(t) + \omega_0^2 x(t) = F(t)$$

with γ and ω_0 constants and $\omega_0 > \gamma > 0$ (i.e., an underdamped forced harmonic oscillator). We want to solve this with the initial conditions $x(0) = 0 = \dot{x}(0)$.

1. If $\phi_1(t)$ and $\phi_2(t)$ are two linearly independent solutions of the homogeneous equation, then show that the quantity G(t,s) given by

$$G(t,s) = \theta(t-s) \left[\frac{\phi_1(s)\phi_2(t) - \phi_2(s)\phi_1(t)}{W(s)} \right] \theta(s)$$
 (1)

is a causal Green's function of the system satisfying $G(0,s) = 0 = \dot{G}(0,s)$, where W is the Wronskian of ϕ_1 and ϕ_2 .

- 2. Solve the homogenous equation and find ϕ_1 and ϕ_2 (considering only real solutions).
- 3. Plug these into equation (1) to derive the expression for the corresponding Green's function and compare this with the result derived in class which used Fourier transforms.
- 4. For a general forcing term F(t), write down the solution of the differential equation which satisfies the required initial conditions.

2 Convolution properties (3 marks)

Prove the following properties of the convolution operation (*) in D dimensions, where A, B and C are functions of the D-dimensional variable \vec{x} :

1. Linearity

$$((A+B)*C)(\vec{x}) = (A*C)(\vec{x}) + (B*C)(\vec{x})$$

2. Associativity

$$(A*(B*C))(\vec{x}) = ((A*B)*C)(\vec{x})$$

3 Green's function as a propagator (10 marks)

Consider the *D*-dimensional Gaussian $G_{\Delta t}(\vec{x})$ with Fourier transform $\tilde{G}_{\Delta t}(\vec{k}) = \exp(-\alpha k^2 \Delta t)$ where $k^2 = \vec{k} \cdot \vec{k}$ and α and Δt are positive constants. Consider the recurrence relation for a sequence of outputs $\{O_{(j)}(\vec{x})\}$ given by

$$O_{(j)}(\vec{x}) = (G_{\Delta t} * O_{(j-1)})(\vec{x}) \text{ for } j \ge 2 \text{ } ; \text{ } O_{(1)}(\vec{x}) = (G_{\Delta t} * I)(\vec{x}),$$

where $I(\vec{x})$ is some (square-integrable) input function. You may want to use results from the previous problem below.

- 1. Show that this recurrence constitutes a linear filter.
- 2. Show that we can equivalently write

$$O_{(j)}(\vec{x}) = (G_{j\Delta t} * I)(\vec{x})$$

where $G_{j\Delta t}(\vec{x})$ is simply $G_{\Delta t}(\vec{x})$ with Δt replaced with $j\Delta t$.

3. Show that in the limit $\Delta t \to 0$, $j \to \infty$ with $t \equiv j\Delta t$ remaining finite, the resulting function $O(t, \vec{x}) = \lim_{j \to \infty, \Delta t \to 0} O_{(j)}(\vec{x})$ satisfies the diffusion equation

$$\frac{\partial O}{\partial t} = \alpha \nabla^2 O \,,$$

with the initial condition $O(0, \vec{x}) = I(\vec{x})$, where ∇^2 is the *D*-dimensional Laplacian operator.