

Contents of this template

You can delete this slide when you're done editing the presentation

Fonts	To view this template in PowerPoint, download and install the fonts we used
Used and alternative resources	An assortment of graphic resources that are suitable for use in this presentation
Thanks slide	You must keep it so that proper credits for our design are given
Colors	All the colors used in this presentation
Icons and infographic resources	These can be used in the template, and their size and color can be edited
Editable presentation theme	You can edit the master slides easily. For more info, click here

For more info: SLIDESGO | BLOG | FAQs You can visit our sister projects:
FREEPIK | FLATICON | STORYSET | WEPIK | VIDEVO

>>>>>

Table of contents

~~~

01

#### Introduction

You can describe the topic of the section here

02

#### **Data Analysis**

You can describe the topic of the section here

03

#### **Takeaways**

You can describe the topic of the section here















#### • • • •

#### **Dataset**

Bitcoin Prices 2010 - 2024

https://www.kaggle.com/datasets/priyamchoksi/bitcoin-historical-prices-and-activity-2010-2024

Dataset Summary: Total entries 5021 Number of attributes: 8

Data Types Numerical: 6 Categorical: 2









• • • •

#### **The Goal**

Create the most accurate model of predicting Bitcoin's future price

Regression Model Problem:

Linear Regression Polynomial Regression ElasticNet







## **Preparing the Data**

**~~~~** 





#### **Cleaning**

I identified the non-numeric columns as well as missing values and removed them from the dataset



#### Sorting

The data was sorted based on the 'End' dates to make sure the data is organized chronologically



#### **Converting**

I converted the date values to datetime format using a specific function



## **Other Attributes**







## Linear Regression

Train RMSE: 278.53125674371387 Test RMSE: 264.8591679825205

• • • •







# Polynomial Regression

Train RMSE: 384.08758850204214

Test RMSE: 415.32191154327455









## ElasticNet Regression

Train RMSE: 441.365814562673 Test RMSE: 446.4429922434832

• • • •





















### **Which Model Worked Best**





The Linear regression model turned out to be the most accurate model as the RMSE values were:





The Polynomial Regression Model was the second best with an RMSE of:

**384.09 Train, 415.32 Test** 



ElasticNet ended with the worst performing results with RMSE values of:

441.37 Train, 446.44 Test .....





. . . . . . . . . . . . . . . .