```
Tim Cheeseman
CS 260-003
Summer 2014
Assignment 1 Sample Solution
```

1.10)

```
\begin{aligned} & \mathbf{f_1}(\mathbf{n}) \in \mathbf{O}(\mathbf{f_2}(\mathbf{n})) \\ & n^2 \leq c(n^2 + 1000 \cdot \mathbf{n}) \text{ with } n_0 = 0, \ c = 1 \\ & \mathbf{f_1}(\mathbf{n}) \in \mathbf{\Omega}(\mathbf{f_2}(\mathbf{n})) \\ & n^2 \geq c(n^2 + 1000 \cdot \mathbf{n}) \text{ with } n_0 = 1, \ c = \frac{1}{1001} \\ & \mathbf{f_2}(\mathbf{n}) \in \mathbf{O}(\mathbf{f_1}(\mathbf{n})) \\ & n^2 + 1000 \cdot \mathbf{n} \leq c \cdot n^2 \text{ with } n_0 = 1, \ c = 1001 \\ & \mathbf{f_2}(\mathbf{n}) \in \mathbf{\Omega}(\mathbf{f_1}(\mathbf{n})) \\ & n^2 + 1000 \cdot \mathbf{n} \geq c \cdot n^2 \text{ with } n_0 = 0, \ c = 1 \end{aligned}
```

f₁ and f₃

 $f_1(n) \notin O(f_3(n))$ $f_1(n) \notin \Omega(f_3(n))$

 $f_3(n) \notin O(f_1(n))$

 $f_3(n) \notin \Omega(f_1(n))$

 $f_3(n)$ oscillates between being a lower bound and upper bound for $f_1(n)$ and cannot be exclusively either.

f₁ and f₄

$$f_1(n) \in O(f_4(n))$$

 $f_1(n) \le c \cdot f_4(n)$ with $n_0 = 101$, c = 1

$f_1(n) \notin \Omega(f_4(n))$

There is no constant c that can make $n^2 \ge c \cdot n^3$ true for infinitely many n. As $f_4(n) = n^3$ for all n > 100, it will always dominate f_1 .

$f_{4}(n) \notin O(f_{1}(n))$

There is no constant c that can make $n^3 \le c \cdot n^2$ true for infinitely many n. As $f_4(n) = n^3$ for all n > 100, it will always dominate f_1 .

$$f_4(n)\in\Omega(f_1(n))$$

 $f_4(n) \ge c \cdot f_1(n)$ with $n_0 > 101$, c = 1

f₂ and f₃

- $f_2(n) \notin O(f_3(n))$
- $f_2(n) \notin \Omega(f_3(n))$
- $f_3(n) \notin O(f_2(n))$
- $f_3(n) \notin \Omega(f_2(n))$
- $f_3(n)$ oscillates between being a lower bound and upper bound for $f_2(n)$ and cannot be exclusively either.

f₂ and f₄

$f_2(n) \in O(f_4(n))$

 $n^2 + 1000 \cdot n \le f_4(n)$ with $n_0 = 101$, c = 1

$f_2(n) \notin \Omega(f_4(n))$

There is no constant c that can make $n^2 + 1000 \cdot n \ge c \cdot n^3$ true for infinitely many n. As $f_4(n) = n^3$ for all n > 100, it will always dominate f_2 .

$f_4(n) \notin O(f_2(n))$

There is no constant c that can make $n^3 \le c \cdot (n^2 + 1000 \cdot n)$ true for infinitely many n. As $f_4(n) = n^3$ for all n > 100, it will always dominate f_2 .

$f_4(n) \in \Omega(f_2(n))$

 $f_4(n) \ge n^2 + 1000 \cdot n$ with $n_0 = 101$, c = 1

f₃ and f₄

$f_3(n) \in O(f_4(n))$

 $f_3(n) \le c \cdot f_4(n)$ with $n_0 > 101$, c = 1

$f_3(n) \notin \Omega(f_4(n))$

There is no constant c that can make $n \ge c \cdot n^3$ true for infinitely many n. As $f_4(n) = n^3$ for all n > 100 and $f_3(n) = n$ for infinitely many odd n, f_4 will dominate f_3 for infinitely many n.

$f_{\lambda}(n) \notin O(f_{3}(n))$

There is no constant c that can make $n^3 \le c \cdot n$ true for infinitely many n. As $f_4(n) = n^3$ for all n > 100 and $f_3(n) = n$ for infinitely many odd n, f_4 will dominate f_3 for infinitely many n.

$f_4(n) \in \Omega(f_3(n))$

 $f_4(n) \ge c \cdot f_3(n)$ with $n_0 > 101$, c = 1

1.12)

a) O(n3)

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} 1 = \sum_{i=1}^{n} \sum_{j=1}^{n} n = \sum_{i=1}^{n} n^2 = n^3$$

b) **O(n³)**

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=1}^{j} 1 = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} j \le \sum_{i=1}^{n-1} n^2 \le n^3$$

c) O(n2)

Let's define a function to be the running time of the conditional: f(n, i) = 1 when i is even and f(n, i) = n when i is odd (the combination of the inner two for loops is O(n-i+i) = O(n))

The running time is $\sum_{i=1}^{n} f(n, i) = \frac{n}{2} 1 + \frac{n}{2} n = \frac{n^2 + n}{2}$ which is O(n²)

d) O(2ⁿ)

T(n) = 1 when n = 1 and $T(n) = 2 \cdot T(n-1)$ when n > 1.

$$T(n-1) = 2 \cdot 2 \cdot T(n-2)$$

$$T(n-2) = 2 \cdot 2 \cdot 2 \cdot T(n-3)$$

• • •

$$T(n-(n-1)) = 2 \cdot 2^{n-1} = 2^n$$