Exercise 1 - Computational Models - Spring 2022

Question 1

Given a Boolean function $f: \{0,1\}^n \to \{0,1\}$ and a boolean circuit C of size |C| = s that computes f, Lets proof that there existences of a boolean circuit C' that's stand with the question property.

claim 0.1. Any simple logic statement that uses \vee or \wedge before \neg can be re-form to \neg before \vee or \wedge using one additional gate

Proof. using De-Morgan law for $x, y \in \{0, 1\}$: $\neg(x \lor y) = \neg x \land \neg y$ and on the same way for $\neg(x \land y) = \neg x \lor \neg y$, we apply the same statement using extra one gate in total.

using the claim above we can intuitive say that we need to "roll down the tree" all the NOT gates, and from quick indication I can claim the following.

claim 0.2. if P have some cycle C size K that compute it \Rightarrow three is some cycle |C'| = |2K - 1| that can computes P where all the \neg gate's before any \land or \lor gates

Proof. the indication base case is given from claim 0.1, so for some Atomic P where $P_i \in \{0,1\} \Rightarrow \text{ in total } |K| \text{ simple gates we get:}$

$$\neg (P_1 \lor P_2 \lor \dots P_n) \Rightarrow \neg P_1 \land \neg P_2 \land \dots \neg P_n$$

we can notice that now we need |K| NOT gates and |K-1| of \wedge gates, and in total |K+K-1| gates. and all the \neg gate's before any \wedge gate's.

Now lets P_k be any boolean function that stand with the induction property, for some $x, y \in \{0,1\}$ lets look at:

$$X = \neg(P_k \lor x) = \neg P_K \land \neg x, Y = \neg(P_k \land y) = \neg P_K \lor \neg y$$

so in any case X, Y can be written in |2k-1| gates of P_k , additional NOT gate and one \land or \lor gate, in total |2k-1+3|=|2k+2| under the induction assumption we know that P have some |C|=K that compute it ,so C including the following \neg, \lor witch is size |K+3| and can compute X

on the same way we proof claim 0.2 we can get the same property for the \land gate, so in total for some f we can find for any appearance of \neg gate $\in C$, and each time apply De-Morgan law. based on claim 2 this new |C'| hold the property (a)(b)(c).

Question 2

For f that has a circuit C of size m over B_{ℓ} , C can be written as a binary tree with m internal nodes. Each internal node is labelled by a gate, and each leaf is labelled by a variable, for each $v \in C$ lets $L_v : \{0,1\}^k \to \{0,1\}$ be the circuit that accept language, according to Lupanov '58 theorem its can be expressed as language over DeMorgan basis, using the result of exercise 2 at Recitation 1, we know that for such L_v language there is some C that can accept it when $|C| = O(2^k)$ hence for $\forall v \in C \Rightarrow M|L_v|$ can be decided with some C_m size $O(m2^{\ell})$.

Question 3

 \Longrightarrow Lets M be an DFA such as $M=(Q,\sum,\delta,q_0,F)$ and assume that M accept some $w\in\sum^*$ i.e $\hat{\delta}_m(q_0,w)\in F$. using $\hat{\delta}_m$ definition, lets k_i be the state such as

$$\hat{\delta}_m(q_0, w) = k_n$$

$$\hat{\delta}_m(q_0, w) = \delta(\hat{\delta}_m(q_0, w_1, w_2 \dots w_n - 1), w_n) \Rightarrow k_{n-1} = \hat{\delta}_m(q_0, w_1, w_2 \dots w_n - 1)$$

follow same proses for $n-2, n-3, \ldots$ so for general k_i on the "back-word" path

$$\hat{\delta}_m(q_0, w_j) = \delta(\hat{\delta}_m(q_0, w_1, w_2 \dots w_{j-1}), w_j) \Rightarrow k_{j-1} = \hat{\delta}_m(q_0, w_1, w_2 \dots w_{j-1})$$

hence $\forall k_i \in Q$, $k_n \in F$, $k_0 = q_0$ and $\delta_m(k_{i-1}, w_i) = k_i$ for $1 \le i \le n$ so we can claim that the sequence $k_1, k_2, \dots k_n$ stand with the property of the second equivalent DFA definition.

 \Leftarrow Lets M be an DFA such as $M=(Q,\sum,\delta,q_0,F)$ and we assume that $\forall q_i \in Q$, $q_n \in F, w_0 = q_0$ and $\delta_m(q_{i-1},w_i) = q_i$ for some $w=w_1,w_2,\ldots w_n$ and $q_1,q_2,\ldots q_n$ with the same way described above

$$\delta(q_0, w_1) = q_1, \hat{\delta}_m(q_0, w_1, w_2) = \delta(\delta(q_0, w_1), w_2) = \delta(q_1, w_2) = q_2,$$

in general

$$\hat{\delta_m}(q_0, w_1, \dots, w_j) = \delta(\hat{\delta_m}(q_0, w_1, \dots, w_{j-1}), w_j) = q_j$$

$$\hat{\delta_m}(q_0, w_1, \dots, w_n) = \delta(\hat{\delta_m}(q_0, w_1, \dots, w_{n-1}), w_n) = q_n \in F$$

and we proof that both definition are equivalent

Question 4

Figure 1: DFA (a) Σ^*

Figure 2: DFA (b) $\{\epsilon, 0101\}$

Figure 3: DFA (c) $\{w | \#_1 w \mod 3 \equiv 0\}$

Question 5

Given n, Lets formalize the language

$$L_n = \{w0w_n | w \in \{0, 1\}^* \land w_n \in \{0, 1\}^{n-1}\}$$

lets present NFA $N=(Q,\Sigma,\delta,S,F)$ that accept L_n , we know that any NFA can be transform to DFA .

$$Q = \{q_0, q_1 \dots, q_n\}, \Sigma = \{0, 1\}, S = \{q_0\}, F = \{q_n\}$$

$$\delta(q_i, \sigma) = \begin{cases} \{q_0, q_1\} & \text{if } q_i = q_0 \land \sigma = 0 \\ \{q_0\} & \text{if } q_i = q_0 \land \sigma = 1 \\ \{q_{i+1}\} & \text{if } 0 < q_i < q_n \forall \sigma \in \Sigma \end{cases}$$

$$\phi \qquad \text{if } q_i = q_n \forall \sigma \in \Sigma$$

claim 0.3. N accept L_n

Proof.
$$w \in L_n \Leftrightarrow$$

$$w \in \{w0w_n | w \in \{0,1\}^* \land w_n \in \{0,1\}^{n-1}\} \Leftrightarrow \exists \hat{w} \in \Sigma^*. \exists \sigma \in \{0\}. w_n \in \{0,1\}^{n-1} \}$$

$$\Leftrightarrow \exists \hat{w} \in \Sigma^*. \exists \sigma \in \{0\}. \hat{\delta}_w(q_1, w_n) \in Q \Leftrightarrow \exists \hat{w} \in \Sigma^*. \exists \exists \delta(q_0, q_1), \hat{\delta}_w(q_1, w_n)) \in Q$$

$$\Leftrightarrow \exists \hat{w} \in \Sigma^*. \exists \hat{\delta}(q_0, q_n) \in Q \Leftrightarrow \exists \exists \dots q_i, q_j \in Q. \exists \hat{\delta}(q_0, q_n) \in F$$

$$\Leftrightarrow \delta(\hat{\delta}_w(q', q_n), \sigma) \exists q' \in Q \forall \sigma \in \Sigma. \hat{\delta}(q_0, q_n) \in F \Leftrightarrow \phi.(q_0, q_n) \in F \Leftrightarrow (q_0, q_n) \in L(N)$$
to be honest i'm not relay sure about the last few equivalence:)

Now lets show N as DFA

$$Q_m = \{ [R] | R \in Q \}, \Sigma = \{0, 1\}, \delta_0 = q_0, F_m = \{ [R] | R \cap Q \neq \emptyset \}, \delta_m([R], \sigma) = \bigcup_{q \in R} \delta(q, \sigma) \}$$

Question 5 (b)

claim 0.4. All regular languages is closed under \setminus with a any regular language.

Proof. Lets L_1 and L_2 be regular, using the regular operator we know already, we can immediately claim that following holds

$$L_1 \cap \overline{L_2} \Rightarrow L_1 \backslash L_2$$
 is regular language

Question 6

Let $A = (Q, \sum, \delta, q_0, F)$ be a DFA, and let $w_1, w_2 \in \Sigma^*$ be words such that $\hat{\delta}(q_0, w_1) = \hat{\delta}(q_0, w_2)$. Lets proof that for every word $w \in \Sigma^*$ it holds that $w_1 w \in L(A) \Leftrightarrow w_2 w \in L(A)$ now we set some q_k such as

 $\hat{\delta}(q_0, w_1) = \hat{\delta}(q_0, w_2) = q_k \in Q$. now we construct new A_1 and A_2 in the following way:

$$A_1 = (Q, \Sigma, \delta, q_0, q_k = F_1), A_2 = (Q, \Sigma, \delta, q_k, F_2 = F)$$

we can notice that $\hat{\delta}(q_0, w_1) = \hat{\delta}(q_0, w_2) \in L(A_1)$, and for some w such as $w \in L(A_2)$ we get

$$w \in L(A_2) \Leftrightarrow \hat{\delta}(q_k, w) \in F_2 \Leftrightarrow \hat{\delta}(q_k, w) \in F$$

$$\Leftrightarrow q_k \in F_1, \hat{\delta}(q_k, w) \in F$$

$$\Leftrightarrow \forall w' \in L(A_1).\hat{\delta}(\hat{\delta}(q_0, w')), w) \in F$$

$$\hat{\delta}(\hat{\delta}(q_0, w_1)), w) \in F \Leftrightarrow \hat{\delta}(\hat{\delta}(q_0, w_2)), w) \in F$$

$$w_1 w \in L(A) \Leftrightarrow w_2 w \in L(A)$$

Question 6 (b)

Let n be a number and let A be a DFA such that $L(A) = \{0^i 1^i : 0 \le i \le n\}$. now follow the hint

claim 0.5. $\hat{\delta}(q_0, 0^i) \neq \hat{\delta}(q_0, 0^i)$ for any $i \neq j$

Proof. lets assume that $\hat{q} = \hat{\delta}(q_0, 0^i) = \hat{\delta}(q_0, 0^j)$ and without any loss of generality i < j .from A definition we know that $w_i := 0^i 1^i, w_i := 0^j 1^j \in L(A)$ i.e for $\hat{\delta}(\hat{\delta}(q_0, 0^j), 1^i)$ we can get to for some $q \in F$. now lets look at

$$\hat{\delta}(q_0, w) \in F \Rightarrow \hat{\delta}(\hat{\delta}(q_0, 0^i), 1^j) = \hat{\delta}(\hat{q}, 1^i)$$

under the assuming we lets look at

$$\hat{\delta}(\hat{q}, 1^i) = \hat{\delta}(\hat{\delta}(q_0, 0^j), 1^i) = \hat{\delta}(q_0, 0^j 1^i) \in F$$

and we got an contradiction.

Hence the claim above hold for any $i \neq j$ and in total we find that A has at least n accepting state.