





. UNIVERSITÄT BERN

# Pattern Detection, Monte Carlo Simulation & ANN Applications in Vertical Two-phase CO<sub>2</sub> Flow

Hakki Karaman

08.07.2021

### Goals & Outline

**Main Goal:** Improving the accuracy of void fraction ratio estimations of bubbly flow of vertical two-phase CO<sub>2</sub> flow by using the high speed camera images

### **Outline of the presentation:**

- Improving 2D bubble detection of Shai's pipeline with geometric-based rotation invariant pattern detection algorithms
- <u>Improving 3D reconstruction of bubbles with Monte Carlo simulations and ANN</u> (artificial neural networks)
- <u>Further Ideas for the future analyses</u> of different flow regimes and experimental setup

### Why Rotation Invariant Bubble Detection?



Standard ellipse fitting algorithm finds an ellipse that minimizes vertical mean square error (MSE)

### Algebraic Error vs. Geometric Error



Fitting Algorithms finds the curve that minimizes MSE

i.e. 
$$\min_{curve} \frac{1}{n} \sum_{i=1}^{n} Error_i^2$$

Defining algebraic error vs. geometric error



Standard ellipse fitting algorithm finds an ellipse that minimizes vertical MSE

Taubin's Method for Implicit Quadrics

2D Implicit Quadric Equation 
$$\begin{bmatrix} c_0 & c_1 & c_2 & c_3 & c_4 & c_5 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \\ x^2 \\ xy \\ y^2 \end{bmatrix} = \underline{c}^T \underline{\mathbf{X}} = \mathbf{f}(\mathbf{x}, \mathbf{y}) = 0$$

Ellipse condition:  $c_4^2 - 4 \cdot c_3 \cdot c_5 < 0$ 

$$\lambda = d^2 \approx \frac{f(x,y)^2}{\|\nabla f(x,y)\|^2} = \frac{\underline{c}^T \underline{\underline{M}} \underline{c}}{\underline{c}^T \underline{\underline{N}} \underline{c}}$$

 $\lambda \coloneqq \text{Geometric MSE}$ d := Geometric RMSE

Taubin 1991 - Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations

# Taubin's Method for Implicit Quadrics

$$\underline{\underline{\mathbf{M}}}_{6\times6} := \frac{1}{n} \sum_{i=1}^{n} \underline{\mathbf{X}}_{i} \underline{\mathbf{X}}_{i}^{T} = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} 1 & x_{i} & y_{i} & x_{i}^{2} & x_{i}y_{i} & y_{i}^{2} \end{bmatrix}$$

$$\underline{\underline{N}}_{6\times6} := \frac{1}{n} \sum_{i=1}^{n} \underline{\underline{DX}}_{i} \underline{\underline{DX}}_{i}^{T} = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 2x_{i} & 0 \\ y_{i} & x_{i} \\ 0 & 2y_{i} \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 2x_{i} & y_{i} & 0 \\ 1 & 0 & 1 & 0 & x_{i} & 2y_{i} \end{bmatrix}$$

Generalized Eigenvalue Problem

$$\underline{\underline{\underline{M}}} \underline{\underline{c}} = \lambda \underline{\underline{\underline{N}}} \underline{\underline{c}}$$

There are 6 eigenvalue  $\lambda$ :

- $\lambda_{min}$  is the Geometric MSE
- Corresponding eigenvector  $\underline{c}$  to  $\lambda_{min}$  are the coefficients of the optimal ellipse

# Results with Synthetic Data



Results of Fitting Rotation Invariant Ellipse to the synthetic Data

### Rotation Invariant Bubble Detection Results

#### Before



#### After



(b)

- traditional ellipse fitting algorithm minimizes the total vertical error
- my implementation minimizes the orthogonal/ geometric error

(a)

Bubble detection pipeline result (a) with regionprops (standard ellipse fitting of MATLAB) and (b) with geometric ellipse fitting implementation

# From 2D Images to 3D Bubbles

$$Void\ fraction\ ratio = \frac{1}{\#frames} \sum_{i=1}^{\#frames} \frac{Total\ volume\ of\ the\ bubbles\ in\ frame\_i}{Volume\ of\ the\ inner\ tube\ in\ frame\_i}$$



Two-phase flow image of CO2 from David's vertical setup at CERN

## How to approximate 3D bubbles statistically?



Ellipsoid semi-axis lengths:  $R_1$ ,  $R_2$ ,  $R_3$ 2D projection ellipse major &minor axes:  $r_1$ ,  $r_2$ 

$$R_1 \ge r_1 \ge r_2 \ge R_3$$

$$Volume = \frac{4}{3}\pi R_1 R_2 R_3 \approx VolumeApprox(r_1, r_2)$$

- Monte Carlo simulations can be used to create ellipsoids take projections and solve an inverse problem to approximate volume from the projected ellipses
- Similar Monte Carlo Simulations were used from estimating galaxy shapes (Binggeli 1980) to sand grain shapes (Yan et al. 2017)

# Projection of an Ellipsoid

Ellipsoid equation: 
$$\frac{x^2}{R_1^2} + \frac{y^2}{R_2^2} + \frac{z^2}{R_3^2} = 1 \iff \underline{X}^T \underline{\underline{A}} \; \underline{X} = 1$$

where 
$$\underline{X} \coloneqq \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 and  $\underline{\underline{A}} \coloneqq \begin{bmatrix} R_1^{-2} & 0 & 0 \\ 0 & R_2^{-2} & 0 \\ 0 & 0 & R_3^{-2} \end{bmatrix}$ 

# Projection of an Ellipsoid

Ellipsoid equation: 
$$\frac{x^2}{R_1^2} + \frac{y^2}{R_2^2} + \frac{z^2}{R_3^2} = 1 \iff \underline{X}^T \underline{\underline{A}} \underline{X} = 1$$

where 
$$\underline{X} \coloneqq \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 and  $\underline{\underline{A}} \coloneqq \begin{bmatrix} R_1^{-2} & 0 & 0 \\ 0 & R_2^{-2} & 0 \\ 0 & 0 & R_3^{-2} \end{bmatrix}$ 

Projection along unit projection vector 
$$\underline{v} = \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix}$$
: 
$$\underline{X}^T \underline{\underline{B}} \, \underline{X} = 1$$
 where  $\underline{\underline{B}} \coloneqq \underline{\underline{A}} - \frac{\underline{\underline{A}} \, \underline{v} \, \underline{v}^T \underline{\underline{A}}}{\underline{v}^T \underline{\underline{A}} \, \underline{v}}$  
$$r_k = \frac{1}{\sqrt{\lambda_k}}, \, \text{k=1,2, and } \lambda_k \, \text{are eigenvalues of } \underline{\underline{B}}$$

### **Designing Monte Carlo Simulation**

0.1 to 10 Million ellipsoids with a specific projection vector were generated by

- Choosing characteristic semi-axis length randomly between minimum detectable bubble radius 0.05 mm and inner radius of the tube 4 mm
- Choosing 5 as a maximum aspect ratio of the bubbles (observation from our images)
- Choosing semi-axis lengths randomly in an interval bounded by

maximumBubbleRadius=4)

# Creating Random Unit Projection Vector

$$n_x = \cos \theta \sin \varphi$$

$$n_y = \sin \theta \sin \varphi$$

$$n_z = \cos \varphi$$

$$where \ \theta \in [0, 2\pi), \ \varphi \in [0, \pi)$$

If  $\theta$  and  $\phi$  are uniformly distributed, the unit projection vector would not be random!



# **Creating Random Unit Projection Vector**

$$n_x = \cos \theta \sin \varphi$$

$$n_y = \sin \theta \sin \varphi$$

$$n_z = \cos \varphi$$

$$where \ \theta \in [0, 2\pi), \ \varphi \in [0, \pi)$$

If  $\theta$  and  $\varphi$  are uniformly distributed, the unit projection vector would not be random!



### Creating random direction

$$\theta = 2\pi\zeta_1$$
 $\varphi = \arccos(1 - 2\zeta_2)$ 
uniformly distributed random variables:

$$\zeta_1 \zeta_2 \in [0,1]$$



### Arithmetic Mean Model with Monte Carlo

 $Mean\ Volume \approx Mean\ Volume\ Approx\_Arithmetic(r_1, r_2)$ 

$$\frac{1}{n} \sum_{i=1}^{n} \frac{4}{3} \pi R_1^{\ i} R_2^{\ i} R_3^{\ i} \approx C_{arithmetic} \frac{1}{n} \sum_{i=1}^{n} \frac{4}{3} \pi r_1^{\ i} r_2^{\ i} \frac{r_1^{\ i} + r_2^{\ i}}{2}$$





 $C_{arithmetic} \approx 0.936 \pm 6.6\%$ 

#### Blue:

coefficient for a single ellipsoid

#### Red:

### Geometric Mean Model with Monte Carlo

 $Mean\ Volume \approx Mean\ Volume\ Approx\_Geometic(r_1, r_2)$ 

$$\frac{1}{n} \sum_{i=1}^{n} \frac{4}{3} \pi R_1^{\ i} R_2^{\ i} R_3^{\ i} \approx C_{geometric} \frac{1}{n} \sum_{i=1}^{n} \frac{4}{3} \pi r_1^{\ i} r_2^{\ i} \frac{\sqrt{r_1^{\ i} r_2^{\ i}}}{2}$$





 $C_{geometric} \approx 0.961 \pm 8.1\%$ 

#### Blue:

coefficient for a single ellipsoid

#### Red:

### Harmonic Mean Model with Monte Carlo

 $Mean\ Volume \approx MeanVolumeApprox\_Harmonic(r_1, r_2)$ 

$$\frac{1}{n} \sum_{i=1}^{n} \frac{4}{3} \pi R_1^{\ i} R_2^{\ i} R_3^{\ i} \approx C_{harmonic} \frac{1}{n} \sum_{i=1}^{n} \frac{4}{3} \pi r_1^{\ i} r_2^{\ i} \frac{2r_1^{\ i} r_2^{\ i}}{r_1^{\ i} + r_2^{\ i}}$$



 $C_{harmonic} \approx 0.988 \pm 9.6\%$ 

#### Blue:

coefficient for a single ellipsoid

#### Red:

### L2 Mean Model with Monte Carlo

 $Mean\ Volume \approx Mean\ Volume\ Approx\_L2(r_1, r_2)$ 

$$\frac{1}{n} \sum_{i=1}^{n} \frac{4}{3} \pi R_1^{i} R_2^{i} R_3^{i} \approx C_{L2} \frac{1}{n} \sum_{i=1}^{n} \frac{4}{3} \pi r_1^{i} r_2^{i} \frac{\sqrt{(r_1^{i})^2 + (r_2^{i})^2}}{\sqrt{2}}$$



$$C_{L2} = 0.915 \pm 5.2\%$$

#### Blue:

coefficient for a single ellipsoid

#### Red:

### Most Robust: L2 Mean Model

Minimum Bins Fluctuation (L2 Mean Model with  $\pm 5.2\%$ )  $\Leftrightarrow$  The most robust for changing bubble sizes

 $Mean\ Volume \approx Mean\ Volume\ Approx\_L2(r_1, r_2)$ 

$$\frac{1}{n} \sum_{i=1}^{n} \frac{4}{3} \pi R_1^{\ i} R_2^{\ i} R_3^{\ i} \approx 0.9143 \frac{1}{n} \sum_{i=1}^{n} \frac{4}{3} \pi r_1^{\ i} r_2^{\ i} \frac{\sqrt{(r_1^{\ i})^2 + (r_2^{\ i})^2}}{\sqrt{2}}$$

# **Artificial Neural Networks (ANN)**

- Training ANN with 2 inputs  $(r_1, r_2)$  to estimate 1 output (volume) would provide more sophisticated functions and more accurate results
- 10 Million data points, Training with Levenberg-Marquardt Algorithm
   70% training, 15% testing, 15% validation

 $Volume \approx VolumeApprox(r_1, r_2)$  with R = 0.9484 (Regression R value > 0.93 indicates strong correlation)



MATLAB nftool - Network Architecture

# **Artificial Neural Networks (ANN)**



100 k data points

L2-norm Error: 0.1462%

ANN Error: 4.5·10<sup>-4</sup>%

ANN will perform significantly better then other models if there are only smaller bubbles or bigger bubbles

As a next step, big dataset of  $(r_1, r_2)$  of high-speed camera images can be used to make Monte Carlo simulation fully data driven

### Outlook: Other Flow Regimes with Median Filter

- Median filter can be used on high-speed camera images to understand flow characteristic
- One can implement classification based on training CNN with median filtered images and Power Spectral Density (PSD)



Ripa et Al. 2014, Typical bubble shape estimation in two-phase flow using inverse problem techniques

## Outlook: Laser Attenuation Technique

$$I = I_0 \times e^{-\mu d} \qquad I_{norm} = \frac{I - I_l}{I_g - I_l} \qquad \alpha = \frac{1}{N} \sum_{n=1}^{N} I_{norm}$$

I,  $I_g$ ,  $I_l$ : Intensities of the laser beams passing through two–phase flowor pure liquid or gas  $\alpha$ : Void Fraction Ratio



Figure 1. The structure of the sensing configuration.



Figure 5. Photo of the observation window.

Wu et al. 2019, Gas Void Fraction Measurement of Gas-Liquid Two-Phase CO2 Flow Using Laser Attenuation Technique

### References

- Taubin 1991 Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation
- 2. Binggeli 1980 On the Intrinsic Shape of Elliptical Galaxies
- Yan et al. 2017 Inferring 3D particle size and shape characteristics from projected 2D images Lessons learned from ellipsoids
- 4. Ripa et Al. 2014, Typical bubble shape estimation in two-phase flow using inverse problem techniques
- 5. Wu et al. 2019, Gas Void Fraction Measurement of Gas-Liquid Two-Phase CO2 Flow Using Laser Attenuation Technique

# THANK YOU ALL!