Задача А. Кольцевые гонки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Участники кольцевых гонок на одноколесных велосипедах нумеруются числами от 1 до N. Им предстоит проехать K кругов и победителем является тот, кто проехал их раньше всех. Участники стартуют одновременно с некоторой линии, которая называется конец круга. Каждый раз, когда участник пересекает эту линию, его номер фиксируется автоматической системой с высокой точностью (то есть два участника не могут пересечь эту линию одновременно). После прохождения K кругов эта же линия является финишной прямой. K сожалению, некоторые участники сходят с дистанции и проезжают меньшее количество кругов.

Организаторы соревнования забыли число K и стесняются спросить его у участников. Помогите организаторам определить победителя соревнования, используя только записи с системы фиксации. Гарантируется, что хотя бы один из участников преодолел необходимые K кругов и никто из участников не проехал более K кругов. Первая фиксация номера участника происходит после прохождения первого круга.

Формат входных данных

В первой строке задаются целые числа N и M ($1 \le N \le 100$, $1 \le M \le 10000$) — количество участников соревнования и записей с системы фиксации соответственно.

Во второй строке задается M целых чисел от 1 до N – номера участников в том порядке, как они фиксировались системой.

Формат выходных данных

Выведите одно число — номер победителя.

Примеры

стандартный ввод	стандартный вывод
3 4	3
1 3 3 1	
3 5	1
1 1 2 3 1	

Замечание

Система оценки: Решения, верно работающие при $N\leqslant 10,\, M\leqslant 20$ будут получать не менее 50% баллов.

В первом примере участники 1 и 3 проехали 2 круга, но после последнего круга впереди был участник номер 3, поэтому он и является победителем. Участник номер 2 сошёл с дистанции на первом круге.

Во втором примере участник 1 единственный проехал 3 круга и является победителем. Участники 2 и 3 сошли на втором круге.

Задача В. Гости

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вася переехал из своего родного города и очень скучает по старым друзьям. К сожалению, Вася снимает маленькую квартиру и одновременно в гости к нему может приехать только один друг.

Каждый друг сказал Васе два числа А и В - с какого по какой день он может приехать в гости. Каждый друг приезжает и уезжает в полдень. Каждый друг может приехать к Васе только один раз и остаться у него на несколько дней. Вася хотел бы, чтобы суммарное количество дней, когда у него в гостях есть кто-нибудь из друзей, было максимальным. Помогите ему определить даты приезда для каждого из друзей так, чтобы они не пересекались (допустима ситуация, что в один день один из друзей уезжает, а другой - уезжает) и суммарное время, когда у Васи в гостях есть кто-то из друзей, было максимальным.

Формат входных данных

В первой строке записаны целое число N $(1 \le N \le 100000)$ - количество друзей Васи.

В следующих N строках записано по два целых числа A_i и B_i (оба числа от 1 до 10^9) - возможное время приезда i-го друга.

Формат выходных данных

Выведите N пар чисел L_i и R_i - номера дней, в которые приедет и уедет і-й друг соответственно $(A_i \leqslant L_i \leqslant R_i \leqslant B_i)$. Если і-го друга приглашать не нужно, выведите пару чисел -1 -1. Если правильных ответов несколько - выведите любой из них.

Примеры

стандартный ввод	стандартный вывод
3	1 2
1 2	3 4
2 4	5 5
3 5	
3	-1 -1
2 3	1 4
1 4	5 5
3 5	

Замечание

Система оценки: Решения, верно работающие при $N\leqslant 10$ и временами приезда от 1 до 100, будут оцениваться не менее чем в 50% баллов.

Задача C. Breaking News

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Жизнь завода по производству олимпиадных задач монотонна и однообразна: каждый день происходит одно и то же, вечера похожи как две снежинки и каждое утро всё начинается сначала - ничего не меняется на заводе по производству олимпиадных задач.

В частности, давно известно, когда в течение дня пара сотрудников встречается между собой. При встрече сотрудники делятся друг с другом новостями.

Утром перед работой сотрудник номер 1 узнал нежелательную новость. Конечно же, он делится с ней при встрече со всеми остальными сотрудниками и они тоже узнают новость и начинаются делиться ей с другими. Если встречаются два сотрудника и один из них знает новость, то начиная с этого момента второй из них также знает новость. Ни один сотрудник не может встречаться с двумя или более сотрудниками одновременно (из соображений секретности). Пара сотрудников может встречаться несколько раз в течение дня.

Вы можете помешать ровно одной встрече за весь день. Выберите такую встречу, отмена которой приведёт к тому, что как можно меньше сотрудников завода узнают новость.

Формат входных данных

В первой строке входного файла задано два целых числа N (2 $\leqslant N \leqslant 1000$) и D (1 $\leqslant D \leqslant 100000$) — количество сотрудников и встреч соответственно.

В следующих D строках заданы описания встреч. Каждое описание встречи состоит из трех чисел A_i , B_i и T_i ($1 \le A_i$, $B_i \le N$, $1 \le T_i \le 10^9$) — пара номеров сотрудников и время встречи.

Формат выходных данных

Выведите описание встречи, которую необходимо отменить в том же формате, который используется во входных данных. Если ответов несколько — выведите любой.

Пример

стандартный ввод	стандартный вывод
4 5	1 2 4
2 3 1	
1 2 4	
4 2 110	
2 3 5	
3 4 4	

Замечание

Решения, верно работающие при $D \leqslant 1000$, будут оцениваться не менее чем в 50% баллов

Задача D. Пирамида

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Великий фараон Флатландии недавно взошёл на престол и озаботился вопросом строительства пирамиды для себя.

Флатландия — двумерная страна, у неё есть только длина и высота. Для строительства пирамиды был выделен участок длиной в N стандартных блоков. Каждый единичный отрезок был обследована геологами, которые выяснили количество стандартных блоков 1 на 1, которые могут быть уложены в столбик на эту клетку без угрозы проседания грунта.

Пирамидой называется фигура, состоящая из блоков 1 на 1, такая, что каждый горизонтальный слой представляет собой непрерывный отрезок. Под каждым блоком должен находится блок предыдущего слоя или земля (в нижнем слое). Количество блоков в каждом столбце не должно превосходить грузоподъёмности клетки, на которой находится этот столбец.

Фараон хочет, чтобы его пирамида состояла из как можно большего числа блоков. Помогите ему определить это число.

Формат входных данных

В первой строке входных данных задано целое число N ($1 \le N \le 300000$) — длина участка, выделенного для строительства пирамиды.

Во второй строке задано N целых чисел W_i (0 $\leqslant W_i \leqslant 10^9$) — грузоподъемности отрезков единичной длины.

Формат выходных данных

Выведите максимальное количество блоков, из которого может быть построена пирамида.

Пример

стандартный ввод	стандартный вывод
6	8
7 0 1 3 2 3	

Замечание

Решения, верно работающие при $N \leqslant 5000$, будут оцениваться не менее чем в 50% баллов