

ANAФOPA PROJECT

Συστήματα Ανάκτησης Πληροφοριών

ANASTASIOS ZACHARIOUDAKIS (3170048) – NIKOLAOS VATTIS (3170203)

9/5/2021

Φαση 1: Baseline (Συλλογη LISA)

BHMATA 1,2

Για τη προεπεξεργασια του κειμένου φτιαξαμε τη κλαση FileParser η οποια κανει parse τα τα αρχεια της συλλογης, τα οποια οριζονται στη μεταβλητη txtfile της Baseline, την οποια καλουμε 8 φορες για κάθε ξεχωριστο αρχειο τα από documents. Οποτε ο FileParser κανει parse το αρχειο από documents και ξεχωριζει κάθε doc και κάθε field του doc φτιαχνοντας αντικειμενα MyDoc.

Επειτα, επιστρεφει στην List<MyDoc> docs της baseline όλα τα documents του txt και με την indexDoc() γραφει στο ευρετηριο τα documents, ενώ με την CREATE_OR_APPEND ειτε δημιουργουμε το ευρετηριο ειτε προσθετουμε στο ευρετηριο τα επομενα.

Τελος, εχουμε επιλεξει ως συναρτηση ομοιοτητας την Classic Similarity() η οποία υλοποιει το vector space μοντελο και ως αναλυτη τον English Analyzer().

Σημειωτέον ότι στην υλοποιηση μας στην Baseline, κανουμε run μονο το 1° μερος για κάθε αρχειο μεχρι να ολοκληρωθει το ευρετηριο, δηλαδη εχουμε σε σχολια τον κωδικα των επομενων βηματων της εργασιας, ενώ αντιστροφα για κανουμε το αναποδο για να τρεξουμε τα υπολοιπα μερη της εργασιας, δηλαδη το (2.) parse των queries και το (3. search) matching.

- *Ακομη, υπαρχει η κλαση ReadIndex() με την οποια μπορουμε να κανουμε print ολοκληρο το index.
- *Επίσης, εχουν αφαιρεθει ολες οι κενες τελευταιες γραμμες από όλα τα αρχεια LISA.

BHMATA 3,4

Στη συνεχεια υλοποιησαμε την κλαση QueriesParser την οποια καλουμε για να ξεχωρισει τα queries του αρχειου LISA.QUE και να αποθηκευσει κάθε query ξεχωριστα στην List<QueryDoc> queries οπου το queryDoc είναι ένα αντικειμενο query το οποιο αποτελειται από το νουμερο του και το περιεχομενο του.

Επειτα κανουμε το matching με την συναρτηση search για το κάθε query, επιλεγοντας το **hitsPerPage** το οποιο είναι το k μας, το οποιο το τρεχουμε 3 φορες για k=20,30,50 και αποθηκευουμε τα αποτελεσματα στα αρχεια results20.txt, results50.txt.

Επισης εχουμε υλοποιησει την κλαση RelConverter() η οποια μετατρεπει το αρχειο LISA.REL σε ένα αρχειο qrel.txt το οποιο βρισκεται στη μορφη που χρειαζεται το trec_eval.

Παρακάτω παραθετουμε τον πινακα με τα αποτελεσματα του trec_eval για τις διαφορες τιμες του \mathbf{k} :

1. για k=20:	1. για k=30:	1. για k=50:
2. runid	2. runid	2. runid
all STANDARD	all STANDARD	all STANDARD
3. num_q	3. num_q	3. num_q
all 18	all 18	all 18
4. num_ret	4. num_ret	4. num_ret
all 308	all 458	all 753
5. num_rel	5. num_rel	5. num_rel
all 225	all 225	all 225
6. num_rel_ret	6. num_rel_ret	6. num_rel_ret
all 42	all 43	all 50
7. map	7. map	7. map
all 0.1139	all 0.1150	all 0.11 7 8
8. gm_map	8. gm_map	8. gm_map
all 0.0028	all 0.0043	all 0.0045
9. Rprec	9. Rprec	9. Rprec
all 0.1556	all 0.1556	all 0.1556
10. bpref	10. bpref	10. bpref
all 0.1768	all 0.2045	all 0.2235
11. recip_rank	11. recip_rank	11. recip_rank
all 0.3988	all 0.4010	all 0.4010
<pre>12. iprec_at_recall_o</pre>	<pre>12. iprec_at_recall_o</pre>	<pre>12. iprec_at_recall_o</pre>
.00 all 0.4222	.00 all 0.4244	.00 all 0.4244
13. iprec_at_recall_o	13. iprec_at_recall_o	<pre>13. iprec_at_recall_o</pre>
.10 all 0.3006	.10 all 0.3028	.10 all 0.3028
14. iprec_at_recall_o	<pre>14. iprec_at_recall_o</pre>	<pre>14. iprec_at_recall_o</pre>
.20 all 0.2196	.20 all 0.2218	.20 all 0.2347
15. iprec_at_recall_o	<pre>15. iprec_at_recall_o</pre>	<pre>15. iprec_at_recall_o</pre>
.30 all 0.1918	.30 all 0.1940	.30 all 0.2023
16. iprec_at_recall_o	<pre>16. iprec_at_recall_o</pre>	<pre>16. iprec_at_recall_o</pre>
.40 all 0.1204	.40 all 0.1226	.40 all 0.1226
17. iprec_at_recall_o	17. iprec_at_recall_o	<pre>17. iprec_at_recall_o</pre>
.50 all 0.0833	.50 all 0.0856	.50 all 0.1011
18. iprec_at_recall_o	18. iprec_at_recall_o	<pre>18. iprec_at_recall_o</pre>
.60 all 0.0556	.60 all 0.0556	.60 all 0.0556
19. iprec_at_recall_o	19. iprec_at_recall_o	<pre>19. iprec_at_recall_o</pre>
.70 all 0.0000	.70 all 0.0000	.70 all 0.0000
20. iprec_at_recall_o	20. iprec_at_recall_o	<pre>20. iprec_at_recall_o</pre>
.80 all 0.0000	.80 all 0.0000	.80 all 0.0000

21. iprec_at_recall_o	21. iprec_at_recall_o	21. iprec_at_recall_o
.90 all 0.0000	.90 all 0.0000	.90 all 0.0000
22. iprec_at_recall_1	<pre>22. iprec_at_recall_1</pre>	<pre>22. iprec_at_recall_1</pre>
.00 all 0.0000	.00 all 0.0000	.oo all o.oooo
23. P_5 all	23. P_5 all	23. P_5 all
0.2444	0.2444	0.2444
24. P_10	24. P_10	24. P_10
all 0.166 7	all 0.166 7	all 0.166 7
25. P_15 all	25. P_15 all	25. P_15 all
0.1370	0.1370	0.1370
26. P_20	26. P_20	26. P_20
all 0.1167	all 0.116 7	all 0.116 7
27. P_30	27. P_30	27. P_30
all 0.0 77 8	all 0.0 7 96	all 0.0 7 96
28. P_100	28. P_100	28. P_100
all 0.0233	all 0.0239	all 0.0278
29. P_200	29. P_200	29. P_200
all 0.011 7	all 0.0119	all 0.0139
30. P_500	30. P_500	30. P_500
all 0.0047	all 0.0048	all 0.0056
31. P_1000	31. P_1000	31. P_1000
all 0.0023	all 0.0024	all 0.0028
32. runid	32. runid	32. runid
all STANDARD	all STANDARD	all STANDARD
33. num_q	33. num_q	33. num_q
all 18	all 18	all 18