Minimax-Optimal Semi-supervised Regression

Geodesic kNN on Unknown Manifolds

Ziyue Chu & Keng Xu

University of Edinburgh

Introduction

Previous **defects** on semi-supervised regression and classification methods [1][2]:

- Unlabeled data is not useful with unknown manifolds.
- Require infinity labeled samples.
- The results only achieve asymptotic minimax rate.

Objectives:

- How to use unlabeled data to help the learning process?
- How to design statistically sound and computationally efficient methods with unlabeled data?

Methodology

Algorithm 1 Geodesic KNN

Define: Data space: $\mathcal{X} = \mathcal{L} \cup \mathcal{U}$, where $\mathcal{L} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ are n labeled instances, $\mathcal{U} = \{\mathbf{x}_j\}_{j=1}^m$ are m unlabeled instances.

Define: Distance function: $d(\mathbf{x}, \mathbf{x}')$.

Step 1: Construct an undirected graph G whose vertices are all the labeled and unlabeled points, with edge weight $w(\mathbf{x}, \mathbf{x}') = d(\mathbf{x}, \mathbf{x}')$ connecting each pairs of points \mathbf{x}, \mathbf{x}' .

Step 2: Compute the shortest-path graph distance $d_G(\mathbf{x}_i, \mathbf{x}_j), \forall \mathbf{x}_i \in \mathcal{L}$ and $\mathbf{x}_i \in \mathcal{L} \cup \mathcal{U}$.

Step 3: Apply standard metric-based supervised learning methods (e.g. kNN) with d_G .

Step 4: Geodesic kNN regressor updates:

$$\hat{f}(\mathbf{x}_i) := \frac{1}{|kNN(\mathbf{x}_i)|} \sum_{(\mathbf{x}_j, y_j) \in kNN(\mathbf{x}_i)} y_j.$$

Step 5: Geodesic kNN predictor:

$$\hat{f}(\mathbf{x}) := \hat{f}(\mathbf{x}^*) = \hat{f}\left(\underset{\mathbf{x}' \in \mathcal{L} \cup \mathcal{U}}{\operatorname{arg min}} ||\mathbf{x} - \mathbf{x}'||\right).$$

Claims

- If Regressor $\hat{f} \in \text{Lipschitz function}$:
- ullet Geodesic kNN regressor error expectation is up-bounded and \hat{f} is a minimax-optima.

Theorem 1.

$$\mathbb{E}\left[\left(\hat{f}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] \le cn^{-\frac{2}{2+d}} + c'e^{-c''(n+m)}f_D^2$$

Proof:

$$\mathbb{E}\left[\left(\hat{f}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \mathbb{E}\left[\left(\hat{f}(\mathbf{x}^{*}) - f(\mathbf{x})\right)^{2}\right]$$

$$\leq 2\mathbb{E}\left[\left(\hat{f}(\mathbf{x}^{*}) - f(\mathbf{x}^{*})\right)^{2}\right] + 2\mathbb{E}\left[\left(f(\mathbf{x}^{*}) - f(\mathbf{x})\right)^{2}\right]$$

Lemma 1. Second term is up-bounded:

$$\mathbb{E}\left[(f(\mathbf{x}^*) - f(\mathbf{x}))^2 \right] \le \frac{2L^2}{(1 - e^{-Q})^2} n^{-\frac{2}{2+d}} + \frac{e^{-QR^d(n+m)} f_D^2}{e^{-QR^d(n+m)}}$$

Lemma 2. First term is up-bounded:

$$\mathbb{E}\left[\left(\hat{f}(\mathbf{x}^*) - f(\mathbf{x}^*)\right)^2\right] \le 4 c_a e^{-c_b \mu_{min}(n+m)} f_D^2 + \left(2L^2 \left(\frac{1+\delta}{1-\delta}\right)^2 c_1(\mathcal{M}, \mu, \delta) + \sigma^2\right) n^{-\frac{2}{2+d}}$$

Algorithm Implemention

Algorithm 2 Computation of Geodesic KNN [with faster priority queue handling]

Input: An undirected weighted graph G = (V, E, w) and a set of labeled vertices $\mathcal{L} \in V$.

Output: For every $v \in V$ a list kNN[v] with the k nearest labeled vertices to v and their distances.

 $Q \leftarrow \text{PriorityQueue}()$

for $v \in V$ do

 $[Q_v \leftarrow PriorityQueue()]$

 $kNN[v] \leftarrow \text{Empty-List}(), S_v \leftarrow \phi$

if $v \in \mathcal{L}$ then

insert $(Q, (v, v) [(Q, v) \& (Q_v, v)], prio = 0)$

while $Q \neq \phi$ do

(seed, v0, dist) [(v0, dist) & (seed, dist)] \leftarrow pop-minimum(Q

 $[Q_{v_0}]$), $S_{v_0} \leftarrow S_{v_0} \cup \{seed\}$

if length(kNN[v_0]); k (and $Q_{v_0} \neq \phi$) then append (seed, dist) to kNN[v_0]

[(newseed, newdist) $\leftarrow \min(Q_{v_0})$ & insert]

for all $v \in \text{neighbors}(v_0)$ do

if length(kNN[v]); k and seed $\notin S_v$ then

decrease-or-insert(Q, (seed, v), [Q_v , seed & Q,v] priority = dist + $w(v_0, v)$)

Computational Efficiency

The computational efficiency comparison between the two algorithms are shown below:

Algorithms	Runtime
Algorithm 2.1	$O(k E + N_p log V)^{1}$
Algorithm 2.2	O(k E + kVlog V)

Contact Information:

School of Informatics
University of Informatics
10 Crichton St, Edinburgh EH8 9AB, UK

Phone: (+44) 131 650 2957

Email: zero-cooper@foxmail.com

10000 15000 20000 25000 30000

○ • Algorithm 1 (k=1)

● Algorithm 2 (k=1)

← ♦ Algorithm 1 (k=7)

25000

→ Algorithm 2 (k=7)

20000

Number of unlabeled locations

Figure 1: Geodesic 1NN and 7NN with Algorithms 2.1 and 2.2. (Top: 1600 labeled

Number of unlabeled locations

Labeled grid	n	kNN	GNN	Laplacia
1.5m	73	1.49m	<i>1.11</i> m	1.36m
2.0m	48	2.27m	<i>1,49</i> m	1.65m
3.0m	23	3.41m	2.41m	2.79m

Table 1: Mean accuracy of kNN, geodesic kNN and Laplacian eigenbasis regression on the real data set. [3]

GNN	Laplacian	graph buil
2.3s	7.6s	9s
7s	195s	76s
56s	114min	66min
	2.3s 7s	

Table 2: Runtime of Geodesic 7-NN vs. time to com-pute Laplacian eigenvectors. [3]

Facial Pose Estimation

Figure 3: Mean prediction error for the left-rightangle of the face. [3]

locations on 2m grid; Bottom: 400 labeled on 4m grid)

150 -----

Regressor Used

Applications

- K nearest neighbor regressor (KNN)
- Geodesic KNN (GNN)
- Semi-supervised Laplacian regressor

Indoor Localization Using Wi-Fi Signals

Figure 2: Median localization error vs. number of unlabeled points with 1600 labeled points placed on a regular simulated grid with a side length of 2m. [3]

References

- [1] Peter J. Bickel and Bo Li. Local polynomial regression on unknown manifolds. *InTomography,Networks and Beyond, pages 177186. Institute of Mathematical Statistics*, 2007.
- [2] John Lafferty and Larry Wasserman. Statistical analysis of semisupervised regression. *InNeural Information Processing Systems* (NIPS), 2007.
- [3] Amit Moscovich, Ariel Jaffe, and Boaz Nadler. Minimax-optimal semi-supervised regression on unknown manifolds. *arXiv:1611.02221*, March 2017.

Acknowledgements

We would like to thank Amit Moscovich, Ariel Jaffe, and Boaz Nadler for methodology, algorithm, and empirical results provided in "Minimax-optimal semi-supervised regression on unknown manifolds".