Lecture 17

theoren: Let A be any uxn matrix. Then The induced 2-norm of A'U $\|AU_2 = \max_{j} (\lambda_j (A^*A))^{j}$ when $\lambda_{ij}(A^*A)$ one the eigenshus of A^*A . $||A||_2 = \max_{\substack{\underline{\mathcal{I}} \in C^1 \\ \text{sub th} \\ ||\underline{\mathcal{I}}|_2 = 1}} (||A\underline{\mathcal{I}}||_2)$ = mex \(\langle A2, A2) - Standard inner product $=\max_{|\underline{x}|=1}\sqrt{\langle A^{*}(\underline{A}\underline{x}),\underline{x}\rangle} \quad (:\langle \underline{x},\underline{A}\underline{y}\rangle$ $\langle A_{2}, \underline{y} \rangle$ = \ mex \ \ A*A1, x \ $= \sqrt{\frac{n \times x}{2 \neq 0}} < A^*A^2, x$ $= \sqrt{\frac{2}{2}} + \sqrt{\frac{2}{2}} = \sqrt{\frac{2}{2}}$ = Than J. [A*A) (by feilghu thm) $= \max_{j} \sqrt{\lambda_{j} (A_{A}^{*})}$

Theorem! Suppose
$$A_{nxn}$$
 is an invertible matrix. Then $\|A^{-1}\| = \frac{1}{\min \left(\|Ax\| \right)}$

proof:

Let $Ax = y$
 $\Rightarrow x = A^{-1}y$

Now $\min \|Ax\| = \min \left(\frac{\|Ax\|}{\|x\|} \right)$
 $= \min \left(\frac{\|Ax\|}{\|x\|} \right)$
 $= \min \left(\frac{\|y\|}{\|A^{-1}y\|} \right)$
 $= \min \left(\frac{\|y\|}{\|x^{-1}y\|} \right)$
 $= \min \left(\frac{\|y\|}{\|x^{-1}y\|} \right)$

$$=\frac{1}{\|A^{-1}\|}$$

An induced NAII represents the maximum entend to which a vector on the cent sphere can be strutched by A & __ meaning NAIII where the entend to which a non-singular matrix A' can be shrink vectors on the unit sphere

De Composition of metrices

- · QR-decomposition.
- . Cholinky de comprosition
- . Singular value de composition.

Def: Householder transformation: Let $w \in \mathbb{C}^n$ be a unit votor. ie, |w| =1. Throughout ||- || is 1 4 1 = / [he] 2 + --+ (wen) 2 A matrix P_{nxn} over I of the form $P = I - 2 \underline{\omega} \underline{\omega}^*$ is called a howeholder transformation. Note that with = | w| = 1 Anither names: elementary Hermitian matrix

Elementary raflector.

Properties P is a Hermitian matrix. is, p*=p.

$$P^{*}=\left(I-2 \omega \omega^{*}\right)^{*}$$

$$= I^{*}-2\left(\omega \omega^{*}\right)^{*}$$

$$= I-2\left(\omega^{*}\right)^{*}\omega^{*}$$

$$P^{*}P = PP = (I - 2 \cup \omega^{*}) (I - 2 \cup \omega^{*})$$

$$= I - 2 \cup \omega^{*} - 2 \cup \omega^{*} + 4 (\cup \omega^{*}) (\cup \omega^{*})$$

$$= I - 4 \cup \omega^{*} + 4 \cup (\omega^{*} \cup \omega) \cup^{*}$$

$$= I - 4 \cup \omega^{*} + 4 \cup (1) \cup^{*}$$

$$= I - 4 \cup \omega^{*} + 4 \cup (1) \cup^{*}$$

$$= I - 4 \cup \omega^{*} + 4 \cup (1) \cup^{*}$$

$$= I - 4 \cup \omega^{*} + 4 \cup (1) \cup^{*}$$

$$= I - 4 \cup \omega^{*} + 4 \cup (1) \cup^{*}$$

$$= I - 4 \cup \omega^{*} + 4 \cup (1) \cup^{*}$$

$$|| P \underline{\lambda} ||^{2} = \langle P \underline{\lambda}, P \underline{\lambda} \rangle$$

$$= (P \underline{\lambda})^{*} (P \underline{\lambda})$$

$$= (P \underline{\lambda})^{*} (P \underline{\lambda})$$

$$= (P \underline{\lambda})^{*} P \underline{\lambda}$$

Theorem! — Given a non-zero vertor $\underline{x} = (\overline{x}_1, -, \overline{x}_n)$ in \mathbb{R}^n (or in \mathbb{C}^n), there exists a householder transportmention $P = I - 2 \omega \omega^*$ of Nize h for None $\omega \in \mathbb{R}^n$, $\omega^* \omega = 1$, such that $P\underline{x} = \alpha \ \underline{e}_1 = (1,0,--,0) \in \mathbb{R}^n$.

 $\frac{\text{prof}}{} - \text{ Let } m = ||\underline{x}|| = \sqrt{|\eta_1|_{+\cdots+|x_n|}^2}$

we need to find a unit Neutor we satisfying all the conditions of the Hum.

Now 11211=11212 = 11 x e1 1 = 1x1211e11=1x12

Let $\underline{w} = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_h \end{pmatrix}$ of $P = I - 2 \underline{\omega} \underline{\omega}^*$.

Now P2 = <e1

$$\Rightarrow \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} - 2 \begin{pmatrix} \omega_{1} \omega^{2} \frac{1}{2} \\ \omega_{2} \omega^{2} \frac{1}{2} \\ \omega_{1} \omega^{2} \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \pm \omega_{1} \\ \omega_{1} \omega^{2} \frac{1}{2} \\ \omega_{1} \omega^{2} \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \pm \omega_{1} \\ \omega_{1} \omega^{2} \frac{1}{2} \\ \omega_{1} \omega^{2} \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \pm \omega_{1} \\ \omega_{1} \omega^{2} \frac{1}{2} \\ \omega_{1} \omega^{2} \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \pm \omega_{1} \\ \omega_{1} \omega^{2} \frac{1}{2} \\ \omega_{1} \omega^{2} \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \pm \omega_{1} \\ \omega_{1} \omega^{2} \frac{1}{2} \\ \omega_{1} \omega^{2} \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \pm \omega_{1} \\ \omega_{1} \omega^{2} \frac{1}{2} \\ \omega_{1} \omega^{2} \frac{1}{2} \\ \omega_{1} \omega^{2} \frac{1}{2} \\ \omega_{2} \omega^{2} \omega^{2} \\ \omega_{1} \omega^{2} \omega^{2} \\ \omega_{2} \omega^{2} \omega^{2} \\ \omega_{3} \omega^{2} \omega^{2} \\ \omega_{1} \omega^{2} \\ \omega_{2} \omega^{2} \omega^{2} \\ \omega_{3} \omega^{2} \omega^{2} \\ \omega_{3} \omega^{2} \omega^{2} \\ \omega_{3} \omega^{2} \omega^{2} \\ \omega_{3} \omega^{2} \\ \omega_{3} \omega^{2} \omega^{2} \\ \omega_{3} \omega^{2} \\ \omega_{3} \omega^{2} \\ \omega_{3} \omega^{2} \\ \omega_{3} \omega^{2} \\ \omega^{2} \omega^$$

Now
$$|| \underline{\omega} || = 1 \Rightarrow w_1^2 + \dots + w_n^2 = 1$$

$$\Rightarrow \left(\frac{\alpha_1 + m}{2q}\right)^2 + \frac{\alpha_2^2}{4q^2} + \dots + \frac{\alpha_n^4}{4q^2} = 1$$
(from (4))

$$\Rightarrow (x_1 + m) + x_2 + \dots + x_n = 4 q^2$$

$$\Rightarrow x_1^2 + 2m x_1 + m^2 + x_2^2 + \dots + x_n^2 = 4 q^2$$

$$\Rightarrow + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2 + m^2 + m^2 = 4 q^2$$

$$\Rightarrow 4 + 2m x_1 + m^2 + m^2$$

Let
$$U = \begin{pmatrix} x_1 + w \\ x_2 \end{pmatrix}$$
.

 $\frac{bo}{2q} = \frac{1}{2q} \underline{y}$.

Thus $P = I - 2 \underline{w} \underline{w}^{2}$

$$= I - \frac{2}{4q^2} \underline{y} \underline{y}^{4}$$

$$P = I - \frac{1}{2q^2} \underline{y} \underline{y}^{4}$$

Where $u = \begin{pmatrix} x_1 + w \end{pmatrix}$

m=11311

where
$$u = \begin{pmatrix} x_1 + m \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

 $2q_1^2 = m \left(m + Mgn(x_1) x_1\right)$ $X = f m = - Mgn(x_1) || x ||$

check that Pn=xg.