Udine, 9 luglio 2018

- 1. Sia $\mathcal{F} = \mathcal{F}(2, t, p_{max}, p_{min})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi t, p_{max}, p_{min} in modo che $p_{max} = p_{min}, realmin = 1/32$ e gli elementi positivi siano 72. Calcola realmax.
 - Definisci in generale la precisione di macchina u e determina quella di \mathcal{F} .
 - Sia $x = (0.0\overline{10})_2$ Determina $\tilde{x} = fl(x) \in \mathcal{F}$.
 - Sia $y = (11.\overline{10})_2$. Determina $\tilde{y} = fl(y) \in \mathcal{F}$.
 - Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10 e calcola gli errori relativi.
 - Calcola $\tilde{z} = \tilde{x}fl(+)\tilde{y} \in \mathcal{F}$.
 - Definisci i numeri denormalizzati. Quanti sono i numeri denormalizzati positivi relativi a F?
- 2. Si vuole calcolare la funzione y = f(x).
 - Definisci l'errore inerente ed il concetto di condizionamento.
 - Studia il condizionamento della funzione $f(x) = \frac{1+x^2}{1+x}$ al variare di x.
 - Definisci l'errore algoritmico ed il concetto di stabilità.
 - ullet Studia la stabilità dell'algoritmo che calcola la funzione f.
- 3. Sia $f(x) = -\frac{x^4}{4} + x^3 4x + 4$.
 - Disegna il grafico di f e determina le due radici reali α, β con $\alpha < \beta$.
 - Studia la convergenza ad α del metodo di Newton. La successione ottenuta con $x_0 = -1.5$ è convergente ad α ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
 - Studia la convergenza a β del metodo di Newton. La successione ottenuta con $x_0 = 1$ è convergente a β ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.

Sia $g(x) = x - \frac{f(x)}{m}, m \neq 0$. Verifica che α, β siano punti fissi di g

- Sia m=16. Studia la convergenza ad α del metodo iterativo $x_{k+1}=g(x_k), k=0,1,\ldots$ La successione ottenuta con $x_0=-1.5$ è convergente a β ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
- Sia m=32. Studia la convergenza ad α del metodo iterativo $x_{k+1}=g(x_k), k=0,1,\ldots$ La successione ottenuta con $x_0=-1.5$ è convergente a β ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
- Sia m=-4. Studia la convergenza a β del metodo iterativo $x_{k+1}=g(x_k), k=0,1,\ldots$ La successione ottenuta con $x_0=1$ è convergente a β ?Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
- Definisci un criterio d'arresto e deriva le stime dell'errore.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} -1 & 3 & \alpha \\ 3 & 2\alpha & -1 \\ \alpha & -1 & 0 \end{array}\right).$$

- Disegna il grafico della funzione $\alpha \to ||A||_1$.
- Per quale valore di α non esiste la fattorizzazione LU di A? Giustifica la risposta.
- Determina $\alpha > 0$ tale che $||A||_{\infty} = 8$ e calcola la fattorizzazione LU di A.
- Nota la fattorizzazione A = LU come calcoli il determinante di A?
- Illustra in generale la strategia del pivot parziale per il metodo di Gauss. Perchè si applica?
- Determina $\alpha < 0$ tale che $||A||_{\infty} = 16$ e calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Scrivi la pseudocodifica di un algoritmo che calcola la soluzione x di Ax = b con A triangolare inferiore di dimensione n e analizza il costo computazionale.
- 5. Sia $f(x) = \log_3(x)$. Dati i punti $P_0 = (\frac{1}{9}, f(\frac{1}{9})), P_1 = (\frac{1}{3}, f(\frac{1}{3})), P_2 = (1, f(1)).$
 - ullet Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Scrivi la formula dell'errore f(x)-p(x) e determina una limitazione di $\max_{x\in [\frac{1}{2},3]}|f(x)-p(x)|$.
 - Dato l'ulteriore punto $P_3=(3,f(3))$., determina il polinomio \tilde{p} che interpola i quattro punti nella forma di Newton
 - Determina il polinomio q di primo grado di miglior approssimazione dei tre punti P_0, P_1, P_2 nel senso dei minimi quadrati.
 - Determina il polinomio r di primo grado di miglior approssimazione dei tre punti P_1, P_2, P_3 nel senso dei minimi quadrati.
- 6. Scrivi la pseudocodifica di un algoritmo efficiente per calcolare il valore del polinomio $p_n(x) = \sum_{i=0}^n a_i x^i$ in un punto x assegnato e analizza la complessità computazionale.
 - Scrivi la pseudocodifica per il metodo di bisezione e proponi un criterio di arresto.
 - Scrivi la pseudocodifica di un algoritmo che calcola i coefficienti del polinomio $p_n(x)$ che interpola i punti $x_i, y_i, i = 0, ..., n$ nella forma di Newton.