

Introduction to ROS SS22 Final Project

Autonomous Quadruped

Group 14 Awesome Dog

16.08.2022

Dian Yuan

Yinglei Song

Zhelin Yang

Hang Li

Zhaoqi Zhou

Perception & Mapping

Used external packages: depth_image_proc, octomap_server.

Transform depth image to point cloud.

Build Octomap based on point cloud.

Publish 2D projected map for further usage.

Two maps:

Projected map without step and slope: z coordinate between 0.15m and 5.0m

Path Planning

Projected map with step and slope: only filter out ground surface.

Step & Slope Detection

Map Presentation

Step & Slope Detection

Get waypoints from *nav_msgs/path*.

Get corresponding occupancy values from *nav_msgs/Occupancygrid* Array Transformation

Three different values:

100: occupied

0: free

-1: unknown

If more than 5 of following 10 waypoints are occupied _____ There is a step or slope.

Move_Base Package

path(green line)

Data of a point

```
header:
  seq: 0
  stamp:
    secs: 1660479426
    nsecs: 236030248
  frame id: "world"
pose:
  position:
    x: 5.500000266730785
    y: 6.000000128895044
    Z: U.U
  orientation:
    x: 0.0
    y: 0.0
    z: 0.0
    W: 1.0
```


The states experienced by the robot are described by a hierarchical state machine with 7 main states:

Group 14 Awesome Dog | Introduction to ROS SS22 | AutonomousQuadruped

Function of the controller

Given a target point, the controller adjusts the forward orientation of the robot towards the point and drive the robot to reach the point

Variables

x: current position (subscribed)

xd: target position (subscribed)

v: current speed (subscribed)

distance: vector pointing from the robot to

the target position (xd - x)

 θ : angle between v and distance

Size of the speed

 $|speed| \propto |distance|$ 0.2 < |speed| < 1

If |distance|<threshold |speed|=0

Orientation & Rotational direction

Orientation: the same direction as v

Rotational direction:

$$\vec{v} \times \overrightarrow{distance}$$

if ≤ 0 , turn right else turn left

Rotational speed

Demo Video

Normal speed: https://drive.google.com/file/d/1SljrDl93RdoaB7c93GNVHmsPp5w93V0a/view?usp=sharing 8x speed: https://drive.google.com/file/d/1Ev4BGYuUePXea4E4gV0mWkTVYtVBBhBW/view?usp=sharing

Thanks for watching!

Autonomous Quadruped

Group 14 Awesome Dog

16.08.2022

Dian Yuan

Yinglei Song

Zhelin Yang

Hang Li

Zhaoqi Zhou

