Chapter 5: strong acid-strong base; pH-metric titration.

- Conjugate acid/base pair: acid/ its conjugate base
- Aqueous solution: A solution that contains water.
 - Auto ionization of water:

$$2 \text{ H}_2\text{O} \Leftrightarrow \text{H}_3\text{O}^+ + \text{OH}^-$$

Ion product constant of water: $Kw = [H_3O^+][OH^-]$

$$Kw = 10^{-14}$$
 at $T = 25^{\circ}C$; $pKw = -\log Kw$; $Kw = 10^{-pkw}$; At $T = 25^{\circ}C$ $pKw = 14$

As temperature increases, Kw increases => the auto ionization of water is endothermic.

Acid-base pairs involved: H₂O/OH⁻; H₃O⁺/H₂O

Water is said to be amphoteric (Amphoteric means a substance that can act as acid or base).

• **pH** measures the acidity of the medium; $pH = -log [H_3O^+] = pKw + log [OH^-]$

At
$$T = 25^{\circ}C$$
; $pH = 14 + log [OH^{-}]$
 $[H_{3}O^{+}] = 10^{-pH}$; $[OH^{-}] = 10^{pH-pKw}$

• Nature of medium:

Neutral =>
$$[H_3O^+] = [OH^-] => [H_3O^+] = \sqrt{Kw}$$
; pH = $\frac{1}{2}$ pKw

Acidic =>
$$[H_3O^+] > [OH^-] => [H_3O^+] > \sqrt{Kw}$$
; pH <\frac{1}{2} pKw

As pH decreases, the acidity of the solution increases

Basic =>
$$[H_3O^+] < [OH^-] => [H_3O^+] < \sqrt{Kw}$$
; pH >½ pKw

As pH increases, the basicity of the solution increases

- Acid: a substance that gives H_3O^+ when dissolves in water
 - Strong acid: acid that dissociates completely in water to give H₃O⁺

$$[H_3O^+] = x = Ca \;\; ; \;\; Degree \; of \; conversion \; \alpha \; (HA) = 1$$

Dissociation equation	$HA + H_2O \rightarrow H_3O^+ + A^-$			
Initial	Ca	0 0		
Final	0	Ca Ca		

Acid-base pairs involved: HA/A⁻; H₃O⁺/H₂O

If a strong acid is diluted by 10^{n} times, then pH will increase by n

• How to identify if an acid is strong or weak?

Strong acid => $[H_3O^+]$ = Ca where $[H_3O^+] = 10^{-pH}$

Or pH =
$$-\log [H_3O^+] = -\log Ca$$

Weak acid =>
$$[H_3O^+]$$
 < Ca where $[H_3O^+] = 10^{-pH}$
Or pH = $-\log [H_3O^+] > -\log Ca$

If two acids have the same concentration, the stronger acid is the one that has lower pH.

- **Base:** a substance that gives OH⁻ or receives H⁺ when dissolves in water
 - Strong base: base that dissociates completely in water to give OH⁻ or receives H⁺

Dissociation equation	_	\Rightarrow B ⁺ + 0	_	
Initial	Cb	0	0	
Final	0	Cb	Cb	

Acid-base pairs involved: B+/BOH or BH+/B; H2O/OH-

$$[OH^{-}] = x = Cb$$
 ; Degree of conversion α (BOH) = 1

If a strong base is diluted by 10ⁿ times, then pH will decrease by n

• How to identify if a base is strong or weak?

Strong base =>
$$[OH^-]$$
 = Cb where $[OH^-]$ = 10^{pH-pkw}
Or $pH = pKw + log [OH^-] = pKw + log Cb$

Weak base =>
$$[OH^-]$$
 < Cb where $[OH^-]$ = 10^{pH-pkw}
Or $pH = pKw + log [OH^-] < pKw + log Cb$

If two bases have the same concentration, the base that has higher pH is the stronger base.

- Reaction of strong acid (H₃O⁺) with strong base (OH⁻)

$$H_3O^+ + OH^- \rightarrow 2 H_2O$$

This reaction is called neutralization reaction

$$K_R = \underbrace{1}_{[H_3O^+][OH^-]} = \underbrace{1}_{Kw}.$$

At T=25°C $K_R = 10^{14} >>> 10^4 =>$ the reaction is quantitative and complete.

- Strong acid – strong base pH-metric titration

• Materials:

Graduated buret-stand-clamp-beaker-magnetic stirrer-magnetic bar-pH meter

• pH-metric titration setup

• Procedure:

- Calibrate pH-meter.
- Rinse the buret with distilled water and with the titrant.
- Fill the buret till 0.0 ml mark line.
- Rinse the volumetric pipet with distilled water and with the analyte.
- Place x ml of the analyte in the beaker using volumetric pipet (x ml) and pipet filler.
- Add 1 ml of the titrant and shake.
- Repeat this addition until the pH starts changes rapidly.
- Add drop by drop of the titrant and shake until the pH starts changes slowly.
 - Why sometimes distilled water is added into the beaker before titration starts? In order to immerse the pH-electrode.
 - Case 1: Analyte : strong acid Titrant : strong base

Net ionic titration reaction: $H_3O^+ + OH^- \rightarrow H_2O$

Describing the curve:

The curve consists of three parts:

AB (Vb = 0 ml to 20 ml): pH increases slightly;

horizontal asymptote.

BC (Vb = 20 ml to 30 ml): pH increases sharply (jump).

There is inflection point I(VbEq; pH eq).

CD (Vb = 30 ml to 50 ml): pH increases slightly;

horizontal asymptote.

Special points:

- ⇒ From A to I : acid is in excess
- ⇒ At I: acid is totally neutralized by the base according
- ⇒ to stoichiometric ratio. This point is called equivalence point.

Titration curve of strong acid (HCI) with a strong base (NaOH)

- ⇒ From I to D: base is in excess.
- \Rightarrow Initially Vb = 0 ml : pH = log [H₃O⁺] = log Ca; (if no water was added)

$$[H_3O^+]$$
 = Ca (strong acid)

 \Rightarrow Equivalence point I: pH = $\frac{1}{2}$ pKw = 7 (T = 25° C) => neutral The equivalence point is determined by parallel tangent method.

Species that are presented at equivalence: H₂O and spectator ions like Na⁺ and Cl⁻

The spectator ions have no effect pH

The medium is neutral due to the auto ionization of water which produces H_3O^+ and OH^- where $[H_3O^+] = [OH^-] = 10^{-7}$ => pH = - log $[H_3O^+]$

Always pH is determined

by the species that are

- \Rightarrow Adding excess strong base => pH = 14 + log [OH⁻];
- \Rightarrow the asymptote tend to pH = 14 + log Cb

Calculation:

At the equivalence point, according to stoichiometric ratio: $n (H_3O^+)$ (initial in the beaker Va = ml) = $n (OH^-)$ (added from buret at equivalence, V b eq = ml)

 \Rightarrow Ca Va = Cb VbEq

• Case 2: Analyte: strong base Titrant: strong acid

Net ionic titration reaction: $H_3O^+ + OH^- \rightarrow H_2O$

Describing the curve:

The curve consists of three parts:

AB (Va = 0 ml to x ml): pH decreases slightly; horizontal asymptote.

BC (Va = x ml to y ml): pH decreases sharply (jump). There is inflection point I (VaEq; pH eq).

CD (Va = y ml to z ml): pH decreases slightly; horizontal asympto

Special points:

- ⇒ From A to I : base is in excess
- ⇒ **At I:** base is totally neutralized by the base according to stoichiometric ratio. This point is called equivalence point.
- \Rightarrow From I to D: acid is in excess.
- \Rightarrow Initially Va = 0 ml : pH = 14 + log [OH⁻] = 14 + log Cb;

 $[OH^{-}] = Cb \text{ (strong base)}$

The equivalence point is determined by parallel tangent method.

Titration curve of strong base (NaOH) with strong acid (HCI)

Species that are presented at equivalence: H₂O and spectator ions like Na⁺ and Cl⁻

The spectator ions have no effect pH

The medium is neutral due to the auto ionization of water which produces H_3O^+ and OH^- where $[H_3O^+] = [OH^-] = 10^{-7} \implies pH = -\log [H_3O^+]$

 $\Rightarrow \ \ \text{Adding excess strong acid} \Rightarrow pH \ = \text{-log } [H_3O^+] \ ; \ \text{the asymptote tend to} \ pH = \text{-log } Ca$

Calculation:

At the equivalence point, according to stoichiometric ratio:

n (OH $^-$) (initial in the beaker Vb = ml) = n (H $_3$ O $^+$) (added from buret at equivalence, Va eq = ml)

 \Rightarrow Cb Vb = Ca VaEq

• Effect of adding distilled water - in order to immerse the pH-electrode - on the equivalence point I (V eq; pH eq)

- Adding distilled water doesn't not affect Veq, since the number of moles of the analyte initially presented in the beaker is not affected.
- ⇒ pH at equivalence will not be affected, since the species that are presented at equivalence are H₂O and spectator ions => adding water will keep the solution at equivalence neutral.
- ⇒ No effect for adding water on the equivalence point of strong acid with strong base.

Reactions and their calculations:

1- Auto-ionization of water.

$$2H_2O \Leftrightarrow H_3O^+ + HO^- \quad Kw = [H_3O^+\]\ [HO^-\]$$

2- Strong acid-strong base reaction:

$$H_3O^+ + HO^- \rightarrow 2H_2O \quad Kr = 1/Kw$$