Assignment-1-Q7 (Basic Statistics Level-1)

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [2]:

cars=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/Q7.csv")

In [3]:

cars

Out[3]:

	Unnamed: 0	Points	Score	Weigh
0	Mazda RX4	3.90	2.620	16.46
1	Mazda RX4 Wag	3.90	2.875	17.02
2	Datsun 710	3.85	2.320	18.61
3	Hornet 4 Drive	3.08	3.215	19.44
4	Hornet Sportabout	3.15	3.440	17.02
5	Valiant	2.76	3.460	20.22
6	Duster 360	3.21	3.570	15.84
7	Merc 240D	3.69	3.190	20.00
8	Merc 230	3.92	3.150	22.90
9	Merc 280	3.92	3.440	18.30
10	Merc 280C	3.92	3.440	18.90
11	Merc 450SE	3.07	4.070	17.40
12	Merc 450SL	3.07	3.730	17.60
13	Merc 450SLC	3.07	3.780	18.00
14	Cadillac Fleetwood	2.93	5.250	17.98
15	Lincoln Continental	3.00	5.424	17.82
16	Chrysler Imperial	3.23	5.345	17.42
17	Fiat 128	4.08	2.200	19.47
18	Honda Civic	4.93	1.615	18.52
19	Toyota Corolla	4.22	1.835	19.90
20	Toyota Corona	3.70	2.465	20.01
21	Dodge Challenger	2.76	3.520	16.87
22	AMC Javelin	3.15	3.435	17.30
23	Camaro Z28	3.73	3.840	15.41
24	Pontiac Firebird	3.08	3.845	17.05
25	Fiat X1-9	4.08	1.935	18.90
26	Porsche 914-2	4.43	2.140	16.70
27	Lotus Europa	3.77	1.513	16.90
28	Ford Pantera L	4.22	3.170	14.50
29	Ferrari Dino	3.62	2.770	15.50
30	Maserati Bora	3.54	3.570	14.60
31	Volvo 142E	4.11	2.780	18.60

```
In [4]:
```

```
# mean
cars.mean()
```

Out[4]:

Points 3.596563 Score 3.217250 Weigh 17.848750 dtype: float64

In [5]:

```
# Median
cars.median()
```

Out[5]:

Points 3.695 Score 3.325 Weigh 17.710 dtype: float64

In [7]:

```
# Mode
cars.Points.mode()
```

Out[7]:

0 3.07
1 3.92
dtype: float64

In [8]:

```
cars.Score.mode()
```

Out[8]:

0 3.44 dtype: float64

In [9]:

cars.Weigh.mode()

Out[9]:

0 17.02 1 18.90 dtype: float64

```
In [10]:
```

```
# variance
cars.var()
```

Out[10]:

Points 0.285881 Score 0.957379 Weigh 3.193166 dtype: float64

In [11]:

```
# Standard Deviation cars.std()
```

Out[11]:

Points 0.534679 Score 0.978457 Weigh 1.786943 dtype: float64

In [12]:

```
# Range
cars.describe()
```

Out[12]:

	Points	Score	Weigh
count	32.000000	32.000000	32.000000
mean	3.596563	3.217250	17.848750
std	0.534679	0.978457	1.786943
min	2.760000	1.513000	14.500000
25%	3.080000	2.581250	16.892500
50%	3.695000	3.325000	17.710000
75%	3.920000	3.610000	18.900000
max	4.930000	5.424000	22.900000

In [16]:

```
Point_Range=cars.Points.max()-cars.Points.min()
Point_Range
```

Out[16]:

2.17

```
In [17]:
```

```
Score_Range=cars.Score.max()-cars.Score.min()
Score_Range
```

Out[17]:

3.9110000000000005

In [18]:

```
Weigh_Range=cars.Weigh.max()-cars.Weigh.min()
Weigh_Range
```

Out[18]:

8.39999999999999

Assignment-1-Q9_a

In [19]:

data1=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/Q9_a.csv")

In [20]:

data1

Out[20]:

	Index	speed	dist
0	1	4	2
1	2	4	10
2	3	7	4
3	4	, 7	22
4	5	8	16
5	6	9	10
6	7	10	18
7	8	10	26
8	9	10	34
9	10	11	17
			28
10 11	11	11 12	28 14
	12 13	12	
12			20
13	14	12	24
14	15	12	28
15	16	13	26
16	17	13	34
17	18	13	34
18	19	13	46
19	20	14	26
20	21	14	36
21	22	14	60
22	23	14	80
23	24	15	20
24	25	15	26
25	26	15	54
26	27	16	32
27	28	16	40
28	29	17	32
29	30	17	40
30	31	17	50
31	32	18	42
32	33	18	56
33	34	18	76

	Index	speed	dist
34	35	18	84
35	36	19	36
36	37	19	46
37	38	19	68
38	39	20	32
39	40	20	48
40	41	20	52
41	42	20	56
42	43	20	64
43	44	22	66
44	45	23	54
45	46	24	70
46	47	24	92
47	48	24	93
48	49	24	120
49	50	25	85

In [21]:

```
# Skewness
data1.skew()
```

Out[21]:

Index 0.000000 speed -0.117510 dist 0.806895 dtype: float64

In [22]:

```
# Kurtosis
data1.kurt()
```

Out[22]:

Index -1.200000 speed -0.508994 dist 0.405053 dtype: float64

Assignment-1-Q9_b

In [23]:

data2=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/Q9_b.csv")

In [25]:

data2

Out[25]:

	Unnamed: 0	SP	WT
0	1	104.185353	28.762059
1	2	105.461264	30.466833
2	3	105.461264	30.193597
3	4	113.461264	30.632114
4	5	104.461264	29.889149
76	77	169.598513	16.132947
77	78	150.576579	37.923113
78	79	151.598513	15.769625
79	80	167.944460	39.423099
80	81	139.840817	34.948615

81 rows × 3 columns

In [27]:

```
data3=data2.iloc[:,1:]
data3
```

Out[27]:

	SP	WT
0	104.185353	28.762059
1	105.461264	30.466833
2	105.461264	30.193597
3	113.461264	30.632114
4	104.461264	29.889149
76	169.598513	16.132947
77	150.576579	37.923113
78	151.598513	15.769625
79	167.944460	39.423099
80	139.840817	34.948615

81 rows × 2 columns

```
In [28]:
# Skewness
data3.skew()
Out[28]:
SP
      1.611450
WΤ
     -0.614753
dtype: float64
In [29]:
data3.kurt()
Out[29]:
SP
      2.977329
WT
      0.950291
dtype: float64
Assignment-1-Q11
In [30]:
from scipy import stats
from scipy.stats import norm
In [31]:
# Avg. weight of Adult in Mexico with 94% confidence interval
stats.norm.interval(0.94,200,30/(2000**0.5))
Out[31]:
(198.738325292158, 201.261674707842)
In [32]:
# Avg. weight of Adult in Mexico with 98% confidence interval
stats.norm.interval(0.98,200,30/(2000**0.5))
Out[32]:
(198.43943840429978, 201.56056159570022)
In [35]:
        weight of Adult in Mexico with 96% confidence interval
stats.norm.interval(0.96,200,30/(2000**0.5))
Out[35]:
(198.62230334813333, 201.37769665186667)
In [ ]:
```

Assignment-1-Q12

```
In [36]:
x=pd.Series([34,36,36,38,38,39,39,40,40,41,41,41,41,42,42,45,49,56])
In [37]:
# Mean
x.mean()
Out[37]:
41.0
In [38]:
# Median
x.median()
Out[38]:
40.5
In [39]:
# Varience
x.var()
Out[39]:
25.529411764705884
In [40]:
# Standard Deviation
x.std()
Out[40]:
5.05266382858645
In [ ]:
```

Assignment-1-Q20

In [41]:

cars=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/Cars.csv")
cars

Out[41]:

	HP	MPG	VOL	SP	WT
0	49	53.700681	89	104.185353	28.762059
1	55	50.013401	92	105.461264	30.466833
2	55	50.013401	92	105.461264	30.193597
3	70	45.696322	92	113.461264	30.632114
4	53	50.504232	92	104.461264	29.889149
76	322	36.900000	50	169.598513	16.132947
77	238	19.197888	115	150.576579	37.923113
78	263	34.000000	50	151.598513	15.769625
79	295	19.833733	119	167.944460	39.423099
80	236	12.101263	107	139.840817	34.948615

81 rows × 5 columns

In [42]:

sns.boxplot(cars.MPG)

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variable as a keyword arg: x. From version 0.1 2, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretati on.

warnings.warn(

Out[42]:

<AxesSubplot:xlabel='MPG'>


```
In [43]:
# P(MPG>38)
1-stats.norm.cdf(38,cars.MPG.mean(),cars.MPG.std())
Out[43]:
0.3475939251582705
In [45]:
# P(MPG<40)
stats.norm.cdf(40,cars.MPG.mean(),cars.MPG.std())
Out[45]:
0.7293498762151616
In [48]:
# P(20<MPG<50)
stats.norm.cdf(50,cars.MPG.mean(),cars.MPG.std())-stats.norm.cdf(20,cars.MPG.mean(),cars.MP
Out[48]:
0.8988689169682046
In [ ]:
```

Assignment-1-Q21_a

In [49]:

cars2=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/Cars.csv")
cars2

Out[49]:

	HP	MPG	VOL	SP	WT
0	49	53.700681	89	104.185353	28.762059
1	55	50.013401	92	105.461264	30.466833
2	55	50.013401	92	105.461264	30.193597
3	70	45.696322	92	113.461264	30.632114
4	53	50.504232	92	104.461264	29.889149
76	322	36.900000	50	169.598513	16.132947
77	238	19.197888	115	150.576579	37.923113
78	263	34.000000	50	151.598513	15.769625
79	295	19.833733	119	167.944460	39.423099
80	236	12.101263	107	139.840817	34.948615

81 rows × 5 columns

In [50]:

```
sns.distplot(cars2.MPG, label='Cars-MPG')
plt.xlabel('MPG')
plt.ylabel('Density')
plt.legend()
```

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2557: F utureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-leve l function with similar flexibility) or `histplot` (an axes-level function f or histograms).

warnings.warn(msg, FutureWarning)

Out[50]:

<matplotlib.legend.Legend at 0x4d90e076a0>

In [51]:

```
cars2.MPG.mean()
```

Out[51]:

34.422075728024666

In [52]:

```
cars2.MPG.median()
```

Out[52]:

35.15272697

Assignment-1-Q21_b

In [54]:

wcat=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/wc-at.csv")
wcat

Out[54]:

	Waist	AT
0	74.75	25.72
1	72.60	25.89
2	81.80	42.60
3	83.95	42.80
4	74.65	29.84
104	100.10	124.00
105	93.30	62.20
106	101.80	133.00
107	107.90	208.00
108	108.50	208.00

109 rows × 2 columns

In [55]:

```
# plotting distribution for waist circumference (waist)
sns.distplot(wcat.Waist)
plt.ylabel('density')
```

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2557: F utureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-leve l function with similar flexibility) or `histplot` (an axes-level function f or histograms).

warnings.warn(msg, FutureWarning)

Out[55]:

Text(0, 0.5, 'density')


```
In [56]:
```

```
# plotting distribution for Adipose Tissue (AT)
sns.distplot(wcat.AT)
plt.ylabel('density')
```

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2557: F utureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-leve l function with similar flexibility) or `histplot` (an axes-level function f or histograms).

warnings.warn(msg, FutureWarning)

Out[56]:

Text(0, 0.5, 'density')

In [57]:

```
# WC
wcat.Waist.mean(), wcat.Waist.median()
```

Out[57]:

(91.90183486238533, 90.8)

In [58]:

```
wcat.AT.mean(), wcat.AT.median()
```

Out[58]:

(101.89403669724771, 96.54)

In []:

Assignment-1-Q22

```
In [59]:
# Z score for 90% confidence interval
stats.norm.ppf(0.95)
Out[59]:
1.6448536269514722
In [60]:
# Z score for 94% confidence interval
stats.norm.ppf(0.97)
Out[60]:
1.8807936081512509
In [62]:
# Z score for 60% confidence interval
stats.norm.ppf(0.80)
Out[62]:
0.8416212335729143
Assignment-1-Q23
In [63]:
# t Score of 95% confidence interval for sample size of 25
stats.t.ppf(0.975,24) # df=n-1=24
Out[63]:
2.0638985616280205
In [64]:
# t Score of 96% confidence interval for sample size of 25
stats.t.ppf(0.98,24)
Out[64]:
2.1715446760080677
In [65]:
# t Score of 99% confidence interval for sample size of 25
stats.t.ppf(0.995,24)
Out[65]:
2.796939504772804
In [ ]:
```

Assignment-1-Q24

```
In [66]:
# Assume Null Hypothesis is H0:=Avg life of bulb >=260 days
# Alternative Hypothesis is Ha:=Avg life of bulb < 260 days
In [67]:
# find t-score at x=260; t=(s_mean-p_mean)/(s_SD/sqrt(n))
t=(260-270)/(90/18**0.5)
Out[67]:
-0.4714045207910317
In [68]:
# Find the p(X>=260) for null hypothesis
In [70]:
# p_value=1-stats.t.cdf(abs(t_scores),df=n-1)....Using cdf function
p_value=1-stats.t.cdf(abs(-0.4714),df=17)
p_value
Out[70]:
0.32167411684460556
```