Probability and non-probability sampling

Matthew J. Salganik Department of Sociology Princeton University

Summer Institutes in Computational Social Science 2020

The Summer Institutes in Computational Social Science is supported by grants from the Russell Sage Foundation and the Alfred P. Sloan Foundation.

	Sampling	Interviews	Data environment
1st era	Area probability	Face-to-face	Stand-alone
2nd era	Random digital dial	Telephone	Stand-alone
3rd era	probability Non-probability	Computer-administered	Linked

Probability Samples

$$P(u_i) = \frac{p_i}{(N-1)\cdots(N-n+1)} {N-1 \choose n-1} (n-1)! + \sum_{j\neq i}^{N} \frac{p_j}{(N-1)\cdots(N-n+1)} {N-1 \choose n-1} (n-1)! \frac{n-1}{N-1},$$

which upon simplification becomes

(19)
$$P(u_i) = \frac{N-n}{N-1} p_i + \frac{n-1}{N-1}, \qquad (i = 1, 2, \dots, N).$$

Similarly, it may be shown that for this case

(20)
$$P(u_i u_j) = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right],$$
$$(i \neq j: i, j = 1, 2, \dots, N).$$

Non-Probability Samples

http://www.chicagotribune.com/news/nationworld/politics/chi-chicagodays-deweydefeats-story-story.html

Probability Samples

Non-Probability Samples

unknown sampling process weighting based on unverifiable assumptions

unknown sampling process weighting based on unverifiable assumptions

Probability sample (roughly): every unit from a frame population has a known and non-zero probability of inclusion

- Probability sample (roughly): every unit from a frame population has a known and non-zero probability of inclusion
- ▶ Not all probability samples look like miniature versions of the population

- ► Probability sample (roughly): every unit from a frame population has a known and non-zero probability of inclusion
- ▶ Not all probability samples look like miniature versions of the population
- ▶ But, with appropriate weighting, probability samples can yield unbiased estimates of the frame population

Main insight from probability samples:

- ▶ How you collect your data impacts how you make inference
- ▶ Focus on properties of estimators not properties samples

Main idea and equation in sampling and estimation:

$$\hat{\bar{y}} = \frac{\sum_{i \in s} y_i / \pi_i}{N}$$

where π_i is person i's probability of inclusion

Sometimes called:

- ► Horvitz-Thompson estimator
- $\blacktriangleright \pi$ estimator

Inference from probability samples in theory

```
\left.\begin{array}{c} \text{respondents} \\ \text{known information about sampling} \end{array}\right\} \ \text{estimates}
```

Inference from probability samples in theory

 $\left.\begin{array}{c} \text{respondents} \\ \text{known information about sampling} \end{array}\right\} \ \text{estimates}$

Inference from probability samples in practice

 $\underbrace{\text{estimated information about sampling}}_{\text{auxiliary information} + \text{assumptions}} \text{estimates}$

Inference from probability samples in theory

respondents known information about sampling estimates

Inference from probability samples in practice

respondents
estimated information about sampling auxiliary information + assumptions estimates

Inference from non-probability samples

respondents
estimated information about sampling auxiliary information + assumptions estimates

4 D > 4 A > 4 B >

$$\hat{\bar{y}} = \frac{\sum_{i \in s} y_i / \hat{\pi}_i}{N}$$

where $\hat{\pi}_i = rac{n_g}{N_g} \quad orall \quad i \in g$ (estimated probability of inclusion)

Requires:

- ightharpoonup auxiliary information (N_g)
- ability to place respondents in groups
- assumptions

Key to many adjustment methods is to use external information and make assumptions

- Key to many adjustment methods is to use external information and make assumptions
- ▶ If external information is incorrect or assumptions are wrong, then you can make things worse (but it usually seems to make things better)

Imagine that you want to estimate the average height of Princeton students.

- ► Assume 50% are male and 50% are female
- ▶ You stand outside Lewis Library and recruit 60 Princeton students
- ▶ Males (n= 20): Average height: 180cm
- ► Females (n=40): Average heigh: 170cm

What is your estimate of the average height? (think-pair-share)

▶ sample mean = 173.3cm $\left(\frac{180*20+170*40}{20+40}\right)$

- ightharpoonup sample mean = 173.3cm ($\frac{180*20+170*40}{20+40}$)
- weighted estimate = 175cm (180 * 0.5 + 170 * 0.5)

- ightharpoonup sample mean = 173.3cm $(\frac{180*20+170*40}{20+40})$
- weighted estimate = 175 cm (180 * 0.5 + 170 * 0.5)

How could this go wrong?

Forecasting elections with non-representative polls

Wei Wang a,*, David Rothschild b, Sharad Goel b, Andrew Gelman a,c

^a Department of Statistics, Columbia University, New York, NY, USA

b Microsoft Research, New York, NY, USA

^c Department of Political Science, Columbia University, New York, NY, USA

- ▶ about 750,000 interviews
- ▶ about 350,000 unique respondents

Online, Opt-in Surveys: Fast and Cheap, but are they Accurate?

Sharad Goel Stanford University scgoel@stanford.edu Adam Obeng Columbia University adam.obeng@columbia.edu David Rothschild Microsoft Research davidmr@microsoft.com

► Samples don't need to look like mini-populations

- ► Samples don't need to look like mini-populations
- ► Key to making good estimates is for estimation process to account for the sampling process

- Samples don't need to look like mini-populations
- ► Key to making good estimates is for estimation process to account for the sampling process
- ► There is not a bright-line difference between probability sampling in practice and non-probability sampling

- ► Samples don't need to look like mini-populations
- ► Key to making good estimates is for estimation process to account for the sampling process
- ► There is not a bright-line difference between probability sampling in practice and non-probability sampling
- ▶ To learn more: Lohr (2009) or Sandal et al (2013)