PANEL - EVİRİCİ UYUMLULUK HESAPLARI

Panel Verileri			
Panel Gücü	PModul	320 W	
Nominal Gerilim	UModul	33,7 V	
Açık Devre Gerilimi	Voc	40,6 V	
Nominal Akım	IModul	10,36 A	
Kısa Devre Akımı	Isc	9,51 A	
Kablo Uzunluğu	LModule	1100 mm	
Modül sayısı	-	1120	

60 KW Inverter Verileri		
Max. Giriş Gerilimi	UINV-Max .Gir.	1100 V
Min. Giriş Gerilimi	UINV-Min .Gir.	200 V
Max. Giriş Akımı(MPPT)	IMPPT	6x22 A
Min. MPPT Gerilimi	Vmppt Min	200 V
Max. MPPT Gerilimi	Vmppt Max	1000 V

Formül Açıklamaları		
n Max	Dizideki Max. Panel Sayısı	
n MIN	Dizideki Min. Panel Sayısı	
U -15	-15 °C'deki Modül Gerilimi	
U 70	70°C'deki Modül Gerilimi	
kmax	-15 °C' için katsayı	
kmin	70 °C' için katsayı	

PV Modüllerin gerilimleri ışınımla doğru orantılı, sıcaklıkla ters orantılı olarak değişir. Düşük sıcaklıklarda yüksek gerilim, yüksek sıcaklıklarda düşük gerilim elde edilir. Buna göre;

PV Modüllerden <u>en yüksek açık devre gerilimi</u>; ışık altında minimum sıcaklık ortamında elde edilir. PV Modüllerden <u>en düşük açık devre gerilimi</u>; ışık altında maksimum sıcaklık ortamında elde edilir.

Eviricinin kapatması durumunda eviriciyi tekrar devreye sokarken yüksek açık devre gerilimi söz konusu olabilir. Bu gerilim, eviricideki maksimum DC giriş geriliminden küçük olmalıdır. Aksi takdirde evirici zarar görebilir. Böylece seri devrede bulunan maksimum modül sayısı; eviricinin maksimum giriş geriliminin, minimum sıcaklıktaki açık devre gerilimine bölünmesi ile elde edilir.

Çok düşük ışıma değerlerinde bile PV modül bir miktar ısınmaktadır. Yaz aylarında modüller 70°C'ye kadar ısınabilir. Isınan modüllerin gerilimleri düşecektir. Yüksek sıcaklıklarda oluşacak açık devre gerilimi, eviricideki minimum DC giriş geriliminden büyük olmalıdır. Böylece seri devrede bulunan minimum modül sayısı; eviricinin minimum giriş geriliminin, maksimum sıcaklıktaki açık devre gerilimine bölünmesi ile elde edilir.

Ankara ili için ışık altında oluşabilecek en yüksek gerilim, -15°C'deki açık devre gerilimidir.

```
    kmax = 1 + (Sıcaklık Farkı X Gerilim Katsayısı(%))
    kmax = 1 + ((25 - (-15)) X (0.275%)
    kmax = 1,11
    U -15 = Uoc X kmax
    U -15 = 40,6 X 1,11
    U -15 = 45,066 V (1 Adet PV Modülde oluşabilecek maksimum gerilim)
```

Her bir dizide bulunan seri bağlı PV modüllerin toplam gerilimi, evirici maksimum giriş gerilimden düşük olmalıdır. Aksi taktirde evirici zarar görebilir.

```
n Max = U_{INV-MAX.Giris} / U_{-15}
n Max = 1100 / 45,066
```

n Max = 24 Adet ~ (1 dizide seri bağlanabilecek maksimum PV modül sayısı)

Gerilim Kontrolü

Her bir diziye 20 adet PV modül seri bağlandığında;.

20 x 45,066 = 903,54 V

901,32 V < 1100V

olduğundan, her bir diziye 20 adet PV modülün seri bağlanması uygundur.

lşık altında oluşabilecek en düşük gerilim 70 C'deki açık devre gerilimidir.

```
    kmin = 1 + (Sıcaklık Farkı X Gerilim Katsayısı(%))
    kmin = 1 + ((25 - (70)) X (0.275%)
    kmin = 0.876
    U 70 = Uoc X kmin
    U 70 = 40,6 X 0.876
    U 70 = 35,57 V (1 Adet PV Modülde oluşabilecek maksimum gerilim)
```

Her bir dizide bulunan seri bağlı PV modüllerin toplam gerilimi, evirici minimum giriş gerilimden yüksek olmalıdır. Aksi taktirde evirici çalışmayacaktır.

```
n Min = U_{INV-MIN.Giris} / U 70
```

n Min = 200 / 35,57

n Max = ~ 6 Adet (1 dizide seri bağlanabilecek minumum PV modül sayısı)

Gerilim Kontrolü

Her bir diziye 20 adet PV modül seri bağlandığında;

20 x 35,57 = 713,2 V

711,4 V > 200 V

olduğundan, her bir diziye 20 adet PV modülün seri bağlanması uygundur.

HUAWEİ 60 KW İNVERTER İÇİN

```
kmax = 1 + (Sicaklik Farki X Gerilim Katsayısı(%))
```

$$kmax = 1 + ((25 - (-15)) \times (0.275\%)$$

kmax = 1,11

U - 15 = Umodul X kmax

 $U - 15 = 33,7 \times 1.11$

U -15 = 37,4 V (1 Adet PV Modülde oluşabilecek maksimum gerilim)

Her bir diziye 20 adet PV modül seri bağlandığında;.

Vmppt max = $20 \times 37.4 = 748.14$ V

748,14 V < 1000 V olduğu için UYGUNDUR.

kmin = 1 + (Sıcaklık Farkı X Gerilim Katsayısı(%))

 $kmin = 1 + ((25 - (70)) \times (0.275\%)$

kmin = 0.876

U 70 = Umodul X kmin

 $U70 = 33.7 \times 0.876$

U 70 = 29,52 V (1 Adet PV Modülde oluşabilecek maksimum gerilim)

Her bir diziye 20 adet PV modül seri bağlandığında;.

Vmppt min 20 x 29,52 = 590,4 V

590,4 V > 200 V olduğu için UYGUNDUR.

PANEL – İNVERTER UYUMU GERİLİM YÖNÜNDEN İNCELENMESİ

```
kmax = 1 + (Sicaklik Farki X Gerilim Katsayısı(%))
kmax = 1 + ((25 - (-15)) \times (0.275\%)
kmax = 1.11
U - 15 = Umodul X kmax
U - 15 = 33,7 \times 1.11
U -15 = 37,4 V (1 Adet PV Modülde oluşabilecek maksimum gerilim)
Her bir diziye 20 adet PV modül seri bağlandığında;.
Vmppt max = 20 \times 37,4 = 763,68 \text{ V}
748,1 V < 1000 V olduğu için UYGUNDUR.
kmin = 1 + (Sicaklik Farki X Gerilim Katsayısı(%))
kmin = 1 + ((25 - (70)) \times (0.275\%)
kmin = 0.876
U70 = Umodul X kmin
U70 = 37.4 \times 0.876
U 70 = 32,76 V (1 Adet PV Modülde oluşabilecek maksimum gerilim)
Her bir diziye 20 adet PV modül seri bağlandığında;.
Vmppt min 20 x 32,76 = 655,2 \text{ V}
655,2 V > 200 V olduğu için UYGUNDUR.
```

PANEL – İNVERTER UYUMU AKIM YÖNÜNDEN İNCELENMESİ

```
60 Kw inverter'in Max. DC çalışma akımı, katalog bilgilerine göre 132 A 'dir. 320W panelin optimum çalışma akımı, katalog bilgilerine göre 9,51 A dc'dir. İnverter 1 için;

Dizi sayısı x panel optimum çalışma akımı

12 x 9,51 A = 111,96 A ( panellerden invertere gelen toplam DC akım )

114,12 A < 132 A olduğu için uygundur.

İnverter 2-3-4-5 için;

Dizi sayısı x panel optimum çalışma akımı

11 x 9,33 A = 102,63 A ( panellerden invertere gelen toplam DC akım )
```

104,61 A < 132 A olduğu için uygundur.

PANEL - İNVERTER UYUMU GÜÇ YÖNÜNDEN İNCELENMESİ

60 Kw inverter'in Max. Panel giriş gücü, katalog bilgilerine göre 78Kw 'dır.

320W panelin gücü, katalog bilgilerine göre 320w 'dır.

İnverter 1 için;

Her bir diziye 20 adet panel bağlıdır.

Buna göre;

Dizideki panel sayısı x panel gücü

20 x 320W= 6,400 Kw (1 dizi gücü)

İnverter 1'e 12 dizi girildiğine göre,

Dizi sayısı x 1 dizi gücü

 $12 \times 6,4 \text{ Kw} = 76,8 \text{ Kw}$

76,8 Kw < 78 Kw olduğu için uygundur.

İnverter 2-3-4-5 için;

Her bir diziye 20 adet panel bağlıdır.

Buna göre;

Dizideki panel sayısı x panel gücü

20 x 320W= 6,400 Kw (1 dizi gücü)

İnverter 2-3-4-5'e 11 dizi girildiğine göre,

Dizi sayısı x 1 dizi gücü

 $11 \times 6,4 \text{ Kw} = 70,4 \text{ Kw}$

70,4 Kw < 78 Kw olduğu için uygundur.