Геометрия

Задание 16 № 501887

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

- а) Докажите, что прямые AD и BC параллельны.
- б) Найдите площадь треугольника АКВ, если известно, что радиусы окружностей равны 4 и 1.

Решение.

а) Обозначим центры окружностей O_1 и O_2 соответственно. Пусть общая касательная, проведённая к окружностям в точке K, пересекает AB в точке M. По свойству касательных, проведённых из одной точки, AM = KM и KM = BM. Треугольник AKB, у которого медиана равна половине стороны, к которой она проведена, — прямоугольный.

Вписанный угол AKD прямой, поэтому он опирается на диаметр AD. Значит, $AD \perp AB$. Аналогично получаем, что $BC \perp AB$. Следовательно, прямые AD и BC параллельны.

 Пусть, для определенности, первая окружность имеет радиус 4, а радиус второй равен 1.

Треугольники
$$BKC$$
 и AKD подобны, $\frac{AD}{BC}=\frac{DK}{KB}=4$. Пусть $S_{BKC}=S$, тогда $S_{AKD}=16S$.

У треугольников AKD и AKB общая высота, следовательно, $\frac{S_{AKD}}{S_{AKB}} = \frac{DK}{KB} = \frac{AD}{BC}$, то есть $S_{AKB} = 4S$. Аналогично, $S_{CKD} = 4S$. Площадь трапеции ABCD равна 25S.

$$O_2H = \sqrt{O_1O_2^2 - O_1H^2} = 4.$$

Тогда

$$S_{ABCD} = \frac{AD + BC}{2} \cdot AB = 20.$$

Спедовательно, 25S = 20, откуда S = 0.8 и $S_{AKB} = 4S = 3.2$.

Задание 24 № 339619

Найдите площадь трапеции, диагонали которой равны 15 и 7, а средняя линия равна 10.

Решение

Пусть AC=7, BD=15, m=10 — длина средней линии. Проведём высоту CH и проведём прямую CE, параллельную BD. Рассмотрим четырёхугольник BCED: $BC\parallel DE$, $BD\parallel CE$, следовательно, BCED — параллелограмм, откуда DE=BC, BD=CE=15. Рассмотрим треугольник ACE, AE=AD+DE=AD+BC=2m=20. Пусть p — полупериметр треугольника ACE. Найдём площадь треугольника ACE по формуле Герона:

D

$$S_{ACE} = \sqrt{p(p - AC)(p - CE)(p - AE)} = \sqrt{21(21 - 7)(21 - 15)(21 - 20)} = \sqrt{21 \cdot 14 \cdot 6 \cdot 1} = \sqrt{3 \cdot 7 \cdot 2 \cdot 7 \cdot 2 \cdot 3} = 2 \cdot 3 \cdot 7 = 42.$$

Выразим площадь треугольника ACE как произведение основания AE на высоту CH, откуда найдём CH:

$$S_{ACE} = \frac{1}{2}AE \cdot CH \Leftrightarrow CH = \frac{2S_{ACE}}{AE} \Leftrightarrow CH = 4, 2.$$

Площадь трапеции равна произведению высоты на полусумму длин оснований: $\frac{AD+BC}{2} \cdot CH = m \cdot CH = 10 \cdot 4, 2 = 42.$

Ответ: 42.

Задание 26 № 350898

Середина M стороны AD выпуклого четырёхугольника равноудалена от всех его вершин. Найдите AD, если BC = 3, а углы B и C четырёхугольника равны соответственно 94° и 131° .

Решение

Поскольку существует точка, равноудалённая от всех вершин четырёхугольника, четырёхугольник можно вписать в окружность. Четырёхугольник вписан в окружность, следовательно, суммы противоположных углов равны 180°:

$$\angle BAD + \angle BCD = 180^{\circ} \Leftrightarrow \angle BAD = 49^{\circ}.$$

$$\frac{BC}{\sin BMC} = \frac{BM}{\sin BCM} \Leftrightarrow BM = 3 \cdot \frac{\sqrt{2}}{2} \Leftrightarrow BM = \frac{3\sqrt{2}}{2}.$$

Сторона AD — диаметр описанной окружности, поэтому $AD = 2BM = 3\sqrt{2}$.

Ответ: 3√2.

Задание 26 № 353377

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 7:2, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 16.

Решение.

Проведем построения и введём обозначения, как показано на рисунке. Рассмотрим треугольник ACE, CO — биссектриса, по свойству биссектрисы:

$$\frac{AO}{OE} = \frac{AC}{CE} \Leftrightarrow AC = \frac{7}{2}CE.$$

Рассмотрим треугольник АВЕ, ВО — биссектриса, по свойству биссектрисы:

$$\frac{AO}{OE} = \frac{AB}{BE} \Leftrightarrow AB = \frac{7}{2}BE.$$

Складывая два получившихся равенства, получаем:

Таким образом, периметр треугольника ABC равен 72.

Ответ: 72.

Задание 26 № 339886

Высоты остроугольного треугольника ABC, проведённые из точек B и C, продолжили до пересечения с описанной окружностью в точках B_1 и C_1 . Оказалось, что отрезок B_1C_1 проходит через центр описанной окружности. Найдите угол BAC.

Решение

Введём обозначения, как показано на рисунке. Отрезок B_1C_1 проходит через центр описанной окружности, следовательно, B_1C_1 — диаметр. Углы BB_1C , CAB и CC_1B — вписанные и опираются на одну и ту же дугу, значит, они равны. Из прямоугольного треугольника B_1OC : $\angle B_1OC = 90^\circ - \angle BB_1C$. Из прямоугольного треугольника LCO: $\angle LCO = 90^\circ - \angle B_1OC = \angle BB_1C = BAC$. Рассмотрим прямоугольный треугольник CAM, углы BAC и ACC_1 равны, значит, $\angle BAC = \angle ACC_1 = 90^\circ/2 = 45^\circ$.

Ответ: 45°.

Раздел кодификатора ФИПИ: Углы в окружностях

Спрятать решение \cdot <u>Поделиться</u> \cdot Сообщить об ошибке \cdot <u>Помощь</u>

Задание 26 № 311556

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанный в треугольник ABC.

Решение.

Данная окружность касается стороны AC в её середине M и продолжений сторон BA и BC треутольника ABC. Пусть O — центр этой окружности, а Q — центр окружности, вписанной в треутольник ABC. Угол OAQ — прямой как угол между биссектрисами смежных углов. Треутольник OAQ — прямоугольный, AM — его высота. Из этого треутольника находим,

что
$$AM^2 = MQ \cdot MO$$
. Следовательно, $QM = \frac{AM^2}{OM} = \frac{36}{8} = 4.5$.

Ответ: 4,5.

В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 длина стороны основания равна 3, а длина бокового ребра равна 4. Найдите угол между прямыми АС1 и BD1.

Попроси больше объяснений - Следить - Отметить нарушение **Bernarochka13** 15.02.2014

Ответ Проверено экспертом

В правильной шестиугольной призме противоположные грани параллельны.

В основаниях малые диагонали равны.

Внутренний угол правильного шестиугольника равен 120°.

Точки А, С, В и D, не лежет в одной плоскости, поэтому прямые АС, и ВО1 скрещивающиеся.

AB \parallel DE и AB = DE, энечит ABD₁E₁ переллелогремм, ⇒ AE₁ \parallel BD₁. Тогде $\angle E_1AC_1 = \angle(AE_1 \; ; \; AC_1) = \angle(BD_1 \; ; \; AC_1) = \alpha$ - искомый.

Найдем малую диагональ шестиугольника из ΔABC по теореме косинусов: AC2 = AB2 + BC2 - 2-AB-BC-cos120* $AC^2 = 9 + 9 - 2.3.3.(-1/2) = 18 + 9 = 27$ AC = 3-/3, AE = AC = 3-/3.

∆АЕЕ₁: ∠АЕЕ₁ = 90°, по теореме Пифагора $AE_1 = \sqrt{(AE^2 + EE_1^2)} = \sqrt{(27 + 16)} = \sqrt{43}$

ΔΑСС, = ΔΑΕΕ, по двум катетам, эначит AC₁ = AE₁ = √43

 C_1E_1 = AC = $3\sqrt{3}$ (малая диагональ правильного шестиугольника)

Ив $\Delta C_1 A E_1$ по теореме косинусов: C₁E₁² = AC₁² + AE₁² - 2·AC₁·AE₁·cosa cosa = (AC₁² + AE₁² - C₁E₁²) / (2·AC₁·AE₁) cosa = (43 + 43 - 27) / (2 · √43 · √43) = 59/86

a = arccos (59/86)

Задание 26 № 339675

Четырёхугольник ABCD со сторонами AB = 25 и CD = 16 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём $\angle AKB = 60^\circ$. Найдите радиус окружности, описанной около этого четырёхугольника.

Для решения этой задачи необходимо знание формул тригонометрии.

Решение.

Проведём через точку D прямую, параллельную диагонали AC. Дуги AL и CD равны, следовательно, равны и стягивающие их хорды: AL = CD = 16.

Вертикальные углы AKB и CKD равны. Углы CKD и LDK равны как накрест лежащие: $\angle CKD = \angle LDK = 60^{\circ}$.

Четырёхугольник ABDL вписан в окружность, следовательно, суммы противолежащих углов равны 180° , откуда $\angle LAB = 180^\circ - \angle LDK = 180^\circ - 60^\circ = 120^\circ$.

Рассмотрим треугольник АВL, По теореме косинусов:

$$BL = \sqrt{AL^2 + AB^2 - 2AL \cdot AB\cos 120^\circ} = \sqrt{256 + 625 - 2 \cdot 16 \cdot 25 \cdot \cos 120^\circ} = \sqrt{1281}$$
.

Найдём радиус описанной вокруг треугольника ABL окружности по теореме синусов:

$$R = \frac{BL}{2\sin\angle BAL} = \frac{\sqrt{1281}}{2\sin 120^{\circ}} = \frac{\sqrt{1281}}{2\sin 60^{\circ}} = \frac{\sqrt{1281}}{2\frac{\sqrt{3}}{2}} = \sqrt{\frac{1281}{3}} = \sqrt{427}.$$

Ответ: √427.

Задание 14 № 509977

В основании четырехугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами $AB=\sqrt{5}$ и BC=2. Длины боковых ребер пирамиды $SA=\sqrt{7}$, $SB=2\sqrt{3}$, $SD=\sqrt{11}$.

- а) Докажите, что SA высота пирамиды.
- б) Найдите угол между прямой SC и плоскостью ASB.

Решение.

- а) Заметим, что $AB^2+SA^2=SB^2$ и $SA^2+AD^2=SD^2$, поэтому $SA\perp AB$, $SA\perp AD$, значит, $SA\perp ABC$.
- б) Поскольку $AD \perp AS$ и $AD \perp AB$, AD перпендикулярна плоскости ASB. Так как BC и AD параллельны, угол CSB искомый.

$$\angle \arctan \frac{1}{\sqrt{3}} = 30^{\circ}$$
.

Ответ: 30.

Задание 14 № 510019

Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ имеют длину 6. Точки M и N— середины рёбер AA_1 и A_1C_1 соответственно

- а) Докажите, что прямые BM и $M\!N$ перпендикулярны.
- б) Найдите угол между плоскостями BMN и ABB₁.

Решение.

а) Пусть точка H — середина AC.

Тогда

$$BN^2 = BH^2 + NH^2 = (3\sqrt{3})^2 + 6^2 = 63.$$

Вместе с тем,

$$BM^2 + MN^2 = (3^2 + 6^2) + (3^2 + 3^2) = 63,$$

а тогда по теореме, обратной теореме Пифагора, треугольник BMN является прямоугольным с прямым углом M.

б) Проведём перпендикуляр NP к прямой A_1B_1 , кроме нее $NP \perp A_1A$. Следовательно, $NP \perp ABB_1$. Поэтому MP — проекция MN на плоскость ABB_1 .

Прямая BM перпендикулярна MN, тогда по теореме о трёх перпендикулярах $BM \perp MP$. Следовательно, угол NMP — линейный угол искомого угла.

Длина NP равна половине высоты треугольника $A_1B_1C_1$, то есть $NP=\frac{3\sqrt{3}}{2}.$

Поэтому

$$\sin NMP = \frac{NP}{MN} = \frac{3\sqrt{3}}{2 \cdot 3\sqrt{2}} = \frac{\sqrt{3}}{\sqrt{8}}.$$

Следовательно, $NMP = \arcsin \sqrt{\frac{3}{8}}$.

Ответ: б) $\arcsin\sqrt{\frac{3}{8}}$.

833

В правеневиой 6^{my} расьной пирамиде SABCDEF диина стороны основания 1, а бою ребро 3. Найти уги ме псоу пероскостями (SAB) и (SEF)

Вешения

8 см. две пл. SAB ч

8 в тименот общо,

то ом П по прямой,

проходищий, чере

Эту ()

Найдин эту

прямую

Просативы

прямов F в и AP

до их П в у S (

Δ SSE = SSB (no III nown) SS = (SES) SS = (SES)

Om. 6. are as 35

Высота ch прямоугольного треугольника abc делит гипотенузу ab на отрезки ah=12 и bh=3. Касательная к описанной окружности треугольника abc проходящая через точку с пересекает прямую ab в точке d. найти длину отрезка bd

Попроси больше объяснений · Следить · Отметить нарушение Semyom21 14.07.2016

Ответ

Пусть О-центр окружности.

По свойству касательной $r=OC \perp CD \Rightarrow \Delta OCD$ -

прямоугольный, ∠C=90°.

По свойству высоты прямоугольного треугольника, опущенной на гипотенузу, CH^2 = $BH\cdot HA$ ⇒ CH^2 = $3\cdot 12=36$ ⇒ CH=6.

AB - диаметр, AB=3+12=15 \Rightarrow r=OA=OB=OC=7,5.

Пусть BD=x.

По свойству касательной и секущей к окружности, проведенных их одной точки, $CD^2 = DB \cdot DA = x \cdot (x+15)$.

С другой стороны в прямоугольном Δ CDH по теореме Пифагора CD²=HD²+HC² = (x+3)²+6².

Решаем уравнение $(x+3)^2+6^2 = x \cdot (x+15)$

 $x^2+6x+9+36 = x^2+15x$

9x = 45

x = 5

Значит, BD = 5.

Ответ: 5.

100 БАЛЛОВ!

Биссектриса CL треугольника ABC делит сторону AB на отрезки AL=11 и BL=9.

Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите длину отрезка CD.

Попроси больше объяснений · Следить · Отметить нарушение Dan56213p2aer7 11.03.2018

Ответ

Проверено экспертом

1 теорема: Квадрат длины касательной (DC) = произведению длины секущей (DA), проведенной из той же точки (у нас это D),

на ее внешнюю часть (DB).

2 теорема: Угол между касательной (DC) и хордой (BC),

проведенными из одной точки (у нас это C), = половине градусной меры дуги,

заключенной между касательной и хордой.

и вписанный угол BAC = половине градусной меры той же дуги... легко заметить, что треугольник DLC окажется равнобедренным))

22 Задание 16 № 514562

Дана трапеция ABCD с боковой стороной AB, которая перпендикулярна основаниям. Из точки A на сторону CD опущен перпендикуляр AH. На стороне AB взята точка E так, что прямые CE и CD перпендикулярны.

- а) Доказать, что прямые BH и ED параллельны.
- б) Найти отношение BH к ED, если $\angle BCD = 135^{\circ}$.

Решение.

а) Продлим AB и DC до пересечения в точке O. Тогда треугольники OBC, OCE, OHA, OAD подобны по двум углам ($\angle O$ и прямому). Значит, OB:OC = OC:OE = OA:OD = OH:OA. Перемножая первые два и последние два отношения, находим OB:OE = OH:OD, откуда по теореме обратной теореме о пропорциональных отрезках $BH \parallel ED$.

б) Заметим, что *BH* : *ED* = *OB* : *OE* . Далее имеем:

$$OB:OE = \frac{OB}{OC} \cdot \frac{OC}{OE} = \cos^2 \angle COE = \sin^2 \angle OCB = \sin^2 (180^o - \angle BCD) = \sin^2 45^o = \frac{1}{2}.$$

Ответ: 1:2.

Приведем другое решение пункта б).

Угол OCD равен 45° , поэтому прямоугольный треугольник AOD равнобедренный. Значит, его высота AH является медианой: OH = HD. Прямые ED и BH параллельны, тогда, по теореме Фалеса, OB = BE. Значит, BH — средняя линия треугольника EOD, а тогда BH — половина ED.

Источник: ЕГЭ — 2016. Основная волна 06.06.2016. Центр

Классификатор планиметрии: Многоугольники и их свойства, Подобие

Спрятать решение · <u>Поделиться</u> · Сообщить об ошибке · <u>Помощь</u>

21 Задание 16 № 514536

В остроугольном треугольнике ABC проведены высоты AK и CM. На них из точек M и K опущены перпендикуляры ME и KH соответственно.

- а) Докажите, что прямые ЕН и АС параллельны.
- б) Найдите отношение EH и AC, если $\angle ABC = 45^{\circ}$.

Решение.

а) AMKC — вписанный четырехугольник, поскольку $\angle AMC = \angle AKC = 90^\circ$ — все точки лежат на окружности с диаметром AC. Аналогично MKEH — вписанный, причем в окружность с диаметром MK. Значит,

$$\angle KEH = \angle KMH = \angle KMC = \angle KAC$$
,

откуда $EH \parallel AC$.

6) Обозначим за O точку пересечения AK и MC. Тогда $∠MOK = 180^{\circ} - ∠MBK = 135^{\circ}$, $∠KOC = 45^{\circ}$. Поэтому KOC — равнобедренный прямоугольный треугольник, и его высота KH совпадает с его медианой, то есть H — середина OC. Аналогично E — середина OA, поэтому EH — средняя линия треугольника AOC и EH: AC = 1: 2.

Ответ: 1:2.

Спрятать решение · <u>Поделиться</u> · Сообщить об ошибке · <u>Помощь</u>

Параметры

Задание 18 № <u>519674</u>

Найдите все значения а, при каждом из которых система уравнений

$$\begin{cases} x^2 + |x^2 - 2x| = y^2 + |y^2 - 2y|, \\ x + y = a \end{cases}$$

имеет более двух решений.

Решение.

Изобразим на координатной плоскости множество точек, координаты которых удовлетворяют первому уравнению системы. Рассмотрим четыре случая:

1) Если $x^2 - 2x \le 0$ и $y^2 - 2y \le 0$, то получаем уравнение

$$x^2 + 2x - x^2 = y^2 + 2y - y^2 \Leftrightarrow y = x.$$

Полученное уравнение задаёт прямую y=x. Случаю удовлетворяют отрезок внутри квадрата 2×2 с вершиной в начале координат.

2) Если $x^2 - 2x \le 0$ и $y^2 - 2y \ge 0$, то получаем уравнение

$$x^{2} + 2x - x^{2} = y^{2} - 2y + y^{2} \Leftrightarrow x = y^{2} - y$$

Полученное уравнение задаёт параболу $x=y^2-y$. Случаю удовлетворяет только дуга ниже оси Ox.

3) Если $x^2 - 2x \ge 0$ и $y^2 - 2y \le 0$, то получаем уравнение

$$x^{2}-2x+x^{2}=y^{2}+2y-y^{2} \Leftrightarrow y=x^{2}-x$$

Полученное уравнение задаёт параболу $x=x^2-x$. Случаю удовлетворяет только дуга левее оси Oy.

4) Если $x^2 - 2x \ge 0$ и $y^2 - 2y \ge 0$, то получаем уравнение

$$\begin{aligned} x^2-2x+x^2 &= y^2-2y+y^2 \Leftrightarrow 2y^2-2y-2x^2+2x = 0 \Leftrightarrow \\ &\Leftrightarrow (y-x)(y-1+x). \end{aligned}$$

Рассмотрим второе уравнение системы. Оно задаёт прямую m с коэффицентом наклона -1.

При a=1 прямая m совпадает с частью графика из первой строчки, то есть исходная система имеет бесконечное число решений.

При a=0 прямая m касается части графика из первой строчки, то есть исходная система имеет одно решение.

При 0 < a < 1 прямая m пересекает график в трех точках точках, то есть исходная система имеет три решения.

При a < 0 или при a > 1 прямая m пересекает график в одной точке.

Значит, исходная система имеет более двух решений при 0 < a < 1.

Ответ: $0 < a \le 1$.

Задание 18 № 519672

Найдите все значения а, при каждом из которых система уравнений

$$\begin{cases} |x^2 - 1| + 2x - x^2 = |y^2 - 1| + 2y - y^2, \\ x + y = a \end{cases}$$

имеет более двух решений.

Решение.

Изобразим на координатной плоскости множество точек, координаты которых удовлетворяют первому уравнению системы. Рассмотрим четыре случая:

1) Если $x^2 - 1 \le 0$ и $y^2 - 1 \le 0$, то получаем уравнение

$$2y^2-2x^2+2x-2y=0 \Leftrightarrow \left(y-\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2.$$

Полученное уравнение задаёт пару прямых y=x и y=1-x. Случаю удовлетворяют отрезки внутри квадрата 2×2 с центром в начале координат.

2) Если $x^2 - 1 \le 0$ и $y^2 - 1 \ge 0$, то получаем уравнение

$$1 - x^2 - x^2 + 2x = y^2 - 1 + 2y - y^2 \Leftrightarrow y = -x^2 + x + 1.$$

Полученное уравнение задаёт параболу $y=-x^2+x+1$. Случаю удовлетворяет только дуга выше прямой y=1.

3) Если $x^2 - 1 \ge 0$ и $y^2 - 1 \le 0$, то получаем уравнение

$$x^{2}-1+2x-x^{2}=1-y^{2}+2y-y^{2} \Leftrightarrow x=-y^{2}+y+1.$$

Полученное уравнение задаёт параболу $x = -y^2 + y + 1$. Случаю удовлетворяет только дуга правее прямой x = 1.

4) Если $x^2 - 1 \ge 0$ и $y^2 - 1 \ge 0$, то получаем уравнение

$$x^{2}-1+2x-x^{2}=y^{2}-1+2y-y^{2} \Leftrightarrow y=x.$$

Полученное уравнение задаёт прямую y = x. Случаю удовлетворяют лучи вне квадрата 2×2 с центром в начале координат.

Точки A(0;1), B(1;0), C(1;1) являются точками пересечения полученных парабол с полученными прямыми и лежат на прямых x=1 и/или y=1, поэтому искомое множество состоит из прямой l, задаваемой уравнением y=x, отрезка AB прямой x+y=1, дуги ω_1 параболы $x=-y^2+y+1$ с концами в точках B и C и дуги ω_2 параболы $y=-x^2+x+1$ с концами в точках A и C (см. рис.).

Рассмотрим второе уравнение системы. Оно задаёт прямую m, параллельную прямую AB или совпадающую с ней.

Заметим, что при a=0 прямая m пересекает прямую l в одной точке и не пересекает дуги ω_1 и ω_2 и отрезок AB, то есть исходная система имеет одно решение..

При a=1 прямая m содержит отрезок AB, то есть исходная система имеет бесконечное число решений.

При 1 < a < 2 прямая m не пересекает отрезок AB, пересекает прямую l в точке, отличной от точки C, и пересекает каждую из дуг ω_1 и ω_2 в одной точке, отличной от точки C, то есть исходная система имеет три решения.

При a < 1 или a > 2 прямая m пересекает прямую l в одной точке и не пересекает дуги ω_1 и ω_2 и отрезок AB, то есть исходная система имеет одно решение.

Значит, исходная система имеет более двух решений при $1 \le a < 2$.

Ответ: $1 \le a < 2$.

Найдите все значения параметра а, при каждом из которых система уравнений

$$\begin{cases} x^2 + 5x + y^2 - y - |x - 5y + 5| = 52, \\ y - 2 = a(x - 5) \end{cases}$$

имеет ровно два решения.

Решение.

Если x - 5y + 5 > 0, первое уравнение можно записать в виде:

$$x^2 + 5x + y^2 - y - x + 5y - 5 = 52 \Leftrightarrow x^2 + 4x + y^2 + 4y = 57 \Leftrightarrow (x+2)^2 + (y+2)^2 = 65.$$

Пары чисел, являющихся его решениями, представляют собой координаты точек на дуге окружности с центром (-2; -2) и радиусом $\sqrt{65}$, лежащей в полуплоскости x - 5y + 5 > 0.

Аналогично, если x - 5y + 5 < 0, первое уравнение можно записать в виде:

$$x^2 + 5x + y^2 - y + x - 5y + 5 = 52 \Leftrightarrow x^2 + 6x + y^2 - 6y = 47 \Leftrightarrow (x+3)^2 + (y-3)^2 = 65.$$

Пары чисел, являющихся его решениями, представляют собой координаты точек на дуге окружности с центром (-3; 3) и радиусом $\sqrt{65}$, лежащей в полуплоскости $x-5y+5\leq 0$. Точки пересечения этих окружностей с прямыми можно угадать по картинке и проверить подстановкой, это (5; 2) и (-10; -1). Второе уравнение задает прямую, проходящую через точку (5; 2) и любая прямая, кроме вертикальной, может быть задана таким уравнением.

Итак, задача свелась к следующей — при каких a прямая, проходящая через точку (5; 2) имеет еще ровно одно пересечение с построенной фигурой? Очевидно, сама прямая, содержащая общую хорду окружностей, подходит. Она получается при $a=\frac{1}{5}$. Если ее поворачивать в любую сторону, она будет давать одно решение до тех пор, пока не станет касательной к одной из окружностей. Затем решений станет два. Итак, осталось выяснить, при каких a эта прямая касается наших окружностей. Для этого расстояние от центра окружности до прямой должно быть равно радиусу окружности.

Запишем уравнение прямой в виде ax - y - 5a + 2 = 0.

Для первого центра имеем:

$$\begin{aligned} &\frac{-2a+2-5a+2}{\sqrt{a^2+1}} = \sqrt{65} \Leftrightarrow (-7a+4)^2 = 65(1+a^2) \Leftrightarrow \\ &\Leftrightarrow 16a^2+56a+49 = 0 \Leftrightarrow (4a+7)^2 = 0 \Leftrightarrow a = -\frac{7}{4}. \end{aligned}$$

Для второго центра имеем

$$\frac{-3a - 3 - 5a + 2}{\sqrt{a^2 + 1}} = \sqrt{65} \Leftrightarrow (-8a - 1)^2 = 65(1 + a^2) \Leftrightarrow a^2 - 16a + 64 = 0 \Leftrightarrow (a - 8)^2 = 0 \Leftrightarrow a = 8.$$

Значит, ответ $a \in \left[-\frac{7}{4}; 8\right]$.

Other: $a \in \left[-\frac{7}{4}; 8\right]$

Задание 18 № 519670

Найдите все значения а, при каждом из которых система

$$\begin{cases} y^2 - x - 2 = |x^2 - x - 2|, \\ x - y = a \end{cases}$$

имеет более двух решений.

Решение.

Раскроем модуль: при x > 2 или x < -1, уравнение $y^2 - x - 2 = |x^2 - x - 2|$ принимает вид $y^2 = x^2$ (*), при $-1 \le x \le 2$, его можно записать в виде $(x-1)^2 + y^2 = 5$ (**).

На координатной плоскости уравнение (*) задает прямые y = x или y = -x. Уравнение (**) задает окружность с центром в точке (1; 0) и радиусом $\sqrt{5}$. Тем самым, график первого уравнения исходной системы имеет вид, приведенный на рисунке синим плетом

Графиком второго уравнения является семейство прямых y=x-a, получаемых сдвигом прямой y=x на a единиц вдоль оси ординат. Система имеет более двух решений тогда и только тогда, когда графики построенных уравнений имеют более двух общих точек. Возможны два случая: графики уравнений имеют бесконечно много общих точек, что возможно при a=0 (выделено на рисунке красным) или прямые y=x-a лежат между прямыми m и n (см. рис.). Здесь прямая m проходит через точку (-1;1), а прямая n является касательной к окружности.

Определим уравнение касательной, подставив y = x - a в (**).

$$x^{2}-2x+1+x^{2}-2xa+a^{2}=5 \Leftrightarrow 2x^{2}-2(1+a)x+a^{2}-4=0.$$

Очевидно, что дискриминат этого уравнения должен равняться 0:

$$\frac{D}{4} = 1 + 2a + a^2 - 2a^2 + 8 = -a^2 + 2a + 9,$$
$$-a^2 + 2a + 9 = 0 \Leftrightarrow \begin{bmatrix} a = 1 - \sqrt{10}, \\ a = 1 + \sqrt{10}. \end{bmatrix}$$

Нам подходит меньший корень, так как больший корень сдвинет нашу прямую вниз. Это происходит потому, что знак перед a отрицательный. Подставив координаты точки (-1; 1) в уравнение прямой из второй строчки системы, получим, что a=-2.

Таким образом, получаем окончательный ответ $1 - \sqrt{10} < a < -2$; a = 0.

Ответ:
$$(1-\sqrt{10};-2)\cup\{0\}.$$

Задание 18 № <u>512996</u>

Найдите все значения a, при каждом из которых уравнение

$$64x^6 - (3x+a)^3 + 4x^2 - 3x = a$$

имеет более одного корня.

Решение.

Преобразуем уравнение:

$$64x^6 + 4x^2 = (3x+a)^3 + (3x+a).$$

Рассмотрим функцию $f(t) = t^3 + t$. Она монотонно возрастает как сумма двух возрастающих функций. Поэтому уравнение $f(4x^2) = f(3x+a)$ равносильно уравнению $4x^2 = 3x + a$. Оно имеет более одного корня в тех случаях, когда дискриминант уравнения $4x^2 - 3x - a = 0$ положителен. То есть когда 9 + 16a > 0, $a > -\frac{9}{16}$.

Ответ:
$$a > -\frac{9}{16}$$
.

Задание 18 № 507914

Найдите все значения параметра a, при каждом из которых множество значений функции $y = \frac{5a - 15x + ax}{x^2 - 2ax + a^2 + 25}$ содержит отрезок [0;1].

Решение.

Запишем знаменатель дроби в виде $(x-a)^2+25$ и заметим, что для любого значения параметра a знаменатель положителен при всех значениях переменной x. Следовательно, заданная функция непрерывна, а тогда отрезок [0; 1] лежит во множестве ее значений тогда и только тогда, когда уравнения y(x) = 0 и y(x) = 1 имеют решения.

Уравнение y(x) = 0 записывается в виде (15 - a)x = 5a, оно имеет решение при любом $a \neq 15$.

Уравнение y(x) = 1 приведем к виду $x^2 + 3(5-a)x + a^2 - 5a + 25 = 0$. Оно имеет решения тогда и только тогда, когда его дискриминант неотрицателен:

$$D = 9(5-a)^2 - 4(a^2 - 5a + 25) = 5(a^2 - 14a + 25),$$
$$a^2 - 14a + 25 \ge 0 \Leftrightarrow \begin{bmatrix} a \ge 7 + 2\sqrt{6}, \\ a \le 7 - 2\sqrt{6}. \end{bmatrix}$$

Учитывая условие $a \neq 15$, окончательно имеем: $a \leq 7 - 2\sqrt{6}$, $7 + 2\sqrt{6} \leq a < 15$ или a > 15.

Ответ: $a \le 7 - 2\sqrt{6}$, $7 + 2\sqrt{6} \le a < 15$ или a > 15.

Кредиты

Задание 17 № 514530

15 января планируется взять кредит в банке на 6 месяцев в размере 1 млн руб. Условия его возврата таковы:

- Первого числа месяца долг увеличивается на r% по сравнению с концом предыдущего месяца, где r целое число.
- Со 2 по 14 число необходимо выплатить часть долга.
- 15 числа каждого месяца долг должен составлять некоторую сумму в соответствии с таблицей

Месяц	Январь	Февраль	Март	Апрель	Май	Июнь	Июль
Долг	1	0,6	0,4	0,3	0,2	0,1	0

Найдите наибольшее r, при котором сумма выплат будет меньше 1,25 млн руб.

Решение.

Долг перед банком (в млн рублей) на 15-е число каждого месяца должен уменьшаться до нуля следующим образом:

Пусть $k=1+\frac{r}{100}$, тогда долг на первое число каждого месяца равен:

Следовательно, выплаты со 2-го по 14-е число каждого месяца составляют:

$$k-0.6$$
; $0.6k-0.4$; $0.4k-0.3$; $0.3k-0.2$; $0.2k-0.1$; $0.1k$.

Общая сумма выплат составляет:

$$k(1+0,6+0,4+0,3+0,2+0,1) - (0,6+0,4+0,3+0,2+0,1) = (k-1)(1+0,6+0,4+0,3+0,2+0,1) + 1 = 2,6(k-1)+1.$$

По условию, общая сумма выплат будет меньше 1,25 млн рублей, значит,

$$2,6(k-1)+1<1,25 \Leftrightarrow 2,6 \cdot \frac{r}{100}+1<1,25 \Leftrightarrow r<9\frac{8}{13}.$$

Наибольшее целое решение этого неравенства — число 9. Значит, искомое число процентов — 9.

Ответ: 9%.

Задание 17 № 514627

В июле 2016 года планируется взять кредит в банке в размере S тыс. рублей, где S — натуральное число, на 3 года. Условия его возврата таковы

- каждый январь долг увеличивается на 15% по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
- в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц и год	Июль 2016	Июль 2017	Июль 2018	Июль 2019	
Долг (в тыс. рублей)	S	0,78	0,48	0	

Найдите наименьшее значение S, при котором каждая из выплат будет составлять целое число тысяч рублей.

Решение

Долг перед банком (в тыс. рублей) по состоянию на июль каждого года должен уменьшиться до нуля следующим образом:

По условию, в январе каждого года долг увеличивается на 15% значит, долг в январе каждого года равен:

Следовательно, выплаты с февраля по июнь каждого года составляют:

По условию, числа

$$S; \frac{9S}{20}; \frac{81S}{200}; \frac{23S}{50}$$

должны быть целыми. Значит, число S должно делиться на 20, 200 и 50. Наименьшее общее кратное этих чисел равно 200.

Ответ: 200.

Задание 17. 15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месята

Известно, что в течение первого года кредитования нужно вернуть банку 822 тыс. рублей. Какую сумму нужно вернуть банку в течение второго года кредитования?

Решение.

Пусть x размер кредита, взятого в банке. После первого месяца начисляются 2%, что составляет 1,02x и нужно сократить долг так, чтобы он уменьшался пропорциональными частями каждый месяц, т.е. нужно выплатить в первый месяц $\frac{x}{24} + 0.02x$, получим сумму долга на второй месяц

$$1,02\pi - \frac{\pi}{24} - 0,02\pi = \frac{23}{24}\pi$$
.

Аналогично для второй выплаты, сумма выплачиваемого долга должна составлять $\frac{x}{24} + 0.02 \cdot \frac{23}{24}\pi$ и тогда сумма долга будет равна

$$1.02 \cdot \frac{23}{24} \pi - \frac{x}{24} - 0.02 \cdot \frac{23}{24} \pi = \frac{22}{24} \pi$$
.

В результате, сумма выплат за первый год составят:

$$\left(\frac{x}{24} + 0,02x\right) + \left(\frac{x}{24} + 0,02 \cdot \frac{23}{24}x\right) + \dots + \left(\frac{x}{24} + 0,02 \cdot \frac{13}{24}x\right)$$

или в виде

$$\frac{12}{24}x + \frac{0,02x}{24} \cdot (24 + 23 + ... + 13) =$$

$$= \frac{12}{24}x + \frac{0,02x}{24} \cdot \frac{(24 + 13) \cdot 12}{2} =$$

$$= x \cdot \left(\frac{12}{24} + \frac{4,44}{24}\right) = x \frac{16,44}{24}$$

По условию задачи сумма выплаченного долга за первый год составила 822 тыс. рублей, получаем уравнение

$$x\frac{16,44}{24} = 822$$
$$x = \frac{822 \cdot 24}{16,44} = 1200$$

To есть сумма кредита составляет 1200 тыс. рублей. Вычислим сумму долга, возвращаемую во второй год кредитования, имеем:

$$\left(\frac{x}{24} + 0,02 \cdot \frac{12}{24}x\right) + \left(\frac{x}{24} + 0,02 \cdot \frac{11}{24}x\right) + \dots + \left(\frac{x}{24} + 0,02 \cdot \frac{1}{24}x\right)$$

перепишем выражение в виде

$$\frac{12}{24}x + \frac{0.02x}{24} \cdot \frac{(12+1) \cdot 12}{2} =$$

$$= \frac{12}{24}x + \frac{1.56x}{24} = x \cdot \frac{13.56}{24}$$

Подставим вместо х сумму кредита, получим

$$1200 \cdot \frac{13,56}{24} = 678$$
 тыс. рублей.

Ответ: 678000.

Задание 17. Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заёмщика возрастает на 25 % по сравнению с началом года. В конце 1-го и 2-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заёмщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 9 млн рублей.

Решение

Обозначим через S млн рублей размер первоначального кредита. В середине первого года долг возрастает на 25 %, то есть, увеличивается в 1,25 раз и становится равным 1,25S. Следовательно, заемщик в 1-й год гасит проценты по кредиту в размере 0,25S. И столько же во второй год. В сумме за 2 года он погашает сумму 0,25S+0,25S=0,5S.

В последние два года (3-й и 4-й) сумма долга сначала возрастает в 1,25 раза (становится равной 1,25S), а затем, погашается равными долями в х рублей, то есть, на конец 3-го года, сумма долга составляет

В 4-й год эта оставшаяся сумма увеличивается снова в 1,25 раз и становится равной 1,25 (1,25S-x), а, затем, гасится на x рублей до нуля:

$$1,25 \cdot (1,25S - x) - x = 0.$$

Отсюда получаем, что

$$1,25^{2}S-2,25x=0$$
$$x = \frac{1,25^{2}S}{2,25}$$

и общий размер выплат составляет:

$$0.5S + \frac{2 \cdot 1.25^2}{2.25}S = S \cdot \left(\frac{1}{2} + \frac{3125}{2250}\right) = \frac{17}{9}S$$

По условию общая сумма выплат превышает 9 млн рублей, то есть,

$$\frac{17}{9}S > 9 \Rightarrow 17S > 81$$

При минимальном целом значении S=5 это неравенство выполняется, следовательно, размер кредита составил 5 млн. рублей.

Ответ: 5 000 000.