CS 3530: Assignment 0d

Fall 2023

Cutler Thomas

Problem 0.10 (7 points)

Problem

Find the error in the following proof that 2 = 1.

Consider the equation a = b. Multiply both sides by a to obtain $a^2 = ab$. Subtract b^2 from both sides to get $a^2 - b^2 = ab - b^2$. Now factor each side, (a + b)(a - b) = b(a - b), and divide each side by (a - b) to get a + b = b. Finally, let a and b equal 1, which shows that b = ab.

Solution

Since a = b, when you divide by (a-b) that would be the same as dividing by 0 which would break the proof.

Exercise 0.11 (13 points)

Problem

Let $S(n) = 1 + 2 + \cdots + n$ be the sum of the first n natural numbers and let $C(n) = 1^3 + 2^3 + \cdots + n^3$ be the sum of the first n cubes. Prove the following equalities by induction on n, to arrive at the curious conclusion that $C(n) = S^2(n)$ for every n.

a.
$$S(n) = \frac{1}{2}n(n+1)$$
.

Solution

n = 1: 1 =
$$\frac{1}{2}$$
1(1 + 1)
1 = 1
n = n + 1: $S(n+1) = 1 + 2 + \dots + n + 1$
= $S(n) + n + 1$
= $\frac{n(n+1)}{2} + n + 1$
= $\frac{(n+1)(n+2)}{2}$

b.
$$C(n) = \frac{1}{4}(n^4 + 2n^3 + n^2) = \frac{1}{4}n^2(n+1)^2$$
.

Solution

n=1:
$$C(1)or1^3 = \frac{1}{4}1^2(1+1)^2$$

1 = 1
n=n+1: $C(n+1) = \frac{1}{4}n^2(n+1)^2 + (n+1)^3$
= $\frac{(n+1)^2(n+2)^2}{4}$

So when looking at the proofs for S(n+1) and C(n+1) you can see that $C(n+1) = (S(n+1))^2$