Unsupervised Learning: Generative Models

Component-by-component

Practicing Generation Models: Pokémon Creation

- Tips
 - ➤ Each pixel is represented by 3 numbers (corresponding to RGB)

➤ Each pixel is represented by a 1-of-N encoding feature

PixelRNN

Ref: Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu, Pixel Recurrent Neural Networks, arXiv preprint, 2016

Real World

Autoencoder

Auto-encoder

Why VAE?

Intuitive Reason

 $z \sim N(0, I)$

z is a vector from normal distribution

$$x|z \sim N(\mu(z), \sigma(z))$$

Each dimension of z represents an attribute

Maximizing Likelihood

$$P(x) = \int_{z} P(z)P(x|z)dz$$

$$L = \sum_{x} log P(x)$$

$$log P(x) = \int_{z} q(z|x)log P(x)dz$$

P(z) is normal distribution
$$x|z \sim N\big(\mu(z),\sigma(z)\big)$$

$$\mu(z),\sigma(z) \text{ is going to be estimated}$$

Maximizing the likelihood of the observed x

e any distribution

$$L_b = \int_{z} q(z|x) log\left(\frac{P(x|z)P(z)}{q(z|x)}\right) dz$$

Find P(x|z) and q(z|x) maximizing L_b

q(z|x) will be an approximation of p(z|x) in the end

Ref: http://www.wired.co.uk/article/google-artificial-intelligence-poetry
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, Samy Bengio, Generating Sentences from a Continuous Space, arXiv prepring, 2015

Problems of VAE

It does not really try to simulate real images

VAE may just memorize the existing images, instead of generating new images

Generative Adversarial Network (GAN)

The evolution of generation

Basic Idea of GAN

- A generator G is a network. The network defines a probability distribution.
- The data we want to generate has a distribution $P_{data}(x)$

We do not know what the distribution looks like.

Basic Idea of GAN

Discriminator
v1

→ 1/0

It can be proofed that the **loss the discriminator** related to **JS divergence**.

Basic Idea of GAN

Next step:

- Updating the parameters of generator
- To minimize the JS divergence

The output be classified as "real" (as close to 1 as possible)

Generator + Discriminator = a network

Using gradient descent to update the parameters in the generator, but fix the discriminator

Why GAN is hard to train?

WGAN

Using Wasserstein distance instead of JS divergence

Better