Reg. No.															
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

B.Tech. DEGREE EXAMINATION, MAY 2024 OPEN BOOK EXAMINATION

Sixth Semester

18EIC306T - DISCRETE TIME SIGNAL PROCESSING

(For the candidates admitted from the academic year 2018-2019 to 2020 - 2021)

-	ndwritten class notes (certified by the faculty handling the course / head of the departr							
Time: 3 Hours				Max. Marks: 100				
1.a.i.	(5×20 = 100 Marks) Answer FIVE questions (Question No. 1 is compulsory) Using linear convolution method determine the output sequence $y(n)$ $x(n)=1$ for $n=-2,0,1$	Marks 14	BL 3	co 1	PC 2			
	2 for $n = -1$ $h(n) = \delta(n) - \delta(n-1) + \delta(n-2) - \delta(n-3)$							
ii.	Verify the same through circular convolution.	4	3	1	= 2			
b.	The representation of unit step signal delayed by 4 samples is(A) u(n+4) (B) u(n-4) (C) u(-n+4) (D) u(-n-4)	1	1	1	1			
c.	If $x(n) = \delta(n) + \delta(n+2) - \delta(n+1)$ then the sequence of $x(n)$ is	1	1	1	1			
2.a.i.	Design a third order Butterworth digital filter using impulse invarian method.	nt ¹²	3	2	3			
ii.	Realize the Butterworth filter of the above using direct form I.	6	3	2	2			
b.	The transformation technique in which there is one to one mapping from domain to z domain is (A) Approximation of derivatives (B) Impulse invariant method (C) Bilinear transformation (D) Backward difference for the method		1	2	1			

(B) $T=\Omega\omega$

(D) $\omega = \Omega T$

c. The correct relation between ω and Ω is

(A) $\Omega = \omega T$

(C) $\Omega = \omega T/2$

5.a.	Design an ideal band reject inter with a desired frequency response $\pi = 2\pi$		_		
	$H_d(e^{j\omega}) = 1$ for $ \omega \le \frac{\pi}{3}$ and $ \omega \ge \frac{2\pi}{3}$				
	= 0 otherwise Determine the value of h(n) for N=11 also show the magnitude response.				
b.	Identify where the poles of transfer function of normalized low pass Butterworth filter exists.	1	1	3	1
	(A) On unit circle(B) Inside unit circle(C) Outside unit circle(D) Imaginary axis				
c.	Analog filters are characterized by	1	1	3	1
	(A) Differential equation (C) Quadratic equation (B) Difference equation (D) State equation				
4.a.i.	Illustrate any one application of digital signal processing in speech processing.	13	2	4	1
ii.	Summarize the advantages of speech processing.	5	2	4	1
b.	The process of increasing the sampling rate by a factor I is	1	1	4	1
	(A) Decimation(B) Quantization(C) Sampling rate(D) Interpolation				
c.	The instructions executed in DSP processors are	1	1	4	1
	 (A) Line by line (B) Both parallel and sequential (C) Parallel manner (D) Sequential manner 				
5.a.i.	Model and realize the ARMA model for recursive system.	13	3	5	1
ii.	Outline the advantages of discrete wavelet transform.	5	4	5	1
b.	b. The autocorrelation function of white noise is				
	(A) Gaussian(B) Delta(C) Non uniform(D) Uniform			9	
c.	The interface between an analog and a digital processor is	1	1	5	1
	(A) Demodulator (B) D/A converter				
6.2	(C) Modulator (D) A/D converter Solve the IDET of the sequence $x(k) = (5.0.1 \pm i.0.1.0.1 \pm i.0)$ using DIE	18	3	1	2
0.a.	Solve the IDFT of the sequence $x(k) = \{5,0,1-j,0,1,0,1+j,0\}$ using DIF algorithm.				
b.	If $x(n)$ and $x(k)$ are N point DFT pair then $X(k+N)$ is	1	1	1	1
	(A) $-x(k)$ (B) $x(k+1)$ (C) $x(k)$ (D) $x(-k)$				
c.	If x(n) is real and even, then DFT of x(n) is	1	1	1	1
	$\sum_{n=0}^{\infty} N \qquad \qquad N$ (C) $\frac{N-1}{2}$ $2\pi kn$				
	(C) $j\sum_{n=0}^{N-1} x(n)\cos\frac{2\pi kn}{N}$ (D) $\sum_{n=0}^{N-1} x(n)\sin\frac{2\pi kn}{N}$				

7.a.i. Determine the direct form and cascade form realization for the system 14 3 2 3 function.

$$H(z) = 1 + \frac{1}{3}z^{-1} + \frac{1}{4}z^{-2} + \frac{1}{4}z^{-3} + \frac{1}{3}z^{-4} + z^{-5}.$$

ii. Compare Hamming and Hanning window.

- 4 5 2 2
- b. The poles of Chebyshev transfer function is ______
- 1 1 2 1
- (A) Anti-symmetrical on a circle in (B) Symmetrical on an ellipse in s s plane plane
- (C) Symmetric on a circle in s (D) Anti-symmetric on an ellipse in plane s plane
- - (A) $\omega = \Omega / T$

(B) $\omega = T / \Omega$

(C) $\omega = \Omega T$

(D) $\omega = \tan \Omega T$

* * * * *