### Digital Signal Analysis and Applications Lecture5: Convolution + Correlation + Stats

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

#### Correlation



#### Convolution



### Convolution vs Correlation (2D)

|           |    |    |      |     |            |     |                           |    |      | P<br>() |      | 0    | ()   |     | 0  | 0                          | 0  | 0  |    |     |     |      |      |                | FIGURE 3.30<br>Correlation<br>(middle row) and |
|-----------|----|----|------|-----|------------|-----|---------------------------|----|------|---------|------|------|------|-----|----|----------------------------|----|----|----|-----|-----|------|------|----------------|------------------------------------------------|
|           |    |    |      |     |            |     |                           |    |      | ()      | 0    | 0    | 0    | ()  | () | ()                         | () | 0  |    |     |     |      |      |                | convolution (last                              |
| e e       | ,  | _  | Ori  | gin | f          | (x, | y)                        |    |      | U       | 0    | 0    | ()   | 0   | 0  | ()                         | 0  | 0  |    |     |     |      |      |                | row) of a 2-D                                  |
|           | () | () | 0    | ()  | ()         |     |                           |    |      | ()      | 0    | 0    | ()   | 1   | 0  | ()                         | 0  | 0  |    |     |     |      |      |                | filter with a 2-D                              |
|           | 0  | 0  |      | 0   | 0          |     |                           |    | y)   | 0       | - 7  | 0    | 0    | 0   | 0  | ()                         | 0  | 0  |    |     |     |      |      |                | discrete, unit                                 |
|           | 0  | 0  | - 5  | 0   |            |     | 1                         | -  | 7.0  | 0       | - 80 | 0    | 0    | 0   | 0  | ()                         | 0  | 0  |    |     |     |      |      |                | impulse. The 0s                                |
|           | 0  | 0  | 0    | 0   |            |     | 4                         |    |      | .0      |      | 0    | 0    | 0   | 0  | ()                         | 0  | 0  |    |     |     |      |      |                | are shown in gray                              |
|           | () | 0  | 0    | 0   |            |     | 7                         | 8  | 9    | 0       | ()   | 0    | 0    | (b) |    | 0                          | 0  | 0  |    |     |     |      |      |                | to simplify visual<br>analysis.                |
|           | _  | _  | Init | iei | (a)<br>pos |     | n f                       | or | ert. | E       | ull  | corr | rela |     |    | enl                        |    |    | C  | ror | mer | d co | ) PT | elation result | analysis.                                      |
|           | 11 |    | -31  |     | •          |     |                           |    | 0    | 0       |      | 0    | ()   | ()  |    | 0                          |    | 0  | 0  | 200 | -   |      |      |                |                                                |
|           | 4  | 5  | - 31 | 0   |            | 0   |                           |    | 0    | 0       |      | 0    | 0    | 0   |    | 0                          |    | 0  | Ü  | 9   |     |      | 0    |                |                                                |
|           | 17 | 8  | 9    |     | 0          | 0   | 0                         | 0  | 0    | 0       |      | 0    | 0    | 0   | 0  | 0                          | 0  | 0  | 0  | 6   | 5   | 4    | 0    |                |                                                |
|           | 0  | 0  | 0    | 0   | 0          | 0   | 0                         | 0  | 0    | 0       |      | 0    | 9    | 8   | 7  | 0                          | 0  | 0  | 0  | 3   | 2   | 1    | 0    |                |                                                |
|           | 0  | 0  | 0    | 0   | 1          | 0   | 0                         | 0  | 0    | 0       | 0    | 0    | 6    | 5   | 4  | 0                          | 0  | 0  | 0  | 0   | 0   | 0    | 0    |                |                                                |
|           | 0  | 0  | 0    | 0   | 0          | 0   | 0                         | 0  | 0    | 0       | 0    | 8    | 3    | 2   | 1  | 0                          | 0  | () |    |     |     |      |      |                |                                                |
|           | 0  | () | 0    | 0   | 0          | 0   | 0                         | 0  | 0    | 0       | 0    | ()   | 0    | 0   | 0  | ()                         | () | 0  |    |     |     |      |      |                |                                                |
|           | 0  | () | 0    | 0   | ()         | 0   | 0                         | () | ()   | 0       |      | 0    | 0    | ()  | () | 0                          | 0  | 0  |    |     |     |      |      |                |                                                |
|           | 0  | 0  | 0    | 0   | 0          | ()  | ()                        | 0  | 0    | 0       | 0    | 0    | 0    | 0   |    | 0                          | 0  | 0  |    |     |     |      |      |                |                                                |
|           |    |    |      |     | (c)        |     |                           |    |      |         |      |      |      | (d) |    |                            |    |    |    |     | (e) |      |      |                |                                                |
| Rotated w |    |    |      |     |            | F   | Full convolution result · |    |      |         |      |      |      |     | C  | Cropped convolution result |    |    |    |     |     |      |      |                |                                                |
|           | 19 | 8  | 7!   | 0   | 0          | ()  | 0                         | () | 0    | ()      | 0    | 0    | 0    | 0   | 0  | 0                          | 0  | () | () | 0   | 0   | 0    | U    |                |                                                |
|           | 16 | 5  | 4    | ()  | 0          | 0   | ()                        | () | 0    | ()      | 0    | 0    | 0    | 0   | 0  | 0                          | () | 0  | 0  | 1   | 2   | 3    | ()   |                |                                                |
|           | 3_ | 2. | 1    | ()  | 0          | 0   | ()                        | () | 0    | 0       |      | ()   | 0    | 0   |    | 0                          | () | () | () | 4   | 5   | 6    |      |                |                                                |
|           |    | 0  |      | ()  | ()         | 0   | 0                         | 0  | 0    | 0       |      | ()   | 1    | 2   | -  | 1)                         | () | () | 0  | 7   | 8   | -    | ()   |                |                                                |
|           | 0  | 0  | 0    | 0   | 1          | 0   | ()                        | 0  | 0    | ()      | 10.0 | ()   | 4    | 5   | _  | -                          | () | 0  | () | 0   | 0   | 0    | 0    |                |                                                |
|           | 0  | 0  | 0    | 0   | 0          | ()  |                           |    | 0    | 0       |      | 0    | 7    | 8   | 9  | (1                         | () | 0  |    |     |     |      |      |                |                                                |
|           |    | 0  | 0    | 0   | 0          | 0   | 0                         | 0  | 0    | 0       | 5.5  | ()   | 0    | 0   |    | 33                         | 0  | () |    |     |     |      |      |                |                                                |
|           | 0  | 0  | 0    | 0   | 0          | 47  | 0                         | 0  | 0    | 0       | ()   | ()   | ()   | 0   | -  |                            |    | 0  |    |     |     |      |      |                |                                                |
|           | 0  | 0  | 0    | 0   |            | ()  | ()                        | () | U    | 0       | 0    | U    |      |     | () | 0                          | 1) | 0  |    |     | (h) |      |      |                |                                                |
|           |    |    |      |     | (f)        |     |                           |    |      |         |      |      |      | (g) |    |                            |    |    |    |     | (h) |      |      |                |                                                |

#### Convolution (2D)

$$w(x,y) \bigstar f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

- Evaluated for all values of displacement variables x and y
- Filter size m × n (notational convenience → m, n are assumed odd)
- a = (m-1)/2 and b = (n-1)/2

#### **Averaging**







| 4             | 1 | 1 | 1 |
|---------------|---|---|---|
| $\frac{1}{0}$ | 1 | 1 | 1 |
| Э             | 1 | 1 | 1 |







Square averaging filter mask size: 3,5,9,15,35

### **Averaging**



### Averaging









 $5\times5$  Gaussian filter,  $\sigma$ =3



Courtesy: wikipedia

















