e travail est le fruit d'une étroite collaboration avec le milieu industriel. Il répond à un besoin de formation clairement identifié et repose sur une forte complémentarité entre l'expérience et le savoir-faire industriel de M. G. GAY, responsable de la formation CEM de l'Institut Schneider formation et l'approche pédagogique de

M. Y. PELLICIER, enseignant au lycée Pablo Neruda de Saint Martin d'Hères.

Le document est composé d'un article de vulgarisation sur les perturbations électromagnétiques basse et haute fréquence et la présentation d' HARMOCEM, un banc d'étude développé pour répondre au besoin de formation.

Etude des phénomènes Harmoniques Basse Fréquence	p 3
Etude des phénomènes Harmoniques Haute Fréquence	p 11
Présentation du Banc HARMOCEM	P 17
Extrait du manuel des activités pédagogiques	p 23

Les perturbations électromagnétiques basse et haute fréquence

Cet article a pour objectif de présenter les phénomènes électromagnétiques basse et haute fréquence et de proposer les principales solutions industrielles permettant d'y remédier.

- Les perturbations harmoniques sont situées dans un spectre basse fréquence s'étendant jusqu'à quelques kHz.
- Les perturbations haute fréquence se situent dans un spectre s'étendant jusqu'à plusieurs GHz.

Définition d'une perturbation électromagnétique

Il s'agit de tout phénomène électromagnétique susceptible de dégrader les performances d'un dispositif ou d'un système.

Les différents niveaux de perturbations rencontrés

p.3
Etude des phénomènes harmoniques basse fréquence

p.11

Les perturbations électromagnétiques haute fréquence

Etude des phénomènes harmoniques basse fréquence

Le domaine d'application des phénomènes harmoniques basse fréquence s'étend jusqu'à environ 2 kHz.

Origine

Dans les secteurs industriel et domestique on constate une recrudescence de générateurs d'harmoniques imposant un courant alternatif non sinusoïdal.

Les générateurs d'harmoniques sont des charges non linéaires, c'est-à-dire qu'ils n'absorbent pas un courant sinusoïdal, bien qu'ils soient alimentés par une tension sinusoïdale. Ils comprennent deux types :

Les redresseurs en courant

Il s'agit des redresseurs en pont de **Graetz** débitant sur une charge inductive.

La forme du courant est composée de créneaux liés à la commutation rapide des thyristors.

Les redresseurs en tension

Il s'agit des redresseurs en pont de **Graetz** chargés par un condensateur.

La forme du courant est composée de pointes élevées et fines liées à la charge du condensateur.

Il est à noter que sur un système monophasé ou triphasé avec neutre câblé le spectre contient des harmoniques de rang 3.

Exemple

- alimentation à découpage
- variation de vitesse pour moteur asynchrone
- éclairage.

Quelques définitions importantes

Rappel du théorème de Fourier (Joseph)

mathématicien français né à Auxerre (1768-1830).

Toute fonction périodique de fréquence f peut être représentée sous la forme d'une somme composée :

- d'un terme sinusoïdal à la fréquence f de valeur efficace Y1 (fondamental)
- de termes sinusoïdaux dont les fréquences sont égales à :
- n fois la fréquence du fondamental et de valeurs efficaces Yn (harmonique)
- n multiple entier étant le rang de chaque harmonique
- d'une éventuelle composante continue de valeur Y0

$$y(t) = \sum_{n=1}^{n=\infty} Ynr \sin(not - \phi n) + Y0$$

Y0 = valeur de la composante continue

Y1 = valeur efficace du fondamental

Yn = valeur efficace de l'harmonique de rang n

O = pulsation de la fréquence fondamentale

φn = déphasage de la composante harmonique

Exemple d'application du théorème de Fourier sur un signal carré

Représentation temporelle

Représentation spectrale

Le spectre est observé avec un analyseur de spectre.

Remarque : l'amplitude (donc l'énergie) des raies harmoniques décroît en fonction de leur rang.

Nota : Nous constatons que le signal résultant de la sommation (H1 + H3) se rapproche du signal carré.

Valeur efficace d'une grandeur alternative non sinusoïdale

La valeur efficace de la grandeur déformée conditionne les échauffements, donc habituellement les grandeurs harmoniques sont exprimées en valeurs efficaces.

Pour une grandeur sinusoïdale : Veff = $\frac{Vmax}{r}$

Pour une grandeur déformée et en régime permanent, l'énergie dissipée par effet Joule est la somme des énergies dissipées par chacune des composantes harmoniques, soit l'application de la formule générale :

$$yeff = \sqrt{\frac{1}{T}} \int_{0}^{T} y^{2} t. dt \qquad donne \ avec \ la \\ représentation \\ harmonique : \qquad yeff = \sqrt{\sum_{n=1}^{n=\infty} Yn^{2}}$$

Exemple d'application

IH1 = 104 A) Valeurs données par l'analyseur IH3 = 30 A) de spectre dans l'exemple

IH5 = 10 A) du signal carré

yeff =
$$\sqrt{104^2 + 30^2 + 10^2}$$
 = 109 A

Conclusions

Nécessité d'effectuer la mesure de courant avec un ampèremètre RMS (Root Mean Square) intégrant les rangs harmoniques (valeur efficace).

Le calcul de la section des conducteurs sera adapté au courant efficace et non pas au seul fondamental.

Notion de taux de distorsion

Il donne une mesure de l'influence thermique de l'ensemble des harmoniques : c'est le rapport de la valeur efficace des harmoniques à la valeur efficace du fondamental seul.

Taux de distorsion (selon définition donnée par le dictionnaire CEI) : ce paramètre, appelé encore distorsion harmonique ou facteur de distorsion, représente le rapport de la valeur efficace des harmoniques à la valeur efficace du fondamental Y1.

THD (%) =
$$100 \frac{\sqrt{\sum_{n=2}^{n=\infty} (Yn^2)}}{Y1}$$

Exemple d'application (signal carré)

THD =
$$100 \frac{\sqrt{30^2 + 10^2}}{104} = 28 \%$$

Facteur de puissance et cos φ

Le facteur de puissance est le rapport de la puissance active P à la puissance apparente S

$$FP = \frac{P}{S}$$

Le facteur de déphasage cos φ1 représente le cosinus de l'angle entre les fondamentaux de la tension et du courant

$$\cos \varphi 1 = \frac{P1}{S1}$$

P1 puissance active de la composante fondamentale

S1 puissance apparente de la composante fondamentale

Conclusions

FP = cosφ1 sur une charge linéaire FP $\neq cosφ1$ sur une charge non linéaire

- le facteur de déformation FD représente le lien entre FP et $cos\phi$

$$FD = \frac{FP}{\cos \phi 1}$$
 donc $FP = \cos \phi 1.FD$

- le facteur de crête c'est le rapport de la valeur de crête à la valeur efficace d'une grandeur périodique

$$Fc = \frac{Y \text{ crête}}{Y \text{eff}}$$

Principaux générateurs d'harmoniques

- Onduleurs, hacheurs.
- Ponts redresseurs : électrolyse, machine à souder.
- Fours à arc et à induction.
- Variateurs de vitesse électroniques pour moteur à courant continu ou pour moteur asynchrone ou synchrone.
- Appareils domestiques tels que téléviseurs, lampes à décharges, lampes fluorescentes à ballast électronique.
- Alimentation à découpage informatique.

Ces équipements connaissent une diffusion croissante, ils entraînent une source de pollution harmonique importante.

La normalisation en vigueur

Limites d'émission en courant

Elles sont fixées par la norme CEI 61000-3-2 pour les appareils raccordés au réseau public en basse tension consommant moins de 16 A par phase. Au delà une norme CEI 61000-3-4 est en préparation.

Pour les abonnés "tarif vert" en France, EDF propose un contrat EMERAUDE qui engage ses abonnés à limiter leur niveau de pollution et EDF à fournir une énergie de qualité.

Nota: Un "club" FIABELEC en partenariat avec EDF peut servir d'assistance aux industriels.

Niveau de compatibilité

La norme CEI 61000-2-2 définit des niveaux de compatibilité de tensions harmoniques pour les réseaux publics basse tension et CEI 61000-2-4 pour les installations industrielles basse et moyenne tension.

Les effets indésirables et les retombées économiques des harmoniques sur les installations

Les tensions et courants harmoniques superposés à l'onde fondamentale conjuguent leurs effets sur les appareils et équipements utilisés.

Ces grandeurs harmoniques ont des effets différents selon les récepteurs rencontrés :

- soit des effets instantanés,
- soit des effets à terme dus aux échauffements.

Les effets instantanés

Sur les systèmes électroniques, les tensions harmoniques peuvent perturber les dispositifs de régulation. Elles peuvent influencer les liaisons et les équipements "courants faibles", entraînant des pertes d'exploitation.

Les compteurs d'énergie présentent des erreurs supplémentaires en présence d'harmoniques : par exemple un compteur classe 2 donnera une erreur supplémentaire de 0,3 % avec un taux de 5 % d'harmonique 5 sur le courant et la tension. Les récepteurs de télécommande centralisée à fréquence musicale utilisée par les distributeurs d'énergie peuvent être perturbés par des tensions harmoniques de fréquence voisine de celle utilisée par le système.

Vibrations, bruits

Par les efforts électrodynamiques proportionnels aux courants instantanés en présence, les courants harmoniques généreront des vibrations, des bruits acoustiques, surtout dans les appareils électromagnétiques (transformateurs, inductances). Des couples mécaniques pulsatoires, dus aux champs tournants harmoniques, donneront des vibrations dans les machines tournantes. Ils peuvent entraîner une destruction du matériel.

Perturbations induites sur les lignes à courants faibles (téléphone, contrôle-commande)

Des perturbations surviennent lorsqu'une ligne à courants faibles chemine le long d'une canalisation de distribution électrique avec courants et tensions déformés

Les effets à terme

Victimes

Les effets à terme

Les condensateurs

Echauffement, vieillissement

Risque de résonance avec le circuit amont (inductance réseau), suite à la circulation de certains rangs harmoniques. Ce phénomène peut entraîner un facteur d'amplification du courant dans le condensateur provoquant sa surcharge et pouvant conduire à son claquage.

Les transformateurs

Echauffement dû aux pertes supplémentaires des machines et des transformateurs

c Pertes supplémentaires dans les machines, dans leur stator (cuivre et fer) et principalement dans leurs circuits rotoriques (cages, amortisseurs, circuits magnétiques) par suite des différences importantes de vitesse, entre les champs tournants harmoniques et le rotor. c Pertes supplémentaires dans les transformateurs dues à l'effet de peau (augmentation de la résistance du cuivre avec la fréquence), à l'hystérésis et aux courants de Foucault (dans le circuit magnétique).

c Couple pulsatoire.

Les câbles et les équipements

Echauffement des câbles et des équipements

Les pertes des câbles traversés par des courants harmoniques sont majorées, entraînant une élévation de température. Parmi les causes de pertes supplémentaires, on peut citer : c l'élévation de la résistance apparente de l'âme avec la fréquence, phénomène dû à l'effet de peau ;

c l'élévation des pertes diélectriques dans l'isolant avec la fréquence, si le câble est soumis à une distorsion de tension non négligeable.

D'une façon générale, tous les équipements (tableaux électriques) soumis à des tensions ou traversés par des courants harmoniques ont des pertes accentuées et devront faire l'objet de déclassements éventuels.

Particularités de l'harmonique 3

Les harmoniques de rang 3 étant en phase, ils s'ajoutent algébriquement dans le neutre ; il y a donc surcharge importante sur le neutre notamment en régime déséquilibré.

Il faudra adapter la section des conducteurs.

Les principaux remèdes envisagés

Solutions générales

Abaisser les impédances harmoniques Agir sur la structure de l'installation :

- augmentation de la puissance de court-circuit
- choisir le bon schéma de liaison à la terre ; éviter le TNC
- utilisation de transformateurs à couplage spécifique (exemple : DY/n¹¹)
- confiner les charges polluantes
- déclassement des équipements.

Solutions de neutralisation

Protection des condensateurs de compensation d'énergie réactive (suite au phénomène de résonance).

- Installation d'inductances anti-harmoniques (LAH)

But: réaliser l'accord du circuit LAH à une fréquence pauvre en harmonique pour supprimer les risques de forts courants harmoniques dans les condensateurs **Moyen**: montage en série avec le condensateur d'une inductance dite anti-harmonique (LAH).

$Fr\'{e} quences\ typiques\ d'accord:$

- \bullet 135 Hz rang 2,7 si 1 $^{\rm er}$ rang significatif est 3
- 215 Hz rang 3,8 (BT) si 1er rang significatif est 5 en BT
- 225 Hz rang 4,5 si 1er rang significatif est 5 en MT.

Principe

Filtrage anti-harmonique permettant de dépolluer le réseau lorsque le niveau d'harmonique est trop élevé

- Lisser le courant

Schéma de l'étage d'entrée classique des variateurs, alimentations à découpage

La forme et donc le spectre harmonique dépend de L et de C

- Filtrage passif shunt résonnant

But : piéger les harmoniques dans des "courtscircuits harmoniques" appelés filtres d'harmoniques pour réduire la distorsion de tension.

Moyen: montage en série avec le condensateur d'une inductance accordée sur un rang riche en harmoniques ($LCo^2 = 0$).

Fréquences typiques d'accord

• 250, 350, 550, 650 Hz (rangs 5, 7, 11 et 13).

Principe

- Filtrage actif ou compensateur actif

Une des définitions

Un filtre actif est un convertisseur statique qui permet d'injecter dans le réseau des harmoniques en opposition de phase et d'amplitude afin que l'onde résultante soit sinusoïdale.

Principe

Principe du filtre actif

- Filtrage hybride

- Principe : association des solutions passives et actives permettant la dépollution de tout le spectre. La compensation d'énergie réactive possible.
- Solution bien adaptée à un filtrage "réseau".
- Cette solution permet d'obtenir un compromis technico-économique idéal car il permet de réduire la puissance de dimensionnement du filtre actif.

Principe

Nota: le filtre passif traitera les rangs 5 et 7 par exemple, et le compensateur actif les rangs suivants.

Etude d'un cas de pollution par des harmoniques de courant

Les faits : match de football Le Mans-Guingamp, pour le compte du championnat de France de 2 eme division.

- 21 h 44 : Le Mans 2, Guingamp 1
- 21 h 45 : panne d'éclairage, impossibilité de réenclencher le disjoncteur de tête
- 22 h 00 : match définitivement arrêté
- décision : match perdu pour Le Mans sur "tapis vert"

L'étude

Explication du problème

Résonance de l'installation sur le rang 5, excitée par les tensions harmoniques présentes sur le réseau EDF, du fait, qu'à cette heure, tout le monde est devant son téléviseur pour suivre le match. L'ouverture du disjoncteur a été entraînée par surcharge thermique.

Les mesures effectuées par les experts de Schneider Electric ont mis en évidence un taux d'harmonique 5 identique au fondamental.

Le disjoncteur Merlin Gerin a donc rempli sa mission en mettant l'installation hors tension

Schéma équivalent simplifié du réseau pollué

La solution proposée

Déplacement de la fréquence de résonance par installation d'une inductance série de 3 mH sur chaque lampadaire (valeur déterminée par le logiciel expert).

Les perturbations électromagnétiques haute fréquence

La compatibilité électromagnétique (CEM)

Les perturbations électriques créées par la proximité d'équipements électriques de puissance sur les transmissions de données de niveaux faibles sont de plus en plus fréquentes.

Elles obligent les responsables de sites industriels et tertiaires à s'en prémunir.

Notions de courants forts et de courant faibles

Les **courants forts** sont ceux qui s'appliquent aux installations de distribution de l'énergie électrique. Les **courants faibles** sont ceux qui s'appliquent aux transmissions d'informations ou de signaux entre dispositifs électroniques.

La compatibilité électromagnétique : c'est l'art de les faire coexister, sans créer de dysfonctionnement.

Les sources de perturbations haute fréquence

Principales sources d'origine naturelle

- atmosphériques (foudre),
- bruit thermique terrestre.

Principales sources d'origine artificielle

- émetteurs intentionnels : radioélectriques, talkie-walkie, GSM...
- émetteurs non intentionnels : les moteurs électriques, l'appareillage, les ordinateurs, les tubes fluorescents...

...et dans le même temps :

- prolifération de l'électronique numérique,
- sensibilité croissante des composants.

La génération des perturbations électromagnétiques provient en général de l'établissement et de la coupure d'un circuit électrique se traduisant par de brutales variations de tension $\frac{\text{(dv)}}{\text{dt}}$ ou de courant $\frac{\text{(di)}}{\text{dt}}$

aux bornes du circuit commandé.

Ces perturbations peuvent être rayonnées ou conduites en mode Différentiel et/ou en mode Commun.

Elles créeront des dysfonctionnements sur les appareils sensibles tels que les : systèmes de mesure, récepteurs radio, téléphones, capteurs, régulateurs.

Définition du mode Différentiel

Le courant se propage sur l'un des conducteurs, traverse l'appareil victime, en le polluant et revient sur l'autre conducteur en sens inverse.

iMD : courant de mode Différentiel uMD : tension de mode Différentiel

Définition du mode Commun

Le courant se propage en phase sur tous les conducteurs et se reboucle par les circuits de masse via les capacités parasites (Cp).

iMC : courant de mode Commun uMC : tension de mode Commun

Nota : Principe de génération du courant de mode Commun.

La capacité parasite du radiateur de refroidissement des composants électroniques est un élément pris en compte dans la conception des "bras convertisseurs".

Le courant iMC de mode Commun circulant dans Cp provient des variations de tension liées à la commutation du transistor.

Ce courant circule donc du transistor vers la masse via Cp.

Le remède principal permettant de limiter les perturbations conduites, consiste à insérer un filtre accordé haute fréquence en série dans la liaison au plus près du pollueur.

Ce filtre doit être raccordé en respectant scrupuleusement les règles de câblage préconisées par les fabricants (placage au plan de masse...). Le phénomène prépondérant est surtout le mode Commun (i de fuite, rayonnement des câbles...).

Les cinq familles de mesure utilisées en CEM

Les perturbations conduites se propagent par voie filaire.

Les perturbations rayonnées se propagent par voie hertzienne.

La normalisation

Une directive a pris naissance en 1989. Il s'agit de la directive 89/336/CEE modifiée par les directives 92/31/CEE et 93/68/CEE.

Le champ d'application de cette directive concerne tous les appareils électriques et électroniques ainsi que les équipements et installations qui contiennent des composants électriques ou électroniques. Son respect est obligatoire depuis le 01/01/96. Ceux-ci doivent être construits de façon à ce qu'ils respectent les exigences essentielles de la directive c'est-à-dire :

- avoir un niveau de perturbations électromagnétiques limitées de façon à ne pas provoquer des dysfonctionnements périphériques.
- avoir un niveau d'immunité adéquat face à l'environnement auquel ils sont confrontés. Ces niveaux d'émission et d'immunité sont fixés par une série de normes correspondantes.

Les appareils conformes aux exigences de la directive doivent comporter le marquage CE au titre de la CEM.

Nota : deux autres directives exigent également le marquage CE (Basse Tension et machine). *Voir guide technique Intersections novembre 1999.*

En CEM deux catégories d'essais sont effectuées

- les essais de labo (de type) dont l'objectif final consiste (via les normes) à atteindre le marquage CE sur le produit de façon à garantir sa bonne intégration dans l'environnement.
- les essais de site dont l'objectif consiste à assurer (préventif) ou à rendre (curatif) une installation conforme.

Les différents modes de couplage des perturbations électromagnétiques

Les trois types de couplage principaux sont :

- le couplage par impédance commune (phénomène conduit)
- le couplage électrique
- le couplage magnétique.

Le couplage par impédance commune

Il provient de la présence d'un circuit commun entre différents appareils.

Par exemple:

- le circuit d'alimentation
- le circuit de masse
- le réseau de protection PE, PEN.

Figure 1

La figure 1 montre que lorsque des courants (haute fréquence, de défaut 50 Hz, foudre) circulent dans des impédances communes (Z); les deux équipements vont être soumis à une différence de potentiel VA-VB indésirable (risque pour les circuits électroniques bas niveau).

Tous les câbles, y compris le PE, présentent une impédance qui augmente avec la fréquence.

Nota: Un câble rond quelle que soit sa section est équivalent à une inductance de 1µH/m.

Remèdes

Réduction de l'impédance commune par :

- maillage des circuits communs
- liaison des chemins de câble métallique
- utilisation de câbles blindés reliés des deux côtés
- utilisation de tresses plates
- filtre haute fréquence.

Le couplage électrique

Diaphonie capacitive.

Transmission de perturbations entre deux câbles par capacité parasite (Cp).

On distingue deux cas:

La diaphonie capacitive

Une variation brutale de tension V1 entre un fil et un plan de masse ou entre deux conducteurs va générer un champ électrique qui va induire un courant (i) sur le conducteur voisin par effet capacitif. On récupère donc une tension V2 sur le câble victime.

Figure 2

Le couplage champ à câbles

Lorsque le conducteur est soumis à un champ électrique variable (talkie-walkie, GSM, manœuvre d'appareillage, radar...), un courant (i) est induit sur ce conducteur.

Figure 3

Remèdes:

- éloignement source/victime
- plaquer les câbles victimes près des structures métalliques (chemin de câble, conduit métallique...) évitant les phénomènes d'antenne
- ajouter des câbles d'accompagnement de masse
- blinder les câbles victimes en soignant le raccordement à la masse des deux côtés
- filtrage haute fréquence ou ferrites sur le câble victime.

Le couplage magnétique ou diaphonie inductive

Une variation de courant dans un conducteur génère un champ magnétique (H) variable. Il va créer une force contre-électromotrice qui développera une tension perturbatrice (e) dans un câblage victime présentant une boucle de surface (S).

Figure 4

Sources de champ magnétique haute fréquence

- foudre
- four à induction
- système de commutation de puissance
- décharge électrostatique.

Remèdes

- réduction des surfaces de boucle de câblage
- torsadage des câbles de nature identique
- solutions du couplage champ électrique.

Quelques règles de câblage importantes préconisées

L'analyse de la situation

Problème

faire cohabiter courants forts / courants faibles.

Risques

perturber les liaisons courants faibles et l'électronique associée :

- dysfonctionnements (disponibilité, fiabilité...)
- erreurs de mesures, de transmissions
- destruction de matériels.

Mécanismes

- couplages câbles à câbles, champs à câbles
- tensions de mode Commun
- dv/dt, di/dt
- surtensions.

Solutions

- séparer les câbles véhiculant des signaux différents
- soigner la mise en œuvre du câblage, l'équipotentialité, maillage des masses
- blinde
- filtrer
- protéger contres les surtensions.

Classification des signaux

Groupes distincts

- groupe 4 : très sensible
- groupe 3 : sensible aux impulsions, perturbe le groupe précédent
- groupe 2 : peu sensible mais perturbe les groupes précédents
- groupe 1 : peu sensible mais perturbe les groupes précédents.

Les règles de câblage

Risques de diaphonie en mode commun si e < 3h

Signaux incompatibles : câbles et torons différents

Eloigner les câbles incompatibles

La "ségrégation" s'applique aussi aux raccordements

Répartition des câbles dans une tablette

Chemin de câbles métallique

Le raccordement des blindages

La mise en œuvre des filtres

La valise magique

Les principaux composants CEM

Etude de cas de perturbation par rayonnement

Prenons le cas de deux ordinateurs en réseau (figure A) et examinons ce qui se passe lors d'un coup de foudre. Supposons que la foudre tombe à 200 m du bâtiment avec un di/dt de $25.10^9\,\text{A/s}$ (Icrête = $25\,\text{kA}$; $t_m = 1\,\mu\text{s}$). Si la boucle, formée par le réseau 50 Hz et les liaisons numériques (figure A) présente une surface de $50\,\text{m}^2$ au champ impulsionnel, la f.e.m. développée est :

$$e = \frac{d\emptyset}{dt} = \mu_0 S \frac{dH}{dt} = \frac{\mu_0 S}{2\pi d} \frac{di}{dt}$$

$$e = \frac{4\pi.10^{-7}.50}{2\pi.200}.25.10^9 = 1,25 \text{ kV}$$

Elle est dangereuse pour les circuits émetteursrécepteurs numériques et si la boucle est fermée, c'est le courant résultant qui va entraîner des détériorations.

Quelle est la parade ?

Minimiser la surface des boucles, câbles de puissance, câbles courants faibles; en effet si la boucle est ouverte une tension dangereuse pour l'électronique est développée et si elle est fermée, le courant induit va (impédance de transfert) perturber le signal, voire détruire les circuits émeteurs-récepteurs. La figure A montre que la boucle peut être de grande dimension. Un conducteur d'accompagnement, ou un chemin de câble ou un tube métallique (figure B) permet de minimiser la surface de la boucle.

Mais attention, on a ainsi créé une boucle entre masses. La liaison conductrice entre les deux équipements communicants doit donc être de faible impédance pour ne pas développer de tension induite entre les masses des équipements communicants (éviter les queues de cochons)...

Il faut noter que si cette impédance de liaison est faible, elle va voir passer en cas de défaut d'isolement une part importante du courant de défaut.

La solution est encore une fois le maillage des masses le plus intense possible pour diviser les courants, (figure C). Perturbation d'une liaison numérique par boucle inductive et remède.

A. Boucle formée par le réseau et la liaison numérique

B. Le chemin de câbles, connecté aux masses des deux appareils, minimise l'effet de courant induit avec la liaison numérique.

C. Utilisation de chemins de câbles parallèles pour l'alimentation et la liaison numérique : boucles réduites, plans réducteurs et effets atténués par maillage.

Bibliographie

Cahiers techniques Schneider Electric	
La CEM	CT 149
Coexistence courants forts, courants faibles	CT 187
Perturbations harmoniques et leur traitement	CT 152
Harmoniques convertisseur et compensateur actifs	CT 183
Manuel didactique CEM	ART. 62920
Les singularités de l'harmonique 3	à paraître

Collection technique Les harmoniques et les installations électriques......MD1 HRM1F La compatibilité électromagnétique......MD1 CEM1F

L'utilisation croissante de dispositif électrique utilisant des semi-conducteurs, tant dans les installations industrielles que pour les besoins électrodomestiques, est à l'origine des perturbations harmoniques et électromagnétiques dans les installations électriques mais aussi sur les réseaux de distribution et de transport.

Les exigences des clients industriels et tertiaires en matière de qualité de courant électrique sont de plus en plus fortes. Aux raisons techniques (développement des automatismes et de l'informatique) s'ajoutent les besoins induits par les démarches qualité, la recherche du zéro défaut, pour lesquels les utilisateurs doivent parfaitement maîtriser le fonctionnement de leur équipement.

Chasser les perturbations harmoniques et électromagnétiques devient une préoccupation majeure des responsables d'exploitation.

Le banc d'étude des perturbations des réseaux électriques <u>"HARMOCEM"</u> répond au besoin de formation sur les phénomènes Harmoniques et CEM quel que soit le niveau recherché, d'une simple sensibilisation par identification des pollueurs à une investigation complète menant aux calculs et à la mise en œuvre des remèdes.

Offre Complète et évolutive

Offre adaptée à tous les budgets

Pédagogie multidisciplinaire progressive

Rapidité de mise en oeuvre

Adaptée à tous les niveaux

Multi-métiers

Prise en compte de solutions industrielles

A l'ordre du jour sur des domaines industriels d'actualités

HARMOCEM

Selfs

Références

Composition	Référence
Banc d'études des perturbations des réseaux électriques	MDG99150
(notice,manuel pédagogique et matériels de mesure)	
Banc d'études des perturbations des réseaux électriques livré avec analyseurs HF et BF	MD1AG150
Filtre actif harmonique	MDG99159

Banc d'étude des perturbations des réseaux électriques CEM et Harmoniques

Extrait du Manuel des activités pédagogiques

Sommaire général

Introduction

1.2 La CEM : généralités

2	Со	urs et TP «Harmoniques»	15					
	2.1 TP 1 : Étude de différentes charges d'éclairage							
	2.2	Harmoniques : cours de synthèse						
	2.3	Évaluation harmoniques : QCM						
	2.4	TD : Étude des perturbations harmoniques sur la distribution (l'éclairage)	1					
	2.5	TP 2 : Étude des remèdes						
	2.6	TP 3 : Étude «Harmoniques et compensation d'énergie réactive»						
	2.7	TP 4 : Influence de l'impédance de source sur le taux de distorsion en tension						
3	Со	urs et TP «CEM»	49					
	3.1	Cours «CEM»						
	3.2	TP 1 : Mesure du rayonnement d'un câble en sortie variateu	ır					
	3.3	TP 2 : Mesure du rayonnement d'un câble sur un écran cathodique						
	3.4	TP 3 : Mesure de l'efficacité d'une armoire CEM sur le charrayonné	np					
	3.5	TP 4 : Mesure d'émission conduite HF réinjectée sur le rése	au					
	3.6	TP 5 : Corrélation entre mesure sur site et en laboratoire						

1.1 Perturbations provoquées par les harmoniques

1.3 Compétences et stratégie pédagogiques

Page

5

1.3 Compétences et stratégie pédagogiques

A- Compétences du technicien dans ce domaine

L'utilisation croissante de dispositif électrique utilisant les semi-conducteurs, tant dans les installations industrielles que pour les besoins électro-domestiques, est à l'origine de perturbations harmoniques et électromagnétiques dans les installations électriques mais aussi sur les réseaux de distribution et de transport. Les exigences des clients industriels et tertiaires en matière de qualité de courant électrique sont de plus en plus fortes. Aux raisons techniques (développement des automatismes et de l'informatique) s'ajoutent les besoins induits par les démarches qualités, la recherche du zéro défaut, pour lesquels les utilisateurs doivent parfaitement maîtriser le fonctionnement de leur équipement. Chasser les perturbations harmoniques et électromagnétiques devient une des préoccupations majeures des responsables d'exploitation.

■ Pour ceci, en présence d'un système automatisé, les schémas et la documentation technique étant fournis, un électrotechnicien doit être capable de :
☐ H0 : Connaître les normes en vigueur BF et HF, le marquage CE, ainsi que leurs champs d'application ;
☐ H1 : Connaître et savoir mettre en œuvre les règles de câblage et d'installation pour assurer la coexistence des différents courants (forts et faibles) ;
☐ H2 : Choisir et Appliquer une stratégie de protection en fonction des donnés constructeur (montage et remèdes) ;
☐ H3 : Identifier , sur une installation, les supports de propagation des perturbations (courants forts et les courants faibles) ;
☐ H4 : Identifier les différents pollueurs et victimes de l'installation ;
☐ H5 : Proposer un protocole d'investigation et de mesures sur site, face à un problème de dysfonctionnement de l'installation ;
☐ H6 : Déterminer , en fonction de critères prédéfinis, la stratégie de protection utilisée sur l'installation, Calculer et Justifier cette dernière.

B-Stratégie pédagogique Harmoniques/CEM

			H0	H1	H2	H3	H4	H5	H6
Niveau 1	Information, compréhension du sujet	Connaissance							
Niveau 3 Niveau 2 Niveau 1	Expression, maîtrise du savoir	Compréhension							
Niveau 3	Maîtrise d'un outil, d'un savoir faire	Application							
4	Maîtrise méthodologique	Analyse							
Niveau 4	d'un démarche	Synthèse							
ź		Evaluation							
	Etude des charges d'éclairages	TP n°1					0	О	
40	Normes et réglementa- tion	Cours	О	О					
niques	La distribution : effet sur les composants	TD n°1	0			О			0
Harmoniques	Etudes des remèdes	TP n°2	О		О		О	О	О
T	Harmoniques et capa. de $\cos \phi$	TP n°3	О			О	О	О	О
	Impédance de source	TP n°4	0		0			0	
	La C.E.M.	Cours 1							0
CEM	Les normes et directives	Cours 2	0					0	
	Les couplages	Cours 3			0	0	0		
	Les règles de câblage et les SLT	Cours 4		О		0			
	Rayonnement d'un câble	TP n°1		О	О		О	О	
	Influence du rayonne- ment d'un câble	TP n°2		О	О			О	
	Efficacité d'une armoire CEM	TP n°3		О				0	
	Mesure d'émission con- duite	TP n°4	О	О			О	О	
	Corrélation Site/Labora-	TP n°5	О					О	

C- Développement de la stratégie pédagogique Harmoniques

D- Développement de la stratégie pédagogique CEM

Cours et TP «Harmoniques»

Titre		page
2.1	TP 1 : Étude de différentes charges d'éclairage	17
2.2	Harmoniques : cours de synthèse	46
2.3	Évaluation harmoniques : QCM	57
2.4	TD : Étude des perturbations harmoniques sur la bution (l'éclairage)	distri- 58
2.5	TP 2 : Étude des remèdes	67
2.6	TP 3 : Étude «Harmoniques et compensation d'én réactive»	ergie 123
2.7	TP 4 : Influence de l'impédance de source sur le ta distorsion en tension	aux de 139

TP 1 : Étude de 2.1 différentes charges d'éclairage

Étude des phénomènes harmoniques

d'activité système

Lieu Laboratoire d'essai de

Apprentissage

Conditions de	
réalisation	

■ Sécurité

L'enseignant doit énoncer de manière explicite les consignes de sécurités.

Pour réduire au maximum les risques d'origine électrique :

- ☐ Tous les points de mesure sont accessibles sur le coté de l'armoire par bornes de sécurité.
- ☐ Le raccordement des appareils de mesure doit être réalisé exclusivement par des cordons de sécurité.

■ Matériels et documents utilisés

- ☐ Le système «Banc d'étude des perturbations des réseaux électriques CEM et Harmoniques»,
- ☐ Le dossier technique du système,
- Un analyseur d'harmoniques.

■ Pré-requis

☐ Sensibilisation du risque électrique.

mesure

Conditions de **■** Configuration du système

- ☐ Raccorder le câble d'alimentation de la partie opérative sur l'armoire principale.
- ☐ Utiliser des cordons de sécurité pour raccorder l'analyseur harmonique aux bornes U1, permettant la mesure de la tension réseau.
- ☐ Remplacer un des cavaliers I1 (phase ou neutre) par le cordon «10 spires» fourni pour permettre la mise en place de la pince TI de l'analyseur harmonique et réaliser la mesure du courant réseau.
- ☐ Agir sur les commutateurs C1 à C4 correspondants aux différentes charges d'éclairage.

Obiectif de l'activité

- ☐ Acquérir le vocabulaire, les notions et les définitions importantes liées à l'étude des phénomènes harmoniques au travers de l'étude des charges d'éclairage.
- ☐ H4 : Identifier les différents pollueurs et victimes de l'installation.
- ☐ H5 : Proposer un protocole d'investigation et de mesures sur site.

2.2 Harmoniques : cours de synthèse

Ce cours sur les Harmoniques comprend :

- Normes et réglementations
- Rappel théorique d'électrotechnique
- Etude d'une charge non linéaire (alimentation à découpage)

2.4 TD : Étude des perturbations harmoniques sur la distribution (l'éclairage)

L'objectif de ce TD est d'étudier l'incidence des harmoniques générés par l'éclairage sur une installation.

On y abordera aussi la détermination de la protection et de la section des câbles en fonction des différentes technologie d'éclairage.

Ce TD est structuré comme suit :

- A Sur une installation industrielle ne présentant pas de courant harmoniques
- B Sur une installation présentant des courants harmoniques
- C Rappels de quelques définitions pour la détermination de la section d'un câble
- D Informations sur le choix des câbles par rapport aux types de disjoncteur
- E Précautions à prendre pour l'étude d'une installation présentant des courants harmoniques (alimentations à découpage par exemple)

TP 2 : Étude des 2.5 remèdes

Étude des phénomènes harmoniques

d'activité système

Lieu | Laboratoire d'essai de

Transfert et complément de connaissance

Conditions de réalisation

■ Sécurité

L'enseignant doit énoncer de manière explicite les consignes de sécurités.

Pour réduire au maximum les risques d'origine électrique :

- ☐ Tous les points de mesure sont accessibles sur le coté de l'armoire par bornes de sécurité.
- ☐ Le raccordement des appareils de mesure doit être réalisé exclusivement par des cordons de sécurité.

■ Matériels et documents utilisés

- ☐ Le système «Banc d'étude des perturbations des réseaux électriques CEM et Harmoniques»,
- ☐ Le dossier technique du système,
- ☐ Un analyseur d'harmoniques, un ampèremètre non RMS, un ampèremètre RMS.

■ Pré-requis

- Sensibilisation du risque électrique.
- ☐ Connaissance des normes et définitions liées à l'études des harmoniques.
- ☐ Connaissance de base de l'électrotechnique.

mesure

Conditions de ■ Configuration du système

- ☐ Raccorder les deux armoires par :
- le câble d'alimentation de la partie opérative.
- le câble d'alimentation du variateur repéré (raccordé CEM).
- ☐ Utiliser des cordons de sécurité pour raccorder l'analyseur harmonique aux bornes U1, pour réaliser la mesure de la tension réseau,
- ☐ Remplacer les cavaliers I1 (phase ou neutre) et IFP par un cordon de sécurité pour permettre la mise en place de la pince TI de l'analyseur harmonique et réaliser la mesure du courant réseau.
- ☐ Agir sur les boutons poussoirs correspondant aux différents filtres mis en oeuvre.
- ☐ Remplacer un des cavaliers I_M courant de sortie VV par un ampèremètre RMS pour réaliser la mesure du courant de charge réglé par le frein à poudre.

Objectif de l'activité

- ☐ Mise en oeuvre et analyse des différents remèdes.
- ☐ H0 : Connaître les normes en vigueur BF et HF, le marquage CE, ainsi que leurs champs d'application;
- ☐ H2 : Choisir et appliquer une stratégie de protection en fonction des données constructeur (montage et remèdes) ;
- ☐ H4 : Identifier les différents pollueurs et victimes de l'installation ;
- ☐ H5 : Proposer un protocole d'investigation et de mesures sur site ;
- ☐ H6 : Déterminer, en fonction de critères prédéfinis, la stratégie de protection utilisé sur l'installation et justifier cette dernière.

Étude des phénomènes harmoniques

TP 2 : Étude des remèdes

1/54

Procédure de démarrage du variateur ATV18

	et de freinage du moteur par frein à poudre.
Sur l'armoire de commande	☐ Mise sous tension du variateur par le bouton poussoir I/O situé sur la face avant.
	☐ ordre de démarrage, de sens rotation et d'arrêt du moteur par le commutateur à trois positions AV, O, AR situé sur la face avant.
Sur la partie opérative	☐ validation et réglage du freinage du moteur.
	☐ Validation ou arrêt du freinage par action sur le commutateur C5.
	☐ Réglage du freinage par le potentiomètre P1.
	Le freinage sera réglé pour ajuster le courant de sortie du variateur par exemple à IN = 2,1A grâce à un ampèremètre situé en série sur un cavalier de sortie IM.
Note :	Lors des manipulations, il est conseillé pour arrêter ou démarrer le moteur, de se servir du commutateur AV, O, AR et non pas du BP

(I/O) de façon à éviter de solliciter trop fréquemment la protection de l'étage d'entrée du variateur.

Étude des phénomènes harmoniques

TP 2 : Étude des remèdes

2/54

A- Mise en évidence du pollueur

■ Vous êtes concepteur de l'armoire d'alimentation d'une MAS, en BT, < 16 A donc soumis à une réglementation produit avec des restrictions par cordon (CEI 61000-3-2).

Analyse de l'installation

☐ Armoire sans filtre : points de mesure U1-I1.

1 - Mettre en évidence, grâce au schéma, la chaîne de transfert de l'énergie électrique.

☐ Utiliser un surligneur pour suivre le parcourt de l'énergie sur le schéma puis compléter la représentation suivante :

- **2** Relever en toute sécurité la valeur du courant de ligne avec un appareil non RMS (i1) puis un appareil RMS (i2).
- □ Que constate t-on?

i1 ≠ i2, il est donc important de prendre le bon appareil de mesure.

- **3 -** Relevez en toute sécurité l'allure du couple tension/courant sur la ligne d'alimentation.
- ☐ Le courant est-il sinusoïdal?

On constate que le courant est alternatif non sinusoïdal.

Cette allure permet d'expliquer la différence de relevé constaté à la question 1 par la présence d'harmoniques.

- **4 -** En fonction de ces informations, la charge que constitue cette armoire est-elle une charge linéaire ?
- ☐ Identifier l'élément pollueur de cette installation.

La charge n'est pas linéaire et le pollueur est le modulateur ATV 18.

Étude des phénomènes harmoniques

TP 2 : Étude des remèdes

3/54

Étude harmonique : Utilisation d'un analyseur de spectre.

Réaliser en toute sécurité le relevé des paramètres suivant à l'aide d'un analyseur, les paramètres de l'alimentation en énergie électrique du coffret aux points de mesure U1I1. L'analyseur nous offre de nombreuses mesures, nous nous limiterons aux valeurs suivantes :

- ☐ TDH pour le taux de distorsion de tension et de courant par rapport au fondamental (THD Fund),
- ☐ le courant efficace (IRMS),
- ☐ H1 pour le fondamental,
- ☐ le Facteur de Puissance (PF),
- ☐ le Cos φ (DPF),
- □ Le facteur de crête (CF),
- ☐ la puissance active (KW),
- ☐ la puissance apparente (KVA),
- ☐ ainsi qu'aux allures de la tension, du courant, de la puissance et de leur spectre harmonique.
- ☐ Exploitation des relevés :

TDHu (%) TDHi (%)	IRMS	IH1 (A)	IH3 (A)	IH5 (A)	IH7 (A)	IH9 (A)	PF	$\text{Cos}\ \phi$	P (kW)	Q (kVA)
3,3	108,2	4,96	3,36	2,74	1,8	0,96	0,7	0,65	0,98	0,72	1,12

TP 2 : Étude des remèdes

☐ Mesure de la tension en U1

TP 2 : Étude des remèdes

- ☐ Mesure de la tension en I1
- □ VV à In
- ☐ Spectre riche

TP 2 : Étude des remèdes

Summary Ir	nformation					Record I	nformation		
Frequency Power KW KVA KVAR Peak KW Phase Total PF DPF	50,0 0,72 1,12 0,17 4,41 13° lead 0,65 0,98	RMS Peak DC C Crest THD THD HRM KFac	Offset t Rms Fund S	Itage Cu 226 307 0 1,36 3,3 3,3 8	rrent 4,96 14,75 -0,03 2,98 73,4 108,2 3,63 18,7	V RMS A RMS V Peak A Peak V THD-F A THD-F KWatts KVAR TPF DPF Frequence	1%	Average	Mi
Harmor	nic Information	1							
	Freq.	٧	Mag	%V RMS	٧ذ	l Mag	%I RMS		ver (KV
DC		0,0	0	0,0	0	0,03	0,6	0	0,0
1		0,0	226	100,0	0	3,36	68,1	13	0,7
2	100		0	0,1	51	0,02	0,5	105	0,0
3	150		3	1,2	31	2,74	55,5	-149	-0,0
4	200	,	0 7	0,0	-3 170	0,01	0,2	-71 58	0,0 -0.0
5 6	250 299	•	0	3,0 0,0	-179 -22	1,79 0,00	36,2 0,1	-58	-0,0
7	349		2	0,0	43	0,96	19,4	-38 -79	0,0
8	399		0	0,0	98	0,01	0,2	132	0,0
9	449		Ö	0,2	-15	0.70	14,2	170	0,0
10	499		0	0,0	123	0,01	0,2	-29	0,0
11	549	9,9	0	0,1	-84	0,70	14,3	39	0,0
12	599		0	0,0	-129	0,01	0,2	174	0,0
13	649		0	0,2	48	0,54	10,9	-103	0,
14	69	,	0	0,0	-13	0,00	0,1	82	0,0
15	749	. ,	0	0,2	-49	0,31	6,3	130	0,0
16 17	79:		0	0,0	117 -94	0,01	0,2 5,3	-39 25	0,0 0,0
18	849 899		0	0,1 0.0	-94 89	0,26 0,01	0,2	169	0,
19	94		0	0,0	124	0,01	5,5	-108	0,
20	99		ő	0,0	-137	0,00	0,1	22	0.0
21	104		Ö	0,1	-56	0,20	4,0	110	0.
22	109		0	0,0	53	0,00	0,1	-30	0,
23	114	9,8	0	0,0	-139	0,10	2,0	-8	0,
24	119	,	0	0,0	-146	0,01	0,1	168	0,
25	124		0	0,1	127	0,10	2,0	-108	0,
26	129		0	0,0	136	0,00	0,1	-5	0,
27	134		0	0,1	-13	0,10	2,0	112	0,
28 29	139: 144:		0	0,0 0,0	129 -124	0,00 0,05	0,0 1,0	146 -28	0,0 0,0
28	144	•	0	0,0	-124 90	0,05	0,0	-28 -160	0,0
30		91/							

TP 2 : Étude des remèdes

TP 2 : Étude des remèdes

8/54

Travail sur les relevés :

5 - Notre installation est-elle conforme à la norme ?

☐ Quel paramètre est important?

Notre armoire n'est pas conforme.

CEI 61000-3-2 : norme d'émission pour l'appareillage BT < 16 A :

IH3 < 2.3 A

Note : elle serait conforme en milieu industriel avec une distribution privée (grande parties des applications).

6 - Comparer la valeur IH1 avec le relevé du courant effectué par l'appareil non RMS (i1).

☐ Que peut-on en conclure ?

IH1 = i1, un appareil non RMS mesure le fondamental du courant

7 - Comment calculer IRMS en fonction du spectre harmonique ?

$$IRMS = \sqrt{\sum (IHn)^2}$$

8 - Rechercher les définitions de FP et de cos φ.

☐ Que traduisent ces deux valeurs?

Il n'y a pas de déphasage en amont d'un variateur de vitesse cos

o = 1 mais la richesse du spectre harmonique dégrade fortement le facteur de puissance PF = 0.68.

9 - Analyse des spectres :

☐ Expliquer la pauvreté du spectre de puissance et conclure sur le transport de l'énergie active.

La puissance active est la somme des puissances actives dues aux tensions et courants de même rang.

Dans notre cas, malgré un spectre de courant très riche, la puissance active ne transite que par le fondamental. Ceci s'explique par la tension qui est sinusoïdale donc uniquement composé du fonda-

 $P = URMS.IRMS.PF = UH1.IH1. \cos\varphi + UH2.IH3. \cos\varphi 2 +$ UHn.IHn. $cos\phi n + ...$ avec UH2 = 0 ... UHn =0.

Étude des phénomènes harmoniques	TP 2 : Étude des remèdes	9/54
--	--------------------------	------

B- Etude du pollueur

Le générateur d'harmoniques est un convertisseur de fréquence (CdF) ATV 18.

- **1 -** Expliquer son rôle en donnant le principe de variation de vitesse d'une MAS.
- **2 -** A l'aide des documents constructeur, compléter le synoptique interne du modulateur.

- 1 Convertisseur alternatif/continu fixe, généralement constitué par un pont de diode.
- 2 Filtre constitué par une batterie de condensateur.
- 3 Convertisseur continu/alternatif à modulation de largeur d'impulsion MLI constitué de transistors IGBT.

Ce pont onduleur a pour but de fournir au moteur un système de tension alternative triphasée d'amplitude et de fréquence variables.

☐ Analyse des paramètres constructeur :

Réseau				Moteur Puissance indique	ée sur la plaque	ATV 18U09M2			
U1 200	U2 240	Cour	ant de (A)	0.27 kW	0.5.UD	Courant de sor- tie permanent (A)	Courant transitoire (A)	Puissance dis- sipée à charge nominale (W)	
mono phasé 50/60	é	U1 4,4	U2 3,9	– 0,37 kW –	0,5 HP	2,1	3,1	23	

TP 2 : Étude des remèdes

10/54

3 - Calculer la puissance active absorbée par le variateur pour une tension réseau U2 de 240 V.

Décoder les paramètres constructeur et utiliser l'un des deux facteurs suivant : FP = 0.65 ou $cos\phi$ =0.98.

 $Pa = Ueff.Ieff.FP = 226 \times 4.96 \times 0.65 = 728W$

4 - Calculer la puissance de sortie du variateur (Pu), pour un courant de sortie sinusoïdal, une tension efficace de sortie de 240 V, le facteur de puissance est lié au $\cos \varphi$ imposé par la charge soit 0,6.

 $Pu = 240 \times 2.1 \times 0.8 \times \sqrt{3} = 698 \text{ W}$ On retrouve bien les 23W de puissance dissipé à la charge nominale dans le variateur.

5 - Que représente la puissance de 0,37 kW indiquée sur le variateur ?

Elle représente la puissance disponible sur l'arbre moteur en prenant un rendement de l'ordre de 0,6.

TP 2 : Étude des remèdes

11/54

Les remèdes industriels envisageables	■ Solutions générales :
	■ abaisser les impédance des harmoniques
	■ agir sur la structure de l'installation :
	□ augmentation de la puissance de court-circuit
	☐ choisir le bon schéma de liaison à la terre
	☐ utilisation de transformateurs spécifiques
	☐ confiner les charges polluantes
	☐ déclassement des équipements
	■ Solution de neutralisation :
	■ protection des condensateurs de compensation d'énergie réactive
	☐ Installation de self anti-harmoniques (SAH)
	■ filtrage anti-harmoniques :
	☐ lisser le courant
	☐ filtrage passif shunt résonnant
	☐ filtrage actif

☐ filtrage hybride

TP 2 : Étude des remèdes

12/54

C-Les remèdes

Les relevés précédents mettent en évidence que le taux de distorsion en courant, à l'entrée du redresseur, est trop important.

Il est donc nécessaire de réduire les courants harmoniques. Pour ce faire, quatre méthodes sont utilisées :

☐ mettre une inductance supplémentaire à l'entrée du redresseur pour atténuer globalement l'amplitude des harmoniques ;

utiliser un Filtre Passif accordé sur une fréquence particulière, riche en harmonique ;

utiliser un Filtre Actif capable de balayer tout le spectre harmonique ;

utiliser un Filtre Hybride pour optimiser le filtrage.

Mise en place d'une inductance à l'entrée du redresseur : lissage du courant

Il est possible de limiter les courants harmoniques de certains convertisseurs en intercalant entre leur point de raccordement et leur entrée une inductance dite de lissage. Cette disposition est utilisée en particulier pour les redresseurs avec condensateurs en tête ; l'inductance pouvant même être proposée en option par les constructeurs.

1 - Que préconise le constructeur et comment justifie t-il l'emploi d'une inductance de ligne ? (catalogue ATV18)

Réduction du taux d'harmoniques et protection contre les surtensions réseau, norme EN 50178, la valeur de la self est définie pour une chute de tension comprise entre 3 et 5 % de la tension nominale du réseau pour éviter une perte de couple du moteur.

Inductance proposée 10 mH 4A

TP 2 : Étude des remèdes

13/54

2 - Réaliser en toute sécurité le relevé des paramètres suivant à l'aide d'un analyseur, les paramètres de l'alimentation en énergie électrique du coffret aux points de mesure U1I1. L'analyseur nous offre de nombreuses mesures, nous nous limiterons aux valeurs suivantes :

☐ TDH pour le taux de distorsion de tension et de courant par rapport au fondamental (THD Fund),
□ le courant efficace (IRMS),
☐ H1 pour le fondamental,
☐ le Facteur de Puissance (PF),
□ le cos φ (DPF),
☐ Le facteur de crête (CF)
☐ la puissance active (KW),
☐ la puissance apparente (KVA),
☐ ainsi qu'aux allures de la tension, du courant, de la puissance e de leur spectre harmonique.

0,89	TDHi (%)	IRMS	IH1 (A)	IH3 (A)	IH5 (A)	IH7 (A)	IH9 (A)	PF	Cos φ	P (kW)	Q (kVA)
3	59,8	3,95	3,38	1,92	0,5	0,34	0,14	0,82	0,95	0,95	0,72

☐ Exploitation des relevés :

3 - Comment à évolué le TDHi de l'installation?

Commenter l'évolution des IH, de FP et du cos φ.

La self permet de lisser le courant mais n'annule pas les harmoniques, le TDHi est pratiquement divisé par 2, on se rend bien compte que la self n'agit pas sur le fondamental mais atténue fortement les harmoniques donc permet d'améliorer le PF sans trop dégrader le $Cos\ \varphi$.

L'utilisation d'inductances de ligne en amont des convertisseurs de fréquence a les effets suivants :

- Réduction des harmoniques de courant et donc de la valeur efficace du courant demandé au réseau.
- Conservation de la valeur de IH1 (fondamental) pour maintenir le couple moteur.
- Augmentation du facteur de puissance FP sans introduire de déphasage cosφ reste constant.
- Diminution du facteur de crête.

TP 2 : Étude des remèdes

14/54

- **4 -** Calculer la valeur de la self en fonction des données constructeur.
- Calcul de la valeur de self
- \Box chute de tension : Δu total admissible pour maintenir le couple moteur $\leq 3\%$ de 240V

 $\Delta u \leq 7V$

$$\label{eq:local_local_local} \square \ L1 \, = \, \frac{\Delta u}{\omega \cdot Ih1} \, = \, \frac{7}{2\pi \cdot 50 \cdot 2, \, 4} \, = \, 10 mH$$

- Calcul courant de la self L1
- ☐ leffL1 = leff du variateur = 4A
- ☐ Nota : tenir compte des éventuels courants harmoniques pré-existant sur le réseau
- ☐ Choix de L1 : n° 18175 AGECELEC ; 15 mH ; 6,5A.

Note : le choix volontaire d'une self plus forte a été faite à des fins pédagogiques de façon à mieux visualiser le TDHu (cf question 4),

par contre le couple moteur sera légèrement diminué.

TP 2 : Étude des remèdes

- ☐ Mesure sur réseau
- □ L1 = 15 mH
- □ VV à IN
- ☐ IN = courant nominal = 2,1A
- ☐ Légère atténuation de tout les spectres

TP 2 : Étude des remèdes

Summary In	formation					Boord	Information		
Summary in	ioimation		1/-		S	Hecord		A	
Frequency Power KW KVA KVAR Peak KW Phase Total PF DPF	50,0 0,72 0,89 0,24 2,27 18° lag 0,81 0,95	P D C T T	MS eak C Offset crest HD Rms HD Fund IRMS Factor	ltage 0 225 308 0 1,37 3,1 3,1 7	3,95 3,95 7,88 -0,02 2,0 51,3 59,8 2,02 4,1	V RMS A RMS V Peak A Peak V THD- A THD- KWatts KVAR TPF DPF Frequer	R%	Average	Mi
Harmoni	ic Informatio	n							
	Freq.		V Mag	%V RMS		I Mag	%I RMS		ver (KV
DC		0,0	0	0,	_	0,02		0	0,0
1 2		0,0	225	100,		3,38		-18	0,7
3		0,0 0.0	0	0, 1,				42 114	0,0 -0.0
4		0.0	0	0,			,	156	-0,0
5		0,0	6	2,		.,.		-146	0,0
6		9.9	0	0,				-164	0,0
7		9.9	2	1,		,		-101	0.0
8		9.9	ō	0,				-79	0,0
9	44	9,9	1	Ō,				-13	0,0
10	49	9,9	0	0,		0,00		-159	0,0
11	54	9,9	0	0,		3 0,12		16	0,0
12		9,9	0	0,				-20	0,0
13		9,9	1	0,				90	0,0
14		9,9	0	0,				62	0,0
15		9,9	0	0,				135	0,0
16		9,9	0	0,				99	0,0
17 18		9,8 9,8	0	0, 0.				-160 165	0,0
19		9.8	0	0,				-108	0,0
20		9,8	0	0,				-132	0,0
21	104		0	0,				-51	0,0
22	109		ŏ	Ő,				-89	0,0
23	114	. , .	0	Ō,				6	0,0
24	119	9,8	0	0,	0 36	0,00	0,0	-167	0,0
25	124	9,8	0	0,	0 -68	3 0,02	9,5	53	0,0
26	129	,	0	0,		-,		39	0,0
27	134	•	0	0,				114	0,0
28	139	•	0	0,		,		53	0,0
	144	9,/	0	0,	0 (0 -11,	0,01 4 0,00		169 122	0,0
29 30	149	07	0						

TP 2 : Étude des remèdes

TP 2 : Étude des remèdes

18/54

■ Principe

Utilisation de filtres passifs d'harmoniques :

Une mesure préliminaire est nécessaire pour accorder le filtre et pour vérifier que le réseau n'amène pas d'harmoniques qui pourrait saturer le filtres.

Il s'agit ici d'utiliser un condensateur en série avec une inductance de façon à obtenir l'accord sur un harmonique de fréquence donnée. Cet ensemble placé en dérivation sur l'installation présente une impédance très faible pour sa fréquence d'accord, et se comporte comme un court-circuit pour l'harmonique considéré.

Il est possible d'utiliser simultanément plusieurs ensembles accordés sur des fréquences différentes afin d'éliminer plusieurs rangs d'harmoniques.

D'apparence simple ce principe demande toutefois une étude soignée de l'installation car si le filtre se comporte bien comme un court-circuit pour la fréquence désirée, il peut présenter des risques de résonnance avec les autres inductances du réseau sur d'autres fréquences et ainsi faire augmenter des niveaux d'harmoniques.

☐ Schéma de principe :

Principe: La branche parallèle du filtre est constituée d'un circuit accordé sur l'harmonique le plus important qui présentera une impédance nulle pour ce dernier.

La branche série du filtre comporte une inductance L1 destinée à réaliser un découplage de la branche parallèle vis-à-vis de la source.

TP 2 : Étude des remèdes

19/54

☐ En appelant Zpn et Zsn les impédances des branches parallèle et série du filtre pour l'harmonique de rang n, et si le courant généré par le redresseur pour ce rang est l'Hn, le courant fourni par la source est :

IHn = I'Hn. (Zpn / (Zpn+Zsn))

- pour l'harmonique accordé, l'impédance parallèle est nulle. Tout le courant d'harmonique traverse donc la branche parallèle du filtre et cet harmonique n'affecte plus les autres utilisations.
- pour l'harmonique supérieur, du fait de la proximité de l'accord, l'impédance parallèle est encore faible et une grande partie de cet harmonique est aussi éliminée.
- enfin, pour les harmoniques de rangs élevés, l'impédance parallèle du filtre est très proche de celle de son inductance Lp : le filtre fonctionne en diviseur de courant.

Pour les harmoniques de rangs élevés : IHn = I'Hn. L2 / (L2 + L1 + Ls). Si L2 est choisi de façon à avoir : L2 = Ls + LF, alors IHn = 0.5.I'Hn

- ☐ Rang d'accord des filtres harmoniques :
- rangs 5 et 7 en triphasé
- rangs 3 et 5 en monophasé

TP 2 : Étude des remèdes

20/54

■ Mesure

1 - Mettre en service les selfs L1 et le filtre passif L2-C1 (filtre accordé sur l'harmonique de rang 3.

Réaliser en toute sécurité le relevé des paramètres suivant à l'aide d'un analyseur les paramètres de l'alimentation en énergie électrique du coffret aux points de mesure U1I1 (sur le réseau). TDH pour le taux de distorsion de tension et de courant par rapport au fondamental (THD Fund), le courant efficace (IRMS), H1 pour le fondamental, le Facteur de Puissance (PF), le cos ϕ (DPF), le facteur de crête $\cos \phi$, la puissance active (KW), la puissance apparente (KVA).

Ainsi que l'allure de la tension, du courant, de la puissance et de leur spectre harmonique.

TDHu (%)	TDHi (%)	IRMS	IH1 (A)	IH3 (A)	IH5 (A)	IH7 (A)	IH9 (A)	PF	Cos φ	P (kW)	Q (kVA)
3,4	19,6	3,78	3,7	0,47	0,48	0,10	0,22	0,88	0,89	0,74	0,85

- 2 Comment à évolué le TDHi de l'installation ?
- **□** Commenter l'évolution des IH, de FP et du cos φ.

Le filtre passif permet de «taper» sur un rang harmonique mais ne traite pas tout le spectre, le TDHi est pratiquement divisé par 4, on se rend bien compte que le fondamental n'est pas affecté, que le filtre est accordé sur le rang 3 (fréquence de résonance) mais agit aussi sur les rangs proches (5,7,9) le PF et le Cos j sont pratiquement unitaire. On tient largement la norme 1 A de IH3.

L'utilisation du filtre passif en amont des convertisseur de fréquence a les effets suivants :

- Réduction des harmoniques de courant et donc de la valeur efficace du courant demandé au réseau.
- Conservation de la valeur IH1 (fondamental) pour maintenir le couple moteur.
- Augmentation du facteur de puissance FP.
- Diminution du facteur de crête.

TP 2 : Étude des remèdes

- ☐ Mesure sur réseau en l1.
- ☐ VV seul à IN.
- ☐ Filtre passif connecté avec L2 = 46mH.
- ☐ Réduction très forte du rang 3 grâce au filtre passif accordé sur ce rang.
- ☐ Le reste du spectre demeure.

TP 2 : Étude des remèdes

Summary Ir	ntormation				Record	Information		
Frequency Power KW KVA KVAR Peak KW Phase Total PF DPF	50,0 0,74 0,85 0,37 1,51 27° lead 0,88 0,89	RMS Peak DC Offset Crest THD Rms THD Fund HRMS KFactor	/oltage 225 307 0 1,36 3,4 3,4 8	Current 3,78 5,21 -0,02 1,38 19,3 19,6 0,73 2,1	V RMS A RMS V Peak A Peak V THD-F KWatts KVAR TPF DPF Frequen	₹%	Average	. Mi
Harmor	nic Information							
DC	Freq.	V Mag	%V RMS	.0 Vذ	l Mag 0,02	%I RMS 0,6	Iذ Po	wer (KV 0,0
1		0,0 22					27	0,7
2	100		0 0		0,01	0,4	65	0,0
3	150			5 -98			74	0,0
4 5	200			.0 -16	0,00		110	0,0
5 6	250 299			,1 171 ,0 80	0,48 0,00	,	-32 -123	0,0 0.0
7	349			.9 -13			-123 -45	0,0
8	399			.0 98			-15	0,0
9	449			4 -63	0,22	5,8	124	0,0
10	499			0 162	.,		-90	0,0
11	549			4 35	-,	1,3	-75	0,0
12 13	599 649			0 -26 3 7			0	0,0
14	699			0 103	0,09 0,00	2,5 0,0	-93 13	0,0 0,0
15	749		0.		0,06	1,6	70	0,0
16	799			0 108		0,0	68	0,0
17	849		0 0		0,03	0,7	26	0,0
18	899			0 -136	0,00	0,1	141	0,0
19 20	949		0 0 0		0,04	1,2	-153	0,0
20	999 1049	,		.0 32 .0 -117	0,00 0,0 1	0,0 0,4	121 25	0,0 0,0
22	1099		-	.0 51	0,00	0,4	163	0,0
23	1149			0 56	0,02	0,6	-2	0.0
24	1199			0 113	0,00		-134	0,0
25	1249			0 -74	0,02	0,6	153	0,0
26	1299	,		0 -177	0,00	0,0	-77	0,0
27 28	1349			0 -172	0,01	0,1	152	0,0
20 29	1399 1449			.0 112 .0 0	0,00 0,02	0,0 0,5	-37 -75	0,0 0.0
30	1499			0 -34	0,02		-73 -4	0,0
	1549	•		0 -72	0,00		51	0,0

TP 2 : Étude des remèdes

TP 2 : Étude des remèdes

24/54

3 - Mesurer en toute sécurité, à l'aide d'un analyseur d'harmoniques, les paramètres du filtre passif aux points de mesure U1 IFP

- ☐ Mesure I dans le filtre passif.
- □ VV à IN
- ☐ avec L1 = 15 mH et L2 = 46 mH
- ☐ Ih3 élevé dans le filtre passif

TP 2 : Étude des remèdes

Summary In	formation				Record I	nformation		
Frequency Power KW KVA KVAR Peak KW Phase Total PF DPF	50,0 -0,03 0,68 0,44 1,17 94° lag -0,04 -0,07	RMS Peak DC Offset Crest THD Rms THD Fund HRMS KFactor	Voltage C 225 308 0 1,37 3,0 3,0 7	urrent 3,02 5,22 -0,03 1,73 76,1 117,1 2,30 **OL**	V RMS A RMS V Peak A Peak V THD-F A THD-F KWatts KVAR TPF DPF Frequence	?%	Average	Mir
Harmoni	c Information)						
	Freq.	V Mag	%V RMS	V ذ	l Mag	%I RMS	Iذ Pow	er (KW
DC),0			ŏ,03	0,9	0	0,0
1),0 225	, .		1,96	65,4	-94	-0,0
2	100		0,1		0,00	0,1	-81	0,0
3	150		,		2,27	75,7	169	0,0
4 5	200	•	,		0,00	0,2	125	0,0
5 6	250				0,35	11,6	-61	0,0
7	299 349	•	- , -		0,00	0,1	-70	0,0
8	399				0,05 0,00	1,6 0,0	50 -132	0,0
9	449				0,00	1,8	*132 86	0,0 0,0
10	499				0,00	0,0	-39	0,0
11	549				0,02	0,5	-137	0,0
12	599				0,00	0,0	136	0.0
13	649	•			0.01	0,5	-81	0,0
14	699	9,9			0,00	0,0	-105	0,0
15	749	9,9	0,1	-98	0,02	0,8	38	0,0
16	799			-84	0,00	0,0	72	0,0
17	849		. ,		0,02	0,6	130	0,0
18	899		- , -		0,00	0,0	-87	0,0
19	949	,-			0,01	0,4	-171	0,0
20 21	999		-,-		0,00	0,0	106	0,0
21	1049		-,-		0,01	0,4	-77	0,0
23	1099 1149	,	-,-		0,00	0,0	-44 -77	0,0
23 24	1149				0,01 0,00	0,2	77 52	0,0
25	1249	,			0.00	0,0 0,0	53 93	0,0
26	1299				0,00	0,0	93 75	0,0
27	1349				0,00	0,0	-114	0,0
28	1399				0,00	0,0	-172	0,0
29	1449				0,01	0,3	-8	0,0
00	1499				0,00	0,0	-115	0.00
30 31		','	,	00				

TP 2 : Étude des remèdes

26/54

r fréquence fr

■ Calcul du filtre passif

☐ Introduction:

La branche parallèle du filtre constituée d'un condensateur Cp en série avec une inductance Lp à une impédance complexe Zp=r+j (L ω - 1/C ω)

Où r est la résistance de l'inductance Lp.

L'étude de cette impédance en fonction de la fréquence présente :

- une valeur minimale résistive à la fréquence de résonance fr ;
- une impédance capacitive pour les fréquences inférieures à fr ;
- une impédance inductive pour les fréquences supérieures à fr ;

L'objectif est d'accorder ce filtre sur le rang le plus riche en harmoniques, ainsi ce courant produit par la charge se dirige vers le filtre et non vers le réseau. Le filtre est donc un absorbeur de courants harmoniques.

L'ensemble de l'installation présente une impédance A dont le comportement représenté sur le graphe suivant : ou l'on met en évidence une fréquence d'anti-résonnance ou Z a une impédance maximale. Il est important de bien connaître le spectre harmonique pour caler correctement notre filtre. Dans notre cas celui-ci est déterminer pour une éliminer les IH3 donc accordé sur 150 Hz.

Il faut:

- bien vérifier que l'anti-résonance n'est pas sur un rang riche en harmoniques ;
- tenir compte des harmoniques préexistantes sur le réseau qui pourraient entraîner un échauffement supplémentaire des condensateurs;

Étude des
phénomènes
harmoniques

TP 2 : Étude des remèdes

27/54

■ Spectre Harmonique de l'ATV18 (370W)

IRMS ligne	= 4A
IH1	= 2,4A
IH3	= 2,3A
IH5	= 2A
IH7	= 1,8A
IH9	= 2,3A

Sans self de ligne à Un = 240V

☐ Calcul

- 1 Calcul de la puissance apparente SN (d'entrée) de l'ATV18.
- ☐ Sans la self de ligne L1 :

S(KVA) = Ueff.leff = 240 X 4 = 960VA.

☐ Avec la self de ligne L1 :

Cette self limite le spectre harmonique par conséquent la puissance apparente va être réduite. Cette self doit être obligatoirement associée au filtre passif de façon à s'affranchir par «découplage impédant» des variations de courants harmoniques pré-éxistants sur le réseau.

Le filtre passif sera ainsi dimensionner que pour les seuls harmoniques générés par la charge à dépolluer.

☐ Calcul de SN:

La valeur du condensateur de filtre étant déterminée sur le fondamental :

SN = U1.I1 = 240. 2,4 = 570 VA

- 2 Calcul de QC.
- Hypothèse de travail :

☐ Si présence de condensateur de compensation d'énergie réactive sur l'installation :

(QC / SN) < 15% avec QC filtre passif et SN puissance du transformateur d'alimentation.

☐ Si absence de condensateur :

(QC / SN) < 30% avec QC filtre passif et SN puissance du transformateur d'alimentation.

Note : si la puissance de la charge est très inférieure de celle du transformateur d'alimentation pour calculer QC, on choisira le SN de la

charge. Ce sera le cas dans notre application.

$$\frac{QC}{570}$$
 < 30 % donc QC = 170 VAR

TP 2 : Étude des remèdes

28/54

3 - Calcul de C1

$$Q = U^2.C\omega$$

$$C = \frac{Q}{U^2 \cdot \omega} = \frac{170}{270^2 \cdot 2\pi \cdot 50} = 7,4 \mu F$$

4 - Calcul de la tension de dimensionnement Ud du condensateur
 C1

Ud = U(50Hz)
$$\cdot \frac{n^2}{n^2 - 1} + \sum_{n=2}^{n=\infty} Uhn^2$$

$$Ud = U(50Hz) \cdot \frac{n^2}{n^2 - 1} + Uh3 + Uh5$$

Le terme $\frac{n^2}{n^2-1}$ permet de tenir compte de la surtension de la self sur la circulation des courants harmoniques.

Dans notre cas on prendra n = 3 car filtre de rang 3 donc

$$\frac{n^2}{n^2-1} = 1,125$$

□ Calcul de Uh3 =
$$\frac{\text{Ih3}}{\text{C}\omega} = \frac{2,3}{7,4 \cdot 10^{-6} \cdot 2\pi \cdot 150} = 330\text{V}$$

☐ Calcul de Uh5 :

Par hypothèse nous fixerons une valeur de 30% de circulation de lh5 dans le filtre.

$$Uh5 = \frac{Ih5 \cdot 0, 3}{C\omega} = \frac{2 \cdot 0, 3}{7, 4 \cdot 10^{-6} \cdot 2\pi \cdot 250} = 51V$$

☐ Calcul de Ud

$$Ud = (240 \times 1,125) + 330 + 51 = 651V$$

Note : l'addition est faite algébriquement de façon à prendre une marge de sécurité.

Cette tension est très élevée pour cette faible valeur de condensateur et ne correspond pas à un produit standard. Nous opterons pour une valeur standard de condensateur de 24,8µF. Cette donnée technologique modifie les hypothèses de départ et permettra d'abaisser la tension de dimensionnement Ud.

TP 2 : Étude des remèdes

29/54

☐ Nouveau calcul de Ud

Uh3 =
$$\frac{Ih3}{C\omega}$$
 = $\frac{2,3}{24,8 \cdot 10^{-6} \cdot 2\pi \cdot 150}$ = 98V

$$Uh5 = \frac{Ih5 \cdot 0, 3}{C\omega} = \frac{2 \cdot 0, 3}{24, 8 \cdot 10^{-6} \cdot 2\pi \cdot 250} = 15V$$

$$Ud = 240 \cdot \frac{9}{9-1} + 98 + 15 = 385V$$

5 - Calcul de dimensionnement en courant de la capacité C1

leff =
$$\sqrt{IcH1^2 + IcH3^2 + IcH5^2}$$
 (dans la capa)

IcH1 = U1C
$$\omega_1$$
 = 240. 24,8. 2 π . 50 = 1,8A

$$IcH3 = U3C\omega_3 = 98.24, 8.2\pi.150 = 2,3A$$

$$IcH5 = U1C\omega_5 = 2.0,3 = 0,6A$$

leff =
$$\sqrt{1,8^2 + 2,3^2 + 0,6^2}$$
 = 3A

☐ Choix du condensateur C1 :

RECTIPHASE : référence D12A 3,3A ; 600V ; 50Hz ; 24,8µF

Ce condensateur standard est adapté à la nouvelle tension de dimensionnement Ud.

6 - Calcul de la self L2

 $LC\omega^2 = 1$ à l'accord au rang 3 = 150 hz.

$$L = \frac{1}{C\omega^2} = \frac{1}{24.8 \cdot 10^{-6} \cdot (2\pi \cdot 150)^2} = 46 \text{mH}$$

☐ Nota : on peut tenir compte de la dérive de la valeur du condensateur dans le temps en accordant le filtre à une valeur légèrement inférieur au rang 3 (par exemple 2,95).

☐ Choix de la self L2 :

AGECELEC n°181120; 46mH; 3,5A

TP 2 : Étude des remèdes

30/54

Le compensateur actif : explication du fonctionnement théorique.

■ Présentation du compensateur actif

- L'objectif est de minimiser sinon d'annuler au point de raccordement les harmoniques du courant (ou de la tension), par injection d'un courant (ou d'une tension) «complémentaire».
- Sous réserve que le dispositif soit apte à injecter à tout instant un courant dont chaque composante harmonique est de même amplitude que celle du courant dans la charge, et de phase opposée, alors la loi de sommation des courants en A garantit que le courant fourni par la source est purement sinusoïdal.

L'association «charges perturbatrices + compensateur actif» constitue une charge linéaire.

■ Ce type de dispositif est particulièrement bien adapté à la dépollution des réseaux BT, et ce quel que soit le point de raccordement choisi et le type de charge (car ce dispositif est auto-adaptatif). Le compensateur actif «shunt» constitue une source de courant indépendante de l'impédance réseau, et qui présente les caractéristiques intrinsèques suivantes :

TP 2 : Étude des remèdes

31/54

□ sa bande passante est suffisante pour garantir la suppression des composantes harmoniques majoritaires (en termes statistiques) du courant de la charge. Typiquement, nous considérons que la plage H 2 - H 23 est satisfaisante ; car plus le rang est élevé, plus le niveau de l'harmonique est faible.

☐ son temps de réponse est tel que la compensation harmonique soit effective non seulement en régime établi, mais encore en régime transitoire «lent» (quelques dizaines de ms),

□ sa puissance permet d'atteindre les objectifs de dépollution fixés, ce qui ne signifie pas nécessairement la compensation totale et permanente des harmoniques générés par la (ou les) charge(s). Sous réserve que ces trois objectifs soient simultanément atteints, alors le compensateur actif «shunt» constitue un excellent dépollueur, car auto-adaptatif, et ne présentant aucun risque d'interaction avec l'impédance réseau.

Schémas de principe

TP 2 : Étude des remèdes

32/54

Schéma de principe unifilaire

TP 2 : Étude des remèdes

33/54

■ Descriptif

Technologie du filtre actif

Transistor de type IGBT (Insolated Gate Bipolar Transistor)

Mixage des technologies MOS et bi-polaire permettant de réunir l'avantage du bi-polaire (bonne capacité de sortie en courant) e MOS (Rapidité, faible consommation de courant de commande)

TP 2 : Étude des remèdes

TP 2 : Étude des remèdes

35/54

Note d'exploitation et paramètrage du filtre actif

- Programmation du compensateur actif
- Mise sous tension par l'interrupteur face AR
- Mise en service de l'appareil

- ☐ Mise en marche: Touches RUN
- ☐ Mise à l'arrêt : Touches STOP + ENT
- Paramètrages des rangs d'harmoniques : modification de la programmation
- ☐ Déplacement dans le menu général avec les touches jusqu'à CONFIGURATION

- □ Validation par la touche ENTER
- ☐ Entrer le mot de passe : taper 5555 au clavier + [ENT]
- ☐ Dans le nouveau menu de configuration, rechercher le paramètre

CHOIX DES HARMONIQUES avec les touches + ENT

☐ Sélectionner les rangs d'harmoniques désirés avec les touches

$$\boxed{F2} = OUI$$
; $\boxed{F3} = NON$; + \boxed{ENT} en fin de programmation

☐ Confirmation de la mémorisation (MEM) de cette programmation :

FIN DE PROGRAMMATION

- Nota:
- ☐ Programmer H2 à H25 = NON ; Filtre Actif Seul

Programmer H2 / H3 = NON; H4 à H25 = OUI; Filtrage Hybride Passif + Actif

Étude des phénomènes harmoniques	TP 2 : Étude des remèdes	36/54
	- Procédure de Marche / Arrêt du filtre actif :	
	☐ Mise sous tension de l'appareil par l'interrupteur face AR	
	LED allumée (présence tension)	
	Nota : la charge est alimentée par le réseau EDF	
	☐ Mise en marche par les touches RUN + ENT ; LED ☐ mée (filtre actif en service)	∨ allu-
	☐ Mise à l'arrêt par les touches STOP + ENT ; LED	allumée
	Nota : la charge est alimentée par le réseau EDF	
	□ Fonctionnement en surcharge : LED contrôle allum	née lors-

2A de courant harmonique

que l'appareil centrale dépasse sa capacité de dépollution, environ

TP 2 : Étude des remèdes

37/54

Mesure

☐ Mettre en service le filtre actif et paramétrer celui-ci pour balayer l'ensemble du spectre.

☐ Mesurer en toute sécurité, à l'aide d'un analyseur d'harmoniques, les paramètres de l'alimentation en énergie électrique aux points de mesure U «tension», I «réseau» et I «filtre» situés sur le compensateur actif et non plus sur les points test U1I1 de l'armoire de commande.

Choix des harmoniques : OUI sur tous les rangs

☐ Réaliser pour les trois situations suivants :

- Faiblement chargé
- Filtre actif en limite de surcharge
- A In moteur

□ Relevé et analyse : à In Variateur, le filtre est en surcharge donc ne dépollue pas complètement notre installation.

TP 2 : Étude des remèdes

- ☐ Mesure sur I Réseau (sur compensateur actif)
- □ VV seul faiblement chargé
- ☐ Filtre actif seul programmé des rangs H2 à H25
- ☐ Dépollution totale du spectre

TP 2 : Étude des remèdes

Frequency 50.0 RMS 226 1.09 V RMS	Summary Information					Record Information			
Freq. V Mag %V RMS V ذ I Mag %I RMS I ذ Power (I I I I I I I I I I I I I I I I I I I	Power KW KVA KVAR Peak KW Phase Total PF	0,24 0,25 0,01 0,58 3° lead 0,99	RMS Peak DC Offset Crest THD Rms THD Fund HRMS	226 310 0 1,37 2,6 2,6	1,09 1,81 -0,02 1,66 8,8 8,9 0,10	A RMS V Peak A Peak V THD-R A THD-R KWatts KVAR TPF DPF	%	Average	Mil
DC	Harmon	ic Information							
1 50,0 226 100,1 0 1,08 101,5 3 (2 100,0 1 1 0,4 -146 0,01 1,1 -110 (3 3 150,0 0 0 0,1 -49 0,01 1,4 41 (4 200,0 0 0 0,1 155 0,00 0,4 73 (5 250,0 5 2,3 174 0,03 2,6 -18 (6 299,9 0 0,1 113 0,01 1,2 67 (7 349,9 2 1,1 -8 0,00 0,4 149 (8 399,9 0 0,1 -61 0,01 0,9 -136 (9 449,9 0 0,1 -61 0,01 0,9 -136 (9 449,9 0 0,1 -55 0,01 0,6 79 (11 549,9 0 0,0 1,1 -55 0,01 0,6 79 (11 549,9 0 0,0 1,1 -55 0,01 0,6 79 (11 549,9 0 0,0 1,1 -55 0,01 0,6 79 (11 549,9 1 0,2 -29 0,01 1,2 174 (14 699,9 0 0,0 1,1 -88 0,03 2,5 -22 (15 749,9 0 0,0 -158 0,01 0,8 122 (15 749,9 0 0,0 -158 0,01 0,8 122 (15 749,9 0 0,0 -158 0,01 0,8 122 (17 849,8 0 0,0 -18 0,00 0,1 0,1 0,6 (17 9,9 0,0 1,1 849,8 0 0,0 -18 0,00 0,1 0,6 (16 1,2 1,2 1,4 (17 849,8 0 0,0 1,1 38 0,03 2,5 -96 (18 89,8 0	DC								er (KW 0,0
2 100,0 1 0,4 -146 0,01 1,1 -110 0 3 150,0 0 0,1 -49 0,01 1,4 41 0 4 200,0 0 0,1 155 0,00 0,4 73 0 5 250,0 5 2,3 174 0,03 2,6 -18 0 6 299,9 0 0,1 113 0,01 1,2 67 0 7 349,9 2 1,1 -8 0,00 0,4 149 0 8 399,9 0 0,1 -61 0,01 0,9 -136 0 9 449,9 0 0,1 -82 0,02 1,8 82 0 10 499,9 0 0,1 -55 0,01 0,6 79 0 11 549,9 0 0,2 50 0,03 2,5 -22 0 12 599,9 0 0,0 131 0,00 0,2 50								-	0,0
4 200,0 0 0,1 155 0,00 0,4 73 0 5 250,0 5 2,3 174 0,03 2,6 -18 0 6 299,9 0 0,1 113 0,01 1,2 67 0 7 349,9 2 1,1 -8 0,00 0,4 149 0 8 399,9 0 0,1 -61 0,01 0,9 -136 0 9 449,9 0 0,1 -82 0,02 1,8 82 0 10 499,9 0 0,1 -55 0,01 0,6 79 0 11 549,9 0 0,2 50 0,03 2,5 -22 0 13 649,9 1 0,2 -29 0,01 1,2 174 0 14 699,9 0 0,0 -158 0,01 0,8 122 0 15 749,9 0 0,1 -88 0,03 2,8 40		100,			-146		,	_	0,0
5 250,0 5 2,3 174 0,03 2,6 -18 0 6 299,9 0 0,1 113 0,01 1,2 67 0 7 349,9 2 1,1 -8 0,00 0,4 149 0 8 399,9 0 0,1 -61 0,01 0,9 -136 0 9 449,9 0 0,1 -55 0,01 0,6 79 0 10 499,9 0 0,1 -55 0,01 0,6 79 0 11 549,9 0 0,2 50 0,03 2,5 -22 0 12 599,9 0 0,0 131 0,00 0,2 50 0 13 649,9 1 0,2 -29 0,01 1,2 174 0 14 699,9 0 0,0 -158 0,01 0,8 122 0									0,0
6 299,9 0 0,1 113 0,01 1,2 67 0 7 349,9 2 1,1 -8 0,00 0,4 149 0 8 399,9 0 0,1 -61 0,01 0,9 -136 0 9 449,9 0 0,1 82 0,02 1,8 82 0 10 499,9 0 0,1 -55 0,01 0,6 79 0 11 549,9 0 0,2 50 0,03 2,5 -22 0 12 599,9 0 0,0 131 0,00 0,2 50 0 13 649,9 1 0,2 -29 0,01 1,2 174 0 14 699,9 0 0,0 -158 0,01 0,8 122 0 15 749,9 0 0,1 -88 0,03 2,8 40 0 16 799,9 0 0,1 -88 0,03 2,8 40 0 16 799,9 0 0,0 -18 0,00 0,1 0 17 849,8 0 0,1 38 0,03 2,5 -96 0 18 899,8 0 0,0 137 0,01 0,6 165 0 19 949,8 0 0,0 137 0,01 0,6 165 0 19 949,8 0 0,0 137 0,01 0,6 165 0 19 949,8 0 0,0 128 0,00 0,4 73 0 21 1049,8 0 0,0 128 0,00 0,4 73 0 21 1049,8 0 0,0 128 0,00 0,4 73 0 22 1099,8 0 0,0 128 0,00 0,2 -120 0 23 1149,8 0 0,0 -139 0,03 2,6 -29 0 24 1199,8 0 0,0 -139 0,03 2,6 -29 0 25 1249,8 0 0,0 -138 0,02 1,9 -174 0 24 1199,8 0 0,0 -33 0,01 0,6 128 0 25 1249,8 0 0,0 -33 0,01 0,6 128 0 26 1299,8 0 0,0 -33 0,01 0,6 128 0 27 1349,8 0 0,0 -33 0,01 0,6 128 0 28 1399,7 0 0,0 33 0,03 3,1 -76 0 28 1399,7 0 0,0 10 0,01 0,5 169 0 29 1449,7 0 0,0 12 0,03 2,6 122 0									0,0
7 349,9 2 1,1 -8 0,00 0,4 149 0 8 399,9 0 0,1 -61 0,01 0,9 -136 0 9 449,9 0 0,1 82 0,02 1,8 82 0 10 499,9 0 0,1 -55 0,01 0,6 79 0 11 549,9 0 0,2 50 0,03 2,5 -22 0 12 599,9 0 0,0 131 0,00 0,2 50 0 13 649,9 1 0,2 -29 0,01 1,2 174 0 14 699,9 0 0,0 -158 0,01 0,8 122 0 15 749,9 0 0,1 -88 0,03 2,8 40 0 16 799,9 0 0,0 -18 0,00 0,1 0 0 17 849,8 0 0,1 38 0,03 2,5 -96		,		•					0,0
8 399,9 0 0,1 -61 0,01 0,9 -136 0 9 449,9 0 0,1 82 0,02 1,8 82 0 10 499,9 0 0,1 -55 0,01 0,6 79 0 11 549,9 0 0,2 50 0,03 2,5 -22 0 12 599,9 0 0,0 131 0,00 0,2 50 0 13 649,9 1 0,2 -29 0,01 1,2 174 0 14 699,9 0 0,0 -158 0,01 0,8 122 0 15 749,9 0 0,1 -88 0,03 2,8 40 0 16 799,9 0 0,0 -18 0,00 0,1 0 0 17 849,8 0 0,1 38 0,03 2,5 -96 0 18 899,8 0 0,0 137 0,01 0,6 165									0,0
9									0,0
11 549,9 0 0,2 50 0,03 2,5 -22 0 12 599,9 0 0,0 131 0,00 0,2 50 0 13 649,9 1 0,2 -29 0,01 1,2 174 0 14 699,9 0 0,0 -158 0,01 0,8 122 0 15 749,9 0 0,1 -88 0,03 2,8 40 0 16 799,9 0 0,0 -18 0,00 0,1 0 0 17 849,8 0 0,1 38 0,03 2,5 -96 0 18 899,8 0 0,0 137 0,01 0,6 165 0 19 949,8 0 0,0 -87 0,03 2,5 108 0 20 999,8 0 0,0 -139 0,03 2,6 -29 0 21 1049,8 0 0,0 -139 0,03 2,6 -29<		449,	9 0	0,1	82	0,02		82	0,0
12 599,9 0 0,0 131 0,00 0,2 50 0 13 649,9 1 0,2 -29 0,01 1,2 174 0 14 699,9 0 0,0 -158 0,01 0,8 122 0 15 749,9 0 0,1 -88 0,03 2,8 40 0 16 799,9 0 0,0 -18 0,00 0,1 0 0 17 849,8 0 0,1 38 0,03 2,5 -96 0 18 899,8 0 0,0 137 0,01 0,6 165 0 19 949,8 0 0,0 -87 0,03 2,5 108 0 20 999,8 0 0,0 128 0,00 0,4 73 0 21 1049,8 0 0,0 -139 0,03 2,6 -29 0 22 1099,8 0 0,0 124 0,00 0,2 -120									0,0
13 649,9 1 0,2 -29 0,01 1,2 174 0 14 699,9 0 0,0 -158 0,01 0,8 122 0 15 749,9 0 0,1 -88 0,03 2,8 40 0 16 799,9 0 0,0 -18 0,00 0,1 0 0 17 849,8 0 0,1 38 0,03 2,5 -96 0 18 899,8 0 0,0 137 0,01 0,6 165 0 19 949,8 0 0,0 -87 0,03 2,5 108 0 20 999,8 0 0,0 128 0,00 0,4 73 0 21 1049,8 0 0,0 -139 0,03 2,6 -29 0 22 1099,8 0 0,0 124 0,00 0,2 -120 0 23 1149,8 0 0,0 43 0,02 1,9 -1		1	-						0,0
14 699,9 0 0,0 -158 0,01 0,8 122 0 15 749,9 0 0,1 -88 0,03 2,8 40 0 16 799,9 0 0,0 -18 0,00 0,1 0 0 17 849,8 0 0,1 38 0,03 2,5 -96 0 18 899,8 0 0,0 137 0,01 0,6 165 0 19 949,8 0 0,0 -87 0,03 2,5 108 0 20 999,8 0 0,0 128 0,00 0,4 73 0 21 1049,8 0 0,0 -139 0,03 2,6 -29 0 22 1099,8 0 0,0 124 0,00 0,2 -120 0 23 1149,8 0 0,0 43 0,02 1,9 -174 0 24 1199,8 0 0,0 -33 0,01 0,6									0,0
15 749,9 0 0,1 -88 0,03 2,8 40 0 16 799,9 0 0,0 -18 0,00 0,1 0 0 17 849,8 0 0,1 38 0,03 2,5 -96 0 18 899,8 0 0,0 137 0,01 0,6 165 0 19 949,8 0 0,0 -87 0,03 2,5 108 0 20 999,8 0 0,0 128 0,00 0,4 73 0 21 1049,8 0 0,0 -139 0,03 2,6 -29 0 22 1099,8 0 0,0 124 0,00 0,2 -120 0 23 1149,8 0 0,0 43 0,02 1,9 -174 0 24 1199,8 0 0,0 -33 0,01 0,6 128 0 25 1249,8 0 0,0 -138 0,02 2,3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0,0</td></td<>									0,0
16 799,9 0 0,0 -18 0,00 0,1 0 0 17 849,8 0 0,1 38 0,03 2,5 -96 0 18 899,8 0 0,0 137 0,01 0,6 165 0 19 949,8 0 0,0 -87 0,03 2,5 108 0 20 999,8 0 0,0 128 0,00 0,4 73 0 21 1049,8 0 0,0 -139 0,03 2,6 -29 0 22 1099,8 0 0,0 124 0,00 0,2 -120 0 23 1149,8 0 0,0 43 0,02 1,9 -174 0 24 1199,8 0 0,0 -33 0,01 0,6 128 0 25 1249,8 0 0,0 -138 0,02 2,3 54 0 26 1299,8 0 0,0 89 0,00 0,2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0,0 0,0</td></td<>									0,0 0,0
17 849,8 0 0,1 38 0,03 2,5 -96 0 18 899,8 0 0,0 137 0,01 0,6 165 0 19 949,8 0 0,0 -87 0,03 2,5 108 0 20 999,8 0 0,0 128 0,00 0,4 73 0 21 1049,8 0 0,0 -139 0,03 2,6 -29 0 22 1099,8 0 0,0 124 0,00 0,2 -120 0 23 1149,8 0 0,0 43 0,02 1,9 -174 0 24 1199,8 0 0,0 -33 0,01 0,6 128 0 25 1249,8 0 0,0 -138 0,02 2,3 54 0 26 1299,8 0 0,0 89 0,00 0,2 23 0 27 1349,8 0 0,0 33 0,03 3,1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td>0,0</td></t<>						,			0,0
18 899,8 0 0,0 137 0,01 0,6 165 0 19 949,8 0 0,0 -87 0,03 2,5 108 0 20 999,8 0 0,0 128 0,00 0,4 73 0 21 1049,8 0 0,0 -139 0,03 2,6 -29 0 22 1099,8 0 0,0 124 0,00 0,2 -120 0 23 1149,8 0 0,0 43 0,02 1,9 -174 0 24 1199,8 0 0,0 -33 0,01 0,6 128 0 25 1249,8 0 0,0 -138 0,02 2,3 54 0 26 1299,8 0 0,0 89 0,00 0,2 23 0 27 1349,8 0 0,0 33 0,03 3,1 -76 0 28 1399,7 0 0,0 10 0,01 0,5 <	17	849,	8 0						0,0
20 999,8 0 0,0 128 0,00 0,4 73 0 21 1049,8 0 0,0 -139 0,03 2,6 -29 0 22 1099,8 0 0,0 124 0,00 0,2 -120 0 23 1149,8 0 0,0 43 0,02 1,9 -174 0 24 1199,8 0 0,0 -33 0,01 0,6 128 0 25 1249,8 0 0,0 -138 0,02 2,3 54 0 26 1299,8 0 0,0 89 0,00 0,2 23 0 27 1349,8 0 0,0 33 0,03 3,1 -76 0 28 1399,7 0 0,0 10 0,01 0,5 169 0 29 1449,7 0 0,0 12 0,03 2,6 122 0		,						165	0,0
21 1049,8 0 0,0 -139 0,03 2,6 -29 0 22 1099,8 0 0,0 124 0,00 0,2 -120 0 23 1149,8 0 0,0 43 0,02 1,9 -174 0 24 1199,8 0 0,0 -33 0,01 0,6 128 0 25 1249,8 0 0,0 -138 0,02 2,3 54 0 26 1299,8 0 0,0 89 0,00 0,2 23 0 27 1349,8 0 0,0 33 0,03 3,1 -76 0 28 1399,7 0 0,0 10 0,01 0,5 169 0 29 1449,7 0 0,0 12 0,03 2,6 122 0									0,0
22 1099,8 0 0,0 124 0,00 0,2 -120 0 23 1149,8 0 0,0 43 0,02 1,9 -174 0 24 1199,8 0 0,0 -33 0,01 0,6 128 0 25 1249,8 0 0,0 -138 0,02 2,3 54 0 26 1299,8 0 0,0 89 0,00 0,2 23 0 27 1349,8 0 0,0 33 0,03 3,1 -76 0 28 1399,7 0 0,0 10 0,01 0,5 169 0 29 1449,7 0 0,0 12 0,03 2,6 122 0									0,0
23									0,0 0,0
24 1199,8 0 0,0 -33 0,01 0,6 128 0 25 1249,8 0 0,0 -138 0,02 2,3 54 0 26 1299,8 0 0,0 89 0,00 0,2 23 0 27 1349,8 0 0,0 33 0,03 3,1 -76 0 28 1399,7 0 0,0 10 0,01 0,5 169 0 29 1449,7 0 0,0 12 0,03 2,6 122 0								. — -	0,0
25									0,0
27 1349,8 0 0,0 33 0,03 3,1 -76 0 28 1399,7 0 0,0 10 0,01 0,5 169 0 29 1449,7 0 0,0 12 0,03 2,6 122 0		1249,							0,0
28 1399,7 0 0,0 10 0,01 0,5 169 0 29 1449,7 0 0,0 12 0,03 2,6 122 0		,				0,00	0,2		0,0
29 1449,7 0 0,0 12 0,03 2,6 122 0									0,0
11111									0,0
									0,0
		,							0,0 0,0

TP 2 : Étude des remèdes

- ☐ Mesure sur I Réseau
- □ VV seul
- $\hfill \Box$ Filtre actif en limite de surcharge (1,7A RMS) programmé des rangs H2 à H25

TP 2 : Étude des remèdes

Summary In	formation				Record I	nformation		
Frequency Power KW KVA KVAR Peak KW Phase Total PF DPF	50,0 0,39 0,40 0,05 1,29 7° lead 0,97 0,99	RMS Peak DC Offset Crest THD Rms THD Fund HRMS KFactor	oltage Cu 224 307 0 1,37 2,5 2,5 6	rrent 1,79 4,16 -0,04 2,32 20,3 20,8 0,36 9,0	V RMS A RMS V Peak A Peak V THD-F A THD-F KWatts KVAR TPF DPF Frequence	₹%	Average	Min
Harmon	ic Information							
DC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 31	Freq. 0 50 100 150 200 250 299 349 399 449 599 649 799 849 999 1049 1199 1249 1399 1349 1499 1149 1549	,0 1 ,0 0 ,0 0 ,0 0 ,0 5 ,9 0 ,9 0 ,9 0 ,9 0 ,9 0 ,9 0 ,9 0 ,9 0	%V RMS 0,1 100,1 0,4 0,1 0,1 2,2 0,0 1,1 0,1 0,1 0,1 0,2 0,0 0,3 0,0 0,1 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0	V ذ 0 0 -147 -6 170 178 142 -8 -59 45 -64 63 169 -18 180 -103 -83 63 102 -46 -143 -160 -51 -55 -91 -114 -36 -141 -62 -49 -75	I Mag 0,04 1,75 0,01 0,09 0,00 0,11 0,01 0,13 0,01 0,14 0,01 0,12 0,01 0,01 0,01 0,01 0,09 0,01 0,07 0,01 0,07 0,01 0,06 0,00 0,05 0,00 0,03 0,03 0,03	%I RMS 2,0 99,7 0,6 5,4 0,3 6,4 1,0 6,3 0,9 7,5 7,7 0,6 6,6 0,6 6,8 0,2 5,6 0,4 5,0 4 4,1 0,4 3,5 0,3 3,0 0,1 3,1 0,2 1,9 0,2 1,7	l ذ Pov 0 7 -115 -134 151 78 58 -60 -125 146 104 6 -79 -144 148 72 21 -75 -123 141 117 5 -70 -139 -179 85 -169 -39 -23 -162 -150 91	ver (KW) 0,00 0,39 0,00 0,00 0,00 0,00 0,00 0,00

TP 2 : Étude des remèdes

- ☐ Mesure sur I Réseau
- ☐ VV seul à In
- ☐ Filtre actif seul programmé des rangs H2 à H25
- ☐ Conclusion : on constate une dégradation des paramètres. En effet le filtre se limitant par protection électronique à son courant nominal, il ne peut ainsi plus atteindre les objectifs de dépollution
- ☐ Le filtre actif est en surcharge

TP 2 : Étude des remèdes

Frequency Power KW KVAR Peak KW Phase Total PF DPF Harmonic DC 1 2 3 4 5 6 7 8 9 10	0,78 D 0,86 C 0,11 T 2,84 T 8° lead H	V Mag V Mag 0 224 1 1 0 5 0 2	## CUI 100,0 1,10,0 1,1	verent 3,84 9,29 -0,02 2,42 39,0 42,4 1,50 8,0 V ذ 0 0 -152 27 176 -172 170	V RMS A RMS V Peak A Peak V THD-R KWatts KVAR TPF DPF Frequence	% %I RMS 0,6 92,6 1,7 28,7 0,9	Average I ذ Pow 0 8 -72 -153 150	0 0 0
DC 1 2 3 4 5 6 7 8 9	Freq. 0,0 50,0 100,0 150,0 200,0 250,0 299,9 349,9	0 224 1 1 0 5 0	0,1 100,0 0,4 0,5 0,2 2,4 0,0	0 0 -152 27 176 -172	0,02 3,54 0,06 1,10 0,03 0,72	0,6 92,6 1,7 28,7 0,9	0 8 -72 -153	0 0 0
1 2 3 4 5 6 7 8 9	0,0 50,0 100,0 150,0 200,0 250,0 299,9 349,9	0 224 1 1 0 5 0	0,1 100,0 0,4 0,5 0,2 2,4 0,0	0 0 -152 27 176 -172	0,02 3,54 0,06 1,10 0,03 0,72	0,6 92,6 1,7 28,7 0,9	0 8 -72 -153	0 0 0
1 2 3 4 5 6 7 8 9	50,0 100,0 150,0 200,0 250,0 299,9 349,9	224 1 1 0 5 0 2	100,0 0,4 0,5 0,2 2,4 0,0	0 -152 27 176 -172	3,54 0,06 1,10 0,03 0,72	92,6 1,7 28,7 0,9	8 -72 -153	0 0 0
2 3 4 5 6 7 8 9	100,0 150,0 200,0 250,0 299,9 349,9	1 1 0 5 0 2	0,4 0,5 0,2 2,4 0,0	-152 27 176 -172	0,06 1,10 0,03 0,72	1,7 28,7 0,9	-72 -153	0
3 4 5 6 7 8 9	150,0 200,0 250,0 299,9 349,9	1 0 5 0 2	0,5 0,2 2,4 0,0	27 176 -172	1,10 0,03 0,72	28,7 0,9	-153	0
4 5 6 7 8 9	200,0 250,0 299,9 349,9	0 5 0 2	0,2 2,4 0,0	176 -172	0,03 0,72	0,9		
6 7 8 9	299,9 349,9	0 2	2,4 0,0		0,72	40.0		0
6 7 8 9	349,9	2		170		18,8	51	0
8 9			4 4		0,03	0,8	38	0
9	399,9			-6	0,38	9,9	-84	0
		0	0,1	-58	0,03	0,8	-91	0
10	449,9	0	0,2	49	0,31	. 8,2	162 147	0
11	499,9 549.9	0	0,1 0,0	-65 68	0,02 0,33	0,6 8,6	30	0
12	549,9 599.9	0	0,0	78	0,33	0,5	12	0
13	649.9	1	0,0	-5	0,02	6,4	-112	Ċ
14	699,9	Ö	0,0	-167	0.02	0,4	-105	Ö
15	749,9	Ō	0,1	-65	0,17	4,5	121	0
16	799,9	0	0,0	-13	0,02	0,5	115	0
17	849,8	0	0,0	-75	0,15	4,0	8	0
18	899,8	0	0,0	180	0,01	0,3	-38	0
19 20	949,8 999,8	0	0,1 0.0	63 136	0,15 0,00	4,0 0,1	-131 -135	0
20 21	1049,8	0	0,0	-96	0,00	3,0	-135 94	C
22	1099,8	0	0,0	132	0,01	0,0	112	Č
23	1149,8	ő	0,0	139	0,08	2,0	-25	C
24	1199,8	0	0,0	134	0,01	0,2	-35	C
25	1249,8	0	0,0	108	0,09	2,3	-154	C
26	1299,8	0	0,0	79	0,00	0,1	-101	(
27	1349,8	0	0,0	-86	0,08	2,1	78	(
28	1399,7	0	0,0	15	0,01	0,2	135 -46	
29 30	1449,7 1499,7	0	0,0 0,0	139 142	0,03 0,01	0,9 0,2	-46 -17	(
30 31	1549,7	0	0,0	93	0,01	1.0	-17 -132	(

TP 2 : Étude des remèdes

TP 2 : Étude des remèdes

- ☐ Mesure du courant absorbé dans le filtre actif
- ☐ VV seul à In donc filtre actif en surcharge
- ☐ Filtre actif seul programmé des rangs H2 à H25
- ☐ Conclusion : Absence de fondamental ; présence du spectre harmonique dans le filtre actif (dans sa limite de dépollution) de lh3 à lh25

TP 2 : Étude des remèdes

Summary Ir	nformation				Record	Information		
Frequency Power KW KVA KVAR Peak KW Phase Total PF DPF	50,0 0,03 0,43 0,02 -1,48 48° lead 0,07 0,67	RMS Peak DC Offset Crest THD Rms THD Fund HRMS KFactor	/oltage 224 305 0 1,36 2,8 2,8 6	Current 1,92 4,78 -0,02 2,49 99,7 ***OL** 1,91 ***OL**	V RMS A RMS V Peak A Peak V THD-I A THD-I KWatts KVAR TPF DPF Frequen	₹%	Average	М
Harmor	nic Information							
	Freq.	V Mag	%V RMS		I Mag	%I RMS		ver (K\
DC					0,02	1,3	0	0,0
1 2	100),0 22		1,1 1,4 -14	0,15	7,8	48 101	0,0
3	150),4			25	0,0 0,0
4	200			,,3 ,1 17			-89	0,0
5	250		-	,4 -17	,		-139	0,0
6	299			,0 -17:			69	0,0
7	349	,9		,2 -		24,6	76	0,0
8	399	, -		,1 -6		0,4	176	0,0
9	449	, -		,3 5			-38	0,0
10	499			,1 -6	- - ,	0,4	-82	0,0
11	549			,0 6	,		-173	0,0
12	599	, -		,0 -11			-68	0,0
13 14	649 699),2 -1:),0 -12:			31 147	0,0
15	749	,),0 -12:),1 -5:	,		-148	0,0
16	799),0 -3		0,4	-146 -61	0,0
17	849			,0 -2			-97	0,0
18	899	•		,0 -13			-34	0.0
19	949	,8	0 0	,0 4	8 0,01	0,5	113	0,0
20	999),8	0 0	,0 -11	1 0,00	0,1	105	0,0
21	1049	,),1 -10	,		77	0,0
22	1099	, -		,0 -2		0,3	-10	0,0
23 24	1149			,0 17	,		-77	0,0
2 4 25	1199 1249),0 15),0 8:	,		180	0,0
25 26	1248	,		1,0 6. 1,0 3		2,3 0,3	142 60	0,0 0,0
27	1349	•	-),1 -7	-,		31	0,0
28	1399	, .		,0 4			-27	0,0
29	1449	•		,0 -12	,		-96	0,0
30	1499			,0 11			174	0,0
31	1549).7	0 0	,0 10	1 0,02		119	0,0

TP 2 : Étude des remèdes

47/54

Calcul du dimensionnement d'un filtre actif

■ Mesure du courant efficace absorbé par la charge déformante :

$$leff = \sqrt{\sum_{n=1}^{n=\infty} lhn^2}$$

■ Dimensionnement du filtre passif :

$$leff = \sqrt{\sum_{n=2}^{n=\infty} lhn^2}$$

■ Nota : les filtres actifs industriels travaillent jusqu'au rang 25 environ.

TP 2 : Étude des remèdes

48/54

Filtrage hybride

■ Intérêt de cette méthode.

- ☐ Parmi les nombreuses variantes dites «hybrides», nous nous intéresserons plus particulièrement au type dit «série/parallèle» associant compensateurs actif(s) et passif(s) qui présente un intérêt certain pour la dépollution au plus près de convertisseurs de grosses puissances.
- ☐ Le passif «tape» sur les rangs faibles de forte amplitudes et évite la saturation de l'actif qui peut se consacrer au rang élevés de plus faible amplitudes.

TP 2 : Étude des remèdes

49/54

Mesure avec filtre hybride

☐ Mettre en service le filtre passif, la self L1 et le filtre actif paramétré pour balayer le spectre lors du rang 4 à 25.

Note: le rang 3 sera abordé par le filtre passif

☐ Mesurer en toute sécurité, à l'aide d'un analyseur d'harmoniques, les paramètres de l'alimentation en énergie électrique du coffret aux points de mesure U tension ; I réseau et I filtre situé sur le compensateur actif.

TP 2 : Étude des remèdes

- ☐ Mesure sur réseau
- ☐ VV seul à In
- ☐ Filtre actif programmé des rangs H4 à H25
- ☐ Self de ligne L1 et filtre passif (rang 3) connectés
- ☐ Conclusion : le filtre actif n'étant plus en surcharge (grâce à la contribution du filtre passif), la dépollution est totale
- ☐ Ceci permet de sous-dimensionner le compensateur actif
- ☐ Nota : Le résidu de lh3 correspond au facteur de qualité du filtre passif

TP 2 : Étude des remèdes

Summary In	ilomation	,	1 - 14	0	Hecolu	Information	A	L 41
Frequency Power KW KVA KVAR Peak KW Phase Total PF DPF	50,0 0,67 0,81 0,43 1,30 32° lead 0,84 0,84	RMS Peak DC Offset Crest THD Rms THD Fund HRMS KFactor	/oltage 232 313 0 1,35 8,4 8,4	Current 3,47 4,49 -0,03 1,3 12,4 12,5 0,43 1,2	V RMS A RMS V Peak A Peak V THD-I A THD-I KWatts KVAR TPF DPF Frequer	R%	Average	Mi
Harmor	nic Information							
	Freq.	V Mag	%V RM		l Mag	%I RMS		wer (KV
DC		,-		0,2	0 0,03		0 32	0,0
1 2	100),0 23		99,8 0,2 -1	0 3,43 124 0,02		-64	0,6 0.0
3	150				-25 0,43		-04 79	0,0
4	200				173 0,00		105	0,0
5	250				141 0,03		-152	0,0
6	300	,3	0	0,0 1	134 0,00		68	0,0
7	350		4	1,6	-7 0,02	0,5	-166	0,0
8	400			-,-	-54 0,01		-77	0,0
9	450			2,3	53 0,00		46	0,0
10	500			0,0	8 0,00		97	0,0
. 11	550		3		179 0,01		-58	0,0
12	600			0,0	82 0,00		100	0,0
13 14	650 700		2 0		-99 0,00 172 0,00		-10 -106	0,0 0,0
15	700 750		3	1,3	14 0,00		-106 77	0,0
16	800				-59 0,00		-95	0,0
17	850				100 0,00		103	0,0
18	900		0	0.0	61 0,00		118	0,0
19	950	, .	2		154 0,01		-124	0,0
20	1000		0		139 0,00		-77	0,0
21	1051	•			-50 0,01		57	0,0
22	1101		0	-,-	146 0,00		-88	0,0
23	1151		2	0,7	37 0,00		17	0,0
24 25	1201		0		-86 0,00		-175	0,0
25 26	1251 1301	•	1 0	0,5 1 0,0	148 0,01 0 0,00		-136 83	0,0 0,0
20 27	1351	•	1		0,00 127 0,01		80	0,0
28	1401		o		-43 0,00		-56	0,0
29	1451		1		-17 0,01		46	0,0
	1501		Ò		143 0,00		-35	0,0
30 31		· •	1		75 0,01			

TP 2 : Étude des remèdes

52/54

■ Montage hybride :

- ☐ Mesure sur de courant absorbé dans le filtre actif
- ☐ Filtre actif programmé des rangs H4 à H25
- ☐ Self de ligne L1 et filtre passif (rang 3) connectés
- ☐ Conclusion : absence de fondamental ; présence du spectre harmonique de lh5 à lh25 dans le filtre (le rang lh3 étant absorbé par le filtre passif)

TP 2 : Étude des remèdes

Outhinary II	nformation	V	oltogo C		Hecora I	nformation		
Frequency Power Watts VA Vars Peak W Phase Total PF DPF	50,0 13 136 18 432 63° lead 0,09 0,45	RMS Peak DC Offset Crest THD Rms THD Fund HRMS KFactor	oltage C 226 308 0 1,36 3,4 3,4 8	urrent 0,61 1,43 -0,02 2,35 98,9 658,5 0,60 **OL**	V RMS A RMS V Peak A Peak V THD-F A THD-F Watts Volt * Arr TPF DPF Frequence	1% nps	Average	Min
Harmor	nic Information	ı						
DC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31		1,1 1 1,0,2 0,0,2 0,0,3 0,0,4 0,0,5 0,0,6 0,0,7 0,0,7,7 0,0,8 0,0,9 0,0,0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,0,0,	100,0 0,1 0,4 0,1 3,3 0,0 0,7 0,1 0,1 0,0 0,3 0,0 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0 0,0	0 -15 -101 14 170 51 -3 138 -106 99 61 32 -8 -110 -115 -112 44 -15 -60 152 -108 -108 -108 -26 129 -92 -172 -69 -144	I Mag	%I RMS 2,9 15,4 0,3 4,2 1,2 87,4 1,3 22,6 1,3 38,6 0,6 9,3 1,3 16,6 0,8 10,5 0,6 2,2 1,0 7,7 0,3 2,4 1,0 3,0 0,5 3,0 0,7 0,7 0,7 0,7 0,7 0,4 0,4 1,2	I ذ Pow 0 63 142 0 -8 154 70 139 161 -53 -27 118 -15 93 167 -101 28 176 -60 30 169 -122 -7 152 -85 -6 179 10 -58 -6 179 10 -8 -8 -9 -10 -10 -10 -10 -10 -10 -10 -10	ver (W) 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TP 2 : Étude des remèdes

54/54

■ Conclusion

Suite à cette étude des remèdes, il convient de faire une synthèse sur le bien fondé de leur application respective. Pour cela nous proposons un argumentaire technico-économique progressif en commençant par la solution de base.

Remèdes	Efficacité de filtrage	Incidence économique sur l'installation	Coût du remède (ordre d'idée varie avec la puissance) *
Inductance de ligne seule.	Affaiblissement de tout spectre car self non accordée, aucune suppression de rang harmonique.	En fonction de leur efficacité les incidences sur l'installation sont les réductions suivantes :	A
Filtre passif, shunt accordé,	Accord de la branche série self + condensateur sur un rang	- réduction du IRMS dans les câbles et dans l'installation.	В
cellule avec protection.	riche en harmonique, suppression totale du rang d'accord.	 réduction des sections de câble ph + neutre, 	
		 réduction du calibre des pro- tections et des contacteurs, 	
		 réduction du rayonnement magnétique des câbles, 	
		- réduction du TDHU	
		- réduction du coût de l'installation.	
Compensateur actif dimensionné pour la puissance totale	Suppression de tout un spectre d'harmonique (2 à 23 environ).	- Donc amélioration globale du bon fonctionnement de l'installa- tion (continuité des services).	D
Filtrage hybride, association filtre pas-	Solution très efficace, suppression de tout les spectres :	- Respect des normes (surtout le spectre).	С
sif compensateur actif.	- rangs bas = filtrage passif,	- Solution bien adaptée à un filtrage réseau.	
	- rangs élevés = filtrage actif.	- Compensation d'énergie reac-	
	Le système permet d'optimiser la puissance du filtre actif	tive.	

(*) A:-cher...D:+cher

TP 3 : Étude 2.6 «Harmoniques et compensation d'énergie réactive»

Étude des phénomènes harmoniques

d'activité système

Lieu Laboratoire d'essai de

Transfert et complément de connaissance

Conditions de réalisation

■ Sécurité

L'enseignant doit énoncer de manière explicite les consignes de sécurités.

Pour réduire au maximum les risques d'origine électrique :

- ☐ Tous les points de mesure sont accessibles sur le coté de l'armoire par bornes de sécurité.
- ☐ Le raccordement des appareils de mesure doit être réalisé exclusivement par des cordons de sécurité.

■ Matériels et documents utilisés

- ☐ Le système «Banc d'étude des perturbations des réseaux électriques CEM et Harmoniques»,
- ☐ Le dossier technique du système,
- Un analyseur d'harmoniques.

■ Pré-requis

- Sensibilisation du risque électrique.
- ☐ Connaissance des normes et définitions liées à l'études des harmoniques.
- ☐ Connaissance de base de l'électrotechnique.

Conditions de mesure

■ Configuration du système

- ☐ Raccorder les deux armoires par :
- le câble d'alimentation de la partie opérative.
- le câble d'alimentation du variateur repéré (raccordé CEM).
- ☐ Utiliser des cordons de sécurité pour raccorder l'analyseur harmonique aux bornes U1, pour réaliser la mesure de la tension réseau,
- ☐ Remplacer les cavaliers IAR et I1 par un cordon de sécurité pour permettre la mise en place de la pince TI de l'analyseur harmonique et réaliser la mesure du courant réseau.
- ☐ Agir sur les boutons poussoirs correspondant aux différents filtres mis en oeuvre.
- ☐ Remplacer un des cavaliers I_M courant de sortie VV par un ampèremètre RMS pour réaliser la mesure du courant de charge réglé par le frein à poudre.
- ☐ Eviter de mettre hors tension le variateur entre les différentes manipulations pour éviter de surcharger la résistance de pré-charge du condensateur d'entrée du variateur. Pour cela utiliser le commutateur à 3 positions pour arrêter et démarrer le moteur.

Objectif de l'activité

- Mise en évidence et calcul des phénomènes de résonance, mise en oeuvre d'un remède.
- Mise en évidence de la compensation d'énergie réactive.
- ☐ H0 : Connaître les normes en vigueur BF et HF, le marquage CE, ainsi que leurs champs d'application;
- ☐ H3: Identifier sur une installation, les supports de propagation des perturbations (courants forts et faibles);
- ☐ H4 : Identifier les différents pollueurs et victimes de l'installation ;
- ☐ H5 : Proposer un protocole d'investigation et de mesures sur site ;
- ☐ H6 : Déterminer, en fonction de critères prédéfinis, la stratégie de protection utilisé sur l'installation et justifier cette dernière.

2.7 TP 4: Influence de l'impédance de source sur le taux de distorsion en tension

Étude des phénomènes harmoniques

d'activité système

Lieu Laboratoire d'essai de

Transfert et complément de connaissance

Conditions de réalisation

■ Sécurité

L'enseignant doit énoncer de manière explicite les consignes de sécurités.

Pour réduire au maximum les risques d'origine électrique :

- ☐ Tous les points de mesure sont accessibles sur le coté de l'armoire par bornes de sécurité.
- ☐ Le raccordement des appareils de mesure doit être réalisé exclusivement par des cordons de sécurité.

■ Matériels et documents utilisés

- ☐ Le système «Banc d'étude des perturbations des réseaux électriques CEM et Harmoniques»,
- ☐ Le dossier technique du système,
- Un analyseur d'harmoniques.

■ Pré-requis

Sensibilisation du risque électrique.

Conditions de mesure

■ Configuration du système

- ☐ Raccorder les deux armoires par :
- le câble d'alimentation de la partie opérative.
- le câble d'alimentation du variateur repéré (raccordé CEM).
- ☐ Utiliser des cordons de sécurité pour raccorder l'analyseur harmonique aux bornes U1 et U3 pour réaliser la mesure de la tension réseau.
- ☐ Remplacer un des cavaliers I1 (phase ou neutre) par un cordon de sécurité pour permettre la mise en place de la pince TI de l'analyseur harmonique et réaliser la mesure du courant réseau.
- ☐ Agir sur les boutons poussoirs correspondant aux différents filtres mis en oeuvre.
- ☐ Remplacer un des cavaliers I_M courant de sortie VV par un ampèremètre RMS pour réaliser la mesure du courant de charge réglé par le frein à poudre.
- ☐ Agir sur le bouton poussoir S1 pour connecter L1.
- ☐ Eviter de mettre hors tension le variateur entre les différentes manipulations pour éviter de surcharger la résistance de pré-charge du condensateur d'entrée du variateur. Pour cela utiliser le commutateur à 3 positions pour arrêter et démarrer le moteur.

Objectif de l'activité

- Influence de l'impédance de ligne ou source sur le TDHu.
- ☐ H0 : Connaître les normes en vigueur BF et HF, le marquage CE, ainsi que leurs champs d'application;
- ☐ H2 : Choisir et appliquer une stratégie de protection en fonction des données du constructeur.
- ☐ H5: Proposer un protocole d'investigation et de mesures sur site;

Cours et TP «CEM»

Titre	Ţ.	page
3.1	Cours «CEM»	150
3.2	TP 1 : Mesure du rayonnement d'un câble en sortie variateur	191
3.3	TP 2 : Mesure du rayonnement d'un câble sur un éc cathodique	ran 201
3.4	TP 3 : Mesure de l'efficacité d'une armoire CEM sur champ rayonné	le 205
3.5	TP 4 : Mesure d'émission conduite HF réinjectée sur réseau	r le 207
3.6	TP 5 : Corrélation entre mesure sur site et en labora	toire 217

3.1 Cours «CEM»

1. Généralités

□ Objectif:

Donner les principales définitions.

Fixer les rappels théoriques

2. Les normes, directives et marquages CE

☐ Objectif:

Présenter l'état de l'art concernant les principales normes, la directive CEM avec ses enjeux ainsi que le marquage CE.

3. Les couplages

☐ Objectif:

définir les modes de transmission des perturbations.

4. Règles de câblage

☐ Objectif:

- Connaître et savoir mettre en œuvre les règles pratiques d'installation et de câblage.
- Connaître les schémas de liaison à la Terre sur une installation en milieu perturbé.

3.2 TP 1: Mesure du rayonnement d'un câble en sortie variateur

CEM - Compatibilité électromagnétique

d'activité système

Lieu Laboratoire d'essai de

Transfert et complément de connaissance

Conditions de réalisation

■ Sécurité

L'enseignant doit énoncer de manière explicite les consignes de sécurités.

Pour réduire au minimum les risques d'origine électrique :

le raccordement des appareils de mesure doit être réalisé exclusivement par des cordons de sécurité.

■ Matériels et documents utilisés

☐ Le système «Banc d'étude	des perturbations	des réseaux	électri-
ques CEM et Harmoniques»,			

- ☐ Le dossier technique du système,
- ☐ Un analyseur de spectre HF ou un oscilloscope + adaptateur
- ☐ Une boucle de Moebius, une paire informatique torsadée, 3 câbles VV.

■ Pré-requis

- ☐ Sensibilisation du risque électrique
- Cours CEM.

mesure

Conditions de ■ Configuration du système

- ☐ Raccorder les deux armoires par :
- le câble d'alimentation de l'armoire PO,
- les trois types de câble VV en fonction des questions.
- ☐ Utiliser la pince HF pour mesurer le rayonnement du câble.
- ☐ Connecter le filtre FVV d'entrée.
- ☐ Variateur à In, aucune solution de filtrage harmoniques connectée.

Objectif de l'activité

Mis en évidence de l'efficacité d'un câble blindé.

- ☐ H1 : Connaître et savoir mettre en œuvre les règles de câblage et d'installation pour assurer la coexistence des différents courants (forts et faibles)
- ☐ H2 : **Choisir** et **appliquer** une stratégie de protection en fonction des données constructeur (montage et remèdes)
- ☐ H4 : **Identifier** les différents pollueurs et victimes de l'installation.
- ☐ H5: **Proposer** un protocole d'investigation et de mesures sur site, face à un problème de dysfonctionnement de l'installation

3.3 TP 2 : Mesure du rayonnement d'un câble sur un écran cathodique

CEM - Compatibilité électromagnétique

d'activité système

Lieu Laboratoire d'essai de

Transfert et complément de connaissance

Conditions de réalisation

■ Sécurité

L'enseignant doit énoncer de manière explicite les consignes de sécurités.

Pour réduire au minimum les risques d'origine électrique :

le raccordement des appareils de mesure doit être réalisé exclusivement par des cordons de sécurité.

■ Matériels et documents utilisé		Matériels	et	documents	utilisé
----------------------------------	--	------------------	----	-----------	---------

Le système «Banc d'étude des perturbations des réseaux électri-
ques CEM et Harmoniques»,
The descior technique du quetème

- Le dossier technique du système,
- Un écran cathodique,
- ☐ Une rallonge d'alimentation (Ph + N + PE) dénudée.

■ Pré-requis

- ☐ Sensibilisation du risque électrique
- ☐ Cours CEM.

mesure

Conditions de ☐ Configuration du système

- ☐ Raccorder les deux armoires par :
- le câble d'alimentation de l'armoire PO,
- le câble VV raccordé «CEM».
- ☐ Mettre en série avec le cordon d'alimentation du banc la rallonge dénudée.
- ☐ Plaquer le câble de phase contre l'écran cathodique.
- ☐ Variateur à In, aucune solution de filtrage harmoniques connectée.

Objectif de l'activité

Mis en évidence de l'efficacité d'un câble blindé.

- ☐ H1 : Connaître et savoir mettre en œuvre les règles de câblage et d'installation pour assurer la coexistence des différents courants (forts et faibles)
- ☐ H2 : **Choisir** et **appliquer** une stratégie de protection en fonction des données constructeur (montage et remèdes)
- ☐ H5 : **Proposer** un protocole d'investigation et de mesures sur site, face à un problème de dysfonctionnement de l'installation

TP 3: Mesure de 3.4 l'efficacité d'une armoire CEM sur le champ rayonné

CEM - Compatibilité électromagnétique

d'activité système

Lieu Laboratoire d'essai de

Transfert et complément de connaissance

Conditions de réalisation

■ Sécurité

L'enseignant doit énoncer de manière explicite les consignes de sécurités.

Pour réduire au minimum les risques d'origine électrique :

le raccordement des appareils de mesure doit être réalisé exclusivement par des cordons de sécurité.

■ Matériels et documents utilisé		Matériels	et	documents	utilisé
----------------------------------	--	------------------	----	-----------	---------

☐ Le système «Banc d'étude des perturbations des réseaux él	lectri-
ques CEM et Harmoniques»,	

- ☐ Le dossier technique du système,
- ☐ Un analyseur de spectre HF,
- □ Une boucle de Moebius.

■ Pré-requis

- ☐ Sensibilisation du risque électrique
- ☐ Cours CEM.

mesure

Conditions de **■** Configuration du système

- ☐ Raccorder les deux armoires par :
- le câble d'alimentation de l'armoire PO,
- le câble VV raccordé «CEM».
- ☐ Régler le courant variateur à In
- ☐ Placer la boucle de Moebius devant l'armoire
- ☐ Manœuvrer la porte suivant les consignes du professeur, et utiliser le bouton SA0 pour travailler porte ouverte.

Objectif de l'activité

Mis en évidence de l'efficacité d'une armoire CEM.

- ☐ H2 : **Choisir** et **appliquer** une stratégie de protection en fonction des données constructeur (montage et remèdes)
- ☐ H5: **Proposer** un protocole d'investigation et de mesures sur site, face à un problème de dysfonctionnement de l'installation

3.5 TP 4: Mesure d'émission conduite HF réinjectée sur le réseau

CEM - Compatibilité électromagnétique

d'activité

Lieu Laboratoire d'essai de système

Transfert et complément de connaissance

Conditions de réalisation

■ Sécurité

L'enseignant doit énoncer de manière explicite les consignes de sécurités.

Pour réduire au minimum les risques d'origine électrique :

le raccordement des appareils de mesure doit être réalisé exclusivement par des cordons de sécurité.

■ Matériels et documents utilisés

☐ Le système «Banc d'étude des perturbations des réseaux électri-
ques CEM et Harmoniques»,

- ☐ Le dossier technique du système,
- ☐ Une pince HF,
- ☐ Un analyseur de spectre HF ou un oscilloscope + adaptateur 50 Ω

■ Pré-requis

- Sensibilisation du risque électrique
- □ Cours CEM.

mesure

Conditions de ■ Configuration du système

- ☐ Raccorder les deux armoires par :
- le câble d'alimentation de l'armoire PO,
- le câble VV raccordé «CEM».
- ☐ Remplacer les cavaliers I1 (phase et neutre) par 2 cordons de sécurité pour permettre la mesure des courants conduits.
- ☐ Agir sur le bouton poussoir S5 pour mettre en œuvre ou enlever le filtre FVV (intégré dans le variateur).
- ☐ Variateur à vide, sans aucune solution de filtrage harmoniques connectée.

Objectif de l'activité

Mis en évidence de l'intérêt d'un filtre CEM.

- ☐ H0 : **Connaître** les normes en vigueur BF et HF, le marquage CE, ainsi que leurs champs d'application.
- ☐ H1 : Connaître et savoir mettre en œuvre les règles de câblage et d'installation pour assurer la coexistence des différents courants (forts et faibles)
- ☐ H4 : **Identifier** les différents pollueurs et victimes de l'installation.
- ☐ H5: **Proposer** un protocole d'investigation et de mesures sur site, face à un problème de dysfonctionnement de l'installation.

Notes:

TP 4 : Mesure d'émission conduite HF réinjectée sur le réseau

1/8

A - Configuration

A - Configuration	
Mesure de l'émission conduite HF réinjectée sur le du banc.	e réseau en entrée
☐ Outil de mesure : pince HF.	
☐ Lieu de mesure : sur les deux cavalier I1	
B - Descriptif	
1 - Mesure du courant HF à l'oscilloscope et à l'a tre, en connectant et déconnectant le filtra (FV) in par action sur le poussoir S5.	•
2 - Calcul du courant mesuré à la pince HF.	
3 - Corrélation (à des fins pédagogiques) entre le à la pince et la mesure normative (tension) effectu	
\Box les mesures effectuées à l'oscilloscope se feront 50 Ω .	t avec l'adaptateu

☐ Entrée directe (sans adaptateur) sur l'analyseur).

TP 4 : Mesure d'émission conduite HF réinjectée sur le réseau

2/8

Mesures d'émission HF en entrée du bruit de fond à l'analyseur de spectre

Banc hors tension

Le niveau de bruit de fond se situe en moyenne à $10 \text{ dB}\mu\text{V}$

Analyseur 10 dBµV/div 2 MHz/div

TP 4 : Mesure d'émission conduite HF réinjectée sur le réseau

3/8

Mesures d'émission HF en entrée à l'analyseur de spectre en mode commun

Variateur seul sans filtre

Variateur seul avec filtre

Analyseur 10 dBµV/div 2 MHz/div

Rappel: - 10 dB correspondent à une atténuation d'un facteur 3

TP 4 : Mesure d'émission conduite HF réinjectée sur le réseau

4/8

Mesures d'émission HF en entrée à l'analyseur de spectre en mode différentiel

Variateur seul sans filtre

Variateur seul avec filtre

Analyseur 10 dBµV/div 2 MHz/div

TP 4 : Mesure d'émission conduite HF réinjectée sur le réseau

5/8

Mesures d'émission HF en entrée du bruit de fond à l'oscilloscope en mode commun

Oscilloscope 5 mV/div 2 ms

Banc hors tension

Oscilloscope adapté à 50 Ω

TP 4 : Mesure d'émission conduite HF réinjectée sur le réseau

6/8

Mesures d'émission HF en entrée à l'oscilloscope en mode commun

Variateur sans filtre

Variateur avec filtre

Oscilloscope 0,5 V/div 2 ms

Oscilloscope adapté à 50 Ω

TP 4 : Mesure d'émission conduite HF réinjectée sur le réseau

7/8

Mesures d'émission HF en entrée à l'oscilloscope en mode différentiel

Variateur seul sans filtre

Variateur seul avec filtre

Oscilloscope 0,5 V/div 2 ms

■ Remarque:

La visualisation du courant à 50 Hz reste inchangée avec et sans filtre.

On constate que le filtre RFI atténue la HF et non la BF.

TP 4 : Mesure d'émission conduite HF réinjectée sur le réseau

8/8

C - Conclusion

On a pu mettre en évidence l'efficacité du filtre en fonction des différentes méthodes de mesure, à oscilloscope et à l'analyseur de spectre.

Le filtre Haute Fréquence atténue fortement les perturbations électromagnétiques, sous réserve d'un câblage correct, et ceci quel que soit le niveau de charge (BF) du variateur.

Notes concernant le filtre haute fréquence (FEN)

Dans le banc, le filtrage des perturbations HF est assuré par le filtre (FVV) intégré dans le variateur.

Le filtre FEN n'a donc qu'un rôle pédagogique : il permet de mettre en évidence les règles de câblage d'un filtre HF.

(voir cours sur les règles de câblage)

3.6 TP 5 : Corrélation entre mesure sur site et en laboratoire

CEM - Compatibilité électromagnétique

d'activité système

Lieu Laboratoire d'essai de

Transfert et complément de connaissance

Conditions de réalisation

■ Sécurité

L'enseignant doit énoncer de manière explicite les consignes de sécurités.

Pour réduire au minimum les risques d'origine électrique :

le raccordement des appareils de mesure doit être réalisé exclusivement par des cordons de sécurité.

■ Matériels et documents utilisés

☐ Le système «Banc d'étude	des perturbations	des réseaux électri-
ques CEM et Harmoniques»,	,	

- ☐ Le dossier technique du système
- ☐ Une pince HF
- ☐ Un analyseur de spectre HF

■ Pré-requis

- ☐ Sensibilisation du risque électrique
- □ Cours CEM.

mesure

Conditions de ■ Configuration du système

- ☐ Raccorder les deux armoires par :
- le câble d'alimentation de l'armoire PO,
- le câble VV raccordé «CEM».
- ☐ Remplacer les cavaliers I₁ (phase et neutre) par 2 cordons de sécurité pour permettre la mesure des courants conduits.
- ☐ Agir sur le bouton poussoir S5 pour mettre en œuvre ou enlever le filtre FVV.

Obiectif de l'activité

☐ H0: Connaître les normes en vigueur BF et HF, le marquage CE, ainsi que leurs champs d'application

☐ H5: **Proposer** un protocole d'investigation et de mesures sur site, face à un problème de dysfonctionnement de l'installation