

CG4002: Computer Engineering Capstone Project

Hardware Sensors

Lecturer : Dr. Sangit Sasidhar (sangit@nus.edu.sg)

Department of Electrical and Computer Engineering

Hardware Sensors Requirements

- Design the Laser Tag Gun and Target Suit
- Power System Design
- Detect Laser Tag Game Actions!!!!!
- Design your own Final Move

Beetle BLE

- The Beetle BLE (Former name as Bluno Beetle) is an Arduino Uno based board with Bluetooth 4.0 (BLE)
- ATmega328@16MHz
- Bluetooth Low Energy (BT 4.0)
- Micro USB port
- Super Compact Size
- Support Bluetooth HID and ibeacon
- Support Wireless Programming
- Digital Pin x4, Analog Pin x4, PWM Output x2, UART interface x1, I2C interface x1, Micro USB interface x1, Power port x2
- Weight: 10g

Source:https://www.dfrobot.com/index.php?route=product/product&product_id=1259&search=beetle &description=true&category_id=48&gclid=Cj0KCQiAsbrxBRDpARIsAAnnz_MokTwqL2LxM-OZI0JIZv2S zNbUMkXhpnIkH734XtveQnhZ3dNI1MaAu-UEALw wcB

Laser Tag Gun and Target Requirements

- A Laser tag gun (Transmitter) that can shoot at an opponent
- An accompanying target suit that can detect shots
- Working range of 3m
- Line of Sight
- Good to have!! Visual and audio feedback when a target is hit and when the player loses all health points

Sensors – Laser Tag Gun and Target

- Infra-red Transmitter and Detector
 - Traditionally user in laser tag
 - Needs line of sight to function
 - Range can be improved by programming the transmitting IR and isolating the corresponding frequency at the detector (Think TV Remote!)
 - Simpler to implement
- Software Visualiser Camera as the detector
 - Need to share resources with the software visualizer
 - What would you choose to transmit the shooting?
- Other possible transmitter-sensors
 - Ultrasonic Sensors??
 - UWB Sensor??

Power System Design

Why Power System Design???

• How Big a Battery do you need?

Power Budget and Battery Design

Subsystems in Series and Parallel

PS: Sample battery design video also has been uploaded

Beetle Power Options

- Button Cell Battery
 - Small, Portable, Lightweight
 - High running cost, does not last long

- AA Battery
 - Relatively small, can be integrated to the body sensor system, rechargeable
 - Unregulated voltage, requires voltage regulator or DC-DC convertor

Interfacing Info

- General Purpose Input/Output (GPIO)
 - configure a pin as output / input and write/read digital data to the pin
 - Simple devices such as ultrasound, IR, 2line LCD display, Buzzers, LEDs
- Inter-integrated circuit (I2C)
 - 2 wire, synchronous, serial, master-slave, half-duplex, in-band addressing using 7-bit addresses (+read/write bit), short-distance [Arduino Library: Wire]
 - Slower devices such as accelerometer, gyro, compass etc

Interfacing Info

- Universal asynchronous receiver/ transmitter (UART, also called serial)
 - 2 non-shared wires, asynchronous, serial, fullduplex, longer distance (using a physical layer)
 [Arduino Library : Serial]
 - Between computers / microcontrollers, RFID modules, GSM modules
- Take note of the voltage levels of each device and component (3.3V / 5V/12V etc)
 - Do you require level shifting between 3.3V sensors and 5V Beetles?
- Take note of the max. current supplied by each pin of the device
- Read the datasheet carefully for such info

Human Movement Estimation

• What is Human Movement Estimation?

- How do we do it?
 - Optical Systems
 - Non-Optical Systems

Human Movement Estimation

- Data captured from image sensors to triangulate the 3D position of a subject between two or more cameras calibrated to provide overlapping projections
 - Marker Based System
 - Marker-less System
- Inertial Systems
 - miniature inertial sensors
 - biomechanical models
 - sensor fusion algorithms
 - \$1,000 to \$80,000 USD
- Mechanical motion
 - exoskeleton motion capture systems
 - \$25,000 to \$75,000 USD

Laser Tag Game Actions

- What type of actions need to be measured?
 - Grenade
 - Shield
 - Reload
 - Final Game Move
- What type of systems/ sensors can we use?
 - Cameras
 - Flex Sensors
 - Inertial Sensors

Sensor Measurement Protocol

- Sampling IMU Signal Processing
 - Filtering: Remove noise from the signal
 - Conversion of raw data to appropriate format (e.g. Hex value to m/s² for acceleration)
- Feature Extraction
 - Example Sampling Frequency: 5-50 Hz
 - Analysis Window: 250ms 1000ms
 - 500 ms contains 25 samples per sensor
 - Use of sliding window?

- Benefits of Feature Extraction on the Beetle
 - Communication protocol is simpler
 - 1 second window: 6 sensors/IMU * 2 IMUs per user* 50 samples/1 second = 600 samples
 - Extracting features: e.g. 6 features per sensor* 6 sensors/IMU* 2 IMUs per user = 72 features
 - Utilization of the Beetle resources
 - Decentralized Debugging of sensors and each body unit is easier and convenient

Documentation

- A proper documentation is very useful in debugging
- Document everything in a wiki / knowledge bank (eg: NUS wiki, GIT, Microsoft Teams)
 - Include the links. Always have wiki open whenever you google
 - Save all the datasheets, libraries you used (you need to specify the library source in your code clearly)
- Will help you in final documentation. It will also serve as a learning journal
- "Oh, I had seen it somewhere, can't recall where" issues can be minimized

Thank You

PS: Check the Hardware Sensors under Week 6 (Individual Full Subsystem Test) for expected deliverables