Time Series

권지혜 윤빈나 윤재경 전혜민 정재원 최성웅

Index

- 1. LSTM
- 2. Box-Jenkins Method

RNN: Gradient Vanishing / Gradient Exploding problem

Forget gate layer

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

cell state로부터 어떤 정보를 버릴 것인지 정하는 단계의 gate

Input gate layer

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

새로운 정보 중 어떤 것을 cell state에 저장할 것인지 결정

Cell state update

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

과거 state를 업데이트해서 새로운 cell state를 만듦

Output gate layer

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

input 데이터를 태워서 cell state의 어느 부분을 output으로 내보낼지 결정함

Univariate

Multivariate

	meter_reading	air_temperature	dew_temperature	precip_depth_1_hr	sea_level_pressure	wind_direction	wind_speed
timestamp							
2016-01-01 00:00:00	28.10	15.6	-5.6	0.0	1015.3	270,0	3.6
2016-01-01 01:00:00	26.57	13.9	-5.6	0.0	1015.6	270.0	4.1
2016-01-01 02:00:00	25.73	13.3	-5.6	0.0	1016.0	270.0	3.1
2016-01-01 03:00:00	25.96	12.2	-8.1	0.0	1018.6	280.0	3.1
2016-01-01 04:00:00	25.59	11.7	-6.7	0.0	1017.0	270.0	3.1

Scale/Set window size

```
# load dataset
values = dataset.values
# ensure all data is float
values = values.astype('float32')
# normalize features
scaler = MinMaxScaler(feature_range=(0, 1))
scaled = scaler.fit_transform(values)
window_size=24
# frame as supervised learning
reframed = series_to_supervised(scaled, window_size, 1)
# drop columns we don't want to predict
reframed.drop(reframed.columns[[169,170,171,172,173,174]], axis=1, inplace=True)
print(reframed.head())
```

```
0.007519
                              0.288420
      0.082777
                  0.280000
                                          0.007519
     0.078716
                             0.286420
                                          0.007519
                                                                  0.780000
                             0.274074
     0.079828
                                          0:007519
                                                      0.601424
                                                                  0.777778
      0.078039
                  0.211111
                             0.259259
                            var2(t-23)
                                                              var8(t-2) W
    var7[t-24]
                var1(1-23)
      0.233768
                                          0.286420
                                                               0.000000
     0.268234
                 0.078716
                                                               0.000000
                             0.246667
                                          0.286420
      0.201299
                  D.079828
                                          0.274074
                                                               0.750000
      0.201299
                                          0.259258
                                                               0.894444
28
     0.201299
                 D. 081520
                                                               0.694444
                           0.333333
                           0.271111
     0.750000
     0.894444
    0.583333
               0.097403 0.079344
[5 rows x 189 columns]
```


Split data

```
#spilt train and test
values = reframed.values
n_train_hours = 200*24
train = values[n_train_hours. :]
test = values[n_train_hours. :]
# spilt into input and outputs
train_X, train_y = train[: :-1], train[:, -1]
test_X, test_y = test[:, :-1], test[:, -1]
# reshape input to be 30 [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], window_size, int(train_X.shape[1]/window_size)))
test_X = test_X.reshape((test_X.shape[0], window_size, int(test_X.shape[1]/window_size)))
print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)
(4800, 24, 7) (4800,) (3935, 24, 7) (3935,)
```

Design LSTM model

```
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.layers import LSTM
from tensorflow.keras import Sequential

# design network - 3 /ayered /stm
nodel = Sequential()
nodel.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2]),return_sequences=True))
nodel.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2]),return_sequences=True))
nodel.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])))
nodel.add(Dense(1))
nodel.compile(loss='mae', optimizer='adm')
```


Fit model

```
history = model.fit(train_X, train_y, epochs=70, batch_size=72, validation_data=(test_X, test_y), verbose=2, shuffle=False)
```

```
Epoch 1/70
- 16s - Ioss: 0.1167 - val_loss: 0.1090
Epoch 2/70
- 9s - Ioss: 0.0867 - val_loss: 0.0819
Epoch 3/70
- 9s - Ioss: 0.0725 - val_loss: 0.0707

• • •

Epoch 68/70
- 9s - Ioss: 0.0284 - val_loss: 0.0312
Epoch 69/70
- 9s - Ioss: 0.0285 - val_loss: 0.0300
Epoch 70/70
- 9s - Ioss: 0.0298 - val_loss: 0.0301
```

Loss plot

```
import matplotlib.pyplot as plt
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend()
plt.show()
```


RMSE

Test RMSE: 8.678

Box-Jenkins Method

Classic Method

- 모형을 찾는 체계적인 방법이 없음
- Trial-and-error 로 모형을 찾아야 함
- 선택된 방법의 좁은 scope 내에서 찾게 됨
- 잘 작동하는 좋은 모형인지에 대한 (이론적) 검증이 어려움

Box-Jenkins Method

Box-Jenkins Method

Box-Jenkins Method

- 1. Model Identification
- 2. Model Estimation
- 3. Model Diagnostic
- 4. Modify or Forecast

1. Model Identification

- Is the Time Series Stationary?
- What Differencing will make it stationary?
- What Transforms will make it stationary?
- What Values of p and q are most promising?

Tools

- Time Series Plot
- Seasonal Decomposition
- Augmented Dicky-Fuller Test
- (Partial) Auto Correlation Function

16 / n

1. Model Identification

- Is the Time Series Stationary?
- What Differencing will make it stationary?
- What Transforms will make it stationary?
- What Values of p and q are most promising?

Tools

- Time Series Plot
- Seasonal Decomposition
- Augmented Dicky-Fuller Test
- (Partial) Auto Correlation Function

17 / n

1. Model Identification Tools – Time Series Plot

- Stationarity

Constant Variance?

Constant AutoCorrelation?

- Seasonality

Strong seasonal pattern Use seasonal differencing

Weak seasonal pattern **Optional**

1. Model Identification Tools – Time Series Plot

- Differencing

- (Variance Stabilizing) Transformation

1. Model Identification Tools – Seasonal Decomposition

Additive series = Trend + Season

Using Differencing

Decomposition of multiplicative time series

Multiplicative series = Trend x Season

Transformation ex> Log

1. Model Identification Tools – ADF Test

- Test for TREND Non-Stationary
- Null hypothesis is time series is non-stationary
- Test Statistic : More negative, more likely to be stationary

- Finding Trend & Seasonality

- Under/Over Differencing

- Finding Orders (p,d,q) (P,D,Q,)S

	AR(p)	MA(q)	ARMA(p,q)	
ACF	Tails off	Cuts off after lag q	Tails off	
PACF	Cuts off after lag p	Tails off	Tails off	

- Finding Orders (p,d,q) (P,D,Q,),S

Trend & Seasonality exists -> Compare ADF test statistics of Seasonal Differenced Data and Double Differenced Data

-> Double Differenced Data has more negative statistic, thus more Stationary.

- Finding Orders (p,d,q) (P,D,Q,)S

Normal ACF/PACF of Double Differenced Data

Negative First Autocorrelation -> Overdifferenced!

Using Seasonal Differenced Data! => d=1 => d=0

- Finding Orders (p,d,q) (P,D,Q,)S

Normal ACF/PACF of Seasonal Differenced Data

Cut off after lag 1 in PACF & Tails off in ACF=> p=1, q=0

- Finding Orders (p,d,q) (P,D,Q,)S

Seasonal ACF/PACF of Seasonal Differenced Data

Cut off after lag 1 in ACF & Tails off in PACF=> **P=0, Q=1**

Promising Order: non-seasonal order (1,0,0) / seasonal order (0,1,1),12

2. Model Estimation

- Parameter(Model Coefficients) Estimation
 using Train data set
- Model(Order) Selection

Tools

- Maximum Likelihood Estimation
- Un/Conditional Least Squares
- AIC / BIC; Model Selection

2. Model Estimation – AIC & BIC

- -**Lower** AIC indicates a **better** model
- -AIC likes to choose simple models with lower order

- -AIC is better at choosing predictive models
 - print(order_df.sort_values('aic')) ьіс 3112.918967 3134.376813 3129.972495 3147.138772 3183.475807 3200.642084 3190.917510 3203.792218 3339.591808 3356.758084 3369.698156 3382.572864 3426.025487 3443.191763 3432.552804 3445.42751 3614.584824 3627.459531 3624.548106 3637.422813 3638.128920 3646.712058 3669.730662 3682.605370 3670.421159 3679.004297 3813.022618 3821.605756 2 3893.520397 3902 . 103535 4055.250998 4059.542567

- -Lower BIC indicates a better model
- -BIC also likes to choose simple models with lower order, but **favors simpler model than AIC** does
- -BIC is better at choosing good explanatory models

```
print(order_df.sort_values('bic'))
                                       bic
                 3112.918967
                               3134.376813
                 3129.972495
                               3147.138772
                               3200.642084
                 3183.475807
                 3190.917510
                 3339.591808
                               3356.758084
                 3369,698156
                               3382.572864
                3426.025487
                               3443.191763
                3432.552804
                               3445.427511
                 3614.584824
                               3627.459531
                 3624.548106
                               3637.422813
                 3638.128920
                               3646.712058
          0
                3670.421159
                               3679.004297
                 3669.730662
                               3682.605370
                               3821.605756
                 4055,250998
                               4059.542567
```


3. Model Diagnostic

- Checking Model adequacy with Residual
 - Are the residuals uncorrelated?
 - Are the residuals normally distributed?

- Tools
- MAE / RMSE
- Diagnostics Plots
- Summary Statistics

3. Model Diagnostic - Diagnostics Plots

```
model1 = SARIMAX(candy_sdiff, order=(1,0,1), seasonal_order=(1,1,1,12))
results = model1.fit()

print(mae)
3.2941547959168327
```

results.plot_diagnostics()

3. Model Diagnostic – Summary Statistics

Ljung-Box

- HO: The data are independently distributed
- Applied to the residuals of fitted ARIMA model.
- => Test whether the residuals are autocorrelated.

Jarque-Bera

- Goodness of fit test of whether sample data have the skewness and kurtosis matching a normal distribution.
- If it is far from zero, it means the data don't have a normal distribution

4. Modify or Forecast

Box-Jenkins Method

1. Model Identification – Time Series Plot

Site2, Office, Daily Sum

1. Model Identification – Seasonal Decomposition

```
# Seasonal Decomposition
#from statemodels.tsa.seasonal import seasonal_decompose
# Ferform additive decomposition
decomp = seasonal_decompose(daily_total2['meter_reading'],freq=7,
# Flat decomposition
flg = plt.figure(figsize=(1000,10))
decomp.plot()
plt.show()
```


1. Model Identification – ADF Test

```
# ADF Test
#from statsmode/s.tsa.stattoo/s import adfuller
adf_results = adfuller(daily_total2['meter_reading'])
print('p-value is :', adf_results[1],
    'test statistic is :', adf_results[0])

p-value is : 0.7261436282834549 test statistic is : -1.0719081742350394

# 1-order Differencing
daily_total2_diff = daily_total2[['meter_reading']].diff().dropna()

# ADF Test for Differenced Data
#from statsmode/s.tsa.stattoo/s import adfuller
adf_results = adfuller(daily_total2_diff['meter_reading'])
print('p-value is :', adf_results[1],
    'test statistic is :', adf_results[0])

p-value is : 5.21821466096037e-07 test statistic is : -5.777493022727649
```

Non-Stationary

1st order Differencing

Stationary!

2. Model Estimation – AIC & BIC

609) SARIMA(2,1,1)(1,0,2)7

255) SARIMA(1,0,0)(1,0,1)7

3. Model Diagnostic - Diagnostics Plots

609) SARIMA(2,1,1)(1,0,2)7

results.plot_diagnostics()

3. Model Diagnostic – Summary Statistics

609) SARIMA(2,1,1)(1,0,2)7

Statespace Model Results

Dep. Variable:	meter_reading	No. Observations:	335
Model:	SARIMAX(2, 1, 1)x(1, 0, 2, 7)	Log Likelihood	508.996
Date:	Wed, 27 Nov 2019	AIC	-979.992
Time:	13:40:22	BIC	-907.580
Sample:	01-01-2016	HQIC	-951.120
	- 11-30-2016		
Covariance Type:	opg		

	coef	std err	z	P> z	[0.025	0.975]
air_temperature	0.5216	0.059	8.769	0.000	0.405	0.638
weekend	-0.1164	0.008	-15.136	0.000	-0.131	-0.101
holiday	-0.1651	0.009	-18,962	0.000	-0.182	-0.148
dew_temperature	0.1449	0.026	5.656	0.000	0.095	0.195
sea_level_pressure	0.0697	0.039	1.802	0.072	-0.006	0.145
hot_temperature^2	0.2845	0.027	10.687	0.000	0.232	0.337
hot	-0.1874	0.016	-11,418	0.000	-0.220	-0.155
Sunday	-0.0919	0.006	-15.152	0.000	-0.104	-0.080
Saturday	-0.0488	0.009	-5.523	0.000	-0.066	-0.031
Tuesday	0.0033	0.010	0.336	0.737	-0.016	0.022
cold	0.0177	0.026	0.666	0.505	+0.034	0.070
Friday	-0.0273	0.015	-1.878	0.060	+0.056	0.001
ar.L1	0.6430	0.086	7.495	0.000	0.475	0.811
ar.L2	-0.1042	0.065	-1.595	0.111	-0.232	0.024
ma.L1	-0.8283	0.080	-10.354	0.000	-0.985	-0.671
ar.S.L7	0.7255	0.172	4.217	0.000	0.388	1,063
ma.S.L7	-0.7096	0.177	-3.999	0.000	-1.057	-0.362
ma.S.L14	0.1314	0.064	2.061	0.039	0.006	0.256
sigma2	0.0028	0.000	15.935	0.000	0.002	0.003

Ljung-Box (Q): 38.47 Jarque-Bera (JB): 63.61

41/n

