Name: Harshit Jain Access ID: hmj5262

Recitation: 8

Points:

Acknowledgements

- (a) I did not work in a group.
- (b) I did not consult without anyone my group members.
- (c) I did not consult any non-class materials.

Points:

Compare Growth Rates

(a)
$$n^{1.5} = \Omega(n^{1.3}) :: n^{1.3} < n^{1.5}$$

(b)
$$2^{n-1} = \Theta(2^n)$$
 : $2^{n-1} = \frac{2^n}{2}$ and constants (in this case, $\frac{1}{2}$) does not matter

(c)
$$n^{1.3logn} = \Omega(n^{1.5})$$
 : asymptotically $n^{1.3logn} > n^{1.5}$

(d)
$$3^n = \Omega(n \cdot 2^n)$$
 : asymptotically $3^n > n \cdot 2^n$

(e)
$$(log n)^{100} = O(n^{0.1})$$
 : power of $log n$ will only weaken the infinity of $log n$ and $n^{0.1} > (log n)^{100}$

(f)
$$n = O((log n)^{log(log n)})$$
 : infinity of $(log n)^{log(log n)} >$ infinity of n

(g)
$$2^n = O(n!)$$
 : infinity of factorial function is greater than the infinity of exponential function

(h)
$$log(e^n) = O(n \cdot log n)$$
 : $log(e^n) = n$ and we know that $n < nlog n$

(i)
$$n + logn = \Theta(n + (logn)^2)$$
 : dominating term is n and powers of logn will not affect infinities

(j)
$$5n + \sqrt{n} = \Theta(\log n + n)$$
 : both $\log n$ and \sqrt{n} grows slower than n. So, n term will dominate

Points:

Tribonaci Numbers

(a) We proceed by induction on the variable *i*. Let P(i) holds the property for *i*. P(i) be the statement that $R(i) \ge 3^{i/2} \ \forall \ i \ge 2$.

Base Case:

$$R(0) = 1, R(1) = 2, R(2) = 3$$
 (Given)

When
$$i = 0$$
, $R(0) \ge 3^{0/2}$ [True]

When
$$i = 1$$
, $R(1) > 3^{1/2}$ [True]

When
$$i = 2$$
, $R(2) \ge 3^{2/2}$ [True]

P(1) is True. Therefore, base case is proved.

Inductive Hypothesis (i = k):

Let k be any arbitrary natural number and k > 2 and we assume that P(k) is True.

That means, $R(k) \ge 3^{k/2}$.

Inductive Step (i = k + 1):

We must show that P(k+1) is True. That means, $R(k+1) > 3^{(k+1)/2}$.

Given equation: R(i) = R(i-1) + R(i-2) + R(i-3).

$$R(k+1) = R(k) + R(k-1) + R(k-2)$$

$$\Rightarrow (\geq 3^{k/2}) + (\geq 3^{(k-1)/2}) + (\geq 3^{(k-2)/2})$$

$$\Rightarrow \geq 3^{k/2}(1+3^{-1/2}+3^{-1})$$

$$\Rightarrow \geq 3^{k/2}(1.9)$$

$$\Rightarrow \geq 3^{k/2}(\geq 3^{1/2})$$

$$\Rightarrow \geq 3^{(k+1)/2}$$

Hence, P(k+1) is proved. \square

(b)

Points:

Big Oh Definitions

<u>Definition 1</u>: It says that, after a certain point $(n = n_0)$, f(n) < g(n). As Big-Oh gives the strict upper bound, then $g(n) \ge f(n)$ and this is possible iff c_1 is a positive constant i.e. $c_1 > 0$ and provided that n_0 cannot be a negative value.

So, if $f(n) \le c_1 \cdot g(n)$ where $c_1 > 0$, then $f(n) = O_1(g(n))$ where $n > n_0$ and $n_0 > 0$.

<u>Definition 2</u>: It says that, all the Big-Oh conditions should be satisfied i.e. $n_0 > 0$ and c_2 should be positive value i.e. $c_2 > 0$.

So, if $f(n) \le c_2 \cdot g(n)$ where $c_2 > 0$, then $f(n) = O_2(g(n))$ where $n > n_0$ and $n_0 > 0$.

From above, $f(n) = O_1(g(n)) = O_2(g(n))$ for all g.