★☆☆☆ Exercice 1.

Dans ces cinq questions on considère un trinôme du second degré P défini sur \mathbb{R} par $P(x) = ax^2 + bx + c$ de forme canonique $P(x) = a(x-\alpha)^2 + \beta$ et dont on donne la représentation graphique \mathscr{P} est donnée ci-dessous.

 $\ \square$ on ne peut pas savoir

• Question 1. Le réel <i>a</i> est :	
□ nul	☐ strictement négatif
☐ strictement positif	\Box on ne peut pas savoir
• Question 2. Le réel α est :	
\square nul	☐ strictement négatif
☐ strictement positif	\Box on ne peut pas savoir
• Question 3. Le réel <i>c</i> est :	
□ nul	☐ strictement négatif
☐ strictement positif	\Box on ne peut pas savoir
• Question 4. Le réel <i>b</i> est :	
\square nul	☐ strictement négatif
☐ strictement positif	\Box on ne peut pas savoir
• Question 5. Le réel β est :	
□ nul	☐ strictement négatif

24/09/2025 1/2

 \square strictement positif

★☆☆☆ Exercice 2.

Dans un repère $(O; \overrightarrow{i}; \overrightarrow{j})$ on donne M(-1; 3), T(1; 8), B(-3; 2) et F(-1; 7).

- 1. Démontrer que le quadrilatère *MTFB* est un parallélogramme.
- 2. Soit *K* le centre de ce parallélogramme. Calculer les coordonnées du point *K*.
- 3. Soit *L*(5; 14). Les points *B*, *L* et *T* sont-ils alignés? Justifier.

★★★☆ Exercice 3.

Soit ABCD un parallélogramme.

On note *J* le symétrique de *D* par rapport à *C* et *E* le point défini par $\overrightarrow{AE} = \overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC}$.

- 1. Faire une figure et placer les points *J* et *E*.
- 2. En vous plaçant dans le repère $(A; \overrightarrow{AB}; \overrightarrow{AC})$, démontrer que les droites (AC) et (EJ) sont parallèles.

★★☆☆ Exercice 4.

Dans un repère orthonormal $(0; \overrightarrow{i}; \overrightarrow{j})$, on considère le vecteur $\overrightarrow{u}(-2; 3)$ ainsi que les points A(-1; 2) et B(5; -7).

- 1. (a) Déterminer une équation cartésienne de la droite (D) passant par le point A et dirigée par le vecteur \vec{u} .
 - (b) Le point *B* est-il situé sur la droite (*D*)? Justifier.
- 2. Déterminer l'équation réduite de la droite (D') parallèle à la droite (D) passant par le point H(5;3).

★★☆☆ Exercice 5.

On se place dans un repère orthonormal $(0; \vec{i}; \vec{j})$ et on considère les droites (d) et (d') d'équation cartésienne :

$$(d): 2x-4y+8=0$$
 et $(d'): y=-2x+7$

- 1. Déterminer les coordonnées d'un vecteur \vec{u} directeur de la droite (d) et les coordonnées d'un vecteur \vec{v} directeur de la droite (d').
- 2. Démontrer que les droites (d) et (d') sont sécantes.
- 3. Calculer les coordonnées du point K, point d'intersection des droites (d) et (d'). *Vous préciserez la méthode employée.*

24/09/2025 2/2