Sequences in Deep Learning

University of Victoria - PHYS-555

Stock Market

DJIA History 2017-2020

Date

Gravitational Waves

Text

DNA Sequencing

DNA sequence data from an automated sequencing machine

Particle Track Reconstruction

Speech Analysis

Try this sketching app

Type of Sequences

Learning from Sequences

Why not using a CNN?

Extensions of 1D CNN.

Example: time series of N steps, each step with c features.

CNNs can be extended easily to other domains having grid-like structure of various dimensions. For example, consider a time-series of n steps, each step having c features (e.g., c different readings from different sensors). We would need masked convolution (dilated)

Example: WaveNet

WaveNet: A Generative Model for Raw Audio

Recurrent Neural Networks

Recurrent neural network

Unfolding the RNN

Elman Network (1990)

1. Start with hidden state:

$$h_0 = 0$$

2. Update with new state

$$h_t = \text{ReLU}(\mathbf{w}_{xh}x_t + \mathbf{w}_{hh}h_{t-1} + b_h)$$

3. Final prediction

$$y_T = \mathbf{w}_{hy} h_T + b_y.$$

Elman Network (1990)

Start with hidden state:

$$h_0 = 0$$

2. Update with new state

$$h_t = \text{ReLU}(\mathbf{w}_{xh}x_t + \mathbf{w}_{hh}h_{t-1} + b_h)$$

3. Final prediction

$$y_T = \mathbf{w}_{hy} h_T + b_y.$$

```
class ElmanNet(nn.Module):
  def __init__(self, size_input, size_hidden, size_output):
      super(ElmanNet, self). init ()
       self.fc x2h = nn.Linear(size input, size hidden)
      self.fc h2h = nn.Linear(size hidden, size hidden, bias=False)
       self.fc h2y = nn.Linear(size recurrent, size output)
  def forward(self, x):
      h = x.new zeros(1, self.fc h2y.weight.size(1))
      for t in range(x.size(0)):
           h = torch.relu(self.fc x2h(x[t,:]) + self.fc h2h(h))
      return self.fc h2y(h)
```

Elman Network in PyTorch

```
class ElmanNet(nn.Module):
                                                                             rnn = ElmanNet(size input=10, size hidden=50, size output=2)
   def __init__(self, size_input, size_hidden, size_output):
                                                                             cross entropy = nn.CrossEntropyLoss()
       super(ElmanNet, self). init ()
                                                                             optimizer = torch.optim.Adam(rnn.parameters(), lr=learning rate)
       self.fc x2h = nn.Linear(size input, size hidden)
                                                                             for k in range(data.size()):
       self.fc h2h = nn.Linear(size hidden, size hidden, bias=False)
                                                                                x, label = data.get batch()
       self.fc h2y = nn.Linear(size recurrent, size output)
                                                                                y = rnn(x)
   def forward(self, x):
                                                                                loss = cross entropy(y, label)
       h = x.new zeros(1, self.fc h2y.weight.size(1))
                                                                                optimizer.zero_grad()
       for t in range(x.size(0)):
                                                                                loss.backward()
           h = torch.relu(self.fc x2h(x[t,:]) + self.fc h2h(h))
                                                                                optimizer.step()
       return self.fc h2y(h)
```

Gating

Gates decides which information to go through.
 They are composed out of a sigmoid σ neural net layer and a pointwise multiplication operation.

The sigmoid outputs numbers between zero and one, zero means "let nothing through," while a
value of one means "let everything through!"

Gating Implementation

Update hidden state proposal: (same as Elman)

$$\overline{h}_t = \text{ReLU}(\mathbf{w}_{xh}x_t + \mathbf{w}_{hh}h_{t-1} + b_h)$$

Forget gate:

$$z_t = \sigma(\mathbf{w}_{xz}x_t + \mathbf{w}_{hz}h_{t-1} + b_z)$$

Hidden State:

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \overline{h}_t$$

Gating Implementation

Update hidden state proposal: (same as Elman)

$$\overline{h}_t = \text{ReLU}(\mathbf{w}_{xh}x_t + \mathbf{w}_{hh}h_{t-1} + b_h)$$

Forget gate:

$$z_t = \sigma(\mathbf{w}_{xz}x_t + \mathbf{w}_{hz}h_{t-1} + b_z)$$

Hidden State:

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \overline{h}_t$$

```
class ElmanNetGating(nn.Module):
   def init (self, size input, size hidden, size output):
       super(ElmanNetGating, self). init ()
       self.fc x2h = nn.Linear(size input, size hidden)
       self.fc_h2h = nn.Linear(size_hidden, size_hidden, bias=False)
       self.fc x2z = nn.Linear(size input, size hidden)
       self.fc h2z = nn.Linear(size hidden, size hidden, bias=False)
       self.fc h2y = nn.Linear(size_hidden, size_output)
   def forward(self, x):
       h = x.new_zeros(1, self.fc_h2y.weight.size(1))
       for t in range(x.size(0)):
          z = torch.sigmoid(self.fc x2z(x[t,:])+self.fc h2z(h))
          hb = torch.relu(self.fc_x2h(x[t,:]) + self.fc_h2h(h))
          h = z * h + (1-z) * hb
       return self.fc h2y(h)
```

Training with Gating

Loss curve

Gated Recurrent Units (GRU)

Update hidden state proposal:

$$\overline{h}_t = \tanh(\mathbf{w}_{xh}x_t + \mathbf{w}_{hh}(r_t \odot h_{t-1}) + b_h)$$

Forget gate:

$$z_t = \sigma(\mathbf{w}_{xz}x_t + \mathbf{w}_{hz}h_{t-1} + b_z)$$

Reset gate:

$$r_t = \sigma(\mathbf{w}_{xr}x_t + \mathbf{w}_{hr}h_{t-1} + b_r)$$

Hidden State:

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot h_t$$

GRU

Cho et. al (2014)

Long Short-Term Memory (LSTM)

Hochreiter & Schmidhuber (1997)

Cell State

Forget gate layer

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input Gate Layer

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Update Cell State

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

LSTM in PyTorch

```
class MyLSTM(nn.Module):
  def init (self, size input, size hidden, num layers, size output):
      super(MyLSTM, self). init ()
      self.lstm = nn.LSTM(input_size=size_input, hidden_size=size_hidden, num_layers=num_layers)
      self.fc_o2y = nn.Linear(size_hidden, size_output)
  def forward(self, x):
      x = x.unsqueeze(1) # expect a batch size (here is 1)
      output, = self.lstm(x)
      output = output.squeeze(1) # only last layer, shape (seq. len., bs, dim_recurrent) and drop the batch index
      output = output.narrow(0, output.size(0)-1,1) # keep only the last hidden variable
      return self.fc o2y(F.relu(output)) # shape (1, dim recurrent)
```

Training with LSTM

Loss curve

Resources

- Chris Olah: <u>Understanding LSTM Networks</u>
- Andrej Karpathy: <u>The Unreasonable Effectiveness of Recurrent Neural</u> <u>Networks</u>