

On the High Accuracy Limitation of Adaptive Property Estimation

Yanjun Han

Department of Electrical Engineering, Stanford University Email: yjhan@stanford.edu

Objective

Target: characterize the following adaptive minimax risk:

$$R_{ ext{adaptive}}^{\star}(n,k) = \inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \sup_{F \in \mathcal{F}_{ ext{Lip}}} \mathbb{E}_p |F(\widehat{p}) - F(p)|$$

- n: sample size;
- k: support size;
- p: unknown true distribution;
- \widehat{p} : a distribution estimator based on *n* iid observations from *p*;
- \mathcal{M}_k : all discrete distributions with support size k;
- F: symmetric functional/property defined as $F(p) = \sum_{i=1}^{k} f(p_i)$;
- \triangleright \mathcal{F}_{Lip} : class of all functionals F such that f is 1-Lipschitz.

Related work

Two similar quantities:

► A smaller quantity (Hao and Orlitsky'19):

$$\sup_{F \in \mathcal{F}_{\mathsf{Lip}}} \inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \mathbb{E}_p |F(\widehat{p}) - F(p)| \asymp \sqrt{\frac{k}{n \log n}}, \quad \log n \lesssim k \lesssim n \log n.$$

► A larger quantity (Han, Jiao, and Weissman'18):

$$\inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \mathbb{E}_p \left[\sup_{F \in \mathcal{F}_{\mathsf{Lip}}} |F(\widehat{p}) - F(p)| \right] \asymp \begin{cases} \sqrt{\frac{k}{n \log n}} & \text{if } k \gg n^{1/3} \\ \sqrt{\frac{k}{n}} & \text{if } 1 \ll k \ll n^{1/3} \end{cases}.$$

$$\mathsf{Idea II: profile maximum likelihood (PML)}$$

$$\mathsf{Theorem (Acharva, Das, Orlitsky, and Suresh'17)}$$

Motivation: functional estimation

Problem: Given n i.i.d. observations $X_1, \dots, X_n \sim p = (p_1, \dots, p_k)$, aim to estimate the quantity $F(p) = \sum_{i=1}^{k} f(p_i)$ for a given f

Example: Shannon entropy when $f(x) = -x \log x$, support size when $f(x) = 1(x \neq 0)$

Applications: genetics, image processing, computer vision, secrecy, ecology, physics...

Generalization: non-symmetric, multivariate and nonparametric functionals

Ad-hoc estimation

Optimal estimator with n samples \iff MLE with $n \log n$ samples

Supported in lots of recent literature:

- Shannon entropy (VV11a, VV11b, VV13, JVHW15, WY16)
- Rényi entropy (AOST14, AOST17)
- distance to uniformity (VV13, JHW18)
- divergences (HJW16, JHW18, BZLV18)
- nonparametrics (HJM17, HJWW17)
- general 1-Lipschitz functional (HO19a, HO19b)

Adaptive estimation

Target: find a single distribution estimator \hat{p} such that the plugging \hat{p} into the functional is universally optimal for "many" functionals

Too good to be true? No!

Idea I: local moment matching (LMM)

Theorem (Han, Jiao, and Weissman'18): There exists a single estimator \hat{p} , efficiently computable, which achieves the optimal sample complexity for a large class of symmetric functionals whenever $\varepsilon \gg n^{-1/3}$.

In particular, it solves the minimax problem

$$\inf_{\widehat{p}} \sup_{p \in \mathcal{M}_k} \mathbb{E}_p \|\widehat{p} - p\|_{1, \mathsf{sorted}} \asymp \sqrt{\frac{k}{n \log n}} + \left(\widetilde{\Theta}(n^{-1/3}) \wedge \sqrt{\frac{k}{n}}\right).$$

Theorem (Acharya, Das, Orlitsky, and Suresh'17):

$$\sup_{p\in\mathcal{M}_k}\mathbb{P}_p(|F(p^{\mathsf{PML}})-F(p)|>2\varepsilon)\leq e^{3\sqrt{n}}\cdot\inf_{\widehat{F}}\sup_{p\in\mathcal{M}_k}\mathbb{P}_p(|\widehat{F}-F(p)|>\varepsilon).$$

Theorem (Han and Shiragur'21): Improved competitive factor from $e^{3\sqrt{n}}$ to $\exp(n^{1/3+o(1)})$.

Corollary: since the tail probability on the RHS is typically $\exp(-n\varepsilon^2)$ when n exceeds the sample complexity of acheving error ε , the PML plug-in approach attains the rate-optimal sample complexity if $\varepsilon \gg n^{-1/3}$.

Table of comparison

	ad-hoc	LMM	PML
optimality	full: $\varepsilon \gg n^{-1/2}$	if $\varepsilon \gg n^{-1/3}$	if $\varepsilon \gg n^{-1/3}$
complexity	almost linear	polynomial	polynomial*
functional independent	X		✓
asymmetric functional		X	X
free parameter tuning	X	X	√

Question: is there a fundamental discrepancy between non-adaptive and adaptive approaches?

Main results

Theorem:

$$R_{
m adaptive}^{\star} symp \left\{ egin{array}{ll} \sqrt{rac{k}{n\log n}} & ext{if } k \gg n^{1/3} \ \sqrt{rac{k}{n}} & ext{if } 1 \ll k \ll n^{1/3} \end{array}
ight.$$

Corollary: The competitive factor in the PML analysis cannot be improved from $\exp(cn^{1/3+o(1)})$ to $\exp(cn^{1/3-o(1)})$. Implication:

- phase transition for the adaptive minimax risk
- strict penalty of adaptation iff $\varepsilon \ll n^{-1/3}$
- ▶ LMM and PML both optimal in the class of adaptive estimators

Comparison with classical adaptive estimation

General minimax formulation:

$$\inf_{\mathcal{T}}\sup_{ heta\in\Theta}\mathbb{E}_{ heta}[L(heta,\,\mathcal{T})].$$

Classical adaptive estimation: adapting to parameter sets

- ▶ a nested class of parameter sets $\Theta_1 \subseteq \Theta_2 \subseteq \cdots$;
- penalty of adaptation:

$$\inf_{T} \max_{m \geq 1} \frac{\sup_{\theta \in \Theta_m} \mathbb{E}_{\theta}[L(\theta, T)]}{\inf_{T_m} \sup_{\theta \in \Theta_m} \mathbb{E}_{\theta}[L(\theta, T_m)]}.$$

Our adaptive estimation: adapting to loss functions

- \blacktriangleright a class of loss functions $L \in \mathcal{L}$;
- in our example, $L_F(p,\widehat{p})=|F(p)-F(\widehat{p})|$, and $\mathcal{L}=\{L_F:F \text{ is 1-Lip}\}$;
- adaptive minimax risk:

$$\inf_{\mathcal{T}} \sup_{\theta \in \Theta} \sup_{L \in \mathcal{L}} \mathbb{E}_{\theta}[L(\theta, \mathcal{T})].$$

Proof technique

Find $\theta_1, \dots, \theta_M \in \Theta$ and $L_1, \dots, L_M \in \mathcal{L}$ with the indistinguishability condition and a new separation condition: for all $i \neq j$,

$$\inf_{a} \left[L_i(\theta_i, a) + L_j(\theta_j, a) \right] \geq \Delta.$$

References

- ▶ Jayadev Acharya, Hirakendu Das, Alon Orlitsky, and Ananda Theertha Suresh. A unified maximum likelihood approach for estimating symmetric properties of discrete distributions. In International Conference on Machine Learning, pages 11-21,
- > Yanjun Han, Jiantao Jiao, and Tsachy Weissman. Local moment matching: A unified methodology for symmetric functional estimation and distribution estimation under wasserstein distance. In Conference On Learning Theory, pages 3189-3221, 2018.
- Yi Hao and Alon Orlitsky. Unified sample-optimal property estimation in near-linear time. In Advances in Neural Information Processing Systems, pages 11104–11114, 2019.
- ▶ Yanjun Han and Kirankumar Shiragur. On the competitive analysis and high accuracy optimality of profile maximum likelihood. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1317–1336. SIAM,