CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 12 LUGLIO 2019

Svolgere i seguenti esercizi,

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di differenza simmetrica $X \triangle Y$ tra due insiemi $X \in Y$.

Siano $A = \{n \in \mathbb{Z} \mid n^2 < 25 \land n \equiv_3 1\}$ e $B = \{n \in \mathbb{N} \mid n < 6\}$. Elencare gli elementi di A e quelli di $C := A \triangle B$.

Esercizio 2. Sia * l'operazione binaria definita in $S := \mathbb{Z}_{25} \times \mathbb{Z}_{25}$ ponendo, per ogni $a, b, c, d \in \mathbb{Z}_{25}$, $(a, b) * (c, d) = (\bar{3}ac, b)$.

- (i) *è commutativa? *è associativa?
- (ii) Facendo uso di un'opportuna equazione congruenziale, determinare tutti gli elementi $(x, y) \in S$ tali che in S si abbia $(x, y) * (\bar{3}, \bar{5}) = (\bar{6}, \bar{6})$.
- (iii) Determinare tutti gli (eventuali) elementi neutri a destra, neutri a sinistra, neutro in (S, *) e decidere se (S, *) è o non è un semigruppo, un monoide, un gruppo.
- (iv) Siano $T_1 = \mathbb{Z}_{25} \times \{\bar{9}\} \subseteq S$ e $T_2 = \{\bar{9}\} \times \mathbb{Z}_{25} \subseteq S$. Per ciascuna di T_1 e T_2 decidere se è una parte chiusa in (S, *) e, nel caso lo sia, studiare la struttura indotta su essa da (S, *), decidendo se si tratta di un semigruppo, un monoide, un gruppo, commutativa o meno, e, nel caso la domanda abbia senso, determinandone gli elementi simmetrizzabili.

Esercizio 3. Si consideri l'applicazione $f: n \in \mathbb{N}^* \mapsto |\tau(n)| \in \mathbb{N}$, dove, per ogni $n \in \mathbb{N}^*$ indichiamo con $\tau(n) = \{p \in \mathbb{P} \mid p \leq n\}$ l'insieme dei numeri naturali primi minori o uguali ad n.

- (i) f è iniettiva? f è suriettiva?
- (ii) Vero o falso? Per ogni $n, m \in \mathbb{N}^*$...
 - (a) $\dots n < m \Longrightarrow |\tau(n)| \le |\tau(m)|$;
 - (b) $\dots n < m \Longrightarrow |\tau(n)| < |\tau(m)|$.
- (iii) Detto \sim il nucleo di equivalenza di f, determinare $[1]_{\sim}$ e $[9]_{\sim}$.

Sia ora σ la relazione d'ordine definita in \mathbb{N}^* ponendo, per ogni $n, m \in \mathbb{N}^*$,

$$n \sigma m \iff (n = m \vee (|\tau(n)| \neq |\tau(m)| \wedge |\tau(n)| \text{ divide } |\tau(m)|)).$$

- (iv) Stabilire se σ è una relazione totale.
- (v) Determinare in (\mathbb{N}^*, σ) eventuali minimo, massimo, elementi minimali, elementi massimali.
- (vi) In (\mathbb{N}^*, σ) , descrivere gli insiemi dei minoranti e dei maggioranti di $\{3, 4\}$ individuando poi, se esistono, inf $\{3, 4\}$ e sup $\{3, 4\}$.
- (vii) (\mathbb{N}^*, σ) è un reticolo? Se lo è, è distributivo? È complementato?

Esercizio 4. Sia $f = x^4 - \bar{4} \in \mathbb{Z}_{13}[x]$.

- (i) f si può rappresentare nella forma $(x^2 a)(x^2 + a)$. Per quali valori di $a \in \mathbb{Z}_{13}$? f ha radici in \mathbb{Z}_{13} ? È irriducibile in $\mathbb{Z}_{13}[x]$?
- (ii) Spiegare perché un polinomio monico di grado due non irriducibile in $\mathbb{Z}_{13}[x]$ ha necessariamente la forma (x-u)(x-v) per opportuni elementi $u,v\in\mathbb{Z}_{13}$.
- (iii) Quanti sono i polinomi monici di secondo grado e non irriducibili in $\mathbb{Z}_{13}[x]$? E quanti quelli, sempre monici di secondo grado, irriducibili?
- (iv) Descrivere i polinomi in $\mathbb{Z}_{13}[x]$ che abbiano grado 13 ed ammettano tutti gli elementi di \mathbb{Z}_{13} come radici.