Module C

Standard C1

C1. Sketch a solution curve through each point marked in the slope field.

C1. Sketch a solution curve through each point marked in the slope field.

C1. Sketch a solution curve through each point marked in the slope field.

C1. Sketch a solution curve through each point marked in the slope field.

C1. Sketch a solution curve through each point marked in the slope field.

C1. Sketch a solution curve through each point marked in the slope field.

 ${\bf C1.}$ Sketch a solution curve through each point marked in the slope field.

C1. Sketch a solution curve through each point marked in the slope field.

C1. Sketch a solution curve through each point marked in the slope field.

$$y' + 3y = 6t + 5.$$

$$y' + 4y = 4.$$

$$y' + 2y = 6t - 1.$$

$$y' - y = e^t.$$

$$y' + y = e^t.$$

$$y' - y = e^{-t}.$$

$$y' + y = e^{-t}.$$

$$y' + 3y = 10\sin(t).$$

$$y' + 2y = 10\sin(t).$$

$$y' + 2y = 5\sin(t).$$

$$y' + 3y = 10\cos(t).$$

$$y' + 2y = 10\cos(t).$$

C2. Find the general solution to

$$y' + 2y = 5\cos(t).$$

$$y'' + 2y' + y = 0.$$

$$y'' + 2y' - 8y = 0.$$

$$y'' + 4y' + 3y = 0.$$

$$y'' + 2y' - 3y = 0.$$

$$y'' - 2y' - 3y = 0.$$

$$y'' + 4y' + 4y = 0.$$

$$y'' - 4y' + 4y = 0.$$

$$y'' + 5y' + 6y = 0.$$

$$y'' - 2y' + 2y = 0.$$

$$y'' + 2y' + 2y = 0.$$

$$y'' - 6y' + 10y = 0.$$

$$y'' + 6y' + 10y = 0.$$

$$y'' - 2y' + 5y = 0.$$

$$y'' + 2y' + 5y = 0.$$

$$y'' - 4y' + 5y = 0.$$

$$y'' + 4y' + 5y = 0.$$

C4. Find a general solution to the given equation.

$$y'' + 2y' + y = 3x + 4$$

C4. Find a general solution to the given equation.

$$y'' + 4y' + 3y = 2\sin(3x)$$

C4. Find a general solution to the given equation.

$$y'' - 2y' - 3y = 1 + xe^x$$

 ${\bf C4.}$ Find a general solution to the given equation.

$$y'' - 4y' + 4y = e^{2x}$$

C4. Find a general solution to the given equation.

$$y'' + 4y' + 4y = e^{2x}$$

C4. Find a general solution to the given equation.

$$y'' + 4y = \cos(2x)$$

C4. Find a general solution to the given equation.

$$y'' - 4y = \cos(2x)$$

C4. Find a general solution to the given equation.

$$y'' + 9y = \sin(3x)$$

C4. Find a general solution to the given equation.

$$y'' - 9y = \sin(3x)$$

C4. Find a general solution to the given equation.

$$y'' - 2y' + 2y = \sin(x)$$

C4. Find a general solution to the given equation.

$$y'' - 2y' + 5y = 2x + 1$$

$$y'' + 2y' + y = 0$$

when
$$y(0) = 0$$
 and $y'(0) = 2$.

$$y'' + 2y' + y = 0$$

when
$$y(0) = 2$$
 and $y'(0) = 0$.

$$y'' + 2y' - 8y = 0$$

when
$$y(0) = 3$$
 and $y'(0) = -6$.

$$y'' + 4y' + 3y = 0$$

when
$$y(0) = 1$$
 and $y'(0) = 5$.

$$y'' + 2y' - 3y = 0$$

when
$$y(0) = 5$$
 and $y'(0) = 1$.

$$y'' + 2y' - 3y = 0$$

when
$$y(0) = 2$$
 and $y'(0) = 2$.

$$y'' - 2y' - 3y = 0$$

when
$$y(0) = 2$$
 and $y'(0) = 2$.

$$y'' + 4y' + 4y = 0$$

when
$$y(0) = 1$$
 and $y'(0) = 3$.

$$y'' - 4y' + 4y = 0$$

when
$$y(0) = 1$$
 and $y'(0) = 3$.

$$y'' + 4y' + 4y = 0$$

when
$$y(0) = 3$$
 and $y'(0) = 1$.

$$y'' - 4y' + 4y = 0$$

when
$$y(0) = 3$$
 and $y'(0) = 1$.

$$y'' + 5y' + 6y = 0$$

when y(0) = 3 and y'(0) = 1.

C5. Find the solution to

$$y'' + 5y' + 6y = 0$$

when y(0) = 1 and y'(0) = 2.

Module S

Standard S1

S1. Find the general solution of the system

$$x' = x + y,$$

$$y' = 4x + y.$$

S1. Find the general solution of the system

$$x' = x + 2y,$$

$$y' = 3x + 2y.$$

S1. Find the general solution of the system

$$x' = 2x + y,$$
$$y' = x + 2y.$$

S1. Find the general solution of the system

$$x' = 2x + y,$$

$$y' = 2x + 3y.$$

S1. Find the general solution of the system

$$x' = 3x + y,$$

$$y' = x + 3y.$$

 ${f S1.}$ Find the general solution of the system

$$x' = 3x + y,$$

$$y' = 2x + 2y.$$

 ${f S1.}$ Find the general solution of the system

$$x' = 4x + y,$$

$$y' = 2x + 3y.$$

 ${f S1.}$ Find the general solution of the system

$$x' = 4x + 3y,$$

$$y' = x + 2y.$$

Module F

Standard F1

- **F1.** Find the general solution to $\frac{dy}{dx} + 3xy = 0$.
- **F1.** Find the general solution to $y' y \sin(x) = 0$.
- **F1.** Find the general solution to $y' = \frac{x+2}{y}$.
- **F1.** Find the general solution to $\frac{dy}{dx} = \frac{1+x}{1+y}$.
- **F1.** Find the general solution to xy' = y.
- **F1.** Find the general solution to $y\frac{dy}{dx} = y^2 \cos(x)$.
- **F1.** Find the general solution to $xy\frac{dy}{dx} = 1$.
- **F1.** Find the general solution to $x\cos(y)y'=1$.

F2. Consider the autonomous equation

$$\frac{dx}{dt} = x - 3.$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(0) = 4.
- **F2.** Consider the autonomous equation

$$\frac{dx}{dt} = 1 - x.$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(2) = 2.
- **F2.** Consider the autonomous equation

$$\frac{dx}{dt} = (x-3)^2.$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(1) = 2.
- **F2.** Consider the autonomous equation

$$\frac{dx}{dt} = (x+4)^2.$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(4) = 0.
- **F2.** Consider the autonomous equation

$$\frac{dx}{dt} = (4 - x)^3.$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(3) = 2.
- **F2.** Consider the autonomous equation

$$\frac{dx}{dt} = (5 - x)^3.$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(0) = 4.
- **F2.** Consider the autonomous equation

$$\frac{dx}{dt} = x^2 - 7x + 10.$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(0) = 3.

F2. Consider the autonomous equation

$$\frac{dx}{dt} = x^2 - x - 6.$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(3) = 0.
- **F2.** Consider the autonomous equation

$$\frac{dx}{dt} = x^2(x^2 - x - 6).$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(5) = 1.
- **F2.** Consider the autonomous equation

$$\frac{dx}{dt} = x^2 - 4x + 3.$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(2) = 2.
- **F2.** Consider the autonomous equation

$$\frac{dx}{dt} = x(x^2 - 4x + 3).$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(2) = 2.
- F2. Consider the autonomous equation

$$\frac{dx}{dt} = x(x^2 - 9x + 20).$$

- (a) Find and classify the critical points.
- (b) Describe the long term behavior of the solution passing through the point x(2) = 2.

- **F3.** Find the general solution to xy' + 4y = 2x.
- **F3.** Find the general solution to $xy' + 4y = \sqrt{x}$ (for x > 0).
- **F3.** Find the general solution to $xy' + 2y = x^2$.
- **F3.** Find the general solution to y' = 2 + x + 2y + xy.
- **F3.** Find the general solution to y' = 1 + 2x + y + 2xy.

F4. One of the two ODEs below is exact. Identify which one, and solve it.

$$(x+2y)y' + y = 2x$$
$$(x+2y)y' - y = -2x$$

F4. One of the two ODEs below is exact. Identify which one, and solve it.

$$(3x + 2y)y' + 3y = 2x$$
$$(3x + 2y)y' - 3y = -2x$$

F4. One of the two ODEs below is exact. Identify which one, and solve it.

$$(x^{2} + 3y^{2})y' - 2xy = -3x^{2}$$
$$(x^{2} + 3y^{2})y' + 2xy = 3x^{2}$$

F4. One of the two ODEs below is exact. Identify which one, and solve it.

$$(2xy + 3y^2)y' + y^2 = 3x^2$$
$$(2xy + 3y^2)y' - y^2 = -3x^2$$

F4. One of the two ODEs below is exact. Identify which one, and solve it.

$$\cos(x)\cos(y)y' = \sin(x)\sin(y)$$
$$\cos(x)\cos(y)y' = \sin(x) + \sin(y)$$

F4. One of the two ODEs below is exact. Identify which one, and solve it.

$$\sin(x)\sin(y)y' = \cos(x) + \cos(y)$$
$$\sin(x)\sin(y)y' = \cos(x)\cos(y)$$

F4. One of the two ODEs below is exact. Identify which one, and solve it.

$$(y^3e^x + xe^x)y' + 3e^xy^2 = 3x^2$$
$$(2ye^x + e^y)y' + e^xy^2 = 3x^2$$

 $\mathbf{Module}\ \mathbf{N}$

Standard N1

Module D

Standard D1