Undergraduate Seminar Presentation

Number of Primes

Karen Arzumanyan November 22, 2021

The number of primes until x, the function $\pi(x)$

Definition

The function $\pi(x)$ takes an integer, and returns the number of prime numbers that are less or equal to that integer.

The number of primes until x, the function $\pi(x)$

Definition

The function $\pi(x)$ takes an integer, and returns the number of prime numbers that are less or equal to that integer.

$$\pi(x) = \sum_{p \le x} 1 = \#\{p \le x | p \text{ is prime.}\}\$$

The function $\pi(x)$ behaves roughly like $\frac{x}{\log x}$ as $x \to \infty$

The function $\pi(x)$ behaves roughly like $\frac{x}{\log x}$ as $x \to \infty$

$$\lim_{x\to\infty}\pi(x)\frac{\log x}{x}=1$$

The function $\pi(x)$ behaves roughly like $\frac{x}{\log x}$ as $x \to \infty$

$$\lim_{x \to \infty} \pi(x) \frac{\log x}{x} = 1$$

This was proven by *J. Hadamard* and *C. de la Vallé Poussin* in 1896.

The function $\pi(x)$ behaves roughly like $\frac{x}{\log x}$ as $x \to \infty$

$$\lim_{x \to \infty} \pi(x) \frac{\log x}{x} = 1$$

This was proven by *J. Hadamard* and *C. de la Vallé Poussin* in 1896.

The proof is too complicated and is beyond the scope of this presentation.

Chebyshev's Theorem

Theorem (Chebyshev)

There exist constants $0 < c_1 < 1 < c_2$ such that for all $x \ge 1$ we have that

$$c_1 \frac{x}{\log x} \le \pi(x) \le c_2 \frac{x}{\log x}$$

Chebyshev's Theorem

Theorem (Chebyshev)

There exist constants $0 < c_1 < 1 < c_2$ such that for all $x \ge 1$ we have that

$$c_1 \frac{x}{\log x} \le \pi(x) \le c_2 \frac{x}{\log x}$$

Pavnutii Lvovich Chebyshev proved this theorem for $c_1 = 0.92$ and $c_2 = 1.11$.

Chebyshev's Theorem

Theorem (Chebyshev)

There exist constants $0 < c_1 < 1 < c_2$ such that for all $x \ge 1$ we have that

$$c_1 \frac{x}{\log x} \le \pi(x) \le c_2 \frac{x}{\log x}$$

Pavnutii Lvovich Chebyshev proved this theorem for $c_1=0.92$ and $c_2=1.11$.

We will prove the theorem for weaker bounds.

Sum of logs

Sum of Logs

We define a function

$$\theta(x) = \sum_{p \le x} \log p$$

and specify that $\theta(1) = 0$.

Sum of logs

Sum of Logs

We define a function

$$\theta(x) = \sum_{p \le x} \log p$$

and specify that $\theta(1) = 0$.

If we compare $\theta(x)$ and $\pi(x)$ we can see that since $\log p \leq \log x$

$$\theta(x) = \sum_{p \le x} \log p \le \sum_{p \le x} \log x = \pi(x) \log x$$

Sum of logs

Sum of Logs

We define a function

$$\theta(x) = \sum_{p \le x} \log p$$

and specify that $\theta(1) = 0$.

If we compare $\theta(x)$ and $\pi(x)$ we can see that since $\log p \leq \log x$

$$\theta(x) = \sum_{p \le x} \log p \le \sum_{p \le x} \log x = \pi(x) \log x$$

Therefore,

$$\frac{\theta(x)}{x} \le \frac{\pi(x)}{\left(\frac{x}{\log x}\right)}$$

Suppose we have $0<\epsilon<1$, then

$$\theta(x) = \sum_{p \le x} \log p = \sum_{p \le x^{1-\epsilon}} \log p + \sum_{x^{1-\epsilon}$$

Suppose we have $0<\epsilon<1$, then

$$\theta(x) = \sum_{p \le x} \log p = \sum_{p \le x^{1-\epsilon}} \log p + \sum_{x^{1-\epsilon}
$$\ge (1-\epsilon) \Big(\pi(x) - \pi(x^{1-\epsilon}) \Big) \log x$$$$

Suppose we have $0 < \epsilon < 1$, then

$$\theta(x) = \sum_{p \le x} \log p = \sum_{p \le x^{1-\epsilon}} \log p + \sum_{x^{1-\epsilon}
$$\ge (1-\epsilon) \Big(\pi(x) - \pi(x^{1-\epsilon}) \Big) \log x$$
$$\ge (1-\epsilon)\pi(x) \log x - \pi(x^{1-\epsilon}) \log x$$$$

Suppose we have $0 < \epsilon < 1$, then

$$\theta(x) = \sum_{p \le x} \log p = \sum_{p \le x^{1-\epsilon}} \log p + \sum_{x^{1-\epsilon}
$$\ge (1-\epsilon) \Big(\pi(x) - \pi(x^{1-\epsilon}) \Big) \log x$$

$$\ge (1-\epsilon)\pi(x) \log x - \pi(x^{1-\epsilon}) \log x$$

$$\ge (1-\epsilon)\pi(x) \log x - x^{1-\epsilon} \log x$$$$

Now we have that

$$\theta(x) \ge (1 - \epsilon)\pi(x)\log x - x^{1-\epsilon}\log x$$

Now we have that

$$\theta(x) \ge (1 - \epsilon)\pi(x)\log x - x^{1-\epsilon}\log x$$

If we divide both sides by x, we will get

$$\frac{\theta(x)}{x} \ge (1 - \epsilon) \frac{\pi(x)}{\left(\frac{x}{\log x}\right)} - \frac{\log x}{x^{\epsilon}}$$

Now we have that

$$\theta(x) \ge (1 - \epsilon)\pi(x)\log x - x^{1-\epsilon}\log x$$

If we divide both sides by x, we will get

$$\frac{\theta(x)}{x} \ge (1 - \epsilon) \frac{\pi(x)}{\left(\frac{x}{\log x}\right)} - \frac{\log x}{x^{\epsilon}}$$

Remark: Recall that we also had

$$\frac{\theta(x)}{x} \le \frac{\pi(x)}{\left(\frac{x}{\log x}\right)}$$

Since the term $\frac{\log x}{x^{\epsilon}}$ vanishes as $x \to \infty$, we can go back and forth between asymptotic formulas of $\pi(x)$ and $\theta(x)$.

Lemma

For all $x \ge 1$ we have,

$$\theta(x) < (4\log 2)x$$

Proof.

Let's consider the binomial coefficient

$$\binom{2n}{n} = \frac{(2n)(2n-1)\dots(n+1)}{n!} < 2^{2n}$$

Proof.

Let's consider the binomial coefficient

$$\binom{2n}{n} = \frac{(2n)(2n-1)\dots(n+1)}{n!} < 2^{2n}$$

where the inequality follows from

$$2^{2n} = (1+1)^{2n} = \sum_{k=0}^{2n} {2n \choose k} 1^{2n-k} 1^k > {2n \choose n}$$

Proof.

Let's consider the binomial coefficient

$$\binom{2n}{n} = \frac{(2n)(2n-1)\dots(n+1)}{n!} < 2^{2n}$$

where the inequality follows from

$$2^{2n} = (1+1)^{2n} = \sum_{k=0}^{2n} {2n \choose k} 1^{2n-k} 1^k > {2n \choose n}$$

We know that every prime $p \in (n, 2n]$ will appear in the numerator, but not in the denominator.

Proof.

Let's consider the binomial coefficient

$$\binom{2n}{n} = \frac{(2n)(2n-1)\dots(n+1)}{n!} < 2^{2n}$$

where the inequality follows from

$$2^{2n} = (1+1)^{2n} = \sum_{k=0}^{2n} {2n \choose k} 1^{2n-k} 1^k > {2n \choose n}$$

We know that every prime $p \in (n, 2n]$ will appear in the numerator, but not in the denominator.

Therefore,

$$\prod_{n$$

Proof.

Hence, taking the log of both sides

$$\sum_{n$$

Proof.

Hence, taking the log of both sides

$$\sum_{n$$

That is,

$$\theta(2n) - \theta(n) < (2\log 2)n$$

Proof.

Hence, taking the log of both sides

$$\sum_{n$$

That is,

$$\theta(2n) - \theta(n) < (2\log 2)n$$

In particular, taking $n = 2^{k-1}$, we get that

$$\theta(2^k) - \theta(2^{k-1}) < (2 \log 2) 2^{k-1}$$

Proof.

Hence, taking the log of both sides

$$\sum_{n$$

That is,

$$\theta(2n) - \theta(n) < (2\log 2)n$$

In particular, taking $n = 2^{k-1}$, we get that

$$\theta(2^k) - \theta(2^{k-1}) < (2 \log 2) 2^{k-1}$$

Proof.

If we apply a telescopic sum,

$$\sum_{k=1}^m \theta(2^k) - \theta(2^{k-1})$$

Proof.

If we apply a telescopic sum,

$$\sum_{k=1}^m \theta(2^k) - \theta(2^{k-1})$$

$$= \left(\theta(2) - \theta(1)\right) + \left(\theta(4) - \theta(2)\right) + \ldots + \left(\theta(2^m) - \theta(2^{m-1})\right)$$

Proof.

If we apply a telescopic sum,

$$\sum_{k=1}^{m} \theta(2^{k}) - \theta(2^{k-1})$$

$$= (\theta(2) - \theta(1)) + (\theta(4) - \theta(2)) + \dots + (\theta(2^{m}) - \theta(2^{m-1}))$$

$$= \theta(2^{m}) - \theta(1) = \theta(2^{m})$$

Proof.

If we apply a telescopic sum,

$$\sum_{k=1}^m \theta(2^k) - \theta(2^{k-1})$$

$$= \left(\theta(2) - \theta(1)\right) + \left(\theta(4) - \theta(2)\right) + \ldots + \left(\theta(2^m) - \theta(2^{m-1})\right)$$

$$=\theta(2^m)-\theta(1)=\theta(2^m)$$

Thus, together with the inequality from before

$$\theta(2^m) \le (2 \log 2) \sum_{k=1}^m 2^{k-1} < (2 \log 2) 2^m$$

Proof.

For an arbitrary $x \ge 1$, choose an integer m such that $2^{m-1} < x < 2^m$.

Proof.

For an arbitrary $x \ge 1$, choose an integer m such that $2^{m-1} \le x < 2^m$. Then,

$$\theta(x) \le \theta(2^m) < (2 \log 2) 2^m \le (4 \log 2) x$$

Proof.

For an arbitrary $x \ge 1$, choose an integer m such that $2^{m-1} \le x < 2^m$. Then,

$$\theta(x) \le \theta(2^m) < (2\log 2)2^m \le (4\log 2)x$$

that is

$$\theta(x) \le (4\log 2)x$$

Proof.

We already know that,

$$(4 \log 2)x \ge \theta(x) \ge \sum_{\sqrt{x}$$

Proof.

We already know that,

$$(4 \log 2)x \ge \theta(x) \ge \sum_{\sqrt{x}$$

$$\geq \log\left(\sqrt{x}\right)(\pi(x) - \pi(\sqrt{x})) \geq \frac{1}{2}\log\left(x\right)(\pi(x) - \pi(\sqrt{x}))$$

Proof.

We already know that,

$$(4 \log 2)x \ge \theta(x) \ge \sum_{\sqrt{x}$$

$$\geq \log\left(\sqrt{x}\right)(\pi(x) - \pi(\sqrt{x})) \geq \frac{1}{2}\log\left(x\right)(\pi(x) - \pi(\sqrt{x}))$$

$$\geq \frac{1}{2}\log(x)\pi(x) - \frac{1}{2}\log(x)\sqrt{x}$$

where the last inequality follows from $\pi(\sqrt{x}) \leq \sqrt{x}$. Equivalently,

$$\frac{1}{2}\log(x)\pi(x) \le (4\log 2)x + \frac{1}{2}\log(x)\sqrt{x}$$

Proof.

Dividing both sides of the last inequality by $\frac{1}{2} \log(x)$, we get

$$\pi(x) \le (8 \log 2) \frac{x}{\log x} + \sqrt{x} \le (8 \log 2 + 2) \frac{x}{\log x}$$

Proof.

Dividing both sides of the last inequality by $\frac{1}{2} \log(x)$, we get

$$\pi(x) \le (8 \log 2) \frac{x}{\log x} + \sqrt{x} \le (8 \log 2 + 2) \frac{x}{\log x}$$

where we used the simple inequality $\sqrt{x} < \frac{2x}{\log x}$ for all $x \ge 2$.

Proof.

Dividing both sides of the last inequality by $\frac{1}{2} \log(x)$, we get

$$\pi(x) \le (8 \log 2) \frac{x}{\log x} + \sqrt{x} \le (8 \log 2 + 2) \frac{x}{\log x}$$

where we used the simple inequality $\sqrt{x} < \frac{2x}{\log x}$ for all $x \ge 2$.

Proof.

Dividing both sides of the last inequality by $\frac{1}{2} \log(x)$, we get

$$\pi(x) \le (8 \log 2) \frac{x}{\log x} + \sqrt{x} \le (8 \log 2 + 2) \frac{x}{\log x}$$

where we used the simple inequality $\sqrt{x} < \frac{2x}{\log x}$ for all $x \ge 2$. Therefore

$$c_2 = 8\log 2 + 2 \approx 4.41$$

Proof of the Lower Bound

For the lower bound, let us consider the following binomial coefficient inequality

$$\binom{2n}{n} = \prod_{1 \le k \le n} \frac{k+n}{k} \ge 2^n$$

Proof of the Lower Bound

For the lower bound, let us consider the following binomial coefficient inequality

$$\binom{2n}{n} = \prod_{1 \le k \le n} \frac{k+n}{k} \ge 2^n$$

We now write

$$\binom{2n}{n} = \prod_{p < 2n} p^{\alpha_p} \ge 2^n$$

for $\alpha_p > 0$

Lemma

The largest power of p dividing n! is given by

$$\nu_p(n!) = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor$$

Proof.

As $\binom{2n}{n} = \frac{2n!}{(n!)^2}$, then the power of p in the decomposition of $\binom{2n}{n}$ can be calculated by subtracting twice the power of p in the decomposition of n! from the power of p in the decomposition of (2n)!. Applying the previous lemma,

$$\alpha_p = \sum_{j=1}^{t_p} \left(\left\lfloor \frac{2n}{p^j} \right\rfloor - 2 \left\lfloor \frac{n}{p^j} \right\rfloor \right) = \sum_{j=1}^{t_p} \left\lfloor \frac{2n}{p_j} \right\rfloor - 2 \sum_{j=1}^{t_p} \left\lfloor \frac{n}{p_j} \right\rfloor$$

where t_p is the largest integer such that $p^{t_p} \leq 2n$.

Proof.

Taking the log of both sides gives $t_p = \left| \frac{\log 2n}{\log p} \right|$, implying

$$n \log 2 \le \sum_{p < 2n} t_p \log p = \sum_{p < 2n} \left\lfloor \frac{\log 2n}{\log p} \right\rfloor \log p$$

Proof.

Taking the log of both sides gives $t_p = \left| \frac{\log 2n}{\log p} \right|$, implying

$$n \log 2 \le \sum_{p < 2n} t_p \log p = \sum_{p < 2n} \left\lfloor \frac{\log 2n}{\log p} \right\rfloor \log p$$

Now, we need to separate the right hand side (RHS) into two separate sums and deal with them individually.

Proof.

We have,

$$RHS = \sum_{p < \sqrt{2n}} \left\lfloor \frac{\log 2n}{\log p} \right\rfloor \log p + \sum_{\sqrt{2n} \le p \le 2n} \log p \le \sqrt{2n} \log 2n + \theta(2n)$$

Proof.

We have,

$$RHS = \sum_{p < \sqrt{2n}} \left\lfloor \frac{\log 2n}{\log p} \right\rfloor \log p + \sum_{\sqrt{2n} \le p \le 2n} \log p \le \sqrt{2n} \log 2n + \theta(2n)$$

We have proven that for sufficiently large $n \ge 1$,

$$\theta(2n) \ge n \log 2 - \sqrt{2n} \log 2n \ge Cn$$

Proof.

For x = 2n + 1, we also have that

$$\theta(x) \ge \theta(2n) \ge Cn \ge \frac{C}{4}x$$

Proof.

For x = 2n + 1, we also have that

$$\theta(x) \ge \theta(2n) \ge Cn \ge \frac{C}{4}x$$

It is now clear that

$$\theta(x) = \sum_{p \le x} \log p \le \pi(x) \log x$$

Proof.

For x = 2n + 1, we also have that

$$\theta(x) \ge \theta(2n) \ge Cn \ge \frac{C}{4}x$$

It is now clear that

$$\theta(x) = \sum_{p \le x} \log p \le \pi(x) \log x$$

Therefore,

$$\frac{C}{4} \frac{x}{\log x} \le \frac{\theta(x)}{\log x} \le \pi(x)$$

Work Cited

Mallahi-Karai, K., Number Theory Complete Lecture Notes.