Capstone Project Report: Credit Card Churn Prediction

Project Title: Credit Card Churn Prediction

Submitted by: Isha Goyal

Submitted to: EXL **Date**: 7 August,2025

Tool Used: Python (Colab), Scikit-learn, Pandas, Matplotlib, Seaborn **Github**: https://github.com/1007Isha/-exl-credit-churn-analysis

1. Introduction

Customer retention is a key priority for credit card companies. Identifying customers likely to churn can help proactively take action and improve customer satisfaction.

This project focuses on building a machine learning model to predict customer churn based on behavioral and demographic data.

2. Problem Statement

The goal of this project is to develop a model that accurately predicts whether a customer will churn, allowing financial institutions to take early actions.

Churn is defined as customers who discontinue using a company's credit card services.

3. Dataset Overview

• Source: Sample dataset provided via EXL Capstone project

• **Size**: 1000+ records

- Key Columns:
 - o Customer ID
 - Gender
 - Age
 - Tenure
 - Balance
 - NumOfProducts
 - HasCrCard
 - IsActiveMember
 - EstimatedSalary
 - o Churn (target)

	CustomerID	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	\
0	CUST0001	Male	56.0	4	0.00	4	0	
1	CUST0002	Female	28.0	8	67408.01	4	0	
2	CUST0003	Female	47.0	6	1154.97	1	0	
3	CUST0004	Male	42.0	1	0.00	2	1	
4	CUST0005	Male	64.0	3	77109.94	4	0	
IsActiveMember EstimatedSalary				dSalary	Churn			
0		0	4	0282.42	1			
1		1	2	7333.51	0			
2		1	9	9514.91	1			
3		1	14	6588.22	0			
4		0	13	1792.25	0			

4. Data Preprocessing

- Checked and handled missing values
- Removed irrelevant columns (like CustomerId)
- Performed Label Encoding for categorical variables
- Scaled numerical features using MinMaxScaler

5. Exploratory Data Analysis (EDA)

Explored churn across different demographics and behavioral attributes.

- Churn by Age
- Churn by Gender
- Correlation Matrix
- Feature Importance

6. Model Development

Used Random Forest Classifier to train the model.

- Train/Test Split: 80:20
- Evaluation Metrics:
 - Accuracy
 - o Precision
 - o Recall
 - o F1-score
 - Confusion Matrix

```
i Accuracy: 0.7300
3 Confusion Matrix:
4 [[77 28]
5 [26 69]]
Classification Report:
          precision
                        recall fi-score support
                 0.75 0.73
0.71 0.73
                                    0.74
   accuracy
                                    0.73
                                              288
                 0.73 0.73
0.73 0.73
   macro avg
                                     0.73
                                               200
 weighted avg
```

7. Results

The model achieved satisfactory accuracy with a good balance between precision and recall, indicating effective churn prediction.

8. Project Structure

```
exl-credit-churn-analysis/

data/
 raw/, processed/
feature/
 eda/, ml/
model/
model_metrics.txt
scripts/
model_training.py
git/
git_flow.md
requirements.txt
README.md
```

9. Conclusion

The project successfully demonstrates how machine learning can be applied to churn prediction. With further optimization and real-time data, this approach can be productionized for use by credit institutions.

10. Future Work

- Use of cloud services (AWS/SageMaker) for model deployment
 Integration with real-time dashboards
 Hyperparameter tuning and ensembling methods