Reprezentacje atomów bazujące na uwadze

Wstęp

TABLE I: Features included in each of the 12 atom representations.

	1	2	3	4	5	6	7	8	9	10	11	12
atom type	1	1	1	1	/	1	\	1	\	\	√	V
neighbors	1		1						1	1	1	1
hydrogens	1			1				1		1	1	1
formal charge	1				1			1	1		1	1
in ring	1					1		1	1	1		1
aromatic	1						1	1	1	1	1	

TABLE III: Average test mean squared error of all models trained with different representations (no model selection).

representation	rat	human	qm9-random	esol-random	esol-scaffold
1	0.301 ± 0.102	0.291 ± 0.090	34100 ± 65370	0.39 ± 0.29	0.37 ± 0.21
2	0.339 ± 0.087	0.314 ± 0.075	35990 ± 65780	0.49 ± 0.29	0.47 ± 0.21
3	0.322 ± 0.101	0.303 ± 0.085	34820 ± 65340	0.37 ± 0.29	0.41 ± 0.19
4	0.311 ± 0.104	0.299 ± 0.073	35140 ± 65300	0.42 ± 0.29	0.38 ± 0.22
5	0.342 ± 0.092	0.315 ± 0.078	35740 ± 65670	0.49 ± 0.30	0.47 ± 0.20
6	0.329 ± 0.101	0.310 ± 0.083	35210 ± 65410	0.46 ± 0.29	0.42 ± 0.21
7	0.326 ± 0.100	0.308 ± 0.084	35930 ± 65640	0.48 ± 0.28	0.47 ± 0.19
8	0.303 ± 0.098	0.295 ± 0.083	34460 ± 65300	0.44 ± 0.28	0.37 ± 0.22
9	0.299 ± 0.104	0.295 ± 0.083	34670 ± 65290	0.38 ± 0.28	0.38 ± 0.20
10	0.297 ± 0.093	0.289 ± 0.078	34040 ± 65270	0.38 ± 0.29	0.36 ± 0.21
11	0.300 ± 0.097	0.294 ± 0.084	34250 ± 65360	0.39 ± 0.28	0.37 ± 0.20
12	0.302 ± 0.099	0.290 ± 0.080	34060 ± 65340	0.38 ± 0.29	0.36 ± 0.20

Wstęp

TABLE IV: Different featurisation methods used in the literature.

size	representation 1 [2] description
12	one-hot vector specifying the type of atom
6	number of heavy neighbours as one-hot vector
5	number of hydrogen atoms as one-hot vector
1	formal charge
1	is in a ring
1	is in aromatic system

Architektura modelu - attention pooling

Użyte datasety

- ADME Solubility_AqSolDB
- QM9 g298 (do transfer learningu)
- ESOL molecular properties
- Human czas połowicznego rozkładu związków znalezionych w ciele człowieka
- Rat czas połowicznego rozkładu związków znalezionych w ciele szczura

- Dodanie warstwy liniowej lub attention poolingu do stworzenia trenowalnej reprezentacji poprawia wyniki przewidywań modelu.
- QM9:

	Repr 1	Repr 10	Atention Pooling v2 - size = 3	Atention Pooling v2 - size = 35	Atention Pooling v2 - size = 100
1 convs, 64 channels	0.47	0.47	0.38	0.38	0.35
1 convs, 512 channels	0.47	0.47	0.38	0.41	0.37
3 convs, 64 channels	0.39	0.39	0.46	0.37	0.38
3 convs, 512 channels	0.41	0.39	0.39	0.39	0.38
5 convs, 64 channels	0.44	0.44	0.77	0.53	0.56
5 convs, 512 channels	0.45	0.45	0.49	0.53	0.52

• ESOL

	Repr 1	Repr 10	Atention Pooling v2 - size = 3	Atention Pooling v2 - size = 35	Atention Pooling v2 - size = 100
1 convs, 64 channels	1.47	1.49	1.41	1.38	1.43
1 convs, 512 channels	1.48	1.50	1.42	1.51	1.37
3 convs, 64 channels	1.32	1.32	1.35	1.30	1.39
3 convs, 512 channels	1.31	1.30	1,40	1.26	1.26
5 convs, 64 channels	1.32	1.31	1.35	1.37	1.32
5 convs, 512 channels	1.47	1.29	1.46	1.30	1.34

Human

	Repr 1	Repr 10	Atention Pooling v2 - size = 3	Atention Pooling v2 - size = 35	Atention Pooling v2 - size = 100
1 convs, 64 channels	1.41	1.45	1.39	1.38	1.36
1 convs, 512 channels	1.35	1.35	1.38	1.39	1.37
3 convs, 64 channels	1.42	1.37	1.34	1.37	1.39
3 convs, 512 channels	1.32	1.40	1.44	1.47	1.35
5 convs, 64 channels	1.34	1.32	1.38	1.39	1.46
5 convs, 512 channels	1.45	1.50	1.42	1.43	1.36

Rat

	Repr 1	Repr 10	Atention Pooling v2 - size = 3	Atention Pooling v2 - size = 35	Atention Pooling v2 - size = 100
1 convs, 64 channels	1.85	1.88	1.87	1.83	1.87
1 convs, 512 channels	1.85	1.82	1.85	1.84	1.82
3 convs, 64 channels	1.82	1.81	1.92	1.87	1.86

 Attention pooling daje warstwę interpretowalności do modelu, pozwalając odszukać ważne cechy atomów dla danego zadania. QM9:

	AtomicNum	Degree	TotalNumHs	ImplicitValence	Hybridization	FormalCharge	IsInRing	IsAromatic	NumRadicalElectrons
0	0.47	0.06	0.06	80.0	0.06	0.11	0.06	0.06	0.06
1	0.55	0.05	0.06	0.07	0.05	0.09	0.05	0.05	0.05
2	0.48	0.06	0.06	0.08	0.06	0.10	0.06	0.06	0.06
3	0.53	0.05	0.06	0.07	0.05	0.09	0.05	0.05	0.05
4	0.49	0.06	0.06	0.08	0.06	0.10	0.06	0.06	0.06
5	0.48	0.06	0.06	80.0	0.06	0.10	0.06	0.06	0.06
6	0.48	0.06	0.06	0.08	0.06	0.10	0.06	0.06	0.06
7	0.49	0.05	0.06	0.07	0.05	0.10	0.05	0.05	0.05
8	0.49	0.05	0.06	0.07	0.05	0.10	0.05	0.05	0.05
9	0.47	0.06	0.06	80.0	0.06	0.11	0.06	0.06	0.06

dla pojedynczych atomów

	AtomicNum	Degree	TotalNumHs	ImplicitValence	Hybridization	FormalCharge	IsInRing	IsAromatic	NumRadicalElectrons
1	0.26	0.08	0.08	0.14	0.07	0.14	0.07	0.07	0.07

dla całego batcha

• ESOL

	AtomicNum	Degree	TotalNumHs	ImplicitValence	Hybridization	FormalCharge	IsInRing	IsAromatic	NumRadicalElectrons
0	0.53	0.03	0.03	0.03	0.27	0.03	0.03	0.05	0.03
1	0.17	0.06	0.06	0.08	0.34	0.06	0.06	0.11	0.06
2	0.17	0.06	0.06	0.08	0.34	0.06	0.06	0.11	0.06
3	0.17	0.06	0.06	0.08	0.34	0.06	0.06	0.11	0.06
4	0.17	0.06	0.06	0.08	0.34	0.06	0.06	0.11	0.06

	AtomicNum	Degree	TotalNumHs	ImplicitValence	Hybridization	FormalCharge	IsInRing	IsAromatic	NumRadicalElectrons
1	0.25	0.06	0.06	0.11	0.22	0.06	0.06	0.11	0.06
2	0.24	0.06	0.06	0.11	0.22	0.06	0.06	0.11	0.06
3	0.23	0.07	0.07	0.11	0.22	0.07	0.07	0.11	0.07
4	0.23	0.07	0.07	0.11	0.22	0.07	0.07	0.11	0.07
5	0.23	0.07	0.07	0.11	0.22	0.07	0.07	0.11	0.07

Human

	AtomicNum	Degree	TotalNumHs	ImplicitValence	Hybridization	FormalCharge	IsInRing	IsAromatic	NumRadicalElectrons
0	0.034916	0.034916	0.057138	0.664600	0.068766	0.034916	0.034916	0.034916	0.034916
1	0.033937	0.033937	0.055536	0.674002	0.066839	0.033937	0.033937	0.033937	0.033937
2	0.088251	0.088251	0.144417	0.161766	0.164313	0.088251	0.088251	0.088251	0.088251
3	0.036922	0.036922	0.060421	0.645326	0.072718	0.036922	0.036922	0.036922	0.036922
4	0.091089	0.091089	0.149062	0.125004	0.179398	0.091089	0.091089	0.091089	0.091089
5	0.039687	0.039687	0.064946	0.618768	0.078163	0.039687	0.039687	0.039687	0.039687
6	0.035639	0.035639	0.058321	0.657657	0.070190	0.035639	0.035639	0.035639	0.035639
7	0.036845	0.036845	0.060295	0.646065	0.072566	0.036845	0.036845	0.036845	0.036845
8	0.036387	0.036387	0.059546	0.650466	0.071664	0.036387	0.036387	0.036387	0.036387
9	0.038912	0.038912	0.063677	0.626213	0.076637	0.038912	0.038912	0.038912	0.038912

dla pojedynczych atomów

	AtomicNum	Degree	TotalNumHs	ImplicitValence	Hybridization	FormalCharge	IsInRing	IsAromatic	NumRadicalElectrons
1	0.063041	0.063041	0.203187	0.298521	0.120044	0.063041	0.063041	0.063041	0.063041

dla całego batcha

Rat

	AtomicNum	Degree	TotalNumHs	ImplicitValence	Hybridization	Formal Charge	IsInRing	IsAromatic	NumRadicalElectrons
0	0.05	0.29	0.05	0.24	0.09	0.05	0.1	0.07	0.05
1	0.05	0.29	0.05	0.24	0.09	0.05	0.1	0.07	0.05
2	0.05	0.29	0.05	0.24	0.09	0.05	0.1	0.07	0.05
3	0.05	0.29	0.05	0.24	0.09	0.05	0.1	0.07	0.05
4	0.05	0.29	0.05	0.24	0.09	0.05	0.1	0.07	0.05
5	0.05	0.29	0.05	0.24	0.09	0.05	0.1	0.07	0.05
6	0.05	0.29	0.05	0.24	0.09	0.05	0.1	0.07	0.05
7	0.05	0.29	0.05	0.24	0.09	0.05	0.1	0.07	0.05
8	0.05	0.29	0.05	0.24	0.09	0.05	0.1	0.07	0.05
9	0.05	0.29	0.05	0.24	0.09	0.05	0.1	0.07	0.05

dla pojedynczych atomów

	AtomicNum	Degree	TotalNumHs	ImplicitValence	Hybridization	FormalCharge	IsInRing	IsAromatic	NumRadicalElectrons
1	0.07	0.20	0.10	0.12	0.11	0.07	0.13	0.13	0.07

dla całego batcha

- Nauczona warstwa kodująca cechy atomów może zostać użyta do innych zadań (transfer learning)
- (big) uczona na 50 000 cząsteczkach, reszta na 5000

QM9 -> ADME

Out[20]:		Repr 1	Repr 10	transfer learning - size = 3	transfer learning - size = 35	transfer learning - size = 100	transfer learning - size = 35 (big)
	1 convs, 64 channels	1.90	1.90	2.22	1.92	1.95	1.79
	1 convs, 512 channels	1.92	1.90	2.24	1.93	2.17	1.78
	3 convs, 64 channels	1.40	1.46	1.65	1.42	1.47	1.33
	3 convs, 512 channels	1.43	1.43	1.75	1.41	1.50	1.35
	5 convs, 64 channels	1.39	1.43	1.60	1.36	1.47	1.67
	5 convs, 512 channels	1.50	1.56	2.33	1.38	1.50	1.46

• QM9 -> ESOL

	Repr 1	Repr 10	transfer learning - size = 3	transfer learning - size = 35	transfer learning - size = 100	transfer learning - size = 35 (big)
1 convs, 64 channels	1.49	1.48	2.33	1.64	1.56	1.35
1 convs, 512 channels	1.48	1.48	2.35	1.62	1.53	1.35
3 convs, 64 channels	1.37	1.40	1.71	1.58	1.52	1.30
3 convs, 512 channels	1.44	1.45	2.14	1.46	1.55	1.17
5 convs, 64 channels	1.46	1.46	1.40	1.52	1.51	1.25
5 convs, 512 channels	1.52	1.56	2.34	1.29	1,45	1.28

Przykładowe krzywe uczenia

size 35 solubility

size 35 solubility - transfer learning