4. Lösung einer Differentialgleichung 2. Ordnung mit konstanten Koeffizienten

a) Homogene Differentialgleichungen

$$y'' + 2a y' + b y = 0$$
 (**)

Ansatz: $\mathbf{y} = \mathbf{e}^{\mu \mathbf{x}}$, also $\mathbf{y}' = \mu \mathbf{e}^{\mu \mathbf{x}}$ und $\mathbf{y}'' = \mu^2 \mathbf{e}^{\mu \mathbf{x}}$

eingesetzt in (**): $\mu^2 e^{\mu x} + 2a\mu e^{\mu x} + b e^{\mu x} = 0$

Dies ergibt die charakteristische Gleichung $\mu^2 + 2a\mu + b = 0$

Ihre Lösungen lauten: $\mu_1 = -a + \sqrt{a^2 - b}$ und $\mu_2 = -a - \sqrt{a^2 - b}$

1. Fall: $\lambda^2 := a^2 - b > 0$ $(\lambda > 0)$

Die zwei grundsätzlichen Lösungen (sog. Haupsystem) von (**) haben also die Form: $v_1 = e^{\mu_1 x} = e^{(-a + \lambda)x}$ und $v_2 = e^{\mu_2 x} = e^{(-a - \lambda)x}$

Die Lösungsgesamtheit von (**) ist daher $\mathbf{y} = C_1 \mathbf{y}_1 + C_2 \mathbf{y}_2 = \mathbf{e}^{-\mathbf{a}\mathbf{x}} (\mathbf{C}_1 \mathbf{e}^{\lambda \mathbf{x}} + \mathbf{C}_2 \mathbf{e}^{-\lambda \mathbf{x}})$

Beispiel 1: a = 3, b = 5, also y'' + 6y' + 5y = 0 (**)

Es ist daher $\lambda^2 = 9 - 5$, also $\lambda = 2$

Die Lösungsgesamtheit von (**) lautet damit $\mathbf{y} = \mathrm{e}^{-3x} \left(\mathrm{C}_1 \mathrm{e}^{2x} + \mathrm{C}_2 \mathrm{e}^{-2x} \right) = \mathbf{C}_1 \mathrm{e}^{-x} + \mathbf{C}_2 \mathrm{e}^{-5x}$

Kontrolle mit TI Voyage: deSolve(y" + 6y' + 5y =0,x,y) liefert $y = \rho_1 e^{-x} + \rho_2 e^{-5x}$

2. Fall: $\lambda^2 = a^2 - b = 0$ ($\lambda = 0, a^2 = b$)

Dann wird $\mu_1 = \mu_2 = -a$ (Doppellösung)

Das Hauptsystem (die zwei grundsätzlichen Lösungen) heissen dann

 $y_1 = e^{\mu_1 x} = e^{-a x}$ (klar!) und $y_2 = x e^{-a x}$ (Beweis: Aufgabenblatt, Aufgabe 2)

Die Lösungsgesamtheit von (**) ist also in diesem Fall $y = C_1y_1 + C_2y_2 = e^{-ax} (C_1 + C_2x)$

Beispiel 2: a = 2, b = 4, also y'' + 4y' + 4y = 0 (**)

Es ist daher $\lambda^2 = 4 - 4$, also $\lambda = 0$ Die Lösungsgesamtheit von (**) lautet damit

 $y = e^{-2x} (C_1 + C_2 x)$ (Kontrolle mit TI selber)

3. Fall:
$$a^2 - b < 0$$
 $\omega^2 := b - a^2$ $(\omega > 0)$

Die Lösungen der charakteristischen Gleichung $\mu^2 + 2a\mu + b = 0$ sind dann komplex:

$$\mu_1 = -a + i\sqrt{b - a^2} = -a + i\omega$$
 und $\mu_2 = -a - i\sqrt{b - a^2} = -a - i\omega$

Es entsteht also ein komplexes Hauptsystem

$$y_1 = e^{\mu_1 x} = e^{(-a + i\omega)x}$$
 und $y_2 = e^{\mu_2 x} = e^{(-a - i\omega)x}$

Wir benötigen aber ein reelles Hauptsystem. Gemäss früher (siehe Skript über komplexe Zahlen) gilt: $e^{i\phi} = \cos\phi + i \sin\phi$

Realteil Re($e^{i\phi}$) = \cos_{ϕ} , Imaginärteil Im($e^{i\phi}$) = \sin_{ϕ}

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a):

 $Re(y_1)$ und $Im(y_1)$ bilden ein reelles Hauptsystem, also

Re(y₁) = Re(
$$e^{(-a+i\omega)x}$$
) = Re ($e^{-ax} \cdot e^{i\omega x}$) = Re (e^{-ax}) · Re($e^{i\omega x}$) = $e^{-ax} \cos \omega x$
Im(y₁) = ... = $e^{-ax} \sin \omega x$

Die Lösungsgesamtheit von (**) ist also in diesem Fall

$$y = C_1 e^{-ax} \cos \omega x + C_2 e^{-ax} \sin \omega x = e^{-ax} (C_1 \cos \omega x + C_2 \sin \omega x)$$

Bemerkung: Die zweite Lösung $y_2 = e^{\mu_2 x} = e^{(-a - i\omega)x}$ führt zu keiner neuen Lösung (s. Aufgabenblatt, Aufgabe 3b)

Beispiel 3:
$$a = 1, b = 5, also y'' + 2y' + 5y = 0$$
 (**)

Es ist $a^2 - b = -4$, also $\omega = 2$

Die Lösungsgesamtheit von (**) lautet damit

$$y = e^{-x} (C_1 \cos 2x + C_2 \sin 2x)$$
 (Kontrolle mit TI selber)

Zusatz: Wie heisst die Lösung von (**) mit den beiden

Anfangsbedingungen y(0) = 0 und y'(0) = 1?

Aus y(0) = 0 folgt $C_1 = 0$. Also ist $y = C_2 e^{-x} \sin 2x$.

Damit $y' = C_2 (-e^{-x} \sin 2x + 2e^{-x} \cos 2x)$. Aus y'(0) = 1 gilt $C_2 (0 + 2) = 1$, daher $C_2 = 0.5$.

Die Lösung heisst also $v = 0.5 e^{-x} \sin 2x$

Kontrolle mit TI:

deSolve(y'' + 2y' + 5y = 0 and y(0)=0 and y'(0)=1,x,y)

Beispiel 4:
$$a = 0$$
, $b = k^2$ mit $k > 0$, also $y'' + k^2y = 0$ (**)

Es ist $a^2 - b = -k^2$, also $\omega = k$

Die Lösungsgesamtheit von (**) lautet damit

(Kontrolle mit TI selber) $y = C_1 \cos kx + C_2 \sin kx$

b) Inhomogene Differentialgleichungen

Inhomogene DGL: y'' + 2a y' + b y = g(x) (*), y = f(x) = ?

Dazugehörige homogene DGL: y'' + 2a y' + b y = 0 (**)

Die Funktion g(x) nennt man Störfunktion.

Es gilt der analoge Satz wie bei Differentialgleichungen 1. Ordnung (s. früher):

Die Lösungsgesamtheit der inhomogenen DGL (*) erhält man, indem man zur Lösungsgesamtheit der dazugehörigen homogenen DGL (**) eine beliebige Lösung y₀ (partikuläre Lösung) addiert.

Für das Finden einer partikulären Lösung versucht man zuerst Ansätze wie bei den Differentialgleichungen 1. Ordnung:

- Ist g(x) eine ganzrationale Funktion n-ten Grades, so verwendet man als Ansatz eine ganzrationale Funktion n-ten oder (n+1)-sten Grades
- Ist g(x) eine Exponentialfunktion, so versucht man als Ansatz für y₀ wiederum eine Exponentialfunktion.
- Ist g(x) eine trigonometrische Funktion, so nimmt man als Ansatz $y_0 = A \sin \omega x + B \cos \omega x$ (vgl. auch Aufgabenblatt, Aufgabe 4)

Beispiele:

1a)
$$y'' + y' - 2y = e^{2x}$$
 (*)

Die Lösungsgesamtheit der dazugehörigen homogenen DGL y" + y' – 2y = 0 lautet ($a^2 - b = 0.25 + 2 > 0$, also Fall1):

$$y = e^{-0.5x} (C_1 e^{1.5x} + C_2 e^{-1.5x}) = C_1 e^x + C_2 e^{-2x}, y=e^{2x} \text{ ist nicht Lösung von (**)}$$

Ansatz für y₀:
$$y_0 = k e^{2x}$$
, also $y'_0 = 2k e^{2x}$, $y''_0 = 4k e^{2x}$
 $4k + 2k - 2k = 1$, also $k = 0.25$

Die Lösungsgesamtheit der inhomogenen DGL $y'' + y' - 2y = e^{2x}$ lautet daher $y = C_1e^x + C_2e^{-2x} + 0.25$ e^{2x}

1b)
$$y'' + y' - 2y = e^{x}$$
 (*)

Die Lösungsgesamtheit der dazugehörigen homogenen DGL y" + y' – 2y = 0 lautet wie bei 1a) $y = C_1e^x + C_2e^{-2x}$, $y=e^x$ ist also hier Lösung von (**) Der Ansatz $y_0 = k e^x$ führt daher auf k + k - 2k = 1, also 0 = 1 (!)

Neuer Ansatz für y_0 : $y_0 = k \times e^x$, also $y'_0 = \dots$, $y''_0 = \dots$

.... , also k =
$$\frac{1}{3}$$
 (selber)

Die Lösungsgesamtheit der inhomogenen DGL $y'' + y' - 2y = e^x$ lautet daher $y = C_1 e^x + C_2 e^{-2x} + \frac{1}{3} x e^x$

2a)
$$y'' - y = \sin 3x$$
 (*) (a = 0, b = -1)
Die Lösungsgesamtheit der dazugehörigen homogenen DGL y'' - y = 0
lautet $y = C_1e^x + C_2e^{-x}$ (Fall1: $\lambda^2 = a^2 - b = 1 > 0$)

Ansatz für y₀:
$$y_0 = \alpha \sin (3x + \gamma) = \alpha_1 \sin 3x + \alpha_2 \cos 3x$$

 $y'_0 = 3\alpha_1 \cos 3x - 3\alpha_2 \sin 3x$
 $y''_0 = -9\alpha_1 \sin 3x - 9\alpha_2 \cos 3x$

eingesetzt in (*):
$$-9\alpha_1 \sin 3x - 9\alpha_2 \cos 3x - \alpha_1 \sin 3x - \alpha_2 \cos 3x = \sin 3x \quad (\forall x)$$

 $-10\alpha_1 \sin 3x = \sin 3x \rightarrow \alpha_1 = -0.1$
 $-10\alpha_2 \cos 3x = 0 \rightarrow \alpha_2 = 0$

Also ist $y_0 = -0.1 \sin 3x$

Die Lösungsgesamtheit von (*) ist daher $y = C_1e^x + C_2e^{-x} - 0.1 \sin 3x$

2b)
$$y'' + 9y = \sin 3x$$
 (*) (a = 0, b = 9)
Die Lösungsgesamtheit der dazugehörigen homogenen DGL y'' + 9y = 0
lautet y = C₁ cos3x + C₂ sin3x (Fall3: $a^2 - b = -9 < 0$)

Da y = sin3x bereits Lösung der homogenen DGL ist, so kann man nicht den Ansatz wie bei 2a) machen, sondern man versucht

$$y_0 = \alpha_1 x \sin 3x + \alpha_2 x \cos 3x$$

..... (selber!)
Es folgt $\alpha_1 = 0$ und $\alpha_2 = \frac{1}{6}$

Die Lösungsgesamtheit von (*) ist $y = C_1 \cos 3x + C_2 \sin 3x - \frac{1}{6}x \cos 3x$

2c)
$$\mathbf{y''} + 2\delta \mathbf{y'} + \omega_0^2 \mathbf{y} = \mathbf{A} \cos \omega_1 \mathbf{t}$$
 (*) (y Funktion von t; δ , ω_0 , $A \ge 0$)

Die Lösungsgesamtheit der dazugehörigen homogenen DGL y" + 2δ y' + ω_0^2 y = 0 sei die Funktion mit Gleichung y = h(t) je nachdem $\delta^2 - \omega_0^2 > 0$, also $\omega_0 < \delta$ (Fall1) $\delta^2 - \omega_0^2 = 0$, also $\omega_0 = \delta$ (Fall2) $\delta^2 - \omega_0^2 < 0$, also $\omega_0 > \delta$ (Fall3)

Ansatz für y₀:
$$y_0 = \alpha \cos (\omega_1 t + \gamma)$$
 (bzw. $y_0 = \alpha_1 \cos \omega_1 t + \alpha_2 \sin \omega_1 t$)
 $\alpha = ? \quad \gamma = ?$

$$y_0' = -\alpha \omega_1 \sin(\omega_1 t + \gamma), \quad y_0'' = -\alpha \omega_1^2 \cos(\omega_1 t + \gamma)$$

eingesetzt in (*):

$$-\alpha \omega_1^2 \cos(\omega_1 t + \gamma) - 2\delta\alpha \omega_1 \sin(\omega_1 t + \gamma) + \omega_0^2 \alpha \cos(\omega_1 t + \gamma) = A \cos\omega_1 t$$

Goniometrie bzw TI Voyage....

Vergleich der Koeffizienten von sin $\omega_1 t$ und cos $\omega_1 t$ liefert ein 2-2-Gleichungssystem für die zwei Unbekannten α und γ . (Aufgabenblatt, Aufgabe 5)

Lösung:

 $\begin{array}{l} -\alpha \ \omega_1^{\ 2} \cos \omega_1 t \cos \gamma + \alpha \ \omega_1^{\ 2} \sin \omega_1 t \sin \gamma \ - \ 2\delta \alpha \ \omega_1 \sin \omega_1 t \cos \gamma \ - \\ 2\delta \alpha \ \omega_1 \cos \omega_1 t \sin \gamma + \omega_0^{\ 2} \alpha \cos \omega_1 t \cos \gamma \ - \omega_0^{\ 2} \alpha \sin \omega_1 t \sin \gamma = A \cos \omega_1 t \cos \gamma \ - \omega_0^{\ 2} \alpha \sin \omega_1 t \sin \gamma \ - A \cos \omega_1 t \cos \gamma \ - \omega_0^{\ 2} \alpha \cos \omega_1 t \sin \gamma \ - A \cos \omega_1 t \cos \gamma \ - \omega_0^{\ 2} \alpha \sin \omega_1 t \sin \gamma \ - A \cos \omega_1 t \cos \gamma \ - \omega_0^{\ 2} \alpha \cos \omega_1 t \cos \omega_1$

 $\cos \omega_1 t \left(-\alpha \ \omega_1^2 \cos \gamma - 2\delta \alpha \ \omega_1 \sin \gamma + \omega_0^2 \alpha \cos \gamma \right) + \\ \sin \omega_1 t \left(\alpha \ \omega_1^2 \sin \gamma - 2\delta \alpha \ \omega_1 \cos \gamma - \omega_0^2 \alpha \sin \gamma \right) = A \cos \omega_1 t + 0 \cdot \sin \omega_1 t$

$$\alpha(-\omega_1^2 \cos \gamma - 2\delta \omega_1 \sin \gamma + \omega_0^2 \cos \gamma) = A$$
 (1) (auch mit Setzung t:=0) $\omega_1^2 \sin \gamma - 2\delta \omega_1 \cos \gamma - \omega_0^2 \sin \gamma = 0$ (2) (auch mit Setzung t:= $\pi/(2\omega_1)$)

Aus (2) folgt
$$\tan \gamma = \frac{2\delta \omega_1}{\omega_1^2 - \omega_0^2}$$
 (3) $\omega_1 \neq \omega_0$

(3) eingesetzt in (1) ergibt nach einiger Rechnung

$$\alpha = \frac{A}{\sqrt{(\omega_1^2 - \omega_0^2)^2 + 4\delta^2 \omega_1^2}}$$

Also erhält man die partikuläre Lösung $y_0 = \alpha \cos (\omega_1 t + \gamma)$ und hat damit die Lösungsgesamtheit $y = h(t) + \alpha \cos (\omega_1 t + \gamma)$.

Ist also
$$\omega_0 > \delta$$
 (Fall3), so gilt:
 $y = e^{-\delta t} (C_1 \cos \omega t + C_2 \sin \omega t) + \alpha \cos (\omega_1 t + \gamma)$. (mit $\omega^2 = \omega_0^2 - \delta^2$)

2d) Ist nun z.B. aber $\omega_1 = \omega_0$ und $\delta = 0$, so heisst die Differentialgleichung von 2c) $\mathbf{y''} + \omega_0^2 \mathbf{y} = \mathbf{A} \cos \omega_0 \mathbf{t}$. Wie lautet dann ihre Lösung?

(als Aufgabe!)

Hinweis: $y = A \cos \omega_0 t$ ist bereits Lösung der dazugehörigen homogenen Differentialgleichung $y'' + \omega_0^2 y = 0$. Wie muss dann der Ansatz für y_0 heissen? (vgl. frühere Aufgabe 2b))

Lösung:
$$y = \frac{A}{2\omega_0} t \sin \omega_0 t + h(t)$$

(Dabei ist h(t) Lösungsgesamtheit von der homogenen DGL)

5. Numerische Lösung einer Differentialgleichung 2. Ordnung

Die Verfahren zur Lösung einer DGL 1. Ordnung (nach Euler, Heun und Runge-Kutta) wurden im Skript Differentialgleichungen.pdf (s. www.mathematik.ch) ausführlich behandelt.

Hier wird nur das Verfahren zur Reduktion der Ordnung und das anschliessende Lösen des dazugehörigen Differentialgleichungssystems nach Runge-Kutta mit Hilfe des TI Voyage 200 erklärt.

Die (inhomogene) DGL y" + 2a y' + b y = g(x) (*) kann auf ein Gleichungssystem von zwei Differentialgleichungen 1. Ordnung mit den zwei gesuchten Funktionen y_1 und y_2 geführt werden:

```
y_1:=y. Dann ist y_1'=y' und y_1''=y''. Definiert man y_2:=y_1', so ist y_2'=y_1''=y''.
```

Dann gilt mit (*)
$$y_2' = -2a y_1' - b y_1 + g(x)$$

(*) ist also äquivalent zum Gleichungssystem:

$$y_1' = y_2$$

 $y_2' = -2a y_2 - b y_1 + g(x)$

Kennt man die zwei Anfangsbedingungen $y(0) = y_1(0)$:= y0 und y'(0) = y₂(0):= y'0, so kann durch geeignete Modifikation des Verfahrens von Runge-Kutta für die Lösung einer DGL 1. Ordnung die numerische Lösung von (*) gefunden werden.

Beispiel zur Lösung mit dem TI Voyage 200:

(vergleiche mit den früheren exakten Lösungen dieser Beispiele)

$$y'' - y = \sin 3x$$
 (*) (s. frühere Aufgabe 2a), p.4)
Anfangsbedingungen $y(0) = y'(0) = 0$.

Das oben angegebene Verfahren führt auf das Gleichungssystem

$$y_1' = y_2$$

$$y_2' = y_1 + \sin 3x$$
, Anfangsbedingungen $y_1(0) = y_2(0) = 0$.

Numerische Lösung mit dem TI Voyage 200

- 1. MODE: Einstellung für Graph auf DIFF EQUATIONS
- 2. Im Y-Editor das Gleichungssystem eingeben:

$$y1' = y2$$

 $y2' = y1 + \sin(3*t)$ (y1 und y2 sind Funktionen von t)

mit den Anfangsbedingungen yi1 = 0 und yi2 = 0 für t0 = 0.

3. Im Y-Editor mit ♦F die GRAPH FORMATS - Seite aufrufen:

Coordinates = RECT

Grid = OFF

Axes = ON

Labels = OFF

Solution Method = RK (Runge-Kutta)

Fields = **FLDOFF**

(vgl. früher Richtungsfeld einer DGL: Einstellung SLPFLD)

- 4. Im Y-Editor die *AXES* Einstellungen aufrufen: Axes TIME
- 5. Im Window-Editor die Fenstervariablen einstellen bzw. anpassen:

t0 = 0. xmin = 0. ncurves = 0.

tmax = 6. xmax = 6. diftol = .001

tstep = .1 xscl = 1.

tplot = 0.

ymin = 0. ymax = 10. yscl = 1.

6. Grafikbildschirm aufrufen

Mit TABLE können die Werte von y1 und y2 abgefragt werden: z.B. y1(3) = y(3) = 2.9618.

{zum Vergleich: Die exakte Lösungsgesamtheit (s. früher)

y = $C_1e^x + C_2e^{-x}$ - 0.1 sin3x liefert mit den genannten Anfangsbedingungen die Lösung y = $0.15e^x - 0.15e^{-x}$ - 0.1 sin3x, also z.B. für x=3 den Wert y=2.9642; beachte: der TI liefert y = 0.3sinhx – 0.1sin3x, was dasselbe ist!}

Anwendungen: 1. Das mathematische Pendel

Nach einer früheren Aufgabe erhält man für das mathematische Pendel der Länge I die Differentialgleichung $\ddot{\varphi} + \frac{g}{I}\sin\varphi = 0$ (*) (g= 9.81m/s²)

Für kleine Winkel φ gilt $\varphi \approx \sin \varphi$. Vergleiche früher: Grenzwert von $\frac{\sin x}{x}$ für $x \rightarrow 0$ ist 1.

Mit dieser Setzung wurde die DGL (*) zur Gleichung $\ddot{\varphi} + \frac{g}{I} \varphi = 0$

Ihre Lösung lautete: $\varphi(t) = C_1 \cos(\sqrt{\frac{g}{I}} \cdot t) + C_2 \sin(\sqrt{\frac{g}{I}} \cdot t)$

Die Koeffizienten C_1 und C_2 sind abhängig von den Anfangsbedingungen, d.h. z.B. vom Wert ϕ (0) (Ort) und vom Wert $\dot{\phi}$ (0) (Geschwindigkeit) zur Zeit t = 0.

Die Schwingungsdauer T ist nur abhängig von I und beträgt T = $2\pi \sqrt{\frac{1}{g}}$.

Die Lösung der ursprünglichen DGL (*) kann nicht exakt angegeben werden. Die numerische Lösung erhält man mit dem oben angegeben Verfahren durch Überführung in ein Gleichungssystem von zwei DGL's 1. Ordnung.

Aufgabe 1

Suche die Lösungen $\phi(t)$ für die Gleichung des Pendels bei kleinem Winkel 'exakt', wenn $I=1\,m$ und

a) der maximale Ausschlag des Pendels 25° ≈ 0.43633 rad beträgt.

b)
$$\varphi(0) = 0$$
 und $\varphi'(0) = \frac{\pi}{4} \frac{1}{s}$ ist.

Aufgabe 2

Löse die Differentialgleichung des Pendels für I = 1 m, wenn die Masse unter einem Winkel von a) 90° bzw. b) 170° (ϕ (0) \approx 2.967) losgelassen wird (ϕ '(0)=0) numerisch mit Hilfe des TI Voyage und stelle die Graphen der Funktionen ϕ (t) dar. Vergleiche mit der falschen Lösung bei Verwendung der Approximation $\phi \approx \sin \phi$.

Lösung Aufgabe 1

1a) Die 'exakte' Lösung der DGL (mit $\varphi \approx \sin \varphi$) liefert für die Anfangswinkel 25° die Funktion $\varphi(t) = 0.43633 \cos(\sqrt{g} t)$, die Schwingungsdauer T beträgt etwa 2.006 s.

1b)
$$\varphi(t) = \frac{\pi}{4\sqrt{g}} \sin(\sqrt{g} \ t) \approx 0.2508 \sin(\sqrt{g} \ t)$$
, gleiche Schwingungsdauer T $\approx 2.006 \ s$

Zum Vergleich kann Aufgabe 1 auch numerisch mit dem TI gelöst werden.

Lösung Aufgabe 2

$$\ddot{\varphi} + \frac{g}{I} \sin(\varphi) = 0.$$

Man erhält ein System mit zwei Differentialgleichungen 1.Ordnung:

$$y_1' = y_2$$

 $y_2' = -g/l \sin y_1$

- 1. MODE: Einstellung für Graph auf DIFF EQUATIONS
- 2. Im Y-Editor das Gleichungssystem eingeben:

$$y1' = y2$$

 $y2' = -9.81*\sin(y1)$

Anfangsbedingungen a) yi1= 1.5708 bzw. b) yi1 = 2.967, t0 = 0. und yi2 = 0 Weiter wie früher beschrieben...

5. Im Window-Editor die Fenstervariablen anpassen, z.B.

Es sind die beiden Graphen für $\varphi(t)$ für Auslenkung 90° bzw. 170° gezeichnet. (y3 und y4 benützen; nur y1 und y3 aktivieren)

Die graphische Darstellung ergibt für den Anfangswinkel 170° eine Kurve, die sich klar von einer Cosinuskurve unterscheidet. Die Schwingungsdauer beträgt für den Anfangswinkel 90° etwa $T\approx 2.35$ s, für den Anfangswinkel 170° bereits $T\approx 4.85$ s. (Mit Trace kann die Berechnung schrittweise verfolgt werden).

2. Das gedämpfte mathematische Pendel

Man kann leicht zeigen, dass sich die Funktion $\,\phi(t)$ bei einem gedämpften mathematischen Pendel (Länge I, Masse m) mit Dämpfungskoeffizient k durch die Differentialgleichung

$$\ddot{\varphi} + \frac{k}{m} \dot{\varphi} + \frac{g}{l} \sin \varphi = 0$$
 (*) beschreiben lässt. (selber!)

Setzt man wiederum (für kleine Winkel) $\phi \approx \sin \phi$, so entsteht die exakt lösbare DGL $\ddot{\phi} + \frac{k}{m} \dot{\phi} + \frac{g}{I} \phi = 0$ mit Lösungen je nach Fall gemäss Kapitel 4a).

Die Lösung der DGL (*) ist natürlich auch hier nur numerisch möglich.

Aufgabe 1

Suche die Lösungen $\phi(t)$ für die Gleichung des gedämpften Pendels bei kleinem Winkel 'exakt', wenn I = 1 m, m = 1kg, der maximale Ausschlag des Pendels 25° \approx 0.43633 rad beträgt, $\dot{\phi}$ (0)=0 und

a) k = 1 kg/s b) k =
$$2\sqrt{g}$$
 kg/s ist. (g = 9.81)

Aufgabe 2

Löse die Differentialgleichung des Pendels für I = 1 m, m = 1kg, wenn die Masse m unter einem Winkel von 170° (ϕ (0) \approx 2.967) losgelassen wird ($\dot{\phi}$ (0)=0) und

a)
$$k = 1 \text{ kg/s}$$
 b) $k = 2\sqrt{g} \text{ kg/s} \approx 6.26 \text{ kg/s}$ (g = 9.81) numerisch mit Hilfe des TI Voyage und stelle die Graphen der Funktionen φ (t) dar.

Lösung Aufgabe 1

a) DGL
$$\ddot{\varphi} + \dot{\varphi} + g \varphi = 0$$
. (a = 0.5, b = g). Da a^2 - b = 0.25-9.81<0, so Fall 3.

Unter Berücksichtigung der Anfangsbedingungen lautet die Lösung $\varphi(t) = 0.43633e^{-0.5t}$ ($\cos \omega t + 1/2\omega \sin \omega t$) mit $\omega^2 = b - a^2 = g - 0.25$, $\omega \approx 3.0919$ (vergleiche mit der exakten Lösung des TI)

b) DGL
$$\ddot{\varphi}$$
 + 2 \sqrt{g} $\dot{\varphi}$ + g φ = 0. (a = \sqrt{g} , b = g). Da a^2 - b = 0, so entsteht Fall 2.

Unter Berücksichtigung der Anfangsbedingungen lautet die Lösung

$$\varphi(t) = 0.43633e^{-at} (1 + \sqrt{g} t) = 0.43633e^{-3.132 t} (1 + 3.132 t)$$

Lösung Aufgabe 2

3. Das Doppelpendel

In einem Skript (http://www.physik.uni-oldenburg.de/ftheorie/polley/VL/KM080205.pdf, p.37) findet man folgende Angaben zum Doppelpendel:

Doppelpendel

Kartesische Koordinaten der Pendelmassen:

$$x_1 = l_1 \sin \varphi_1$$
 $x_2 = l_1 \sin \varphi_1 + l_2 \sin \varphi_2$
 $y_1 = -l_1 \cos \varphi_1$ $y_2 = -l_1 \cos \varphi_1 - l_2 \cos \varphi_2$

 m_1 m_1 m_2 m_2

Kinetische Energie:

$$T = \frac{1}{2}(m_1 + m_2)l_1^2 \dot{\varphi}_1^2 + \frac{1}{2}m_2 l_2^2 \dot{\varphi}_2^2 + m_2 l_1 l_2 \cos(\varphi_1 - \varphi_2) \dot{\varphi}_1 \dot{\varphi}_2$$

Potentielle Energie:

$$U = -m_1 g l_1 \cos \varphi_1 - m_2 g (l_1 \cos \varphi_1 + l_2 \cos \varphi_2)$$

Lagrange-Gleichungen:

$$(\frac{m_1}{m_2} + 1)\frac{l_1}{l_2}\ddot{\varphi}_1 + \cos(\varphi_1 - \varphi_2)\ddot{\varphi}_2 + \sin(\varphi_1 - \varphi_2)\dot{\varphi}_2^2 + (\frac{m_1}{m_2} + 1)\frac{g}{l_2}\sin\varphi_1 = 0$$

$$l_2\ddot{\varphi}_2 + l_1\cos(\varphi_1 - \varphi_2)\ddot{\varphi}_1 - l_1\sin(\varphi_1 - \varphi_2)\dot{\varphi}_1^2 + g\sin\varphi_2 = 0$$

Dies ist ein System von zwei Differentialgleichungen 2. Ordnung. Durch Reduktion auf Differentialgleichungen 1. Ordnung erhält man ein Gleichungssystem von 4 Gleichungen:

Setzt man y1 = φ_1 , y2 = φ_1 ', y3 = φ_2 und y4 = φ_2 ', so gilt:

- 1) y1' = y2
- 2) $(m_1/m_2 + 1)|1/l_2*y2' + \cos(y1-y3)*y4' + \sin(y1-y3)*(y4)^2 + (m_1/m_2 + 1)g/l_2*\sin(y1) = 0$
- 3) v3' = v4
- 4) $I_2^*y4' + I_1^*\cos(y1-y3)^*y2' I_1^*\sin(y1-y3)^*(y2)^2 + g^*\sin(y3) = 0$

Wenn man 2) und 4) als Gleichungssystem für y2' und y4' betrachtet, so kann man nach diesen zwei Unbekannten y2' und y4' auflösen.

Man erhält also ein System der Form

- 1) y1'= y2
- 2) y2'= // Funktion von y1, y2, y3 und y4
- 3) y3'= y4
- 4) y4'= // Funktion von y1, y2, y3 und y4

Mit gewählten Anfangsbedingungen kann das System vom TI Voyage gelöst werden.

Aufgabe: Setze $m_1 = m_2$ und $l_1 = l_2 = 1$ Meter, bestimme dann y2' und y4' als Funktionen von y1, y2, y3 und y4.

Experimentiere mit verschiedenen Anfangsbedingungen (z.B. y1(0)= π /2, y3(0)=0, y2(0)=y4(0)=0) und stelle mit Hilfe des TI Voyage die Funktionen y1 und y3 graphisch dar.

Vergleiche das Bild des TI mit demjenigen, das durch Anwendung des Applets auf http://www.mathematik.ch/anwendungenmath/Doppelpendel/ entsteht!

Lösung für y1(0)= π /2, y3(0)=0, y2(0)=y4(0)=0, d.h. ϕ_1 (0)= π /2, ϕ_2 (0)=0, ϕ_1 '(0)=0 und ϕ_2 '(0)=0

3. Gekoppelte Pendel

Im Physikteil wurde das Differentialgleichungssystem für gekoppelte Pendel gleicher Länge $I_1=I_2=I$ und mit gleicher Masse $m_1=m_2=m$ bei kleinen Ausschlägen hergeleitet:

 $x_1(t)$: Ausschlag 1. Pendel, $x_2(t)$: Ausschlag 2. Pendel, D: Federkonstante

(1)
$$\ddot{x}_1 + \frac{g}{l}x_1 = -\frac{D}{m}(x_1 - x_2)$$

(2)
$$\ddot{x}_2 + \frac{g}{l}x_2 = -\frac{D}{m}(x_2 - x_1)$$

Die Lösung dieses Systems war für den Fall 1: $x_1(0) = x_2(0) > 0$, $v_1(0) = v_2(0) = 0$:

$$x_1(t) = A \cos \omega_s t = x_2(t)$$
 mit $\omega_s = \sqrt{\frac{g}{I}}$

Die Lösung dieses Systems war für den Fall 2: $x_1(0) = -x_2(0) > 0$, $v_1(0) = v_2(0) = 0$:

$$x_1(t) = B \cos \omega_a t = -x_2(t)$$
 mit ω_a gemäss Aufgabe 1

Die allgemeine Lösung des Differentialgleichungssystems ist daher $x_1(t) = A \cos \omega_s t + B \cos \omega_a t$ und $x_2(t) = A \cos \omega_s t - B \cos \omega_a t$

Für die Schwebefrequenz f gilt $f = \frac{1}{2\pi} |\omega_a - \omega_s|$, T ist 1/f

Aufgaben

- 1) Zeige, dass $\omega_a = \sqrt{\frac{g}{I} + \frac{2D}{m}}$
- 2) Bestimme die Konstanten A und B für die Anfangsbedingungen $x_1(0)$, $x_2(0)$ und $v_1(0) = v_2(0) = 0$
- 3) Es sei nun I = 1m, m = 1kg und D = 1 kgs⁻² Berechne zuerst ω_s , ω_a , f' und T'.

Löse nun das Differentialgleichungssystem (1) (2) mit Hilfe des TI Voyage: Dabei sei $x_1(0) = 3^\circ$, $x_2(0)=0$, $v_1(0)=v_2(0)=0$. {Hinweis: $y1=x_1$, $y2=x_1$ ', $y3=x_2$, $y4=x_2$ ',}

Stelle die beiden Graphen x_1 und x_2 in einem geeigneten Koordinatensystem dar, so dass mit dem theoretischen Wert von T' verglichen werden kann.

Lösungen:

- 1) Einsetzen von $x_1(t) = B \cos \omega_a t$ und $x_2(t) = -B \cos \omega_a t$ in die Differentialgleichung (1) und Auflösen nach ω_a .
- 2) $A = 0.5(x_1(0) + x_2(0)), B = 0.5(x_1(0) x_2(0))$
- 3) ω_s = 3.132 s⁻¹, ω_a = 3.4366 s⁻¹, f' = 0.04845 s⁻¹ und T' = 20.6 s.

Lösung mit TI: y1'=y2, y2' = -9.81y1-(y1-y3), y3'=y4, y4' = -9.81y3-(y3-y1) yi1 = π /60., sonst alle yi... = 0 In WINDOW t0=0, tmax=21, xmin=-0.1, xmax=21, ymin=-0.05, ymax= 0.05

