Spacetime algebra without reference to a metric signature

Define spacetime basis vectors by $|\gamma_\mu^2|=1$ and $\gamma_0^2=-\gamma_i^2$. Define reciprocal basis vectors by $\gamma^\mu:=\gamma_\mu^{-1}$. Define the pseudoscalar $I:=\gamma_0\gamma_1\gamma_2\gamma_3$.

Define relative vectors $\sigma_i \coloneqq \gamma_i \gamma^0$ so that

$$\begin{split} \sigma_i^2 &= \gamma_i \gamma^0 \gamma_i \gamma^0 \\ &= -(\gamma_i)^2 (\gamma^0)^2 \\ &= -\gamma_i^2 (\gamma_0^2)^{-1} \\ &= -\gamma_i^2 (-\gamma_i^2)^{-1} = 1 \end{split}$$

and

$$\begin{split} \sigma_1 \sigma_2 \sigma_3 &= \gamma_1 \gamma^0 \gamma_2 \gamma^0 \gamma_3 \gamma^0 \\ &= \gamma^0 \gamma_1 \gamma_2 \gamma_3 \gamma^0 \gamma^0 \\ &= \gamma_0 \gamma_1 \gamma_2 \gamma_3 \gamma_0 \gamma^0 \\ &= \gamma_0 \gamma_1 \gamma_2 \gamma_3 = I \end{split}$$

Define $\sigma^i=\sigma_i^{-1}$ and find $\sigma^i=\gamma_0\gamma^i$ so that $\sigma_i\sigma^i=\gamma_i\gamma^0\gamma_0\gamma^i=1$.

Relation to vector cross product

If \times is the \mathbb{R}^3 cross product, then for $\vec{E} = E^i \sigma_i$ and $\vec{B} = B^i \sigma_i$ we have

$$\begin{split} \left\langle \vec{E} \vec{B} \right\rangle_2 &= \sum_{i,j} E^i B^j \left\langle \sigma_i \sigma_j \right\rangle_2 \\ &= \sum_{i \neq j} E^i B^j \sigma_i \sigma_j \\ &= \sum_{i \neq j} E^i B^j \sigma^k I \varepsilon_{ijk} = \left(\vec{E} \times \vec{B} \right) I \end{split}$$