Examples for 10/8/2015

Correlation Coefficient:

$$r = \frac{1}{n-1} \cdot \sum \left(\frac{x - \overline{x}}{s_x} \right) \cdot \left(\frac{y - \overline{y}}{s_y} \right) \qquad r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \cdot \sqrt{\sum (y - \overline{y})^2}}$$
$$r = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{n \sum x^2 - (\sum x)^2} \cdot \sqrt{n \sum y^2 - (\sum y)^2}}$$

- 1. The value of r is always between -1 and +1.
- 2. The magnitude of r indicates the strength of a <u>linear</u> relation, whereas its sign indicates the direction.
- 3. A value of r close to zero means that the linear association is very weak.
- 4. The value of r does not depend on which of the two variables under study is labeled x and which is labeled y, and is independent of the units in which x and y are measured.
- 5. r is invariant under *linear* transformations of x and y. That is, if v = a + bx and w = c + dy, then $r_{xy} = r_{vw}$ if b and d are of the same sign, $r_{xy} = -r_{vw}$ if b and d are of the opposite sign.

$$\frac{\left(\frac{x-\overline{x}}{s_x}\right) < 0}{\left(\frac{y-\overline{y}}{s_y}\right) > 0} \qquad \qquad \frac{\left(\frac{x-\overline{x}}{s_x}\right) > 0}{\left(\frac{y-\overline{y}}{s_y}\right) < 0} \qquad \qquad \frac{\left(\frac{x-\overline{x}}{s_x}\right) > 0}{\left(\frac{y-\overline{y}}{s_y}\right) < 0} \qquad \qquad \frac{\left(\frac{x-\overline{x}}{s_x}\right) > 0}{\left(\frac{y-\overline{y}}{s_y}\right) < 0}$$

Slope of the least-squares regression line

$$\hat{\beta}_1 = r \cdot \frac{s_y}{s_x}.$$

1. The owner of *Momma Leona's Pizza* restaurant chain believes that if a restaurant is located near a college campus, then there is a linear relationship between sales and the size of the student population. Suppose data were collected from a sample of $10 \, Momma \, Leona's \, Pizza$ restaurants located near college campuses. For the ith restaurant in the sample, x_i is the size of the student population (in thousands) and y_i is the quarterly sales (in thousands of dollars). The values of x_i and y_i for the 10 restaurants in the sample are summarized in the following table:

Restaurant	Student Population (1000s)	Quarterly Sales (\$1000s)	
i	x_i	y_i	
1	2	58	
2	6	105	
3	8	88	
4	8	118	
5	12	117	
6	16	137	
7	20	157	
8	20	169	
9	22	149	
10	26	202	

$$\overline{x} = 14, \quad \overline{y} = 130$$

$$SXX = 568$$

$$SXY = 2,840$$

$$SYY = 15,730$$

$$\hat{\beta}_1 = 5, \quad \hat{\beta}_0 = 60$$

$$\hat{y} = 60 + 5 \cdot x$$

$$RSS = 1,530$$

$$R^2 = 0.9027$$

$$S_e^2 = 191.25$$

a) Compute the sample correlation coefficient.

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \cdot \sqrt{\sum (y - \overline{y})^2}} = \frac{2840}{\sqrt{568} \cdot \sqrt{15730}} = \mathbf{0.950123}.$$

OR

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2} \cdot \sqrt{n\sum y^2 - (\sum y)^2}}$$

$$= \frac{10 \cdot 21040 - 140 \cdot 1300}{\sqrt{10 \cdot 2528 - 140^2} \cdot \sqrt{10 \cdot 184730 - 1300^2}} = \frac{28400}{\sqrt{5680} \cdot \sqrt{157300}}$$

$$= \mathbf{0.950123}.$$

Note that
$$(r)^2 = R^2$$
. (since SSRegr = $\sum (\hat{y} - \overline{y})^2 = \hat{\beta}_1^2 SXX$.)

 $(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)$ – a random sample from a Bivariate Normal distribution with parameters μ_X , μ_Y , σ_X^2 , σ_Y^2 , ρ

To test
$$H_0: \rho = 0$$
, use $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ $(n-2 \text{ degrees of freedom})$

To test
$$H_0: \rho = \rho_0$$
, use $W = \frac{1}{2} \ln \frac{1+r}{1-r}$

$$W$$
 is approximately normal with mean $\mu_W = \frac{1}{2} \ln \frac{1+\rho}{1-\rho}$ and variance $\sigma_W^2 = \frac{1}{n-3}$.

b) Assume (X, Y) have a Bivariate Normal distribution. Test $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$ at a 1% level of significance.

Test Statistic:
$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{0.950123 \cdot \sqrt{10-2}}{\sqrt{1-0.950123^2}} = 8.617.$$

Rejection Region: Rejects H₀ if $t < -t_{0.005}(8 \text{ df})$ or $t > t_{0.005}(8 \text{ df})$.

$$\pm t_{0.005}$$
 (8 df) = ± 3.355 . **Reject H**₀.

Since
$$1-r^2=1-R^2=\frac{\text{SSResid}}{\text{SVV}}$$
,

$$\frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{\frac{\text{SXY}}{\sqrt{\text{SXX}}\sqrt{\text{SYY}}}\sqrt{n-2}}{\sqrt{\frac{\text{SSResid}}{\text{SYY}}}} = \frac{\frac{\text{SXY}}{\sqrt{\text{SXX}}}}{\sqrt{\frac{\text{SSResid}}{n-2}}} = \frac{\frac{\text{SXY}}{\sqrt{\text{SXX}}}}{\frac{s_e}{\sqrt{\text{SXX}}}} = \frac{\frac{\text{SXY}}{\text{SXX}}}{\frac{s_e}{\sqrt{\text{SXX}}}} = \frac{\hat{\beta}_1 - 0}{\hat{\sigma}_{\hat{\beta}_1}}.$$

OR

$$W = \frac{1}{2} \ln \frac{1+r}{1-r} = \frac{1}{2} \cdot \ln \left(\frac{1+0.950123}{1-0.950123} \right) = 1.833.$$

Under
$$H_0$$
, $\mu_W = \frac{1}{2} \ln \frac{1 + \rho_0}{1 - \rho_0} = \frac{1}{2} \cdot \ln \left(\frac{1 + 0}{1 - 0} \right) = 0$,
$$\sigma_W^2 = \frac{1}{n - 3} = \frac{1}{7}$$
.

Test Statistic:
$$z = \frac{W - \mu_W}{\sigma_W} = \frac{1.833 - 0}{\sqrt{1/7}} = 4.85.$$

Rejection Region: Rejects H₀ if $z < -z_{0.005}$ or $z > z_{0.005}$.

$$\pm z_{0.005} = \pm 2.576$$
. Reject **H**₀.

c) Find the p-value of the test $H_0: \rho = 0.8$ vs. $H_1: \rho > 0.8$.

$$W = \frac{1}{2} \ln \frac{1+r}{1-r} = \frac{1}{2} \cdot \ln \left(\frac{1+0.950123}{1-0.950123} \right) = 1.833.$$

Under
$$H_0$$
, $\mu_W = \frac{1}{2} \ln \frac{1 + \rho_0}{1 - \rho_0} = \frac{1}{2} \cdot \ln \left(\frac{1 + 0.80}{1 - 0.80} \right) = 1.0986$,
$$\sigma_W^2 = \frac{1}{n - 3} = \frac{1}{7}$$
.

Test Statistic:
$$z = \frac{W - \mu_W}{\sigma_W} = \frac{1.833 - 1.0986}{\sqrt{1/7}} = 1.943.$$

P-value = right tail = P(Z > 1.943) = 0.026.

2. The following data are indexed prices of gold and copper over a 10-year period. Assume that the indexed values constitute a random sample from a bivariate normal distribution.

X	у	$x-\overline{x}$	$y-\overline{y}$	$(x-\overline{x})^2$	$(x-\overline{x})\cdot(y-\overline{y})$	$(y-\overline{y})^2$
76	80	16	12	256	192	144
62	68	2	0	4	0	0
70	73	10	5	100	50	25
59	60	-1	-8	1	8	64
53	64	-7	-4	49	28	16
54	68	-6	0	36	0	0
55	65	-5	-3	25	15	9
58	62	-2	-6	4	12	36
57	67	-3	-1	9	3	1
56	73	-4	5	16	-20	25
600	680	0	0	500	288	320

a) Test for the existence of linear relationship between the indexed prices of the two metals. That is, test $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$. Use a 5% level of significance.

b) Is there enough evidence to conclude $\rho > 0.40$. That is, test $H_0: \rho = 0.40$ vs. $H_1: \rho > 0.40$. Use a 5% level of significance. What is the p-value of this test?