Computational Physics

Topic 02 — Computational Problems involving Marko Chains

Lecture 02 — The Collector Problem

Dr Kieran Murphy

Department of Computing and Mathematics, SETU (Waterford). (kieran.murphy@setu.ie)

Autumn Semester, 2025/26

RESOURCE OUTLINE LABEL

- Problem statement
- Sample run

The Coupon Collector Problem

A company decided to include a toy in their cereal boxes.

What is the expected number of boxes purchased in order to obtain all of the toys?

Some variations ...

Cards collected in packs

Trading cards are obtained in packs of a fixed size.

Typically no repetition within a pack.

Unequal probabilities

Not all cards are equally likely.

A lot of effort is put into tuning the probabilities to maximise impact (increase demand) or minimise costs (prizes).

Multiple Collectors

One collector might want multiple collections,

or multiple collectors working together, trading cards, so that all get a full collection.

The Coupon Collector Problem — Specification

- Number of distinct **coupons** (trading cards, coins, etc.) is n > 0.
- Assumptions:
 - Coupons are obtained one at a time.
 - Later we will consider **packs** of size k with no repetition within a pack.
 - The number of copies of each coupon is effectively infinite.
 - If the number of copies of each coupon was small enough then the probabilities would change during the experiment based on which coupon have been seen already.

 (so would have a sampling without replacement problem harder).
 - Note: 'effectively infinite' does not mean the actual number is very big, just that it is big enough.
 - Each coupon is equally likely to be found, i.e., uniform probabilities
 - uniform distribution easiest but unrealistic for most trading cards/competitions situations.
 - **Zipf–Mandelbrot** distribution more realistic (**power-law**) distribution.

What is the expected number of coupons collected in order to obtain m complete collections of the coupons?

Aside — History of the coupon collector problem

- 1708 The problem first appeared in 1708 in *De Mensura Sortis* (On the Measurement of Chance) by A. De Moivre.
 - Additional results by various authors including Laplace and Euler in the case of uniform probabilities, i.e. when $p_i = 1/n$ for all j.
- 1954 H. Von Schelling obtained waiting time to complete a collection for non-uniform probabilities.
- 1960 D. J. Newman and L. Shepp calculated waiting time for two collections (m = 2).

> Applications

- Electrical engineering related to the cache fault problem, also used in electrical fault detection.
- Biology used to estimate the number of species of animals (see Watterson estimator).

First a simulation ...

Before we construct a Markov chain model lets code a simulation ... first, code snippets ...

```
The Collector Problem.ipynb In[4]:
np.random.seed(42)
                        # fixed seed during testing
                                           count:
                                                          found:
                                                                       collected: set()
n = 4
space = range(n) # all possible coupons
collected = set() # coupons collected to date
count = 0
print (f'count: { count: 4d} \ tfound: \ tcollected: { collected } ')
while len(collected)<n: # collection is incomplete
   found = set(choice(space, 1)) # get next (random) coupon
    collected = collected.union(found) # sets so duplicates dropped
    count += 1
    print (f'count: {count:4d}..\tfound: {found}..\tcollected: {collected}')
```

... wrap code up in a function ...

```
The Collector Problem invnh In[5].
                                                           Using optional parameters we can set
def run_experiment(n, seed=None, debug=False):
                                                           the seed for reproducible results and
                                                           displaying debug output.
    if seed is not None: np.random.seed(seed)
    space = range(n) # all possible coupons
    collected = set() # coupons collected to date
    count = 0
    if debug: print (f'count: {count: 4d}...\tfound: .....\tcollected: ...{collected}')
    while len(collected)<n: # not completed collection yet
        found = set(choice(space,1)) # get next (random) coupon
        collected = collected.union(found) # using sets so duplicates dropped
        count += 1
        if debug: print (f'count: {count: 4d}. \tfound: {found}. \tcollected: {collected}')
    return count
```

... and a few sample runs ...

```
The_Collector_Problem.ipynb In[6]:
                                                                                              The_Collector_Problem.ipynb In[7]:
  run_experiment(5, seed=105, debug=True)
                                                             run_experiment(5, seed=1013, debug=True)
count:
          0
                 found:
                              collected: set()
                                                                         0
                                                                               found:
                                                                                            collected: set()
                                                              count:
                              collected: {0}
                 found: {0}
                                                                               found: {0}
                                                                        1
                                                                                            collected: {0}
count:
                                                              count:
                 found: {1}
                              collected: {0, 1}
                                                                               found: {4}
                                                                                            collected: {0, 4}
count:
                                                              count:
                 found: {4}
                              collected: {0, 1, 4}
                                                                               found: {2}
                                                                                            collected: {0, 2, 4}
          3
                                                                         3
count:
                                                              count:
                 found: {0}
                              collected: \{0, 1, 4\}
                                                                               found: {1}
                                                                                            collected: \{0, 1, 2, 4\}
count:
                                                              count:
                 found: {0}
                              collected: {0, 1, 4}
                                                                               found: {0}
                                                                                            collected: {0, 1,
          5
                                                                         5
count:
                                                              count:
                 found: {4}
                              collected: {0, 1,
                                                                               found: {0}
                                                                                            collected: {0, 1,
                                                                         6
count:
                                                              count:
                 found: {0}
                              collected: {0, 1,
                                                                               found: {3}
                                                                                            collected: {0, 1, 2, 3, 4}
                                                                         7
count:
                                                              count:
                 found: {4}
                              collected: {0, 1,
count:
                 found: {1}
                              collected: {0, 1, 4}
          9
count:
                                                                                              The_Collector_Problem.ipynb In[8]:
         10
                 found: {1}
                              collected: {0, 1, 4}
count:
                                                             run experiment(3, seed=2, debug=True)
         11
                 found: {1}
                              collected: {0, 1, 4}
count:
         12
                 found: {3}
                              collected: {0, 1, 3, 4}
count:
                                                                               found:
                                                                                            collected: set()
                                                                         0
                                                              count:
         13
                 found: {4}
                              collected: {0, 1, 3,
count:
                                                                               found: {0}
                                                                                            collected: {0}
                                                              count:
                                                                         1
         14
                 found: {3}
                              collected: {0, 1, 3,
count:
                                                                               found: {1}
                                                              count:
                                                                                            collected: {0, 1}
         15
                 found: {1}
                              collected: {0, 1, 3,
count:
                                                                               found: {0}
                                                                                            collected: {0, 1}
                                                              count:
                                                                         3
                 found: {4}
                              collected: {0, 1, 3, 4}
         16
count:
                                                                               found: {2}
                                                                                            collected: \{0, 1, 2\}
                                                              count:
                                                                         4
count:
         17
                 found: {4}
                              collected: \{0, 1, 3, 4\}
                 found: {1}
                              collected: {0, 1, 3, 4}
count:
         18
                 found: {4}
                              collected: {0, 1, 3, 4}
count:
         19
                              collected: \{0, 1, 2, 3, 4\}
         20
                 found: {2}
count:
```

Need to get some idea of variation ... so repeat runs ...

```
The Collector Problem.ipynb In[9]:
import scipy stats as stats
data = [run\_experiment(4) for \_ in range(10)]
print (data)
m, se = np.mean(data), stats.sem(data)
print ("\n95\%_CI_for_number_of_coupns_=\%s_+/-\_\%.2f" \% (m, 1.96 * se) )
[7, 8, 6, 8, 5, 7, 12, 6, 5, 4]
95% CI for number of coupns = 6.8 + - 1.40
                                                                  The Collector Problem.ipynb In[10]:
data = [run\_experiment(4) for \_ in range(100)]
m, se = np.mean(data), stats.sem(data)
print ("\n95\%, CI, for number of coupns = \%s, +/-, \%.2 f" \% (m, 1.96 * se)
95% CI for number of coupns = 8.82 + - 0.77
```

... a picture is worth a thousand words ...

```
rValues = np.logspace(1,3,10)

m = []

se = []

for r in rValues:

data = [run_experiment(30) for _ in range(int(r))]

m.append(np.mean(data))

se .append(stats.sem(data))

Effect of run size on prediction of E[X] with n = 4.
```

```
plt.plot(rValues, m)
plt.errorbar(rValues, m, se, linestyle='None')
plt.xlabel("Number_of_runs")
plt.title("Effect_of_run_size_on_prediction_of_E
plt.savefig("output/coupons_n_4.pdf", bbox_inches
plt.show()
```


Effect of collection size (n) ...

n	mean	se
2	3.36	0.21
3	5.60	0.27
4	8.01	0.33
8	21.57	0.82
10	29.06	1.13
20	73.23	2.48

• Variance increases with collection size (n), but this is offset by the fact that the estimate for the expected number of coupons needed is increasing faster.

Theoretical approach — via geometric distribution

Let *X* denote the (random) number of coupons that we need to purchase in order to complete our collection of *n* coupons. Then *X* can be expressed as the sum

$$X = X_0 + X_1 + \cdots + X_i + \cdots + X_{n-1}$$
coupons needed to coupons collect all needed to not coupons collected to 1 to 1 coupons collected
$$x_0 \sim GP(1)$$

$$X_1 \sim GP(\frac{n-1}{n})$$

$$X_1 \leftarrow W + W_1 + W_2 + W_3 + W_4 + W_4 + W_5 + W_5 + W_6 +$$

$$E[X] = E[X_0] + E[X_1] + E[X_2] + \cdots + E[X_{n-1}]$$

$$= \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1} = n \sum_{i=1}^{n} \frac{1}{i}$$

Theory

Comparison of Theoretical vs Computation of E[X]

n	Theoretical	Computation
2	3.000000	2.998
3	5.500000	5.643
4	8.333333	8.509
8	21.742857	21.411
10	29.289683	29.288
20	71.954793	72.556

- ✓ Theoretical and computation agree.
- The computation result is less precise but it is much easier to apply to extensions to the basic problem.

Markov chain model

Model

- State: i, i = 0, ..., n, where i is number of collected coupons. Have i of the n available coupons, so (n - i) coupons are unseen.
- Initial state is 0. State *n* is terminal.
- **Stage**: Number of coupons purchased. *How long does it take to travel from* 0 *to n?*

Markov Chain Model

Viewing our first simulation run as a Markov chain ...


```
found:
                             collected: set()
count:
                found: {2}
                            collected: {2}
count:
                found: \{3\} collected: \{2, 3\}
count:
                found: {0} collected: {0, 2, 3}
count:
                found: {2} collected: {0, 2, 3}
count:
                found: {2} collected: {0, 2, 3}
count:
                found: {3}
                             collected: \{0, 2, 3\}
count:
                found: {0}
count:
                             collected: \{0, 2, 3\}
                found: {0} collected: {0, 2, 3}
count:
                found: {2} collected: {0, 2, 3}
count:
                found: {1}
         10
                             collected: \{0, 1, 2, 3\}
count:
```


Number of stages needed = 10