Conhecimento e Raciocínio

Aula 6 Redes Bayesianas

Viriato M. Marques

Licenciatura em Engenharia Informática

DEIS – Departamento de Engenharia Informática e de Sistemas ISEC – Instituto Superior de Engenharia de Coimbra

1. Introdução

- O mundo não é preto e branco...é cinzento ©
- A incerteza está presente em muitos aspectos da realidade
- Em muitas tarefas o desfecho não pode ser previsto com 100% de certeza ...
 - Diagnóstico médico e de falhas
 - Previsão do comportamento de um cliente
 - Qual o risco de ataque cardíaco para uma pessoa que faz boa alimentação, pratica desporto e não fuma? É certo que não o terá?
- A modelação da incerteza pode basear-se em probabilidade, conjuntos difusos, factores de certeza, crença, etc.
- Vamos tratar de um classificador probabilístico designado por Rede Bayesiana

2. Probabilidade - Revisão

- Ideia base de um classificador Bayesiano:
 - Estimar a probabilidade de uma dada classificação ou hipótese H, conhecidos os valores dos atributos de um novo exemplo
 - Formalmente, calcular: $p(H_i | \mathbf{X}_{ij})$, com H_i = Hipótese de ordem i, \mathbf{X}_j = vector de atributos $(x_{i1}, x_{i2}...x_{in})$ e p(H|X) = probabilidade *a posteriori* ou probabilidade condicionada (p de H suposto \mathbf{X})
- Para isso bastaria:
 - Dispor de um dataset de treino composto pelas diversas combinações possíveis de **todos** os atributos com **todas** as classes, i.e.:
 - Para cada combinação possível dos atributos, contar as ocorrências de cada classe, H_i e as respectivas ocorrências da combinação X_{ii}
 - Calcular as frequências relativas H_i/X_{ij}

	Atributos			Classe
ID	Febre	Tosse	Dores	Diag
1	В	В	В	Tuberculose
2	В	В	Α	Gripe
3	В	Α	В	Tuberculose
4	В	Α	Α	Gripe
5	Α	В	В	Gripe
6	Α	В	Α	Gripe
7	Α	Α	В	Gripe
8	Α	Α	Α	Gripe
9	В	В	В	Tuberculose
10	В	В	Α	Gripe
11	В	Α	В	Gripe
12	В	Α	Α	Gripe
13	Α	В	В	Tuberculose
14	А	В	Α	Gripe
15	Α	Α	В	Gripe
16	А	А	Α	Gripe

Fórmula de Bayes

Relaciona probabilidade a posteriori com probabilidade a priori

$$p(H \mid X) = \frac{p(X \mid H).p(H)}{p(X)}$$

a priori p(Febre=B|Tuberculose)=#{1,3,9}/#{1,3,9,13}=3/4=0,75

a posteriori p(Tuberculose | Febre=B)=#{1,3,9}/#{1,2,3,4,9,10,11,12}=3/8=0,375 ◀

Fórmula de Bayes p(B|A)=p(A|B)*p(B)/p(A)

p(Tuberculose | Febre=B)=p(Febre=B | Tuberculose)*p(Tuberculose)/p(Febre=Baixa)

p(Tuberculose | Febre=B)=0,75* (4/16)/(8/16)=0,375

		Atributos		Classe	
ID	Febre	Tosse	Dores	Diagnóstico	
1	В	В	В	Tuberculose	
2	В	В	Α	Gripe	
3	В	Α	В	Tuberculose	
4	В	Α	Α	Gripe	
5	Α	В	В	Gripe	
6	Α	В	Α	Gripe	
7	Α	Α	В	Gripe	
8	Α	Α	Α	Gripe	
9	В	В	В	Tuberculose	Pa
10	В	В	Α	Gripe	а
11	В	Α	В	Gripe	а
12	В	Α	Α	Gripe	
13	Α	В	В	Tuberculose	Fć
14	Α	В	Α	Gripe	
15	Α	Α	В	Gripe	
16	Α	Α	Α	Gripe	
17	В	В	Α	Gripe	Pa
18	В	Α	В	Gripe	а
19	В	Α	Α	Gripe	а
20	Α	В	В	Tuberculose	
21	Α	В	А	Gripe	Fá
22	Α	Α	В	Gripe	
23	Α	Α	А	Gripe	

Exemplo igual ao anterior mas com mais tuplos

Para 1 Atributo		
a priori	p(Febre=B Tuberculose)=3/5=	0,6
a posteriori	p(Tuberculose Febre=B)=3/11=	0,272727
Fórmula de Bayes	$p(B A)=p(A B)*p(B)/p(A) \\ p(Tuberculose Febre=B)=p(Febre=B Tuberculose)*p(Tuberculose Febre=B)=0,6*(5/23)/(11/23)=$	erculose)/p(Febre=Baixa) 0,272727
Para os 3 Atributos		
a priori	p(B,B,B Tuberculose)=2/5=	0,4
a posteriori	p(Tuberculose B,B,B)=2/2=	1
Fórmula de Bayes	p(B A)=p(A B)*p(B)/p(A) p(Tuberculose B,B,B)=p(B,B,B Tuberculose)*p(Tuberculose p(Tuberculose B,B,B)=0,4*(5/23)/(2/23)=	se)/p(B,B,B) 1

- O exemplo anterior mostra que
 - Para calcular directamente P(H|X) das tabelas, é necessário conhecer um número enorme de exemplos, dado que têm de se considerar:
 - Todas as combinações possíveis dos N atributos
 - Multiplicar essas combinações por todas as classes
 - Ter um número "elevado" de instâncias de cada combinação de atributos / classe para se poder aproximar a probabilidade através das frequências relativas calculadas

Exemplo:

• 5 atributos, cada um com 3 valores, 4 classes: $3^{5*}4=972$. Se se pretendesse uma média de 100 exemplos por cada combinação de atributos / classe, ter-se-ia necessidade de cerca de 972 * 100 = 97200 exemplos!

- Em termos práticos é pois necessário procurar uma abordagem que permita reduzir o número de exemplos de treino necessários:
 - Pode conseguir-se partindo da Fórmula de Bayes, já apresentada:

$$p(H \mid X) = \frac{p(X \mid H).p(H)}{p(X)}$$

- Contudo, aparentemente nada se ganha ao exprimir p(H|X) em função de p(X|H): o número de exemplos necessário seria do mesmo modo muito elevado!
- E com a agravante de terem de se calcular ainda p(H) e p(X)

Independência Condicional

- Exemplo: a habilidade de leitura e o comprimento do braço são variáveis aleatórias condicionalmente independentes. Porquê?
 - Estatisticamente poderá verificar-se que quanto maior o comprimento do braço, C, maior a habilidade de leitura, L
 - Contudo, esta relação é explicada atendendo à idade, I: quanto maior a idade, maior o comprimento do braço e a habilidade de leitura. Fixando I, a correlação entre L e C desaparece
 - Ou seja, L é afinal condicionalmente dependente de I
 - E, além disso, L é condicionalmente independente de C
- Formalmente, sendo X, Y e Z variáveis aleatórias, X é independente de Y se

$$p(X \mid Y, Z) = p(X \mid Z)$$

- Este classificador não exige a independência condicional de todos os atributos dentro de uma mesma classe
- Pelo contrário, este modelo permite traduzir dependências condicionais, mas apenas as "importantes"
 - Situa-se assim entre as exigências da Fórmula de Bayes original (dependência condicional de todos os atributos, da classe) e as do classificador Naïve Bayes (independência condicional de todos os atributos, da classe)
- O aspecto geral de uma rede Bayesiana é o de um grafo acíclico e dirigido
 - As dependências são traduzidas por setas, entre atributos
 - Os atributos constituem nós e contêm tabelas de probabilidade condicionada que os associam ao(s) nó(s) pai
 - O grafo n\u00e3o pode conter quaisquer ciclos fechados

Modelo

- Sejam 3 variáveis aleatórias A, B e C
 - Se A for independente de B, e A e B influenciarem, ambas, C, a rede correspondente terá o seguinte aspecto:

- A e B são **pais** de C
- C é **filho** de A e B

- Na rede seguinte:
 - D é um antepassado de B
 - B é um descendente de D

- A cada nó são assinaladas as seguintes tabelas de probabilidade:
 - Se um nó não tem pais, a tabela é do tipo p(X)
 - Se um nó tem apenas 1 pai, a tabela é do tipo p(X|Y)
 - Se um nó tem vários pais, a tabela é do tipo $p(X|Y_1, Y_2...Y_n)$
- De acordo com este modelo, a independência condicional entre atribuitos feita pelo Naïve Bayes Classifier pode ser assim visualizada:

- Cada nó X_i terá apenas uma tabela de probabilidade condicionada do tipo p(X_i|Y), dado que cada atributo depende apenas de Y
- Foram exactamente estas frequências que se calcularam anteriormente e que figuram no produto $\prod_{i=1}^{d} P(X_i | Y = y)$

Figure 5.13. A Bayesian belief network for detecting heart disease and heartburn in patients.

- Desenhar uma Rede Bayesiana envolve 2 fases:
 - Desenhar a rede
 - Estimar as probabilidades condicionais envolvidas (através de históricos ou opinião de peritos)
- Para desenhar a rede há duas opções
 - Captar as relações de causa-efeito e traçar as setas das causas para os efeitos
 - Proceder sistematicamente (ver rede anterior):
 - Ordenar as variáveis. Por exemplo: E,D,HD,Hb,CP,BP
 - P(D|E) pode simplificar-se para p(D)
 - P(HD|E,D) não pode simplificar-se
 - P(Hb|HD,E,D) pode simplificar-se para p(Hb|D)
 - P(CP\Hb,HD,E,D) pode simplificar-se para p(CP\Hb,HD)
 - P(BP|CP,Hb,HD,E,D) pode simplificar-se para p(BP|HD)
 - Esta abordagem pode gerar modelos diferentes consoante a ordenação original das variáveis, mas garante ausência de ciclos
 - Dificuldade: para d atributos há d! grafos distintos

Cálculos com Redes Bayesianas

- Uma Rede Bayesiana permite 3 tipos de cálculos base:
 - 1. Probabilidade conjunta de qualquer acontecimento

$$P(x_1, x_2...x_n) = \prod_{i=1}^{n} P(x_i | Parents(X_i))$$

- Inferência:
 - Causal (das causas para os efeitos)
 - Diagnóstico (dos efeitos para as causas)

$$p(x_1 | x_2...x_n) = \frac{p(x_1, x_2...x_n)}{p(x_2...x_n)}$$

Polagnostico (dos eleitos para as causas)
$$p(x_1 | x_2...x_n) = \frac{p(x_1, x_2...x_n)}{p(x_2...x_n)}$$

$$p(A | B) = \frac{p(A, B)}{p(B)}$$

$$p(A | B, C, D) = \frac{p(A, B, C, D)}{p(B, C, D)}$$
The painds outros tipos de cálculos baseados pestes, pomeadamente

Existem ainda outros tipos de cálculos baseados nestes, nomeadamente Intercausal (estudo da influência de novas causas sobre um efeito comum) e Misto (mistura de várias destas formas num só cálculo)

Note-se que, por exemplo

$$p(A \mid B, C, D) = \frac{p(A, B, C, D)}{p(B, C, D)} = \frac{p(A, B, C, D)}{p(\overline{A}B, C, D) + p(A, B, C, D)}$$

- Isto significa que, conhecidas as probabilidades conjuntas relativas a uma rede, é pode aplicar-se a equação acima para realizar uma inferência de diagnóstico
- Por outro lado, como vimos, para calcular estas probabilidades conjuntas basta aplicar

$$P(x_1, x_2...x_n) = \prod_{i=1}^{n} P(x_i | Parents(X_i))$$

que permite calculá-las a partir das probabilidades condicionadas que figuram nos nós da rede

- Uma rede Bayesiana permite:
 - Reduzir muito o número de probabilidades que é necessário conhecer inicialmente para implementar a rede
 - Que essas probabilidades sejam do tipo condicionado e não conjuntas (importante no caso de a rede ser modelizada por recurso a opinião de peritos e não por análise de dados)

Exemplo

Supondo que as 4 variáveis são binárias, teremos de conhecer, para implementar a rede, 1+1+2+4=8 probab. condicionadas

O número de probabilidades conjuntas é, no entanto, 2⁴=16 (correspondente às combinações de 0000 a 1111) ou seja, o dobro das condicionadas atrás referidas

- Suponha-se que temos 20 variáveis booleanas tais que cada uma é influenciada, no máximo, por 5 outras:
 - Rede Bayesiana:
 - Para cada nó, a tabela conterá as combinações binárias de 5 variáveis, num total de 25=32 linhas.
 - Como são 20 nós, a rede necessitará da especificação de 20x32=640 probabilidades.
 - Probabilidade Conjunta:
 - Uma tabela de probabilidade conjunta teria de conter 2²⁰= 1.048.576 probabilidades
- Ora, para realizar inferências com redes Bayesianas estas probabilidades conjuntas
 - Podem ser calculadas somente à medida que são necessárias
 - O seu valor é determinado a partir das condicionadas

Exemplo 1: Cálculo de Probabilidades Conjuntas

Uma casa possui um alarme que toca quando há assaltos mas, por vezes, também quando há um tremor de terra. Quando toca, os vizinhos João e Maria telefonam ao dono, segundo as probabilidades assinaladas na rede Bayesiana da figura. Calcular a probabilidade de John e Mary telefonarem ambos, o alarme tocar e não ocorrer nenhum roubo nem tremor de terra:

$$P(x_1, x_2...x_n) = \prod_{i=1}^{n} P(x_i | Parents(X_i))$$

$$P(J, M, A, \neg B, \neg E) =$$

$$= P(J|A) \times P(M|A) \times P(A \mid \neg B, \neg E) \times P(\neg B) \times P(\neg E) =$$

$$= 0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 =$$

= 0.00062

- Exemplo 2: Inferência Causal
 - Um indivíduo X pratica exercício.
 - De acordo com a rede Bayesiana da figura, deverá ser classificado como candidato ou não candidato a uma doença de coração?

Figure 5.13. A Bayesian belief network for detecting heart disease and heartburn in patients.

- 1. A rede especifica que p(Exercise=Yes)=0,7.
- 2. Por se tratar de um nó sem pai, esta probabilidade significa que, retirada uma amostra da população, 70% dos indivíduos praticam exercício.
- 3. Se nada for dito em contrário, é com esta probabilidade que se lida no cálculo de outras probabilidades da rede.
- 4. Porém, neste caso o enunciado especifica o valor do atributo Exercise ao afirmar que X pratica exercício: ou seja, p(Exercise=Yes)=1 (logo, p(Exercise=No)=0)
- 5. Contudo, para dieta nada se sabe (o enunciado é omisso) e portanto X pode ou não ter uma dieta saudável
- 6. O problema consiste em calcular p(HD=Yes), sabendo que para X p(Exercise=Yes)=1 e nada sabendo de p(Diet=Healhty), pelo que se assumem as probabilidades dadas na tabela de Diet. Ou seja:

	HD=Yes
E=Yes D=Healthy	0.25
E=Yes D=Unhealthy	0.45
E=No D=Healthy	0.55
E=No D=Unhealthy	0.75

```
p(HD=Yes|(Exercise=yes,Diet=Healthy\ V\ Exercise=yes,Diet=Unhealthy))=
=p(HD=Yes|(E=Yes,D=Yes).p(E=Yes).p(D=Yes)+p(HD=Yes|(E=Yes,D=No).p(E=Yes).p(D=No)=
=(0,25x1x0,25)+(0,45x1x(1-0,25))=0,4
```

Falta agora determinar a probabilidade de NÃO ter doença do coração:

```
p(HD=No|(Exercise=yes,Diet=Healthy\ V\ Exercise=yes,Diet=Unhealthy))=
=p(HD=No|(E=Yes,D=Yes).p(E=Yes).p(D=Yes)+p(HD=No|(E=Yes,D=No).p(E=Yes).p(D=No)=
=((1-0,25)\ x1x0,25)+((1-0,45)x1x(1-0,25))=0,6
```

- Como 0,6 > 0,4 o indivíduo X é classificado como não candidato a doença do coração
- Notar que o segundo cálculo é o complementar do primeiro, pelo que poderia ter-se feito assim:

```
p(HD=No|(Exercise=yes,Diet=Healthy\ V\ Exercise=yes,Diet=Unhealthy))=
=1-p(HD=Yes|(Exercise=yes,Diet=Healthy\ V\ Exercise=yes,Diet=Unhealthy))=
=1-0,4=
=0,6
```

Exemplo 3: Inferência Causal

 Sem qualquer informação adicional, e no cenário descrito por esta rede, inferir qual a probabilidade de uma pessoa ter uma doença do coração (HD)

```
p(HD=Yes) = \\ = p(HD=Yes|E=Yes,D=Yes).p(E=Yes).p(D=Yes)+p(HD=Yes|E=No,D=Yes).p(E=No).p(D=Yes)+\\ + p(HD=Yes|E=No,D=No).p(E=No).p(D=No)+p(HD=Yes|E=No,D=No).p(E=No).p(D=No)=\\ = (0,25\times0,7\times0,25)+(0,45\times0,7\times(1-0,25))+(0,75\times(1-0,7)\times(1-0,25)+(0,55\times(1-0,7)\times0,25)=\\ = (0,25\times0,7\times0,25)+(0,45\times0,7\times0,75)+(0,75\times0,3\times0,75)+(0,55\times0,3\times0,25)=\\ = 0,49 \\ p(HD=No)=1-p(HD=Yes)=\\ = 1-0,49=\\ = 0,51 \\ \end{cases}
```

Como 0,51 > 0,49, na ausência de informação adicional há uma ligeira probabilidade a favor de não se contrair doença do coração (HD)

- Exemplo 4: Inferência Causal
 - Qual a probabilidade de uma pessoa ter tensão alta (BP=H) sabido que pratica exercício e tem dieta saudável ?

$$P(x_1, x_2...x_n) = \prod_{i=1}^{n} P(x_i | Parents(X_i))$$

Figure 5.13. A Bayesian belief network for detecting heart disease and heartburn in patients.

Exemplo 5: Inferência de Diagnóstico

Qual a probabilidade de doença do coração para um doente que tem tensão arterial elevada, não faz exercício nem tem uma dieta saudável?

$$p(x_1 | x_2...x_n) = \frac{p(x_1, x_2...x_n)}{p(x_2...x_n)}$$

$$P(x_1, x_2...x_n) = \prod_{i=1}^{n} P(x_i | Parents(X_i))$$

$$p\left(DC \mid TA, \bar{E}, \bar{D}\right) = \frac{p\left(DC, TA, \bar{E}, \bar{D}\right)}{p\left(TA, \bar{E}, \bar{D}\right)} =$$

$$p(TA \mid DC).p(DC \mid \bar{E}, \bar{D}).p(\bar{E}).p(\bar{D})$$

Figure 5.13. A Bayesian belief network for detecting heart disease and heartburn in patients.

$$= \frac{1}{p(TA \mid DC).p(DC \mid \bar{E}, \bar{D}).p(\bar{E}).p(\bar{D}) + p(TA \mid \bar{DC}).p(\bar{D}C \mid \bar{E}, \bar{D}).p(\bar{E}).p(\bar{D})} = \frac{0.85 \times 0.75 \times 1 \times 1}{0.85 \times 0.75 \times 1 \times 1 + 0.2 \times (1 - 0.75) \times 1 \times 1} = 0.9272$$

Redes Bayesianas - Resumo

- Este classificador:
 - Apresenta uma solução gráfica para a representação de conhecimento / probabilidades / dependência
 - Pode representar ligações causais
 - Construir uma rede real pode consumir muito tempo e esforço
 - Contudo, a sua manutenção é simples
 - É adequado a domínios com dados incompletos
 - É robusto em relação a overfitting

Redes Bayesianas FIM

Naïve Art