Relatório – Projeto de Supercomputação

Objetivo do projeto

Encontrar a clique máxima em um grafo utilizando pelo menos três abordagens distintas vistas na disciplina - sendo essas Busca Exaustiva, OpenMP e MPI - e apresentar resultados comparativos.

Arquivos

busca exaustiva.cpp - implementação em Busca Exaustiva

heuristica_busca_exaustiva.txt – pseudo-código com heurística

mc_openmp.cpp - implementação em OpenMP

mc mpi.cpp - implementação em MPI

mc_mpi.slurm – arquivo .slurm para execução da implementação MPI no cluster

Grafos

Foram criados 6 grafos com diferentes números de vértices e arestas para testar as execuções:

	Nº de	Nº de	
	vértices	arestas	
grafo1.txt	50	601	
grafo2.txt	50	876	
grafo3.txt	100	2513	
grafo4.txt	100	3465	
grafo5.txt	150	5587	
grafo6.txt	150	7835	

Tabela 1 – Nome no grafo e informação do número de vértices e do número de arestas

Resultados

Grafo	Busca Exaustiva	OpenMP	MPI
1	0.0070965	0.00320964	0.00813463
2	0.168397	0.0462063	0.253332
3	0.0864181	0.0265374	0.171806

4	14.7989	3.29794	20.463
5	0.636649	0.146357	1.11745
6	973.618	136.378	718.281

Tabela 2 – Tempo de execução de cada grafo por cada algoritmo

Gráfico 1 – Tempo de execução de cada grafo por cada algoritmo

Gráfico 2 – Tempo de execução dos grafos de 1 a 5 por cada algoritmo

Interpretação dos Resultados

Pela tabela e gráficos é possível perceber que, para os grafos de 1 a 3 e grafo 5, os três algoritmos implementados têm tempo de execução parecidos.

A discrepância entre eles é mais percebida para os grafos 4 e 6. No grafo 4, MPI tem o pior desempenho em tempo de execução, já para o grafo 6, Busca Exaustiva tem o pior desempenho.

Essa diferença de desempenho nos grafos 4 e 6 pode ser explicada pela escalabilidade dos algoritmos conforme o tamanho ou a complexidade do grafo aumenta. Para grafos menores (1 a 3 e 5), o espaço de busca ainda é gerenciável, e a sobrecarga inerente ao paralelismo em MPI e OpenMP não é tão perceptível, resultando em tempos de execução semelhantes entre os métodos.

Para o grafo 4, MPI apresenta o pior desempenho devido à sua dependência de comunicação entre processos, que se torna mais custosa à medida que o tamanho do problema aumenta. Isso pode indicar que, nesse caso, a sobrecarga de paralelismo em MPI supera os benefícios da divisão de trabalho.

Já no grafo 6, a Busca Exaustiva começa a obter tempo de execução significativamente maior, pois explora todas as possibilidades sem qualquer paralelismo ou otimização, resultando em tempos de execução extremamente altos. Isso indica que esse método não é escalável para grafos maiores devido à explosão combinatória do espaço de busca, apesar de ser uma solução plausível para os grafos menores.

Por outro lado, OpenMP continua sendo o método mais eficiente em todos os grafos, incluindo os mais complexos. Isso demonstra que, apesar de também envolver paralelismo, a sobrecarga de OpenMP é bem menor, tornando-o mais adequado para problemas de clique máxima em grafos maiores.