(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 10 February 2005 (16.02,2005)

PCT

(10) International Publication Number WO 2005/012512 A1

(51) Insersational Patent Chastilestins':

C12N 5/86

(21) International Application Number:

PCETPERMANHARE

- (22) International Filing Date: 2 August 2006 (02.68.2008)
- (25) Filing Language: Kaglish
- (26) Publication Language: Kaglish
- (30) Priority Date:

2003-285475 | LAugust 2003 (01.58.2003) | JP 2004-458285 | 2 March 2004 (02.63.2004) | JP

- (71) Applicant usuf
- (72) Inventor: NASAMURA, Norinasa (JP/SP): 15-12, Korakuennibancho, Nishinosaiya shi, Hyogo 6620082 (JP).
- (72) Inventors; and
- (78) Inventors/Applicants (for US endy): MAISUDA, Hikaru (JP/P); 20-5. Obsrache, Adea-shi, Hyago (S9089); (JP) SAWA, Yoshiki (JP/P); 8-3. Kendunicho, Nishinceniya-shi, Hyago (USDP); 8-3. Kendunicho, Nishinceniya-shi, Hyago (USDP); (JP) TAKETANI, Satoshi (JP/P); 5-18-3-2848. Nakanasta, Miyako-jima-ku, Osaka-shi, Osaka S388827 (JP) MIYAGAWA, Shigaru (JP/P); 3-10-36-385, Nishindedigaeku, Toyonaka-shi, Osaka S008889 (JP) YOSHIKAWA, Rideki (JP/P); 2-111-1-805, Shoji, Toyonaka-shi, Osaka S608004 (JP). ANIO, Wataru (JP/P); 13-201, 2-6, Yanuseniai, Hugaki-shi, Osaka S608009 (JP).

- (74) Agests: VAMAMOTO, Sisussku et al.; Fišieceih Fisor, Crystal Tower, 2-27, Sisiromi 1-chome, Chuo-ku, Ozakashi, Ozaka 5406015 (3P).
- (81) Designated Sisters (unions otherwise indicated for every kind of national protection artificials: AE, AG, AI, AM, AI, AE, AZ, BA, BB, BB, BB, BW, BY, BZ, CA, CB, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, BC, EE, EG, ES, FI, GB, GD, GB, GB, GM, BR, BU, ED, B, FK, IS, JF, KE, KG, KF, KR, KZ, EC, LK, LB, LS, LI, EE, IN, MA, MD, MC, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, CM, PR, PH, PI, PG, BO, RU, SC, SD, SE, SG, SK, SE, SY, TI, TM, TN, TR, TI, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (34) Designated States (unforce otherwise indicated, for every kind of regional protection available): A&IPO (SW, GH, GM, KE, LS, MW, MZ, NA, SB, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, SY, KG, KZ, MD, RU, TL, TM, Bangean (AI, BE, BG, CH, CY, CZ, DE, DN, RE, ES, FL, FB, GB, GB, RU, RS, FL, EU, MC, NL, FE, PT, RO, SE, SL, SK, TB), OAPI (SE, BJ, CF, CG, CJ, CM, GA, GN, GQ, GW, ME, MR, NE, SN, TD, TG).

Pahiidad:

- with intermutional rearch repart
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Fines on Codes and Abbreviations" appearing at the legisning of each regular tome of the PCT Gazette.

🔁 (54) Title: SCAPKOLD-PREE SELF-ORGANIZED 3D SYNTHETIC TISSSEE

(57) Abstract: The present invention can be used for actual implantation surgery without a scaffold. The present invention provides a synthetic thouse or complex which can be produced by culture and has a high level of differentiation ability. The present invention also provides a therapy and medicansent for repairing under regenerating tissue using replacement and covering. By culturing cells under specific culture conditions such that medium outsains an extracellular matrix synthesis promoting agent, the cells are organized and are easily detached from a culture dish. The present invention was achieved by liading such a placement. In addition, the self contraction of the tissue can be regulated by culturing the tissue in a suspended measure. Therefore, it is possible to regulate the time dimensional strape of the tissue. The present invention also provides a method for producing an implantable synthetic tissue. The present invention is characterized by richness in adhesion molecules, nonnecessity of additional finalism at an implantation site, and good biological integration.

2005/0125

WO 2005/012512 PCT/JP2004/0114/01

- 1 ...

DESCRIPTION

SCAFFOLD-FREE SELF-ORGANIZED 3D SYNTHETIC TISSUE

5 TECHNICAL FIELD

The present invention relates to the field of regenerative medicine. More particularly, the present invention relates to a synthetic tissue capable of functioning after implantation, a method for producing the same, and use of the same. The synthetic tissue of the present invention has biological integration capability.

BACKGROUND ART

3.5

20

10

Recently, regenerative therapy has attracted attention as a novel approach to severe organ failure or intractable diseases. Regenrative therapy is a combination of genetic engineering, cell tissue engineering, regenerative medicine, and the like. Many researchers over the world are vigorously working on this important and challenging subject of research in the 21-century advanced medical practice.

25

30

The scale of the market associated with regenerative medicine (tissue engineering) is estimated as about 500 billion US dollars in the world and about 50 billion US dollars in Japan according to the material prepared by the New Energy and Industrial Technology Development Organization. Only tissue engineering products account for about 100 billionUS dolloars in the world. The regenerative medicine is greatly expected to create the next-generation industry.

823

10

ar Branch

The present inventors have made efforts to develop regenerative therapy in the field of musculoskeletal and cardiovascular tissues, and have reported a combination therapy of cell implantation and a growth factor administration, or a tissue implantation regenerative therapy based on tissue engineering. However, regenerative therapy based on cell or tissue implantation requires a source of autologous cells. A stable and abundant source of such cells is urgently required and important. A number of cells in musculoskeletal tissue have a high level of self-repairing ability. It has been reported that there is a stem cell among the cells of the musculoskeletal tissue.

It has been demonstrated that a cell derived from skeletal muscle (Jankowiski R.J., Huand J. et al, Gene Ther., 9:642-647, 2002), fat (Wickham M.Q. et al., Clin. Orthop., 2003, 412, 196-212), umbilical cord blood (Lee O.K. et al., Blood, 2004, 103:1669-75), tendon (Salingcarnboriboon R., Exp. Cell. Res., 287:289-300, 2002), bone marrow (Pitterger M.F. et al., Science, 284:143-147, 1999), and synovium (Arthritis Rheum. 2001 44:1928-42) is undifferentiated and has the potential to differentiate into various cells.

Conventionally, when cell therapy is performed for repair or regeneration of tissue, most research employs a biological scaffold to maintain the accumulation of cells, allow cells to grow, maintain pluripotency, protect cells from mechanical stress on a treated site, or the like. However, most scaffolds contain a biological (animal) material, a biomacromolecule material, or the like, of which influence on the safety of organism cannot be fully predicted.

A cell implanting method without a scaffold has been

WO 2005/012512 PCI/IP2004/014/01

reported by Kushida A., Yamato M., Konno C., Kikuchi A., Sakurai Y., Okano T., J. Biomed. Mater. Res., 45:355-362, 1999, in which a cell sheet is produced using a temperature sensitive culture dish. Such a cell sheet engineering technique is internationally appraised due to its originality. However, a single sheet obtained by this technique is fragile. In order to obtain the strength that can withstand surgical manipulation, such as implantation, a plurality of sheets need to be assembled, for example.

10

15

20

25

30

3

When a mano-biointerface technology is used to fix a temperature responsive polymer (PIPAAm) onto a plastic mold, such as a Petri dish, for cell culture, the polymer surface is reversibly changed at 31°C between hydrophilicity and hydrophobicity. Specifically, when the temperature is 31°C or more, the surface of the Petri dish is hydrophobic so that cells or the like can adhere thereto. In this situation, the cells secrete extracellular matrix (ECM; for example, adhesion molecules which are proteins having a function like a "glue") and adhere to the surface of the Petri dish, so that the cells can grow. See, Okano T., Yamada N., Sakai H., Sakurai Y., J. Biomed. Mater. Res., 1993, 27:1243-1251; Kushida A., Yamato M., Konno C., Kikuchi A., Sakurai Y., Okano T., J. Biomed. Matex. Res. 45:355-362, 1999; and Shimizu T., Yamato M., Akutsu T. et al., Circ. Res., 2002, Feb 22; 90(3):=40.

When the temperature is 31°C or less, the surface of the Petri dish is hydrophilic. The cells which have adhered to the Petri dish are readily detached, though the cells still maintain adhesion molecules. This is because the surface of the Petri dish to which the cells have adhered no longer exists at 31°C or less.

m & m

Even when such a Petri dish having a fixed temperature responsive polyer (e.g., tradename: UpCell and RepCell) is used to culture cells and detach the cells, an extracellular matrix is not appropriately provided. Thus, there has been no actually practical synthetic tissue developed. See, Okano T., Yamada N., Sakai H., Sakurai Y., J. Biomed. Mater. Res., 1993, 27:1243-1251; Kushida A., Yamato M., Konno C., Kikuchi A., Sakurai Y., Okano T., J. Biomed. Mater. Res. 45:355-362, 1999; and Shimizu T., Yamato M., Akutsu T. et al., Circ. Res., 2002, Feb 22; 90(3):e40.

3

10

WOO0/51527 and WOO3/024463 reported that cells are cultured on a semipermeable membrane using alginate gel.

However, the resultant tissue is poorly integrated with an extracellular matrix and is not free of a scaffold. In addition, the cells in the tissue are not self organized.

The tissue has no self-supporting ability. The cells no longer have a differentiation potential. The tissue loses morphological plasticity in terms of three-dimensional structure. Therefore, the tissue is not suitable for cell implantation.

Use of a scaffold is considered to be problematic
in implantation therapy because of adverse side effects.
Therefore, there is a demand for the advent of a scaffold-free technique.

Conventional mathods for producing tissue sheets
have the following drawbacks: it is not possible to produce
a very large sized sheet; it is not possible to produce a
sheet having biological integration in three dimensions;
when a sheet is detached after sheet production, the sheet

is broken into pieces; and the like.

32

20

23

Therefore, there is a keen demand for a synthetic tissue, which is developed by culture processes, capable of withstanding an implantation operation, capable of being used in an actual operation.

By conventional techniques, it is difficult to isolate a synthetic tissue from a culture base material after tissue culture, and it is substantially impossible to produce a large sized tissue piece. Therefore, conventional synthetic tissues, such as tissue sheets, cannot be used in medical application in view of size, structure, mechanical strength, and the like. It is difficult to develop a synthetic tissue using conventional techniques. Therefore, unfortunately their supplies are limited.

An object of the present invention is to provide a synthetic tissue produced by cell culture, which is feasible to implantation surgery.

Specifically, an object of the present invention is to provide a synthetic tissue having a three-dimensional structure and self-supporting ability, being free of a scaffold, and maintaining a differentiation potential if the tissue possesses it.

Still another object of the present invention is to provide a method and a pharmaceutical agent for treating an injury of a tissue or the like when a replacement or resurfacing therapy is required.

DISCLOSURE OF THE INVENTION

WO 2005/012512 PCT/IP20842031401

83

20

32

30

The above-described objects were achieved in part based on the invention of the following synthetic tissue. When a cell was cultured in medium containing an extracellular matrix (SCN) synthesis promoting agent, cells and ECM produced by the cells are integrated to formed a tissue, which was readily detached from the culture dish.

The above-described objects were achieved by providing a synthetic tissue of the present invention which is free of a scaffold, has self-supporting ability, is easily formed into a three-dimensional structure, has morphological plasticity, has excellent ability to biologically adhere to surroundings, has a differentiation potential, and the like, and finding that the synthetic tissue is effective for a replacement or resurfacing therapy at an injured site.

The present invention also provides a method for producing an implantable synthetic tissue, which has biological integration and does not require assembling layers.

The above-described objects were achieved by finding that the thickness of the synthetic tissue of the present invention can be adjusted to a desired value by regulating a physical or chemical stimulus on the synthetic tissue.

The present inventors realized the formation of a three-dimensional synthetic tissue (cellular therapeutic system) comprising cultured cells (e.g., fat-derived cells, etc.) and material produced by the cells without a scaffold.

The synthetic tissue of the present invention can

WO 2005/012512 PCY/JP2004/03.1401

5

10

and y

be constructed into various shapes and has a sufficient strength. Therefore, it is easy to surgically manipulate (e.g., implant, etc.) the synthetic tissue of the present invention. According to the present invention, a large quantity (e.g., 10^6 to 10^8) of cells can be securely supplied to a local site by means of tissue implantation.

In the matrix, cell adhesion molecules, such as collagen (e.g., type I, type III), fibronectin, vitronectin, and the like, are present in large amounts. Particularly, the cell adhesion molecules are integrated throughout the matrix.

Therefore, the tissue has excellent ability of biologically adhesion to surroundings of the implanted site. Thus, the synthetic tissue complex biologically adheres to an implanted site tissue very quickly. In addition, by changing culture conditions, the synthetic tissue can be differentiated into a bone or cartilage tissue. The maintenance of a differentiation potential is a feature of the synthetic tissue of the present invention which was first found by the present inventors. The synthetic tissue is effective as a safe and efficient cell therapy system.

25 An object of the present invention is to provide a clinical application of the synthetic tissue regeneration of a joint tissue. The present invention provides the above-described synthetic tissue or a complex of a cell and a component derived from the cell, thereby making it possible to develop therapies for bone regeneration at a conventionally intractable site, in which both periosteum and bone cortex are inflamed; partial thickness cartilage injury which does not bleach the subchondral bone, and injury

of a meniscus, a tendon, a ligament, an intervertebral disk, cardiac muscle in an avascular area or a poor circulation site.

- Thus, the present invention provides the following.
 - 1. An implantable synthetic tissue.

- A synthetic tissus according to item 1, which is
 biologically organized in the third dimensional direction.
 - 3. A synthetic tissue according to item 1, which has biological integration capability with surroundings.
- 4. A synthetic tissue according to item 3, wherein the biological integration capability includes capability to adhere to surrounding cells and/or extracellular matrices.
- 5. A synthetic tissue according to item 1, which comprises cells.
 - 6. A synthetic tissue according to item 1, which is substantially made of cells and a material derived from the cells.
 - 7. A synthetic tissue according to item 1, which is substantially made of cells and an extracellular matrix (ECM) derived from the cells.
- 30 8. A synthetic tissue according to item 7, wherein the extracellular matrix contains at least one selected from the group consisting of collagen I, collagen III, vitronectin and fibronectin.

9. A synthetic tissue according to item 7, wherein the extracellular matrix contains collagen I, collagen III, vitronectin and fibronectin.

11.0

- 10. A synthetic tissue according to item 7, wherein the extracellular matrix contains vitropectin.
- 11. A synthetic tissue according to item 7, wherein the 10 extracellular matrix contains fibronectin.
 - 12. A synthetic tissue according to item 7, wherein the extracellular matrix contains collagen I and collagen III. the collagen constitutes 5% to 25% of the tissue, and the
- 15 ratio of the collagen I to the collagen III is between 1:10 and 10:1.
- . 13. A synthetic tissue according to item 7, wherein the extracellular matrix and the cells are integrated together into a three-dimensional structure.
 - 14. A synthetic tissue according to item 7, wherein the extracellular matrix is diffusedly distributed in the tissue.
- 25 15. A synthetic tissue according to item 1, wherein an extracellular matrix is diffusedly distributed, and the distribution densities of the extracellular matrix in two arbitrary sections of 1 cm² in the tissue have a ratio within a range of about 1:3 to about 3:1.

30

16. A synthetic tissum according to item 1, which is heterologous, allogenic, isologous, or autogenous.

~ 10 -

- 17. A synthetic tissue according to item 1, which is free of scaffolds.
- 18. A synthetic tissue according to item 1, which is used to implant cells.
 - 19. A synthetic tissue according to item 1, which is large sized.
- 20. Asynthetic tissue according to item 1, which has a volume of at least about 20 mm³.
 - 21. A synthetic tissue according to item 1, which is flexible.

1.5

- 22. A synthetic tissue according to item 1, which is expandable and contractile.
- 23. A synthetic tissue according to item 1, which can withstand heart pulsation.
 - 24. A synthetic tissue according to item 1, which is biologically organized in all three dimensional directions.
- 25 25. A synthetic tissue according to item 24, wherein the biological integration is selected from the group consisting of internal binding of extracellular matrix, electrical integration, and intercellular signal transduction.
- 30 26. Asynthetic tissue according to item 1, which has a tissue strength which allows the synthetic tissue to be clinically applicable.

- 11 -

- 27. A synthetic tissue according to item 26, wherein the strength is a break strength of about 0.02 N to about 2 N.
- 28. A synthetic tissue according to item 26, wherein the tissue strength is sufficient to provide self-supporting ability.
- 29. A synthetic tissue according to item 28, wherein the self-supporting ability is characterized in that the synthetic tissue is not substantially broken when the synthetic tissue is picked up using forceps having a tip area of 0.05 to 3.0 mm².
- 30. A synthetic tissue according to item 28, wherein the self-supporting ability is characterized in that the synthetic tissue is not broken when the synthetic tissue is picked up with a hand.
- 31. A synthetic tissue according to item 26, wherein the 20 site to which the synthetic tissue is intended to be applied, includes a heart.
- 32. A synthetic tissue according to item 26, wherein the site to which the synthetic tissue is intended to be applied, 25 includes an intervertebral disk, a meniscus, a cartilage, a bone, a ligament, or a tendon.
- 33. A synthetic tissue according to item 26, wherein:
 the synthetic tissue is a cartilage, an
 intervertebral disk, a meniscus, a ligament, or a tendon;
 and

the synthetic tissue remains attached without an additional fixation procedure, after the synthetic tissue

WO 2005/012512 PCY/JP2084/03.1401

- 12 -

is implanted into an injured portion of the intra-articular tissue.

- 34. A method for producing a synthetic tissue, comprising the steps of:
 - A) providing cells;

- B) placing the cells in a container, the container having cell culture medium containing an ECM synthesis promoting agent and having a sufficient base area which can accommodate a synthetic tissue having a desired size;
- C) culturing the cells in the container along with the cell culture medium containing the ECM synthesis promoting agent for a period of time sufficient for formation of the synthetic tissue having the desired size; and
- 15 D) detaching the cells from the conteider.
 - 35. A method according to item 34, wherein a stimulus for inducing tissue contraction is applied in the detaching step.
- 20 36. A method according to item 35, wherein the stimulus includes a physical or chemical stimulus.
- 37. A method according to item 36, wherein the physical stimulus includes shaking of the container, pipetting, or deformation of the container.
 - 38. A method according to item 34, wherein the detaching step includes adding an actin regulatory agent.
- 30 39. A method according to item 38, wherein the actin regulatory agent includes a chemical substance selected from the group consisting of actin depolymerizing agents and actin polymerizing agents.

WO 2005/012512 PCY/3P2004/044/04

40. A method according to item 39, wherein the actin depolymerizing agent is selected from the group consisting of Slingshot, cofilin, cyclase associated protein (CAP), actin interacting protein 1 (AIP1), actin depolymerizing factor (ADF), destrin, departin, actophorin, cytochalasin, and NGF (nerve growth factor).

3

28

- A method according to item 39, wherein the actin polymerizing agent is selected from the group consisting of RhoA, mDi, profilin, Racl, IRSp53, WAVE2, ROCK, LIN kinase, cofilin, cdc42, N-WASP, Arp2/3, Drf3, Mena, lysophosphatidic acid (LPA), insulin, platelet derived growth factor (FDGF) a, PDGFb, chemokine, and transforming growth factor (TGF)
 - 42. A method according to item 34, wherein the container is free of scaffolds.
- 20 43. A method according to item 34, wherein the cells are first cultured in monolayer culture.
 - 44. A method according to item 34, wherein the ECM synthesis promoting agent includes TGFβ1, TFGβ3, ascorbic acid, ascorbic acid, ascorbic acid 2-phosphate, or a derivative or salt thereof.
 - 45. Amethodaccording to item 44, wherein the ascorbic acid, ascorbic acid 2-phosphate, or the derivative or salt thereof is present at a concentration of at least 0.1 mM.
 - 46. A method according to item 44, wherein the TGF\$1 or TFG\$3 is present at a concentration of at least 1 ng/ml.

WO 2005/012512 PCT/JF2084/031401

m] 4 m

47. A method according to item 34, wherein the cells are placed at a concentration of 5×10° to 5×10° cells per 1 cm², and the ECM synthesis promoting agent is ascorbic acid, ascorbic acid 2-phosphate, or a derivative or salt thereof, and the ascorbic acid, ascorbic acid 2-phosphate, or the derivative or salt thereof is provided at a concentration of at least 0.1 mM.

23

- 48. Amethodaccording to item 34, further comprising causing the synthetic tissue to detach from the container and self-contract.
- 49. A method according to item 48, wherein the detaching and self-contraction are achieved by providing a physical stimulus to the container.
 - 50. A method according to item 48, wherein the detachment and self-contraction are achieved by providing a chemical stimulus to the container.
 - 51. A method according to item 34, wherein the sufficient period of time is at least 3 days.
- 52. A mothod according to item 34, wherein the sufficient period of time is at least 3 days and a period of time required for the synthetic tissue to be spontaneously detached from the container at a maximum.
- 53. A method according to item 52, wherein the period of time required for the synthetic tissue to be spontaneously detached from the container is at least 40 days.
 - 54. A method according to item 34, further comprising:

w 15 w

causing the synthetic tissue to differentiate.

- 55. A method according to item 54, wherein the differentiation includes osteogenesis, chondrogenesis, adipogenesis, tendon differentiation, and ligament differentiation.
 - 56. A method according to item 55, wherein the osteogenesis is performed in medium containing dexamethesone,
- 10 \$\beta-glycerophosphate, and ascorbic acid 2-phosphate.

C.

20

- 57. A method according to item 56, wherein the medium contains at least one selected from the group consisting of BMP (bone morphogenetic protein)-2, BMP-4, and BMP-7.
- 15
 58. Amethodaccordingtoitem 55, wherein the chondrogenesis is performed in medium containing pyrubic acid,
 dexamethasone, ascorbic acid 2-phosphate, insulin,
 transferrin, and selenious acid.
 - 59. A method according to item 58, wherein the medium contains at least one selected from the group consisting of BMP-2, BMP-4, BMP-7, TGF(transforming frowth factor)- β 1 and TGF- β 3.
 - 60. A method according to item 54, wherein the differentiation step is performed before or after the detaching step.
- 30 61. A method according to item 54, wherein the differentiation step is performed after the detaching step.
 - 62. A method according to item 34, wherein the cell includes

WO 2005/012512 PCT/JF2084/031401

cells of 3 or more passages.

Ş

- 63. A method according to item 34, wherein the cells include cells of 3 to 8 passages.
- 64. A method according to item 34, wherein the cells are provided at a cell density of 5.0×10^8 to 5.0×10^8 cells/cm².
- 65. A method according to item 34, wherein the cells include 10 myoblasts.
 - 66. Amethod according to item 34, wherein the cells include fat-derived cells.
- 15 67. A method according to item 34, wherein the cells include synovium-derived cells.
 - 68. A method according to item 34, wherein the cells include mesenchymal stem cells.
 - 69. A method according to item 58, wherein the mesenchymal stem cells are derived from an adipose tissue, a synovial membrane, a tendon, a bone, or a bone marrow.
- 70. A method according to item 34, further comprising: producing a plurality of the synthetic tissues and attaching the plurality of the synthetic tissues together to be integrated.
- 30 71. A cell culture composition for producing a synthetic tissue from cells, comprising:
 - A) an element for maintaining the cells; and
 - B) an extracellular matrix synthesis promoting

m 1.7 m

agent.

- 72. Amethod according to item 68, wherein the ECM synthesis promoting agent includes TGF\$1. TFG\$3, ascorbic acid.

 5 ascorbic acid 2-phosphate, or a derivative or salt thereof.
- 73. A method according to item 72, wherein TGFβ1 or TFGβ3 is present at a concentration of at least 1 ng/ml, or ascorbic acid, ascorbic acid 2-phosphate, or the derivative or salt thereof is present at a concentration of at least 0.1 mM.
 - 74. A complex for reinforcing a portion of an organism, comprising cells and a component derived from the cells.
- 15 75. A complex according to item 74, which has biological integration capability with surroundings.
 - 76. A complex according to item 75, wherein the biological integration capability include capability to adhere to surrounding cells and/or extracellular matrices.
 - 77. A complex according to item 74, which is substantially made of cells and a material derived from the cells.
- 78. A complex according to item 78, which is substantially made of cells and an extracellular matrix derived from the cells.
- 79. A synthetic tissue according to item 78, wherein the 30 extracellular matrix is selected from the group consisting of collagen I, collagen III, vitronectin and fibronectin.
 - 80. Acomplex according to item 78, wherein the extracellular

matrix and the cells are integrated together into a three-dimensional structure.

- 81. Acomplex according to item 78, wherein the extracellular matrix is provided on a surface of the complex.
 - 82. Acomplex according to item 78, wherein the extracellular matrix is diffusedly distributed on a surface of the complex.
- 10 83. A complex according to item 74, wherein an extracellular matrix is diffusedly distributed on a surface of the complex, and the distribution densities of the extracellular matrix in two arbitrary sections of 1 cm² in the complex have a ratio within a range of about 1:3 to about 3:1.
- 84. Acomplex according to item 78, wherein the extracellular matrix includes fibrosectin or vitrosectin.

15

- 85. A complex according to item 74, which is heterologous, 20 allogenic, isologous, or autogenous.
 - 86. A complex according to item 74, wherein the portion includes a bag-shaped organ.
- 25 87. A complex according to item 86, wherein the bag-shaped organ includes a heart.
 - 88. A complex according to item 74, wherein the portion includes a bone or cartilage tissue.
- 89. A complex according to item 74, wherein the portion includes avascular tissue.

- 90. A complex according to item 74, wherein the portion includes an intervertebral disk, a meniscus, a ligament, or a tendon.
- 5 91. Acomplex according to item 74, wherein the reinforcement is achieved by replacing the portion with the complex or providing the complex to cover the portion, or both.
- 92. A complex according to item 74, which resists the expansion and contraction of the portion.
 - 93. A complex according to item 74, which has biological integration.
- 94. A complex according to item 74, wherein the Biological integration selected from the group consisting of internal binding of extracellular matrix, electrical integration, and intercellular signal transduction.
- 20 95. A Complex according to item 74, which is formed by culturing cells in the presence of an ECM synthesis promoting agent.
- 96. A complex according to item 74, which has 25 self-supporting ability.
 - 97. A method for reinforcing a portion of an organism, comprising the steps of:
- A) replacing the portion with a complex comprising cells and a component derived from the cells or providing the complex to cover the portion, or both; and
 - B) holding the complex for a sufficient period of time for biologically adhering the complex to the portion.

m 20 m

98. A method according to item 97, wherein the adhesion is achieved by adhesion between extracellular matrix and extracellular matrix.

8

- 99. A method according to item 97, which has biological integration capability with surroundings.
- 100. A method according to item 99, wherein the biological integration capability include capability to adhere to surrounding calls and/or extracellular matrices.
 - 101. A method according to item 97, which is substantially made of cells and a material derived from the cells.

1.5

- 102. A method according to item 97, which is substantially made of cells and an extracellular matrix derived from the cells.
- 20 103. A method according to item 102, wherein the extracellular matrix contains one selected from the group consisting of collagen I, collagen III, vitronectin and fibronectin.
- 25 104. A method according to item 102, wherein the extracellular matrix contains all of collagen I, collagen III, vitronectin and fibronectin.
- 105. A method according to item 102, wherein the 30 extracellular matrix contains vitronectin.
 - 106. A method according to item 102, wherein the extracellular matrix contains fibronectin.

WO 2005/012512 PCY/JP2084/03.1401

- 107. A method according to item 97, wherein an extracellular matrix is provided on a surface of the complex.
- 5 108. A method according to item 97, wherein an extracellular matrix is diffusedly distributed on a surface of the complex.
- 109. A method according to item 97, wherein an extracellular matrix is diffusedly distributed on a surface of the complex, and the distribution densities of the extracellular matrix in two arbitrary sections of 1 cm² have a ratio within a range of about 1:3 to about 3:1.
- 110. A complex according to item 97, wherein an extracellular matrix is diffusedly distributed on a surface of the complex, and the distribution densities of the extracellular matrix in two arbitrary sections of 1 cm² have a ratio within a range of about 1:2 to about 2:1.
- 20 111. A method according to item 97, which is heterologous, allogenic, isologous, or autogenous.
 - 112. A method according to item 97, wherein the portion includes a bag-shaped organ.
 - 113. A method according to item 112, wherein the bag-shaped organ includes a heart.

- 114. A method according to item 97, wherein the complex 30 resists the expansion and contraction of the portion.
 - 115. A method according to item 97, wherein the complex has biological integration.

· 22 ·

116. A method according to item 115, wherein the biological integration selected from the group consisting of internal binding of extracellular matrix, electrical integration, and intercellular signal transduction.

117. A method according to item 97, further comprising:
forming the complex by culturing the cells in the
presence of an ECM synthesis promoting agent.

10

35

- 118. A method according to item 97, wherein the portion is a heart and the heart has a disease or disorder selected from the group consisting of heart failure, ischemic heart disease, myocardial infarct, cardiomyopathy, myocarditis,
- 15 hypertrophic cardiomyopathy, dilated phase hypertrophic cardiomyopathy, and dilated cardiomyopathy.
 - 119. A method according to item 97, wherein the portion includes an avascular lesion.

20

- 120. A method according to item 97, wherein the portion includes a vascular lesion.
- 121. A method according to item 97, wherein the portion 25 includes a bone or a cartilage.
 - 122. A method according to item 97, wherein the portion includes an intervertebral disk, a meniscus, a ligament, or a tendon.

30

123. A method according to item 97, wherein the portion includes a bone or a cartilage, and the bone or the cartilage is damaged or degenerated.

... 23 ...

124. A method according to item 97, wherein the portion includes intractable fracture, osteonecrosis, cartilage injury, meniscus injury, ligament injury, tendon injury, cartilage degeneration, meniscus degeneration, intervertebral disk denaturation, ligament degeneration, or tendon degeneration.

S

- 125. A method according to item 97, wherein the sufficient 10 period of time is at least 10 days.
 - 126. A method according to item 97, wherein the complex has self-supporting ability.
- 15 127. A method according to item 97, which has biological integration capability with surroundings.
- . 128. A method according to item 97, which is substantially made of cells and an extracellular matrix derived from the cells.
 - 129. A method according to item 97, further comprising implanting another synthetic tissue.
- 25 130. A method according to item 129, wherein the other synthetic tissue is an artificial bone or a microfibrone collegen medical device.
- 131. A method according to item 97, which is substantially made of cells and an extracellular matrix derived from the cells, wherein the other synthetic tissue is an artificial bone or a microfibrous collagen medical device.

m 24 m

132. A method according to item 130, the artificial bone includes hydroxyapatite.

133. A method for treating a portion of an organism, comprising the steps of:

50

- A) replacing the portion with a complex comprising cells and a component derived from the cells or providing the complex to cover the portion, or both; and
- B) holding the complex for a sufficient period of time for restoring a condition of the portion.
- 134. A method according to item 133, wherein the treatment is for the treatment, prevention, or reinforcement of a disease, disorder, or condition of a heart, a bone, a 15 cartilage, a ligament, a tendon, a meniscus, of an intervertebral disk.
 - 135. A method according to item 133, wherein the complex has self-supporting ability.
 - 136. A method according to item 133, wherein the complex has biological integration capability with surroundings.
- 137. A method according to item 133, wherein the complex is substantially made of cells and an extracellular matrix derived from the cells.
- 138. A method according to item 133, further comprising implanting another synthetic tissue in addition to the replacement or coverage of the portion.
 - 139. A method according to item 138, wherein the other synthetic tissue includes an artificial bone or a

- 25 -

microfibrous collagen medical device.

. 5

10

- 140. A method according to item 133, which is substantially made of cells and an extracellular matrix derived from the cells, wherein the other synthetic tissue includes an artificial bone or a microfibrous collagen medical device.
- 141. A method according to item 139, the artificial bone includes hydroxyapatite.
- 142. A method for producing a synthetic tissue, comprising the steps of:
 - A) providing cells;
- B) placing the cells in a container, the container

 15 having cell culture medium containing an ECM synthesis

 promoting agent and having a sufficient base area which can
 accommodate a synthetic tissue having a desired size;
 - C) culturing the cells in the container along with the cell culture medium containing the ECM synthesis promoting agent for a period of time suffificent for formation of the synthetic tissue having the desired size; and
 - D) regulating a thickness of the synthetic tissue by a physical or chemical stimulus to a desired thickness.
- 25 143. A method according to item 142, wherein the physical stimulus includes shear stress between the synthetic tissue and the container, deformation of the base of the container, shaking of the container, or pipetting.
- 30 144. A method according to item 142, wherein the chemical stimulus is obtained by using a chemical substance selected from the group consisting of actin depolymerizing agents and actin polymerizing agents.

25

20

- 145. A method according to item 144, wherein the actin depolymerizing agent is selected from the group consisting of Slingshot, cofilin, CAP (cyclase associated protein), AIP1 (actin interacting protein 1), ADF (actin depolymerizing factor), destrin, depactin, actophorin, cytochalasin, and NGF (nerve growth factor).
- 146. A method according to item 144, wherein the actin polymerizing agent is selected from the group consisting of RhoA, mDi, profilin, Racl. IRSp53, WAVE2, ROCK, LIM kinase, cofilin, cdc42, N-WASP, Arp2/3, Drf3, Mena, LPA (lysophosphatidic acid), insulin, PDGF (platelet derived growth factor), PDGFb, chemokine, and TGF (transforming growth factor) β.
 - 147. A method according to item 144, wherein the desired thickness is regulated by adjusting a ratio of the actin depolymenizing agent to the actin polymenizing agent.
- 148. A method according to item 142, further comprising:

 producing a plurality of the synthetic tissues and
 attaching the plurality of the synthetic tissues together
 to be integrated.
- 149. A tissue complex, comprising an implantable synthetic tissue.
- 150. A tissue complex according to item 149, wherein the implantable synthetic tissue is substantially made of cells and a material derived from the cells.
 - 151. A tissue complex according to item 149, wherein the

implantable synthetic tissue is substantially made of cells and an extracellular matrix derived from the cells.

- 152. A tissue complex according to item 151, wherein the extracellular matrix is selected from the group consisting of collagen I, collagen III, vitromectin, and fibromectin.
- 153. A tissue complex according to item 151, wherein the extracellular matrix contains all of collagen I, collagen 10 III, vitronectin, and fibronectin.
 - 15%. A tissue complex according to item 149, wherein the other synthetic tissue includes an artificial bone or a microfibrous collagen medical device.
- 155. A tissue complex according to item 154, the artificial bone includes hydroxyapatite.

15

- 156. A tissue complex according to item 149, the implantable 20 synthetic tissue is biologically integrated with the other synthetic tissue.
- 157. A tissue complex according to item 156, wherein the biological integration is achieved via an extracellular matrix.
 - 158. A composition for use in producing a synthetic tissue having a desired thickness, comprising a chemical substance selected from the group consisting of actin depolymerizing agents and actin polymerizing agents.
 - 159. A Composition according to item 159, wherein the actin depolymenizing agent is selected from the group consisting

of Slingshot, cofilin, CAF (cyclase associated protein), AIP1 (actininteracting protein), ADF (actindepolymerizing factor), destrin, departin, actophorin, cytochalasin, and NGF (nerve growth factor).

S

23

160. A composition according to item 158, wherein the actin polymerizing agent is selected from the group consisting of RhoA, mDi, profilin, Bacl, IRSp53, WAVE2, ROCK, LIM kinase, cofilin, cdc42, N-WASP, Arp2/3, Drf3, Mena, LPA

10 (lysophosphatidic acid), insulin, PIXIF (platelet derived growth factor) a, PDGFb, chemokine, and TGF (transforming growth factor) \$.

Bersinafter, the present invention will be described
by way of preferable examples. It will be understood by those skilled in the art that the examples of the present invention can be appropriately made or carried out based on the description of the present specification and commonly used techniques well known in the art. The function and effect of the present invention can be easily recognized by those skilled in the art.

The present invention provides a scaffold-free synthetic tissue or complex. By providing such a scaffold-free synthetic tissue, a therapeutic method and a therapeutic agent for providing an excellent therapeutic result after implantation can be obtained.

The Scaffold-free synthetic tissue of the present invention solves a long outstanding problem with biological formulations, which is attributed to contamination of the scaffold itself. Despite the absence of a scaffold, the therapeutic effect is comparable with, or more satisfactory

- 29 -

than conventional techniques.

In addition, when a scaffold is used, the alignment of implanted cells in the scaffold, the cell-to-cell adhesion, the in vivo alteration of the scaffold itself (eliciting inflammation), the integration of the scaffold to recipient tissue, and the like become problematic. These problems can be solved by the present invention.

The synthetic tissue and the complex of the present invention are also self-organized, and have biological integration inside thereof. Also on this point, the present invention is distinguished from conventional cell therapies.

It is easy to form a three-dimensional strubture with the synthetic tissue or complex of the present invention, and thus it is easy to design it into a desired form. The versatility of the synthetic tissue and the complex of the present invention should be noted.

20

5

The synthetic tissue and the complex of the present invention have biological integration with recipient tissues, such as adjacent tissues, cells, and the like. Therefore, the post-operational stability is satisfactory, and cells are securely supplied to a local site, for example. An effect of the present invention is that the satisfactory biological integration capability allows the formation of a tissue complex with another synthetic tissue or the like, resulting in a complicated therapy.

30

25

Another effect of the present invention is that differentiation can be induced after the synthetic tissue or the complex is provided. Alternatively, differentiation

is induced before providing a synthetic tissue and/or a complex, and thereafter, the synthetic tissue and/or the complex are developed.

Another effect of the present invention is that the implantation of the synthetic tissue of the present invention provides a satisfactory tissue replacement ability and a comprehensive supply of cells for filling or covering an implanted site, compared to conventional cell-only implantation and sheet implantation.

The present invention provides an implantable synthetic tissue with biological integration capability. The above-described features and effects of the present 15 invention make it possible to treat a site which cannot be considered as an implantation site for conventional synthetic products. The synthetic tissue of the present invention has biological integration and actually works in implantation thorpies. The synthetic tissue is for the first time provided 20 by the present invention, but is not provided by conventional techniques. The synthetic tissue or composite of the present invention has the sufficient ability to integrating with adjacent tissues, cells or the like during implantation (preferably, due to extracellular matrix). Therefore, 25 post-operational restoration is excellent. Such a synthetic tissue, which has biological integration capability in all of the three dimensions, cannot be achieved by conventional techniques. Therefore, the present invention provides a therapeutic effect which cannot be 30 achieved by conventional synthetic tissue.

In addition, the present invention provides medical treatment which provides a therapeutic effect by filling,

- 31 w

replacing, and/or covering a lesion.

S

10

30

In addition, when the synthetic tissue of the present invention is used in combination with another synthetic tissue (e.g., an artificial bone made of hydroxyapatite, a microfibrous collagen medical device, etc.), the synthetic tissue of the present invention is biologically integrated with the other synthetic tissue, so that the acceptance of the synthetic tissue makes it possible to organize more complicated tissue complex which is not conventionally expected.

An extracellular matrix or a cell adhesion molecule. such as fibronectin, vitronectin, or the like, is distributed throughout the synthetic tissue of the present invention. 15 In the cell sheet engineering, a cell adhesion molecule is localized on a bottom surface of culture cells which is attached to a Petri dish. In the sheet provided by the cell sheet engineering, cells are major components of the sheet. 20 The sheet is intended to provide a mass of cells with an adhesion molecule attached on the bottom surface. synthetic tissue of the present invention is a real "tissue" such that an extracellular matrix three-dimensionally integrates with cells. Thus, the present invention is 25 significantly distinguished from conventional techniques including the cell sheet engineering.

A cell implanting method without a scaffold has been reported by a Tokyo Women's Medical University group, in which a cell sheet is produced using a temperature sensitive culture dish. Such a cell sheet engineering technique is internationally appraised due to its originality. However, a single sheet obtained by this technique is fragile. In

- 32 -

order to obtain the strength that can withstand surgical manipulation, such as implantation, a plurality of sheets need to be piled up, for example. Such a problem is solved by the present invention.

 \mathbb{S}_{2}

10

13

20

30

A cell/matrix complex developed by the present invention does not require a temperature sensitive culture dish unlike the cell sheet technique. It is easy for the cell/matrix complex to form into a contractile three-dimensional tissue. There is no technique in the world other than the present invention, which can produce a contractile three-dimensional complex having 10 or more layers of cells without using so-called feeder cells, such as rodent stroma cells, in about three weeks. By adjusting conditions for matrix synthesis of the cell, it is possible to produce a complex having a strength which allows surgical manipulation, such as holding or transferring the complex, without a special instrument. Therefore, the present invention is an original, epoch-making technique in the world for reliably and safely perform cell implantation.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows macroscopy and histology of exemplary 25 synthetic tissues using syncvial cells.

Figure 2 shows high magnification histology of a synthetic tissue when ascorbic acid 2-phosphate has a concentration of 0 mM, 0.1 mM, 1 mM, and 5 mM. As can be seen, Eosin staining of the synthetic tissue is more intense when ascorbic acid 2-phosphate is added at a concentration of more than 0.1 mM.

S

15

20

25

30

Figure 3 shows a high magnification view of a synthetic tissue on day 3, 7, 14, and 21 of culture. As can be seen, the synthetic tissue is already developed at day 3 but the matrix is scarce. The matrix is getting dense with time.

Figure 4 shows an exemplary stained extracellular matrix in a synthetic tissue derived from synovial cells.

10 Figure 5 shows exemplary histology of normal tissue (normal skintissue, synovial membrane tissue, tendon tissue, cartilage tissue, and meniscus tissue).

Figure 6 shows exemplary histology of a commercially available stained collagen sponge as a control: From the left, staining of fibronectin, vitronectin, non-IgG-immune as a negative control and HE staining are shown.

Figure 7 shows the results of collagen content measurement. When 0.1 mM or more of ascorbic acid diphosphate is added, collagene content in the synthetic tissue of the present invention is significantly increased in any of the culture periods. However, substantially no difference among the concentrations of 0.1 mM, 1 mM and 5 mM were found.

Figure 8 shows the results of collagen content measurement. When 0.1 mMormore of ascorbic acid diphosphate is added, collagene content in the synthetic tissue of the present invention is significantly increased in any of the culture periods. However, substantially no difference among the concentrations of 0.1 mM, 1 mM and 5 mM were found.

Figure 9 shows a production of synthetic tissues

15

28

using a different number of cells. Prepresents the number of passages. Numeral figures in the photograph indicate the number of cells per cm2.

- Figure 10 shows a production of synthetic tissues using dishes with different sizes. * indicates culture in a 35-mm dish. ** indicates culture in a 60-mm dish. *** indicates culture in a 100-mm dish.
- 10 Figure 11 shows an exemplary mechanical testing system for measuring mechanical properties.
 - Figure 12 shows a test piece holding portion of an apparatus for measuring mechanical properties.

Figure 13 shows an enlarged view of an apparatus for measuring mechanical properties. A test piece is provided with a marker.

- 20 Figure 14 shows an enlarged view of a test piece holding portion.
 - Figure 15 shows a disrupted synthetic tissue after a tensile test.
 - Figure 16 shows the results (load-deformation curve) of a tensile test of a synthetic tissue (derived from synovium) of the present invention.
- Figure 17 shows the results (stress-strain curve) of a mechanical properties test of a synthetic tissue (derived from synovial membrane tissue) of the present invention.

Figure 16 shows an exemplary osteogenic induction experiment of the synthetic tissue of the present invention and the results. The upper half portion shows a scheme for osteogenesis induction. The induction was conducted in the presence of 0.1 μM dexamethasons, 10 mM β -glycerophosphate, and 50 $\mu\text{g}/\text{ml}$ ascorbic acid 2-phosphate. The lower left portion shows a control. The middle left portion shows a synthetic tissue differentiated into a bone by osteogenic induction. The middle lane portion shows Alizarin Red staining. The lower right portion shows an ALF-stained control. The middle right portion shows positive ALF-staining in a synthetic tissue by osteogenic induction.

Figure 19 shows the results of chondrogenic differentiation of a synthetic tissue of the present invention. This figure shows cultured synthetic tissues (A) and monolayer (B) using, from the leftmost, normal culture medium, chondrogenic medium, chondrogenic medium plus TGF-β1, respectively. Note that and chondrogenic medium plus TGF-β1, respectively. Note that A) synthetic tissues have more intense staining of Alcian blue than B) monolayer culture. Also, note that addition of TGF-β results in detachment of a synthetic tissue from the container without mechanical stimulation. (A) Most right lane.

25

30

S

10

Figure 20 shows semi-quantification of Alcian blue staining for comparison of a synthetic tissue of the present invention with a single cell sheet under chondrogenic stimulation as in Figures 19 and 39. The left (blue) shows a result of monolayer, and the right (red) shows a result of the synthetic tissue.

Figure 21 shows the expression of various

WO 2005/012512 PCT/IP2004/031401

- 36 -

chondrogenic marker genes (aggrecan, Col II, Sox9, B-actin) under chondrogenic stimulation.

Figure 22 shows the comparison of the expression of chondrogenic marker genes within a synthetic tissue and a monolayer culture of synovial cells under chondrogenic stimulation as in Figures 19 and 21.

Figure 23 shows an in vitro cartilage implantation experiment using a synthetic tissue of the present invention and the results. The upper portion shows a diagram of explant culture. It is shown that a synthetic tissue is adhered to a partial thickness cartilage injury (in vitro). A superficial zone was removed, followed by digestion with chondroitinese ABC (Hinziker RB, JBJ3, 1996). The lower portion is lower magnification histology (x40). The lower right portion is higher magnification histology (x40). As can be seen, the synthetic tissue is tightly attached to the injured surface.

20

Sec. 25.

30

C,

20

1.5

Figure **24** shows an *in vivo* cartilage implantation experiment of the present invention and the 10 day results. A synthetic tissue is firmly adhered to a partial cartilage injury. The left shows a macroscopic view of the result. The upper right shows a histology (x40) and the lower right shows a histology at higher magnification (x200).

Figure 25 shows the adhesion of a synthetic tissue of the present invention in a cartilage implantation experiment. The state on day 10 is shown. The left portion shows the result of HE staining, the middle portion shows the result of fibronectin staining, and the right portion shows the result of vitronectin staining.

WO 2005/012512 PCY/IP2004/031401

35

1.0

20

30

Figure 26 shows the 1-month result of an in vivo implantation experiment of the present invention. A synthetic tissue is integrated with adjacent cartilage tissue without inflammation. Further, a superficial portion of the synthetic tissue contained a number of fibroblast-like cells (Figure 27), and a deep portion of the synthetic tissue constined a number of chondrocyte-like cells (Figure 28), indicating the chondrogenesis of the synthetic tissue after the implantation at particularly deep portions.

Figure 27 shows a superficial portion of a synthetic tissue at one month after implantation.

15 Figure **28** shows a deep portion of a synthetic tissue at one month after implantation.

Figure 29 shows the result of a meniscus repair experimentusing a synthetic tissue of the present invention. The left portion of the figure shows that a medial femoral condyle bone and an anterior born of medial meniscus are exposed. The right figure shows a 6.5-mm defect in a medial knee joint in the anterior born of medial meniscus.

Figure 30 shows a meniscus repair procedure. The left portion shows a defect before the implantation of a synovial membrane-derived synthetic tissue (lower left). The right portion shows the defect after the implantation of the synovial membrane-derived synthetic tissue.

Figure **31** shows the results of a meniscus repair experiment using a synthetic tissue of the present invention. A visual inspection four weeks after operation is shown.

WO 2005/012512 PCT/JF2004/011401

3

10

20

- 38 -

The upper portion shows a state of a cartilage. It is shown that substantially no degeneration or injury due to friction or the like was found on the corresponding chondral surface, i.e., the meniscal defect was recovered. The lower left and right portions show a repaired defect.

Figure 32 shows the results of a meniscus repair experiment using a synthetic tissue of the present invention. The upper portion shows a macroscopic view. The lower left portion shows histology of a repaired tissue. The lower right portion shows histology of a border between the repaired tissue and its adjacent meniscus (magnification: x200).

Figure 33 shows an immunohistochemistry of a 15 synthetic tissue derived from adipose tissue. From the left, H&E staining, fibronectin staining, and vitronectin staining.

Figure 34 shows the results of osteogenic or chondrogenic induction of a synthetic tissue derived from adipose tissue.

Figure 35 shows the results of a synthetic tissue 25 with osteogenic induction when dexamethasone and \$-qlycerophosphate were added in culture medium prior to a detachment procedure.

Figure **36** shows the results of a synthetic tissue 30 with osteogenic induction when dexamethasone and β -glycerophosphate were added in culture medium after a detachment procedure.

Figure 37 shows histology of biological integration of collagen gel containing synovial cells with cartilage after implantation. There is failure in integration observed (arrow).

S

Figure 38 shows biological integration after implantation to a chondral defect when a synthetic tissue of the present invention was used. The biological integration is completely established.

10

Figure 39 shows the effect of TGF- β on the detachment of a synthetic tissue. Addition of TGF- β leads to active detachment of the synthetic tissue.

Figure 40 shows a transition in contraction of a synthetic tissue of the present invention where dihydrochytochalasin or Y27632 was added or not. Data is shown in predetermined culture time intervals.

Figure **41** shows a photograph indicating adhesion of a synthetic tissue of the present invention with an artificial bone after fourteen days of culture in chondrogenic medium.

Figure 42 shows histology of a synthetic tissue 25 culturedonacollagensynthetic tissue (CMI collagen sponge, Amgen, USA), which is a microfibrous collagen medical device, for 7 days.

Figure **43** shows a skeletal muscle-derived sheet developed by a synthetic tissue production method without ascorbic acid.

Figure 44 shows a skeletal muscle-derived synthetic

tissue developed by a synthetic tissue production method with ascorbic acid according to the present invention.

Figure 45 shows histology of the synthetic tissue 5 as shown in Figure 44 (HE staining).

Figure **46** shows a diagram for explaining a technique for measuring stress and distortion characteristics to determine tensile strength.

10

Figure 47 shows a principle for obtaining a load/removal of a load curve.

(Description of Sequencing List)

15

SEQ ID NO.: 1 indicates the nucleic acid sequence of myosin heavy chain IIa (human: Accession No. NM_917534).

SSQ ID NO.: 2 indicates the amino acid sequence of myosin heavy chain ITa (human: Accession No. NM_017534).

SEQ ID NO.: 3 indicates the nucleic acid sequence of myosin heavy chain IIb (human: Accession No. NM_017533).

25 SEQ ID NO.: 4 indicates the amino acid sequence of myosin heavy chain IIb (human: Accession No. NM 017533).

SEQ ID NO.: 5 indicates the nucleic acid sequence of myosin heavy chain IId (IIx) (human: Accession No. NM_005963).

SEQ ID NO.: 6 indicates the amino acid sequence of myosin heavy chain IId (IIx) (human: Accession

No. NM_005963).

SEQ ID NO.: 7 indicates the nucleic acid sequence of CD56 (human: Accession No. U63041).

S

SEQ ID NO.: 8 indicates the amino acid sequence of CD56 (human: Accession No. U63041).

SEQ ID NO.: 9 indicates the nucleic acid sequence 10 of human MyoD (GENBANK Accession No. X56677).

SEQ ID NO.: 10 indicates a polypeptide sequence encoded by the nucleic acid sequence of SEQ ID NO.: 2.

IS SEQ ID NO.: 11 indicates the nucleic acid sequence of human myogenic factor 5 (MYF5) (GENRANK Accession No. NM 808593).

SEQ ID NO.: 12 indicates a polypeptide sequence encoded by the nucleic acid sequence of SEQ ID NO.: 3.

SEQ ID NO.: 13 indicates the nucleic acid sequence of human myogenin (myogenic factor 4) (GENBANK Accession No. BT007233).

25

20

SEQ ID NO.: 14 indicates a polypeptide sequence encoded by the nucleic acid sequence of SEQ ID NO.: 13.

SEQ ID NO.: 15 indicates the nucleic acid sequence of Sox9 (human: Accession No. NM_000346 = a marker specific to a chondrocyte).

SEQ ID NO.: 16 indicates a polypeptide sequence

encoded by the nucleic acid sequence of SEQ ID NO.: 15.

SEQ ID NO.: 17 indicates the nucleic acid sequence of Col 2Al (human: Accession No. NM_OOl844 - a marker specific to a chondrocyte).

SEQ ID NO.: 18 indicates a polypeptide sequence encoded by the nucleic acid sequence of SEQ ID NO.: 17.

10 SEQ ID NO.: 19 indicates the nucleic acid sequence of Aggrecan (human: Accession No. NM_001135 - a marker specific to a chondrocyte).

SEQ ID NO.: 20 indicates a polypeptide sequence encoded by the nucleic acid sequence of SEQ ip No.: 19.

SEQ ID NO.: 21 indicates the nucei acid sequenence of Bone sialoprotein (human: Accession No. NM_004967 \sim a marker specific to an osteoblast).

20

1.5

82,

SEQ ID NO.: 22 indicates a polypeptide sequence encoded by the nucleic acid sequence of SEQ ID NO.: 21.

SEQ ID NO.: 23 indicates the nucleic acid sequence of Osteocalcin (human: Accession No. NM_199173 = a marker specific to an osteoblast).

SEQ ID NO.: 24 indicates a polypeptide sequence encoded by the nucleic acid sequence of SEQ ID NO.: 23.

30

SEQ ID NO.: 25 indicates the nucleic acid sequence of GDF5 (human: Accession No. NM_000557 = a marker specific to a ligament cell).

WO 2005/012512 PCT/JP2084/011401

... 43 m

SEQ ID NO.: 26 indicates a polypeptide sequence encoded by the nucleic acid sequence of SEQ ID NO.: 25.

5 SEQ ID NO.: 27 indicates the nucleic acid sequence of Six1 (human: Accession No. NM_005982 = a marker specific to a ligament cell).

SEQ ID NO.: 28 indicatesa polypeptide sequence encoded by the nucleic acid sequence of SEQ ID NO.: 27.

SEQ ID NO.: 29 indicates the nucleic acid sequence of Scleraxis (human: Accession No. BK000280 = a marker specific to a ligament cell).

15

10

SEQ ID NO.: 30 indicatesa polypeptide sequence encoded by the nucleic acid sequence of SEQ ID NO.: 29.

BEST MODE FOR CARRYING OUT THE INVENTION

20

25

30

The present invention will be described below. It should be understood throughout the present specification that articles for singular forms include the concept of their plurality unless otherwise mentioned. Therefore, articles or adjectives for singular forms (e.g., "a", "an", "the", and the like in English) include the concept of their plurality unless otherwise specified. Also, it should be also understood that terms as used herein have definitions ordinarily used in the art unless otherwise mentioned. Therefore, all technical and scientific terms used herein have the same meanings as commonly understood by those skilled in the relevant art. Otherwise, the present application (including definitions) takes precedence.

WO 2005/012512 PCY/IP2004/031401

... & &

(Definition of terms)

The definitions of specific terms used herein are described below.

2

10

15

20

25

30

(Regenerative medicine)

As used herein, the term "regeneration" refers to a phenomenon in which when an individual organism loses a portion of tissue, the remaining tissue grows and recovers. The extent or manner of regeneration varies depending among animal species or among tissues in the same individual. Most human tissues have limited regeneration capability, and therefore, complete regeneration is not expected if a large portion of tissue is lost. In the case of severe damage, a tissue may grow which has strong proliferation capability different from that of lost tissue, resulting in incomplete regeneration where the damaged tissue is incompletely regenerated and the function of the tissue cannot be recovered. In this case, a structure made of a bicabscrbable material is used to prevent a tissue having strong proliferation capability from infiltrating the injured portion of the tissue so as to secure space for proliferation of the damaged tissue. Further, by supplementing with a cell growth factor, the regeneration capability of the damaged tissue is enhanced. Such a regeneration technique is applied to cartilages, bones, bearts, and paripheral nerves, for example. It has been so far believed that cartilages, nerve cells, and cardiac muscles have no or poor regeneration capability. Recently, it was reported that there are tissue (sometic stem cells), which have both the capability of differentiating into these tissues and self-proliferation capability. Expectations are running high for regenerative medicine using stem cells. Embryonic stem cells (ES cells) also have the capability

WO 2005/012512 PCT/JP2084/031401

of differentiating into all tissues. Efforts have been made to use ES cells for regeneration of complicated organs, such as kidney, liver, and the like, but have not yet been realized.

The term "cell" is berein used in its broadest sense 5 in the art, referring to a structural unit of tissue of a multicellular organism, which is capable of self replicating, has genetic information and a mechanism for expressing it, and is surrounded by a membrane structure which isolates 10 the living body from the outside. In the method of the present invention, any cell can be used as a subject. The number of cells used in the present invention can be counted through an optical microscope. When counting using an optical microscope, the number of nuclei is counted. Tissues are 1.5 sliced into tissue sections, which are then stained with hematoxylin-eosin (NE) to variegate nuclei derived from extracellularmatrices (e.g., elastinor collagen) and cells. These tissue sections are observed under an optical microscope and the number of nuclei in a particular area (e.g., 200 $\mu m \times 200 \mu m$) can be estimated to be the number 20 cells. Cells used herein may be naturally-occurring cells or artificially modified cells (e.g., fusion cells, genetically modified cells, etc.). Examples of cell sources include, but are not limited to, 22 a single-cell culture; the embryo, blood of a normally-grown transgenic animal; a cell mixture of cells derived from normally-grown cell lines; and the like. Primary culture cells may be used. Alternatively, subcultrue cells may also be used. Preferably, when subculture cells are used, the 30 cells are preferably of 3 to 8 passages. As used herein. cell density may be represented by the number of cells per unit area (e.g., cm2).

WO 2005/012512 PCY/IP2004/031401

As used herein, the term "stem cell" refers to a cell capable of self replication and pluripotency. Typically, stem cells can regenerate an injured tissue. Stem cells used herein may be, but are not limited to, embryonic stem (ES) cells or tissue stem cells (also called tissular stem cell, tissue-specific stem cell, or somatic stem cell). A stem call may be an artificially produced cell (e.g., fusion cells, reprogrammed cells, or the like used herein) as long as it can have the above-described abilities. Embryonic stem cells are pluripotent stem cells derived from early embryos. An embryonic stem cell was first established in 1981, and has been applied to production of knockout mice since 1989. In 1998, a human embryonic stem cell was established, which is currently becoming available for regenerative medicine. Tissue stem cells have a relatively limited level of differentiation unlike embryonic stem cells. Tissue stem cells are present in tissues and have an undifferentiated intracellular structure. Tissue stem cells have a higher nucleus/cytoplasm ratio and have few intracellular organelles. Most tissue stem cells have pluripotency, a long cell cycle, and proliferative ability beyond the life of the individual. As used herein, stem calls may be preferably embryonic stem cells, though tissue stem cells may also be employed depending on the circumstance.

25

30

83

10

35

20

Tissue stem cells are separated into categories of sites from which the cells are derived, such as the dermal system, the digestive system, the bone marrow system, the nervous system, and the like. Tissue stem cells in the dermal system include epidermal stem cells, hair follicle stem cells, and the like. Tissue stem cells in the digestive system include pancreatic (common) stem cells, hepatic stem cells, and the like. Tissue stem cells in the bone marrow system

WO 2005/012512 PCT/JP2004/03:1401

5

3.0

15

20

25

30

include hematopoietic stem cells, mesenchymal stem cells, and the like. Tissue stem cells in the nervous system include neural stem cells, retinal stem cells, and the like.

As used herein, the term "scmatic cell" refers to any cell other than a germ cell, such as an egg, a sperm, or the like, which does not transfer its DNA to the next generation. Typically, somatic cells have limited or no pluripotency. Scmatic cells used herein may be naturally-occurring or genetically modified as long as they can achieve the intended treatment.

The origin of a stem cell is categorized into the scroderm, endoderm, or mesoderm. Stem cells of ectodermal origin are mostly present in the brain, including neural stem cells. Stem cells of endodermal origin are mostly present in bone marrow, including blood vessel stem cells, hematopoietic stem cells, mesenchymal stem cells, and the like. Stem cells of mesoderm origin are mostly present in organs, including hepatic stem cells, pancreatic stem cells, and the like. As used herein, sometic cells may be derived from any mesenchyme. Preferably, sometic cells derived from mesenchyme may be employed.

As cells for use in construction of a synthetic tissue or three-dimensional structure of the present invention, differentiated cells or stem cells derived from the above-described ectoderm, endoderm, or mesoderm may be employed, for example. Examples of such cells include mesenchymal cells. In a certain embodiment, as such cells, myoblasts (e.g., skeletal myoblast, etc.), fibroblasts, synovial cells, and the like may be employed. As such cells, differentiated cells or stem cells can be used as they are.

WO 2005/012512 PCY/JP2004/011401

S

30

15

20

25

30

~ 48 ~

Cells differentiated from stem cells into a desired direction can be used.

As used herein, the term "mesenchymal stem cell" refers to a stem cell found in mesenchyme. The term "mesenchymal stem cell" may be herein abbreviated as "MSC". Mesenchyme refers to a population of free cells which are in the asterodal shape or have irregular projections and bridge gaps between epithelial tissues, and which are recognized in each stage of development of multicellular animals. Mesenchyme also refers to tissue formed with intracellular cement associated with the Mesenchymal stem cells have proliferation ability and the ability to differentiate into osteocytes, chondrocytes, muscle cells, stroma cells, tendon cells, and atipocytes. Mesenchymal stem cells are employed in order to culture or grow bone marrow calls or the like collected from patients. or differentiate them into chondrocytes or osteoblasts. Mesenchymal stem cells are also employed as reconstruction material, such as alveolar bones; bones, cartilages or joints for arthropathy or the like; and the like. There is a large demand for mesenchymal stem cells. A synthetic tissue or thres-dimensional structure of the present invention comprising mesenchymal stem cells or differentiated mesenchymal stem cells is particularly useful when a structure is required in these applications.

As used herein, the term "isolated" means that naturally accompanying material is at least reduced, or preferably substantially completely eliminated, in normal circumstances. Therefore, the term "isolated cell" refers to a cell substantially free of other accompanying substances (e.g., other cells, proteins, nucleic acids, etc.) in natural

WO 2005/012512 PCY/IP2004/031401

circumstances. The term "isolated tissue" refers to a tissue substantially free of substances other than that tissue (e.g., in the case of synthetic tissues or complexs, substances, scaffolds, sheets, coats, etc. used when the synthetic tissue is produced). As used herein, the term "isolated" refers to a scaffold-free state. Therefore, it will be understood that the synthetic tissue or complex of the present invention in the isolated state may contain components (e.g., medium, etc.) used in the production of it. The term "isolated" in relation to nucleic acids or polypeptides means that, for example, the nucleic acids or the polypeptides are substantially free of cellular substances or culture media when they are produced by recombinant DNA techniques; or precursory chemical substances or other chemical substances when they are chemically synthesized. Isolated nucleic acids are preferably free of sequences naturally flanking the nucleic acid within an organism from which the nucleic acidis derived (i.e., sequences positioned at the 5' terminus and the 3' terminus of the nucleic acid).

20

25

30

S

20

15

As used herein, the term "scaffold-free" indicates that a synthetic tissue does not substantially contain a material (scaffold) which is conventionally used for production of a synthetic tissue. Examples of such a scaffold include, but are not limited to, chemical polymeric compounds, ceramics, or biological formulations such as polysaccharides, collagens, gelatins, hysluronic acids, and the like. A scaffold is a material which is substantially solid and has a strength which allows it to support cells or tissue.

As used herein, the term "established" in relation to cells refers to a state of a cell in which a particular

WO 2005/012512 PCY/JP2004/011401

property (pluripotency) of the cell is maintained and the cell undergoes stable proliferation under culture conditions. Therefore, established stem cells maintain pluripotency.

As used herein, the term "non-embryonic" refers to not being directly derived from early embryos. Therefore, the term "non-embryonic" refers to cells derived from parts of the body other than early embryos. Also, modified embryonic stem cells (e.g., genetically modified or fusion embryonic stem cells, etc.) are encompassed by non-embryonic cells.

As used herein, the term "differentiated cell" refers to a cell having a specialized function and form (e.g., muscle cells, neurons, etc.). Unlike stem cells, differentiated cells have no or little pluripotency. Examples of differentiated cells include epidermic cells, pancreatic parenchymal cells, pancreatic duct cells, hepatic cells, blood cells, cardiac muscle cells, skeletal muscle cells, osteoblasts, skeletal myoblasts, neurons, vascular endothelial cells, pigment cells, smooth muscle cells, adipocytes, osteocytes, chondrocytes, and the like.

1.5

20

As used herein, the term "tissue" refers to a group of cells having the same function and form in cellular organisms. In multicellular organisms, constituent cells are usually differentiated so that the cells have specialized functions, resulting in division of labor. Therefore, multicellular organisms are not simple cell aggregations, but constitute organic or social cell groups having a certain function and structure. Examples of tissues include, but are not limited to, integument tissue, connective tissue, muscular tissue, nervous tissue, and the like. Tissue

WO 2005/012512 PCT/JP2084/031401

targeted by the present invention may be derived from any organ or part of an organism. In a preferable embodiment of the present invention, tissue targeted by the present inventionincludes, but is not limited to, a hones, a cartilage, a tendon, a ligament, a meniscus, an intervertebral disk, a periosteum, a blood vessel, a blood vessel-like tissue, a heart, a cardiac valve, a pericardium, a dura mater, and the like.

As used herein, the term "cell sheet" refers to a structure comprising a monolayer of cells. Such a cell sheet has at least a two-dimensional biological integration. The sheet having biological integration is characterized in that after the sheet is produced, the connection between cells is not substantially destroyed even when the sheet is handled singly. Such biological integration includes intracellular connection via an extracellular matrix. It will be understood that the cell sheet may partially include a two or three-layer structure.

30

33

30

3

As used herein, the term "synthetic tissue" refers to tissue having a state different from natural states. Typically, a synthetic tissue is herein prepared by cell culture. Tissue which is removed from an organism and is not subjected to any treatment is not referred to as a synthetic tissue. Therefore, a synthetic tissue may include materials derived from organisms and materials not derived from organisms. The synthetic tissue of the present invention typically comprises a cell and/or a biological material, and may comprise other materials. More preferably, a synthetic tissue of the present invention is composed substantially only of a cell and/or a biological material. Such a biological material is preferably derived from cells

WO 2005/012512 PCT/JP2084/011401

~ \$2 ~

constituting the tissue (e.g., extracellular matrix, etc.).

As used herein, the term "implantable synthetic tissue" refers to a synthetic tissue, which can be used for actual clinical implantation and can function as a tissue at the implantation site for a certain period of time after implantation. Implantable synthetic tissue typically has sufficient biocompatibility, sufficient affinity, and the like.

10

15

20

25

30

5

The sufficient strength of an implantable synthetic tissue varies depending on a part targeted by implantation, but can be determined as appropriate by those skilled in the art. The strength is sufficient to provide self-supporting ability, and can be determined depending on the environment of implantation. The strength can be measured by measuring stress or distortion characteristics or conducting a creep characteristics indentation test as described below. The strength may also be evaluated by observing the maximum load.

The sufficient size of an implantable synthetic tissue varies depending on a part targeted by implantation, but can be determined as appropriate by those skilled in the art. The size can be determined depending on the environment of implantation.

However, an implantable synthetic tissue preferably has at least a certain size. Such a size (e.g., area) is at least 1 cm², preferably at least 2 cm², more preferably at least 3 cm², even more preferably at least 4 cm², at least 5 cm², at least 6 cm², at least 7 cm², at least 8 cm², at least 9 cm², at least 10 cm², at least 15 cm², or at least 20 cm².

WO 2005/012512 PCY/JP2004/011401

An essence of the present invention is that a synthetic tissue of any size (area, volume) can be produced, i.e., the size is not particularly limited.

5 When the size is represented by the volume, the size may be, but is not limited to, at least 2 mm³, or at least 40 mm³. The size may be 2 mm³ or less or 40 mm³ or more.

The sufficient thickness of an implantable synthetic 10 tissue varies depending on a part targeted by implantation, but can be determined as appropriate by those skilled in the art. The thickness can be determined depending on the environment of implantation. The thickness may exceed 5 mm. When an implantable synthetic tissue is implanted into the 13 heart, the tissue may only have these minimum thicknesses. When implentable synthetic tissue is used in other applications, the tissue may preferably have a greater thickness. In such a case, for example, an implentable synthetic tissue has preferably a thickness of at least 2 mm. 20 more preferably at least 3 cm, and even more preferably 5 cm. For example, when an implantable synthetic tissue is applied to a bone, a cartilage, a ligament, a tendon, or the like, similar to the case of a heart, the tissue has a thickness of at least about 1 mm (e.g., at least 2 mm, more preferably 25 at least 3 mm, and even more preferably 5 mm), or 5 mm or more or less than 1 mm. An essence of the present invention is that a synthetic tissue or complex of any thickness can bs produced, i.e., the size is not particularly limited.

The sufficient blocompatibility of implantable synthetic tissue varies depending on a part targeted by implantation, but can be determined as appropriate by those skilled in the art. However, an implantable synthetic tissue

WO 2005/012512 PCT/IP20842031401

5

10

15

20

25

30

preferably has at least a certain level of biocompatibility. Typically, a desired level of biocompatibility is, for example, such that biological integration to surrounding tissues is achieved without any inflammation, any immune reaction or the like. The present invention is not limited to this. In some cases (e.g., corneas, etc.), an immune reaction is less likely to occur. Therefore, an implantable synthetic tissue has biocompatibility to an extent, which achieves the object of the present invention even when an immune reaction is likely to occur in other organs. Examples of parameters indicating biocompatibility include, but are not limited to, the presence or absence of an extracellular matrix, the presence or absence of an immune reaction, the degree of inflammation, and the like. Such biocompatibility can be determined by examining the compatibility of a synthetic tissue at an implantation site after implantation (0.g., confirming that an implanted synthetic tissue is not destroyed). See "Hito Ishoku Zoki Kyozetsu Hanno no Byori Soshiki Shindan Kijyun Kanbetsu Shindan to Seiken Hyohon no Toriatsukai (Zufu) Jinzo Ishoku, Kanzo Ishoku Oyobi Shinzo Ishoku (Pathological Tissue Diagnosis Criterion for Human Transplanted Organ Rejection Reaction Handling of Differential Diagnosis and Biopsy Specimen (Illustrated Book) Kidney Transplantation, Liver Transplantation and Transplantation] " The Japan Society Transplantation and The Japanese Society for Fathology editore, Kanehara Shuppan Kabushiki Kaisha According to this document, blocompatibility is divided into Grade 0, 1A, 1B, 2, 3A, 3B, and 4. At Grade 0 (no acute rejection), no acute rejection reaction, cardiomyocyte failure, or the like is found in biopsy specimens. At Grade 1A (focal, mild acute rejection), there is focal infiltration of large lymphocytes around blood vessels or into

WO 2005/012512 PCT/JP2084/031401

interstitial tissue, while there is no damage to cardiomyocytes. This observation is obtained in one or a plurality of biopsy specimens. At Grade 18 (diffuse, mild acute rejection), there is diffuse infilitration of large lymphocytes around blood vessels or into interstitial tissue 5 or both, while there is no damage to cardiomyocytes. At Grade 2 (focal, moderate acute rejection), there is a single observed infilitration focus of inflammatory cells clearly bordered from the surrounding portions. Inflammation cells 10 are large activated lymphocytes and may include ecsinophils. Damage to cardiomyocytes associated with modification of cardiac muscle is observed in lesions. At Grade 3A (multifocal, moderate scute rejection), there are multiple infiltration foci of inflammatory cells which are large activated lymphocytes and may include eosinophils. Two or 100 more of the multiple inflammatory infiltration foci of inflammatory cells have damages to cardiomyocytes. In some cases, there is also rough infiltration of inflammatory cells into the endocardium. The infiltration foci are observed in one or a plurality of biopsy specimens. At Grade 3B 20 (multifocal, borderline severe acute rejection), there are more confluent and diffuse infiltration foci of inflammatory cells found in more biopsy specimens than those observed at Grade 3A. There is infiltration of inflammatory cells including large lymphocytes and ecsinophils, in some cases 25 neutrophils, as well as damage to cardiomyocytes. There is no hemorrhage. At Grade 4 (severe acute rejection), there is infiltration of various inflammatory cells including activated lymphocytes, eosinophils, and neutrophils. There is always damage to cardiomyocytes and necrosis of 30 cardiomyocytes. Edems, hemorrhage, and/or angitis are also typically observed. Infiltration of inflammatory cells into the endocardium, which is different from the "Quilty"

WO 2005/012512 PCY/JP2084/03.1401

effect, is typically observed. When a therapy is strongly conducted using an immunosuppressant for a considerably long period of time, edema and hemorrhage may be more significant than infilltration.

Ç.,

10

15

20

25

30

The sufficient affinity of an implantable synthetic tissue varies depending on a part targeted by implantation, but can be determined as appropriate by those skilled in the art. Examples of parameters for affinity include, but are not limited to, biological integration capability between an implanted synthetic tissue and its implantation site, and the like. Such affinity can be determined based on the presence of biological integration at an implantation site after implantation. Preferable affinity is herein such that an implanted synthetic tissue has the same function as that of a site in which the tissue is implanted, for example.

As used herein, the term "self-supporting ability" in relation to a tissue (e.g., a synthetic tissue, etc.) refers to a property of the synthetic tissue such that when it is restrained on at least one point thereof, it is not substantially destroyed. Self-supporting ability is herein observed if a tisque (e.g., a synthetic tiesue) is picked up by using forceps with a tip having a thickness of 0.5 to 3.0 mm (preferably, forceps with a tip having a thickness of 1 to 2 mm or 1 mm; the forceps preferably have a bent tip) and the tissue is not substantially destroyed. Such forceps are commercially available (e.g., from Natsume Seisakusho, etc.). A force exerted for picking up a tissue is comparable with a force typically exerted by a medical practioner handing 33. tissue. Therefore, self-supporting ability of a tissue can also be represented by a property such that the tissue is not destroyed when

WO 2005/012512 PCY/JP2004/011401

5

20

25

30

it is picked up by a hand. Such forceps are, for example, but are not limited to, a pair of curved fine forceps (e.g., No. A-11 (tip: 1.0 mm in thickness) and No. A-12-2 (tip: 0.5 mm in thickness) commercially available from Natsume Seisakusho). A bent tip is suitable for picking up a synthetic tissue. The forceps are not limited to a bent tip type.

When a joint is treated, replacement is majorly performed. The strength of a synthetic tissue of the present invention required in such a case is such that a minimim self-supporting ability is obtained. Cells contained in the synthetic tissue are subsequently replaced with cells in an affected portion. The replacing cells produce a matrix which enhances the mechanical strength, so that the joint is healed. It will also be understood that the present invention may be used in conjunction with an artificial joint.

In the present invention, self-supporting ability plays an important role in evaluating the supporting ability of a synthetic tissue which is actually produced. When a synthetic tissue of the present invention is produced, the synthetic tissue is formed in the shape of a cell sheet in a container. Thereafter, the sheet is detached. conventional techniques, the sheet is usually destroyed due to lack of self-supporting ability. Therefore, in conventional technology, an implantable synthetic tissue cannot be substantially produced. Especially, when a large-sized synthetic tissue is required, conventional techniques are not adequate. According to the technique of the present invention, a synthetic tissue can be produced, which has a sufficient strongth which allows the tissue to be detached from a container without being destroying, i.e.,

WO 2005/012512 PCI/IP2004/014/01

~ 58 ~

the tissue already has self-supporting ability when being detached. This is true even when the synthetic tissue is in the form of a monolayer sheet before being detached. It will be understood that the monolayer may partially include a two or three-layer structure. Thus, it will be understood 5 that the synthetic tissue of the present invention is applicable in substantially any chosen therapy. addition, typically, after a synthetic tissue is produced and detached, the strength and self-supporting ability of the synthetic tissue are increased as observed in the present . 10 invention. Therefore, in the present invention, it will be understood that the self-supporting ability evaluated upon production may be an important aspect. In the present invention, the strength upon implantation is also important. It may also be important to evaluate the self-supporting 15 ability of a synthetic tissue when a predetermined time has passed after the production of the tissue. Therefore, it will be understood that the self supporting ability at the time of implantation after transport, can be determined by 20 calculating the time that has elapsed since production of the tissue, based on the above-described relationship.

As used herein, the term "membranous tissue" refers to a tissue in the form of membrane and is also referred to as "planartissue". Examples of membranous tissue include tissues of organs (e.g., periosteum, pericardium, dura mater, cornes, etc.).

ŽS.

As used herein, the term "organ" refers to a structure 30 which is a specific part of an individual organism where a certain function of the individual organism is locally performed and which is morphologically independent. Generally, in multicellular organisms (e.g., animals and

WO 2005/012512 PCT/JP2004/011401

plants), organs are made of several tissues in specific spatial arrangement and tissue is made of a number of cells. Examples of such organs include, but are not limited to, skin, blood vessel, cornea, kidney, heart, liver, umbilical cord, intestine, nerve, lung, placenta, pancreas, brain, joint, bone, cartilage, peripheral limbs, retina, and the like. Examples of such organs include, but are not limited to, organs of the skin system, the parenchyma pancreas system, the pancreatic duct system, the hepatic system, the blood system, the myocardial system, the skeletal muscle system, the nervous system, the blood vessel endothelial system, the pigment system, the semonth muscle system, the fat system, the bone system, the cartilage system, and the like.

3 2

20

10

5

As used herein, the term "bag-shaped organ" refers to an organ which has a three-dimensional expanse and the inside of which may be connected via a tubular tissue to the outside. Examples of bag-shaped organs include, but are not limited to, heart, liver, kidney, stomach, spleen, and the like.

In one embodiment, the present invention targets an intervertebral disk, a cartilage, a joint, a bone, a meniscus, a synovial membrane, a ligament, a tendon, and the like. In a preferable embodiment, the present invention targets bloodvessels, bloodvessel-like tissue, heart, heart valves, pericardia, dura mater, cornea, and bones. In another preferable embodiment, examples of organs targeted by the present invention include, but are not limited to, skeletal muscle, fat, and the like in addition to what is described above.

WO 2005/012512 PCT/JP2084/031401

\$

10

As used herein, the term "cover" or "wrap" in relation to a synthetic tissue, a three-dimensional structure, or the like, which is wrapped around a certain part (e.g., an injured site, etc.), means that the synthetic tissue or the like is arranged so as to cover the part (i.e., conceal an injury or the like). The terms "wrap" and "arrange (or locate) so as to cover" are used interchangeably. By observing the spatial relationship between the part and the synthetic tissue or the like, it can be determined whether or not the part is covered by the synthetic tissue or the like. In a preferable embodiment, in a covering step, a synthetic tissue or the like can be wrapped one turn around a certain site.

As usedherein, the term "replace" means that a lesion (a site of an organism) is replaced, and cells which have originally been in a lesion are replaced with cells supplied by a synthetic tissue or a complex according to the present invention. Examples of a disease for which replacement is suitable include, but not limited to, a reptured site, and the like. The term "fill" may be used in place of the term "replace" in the present specification.

To biologically integrate with a part" herein varies depending on a combination of the part and the synthetic tissue, but can be determined as appropriate by those skilled in the art based on the combination. Examples of such a time include, but are not limited to, 1 week, 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, and the like, after operation. In the present invention, a synthetic tissue preferably comprises substantially only cells and materials derived from the cells, and therefore, there is no particular

WO 2005/012512 PCT/IP2004/031401

~ 8I. ~

material which needs to be extracted after operation. Therefore, the lower limit of the sufficient time is not particularly important. Thus, in this case, a longer time is more preferable. If the time is substantially extremely long, reinforcement is substantially completed.

As used herein, the term "immune reaction" refers to a reaction due to the dysfunction of immunological tolerance between a graft and a host. Examples of immune reactions include, but are not limited to, a hyperscute rejection reaction (within several minutes after implantation) (immune reaction caused by antibodies, such as β -Gal or the like), an acute rejection reaction (reaction caused by cellular immunity about 7 to 21 days after implantation), a chronic rejection reaction (rejection reaction caused by cellular immunity 3 or more months after operation), and the like.

As used herein, the elicitation of an immune reaction can be confirmed by pathological and histological examination of the type, number, or the like of infiltration of (immunological) cells into implanted tissue using staining (e.g., HE staining, etc.), immunological staining, or microscopic inspection of tissue sections.

æ. S

30

20

5

30

1.5

As used herein, the term "calcification" refers to precipitation of calcareous substances in organisms.

"Calcification" in vivo can be determined herein by staining (e.g., Alizarin Red staining) and measuring calcium concentration. Specifically, implanted tissue is taken out; the tissue section is dissolved by acid treatment or the like; and the atomic absorption of the solution is measured

WO 2005/012512 PCT/IP2004/011401

by a trace element quantifying device.

5

3.5

As used herein, the term "within organism(s) (or in organism(s))" or "in vivo" refers to the inner part of organism(s). In a specific context, "within organism(s)" refers to a position at which a subject tissue or organ is placed.

As used herein, "in vitro" indicates that a part of an organism is extracted or released outside the organism for various purposes of research (e.g., in a test tube). The term in vitro is in contrast to the term in vivo.

As used herein, the term "ex vivo" refers to a series of operations where target calls into which a jene will be introduced are extracted from a subject; a therapeutic gene is introduced in vitro into the cells; and the cells are returned into the same subject.

20 As used herein, the term "material derived from cell(s)" refers to any material originating from the cell(s), including, but not being limited to, materials constituting the cell(s), materials secreted by the cell(s), materials metabolized by the cell(s), and the like. Representative 25 examples of materials derived from cells include, but are not limited to, extracellular matrices, hormones, cytokines, and the like. Materials derived from cells typically have substantially no adverse effect on the cells and their hosts. Therefore, when the material is contained in a synthetic 30 tissue, a three-dimensional structure, or the like, the material typically has substantially no adverse effect on the synthetic tissue, three-dimensional structure, or the like.

WO 2005/012512 PCY/IP2004/031401

5

10

15

20

28

30

~ 63 ~

As used herein, the term "extracellular matrix" (ECM) refers to a substance existing between somatic cells no matter whether the cells are epithelial cells or non-epithelial cells. Extracellular matrices are typically produced by cells. and therefore, are biological materials. Extracellular matrices are involved in supporting tissue as well as in internal environmental structure essential for survival of all somatic cells. Extracellular matrices are generally produced from connective tissue cells. Some extracellular matrices are secreted from cells possessing basal membrane, such as epithelial cells or endothelial cells. Extracellular matrices are roughly divided into fibrous components and matrices filling there between: Fibrous components include collagen fibers and clastic libers. A basic component of matrices is a glycosaminoglycan (acidic mucopolysaccharide), most of which is bound non-collagenous protein to form a polymer of a proteoglycan (acidic mucopolysaccharide-protein complex). In addition, matrices include glycoproteins, such as laminin of basal membrane, microfibrils around elastic fibers, fibers, fibronsctins on cell surfaces, and the like. Particularly differentiated tissue has the same basic structure. For example. 1.33 hvaline cartilage, chondroblasts characteristically produce a large amount of cartilage matrices including proteoglycans. In bones, osteoblasts produce bone matrices which cause calcification. Herein, examples of typical extracellular matrix include, but not limited to, collagen I, collagen III, collagen V, elastin, vitronectin, fibronectin, proteoglycans (for example. decolin, byglican, fibromodulin, lumican, hyaluronic acid. etc.). Various types of extracellular matrix may be utilized in the present invention as long as cell adhesion is acheived.

WO 2005/012512 PCT/JP2084/011401

5

10

25

20

25

30

In one embodiment of the present invention, the synthetic tissue, three-dimensional structure, or the like of the present invention may be advantageously similar to the composition of an extracellular matrix (e.g., elastin, collagen (e.g., Type I, Type III, Type IV, etc.), laminin, etc.) of a site of an organ for which implantation is intended. In the present invention, extracellular matrices include cell adhesion molecules. As used herein, the terms "cell adhesion molecule" and "adhesion molecule" are used interchangeably, referring to a molecule capable of mediating the joining of two or more calls (cell adhesion) or adhesion between a substrate and a cell. In general, cell adhesion molecules are divided into two groups: molecules involved in cell-cell adhesion (intercellular adhesion) (cell-cell adhesion molecules) and molecules involved cell-extracellular matrix adhesion (cell-substrate adhesion) (cell-substrate adhesion molecules). Asynthetic tissue or three-dimensional structure of the present invention typically comprises such a cell adhesion molecule. Therefore, cell adhesion molecules herein include a protein of a substrate and a protein of a cell (e.g., integrin, etc.) in cell-substrate adhesion. Amolecule other than proteins falls within the concept of cell achesion molecule as long as it can mediate cell adhesion.

It should be noted that the synthetic tissue or complex of the present invention comprises calls and a material (natively) derived from the cell. Therefore, such materials including ECMs form a complicated composition containg collagen I, collagen III, collagen V, elastin, fibronactin, vitronactin, proteoglycana (for example, decolin, byglican, fibromodulin, lumican, hyaluronic acid,

WO 2005/012512 PCT/JP2004/011401

2

20

·· 83 ···

etc.). Conventionally a synthetic tissue containg such cell-derived ingredients has not been provided. To obtain a synthetic tissue having such a composition is substantially impossible when an artificial material is used. Thus, a composition containing such ingredients (particularly, collagen I, collagen III and the like) is recognized to be a native composition.

More preferably, an extracellular matrix includes all the collagen (for example, Types I, Type III, etc.), vitronectin, and fibronectin. Especially, a synthetic tissue containing vitronectin and/or fibronectin has not been provided before. Therefore, the synthetic tissue and the complex according to the present invention are recognized to be new in this regard.

As used herein, the term "provided" or "distributed" in relation to an extracellular matrix and the synthetic tissue of the present invention indicates that the extracellular matrix is present in the synthetic tissue. It should be understood that such superficial provision can be visualized and observed by immunologically staining an extracellular matrix of interest.

As used herein, the term "in a diffused manner" or "diffusedly" in relation to the distribution of an extracellular matrix is not localized. Such distribution of an extracellular matrix has a ratio of the distribution densities of two arbitrary sections of 1 cm² within a range of typically about 1:10 to about 10:1, and representatively about 1:3 to about 3:1, and preferably about 1:2 to about 2:1, and more preferably about 1:1 (i.e., substantially evenly distributed over the

WO 2005/012512 PCY/IP2004/031401

~ 66 ~

synthetic tissue. When an extracellular matrix is distributed on a surface of the synthetic tissue of the present invention, but not localized, the synthetic tissue of the present invention has biological integration capability evenly with respect to the surrounding. Therefore, the synthetic tissue of the present invention has an excellent effect of recovery after implantation.

S

For cell-cell adhesion, cadherin, a number of molecules belonging in an immunoglobulin superfamily (NCAML), ICAM, fasciclin II, III, etc.), selectin, and the like are known, each of which is known to join cell membranes via a specific molecular reaction. Therefore, in one embodiment, the synthetic tissue, three-dimensional structure, or the like of the present invention preferably has substantially the same composition of cadherin, immunoglobulin superfamily molecules, or the like as that of a site for which implantation is intended.

Thus, various molecules are involved in celladhesion and have different functions. Those skilled in the art can appropriately select a molecule to be contained in a synthetic tissue or three-dimensional structure of the present invention depending on the purpose. Techniques for cell adhesion are well known as described above and as described in, for example, "Saibogaimatorikkusu -Rinsho heno Oyo-(Extracellular matrix -Clinical Applications-), Medical Review.

It can be determined whether or not a certain molecule is a cell adhesion molecule, by an assay, such as biochemical quantification (an SDS-PAG method, a labeled-collagen method, etc.), immunological quantification (an enzyme antibody

method, a fluorescent antibody method, an immunohistological study, etc.), a PCR method, a hybridization method. or the like, in which a positive reaction is detected. Examples of such a cell adhesion molecule include, but are not limited 8 to, collagen, integrin, fibronectin, laminin, vitronectin, fibrinogen, an immunoglobulin superfamily member (e.g., CDZ, CD4, CD8, ICM1, ICAM2, VCAM1), selectin, cadherin, and the like. Most of these cell adhesion molecules transmit into a cell an auxiliary signal for cell activation due to intercellular interaction as well as cell adhesion. 10 Therefore, an adhesion molecule for use in an implant of the present invention preferably transmits an auxiliary signal for cell activation into a cell. This is because cell activation can promote growth of cells originally present 15 or aggregating in a tissue or organ at an injured site after application of an implant thereto. It can be determined whether or not such an auxiliary signal can be transmitted into a cell, by an assay, such as biochemical quantification (an SDS-PAG method, a labeled-collagen method, etc.), immunological quantification (an enzyme antibody method, 20 a fluorescent antibody method, an immunohistological study, etc.), a PDR method, a hybridization method, or the like, in Which a positive reaction is detected.

An example of a cell adhesion molecule is cadherin which is present in many cells capable of being fixed to tissue. Cadherin can be used in a preferable embodiment of the present invention. Examples of a cell adhesion molecule in cells of blood and the immune system which are not fixed to tissue, include, but are not limited to, immunoglobulin superfamily molecules (LFA-3, CD2, CD4, CD8, ICAM-1, ICAM2, VCAM1, etc.); integrin family molecules (LFA-1, Mac-1, gpIIbIIIa, p150, p95, VLA1, VLA2, VLA3, VLA4, VLA5, VLA6.

WO 2005/012512 PCT/IP2004/014/01

etc.); selectin family molecules (L-selectin, E-selectin, P-selectin, etc.), and the like. Therefore, such a molecule may be useful for treatment of a tissue or organ of blood and the immune system.

£ .

Nonfixed cells need to be adhered to a specific tissue in order to act on the tissue. In this case, it is believed that cell-cell adhesion is gradually enhanced via a first adhesion by a selectin molecule or the like which is constantly expressed and a second adhesion by a subsequently activated integrin molecule. Therefore, in the present invention, a cell adhesion molecule for mediating the first adhesion and another cell adhesion molecule for mediating the second adhesion may be used together.

15

 20°

25

30

30

As used herein, the term "actin regulatory agent" refers to a substance which interacts directly or indirectly with actin in cells to change the form or state of the actin. It should be understood that actin regulatory agents are categorized into two classes, actin depolymerizing agents and actin polymerizing agents, depending on the action on actio. Examples of actin depolymerizing agents include, but are not limited to, Slingshot, cofilin, CAP (cyclase associated protein), ADF (actin depolymerizing factor), destrin, depactin, actophorin, cytochalasin, NGF (nerve growth factor), and the like. Examples of actin polymerizing agents include, but are not limited to, Bhoa, mbi, profilin. Racl, IRSp 53, Wave2, profilin, BOCK, Lim kinase, cofilin, cdc42. N-WASP. Arp2/3. Drf3, IRSp53. Mena. (lysophosphatidic acid), insulin, PDGF (platelet-derived growth factor) a, PDGFb, chemokine, TGF (transforming growth factor) b, and the like. The above-described actin regulatory agents include some substances which can be

20

25

30

identified by the following assay. Interaction of an actin regulatory agent with respect to actin is assayed as follows. Actin is visualized using an actin staining reagent (Molecular Probes, Texas Red-X phalloidin) or the like. By observing actin aggregation or cell outgrowth under a 5 microscope, the presence of the interaction is determined by confirming the aggregation and reconstruction of actin and/or an increase in the cell outgrowth rate. determination be performed quantitatively may qualitatively. The above-described actin regulatory agents 10 are used in the present invention so as to promote the detachment or a multilayer structure of the synthetic tissue. When an actin regulatory agent used in the present invention is derived from an organism, the organism may be a mammalian species, such as human, mouse, bovine, or the like. 15

The above-described agents involved in actin polymerization control actin polymerization in relation to Rho and the examples of the agents include the follwing (see, for example, "Saibokokkaku/Undo ga wakaru (Understanding of cytoskeleton/movement)", (Ed./Hiroaki Miki), Yodo-sha).

Actin polymerization (see Takenaka T et al. J.Cell Sci., 114: 1801-1809, 2001)

RhoA ightarrow mDi ightarrow profilin ightharpoonup actin polymerization

RhoA \rightarrow ROCK/Rho \rightarrow LIM kinase \rightarrow phosphorylation of (suppression) \Rightarrow actin polymerization

WO 2005/012512

cdc42 \longrightarrow N-WASP \longrightarrow profilin, Arp2/3 \Longrightarrow actin polymerization

 $cdc42 \rightarrow Drf3 \rightarrow IRSp53 \rightarrow Mena \Rightarrow actin polymerization$

S

(In the above descriptions, \rightarrow indicates a singal transduction pathway such as phosphorylation. In the present invention any agent involved in such a pathway can be utilized.

10

Actin depolymerization

Slingshot -> dephosphorization of cofilin (activation) => actin depolymentiation

15

20

Actin depolymerization is controlled by a balance between phosphorylation by LIM kinase activity of cofilin and dephosphorization by Slingshot. As another agent for activating cofilin, CAP(cyclass-associated protein) and AIPI(actin-interacting-protein 1) are identified. It is recognized that any suitable agent can be used.

LPA (lysophosphatidic acid) of any chain length can be used.

25

Any chemokine can be used. However, examples of prefereable chemokine include interleukin 8, MIP-1, SDF-1 and the like.

30

Any TGF β can be used. However, examples of preferable TGF β include TGF- β 1 and TGF- β 3. TGF- β 1 and TGF- β 3 has an extracellular matrix generation promoting activity. Thus, in the present invention, TGF- β 1 and TGF- β 3 are used

WO 2005/012512 PCY/IP2004/031401

w 71 w

with an attention.

As used herein, the term "tissue strength" refers to a parameter which indicates a function of a tissue or organ and a physical strength of the tissue or organ. Tissue strength can be generally determined by measuring tensile strength (e.g., break strength, modulus of rigidity, Young's modulus, etc.). Such a general tensile test is well known. By analyzing data obtained by a general tensile test, various data, such as break strength, modulus of rigidity, Young's modulus, and the like, can be obtained. These values can be herein used as indicators of tissue strength. Typically, tissue strength which allows clinical applications is herein required.

15

20

3.2

30

20

3

The tensile strength of a synthetic tissue, three-dimensional structure, or the like of the present invention can be determined by measuring the stress and distortion characteristics thereof. Briefly, a load is applied to a sample; the resultant distortion and the load are input to respective A/O converters (e.g., ELK-5000) (1 ch: distortion, 2 ch: load); the stress and distortion characteristics are measured to determine the tensile strength of the sample (Figure 46). Tensile strength can also be determined by testing creep characteristics. A creep characteristics indentation test is conducted to investigate how a sample is extended over time while a constant load is applied to the sample. For small materials, thin materials, and the like, an indentation test is conducted using, for example, a triangular pyramid-shaped indenter with a tip having a radius of about 0.1 µm to about 1 µm. Initially, the indenter is pushed into a test piece so that a load is given to the test piece. When the indenter reaches from

8

10

15

20

25

30

several tens of nanometers to several micrometers deep in the test piece, the indenter is drawn off to remove the load. Figure 47 shows a load/removal of load curve obtained by the above-described test method. Rigidity, Young's modulus, or the like can be obtained based on the behavior of the load and the push depth derived from the curve.

The tensile strength of the synthetic tissue of the present invention may be low. The tensile strength becomes higher when the matrix concentration is increased, and becomes lower when the cell to matrix ratio is increased. The present invention is characterized in that the strength can be adjusted as necessary. The present invention is also characterized in that the strength can be high or low relative to that of a tissue to be implanted. Therefore, it is recognized that the strength can be set to comply with any desired site.

As used herein, the term "physiologically active substance" refers to a substance capable of acting on a cell or tissue. Physiologically active substances include cytokines and growth factors. A cellular physiologically active substance may be naturally-occurring or synthesized. Preferably, a cellular physiologically active substance is one that is produced by a cell or one that has a function similar thereto. As used herein, a cellular physiologically active substance may be in the form of a protein or a nucleic acid or in other forms. In actual practice, cellular physiologically active substances are typically proteins. In the present invention, a physiologically active substance may be used to promote the affinity of an implanted synthetic tissue of the present invention, for example.

The term "cytokine" is used herein in the broadest sense in the art and refers to a physiologically active substance which is produced from a cell and acts on the same or different cell. Cytokines are generally proteins or polypeptides having a function of controlling an immune response, regulating the endocrine system, regulating the nervous system, acting against a virus, regulating cell growth, regulating cell differentiation, or the like. Cytokines are herein in the form of a protein or a nucleic acid or in other forms. In actual practice, cytokines are typically proteins.

5

10

15

20

25

30

The terms "growth factor" or "cell growth factor"

are used herein interchangeably and each refers to a substance
which promotes or controls cell growth. Growth factors are
also called "proliferation factors" or "development factors".
Growth factors may be added to cell or tissue culture medium,
substituting for serum macromolecules. It has been revealed
that a number of growth factors have a function of controlling
differentiation in addition to a function of promoting cell
growth.

Examples of cytokines representatively include, but are not limited to, interleukins, chemokines, hematopoietic factors such as colony stimulating factors, a tumor necrosis factor, interferons, a platelet-derived growth factor (PDGF), an epidermal growth factor (EGF), a fibroblast growth factor (FGF), a hepatocyte growth factor (HGF), a vescular endothelial cell growth factor (VEGF), cardiotrophin, and the like, which have proliferative activity.

Cellular physiologically active substances, such as cytokines, growth factors, and the like, typically have

WO 2005/012512 PCY/JP2084/03.1401

S

10

25

20

28

30

redundancy in function. Accordingly, reference herein to a particular cytokine or growth factor by one name or function also includes any other names or functions by which the factor is known to those of skill in the art, as long as the factor has the activity of a cellular physiologically active substance for use in the present invention. Cytokines or growth factors can be used in a therapeutic or pharmaceutical agent according to a preferable embodiment of the present invention as long as they have preferable activity as described herein.

Therefore, in one embodiment of the present invention, it was revealed that when such a cytokine or growth factor (e.g., BMP-2, etc.) is provided to an implantation site (e.g., an injured site of a cartilage, etc.) concomitantly with a synthetic tissue or three-dimensional structure of the present invention, the affinity of the synthetic tissue or three-dimensional structure and an improvement in the function of the implantation site are observed. Thus, the present invention also provides such a combined therapy.

As used herein, the term "differentiation" refers to a developmental process of the state of the complex parts of organisms, such as cells, tissues, or organs and a process in which a characteristic tissue or organ is formed. The term "differentiation" is mainly used in embryology, developmental biology, and the like. In organisms, various tissues and organs are formed from divisions of a fertilized ovum (a single cell) to an adult. At early developmental stages (i.e., before cell division or after insufficient cell division), each cell or cell group has no morphological or functional feature and is not much distinguishable. Such state 1.80 referred to 8.8 "undifferentiated".

... 75

"Differentiation" may occur at the level of organs. A cell constituting an organ may develop into various cells or cell groups having different features. This phenomenon is also referred to as differentiation within an organ in the formation of the organ. Therefore, a synthetic tissue or three-dimensional structure of the present invention may comprise a tissue including differentiated cells.

When differentiation is required to produce a 10 synthetic tissue of the present invention, the differentiation may be performed either before or after the organization of the cells.

\$

As used herein, the terms "differentiation agent" 3.5 "differentiation | promoting agent" dre interchangeably and refer to any agent which is known to promote differentiation of cells (e.g., chemical substances. temperature, stc.). Examples of such an agent include, but are not limited to, various environmental factors, such as temperature, humidity, pH, salt concentration, nutrients, 20 metals, gas, organic solvent, pressure, chemical substances (e.g., steroids, antibiotics, etc.), and the like, or arbitrary combinations thereof. Representative examples of differentiation agents include, but are not limited to, 25 cellular physiologically active substances. Representative examples of cellular physiologically active substances include, but are not limited to, DNA demethylating agents (e.g., 5-azacytidine, etc.), histone deacetylating agents (e.g., trichosanthin, etc.), intraneclear receptor 30 ligands (e.g., retinoic acid (ATRA), vitamin D_3 , T3, etc.), cell growth factors (e.g., activin, IGF-1, FGF, PDGF, TGF-5, BMF2/4, etc.), cytokines (e.g., LIF, IL-2, IL-6, etc.), hexamethylenebisacetoamides, dimethylacetoamides, dibutyl

cAMPs, dimethylsulfoxides, iododeoxyuridines, hydroxyl ureas, cytosine arabinosides, mitomycin C, sodium lactate, aphydicolin, fluorodeoxyuridine, polybren hexadimetrine bromide, selenium, and the like.

3

Specific examples of differentiation agents are described below. These differentiation agents may be used singly or in combination.

- 10 A) Cornea: epidermal growth factor (EGF);
 - B) Skin (keratinocyte): TGF- β , FGF-7 (KGF: keratinocyte growth factor), EGF;
 - C) Vascular endothelium: VEGF, FGF, angiopoietin;
 - D) Kidney: LIF, BMP, FGF, GDNF;
- 15 E) Heart: HGF, LIF, VEGF;
 - F) Liver: HGF, TGF-\$, IL-6, NGF, VEGF;
 - G) Umbilical endothelium: VEGF;
 - M) Intestinal epithelium: MGF, IGF-I, HGF, KGF, TGF-8, IL-11;
 - I) Werve: nerve growth factor (NGF), BINF (brain-derived
- 20 neurotrophic factor), GDNF (glial-derived neurotrophic factor), neurotrophin, IL-6, TGF- β , TWF;
 - J) Glia cell: TGF- β , TNF- α , EGF, LTF, IL-6;
 - K) Peripheral nerve cell: bPGF, LIF, TGF-eta, IL-6, VEGF;
 - L) Lung(alveolar epithelium): TGF-eta, IL-13, IL-1eta, KGF, HGF;
- 25 M) Placenta: growth hormone (GH), IGF, prolactin, LIF, IL-1, activin A. EGF;
 - N) Fancreatic epithelium: growth hormone, prolactin;
 - O) Pancreatic Langerhans' cells: TGF- β , IGF, PDGF, EGF, TGF- β , TRH (thyroropin);
- 30 P) Synovial cell: FGF, TGF- β (particularly, TGF- β 1, TGF- β 3);
 - Q) Osteoblast: BMP (particularly, BMP-2, BMP-4, BMP-7), FGP;
 - R) Chondroblast: FGF, TGF- β (particularly, TGF- β 1, TGF- β 3), BMP (particularly, BMP-2, BMP-4, BMP-7), TNF- α , IGF;

15

- S) Betinal cell: FGF, CNTF (cilliary neurotrophic factor);
- T) Fat cell: insulin, IGF, LIF; and
- U) Muscle cell: LIF, TNF-a, FGF.

As used herein, the term "osteogenesis" indicates that any cell is caused to differentiate into a osteocyte. It is known that osteogenesis is promoted in the presence of dexamethasone, \$\beta\$-glycerophosphate, and ascorbic acid 2-phosphate. An osteogenic agent (BMF, (particularly, BMF-2, BMF-4, BMP-7)) may be added to promote osteogenesis.

As used herein, the term "chondrogenesis" refers to differentiation of any cell into a chondrocyte. It is known that chondrogenesis is promoted in the presence of pyrubic acid, dexamethasone, ascorbic acid 2-phosphate, insulin, transferrine, and selenious acid. An bone morphogenetic protein (BMP, (particularly, BMP-2, BMP-4, BMP-7)), TGF- β (particularly, TGF- β 1 and TGF- β 3), FGF, TNF- α and the like may be added to promote chondrogenesis.

As used herein, the term "adipogenesis" refers to differentiation of any cell into an adipocyte. It is known that adipogenesis is promoted in the presence of insulin, IGF, LIF, and ascorbic acid 2-phosphate.

As used herein, the terms "implant", "graft", and "tissue graft" are used interchangeably, referring to homologous or heterologous tissue or a cell group, or an artificial material, which is inserted into a particular site of a body and thereafter forms a part of the body.

Therefore, asynthetic tissue or three-dimensional structure of the present invention can be used as an implant. Examples of conventional grafts include, but are not limited to, organs or portions of organs, blood vessels, blood vessel-like

~ 78 ~

tissue, heart, cardiac valves, pericardia, duramatter, joint capsule, bone, cartilage, cornea, tooth, and the like. Therefore, grafts encompass any one of these which is inserted into an injured part so as to compensate for the lost portion. Grafts include, but are not limited to, autografts, allografts, and xenografts, which depend on the type of their donor.

As used herein, the term "autograft" (a tissue, a cell, cell, an organ, etc.) refers to a graft (a tissue, a cell, an organ, etc.) which is implanted into the same individual from which the graft is derived. As used herein, the term "autograft" (a tissue, a cell, an organ, etc.) may encompass a graft from a genetically identical individual (e.g. an identical twin) in a broad sense. As used herein, the terms "autologous" and "derived from a subject" are used interchangeably. Therefore, the term "not derived from a subject" in relation to a graft indicates that the graft is not autologous (i.e., beterologous).

20

25

30

3

As used herein, the term "allograft (a tissue, a cell, an organ, etc.)" refers to a graft (a tissue, a cell, an organ, etc.) which is transplanted from a donor genetically different from, though of the same species, as the recipient. Since an allograft is genetically different from the recipient, the allograft (a tissue, a cell, an organ, etc.) may elicit an immune reaction in the recipient. Examples of such grafts (a tissue, a cell, an organ, etc.) include, but are not limited to, grafts derived from parents (a tissue, a cell, an organ, etc.). The synthetic tissue of the present invention can be an allograft, which has been demonstrated to have satisfactory therapeutic results. Attention should be paid to the synthetic tissue of the present invention.

As used herein, the term "xenograft" (a tissue, a cell, an organ, etc.) refers to a graft (a tissue, a cell, an organ, etc.) which is implanted from a different species. Therefore, for example, when a human is a recipient, a porcine-derived graft (a tissue, a cell, an organ, etc.) is called a xenograft (a tissue, a cell, an organ, etc.).

3

20

23

30

As used herein, "recipient" (acceptor) refers to an individual which receives a graft (a tissue, a cell, an organ, etc.) or implanted matter (a tissue, a cell, an organ, etc.) and is also called "host". In contrast, an individual providing a graft (a tissue, a cell, an organ, etc.) or implanted matter (a tissue, a cell, an organ, etc.) is called "donor" (provider).

With a synthetic tissue forming technique of the present invention, a synthetic tissue derived from any cell can be used. This is because a synthetic tissue (e.g., membranous tissues, organs, etc.) formed by the method of the present invention can exhibit a desired function while the tissue injury rate is maintained at a level which does not interfere with the therapy (i.e., a low level). Conventionally, tissues or organs are used as grafts without modification. In contrast to this, the present invention provides a tissue comprising three-dimensionally connected cells. Such a synthetic three-dimensional tissue cannot be achieved by conventional techniques, and therefore, constitutes one significant effect of the present invention.

As used herein, the term "subject" refers to an organism to which treatment of the present invention is applied and is also referred to as "patient". A patient or

·· 80 ···

subject may be preferably a human.

Cells optionally used in a synthetic tissue, three-dimensional structure, or tissue graft of the present invention may be derived from a syngeneic origin (self origin), 82 an allogenic origin (non-self origin), or a heterologous origin. In view of rejection reactions, syngeneic cells are preferable. If rejection reactions do not raise problems. allogenic cells may be employed. Cells which elicit 10 rejection reactions can be employed by optionally treating the cells in a manner that overcomes rejection reactions. Procedures for avoiding rejection reactions are known in the art (see, for example, "Shin Gekagaku Taikei, Dai 12 Kan, Zoki Ishoku (Shinzo Ishoku - Hai Ishoku Gijutauteki. Rinriteki Seibi kara Jisshi ni Mukete (New Whole Surgery, 3.5 Vol. 12, Organ Transplantation (Meart Transplantation · Lung Transplantation From Technical and Ethical Improvements to Practice)" (Revised 3rd ed.), Nakayama Shoten). Examples of such methods include, but are not limited to, a method 20 using immunosuppressants or steroidal drugs, and the like. For example, there are currently the following immunosuppressants for preventing rejection reactions: "cyclosporine" (SANDIMMUNE/NEORAL); "tacrolimus" (PROGRAF); "azathioprine" (IMURAN); "steroid hormone" 25 (predning, methylpredning); and "T-cell antibodies" (ONT3, ATG, etc.). A method which is used worldwide as a preventive immunosuppression therapy in many facilities, is the concurrent use of three drugs: cyclosporine, azathioprine, and steroid hormone. An immunosuppressant is desirably 30 administered concurrently with a pharmaceutical agent of the present invention. The present invention is not limited to this. An immunosuppressant may be administered before or after a regeneration/therapeutic method of the present

invention as long as an immunosuppression effect can be achieved.

Cells used in the present invention may be derived from any organism (e.g., vertebrates and invertebrates). Preferably, cells derived from vertebrates are used. More preferably, cells derived from mammals (e.g., primates, rodents, etc.) are used. Evenmore preferably, cells derived from primates are used. Most preferably, cells derived from a human are used. Typically, cells from the same species as the host are preferably used.

\$

10

15

20

25

30

Examples of an affected portion of a subject treated by a synthetic tissue of the present invention include, but are not limited to, the heart suffering from a heart disease (e.g., heart failure, ischemic heart diseases, myocardial infarct, cardiomyopathy, myocarditis, hypertrophic cardiomyopathy, dilated hypertrophic cardiomyopathy, and dilated cardiomyopathy); blood vessels in a pericardium patch, infarcted myocardium lower and upper limbs; a joint injury or denaturation; a cartilage injury or denaturation; osteonecrosis; meniscus injury OX. denaturation; intervertebral disk denaturation; ligament injury or denaturation; a fracture; implentation to a patient having a joint, cartilage, or bone having bone loss; an injured cornea; and the like.

Tissues targeted by the present invention may be any organ of an organism and may be derived from any organism.

Examples of organisms targeted by the present invention include vertebrates and invertebrates. Preferably, organisms targeted by the present invention are mammals (e.g., primates, rodents, etc.). More preferably, organisms

WO 2005/012512 PCT/IP20842031401

targeted by the present invention are primates. Most preferably, organisms targeted by the present invention are humans.

As used herein, the term "flexibility" in relation to a synthetic tissue refers to an ability to resist physical stimuli from external environments (e.g., pressure). A synthetic tissue having flexibility is preferable when the implantation site moves or deforms autonomously or by external effects.

As used herein, the term "extendibility and contractibility" in relation to a synthetic tissue refers to an ability to resist extending or contracting stimuli from external environments (e.g., pulsation). A synthetic tissue having extendibility and contractibility is preferable when the implantation site is subjected to extending or contracting stimuli. Examples of implantation sites, which are subjected to extending or contracting stimuli, include, but are not limited to, heart, muscle, joint, cartilage, tendon, and the like. In one embodiment, extendibility and contractibility capable of withstanding the pulsation motion of the heart may be required.

13

20

As used herein, the term "part" or "portion" refers
to any part or portion, tissue, cell, or organ in the body.
Examples of such parts, tissues, cells, and organs include,
but are not limited to, a portion which can be treated with
skeletal myoblasts, fibroblasts, synovial cells, stem cells,
and the like. A marker specific to a portion may be any
parameter, such as a nucleic acid molecule (expression of
mRNA), a protein, an extracellular matrix, a specific
phenotype, aspecific shape of a cell, or the like. Therefore,

~ 83 ~

markers which are not specified herein may be used to identify a synthetic tissue of the present invention as long as these markers can indicate cells derived from a portion. Representative examples of portions, but are not limited to, portions of the heart other than the adult myocardium, portions containing mesenchymal stem cells or cells derived therefrom, other tissues, other organs, myoblasts (e.g., skeletal myoblasts), fibroblasts, synovial cells, and the like.

10

5

For observing a cartilage tissue, following markers can be used as index.

Sox9 (human: Accession No. NM_000346) is a marker specific to a chondrocyte. The marker can be confirmed mainly by observing the presence of mRNA (Kulyk WM, Franklin JL, Hoffman LM. Sox9 expression during chondrogenesis in micromass cultures of embryonic limb mesenchyme. Exp Cell Res. 2000 Mar 15, 255(2):327-32.).

20

25

30

Col 2A1 (human: Accession No. NM_081844) is a marker specific to a chondrocyte. The marker can be confirmed mainly by observing the presence of manA (Kulyk WM, Franklin JL, Moffman LM. Sox9 expression during chondrogenesis in micromass cultures of embryonic limb mesenchyme. Exp Cell Res. 2000 Mar 15:255(2):327-32.).

Aggrecan (human: Accession No. NM_001135) is a marker specific to a chondrocyte. The marker can be confirmed mainly by observing the presence of mRNA (Kulyk WM, Franklin JL, Hoffman LM. Sox9 expression during chondrogenesis in micromass cultures of embryonic limb mesenchyme. Exp Cell Res. 2000 Mar 15;255(2):327-32.).

Bone sialoprotein (human: Accession No. NM_004967) is a marker specific to an osteoblast. The marker can be confirmed mainly by observing the presence of mRNA (Haase MR, Ivanovski S, Waters MJ, Bartold PM. Growth hormone regulates osteogenic marker mRNA expression in human periodontal fibroblasts and alveolar bone-derived cells. J Periodontal Res. 2003 Aug:38(4):366-74.).

5

20

25

Osteocalcin (human: Accession No. NM_199173) is a marker specific to an osteoblast. The marker can be confirmed mainly by observing the presence of mRNA (Haase HR, Ivanovski S, Waters MJ, Bartold PM. Growth hormone regulates osteogenic marker mRNA expression in human periodontal fibroblasts and alveolar bone-derived cells. J Periodontal Res. 2003 Aug; 38(4):366-74.).

GDF5 (human :Accession No. NM_000557) is a marker specific to a ligament cell. The marker can be confirmed mainly by observing the presence of mRNA (Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ, Wozney JM, Rosen V. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest. 1997 Jul 15;100(2):321-30.).

Sixl (human: Accession No. NM_005982) is a marker specific to a ligament cell (Dreyer SD, Naruse T, Morello R, Zabel B, Winterpacht A, Johnson RL, Lee B, Oberg KC. Imxlb expression during joint and tendon formation: localization and evaluation of potential downstream targets. Gene Expr Patterns. 2004 Jul;4(4):397-405.). The marker can be

~ 85 ~

confirmed mainly by observing the presence of mRNA.

23

Scleraxis (human :Accession No. 8K000280) is a marker specific to a ligament cell (Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell. 2003 Apr 18;113(2):235-48.). The marker can be confirmed mainly by observing the presence of mRNA.

A "part other than the myocardium of an adult" and 10 a "part other than the heart of an adult" can be identified using markers characteristic to cells derived from the myocardium of an adult or the heart of an adult including skeletal myoblasts, fibroblasts, synovial cells, stem cells, or the like (hereinafter referred to as a "non-adult myocardial marker" or a "non-adult heart marker", 15 respectively). If the marker is expressed by less than about 100%, preferably less than about 80%, more preferably less than about 50%, even more preferably less than about 25%. in some cases less than about 1%, the above-described parts 20 can be identified. Examples of such markers include, but are not limited to, myosin heavy chain IIa, myosin heavy chain IIb, myosin heavy chain IId (IIx), CD56, MyoD, Myf5, myogenin, and the like. Therefore, non-adult myocardial markers which are not specified herein may be used to identify a synthetic tissue of the present invention as long as these 23 markers can indicate cells derived from parts other than the myocardium of an adult. Also, non-adult heart markers which are not specified herein may be used to identify a synthetic tissue of the present invention as long as these 30 markers can indicate cells derived from parts other than the heart of an adult.

Myosin heavy chain IIa (human: Accession

Mo. NM_017534; SEQ ID NOs. 1 and 2), myosin heavy chain IIb (human: Accession No. NM_017533; SEQ ID NOs. 3 and 4), and myosinheavychain IId (IIx) (human: Accession No. NM 005963; SEQ ID WOs. 5 and 6) are markers specific to myoblasts 5 (Havenith M.G., Visser R., Schriivers-van Schendel J.M., Bosman F.T., "Muscle Fiber Typing in Routinely Processed Skeletal Muscle With Monoclonal Antibodies", Histochemistry, 1990; 93(5):497-499). These markers can be confirmed mainly by observing the presence of proteins. An antibody against 10 myosin heavy chain IIa, myosin heavy chain IIb, and myosin heavy chain IId (IIx) is, for example, MY-32 available from Sigma. This antibody is specific to skeletal muscles and does not bind to myocardium (Webster C., Pavlath G.K., Parks D.R., Walsh F.S., Blau H.M., Exp. Cell. Res., 1988 Jan; 13 174(1):252-65; and Havenith M.G., Visser R., Schrijvers-van Schendel J.M., Bosman F.T., Muscle Fiber Typing in Routinely Processed Skeletal Muscle with Monoclonal Antibodies. Histochemistry, 1990, 93(5):497-499).

20 CD56 (human: Accession No. U63041; SEQ ID NOs. 7 and 8) is a marker specific to myoblasts. This marker can be confirmed mainly by observing the presence of mRNA.

MycD (human: Accession No. X56677; SEQ ID NOs. 9 and 25 10) is a marker specific to myoblasts. This marker can be confirmed mainly by observing the presence of mANA.

Myf5 (human: Accession No. NM_005593; SEQID Nos. 11 and 12) is a marker specific to myoblasts. This marker can be confirmed mainly by observing the presence of mRNA.

Myogenin (human: Accession No. BT007233; SEQ ID NOs. 13 and 14) is a marker specific to myoblasts. This

marker can be confirmed mainly by observing the presence of mana.

In other embodiments, other markers specific to other tissues can be utilized. Examples of such markers include, but are not limited to, Oct-3/4, SSEA-1, Rex-1, Otx2, and the like for embryonic stem cells; VE-cadherin, Flk-1, Tie-1, FECAM1, vWF, c-kit, CD34, Thy1, Sca-1, and the like for endothelial cells; skeletal muscle & actin in addition to the above-described markers for skeletal muscles; Nestin, Glu receptor, NMDA receptor, GFAP, neuregulin-1, and the like fornerve cells; c-kit, CD34, Thy1, Sca-1, GATA-1, GATA-2, FOG, and the like for hematopoletic cells.

As used herein, the term "derived" in relation to cells means that the cells are separated, isolated, or extracted from a cell mass, tissue, or organ in which the cells have been originally present, or that the cells are induced from stem cells.

20

25

As used herein, the term "applicable to heart" means that the heart applied has an ability to pulsate. A tissue applicable to heart has strength such that the tissue can withstand dilation and contraction of the pulsating heart. Here, applicability to the heart includes applicability to the myocardium. Applicability to heart may be determined by confirming that a recipient having an implanted graft survives.

As used herein, the term "three-dimensional structure" refers to an object which comprises cells having intracellular intergration or alignment and extends three-dimensionally, particularly matrices are oriented

3

1.0

35

20

25

30

... 88 ...

thres-dimensionally and cells are arranged three-dimensionally.

As used herein, the term "biological integration" in relation to the relationship between biological entities such as cells means that there is certain interaction between the biological entities. Examples of such interaction includes, but are not limited to, interaction via biological molecules (e.g., extracellular matrix), interaction via signal transduction, electrical interaction (electrical integration, such as synchronization of electrical signals or the like), and the like. Biological integration includes biological integration in a synthetic tissue and biological integration of a synthetic tissue with its surroundings (e.g., surrounding tissues and cells after implantation, etc.). In order to confirm interactions, an assay appropriate to a characteristic of the interaction is employed. In order to confirm physical interactions via biological molecules, the strength of a synthetic tissue, a three-dimensional structure, or the like is measured (e.g., a tensile test). In order to confirm interaction via signal transduction, gene expression or the like is investigated. In order to confirm electrical interactions, the electric potential of a synthetic tissue, a three-dimensional structure, or the like is measured to determine whether or not the electric potential is propagated with constant waves. In the present invention, biological integration is provided in all three dimensions. Preferably, there is biological integration substantially uniformly all directions in in three-dimensional space. In another embodiment, the synthetic tissue, a three-dimensional structure, and the like, which has substantially uniform two-dimensional biological integration and slightly weaker biological

integration in the third dimension, may be employed. Biological integration via an extracellular matrix can be confirmed based on the degree of staining by staining the extracellular matrix. As a method for observing biological integration in vivo, there is an integration experiment using cartilage. In this experiment, a surface of the cartilage is removed and digested with chondroitinase ABC (Hunziker S.B. et al., J. Bone Joint Surg. Am., 1996 May: 78 (5): 721-33). Thereafter, a tissue of interest is implanted onto a cut surface, followed by culturing for about 7 days. The subsequent integration is observed (Figure 23). It will be understood that a capability to adhere to surrounding cells can be determined with the above-described cartilage experiment.

15

20

25

30

1.0

ξ,

Asynthetic tissue, three-dimensional structure, or the like of the present invention may be provided using known preparation methods, as a pharmaceutical product, or alternatively, as an animal drug, a quasi-drug, a marine drug, a cosmetic product, and the like.

Animals targeted by the present invention include any organism as long as it has organs (e.g., animals (e.g., vertebrates, invertebrate)). Preferably, the animal is a vertebrate Myxiniformes, Petronyzoniformes, (e.g., Chondrichthyes, Osteichthyes, amphibian, reptilian, avian, mammalian, etc.), more preferably mammalian monotremata, marsupialia, edentate, dermoptera, chiroptera, carnivore, insectivore, proboscidea, perissodactyla, artiodactyla, tubulidentata, pholidota, sirenia, cetacean, primates, rodentis, lagomorphs, etc.). Illustrative examples of a subject include, but are not limited to, animals, such as cattle, pigs, horses, chickens, cats, dogs, and the

~ 30 ~

like. More preferably, primates (e.g., chimpanzee, Japanese monkey, human, etc.) are used. Most preferably, a human is used. This is because there is limitation to implantation therapies.

S

10

15

When the present invention is used as a pharmaceutical agent, it may further comprise a pharmaceutically acceptable carrier or the like. A pharmaceutically acceptable carrier contained in a medicament of the present invention includes any material known in the art.

Examples of such a pharmaceutically acceptable carrier include, but are not limited to, antioxidants, preservatives, colorants, flavoring agents, diluents, emulsifiers, suspending agents, solvents, fillers, bulking agents, buffers, delivery vehicles, agricultural or pharmaceutical adjuvents, and the like.

The amount of a pharmaceutical agent (e.g., a 20 synthetic tissue, a pharmaceutical compound used in conjunction therewith, etc.) used in the treatment method of the present invention can be easily determined by those skilled in the art with reference to the purpose of use, a target discase (type, severity, and the like), the patient's 25 age, weight, sex, and case history, the form or type of the cell, and the like. The frequency of the treatment method of the present invention applied to a subject (or patient) is also determined by those skilled in the art with respect to the purpose of use, target disease (type, severity, and the like), the patient's age, weight, sex, and case history, 30 the progression of the therapy, and the like. Examples of the frequency include once per day to several months (e.g., once per week to once per month). Preferably, administration

is performed once per week to month with reference to the progression.

As used herein, the term "administer" in relation to a synthetic tissue, three-dimensional structure, or the 5 like of the present invention or a pharmaceutical agent comprising it, means that they are administered singly or in combination with other therapeutic agents. A synthetic tissue of the present invention may be introduced into the rapy 10 sites (e.g., impaired heart, etc.) by the following methods, in the following forms, and in the following amounts. Examples of the introduction methods include, but are not limited to, direct attachment, suture after attachment, insertion, and the like. For example, a synthetic tissue 15 and a three-dimensional structure of the present invention may be applied by the above-described methods to an impaired site of ischemic myocardial tissue caused by myocardial infarct, angina pectoris, or the like. Combinations may be administered either concomitantly (e.g., as an admixture), separately but simultaneously or concurrently; 20 sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously (e.g., a 33 synthetic tissue or the like is directly provided by operation, while other pharmaceutical agents are provided by intravenous injection). "Combination" administration further includes the separate administration of one of the compounds or agents given first, followed by the second.

30

As used herein, the term "reinforcement" means that the function of a targeted part of an organism is improved.

3

10

3.5

20

25

30

As used herein, the term "instructions" describe how to handle reagents, usage, a preparation method, a method of producing a synthetic tissue, a method of administering a medicament of the present invention, a method for diagnosis, or the like for persons who administer, or are administered, the medicament or the like or persons who diagnose or are diagnosed (e.g. physicians, patients, and the like). The instructions describe a statement indicating an appropriate method for administering a diagnostic, a medicament, or the like of the present invention. The instructions are prepared in accordance with a format defined by an authority of a country in which the present invention is practiced (e.g., Health, Labor and Welfare Ministry in Japan, Food and Drug Administration (FDA) in the U.S., and the like), explicitly describing that the instructions are approved by the authority. The instructions are so-called package insert and are typically provided in paper media. The instructions are not so limited and may be provided in the form of electronic media (e.g., web sites, electronic mails, and the like provided on the Internet).

As used herein, the term "extracellular matrix synthesis promoting agent" or "ECM synthesis promoting agent" tefers to an agent which promotes the production of an extracellular matrix of a cell. In the present invention, when an ECM synthesis promoting agent is added to a cell sheet, an environment which promotes self-contraction of cells after a cell sheet is detached from a culture container. The sheet is biologically organized in three-dimensional directions. Examples of such an agent representatively include agents capable of promoting the secretion of an extracellular matrix (e.g., $TGF-\beta 1$, $TGF-\beta 3$, etc.). Examples of an ECM synthesis promoting agent representatively include,

WO 2005/012512 PCT/IP20842031401

but are not limited to, TGF-\$1, TGF-\$3, ascorbic acid, ascorbic acid 2-phosphate, or a derivative or salt thereof. Preferably, an ECM synthesis promoting agent may be preferably a component of an extracellular matrix of a part targeted by application and/or a component(s) capable of promoting the secretion of an extracellular matrix in an amount similar thereto. When an ECM synthesis promoting agent comprises a plurality of components, the components may be components of an extracellular matrix of a part targeted by application and/or components capable of promoting the secretion of an extracellular matrix in an amount similar thereto.

As used herein, the term "ascorbic acid or a derivative thereof" includes ascorbic acid and an analog thereto (e.g., ascorbic acid 2-phosphate, ascorbic acid 1-phosphate, etc.), and a salt thereof (e.g., sodium salt, magnesium salt, etc.). Ascorbic acid is preferably, but is not limited to, an L-isomer.

20

80°

10

1.5

(Description of the Preferred Embodiments)

Hereinafter, preferable embodiments of the present invention will be described. The following embodiments are provided for a better understanding of the present invention and the scope of the present invention should not be limited to the following description. It will be clearly appreciated by those skilled in the art that variations and modifications can be made without departing from the scope of the present invention with reference to the specification.

30

28

In an aspect of the present invention, the synthetic tissue and complex of the present invention is free of injury caused by a protein degrading enzyme, such as,

WO 2005/012512 PCY/JP2004/03.1401

5

10

3.8

20

25

30

representatively, dispase, trypsin, or the like, during culture. Therefore, the synthetic tiesue and complex, which is detached from the base material, can be recovered as a call mass holding proteins between calls (e.g., an extracellular matrix) and having a certain level of strength. The synthetic tissus and complex also retain intact functions, such as an intracellular linking manner, alignment, and the like. When typical protein degrading enzymes (e.g., trypsin, etc.) are used to detach the three-dimensional structure or synthetic tissue, substantially no cell-to-cell link or cell-to-extracellular matrix link are retained, so that cells are individually separated. Among these protein degrading enzymes, dispase destroys basement membrane-like proteins between cells and base materials substantially completely. In this case, however, the resultant three-dimensional structure or synthetic tissue has weak strength. In contrast, the three-dimensional structure or synthetic tissue of the present invention can both substantially completely retain each of the desmosome structure and the basement membrane-like protein, resulting in the above-described various effects.

In the method of the present invention, the period of time required for culture may be determined depending application ΟÍ the synthetic tissue three-dimensional structure. In order to detach and recover the cultured synthetic tissue or three-dimensional structure from the support material, the cultured synthetic tissue or three-dimensional structure is detached directly, or with macromolecular membrane being attached thereto. Note that the synthetic tissue or three-dimensional structure may be detached in culture medium in which cells have been cultured, or alternatively, in other isotonic solutions. Such

solutions may be selected depending on the purpose. When a monolayer cell sheet is prepared, examples of the macromolecular membrane, which is optionally attached to the cell sheet or three-dimensional structure, include, but are not limited to, hydrophilized polyvinylidene difluoride (PVDF), polypropylene, polyethylene, cellulose derivatives thereof, chitin, chitosan, collagen, paper (e.g., Japan paper, etc.), wrethame, net-like or stockinette -like macromolecular materials (e.g., spandex, etc.), and the like. When a net-like or stockinette-like macromolecular material is employed, the synthetic tissue or complex has a higher degree of freedom, so that the contraction/relaxation function thereof can be increased. A method for producing the synthetic tissue or three-dimensional structure comprising cells of the present invention is not particularly limited. For example, the synthetic tissue or three-dimensional structure of the present invention can be produced by utilizing the above-described cultured cell sheet attached to a macromolecular membrane.

20

25

30

\$3

10

15

In order to detech and recover the synthetic tissue or complex with a high yield from the cell culture support, the cell culture support is tapped or shaken, or the medium is stirred with a pipette. These procedures may be performed singly or in combination. In addition, the synthetic tissue or complex may be detached and recovered by deforming the base of the culture container or rinsing the container with isotonic solution or the like. By stretching the synthetic tissue or complex in a specific direction after being detached from the base material, the complex is provided with a lignment. Stretching may be performed by using a tensile device (e.g., Tensilon, etc.), or simply forceps, or the like. A stretching method is not particularly limited. By providing a lignment,

~ 96 ~

it is possible to confer directionality to the motion of the cell sheet or complex itself. Therefore, for example, it is possible to allow the synthetic tissue or complex to move in accordance with the motion of a specific organ. The synthetic tissue or complex can be efficiently applied to organs.

The thus-obtained synthetic tissue or complex cannot be obtained by conventional techniques.

10

1.5

20

25

25

The synthetic tissue and the complex according to the present invention includes an abundance of adhesion molecules such as extracellular matrix which may include collagen (types I, III, etc.), vironectin, and fibronectin, and can be accepted by the surrounding tissue. implanted cells can be stably accepted by the implantation site. In conventional cell implantation, it was difficult for cells to be stably accepted by the implantation site not only in cells implantation without a scaffold, but also in cell implentation using an additional stabilizing treatment (e.g., sewing of a patch, scaffold, etc.). However, use of the present invention facilitates stabilization. When only cells are used, reinforcement by another tissue, fixing scaffold, or the like is necessary. According to the present invention, without requiring such means, cells which may have pluripotency included in the synthetic tissue or complex can be stably accepted by the implantation portion without am additional fixing means.

30 (Preparation of synthetic tissue using an ECM synthesis promoting agent)

In another aspect, the present invention provides a method for producing a synthetic tissue. The method for

S

producing a synthetic tissue comprises the steps of:

A) providing a cell; B) placing the cell in a container containing a cell culture medium including an ECM synthesis promoting agent, wherein the container has a base with an area sufficient to accommodate a desired size of the synthetic tissue; and C) culturing the cell in the container for a period of time sufficient to form the synthetic tissue having the desired size.

1.0 The above-described cell may be any cell. A method for providing a cell is well known in the art. For example, a tissue is extracted and cells are isolated from the tissue. Alternatively, cells are isolated from body fluid containing blood cells or the like. Alternatively, a cell line is 15 prepared in an artificial culture. The present invention is not limited to this. Cells used herein may be any stem cells or differentiated cells, particularly including myoblasts, mesenchymal stem cells, adipocytes, synovial cells, bone marrow cells, and the like. Examples of mesenchymal stem cells used herein include adipose 20 tissue-derived stem cells, bone marrow-derived stem cells, and the like.

The method for producing a synthetic tissue of the present invention employs a cell culture medium containing an ECM synthesis promoting agent. Examples of such an ECM synthesis promoting agent include, but are not limited to, ascorbic acid or a derivative thereof, ascorbic acid l-phosphate, ascorbic acid, and the like.

The cell culture medium used in the present invention may be any medium which allows a cell of interest to grow.

3

10

1.5

20

28

30

Examples of such a medium include, but are not limited to, DMEM, MEM, F12, DME, RPMI1640, MCD8104, 199, MCD8163, L15, SkBM, Basal medium, and the like which are supplemented with glucose, PCS (fetal calf serum), antibiotics (penicillin, streptomycin, etc.) as appropriate.

The container used in the present invention may be any container typically used in the art which has a base with an area sufficient to accommodate a desired size of the synthetic tissue. Examples of such a container include, but are not limited to, petri dishes, flasks, mold containers, and the like, and preferably containers having a large area of the base (e.g., at least 1 cm²). The material of the container may be any material and include, but are not limited to, glass, plastic (e.g., polystyrene, polycarbonate, etc.), silicone, and the like.

In a preferable embodiment, the method for producing a synthetic tissue according to the present invention further comprises detaching a produced synthetic tissue. As used berein, the term "detach" indicates that after a synthetic tissue of the present invention is formed in a container. the synthetic tissue is removed from the container. The detachment can be achieved by, for example, physical means (e.g., pipetting of medium, etc.), chemical means (addition of a substance), or the like. In the present invention, a synthetic tissue can be detached by providing a stimulus around the synthetic tissue by physical means or chemical means, but not by aggressive means (e.g., treatement with a protein degrading enzyme, etc.) to the synthetic tissue. Thus, the present invention provides ease of handling, which cannot be conventionally achieved, and the resulting synthetic tissue is substantially intact, resulting in a

- 99 ...

high-performance implant.

In a preferable embodiment, the present invention further comprises detaching cells which construct a synthetic \mathfrak{S} tissue. In a more preferable embodiment, the detaching step includes applying a stimulus for contracting a synthetic tissue, including a physical stimulus (e.g., pipetting, etc.). Such a physical stimulus is not directly applied to the produced synthetic tissue. This is a preferable feature of 1.0 the present invention. Since a physical stimulus is not directly applied to a synthetic tissue, it is possible to suppress damage to the synthetic tissue. Alternatively, the detaching step includes chemical means, such as adding an actin regulatory agent. Such an actin regulatory agent includes a chemical substance selected from the group 15 consisting of actin depolymerizing agents and actin polymerizing agents. Examples of actin depolymerizing agents include, but are not limited to, ADF(actin depolymerizing factor), destrin, depactin, actophorin, 20 cytochalasin, NGF (nerve growth factor), and the like. Examples of actin polymerizing agents include, but are not limited to, LPA (lysophosphatidic acid), insulin, PDGFm, chemokine, TGF b, and the like.

Though not wishing to be bound by any theory, these actin regulatory agents may cause actomyocin-based cytoskeleton to contract or extend, thereby regulating contraction and extension of a cell itself. As a result, a synthetic tissue itself may be promoted to or inhibited from being detached from the base of a container.

In another embodiment, the synthetic tissue and complex of the present invention are characterized in that

55

10

1.5

20

25

30

they are produced from cells which are cultured in monolayer culture. Despite monolayer culture, synthetic tissues having various thicknesses can be constructed. This is an unexpected effect. Conventionally, for example, a thick tissue cannot be constructed without using a multilayer structure when a temperature responsive sheet or the like is used. The present invention is the first to achieve a method for constructing a three-dimetional structure, which does not require a scaffold and can construct the contractile organization including ten or more layers. A typical cell implantation method which does not employ a scaffold is a cell sheet engineering technique utilizing a temperature sensitive culture dish disclosed by Kushida A., Yamato M., Monno C., Kikuchi A., Sakurai Y., Okano T., J. Biomed. Mater. Res., 45:355-362, 1999. The technique has won international recognition as an original technique. However, this cell sheet technique has a problem in that a single sheet is weak in many cases, and requires modification such as layering sheets for obtaining the strength resistant to an surgical operation such as implantation.

A cell/matrix complex developed by the present invention does not require a temperature sensitive culture dish unlike the cell sheet technique. The cell/matrix complex is easy to form into a contractile three-dimensional tissue. There is no technique in the world other than the present invention, which can produce a contractile three-dimensional complex having 10 or more layers without using 80-called feeder cells, such as rodent stroma cells, after approximately three weeks. By adjusting conditions for matrix production of the synovial cell, it is possible to produce a complex having a strength which allows surgical manipulation, such as holding or transferring the complex,

without a special instrument. Therefore, the present invention is an original, epoch-making technique in the world for reliably and safely perform cell implantation.

27 In a preferable embodiment, the ECM synthesis promoting agent used in the method for producing a synthetic tissue of the present invention includes ascorbic soid 2-phosphate (Hata R., Senoo H., J. Cell Physiol., 1989, 138(1):8-16). In the present invention, by adding a certain 10 amount or more of ascorbic acid 2-phosphate, it is possible to promote production of an extracellular matrix, so that the resultant synthetic tissue or complex is made strong to become easy to be detached. Thereafter, self contraction is elicited by applying a stimulus for detachment. Hata et 15 al. do not report that, after adding such an ascorbic acid and culturing, a tissue becomes strong and obtains a property to be easy to be detached. Though not wishing to be bound by any theory, a significant difference is that Hata et al. used a significantly different cell density. Hata et al. 20 does not suggest an effect of making a tissue rigid. Such an effect that the tissue is made rigid, an effect of contraction, and an effect that the tissue becomes easy to be detached are first found in the present invention. The synthetic tissue according to the present invention is recognized to be totally different from the synthetic tissue which has been fabricated conventionally at least on the point that it is produced through the process of making rigid, contraction, and detachment.

30 Conraction when the culture is detached and promotion in constructing a three-dimensional structure, a contractile three-dimensional tissue, or the like are suprising effects. Such effects have not been reported conventionally.

28

- 102 -

In a preferable embodiment, ascorbic acid 2-phosphate used in the present invention typically has a concentration of at least 0.01 mM, preferably at least 0.05 mM, more preferably at least 0.1 mM, even more preferably at least 0.2 mM, still more preferably at least 0.5 mM, and still even more preferably 1.0 mM. Herein, any concentration of 0.1 mM or higher may be employed. However, there may be an aspect in which a concentration of 10 mM or lower is desired.

S

10

15

20

28

30

In a certain preferable embodiment, the ECM synthesis promoting agent of the present invention includes ascorbic acid 2-phosphate or a salt thereof, and L-ascorbic acid or a salt thereof.

In a preferable embodiment, after the culturing step, the synthetic tissue production method of the present invention further comprises, detaching the synthetic tissue and allowing the synthetic tissue to perform self contraction. The detachment can be accelerated by applying a physical stimulus (e.g., application of shear stress, pipetting, deformation of the container, etc.). Self-contraction naturally takes place when a stimulus is applied after the When a chemical stimulus is applied, detachment. self-contraction and detachment occurs simultaneously. By self-contraction, biological integration is accelerated particularly in the third dimension (the direction perpendicular to the two-dimensional directions in the case of tissue on a sheet). Therefore, a synthetic tissue of the present invention may have a three-dimensional structure.

In a synthetic tissue production method of the present

invention, the sufficient time preferably means at least 3 days, though it varies depending on the application of a synthetic tissue of interest. An exemplary period of time is 3 to 7 days.

8

1.0

15

In another embodiment, the synthetic tissue production method of the present invention may further comprise causing a synthetic tissue to differentiate. By differentiation, the synthetic tissue can have a form closer to that of a desired tissue. An example of such differentiation is, but is not limited to, chondrogenesis and osteogenesis. In a preferable embodiment, osteogenesis may be performed in medium containing dexamethasone, β -glycerophosphate, and ascorbic acid 2-phosphate. More preferably, bone morphogenetic proteins (BMPs) are added. This is because such BMP-2, BMP-4, and BMP-7 proteins promote osteogenesis.

In another embodiment, a method of producing the synthetic tissue of the present invention is a process of differentiating a synthetic tissue. A form of differentiation includes performing a differentiation of cartilage. In the preferable embodiment, chondrogenesis is performed in a medium including pyruvic acid, dexamethasone, ascorbic acid 2-phosphate, insulin, transferrin, and selenious acid. More preferably, bone morphogenetic proteins (such as BMF-2, BMF-4, BMF-7), transforming growth factors (such as TGF-\$1, TGF-\$3) are added. This is because such BMFs promote chondrogenesis.

30

An important point in the present invention is that it is possible to fabricate a tissue having a pluripotency into various differentiated cells such as bone, cartilage,

and the like. Conventionally, differentiation into a cartilage tissue is difficult in other synthetic tissues which are scaffold-free. If a certain size is required, conventionally, it was necessary to coculture with a scaffold, construct a three-dimensional structure, and add S a Chondrogenesis medium. Conventionally, scaffold-free differentiation into cartilage was difficult. The present invention is the first to enable differentiation into cartilage in a synthetic tissue. This is not an effect which 10 has not been obtained conventionally, and is a characteristic effect of the present invention. In a treatment which aims to regenerate a tissue, a method for performing a treatment efficiently and safely by using a tissue of sufficient size without a scaffold was difficult. The present invention 13 achieves a significant effect on this point. Particularly, the present invention is significant on the point that it becomes possible to easily manipulate differentiated cells such as cartilage, which has been impossible conventionally. Conventionally, for example, cells can be collected to a 20 pellete shape and the aggregation of cells can be differentiated to obtain a tissue of about 2 mm3. obtaining a tissue larger than this size, it was necessary to use a scaffold.

The differentiation step in synthetic tissue production of the present invention may be performed before or after providing cells.

In the present invention, primary culture cells can be used. The present invention is not limited to this. Subcultured cells (e.g., three or more passages) can also be used. Preferably, when subculture cells are used, the cells are preferably of four passages or more, more preferably

of 5 passages or more, and even more preferably of 6 passages or more. The upper limit of cell density is increased with an increase in the number of passages within a certain range. This is because a denser synthetic tissue can be produced. The present invention is not limited to this. It seems that a certain range of passages (e.g., 3 to 8 passages) are preferable.

In the present invention, the cells are preferably provided at a cell density of 5.0×10⁴/cm² or more. The present invention is not limited to this. This is because a higher cell density can provide a synthetic tissue having a greater strength. It will be understood that the lower limit of the cell density may be lower than the above-described density. It will also be understood that those skilled in the art can define the lower limit based on the present specification.

In one ambodiment of the present invention, for example, a myoblast, a synovial cell, an adipocyte, and a mesenchymal stem sell (e.g., derived from adipose tissue or bone marrow) can be used. The present invention is not limited to this. These cells can be applied to, for example, a heart, a bone, a cartilage, a tendon, a ligament, a joint, a meniscus, and the like.

25

30

5

3.0

15

20

(Synthetic tissue and complex)

In another aspect, the present invention provides a functional synthetic tissue or complex. The functional synthetic tissue of the present invention is herein an implantable synthetic tissue. Attempts have been heretoforemade to produce synthetic tissues by cell culture. However, there were no synthetic tissues suitable for implantation in terms of size, strength, physical injuries

when it is detached from a culture container, or the like. The present invention provides a tissue culture method in which cells are cultured in the presence of an ECM synthesis promoting agent as described above, so that there is no problem in terms of size, strength, and the like and there is no difficulty in detaching tissues. An implantable synthetic tissue is provided only after such a tissue culture method is achieved.

S

20

28

30

Another aspect of the present invention provides cells, and a complex including factors derived from the cells. Herein, it is recognized that, preferably, the complex substantially comprises cells, and the factors derived from the cells. Herein, the complex of the present invention is provided for reinforcing, repairing, or regenerating a part of an organism.

As used herein, the term "complex" means that cells and other components are integrated into a complex by some kindofinteractivity. Therefore, the complex of the present invention often has an appearance like a synthetic tissue, and it is recognized that the meaning of the term "complex" overlaps with what is referred to by a synthetic tissue.

The present invention provides a scaffold-free synthetic tissue or complex. A therapeutic method and a therapeutic agent for providing an excellent condition after implantation can be obtained by providing such a scaffold-free synthetic tissue.

The scaffold-free synthetic tissue of the present invention solves a long outstanding problem with biological formulations, which is attributed to contamination of the

~ 107 ~

scaffold itself. Despite the absence of a scaffold, the therapeutic effect is comparable with, or more satisfactory than, conventional techniques.

In addition, when a scaffold is used, the alignment of implanted cells in the scaffold, the cell-to-cell adhesion, the in vivo alteration of the scaffold itself (eliciting inflammation), the acceptance of the scaffold by the recipient tissue, and the like become problematic.

These problems can be solved by the present invention.

The synthetic tissue and the complex of the present invention are also self-organized, and have biological integration inside thereof. Also in this point, the present invention is distinguished from conventional cell therapies.

The synthetic tissue and the complex of the present invention are easily used to form a three-dimensional structure, and is thus easy to be designed into a desired form. The versatility of the synthetic tissue and the complex of the present invention should be noted.

3.5

20

25

30

The synthetic tissum and the complex of the present invention have biological integration with recipient tissues, such as surrounding tissues, cells, and the like. Therefore, the post-operational acceptance is satisfactory, and cells are reliably supplied to a local site, for example. An effect of the present invention is that the satisfactory biological integration capability allows the formation of a tissue complex with another synthetic tissue or the like, resulting in a complicated therapy.

Another effect of the present invention is that

differentiation can be induced after the synthetic tissue or the complex is provided. Alternatively, differentiation is induced before providing a synthetic tissue and/or a complex, and thereafter, the synthetic tissue and/or the complex are formed.

Another effect of the present invention is that the cell implantation of the present invention provides a satisfactory replacement ability and a comprehensive supply of cells for covering an implanted site, compared to conventional cell-only implantation and sheet implantation.

The present invention provides an implantable synthetic tissue. The above-described features and effects of the present invention become it possible to treat a site which cannot be considered as an implantation site for conventional synthetic products. The present invention makes it possible to provide a synthetic tissue or a three-dimensional structure using not only a heart muscle but also cells derived from other parts. The synthetic tissue of the present invention has biological integration and actually works in implantation therpies. The synthetic tissue is first provided by the present invention, but is not provided by conventional techniques.

28

83

1.0

15

20

In addition, the present invention provides medical treatment which provides a therapeutic effect by filling, replacing, and/or covering an affected portion.

In addition, when the synthetic tissue of the present invention is used in combination with another synthetic tissue (e.g., an artificial bone made of hydroxyapatite, a microfibrous collagen medical device, etc.), the synthetic

- 109 -

tissue of the present invention is biologically integrated with the other synthetic tissue, so that the acceptance of the synthetic tissue can be improved to an extent which is not conventionally expected.

5

10

15

20

22

An extracellular matrix or a cell adhesion molecule, such as fibronectin, vitronectin, or the like, is distributed throughout the synthetic tissue of the present invention. In the cell sheet engineering, a cell adhesion molecule is localized on a surface of culture cells which is attached to a culture dish. In the sheet of the cell sheet engineering, cells are major components of the sheet. The sheet is nearly a mass of cells, on the bottom surface of which an adhesion molecule (glue) is added. The synthetic tissue of the present invention is a real "tissue" such that an extracellular matrix wraps cells. Thus, the present invention is significantly distinguished from conventional techniques.

A cell implanting method without a scaffold has been reported by Kushida A., Yamato M., Konno C., Kikuchi A., Sakurai Y., Okano T., J. Biomed. Mater. Res., 45:355-362, 1999. in which a cell sheet is produced using a temperature sensitive culture dish. Such a cell sheet engineering technique is internationally appraised due to its originality. However, a single sheet obtained by this technique is fragile. In order to obtain the strength that can withstand surgical manipulation, such as implantation, a plurality of sheets need to be assembled, for example. Such a problem is solved by the present invention.

30

A Cell/matrix complex developed by the present invention does not require a temperature sensitive culture dish unlike the cell sheet technique. The cell/matrix

5

10

complexiseasily formed into a contractile three-dimensional tissue. There is no technique in the world other than the present invention, which can produce a contractile three-dimensional complex having 10 or more layers without using so-called feeder cells, such as rodent stroma cells, after approximately three weeks. By adjusting conditions for matrix production of the synovial cell, it is possible to produce a complex having a strength which allows surgical manipulation, such as holding or transferring the complex, without a special instrument. Therefore, the present invention is an original, epoch-making technique in the world for reliably and safely performing cell implantation.

In a preferable embodiment, the synthetic tissue of 15 the present invention has a biological integration capability to the surroundings. As used herein the term "surroundings" typically means surroundings to be implanted, and examples thereof include tissues, cells and the like. The biological integration capability with surrounding tissues, cells, and the like can be confirmed by, for example, photomicrograph, 20 physical test, staining of a biological marker, or the like. Convetional synthetic tissues have a low affinity for adjacent tissues in which they are implanted. It was not even assumed that convetional synthetic tissues have the 25 biological integration capability. Conventional synthetic tissues depend on a regeneration capability of an organism, and serves as a temporary solution until autologous cells gather and regenerate. These conventional synthetic tissues are not intended to for a permanent use. Therefore, 30 the synthetic tissus of the present invention should be contemplated as an implantation treatment in the true sense. The biological integration capability referred to by in the present invention preferably includes an adhesion capability

5

10

15

20

25

30

to surrounding cells. Such an adhesion capability can be measured by an in vitro culturing assay (see Figure 23) with a tissue section (e.g., a cartilage section).

As used herein, the term "disease" to be treated by the present invention refers to any disease accompanying degeneration, necrosis, injury or the like, and examples thereof including, osteograthmitis, osteochondral injury, intractable fracture, osteonecrosis, cartilage injury, meniscus injury, ligament injury, tendon injury, cartilage degeneration, moniscus degeneration, intervertebral disk denaturation, ligament degeneration, or tendon degeneration, or any heart diseases having an injured tissue. Examples of such heart diseases include heart failure, intractable heart failure, myocardial infarct, cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, dilated phase hypertrophic cardiomyopathy, and the like. The combined therapy of the present invention may be applied to a regeneration of an injury in an organ other than a heart, as long as regeneration of a tissue injury is the goal. In a specific embodiment, a disease to be treated by the method of the present invention is intractable heart failure.

As used herein, the term "prophylaxis" or "prevention" in relation to a certain disease or disorder refers to a treatment which keeps such a condition from happening before the condition is caused, or causes the condition to occur at a reduced level or to be delayed.

As used herein, the term "therapy" in relation to a certain disease or disorder means that when such a condition occurs, such a disease or disorder is prevented from deteriorating, preferably is retained as it is, more preferably is diminished, and even more preferably

5

10

1.5

20

25

30

extinguished. As used herein, the term "radical therapy" refers to a therapy which eradicates the root or cause of a pathological process. Therefore, when a radical therapy is made for a disease, there in principle is no recurrence of the disease.

As used berein, the term "prognosis" is also referred to as "prognostic treatment". The term "prognosis" in relation to a certain disease or disorder refers to a diagnosis or treatment of such a condition after a therapy.

In a preferable embodiment, the synthetic tissue or complex of the present invention has a three-dimensional, biological integration. As described in other portions of the specification, examples of biological integration include, but are not limited to, physical integration or connection via extracellular matrices, clectrical integration, and the like. Particularly, in a preferable embodiment including the cells, it is important that extracellular matrix in a tissue is biologically organized. Such a synthetic tissue which is biologically organized has not been provided. Thus, the synthetic tissue of this embodiment according to the present invention is new also in view of the structure. Further, the preferable embodiment having a biological integration capability with the surroundings provides a synthetic tissue which has not exist conventionally on the point that the synthetic tissue can form a part of an organism after implantation. The present invention can provide an synthetic tissue which does not include any cell, even a cell which has been frozen once and died. The tissue is still unique on the point that it has an affinity with the surrounding even in such a case.

~ 113 ~

embodiment, the synthetic tissue of the present invention is different from conventional synthetic tissues in that the former comprises a cell. Farticularly, a high density that the density of $5\times10^8/\text{cm}^2$ at maximum can be included is

In

ಯಾ

important. The present invention is important on tha point that it is suitable for implanting cells rather than

implanting the tissue.

5

10 Preferably, a synthetic tissue of the present invention substantially comprise cells or a material derived from the cells. Since the synthetic tissue is composed substantially of only cells and a cell-derived material (e.g., extracellular matrix, etc.), the synthetic tissue can have 15 an increased level of biocompatibility and affinity. As used herein, the terms "substantially comprise "substantially made of ...", and "substantially contain ..." mean that cells and substanced derived from the cells are included, and also any other substance may be included as long as it does not cause any harmful effect (herein, mainly, 20 bad effect on implantation), and should understood as such herein. Such substances which do not cause any harmful effect are known to those skilled in the art or can be confirmed by conducting an easy test. Typically, such substances are, 32 but not limited to, any additives permitted by the Health, Labor and Welfare Ministry, Food and Drug Administration (FDA) or the like, ingredients involved in cell culture, and the like. The cell-derived material representatively includes extracellular matrices. Particularly, the synthetic tissue or complex of the present invention 30 preferably comprises a cell and an extracellular matrix at an appropriate ratio thereof. Such an appropriate ratio of a cell and an extracellular matrix is from about 1:3 to about

- 114 --

20:1. The strength of the tissue is adjusted by the ratio between scall and an extracellular matrix. The ratio between a cell and an extracellular matrix is adjusted for use in accordance with application of cell implantation and physical environment at the implantation site. Preferable ratio varies depending on the treatment to be simed. Such a variation is apprarent to those skilled in the art and can be estimated by investigating the ratio of a cell in an organ which is a target and an extracellular matrix.

10

3

Preferablly, a synthetic tissue substantially comprising cells and an extracellular matrix derived from the cells has not been known. Therefore, the present invention provides a totally new synthetic tissue.

1.5

20

SE 25

30

Preferably, an extracellular matrix which forms the present invention includes, collagen I, collagen III, vitronectin, fibronectin, and the like. It is preferable that a variety of extracellular matrix includes all the listed ingredients, and that they are integrated and mixed. Alternatively, it is preferable that extracellular matrix is dispersed across the entire body. Such a distribution has a significant effect on the point that compatibility and affinity with the environment can be improved when The present invention is known to be implanted. characterized in that adhesion to intercellular matrix which promotes cell adhesion to a matrix, cell extension, and cell chemotaxis is also promoted by including collagen (Types I, III), vitronectin, fibronectin, and the like. However, a synthetic tissue which includes collagen (Types I, III), vitronectin, fibronectin, and the like has not been provided. It is not intended to be constrained by the theory, but, collagen (Types I, III), vitromectim, fibromectim, and the

like are contemplated to have a function in exercising the biological integration capability with the surrounding. Therefore, in the preferable embodiment, it is advantageous that vitronectin are positioned to be dispersed on a surface of the synthetic tissue or complex of the present invention. It is considered that adhesion, affinity, and stability after implantation are significantly different.

It is preferable that the fibronectin is also positioned in the synthetic tissue or complex of the present invention. It is known that fibronectin has a function in cell adhesion, control of a shape of a cell, and adjustment in cell migration. A synthetic tissue in which fibronectin is expresse has not been provided. It is not intended to be contrained by the theory, fibronection is also contemplated to have a function in exercising the biological integration capability with the surrounding. Therefore, in the preferable embodiment, it is advantageous that fibronectin are also positioned to be dispersed on a surface of the synthetic tissue or complex of the present invention. It is considered that adhesion, affinity, and stability after implantation are significantly different.

In the preferred embodiment, it is understood that to position extracellular matrix used in the present invention on the synthetic tissue or complex can be readily achieved by the synthetic tissue production method of the present invention. It is also understood that the production method is not limited to this.

30

S

3.0

35

20

25

In more preferable embodiment, it is advantageous to position the extracellular matrix used in the present invention to be disperesed. Positioning extracellular

- 116 -

matrix into such a dispered state was impossible in convetional synthetic tissues. It is understood the present invention is the fist to provide such a tissue.

In the preferred embodiment, regarding extracellular matrix positioned to be dispersed on the synthetic tissue or complex, when distribution densities in any two section of low ere compared, the ratio is preferably within the range of about 1:3 to 3:1. Measurement of distribution densities can be performed by any method known in the field of the art, for example, immune staining or the like.

In the preferred embodiment, regarding extracellular matrix used in the present invention, when distribution densities in any two section of 1 cm² are compared, the ratio is preferably within the range of about 1:2 to 2:1, and further preferably, about 1.5:1 to 1.5:1. It is advantageous that extracellular matrix is uniformly dispersed. Preferably, extracelluar matrix is dispersed substantially uniform, but it is not limited to this.

In one embodiment, extracellular matrix positioned in the present ivnetion may include collagen I, collagen III, vitronectin, fibronectin or the like.

25

30

In an alternative embodiment, the synthetic tissue or complex of the present invention may employ heterologous cells, allogenic cells, isogenic cells or autologous cells. In the present invention, it is found that even allogenic cells, particularly, mesenchymal cells are used, no adverse reactions, such as immune rejection reactions, is generated. Thus, the present invention ends to the development of the

treatment of ex vivo, and also a therapy which produces a synthetic tissue using cells of others and utilize the tissue without using an immuno rejection suppressor or the like.

In one preferred embodiment, the cells included in the synthetic tissue or complex of the present invention may be stem cells, differentiation cells, or they may include both. In the preferred embodiment, the cells included the three directional sturucture are mesenchymal cells. It is not intended to restrained to the theory, the mesenchymal cells are highly compatible with various organs such as heart, and may have capability to differentiate into various organs such as a heart.

15

10

8

Such mesenchymal cells may be mesenchymal stem cells, or may be mesenchymal differentiation cells.

Examples of the mesenchymal cells used in the present invention include, but not limited to, bone marrow cells, adipocyte, synovial cell, myoblast, skeletal muscle cells, and the like. Examples of mesenchymal cells as used herein include stem cells derived from an adipose tissue, stem cells derived from a bone marrow, and the like.

25

30

20

In the preferred embodiment, it is advantageous that the cells used in the present invention are cells derived from the subject to which the synthetic tissue or complex is applied. In such a case, cells as used herein also referred to as autologous cells. By using autologous cells, immune rejection reactions can be prevented or reduced.

Alternatively, in another embodiment, the cells as

used herein may not be cells derived from a subject to which the synthetic tissue or complex is applied. In such a case, it is preferable that measures are taken to prevent immune rejection reactions.

35

1.0

15

20

25

The synthetic tissue or complex of the present invention may be provided as a drug. Alternatively, the synthetic tissue or complex may be prepared by a physician for therapy, or, a physician may first prepare the cells, and then the third party may culture the cells and prepare as a third-dimension structure for use in a surgery. In such a case, culturing cells is not necessarily performed by a physician, but can be performed by those skilled in the art of cell culture. Those skilled in the art can determine culturing conditions in accordance with a variety of the cells and an implantation site to be targeted after reading the disclosure herein.

In another embodiment, the synthetic tissue or complex of the present invention is preferably isolated. In this case, the term "isolate" means that the synthetic tissue is detached from a scaffold, a support, and a culture medium used in culture. If a synthetic tissue of the present invention is substantially free of materials, such as a scaffold and the like, it is possible to suppress adverse reactions after implantation, such as immune rejection reactions, inflammation reactions, and the like.

30

The base area of the synthetic tissue according to the present invention may be, for example, 1 $\rm cm^3$ to 20 $\rm cm^2$. However, the area is not limited to this range and may be smaller than $\rm 1cm^2$, or greater than $\rm 20cm^2$. It is understood

that the essential feature of the present invention is that a tissue of any size (area, volume) can be produced, and it is not limited in the size.

In a preferable embodiment, the synthetic tissue of \$ the present invention is thick. The term "thick" in relation to a synthetic tissue typically means that the synthetic tissue has a thickness which provides a strength sufficient to cover a site to which the synthetic tiesue is implanted. 1.0 Such a thickness is, for example, at least about 50 µm, more preferably at least about 100 µm, at least about 200 µm, at leastabout 300 µm, even more preferably at least about 400 µm, still more preferably at least about 500 µm, and still even more preferably about 1 mm. It is recognized that, in some 1 2 C cases, a tissue having a thickness of 3 mm or greater and a tissue having a thickness of 5 mm or greater can be produced . Alternatively, such a thickness may be, 1 mm or less. It is understood that an essential feature of the present invention is that a tissue or a complex having any thickness 20 can produced, and the tissue or complex is not limited in the size.

The present invention provides a scaffold-free synthetic tissue or complex. By providing such a scaffold-free synthetic tissue, a therapeutic method and a therapeutic agent for providing an excellent condition after implantation can be obtained.

25

The scaffold-free synthetic tissue of the present invention solves a long outstanding problem with biological formulations, which is attributed to contamination of the scaffold itself. Despite the absence of a scaffold, the therapeutic effect is comparable with or more satisfactory

WO 2005/012512 PCT/IP20842031401

- 120 -

than conventional techniques.

3

20

23

30

In addition, when a scaffold is used, the alignment of implanted cells in the scaffold, the cell-to-cell adhesion, the in vivo alteration of the scaffold itself (eliciting inflammation), the acceptance of the scaffold to recipient tissue, and the like become problematic. These problems can be solved by the present invention.

The synthetic tissue and the complex of the present invention are also self-organized, and have biological integration inside thereof. Also in this point, the present invention is distinguished from conventional cell therapies.

The synthetic tissue and the complex of the present invention are easy to form a three-dimensional structure, and is thus easy to be designed into a desired form. The versatility of the synthetic tissue and the complex of the present invention should be noted.

The synthetic tissue and the complex of the present invention have biological integration with recipient tissues, such as surrounding tissues, cells, and the like. Therefore, the post-operational acceptance is satisfactory, and cells are reliably supplied to a local site, for example. An effect of the present invention is that the satisfactory biological integration capability allows the formation of a tissue complex with another synthetic tissue or the like, resulting in a more complex therapy.

Another effect of the present invention is that differentiation can be induced after the synthetic tissue or the complex is provided. Alternatively, differentiation

WO 2005/012512 PCY/JP2004/03/1401

- 121 -

is induced before providing a synthetic tissue and/or a complex, and thereafter, the synthetic tissue and/or the complex are formed.

Another effect of the present invention is that the cell implantation of the present invention provides a satisfactory replacement and a comprehensive supply of cells for covering an implanted site, compared to conventional cell-only implantation and sheet implantation.

10

15

20

23

30

The present invention provides an implantable synthetic tissue having biological integration capability. The above-described features and effects of the present invention become it possible to treat a site which cannot be considered as an implantation site for conventional synthetic products. The present invention makes it possible to provide a synthetic tissue or a three-dimensional structure. The synthetic tissue of the present invention has biological integration and actually works in implantation therapies. The synthetic tissue is first provided by the present invention, but is not provided by conventional techniques.

In addition, the present invention provides medical treatment which provides a therapeutic effect by filling, replacing, and/or covering an affected portion.

In addition, when the synthetic tissue of the present invention is used in combination with another synthetic tissue (e.g., an artificial bone made of hydroxyspatite, a microfibrous collagen medical device, etc.), the synthetic tissue of the present invention is biologically integrated with the other synthetic tissue, so that the acceptance of

- 122 -

the synthetic tissue can be improved to an extent which is not conventionally expected.

An extracellular matrix or a cell adhesion molecule, \$ such as fibronectin, vitronectin, or the like, is distributed throughout the synthetic tissue of the present invention. In call sheet engineering, a cell adhesion molecule is localized on a surface of culture cells which is attached to a culture dish. In the sheet of the cell sheet engineering, 10 the cells are major components of the sheet. The sheet is nearly a mass of cells, on the bottom surface of which an adhesion molecule (glue) is added. On the other hadn, the synthetic tissue of the present invention is a real "tissue" such that an extracellular matrix covers cells. Thus, the present invention is significantly distinguished from 15 conventional techniques.

A cell implanting method without a scaffold has been reported by Kushida A., Yamato M., Konno C., Kikuchi A., Sakurai Y., Okano T., J. Biomed. Mater. Res., 45:355-362, 1999, in which a cell sheet is produced using a temperature sensitive culture dish. Such a cell sheet enginesring technique is internationally appraised due to its originality. However, a single sheet obtained by this technique is fragile. In order to obtain the strength that can withstand surgical manipulation, such as implantation, a plurality of sheets need to be assembled, for example. Such a problem is solved by the present invention.

20

25

A cell/matrix complex developed by the present invention does not require a temperature sensitive culture dish unlike the cell sheet technique. The cell/matrix complex is easy to form into a contractile three-dimensional

 ε

10

13

tissue. There is no technique in the world other than the present invention, which can produce a contractile three-dimensional complex having 10 or more layers without using so-called feeder cells, such as redent stroma cells, at about three weeks. By adjusting conditions for matrix production of the cell, it is possible to produce a complex having a strength which allows surgical manipulation, such as holding or transferring the complex, without a special instrument. Therefore, the present invention is an original, epoch-making technique in the world for reliably and safely performing cell implantation.

In another embodiment, the synthetic tissue or complex of the present invention is flexible. Due to the flexibility, the synthetic tissue is particularly suitable for reinforcement of motile organs. Examples of motile organs include, but are not limited to, hearts, blood vessels, muscles, and the like.

In another embodiment, the synthetic tissue or 20 complex of the present invention has dilation/contraction ability. Due to the dilation/contraction ability, the synthetic tissue is suitable for organs which expand and contract, including, for example, hearts, muscles, and the 25 like. The dilation/contraction ability cannot be achieved by cell sheet or the like prepared by conventional methods. Preferably, a synthetic tissue of the present invention has a sufficient strength to withstand the pulsation motion of a heart. The strength sufficient to withstand pulsation 30 motion is, but is not limited to, at least about 50% of the strength of naturally-occurring myocardism, preferably at least about 75%, and more preferably at least about 100%.

2

10

3.5

20

25

30

In a preferable embodiment, the synthetic tissue or complex of the present invention has biological integration in all three dimensions. There are some synthetic tissues prepared by conventional methods, which have biological integration in two dimensions to some degree. However, no tissue having biological integration in all three dimensions can be prepared by conventional methods. Therefore, since the synthetic tissue of the present invention has biological integration in all three dimensions, the synthetic tissue is substantially implentable in any application.

Examples of biological integration which is an indicator of a synthetic tissue or complex of the present invention, include, but are not limited to, interconnection of extracellular matrices, electrical integration, the presence of intracellular signal transduction, and the like. The interaction of extracellular matrices can be observed with a microscope by staining intracellular adhesion as appropriate. Electrical integration can be observed by measuring electric potential.

In a preferable embodiment, the synthetic tissue of the present invention has a sufficient tissue strength for clinical applications. The sufficient tissue strength for clinical applications varies depending on a site to which the synthetic tissue is applied. Such a strength can be determined by those skilled in the art with reference to the disclosure of the specification and techniques well known in the art. The tensile strength of the synthetic tissue of the present invention may be low. The tensile strength becomes higher when the matrix concentration is increased, and becomes lower when the cell ratio is increased. The present invention is characterized in that the strength can

S

10

3.5

20

25

- 125 m

be adjusted as necessary. The present invention is also characterized in that the strength can approximate to be high or low relative to that of a tissue to be implanted. Therefore, it is recognized that the goal can be set to comply with any site.

In another ambodiment, it is preferable that a strength of the synthetic tissue or complex is sufficient for having a self-supporting ability. Conventional synthetic tissues do not have a self-supporting ability after production. Therefore, when conventional synthetic tissues are transferred, at least a part of them are injured. However, when the technique of the present invention is used, the synthetic tissue having the self-supporting ability is provided. This means that the present invention provides the synthetic tissue which cannot be provided by conventional techniques. Preferable self-supporting ability is such that, when a tissue is picked up with a tweezers having tips of 0.5 to 3 mm (preferably, tips of 1 to 2 mm, and more preferably, tips of 1 mm), the tissue is not substantially destroyed. Herein, whether the tissue is not substantially destroyed can be confirmed with eyes, but can be confirmed by performing, for example, a water leakage test after the tissue is picked up in the above-described conditions and confirming that water does not leak. Alternatively, the self-supporting ability as described above can also be confirmed by not being destroyed when picked up by fingers, instead of tweezers.

In a particular embodiment of the present invention, the above-described clinical application is intended to a bone, a joint, a cartilage, a meniscus, a tendon, a ligament, a kidney, a liver, a synovial membrane, a heart, and the

- 126 -

like. The origin of cells contained in the synthetic tissue of the present invention is not affected by clinical applications.

Also, when a synthetic tissue of the present invention is applied to a cartilage, the attachment ability of the synthetic tissue can be tested by determining whether or not the synthetic tissue remains attached without an additional fixation procedure when the synthetic tissue is implanted into an injured portion of the intra-articular tissue (e.g., 2, 3 minutes after).

15

20

28

30

In another aspect, the present invention provides a cell culture composition for producing synthetic tissue from a cell. The cell culture composition contains an ingredient (e.g., commercially available medium, etc.) for maintaining or growing the cell, and an ECM synthesis promoting agent. The ECM synthesis promoting agent has been described in detail in the above description of the synthetic tissue production method. Therefore, the ECM synthesis promoting agent includes ascorbic acid or a derivative thereof (e.g., TGF- β 1, TGF- β 3, ascorbic acid 1-phosphate or a salt thereof, ascorbic acid 2-phosphate or a salt thereof, L-ascorbic acid or a salt thereof, etc.). The culture composition of the present invention contains ascorbic acid 2-phosphate or a salt thereof at a concentration of at least 0.1 mM. Alternatively, in the case of a condensed culture composition, the condensed culture composition contains ascorbic acid 2-phosphate or a salt thereof at a concentration which becomes at least 0.1 mM after preparation. Ascorbic acid 2-phosphate or a sait thereof contained in the culture composition of the present invention is present at a concentration of at least 0.1 mM. When the culture

5

30

15

20

32

30

composition of the present invention is condensed, ascorbic acid 2-phosphate or a salt thereof contained therein is present at a concentration of at least 0.1 mM after fomulation. It seems that 0.1 mM or more ascorbic acids have substantially a constant effect. Thus, 0.1 mM can be said to be sufficient. For TGF- β 1 and TGF- β 3, 1 ng/ml or more, representatively 10 ng/ml, may be sufficient.

Alternatively, the present invention may provide a composition for producing a synthetic tissue, comprising such an ECM synthesis promoting agent.

In another embodiment of the present invention, an ECM synthesis promoting agent used in the synthetic tissue production method of the present invention includes ascorbic acid 2-phosphate (Hata R., Senoo H., J. Cell Physiol., 1989, 138(1):8-16). In the present invention, by adding an at least predetermined amount of ascorbic acid 2-phosphate, the production of an extracellular matrix is promoted. As a result, the resultant synthetic tissue or complex is made rigid, and therefore, becomes easy to be detached. Thereafter, the tissue undergoes self-contraction in response to a stimulus of detachment. Hata et al. does not disclose that the culture in medium supplemented with ascorbic acid causes the tissue to be rigid and thus confers to the tissue a property of being easily detached. Though not wishing to be bound by any theory, a significant difference between the present invention and Mata et al. is present in cell density. Also, Hata et al. does not suggest the effect of facilitating detachment of cells from a container for culture. The present invention is the first to find the effect OÉ tissue contraction on development three-dimensional synthetic tissue from monolayer cultured

~ 128 ~

cells. The synthetic tissue of the present invention can be absolutely distinguished from conventional synthetic tissues, since the synthetic tissue of the present invention is produced via the procedures of tissue detachment and subsequent tissue contraction.

In a preferable embodiment, ascorbic acid 2-phosphate used in the present invention is typically present at a concentration of at least 0.01 mM, preferably at least 0.05 mM, more preferably at least 0.1 mM, even more preferably at least 0.2 mM, and still more preferably at least 0.5 mM, and still more preferably at least 0.5 mM, and still even more preferably 1.0 mM.

In one embodiment of the present invention, the cell density is, but is not particularly limited to, 5×10° to 5×10° cells per 1 cm². These conditions may be, for example, applied to myoblast. In this case, preferably, the ECM synthesis promoting agent may be ascorbic acids and may be provided at a concentration of at least 0.1 mM. This is because a thick synthetic tissue can be produced. In this case, if the concentration is increased, a synthetic tissue having a dense extracellular matrix is produced. If the concentration is low, the amount of an extracellular matrix is decreased but the self-supporting ability is maintained.

25

30

S

20

15

20

(Synthetic tissue for replacement and coverage)
In another aspect, the present invention provides a synthetic tissue or complex for reinforcement of a portion of an animal organism. The synthetic tissue or complex capable of such reinforcement is a technique achieved only after the synthetic tissue production method of the present invention is provided. Since the synthetic tissue or complex of the present invention has self-supporting ability, it

can be used in applications which are not conventionally provided (e.g., filling (replacement) reinforcement, whole reinforcement, no-leakage reinforcement, coverage, etc.). The present invention has a significant effect such that the filling and replacement reinforcement (i.e., cell supply) was significantly improved. The present invention also allows differentiation induction, which enlarges the range of application of the present invention.

In a specific embodiment of the present invention, the above-described reinforcement may be achieved by disposing a synthetic tissue of the present invention to cover the above-described portion. It is not possible to use a synthetic tissue provided by conventional methods to perform treatment by covering the above-described portion (i.e., replacement and/or coverage application). Thus, the synthetic tissue of the present invention can provide applications which cannot be achieved by conventional techniques.

20

Therefore, in the above-described specific embodiment, the synthetic tissue or complex of the present invention is resistant to dilation/contraction of the above-described portion.

28

Ş

In a preferable embodiment, the synthetic tissue or complex of the present invention advantageously has biological integration.

In another preferable embodiment, the biological integration includes at least one of interconnection of extracellular matrices, electrical integration, and intracellular signal transduction.

5

10

30

In another preferable embodiment, the synthetic tissue or complex for reinforcement of the present invention is formed by culturing a cell in the presence of an ECM synthesis promoting agent.

In another embodiment, the synthetic tissue or complex for reinforcement of the present invention comprises a cell (sutologous cell) derived from an animal to be treated (e.g., a human). More preferably, a synthetic tissue for reinforcement of the present invention comprises only a cell(s) (sutologous cell) derived from an animal to be treated (e.g., a human) as a cell source.

15 Applications for the therapy utilizing the present invention include, for example: cartilage full thickness injury, cartilage partial injury; osteochondral injury; Osteonecrosis; osteoarthritis; meniscus injury; licament injury (chronic injury, degenerative tear, biological augmentation for reconstruction surgery, etc.); rotator cuff 30 (particularly, chronic injury, degenerative tear, etc.); delaved umion; nonunion; skeletal repair/regeneration; cardiac muscle repair; (augmenting the repair of necrotic tissue by ischemic-heart disease) or the 25 like.

(Therapy using replacement and coverage)

In another aspect, the present invention provides a method for reinforcement of a portion of an animal organism. The method comprises the steps of: A) disposing a synthetic tissue or complex to replace or cover the portion; and B) holding the synthetic tissue or complex for a time sufficient to connect to the portion. Herein, to position

8

10

15

20

25

- 131 -

a portion for replacement typically means to perform debridement or curettage of an affected portion as necessary, to position the synthetic tissue or complex of the present invention on the lesion, and to allow it to stand so as to promote replacement. An objective of such replacement is to fill cells. Techniques known in the art can be combined and used. The step of disposing the synthetic tissue to cover the portion can be carried out using a technique well known in the art. The sufficient time varies depending on a combination of the portion and the synthetic tissue, and can be easily determined as appropriate by those skilled in the art depending on the combination. Examples of such a time include, but are not limited to, 1 week, 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, and the like. In the present invention, a synthetic tissue preferably comprises substantially only cell(s) and material(s) derived from the cell. Therefore, there is no particular material which needs to be extracted after operation. The lower limit of the sufficient time is not particularly important. In this case, it can be said that the longer the time, the more preferable the synthetic tissue. If the time is sufficiently extremely long, it can be said that reinforcement is substantially completed. Therefore, the time is not particularly limited. The synthetic tissue of the present invention is also characterized in that it is easily handled, is not destroyed during an actual treatment, and facilitates a surgery due to its self-supporting ability.

In another embodiment, in a reinforcement method of
the present invention, the above-described portion
preferably includes bag-shaped organs (e.g., hearts, livers,
kidneys, etc.). In order to reinforce such a bag-shaped
tissue, it is necessary to replace or cover the organ. A

WO 2005/012512 PCT/IP20842031401

synthetic tissue resistant to applications for replacement or covering is first provided by the present invention. Therefore, the reinforcement method of the present invention is advantageous over conventional techniques.

<u>\$3</u>

10

Alternatively, the above-described portion may include a bone or cartilage. Examples of such portions include, but not limited to, meniscus, ligament, tendon, and the like. By the method of the present invention a disease, injury, or condition of a heart, bone, cartilage, ligament, tendon, or meniscus may be treated, prevented or reinforced.

Farticularly, in the reinforcement method of the present invention, a synthetic tissue or complex of the present invention is resistant to dilation/contraction of the above-described portion. Examples of such dilation/contraction include, but are not limited to, the pulsation motion of a heart, the contraction of a muscle, and the like.

In another preferable embodiment, in the reinforcement method of the present invention, a synthetic tissue or complex of the present invention has biological integration (e.g., interconnection of extracellular matrices, electrical integration, intracellular signal transduction, etc.). The biological integration is preferably provided in all three dimensions.

30

35

In another preferable embodiment, the reinforcement method of the present invention further comprises culturing a cell in the presence of an ECM synthesis promoting agent to form a synthetic tissue or complex of the present invention.

WO 2005/012512 PCY/JP2004/03/1401

~ 133 ~

An implantation/regeneration technique using the method which comprises the step of culturing a cell in the presence of an ECM synthesis promoting agent cannot be provided by conventional techniques. The method provides a therapy for diseases (e.g., cartilage injury, intractable bone fracture, etc.), which cannot be achieved by conventional therapies.

In a preferable embodiment, in the reinforcement methodofthe present invention, the cell used in the synthetic tissue or complex of the present invention is derived from an animal to which the synthetic tissue is to be implanted (i.e., an autologous cell). By using an autologous cell, adverse side effects, such as immune rejection reactions or the like, can be avoided.

15

20

25

1.0

83.

In another preferable embodiment, the portion is a heart.

Applications for the therapy utilizing the present invention include, for example: cartilage full thickness injury, cartilage partial injury; osteochondral injury; osteonecrosis; osteoarthritis; meniscus injury; ligament injury (chronic injury, degenerative tear, biological augmentation for reconstruction surgery, etc.); rotator cuff (particularly, chronic injury, degenerative tear, etc.); delayed union; nonunion; skeletal muscle repair/regeneration; cardiac muscle repair; (augmenting the repair of necrotic tissue by ischemic-heart disease) or the like.

30

For some organs, it is said that it is difficult to radically treat a specific disease, disorder, or condition thereof (e.g., refractory heart diseases). Sowever, the

S

10

15

20

25

30

present invention provides the above-described effect, thereby making possible a treatment which cannot be achieved by conventional techniques. It has been clarified that the present invention can be applied to radical therapy. Therefore, the present invention has usefulness which cannot be achieved by conventional medicaments.

Thus, the present invention provides a method for treating a portion of an organism of an animal, comprising: A) positioning the synthetic tissue or complex so as to cover the portion; and B) retaining the synthetic tissue for a time period which is sufficient for the condition of the portion of the organism to be improved. Such an improvement in the condition can be determined can be determined in accordance with the function of the portion to be treated. For example, when a heart should be treated, an improvement in the condition can be determined by checking a cardiac function (heartbest, bloodstream, or the like). If a bone should be treated, an improvement in the condition can be determined by observing osteogensis by using roentgen, CT scan, or the like. In the case of a bone, an improvement in the condition can be determined by measuring its strength or by evaluating bone marrow and/or a bone substance by using MRI. If a cartilage or meniscus should be treated, a surface of a joint can be observed by an arthroscopy. Further, it is possible to determine an improvement in the condition by performing a biomechanical inspection under arthroscopy. It is also possible to determine an improvement in the condition by confirming a repairing condition by using MRI. Regarding ligament, it is possible to determine by confirming whether there is laxity by a joint stability inspection. Further, an improvement of the condition can be determined by confirming a continuousness of a tissue by an MRI. In

- 335 -

the case of any tissue, it is possible to determine whether the condition is improved by performing a biopsy of the tissue and making a histological evaluation.

In a preferred embodiment the treatment treats, prevents, prognosis, or enhances a disease, injury, or condition of a heart, bone, cartilage, ligament, tendon, ormeniscus. Preferably, the synthetic tissue or the complex has a self-supporting ability. For such a synthetic tissue, those skilled in the art can use a synthetic tissue of any form described above herein, and a variant thereof.

(Combined therapy)

1.5

20

25

30

In another aspect, the present invention provides a regeneration therapy which uses a cytokine, such as BMP (e.g., BMP-2, BMP-4, BMP-7, etc.), TGF- β 1, TGF- β 3, HGF, FGF, IGF, or the like, in combination with a synthetic tissue.

Some cytokines used in the present invention are already commercially available (e.g., BMF (Yamanouchi Pharmaceutical), bFGF2 (Kaken Pharmaceutical), TGF- β l (for research only, HGF-10l from Toyo Boseki, etc.). However, these cytokines can be prepared by various methods and can be used in the present invention if they are purified to an extent which allows them to be used as a medicament. A certain cytokine can be obtained as follows: primary cultured cells or an established cell line capable of producing the cytokine is cultured; and the cytokine is separated from the culture supernatant or the like, followed by purification. Alternatively, a gene encoding the cytokine is incorporated into an appropriate vector by a genetic engineering technique; the vector is inserted into an appropriate host to transform the host; a recombinant

S

10

13

20

£ 5

30

cytcking of interest can be obtained from the supernatant of the transformed host culture (e.g., Nature, 342, 440(1989); Japanese Laid-Open Publication No. 5-111383; Biochem-Biophys. Res. Commun., 163, 967 (1989), etc.). The above-described host cell is not particularly limited and can be various host cells conventionally used in cenetic engineering techniques, including, for example, Escherichia coli, yeast, animal cells, and the like. The thus-obtained cytokine may have one or more amino acid substitutions, deletions and/or additions in the amino acid sequence as long as it has substantially the same action as that of the naturally-occurring cytokine. Examples of a method for introducing the cytokine into patients in the present invention include, but are not limited to, a Sendai virus (HVJ) liposome method with high safety and efficiency (Molecular Medicine, 30, 1440-1448(1993); Jikken Igaku (Experimental Medicine), 12, 1822-1826 (1994)), electrical gene introduction method, a shotgun gene introduction method, a ultragonic gene introduction method. and the like. In another preferable embodiment, the above-described cytokines can be administered in the form of proteins.

(Production method of synthetic tissue having desired thickness)

Another aspect of the present invention provides a method for producing a synthetic tissue or complex having a desired thickness. This method comprises: A) providing cells; B) positioning the cells in a container having the base area sufficient for accommodating the synthetic tissue or complex having the desired size, which contains an ECM synthesis promoting agent (e.g., ascorbic acids, TGF- β 1, TGF- β 3, etc.); C) culturing the cells in the container with

S

10

3.5

20

25

30

- 137 -

a cell culture medium including the ECM synthesis promoting agent for a time sufficient for forming the synthetic tissue or complex having the desired size to convert the cells into a synthetic tissue; and D) adjusting the thickness of the synthetic tissue to obtain a desired thickness by a physical stimulation or a chemical stimulation. Herein, the steps of providing the cells, positioning the cells, stimulating and converting into the tissue or complex are described with respect to the production method for the synthetic tissue or complex of the present invention in detail, and it is understood that any embodiment can be employed.

Next, examples of the physical or chemical stimulation to be used may include, but not limited to, use pipetting, use of actin interacting substance. Pipetting may be preferable because operation is easy and no harmful substance is produced. Alternatively, examples of the chemical stimulation to be used may include actin depolymerizing factors and actin polymerizing factor. Examples of such an actin depolymerizing factor may include ADF(actin depolymerizing factor), destrin, depactin, actophorin, cytochalasin, NGF (nerve growth factor) and the like. Examples of the actin polymerizing factor include LPA (lysophosphatidio acid), insulin, PDGFa, POGED, chemokine, and TGFb. The polymerization depolymerization of actin can be observed by checking the activity to actio. It is possible to test any substance whether it has such an activity. It is understood that a substance which is tested as such and identified can be used for achieving the desired thickness in production of the synthetic tissue of the present invention. For example, in the present invention, the adjustment of the desired thickness can be achieved by adjusting the ratio between

- 138 -

the actin depolymerizing factor and actin polymerizing factor.

(Composite tissue)

83

10

15

20

28

30

Another aspect of the present invention also provides a tissue complex including an implantable synthetic tissue and another synthetic tissue. Herein, another tissue may either be a synthetic tissue included within the scope of the present invention, or a synthetic tissue out of the scope (i.e., conventional tissues). Conventional tissues (e.g., an artificial bone, microfibrous collagen medical device, etc.,) do not have a biological integrating ability or have a biological integrating ability which cannot stand the practical use. Thus, it was almost impossible to form such a tissue complex. It is understood that, according to the present invention, a cartilage can be combined to a bone for treatment. For the case of a cavity in a bone or the like, particularly, for the case of treatment of bone cartilage complex, by using a tissue complex of an artificial bone (e.g., hydroxyapatite construct such as NEO BONE, a microfibrous collagen medical device, etc. } and the synthetic tissue or complex of the present invention, it is possible to treat the bone by the artificial bone, and the cartilage on the bone by the synthetic tissue at the same time. It is understood that the synthetic tissue or complex of the present invention is combined to an artificial bone and used for treatment. Herein, the implantable synthetic tissue or complex of the present invention substantially comprises, for example, cells and substances derived from the cells. and more preferably, cells and extracellular matrix derived from the cells. The extracellular matrix as used herein is selected from the group consisting of collagen I, collagen III, Vitronectin, and fibronectin.

WO 2005/012512

As used herein, the term "tissue complex" refers to a tissue obtained by combining a synthetic tissue or complex of the present invention with another synthetic tissue (including a synthetic tissue or complex of the present invention). Such a tissue complex can be used for a treatment of a plurality of tissues. For example, such a tissue complex can be used for treatment of both cartilage and bone.

In the case there is a large defect of soft tissue (e.g., menisucus, etc.), the synthetic tissue of the present invention can be coupled to another synthetic tissue (microfibrous collegen medical device (e.g., CMI (Amgen, USA), Integran® (Nippon Zoki Pharmaceutical), hyaluronic acid gel, collagen gel, agarose gel, alginate gel, beads etc.) to promote biological integration between another synthetic tissue and an implantation cells.

Preferably, in the complex of the present invention, an implantable synthetic tissue and another synthetic tissue are biologically integrated. Such integration can be produced by culturing two tissues in contact. Such a biological integration is mediated by extracellular matrix.

Hereinafter, the present invention will be described by way of examples. Examples described below are provided only for illustrative purposes. Accordingly, the scope of the present invention is not limited except as by the appended claims.

30

20

S

(Examples)

In the examples below, animals were treated in

- 140 -

accordance with rules defined by Osaka University (Japan) and were cared for in the spirit of animal protection.

(Example 1: Synovial cell)

In this example, various synovial cells were used to produce a synthetic tissue as follows.

<Preparation of cells>

Synovial cells were collected from a knee joint of a pig (LWD ternary hybrid, 2-3 months old upon removal of 3.0 cells), followed by treatment with collagenase. The cells were cultured and subcultured in 10% FBS-DMEM medium (FBS was obtained from HyClone, DMEM was obtained from GIBCO). It has been reported that 10th passage synovial cells still 1.5 have pluripotency. Although cells of 10 or lest passages were used in this example, cells of more than 10 passages may Dec. used depending on the application. Autotransplantation was performed for humans, where a sufficient number of cells were used and the cells were cultured for a short period of time so as to reduce the risk 20 of infection or the like.

Considering these points, cells of various passages were used. Actually, primary culture cells, first passage cells, second passage cells, third passage cells, fourth passage cells, fifth passage cells, sixth passage cells, eighth passage cells, and tenth passage cells were used in experiments. These cells were used for synthetic tissues.

30 <Preparation of synthetic tissue>

25

Synovial cells (4.0×10⁶) were cultured in 2 ml of 10% FBS-DMEM medium in a 35-mm dish, a 60-mm dish, or 100-mm dish (8DBiosciences, culture dish and multiwell cell culture

- 141 -

plate). In this case, ascorbic acid was added. The dishes, the ascorbic acid concentrations, and the cell concentration are described below.

5 Dishes: BD Biosciences, cell culture dishes and multiwell cell culture plates

Ascorbic acid 2-phosphate: 0 mM, 0.1 mM, 0.5 mM, 1 mM, 2 mM, and 5 mM

10

The number of cells: 5×10^4 cells/cm², 1×10^8 cells/cm², 2.5×10^3 cells/cm², 4.0×10^8 cells/cm², 5×10^5 cells/cm², 7.5×10^5 cells/cm², 1×10^6 cells/cm², 5×10^8 cells/cm², and 1×10^7 cells/cm²

1.5

20

25

30

Medium was exchanged two times per week until the end of a predetermined culture period. At the end of the culture period, a cell sheet was detached from the dish by pipetting circumferentially around the dish using a $100-\mu l$ pipetteman. After detachment, the cell sheet was made as flat as possible by lightly shaking the dish. Thereafter, 1 ml of medium was added to completely suspend the cell sheet. The cell sheet was allowed to stand for two hours, resulting in the contraction of the cell sheet into a three-dimensional form. Thus, a synthetic tissue was obtained (Fig. 1).

<### </pre> ### <pr

The acceptance or vanishment of cells in a sheet was observed by HE staining. The procedure is described as follows. A sample is optionally deparaffinized (e.g., with pure othanol), followed by washing with water. The sample is immersed in Omni's hematoxylin for 10 min. Thereafter, the sample is washed with running water, followed by color

development with associa in water for 30 sec. Thereafter, the sample is washed with running water for 5 min and is stained with eosin hydrochloride solution for 2 min, followed by dehydration, clearing, and mounting.

5

10

(Various extracellular matrix staining)

- 1. Make 5 µm thick sections from frozen block.
- 2. Sections are fixed in acetone at -20°C for 5-10 mins. (Faraffin blocks should be deparaffinized and rehydrated).
- 3. Endogenous peroxide activity is blocked in 0.3% $\rm H_2O_2$ in methanol for 20 mins at RT.

 $(1 \text{ ml } 30\% \text{ H}_2\text{O}_2 + 99 \text{ ml methanol})$

- 4. Wash with PBS (3 × 5 mins).
- 15 5. Incubate with primary monoclonal antibody (a mouse or rabbit antibody against each extracellular matrix protein) in a moist chamber at 4°C for overnight (1 μ l antibody + 200 μ l PBS per slide).
 - 6. Next day wash with PBS $(3 \times 5 \text{ mins})$.
- 7. Apply anti mouse and anti rabbit no. 1 Biotynalated link for 30 mins -1 hrs at RT.

(apply about 3 drops directly on slide).

- 8. Wash with PBS $(3 \times 5 \text{ mins})$.
- 9. Apply about 3 drops directly Streptavidin HRP no. 2 for
- 25 LSAB. 10-15 mins.
 - 10. Wash with PBS $(3 \times 5 \text{ mins})$.
 - 11. Apply DAB (5 ml DAB+5 μ 1 H_2O_2).
 - 12. Observe under microscope for brownish colour.
 - 13. Dip in water for 5 mins.
- 30 10. Apply ME for 30 sec-1 min.
 - 15. Wash several times.
 - 16. Ion exchange water wash 1 time.
 - 17. 80% ethanol wash for 1 min.

- 143 -

18. 90% ethanol wash for 1 min.

- 19. 100% ethanol wash for 1 min (3 times).
- 20. Xylene wash for 1 min (3 times), Coverslip.

21. Examine color development.

S

10

3.5

20

25

30

An exemplary result is shown in Figure 1. As shown in the right portion of Figure 1, when ascorbic acid 2-phosphate was added as an ECM synthesis promoting agent. a contractile three-dimensional tissue of the cells was only slightly observed. On the other hand, by detaching the sheet-like cells from the base of the culture dish and allowing the cells to self organize, the cells were promoted to be layered and were accelerated into a three-dimensional structure, as shown in the left portion of Figure 1. As shown in a left portion of Figure 1, large tissue without a hole was also produced when synovial cells were used. This tissue was thick and its extracellular matrix was rich as shown in a right portion of Figure 1. When ascorbic acid 2-phosphate was added at a concentration of 0.1 mM or more, the formation of an extracellular matrix was promoted (Figure 2). Figure 3 shows an enlarged view of a synthetic tissue on Day 3, 7, 14, and 21. As can be seen, after 3 days of cultre, the tissue was already so rigid that it can be detached (Figure 3). As the number of culture days is increased, the density of the extracellular matrix fluctuates and increases.

The tissue was detached from the base of the culture dish and self-contracted. The synthetic tissue was prepared in a sheet form. When the sheet was detached from the dish and was allowed to stand, the sheet self contracted into a three-dimensional structure. It is seen that a number of layers of cells exist in the tissue.

Next, various markers including extracellular matrix markers were stained.

Figure 4 shows the result of staining extracellular S matrix. It can be seen that various extracellular matrix components (collagen I, II, III, fibronectin, vitronectin, etc.) existed. Immunostaining was conducted, so that collagen I and III were strongly stained while collagen II 10 staining was limited to a portion. By being strongly magnified, it can be confirmed that collagen was stained at a site slightly away from the nuclei, i.e., collagen was a part of the extracellular matrix. On the other hand, fibronectin and vitronectin, which are believed to be 13 important cell adhesion molecules. By being strongly magnified, it can be confirmed that fibronectin and vitronectin were stained at a region close to nulei unlike collagen, i.e., fibronectin and vitronectin existed around the cells.

These results demonstrated that cells of at least 3 to 8 passages are preferable for production of synthetic tissue.

20

For comparison, a nomal tissue and a collagen sponge (CMI, Amgen, USA) were stained. Figure 5 shows the normal tissue (normal synovial membrane tissue, tendon tissue, cartilage tissue, skin, and meniscus tissue). Figure 6 shows the stained collagen sponge, which was the comparative example. From the left, fibronectin, vitronectin, negative control, and HE staining are indicated. As can be seen, the conventional synthetic tissue was not stained with fibronectin or vitronectin. Therefore, the synthetic

tissue of the present invention is different from conventional synthetic tissues. Existing collagen scaffolds do not contain fibronectin and vitronectin (adhesion agents). In view of this, the originality of the synthetic tissue of the present invention is clearly understood. No stain in found in the extracellular matrix. When the synthetic tissue of this example was compared with normal tissue, the synthetic tissue has a lower extracellular matrix density and had a structure different from normal tissue.

Further, when the synthetic tissue of the present invention was contacted with a filter paper in order to remove moisture from the tissues, the filter is adhered to the synthetic tissue, and it was difficult to manually detach the synthetic tissue of the present invention.

In order to determine the collagen concentration, the collagen content was measured. The result is shown in Figures 7 and 8. As can be seen, the amount of hydroxyproline clearly indicates that when 0.1 mM or more ascorbic acid 2-phosphate was added, the production of collagen was significantly promoted. The amount of produced collagen is substantially proportional to the time period of culture (Figure 8).

25

30

20

5

3.0

15

(Example 2: Measurement of collagen production)

Next, it was determined whether or not collagen
(extracellular matrix) is sufficiently secreted after
implantation of a synthetic tissue of the present invention.
The following protocol was used.

<Method>

Culture periods: 3 days, 7 days, 14 days, and 21 days,

WO 2005/012512 PCT/IP20842031401

Concentrations of ascorbic acid 2-phosphate: 0 mM, 0.1 mM, 1 mM, and 5 mM

Under the above-described conditions, a symposial membrane-derived synthetic tissue was produced.

3

3.0

6 N HCl was added to culture medium for the synthetic tissue, followed by hydrolysis at 105°C for 16 hours. The medium was exidized with chloramine T. Thereafter, the synthetic tissue was subjected to color development using Ehrlich's Reagent Solution (2 g of p-dimethylamino-benzaldehyde + 3 ml of 60% perchloric acid; isopropanol was diluted at 3:13), followed by measurement of absorbance.

15 <Results>

- 1) The quantities of collagen produced was dependent on the ascorbic acid concentration in the following manner: 0 mM << 5 mM < 1 mM \le 0.1 mM <Figure **7 and 8**>.
- 20 2) it was demonstrated that the quantity of produced collogen is increased with an increase in the culture time period.
- (Example 3: Influences of the size of a dish, the number of cells, and the number of passages)

Next, influences of the size of a dish and the number of passages were investigated.

Figure 9 shows the formation of synthetic tissues
30 where the number of cells and the number of the passage were changed. Asynthetic tissue was formed in all concentrations tested.

WO 2005/012512 PCI/IP2004/014/01

m 147 m

Under the conditions of the above-described Example 1, a similar experiment was conducted where the sizes of dishes were 35 mm, 65 mm, and 100 mm and the number of passages were 5 to 7 (Figure 10).

3

The results are shown in Figures 9 and 10. Figure 9 shows the states of synthetic tissues, where the number of passages was changed. Figure 10 shows the states of synthetic tissues, where the size of a dish was changed. As can be seen from the figures, it was demonstrated that a synthetic tissue can be formed using any size of dish and any number of passages.

15

20

25

30

10

As shown in Figure 9, basically, a greater number of cells may be preferable for the purpose of matrix production. However, when an excessive number of cells were provided, the cells produced an excessive level of contraction force. so that the cell sheet was detached on the day following the start of culture. Therefore, it was demonstrated that when a larger synthetic tissue is desired, it is preferable to dessimate cells at a relatively small concentration. Particularly, in order to control the strength or the like of a synthetic tissue, a relatively small cell concentration seems to be preferable. As can be seen from the figure, when the number of passages was five, the resultant cell sheet was spontaneously detached if the cell concentration was $5.0 imes 10^5/ ext{cm}^2$, and was not spontaneously detached if the cell concentration was 2.5×10⁸/cm². Also, when the number of passages was six or more, the resultant cell sheet was spontaneously detached if the cell concentration was 7.5×105/cm3, and was not spontaneously detached if the cell

3

10

15

20

2.5

30

- 148 -

concentration was 5.0×10°/cm². Therefore, the production of a preferable synthetic tissue of the present invention seems to require a sufficient number of cells and a relatively great number of passages. Fourth passage cells were used to produce a trial synthetic tissue. It was spontaneously detached when the cell concentration was 40×10°/cm². Thus, there seems to be a close relationship between the strength of a synthetic tissue and the number of passages. Various synthetic tissues can be produced, depending on the application. According to these results, cells capable of withstanding implantation seems to be obtained by culturing fifth passage cells at a concentration of 4.0×10°/cm², however, the present invention seems not to be limited to this.

Similarly, the strength of tissues consisting of other cells is demonstrated to be able to be regulated by changing the cell concentration. Under the conditions described in Example 1, myoblasts can be used to produce a synthetic tissue and the influence of cell density on the strength of the synthetic tissue can be measured. Under the conditions described in Example 28, synovial cells can be used to produce a synthetic tissue and the influence of cell density on the strength of the synthetic tissue can be measured. Under the conditions described in Example 12, fat-derived cells can be used to produce a synthetic tissue and the influence of cell density on the strength of the synthetic tissue and the influence of cell density on the strength of the synthetic tissue can be measured.

(Example 4: Measurement of mechanical properties)
In this example, cells (4×10° cells/cm²) were cultured in medium containing ascorbic acid 2-phosphate for three weeks. Following detachment at 48 hours, the mechanical properties of the tissue were investigated. The protocol

- 149 -

will be described below.

The meChanical properties were examined by a tensile test.

8

Figures 11 and 12 show the outer appearance of a testing apparatus. Figure 11 shows a test piece holding portion (an original piece is shown). As shown in Figure 12, the opposite ends of a synthetic tissue were held by the test piece holding portion. A marker was attached to the synthetic tissue for ease of measurement. Figure 13 shows the attachment of the marker. Figure 14 shows an enlarged view of the test piece holding portion. Figure 15 shows the state of the synthetic tissue after a tensile test.

1.5

20

25

30

3.0

A synthetic tissue was held as shown in the figures and a marker was attached to the synthetic tissue, followed by a tensile test. The maximum load was 1.89 N, and the Young's modulus was 19.2 Mega pascal. As a reference, the maximum load (tension) of cartilage is typically 0.7 and that of skin is 1.2. The Young's modulus of cartilage is 10 MPa and that of skin is 35 Mpa. Thus, it was demonstrated that the synthetic tissue of the present invention has substantially the same mechanical strength as that of skin, cartilage, or the like, and can resist surgical handling.

The results of the experiment are shown in Figures 16 and 17. The results demonstrate that the maximum load was 1.89 N and 1.9 N, respectively. Young's modulus (tangent tensile modulus) was 19.2 MPa.

(Example 5: Determination of self-supporting ability)

Š

10

3.5

30

Next, the self-supporting ability of a synthetic tissue of the present invention was tested. The synthetic tissue was held and tested using curved fine forceps A-ll (made of stainless steel; full length: 120 mm; curved: 20 mm, tip: 0.1 mm; manufactured by Natsume Seisakusho). It was determined by visual inspection whether or not the synthetic tissue has self-supporting ability. If the synthetic tissue was divided into a plurality of pieces, it was determined to lacking self-supporting ability. The same result was obtained when another forceps, e.g., curved fine forceps A-12-2 (made of stainless steel, full length: 100 mm; tip: 0.05 mm; manufactured by Natsume Seisakusho) were used by another experimenter performing the same expriment.

The self-supporting ability may be determined immediately after detaching a synthetic tissue off or after preserving a detached synthetic tissue.

None of the synthetic tissues comprising cardiomyocytes, myoblasts, and synovial cells, which are produced in the presence of a three-dimensional promoting agent comprising ascorbic acid as described in the above examples, had self-supporting ability. In contrast, it was already difficult to hold a synthetic tissue produced in the absence of such an agent with forceps upon detachment, so that lack of self-supporting ability was confirmed.

Therefore, 1) if a sheet is easily detached by circumferential pipetting; and 2) if the detached sheet is easily attached to a target site by lightly touching an edge thereof, the sheet spontaneously contracts to have sufficient strength.

Therefore, self-supporting ability is a property which was first obtained by the method of the present invention.

5 (Example 6: Osteogenic differentiation induction)
In this example, it was determined whether or not
the synthetic tissue of the present invention works when
osteogenesis was induced in the synthetic tissue.

It was confirmed that synovial cells can be cultured in osteogenesis induction medium (10% FBS-IMEM+0.1 µM dexamethasone, 10 mM beta glycerophosphate, 0.2 mM ascorbic acid 2-phosphate) from the beginning to produce a synthetic tissue.

15

20

25

30

Also, it was confirmed that a synthetic tissue was produced without osteogenesis induction, and thereafter, the medium was exchanged with osteogenesis induction medium and the tissue was cultured, so that calcificated bone was generated in the synthetic tissue. The result is shown in Figure 18.

Whereas a synthetic tissue without differentiation inductionappears to be transparent, an ossificated synthetic tissue has a white colour. The synthetic tissue was strongly stained with Alizarin Red. and was also strongly stained by alkali phosphatase (ALP) staining as compared to the control. Thus, it was confirmed that the synthetic tissue of synovial cells is capable of osteogenesis.

(Example 7: chondrogenesis induction)

- 152 -

In this example, it was determined whether or not chondrogenesis induction can be used for the production method of the synthetic tissue of the present invention.

5 (Culture conditions)

Cell density: 4×10⁴ cells/cm²

125

Conditions: CO2 5%, air 95%, 37°C

These conditions and a chondrogenesis induction
10 medium described below were used to produce a synthetic
tissue.

Cartilage differentiation induction medium: DMEM (GIBCO), FBS (ByClone) 10%, ITS + Premix (insulin, transferrin, selenious acid) (BD Biosciences) 6.25 µg/ml, dexamethasone (Sigma) 10⁻⁷ M, ascorbic acid (WAEO) 50 µg/ml, pyrubic acid (SIGMA) 100 µg/ml.

The results are shown in Figure 19. The cells were induced into cartilage. From the left, a typical medium, a chondrogenesis induction medium, a chondrogenesis induction medium+BMP-2, and a chondrogenesis induction medium+TGF-bl were used to culture a synthetic tissue. All of the tissues were stained blue with Alcian blue staining. It was confirmed that a cartilage-like matrix production was accelerated. Such an effect is significant for cells cultured in medium containing BMF-2. The result of quantification of staining ability is shown in Figure 20.

30 Expression of cartilage-associated genes (aggrecan, Col II, Sox9) in the synthetic tissue is shown in Figure 21.

When the synthetic tissue was transferred from the typical medium (leftmost column) to the chondrogenesis induction

- 153 -

medium (middle column), expression of the Sox9 gene, which is a chondrogenesis marker, was increased. synthetic tissue was further cultured in the chondrogenesis induction medium+BMP-2, expression of the collagen II gene was also increased. Thus, stronger chondrogenesis could be confirmed. Figure 22 shows the results of comparison of a chondrogenesis reaction between a monolayer culture synoyial cell and a synovial cell in a three-dimensional synthetic tissue, when the same differentiation inducing stimulus was applied. When counted from the left, odd-numbered columns indicate monolayer culture, while even-numbered columns indicate three-dimensional synthetic tissue, where culture was performed under the same culture conditions. When the chondrogenesis induction medium or the chondrogenesis induction medium + BMP-2 was added as a stimulus, it was confirmed that the chondrogenesis marker gene was significantly expressed in the synthetic tissue. Thus, the three-dimensional synthetic tissue was confirmed to have strong chondrogenesis ability.

20

83

1.0

15

(Example 8: Repair of a pig cartilage)

Next, it was determined whether or not cartilage can
be repaired. An allogenic synthetic tissue was used.

To determine the presence or absence of the adhesion capability of a synthetic tissue, an allogenic synthetic tissue was implanted onto a pig cartilage piece. The synthetic tissue was prepared under conditions where the number of cells was 4.0×10⁶ cells/35-mm dish, the concentration of ascorbic acid was 1 mM, and the culture period was 7 to 14 days. A wound having a diameter of 6 mm was generated on the cartilage piece. An upper layer zone thereof was cut off from the cartilage piece using a scalpel.

Ş

Chondroitinase ABC (1 U/ml) was added. The cartilage piece was allowed to react for 5 minutes. A synthetic tissue was sized to have a diameter of 6 mm and was implanted, followed by culture for 7 days. The synthetic tissue is closely attached to the attachment surface of the cartilage piece. Fibronectin aggregated on the attachment surface (Figure 23).

Next, pig cartilage implantation was performed. As 10 described above, a wound having a diameter of 6 mm was created in a medial femoral condyle. An upper layer zone thereof was cut off from the cartilage piece using a scalpel. Chondroitinase ABC (1 U/ml) was added. The cartilage piece was allowed to react for 5 minutes. A allogenic synthetic 15 tissue was sized to have a diameter of 6 sm and was implanted. followed by culture for 7 days. The results are shown in Figure 24. Figure 25 shows a strongly enlarged view of a culture portion of a surface of the cartilage adhered to the synthetic tissue of Figure 24. The left portion of 20 Figure 25 is a photograph showing the result of HE staining, the middle portion is a photograph showing the result of staining with anti-fibronectin antibodies, and the right portion is a photograph showing the result of staining with anti-vitronectin antibodies. As indicated by an arrow (the 25 interface between the synthetic tissue and the cartilage tissue), it was demonstrated that the matrix of the synthetic tissue was directly attached to the cartilage matrix, but not via cells. It is shown that fibronectin and witronectin were accumulated at the adhesion surface. Thus, the results suggest that these adhesion molecules are involved in 30 adhesion between a synthetic tissue and a recipient tissue. Therefore, the present invention is also characterized in that the synthetic tissue is more effectively adhered to

- 155 -

in vivo tissue than conventional synthetic tissues, or calls.

Further, the tissue was examined after one month of implantation. The result is shown in Figure 26. As can be seen, it is confirmed that the synthetic tissue was biologically integrated with the cartilage injury portion and was accepted without inflammation. The surface layer portion of the synthetic tissue was made mainly of fibroblast-like cells as shown in Figure 27. On the other hand, a deeper layer portion of the synthetic tissue was made mainly of cartilage-like cells as shown in Figure 28. Therefore, the implanted synthetic tissue had differentiated into cartilage-like tissue over time. No significant rejection was confirmed in any period of time, and rejection which is expected for allogenic implantation; was not observed.

Therefore, it was found that the allogenic synthetic tissue can be implanted without a side effect.

1

S

30

3.5

(Example 9: Repair of a pig meniscus)

Next, it was determined whether or not the synthetic tissue of the present invention is applicable to repair of meniscus.

25

30

As in the above-described Example 6, an allogenic synthetic tissue was prepared under conditions where the number of cells was 4.0×10° cells/35-mm dish, the concentration of ascorbic acid was 1 mM, and the culture period of time was 7 to 14 days. A portion having a diameter of 6.5 mm was removed from a meniscus (Figure 29), and the synthetic tissue was implanted thereinto. The portion containing the implant was covered with a collagen sheet

~ 156 ~

(Nipro) for protection until the synthetic tissue was accepted (Figure 30). The pig was kept for one month. The protocol is described below.

5 (Anesthesia)

A pig 15 to 17 weeks old (LWD ternary hybrid) was intramuscularly injected via the dorsal portion of its neck with 20 mg/kg Ketaral + 10 mg/kg Seractal. Thereafter, an infusion route was provided in the ear vein, and thereafter, the respiratory tract was secured using endotracheal intubation. Diprivan was continuously administered at a rate of 0.5 mg/kg/hr to maintain anesthesia. An antibiotic (Cefamezin, 1 g) was administered to prevent post-operational infection.

15

20

25

20

(Operation)

The animal was positioned and an operation portion was cleaned with a sterilized drape. A knee joint was accessed by medial para-patellar approach. After detecting the internal articular capsule, the middle portion at the medial collateral ligament (MCL) of the knee was defected. Acylinder-shaped cavity (diameter: 6.5 mm) was created using the mosaic plasty DP (Smith & Mephew) (Figure 29). The cavity was filled with the synthetic tissue (Figure 30), followed by the coverage with fascis. After hemostasis was confirmed, the incised internal collateral ligament was repaired, and the articular capsule, the subcutaneous tissue, and the epidermis were sutured. A cast was fixed to the knee joint in its incurvation position. The operation was ended.

30

(Evaluation method)

Visual inspection and histological study were performed.

- 157 -

(Results)

5

10

28

30

Four weeks after operation, the animals receiving the synthetic tissum was significantly repaired according to visual finding (Figure 31) and histological finding (Figure 32).

Remarkably, an eosin positive result was observed in the synthetic tissue four weeks after implantation. Also, the formation of a meniscus tissue-like matrix was observed and the biological integration of the synthetic tissue and its adjacent meniscus tissue was completed.

(Example 10: Repair of pig tendon/ligament tissues)

Tendon/ligament tissues were subjected to a repair operation. The state of the wound of a tendon/ligament tissue is confirmed. In this case, a portion of synovial cells are collected. The synovial cells are cultured. The cells are used to produce a synthetic tissue using a protocol as described in Example 1.

Next, by operation, the vicinity of the wound site of the tendon/ligament tissue is cut off to obtain a fresh portion, on which the above-described synthetic tissue is in turn placed. In this case, since the synthetic tissue has adhesion molecules, the synthetic tissue is adhered to the portion without suture. The protocol is described below.

(Anesthesia)

A pig 15 to 17 weeks old (LWD ternary hybrid) was intramuscularly injected via the dorsal portion of its neck with 20 mg/kg Ketaral * 10 mg/kg Seractal. Thereafter, an infusion route was provided in the ear vein, and thereafter,

- 158 -

the respiratory tract was secured using endotracheal intubation. Dipriven was continuously administered at a rate of 0.5 mg/kg/hr to maintain anesthesia. An antibiotic (Cefamezin, 1 g) was administered to prevent post-operational infection.

(Operation)

The animal was positioned and an operation portion was cleaned with a sterilized drape. A knee joint was accessed by medial para-patellar approach. After detecting the internal articular capsula, the middle portion of the capsule was dissected. The lower thighs were bent and laterally rotated, and were further pulled forward, so that the anterior horn portion of the internal meniacus was exposed. In this place, a cylinder-shaped cavity (diameter: 6.5 mm) was created using the mosaic plasty DP (Smith & Mephew) . The cavity was filled with the synthetic tissue . In order to protect the synthetic tissue until it was accepted, the meniscus was wrapped with a collagen sheet (Nipro) which was fixed by suture. After hemostasis was confirmed, the incised internal collateral ligament was repaired, and the articular capsule, the subcutaneous tissue, and the epidermis were sutured. A cast was fixed to the knee joint in its incurvation position. The operation was ended.

25

Ę,

10

15

20

(Evaluation method)

Sistological study was performed based on Frank's method (J. Orthop. Res., 13, 923-9,1995).

30 (Results)

According to visual finding and histological finding & weeks after operation, the group filled with the synthetic tissue had significantly better healing quality.

- 159 -

(Example 11: Repair of a pig bone)

In this example, repair of bone is experimentally conducted. Using a protocol as described in Example 1, synovial cells are collected and cultured to produce a synthetic tissue.

Next, a sheet of this synthetic tissue is applied to a bone. The synthetic tissue is applied to an affected portion mainly by covering it over a cortical bone as well as a periosteum. As a result, it is demonstrated that the synthetic tissue comprising synovial cells is effective for repair of a bone. The protocol is described below.

15 (Anesthesia)

A pig 15 to 17 weeks old (LWD ternary hybrid) was intramuscularly injected via the dorsal portion of its neck with 20 mg/kg Ketaral + 10 mg/kg seractal. Thereafter, an infusion route was provided in the ear vein, and thereafter, the respiratory tract was secured using endotracheal intubation. Diprivan was continuously administered at a rate of 0.5 mg/kg/hr to maintain anesthesia. An antibiotic (Cefamezin, 1 g) was administered to prevent post-operational infection.

23

30

20

S

20

(Operation)

The animal was positioned and an operation portion was cleaned with a sterilized drape. A second metatarsal bone was accessed from a longitudinal incised portion. The periosteum of the second metatarsal bone was ablated as much as possible so that the surface of the second metatarsal bone was exposed. A window of 1.5 cm (horizontal) \times 3 cm (vertical) was created on the surface of the second metatarsal

- 160 -

bone using a chisel. The window was covered with the outstretched synthetic tissue. After confirming the attachment of the synthetic tissue, the the subcutaneous tissue and the spidermis were sutured. A cast is fixed to the lower thigh. The operation was ended.

(Evaluation method)
Radiography, micro CT, and histology.

10 (Results)

83

30

Four weeks after operation, evaluation confirmed that osteogenesis was accelerated in the window portion for the group filled with the synthetic tissue.

15 (Example 12: Pig fat-derived tissue) · '
Next, cells derived from adipose tissue were used to produce a synthetic tissue.

- A) Cells were collected as follows.
- 20 1) A specimen was removed from the fat-pad of a knee joint.
 - 2) The specimen was washed with PBS.
 - 3) The specimen was cut into as many pieces as possible using acissora.
- 25 4) 10 ml of collagenase (0.1%) was added to the specimen, followed by shaking for one hour in a water bath at 37°C.
 - 5) An equal amount of CMEM (supplement with 10% FBS) was added, followed by filtration using a 70 μ l filter (available from Millipore or the like).
 - 6) Cells which passed through the filter and residues which remained on the filter were placed in a 25-cm2 flask (available from Falcon or the like) containing 5 ml of DMEM

WO 2005/012512 PCT/IP20842031401

- 161 -

supplemented with 10% FBS.

7) Cells attached to the bottom of the flask (including mesenchymal stem cells) were removed and subjected to the production of a synthetic tissue as follows.

S

3.0

15

8) Production of synthetic tissue

Next, the above-described fat-derived cells were used to produce a synthetic tissue. The concentrations of ascorbicacid2-phosphatewere 0 mM (absent), 0.1 mM, 0.5 mM, 1.0 mM, and 5.0 mM. The synthetic tissue was produced in accordance with the above-described method which was used to produce synovial cells (Example 1). Cells were dessimated at an intial concentration of 5×10° cells/cm². The result is shown in Figure 33. The cells were cultured for 16 days. A synthetic tissue was also formed from an adipose tissue-derived cell and had as rich fibronectin and vitronectin as the synovial cell-derived synthetic tissue. Collagen I and III were similarly expressed richly.

20

25

C) Implantation experiment

Next, the above-described synthetic tissue is subjected to an implantation experiment in Example 8 (cartilage repair) and in Example 9 (meniscus repair). As a result, it is demonstrated that a repairing capability is possessed by the fat-derived synthetic tissue as with a synovial cell-derived synthetic tissue.

30

D) Differentiation induction of a fat-derived synthetic tissue into bone/certilage

The synthetic tissue of this example was induced to differentiate into a cartilage or a bone. The results

- 162 -

are shown in Figure 34. The left portion of the figure indicates the results of an esteegenesis experiment. The upper portion indicates a synthetic tissue, while the lower portion indicates monolayer culture. The synthetic tissue had a positive reaction to Alizarin Red in an esteegenesis induction medium. Thus, esteegenesis was confirmed. The right portion indicates a chendrogenesis induction experiment. In this experiment, the synthetic tissue was differentiated with a stimulus due to chendrogenesis induction medium+PMF-2 into a cartilage-like tissue which was positive to Alcian blue. Thus, it was demonstrated that the fat-derived synthetic tissue also has the ability to differentiate into a bone and a cartilage as with a synovial cell-derived synthetic tissue.

15

20

10

5

(Example 13: Versatility of shape of synthetic tissue)

In this example, a difference in function due to the shape of a synthetic tissue is measured. The synthetic tissue may be crumpled up and implanted into an affected portion instead of using a sheet of the synthetic tissue. Thereby, it is determined whether or not a tailor-made operation can be conducted, depending on the shape or the like of a wound portion.

25

In this example, it is investigated whether or not a synthetic tissue can be implanted when it is in the shape of aball, a line, or a tube. The synthetic tissue is confirmed not to require auture, since it has an adhesion molecule.

30

(Example 14: Treatment using a synovial cell)

In this example, a synovial cell is collected from a patient having an injured meniscus, and it is determined

- 163 -

whether or not the synovial call can be used to produce a synthetic tissue.

(Collection of a human synovial cell)

82.

10

35

20

25

30

A human patient, who has a clinical symptom is diagnosed by an imaging technique as having cartilage injury or meniscus injury, is subjected to arthroscopy under lumber anesthesia or general anesthesia. In this case, several milligrams of synovial membrane is collected. The collected synovial membrane is transferred to a 50-ml centrifuge tube (manufactured by Falcon) and washed with phosphate buffered saline (PBS). Thereafter, the sample is transferred to a 10-cm diameter culture dish (Falcon) and is cut into small pieces using a sterilized blade. Thereafter, 10 ml of 0.1% collagenase (Sigma) is added to the cut pieces in the dish. The dish is shaken in a constant temperature bath at 37°C for I hour 30 minutes. To the solution, 10 ml of medium (DMEM, Gibco) containing self-serum previously collected or bovine serum (FBS) is added to inactivate the collagenase, followed by centrifugation at 1500 rpm for 5 minutes to pellet the cells. Thereafter, 5 ml of the serum-containing medium is added again. The culture medium is passed through a 70-ul filter (Falcon). The collected cells are transferred to a 25 cm^2 flask (Falcon), followed by culture in a CO_2 incubator at 37°C.

(Subculture of a synovial cell)

During primary culture, medium is exchanged two times every week. When cells become confluent, the cells are subcultured. For initial subculture, the medium is suctioned and thereafter the cells are washed with PBS. Trypsin-EDTA (Gibco) is added to the cells which are in turn allowed to stand for 5 minutes. Thereafter, the

- 164 -

serum-containing medium is added and the resultant mixture was transferred to a 50-ml centrifuge tube (Falcon), followed by centrifugation at 1500 rpm for 5 minutes. Thereafter, 15 ml of the serum-containing medium is added to the pellet. The cells are placed in a 150-cm² culture dish (Falcon). Subsequent subculture is performed so that the cell ratio was 1:3. The same procedure is repeated up to 4 to 5 passages.

(Production of a synthetic tissus)

8

3.0 The synovial cell of 4 to 5 passages is treated with trypsin-EDTA. The synovial cells (4.0×10^6) are dispersed in 2 ml of medium containing 0.2 mM ascorbic acid 2-phosphate on a 35-ml culture dish (Falcon), followed by culture in a CO2 incubator at 37°C for 7 days. As a result, a culture 15 cell-extracellular matrix complex is formed. The complex is mechanically detached from the culture dish by pipetting the periphery thereof two or more hours before an implantation operation. After detachment, the culture cell-extracellular matrix complex contracts into a three-dimensional tissue having a diameter of about 15 mm 20 and a thickness of about 0.1 mm.

(Example 15: Production of a synthetic tissue from a human adipocyte)

A collection-intended site (e.g., around a knee joint) from a patient under local anesthesia is resected. Several milligrams of adipocytes are collected from the site. The collected adipocytes were treated in a manner similar to that of the synovial cells. As a result, a three-dimensional synthetic tissue can be produced.

(Example 16: Implantation of a synthetic tissum into a joint cartilage injury portion)

WO 2005/012512 PCT/IP20842031401

The synthetic tissue produced in Example 14 or 15 is used for actual implantation. A human subject is subjected to lumbar anesthesia or general anesthesia. Thereafter, the inside of a joint is opened at minimum inclusion for arthroscopy. After detecting a cartilage injury portion, the size of the cartilage injury is measured. A circular portion of the cartilage is dissected from the bone-cartilage interface using the mosaic plasty harvesting system (Smith and Nophew) and a dental explorer, where the circular portion fully contains the injured cartilage. The synthetic tissue was implanted into the cavity in a portion of cartilage. The synthetic tissue is adhered to the base of the cavity several minutes after implantation. When an affected portion receives a high mechanical stress, the fixation of the synthetic tissue may be reinforced using fibrin gloe (initial fixation is reinforced). The present invention is not limited to this. After fixation, the articular capsule, the subcutaneous tissue, and the skin are sutured collectively. After closing the incision site, the joint is fixed using a cast or an orthosis for 2 to 3 weeks. Thereafter. rehabilitation is started within a limited range of motion. When an affected portion is present in a weight-bearing joint (e.g., a knee, a ankle joint, etc.). A full load is able to be applied after 6 to 8 weeks.

25

30

Ç,

10

13

20

As a result, symptoms are cured or ameliorated as follows: a reduction in joint pain when a load or an exercise is applied; elimination of joint effusion; recovery of a joint range of motion; recovery of muscle strength around the joint; prevention of osteoarthritis; and the like. Thus, it is observed that the synthetic tissue of the present invention has no significant side effects and improves the function of a repaired portion.

- 166 w

(Example 17: Implantation into a meniscus injury portion)

In this example, the synthetic tissue produced in Example 14 or 15 is actually implanted into a meniscus injury portion.

25

1.0

15

20

25

A meniscus injury portion is detected in a human subject under lumbar anesthesia or general anesthesia, using an arthroscope. A rupture portion of an injury meniscus is filled with the synthetic tissue. Thereafter, the injured meniscus and the synthetic tissue are sutured together. All surgical procedures are performed under an arthroscope. After surgery, a knee orthosis is used for 2 to 3 weeks. Thereafter, rehabilitation is started within a limited range of motion. A full weight bearing is permitted after 5 to 6 weeks.

As a result, symptoms are cured or ameliorated as follows: a reduction in joint pain when a load or an exercise is applied to the knee joint; elimination of hydrarthrosis; recovery of a joint range of motion; recovery of muscle strength around the joint; recovery of activity; doing sports again; and the like. Thus, it is observed that the synthetic tissue of the present invention has no significant side effects and improves the function of a repaired portion.

(Example 18: Implantation into an Achilles tendon)

The synthetic tissue produced in Example 14 or 15

30 is implanted into an Achilles tendon injury postion.

A human subject under lumbar anesthesia or general anesthesia is subjected to Achilles tendon by para-tendon

- 167 -

approach. The portion of degenative tear is detected and then curetted. The synthetic tissue is implanted into the portion of degenerative tear. After implantation, conventional tendon repair is performed. In addition, the surface layer of the repaired portion is covered with the synthetic tissue, which is in turn sutured and fixed thereto. After closing the incision site, a cast is fixed to the lower limb for 4 weeks. A full weight bearing is permitted after 6 to 8 weeks.

1.0

15

25

30

85

As a result, symptoms are cured or ameliorated as follows: recovery of activity level (from walking to a sport level); a reduction in pain; and a decrease in possibility of re-rupture. Thus, it is observed that the synthetic tissue of the present invention has no significant side effects and improves the function of a repaired portion.

(Example 19: Treatment o£ intractable pseudarthrosis)

In this example, intractable pseudarthrosis is 20 treated using the synthetic tissue produced in Example 14 or 15. A feature of intractable pseudarthrosis is that a periosteum, which is a source of supplying cells in a bone fracture therapy, is severely damaged and lost. Implantation of the synthetic tissue is considered to be approparate in such a case.

A bone fracture portion is opened in a human subject under anesthesia. Thereafter, the bone fracture portion is curetted. After the remaining portion is fixed with a plate or an intramedullary nail, the injured periosteum is covered with the synthetic tissue. The synthetic tissue is sutured and fixed to adjacent periosteum tissue. After closing the

- 168 -

incision site, the joint adjacent to the bone fracture portion is fixed with a cast for 3 to 4 weeks. In the case of a lower limb bone, full weight bearing is permitted after 6 to 8 weeks.

8

As a result, symptoms are cured or ameliorated as follows: elimination of pain; recovery of muscle strength around the joint; and recovery of an activity level. Thus, it is observed that the synthetic tissue of the present invention has no significant side effects and improves the function of a repaired portion.

(Example 20: Implantation into a rotator cuff injury portion)

15

10

In this example, a synthetic tissue is implanted into a rotator cuff injury portion. The synthetic tissue is produced as described in Example 1. Under general anesthesia, the rotator cuff injury portion is detected by transdeltoid approach.

20

After detecting the rotator cuff injury portion, the portion is curetted and is subjected to a typical rotator cuff repair operation. Thereafter, the surface layer of the repaired rotator cuff portion is covered with the synthetic tissue. After closing the incision site, the shoulder joint is fixed with an orthosis for 2 to 3 weeks. Thereafter, rehabilitation is started within a limited range of motion. After 6 weeks, full range of motion is permitted.

30

28

As a result, symptoms are cured or ameliorated as follows: remission of shoulder pain (particularly, night pain); recovery of a joint range of motion; recovery of muscle strength around the shoulder; and recovery of activity. Thus,

m 169 m

it is observed that the synthetic tissue of the present invention has no significant side effects and improves the function of a repaired portion.

5 (Example 21: Study on the possibility of cell differentiation induction before and after production of a synthetic tissue)

In this example, a synthetic tissue is produced using a human synovial cell.

10

1.5

20

32

The production process of the synthetic tissue using a human synovial cell is shown in the upper portions of Figures 35 and 36. Figure 35 shows production of a synthetic tissue after a human synovial cell is subjected to differentiation induction. Figure 36 shows that a synthatic tissue is produced before the tissue is subjected to differentiation induction. The differentiation induction is performed by culturing a human synovial cell in DNEM medium containing 0.1 µM dexamethasone, 10 mM β -glycerophosphate, and 50 $\mu g/ml$ ascorbic acid 2-phosphate for 14 days. The synthetic tissue is stained with Alzarin red and alkali phosphatase (ALP). The results of the staining are shown in the lower portions of Figures 35 and 36. As can be seen from Figure 35, in either case, the synthetic tissue is produced and exhibits an osteogenic reaction positive to the Alzarin red and ALP staining. Therefore, it is demonstrated that the differentiation induction of a tissue can be performed either before or after production of a synthetic tissue.

30

(Example 22: Study on timing of differentiation for production of a synthetic tissue in the case of human cells)
In this example, a synthetic tissue was produced using

cells derived from adipose tissue.

- A) The cells were collected as follows.
- A specimen was collected from a fat-pad of a knee
 joint.
 - 2) The specimen was washed with PBS.
 - 3) The specimen was out into as many pieces as possible.
- 4) 10 ml of collagenase (0.1%) was added, followed 10 by shaking in 37°C water bath for one hour.
 - 5) An equal amount of DMEM (supplemented with 10% FBS) was added. The resultant mixture was passed through a 70- μ l filter (available from Millipore, etc.).
 - 6) Cells passing through the filter and cells remaining on the filter were cultured in 25-cm² flask containing 5 ml of DMEM medium supplemented with 10% FBS.
 - 7) The cells (including a mesenchymal stem cell) attached to the base of the flask were used to produce a synthetic tissue as follows.

20

25

13

B) Production of a synthetic tissue

Next, the fat-derived cells were used to produce a synthetic tissue. Ascorbic acid 2-phosphate was used at a concentration of 0 mM (absence), 0.1 mM, 0.5 mM, 1.0 mM, or 5.0 mM. The production was conducted in accordance with the method for producing a synthetic tissue from a synovial cells (Example 1). The cells were disseminated at an initial density of 5×10^4 cells/cm².

The cells were used to study the importance of the differentiation timing using the conditions as described in Example 21.

w 171 w

As a result, it was similarly demonstrated that the differentiation timing has no particular influence on the adipocyte-derived synthetic tissue of the present invention.

5 (Example 23: Confirmation of biological integration)

It is known that conventional collagen gel does not always achieve biological integration after implantation. In this example, a conventional collagen gel (3% type I collagen, Koken, Tokyo, Japan) was used. Synovial cells (1x10⁵ cells/ml) were embedded in the gel. The resultant gel was implanted into a cavity in a portion of cartilage. As a result, as can be seen from Figure 37, the integration between the collagen gel and its adjacent cartilage was insufficient, so that a crack was observed (arrow in Fig 37).

On the other hand, when a synthetic tissue of the present invention as produced in Example 1 is introduced into a pig, biological integration is histologically established as shown in Figure 38.

(Example 24: Study on conditions for detachment during production of a synthetic tissue)

In this example, it was determined whether or not chemical detachment can be used instead of physical detachment (mechanical detachment (e.g., pipetting, etc.)) during the production of the synthetic tissue of the present invention.

30

10

13

20

25

(Conditions for culture)

Cell density: 4×10° cells/cm³

Conditinos: CO₂ 5%, air 95%, 37°C

- 172 -

Medium: DMEM/F12 (FBS 10%) supplemented with 10 ng/ml TGF β 1.

This medium was used to conduct culture under the conditions described in Examples 14 and 15 to produce a synthetic tissue.

When TGF- β was added, the monolayer culture cells could be more easily detached from the culture dish.

10

83

Medium: DMEM (GIBCO), FBS (HyClone) 10%, ITS+Premíx (insulin, transferrin, selenious acid) (BD Biosciences) 6.25 μ g/ml, dexamethasone (Sigms) 10^{-7} M, ascorbic acid (WAKO) 50 μ g/ml, pyrubic acid (SIGMA) 100 μ g/ml.

15

20

The results are shown in Figures 19 and 39. The rightmost column in Figure 19 shows the case where TGY- β was added. In this case, cells were detached from a culture dish during monolayer culture. Therefore, a synthetic tissue could not be satisfactorily produced. Figure 39 shows the result of a tissue which was detached without a physical stimulus when TGF- β was added in monolayer culture. These results indicate that TGF- β has the effect of detaching culture cells.

23

30

(Example 25: Actin regulatory agent)

Dihydrocytochalasin B and YZ763Z (Yamanouchi Pharmaceutical), which are known to have an actin depolymentizing function, were used to study their influence on the contraction of a synthetic tissue.

A synovium-derived synthetic tissue was produced by monolayer culture. The tissue was detached from a culture

~ 173 w

dish. The tissue was cultured in medium in the presence of dihydrocytochalasin B (3µM) and Y27632 (10µM). The transition of the radius of the tissue is shown every unit culture time in Figure 40. As can be seen from the figure, contraction was inhibited by the addition of these actin depolymerisaing agents. Dihydrocytochalasin B and Y27632 are representative exemplary actin polymerization inhibitors. It will be understood by those skilled in the art that other actin polymerization inhibitors, such as cytochalasin D and the like, have a similar function.

(Example 26: Production of an artificial bone/cartilage column as a complex of a synthetic tissue and an artificial bone)

A 12-well culture dish was used to produce a synthetic tissue.

A column-like satisficial bone (NEO BONE: MMT) having a diameter of 5 mm \times 6 mm was placed in a 96-well culture dish. The synthetic tissue was implanted onto the artificial bone. 100 μ l of medium (DMEM, 10% FBS) was placed in each well of the dish, followed by culture for 2 hours. As a result, the synthetic tissue was attached to the artificial bone, thereby obtaining a tissue complex.

25

S

10

15

20

This complex was cultured in cartilage induction medium (CMEM, 10% FBS, ITS+Premix, sodium pyrubate, ascorbic acid 2-phosphate, 500 ng/ml BMP-2) for 14 days.

30 The result is shown in Figure 41.

As can be seen from Figure 41, it is demonstrated that the synthetic tissue of the present invention was

satisfactorily adhered to the other synthetic tissue (i.e., the artificial bone). Therefore, it will be understood that the synthetic tissue of the present invention can be combined with other synthetic tissues into a tissue complex.

S

10

3.5

23

30

(Example 27: Composite tissue obtained by attaching a synthetic tissue to a collagen scaffold)

In this example, a microfibrous collagen medical device (specifically, a collagen synthetic tissue (CMI (Collagen Meniscal Implant) collagen sponge, Amgen, USA)) was attached to a synthetic tissue instead of NEO BONE in Example 26. The result is shown in Figure 42 (enlarged photograph). The synthetic tissue of the present invention is observed to be biologically integrated with the surface of the CMI. Thus, it was demonstrated that a mitrofibrous collagen medical device, which is a conventional synthetic tissue, can be combined with the synthetic tissue of the present invention to obtain a tissue complex.

20 (Example 28: Production of a synthetic tissue using a myoblast)

In this example, an influence of ascorbic acid or a derivative thereof on the production of a synthetic tissue when a myoblast was used, was studied. The synthetic tissue was produced as in Example 1.

After the myoblast was well grown, 5x10° myoblast cells were cultured to form a synthetic tissue. For culture, SkBM Basel Medium (Clonetics (Cambrex)) was used. Next, ascorbic acid 2-phosphate (0.5 mM), a magnesium salt of ascorbic acid 1-phosphate (0.1 mM), and I-ascorbic acid Na (0.1 mM) were added to the medium. After four days of culture, the tissue was detached. As a control, a synthetic tissue

- 175 -

was produced in medium without ascorbic acids.

(Results)

10

15

25

30

When ascorbic acids were used, the synthetic tissue Ş was easily detached as compared to when the ascorbic acid-free culture system was used. Also, in the ascorbic acid-free culture system, the tissue was cultured to about several millimeters. When the tissue exceeded such a level, a crack or the like occurred in the tissue so that the tissue did not grow satisfactorily. In addition, it was substantially difficult to detach the tissue. Thus, no implantable synthetic tissue was produced (Figure 43). In contrast, the synthetic tissue of the present invention, which was cultured in medium containing ascorbic acids, was grown to a size which allows implantation, and was easily isolated (Figure 44). Biological integration was investigated, so that extracellular matrices were highly interacted (Figure 45).

20 (Example 29: Effect of a synthetic tissue in the presence of ascorbic soids)

The synthetic tissue of Example 28, which was produced in the presence of ascorbic acids, was implanted into a dilated cardiomyopathy rat. In 28 rats, the left anterior descending (LAD) was ligated for two weeks to produce injured hearts. The synthetic tissue of the present invention was implanted into some of the injured hearts, while the synthetic tissue of the present invention was not implanted into the other injured hearts. As controls, rats without injury to their hearts were obtained.

The rate were anesthetized and operated. The heart function of the rats was monitored on Day 14 and 28 after

- 176 -

surgery. A ultrasonic instrument (Sonos 5500) having an anular array converter operating at 12 MHz was used to perform endocardiography. Parasternal minor axis imaging and parasternal major axis imaging were performed in a B-imaging mode and an M-imaging mode. In addition to the anterior wall pressure, general parameters (e.g., left ventricular telediastolic diameter, left ventricular telediastolic diameter contraction rate, and ejection fraction) were measured.

10

5

Two and four weeks after implantation, the rats were sacrificed with an excessive amount of pentobarbital. The heart was dissected, fixed with 10% formalin, and embedded in paraffin. In a low temperature bath, the heart was out along the longitudinal axis thereof from the base to the apex to prepare a series of sections having a thickness of 5 mm. Thermafter, the sections were treated for standard histology.

20

28

30

15

All of the rats with implants were completely cured, and survived for substantially the same period of time as normal rats. Therefore, it was demonstrated that the present invention can completely cure diseases, which are conventionally said to be intractable, in the presence of a specific ECM synthesis promoting agent.

(Example 30: Combined therapy)

A combined therapy of the synthetic tissue produced in the examples and a gene therapy was performed. The combined therapy was intended to promote vascularization in a portion which a synthetic tissue was implanted; promotion of acceptance of an implanted synthetic tissue; and suppression of cell necrosis in a synthetic tissue.

- 177 -

(Methods)

A hemagglutinating virus of Japan (8VJ)-liposome complex was prepared in accordance with Kaneda Y., Iwai K., 3 Vohida T., Increased expression of DNA co-introduced with nuclear protein in adult rat liver. Science, 1989; 243: 375-378. The procedure will be briefly described below. ADMA solution (200 µl) was added, followed by shaking for 30 seconds. The solution was allowed to stand at 37°C in a constant temperature 1.0 bath for 30 seconds. This step was performed 8 times. Thereafter, ultrasonication was performed for 5 seconds, followed by shaking for 30 seconds. BSS (0.3 ml) was added, followed by shaking at 37°C in a constant temperature bath. Inactivated NVJ was added. The mixture was placed on ice 13 for 10 minutes. The mixture was then shaken at 37°C in a constant temperature bath for one hour. A 60% sucrose solution (1 ml) and a 30% sucrose solution (6 ml) were layered in a centrifuge tube. A HVV liposome solution was placed on top of the layered sucrose solution. Additional BSS was added to the tube. Centrifugation was performed at 62,800 g 20 at 4°C for 1.5 hours. A solution immediately above the 30% sucrose solution layer was recovered. The solution was preserved at 4°C and was used for gene introduction.

About 0.2 ml of Sendai virus liposome-plasmid complex (including 15 µg of human HGF cDNA) was injected into a cardiac infarction region. For a control group, an empty vector was introduced into a heart muscle having infarction. The human HGF concentration of heart tissue was measured with an enzyme linked immunosolvent assay (ELISA) using an anti-human HGF monoclonal antibody (Institute of Immunology, Tokyo, Japan) (Ueda H., Sawa Y., Matsumoto K. et al., Gene Transfection of Hepatocyte Growth Factor

WO 2005/012512 PCT/IP20842031401

- 178 -

Attenuates reperfusion Injury in the Heart, Ann. Thorac. Surg., 1999, 67:1726-1731). The synthetic tissue produced in Example 30 was used. The cardiac infarction models produced by ligating LAD were subjected to three different therapies: 1) a cell sheet group; 2) a gene therapy group; 3) a combined therapy group; and 4) a control group. Changes in heart function and cardiomuscular tissue were studied.

(Results)

3

20

15

20

25

30

For the synthetic tissue implanted group and the combined therapy group, the contractibility and expansibility of the heart were ameliorated. In addition, for the combined therapy group, it can be confirmed that vasculization was observed in the cardiac infarction portion, and the acceptance of implanted cells was improved.

(Conclusion)

By combining a synthetic tissue and a gene therapy, the decreased heart function ameliorating effect, the vasculization effect, and the cell protecting effect are obtained, so that a higher level of amelioration of the decreased heart function can be observed.

Although certain preferable embodiments have been described herein, it is not intended that such embodiments be construed as limitations on the scope of the invention except as set forth in the appended claims. Various other modifications and equivalents will be apparent to end can be readily made by those skilled in the art, after reading the description herein, without departing from the scope and spirit of this invention. All patents, published patent applications and publications cited herein are incorporated by reference as if set forth fully herein.

WO 2005/012512 PCT/IP20842031401

-179 -

INDUSTRIAL APPLICABILITY

The present invention usefully provides a basic therapeutic method, technique, pharmaceutical agent, and medical device for diseases which are conventionally difficult to treat. Farticularly, the present invention provides an epoch-making therapy and prevention because it promotes recovery to a substantially native state. The present inventionalsoprovides a pharmaceutical agent, cell, tissue, composition, system, kit, and the like, which are used for such an epoch-making therapy and prevention.

There is a demand for repair and regeneration of joint 1.3 tissues, mainly including bones and cartilages which are targeted by the present invention. The number of bone fracture patients, which are targeted by bone regeneration, accounts for several bundreds of thousands per year. It is also said that there are 30 million potential patients having osteoarthritis which is targeted by the cartilage 20 regenerative therapy. Thus, the potential market is huge. The present invention is also highly useful for peripheral industries. Acute competition has been started in the regenerative medical research on joint tissues, mainly including bone and cartilage. The synthetic tissue of the 23 present invention is a safe and original material made of cells collected from an organism, such as a patient or the like, and is highly useful in view of the lack of side effects or the like.

WO 2005/012512 PCT/JF2084/031401

- 180 -

CLAIMS

1. An implantable synthetic tissue.

10

25

- 5 2. A synthetic tissue according to claim 1, which is biologically organized in the third dimensional direction.
 - 3. A synthetic tissue according to claim 1, which has biological integration capability with surroundings.
- 4. A synthetic tissue according to claim 3, wherein the biological integration capability includes capability to adhere to surrounding cells and/or extracellular matrices.
- 15 5. A synthetic tissue according to claim 1, which comprises cells.
- 6. A synthetic tissue according to claim 1, which is substantially made of cells and a material derived from the cells.
 - 7. A synthetic tissue according to claim 1, which is substantially made of cells and an extracellular matrix (ECM) derived from the cells.
- 8. A synthetic tissue according to claim 7, wherein the extracellular matrix contains at least one selected from the group consisting of collagen I, collagen III, vitronectin and fibronectin.
- 9. A synthetic tissue according to claim 7, wherein the extracellular matrix contains collagen I, collagen III, vitronectin and fibronectin.

WO 2005/012512 PCT/IP2084/031401

- 181 -

- 10. A synthetic tissue according to claim 7, wherein the extracellular matrix contains vitromectin.
- 5 11. A synthetic tissue according to claim 7, wherein the extracellular matrix contains fibronectin.
 - 12. A synthetic tissue according to claim 7, wherein the extracellular matrix contains collagen I and collagen III.
- 10 the collagen constitutes 5% to 25% of the tissue, and the ratio of the collagen I to the collagen III is between 1:10 and 10:1.
- 13. A synthetic tissue according to claim 7, wherein the extracellular matrix and the cells are integrated together into a three-dimensional structure.
 - 14. A synthetic tissue according to claim 7, wherein the extracellularmatrix is diffusedly distributed in the tissue.
- 15. A synthetic tissue according to claim 1, wherein an extracellular matrix is diffusedly distributed, and the distribution densities of the extracellular matrix in two arbitrary sections of 1 cm² in the tissue have a ratio within
- 25 a range of about 1:3 to about 3:1.

- 16. A synthetic tissue according to claim 1, which is heterologous, allogenic, isologous, or autogenous.
- 30 17. A synthetic tissue according to claim 1, which is free of scaffolds.
 - 18. A synthetic tissue according to claim 1, which is used

WO 2005/012512 PCT/IP2004/011401

to implant cells.

8

20

- 19. A synthetic tissue according to claim 1, which is large sized.
- 20. A synthetic tissue according to claim 1, which has a volume of at least about 20 mm³.
- 21. A synthetic tissue according to claim 1, which is 10 flexible.
 - 22. A synthetic tissue according to claim 1, which is expandable and contractile.
- 15 23. A synthetic tissue according to claim 1, which can withstand heart pulsation.
 - 24. A synthetic tissue according to claim 1, which is biologically organized in all three dimensional directions.
 - 25. A synthetic tissue according to claim 24, wherein the biological integration is selected from the group consisting of internal binding of extracellular matrix, electrical integration, and intercellular signal transduction.
- 26. A synthetic tissue according to claim 1, which has a tissue strength which allows the synthetic tissue to be clinically applicable.
- 30 27. A synthetic tissue according to claim 26, wherein the strength is a break strength of about 0.02 N to about 2 N.
 - 28. A synthetic tissue according to claim 26, wherein the

tissue strength is sufficient to provide self-supporting ability.

- 29. A synthetic tissue according to claim 28, wherein the self-supporting ability is characterized in that the synthetic tissue is not substantially broken when the synthetic tissue is picked up using forceps having a tip area of 0.05 to 3.0 mm².
- 10 30. A synthetic tissue according to claim 28, wherein the self-supporting ability is characterized in that the synthetic tissue is not broken when the synthetic tissue is picked up with a hand.
- 15 31. A synthetic tissue according to claim 26, wherein the site to which the synthetic tissue is intended to be applied, includes a heart.
- 32. A synthetic tissue according to claim 26, wherein the some site to which the synthetic tissue is intended to be applied, includes an intervertebral disk, a meniscus, a cartilage, a bone, a ligament, or a tendon.
- 33. A synthetic tissue according to claim 26, wherein:
 25 the synthetic tissue is a cartilage, an
 intervertebral disk, a meniscus, a ligament, or a tendon;
 and

the synthetic tissue remains attached without an additional fixation procedure, after the synthetic tissue is implanted into an injured portion of the intra-articular tissue.

30

34. A method for producing a synthetic tissue, comprising

WO 2005/012512 PCT/IP2004/031401

the steps of:

5.

1.0

15

25

- A) providing cells;
- B) placing the cells in a container, the container having cell culture medium containing an ECM synthesis promoting agent and having a sufficient base area which can accommodate a synthetic tissue having a desired size;
- C) Culturing the calls in the container along with the call culture madium containing the ECM synthesis promoting agent for a period of time suffificent for formation of the synthetic tissue having the desired size; and
 - D) detaching the cells from the container.
- 35. A method according to claim 34, wherein a stimulus for inducing tissue contraction is applied in the detaching step.
- 36. A method according to claim 35, wherein the stimulus includes a physical or chemical stimulus.
- 37. A method according to claim 36, wherein the physical 20 stimulus includes shaking of the container, pipetting, or deformation of the container.
 - 38. A method according to claim 34, wherein the detaching step includes adding an actin regulatory agent.
 - 39. A method according to claim 38, wherein the actin regulatory agent includes a chemical substance selected from the group consisting of actin depolymerizing agents and actin polymerizing agents.
 - 40. A method according to claim 39, wherein the actin depolymerizing agent is selected from the group consisting of Slingshot, cofilin, cyclase associated protein (CAP),

WO 2005/012512 PCY/JP2004/031401

actin interacting protein 1 (AIP1), actin depolymerizing factor (ADF), destrin, depactin, actophorin, cytochalasin, and NGF (nerve growth factor).

- 5 41. A method according to claim 39, wherein the actin polymerizing agent is selected from the group consisting of RhoA, mDi, profilin, Racl, IRSp53, WAVE2, ROCK, LIMkinase, cofilin, cdc42, N-WASP, Arp2/3, Drf3, Mena, lysophosphatidic acid (LPA), insulin, platelet derived growth factor (PDGF) a, PDGFb, chemokine, and transforming growth factor (TGF) 8.
 - 42. A method according to claim 34, wherein the container is free of scaffolds.
 - 43. A method according to claim 34, wherein the cells are first cultured in monolayer culture.

- 44. Amethodaccording to claim 34, wherein the SCM synthesis 20 promoting agent includes TGF β 1, TFG β 3, ascorbic acid, ascorbic acid 2-phosphate, or a derivative or salt thereof.
- 45. A method according to claim 44, wherein the ascorbic acid, ascorbic acid 2-phosphate, or the derivative or salt thereof is present at a concentration of at least 0.1 mM.
 - 46. A method according to claim 44, wherein the TGFP1 or TFGP3 is present at a concentration of at least 1 ng/ml.
- 47. A method according to claim 34, wherein the cells are placed at a concentration of 5×10° to 5×10° cells per 1 cm², and the ECM synthesis promoting agent is ascorbic acid, ascorbic acid 2-phosphate, or a derivative or salt thereof,

WO 2005/012512 PCY/JP2004/031401

- 186 -

and the ascorbic acid, ascorbic acid 2-phosphate, or the derivative or salt thereof is provided at a concentration of at least 0.1 mM.

- 5 48. A method according to claim 34, further comprising causing the synthetic tissue to detach from the container and self-contract.
- 49. A method according to claim 48, wherein the detaching lo and self-contraction are achieved by providing a physical stimulus to the container.
- 50. A method according to claim 48, wherein the detachment and self-contraction are achieved by providing a chemical stimulus to the container.
 - 51. A method according to claim 34, wherein the sufficient period of time is at least 3 days.
- 20 52. A method according to claim 34, wherein the sufficient period of time is at least 3 days and a period of time required for the synthetic tissue to be spontaneously detached from the container at a maximum.
- 25 53. A method according to claim 52, wherein the period of time required for the synthetic tissue to be spontaneously detached from the container is at least 40 days.
- 54. A method according to claim 36, further comprising: 30 causing the synthetic tissue to differentiate.
 - 55. A method according to claim 54, wherein the differentiation includes osteogenesis, chondrogenesis,

WO 2005/012512 PCT/IP2004/014/01

~ 187 ×

adipogenesis, tendon differentiation, and ligament differentiation.

- 56. A method according to claim 55, wherein the osteogenesis
 is performed in medium containing dexamethasone,
 β-glycerophosphate, and ascorbic acid 2-phosphate.
- 57. A method according to claim 56, wherein the medium contains at least one selected from the group consisting of BMP (bone morphogenetic protein)-2, BMP-4, and BMP-7.
 - 58. A method according to claim 55, wherein the chondrogenesis is performed in medium containing pyrubic acid, dexamethasone, ascorbic acid 2-phosphate, insulin,
- 15 transferrin, and selenious acid.

- 59. A mathod according to claim 58, wherein the medium contains at least one selected from the group consisting of BMP-2, BMP-4, BMP-7, TGF(transforming frowth factor)-β1 and TGF-β3.
 - 60. A method according to claim 54, wherein the differentiation step is performed before or after the detaching step.
 - 61. A method according to claim 54, wherein the differentiation step is performed after the detaching step.
- 62. Amethod according to claim 34, wherein the cell includes 30 cells of 3 or more passages.
 - 63. Amethod according to claim 34, wherein the cells include cells of 3 to 8 passages.

WO 2005/012512 PCY/JP2004/031401

- 188 -

- 64. A method according to claim 34, wherein the cells are provided at a cell density of 5.0×10^4 to 5.0×10^6 cells/cm².
- 5 65. Amethodaccording to claim 34, wherein the cells include myoblasts.
 - 66. Amethod according to claim 34, wherein the cells include fat-derived cells.
- 67. Amethod according to claim 34, wherein the cells include synovium-derived cells.

1.0

20

2.5

- 68. Amethodaccording to claim 34, wherein the cells include 15 mesenchymal stem cells.
 - 69. A method according to claim 68, wherein the mesenchymal stem cells are derived from an adipose tissue, a synovial membrane, a tendon, a bone, or a bone marrow.
 - 70. A method according to claim 34, further comprising:

 producing a plurality of the synthetic tissues and
 attaching the plurality of the synthetic tissues together
 to be integrated.
 - 71. A cell culture composition for producing a synthetic tissue from cells, comprising:
 - A) an element for maintaining the cells; and
 - B) an extracellular matrix synthesis promoting agent.
 - 72. Amethod according to claim 58, wherein the ECM synthesis promoting agent includes TGF\$1, TFG\$3, ascorbic acid,

WO 2005/012512 PCT/JF2084/031401

- 189 -

ascorbic acid 2-phosphate, or a derivative or salt thereof.

73. A method according to claim 72, wherein TGF\$1 or TFG\$3 is present at a concentration of at least 1 ng/ml, or ascorbic acid, ascorbic acid 2-phosphate, or the derivative or salt thereof is present at a concentration of at least 0.1 mM.

2

10

- 74. A complex for reinforcing a portion of an organism, comprising cells and a component derived from the cells.
- 75. A complex according to claim 74, which has biological integration capability with surroundings.
- 75. A complex according to claim 75, wherein the biological integration capability include capability to adhere to surrounding cells and/or extracellular matrices.
 - . 77. A complex according to claim 74, which is substantially made of cells and a material derived from the cells.
 - 78. A complex according to claim 74, which is substantially made of cells and an extracellular matrix derived from the cells.
- 25 79. A synthetic tissue according to claim 78, wherein the extracellular matrix is selected from the group consisting of collagen I, collagen III, vitronectin and fibronectin.
- 80. A complex according to claim 78, wherein the
 30 extracellular matrix and the cells are integrated together
 into a three-dimensional structure.
 - 81. A complex according to claim 78, wherein the

extracellular matrix is provided on a surface of the complex.

82. A complex according to claim 78, wherein the extracellular matrix is diffusedly distributed on a surface of the complex.

 $\mathcal{E}_{\mathbf{k}}$

10

13

- 83. Acomplex according to claim 74, wherein an extracellular matrix is diffusedly distributed on a surface of the complex, and the distribution densities of the extracellular matrix in two arbitrary sections of 1 cm² in the complex have a ratio within a range of about 1:3 to about 3:1.
 - 84. A complex according to claim 78, wherein the extracellular matrix includes fibronectin or vitronectin.
- 85. A complex according to claim 74, which is beterologous, allogenic, isologous, or autogenous.
- 86. A complex according to claim 74, wherein the portion 20 includes a bag-shaped organ.
 - 87. A complex according to claim 86, wherein the bag-shaped organ includes a heart.
- 25 88. A complex according to claim 74, wherein the portion includes a bone or cartilage tissue.
 - 89. A complex according to claim 74, wherein the portion includes avascular tissue.
- 90. A complex according to claim 7%, wherein the portion includes an intervertebral disk, a meniscus, a ligament, or a tendon.

- 91. A complex according to claim 74, wherein the reinforcement is achieved by replacing the portion with the complex or providing the complex to cover the portion, or both.
- 92. A complex according to claim 74, which resists the expansion and contraction of the portion.
- 10 93. A complex according to claim 74, which has biological integration.

Š

- 94. A complex according to claim 74, wherein the biological integration selected from the group consisting of internal binding of extracellular matrix, electrical integration, and intercellular signal transduction.
- . 95. A complex according to claim 74, which is formed by culturing cells in the presence of an ECM synthesis promoting 20 agent.
 - 96. A complex according to claim 74, which has self-supporting ability.
- 25 97. A method for reinforcing a portion of an organism, comprising the steps of:
 - A) replacing the portion with a complex comprising cells and a component derived from the cells or providing the complex to cover the portion, or both; and
- 30 B) bolding the complex for a sufficient period of time for biologically adhering the complex to the portion.
 - 98. A method according to claim 97, wherein the adhesion

is achieved by adhesion between extracellular matrix and extracellular matrix.

- 99. A method according to claim 97, which has biological integration capability with surroundings.
 - 100. A method according to claim 99, wherein the biological integration capability include capability to adhere to surrounding cells and/or extracellular matrices.
- 101. A method according to claim 97, which is substantially made of cells and a material derived from the cells.

- 102. A method according to claim 97, which is substantially made of cells and an extracellular matrix derived from the cells.
- . 103. A method according to claim 102, wherein the extracellular matrix contains one selected from the group consisting of collagen I, collagen III, vitronectin and fibronectin.
- 104. A method according to claim 102, wherein the extracellular matrix contains all of collagen I, collagen 25 III, vitronectin and fibronectin.
 - 105. A method according to claim 102, wherein the extracellular matrix contains vitromectin.
- 30 106. A method according to claim 102, wherein the extracellular matrix contains fibronectin.
 - 107. Amethodaccording to claim 97, wherein an extracellular

WO 2005/012512 PCT/JF2084/031401

.. 193 ...

matrix is provided on a surface of the complex.

188. Amethod according to claim 37, wherein an extracellular matrix is diffusedly distributed on a surface of the complex.

Ş

109. Amethod according to claim 97, wherein an extracellular matrix is diffusedly distributed on a surface of the complex, and the distribution densities of the extracellular matrix in two arbitrary sections of 1 cm² have a ratio within a range of about 1:3 to about 3:1.

10

110. A complex according to claim 97, wherein an extracellular matrix is diffusedly distributed on a surface

of the complex, and the distribution densities of the last racellular matrix in two arbitrary sections of low have

a ratio within a range of about 1:2 to about 2:1.

lll. A method according to claim 97, which is heterologous, allogenic, isologous, or autogenous.

- 112. A method according to claim 97, wherein the portion includes a bag-shaped organ.
- 113. Assethod according to claim 112, wherein the bag-shaped 25 organ includes a heart.
 - 114. A method according to claim 97, wherein the complex resists the expansion and contraction of the portion.
- 30 ll5. A method according to claim 97, wherein the complex has biological integration.
 - 116. A method according to claim 115, wherein the biological

integration selected from the group consisting of internal binding of extracellular matrix, electrical integration, and intercallular signal transduction.

- 5 117. A method according to claim 97, further comprising: forming the complex by culturing the cells in the presence of an ECM synthesis promoting agent.
- li8. A method according to claim 97, wherein the portion is a heart and the heart has a disease or disorder selected from the group consisting of heart failure, ischemic heart disease, myocardial infarct, cardiomyopathy, myocarditis, hypertrophic cardiomyopathy, dilated phase hypertrophic cardiomyopathy, and dilated cardiomyopathy.
- 119. A method according to claim 97, wherein the portion includes an avascular lesion.

- 120. A method according to claim 97, wherein the portion 20 includes a vascular lesion.
 - 121. A method according to claim 97, wherein the portion includes a bone or a cartilage.
- 25 122. A method according to claim 97, wherein the portion includes an intervertebral disk, a meniscus, a ligament, or a tendon.
- 123. A method according to claim 97, wherein the portion includes a bone or a cartilage, and the bone or the cartilage is damaged or degenerated.
 - 124. A method according to claim 97, wherein the portion

includes intractable fracture, osteonecrosis, cartilage injury, meniscus injury, ligament injury, tendon injury, cartilage degeneration, meniscus degeneration, intervertebral disk denaturation, ligament degeneration, or tendon degeneration.

- 125. A method according to claim 97, wherein the sufficient period of time is at least 10 days.
- 10 126. A method according to claim 97, wherein the complex has self-supporting ability.

S

15

- 127. A method according to claim 97, which has biological integration capability with surroundings.
- 128. A method according to claim 97, which is substantially made of cells and an extracellular matrix derived from the cells.
- 20 129. A method according to claim 97, further comprising implanting another synthetic tissue.
- 130. A method according to claim 129, wherein the other synthetic tissue is an artificial bone or a microfibrous 25 collagen medical device.
 - 131. A method according to claim 97, which is substantially made of cells and an extracellular matrix derived from the cells, wherein the other synthetic tissue is an artificial bone or a microfibrous collagen medical device.
 - 132. A method according to claim 130, the artificial bone includes hydroxyapatite.

WO 2005/012512 PCY/JP2004/03.1401

- 196 -

- 133. A method for treating a portion of an organism, comprising the steps of:
- A) replacing the portion with a complex comprising cells and a component derived from the cells or providing the complex to cover the portion, or both; and
 - B) holding the complex for a sufficient period of time for restoring a condition of the portion.
- 10 134. A method according to claim 133, wherein the treatment is for the treatment, prevention, or reinforcement of a disease, disorder, or condition of a heart, a bone, a cartilage, a ligament, a tendon, a meniscus, or an intervertebral disk.

- 135. A method according to claim 133, wherein the complex has self-supporting ability.
- 136. A method according to claim 133, wherein the complex 20 has biological integration capability with surroundings.
 - 137. A method according to claim 133, wherein the complex is substantially made of cells and an extracellular matrix derived from the cells.

25

- 138. A method according to claim 133, further comprising implanting another synthetic tissue in addition to the replacement or coverage of the portion.
- 30 139. A method according to claim 138, wherein the other synthetic tissue includes an artificial bone or a microfibrous collagen medical device.

WO 2005/012512 PCT/IP2004/011401

- 197 -

140. A method according to claim 133, which is substantially made of cells and an extracellular matrix derived from the cells, wherein the other synthetic tissue includes an artificial bone or a microfibrous collagen medical device.

5

15

20

25

- 141. A method according to claim 139, the artificial bone includes hydroxyapatite.
- 142. A method for producing a synthetic tissue, comprising the steps of:
 - A) providing cells;
 - B) placing the cells in a container, the container having cell culture medium containing an ECM synthesis promoting agent and having a sufficient base area which can accommodate a synthetic tissue having a desired size;
 - C) culturing the cells in the container along with the cell culture medium containing the ECM synthesis promoting agent for a period of time suffificent for formation of the synthetic tissue having the desired size; and
 - D) regulating a thickness of the synthetic tissue by a physical or chemical stimulus to a desired thickness.
 - 143. A method according to claim 142, wherein the physical stimulus includes shear stress between the synthetic tissue and the container, deformation of the base of the container, shaking of the container, or pipetting.
 - 144. A method according to claim 142, wherein the chemical stimulus is obtained by using a chemical substance selected from the group consisting of actin depolymerizing agents and actin polymerizing agents.
 - 145. A method according to claim 104, wherein the actin

WO 2005/012512 PCT/JP2084/031401

S.

10

30

.. 298 ...

depolymerizing agent is selected from the group consisting of Slingshot, cofilin, CAP (cyclase associated protein), AIP1 (actininteracting protein), ADF (actindepolymerizing factor), destrin, depactin, actophorin, cytochalasin, and NGF (nerve growth factor).

- 146. A method according to claim 144, wherein the actin polymerizing agent is selected from the group consisting of RhoA, mDi, profilin, Bacl, IRSp53, WAVE2, ROCK, LIM kinase, cofilin, cdc42, N-WASP, Arp2/3, Drf3, Mena, LPA (lysophosphatidic acid), insulin, PDGF (platelet derived growth factor), PDGFb, chemokine, and TGF (transforming growth factor) β.
- 15 147. A method according to claim 144, wherein the desired thickness is regulated by adjusting a ratio of the actin depolymerizing agent to the actin polymerizing agent.
- 148. A method according to claim 142, further comprising:
 20 producing a plurality of the synthetic tissues and attaching the plurality of the synthetic tissues together to be integrated.
- 149. A tissue complex, comprising an implantable synthetic 25 tissue and another synthetic tissue.
 - 150. A tissue complex according to claim 149, wherein the implantable synthetic tissue is substantially made of cells and a material derived from the cells.
 - 151. A tissue complex according to claim 149, wherein the implantable synthetic tissue is substantially made of cells and an extracellular matrix derived from the cells.

WO 2005/012512 PCT/IP2004/011401

- 199 -

152. A tissue complex according to claim 151, wherein the extracellular matrix is selected from the group consisting of collagen I, collagen III, vitronectin, and fibronectin.

 \widetilde{z}_{i}

- 153. A tissue complex according to claim 151, wherein the extracellular matrix contains all of collagen I, collagen III, vitronectin, and fibronectin.
- 10 154. A tissue complex according to claim 149, wherein the other synthetic tissue includes an artificial bone or a microfibrous collagen medical device.
- 155. Atissum complex according to claim 154, the artificial bone includes hydroxympatite.
 - 156. Atissue complex according to claim 149, the implantable synthetic tissue is biologically integrated with the other synthetic tissue.

- 157. A tissue complex according to claim 156, wherein the biological integration is achieved via an extracellular matrix.
- 25 158. A composition for use in producing a synthetic tissue having a desired thickness, comprising a chemical substance selected from the group consisting of actin depolymerizing agents and actin polymerizing agents.
- 30 159. A composition according to claim 158, wherein the actin depolymerizing agent is selected from the group consisting of Slingshot, cofilin, CAP (cyclase associated protein), AIPI (actin interacting protein 1), ADF (actin depolymerizing)

factor), destrin, departin, actophorin, cytochalasin, and NGF (nervs growth factor).

160. A composition according to claim 158, wherein the actin polymerizing agent is selected from the group consisting of RhoA, mDi, profilin, Racl, IRSp53, WAVE2, ROCK, LIM kinase, cofilin, cdc42, N-WASP, Arp2/3, Drf3, Mena, LFA (lysophosphatidic acid), insulin, FDGF (platelet derived growth factor) a, FDGFb, chemokine, and TGF (transforming growth factor) β.

WO 2005/012512 PCT/JP2004/011401

2/46

4/46

WO 2005/012512 PCY/IP2004/011401

5/46

五 日 日 3 8

WO 2005/012512 PCY/IP2004/03/1401

<u>、</u> (<u>)</u> (<u>)</u>

FIG. 12

<u>の</u> り 山

五0.15

FIG.17

WO 2005/012512 PCT/JP2004/011401

andr or

FIG.21

月6.22

B-actin

Chondrogenic medium

Growth medium

24/46

25/48

上 (の)

五 (2.2) (1.2)

නු <u>ෆ</u>

FIG:23

membrana synovialis derived artificial tissue

MG.38

で り し

WO 2005/012512 PCY/JP2004/011401

33/46

HE staining

ənssij Monolayer synthetic osteogenesis control ənssij Monolayer synthetic

FIG.34

WO 2005/012512 PCY/JP2004/03.1401

₩ 10.33

WO 2005/012512 PCY/IP2004/031401

38/46

FIG.38

FIG.40

Ratio of initial diameter

PCT/JP2084/011401

NEOBONE | NEOBONE + Synthetic tissue SI

FIG.43

FIG.44

FIG.45

WO 2005/012512 PCT/JF2084/031401

contact projection A

$$H = \frac{F}{A} = \frac{F}{k_i h_i^2}$$

$$f_{Are} \mathbf{1}$$

$$E = \left[\frac{dF}{dh}\right]_{F_{max}} = \frac{1 - \nu^2}{2 \cdot k_z \cdot h_{pmax}}$$

$$h_p = h_r + 0.25(h_{\text{max}} - h_r)$$

F: load

A: contact projection area

hp: contact depth k1k2: shape conflict Fmax: Maximum load

hmax: Maximum displacement ltr: point at which tangential

line intersects

dF/dh: Gradient of tangential line of load removal curve

ν: Poisson's ratio

SEQUENCE LISTING

(110) NAKANURA, Norimees: MATSUNA, Hikaru: SAWA, Yoshiki: TAKETANI, Satoshi: MIYAGANA, Shigeru: YOSHIKANA, Hideki: ANDO, Wateru

(120) SCAFFOLD-FREE SELF-ORSANIZED 3D SYNTHETIC TISSUE

(130) NKMOOIPCT

(160) 30

<170> Patentin version 3.2

(210) 1

(211) 6085

(212) DNA

(213) Homo sapiems

⟨220⟩

<221) CDS

(222) (115)...(5940)

5

<490> 1

tacegotece assassesac assassessi ocigotitas assectocas gasoteto 60

actocoaggo tacatottot cacttgotaa caaggacoto tgagtteago agos atg

Mests:

117

165

213

The same

18

agt toa gas toe gas tts sot stt tit ggs sas got got oot tto oto Ser Ser Aap Ser Glu Leu Ala Val Phe Gly Glu Ala Ala Pro Phe Leu

10

oga aas tot saa ass sas ogo att sas sco cas aat ass coo tti sat Ars Lys Ser Siu Ars Giu Ars lie Giu Aia Gin Asn Ars Pro Phe Asp

20 25 -30 ECC SEE SCE TOT STO THE STS SCE SEE CCC SEE SEE TOO THE STO SEE 281 Ala Lys Thr Ser Vai Phe Val Ala Siu Pro Lys Siu Ser Phe Vai Lys 35 40 45 EEE SCC STC CAR ASC ASA EAA SEE EEE EEE ETE ACE STY ASE OCT SAE 309 Gly Thr lie Sin Ser Arg Siu Gly Gly Lys Val Thr Val Lys Thr Glu 80 22 68 see see see act cig aca sig any got got cap gio the coc atg age 387 Gly Gly Ala Thr Lau Thr Val Lys Asp Asp Gin Val Phe Pro Met Asn 70 80 oot oog ass ist gad asg ato gag gat atg god atg atg act dat dig Pro Pro Lys Tyr Asp Lys IIe Giu Asp Met Als Met Met Thr His Leu (80) 35 cat gas oct set stg etg tae aac ete aas gaa egt tat gea gee teg \$53 His Glu Pro Ala Val Leu Tyr Asm Leu Lys Giu Arg Tyr Ala Ala Trp 100 105 110 sts ato tac acc tat top ggt oto tto tst sto act sto ago occ tac 501 Met lie Tyr Thr Tyr Ser Cly Leu Phe Cys Val Thr Val Ash Pro Tyr 115 120 125 ase tee cts out gig tot mas one gas gig gts and see too ego sgo 540 Lys Trp Lsu Pro Val Tyr Lys Pro Giu Val Vai Thr Als Tyr Arg Gly 130 135 140 145 ass asg ogo tag 668 goo oog ood ogo ato tto too ato toi gad asc 897 Lys Lys Ars 6in 6iy Ala Pro Pro His lie Phe Ser lie Ser Asp Asn 150 155 180 god tat cag ito aig oig act gas oga gag met cag ice sic oig ato 645

Ala Tyr Sin Phe Met Leu Thr Asp Arg Glu Ash Sin Sor Ile Leu lle

\$75 act see the tot set somes as act sty sec acc may out sto atc The Gly Glu Ser Gly Ala Gly Lys The Val Ash The Lys Arg Val 11e cag tac tit gos ace sit gos git act ggt gag aag seg asg gee gee Gin Tyr Phe Ala Thr lie Ala Vel Thr Gly Glu Lys Lys Lys Glu Glu att act fot 550 aan ata cas 555 act cig 525 get can atc atc agt lie The Ser Siy Lys lie Sin Siy The Leu Siu Asp Gin Lie lie Ser god and dos sin sig gag gos tit ggo and gos nag not gig agg ant Ala Asn Pro Leu Leu Giu Ala Phe Giy Asn Ala Lys Thr Val Arg Asn gac ase for tot ego tit ggt ass tic sto age ate eac tit gge act Asp Ash Ser Ser Arg Phe Cly Lys Phe IIe Arg IIe His Phe Cly Thr act 82% 888 ctg gow tot got gat att gas ace tet ctg cta gag sag The Gly Lys Lew Ala Ser Ala Asp lie Glu The Tyr Leu Lew Glu Lys ict aga git git ito dag ott sag got gag aga agt tat dat eit itt Ser Arg Val Val Phe Gin Lou Lys Als Giu Arg Ser Tyr His 11e Phe two des att aca tog set asg ass oca gas ott att gas atg ott otg Tyr Gin lie Thr Ser Asn Lys Lya Pro Glu Leu lie Glu Met Leu Lsu att acc acg ago con tet gat the och itt gio agi can gag gag atc

ile The The Ash Pro Tyr Asp Tyr Pro Phe Val See Sin Gly Sie lie

agt sts see age ate sat gat eas gas eas ets ate goe ace gat agt Ser Vai Ala Ser Ile Amp Asp Gin Glu Glu Leu Met Ala Thr Asp Ser got sit gat all its see itt act aat gas gaa aag gid too att iso Ala IIs Asp ile Lau Gly Phe Thr Ase Six Giu Lys Val Ser lie Tyr ass oto sog ggg got gig sig dat tet ggg aso ota sas tit seg cas Lys Lau Thr Sly Als Val Met His Tyr Sly Asn Leu Lys Phe Lys Gin ase can out say say can gon say our get ago ace gee git got say Lys Gin Arg Giu Giu Gin Aia Giu Pro Asp Giy Thr Giu Yai Aia Asp BEE SCS SCC tec cto ces est cts eac tot goe get cts cto ese got iys Ala Als Tyr Leu Gin Ser Leu Asn Ser Als Asp Leu Leu Lys Ala cts tgc tac coc age git sag git ggc aat gag tat git acc ana ggc Low Cys Tyr Pro Arg Val Lys Val Gly Asn Glu Tyr Val Thr Lys Gly cas act gla gam cag gig too aso goa gia ggt get etg gee ase goo Gin Thy Val Giu Gin Val Ser Asn Ala Val Gly Ala Leu Ala Lys Ala gto tac gag ang stg tio otg tgg stg gtt god ogs sto ase cag cag Val Tyr Giu Lys Met Phe Leu Trp Met Val Ala Arg lie Asn Gin Gin **\$35** 440) otg gad add dag dag ded agg dag the its ato ggg gto iig gad att

Leu Asp Thr Lys Gin Pro Arg Gin Tyr Phe He Giy Val Lou Asp He

	450	}				458	Š				460)				465	
	get	. eet	: tt1	t gag	, att	i tit	gat	: tto	aac	- 880	ots	(80)	(CS)	; ct;	tg:	ato	1557
	Ala	Gly	Pin	: 81:	3	: Phe	Ass	Phe	: Asn	Ser	· Let	031	ı Gir	i Lei	: Cyr	s 11e	
					470) :				478	j.				480)	š
	880	tte	800	; sat	. 434	888	ets	CSS	ı cag	ttt	: tto	3838	; cac	Cac	ats	, ttc	180%
																Phe	****
				485					490					495			×
										:-							
																tto	1653
	¥a!	Leu			Glu	Giu	îyr	Lys	Lys	§≬u	81y	118	e Q (u	Tep	The	Pine	
			500	1				505					510	l	,		
	seller.	erae	***	- 437 67 507	a tra		er Sine	sa partir	***	****	ac de ac						א מפסיל ני
																aag Lys	1701
		S15	s. C.s.	·	3013A P	s make	520	551.00	428.88	പഴ വ	11.63	525		3 1 22	23 52	7.32	: * * -
												ececió					
	cet	atg	ggc	ato	tto	tcc	ato	ots	gaa.	gag	gag	tgo	atg	ttc	cct	888	1749
	Pro	Met	@ly	118	Phe	Ser	11*	Leu	ű i	Glu	Slu	Cys	Mest	Phe	pro	Lys	
	530					535					540					545	
÷													cag				1797
	Asa	1337	asp	ih:		P99	Lys	Asn	Lys		j.hi.	Asp	@lo	His		Gly	
					550					555					560		
	232	tot	800	88 0	tte	Cas	888	000	888	ete	జాకుడ	***	ggc	a a a	2000	282	1845
	Lys												Gly				6.64.00
				565					570					575			
	gog	csc	tto	got	ctg	att	080	tat	get	381	gtt	sts	gac	tac	880	att	1893
	Als	His	Phe	Als	Leu	118	Mis	Туг	Als	Gly	Val	Val	Asp	Tyr	Asn	He	
			580					585					590				
	چاند ماند سا		à														
													282				1941
	8 1.18	22 L 3.	ŧιp	广流线	68 I 33	%.¥#	ASO	L'AS	asp.	2,3.10	i.su	កនក	61a	1334	¥8	Yasi	

ess of the cas man for gon ats man act of got can ofe the tot Gly Leu Tyr Sin Lys Ser Ala Met Lys Thr Leu Ala Sin Leu Phe Ser ese sot cas act gut gas ega ese ega got ego ega ega eco asy ass Giy Ala Gin Thr Ale Giu Giy Giu Giy Ala Siy Giy Giy Ale Lya Lya set est was was ass see tot tot the ess sea sig tot see eit the Giy Giy Lys Lys Lys Gly Ser Ser Phe Gin Thr Val Ser Ala Lsu Phe aga gag aat iig aac aag cig aig acc aac cic agg agi acc cet oct Ars Glu Asn Leu Asn Lys Leu Met Thr Asn Leu Arg Ser Thr His Pro cas tit sts age tet atc atc occ est sag ace ace act cot ggt goo His Phe Vai Arg Cys lie lie Pro Asn Giu Thr Lys Thr Pro Gly Ala sts sag cat sag oft sto oto can cag ots age tet mac set stg ots Met Glu His Glu Leu Val Leu His Gin Leu Arg Cys Asn Gly Val Leu gas ago ato ago ato tet age ase ees tit oos ago aga ato oit tat Gla Siy lie Arg lie Cya Arg Lya Siy Phe Pro Ser Arg lie Lea Tyr gos sac the sas cag aga two sas sta tha sat gos agt gos ato got Ala Asp Phe Lys Gin Arg Tyr Lys Vai Leu Ass Ala Ser Ala lie Pro saa see caa tio att gat ago aag aag goo tot gag aag oto ott gos

Giu Gly Gin Phe Ils Asp Ser Lys Lys Ala Ser Giu Lys Les Leu Ala

too sto gan att gan oan oom dag tat ama tit ggg oan ang gto Ser lis Asp lie Asp His Thr Gim Tyr Lys Phe Gly His Thr Lys Val itt ito ama got ggt oft cig ggg oto cia gag gag sig ogs gat gac Pho Pho Lys Aia Gly Leu Leu Giy Leu Leu Giu Glu Mot Arg Asp Asp ase ois see cap oig ait ace ogs see cap you age tee age yeg tio Lys Lou Ala Gin Leu He Thr Arg Thr Gin Ala Arg Cys Arg Gly Phe tts see aga sts sag teo cas age ate ste sas asa age sag see ate Leu Ala Arg Vai Glu Tyr Gin Arg Mst Val Giu Arg Arg Giu Ala IIe 📌 🦠 the tet ate cag tee ast ste aga tee the ang sat gie sag cae teg Phe Cys lie Gin Tyr Asn lie Arg Ser Phe Met Asn Vai Lys His Trp oce tex ate saa cid tid tid sax ato say out dig ity say agt you Pro Trp Not Lys Leu Piw Phe Lys lie Lys Pro Les Leu Lys Ser Ala see act see eas see atg see acc atg ang gon gon tit cag man att Glu Thr Siu Lys Glu Met Ais Thr Met Lys Siu Giu Phe Sin Lys Ile asa çac gas ett god sag toa gag gos asa agg sag gas etg gas gos Lys Asp Giu Lex Ais Lys Sor Giu Ais Lys Arg Lys Giu Leu Giu Giu sag atg sig acg cig tig mas gam amm ami gac tig cag cic cam git Lys Met Val Thr Leu Leu Lys Glu Lys Asn Asp Leu Gin Les Sin Val

cas set saa see saa see tig set gat sea sag saa age tet gas cag Gin Ala Giu Ala Giu Giy Law Ala Asp Ala Giu Giu Arg Cys Asp Gio cts atc ass acc ass atc cag cts gas god ass atc sas gag gtg sot tsu lie tys Thr tys lie Gin tsu Giu Ala tys lie tys Giu Val Thr sag aga got gag gat gag gas gag atc aat got gag otg ace goo aag Giu Arg Ala Glu Asp Giu Giu Siu 11s Asp Ala Giu Leu Thr Ala Lya sag agg asa cig gag get gas tgt toa gas etc asg sas gac stt get tys Arg Lys Leu Glu Asp Glu Cys Ser Glu Leu Lys tys Asp lie Asp sac off sag ofg aca ofg goo ang git gag sag gag aaa osi goo aca Asp Leu Glu Lau Thr Lau Ala Lys Val Glu Lys Glu Lys His Als Thr gas and any sig and and did ace goe gag sty goe ggt otg get gas Glo Asn Lys Val Lys Asn Leu Thr Glo Siu Net Ala Gly Lou Asp Glo ace att get sag etg ace sag gag asg aag get ete cag gag goe cae The lie Alaiya ion The Lys Giv Lys Lys Alaica: Gin Giv Ala His cag cas not cig gat gad cig cag gos gag gag gad sas gio sac Gin Gin Thr Leu Asp Asp Leu Gin Ais Giu Giu Asp Lys Yai Asn acc oig acc asa got saa sic saa oii gas osa caa gig gai gai

Thr Lew Thr Lys Als Lys | He Lys Lew Glu Gin Gin Val Asp Asp

1028	ŝ		103	©.			109	15				
ctt Leu 1 0 40	@£L		g gag g Glu 104	81				Ar				3276
822 Gio 1055	Ars		; 888 Lys 1060	Leu				Ĺ.y:				3321
≋aa 6≷u 1070	Ser		: stt : 116 :1078	Glu				@ls				3386
88g Lys 1085			: £2£ Glu 1090	Phe				Loc) aag • Lys		3411
att lie 1100			gca Ala 1105	Leo				Gla				3458
			cgs Arz 1120					Glu		sas Siu		3501
			ces Ars 1135				aag	cag				3546
			898 Giu 1150			618	agg		gas Glu			3591
			gov Ala			atg	88C				N.	3636

						9							
* *	60					116	6				117	70	
ge	₹ 1	:88	i ti	s ca	£ 88	នេះ នេះទ	630	e se	ar eo eo	er eede	n osa	: sas soc eta	#.A.W.)
Al						s Wet					s s∞s y Qlu		3681
**					er eag	118		ille sec i	ള കോയാ	n resi		-	
	- **					6.5.45	60				118	क	,
080	8 (at	883	e go	0 80	a gog	30	0 404) ot:	. ags	(28g	ass cat gos gat	3726
មិនិ												Lys His Als Asp	
111						119!					120		•
88	8 3	ts	goe	68	got	t sse	\$33	g cag	(at	i gac	* ***	ots cas osa sis	3771
Sec	r V	8: [Ala	: Gls	; Le	u Gly	Gŝu	ı Gin	118	: Авр	Asn	Leu Gin Arg Val	*
120)5					1210)				121	5	
aas	(0	88	888	ste	(88)	3 888	838	388	881	gag	atg	ses ets ses sit	3816
Lys		33	Lys	Lee	8 8 18	: Lys	Glu	Lys	Ser	Slu	Met	Lys Net Glu IIs	, *
122	50					1228					1230)	
şat	8	\$C	ott	get	881	aat	gta	gaa	seg	gto	tcc	ses soc sag ges	2881
Asp	Å	883	ែខព	Als	Ser	* Asn	¥a!	6lu	The	Val	Ser	Lys Ais Lys Gly	
123	S					1240					1245	S	
886	e o	.8	888	888	atg	tgo	CSS	act	cts	282	gac	cas otg agt gas	3906
Asn	Ls	383	Slu	Lys	Met	Gys	Ārg	Br	Leu	Glu	Asp	Gin Les Ser Giu	
1.250	0					1255					1260	•	
cts	28	8	tes	988	888	geg	sas	cag	cag	cgg	otg	atc ast gac ctg	3951
Leu	Ly	8	Ser	Lys	©lu	6ls	Ølu	0in	G≨n	Arg	Less	ile Ass Asp Leu	
126!	\$					1270					1275		
act												sst sag tit toa	3996
Thr		8 . §	ឱាំខ	Arg	Gly		Leu	©[n	Thr	Gju	Ser	Gly Glu Phe Ser	
1280)					1285					1290		
cgc								sct	otg	ere .	tot	cag tta tos aga	4041
200	3.23	m 3	2000.0	St event	25 Teach	Encore	ox it.	A	o	SE. 5 .	rie.	Sex is a contract to the sex of t	

Arg Gin Leu Asp Giu Lys Giu Ais Leu Vai Sor Gin Leu Sor Arg

1295			130	3		130	š				
ggs Sly 1310	Lys			Sir		: gas : 61:: 132(Lei				4086
ott Leu 1325			: 888 : Lys 1330	Ala		ctg Lau	Ala			2	4331
688 Gin 1340			: 880 : Asp 1349	Cys		088 Ars 1350	Gla		see Glu	3.	417 8
888 818 1355				Ala		asa Ars 1365	Als			۶.	4221 ,
800 Ala 1370				\$In		888 Lys 1380		sas Giu	gec Asp		4268
			888	ses		gos Ala	-	aag Lys	ctg Leu	`	4311
goc Ala			gos Ala								4356
\$400 gcc Als						1410 cag Gin					44 01
			1420 sty Met					aat Asn			4449

1430			N.	1435			1440)					
tst Cys 1445				: 888 : Lys 1450	Lys		ttc Phe 1455	Asp			••		4491
gos Ala 1460				; sea Lys 1465	Cys		cst Nis	Ala					4536
800 Ala 1475		-		. 860 Ala 1480	Arg		act Thr 1485	Giu			aag Lys		4581
#1# # 490				688 618 1495			cag Gin 1500	Leu				к	. 4625
aas Lys 1505				aac Aan 1510				tot					4671
gas				gga Gly			cat His			•			4716
sts He				1525 gaa Glu			8lu			•	**		4781
t.su				1540 gos Als				gas Giu	***				4806
				1555 E85 Slu				tot Ser					4851

1965	i				157	0				157	ő					
agg										gsc		; cts	(88)	g aga	**	4896
Arg 1580		;	∍ Ali	e Gle	: Lys 158:		o Gle	ı Sit	ı ile	: Asp 159(i Lei	ı Lys	s Arg	c.	
880	080	ati	: ag:	atc	stg	gaş	to:	; atg	cag	: egc	acs	ctg	ga!	: got		4941
Asn 1595		116	ar Arg	; 11e	150X		i Ser	· Net	: Gin	Sør 1605		· Leu	i Asp	A ia	,	
888	ato	386	: agt	agg	sat	gst	. g oc	at:	agg	cts	888	ssg		: : atg	•	4986
81u 1810	Hs	Arg	Ser	- Arg	Asn 1515		: Als	: ile	AFŞ	1620		Lys	Lys	: Met		
888	ggs	gac	cto	: aat	gaa	stg	şsa	ato	cag	ots	886	cat	g 00	880		5031
6 lu 1625	Sly	Asp	Leu	Asn	Giu 1630		Slu	118	8Ia	Leu 1635		Mis	Ala	Asn	87	*
osp							agg	886	tac	322	880	scc	caa	88c		5076
Arg 1640	Wet	Als	Ala	6lu	Ala 1645		årg	Asn	Ţ¥r	Ars 1650	Asn	Tŝu	Gin	Gly		
atc										gat						5121
11e 1655	7'80	Lys	Asp	list.	SIN 1580		His	Leu	Asp	Asp 1665	Als	Leu	Arg	Ser		
										sts						5166
Sin 1670	W155	uss	Les	2.360	1675		R.8963	A S B	REE	Va I 1680	Siu	Arg	Arg	Ais		
					sas esu					ogg						5211
1665	oesid	x.1013	64811	maid.	1690	5 1 3 5	213	usu		Arg 1895	A. 3	3 535	r.su	ម៖ព		
										cas						5256
25.3.52	8100	989	5.80 B	6968	ees 🛱	m A se	8 6 85	833	ខាន	មីពៃ	030	8,800	£.833	Asp		

							-									
1700)				170	5				171	0					
gcc	agi	t ga	g 0g	t gt	t cag	oti	a ot:	g ca:	0 80	o cag	2.3	c ac	0 ag	c etg		5301
Als					l ein											
1715					172					172						
atc	880	* &G(c aa;	g 38	g ang	etg	(83	g sc.	e gal	t att	te	s cai	a at	g caa		5346
lie	Ass	Bu	r Lys	s Ly:	s Lys	i.e.	e Git	i The	· As;) lie	Ser	- Gl:	n ‱e	t Gin		
1730	l				1738	j				174)				, c.	
gga	g 88	sta	<u> </u>	g g e	Sett	oto	cas	(ge	goç	Ggg	ast	gos	. 38	9 838		5391
Gly	Glu	Met	t Gil	j Ass	t Hs	Leu	Gir) Glu	Als	Arg	Asc	Als	611	ı Giu		
1745					1750					1758	į			4		
sag	gcc	888	. 388	(go:	atc	act	gat	gog	gco	atg	stg	gct	234	. 888		5436
i.ys	Als	Lys	Lys	: Ala	: He	Thr	Asp	Ala	Ala	Met,	Met	Ala	611	olu	5.1	ş.
1760					1768					1770	ł					
ctş	888	888	888	ces	gac	860	380	gcc	cae	otg	gag	cgg	818	aag		5481
Leu	Lys	Lys	810	(© fin	Asp		Ser	Ala	His	Leu	€la	Arg	₩et	Lys		
1775					1780				ű.	1785						
sag					acc											5526
Lys	Asn	Met	ឱ្យ	Gin	Thr	Vai	Lys	Aso	Leu	0 in	Lou	Arg	Les	Asp		
1790					1795					1800						
					gec											5571
	Ala	Giu	Sin	Leu	Ala	Leo	£ys	Gly	Gly	Lys	Lys	G≬n	116	@ln		
1805					1810					1815						
888	otg	232	300	agg	gta	ces	gag	otg	888	gga	gag	gtt	888	agt		5618
	Leu	G lu	Als	Arg	Val	Arg	@la	î.eu	ន៖ប	Gly	Slu	Va i	610	Ser		
1820					1825					1830						
888	caa	888	est	aat	got	gag	get	gto	888	ggt	ots	ogo	888	cat		5581
Siu	Gin	Lys	Arg	Asn	Ala	Glu	Ala	Vai	Lys	Gly	Leu	Arg	l.ys	His		

1835	š				184)				184	5					
888 010 1850	Arg				: 888 : Giu 1858	Løu					Ø i u			t sga > Arg		5706
aag Lys 1865	Ass				: cit : Leu : 1870	ßin					Lys			sca Als		5751
888 Lys 1880	Val				88g Lys 1885	Arg				sas Glu 1890	Als			cas Gin		5796
toc Ser 1895					got Ala 1900						Gin				3.9	. 584 1
888 619 1910					088 Arg 1915						Ser					5805
					8gc Ser 1930				His							5931
	gag Glu	tga	tost	gtes	ts at	gccs	tgga	atg	scts	88 <u>%</u> &	:08 <u>g</u> g	caca	a			5980
astgt	gaca	t ot	tigg	tcat	ttoo	otsi	ŗt a	etts	ttsti	; tat	tots	ooc	tgtt	assoğ	g	6040
geaat	uaag	s at	8886	tagt	ttgo	***C	18 S	3933;	inası	3 33 8	88					6085

(211) 1941

<212> PST

(213) Home sapiens

(400) 2

Met Ser Ser Asp Ser Glu Leu Ala Val Phe Sly Glu Ala Ala Pro Phe 1 5 10 15

Leu Arg Lys Ser Giu Arg Siu Arg IIe Glu Als Gin Ass Arg Pro Phe 20 25 30

Asp Ala Lys Thr Ser Val Phe Val Ala Glu Pro Lys Glu Ser Phe Val 35 40 45

Lys Gly Thr 11s Gin Ser Arg Giu Gly Gly Lys Val Thr Val Lys Thr 50 55 60

Giu Gly Gly Ala Thr Lau Thr Vai Lya Aap Aap Gin Vai Phe Pro Net 65 70 75 80

Asn Pro Pro Lys Tyr Asp Lys lis Giu Asp Met Als Met Met Thr His 85 90 95

Leu His Giu Pro Ais Vai Leu Tyr Asn Leu Lys Giu Arg Tyr Ais Ais 100 105 110

Trp Met lie Tyr Thr Tyr Ser Giy Leu Phe Cys Vai Thr Vai Asm Pro 116 120 125 Tyr Lys Trp Leu Pro Vai Tyr Lys Pro Giu Vai Vai Thr Ais Tyr Arg 130 135 140

Giy Lys Lys Arg Gin Giy Ala Pro Pro His (le Pho Ser lie Ser Asp 145 150 155 160

Asn Ala Tyr Gin Phe Met Les Thr Asp Arg Giu Asn Gin Ser lie Les 165 170 175

ile Thr Siy Siu Ser Giy Ala Siy Lys Thr Val Asn Thr Lya Arg Val

ije Sin Tyr Phe Ala Thr lie Ala Val Thr Siy Giu Lys Lys Lys Giu 195 200 205

Giu Ils Thr Ser Gly Lys Ile Sin Giy Thr Leu Giu Asp Gln Iie iis 210 215 220

Ser Als Asn Pro Leu Leu Glu Als Phe Gly Asn Als Lys Thr Vel Arg 225 230 235 240

Asn Asp Asn Ser Ser Arg Phe Cly Lys Phe lie Arg Ile His Phe Gly
245 250 255

The The Giy Lys Leu Ale Ser Aie Asp ile Giu The Tyr Leu Leu Giu 260 265 270 Lys Ser Arg Val Val Phe Gin Leu Lys Ala Glu Arg Ser Tyr His lie 275 280 285

Phe Tyr Gin lie Thr Ser Asn Lys Lys Pro Glu Leu lie Glu Met Leu 250 295 300

Leu lie The The Asn Pro Tye Asp Tye Pro Phe Val Ser Gin Gly Giu 305 310 315 320

ile Ser Val Ala Ser ile Asp Asp Sin Giu Glu Leu Met Ala Thr Asp 325 330 335

Ser Ala ils Asp lie Lau Gly Phe Thr Ash Glu Stu Lys Val Ser lie 340 345 350

Tyr Lys Leu Thr Siy Ala Val Met His Tyr Sly Asn Leu Lys Phe Lys 365 360 365

Sin Lya Gin Arg Siu Giu Gin Ala Siu Pro Asp Siy The Giu Val Ala 370 375 380

Aso Lys Als Als Tyr Leu Gin Ser Leu Asn Ser Als Asp Leu Leu Lys 385 390 395 400

Als Leu Cys Tyr Pro Arg Val Lys Val Giy Asn Glu Tyr Val Thr Lys
405 410 415

Giy Gin Thr Val Giu Sin Val Sor Aan Ala Val Giy Ala Lau Ala Lys 420 425 430

Ais Val Tyr Giu Lys Net Phe Leu Trp Net Val Ais Arg lie Asn Gin 435 440 445

Gin Lau Asp Thr Lys Gin Pro Arg Sin Tyr Pha lie Gly Val Leu Asp 450 455 460

lis Als Gly Pho Glu lis Pho Asp Pho Asn Ser Leu Glu Glo Leu Cys
465 470 475 480

He Asn Phe Thr Asn Giu Lys Lew Gin Gin Phe Phe Asn His His Net 485 490 495

Phe Vai Leu Siu Glm Siu Siu Tyr Lys Lys Siu Siy ile Siu Trp Thr 500 505 510

Phe lie Asp Phe Gly Met Asp Leu Aiz Ala Cys Ile Glu Leu lle Glu 515 520 525

Lys Pro Met Giy He Phe Ser He Leu Glu Giu Giu Cys Met Phe Pro 530 540

Lys Ala Thr Asp Thr Ser Phe Lys Asm Lys Leu Tyr Asp Sin His Leu 545 550 555 560 Siy Lys Ser Als Asn Phe Sin Lys Pro Lys Val Val Lys Siy Lys Ala 555 570 575

Giu Aia His Phe Aia Leu IIs His Tyr Aia Gly Val Val Asp Tyr Asn 580 585 590

lie Thr Giy Trp Leu Giu Lys Asn Lys Asp Pro Leu Asn Giu Thr Vai 595 600 605

Vsi Giy Leu Tyr Gin Lys Ser Ala Net Lys Thr Leu Ala Gin Leu Phe 615 620

Ser Siy Aia Gin Thr Aia Siu Siy Giu Siy Aia Giy Siy Giy Aia Lys 625 630 635 636

Lys Giy Giy Lys Lys Giy Ser Ser Phe Gin Thr Val Ser Ala Leu 645 650 655

Phe Arg Giu Ash Leu Ash Lya Leu Met Thr Ash Leu Arg Ser Thr 8/s 660 865 670

Pro His Phe Vel Arg Cys !le | Le Pro Asn Giu Thr Lys Thr Pro Sty 675 685

Ala Met Glu His Six Leu Val Leu His Gin Leu Arg Cyz Asn Gly Val 690 695 700 Leu Siu Giy ile Arg lie Cys Arg Lys Giy Phs Pro Ser Arg Ile Leu 705 710 715 720

Tyr Als Asp Phe Lys Gin Arg Tyr Lys Vai Lsu Asn Als Ser Als Ile 725 780 780

Pro Siu Giy Gin Phe lie Asp Ser Lye Lye Ala Ser Siu Lye Leu 740 745 750

Ala Ser iie Asp IIe Asp His Thr 6in Tyr Lys Phe 6iy His Thr Lys 765 760 765

Val Phe Phs Lys Ala Gly Leu Leu Gly Leu Leu Glu Glu Met Arg Asp 770 775 780

Asp Lys Lau Ala Gin Leu He Thr Arg Thr Gin Ala Arg Cys Arg Giy 785 790 795 800

Phe Leu Ala Arg Vel Giu Tyr Gin Arg Met Val Giu Arg Arg Giu Ala 805 - 810 - 815

ile Phe Cys lie Gin Tyr Ash lie Arg Sor Phe Met Ash Val Lys His 820 825 820

Trp Pro Trp Met Lys Lou Pie Phe Lys 11e Lys Pro Leu Leu Lys Ser 835 840 845 Ala Glu Thr Glu Lys Glu Met Ala Thr Met Lys Glu Slu Phe Gln Lys 850 855 850

ile Lys Asp Glu Leu Ala Lys Ser Glu Ala Lys Arg Lys Glu Leu Glu 865 870 875 880

Giu Lys Met Vai Thr Leu Leu Lys Giu Lys Asn Asp Leu Gin Lau Gin 885 890 895

Vai Gim Ala Siu Ais Giu Giy Leu Aia Asp Ais Siu Giu Arg Cys Asp 900 905 910

Sin Lew 11s Lys Thr Lys 11e Gin Lew Giz Als Lys 11e Lys Giz Vsi 915 920 925

Thr Giu Arg Ais Giu Asp Giu Giu Giu lie Asm Ais Giu Leu Thr Ais 930 935 940

Lys Lys Arg Lys Les Gis Asp Gis Cys Ser Gis Les Lys Lys Asp lie 945 950 955 960

Asp Asp Leu Gis Les Thr Leu Ala Lys Vai Giu Lys Gis Lys His Ala 965 970 975

The Giu Aan Lys Val Lys Aan Lau The Giu Giu Met Ala Siy Lau Asp 980 985 990 Giu Thr lie Ais Lys Leu Thr Lys Giu Lys Lys Aia Leu Gin Giu Aia 995 1000 1005

His Gin Gin Thr Leu Asp Asp Leu Gin Ala Giu Giu Asp Lys Vsi 1010 1020

Asp Leu Giu Giy Ser Leu Giu Gin Giu Lys Lys Leu Arg Met Asp 1040 1045 1050

Leu Siu Arg Ais Lys Arg Lys Leu Siu Siy Asp Lsu Lys Leu Als 1865 1860 1865

Gin Giu Ser lie Met Asp lie Giu Asn Giu Lys Sin Gin Leu Asp 1070 1075 1080

Giu Lys Leu Lys Lys Giu Phe Giu lle Ser Ass Leu Gin Ser 1885 - 1889 - 1895

Lys lie Giu Asp Siu Gin Aia Leu Gly lie Gin Leu Gin Lys Lys 1100 1105 1110

lis Lya Giu Leu Gin Aia Arg lia Giu Siu Lau Giu Siu Siu Ita 1115 - 1120 - 1125 Giu Ala Giu Arg Ala Ser Arg Ala Lya Ala Giu Lya Gio Arg Ser 1130 1135 1140

Asp Lau Ser Arg Giu Leu Giu Giu iia Ser Siu Arg Lau Giu Giu 1145 - 1150 - 1155

Ala Giy Giy Ala The Sor Ala Gin ile Giu Met Asm Lys Lys Arg 1160 1165 1170

Siu Ala Giu Phe Gin Lya Met Arg Arg Asp Leu Giu Giu Ala Thr 1175 - 1180 - 1185 - .

Leu Gin His Giu Ala Thr Ala Ala Thr Leu Arg Lys His Ala 1190 - 1195 - 1200

Asp Ser Vel Ala Clu Lsu Siy Giu Gin He Asp Asn Lsu Sin Arg 1205 1210 1216

Vai Lys Sin Lys Leu Giu Lys Giu Lys Sar Giu Not Lys Met Giu 1220 1225 1230

iis Ass Asp Leu Als Ser Asn Vai Giu Thr Vai Ser Lys Aim Lys 1235 1240 1245

Gly Asn Leu Glu Lys Met Cys Arg Thr Leu Glu Asp Gin Leu Ser 1250 1255 1260 Glu Leu Lys Ser Lys Glu Glu Glu Glu Gln Arg Leu | (s Asn Asp 1265 1270 1275

Les Thr Ala Gin Arg Siy Arg Les Gin Thr Sis Ser Gly Sis Phe 1280 1285 1290

Ser Arg Gin Leu Asp Giu Lys Gis Ais Leu Vai Ser Gin Less Ser 1295 : 1300 : 1305

Arg Gly Lys Gin Als Phs Thr Sin Gin He Giu Glu Leu Lys Arg 1310 1315 1320

Gin Leu Siu Giu Giu Ile Lys Ala Lys Asn Ala Leu Ala His Ala 1335 1330 1335

Leu Gin Ser Ser Arg His Asp Cys Asp Leu Leu Arg Glu Gin Tyr 1340 1345 1350

Giu Giu Siu Sin Giu Ser Lys Aia Giu Leu Sin Arg Ala Lou Ser 1355 1360 1365

Lys Ala Aso The Giu Vai Ala Gin Tep Arg The Lys Tye Glu The 1370 1380

Asp Ala lle Gin Arg Thr Glu Giu Leu Giu Glu Ala Lys Lys Lys 1390 1395 isu Aia Cin Arg Leu Gin Ala Aia Ciu Ciu His Val Ciu Aia Val 1400 : 1405 : 1410

Asn Ala Lys Cys Ala Ser Less Glu Lys Thr Lys Gln Arg Leu Gln 1415 1420 1425

Ash Gio Val Giu Asp Leu Met Leu Asp Val Giu Arg Thr Ash Ala 1430 1435 1440

Ala Cys Ais Ais Leu Asp Lys Lys Gim Arg Asn Fhe Asp Lys lie 1445 1450 1466

Leu Als Giu Trp Lys Gin Lys Cys Gis Giu Thr His Als Giu Les 1460 1465 1470

Giu Als Ser Gin Lys Giu Als Arg Ser Leu Gly Thr Giu Leu Phe 1475 1480 1485

Lys lie Lys Asn Als Tyr Siu Giu Ser Leu Asp Cln Leu Giu Thr 1490 1495 1500

Lau Lya Arg Siu Aso Lya Aso Leu Sin Sin Giu lia Ser Aso Lau 1505 1510 1515

The Giu Gin He Ale Siz Giy Gly Lys Arg He His Giu Leu Glz 1520 1525 1530 Lys IIs Lys Lys Gln Vai Siu Gin Siu Lys Cys Siu Leu Gin Ala 1535 1540 1545

Als Lew Giu Giu Als Siu Als Ser Leu Giu His Giu Giu Giy Lys 1550 1555 1560

ils Leu Arg IIs Gin Leu Giu Leu Asn Gin Val Lys Ser Giu Vai 1565 1570 1575

Asp Ars Lys He Ais Giu Lys Asp Giu Glu He Asp Gin Leu Lys 1580 1585 1590

Ars Asn His lie Ars lie Val Glu Ser Met Gin Ser Thr Leu Asp 1595 1600 1605

Ala Glu lie Arg Ser Arg Ash Asp Ala lie Arg Lew Lys Lys 1810 1615 1620

Wet Siu Gly Asp Leu Ash Giu Wet Giu ile Gin Leu Ash His Ala 1625 1630 1635

Asn Ars Met Als Ala Giu Ala Leu Arg Asn Tyr Arg Asn Thr Gla 1640 1645 1650

Siy ite Leu Lys Asp Thr Cin He His Leu Asp Asp Ala Lau Arg 1865 1860 1865 Ser Gin Giu Asp Leu Lys Giu Sin Leu Als Wet Val Giu Ars Ars 1675 1680

Ala Ash Leu Leu Gin Ala Glu lie Giu Glu Leu Arg Ala Thr Leu 1685 1690 1695

Glu Gin Thr Giu Arg Sor Arg Lys lie Alz Glu Gin Giu Leu Leu 1700 1705 1710

Asp Ala Ser Giu Arg Val Sin Leu Leu Nie Thr Gin Asn Thr Ser 1715 1720 1725

Leu lie Asn Thr Lys Lys Leu Glu Thr Asp lie Ser Gin Met 1730 1735 1740

Gin Gly Siu Mat Siu Asp lie Leu Gla Siu Ala Arg Ash Ala Giu 1745 1750 1755

Giu Lys Ais Lys Lys Als lie Thr Asp Als Als Not Not Als Glo 1760 1765 1770

Gir Leu Lys Lys Gir Gin Asp Thr Ser Ala His Leu Gir Arg Met 1775 1780 1785

Lys Lys Asm Met Giu Gin Thr Val Lys Asp Leu Gin Leu Arg Leu 1790 1795 1800 Asp Sis Ais Gis Sin Les Ais tess Lys Giy Giy Lys Cys Gin IIs 1805 1810 1815

Sin Lys Leu Gla Ais Arg Val Arg Giu Leu Gla Giy Gla Vai Giu 1829 1825 1830

Ser Giu Gin Lys Arg Asm Als Giu Ala Val Lys Giy Leo Arg Lys 1835 1840 1845

His Glo Arg Arg Val Lys Gio Leo Thr Tyr Gin Thr Glo Gio Asp 1850 1855 1860

Arg Lys Ash lie Lew Arg Lew Gin Asp Lew Val Asp Lys Lew Gin 1855 1870 1875

Als Lys Vai Lys Ser Tyr Lys Arg Sin Als Giu Giu Ais Giu Giu 1880 - 1886 - 1890

Sin Ser Asn The Asn Leu Ala Lys Phe Arg Lys Lau Gin His Glu 1885 1980 1985

Leu Giu Giu Ala Giu Giu Arg Ala Aap lie Ala Giu Ser Gin Vai 1910 1915 1920

Asn Lys Leu Arg Val Lys Ser Arg Glu Val His Thr Lys Val lie 1925 1930 1935 Ser Glu Glu 1940

(210) 3

(211) 6016

(212) DNA

(213) Nomo sapiens

<220>

<221> cms

<222> (112)...(5931)

<400> 3

stacticals esseticity eastesits attactives actions total

ataatacaag agglatacet agtocagoac tgocatoaat aacetgoago c atg agt 117 Wet Ser

Ţ

ict gas tot gag atg gos att tit gag gag got got oot its oto oga 165 Sar Asp Sar Giu Met Aia ile Phe Giy Giu Aia Aia Pro Phe i.au Arg 5 10 15

ass ict see mas ses ose att sas set cas mac aas oot tit get soo 213 Lys Ser Giu Lys Giu Arg ile Giu Aia Gin Asn Lys Pro Phe Asp Aia 20 25 30

ass aca toa gto tit gig gig gac cet asg gag toe tac gig asa goa 261 Lys Thr Ser Vai Phe Vai Vai Asp Pro Lys Sis Ser Tyr Vai Lys Aia 35 40 45 50

sta gig cag ago agg gaa see gag aag gig aca goo aag aco gaa goi 309

lfs	: Val	Sin	: Ser	* Ars 55	: 6iu	i ©ly	' Giy	/ Lys	5 Val	Thr	' Ais	ı Lys	i Thi	- Gil 65	siA ı		
888	get	ect	gta	sct	gtg	888	888	gs c	C88	i gta	tte	too	atş	. 886	cot		357
8 i y	Als	Thr	Vai	His	Va I	£.ys	Gio	i Ass	មីរិក	ı Vai	Phe	: Ser	Wet	Ass	Pro	¢.	
			70					75					80				
		diam'r.															
															cet	2	405
ji e sp	. ஸ்.கேல்	85	2500350	s.yes	1 1822	: 100 K:104	лар 90	. 8888.E	. PR 8 83	- 8863°E	18000 %	***	3118	Let	His		
		***					au					95					
282	cot	got	gtg	otg	tat	886	oto	888	gag	egt	tao	808	800	tgg	atg		453
															Met		
	100					105					110					•	
															aag	3]	• 501
	Tyr	Dar	Tyr	Ser		Leu	Phe	Cys	Val		¥a¥	Asn	Pro	Tyr			
115					120					125					1,30		
tee	cts	COS	erior	tan	2880	eed	e sa er	as a	aritra:	Seesa	886	Notice Co.	.es.mess.	2000000	04.04.06		E 800
	Læg																549
				135					140	,		, 4.	ex. 36	145	21.3 14		
sag	oge	Cag	223	goc	cos	ccc	cat	ato	tte	tee	atc	tot	gsc	aat	800		597
Lys	Arg	0ln	Glu	Als	Pro	Pro	His	118	Phe	Ser	ile	Ser	Asp	Asn	Als		
			150					155					160				
Sec. 16.		.X. X															
	088																645
3 36 5	Oin	165	BB953 3.	e-enia	ESSF	asp	AFS 170	2018	ASH	usn	9.63.		เาตก	336	lin		
		2 60 60					9 8 83					175					
gga	333	tot	ggt	sca	888	aag	act	gts	880	808	888	ost	gta	ata	887		693
	010																A. A. M.
	180					185					190						
tac	žžt	sca :	acs :	338	808	gtt	sct	888	288	888	888	888	808	gas	cct		741

î ye 195		e Ali	a The	r }	e Alia 200		l T≋s	r Si	y Gi	200 200		s Ly	s SI:	u 81	u Pro 210	v
					: Gir					ı Asş					t got r Ala S	789
				: Gla					: Ala					: Ass	t geo 1 Aso	837
			Arg					He					Gly		i ace i Thr	: 885
												Less			toc Ser	. 933
									aga Arg							981
csa Sin																1929
scc :		Asn					Als									1677
sts : Val f	ro i					åla :					Ala					1125
sts s	(ac	atc	etg :	sst ·	tte :	ect (got !	gat .	gsa :	10g ;	gtş	gce :	att '	cac	888	1173

Va!	As; 34(: Lex	s Siy	r Phi) The 346		i Ası) Gii	ı Ly	s Va 354		a Eli	e Ty	r Lys	:	
oto	sci	: gg#	goc	st	ets	cat	tat	888	880	: atg	(886	ı tik	3 88;	g ca	* 33 <u>£</u>		1221
Less	Tin	. 013	Als	Ya)	Mari	His	Tyr	Oly	- Asn	i Met	i iys	Phy	l.ye	8 6 8	n Lys		
355	+				360	l				368	Ĩ				370		
caa	886	. 28 8	geg	cas	(gca	gag	cca	ı gat	880	- 809	: sas	888	got	: ga	9 888		1269
															o Ly≋		
				375					380					38!			
get	got	tat	ctg	303	agt	otg	sac	tot	got	880	ctg	oto	888	tet	oto	2	1317
Als	Als	3.82.	Løu	Thr	Ser	Leu	Åan	Ser	Ala	Asp	Leu	Leu	l.ys	Ser	Leu		
			390					395					400	i			
tgc	tat	000	ags	gto	seg	gto	ggc	aat	808	tto	gta	800	888	880	cag	3.0	: :1365
Cys	Tyr	Pro	Arg	Va!	Lys	Val	Siy	Åan	Gių	Pho	Vz!	Thr	L.ys	Gly	Gin	•	
		405					410					415					
															ato		1413
Thr	Val	Gin	Sin	Va i	Tyr	Asn	Als	¥æ!	618	Ala	Leu	Ala	i.ys	Ais	ile		
	420					425					430						
tac	888	88%	stg	tto	ote	tgg	atg	sto	aco	ogc	stc	880	CAE	cag	ctg		1461
Tyr	Glu	l.ys	Met	Phe	Les	Trp	₩et:	٧ai	Thr	Arg	Ha	Asn	@lo	G §n	Leu		
435					440					445					450		
886	800	23g	cag	000	ase	ceg	tsc	tto	ažc	ggg	gto	ttg	gac	att	got		1509
Åsp	Mr	Ĺys	និរិក	Pro	Arg	Gin	Tyr	Phe	116	Gly	Va)	Leu	Asp	i i e	Ala.		
				455					460					465			
88c	ttt	gag	ato	ttt	gat	tto	aac	ago	ctg	gog	cag	cig	tgc	ato	880		1557
Gly	Pho	Slu	lle	Phe	Asp	Phe :	Åsn	Ser	Leu	élu	@(n	Leu	Oys	i ie	Asn		
			470					4 75					480				
tto :	302	880	sas :	888	ctg :	C88 :	oag '	iit ·	tto :	886	cac :	Carrier	stg	tta	gig		1605

Pive	The	* Asr 485		ı Lys	i Lei	i (()	1 Gil 491		t Phy	i Ast	1 HS	s His 498		t Ph	e Vai	5
cts	888	Cag	gsa	888	(tac	288	: 98	g gas	e ggc	atc	s gas	r tee	(6 8)	e ee	s att	1853
Leu	630	Gla	: Slu	Giu	Tyr	· Lys	i Lys	s Gla	Oly	i lie	e Git	ı Tep	g G la	a Ph	s He	5
	500					500					SH			,		*
															t oct	1701
		: 631 y	Met	Asp			Als	ı Cys	118	: Olu	Leu	ı ile	ŭi:	Ly	i Pro	κ.
515					520					525					530	\$ \$
															gce	1749
mer	(21 Å	118	Phe		Hæ	Leu	&Iu	: 61s			Met	Phe	Pro		Ala	
				535					540					545		×
															888	. +1797
in:	Asp	Test		Phe	Lys	Asn	Lys		Tyr	Olu	មីនិក	His	Leu	Gly	Lys	
a ha ri			550					555					560			
toc	886	880	tto	cag	888	ccc	ssg	cct	800	ននន	ggc	38g	cot	&3£	get	1845
Ser	Asn	Asn	Phe	Gin	Lys	Pro	Lys	Pro	Ala	Lys	G≬y	Lys	Pro	Glu	Ala	
		585					570					575				
080	tte	toa	otg	gty	CSC	tat	gcc	ggc	800	gtg	gac	tac	880	sto	gcc	1893
His	Phe	Ser	Leu	Va I	His	Tyr	Als	Cly	Thr	٧a١	Asp	Tyr	Asn	110	Als	
	580					585					590					
ggo	tes	ctg	880	888	886	388	282	000	ets	sat	gag	set	gtg	stę	888	1941
@ly	Trp	Leu	Åsp	Lys	Åsn	Lys	Asp	Pro	Leu	Asn	G ៖ ប	Thr	Val	¥a∄	Sly	
595					600					605					810	
ots																1989
Leu) șr	Gin.	Lys	Ser .	Als:	Not	Lys	Thr	Leu	Als	Phe	Leu	Phe	Ser	Gly	
				815					620					625		
grs (csa:	sot :	get	gaa (gca	geg .	sst	sst	ggt	538	88g	888	est	88 0	888	2037

Ala Sin Thr Ala Siu Ala Siu Siy Siy Siy Siy Eya Siy Siy Eya 630 - 635 - 640	
ass sag agt tot tot tiv cas aca gts toa got off the agg gag ast Lys Lys Gly Ser Ser Phe Gin Thr Val Ser Ala Leu Phe Arg Giu Asn 645 650 655	2085
ttg ast wag otg atg aco ago its agg ago act cac cec cac itt gig Leu Asn Lys Leu Met Thr Asn Leu Arg Ser Thr His Pro His Phe Val 660 665 670	2133
CES ter ato ato occ sat gas act eas act cot est soc ats gas cat Ars Cys lie lis Pro Asa Giu Thr Lys Thr Pro Giy Ais Met Giu His 675 680 685 689	2181
886 oft sto dig cat dag ofs agg tgt amo set gig ofg gam ago ato Giu law Vai Leu Mia Gin Law Arg Cya Ash Giy Vai Law Giu Giy 11e 695 700 705	. 2229
ogo aic igo agg ama ggo ito com ago aga ato ott tai gom gmo ito Arg ile Cym Arg Lym Gly Phm Pro Ser Arg Ile Leu Tyr Alm Amp Phe 710 715 720	2277
asa cag aga tac sag gtt ota sat gog agt got atc coa gag ggt cag Lys Gin Arg Tyr Lys Vai Leu Asm Ala Ser Ala ils Pro Giu Gly Gin 725 730 735	2325
tic att gas ags aeg mag got tot gag aga ott ota ggg tot att gam Phe lie Asp Ser Lys Lys Als Ser Glu Lys Leu Leu Gly Ser lie Glu 740 745 750	2373
att gac cac acc cag two asa tto agt cat acc aag git tto tto aag lie Asp His Thr Gin Tyr Lys Phe Giy His Thr Lys Vai Phe Phe Lys 765 760 765 770	2421
got ago oig oig aga act oia gas gas aig ogs gat gas aag cia got	2469

Al:	a Gl	y ix	au Le	u 61 77		r Le	u Gi	មេ 🕅	u % e 78		g As	p Gi	u Ly	* Ls 78	su Ala IS	.	
ose Sis	ot Le	≎ #! u }	c ac e Th 79	r Ar	c ac	t ca: r Gl;	e go : Al	G at a !! 79	e Cy	c ag s Ar;	8 88 8 61	g tto y Phi	s st 9 Le 80	u Me	g aga t Arg	:	2517
			e Ar					a Arg					: Ph		c att		2565
		' Asi										; Trp	000		g atg > Met		2613
						Lys									: gag - Glu 850	4 ° '	2681
												acc Thr					2709
												gaa Gin				;	2757
						Asn .						gtt Val 895				š	2806
gca i					Asp :					Cys .						\$:853
acc :	aa .	atc	caa	ctt :	gag (goc (888	etc:	888 (gag :	gta.	act :	(88)	# £ 8	sot	2	901

Thr	· Lys	s	e Olr	Leu	i Glu	Ala	Lys	He	Lys	Glu	Val	Thr	Glu	Arg	Als	
918					920					925					930	
										aca						2949
618	Asp	(G it)	(Glu			Asn	Ala	ម្រ	Les	Thr	Ala	Lys	Lys	Arg	Lys	8.
				935					940					945		
<i>க</i> ு வ	er ex ex	· acade	- do the sec	di man	***										,	
										gec						2997
toneac	No I-Xo	235030	950		261	0.813	8.8868		7.8.2	Asp	1 88	Asp		t.eu	Gi u	
	٧.		*****			. •		955	·				960			
otg	scs	otg	goo	Bag	gtt	Sag	3330	ese	200	cat,	e eee	ar.o	mesor		ii Markan	Section 1
										His.						3045
		965					970					975	ene à chir	436924	K.3 G	
sts	338	880	oto	808	gas	888	atg	8 08	ggt	ctg (et j	gas :	age :	att	ect:	8093
										Leu /						
	086					985					90					
æ.																
			888							gas		3 08(o dag	g cs;	8	3138
	Leu	liu	Lys	Giu	Lys	Lys	Als	Leu	Gla	Glu	Alz	: 81:	s Gir	1 (Si)	n	
995					1000					1005	}					
. No sector	w & w					,										
acc Thr			gac Asp							S 888			80 ac			3183
1010		resign	. szegős	1-1383	1018		E 8213	2 3381	u asp) Lys		II As	m Th	r Le	3U	
					KARSE	is.				102	U.					
30C	383	got	888	800	888	cts		e nas	r cas	e serre	ଦ୍ୱର	ര കുട	e e	de ann	849	ማማሪው
The										ı Val						3228
1025					1030					103		30 2000	in error	00 00 E	334	
											~					
228	tot	stg	gas	caa	gaa	933	888	stt	tgc	alg	ga:	c (1)	8 g g	S & C	.8	3273
Gly										Met						
1040					1045					1080					•	
								÷								
800	888	aga	883	etg	gag	88°E	gac	cta	*88	ttg	\$04	Cas	a ga:	a to	6	3318

Ala	Ly:	f Ar	g Ly	8 L8	ធ ទីសែ	Gi	y Ass	3 L48	i Ly	s Leu	Als	: G1	n Gi	u Ser	
1059					106					106					
															N.
868	sty	: 88	t ac	8 K8	a sat	238	ර නෙනෙස	e cas	e es	a erkik	* ::::::::::::::::::::::::::::::::::::	- 88785a	e ses	a ctc	3363
The														s Leu	
1070		•			107		e tegra	2 20 50	v 2401			i iuki	u 8038	08 S.JB813	X
					12071	so:			*	108	Ų.				
333	888	. 88	8 X21	e tit	t gas	ats	f 18.07 <i>e</i> r	e sest	n esta	e essa	e e e	20140.0	e sode	t gsa	MI ALKON
Lys														e Slu	3408
1085			- ** * *		1098			5.5854	s eresi			w.y.c	a 3 (# # # 1 LL	
					1.62%3	e				109!	Ci				
sat	22.8	na:		r esta	· province	arre		***			de as ma	مطمع		s gsa	· ·
Asp														s gaz s Glu	3453
1100		300,73		e encount	1105		. Nacional	82863	S 503 1 2 3			I E	1.30	\$ 63163	
X 0.00 Cr					1166	\$				1110	j.				
tta	erio seri	nse	· 25/2009		- Minister	ere an	and a				. 0				
Leu					gäg									geg t	3498
1115	53/3 8 8	361 E	: Mrg	, 318	: \$19 		rea	818	&13			814	Als	e Glu	
8889					1120)				1128					
×		a													
CSS					383							880	oto	tec	3543
	ASS	200	Arg	Ais	l.ys		6ia	Lys	Gla	Arg	Ser	Asp	i.eu	Ser	
1130					1138					1140	2				
					sto										3568
Arg	Glu	Leu	Glu	Giu	118	Ser	ផ៖ប	AFE	Leo	01a	Stu .	Als	Siy	Gly	
1145					1150					1155					
866	305	tea	goo	cag	ett .	gag	ttg	880	334	asg	cgg :	888	got	sas	3633
					lle										
1160					1165					1170					
tto	cag	388	stg	080	8 <u>23</u>	gac	atg :	gna	<u> </u>	too	SCC (ote	©88.	cac	3678
					Arg										on why is sides.
1175					1180	-				1185	•			কৰ্ম ্ ক	
88a (2000 :	80.0	eca	eci.	got	644	റത്ത ദ	300 KF -	9390	erae.	ത്രസം ച		n serin	anti w	ogene oce
	X		JQ5.00	Sheets on	Marie of	SE MARK	missing a	99 (SP 20)	Secure :	201220	Sec. 2	3.83	Sa L	SKS	3723

G1u 1190		i Thi	* Ali	a Ali	2 Als 119		: Arı	g Lys	i Ly:	s %is		a As	p Se	r Vai			
got	888	ott	233	. 330	(08g	ato	880	ago	ct	t cag	egs	e et	ଦ ଲଞ୍ଚ	g cag		3768	
Als														s Sin		77.7.00.00	
1205					1210					121						æ	
20.00	ar de ac					4								•			
38g														t gac		3813	
Lys 1220		พยน	. £3/8	U3 ()			a:	Leu	Lys				: As:	a Asp			
1650					1225	\$:				1230	3						
ett	got	agt	880	ste	geg	act	gta	too	888	goc	***	e e	1 88	ttt:	*	3858	
Les					Glu											2.24.4	
1235					1240					1248							
gag	888	atg	tgc	ege	800	ota	gag	880	cag	ctt	agt	888	. sta	888	5.	-3903	
@f@	Lys	Xet.	Cys	Arg	The	Leo	Glu	Asp	Gin	Løu	Ser	ŭŝ.	1 18	Lys			
1250					1255					1260	;						
as.								9									
aca					ceg											3948	
	i.ys	8itu	Glu	Glu	6ln	Gin	Arg	Leu	\$ \$ \$	Asn	0lu	Lau	Ser	Als			
1285		37			1270					1275							
cag	nne	green.	නාණ	***	080	201/27/202	erosa	Trong.	an and	an acore	i de la composición dela composición de la composición dela composición de la composición de la composición dela composición dela composición de la composición de la composición dela composición dela composición dela composición dela composición	.				****	
										6lu						3993	
1280					1285	0.116	w,o	44,445	M X Z	1290		43431	nes 35	\$2133			
										X X.00.00							
cts	gat.	888	888	get	gct	atg.	gtt	tet	cag	cts	toc	GZS.	220	888		4038	
					Ata												
1295					1300					1305							
					cag											4083	
មីកែ វ	Mia i	of the last	Tim	@fs	Øla -	lie (Slu	Ciu l	Leu	Lys	Arg	ទីខែវា	Leu	0lu			
1310					1315					1320							
888 (ist i	128	888	goc	sag	ago :	ect	ats (\$CC	cat	goc	ctg	Gag	tes	;	4128	

Glu	6	u T	he Lj	ys Al	a Lys	: Se	r Th	r Le	ai A	la Hii	s Ali	ه ا ه	eri 🚳	in to	% F."	
132	õ				133					13:		Le to to	904 900	ass On	21	
															,	
#GC	og	G Ca	it ga	sc tg	it gae	s ct	g ct	e ce	e er	ia cas	s tel	h es	ಷ ಪ್ರ	202 - 4008	ະກ	4173
Ala	Ār	gH	s As	эр Су	s Asp	Ls	u Le	u Ar	z 61	13 6 § r	t Tyr	- GL	e e	tu 68	886 88	4113
134					134					135				· se que-,	···	w.
cas	gs.	8 g0	X 88	s sc	t gag	et.	g cs:	£ 48;	g gg	s sts	toc	: 38.83	£ .80	c aa	e	4218
@In											Ser					
1383					138					136						
agt	888	g gt	t go	0 08)	e teg	888	3 866	88	ž ta:	e gag	seg	gac) 80	o st	Ç.	4283
Ser	និដ										Thr					
1370):				1371	ä				138	D					
																•
cag					ctg		gaş	800	889	386	888	ota	200	o caş	\$:	4308
Gin		T \$31	r G li	a Gil	i Leu	618	i 61u	Ala	l Lys	: Lys	Lys	Leu	Ali	# Sir	1	
1385					1380)				1399	Š					
ų.																
cgt											gtg					4353
Arg		Gir	: Ass	Ala	Glu	Siu	His	Vei	Giu	Ala	Val	Asn	Ser	"Lys	}	
1400					1405					1410	}					
	,															
											ceg					4398
Cys	Als	Ser	Len	Glu			Lys	©In	Arg	Leu	815	Ass	Giu	Ya)		
1415					1420					1425						
20000		الداغات ا														
888 888											get :					4443
Siu 1430	923	rem	20 t	116		¥al	Sit	Årg	Ser		Ala,	Ala	Cys	He		
1 4720					1435					1440						
ere*	arke	tons	ning pain com-	po po see	MA -											
											stt e					4488
nus 1445	80-808A)	e popiti	80. J. W.	r kg		arg	asn	rne	Aap		Val 1	. 8 8	e A	Glu		
× 18.000					1450					1455						
tyg .	ଥର୍ଷ	030	2020	***	richer an	SN 40 10	an an an				2.2					
~33.35	ad Cd Xi	A. 1865.	226	P. C. C.	W. O. M.	ន្តនុង	ace:	seg :	got	ଛୁଅଲ	ett g	(8g)	866	tee		4533

Тгр	Ły:	8 8 1	n Ly	s Tyl	ក ផ្ទីរ	611	u Th	r Si	n Ai	ស ទីខែ	Lei	ս (3)	a Al	a Ser		
1460					146					147						
															5	
cag	888	(ga;	g to	g cgi	t tot	οži	e sec	e ac	t sa	e cte	tti	5 as	e ert	g æag	4578	
8£n														l Lys	3,000,000	
1475					148					148		. 10/9.	0 0.00	a algray	٥	
										A 4.00*	w					
88\$	goo	tac	2 <u>ga</u> g	. 688	i too	ets	get	cat	: ati	. Kaa	sct	ots	\$ 25333	g ogs	4623	
Asn														a Arg		
1490					1499					1500			- ma	n. 120 36		
gag	aat	888	(88C	tta	caa	cag	gag	sti	tes	880	ets	aca	I 288	: C88	4588	
8lu	Asm	Lys	Ase	Leu	Gin					. Asp						
1505					1510					1512						
att	gea	808	ggt	gga	aas	cat	ato	cat;	saa	otg	282	****	a ta	sag:	, 4713	
iie										Leu					, v. • • •	
1520					1525					1530						
_																
888	CSS	ott	est	cat	Sas	888	tze	gas	ota	Cag	sct	toc	ota	282	4758	
Lys										Gin					Comm	
1535					1540					1545						
238	gca	sag	gos	tot	ott	282	cat	<u> </u>	883	880	888	att	cti	czc	4803	
										Giy				Arg	2.45.40	
1550					1555					1560				- 11 200		
338	088	ožž	585	eta.	aat	Cag	gtg	888	tet	232	stt	200C	CSS	8.83	4848	
										Giu					E SAF ONE	
1565					1570			••		1575						
att	sct	<u> </u>	288	gat	gaa	gau	oto	gat	cag	cta	388	aee	880	GST.	4893	
										Leu					in the piece dist	
1580					1585					1590	16 20	(60		- D 12 1875		
sto :	388	gtt	gtg	808	toa	ate	Can :	agt	808	ctg	gat	and t	STAR ST	11 % ex	4938	
		•								200 MARS	King C	dana, ga	Marie 1889	00. N/N/A	4800	

Leu	Ars	; Va	Ya	Q1s	i Ser	₩et	: Ola	Ser	Tin	" Lau	As	p Ål	a Gi	s He	
159	Š				1800)				160	6				
															¥
agg	ag:	888	1 333	gst	got	etg	888	stc	sa;	. 338	88	g at	g ,g2	g gga	4983
Arg														s Sly	
1610					1815					1620					
gst	sti	ast	gas	ats	288	sto	cag	ets	880	cet	gc	7 888	o og:	o oag	5028
Asp	Ĺœ	. Asr	i @ls	Met	6§u	He	Sin	1.90	Asn	His	Als	a Ass	i Arg	g Gln	۰
1625	ì				1630	ŀ				1638	ŝ				
				,							•				•
got	gat	gag	ges	ota	388	ast	ctt	888	880	808	Cas	ı şşı	eta	ets.	5073
Als	Als	Glu	Als	Leu	Arg	Asn	Leu	Arg	Asn	Thr	Sir	1 @l3	f 18	Leu	
1640)				1645					1650	}				
sag	880	act	cag	cta	cat	ttg	gat	gat.	800	atc	888	. ggc	- 1388	ı gat	5118
Lys					His										
1655					1860					1668					
8															
880	ctt	asg	883	088	ttg	gca	atg	gtt	888	ogc	888	get	880	ots	5163
Asp	Les	Lys	G≋u	Gin	Leu	Ala	Met	Val	©l⊎	Arg	AFS	Ala	Asn	Leu	
1670					1875					1680					
stg	csg	gat	g88	gtt	888	geg	oto	888	gca	toc	etg	888	CZZ	act	5208
Mot	Sin	Aša	Gla	¥.8	Giu	6lu	Leu	Arg	Ala	Ser	Læs	01u	Arg	Thr	
1685					1690					1695					
282	888	880	agg	888	atg	gcs	888	cas	Sas	cii	ots	888	8 000	sgt	5253
Ğlu	årg	Gly	Arg	Lys	Met	Ala	6lu	8in	6Eu	Leu	Leu	Asp	Ala	Ser	
1700					1705					1710					
saa	cgt	gtg	caa	ctt	ctg	CSC	act	cag	sac	800	880	otg	sto	200	5298
					Leu										**
1715					1720					1725					
202	seg	888	asg	ctg	gas.	aca	sac :	att	tcc	CAS	ato	cag	gga	888	5343

Thr -1730		Lys	Lys	Lsu	61a 1735		Asp	He	Ser	6in 1740		Sin	Gly	Glu		
4					1.00					× + + + +					•	
atg	gag	880	ato	gto	cag	gas	200	0.00	ast:	ges	282	288	828	800 0		5388
Met					Gin								-			
1745					1750					1755					,,	
asg	SAC	gec	ato	æct	gat	got	gcc	atg	atg	get	gag	Sas	otg	388		5433
Lys	Lys	Ala	116	Thr	Asp	Als	Als	%et	Met.	Ala	@lş	មី៖ប	Leu	Lys	٠	
1760		ę			1765					1770		÷				
								,	. "						1	
aas	888	ceg	880	800	ago	gee	CSC	ctg	gag	css	atg	888	888	880	•	5478
Lys	©1s	&(n	Åsp	Thr	Ser	Als	His	Lsu	ទ ៖ធ	Arg	Met	Lys	Lys	Asn		
1775					1780					1785						
																e.
atg	808	Cag	800	sts	aag	gat	ctg	cag	cts	cgt	cts	88 %	gag	gct	<u> }</u> ÷	+5523
Met	@lu	Gla	Thr	Val	Lys	Asp	Leu	Gla	Leu	Arg	Leu	Gly	នាម	Ala		
1790					1795					1800						
s.																36
383	cag	otg	202	stg	888	ggt	ggg	aaş	aag	cag	ato	cas	888	ctg		5568
≬fu	0in	Leu	Ala	Lau	Lys	Gly	Sly	Lys	Lys	Gin	He	Gin	Lys	Leu		
1805					1810					1815						
838	gee	322	gtg	888	gzg	ctt	888	agt	gag	gtg	233	ægt	888	esg		5613
@1ss	Ala	Arg	¥a!	Arg	Slu	1.88	81a	Ser	6 10	¥s}	610	\$er	0iu	@lm		
1820					1825					1830						
332	080	æŧ	gtt	gaş	get	gte	sag	ggt	ott	ogo	888	ost	gag	388		5658
Lys	≋is	Asn	Vs I	Glu	alA	\ai	Lys	Gly	Len	Arg	Lys	His	Stu	Arg		
1835					1840					1845						
888					act											5703
Are	Val	Lys	ទីនៃ	Leu	Thr	Tyr	Gin	Thr	816	Sla	Asp	Årg	r'àa	Åsn		
1850		٠			1855					1860						
stt	ete	888	otg	cag	gac	XXX	gtg	gac	888	tts	088	80C	888	stc		5748

iis 1865	teu	Arg	Leu	6 In	Asp 1870		Val	Asp	Lys	Leu 1875	Sin	Thr	Lys	Væl	•	
ass Lys 1880										\$#\$ \$10 1890					e	5793
gtc Vai 1895										080 His 1905						5838
goc Ala 1910													aag Lys		•	5883
					888 818 1930					gto Val 1935			gaa Giu		4 ⁽⁾	· · 5928
tsa t	icat	icta	a tg	asag	2232	tgtg	acca	188 <u>8</u>	assi	gosog	888	tsts	38g			5981
ttoti	tgto	a ct	gtoc	tgts	teto	oagg	38 S	tasa						*		8018
604 <i>6</i> %	. At															

<210> 4

(211) 1939

<212> PRT

<213> Homo sapiens

<400> 4

Met Ser Ser Asp Ser Giu Met Ala lie Phe Gly Glu Aia Ala Pro Phe 1 5 10 15

Leu Arg Lys Ser Glu Lys Glu Arg lis Glu Als Gin Asn Lys Pro Phe

25

30

Asp Als Lys The Ser Val Phe Val Val Asp Pro Lys Glu Ser Tyr Val 35 40 45

Lys Aiz He Val Gin Ser Arg Siz Giy Gly Lys Vai The Aia Lys The 50 50

©lu Ala Giy Aia Thr Val Thr Val Lys Glu Asp Gin Val Phe Ser Not 85 70 75 80

Leu Mis Giu Pro Ala Val Leu Tyr Aan Leu Lys Giu Arg Tyr Ala Ala 100 105 110

Trp Met lie Tyr Thr Tyr Ser Gly Leu Phe Cys Vai Thr Vai Asm Pro 115 120 125

Tyr Lys Trp Leu Pro Vai Tyr Ass Pro Giu Vai Vei Thr Ala Tyr Arg 130 135 140

Giy Lys Lys Arg Gin Siu Ale Pro Pro Sis lie Phe Ser lie Ser Asp 145 150 155 160

Asn Als Tyr Gin Phe Net Leu Thr Asp Arg Giu Asn Gin Ser lie Leu

165 170

lie Thr Siy Giu Ser Giy Aia Giy Lys Thr Val Ash Thr Lys Arg Vai 180 185 190

lie Gla Tyr Phe Ala Thr lie Ala Val Thr Gly Glu Lys Lys Lys Glu 195 200 205

Giu Pro Ala Ser Gly Lys Met Gin Sly Thr Leu Glu Asp Gin He He 210 215 220

Ser Ala Ash Pro Leu Leu Siu Ala Phe Gly Ash Ala Lys Thr Val Arg . . . 225 230 235 240

Asn Asp Asn Ser Ser Arg Phe Gly Lys Phe lie Arg lie His Phe Gly
245 250 255

Ala Thr Gly Lys Lou Aia Ser Als Asp lie Glu Thr Tyr Lou Lou Glu 260 285 270

Lys Ser Arg Vai Thr Phs Sin Leu Lys Ala Siu Arg Ser Tyr His lie 275 280 295

Phe Tyr Gin lis Lau Ser Asn Lys Lys Pro Giu Lau lie Giu Met Lau 290 295 300

Les lie Thr Thr Asn Pro Tyr Asp Phe Als Phe Val Ser Gin Gly Siu

305 310 315 320

ile The Val Pro Ser lie Asp Asp Sin Giu Giu Leu Met Ala The Asp 325 330 335

Ser Aia Val Asp lie Lew Gly Phe Thr Ala Asp Glu Lys Vsi Als lle
340 345 350

Tyr Lys Leu Thr Sly Ala Val Met His Tyr Oly Asn Met Lys Phe Lys 355 360 365

Gin Lys Sin Arg Giu Siu Gin Ala Siu Pro Amp Giy Thr Giu Val Ala 370 375 380

Asp Lys Als Als Tyr Leu Thr Ser Leu Ash Ser Als Asp Leu Leu Lys 385 390 395 400

Ser Law Cys Tyr Pro Arg Vai Lys Val Sly Asn Siu Phe Val Thr Lys 405 410 415

Giy Gin The Val Gin Gin Val Tyr Asn Aia Val Gly Aia Leu Aia Lys 420 425 430

Als lie Tyr Glu Lys Met Phe Leu Trp Met Vai The Arg lie Asm Sin 435 445

Gin Leu Asp Thr Lys Gin Pro Arg Gin Tyr Phs Ile Giy Vai Leu Asp

450 455 460

lie Als Gly Phe Glu ile Phe Asp Phe Asm Ser Leu Glu Gin Leu Cys 465 470 475 480

lis Asn Phs Thr Asn Giu Lys Leu Gin Sin Phe Phe Asn His His Met 485 490 495

Phs Vai Leu Glu Sin Giu Giu Tyr Lys Lys Siu Giy iie Glo Trp Giu 500 505 510

Phe IIs Asp Phe Gly Met Asp Les Als Ala Cys ils Gls Leu IIs Glu . . . 515 520 525

Lya Pro Mat Siy lie Phe Sar lie Lau Siu Siu Giu Cya Mat Phe Pro 536 540

Lye Als Thr Asp Thr Ser Phe Lys Ash Lys Leu Tyr Glu Gin His Leu 545 550 565 560

Sly Lys Ser Asn Asn Phe Sin Lys Pro Lys Pro Aia Lys Siy Lys Pro 565 570 575

Siu Ala His Phe Ser Leu Val His Tyr Ala Gly Thr Val Asp Tyr Asn 580 585 590

ile Ala Sly Trp Leu Asp Lys Asn Lys Asp Pro Leu Asn Giu Thr Val

595 600 606

Vsi Gly Leu Tyr Gin Lys Ser Ala Met Lys Thr Leu Ala Phe Leu Phe 610 615 620

 Ser Giy Ala Sin Thr Ala Giu Ala Siu Giy Giy Giy Lys Lys Giy

 \$25
 630
 635
 640

Giy Lys Lys Sly Ser Ser Phe Sin Thr Val Ser Ala Leu Phe Arg 645 650 655

Phe Val Arg Cys lie lie Pro Asn Glu Thr Lys Thr Pro Gly Als Net 675 680 685

81s His Sis Les Val Les His Sin Les Arg Cys Asn Siy Val Les Sis 690 695 700

Giy lie Arg lie Cys Arg Lys Giy Phe Pro Ser Arg ile Leu Tyr Ale 705 - 710 - 715 - 720

Asp Pho Lys Gin Arg Tyr Lys Val Leu Asn Als Ser Ala Ile Pro Giu 725 730 735

Gly Gln Phe Lie Asp Ser Lya Lya Ala Ser Glu Lya Leu Leu Gly Ser

745

750

ile Giu ile Asp His Thr Gin Tyr Lys Phe Giy His Thr Lys Vai Phe 765 766 765

Pho Lys Als Giy Les Les Sly Thr Les Sls Siu Mat Arg Asp Gis Lys 770 775 780

tou Als Gin tou He Thr Arg Thr Gla Als lie Cys Arg Gly Phe tou 785 790 795 800

Met Arg Val Giu Phe Arg Lys Met Met Giu Arg Arg Giu Ser lle Phe . . . 805 810 815

Cys lis Sin Tyr Asn IIs Arg Als Phe Met Asn Val Lys His Trp Pro 820 825 830

Trp Met Lys Leu Tyr Pha Lys lie Lys Pro Leu Leu Lys Ser Ala Glu 835 840 845

Thr Giu Lys Six Met Ais Asn Net Lys Six Giu Phe Giu Lys Thr Lys 850 855 860

Siu Siu Leu Ais Lys Thr Siu Ais Lys Arg Lys Siu Leu Siu Lys 855 876 875 880

Met Val Thr Leu Met Gin Giu Lys Asn Asp Leu Gin Leu Sin Vai Gin

880

895

Als Sis Als Asp Als Leu Als Asp Als Sis Gis Arg Cys Asp Sin Leu 900 905 910

ile Lys Thr Lys Ile Cin Les Glu Ale Lys Ile Lys Glu Val Thr Giu 915 920 925

Arg Ala Giu Aap Giu Giu Giu Ile Asn Aia Giu Leu Thr Ala Lys Lys 930 935 940

Arg Lys Leu Giu Asp Giu Cys Ser Giu Leu Lys Lys Asp Iis Asp Asp 945 950 955 960

Leu Giu Lau Thr Leu Ala Lys Vsi Giu Lys Giu Lys His Ala Thr Giu 965 970 975

Ann Lyn Val Lyn Ann Lau Thr Giu Giu Met Ala Giy Leu Ann Giu Thr 980 985 990

ile Ala Lys Leu Thr Lys Giu Lys Lys Ala Leu Gin Glu Ala His Gin 995 1000 1005

Gin Thr Leu Asp Asp Leu Gin Met Clu Glu Asp Lys Val Asn Thr 1010 1015 1020

Leu Thr Lys Ala Lys Thr Lys Leu Glu Gln Gin Vai Amp Amp Leu

1025 1030 1035

Giu Sly Ser Leu Glu Sin Giu Lys Lys Leu Cys Met Asp Leu Siu 1840 1845 1868

Ars Ala Lys Arg Lys Leu Glu Gly Asp Leu Lys Leu Ala Glm Glu 1055 1060 1065

Ser Thr Net Asp Thr Giu Asn Asp Lys Gin Gin Leu Asn Giu Lys 1070 1075 1080

Leu Lys Lys Lys Giu Phe Giu Met Ser Asm Leu Gin Gly Lys He 1085 1090 1095

Olu Asp Siu Gin Ala Leu Ala Met Gin Leu Gin Lya Lya lie Lya 1100 1105 1110

Sisteu Gin Ala Arg II e Gis Sistes Gis Gis Gis II e Gis Ala 1115 - 1120 - 1125

Giu Arg Als Ser Arg Aia Lys Ais Giu Lys Gin Arg Ser Asp Leu 1130 1135 1140

Ser Arg Six Lew Giv Six He Ser Giv Arg Lew Giv Giv Ala Giy
1145 1150 1155

Gly Als Thr Ser Als Sin lie Slu Les Asn Lys Lys Arg Glu Als

1165

1170

Glu Phe Gin Lys Met Arg Arg Asp Leu Glu Glu Ser Thr Lau Gin 1175 - 1180 - 1185

His Giu Ala Thr Ais Ais Als Leu Arg Lys Lys His Ala Asp Ser 1190 1195 1200

Val Als Giu Leu Gly Lys Gin lie Asp Ser Leu Gin Arg Vai Lys 1205 1210 1215

Asp Lau Als Ser Ash Set Giu Thr Val Ser Lys Als Lys Als Ash 1235 1240 1245

Phe Glu Lys Met Cys Arg Thr Leu Glu Asp Gin Leu Ser Glu 110 1250 1260

Lys Thr Lys Six Giv Six Giv Sin Gin Arg Leu lie Aan Giv Leu Ser 1265 1270 1275

Ala Gin Lys Ala Arg Lau His Thr Giu Ser Gly Slu Phe Ser Arg 1280 1285 1290

Gin Leu Asp Giu Lys Asp Ala Met Val Ssr Gin Leu Ser Arg Gly

1295 1300 1305

Lys Gin Ala Fhe Thr Gin Gin lie Gio Gio Leu Lys Arg Gin Leu 1310 : 1315 : 1320

Siu Gio Gio Thr Lys Als Lys Ser Thr Leu Als Ris Als Leu Gin 1335 1330 1335

Ser Als Arg His Asp Cys Asp Leu Leu Arg Siz Sin Tyr Giu Giu 1340 1350

Asn Ser Giu Val Ala Sin Trp Arg Thr Lys Tyr Glu Thr Asp Ala 1370 1375 1380

ils Gin Arg The Giu Giu Leu Giu Giu Ala Lys Lys Lys Leu Ala 1385 - 1390 - 1395

Sin Arg Leu Gin Asp Ala Siu Siu His Val Giu Ala Val Asm Ser 1400 1405 1410

Lys Cys Als Series Gla Lys Thr Lys Sin Arg Les Sin Asn Giu 1415 1420 1425

Val Giu Aspilou Met lie Asp Val Giu Arg Ser Asn Ala Ala Cyz

1435

1440

lis Als Lau Asp Lys Lys Gin Arg Asn Pho Asp Lys Val Leu Ala 1445 1450 1455

Glu Trp Lys Sin Lys Tyr Siu Giu Thr Glm Ala Giu Leu Giu Ala 1460 1465 1470

Ser Sin Lys Siu Ser Arg Ser Leu Ser Thr Giu Leu Phe Lys Val 1475 1485 1485

Lys Asn Als Tyr Glu Glu Ser Leu Asp His Leu Glu Thr Leu Lys
1490 1495 1500

Ars Giu Asn Lys Asn Leu Gin Gin Glu He Ser Asp Leu The Glu 1505 1510 1515

Gin lie Als Glu Gly Gly Lys His lie His Glu Leu Glu Lys Val 1520 1525 1530

Lys Lys Gin Les Asp His Glu Lys Ser Glu Leu Gln Thr Ser Leu 1535 1540 1545

Glu Siu Ais Siu Ais Ser Leu Glu His Giu Glu Siy Lys (le Leu 1550 1555 1560

Arg lie Gin Leu Giu Leu Asn Gin Vai Lya Ser Giu lie Asp Arg

1565 1570 1575

Lys lie Als Siu Lys Asp Giu Glu Leu Asp Gin Leu Lys Arg Asn 1580 1585 1590

His Lew Arg Vai Val Giu Ser Met Gin Ser Thr Lew Asp Ala Giu 1595 1605

Ils Arg Ser Arg Asn Asp Ais Leu Arg Ne Lys Met Giu 1610 1615 1620 .

Gin Als Ala Giu Ala Leu Arg Ash Leu Arg Ash Tha Gin Gly Ile 1640 1646 1650

Leu Lys Asp Thr Gin Leu Mis Leu Asp Asp Ala Ho Arg Sly Gin 1855 1860 1865

Asp Asp Leu Lys Gis Gin Leu Als Net Vai Giu Arg Arg Ala Ass 1670 1675 1690

Leu Met Gin Als Giu Val Siu Giu Leu Arg Ala Ser Leu Glu Arg 1685 1890 1695

Thr Glu Arg Gly Arg Lys Net Ala Glu Gla Glu Leu Lew Asp Ala

1706 1705 1716

Ser Glu Arg Vai Gin Leu Lau His Thr Gin Asn Thr Ser Leu lie 1715 1720 1725

Asn Thr Lys Lys Lys Lou Glu Thr Asp He Ser Gin He Gin Gly
1730 1740

Giu Met Giu Asp lie Val Sin Giu Ala Arg Aan Ala Giu Giu Lys 1745 1750 1755

Lys Lys Glu Gin Asp Thr Ser Ala His Leu Glu Arg Net Lys Lys 1775 1780 1785

Asn Net Giu Gin Thr Vai Lys Asp Leu Gin Leu Arg Leu Giy Giu 1795 1800

Als Siu Sin Leu Ala Leu Lys Gly Siy Lys Cin | He Sin Lys 1805 1810 1815

Leu Giu Ala Arg Vai Arg Giu Leu Giu Sar Slu Vai Giu Sar Giu 1820 - 1825 - 1830

Gin Lys His Asn Val Glu Ais Val Lys Sly Less Arg Lys His Glu

1840

1845

Arg Arg Vai Lys Giu Leu Thr Tyr Gin Thr Slu Giu Asp Arg Lys 1850 1855 1860

Aso lie Leo Arg Leo Gin Asp Leo Val Asp Lys Leo Gin Thr Lys 1865 1870 1875

Asn Val Asn Leu Ala Lys Phe Arg Lys Leu Gin Nis Giu Leu Glu . . 1895 1900 1905

Glu Ala Glu Glu Arg Ala Asp | He Ala Glu Ser Gln Val Ass Lys 1910 1915 1920

Lou Arg Val Lys Ser Arg Glu Val His Thr Lys Val IIe Ser Glu 1925 1930 1935

B≋u

<210> 5

<211> 5925

<212> DNA

<213> Nomo sapiene

(220) (221) C223 $\langle 222 \rangle$ (1)... (5820) <400> 5 ate agt tot sac tot sag ats god att tit sag gag got got oot tio 48 Met Ser Ser Asp Ser Glo Met Ala lie Phe Gly Glo Ala Ala Pro Phe Ĭ S 10 35 oto oga seg tot gas agg gas oga att gas goo ogg agg agg oot tit 96 Leu Arg Lys Ser Glu Arg Glu Arg IIe Glu Ala Gla Ash Lys Pro Phe 20 25 30 get goe sag aca tos gto iti gtg gtg gae oot sag gag too tit gtg 144 Aso Ala Lys Thr Ser Val Phe Val Val Asp Pro Lys Glu Ser Phe Val 38 363 45 eda soe ede sig deg ego egs sad seg egg ees sig ede got ang edo 192 Lys Ala Thr Val Gin Ser Arg Giu Giy Giy Lys Val Thr Ala Lys Thr 80 55 60 saa set saa set aet sta aca sig saa gat gae ees gie tte ooc atg 240 Gis Als Giy Als Thr Val Thr Val Lys Asp Asp Gin Val Phe Pro Met 65 70 75 80 ase eet oog sam tot goe asg ste gog goe stg goe atg sty set oot 288Asn Pro Pro Lys Tyr Asp Lys He Giu Asp Met Ala Met Met Thr His 85 90 95 cts can sag out got stg cts tan amo oto asm sag ogo tan gom goo 336 Leu His Giu Pro Ala Vai Leu Tyr Aon Leu Lys Giu Arg Tyr Aia Ala

105

tag ats ato two acc tac tos ago tig tio tat atc set atc sec occ

Trp Met lie Tyr Thr Tyr Ser Gly Lou Pho Cys Val Thr Vai Asn Pro

110

384

tac aas tes its coa sis tat aat soa gas sis sis aca soc tac ogs Tyr Lys Tep Leu Pro Val Tyr Asn Ala Glu Val Val The Ala Tyr Arg est ass say ogo cay gas got oca coo est ato the too ato tot gad Giy Lys Lys Arg Gin Giw Ala Pro Pro His lie Phe Ser lie Ser Asp

ast goo tai cag tto aig oig act gat ogg gag sai cag ict aic iig Asn Aia Tyr Sin Phe Met Leu Thr Asp Arg Siu Asn Gin Ser lie Leu

ato acc sea sea tot sec sea see ase act sig asc acc ase cet sic lie Thr Sly Giu Ser Giy Ala Gly Lys Thr Val Ash Thr Lys Arg Val ...

ato des ted tit goe eca ett goe git act ges ges eeg eeg gee lle Gin Tyr Phe Ala Thr lie Ala Val Thr Gly Giu Lys Lys Lys Glu

gas git act ict ggc ass sig cag ggg act cig gas gat cas sic aic Glu Vai Thr Ser Gly Lys Wat Gin Gly Thr Leu Giu Asp Gin 11s 11s

agt and ase occ the ote gas are tit ago sac and and ate aga Ser Ale Asn Pro Leu Leu Giu Als Pise Siy Asn Ala Lye Thr Val Arg

ast gad aad too tot ogo tii ggt aas tio ais agg ato cas iis ggt Asn Asp Asn Ser Ser Arg Phe Gly Lys Phe lie Arg He His Phe Gly

acc aca ggg was cig got tot got gat att gas aca tet cit cig gag Thr Thr Gly Lys Leu Ala Ser Ala Asp ile Glu Thr Tyr Leu Leu Glu

ase tot aga git act the cag ota ase got gas aga ago tet cat att Lys Ser Arg Val Thy Phe Gin Leu Lys Ala Giu Arg Ser Tyr His lie tit tot cag ato otg tot one mag sag con get eto ott gae otg eto Phe Tyr Gin lie Met Ser Aso Lys Lys Pro Asp Los ille Giz Met Los ofg sic acc acc sac oca tac get tat goo tto gto agt cas ggg gag Leu lis Thr Thr Asn Pro Tyr Asp Tyr Ais Phe Vai Sor Sin Gly Sig ato aca sig occ ago att gat gac caa gaa gag tig aig got aca gat He Thr Val Pro Ser He Asp Asp Sin Giu Giu Leu Met Ale Thr Asp agt god att gam att otg ggd itt act tom gat gam aga gig tod atd Ser Ala lis Glu lie Leu Gly Phe Thr Ser Asp Glu Arg Val Ser lie tat sag cic aca sag got gig aig cat tot ggg aso aig eas tic aag Yyr Lys iss Thr Gly Ala Val Wet His Tyr Sly Asn Met Lys Phe Lys cas ass cas est sas sas cas set sas one sat see act sas stt set Gin Lys Gin Arg Giu Gis Gin Alg Giu Pro Asp Giy The Giu Vai Ale gas aas goe goe tot ote caa aat ote aan tot goe get ote ote eas Ass Lys Ala Ala Tyr Leu Gin Asn Leu Asn Ser Ala Asp Leu Leu tys 3(%) goe oto igo tao oot agg gio aag gio ggo sei geg tai gio aco sea Ala Lau Cya Tyr Pro Arg Val Lya Val Gly Asa Glu Tyr Val Thr Lya

				.,	u.				-4+ 3 ¢	ist.				48)	
88	t ca	a ac	t gij	(68)	g 68)	g gt	s to	0 88	t gca	ı st.	222	t go	h ots	E (E)(C)(: 888	1296
															ı Lys	•
			420					42	_		,	, ,,,,	431		r militi	
													7.00	*		•
80	t sto	ta:	s gat	. 888	ç etg	; tt	e iti	r tsi	s ats	gte	: 801	ogi	atc	380	cag	1344
															e Gin	
		438					44(445				×
								A								* :
088	; cts	; <u>g</u> ac	****	888	Gag	OGK	e egg	Cas	; tac	tto	stl	: 888	gto	tty	gac	1392
Q1:	i Lac	ı Asp	Thr	Lys	Gir.	Pro	Ars	(Sle	ı Tyr	Phy	He	Sly	Va!	Les	Asp	•
	450	Ì				455	ì				460	}				
ett	goi	250	ttt	gas	ato	tti	gat	ttc	880	880	otg	888	csg	otg	tgc	1440
He	Ala	Sly	Phe	និធ		Phe	Asp	Phe	Asn	Ser	£60	ថ ្ងៃ	Gin	Lexu	Cys	, š
465	Š				470					475					480	
ato	886	tto	acc	aat	sas	888	otg	cas	cag	ttt	tte	886	cae	080	ats	1488
116	Ass	Phu	Thr	Asn	Glu	Lys	Lou	Gin	@la	P108	Phe	Azn	His	#is	Met	
				485					490					495		
tto	gts	ctg	gag	cag	888	gsg	tac	382	388	gsa	erc	811	288	tgg	acg	1536
Phe	Va)	Leu	6៖ប	Gin	Giu	Glu	Tyr	Lys	Ĺys	Stu	Gly	i ie	@ls	Trø	The	
			500					505					510			
ito	stt	gec	ttt	222	atg	gac	ctg	got	800	tgc	atc	282	oto	atc	888	1584
Pho	180	Asp	Phe	@jy	Mot	Asp	Leu	Ala	Ala	Cys	ile.	810	Lou	l le	61a	
		515					520					525				
888	cet	stg	ggo	sto	tto	tec	# \$0	otg	ន្តធន	geg	888	tgo	atg	tta	600	1632
l.ys	Pro	Met	⊈ y	H®	Phs	Ser	ije	Less	Glu	6៖ធ	810	Cys	Not	Phe	Pro	
	530					535					540					
228	gog	808	gac	800	teg	tta	aag	388	aaş	ctg	tæt	888	CSS	cat	ott	1680
	Ala															
															••	

S45	i				55(3				558	ì				560	
					i Phe) Lys	: Pro				Lys	: cct : Pro	1728
				tot	: tts					. ggc) sta · Va!			880	1776
			580	. ,		da.		585	\$			J.	590			* 1
			Trp					Lys				aat Aan 605			sts Vai	1824
												got Ala]\$72 }. *
	888					gsa					ggi	ggs Gly				1920
625 sst	385	aag	seg	ggt	830 tot	tot	tte	cag	act	635 sts	tos	got	cte	tto	640 sgg	1968
Giy	Lys	Lys	Lys	81y 645	Ser	Ser	Phe	Gin	Thr 650	Vai	Ser	Als	Leu	Phe 655	Arg	
												sct Thr				2016
ttt j	Val.					Pro					Thr					2064
gas (Siu l																2112

	690					695					700	į.					
ggc	ate	egs	sto	tgo	agg	888	880	ttc	CCS	aşc	888	ato	ott	tat	808		2160
Gly	118	Arg	i i e	Cys	Arg	Lys	Gly	Pho	Pro	Ser	Arg	He	Leu	Tyr	Als		
705					710					715					720		
gac	tte	888	088	888	tac	388	sts	tta	ast	208	sgt	set	sto	cot	888		2208
Aso	Phe	Lys	Sin	Arg	Tyr	Lys	Val	Leu	Asn	Als	Ser	Ala	He	pro	Glu		
				725					730					735		,	
ezz	CSS	tto	3 \$0	gst	ago	888	388	got	tes	888	388	otc	otg	888	tec		2256
Gly	GIA	Phe	116	Aso	Ser	Lys	Lys	Ala	Ser	Glu	Lys	Leu	1.00	Gly	Ser		
			740					745					750				
stt	gac	stt	gac	680	800	cag	tet	888	ŽŽŽ:	ggt	cac	800	888	gta	ttt		2304
He	Åsp	118	Asp	Hìs	The	@la	Tyr	Lys	Pho	@ly	His	Thr	Lys	¥a!	Phe	2,	9
		755				e ^a	760					765					
																	•
tte	888	get	ggt	att	ctg	888	oto	ots	ESE	gag	stg	cga	gat	888	888		2352
Pho	Lys	Ala	Gly	Leu	Leu	Gly	Leu	Leu	810	Glu	Mert	Ārg	Asp	81s	Lys		
	770					775					780			,			
cts	SCC	cag	ctg	322	800	oga	acc	cag	gco	sts	tgo	888	888	tte	ttg		2400
Leu	Ala	@In	Leu	110	Tier	Arg	The	Gin	Ala	#et	Cys	Arg	6ly	Phe	Les		
785					790					795					800		
gcs	sga	gtg	888	tac	688	888	stg	gtg	gaa	888	8.Ç8	888	tee	atc	tto		2448
Als	Arg	¥a!	Slu	Tyr	@in	Lys	Met	Val	G≗u	Arg	Arg	និ៖ម	Ser	He	Phe		
				805					810					815			
tgc	ato	G88	083	ast	gto	ogt	goo	žžo	stg	sat	sto	288	CSG	tee	000		2496
Cys	He	Gin	Tyr	Asn	Val	Arg	Ala	Phs	Met	Asn	Val	Lys	His	Trp	Pro		
			820					825					830				
tss	828	888	ets	tat	tto	aag	stc	888	cec	oto	oto	888	ægt	gos	gaş		2544
ĩrp	Ke t	Lys	Leu	1.AL	Pho	Lys	l le	Lya	Pro	Leu	Leu	Lys	Sar	Als	S≹u		

aca sas axe sas ate soc aac ate aas saa saa tit gas aaa acc aaa Thr Siu Lys Giu Met Ais Aso Met Lys Giu Giu Phe Giu Lys Thr Lys gas sas ots got sag acc gas gos ana agg axa gas ctg gan gas aus Giu Giu Leu Ala Lys Thr Giu Ala Lys Arg Lys Giu Leu Gio Gio Lys ats sig abt big sig cas gas sas ast gab its cas cit cas git cas Met Val Thr Leu Met Gin Giu Lys Asn Asp Leu Gin Lou Gin Val Gin got san got gan ago tig got gat goa gag gan agg tgi gan cag cta Ala Giu Aia Asp Ser Leu Aia Asp Aia Giu Giu Arg Cya Asp Gin Leu 👝 🔻 ate ass see ass ate erg eta gra gee ass ate saa grg gtg act grg tie Lys Thr Lys tie Sin Lou Giu Ala Lys He Lys Gis Vai Thr Giu age got sag get see see see sto eet got geg otg ees god eeg eeg Arg Ais Giu Asp Giu Giu Giu IIe Asn Ais Giu Leu Thr Ais Lys Lys

Ars Lys Law Giu Asp Giu Cys Ser Giu Law Lys Lys Asp 11e Asp Asp

945 950 955 960

ctt sas cts acs cts soc ass stt sas sas sas ass cst soc ace sas 2928

Leu Giu Leu Thr Law Aia Lys Vel Giu Lys Giu Lys His Aia Thr Giu

asc asg gig sas asc oto aca gas gag etg gog ggt otg gat gas acc 2976 Asc Lys Val Lys Asc Lew Thr Giu Giu Met Als Giy Leu Asp Giu Thr

att got ama otg acc ama gas ama set etc ess gas god cac ess lis Ala Lys Leu Thr Lys Giu Lys Lys Ala Leu Gin Glu Ala His Gin cas acc sts sat sac cts cas see sas sas sac aas ste ame acc Gin Thr Leu Asp Asp Leu Gin Ais Giu Giu Asp Lys Vai Asp Thr ctg acc sas sot ass sic ass cit gas cas cas gig get gat cit Less Than Lya Ala Lya Ile Lya Lau Giu Gin Gin Val Asp Asp Leu ges aga tot tig ges ces ass eag ass ato ogg etg get ote ges 3:59 Giu Giy Ser Leu Giu Gin Giu Lys Lys Ile Arg Met Asp Leu Giu asa sce aeg aga ana cia sag sga geo cia nan ity goi can gan Arg Ala Lys Arg Lys Leu Glu Gly Asp Leu Lys Leu Ala Gin Glu too gos sig gat ate gas ast gad ass cas car cit gat gas seg Sor Ala Wet Aspile Slu Asn Asp Lys Gin Sin Lou Asp Glu Lys ott sam mag sam sag tit gas sig sgo ggi oig com ago sag sit Leu Lys Lys Cys Giu Phe Glu Net Ser Gly Leu Gin Ser Lys He gas gat gas cas goo cit ggt atg cag cig cag ang ans atc ang Siu Asp Giu Gin Ala Lau Giy Met Gin Leu Gin Lya Lya ile Lya

sas tia cae goo ogo att sag gag ots gag geg gaa ato gag goa

Giu Leu Gin Als Arg lie Glu Glu Leu Glu Slu Slu lie Glu Ala

- 1110

Siy Ala Thr Ser Ala Gin ile Giu Met Asn Lys Lys Arg Giu Ala 1186 1185 1176 sag tto dag ass atg ogd asg gad otg gag gag god add ote dag Giu Phe Gin Lys Met Arg Arg Asp Leu Giu Giu Als Thr Leu Gin 1175 1180 1185 cat gag god adg gog god add otg gag gat agt Nis Giu Als Thr Ala Ala Thr Leu Arg Lys Lys His Ala Asp Ser 1190 1195 1200 stg god gag dit ggg gag dag att ged aad otg dag gig aag Val Ala Giu Leu Giy Giu Gin ile Asp Asn Leu Gin Arg Val Lys 1205 1210 1213 cag aas otg gag sag aag agt gag atg aag atg gag atd gat Gin Lys Leu Giu Lys Giu Lys Ser Giu Met Lys Mat Giu ile Asp 1220 1225 1220 gad ott got agt aad atg gag adt gid tod aas god aag gag aag Asp Leu Ala Ser Asn Met Giu Thr Val Ser Lys Ala Lys Giy Asn 1235 1240 1245			1115	•				1120	}				1121	ý				
toc case sas ets sas sas atc sat sas ass ets sas ass ecc sat sas sas ecc sat sas sas ecc sat sas ass ets sas ass ets sas ass ecc sas ets sas ass ets sas ass ecc sas ecc sas ecc sas ets sas ats sas ats sas ass ecc sas ass ecc sas ecc ecc ecc ecc ecc ecc sas gas gas god ecc ect ecc ecc ect sas ecc ect sas ecc ect ecc ecc		gæg	ces	goo	tee	cgs	(gcc	288	800	ı gaş	Sas	Caş	cgc :	tet	. şat	: ctc		3429
Ser Arg Giu Leu Giu Shu lie Ser Giu Arg Leu Giu Glu Als Giy 1145 1150 1156 gee see see see toe gee cas att sas atg sae asg asg ceg saa set Gly Ala Thr Ser Aia Gin lla Giu Met Asn Lys Lys Arg Giu Ala 1160 1165 1170 sas tto cas sae atg cgc asg gac ctg gas gas goc acc cta cas Glu Phe Gin Lys Met Arg Arg Asp Leu Glu Glu Ala Thr Leu Gln 1175 1180 1185 cat sas goc sos gog goc acc ctg asg sae aas cat gos gat ast Nis Giu Ala Thr Aia Aia Thr 1190 1196 1200 stg goc gas ctt gee gag cag att gac aac ctg cag cga gtg aag Val Ala Giu Leu Gly Siu Gin ila Asp Asn Leu Gin Arg Val Lys 1205 1210 1220 cag aas ctg gas sag gas aag set gas atg gas atc gat Gin Lys Leu Giu Lya Giu Lya Ser Giu Net Lys Mat Giu Ile Asp 1220 1225 1230 sac ctt get gat aac stg gas act gtc toc aaa goc aasg ga aac Asp Leu Ala Ser Asn Mat Giu Thr Val Ser Lya Ala Lya Giy Asn 1236 1240 1245 ctt gaa aag atg tgu ogo got cta gaa gat cas ctg agt gas ett 1245 ctt gaa aag atg tgu ogo got cta gaa gat cas ctg agt gas ett 1245 ctt gaa aag atg tgu ogo got cta gaa gat cas ctg agt gas ett 1245		@lu	Arg	Ala	Ser	Arg	: Ala	Lys	Ala	ı Gle	Lys	Gin	Arg	Ser	. Asp	Les		
Ser Arg Giu Lee Giu Giu iie Ser Giu Arg Lee Giu Giu Als Siy 1145 1150 1155 ggg sec acc tog goc oag att gag atg sac asg asg ogg gaa got Giy Ala Thr Ser Ala Gin iie Giu Met Asn Lys Lys Arg Giu Ala 1160 1185 1170 sag tto dag ass atg ogo asg gac otg gag gag goc acc ots asg Giu Phe Gin Lys Met Arg Arg Asp Leu Giu Giu Als Thr Leu Gin 1175 1180 1185 cat gag goc sog gog goc acc otg asg asg sag dat goa gat agt Nic Giu Als Thr Ala Ala Thr Leu Arg Lys Lys His Ala Asp Ser 1190 1195 1200 gtg goo sag ott gag gag dag att gad asc otg dag stg aag Val Ala Giu Leu Giy Giu Gin iie Asp Asn Leu Gin Arg Val Lys 1205 1210 1216 cag ass otg eag sag sag agt gag atg asg atg gag atg gag atc gat Gin Lys Lee Giu Lys Giu Lys Ser Giu Met Lys Met Giu lie Asp 1220 1225 1220 gsg ott got agt asc atg gag act gto too aaa god aag gag aac Asp Leu Ala Ser Asn Met Giu Thr Val Ser Lys Als Lys Giy Agn 1235 1240 1245 ott gaa aag atg tgo oso got ots gaa gat cas otg agt gas att			1130	1				1135	\$				1140)			es.	
ggg scc acc tog gcc cag att gag atg sac asg asg cgg gaa gct Gly Ala Thr Ser Ala Gin IIs Giu Met Asn Lys Lys Arg Giu Ala 1160 1185 1170 sag ttc cag sas atg cgc asg gac ctg gag gag gcc acc cta cag Glu Phe Gin Lys Met Arg Arg Asp Leu Glu Glu Ala Thr Leu Gln 1175 1180 1185 cat gag gcc acg scc gcc acc ctg asg asg asg cat gca gat agt Nie Glu Als Thr Ala Ala Thr Leu Arg Lys Lys His Ala Asp Ser 1190 1195 1200 stg gcc gag ctt ggg gag cag att gac and ctg cag cga stg aag Val Ala Glu Leu Gly Glu Gin ile Asp Aen Leu Gln Arg Val Lys 1205 1210 1215 cag aas ctg gag sag sag agg sgt gag atg asg atg sag atg gag Gln Lys Leu Glu Lys Glu Lys Ser Glu Met Lys Mat Glu IIe Asp 1220 1220 1220 sac ctt got agt aac atg gag act gtc toc aaa gcc aas gga aac Asp Leu Ala Ser Asn Met Glu Thr Val Ser Lys Ala Lys Gly Aon 1235 1240 1245 ctt gaa aag atg tgc cag ct cta gaa gat cas ctg agt gas att		tee	cgg	888	ots	gag	: cag	atc	agt	sas	agg	ctg	gaa	888	goc	ggt		3474
ggg goc acc tog goc cag att gag atg sac aag aag cgg gaa got Gly Ala Thr Ser Ala Gin ile Giu Met Asn Lys Lye Arg Giu Ala 1160 1185 1170 sag tto cag ass atg cgc agg gac otg gag goc acc eta cag Glu Phe Gin Lys Met Arg Arg Asp Leu Gio Giu Ala Thr Lau Gin 1175 1180 1185 cat sag goc acg gog acc ctg agg asg sag cat gos gat agt His Giu Ala Thr Ala Ala Thr Leu Arg Lys Lys His Ala Asp Ser 1190 1195 1200 stg goc sag cti ggg gag cag att gac aac ctg cag cga sig aag Val Ala Giu Leu Giy Giu Gin ile Asp Asn Leu Gin Arg Val Lys 1205 1210 1215 cag aag ctg gag aag agg sgt gag atg asg atg gag atc gat Gin Lys Leu Giu Lys Giu Lys Giu Lys Ser Giu Met Lys Mat Giu Ile Asp 1220 1225 1230 sac ctt got agt aac atg gag act got toc aas goc aag gga aac Asp Leu Ala Ser Asn Met Giu Thr Val Ser Lys Ala Lys Giy Asn 1235 1240 1245 ctt gaa aag atg tgo ogc sot cta gaa ggt cas ctg agt gas act		Ser	Arg	Giu	Les	Glu	Slu	He	Ser	មិនិធ	Arg	1.60	មិ៖ម	Glu	Als	Sly		
Sly Ala Thr Ser Ala Gin IIe Giu Met Asn Lys Lys Arg Giu Ala 1160 1185 1170 sag tto cag ass atg cgc agg gac ctg gag gag goc acc cta cag Giu Phe Gin Lys Met Arg Arg Asp Leu Giu Giu Ala Thr Leu Gin 1175 1180 1185 cat gag goc sos gog goc acc ctg agg asg sag cat goa gat agt Nis Giu Ala Thr Ala Ala Thr Leu Arg Lys Lys His Ala Asp Ser 1190 1195 1200 stg goc gag ctt ggg gag cag att gac sac ctg cag cga gtg aag Val Ala Giu Leu Giy Giu Gin ile Asp Asn Leu Gin Arg Val Lys 1205 1210 1215 cag aag ctg gag sag aag agt gag atg aag atg gag atg gag atc gat Gin Lys Leu Giu Lys Giu Lys Ser Giu Met Lys Met Giu Ile Asp 1220 1225 1220 gac ott got agt aac stg gag act gto toc aaa goc aag gag aac Asp Leu Ala Ser Asn Met Giu Thr Val Ser Lys Ala Lys Giy Asn 1235 1240 1245 ctt gas aag atg tgc ogc got cta gaa gat cas ctg agt gas att			1145					1150	;				1155	,			•	
sag tto cas ass stg cgc asg gsc cts gag gag god acc cts cag Giu Phe Gin Lys Met Arg Arg Asp Leu Giu Giu Als Thr Leu Gin , 1175 1180 1185 cat gag gcc sog gcg gcc acc ctg asg asg sag cat gca gat agt Nis Giu Als Thr Ais Ais Thr Leu Arg Lys Lys His Als Asp Ser 1190 1195 1200 stg gcc sag ctt ggg gag cag att gac sac ctg cag cga gtg aag Vai Ais Giu Leu Giy Giu Gin lie Asp Asn Leu Gin Arg Vai Lys 1205 1210 1215 cag asg ctg gag sag sag agg agt gag atg asg atg gag atc gat Gin Lys Leu Giu Lys Giu Lys Ser Giu Met Lys Met Giu lie Asp 1220 1225 1220 sag ctt gct agt aac atg gag act gto toc aas gcc aag gga aac Asp Leu Ais Ser Asn Met Giu Thr Vai Ser Lys Als Lys Giy Asn 1235 1240 1245 ctt gas aag atg tgc ogc gct cte gas get cas ctg agt gag att	;	ææ	800	800	tos	800	cag	stt	sas	atg	#8G	888	888	cgg	gas	got.		3519
sag tto cag ase atg cgc agg gac ctg gag gag goc acc cta cag Giu Phe Gin Lys Mat Arg Arg Arg Asp Leu Giu Giu Ala Thr Leu Gin 1175 1180 1185 cat sas goc acg goc acc ctg agg aag sag cat gos gat agt Nie Giu Ala Thr Ala Ala Thr Leu Arg Lys Lys His Ala Asp Ser 1190 1195 1200 stg goc sag cti ggg gag cag att gac aac ctg cag cga gtg aag Val Ala Giu Leu Giy Giu Sin lie Asp Asn Leu Gin Arg Val Lys 1205 1210 cag aag ctg gag aag agg agg atg gag atg aag atg aag atg aag Gin Lys Leu Siu Lys Giu Lys Ser Giu Mat Lys Mat Giu Ile Asp 1220 gac ott got agt aac atg gag act gtc toc daa goc aag gga aac Asp Leu Ala Ser Asn Mat Giu Thr Val Ser Lys Ala Lys Giy Asn 1235 1240 stt gaa aag atg tgc cso got cta gaa get cas ctg agt gas att	į	8ly	Als	Tiar	Ser	Ala	Gin	118	Glu	Met	Asn	Lys	Lys	Arg	និ៖ប	Ala		
Giu Phe Gin Lys Met Arg Arg Asp Leu Giu Giu Ais Thr Leu Gin 1175 1180 1185 cet sag ged acg ged ged acc ctg agg asg asg cat ged get agt mis Giu Ais Thr Ais Aia Thr Leu Arg Lys Lys His Aia Asp Ser 1190 1195 1200 stg ged sag cit ggg gag cag att gad aad ctg cag cga gig aag Val Aia Giu Leu Giy Giu Gin lie Asp Asn Leu Gin Arg Val Lys 1205 1210 1215 cag aag ctg gag sag aag agt gag atg aag atg gag atg gag atd gat Gin Lya Leu Giu Lya Giu Lya Ser Giu Met Lys Met Giu lie Asp 1220 1220 sad ctt ged gad aad atg gag act gid tod aaa god aag gga aad Asp Leu Aia Ser Ash Met Giu Thr Val Ser Lya Aia Lya Giy Aan 1235 1240 1245 ctt gaa aag atg tgd cgd got cta gaa get cas ctg agt gag att			1160					1185					1170	;				
cat sas god ace sce sce ace ots ass ass ass cat gos get ast mis Giu Als Thr Ala Ala Thr Leu Arg Lys Lys His Ala Asp Ser 1190 1195 1200 sts god sas cit see gag cas att gad aad cit cas oga gis aag Val Ala Giu Leu Gly Glu Gin ile Asp Ash Leu Gln Arg Val Lys 1205 1210 1215 cas ass cit see sas sas ass ast set sas att sas att sas atd get Gin Lys Leu Giu Lys Giu Lys Ser Giu Met Lys Mat Giu Ile Asp 1220 1225 1230 sad oft set agt aad atg gas act sid tod aaa sod aas saa aad Asp Leu Ala Ser Ash Met Giu Thr Val Ser Lys Ala Lys Giy Ash 1235 1240 1235 1245 ctt saa aas atg tsu oso sot ots saa get cas ots agt sas ett :																		
cat sag god sos sos sos soc soc cts agg asg sag cat goa gat agt Nis Giu Als Thr Als Als Thr Leu Arg Lys Lys His Als Asp Ser 1190 1195 1200 sts god sas cit seg gag cag att gad aad dis csg csa sts aag Yal Ala Giu Leu Giy Giu Sin lie Asp Asn Leu Gin Arg Val Lys 1205 1210 1215 cag aas cts sas sas aag agt sas atg aag ats sas atd gat Gin Lya Leu Giu Lya Giu Lya Ser Giu Met Lya Mat Giu 1/e Asp 1220 1225 1230 sad ott got agt aad atg gag adt gib tod aas soc aag ssa aad Asp Leu Ala Ser Ash Met Giu Thr Val Ser Lya Ala Lya Giy Ash 1235 1240 1245 ott saa aag atg tsu oso sot ota gaa get cas ots agt sas eit	1	ផ្ស័យ	Phe	Gin	Lys	Met	Arg	årg	Asp	Leu	Glu	\$1a	Als	Thr	Leu	@In	3 .	*
Sis Giu Als Thr Als Als Thr Leu Arg Lys Lys His Als Asp Ser 1190 1195 1200 Etg goo 88g cit ggg gag cag att gac aac cig cag cga gig aag Val Ala Giu Leu Gly Glu Gin ile Asp Asn Leu Gls Arg Val Lys 1205 1210 1216 Cag aag cig gag aag aag agt gag atg aag atc gat gin Lys Leu Glu Lys Giu Lys Giu Lys Ser Giu Mat Lys Mat Giu Ile Asp 1220 1225 1230 88G oft got agt aac atg gag act gio too aaa goo aag gga aac aap Leu Ala Ser Asn Met Giu Thr Val Ser Lys Ala Lys Giy Asn 1235 1240 1225 ott gaa aag atg tgo cgo got cis gaa gat cas cig agt gas att			1175					1180					1185					
sts sco sas cit see gag cag att gac aac cit cag cga sis aag Val Ala Giu Leu Gly Slu Sin ile Asp Asn Leu Gln Arg Val Lys 1205 1210 1215 cag aas cit see sas sas aas agt gaz aig aag ats gag atc gat Sin Lys Leu Siu Lys Glu Lys Ser Giu Met Lys Mat Glu lle Asp 1220 1225 1230 sac cit set agt sac aig gas act gic toc aaa soc aag sa aac Asp Leu Ala Ser Asn Met Glu Thr Val Ser Lys Ala Lys Gly Asn 1235 1240 1245 cit gaa sag aig isc oso sot cie gaa set cas cis agt gas eit	š	et	808	goo	sog	gog	gos	800	etg	888	88g	sag	cat	808	gat	est		3609
Sts Sco Sas cit sge gag cag att gac aac cig cag cga sig aag Val Ala Giu Leu Giy Siu Sin ile Aap Aan Leu Gin Arg Val Lya 1205 1210 1215 cag aas cig gag aag agi gag aig aag atg aag atc gat Gin Lya Leu Giu Lya Giu Lya Ser Giu Mat Lya Mat Giu ile Aap 1220 1225 1220 sac cit got agi aac aig gag act gio too aaa goo aag gag aac Aap Leu Ala Ser Aan Mat Giu Thr Val Ser Lya Ala Lya Giy Aan 1235 1240 1245 cit gaa aag atg tgo ogo got cia gaa gat cas cig agi gas att	ä	ŝi s	Glu	Als:	Thr	Åİä	Ala	The	Leu	Arg	Ļуя	Lys	His	Ala	Aso	Ser		
Vai Aia Giu Leu Giy Siu Sin iia Asp Asn Leu Gin Arg Vai Lys 1205 1210 1215 cag aas cis gas aas agi gas aig aag ats aag atc gat Gin Lys Leu Siu Lys Giu Lys Ser Giu Met Lys Met Giu 1/e Asp 1220 1225 1230 sag cit got agt aac aig gas act giu too aas god aas gaa aac Asp Leu Aia Ser Asn Met Giu Thr Vai Ser Lys Ais Lys Giy Asn 1235 1240 1245 cit gas aag atg tgo ogo got cis gaa get cas cis agt gas ett			1190					1195					1200					
cag ass cts gas ass sas sas ass ass ats ass ats sas atc gat Gin Lya lew Siw Lya Giw Lya Ser Giw Mat Lya Mat Giw I/a Asp 1220 1225 1230 sac att sat sac atg gas act gib too ass sac ass sas acc Asp Lew Ais Ser Ash Mat Giw Thr Val Ser Lya Ais Lya Giy Ash 1236 1240 1245 ctt gas ass atg tsc oso sot ota gas gat cas ots ast gas att	Š	tg	gcc															3654
Cag ass cis gas sas gas ass agt gas aig asg atg gas aic gat Gin Lya iau Giu Lya Giu Lya Ser Giu Mat Lya Mat Giu Ija Asp 1220 1225 1230 gas att got agt sac atg gas act giu toc ass god ang gga sac ; Asp iau Aia Ser Asn Mat Giu Thr Val Ser Lya Aia lya Giy Asn 1235 1240 1245 ctt gas asg atg tgu ogo got cia gas gat cas otg agt gas ett ;	ş	(8)		ផ្ទីម	Leu	€ly	Slu	Sin	ile	Asp	Asn	Leu	Gin	Arg	¥a!	Lys		
Sin Lys iss Siu Lys Giu Lys Ser Giu Mot Lys Met Giu lie Asp 1220 1225 1230 sec off sot est sec sts ses act gio too aaa soo ees ssa sac : Asp Leu Aia Ser Asn Met Giu Thr Vel Ser Lys Ais Lys Giy Asn 1235 1240 1245 off sea ses ats tso oso sot ote sea set cas ots ast see ett :			1295					1210					1215					
1220 1225 1230 886 off got agt sec sig gag act giv too ass god ass gga sac : Asp Leu Aia Ser Asm Met Giv Thr Vel Ser Lys Als Lys Gly Asm 1235 1240 1245 off gas asg atg tgc ogo got ota gas get cas ots agt gas ett :		-																3699
88G off got agt sec stg gag act gio too aam god eeg gga sec ; Asp Leu Aim Ser Asm Met Giu Thr Val Ser Lys Aim Lys Giy Asm 1235 1240 1245 off gam asg atg tgo ogo got ofm gam get cam ofg agt gam ett :	8	ila	Lys	1.60	ទីខែ	Lys	G) u	Lys	Ser	810	Mot.	l.ys	Met	616	118	Asp		
Asp Leu Aia Ser Asm Met Glu îhr Val Ser Lys Ala Lys Gly Asm 1235 1240 1245 ott saa seg atg tgo ogo got ota gaa gat cas otg agt gas ett :			1220					1225					1230					
1235 1240 \$245 ctt gaa seg atg tgc cgc got cts gaa get cas ctg agt gaa ett :	8	86	ott	got	sgt	88C	stg	gag	agt	gto	tee	388	goo	888	888	880		3744
ctt gaa seg atg tgo ogo got ote gaa get cas otg agt gas ett	ķ	8p	Leu	Ala	See	Asn	Met.	01u	Thr	¥#1	Sor	Lys	Als	Lys	0ly	Asn		
			1235					1240					1245					
Leu Giu Lys Met Cys Arg Ala Leu Giu Asp Sin Leu Ser Giu lie	C	tt	883	seg	atg	tgo	oso	got	ota	883	gat	Cas	otg	agt.	888	stt		3789
was a second of the second of	ŝ,	#U	Glu	Ĺуs	Wet	Gys	Årg	Ala	Leu	Glu	Asp	@ln	Leu	Ser	@ls	i i s		

	1250					1268					1260	!				
888	acc	888	533	232	gag	cag	cag	cgg	otg	atc	ast	gac	ote	- &C&		3834
Lys	Fhr	Lys	016	Ø1s	\$lu	G≬n	Gin	Arg	t.eu	110	Asn	åsp	Lea	: Thr		
	1265					1270					1275	· •			¢.	
808	086	aga	gog	080	otg	C88	SCS	gaa	toa	ggt	gas	tsi	tça	egs		3879
Ala	Sin	Arg	Als	Arg	Leu	@in	Thr	G≗u	Ser	Sty	ម្រ	Tyr	Sør	Arg		
	1280					1285					1.290				5s.	
cag	cta					808										3924
Sin	Les	qaA	Giu	Lys	Asso	Thr	Leu	Val	Ser	Gin	Lens	Ser	Ārg	Sly		
	1295					1300					1305		,			
533	cas	800	itt	act	caa	cag	stt	gaş	şas	ots	888	388	088	ctt		3969
Lys	© ∄រា	Ala	Me	Thr	Gin	\$ta	Ha	G≗u	Glu	Leu	Lys	Arg	ថ្នាំព	Leu	è,	ŧ
	1310					1315					1320					
	232					aaş										4014
មិ៖ព	Gis	Slu	116	Lys	Ala	Lys	Ser	Alz	Leu	Ala	His	Als	Leu	Gla		
	1325					1330					1335					
	toc					gec										4059
201	Ser	Arg	nis	Asp	Gys	Asp	Levu	i.eu	AFS	818	Sin	Tyr	Slu	§§ជ		
	1340					1345					1350					
888	cag	gaa	800	BBE	god	282	cta	cag	aga	gca	aig	tec	aag	goo		4104
Ğio	61a	ងិខ័ព	Als	i.ys	Ala	6.មែ	Leu	@la	Arg	Ala	Mat	Ser	Lys	Als		
	1355					1360					1365					
88C	agt	gag	gtt	gco	cag	tgg	868	ago	388	tat	gag	868	gat	god		4149
Aso	Ser	@ls	Val	Ala	Gin	Trp	Arg	Thr	Lys	Tyr	Glu	The	Asp	Als		
	1370					1375					1380					
ato	cas	ogc	808	gag	gag	ots	808	gag	gcc	888	gse	288	ctg	got		4194
118	&In	Arg	mr	ធី! នេ	Slu	Leu	(lu	@ls	Als	Lys	Lys	Lys	Leu	Als		

	1385					1290					1398					
	cgt										got			800		4239
Sin	årg	Leu	@In	Asp	Als	Slu	Siu	His	Val	@la	Ala	Val	Asm	Ala		
	1400					1405					1410	:			V	
ass	tgt	gst	tec	ctt	sas	aag	acg	sag	cag	agg	ete	Cas	set	589		4284
Lys	Cys	Als	Ser	1.60	8§u	Lys	Tier	Lys	Øin	Arg	Less	Gin	Asm	Glo		
	1415					1420					1425				**	
gtt	888	880	oto	atg	att	gat	stt	888	388	808	sst	got	esc	tgt		4329
Vel	Glu										Asn			Cys		
	1430					1435					1440					
800	goc	ots	280	888	888	caa	888	880	ttt	gat	ssg	atc	ctg	ges		4374
Ala	Als	Leu	Asp	Lys	Lys	Gin	Arg	Asn	Phe	Asp	Lys	iis	Leu	Als	٨,	ŧ
	1445					1450					1455					
	e.				د د											
											gas					4419
ម៖ប	Trp	lys:	ម៖ភ	ГÀЗ	Cys		ផ្ទាប	The	818	Als		1.883	Glu	Ala		
	1460					1465					1470					
tet	CSS	238	222	tee	ese	tea	oto	ago	aca	gaa	cts	ttt	382	stt		4484
Ser	Gin												Lys			
	1475					1480					1485					
888	ast	get	tat	gag	888	tet	££a	880	css	ctt	gsa	&CC	ttg	333		4509
Lys	Asm	Als	₹yr	Glu	€lu	Ser	Leo	Asp	@lm	Leu	Siu	Ter	Lau	Lys.		
	1490					1495					1500					
	gaa															4554
arş	Giu	asn	rys	ASH	Legg		粉納	GEU	110	Ser		Lau	Thr	Siu		
	1505					1510					1515					
osa	att	gca	888	ggs	gga	888	ಎಕ್ಟ	ata	ost	888	ote	gaa	2122	新 党(8)		4599
	He															A. ale., who, old,

	152	0				152	5				153	0				
	g seg s Lys					s gas s Glu								o ita a Leu		454
	1531				er verco	154		w 15000	13 S S	a tast	154		a ma	a estat	٧	
83	g gsg	gos	1 838	80	ı tol	ctt	gas	e cat	. ga	1 285	: 228	888	at	o otg		4689
63	u Siu	Als	: Giu	ı Als	8. S@r	' Leu	Git	a Mis	ន មិន ខ	ı Git	i Gly	Lys	118	e Leu		
	1550)				1555	ì				1580	<u>}</u>			.5	
cg	c atc	caş	cii	388 8	tt:	(880	cas	, stc	: 335	(tot	gag	gtt	gai	sgs		4734
Ar:			Lsu	(: Leg	Asn	Sir	ı Vai	Lys	501	@lu	¥a!	Ass	Arg		
	1569	ŝ				1570	\$				1575	š				
88	s att	got	gsa	- 282	e gat	gag	888	att	- gac	cag	sts	332	888	880		4779
Lyi	: He		Slu	Lys	Asp	©18	Glu	ı ile	Asp	@In	Met	Lys	Arg	Asn	ж,	ś
	1580	;				1585					1590	į				
esi	att					too										4824
Hše	: 116		l le	¥aš	Giu	Ser		Gin	Ser	Ma	Leu	Asp	Ala	@ u		
	1595					1600					1605					
						gcc										4669
3 16	Arg		Arg	Asn	Asp	Ala	118	Arg	Leu	l.ys	Lys	Lys	Met	Glu		
	1610					1615					1620					
888	gac	cte	33%	888	stg	888	stc	cag	otg	зас	cat	800	sac	ogc		4914
∭ly	Asp	l.su	Aan	@1 @	Met	Giu	Ha	0 in	Leu	Asn	His	Als	Asn	Arg		
	1625					1630					1635					
atg	got	get	888	goo	ctg	agg	880	tat	888	880	800	Gää	gos	sto		4959
Net	Ala	Als	8lu	Als	Leu	Arg	Asn	Tyr	Arg	Asn	Tiur	Gin	Ala	118		
	1640					1645					1650					
ata	asg	gat	800	cag:	ete	080	ota	gat	gat	got	sto	088	sgo	GSS		5004
Leu	Lys	Asp	Thr	Gin	Leu						Leu					

	1658	Ď				1860)				1668	ś				
											v					
gaş	880	ots	388	338	cag	etg	803	sts	: st	. 29 <u>2</u>	cgc	888	800	880		5049
មាន	i Asp	i.eu	Lys	Glu	៖ ឱ្យន	Leu	Ašs	: Met	. Va	Giu	Arg	Arg	Ala	ı Assı		
	1670)				1878	3				1680	}				
•																
ctg	ots	cas	got	888	ato	gag	gas	eta	oga	. geç	sct	cts	888	cag		5094
Leu	Leu	88n	: Ala	- Olu	Hs	Giu	@la	£.94.	Arg	Ala	Thr	Leu	Ø ls	: 6ln		
	1685	į				1690	}*				1695	į			e.	
scg	\$8 \$	888	880	888	aaa	atc	SCS	gua	cas	gag	cts	stg	gat	800		5139
Thr	Glu	Arg	Ser	Årg	Lys	He	A) a	68u	@ln	- Ola	Leu	Leu	Asp	Ala	٠	
	1700	;				1705					1710			•.		
agt	282	ogt	8tt	GRE	ožo	otg	gas	860	osg	aac	800	agc	cts	ato		5184
Ser	Glu	Arg	Val	@la	Ĺœ	Leu	His	The	ŭ in	Åsn	The	Ser	Leu	116	٤.	-8
	1715					1720					1725					
880	806	aaş	888	888	ctg	gag	808	800	att	tos	CSS	atc	cag	888		5229
Asm	The	Lys	Lys	1.ys	Lou	Giu	Ther	Asp	118	Ser	@In	He	Gin	@ly		
	1730					1735					1740					
gag	atg	888	880	atc	atc	cag	888	gcc	ogo	ast	gca	888	888	888		5274
ឱ្យ	Net	©ls	Asp	110	118	Gin	Sie	Ala	hrg.	Ases	Ala	Glu	618	Lys		
	1745					1750					1755					
gec	888	888	800	stc	But	gst	got	800	atg	atg	get	888	gag	otg		5319
Ala	Lys	Lys	Ala	118	$I_{\mathbb{N}^{r}}$	Asp	Ala	Ala	Met	Mat	Ala	©188	Glu	Leu		
	1760					1765					1770					
aag	aag	888	osg	gac	acc	asc	800	cat	ctg	838	ogg	atg	388	88g		5364
Lys	Lys	Giu	0ln	Asp	Thr	Ser	Ala	His	Leu	Glu	Arg	% et	Lys	l.ys		
	1775					1780					1785					
880	tig	\$88	cas	acg	#\$#	aag	880	gźo	cag	cat	ogt	otg	gst	888		5409
Åsn	Leu	Slu	G≷n	The	Va i	Lys	Åsp	Leu	Gla	::	Årg	Leu .	Asp	Glu		*

	1790	}				1799	j				1808	D				
gat	gag	cas	g otg	go:	ats	332	gg	t sse	(88)	: 225	cag	ata) ca	3 888		545
Ala	Gle	Gêr) Lei	i Ali	Leu	Lys	Øi3	/ (Bis	Lys	Lys	Gin	118	S	n Lys		
	1808	Š.				1810	\$				1815	ì				
ctg	gag	got	: ags	; gii	egi	g 22	cti	. 888	ggt	. gaa	git	gas	: agi	i gaa		5499
Les	ឱ៖ប	Als	e Arg	; Val	Arg	(dia	Lei	ı Gili	@ly	Glu	Val	GI:	Ses	- Giu		
	1820	ŧ				1825	Š				1830	}			*	
cas	asg	cgc	: 221	gti	gas	gct	gto	sag	ggt	: ota	aga	888	cat	gag	5	5544
ថីកែ	l.ys	Arg	Ase	Va I	01u	Ala	Va i	Lys	Gly	Leu	Arg	Lys	. Nis	: Glu	:	
	1835					1840					1845	Š		>		
388	888	gtg	ass	888	oto	act	iso	caa	act	888	888	gac	ege	: 205		5589
Arg	Lys	¥a]	Lys	ន ាំប	Leu	Thr	Tyr	äln	The	@ls	ថ៌ដែរ	Asp	Arg	Lys	>	ø
	1850					1855					1860	t			,	
est	att	ste	088	ctg	cag	gsc	ctg	stg	880	asg	etg	Cas	gca	888		5634
Asn	ile	Leu	Arg	Leu	Gin	Asp	Leu	Va)	Asp	Lys	Lsu	@In	Als	Lys		
	1865					1870					1879					
sts	388	tce	tac	sag	aga	cas	get	gas	gaa	808	gag	gas	623	toc		5679
¥ai	Lys	Ser	Tyr	Lys	Arg	Gin	Als	@[s	Situ	Ala	€lu	Glu	Gin	Ser		
	1880					1885					1890					
880	gte	880	oto	tes	888	tto	egg	888	ato	csg	cac	232	cts	322		5724
Aso	Va.	Asn	Leu	Ser	Lys	Phe	Arg	Ārg	\$ \$ @	0le	His	Giu	i.eu	€f⊌		
	1895					1900	•				1905					
gas	800	gas	888	888	got	gac	att	got	gag	tos	csg	gto	880	aag		5769
ឱ≬ប	Als	ឱ្យព	Glu	Arg	Ala	Asp	118	Ala	01a	Ser	Gin	Vs.I	Asn	Lys		
	1910					1915					1920					
etg	#88	sts	885	agc	agg	888	git	080	808	asa	sto	ata	agt	g88		5614
Lau	Arg	Val	Lys	Sør	Arg	0lu	Va I	His	Thr	Lys	He	i i e	Ser	Ğlu		

1930

1935

gas tea illaiciaso igcigasagg igaccaaaga asigcacaaa aigigasaat Glu

5870

ottigicast coaffifigia ottatgacti tiggagaisa sassitiato igoca

5925

(210) 6

(211) 1939

<212> PRT

<2:3> Nomo sapiena

<400> 6

Net Ser Ser Asp Ser Giu Net Ala IIe Phe Giy Giu Ala Ala Pro Phe 1 5 10 15

Lew Arg Lys Ser Giu Arg Giu Arg lie Giu Ala Gin Asn Lys Pro Phe 20 25 30

Asp Ala Lys Thr Ser Vel Phe Val Val Asp Pro Lys Glu Ser Phe Val 35 40 45

Lys Ale Thr Val Sin Ser Arg Gla Sly Sly Lys Val Thr Ala Lys Thr 50 55 60

Giu Ala Giy Ala Thr Val Thr Val Lys Asp Asp Glm Val Phe Pro Met 65 70 75 80 Ass Pro Pro Lys Tyr Asp Lys lie Glu Asp Met Ale Net Thr His 85 90 95

Leu His Gio Pro Ala Val Leu Tyr Asn Leu Lys Glu Arg Tyr Ala Aïa 100 105 110

Trp Net lie Tyr Thr Tyr Ser Gly Leu Phe Cys Val Thr Val Aan Pro 115 120 125

Tyr Lys Trp Leu Pro Val Tyr Asn Als Siu Vai Vai Thr Als Tyr Arg 130 135 140

Gly Lya Lya Arg Glo Glo Ala Pro Pro Hia ile Phe Ser ile Ser Asp 145 - 150 - 155 - 160

Asn Als Tyr Sin Phe Met Leu Thr Asp Arg Siu Aen Gin Ser Ile Leu 165 170 175

lie Thr Gly Glu Ser Gly Ala Gly Lys Thr Val Ash Thr Lys Arg Val

lie Gla Tyr Pha Ala Thr IIs Ala Val Thr Gly Glu Lys Lys Lys Glu 195 200 205

Sis Vai Thr Sar Siy Lys Met Gin Siy Thr Leu Giu Asp Sin iie ile 210 215 220 Ser Ais Asn Pro Leu Leu Giu Ais Phe Giy Asn Ais Lys Tha Vai Arg 225 230 235 240

Ash Asp Ash Ser Ser Arg Phe Gly Lys Phe lie Arg lie His Phe Gly 255

Thr Thr Siy Lys Leu Ala Ser Ala Asp lie Glu Thr Tyr Leu Leu Glu 1 260 265 270

Lys Ser Arg Val Thr Phe Gin Leu Lys Ala Giu Arg Ser Tyr Nia lie 275 280 285

Phe Tyr Gin lie Not Ser Asn Lys Lys Pro Asp Leu lie Slu Not Leu 290 295 300

Leu lle Thr Thr Asn Pro Tyr Asp Tyr Als Phe Val Ser Gin Giy Giu 305 310 315 320

lie Thr Vai Pro Ser lie Asp Asp Gin Giu Giu Leu Met Aia Thr Asp 325 330 335

Ser Ala IIs Giu lie Leu Gly Phe Thr Ser Asp Glu Arg Val Ser IIe 340 345 350

Tyr Lys Lau Thr Gly Ala Val Met His Tyr Gly Asn Mat Lys Phe Lys 365 360 365 Gin Lys Gin Arg Giu Giu Gin Ala Giu Pro Asp Giy Thr Giu Val Ala 370 375 380

Asp Lys Ais Als Tyr Leu Gin Asn Leu Asn Ser Ais Asp Leu Lys 385 - 390 - 395 - 400

Als Leu Cys Tyr Pro Arg Vel Lys Vai Gly Asn Glu Tyr Vai Thr Lys 405 410 415

Giy Gin Thr Val Sin Gin Val Tyr Asn Ala Val Giy Ala Leu Ala Lys 420 425 430

Ala Vai Tyr Asp Lys Met Phe Leu Trp Met Vai Thr Arg lie Asn Glm 435 440 445

Gin Lew Asp Thr Lys Gin Pro Arg Gin Tyr Phe ile Giy Vai Lew Asp 450 465 460

Ils Ala Gly Phe Giu lie Phe Asp Phe Asp Ser Leu Giu Gio Leu Cys 465 470 475 480

iis Asn Phe Thr Asn Giu Lys Leu Gin Gin Phe Phe Asn His His Met 495 490 495

Pho Vai Leu Siu Gin Slu Slu Tyr Lys Lys Slu Siy lie Slu Trp Thr 500 505 516 Pho ite Asp Pho Gly Not Asp Les Als Aig Cys Its Giu Les Ite Giu 515 520 525

Lys Pro Met Gly lie Phe Ser lie Leu Glu Glw Glw Cys Met Phe Pro 530 540

Lys Ala Thr Asp Thr Ser Phe Lys Asn Lys Leu Tyr Glu Gin His Leu 555 560

Gly Lys Ser Asn Asn Pine Gin Lys Pro Lys Pro Ais Lys Gly Lys Pro 565 570 576

Giu Ala Nis Phe Ser Leu lie His Tyr Ala Siy Thr Val Asp Tyr Ass 580 585 590

ils Als Gly Trp Leu Asp Lys Asm Lys Asp Pro Les Asm Gls Thr Val 595 600 606

Vai Gly Les Tyr Glo Lys Ser Ala Met Lys Thr Leu Als Leu Phe 610 615 620

Vai Giy Aia Tha Siy Ala Siu Ala Siu Aia Siy Siy Giy Lya Lya Siy 625 630 635 840

Gly Lys Lys Gly Sor Ser Phe Gin Thr Val Sor Ala Leu Phe Arg 645 650 655 Giu Ass Leu Ash Lys Leu Met Thr Ash Leu Arg Ser Thr His Pro His 860 685 670

Pine Val Arg Cys lie lie Pro Aso Giu Thr Lys Thr Pro Gly Ala Met . 675 680 685

Giu Mis Siu Leu Val Leu His Gin Leu Arg Cys Asn Siy Val Leu Giu 3

Giy ila Arg Ila Cys Arg Lys Giy Pha Pro Ser Arg ila Les; Tyr Ala 705 710 715 720

Asp Phe Lys Gin Arg Tyr Lys Vel Leu Asn Ala Ser Ala lie Pro Giu 725 730 735

Giy Gin The lie Asp Ser Lys Lys Ais Ser Glu Lys Leu Leu Giy Ser 740 746 750

ils Asp lie Asp His Thr Gin Tyr Lys Phe Gly His Thr Lys Val Phe
755 760 765

Phe Lys Ala Siy Leu Leu Siy Leu Leu Siu Met Arg Asp Siu Lys 770 775 780

ieu Ala Gin ieu IIe Thr Arg Thr Gin Ala Met Cys Arg Gly Phe Leu 785 790 795 800 Ais Arg Val Giu Tyr Gin Lys Met Val Giu Arg Arg Giu Ser lie Phs 805 810 816

Cys lie Gin Tyr Asn Val Arg Ala Phe Met Asn Val Lys Nis Trp Pro 820 825 830

Trp Met Lys Leu Tyr Phe Lys He Lys Pro Leu Leu Lys Ser Ala Glu 835 840 845

Thr Giu Lys Siu Mat Ais Asn Mat Lys Giu Siu Phe Giu Lys Thr Lys 850 855 860

Giu Giu Leu Aia Lys Thr Glu Aia Lys Arg Lys Glu Leu Glu Giu Lys 865 870 875 990

Met Val Thr Leu Met Gin Giu Lys Asn Asp Leu Gin Leu Gin Val Gin 885 890 895

Ale Giu Aia Asp Ser Leu Aia Asp Ala Giu Giu Arg Cya Asp Gin Leu 900 905 910

ile Lys Thr Lys ile Gin Leu Siu Als Lys Ile Lys Giu Vai Thr Giu 915 920 925

Arg Ala Giu Aso Siu Giu Giu Lie Aso Ala Giu Lsu Thr Ala Lys Lys 930 935 940 Arg Lys Leu Giu Asp Giu Cys Ser Giu Leu Lys Lys Asp 11e Asp Asp 945 950 955 960

Leo Glu Leo Thr Leo Ale Lys Vel Glu Lys Glu Lys His Ale Thr Glu . 965 970 975

Asn Lys Val Lys Asn Leu Thr Giu Glu Met Ala Sly Leu Asp Slu Thr 980 985 990

lie Aia Lys Leu Thr Lys Giu Lys Lys Aia Leu Sin Giu Ala His Gin 995 1000 1005

Sin Thr Leu Asp Asp Leu Gin Ale Giu Glu Asp Lys Val Asn Thr 1010 1015 1020

Leu Thr Lys Ais Lys Ile Lys Leu Glu Gln Gin Vai Asp Asp Lau 1025 1030 1035

Giu Sly Ser Lau Giu Gin Giu Lya Lya lie Arg Mat Amp Leu Giu 1040 1045 1060

Arg Ais Lys Arg Lys Leu Giu Giy Asp Leu Lys Lsu Aia Gin Giu 1055 1060 1055

Ser Ala Met Asp ile Giu Asn Asp Lys Gin Gin Leu Asp Glu Lys 1070 1075 1080 Leu Lys Lys Diu Phe Glu Met Ser Gly Leu Gin Ser Lys He 1885 1890 1895

Oid Asp Gla Gin Als Lea Gly Met Sin Lea Gin Lys Lys 1100 1100 1100 1110

Giules Gin Ale Arg ile Giu Giuleu Giu Giu Giu | le Giu Ale 1115 - 1120 - 1125

Giu Arg Ala Ser Arg Ala Lya Ala Siu Lya Gin Arg Ser Asp Lau 1130 1135 1140

Ser Arg Giu Leu Giu Giu lie Ser Giu Arg Leu Giu Giu Ala Giy 1145 1150 1155

Gly Als Thr Ser Als Gin lie Glu Met Asn Lys Lys Arg Glu Als 1160 1165 1170

Giu Phe Gin Lys Met Arg Arg Asp Leu Giu Giu Aia Tha Leu Gin 1175 - 1180 - 1185

His Glu Ala The Ala Ala The Leu Arg Lya Lya His Ala Asp Sor 1190 1195 1200

Vai Ala Giu Leu Giy Siu Gin lie Asp Asn Leu Gin Arg Vai Lya 1205 1210 1215 Gin Lys Lea Giu Lys Giu Lys Ser Giu Met Lys Met Giu lie Asp 1220 1226 1230

Asp Lou Aia Ser Ash Not Glo Tor Vai Ser Lys Ais Lys Gly Ash 1235 1240 1245

Leu Giu Lys Met Cys Arg Ais Leu Giu Asp Sin Leu Ser Siu lie 1250 1255 1260

Lys Thr Lys Giu Giu Giu Gin Gin Arg Leu Ile Asn Asp Leu Thr 1265 1270 1275

Als Gin Arg Als Arg Leu Gin Thr Giu Ser Gly Glu Tyr Ser Arg 1280 1285 1290

Gin Lau Asp Siu Lya Asp Thr Lau Vai Ser Sin Lau Ser Arg Giy 1295 1300 1305

Lys Sin Ais Phe Thr Sin Cin (is Siu Siu Leu Lys Arg Gin Leu 1310 - 1316 - 1320

Giu Giu Giu He Lys Aia Lys Ser Aia Leu Aia Nis Aia Leu Gin 1325 1330 1335

Ser Ser Arg His Asp Cys Asp Leu Leu Arg Siu Sin Tyr Siu Giu 1340 1345 1360 Sis Sin Gis Ala Lys Ala Sis Les Sin Arg Ala Met Ser Lys Ala 1365 1360 1365

Asn Ser Glu Vai Ala Glo Trp Arg Thr Lya Tyr Glo Thr Asp Ala 1370 1375 1380

Tie Gin Arg Thr Siu Siu Leu Siu Giu Ala Lys Lys Leu Ala 1385 - 1390 - 1395

Gin Arg Leu Gin Asp Ala Glu Glu His Val Giu Ala Val Asn Ala 1406 1405 1410

Lys Cys Ala Ser Lew Slu Lys Thr Lys Gin Arg Lew Gin Asm Glu 1415 1420 1425

Val Giu Asp Leu Met ile Asp Val Glu Arg The Ash Ala Ala Cya 1430 1435 1440

Als Als Leu Asp Lys Lys Sin Arg Asn Phe Asp Lys | He Leu Ala 1445 1450 1455

Giu Trp Lys Sin Lys Cys Glu Siu Thr His Ala Siu Leu Glu Ala 1460 1455 1470

Ser Sin Lys Giu Ser Arg Ser Leu Ser Thr Giu Leu Phe Lys Sie 1475 1480 1485 Lys Asn Als Tyr Glu Glu Ser Leu Asp Gin Leu Glu Thr Leu Lys 1490 1495 1500

Ars Giu Asn Lys Asn Leu Gin Gin Giu ile Ser Asp Leu Thr Giu 1505 1510 1515

Sin lis Ala Siu Siy Siy Lys Arg lis Nia Giu Leu Siu Lys lie 1520 1525 1530

Lys Lys Gin Val Glu Sln Giu Lys Ser Giu Leu Gin Ais Ala Leu 1835 1540 1545

Gis Giu Ala Gis Aia Ser Leu Gis His Gis Gis Gis Giy Lys 11e Leu 1550 1555 1560

Arg lie Gin Leu Glu Leu Asn Gin Val Lye Ser Glu Val Asp Arg 1565 1570 1575

Lys lie Als Glu Lys Asp Glu Glu lie Asp Gin Met Lys Arg Asp 1580 1585 1590

Mis its Arg lie Val Giu Ser Met Gin Ser Thr Leu Asp Ala Siu 1695 1600 1605

iis Arg Ser Arg Asn Asp Als lie Arg Leu Lys Lys Het Giu 1810 - 1815 - 1820 Giy Asp Leu Ash Giu Met Giu lis Gin Leu Ash His Als Ash Arg 1625 1830 1635

Mot Ais Ais Siu Ais Less Arg Ash Tyr Arg Ash Thr Gin Ais ||e 1640 1645 1650

Leu Lys Asp Thr Sin Leu His Leu Asp Asp Ala Leu Arg Ser Gin 1655 1660 1665

Giu Ass Leu Lys Giu Gin Leu Ala Met Val Glu Arg Arg Ala Aan 1670 1675 1680

Les Les Gin Ala Giu lia Giu Giu Leu Arg Ala Thr Less Giu Gin 1885 1890 1895

Thr Giu Arg Ser Arg Lys lie Ala Glu Glu Leu Leu Asp Ala 1700 1705 1710

Ser Glu Arg Val Gin Leu Leu Mis Thr Gin Asn Thr Ser Law He 1715 1720 1725

Asn Thr Lys Lys Leu Siu Thr Asp IIe Ser Sin IIe Sin Siy 1730 1735 1740

Giu Met Siu Asp lie lie Gin Giu Ala Arg Asn Ala Siu Giu Lys 1746 1750 1755 Als Lys Lys Als lis Thr Asp Als Als Net Mat Als Gla Siu Leu 1760 1765 1770

Lys Lys Glo Gin Asp Thr Ser Ala His Les Glo Arg Met Lys Lys 1775 1780 1785

Ass Leu Giu Gin Thr Vai Lys Asp Leu Gin His Arg Leu Asp Giu 1790 1795 1800

Ala Giu Gin Leu Ala Leu Lya Giy Giy Lya Lya Gin | He Gin Lya 1805 1816

Leu Siu Ala Arg Val Arg Siu Leu Giu Gly Giu Val Giu Ser Giu 1820 - 1825 - 1830

Gin Lys Arg Asn Val Glu Ais Vai Lys Gly Lau Arg Lys His Glu 1835 1840 1845

Arg Lys Vai Lys Siu Leu Thr Tyr Gin Thr Giu Six Asp Arg Lys 1850 1855 1860

Asn He Lsu Arg Leu Sin Asp Leu Val Asp Lys Leu Sin Ala Lys 1865 1870 1875

Vai Lys Ser Tyr Lys Arg Sin Ais Siu Giu Ais Siu Giu Gin Ser 1880 1885 1890 Asn Val Asn Leu Ser Lys Phs Arg Arg I to Oln His Glu Leu Giu 1895 1900 1905

Siz Ala Giz Giz Arg Ala Asp lie Ala Giz Ser Gin Val Ash Lys 1910 1915 1920

Lau Arg Vsi Lys Ser Arg Glu Vsl Nis Thr Lys He His Ser Glu 1925 1930 1935

@19

(210) 7

(211) 2633

〈212〉 EXXA.

<213> Home sapiens

(220)

<221> COS

<222> (38)..(2584)

<400> 7

cogoggeasg ascatocote coasceages gattaca mig etg cas act mag gat 55 Met Leu Gin Thr Lye Asp 3

5

103

oto ato iss sot its tit tic ots sea act soe git tot ots cas sig Leu lie Tro Thr Leu Phe Phe Leu Gly Thr Ala Vai Ser Leu Gin Vai 10 15 20

gat alt sti cos ago cag egg gag ato ago gti aga gag too aga tio 151

Asp	lie	Vs.I 25	Pro	Ser	Gin	Gly	81u 30	110	Ser	Yai	Gly	61u 35	Ser	Lys	Phe	۵	
tto	tta	tgo	088	gtg	gca	gga	zez	goc	333	gat	888	gac	ats	tee	tss		199
															Trp	á	
	40					45					50						
1-1-N	toc	nen	es esté.	esere.	erwa	500	este	24.00.00	AAA	ale ale cale	ale man and	100 ASL 200	***	and an	No.		20.30%
	Ser															ν.	247
22					60					65	OF CO.			0.00	70		
																•	
	gtg																295
Val	V&	Tep	Asn		Asp	Ser	Ser	Ser		Leu	Thr	110	Tyr		Ala		
				75					80					85			
aac	ato	gac	gac	g00	222	stt	tac	asg	tgt	sts	ett	808	SEC	282	şat	3 3	343
Asn	He	Asp	Asp	Ala	€ly	118	Tyr	Lys	Cys	¥a∄	Val	Thr	Gly	Glu	Asp	•	
			90					95					100				
N.	an andre	2000.20	A	22.22.22								* * *			ž.		20.22.0
	ast Ser																391
	8000	105	2001	48.53	ert S 500	8 2 1 2	110	592551	8 CAL 3	# J. 20.	13.62	115	\$2155	r'ks	ะะน		
atg	tto	888	aat	gog	COS	800	cca	csg	888	tto	ogg	gzg	ese	<u> </u>	gat		439
Net	Pho	Lys	Ass	Als	Pro		Pro	6in	Glu	Phe	Arg	Glu	6 ly	Gilu	Asp		
	120					125					130						
goc	gtg	stt	gtg	tgt	gat	sts	gto	ægg	tec	ote	CGS	668	800	sto	ato		487
	Val																5 IX- 4-
135					140					145					150		
	888													-			535
16.00	Lys	### S		81y 185	arg	asp	*81	118	Leu 160	r.ys	Lys	Asp	YS	ars 165	P796		
				6-1267626					COST					3 ZI ZI			
ata	gtc	ctg	tes	886	886	tac	ctg	csg	ato	cgg	ggG	atc	288	888	808		583

iis	Val	Leu	Ser 170	Åsn	Asn	Tyr	Leu	&In 175	lie	Ang	Gly	\\ \\	i.ys		The		
												Ala			gss Glu	v.	6 31
		tto					gio	stt He								ā	679
	200					205		gec			210					er e	727
								Ala						_			S 800 F
								oss Ars								\$ _{.5.} ^	· 775
								gag 61s 255									823
								cas Gin									871
								tgc Cys									919
				Thr				sas Lys	Val								967
aca	tat	gts	geg	886	cag	act	gcc	atg	5 88	tta	285	şaş	cag	gto	act		1015

The	· Tyr	^ V⊗	Glu	i Asi	i Gli	M	Als	: Met	: 6%	i Les	a Gla	a Gile	i 61:	a Va	i The	
				318	Š				320	l				328	3	
																·
ott	300	tgt	gs:	gge	toc	888	880	000	: stt	: 601	to:	atc	8C(t (S	228	1063
Ĺ¢į	Thr	Cys	i Glu	Ala	3 07	⊚ly	Asp	Pro	1 1 1 8	Pri	3 Ser	- 110	The	- Trp	a Arg	N.
			330	*				335	i				340)		
act	tot	300	cgg	886	ste	ago	880	283	888	888	(act	otg	gat	888	080	1111
Thr	Ser	The	Arg	Aan	118	Ser	Ser	Glu	Glu	Lys	Thr	Less	Asp	Giy	His	*
		348	í				350					355				
atg	gtg	gtg	ogi	agc	ost	800	cgt.	gtg	teg	tos	G S.g	800	cts	333	#8C	1159
Met	Val	Val	Arg	Ser	His	Als	Arg	Va I	Ser	Ser	Leg	Thr	Leu	Lys	Ser	
	360	!				365					370	:				
etc	088	tac	sct	gst	gec	888	gag	tec	atc	tge	860	800	SŞC	880	acc	, +1207
Il⊜	Sin	Tyr	Thr	Asp	Als	Gily	818	Tyr	l le	Cys	Thr	Ala	Ser	Asn	Thr	·
375					380					385					390	
,																
stc	880	cag	gac	tee	cag	tec	ats	tac	ctt	233	gtg	caa	tst	scc	cca	1255
He	Giy	Gin	Asp	Ser	6la	Ser	Met	Tyr	Leu	Glu	Vai	Gin	Tyr	Als	Pro	
				395					400					405		
888	ota	088	ggc	cet	gtg	get	gts	tac	800	tgg	888	eeu	esc	cag	gig	1303
Lys	Leu	@lm	Gly	$p_{F\mathcal{O}}$	٧æ١	Als	¥a!	ă yr	The	Trp	0fu	Gly	Asn	@in	Val	
			410					415					420			
880	sto	800	tgc	gag	gta	ttt	goc	tet	000	agt	800	80g	ato	tes	tee	1351
Ass	Hø	Thr	Cys	6133	Va:	Phe	Ala	Tyr	Pro	Ser	Ála.	m	l le	Ser	Trp	
		425					430					435				
ttt	CSS	şat	ggc	cag	atg	stg	800	886	too	aat	tec	880	aat.	ato	888	1399
												Ser				
	440					445					450					
															-	
ato	tac	830	800	665	tot	gcc	agc	tat	otg	282	gtg	ace	008	880	tet	1447

He	Tyr	Åsn	Thr	Pro	Ser	Als	Ser	Tyr.	Less	Olu	Vel	The	Pro	Asp	Ser		
455					460					465					470		
N. 4 44	n.est	wast-	elje danke	*****	200,200,00	down	. W. M. W.	denote	ئەيدىن								a assess
															888		1495
QB SE	A8883	wat	rns			8.848	Asn	eyys		833	831	ASI	arg		8 y	V.	
				475					480					485			
088	888	too	tto	gsa	tte	ato	ctt	gźż	088	ges	880	800	000	tot	tca		1543
Sin	Giu	äer	Pho	Siu	Phe	H⊗	Leu	¥a!	Gin	Ala	Asp	The	Pro	Ser	Ser	Э.	
			490					495					500				
008	toc	atc	gac	CRE	gte	gaş	oca	tac	tee	320	aca	9888	cas	ete	cse	5	1591
						Giu											1000
		505					510	Ÿ				515					
ttt	gat	.8.8.3	008	888	800	aca	sst	888	gtg	ccc	stc	ata	888	tac	888	ş	1639
Phe	Asp	€le	Pro	Giu	Ala	Thr	Gly	Gly	Val	Pro	l le	Lea	Lys	Tyr	Lys		
	520					828					530						
get	888	188	888	808	gtg	sst	gaa	gaa	sta	188	cat	tee	ននន្ត	tgg	tat		1687
Alæ	Giu	Trp	Arg	Als	Val	Gly	Glu	ទីដែ	¥a§	Trp	His	Ser	Lys	Trp	Tyr		
535					540					545					550		
	000000					and an						. «			*		es nos es es
						stg									-		1735
risite	681.68	168.00	10.5 M	555	8,600	Wet	28128	Ø13	560	¥48.8	6.585	3 8 83	¥88.8		11.888.8		
				918484					www					565			
aag	000	888	808	ece.	tac	gae	gts	888	ctg	gog	gog	ata	ast.	ggc	888		1783
Lys	pro	816	Thr	Thr	Tyr	Ala	¥a!	Årg	Leu	Als	Ala	Leu	Asn	Sly	Lys		
			570					575					580				
222	otg	sst	ZHZ	ato	880	geg	gee	too	282	tta	sag	scg	cag	ccs	gto		1831
&ly	Leu	Gly	Glu	118	Ser	Ala	Als	Ser	Slu	Phe	Lys	The	Sin	Pro	Val		
		585					590					595					
្នុងន	222	288	ccc	agt	gca	cet	888	oto	283	aac	cag	ats	888	202	gat		1879

@In	61y 600		Pro	Ser	Ala	Pro 605	Lys	Leu	Slu	Sly	610		© y	Slu	Åsp	,	
	asc Asn										Asp					v.	1927
	ato He															.s.	1975
	cca Pro																2023
	otg Lew															8	2071
	088 Gin 680																2119
	cec Pro																2167
	888 Gly														~		2215
	gtt Vai	Val										Cys					2263
ata	tgc	stt	gog	gtc	aac	ctg	tgt	esa	333	geo	eee	ccc	SSS	800	sag		2311

Mot	Cys	Hø	Ala	Val	Aso	Lou	Cys	Gly	Lys	Als	Sly	Pro	Gly	Als	Lys		
		745					750	•				755					
		gac											•				2359
@ly		Asp	Met	មិនិដ	810		î.ys	Als	Als	Phe		i.ys	Aso	មិវិម	Ser	-4	
	760					765					770						
	50.00.50	000	mer en	andr æ	***	art t	20.000	20.00.00	00/00/00/	.0036.00	par de ser-	20,207.00	and a second	area en en	20.00.40		****
		Pro														,	2407
775	287.50	3 3 40	23.00	20,266.6	780	10.000 4	re 8	3 861	.en e cir	785	49.648	250. 88	8 888	8.3.25	790		
, , , ,	*				8.0000					0 6000					£ 25.56		
cat	gat	888	888	888	0.80	808	gag	CGG	880	gas	acc	808	oos	ots	808	,	2455
		Gly															
				795					800					805			
888	000	888	388	880	ccc	gta	gaa	gca	sas	008	283	tgo	cag	gag	aca	, 8	2503
ថ្ងាប	Pro	6ĭu	£ys	Siy	pro	Val	Glu	ÀΙε	Lys	Pro	Slo	Cys	0in	@lu	Thr		
			810					815					820				
85																	
888	808	388	cea	828	CCS	800	gsa	gto	38g	acg	gto	000	sst	gac	202		2551
6 lu	The	Lys	Pro	Ala	Pro	Ala	9 iu	¥a i	Lys	Thr	Vai	Pro	Asn	Åsp	Ala		
		825					830					835					
										_							
										188	1888	tgaz	188 8	23800	gagoa		2504
1888.		The	суя	weu	ASFI		268	rys.	A S B								
	840					845											
20.00	rinas	sa t	3323	esort a	തു ക	രാജ്ഞ	9886										2633
ecotype.			- 100 100 100 100	emoster, existe	the second	e and a feet Billion of a	, was the sea										6.88-60-8
<210	i) 8	ļ															
<211	> 8	48															

<400) 8

(212) PRT

<213> Homo supiens

Met Leu Sin Thr Lys Asp Leu-lle Trp Thr Leu Phe Phe Leu Siy Thr

10 15

Ala Vai Ser Lau Gin Vai Asp lie Vai Pro Ser Sin Gly Giu lie Ser 20 26 30

Vai Gly Slu Sor Lys Phe Phe Leu Cys Sin Vai Ala Siy Asp Ale Lys 35 40 45

Asp Lys Asp 11s Ser Trp Pha Ser Pro Asm Sly Siu Lys Leu Thr Pro 50 55 60

Asn Gin Sin Arg ile Ser Val Val Trp Asn Asp Asp Ser Ser Ser Jär 65 70 76 80

isu Thr iis Tyr Aan Ala Aan lie Asp Asp Ala Gly lie Tyr Lys Cys 85 90 95

Val Val Thr Gly Glu Asp Gly Ser Glu Ser Glu Ala Thr Vel Asn Val

Lys lie Phe Gin Lys Leu Met Phe Lys Asn Ala Pro Thr Pro Gin Giu 115 120 125

Phe Arg Glu Gly Glu Asp Ala Val He Val Cya Asp Val Val Ser Sar 130 135 140 Low Pro Pro Thr lie lie Trp Lys His Lys Siy Arg Asp Val | | 6 Leo | 155 | 150 | 155 | 160 | 150

Lys Lys Asp Vai Arg Phe lis Val Leu Ser Asn Asn Tyr Leu Sin lie 165 170 175

Arg Siy iie Lys Lys Thr Asp Siu Siy Thr Tyr Arg Cys Giu Siy Arg 180 185 190

lie Leu Ala Arg Giy Giu lie Asn Phs Lys Asp lie Gin Val lie Val
195 200 205

Asn Val Pro Pro Thr lie Arg Ala Arg Gin Asn lie Val Asn Ala Thr 210 215 220

Ala Ash Leu Gly Sin Ser Val Thr Leu Vai Gys Asp Ala Giu Arg Phe 225 230 235 240

Pro Glu Pro Thr Net Ser Trp Thr Lys Asp Gly Siu Gin lie Giu Gin 245 250 256

Glu Giu Asp Asp Glu Lys Tyr IIs Fise Ser Asp Asp Ser Ser Gin Leu 260 256 270

Thr ile Lys Lys Val Asp Lys Asn Asp Giu Ala Gla Tyr lie Cys lie 275 280 285 Ala Sis Asn Lys Ala Siy Giu Sin Asp Ala Thr lie His Leu Lys Yai 290 295 300

Phe Ala Lys Pro Lys lie Thr Tyr Val Giu Asn Gin Thr Als Nat Giu 305 310 315 320

Leu Glu Glu Gin Val Thr Leu Thr Cys Glu Ala Ser Gly Asp Pro | He 325 330 335

Pro Ser lie The Trp Arg The Ser The Arg Ash Lie Ser Ser Glo Giu

340 345 350

Lys Thr Lew Asp Gly His Net Val Val Arg Ser His Ala Arg Val Ser 355 360 365

Ser Law Thr Law Lys Ser He Gin Tyr Thr Asp Ala Gly Siu Tyr He 376 375 380

Cys Thr Aia Sar Am Thr lie Gly Gin Amp Sar Glm Ser Not Tyr Leu 385 390 395 400

Giu Val Glm Tyr Ala Pro Lys Leu Gim Sly Pro Val Ala Val Tyr Thr 405 410 415

Trp Siu Giy Aan Sin Val Aan He Thr Cya Siu Val Phe Ala Tyr Pro 420 425 430 Ser Ala Thr lie Ser Trp Phe Arg Asp Siy Sin Lew Low Pro Ser Ser 435 440 445

Asn Tyr Ser Asn He Lys He Tyr Asn Thr Pro Ser Ala Ser Tyr Leu 460 455 460

Giu Vai Thr Pro Asp Ser Giu Asm Asp Phe Gly Asm Tyr Asm Cys Thr 465 470 475 480

Ala Vai Asn Arg lie Gly Gln Glu Ser Phe Glu Phe He Leu Vai Gln 485 490 495

Ale Asp Thr Pro Ser Ser Pro Ser lie Asp Gin Val Glu Pro Tyr Ser 500 505 510

Ser Thr Ala Sin Val Gin Phe Asp Siu Pro Giu Ala Thr Giy Siy Val 515 526 525

Pro ile Leu Lys Tyr Lys Ala Giu Trp Arg Aia Vai Giy Giu Vai 530 540

Trp His Ser Lys Trp Tyr Asp Ala Lys Siu Ala Ser Met Glu Gly lle 545 550 555 580

Val The Ha Val Gly Lau Lys Pro Siu The The Tyr Aia Val Arg Lau 565 570 575 Als Als Leu Asn Gly Lys Sly Leu Gly Glu lie Ser Als Als Ser Glu 580 585 599

Phe Lys Thr Sin Pro Val Gin Giy Siu Pro Ser Ala Pro Lys Lew Siu 595 600 605

Giy Gin Met Giy Giu Asp Giy Asn Ser IIs Lys Val Asn Leu IIs Lys 610 635 620

Gin Asp Asp Gly Siy Ser Fro lie Arg His Tyr Lew Val Arg Tyr Arg 625 630 635 640

Ala Leu Sar Sar Giu Trp Lys Pro Giu ila Arg Leu Pro Sar Giy Sar 645 650 656

Asp His Val Met Law Lys Ser Leu Asp Trp Azn Ala Glw Tyr Glu Val 660 665 570

Tyr Val Vai Ala Glu Asn Gin Gla Gly Lys Ser Lys Ale Als His Phe 675 680 685

Val Phe Arg Thr Ser Ala Glo Pro Thr Ala lie Pro Ala Asn Gly Ser 690 695 700

Pro Thr Ser Gly Lou Ser Thr Gly Als Ite Val Gly lie Leu Ite Val 705 710 715 720 lie Phe Vai Les Leu Leu Val Vai Vai Asp lle Thr Cys Tyr Phe Leu 725 730 735

Ass Lys Cys Gly Leu Pha Met Cys lie Ala Val Ass Leu Cys Gly Lys 740 745 750

Als Gly Pro Gly Als Lys Sly Lys Asp Met Glu Glu Gly Lys Als Als 755 760 785

Phe Ser Lys Asp Siu Ser Lys Giu Pro IIe Vai Giu Vai Arg Thr Giu 770 775 780

Sis Sis Arg The Pro Asn His Asp Siy Giy Lys His The Gis Pro Asn 785 790 795 800

Giu Thr Thr Pro Lau Thr Gla Pro Giu Lya Sly Pro Val Siu Ala Lya 806 810 815

Pro Glu Cys Gin Glu Thr Giu Thr Lys Pro Ala Pro Ala Giu Vaj Lys 820 825 830

The Val Pro Asn Asp Ala The Gin The Lys Giu Asn Giu See Lys Ala 835 840 845

(210) 9

(211) 1692

(212) DNA

(213) Homo sapiens

<220> (221) 008 <222> - (121)...(108g)

<400> 9 sticagacia coascactit sciatetaca socssaseto ocgasossos saaasttoos 80 scenetatot googotiggg tigggogaan goonggoog tgoogogoca oogocaggat. 120 sig gag ota cig tog oca cog eto ogo gao gta gao etg aog goo eco 168 Mat Glu Leu Leu Ser Pro Pro Leu Arg Asp Val Asp Leu Thr Ala Pro 8 5 10 15 gad ggs lot cic igo ice tit god aca acg gad gad ito iai gad gad 216 Asp Giy Ser Leu Cys Ser Phe Als Thr Thr Asp Asp Phe Tyr Asp Asp 20 25 30 ces tot the gas tee cog gas etg ego the the gas sae otg gas eeg 284

Pro Cys Phs Asp Ser Pro Asp Leu Arg Phs Phs Glu Asp Leu Asp Pro 35 40°

ego otg aig ese gig sgo gog ote etg ass eec gas gag eac teg ese 312 Arg Leu Met His Val Gly Ala Leu Leu Lys Pro Glu Siu His Ser His 50 55 60

tts see ses ses ata eac coa see eeg gae ged est gas see sag eat 360 Phe Pro Als Als Val His Pro Als Pro Gly Als Arg Glu Asp Glu His 65 70 78 80

six ego gos oce age gug cac cac cag gos ggo ogo igo ota eta teg 408 Vai Arg Ala Pro Ser Gly His His Gin Ala Gly Arg Cys Less Leu Trp 85 90 95

		Cys			Thr				. Arg	: aag : Lya		456
								Asn		Als	*	504
			tge Cys 135							ttg		552
			ege Arg									600
			cag Gin								, .	648
			otg Leu									596
			tes Ser									744
Met			ssc Pro 215			Als						792
tac Tyr 225		į yr			Pro							840

333	agt	gog	goş	818	tog	88G	cts	gac	tac	eza	tes	agc	ato	gtg	gag		888
Lys	Ser	Als	Als	Val	Ser	Ser	Lass	Åsp	Tyr	Leu	Ser	Sør	He	Val	Sla		
				245					250					255			
Ggs	atc	toc	800	888	agc	cat	gog	808	000	gcc	ete	ota	otg	gog	886		936
Årg	l le	Sar	Ther	&lu	Ser	Pro	Ala	Ala	Pro	Ala	Leu	Leu	Leu	Ala	Aso		
			260					265					270		*		
gig	oct	tet	Sas	tog	cct	oog	CSC	agg	osa	gag	sct	goc	goc	000	380	A.	984
			§៖u														
		275					280					285					
																•	
geg	888	EZE	agc	agc	ggc	gac	666	800	088	tos	808	886 886	888	266	668	1:	032
			Sør													•	4.76.40
	290					295					300		,,,,,,	20100	3.00		
											www						
CAR	tero.	ect:	gcg	eet	202	880	cse	aac	රාර්ණ	ata	fan	esse	nte	est es	* 000	्र ^१ इस	080
			Ala												N-35/500	R*	uuw
305	, .				310					315	v ,9 x	W . 174	*42.5	10000			
*					A4 1 A4					40 N NF							
eeee	eats	ežer s	ranse	ಬಲಾಣ	e ee	90 890 85	se er er	ි කර්ක	ar ir ares	anenii ir	sarene	tace	re e	laris datuels ere	CSSSS	 	140
-2012/3070	. (Q a. 0)	exe- e	ik in nistikan		15° 56'0	11000		- 60 660	i Chi ce Chicae	70,20,40	ntititi	energy.	*** 8	10800	resse	5	1 1999
esti	esse	r T	100000	in in in in	an and	an man	awan	- MANA	合种物面	***	esse esse	onosodo so	da da	*·mara	gtegg	4.5	ina
Section 4	52 so 106 so	· N W - S	42620 AG	and the same	· · · · · ·	.www.a	nanig.	1080	Citic Not Not Not Not	20100000	Sec.	was tru	au a	e is mile	9. r.468	8.0	500
:0-07:03:03	anzo enas	record e	annto	aast	te ten	an an an an	ers orbeste ers	1850 275 886	and the second	ww.m	as en en en	22. A. A. A.	~~ ~	. Marion . arrows	.x.a.x.a.a.	90.4	800
nettendi	apres 1910	185% E	394.VV	ensole e	.S. S.W	ariillerin	ower.	ಬಲಜ	దారికి	886	acs	86.60	88 G	&088	tttt	£3	260
Sec.	***	9989 S	s man and s	***	e es	avec wee	matric	www.	an di saran	A Salar	and the same	للمسر بقائدة			de accessos s	4.5	s.e.es
10.000.000	28.00	1870 E	esseria L	NG CG	g 5a	Handre	tea tete	80.8	10.14K	eses 8	0100	&r&£	ec e	regg	tesec	18	320
	ana dina	on on a	s andreid so	action as on	ar ask		ă. <u> </u>	يغ ند	&&								5.00.20
uaga	80 E8	33 S	er er K	8888 8	8 GE	988C	cosc	S.E.E.	EREE	SON .	oset.	coat	88 0	EBBS	eceta	30	180
												-2					
goag	80GE	32 6	1005E	0000	g gy	stge.	scog	grr	atte.	288	22.52	ogig	8g 8	cant.	geset	3.4	40
	×					.w											
ccgg	rccc	88 8	itsta.	8088	e te	teed	cgts	800	CSCC	acc :	8866	agti	to o	czzt	tcagg	18	00
		• 3		2.50	e se	24											
8008	ortt	rr g	tast	actt	e te	85.88.	tota	110	tyśa	888	tsag	este	ag t	ttgo	Gagag	13	480

assascocot sassotgiai tistototaa sacassatat gigateotac assaalita 1620 tacaitista oogoassoss sosagoogos sacatoact cassigaica aastaaasso 1680

goisattiat as 1692

(210) 10

(211) 319

<212> PRT

(213) Homo sapiens

<400> 10

Met Giu Leu Ser Pro Pro Leu Arg Asp Vel Asp Leu The Ala Pro
1 5 10 15

Asp Gly Ser Leu Cys Ser Phe Als Thr Thr Asp Asp Phe Tyr Asp Asp 20 25 30

Pro Cys Phe Asp Ser Pro Asp Leu Arg Phe Phe Giu Asp Leu Asp Pro 35 40 45

Arg Leu Met His Vai Gly Ais Leu Leu Lys Pro Glu Glu His Ser His 50 55 60

Phe Pro Als Als Val His Pro Als Pro Gly Als Ars Glu Asp Glu His 65 70 75 80

Vsi Arg Ais Pro Ser Gly His His Gin Ala Gly Arg Cys Lew Law Trp 85 90 95 Ala Cya Lys Ala Cya Lya Arg Lya Thr Thr Ash Ala Asp Arg Lya 100 105 110

Als Als Thr Met Arg Sis Arg Arg Arg Los Ser Lys Vai Asn Gis Als 115 120 125

Phe Glu Thr Leu Lys Arg Cys Thr Ser Ser Asn Pro Asn Gin Arg Leu 130 140

Pro Lys Vai Glu lie Leu Arg Asn Ala lie Arg Tyr lie Glu Gly Leu 145 150 155 160 . •

Sin Ala Leu Leu Arg Asp Sin Asp Ala Ala Pro Pro Gly Ala Ala Ala 185 170 175

Phe Tyr Als Pro Gly Pro Leu Pro Pro Gly Arg Gly Gly His Tyr
180 185 190

Ser Gly Asp Ser Asp Ala Ser Ser Pro Arg Ser Asp Cly
195 200 205

Met Met Asp Tyr Ser Gly Pro Pro Ser Gly Ala Arg Arg Arg Ass Cys 210 215 220

Tyr Siu Siy Ala Tyr Tyr Ass Siu Ala Pro Ser Siu Pro Ara Pro Siy 225 230 235 240 Lys Ser Ala Ala Val Ser Sor Leu Asp Tyr Leu Ser Ser lie Val Glu 245 250 256

Arg Tie Ser Thr Giu Ser Pro Ais Als Pro Ais Leu Leu Leu Leu Ais Asp 260 285 270

Val Pro Ser Glu Ser Pro Pro Arg Arg Gin Glu Ala Ala Ala Pro Ser 275 280 265

Giu Gly Slu Ser Ser Gly Asp Pro Thr Gin Ser Pro Asp Ala Ala Pro 290 295 300

Gin Cys Pro Aia Gly Ais Asn Pro Asn Pro Ite Tyr Gin Val Leo 305 - 310 - 315

(210) 11

(211) 1427

<212> 9NA

(213) Homo sapiens

(220)

(221) (305

(222) (43)...(810)

<400> 11

octologoig ocgiosaggi gcaccgooig octoloagca gg atg gac gig atg Mat Asp Val Met

54

gat	880	tgc	088	ttc	tca	cct	tot	gag	tsc	tts	tac	gac	886	too	tgo	,	102
Asp	Gly	Cys	@In	Phe	Ser	Pro	800	6lu	Tyr	Phe	Tyr	Asp	Gly	Ser	Cys		
5					10					15					20		
		9														4-	
ats	ccs	tee	000	388	ggt	g88	ttt	eee	gac	æe	ttt	818	ccg	csa	sts		150
118	Pro	Ser	pro	O lu	Gly	©la	Pho	Gly	Asp	Glu	Phe	Va l	Pro	Årg	Val		
				25					30					35			
																> 	
got	800	tts	ggs	gog	cac	888	809	288	cts	CSE	223	tes	gst	gag	886		198
Ala	Ala	P#198	Gly	Ala	Sis	Lys	Als	@lu	Leu	Gin	Gly	Ser	Asp	Gle	Asp	e e	
			40					45					50			4	
														÷			
888	cac	gtg	cgs	gog	cct	800	886	cac	080	CSE	got	ggt	cac	tge	375		246
01u	His	Val	Arg	Als	Pro	Ter	Giy	His	His	\$In	Als	63y	≋i≋	Cys	1.883		
		55					60					65				× 4	
atg	tes	gre	tgc	888	goe	tgo	888	888	888	toe	300	soc	atg	gst	cgg		294
Mot	Trp	Ala	Gys	Lys	Alm	Cys	î.ys	Arg	1.ys	Ser	Thr	Thr	Met	Asp	Arg		
	30					75					80						
ces	asg	ges	gee	act:	atg	ogo	888	ogg	agg	cgc	ctg	asg	38g	gtg	880		342
Arg	Lys	Als	Als	Thr	Met	Årg	@lu	Arg	Arg	Arg	Lou	Lys	Lys	Val	Asn		
85					90					95					100		
cag	gct	ttc	233	800	ete	338	888	tgt	acc	acg	909	sac	GGG	880	csg		390
@ln	Aša	Phe	Glu	Thr	t.eu	Lys	Arg	Cys	Thr	Thr	Ther	Ásn	pro	Asn	6in		
				105					110					118			
azz	ctg	ccc	888	878	888	atc	cts	332	ast	gcc	atc	ago	teo	ate	888		438
AFR	Leu	Pro	Lys	Val	@fs	110	Leu	Arg	Asn	Ala	\$ \$ 8	Arg	Tyr	ile.	@ls		
			1.20					125					130				
sgc	etg	cag	888	ttg	otg	888	gag	cag	gtg	gag	880	tac	tat	886	ctg		486
Ser	Leu	&In	€la:	Leu	Leu	Arg	Glu	Gin	Va i	Glu	Asn	Tyr	Tyr	Ser	Leu		
		135					140					145					

								scc The						-		534
	150				2007	155		2.540			160	www	2000;	~,	en vivi	
sat	ggo	stg	000	888	tgt	88G	28E	cst	gto	tgg	tee	888	888	880	agt	582
Asp	Sly	Met	pro	@lu	Cy s	Asn	5er	pro	٧a١	Trp	Ser	Arg	Lys	Ser	Ser	
165					170					178					180	
																v.
act	333	880	880	ato	tac	îgt	oot	gat	gts	tca	aat	gts	tst	800	808	830
File	Phe	dep	Ser		Ţyr.	Cys	Pro	Asp	Val	805	Asn	Vs i	Tyr	Als	Thr	e ve
				185					190					195		
_					4									÷		
								gat								678
asp	Lys	ASS		Leu	Ser	Ser	8.60	ASP	Cys.	Leu	Ser	ASR		¥8i		
			200					205					210			6 , 8
81.00 S	81°C	2000	Desc.	d'unes	25/00/05	esa	esert.	SES	***	esentir.	mir m	2000	eran.	n de ac	est	726
								San Oly							-	3.639
592 AG	8 8 KG	215	9994578	Vocati.	NI 5 88	(4515	220	33 t K	4.889.4	E S 82	SUBSEC	225	naµ	E-core	nea	
		a j ω					808080					en en en				
tat	oto	tot	008	git	800	agc	800	gst	tes	CAS	cet	oga	act	oca	REE	774
								Asp				•				
	230					235					240	***			*	
sot	tot	agt	too	ass	ott	ato	tat	cat	gtg	cta	tga	acts	etti	to		820
Ala	Ser	Ser	Ser	Arg	Leu	11*	Tyr	Hi≋	Val	Leu						
245					250					255						
tggt	ctal	st g	acti	istto	o as	(88£8	goot	aat	acac	322	acga	iaşa:	igg (rttoe	gessu	880
tocc	3886	ice e	gace	iacat	g ta	igats	assa	: ttt	atti	tos	gtig	taaa	itt 1	gtas	asatt	940
soct	igoc	ac t	ittst	issgs	18 8 <u>8</u>	tgta	ittis	sct	3888	agt	oxto	sttg	ca s	ıatas	rtectt	1800
tott	ctto	at i	atta	ittol	t te	ctts	gata	: tta	stac	ats	gito	cagt	aa t	acte	itttot	1060

gsingggggc	cattgattga	sssissotts	ttogestgot	tasctistat	atscatatat	1120
atatetteta	sstatigoto	stcasastgt	ctclestett	tagagotita	tttttttett	1180
tsasscrits	aaacagotga	gastosgita	aatggaattt	issetstatt	taxctatttc	1240
ititotetit	aatootttag	ttatattgta	ttasstssas	atataeteot	godinatgta	1300
tatattttga	totitiotig	taasaastgt	atcttttaas	tgtaagosos	asatagtaci	1360
ttgtggstcs	iticasgata	tesgaaattt	iggaaattoo	sceteanta	asstittta	1420
ctacaag					`	1427

(210) 12

⟨211⟩ 255

<212> PRT

<213> Homo sapiens

(400) 12

Not Asp Val Met Asp Gly Cys (In Phe Ser Pro Ser Glu Tyr Phe Tyr

1 5 10 15

Asp Giy Ser Cys ils Pro Ser Pro Giu Gly Giu Phe Giy Asp Giu Phe 20 25 30

Val Pro Arg Val Ala Ala Pha Gly Ala His Lys Ala Glu Leu Gla Sly 35 40 45

Ser Asp Slu Asp Glu His Val Arg Ale Pro Thr Gly His His Sin Ale

50

68

60

Giy His Cys Leu Mat Tro Aia Cys Lys Aia Cys Lys Arg Lys Ser Thr 65 70 75 80

The Met Asp Arg Arg Lys Als Ais The Met Arg Siu Arg Arg Leu 85 90 95

Lys Lys Vai Asn Gin Ale Phe Giu Thr Less Lys Arg Cys Thr Thr $100\,$ $105\,$ $110\,$.

Arg Tyr He Giu Ser Leu Gin Glu Leu Leu Arg Giu Gin Vei Glu Aen 130 135 140

Tyr Tyr Ser Leu Pro Gly Glo Ser Cye Ser Glu Pro Thr Ser Pro Thr 145 150 155 160

Ser Ass Cys Ser Asp Sly Met Pro Giu Cys Ass Ser Pro Vsi Trp Ser 165 170 175

Arg Lys Ser Ser Thr Phe Asp Ser He Tyr Cys Pro Asp Val Ser Asn 180 185 190

Val Tyr Ala Thr Asp Lys Asn Ser Leu Ser Ser Leu Asp Cys Leu Ser

48

195 200 205

Ass lie Val Asp Arg lie Thr Ser Ser Glu Gin Pro Gly Leu Pro Leu 210 215 220

Gin Asp Leu Ais Ser Leu Ser Pro Vai Ais Ser Thr Asp Ser Gin Pro 225 230 235 240

Arg Thr Pro Siy Ala Ser Ser Ser Arg Leu IIs Tyr His Val Leu 245 250 250

<210> 13

(211) 875

<212> ONA

(213) Homo sapiens

<2200>

<221) cos

(222) (1).. (675)

<400> 13

ste ses ols tat gas aca too coo tao the tao cas gas one ose the Met Glu Leu Tyr Glu Thr Ser Pro Tyr Phe Tyr Gln Glo Pro Arg Phe 1 5 10 15

tst gat ggg gas aac tac ctg cct gtc cac ctc cag ggc ttc gas cca 96 Tyr Asp Gly Glu Asn Tyr Lsu Pro Val His Leu Glo Gly Phe Glu Pro 20 25 30

oca sec tac gas ces ace gas cto ace ots ago coc gas sec coa gas. 144 Pro Giy Tyr Giu Ars Thr Giu Leu Thr Leu Ser Pro Giu Aia Pro Giy

38 40 45 con off sas sac and see off est acc occ gag one tet och est cad 192 Pro Leu Giu Asp Lys Siy Leu Giy Thr Pro Glu His Cys Pro Giy Gin 20 \$5 60 tgo ots ove tee eog tet ame ets tet mes mes mes tog ets too ets 240 Cys Leu Pro Trp Als Cys Lys Val Cys Lys Arg Lys Ser Val Ser Val 65 70 78 08 sac cas oss oss sos soc aca cis aga sas aas cac aga cic aag eag 388 Asp Arg Arg Arg Ala Ala Thr Leo Arg Sio Lys Arg Arg Leo Lys Lys sig ast say goo tid gag god dig say aga agd acc dig did asd occ Yal Asn Giu Ala Phe Glu Ala Leu Lys Arg Ser Thr Leu Leu Asn Pro 100 100 110 ASC CAS SAS STE COO MAE STE SAS ATO STE SEC ACT SOC ATO SAS THE 384 Ash Gin Arg Leu Pro Lys Val Giu ile Leu Arg Ser Ala ile Gin Tyr 385 120 125 ate gag ego ofe eag god otg ete ago toe ete aac eag gag gag egt 433 lie Glu Arg Lew Sin Ais Lew Lew Ser Ser Lew Ash Gin Glu Siu Arg 130 135 14(3 gas etc ego tac egy gys gys gys ecc cay cea gyg gtg cos ago 480 Asp Leu Arg Tyr Arg Gly Gly Gly Gly Pro Gin Pro Gly Vai Pro Ser 145 150 155 160 gas two ago tot cac ago goo too tgo agt gos gag teg ego agt gos 528 6lu Cys Ser Ser Ris Ser Ala Ser Cys Ser Pro 6lu Trp Gly Ser Ala 185 170 ots say the age god say oca egg got cat otg oto seg got gad oot

Leu Glu Fine Ser Ala Asn Pro Gly Asp His Lau Leu Thr Ala Asp Pro

180

188

190

acs sat son can amonts can too oto acc too sto sto sts san ago sto
The Amp Aim Him Amn Leu Him Ser Leu The Ser IIm Vai Amp Ser IIm
195 200 205

\$24

aca 8% 800 gat gig tot sig ged tid som gat gam acc mig opd mad Thr Vai Giu Asp Vai Sor Vai Als Phe Pro Asp Giu Thr Met Pro Asp 210 215 220 672

tag

ag 67%

(210) 14

(211) 224

(212) PRT

<213> Homo sapiens

<400> 14

Met Giu Leu Tyr Slu Thr Ser Pro Tyr Phe Tyr Sin Siu Pro Arg Phe 1 5 10 15

Tyr Asp Gly Siu Asn Tyr Leu Pro Val His Leu Gin Giy Phe Slu Pro 20 25 30

Pro Giy Tyr Glu Arg Thr Glu Leu Thr Leu Ser Pro Glu Ala Pro Gly
35 40 45

Pro Leu Giu Asp Lys Giy Leu Giy Thr Pro Giu His Cys Pro Giy Gin 50 55 50 Cys Lau Pro Trp Ala Cys Lys Val Cys Lys Arg Lys Ser Val 85 70 75 80

Asp Arg Arg Ala Ala Thr Leo Arg Gio Lys Arg Arg Leo Lys Lys 85 90 95

Val Asn Giu Ala Phe Giu Aia Leu Lys Arg Ser Thr Leu Leu Asn Pro-100 105 110

Asn Gin Arg Leu Pro Lys Val Giu lie Leu Arg Ser Ala Ile Gin Tyr 115 120 125

ile Gis Arg Leu Gin Ala Les Leu Ser Ser Leu Asn Gin Gis Gis Arg 130 135 140

Asp Leu Arg Tyr Arg Sly Sly Sly Sly Pro Sin Pro Sly Val Pro Ser 145 150 155 160

Giu Cys Ser Ser His Ser Ale Ser Cys Ser Pro Glu Trp Gly Ser Ale 185 170 175

Leu Giu Phe Ser Ala Asn Pro Gly Asp His Leu Leu Thr Ala Asp Pro 180 185 190

Thr Asp Ala His Asn Leu His Ser Leu Thr Ser lie Val Asp Ser lie 195 200 205 Thr Val Giu Asp Val Ser Val Alz Phe Pro Asp Giu Thr Mat Pro Asn 210 215 220

(210) 15

(211) 3935

(212) DWA

<213> Homo sepiens

<220×

<221> CDS

<222) (373)...(1902)

<400> 15

ggagagooga aagoggagot ogaaaotgao tggaaactto agtggoggg agactogoca. . 60 gtticascon oggassettt tottignsg aggagasgas asggggtgda agogoococa 120 cititisciet titiccieco cicciccico totocastic socioccoc sotissasos 180 sgrageigtg sactggorac cocgegostt octaagiget egeoggegia geoggeegse 240 gogocagott cocogggage egottgotoc goatcogggo agocgagggg agaggageco 300 sesectors, teccogasco socsessett etesectite cossecses secceetsee 360 coggeneese gt sig sat old dig gad odd tid sig ang alg acc gad gag 411 Met Asn Leu Leu Asp Pro Phe Met Lys Met Thr Asp Glu 1 8 10

Cas Sas aas sec cig ies sec sec oor asc esc acc ats too sas sac 459 Sin Siu Lys Siy Leu Ser Siy Ala Pro Ser Pro Thr Met Ser Giu Asp 15 20 25

ted sos sas tog ded iso dog tog sad toe sad tog sad sed sad sad 507

Ser 30	· Als	¥ (8)	y Se	r Pr	o Cy 35		o Se	r Øl	y Se	r Gi;	y Se	r Asi	p Ta	r Gi	u Asn 45			
															g sag Jiyo		555	
															(gto (Val		803	
												occ Pro SO			: sis Yal	s e	651	×
												aag Lys			atg M et	€.,	: 699	
												ass Lys					747	
cas Gin																	795	
ete :												Phe					843	
scs : Ais (lu,					Gla i		885			His I	sog : Pro :	gat:				891	
tso c			css	cgg .	agg i			gtg :	asç i	aac (170 Cag j	\$0\$ i	[ag ;	jos		939	

Tyr	Gin 175	Pro	Arg	Arg	Arg	Lys 180		VsI	ĭ.ys	Asn	61y 185		Ala	Giu	ΑÍ®		
	geg										Aso						967
	otg Les															a	1035
	toc Ser																1083
	acc															₹.,.	* \$131
	885 010 255																1179
	ogo Arg													tco Ser			1227
	sas Giu																1275
	cac His	Pro										Thr					1323
age	tac	ggc	ato	agc	ago	acc	gog	gcc	acc	ceg	gog	agc	808	ggc	cac		1371

Ser	Tyr	320	He	Ser	Ser	Thr	A1a 325	Ala	Thr	Pro	Ala	Ser 330	Als	Siy	His	•
gtg	tgg	atg	tee	888	cag	cag	gog	cos	oog	008	000	GOS	cag	oss	ccc	1419
¥a1	Trp	Met	Sør	i.ys	6 }a	Bin	Alæ	Pro	Pro	Pro	Pro	pro	@la	Ola	pro	
	335					340					345					
cca	cag	geo	osg	cog	gec	ccs.	GSS	gog	ccc	008	cag	cog	oag	808	geg	1467
	@ln	Å S	Pro	Pro	Als	Pro	Gin	Als	Pro	Pro	Gin	Pro	@in	Ala	Ala	,
350					355					350					365	9
CCC	CCS	cag	cag	cog	gcg	gca	ecc	cog	cag	088	G0#	088	gog	080	80g	1515
Pro	Pro	Gin	Gin		Ala	Als	Pro	Pro		Gin	Pro	Sin	Ala	His	Tar	
				370					375					380		
otg	866	scg	otg	880	880	gag	ccg	ssc	cag	tee	cag	088	808	cac	ato	. + 1563
Leu	Thr	Thr		Ser	Ser	€la	pro	Gly	Sin	Ser	Gin	Arg	Thr	His	110	
			385					390					396			
	acg															1611
Lys	Bhr.		មហ	Leu	Ser	PERO		3163	137	Ser	នារ		ŒI6	\$ in	His	
•		400					405					410				
_	ccc															1659
Ser	Pro	Sin	Sis	116	Ala	•	Ser	Pro	Phe	Asn		Pro	His	Tyr	Ser	
	415					420					425					
	tcc															1707
	Ser	Ţ¥ĸ	Pro	Pro		The	Arg	Ser	ថិរិក	Tyr	Asp	Tyr	Thr	Asp		
430					435					440					445	
	886															1755
Gin	Asn	3er	Ser		fyr	Tyr	Ser			Ala	Gly	&In	Sly	The	Gly	
				450					455					460		
oto	tao	toc	acc	tto	800	tec	sts	886	000	got	cag	ege	000	sts	tec	1803

Leu Tyr Ser The Phe The Tyr Met Ash Pro Ale Gin Ars Pro Met Tyr 465 470 475	
ace see ate see gas ace tot ggg gto set too ate seg sag ace sac Thr Pro lie Ala Asp Thr Ser Gly Val Pro Ser lie Pro Gle Thr His 480 485 490	1851
ago occ cas cac tgg gaa caa occ gto tac aca cag cto act cga oct Ser Pro Gin His Trp Giu Gin Pro Vai Tyr Thr Gin Leu Thr Arg Pro 495 500 505	1899
tga ggaggodico cacgaagggo gaagatggco gagatgatoo taasaataao	1952
CS80gs88g8 goggsCc88G cagsaitece tttggacati tytgttittt tgtitttta	2012
tittgittig tilititotic ticticitot toctiasaga catitasgot asaggosaci,	+2072
ogiacocaaa iiiccaagac acaaacaiga ociatocaag ogcaitacco sciigiggoo	2132
astragisgo cassocasor liggolaasi gsagosgoga aatosacgag aaacisgaci	2192
ittissacoc iettessago asgugiggeg gatgaiggag astogigiga iosgigiget	2252
aaatototot socigiitgs actitgiaat taittitta goagiasita aagaaaassg	2312
toctotsiga ggaatatici cistillasa tatiliisgi atgiacigig teisalicai	2372
Caccalitie agggestica tacatatiti tagsisaasi tesetectot tettiticca	2432
acaşcisaso taqiciiagi igascaştşt goscisgott ttetigosso caşaştatii	2492
ilgimosgat itgotticio tiacamasag aasaaaamas tootgitgia tiascettia	2552
aasacagsat Egigiisigi gatoagilli gggggiisac liigoiisat toolcaggoi	2612
ttgogstita aggaggagoi gocttessas avaataaagg cottaitiig casttatggs	2672

sstasacsa	t agtotagag	≆ agcatttgg:	t asgotttati) statatete	t tättissegs	2732
ägagassa	o accitgago) ttaasecgg	t gotgotegg:	ascattigo	s cictitiagi	2792
scatt tcet	o otgootitg:) iteticacia	: cagtottaas	; aasgaggts:	* #Mggcsegca	2852
asggagatg:	: 3 as totetto:	gggastgitt	Cagoggocas	: taegtgood	: agcacastgs	2912
occessits	atsociggge	occatstss:	: aggoagatgo	otgatagata	: %%%%cotgt	2972
goctotoasa	aceccasess	(%%&ccttca	asacattoca	citgotaass	tistitatit	3032
igiooggagi	: ggttitsett	8888688888	seseticiti	ttttttt	tttccssttt	3092
tacattotti	: assataggtt	gttsgasott	tostossagg	gtatggtcat	otgttgttes	:3152
stisigito	: taxotgiasc	cagtititit	ttstttstot	ctttsstctt	tttttattat	3212
teasegosag	titottigis	ttectcacce	tagatttgts	taaatgoott	tttgtesste	3272
setititiat	ttgtigtttt	tsttsaxaac	sssciggaaa	otigitictt	ttittgtata	3332
aatsagaget	tgcsastgts	gigistosci	gastcattig	cagtyttito	tgooscagae	3392
ctttgggotg	cotiststig	tatetetsts	tesstatata	tgtgttttga	Cacassasca	3452
atgosagost	gtsteatees	istitoteis	catotictot	tssasteags	sassciacot	3512
ssasssato	agoccaciga	cagacottaa	tottaattao	tgstgtggst	asassitts	3572
aggsitgett	tttsssassg	BOSSCRARCE	ttttttttta	tttaasasas	gatatattes	3632
casttttaga	astoastaga	ælesssictt	asagractes	tastatggca	tootteaatt	3692
totgtstasa	agcagatott	tttaaaaaga	tecticigia	acttasgaaa	cotggoattt	3752

asstostatt	tigicities	steassoctt	tssittstyt	togigining	ittgtiivec	3612
ttgtttsoct	coesgooces	##scottitigt	tetetecsts	assottacct	ttesettttt	3872
ctitalatit	ttittttttt	tstatistig	tttaceatea	atatacattg	catteeseas	3932
200						3935

<210> 16

(211) 509

<212> PRT

(2:3) Homo sapiens

(400) 16

Met Asn Leu Leu Asp Pro Phe Met Lys Met The Asp Glu Gin Glu Lys

1 10 15

Sly Leu Ser Gly Ala Pro Ser Pro Thr Met Ser Glu Asp Ser Ala Gly 20 25 30

Ser Pro Cys Pro Ser Sly Ser Gly Ser Asp Thr Giu Asn Thr Ars Pro 35 40 45

Gin Giu Asn Thr Phe Pro Lys Gly Giu Pro Asp Leu Lys Lys Giu Ser 50 55 60

Giu Siu Asp Lys Phe Pro Val Cys lie Arg Siu Ala Vai Ser Sin Vai 65 70 75 80 Lau Lys Gly Tyr Asp Trp Thr Low Vai Pro Met Pro Val Arg Vai Asn 85 90 95

Siy Ser Ser Lys Asn Lys Pro His Val Lys Arg Pro Met Asn Aia Phe 100 105 110

Wet Vai Trp Ala Sin Ala Ala Arg Arg Lys Leu Ala Asp Gin Tyr Pro 115 t20 125

His Leu His Asn Ais Giu Leu Ser Lys Thr Leu Giy Lys Leu Trp Arg 130 135 140

Leu Leu Asn Giu Ser Siu Lys Arg Pro Phe Vai Giu Gis Ala Giu Arg 145 150 155 160

Lau Arg Val Gla His Lys Lys Asp His Pro Asp Tyr Lys Tyr Gla Pro 185 170 175

Ars Ars Ars Lys Ser Vai Lys Asn Giy Gin Als Giu Aia Giu Giu Aia 180 185 190

Thr Siu Gin The His IIe Ser Pro Aso Ale lie Phe Lys Ale Leu Glo 195 200 205

Als Asp Ser Pro His Ser Ser Ser Siy Met Ser Clu Vai His Ser Pro 210 215 220 Giy Giu His Ser Giy Gin Ser Gin Gly Pro Pro Thr Pro Pro Thr Thr 225 230 235 240

Pro Lys Thr Asp Val Sin Pro Giy Lys Ais Asp Les Lys Arg Giu Giy 245 250 250

Arg Pro Lsu Pro Siu Giy Giy Arg Sin Pro Pro lie Asp Phe Arg Asp 260 265 270

Vai Asp lie Giy Giu Leu Ser Ser Asp Val lie Ser Asn lie Giu Thr 275 280 285

Phe Asp Val Asm Glu Phe Asp Gin Tyr Leu Pro Pro Aen Gly Hje Pro 290 295 300

Siy Yai Pro Ala Thr His Gly Sin Vai Thr Tyr Thr Gly Ser Tyr Gly 305 310 315 320

lie Ser Ser Thr Ale Ale Thr Pro Ale Ser Ale Gly His Val Trp Wet 325 330 235

Ser Lys Gin Gin Ala Pro Pro Pro Pro Pro Gin Gin Pro Pro Gin Ala 340 345 350

Fro Pro Ala Pro Sin Ala Pro Pro Gln Pro Gln Ala Ala Pro Pro Sin 365 360 365 Gin Pro Als Ais Pro Pro Gin Gla Pro Gin Ais His The Lew Thr Thr 370 376 380

Lau Ser Ser Glu Pro Gly Gln Ser Gln Arg Thr Nie lie Lye Thr Glu 385 390 395 400

Gin Leu Ser Pro Ser His Tyr Ser Giu Gin Gin Gin His Ser Pro Gin 405 410 415

Sin lie Ala Tyr Ser Pro Phe Asn Leu Pro His Tyr Ser Pro Ser Tyr 420 425 430

Pro Pro IIs The Arg Ser Sin Tyr Asp Tyr The Asp His Sin Asm Ser 435 440 445

Ser Ser Tyr Tyr Ser His Ala Ala Gly Gla Gly Thr Gly Leu Tyr Ser 450 455 460

The Pho The Tyr Met Asn Pro Ala Gin Arg Pro Mot Tyr The Pro Ile 485 470 475 480

Als Asp Thr Ser Gly Val Pro Ser He Pro Gin Thr His Ser Pro Gin 485 490 495

His Trp Glu Gin Pro Val Tyr Thr Gin Leu Tha Arg Pro 500 505

367

70

(210) 17 (211) 5060 (212) ONA (213) Homo sepiens (220) <221) COS (222) (158).. (4621) <400> 17 acguagagog ofgotaggot googagioto cogottooto otocigotoo aagggootoo 60 tgoatsasss oscsstasas accossacoc soscosisci coigcositi ogcisosci 120 ogcoogggoo oggotoagoo aggocoogog gigagoo aig ait ogo oto ggg goi 175 Met lie Arg Leu Gly Ala Ì oce cag tog ctg gig ctg ctg acg ctg ctc gtc gcc gct gtc cit cgg 223 Pro Gin Ser Leu Val Law Leu Thr Lew Leu Val Ala Ala Val Leu Arg 10 15 igt cag ago cas gai gio cag gag got ego ago igi gig cag gai egg 271 Cys Gin Gly Gin Asp Val Gin Glo Ala Gly Ser Cys Val Gin Asp Gly 25 35 cag age tot eat get aag got gig igg aag cog gog occ igo ogg eic 319 Gin Arg Tyr Asn Asp Lys Asp Val Tro Lys Pro Giu Pro Cys Arg lis 40 45 50 tgt gto tgt gac act ggg act gtc etc tgc gac gac ata ato tgt gag

Cys Vai Cys Asp Thr Gly Thr Val Leu Cys Asp Asp lle lie Cys Glu

85

80

85

						0 881												415
Asş) Va	Lty	s Ası		a Les	3 S01	- Pn	០ ឱ្យ	u šše	3 B.S.	o Ph	e ül	y (3.)	u Ø	¥\$	Cys	,	
				75					80					ő	5			
district	र व्यक्ति	o tran	Ne anoshio	ப		u autou												
						ote											×	463
388	. 9 44	ი რერე	* 71% 940	8 S198	usaj) Leu	: .PI.33	ı 189 95	* #\$18	: නිස:	។ មាន	y ©la			y	Pro		
			2.2					363					10	8				
888	883	ı caş	(888	. ESS	888	oct	888	1 gas	: ato	888	; gat	t att	gt	8 88	**	000	÷	511
						Pro												
		108					110					115					4	
						698												559
£¥8			: Mag	: @ y	Pro	Gin	Gly	Pro	Ala.	Sly	Sla	មិនិក	Ğij	, Pr	Θ.	Ars		
	1.20	ļ				125					130	\$						
REE	est	est:	grarit:	g skep	202	sst	00° 95' 95	කතන	anack	#ww.	والمحمد	- Marie 2	20.00				1.	
						Giy												607
135			,	1 11790	140	2016 B	Xe i xe	c. y	za s 3k	145	E. S. 20	ssile	rrt	P(87)				
										2 -25-64					;	150		
888	gat	gga.	888	cot	aza	86G	oot	ggs	sst	oot	ggo	966	port	881	. ∢	>ct		655
						Thr												
				155					160					165	į			
													V					
						oot												703
LLO	SIY	Pro		Gly	B.E.G	Pro	Gly		Sly	Gly	åan	Phe	Als	Als	6	Un		
			170					175					180					
atg.	ect	228	883	ተተተ	សមាត	97 38 28:	ଅପାର	diam'r.	econolis	reserves.						. 2		00-00-0
Met .																		751
		185			, sandia.		190	5.1.3 M	ess St.	es i Jr	az i xa	195	Len	23 1 %.	¥.	33 3		
												> 90.69						
atg	988	828	cca	atg :	880 :	000	sts	888	oot :	cgs .	888	cat	CCM	280	Çi	ct		799
Met i																		
	800					205					210							

																a cot	847
	A. S) (()	f Als	a Pro	s @ly	Pre) Sin	ı Giş	Pho	Gir	ı Siy	Ass	n Pro	G G I	y @1	s Pro	
	216	à				220)				228	, S				230	v
	883	gas	a oct	881	gto	tot	est	600	ats	EE!	coc	egi	i ggt	i co	t cc	t ggt	. 895
	Giy	(Sh	e Pro	Gly	Ya!	Ster	Gly	Pro	Met	Gly	Pro	Ara	; 643	r Ph	o Pr	o Giy	
					235	Š				240	ŀ				24	5	
	000	cct	SES.	888	cct	sst	gat	gst	est	888	get	C E8	3 333	001	t gg:	888	943
	pro	Pro	Gly	Lys	Pro	Üly	Asp	Asp	Sly	Glu	Als	äly	Lys	Per) SI	/ Lys	
				250	ŧ				255					260)		
				ć													
	get	get	£88	agg	SST	oog	cct	ggt	cct	cag	est	get	cgt	223	tte	cca	991
	Als	Ø i y	Ölü	Arg	Siy	pro	Pro	Gly	Pro	Gin	Siy	Als	Arg	Gly	r Phie	pro	
			265					270					275				
	888	acc	008	ggc	ctt	cct	ggż	gts	888	ggt	cac	888	sst	tai	ccs	880	1039
	©Iy	Ihr	Pro	Gly	Leu	Pro	Giy	¥81	Lys	Gly	Mis	Arg	Giy	Tyr	Pro	Gly	
		280					285					290					
	cts	gac	ggt	got	aag	888	gag	geg	88¥	got	oct	ggt	gtg	388	ggt	sas	1087
	ĹŒij	Asp	Sly	Als	Lys	Gly	680	Als	Siy	Ala	Pro	Gly	Va.I	Lys	Siy	មាន	
	295					300					305					310	
	agt	žzz	tec	ccs.	188	282	880	888	tot	oog	ggc	cos	stg	ggt	cot	ogt	1135
	Ser	Gly	Ser	Pro	ßiy	@iu	Asn	Sly	Ser	Pro	Gly	pro	Met.	Gly	Pro	Arg	
					315					320					325		
	88G	cžg	cct	est	888	aga	gga :	CES	act	ggc	cct	gat	880	got	gog	set	1183
							Gly :										
				330				;	335					340			
	800	oga	ego	886	gat	ggt	csg :	coa :	eec :	ccc .	sca :	set	cot	ocg	est	cct	1231
	((,																
į							SIn i										0.0000

gte	- gg1	t cot	(gc	t ssi	1 887	001	ggt	tte	t cot	881	t goi	t set	88	8 904	388		1279
¥a.	(Gly	r Pro	Ala	s Gij	y Giy	r Pro) Øly	Phe	ı Pro	: &I	y Alie) Pro	SI:	y Ali	a Lys		
	380)				368	í				371)				•	
green's	· man		: 25.00 A		e on out	· want					i						
															egt.	×	1327
375		F 998.843	ાંચા	e mero			ALS	: Arg	(3)3			l Gly	Als	a Gir	: Gly		
976	ı				380	ŗ				389	\$				390		
cct	cgr	881	gaa	oct	egt.	act	cct	888	too	cct	888	cct	gat	. <i>88</i> 1	800	v	1375
Pro	Arg	Gly	Sly	Pro	Gly	Ter	Pro	üly	Ser	Pro	Giy	Pro	Als	Gly	Ala		
				395					400					405			
Binon	zenek	55 AV.AV	ac acido					V 3	2							ŕ	
															got		1423
10/24	พรฐ	enass.			4585	asp	ប៖ម្		53.0	ary	Ala	£¥\$			Ala		
			410					415					420	!			
ggt	sct	cet	880	ætt	gct	ggt	got	cct	ggc	tte	cet	232	cca	cgg	282	₹., ²	: 1471
														Arg			
5		425					430					435					
														ggt		1	519
Pro		Sly	Pro	@In	Gly	Ala	The	Gly	Pro	Leu	Gly	Pro	Lys	Gly	0 ln		
	440					445					450						
acg	ggt	888	cot	ggt	att	set	ees ees	ito	228	eet.	###	សនាន	sen.	000	సబరా	-5	567
														Pro			- Market C
455					480					485	100.00	w	يې د سم	20.80	470		
															2 2 30		
gga	888	ggt.	agc	ect	sct	880	000	cag	888	800	act	888	occ	got	ggt	8	615
Sly	8lu	Pro	₿ [y	pro	Ala	Gly	Pro	\$In	Sly	Ala	Pro	Giy	Pro	Als	@ly		
				475					480					485			
74.5	20 20 10	essenion.	30030-001	on error	decen	2000-A	المارية			a							
														228		,	663
AP 1 3%	98 5 8A		.ys 490	en &	13:13 B	W13			ជ៖ដ	1.8.68	Ø1ÿ			Sly	fro		
			-destablishing					495					500				

810	ggt	000	¢¢.	<u>gg</u> 8	gáa	888	ggt	801	cec	888	880	ogs	ggt	tte	008		1711
118	Sty	$\mathfrak{p}_{r\varrho}$	Pro	Q iy	610	Arg	Sty	Ala	Pro	€ly	Asn	Arg	Gly	Phe	Pro		
		505					510					515					
ggt	CSS	gat	ggt	otg	gca	ggt	ccc	888	ggs	gcc	cet	gga	gag	088	888		1759
@ly	Ğİn	Asp	Gly	i	Ala	Gly	Pro	Lys	Ĝijy	Ala	Pro	Giy	Glu	Arg	Gly		à
	520					525					530						
ace	agt	ggt	ott.	sot	ggs	GGG	sag	ggs	god	880	est	gec	cet	ggc	cgt	2.	1807
Pro	Ser	Gly	Leo	Als	Sly	Pro	Lys	Sly	Ala	Asn	Gly	Asp	Pro	Gly	Arg		
835					540					546					550		
																5	
cct	883	888	cat	880	ott	cet	888	gcc	cgg	ggt	ctc	act	ggc	aga	cet		1855
pro	@ly	©lu	pro	Gly	Leu	$\mathfrak{p}_{\mathfrak{FQ}}$	Gly	Als	Arg	Siy	Leu	Ter	Gly	Arg	Pro		
				555					560					565			
																ł.,	>
sst	gat	got	ggt	což	088	880	äää	gtt	&&C	cct	tot	SSS	gcc	ccţ	ggt		1903
Gly	Asp	Ala	Siy	p_{r0}	Gla	Siy	Lys	Val	Oly	Pro	Ser	Gly	Als	pro	Gly		
			570					875					580				
,																	
888	gat	żzz	egt	cot	223	oct	ocs	sst	cot	CSE	222	gat	cgt	233	cag		1951
Glu	Asp	Gly	Arg	Pro	Gly	pro	pro	Gly	Pro	Gla	Gly	Alia	Arg	Gly	Gin		
		585					590					595					
cet	ggt	sto	atg	ggt	tto	oot	ggg	666	888	est:	800	880	aat	282	cct		1999
Pro	Gly	Va I	Set	(I)	Pho	pro	Gly	pro	Lys	Gly	Ala	Asn	Gly	@lu	pro		
	600					605					\$10						
ggc	888	got	ggt	gag	aag	gga	otg	cct	ggt	got	act	ggt	ots	agg	ggt		2047
Gly	Lys	Ala	Gly	Ġlu	Lys	Gly	Leu	pro	Gly	Ala.	Pro	Sly	Leu	Arg	Sly		
615					620					628					630		
ctt	cct	ggc	aaa	gat	ggt	Sæg	808	ggt	get	gca	223	000	cct	880	cot		2095
Lee	Pro	Gly	Lys	Asp	Gly	Glu	That	Siy	Als	Ala	Giy	810	pro	Gly	Pro		
				635					640					648			

got	gga	toa	gst	ggt	gaa	083	ggc	282	cag	ggt	got	cet	828	coa	tot	2143	
Als	01y	Pro	Alæ	Gly	ថ្ងីខ្មែ	Arg	Gly	616	Gla	Sly	Ala	$p_{\mathcal{F}\mathcal{O}}$	@ly	Pro	Ser		
			650					655					660				
ggg	ttc	cas	883	cit	cct	880	cet.	cat	ggt	000	008	ggt	883	ggt	888	2191	
Gly	Phe	Ğin	Gly	Løu	pro	Giy	Pro	pro	Giy	Pro	Pro	Siy	Glu	Sty	Gly		
		665					670					678					
868	oca	ggt	gec	cag	ggt	gtt	000	ggt	888	got	888	ges	cet	ggc	cta	2239	
Lys	Pro	Giy	Asp	61n	Sly	Val	Pro	fily	Gilu	Ala	Gly	Als	Pro	@ly	ren		
	680					685					690						
															*		
212	sst	ccc	888	est	gaa	oga	rer	ttc	ccs	ggt	gas	ogt.	ggc	tat	occ	2287	
Va I	6ly	Pro	Års	Gly	\$lu	Arg	() ly	Phe	Pro	Gly	Giu	Arg	Gly	Ser	Pro		
695					700					705					710		
															<u> </u>	i t	
est	80c	Cag	ggc	oto	CSE	ggt	000	ogt	ggc	oto	ccc	ssc	sct	cct	ggc	2335	
@ly	Als	üla	6ly	Leu	Sin	Sty	ρ_{FG}	Arg	Gly	Leu	pro	Gly	Thr	Pro	Gly		
				715					720					725			
•																	
act	gst	ggt	000	888	est	808	tet	385	cos	gos	ggo	ccc	cct	ggc	gcs	2383	
The	Asp	Oly	Pro	Lys	Giy	Ala	Sec	@ly	Pro	Als	Gly	Pro	Pro	Gly	Als		
			730					735					740				
Gas	ZZC	cct	830	ggt	ctt	Cag	888	atg	cot	ggc	gag	ass	\$\$8	goa	set	2431	
@in	Gly	Pro	Pro	Gly	Leu	@la	Gly	Net	Pro	Sly	Gly	Ars	@ly	Ala	Ala		
		745					750					755					
sst	ato	gct	ggg	ccc	aaş	88C	gaç	agg	sst	gac	gtt	ggt	888	888	ggc	2479	
Gly	i lø	Als	Sly	Pro	Lys	Gly	Asp	Arg	Gly	Asp	¥81	Giy	Glu	Lys	Gly		
	760					765					770						
cct	gag	ggs	gee	est	SSS	aag	gat	ggt	888	cgs	ggc	etg	aca	122	scc	2527	
Pro	Gla	Gly	Als	Pro	Giy	Lys	Asp	Giy	Gly	Arg	@ly	Leu	Mr	@ly	Pro		
775					780					785					790		

att	ggo	866	cat:	sgo	008	got	ggt	gst	aac	ggo	gag	aag	888	888	gtt		2575
110	Gly	pro	Pro	@ly	₽r⊚	Ala	Gly	Ala	Aan	8ly	Glu	Lys	Gly	@lu	Val		
				795					800					805			
888	cct	ect	ggt	cot	gca	ggs	ast	gst	ggt	sct	egt	ggc	got	cog	ggt	٠,	2623
Gly	Pro	Pro	Gly	Pro	Ala	Gly	Ser	Als	Siy	A.ia	Arg	Sly	Ala	Pro	Sly		
			810					815					820				
288	igo	222	888	act	ssc	000	ccc	888	sos	gog	gga	ttt	get	888	cat	2	2871
@fu	Årz	&ly	ទីខែ	The	Gly	Pro	Pro	Gly	Pro	Ala	Gly	Phs	Alæ	Giy	Pro	,	
		825					830					835					
cot	eet	gut	gst	ggo	cag	cet	aee	gcc	asg	ggt	gag	caa	ggs	gag	gcc		2719
PY-00	@ y	Als	Asp	Giy	Gin	Pro	Sly	EIA	Lys	Sly	មីខែ	Gin	Siy	8៤	Ala		
	840					845					850						
																è.,	ŧ
880	CSS	232	880	gst	got	ggt	800	set	ggt	cci	csg	ggc	ccc	tet	ggs		2767
63y	Sin	Lys	Sly	Asp	A) a	Gly	Als	Pro	Siy	Pro	Gin	Gly	Pro	Ser	Sly		
855					860					865					870		
gca	cet	888	gož:	cag	igg	eet	sot	888	gtg	sct	ggt	cct	388	888	800		2815
Ala	Pro	Gly	Pro	@In	Sly	Pro	Thr	Gly	Val	Thr	Gly	Pro	Lys	Gly	Als		
				875					880					885			
osa	ins	gog	GBB	222	000	SOS	682	800	act	gga	ttc	oct	888	got	got		2863
Arg	Gly	Als	Gin	Gly	Pro	Pro	Gly	Ala	Ner	Sly	Phe	Pro	&ly	Ala	Ala		
			890					895					900				-
gge	age	gtt	gga	888	cca	ggc	tcc	sat	ggc	286	oct	888	000	cot	ggt	•	2911
Sly	Arg	Val	űly	Pro	Pro	Gly	Ser	Aan	Gly	Asn	Pro	Gly	Pro	Pro	0 y		
		905					910					915					
			ect														2959
Pro		Sly	Pro	Ser	Gly	Lys	Asp	Siy	Pro	Lys	@ly	A a	Arg	(\$1 y	Asp		
	920					925					930						

Ser	· Gly											Gaa : Gin (>	3007
935	ĵ				940					945					950		
884	000	cot	ggc	geg	885	gga	gæg	oot	gga	gst	gac	ggt (300	tet	881	ø	3055
Gly	° Pro	Pro	Sly	61u 955	Lys	@ly	នាំន	Pro		Asp	Asp	Gly i			Gly		
				26/2/5					960					965			
												cag s					3103
A18	: 6 3.0		Pro 970	Pro	Sly	Pro		01y 975	Leu	Als	Gly	Gin /	irg 180	Giy	He		
								~ . ~				~	.00.00			2	
												cot g					3151
4625	O:13	985	rso	en y	63 533		990 990	is s (ii	w.g	es y		Pro 6 995	ily I	Leu	Pro		
																¥	i
	ecs Pro				ece Pro					t go y Al			a 33				3196
	1000		396 E.St.	18 (16	1112	100		9 931	88 NAS	9 .98.1 9	a sr 10		y A	183. 3	er er		
_			E.		į.												
	gac Asp				ost Pro					t oc y Pn			o oi Y La				3241
	1015					1020					10		ge som	ene s	321		
eset	ect	ere s	అచాన	.avaa	000	202	avava.		00 20 000					. i			et ann et an
	Pro									s agi y Sei			t go y Al				3286
	1030					1038	ž				10	\$ 0					
ggc	ccc	oct	220	888	sat	226 226	ent	· sassa	e or	a oti	: 36.86 C	(gg	h ave	ىنى ئۇي	eres	4	3331
												·				8	363 G S
	1048					1050)				100	is					
ggt	<u> </u>	act	ggt	gat	ste	222	get	_ ඉප්	t ge	3 32000	taa e	esi	n beta	g es	estr	sign.	376
	Siu															÷	and is pig.
									,	,				554 KC 5	· 49		

	tcc Ser 1075	Pro			ggt Gly 1980	Pro			Gly			3421
	888 Glu 1090	Als			880 Gly 1095	Pro			Gly	get Als	-8	3466
	scc Als 1105	Arg				Pro			Gly	ass Lys	e N	3511
	888 Siu 1120				ggc Sly 1125				Sly			3556
	tto Phe 1135										**	3601
	gac Asp 1159											3646
61y	cci Pro 1165			Val	88t Siy 1170		Gly	Lys				3691
Sly	stc e 1180			ile				Pro				3736
Gly	293 Giu 1195			Ala				Asn				3781

SST	oot	cca	881	. 000	oct	880	cot	880	ato	880	stg	toc) <u>(5</u> 00	ttt		3826
Giy	Pro	Pro	Gly	Pro	pro	Gly	pro	01y	110	Авр	Met	Ser	· Als	Phs		
	1210	l				1215					1220)			•	
get	880	tts	ggo	- 00g	853	£88	888	880	000	gao	ccc	ots	088	tec		3871
Ala	Gly	Leo	⊗ly	Pro	årg	: ឱ រប	Lys	@ly	Pro	Asp	Pro	Læ0	: Øin	Tyr		
	1225					1230	;				1235	i				
atş	cee	goo	gac	CSS	ges	gcc	ggt	880	cts	aga	csg	cat	880	202	v	3918
Wet	Arg	Als	Asp	Gin	Als	Ala	@ly	Siy	Leu	Ārg	Gin	His	Asp	Als		
	1240					1248					1260	:				
gsg	gtg	gat	800	808	ctc	asg	tec	cts	886	830	cag	att	888	880		3961
618	¥s!	Asp	Ala	Ter	Leu	Lys	Sar	Leu	Asn	Asn	Gla	i ie	61s	Ser		
	1255					1260					1265					
															٠. ٠	ŝ
atc	cge	386	coc	888	880	tcc	ege	888	880	oct	gct	cgc	*GC	tgo		4006
He	Arg	Ser	Pro	ថាដែ	Giy	Sør	AFE	Lys	Asn	Pro	Ala	Arg	Thr	Cys		
8	1270					1275					1280					
888	gac	ots	888	ožo	igo	cae	cet	gæg	tes	888	agt	888	sac	tac		4051
ÅFŞ	Asp	Leu	Lys	Less	Cys	His	Pro	Glu	Trp	Lys	Ser	Sly	Asp	Tyr		
	1285					1290					1295					
tgg	att	880	000	880	caa	ggc	tgo	800	ttg	830	goc	atg	288	ght		4096
Trp	lle	Asp	500	Aan	Gln	Gly	Cys	Thr	Leu	Asp	&f&	Net.	Lys	Vai		
	1300					1308					1310					
tte	180	88C	atg	363	æct	880	282	sot	tgc	gtc	tac	000	sat	CCS		414%
Phe	Cys	Asn	Mot	មិន	Thr	Şiy	610	Mr	0ys	Val	Tyr	Pro	Asn	Pro		
	1315					1320					1325					
808	880	gtt	000	322	aag	886	tgg	tee	agc	agc	aag	880	aug	gag		4186
Als	Àsn	Va i	Pro	Lys	Lys	Asn	Trp	Trp	Ser	Ser	Lys.	Ser	Ļys	€1⊎		
	1330					1335					1340					

888	888	680	atc	*88	: 888	888	<u>g</u> 88	800	ato	388	ggt	880	i tti	cet		4231
Lys	i.ys	#I s	: Nie	Terp	Phe	Siy	Ø19	Thr	· ile	Asn	€ @Ty	űlly	Phe	: Nis		
	1345	ķ				1350	j		4		1353	Š				
tto	880	tet	. gg8	gat	063	88%	otg	got	000	880	act	300	880	gto		4276
Phe	Ser	Tyr	· @ly	Asp	Asp	Asn	6.80	Ala	pro	Asn	Thr	Ala	. Asc	ya!		
	1360					1365	į				1370)				
cas	aig	800	tts	cta	cgc	otg	atg	tee	acg	888	ggg	ton	: 088	asc		4321
@ln	Met	Thr	Phe	Lou	Arg	Leu	Leu	Sar	The	Glu	Gly	Ser	Gin	Asn		*.
	1375					1380	3				1385					
ate	800	tac	cac	tgc	aag	**6	age	att	gcc	tat	cig	880	888	. gca		4366
lie	The					Asn								•		
	1390					1398					1400	:				
															e v	
get	ggc	880	oto	zag	322	gcc	ote	oto	ato	CSE	ggc	toc	aat	gac	5/ %	4411
Alæ	Gly													Asp		
	1405					1410					1415			ì		
۰																
gtg	808	ato	ogg	gca	gag.	880	ast	880	388	tto	acg	tac	sot	gog		4456
¥æ!						Gly										
	1420					1425					1430	•				
ctg	888	gat	ssc	tgo	acg.	888	cat	800	ggt	888	tee	880	888	act:		4501
Leu						Lys							Lys			
	1435					1440			*	Ť	1445			,-		
gtt	ato	888	tac	ogg	tca	cag	aag	800	tca	C&C.	oto	000	ate	att		4546
	ile															
	1450			••		1455	•		•		1460					
gac	att	gos	ccc	ats	886	ata	ers	222	cee	282	nse -	233	***	ggt		4591
	118															-messat is
	1465	_				1470					1475	യംഗപ	F 6382	يۇ دىدىس		
						2 16.40					* A 4 44					

sts sac ata 800 cos sto tso tto tig tas asaccigaac :	xagasscaa	4641
Val Asp lie Gly Pro Val Cys Phe Leu	,	
1480 1485		
casaatoogi igoasaocca aaggacccaa giaciiicca aioicagic;	ototaggest,	4701
ctgcactgaa tggctgacct gacotgatgi coaticatco caccototca	cagtioggac	4761
tititotocco tetetticia agagacetsa actgggeaga cigoassata	aastotoggt	4821
sticiatita itiatistoi tootgiaasa ootioggato aassoagass	caggasacta	4681
	e .	
actsstatga gtcamatgoc ocotgagiga ctgoccceag occaggocag	asgacetece	4941
ttoassisso sasossagga acigigigis isoiacacaa iggigotati	cigigicasa	5001
	÷ .	ŝ
caestetgia tittitaasa cateasitga tattaassat gaasagatis		5060

<210> 18

(211) 1487

<212> PRT

description of the complete of the comp

<400> 18

Net Ils Arg Lau Sly Ais Pro Gin Ser Leu Vai Lau Leu Thr Lau Leu 1 5 10 15

Val Ala Ala Vai Leu Arg Cys Gin Gly Gin Asp Vai Gin Gly Ala Giy
20 25 30

Ser Cys Ysi 6in Asp 6iy 6in Arg Tyr Asn Asp Lys Asp Vel Trp Lys 35 40 45 Pro Giu Pro Cys Arg lie Cys Val Cys Asp Thr Gly Thr Val Leu Cys 50 55 60

Asp Asp lie lie Cys Giu Asp Val Lys Asp Cys Lew Ser Pro Giu lie 65 70 75 80

Pro Phe Siy Siu Cys Cys Pro Iie Cys Pro Thr Asp Leu Als Thr Ais 85 90 95

Ser Siy Gin Pro Giy Pro Lys Siy Sin Lys Siy Siu Pro Siy Asp iie 180 105 110

Lys Asp lie Vai Gly Pro Lys Gly Pro Pro Gly Pro Gln Gly Pro Ala 115 120 125

Giy Giu Gin Giy Pro Arg Giy Asp Arg Giy Asp Lys Giy Lys Giy 130 135 140

Ala Pro Siy Pro Arg Siy Arg Asp Siy Sis Pro Siy Thr Pro Siy Asn 145 150 155 160

Pro Siy Pro Pro Siy Pro Pro Siy Pro Pro Giy Pro Pro Giy Lew Siy
165 170 175

Gly Asn Phs Als Ala Gin Met Ala Gly Gly Phe Asp Giu Lys Ala Gly 180 185 190 Giy Aia Gin Leu Giy Val Met Gin Gly Pro Met Gly Pro Met Gly Pro 195 200 205

Arg Siy Pro Pro Siy Pro Ala Siy Ais Pro Siy Pro Sin Siy Pha Sin 210 215 220

Giy Asn Pro Sly Giu Pro Giy Giu Pro Gly Val Ser Gly Pro Met Gly 225 235 240

Pro Arg Gly Pro Pro Gly Pro Pro Gly Lys Pro Gly Aso Asp Gly Glo 245 250 255

Aia Giy Lya Pro Giy Lya Aia Giy Giu Arg Giy Pro Pro Giy Pro Gia - 200 265 270

Sly Als Arg Gly Phs Pro Gly Thr Pro Gly Leu Pro Gly Val Lys Gly 275 280 285

His Arg Sly Tyr Pro Gly Esu Asp Gly Ala Eys Sly Glu Ala Sly Ala 290 295 300

Pro Gly Vai Lys Gly Giu Ser Gly Sar Pro Gly Giu Asm Gly Ser Pro 305 - 319 - 315 - 320

Gly Pro Nat Gly Pro Arg Gly Leu Pro Gly Gla Arg Gly Arg Thr Gly 325 330 335 Pro Aia Siy Ala Aia Siy Ala Arg Siy Asn Asp Siy Gin Pro Siy Pro 340 345 350

Als Sly Pro Pro Gly Pro Val Gly Pro Als Gly Gly Pro Gly Pro Pro 365 380 365

Giy Ais Pro Gly Ala Lys Giy Siu Ala Giy Pro Thr Giy Ala Arg Giy 370 375 380

Pro Giu Siy Ala Gin Giy Pro Arg Giy Siu Pro Giy The Pro Giy Ser 385 390 395 400 ...

Pro Siy Pro Ala Siy Ala Ser Giy Aan Pro Giy Thy Asp Giy IIa Pro 405 410 415

Giy Ais Lys Gly Ser Ais Giy Ais Pro Gly | I e Ais Gly Aia Pro Gly | 420 425 430

Pies Pro Gly Pro Arg Gly Pro Pro Gly Pro Gln Gly Ala The Gly Pro 435 440 445

Leu Giy Pro Lys Sly Sin Thr Gly Giu Pro Giy He Alz Giy Phe Lys 450 455 460

Gly Glu Gin Gly Pro Lys Gly Glu Pro Gly Pro Als Gly Pro Gln Gly
485 470 475 480

Ala Pro Gly Pro Ala Sly Slu Glu Gly Lys Arg Gly Ala Arg Gly Slu 485 490 495

Pro Gly Sly Val Gly Pro lle Sly Pro Pro Sly Glu Arg Sly Ala Pro
500 505 510

Giy Asn Arg Giy Fine Pro Siy Gin Asp Siy Les Ale Siy Pro Lys Siy 515 520 525

Als Pro Siy Siu Arg Giy Pro Ser Siy Leu Ala Siy Pro Lya Siy Ala 530 535 540

Asn Gly Asp Pro Gly Arg Pro Gly Glu Pro Gly Leu Pro Gly Ala Arg 545 550 555 560

Siy Leu Thr Siy Arg Pro Giy Asp Ala Giy Pro Sin Giy Lya Yai Siy 565 570 575

Pro Ser Giy Ala Pro Siy Siu Asp Giy Arg Pro Giy Pro Pro Giy Pro 580 585 599

Sto Giy Als Arg Giy Gin Pro Gly Vai Mot Gly Phe Pro Giy Pro Lys 595 600 605

Giy Als Asn Gly Slu Pro Sly Lys Ala Sly Giu Lys Sly Less Pro Gly 616 620 Ais Pro Giy Leu Arg Giy Leu Pro Giy Lya Asp Siy Giu Thr Siy Ais 625 630 635 640

Ala Siy Pro Pro Giy Pro Ala Siy Pro Ala Siy Siu Ars Siy Siu Gin 645 650 656

Giy Ala Pro Siy Pro Ser Gly Phe Gin Gly Lew Pro Gly Pro Pro Gly 666 670

Pro Pro Cly Giu Giy Giy Lys Pro Giy Asp Sin Giy Val Pro Giy Giu 675 685

Als Gly Als Pro Sly Less Val Gly Pro Arg Gly Glu Arg Gly Phe Pro 690 695 700

Giy Glu Arg Giy Sar Pro Giy Aia Gin Gly Leu Gin Gly Pro Arg Gly 705 716 715 720

Leu Pro Giy Thr Pro Giy Thr Asp Gly Pro Lys Giy Ais Ser Gly Pro
725 730 736

Ala Siy Pro Pro Giy Aia Gin Gly Pro Pro Giy Leo Gin Giy Met Pro 740 745 750

Siy Siu Arg Siy Ala Ala Siy IIa Ala Siy Pro Lys Siy Asp Arg Siy 755 760 765 Asp Val Siy Giu Lys Siy Pro Siu Siy Ais Pro Siy Lys Asp Siy Siy 770 775 780

Arg Siy Lau Thr Siy Pro He Siy Pro Pro Siy Pro Ala Siy Aia Ass 785 790 795 800

Giy Giu Lys Giy Giu Vai Giy Pro Pro Siy Pro Ala Siy Ser Ala Siy 805 - 810 - 815

Als Arg Giy Ala Pro Giy Siu Arg Giy Giu Thr Giy Pro Pro Siy Pro 820 825 830

Als Gly Phs Als Gly Pro Pro Gly Als Asp Gly Glo Pro Gly Als Lys 835 840 845

Giy Glu Gin Giy Glu Ais Giy Gin Lys Sly Asp Ais Gly Ais Pro Gly 850 855 860

Pro Sin Gly Pro Ser Gly Ala Pro Gly Pro Gln Gly Pro The Gly Val 865 870 875 880

The Gly Pro Lys Giy Ala Arg Gly Ala Glo Gly Pro Pro Gly Ala The 885 890 885

Siy Phe Pro Gly Ala Ala Siy Arg Val Siy Pro Pro Gly Ser Asn Gly 900 935 910 Asn Pro Giy Pro Pro Gly Pro Pro Giy Pro Ser Gly Lys Asp Gly Pro 915 920 925

Lys Gly Ala Arg Gly Asp Ser Gly Pro Pro Gly Arg Ala Gly Glu Pro 930 935 940

Giy Leu Gin Giy Pro Ais Giy Pro Pro Giy Giu Lys Siy Giu Pro Giy 945 950 955 960

Asp Asp Gly Pro Ser Gly Ala Glo Gly Pro Pro Gly Pro Gla Gly Leu 965 970 975

Aia Siy Sin Arg Siy ils Vai Gly Lew Pro Siy Gin Arg Siy Glu Arg 880 985 985

Siy Phe Pro Gly Law Pro Gly Pro Ser Gly Glu Pro Gly Lys Sin Gly
995 1000 1005

Ala Pro Gly Ala Ser Gly Asp Arg Gly Pro Pro Gly Pro Val Gly 1010 1015 1020

Pro Pro Giy Lau Thr Giy Pro Ala Siy Giu Pro Gly Arg Giu Siy 1025 1030 1035

Ser Pro Sly Ala Asp Sly Pro Pro Gly Arg Asp Sly Ala Ala Sly 1040 1045 1050 Val Lys Giy Asp Arg Siy Giu Thr Giy Aia Val Giy Aia Pro Giy 1055 1060 1065

Als Pro Gly Pro Pro Gly Ser Pro Gly Pro Ala Gly Pro Thr Gly 1076 1075 1080

Lys Sin Siy Asp Arg Siy Siu Ala Siy Ala Sin Siy Pro Met Siy 1085 1090 1098

Pro Ser Gly Pro Ais Gly Ala Arg Gly He Gla Gly Pro Gla Gly 1100 1100 1100

Pro Arg Siy Asp Lys Siy Six Ais Siy Six Pro Giy Six Arg Giy 1115 1120 1125

Leu Lys Gly Mis Arg Gly Pha Thr Gly Leu Sin Siy Leu Pro Siy 1130 1135 1140

Pro Pro Giy Pro Ser Siy Asp Gin Siy Ala Ser Giy Pro Ala Giy 1145 1150 1165

Pro Ser Gly Pro Arg Gly Pro Pro Gly Pro Val Gly Pro Ser Gly
1160 1165 1170

Lys Asp Siy Ala Asm Siy He Pro Gly Pro He Siy Pro Pro Siy 1175 1180 1185 Pro Arg Siy Arg Ser Siy Giu Thr Siy Pro Ala Siy Pro Pro Siy 1190 : 1195 : 1200 :

Asn Pro Gly Pro Pro Gly Pro Pro Gly Pro Gly Pro Gly ||e | 1295 | 1210 | 1215

Asp Net Ser Ala Phe Ala Giy Leu Giy Pro Arg Gis Lye Giy Pro 1220 1225 1230

Acp Pro Leu Gim Tyr Met Arg Ala Asp Gim Ala Ala Giy Giy Leu 1235 i240 1245

Ars Sin His Asp Ala Slu Val Asp Ala Ter Leu Lys Ser Leu Asn 1250 1255 1260

Asm Gin lie Glu Ser He Arg Ser Pro Siu Gly Ser Arg Lys Asm 1265 1270 1275

Pro Ala Arg Thr Cya Arg Asp Lew Lya Lew Cya His Pro Gla Trp 1280 1285 1280

Lys Ser Siy Asp Tyr Trp He Asp Pro Asn Gin Gly Cys Thr Leu 1295 1300 1305

Asp Ale Met Lye Vai Phe Cys Asn Met Giu Thr Gly Giu Thr Gye 1310 1320 Val Tyr Pro Asn Pro Ala Asn Val Pro Lys Lys Asn Trp Trp Ser 1325 1330 1335

Ser Lys Ser Lys Glu Lys Lys His He Trp Phe Gly Giu Thr He 1340 1345 1350

Ash Gly Gly Phe His Phe Ser Tyr Gly Asp Asp Ash Leu Ala Pro 1355 1360 1365

Asn Thr Ala Aan Val Sin Met Thr Phe Lew Arg Lew Lew Ser Thr 1370 1375 1380

Giu Giy Ser Gin Ash He Thr Tyr His Cys Lys Ash Ser He Als 1385 1390 1395

Tyr Less Asp Glu Ais Ais Gly Asn Less Lys Lys Als Leu Less IIe 1400 1400 1410

Gin Gly Ser Asn Asp Val Gio Tie Arg Ala Glu Gly Asn Ser Arg 1415 1420 1425

Pho Thr Tyr Thr Alm Lou Lys Asp Gly Cys Thr Lys His Thr Gly
1430 1435 1440

Lys Trp Gly Lys Thr Vel He Giu Tyr Arg Ser Sin Lys Thr Ser 1455 1450 1455 Arg Leu Pro IIe iie Asp Iie Aie Pro Met Asp Iie Gly Gly Pro 1460 1465 1470

Giu Gin Giu Phe Gly Vai Asp | 11% Gly Pro Val Cys | Phe Less 1475 | 1480 | 1495

(210) 19

(211) 7137

(212) DNA

(213) Homo sapiens

⟨220⟩

<221> cps

<222> (61)...(7011)

(400) 19

ossocassis isisseets assittits asassesst coastitic massignet 60

atg acc set its etc tag git tto gtg act sig agg gtc atc set gca 108 Met Thr Thr Lew Lew Trp Val Phe Vai Thr Lew Arg Vai lie Thr Ais 1 5 iO 15

got gio act sta gas act toa gas cat gas aan tog etg agt gio ago 156 Ala Val Thr Val Glu Thr Ser Asp His Asp Asn Ser Leu Ser Val Sar 20 25 30

ato occ cas cog too ocg cig agg gto oto cig ggg acc too cic acc 204

He Pro Gin Pro Ser Pro Leu Arg Vai Leu Leu Gly Thr Ser Leu Thr

35 40 45

ate occ tgc tat the ate gad occ sig sac oct gig ace acc god oct 252

lie	Pro 50	Öys	Tyr	Pho	- i i e	Asp 55	Pro	Met	His	Pro	Vsi 60	Thr	Thr	`Als	Pro		
	acc Thr															•	300
	aag Lya															*	348
	agt Ser													Ala			396
	ast Ser															3	. 444
	gts Val 130																492
	otg Leu																540
	sca Thr																588
	aac Asn	Ser														ø	636
gaa	gac	SEC	tts	cac	cag	tgt	gac	gcc	880	tee	ctg	got	gac	C8g	act		684

	Siu	Asp	: Sly 195		His	Sin	Cys	Asp 200		üly	Trp	Lev	A1a 205		616	: Thr	8		
			Tyr									Gys				eag Lys	•	732	
		00. K 560					20.800					220				4			
																888		780	
		614	Phe	Pro	Giy		arg	Thr	142	Sly	110	Arg	Asp	Ber	Asn	Glu			
	225					230					235					240			
	acc	tst	sat	gtg	tec	tgo	tto	8 00	gag	888	atg	888	ggt	sas	gto	ttt	9	828	
	Tha	Tyr	Åsp	Va l	Tyr	Cys	Phs	Ala	Glu	Gšu	#2 1	€lu	Giy	G≋u	Val	Phe			
					245					250					255				
	tæt	gca	808	tet	cca	888	38g	tte	800	tto	cag	gas	808	800	ast	sas	а. 1	876	
			Teer																
				260					265					270					
	tgc	cgg	egg	cig	ggt	goc	cee	ctg	800	scc	808	ggc	cac	gtc	tac	ctg		924	
	Cys	Arg	Arg	Lea	@ly	Ala	Arg	Leu	Als	Thr	mr	@ly	Nis.	¥s}	1.AL	Leu			
			275					280					285						
	geo	tsz	\$83.	got	SEC	atg	gac	atg	tgo	386	gcc	ggo	tgg	ctg	goc	gac		972	
	Ala	Trp	@ln	Ala	Oly	Met	Åsp	Met	Cys	Ser	Als	Sly	Trp	Leu	Als	Asp			
		290					295					300							
i	cgc	880	sts	GES	tac	000	stc	tec	aag	800	088	000	886	tgo	ggt	880		1020	
Ĵ	Arg	Ser	¥ai	Arg	Tyr	Pro	H⊛	Ser	Lys	Als	Ars	Pro	Aen	Cys	Sly	Gly			
3	305					310					315					320			
ŝ	880	ota	otg	ggc	gtg	agg	800	sto	tec	sts	est	goc	886	cag	acg	ggo		1068	
,	Asn	Leu	Leu	Gly	Val	Arg	Thr	¥8:1	Tyr	Va!	Sis	Als	Åæn	Gin	Thr	Sly			
					325					330					335				
-8	tac	000	gac	223	tca	too	ogo ·	tec	gac	goc	ato	tgo	tac	aca	ggt	233		1116	

Tyr	' Pro	Asp	Pro 340		Ser	Arg	Tyr	* Asp 345		He	: Gys	Tyr	Thr 350		/ Giu		
															(888		1164
, was	F 15 1525	355	ush	118	\$*T\$3	asu	.asn 360		\$.4388	usy	YSI	365		· 6316	: Slu	o,	
															cts		1212
Asp	11s 370		Val	Gin	Thr	7al 375	Thr	Trp	pro	Asp	Met 380	6lu	Less	Pro	l.eu	,	
oat	ogs	886	ato	act	888	ggt	ខ្លួនន	800	cgs	ggc	agc	gtg	stc	ožž	800	*	1260
Pro 385		Asn	1 is	Thr	615 390	Sly	Slu	Ala	Arz	Sly 395	Ser	Val		Leu	Thar 400		
gts	222	ccs	stc	tto	888	gtc	too	000	agt.	ecc	otg	gaa	ccc	gsg	gag	F.A.	.1308
Val	Lys	Pro	Hø		Glu	Val	Ser	Pro		Pro	Less	Glu	Pro		Glu		
				405					410					415			
ccc	tts	ecg	ttt	800	cet	888	ata	888	gcc	sct	gcc	tto	got	gag	gtt		1356
Pro	Phe	Thur		Ala	Pro	@I#	Hø	Gly	Ala	Ter	Als	Phe		@ u	Val		
			420					425					430				
282	ast	gag	act	gga	gag	80G	800	888	000	tgg	880	ttt	oge	808	cet		1404
610	Ass		Mar	Sly	0lu	Ala	The	Arg	Pro	Trp	Gly	Phe	Pro	The	Pro		
		435					440					445					
ggc	ctg	\$\$C	cct	860	808	808	tto	acc	agt	çag	800	oto	gto	gtg	cag	•	1482
								Thr									
	450					455					460						
gtg	800	sct	gto	oct	888	cag	aeg	cst	ttg	cca.	888	222	gte	gto	tto		1500
	Tar	Ala	Val			មិរិក	Pro	His	Less	Pro	Gly	@ly	Vai	Va I	Phe		
465					479					475					480		
css	tac	080	cog	88a	೮೮೮	800	cgc	tec	tog	otg	800	ttt	gag	888	gca		1548

#1s	i Tyr	- Arş	: Pro	9 8 i y 485		ı Tin	r Ari	g Tyi	- Se: 490		is 17 81	r Phe	: SI;	u 61 49:	ı Ala S	
CSS	Caş	; god	tgo	jao i	ggc	808	888	: 208	e gio	: 811	t god	i tag	co;	. 80)	e ceg	1596
@ls	: Bir	ı Ala	Cys	Pro	Gly	Titar	· Siy	/ Als	ı Vai	114	Al:	3 Ser	Pro	១ ស៊ូនី៖	ı Gin	N.
			500	į				508	š				510)		
ata	CSS	800	800	tac	g28	ges	880	: tat	. 888	Cag	tgt	. 880	goc	880	i tee	1644
															Trp	p.
		515			ē		520	ł				525				
otg	cgg	280	cag	800	gto	888	tac	000	att	gts	880	CGS	ogg	800	008	1692
Leu	ÅFE	Asp	នាំក	The	Væ i	årg	3.84.	Pro	Hs	Val	Ser	pro	Arg	The	Pro	
	530					535					540	ì				
tgo	gtg	ggt	880	aag	gac	agc	880	cca	222	gto	888	800	tat	28C	gts	, +1740
Cys	Va l	⊗ly	Asp	Lys	Asp	Ser	Ser	Pro	⊗ ly	Val	Arg	The	Tyr	Giy	Vail	
545					550					555					560	
csc	೧೯೩	tes	aca	282	scc	tec	gat	gic	tec	tgc	ttt	gts	gac	828	ett	1788
Arg	Pro	Ser	Thr	618	Thr	Tyr	Asp	Val	Tyr	Oys	Phe	Val	Asp	Arg	Les	
				568					570					575		
gag	ere	gag	878	tto	tto	\$50	808	ogo	ott	888	cag	tto	800	ite	cag	1836
Glu	Sly	Slu	Val	Pho	Phe	Ala	Thr	Arg	1.60	Glu	ផ្ស័ក	Pho	Thr	Phe	61n	
			580					585					590			
												gcc				1884
Sla	Als	Leu	Glu	Pho	Cys	Glu	Ser	His	Asn	Als	The	Als	Thr	The	Sly	
		595					600					605				
cas	cte	tac	800	goc	tes	880	sga	ggc	ctg	gac	888	tgc	tat	goo	ggc	1932
		îye .	Ala.	Als	Trp	Ser	Arg	Gly	Leu	Asp	Lys	Cys	Tyr	Ala	Gly	
	610					6 15					620					
tss	otg	800	gsc :	eec :	986	ctc -	ogc	tac	606 i	ato	gto	acc :	coa	sgg	set	1980

Trp 625		Als	Asp	Gly	Ser 630	Leu	Arg	Tyr	Pro	11e		Har	Pro	Arg	Pro 640		
					sag Lya										A.	ч	2028
					ocs Pro											,	2076
					sos Als												2124
					tot Ser											¥20	.2172
					sci Als 710												2220
					act Thr												2268
					588 61u										~	÷	2316
					oct Pro	Thr											2364
gaa	agt	808	5 *8	ssc	cct	tot	goa	act	288	gtg	666	tet	sce	toa	gag		2412

ឱ្យ	Ser 770	Thr	Giu	Gly	Pro	Ser 775	Ala	Tiar	Sis	Val	Pro 780	Ser	Aia	Ser	ន ដែ			
gaa	CCS	tes	ccc	tca	gag	gtg	cca	tte	occ	tea	888	gag	cca	tes	000		2460	
នាម	Pre	Ser	Pro	Ser	8iu	V81	p_{ro}	Phe	Pro	Ser	Glu	@lu	Pro	Ser	Pro	.,		
785					790					795					800			
A												٥			,		anna	
															ctg		2508	
089	Blu	838	នាម	805	rro	aes	8.85.1	ars.	810	8.886	rro	aar	¥83.3	815				
			er.	20270	ς.	A			wsw				*	88 1.68				
tto	866	tca	\$34	gag	cos:	tto	cae	toc	ass	gag	oca	top	GCG	tos	222	4	2556	
	Pro																	
			820					825					830					
gaa	COS	tes	sec	tca	gas	gag	ceg	tst	808	cot	tes	ccc	000	ese	000	к.	2604	
ទីខែ	Pro		Ala	Ser	€!u	Glu	Pro	282	The	Pro	Ser	Pro	Pro	Stu	Pro			
		835					840					845						
		X-					عقد بدعقد				.e a.				,		25 N. SV N.	
	tss Trp																2652	
70.704	850	3 1:32	38 5 38	K.1018	1130	255	80.503	wig	SERVE	ene a since	860	#81 A	કુશ્યાસ	2.8.83	may			
						www					4.0.4							
gto	agt	ggt	\$38C	tto	808	ggc	agt	888	gat	gtt	tea	888	csc	ott	\$80		2700	
Va.I	Ser	Gly	Asp	Pho	Tim	@ly	Ser	Gly	Asp	Va i	Ser	@ly	His	Lau	Asp			
865					870					8 75					880			
tte	egt	222	cag	ctg	tea	888	282	888	808	agt	ega	otg	888	tot	gga		2748	
Phe	Ser	Sly	Gin		Ser	Gly	Asp	Arg		Ser	Sly	Leu	Pro	Ser	Siy			
				885					890					895				
man	er de ce	nan	ok oo oo	denses.	annet:	N4:3	S. 60 S.	Sept. Se	and the second	an Dog	er som	domon	.eo.eo.eo	an aller see	as and		938e	
	ctg Leu																2796	
in months.			900	-0-0AB	interes in the	100 Yor Bull		905	* * * *	4443	w 1 3	NEW!	910 910	K. 5353	1 880			
			~ a.v.					- 40 Apr 1/97					~ 0 W					
gtg	gaa	ast	888	cta	occ	tca	888	gat	gaa	gag	aga	att	SSS	tss	600		2844	

	61s	Ser 915	@ly	Leu	Pro	Ser	61y 920	Asp	G iu	8lu	Arg	ile 925	6lu	Trp	Pro	
ægc	act	cot	808.	gtt	ggt	288	ctg	ccc	tot	888	gct	geg	stc	cts	gag	2892
Ser	Thr	Pro	Thr	Yai	€ly	Slu	i.eu	Pro	Ser	Gly	Ala	Slu	119	Les	Glu ,	
	930					935					940			,		
880	tet:	goo	tot	gga	stt	ese	gat	oto	agt	ggs	ett	eat	tst	gga	gaa	2940
Gly	Ser	Ala	Ser	Sly	¥a!	Gly	Aso	Leu	Ser	ŝly	Leu	Pro	Ser	Sly	G lu	•
945					950					955					960	
	ota															2988
Væ i	Leu	©lu	ihr		Als	Sor	Gly	¥a I		Aap	Leu	Ser	Gly	Leu	Pro	
				965					970					975		
	888															-3036
Ser	Siy	6 iu		Lea	Glu	Thr	Thr	Ala	Pro	Sly	Val	ធីខែ	Asp	Hø	Ser	
			980					985					990			
W.0000.	000	eet	\$ 55 W	er er es	ess	gtt	cta	gag	(acc	act	200	e e e e	i si	e gi	ta gag	200 4
888	66.672	16.50 F	sers:	Willian.				., .							nes Strangs	3084
	Les	Pro				Vsl.	Leu	Gla				Pre			ıl Gie	2004
		Pro 995	Ser	@ly	G lu	Vs)	Leu 1000	Gla	i Tšar	The	Als	100) (G)			20034
Siy	Les	Pro 995 9gc	Ser Ses	@ly : ott	Glu cot	Vsl : tot	Leu 1000 88	Glu s sa	: Thr	Thr t ct	Ais	10(8 8) (i))5 cc s	y Va	ni Gla	3129
Siy	Les sto	Pro 995 ago Ser	Ser Ses	@ly	Glu cot	Vsi tot Ser	Leu 1000 85 Gi	Glu s sa	i Tšar	Thr t ot	Als s gs u Ol	164 8 2 u 1) (i))5 cc s	y Va	ni Gla	
Siy	Les	Pro 995 ago Ser	Ser Ses	@ly : ott	Glu cot	Vsl : tot	Leu 1000 85 Gi	Glu s sa	: Thr	Thr t ot	Ais	164 8 2 u 1) (i))5 cc s	y Va	ni Gla	
Siy gac Asp	sto lie 1010	Pro 995 ago Ser)	Ser See Oly	@ly : ott : Leu : gsc	Siu cet Pro	Vel tot Ser 101	Leu 1000 85 Gi 5	Gla s ga y Gi	: Thr a gt u Ya t cc	Thr t ot Le	Als 88 8 80 4 10 88 5	104 8 2 0 1 20 8 g	o (ji)\$ icc : ihr l	y Va sct s hr A	ni Giu soc Ha	3129
Siy gac Asp	Les sto lie 1010 ggs	Pro 995 885 Ser ; sta Yai	Ser See Oly	@ly : ott : Leu : gsc	Siu cet Pro	Ysi tot Ser 101 asc Ser	Leu 1000 85 61 5	Gla s ga y Gi	: Thr a gt u Ya t cc	Thr t ot Le	Als 8 88 8 81 10 1 88 7 81	104 8 2 0 3 20 8 8	o (ji)\$ icc : ihr l	y Va sct s hr A	ni Giu soc Ha	3129
Sly gac Asp cct Pro	sto i ie i 010 888 01y 1025	Pro 995 ser ta Yal	507 855 614 805 614	Gly : cit : Leu : gsc : Asp	Glu Pro atc	Vsi tot 8er 101 8gc Ser 103	Leu 1000 85 61 5 61	Glu s gs y Gi s ot	: Tim a gi u Ya i cc :: Pr	Thr t ct Le t to	Als 8 88 10 10 2 88 7 81	164 8 2 u 1 20 8 8 8 9	o Gi S Occ : The I	y Ve ect e for A est e	ol Clu soc Ha	3129
Siy gac Asp oct Pro	sto lie 1010 888 81y 1025	Pro 995 ago Ser ta Ya!	Ser SEE Oly Slu Sco	Gly : ott : Leu : gsc : Asp	Glu cot Pro atc	Vs) tet Ser 101 age Ser 103	Leu 1000 85 61 5	Glu e ge y G: ; ot ; et	: Thr a gt u Ya t cc :: Pr	Thr t ot Le t to Se:	Als 8 88 10 10 2 28 7 61 10	164 8 2 10 1 20 8 8 8 9 8 6	gita Sisteman Sistema Sistema Sistema Sistema Sistema Sistema Sistema Sistema Sistema Sistema Sistema Sistema S	y Ve ect e ect e est b	ol Giv Koc Kis ev	3129
Siy gac Asp oct Pro	Les stc lie 1010 888 81y 1025 acc Thr	Pro 995 ago Ser sta Yal sst	Ser SEE Oly Slu Sco	Gly : ott : Leu : gsc : Asp	Glu cot Pro atc	Vsi tot Ser 101 asc Ser 103 gte Vsi	Leu 1000 85 Gi 5 0	Glu e ge y G: ; ot ; et	: Thr a gt u Ya t cc :: Pr	Thr t ot Le t to Se:	8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16% 8 20 8 8 8 9 6 8 5	gita Signal Sign	y Ve ect e ect e est b	ol Giv Koc Kis ev	3129
Siy gac Asp oct Pro	sto lie 1010 888 81y 1025	Pro 995 ago Ser sta Yal sst	Ser SEE Oly Slu Sco	Gly : ott : Leu : gsc : Asp	Glu cot Pro atc	Vs) tet Ser 101 age Ser 103	Leu 1000 85 Gi 5 0	Glu e ge y G: ; ot ; et	: Thr a gt u Ya t cc :: Pr	Thr t ot Le t to Se:	Als 8 88 10 10 2 28 7 61 10	16% 8 20 8 8 8 9 6 8 5	gita Signal Sign	y Ve ect e ect e est b	ol Giv Koc Kis ev	3129

Gly	មីខែ	Val	Leu	(Glo	Ter	Thr	Ăέa	Pro	Gly	(Va)	Øla	Åsp	116	s Ser		
	1055					1060	•				1065					
888	ctt	oct	tot	gga	gaa	gtt	cta	888	acc	get	g00	cet	. 888	ı gta		3309
Gly	Leu	Pro	Ser	Sily	G≩u	Val	1.60	6 i u	The	Ala	Ala	Pro	Silv	. Vai		
	1070					1075					1080		24.18			
						1.00					6.000000					
gsg	gac	ato	agg	222	cii	oct	tet	888	888	gtt	ota	888	860	got		3354
Glu	Asp	116	Ser	Gly	i.#0	pro	Ser	Gly	Gla	Vs!	Lea	G lu	The	Ala	e.	
	1085					1090					1095					*9
											tot		\$38	gtt		3399
Ais	Pro	Sly	Va.	ទីដែ	Asp	ile	Ser	Gly	Leu	850	Ser	Gly	Glu	.Val		
	1100					1105					1110					
cts	gas										886		stt	GC %	1.2	3444
Loui	Giu	N.	Als	A18	Pro	@ly	Vsl	Giy	Asp	1 (*	Ser	@ly	Leu	Pro		
	1115					1120					1125					
*																
tet											gis		280	8 1 0		3489
Ser		Slo	Val	Leu	01u	The	Aia	Als	Pro	Giy	Val	Glu	Asp	110		
	1130					1135					1140					
											got	800	oct	gga		3534
Ser		Leu	mo	Ser	@iy	618	¥81	Leu	§∄µ	The	Als	Ala	Pro	@ly		
	1145					1150					1155					
			k:													
											ZŽŽ.					3579
¥8:		ASD	886	96r	uly		Pro	Ser.	© y	Site	Val	Leu	ធិរិប	Thr		
	1160					1165					1170					
nest.	gcc	eres	30° 20° 500	कारो क	sea er	aras	48 A	80.88 VB	36 9 C 36	الله الله الله الله الله الله الله الله	cst	de sude	***			ಶರಣಕ
											Pro					3624
70 F 70	1175	. t. te	y	s xx x		1180	1139	35501	58 S 30	8688.0		esen:	e i y	48148		
	F 63752					5 1 W.W.					1185					
00 P P	ore or	gas	ane	green's	00000	nnt	400000	grafica.	mes es	meer	stc	ana.	oc server	ند باد د		3.000
\$2.00 pc	ର ଅଣ୍ଡ	the W	aww.	Mrs F	Sections	MAN E	전환학	g; c.a.	Unit.	Sant.	報子会	40.00 C	888	GEE		3669

¥a i	Lso	81	a The	r Als	a Aša	a Pro	Gly	(¥8)	Gii	i Ask) ile	50	r 81	y Leu		
	1190					1198					1208					
cot	tet	883	1 g28	a gitt	: eta	e sag	act	gei	300	cet	ess :	æti	8 88	g gac		3714
						Giu								u Asp		****
	1205					1210					1210		. sa(x)	or 1.25480	`	
											F-968- 80 %					
stc	agc	888	eti e	i ost	: tot	gga	223	ett	නරාන	: 888	: act.	øks:	h anna	e mant		3759
He						Gly									×	6000
	1220					1225					1230					
		.s.									3.32600	•				
888	sta	282	Sac	: ato	Bec	888	ett	atiete fr	tet	- 8787.94 - 1878.94	8794.88	nefet	i oka	s oraco	3	3804
	¥a.l					Gly										JUST
-	1235					1240			900000	w.e.ş	1245		. 10.004	x 2x125		
						350 650					9.52.30	•				
aci	got	266	cot	ees	sta	282	086	atn	ase	20.00	440	phy grity (\$	· Angel	- 1077.02		3849
						Glu									÷.x	> 0000400
	1250				5.44.5	1255		e v .ee	2001	Q. ()	1260		(2003	es i à		
	11100					1000					e etame	•				
e e e e e e e e e e e e e e e e e e e	gtt	ots	935F	ant	ser.	goc	exert	87876	er# or	.002.00	www	مد نائد م		- 20020000		Sene.
	Val					Ala										3894
	1265	20.02.03	30.5 (4)	1.001	271.52	1270	3 3 82	мзу	8.83.3	22/3 KI			9731	nik		
						4 21 3 55					1275					
ntt	cct	400	0.00	eraa	eris &	entra	20704-207	مكاونتدين	en en en	W.S. D.			4			and an an an
	Pro					ota										3939
20,00,00	1280	19169	8813	wes	4.53	Leu 1295	ធនារូ	8.018	8138.	W19:		nsk	V.S. i	មរក		
	5.2350					1280					1290					
ana a	andron.											,				
														800		3984
នេះនា		mar.	en a	LSS	suo.	Ser	DEY	(Elti	¥8:1	1.633		Ilw	The	Ala		
	1295					1300					1305					
						agi										4029
		¥88	Asp	@]@	116	Ser	Gly	Lou	Pro	Ser	Gly	Slu	Val	Leu		
	1310					1315					1320					
888	act	act	\$000	cct	889	gta	gag.	geg .	ato	agc	222	stt	oct	tot		4074

\$ls	Hir	The	^ Ala	e Pro	Gly	V⊗!	Glu	Gla	i He	: Ser	· Giy	Ł.se	s Pro) Ser		
	1326	i				1330)				1338	š				
															:	
888	888	gti	cts	888	300	tot	800	tet	gre	gta	828	gao	ete	: agt		4119
Gly	Glu	Væl	Leu	6 ខ្មែរ	Thr	Ser	Her	Ser	Als	Va:	Gly	Asq	Les	: Ser		
	1340					1345					1350					
888	ott	cet	tot	ggs	888	gas	gtt	ota	838	ett	tot	gtc	: tot	200		4164
Gly	Leu														ĸ	
	1385					1360					1365			*		
			7-													
gta	888	280	ato	agt	888	ett	oot	tot	ggs	888	stt	gta	. <u>688</u> 8	act	;	4209
Val	Stu					Less										
	1370					1375					1380					
tet	800	tot	ggs	ata	gag	gat	sto	agt	222	ctt	oot	tes	223	238		4254
Ser						Asp								Glu	* ,	
	1385					1390					1395		2 .			
ggt	cta	gag	acc	tet	get	tex	gga	gts	gag	gac	oto	SEC	388	ete		4299
@ly	Leu										Less					C.CC.C.G.
	1400					1405	•			e.	1410					
cot	tot	888	222	282	gtt	028	888	att	tet	800	tet	888 888	***	0.0.0.		4344
Pro	Ser					Lea		7								.1.00.1.0
	1415					1420				A 17.1 Sep	1425	20.0		24.3		٠
											1 - 140-00					
830	oto	ægt:	223	ett	cat	tot	<i>8</i> 98	EE8	E88	est	nès	n se	800	#we#		4389
	Leu															*8008
	1430		 , *	****	* * **	1435	our gr	wij	78.7.88	ea o go	1440	88188	11.64	€a.⇔%		
						1-1-0-22					e seciety.					
got	tot	&B.8	27×	ggæ	set.	eraio.	andra.	s:ort	grgs:39	20.00 W	ge gelike	nga yan dir	2000	48. MY 4V		#38.# #
	Ser															4434
	1445	-∞ σ W.	e tal. 3	*** * `\$c		πομ 1450	SCHOOL ST	sani	ભાગ ફુ	8- 68 8	1455	ପତୀ '	m i A.	18 K		
	5 5 E E					s most (a)					র প্রকৃত্তি					
20'23 20'	20.20%·	en trees	0000	100 pt 30	de gasar	economist.	tat	anuores	Section		AND 200 AND		a said	*****		a 420020.
Sec. Co.	taz	10.000	40B	શક્યાં દ	uU U	الله بعندين	Print's	888	SUI.	<i>\$500</i>	880	GEC	133	EEE		4479

WO 2005/012512 157/206 PCT/JP2004/011401

Glu	01y 1460	Leu	Glu	Thr	Ser	Ala 1465	Ser	Gly	Ala	6iu	Asp 1470	Leu	Ser	Gly		
ttg	cet	tet	ggs	888	888	Sac	ttg	818	888	tea	gct	tet	gga	gac		4524
Leu	Pro	Ser	Sty	Lys	Glu	Asp	Leu	¥a1	Gly	Ser	Ala	Sør	Giy	Asp		
	1475					1480					1485					
ttg	gac	ttg	880	888	etg	cot	tot	889	808	cts	gga	agt	888	©88		4569
Leu	Asp	Leu	Sly	Lys	Leu		Ser	Gly	Thr	1.66	-	Ser	@ly	Gin	.5	
	1490					1495					1500					
es e fr	cca	ಗಳು	ana.	8.0%	erer?	ott	en en en	di sede	6000000	***	sens.	nosodo	.0000.00	S. 10. S	и В	4614
40						Leu										221:4
X11.0 MA	1505	COPIC	0 0 00	50000	∞13:	1510	r c se	conce	****	8: 3 BBSK	1515	24.5 Z	586 3 S.R.	. 3 37 1		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										, ~ , ~					
tet	SSS	gtg	886	stt	88X	agt	880	008	ogo	tot	880	ots	oat	880	, š	4659
Ser	Gly	٧s١	Åsp	Leu	Sly	Ser	Giy	Pro	pro	Ser	Gly	Leu	pro	Asp		
	1520					1525					1530					
ų																
tit	agt	333	ott	cca	tet	888	tto	cca	*ot	gtt	tes	ota	gtg	gat	:	4704
Pine	Ser	@ly	Leu	Pro	Ser	Gly	Phe	Pro	Thr	Vsl	Ser	Less	Vas	Asp		
	1535					1540					1545					
××.		x.a							.w					a .		
														stg	ŧ	4749
961	Thr 1550	Leu	A.33 :	បះម	Fig. 8	1555	1335.	ASS	940	1888	A:8 1560	Ser	\$2132	E.BE		
	ssaure					1000					essen					
888	223	ass	223	800	att	ggo	ato	sgt	est	808	ggs	gas	sta	tot	,	1 794
	Sly															
	1565					1570					1575					
888	otg	ccc	toc	igs	gag	ctg	gao	stt	ast	233	888	got	ast	SES	ś	1 839
Giy	i.eu	pro	Ser	Ser	Slu	Løu	Asp	118	Ser	Giy	Arg	Als	Ser	Gly		
	1590					1585					1590					
ata	oct	tca	223	ios.	233	cto	agt	erc Creation	CSS	gca	tot	222	tet	cct	s	1884

Leu	Pro 1595		Gly	mr	Slu	Leu 1600		Sly	Gin	Ala	Ser 1605	-	Ser	Pro	
gst	gto	igs	ess	888	ats	cet	gga	cto	ttt	sst	gto	sgt	£23	cag	4929
Asp	Val	Ser	Sly	8≬u	118	Pro	Sly	Les	Phe	Gly	Val	Ser	Gly	Gin	
	1610					1815					1620				
		,													
cca	tos	888	ttt	cot	gso	act	egt	eee	gsa	808	tot	ggs	gtg	act	4974
pro	Ser	@ly	Phe	Pro	Asp	Thr	Ser	Gly	ថ៖ម	Thr	Ser	Gly	Val	Thr	
	1825					1630					1635				
888	ott	880	888	ctg	tee	tet	gga	cas	ccs	ggt	git	ast	888	288	5019
8lu	Leu	Ser	Gly	Leu	300	Ser	Gly	Gin	Pro	Giy	Val	Ser	Giy.	Glu	
	1640					1645					1650				
808	tet	888	gtt	ott	tst	220	act	agt;	caa	000	ttt	880	sts	act .	5064
Als	Ser	Oly	Val	Leu	*yr	Gly	Thr	Ser	Gìn	Pro	Phe	Gly	118	Thr	
	1655					1660					1665				
gat	etg	ast	888	233	808	tct	ess	gtc	cst	gat	oto	æt	888	cag	5109
Asp	Leo	Ser	@ly	\$1s	Tier	Ser	Giy	Val	gro	Asp	Leu	Ser	Giy	Gln	
	1670					1675					1680				
cct	tea	222	tita	cca	888	itc	sgt	888	803	808	tea	ggz	gto	cct	5154
Pro	Ser	&ly	Leu	Pro	Gly	Phe	Ser	G≬y	Aia	Tier	Ser	Gly	Val	Pro	
	1685					1690					1695				
gac	otg	gtt	tot	ggt	200	80g	ag%	gge	880	ggt	282	tet	tot	CEE	5199
Asp	Lou	Yai	Ser	Sly	Ter	Thr	Ser	@ly	Ser	Gly	\$1u	Ser	Ser	Gly	
	1700					1705					1710				
						egt							sct		5244
lle	The	Pho	Va.i	Asp	The		Læu	¥a:	ű lu			Fra	Thr	Thr	
	1715					1720					1725				
ttt	888	233	gas	888	880	tta	888	tot	sts	833	oto	ast	886	eto	5289

Pho	Lys 1730		@lu	S lu	Gly	Leu 1735		Ser	Val	Siu	Leu 1740		Giy	Lsu		
	toc Ser 1745						Ser				ESE Gly 1755	-		gat A sp	ā	5334
100	agt Ser 1760					888 Siy 1765					agt Ser 1770			acs Thr	**	5379
	cag Sin 1775										880 61y 1785				į	5424
	agt Ser 1790										agc Ser 1800			soc Pro	الم	5469
	888 Gly 1805										851 Ser 1815				3	B514
	tot Ser 1820														i i	5559
	acs Thr 1835														į	5604
	agt Ser 1850														****	i649
tet	888	ttt	ots	880	cta	agt	eee	otg	CSS	too	222	ctg	ata	282	Ş	5694

Same	- 81 w	Obe	i Leav	e Basses	. 3	. Warren	83.5	رم ا	. 03		o de troc	3	. T. S			
58503	°©ly 40es		: m.sta64	r serre	. 178319			Let	1 (03)	1 981			1 11 18	8 68 613		
	1885	,				1870	:				1875	3			v	
						v										
											est					5739
880	Ser		' ©le	Pro	Pro	Sly	ž) iz	Bro	Tyr	3996	Ser	Gly	Asp	Phe	v	
	1880					1885					1890	•				
											gta					5784
Ala	Sec	Tiu	Thr	Asn	Val	Ser	Gly	Glu	Ser	Ser	Val	Ala	₩et	Gly	,	
	1895					1900					1905					
800	sgt	gga	gag	goo	toa	gga	ctt	cca	gaa	get	act	tta	ato	set		5829
m	Ser	Giy	Glu	Ala	Ser	⊗ly	Leu	Pro	Glu	Va i	Thr	Leu	118	Tar		
	1910					1915					1920					
tot	288	tts	gtg	gag	88%	stt	act	<u> </u>	cos	act	*tt	tot	OSE	gas		.5874
Ser											He				\$ 0	
	1925				·	1930					1935					
ota	220	088	888	000	cet	222	808	080	808	ccc	cag	224	+**	W33-95		5919
											ûin					ಪ್ರಾಭ
,	1940					1945	3 5 60	02136	1001	4 (👀	1950	90000	3.116.	20 9 KB		
						0.00.000					e armer.					
Trees	set	erier a	35-35-35	mbo	Prop	***	seize de	er errer	00101.00	and the	as redir	di decine	- an an aide			ಕ್ರಾಂತ ಕ
											agt					5964
105338		usg	mas.	¥.32 (Set.		8148	asy	ភន្	336	Ser	usy	Als	189r		
	1955					1960					1965					
	Ų.	v														
	sts															8009
Pro	Val	Les	Pro	Gly	Ser	Gly	Va i	Glu	Val	868	Ser	Val	Pro	Stu		
	1970					1975					1980					
tet	agc	sgt	888	seg	too	\$50	tet	cct	gea	got	222	tta	888	803		6054
Ser	Ser	Ser	Glu	Thr	Ser	Álá	Tyr	Pro	Stu	Ala	Gly	Phe	Gly	Ala		
	1985					1990					1995				•	
tot	200	800	cot	888	gec	agc	888	§33	sat	tot	zgg	taa	cot	gst		6099
							**					••				

Ser	Ala 2000		Pro	6 1u	i Ala	Ser 2005		Slu	. Авр	Ser	2010 2010		· Pro	: Asp		
	ast Ser 2015	610				gcs Als 2020	Phe					Leu		**	V	6144
	tot Ser 2030	Sly				ago Ser 2035	Giy					Phe		ges Glu	-9	6189
	gag Siu 2045					cca Pro 2050	Slu							acc Thr		6234
	agt Ser 2060					585 616 2065									8.9	: 6279
	sog Thr 2075					sss Ars 2080							ctg Leu			6324
						ggc Gly 2095							ato 11s			\$369
	tot Ser 2105				Gla								-			6414
	gaa Glu 2120				Ser					Ser						8469
cac	aca	gto	gaa	aca	gcc	8 00	toc	cca	aca	gst	got	too	sto	cca		6504

888	Thr	V#1	üiu	Thr	Als	Thr	Ser	Pro	The	Asp	Als	Ser	1100	Pro		
	2135	;				2140	:				2148					
set	tot	ccg	gse	tgg	888	egt	gsa	tea	288	tes	act	ect	ges	eac		6549
Ala	Ser					Arg						•-				
	2150			,	•	2155			•		2160		,	2 code	· i	
						20.00					.000 O 00000					
cas	28g	et:s	*#*	37.7837	ese	ggo	tero	888	50c 50i -57	T sacre	25-20-07	ere e	27140.574	tgt		6594
	Gis					Siy										SOST
,	2165		n Sin		100 7 100	2170		n section i	mark in	3,50	2175		4 t x 60			
	XX X SESSO					50:1-5780					S. 5 .5 45		38		:	
do x x	00,00000	*	Strokense	المن المناسف	20.00.00				Δ		*	٠				Je de las Je
	ege *					cgc						-	gag	. 200		6639
3 3/4	Arg		3,335	rro	asp	Ars	616	inr	11.20	vs!			612	Ang		
	2180					2185					2190			:		
	tgt					tes									:	6684
Ārg	Cys	Arg	Giu	&la	81 %	Ser	His	Leu	Ser	Ser	114	Va l	Thr	Pro		
	2195					3200					2205					
w																
888	282	cag	888	ttt	gto	880	880	aat	gec	088	gac	tac	cag	tgg		6729
€le	Slu	Gin	0lu	Phe	Va !	Asn	Aem	Asn	Als	@ 18	Asp	175	GIss	Trp		
	2210					2215					2220					
ato	ggs	ots	880	880	322	800	atc	888	888	880	tto	ogc	tgg	tos		6774
iie	Sly	Leu	Asn	Asp	Arg	Thr	110	6la	Oly	Åsp	Pho	Arg	Tro	Ser		
	2225					2230				•	2235	_	,			
get	888	080	000	ate	CSS	ttt	282	sac	tæa	080	con	880	688	eet:		6819
	Gly															2012
	2240					2245		. 10.11	o o Bo	535 83	2250	A-MARCE L	200 1 21 6	জ ক % ক		
	.com ru					XXXX - 0.02					**********					
2000 C	880	***	***	gregore	mostic.	gga	200	ara.e.	de poste	gertine.	erik m	gg riffer som	endres.	do so so		6884
	Asn											sig				6864
ning by,	2255	a 25%	e 1.000	ភា(ឃ			usu	4.00	外藻彩	****		27000	118	8 F [3:		
	x 20,000					2260					2265					
10 10 10 10 10 10 10 10 10 10 10 10 10 1	AN 80 11				š					2						
CEC	888	388	ggc	zas	C\$\$	388	383	stt	ccc	160	ast.	tac	680	oto		6909

His Glu Lys Giy Giu Trp Asn Asp Val Pro Cys Asn Tyr His Leu 2270 2278 2280 see tto see igt ama may goo see see ace tas mas ego aga 6954 Pro Phs The Cys Lys Lys Siy The Als The The Tye Lys Arg Arg 2285 2290 2295 ota cag aag ogg ago toa egg cas oot egg agg ago egg egg ag 8999 Leu Gin Lys Arg Ser Ser Arg His Pro Arg Arg Ser Arg Pro Ser 2300 2305 2310 aca soc cac iga saagagotto cassaogoac coasgacgot gagoocasga 7051 Thr Ala His 2315 goolgocage cigacgiese icocaccoas acegietoci cilcitetes cittizica ,7111 isteeggest occattaase eesess 7137 ⟨210⟩ 20 (211) 2316 <212> PST <213> Nomo sapiens <400> 20 Not The The Leu Leu Yep Val Pho Val The Leu Arg Val lie The Ala 3 5 10 15

ils Pro Gin Pro Ser Pro Leu Arg Val Leu Leu Gly Thr Ser Leu Thr

Ala Val Thr Val Glu Thr Sor Asp His Asp Asn Ser Lou Ser Val Ser

30

20

45

lie Pro Cys Tyr Phe lie Asp Pro Met His Pro Val Thr Thr Als Pro 50 55 60

40

Ser Thr Als Pro Leu Ala Pro Arg He Lys Trp Ser Arg Val Ser Lys 55 70 75 80

Giu Lya Giu Vai Val Lau Lau Val Ala Thr Giu Giy Arg Vai Arg Val 85 90 95

Pro Ser Asp Ala Thr Lew Glu Val Glo Ser Lew Arg Ser Aso Asp Ser 115 120 125

Siy Vai Tyr Arg Cys Glu Val Met His Siy lie Glu Asp Ser Glu Ala 130 135 140

The Leu Slu Val Val Val Lys Giy lie Val Phe Nie Tyr Arg Ala lle 145 150 165 166

Ser Thr Arg Tyr Thr Leu Asp Pile Asp Arg Ala Gin Arg Ala Cys Leu 165 170 175

Gin Asn Sor Ais Ile Ile Ale Thr Pro Giu Gin Leu Gin Ale Ale Tyr

185

190

Gis Asp Giy Phe His Gin Cys Asp Ala Giy Trp Les Ala Asp Gin The

Val Ara Tyr Pro IIe His Thr Pro Ara Glu Gly Cys Tyr Gly Asp Lys
210 215 220

Asp Giu Phe Pro Siy Vai Arg Thr Tyr Giy He Arg Asp Thr Ash Giu 225 230 235 240

Tyr Ala The Ser Pro Glu Lys Phe The Pha Sin Siu Ala Ash Glu 260 265 270

Cys Arg Arg Lew Siy Ala Arg Lew Ala Thr Thr Siy His Val Tyr Lew 275 280 285

Ala Trp Sin Ala Gly Met Asp Met Cys Ser Ala Gly Trp Leu Ala Asp 290 295 300

Arg Ser Val Arg Tyr Pro lie Ser Lys Ala Arg Pro Asn Cya Gly Gly 305 315 320

Asn Leu Leu Giy Val Arg Thr Val Tyr Val His Ala Asn Gin Thr Gly

325 330 335

Tyr Pro Asp Pro Ser Ser Arg Tyr Asp Ala lie Cys Tyr Thr Giy Glu 340 345 350

Asp Phe Vai Asp IIs Pro Giu Asa Phe Phe Gly Val Giy Gly Glu Giu 355 380 265

Asp ile Thr Vai Gin Thr Val Thr Trp Pro Asp Met Giu Leu Pro Leu 370 375 380

Vai Lys Pro lie Phe Glu Vai Ser Pro Ser Pro Leu Glu Pro Glu Glu
405 410 415

Pro Pha Thr Pha Ala Pro Glo lie Gly Ala Thr Ala Phe Ala Glu Val
420 425 430

Gia Asn Gia The Gly Gia Aia The Arg Pro Trp Gly Pho Pro The Pro 435 440 445

Gly Less Gly Pro Ala Thr Ala Phe Thr Ser Glu Asp Less Val Val Gln
450 455 460

Val Thr Ala Val Pro Gly Gin Pro His Lau Pro Gly Gly Val Val Phe

465 470 475 480

His Tyr Arg Pro Gly Pro Thr Arg Tyr Ser Leu Thr Phe Glu Glu Als
485 490 495

Sin Gin Ala Cys Pro Siy Thr Siy Ala Val lie Ala Ser Pro Gie Sin 500 505 510

Leu Gin Ala Ala Tyr Siu Ala Siy Tyr Giu Sin Cya Asp Ala Giy Trp 515 520 525

Less Arg Assp Sin Thr Vai Arg Tyr Pro lie Vai Ser Pro Arg Thr Pro 1530 535 540

Cys Val Gly Asp Lys Asp Ser Ser Pro Gly Val Arg Thr Tyr Gly Val 545 550 555 560

Arg Pro Ser Thr Glu Thr Tyr Asp Val Tyr Cys Phe Vai Asp Arg Leu 565 570 575

Giu Sly Giu Vai Phe Phe Ala Thr Arg Leu Giu Gin Phe Thr Phe Gla 580 585 590

Giu Als Leu Giu Phe Cye Gie Ser His Ase Ale Thr Ale Thr The Gly
595 600 605

Gin Leu Tyr Ais Ala Trp Ser Arg Giy Leu Asp Lys Cys Tyr Ais Giy

610 615 620

Trp Leu Als Asp Siy Ser Leu Arg Tyr Pro lie Val Thr Pro Arg Pro 825 630 635 640

Ala Cya Giy Giy Aap Lya Pro Giy Vai Arg Thr Vai Tyr Leu Tyr Pro 645 650 655

Asn Gin Thr Gly Leu Pro Asp Pro Leu Ser Arg His His Ala Phe Cys 860 665 670

Phe Arg Gly lle Ser Ala Val Pro Ser Pro Gly Glu Glu Glu Gly Gly . . 675 680 685

The Pro The See Pro See Giy Val Giu Siu Trp lie Vai The Sia Val
696 695 700

Vai Pro Sly Vai Als Ala Vai Pro Vai Giu Siu Siu Thr Aia Vai 705 716 715 720

Pro Ser Gly Giu Thr Thr Ala He Leu Giu Phe Thr Thr Glu Pro Giu
725 730 736

Asn Sin Thr Siu Trp Siu Pro Ala Tyr Thr Pro Val Siy Thr Ser Pro
740 745 750

Leu Pro Gly He Leu Pro Thr Trp Pro Pro Thr Gly Ala Glu Thr Gla

785 760 765

Giu Ser Thr Giu Gly Pro Ser Ala Thr Siu Vai Pro Ser Ala Ser Siu 770 775 760

Sis Pro Ser Pro Ser Giu Vel Pro Phe Pro Ser Sis Siu Pro Ser Pro 785 790 795 800

Ser Six Six Pro Phs Pro Ser Val Arg Pro Phe Pro Ser Val Six Leo 805 810 815

Phe Pro Ser Glu Giu Pro Phe Pro Ser Lys Glu Pro Ser Pro Ser Glu . . . 820 825 830

Giu Pro Ser Aia Ser Giu Giu Pro Tyr Thr Pro Ser Pro Pro Giu Pro 835 840 845

Ser Trp The Sis Leu Pro Ser Ser Gly Giu Sis Ser Gly Ala Pro Asp 850 855 860

Val Sor Gly Asp Phe Thr Gly Ser Gly Asp Val Ser Gly Hie Les Asp 865 870 876 880

Pho Sor Sly Gin Leu Ser Giy Asp Arg Ala Sor Giy Leu Pro Ser Giy 885 890 895

Asp Lou Asp Ser Ser Gly Lew Thr Ser Thr Val Gly Ser Gly Lew Thr

900 906 910

Vsi Giu Ser Siy Lau Pro Ser Giy Asp Giu Siu Arg ila Giu Trp Pro 915 920 925

Ser The Pro The Val Gly Six Leu Pro Ser Siy Aia Gly 11s Leu Gly 930 935 940

Giy Ser Ala Ser Giy Val Giy Asp Leu Ser Giy Leu Pro Ser Giy Giu 945 950 955 980

Val Leu Giu Thr Ser Ala Ser Giy Val Siy Aap Leu Ser Siy Leu Pro 🗼 , 965 970 975

Ser Giy Giu Val Leu Giu Thr Thr Ale Pro Giy Val Giu Asp lle Ser 980 985 980

Oly Leu Pro Ser Sly Giu Val Leu Giu Thr Thr Ala Pro Gly Val Giu 995 1000 1005

Asp ile Ser Gly Leu Pro Ser Gly Glu Val Leu Glu Thr Thr Ala 1010 1020

Pro Gly Val Glu Asp Ile Ser Gly Leu Pro Ser Gly Glu Val Leu 1025 1030 1035

Giu Thr Thr Ala Pro Gly Val Giu Asp He Ser Gly Lau Pro Ser

1040 1045 1050

Giy Giu Vei Leu Glu Thr Thr Ala Pro Giy Val Giu Aap lie Ser 1055 1060 1065

Giy Leu Pro Ser Giy Giu Vai Leu Giu Thr Ala Ala Pro Giy Val 1070 1075 1080

Siu Asp I le Ser Giy Leu Pro Ser Siy Sis Vai Leu Giu Thr Aia 1085 1090 1095

Ale Pro Gly Val Giu Asp ile Ser Gly Leu Pro Ser Gly Glu Val , . 1100 1105 1110

Leu Glu Thr Ala Ala Pro Gly Val Glu Asp IIe Ser Gly Leu Pro 1115 1120 1125

Ser Siy Siu Val Leu Slu Thr Ala Ala Pro Siy Val Siu Asp ile 1130 - 1135 - 1140

Ser Siy Leu Pro Ser Siy Siu Val Leu Siu Thr Ala Ala Pro Giy 1145 1150 1155

Val Giu Asp ile Ser Giy Leu Pro Ser Siy Giu Val Leu Giu Thr 1160 1165 1170

Ala Ala Pro Gly Val Giu Asp lie Ser Gly Leu Pro Ser Gly Giu

11375 1130 1135

Val Leu Giu Thr Ala Ala Pro Siy Val Siu Asp ile Ser Siy Leu 1190 1195 1200

Pro Ser Gly Sie Vel Leu Giu Thr Ala Ala Pro Gly Val Gle Asp 1205 1216

lis Ser Siy Leu Pro Ser Siy Giu Val Leu Gia Thr Ala Ala Pro 1220 1225 1230

The Ala Ala Pro Gly Val Glu Amp lie Ser Sly Leu Pro Ser Sly
1250 1255 1260

Gis Vai Les Sis Thr Aia Aia Pro Siy Vai Sis Asp lie Ser Giy 1265 1270 1275

Leu Pro Ser Gly Glu Val Leu Glu Thr Thr Ala Pro Gly Val Glu 1280 1285 1290

6iu lle Ser Giy Leu Pro Ser Giy Giu Vel Leu Giu Thr Thr Ais 1295 1300 1305

Pro Gly Val Asp Glu lie Ser Gly Lou Pro Ser Gly Glu Val Leu

1310 1315 1320

Giu Thr Thr Ala Pro Siy Vai Giu Siu lie Ser Siy Leu Pro Ser 1325 1330 1335

Sly Siu Val Leu Slu Thr Ser Thr Ser Ala Vai Gly Asp Leu Ser 1340 1345 1350

Giy Less Pro Ser Giy Giy Glu Val Less Giu 11e Ser Val Ser Giy 1355 1360 1365

Ser Als Ser Gly I le Glu Asp Val Ser Glu Leu Pro Ser Gly Glu 1385 1390 1395

Giy Lew Giu The Ser Ala Ser Gly Vel Giu Asp Lew Ser Arg Lew 1400 1400 1410

Pro Ser Gly Glu Siu Val Leu Glu ile Ser Ala Ser Gly Phe Gly 1415 1420 1425

Asp Leu Ser Giy Val Pro Ser Siy Giy Siu Siy Leu Giu Ter Ser 1430 1435 1440

Als Ser Giu Val Giy Thr Asp Les Ser Siy Leu Pro Ser Giy Arg

1445 1450 1455

Six Giy Leu Six Thr Ser Ais Ser Sly Ais Giu Asp Leu Ser Sly
1460 1465 1470

Leu Pro Ser Giy Lys Giu Asp Leu Vai Giy Ser Ale Ser Giy Asp 1475 1480 1485

Leu Asp Leu Giy Lys Leu Pro Ser Giy Thr Leu Giy Ser Giy Gin 1490 1495 1500

. .

Ser Gly Vai Asp Les Giy Ser Gly Pro Pro Ser Gly Lau Pro Asp 1525 1530

Phe Ser Gly Leu Pro Ser Gly Phe Pro Thr Vel Ser Leu Val Asp 1535 1540 1545

Ser Thr Leu Val Siu Val Val Thr Ala Ser Thr Ala Ser Siu Leu 1550 1555 1560

Giu Sly Arg Giy Thr He Giy | He Ser Siy Ale Giy Giu He Ser 1585 1570 1575

Gly Leu Pro Ser Ser Glu Leu Asp lie Ser Gly Arg Ala Ser Gly

1588

1590

Let Pro Ser Gly Thr Glu Lett Ser Gly Gin Ala Ser Gly Ser Pro 1595 1606

Asp Vai Ser Gly Siu lie Pro Gly Leu Phe Sly Vai Ser Gly Gla 1610 1615 1620

Pro Ser Gly Fins Pro Asp Thr Ser Gly Sin Thr Ser Gly Val Time 1625 1630 1635

Ala Ser Giy Vai Law Tyr Gly Thr Ser Gin Pro Pha Giy ile Thr 1855 : 1880 : 1885

Asp Leu Ser Gly Siu Thr Ser Gly Val Pro Asp Leu Ser Gly Gin 1670 1675 1580

Pro Ser Sly Lew Pro Sly Phe Ser Gly Als Thr Ser Gly Val Pro 1685 1690 1695

Asp Leu Vai Ser Gly Thr Thr Ser Sly Ser Gly Glu Ser Ser Gly 1700 1705 1710

He Thr Phe Val Asp Thr Sor Lew Val Giu Val Ala Pro Thr Thr

1715 1720 1725

Pite Lys Giu Siu Siu Siy Leu Giy Ser Val Giu Leu Ser Giy Leu 1730 1735 1740

Pro Ser Siy Giu Ala Asp Leu Ser Siy Lys Ser Siy Met Val Asp 1745 1750 1755

Vsi Ser Gly Sin Phe Ser Gly Thr Val Asp Ser Ser Gly Phe Thr 1766 1765 1770

Ser Gin The Pro Giu Phe Ser Gly Leu Pro Ser Gly 11e Ala Siu , > 1775 1780 1785

Val Ser Giy Giu Ser Ser Arg Ala Siu lie Gly Ser Ser Leu Pro 1795 1800

Ser Gly Als Tyr Tyr Gly Ser Gly Thr Pro Ser Ser Phe Pro Thr 1805 1810 1815

Vai Ser Lew Val Asp Arg Thr Lew Val Glu Ser Vai Thr Gle Ala 1820 1825 1820

Fro Thr Aia Gin Giu Als Siy Giu Siy Pro Ser Gly | ie Leu Giu 1835 - 1840 - 1845

Leu Ser Cly Ala His Ser Cly Ala Pro Asp Met Ser Cly Clu His

1850 1855 1860

Ser Siy Fine Low Asp Leu Ser Siy Leu Sin Ser Gly Low He Giu 1865 1870 1875

Pro Ser Giy Giu Pro Pro Giy Thr Pro Tyr Phe Ser Giy Asp Phe 1880 1885 1890

Als Ser Thr Thr Asn Vai Ser Gly Giu Ser Ser Vai Als Not Gly 1895 1900 1905

Thr Ser Giy Giu Ala Sar Siy Leu Pro Giu Vai Thr Leu lie Thr . : 1910 1915 1920

Ser Giu Phe Val Giu Giy Vai Thr Giu Pro Thr lie Ser Gln Glu 1925 1930 1935

Leu Gly Gin Arg Pro Pro Vsi Thr His Thr Pro Gin Less Phe Giu 1940 1945 1960

Ser Ser Gly Lys Vai Ser Thr Ala Giy Asp IIs Ser Gly Ala Tar 1955 1960 1965

Pro Val Lau Pro Gly Sar Siy Vai Gla Vai Ser Ser Vai Pro Giu 1970 1975 1980

Ser Ser Ser Siu Thr Ser Aia Tyr Pro Giu Ala Siy Phe Giy Aia

1985 1990 1995

Ser Ala Ala Pro Giu Ala Ser Arg Glu Aso Ser Gly Ser Pro Asp 2000 2005 2010

Leu Ser Giu Thr Thr Ser Aia Phe His Glu Alm Asn Leu Gle Arg 2015 2020 2025

Ser Ser Gly Leu Gly Val Ser Gly Ser Thr Leu Thr Phe Gin Glu 2030 2035 2040

Gly Glu Ala Ser Ala Ala Pro Glu Val Ser Gly Glu Ser Thr Thr 1, 2045 2056

The Ser Asp Val Gly The Giu Aia Pro Giy Leu Pro Ser Ala The 2060 2065 2070

Pro Thr Ala Ser Gly Asp Arg Thr Glu ile Ser Gly Asp Leu Ser 2075 2080 2085

Gly Nis Thr Ser Sin Leu Gly Val Val lis Ser Thr Ser lle Pro 2090 2095 2100

Giu Ser Giu Trp Thr Gin Gin Thr Gin Arg Pro Ala Giu Thr His 2105 2110 2115

Leu Giu lie Giu Ser Ser Ser Leu Leu Tyr Ser Giy Giu Giu Thr

2125

2130

His The Val Six The Ala The See Pro The Asp Ala See Lie Pro 2135 2140 2145

Als Sor Pro Giu Trp Lys Arg Giu Sor Glu Ser Thr Als Ala Asp 2150 2155 2160

Gin Glu Vai Cys Siu Siu Gly Trp Asn Lys Tyr Gin Gly Nie Cys 2165 2170 2175

Arg Cys Arg Giu Sin Sin Ser His Leu Ser Ser lie Vai Thr Pro 2195 2200 2205

Siu Giu Gin Siu Phe Vei Asn Asn Ais Gin Asp Tyr Gin Trp 2210 2215 2220

lie Gly Leu Asn Asp Arg Thr lie Glu Gly Asp Phe Arg Trp Ser 2225 2230 2235

Asp Siy His Pro Met Sin Phe Siu Asm Trp Arg Pro Asm Glm Pro 2240 2245 2250

Asp Asn Phe Ala Ala Sly Slu Asp Cys Val Val Met | le Trp

2260

2265

Mis Giu Lys Gly Giu Trp Asn Asp Val Pro Cys Asn Tyr His Leu 2270 2275 2280

Pro Phe Thr Cys Lys Lys Siy Thr Ala Thr Thr Tyr Lys Arg Arg 2285 2290 2296

Leu Gin Lys Arg Ser Ser Arg His Pro Arg Arg Ser Arg Pro Ser 2300 2306 2310

Thr Ais His 2315

(210) 21

(211) 1108

(212) DMA

(213) Homo sepiens

(220)

(221) 00%

(222) (143)...(1096)

<400> 21

gasigagiga sagscossag gaastactom atotytycos otomotycot typycotyct

60

tectosetec aggaciacea gaggeteact ecettgagee tgeficetea etocaggact 120

goongaaggaa gosatoacca aa atg aag ast got tim ett tig oto ago att 172 Met Lya Thr Ala Lau lie Leu Lau Sar lie

ŝ \$ 10 tts gam atg god tot get the tom atg was not the cat ogs aga gio 220 Lou Gly Mot Ala Cya Ala Phe Ser Met Lys Asn Lou His Arg Arg Val 15 20 25 see eta sas gat tot gee sae eet gag gio tit eeg teo agg oos oge 268 Lys lie Giu Asp Ser Giu Giu Asn Giy Vai Phe Lys Tyr Arg Pro Arg 30 tat tat cit tag aag ost god tag tit tat oot gat tis see ose tit 318 Tyr Tyr Lou Tyr Lys His Ala Tyr Phe Tyr Pro His Lou Lys Arg Pho 45 50 53. con att cag see agt ast sao toa toe san gan ant sea gat gad agt Pro Val Gin Gly Ser Ser Asp Ser Ser Glu Glu Asn Gly Asp Asp Ser 60 88 70 ton gan gag sag sag san san sag sag act ton ant san san san sac 412 Ser Siu Giu Giu Giu Giu Giu Giu Giu Thr Ser Asn Siu Giy Giu Azn 75 80 85 383 aut gas gas tog eat gaa get gaa gas tot gag got gag ast see aca 460 Ash Glo Sto Ser Ash Glo Asp Sto Ase Ser Glo Ala Glo Ash Thr Thr 98 100 105 off tot got ace ace ofg ago tet age and geo goo ace oct ago ace 500 Leu Ser Ala The The Leu Gly Tyr Gly Glu Asp Ala The Pro Gly The 110 335 120 ggg tat aca ggg tha got gos ato dag off cod sag sag got ggg gat 556 Gly Tyr Thr Gly Leu Ala Ala ile Gin Leu Pro Lys Lys Ala Gly Asp 125 130 138 sta ace asc asa got aca ase gas aag gaa agt gat gaa gaa gaa gaa 104 He Thr Asn Lys Ala Thr Lys Giu Lys Giu Ser Asp Giu Giu Giu Giu

140		145	150		
			gas ago gaa go Glu Ser Glu Al		652
155	160		165	170	* .
			agt acc asc sg Ser Thr Ass Se		700
(E) (A) (A) (B) (B) (B)	175	2000)1 G (9 128)	180	185	A.
			gac aat gga ga		748
Wil Ass Wi	: Asn Gly Ser 190	Ser 819 819 195	Asp Asn Gly Gl	0 010 61y 61u 200 -	
			\$33 \$\$0 800 80		. 796
313 Utu 301 205		Ais Asn Ais 210	Giu Sly Thr Th 21		* _{1.1} *
			aca ace tet ce		844
220		225 225	The Sec Pri 230	o Asn Giy Gly	
			tat aga acc ac		892
Phe Glu Pro 235	The The Pro 240	Pro Sin Yal	Tyr Arg Thr Th 245	r Sær Pro Pro 250	8
itt ggg sas	sec ace ace	gtt gam tac	sas ses ses ta	c gas tac acg	940
Phe Gly Lys	Thr Thr Thr 255	Vai Glo Tyr	Giu Giy Gla Ty 260	r Giu Tyr Thr 265	
ggo gto aat	gaa tac gac	sat gga tat	ges sto tot ga	a agt gag asc	988
Sly Vai Asn	Gls Tyr Asp . 270	Asn Gly Tyr 275	Glu ile Tyr Gl	s Ser Giu Asn 280	
ssy gas oot		sat ten nes	gos ist gas sa		1036
			ava tat saa sa Ala Tyr Siu Asi		1,502.0

285 290 295

tac ttt ass sgs cas ggc tac gat ggc tat gat ggt cas aat tac tac 1004
Tyr Phe Lys Giy Gin Giy Tyr Asp Giy Tyr Asp Giy Gin Asn Tyr Tyr
300 305 310

cac cac cag tga agotocagoo tg 190% Mis His Gin

⟨210⟩ 22

315

(211) 317

(212) PRT

<213> Homo sapiens

⟨400⟩ 22

West Lys That Ais Lew 11st Lew Lew Ser 11e Lew Gly Met Ais Cys Ala f 5 10 15

Pine Ser Met Lys Asn Leu Mis Arg Arg Val Lys lie Glu Asp Ser Glu 20 25 30

Giu Asn Giy Val Phe Lys Tyr Arg Pro Arg Tyr Tyr Leu Tyr Lys Nis 35 40 45

Ala Tyr Phe Tyr Pro His Leu Lys Arg Phs Pro Val Gin Gly Ser Ser 50 55 60

Asp Ser Ser Giu Giu Asn Giy Asp Asp Ser Ser Giu Giu Giu Giu Giu Giu 65 76 75 80

Giu Glu Siu Thr Ser Asn Giu Giy Giu Asn Asn Giu Giu Ser Asn Giu 85 90 95

Asp Six Asp Ser Six Aia Glu Asn Thr Thr Lex Ser Aia Thr Thr Lex 100 105 110

Sily Tyr Giy Giu Asp Ala Thr Pro Giy Thr Giy Tyr Thr Giy Leu Ala 115 120 125

Ale lie Gin Leu Pro Lys Lys Ala Giy Asp IIs Thr Asm Lys Ala Thr 130 135 140

Giu Ass Siu Siu Ser Siu Ais Giu Val Asp Siu Ass Giu Gin Giy 1]e 165 176 176

Asn Sly Thr Ser Thr Asn Ser Thr Slo Ala Giu Asn Gly Asn Gly Ser 180 185 190

Ser Gly Gly Asp Asn Gly Glu Glu Glu Glu Glu Ser Val Thr Sly 185 200 - 205

Ala Asn Ala Siu Siy The The Siu The Giy Giy Sin Siy Lys Siy The 210 215 220 Ser Lys Thr Thr Ser Pro Asn Gly Gly Phe Glu Pro Thr Thr Pro 225 230 235 240

Pro Gin Val Tyr Arg The Thr Ser Pro Pro Phe Gly Lys The The The 245 250 255

Vei Giu Tyr Siu Siy Glu Tyr Glu Tyr Thr Siy Vei Aan Siu Tyr Asp 260 265 270

Asn Gly Tyr Siu ile Tyr Siu Ser Glu Asn Sly Glu Pro Arg Gly Asp 275 280 285

Asn Tyr Arg Ais Tyr Glu Asp Glu Tyr Ser Tyr Phe Lye Gly Gin Gly 296 295 300

Tyr Asp Siy Tyr Asp Siy Sin Asm Tyr Tyr His His Gim 305 316 315

(210) 23

(211) 498

(212) DNA

(213) Homo sapiens

<2202

(221) COS

(222) (19).. (321)

(40	0,5	23															
ogo	asco	aco	gage	10800	ats	sga	gcc	ato	808	oto	ata	800	ots	tts	200		51
					Met	Arg	Als	Lea	The	โดน	Lau	Ala	Les	Leu	Ala		
					ž.				8					10			
																2.	
ctg	goc	\$\$ 6	ectt	tga	eto	get	880	cag	gca	122	808	888	ccc	agg	ggt		99
Leu	Ala	Als	i Leu	Cys	lle	Ala	Siy	01n	Ala	Giy	Ala	Lys	Pro	Ser	Cly		
			15					20					25				
																3	
gca	####	tee	asc	888	eet	gcs	sac	ttt	sts	tes	888	cag	gag	880	222		147
Ala	@lu	Sør	Ser	Lys	@ly	Als	Ala	Phe	¥s!	Ser	Lys	Sin	6lu	Gly	Ser		
		30					35					40					
														,			
888	gts	gtg	888	383	000	sgg	Cgr	180	ctg	tat	088	tgg	cts	CC3	gce		195
Ø¥u	٧×١	¥81	Lys	As g	Pro	Arg	Arg	Tyr	Leu	3.As.	@In	Tro	Leu	Gly	Als		
	45					50					55					k. A	·
008	gtc	ccc	tac	ong	gat	998	ctg	gag	300	azg	sgg	888	gtg	tgi	gag.		243
bro	Va!	Pro	Tyr	Pro	Asp	Pro	Less	81 8	Pro	Arg	Arg	Stu	Va.i	Cys	Glu		
60					65					70					75		
oto	aat	cog	28 0	tgt	Sac	888	ttg	get	880	cac	stc	880	ŧŧŧ	oag	gag		291
Lau	Åsn	Pro	Asp	Cys	Asp	ទីនិប	Less	Als	Asp	liis	He	Giy	Phe	@In	Siu		
				80					86					90			
goo	tet	cze	ogo	tto	tac	880	ceg	sto	teg	ggtg	tege	to t	gotş	goot	S.		341
Als	Tyr	Arg	Arg	Phe	£4£	Gly	Pro	Val									
			98					100									
goog	gcas	ec c	cagt	tote	o to	ctct	ocas	808	coct	tat	ttec	tott	cc c	ctts	coctt	:	401
good	tgac	et c	xccag	ecct	a tg	gatg	tggg	gto	ooda:	ම්කුතු : ම්කුතු	tece	agot	80 t	0008	sstas	:	461
acto	Caga	ag a	8833	totg	8 88	8888	8888	333	8888								498

(210) 24

(211) 100

(212) PRT

<213> Homo sapiens

(400) 24

Mat Ars Ala Leu Thr Leu Leu Ala Leu Leu Ala Leu Cys 1 5 10 15

He Ala Sly Gin Ala Sly Ala Lys Pro Ser Gly Ala Slu Ser Ser Lys 20 25 30

Pro Arg Arg Tyr Less Tyr Sin Trp Less Siy Aia Pro Vai Pro Tyr Pro 50 55 60

Asp Pro Leu Giu Pro Arg Arg Giu Val Cys Giu Leu Asn Pro Asp Cys 65 70 75 80

Asp Giu Leu Ais Asp His He Gly Phe Gin Glu Als Tyr Arg Phe 85 90 95

Tyr Siy Pro Val

(211) 2383

(212) DMA

(213) Homo sapiens

⟨220⟩

(221) COS

(222) (320)...(1825)

<400> 25

ctooticesg cootesgies gitgigesgs assausgegg eggitggett tetectites 60

120

agaacgagit attitcagot gotgacigga gaoggigdac gioiggaiac gagagcatti

ocactaiggg actggataca ascacacaco oggoagactt ceagegtoto agactgagge

240

gasagostii ooitoigaig siaalgatga igaagaigat tiigaaagia caataatta

aigsititto cigocasaco agaggisci itgolgoigo egoigitoio illiggigica

300

352

thoasesset saccasass ats asa cic occ ass oto oto set tie tis ott Met Arg Leu Pro Lys Leu Leu Thr Phe Leu Leu

tag two ote sot teg cts swc ote gas tto ato two sot etg tig egt Trp Tyr Leu Ala Trp Leu Asp Leu Giu Fha ile Cya Thr Vai Leu Gly

400

\$5

20

28

goe oot sac its age cas aga ooc cas aga acc aga coa aga tig goo Ala Pro Asp Lew Gly Gin Arg Pro Gin Siy Thr Arg Pro Gly Lew Ala

448

30 38

ass sos sas soc sas sas age occ occ oty soc oge sac sto tto age Lys Ala Glu Ala Lys Glu Arg Pro Pro Leu Ala Arg Asn Val Pase Arg

498

45

50

1

008	#68	ggt	Gas	880	tat	ggt	ggs	888	gcc	800	: 881	god	ast	gco	agg		544
Pro	Sly	Gly	His	Sør	(yr	Gly	Sly	Gly	Als	The	Ass	: Ala	Asn	Ala	Arg	9	
50					65					70					75		
												ceg				*2	592
Ala	Lys	Gly	Sly		() ly	Gin	The	Giy		Less	Thr	6in	Pro	Lys	Lys		
				80					85					90			
and the	nss	ana	অভত	m ore	and a	بنديند بند		as are as	200	- averes	200.000.00					,	m a m
												eet					840
reago	sa) as	3352	95	P 20.00	3-73308	rev	rs w			nik	m s &	Pro		rro	Lys		
			. Cr. 55					100					105			7	
008	223	cac	cct	000	ଞ୍ଜେଶ	808	SSS	CBE	set	808	200	ogg	act	ete	ase		688
												Arg					ww.w
		110					118					120					
																8. 8	
008	888	ggs	cag	ett.	606	gga	880	aag	gca	ccc	cca	888	gcs	888	tot		736
Pro	Lys	Sly	Sin	Leu	Pro	@fy	Gly	l.ys	Als	Pro	Pro	Lys	Als	Gly	Ser		
	125					130					135						
gto	CCG	ago	tee	tto	otg	otg	3SS	238	gcc	888	sas	800	233	600	ocs		784
Val	Pro	Ser	Ser	Pho	Less.	Lea	Lys	Lys	Als	Årg	Œij	Pro	@ly	Pro	Pro		•
140					145					150					155		
												808					832
Arg	Giu	2,200	Lys		Pro	Pho	årg	Pro		Pro	118	Bir	Pro	His	Glu		
				160					165					170			
\$-20°	a-t-a	e-\$-%	****	m dere	divers	N.000.00	nan		Ann	accords	an an ika						200
												880					880
st Ous	331C: X-	emetakk	×51 175	b:3988	8 <u>3</u> 53	an E	8135		gas.	ww	M338	Asp		rys	SS 1 X		
			8343					180					185				
ggc	880	880	880	gte	23E	tte	gsg	get	eso	ate.	850	88C	866	ate	ann		928
												Asn					randatati
=		190	•		•		196					200	n 4 98°		5076		
						404						ALC: YE					

89	şe 1	ttt	ati	1 28	3 888	888	(08)	801	gse	ogs	881	t ccc	gi,	g gti	2 883	388		976
Se	er 1	Phe	110	a Ass) Lys	s Gij	/ ©la	Assp	s Ass	: Arg	(913	e Pro	Val	٧æ	i Ara	E Lys		
	3	205					210	3				215	ŝ					
																cots	v	1024
6	n A	1. A	J'n	Va)	Phe	: Asp	He	Ser	Als	Leu	ធិរិដ	ı Lys	Ass	Sily	Lsi.	Less		
22	O					225	i				230)				235		
																888	,	1072
G:	¥ \$	ila	Siu	Leu			Leu	Arg	Lys	Ĺys	Pro	Ser	Ass	Thr	Ala	Lys		
					240					245					250	;		
												otg						1120
\$,\$	O A	8 I S	AIS			Siy	usy	Arg		Ala	Gin	Leu	Lys	î.gu	Ser	Ser		
				255					260					265				
ole vez				20.00					.								* ₁₁	4
												gat						1168
57.95	25 87	T 53	270	res 3.	ME E	Ø183	rro		ser	usu	Les	Asp		Arg	Ser	Val		
*			.c.r.v					275					280					
oe:	S 601	88.65	පතික	\$60.50,00	éérenes:	of a graph	09100.0	Source	alak ana ana	and a	. Service .	oo aa aa	and the same	×				
												gec Asp						1216
713		85	entranta (198)	1,000	601.39	500001	290	4 4 32	13 8 13	*#13	ELESS#		1:543	anp	rys	erests.		
	ALC:	XX ES					200					295						
tta) G	238	8880	tet	.888	388	Že.#	ation in	en en en	ert er	rinne.	otg	800 S	endiren.	evene.	Marketon (1000
												Leu						1264
300		*20:				305	27.00.2	77 P 40.	NCX EC	Recorded:	310	Norther No.	43 S LJ	1.00	42112	315		
																25. 8.89		
tes	(83	88 :	cgg	ggc	ass	ssc	gte	SSC	ctc	cet	een	otg	87.84C	ŤŤO	gwr.	nese		1312
												Leu						F 89 S-90.
				-	320					325					330	2-95 - 65		
															-washing			
gos	80	3 0 i	330	caş	gts	080	gag	83£	ECC	ctg	tte	atg	gia	ttt	880 088	ásc aso		1360
												Leu						s. No 20150
				335					340		-		·	345	~~~			

850	888	888	sgg	gac	stg	tto	222	sat	888	att	888	gcc	080	tot	220		1408
Thr	Lys	Lys	Arg	Asp	Leu	Phs	Pho	Asn	Glu	110	Lys	Ala	Ar #	Ser	Gly		
		350					355					360					
cag	gac	gst	888	800	gtg	tst	888	126	ots	tte	880	csg	Ggg	088	888		1456
0 in	Asp	Asp	Lys	The	¥a1	Tyr	G≗u	Tyr	Leu	Phe	Ser	ØIn	Arg	AFE	Lys		
	365					370					375			-			
ogg	cgg	gsc	ccs	ctg	gcc	act	ege	cag	ggc	888	csa	GCG	ago	BBS	sac	*	1504
Arg	Arg	Ala	Pro	Leu	Als	1113	Arg	Gin	Gly	Lys	Ārg	Pro	Ser	Lys	Asn		
380					385					390					395		
ott	888	got	SES	tgo	sçî	cee	asş	gca	gts	cat	gto	880	tto	333	gac		1552
Læg	Lys	Ala	Arg	Cys	Ser	Årg	Lys	Als	Leu	His	¥s!	Asn	Phe	Lys	Asp		
				400					405					410			
																\$,	ė
atg	ggc	tes	880	880	tee	ato	atc	gcs	ccc	ctt	888	tec	gag	got	tto		1600
Net:	₿ŧу	Trp	Asp	Asp	Tep	118	He	Als	Pro	Leu	610	Tyr	6lu	Ala	Phie		
13			415		•			420					425				
cac	283	£3£	222	ctg	tgo	gag	tto	cca	ttg	ogo	too	cas	ctg	gag	006		1648
His	Cys	01 0	Sly	Leu	Cys	Giu	Pho	Pro	Leu	Arg	Sər	Н≗≋	Lea	@le	pro		
		430					438					440					
808	aat	cat	808	gto	ato	cag	acc	otg	ats	880	\$00	sts	SEC	000	388		1896
Thr	Asn	His	Ala	Val	Hs	&£n	The	Løu	#et	Asn	Ser	Met	Åsp	Pro	Glu		
	445					450					422						
toc	808	CCS	ccc	acc	tgo	tgt	gtg	cee	acg	CES	ctg	138	223	stc	agc		1744
Ser	Thr	Pro	Pro	Thr	Cya	Cys	¥s:	Pro	Mir	Årg	Leu	Ser	pro	He	Ser		
460					465					470					475		
atc	ats	ttc	att	sac	tet	200	336	880	sts	ete	tst	288	cag	tet	gag		1792
i i e	Løu	F998	118	Asp	Ser	RiA	Asm	Asn	Val	Val	Tyr	Lys	Gin	Tyr	មិន		
				480					48 5					490			

SAC ats Sic ste sas tos tet sec tec ase tag cascacieso octotetett (645 Asp Met Val Val Glu Ser Cya Gly Cya Arg 495

cotsssisse acatomosas associtice typesteets gastoscass sysytmagas. 1908 ascistssca seascatota cacascites sissuasses attocaataa sottscioso 1965 tototgasts isactigago tamasgosco ottitatoca caagitocoo iggeigagga 2025 tignigness toiscissis imaccastas casseassa tecassassa casacicisa 2085 stessacies etcocaseas acagisciti ocesiseano toasoccaco atticiocio 2345 accisssor icicasocic issacicico isagoaccic icassasase cacassisco 2205 actgootect caasteecat itgigooigg igacttooig tocologgac agiigagaag 2265 ctsactssec aasastgges gagaagagga gagagotigs atagagtiga ggagigigag 2325 goigtageo (gitagetti eesigiaisi igeigagsia aasagoees oigigoot 2383

<219> 26

(211) 501

(212) PRT

<213) ikmo sapiens

<400> 26

Mot Arg Lew Pro Lys Lew Lew Thr Phe Lew Lew Trp Tyr Lew Alg Trp
1 5 10 15

Leu Asp Leu Giu Pha lie Cys Thr Vai Leu Siy Ala Pro Asp Leu Giy
20 25 30

Gin Arg Pro Gin Gly Thr Arg Pro Gly Lew Ala Lys Ala Gly Ala Lys

35 40 45

Giu Arg Pro Pro Leu Ale Arg Aso Vel Phe Arg Pro Gly Gly Nie Ser 50 55 50

Tyr Gly Gly Sly Alm Thr Ash Alm Ash Alm Arg Alm Eye Gly Gly Thr 65 70 75 80

Giy Gin Thr Giy Giy Leu Thr Gin Pro Lys Lys Asp Giu Pro Lys Lys 85 90 95

Leu Pro Pro Arg Pro Sly Sly Pro Glu Pro Lys Pro Sly His Pro Pro 100 105 110

Sin Thr Arg Sin Ala Thr Ala Arg Thr Val Thr Pro Lys Siy Sin Law 115 120 125

Pro Gly Giy Lys Als Pro Pro Lys Ala Sly Ser Val Pro Ser Ser Pho 130 135 140

Leu Leu Lys Lys Ala Arg Glu Pro Gly Pro Pro Arg Glu Pro Lys Glu 145 150 155 160

Pro Phe Arg Pro Pro Pro lie Thr Pro His Giu Tyr Met Leu Ser Leu 155 170 175 Tyr Arg Thr Leu Ser Asp Ale Asp Arg Lys Gly Gly Asn Ser Ser Val 180 185 190

Lys Les Giu Ala Giy Leu Ala Asa Tar lis Tar Ser Phe IIs Asp Lys 195 200 205

Gly Gin Asp Asp Arg Gly Pro Vsi Vsi Arg Lys Gln Arg Tyr Vsi Phe 210 215 220

Asp lie Ser Ala Leu Glu Lys Asp Gly Leu Gly A(z Glu Leu Arg 225 230 235 240 . .

ije Leu Arg Lys Lys Pro Ser Asp Ter Ala Lys Pro Ala Ala Pro Gly 245 - 250 - 255

Sly Siy Arg Ais Ala Gln Les Lys Leu Ser Ser Cys Pro Ser Giy Arg 260 265 270

Gin Pro Als Ser Leu Leu Asp Val Arg Ser Val Pro Gly Leu Asp Gly 275 280 285

Ser Siy Trp Siz Val Phe Asp lie Trp Lys Leu Phe Arg Ass Phe Lys 290 295 300

Asn Ser Ala Gin Les Cya Leu Giu Leu Giu Ala Trp Gla Arg Giy Arg 305 310 315 320 Als Val Asp Leu Arg Siy Leu Giy Phe Asp Arg Als Als Arg Sin Val 325 330 335

His Glu Lys Ala Lau Phe Leu Val Phe Gly Arg Thr Lys Lys Arg Asp 340 345 350

Leu Phe Phe Ash Siu lie Lys Als Arg Ser Cly Gin Asp Asp Lys Thr . 355 360 365

Val Tyr Giu Tyr Lau Phe Ser Gia Arg Arg Lys Arg Arg Ala Pro Leu 370 380

Ala Thr Arg Gin Siy Lys Arg Pro Ser Lys Asn Lew Lys Ala Arg Cys 385 390 395 400

Ser Arg Lys Als Leu His Val Asn Phe Lys Asp Mot Giy Trp Asp Asp 405 410 415

Trp He He Als Pro Leu Gle Tyr Glu Als Phe His Cys Gle Gly Leu
420 425 430

Cys Siu Phe Pro Leu Arg Ser His Leu Giu Pro Thr Asn His Ais Val 435 440 445

lie Gin Thr Leu Net Asn Ser Met Asp Pro Giu Ser Thr Pro Pro Thr 450 455 460 Cys Cys Vai Pro Thr Arg Lou Ser Pro lie Ser lie Leu Phe lie Asp 465 470 475 480

Ser Ala Asn Asn Val Val Tyr Lys Gin Tyr Giu Asp Met Val Val Giu 485 490 495

Ser Cys Gly Cys Arg 500

(210) 27

(211) 1378

(212) DNA

(213) Homo sapiens

(220)

(221) (28

<222> (276)..(1130)

(400) 27

ggtagoagca tocaccgggc ggggggcgg aggcagggaag gcottaaagg ctactgagtg 50

cgccggccgt tocgtgtoca gwacciccce tectooloog cottelette stiggccgcc 120

caccgccaag ticogactcc ggttttcgcc titgcaaagc ctaaggagga ggttaggaac 180

agccgcgccc ccctgccccc cgccgcccc ccctgcctct cggctctgct ccctgccgcg 240

tgcgcctggg ccgtgcgccc cggcsggcgc cagcc aig tog atg ctg ccg tcg 293

Met Ser Met Leu Pro Ser

ř

																cag		341
	Phe	(Sh	r Phe	: The	· Gir	Giu	G§r	Va l	Ala	Üys	Va	Cys	s Gls	i Val	Loi	: Gin		
				10					18					20				
																	•	
																600		389
	@In	Gly	· Gly	Ass	i Leu	Giu	Arg	Les	Siy	Arg	Phe	Lau	i jas	Ser	Lsu	Pro		
			25					30					35					
									838									437
	Ala		: Asp	318.8	Les	: His	l.ys	Asn	Giu	Ser	Val	Leu	Lys	Ala	Lys	Als		
		40					45					50						
		,													•			
									tto									485
		¥81	A:a	Fne	(#1%)		Gly	Asn	Phe	årg		E.SE	ïyr	Lys	116	Leu		
3	55					60					65					70	3	9
	****	20.00.00			diskon	A												
									88C									533
ş	01 <u>5</u> .6	381	ms	818		aer	Pro	HI S	Asn		820	Lys	Leu	Gin		Leu		
					75					80					88			
	i eres	andi-ar	200	***	sin sig Sir	Sono.	ando m	00.50:30	500.000.000	30.00 M								20,00, 3
									800									581
-1	1.3 36	and	e-Jr.w.	90	445%	3368	¥81.3	22133	Ala ne	933	8. 3 8	LOU	AU S		Arg	Pro		
				aw					95					100				
ĩ	errer errer	one	wee.	37 B	of one	వరు	tet	e e e e	sts	és.max	erana:	on est ex	***	******				2000
									Val									629
		,	105	5 88 X	w.,,	college.	r ž. z	110	F(0.)	200 B	en g	rŝò		3, 1.43	8.80	reu		
			3.2.12					F 6-56					118					
S	 	806	ato	žææ.	sac	2020	238	23.5	800	san	tan	t me	****	8166	-22:50-201	60-20-10°		677
									Thr									011
	7.7	120					125		0000	- Se - Se - 5	330	130	x 0499	40 B 10	Gra Gr	5-13-10:		
												n man ping						
ţ	eş.	888 888	ggt	gto	ctg	CHR	282	iee	tac	gcs	080	ast	000	žan.	ees	tes		725
									Tyr .									a score
	35		•			140		***	~ .		145			<u>.</u>		150		
																e intrinsi		

									Ther				acc Thr		773
												800	gog Ala	•	821
											toc Sør 195			e N	869
		880					ots				ccg Pro				917
Ser,	tea				Phs	tes			Ser	003	gec Asp		Ser	*,	965
											agc Ser				1013
											ssc Sly				1061
							tot				oto Leu				1109
oig	sts	265 580	ttg	äää	tos		270				275 1 cg				1150
Leu	Ve i 280	Asp	Leu	\$1y	Ser -										

cotsgascas caaccactso agosaciass sacacttsta asiassaato aggaecatti 1220
titocascits titoissasi igitisossa taaassaata giggacitic acaaatatei 1280
titiaasasi Gaasaccaas agosatotea agottaatot coteitetei ocaacteiti 1340
cosciitigo attitootic ocaatgossa satoagga 3378

(210) 28

(211) 284

(212) PRY

<213> Nomo sapiens

⟨400⟩ 28

Met Ser Met Lew Pro Ser Phe Gly Phe Thr Gln Glw Gin Val Ala Cys I . 5 10 15

Val Cys Giu Vai Leu Gln Gin Giy Gly Asn Leu Giu Arg Leu Giy Arg 20 25 30

Phe Leu Trp Ser Leu Pro Ala Cys Asp His Leu His Lys Asn Glu Ser 35 40 45

Val Leu Lys Ala Lys Ala Val Val Ala Phe His Arg Gly Asn Phe Arg 50 55 60

Giu Leu Tyr Lys lie Leu Giu Ser His Gin Phe Ser Pro His Asn His 65 70 75 80 Pro Lys Leu Sin Sin Lau Trp Lau Lys Ala His Tyr Val Glu Aia Glu
85 96

Lys Leu Arg Gly Arg Pro Les Gly Als Val Gly Lys Tyr Arg Val Arg 100 106 110

Arg Lys Phe Pro Leu Pro Arg Thr He Trp Asp Gly Glu Glu Thy Ser 115 120 125

Tyr Cys Pine Lys Giu Lys Ser Arg Giy Val Leu Arg Giu Tro Tyr Ala 130 135 140

Nis Asn Pro Tyr Pro Ser Pro Arg Stu Lys Arg Stu Leu Ata Glu Ata 145 150 166

Thr Gly Leu Thr Thr Gin Val Ser Asn Trp Phe Lys Asn Arg Arg 165 170 175

Gin Arg Asp Arg Ala Ala Glu Ala Lys Glu Arg Glu Asn Thr Giu Asn 180 185 190

Sly Lys Pro Leu Net Ser Ser Ser Slu Slu Giu Phe Ser Pro Pro Gla 2:0 2:5 220 Ser Pro Asp Gin Asn Ser Val Leu Leu Leu Gin Giy Asn Met Giy His 225 230 235 240

Als Arg Ser Ser Asn Tyr Ser Lew Pro Gly Lew Thr Ale Ser Gin Pro 245 250 255

Ser His Sly Leu Gin Thr His Gin His Gin Leu Gin Asp Ser Leu Leu 280 268 270

Gly Pro Law Thr Ser Ser Lew Val Asp Lew Gly Ser 275 280

(210) 29

(211) 2590

(212) DNA

<213> Nomo sepiens

<220>

<221> CDS

〈222〉 (546).. (1112)

(220)

<221> cos

(222) (2036)..(2071)

<400> 29

caggogoteg ogcacatege aggoasagac agacaggete oggtoseges goaggeocag

60

ggoggotggg tisactosgt tgtgocaogg gagasaacgg ggtgggt toctococto 120

tocossasso Egggggoact scagtitiza agcoctgagt aactacagoo cagaagogac	180
ciccegito ciccgestec ecagagaegg sacgatgues ecasagaeca gocoegosec	240
coccaccocc gocsangogi ggccacagaa ggccgaggga cgcggggggc gotgriegag	300
gagoctocgg gotgagaggg gossagogtg ogogagaag gagocgagac googotataa	360
aggogoagot oggggcocog otooggocog gyacgoscat gtgogogoga ogcocggozg	420
ofgeneense sassegnase exasseeres esectosees essecssore sesasseers	480
cggcggoogo aggaggcggc atgagcagog ogcgacagag ctgacgccgc gococcgccg	540
######################################	590
tac sec sag sts ago ocg otg tog gag gac gag gac oge ggc ago gac Tyr Pro Glu Vai Ser Pro Leu Ser Glu Asp Glu Asp Arg Gly Ser Asp 20 25 30	638
ago tog ggo too gas gag ama coo tgt ogo gtg cac gog gog ogo tgo Ser Ser Gly Ser Amp Glo Lym Pro Gym Arg Val Him Aim Alm Arg Gym 35 40 45	656
sso oto cas sso soc oss oss ass sos ses sec oss oss soc ses sec Gly Leu Gin Gly Ala Ars Ars Ars Ala Gly Gly Ars Ars Ala Gly Gly 50 55 60	734
ese see com ese see can oca ese cet san coo can can cen can acq Gly Gly Pro Gly Gly Arg Pro Gly Arg Glu Pro Arg Gln Arg Him Thr 65 70 75	782
seg ase seg ege sag ega sac ege ace ace age gtg aac acg see tto Ala Asa Ala Arg Glu Arg Asp Arg Thr Asa Sar Val Asa Thr Ala Phe	830

	80					85					90					95			
			cts Leu		The	Leu				G≋u	Pro							878	
	\$ see	220	455	86 St. SS.	100		es comes	os de con		105		diam	بديفيد		110		v		
			: att							Ser						-	•	926	
			gtg Val														e d	974	
			ees Siy					GSG					ggc				a_{x_j}	. 1622	
			ccc Pro															1070	
			atc He															1112	
	gtga	gese	aa e	cost	eeee	c go	cgag	8888	(goo	toca	acg	egec	oeto	sg c	ccac	accty	(1172	
;	ccag	gcag	ag g	essc	£088	c ca	cacg	ekca	222	ctcc	oca	acag	ggca	ca g	goag	goada	i	1232	
	cetg	tsac	80 8	8800	tgos	e ee	ggot	8888	cot	toto	otg.	eeso	teet	ot c	gagg,	gogto		1292	
																tasat		1352	
Ş	88,08	gota	88 8	stgg	ccaa	8 88	8.8G¢	0000	CSS.	gogy	\$88 i	8880	tese	78 83	itgg:	80088		1412	

googotgoas gottocottt tosgissgit gasaggogga gigassacag cigagticag	1472
asagimagag goigomagga aagagaggam ggacccggg ticitagooc oigoggocca	1532
gosotsgott aagodalott gggcacotgo igtoogtooo oosootaggo ogosoaccaa.	1592
##C#CCA##! Octstagggo tgcocgagao gigggcosig ggacacgaag gcagaggotg	1652
graguagate tennescies enginaeur coctecases margotesco ascisteati	1712
tacagotoot goigigotig giggoacogg aasagcaggg igagcaggga gasasiscgg	1772
cacygotiti cocaatooso atticototo cagacageae gogogagoto ctggggoctg	1832
sacsiotygg assittaatt tiscesiito ggotgigoag cagistgoic coctococas	. 1892
amogotigag symmetiggs sagagoosse maggagstyc ottogogots gocaccigag	1952
atgecacoca ecasseasec casassasses casactasecs cissectota ecassascis	2012
asastootoo stoocotota saa ago aaa gaa gaa gaa gaa aaa aaa aca gog att Sar iya Aap Ara Aap Ara iya Tar Ala lie 190 195	2065
ogo agi taggaggigg voggosgogg coaggaggoe gacgolgolg geggaggigg Arg Ser 200	2121
acescoesses teacteraga casococoso citeracote agotessosa spocoacoso	2181
asgratgood coaggreage cotgettees assungers asguaragae gracgiasag	2241
scapposcop gongogogo totpopotop coccapcaco tpoccoppoc cactegasct	2301
itoigogoig gottttotto oggopacigi gigziggoat citgigitit igsisigsia	2361

statesagic igneration gistestian energiance gistolicus mainigenge 2421

conscitigo icatgamagy ilraganico acceccagos cocagooliga godicentic 2481

conscitiga igneratio olocitysys cangiacece ggotecciya gangoocea 2541

ctilocaggo icaggscose sociocoliga geligaggagy ignegategy 2590

⟨210⟩ 30

(211) 201

<212> PRT

(213) Nomo sepiens

(400) 30

Not Ser Phe Ala Thr Les Arg Pro Als Pro Pro Gly Arg Tyr Less Tyr
I 5 10 15

Pro Sio Val Ser Pro Leu Ser Gio Asp Gio Asp Arg Giy Ser Asp Ser 20 25 30

Ser Giy Ser Asp Giu Lys Pro Cys Arg Val His Ala Ala Arg Cys Giy 35 40 45

Leu Gin Giy Ala Arg Arg Arg Ala Giy Giy Arg Arg Ala Giy Giy 50 55 60

Gly Pro Gly Gly Arg Pro Gly Arg Glu Pro Arg Gln Arg His Thy Ala 65 70 75 80 Ash Ala Arg Glu Arg Asp Arg The Ash Ser Val Ash The Ala Phe The 85 90 95

Als Leu Arg Thr Leu (de Pro Thr Siu Pro Als Asp Arg Lys Leu Ser ... 100 105 110

Lys lis Siz Thr Leu Arg Les Ais Ser Ser Tyr lie Ser His Leu Gly
115 120 125

Asn Val Leu Leu Ala Gly Giu Ala Cys Giy Asp Gly Gin Pro Cys His 130 135 140

Ser Siy Pro Als Phe Phe His Als Als Arg Als Siy Ser Pro Pro 165 150 155 160

Pro Pro Pro Pro Pro Als Arg Asp Sly Siu Asn Thr Sln Pro Lys 165 170 175

Gin He Cys The Phe Cys Lew Ser Asm Gin Arg Lys Lew Ser Lys Asp 180 185 190

Arg Asp Arg Lys Thr Als ile Arg Ser 195 200

A CLASS IPC 7	fication of subject matter C12N5/06							
According to	a indemnational Patient Chamiltoution (IPC) or to both national Gazagisco	Abo and PC						
B. FIELDS	SEARCHIN							
tesinum it: IPC 7	cumentation searched (describestion system thinwest by identification C12N							
Doormants	for searched other than minimum decommodation to the entent that a	act documents are instactor in the tolds o						
Electronic st	ata base consided during the international exacts (name of data ba	es and, where practical, search farms used	*					
EPO-In	ternal, WPI Data, PAJ, EMBASE, BIGSI	\$						
0.000088	ENTS CONSIDERED TO BE RELEVANT		20000					
Caterany *	Citation of document, with indication, where appropriate, of the res	const systematics	Sedeward to claim No.					
remembers	Printer in processing me continues, mense abboditione in east of	seum tessindhus	***************************************					
X	KALE S ET AL: "THREE-DIMENSIONAL DEVELOPMENT IS ESSENTIAL FOR EX Y FORMATION OF HUMAN BONE" NATURE BUSTECHNOLOGY, NATURE PUBLUS, vol. 18, September 2000 (2000-09) 954-958, XP000996174 ISSN: 1087-0156 the whole document	TUO	1-30. 32-34. 42-44. 46.51. 54.58. 52-64. 68-85. 88. 92-96. 149-160					
X :500	ner decisions are lasted in the exercise or box (C	X Content through members are indeed	ii muux					
FA document of the control of the co	and defining the general state of the last which is not been do be of particular releasons. Incomment to published on or other the international last last which may throw risulate on pronty, ideas(a) or is which may throw risulate on pronty, ideas(a) or is called to establish the publication date of another is or other special reason (as especialed) and referring to an osal declaration, use, exhibition or insertion in the publication of the publ	"These document pastished after the integer printity date and not in control with other in smaller than the principle or the control." "Y" document of particular resonance; the commod be considered event or connot be the smaller department pastise the destruction of the control is considered to patient the destruction of the smaller and control is considered with one in the control is considered with one in the mode, such control with one in the act. "S" document member of the same patient Costs of moding of the identification bear.	the application the corp underlying the District inventors the District in Consideration of the consideration of the consideration of the consideration of the consideration of the consideration of the consideration of the consideration of the Consideration of t					
Marno end n	naing mateum of the SSA.	Authorized afficer						
	European Poleni Chine, P.E. 5515 Patentinan 2 18 5335 HV Figure 18. (+31-76) 345-7681 Yz. 31 851 epo 8 Fan: (+31-76) 585-3016 Chavanne, F							

isintine In	NIGO: COCUMENTS CONSDERED TO BE RELEVANT	
	Challen of document, with indication, where appropriate, of the enterent passages	500 \$200 ME 50 0 \$440 \$450
X	WO 95/30742 A (BIOSURFACE TECH INC) 16 November 1995 (1995-11-16) abstract	1-30, 32-34, 42-48, 51-60, 62-86, 88-112, 114-141, 149-160
	asstract page 20 - page 29 page 30, line 12 - page 31, line 7 page 32, line 28 - page 33, line 31 page 36, line 30 - page 40 examples 3,4	
*	KUSHIDA A, ET AL.: JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, vol. 45, no. 5, 1999, pages 355-362, XPOC1204072	1,3-12, 14-23, 26-30, 34-36, 42,43, 48,49, 51-53, 62-64, 74-79,
*(****)(*(*(*(*)))(*(*))	abstract page 355, column 2 - page 356, column 1, paragraph 1 page 356, column 2, paragraph 2 page 357, column 2, paragraph 2 figure 1 page 359 page 360, column 1, paragraph 2 page 360, column 2, paragraph 2 page 360, column 2, paragraph 2 - page 361, column 1, paragraph 2 - page	@4~@J
X	WO 95/33821 A (ADVANCED TISSUE SCIENCES INC) 14 December 1995 (1995-12-14)	1~16, 18-30, 32-41, 43-86, 88~112, 114~160
	abstract page 15. paragraph 2 - page 17. paragraph 1 page 18. paragraph 7 page 19. paragraph 2 - page 30. paragraph 2 page 45. paragraph 1 - page 46. paragraph	214100

Into (1000) Application No PCT/JP2004/011401

		EC1/2520242.0314031
C/Coetinus	6000) DOCUMENTS CONSIDERING TO BE RELEVANT Classes of document, with indication, where appropriate, or the relevant passages	Photograp to calabo this
Casagary "	C18886 (C20000004 Mill Mingling Manus Mehodeneer in the consequence and the	
X	US 2003/091979 Al (ESCHENHAGEN THOMAS) 15 May 2003 (2003-05-15)	1-6,16, 18-31, 74-77, 85-87, 91-94, 96,149, 150,154, 156,157
	abstract paragraphs '0001!, '0008!, '0014!, '0016!, '0031!, '0083! ~ '0085! example 2 	***************************************

#Somation on patent family members

	itent document I in search report	***************************************	Publication date	۸	Patent tamily member(s)		Publication Gate
ki0	9530742	A	16-11-1995	AU	2435495	A	Z9~11-1995
				AU	2468995	A	29-11-1995
				MO.	9530383	Al	16-11-1995
				MO	9530742		16-11-1995
				US	5723331	A	03~03~1998
				US	5786217	Á	28-07-1998
WO	9533821	A	14-12-1995	US	5902741	A	11-05-1999
				AU	689605	82	02-04-1998
				ΑU	2769695	A	04-01-1996
				CA EP	2192064		14-12-1995
				ES	0812351	Al	17~12~1997
				Jþ	2002502226	3	22~01~2002
				ΝZ	288467	A	28-10-1998
				WO	9533821		14-12-1998
				US	5962325	A	05-10-1999
				US		A	31-10-2006
				US	6022743		08-02-2000
avava				US.	5863531	A	26-01-1999
US	2003091979	Al	15~05~2003	DE	a r e e e a a a	A1	09-08-2001
				AU	3734501	Å	07-08-2001
				CA		Al	02-08-2001
				WO	0155297		02-08-2001
				€P	1250416	AZ	23~10~2002
				ĕ₽	2004500093	T	08~01~2004

seemational application No.

PCT/3P2004/011401

Box No. I	Nucleotide and/or amino scid sequence(s) (Continuation of item 1.b of the first sheet)
i. Yviin inse	regard to any nucleoside engice emino acid sequence disclaned in the intermetional application and necessary to the cisimod ration, the international search was carried out on the bests of:
3 1.	To section to the enquence leting X a section bits X a section bits
š .	formal of material X in wither format X in computer readsubte form
\$.	time of Mingdomishing X contained in the international application as filed X Sted together with the international application in computer reactable from turnished subsequently to the Authority for the purpose of search
2.	In gastron, in the case that more than one version or copy of a sequence fetting and/or table relating thereto has been filed or runnished, the required atstaments that the information in the subsequent or additional copies is identifical to that in the application as filed, as appropriate, were furnished.

PCT/JP2004/011401

6ox II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
Tres less	enational Search Paport has not been established in respect of sortain duline under Article 17(2)(a) for the following research:
· X	Claims Note: Second they make to subject matter not required to be asserted by this Authority, namely:
	Although claims 97-141 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
	Chains Nos.: because the pasts of the international Application that do not comply with the prescribed requirements to such an activit that no meaningful International Search can be carried out, specifically:
&	Claims Now.: because they are dispendent claims and are not drefted in excordance with the second and third sentences of Fude 6.4(a).
Box III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This bas	apolitoral Securiting Authority found multiple inventions in this international application, as follows:
5 C	As all required additional search lives were timely paid by the applicant, this International Search Report covers all searches dains.
2	As all searchable claims could be searched without effort justifying an additional lee, this Authority did not invite payment of any additional lee.
* []	As ordy some of the required additional search fees were Smely paid by the applicant, this international Search Resport covers only those claims for which Seas were paid, specifically claims Nos.:
4.	No required additional asserth face were smally paid by the applicant, Consequently, this International Search Report is restricted to the Invention first mentioned in the claims, it is covered by claims Nos.;
Sensark	on Protest The additional search less were accompanied by the applicant's protest. No protest accompanied the payment of additional search less.