МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Качество и метрология программного обеспечения»

Тема: Расчет метрических характеристик качества разработки программ
по метрикам Холстеда

Студент гр. 7304	 Ажель И.В.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2021

Цель работы:

Расчет и сравнение метрик Холстеда для программ, написанных на языках Паскаль, Си, Ассемблер.

Задание:

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер.

Для каждой из разработанных программ(включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

- 1. Измеримые характеристики программ:
- число простых (отдельных) операторов, в данной реализации;
- число простых (отдельных) операндов, в данной реализации;
- общее число всех операторов в данной реализации;
- общее число всех операндов в данной реализации;
- число вхождений ј-го оператора в тексте программы;
- число вхождений ј-го операнда в тексте программы;
- словарь программы;
- длину программы.
- 2. Расчетные характеристики программы:
- длину программы;
- реальный и потенциальный объемы программы;
- уровень программы;
- интеллектуальное содержание программы;
- работу программиста;
- время программирования;
- уровень используемого языка программирования;
- ожидаемое число ошибок в программе.

Ход работы:

1. Расчет метрик вручную

Программа на языке Паскаль, а также реализованные программы на языках Си и Ассемблер представлены в приложениях А, Б и В соответственно.

В таблицах 1-3 представлены результаты подсчета количества операторов и операндов для программ, написанных на языках Паскаль, Си, Ассемблер.

Таблица 1 — Количество операторов и операндов в программе, написанной на языке Паскаль.

N₂	Оператор	Число вхождений	№	Операнд	Число вхождений
1	;	29	1	X	14
2	beginend	5	2	x2	1
3	:=	9	3	x1	4
4	writeln	5	4	alldone	1
5	if then	1	5	fx	6
6	repeat until	2	6	dfx	10
7	+	3	7	dx	4
8	write	6	8	a	2
9	>	1	9	b	3
10	readln	1	10	c	3
11	abs	3	11	logp	2
12	ı	8	12	tol	5
13	/	4	13	real	2
14	*	3	14	false	1
15	<=	1	15	true	1
16	()	17	16	1.0E-4	1
17	>=	1	17	18.19	1
18	ln	1	18	23180.0	1
			19	0.8858	1
			20	4.60517	1
			21	0.0	1
			22	999	1

Таблица 2 — Количество операторов и операндов в программе, написанной на языке Си.

№	Оператор	Число вхождений	N₂	Операнд	Число вхождений
1	log	1	1	X	16

2	-	8	2	fx	6
3	!	1	3	dfx	10
4	ifelse	3	4	x1	4
5	==	1	5	alldone	4
6		21	6	a	2
7	/	4	7	b	3
8	+	3	8	c	3
9	<	4	9	a	5
10	^	3	10	error	1
11	• •	26	11	tol	5
12	scanf	1	12	dx	4
13	*	12	13	true	1
14	abs	3	14	false	1
15	printf	3	15	18.19	1
16	&	4	16	23180.0	1
17	()	20	17	0.8858	1
18	>=	1	18	4.60517	1
19	dowhile	2	19	0.0	1
20	<=	1	20	999	1

Таблица 3 — Количество операторов и операндов в программе, написанной на языке Ассемблер.

№	Оператор	Число	№	Операнд	Число
,-	сперигор	вхождений	"-		вхождений
1	push	3	1	rbp	52
2	mov	90	2	rsp	6
3	movss	42	3	QWORD PTR [rbp-40]	7
4	nop	2	4	rdi	4
5	movd	8	5	QWORD PTR [rbp-32]	2
6	ret	3	6	rsi	3
7	sub	4	7	rax	20
8	jmp	4	8	xmm0	66
9	mulss	3	9	DWORD PTR [rax]	6
10	add	4	10	DWORD PTR [rbp-44]	4
11	addss	4	11	48	4
12	cmp	1	12	DWORD PTR [rbp-20]	11
13	divss	4	13	esi	2
14	call func	1	14	eax	18
15	lea	7	15	DWORD PTR [rbp-8]	6
16	comiss	5	16	.L3	3

17	je	2	17	edx	15
18	pxor	4	18	31	2
19	jb	2	19	BYTE PTR [rbp-1]	3
20	seta	1	20	1	6
21	xor	5	21	DWORD PTR [rbp-12]	6
22	test	2	22	.L4	2
23	jne	2	23	0	8
24	movq	4	24	DWORD PTR [rbp-16]	4
25	leave	3	25	.L5	3
26	movapd	2	26	[0+rax*4]	5
27	div	4	27	rdx	21
28	setnb	1	28	rcx	2
29	cvtss2sd	4	29	.L7	2
30	ucomiss	2	30	al	2
			31	.L8	2
			32	.L9	2
			33	rbx	4
			34	40	1
			35	80	1
			36	QWORD PTR [rbp-40]	1
			37	r8	1
			38	r9d	1
			39	16	3
			40	1	1
			41	3	2
			42	QWORD PTR [rbp-48]	3
			43	DWORD PTR [rbp-20]	4
			44	.L13	2
			45	2147483647	1
			46	0	5
			47	100	1
			48	ecx	5
			49	DWORD PTR	1
				[rax+rdx*4]	
			50	.L14	2

В таблице 4 представлены результаты расчета метрик Холстеда вручную для программ, реализованных на языках Паскаль, Си, Ассемблер.

Таблица 4 – Результаты расчета метрик вручную.

Характеристики	Паскаль	Си	Ассемблер
Число уникальных операторов	18	20	30
Число уникальных операндов	20	20	50
Общее число операторов	101	122	174
Общее число операндов	65	72	281
Алфавит	38	40	80
Экспериментальная длина программы	166	194	455
Теоретическая длина программы	161,16	172,8	414,5
Объем программы	871,168	1032,274	2876,055
Потенциальный объем	11,6	11,6	11,6
Уровень программы	0,013	0,011	0,004
Интеллектуальное содержание	29,511	28,66	34,116
Работа по программированию	67012,92	93818,18	719022,54
Ожидание времени кодирования	6701,2	9381,8	71902,2
Уровень языка программирования	0,151	0,128	0,046
Уровень ошибок	1	1	3

2. Программный расчет метрик

Результаты программного расчета метрик для программ, реализованных на языках Паскаль, Си представлены в приложениях Г и Д соответственно.

В таблицах 5-6 представлены результаты программного подсчета количества операторов и операндов для программ, написанных на языках Паскаль, Си.

Таблица 5 – Количество операторов и операндов в программе, написанной на языке Паскаль.

№	Оператор	Число вхождений	№	Операнд	Число
					вхождений
1	()	10	1	a	2
2	*	3	2	alldone	2
3	+	3	3	b	3
4	-	7	4	С	3
5	/	4	5	dfx	10
6	<	1	6	dx	4
7	<=	1	7	error	1
8	=	14	8	false	1
9	>=	1	9	fx	6

10	abs	3	10	logp	2
11	const	2	11	newdr	1
12	func	2	12	tol	5
13	if	1	13	X	14
14	ln	1	14	x1	4
15	newton	1	15	x2	1
16	program	1	16	0.0	1
17	readln	1	17	0.8858	1
18	repeat	1	18	1.0E-4	1
19	write	1	19	18.19	1
20	writeln	2	20	23180.0	1
			21	4.60517	1
			22	999	1
			23	',dfx='	1
			24	',fx='	1
			25	'First guess	1
				(999. to exit): '	
			26	'x='	1

Таблица 6 – Количество операторов и операндов в программе, написанной на языке Си.

№	Оператор	Число вхождений	№	Операнд	Число
					вхождений
1	!	1	1	"x = %f fx = %f	1
				$dfx = %f \n''$	
2	()	6	2	0.0	1
3	*	3	3	0.8858	1
4	+	3	4	18.19	1
5	,	11	5	1e-4	1
6	-	2	6	23180.0	1
7	/	4	7	4.60517	1
8	;	17	8	a	2
9	<	1	9	b	3
10	<=	1	10	С	3
11	=	12	11	dfx	10
12	>=	1	12	dx	4
13	_&	2	13	fx	6
14	_*	6	14	logp	2
15		5	15	tol	5
16	*	3	16	X	12
17	const	5	17	x1	4

18	dowhile	1	18	x2	1
19	fabs	3			
20	float	11			
21	func	2			
22	if	2			
23	int	1			
24	log	1			
25	newton	1			
26	void	2			
27	printf	1		-	

В таблице 7 представлены результаты программного расчета метрик Холстеда для программ, реализованных на языках Паскаль, Си.

Таблица 7 – Результаты программного расчета метрик.

Характеристики	Паскаль	Си
Число уникальных операторов	20	27
Число уникальных операндов	26	18
Общее число операторов	61	108
Общее число операндов	70	59
Алфавит	46	45
Экспериментальная длина программы	131	167
Теоретическая длина программы	208.65	203,441
Объем программы	723.587	917,139
Потенциальный объем	19,6515	19,6515
Уровень программы	0,0271584	0,0214269
Интеллектуальное содержание	26,8761	20,7263
Ожидание уровня программы	0,0371429	0,0225998
Работа по программированию	26643.2	42803.1
Ожидание времени кодирования	1480.18	2377.95
Уровень языка программирования	0,533704	0,421071
Уровень ошибок	1	1

3. Сравнение полученных результатов

В таблице 8 представлены результаты программного и ручного расчета метрик Холстеда для программ, реализованных на языках Паскаль, Си.

Таблица 8 – Сводная таблица расчетов на языках Паскаль, Си.

Характеристики	Ручной	Программный	Ручной	Программный
	расчет	расчет	расчет	расчет
	Паскаль	Паскаль	Си	Си
Число уникальных	18	20	20	27
операторов				
Число уникальных	20	26	20	18
операндов				
Общее число	101	61	122	108
операторов				
Общее число	65	70	72	59
операндов				
Алфавит	38	46	40	45
Экспериментальная	166	131	194	167
длина программы				
Теоретическая длина	161,16	208.65	172,8	203,441
программы				
Объем программы	871,168	723.587	1032,274	917,139
Потенциальный	11,6	19,6515	11,6	19,6515
объем				
Уровень программы	0,013	0,0271584	0,011	0,0214269
Интеллектуальное	29,511	26,8761	28,66	20,7263
содержание				
Ожидание уровня	0,018	0,0371429	0,012	0,0225998
программы				
Работа по	67012,92	26643.2	93818,18	42803.1
программированию				
Ожидание времени	6701,2	1480.18	9381,8	2377.95
кодирования				
Уровень языка	0,151	0,533704	0,128	0,421071
программирования				
Уровень ошибок	1	1	1	1

Выводы:

Метрические характеристики программ, написанных на языках Си и Паскаль выглядят похожим образом, так они имеют схожую структуру. Характеристики программы на языке Ассемблер сильно отличаются. Это связано с тем, что язык Ассемблер является языком низкого уровня.

В ходе выполнения данной работы все характеристики были посчитаны вручную и автоматически. Различия в полученных результатах обусловлены

тем, что автоматический метод считает не только функциональную часть программы, но и объявления типов переменных и функций. Также различия для программы на языке Си обусловлены тем, что инструмент автоматического подсчета не имеет возможности обработки типа данных bool, который присутствует в коде программы.

ПРИЛОЖЕНИЕ А.

КОД ПРОГРАММЫ НА ЯЗЫКЕ ПАСКАЛЬ.

```
program newdr;
var x, x2 : real;
alldone : boolean;
error : boolean;
procedure func(x: real;
var fx,dfx: real);
{ the vapor pressure of lead }
const
   a = 18.19;
   b = -23180.0;
   c = -0.8858;
   logp = -4.60517; {ln(.01)}
begin
  fx := a + b/x + c*ln(x) - logp;
  dfx := -b/(x*x) + c/x
end; { func }
procedure newton(var x: real);
const tol = 1.0E-4;
var fx,dfx,dx,x1: real;
begin{ newton }
  repeat
    x1:=x;
    func (x, fx, dfx);
    if(abs(dfx) < tol) then
       begin
          if (dfx \ge 0.0) then dfx = tol
          else dfx := -tol
       end;
    dx:=fx/dfx;
    x := x1 - dx;
    writeln('x=',x1,',fx=',fx,',dfx=',dfx);
  until abs(dx) \le abs(tol*x)
end; { newton }
      { main program }
begin
  alldone:=false;
  repeat
   writeln;
    write('First guess (999. to exit): '); { first guess }
    readln(x);
    if x=999. then alldone:=true
    else
```

```
begin
newton(x);
writeln;
writeln('The solution is ',x);
writeln
        end
    until alldone
end.
```

приложение Б.

КОД ПРОГРАММЫ НА ЯЗЫКЕ СИ.

```
#include <math.h>
#include <stdio.h>
#include <stdbool.h>
void func(float x, float*fx, float*dfx) {
     const float a = 18.19;
     const float b = -23180.0;
     const float c = -0.8858;
     const float logp = -4.60517;
     *fx = a + b / x + c * log(x) - logp;
     *dfx = -b / (x * x) + c / x;
}
void newton(float* x) {
     const float tol = 1e-4;
     float fx, dfx, dx, x1;
     do {
          x1 = *x;
          func(*x, &fx, &dfx);
          if (fabs(dfx) < tol) {</pre>
               if (dfx >= 0.0) dfx = tol;
               else dfx = -tol;
```

```
}
          dx = fx / dfx;
          *x = x1 - dx;
          printf("x= f fx = f dfx = f \n", x1, fx, dfx);
     } while (!(fabs(dx) \le fabs(tol * *x)));
}
int main() {
     float x, x2;
     bool alldone;
    bool error;
     alldone = false;
     do {
          printf("First guess (999. to exit): ");
          scanf("%f", &x);
          if (x == 999.0) {
              alldone = true;
          } else {
              newton(&x);
               printf("\nThe solution is f \in n, x);
          }
     } while (!alldone);
}
```

приложение в.

КОД ПРОГРАММЫ НА ЯЗЫКЕ АССЕМБЛЕР.

func(float, float*, float*):

push rbp

mov rbp, rsp

sub rsp, 48

movss DWORD PTR [rbp-20], xmm0

mov QWORD PTR [rbp-32], rdi

mov QWORD PTR [rbp-40], rsi

movss xmm0, DWORD PTR .LC1[rip]

movss DWORD PTR [rbp-4], xmm0

movss xmm0, DWORD PTR .LC2[rip]

movss DWORD PTR [rbp-8], xmm0

movss xmm0, DWORD PTR .LC3[rip]

movss DWORD PTR [rbp-12], xmm0

movss xmm0, DWORD PTR .LC4[rip]

movss DWORD PTR [rbp-16], xmm0

movss xmm0, DWORD PTR .LC2[rip]

movaps xmm1, xmm0

divss xmm1, DWORD PTR [rbp-20]

movss xmm0, DWORD PTR .LC1[rip]

addss xmm1, xmm0

movss DWORD PTR [rbp-44], xmm1

mov eax, DWORD PTR [rbp-20]

movd xmm0, eax

call std::log(float)

movss xmm1, DWORD PTR .LC3[rip]

mulss xmm0, xmm1

movss xmm1, DWORD PTR [rbp-44]

addss xmm1, xmm0

movss xmm0, DWORD PTR .LC5[rip]

addss xmm0, xmm1

mov rax, QWORD PTR [rbp-32]

movss DWORD PTR [rax], xmm0

```
xmm0, DWORD PTR [rbp-20]
       movss
       movaps xmm2, xmm0
               xmm2, xmm0
       mulss
               xmm0, DWORD PTR .LC6[rip]
       movss
       movaps xmm1, xmm0
              xmm1, xmm2
       divss
       movss xmm0, DWORD PTR .LC3[rip]
       divss xmm0, DWORD PTR [rbp-20]
              xmm0, xmm1
       addss
       mov
               rax, QWORD PTR [rbp-40]
              DWORD PTR [rax], xmm0
       movss
       nop
        leave
        ret
.LC10:
        .string "x= %f fx = %f dfx = %f \n"
newton(float*):
       push
              rbp
       mov rbp, rsp
        sub
              rsp, 48
               QWORD PTR [rbp-40], rdi
       mov
               xmm0, DWORD PTR .LC7[rip]
       movss
       movss DWORD PTR [rbp-4], xmm0
.L11:
              rax, QWORD PTR [rbp-40]
       mov
       movss xmm0, DWORD PTR [rax]
       movss
              DWORD PTR [rbp-8], xmm0
              rax, QWORD PTR [rbp-40]
       mov
               eax, DWORD PTR [rax]
       mov
        lea
               rcx, [rbp-20]
        lea
               rdx, [rbp-16]
               rsi, rcx
       mov
               rdi, rdx
       mov
               xmm0, eax
       movd
               func(float, float*, float*)
        call
```

```
movd xmm0, eax
       call std::fabs(float)
       movss xmm1, DWORD PTR .LC7[rip]
       comiss xmm1, xmm0
              al
       seta
       test al, al
              .L7
       jе
       movss xmm0, DWORD PTR [rbp-20]
       pxor
             xmm1, xmm1
       comiss xmm0, xmm1
       jb
             .L13
       movss xmm0, DWORD PTR .LC7[rip]
       movss DWORD PTR [rbp-20], xmm0
              .L7
       jmp
.L13:
       movss xmm0, DWORD PTR .LC9[rip]
       movss DWORD PTR [rbp-20], xmm0
.L7:
       movss xmm0, DWORD PTR [rbp-16]
       movss xmm1, DWORD PTR [rbp-20]
       divss xmm0, xmm1
       movss DWORD PTR [rbp-12], xmm0
       movss xmm0, DWORD PTR [rbp-8]
       subss xmm0, DWORD PTR [rbp-12]
             rax, QWORD PTR [rbp-40]
       mov
       movss DWORD PTR [rax], xmm0
       movss xmm0, DWORD PTR [rbp-20]
       pxor xmm1, xmm1
                     xmm1, xmm0
       cvtss2sd
       movss xmm0, DWORD PTR [rbp-16]
                     xmm0, xmm0
       cvtss2sd
       pxor xmm3, xmm3
                     xmm3, DWORD PTR [rbp-8]
       cvtss2sd
       movq rax, xmm3
```

eax, DWORD PTR [rbp-20]

mov

```
movapd xmm1, xmm0
             xmm0, rax
       mova
              edi, OFFSET FLAT:.LC10
       mov
              eax, 3
       mov
              printf
       call
             eax, DWORD PTR [rbp-12]
       mov
       movd xmm0, eax
             std::fabs(float)
       call
             DWORD PTR [rbp-44], xmm0
       movss
             rax, QWORD PTR [rbp-40]
       mov
       movss xmm1, DWORD PTR [rax]
       movss xmm0, DWORD PTR .LC7[rip]
       mulss xmm1, xmm0
             eax, xmm1
       movd
             xmm0, eax
       movd
       call
             std::fabs(float)
       movd eax, xmm0
       movd xmm4, eax
       comiss xmm4, DWORD PTR [rbp-44]
       setnb
             al
             eax, 1
       xor
             al, al
       test
              .L14
       jе
       jmp
              .L11
.L14:
       nop
       leave
       ret
.LC11:
       .string "First guess\t(999. to exit): "
.LC12:
       .string "%f"
.LC14:
       .string "\nThe solution is f \n"
```

movapd xmm2, xmm1

```
main:
       push rbp
       mov
              rbp, rsp
               rsp, 16
       sub
               BYTE PTR [rbp-1], 0
       mov
.L20:
           edi, OFFSET FLAT:.LC11
       mov
              eax, 0
       mov
       call
              printf
       lea
               rax, [rbp-8]
              rsi, rax
       mov
               edi, OFFSET FLAT:.LC12
       mov
               eax, 0
       mov
               __isoc99 scanf
       call
               xmm0, DWORD PTR [rbp-8]
       movss
       ucomiss xmm0, DWORD PTR .LC13[rip]
       jр
               .L16
       ucomiss xmm0, DWORD PTR .LC13[rip]
       jne
               .L16
               BYTE PTR [rbp-1], 1
       mov
       jmp
               .L18
.L16:
               rax, [rbp-8]
       lea
       mov rdi, rax
       call newton(float*)
       movss xmm0, DWORD PTR [rbp-8]
              xmm1, xmm1
       pxor
       cvtss2sd
                      xmm1, xmm0
       movq rax, xmm1
               xmm0, rax
       movq
              edi, OFFSET FLAT:.LC14
       mov
              eax, 1
       mov
               printf
       call
.L18:
               BYTE PTR [rbp-1], 0
       cmp
```

jne .L19 jmp .L20 .L19: eax, 0 mov leave ret .LCO: .long 2147483647 .long 0 .long 0 .long 0 .LC1: .long 1100055839 .LC2: .long -961210368 .LC3: .long -1084046390 .LC4: .long -1064084083 .LC5: .long 1083399565 .LC6: .long 1186273280 .LC7: .long 953267991 .LC9: .long -1194215657 .LC13:

.long 1148829696

приложение г.

РЕЗУЛЬТАТ ПРОГРАММНОГО РАСЧЕТА МЕТРИК ДЛЯ ПРОГРАММЫ НА ЯЗЫКЕ ПАСКАЛЬ.

The number of different operators : 20

Statistics for module pas.lxm

The number of different operands : 26 The total number of operators : 61 The total number of operands : 70

(D) : 46 Dictionary (N) : 131 Length (^N) : 208.65 Length estimation : 723.587 Volume (V) Potential volume : 19.6515 (*V) (**V) : 38.2071 Limit volume Programming level (L) : 0.0271584 Programming level estimation (^L) : 0.0371429 : 26.8761 Intellect (I) Time of programming (T) : 1480.18 Time estimation (^T) : 1723.81 Programming language level (lambda): 0.533704 (E) : 26643.2 Work on programming (B) : 0.297351

Table:

Error

Operators:

	1		10		()
	2		3	-	*
	3		3		+
ı	4	1	7	ı	_

Error estimation

(^B)

: 0.241196

```
5
           4
                | /
6
           1
                | <
  7
           1
                | <=
           14
                | =
   8
                | >=
   9
           1
   10
           3
                abs
        11
           2
                const
   12
           2
                | func
   13
           2
                | if
   14
           1
                | ln
        15
           1
                newton
   16
                | program
           1
   17
                | readln
           1
   18
           1
                | repeat
   19
           1
                | write
       20
           2
                | writeln
Operands:
                | ',dfx='
   1
           1
   2
                | ',fx='
           1
                | 'First guess (999. to exit): '
   3
           1
                | 'x='
           1
   4
        5
           1
                0.0
                0.8858
   6
           1
   7
                | 1.0E-4
           1
                | 18.19
   8
           1
   9
           1
                | 23180.0
           1
                4.60517
   10
   11
                999
        1
   12
           2
                | a
   13
                | alldone
           2
   14
           3
                l b
   15
           3
                | C
        16
           10
                | dfx
   17
           4
                | dx
   18
           1
                | error
```

Summary:

The number of different opera	ators	:	20
The number of different opera	:	26	
The total number of operators	5	:	61
The total number of operands		:	70
Dictionary	(D)	:	46
Length	(N)	:	131
Length estimation	(^N)	:	208.65
Volume	(V)	:	723.587
Potential volume	(*V)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0271584
Programming level estimation	(^L)	:	0.0371429
Intellect	(I)	:	26.8761
Time of programming	(T)	:	1480.18
Time estimation	(^T)	:	1723.81
Programming language level	(lambda)	:	0.533704
Work on programming	(E)	:	26643.2
Error	(B)	:	0.297351
Error estimation	(^B)	:	0.241196

приложение д.

РЕЗУЛЬТАТ ПРОГРАММНОГО РАСЧЕТА МЕТРИК ДЛЯ

ПРОГРАММЫ НА ЯЗЫКЕ СИ.

Statistics for module output.lxm					
The number of different operators	:	27			
The number of different operands	:	18			
The total number of operators	:	108			
The total number of operands	:	59			
Di ati an ana		4 -			
Dictionary (D)		45			
, , , , , , , , , , , , , , , , , , ,		167			
Length estimation (^N)	:	203.441			
Volume (V)	:	917.139			
Potential volume (*V)	:	19.6515			
Limit volume (**V)	:	38.2071			
Programming level (L)	:	0.0214269			
Programming level estimation (^L)	:	0.0225989			
Intellect (I)	:	20.7263			
Time of programming (T)	:	2377.95			
Time estimation (^T)	:	2746.61			
Programming language level (lambda)	:	0.421071			
Work on programming (E)	:	42803.1			
Error (B)	:	0.407877			
Error estimation (^B)	:	0.305713			
Table:					
=======================================					

Operator	~ C •
Operator	

ΟP	eraco.	L O .		
	1		1	!
	2		6	()
-	3		3	*
-	4		3	+
	5		11	,
	6		2	-
-	7		4	/
-	8		17	;
-	9		1	<
	10		1	<=
-	11		12	=
	12		1	>=

```
13
  14
           6
  15
           5
           3
   16
  17
          5
                | const
  18
          1
               | dowhile
  19
          3
               | fabs
  20
         11
               | float
  21
          2
               | func
  22
          2
               | if
               | int
  23
          1
  24
          1
               | log
  25
          1
               | newton
   26
          1
               | printf
   27
       2
               | void
Operands:
               | "x= %f fx = %f dfx = %f n"
   1
           1
           1
               1 0.0
          1
               0.8858
   4
          1
               | 18.19
  5
          1
               | 1e-4
   6
       | 1
               | 23180.0
               | 4.60517
  7
          1
          2
  8
               | a
   9
          3
               | b
          3
  10
               l c
       | 10
               | dfx
   11
  12
          4
               l dx
  13
       | 6
               | fx
         2
  14
       | logp
  15
          5
               | tol
  16
       | 12
               X
  17
          4
                | x1
   18
          1
                | x2
```

Summary:

Dictionary

The number of different operators : 27
The number of different operands : 18
The total number of operators : 108
The total number of operands : 59

24

: 45

D)

(

Length	(N)	:	167
Length estimation	(^N)	:	203.441
Volume	(V)	:	917.139
Potential volume	(*∀)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0214269
Programming level estimation	(^L)	:	0.0225989
Intellect	(I)	:	20.7263
Time of programming	(T)	:	2377.95
Time estimation	(^T)	:	2746.61
Programming language level	(lambda)	:	0.421071
Work on programming	(E)	:	42803.1
Error	(B)	:	0.407877
Error estimation	(^B)	:	0.305713