Introdução

Tal como se define o conceito de integral de uma função real de variável real, também se define o conceito de integral duplo de uma função escalar definida num subconjunto de \mathbb{R}^2 , de integral triplo de uma função escalar definida num subconjunto de \mathbb{R}^3 e, em geral, o conceito de integral múltiplo de uma função escalar definida num subconjunto de \mathbb{R}^n .

- ▶ Aqui, vamos considerar sempre funções $f:A\to\mathbb{R}$, limitadas (isto é, com contradomínio limitado), definidas num subconjunto limitado A de \mathbb{R}^n .
- ▶ O objectivo é, em qualquer caso, formalizar o conceito geral de volume de regiões em \mathbb{R}^n (área, no caso de \mathbb{R}^2 ; comprimento, no caso de \mathbb{R}).

Introdução

▶ Quando existe, o integral $\int_A f$ de uma tal função positiva f, pode ser interpretado como o volume da região de \mathbb{R}^{n+1} compreendida entre o gráfico de f e $A \times \{0\}$ (mais precisamente, do sólido constituído pelos segmentos que unem cada ponto (X,0), para $X \in A$, ao correspondente (X,f(X)) do gráfico).

▶ No caso de f não ser sempre positiva, o volume correspondente aos pontos em que é negativa contribui com sinal negativo para o valor total do integral: $\int_A f$ é então o volume correspondente à parte positiva do gráfico subtraído do volume correspondente à parte negativa.

Introdução

Não veremos em detalhe a definição do integral (de Riemman) $\int_A f$.

Informalmente, (para f positiva) a ideia é análoga à conhecida para funções de uma variável - aproxima-se a região limitada pelo gráfico de f, por defeito e por excesso, com "paralelipípedos" cujas bases cobrem todo o domínio de f e cujas alturas estão respectivamente abaixo e acima do gráfico:

Introdução

É claro que a soma dos volumes dos paralelipípedos abaixo do gráfico de f (soma inferior) é sempre menor ou igual à soma dos volumes dos que estão acima (soma superior).

Em certas condições, existe um único n° real V maior ou igual a qualquer soma inferior e menor ou igual a qualquer soma superior.

▶ Diz-se então que f é integrável (em A) e V é o valor de $\int_A f$.

Nota: A integrabilidade de uma função f num domínio A depende simultaneamente das características do domínio e da função.

Notação: Para integrais duplos usa-se também a notação

$$\iint_{A} f(x,y) dx dy \quad \text{ou} \quad \iint_{A} f(x,y) dy dx;$$

Para integrais triplos usa-se também a notação

$$\iiint_A f(x,y,z) dx dy dz, \quad \iiint_A f(x,y,z) dy dx dz \quad \text{ou} \quad \cdots$$

Exemplos

1. Sejam a < b e c < d números reais e considere-se o rectângulo em \mathbb{R}^2 : $A = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, c \le y \le d\}.$

Seja $f:A\to\mathbb{R}$ a função constante igual a h, em que $h\in\mathbb{R}^+.$

Então, a região compreendida entre o gráfico de f e $A \times \{0\}$ é um paralelipípedo, $[a,b] \times [c,d] \times [0,h]$, cuja base é $A \times \{0\}$ e de altura h. O seu volume é a área da base multiplicada pela altura e, portanto,

$$\iint_A h \, \mathrm{d}x \, \mathrm{d}y = (b-a)(d-c)h.$$

Volume

Mais geralmente, se A é um subconjunto de \mathbb{R}^n e a função constante igual a 1 é integrável em A, então $\int_A 1$ é o volume do "cilindro" $A \times [0,1]$, com base $A \times \{0\}$ e altura 1.

▶ Diz-se então que A tem volume (área, no caso de n=2 e comprimento, no caso de n=1) e

Volume de
$$A = \int_A 1$$

Por exemplo, se D é o disco de centro (0,0) e raio 1 em \mathbb{R}^2 , então

$$\iint_D 1 \, \mathrm{d}x \, \mathrm{d}y = \text{área de } D = \pi$$

que é igual ao volume do cilindro $D \times [0,1]$ em \mathbb{R}^3 .

Exemplos

2. Seja ainda D o círculo em \mathbb{R}^2 de centro (0,0) e raio 1 e $f:D\to\mathbb{R}$ dada por $f(x,y)=\sqrt{1-x^2-y^2}$.

O gráfico de f é a semi-esfera definida por $z=\sqrt{1-x^2-y^2}$, ou seja, por $x^2+y^2+z^2=1 \ \land \ z\geq 0$.

Sendo o volume da bola B((0,0,0);1) igual a $\frac{4\pi}{3}$, então o volume da metade A desta bola que está acima do plano xy é

 $\iiint 1 = \frac{2\pi}{3}$

е

$$\iint_{\Omega} \sqrt{1 - x^2 - y^2} = \frac{2\pi}{3}$$

Exemplos

3. Seja
$$f(x,y) = \cos y$$
 e $A = [-1,1] \times [0,\pi] = \{(x,y) \in \mathbb{R}^2 : -1 \le x \le 1, 0 \le y \le \pi\}.$

Então, imediatamente se pode afirmar que

$$\iint_A \cos y \, \mathrm{d}x \, \mathrm{d}y = 0$$

uma vez que, neste domínio, o volume da região limitada pelo gráfico de f acima do plano xy é igual ao volume da região limitada abaixo deste plano, e

contribuem para o valor do integral com sinais opostos.

Propriedades

Sejam A um subconjunto limitado de \mathbb{R}^n , $f,g:A\to\mathbb{R}$ funções limitadas e $a\in\mathbb{R}$. Prova-se que:

- Se A tem volume e f é contínua, então f é integrável em A.
- Se f é integrável em A então af é integrável em A e

$$\int_A af = a \int_A f$$

• Se f e g são integráveis em A então f + g é integrável em A e

$$\int_A (f+g) = \int_A f + \int_A g$$

 Se A = A₁ ∪ A₂, A₁ e A₂ são disjuntos, e f é integrável em A₁ e em A₂, então

$$\int_A f = \int_{A_1} f + \int_{A_2} f$$

• Se f e g são integráveis em A e $\forall x \in A$, $f(X) \leq g(X)$, então

$$\int_A f \le \int_A g$$

Cálculo de integrais múltiplos - integrais iterados

Nos exemplos anteriores, todos os integrais foram calculados recorrendo apenas à interpretação dos seus valores como o volume, previamente conhecido, de regiões de \mathbb{R}^n .

A situação mais comum será a inversa: usa-se o integral precisamente para calcular (e definir) volumes não conhecidos.

A técnica principal para o cálculo de integrais múltiplos, chamada iteração, consiste em reduzir o cálculo de um integral múltiplo de uma função definida em \mathbb{R}^n ao cálculo sucessivo de n integrais simples, chamados neste contexto integrais iterados.

O teorema que fundamenta este processo, Teorema de Fubini, não será aqui estudado. Será explicada a sua aplicação em casos particulares e através de exemplos.

Cálculo de integrais duplos - caso particular

Seja A uma região de \mathbb{R}^2 do tipo

$$A = \{(x,y) \in \mathbb{R}^2 : a \le x \le b \land \varphi(x) \le y \le \psi(x)\},\$$

em que $a < b \in \mathbb{R}$ e $\varphi, \psi: [a,b] \to \mathbb{R}$ são funções contínuas tais que $\forall x \in [a,b], \ \varphi(x) \leq \psi(x)$. A $y=\varphi(x)$ b

Esta região A tem área, e o seu valor é dado por

$$\int_a^b \psi(x) - \varphi(x) \, \mathrm{d}x.$$

Se $f:A\to\mathbb{R}$ é uma função contínua, então f é integrável em A e $\iint_A f(x,y)\,\mathrm{d}x\,\mathrm{d}y\,\,\mathrm{d}a$ o volume do sólido de \mathbb{R}^3 limitado entre $A\times\{0\}$ e o gráfico de f.

Cálculo de integrais duplos - caso particular

(continuação)

Intuitivamente, este volume pode ser obtido "somando" todas as áreas $A(x_0)$, onde $A(x_0)$ é a área da figura plana obtida por intersecção do sólido com o plano $x=x_0$ ($x_0 \in [a,b]$); mais precisamente,

$$\iint_A f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_a^b A(x) \, \mathrm{d}x.$$

Ora, em cada região de área $A(x_0)$, tem-se $\varphi(x_0) \leq y \leq \psi(x_0)$ e portanto

$$A(x_0) = \int_{\varphi(x_0)}^{\psi(x_0)} f(x_0, y) \, \mathrm{d}y$$

Cálculo de integrais duplos - caso particular

(continuação)

Obtém-se finalmente

$$\iint_{A} f(x,y) dx dy = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x,y) dy \right) dx.$$

Na expressão acima, os parêntesis são dispensáveis, uma vez que os símbolos $\mathrm{d} y$ e $\mathrm{d} x$ delimitam sem ambiguidade cada um dos integrais iterados: primeiro calcula-se $\int_{\varphi(x)}^{\psi(x)} f(x,y) \, \mathrm{d} y$ (integrando em ordem à variável y) cujo resultado é a função A(x) de x; depois, calcula-se o integral $\int_a^b A(x) \, \mathrm{d} x$ (integrando em ordem à variável x).

Note-se que, nesta forma, <u>a ordem dos símbolos dy e dx não é</u> indiferente: indica a ordem das variáveis relativamente às quais se fazem as sucessivas integrações.

Cálculo de integrais duplos - exemplo

1. Calcule-se o integral duplo $\iint_T xy \, dx \, dy$, onde T é a região de \mathbb{R}^2 limitada pelo triângulo de vértices (0,0), (1,0) e (0,1).

A região ${\mathcal T}$ pode ser descrita como

$$T = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 1 - x\}.$$

0 y=0 1

Então,

$$\iint_{T} xy \, dx \, dy = \int_{0}^{1} \int_{0}^{1-x} xy \, dy \, dx = \int_{0}^{1} \left[\frac{xy^{2}}{2} \right]_{0}^{1-x} \, dx$$
$$= \frac{1}{2} \int_{0}^{1} x(1-x)^{2} \, dx = \frac{1}{2} \left[\frac{x^{4}}{4} - \frac{2x^{3}}{3} + \frac{x^{2}}{2} \right]_{0}^{1}$$
$$= \frac{1}{24}$$

Cálculo de integrais duplos - caso particular

Analogamente, se o domínio de integração A de um integral duplo

 $\iint_A f(x,y) \, \mathrm{d}x \, \mathrm{d}y \, \, \mathsf{\acute{e}} \, \, \mathsf{da} \, \, \mathsf{forma}$

 $A = \{(x,y) \in \mathbb{R}^2: \ \varphi(y) \leq x \leq \psi(y) \land c \leq y \leq d\}, \ \ \text{d}$ em que $c < d \in \mathbb{R}$ e $\varphi, \psi : [c,d] \to \mathbb{R}$ são funções contínuas tais que $\forall y \in [c,d], \ \varphi(y) \leq \psi(y)$, então

$$\iint_A f(x, y) dx dy = \int_c^d \left(\int_{\varphi(y)}^{\psi(y)} f(x, y) dx \right) dy.$$

Por exemplo, o integral do exemplo 1 também pode ser calculado como

$$\iint_{T} xy \, dx \, dy = \int_{0}^{1} \int_{0}^{1-y} xy \, dx \, dy = \int_{0}^{1} \left[\frac{x^{2}y}{2} \right]_{0}^{1-y} \, dy$$
$$= \frac{1}{2} \int_{0}^{1} (1-y)^{2} y \, dy = \frac{1}{24}$$

Cálculo de integrais duplos - exemplo

2. Calcule-se
$$\iint_A e^{y^3} dx dy$$
 no domínio $A = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le y^2 \land -1 \le y \le 1\}:$

$$\iint_A e^{y^3} dx dy = \int_{-1}^1 \int_0^{y^2} e^{y^3} dx dy = \int_{-1}^1 \left[e^{y^3} x \right]_0^{y^2} dy$$

$$= \int_{-1}^1 e^{y^3} y^2 dx = \left[\frac{e^{y^3}}{3} \right]_0^1 = \frac{1}{3} (e - e^{-1})$$

O mesmo integral pode ser iterado pela ordem inversa das variáveis, mas para tal será necessário decompôr a região A em $A_1 \cup A_2$, como indicado na figura, e exprimir o integral na forma

$$\iint_{A} e^{y^{3}} dy dx = \iint_{A_{1}} e^{y^{3}} dy dx + \iint_{A_{2}} e^{y^{3}} dy dx$$

Não é no entanto uma boa opção, uma vez que não sabemos primitivar (em ordem a y) a função e^{y^3} .

Cálculo de integrais duplos - exemplo

3. Para calcular a área da região definida no exemplo anterior, $A = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le y^2 \land -1 \le y \le 1\}$, como um integral duplo e com a ordem de integração inversa:

área de
$$A = \iint_A 1 \, \mathrm{d}x \, \mathrm{d}y = \iint_{A_1} 1 \, \mathrm{d}x \, \mathrm{d}y + \iint_{A_2} 1 \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_0^1 \int_{\sqrt{x}}^1 1 \, \mathrm{d}y \, \mathrm{d}x + \int_0^1 \int_{-1}^{-\sqrt{x}} 1 \, \mathrm{d}y \, \mathrm{d}x = 2 \int_0^1 \int_{\sqrt{x}}^1 1 \, \mathrm{d}y \, \mathrm{d}x$$

$$= 2 \int_0^1 1 - \sqrt{x} \, \mathrm{d}x = 2 \left[x - \frac{2}{3} x^{\frac{3}{2}} \right]_0^1 = \frac{2}{3}$$

Alternativamente, ainda seria possível calcular a área de A subtraíndo à área do rectângulo $[0,1]\times[-1,1]$ a área limitada entre a parábola $x=y^2$ e a recta x=1:

área de $A = 2 - \int_0^1 \int_0^{\sqrt{x}} 1 \, dy \, dx$ ou área de $A = 2 - \int_0^1 \int_0^1 1 \, dx \, dy$

Cálculo de integrais triplos

A técnica de iteração funciona de forma análoga para integrais triplos, que podem ser calculados como uma sequência de 3 integrais iterados.

Por exemplo, se o domínio de integração A é da forma

$$\{(x, y, z) \in \mathbb{R}^3 : a \le x \le b, \varphi_1(x) \le y \le \psi_2(x), \varphi_2(x, y) \le z \le \psi_2(x, y)\}$$

em que φ_1, ψ_1 (1 variável) e φ_2, ψ_2 (2 variáveis) são funções contínuas, pode escrever-se

$$\iiint_A f \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_a^b \int_{\varphi_1(x)}^{\psi_1(x)} \underbrace{\int_{\varphi_2(x,y)}^{\psi_2(x,y)} f(x,y,z) \, \mathrm{d}z \, \, \mathrm{d}y \, \, \mathrm{d}x}_{\text{função de } x,y)}_{\text{função de } x}$$

Cálculo de integrais triplos - exemplos

1. Seja A o subconjunto de \mathbb{R}^3 definido pelas condições

0 ≤

$$x \le 1, \ 0 \le y \le 2, \ 0 \le z \le 2 - \frac{y}{2}.$$

Calcule-se $I = \iiint_A xy + e^z dx dy dz$:

$$I = \int_0^2 \int_0^1 \int_0^{2 - \frac{y}{2}} xy + e^z \, dz \, dx \, dy$$

$$= \int_0^2 \int_0^1 \left[xyz + e^z \right]_0^{2 - \frac{y}{2}} dx dy = \int_0^2 \int_0^1 2xy - \frac{xy^2}{2} + e^{2 - \frac{y}{2}} - 1 dx dy$$
$$= \int_0^2 \left[x^2y - \frac{x^2y^2}{4} + e^{2 - \frac{y}{2}}x - x \right]^1 dy$$

$$\int_0^2 \begin{bmatrix} x^2 & y^2 & y & y \\ y & y & y \end{bmatrix} \begin{bmatrix} y^2 & y \\ y & y \end{bmatrix}$$

 $= \int_0^2 y - \frac{y^2}{4} + e^{2-\frac{y}{2}} - 1 \, dy = \left[\frac{y^2}{2} - \frac{y^3}{12} - 2e^{2-\frac{y}{2}} - y \right]_0^2 = -\frac{2}{3} - 2e + 2e^2$

Cálculo de integrais triplos - exemplos

2. Seja C a região de \mathbb{R}^3 limitada pelo cilindro de equação $x^2+y^2=1$ e os planos z=0 e z=2.

Nesta região, z varia entre 0 e 2.

Fixado um z entre estes dois valores, o que corresponde a considerar a secção de C por um plano da forma z = constante, as coordenadas x e y obedecem à condição $x^2 + y^2 < 1$.

A variação máxima de y é entre -1 e 1 e, para cada um destes valores, $-\sqrt{1-y^2} \le x \le \sqrt{1-y^2}$. Assim,

$$C = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le 2, -1 \le y \le 1, -\sqrt{1 - y^2} \le x \le \sqrt{1 - y^2}\}$$

Cálculo II (M1003) - 2018/2019 4. 20

Cálculo de integrais triplos - exemplos

2. (Continuação) O integral $\iiint_C y \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$ é nulo, uma vez que a região C é simétrica relativamente ao plano y=0 e a função f(x,y,z)=y toma valores simétricos nas metades de C que estão em cada um dos lados deste plano.

Calculemos $I = \iiint_C |y| dx dxy dz$:

$$I = \int_0^2 \int_{-1}^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} |y| \, dx \, dy \, dz$$

$$= \int_0^2 \int_{-1}^0 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} -y \, dx \, dy \, dx + \int_0^2 \int_0^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} y \, dx \, dy \, dz$$

$$= 2 \int_0^2 \int_0^1 y \left[x \right]_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \, dy \, dz = 4 \int_0^2 \int_0^1 y \sqrt{1-y^2} \, dy \, dz$$

$$= -\frac{4}{3} \int_0^2 \left[(1-y^2)^{\frac{3}{2}} \right]_0^1 \, dz = \frac{4}{3} \int_0^2 1 \, dz = \frac{8}{3}$$

Cálculo de integrais triplos - exemplos

3. Considere-se, em \mathbb{R}^3 , o tetraedro

$$T = \{(x, y, z) \in \mathbb{R}^3 : x, y, z \ge 0, x + y + z \le 1\}$$

e $f(x, y, z) = (x + y + z)^2$.

Neste caso, para calcular $\int_T f$, a escolha da ordem de iteração é indiferente, uma vez que as 3 coordenadas x,y,z têm um papel simétrico tanto no domínio como na função.

A coordenada x varia, neste domínio, entre 0 e 1. Fixe-se $x=x_0\in[0,1]$. A intersecção de T com o plano $x=x_0$ é o triângulo T_{x_0} representado na figura.

Em T_{x_0} , a variação máxima de y é entre 0 e $1-x_0$ e , fixado um tal y, z varia entre 0 e $1-x_0-y$.

Cálculo de integrais triplos - exemplos

3. (continuação) Portanto,

$$\iiint_T f(x, y, z) dx dy dz = \int_0^1 \left(\iint_{T_{x_0}} f(x, y, z) dy dz \right) dx$$
$$= \int_0^1 \int_0^{1-x} \int_0^{1-x-y} f(x, y, z) dz dy dx$$

Calculando este integral, I, vem

$$I = \frac{1}{3} \int_0^1 \int_0^{1-x} \left[(x+y+z)^3 \right]_0^{1-x-y} \, \mathrm{d}y \, \mathrm{d}x$$

$$= \frac{1}{3} \int_0^1 \int_0^{1-x} 1 - (x+y)^3 \, \mathrm{d}y \, \mathrm{d}x = \frac{1}{3} \int_0^1 \left[y - \frac{(x+y)^4}{4} \right]_0^{1-x}$$

$$= \frac{1}{3} \int_0^1 1 - x - \frac{1}{4} + \frac{x^4}{4} \, \mathrm{d}x = \frac{1}{10}$$

Cálculo II (M1003) - 2018/2019 4. 2

Mudança de coordenadas

Tal como é muitas vezes útil usar uma mudança de variável para calcular integrais simples, também alguns integrais múltiplos são mais facilmente calculados fazendo uma mudança das coordenadas cartesianas, $x, y, z \ldots$, para outros sistemas de coordenadas.

ightharpoonup Uma mudança de coordenadas em \mathbb{R}^n é uma função

$$g: A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^n$$

 $(u_1, \dots, u_n) \mapsto g(u_1, \dots, u_n)$

tal que $g_{|\overset{\circ}{A}}$ é injectiva, de classe c^1 e $\det \mathcal{J}g(u) \neq 0$, $\forall u \in \overset{\circ}{A}$.

▶ Diz-se então que (u_1, \ldots, u_n) são as coordenadas de $(x_1, \ldots, x_n) = g(u_1, \ldots, u_n)$ no novo sistema de coordenadas definido por g.

Mudança de variável em integrais múltiplos

Seja $g:A\to\mathbb{R}^n$ uma mudança de coordenadas em \mathbb{R}^n , em que A é um subconjunto limitado de \mathbb{R}^n .

Sejam B = g(A) e $f: B \to \mathbb{R}$ uma função limitada e integrável.

Em determinadas condições que asseguram a existência dos integrais, prova-se que

(Teorema da Mudança de variável)

$$\int_{B} f = \int_{A} f \circ g \cdot |\det \mathcal{J}g|$$

ou, com outra notação,

$$\textstyle \int_{B} f(x_1,\ldots,x_n) \,\mathrm{d} x_1 \ldots \mathrm{d} x_n = \int_{A} f(g(u_1,\ldots,u_n)) \cdot \left| \det \mathcal{J} g(u_1,\ldots,u_n) \right| \,\mathrm{d} u_1 \ldots \mathrm{d} u_n$$

(mudam-se as variáveis x_1, \ldots, x_n para u_1, \ldots, u_n)

Mudança de variável em integrais múltiplos

A escolha de um sistema de coordenadas apropriado para calcular um dado integral depende simultaneamente das características do domínio e da função.

Iremos estudar alguns sistemas de coordenadas, em \mathbb{R}^2 e em \mathbb{R}^3 , que são frequentemente os mais adequados para descrever os domínios de integração e para calcular integrais duplos e triplos.

Coordenadas polares (em \mathbb{R}^2)

Um ponto $P \in \mathbb{R}^2$ de coordenadas cartesianas $(x,y) \neq (0,0)$ fica determinado pela distância r à origem e pelo ângulo $\theta \in [0,2\pi[$ que o seu vector de posição faz com o vector (1,0), contado no sentido directo a partir de (1,0).

ightharpoonup Os parâmetros r e θ dizem-se as coordenadas polares de P.

O ponto P = (0,0) fica determinado pela coordenada r = 0.

(Coordenadas polares
$$r \in \mathbb{R}_0^+$$
, $\theta \in [0, 2\pi[$)
$$(x,y) = (r\cos\theta, r\sin\theta) \iff$$

$$r = \sqrt{x^2 + y^2} \wedge \begin{cases} \cos\theta = \frac{x}{\sqrt{x^2 + y^2}} \\ \sin\theta = \frac{y}{\sqrt{x^2 + y^2}} \end{cases}$$
, $se(x,y) \neq (0,0)$

Coordenadas polares - exemplos

1. Se $r_0 \in \mathbb{R}^+$, a equação em coordenadas polares $r = r_0$ define o conjunto dos pontos $(x,y) = (r\cos\theta,r\sin\theta) \in \mathbb{R}^2$ tais que $\sqrt{x^2+y^2} = r_0$, que é a circunferência centrada na origem de raio r_0 .

2. O subconjunto de \mathbb{R}^2 definido, em coordenadas polares, pela equação $\theta=\theta_0$, em que θ_0 é um ângulo fixo entre 0 e 2π , é a semi-recta que faz com o semi-eixo positivo dos xx um ângulo θ_0 (quando contado no sentido directo a partir deste semi-eixo).

Cálculo de integrais em coordenadas polares

A mudança para coordenadas polares é realizada pela função

$$g: \mathbb{R}_0^+ \times [0, 2\pi[\rightarrow \mathbb{R}^2$$

 $(r, \theta) \mapsto (r \cos \theta, r \sin \theta)$

que é de classe c¹, sobrejectiva, e injectiva quando restrita ao interior do domínio. Além disso, $\forall (r,\theta) \in \mathbb{R}^+ \times [0,2\pi[$,

$$\det \mathcal{J}g_{(r,\theta)} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r > 0$$

Assim, se $A\subseteq\mathbb{R}^2$ é limitado, B=g(A) e $f:B\to\mathbb{R}$ estão nas condições do Teorema da Mudança de Variável, então

$$\iint_{B} f(x, y) dx dy = \iint_{A} f(r \cos \theta, r \sin \theta) \cdot r dr d\theta$$

Cálculo de integrais em coordenadas polares - exemplos

1. Considere-se a parte B do anel definido por $1 \le x^2 + y^2 \le 4$ cujos pontos (x,y) satisfazem ainda as condições $0 \le y \le x$.

Escrevendo
$$(x,y)=g(r,\theta)=(r\cos\theta,r\sin\theta)$$
, obtém-se
$$1\leq x^2+y^2\leq 4\iff 1\leq r\leq 2\quad \text{e}\quad 0\leq y\leq x\iff 0\leq \theta\leq \frac{\pi}{4}$$

Assim, $B = \{(r\cos\theta, r\sin\theta): 1 \le r \le 2, 0 \le \theta \le \frac{\pi}{4}\} = g(A)$, onde $A = \{(r,\theta): 1 \le r \le 2, 0 \le \theta \le \frac{\pi}{4}\}.$

Cálculo de integrais em coordenadas polares - exemplos

1. (continuação) Note-se que A e B=g(A) não têm a mesma área: a transformação causada pela função g altera a área. De facto, a área do rectângulo A é $\frac{\pi}{4}$ e a área de B é $\frac{4\pi-\pi}{8}=\frac{3\pi}{8}$.

Por outro lado, sabe-se que a área de B é dada pelo integral $\iint_B 1 \, \mathrm{d}x \, \mathrm{d}y$ e, usando a mudança para coordenadas polares, vem

$$\iint_{B} 1 \, \mathrm{d}x \, \mathrm{d}y = \iint_{A} 1 \cdot r \, \mathrm{d}r \, \mathrm{d}\theta$$

O produto por r no segundo integral vai fazer a correcção entre a área de $A \ (= \iint_A 1 \, \mathrm{d} r \, \mathrm{d} \theta)$ e a área de B. Fazendo o cálculo:

$$\iint_{B} 1 \, \mathrm{d}x \, \mathrm{d}y = \iint_{A} 1 \cdot r \, \mathrm{d}r \, \mathrm{d}\theta = \int_{0}^{\frac{\pi}{4}} \int_{1}^{2} r \, \mathrm{d}r \, \mathrm{d}\theta$$
$$= \int_{0}^{\frac{\pi}{4}} \left[\frac{r^{2}}{2} \right]_{1}^{2} \, \mathrm{d}\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} 3 \, \mathrm{d}\theta = \frac{3\pi}{8}$$

Cálculo de integrais em coordenadas polares - exemplos

2. Calcule-se a área da região B de \mathbb{R}^2 limitada pela curva cuja equação em coordenadas polares é $r=1-\cos\theta$.

Então, B é o conjunto dos pontos de $(x,y)=(r\cos\theta,r\sin\theta)\in\mathbb{R}^2$ tais que $0\leq r\leq 1-\cos\theta$ e $0\leq \theta<2\pi$.

Sendo

$$A = \{(r, \theta) : 0 \le r \le 1 - \cos \theta, 0 \le \theta < 2\pi\},$$
 área de $B = \iint_B 1 \, \mathrm{d}x \, \mathrm{d}y$
$$= \iint_A r \, \mathrm{d}r \, \mathrm{d}\theta = \int_0^{2\pi} \int_0^{1 - \cos \theta} r \, \mathrm{d}r \, \mathrm{d}\theta$$

Cálculo de integrais em coordenadas polares - exemplos

2. (continuação) Logo,

área de
$$B = \frac{1}{2} \int_0^{2\pi} \left[r^2 \right]_0^{1-\cos\theta} d\theta = \frac{1}{2} \int_0^{2\pi} 1 + \cos^2\theta - 2\cos\theta d\theta$$
$$= \int_0^{2\pi} 1 + \frac{1 + \cos(2\theta)}{2} - 2\cos\theta d\theta$$
$$= \int_0^{2\pi} \frac{3}{2} d\theta + \underbrace{\int_0^{2\pi} \frac{1}{2} \cos(2\theta) - 2\cos\theta d\theta}_{=0} = 3\pi$$

Note-se que a curva que constitui a fronteira de B, de equação em coordenadas polares $r=1-\cos\theta$, tem equação em coordenadas cartesianas $x^2+y^2=\sqrt{x^2+y^2}-x$. Seria bastante complicado calcular a área de B usando um integral em coordenadas cartesianas (apesar de a função a integrar ser o mais simples possível).

Cálculo de integrais em coordenadas polares - exemplos

3. Seja $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, 0 \le \sqrt{3}y \le x\}$ e $f(x, y) = e^{x^2 + y^2}$. Em coordenadas polares,

coordenadas polares,
$$x^2 + y^2 \le 9 \iff r \le 3$$

$$e \quad y \ge 0 \iff \theta \in [0, \pi].$$

Os pontos $(x,y) \neq (0,0)$ da recta $x = \sqrt{3}y$ satisfazem a equação

$$\frac{y}{x} = \frac{1}{\sqrt{3}} \iff \frac{r \sin \theta}{r \cos \theta} = \frac{1}{\sqrt{3}} \iff \operatorname{tg} \theta = \frac{1}{\sqrt{3}}.$$

O ângulo $\theta \in [0,\pi]$ que satisfaz esta condição é $\theta = \frac{\pi}{6}.$

Assim,
$$A = \{(r\cos\theta, r\sin\theta): r \le 3, 0 \le \theta \le \frac{\pi}{6}\}$$
 e

$$\iint_A e^{x^2+y^2} \, \mathrm{d}x \, \mathrm{d}y = \int_0^{\frac{\pi}{6}} \int_0^3 e^{r^2} \cdot r \, \mathrm{d}r \, \mathrm{d}\theta = \frac{1}{2} \int_0^{\frac{\pi}{6}} \left[e^{r^2} \right]_0^3 \, \mathrm{d}\theta = \frac{\pi}{12} (e^9 - 1)$$

Coordenadas cilíndricas (em \mathbb{R}^3)

As coordenadas cilíndricas de um ponto $P \neq 0_{\mathbb{R}^3}$ de \mathbb{R}^3 são r, θ e z, onde z é a terceira coordenada cartesiana de P e ρ, θ são as coordenadas polares de (x, y, 0) no plano z = 0.

Os pontos da forma P = (0,0,z) ficam determinados pelas coordenadas r = 0 e z.

(Coordenadas cilíndricas r, θ, z)

$$(x, y, z) = (r \cos \theta, r \sin \theta, z) \iff$$

$$r = \sqrt{x^2 + y^2} \land \begin{cases} \cos \theta = \frac{x}{\sqrt{x^2 + y^2}} \\ \sin \theta = \frac{y}{\sqrt{x^2 + y^2}} \end{cases}, se(x, y) \neq (0, 0)$$

Coordenadas cilíndricas - exemplos

- 1. A coordenada $r=\sqrt{x^2+y^2}$ de $(x,y,z)\in\mathbb{R}^3$ é a distância do ponto ao eixo dos zz. Assim, a equação em coordenadas cilíndricas $r=r_0(\in\mathbb{R}^+_0)$ define o cilindro de raio r_0 centrado no eixo dos zz.
- 2. A equação $\theta=\theta_0(\in[0,2\pi[))$, em coordenadas cilíndricas, define o semi-plano que contém o eixo dos zz e faz com o semi-plano positivo xz um ângulo θ_0 (contado no sentido directo a partir deste semi-plano).

Cálculo de integrais em coordenadas cilíndricas

A mudança para coordenadas cilíndricas é realizada pela função

$$g: \mathbb{R}_0^+ \times [0, 2\pi[\times \mathbb{R} \rightarrow \mathbb{R}^3$$

 $(r, \theta, z) \mapsto (r \cos \theta, r \sin \theta, z)$

que é de classe c¹, sobrejectiva, e injectiva quando restrita ao interior do domínio. Além disso, $\forall (r, \theta, z) \in \mathbb{R}^+ \times [0, 2\pi[\times \mathbb{R},$

$$\det \mathcal{J}g_{(r,\theta)} = \begin{vmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{vmatrix} = r > 0$$

Assim, se $A\subseteq\mathbb{R}^3$ é limitado, B=g(A) e $f:B\to\mathbb{R}$ estão nas condições do Teorema da Mudança de Variável, então

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Omega} f(r \cos \theta, r \sin \theta, z) \cdot r dr d\theta dz$$

Cálculo de integrais em coordenadas cilíndricas - exemplos

1. Calcule-se novamente, agora usando coordenadas cilíndricas, o integral $I = \iiint_C |y| dx dy dz$, em que

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, 0 \le z \le 2\}.$$

Descrevendo C em coordenadas cilíndricas:

$$C = \{ (r\cos\theta, r\sin\theta, z) \in \mathbb{R}_0^+ \times [0, 2\pi[\times\mathbb{R} : \\ r \le 1, 0 \le z \le 2 \}$$

e portanto

$$\iiint_C |y| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_0^{2\pi} \int_0^1 \int_0^2 |r \sin \theta| \cdot r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\theta.$$

A função $|y|=|r\sin\theta|$ é igual a $\pm r\sin\theta$, conforme $r\sin\theta$ é positivo ou negativo, respectivamente. Ora,

$$y = r \operatorname{sen} \theta \ge 0 \iff \theta \in [0, \pi] \quad \text{e} \quad y = r \operatorname{sen} \theta \le 0 \iff \theta \in [\pi, 2\pi]$$

Cálculo de integrais em coordenadas cilíndricas - exemplos

1. (continuação) Então

$$I = \int_0^{\pi} \int_0^1 \int_0^2 r \operatorname{sen} \theta \cdot r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\theta + \int_{\pi}^{2\pi} \int_0^1 \int_0^2 -r \operatorname{sen} \theta \cdot r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\theta.$$

Alternativamente, e tal como foi feito em coordenadas cartesianas, atendendo a que tanto o domínio de integração como a função são simétricos relativamente ao plano y=0, tem-se

$$I = 2 \int_0^{\pi} \int_0^1 \int_0^2 r \operatorname{sen} \theta \cdot r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\theta$$

$$= 2 \int_0^{\pi} \int_0^1 r^2 \operatorname{sen} \theta \left[z\right]_0^2 \, \mathrm{d}r \, \mathrm{d}\theta = 4 \int_0^{\pi} \int_0^1 r^2 \operatorname{sen} \theta \, \mathrm{d}r \, \mathrm{d}\theta$$

$$\frac{4}{3} \int_0^{\pi} \operatorname{sen} \theta \left[r^3\right]_0^1 \, \mathrm{d}\theta = \frac{4}{3} \int_0^{\pi} \operatorname{sen} \theta \, \mathrm{d}\theta$$

$$= \frac{4}{3} \left[-\cos\theta\right]_0^{\pi} = \frac{8}{3}$$

Cálculo de integrais em coordenadas cilíndricas - exemplos

2. Seja
$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z^2, 0 \le z \le 1\}$$
 e $f(x, y, z) = zx^2 + zy^2$. Calcule-se $I = \iiint_A f(x, y, z) \, dx \, dy \, dz$.

Para descrever A em coordenadas cilíndricas, note-se que $x^2+y^2\leq z^2\iff r^2\leq z^2$ e, atendendo a que $z\geq 0$ (nos pontos de A), $r^2\leq z^2\iff r\leq z$.

Tal como no exemplo anterior, não há nenhuma condição relativamente à coordenada θ . Isto significa que θ varia livremente entre 0 e 2π e que a variação de r e z não dependem de θ . A região A é, pois, um sólido de revolução em torno do eixo dos zz.

Cálculo de integrais em coordenadas cilíndricas - exemplos

2. (continuação) A secção de A por um semi-plano $\theta = \theta_0 (\in [0, 2\pi[)$ não depende de θ_0 e ajuda a perceber qual a forma de A e a determinar os limites de integração das coordenadas r e θ :

Sólidos de revolução em coordenadas cilíndricas

▶ Em geral, se $a < b \in \mathbb{R}$ e $f:[a,b] \to \mathbb{R}$ é uma função contínua e positiva, o subconjunto de \mathbb{R}^3 definido em coordenadas cilíndricas pela condição

$$r \leq f(z), \quad z \in [a, b],$$

ou seja, o conjunto

$$B = \{ (r \cos \theta, r \sin \theta, z) : \theta \in [0, 2\pi[, z \in [a, b], r \in [0, f(z)]] \}$$

é um sólido de revolução em torno do eixo dos zz.

Volume de sólidos de revolução

▶ O volume do sólido de revolução S definido, em coordenadas cilíndricas por $r \le f(z)$, $z \in [a, b]$, é dado por:

$$\operatorname{Vol}(S) = \iiint_{S} 1 \, dx \, dy \, dz$$

$$= \int_{0}^{2\pi} \int_{a}^{b} \int_{0}^{f(z)} r \, dr \, dz \, d\theta = 2\pi \int_{a}^{b} \left[\frac{r^{2}}{2} \right]_{0}^{f(z)} \, dz$$

$$= \pi \int_{a}^{b} (f(z))^{2} \, dz$$

Obtém-se assim uma fórmula para o cálculo do volume de um sólido de revolução (em torno do eixo dos zz), como um integral simples.

Cálculo II (M1003) - 2018/2019 4. 43

Volume de sólidos de revolução - exemplo

O sólido S de \mathbb{R}^3 limitado entre o parabolóide de equação $x^2+y^2=z$ e o plano z=4 é descrito em coordenadas cilíndricas por $r^2\leq z$ (i.e., $r\leq \sqrt{z}$) e $0\leq z\leq 4$.

O volume de S pode ser calculado por

$$Vol(S) = \int_{S} 1 = \int_{0}^{2\pi} \int_{0}^{2} \int_{r^{2}}^{4} r \, dz \, dr \, d\theta = 2\pi \int_{0}^{2} r(4 - r^{2}) \, dr = 8\pi$$

ou, equivalentemente,

$$Vol(S) = \pi \int_{0}^{4} (\sqrt{z})^{2} dz = \frac{2\pi}{3} \left[z^{\frac{3}{2}} \right]_{0}^{4} = 8\pi$$

Cálculo II (M1003) - 2018/2019 4. 4

Coordenadas esféricas (em \mathbb{R}^3)

A um ponto $P=(x,y,z)\neq (0,0,0)$ de \mathbb{R}^3 pode-se atribuir as coordenadas ρ , $\theta\in\varphi$, onde

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

é a distância de P à origem, θ coincide com a coordenada cilíndrica já definida e φ (\in [0, π]) é o ângulo que o vector (0,0,1) faz com o vector de posição de P.

▶ As coordenadas ρ , θ e φ dizem-se as coordenadas esféricas de P. O ponto (0,0,0) fica determinado pela coordenada $\rho=0$.

Se r, θ, z são as coordenadas cilíndricas de P, facilmente se verifica que

$$r=
ho\sin\varphi\quad {
m e}\quad z=
ho\cos\varphi.$$

Coordenadas esféricas (em \mathbb{R}^3)

Daqui resulta a expressão de (x, y, z) em coordenadas esféricas:

(Coordenadas esféricas
$$\rho, \theta, \varphi$$
)
$$(x, y, z) = (\rho \operatorname{sen} \varphi \cos \theta, \rho \operatorname{sen} \varphi \operatorname{sen} \theta, \rho \cos \varphi)$$

Muitas vezes é útil relacionar os 3 sistemas de coordenadas em \mathbb{R}^3 , cartesianas, cilíndricas e esféricas. Tem-se então:

$$\begin{cases} x = r \cos \theta = \rho \sin \varphi \cos \theta \\ y = r \sin \theta = \rho \sin \varphi \sin \theta \\ z = z = \rho \cos \varphi \end{cases}$$

Coordenadas esféricas - exemplos

- 1. A equação em coordenadas esféricas $\rho = \rho_0 (\in \mathbb{R}_0^+)$ define a superfície esférica de raio ρ_0 centrada na origem.
- 2. A equação $\varphi=\varphi_0(\in[0,\pi])$, em coordenadas esféricas, define um cone em \mathbb{R}^3 cuja equação em coordenadas cilíndricas é $r=(\lg\varphi_0)z$ (corresponde a uma semi-recta, num semi-plano $\theta=\theta_0$).

Cálculo de integrais em coordenadas esféricas

A função de mudança para coordenadas esféricas é

$$\begin{split} g: \mathbb{R}_0^+ \times \big[0, 2\pi \big[\times \big[0, \pi \big] & \to & \mathbb{R}^3 \\ \big(\rho, \theta, \varphi \big) & \mapsto & \big(\rho \, \operatorname{sen} \varphi \cos \theta, \rho \, \operatorname{sen} \varphi \, \operatorname{sen} \theta, \rho \, \cos \varphi \big) \end{split}$$

e,
$$\forall (\rho,\theta,\varphi) \in \mathbb{R}^+ \times [0,2\pi[\times]0,\pi[$$
,

$$\det \mathcal{J} g_{(r,\theta,\varphi)} = \begin{vmatrix} \sin \varphi \cos \theta & -\rho \sin \varphi \sin \theta & \rho \cos \varphi \cos \theta \\ \sin \varphi \sin \theta & \rho \sin \varphi \cos \theta & \rho \cos \varphi \sin \theta \\ \cos \varphi & 0 & -\rho \sin \varphi \end{vmatrix} = -\rho^2 \sin \varphi < 0,$$

logo, $\left|\det \mathcal{J}g_{(r,\theta,\varphi)}\right|=\rho^2\operatorname{sen}\varphi$. Assim, se B=g(A) e $f:B\to\mathbb{R}$ estão nas condições do Teorema da Mudança de Variável, então

$$\int_{\mathcal{B}} f = \iiint_{\mathcal{A}} f(\rho \operatorname{sen} \varphi \cos \theta, \rho \operatorname{sen} \varphi \operatorname{sen} \theta, \rho \cos \varphi) \cdot \rho^{2} \operatorname{sen} \varphi \, \mathrm{d}\rho \, \mathrm{d}\theta \, \mathrm{d}\varphi$$

Cálculo de integrais em coordenadas esféricas - exemplos

1. Calcule-se o volume de uma bola de raio $a\ (>0)$ usando coordenadas esféricas.

A bola (fechada) B centrada na origem de raio a é descrita em coordenadas esféricas pela condição $\rho \leq a$, sendo que as coordenadas θ e φ variam livremente em $[0,2\pi[$ e $[0,\pi]$, respectivamente. O seu volume é dado por

$$\iiint_{B} 1 \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_{0}^{2\pi} \int_{0}^{a} \int_{0}^{\pi} 1 \cdot \rho^{2} \operatorname{sen} \varphi \, \mathrm{d}\varphi \, \mathrm{d}\rho \, \mathrm{d}\theta$$
$$= 2\pi \int_{0}^{a} \rho^{2} \left[-\cos \varphi \right]_{0}^{\pi} \, \mathrm{d}\rho$$
$$= 2\pi \int_{0}^{a} 2\rho^{2} \, \mathrm{d}\rho$$
$$= 4\pi \left[\frac{\rho^{3}}{3} \right]_{0}^{a} = \frac{4\pi a^{3}}{3}$$

Cálculo de integrais em coordenadas esféricas - exemplos

2. Seja $B=\{(x,y,z)\in\mathbb{R}^3:\ x^2+y^2+z^2\leq 1,\ z^2\geq x^2+y^2,z\geq 0\}.$ Vamos usar coordenadas esféricas para calcular $\int_B z$.

Para tal, note-se que

$$\begin{aligned} x^2 + y^2 + z^2 &\leq 1 \iff r \leq 1 \quad \text{e} \\ z^2 &\geq x^2 + y^2 \, \land \, z \geq 0 \iff z^2 \geq r^2 \, \land \, z \geq 0 \iff z \geq r \\ &\iff \rho \cos \varphi \geq \rho \sec \varphi \iff \rho = 0 \lor \cos \varphi \geq \sec \varphi \\ &\iff \varphi \in \left[0, \frac{\pi}{4}\right] \end{aligned}$$

Cálculo de integrais em coordenadas esféricas - exemplos

2. (continuação) Tem-se então,

$$\iiint_{B} z \, dx \, dy \, dz = \int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{1} \rho \cos \varphi . \rho^{2} \sin \varphi \, d\rho \, d\varphi \, d\theta$$
$$= 2\pi \int_{0}^{\pi/4} \cos \varphi \sin \varphi \left[\frac{\rho^{4}}{4} \right]_{0}^{1} \, d\varphi$$
$$= \frac{\pi}{4} \int_{0}^{\pi/4} \sin(2\varphi) \, d\varphi = \frac{\pi}{4} \left[\frac{-\cos(2\varphi)}{2} \right]_{0}^{\frac{\pi}{4}} = \frac{\pi}{8}$$

Considerando agora

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, z^2 \ge x^2 + y^2\},$$

$$\iiint_C z \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z =$$

$$= \iiint_C z \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z - \iiint_C z \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = 0$$

Cálculo de integrais em coordenadas esféricas - exemplos

3. Determine-se o volume da região A de \mathbb{R}^3 limitada entre a esfera de equação $x^2+y^2+(z-\frac{1}{2})^2=\frac{1}{4}$ e o cone $x^2+y^2=z^2$.

Para obter a equação da esfera em coordenadas esféricas:

$$x^{2} + y^{2} + (z - \frac{1}{2})^{2} = \frac{1}{4} \iff x^{2} + y^{2} + z^{2} = z$$
$$\iff \rho^{2} = \rho \cos \varphi \iff \rho = \cos \varphi.$$

Cálculo II (M1003) - 2018/2019 4. 52

Cálculo de integrais em coordenadas esféricas - exemplos

3. (continuação) O volume de A é então dado por

$$\begin{split} \int_{A} 1 &= \int_{0}^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\cos \varphi} \rho^{2} \sin \varphi \, \mathrm{d}\rho \, \mathrm{d}\varphi \, \mathrm{d}\theta = 2\pi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin \varphi \left[\frac{\rho^{3}}{3} \right]_{0}^{\cos \varphi} \, \mathrm{d}\varphi \\ &= \frac{2\pi}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin \varphi \cos^{3} \varphi \, \mathrm{d}\varphi = \frac{2\pi}{3} \left[\frac{-\cos^{4} \varphi}{4} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \frac{\pi}{24} \end{split}$$

Se se pretender apenas o volume da parte A_1 de A situada no primeiro octante (que já não é um sólido de revolução), tem-se

$$\operatorname{Vol}(A_1) = \frac{1}{8} \operatorname{Vol}(A) = \frac{\pi}{192}$$

ou, equivalentemente,

$$\operatorname{Vol}(A_1) = \int_0^{\frac{\pi}{2}} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_0^{\cos \varphi} \rho^2 \operatorname{sen} \varphi \, \mathrm{d}\rho \, \mathrm{d}\varphi \, \mathrm{d}\theta = \dots = \frac{\pi}{192}$$

Cálculo II (M1003) - 2018/2019 4. 53

Integrais iterados

 Calcule os seguintes integrais iterados e esboce os respectivos domínios de integração.

a)
$$\int_{-1}^{1} \int_{0}^{1} x^{4}y + y^{2} \, dy \, dx$$

b) $\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} y \cos x + 2 \, dy \, dx$
c) $\int_{0}^{1} \int_{0}^{1} xye^{x+y} \, dx \, dy$
d) $\int_{0}^{\frac{\pi}{2}} \int_{-y}^{y} \sin x \, dx \, dy$
e) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} 1 \, dy \, dx$
f) $\int_{1}^{2} \int_{0}^{1} \int_{y}^{1} 1 \, dz \, dy \, dx$
g) $\int_{1}^{1} \int_{0}^{|x|} \int_{0}^{1} (x+y+z) \, dz \, dy \, dx$
h) $\int_{0}^{1} \int_{0}^{2-z} x \, dx \, dy \, dz$

2. Esboce o conjunto $D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, \ 0 \le y \le x\}$ e calcule o integral sobre D da função $f(x,y) = x \operatorname{sen} y$, usando os integrais iterados em cada uma das duas ordens possíveis.

Integrais iterados; áreas e volumes

- 3. Sejam $\varphi, \psi \colon [a,b] \to \mathbb{R}$ funções contínuas tais que $\varphi(x) \le \psi(x)$ para todo o $x \in [a,b]$. Seja D a região do plano limitada pelos gráficos de ϕ e ψ e as rectas x=a e x=b.
 - a) Escreva uma expressão para a área de D usando um integral simples.
 - b) Escreva uma expressão para a área de *D* usando um integral duplo e represente-o como uma sequência de integrais iterados.
- 4. Calcule o volume do sólido compreendido entre o rectângulo $[0,1] \times [1,2]$ no plano xy e a superfície $z=x^2+y$.
- 5. Calcule o volume de A, onde:
 - a) $A = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le x^2, 0 \le x \le 1\};$
 - b) $A = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 1 \le y \le 1 + x^2\};$
 - c) $A = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, z \ge 0, x + y + z \le 1\}.$

Integrais duplos em coordenadas cartesianas

- 6. Calcule $\iint_D f(x, y) dx dy$ onde:
 - a) $f(x, y) = x \operatorname{sen} xy \in D = [0, \pi] \times [0, 1].$
 - b) $f(x,y) = x^2 + y^2$ e D é a região do plano limitada por $y = x^2$, x = 2 e y = 1.
 - c) f(x,y)=1/(x+y) e D é a região limitada pelas rectas y=x, x=1, x=2 e y=0.
 - d) $f(x,y) = x^2 y^2$ e $D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, x^2 y^2 \ge 0\}.$
 - e) $f(x,y) = x^3 + 4y$ e $D = \{(x,y) \in \mathbb{R}^2 : y \ge x^2, y \le 2x\}.$
 - f) f(x,y) = 1 e $D = \{(x,y) \in \mathbb{R}^2 : y \le \sqrt{x}, y \ge \sqrt{3x 18}, y \ge 0\}.$
 - g) $f(x,y) = xy \in D = \{(x,y) \in \mathbb{R}^2 : y \le x^3, x \le 2, y \ge 0\}.$
 - h) f(x,y) = x e $D = \{(x,y) \in \mathbb{R} : x \ge 0, y \ge 0, y \le 1, y \ge \ln x\}.$
 - i) $f(x,y) = \sqrt{1+x}$ e $D = \{(x,y) \in \mathbb{R}^2 : x+y \ge 0, x^2 \le y \le 1\}.$
 - j) $f(x,y) = |x-1| \in D = \{(x,y) \in \mathbb{R} : y \ge x^2, y \ge (x-2)^2, y \le 4\}.$
- 7. Escreva uma expressão para o volume da bola $x^2 + y^2 + z^2 \le a^2$ como:
 - i) um integral triplo; ii) um integral duplo.

Integrais triplos em coordenadas cartesianas

- 8. Calcule $\iiint_{z} f(x, y, z) dx dy dz$ onde:
 - a) $f(x, y, z) = 1 + 2x 3y^2$ e $D = [-1, 1]^3$.
 - b) f(x, y, z) = xyz e $D = [0, 1] \times [-1, 0] \times [1, 4]$.
 - c) f(x, y, z) = xyz e

$$D = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 1, -1 \le y \le 0, 0 \le z \le 1 - y\}$$

- d) f(x,y,z)=3+2xy e D é a parte da bola centrada na origem de raio 2 que está acima do plano xy. (Sugestão: determine o valor do integral sem fazer cálculos)
- e) f(x, y, z) = xy e $D = \{(x, y, z) \in \mathbb{R}^3 : z \in [0, 2], x \ge 0, y \ge 0, x + y \le 1\}.$
- f) $f(x, y, z) = x \in D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 4, 0 \le z \le 1\}.$
- g) $f(x, y, z) = (1 + x + y + z)^{-3}$ e D é o sólido limitado pelos 3 planos coordenados e pelo plano de equação x + y + z = 1.
- h) f(x,y,z)=1 e D é a região limitada pelo cilindro parabólico $z=4-x^2$ e os planos de equações $y=0,\ y=6,\ z=0.$
- i) f(x, y, z) = xyz e $D = \{(x, y, z) : 0 \le x \le 2, 0 \le y \le x, 0 \le z \le x y\}.$
- j) f(x,y,z)=1 e D é a pirâmide quadrangular de vértices $(\pm 1,0,0),(0,\pm 1,0)$ e (0,0,1).

Integrais duplos em coordenadas polares

- 9. Calcule, usando coordenadas polares, os integrais $\iint_A f(x,y) dx dy$, onde:
 - a) $f(x,y) = \sqrt{x^2 + y^2}$ e $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}.$
 - b) $f(x,y) = e^{x^2+y^2}$ e $A = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 2\}.$
 - c) $f(x,y) = x^2 y^2$ e $A = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 2, x \ge 0, y \ge 0\}.$
 - d) $f(x,y) = \ln(x^2 + y^2)$ e $A = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4, x, y \le 0\}.$
 - e) $f(x,y) = \sqrt{x^2 + y^2}$ e A é a região do plano limitada pelas circunferências de equações $x^2 + y^2 = 4$ e $x^2 + y^2 = 9$.
 - f) f(x,y) = 1 + xy e $A = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 2, y \ge \sqrt{3}x\}.$
 - g) f(x,y) = |y| e $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2x\}.$
 - h) $f(x,y)=|x| \in A = \{(x,y) \in \mathbb{R}^2 : x^2+(y-b)^2 \ge b^2, x^2+(y-a)^2 \le a^2\},$
 - (0 < b < a).
 - i) $f(x,y) = \frac{y}{\sqrt{x^2 + y^2}}$ e A é o interior do triângulo de vértices (0,0), (1,0) e $(1,\sqrt{3})$.
- 10. Encontre a área da região em \mathbb{R}^2 limitada pela lemniscata :

$$(x^2 + y^2)^2 = x^2 - y^2$$
.

Integrais triplos em coordenadas cilíndricas

- 11. Calcule, usando coordenadas cilíndricas, os integrais $\iiint_A f(x,y,z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$, onde:
 - a) f(x, y, z) = x e $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, 0 \le z \le 1\}.$
 - b) $f(x, y, z) = y \in A = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, x^2 + y^2 \le z \le 2\}.$
 - c) $f(x,y,z) = |z| e A = \{(x,y,z) \in \mathbb{R}^3 : z \le x^2 + y^2 \le 1, z > -2\}.$
 - d) $f(x,y,z) = z\sqrt{x^2 + y^2}$ e $A = \{(x,y,z) \in \mathbb{R}^3 : 1 \le x^2 + y^2 \le 2, 1 \le z \le 2\}.$
 - e) f(x, y, z) = xyz e
 - $A = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, z \ge 0, x^2 + y^2 + z^2 \le 1\}.$
 - f) $f(x, y, z) = \sqrt{x^2 + y^2}$ e $A = \{(x, y, z) \in \mathbb{R}^3 : z^2 \ge x^2 + y^2, -1 \le z \le 1\}.$
 - g) $f(x, y, z) = 5z(x^2 + y^2)^{3/2}$ e
 - $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 4, \ 0 \le y \le x, \ 0 \le z \le 1\}.$
 - h) $f(x, y, z) = z\sqrt{x^2 + y^2}$ e
 - $A = \{(x, y, z) \in \mathbb{R}^3 : z \in [1, 2], x, y \ge 0, 1 \le x^2 + y^2 \le 4\}.$

Integrais triplos em coordenadas esféricas

- 12. Calcule, usando coordenadas esféricas, os integrais $\iiint_A f(x, y, z) dx dy dz$, onde:
 - a) f(x, y, z) = x + y + z e $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}.$
 - b) f(x,y,z) = 1 e $A = \{(x,y,z) \in \mathbb{R}^3 : 0 \le z \le 1, x^2 + y^2 \le z^2\}.$
 - c) f(x,y,z)=1 e $A=\{(x,y,z)\in\mathbb{R}^3:\ x^2+y^2-3z^2\geq 0,\ x^2+y^2-2x\leq 0\}.$
 - d) f(x, y, z) = xyz e
 - $A = \{(x, y, z) \in \mathbb{R}^3: \ x^2 + y^2 + z^2 \le 1, \ x \ge 0, \ y \ge 0, \ z \ge 0\}.$
 - e) $f(x,y,z) = \frac{1}{\sqrt{2+x^2+y^2+z^2}}$ e $A = \{(x,y,z) \in \mathbb{R}^3 : x^2+y^2+z^2 \le 3, x,z \le 0\}.$
 - f) f(x, y, z) = x e A é a bola limitada pela esfera de equação de $x^2 + y^2 + z^2 = 4z$.
 - g) f(x,y,z)=1 e A é a região dentro da esfera de equação $x^2+y^2+z^2=a^2$ e acima do cone $z^2 \text{sen}^2 \alpha = (x^2+y^2) \cos^2 \alpha$, em que α é uma constante entre 0 e π .

Volumes de sólidos

- 13. Calcule o volume de $S \subseteq \mathbb{R}^3$, em que:
 - a) S é o sólido limitado pelo plano z=2 e pelo parabolóide $z=x^2+y^2$.
 - b) S é a região acima do plano xy limitada entre o parabolóide $z=x^2+y^2$ e o cilindro $x^2+y^2=a^2$ (a>0)
 - c) $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, x^2 + y^2 \ge z^2\}.$
 - d) $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 \ge 0, \ x^2 + y^2 \le 4\}.$
 - e) $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 4, \ x^2 + y^2 \ge 1\}.$
 - f) $S = \{(x, y, z) \in \mathbb{R}^3 : z^2 \le x^2 + y^2, x^2 + y^2 \le 2x, z \ge 0\}.$
 - g) S é a região limitada entre as superfícies $-z = x^2 + y^2$, $x^2 + y^2 = 4$ e z = 0.
 - h) S é sólido de revolução gerado por rotação em torno do eixo dos xx's do conjunto dos pontos do plano xy limitado pelo eixo dos xx e a curva $y=x^2$, para $0 \le y \le 2$.

• 3

a)
$$\int_a^b \psi(x) - \varphi(x) dx$$

b) $\int_a^b \int_{\varphi(x)}^{\psi(x)} 1 dx dy$

• 5

c)
$$\int_0^1 \int_0^{1-x} \int_0^{1-x-y} 1 \, dz \, dy \, dx = \frac{1}{6}$$

• 6

b)
$$\int_{1}^{2} \int_{1}^{x^{2}} x^{2} + y^{2} dy dx$$

c) $\int_{1}^{2} \int_{0}^{x} \frac{1}{x+y} dy dx$

c)
$$\int_1^1 \int_0^1 \frac{1}{x+y} dy dx$$

d)
$$\int_0^1 \int_{-x}^x x^2 - y^2 \, dy \, dx$$

e)
$$\int_0^2 \int_{x^2}^x x^3 + 4y \, dy \, dx$$

f)
$$\int_0^3 \int_{y^2}^{\frac{y^2}{3}+6} 1 \, \mathrm{d}x \, \mathrm{d}y$$

g)
$$\int_{0}^{2} \int_{0}^{x^{3}} xy \, dy \, dx$$

h) $\int_{0}^{1} \int_{0}^{e^{y}} x \, dx \, dy$

i)
$$\int_{-1}^{0} \int_{x^2}^{-x} \sqrt{1+x} \, dy \, dx$$

j)
$$2\int_{1}^{2}\int_{x^{2}}^{1}x-1\,\mathrm{d}y\,\mathrm{d}x$$

e)
$$\int_0^2 \int_0^1 \int_0^{1-y} xy \, dx \, dy \, dz = \frac{1}{12}$$

f)
$$\int_0^1 \int_{-2}^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} x \, dx \, dy \, dz = 0$$

g)
$$\int_0^1 \int_0^{1-x} \int_0^{1-x-y} (1+x+y+z)^{-3} dz dy dx = \frac{\log(2)}{2} - \frac{5}{16}$$

h)
$$\int_0^6 \int_{-2}^2 \int_0^{4-x^2} 1 \, dz \, dx \, dy = 64$$

i) $\frac{2}{3} = 4$ vezes o integral de 5 c.

a)
$$\int_0^{2\pi} \int_0^2 r^2 dr d\theta$$

b)
$$\int_0^{2\pi} \int_1^2 e^2 r \, dr \, d\theta$$

c)
$$\int_{0}^{\frac{\pi}{4}} \int_{1}^{2} r^{3} \cos(2\theta) dr d\theta$$

d)
$$\int_{0}^{\frac{3\pi}{2}} \int_{1}^{2} r \log(r^2) dr d\theta$$

e)
$$\int_{0}^{2\pi} \int_{0}^{3} r^{2} dr d\theta$$

f)
$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \int_{1}^{2} r + r^{3} \cos \theta \sin \theta \, dr \, d\theta$$

g)
$$2 \int_0^{\frac{\pi}{2}} \int_0^{2\cos\theta} r^2 \sin\theta \, dr \, d\theta$$

h)
$$\int_0^{\frac{\pi}{2}} \int_{2b \operatorname{sen} \theta}^{2a \operatorname{sen} \theta} r^2 \cos \theta \, \mathrm{d}r \, \mathrm{d}\theta$$

i)
$$\int_0^{\frac{\pi}{3}} \int_0^{\frac{1}{\cos \theta}} r \sin \theta \, dr \, d\theta$$

• 10

$$2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\sqrt{\cos(2\theta)}} r \,\mathrm{d}r \,\mathrm{d}\theta.$$

• 11

a)
$$\int_0^{2\pi} \int_0^1 \int_0^1 r^2 \cos \theta \, dz \, dr \, d\theta$$

b)
$$\int_0^{\frac{\pi}{2}} \int_0^{\sqrt{2}} \int_{r^2}^2 r^2 \operatorname{sen} \theta \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\theta$$

c)
$$\int_0^{2\pi} \int_0^1 \int_{-2}^0 -zr \, dz \, dr \, d\theta + \int_0^{2\pi} \int_0^1 \int_0^{r^2} zr \, dz \, dr \, d\theta$$

d)
$$\int_0^{2\pi} \int_1^{\sqrt{2}} \int_1^2 z r^2 dz dr d\theta$$

e)
$$\int_0^{\frac{\pi}{2}} \int_0^1 \int_0^{1-r} r^3 z \cos \theta \sin \theta \, dz \, dr \, d\theta$$

f)
$$2 \int_0^{2\pi} \int_0^1 \int_r^1 r^2 dz dr d\theta$$

g)
$$\int_0^{\frac{\pi}{4}} \int_0^2 \int_0^1 5z r^4 dz dr d\theta$$

h)
$$\int_0^{\frac{\pi}{2}} \int_1^2 \int_1^2 z r^2 \cos \theta \, dr \, dz \, d\theta$$

• 13

a)
$$\int_0^{2\pi} \int_0^{\sqrt{2}} \int_{r^2}^2 r \, dz \, dr \, d\theta$$

b)
$$\int_0^{2\pi} \int_0^a \int_0^{r^2} r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\theta$$

c)
$$2 \int_0^{2\pi} \int_0^{\frac{1}{\sqrt{2}}} \int_z^{\sqrt{1-z^2}} r \, dr \, dz \, d\theta$$

d)
$$\int_0^{2\pi} \int_0^2 \int_{-r}^r r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\theta$$

e)
$$\int_0^{2\pi} \int_{-\sqrt{3}}^{\sqrt{3}} \int_1^{\sqrt{1-z^2}} r \, dr \, dz \, d\theta$$

f)
$$\int_0^{2\pi} \int_0^1 \int_z^{2\cos\theta} r \, \mathrm{d}r \, \mathrm{d}z \, \mathrm{d}\theta$$

g)
$$\int_0^{2\pi} \int_0^2 \int_{-r^2}^0 r \, dz \, dr \, d\theta$$

h) O volume de S é igual ao volume de um sólido S', idêntico a S, mas cujo eixo de revolução é o eixo dos zz: S' é sólido de revolução gerado por rotação em torno do eixo dos zz's do conjunto dos pontos do plano yz limitado pelo eixo dos zz e a curva $y=z^2$, para $0 \le y \le 2$.

$$VolS = VolS' = \int_0^{2\pi} \int_0^{\sqrt{2}} \int_0^{z^2} r \, dr \, dz \, d\theta.$$