Zjištění IP adresy

IP dekadicky - 192 . 168 . 68 . 233 IP binárně - 1100 0000 . 1010 1000 . 0100 0100 . 1110 1001 Maska - 1111 1111 . 1111 1111 . 1111 0000 . 0000 0000 Číslo sítě - 192 . 168 . 64 . 0

<u>Třídní adresování</u>

Je to způsob dělení IPv4 adres (32bit) do tříd (A, B, C, D, E)

Rozdělení jednotlivých tříd

- Třída A
- pro extrémně rozsáhlé sítě
- rozsah 0-127 1.0.0.0 126.255.255.255
- 0.0.0.0 0.255.255.255 nepoužívá se pro normální síť
- 127.0.0.0 použití u localhostu - maska je 255.0.0.0 - prefix /8
- použití státy, velké firmy
- · Třída B
- pro velké a střední sítě
- rozsah 128-191 128.0.0.0 191.255.255.255
- maska 255.255.0.0 prefix /16
- · Třída C
- pro potřeby malých sítí domácnost
- rozsah 192.0.0.0 223.255.255.255
- maska 255.255.255.0 prefix /24
- · Třída D multicast
- pro multicastové vysílání vysílání do TV kanálů
- 224.0.0.0 239.255.255.255
- Třída E rezervovaná
- výzkumy a experimenty není běžně použitelné
- rozsah 240.0.0.0 255.255.255.255

Vyhrazené IP adresy

- Nepoužívá se je běžně na internetu nejsou k tomu určeny
- pro vnitřní sítě (školy, firmy, domácnosti)
- testy a diagnostiga
- broadcast, loopback
- A: 10.0.0.0 10.255.255.255 B: 172.16.0.0 - 172.31.255.255
- C: 192.168.0.0 192.168.255.255

<u>Zjištění</u>

Počtu sítí / podsítí

- 2ⁿ - n = počet bitů navíc od dané třídy - /26 je o **2** navíc od /24

 $-2^2 = 4 \text{ sítě}$

Počtu hostů

- 2^n-2 n = počet nemaskovaných bitů /26 32-26 = 6
- max je 32 takže odčítámé číslo od 32! 32bit odresá IP
- 2^6-2 = 62 hostů

Všesměrové(broadcast) a síťové adresy

- jsou to speciální IP adresy
- broadcast je poslední
- síťová je první s nulama v oktetech pro hosty

Velikosti bloku

- 256 - první neúplný oktet

Wild Card

- Inverzní maska sítě
- použití u encapsulace

IP adresace a směrování v datových sítích

IP adresa

- Je to jedinečný identifikátor zařízení v síti
- každé zařízení v sítí musí mít vlastní ip adresu
- IPv4 desítková soustava
- IPv6 hexadecimální soustava
- je přiřazována k zařízení i mobil ma ip adresu (DHCP)

<u>Pojmy</u>

MAC adresa - Media Access Control

- fyzická (Hardwareová) sít přiřazená zarízení ve výrobě
- format xx : xx : xx : xx : xx hexadecimální

Síťová adresa

- jednoznačný identifikátor sítě
- pro adresu 192.168.105.20 /25
- adresa sítě 192.168.105.0

Výchozí brána (Default Gateway)

- je adresa zařízení, které vede ven z tvé sítě (první nebo poslední)

Všesměrová adresa (Broadcast)

- adresa která cílí na všechna zařízení v sítí (uplně poslední)
- použití pro DHCP

- zkrácený zápis masky /24 pro: 255.255.255.0
- číslo určující počet bitů z adresy vyhrázených pro identifikaci sítě

Maska sítě/podsítě

- 32bitová adresa - 255.255.255.0
- znamená, že první 3 oktety jsou pro síť
- poslední pro hosty

VLSM (Variabile Length Subnet Mask)

- je pro efektivní využití adresového prostoru
- umožňuje vytvářet podsítě s různým počtem zařízení

CIDR (Classes Inter Domain Routing)

- moderní zápis bez použítí tříd - A, B, C, D, E

Maska podsítě	CIDR Hodnota	Maska podsítě	CIDR Hodnota
255.0.0.0	/8	255.255.248.0	/21
255.128.0.0	/9	255.255.252.0	/22
255.192.0.0	/10	255.255.254.0	/23
255.224.0.0	/11	255.255.255.0	/24
255.240.0.0	/12	255.255.255.128	/25
255.248.0.0	/13	255.255.255.192	/26
255.252.0.0	/14	255.255.255.224	/27
255.254.0.0	/15	255.255.255.240	/28
255.255.0.0	/16	255.255.255.248	/29
255.255.128.0	/17	255.255.255.252	/30
255.255.192.0	/18	255.255.255.254	/31
255.255.224.0	/19	255.255.255.255	/32
255.255.240.0	/20		

Třídní adresování

 Rozdělení jednotlivých tříd Vyhrazené IP adresy

Pojmy

- o IP a MAC adresa
- Síťová adresa
- Výchozí brána Všesměrová adresa
- Prefix
- Maska (pod)sítě
- VLSM CIDR
- Zjištění
 - Počtu (pod)síti a hostů
 - Všesměrové a síťové adresy
 - Velikosti bloku Wild Card
- Návrh topologie sítě v rámci VLSM
- Sumarizace
- Charakteristika směrovače a směrovací tabulky
- Statické vs. dynamické směrování
- Směrovací protokoly
- Ukázka prostředí Cisco Packet Tracer

o RIP, IGRP, EIGRP, OSPF

Návrh topologie sítě v rámci VLSM

- Je nutné vědět jak se masky skládají z velikosti bloků

Podsíť	Maska	Podsítě	Hostitelé	Blok
/25	128	2	126	128
/26	192	4	62	64
/27	224	8	30	32
/28	240	16	14	16
/29	248	32	6	8
/30	252	64	2	4

- VLSM umožňuje efektivně využít síť, když předem víme kolik skupin po kolik hostů chceme.

Charakteristika směrovače a směrovací tabulky

směrovač je router - přeposílá datové pakety mezi sítěmi

- obsahuje info o dostupných cestách a výstupních

Statické vs dynamické směrování

- řeknu mu jaké IP sítě má znat a on se už domluví s sousedama

rozhoduje kam má paket dál putovat

rozhráních pro směrování paketů

- u statického musíme znát topologií celé sítě

OSPF - používá nejkratší cestu

- u dynamického nám stačí na routeru nastavit routy sítí

- děláme to pomomcí protokolu OSPF, RIP, IGRP, EIGRP

- směrovací tabulka

adresy - 192.168.16.0 až 192.168.31.0

<u>Sumarizace</u>

- spočítám si prefix
- 16 po sobě jdoucích adres - 16x256 = 4096 = 2^12
- 32-12 = 20 -> /20 prefix
- sumarizace je - 192.168.16.0 /20
- adresa a prefix