

Soit $(O, \overrightarrow{OA}, \overrightarrow{OB})$ un repère orthonormé direct de \mathbb{R}^2 . Soit M un point du cercle \mathscr{C} de centre O et de rayon 1. On construit les points H et K, projections orthogonales respectives de M sur les droites (OA) et (OB), et le point L, intersection, si elle existe, de la droite (OM) et de la perpendiculaire à (OA) passant par A. On oriente la droite (OA) (resp. (OB), (OL)) par le vecteur \overrightarrow{OA} (resp. \overrightarrow{OB} , \overrightarrow{OL}). Si α désigne une mesure de l'angle de vecteurs $(\overrightarrow{OA}, \overrightarrow{OM})$, on sait que :

$$\cos(\alpha) = \overline{OH}$$
 , $\sin(\alpha) = \overline{OK}$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \overline{AL}$$

La tangente de α est définie si et seulement si L existe, c'est-à-dire si et seulement si le point M n'est pas sur la droite (OB).

Angles remarquables

α	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π
$\cos(\alpha)$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	-1
$\sin(\alpha)$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	0
$\tan(\alpha)$	0	$1/\sqrt{3}$	1	$\sqrt{3}$	2	0

Propriétés élémentaires

Les fonctions sin et cos sont 2π -périodiques sur \mathbb{R} . La fonction tan est π -périodique sur $\mathbb{R}\setminus\{\pi/2+k\pi,\ k\in\mathbb{Z}\}$. Pour tout réel α on a :

•
$$\cos(-\alpha) = \cos(\alpha)$$

•
$$\cos(\pi/2 - \alpha) = \sin(\alpha)$$

•
$$\cos(\pi/2 + \alpha) = -\sin(\alpha)$$

•
$$\cos(\pi - \alpha) = -\cos(\alpha)$$

•
$$\cos(\pi + \alpha) = -\cos(\alpha)$$

•
$$\sin(-\alpha) = -\sin(\alpha)$$

•
$$\sin(\pi/2 - \alpha) = \cos(\alpha)$$

•
$$\sin(\pi/2 + \alpha) = \cos(\alpha)$$

•
$$\sin(\pi - \alpha) = \sin(\alpha)$$

•
$$\sin(\pi + \alpha) = -\sin(\alpha)$$

Équations trigonométriques

Soient x et y deux réels. Alors :

•
$$cos(x) = cos(y)$$
 ssi $(x = y [2\pi]$ ou $x = -y [2\pi]$)

•
$$\sin(x) = \sin(y)$$
 ssi $(x = y \ [2\pi]$ ou $x = \pi - y \ [2\pi])$

Soient x et y deux réels non congrus à $\pi/2$ modulo π . Alors :

•
$$tan(x) = tan(y)$$
 si et seulement si $x = y$ $[\pi]$

Formulaire trigonométrique

Soient x et y deux réels. Lorsque les réels considérés sont dans les domaines de définiton des fonctions mises en jeu, les formules suivantes sont valides :

$$\bullet \ \cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

•
$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

•
$$cos(x - y) = cos(x)cos(y) + sin(x)sin(y)$$

•
$$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

•
$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

•
$$\tan(x - y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

•
$$\cos(x) + \cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$
 • $\sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$

•
$$\sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

•
$$\cos(x) - \cos(y) = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$
 • $\sin(x) - \sin(y) = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$

•
$$\sin(x) - \sin(y) = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

•
$$\cos(x)\cos(y) = \frac{1}{2}(\cos(x+y) + \cos(x-y))$$

$$\bullet \sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) - \cos(x+y))$$

•
$$\sin(x)\cos(y) = \frac{1}{2}(\sin(x+y) + \sin(x-y))$$

•
$$\sin(2x) = 2\sin(x)\cos(x) = \frac{2\tan(x)}{1 + \tan^2(x)}$$

$$\bullet \ \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

•
$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x) = \frac{1 - \tan^2(x)}{1 + \tan^2(x)}$$

Équations paramétriques du cercle unité

On reprend les notations de l'introduction. Un paramétrage du cercle $\mathscr C$ en coordonnées cartésiennes dans le repère (O, OA, OB) est :

$$\begin{cases} x = \cos(t) \\ y = \sin(t) \end{cases}, t \in [0, 2\pi[$$

Un paramétrage de \mathscr{C} privé du point D de coordonnées (-1,0), en coordonnées cartésiennes dans le repère (O, OA, OB), est :

$$\begin{cases} x = \frac{2t}{1+t^2} \\ y = \frac{1-t^2}{1+t^2} \end{cases}, t \in \mathbb{R}$$

On trouve ce dernier paramétrage appelé paramétrage rationnel de $\mathscr{C}\setminus\{D\}$, en utilisant les formules trigonométriques exprimant le sinus et le cosinus du réel x en fonction de la tangente du réel x/2 (lorsqu'elle existe).