(1) (2)

@

43

B 05 B 17/06 B 01 F 11/02 B 01 J 1/12 F 23 D 17/00 A 61 D 7/00

AVAILABLE COD.

Offenlegungsschrift 28 42 232

Aktenzeichen:

P 28 42 232.4

Anmeldetag:

28. 9.78

Offenlegungstag:

17. 4.80

30 Unionsprioritāt:

39 39 3

Bezeichnung: Verfahren und Vorrichtung zum Zerstäuben von Flüssigkeiten,

Suspensionen und Emulsionen, agglomerierten Stäuben bzw. Pulvern

sowie Mischungen derselben

Anmelder: Battelle-Institut e.V., 6000 Frankfurt

D Erfinder: Lierke, Ernst-Günter, Dipl.-Phys. Dr., 6241 Schwalbach;

Großbach, Rudolf, 6277 Camberg-Erbach; Flögel, Karl,

6282 Friedrichsdorf

389-68/33/78 CASCH/DOJ

25. September 1978

BATTELLE - INSTITUT E.V., Frankfurt (Main)

Patentansprüche

- 1. Verfahren zum Zerstäuben von Flüssigkeiten, Suspensionen u Emulsionen, agglomerierten Stäuben bzw. Pulvern sowie Mischungen derselben, <u>dadurch gekennzeichnet</u>, daß die zu zerstäubenden Stoffe bzw. Stoffgemische in die Druckknoter einer stehenden Ultraschallwelle gefördert und dort disper giert werden.
- 2. Verfahren zum Zerstäuben von Flüssigkeiten, Suspensionen i Emulsionen, agglomerierten Stäuben bzw. Pulvern sowie Mischungen derselben, <u>dadurch gekennzeichnet</u>, daß ein hoch intensives, fortschreitendes Ultraschallfeld erzeugt wird und die Stoffe bzw. Stoffgemische in den Bereich des inter

siven Ultraschallpegels zugeleitet und dort dispergiert werden.

- 3. Anwendung des Verfahrens nach Anspruch 1 und 2 zur Herstellung eines brennbaren Gemisches von Kohlestaub mit Heizoel und/oder Wasser sowie flüssigen bzw. festen Additiven.
- 4. Anwendung nach Anspruch 3, <u>dadurch gekennzeichnet</u>, daß die zu zerstäubende Mischung durch eine oder mehrere Zuführungs-leitungen in einen oder mehrere Druckknoten der stehenden Welle gefördert und die Fördermenge je nach Heizungsbedarf kontinuierlich geregelt wird.
- 5. Anwendung nach Anspruch 3 und 4, <u>dadurch gekennzeichnet</u>, daß die zur Verbrennung der Mischung benötigte Luft durch ein regelbares Gebläse zwischen die Druckknoten der stehenden Welle eingeblasen wird.
- 6. Anwendung des Verfahrens nach Anspruch 1 und 2 zur Konditionierung von Aerosolen aus kompakten Teilchen, Fasern oder Tröpfchen für arbeitsphysiologische Tierversuche.
- 7. Anwendung des Verfahrens nach Anspruch 1 und 2 zur Herstellung von feindispergierten Pulvern, wobei Suspensionen oder
 mehr oder weniger konzentrierte Lösungen in einem Trockenraum zerstäubt und nach Abdampfen der flüssigen Komponente
 Pulver gewonnen werden.

- 8. Anwendung des Verfahrens nach Anspruch 1 und 2 zur Dispergierung von trockenem Kohlestaub zum Zwecke einer anschlies senden Verbrennung.
- 9. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1

 dadurch gekennzeichnet, daß sie aus einem Ultraschallwandle

 (1) und -reflektor (4) besteht, deren Abstand das Mehrfache
 der halben Wellenlänge beträgt, und daß radial oder axial 2

 zylindersymmetrischen, stehenden Welle Zuführungsleitungen
 sowie gegebenenfalls ein regelbares Gebläse (6) mit Schlitz
 düsen zur Einleitung der Luft vorgesehen sind.
- 10. Vorrichtung nach Anspruch 9, <u>dadurch gekennzeichnet</u>, daß diese in einem Oel- bzw. Suspensionsbrenner integriert ist
- 11. Vorrichtung zur Durchführung des Verfahrens nach Anspruch dadurch gekennzeichnet, daß diese aus einem Ultraschall wandler (1) und einem Reflektor (4) besteht, deren Abstand das Mehrfache der halben Wellenlänge beträgt, wobei der Reflektor (4) in Form einer Resonanzkammer ausgebildet ist und in der Mitte der dem Ultraschallwandler gegenüberstehe Fläche des Reflektors eine Öffnung (7) vorgesehen ist, dur die der auf diese Weise in der Intensität verstärkte Ultra schall nach außen tritt, und daß Zuführungsleitungen für d dispergierten Stoffe zu dieser Öffnung führen.
 - 12. Vorrichtung nach Anspruch 11, <u>dadurch gekennzeichnet</u>, daß diese als Bestandteil eines Oel- bzw. Suspensionsbrenner n

389-68/33/78 CASCII/DOJ

25. September 1978

BATTELLE - INSTITUT E.V., Frankfurt (Main)

Verfahren und Vorrichtung zum Zerstäuben von Flüssigkeiten, Suspensionen und Emulsionen, agglomerierten Stäuben bzw. Pulvern sowie Mischungen derselben

Die Erfindung betrifft Verfahren und Vorrichtungen zum Zerstäuben von Flüssigkeiten, Suspensionen und Emulsionen, agglomerierten Stäuben bzw. Pulvern sowie Mischungen derselben und Anwendungen des Verfahrens zur Dispergierung von trockenem Kohlestaub, zur Erzeugung eines brennbaren Gemisches von Kohlestaub mit Heizoel und/oder Wasser sowie flüssigen bzw. festen Additiven, zur Konditionierung von Aerosolen für arbeitsphysiologische Tierversuche sowie zur Herstellung von fein dispergierten Pulvern.

Stäube und Suspensionen werden bisher im allgemeinen mechanisc vernebelt. So wird bei der Verbrennung von Kohlestaubsuspensio z.B. in Großheizungsanlagen und Kraftwerken, mit Düsen- bzw. Rotationsverneblern gearbeitet. Im ersten Fall wird der Düsenv schleiß durch schleifende Kohleteilchen toleriert, weil die An lagen ständig gewartet werden und bei hohen Durchsätzen robust gebaut sind. Bei mittleren Durchsätzen (< 100 l/h) und bei burchsätzen (< 5 l/h) ist dagegen die Verdüsung problematisch, sie zu geringe Standzeiten der feineren Düsen ergibt und die Durchsätze bei guter Zerstäubung nur in geringen Grenzen regel sind. Die Rotationszerstäuber ergeben Probleme bei der Flammer form und der Anpassung an geeignete kleine Heizkessel.

Anderen Vernebelungsverfahren haften ebenfalls wesentliche Nac teile an. So ist die Ultraschall-Vernebelung mittels Kapillarwellen, wie sie bei konventionellen Oelbrennern üblich ist, nu bei Suspensionen mit niedrigem Feststoffgehalt möglich und ic auch nur kurzzeitig, da sich in der Regel Feststoffrückstände Ultraschall-Vernebler bilden.

Der Erfindung liegt nun die Aufgabe zugrunde, diese Schwierigkeiten zu überwinden und ein Verfahren bzw. eine Vorrichtung zuzeigen, mit der sich Flüssigkeiten, Dispersionen und agglomerierte Stäube äußerst wirksam und ohne Kontakt mit den Zerstäubungseinrichtungen dispergieren lassen.

Es hat sich gezeigt, daß diese Aufgabe mit dem erfindungsgemä Verfahren in technisch sehr fortschrittlicher Weise gelöst we kann, in dem die zu zerstäubenden Stoffe bzw. Stoffgemische in die Druckknoten einer stehenden Ultraschallwelle gefördert und dort dispergiert werden oder ein hochintensives, fortschreitendes Ultraschallfeld erzeugt wird und die Stoffe bzw. Stoffgemische in dem Bereich des intensiven Ultraschallpegels zugeleitet und dort dispergiert werden.

Bei der erfindungsgemäßen Ultraschallvernebelung wird ein intensives Ultraschallfeld zwischen einem Sendewandler mit zylindrischer Abstrahlfläche bei einer Resonanzfrequenz von ca. 20 – 100 kHz und einem Reflektor erzeugt, wobei der Resonanzabstand das mehrfache der halben Wellenlänge beträgt. Die Resonanzabstände brauchen nur einmal eingestellt werden und verändern sich nicht mehr. Dadurch ist ein Nachjustieren nicht mehr erforderlich, auch wenn die Konsistenz der zu vernebelnden Stoffe bzw. Stoffgemische starken Schwankungen unterliegen sollte.

Gemäß einer Ausführung erfolgt die Zerstäubung in den Druckknoten einer stehenden Welle, in denen bei Bedarf Schallpegel bis zu 180 dB erzeugt werden können. Wenn z.B. ein Flüssigkeitsstrahl radial in dieses Druckknotengebiet eingeführt wird, wird er zunächst durch radiale Gradienten zu einem Film auseinandergezogen. An der Peripherie dieses Films bewirkt die hohe Schnelle-Amplitude des Schallfeldes einen Angriff großer Scherkräfte, die zur Disintegration des Flüssigkeitsfilms und gegebenenfalls der in ihm eingeschlossenen Feststoffpartikel führen. Bei dieser Methode ist es auch möglich, agglomerierten, trockenen Staub wieder in feine Teilchen zu disintegrieren.

Bei Zerstäubung in den Druckknoten werden die Stoffe radial od axial zur zylindersymmetrischen stehenden Welle eingeleitet. Dabei kann die Fördermenge je nach Bedarf kontinuierlich gereg werden. Es ist vorteilhaft, die Zuführung radial vorzunehmen udie zu vernebelnden Stoffe aus einem Reservoir über mehrere Zuführungsleitungen in den Vernebler einzuleiten, da zwischen Senderwandler und dem Reflektor mehrere Druckknoten im $\lambda/2$ -Abstand liegen. Die Wellenlänge λ beträgt z.B. in der Luft bei einer Resonanzfrequenz von 20 kHz ca. 16 mm.

7. - 7. -

Die Anwendung dieses Verfahrens zur Herstellung brennbarer Gemische von Kohlestaub mit Heizoel und/oder Wasser sowie flüss: bzw. festen Additiven, wie Katalysatoren, ergibt wesentliche Vorteile, da die zur Verbrennung benötigte Luft durch ein regbares Gebläse, z.B. über Schlitzdüsen, zwischen die Druckkrot der stehenden Welle eingeblasen werden kann. Die Sprayabnebel erfolgt dabei vorwiegend radial, so daß die flachen Flammen v zwei Seiten belüftet werden können, was gegenüber der kegelförmigen Düsenflamme wegen den kurzen Diffusionswegen eine be sere Verbrennung garantiert.

Gemäß einer anderen Ausführungsform erfolgt die Zerstäubung i einem intensiven, nicht stehenden Ultraschallfeld. Die dazu nc wendigen hohen Schallpegel werden mittels einer Resonanzkamme erzeugt, die durch einen ebenen oder gekrümmten, im n $\lambda/2\text{-Abs}$ vor dem Senderwandler angeordneten Reflektor mit zentraler ():

nung gebildet wird. Die hohen Schallpegel der Resonanzkammer strahlen durch diese relativ kleine Öffnung ab, wobei infolge des Querschnittsprungs eine nochmalige Verstärkung erfolgt.

Die durch diese und die zuerst genannte Methode weggeschleuderten Teilchen bzw. Tröpfchen besitzen eine im Vergleich zur Düsenzerstäubung relativ geringe kinetische Energie. Dadurch lassen sich diese Teilchen durch geeignete Luftführung leicht in beliebige Richtungen umlenken. Bei Herstellung von Kohlesuspensionen für Heizungszwecke ist dieser Effekt wegen der Anpassung einer Brennerflamme an einem geeigneten Heizkessel von Wichtigkeit. Zuführung von Fremdluft kann ohne negativen Einfluß auf die Zerstäubung sogar ganz unterbleiben. Dies ist insbesondere bei Anwendung des erfindungsgemäßen Verfahrens zur Konditionierung von Acrosolen aus kompakten Teilchen, Fasern oder Tröpfchen für arbeitsphysiologische Tierversuche von Vorteil.

Die erfindungsgemäßen Zerstäubungsmethoden können auch zur Herstellung von fein dispergierten, trockenen Pulvern herangezogen werden. In diesem Fall werden Suspensionen oder mehr oder weniger konzentrierte Lösungen in einem Trockenraum zerstäubt und nach Abdampfen der flüssigen Komponente die Pulver gewonnen.

Im folgenden wird die Erfindung anhand von jeweils einem Ausführungsbeispiel durch eine Zeichnung näher erläutert.

Es zeigen in schematischer Vereinfachung

Figur 1 eine Ausführungsform zur Vernebelung in den Druckknote einer stehenden Welle;

Figur 2 eine Ausführungsform zur Vernebelung in einem intensiven fortschreitenden Ultraschallfeld.

Aus Figur 1 geht hervor, daß die Vernebelungsvorrichtung aus einem piezoelektrisch oder magnetostriktiv erregten Ultrasc 1. Koppelschwinger 1 mit Amplitudentransformator 2, wie er nach d Stand der Technik mit Resonanzfrequenzen bis etwa 100 kHz allgemein bekannt ist, besteht. Gegenüber der schallabstrahlenden Wandlerfläche 3 befindet sich im Abstand von mehreren Schallwe lenlängen des gasförmigen Mediums ein starrer Reflektor 4 der chen oder sphärisch gekrümmt sein kann. Zwischen dem Sender 1 dem Reflektor 4 baut sich eine stehende Welle 5 mit Bäuchen un Knoten des Schallwechseldruckes und der Schnelle auf. Die Stir fläche des Senderwandlers schwingt mit konstanter Amplitude, d durch die Resonanz der stehenden Welle in den Bäuchen erhebiic verstärkt wird. Aufgrund der Resonanzüberhöhung innerhalb der stehenden Welle kann die mit guten Ultraschallkonzentratoren i Dauerbetrieb mögliche Schnelleamplitude von mehr als 10 m/s ar der abstrahlenden Wandlerfläche 3 auf ein Vielfaches verstärkt werden, so daß prinzipiell je nach Art und Druck des schallführenden Gases Schallpegel von über 180 dB möglich sind.

Im Gradientenfeld dieser hohen Druck- bzw. Schnellewerte der stehenden Welle werden Flüssigkeiten bzw. Suspensionen, die in Form eines dünnen Strahls, Films oder größerer Tropfen eingeleitet werden, zu sehr kleinen Tröpfchen oder Teilchen vernebelt. Bei Zerstäubung von brennbaren Gemischen aus Kohlestaub mit Heizoel und/Wasser sowie flüssigen bzw. festen Additiven für Heizungszwecke kann die Verbrennungsluft durch eine Zuführungsleitung 6
in beliebiger Richtung, z.B. radial durch Schlitz- oder Ringdüsen
in die Druckbäuche oder Knoten der stehenden Welle eingeblasen
werden. Eine solche Vorrichtung kann somit in einem Oel- bzw.
Suspensionsbrenner integriert werden.

Eine weitere Möglichkeit zur kontaktlosen Dispergierung in hochintensiven, mit elektroakustischen Wandlern erzeugten Schallfeldern besteht darin, die erforderliche Verstärkung durch eine Resonanzkammer nach Figur 2 zu erzeugen. In diesem Falle wird die Energieabstrahlung an der Stirnfläche des kolbenmembranförmig schwingenden Sendewandlers 1 mit Resonanzfrequenzen von 20 kHz bis 100 kllz durch Gegenüberstellung eines auf einen Abstand von n $\cdot \lambda/2$ justierbaren ebenen oder gekrümmten Reflektor 4 durch Resonanzüberhöhung erheblich verstärkt. Die hohen Schallpegel der Resonanzkammer strahlen durch eine relativ kleine Öffnung 7 in der Mitte des Reflektors ab. Die hier eingeleiteten Flüssigkeiten, Suspensionen oder agglomerierten Stäube bzw. Pulver können somit disintegriert bzw. dispergiert werden. Bei Verwendung einer solchen Vorrichtung zur Erzeugung eines brennbaren Gemisches für Heizungszwecke kann diese als Bestandteil eines Oelbzw. Suspensionsbrenner ausgeführt sein. Die Zuführungsleitung 8 ist vorzugsweise ringförmig ausgeführt und ist am inneren Umfang mit Löchern versehen.

In beiden Fällen ist der Nebeldurchsatz zwischen 0 und einen vor der Arbeitsfrequenz und den äußeren Dimensionen abhängigen Maxi maldurchsatz variabel, ohne daß bei der Variation die Zerstäubungsgüte beeinträchtigt wird. Dadurch wird der für die Verbrei nung insbesondere in Kleinheizanlagen ungünstige aus/an-Betriel mit den daraus folgenden akustischen Belastungen, dem ungünstig Verbrennungswirkungsgrad und der Schadstoffemission, vermieden Die Zufuhr der Verbrennungsluft kann parallel zur Flüssigke zufuhr geregelt werden, so daß jeweils das optimale Gemisch ei gestellt werden kann. Zur Förderung der Flüssigkeit können Nie derdruckpumpen eingesetzt werden, die sich ebenso wie das an d Brenner angepaßte Gebläse leicht optimieren lassen.

Durch Anwendung der erfindungsgemäßen Ultraschallvernebelung i Heizungszwecke können schwindende Oelreserven durch zusätzlich Ausnutzung verfügbarer Kohlereserven getreckt werden. Dies win erreicht durch kontaktlose Zerstäubung von Suspensionen, derei Feststoffgehalt zwischen O, d.h. reines Oel, und relativ honen Maximalwerten variieren darf, ohne daß der Zerstäuber neu einstellen wäre. Es liegt damit eine Möglichkeit zur kontinuierlichen Reduktion des Heizoelanteils unter Umständen bei zuneh mendem Ersatz dieser flüssigen Komponente durch andere Flüssikeiten, z.B. Wasser, vor.

- 13 -2842232

Nummer: Int. Cl.²: Anmeldetag: Offenlegungstag: 28 42 232 B 05 B 17/06 28. September 197 17. April 1980

Figur 1

Figur 2

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.