بررسی الگوی تغییرات ساعتی آلایندهی ازن متناسب با تغییرات دما و سرعت وزش باد در اصفهان با استفاده از مدلهای سری زمانی فاطمه آبروش، کارشناسی ارشد علم داده دی ماه 1403

چکیده

تغییرات سری زمانی میزان آلاینده ی ازن متناسب با دما و سرعت وزش باد یکی از پارامترهای مهم اقلیمی در بررسی فرآیندهای هیدرولوژیکی، کشاورزی، محیط زیست، بهداشت، صنعت و اقتصاد است. ارزیابی و پیشبینی میزان آلاینده ی ازن و دما و سرعت وزش باد کمک شایانی برای مدیران و برنامه ریزان هواشناسی ، کشاورزی و منابع آب است .یکی از روشهای بررسی دادههای سری زمانی استفاده از مدلهای آماری است. با توجه به اهمیت موضوع، در این مقاله میزان آلاینده ی ازن متناسب با دما و سرعت وزش باد به صورت ساعتی از 1398/01/01 الی LSTAM ، VAR ، SARIMAX مورد الی در ایستگاه هواشناسی اصفهان با استفاده از مدلهای (ACF ، خودهمبستگی جزئی بررسی قرار میگیرد.در ادامه برای بررسی ایستایی مدل از توابع خودهمبستگی (ACF) ، خودهمبستگی جزئی از معیارهای اطلاع بیزی (BIC)، مجذور میانگین مربعات خطا (RMSE) و آکائیک(AIC) استفاده شده است. نتایج بررسی مدل با حافظه بلندمدت سریهای زمانی میزان آلاینده ی ازن متناسب با دما و سرعت وزش باد در سطح و درصد مورد تأیید قرار گرفت. همچنین تحلیل ساختارهای مختلف نشاندهنده آن است که دادههای میزان آلاینده ی ازن متناسب با دما و سرعت وزش باد با استفاده از مدل LSTM بهترین برازش یا عملکرد را دارند که حاکی از دقت مناسب مدل ارائه شده است و میتوان از آن برای پیش بینی در آینده استفاده کرد.

كليد واژهها: آلايندهي ازن ، دما، سزعت وزش باد، سريهاي زماني، مدل LSTM ، معيارهاي آماري.

مقدمه

پیش بینی کمیت و کیفیت تحوالات اقلیمی یکی از مسائل پیچیدهای است که اذهان اقلیم شناسان را به خود مشغول کرده است. اکنون به مدد دستیابی به فناوریهای نوین و در اختیار داشتن سریهای متعدد داده های لازم از متغیرهای اقلیمی و به یاری دانش درک روابط بین این متغیرها، گامهای اساسی در درک و پیش بینی روندهای اقلیمی پدیدار شده است. به نحوی که اکنون مدل های کامپیوتری همگی در حیطه توانائی خود به مسائل پیش بینی اقلیم و عوامل مؤثر بر تغییر اقلیم پاسخ میدهند. پیش بینیهای کاملا دقیق و با خطای صفر، صرف نظر از حوزه و موضوع مورد نظر، بسیار دشوار و تقریباً غیرممکن است، به ویژه آنکه فرایند پیش بینی، در محیط کاملا پیچیده و در ابر غلیظی از عدم قطعیت ها و بازیگران و پیشران های متعدد و مؤثر بر محیط انجام می شود. و در امر غلیظی از عدم قطعیت ها و بازیگران و پیشران های متعدد و مؤثر بر محیط انجام می شود. و دادهها و اطلاعات مورد استفاده در پیش بینی نیز دارای خصوصیات مبهم و خاکستری می باشند (یاورزاده و همکاران، 1396).

مدل های سری زمانی، مدل های تجربی و ابزاری قدرتمند برای نیکویی برازش و پیش بینی رفتار سیستم های اقلیمی و هیدرولوژیکی از قبیل میزان آلاینده ها ، دما و سرعت وزش بادهستند .(Nail and Momani,2019). همانطور می دانیم نگرش کلاسیک بر حسب مدلسازی سریهای زمانی بنابر کاربرد نگرش باکس جنکیز به ایستایی و غیرایستایی سری های زمانی بستگی دارد. اگر چنین سری هایی خصوصیت حافظه بلندمدت را نشان دهند ارزش پیشبینی بر اساس مدل های خود رگرسیون میانگین متحرک ARMA و خود رگرسیون میانگین متحرک انباشته ARIMA معتبر نخواهد بود. در صورت وجود حافظه بلند مدت در سری های زمانی، بین مشاهدات سری در فواصل بسیار زیاد، جدا و دور از هم وابستگی معنی داری وجود خواهد داشت که نمایانگر این موضوع است که مشاهدات مستقل از هم نبوده، و همبستگی بین آنها وجود دارد و مشاهدات گذشته به پیشبینی دادهها کمک خواهند کرد. با این توصیفات وجود حافظه بلندمدت در پارامترهای جوی شکل ضعیف کارایی را دادهها کمک خواهند کرد. با این توصیفات وجود حافظه بلندمدت در پارامترهای جوی شکل ضعیف کارایی را نقض کرده و آنگاه تغییرات تصادفی نبوده و قابل پیشبینی خواهد بود. در این راستا ال هاشمی (2014) به ارزیابی و پیشبینی بارش ماهانه با استفاده از روشهای شبکهعصبی، سری زمانی و رگرسیون چندمتغیره در کشور یمن پرداختند. با توجه به نتایج ارزیابی به ترتیب روشهای شبکهعصبی مصنوعی، مدل آریما و رگرسیون بهترین بهترین

در این مقاله با توجه به اهمیت موضوع، مدل شبکهعصبی LSTM جهت برازش و پیشبینی میزان آلاینده ی ازن و دما و سرعت وزش باد در ایستگاه اصفهان مورد استفاده قرار گرفته است.

دادهها و روششناسی

در این پژوهش با توجه به اهمیت موضوع، داده های میزان آلاینده ی ازن از ایستگاه هواشناسی 25 آبان اصفهان در استان اصفهان جمع آوری شده است . دادههای مورد نیاز در این مقاله که شامل میزان آلاینده ی ازن و دما و سرعت وزش باد در تمام ساعات شبانه روز از تاریخ 1398/01/01 ساعت 23 است که از سازمان ساعات شبانه روز از تاریخ 1398/01/01 ساعت 12 بامداد الی 1402/12/29 ساعت 23 است که از سازمان هواشناسی کشور اخذ گردیده است. در تحلیل دادهها و بررسی مدلهای سری زمانی از مدل LSTM برای مدلسازی و شبیهسازی سریهای زمانی آلاینده ی ازن ،دما و سرعت وزش باد در اصفهان و استفاده شده است، که در بخش بعدی به آن پرداخته می شود.

روش کار در مدلهای سری زمانی

1) پیشپردازش دادهها

قبل از شروع تحلیل، پیشپردازش دادهها انجام میشود. مراحل پیشپردازش شامل موارد زیراست:

بررسی دادههای گمشده و دادههای پرت:

دادههای گمشده :بررسی دادهها نشان داد که متغیر آلاینده ازن دارای ۸۵۷۴ مقدار گمشده است، در حالی که متغیرهای دما و سرعت وزش باد هر کدام دارای ۵۱ مقدار گمشده بودند. برای جایگزینی دادههای گمشده، روشهای مختلفی اعمال شد، از جمله: جایگزینی با میانگین، جایگزینی با میانه، جایگزینی با مد و روش نزدیک ترین همسایگی (KNN)

با توجه به ماهیت دادهها، روش نزدیک ترین همسایگی بهترین نتیجه را ارائه کرد. پس از جایگزین کردن داده های های گمشده، پاکسازی انجام شد و در دادهها داده گمشده وجود ندارد.

دادههای پرت :برای شناسایی دادههای پرت از نمودار جعبهای استفاده شد. اگرچه دادههای پرت در مجموعه داده مشاهده شد، اما با توجه به ماهیت سریهای زمانی و وابستگی دادهها به زمان، وجود دادههای پرت قابل قبول در نظر گرفته شد. نمودارهای جعبهای در زیر آورده شده است.

در نمودار آلاینده ی ازن جعبه آبی نشان دهنده دامنه بین چارکی است که شامل 50٪ وسط داده ها می شود. خط افقی داخل جعبه نشان دهنده میانه (Median) یا مقدار مرکزی داده ها است. دایره هایی که خارج از خطوط قرار دارند، داده های پرت هستند و نشان دهنده مقادیر بسیار بالا یا بسیار پایین در مقایسه با بقیه داده ها هستند. در اینجا داده های پرت بیشتری در سمت مقادیر بالا دیده می شود. توزیع داده ها احتمالاً چوله به راست (مثبت) است

زیرا مقادیر پرت بیشتری در سمت بالا وجود دارد. نمودار هیستوگرام آلاینده ی ازن در ادامه رسم شده است که نتایج بدست آمده از نمودار جعبهای را تایید میکند و توزیع متغیر چوله به راست است.

در نمودار متغیر دما داده پرت مشاهده نمی شود؛ زیرا هیچ نقطهای بیرون از خطوط وجود ندارد. به نظر می رسد توزیع داده ها نسبتاً متقارن است زیرا میانه در مرکز باکس قرار دارد و خطوط تقریباً به یک اندازه در هر دو سمت کشیده شدهاند. این نمودار نشان می دهد که متغیر دما یک توزیع نسبتاً متعادل و بدون داده پرت دارد. نمودار هیستوگرام دما در ادامه رسم شده است که نتایج بدست آمده از نمودار جعبهای را تایید میکند و توزیع متغیرنرمال است.

در نمودار سرعت وزش باد دایرههایی که خارج از خطوط قرار دارند، دادههای پرت هستند و نشان دهنده مقادیر بالا بسیار بالا یا بسیار پایین در مقایسه با بقیه دادهها هستند. در اینجا دادههای پرت بیشتری در سمت مقادیر بالا دیده می شود. توزیع دادهها احتمالاً کمی چوله به راست (مثبت) است زیرا مقادیر پرت بیشتری در سمت بالا وجود دارد.

شكل 1- نمودار جعبهاى آلايندهى ازن

شکل 2- نمودار جعبهای دما

شکل 3- نمودار جعبهای سرعت وزش باد

شكل 4- نمودار هيستوگرام آلايندهى ازن

شكل 5- نمودار هيستوگرام آلايندهى دما

این رویکرد ساختاریافته برای پیشپردازش، دادهها را تمیز و آماده تحلیلهای بعدی میکند، در حالی که ویژگیهای ذاتی زمانی دادهها حفظ میشوند.

تبدیل فرمت تاریخ شمسی به میلادی در ستون مربوط به تاریخ

بررسی سطرهای تکراری

2)بررسی توصیفی دادهها

برای تحلیل توصیفی، شاخصهایی مانند میانگین، انحراف معیار، کمترین، بیشترین و سایر معیارهای آماری در جدول زیر ارائه شدهاند:

آلاینده ازن :میانگین مقدار این آلاینده ۳۲.۲۹ است.

دما :میانگین دما برابر با ۱۶ درجه سانتی گراد است.

سرعت وزش باد :میانگین سرعت وزش باد ۲.۸۳ متر بر ثانیه است.

بيشترين	چارک	ميانه	چارک	كمترين	انحراف	میانگین	تعداد	
	سوم		اول		استاندارد			
223.79	48.42	23.7	7.04	-0.05	31.016176	32.298115	35250.0	آلايندەي
								ازن
42.00	26.00	16.0	7.00	-	11.637559	16.317273	43773.0	دما
				14.00				
21.00	3.00	2.0	2.00	0.00	2.260042	2.836589	43773.0	سرعت
								وزش باد

جدول 1- شاخص های توصیفی دادهها

به منظور بررسی همبستگی بین متغیر پاسخ (آلایندهی ازن) و متغیرهای مستقل (دما و سرعت وزش باد) نمودار پراکنش، نمودار حرارتی و آزمون ضریب همبستگی پیرسن انجام شده است که نتایج به شرح زیر است:

شکل 6- نمودار پراکنش آلایندهی ازن و دما

طبق نمودار پراکنش آلاینده ی ازن و دما با افزایش مقادیر دما، مقادیر آلاینده ی ازن نیز افزایش می یابد. این نمودار پراکندگی نشان می دهد که بین این دو متغیر یک رابطه مستقیم وجود دارد.

شکل 7- نمودار پراکنش آلایندهی ازن و سرعت وزش باد

نمودار پراکندگی آلاینده ی ازن و سرعت وزش باد نشان میدهد که با افزایش مقادیرسرعت وزش باد، مقادیر آلاینده ی ازن به طور کلی کاهش مییابند و این رابطه معکوس است.

شكل 8- نمودار حرارتي متغيرها

با توجه به نمودار حراررتی بین آلاینده ازن و دما همبستگی قوی با مقدار ۵۹. وجود دارد. این نشان میدهد که با افزایش دما، غلظت آلاینده ازن نیز تمایل به افزایش دارد. این رابطه مستقیم میتواند ناشی از تأثیر دما بر واکنشهای شیمیایی تولید ازن در جو باشد.

بین آلاینده ازن و سرعت وزش باد همبستگی ضعیفتری با مقدار ۰.۲ مشاهده می شود. این نشان می دهد که سرعت وزش باد تأثیر کمتری بر غلظت ازن دارد. ممکن است وزش باد به پراکندگی آلاینده ها کمک کند، اما تأثیر آن بر ازن به اندازه دما قوی نیست.

بین دما و سرعت وزش باد همبستگی بسیار ضعیفی با مقدار ۲۶.۰ وجود دارد. این نشان میدهد که رابطه مستقیم کمی بین دما و سرعت وزش باد وجود دارد. ممکن است در برخی شرایط جوی، افزایش دما با کاهش سرعت باد همراه باشد، اما این رابطه چندان قوی نیست.

آزمون همبستگی پیرسن:

با توجه به مقدار پی-ولیو فرض صفر رد میشود این بدان معناست که بین هر سه متغیر (آلاینده ازن، دما، و سرعت وزش باد) همبستگی معنادار وجود داردولی شدت این همبستگیها متفاوت است به طوریکه دما بیشترین تأثیر را بر غلظت آلاینده ازن داردو سرعت وزش باد تأثیر کمتری دارد، اما همچنان رابطهای معنادار با ازن و دما نشان میدهد.

	ضریب همبستگی پیرسن	سطح معناداری
آلایندهی ازن و دما	0.519823	0.0
آلایندهی ازن و سرعت وزش باد	0.189258	0.0
دما و سرعت وزش باد	0.261808	0.0

جدول2- جدول همبستگی بین متغیرها

3) بررسی استنباطی دادهها

در تجزیه و تحلیل سریهای زمانی، مانایی در میانگین و واریانس یکی از مهمترین شروط برای استفاده از مدلهای مرسوم است. برای بررسی مانایی سریهای زمانی آلاینده ی ازن، دما و سرعت وزش باد، نمودارهای تفکیکی بر اساس روند، تغییرات فصلی و تغییرات غیرقابل پیشبینی رسم شده است. همچنین، به منظور بررسی دقیق تر، از آزمونهای آماری ADF (Augmented Dickey-Fuller)و - ARCH (Autoregressive Conditional برای بررسی مانایی در میانگین و از آزمون استفاده شده است. از آزمون هم انباشتگی برای Heteroskedasticity) بررسی رابطه بلندمدت معنادار بین متغیرها استفاده شده است. نتایج به شرح زیر است:

شكل 9- نمودار تفكيك سرى زمانى آلايندهى ازن

در نمودار آلاینده ی ازن بخش اول نمودار سری زمانی داده ها از سال 2019 الی 2024 است. نمودار دوم نمودار روند (Trend) است که روند افزایشی یا کاهشی ندارد و تقریبا روند ثابتی دارد. نمودار سوم تغییرات فصلی (Seasonal) را نشان میدهد که نشان دهنده ی الگوهای تکراری در داده ها است که در بازه های زمانی مشخص (مانند روزانه، ماهانه یا سالانه) رخ می دهد. نمودار آخر باقیمانده ها (Residual) است که نشان دهنده ی تغییرات غیرقابل پیش بینی یا نویز در داده ها است که توسط روند و تغییرات فصلی توضیح داده نمی شود. باقیمانده ها الگوی خاصی ندارند و حول صفر پراکنده اند که نشان دهنده ی این است که مدل تجزیه به خوبی داده ها را توصیف کرده است.

شكل 10- نمودار تفكيك سرى زماني آلايندهى دما

در نمودار دما به طور کلی روند افزایشی مشاهده می شود که نشان دهنده ی افزایش مقدار متغیر در طول زمان است. همچنین تغییرات فصلی مشهود است. باقیمانده ها الگوی خاصی ندارند که نشان دهنده ی این است که مدل تجزیه به خوبی داده ها را توصیف کرده است.

شکل 11- نمودار تفکیک سری زمانی آلایندهی سرعت وزش باد

در نمودار سرعت وزش باد در بازهی زمانی حدودا 2022/05 نمودار افزایش داشته است و در بازه های زمانی دیگرتقریبا روند ثابتی داشته است. همچنین تغییرات فصلی مشهود است. باقیمانده ها الگوی خاصی ندارند که نشان دهنده ی این است که مدل تجزیه به خوبی داده ها را توصیف کرده است.

بررسی ایستایی در میانگین با استفاده از آزمون ADF و KPSS:

طبق نتایج بدست امده از سطح معنی داری آزمون ADF و KPSS که کمتر از 0.05 هستند فرض صفر (سری زمانی دارای ریشه واحد است یعنی سری زمانی غیر ایستا است) رد می شود و سری زمانی در میانگین ایستا است.

سطح معنی داری	آمارهی آزمون	سطح معنی داری ADF	آمارهی آزمون ADF	متغيرها
KPSS	KPSS			
0.010	0.758	1.734891164589603e-20	-11.248	آلایندهی ازن
0.013	0.699	0.002	-3.854	دما
0.000	0.449	0.000	-19.139	سرعت وزش باد

جدول 3- بررسی مانایی در میانگین

بررسی ایستایی در واریانس با استفاده از آزمون ARCH:

طبق نتایج بدست آمده از سطح معنی داری آزمون ARCH که کمتر از 0.05 هستند فرض صفر(سری زمانی مانا در واریانس نیست) رد میشودو سری زمانی در واریانس ایستا است.

سطح معنی داری آزمون ARCH	متغيرها
0.0	آلایندهی ازن
0.0	دما
0.0	سرعت وزش باد

جدول 4- بررسی مانایی در واریانس

بررسی رابطه بلندمدت معنادار بین متغیرها (آزمون هم انباشتگی):

طبق نتایج بدست آمده از سطح معنی داری آزمون Cointegration ، فرض صفر رد می شود. این موضوع نشان دهنده ی وجود یک رابطه بلندمدت بین دو متغیر است. هم انباشتگی به بررسی ترکیب خطی متغیرها و رابطه ی بین آنها می پردازد.

سطح معنی داری	متغيرها
9.820652953759152e-09	آلایندهی ازن و دما
0.0	آلایندهی ازن و سرعت وزش باد
0.0	دما سرعت وزش باد

جدول 5- بررسی هم انباشتگی

متغیر پاسخ در این مقاله آلاینده ی ازن و متغیرهای مستقل دما و سرعت وزش باد هستند. به منظور حذف اثرات فصلی از داده ها و بررسی تغییرات غیرفصلی تفاضل گیری مرتبه اول بر روی متغیر مستقل انجام شده است و اثر تغییرات فصلی حذف شده است. مقادیر مثبت نشان دهنده ی این است که مقدار متغیر در این دوره ی فصلی نسبت به دوره ی فصلی قبلی افزایش یافته است و مقادیر منفی نشان دهنده ی این است که مقدار متغیر در این دوره ی فصلی نسبت به دوره ی فصلی قبلی کاهش یافته است.

شكل 12- نمودار حذف اثر فصلى متغير پاسخ

بررسی خود همبستگی در متغیر پاسخ:

در نمودارهای زیر خود همبستگی متغیرآلاینده ی ازن به ازای تاخیرهای 1 تا 31 بررسی شده است. نتایج حاکی از آن است که متغیر پاسخ با زمان های قبلی خود همبستگی دارد پس استفاده از مدلهای سری زمانی مناسب است.

شکل 13- نمودار همبستگی متغیر پاسخ در تاخیرهای متفاوت

4) مدلسازى:

با توجه به بررسیهای انجام شده به نظر میرسد مدل Integrated Moving Average with exogenous factors) برای برازش به دادهها میتواند مناسب باشد. سپس با استفاده از تکنیکهای مانند تحلیل خودهمبستگی (ACF) و خودهمبستگی جزئی(PACF)، پارامترهای مدل SARIMAX را تعیین می کنیم و در نهایت دادهها را به دو بخش آموزش و آزمایش تقسیم میکنیم. مدل را روی دادهای آموزش برازش می کنیم و روی دادههای تست عملکرد آن را ارزیابی می کنیم. پارامترهای مدل شامل:

- (AR)درجه مدل خودرگرسیونی:
 - :dدرجه تفاضی گیری(۱)
-) ۹درجه مدل میانگین متحرک (MA)

- (SAR)درجه مدل خودر گرسیونی فصلی P:
 - کادرجه تفاضی گیری فصلی(SI) •
- (SMA)درجه مدل میانگین متحرک فصلیQ:
 - Sطول دوره فصلی

است.

با توجه به نمودار خود همبستگی، مقادیر خودهمبستگی در وقفههای اولیه (تا حدود 5-6 وقفه) نسبتاً بالا هستند و به تدریج کاهش مییابند. مقادیر خودهمبستگی به سرعت به صفر میل میکنند پس میتوان نتیجه گرفت که دادههای سری زمانی ایستا هستند.

شكل 14- نمودار خودهمبستگى

با توجه به نمودار خود همبستگی جزیی، مقادیر خودهمبستگی جزیی در تاخیر اول بالا است. در وقفه های دوم و سوم و چهارم کاهش می یابد تا در فاصله اطمینان قرار می گیرد. در نتیجه مدل ترکیبی اتور گرسیو مبانگین متحرک فصلی چند متغیره پیشنهاد می شود.

شكل 15- نمودار خودهمبستگی جزیی

مدل اول:

در جدول زیر مدل (1, 1, 1, 12) SARIMAX(1, 0, 1) (1, 1, 1, 12) بر روی دادههای آموزش برازش داده شده است و مدل پیشنهادی بر روی دادههای آزمایش اجرا شده است و با کمک معیارهای ارزیابی مدل بررسی شده است. تفسیر نتایج به شرح زیر است:

Log Likelihood : مقدار 131817.380 - نشان دهنده ی میزان برازش مدل به داده ها است. هرچه این مقدار به صفر نزدیک تر باشد، مدل بهتر است.

(Akaike Information Criterion : مقدار 263648.76 است. این معیار برای مقایسه مدلها استفاده می شود و هرچه کمتر باشد، مدل بهتر است.

(BIC (Bayesian Information Criterion) : مقدار 263707.074 است. این معیار نیز برای مقایسه مدلها استفاده می شود و هرچه کمتر باشد، مدل بهتر است

- این است که باقیماندهها خودهمبستگی (Q) بشاندهها خودهمبستگی (Q) باقیماندهها خودهمبستگی (Ljung-Box (Q) دارند.
- Jarque-Bera (JB) : مقدار 247735.54 و 0.00 = p-value نشان دهنده ی این است که باقیمانده ها نرمال نیستند.

میانگین مربعات خطا و مجذور میانگین مربعات خطا بزرگ هستند در حالی که R2 عدد بسیار کوچکی است.

در زیر برخی از فرمولها آورده شده است که در این روابط k تعداد پارامتر، Nتعداد مشاهدات و L مقدار برآورد تابع ماکسیم درستنمایی است .

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \bar{X})^{\tau}}{N}}$$

$$AIC = \tau k - \tau \ln(\hat{l})$$

$$BIC = k \ln(n) - \tau \ln(\hat{l})$$

SARIMAX(1, 0, 1) (1, 1, 1, 12)	مدل
30667	تعداد مشاهدات آموزش
-131817.380	Log Likelihood
263648.760	AIC
263707.074	BIC
263667.451	HQIC
0.03	آماره ليونگ-باكس
0.85	سطح معنی داری آماره لیونگ–باکس
24729.54	آماره ژارک-برا
0.00	سطح معنی داری آماره ژارک-برا
1.01	Heteroskedasticity (ناهمسانی واریانس)
0.67	سطح معنی داری Heteroskedasticity
-0.10	چولگی
7.40	کشیدگی
13144	تعداد مشاهدات أزمايش
314.7216	MSE
17.7404	RMSE
0.0029	R2

جدول 6- شاخص های مدل (1, 1, 1, 12) SARIMAX(1, 0, 1)

جدول ضرایب مدل:(Coefficients)

دما: ضریب دما 0.0088 و p-value = 0.000 نشاندهنده ی این است که دما تأثیر معناداری بر غلظت ازن دارد.

سرعت وزش باد :(wind_space) ضریب 0.3025- و 0.000 = p-value نشان دهنده ی این است که سرعت وزش باد تأثیر معناداری بر غلظت ازن دارد و این تأثیر منفی است.

AR (ar.L1) : ضریب 0.6611 و 0.546 = p-value نشان دهنده ی این است که تأثیر معناداری ندارد.

(ma.L1) MA: ضریب 0.6634- و 0.543 = p-value نشان دهنده ی این است که تأثیر معناداری ندارد.

(ar.S.L12) AR: ضریب 0.0026- و 0.511 = p-value نشان دهنده ی این است که تأثیر معناداری ندارد.

(MA (ma.S.L12): ضریب 0.9995 و p-value = 0.000 نشان دهنده ی این است که تأثیر معناداری دارد.

Sigma2 : مقدار 317.2108 وp-value واریانس باقیماندهها است که معنادار 9-value مقدار است.

=========						
	coef	std err	z	P> z	[0.025	0.975]
dama	0.0803	0.009	9.307	0.000	0.063	0.097
wind_space	-0.3025	0.051	-5.901	0.000	-0.403	-0.202
ar.L1	0.6611	1.095	0.604	0.546	-1.484	2.806
ma.L1	-0.6634	1.092	-0.608	0.543	-2.803	1.476
ar.S.L12	-0.0038	0.006	-0.658	0.511	-0.015	0.007
ma.S.L12	-0.9995	0.001	-1610.341	0.000	-1.001	-0.998
sigma2	317.2108	1.439	220.387	0.000	314.390	320.032

جدول 7-جدول ضرايب مدل (1, 1, 1, 12) جدول 7-جدول ضرايب مدل

برای بررسی بصری مدل و پیش بینی نمودار آن را در زیر داریم:

در این نمودار مقادیر واقعی مشاهدات در مقابل مقادیر پیش بینی شده کشیده شده است. خطوط آبی و نارنجی روند مشابهی ندارند و از هم فاصله زیادی دارند بنابراین مدل نتوانسته است روند کلی داده ها را به خوبی پیش بینی کند.

نتیجه گیری کلی:

با توجه به معیارهای ارزیابی مدل و نمودار مقادیر مشاهده شده در مقابل مقادیر پیش بینی شده ، مدل SARIMAX(1, 0, 1) (1, 1, 1, 12) مدل مناسبی نمی تواند باشد و بهتر است مدل را با پرامترهای دیگری برازش دهیم یا از مدل های دیگری استفاده کنیم.

شكل 16- نمودار مقادير پيش بيني و مقادير واقعي مدل (1, 1, 1, 12) (1, 2, 1, 1, 12) شكل 16-

مدل دوم:

در جدول زیر مدل (2, 1, 2, 12) SARIMAX(2, 0, 2) بر روی دادههای آموزش برازش داده شده است و مدل پیشنهادی بر روی دادههای آزمایش اجرا شده است و با کمک معیارهای ارزیابی مدل بررسی شده است. تفسیر نتایج به شرح زیر است:

Log Likelihood : مقدار 131816.947- نشان دهنده ی میزان برازش مدل به دادهها است. هرچه این مقدار به صفر نزدیک تر باشد، مدل بهتر است.

(Akaike Information Criterion) عدار 263655.894 است. این معیار برای مقایسه مدلها استفاده می شود و هرچه کمتر باشد، مدل بهتر است.

(Bayesian Information Criterion) : مقدار 263747.531 است. این معیار نیز برای مقایسه مدلها استفاده می شود و هرچه کمتر باشد، مدل بهتر است

- نشان دهنده ی این است که باقیمانده ها خودهمبستگی (Q) و 0.62 و 0.24 و 0.24 و 0.24 مقدار 0.24 دارند.
- Jarque-Bera (JB) : مقدار 24728.44 و 0.00 = p-value : مقدار 24728.44 نرمال نست که باقیماندهها نرمال نیستند.

این است که ناهمسانی واریانس : Heteroskedasticity (H) مقدار : 0.65 = p-value مقدار : 0.65 = p-value وجود ندارد.

میانگین مربعات خطا و مجذور میانگین مربعات خطا بزرگ هستند در حالی که R2 عدد بسیار کوچکی است.

SARIMAX(2, 0, 2) (2, 1, 2, 12)	مدل
30667	تعداد مشاهدات آموزش
-131816.947	Log Likelihood
263655.894	AIC
263747.531	BIC
263685.267	HQIC
0.24	آماره لیونگ-باکس
0.62	سطح معنی داری آماره لیونگ-باکس
24728.44	آماره ژار ک-برا
0.00	سطح معنی داری آماره ژارک-برا
1.01	Heteroskedasticity (ناهمسانی واریانس)
0.65	سطح معنی داری Heteroskedasticity
-0.10	چولگی
7.40	کشیدگی
13144	تعداد مشاهدات آزمایش
314.6761	MSE
0.0030	R2

جدول 8- شاخص های مدل (2, 1, 2, 12) (SARIMAX(2, 0, 2)

جدول ضرایب مدل:(Coefficients)

دما : ضریب 0.0802 و p-value = 0.000 نشان دهنده ی این است که دما تأثیر معناداری بر متغیر وابسته دارد. این تأثیر مثبت است، یعنی با افزایش دما، غلظت ازن افزایش می یابد.

سرعت وزش باد : ضریب 0.3011 و p-value = 0.000 نشاندهنده ی این است که سرعت وزش باد تأثیر معناداری بر متغیر وابسته دارد و این تأثیر منفی است، یعنی با افزایش سرعت وزش باد، غلظت ازن کاهش می یابد (AR (Autoregressive)

معناداری و معناداری است که این جزء تأثیر معناداری ar_{L} 1: فریب ar_{L} 0.3022 و ar_{L} 1: ندارد.

غناداری عناداری و عناداری و 0.2911 و 0.953 = p-value نشان دهنده ی این است که این جزء تأثیر معناداری $ar_L L2$: ندارد.

: MA (Moving Average)

تأثیر ست که این جزء تأثیر معناداری ندارد. 0.983 = p-value معناداری ندارد.

تأثیر ست که این جزء تأثیر بین است که این جزء تأثیر معناداری ندارد. 0.953 = p-value معناداری ندارد.

: AR (Seasonal AR)

 ar_S_L12 : ضریب ar_S_L12 - و ar_S_L12 و ar_S_L12 نشان دهنده ی این است که این جزء تأثیر معناداری دارد.

 ar_S_L24 : فریب ar_S_L24 - و ar_S_L24 نشان دهنده ی این است که این جزء تأثیر معناداری ندارد.

: MA (Seasonal MA)

تأثیر ست که این جزء تأثیر معناداری ندارد. ma_S_L12 = p-value و 0.0265 = 0.0265 معناداری ندارد.

 ma_S_L24 : ضریب 9731 وp-value و0.000 = p-value ضریب ست که این جزء تأثیر معناداری دارد.

sigma2 : مقدار 317.1046 وp-value واریانس باقیماندهها است که معنادار دهنده واریانس باقیماندهها است که معنادار است.

	coef	std err	z	P> z	[0.025	0.975]
dama	0.0802	0.009	9.289	0.000	0.063	0.097
wind_space	-0.3011	0.051	-5.870	0.000	-0.402	-0.201
ar.L1	-0.3022	6.449	-0.047	0.963	-12.943	12.339
ar.L2	0.2911	4.900	0.059	0.953	-9.313	9.896
ma.L1	0.2983	6.451	0.046	0.963	-12.345	12.941
ma.L2	-0.2885	4.875	-0.059	0.953	-9.844	9.267
ar.S.L12	-0.9772	0.252	-3.874	0.000	-1.472	-0.483
ar.S.L24	-0.0035	0.006	-0.552	0.581	-0.016	0.009
ma.S.L12	-0.0265	0.252	-0.105	0.916	-0.520	0.467
ma.S.L24	-0.9731	0.252	-3.862	0.000	-1.467	-0.479
sigma2	317.1046	1.487	213.263	0.000	314.190	320.019

جدول 9- ضرايب مدل (2, 1, 2, 12) جدول 9- ضرايب مدل

برای بررسی بصری مدل و پیش بینی نمودار آن را در زیر داریم:

در این نمودار مقادیر واقعی مشاهدات در مقابل مقادیر پیش بینی شده کشیده شده است. خطوط آبی و نارنجی روند مشابهی ندارند و از هم فاصله زیادی دارند بنابراین مدل نتوانسته است روند کلی داده ها را به خوبی پیش بینی کند.

شكل 17- نمودار مقادير پيش بيني و مقادير واقعي مدل (2, 1, 2, 12) (2, 1, 2, 12)

نتیجه گیری کلی:

با توجه به معیارهای ارزیابی مدل و نمودار مقادیر مشاهده شده در مقابل مقادیر پیش بینی شده ، مدل SARIMAX(2, 0, 2) (2, 1, 2, 12) مدل مناسبی نمیتواند باشد و بهتر است مدل را با پرامترهای دیگری برازش دهیم یا از مدل های دیگری استفاده کنیم.

مدل سوم:

مدل SARIMAX(3, 0, 3)x(1, 1, [1], 12) را مانند مدل اول و دوم به دادهها برازش دادیم و نتایج مشابهی داشت. پس به نظر می رسد مدل SARIMAX در کل مناسب نیست.

مدل چهارم:

VAR (Vector Autoregressive)

مدل VAR یک مدل آماری است که برای تحلیل رابطههای پویا بین چندین سری زمانی استفاده می شود. این مدل می تواند برای پیشبینی و بررسی تأثیرات متقابل بین متغیرها مفید باشد. در این مدل دادهها را به دو بخش آموزش و آزمایش تقسیم کرده ایم سپس مدل را بر روی دادههای آموزش برازش دادیم و با استفاده از معیارهای ارزیابی مدل ان را بررسی کردیم. این معیارها به تعیین تعداد تأخیرهای بهینه برای مدل کمک می کنند. دادهها با فرکانس ساعتی (هر ساعت یک داده) آموزش داده می شوند. مدل با ۲۷ تأخیر (lag) آموزش داده می شود. این تعداد تأخیر بر اساس حداقل مقدار BIC و BIC انتخاب شده است.

VAR Order Selection (* highlights the minimums)

	AIC	BIC	FPE	HQIC			
0	12.88		3.911e+05	12.88			
1	7.538	7.541	1878.	7.539			
2	7.214	7.220	1359.	7.216			
3	7.116	7.124	1231.	7.118			
4	7.087	7.098	1196.	7.091			
5	7.076	7.089	1183.	7.080			
6	7.068	7.084	1174.	7.073			
7	7.060	7.078	1165.	7.066			
8	7.046	7.067	1149.	7.053			
9	7.028	7.050	1127.	7.035			
10	7.002	7.027	1099.	7.010			
11	6.973	7.001	1067.	6.982			
12	6.939	6.969	1032.	6.949			
13	6.905	6.938	997.5	6.916			
14	6.876	6.911	968.7	6.887			
15	6.853	6.890	946.5	6.865			
16	6.827	6.867	922.2	6.840			
17	6.791	6.833	889.8	6.805			
18	6.748	6.793	852.2	6.762			
19	6.700	6.748	812.8	6.716			
20	6.632	6.681	758.6	6.647			
21	6.558	6.610	704.7	6.575			
22	6.488	6.543	657.5	6.506			
23	6.450	6.507	632.5	6.468			
24	6.446	6.506	630.5	6.466			
25	6.384	6.446	592.6	6.404			
26	6.348	6.413	571.5	6.369			
27	6.341	6.408*	567.4	6.363			
28	6.340	6.410	566.9	6.362			
29	6.339	6.411	566.3	6.362			
30	6.338*	6.412	565.8*	6.362*			

جدول 10- شاخص های برازش مدل VAR

با توجه به جدول زیر مدل با استفاده از روش حداقل مربعات به برآورد پارامترها پرداخته است. نسبت به مدل SARIMAX ، مدل VAR معیارهای AIC , BIC کمتری را نشان میدهد.

Summary of Regression Results _____ Model: Method: Thu, 02, Jan, 2025 Date: Time: 12:08:50 No. of Equations: 3.00000 BIC: 6.41494 30649.0 HQIC: -227502. FPE: Log likelihood: 571.393 6.34808 Det(Omega_mle): 566.831 AIC:

جدول 11- خلاصه مدل VAR

به منظور تعیین ضرایب معنادار برای هر کدام از متغیرها از آزمون تی-تست استفاده کردیم و با توجه به سطح معنی داری میتوان فهمید که کدام یک از ضرایب معنادار هستند و باید در مدل باقی بمانند. کمترین مقدار SIC در تاخیر 27 ام است پس تا تاخیر 27 آزمون تی و براورد ضرایب بررسی شده است. ضرایبی که سطح معناداری آنها کمتر از 0.05 هستند در مدل باقی میمانند و بقیه از مدل حذف میشوند.

Results for equation O3 (ppb)

===

coef	ficient s	td. error	t-stat	prob	
const	0.35516	5 0.19	0848	1.861	0.063
L1.O3 (ppb)	0.85987	79 0.00	05714	150.498	0.000
L1.dama	0.2540	60 0.0	40510	6.272	0.000
L1.wind_space	-0.093	556 0.	034184	-2.737	0.006
L2.O3 (ppb)	-0.0915	82 0.0	07538	-12.149	0.000
L2.dama	0.3006	65 0.0	51871	5.796	0.000
L2.wind_space	0.161	952 0.	037832	4.281	0.000
L3.O3 (ppb)	0.0119	61 0.0	07551	1.584	0.113
L3.dama	-0.1413	71 0.0	51888	-2.725	0.006
L3.wind_space	0.205	789 0.	038061	5.407	0.000
L4.O3 (ppb)	0.0057	29 0.0	07524	0.761	0.446
L4.dama	-0.1584	36 0.0	51388	-3.083	0.002
L4.wind_space	-0.048	481 0.	038094	-1.273	0.203
L5.O3 (ppb)	-0.0220	90 0.0	07509	-2.942	0.003
L5.dama	-0.0044	45 0.0	51036	-0.087	0.931
L5.wind_space	-0.045	320 0.	038093	-1.190	0.234
L6.O3 (ppb)	0.0139	22 0.0	07504	1.855	0.064
L6.dama	-0.0540	81 0.0	50984	-1.061	0.289

L6.wind_space	-0.051959	0.038068	-1.365	0.172
L7.O3 (ppb)	-0.025462	0.007505	-3.393	0.001
L7.dama	0.005407	0.050965	0.106	0.916
L7.wind_space	-0.013315	0.038057	-0.350	0.726
L8.O3 (ppb)	0.008141	0.007506	1.085	0.278
L8.dama	-0.082053	0.050960	-1.610	0.107
L8.wind_space	0.107270	0.038060	2.818	0.005
L9.O3 (ppb)	-0.010437	0.007507	-1.390	0.164
L9.dama	0.004096	0.050957	0.080	0.936
L9.wind_space	0.015048	0.038048	0.396	0.692
L10.O3 (ppb)	0.019050	0.007507	2.538	0.011
L10.dama	0.014394	0.050958	0.282	0.778
L10.wind_space	0.045313	0.038049	1.191	0.234
L11.O3 (ppb)	0.014974	0.007507	1.995	0.046
L11.dama	-0.071617	0.050954	-1.406	0.160
L11.wind_space	-0.042718	0.038052	-1.123	0.262
L12.O3 (ppb)	-0.002835	0.007507	-0.378	0.706
L12.dama	-0.011747	0.050959	-0.231	0.818
L12.wind_space	0.116969	0.038050	3.074	0.002
L13.O3 (ppb)	0.008142	0.007507	1.085	0.278
L13.dama	0.020167	0.050959	0.396	0.692
L13.wind_space	-0.083038	0.038057	-2.182	0.029
L14.O3 (ppb)	-0.005406	0.007508	-0.720	0.472
L14.dama	-0.065907	0.050958	-1.293	0.196
L14.wind_space	-0.052860	0.038059	-1.389	0.165
L15.O3 (ppb)	-0.019359	0.007507	-2.579	0.010
L15.dama	0.002285	0.050953	0.045	0.964

L15.wind_space	-0.029974	0.038059	-0.788	0.431
L16.O3 (ppb)	-0.006025	0.007507	-0.803	0.422
L16.dama	0.146972	0.050951	2.885	0.004
L16.wind_space	0.040307	0.038055	1.059	0.290
L17.O3 (ppb)	-0.006671	0.007507	-0.889	0.374
L17.dama	0.122497	0.050952	2.404	0.016
L17.wind_space	0.058619	0.038057	1.540	0.123
L18.O3 (ppb)	0.015930	0.007506	2.122	0.034
L18.dama	-0.125613	0.050951	-2.465	0.014
L18.wind_space	0.016178	0.038058	0.425	0.671
L19.O3 (ppb)	-0.004297	0.007506	-0.572	0.567
L19.dama	0.060933	0.050948	1.196	0.232
L19.wind_space	0.060790	0.038054	1.597	0.110
L20.O3 (ppb)	0.025939	0.007507	3.455	0.001
L20.dama	-0.024684	0.050944	-0.485	0.628
L20.wind_space	-0.024001	0.038054	-0.631	0.528
L21.O3 (ppb)	0.018284	0.007507	2.436	0.015
L21.dama	-0.061656	0.050945	-1.210	0.226
L21.wind_space	-0.016834	0.038051	-0.442	0.658
L22.O3 (ppb)	0.051987	0.007508	6.924	0.000
L22.dama	0.016260	0.050952	0.319	0.750
L22.wind_space	0.081396	0.038064	2.138	0.032
L23.O3 (ppb)	0.080316	0.007513	10.690	0.000
L23.dama	-0.227887	0.050999	-4.468	0.000
L23.wind_space	0.025385	0.038101	0.666	0.505
L24.O3 (ppb)	0.112991	0.007528	15.009	0.000
L24.dama	-0.050457	0.051359	-0.982	0.326

L24.wind_space	0.025851	0.038103	0.678	0.497
L25.O3 (ppb)	-0.052943	0.007553	-7.009	0.000
L25.dama	-0.057696	0.051853	-1.113	0.266
L25.wind_space	-0.027420	0.038083	-0.720	0.472
L26.O3 (ppb)	-0.021584	0.007538	-2.864	0.004
L26.dama	0.135612	0.051869	2.615	0.009
L26.wind_space	-0.084100	0.037864	-2.221	0.026
L27.O3 (ppb)	-0.038283	0.005698	-6.719	0.000
L27.dama	0.108739	0.040762	2.668	0.008
L27.wind_space	-0.110842	0.034151	-3.246	0.001

===

جدول 12- براورد ضرایب آلایندهی ازن

Results for equation dama

===

(coefficient	std. eri	ror	t-stat	prob)
const	0.363	294	0.026903	3	13.504	0.000
L1.O3 (ppb) -0.00)2374	0.0008	805	-2.948	0.003
L1.dama	0.80	5701	0.00571	.1	141.263	0.000
L1.wind_sp	ace -0.0	09957	0.004	819	-2.066	0.039
L2.O3 (ppb	-0.00	01494	0.0010	63	-1.406	0.160
L2.dama	0.06	5260	0.0073	12	8.925	0.000
L2.wind_sp	ace -0.0	06418	0.005	333	-1.203	0.229
L3.O3 (ppk	0.00	02097	0.0010	64	1.970	0.049
L3.dama	-0.00	1675	0.0073	15	-0.229	0.819
L3.wind_sp	ace -0.0	09910	0.005	365	-1.847	0.065

L4.O3 (ppb)	0.000048	0.001061	0.046	0.964
L4.dama	-0.007613	0.007244	-1.051	0.293
L4.wind_space	-0.006411	0.005370	-1.194	0.233
L5.O3 (ppb)	-0.000380	0.001059	-0.359	0.719
L5.dama	0.006387	0.007194	0.888	0.375
L5.wind_space	-0.007897	0.005370	-1.471	0.141
L6.O3 (ppb)	0.000057	0.001058	0.054	0.957
L6.dama	0.001596	0.007187	0.222	0.824
L6.wind_space	0.009817	0.005366	1.829	0.067
L7.O3 (ppb)	-0.001539	0.001058	-1.455	0.146
L7.dama	0.003213	0.007184	0.447	0.655
L7.wind_space	-0.004495	0.005365	-0.838	0.402
L8.O3 (ppb)	0.002018	0.001058	1.907	0.057
L8.dama	-0.011109	0.007184	-1.546	0.122
L8.wind_space	-0.005005	0.005365	-0.933	0.351
L9.O3 (ppb)	-0.003040	0.001058	-2.873	0.004
L9.dama	-0.000192	0.007183	-0.027	0.979
L9.wind_space	-0.000564	0.005364	-0.105	0.916
L10.O3 (ppb)	-0.001810	0.001058	-1.711	0.087
L10.dama	0.001633	0.007183	0.227	0.820
L10.wind_space	-0.018021	0.005364	-3.360	0.001
L11.O3 (ppb)	0.001643	0.001058	1.553	0.121
L11.dama	-0.017411	0.007183	-2.424	0.015
L11.wind_space	-0.007507	0.005364	-1.399	0.162
L12.O3 (ppb)	0.000917	0.001058	0.866	0.386
L12.dama	-0.008126	0.007184	-1.131	0.258
L12.wind_space	-0.008319	0.005364	-1.551	0.121

L13.O3 (ppb)	-0.002960	0.001058	-2.797	0.005
L13.dama	0.013745	0.007184	1.913	0.056
L13.wind_space	-0.003732	0.005365	-0.696	0.487
L14.O3 (ppb)	-0.000010	0.001058	-0.009	0.992
L14.dama	0.013318	0.007184	1.854	0.064
L14.wind_space	0.002252	0.005365	0.420	0.675
L15.O3 (ppb)	0.001079	0.001058	1.020	0.308
L15.dama	-0.002882	0.007183	-0.401	0.688
L15.wind_space	-0.003865	0.005365	-0.720	0.471
L16.O3 (ppb)	-0.001647	0.001058	-1.556	0.120
L16.dama	0.000552	0.007182	0.077	0.939
L16.wind_space	-0.005433	0.005365	-1.013	0.311
L17.O3 (ppb)	0.001102	0.001058	1.041	0.298
L17.dama	0.012101	0.007183	1.685	0.092
L17.wind_space	-0.008913	0.005365	-1.661	0.097
L18.O3 (ppb)	0.000931	0.001058	0.880	0.379
L18.dama	0.005561	0.007183	0.774	0.439
L18.wind_space	-0.007560	0.005365	-1.409	0.159
L19.O3 (ppb)	0.000540	0.001058	0.510	0.610
L19.dama	-0.018899	0.007182	-2.631	0.009
L19.wind_space	-0.001411	0.005364	-0.263	0.793
L20.O3 (ppb)	0.001432	0.001058	1.353	0.176
L20.dama	0.005016	0.007181	0.698	0.485
L20.wind_space	0.000671	0.005364	0.125	0.900
L21.O3 (ppb)	0.002697	0.001058	2.548	0.011
L21.dama	0.020583	0.007182	2.866	0.004
L21.wind_space	-0.001505	0.005364	-0.281	0.779

L22.O3 (ppb)	-0.000293	0.001058	-0.277	0.782
L22.dama	0.055265	0.007183	7.694	0.000
L22.wind_space	-0.015961	0.005366	-2.975	0.003
L23.O3 (ppb)	-0.004403	0.001059	-4.157	0.000
L23.dama	0.145865	0.007189	20.289	0.000
L23.wind_space	-0.007605	0.005371	-1.416	0.157
L24.O3 (ppb)	-0.002421	0.001061	-2.281	0.023
L24.dama	0.175465	0.007240	24.235	0.000
L24.wind_space	0.003099	0.005371	0.577	0.564
L25.O3 (ppb)	0.001359	0.001065	1.276	0.202
L25.dama	-0.071847	0.007310	-9.829	0.000
L25.wind_space	0.011709	0.005368	2.181	0.029
L26.O3 (ppb)	0.001461	0.001063	1.375	0.169
L26.dama	-0.119726	0.007312	-16.374	0.000
L26.wind_space	0.002015	0.005338	0.377	0.706
L27.O3 (ppb)	0.002439	0.000803	3.037	0.002
L27.dama	-0.069963	0.005746	-12.176	0.000
L27.wind_space	-0.000511	0.004814	-0.106	0.915

جدول 13- براورد ضرایب دما

Results for equation wind_space

===

Co	pefficient	std. error	t-stat	prob	
const	0.39935	0.031	953 12.	498 0.	.000
L1.O3 (ppb)	0.000!	531 0.00	00957 C).555 (0.579

L1.dama	0.042004	0.006782	6.193	0.000
L1.wind_space	0.473418	0.005723	82.718	0.000
L2.O3 (ppb)	0.000805	0.001262	0.638	0.524
L2.dama	0.003335	0.008685	0.384	0.701
L2.wind_space	0.117958	0.006334	18.623	0.000
L3.O3 (ppb)	0.000225	0.001264	0.178	0.859
L3.dama	0.012109	0.008687	1.394	0.163
L3.wind_space	0.042255	0.006372	6.631	0.000
L4.O3 (ppb)	-0.001577	0.001260	-1.252	0.211
L4.dama	0.014724	0.008604	1.711	0.087
L4.wind_space	0.026422	0.006378	4.143	0.000
L5.O3 (ppb)	0.000919	0.001257	0.731	0.465
L5.dama	-0.000316	0.008545	-0.037	0.970
L5.wind_space	0.010289	0.006378	1.613	0.107
L6.O3 (ppb)	-0.000169	0.001256	-0.134	0.893
L6.dama	-0.008238	0.008536	-0.965	0.335
L6.wind_space	0.016569	0.006374	2.600	0.009
L7.O3 (ppb)	0.002764	0.001256	2.200	0.028
L7.dama	-0.012639	0.008533	-1.481	0.139
L7.wind_space	-0.010665	0.006372	-1.674	0.094
L8.O3 (ppb)	-0.002749	0.001257	-2.187	0.029
L8.dama	-0.005906	0.008532	-0.692	0.489
L8.wind_space	0.003750	0.006372	0.589	0.556
L9.O3 (ppb)	-0.001600	0.001257	-1.273	0.203
L9.dama	0.012910	0.008532	1.513	0.130
L9.wind_space	-0.010783	0.006370	-1.693	0.091
L10.O3 (ppb)	-0.001075	0.001257	-0.855	0.393

L10.dama	0.003891	0.008532	0.456	0.648
L10.wind_space	-0.004959	0.006370	-0.778	0.436
L11.O3 (ppb)	0.000276	0.001257	0.220	0.826
L11.dama	-0.009301	0.008531	-1.090	0.276
L11.wind_space	0.003462	0.006371	0.543	0.587
L12.O3 (ppb)	0.000967	0.001257	0.769	0.442
L12.dama	0.000809	0.008532	0.095	0.924
L12.wind_space	0.018202	0.006370	2.857	0.004
L13.O3 (ppb)	0.001090	0.001257	0.868	0.386
L13.dama	-0.003349	0.008532	-0.393	0.695
L13.wind_space	-0.008661	0.006372	-1.359	0.174
L14.O3 (ppb)	-0.001652	0.001257	-1.314	0.189
L14.dama	-0.007447	0.008532	-0.873	0.383
L14.wind_space	0.002998	0.006372	0.470	0.638
L15.O3 (ppb)	0.000459	0.001257	0.365	0.715
L15.dama	0.001155	0.008531	0.135	0.892
L15.wind_space	0.007531	0.006372	1.182	0.237
L16.O3 (ppb)	-0.001244	0.001257	-0.990	0.322
L16.dama	0.013337	0.008530	1.563	0.118
L16.wind_space	0.008012	0.006371	1.258	0.209
L17.O3 (ppb)	0.001291	0.001257	1.027	0.304
L17.dama	0.000037	0.008531	0.004	0.997
L17.wind_space	0.002610	0.006372	0.410	0.682
L18.O3 (ppb)	0.000719	0.001257	0.572	0.567
L18.dama	-0.016600	0.008531	-1.946	0.052
L18.wind_space	0.004200	0.006372	0.659	0.510
L19.O3 (ppb)	-0.003828	0.001257	-3.046	0.002

L19.dama	0.018914	0.008530	2.217	0.027
L19.wind_space	0.018157	0.006371	2.850	0.004
L20.O3 (ppb)	0.001651	0.001257	1.314	0.189
L20.dama	-0.004467	0.008529	-0.524	0.600
L20.wind_space	0.005733	0.006371	0.900	0.368
L21.O3 (ppb)	-0.001044	0.001257	-0.831	0.406
L21.dama	-0.009788	0.008529	-1.148	0.251
L21.wind_space	0.032528	0.006371	5.106	0.000
L22.O3 (ppb)	-0.000472	0.001257	-0.376	0.707
L22.dama	0.000685	0.008531	0.080	0.936
L22.wind_space	0.042779	0.006373	6.713	0.000
L23.O3 (ppb)	-0.000924	0.001258	-0.735	0.462
L23.dama	0.004061	0.008539	0.476	0.634
L23.wind_space	0.031024	0.006379	4.863	0.000
L24.O3 (ppb)	0.001171	0.001260	0.929	0.353
L24.dama	-0.010686	0.008599	-1.243	0.214
L24.wind_space	0.027202	0.006379	4.264	0.000
L25.O3 (ppb)	0.000464	0.001265	0.367	0.714
L25.dama	0.002996	0.008682	0.345	0.730
L25.wind_space	0.011360	0.006376	1.782	0.075
L26.O3 (ppb)	0.001988	0.001262	1.576	0.115
L26.dama	-0.016532	0.008684	-1.904	0.057
L26.wind_space	-0.008604	0.006339	-1.357	0.175
L27.O3 (ppb)	-0.003135	0.000954	-3.286	0.001
L27.dama	-0.015700	0.006825	-2.301	0.021
L27.wind_space	-0.011822	0.005718	-2.068	0.039
	.1	1 12	1 .	

جدول 13- براورد ضرایب سرعت وزش باد

ماتریس واریانس-کواریانس باقیماندهها:

باقیماندهها تفاوت بین مقادیر واقعی و مقادیر پیشبینی شده توسط مدل هستند. اگر باقیماندهها با هم همبستگی نداشته باشند، نشاندهندهی این است که مدل به خوبی برازش شده است. نتایج حاکی از آن است که بین باقیماندهها به صورت دو به دو همبستگی قوی وجود ندارد بنابراین مدل VAR مدل مناسبی برای برازش به دادهها است.

	آلایندهی ازن	دما	سرعت وزش باد
آلایندهی ازن	1.000000	0.005767	-0.002308
دما	0.005767	1.000000	0.043634
سرعت وزش باد	-0.002308	0.043634	1.000000

جدول 14- ماتریس واریانس کواریانس متغیرها

اکنون که مدل روی دادههای اموزش به خوبی برازش داده شده است بر روی دادههای آزمایش آن را اجرا میکنیم.

	O3 (ppb)	dama	wind_space
Gregorian_DateTime			
2022-09-19 04:00:00	29.973856	15.513005	1.829291
2022-09-19 05:00:00	32.419147	14.523638	1.922698
2022-09-19 06:00:00	31.339366	14.686278	1.990082
2022-09-19 07:00:00	24.066403	16.531154	1.995000
2022-09-19 08:00:00	16.968452	20.347389	1.909526
2024-03-19 19:00:00	33.857646	17.870606	2.935958
2024-03-19 20:00:00	33.857646	17.870606	2.935958
2024-03-19 21:00:00	33.857646	17.870606	2.935958
2024-03-19 22:00:00	33.857646	17.870606	2.935958
2024-03-19 23:00:00	33.857646	17.870606	2.935958

13148 rows × 3 columns

جدول 15- برازش مدل روی دادههای آزمایش

نمودار مقادیر پیش بینی شده را در مقابل مقادیر برازش داده شده در شکل های زیر داریم. با توجه به نمودارها مدل VAR از مدل SARIMAX عملکرد بهتری داشته است ولی همچنان تفاوت زیادی بین مقادیر مشاهده شده و مقادیر برازش داده شده مشاهده میشود.

شكل 18-نمودار مقادير واقعى در مقابل مقادير پيش بينى شده آلايندهى ازن

شكل 19-نمودار مقادير واقعى در مقابل مقادير پيش بينى شده دما

شكل 19-نمودار مقادير واقعى در مقابل مقادير پيش بينى شده سرعت وزش باد

مدل پنجم:

مدل (Long Short-Term Memory) LSTM

مدل LSTM یک نوع شبکه عصبی بازگشتی (Recurrent Neural Network) است که برای پردازش دادههای ترتیبی مانند سریهای زمانی، دادههای متنی و دادههای صوتی به کار میرود. یکی از مشهور ترین مدلها برای بررسی سریهای زمانی چند متغیره استفاده از مدل شبکههای عصبی در برازش مدل است.

برای اجرای این مدل مراحل زیر دنبال میشود:

- نرمالسازی دادهها :دادهها با روش های نرمال سازی مانند MinMaxScaler یا StandardScaler مقیاس بندی میشوند زیرا مدل LSTM با دادههای نرمالسازی شده بهتر عمل می کند.
- ایجاد توالیها :دادهها به توالیهایی مناسب مدل LSTM تبدیل میشود. برای مثال، در پیشبینی سری زمانی، پنجرهای از دادههای گذشته به عنوان ورودی و نقطه بعدی به عنوان خروجی تعریف میشود.

تقسیم دادهها به مجموعههای آموزشی و آزمایشی و اعتبارسنجی : دادهها را به سه بخش آموزشی (Training) و آزمایشی (Validation) تقسیم می شود.

طراحی مدل: آرگومان های مدل انتخاب میشود و مدل طراحی میگردد.

برازش مدل: مدل بر روی دادههای آموزشی، آموزش میبیند و از دادههای اعتبارسنجی برای ارزیابی عملکرد استفاده می گردد

ارزیابی مدل:عملکرد مدل با دادههای آزمایشی سنجیده میشود. از معیارهایی مانندMAE ، MSEیا دقت برای ارزیابی استفاده می گردد

پیشبینی با مدل: از مدل برای پیشبینی مقادیر جدید استفاده کنید. دادههای نرمال شده را معکوس کرده و به شکل اولیه باز خواهند گشت.

در زیر دادهها پس از نرمال سازی مشاهده می گردد.

	O3 (ppb)	dama	wind_space
Gregorian_DateTime			
2019-03-21 00:00:00	0.034802	0.267857	0.000000
2019-03-21 01:00:00	0.058792	0.267857	0.000000
2019-03-21 02:00:00	0.017334	0.250000	0.142857
2019-03-21 03:00:00	0.011347	0.214286	0.142857
2019-03-21 04:00:00	0.033238	0.232143	0.095238

جدول 16- دادههای نرمال شده

نمودار دادههای نرمال شده در زیر آورده شده است. مقیاس دادهها از صفر تا یک تغییر می کنند.

شکل 20-سری زمانی دادههای نرمال شده

در زیر بخشی از نتایج آموزش مدل مشاهده میشود.

در این مدل از الگوریتم ADAM و تابع هزینه MSE برای مدلسازی استفاده شده است. تعداد ADAM و تابع هزینه epoch =100 برای آموزش است. هر دوره یک بار عبور کامل از دادههای آموزشی را نشان می دهد.

مقادیر val_RootMeanSquaredErrorو val_lossعملکرد مدل روی مجموعه داده اعتبارسنجی را نشان می دهند و به بررسی تعمیمپذیری مدل کمک می کنند.

معیارهای اعتبارسنجی به آرامی در حال بهبود هستند که نشان دهنده روند مثبت آموزش است.

نشانهای از بیشبرازش (Overfitting) دیده نمی شود، چرا که Loss اعتبار سنجی افزایش پیدا نکرده است.

```
Epoch 1/100
9336/9336 •
                              - 423s 44ms/step - RootMeanSquaredError: 0.0979 - loss: 0.0099 - val_RootMeanSquaredError: 0.0586 - val_loss: 0.0034
Epoch 2/100
9336/9336
                               402s 43ms/step - RootMeanSquaredError: 0.0678 - loss: 0.0046 - val_RootMeanSquaredError: 0.0573 - val_loss: 0.0033
Epoch 3/100
9336/9336
                             - 414s 44ms/step - RootMeanSquaredError: 0.0654 - loss: 0.0043 - val_RootMeanSquaredError: 0.0591 - val_loss: 0.0035
Epoch 4/100
9336/9336
                              - 448s 45ms/step - RootMeanSquaredError: 0.0642 - loss: 0.0041 - val RootMeanSquaredError: 0.0577 - val loss: 0.0033
Epoch 5/100
9336/9336
                              - 409s 44ms/step - RootMeanSquaredError: 0.0630 - loss: 0.0040 - val_RootMeanSquaredError: 0.0575 - val_loss: 0.0033
Epoch 6/100
9336/9336
                              · 414s 44ms/step - RootMeanSquaredError: 0.0628 - loss: 0.0039 - val_RootMeanSquaredError: 0.0568 - val_loss: 0.0032
Epoch 7/100
9336/9336 •
                              - 454s 46ms/step - RootMeanSquaredError: 0.0627 - loss: 0.0039 - val RootMeanSquaredError: 0.0560 - val loss: 0.0031
Epoch 8/100
9336/9336
                              - 426s 46ms/step - RootMeanSquaredError: 0.0615 - loss: 0.0038 - val RootMeanSquaredError: 0.0556 - val loss: 0.0031
Epoch 9/100
9336/9336
                               408s 44ms/step - RootMeanSquaredError: 0.0615 - loss: 0.0038 - val_RootMeanSquaredError: 0.0547 - val_loss: 0.0030
Epoch 10/100
9336/9336
                              - 397s 43ms/step - RootMeanSquaredError: 0.0614 - loss: 0.0038 - val_RootMeanSquaredError: 0.0554 - val_loss: 0.0031
Epoch 11/100
9336/9336 -
                              - 399s 43ms/step - RootMeanSquaredError: 0.0614 - loss: 0.0038 - val RootMeanSquaredError: 0.0561 - val loss: 0.0031
Epoch 12/100
                              - 18909s 2s/step - RootMeanSquaredError: 0.0602 - loss: 0.0036 - val_RootMeanSquaredError: 0.0553 - val_loss: 0.0031
9336/9336
```

جدول 17- برازش مدل بر روی دادههای آموزش

بر روی دادههای آزمایش نرمال شده مدل اجرا شده است. بخشی ار نتایج به صورت زیر است:

جدول 18- برازش مدل بر روی دادههای آزمایش

دادهها به شکل اولیه باز گردانده شده است و بخشی از آن در زیر مشاهده میشود.

جدول 19- بازگردانی دادهها به شکل قبل از مقیاس کردن

نمودار مقادیر پیش بینی شده در مقایل مقادیر واقعی در شکل زیر آورده شده است. با توجه به نمودار مدل به خوبی برازش داده شده و مقادیر پیش بینی شده با مقادیر واقعی نزدیک به هم هستند.

شكل 21- نمودار مقادير پيش بيني شده در مقايل مقادير واقعي در مدل LSTM

برای بررسی کارایی مدل میتوان از معیارهای RMSE ، MAE و ${\sf R}^2$ استفاده کرد.

نتیجه گیری:

نتایج تحلیل نشان داد مدل LSTM بهترین برآزش را ارائه میدهد، به طوری که قادر بود تغییرات ساعتی الاینده کی ازن را با دقت بالا پیشبینی کند. مدلهای SARIMAX و VAR دقت کمتری نسبت به مدل ارائه کردند.

با استفاده از مدل LSTM ، قابلیت پیشبینی تغییرات ساعتی میزان آلاینده ی ازن وجود دارد. پیشنهاد میشود از این مدل برای تحلیل و پیشبینی سایر متغیرهای اقلیمی نیز استفاده شود.

منابع:

- 1. Aghelpour, P and M. Nadi, 2018. Assessing the accuracy of SARIMA model in modeling and long-term forecast of average monthly temperature in different climates of Iran. Climatological Research, No. 35, pp. 113-126
- 2. Ahhashimi, Sh. 2014. Prediction of monthly rainfall in Kirkuk using artifitial neural network and time series models. Journal of engineering and development, No. 18, pp.129-142.
- 3. Asakereh, H. 2007. Climate Change, University of Zanjan Pub. 1th edition, Zanjan, 246p.
- 4. Dayal. D., Swain. S., Gautam. A.K., Palmate. S.S., Pandey. A and Mishra. S.K. 2019. Development of ARIMA Model for Monthly Rainfall Forecasting over an Indian River Basin. World Environmental and Water Resources Congress.
- 5. Geweke, J. and Porter-Hudak, S. 1983. The estimation and application of long memory time series models. Journal of Time Series Analysis, No. 4, pp. 221–238.
- 6. Haji Bigloo, M, A. Ghezel Sofloo and H. Ali Mirzaei, 2013. Investigation and forecast of average monthly rainfall using SARIMA technique (Case study: Baba Aman Bojnourd rainfall station). Engineering and Irrigation Sciences (Scientific Journal of Agriculture), No. 3, pp. 41-54.
- 7. Khosravi, Y, S. Biliani and A. Bayat, 2017. Temporal analysis of annual rainfall in Shiraz using time series analysis. Water Resources Engineering, No, 38, pp. 1-14.