§ 36. Ортогональность

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Ортогональные и ортонормированные наборы векторов

Из определения угла между векторами вытекает, в частности, что $(\widehat{\mathbf{x}},\widehat{\mathbf{y}})=\frac{\pi}{2}$ тогда и только тогда, когда $\mathbf{xy}=0$ (точный аналог критерия ортогональности векторов в обычном пространстве из §11). Это делает естественным следующее

Определение

Векторы ${\bf x}$ и ${\bf y}$ из пространства со скалярным произведением называются *ортогональными*, если ${\bf x}{\bf y}=0$. Набор векторов называется *ортогональным*, если любые два различных вектора из этого набора ортогональны. Ортогональный набор векторов называется *ортонормированным*, если длины всех векторов из этого набора равны 1. Тот факт, что векторы ${\bf x}$ и ${\bf y}$ ортогональны, будем записывать в виде ${\bf x}\perp {\bf y}$.

Отметим, что в силу равенства (3) из §35 справедливо следующее

Замечание о нулевом векторе и ортогональности

Нулевой вектор ортогонален любому вектору.

Теорема Пифагора

Теорема Пифагора

Если ${\bf a}$ и ${\bf b}$ — ортогональные векторы в пространстве со скалярным произведением, то $|{\bf a}+{\bf b}|^2=|{\bf a}|^2+|{\bf b}|^2.$

Доказательство. Используя ортогональность векторов а и b, имеем:

$$|a+b|^2 = (a+b)(a+b) = aa+ab+ba+bb = aa+bb = |a|^2 + |b|^2,$$

что и требовалось доказать.

В случае плоскости или обычного 3-мерного пространства, доказанное утверждение превращается в «обычную» теорему Пифагора из элементарной геометрии: квадрат гипотенузы равен сумме квадратов катетов (см. рис. 1). Этим и объясняется название этого утверждения.

Рис. 1. Прямоугольный треугольник

Ортогональность и линейная независимость

Укажем одно важное свойство ортогональных наборов векторов.

Теорема об ортогональности и линейной независимости

Любой ортогональный набор ненулевых векторов линейно независим.

Приведем два доказательства этого утверждения. Пусть $A = \{a_1, a_2, \dots, a_k\}$ — ортогональный набор ненулевых векторов.

Первое доказательство. Ясно, что матрица Грама G_A диагональна, причем на ее диагонали стоят ненулевые скаляры. Следовательно, эта матрица невырождена. Остается учесть критерий линейной независимости на языке матрицы Грама (см. § 35).

Второе доказательство. Предположим что $t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \cdots + t_k \mathbf{a}_k = \mathbf{0}$ и $t_i \neq 0$ для некоторого $1 \leq i \leq k$. Умножим обе части этого равенства скалярно на \mathbf{a}_i . Учитывая, что набор $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ ортогонален, имеем

 $0 = (t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k) \mathbf{a}_i = t_1 \mathbf{a}_1 \mathbf{a}_i + t_2 \mathbf{a}_2 \mathbf{a}_i + \dots + t_i \mathbf{a}_i \mathbf{a}_i + \dots + t_k \mathbf{a}_k \mathbf{a}_i = t_i \mathbf{a}_i \mathbf{a}_i.$

Поскольку $t_i \neq 0$, из равенства $t_i \mathbf{a}_i \mathbf{a}_i = 0$ вытекает, что $\mathbf{a}_i \mathbf{a}_i = \mathbf{0}$, и потому $\mathbf{a}_i = \mathbf{0}$. Но это противоречит условию.

Следствие об ортонормированности и линейной независимости

Любой ортонормированный набор векторов линейно независим.

Вычисление скалярного произведения в ортонормированном базисе (1)

Определение

Ортогональный [ортонормированный] набор векторов, который является базисом, называется *ортогональным* [соответственно *ортонормированным*] *базисом*.

Примером ортонормированного базиса является стандартный базис пространства \mathbb{R}_n (если скалярное произведение в \mathbb{R}_n определить как сумму произведений одноименных компонент).

Очевидно, что матрицей Грама ортонормированного базиса является единичная матрица. Из предложения о матрице Грама и скалярном произведении (см. § 35) немедленно вытекает

Теорема о скалярном произведении в ортонормированном базисе

Пусть V — пространство со скалярным произведением, а P — ортонормированный базис в V. Тогда

$$\mathbf{x}\mathbf{y} = [\mathbf{x}]_P^\top \cdot \overline{[\mathbf{y}]_P} \tag{1}$$

для любых $\mathbf{x}, \mathbf{y} \in V$.

Вычисление длины вектора, угла и расстояния между векторами

Перепишем равенство (1) на языке координат векторов. Если векторы $\mathbf x$ и $\mathbf y$ имеют в ортонормированном базисе координаты (x_1,x_2,\ldots,x_n) и (y_1,y_2,\ldots,y_n) соответственно, то, в силу, (1), имеем

$$xy = x_1\overline{y_1} + x_2\overline{y_2} + \cdots + x_n\overline{y_n}.$$

В евклидовом пространстве эта формула принимает совсем простой вид:

$$\mathbf{x}\mathbf{y}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

Из определений длины вектора, угла между векторами и расстояния между векторами немедленно вытекает, что в евклидовом пространстве справедливы также формулы

$$\begin{aligned} |\mathbf{x}| &= \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}; \\ \cos(\widehat{\mathbf{x}, \mathbf{y}}) &= \frac{x_1 y_1 + x_2 y_2 + \dots + x_n y_n}{\sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \cdot \sqrt{y_1^2 + y_2^2 + \dots + y_n^2}}; \\ \rho(\mathbf{x}, \mathbf{y}) &= \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}. \end{aligned}$$

Отметим, что четыре последние формулы являются точными аналогами соответствующих формул из векторной алгебры (см. $\S 11$ и 14).

Процесс ортогонализации Грама-Шмидта (1)

Естественно поставить вопрос о том, в любом ли пространстве со скалярным произведением существует ортонормированный базис. Ответ на него содержится в следующем утверждении. В доказательстве этого утверждения указан способ нахождения ортонормированного базиса, который называется процессом ортогонализации Грама—Шмидта.

Теорема о существовании ортонормированного базиса

Любое ненулевое пространство со скалярным произведением V имеет ортонормированный базис.

Доказательство. Пусть $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ — базис пространства V. Построим ортогональный базис $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ пространства V. Векторы $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ будем находить последовательно — сначала \mathbf{b}_1 , затем \mathbf{b}_2 и т. д.

Положим $\mathbf{b_1}=\mathbf{a_1}$. Пусть $2\leqslant i\leqslant n$. Предположим, что мы уже построили ортогональный набор ненулевых векторов $\mathbf{b_1},\,\mathbf{b_2},\,\ldots,\,\mathbf{b_{i-1}},\,$ каждый из которых является линейной комбинацией векторов $\mathbf{a_1},\,\mathbf{a_2},\,\ldots,\,\mathbf{a_{i-1}}.$ Положим

$$\mathbf{b}_{i} = -\frac{\mathbf{a}_{i}\mathbf{b}_{1}}{\mathbf{b}_{1}\mathbf{b}_{1}} \cdot \mathbf{b}_{1} - \frac{\mathbf{a}_{i}\mathbf{b}_{2}}{\mathbf{b}_{2}\mathbf{b}_{2}} \cdot \mathbf{b}_{2} - \dots - \frac{\mathbf{a}_{i}\mathbf{b}_{i-1}}{\mathbf{b}_{i-1}\mathbf{b}_{i-1}} \cdot \mathbf{b}_{i-1} + \mathbf{a}_{i}. \tag{2}$$

Процесс ортогонализации Грама-Шмидта (2)

Умножая скалярно обе части равенства (2) на \mathbf{b}_1 справа и учитывая, что вектор \mathbf{b}_1 ортогонален к векторам $\mathbf{b}_2,\dots,\mathbf{b}_{i-1}$, получаем, что

$$\mathbf{b}_i \mathbf{b_1} = -\frac{\mathbf{a}_i \mathbf{b_1}}{\mathbf{b_1} \mathbf{b_1}} \cdot \mathbf{b_1} \mathbf{b_1} + \mathbf{a}_i \mathbf{b_1} = -\mathbf{a}_i \mathbf{b_1} + \mathbf{a}_i \mathbf{b_1} = 0.$$

Аналогично, умножая скалярно обе части равенства (2) на $\mathbf{b}_2,\ldots,\mathbf{b}_{i-1}$ справа и учитывая, что вектора $\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_{i-1}$ попарно ортогональны, можно проверить, что $\mathbf{b}_i\mathbf{b}_2=\cdots=\mathbf{b}_i\mathbf{b}_{i-1}=0$. Следовательно, набор векторов $\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_i$ ортогонален. Напомним, что каждый из векторов $\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_{i-1}$ является линейной комбинацией векторов $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{i-1}$. Отсюда вытекает, что равенство (2) можно записать в виде

$$\mathbf{b}_i = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \cdots + t_{i-1} \mathbf{a}_{i-1} + \mathbf{a}_i,$$

где $t_1, t_2, \ldots, t_{i-1}$ — некоторые числа. Иными словами, вектор \mathbf{b}_i равен некоторой нетривиальной линейной комбинации векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_i$. Поскольку эти векторы входят в базис пространства V, они линейно независимы. Следовательно, $\mathbf{b}_i \neq \mathbf{0}$. Итак, мы получили ортогональный набор ненулевых векторов $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_i$, каждый из которых является линейной комбинацией векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_i$.

Процесс ортогонализации Грама-Шмидта (3)

Повторив указанные выше построения нужное число раз, мы в конце концов получим ортогональный набор ненулевых векторов $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$, принадлежащих V. По теореме об ортогональности и линейной независимости этот набор векторов линейно независим. Поскольку число векторов в нем совпадает с размерностью V, он является базисом этого подпространства. В силу замечания об орте вектора из § 35, для того, чтобы получить ортонормированный базис подпространства V, достаточно разделить каждый из векторов $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$ на его длину.

Дополнение до ортогонального базиса (1)

Теорема о дополнении до ортогонального базиса

Любую ортогональную систему ненулевых векторов пространства со скалярным произведением V можно дополнить до ортогонального базиса этого пространства.

Доказательство. Пусть ${\bf a}_1, {\bf a}_2, \dots, {\bf a}_k$ — ортогональный набор ненулевых векторов пространства V. Обозначим размерность пространства V через n. Нам достаточно найти ортогональный набор из n ненулевых векторов пространства V, содержащий векторы ${\bf a}_1, {\bf a}_2, \dots, {\bf a}_k$. В самом деле, в силу теоремы об ортогональности и линейной независимости такой набор векторов будет линейно независимым, А поскольку число векторов в нем равно размерности пространства V, он будет базисом этого пространства.

Если k=n, то, в силу сказанного выше, уже сам набор векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ является ортогональным базисом пространства V. Поэтому далее можно считать, что k < n. Пусть $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$ — ортонормированный базис пространства V, существующий в силу теоремы о существовании ортонормированного базиса. Пусть вектор \mathbf{a}_i имеет в этом базисе координаты $(a_{i1}, a_{i2}, \ldots, a_{in})$ (для всякого $i=1,2,\ldots,k$).

Дополнение до ортогонального базиса (2)

Рассмотрим следующую однородную систему линейных уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0. \end{cases}$$
(3)

Поскольку k < n, эта система имеет по крайней мере одно ненулевое решение (см. замечание о существовании ненулевого решения однородной системы в §7). Обозначим его через $(c_1, c_2, ..., c_n)$ и положим $\mathbf{a}_{k+1} = \overline{c_1} \, \mathbf{b}_1 + \overline{c_2} \, \mathbf{b}_2 + \cdots + \overline{c_n} \, \mathbf{b}_n$. Учитывая теорему о скалярном произведении в ортонормированном базисе, имеем:

$$a_ia_{k+1}=a_{i1}\,\overline{\overline{c_1}}+a_{i2}\,\overline{\overline{c_2}}+\cdots+a_{in}\,\overline{\overline{c_n}}=a_{i1}c_1+a_{i2}c_2+\cdots+a_{in}c_n=0$$

для всякого i = 1, 2, ..., k. Следовательно, $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_k, \mathbf{a}_{k+1}$ ортогональный набор ненулевых векторов. Если k+1=n, то он является ортогональным базисом пространства V. В противном случае, рассуждая так же, как выше, при построении вектора \mathbf{a}_{k+1} , мы дополним набор $a_1, a_2, \ldots, a_{k+1}$ еще одним вектором a_{k+2} так, что набор $a_1, a_2, \ldots, a_{k+2}$ будет ортогональным набором ненулевых векторов. Продолжая этот процесс, мы через конечное число шагов построим ортогональный базис $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_n$ пространства V, являющийся расширением исходного набора векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$. 4日 > 4日 > 4目 > 4目 > 目 > 目 → り

Дополнение до ортонормированного базиса

Из теоремы о дополнении до ортогонального базиса вытекает

Следствие о дополнении до ортонормированного базиса

Любую ортонормированную систему векторов пространства со скалярным произведением можно дополнить до ортонормированного базиса этого пространства.

Доказательство. Все векторы ортонормированной системы — ненулевые (поскольку их длины равны 1). В силу теоремы о дополнении до ортогонального базиса нашу ортонормированную систему можно дополнить до ортогонального базиса. Разделим каждый из найденных при этом новых векторов на его длину. В силу замечания об орте вектора из § 35, мы получим ортонормированный базис.

Ортогональное дополнение (1)

Определение

Пусть S — подпространство в V. Множество всех векторов, ортогональных к произвольному вектору из S, называется *ортогональным дополнением* подпространства S. Ортогональное дополнение подпространства S обозначается через S^{\perp} .

Предложение об ортогональном дополнении

Пусть S — подпространство пространства со скалярным произведением V, а S^\perp — ортогональное дополнение S. Тогда:

- 1) S^{\perp} подпространство пространства V;
- 2) если ${\bf a}_1, {\bf a}_2, \dots, {\bf a}_k$ базис S, то ${\bf x} \in S^\perp$ тогда и только тогда, когда ${\bf x}{\bf a}_1 = {\bf x}{\bf a}_2 = \dots = {\bf x}{\bf a}_k = 0$.

Ортогональное дополнение (2)

Доказательство. 1) Если $\mathbf{x},\mathbf{y}\in S^\perp$, $\mathbf{a}\in S$, a $t\in F$ — произвольное число, то $(\mathbf{x}+\mathbf{y})\mathbf{a}=\mathbf{x}\mathbf{a}+\mathbf{y}\mathbf{a}=0+0=0$ и $(t\mathbf{x})\mathbf{a}=t(\mathbf{x}\mathbf{a})=t\cdot 0=0$.

2) Если ${\bf a}_1, {\bf a}_2, \dots, {\bf a}_k$ — базис S, а ${\bf x} \in S^\perp$, то вектор ${\bf x}$ ортогонален ${\bf k}$ векторам ${\bf a}_1, {\bf a}_2, \dots, {\bf a}_k$, поскольку он ортогонален ко всем векторам из S. Предположим теперь, что ${\bf x}$ ортогонален ${\bf k}$ векторам ${\bf a}_1, {\bf a}_2, \dots, {\bf a}_k$. Пусть ${\bf a} \in S$. Тогда ${\bf a} = t_1 {\bf a}_1 + t_2 {\bf a}_2 + \dots + t_k {\bf a}_k$ для некоторых чисел $t_1, t_2, \dots, t_k \in F$. Тогда

$$\mathbf{ax} = (t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k) \mathbf{x} = t_1 (\mathbf{a}_1 \mathbf{x}) + t_2 (\mathbf{a}_2 \mathbf{x}) + \dots + t_k (\mathbf{a}_k \mathbf{x}) = t_1 \cdot 0 + t_2 \cdot 0 + \dots + t_k \cdot 0 = 0,$$

и потому $\mathbf{x} \in S^{\perp}$.

Ортогональное разложение (1)

Теорема об ортогональном разложении

Eсли V- пространство со скалярным произведением, а S- подпространство в V, то $V=S\oplus S^{\perp}.$

Доказательство. Если $\mathbf{x} \in S \cap S^\perp$, то $\mathbf{x} = \mathbf{0}$, откуда $\mathbf{x} = \mathbf{0}$. Таким образом, $S \cap S^\perp = \{\mathbf{0}\}$. В силу теоремы о прямой сумме подпространств (см. § 24) осталось проверить, что dim $S + \dim S^\perp = \dim V$.

Положим $\dim V=n$ и $\dim S=k$. Зафиксируем ортонормированный базис $\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_n$ пространства V и произвольный базис $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$ подпространства S. Пусть вектор \mathbf{a}_1 имеет в базисе $\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_n$ координаты $(a_{11},a_{12},\ldots,a_{1n})$, вектор \mathbf{a}_2 — координаты $(a_{21},a_{22},\ldots,a_{2n})$, ..., вектор \mathbf{a}_k — координаты $(a_{k1},a_{k2},\ldots,a_{kn})$. По предложению об ортогональном дополнении $\mathbf{x}\in S^\perp$ тогда и только тогда, когда $\mathbf{x}\mathbf{a}_1=\mathbf{x}\mathbf{a}_2=\cdots=\mathbf{x}\mathbf{a}_k=0$. Если (x_1,x_2,\ldots,x_n) — координаты вектора \mathbf{x} в базисе $\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_n$, то, в силу теоремы о скалярном произведении в ортонормированном базисе, имеем:

$$\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = 0, \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = 0, \\ \dots \\ a_{k1}x_{1} + a_{k2}x_{2} + \dots + a_{kn}x_{n} = 0. \end{cases}$$

$$(4)$$

Ортогональное разложение (2)

Этот набор равенств можно рассматривать как однородную систему линейных уравнений с неизвестными x_1, x_2, \ldots, x_n . Пространство S^\perp совпадает с пространством решений системы (4). Размерность этого пространства равна n-r, где r— ранг матрицы системы (4) (см. теорему о размерности пространства решений однородной системы в § 28). Строки этой матрицы — координаты базисных векторов пространства S. Следовательно, r=k. Итак, $\dim S^\perp=n-k$, и потому

$$\dim S + \dim S^{\perp} = k + (n-k) = n = \dim V.$$

Теорема доказана.

Равенство $V=S\oplus S^\perp$ называется *ортогональным разложением* пространства V относительно подпространства S.

Алгоритм нахождения базиса ортогонального дополнения

Из доказательства теоремы об ортогональном разложении вытекает следующий алгоритм.

Алгоритм нахождения базиса ортогонального дополнения к подпространству

Пусть $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ — базис подпространства S пространства V. Составим однородную систему линейных уравнений, матрица которой — это матрица, в которой по строкам записаны координаты векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ в некотором ортонормированном базисе пространства V. Пользуясь алгоритмом, указанным в § 28, найдем фундаментальную систему решений этой однородной системы. Это и будет базис пространства S^\perp .

Свойства ортогонального дополнения (1)

Свойства ортогонального дополнения

Пусть V- пространство со скалярным произведением, а $S,\ S_1$ и S_2- его подпространства. Тогда:

- 1) $V^{\perp} = \{0\}, \ a \ \{0\}^{\perp} = V;$
- 2) $(S^{\perp})^{\perp} = S$;
- 3) если $S_1\subseteq S_2$, то $S_2^\perp\subseteq S_1^\perp$;
- 4) $(S_1 + S_2)^{\perp} = S_1^{\perp} \cap S_2^{\perp}$, a $(S_1 \cap S_2)^{\perp} = S_1^{\perp} + S_2^{\perp}$;
- 5) если $V=S_1\oplus S_2$, то $V=S_1^\perp\oplus S_2^\perp.$

Доказательство. 1) Если $\mathbf{x} \in V^{\perp}$, то $\mathbf{xy} = \mathbf{0}$ для любого вектора $\mathbf{y} \in V$. В частности, $\mathbf{xx} = \mathbf{0}$. В силу аксиомы 4) имеем $\mathbf{x} = \mathbf{0}$. Следовательно, $V^{\perp} = \{\mathbf{0}\}$. А равенство $\{\mathbf{0}\}^{\perp} = V$ вытекает из замечания о нулевом векторе и ортогональности.

2) Из определения ортогонального дополнения вытекает, что если $\mathbf{x} \in S$, то \mathbf{x} ортогонален к любому вектору из S^\perp . Следовательно, $S \subseteq (S^\perp)^\perp$. Пусть $\dim S = k$ и $\dim V = n$. В силу теоремы об ортогональном разложении $\dim(S^\perp)^\perp = n - \dim S^\perp = n - (n-k) = k = \dim S$. Итак, S - подпространство в $(S^\perp)^\perp$ и $\dim S = \dim(S^\perp)^\perp$. Следовательно, $S = (S^\perp)^\perp$.

Свойства ортогонального дополнения (2)

- 3) Пусть $S_1 \subset S_2$ и $\mathbf{x} \in S_2^{\perp}$. Тогда \mathbf{x} ортогонален к любому вектору из S_2 , а значит, в частности, и к любому вектору из S_1 . Следовательно, $\mathbf{x} \in S_1^\perp$, и потому $S_2^{\perp} \subset S_1^{\perp}$.
- 4) Пусть ${\sf x} \in S_1^\perp \cap S_2^\perp$ и ${\sf y} \in S_1 + S_2$. Тогда ${\sf y} = {\sf y}_1 + {\sf y}_2$ для некоторых векторов $y_1 \in S_1$ и $y_2 \in S_2$. В силу выбора х имеем $xy_1 = xy_2 = 0$, откуда

$$xy = x(y_1 + y_2) = xy_1 + xy_2 = 0 + 0 = 0.$$

Следовательно, $\mathbf{x} \in (S_1+S_2)^\perp$, и потому $S_1^\perp \cap S_2^\perp \subseteq (S_1+S_2)^\perp$. Докажем обратное включение. Пусть $\mathbf{x} \in (S_1 + S_2)^{\perp}$. Поскольку $S_1 \subseteq S_1 + S_2$ и $S_2\subseteq S_1+S_2$, из свойства 3) вытекает, что $\mathsf{x}\in S_1^\perp$ и $\mathsf{x}\in S_2^\perp$. Следовательно, $\mathbf{x} \in S_1^\perp \cap S_2^\perp$, и потому $(S_1 + S_2)^\perp \subseteq S_1^\perp \cap S_2^\perp$. Следовательно, $(S_1 + S_2)^{\perp} = S_1^{\perp} \cap S_2^{\perp}$. Используя свойство 2), имеем

$$S_1^{\perp} + S_2^{\perp} = \left((S_1^{\perp} + S_2^{\perp})^{\perp} \right)^{\perp} = \left((S_1^{\perp})^{\perp} \cap (S_2^{\perp})^{\perp} \right)^{\perp} = (S_1 \cap S_2)^{\perp}.$$

5) По условию $S_1 \cap S_2 = \{0\}$. Используя свойства 1) и 4), имеем $S_1^{\perp} + S_2^{\perp} = (S_1 \cap S_2)^{\perp} = \{\mathbf{0}\}^{\perp} = V$. Далее, положим dim V = n, $\dim S_1 = k_1$ и $\dim S_2 = k_2$. В силу теоремы о прямой сумме подпространств (см. § 24) $n = k_1 + k_2$. В силу той же теоремы достаточно показать, что $\dim S_1^{\perp} + \dim S_2^{\perp} = n$. Используя теорему об ортогональном разложении, имеем

$$\dim S_1^{\perp} + \dim S_2^{\perp} = (n - k_1) + (n - k_2) = 2n - (k_1 + k_2) = 2n - n = n.$$

Нахождение базиса пересечения подпространств с помощью ортогонального дополнения

Свойства ортогонального дополнения позволяют найти базис пересечения подпространств. В самом деле, если S_1 и S_2 — подпространства пространства со скалярным произведением, то

$$S_1 \cap S_2 = (S_1^{\perp})^{\perp} \cap (S_2^{\perp})^{\perp} = (S_1^{\perp} + S_2^{\perp})^{\perp}.$$

Поскольку мы знаем, как находить базисы суммы подпространств и ортогонального дополнения к подпространству, это позволяет легко найти базис пересечения подпространств.

Определения

Пусть V- пространство со скалярным произведением, S- его подпространство и $\mathbf{x} \in V$. В силу теоремы об ортогональном разложении существуют, и притом единственные, векторы y и z такие, что $y \in S$, $\mathbf{z} \in S^{\perp}$ и $\mathbf{x} = \mathbf{y} + \mathbf{z}$. Вектор у называется *ортогональной проекцией* вектора ${f x}$ на подпространство ${f S}$ и обозначается через ${f x}_\perp$, а вектор ${f z}$ называется ортогональной составляющей x относительно S и обозначается через x^{\perp} . Длина ортогональной составляющей вектора ${f x}$ относительно ${f S}$ называется расстоянием от x до S. Предположим теперь, что V — евклидово пространство. Если $S \neq \{\mathbf{0}\}$ и $\mathbf{y} \neq \mathbf{0}$, то *углом между* \mathbf{x} и S называется угол между векторами ${\bf x}$ и ${\bf y}$. Если $S \neq \{{\bf 0}\}$ и ${\bf y}={\bf 0}$, то угол между ${\bf x}$ и S по определению считается равным $\frac{\pi}{2}$ (это естественно, так как в данном случае $\mathbf{x} = \mathbf{z} \in S^{\perp}$). Наконец, если $S = \{\mathbf{0}\}$, то угол между \mathbf{x} и S не определен. Расстояние от x до S обозначается через $\rho(x,S)$, а угол между x и S — через (x, \hat{S}) .

• В унитарном пространстве угол между вектором и подпространством не определен, поскольку в нем не определен угол между векторами.

Ортогональная проекция и ортогональная составляющая. Расстояние и угол между вектором и подпространством (иллюстрация)

Все введенные только что понятия полностью аналогичны одноименным понятиям в обычном пространстве с обычным скалярным произведением. В самом деле, возьмем в этом пространстве в качестве подпространства S плоскость Oxy. Ясно, что ортогональным дополнением S^\perp будет ось Oz. Отложим вектор \vec{x} от начала координат. Тогда ортогональная проекция вектора \vec{x} на S — это его проекция на плоскость Oxy в обычном смысле, расстояние от \vec{x} до S — обычное расстояние от конца вектора \vec{x} до плоскости Oxy, угол между \vec{x} и S — обычный угол между этим вектором и Oxy (см. рис. 2).

Рис. 2. Расстояние от вектора до подпространства и угол между вектором и подпространством

Связь ортогональной проекции вектора на подпространство с расстоянием от вектора до подпространства

Пусть V — пространство со скалярным произведением, S — его подпространство, а \mathbf{a} — произвольный вектор из V. Обозначим через \mathbf{a}_\perp ортогональную проекцию \mathbf{a} на S, а через \mathbf{a}^\perp — ортогональную составляющую \mathbf{a} относительно S. Для всякого $\mathbf{x} \in S$ обозначим через $d_\mathbf{a}(\mathbf{x})$ расстояние между векторами \mathbf{a} и \mathbf{x} . Будем рассматривать $d_\mathbf{a}(\mathbf{x})$ как функцию от \mathbf{x} .

Замечание об ортогональной проекции

Значение функции $d_{\mathbf{a}}(\mathbf{x})$ минимально тогда и только тогда, когда $\mathbf{x}=\mathbf{a}_{\perp}.$ При этом $d_{\mathbf{a}}(\mathbf{a}_{\perp})=\rho(\mathbf{a},S).$

Доказательство. Поскольку $\mathbf{a}_{\perp} - \mathbf{x} \in S$, из теоремы Пифагора вытекает, что $|\mathbf{a} - \mathbf{x}|^2 = \left| (\mathbf{a}_{\perp} + \mathbf{a}^{\perp}) - \mathbf{x} \right|^2 = \left| (\mathbf{a}_{\perp} - \mathbf{x}) + \mathbf{a}^{\perp} \right|^2 = |\mathbf{a}_{\perp} - \mathbf{x}|^2 + |\mathbf{a}^{\perp}|^2$. Поскольку $\rho(\mathbf{a}, \mathbf{x}) = |\mathbf{a} - \mathbf{x}|$, мы получаем, что значение функции $d_{\mathbf{a}}(\mathbf{x})$ минимально тогда и только тогда, когда минимально значение выражения $|\mathbf{a}_{\perp} - \mathbf{x}|^2$. В свою очередь, значение последнего выражения минимально тогда и только тогда, когда $\mathbf{a}_{\perp} - \mathbf{x} = \mathbf{0}$, т.е. когда $\mathbf{x} = \mathbf{a}_{\perp}$. Первое утверждение доказано. Из его доказательства вытекает, что $d_{\mathbf{a}}(\mathbf{a}_{\perp}) = |\mathbf{a}^{\perp}|$, а $|\mathbf{a}^{\perp}| = \rho(\mathbf{a}, S)$ по определению расстояния от вектора до подпространства.

Ортогональная составляющая вектора относительно подпространства и процесс ортогонализации Грама-Шмидта (1)

Замечание об ортогональной составляющей и процессе ортогонализации

Пусть $\mathbf{a}_1, \ \mathbf{a}_2, \dots, \ \mathbf{a}_k$ — линейно независимая система векторов в пространстве со скалярным произведением, а $\mathbf{b}_1, \ \mathbf{b}_2, \dots, \ \mathbf{b}_k$ — ортогональная система векторов, полученная из системы $\mathbf{a}_1, \ \mathbf{a}_2, \dots, \ \mathbf{a}_k$ в результате применения процесса ортогонализации Грама—Шмидта. Тогда, для всякого $i=2,3,\dots,k$, вектор \mathbf{b}_i является ортогональной составляющей вектора \mathbf{a}_i относительно подпространства, порожденного векторами $\mathbf{a}_1, \ \mathbf{a}_2, \dots, \ \mathbf{a}_{i-1}$.

Доказательство. Пусть $i \in \{2,3,\ldots,k\}$ и $S = \langle \mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{i-1} \rangle$. Поскольку векторы $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{i-1}$ линейно независимы, они образуют базис пространства S. В частности, $\dim S = i-1$. Из доказательства теоремы о существовании ортонормированного базиса извлекается, что:

- (i) $\{{f b_1},{f b_2},\ldots,{f b_{i-1}}\}$ ортогональная система ненулевых векторов,
- (ii) $b_1, b_2, \ldots, b_{i-1} \in S$,
- (iii) вектор \mathbf{b}_i ортогонален векторам $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{i-1},$
- (iv) $\mathbf{b}_i = \mathbf{x} + \mathbf{a}_i$ для некоторого вектора $\mathbf{x} \in \langle \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{i-1} \rangle$.

Ортогональная составляющая вектора относительно подпространства и процесс ортогонализации Грама-Шмидта (2)

Из п. (i) и теоремы об ортогональности и линейной независимости вытекает, что векторы $\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_{i-1}}$ линейно независимы. Поскольку $\dim S = i-1$, из п. (ii) следует, что эти векторы являются базисом в S. В частности, $\langle \mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_{i-1}} \rangle = S$. Из п. (iii) теперь вытекает, что $\mathbf{b_i} \in S^\perp$. С учетом п. (iv) получаем, что $\mathbf{b_i} = \mathbf{x} + \mathbf{a_i}$ для некоторого вектора $\mathbf{x} \in S$. Таким образом, $\mathbf{a_i} = -\mathbf{x} + \mathbf{b_i}$, причем $-\mathbf{x} \in S$ и $\mathbf{b_i} \in S^\perp$. Следовательно, $\mathbf{b_i}$ — ортогональная составляющая вектора $\mathbf{a_i}$ относительно S.