Assignment 5 - Hypothesis Testing

Math 363 - November, 2009

- 1. During the 1980s, the general consensus is that about 5% of the nation's children had autism. Some claimed that increases certain chemicals in the environment has led to an increase in autism.
 - (a) Write an appropriate hypothesis test for this situation.
 - (b) Give an appropriate test for this hypothesis, stating what are the necessary conditions for performing the test.
 - (c) A recent study examined 384 children and found that 46 showed signs of autism. Perform a test of the hypothesis and state the p-value.
 - (d) What are your conclusions? State how you use the *p*-value.
- 2. A company with a fleet of 150 cars found that the emission system of 7 our of the 22 cars tested failed to meet pollution guidelines.
 - (a) Write a hypothesis to test if more than 20% of the entire fleet might be out of compliance.
 - (b) Test the hypothesis based on the binomial distribution and report a p-value.
 - (c) Is the test significant at the 10%, 5%, 1% level?
- 3. National data in the 1960s showed that about 44% of the adult population had never smoked.
 - (a) State a null and alternative hypothesis to test that the fraction of the 1995 population of adults that had never smoked had increased.
 - (b) A national random sample of 891 adults were interviewed and 463 stated that they had never smoked. Perform a z-test of the hypothesis and give an approriate p-value.
 - (c) Create a 98% confidence interval for the proportion of adults who had never been smokers.
 - (d) Give the value of the power function $\pi(p)$ for p=0.46,0.48,0.50,0.52 with the choice of $\alpha=0.02$ and a "greater than" alternative hypothesis.
 - (e) Compute the power function for these values if we increase the sample to 1600. Explain why these values increased.
- 4. One of the lenses in your supply is suspected to have a focal length f of 9.1cm rather than the 9cm claimed by the manufacturer.
 - (a) Write an appropriate hypothesis test for this situation.
 - (b) The focal length f is determined by using the thin lens formula,

$$\frac{1}{s_1} + \frac{1}{s_2} = \frac{1}{f}.$$

Here s_1 is the distance from the lens to the object and s_2 is the distance from the lens to the real image of the object. The distances s_1 and s_2 are each independently measured 25 times. The sample mean of the measurements is $\bar{S}_1 = 26.6$ centimeters and $\bar{S}_2 = 13.8$ centimeters, respectively. The standard deviation of the measurement is 0.1cm for s_1 and 0.5cm for s_2 .

Give an estimate \hat{f} based on these measurements and the thin lens formula.

- (c) Use the delta method to give the standard deviation of \hat{f} .
- (d) Use this to devise a z-test for the hypothesis and report a p-value for the test.
- 5. The body temperature in degrees Fahrenheit of 52 randomly chosen healthy adults is measured with the following summary of the data:

$$n = 52$$
, $\bar{x} = 98.2846$ $s = 0.6824$.

- (a) Are the necessary conditions for constructing a valid t-interval satisfied? Explain.
- (b) Find a 98% confidence interval for the mean body temperature and explain its meaning.
- (c) Give a two-side hypothesis test for a mean body temperature of 98.6° Fahrenheit and use the information above to evaluate a test with significance level $\alpha = 0.02$.
- (d) Find the power of the test at the parameter value $\mu = 98.2$ and indicate this value using the cutoff value for the test and drawing the sample distribution for the null and alternative hypothesis.
- 6. Drivers of cars calling for regular gas sometimes premium in the hopes that it will improve gas mileage. Here a rental car company takes 10 randomly chosen cars in its fleet and runs a tank of gas according to a coin toss, runs a tank of gas of each type.

Car #	1	2	3	4	5	6	7	8	9	10
Regular	16	20	21	22	23	22	27	25	27	28
Premium	19	22	24	24	25	25	26	26	28	32

- (a) Write an appropriate hypothesis test for this situation and state the testing procedure appropriate to this circumstance.
- (b) Compute the necessary summary statistics for the test in part (a).
- (c) Perform the t-test and report the p-value.
- (d) Compare your result to that of a two sample t-test.
- 7. In this problem, we will examine the sugar content of several national brands of cereals, here measured as a percentage of weight.

children	40.3	55.0	45.7	43.3	50.3	45.9	53.5	43.0	44.2	44.0					
	33.6	55.1	48.8	50.4	37.8	60.3	46.6	47.4	44.0						
adult	20.0	30.2	2.2	7.5	4.4	22.2	16.6	14.5	21.4	3.3	10.0	1.0	4.4	1.3	8.1
	6.6	7.8	10.6	10.6	16.2	14.5	4.1	15.8	4.1	2.4	3.5	8.5	4.7	18.4	

- (a) Give a summary of these two data sets.
- (b) Create side-by-side boxplots and interpret what you see.
- (c) Use R to create a 95% confidence interval for the difference in mean sugar content and explain your result.

- 1. During the 1980s, The general consensus is that about 5% of the Nation's children had autism Some claimed that Increases certain chemicals in the environment has led to an Increase in Autism.
 - a. Write an appropriate hypothesis test for this situation
 - be give an appropriate test for this hypothesis, Stating what are the necessary conditions for performing the test
 - Showed signs of Autism perform a test of hypothesis & State P-Value.
 - d. what are your conclusions? Stake how to use P-Value

Answer! - Step - 1 Null & Alternative hypothesty

Null Hypothesis: 5% of the Nation's children has Autism

Ho : P = 5 % = 0.05

Alternative hypothesis: more than 5% of Nation's children has Autism

H, 5 P > 5% > 0.05

we will use one-tail Test because we will check only

more man 5%

Step-2: - which Test should we use Z-test

step-31- find The value of Alpha

As not given in problem we will alsome 5% as ac

Step-4: If 2- critical & 2 - Store

If P- value a significance value } Reject and hypothesis

Step-51" Data Bataling

Step-61- Analyze Data

$$Z-SCOTE = \frac{\hat{P}-P}{\sqrt{Pq}} = \frac{0.12-0.05}{\sqrt{0.05\times0.95}}$$

Step-71- Statistical action

Z-critical L Z-Score

we will preject the null hypothesis

Conclusion: - mosethan 6% of the nations and deltan had Automy
due to Increases in Certain Chemical In the environment

Solution: -Step-1: Hypothesis

> pull hypothesis: 20% of the filest out of compliance Ho : P = 0.20

Alternative hypotrologis: - more more from 20%, that out of compliance H, P > 0.20

at it a one thilled Test

Step-21- we will perform Z-test

Step-3: - Significance sevel = 10% lie x = 010

SIEP-4: Z- Orifical & Z-Score -> Reject rull hypothesis

If P-value & Significance level -> Reject mull hypothesis

Slep-5: Convecting Data

Step-6: Analysis of Dala

z score = $\frac{\beta}{\sqrt{\rho \gamma}}$ For Z Score

A = 7/22 = 031

P=020 n=22 9=1-P=0.80

 $\frac{0.31 - 0.20}{\sqrt{0.20 \times 0.80}} = \frac{0.11}{\sqrt{0.0012}} = \frac{0.11}{0.035} = 1.18$ Z- SLOTE =

By 2 - table :-

Zc for 10% = 1.28

for 5% = 2007 1.64

fee 1' = 2.29

1,64

1.28 20

At 10% 2 - Call cat = 128

B- CALHON > B- SCORE

28 > 118

We will accept the mild hypothesis

2 - Critical = 1.64

P- weekenst

キのツ

1.64 > 1.18

we will accept that need hypothesis

At 1% 2-critical = 2.29

P- Value = arrive

一日 一日 日本 日本

ŧŝ

Q

0 11 0

T

accept the well hypothey

P-value o book

100°

Os Salution! -

NULL hypothesis: 44% of Adult Population Never Smoked Ho: M = 044

Attempative hypothesist more than 44% never syndred

H1: M> 0.44

* one Tailed Test - Right

Z-test will be used

Confidence level 98% honce $\alpha = 2% = 0.02$

If Z-critical < Z-score we will revent mult hypothesis

 $P = 6.44 \quad D = 891 \quad P = \frac{463}{591} = 0.519$

q = 0.56

0.519 -0.44 = 4.76 Z-Score = 0 44 x 0.56

Zc = 2.05

Z- Critical L Z-Score

2.05 4.76

Conclusion: - we will soided mull hypothesis

mosethan 44% of adult population never smoked

2- critical = 205

For P = 0 46 2 - Scare = 3 554

Z-critical L Z-Score

Reject Nul hypothesis

For P = 0.48 2. Score = 2.349

Resect New hypothesis

For P= 0.50 Z. Score = 1.144

Z-Score L Z-critical

well will accept Nall hypothesis

For P = 0.52 2. Scare = -0.060

we will accept next hypothesis

e. It sample is 1600

Z - Score = -12.17

accept the new hypothesis

Quy - Answer -

Step-1:- Hypothesis

Nul hypothesis: - focal length of lenses is q cm

Ho: U = 9 cm

Alternative hypothesis: - focal length of lenses is 9.1 cm

H1 = M => 9.cm

Sep-2: - Determine the test z-test

Step-3:- Significance Level

61-3 assume Significance level as 1%

x = 0.01

It is a one-tailed - Right tailed test

Step-4! - Decision Rule !-

If Z-critical < Z-Score Revert Null hypothesis

Step-5:- Couleeting Data

BIEP-6: Analysis of Data

 $S_1 = 26.6 \, \text{cm}$

S2 = 13.8 cm

5 = 0.1 cm

62 = 0.5 cm

n, = 25

m2 = 25

Z-Score for Two Independent Samples

$$Z-Score = \frac{S_1 - S_2}{\sqrt{\frac{(\sigma_1)^2}{\eta_1} + \frac{(\sigma_2)^2}{\eta_2}}} = \frac{26.6 - 13.8}{\frac{(0.1)^2}{25} + \frac{(0.5)^2}{25}}$$

$$= \frac{12.8}{0.102} = 125.5$$

using 8 = bobbs

2 - Collinat + 1 33

Z-Critical L Z-Score

233 4 125 5

are will relect the nell hypothesis

p value = 0 0099

P- Value & Significant value

0 0099 6 001

we will redect was hypothetis

Conclusion - Focal length of the length = 41 cm

D.5 Anscar:-

Step-1: Hypothesis

Nall hypothesis: - mean body temposature is 98 6

Ho I M = 98.6

Alternative hypothesis: - mean body temparature is not 98.6

HA: U = 98.6

It is a Two tail Test we have to cheek left &

Right Tail for the Test

 $\frac{\alpha}{2} = \frac{0.02}{2} = 0.01$

Step-2: Determine The test

We will perform t-test

SKP-31- Significance level

as Given in problem a = 0.02

Step-4: - Decision Rull

For critical Value

t-critical < t- score

we will resent the New hypothesis

$$t - Score = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

$$= 98.2846 - 98.6 = -0.32$$

$$0.6824 = 0.0945$$

$$= -3.386$$

Step-7:-

Step-11- Q-6 Answer

Hypotnesis!-

Nach hypothesis = Mo Difference between fremium & Regulargy

Ho = MA = MB

Alternative Hypothesis:- mileage is not same with Signalar gas &- premium gay

H1 = MA + MB

It is a two tailed test we will check two tails.

Step-9: - Test we will Autosm T-test

Step-3: Significance level we will take default value 5%. $\alpha = 0.05$

Since it is a two tail test 0/2 = 0.025

Step-4: - Decision Rule

IF P value < Significance values | Riect New hypothesis

Skp-5: Data Collection

Step-6: - Analysis of Data

$$P_{r} = \begin{bmatrix} \frac{s_{1}^{2}}{m_{1}} + \frac{s_{2}^{2}}{m_{2}} \end{bmatrix}^{2}$$

$$(\frac{s_{1}^{2}}{m_{1}})^{2} + (\frac{s_{2}^{2}}{m_{2}})^{2}$$

$$= \frac{6.59}{6.367} = 18.3$$

$$T-test = \frac{x_1 - x_2}{\sum_{n=1}^{\infty} \frac{s_n^2 + s_n^2}{n_1 - n_2}} = \frac{231-25.1}{1.38+1133}$$

$$= -\frac{1}{1.6} = 1.25$$

using + - table + - critical = 2.10

P = 0.24

Step -7:- Statistical action t_critical > Here
using +-critical 2.10 > 2.24

Using P-value 022 > 005

we will accept the New hypothesis

Those is no difference in milege of regular & Premium gay

2:-7 Auguer:-

Step-1 Hypothesis testing

Null hypothesis: - Sugar Content of brand of cerels for children and adult are same $Ho = M_A = M_B$

Alternative hypothesis: Sugar content of brand of cerels for children is adult are not same

HI = MA + MB

Step-2? - Determine the test are will perfer t - test-

step-3! - Significance level: given ay 95% of

Confidence level a = 5%.

It is a two tailed test = = 0.025

Skp-u: Decision Rule

for critical value

t-critical < t-test

For P - Values

P value < Significance level) Null hypothogis

step-s: - contect data (problem)

Step-6: - Data Analysis

OF HS a T- test for Two sample standing

variable

For sample of children

for sample of adult

X, = M = 468

5 = 6 41

m1 = 19

 $\bar{\chi_2} = \mu_b = 10.16$

n2 = 29

S2 = 7 47

 $d_{f} = \begin{bmatrix} \frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}} \end{bmatrix}$

 $\left(\frac{3^{2}}{5n_{1}} \right)^{2} + \left(\frac{52^{2}}{n_{2}} \right)$ $\frac{4.67}{18} + \frac{3.70}{2.8}$ $\frac{7}{18} + \frac{3.70}{2.8}$

 $= \frac{16.64}{5.59 + 0.132} = 42.54$

T- test = $\frac{\chi_1 - \chi_2}{\sqrt{51^2 + 52^2}} = \frac{46.8 - 10.16}{\sqrt{(6.41)^2 + (7.47)^2}} = \frac{32.02}{\sqrt{10.41}}$

 $= \frac{36.63}{2.02} = 13.13$

1)sing + - table tc = 2.02

p value = 0.000

Step-72 - Statistical Decision

For critical value +- critical Z t- test score

2.02 4 18.13

For P-value P < significance value | Revect | New hypothesis 0.0000 4 0.05

Conclusion: - The Sugar Content in different brands of Cerelay For children & adult are not same.