GIA - ALG: Segona prova avaluable

Albert Campos Gisbert

7 d'octubre de 2022

1. Sigui $a \in \mathbb{R}$ i considerem la matriu:

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 2 & 0 & a \end{pmatrix}$$

(a) Calculeu el rang de la matriu A. Quan és A invertible?

Tenint en compte que A és una matriu d'ordre 3, llavors, el rang(A) haurà de ser màxim, és a dir, de 3. Per tant, utilitzarem el mètode de Gauss-Jordan per esbrinar quin rang té A:

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 2 & 0 & a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 2 & 0 & a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & -2 & a - 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & a + 1 \end{pmatrix}$$

Després de realitzar tres transformacions elementals a la matriu A, hem obtingut la seva matriu esglaonada. Analitzant la matriu, veiem que si a = -1, la tercera fila seria nula, per tant el rang(A), no seria màxim, i per conseqüència A no serà invertible- A serà invertible només quan $a \neq -1$.

(b) Calculeu A^{-1} si a = 0

Si
$$a = 0: \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 2 & 0 & 0 \end{pmatrix}$$

Si calculem A^{-1} per determinants, sabem que $A^{-1} = \frac{1}{|A|}Adj(A^t)$

$$A^{t} = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix}; Adj(A^{t}) = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} & -\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \\ -\begin{bmatrix} -1 & 2 \\ 2 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} & -\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \\ \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix} & -\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 4 & -2 & -3 \\ -2 & 2 & 2 \end{pmatrix};$$

1

$$|A| = 4 - 2 = 2;$$

$$A^{-1} = \begin{pmatrix} 0 & 0 & \frac{1}{2} \\ 2 & -1 & \frac{-3}{2} \\ -1 & 1 & 1 \end{pmatrix}$$

(c) Determineu els valors del paràmetre a pels quals:

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 2 & 0 & a \end{pmatrix}$$

Segons les propietats de les matrius, sabem que $A * A^{-1} = I$:

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 2 & 0 & a \end{pmatrix} \begin{pmatrix} 1 & -1 & \frac{-1}{2} \\ -1 & 2 & \frac{3}{2} \\ 1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 2 & 0 & a \end{pmatrix} \begin{pmatrix} 1 & -1 & \frac{-1}{2} \\ -1 & 2 & \frac{3}{2} \\ 1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a+2 & -a-2 & -a-1 \end{pmatrix}$$

Per a que es compleixi la igualtat, ha de ser cert:

$$\begin{cases} a+2=0 \\ -a-2=0 \\ -a-1=1 \end{cases}$$

Per tant, A^{-1} serà coherent sempre que a = -2

2. Considerem el sistema homogeni:

$$\begin{cases} x + y + z = 0 \\ -x + y + 2z = 0 \\ 2x + az = 0 \end{cases}$$

(a) Per a quins valors de a el sistema és compatible determinat?

Per saber quan el sistema serà compatible determinat, necessitarem conèixer el rang de la matriu associada. Per tant, escrivim el sistema en matriu i simplifiquem mitjançant el mètode de Gauss-Jordan:

$$A = \begin{pmatrix} 1 & 1 & 1 & |0 \\ -1 & 1 & 2 & |0 \\ 2 & 0 & a & |0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & |0 \\ 0 & 2 & 3 & |0 \\ 2 & 0 & a & |0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & |0 \\ 0 & 2 & 3 & |0 \\ 0 & -2 & a - 2 & |0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & |0 \\ 0 & 2 & 3 & |0 \\ 0 & 0 & a + 1 & |0 \end{pmatrix}$$

$$\begin{cases} x + y + z = 0 \\ 2y + 3z = 0 \\ (a+1)z = 0 \end{cases}$$

Si a = -1, la tercera fila serà nula i la matriu tindrà 1 grau de llibertat, per tant serà un sistema compatible indeterminat.

Si $a \neq -1$, la tercera fila no serà nula, per tant el rang(A) serà màxim, i el grau de llibertat serà 0, per tant serà un sistema compatible determinat.

(b) Calculeu les solucions del sistema segons els diferents valors del paràmetre a.

Resolem el sistema amb les transformacions elementals ja aplicades a la seva matriu associada:

3

- Per
$$a = -1$$
 \rightarrow
$$\begin{cases} x + y + z = 0 \to x + \frac{3\lambda}{2} + \lambda = 0 \to x = \frac{-5\lambda}{2} \\ 2y + 3z = 0 \to \lambda = z; 2y + 3\lambda = 0 \to y = \frac{-3\lambda}{2} \end{cases}$$
$$- Per a \neq -1 \to \begin{cases} x + y + z = 0 \to x + 0 + 0 = 0 \to x = 0 \\ 2y + 3z = 0 \to 2y + 3(0) = 0 \to y = 0 \\ z = 0 \to \lambda = 0 \end{cases}$$

(c) Determineu a i b de manera que (x, y, z) = (2, b, 4) sigui una solució del sistema.

Si
$$x = 2$$
, $y = b$ i $z = 4$:

$$\begin{cases} 2+b+4=0 \to 0=0 \\ 2b+12=0 \to 2b=-12 \to b=\frac{-12}{2}=-6 \\ (a+1)4=0 \to 4a=-4 \to a=-1 \end{cases}$$

$$(x, y, z) = (2, b, 4)$$
 és solució si i només si $a = -1$ i $b = -6$

3. Determineu els valors del paràmetre a pels quals:

$$\begin{cases} x + y + z = 1 \\ -x + y + 2z = 3 \\ 2x + az = c \end{cases}$$

(a) Per a quins valors dels paràmetres a i c el sistema és compatible? Quan és compatible determinat? Quan és compatible indeterminat?

Utilitzem gauss per simplificar la matriu asociada i coneixer el seu rang:

$$A = \begin{pmatrix} 1 & 1 & 1 & | 1 \\ -1 & 1 & 2 & | 3 \\ 2 & 0 & a & | c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | 1 \\ 0 & 2 & 3 & | 4 \\ 2 & 0 & a & | c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | 1 \\ 0 & 2 & 3 & | 4 \\ 0 & -2 & a - 2 & | c - 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | 1 \\ 0 & 2 & 3 & | 4 \\ 0 & 0 & a + 1 & | c + 2 \end{pmatrix}$$

Donat que (a + 1)z = c + 2, El sistema serà incompatible quan a = -1 i $c \ne -2$, compatible indeterminat si a = -1 i c = -2, i compatible determinat a és es arbitraria, $c \ne -2$ i a + 1 = c + 2.

(b) Determineu els valors de a i c de manera que (x, y, z) = (-2, 5, -2) sigui una solució del sistema. Quan és l'única solució del sistema?

$$\begin{cases} x + y + z = 1 \\ 2y + 3z = 4 \\ (a+1)z = c+2 \end{cases}$$

Tenim que (a+1)z = c+2; Si substituïm pels valors que ens dona el enunciat, tenim que $(a+1)(-2) = c+2 \rightarrow -2a-2 = c+2 \rightarrow a = \frac{c+4}{2} \rightarrow c = -2a-4$

4

(c) Demostreu que no existeixen a i c de manera que (x, y, z) = (0, 0, 1) sigui una solució del sistema.

Substituïm pels valors del enunciat:
$$\begin{cases} x + y + z = 1 \rightarrow 1 = 1 \\ 2y + 3z = 4 \rightarrow 3 \neq 4 \\ (a+1)z = c + 2 \rightarrow a = c + 1 \end{cases}$$

El sistema serà sempre incompatible doncs, quan substituïm dona 3 = 4 en la segona fila, per tant (x, y, z) = (0, 0, 1) mai podrà ser solució del sistema.

(d) Determineu la solució general del sistema en el cas a = 0 i c arbitrari.

Substituïm pels valors del enunciat:

$$A = \begin{pmatrix} 1 & 1 & 1 & | 1 \\ 0 & 2 & 3 & | 4 \\ 0 & 0 & 1 & | c + 2 \end{pmatrix}$$

$$\begin{cases} x + y + z = 1 \rightarrow x = \frac{3c+2}{2} - 3c + 2 \rightarrow x = \frac{-3c+6}{2} \\ 2y + 3z = 4 \rightarrow 2y + 3c + 6 = 4 \rightarrow y = \frac{-3c-2}{2} \\ z = c + 2 \end{cases}$$

(e) Determineu la solució general del sistema en el cas a arbitrari i c=-2

Substituïm pels valors del enunciat:
$$\begin{pmatrix} 1 & 1 & 1 & |1 \\ 0 & 2 & 3 & |4 \\ 0 & 0 & a+1 & |0 \end{pmatrix}$$

 $\begin{cases} x+y+z=1 \to x+2+0=1 \to x=-1 \\ 2y+3z=4 \to 2y=4 \to y=2 \\ (a+1)z=0 \to z=0 \end{cases}$

$$\begin{cases} x + y + z = 1 \to x + 2 + 0 = 1 \to x = -1 \\ 2y + 3z = 4 \to 2y = 4 \to y = 2 \\ (a + 1)z = 0 \to z = 0 \end{cases}$$