An introduction to continuous time dynamic modeling part 2 (...a closer look and some terminology)

Dynamic models for the analysis of change:

...here it is!

$$\begin{aligned} \mathbf{x}_{tu} &= \mathbf{A} \ \mathbf{x}_{t_{u-1}} + \mathbf{w}_{t_u} \\ \mathbf{x}_{t_u} - \mathbf{x}_{t_{u-1}} &= (\mathbf{A} - \mathbf{I}) \mathbf{x}_{t_{u-1}} + \mathbf{w}_{t_u} \\ \frac{\Delta \mathbf{x}_{t_u}}{\Delta time} &= (\mathbf{A} - \mathbf{I}) \ \mathbf{x}_{t_{u-1}} + \mathbf{w}_{t_u}^* \end{aligned}$$

0. From differences to differentials

$$\frac{\Delta \mathbf{x}_{tu}}{\Delta time} = (\mathbf{A} - \mathbf{I}) \ \mathbf{x}_{tu-1} + \mathbf{w}_{tu}^* \qquad \qquad \lim_{\Delta time \to 0} \left(\frac{\Delta \mathbf{x}_{tu}}{\Delta time}\right) = \frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}time}$$

1. Latent dynamic model (extended Ornstein-Uhlenbeck process)

$$d\mathbf{\eta}(t) = (\mathbf{A}\mathbf{\eta}(t) + \mathbf{b} + \mathbf{M}\mathbf{\chi}(t))dt + \mathbf{G}d\mathbf{W}(t))$$

including the measurement part

and

$$\mathbf{y}(t) = \mathbf{\Lambda}\mathbf{\eta}(t) + \mathbf{\tau} + \boldsymbol{\varepsilon}(t)$$
 with $\boldsymbol{\varepsilon}(t) \sim \mathbf{N}(\mathbf{0}, \boldsymbol{\Theta})$

$$\mathbf{\chi}(t) = \sum_{u=0}^{\infty} \mathbf{x}_{u} \delta(t-t_{u})$$
 with $\delta(t)$ denoting the Dirac delta function

4

2. Discrete time solution of the stochastic differential equation

$$\mathbf{\eta}_u = \mathbf{A}_{\Delta t_u}^* \mathbf{\eta}_{u-1} + \mathbf{b}_{\Delta t_u}^* + \mathbf{M} \mathbf{x}_u + \mathbf{\zeta}_u$$
 with $\mathbf{\zeta}_u \sim \mathbf{N}(\mathbf{0}, \mathbf{Q}_{\Delta t_u}^*)$

and

$$\mathbf{A}_{\Delta t_u}^* = e^{\mathbf{A}(t_u - t_{u-1})}$$

$$\mathbf{b}_{\Delta t_{\prime\prime}}^{*} = \mathbf{A}^{-1} (\mathbf{A}_{\Delta t_{\prime\prime}}^{*} - \mathbf{I}) \mathbf{b}$$
 thus $\mathbf{b}_{\Delta t_{\infty}}^{*} = -\mathbf{A}^{-1} \mathbf{b}$

$$\mathbf{Q}_{\Delta t_u}^* = \mathbf{Q}_{\Delta t_\infty} - \mathbf{A}_{\Delta t_u}^* \mathbf{Q}_{\Delta t_\infty} (\mathbf{A}_{\Delta t_u}^*)^{\mathrm{T}}$$

with
$$\mathbf{Q}_{\Delta t_{\infty}} = \operatorname{irow}(-(\mathbf{A} \otimes \mathbf{I} + \mathbf{I} \otimes \mathbf{A})^{-1} row(\mathbf{Q}))$$

	Discrete time	Continuous time		
Parameter	Label	Parameter	Label	
$\overline{\mathbf{A}^*_{\Delta}}$	Autoregression matrix	A	Drift matrix	
$\mathbf{A}_{\Lambda}^{*}[k, k]$	Autoregressive effect	$\mathbf{A}[k, k]$	Auto-effect	
$\mathbf{A}_{\Delta}^{\overline{*}}[k,I]$	Cross-lagged effect	A[k, I]	Cross-effect	
\mathbf{Q}_{Δ}^{*}	Process error ^a matrix	Q	Diffusion covariance matrix	
$\mathbf{Q}^*_{\Lambda}[k, k]$	Process error ^a variance	Q[k, k]	Diffusion variance	
$\mathbf{Q}_{\Delta}^{*}[k,I]$	Process error ^a covariance	Q[k, I]	Diffusion covariance	
\mathbf{b}^*_{Δ}	Dt intercepts	b	Ct intercepts	
$\pmb{\Sigma}^*_{b\Delta}$	Dt intercepts covariance matrix	$\pmb{\Sigma}_{b}$	Ct intercepts covariance matrix	
$\Sigma_{\mathrm{b}\Lambda}^{*}[k, k]$	Dt intercepts variance	$\Sigma_{\rm b}[k, k]$	Ct intercepts variance	
$\Sigma_{\mathrm{b}\Delta}^*[k,I]$	Dt intercepts covariance	$\Sigma_{\rm b}[k,I]$	Ct intercepts covariance	

Note. $k \neq l$; Dt = discrete-time; Ct = continuous-time.

Hecht & Voelkle (2019, p. 3).

^aSynonymously "prediction error."

3. Unit level log likelihood

$$ll = \sum_{u=0}^{U} \left(-\frac{1}{2} (n \ln(2\pi) + \ln|\mathbf{V}_{u}| + (\hat{\mathbf{y}}_{u|u-1} - \mathbf{y}_{u}) \mathbf{V}_{u}^{-1} (\hat{\mathbf{y}}_{u|u-1} - \mathbf{y}_{u})^{\mathrm{T}}) \right)$$

n = number of non-missing observations at measurement occasion u.

3b. Excursus: To aid estimation, a hybrid continuous-discrete Kalman filter is often used

$$\widehat{\mathbf{\eta}}_{u|u-1} = \mathbf{A}_{\Delta t_u}^* \widehat{\mathbf{\eta}}_{u-1|u-1} + \mathbf{b}_{\Delta t_u}^* + \mathbf{M} \mathbf{x}_u$$

$$\widehat{\mathbf{\eta}}_{u|u-1} = \mathbf{A}_{\Delta t_u}^* \widehat{\mathbf{\eta}}_{u-1|u-1} + \mathbf{b}_{\Delta t_u}^* + \mathbf{M} \mathbf{x}_u$$

$$\widehat{\mathbf{P}}_{u|u-1} = \mathbf{A}_{\Delta t_u}^* \widehat{\mathbf{P}}_{u-1|u-1} (\mathbf{A}_{\Delta t_u}^*)^\top + \mathbf{Q}_{\Delta t_u}^*$$

$$\widehat{\mathbf{V}}_{u|u-1} = \mathbf{\Lambda}\widehat{\mathbf{\eta}}_{u|u-1} + \mathbf{\tau}$$

$$\widehat{\mathbf{V}}_{u} = \mathbf{\Lambda}\widehat{\mathbf{P}}_{u|u-1}\mathbf{\Lambda}^{\top} + \mathbf{\Theta}$$

$$\widehat{\mathbf{K}}_{u} = \widehat{\mathbf{P}}_{u|u-1}\mathbf{\Lambda}^{\top}\widehat{\mathbf{V}}_{u}^{-1}$$

$$\widehat{\mathbf{V}}_{u} = \mathbf{\Lambda} \widehat{\mathbf{P}}_{u|u-1} \mathbf{\Lambda}^{\top} + \mathbf{\Theta}$$

$$\widehat{\mathbf{K}}_{u} = \widehat{\mathbf{P}}_{u|u-1} \mathbf{\Lambda}^{\top} \widehat{\mathbf{V}}_{u}^{-1}$$

$$\widehat{\mathbf{\eta}}_{u|u} = \widehat{\mathbf{\eta}}_{u|u-1} + \widehat{\mathbf{K}}_{u}(\mathbf{y}_{u} - \widehat{\mathbf{y}}_{u|u-1})$$

$$\widehat{\mathbf{P}}_{u|u} = (\mathbf{I} - \widehat{\mathbf{K}}_{u}\Lambda)\widehat{\mathbf{P}}_{u|u-1}$$

$$\widehat{\mathbf{P}}_{u|u} = (\mathbf{I} - \widehat{\mathbf{K}}_{u} \mathbf{\Lambda}) \widehat{\mathbf{P}}_{u|u-1}$$

4. Accounting for (unobserved) unit heterogeneity

Frequentist Approach

$$d\mathbf{\eta}(t) = \left(\mathbf{A}\mathbf{\eta}(t) + \mathbf{b} + \mathbf{\kappa} + \mathbf{M}\mathbf{\chi}(t)\right)dt + \mathbf{G}d\mathbf{W}(t)$$

$$\mathbf{\eta}_{u} = \mathbf{A}_{\Delta t_{u}}^{*}\mathbf{\eta}_{u-1} + \mathbf{b}_{\Delta t_{u}}^{*} + \mathbf{H}_{\Delta t_{u}}^{*}\mathbf{\kappa} + \mathbf{M}\mathbf{x}_{u} + \mathbf{\zeta}_{u}$$

$$\mathbf{H}_{\Delta t_{u}}^{*} = \mathbf{A}^{-1}(\mathbf{A}_{\Delta t_{u}}^{*} - \mathbf{I})$$

with
$$\mathbf{\Phi}_{\mathbf{\kappa}\Delta t_u}^* = \mathbf{H}_{\Delta t_u}^* \mathbf{\Phi}_{\mathbf{\kappa}} (\mathbf{H}_{\Delta t_u}^*)^{\mathrm{T}}$$

$$\mathbf{\Phi}_{\mathbf{\eta}_{u=1},\mathbf{\kappa}\Delta t_u}^* = \mathbf{\Phi}_{\mathbf{\eta}_{u=1},\mathbf{\kappa}} (\mathbf{H}_{\Delta t_u}^*)^{\mathrm{T}}$$

Bayesian Approach (fully hierarchical)

$$p(\mathbf{\Phi}, \mathbf{\mu}, \mathbf{R}, \mathbf{\beta} | \mathbf{Y}, \mathbf{z}) \propto p(\mathbf{Y} | \mathbf{\Phi}) p(\mathbf{\Phi} | \mathbf{\mu}, \mathbf{R}, \mathbf{\beta}, \mathbf{z}) p(\mathbf{\mu}, \mathbf{R}, \mathbf{\beta})$$
(joint posterior distribution)
with $\mathbf{\Phi}_i = \mathrm{tform}(\mathbf{\mu} + \mathbf{R}\mathbf{h}_i + \mathbf{\beta}\mathbf{z}_i)$

 $\mathbf{h}_i \sim N(\mathbf{0}, \mathbf{1})$

 $\mu \sim N(0,1)$

 $\beta \sim N(0, 1)$

ctsem & ctsemOMX

- > To deal with the math behind continuous time modeling, we developed ctsem.
- Originally, ctsem was a single R package interfacing either to OpenMx or Stan.
- For compatibility reasons, *ctsem* was split in two packages in 2020. The main package *ctsem* (Stan) and OpenMx functions *ctsemOMX*. [loading ctsemOMX will always also load ctsem but not vice versa]
- > Both versions are open source and freely available to everyone on CRAN.

- ➤ To illustrate the approach, let us consider an empirical example using data collected within the research project *Group Focused Enmity* (Heitmeyer, 2004).
- N = 2,722 at t_1 ; computer assisted interviews in 2002, 2003, 2004, 2006, 2008 (U = 5)
- > Focus on two constructs: Anomia/Anomie and Authoritarianism
- ➤ Research question: Does anomia cause authoritarianism (Merton, 1949; Srole, 1956) or is anomia caused by authoritarianism (McClosky & Schaar, 1965)?

<u>Preparation:</u> Installation of R and *ctsem* (*ctsemOMX*)

Data: Person-level data (wide format) with time intervals at the end.

Input: (1) ctModel, (2) ctFit, (3) summary & plot

Input: (1) ctModel, (2) ctFit, (3) summary & plot

Output: Maximum likelihood parameter estimates & standard errors

	\$ctparameters			
		Value	Matrix	StdError
	T0mean_eta1	2.503428618	T0MEANS	0.015249233
	TOmean_eta2	2.842722176	T0MEANS	0.012965464
Anomia	drift_etal_etal	-0.447282102	DRIFT	0.019876762
Anomia -> Authoritarianism	drift_eta2_eta1	0.043292534	DRIFT	0.009630959
Authoritarianism -> Anomia	drift_eta1_eta2	0.232497503	DRIFT	0.018058224
Authoritarianism	drift_eta2_eta2	-0.117466597	DRIFT	0.008651654
	diffusion_etal_etal	0.473241990	DIFFUSION	0.015697481
	diffusion_eta2_eta1	-0.004610021	DIFFUSION	0.005495036
	diffusion_eta2_eta2	0.154509667	DIFFUSION	0.003846351
	T0var_eta1_eta1	0.632861176	T0VAR	0.017155897
	T0var_eta2_eta1	0.244730836	T0VAR	0.011330971
	T0var_eta2_eta2	0.457577114	T0VAR	0.012403760
	c1	0.536315947	CINT	0.046289177
	c2	0.220005403	CINT	0.022199716
		Drift m	atrix	

Plots: Autoregressive and cross-lagged parameters

Plots: Mean trajectories

From theory to practice... let's repeat the analysis together:

Let's take a look under the hood:

#Examine the RAM specification attributes(AnomAuthfit) AnomAuthfit\$mxobj\$matrices\$A\$labels AnomAuthfit\$mxobj\$matrices\$M\$labels AnomAuthfit\$mxobj\$matrices\$F\$values

#Examine the parameter constraints
AnomAuthfit\$mxobj\$algebras
AnomAuthfit\$mxobj\$algebras\$discreteDRIFT_T1
AnomAuthfit\$mxobj\$algebras\$discreteDRIFT_i1

Constraining parameters & model comparisons

```
#1) LR test for testing whether the effect of anomia (eta1) on authoritarianism (eta2) is
significantly different from zero
AnomAuthmodel restricted <- AnomAuthmodel
AnomAuthmodel_restricted$DRIFT[2,1] <- 0
AnomAuthfit restricted <- ctFit(AnomAuth, AnomAuthmodel restricted)
summary(AnomAuthfit)$DRIFT
summary(AnomAuthfit restricted)$DRIFT
chi2 <- summary(AnomAuthfit_restricted)$omxsummary$Minus2LogLikelihood-
summary(AnomAuthfit)$omxsummary$Minus2LogLikelihood
pchisq(chi2, 1, lower.tail=F) #p-value
mxCompare(AnomAuthfit$mxobj, AnomAuthfit restricted$mxobj)
```

Constraining parameters & model comparisons

```
#2) are the two cross effects significantly different from each other?

AnomAuthmodel_restricted2 <- AnomAuthmodel
AnomAuthmodel_restricted2$DRIFT[2,1] <- "cross"
AnomAuthmodel_restricted2$DRIFT[1,2] <- "cross"
AnomAuthfit_restricted2 <- ctFit(AnomAuth, AnomAuthmodel_restricted2)
chi2 <- summary(AnomAuthfit_restricted2)$omxsummary$Minus2LogLikelihood-
summary(AnomAuthfit)$omxsummary$Minus2LogLikelihood
pchisq(chi2, 1, lower.tail=F) #p-value
mxCompare(AnomAuthfit$mxobj, AnomAuthfit_restricted2$mxobj)
```

Study Questions

Question 1:

Match the following discrete-time parameters with their continuous-time counterpart. Describe what each parameter represents in modeling dynamic systems.

Discrete-Time Parameter	Continuous-Time Equivalent	Description
A^st (autoregression)		
Q^st (process error)		
b* (intercepts)		

Day1_02_study_questions.html

Study Questions

Question 2:

Familiarize yourself with ctsemOMX. Check out the help files of ?ctModel and ?ctFit.

Question 3:

Examine the code of a bivariate continuous time model using the `ctsemOMX` package and the provided `AnomAuth` dataset. Fit the model and examine the drift parameters. What do the results tell you about the relationship between Anomia and Authoritarianism?

Question 4:

Apply a bivariate continuous time model to the ctExample1 data provided with the package (without a TRAITVAR argument).

Question 5:

Apply a bivariate continuous time model to the ctExample1 data provided with the package. Include TRAITVAR="auto". Compare the results to the previous analysis. What happened?

Day1 02 study questions.html

Study Questions

Question 6 (optional):

Choose a new longitudinal dataset (uni- or bivariate) and analyze the data using a basic dynamic ct model [for this task do not worry about preprocessing the data or whether the model is justified on theoretical grounds; it's just about the method]. Share your approach/results with the group.

Day1_02_study_questions.html