Following a consistent programming style often helps readability. There are many approaches to the Software development process. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. There exist a lot of different approaches for each of those tasks. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. It is usually easier to code in "high-level" languages than in "low-level" ones. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. While these are sometimes considered programming, often the term software development is used for this larger overall process with the terms programming, implementation, and coding reserved for the writing and editing of code per se. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. Techniques like Code refactoring can enhance readability. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Programs were mostly entered using punched cards or paper tape. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Integrated development environments (IDEs) aim to integrate all such help. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. There exist a lot of different approaches for each of those tasks. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm.