Taller Repaso Probabilidad y Estadistica

Preguntas

Pregunta 1

6.1 Considere una variable aleatoria estándar con $\mu = 0$ y desviación estándar $\sigma = 1$. Use la tabla 3 y llene las probabilidades siguientes.

El intervalo	Escriba la probabilidad	Reescriba la probabilidad (si es necesario)	Encuentre la probabilidad
Menor que −2	P(z <)		
Mayor que 1.16	P(z >)		
Mayor que 1.645	P(z>)		
Entre -2.33 y 2.33	P(< z <)		
Entre 1.24 y 2.58	P(< z <)		
Menor o igual a 1.88	P(z ≤)		

Pregunta 2

Estudios realizados demuestran que el uso de gasolina para autos compactos vendidos en Estados Unidos está normalmente distribuido, con una media de 25.5 millas por galón (mpg) y una desviación estándar de 4.5 mpg. ¿Qué porcentaje de compactos recorre 30 mpg o más?

Pregunta 3

Sea *x* una variable aleatoria normalmente distribuida con una media de 10 y una desviación estándar de 2. Encuentre la probabilidad de que *x* se encuentre entre 11 y 13.6.

Pregunta 4

10.1 Encuentre los siguientes valores *t* en la tabla 4 del apéndice I:

a. *t*_{.05} para 5 *df*

- **b.** $t_{.025}$ para 8 df
- **c.** $t_{.10}$ para 18 df
- **d.** *t*_{.025} para 30 *df*

Pregunta 5

- **8.45** *a*) Calcule P(T < 2.365) cuando v = 7.
 - b) Calcule P(T > 1.318) cuando v = 24.
 - c) Calcule P(-1.356 < T < 2.179) cuando v = 12.
 - d) Calcule P(T > -2.567) cuando v = 17.

Pregunta 6

3.53 Dada la función de densidad conjunta

$$f(x, y) = \begin{cases} \frac{6 - x - y}{8}, & 0 < x < 2, \ 2 < y < 4, \\ 0, & \text{en otro caso,} \end{cases}$$

calcule P(1 < Y < 3 | X = 1).

Pregunta 7

3.57 Si *X*, *Y* y *Z* tienen la siguiente función de densidad de probabilidad conjunta:

$$f(x, y, z) = \begin{cases} kxy^2z, & 0 < x, y < 1, \ 0 < z < 2, \\ 0, & \text{en otro caso.} \end{cases}$$

- a) Calcule k.
- b) Calcule $P(X < \frac{1}{4}, Y > \frac{1}{2}, 1 < Z < 2)$.

Pregunta 8

7.15 Se toma una muestra aleatoria de tamaño n=49 de una distribución con media de $\mu=53$ y $\sigma=21$. La distribución muestral de \bar{x} será aproximadamente _____ con una media de _____ y una desviación estándar (o error estándar) de _____.

Pregunta 9

7.17 Se toma una muestra aleatoria de tamaño n=40 de una distribución con media $\mu=100$ y $\sigma=20$. La distribución muestral de \bar{x} será aproximadamente _____ con una media de _____ y una desviación estándar (o error estándar) de _____.

Pregunta 10

7.19 Muestras aleatorias de tamaño *n* se seleccionaron de poblaciones con las medias y varianzas dadas aquí. Encuentre la media y desviación estándar de la distribución muestral de la media muestral en cada caso:

a.
$$n = 36$$
, $\mu = 10$, $\sigma^2 = 9$

b.
$$n = 100, \mu = 5, \sigma^2 = 4$$

c.
$$n = 8$$
, $\mu = 120$, $\sigma^2 = 1$

Respuestas

Repuesta 1

6.1

El intervalo	Escriba la probabilidad	Reescriba la probabilidad	Hállese la probabilidad
Menos de −2	P(z < -2)	no es necesario	.0228
Mayor a 1.16	P(z > 1.16)	$1 - P(z \le 1.16)$.1230
Mayor a 1.645	P(z > 1.645)	$1 - P(z \le 1.645)$.0500
Entre -2.33 y 2.33	P(-2.33 < z < 2.33)	$P(z \le 2.33) - P(z \le -2.33)$.9802
Entre 1.24 y 2.58	P(1.24 < z < 2.58)	$P(z \le 2.58) - P(z \le 1.24)$.1026
Menor o igual a 1.88	$P(z \le 1.88)$	no es necesario	.9699

Respuesta 2

Solución La proporción de compactos que recorren 30 mpg o más está dada por el área sombreada en la figura 6.15. Para resolver este problema, primero se debe hallar el valor z correspondiente a x=30. Sustituyendo en la fórmula para z, resulta

$$z = \frac{x - \mu}{\sigma} = \frac{30 - 25.5}{4.5} = 1.0$$

El área A_1 a la izquierda de z=1.0, es .8413 (de la tabla 3 del apéndice I). Entonces la proporción de compactos que recorren 30 mpg o más es igual a

$$P(x \ge 30) = 1 - P(z < 1) = 1 - .8413 = .1587$$

El porcentaje que rebasa los 30 mpg es

FIGURA 6.15

Área bajo la curva normal estándar para el ejemplo 6.9

Respuesta 3

Solución El intervalo de x = 11 a x = 13.6 debe ser estandarizado usando la fórmula para z. Cuando x = 11,

Siempre trace una figura;

$$z = \frac{x - \mu}{\sigma} = \frac{11 - 10}{2} = .5$$

y cuando x = 13.6,

$$z = \frac{x - \mu}{\sigma} = \frac{13.6 - 10}{2} = 1.8$$

La probabilidad deseada es, por tanto, $P(.5 \le z \le 1.8)$, el área que está entre z = .5 y z = 1.8, como se muestra en la figura 6.13. De la tabla 3 del apéndice I, se encuentra que el área a la izquierda de z = .5 es .6915, y el área a la izquierda de z = 1.8 es .9641. La probabilidad deseada es la diferencia entre estas dos probabilidades, es decir,

$$P(.5 \le z \le 1.8) = .9641 - .6915 = .2726$$

FIGURA 6.13

Área bajo la curva normal estándar para el ejemplo 6.8

Respuesta 4

10.1 a. 2.015 **b.** 2.306 **c.** 1.330 **d.** 1.96

Respuesta 5

8.45 (a) P(T < 2.365) = 1 - 0.025 = 0.975.

(b) P(T > 1.318) = 0.10.

(c) P(T < 2.179) = 1 - 0.025 = 0.975, P(T < -1.356) = P(T > 1.356) = 0.10. Therefore, P(-1.356 < T < 2.179) = 0.975 - 0.010 = 0.875.

(d) P(T > -2.567) = 1 - P(T > 2.567) = 1 - 0.01 = 0.99.

Respuesta 6

3.53
$$g(x) = \frac{1}{8} \int_2^4 (6 - x - y) dy = \frac{3 - x}{4}$$
, for $0 < x < 2$.
So, $f(y|x) = \frac{f(x,y)}{g(x)} = \frac{6 - x - y}{2(3 - x)}$, for $2 < y < 4$, and $P(1 < Y < 3 \mid X = 1) = \frac{1}{4} \int_2^3 (5 - y) dy = \frac{5}{8}$.

Respuesta 7

3.57 (a) $1 = k \int_0^2 \int_0^1 \int_0^1 xy^2z \ dx \ dy \ dz = 2k \int_0^1 \int_0^1 y^2z \ dy \ dz = \frac{2k}{3} \int_0^1 z \ dz = \frac{k}{3}$. So, k = 3. (b) $P\left(X < \frac{1}{4}, Y > \frac{1}{2}, 1 < Z < 2\right) = 3 \int_1^2 \int_{1/2}^1 \int_0^{1/4} xy^2z \ dx \ dy \ dz = \frac{9}{2} \int_0^{1/4} \int_{1/2}^1 y^2z \ dy \ dz = \frac{21}{16} \int_1^2 z \ dz = \frac{21}{512}$.

Respuesta 8

7.15 normal; 53; 3

Respuesta 9

7.17 normal; 100; 3.16

Respuesta 10

7.19 a.
$$\mu = 10$$
; $\sigma/\sqrt{n} = .5$ **b.** $\mu = 5$; $\sigma/\sqrt{n} = .2$ **c.** $\mu = 120$; $\sigma/\sqrt{n} = .3536$