Università degli Studi dell'Aquila

Prova Scritta di Algoritmi e Strutture Dati con Laboratorio

Martedì 20 giugno 2023 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

Domande a risposta multipla: Il compito è costituito da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0. Se una domanda presenta più di una risposta, verrà considerata omessa.

- 1. Sia dato in input l'array $A = [n, n-1, \dots, 3, 2, 1]$, e si supponga di applicare su di esso gli algoritmi di ordinamento non decrescente SelectionSort, InsertionSort1 e InsertionSort2. Quale dei tre algoritmi esegue il minor numero di operazioni asintoticamente?
 - a) SelectionSort b) InsertionS
- b) InsertionSort1 c) InsertionSort2
- *d) Sono tutt'e tre equivalenti

2. Quale delle seguenti equivalenze è vera:

a)
$$f(n) = \Theta(f(n)) \Leftrightarrow f(n) = O(1)$$
 *b) $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$ c) $f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} f(n)/g(n) = 1$

d)
$$f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} f(n)/g(n) = 0$$

- 3. Quale tra i seguenti algoritmi non è ottimo se applicato al problema descritto?
 - a) Heap Sort per ordinare una sequenza di n interi arbitrari
 - *b) MERGESORT per ordinare una sequenza di n interi con valori compresi tra 1 e n^c
 - c) Algoritmo di ricerca sequenziale per cercare un elemento in una sequenza di n interi non ordinati
 - d) Integer Sort per ordinare una sequenza di n interi con valori O(n)
- 4. Siano f(n) e g(n) i costi dell'algoritmo MERGESORT nel caso peggiore e QUICKSORT in quello migliore, rispettivamente. Quale delle seguenti relazioni asintotiche è vera:

a)
$$f(n) = o(g(n))$$
 *b) $f(n) = \Theta(g(n))$ c) $f(n) = \omega(g(n))$ d) $g(n) = \omega(f(n))$

5. Quali sono, rispettivamente, i costi per implementare le operazioni di *IncreaseKey*, *DecreaseKey*, e *Merge* in una coda di priorità di *n* elementi implementata utilizzando un *d*-heap?

a)
$$O(d \log_d n), O(d \log_d n), \Theta(n)$$
 b) $O(\log_d n), O(\log_d n), O(n)$ *c) $O(d \log_d n), O(\log_d n), O(\log_d n), \Theta(n)$ d) $O(n), O(\log_d n), \Theta(d \log_d n)$ 6. Quali sono, rispettivamente, i costi per implementare le operazioni di *Insert*, *Delete*, e *Search*, in un dizionario di n

6. Quali sono, rispettivamente, i costi per implementare le operazioni di *Insert, Delete*, e *Search*, in un dizionario di *n* elementi implementato utilizzando una lista ordinata?

a)
$$O(n), O(1), \Theta(n)$$

b)
$$\Theta(n), O(1), O(n)$$

c)
$$O(n), O(n), O(n)$$

*d)
$$O(n), O(1),$$

- a) Il grafo contiene almeno un sottografo indotto completo di ordine 3
- b) Il grafo contiene almeno un sottografo indotto bipartito
- *c) Il grafo non contiene un ciclo semplice di lunghezza 7
- d) Il grafo può essere disconnesso rimuovendo opportunamente due archi

8. Dato il grafo di Domanda 7, si applichi su di esso l'algoritmo di Dijkstra con sorgente il nodo D. Qual è la sequenza di nodi estratti dalla coda di priorità?

a)
$$D, C, E, B, G, A, F$$
 b) D, E, B, C, A, F, G c) D, C, B, E, A, F, G *d) D, C, E, B, A, F, G

9. Dato il grafo di Domanda 7, si applichi su di esso l'algoritmo di Prim con sorgente il nodo B. Qual è la sequenza di nodi estratti dalla coda di priorità?

*a)
$$B, A, D, C, E, F, G$$
 b) B, A, D, C, F, E, G c) B, A, D, C, E, G, F d) B, A, C, D, E, F, G

- 10. Nel problema della gestione di insiemi disgiunti, quale tra le diverse implementazioni proposte garantisce di poter eseguire nel caso peggiore la Union in $O(\log n)$ e la Find in O(1)?
 - *a) nessuna b) QuickFind con union by size c) QuickUnion con union by size d) QuickUnion

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
С										
d										