

Introduction

- Annual Winter Wheat Yield: Amount of grain harvested by unit of area in a given year (in tonnes per hectare)
- Depends on the characteristics of the region and the climatic conditions. Values vary greatly between regions and years
- Important to accurately predict yield loss.
 - Harvest planning
 - Management of stocks
 - Strategic information in international markets.

Objective

The objective of this capstone is to develop tools to classify as accurately as possible the wheat yield loss in France.

Metadata

- 94 Departments
- 58 years
- · Climatic data: months Sep-Jun
 - Potential Evapotranspiration (mm/day)
 - Solar Radiation (W/m²)
 - Precipitation: monthly values (mm/day), # rainy days
 - Temperatures: Max (C), min (C), # days with extreme values
- Yield loss: 1 = loss 0 = no loss

Metadata

Metadata

For each year and Department:

- Potential Evapotranspiration (mm/day):
 ETP_9, ETP_10, ETP_11, ETP_12, ETP_1, ..., ETP_6
- Precipitation: monthly values (mm/day) and # rainy days:
 PR_9, PR_10, PR_11, PR_12, PR_1, ..., PR_6
 SeqPR_9, SeqPR_10, SeqPR_11, ..., SeqPR_6
- Solar Radiation (W/m2):
 RV_9, RV_10, RV_11, RV_12, RV_1, ..., RV_6

- # days with daily maximum T > 34 C
- # days with daily maximum T between 0 and 10 C
- # days with daily minimum T < -17 C

Distributions

Boxplots of climatic variables in October (except for Tn17.2, which corresponds to November)

Noise, noise, noise...

Distributions

Boxplots of climatic variables in October (except for Tn17.2, which corresponds to November)

Data preparation

· Data Cleaning

Delete columns of straight zeros

80 features and 3571 instances

Splitting

Random: 75% train - 25% test (Stratified splitting didn't work well)

Normalization

Why does PCA overperform?

Usually:

It is recommended to remove highly correlated variables before PCA

Correlated variables point in the same direction making that component stronger

In our case:

We have roughly the same number of variables for each month

Oversample with SMOTE while using GridSearchCV

SMOTE + cross validation: Pipeline

Wrong

Oversample with SMOTE while using GridSearchCV

SMOTE + cross validation: Pipeline

Right

Logistic Regression

0.75

weighted avg

Train set score: Best cross validation score: 0.66 Test set score: 0.66 Report: precision recall f1-score support 0.87 0.61 0.72 0.31 0.65 0.42 185 micro avg 0.62 0.62 0.62 893 macro avg 0.59 0.63 0.57 893

0.66

KNN

Train set score: 0.92 Best cross validation score: 0.86 Test set score: 0.88

Report:					
		precision	recall	f1-score	support
	0	0.94	0.75	0.83	708
	1	0.46	0.83	0.59	185
micro	avg	0.76	0.76	0.76	893
macro	avg	0.70	0.79	0.71	893
weighted	avg	0.84	0.76	0.78	893

Random Forest

Train set score: Best cross validation score: 0.88 Test set score: 0.89 Report: precision recall f1-score support 0.91 0.91 0.91 1 0.66 0.68 0.67 185 0.86 0.86 0.86 micro avg 893 macro avg 0.79 0.79 0.79 893 weighted avg 0.86 0.86 0.86

Best cross validation score:				0.87		
			re: 0			
Test set score:			0.88			
Report:						
		precision	recall	f1-score	support	
	0	0.92	0.91	0.91	708	
	1	0.66	0.68	0.67	185	
micro	avg	0.86	0.86	0.86	893	
macro	avg	0.79	0.79	0.79	893	
weighted	avg	0.86	0.86	0.86	893	

Model Comparison: ROC Curves

Conclusions

- Climate variables are relatively good predictors of wheat yield loss in France. The predictions are valuable in order to plan harvests, manage stocks, optimize contracts and operate in international markets.
- Random Forest was the best model, with an area under the ROC curve of 0.89.
- The results would be much better with a less noisy data.
 That could be achieved by working with local data (vs generalized for an entire Department) or using the data of several stations for one Department.

Future work

- France has 5 different climates. Thus,
 performing some clustering before using our
 ML models would be ideal and most likely
 improve the results.
- There is also some information in the NUMD (number of department) variable that might be worth to explore.

