Partiel

Exercice 1. Considérons le couple (X, Y) de densité

$$f_{(X,Y)}(x,y) = \alpha \frac{e^{-y}}{\sqrt{x}} \mathbb{I}_{0 < x < y^2} \mathbb{I}_{y > 0}.$$

- a) Déterminer $\alpha > 0$ t.q. $f_{(X,Y)}$ soit correctement normalisée.
- b) Déterminer les densités marginales f_X et f_Y .
- c) Calculer la densité conditionnelle $f_{Y|X=x}(y)$ de Y sachant X=x.

Exercice 2. Soit (X, Y) le vecteur gaussien centré de matrice de covariance $\begin{pmatrix} 1 & 2 \\ 2 & 8 \end{pmatrix}$. Soit W = X - 3Y. $Z = Y - \alpha X$.

- a) Calculer moyenne et variance de la v.a. W.
- b) Déterminer la densité $f_W(w)$ de la v.a. W.
- c) Déterminer α tel que X et Z soient indépendantes.
- d) Calculer $\mathbb{E}[Y|X]$ et Var(Y|X).

Exercice 3. Soient $X_1, ..., X_n, n$ variables aléatoires indépendantes de même loi $\mathcal{N}(0, 1)$. On pose $U = \left|\frac{1}{n}\sum_{i=1}^n X_i\right|^2$ et $V = \frac{1}{n}\sum_{i=1}^n |X_i|^2$.

- a) Calculer $\mathbb{E}[V]$.
- b) Déterminer la loi de V.
- c) Déterminer la loi de U et calculer $\mathbb{E}[U]$.

Exercice 4. Soit X_n une variable aléatoire suivant une loi géométrique de paramètre 1/(n+1). Montrer que la v.a. $X_n \log(1+1/n)$ converge en loi vers une v.a. $\mathcal{E}(1)$ (exponentielle de paramètre 1).

Exercice 5. Soient X, Y deux v.a. réelles telles que Var(X) = Var(Y)/2 = 1 et que $\mathbb{E}[X] = \mathbb{E}[Y] = 2$. Leur coefficient de corrélation est $\rho_{X,Y} = -1$ ce qui implique qu'il existe deux nombres $\alpha, \beta \in \mathbb{R}$ tels que $X = \alpha Y + \beta$:

- a) Déterminer les deux nombres $\alpha, \beta \in \mathbb{R}$.
- b) Calculer $\mathbb{E}[(X+3)^2|Y]$.