Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Statistics 191: Introduction to Applied Statistics Diagnostics & Influence

Jonathan Taylor
Department of Statistics
Stanford University

February 22, 2010

Diagnostics in multiple linear model

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Outline

- Diagnostics again
- Different residuals
- Influence
- Outlier detection
- Residual plots:
 - partial regression (added variable) plot,
 - partial residual (residual plus component) plot

Scottish hill races data

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Description

Variable	Description
	Record time to complete course
	Distance in the course
Climb	Vertical climb in the course

Scottish hill races data

Statistics 191: Introduction to Applied Statistics

Diagnostics

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

What can go wrong?

- Regression function can be wrong: maybe regression function should be quadratic (see R code).
- Model for the errors may be incorrect:
 - may not be normally distributed.
 - may not be independent.
 - may not have the same variance.
- Detecting problems is more art then science, i.e. we cannot test for all possible problems in a regression model.
- Basic idea of diagnostic measures: if model is correct then residuals $e_i = Y_i \widehat{Y}_i, 1 \le i \le n$ should look like a sample of (not quite independent) $N(0, \sigma^2)$ random variables.

Standard diagnostic plots

Statistics 191: Introduction to Applied Statistics Jonathan Taylor

Problems with the errors

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Possible problems & diagnostic checks

- Errors may not be normally distributed or may not have the same variance – qqnorm can help with this. This may not be too important in large samples.
- Variance may not be constant. Can also be addressed in a plot of X vs. e: fan shape or other trend indicate non-constant variance.
- Influential observations. Which points "affect" the regression line the most?
- Outliers: points where the model really does not fit!
 Possibly mistakes in data transcription, lab errors, who knows? Should be recognized and (hopefully) explained.

Residuals

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Types of residuals

- Ordinary residuals: $e_i = Y_i \widehat{Y}_i$. These measure the deviation of predicted value from observed value, but their distribution depends on unknown scale, σ .
- Internally studentized residuals (rstandard in R): $r_i = e_i/s(e_i) = e_i/\widehat{\sigma}\sqrt{1-H_{ii}}$, H is the "hat" matrix. These are almost t-distributed, except $\widehat{\sigma}$ depends on e_i .
- Externally studentized residuals (rstudent in R): $t_i = e_i/\widehat{\sigma_{(i)}}\sqrt{1-H_{ii}} \sim t_{n-p-2}$. These are exactly t distributed so we know their distribution and can use them for tests, if desired.

Standard diagnostic plots

Statistics 191: Introduction to Applied Statistics Jonathan Taylor

Influence of an observation

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Dropping an observation

- In this setting, a $\cdot_{(i)}$ indicates *i*-th observation was not used in fitting the model.
- For example: $\widehat{Y}_{j(i)}$ is the regression function evaluated at the j-th observations predictors BUT the coefficients $(\widehat{\beta}_{0(i)}, \ldots, \widehat{\beta}_{p(i)})$ were fit after deleting i-th row of data.
- Idea: if $\widehat{Y}_{j(i)}$ is very different than \widehat{Y}_j (using all the data) then i is an influential point, at least for estimating the regression function at $(X_{1,j}, \ldots, X_{p,j})$.

Influence of an observation

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

DFFITS

•

$$DFFITS_{i} = \frac{\hat{Y}_{i} - \hat{Y}_{i(i)}}{\hat{\sigma}_{(i)} \sqrt{H_{ii}}}$$

- This quantity measures how much the regression function changes at the *i*-th observation when the *i*-th variable is deleted.
- For small/medium datasets: value of 1 or greater is "suspicious". For large dataset: value of $2\sqrt{(p+1)/n}$.

Influence of an observation: DFFITS

Statistics 191: Introduction to Applied Statistics Jonathan

Influence of an observation

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Cook's distance

•

$$D_i = \frac{\sum_{j=1}^n (\widehat{Y}_j - \widehat{Y}_{j(i)})^2}{(p+1)\widehat{\sigma}^2}$$

- This quantity measures how much the entire regression function changes when the *i*-th variable is deleted.
- Should be comparable to F_{p+1,n-p-1}: if the "p-value" of D_i is 50 percent or more, then the i-th point is likely influential: investigate further.

Influence of an observation: Cook's distance

Statistics 191: Introduction to Applied Statistics

Influence of an observation

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

DFBETAS

•

$$DFBETAS_{j(i)} = \frac{\beta_j - \beta_{j(i)}}{\sqrt{\widehat{\sigma}_{(i)}^2 (X^T X)_{jj}^{-1}}}.$$

- This quantity measures how much the coefficients change when the *i*-th variable is deleted.
- For small/medium datasets: value of 1 or greater is "suspicious". For large dataset: value of $2/\sqrt{n}$.

Influence of an observation: DFBETA, Climb

Statistics 191: Introduction to Applied Statistics

Influence of an observation: DFBETA, Distance

Statistics 191: Introduction to Applied Statistics

Outliers

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Basic definition

- Outlier: an observation pair $(Y, X_1, ..., X_p)$ that does not follow the model, while most other observations seem to follow the model.
- Outlier in predictors: the X values of the observation may lie outside the "cloud" of other X values. This means you may be extrapolating your model inappropriately. The values H_{ii} can be used to measure how "outlying" the X values are.
- Outlier in response: the Y value of the observation may lie very far from the fitted model. If the studentized residuals are large: observation may be an outlier.

Outlying X values

Statistics 191: Introduction to Applied Statistics

Outliers

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Crude (response) outlier detection test

- Strategy to detect outliers: "flag" large residuals.
- Problem: if n is large, if we "threshold" at $t_{1-\alpha/2,n-p-2}$ we will get many outliers by chance even if model is correct. In fact, we expect to see $n \cdot \alpha$ "outliers" by this test. Every large data set would have outliers in it, even if model was entirely correct!
- Problem is known as multiple comparisons or simultaneous inference. We are performing n hypothesis tests, but would still like to control the probability of making any false positive errors.
- One solution: Bonferroni correction, threshold at $t_{1-\alpha/(2*n),n-p-2}$.

Multiple comparisons

Statistics 191. Introduction to Applied Statistics Ionathan Taylor

Department of Statistics Stanford University

Bonferroni correction

- If we are doing many t (or other) tests, say m >> 1 we can control overall false positive rate at α by testing each one at level α/m .
- Proof, when the model is correct, with studentized residuals T_i :

$$\begin{split} P & \text{(at least one false positive)} \\ &= P \left(\cup_{i=1}^m |T_i| \geq t_{1-\alpha/(2*m),n-p-2} \right) \\ &\leq \sum_{i=1}^m P \left(|T_i| \geq t_{1-\alpha/(2*m),n-p-2} \right) \\ &= \sum_{i=1}^m \frac{\alpha}{m} = \alpha. \end{split}$$

Diagnostic plots

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Problems in the regression function

- True regression function may have higher-order non-linear terms, polynomial or otherwise.
- We may be missing terms involving more than one $X_{(\cdot)}$, i.e. $X_i \cdot X_j$ (called an *interaction*).
- Some simple plots: added-variable and component plus residual plots can help to find nonlinear functions of one variable.

Diagnostic plots

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Added variable plots

- Useful for finding influential points, outliers.
- Procedure:
 - let $\tilde{e}_{X_j,i}$, $1 \le i \le n$ be the residuals after regressing \boldsymbol{X}_j onto all columns of \boldsymbol{X} except \boldsymbol{X}_j ;
 - let $e_{X_j,i}$ be the residuals after regressing Y onto all columns of X except X_i ;
 - Plot \tilde{e}_{X_i} against e_{X_i} .

Added variable: Distance

Statistics 191: Introduction to Applied Statistics

Added variable: Climb

Statistics 191: Introduction to Applied Statistics Jonathan

Diagnostic plots

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Component + residual plots

- Can help to determine non-linear trend in data.
- Procedure: plot X_{ij} , $1 \le i \le n$ vs. $e_i + \widehat{\beta}_j \cdot X_{ij}$, $1 \le i \le n$.

Component + residual: Distance

Statistics 191: Introduction to Applied Statistics

Component + residual: Climb

Statistics 191: Introduction to Applied Statistics

