CANONICITY

Alex Kavvos

Reading: arXiv:1907.11133

Recall the following special case of a property of the simply-typed λ -calculus:

Theorem 1 (Canonicity). For every $\vdash e$: Num there exists a v val such that $e \mapsto^* v$.

In other words, every $\vdash e$: Num can be reduced to a **canonical form**, i.e. $\mathsf{num}[n]$: by preservation we must also have that $\vdash v$: Num; as it is also a value v must be of the form $\mathsf{num}[n]$ by the canonical forms lemma.

Induction does not suffice to prove canonicity. The reasons are somewhat deep. However, we are able to prove it through the technique of **logical relations**. Recall that a unary relation is often called a **predicate**.

1 Outline

Consider the STLC (without strings). Define a predicate $e \in P_{\tau}$ on closed pre-terms by **induction on types**.

```
\begin{split} e &\in P_{\mathsf{Num}} \; \equiv \; \exists v. \; v \; \mathsf{val} \land e \longmapsto^* v \\ e &\in P_{\sigma \times \tau} \; \equiv \; \pi_1(e) \in P_\sigma \land \pi_2(e) \in P_\tau \\ e_1 &\in P_{\sigma \to \tau} \; \equiv \; \forall e_2 \in P_\sigma. \; e_1(e_2) \in P_\tau \\ e &\in P_{\sigma + \tau} \; \equiv \; (\exists u. \; e \longmapsto^* \mathsf{inl}(u) \land u \in P_\sigma) \lor (\exists w. \; e \longmapsto^* \mathsf{inr}(w) \land w \in P_\tau) \end{split}
```

We will prove the following result.

Lemma 2. If $\vdash e : \tau$ then $e \in P_{\tau}$.

Consequently, if $\vdash e$: Num then $e \in P_{\text{Num}}$. Thus there exists a numerical v val with $e \mapsto^* v$.

2 Substitutions

Unfortunately, Lemma 2 is not strong enough to be proved by induction. We need to **strengthen the** IH

Let $x, y, \ldots \in \mathcal{V}$ be the set of variables.

A substitution is a finite map $\gamma: \mathcal{V} \longrightarrow \mathsf{PreTerm}$ mapping variables to pre-terms.

We define $e[\gamma]$ inductively as before; for example

$$x[\gamma] \stackrel{\text{def}}{\simeq} \gamma(x)$$

$$(e_1(e_2))[\gamma] \stackrel{\text{def}}{\simeq} e_1[\gamma](e_2[\gamma])$$

$$\vdots$$

Finally, given a context Γ define

$$\gamma \vDash \Gamma \stackrel{\text{def}}{\equiv} \forall (x : \sigma) \in \Gamma. \ \gamma(x) \in P_{\sigma}$$

We will then prove

Lemma 3. If $\Gamma \vdash e : \tau$ and $\gamma \vDash \Gamma$ then $e[\gamma] \in P_{\tau}$.

From this Lemma 2 follows by picking Γ to be the empty context. What is more, this can be shown by induction!

3 Some cases of the proof

First, another lemma:

Lemma 4. If $e_1 \mapsto e_2$ and $e_2 \in P_{\sigma}$ then $e_1 \in P_{\sigma}$.

Proof. By induction on σ .

We can then produce a

Proof of Lemma 3. By induction on the derivation of $\Gamma \vdash e : \tau$.

Case(VAR). Suppose the derivation is $\Gamma, x : \tau \vdash x : \tau$, so that e = x. Then from $\gamma \vDash \Gamma$ we know that $\gamma(x) \in P_{\sigma}$. But from the definition of substitution we have $e[\gamma] = x[\gamma] \stackrel{\text{def}}{=} \gamma(x)$, which is then in the relation.

Case(APP). Suppose the derivation is of the form

$$\frac{\vdots}{\frac{\Gamma \vdash e_1 : \sigma \to \tau}{\Gamma \vdash e_1 (e_2) : \tau}} \frac{\vdots}{\Gamma \vdash e_2 : \sigma} \text{APP}$$

By the IH, we have that $e_1[\gamma] \in P_{\sigma \to \tau}$ and $e_2[\gamma] \in P_{\sigma}$.

By the definition of $P_{\sigma \to \tau}$ we then have that $e_1[\gamma](e_2[\gamma]) \in P_{\tau}$. But $(e_1(e_2))[\gamma] \stackrel{\text{def}}{=} e_1[\gamma](e_2[\gamma])$, so we are done.

Case(LAM). Suppose the derivation is of the form

$$\frac{\vdots}{\Gamma, x : \sigma \vdash u : \tau} \\
\frac{\Gamma, x : \sigma \vdash u : \tau}{\Gamma \vdash \lambda x : \sigma, u : \sigma \to \tau} \text{ LAM}$$

We need to show that $(\lambda x : \sigma. u)[\gamma] \stackrel{\text{def}}{=} \lambda x : \sigma. u[\gamma] \in P_{\sigma \to \tau}$.

By definition, this means that assuming $e \in P_{\sigma}$ we have to show $(\lambda x : \sigma . u[\gamma])(e) \in P_{\tau}$.

So assume $e \in P_{\sigma}$. By D-Beta we have

$$(\lambda x : \sigma. u[\gamma])(e) \longmapsto u[\gamma][e/x] \equiv u[\gamma'] \tag{*}$$

where

$$\gamma'(z) \simeq \begin{cases} e & \text{if } z = x \\ \gamma(z) & \text{otherwise} \end{cases}$$

Notice that $\gamma' \models \Gamma, x : \sigma$, as x is mapped to $e \in P_{\sigma}$. Hence by the IH we have $u[\gamma'] \in P_{\tau}$.

Therefore by Lemma 4 and (*) we have $(\lambda x : \sigma. u[\gamma])(e) \in P_{\tau}$.

Note that the cases of operations on ground types (e.g. plus(-;-)) are somewhat annoying, as they depend on various admissible rules for $e_1 \mapsto^* e_2$ which need to be proved by induction.

The method of logical relations is extremely general. It can be adapted to prove a host of properties, including type safety, noninterference, equivalence of programs, and so on. Moreover, it is extensible to languages with a higher-order store, polymorphism, and so on.