Probability and Quelling Theory

Unit -1 Random variables

Discrete Distribution:

Binomial Distribution Sunctions

1	
PMF	$P(x=x) = n_{\zeta_x} p^x q^{n-x}$
MOIF	(9+pe*)n
Mean	nP
variance	npa
S.D	Vnpg

Offind the MGF of the binomial R.V with parameters n & P and hence find its mean & variance.

WKT, The MUF of a R.V x about origin whose Soln probability function P(x) is given by

$$M_{x}(t) = \int_{x=0}^{n} e^{tx} p(x)$$

[pa) is a pmf]

 $(\hat{1})$

$$p(x) = n_{C_x} p^x q^{n-x}$$

$$M_{\chi}(t) = \sum_{x=0}^{n} e^{tx} n_{c_{\chi}} p^{\chi} q^{n-\chi}$$

$$= 2^{n} (e^{t})^{x} p^{x} n_{c_{x}} q^{n-x}$$

Mx(t) = (pet) nc, qn-0+ (pet) nc, q+-...+ (pet) nc, qn-1 = qn+(pet)'nc, qn-1+...

$$|M_{\chi}(t) = (9 + pe^{t})^{n} - 0$$

.. M.g. + of binomial distribution is Mx(+) = (2+pet)"

mean =
$$M_{x}^{1}(t) = n(q+pe^{t})^{n-1}pe^{t}$$
 $p_{t}t t = 0$
 $p_{t}t t =$

$$\begin{aligned} \text{Var}(x) &= \text{M}_{x}^{1}(0) - \left[\text{M}_{x}^{1}(0)\right]^{2} \\ &= \text{N}_{x}^{1}(0) - \left[\text{M}_{x}^{1}(0)\right]^{2} + \text{N}_{x}^{1}(0) \\ &= \text{N}_{x}^{1}(0) - \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} \\ &= \text{N}_{x}^{1}(0) - \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} \\ &= \text{N}_{x}^{1}(0) - \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} \\ &= \text{N}_{x}^{1}(0) - \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} \\ &= \text{N}_{x}^{1}(0) - \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} \\ &= \text{N}_{x}^{1}(0) - \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} \\ &= \text{N}_{x}^{1}(0) - \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} \\ &= \text{N}_{x}^{1}(0) - \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{x}^{1}(0)\right]^{2} \\ &= \text{N}_{x}^{1}(0) - \left[\text{M}_{x}^{1}(0)\right]^{2} + \left[\text{M}_{$$

3 State and prove additive property of Binomial

statement

The Sum of two independent binomial distribution is also binomial distribution.

Proof

Let x1 and x2 be 600 Endependent binomial distributions with parameters (n,,p) and (n2,P)

i.e,
$$X_1 \sim B(n_1 p)$$
, $X_2 \sim B(n_2 p)$
 $M_{X_1}(t) = (q + pe^t)^{n_1}$, $M_{X_2}(t) = (q + pe^t)^{n_2}$
 $M_{X_1} + X_2(t) = M_{X_1}(t) \cdot M_{X_2}(t)$
 $M_{X_1} + M_{X_2}(t) = M_{X_1}(t) \cdot M_{X_2}(t)$

$$m_{X_1 + X_2}(t) = M_{X_1}(t) \cdot M_{X_2}(t)$$

$$= (9 + pe^t) \cdot (9 + pe^t)^{n_2}$$

$$M_{X_1 + X_2}(t) = (9 + pe^t)^{n_1 + n_2}$$

=> x1+ x2 ~ B(n1+n2 1P)

:. X1+X2 & binomial distribution with parameters (n1+n2)P)

Poisson Distribution

Note	$P(x=x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$ $(e^{t}-1)\lambda$, x=0/1/0
PMF	$P(x=x) = \overline{x!}$	
MGF	$M_{\chi}(t) = e^{(e^t-1)\chi}$	
mean	7	
var(x)	λ	
S.D	Va	

*-> no. of Success

>> Parameter

1) By calculating the MOIF of poisson distribution with parameter 7. Prove that the mean & variance of the poisson distribution are equal.

Soln

To find MOIF

$$M_{x}(t) = 2^{\infty} e^{xt} p(x)$$

WET PMF
$$p(x) = \frac{e^{\lambda}}{x!}$$
 $m_{X}(t) = \frac{e^{\lambda}}{x = 0} \frac{e^{\lambda}}{x!}$
 $= \frac{e^{\lambda}}{x} \frac{e^{\lambda}}{x!} + \frac{e^{\lambda}}{x!} + \cdots$
 $= \frac{e^{\lambda}}{x} \frac{e^{\lambda}}{x!} + \frac{e^{\lambda}}{x!} + \cdots$
 $= \frac{e^{\lambda}}{x} \frac{e^{\lambda}}{x!} + \frac{e^{\lambda}}{x!} + \cdots$
 $= \frac{e^{\lambda}}{x} \frac{e^{\lambda}}{x!} + \cdots$
 $= \frac{e^{\lambda}}{x!} \frac{e^{\lambda}}{x!} + \cdots$
 $= \frac{e^{\lambda}}{x} \frac{e^$

$$M_{x}^{"}(t) = uv^{\dagger} + vu^{\dagger}$$

$$= (e^{t} \lambda) \left(e^{(e^{t-1})\lambda} e^{t} \lambda \right) + \left(e^{(e^{t-1})\lambda} \right) \left(e^{t} \lambda \right)$$

$$= \lambda^{2} e^{2\lambda t} e^{(e^{t-1})\lambda} + e^{t} \lambda e^{(e^{t-1})\lambda}$$

$$\begin{bmatrix} M_{x}^{"}(t) \end{bmatrix} = \lambda^{2} e^{2(0)} (e^{0} - 1)\lambda + e^{0} \lambda e^{(0)} - 1)\lambda$$

$$t=0$$

$$\begin{bmatrix} M_{x}^{"}(t) \end{bmatrix} = \lambda^{2} + \lambda$$

$$Var(x) = E(x^{2}) - [E(x)]^{2}$$

$$= \Re M_{x}^{"}(t) - [M_{x}^{'}(t)]^{2}$$

$$= \lambda^{2} + \lambda - [\lambda]^{2} = \lambda^{2} + \lambda - \lambda^{2}$$

$$Var(x) = \lambda$$

$$\boxed{\text{Var}(x) = \lambda}$$

$$\boxed{\text{Stable and prove additive property of poisson distribution}}$$

The sum of two independent poesson distribution is also a porsson distribution.

Jet x,1x2 be two Independent poisson distribution with parameters 1, 6 1/2 respectively.

$$paramerous$$
; $x_2 \sim p(\lambda_2)$
=> $x_1 \sim p(\lambda_1)$; $x_2 \sim p(\lambda_2)$
 $m_{x_1}(t) = e^{(e^t - 1)\lambda_1}$; $m_{x_2}(t) = e^{(e^t - 1)\lambda_2}$

$$M_{\chi_1 + \chi_2}(t) = M_{\chi_1}(t) \cdot M_{\chi_2}(t)$$
 (: $\chi_1 \in \chi_2$ are independent)
$$= e^{(t-1)(\lambda_1 + \lambda_2)}$$

$$= e^{(t-1)(\lambda_1 + \lambda_2)}$$

ie x1+x2 is also poissons distribution with parameter = 1 x1+x2 ~ P(21+22)

Gleometric Distribution:- $P(x=x)=q^{x-1}P$ pet 1-3et

Offind the MUF of Geometric Distribution R.V 2 and hence find its mean and variance.

Solm

vax(x)

To find muf
wet
$$M_{x}|t) = \int_{x=1}^{\infty} e^{tx} p(x)$$

 $= \int_{x=1}^{\infty} e^{tx} e^{x-1} P$
 $= \int_{x=1}^{\infty} e^{tx} e^{t} e^{t} q^{x-1} P$
 $= \int_{x=1}^{\infty} e^{t} e^{t} e^{t} q^{x-1} P$
 $= \int_{x=1}^{\infty} e^{t}$

To find mean:

WET
$$M_{\star}(t) = \frac{Pe^{t}}{1-ge^{t}}$$

$$M_{x}^{1}(t) = [(1-qe^{t})pe^{t} - pe^{t}(o-qe^{t})]$$

$$= [pe^{t} - qe^{t}pe^{t} + qe^{t}pe^{t}]$$

$$= (1-qe^{t})^{2}$$

$$= (1-qe^{t})^{2}$$

$$(1-qe^{t})^{2}$$

$$M_{x}^{1}(t) = \frac{pe^{t}}{(1-qe^{t})^{2}}$$

$$W^{1}(1) = \frac{p}{(1-q)^{2}}$$

$$W^{1}(1) = \frac{p}{(1-q)^{2}}$$

$$W^{2}(1) = \frac{p}{(1-q)^{2}}$$

$$Vax(1) = [(1-qe^{t})^{2}] - [(1-qe^{t})^{2}]$$

$$W^{2}(1) = (1-qe^{t})^{2} - [(1-qe^{t})^{2}] - [(1-qe^{t})^{2}]$$

$$M_{x}^{1}(1) = (1-qe^{t})^{2} - [(1-qe^{t})^{2}] - [(1-qe^{t})^{2}]$$

$$M_{x}^{1}(1) = (1-qe^{t})^{2} - [(1-qe^{t})^{2}] - [(1-qe^{t})^{2}]$$

$$\lim_{t \to 0} \frac{(1-qe^{t})^{4}}{(1-qe^{t})^{4}} = \frac{p^{2}}{p^{2}} + 2pq$$

$$\lim_{t \to 0} \frac{(1-qe^{t})^{4}}{p^{2}} - \frac{p^{2}}{p^{2}} + 2pq$$

$$\lim_{t \to 0} \frac{(1-qe^{t})^{4}}{p^{2}} - \frac{p^{2}}{p^{2}}$$

$$Var(x) = E(x^{2}) - [E(x)]^{2}$$

$$= M_{x}^{1}(t) - [M_{x}^{1}(t)]^{2}$$

$$= \frac{p+2q}{p^{2}} - \frac{1}{p^{2}}$$

$$= 1 - q + 2q - 1$$

$$= \frac{1-q+2q-1}{p^{2}}$$

$$Var(x) = \frac{q}{p^{2}}$$

2) State and prove memoryless property

Statement

Jet x be the general tric distribution then for any 2 positive integer mon P(x>m+n/x>m) = P(x>n)

proof

$$W^{KT}P(x=x)=q^{x-1}P$$

$$P(x>n) = P(x = n+1) + P(x = n+2) + P(x = n+3) + \cdots$$

$$= q^{n+1-1} p + q^{n+2-1} p + q^{n+3-1} p + \cdots$$

$$= q^{n} p + q^{n-1} p + q^{n+2} p + \cdots$$

$$= q^{n} p [1 + q^{1} + q^{2} + \cdots]$$

$$= q^{n} p [1 - q]^{1}$$

$$= q^{n} p [P]^{1}$$

$$= q^{n} p [P]^{1}$$

$$= q^{n} p [P]^{1}$$
Sound by (Second by (Seco

9

P(x>m+n/x>m)=qn

confirmous distribution:

set x be a uniform distribution as the interval (a 16) with PBF, f(x) = { b-a | a 2x2b | o theqwise To find MUIF

WET Mx(t) = \int & xt fen dx. $f(x) = \frac{1}{h-a}$, aaxb $M_{x}(t) = \int_{0}^{b} e^{xt} \frac{1}{b-9} dx$ $= \lim_{b \to a} \int_{N}^{b} e^{t} dx$ = 1 E C T Ja = 1 [ebt - at]

(10)

Mean
$$E(x) = \int_{-\infty}^{a} x f(x) dx = \int_{a}^{b} \frac{1}{b-a} dx dx$$

$$= \frac{1}{b-a} \int_{a}^{b} x dx$$

$$= \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b}$$

$$= \frac{1}{b-a} \left[\frac{b^{2} - a^{2}}{2} \right]_{a}^{b}$$

$$= \frac{1}{b-a} \left[\frac{(b+a)(b-a)}{2} \right]_{a}^{b}$$

$$= \frac{1}{b-a} \left[\frac{b+a}{2} (b-a)(b-a) \right]_{a}^{b}$$

$$= \frac{b+a}{2} (b-a)(b-a)$$

Find variance:

$$Var(x) = E(x^{2}) - [E(x)]^{2}$$

$$E(x^{2}) = \int_{a}^{b} x^{2} \frac{1}{b-a} dx$$

$$= \frac{1}{b-a} \left[\frac{x^{3}}{3} \right]_{a}^{b}$$

$$= \frac{1}{b-a} \left[\frac{b^{3}-a^{3}}{3} \right] = \frac{1}{b-a} \left[\frac{(b-a)(b^{2}+ab+a^{2})}{3} \right]$$

$$E(x^2) = b^2 + 9b + 9^2$$

$$val(x) = \frac{b^2 + ab + a^2}{3} - \frac{(a+b)^2}{4}$$

$$= \frac{4(b^2 + ab + a^2)}{3} - \frac{3(a^2 + b^2 + dab)}{3}$$

$$= 4b^{2} + 4ab + 4a^{2} - 3a^{2} - 3b^{2} - 6ab = \frac{a^{2} + b^{2} - 2ab}{12}$$

$$vax(x) = \frac{(a-b)^2}{12}$$

Memory less property

Statement!

If x is a Exponential distribution, let m, n be two positive integer then P(x>m+n/x>m)=P(x>n).

Proof

Let x be a ED :
$$f(x) = \lambda e^{\lambda x}$$
, $x \ge 0$

RHS $P(x > n) = \int_{0}^{\infty} f(x) dx$

$$= \int_{0}^{\infty} \lambda e^{-\lambda x} dx$$

$$= \lambda \int_{0}^{\infty} e^{-\lambda x} dx$$

$$= \lambda \left[e^{-\lambda x} \int_{0}^{\infty} e^{-\lambda x} dx \right]$$

$$= -\sum_{0}^{\infty} e^{-\lambda x} \int_{0}^{\infty} e^{-\lambda x} dx$$

$$Similarly, p(x>m) = e^{\lambda m}$$

$$P(x>m+n) = e^{\lambda (m+n)}$$

$$P(x>m+n/x>m) = P(x>m+n/x>m)$$

$$P(x>m+n/x>m) = P(x>m+n/x>m)$$

$$= \frac{P(x > m+n)}{P(x > m)}$$

$$= \frac{e^{-\lambda}(m+n)}{e^{-\lambda}m}$$

$$= \frac{e^{-\lambda}m}{e^{-\lambda}m}$$

$$= \frac{e^{-\lambda}m}{e^{-\lambda}m}$$

$$= \frac{e^{-\lambda}m}{e^{-\lambda}m}$$

Exponential Distribution

Let
$$x$$
 be a exponential distribution with PDE

$$f(x) = \begin{cases} \lambda e^{\lambda x}, & x \geq 0 \\ 0, & \text{otherwise} \end{cases}$$

Totind More:

$$M_{X}(t) = \begin{cases} \lambda e^{\lambda x}, & x \geq 0 \\ 0, & \text{otherwise} \end{cases}$$

What ED to

$$f(x) = \begin{cases} \lambda e^{\lambda x}, & x \geq 0 \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda t} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda t} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda e^{\lambda x} e^{\lambda x} dx \\ 0, &$$

WET
$$M_{x}(t) = \frac{\gamma}{\gamma - t}$$

$$M_{y}'(t) = \gamma \left[-\frac{1}{(\gamma - t)^{2}} (-1) \right]$$

$$\left[M_{x}'(t) \right]_{t=0} = \lambda \left[+\frac{1}{\gamma^{2}} \right]$$

$$\left[M_{x}'(t) \right] = \frac{\gamma}{\gamma}$$

To find variance

$$Var(x) = E(x^{2}) - [E(x)]^{2}$$

$$M_{x}^{2}(t) = \frac{\lambda}{(\lambda - t)^{2}}, \quad M_{x}^{2}(t) = -\frac{2\lambda}{(\lambda - t)^{3}}(-t) = \frac{2\lambda}{(\lambda - t)^{3}}$$

$$[M_{x}^{2}(t)] = \frac{2\lambda}{(\lambda - 0)^{3}} = \frac{2\lambda}{\lambda^{2}} = \frac{2}{\lambda^{2}}$$

$$E(x^{2}) = \frac{2}{\lambda^{2}}$$

$$Var(x) = \frac{2}{\lambda^{2}} - \frac{2}{\lambda^{2}}$$

$$Var(x) = \frac{2}{\lambda^{2}}$$

Normal Distribution

Said to follow a normal distribution, it its porting given by $f(R) = \int \frac{1}{\sqrt{\sqrt{4\pi}}} \frac{-(x-\mu)^2}{e^{-4\sigma^2}}, -22x20, \sigma > 0$

x is called normal R.V.

To find MUIF

$$M_{y}(t) = E(e^{tx}) = \int e^{tx} f(u) dx$$

$$= \int_{0}^{\infty} e^{tx} \frac{1}{\sqrt{\sqrt{a\pi}}} e^{-\frac{(x-H)^{2}}{2\sigma^{2}}} dx$$

$$= \frac{1}{\sqrt{\sqrt{a\pi}}} \int_{0}^{\infty} e^{tx} - \frac{(x-H)^{2}}{2\sigma^{2}} dx$$

$$= \frac{1}{\sqrt{\sqrt{a\pi}}} \int_{0}^{\infty} e^{tx} - \frac{(x-H)^{2}}{2\sigma^{2}} dx$$

$$= \frac{1}{\sqrt{a}} \int_{0}^{\infty} e^{tx} - \frac{2^{2}}{2} dx$$

$$= \frac{1}{\sqrt{a}} \int_{0}^{\infty} e^{tx} - \frac{2$$

$$= \frac{e^{h}}{Va\pi} \int_{-h}^{2\sigma^{2}} e^{-\left(\frac{1}{N_{3}} + \frac{1}{V_{2}}\right)^{2}} dz$$

$$= \frac{e^{h}}{Va\pi} \int_{-h}^{2\sigma^{2}} e^{-\left(\frac{1}{N_{3}} + \frac{1}{V_{2}} + \frac{1}{V_{2}}\right)^{2}} dx$$

$$= \frac{e^{h}}{Va\pi} \int_{-h}^{2\sigma^{2}} e^{-\left(\frac{1}{N_{3}} + \frac{1}{V_{2}} + \frac{1}{V_{2}}\right)^{2}} dx$$

$$= \frac{e^{h}}{Va\pi} \int_{-h}^{2\sigma^{2}} e^{-\left(\frac{1}{N_{3}} + \frac{1}{V_{2}} + \frac{1}{V_{3}} + \frac{1}{V_{3}}\right)^{2}} dx$$

$$= \frac{e^{h}}{Va\pi} \int_{-h}^{2\sigma^{2}} e^{-\left(\frac{1}{N_{3}} + \frac{1}{V_{3}} dx$$

$$= \frac{e^{h}}{Va\pi} \int_{-h}^{2\sigma^{2}} e^{-\left(\frac{1}{N_{3}} + \frac{1}{V_{3}} + \frac{1}{$$

$$M_{x}^{"}(t) = (H + \sigma^{2} +)^{2} \left(e^{Ht + \sigma^{2} t^{2}}\right) + (\sigma^{2}) \left(e^{Ht + \sigma^{2} t^{2}}\right)$$

$$mean = \left[M_{x}(t)\right] = H$$

$$to$$

$$M_{x}'(t) = H$$

$$To find Val(x)$$

$$\left[M_{x}''(t)\right] = h^{2} + \sigma^{2}$$

$$t = 0$$

$$Val(x) = E(x^{2}) - \int E(x) \int^{2}$$

$$= \mu^{2} + \sigma^{2} - H^{2}$$

$$Val(x) = \sigma^{2}$$

$$To find S.D$$

$$S.D = Val(x)$$

$$= \sqrt{\sigma^{2}}$$

$$S.D = \sigma$$