Variational generation of images by deep spatial architectures

ARTHUR VIVÉ

MASTER'S PAPER PRESENTATION

ADVISOR: YALI AMIT

JULY 21 2017

Introduction

Context:

- Deep learning achieve State-of-the-Art in Computer Vision
- But little is known about the theory (optimization)

Goal:

- Generate images
- Reconstruct (denoise)
- Use higher-level information

Cherry-picked sample from a Generative adversarial network (Goodfellow 2016)

Important Concepts

Deep Autoencoders

$$h = \sigma(W_1 x + b_1)$$

 $z = \sigma(W_2 h + b_2)$
 $h' = \sigma(W_3 z + b_3)$
 $x' = \sigma(W_4 h' + b_4)$

Nonlinearity σ : sigmoid, tanh, max(0, .)

Loss: Cross-Entropy, Mean squared error

Properties:

- Gradient analytically tractable -> Training end to end.
- denoising / manifold learning, visualization.

encoder

Variational Inference

$$p(x,z) = p_{\theta}(x|z)p_{\theta}(z)$$

$$log[p(x)] = -D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) + E_{z \sim q_{\phi}(.|x)}[log(p_{\theta}(x|z))]$$

$$+ D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x))$$

$$\geq -D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) + E_{z \sim q_{\phi}(.|x)}[log(p_{\theta}(x|z))]$$

$$=: L(x, \theta, \phi)$$

True regardless of q, the approximate posterior.

- Maximize this tractable lower bound for an easily computable q.
- I Fix the parametrization and optimize over (θ, ϕ)

Figure 2: Parametrization of the latent variable model.

Variational Autoencoder

Approximate posterior

 $\hat{L}(\theta, \phi, x) = -D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) + \frac{1}{L} \sum_{j=1}^{L} log p_{\theta}(x|z_{j})$ where (z_{j}) are sampled independently from $q_{\phi}(z|x)$.

Assumptions:

- Continuous latent variable z
- Differentiability of p and q w.r.t. θ , ϕ respectively.
- Necessary reparametrization:

$$z_j = g_{\phi}(\epsilon_j, x)$$
, e.g. $z_j = \mu_{\phi}(x) + \sigma_{\phi}(x)\epsilon_j$, $\epsilon_j \sim N(0, 1)$

Generative model

Properties:

- Gradient analytically tractable -> Training end to end.
- denoising / manifold learning, visualization.
- Generative models

Spatial Transformer Layers

- 2 differentiable transformations allowed:
- Affine and thin plate splines

Learns the pose by end-to-end learning (no data about this pose)

Our models

Our models: Transformer VAE and Double-Transformer VAE

Dataset

25 first digits of the MNIST test dataset

MNIST Dataset: 60,000 train digits between 0 and 9.

10,000 test samples

- ☐ Grayscale (between 0 and 1)
- ☐ 28x28 pixels (784-dimensional)

Widely used as benchmark.

Distributions

Priors:

$$z \sim N(0, I)$$

$$u \sim ?$$

Approximate posteriors:

$$z|x \sim N(\mu^z(x), Diag(\sigma_1^z(x), ..., \sigma_D^z(x))$$

$$u = \mu^u(x)$$

Conditional:

$$x_{i,j} \sim Bernoulli(x'_{i,j})$$

Functions of x are outputs of the encoder.

x' is the output of the decoder,

deterministic function of *z* and *u*.

☐ KL-Divergence has closed form; reconstruction error is a Cross-entropy (Binomial likelihood)

Reconstructing digits

Input

VAE

Aff - TVAE

TPS-TVAE

Aff- DTVAE

Linear separation in the latent space

Input	Mean Accuracy (%)	Standard deviation (%)	Test accuracy
Raw MNIST ($28 \times 28 = 784$)	91.19	0.74	91.80
PCA (8)	75.09	1.32	75.51
VAE (8)	87.70	0.93	87.99
Affine-TVAE (8)	89.30	0.68	88.39
TPS-TVAE (8)	88.42	0.58	88.65
Affine-DTVAE (8)	93.56	0.64	93.87
PCA (20)	85.62	1.20	86.52
VAE (20)	85.77	1.22	86.45
Affine-TVAE (20)	90.80	0.66	90.51
TPS-TVAE (20)	94.65	0.46	94.48
Affine-DTVAE (20)	93.56	0.61	94.17

Table 1: Accuracy of linear SVMs trained on latent codes produced by different models on MNIST (higher is better). Dimension of the input z in parenthesis. To compute the mean accuracy and the standard deviation, we cross validated the models on the training set 9 times.

Generating Digits

VAE Affine - TVAE

10-dimensional latent code (=dim u + dim z)

Generating Digits

Affine - TVAE

Affine DTVAE

10-dimensional latent code (=dim u + dim z)

Prior specification on spatial variables

Priors:

$$z \sim N(0, I)$$

$$u' \sim N(0, I)$$

Approximate posteriors:

$$z|x \sim N(\mu^{z}(x), Diag(\sigma_{1}^{z}(x), ..., \sigma_{D}^{z}(x))$$

$$u'|x \sim N(\mu^{u}(x), Diag(\sigma_{1}^{u}(x), ..., \sigma_{S}^{u}(x))$$

Conditional:

$$x_{i,j} \sim Bernoulli(x'_{i,j})$$

Functions of x are outputs of the encoder.

x' is the output of the decoder

deterministic function of z and u' (through u).

With
$$u = Wu' + b$$

Hence
$$u \sim N(b, WW^T)$$

we estimate the prior parameters

Generating Digits II

Reference pose - Sampled pose

Centered on identity. Estimated diagonal covariance

Estimated mean and diagonal covariance

Estimated mean and diagonal covariance on the reparametrization (6 d.o.f)

Gaussian priors:

Generating Digits III

Prior: estimated mean and covariance. Rank of the covariance constrained by dim(u')

Pros and cons

- ☐ Better Upright digits
- ☐ Better linear separation.
- ☐ Sharper than VAE
- ☐ Statistically relevant

- ☐ More complicated model
- ☐ Spatial prior difficult to get right
- Lack of objective measure of good generation
- Lacks discreteness

Future work

- Other datasets
- Add discreteness
- Better reconstruction error

Acknowledgment

Thank you for your attention Questions?

Figure 8: Validation samples in a 2d-latent space. Top left: VAE. Top right: Affine TVAE, Top right: Affine TVAE. Bottom left: Affine DTVAE. Bottom right: TPS TVAE.

Local optimum

Figure 11: Different outputs of the decoder with transformation set to identity. Left: example a promising local minimum. Left: example of a poor local minimum.

Other examples of generation