Exercice 1 - \mathbb{R} -différentiable - L3/M1 - \star

Pour z = x + iy, on pose $f(z) = x + iy^2$.

- 1. Prouver que f est \mathbb{R} -différentiable sur \mathbb{C} . Déterminer la différentielle de f.
- 2. En quels points f est-elle \mathbb{C} -différentiable? Existe-t-il un ouvert non vide U de \mathbb{C} tel que la restriction de f à U soit holomorphe sur U?

Exercice 2 - Fonctions holomorphes à valeurs réelles - L3/M1 - **

Soit Ω un ouvert connexe et f une fonction holomorphe dans Ω . On écrit f = u + iv, où u et v sont à valeurs réelles. Montrer que les propositions suivantes sont équivalentes :

- (i) f est constante;
- (ii) u est constante;
- (iii) v est constante;
- (iv) \bar{f} est holomorphe;
- (v) |f| est constante.

Exercice 3 - Parties réelles et imaginaires harmoniques - L3/M1 - \star

Soit f=u+iv une fonction holomorphe dans un ouvert Ω . Montrer que u et v sont harmoniques, c'est-à-dire que

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Exercice 4 - Reconstruction - L3/M1 - *

Soient $a, b, c \in \mathbb{R}$. Pour z = x + iy, on pose

$$P(z) = az^2 + 2bxy + c^2.$$

Donner une condition nécessaire et suffisante sur a, b, c pour qu'il existe une fonction holomorphe f sur \mathbb{C} vérifiant $\Re e(f) = P$. Lorsque cette condition est remplie, déterminer toutes les fonctions f solution.

Exercice 5 - Symétrie - L3/M1 - **

Soit U un ouvert de \mathbb{C} et f une fonction holomorphe sur U. Soit $V = \{z \in \mathbb{C}; \ \overline{z} \in U\}$. On pose, pour $z \in V$, $g(z) = \overline{f(\overline{z})}$. Montrer que g est holomorphe sur V.

Exercice 6 - Courbes orthogonales - $L3/M1 - \star\star$

Soit f = u+iv une fonction holomorphe dans un ouvert Ω . Montre que les familles de courbes u(x,y) = constante et v(x,y) = constante sont orthogonales. Plus précisément, montrer qu'en tout point $z_0 = x_0 + iy_0$ de deux de ces courbes tel que $f'(z_0) \neq 0$, leurs tangentes respectives sont perpendiculaires.

Exercice 7 - d-barre - L3/M1 - ***

Dans cet exercice, on identifie \mathbb{R}^2 et \mathbb{C} via l'application $(x,y)\mapsto x+iy$. Soit Ω un ouvert de \mathbb{C} et $f\in C^1(\Omega)$ à valeurs dans \mathbb{C} . On note

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \text{ et } \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

Exercices - Conditions de Cauchy-Riemann : énoncé

1. Montrer que

$$\frac{\partial \bar{f}}{\partial \bar{z}} = \overline{\left(\frac{\partial f}{\partial z}\right)}.$$

- 2. Montrer que f est holomorphe si et seulement si $\frac{\partial f}{\partial \bar{z}}=0$. Montrer que dans ce cas, $f'(z)=\frac{\partial f}{\partial z}(z)$.
- 3. On dit que f est antiholomorphe si \bar{f} est holomorphe. Montrer que f est antiholomorphe si et seulement si $\frac{\partial f}{\partial z}=0$.
- 4. Soit f de classe C^2 . Montrer que $\Delta f = 4 \frac{\partial^2 f}{\partial z \partial \bar{z}}$.
- 5. On suppose que f est une fonction holomorphe. Montrer que

$$\Delta |f|^2 = 4|f'(z)|^2.$$

6. On considère f_1, \ldots, f_p des fonctions holomorphes dans un ouvert connexe Ω . On suppose que $|f_1|^2 + \cdots + |f_p|^2$ est constante. Montrer que chaque fonction f_j est constante.