High-dimensional projection onto/orthogonal to

For any vector **b** and any vector **a**, define vectors $\mathbf{b}^{\parallel \mathbf{a}}$ and $\mathbf{b}^{\perp \mathbf{a}}$ so that

$$b = b^{||a|} + b^{\perp a}$$

and there is a scalar $\sigma \in R$ such that

$$\mathbf{b}^{||\mathbf{a}} = \sigma \, \mathbf{a}$$

and

$$\mathbf{b}^{\perp \mathbf{a}}$$
 is orthogonal to \mathbf{a}

Definition: For a vector **b** and a vector space \mathcal{V} , we define the projection of **b** onto \mathcal{V} (written $\mathbf{b}^{||\mathcal{V}}$) and the projection of **b** orthogonal to \mathcal{V} (written $\mathbf{b}^{\perp\mathcal{V}}$) so that

$$\mathbf{b} = \mathbf{b}^{||\mathcal{V}} + \mathbf{b}^{\perp \mathcal{V}}$$

and $\mathbf{b}^{\parallel \mathcal{V}}$ is in \mathcal{V} , and $\mathbf{b}^{\perp \mathcal{V}}$ is orthogonal to every vector in \mathcal{V} .

High-Dimensional Fire Engine Lemma

Definition: For a vector \mathbf{b} and a vector space \mathcal{V} , we define the projection of \mathbf{b} onto \mathcal{V} (written $\mathbf{b}^{||\mathcal{V}}$) and the projection of \mathbf{b} orthogonal to \mathcal{V} (written $\mathbf{b}^{\perp\mathcal{V}}$) so that

$$\mathbf{b} = \mathbf{b}^{||\mathcal{V}} + \mathbf{b}^{\perp \mathcal{V}}$$

and $\mathbf{b}^{\parallel \mathcal{V}}$ is in \mathcal{V} , and $\mathbf{b}^{\perp \mathcal{V}}$ is orthogonal to every vector in \mathcal{V} .

One-dimensional Fire Engine Lemma: The point in Span $\{a\}$ closest to b is $b^{\parallel a}$ and the distance is $\|b^{\perp a}\|$.

High-Dimensional Fire Engine Lemma: The point in a vector space \mathcal{V} closest to \mathbf{b} is $\mathbf{b}^{\parallel\mathcal{V}}$ and the distance is $\|\mathbf{b}^{\perp\mathcal{V}}\|$.

Finding the projection of **b** orthogonal to Span $\{a_1, \ldots, a_n\}$

High-Dimensional Fire Engine Lemma: Let \mathbf{b} be a vector and let \mathcal{V} be a vector space. The vector in \mathcal{V} closest to \mathbf{b} is $\mathbf{b}^{\parallel\mathcal{V}}$. The distance is $\|\mathbf{b}^{\perp\mathcal{V}}\|$.

Suppose $\mathcal V$ is specified by generators $\mathbf v_1,\dots,\mathbf v_n$

Goal: An algorithm for computing $\mathbf{b}^{\perp \mathcal{V}}$ in this case.

- ▶ *input*: vector **b**, vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$
- ▶ output: projection of **b** orthogonal to $V = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$

We already know how to solve this when n = 1:

```
def project_orthogonal_1(b, v):
  return b - project_along(b, v)
```

Let's try to generalize....

project_orthogonal(b, vlist)

Reviews are in....

```
"Short, elegant, .... and flawed"

"Beautiful—if only it worked!"

"A tragic failure."
```

project_orthogonal(b, vlist) doesn't work

Let \mathbf{b}_i be value of the variable \mathbf{b} after i iterations.

$$\begin{array}{lll} \textbf{b}_1 & = & \textbf{b}_0 - (\text{projection of } [1,1] \text{ along } [1,0]) \\ & = & \textbf{b}_0 - [1,0] \\ & = & [0,1] \\ \\ \textbf{b}_2 & = & \textbf{b}_1 - (\text{projection of } [0,1] \text{ along } [\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}]) \\ & = & \textbf{b}_1 - [\frac{1}{2},\frac{1}{2}] \\ & = & [-\frac{1}{2},\frac{1}{2}] \text{ which is not orthogonal to } [1,0] \end{array}$$

How to repair project_orthogonal(b, vlist)?

```
def project_orthogonal(b, vlist):
   for v in vlist:
    b = b - project_along(b, v)
   return b
```

Maybe the problem will go away if the algorithm

- first finds the projection of **b** along each of the vectors in vlist, and
- ▶ only afterwards subtracts all these projections from **b**.

```
def classical_project_orthogonal(b, vlist):
    w = all-zeroes-vector
    for v in vlist:
        w = w + project_along(b, v)
    return b - w
```

Alas, this procedure also does not work. For the inputs

$$\mathbf{b} = [1,1], \text{vlist} = [\ [1,0], [\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}]\]$$
 the output vector is $[-1,0]$ which is orthogonal to neither of the two vectors in vlist.

Try it with two vectors \mathbf{v}_1 and \mathbf{v}_2 that are orthogonal...

$$\mathbf{v}_1 = [1, 2, 1]$$
 $\mathbf{v}_2 = [-1, 0, 1]$
 \mathbf{b}

b

Try it with two vectors \mathbf{v}_1 and \mathbf{v}_2 that are orthogonal...

$$\begin{array}{rcl} \mathbf{v}_1 & = & [1,2,1] \\ \mathbf{v}_2 & = & [-1,0,1] \\ \mathbf{b} & = & [1,1,2] \\ \mathbf{b}_1 & = & \mathbf{b}_0 - \frac{\mathbf{b}_0 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 \\ & = & [1,1,2] - \frac{5}{6} [1,2,1] \end{array}$$

Try it with two vectors \mathbf{v}_1 and \mathbf{v}_2 that are orthogonal...

$$\mathbf{v}_{1} = [1, 2, 1]
\mathbf{v}_{2} = [-1, 2, -1]
\mathbf{b} = [1, 1, 2]
\mathbf{b}_{1} = \mathbf{b}_{0} - \frac{\mathbf{b}_{0} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}
= [1, 1, 2] - \frac{5}{6} [1, 2, 1]
= [\frac{1}{6}, -\frac{4}{6}, \frac{7}{6}]
\mathbf{b}_{2} = \mathbf{b}_{1} - \frac{\mathbf{b}_{1} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}
= [\frac{1}{6}, -\frac{4}{6}, \frac{7}{6}] - \frac{1}{2} [-1, 0, 1]$$

Try it with two vectors \mathbf{v}_1 and \mathbf{v}_2 that are orthogonal...

$$\begin{array}{lll} \mathbf{v}_1 &=& [1,2,1] \\ \mathbf{v}_2 &=& [-1,0,1] \\ \mathbf{b} &=& [1,1,2] \\ \mathbf{b}_1 &=& \mathbf{b}_0 - \frac{\mathbf{b}_0 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 \\ &=& [1,1,2] - \frac{5}{6} [1,2,1] \\ &=& \left[\frac{1}{6}, -\frac{4}{6}, \frac{7}{6} \right] \\ \mathbf{b}_2 &=& \mathbf{b}_1 - \frac{\mathbf{b}_1 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 \\ &=& \left[\frac{1}{6}, -\frac{4}{6}, \frac{7}{6} \right] - \frac{1}{2} [-1,0,1] \\ &=& \left[\frac{2}{3}, -\frac{2}{3}, \frac{2}{3} \right] \text{ and note } \mathbf{b}_2 \text{ is orthogonal to } \mathbf{v}_1 \text{ and } \mathbf{v}_2. \end{array}$$

Maybe project_orthogonal(b, vlist) works with $\mathbf{v}_1, \mathbf{v}_2$ orthogonal?

Assume $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$.

Remember: \mathbf{b}_i is value of b after i iterations

First iteration:

$$\mathbf{b}_1 = \mathbf{b}_0 - \sigma_1 \, \mathbf{v}_1$$

gives \mathbf{b}_1 such that $\langle \mathbf{v}_1, \mathbf{b}_1 \rangle = 0$.

Second iteration:

$$\mathbf{b}_2 = \mathbf{b}_1 - \sigma_1 \, \mathbf{v}_2$$

gives \mathbf{b}_2 such that $\langle \mathbf{v}_2, \mathbf{b}_2 \rangle = 0$

But what about $\langle \mathbf{v}_1, \mathbf{b}_2 \rangle$?

$$\begin{aligned} \langle \mathbf{v}_1, \mathbf{b}_2 \rangle &= \langle \mathbf{v}_1, \mathbf{b}_1 - \sigma \ \mathbf{v}_2 \rangle \\ &= \langle \mathbf{v}_1, \mathbf{b}_1 \rangle - \langle \mathbf{v}_1, \sigma \ \mathbf{v}_2 \rangle \\ &= \langle \mathbf{v}_1, \mathbf{b}_1 \rangle - \sigma \ \langle \mathbf{v}_1, \mathbf{v}_2 \rangle \\ &= 0 + 0 \end{aligned}$$

Thus \mathbf{b}_2 is orthogonal to \mathbf{v}_1 and \mathbf{v}_2

Don't fix project_orthogonal(b, vlist). Fix the spec.

```
def project_orthogonal(b, vlist):
    for v in vlist:
       b = b - project_along(b, v)
    return b
```

Instead of trying to fix the flaw by changing the procedure, we will change the spec we expect the procedure to fulfill.

Require that vlist consists of **mutually orthogonal** vectors:

the i^{th} vector in the list is orthogonal to the j^{th} vector in the list for every $i \neq j$.

New spec:

- ▶ input: a vector **b**, and a list vlist of mutually orthogonal vectors
- ightharpoonup output: the projection \mathbf{b}^{\perp} of \mathbf{b} orthogonal to the vectors in vlist

Loop invariant of project_orthogonal(b, vlist)

```
def project_orthogonal(b, vlist):
   for v in vlist:
     b = b - project_along(b, v)
   return b
```

Loop invariant: Let vlist = $[\mathbf{v}_1, \dots, \mathbf{v}_n]$

For $i=0,\ldots,n$, let \mathbf{b}_i be the value of the variable \mathbf{b} after i iterations. Then \mathbf{b}_i is the projection of \mathbf{b} orthogonal to Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_i\}$. That is,

- ightharpoonup **b**_i is orthogonal to the first i vectors of vlist, and
- ▶ $\mathbf{b} \mathbf{b}_i$ is in the span of the first *i* vectors of vlist

We use induction to prove the invariant holds.

For i = 0, the invariant is trivially true:

- ightharpoonup b of the first 0 vectors (every vector is), and
- $\mathbf{b} \mathbf{b}_0$ is in the span of the first 0 vectors (because $\mathbf{b} \mathbf{b}_0$ is the zero vector).

Proof of loop invariant of project_orthogonal(b, $[v_1, \ldots, v_n]$) $\mathbf{b}_i = \text{projection of } \mathbf{b} \text{ orthogonal to Span } \{\mathbf{v}_1, \dots, \mathbf{v}_i\}$: • \mathbf{b}_i is orthogonal to $\mathbf{v}_1, \dots, \mathbf{v}_i$, and b = b - project_along(b, v)

Assume invariant holds for i = k - 1 iterations, and prove it for i = k iterations.

In k^{th} iteration, algorithm computes $\mathbf{b}_k = \mathbf{b}_{k-1} - \sigma_k \mathbf{v}_k$ By induction hypothesis, \mathbf{b}_{k-1} is the projection of **b** orthogonal to Span $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ Must prove

• $\mathbf{b} - \mathbf{b}_i$ is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_i\}$

Choice of σ_k ensures that \mathbf{b}_k is orthogonal to \mathbf{v}_k .

Must show \mathbf{b}_k also orthogonal to \mathbf{v}_i for $j=1,\ldots,k-1$

$$\langle \mathbf{b}_k, \mathbf{v}_j \rangle = \langle \mathbf{b}_{k-1} - \sigma_k \mathbf{v}_k, \mathbf{v}_j \rangle$$

= $\langle \mathbf{b}_{k-1}, \mathbf{v}_i \rangle - \sigma_k \langle \mathbf{v}_k, \mathbf{v}_i \rangle$

 $=0-\sigma_k\langle \mathbf{v}_k,\mathbf{v}_i\rangle$

$$=0-\sigma_k 0$$

Shows \mathbf{b}_k orthogonal to $\mathbf{v}_1,\ldots,\mathbf{v}_k$

by the inductive hypothesis by mutual orthogonality

Proof of loop invariant of project_orthogonal(b, $[\mathbf{v}_1, \dots, \mathbf{v}_n]$) $\mathbf{b}_i = \text{projection of } \mathbf{b} \text{ orthogonal to Span } \{\mathbf{v}_1, \dots, \mathbf{v}_i\}: \text{for } \mathbf{v} \text{ in which.}$

• \mathbf{b}_i is orthogonal to $\mathbf{v}_1, \dots, \mathbf{v}_i$, and • $\mathbf{b} - \mathbf{b}_i$ is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_i\}$ for v in vlist: b = b - project_along(b, v)

by algorithm

Assume invariant holds for i = k - 1 iterations, and prove it for i = k iterations.

In k^{th} iteration, algorithm computes $\mathbf{b}_k = \mathbf{b}_{k-1} - \sigma_k \mathbf{v}_k$

By induction hypothesis, \mathbf{b}_{k-1} is the projection of \mathbf{b} orthogonal to Span $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ Must prove

- ▶ \mathbf{b}_k is orthogonal to $\mathbf{v}_1, \dots, \mathbf{v}_k$, ✓ ▶ and $\mathbf{b} - \mathbf{b}_k$ is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ ✓

Now we prove $\mathbf{b} - \mathbf{b}_k$ is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$

$$\mathbf{b} - \mathbf{b}_k = \mathbf{b} - (\mathbf{b}_{k-1} - \sigma_k \mathbf{v}_k)$$

= $(\mathbf{b} - \mathbf{b}_{k-1}) + \sigma_k \mathbf{v}_k$

 $= (\mathbf{b} - \mathbf{b}_{k-1}) + \sigma_k \mathbf{v}_k$ $= (\text{a vector in Span } \{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}) + \alpha_k \mathbf{v}_k \quad \text{by inductive hypothesis}$ $= \text{a vector in Span } \{\mathbf{v}_1, \dots, \mathbf{v}_k\})$

Correctness of project_orthogonal(b, vlist)

```
def project_orthogonal(b, vlist):
   for v in vlist:
     b = b - project_along(b, v)
   return b
```

We have proved:

If $\mathbf{v}_1, \dots, \mathbf{v}_n$ are mutually orthogonal then output of $\operatorname{\mathtt{project_orthogonal}}(\mathbf{b}, [\mathbf{v}_1, \dots, \mathbf{v}_n])$ is the vector \mathbf{b}^\perp such that

$$b = b^{||} + b^{\perp}$$

- $ightharpoonup \mathbf{b}^{||}$ is in Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$
- **b** \mathbf{b}^{\perp} is orthogonal to $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Change to zero-based indexing::

If $\mathbf{v}_0, \dots, \mathbf{v}_n$ are mutually orthogonal then output of $\operatorname{project_orthogonal}(\mathbf{b}, [\mathbf{v}_0, \dots, \mathbf{v}_n])$ is the vector \mathbf{b}^{\perp} such that

$$\mathbf{b} = \mathbf{b}^{||} + \mathbf{b}^{\perp}$$

- **b** | is in Span $\{\mathbf{v}_0,\ldots,\mathbf{v}_n\}$
- **b** \mathbf{b}^{\perp} is orthogonal to $\mathbf{v}_0, \dots, \mathbf{v}_n$.

Augmenting project_orthogonal

Since $\mathbf{b}^{\parallel} = \mathbf{b} - \mathbf{b}^{\perp}$ is in Span $\{\mathbf{v}_0, \dots, \mathbf{v}_n\}$, there are coefficients $\alpha_0, \dots, \alpha_n$ such that

$$\mathbf{b} - \mathbf{b}^{\perp} = \alpha_0 \mathbf{v}_0 + \cdots + \alpha_n \mathbf{v}_n$$

$$\mathbf{b} = \alpha_0 \, \mathbf{v}_0 + \cdots + \alpha_n \, \mathbf{v}_n + 1 \, \mathbf{b}^{\perp}$$

Write as

$$\left[egin{array}{c|c} \mathbf{b} \end{array}
ight] = \left[egin{array}{c|c} \mathbf{v}_0 & \cdots & \mathbf{v}_n & \mathbf{b}^\perp \end{array}
ight] \left[egin{array}{c|c} lpha_0 \ dots \ lpha_n \ 1 \end{array}
ight]$$

The procedure project_orthogonal(b, vlist) can be augmented to output the vector of coefficients.

For technical reasons, we will represent the vector of coefficents as a dictionary, not a Vec.

Augmenting project_orthogonal

$$\left[\begin{array}{c|c} \mathbf{b} \end{array}\right] = \left[\begin{array}{c|c} \mathbf{v}_0 & \cdots & \mathbf{v}_n & \mathbf{b}^\perp \end{array}\right] \left[\begin{array}{c} \alpha_0 \\ \vdots \\ \alpha_n \\ 1 \end{array}\right]$$

We reuse code from two prior procedures.

```
def project_along(b, v):
    sigma = ((b*v)/(v*v)) \
        if v*v != 0 else 0
    return sigma * v

def project_orthogonal(b, vlist):
    for v in vlist:
        b = b - project_along(b, v)
    return b
```

Must create and populate a dictionary.

- One entry for each vector in vlist
- ightharpoonup One additional entry, 1, for \mathbf{b}^{\perp}

Initialize dictionary with the additional entry.