E84 Midterm Exam 2

Instructions

- Take home, open notes, feel free to use a calculator, but not any software package such as Multisim.
- Mark your start and end times. Don't spend more than 3 hours. Due on Monday in class.
- Compare your print-out of the exam with the online version to make sure your hard copy is complete.
- Mark your name and question number clearly on top of each page. Indicate the total number of pages submitted.
- When solving a problem, list all the steps. In each step, indicate concisely what you are doing in
 English, then show the calculation and the result of for the step. Box the final answer. A final answer,
 even if correct, without evidence of the steps leading to it will receive ZERO credit.

• Problem 1. (33 pts)

In the circuit shown in the figure, $R_1=R_2=5\,\Omega$, $C_1=0.01\,F$, $C_2=0.03\,F$, $L=1\,H$, and the input voltage is $v_{in}(t)=10+20\cos 5t+30\cos 10t$ V. Find the output voltage $v_{out}(t)$ across R_2 . (Hint: the circuit is linear, therefore the superposition principal applies.)

Problem 2. (33 pts)

The circuit in the figure below is composed of three resistors $R_1=R_2=R_3=1k\Omega$, and an ideal inductor L=1 mH. The current source is 6 mA. The switch is open when t<0 and the circuit has reached steady state. The switch is then closed at t=0.

o Fill out the following table for the initial and final values of various variables in the circuit (12 pts).

time t	$i_L(t)$	$i_1(t)$	$i_2(t)$	$i_3(t)$	$v_L(t)$	$v_1(t)$	$v_2(t)$	$v_3(t)$
0-								
0+								
∞								

where $v_i(t)$ and $i_i(t)$ and the voltage and current associated with R_i for i=1,2,3, respectively. Their polarities and directions shown in the figure.

- Find the time constant $\tau = L/R$ of the circuit, and give the expressions of $\underline{i_L(t)}$ and $\underline{v_L(t)}$ associated with the inductor L (6 pts).
- o Sketch the waveforms of all eight functions. (16 pts)

• Problem 3. (34 pts)

In the circuit shown in the following figure, $R_1=10\Omega$, $R_1=2\Omega$, $R_3=8\Omega$, L=2H, V=20V, I=1.25A. The switch is in position a and the circuit has reached steady state, until the moment t=0 when the switch is turned to position b. Determine the voltage v(t) across R_3 as the response of the system to the change of position of the switch.

Hint: v(t) is the superposition of v'(t) and v''(t) responding to two processes respectively: (a) the voltage drop across R_3 due to the initial current through L alone after the switch is turned from a to b; and (b) the voltage across R_3 as the complete response to the current source I alone after the switch turned from a to b.

Now solve the problem in the following steps by superposition theorem:

- \circ Find v'(t) across R_3 due to $i_L(t)$ alone:
 - 1. (2 pts) Find the steady state current $\underline{i_L(0^-)}$ through the inductor L before the switch is turned from a to b at t=0;
 - 2. (2 pts) Find the current $i_L(0^+)$ through L right after the switch is turned from a to b at t=0 :
 - 3. (3 pts) Find the voltage $v'(0^+)$ across R_3 due to $i_L(0^+)$;
 - 4. (3 pts) Find the time constant τ after t=0;
 - 5. (3 pts) Find the v'(t) across R_3 corresponding to the decay of $i_L(t)$.
 - 6. (3 pts) Sketch v'(t).
- Find v''(t) across R_3 due to current source I=1.25A:
 - 1. (3 pts) Find the initial condition for the voltage $v''(0^+)$ across R_3 due to I right after t=0;
 - 2. (4 pts) Find the steady state response $v''(\infty)$ across R_3 due to the I alone;
 - 3. (4 pts) Find the complete response v''(t) due to the current source I alone.
 - 4. (3 pts) Sketch $v_t''(t)$.
- (4 pts) Find and sketch the total voltage v(t) = v'(t) + v''(t) across R_3 .