CSEN 1002

Task 4: CFG Epsilon & Unit Rules Elimination ¹

¹These slides are based on Lecture 10 of CSEN 502 by Assoc. Prof. Haythem O. Ismail

Table of Contents

- Context Free Grammars
- **2** ε -Rules Elimination
- 3 Unit-Rules Elimination
- **4** CFG String Representation

Table of Contents

- Context Free Grammars
- 2 ε -Rules Elimination
- 3 Unit-Rules Elimination
- 4 CFG String Representation

A context-free grammar (CFG) is a 4-tuple ($V; \Sigma; R; S$), where:

 \bullet V is the set of variables (Uppercase)

- \bullet V is the set of variables (Uppercase)
- Σ is the set of terminals (Lowercase).

- \bullet V is the set of variables (Uppercase)
- Σ is the set of terminals (Lowercase).
 - In this case, the names of the lexical categories.

- \bullet V is the set of variables (Uppercase)
- Σ is the set of terminals (Lowercase).
 - In this case, the names of the lexical categories.
- \bullet R is the set of production rules.

- \bullet V is the set of variables (Uppercase)
- Σ is the set of terminals (Lowercase).
 - In this case, the names of the lexical categories.
- \bullet R is the set of production rules.
 - Represented in the format $V \longrightarrow (\Sigma \cup V)^*$

- \bullet V is the set of variables (Uppercase)
- Σ is the set of terminals (Lowercase).
 - In this case, the names of the lexical categories.
- \bullet R is the set of production rules.
 - Represented in the format $V \longrightarrow (\Sigma \cup V)^*$
- \bullet S is the start variable

Table of Contents

- 1 Context Free Grammars
- **2** ε -Rules Elimination
- 3 Unit-Rules Elimination
- 4 CFG String Representation

• For each rule, $r \in R$, of the form $A \longrightarrow \varepsilon \ (A \neq S)$ do

- For each rule, $r \in R$, of the form $A \longrightarrow \varepsilon \ (A \neq S)$ do
 - **1** Let $R = R \{r\}$.

- For each rule, $r \in R$, of the form $A \longrightarrow \varepsilon \ (A \neq S)$ do
 - **1** Let $R = R \{r\}$.
 - ② If $B \longrightarrow uAv \in R$, (where $u, v \in (V \cup \Sigma)^*$ and A is a proper substring of uAv), let $R = R \cup \{B \longrightarrow uv\}$
 - Note: This should be done for each occurrence of A on the right-hand side of a rule. That is, it should be repeated for each possible choice of u and v.

- For each rule, $r \in R$, of the form $A \longrightarrow \varepsilon \ (A \neq S)$ do
 - **1** Let $R = R \{r\}$.
 - ② If $B \longrightarrow uAv \in R$, (where $u, v \in (V \cup \Sigma)^*$ and A is a proper substring of uAv), let $R = R \cup \{B \longrightarrow uv\}$
 - Note: This should be done for each <u>occurrence</u> of *A* on the right-hand side of a rule. That is, it should be repeated for each possible choice of *u* and *v*.
 - **3** If $B \longrightarrow A ∈ R$, then unless $B \longrightarrow ε$ has already been removed, let $R = R \cup \{B \longrightarrow ε\}$.

Example

 G_1 :

$$\begin{array}{ccc} S & \longrightarrow & ASA \mid \mathsf{a}B \\ A & \longrightarrow & B \mid S \\ B & \longrightarrow & \mathsf{b} \mid \varepsilon \end{array}$$

Example

 G_1 :

$$\begin{array}{ccc} S & \longrightarrow & ASA \mid \mathsf{a}B \\ A & \longrightarrow & B \mid S \\ B & \longrightarrow & \mathsf{b} \mid \varepsilon \end{array}$$

 G_2 :

$$\begin{array}{cccc} S & \longrightarrow & ASA \mid \mathbf{a} \mid \mathbf{a}B \\ A & \longrightarrow & B \mid S \mid \boldsymbol{\varepsilon} \\ B & \longrightarrow & \mathbf{b} \end{array}$$

Example

 G_1 :

$$\begin{array}{ccc} S & \longrightarrow & ASA \mid aB \\ A & \longrightarrow & B \mid S \\ B & \longrightarrow & b \mid \varepsilon \end{array}$$

 G_2 :

 G_2 :

Table of Contents

- 1 Context Free Grammars
- \circ ε -Rules Elimination
- 3 Unit-Rules Elimination
- 4 CFG String Representation

• For each rule, $r \in R$, of the form $A \longrightarrow B$ (where $B \in V$) do

- \bullet For each rule, $r \in R,$ of the form $A \longrightarrow B$ (where $B \in \mathit{V})$ do
 - **1** Let $R = R \{r\}$

- For each rule, $r \in R$, of the form $A \longrightarrow B$ (where $B \in V$) do
 - **1** Let $R = R \{r\}$
 - ② For every rule of the form $B \longrightarrow u \in R$ (where $u \in (V_1 \cup \Sigma)^+$ and $u \notin V$), let $R = R \cup \{A \longrightarrow u\}$.

- For each rule, $r \in R$, of the form $A \longrightarrow B$ (where $B \in V$) do
 - **1** Let $R = R \{r\}$
 - ② For every rule of the form $B \longrightarrow u \in R$ (where $u \in (V_1 \cup \Sigma)^+$ and $u \notin V$), let $R = R \cup \{A \longrightarrow u\}$.
 - **③** For every rule of the form $B \longrightarrow C \in R$ (where $C \in V$), then unless $A \longrightarrow C$ has already been removed, let $R = R \cup \{A \longrightarrow C\}$.

Example (Cont'd)

 G_2 :

Example (Cont'd)

 G_2 :

 G_3 :

Table of Contents

- 1 Context Free Grammars
- \circ ε -Rules Elimination
- 3 Unit-Rules Elimination
- **4** CFG String Representation

CFG String Representation

 G_1 :

$$\begin{array}{ccc} S & \longrightarrow & ASA \mid \mathtt{a}B \\ A & \longrightarrow & B \mid S \\ B & \longrightarrow & \mathtt{b} \mid \varepsilon \end{array}$$

String Representation

S;A;B#a;b#S/ASA,aB;A/B,S;B/b,e

CFG String Representation

 G_3 :

String Representation

S;A;B#a;b#S/AS,ASA,SA,a,aB;A/AS,ASA,SA,a,aB,b;B/b