Research

Learning Based Energy Management Strategy for Hybrid Electric Vehicle

Renzong Lian 连仁宗

Contents

- 1 Introduction
- 2 HEV Powertrain Model
- 3 Rule-interposing DRL based EMS for power-split HEV
- **4** Cross-type transfer for DRL based HEV energy management
- 5 Hardware-in-the-loop validation
- **6** Future work

Energy management methods for hybrid electric vehicles(HEVs):

Rule-based methods

(deterministic /fuzzy rules, ...)

Optimization-based methods

(DP, ECMS, MPC, ...)

Learning-based methods

(Q-learning, DQL, DDQL, DDPG, ...

Easy implementation for real industry

Acceptable online calculation amount

Tightly depending on a certain vehicle parameter / certain driving cycle

Achieving optimal/suboptimal control strategies

Rely on the priori knowledge (for global optimal methods like DP and MPC)

Difficult for direct real-time implementation due to parameter tuning (like equivalence factor in ECMS) or calculation amount

Close to the global optimum

Strong learning ability and adaptability under complex driving cycles

Consume less computational resources

Research motivation:

- Utilization of expert knowledge of HEV in deep reinforcement learning (DRL) based energy management strategy (EMS)
- Rapid development of EMS for different types of hybrid electric vehicles (HEVs)
- Real-world application of DRL-based EMS

HEV Powertrain Model

A backward HEV model is built for the training and evaluation of EMS. Energy management system mainly deals with the power allocation among multiple power sources.

Vehicle Dynamics

modeled by longitudinal force balance equation:

$$F_t = F_a + F_r + F_i + F_w$$

$$F_a = ma, F_r = mgfcos\theta, F_i = mgsin\theta, F_w = \frac{C_d A_f}{21.15} v^2$$

■ Engine, Generator, and Motors

modeled by corresponding efficiency maps from bench experiments

■ Battery Pack

modeled as equivalent circuit-based model:

$$\dot{SoC} = \frac{\left(V_{oc} - \sqrt{{V_{oc}}^2 - 4R_{batt}P_{batt}}\right)}{2R_{batt}C_{batt}}$$

Rule-interposing DRL based EMS for power-split HEV

Given the slow and resource-intensive training processes of DRL, an improved energy management framework that embeds expert knowledge into DDPG is proposed.

Rule-interposing DRL based EMS

- **State** (input of DRL-based EMS) $state = \{SoC, velocity, acceleration\}$
- **Action** (output of DRL-based EMS)

$$action = \{engine power\}$$

■ Multi-objective reward function:

$$reward = -\{\alpha[fuel(t)] + \beta[SoC_0 - SoC(t)]^2\}$$

$$\text{Charge-sustaining reference value of SoC}$$

$$\text{Current SoC}$$

Rule-interposing DRL based EMS for power-split HEV

Multi-objective reward function: by allocating weights between the fuel consumption and the battery charge sustaining properly, fuel consumption can be significantly reduced by up to 4%.

α: fixed to 1

β: from 0.3×350 to 10×350

The higher the β, the better battery charge-sustaining effect the SoC trajectory shows.

Comparison of different weight settings

ı	The weight of pattery charge- sustaining (β)	Fuel consumption (L/100Km)	Terminal SoC	Fuel consumption of DP(L/100Km)	Fuel economy (%)
	0.3×350	3.755	0.403	3.359 critical p	oint89.4 ×
-	0.4×350	3.704	0.466	3.428	92.5
	0.6×350	3.721	0.509	3.474	93.4 √
	0.9×350	3.758	0.531	3.503	93.2
	1 × 350	3.795	0.541	3.506	92.4
	3 × 350	3.925	0.590	3.563 critical p	oint90.8
	6×350	3.942	0.603	3.585	90.9
	10×350	3.958	0.611	3.602	91.0

R. Lian, J. Peng, Y. Wu, H. Tan, and H. Zhang, "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, vol. 197, p. 117297, 2020.

Rule-interposing DRL based EMS for power-split HEV

Simplified action space: with a limited number of training episodes, the performance of improved DDPG is better than that of original DDPG.

Distribution of engine working points:120 Points:120

- Improved DDPG: in the area of low fuel consumption rate
- Original DDPG: be scattered throughout the engine map

Convergence speed:

- Improved DDPG: 50th episode
- **Original DDPG:** 170th episode

Comparison between two DDPG algorithms

Algorithm	Improved DDPG	DDPG
Fuel consumption	3.64 √	3.70
(L/100Km)		
Terminal SoC	0.596	0.598
Fuel consumption	3.47	3.48
of DP (L/100Km)		
Fuel economy (%)	95.3 √	94.1
Convergence	50 √	170
speed (episodes)		

R. Lian, J. Peng, Y. Wu, H. Tan, and H. Zhang, "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, vol. 197, p. 117297, 2020.

Cross-type transfer for DRL based HEV energy management

Due to the complicated and time-consuming development process of EMSs, deep transfer reinforcement learning is proposed to implement EMSs for different types of HEVs.

Cross-type transfer for DRL based HEV energy management

By incorporating transfer learning into DRL-based EMS for HEVs, an average 70% gap from the baseline in respect of convergence efficiency has been achieved.

EMS	Training time
baseline	100%
Transfer the first layer	45.5%
Transfer the first two layers	36.4%
Transfer the first three layers	20.0%
Transfer all layers	37.3%

Transfer learning and DRL

Baseline: DRL 100%

Compared to baseline: Training time reduced by 70% on average

	Series HEVCTUDC×3		EMS	Training time
0.25 - 0.2 -			baseline	100%
0.2).15 -	Junyma	${ } { } { } { } { } { } { } { } { } { }$	Transfer the first layer	30.5%
0.1 -	manney .	,	Transfer the first two layers	22.5%
0.05	0 500 1000 1500 2000 2500 3000 3500 4000		Transfer the first three layers	19.5%
	Time(s)	,	Transfer all layers	23.5%

time

Prius	EMS transfer	Plug-in series HEV	`1 I I
0.65	PriusCTUDC×3	—Series HEVCTUDC×3	
0.6 - h	$ \begin{array}{c c} 0.2 \\ 0.15 \end{array} $	and the same of th	Г
0.55	0.1	mundelmanner	
0 500 1000 1500 2000 2500 Time(s)	3000 3500 4000 0.05 0	500 1000 1500 2000 2500 3000 3500 4000 Time(s)	ļ

Cross-type transfer for DRL based HEV energy management

Interpretability of EMS transfer: representations will gradually transition from general to specific with the depth increase of neural network layers.

Series HEV Power-split HEB
Power-split HEB
-60 -50 -40 -30 -20 -10 0 10 20 30
Output
Out distribution the third layer

Output	Euclidean distance
Output of the first layer	20.9
Output of the second layer	82.7
Output of the third layer	146.1
Action	168.0

general

specific

Hardware-in-the-loop validation

The real-world application of DRL-based EMSs is verified by a HiL platform through the Dspace, Matlab and CANoe joint validation method.

Hardware-in-the-loop validation

The embedded EMS keeps the same level of the well-developed simulation EMS, which can ensure the performance of fuel economy and battery charge sustaining throughout the trip.

Platform	Driving cycle	CNY cost (¥)	
HiL	Driving cycle 0	16.86	
HIL	Driving cycle 1	20.28	
Cimulation	Driving cycle 0	17.64	
Simulation	Driving cycle 1	20.75	

Generating and deploying packages for DRL-based EMS at real HEVs

- Cloud computing: training and generating packages
- Internet of vehicles: communication
- **Vehicle:** implementation of EMS、collecting data

Human-like autonomous car-following model

- **■** Human-like driving study
- **■** Vehicle longitudinal control
- **■** Energy saving

Publication

R. Lian, J. Peng, Y. Wu, H. Tan, and H. Zhang, "Rule-interposing deep reinforcement learning based energy management strategy for powersplit hybrid electric vehicle," Energy, vol. 197, p. 117297, 2020.

■ **Code:** https://github.com/lryz0612/DRL-Energy-Management

File(Click to open)

R. Lian, H. Tan, J. Peng, Q. Li, Y. Wu, "Cross-type transfer for deep reinforcement learning based hybrid electric vehicle energy management," IEEE Transactions on Vehicular Technology. (Under review)

File(Click to open)

R. Han, **R. Lian**, H. He, X. Han, "Deep reinforcement learning based energy management strategy for a hybrid electric tracked vehicle including lateral dynamics," Applied Energy. (Under review)

Thank you for your attention!

May 20, 2020

