Physical Quantities and Measurement Technique

How do we describe physical world?

Physics Quantity

a physical property of a material or system that can be quantified by measurement

Common physical quantities?

length, area, volume; time, mass

How to express a physical quantity?

measurement: number + unit

7 basic quantities & SI units

7 Base Quantity	SI Unit	
	Name	Symbol
Mass		
Length		
Time		
Electric current		
Temperature		
Luminous intensity		
Amount of substance		

7 basic quantities & SI units

7 Base Quantity	SI Unit	
	Name	Symbol
Mass	Kilogram	kg
Length	Metre	m
Time	Second	S
Electric current	Ampere	A
Temperature	Kelvin	K
Luminous intensity	Candela	cd
Amount of substance	Mole	mol

7 basic quantities & SI units

7 Base Quantity	SI Unit	
	Name	Symbol
Mass	Kilogram	kg
Length	Metre	m
Time	Second	S
Electric current	Ampere	A
Temperature	Kelvin	K
Luminous intensity	Candela	cd
Amount of substance	Mole	mol

Exercise

Exercise:

1.a Guess the mass of an apple, an adult, an airplane, the Earth, express them in SI unit.

1.b Guess the size of an atom, the height of an adult, a school building, the circumference of the Earth, express them in SI unit.

Powers of ten shorthand—standard notation

A neat way of writing numbers

$$9000 = 9 \times 10 \times 10 \times 10 = 9 \times 10^{3}$$
 $900 = 9 \times 10 \times 10$
 $= 9 \times ?$
 $90 = 9 \times 10$
 $= 9 \times 10^{1}$
 $9 = 9 \times 1$
 $= 9 \times ?$
 $0.9 = 9/10$
 $= 9 \times 10^{-1}$
 $0.09 = 9/100$
 $= 9 \times ?$
 $0.009 = 9/1000$
 $= 9 \times ?$

Powers of ten shorthand—standard notation

A neat way of writing numbers

$$9000 = 9 \times 10 \times 10 \times 10 = 9 \times 10^{3}$$

 $900 = 9 \times 10 \times 10$ = 9×10^{2}
 $90 = 9 \times 10$ = 9×10^{1}
 $9 = 9 \times 1$ = 9×10^{0}
 $0.9 = 9/10$ = 9×10^{-1}
 $0.09 = 9/100$ = 9×10^{-2}

$$0.009 = 9/1000 = 9 \times 10^{-3}$$

$$1000 = 10^{3}$$
$$100 = 10^{2}$$
$$10 = 10^{1}$$

$$0.1 = 10^{-1}$$
 $0.01 = 10^{-2}$

 $1 = 10^0$

$$0.001 = 10^{-3}$$

standard notation

Exercise:1.c:

1000 =

10 =

1 =

0.000005 =

Exercise: 1.d

Rewrite your answer in Exercise 1.a and 1.b with standard notation.

Definition of meter(m):

The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.

Submultiples

1 nanometre(nm) = 10^{-9} m

1 micrometre(um) = 10^{-6} m

1 millimetre(mm) = 10^{-3} m

1 centimetre(cm) = 10^{-2} m

1 decimetre(dm) = 10^{-1} m

Multiples

1 kilometre(km) = 10^3 m

1 gigametre(Gm) = 10^9 m

Generally speaking,

Generally speaking,

Measuring length

Try to measure the length of a wire yourself, answer following questions.

- What do you have to consider before measuring?
- How do you do the measurement?

Measuring length

More measuring techniques

- 1. Measure a small length => measure multiples, calculate the average
- 2. Measure a curved line => use a thread, mark the thread, measure the thread

More precise equipments

Measuring area

Unit:

Square metre(m^2)

Exercise: 1.f

1 square decimetre(dm^2) = m^2

1 square centimetre(cm^2) = m^2

Measuring area

Unit: Square $metre(m^2)$

1 square decimetre(dm^2) = $0.01m^2 = 10^{-2}m^2$

1 square centimetre(cm^2) = $0.0001m^2 = 10^{-4}m^2$

Exercise: 1.g Measure the area of a A4 paper sheet.

Measuring area

Exercise: 1.g Measure the area of an A4 paper sheet.

 $29.7 \, cm \times 21.0 \, cm = 623.70 cm^2$

Round to 2 decimal places?

Keep 3 significant figures?

Unit

Exercise: 1.h

```
1 dm^{3} = m^{3}
1 cm^{3} = m^{3}
1 liter(l) = 1( )
1 milliliter(ml) = 1( ) = m^{3}
```

Unit

Exercise: 1.h

$$1 dm^3 = 10^{-3} m^3$$

$$1 \ cm^3 = 10^{-6} m^3$$

$$1 \ liter(l) = 1(dm^3)$$

1
$$milliliter(ml) = 1(cm^3) = 10^{-6} m^3$$

1. Liquid:

tool: measuring/graduated cylinder

meniscus: curved upper surface of a liquid

read the result: eyes should be level with the scale

choice of cylinder: the volume of liquid to be measured

≈ half of cylinder's capacity

Exercise: 1.h

Volume to be measure is around 300ml, which of following cylinder's capacity is most suitable?

A. $100 cm^3$ B. $250 cm^3$ C. $500 cm^3$ D. $1000 cm^3$

2. Solid: regular shape:

Volume of a cuboid =

Volume of a cube =

Volume of a sphere =

Volume of a cylinder =

2. Solid: regular shape:

Volume of a cuboid = $w \times l \times h$

Volume of a cube = a^3

Volume of a sphere = $\frac{4}{3}\pi r^3$

Volume of a cylinder $=\pi r^2 h$

2. Solid: irregular shape:

technique: displacement.

Explain in your own words, how to use displacement to measure a rock. What is the key step?

2. Solid: irregular shape:

technique: displacement.

Explain in your own words, how to use displacement to measure a rock. What is

the key step?

- A. Select a cylinder that is about 2-3 times larger than the object.
- B. Partially fill it with water, enough to cover the object.
- C. Read the volume of water.
- D. **Immerse** the object in the water.
- E. Read the new volume.
- F. increased volume original volume = the volume of the object

Measuring time

Unit: 1 day = 24 hours

1 hour = 60 minutes

1 minute = 60 second

tool: analogue clock; digital clock/stopwatch

Measuring short intervals of timee.g. measure the period of a pendulum.

Measuringtime

tool: <u>analogue</u> clock; <u>digital</u> clock/stopwatch

Measuring short intervals of timee.g. measure the period of a pendulum.

Measuring a large number of oscillations and calculate the Average.

Mass

Def. of Mass: The quantity(amount) of matter the object is composed of.

Unit of mass: killogram (kg) 1kg = ____ g

Tool to measure mass: balance

Mass is not weight.

Weight: the downward force of gravity that acts on an object because of its mass

Tip of iceberg

Why can people easily float on the Dead Sea?

Density

Def. of density: The ratio of mass to volume $\frac{density}{density} = \frac{mass}{volume}$, $\rho = \frac{m}{V}$

Unit of density:
$$kg/m^3$$

$$1 \ kg/m^3 = ___g/cm^3$$

Density of water: $___kg/m^3 = ___g/cm^3$

Values of density

	Material	Density/kg/m³
Gases	air	1.29
	hydrogen	0.09
	helium	0.18
	carbon dioxide	1.98
Liquids	water	1000
	alcohol (ethanol)	790
	mercury	13 600
Solids	ice	920
	wood	400–1200
	polyethene	910–970
	glass	2500–4200
	steel	7500–8100
	lead	11 340
	silver	10 500
	gold	19 300

Table 1.3: Densities of some substances. For gases, these are given at a temperature of 0° C and a pressure of 1.0×10^{5} Pa.

Calculating density

Density of earth:

The Earth has a mass of $6 \times 10^{24} \ kg$ and a radius of about $6400 \ km$.

Finding the density of a liquid

Mass: How to use balance to measure the mass of liquid?

Finding the density of a liquid

How to use a balance and a measuring cylinder to measure the density of liquid?

- 1. Place the measuring cylinder on a balance
- 2. Set the balance to Zero
- 3. Pour the liquid into the cylinder
- 4. Read the scale on the cylinder
- 5. Read the numbers on the balance

Liquids with different densities

Immiscible: form distinct layers with less dense liquids on the top

Water & oil?

Water & alcohol?

Liquids with different densities

Miscible: dissolve in one another

Summary

1. Physical quantities: numbers + unit, SI unit, standard notation, prefix

2. Measuring length, area, volumes

3. Measuring density