TÉCNICAS DE BÚSQUEDA HEURÍSTICA (3a SEMANA)

Sea el siguiente grafo, en el que los arcos tienen un coste y los nodos una estimación heurística de su distancia al nodo Z (Z es el nodo objetivo y A es el nodo inicial).

a) Sin ningún conocimiento a priori (sin conocer la estructura del grafo, sus pesos...) ¿qué podrías hacer para asegurarte de que A* encuentra el camino mínimo hasta el nodo solución?

Para asegurar que A* encuentre el camino mínimo debemos tener en cuenta que el proceso es completo y óptimo. La búsqueda heurística no cumple ninguno de estos requisitos por lo que no podrás asegurar que encuentra ese camino mínimo.

b) Observando el grafo, pero sin aplicar A* ¿puedes asegurar si este método encontrará o no el camino mínimo entre A y Z?

En este caso, utilizando la busqueda de coste uniforme podemos asegurarnos que es tanto completo como óptimo por lo que nos aseguramos de encontrar el camino mínimo.

c) Aplica el algoritmo A*. Dibuja en cada etapa del algoritmo el subgrafo parcial creado y la situación de las listas ABIERTA Y CERRADA.

Iteración 0:

Iteración 1:

Iteración 2:

Ex{(A, 0, 80, 80, -), (C, 10, 60, 70, A)}
Fr{(B, 4, 90, 94, A), (D, 10, 65, **75**, A), (E, 15, 70, 85, A), (F, 30, 50, 80, C)}

Iteración 3:

Ex{(A, 0, 80, 80, -), (C, 10, 60, 70, A), (D, 10, 65, 75, A)}
Fr{(B, 4, 90, 94, A), (E, 15, 70, 85, A), (F, 30, 50, 80, C), (F, 20, 50, 70, D)}

Iteración 4:

Ex{(A, 0, 80, 80, -), (C, 10, 60, 70, A), (D, 10, 65, 75, A), (F, 20, 50, 70, D)}
Fr{(B, 4, 90, 94, A), (E, 15, 70, 85, A), (B, 35, 90, 125, F), (E, 23, 70, 93, F),
(G, 55, 50, 105, F), (H, 50, 50, 100, F)}

Iteración 5:

Ex{(A, 0, 80, 80, -), (C, 10, 60, 70, A), (D, 10, 65, 75, A), (F, 20, 50, 70, D), (E, 15, 70, 85, A), (F, 18, 50, 70, D)}
Fr{(B, 4, 90, 94, A), (G, 55, 50, 105, F), (H, 50, 50, 100, F), (G, 53, 50, 103, F), (H, 48, 50, 98, F), (H, 45, 50, 95, E)}

Iteración 6:

Ex{(A, 0, 80, 80, -), (C, 10, 60, 70, A), (D, 10, 65, 75, A), (E, 15, 70, 85, A), (F, 18, 50, 70, D), (B, 4, 90, 94, A), (F, 9, 50, 59, B)}
Fr{(G, 53, 50, 103, F), (G, 44, 50, 94, F), (H, 39, 50, 89, F)}

Iteración 7:

Ex{(A, 0, 80, 80, -), (C, 10, 60, 70, A), (D, 10, 65, 75, A), (E, 15, 70, 85, A), (B, 4, 90, 94, A), (F, 9, 50, 59, D), (H, 39, 50, 89, F)}

Fr{(G, 44, 50, 94, F), (Z, 41, 0, 41, H)}

Iteración 8:

Ex{(A, 0, 80, 80, -), (C, 10, 60, 70, A), (D, 10, 65, 75, A), (E, 15, 70, 85, A), (B, 4, 90, 94, A), (F, 9, 50, 59, D), (H, 39, 50, 89, F), (Z, 41, 0, 41, H)}
Fr{(G, 44, 50, 94, F)}

Iteración 9:

Ex{(A, 0, 80, 80, -), (C, 10, 60, 70, A), (D, 10, 65, 75, A), (E, 15, 70, 85, A), (B, 4, 90, 94, A), (F, 9, 50, 59, D), (H, 39, 50, 89, F), (Z, 41, 0, 41, H), (G, 44, 50, 94, F)}

Fr{}

 $A \rightarrow B \rightarrow F \rightarrow H \rightarrow Z$

Coste mínimo: 4 + 5 + 30 + 2 = 41

10 pasos de A* sobre el problema 8-puzzle de la Figura 4.7 del libro "Artificial Intelligence. A Modern Approach", Segunda Edición, de Stuart Russel y Peter Norvig, con A* y la distancia de Manhatann como función heurística (ver puzzle a continuación). Para este ejercicio, te sugiero que dibujes los estados que se generan, con enlaces entre estados padre y estados hijos, y que junto a cada estado pongas:

- Nombre del estado (inventado)
- 2. Iteración en la que se generó el estado
- 3. Coste del estado
- 4. Valor heurístico del estado
- 5. Suma del coste y del valor heurístico del estado

6. Nombre del mejor padre

7	2	4
5		6
8	3	1

Estado Inicial

	1	2
3	4	5
6	7	8

Estado Final

Teniendo en cuenta los apuntes de la entrega de la semana 2 el orden de generación es 1) Arriba, 2) Derecha, 3) Abajo y 4) Izquierda y en caso de empate en complejidad heurística siempre elegiré el que este más a la izquierda.

