Funzioni continue

Definizione: f(x) si dice continua in $x_0 \in D_f$ quando

(*)
$$\lim_{x \to x_0} f(x) = f(x_0)$$

Definizione: f(x) si dice continua in $I \subset D_f$ se è continua $\forall x \in I$.

Avevamo già dato questa definizione parlando del $\lim_{x \to x_0} f(x)$.

Punti di discontinuità

Un punto x_0 (per il quale abbia senso calcolare $\lim_{x \to x_0} f(x)$ cioè un punto di accumulazione^(**) del dominio) si dice punto di discontinuità per f(x) quando non si verifica la (*).

(**) x_0 è un punto di accumulazione quando posso avvicinarmi quanto voglio ad x_0 da destra e/o da sinistra all'interno del dominio di f(x).

Si possono avere tre tipi di discontinuità:

• Discontinuità di prima specie quando

$$\lim_{x \to x_0^-} f(x) = l_1$$

$$con \qquad l_1 \neq l_2$$

$$\lim_{x \to x_0^+} f(x) = l_2$$

Si dice anche che la funzione ha un "salto" in x_0 .

Esempio

$$f(x) = \begin{cases} x & x < 1 \\ x+1 & x \ge 1 \end{cases}$$

Poiché $\lim_{x\to 1^-} f(x) = 1$ e $\lim_{x\to 1^+} f(x) = 2$ la funzione ha in $x_0 = 1$ una discontinuità di prima specie.

• **Discontinuità di seconda specie** quando almeno uno dei due limiti (destro o sinistro) $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} f(x)$ è infinito oppure non esiste.

Esempi

$$1) \ f(x) = tgx$$

$$\lim_{\substack{x \to \frac{\pi^{-}}{2}}} f(x) = +\infty$$

$$\lim_{\substack{x \to \frac{\pi^{+}}{2}}} f(x) = -\infty \Rightarrow x_{0} = \frac{\pi}{2} \text{ è un punto di discontinuità di } 2^{a}$$
specie

2)
$$f(x) = \frac{1}{x^2}$$

 $\lim_{x\to 0} f(x) = +\infty \implies x_0 = 0$ è un punto di discontinuità di 2^a specie

3)
$$f(x) = \ln(x-1)$$

 $\lim_{x \to 1^+} f(x) = -\infty \Rightarrow x_0 = 1 \text{ è punto di discontinuità di } 2^a \text{ specie.}$

4)
$$f(x) = \begin{cases} -x & x \le 0 \\ \ln x & x > 0 \end{cases}$$

 $\lim_{x\to 0^-} f(x) = 0 \text{ ma } \lim_{x\to 0^+} f(x) = -\infty \Rightarrow x_0 = 0 \text{ punto di discontinuità di } 2^\circ \text{ specie.}$

5)
$$f(x) = sen \frac{1}{x}$$

 $\lim_{x\to 0} f(x)$ non esiste (vedi cap. sui limiti) e quindi $x_0 = 0$ è un punto di discontinuità di 2° specie.

• Discontinuità di terza specie quando

 $\lim_{x \to x_0} f(x) = l \text{ ma } f(x) \text{ non è definita in } x_0 \text{ oppure } f(x_0) \neq l$

Questa specie di discontinuità viene anche detta discontinuità "eliminabile" perché se f(x) non è definita in x_0 possiamo porre $f(x_0) = l$ oppure, se era già definita, cambiare la definizione di f(x) in x_0 ponendo appunto $f(x_0) = l$ e rendendola così continua in x_0 .

Esempio

$$f(x) = \begin{cases} \frac{x^2 - x}{x - 1} & x \neq 1 \\ 2 & x = 1 \end{cases}$$

ma $\frac{x^2 - x}{x - 1} = \frac{x(x - 1)}{x - 1} = x$

Quindi $\lim_{x\to 1} f(x) = 1$ ma $f(1) = 2 \Rightarrow x_0 = 1$ è un punto di discontinuità di 3^a specie.

Nota: anche $f(x) = \frac{x^2 - x}{x - 1}$ ha in $x_0 = 1$ un punto di discontinuità di 3^a specie poiché $\lim_{x \to 1} f(x) = 1$ (quindi il limite esiste ed è finito) ma la funzione non è definita in $x_0 = 1$.

Esempi di funzioni continue

• La funzione costante f(x) = k è continua $\forall x \in \Re$ Infatti qualunque sia x_0 $\lim_{x \to x} f(x) = k$ $(= f(x_0))$

• La funzione f(x) = x è continua $\forall x \in \Re$ poiché $\lim_{x \to x_0} x = x_0$ (= $f(x_0)$)

- Le funzioni polinomiali $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ sono continue $\forall x \in \Re$
- Le funzioni razionali fratte $f(x) = \frac{N(x)}{D(x)} = \frac{a_0 + a_1x + a_2x^2 + ... + a_nx^n}{b_0 + b_1x + b_2x^2 + ... + b_mx^m}$ sono continue $\forall x : D(x) \neq 0$
- Le funzioni goniometriche y = senx, y = cos x sono continue $\forall x \in \Re$ mentre y = tgx è continua $\forall x \neq \frac{\pi}{2} + k\pi$
- La funzione esponenziale $y = a^x$ $(a > 0 \ a \ne 1)$ è continua $\forall x \in \Re$
- La funzione logaritmica $y = \log_a x \ (a > 0 \ a \ne 1)$ è continua $\forall x > 0$

I teoremi sulle funzioni continue

(solo enunciati)

1) Se f(x) e g(x) sono funzioni continue in x_0 allora

$$f(x) \pm g(x)$$

$$f(x) \cdot g(x)$$

$$\frac{f(x)}{g(x)} \quad (se \ g(x_0) \neq 0)$$

sono ancora funzioni continue in x_0 . (La dimostrazione si basa sulle operazioni con i limiti...)

- 2) Se g(x) è una funzione continua in x_0 e f è continua in $g(x_0)$ allora $f \circ g$ è continua in x_0 .
- 3) Se f(x) è una funzione continua in un intervallo I e strettamente crescente (o decrescente) in I allora la funzione f^{-1} è continua in f(I) (immagine di I)

Esempio:

La funzione esponenziale $y = e^x$ è continua in \Re e strettamente crescente.

La funzione logaritmo $y = \ln x$ è continua quando x > 0 (infatti il codominio di $y = e^x$ sono i reali positivi).

4) Teorema di Weierstrass

Se f(x) è continua in un intervallo chiuso e limitato [a,b] allora esistono il massimo assoluto M e il minimo assoluto m.

Osservazione: se alcune ipotesi del teorema non sono verificate non è detto infatti che f(x) ammetta massimo e minimo assoluti.

• Se per esempio f(x) è continua su un intervallo non limitato può non avere massimo e minimo assoluti (es. y = x; $y = e^x$)

• Se la funzione è continua in (a,b) (intervallo limitato ma aperto) può non avere massimo e minimo assoluti.

Esempio : f(x) = x + 1 0 < x < 2

In questo caso i valori 1 e 3 sono estremo inferiore e superiore ma non appartenendo al codominio di f(x) non sono minimo e massimo assoluti.

• Se la funzione è definita in un intervallo chiuso e limitato ma non è continua in tutti i suoi punti può non avere massimo e minimo assoluti.

Esempio: $f(x) = \frac{1}{x^2}$ $-1 \le x < 1 \ (x \ne 0)$

Il minimo assoluto è m=1 ma non c'è massimo assoluto.

5) Teorema dei valori intermedi

Se f(x) è una funzione continua in [a,b] allora f(x) assume tutti i valori compresi tra il minimo ed il massimo assoluto.

Per ogni $m \le l \le M$ esiste almeno un $x \in [a,b]$: f(x) = l

6) Teorema di esistenza degli zeri

Se f(x) è continua in un intervallo I ed esistono x_1, x_2 con $x_1 < x_2$ aventi immagini $f(x_1), f(x_2)$ discordi allora esiste (almeno) un punto c compreso tra x_1 e x_2 tale che f(c) = 0

(c si dice **zero** della funzione)

 $f(x_1), f(x_2)$ di segno opposto $x_1 < c < x_2$

$$f(c) = 0$$

Infatti è intuitivo che per passare da P_1 (per esempio sopra all'asse x) a P_2 (sotto all'asse x) con un grafico "continuo" almeno una volta il grafico taglierà l'asse x.

NOTA : Questo teorema è utilizzato per studiare l'esistenza di soluzioni di un'equazione f(x) = 0

Esempio: utilizzando il teorema di esistenza degli zeri possiamo dimostrare che un'equazione di 3° grado ammette sempre una soluzione reale.

Infatti risolvere l'equazione $ax^3 + bx^2 + cx + d = 0$ significa trovare gli zeri di $f(x) = ax^3 + bx^2 + cx + d$

Consideriamo, per semplicità, a > 0 (se a fosse negativo basta cambiare segno...) e studiamo i limiti di f(x) quando $x \to \pm \infty$.

Si ha
$$\lim_{x \to +\infty} f(x) = +\infty$$
 e $\lim_{x \to -\infty} f(x) = -\infty$

(sono forme indeterminate ma basta mettere in evidenza $x^3 ...$)

Allora esisteranno $x_1 < x_2$: $f(x_1)$ e $f(x_2)$ sono discordi (più precisamente $f(x_1)$ negativo e $f(x_2)$ positivo)

Ma allora, per il teorema di esistenza degli zeri (la funzione è chiaramente continua in \Re), esisterà almeno un valore c, con $x_1 < c < x_2$: f(c) = 0 e quindi l'equazione $ax^3 + bx^2 + cx + d = 0$ ha almeno una soluzione reale.

Osserviamo inoltre che l'equazione di 3° grado o ha 1 sola soluzione reale oppure ne ha tre (nella figura centrale due sono coincidenti) (più di 3 non può averne).

ESERCIZITEOREMI SULLE FUNZIONI CONTINUE

1) Studia i punti di discontinuità delle seguenti funzioni:

a)
$$f(x) = \frac{x^2 + 1}{x^2 - 4}$$

[$x = \pm 2$ discontinuità di seconda specie]

b)
$$f(x) = \frac{x^2 + 2x + 1}{x + 1}$$

[x = -1 discontinuità di terza specie]

c)
$$f(x) = \frac{x}{e^x - 1}$$

[x = 0 discontinuità di terza specie]

$$d) f(x) = e^{\frac{1}{x}}$$

[x = 0 discontinuità di seconda specie]

e)
$$f(x) = \frac{|x+1|}{x+1}$$

[x = -1 discontinuità di prima specie]

$$f) f(x) = \ln(x+1)$$

[x = -1 discontinuità di seconda specie]

g)
$$f(x) = \frac{x}{x-2}$$

[x = 2 discontinuità di seconda specie]

2) La funzione $f(x) = x^2 + x$ ammette massimo e minimo assoluti in [-1, 1]? Determina m ed M.

$$\left[m = -\frac{1}{4}; M = 2\right]$$

3) Si può applicare il teorema di Weierstrass alla funzione $y = \frac{1}{x}$ nell'intervallo [-1, 1]? Perché? [no]

Funzioni continue

- 4) L'equazione $x^3 + x^2 4 = 0$ ha (almeno) uno zero appartenente all'intervallo [1,2]? Perché? [si]
- 5) Disegna con Geogebra il grafico di $y = x^3 + x + 1$ (vedi figura): utilizzando il teorema di esistenza degli zeri prova che esiste una soluzione reale dell'equazione $x^3 + x + 1 = 0$ nell'intervallo [-1;0].

6) Utilizzando Geogebra traccia il grafico di $y = x^3 + x^2 + 1$ (vedi figura). Approssima la soluzione x_0 dell'equazione $x^3 + x^2 + 1 = 0$ utilizzando il teorema degli zeri.

Funzioni continue

7) Studia l'equazione $\ln x + x = 0$

Per capire se l'equazione ha soluzioni possiamo scrivere l'equazione come

$$\ln x = -x$$

e considerare che le soluzioni possono essere pensate come le ascisse dei punti di intersezione tra la curva $y = \ln x$ e la retta y = -x.

Quindi graficamente vediamo che c'è una soluzione dell'equazione poiché c'è una intersezione tra i due grafici.

Per approssimare la soluzione dell'equazione possiamo usare quindi il teorema di esistenza degli zeri: considerando la funzione $f(x) = \ln x + x$ osserviamo che:

$$f\left(\frac{1}{e}\right) = -1 + \frac{1}{e} < 0$$
 e $f(1) = 0 + 1 = 1 > 0$ e quindi $\exists c, \frac{1}{e} < c < 1 : f(c) = 0$

Possiamo poi approssimare meglio la soluzione dell'equazione "stringendo" l'intervallo (x_1, x_2) in

cui si trova lo zero andando a calcolare
$$f\left(\frac{x_1 + x_2}{2}\right) = f\left(\frac{\frac{1}{e} + 1}{2}\right) = \dots$$