What's Probability: A final note for the Week16 lecture

Yunqing LI

July 4, 2020

1 Introduction and Definition

When we talk about probability, it's hard to define what it is. A acceptable way is to mathematically define "expectation" and axioms about expectation, then we can reach more theorems and lemmas based on these axioms.

1.1 Definitions of Ω , H and E

 Ω is a set named "sample set", which can be any set.

H is a subset of \mathbb{R}^{Ω} and should be a linear space.(Formally, It means that $\forall h \in H, c \in \mathbb{R}$ $ch \in H$ and $\forall h_1, h_2 \in H$ $h_1 + h_2 \in H$.) Specially, to ensure one of the of linear exception, H should include 1_{Ω} (a function which maps every element in Ω to 1).

E is a function from H to \mathbb{R} .

1.2 Linear Expectation

A linear expectation E should satisfy the following statements:

- (1) If $X \in H$ satisfies $X \geq 0$, then $E(X) \geq 0$
- (2) If $X \in H$ and $c \in \mathbb{R}$ is a constant, then E(cX) = cE(X)
- (3) If $X_1, X_2 \in H$, then $E(X_1 + X_2) = E(X_1) + E(X_2)$
- $(4) E(1_{\Omega}) = 1$
- (5) If sequence of functions X_n is increasing and convergent to X, then $\lim(E(X_n)) = E(X)$

1.3 Sublinear Expectation

A sublinear expectation E should satisfy the following statements:

- (1) (monotonicity) If $X \leq Y$, then $E(X) \leq E(Y)$
- (2) (constant-preserving) If $c \in \mathbb{R}$ is a constant, then $E(c \cdot 1_{\Omega}) = c$
- (3) (sub-additivity) If $X_1, X_2 \in H$, then $E(X_1 + X_2) \leq E(X_1) + E(X_2)$
- (4) (positive homogeneity) If $X \in H$ and $c \ge 0$ is a constant, then E(cX) = cE(X)

From the statements it's easy to know that a sublinear expectation is a linear expectation.

1.4 Quantum Expectation

Let \mathbb{A} be a unital *-algebra.

Definition: An unital *-algebra \mathbb{A} is a subset of \mathbb{C}^{Ω} if every $f \in \mathbb{A}$ satisfies $\forall m \in \mathbb{N} |f|^m < \inf$ and has a unital element 1_{Ω} for which $1_{\Omega} * f = f$.

A map $\varphi : \mathbb{A} \to \mathbb{C}$ is a state on \mathbb{A} if it satisfies:

- (1) (linear) $\varphi(a+b) = \varphi(a) + \varphi(b), \ \varphi(\lambda a) = \lambda \varphi(a) \text{ for } \lambda \in \mathbb{C}$
- (2) (positive) $\varphi(a*a) \geq 0$

Note that multiplication in Quantum Expectation can be not commutative.

2 Applications

2.1 Picking balls and Sublinear expectation

Think about a simple game of picking balls among a set Ω , where the probability distribution of picking up each ball is unknown. Use θ to describe this distribution and Θ to describe the set of all distributions. If picking up each ball will make a different cost, then the cost function can be defined as $\varphi: \Omega \to \mathbb{R}$.

Use $E_{\theta}(\varphi)$ to describe the expectation cost of picking balls under the distribution θ when the cost function is φ . To calculate the expectation of cost equals to calculate $E(\varphi) = \sup_{\theta \in \Theta} E_{\theta}(\varphi)$, where E is a sublinear expectation.

- (1) (monotonicity) If $\varphi_x \leq \varphi_y$, then whatever θ is, the cost of picking any ball under φ_x is lower than under φ_y , so $\forall \theta \in \Theta E_{\theta}(\varphi_x) \leq E_{\theta}(\varphi_y)$
- (2) (constant-preserving) If $c \in \mathbb{R}$ is a constant, then $\varphi_c = c \cdot 1_{\Omega}$ means that the cost of picking any ball is always c, so $E(\varphi_c) = c$

- (3) (sub-additivity) If φ_1, φ_2 are two cost functions, then $E(\varphi_1 + \varphi_2) = \sup_{\theta \in \Theta} E_{\theta}(\varphi_1 + \varphi_2) \le \sup_{\theta \in \Theta} E_{\theta}(\varphi_1) + \sup_{\theta \in \Theta} E_{\theta}(\varphi_2) = E(\varphi_1) + E(\varphi_2)$
- (4) (positive homogeneity) If φ is a cost function and $c \geq 0$ is a constant, then $E(c\varphi) = cE(\varphi)$. Note that if $c \leq 0$ this equality may not hold because $E(\varphi)$ takes the upper bound among $E_{\theta}(\varphi)$

2.2 From sublinear to linear

Theorem 1. Let E be a functional defined on a linear space H satisfying sub-additivity and positive homogeneity. Then there exist a family of linear functional $E_{\theta}, \theta \in \Theta$ such that $E(X) = \max_{\theta \in \Theta} E_{\theta}(X)$ for $X \in H$

Theorem 2. If E is a sublinear expectation then there exist a family of linear expectation $E_{\theta}, \theta \in \Theta$ such that $E(X) = \max_{\theta \in \Theta} E_{\theta}(X)$ for $X \in H$

2.3 Probability in Convex Hull[1][2]

Theorem 3 (Caratheodory's theorem). Every point x in a Conv(T) can be expressed as $x = \sum \lambda_i z_i$ where $\sum \lambda_i = 0$ and $\lambda_i \geq 0$, with at most n + 1 points z_i from T.

证明. By the definition of convex hull, x can be expressed as $x = \sum \lambda_i z_i$ where $\sum \lambda_i = 0$ and $\lambda_i \geq 0$ with finite points, suppose at least k points. If $k \leq n+1$ then the theorem is prooved.

If $k \ge n+1$, then $(x_2-x_1), \dots, (x_k-x_1)$ has at least n+1 elements so they should be linear dependent. So there exist $\mu_j \in R$ such that $\sum_{j=2}^k \mu_j(x_j-x_1) = 0$ and mu_j is not all zero.

Without loss of generality, take $\mu_k \neq 0$ so $\mu_k x_k = \mu_k x_1 - \sum_{j=2}^{k-1} \mu_j (x_j - x_1)$. It means that μ_k can be expressed with x_1, \dots, x_{k-1} , so x can be expressed only with x_1, \dots, x_{k-1} , and k isn't the smallest number of points to express x, leads to a contradiction.

Theorem 4 (Approximate Carathedory's theorem). For a set $T \subset \mathbb{R}^n$ and $diamT \leq 1$, then for every $x \in Conv(T)$ and integer k there exists $x_1 \cdots x_k \in T$ such that $|x - \frac{1}{k} \sum_{j=1}^k x_j|_2 \leq \frac{1}{\sqrt{k}}$

参考文献

- [1] Unknown. Caratheodory theorem. https://www.tutorialspoint.com/convex_optimization_caratheodory_theorem.htm.
- [2] Roman Vershynin. Springer Netherlands, University of California, Irvine, June 9, 2020.