Hledání v textu Naivní postup BM (Boyer – Moore) algoritmus f Automat pro přesné vyhledávání vzorku v textu u Automat pro přesné vyhledávání částí vzorku v textu Automat pro nepřesné vyhledávání vzorku v textu Simulace vyhledávacího automatu bitovými poli e Pokročilá Algoritmizace, A4M33PAL, ZS 2009/2010, FEL ČVUT, 7/12

Hledání v textu

Abeceda: Konečná množina znaků.

Text: Posloupnost znaků nad danou abecedou. **Vzorek**: Posloupnost znaků nad stejnou abecedou,

jejíž výskyt se hledá v daném textu.

Text se většinou mění méně často než vzorek (v dokumentu hledáme různá slova), také bývá alespoň řádově delší než vzorek.

Značení

Abeceda: obvykle A

Symboly textu: $t_1, t_2, \dots t_n$

Symboly vzorku: (anglicky "pattern") $p_1, p_2, \dots p_m$

Platí $m \le n$, obvykle m << n

Příklad

Text: ...task is very simple but it is used very freq...

Vzorek: simple

Hledání v textu

Naivní postup

- 1. Přiložíme vzorek k začátku textu.
- 2. Dokud korespondující znaky vzorku a textu souhlasí, posunujeme se ve vzorku kupředu.
- 3. Když narazíme na neshodu, posuneme celý vzorek o jednu pozici kupředu, ve vzorku se nastavíme na začátek a jdeme na 2.
- 4. Když dojdeme za konec vzorku nebo vzorek přesáhne za konec textu, ohlásíme výsledek a případně postupujeme dále jako ve 3.

Boyer - Moore

Ústřední myšlenka:

Vzorek přiložíme k textu a testujeme shodu vzorku **odzadu**. Když dojde k neshodě, je šance, že vzorek lze posunout o více pozic dopředu, mnohdy o celou délku vzorku.

Čím delší vzorek, tím rychlejší hledání. (Čím větší data, tím efektivnější algoritmus, vzácná to konstelace...)

Kolize na poslední pozici vzorku

Bad Character Shift table (BCS)

Když je při kolizi proti poslednímu znaku vzorku v textu znak x, posune se vzorek tak, aby se pod toto x dostal první výskyt znaku x od konce vzorku. BCS je indexována všemi znaky abecedy a má velikost |A|.

Obsahuje nejmenší vzdálenosti znaků od konce vzorku.

Když znak x ve vzorku vůbec není, posune se vzorek o celou svou délku. To se zanese i do BCS.

příkladu netřeba

Hledání v textu

Kolize po částečné shodě na konci vzorku

Když se některá přípona *p* vzorku shoduje s textem, a znak těsně před ní s textem koliduje, rozlišíme tři případy:

1. Řetězec reprezentující příponu *p* se ve vzorku vyskytuje ještě alespoň jednou, a to tak, že mu předchází jiný znak než právě ve vzorku kolidující. Pak musíme vzorek posunout tak, aby se tato další nejbližší instance přípony kryla s textem, tj. o vzdálenost mezi těmito instancemi přípony.

2. Některá přípona vzorku stejně dlouhá nebo kratší než *p* se vyskytuje také na začátku vzorku. Uvažme nejdelší takovou příponu, označme její výskyt na začátku vzorku symbolem *q*.

Vzorek pak musíme posunout o vzdálenost mezi *p* a *q*.

3. Nenastává ani jedna z předchozích možností, Vzorek posuneme o celou jeho délku.

příkladu netřeba

Hledání v textu

Určení posunu lze provést pro všechny tři případy společně takto: Příponu *p* přiložíme k vzorku k jeho původní pozici, a posunujeme doleva tak dlouho, dokud nenastane jedna z možností 1., 2., nebo 3. (alespoň 3 musí nastat vždy).

Jakmile skončíme, zaznamenáme vzdálenost mezi původní a posunutou polou přípony. Tato hodnota určuje posun při kolizi před příponou *p*.

Hodnoty posunu pro všechny možné délky přípon *p* obsahuje tabulka Good Suffix Shift (GS).

příklad

vzorek ADBACBACBA

délka vzorku: 10

pozice se číslují od 1, 0 představuje posun po nalezení vzorku v textu

Posun o 10 lze použít po úplné shodě vzorku s textem

GS

pozice	koliduje	přípona	posun
9	В	Α	9
8	С	ВА	6
7	Α	СВА	9
6	В	ACBA	9
5	С	BACBA	9
4	Α	CBACBA	9
3	В	ACBACBA	9
2	D	BACBACBA	9
1	Α	DBACBACBA	10
0	-	ADBACBACBA	10

ukázka naostro

vzorek

POVALOVAL

BCS

_	Α	Ε	K	L	Ν	0	Р	S	T	٧
9	1	9	9	4	9	3	8	9	9	2

GS

0 1 2 3 4 5 6 7 8 9 9 9 9 9 9 4 9 9 9 -P O V A L O V A L

postup výpočtu

Hledání v textu s pomocí konečných automatů

Pojmy a symbolika – připomenutí

Deterministický konečný automat (DKA) Nedeterministický konečný automat (NKA)

Součásti automatů DKA i NKA jsou Vstupní konečná abeceda *A*.

Množina vnitřních stavů Q.

Počáteční (startovní) stav $q_0 \in Q$.

Neprázdná množina koncových stavů $F \subseteq Q$.

Přechodová funkce δ

A₁ 0 1 0 1 0 1 0 1 0 2

V DKA je $\delta: Q \times A \rightarrow Q$,

tj. z daného stavu při čteném znaku automat přechází v obecně jiný jediný stav.

V NKA je $\delta: \mathbb{Q} \times A \to P(\mathbb{Q})$ (P zde značí potenční množinu),

tj. z daného stavu při čteném znaku automat přechází obecně v nějakou (i prázdnou) množinu stavů.

Většina udále uvedených ukázek je doslova nebo s menšími úpravami převzata z publikace B. Melichar, J. Holub, T. Polcar: *Text Searching Algorithms*, *vol* 1, FEE CTU, Prague, 2004.

F

Automat A₃ přijímající právě jediné slovo $p_1p_2p_3p_4$

$$A_3 \longrightarrow 0 \xrightarrow{p_1} 1 \xrightarrow{p_2} 2 \xrightarrow{p_3} 3 \xrightarrow{p_4} 4$$

Automat A_4 přijímající každý řetězec zakončený příponou p_1 p_2 p_3 p_4 a jeho tabulka přechodů.

	p_1	p_2	p_3	p_4	Z
0	0,1	0	0	0	0
1		2			
2			3		
3				4	
4					

 $z \in A - \{p1, p2, p3, p4\}$

Automat A_4 přijímající každý řetězec zakončený příponou $p_1p_2p_3p_4$ a jeho tabulka přechodů.

 A_4 0 p_1 1 p_2 2 p_3 3 p_4

	p_1	p_2	p_3	p_4	Z	_
0	0,1	0	0	0	0	
1		2				
2			3			
2				4		
4						

 $z \in A - \{p1, p2, p3, p4\}$

ekvivalent

Automat A_6 je deterministický ekvivalent automatu A_4 .

	p_1	p_2	p_3	p_4	Z
0	01	0	0	0	0
01	01	02	0	0	0
02	01	0	03	0	0
03	01	0	0	04	0
04	01	0	0	0	0

příklad

Automat A₇ přijímající každý řetězec zakončený příponou *abba* a jeho tabulka přechodů

	а	b	Z	_					
0	0,1	0	0						
1		2							
2		3							
3	4								
4				F					
$z \in A - \{a, b\}$									

Automat A_8 je deterministický ekvivalent automatu A_7 . Rovněž přijímá každý řetězec zakončený příponou *abba*.

Hledání v textu na více než jen přesnou shodu se vzorkem

Nedeterministický automat s ε -přechody.

V takovém automatu lze přecházet z jednoho stavu do jiného a přitom se nepřečte žádný znak ze vstupu. Příslušný přechod je ohodnocen symbolem ε .

⊱–uzávěr

Symbolem ε –CLOSURE(p) označíme množinu všech stavů q, do nichž lze přejít z p pouze pomocí ε –přechodů. Definitoricky klademe ε –CLOSURE(p) = {p}, pokud z p žádný ε –přechod nevede.

 ε -CLOSURE(0) = {2, 3, 4}

ε−CLOSURE(1) = {1}

 ε -CLOSURE(2) = {3, 4}

 ε -CLOSURE(3) = {3}

...

Konstrukce ekvivalentního nedeterministického automatu bez ε -přechodů.

Vstup: automat A s ε -přechody

Výstup: automat A' bez ε -přechodů.

- 1. A' = kopie A.
- 2. Odstraň všechny ε -přechody z A'.
- 3. V A' do množiny stavů $\delta(p,a)$ přidej všechny stavy r, pro které platí $q \in \varepsilon$ -CLOSURE(p) a $\delta(q,a) = r$.
- 4. Množinu koncových stavů $F \vee A'$ rozšiř o stavy p, pro které platí ε -CLOSURE(p) $\cap F \neq \emptyset$.

snadná konstrukce

Automat A_{12} pro přibližné vyhledání libovolného neprázdného podřetězce vzorku $p_1p_2p_3p_4\,$ v textu nad abecedou A .

Automat A_{13} pro přibližné vyhledání libovolného neprázdného podřetězce vzorku $p_1p_2p_3p_4$ v textu nad abecedou A bez ε –přechodů.

 p_4 p_4 p_4 A_{13}

Stavy 5, 9, 12 jsou nedosažitelné, při transformaci na deterministický automat je transformační algoritmus automaticky vypustí. Viz dále.

	p_1	p_2	p_3	p_4	Z		_					_	
0	0,1	0,6	0,10	0,13	0		A ₁₃					A_1	4
1		2			0	F		n.	n.	n.	n.	Z	
2			3		0	F		p ₁	p_2	p_3	p_4		
3				4	0	F	0	0.1	0.6	0.10	0.13	0	
4					0	F	0.1	0.1	0.2.6	0.10	0.13	0	F
5		6	10	13	0		0.6	0.1	0.6	0.7.10	0.13	0	F
6			7		0	F	0.10	0.1	0.6	0.10	0.11.13	0	F
7				8	0	F	0.13	0.1	0.6	0.10	0.13	0	F
8					0	F	0.2.6	0.1	0.6	0.3.7.10	0.13	0	F
9			10	13	0		0.7.10	0.1	0.6	0.10	0.8.11.13	0	F
10				11	0	F	0.11.13	0.1	0.6	0.10	0.13	0	F
11					0	F	0.3.7.10	0.1	0.6	0.10	0.4.8.11.13	0	F
12				13	0		0.8.11.13	0.1	0.6	0.10	0.13	0	F
13					0	F	0.4.8.11.13	0.1	0.6	0.10	0.13	0	F

Tabulka přechodů NKA A₁₃ bez ε-přechodů

Tabulka přechodů DKA A₁₄ ekvivalentního A₁₃

DKA má v tomto případě méně stavů než odpovídající NKA.

Otázka: Platí to obecně? Důkaz?

Hammingova vzdálenost

Dva řetězce mají Hammingovu vzdálenost rovnou k ($k \le 0$), jestliže k je minimální číslo takové, že změnou symbolů na k různých pozicích v jednom z řetězců získáme druhý řetězec. Symboly nelze vypouštět nebo přidávat, Hammingova vzdálenost je definována jen pro řetězce stejné délky.

Neformálně: Řetězce napíšeme pod sebe a určíme počet pozic, na nichž se řetězce **neshodují.**

Automat A_{15} pro přibližné vyhledání vzorku $p_1p_2p_3p_4$ v textu nad abecedou A. Vyhledaný úsek textu má Hammingovu vzdálenost od vzorku menší nebo rovnou 3.

Automat A₁₆ pro přibližné vyhledání vzorku *rosa* v textu. Vyhledaný úsek textu má hammingovu vzdálenost od slova *rosa* menší nebo rovnou 3.

Automat detekuje například slova:

rosa (vzdálenost = 0)

rasa (vzdálenost = 1)

kost (vzdálenost = 2)

alka (vzdálenost = 3)

Ukázka činnosti NKA při rozpoznání řetězce.

...pokračování

Při akceptaci řetězce *abcba* prošel automat A₁₇ množinami stavů a čtenými symboly:

$$\{0\} \rightarrow a \rightarrow \{1\} \rightarrow b \rightarrow \{3, 4\} \rightarrow c \rightarrow \{0, 6, 7, 8\} \rightarrow b \rightarrow \{2, 6, 7\} \rightarrow a \rightarrow \{0, 4, 5, 6\}.$$

Simulace výpočtu NKA bez předchozí transformace na DKA

```
Vstup: NKA , vstupní text v poli t
Výstup: Simulovaný výstup automatu
```

```
SetOfStates S = eps CLOSURE(q0, S tmp;
State q next;
i = 1;
while ((i <= t.length) && (!S.empty())) {
  for (q : S) // for each state in S
    if (q.isFinal)
      print(q.final state info);
  S tmp = Set.empty();
  for (q : S) {
   q next = delta(q, t[i]);
    S tmp.union(eps_CLOSURE(q));
  S = S tmp;
  i++;
```

Bitová reprezentace NKA A

Tabulka přechodů \mathbf{T} má velikost $|\mathbf{Q}| \times |A|$ a její každý prvek $\mathbf{T}[\mathbf{i}, \mathbf{k}]$ odpovídá stavu $\mathbf{q}_{\mathbf{i}} \in \mathbf{Q}$ a symbolu $\mathbf{a}_{\mathbf{k}} \in \mathbf{A}$. $\mathbf{T}[\mathbf{i}, \mathbf{k}]$ je vektor délky $|\mathbf{Q}|$ a platí $\mathbf{T}[\mathbf{i}, \mathbf{k}][\mathbf{j}] == \mathbf{1} \Leftrightarrow \mathbf{q}_{\mathbf{j}} \in \delta(\mathbf{q}_{\mathbf{i}}, \mathbf{a}_{\mathbf{k}})$.

V bitovém vektoru \mathbf{F} koncových stavů platí $\mathbf{F}[j] == 1 \Leftrightarrow \mathbf{q}_j \in \mathbf{F}_A$

Příklad

 $z \in A - \{a, b\}$

Automat A₁₈ rozpoznávající vzorek *aba* v textu.

Bitová reprezentace A₁₈

F0 0 0 1

T[1,2][4] == 0

Hledání v textu

Simulace činnosti nedeterministického automatu bez *E*–přechodů Základní metoda, implementace pomocí bitových vektorů

Vstup: Bitová tabulka přechodů T, bitový vektor F koncových stavů, počet stavů Q.size, text v poli t (indexy od 1).

Výstup: Simulovaný výstup automatu.

```
S[0] = [100..0]; i = 1;  // init
while ((i <= t.length) && (S[i-1]!=[000...0])) {
   for(j=0; j < Q.size; j++)
      if ((S[i][j] == 1) && (F[j] == 1))
        print (q[j].final_state_info);

S[i] = [000...0];
   for(j=0; j < Q.size; j++)
      if (S[i-1][j]==1)
        S[i] = S[i] or T[j][t[i]];
   i++;
}</pre>
```