UNIVERSITY OF WATERLOO MIDTERM EXAMINATION SPRING TERM 2006

Surname:

First Name:

Id.#:

Course Number	MATHEMATICS 239				
Course Title	Introduction to Combinatorics				
Instructor	P. Schellenberg 9:30 MWF LEC 001 U. Celmins 1:30 MWF LEC 002				
Date of Exam	Tuesday , June 27, 2006				
Time Period	4:30 – 6:30 p.m.				
Number of Exam Pages (including this cover sheet)	10				
Exam Type	Closed Book				
Additional Materials Allowed	None				
Additional Instructions	 Write your answers in the space provided. If you require more space, use the back of the <i>previous</i> page. Please indicate your professor and section above. 				

Problem	Value	Mark Awarded	Problem	Value	Mark Awarded
1	13	13	4b	5	*5
2	9	5	5	8	8
3	9	5	6	12	12
4a	4	3	Total	60	51

$$\times$$
 1. (a) [4 marks] Determine $[x^{10}] \frac{x^3}{(1-x)^5}$.

$$\mathcal{A}^{3}(1-\chi)^{-5} = \mathcal{A}^{3} \underbrace{\sum_{k=0}^{5+K-1} \mathcal{A}^{k}}$$

$$\left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = 39$$

$$= \left(\frac{\pi}{2} \right) \left(\frac{\pi}{2} \right) = 39$$

(b) [4 marks] Determine
$$[x^{13}] \frac{(1-2x^2)^6}{(1-x)^4}$$
. Express your answer as a sum of products of binomial coefficients.

mial coefficients.

$$\int (x) = \frac{(1-7x^2)^6}{(1-x)^9} = \frac{(1-2x^2)^6(1-x)^{-9}}{(1-x)^9}$$

$$(\chi^{(3)})\psi(\chi) = \begin{cases} \begin{pmatrix} 6 \\ \mu \end{pmatrix} \begin{pmatrix} 3+j \\ 3 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix}^{K} \\ 2K+j=13 \end{cases}$$

$$= \underbrace{\left\{ \begin{array}{c} 6 \\ k \end{array} \right\} \left(\begin{array}{c} 3+13-7k \\ 2 \end{array} \right) \left(-2 \right)^{k}}_{K=0}$$

$$= \frac{1}{4} \left(\frac{6}{\kappa}\right) \left(\frac{16-7l_2}{3}\right) \left(\frac{-2}{\kappa}\right)^{\kappa}$$

(c) [5 marks] Use the Binomial Theorem to prove that

$$\sum_{r+s=t} (-1)^r \binom{n+r-1}{r} \binom{m}{s} = \binom{m-n}{t}.$$

$$= \left[\chi^{\dagger} \right] \sum_{V=0}^{\infty} \left(\begin{array}{c} v + V - I \\ v \end{array} \right) \left(\begin{array}{c} v \\ v \end{array} \right) \left(\begin{array}{c} v \\ s \end{array}$$

$$= \left(\pi^{t} \right) \left(1 + x \right)^{n} \left(1 + x \right)^{n}$$

$$= \left(\frac{1}{2} \right) \left\{ \begin{pmatrix} w_1 - h \\ k \end{pmatrix} \right\} \mathcal{K}$$

$$= \left(\frac{1}{2} \right) \left\{ \begin{pmatrix} w_1 - h \\ k \end{pmatrix} \right\}$$

2. (a) [4 marks] List all the 3-part compositions of 5. (Recall that compositions have no zeros.)

(f, 1, 3)

order matters.

(1-22) = sci

 \normalle (b) [5 marks] Determine the generating function for the number of compositions of n in which every part is an even positive integer.

Outh part: (x2+x4+...)=

for k parits:

(1->c2) K

$$\sum_{k=1}^{\infty} \left(\frac{\pi^2}{1-\pi^2} \right)^k = \frac{1}{1-\frac{\pi^2}{1-\pi^2}} \left(\frac{1}{1-\pi^2} \right)^k$$

0(x): x

3. (a) [4 marks] Write down a decomposition that uniquely creates all binary strings in which each block of 1's has length at least 3.

(b) [5 marks] Let A be the set of binary strings defined as follows:

$$A = \{01,0011,000111,00001111,\ldots\}.$$

Determine the generating function for the binary strings in the set

$$S = \{1\}^* (\{0\}^* A)^* \{0\}^*.$$

As usual, the weight of a string is its length.

$$(\{0\}^*A)^* : \frac{1}{1 - \frac{1}{1 - \varkappa^2}}$$

$$\psi_{3}(x) = \frac{1}{1-x} \left(\frac{1}{1-x} \frac{x^{2}}{1-x} \right) \frac{1}{1-x}$$

$$\frac{\left(1-x\right)^{3}-x^{2}}{1-x^{2}}$$

$$= \frac{1-x}{1-3x+2x^2-x^3}$$

4. (a) [4 marks] The generating function for a_n , the number of binary strings of length n that do not contain the substring 01110, is

$$\sum_{i \ge 0} a_i x^i = \frac{1 + x^4}{1 - 2x + x^4 - x^5}$$

Find a linear recurrence relation satisfied by the a_n 's, together with sufficient initial conditions to uniquely determine the sequence $\{a_n\}$.

$$(1-2x+x^{4}-x^{5}) \phi(x) = 1+x^{4}$$

$$[x^{0}]: q_{0}$$

$$[x^{1}]: q_{1}-2q_{0}$$

$$[x^{2}]: q_{2}-2q_{1}$$

$$[x^{2}]: q_{3}-2q_{2}$$

$$[x^{2}]: q_{4}-2q_{3}+q_{0}$$

$$[x^{n}]: q_{1}-2q_{1}+q_{1}-q_{1}-5$$

$$[x^{n}]: q_{1}-2q_{1}+q_{1}-q_{1}-5$$

$$[x^{n}]: q_{1}-2q_{1}+q_{2}-5$$

$$[x^{n}]: q_{1}-2q_{2}-q_{2}-5$$

$$[x^{n}]: q_{1}-2q_{2}-q_{2}-5$$

$$[x^{n}]: q_{1}-2q_{2}-q_{2}-5$$

$$[x^{n}]: q_{2}-2q_{3}-q_{3}-6$$

$$[x^{n}]: q_{3}-2q_{4}-6$$

$$[x^{n}]: q_{3}-2q_{5}-q_{5}-6$$

$$[x^{n}]: q_{3}-2q_{5}-q_{5}$$

34

(b) [5 marks] Let the sequence b_n be defined by $b_0 = 3$, $b_1 = 4$, $b_2 = 12$ and

$$b_n - 6b_{n-1} + 12b_{n-2} - 8b_{n-3} = 0 \ \forall n \ge 3.$$

Solve this recurrence relation to obtain a closed form expression for b_n .

the Characteristic polynomial is

les discour voits:

x-2 13 afretor

$$\frac{x^{2}-4x+4}{x^{2}-6x^{2}+12x-8}$$

$$x^{3}-2x^{2} \rightarrow x$$

one voot, 2, with varual toplicity 3.

general sola.

A= 3

$$C = \frac{3}{4} - \frac{3}{4} - \frac{1}{2}(-1-c) = \frac{1}{2} + \frac{1}{2}c$$

 $\langle \langle \rangle \rangle$

$$N-3$$

5. (a) [4 marks] Make a list of all graphs, up to isomorphism, having 5 vertices and 4 edges; that is, each graph with 5 vertices and 4 edges should be isomorphic to exactly one of the graphs on your list. (Hint: There are more than 4 and fewer than 8 such graphs.)

(b) [4 marks] Show that if every vertex of a graph G has degree at least k, then G has a path of length at least k. (Hint: Let $v_0, v_1, v_2, \ldots, v_n$ be a longest path in G. Show that $n \geq k$.)

- let l= 10 v, v2... vn be a lingest part in G.
- lach v; 13 distinct.

SPS. nck

- eich vi connects to at least k other notes
- because V_n is connected to at least k other vertices, it is connected to k-n+1 vertices not in p lie. Secure there are only V-1 < k it is in p,
- this implies that there Exists some writex

 Vati in G distinct from Vovi... Vn girting that
 the schilth of P1 Intl poutradizing the
 assumption that P1 is limite a, proving

 NZK.

× /

- 6. For each integer $n \geq 1$, let A_n be the graph whose vertices are all subsets of $\{1, 2, \ldots, 2n\}$ having n or n+1 elements, and two distinct vertices (subsets) are adjacent if and only if one contains the other. For example, the vertex $\{1,2,3,4\}$ is adjacent to the vertex $\{1,2,4\}$ in
 - (a) [4 marks] Determine the number of edges in A_n .

n-vertices so there are (n+1)(2n) verges.

 $\binom{2n}{n}$ + $\binom{2n}{n+1}$ ner+ices

vertices adjulent iff one set contains the other xertites of size in can only contain themselves each (n+1)-veriex contains (u+1) other vertices * proof: by removing a single ellinent we get a set continued by an (nell) -veryex there are nell eluments. It she (nell) -vertex, and so there and (nell) ways to do this and (nell)-contained workless. the people is differtife - no ontil-vertex links to any (nel)-u- \$x, and no n-centry little to any h-veryex, * each of the (2") (M+1)-40x+)ces places only to GAD

(c) [4 marks] Is A_n bipartite? Justify your answer.

An B bitarkte.

With he set into for subsets - those with he elements and those with not pelements.

an N-element set can only contain Asolf, but wire not considering loops. Herefore no n-element set links to any other n-element set.

an (ne) element set can contach (ne) n-eliment sets, by f cannot contain any on-element sets for the same reason as above. Therefore no (ne) element vortex links to any other,

Then face the gird partition to a bidarison.