

Exercícios Resolvidos

MÉTODOS NUMÉRICOS C

Mestrado Integrado em Engenharia das Comunicações

Isabel Espírito Santo Lino Costa Versão 7.6: 2011/jun/05

Título: Exercícios resolvidos para Métodos Numéricos C do Mestrado Integrado em En-

genharia das Comunicações

Autores: Isabel Espírito Santo e Lino Costa

Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho

Conteúdo

Ι	$\mathbf{E}\mathbf{x}$	ercícios	1
	1	Erros e números	2
	2	Sistemas de equações lineares	4
	3	Equações não lineares	7
	4	Polinómio interpolador de Newton	12
	5	Integração numérica	14
	6	Aproximação dos mínimos quadrados	18
	7	Optimização não linear sem restrições	21
Π	$\mathbf{R}_{\mathbf{c}}$	esolução	28
	1	Erros e números	29
	2	Sistemas de equações lineares	38
	3	Equações não lineares	48
	4	Polinómio interpolador de Newton	36
	5	Integração numérica	74
	6	Aproximação dos mínimos quadrados	33

Parte I

Exercícios

1 Erros e números

1.1 Com base no limite superior do erro absoluto no cálculo da expressão

$$f(\pi, \sqrt{3}, \sqrt{2}) = \frac{2\pi\sqrt{3}}{\pi^2 + \sqrt{2}},$$

e sabendo que são usados os seguintes valores aproximados

$$\pi = 3.1416, \ \sqrt{3} = 1.732 \ e \ \sqrt{2} = 1.4142,$$

quantos algarismos significativos tem o valor calculado de f?

1.2 O perímetro P de um triângulo rectângulo de hipotenusa h e e com um dos ângulos agudos α , pode ser dado pela expressão

$$P = (\operatorname{sen}(\alpha) + \cos(\alpha)) h.$$

Supondo que $\alpha=0.34$ rad, qual o erro absoluto com que se deve medir h, de valor aproximado 16.7 m, para que o erro absoluto em P não exceda 0.5?

determinação de η ?

- 1.3 Uma corrente eléctrica atravessa uma resistência (R) de 20Ω . A resistência foi medida com um erro relativo que não excede 0.01. A intensidade da corrente (I) é 3.00 ± 0.01 A. Sabendo que a tensão da corrente é dada por V = RI, determine um limite superior do erro absoluto no calculo da tensão da corrente. Quantos algarismos significativos garante para o valor calculado da tensão?
- **1.4** Tomando $\sqrt{2} = 1.41$, $\sqrt{3} = 1.73$ e $\overline{\pi} = 3.14$:
 - a) Calcule um limite superior do módulo do erro absoluto que se comete no cálculo de $N = \frac{\sqrt{3} \sqrt{2}}{\pi}.$
 - b) Com quantas casas decimais exactas devem ser tomados os valores aproximados de $\sqrt{2}$, $\sqrt{3}$ e π para obter uma aproximação de N com 3 casas decimais exactas?

1.5 Seja

$$A = \frac{3\sqrt{3}a^2}{2}$$

a área de um hexágono regular de lado a. Seja 1m o valor aproximado para o lado do hexágono. Considerando um valor aproximado de $\sqrt{3}$ com quatro algarismos significativos, com que aproximação se deve medir o lado de modo a que o limite superior do erro absoluto no cálculo da área não exceda 100cm^2 ?

- 1.6 Pretende-se calcular a área de um círculo, de raio aproximadamente igual a 25 cm, com erro absoluto que em módulo não excede $0.5~\rm cm^2$. Com que aproximação se deve medir o raio do círculo e quantos algarismos significativos se devem usar no valor aproximado de π ?
- 1.7 O rendimento η de um transformador depende da potência de entrada z, da potência de saída a e da perda de potência b, pelas relações:

$$\eta = \frac{a}{z} = \frac{a}{a+b}$$

Podem medir-se z e a a menos de 1%, enquanto que o erro na medida de b pode ser de 20%, sendo η cerca de 0.95. Qual das relações usaria para a

2 Sistemas de equações lineares

2.1 Um engenheiro supervisiona a produção de 3 modelos de automóveis. Para a sua produção, são necessários 3 tipos de materiais: metal, tecido e plástico. As quantidades para produzir um carro de cada modelo são:

	metal (kg./carro)	tecido(kg./carro)	borracha(Kg./carro)
'Jeep'	2.71	4.11	2.69
'coupé'	1.63	2.44	1.64
'V6'	0.32	0.19	0.36

Existem em *stock*, respectivamente 38.48, 56.69, 38.54 kg. de metal, tecido e borracha. Quantos automóveis podem ser produzidos com a quantidade de *stock* existente?

Resolva o sistema por um método directo e estável usando 4 casas decimais nos cálculos.

2.2 Considere a figura representando um sistema de 4 molas ligadas em série sujeito a uma força F de 2000 Kg. Numa situação de equilíbrio, as equações força-balanço deduzidas definem inter-relações entre as molas:

$$\begin{cases} k_2(x_2 - x_1) &= k_1 x_1 \\ k_3(x_3 - x_2) &= k_2(x_2 - x_1) \\ k_4(x_4 - x_3) &= k_3(x_3 - x_2) \\ F &= k_4(x_4 - x_3) \end{cases}$$
 em que $k_1 = 150, \ k_2 = 50, \ k_3 = 75$ e $k_4 = 225$ são as constantes das molas (kg/s²).

Resolva o sistema pelo método EGPP, usando 5 casas decimais nos cálculos.

2.3 Considere os três sistemas e equações lineares

$$A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 8 \\ 9 \end{pmatrix}, \quad A \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 9 \\ 1 \\ 8 \\ 4 \end{pmatrix} \quad \text{e} \quad A \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ -7 \\ 5 \end{pmatrix}$$

com

$$A = \left(\begin{array}{cccc} 4 & 2 & 1 & -3 \\ 1 & 2 & -1 & 0 \\ 3 & -1 & 2 & 4 \\ 0 & 2 & 4 & 3 \end{array}\right).$$

Calcule as três soluções de uma só vez, usando um método directo e estável.

2.4 Considere o sistema

$$\begin{cases} x_1 + 0.5x_2 + 0.5x_3 = 2\\ 0.5x_1 + x_2 + 0.5x_3 = 2\\ 0.5x_1 + 0.5x_2 + x_3 = 2 \end{cases}$$

- a) Use o método da eliminação de Gauss com pivotagem parcial para calcular a sua solução.
- b) Calcule o determinante da matriz dos coeficientes.
- 2.5 Considere o seguinte sistema de equações lineares

$$\begin{cases} 0.8x_1 + 1.4x_2 + 3.0x_3 = 12.6 \\ 0.6x_1 + 0.9x_2 + 2.8x_3 = 10.8 \\ 2.0x_1 + 1.0x_2 + 1.1x_3 = 4.0 \end{cases}$$

- a) Calcule a inversa da matriz dos coeficientes por um método directo e estável.
- b) Resolva o sistema por um método directo e estável.

2.6 Dada a matriz

$$A = \begin{pmatrix} 2.4 & 6.0 & -2.7 & 5.0 \\ -2.1 & -2.7 & 5.9 & -4.0 \\ 3.0 & 5.0 & -4.0 & 6.0 \\ 0.9 & 1.9 & 4.7 & 1.8 \end{pmatrix}$$

e o vector $b = (14.6, -11.4, 14.0, -0.9)^T$.

- a) Resolva o sistema correspondente por um método directo e estável.
- b) Calcule o determinante da matriz A por um método directo e estável.
- c) Calcule A^{-1} usando o método de eliminação de Gauss com pivotagem parcial.

3 Equações não lineares

- **3.1** Localize através do método gráfico os zeros das funções não lineares em x,
 - a) $f(x) = x^3 3x + 1$;
 - b) $f(x) = \sin x + x 2;$
 - c) $f(x) = e^x + x 1$;
 - d) $f(x) = x + \ln x$.
- 3.2 A função

$$a(x) = 2.02x^5 - 1.28x^4 + 3.06x^3 - 2.92x^2 - 5.66x + 6.08$$

é utilizada num estudo do comportamento mecânico de materiais, representando a(x) o comprimento da fissura e x (> 0) uma fracção do número de ciclos de propagação.

Pretende-se saber para que valores de x a velocidade de propagação da fissura é nula. Utilize um método que não recorre ao cálculo de derivadas, usando no critério de paragem $\varepsilon_1 = \varepsilon_2 = 10^{-2}$ ou no máximo três iterações. Use seis casas decimais nos cálculos.

3.3 Um certo equipamento de 20000 euros vai ser pago durante 6 anos. O pagamento anual é de 4000 euros. A relação entre o custo do equipamento P, o pagamento anual A, o número de anos n e a taxa de juro i é a seguinte:

$$A = P \frac{i(1+i)^n}{(1+i)^n - 1}.$$

Utilize o método que não recorre à derivada para determinar a taxa de juro utilizada nos cálculos. O valor da taxa de juro pertence ao intervalo [0.05, 0.15]. Use $\varepsilon_1 = \varepsilon_2 = 0.005$. Use seis casas decimais nos cálculos.

3.4 O volume v de um líquido num tanque esférico de raio r está relacionado com a profundidade h do líquido da seguinte forma:

$$v = \frac{\pi h^2 (3r - h)}{3}.$$

- a) Calcule, utilizando um método que não recorre ao cálculo de derivadas, a profundidade h, num tanque de raio r=1 para um volume de 0.5. Utilize para aproximação inicial o intervalo [0.25, 0.5]. Faça 3 iterações e use seis casas decimais nos cálculos.
- b) Repita os cálculos, nas mesmas condições da alínea anterior, mas utilizando para aproximação inicial o intervalo [2.5,3]. Comente os resultados e analise a viabilidade da solução encontrada.
- 3.5 Considere duas cidades localizadas como se mostra na figura. Uma petrolífera pretende construir uma conduta que ligue as duas cidades. Devido às diferenças no terreno, o custo para construir a conduta será C₁ milhões de euros por quilómetro para o troço T₁ e C₂ milhões de euros por quilómetro para o troço T₂. Para tornar a construção mais económica, o ponto P de intersecção dos dois troços deve estar localizado de modo a que C₁senθ₁ = C₂senθ₂.

(a) Usando a informação da figura e escrevendo esta equação em função de x (a distância de O a P), mostre que se obtém

$$C_2^2(L-x)^2(a^2+x^2) = C_1^2x^2(b^2+(L-x)^2),$$

sendo L a distância de O a E.

(b) Resolva a equação considerando a=3, b=1, L=4, $C_1=1$ e $C_2=2$. Utilize o método de Newton e a aproximação inicial $x_1=3.75$ e $n_{\rm max}=2$. Apresente uma estimativa do erro relativo. Use seis casas decimais nos cálculos.

3.6 A figura representa um vulcão em erupção. A relação entre a distância y (milhas) percorrida pela lava e o tempo t (horas) é dada por:

$$y = 7 (2 - 0.9^t).$$

Existe uma aldeia no sopé da montanha a uma distância de y=10. O gabinete de protecção civil advertiu os moradores da aldeia de que a lava chegaria às suas casas em menos de 6 horas. Calcule utilizando um método iterativo que recorre ao cálculo de derivadas o instante de tempo em que a lava do vulcão atinge a aldeia.

Considere $\varepsilon_1=\varepsilon_2=10^{-3}$ ou no máximo três iterações. Use seis casas decimais nos cálculos.

Nota: $(a^x)' = a^x \ln(a)$, para a constante.

3.7 Uma bola esférica de raio r = 10 cm feita de uma substância cuja densidade é $\rho = 0.638$, foi colocada num recipiente com água.

Usando o método iterativo de Newton, calcule a distância x da parte submersa da bola sabendo que

$$f(x) \equiv \frac{\pi (x^3 - 3x^2r + 4r^3\rho)}{3} = 0.$$

Pare o processo iterativo quando o critério de paragem for verificado para $\varepsilon_1 = \varepsilon_2 = 0.001$, ou ao fim de três iterações. Use o método de Newton e seis casas decimais nos cálculos.

3.8 Num colector solar, um balanço de energia na placa absorvente e na placa de vidro produz o seguinte sistema de equações não lineares nas temperaturas absolutas da placa absorvente (x_1) e da placa de vidro (x_2)

$$\begin{cases} x_1^4 + 0.068x_1 - x_2^4 - 0.058x_2 &= 0.015 \\ x_1^4 + 0.058x_1 - 2x_2^4 - 0.117x_2 &= 0 \end{cases}.$$

Considerando a seguinte aproximação inicial $(x_1, x_2)_1 = (0.3, 0.3)$, implemente duas iterações do método de Newton. Apresente uma estimativa do erro relativo da aproximação calculada. Use seis casas decimais nos cálculos.

3.9 Considere o seguinte sistema

$$\begin{cases}
-x_2 + 2x_1^n = 4 \\
-x_2 - x_2^m - x_1 = 8
\end{cases}$$

em que n e m são parâmetros.

Considere m=3 e n=2. Resolva o sistema utilizando para aproximação inicial o ponto $x_1=(1,-2)^T$. Para o critério de paragem use $\varepsilon_1=\varepsilon_2=10^{-2}$ (ou no máximo duas iterações). Use seis casas decimais nos cálculos.

3.10 Existe um par de valores que anula as primeiras derivadas parciais da função de duas variáveis

$$f(x,y) = -e^{-x} + y^2 - 2x + 2y.$$

Usando um método iterativo, e a partir da aproximação inicial $(x, y)_1 = (-1, 1)$, determine esse par de modo que a estimativa do erro relativo da aproximação calculada não exceda 0.05 (duas iterações). Use seis casas decimais nos cálculos.

3.11 Usando o método de Newton, determine um dos pontos de intersecção da circunferência

$$x_1^2 + x_2^2 = 2$$

com a hipérbole

$$x_1^2 - x_2^2 = 1.$$

Considere os valores iniciais $(x_1, x_2)_1 = (1.5, 0.5)$ e para a paragem do processo iterativo use $\varepsilon_1 = \varepsilon_2 = 0.05$ ou no máximo duas iterações. Use seis casas decimais nos cálculos.

3.12 Em problemas de navegação, é necessário encontrar a posição de um ponto (x, y), através dos valores das distâncias r_1 e r_2 a dois pontos de posição conhecida (x_1, y_1) e (x_2, y_2) , como mostra a figura.

- a) Formule o problema como um sistema de equações não lineares em função das coordenadas do ponto (x, y).
- b) Considerando $(x_1, y_1) = (10, 10)$, $(x_2, y_2) = (10, -10)$, $r_1 = 14$ e $r_2 = 16$, calcule as coordenadas do ponto (x, y) através do método iterativo de Newton considerando a aproximação inicial $(x, y)_1 = (0, 0)$. Apresente o valor ao fim de duas iterações com a correspondente estimativa do erro relativo. Use seis casas decimais nos cálculos.
- ${f 3.13}\,$ A concentração de um poluente num lago depende do tempo t e é dada por

$$C(t) = 70e^{\beta t} + 20e^{\omega t}.$$

Efectuaram-se duas medições da concentração que foram registadas na seguinte tabela

$$\begin{array}{c|cccc} t & 1 & 2 \\ \hline C(t) & 27.5702 & 17.6567 \end{array}$$

Utilize o método de Newton para determinar β e ω . Considere a aproximação inicial $(\beta, \omega)_1 = (-1.9, -0.15)$, efectue duas iterações e apresente uma estimativa do erro relativo.

4 Polinómio interpolador de Newton

4.1 Dada a tabela de valores de uma função f(x)

- a) Pretende-se aproximar f(0.6) usando um polinómio de grau 3. Use a fórmula interpoladora de Newton baseada em diferenças divididas.
- b) Estime o erro de truncatura cometido na alínea anterior.
- c) Estime f(0.6) usando todos os pontos da tabela.
- **4.2** A tabela seguinte apresenta a população dos Estados Unidos da América (em milhões) de 1940 e 1980.

- a) Construa o polinómio interpolador de Newton de grau 4 para estimar a população no ano 1965.
- b) A população em 1930 foi 123.203. Qual a precisão do valor calculado na alínea a)?
- 4.3 Os registos efectuados numa linha de montagem são os seguintes:

$$n^o$$
 de unidades 1 3 4 6 7 10 horas necessárias 2 3 4 5 6 10

- a) Tendo sido recebidos pedidos para a montagem de 2 unidades e 8 unidades, use interpolação cúbica para estimar o tempo (em horas) necessário para satisfazer cada pedido.
- b) Calcule uma estimativa do erro de truncatura cometido na alínea anterior para cada um dos pedidos.

4.4 Considere a seguinte tabela de uma função polinomial

Sem recorrer à expressão analítica de p(x):

- a) mostre que p(x) é um polinómio interpolador de grau 2.
- b) determine p(10).
- **4.5** Considere a tabela de valores da função f(x)

Determine a e b por forma a que o polinómio interpolador de Newton que aproxima f seja de grau 3, com coeficiente do termo de maior grau igual à unidade e coeficiente do termo de menor grau igual a zero. Escreva o polinómio.

5 Integração numérica

 ${\bf 5.1}\,$ Considere o erro de truncatura da fórmula do rectângulo, baseada em a, de Newton-Cotes

$$e_R = \frac{(b-a)^2}{2} f'(\eta), \quad \eta \in [a,b]$$

para aproximar o integral $\int_a^b f(x)dx$. Deduza a fórmula do erro de truncatura da correspondente fórmula composta.

5.2 A figura mostra uma pessoa que desliza, sem atrito, do alto de um escorrega (ponto A), acoplando-se a um carrinho que se encontra em repouso no ponto B. A partir deste instante, a pessoa e o carrinho movem-se juntos na água até parar.

a) Sabendo que a velocidade do conjunto pessoa-carrinho imediatamente após o acoplamento é 4 m/s e que a velocidade, v, em cada instante t na água é dada pela tabela seguinte, calcule (usando todos os pontos da tabela) a distância percorrida na água pelo conjunto pessoa-carrinho até parar.

- b) Estime o erro de truncatura cometido na alínea anterior.
- c) Seleccione o maior número possível de pontos da tabela por forma a obter um conjunto de pontos igualmente espaçados, e calcule a mesma distância usando uma única fórmula composta de integração no intervalo [0, 4.2].

5.3 Na tabela seguinte são apresentados registos pontuais das vendas de um produto que foi lançado no início do ano de 2009. A variável x representa a semana (de 2009).

- a) Calcule a melhor aproximação ao integral $\int_1^{19} v(x) dx$, com base em toda a informação fornecida na tabela sobre v(x).
- b) Estime o erro de truncatura cometido com a aproximação obtida na alínea anterior no intervalo [5, 15].
- c) Seleccione o maior número possível de pontos da tabela para calcular uma aproximação ao integral da alínea a), usando só uma fórmula composta de integração no intervalo [1, 19].
- 5.4 Uma corrida de dragsters tem duas fases distintas: na primeira fase, a mais curta, o movimento do carro é perfeitamente não determinístico, dependendo das derrapagens e da forma como o condutor consegue dominar o carro. Na segunda fase, o carro tem um movimento muito rápido, cuja aceleração está perfeitamente definida.

Considere-se a prova do condutor Don Nase de duração 7.5 s. Na primeira fase os valores da aceleração em cada instante encontram-se na tabela:

Na segunda fase da corrida a aceleração é definida pela seguinte expressão:

$$a(t) = 0.5t^2 - 0.15t$$
 para $t \in [1.5, 7.5]$.

- a) Estime a velocidade na primeira fase da corrida, utilizando a fórmula de integração mais adequada.
- b) Estime a velocidade na segunda fase da corrida, utilizando a fórmula composta do trapézio com erro de truncatura em valor absoluto inferior a 0.3.
- c) Estime o erro de truncatura cometido na alínea a).
- **5.5** A resposta de um transdutor a uma onda de choque causada por uma explosão é dada pela função $F(t)=8e^{-t}\frac{I(a)}{\pi}$ para $t\geq a$, em que

$$I(a) = \int_1^2 f(x, a)dx \qquad \operatorname{com} f(x, a) = \frac{e^{ax}}{x}.$$

Calcule I(1) usando a fórmula composta do trapézio com erro de truncatura inferior a 0.05.

5.6 Considere a seguinte função dada pela tabela

e seja $I = \int_1^{1.9} f(x) dx$. Ao utilizar as fórmulas compostas de Simpson e dos três oitavos foram obtidas as seguintes aproximações a I, respectivamente S(0.15) = 20.005 e 3/8(0.15) = 20.030625. Determine os valores de a e b. Use 6 casas decimais nos cálculos.

5.7 Considere a seguinte tabela da função f(x)

$$\begin{array}{c|ccccc} x_i & 0.0 & 1.0 & 2.0 \\ \hline f(x_i) & 0.0000 & 0.8415 & 0.9093 \\ \end{array}$$

- a) Determine um valor aproximado de $I=\int_0^2 f(x)dx$, usando a fórmula composta do trapézio com h=1.
- b) Sabendo que um valor aproximado de I, usando a fórmula composta do trapézio com h = 0.5 é T(0.5) = 1.2667, determine uma nova aproximação de I, usando a fórmula composta de Simpson com h = 0.5.

5.8 Admita que, para acções de uma determinada empresa cotada na bolsa de Nova Iorque, o lucro anual por acção, depois de impostos, é representado por x (US \$), uma variável aleatória que tem a seguinte função densidade de probabilidade:

$$f(x) = \begin{cases} \frac{4}{27}(9x - 6x^2 + x^3), & \text{para } 0 \le x \le 3\\ 0, & \text{para outros valores de } x. \end{cases}$$

a) Calcule, numericamente, a probabilidade PROB do lucro anual ser um valor menor do que 1 ou maior do que 2.5 ($PROB = P(x \le 1) + P(x \ge 2.5)$).

Use a fórmula composta do trapézio para calcular essa probabilidade por forma a que o erro total de truncatura seja inferior a 0.02. Assuma que os erros das duas parcelas são iguais.

Nota:
$$P(a \le x \le b) = \int_a^b f(x) dx$$
.

b) Relativamente à primeira parcela para o cálculo de PROB, se tivesse usado a fórmula composta de Simpson com o mesmo valor de h que usou na alínea anterior, iria obter um erro menor, ou seja uma melhor aproximação ao valor de $P(x \le 1)$? Justifique a resposta.

6 Aproximação dos mínimos quadrados

6.1 Um carro inicia a sua marcha num dia frio de inverno e um aparelho mede o consumo de gasolina verificado no instante em que percorreu x Km. Os resultados obtidos foram:

$$x$$
 (Km)
 0
 1.25
 2.5
 3.75
 5
 6.25

 $f(x)$ (l Km⁻¹)
 0.260
 0.208
 0.172
 0.145
 0.126
 0.113

Construa um modelo quadrático, para descrever o consumo de gasolina em função da distância percorrida, usando a técnica dos mínimos quadrados.

6.2 A tabela seguinte contém os registos efectuados dos valores médios da radiação solar numa região de Portugal:

Ajuste o modelo

$$M(x) = c_1 x + c_2 \operatorname{sen}(x)$$

aos valores da tabela, no sentido dos mínimos quadrados, e use o modelo encontrado para prever a radiação média no mês de Agosto.

6.3 A resistência de um certo fio (de uma certa substância), f(x), varia com o diâmetro desse fio, x. A partir de uma experiência registaram-se os seguintes valores:

$$x_j$$
 1.5 2.0 3.0 4.0 f_j 4.9 3.3 2.0 1.5

Foram sugeridos os seguintes modelos para ajustar os valores de f(x), no sentido dos mínimos quadrados:

i uma recta

ii o modelo linear
$$M\left(x,c_{1},c_{2}\right)=\frac{c_{1}}{x}+c_{2}x$$

- a) Calcule a recta.
- b) Calcule o modelo M(x).
- c) Qual dos modelos escolheria? Justifique a sua resposta.

6.4 Um sistema simples de comunicações pode ser representado por um transmissor e um receptor. O transmissor recebe um símbolo, m, e modula o sinal a transmitir, $s_m(t)$, num canal com ruído. O receptor recebe o sinal modulado com o ruído adicionado, y(t), e prevê qual foi o símbolo transmitido. Neste sistema simples suponha que o transmissor apenas transmite dois sinais

$$s_1(t) = 0.2\alpha_1 \sin(20\pi t) + 0.2\beta_1 \sin(22\pi t)$$

$$s_2(t) = 0.2\alpha_2 \sin(20\pi t) + 0.2\beta_2 \cos(20\pi t)$$

a) Transmitindo o primeiro sinal $(s_1(t))$ e fazendo uma análise ao transmissor, observaramse os seguintes valores:

$$\begin{array}{c|cccc} t_i & 0.11 & 0.52 & 0.79 \\ \hline s_{1i} & -3.1127 & 0.0625 & 3.0351 \\ \end{array}$$

Determine os valores de α_1 e β_1 , no sentido dos mínimos quadrados.

b) Suponha que $\alpha_1 = -10$, $\beta_1 = -10$, $\alpha_2 = 10$ e $\beta_2 = 10$. Sabendo que o receptor recebeu o sinal indicado na tabela seguinte, determine qual foi o sinal transmitido (isto é, aquele que se ajusta melhor ao sinal recebido, no sentido dos mínimos quadrados).

$$\begin{array}{c|cccc} t_i & 0.1 & 0.45 & 0.63 \\ \hline y(t_i) & 1.9963 & -2.0100 & 1.2742 \\ \end{array}$$

6.5 Uma companhia de gás sugeriu um modelo do tipo

$$M(x; c_1, c_2) = c_1 x^2 + c_2 \frac{1}{x}$$

para estimar o consumo de gás em qualquer altura do ano. No sentido dos mínimos quadrados e considerando a amostra de 6 pontos,

- a) Comece por apresentar o sistema de equações lineares que deve construir para calcular os parâmetros c_1 e c_2 , em função de A.
- b) Considerando A = 15.0 apresente o modelo sugerido.

6.6 Um fio está suspenso entre dois postes. A distância entre os postes é de 30 metros. A distância do fio ao solo f(x), em metros, depende de x como mostra a figura. A tabela mostra 5 valores conhecidos de f.

- a) Calcule a parábola que melhor se ajusta aos valores de $f(x_i)$ no sentido dos mínimos quadrados e determine a distância do fio ao solo quando x = 10.
- b) A partir da parábola da alínea anterior, verifique se x=10 é o ponto em que a distância do fio ao solo é mínima.
- c) Determine os coeficientes c_1 e c_2 do modelo

$$M(x; c_1, c_2) = c_1 e^{1 - 0.1x} + c_2 e^{0.1x - 1}$$

que melhor se ajusta à função f(x) de acordo com

$$min_{c_1,c_2} \sum_{i=1}^{5} (f(x_i) - M(x_i; c_1, c_2))^2.$$

6.7 Pretende-se ajustar o modelo linear

$$M(x; c_1, c_2, c_3) = c_1 e^{-x} + c_2 x + c_3$$

à função f(x) dada pela tabela

no sentido dos mínimos quadrados. Determine os coeficientes do modelo apresentado. Apresente uma estimativa para f(0.5).

6.8 Considere as seguintes observações relativas à função f

Determine a e b sabendo que a aproximação polinomial de grau 1 dos mínimos quadrados é $p_1(x) = -4 + 2x$. Use 6 casas decimais nos cálculos.

7 Optimização não linear sem restrições

- 7.1 Dada a função $f(x) = x^3 6x^2 + 9x + 4$ calcule os seus pontos estacionários e classifique-os.
- 7.2 Na cidade de Ulam Bator surgiu uma epidemia de gripe asiática. A evolução da doença foi descrita pela fórmula

$$P(t) = e^{0.4t - 0.01t^2}$$

onde P(t) representa a percentagem de pessoas doentes e t é o tempo em dias.

Usando o método DSC (baseado em interpolação quadrática), calcule o pior momento da epidemia identificando a percentagem de doentes nesse momento. Inicie o processo iterativo com $t_1=30$ dias. Considere ainda $\delta=2$, M=0.05 e $\varepsilon=0.1$ (duas iterações). Use 4 casas decimais nos cálculos.

7.3 Uma empresa precisa de usar x_1 horas de equipamento ao preço (unitário) de 6 unidades monetárias (u.m.) e x_2 horas de mão-de-obra ao preço (unitário) de 4 u.m. para colocar no mercado um certo número fixo de produtos. As horas utilizadas de equipamento e mão-de-obra verificam a relação

$$x_1^2 + x_1 x_2 = 2500.$$

Calcule x_1 e x_2 de modo a minimizar os custos da empresa.

- a) Comece por formular esta situação como um problema de optimização sem restrições de uma só variável (por exemplo, em função de x_1).
- b) Resolva o problema resultante usando o método DSC (baseado em interpolação quadrática). Na implementação do DSC inicie o processo iterativo com a aproximação inicial $x_1=50$. Use $\delta=5,\, \varepsilon=0.05$ e M=0.1.

Com a aproximação calculada identifique os valores obtidos para as duas variáveis e o custo mínimo.

7.4 [ABCD] representa uma cartolina quadrada de lado 60 cm. Pretende-se montar uma caixa de volume máximo cortando em cada canto um quadrado de lado x, como mostra a figura.

Usando o método DSC (baseado em interpolação quadrática), calcule x. Use duas casas decimais nos cálculos e inicie o processo iterativo com $x_1 = 5$. Considere ainda $\delta = 1$, M = 0.5 e $\varepsilon = 0.5$ (duas iterações).

7.5 A função

$$f(t) = 10 + 3 \operatorname{sen}(\frac{2\pi}{365}(t - 80))$$

dá o número de horas com luz do dia numa certa região do país.

O dia 1 de Janeiro corresponde a t=0. Determine o dia do ano (t) em que o número de horas com luz do dia é máximo, usando o método DSC (baseado em interpolação quadrática). Use 2 casas decimais nos cálculos, $\pi=3.14$ e inicie o processo iterativo com $t_1=200$. Considere ainda $\delta=10$, M=0.1 e $\varepsilon=2$ (duas iterações). Use radianos nos cálculos.

7.6 Dada a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x_1, x_2) = x_1^2 (1 - x_1)^2 + x_1 x_2$$

verifique se tem maximizantes, minimizantes e/ou pontos sela.

7.7 Considere a função

$$f(x,y) = 3x^2 - y^2 + x^3$$

Mostre que a função dada tem um máximo local em (-2,0); tem um ponto sela em (0,0); e não tem mínimos.

7.8 Dada a função $f: \mathbb{R}^3 \to \mathbb{R}$ definida por

$$f(x_1, x_2, x_3) = 5x_1^2 + 2x_2^2 + x_3^4 - 32x_3 + 6x_1x_2 + 5x_2$$

verifique que ela tem apenas um ponto estacionário. Classifique-o.

7.9 Mostre que qualquer ponto da linha $x_2-2x_1=0$ é um mínimo de $f:R^2\to R$ definida por

$$f(x_1, x_2) = 4x_1^2 - 4x_1x_2 + x_2^2.$$

7.10 Considere a função

$$f(x_1, x_2) = -\sin(x_1 - 1) - x_2^4.$$

Implemente, no máximo, duas iterações do método de segurança de Newton para determinar o máximo da função $f(x_1, x_2)$. Considere $\eta = 10^{-6}$, $\mu = 10^{-6}$, $\varepsilon = 1$ e $x^{(1)} = (1, 1)^T$.

7.11 A soma de três números $(x_1, x_2 e x_3)$ positivos é igual a 40. Determine esses números de modo que a soma dos seus quadrados seja mínima.

Use a relação da soma para colocar x_3 em função das outras 2 variáveis. Formule o problema como um problema de optimização sem restrições.

A partir da aproximação inicial $(x_1, x_2)^{(1)} = (10, 10)$, use o método de Segurança de Newton (com $\eta = 0.00001$) para calcular esses números, considerando no critério de paragem os seguintes valores $\varepsilon = 0.001$ (duas iterações). Na condição de Armijo tome $\mu = 0.001$.

7.12 Uma empresa fabrica e comercializa dois tipos de computadores portáteis. O custo de fabrico de cada um deles decresce à medida que o número de unidades produzidas aumenta e é dado pelas seguintes relações empíricas:

$$c_1 = 5 + \frac{1500}{x_1} \qquad c_2 = 7 + \frac{2500}{x_2},$$

em que x_1 e x_2 são o número de unidades de cada um dos portáteis produzidos. O custo de reparação e manutenção do equipamento usado para a produção depende do número total de portáteis produzidos e é dado pela seguinte equação:

$$r = (x_1 + x_2)[0.2 + 2.3 \times 10^{-5}(x_1 + x_2) + 5.3 \times 10^{-9}(x_1 + x_2)^2].$$

O preço de venda dos computadores é tanto menor quanto maior for o número de unidades produzidas, de acordo com as seguintes relações:

$$p_1 = 15 - 0.001x_1$$
 $p_2 = 25 - 0.0015x_2$

- a) Formule o problema de optimização que consiste em determinar quantas unidades de cada computador a firma deve produzir de modo a maximizar os lucros.
- b) Desprezando os custos de reparação e manutenção (r=0), resolva o problema usando o método de Segurança de Newton (com $\eta=0.00001$). Considere a seguinte aproximação inicial $(x_1,x_2)^{(1)}=(20,30)$ e $\varepsilon=0.001$. Na condição de Armijo tome $\mu=0.001$.
- c) Com base na aproximação calculada na alínea anterior ao número de computadores produzidos, a empresa terá lucro?
- 7.13 Três estações eléctricas vão fornecer vão fornecer a uma certa região da forma mais económica possível. Os custos individuais de operação de cada uma das estações são dados por

$$f_1 = 0.1 + 0.25x$$

$$f_2 = 0.08 + 0.12y + 0.00125y^2$$

$$f_3 = 0.05 + 0.09z + 0.001z^2 + 0.0001z^3$$

em que x, y e z são as energias fornecidas pelas três estações (em MWatt). Determine os valores de x, y e z que minimizam o custo total a ser fornecida for de 100 MWatt, recorrendo ao método de segurança de Newton.

Como valores iniciais use $(x, y)^{(1)} = (30, 50)$, no critério de paragem considere $\varepsilon = 0.05$ e tome $\eta = 0.0001$. Como estratégia de procura unidimensional utilize o critério de Armijo com $\mu = 0.01$. Use a relação relacionada com a energia a fornecer para eliminar uma das variáveis, por exemplo, x = 100 - y - z.

7.14 Numa situação monopolista, o rendimento de uma empresa face à venda de um produto ou serviço depende do nível de produção z. O rendimento é uma função crescente de z mas tende em direcção a uma assímptota assim que o mercado fica saturado.

Considere a seguinte função rendimento

$$R(z) = z^2/(1+z^2)$$

que depende da produção z dada por $z=x_1^{1/2}x_2^{1/2}$, em que x_1 representa o capital e x_2 o trabalho.

Supondo que a função lucro é dada por

$$\pi(x_1, x_2) = R(z) - 0.04x_1 - 0.06x_2$$

calcule o lucro máximo que a empresa pode ter. Use o método quasi-Newton (com fórmula BFGS). Como aproximação inicial considere o ponto (2,1). Use na paragem do processo iterativo $\varepsilon = 0.1$. No critério de Armijo use $\mu = 0.001$.

7.15 Suponha que pretendia representar um número A positivo na forma de um produto de quatro factores positivos x_1, x_2, x_3 e x_4 . Para A = 2401, determine esses factores de tal forma que a sua soma seja a menor possível.

Formule o problema como um problema de optimização sem restrições em função das 3 variáveis x_1, x_2 e x_3 .

A partir da aproximação inicial $(x_1, x_2, x_3)^{(1)} = (6, 7, 5)$, use o método quasi-Newton (com fórmula DFP), para calcular esses factores. Na paragem do processo iterativo use $\varepsilon = 0.1$. No critério de Armijo use $\mu = 0.001$.

7.16 O lucro, em milhares de euros, da colocação de um sistema eléctrico é dado por

$$\mathcal{L}(x_1, x_2) = 20x_1 + 26x_2 + 4x_1x_2 - 4x_1^2 - 3x_2^2$$

em que x_1 e x_2 designam, respectivamente, o custo da mão de obra e do material. Calcule o lucro máximo usando o método quasi-Newton baseado na fórmula DFP, considerando na paragem do processo iterativo $\varepsilon = 0.0001$. Tome a seguinte aproximação inicial (0,0). No critério de Armijo use $\mu = 0.001$.

7.17 Considere um circuito eléctrico em que existem duas resistências variáveis, R e X. O valor médio da energia do circuito é dado por

$$P = \frac{10^4 R}{(R+20)^2 + X^2}.$$

Determine os valores de R e X para os quais se obtém uma energia de saída máxima. Use o método quasi-Newton (fórmula DFP) e os valores iniciais $(R, X)^{(1)} = (10, 5)$. Considere $\mu = 0.001$ e $\varepsilon = 0.5$.

7.18 Calcule o máximo da seguinte função não diferenciável

$$f(x_1, x_2) = -|x_1 x_2| - x_2^2$$

usando o método de Nelder-Mead. Inicie o processo iterativo com o seguinte simplex:

$$\left\langle \begin{pmatrix} -1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} -1\\-1 \end{pmatrix} \right\rangle.$$

Para a paragem do processo iterativo use $\varepsilon = 0.5$ ou $n_{\text{max}} = 4$.

7.19 Calcule o mínimo da função f(x) definida por

$$f(x_1, x_2) = \max((x_1 - 1)^2, x_1^2 + 4(x_2 - 1)^2)$$

implementando o método de Nelder-Mead, tomando para conjunto inicial os vectores

$$\left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle$$
.

e $\varepsilon = 0.5$.

7.20 Considere um sistema de duas molas em que é aplicada uma força de deformação P com duas componentes P_1 e P_2 . Pretende-se determinar os deslocamentos x_1 e x_2 das molas que minimizam a energia potencial total EP, definida pela seguinte expressão:

$$EP(x_1, x_2) = \frac{1}{2}K_1\left(\sqrt{x_1^2 + (l_1 - x_2)^2} - l_1\right)^2 + \frac{1}{2}K_2\left(\sqrt{x_1^2 + (l_2 - x_2)^2} - l_2\right)^2 - P_1x_1 - P_2x_2.$$

Sabendo que as características do sistema são: $l_1 = 10$, $l_2 = 10$, $K_1 = 8$, $K_2 = 1$, $P_1 = 5$ e $P_2 = 5$, resolva o problema através do método de Nelder-Mead com $\varepsilon = 0.5$ (ou duas iterações). Considere os seguintes pontos iniciais: (5,2), (3.25,2.5) e (0,0).

Parte II

Resolução

1 Erros e números

1.1 Começa-se por estabelecer o erro absoluto cometido na representação de cada variável, bem como o intervalo onde esse número está compreendido.

$$\begin{cases} \delta_{\pi} &= 0.00005 \\ \delta_{\sqrt{3}} &= 0.0005 \\ \delta_{\sqrt{2}} &= 0.00005 \end{cases} \quad \text{e} \quad I = \begin{cases} 3.14155 \leq \pi < 3.14165 \\ 1.7315 \leq \sqrt{3} < 1.7325 \\ 1.41415 \leq \sqrt{2} < 1.41425. \end{cases}$$

De seguida calculam-se as derivadas parciais da função f em ordem a cada uma das variáveis envolvidas.

$$\frac{\partial f}{\partial \pi} = \frac{2\sqrt{3}\left(\sqrt{2} - \pi^2\right)}{\left(\pi^2 + \sqrt{2}\right)^2}, \quad \frac{\partial f}{\partial \sqrt{3}} = \frac{2\pi}{\pi^2 + \sqrt{2}} \quad e \quad \frac{\partial f}{\partial \sqrt{2}} = -\frac{2\pi\sqrt{3}}{\left(\pi^2 + \sqrt{2}\right)^2}$$

Calcula-se um majorante das derivadas parciais, tendo em conta o intervalo onde cada uma das variáveis é definida. No caso da derivada parcial em ordem a π aparece uma diferença no numerador, que se pretende que seja o maior possível em módulo. Por esta razão, a diferença deve ser também a maior possível em módulo. Para que isso aconteça, a parcela de maior valor, π^2 , deve ser o maior possível, bem como deve acontecer o contrário com a parcela de menor valor, $\sqrt{2}$. Nos restantes casos, basta garantir os maiores valores das variáveis em numerador e os menores em denominador.

$$M_{\pi} = \left| \frac{2 \times 1.7325 \left(1.41415 - 3.14165^2 \right)}{\left(3.14155^2 + 1.41415 \right)^2} \right| = 0.2301293854$$

$$M_{\sqrt{3}} = \left| \frac{2 \times 3.14165}{3.14155^2 + 1.41415} \right| = 0.5568580292$$

$$M_{\sqrt{2}} = \left| -\frac{2 \times 3.14165 \times 1.7325}{\left(3.14155^2 + 1.41415 \right)^2} \right| = 0.08550163496.$$

Pela fórmula fundamental dos erros vem

$$\delta_f \le M_\pi \delta_\pi + M_{\sqrt{3}} \delta_{\sqrt{3}} + M_{\sqrt{2}} \delta_{\sqrt{2}} =$$

$$= 0.2301293854 \times 0.00005 + 0.5568580292 \times 0.0005 + 0.08550163496 \times 0.00005 =$$

$$= 2.942105656 \times 10^{-4}$$

Arredonda-se o erro absoluto por excesso, de forma a que o primeiro dígito do erro seja 5,

$$\delta_f \le 0.0005$$
,

e calcula-se o valor aproximado de f,

$$f(\pi, \sqrt{3}, \sqrt{2}) \approx 0.964431631.$$

Alinham-se os dois valores, já na mesma base, pelo ponto decimal

$$f(\pi, \sqrt{3}, \sqrt{2}) = 0.964431631$$

 $\delta_f \le 0.0005$

e o número de algarismos significativos é 3. Ou seja, $f(\pi, \sqrt{3}, \sqrt{2}) = 0.964$.

1.2 Começa-se por estabelecer o erro absoluto cometido na representação de cada variável, bem como o intervalo onde esse número está compreendido. Neste caso não se conhece δ_h , no entanto pode estabelecer-se um intervalo com base no valor aproximado conhecido. Assim,

$$\begin{cases} \delta_{\alpha} &= 0.005 \\ \delta_{h} &= ? \end{cases} \quad \text{e} \quad I = \begin{cases} 0.335 \leq \alpha < 0.345 \\ 16.65 \leq h < 16.75. \end{cases}$$

De seguida, calculam-se as derivadas parciais de P em ordem a cada uma das variáveis envolvidas, α e h.

$$\frac{\partial P}{\partial \alpha} = (\cos \alpha - \sin \alpha)h$$
 e $\frac{\partial P}{\partial h} = \sin \alpha + \cos \alpha$

Calcula-se um majorante das derivadas parciais, tendo em conta o intervalo onde cada uma das variáveis é definida. Uma vez que α pertence ao primeiro quadrante, a função $\sin \alpha$ é crescente e a função $\cos \alpha$ é decrescente. No cálculo de M_{α} , para maximizar a diferença, a maior parcela toma o maior valor possível, que neste caso corresponde a $\cos \alpha \approx 0.94$, e o contrário para a menor parcela, que corresponde a $\sin \alpha \approx 0.33$. Tendo estas considerações em conta, calcula-se um majorante das derivadas parciais, tendo em atenção o intervalo onde cada uma das variáveis é definida.

$$M_{\alpha} = |(\cos(0.335) - \sin(0.335)) \times 16.75| = 10.311989$$

$$M_h = |\sin(0.345) + \cos(0.335)| = 1.282607$$

Pela fórmula fundamental dos erros vem

$$\delta_P < \delta_{\alpha} M_{\alpha} + \delta_{b} M_{b}$$
.

Pretende-se que $\delta_P \leq 0.5$, ou seja, $\delta_{\alpha} M_{\alpha} + \delta_h M_h \leq 0.5$.

$$0.005 \times 10.311989 + \delta_h \times 1.282607 \le 0.5 \Leftrightarrow$$

$$\Leftrightarrow \delta_b < 0.349632.$$

1.3 Começa-se por estabelecer o erro absoluto cometido na representação de cada variável, bem como o intervalo onde esse número está compreendido. Uma vez que o erro relativo da resistência não excede 0.01, então

$$\frac{\delta_R}{R} = 0.01 \Leftrightarrow \delta_R = 0.2.$$

$$\begin{cases} \delta_R = 0.2 \\ \delta_I = 0.01 \end{cases} \quad e \quad I = \begin{cases} 19.8 \le R < 20.2 \\ 2.99 \le I < 3.01 \end{cases}$$

De seguida calculam-se as derivadas parciais da função V=RI em ordem a cada uma das variáveis envolvidas.

$$\frac{\partial V}{\partial R} = I, \quad \frac{\partial V}{\partial I} = R.$$

Calcula-se um majorante das derivadas parciais, tendo em conta o intervalo onde cada uma das variáveis é definida. No caso da derivada parcial em ordem a R, para que seja o maior possível em módulo, I deve ser o maior possível. Enquanto que no caso da derivada parcial em ordem a I, para que seja o maior possível em módulo, R deve ser o maior possível. Assim,

$$M_R = 3.01, \quad M_I = 20.2.$$

Pela fórmula fundamental dos erros vem

$$\delta_V \leq \delta_R M_R + \delta_I M_I =$$

$$= 0.2 \times 3.01 + 0.01 \times 20.2 = 0.804 \times 10^{0}$$
.

Arredonda-se o erro absoluto por excesso, de forma a que o primeiro dígito do erro seja 5,

$$\delta_V < 0.5 \times 10^1$$

e calcula-se o valor aproximado de V,

$$V = RI \approx 20 \times 3 = 60$$
.

Alinham-se os dois valores, já na mesma base, pelo ponto decimal

$$V = 6.0 \times 10^{1}$$

$$\delta_V \leq 0.5 \times 10^1$$

Logo, garante-se para o cálculo de V um algarismo significativo. O valor calculado para a tensão é

$$V = RI = 0.6 \times 10^2$$
.

1.4 a) Assumindo que $x=\sqrt{2},\ y=\sqrt{3}$ e $z=\overline{\pi},$ começa-se por estabelecer o erro absoluto cometido na representação de cada uma destas variáveis, bem como o intervalo onde esse número está compreendido.

$$\begin{cases}
\delta_x = 0.005 \\
\delta_y = 0.005
\end{cases} \text{ e } I = \begin{cases}
1.405 \le x < 1.415 \\
1.725 \le y < 1.735 \\
3.135 \le z < 3.145
\end{cases}$$

De seguida, calculam-se as derivadas parciais da função $f=\frac{y-x}{z}$ em ordem a cada uma das variáveis envolvidas.

$$\frac{\partial f}{\partial x} = -\frac{1}{z}, \quad \frac{\partial f}{\partial y} = \frac{1}{z}, \quad \frac{\partial f}{\partial z} = \frac{x-y}{z^2}.$$

Para todas as derivadas parciais, quanto menor for o valor de z em módulo, maior será o seu valor em módulo. Na derivada parcial em ordem a z, tem ainda que se maximizar o numerador. Para isso, a diferença x-y deve ser a maior possível em módulo, o que acontece quando o maior valor (y) toma o maior possível e o menor valor (x) toma o menor valor possível. Logo,

$$M_x = \left| -\frac{1}{3.135} \right| = 0.3189792663,$$

$$M_y = \left| \frac{1}{3.135} \right| = 0.3189792663,$$

$$M_z = \left| \frac{1.405 - 1.735}{3.135^2} \right| = 0.03357676488$$

Pela fórmula fundamental dos erros vem

$$\delta_f \leq \delta_x M_x + \delta_y M_y + \delta_z M_z =$$

 $= 0.005 \times 0.3189792663 + 0.005 \times 0.3189792663 + 0.005 \times 0.03357676488$

= 0.003021908

$$< 0.5 \times 10^{-2}$$
.

b) Dado que $\delta_f \leq 0.0005$, assumindo $\delta_x = \delta_y = \delta_z = \delta$, vem

$$\delta \times (M_x + M_y + M_z) \le 0.0005 \Leftrightarrow \delta \le \frac{0.0005}{0.671535297} = 0.0007445625001.$$

Logo, são necessárias pelo menos 3 casas decimais $(\delta_x = \delta_y = \delta_z = 0.0005 \le \delta)$.

1.5 O valor aproximado de $\sqrt{3}$, com quatro algarismos significativos, é de $\sqrt{3} = 1.732$. Pretende-se saber qual a aproximação que se deve tomar na medição do valor de a (que tem um valor aproximado de a = 1m), de tal forma que o limite superior do erro δ_A não ultrapasse $100 \text{cm}^2 = 0.01 \text{m}^2$. Tal implica conhecer um limite superior para o valor de δ_a que se desconhece. De seguida, pode-se estabelecer o erro absoluto cometido na representação de das variáveis, bem como o intervalo onde esse número está compreendido.

$$\begin{cases} \delta_{\sqrt{3}} = 0.0005 \\ \delta_a = ? \end{cases} \qquad e = \begin{cases} 1.7315 \le \sqrt{3} < 1.7325 \\ 1 - \delta_a \le a < 1 + \delta_a \end{cases}$$

De seguida calculam-se as derivadas parciais da expressão de A em ordem a cada uma das variáveis envolvidas.

$$\frac{\partial A}{\partial \sqrt{3}} = \frac{3a^2}{2}, \quad \frac{\partial A}{\partial a} = 3a\sqrt{3}.$$

Logo, os majorantes das derivadas parciais em relação a cada uma das variáveis, serão

$$M_{\sqrt{3}} = \frac{3(1+\delta_a)^2}{2}$$
 e $M_a = 3(1+\delta_a) \times 1.7325$.

Pela fórmula fundamental dos erros vem

$$\delta_{\sqrt{3}}M_{\sqrt{3}} + \delta_a M_a \leq 0.01$$

$$0.0005 \times \frac{3(1+\delta_a)^2}{2} + \delta_a \times 3(1+\delta_a) \times 1.7325 \le 0.01$$

$$\delta_a \leq 0.00177603$$

NOTA: despreza-se a parte negativa da solução.

Logo, deve medir-se o lado com um erro inferior a 0.00177603 (4 algarismos significativos $\Rightarrow \delta_a = 0.0005 \le 0.00177603$).

1.6 Começa-se por estabelecer o erro absoluto cometido na representação de cada variável, bem como o intervalo onde esse número está compreendido. Sabendo que a área do círculo é

$$A = \pi r^2$$

$$\begin{cases} \delta_r = 0.5 \\ \delta_{\pi} = ? \end{cases} \quad e \quad I = \begin{cases} 24.5 \le r < 25.5 \\ 3.135 \le I < 3.145 \end{cases}$$

De seguida calculam-se as derivadas parciais da área em ordem a cada uma das variáveis envolvidas.

$$\frac{\partial A}{\partial \pi} = r^2, \quad \frac{\partial A}{\partial r} = 2\pi r.$$

Calcula-se um majorante das derivadas parciais, tendo em conta o intervalo onde cada uma das variáveis é definida. No caso da derivada parcial em ordem a π , para que seja o maior possível em módulo, r deve ser o maior possível. No caso da derivada parcial em ordem a r, para que seja o maior possível em módulo, ambos r e π devem ser o maior possível.

$$M_{\pi} = 650.25, \quad M_r = 160.395.$$

Considerando $\delta_{\pi} = \delta_{r} = \delta$, pela fórmula fundamental dos erros vem

$$\delta M_{\pi} + \delta M_{r} \leq 0.5$$

$$650.25\delta + 160.395\delta \le 0.5$$

$$\delta < 0.000617928008$$
.

Logo, o raio deve ser medido com um erro inferior a 0.000617928008 e para valor aproximado de π deve-se usar no mínimo 4 algarismos significativos ($\delta_{\pi} = 0.0005$).

1.7 Começa-se por estabelecer o erro absoluto cometido na representação de cada variável, bem como o intervalo onde esse número está compreendido.

$$\begin{cases} \delta_a = 0.01a \\ \delta_b = 0.2b \\ \delta_z = 0.01z \end{cases}$$
 e $I = \begin{cases} 0.99a \le a < 1.01a \\ 0.8b \le b < 1.2b \\ 0.99z \le z < 1.01z. \end{cases}$

De seguida calculam-se as derivadas parciais da função η em ordem a cada uma das variáveis envolvidas.

Começando pela primeira fórmula de η , a que se chamará de ora em diante $\eta_1 = \frac{a}{z}$,

$$\frac{\partial \eta_1}{\partial a} = \frac{1}{z}$$
 e $\frac{\partial \eta_1}{\partial z} = -\frac{a}{z^2}$.

Calcula-se um majorante das derivadas parciais, tendo em conta o intervalo onde cada uma das variáveis é definida.

$$M_a = \left| \frac{1}{0.99z} \right| = \frac{1}{0.99z}$$
, uma vez que os valores de a e z são positivos.

$$M_z=\left|-\frac{1.01a}{(0.99z)^2}
ight|=\frac{1.01a}{0.99^2z^2},$$
 pela mesma razão.

Pela fórmula fundamental dos erros vem

$$\delta_{\eta_1} = \delta_a M_a + \delta_z M_z =$$

$$= \frac{0.01a}{0.99z} + \frac{0.01z \times 1.01a}{0.99^2 z^2} =$$

$$= \frac{0.01a}{0.99z} + \frac{0.0101a}{0.99^2 z} =$$

$$= \frac{(0.01 \times 0.99 + 0.0101)a}{0.99^2 z} =$$

$$= \frac{0.02}{0.9801} \frac{a}{z} = 0.020406081 \eta = 0.020406081 \times 0.95 =$$

$$= 0.019385777.$$

Prosseguindo com o mesmo raciocínio, agora para a segunda fórmula, $\eta_2 = \frac{a}{a+b}$, calculamse as derivadas parciais

$$\frac{\partial \eta_2}{\partial a} = \frac{b}{(a+b)^2}$$
 e $\frac{\partial \eta_2}{\partial b} = -\frac{a}{(a+b)^2}$.

Calcula-se um majorante das derivadas parciais, tendo em conta o intervalo onde cada uma das variáveis é definida.

$$M_a = \left| \frac{1.2b}{(0.99a + 0.8b)^2} \right| = \frac{1.2b}{(0.99a + 0.8b)^2}, \text{ uma vez que os valores de } a \text{ e } b \text{ são positivos.}$$

$$M_b = \left| -\frac{1.01a}{(0.99a + 0.8b)^2} \right| = \frac{1.01a}{(0.99a + 0.8b)^2}, \text{ pela mesma razão.}$$

Pela fórmula fundamental dos erros vem

$$\delta_{\eta_2} = \delta_a M_a + \delta_b M_b =$$

$$= \frac{0.01a \times 1.2b}{(0.99a + 0.8b)^2} + \frac{0.2b \times 1.01a}{(0.99a + 0.8b)^2} =$$

$$= \frac{0.214ab}{(0.99a + 0.8b)^2}$$

Sabendo que $\eta=\frac{a}{a+b}=0.95$, então a=0.95a+0.95b, logo, a=19b. Substituindo na expressão anterior,

$$\delta_{\eta_2} = \frac{0.214 \times 19b \times b}{(0.99 \times 19b + 0.8b)^2} = \frac{4.066b^2}{384.5521b^2} = 0.01057334.$$

Uma vez que $\delta_{\eta_1} > \delta_{\eta_2},$ a segunda fórmula é a mais adequada para determinar $\eta.$

2 Sistemas de equações lineares

2.1

$$\begin{cases} 2.71x_1 + 1.63x_2 + 0.32x_3 = 38.48 \\ 4.11x_1 + 2.44x_2 + 0.19x_3 = 56.69 \\ 2.69x_1 + 1.64x_2 + 0.36x_3 = 38.54 \end{cases}$$

$$\begin{pmatrix} 2.71 & 1.63 & 0.32 & | & 38.48 \\ 4.11 & 2.44 & 0.19 & | & 56.69 \\ 2.69 & 1.64 & 0.36 & | & 38.54 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} 4.11 & 2.44 & 0.19 & | & 56.69 \\ 2.71 & 1.63 & 0.32 & | & 38.48 \\ 2.69 & 1.64 & 0.36 & | & 38.54 \end{pmatrix} \xrightarrow{m_{21} = -0.6594} m_{31} = -0.6545$$

$$\begin{pmatrix} 4.11 & 2.44 & 0.19 & | & 56.69 \\ 0 & 0.0211 & 0.1947 & | & 1.0986 \\ 0 & 0.0430 & 0.2356 & | & 1.4364 \end{pmatrix} \xrightarrow{} \rightarrow \begin{pmatrix} 4.11 & 2.44 & 0.19 & | & 56.69 \\ 0 & 0.0430 & 0.2356 & | & 1.4364 \\ 0 & 0.0211 & 0.1947 & | & 1.0986 \end{pmatrix} \xrightarrow{} m_{32} = -0.4907$$

$$\begin{pmatrix} 4.11 & 2.44 & 0.19 & | & 56.69 \\ 0 & 0.0430 & 0.2356 & | & 1.4364 \\ 0 & 0 & 0.0791 & | & 0.3938 \end{pmatrix} \longrightarrow \begin{cases} 4.11x_1 & + & 2.44x_2 & + & 0.19x_3 & = & 56.69 \\ & & & 0.0430x_2 & + & 0.2356x_3 & = & 1.4364 \\ & & & & & 0.0791x_3 & = & 0.3938 \end{cases}$$

$$\begin{cases} x_3 = 4.9785 \approx 5 \\ x_2 = 6.1271 \approx 6 \\ x_1 = 9.9255 \approx 10 \end{cases}$$

Verificação:

• Metal: $10 \times 2.71 + 6 \times 1.63 + 5 \times 0.32 = 38.48$

• Tecido: $10 \times 4.11 + 6 \times 2.44 + 5 \times 0.19 = 56.69$

• Borracha: $10 \times 2.69 + 6 \times 1.64 + 5 \times 0.36 = 38.54$

Solução: Podem ser produzidos 10 'Jeep', 6 'Coupé' e 5 'V6'.

2.2

$$\begin{cases} 50x_2 - 50x_1 - 150x_1 = 0 \\ 75x_3 - 75x_2 - 50x_2 + 50x_1 = 0 \\ 225x_4 - 225x_3 - 75x_3 + 75x_2 = 0 \\ 2000 - 225x_4 + 225x_3 = 0 \end{cases} \longrightarrow \begin{cases} 200x_1 - 50x_2 = 0 \\ 50x_1 - 125x_2 + 75x_3 = 0 \\ 75x_2 - 300x_3 + 225x_4 = 0 \\ 225x_3 - 225x_4 = -2000 \end{cases}$$

$$\begin{pmatrix}
200 & -50 & 0 & 0 & | & 0 \\
50 & -125 & 75 & 0 & | & 0 \\
0 & 75 & -300 & 225 & | & 0 \\
0 & 0 & 225 & -225 & | & -2000
\end{pmatrix}
\xrightarrow{m_{21} = -0.25}$$

$$m_{31} = 0$$

$$m_{41} = 0$$

$$\begin{pmatrix} 200 & -50 & 0 & 0 & | & 0 \\ 0 & -112.5 & 75 & 0 & | & 0 \\ 0 & 75 & -300 & 225 & | & 0 \\ 0 & 0 & 225 & -225 & | & -2000 \end{pmatrix} \xrightarrow{m_{32} = 0.66667}$$

$$\begin{pmatrix} 200 & -50 & 0 & 0 & | & 0 \\ 0 & -112.5 & 75 & 0 & | & 0 \\ 0 & 0 & -249.99998 & 225 & | & 0 \\ 0 & 0 & 225 & -225 & | & -2000 \end{pmatrix} \xrightarrow{m_{43} = 0.9}$$

$$\begin{pmatrix} 200 & -50 & 0 & 0 & | & 0 \\ 0 & -112.5 & 75 & 0 & | & 0 \\ 0 & 0 & -249.99998 & 225 & | & 0 \\ 0 & 0 & 0 & -22.5 & | & -2000 \end{pmatrix} \longrightarrow$$

$$\begin{cases} 200x_1 & -50x_2 & = 0 \\ -112.5x_2 & +75x_3 & = 0 \\ -249.999998x_3 & +225x_4 & = 0 \\ -22.5x_4 & = -2000 \end{cases} \Leftrightarrow \begin{cases} x_4 = 88.88889 \\ x_3 = 80.00001 \\ x_2 = 53.33334 \\ x_1 = 13.33334 \end{cases}$$

Solução: $(x_1, x_2, x_3, x_4) = (13.33334, 53.33334, 80.00001, 88.88889).$

2.3

$$\begin{pmatrix} 4 & 2 & 1 & -3 & | & 4 & 9 & 4 \\ 1 & 2 & -1 & 0 & | & 2 & 1 & 2 \\ 3 & -1 & 2 & 4 & | & 8 & 8 & -7 \\ 0 & 2 & 4 & 3 & | & 9 & 4 & 5 \end{pmatrix} \quad \begin{array}{c} \longrightarrow \\ m_{21} = -0.25 \\ m_{31} = -0.75 \\ m_{41} = 0 \end{array}$$

$$\begin{pmatrix} 4 & 2 & 1 & -3 & | & 4 & 9 & 4 \\ 0 & 1.5 & -1.25 & 0.75 & | & 1 & -1.25 & 1 \\ 0 & -2.5 & 1.25 & 6.25 & | & 5 & 1.25 & -10 \\ 0 & 2 & 4 & 3 & | & 9 & 4 & 5 \end{pmatrix} \xrightarrow{} 2 \leftrightarrow 3$$

$$\begin{pmatrix} 4 & 2 & 1 & -3 & | & 4 & 9 & 4 \\ 0 & -2.5 & 1.25 & 6.25 & | & 5 & 1.25 & -10 \\ 0 & 1.5 & -1.25 & 0.75 & | & 1 & -1.25 & 1 \\ 0 & 2 & 4 & 3 & | & 9 & 4 & 5 \end{pmatrix} \quad \begin{array}{c} \longrightarrow \\ m_{32} = 0.6 \\ m_{42} = 0.8 \end{array}$$

$$\begin{pmatrix} 4 & 2 & 1 & -3 & | & 4 & 9 & 4 \\ 0 & -2.5 & 1.25 & 6.25 & | & 5 & 1.25 & -10 \\ 0 & 0 & -0.5 & 4.5 & | & 4 & -0.5 & -5 \\ 0 & 0 & 5 & 8 & | & 13 & 5 & -3 \end{pmatrix} \longrightarrow 3 \leftrightarrow 4$$

$$\begin{pmatrix} 4 & 2 & 1 & -3 & | & 4 & 9 & 4 \\ 0 & -2.5 & 1.25 & 6.25 & | & 5 & 1.25 & -10 \\ 0 & 0 & 5 & 8 & | & 13 & 5 & -3 \\ 0 & 0 & -0.5 & 4.5 & | & 4 & -0.5 & -5 \end{pmatrix} \qquad \longrightarrow$$

$$m_{43} = 0.1$$

$$\begin{pmatrix} 4 & 2 & 1 & -3 & | & 4 & 9 & 4 \\ 0 & -2.5 & 1.25 & 6.25 & | & 5 & 1.25 & -10 \\ 0 & 0 & 5 & 8 & | & 13 & 5 & -3 \\ 0 & 0 & 0 & 5.3 & | & 5.3 & 0 & -5.3 \end{pmatrix}$$

Sistema 1:

$$\begin{cases} 4x_1 + 2x_2 + x_3 - 3x_4 = 4 \\ -2.5x_2 + 1.25x_3 + 6.25x_4 = 5 \\ 5x_3 + 8x_4 = 13 \end{cases} \Leftrightarrow \begin{cases} x_4 = 1 \\ x_3 = 1 \\ x_2 = 1 \\ x_1 = 1 \end{cases}$$

Sistema 2:

$$\begin{cases} 4x_1 + 2x_2 + x_3 - 3x_4 = 9 \\ -2.5x_2 + 1.25x_3 + 6.25x_4 = 1.25 \\ 5x_3 + 8x_4 = 5 \end{cases} \Leftrightarrow \begin{cases} x_4 = 0 \\ x_3 = 1 \\ x_2 = 0 \\ x_1 = 2 \end{cases}$$

Sistema 3:

$$\begin{cases} 4x_1 + 2x_2 + x_3 - 3x_4 = 4 \\ -2.5x_2 + 1.25x_3 + 6.25x_4 = -10 \\ 5x_3 + 8x_4 = -3 \\ 5.3x_4 = -5.3 \end{cases} \Leftrightarrow \begin{cases} x_4 = -1 \\ x_3 = 1 \\ x_2 = 2 \\ x_1 = -1 \end{cases}$$

Solução:

Sistema 1:
$$(x_1, x_2, x_3, x_4) = (1, 1, 1, 1)$$

Sistema 2:
$$(x_1, x_2, x_3, x_4) = (2, 0, 1, 0)$$

Sistema 3:
$$(x_1, x_2, x_3, x_4) = (-1, 2, 1, -1)$$

$$\begin{pmatrix} 1 & 0.5 & 0.5 & | & 2 \\ 0.5 & 1 & 0.5 & | & 2 \\ 0.5 & 0.5 & 1 & | & 2 \end{pmatrix} \qquad \xrightarrow{m_{21} = -0.5}$$

$$m_{31} = -0.5$$

$$\begin{pmatrix} 1 & 0.5 & 0.5 & | & 2 \\ 0 & 0.75 & 0.25 & | & 1 \\ 0 & 0.25 & 0.75 & | & 1 \end{pmatrix} \qquad \longrightarrow \qquad m_{32} = -0.333333$$

$$\begin{pmatrix}
1 & 0.5 & 0.5 & | & 2 \\
0 & 0.75 & 0.25 & | & 1 \\
0 & 0 & 0.666667 & | & 0.666667
\end{pmatrix}$$

$$\begin{cases} x_1 + 0.5x_2 + 0.5x_3 = 2 \\ 0.75x_2 + 0.25x_3 = 1 \Leftrightarrow \\ 0.666667x_3 = 0.666667 \end{cases}$$

$$\begin{cases} x_3 = 1 \\ x_2 = 1 \\ x_1 = 1 \end{cases}$$

Solução: $(x_1, x_2, x_3) = (1, 1, 1).$

b)
$$det(A) = (-1)^0 \times 1 \times 0.75 \times 0.666667 = 0.5$$
.

2.5 a)

$$\begin{pmatrix} 0.8 & 1.4 & 3.0 & | & 1 & 0 & 0 \\ 0.6 & 0.9 & 2.8 & | & 0 & 1 & 0 \\ 2.0 & 1.0 & 1.1 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{1 \leftrightarrow 3} \begin{pmatrix} 2.0 & 1.0 & 1.1 & | & 0 & 0 & 1 \\ 0.6 & 0.9 & 2.8 & | & 0 & 1 & 0 \\ 0.8 & 1.4 & 3.0 & | & 1 & 0 & 0 \end{pmatrix} \xrightarrow{m_{21} = -0.3} m_{31} = -0.4$$

$$\begin{pmatrix} 2.0 & 1.0 & 1.1 & | & 0 & 0 & 1 \\ 0 & 0.6 & 2.47 & | & 0 & 1 & -0.3 \\ 0 & 1.0 & 2.56 & | & 1 & 0 & -0.4 \end{pmatrix} \xrightarrow{2 \leftrightarrow 3} \begin{pmatrix} 2.0 & 1.0 & 1.1 & | & 0 & 0 & 1 \\ 0 & 1.0 & 2.56 & | & 1 & 0 & -0.4 \\ 0 & 0.6 & 2.47 & | & 0 & 1 & -0.3 \end{pmatrix} \xrightarrow{m_{32} = -0.6}$$

$$\begin{pmatrix}
2.0 & 1.0 & 1.1 & | & 0 & 0 & 1 \\
0 & 1.0 & 2.56 & | & 1 & 0 & -0.4 \\
0 & 0 & 0.934 & | & -0.6 & 1 & -0.06
\end{pmatrix}$$

 $\mathbf{1}^a$ coluna de A^{-1}

$$\begin{cases} 2.0x_1 + x_2 + 1.1x_3 = 0 \\ x_2 + 2.56x_3 = 1 \\ 0.934x_3 = -0.6 \end{cases} \Leftrightarrow \begin{cases} x_3 = -0.642398 \\ x_2 = 2.644540 \\ x_1 = -0.968951 \end{cases}$$

 2^a coluna de A^{-1}

$$\begin{cases} 2.0x_1 + x_2 + 1.1x_3 = 0 \\ x_2 + 2.56x_3 = 0 \Leftrightarrow \end{cases} \begin{cases} x_3 = 1.070664 \\ x_2 = -2.740899 \\ x_1 = 0.781584 \end{cases}$$

 3^a coluna de A^{-1}

$$\begin{cases} 2.0x_1 + x_2 + 1.1x_3 = 1 \\ x_2 + 2.56x_3 = -0.4 \Leftrightarrow \end{cases} \begin{cases} x_3 = -0.064240 \\ x_2 = -0.235546 \\ x_1 = 0.653105 \end{cases}$$

Solução:

$$A^{-1} = \begin{pmatrix} -0.968951 & 0.781584 & 0.653105 \\ 2.644540 & -2.740899 & -0.235546 \\ -0.642398 & 1.070664 & -0.064240 \end{pmatrix}$$

b) Como a matriz A já foi transformada na matriz triangular superior U por EGPP, basta fazer as mesmas operações no vector dos termos independentes b.

$$\begin{pmatrix} 12.6 \\ 10.8 \\ 4.0 \end{pmatrix} \xrightarrow{1 \leftrightarrow 3} \begin{pmatrix} 4.0 \\ 10.8 \\ 12.6 \end{pmatrix} \xrightarrow{m_{21} = -0.3} m_{31} = -0.4$$

$$\begin{pmatrix} 4.0 \\ 9.6 \\ 11 \end{pmatrix} \xrightarrow{2 \leftrightarrow 3} \begin{pmatrix} 4.0 \\ 11 \\ 9.6 \end{pmatrix} \xrightarrow{m_{32} = -0.6}$$

$$\begin{pmatrix} 4.0 \\ 11 \\ 3 \end{pmatrix}$$

$$\begin{cases} 2.0x_1 + x_2 + 1.1x_3 = 4.0 \\ x_2 + 2.56x_3 = 11 \Leftrightarrow \\ 0.934x_3 = 3 \end{cases}$$

$$\begin{cases} x_3 = 3.211991 \\ x_2 = 2.777303 \\ x_1 = -1.155247 \end{cases}$$

Solução: $(x_1, x_2, x_3) = (13.02569594, -26.50107067, 10.226988073).$

2.6 a)

$$\begin{pmatrix} 2.4 & 6.0 & -2.7 & 5.0 & | & 14.6 \\ -2.1 & -2.7 & 5.9 & -4.0 & | & -11.4 \\ 3.0 & 5.0 & -4.0 & 6.0 & | & 14.0 \\ 0.9 & 1.9 & 4.7 & 1.8 & | & -0.9 \end{pmatrix} \longrightarrow 1 \leftrightarrow 3$$

$$\begin{pmatrix} 3.0 & 5.0 & -4.0 & 6.0 & | & 14.0 \\ -2.1 & -2.7 & 5.9 & -4.0 & | & -11.4 \\ 2.4 & 6.0 & -2.7 & 5.0 & | & 14.6 \\ 0.9 & 1.9 & 4.7 & 1.8 & | & -0.9 \end{pmatrix} \qquad \begin{matrix} \longrightarrow \\ m_{21} = 0.7 \\ m_{31} = -0.8 \\ m_{41} = -0.3 \end{matrix}$$

$$\begin{pmatrix} 3.0 & 5.0 & -4.0 & 6.0 & | & 14.0 \\ 0 & 0.8 & 3.1 & 0.2 & | & -1.6 \\ 0 & 2.0 & 0.5 & 0.2 & | & 3.4 \\ 0 & 0.4 & 5.9 & 0 & | & -5.1 \end{pmatrix} \xrightarrow{} 2 \leftrightarrow 3$$

$$\begin{pmatrix} 3.0 & 5.0 & -4.0 & 6.0 & | & 14.0 \\ 0 & 2.0 & 0.5 & 0.2 & | & 3.4 \\ 0 & 0.8 & 3.1 & 0.2 & | & -1.6 \\ 0 & 0.4 & 5.9 & 0 & | & -5.1 \end{pmatrix} \quad m_{32} = -0.4$$

$$m_{42} = -0.2$$

$$\begin{pmatrix} 3.0 & 5.0 & -4.0 & 6.0 & | & 14.0 \\ 0 & 2.0 & 0.5 & 0.2 & | & 3.4 \\ 0 & 0 & 2.9 & 0.12 & | & -2.96 \\ 0 & 0 & 5.8 & -0.04 & | & -5.78 \end{pmatrix} \longrightarrow 3 \leftrightarrow 4$$

$$\begin{pmatrix} 3.0 & 5.0 & -4.0 & 6.0 & | & 14.0 \\ 0 & 2.0 & 0.5 & 0.2 & | & 3.4 \\ 0 & 0 & 5.8 & -0.04 & | & -5.78 \\ 0 & 0 & 2.9 & 0.12 & | & -2.96 \end{pmatrix} \longrightarrow m_{43} = -0.5$$

$$\begin{pmatrix} 3.0 & 5.0 & -4.0 & 6.0 & | & 14.0 \\ 0 & 2.0 & 0.5 & 0.2 & | & 3.4 \\ 0 & 0 & 5.8 & -0.04 & | & -5.78 \\ 0 & 0 & 0 & 0.14 & | & -0.07 \end{pmatrix}$$

$$\begin{cases} 3.0x_1 + 5.0x_2 - 4.0x_3 + 6.0x_4 = 14.0 \\ 2.0x_2 + 0.5x_3 + 0.2x_4 = 3.4 \\ 5.8x_3 - 0.04x_4 = -5.78 \end{cases} \Leftrightarrow \begin{cases} x_4 = -0.5 \\ x_3 = -1 \\ x_2 = 2 \\ x_1 = 1 \end{cases}$$

Solução: $(x_1, x_2, x_3, x_4) = (1, 2, -1, -0.5)$

- b) $\det A = (-1)^3 \times 3 \times 2 \times 5.8 \times 0.14 = -4.872$
- c) Como já se transformou a matriz A na matriz U na alínea a) por EGPP, basta aplicar o mesmo procedimento à matriz I.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow m_{21} = 0.7$$

$$m_{31} = -0.8$$

$$m_{41} = -0.3$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0.7 & 0 \\ 1 & 0 & -0.8 & 0 \\ 0 & 0 & -0.3 & 1 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & -0.8 & 0 \\ 0 & 1 & 0.7 & 0 \\ 0 & 0 & -0.3 & 1 \end{pmatrix} \xrightarrow{m_{32} = -0.4} m_{42} = -0.2$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & -0.8 & 0 \\ -0.4 & 1 & 1.02 & 0 \\ -0.2 & 0 & -0.14 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & -0.8 & 0 \\ -0.2 & 0 & -0.14 & 1 \\ -0.4 & 1 & 1.02 & 0 \end{pmatrix} \longrightarrow m_{43} = -0.5$$

$$\begin{pmatrix}
3.0 & 5.0 & -4.0 & 6.0 & | & 0 & 0 & 1 & 0 \\
0 & 2.0 & 0.5 & 0.2 & | & 1 & 0 & -0.8 & 0 \\
0 & 0 & 5.8 & -0.04 & | & -0.2 & 0 & -0.14 & 1 \\
0 & 0 & 0 & 0.14 & | & -0.3 & 1 & 1.09 & -0.5
\end{pmatrix}$$

 $\mathbf{1}^a$ coluna de A^{-1}

$$\begin{cases} 3.0x_1 + 5.0x_2 - 4.0x_3 + 6.0x_4 = 0 \\ 2.0x_2 + 0.5x_3 + 0.2x_4 = 1 \\ 5.8x_3 - 0.04x_4 = -0.2 \\ 0.14x_4 = -0.3 \end{cases} \Leftrightarrow \begin{cases} x_4 = -2.142857 \\ x_3 = -0.049261 \\ x_2 = 0.726601 \\ x_1 = 3.009031 \end{cases}$$

 $\mathbf{2}^a$ coluna de A^{-1}

$$\begin{cases} 3.0x_1 + 5.0x_2 - 4.0x_3 + 6.0x_4 = 0 \\ 2.0x_2 + 0.5x_3 + 0.2x_4 = 0 \\ 5.8x_3 - 0.04x_4 = 0 \\ 0.14x_4 = 1 \end{cases} \Leftrightarrow \begin{cases} x_4 = 7.142857 \\ x_3 = 0.049261 \\ x_2 = -0.726601 \\ x_1 = -13.009031 \end{cases}$$

 ${f 3}^a$ coluna de A^{-1}

$$\begin{cases} 3.0x_1 + 5.0x_2 - 4.0x_3 + 6.0x_4 = 1 \\ 2.0x_2 + 0.5x_3 + 0.2x_4 = -0.8 \\ 5.8x_3 - 0.04x_4 = -0.14 \\ 0.14x_4 = 1.09 \end{cases} \Leftrightarrow \begin{cases} x_4 = 7.785714 \\ x_3 = 0.029557 \\ x_2 = -1.185961 \\ x_1 = -13.222084 \end{cases}$$

 4^a coluna de A^{-1}

$$\begin{cases} 3.0x_1 + 5.0x_2 - 4.0x_3 + 6.0x_4 = 0 \\ 2.0x_2 + 0.5x_3 + 0.2x_4 = 0 \\ 5.8x_3 - 0.04x_4 = 1 \\ 0.14x_4 = -0.5 \end{cases} \Leftrightarrow \begin{cases} x_4 = -3.571429 \\ x_3 = 0.147783 \\ x_2 = 0.320197 \\ x_1 = 6.806240 \end{cases}$$

Solução:

$$A^{-1} = \begin{pmatrix} 3.009031 & -13.009031 & -13.222084 & 6.806240 \\ 0.726601 & -0.726601 & -1.185961 & 0.320197 \\ -0.049261 & 0.049261 & 0.029557 & 0.147783 \\ -2.142857 & 7.142857 & 7.785714 & -3.571429 \end{pmatrix}$$

3 Equações não lineares

3.1 a)
$$x^3 - 3x + 1 = 0$$

 $x \approx -2$, $x \approx 0.5$ e $x \approx 1.5$.

b) $\sin x + x - 2 = 0$

 $x \approx 1$.

c)
$$e^x + x - 1 = 0$$

 $x \approx 0$.

$$d) x + \ln x = 0$$

3.2 A velocidade é a primeira derivada do comprimento da fissura a(x), isto é, $a'(x) \equiv f(x)$. Pretende-se f(x) = 0 com

$$f(x) = 10.1x^4 - 5.12x^3 + 9.18x^2 - 5.84x - 5.66.$$

• 1^a iteração (k=2)

$$x_1 = 0.8, \quad f(x_1) = -2.94128$$

 $x_2 = 1, \quad f(x_2) = 2.66$

$$x_3 = x_2 - \frac{(x_2 - x_1)f(x_2)}{f(x_2) - f(x_1)} = 0.905022$$

Critério de Paragem

$$f(x_3) = -0.445866$$

$$|f(x_3)| \le \varepsilon_2 \Leftrightarrow 0.445866 \le 0.01$$
 (falso)

Nota: Como esta condição falha, não há necessidade de verificar a outra (erro relativo da aproximação).

• 2^a iteração (k=3)

$$x_2 = 1, \quad f(x_2) = 2.66$$

$$x_3 = 0.905022, \quad f(x_3) = -0.445866$$

$$x_4 = x_3 - \frac{(x_3 - x_2)f(x_3)}{f(x_3) - f(x_2)} = 0.918657$$

Critério de Paragem

$$f(x_4) = -0.053709$$

 $|f(x_4)| \le \varepsilon_2 \Leftrightarrow 0.053709 \le 0.01$ (falso)

• 3^a iteração (k=4)

$$x_3 = 0.905022,$$
 $f(x_3) = -0.445866$
 $x_4 = 0.918657,$ $f(x_4) = -0.053709$
 $x_5 = x_4 - \frac{(x_4 - x_3)f(x_4)}{f(x_4) - f(x_3)} = 0.920524$

Critério de Paragem

$$f(x_5) = -0.001314$$

 $|f(x_5)| \le \varepsilon_2 \Leftrightarrow 0.001314 \le 0.01$ (verdadeiro)

Nota: Uma vez que se verifica esta condição, para o processo iterativo poder terminar tem que se verificar também a outra.

$$\frac{|x_5 - x_4|}{|x_5|} = 0.002028 \le \varepsilon_1 \quad \text{(verdadeiro)}$$

Uma vez que se verificam ambas as condições do critério de paragem, o processo iterativo termina com $x \approx 0.920524$ e $f(x) \approx -0.001314$.

3.3 Substituindo os valores de P, A e n, vem

$$4000 = 20000 \frac{i(1+i)^6}{(1+i)^6 - 1} \quad \Leftrightarrow \quad 20000 \frac{i(1+i)^6}{(1+i)^6 - 1} - 4000 = 0 \quad \Leftrightarrow \quad \frac{5i(1+i)^6}{(1+i)^6 - 1} - 1 = 0$$
 Logo,

$$f(i) = \frac{5i(1+i)^6}{(1+i)^6 - 1} - 1.$$

• 1^a iteração (k=2)

$$i_1 = 0.05, \quad f(i_1) = -0.014913$$

 $i_2 = 0.15, \quad f(i_2) = 0.321185$
 $i_3 = i_2 - \frac{(i_2 - i_1)f(i_2)}{f(i_2) - f(i_1)} = 0.054437$

Critério de Paragem

$$f(i_3) = -0.000891$$

$$|f(i_3)| \le \varepsilon_2 \Leftrightarrow 0.000891 \le 0.005$$
 (verdadeiro)

Nota: Uma vez que se verifica esta condição, para o processo iterativo poder terminar tem que se verificar também a outra.

$$\frac{|i_3 - i_2|}{|i_3|} \le \varepsilon_1 \Leftrightarrow 1.755479 \le 0.005 \quad \text{(falso)}$$

• 2^a iteração (k=3)

$$i_2 = 0.15, \quad f(i_2) = 0.321185$$

$$i_3 = 0.054437$$
, $f(i_3) = -0.000891$

$$i_4 = i_3 - \frac{(i_3 - i_2)f(i_3)}{f(i_3) - f(i_2)} = 0.054701$$

Critério de Paragem

$$f(i_4) = -0.000054$$

$$|f(i_4)| \le \varepsilon_2 \Leftrightarrow 0.000054 \le 0.005$$
 (verdadeiro)

Nota: Uma vez que se verifica esta condição, para o processo iterativo poder terminar tem que se verificar também a outra.

$$\frac{|i_4 - i_3|}{|i_4|} \le \varepsilon_1 \Leftrightarrow 0.004826 \le 0.005$$
 (verdadeiro)

Uma vez que se verificam ambas as condições do critério de paragem, o processo iterativo termina com $i \approx 0.054701$ e $f(i) \approx 0.000054$.

3.4 Substituindo os valores de r e v, vem

$$f(x) = \frac{\pi h^2 (3 - h)}{3} - 0.5.$$

a) • 1ª iteração (k=2)

$$x_1 = 0.25, \quad f(x_1) = -0.320013$$

$$x_2 = 0.5, \quad f(x_2) = 0.154498$$

$$x_3 = x_2 - \frac{(x_2 - x_1)f(x_2)}{f(x_2) - f(x_1)} = 0.418601$$

•
$$2^a$$
 iteração $(k=3)$

$$x_2 = 0.5, \quad f(x_2) = 0.154498$$

 $x_3 = 0.418601, \quad f(x_3) = -0.026321$
 $x_4 = x_3 - \frac{(x_3 - x_2)f(x_3)}{f(x_3) - f(x_2)} = 0.430450$

•
$$3^a$$
 iteração $(k=4)$

$$x_3 = 0.418601, \quad f(x_3) = -0.026321$$

$$x_4 = 0.430450, \quad f(x_4) = -0.001424$$

$$x_5 = x_4 - \frac{(x_4 - x_3)f(x_4)}{f(x_4) - f(x_3)} = 0.431128$$

$$x \approx 0.431128.$$

b) • 1^a iteração (k=2)

$$x_1 = 2.5, \quad f(x_1) = 2.772492$$

 $x_2 = 3, \quad f(x_2) = -0.5$
 $x_3 = x_2 - \frac{(x_2 - x_1)f(x_2)}{f(x_2) - f(x_1)} = 2.923606$

•
$$2^a$$
 iteração $(k=3)$

$$x_2 = 3$$
, $f(x_2) = -0.5$
 $x_3 = 2.923606$, $f(x_3) = 0.183794$
 $x_4 = x_3 - \frac{(x_3 - x_2)f(x_3)}{f(x_3) - f(x_2)} = 2.944140$

•
$$3^a$$
 iteração $(k=4)$

$$x_3 = 2.923606, \quad f(x_3) = 0.183794$$
 $x_4 = 2.944140, \quad f(x_4) = -0.007045$
 $x_5 = x_4 - \frac{(x_4 - x_3)f(x_4)}{f(x_4) - f(x_3)} = 2.944958$
 $\approx 2.944958.$

A segunda solução não tem significado físico uma vez que a altura máxima que o líquido poderá ter é 2r=2.

3.5 a) Com base na informação da figura,

•
$$\sin(\theta_1) = \frac{x}{\mathbf{T}_1}$$

•
$$\sin(\theta_2) = \frac{L - x}{\mathbf{T}_2}$$

•
$$T_1 = \sqrt{a^2 + x^2}$$

•
$$T_2 = \sqrt{(L-x)^2 + b^2}$$

Pretende-se que $C_1 \sin(\theta_1) = C_2 \sin(\theta_2)$. Assim, vem

$$C_1 \sin(\theta_1) = C_2 \sin(\theta_2) \quad \Leftrightarrow$$

$$C_1 \frac{x}{\sqrt{a^2 + x^2}} = C_2 \frac{L - x}{\sqrt{(L - x)^2 + b^2}} \quad \Leftrightarrow$$

$$\frac{C_1^2 x^2}{a^2 + x^2} = \frac{C_2^2 (L - x)^2}{(L - x)^2 + b^2} \quad \Leftrightarrow$$

$$C_2^2(L-x)^2(a^2+x^2) = C_1^2x^2((L-x)^2+b^2)$$
, como se pretendia mostrar.

b) Substituindo na equação anterior $a=3,\,b=1,\,L=4,\,C_1=1$ e $C_2=2,\,{\rm vem}$

$$2^{2}(4-x)^{2}(3^{2}+x^{2}) = 1^{2}x^{2}\left((4-x)^{2}+1^{2}\right) \Leftrightarrow$$

$$4(16-8x+x^{2})^{2}(9+x^{2})-x^{2}(16-8x+x^{2}+1) = 0 \Leftrightarrow$$

$$576+64x^{2}-288x-32x^{3}+36x^{2}+4x^{4}-17x^{2}+8x^{3}-x^{4} = 0 \Leftrightarrow$$

$$3x^{4}-24x^{3}+83x^{2}-288x+576 = 0$$

Logo,

$$f(x) = 3x^4 - 24x^3 + 83x^2 - 288x + 576.$$

A primeira derivada de f(x) é

$$f'(x) = 12x^3 - 72x^2 + 166x - 228.$$

• 1^a iteração (k=1)

$$x_1 = 3.75, \quad f(x_1) = -9.175781, \quad f'(x_1) = -45.1875$$

$$f(x_1)$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 3.546940$$

• 2^a iteração (k=2)

$$x_2 = 3.546940, \quad f(x_2) = 2.555819, \quad f'(x_2) = -69.544957$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 3.583691$$

Ao fim da segunda iteração, $x \approx 3.583691$ e o erro relativo é

$$\frac{|x_3 - x_2|}{|x_3|} = 0.010255.$$

3.6 Substituindo o valor de y, vem

$$f(t) = 7(2 - 0.9^t) - 10.$$

A primeira derivada de f(t) é

$$f'(t) = -7 \times 0.9^t \ln(0.9).$$

• 1^a iteração (k=1)

$$t_1 = 6$$
, $f(t_1) = 0.279913$, $f'(t_1) = 0.391950$

$$t_2 = t_1 - \frac{f(t_1)}{f'(t_1)} = 5.285845$$

Critério de Paragem

$$f(t_2) = -0.010800$$

$$|f(t_2)| \le \varepsilon_2 \Leftrightarrow 0.010800 \le 0.001$$
 (falso)

Nota: Como esta condição falha, não há necessidade de verificar a outra (erro relativo da aproximação).

• 2^a iteração (k=2)

$$t_2 = 5.285845$$
, $f(t_2) = -0.0108004$, $f'(t_2) = 0.422580$

$$t_3 = t_2 - \frac{f(t_2)}{f'(t_2)} = 5.311402$$

Critério de Paragem $f(t_3) = -0.000015$

$$|f(t_3)| \le \varepsilon_2 \Leftrightarrow 0.000015 \le 0.001$$
 (verdadeiro)

Nota: Uma vez que se verifica esta condição, para o processo iterativo poder terminar tem que se verificar também a outra.

$$\frac{|t_3 - t_2|}{|t_3|} \le \varepsilon_1 \Leftrightarrow 0.004812 \le 0.001 \quad \text{(falso)}$$

• 3^a iteração (k=3)

$$t_3 = 5.311402$$
, $f(t_3) = -0.000015$, $f'(t_3) = 0.421444$

$$t_4 = t_3 - \frac{f(t_3)}{f'(t_3)} = 5.311438$$

Critério de Paragem $f(t_4) = 0.000000$

$$|f(t_3)| \le \varepsilon_2 \Leftrightarrow 0.000000 \le 0.001$$
 (verdadeiro)

Nota: Uma vez que se verifica esta condição, para o processo iterativo poder terminar tem que se verificar também a outra.

$$\frac{|t_4 - t_3|}{|t_4|} \le \varepsilon_1 \Leftrightarrow 0.000007 \le 0.001 \quad \text{(verdadeiro)}$$

Uma vez que se verificam ambas as condições do critério de paragem, o processo iterativo termina com $t \approx 5.311438 \text{h}$ e $f(t) \approx 0.000000$.

3.7 Substituindo os valores de r e ρ e simplificando, vem

$$f(x) = x^3 - 30x^2 + 2552.$$

A primeira derivada de f(x) é

$$f'(x) = 3x^2 - 60x.$$

• 1^a iteração (k=1)

$$x_1 = 10, \quad f(x_1) = 552, \quad f'(x_1) = -300$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 11.84$$

Critério de Paragem

$$f(x_2) = 6.229504$$

$$|f(x_2)| \le \varepsilon_2 \Leftrightarrow 6.229504 \le 0.001$$
 (falso)

Nota: Como esta condição falha, não há necessidade de verificar a outra (erro relativo da aproximação).

• 2^a iteração (k=2)

$$x_2 = 11.84$$
, $f(x_2) = 6.229504$, $f'(x_2) = -289.8432$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 11.861493$$

Critério de Paragem

$$f(x_3) = 0.002464$$

$$|f(x_3)| \le \varepsilon_2 \Leftrightarrow 0.0002464 \le 0.001$$
 (falso)

Nota: Como esta condição falha, não há necessidade de verificar a outra (erro relativo da aproximação).

• 3^a iteração (k=3)

$$x_3 = 11.861493$$
, $f(x_3) = 0.002464$, $f'(x_3) = -289.604531$

$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} = 11.861502$$

Critério de Paragem

$$f(x_4) = 0.000143$$

$$|f(x_4)| \le \varepsilon_2 \Leftrightarrow 0.000143 \le 0.001$$
 (verdadeiro)

Nota: Uma vez que se verifica esta condição, para o processo iterativo poder terminar tem que se verificar também a outra.

$$\frac{|x_4 - x_3|}{|x_4|} \le \varepsilon_1 \Leftrightarrow 0.000001 \le 0.001 \quad \text{(verdadeiro)}$$

Uma vez que se verificam ambas as condições do critério de paragem, o processo iterativo termina com $x \approx 11.861502$ e $f(x) \approx 0.000143$.

3.8

$$\begin{cases} x_1^4 + 0.068x_1 - x_2^4 - 0.058x_2 &= 0.015 \\ x_1^4 + 0.058x_1 - 2x_2^4 - 0.117x_2 &= 0 \end{cases} \Leftrightarrow \begin{cases} x_1^4 + 0.068x_1 - x_2^4 - 0.058x_2 - 0.015 &= 0 \\ x_1^4 + 0.058x_1 - 2x_2^4 - 0.117x_2 &= 0 \end{cases}$$

$$f(x) = \begin{pmatrix} x_1^4 + 0.068x_1 - x_2^4 - 0.058x_2 - 0.015 \\ x_1^4 + 0.058x_1 - 2x_2^4 - 0.117x_2 \end{pmatrix}, \quad J(x) = \begin{pmatrix} 4x_1^3 + 0.068 & -4x_2^3 - 0.058 \\ 4x_1^3 + 0.058 & -8x_2^3 - 0.117 \end{pmatrix}$$

• 1^a iteração (k=1)

$$x_1 = \begin{pmatrix} 0.3 \\ 0.3 \end{pmatrix}, \quad f(x_1) = \begin{pmatrix} -0.012 \\ -0.0258 \end{pmatrix}, \quad J(x_1) = \begin{pmatrix} 0.176 & -0.166 \\ 0.166 & -0.333 \end{pmatrix}$$

Resolver o sistema linear $J(x_1)\Delta_1 = -f(x_1)$ por EGPP para calcular Δ_1 :

$$\begin{pmatrix} 0.176 & -0.166 & | & 0.012 \\ 0.166 & -0.333 & | & 0.0258 \end{pmatrix} \xrightarrow{m_{21} = -0.943182} \begin{pmatrix} 0.176 & -0.166 & | & 0.012 \\ 0 & -0.176432 & | & 0.014482 \end{pmatrix} \xrightarrow{}$$

$$\Delta_1 = \begin{pmatrix} -0.009237 \\ -0.082083 \end{pmatrix}$$

$$x_2 = x_1 + \Delta_1 = \begin{pmatrix} 0.290763 \\ 0.217917 \end{pmatrix}$$

• 2^a iteração (k=2)

$$x_2 = \begin{pmatrix} 0.290763 \\ 0.217917 \end{pmatrix}, \quad f(x_2) = \begin{pmatrix} -0.002975 \\ -0.005995 \end{pmatrix}, \quad J(x_2) = \begin{pmatrix} 0.166328 & -0.099394 \\ 0.156328 & -0.199787 \end{pmatrix}$$

Resolver o sistema linear $J(x_2)\Delta_2=-f(x_2)$ por EGPP para calcular Δ_2 :

$$\begin{pmatrix} 0.166328 & -0.099394 & | & 0.002975 \\ 0.156328 & -0.199787 & | & 0.005995 \end{pmatrix} \xrightarrow{m_{21}} = -0.939878$$

$$\begin{pmatrix} 0.166328 & -0.099394 & | & 0.002975 \\ 0 & -0.106369 & | & 0.003199 \end{pmatrix} \longrightarrow \Delta x_2 = \begin{pmatrix} -0.000086 \\ -0.030075 \end{pmatrix}$$

$$x_3 = x_2 + \Delta_2 = \begin{pmatrix} 0.290677\\ 0.187842 \end{pmatrix}$$

 $Erro\ relativo$

$$\frac{\|\Delta_2\|_2}{\|x_3\|_2} = 0.086900$$

$$x \approx \begin{pmatrix} 0.290677 \\ 0.187842 \end{pmatrix}$$
.

3.9 Substituindo $m \in n$, vem

$$\begin{cases}
-x_2 + 2x_1^2 &= 4 \\
-x_2 - x_2^3 - x_1 &= 8
\end{cases} \Leftrightarrow \begin{cases}
-x_2 + 2x_1^2 - 4 &= 0 \\
-x_2 - x_2^3 - x_1 - 8 &= 0
\end{cases}$$

$$f(x) = \begin{pmatrix} -x_2 + 2x_1^2 - 4 \\ -x_2 - x_2^3 - x_1 - 8 \end{pmatrix}, \quad J(x) = \begin{pmatrix} 4x_1 & -1 \\ -1 & -1 - 3x_2^2 \end{pmatrix}$$

• 1ª iteração (k=1)

$$x_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \quad f(x_1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad J(x_1) = \begin{pmatrix} 4 & -1 \\ -1 & -13 \end{pmatrix}$$

Resolver o sistema linear $J(x_1)\Delta_1 = -f(x_1)$ por EGPP para calcular Δ_1 :

$$\begin{pmatrix} 4 & -1 & | & 0 \\ -1 & -13 & | & -1 \end{pmatrix} \xrightarrow{m_{21}} \begin{pmatrix} 4 & -1 & | & 0 \\ 0 & -13.25 & | & -1 \end{pmatrix} \longrightarrow$$

$$\Delta_1 = \begin{pmatrix} 0.018868 \\ 0.075472 \end{pmatrix}$$

$$x_2 = x_1 + \Delta_1 = \begin{pmatrix} 1.018868 \\ -1.924528 \end{pmatrix}$$

Critério de Paragem

$$f(x_2) = \begin{pmatrix} 0.000712\\ 0.033742 \end{pmatrix}$$

$$||f(x_2)||_2 \le \varepsilon_2 \Leftrightarrow 0.033749 \le 0.01$$
 (falso)

Nota: Como esta condição falha, não há necessidade de verificar a outra (erro relativo da aproximação).

• 2^a iteração (k=2)

$$x_2 = \begin{pmatrix} 1.018868 \\ -1.924528 \end{pmatrix}, \quad f(x_2) = \begin{pmatrix} 0.000712 \\ 0.033742 \end{pmatrix}, \quad J(x_2) = \begin{pmatrix} 4.075472 & -1 \\ -1 & -12.111424 \end{pmatrix}$$

Resolver o sistema linear $J(x_2)\Delta_2 = -f(x_2)$ por EGPP para calcular Δ_2 :

$$\begin{pmatrix} 4.075472 & -1 & | & -0.000712 \\ -1 & -12.111424 & | & -0.033742 \end{pmatrix} \xrightarrow{m_{21}} = 0.245370$$

$$\begin{pmatrix} 4.075472 & -1 & | & -0.000712 \\ 0 & -12.356794 & | & -0.033917 \end{pmatrix} \longrightarrow$$

$$\Delta_2 = \begin{pmatrix} 0.000499\\ 0.002745 \end{pmatrix}$$

$$x_3 = x_2 + \Delta_2 = \begin{pmatrix} 1.019367 \\ -1.921783 \end{pmatrix}$$

Critério de Paragem

$$f(x_3) = \begin{pmatrix} 0.000001\\ 0.000041 \end{pmatrix}$$

$$||f(x_3)|| \le \varepsilon_2 \Leftrightarrow 0.000041 \le 0.01$$
 (verdadeiro)

Nota: Uma vez que se verifica esta condição, para o processo iterativo poder terminar tem que se verificar também a outra.

$$\frac{\|\Delta x_2\|_2}{\|x_3\|_2} \le \varepsilon_1 \Leftrightarrow 0.001283 \le 0.01 \quad \text{(verdadeiro)}$$

Uma vez que se verificam ambas as condições do critério de paragem, o processo iterativo termina com $x \approx (1.019367, -1.921783)^T$.

3.10

$$\begin{cases} e^{-x} - 2 &= 0\\ 2y + 2 &= 0 \end{cases}$$

$$f(x,y) = \begin{pmatrix} e^{-x} - 2 \\ 2y + 2 \end{pmatrix}, \quad J(x,y) = \begin{pmatrix} -e^{-x} & 0 \\ 0 & 2 \end{pmatrix}$$

• 1^a iteração (k=1)

$$(x_1, y_1) = (-1, 1), \quad f(x_1, y_1) = \begin{pmatrix} 0.718282 \\ 4 \end{pmatrix}, \quad J(x_1, y_1) = \begin{pmatrix} -2.718282 & 0 \\ 0 & 2 \end{pmatrix}$$

Resolver o sistema linear $J(x_1,y_1)\Delta_1=-f(x_1,y_1)$ por EGPP para calcular Δ_1 :

$$\begin{pmatrix} -2.718282 & 0 & | & -0.718282 \\ 0 & 2 & | & -4 \end{pmatrix} \longrightarrow$$

$$\Delta_1 = \begin{pmatrix} 0.264241 \\ -2 \end{pmatrix}$$

$$(x_2, y_2) = (x_1, y_1) + \Delta_1 = \begin{pmatrix} -0.735759 \\ -1 \end{pmatrix}$$

Critério de paragem

$$\frac{\|\Delta_1\|_2}{\|(x_2, y_2)\|_2} \le 0.05 \Leftrightarrow 1.624944 \le 0.05 \qquad \text{(falso)}$$

• 2^a iteração (k=2)

$$(x_2, y_2) = (-0.735759, -1), \quad f(x_2, y_2) = \begin{pmatrix} 0.0.087065 \\ 0 \end{pmatrix}, \quad J(x_2, y_2) = \begin{pmatrix} -2.087065 & 0 \\ 0 & 2 \end{pmatrix}$$

Resolver o sistema linear $J(x_2, y_2)\Delta_2 = -f(x_2, y_2)$ por EGPP para calcular Δ_2 :

$$\begin{pmatrix} -2.087065 & 0 & | & -0.087065 \\ 0 & 2 & | & 0 \end{pmatrix} \longrightarrow$$

$$\Delta_2 = \begin{pmatrix} 0.041717 \\ 0 \end{pmatrix}$$

$$(x_3, y_3) = (x_2, y_2) + \Delta_2 = \begin{pmatrix} -0.694042 \\ -1 \end{pmatrix}$$

Critério de paragem

$$\frac{\|\Delta_2\|_2}{\|(x_3, y_3)\|_2} \le 0.05 \Leftrightarrow 0.034272 \le 0.05 \qquad \text{(verdadeiro)}$$

$$(x,y) \approx (-0.694042, -1).$$

3.11

$$\begin{cases} x_1^2 + x_2^2 &= 2 \\ x_1^2 - x_2^2 &= 1 \end{cases} \Leftrightarrow \begin{cases} x_1^2 + x_2^2 - 2 &= 0 \\ x_1^2 - x_2^2 - 1 &= 0 \end{cases}$$

$$f(x) = \begin{pmatrix} x_1^2 + x_2^2 - 2 \\ x_1^2 - x_2^2 - 1 \end{pmatrix}, \quad J(x) = \begin{pmatrix} 2x_1 & 2x_2 \\ 2x_1 & -2x_2 \end{pmatrix}$$

• 1ª iteração (k=1)

$$x_1 = \begin{pmatrix} 1.5 \\ 0.5 \end{pmatrix}, \quad f(x_1) = \begin{pmatrix} 0.5 \\ 1 \end{pmatrix}, \quad J(x_1) = \begin{pmatrix} 3 & 1 \\ 3 & -1 \end{pmatrix}$$

Resolver o sistema linear $J(x_1)\Delta_1 = -f(x_1)$ por EGPP para calcular Δ_1 :

$$\begin{pmatrix} 3 & 1 & | & -0.5 \\ 3 & -1 & | & -1 \end{pmatrix} \xrightarrow{m_{21} = -1} \begin{pmatrix} 3 & 1 & | & -0.5 \\ 0 & -2 & | & -0.5 \end{pmatrix} \longrightarrow$$

$$\Delta_1 = \begin{pmatrix} -0.25\\ 0.25 \end{pmatrix}$$

$$x_2 = x_1 + \Delta_1 = \begin{pmatrix} 1.25 \\ 0.75 \end{pmatrix}$$

Critério de Paragem

$$f(x_2) = \begin{pmatrix} 0.125 \\ 0 \end{pmatrix}$$

$$||f(x_2)|| \le \varepsilon_2 \Leftrightarrow 0.125 \le 0.05$$
 (falso)

Nota: Como esta condição falha, não há necessidade de verificar a outra (erro relativo da aproximação).

• 2^a iteração (k=2)

$$x_2 = \begin{pmatrix} 1.25 \\ 0.75 \end{pmatrix}, \quad f(x_2) = \begin{pmatrix} 0.125 \\ 0 \end{pmatrix}, \quad J(x_2) = \begin{pmatrix} 2.5 & 1.5 \\ 2.5 & -1.5 \end{pmatrix}$$

Resolver o sistema linear $J(x_2)\Delta_2 = -f(x_2)$ por EGPP para calcular Δ_2 :

$$\begin{pmatrix} 2.5 & 1.5 & | & -0.125 \\ 2.5 & -1.5 & | & 0 \end{pmatrix} \xrightarrow{m_{21} = -1} \begin{pmatrix} 2.5 & 1.5 & | & -0.125 \\ 0 & -3 & | & 0.125 \end{pmatrix} \longrightarrow$$

$$\Delta_2 = \begin{pmatrix} -0.025 \\ -0.041667 \end{pmatrix}$$

$$x_3 = x_2 + \Delta_2 = \begin{pmatrix} 1.225\\ 0.708333 \end{pmatrix}$$

Critério de Paragem

$$f(x_3) = \begin{pmatrix} 0.002361 \\ -0.001111 \end{pmatrix}$$

$$||f(x_3)|| \le \varepsilon_2 \Leftrightarrow 0.002609 \le 0.05$$
 (verdadeiro)

Nota: Uma vez que se verifica esta condição, para o processo iterativo poder terminar tem que se verificar também a outra.

$$\frac{\|\Delta x_2\|_2}{\|x_3\|_2} \le \varepsilon_1 \Leftrightarrow 0.034339 \le 0.05 \quad \text{(verdadeiro)}$$

Uma vez que se verificam ambas as condições do critério de paragem, o processo iterativo termina com $x \approx (1.225, 0.708333)^T$.

3.12 a)
$$\begin{cases} (x-x_1)^2 + (y-y_1)^2 &= r_1^2 \\ (x-x_2)^2 + (y-y_2)^2 &= r_2^2 \end{cases} \Leftrightarrow \begin{cases} (x-x_1)^2 + (y-y_1)^2 - r_1^2 &= 0 \\ (x-x_2)^2 + (y-y_2)^2 - r_2^2 &= 0 \end{cases}$$

b) Substituindo $x_1, y_1, x_2, y_2, r_1 \in r_2$, vem

$$f(x,y) = \begin{pmatrix} (x-10)^2 + (y-10)^2 - 196 \\ (x-10)^2 + (y+10)^2 - 256 \end{pmatrix}, \quad J(x,y) = \begin{pmatrix} 2(x-10) & 2(y-10) \\ 2(x-10) & 2(y+10) \end{pmatrix}$$

• 1^a iteração (k=1)

$$(x_1, y_1) = (0, 0), \quad f(x_1, y_1) = \begin{pmatrix} 4 \\ -56 \end{pmatrix}, \quad J(x_1, y_1) = \begin{pmatrix} -20 & -20 \\ -20 & 20 \end{pmatrix}$$

Resolver o sistema linear $J(x_1, y_1)\Delta_1 = -f(x_1, y_1)$ por EGPP para calcular Δ_1 :

$$\begin{pmatrix} -20 & -20 & | & -4 \\ -20 & 20 & | & 56 \end{pmatrix} \xrightarrow{m_{21} = -1} \begin{pmatrix} -20 & -20 & | & -4 \\ 0 & 40 & | & 60 \end{pmatrix} \longrightarrow$$

$$\Delta_1 = \begin{pmatrix} -1.3 \\ 1.5 \end{pmatrix}$$

$$(x_2, y_2) = (x_1, y_1) + \Delta_1 = \begin{pmatrix} -1.3 \\ 1.5 \end{pmatrix}$$

• 2^a iteração (k=2)

$$(x_2, y_2) = (-1.3, 1.5), \quad f(x_2, y_2) = \begin{pmatrix} 3.94 \\ 3.94 \end{pmatrix}, \quad J(x_2, y_2) = \begin{pmatrix} -22.6 & -17 \\ -22.6 & 23 \end{pmatrix}$$

Resolver o sistema linear $J(x_2, y_2)\Delta_2 = -f(x_2, y_2)$ por EGPP para calcular Δ_2 :

$$\begin{pmatrix} -22.6 & -17 & | & -3.94 \\ -22.6 & 23 & | & -3.94 \end{pmatrix} \xrightarrow{m_{21} = -1} \begin{pmatrix} -22.6 & -17 & | & -3.94 \\ 0 & 40 & | & 0 \end{pmatrix} \longrightarrow$$

$$\Delta_2 = \begin{pmatrix} 0.174336 \\ 0 \end{pmatrix}$$

$$(x_3, y_3) = (x_2, y_2) + \Delta_2 = \begin{pmatrix} -1.125664 \\ 1.5 \end{pmatrix}$$

Erro relativo

$$\frac{\|\Delta_2\|_2}{\|(x_3, y_3)\|_2} = 0.092959$$

$$(x,y) \approx (-1.125664, 1.5).$$

3.13

$$\begin{cases} 70e^{\beta} + 20e^{\omega} &= 27.5702 \\ 70e^{2\beta} + 20e^{2\omega} &= 17.6567 \end{cases} \Leftrightarrow \begin{cases} 70e^{\beta} + 20e^{\omega} - 27.5702 &= 0 \\ 70e^{2\beta} + 20e^{2\omega} - 17.6567 &= 0 \end{cases}$$

$$f(\beta,\omega) = \begin{pmatrix} 70e^{\beta} + 20e^{\omega} - 27.5702\\ 70e^{2\beta} + 20e^{2\omega} - 17.6567 \end{pmatrix}, \quad J(\beta,\omega) = \begin{pmatrix} 70e^{\beta} & 20e^{\omega}\\ 140e^{2\beta} & 40e^{2\omega} \end{pmatrix}$$

• 1^a iteração (k=1)

$$(\beta_1, \omega_1) = (-1.9, -0.15), \quad f(\beta_1, \omega_1) = \begin{pmatrix} 0.113763 \\ -1.274382 \end{pmatrix}, \quad J(x_1) = \begin{pmatrix} 10.469803 & 17.214160 \\ 3.131908 & 29.632729 \end{pmatrix}$$

Resolver o sistema linear $J(\beta_1, \omega_1)\Delta_1 = -f(\beta_1, \omega_1)$ por EGPP para calcular Δ_1 :

$$\begin{pmatrix} 10.469803 & 17.214160 & | & -0.113763 \\ 3.131908 & 29.632729 & | & 1.274382 \end{pmatrix} \xrightarrow{m_{21}} = -0.299137$$

$$\begin{pmatrix} 10.469803 & 17.214160 & | & -0.113763 \\ 0 & 24.483337 & | & 1.308413 \end{pmatrix} \longrightarrow$$

$$\Delta_1 = \begin{pmatrix} -0.098732\\ 0.053441 \end{pmatrix}$$

$$(\beta_2, \omega_2) = (\beta_1, \omega_1) + \Delta_1 = \begin{pmatrix} -1.998732 \\ -0.096559 \end{pmatrix}$$

• 2^a iteração (k=2)

$$(\beta_2, \omega_2) = (-1.998732, -0.096559), \quad f(\beta_2, \omega_2) = \begin{pmatrix} 0.074416 \\ 0.116344 \end{pmatrix},$$

$$J(\beta_2, \omega_2) = \begin{pmatrix} 9.485490 & 18.159127 \\ 2.570700 & 32.975388 \end{pmatrix}$$

Resolver o sistema linear $(\beta_2, \omega_2)\Delta_2 = -f(\beta_2, \omega_2)$ por EGPP para calcular Δ_2 :

$$\begin{pmatrix} 9.485490 & 18.159127 & | & -0.074416 \\ 2.570700 & 32.975388 & | & -0.116344 \end{pmatrix} \xrightarrow{m_{21}} = -0.271014$$

$$\begin{pmatrix} 9.485490 & 18.159127 & | & -0.074416 \\ 0 & 28.054010 & | & -0.096176 \end{pmatrix} \longrightarrow$$

$$\Delta_2 = \begin{pmatrix} -0.001283 \\ -0.003428 \end{pmatrix}$$

$$(\beta_3, \omega_3) = (\beta_2, \omega_2) + \Delta_2 = \begin{pmatrix} -2.000015 \\ -0.099987 \end{pmatrix}$$

 $Erro\ relativo$

$$\frac{\|\Delta_2\|_2}{\|(\beta_3, \omega_3)\|_2} = 0.001828$$

4 Polinómio interpolador de Newton

4.1 a) Para estimar f(0.6) usando um polinómio de grau 3 são necessários 4 pontos. A tabela das diferenças divididas para os 4 pontos mais próximos de 0.6 é

$$x_i$$
 f_i dd1 dd2 dd3
0.3 2
0
0.4 2 50
10 -150
0.5 3 -25
0

$$p_3(x) = 2 + 50(x - 0.3)(x - 0.4) - 150(x - 0.3)(x - 0.4)(x - 0.5).$$

A aproximação para f(0.6) é

$$f(0.6) \approx p_3(0.6) = 4.1.$$

b) Tem de se acrescentar à tabela anterior o ponto mais próximo do ponto interpolador que ainda não tenha sido usado no cálculo do polinómio, por exemplo, x = 1. Poder-seia usar também o ponto x = 0.2, já que está à mesma distância do ponto interpolador.

$$x_i$$
 f_i dd1 dd2 dd3 dd4
0.3 2
0
0.4 2 50
10 -150
0.5 3 -25 297.619047
0 58.333333
0.8 3 10
5

O erro de truncatura é dado por

$$|e_3| \le |(x - x_0)(x - x_1)(x - x_2)(x - x_3)| \times |dd4|$$

= $|(0.6 - 0.3)(0.6 - 0.4)(0.6 - 0.5)(0.6 - 0.8)| \times 297.619047 = 0.357143$

c) A tabela de diferenças divididas com todos os pontos é

$$p_7(x) = 10x - 50x(x - 0.1) + 333.333333x(x - 0.1)(x - 0.2)$$

$$- 1666.666667x(x - 0.1)(x - 0.2)(x - 0.3)$$

$$+ 6666.666667x(x - 0.1)(x - 0.2)(x - 0.3)(x - 0.4)$$

$$- 12748.015873x(x - 0.1)(x - 0.2)(x - 0.3)(x - 0.4)(x - 0.5)$$

$$+ 18204.365079x(x - 0.1)(x - 0.2)(x - 0.3)(x - 0.4)(x - 0.5)(x - 0.8).$$

A aproximação para f(0.6) é

$$f(0.6) \approx p_7(0.6) = 7.2$$

4.2 a) Para construir o polinómio interpolador de Newton de grau 4 são necessários 5 pontos.
 A tabela das diferenças divididas para os 5 pontos é

$$x_i$$
 f_i dd1 dd2 dd3 dd4
1940 132.165
1.9161
1950 151.326 0.04418
2.7997 -0.002142
1960 179.323 -0.02009 0.000067
2.3979 0.000547
1970 203.302 -0.003695
2.324

$$p_4(x) = 132.165 + 1.9161(x - 1940) + 0.04418(x - 1940)(x - 1950) -$$

$$-0.002142(x - 1940)(x - 1950)(x - 1960) +$$

$$+0.000067(x - 1940)(x - 1950)(x - 1960)(x - 1970)$$

A aproximação para f(1965) é

$$f(1965) \approx p_4(1965) = 191.990625$$

b) Acrescentando o valor à tabela de diferenças divididas

$$x_i$$
 f_i dd1 dd2 dd3 dd4 dd5
1940 132.165
1.9161
1950 151.326 0.04418
2.7997 -0.002142
1960 179.323 -0.02009 0.000067
2.3979 0.000547 0.000002
1970 203.302 -0.003695 0.000044
2.324 -0.000338
1980 226.542 0.006431
2.06678

$$|e_4| \leq |(x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_4)| \times |dd5| = 140625 \times 0.000002 = 0.28125$$

4.3 a) Para construir o polinómio interpolador de Newton de grau 3 (interpolação cúbica) são necessários 4 pontos. A tabela das diferenças divididas para os 4 pontos quando x=2 é

$$x_i$$
 f_i dd1 dd2 dd3
1 2 ... 0.5
3 3 0.1667
1 -0.0667
4 4 -0.1667
0.5

$$p_3(x) = 2 + 0.5(x - 1) + 0.1667(x - 1)(x - 2) - 0.0667(x - 1)(x - 3)(x - 4)$$

A aproximação para f(2) é

$$f(2) \approx p_4(2) = 2.1999$$

A tabela das diferenças divididas para os 4 pontos quando x=8 é

$$x_i$$
 f_i dd1 dd2 dd3
4 4 0.5
6 5 0.1667
1 -0.0139
7 6 0.0833
1.3333

$$p_3(x) = 4 + 0.5(x - 4) + 0.1667(x - 4)(x - 6) - 0.0139(x - 4)(x - 6)(x - 7)$$

A aproximação para f(8) é

$$f(8) \approx p_4(8) = 7.2224$$

b) Acrescentando o valor mais próximo do ponto interpolador que ainda não foi usado à tabela de diferenças divididas, para x=2 vem

$$x_i$$
 f_i dd1 dd2 dd3 dd4
1 2 0.5
3 3 0.1667
1 -0.0667
4 4 -0.1667 0.0250
0.5 0.0834
6 5 0.1667
1 7 6
 $|e_3| \leq |(x-x_0)(x-x_1)(x-x_2)(x-x_3)| \times |dd4| = 8 \times 0.0250 = 0.2.$

Para x = 8 vem

$$x_i$$
 f_i dd1 dd2 dd3 dd4
4 4 0.5 6 5 0.1667 1 -0.0139 7 6 0.0833 -0.0139 1.3333 0 10 10 10 0.0833 1 1 3 3 $|e_3| \le |(x-x_0)(x-x_1)(x-x_2)(x-x_3)| \times |dd4| = 16 \times 0.0139 = 0.2224.$

4.4 a) A tabela das diferenças divididas é

Como as diferenças divididas de 2ª ordem, logo, p(x) é um polinómio interpolador de 2º grau.

b) Para determinar p(10), recorre-se à tabela das diferenças divididas

$$\frac{14 - \frac{29 - p(10)}{4 - 10}}{3 - 10} = 2 \Leftrightarrow \frac{-84 - 29 + p(10)}{42} = 2 \Leftrightarrow -113 + p(10) = 84 \Leftrightarrow p(10) = 197$$

${\bf 4.5}\,$ A tabela das diferenças divididas é

 $10 \quad p(x)$

$$x_i$$
 f_i dd1 dd2 dd3

0 a

$$2-a$$
1 2

$$\frac{a-1}{3}$$
1
$$\frac{b-a-4}{12}$$
3 4

$$\frac{b-4}{4}$$

$$p_3(x) = a + (x - 0)(2 - a) + (x - 0)(x - 1)\frac{a - 1}{3} + (x - 0)(x - 1)(x - 3)\frac{b - a - 4}{12}$$
$$= a + x(2 - a) + x(x - 1)\frac{a - 1}{3} + x(x - 1)(x - 3)\frac{b - a - 4}{12}$$

Como o coeficiente de maior grau de $p_3(x)$ é igual à unidade, então

$$\frac{b-a-4}{12}=1 \Leftrightarrow b-a-4=12 \Leftrightarrow b-a=16$$

Como o coeficiente de menor grau de $p_3(x)$ é igual a zero, então

$$a = 0$$
 e $b = 16$

O polinómio de grau 3 é

$$p_3(x) = 2x - 0.333333x(x-1) + x(x-1)(x-3)$$

5 Integração numérica

5.1 O espaçamento entre n pontos no intervalo [a, b] é

$$h = \frac{b-a}{n}$$

$$\int_{a}^{b} f(x)dx = \sum_{j=0}^{n-1} \left\{ \int_{x_{j}}^{x_{j+1}} f(x)dx \right\}$$

Para cada subintervalo $[x_j, x_{j+1}]$, o erro de truncatura da fórmula do rectângulo,

$$e_{R_j} = \frac{h^2}{2} f'(\eta), \quad \eta_j \in [x_j, x_{j+1}]$$

Somando o erros, obtém-se

$$e_{CR_j} = \sum_{j=0}^{n-1} \left\{ \frac{h^2}{2} f'(\eta_j) \right\}$$

$$= \frac{h^2}{2} \left\{ f'(\eta_0) + f'(\eta_1) + \dots + f'(\eta_{n-1}) \right\}$$

$$= \frac{h}{2} \times \frac{b-a}{n} \times f'(\eta) \times n$$

$$= \frac{h}{2} \times (b-a) \times f'(\eta), \quad \eta \in [a,b]$$

5.2 a)
$$\int_{0}^{4.2} v(t)dt = \int_{0.6}^{0.6} v(t)dt + \int_{0.6}^{1.2} v(t)dt + \int_{1.2}^{4.2} v(t)dt + \int_{1.2}^{4.2} v(t)dt$$

$$\approx \frac{0.3}{3}(4+4\times3.9+3.7) + \frac{3}{8}\times0.2(3.7+3\times3.5+3\times3.3+2.9) + \\ + \frac{0.6}{2}(2.9+2\times2.5+2\times2.0+2\times1.25+2\times0.75+0.0)$$

$$= 2.33 + 2.025 + 4.77 = 9.125$$

$$|e| = |e_S| + |e_{3/8}| + |e_T|$$

• Simpson - [0,0.6]

$$|e_S| = \frac{0.3^4}{180}(0.6 - 0) \times 1.0909 \times 4! = 0.0007$$

\bullet três oitavos - [0.6,1.2]

 $1.0 \quad 3.3$

$$e_{3/8}| = \frac{0.2^4}{80}(1.2 - 0.6) \times 10.3173 \times 4! = 0.0030$$

• trapézio - [1.2,4.2]

-1.25

$$|e_T| = \frac{0.6^2}{12} (4.2 - 1.2) \times 0.3473 \times 2! = 0.0625$$

$$|e| = 0.0007 + 0.0030 + 0.0625 = 0.0622$$

c) Para usar uma única fórmula de integração, os seguintes pontos igualmente espaçados devem ser seleccionados

$$\begin{pmatrix}
h = 0.6 \\
n = 7
\end{pmatrix}$$
 \Rightarrow trapézio

$$\int\limits_{0}^{4.2} v(t)dt \approx \frac{0.6}{2} (4 + 2 \times 3.7 + 2 \times 2.9 + 2 \times 2.5 + 2 \times 2.0 + 2 \times 1.25 + 2 \times 0.75 + 0.0) = 9.06$$

$$\int_{1}^{19} v(x)dx = \int_{1}^{5} v(x)dx + \int_{1}^{5} v(x)dx + \int_{15}^{19} v(x)dx$$

$$\lim_{h=1, n=4, \mathbf{S}} \int_{h=2, n=5, \mathbf{T}}^{15} \int_{h=1, n=4, \mathbf{S}}^{19} v(x)dx + \int_{15}^{19} v(x)dx$$

$$\approx \frac{1}{3}(10+4\times9+2\times8+4\times8+8) + \frac{2}{2}(8+2\times6+2\times5+2\times5+2\times4+4) + \frac{1}{3}(4+4\times4+2\times4+4\times3+1)$$

$$= 32 + 52 + 13.666667 = 99.666667$$

b) **Trapázio - [5,15]**

$$x_i$$
 v_i dd1 dd2
 5 8 -1
 7 6 0.125
-0.5
 9 5 0.125
0
11 5 -0.125
-0.5

$$|e_T| = \frac{2^2}{12}(15 - 5) \times 0.125 \times 2! = 0.833333$$

c) Para usar uma única fórmula de integração, os seguintes pontos igualmente espaçados devem ser seleccionados

$$\begin{pmatrix}
 h = 2 \\
 n = 9
 \end{pmatrix}$$
 ⇒ três oitavos

$$\int_{1}^{19} v(x)dx \approx \frac{3}{8} \times 2(10+3\times8+3\times8+2\times6+3\times5+3\times5+2\times4+3\times4+3\times4+1) = 99.75$$

5.4 a) Para

$$h = 0.5$$

$$n = 3$$

$$\Rightarrow \text{ três oitavos}$$

$$\int_0^{1.5} a(t)dt \approx \frac{3}{8} \times 0.5(0 + 3 \times 0.35 + 3 \times 0.55 + 0.9) = 0.675$$

b)
$$|e_T| < 0.3 \Leftrightarrow \frac{h^2}{12}(b-a)M_2 < 0.3$$
, $|f''_{[a,b]}| \leq M_2$ (majorante)

$$f(t) = 0.5t^2 - 0.15t$$

$$f'(t) = t - 0.15$$

$$f''(t) = 1$$

$$\frac{h^2}{12}(7.5 - 1.5) \times 1 \le 0.3 \Leftrightarrow h \le 0.7746 \Rightarrow h = 0.75$$

$$\int_{1.75}^{1.5} a(t)dt \approx \frac{0.75}{2}(0.9 + 2 \times 2.19375 + 2 \times 4.05 + 2 \times 6.46875 + 2 \times 9.45 + 2 \times 12.99375 + 2 \times 17.1 + 2 \times 21.76875 + 27) = 65.98125$$

c) Construindo a tabela de diferenças divididas,

$$t_i$$
 a_i dd1 dd2 dd3 dd4
0 0 0
0.7
0.5 0.35 -0.3
0.4 0.4
1 0.55 0.3 -0.045714
0.7 0.297143
1.5 0.9 0.82

 $2.25 \quad 2.19375$

$$|e_{3/8}| = \frac{0.5^4}{80}(1.5 - 0) \times 0.045714 \times 4! = 0.001286$$

5.5

$$I(a) = \int_{1}^{2} f(x, a) dx = f(x, a) = \int_{1}^{2} \frac{e^{ax}}{x} dx$$

$$f(x) = \frac{e^x}{x} = x^{-1}e^x$$

$$f'(x) = -x^{-2}e^x + x^{-1}e^x = e^x(x^{-1} - x^{-2})$$

$$f''(x) = e^x(x^{-1} - x^{-2}) + e^x(-x^{-2} + 2x^{-3}) = e^x(x^{-1} - 2x^{-2} + 2x^{-3})$$

$$f'(1) = 2.718282$$
 $f''(1.5) = 1.659885$ $f''(2) = 1.847264$

O majorante da segunda derivada é 2.718282

$$\frac{h^2}{12}(2-1) \times 1 \le 0.05 \Leftrightarrow h \le 0.469817 \Rightarrow n > 2.128488$$

$$n = 3 \Rightarrow h = 0.333333$$
$$n = 4 \Rightarrow h = 0.25$$

$$I(1) \approx \frac{0.25}{2} (2.718282 + 2 \times 2.792274 + 2 \times 2.987793 + 2 \times 3.288344 + 3.694528) = 3.068704$$

5.6

b)

$$S(0.15) = 20.005 \Leftrightarrow \frac{0.15}{3}(a + 4 \times 16.8 + 2 \times 19.4 + 4 \times 22 + 2b + 4 \times 27.6 + 30.7) = 20.005$$
$$\Leftrightarrow a + 2b = 65$$

$$3/8(0.15) = 20.030625 \Leftrightarrow \frac{3}{8} \times 0.15(a + 3 \times 16.8 + 3 \times 19.4 + 2 \times 22 + 3b + 3 \times 27.6 + 30.7) = 20.030625$$
$$\Leftrightarrow a + 3b = 90$$

$$\begin{cases} a + 2b = 65 \\ a + 3b = 90 \end{cases}$$

$$\begin{pmatrix} 1 & 2 & | & 65 \\ 1 & 3 & | & 90 \end{pmatrix} \xrightarrow{m_{21} = -1} \begin{pmatrix} 1 & 2 & | & 65 \\ 0 & 1 & | & 25 \end{pmatrix} \begin{cases} a = 15 \\ b = 25 \end{cases}$$

5.7 a) $\int_{0}^{2} f(x)dx \approx \frac{1}{2} \times 1(0 + 2 \times 0.8415 + 0.9093) = 1.29615$

$$T(0.5) = 1.2667 \Leftrightarrow \frac{0.5}{2}(0 + 2 \times f(0.5) + 2 \times 0.8415 + 2 \times f(1.5) + 0.9093) = 1.2667$$
$$\Leftrightarrow 0.5f(0.5) + 0.5f(1.5) = 0.618625$$
$$\Leftrightarrow f(0.5) + f(1.5) = 1.23725$$

$$S(0.5) = \frac{0.5}{3} \times (0 + 4 \times f(0.5) + 2 \times 0.8415 + 4 \times f(1.5) + 0.9093)$$

$$= \frac{2}{3} \times f(0.5) + \frac{2}{3} \times f(1.5) + 0.43205 = \frac{2}{3} \times (f(0.5) + f(1.5)) + 0.43205$$

$$= \frac{2}{3} \times 1.23725 + 0.43205 = 1.256883$$

5.8 (a)

$$P(x \le 1) = \int_{0}^{1} \frac{4}{27} (9x - 6x^{2} + x^{3}) dx$$
$$P(x \ge 2.5) = \int_{0}^{3} \frac{4}{27} (9x - 6x^{2} + x^{3}) dx$$

$$e_{\text{total}} = e_1 + e_2 = 0.02 \Rightarrow e_1 = e_2 = 0.01$$

$$f(x) = \frac{4}{27}(9x - 6x^2 + x^3)$$

$$f'(x) = \frac{4}{3} - \frac{48}{27}x + \frac{4}{9}x^2$$

$$f''(x) = -\frac{48}{27} + \frac{8}{9}x$$

$$e_T = \frac{h^2}{12}(b-a)M_2$$

• [0,1]

$$M_2 = \frac{48}{27} = 1.7778$$

$$\frac{h^2}{12}(1-0) \times 1.7778 \le 0.01 \Leftrightarrow h \le 0.2598 \Rightarrow h = 0.25$$

• [2.5,3]

$$M_2 = 0.8889$$

$$\frac{h^2}{12}(3-2.5)\times 0.8889 < 0.01 \Leftrightarrow h < 0.5196 \Rightarrow h = 0.5$$

$$\int_{0}^{1} f(x)dx \approx \frac{0.25}{2} \times (0 + 2 \times 0.2801 + 2 \times 0.4630 + 2 \times 0.5625 + 0.5926) = 0.4005$$

$$\int_{2.5}^{3} f(x)dx \approx \frac{0.5}{2} \times (0.0926 + 0) = 0.0232$$

$$PROB = 0.4005 + 0.0232 = 0.4237$$

(b) Sim. Uma vez que se trata de um polinómio de grau 3, o erro de truncatura cometido com a fórmula de Simpson seria zero, independentemente do valor de h.

6 Aproximação dos mínimos quadrados

6.1
$$p_2(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x)$$

	x_i	f_i	$P_1(x_i)$	$P_1(x_i)^2$	$x_i P_1(x_i)$	$f_i P_1(x_i)$	$P_2(x_i)$	$P_2(x_i)^2$	$f_i P_2(x_i)$
	0	0.26	-3.125	9.765625	0	-0.8125	5.208333	27.12673	1.354167
	1.25	0.208	-1.875	3.515625	4.394531	-0.39	-1.04167	1.08507	-0.21667
	2.5	0.172	-0.625	0.390625	0.976563	-0.1075	-4.16667	17.36111	-0.71667
	3.75	0.145	0.625	0.390625	1.464844	0.090625	-4.16667	17.36111	-0.60417
	5	0.126	1.875	3.515625	17.57813	0.23625	-1.04167	1.08507	-0.13125
	6.25	0.113	3.125	9.765625	61.03516	0.353125	5.208333	27.12673	0.588542
\sum	18.75	1.024		27.34375	85.44922	-0.63		91.14583	0.273958

•
$$P_0(x) = 1$$
, $C_0 = 0$, $P_{-1}(x) = 0$

•
$$P_1(x) = x - B_0$$

$$B_0 = \frac{\sum x P_0(x)^2}{\sum P_0(x)^2} = \frac{18.75}{6} = 3.125$$

$$P_1(x) = x - 3.125$$

•
$$P_2(x) = (x - B_1)P_1(x) - \mathbb{C}_1$$

$$B_1 = \frac{\sum x P_1(x)^2}{\sum P_1(x)^2} = \frac{85.449219}{27.34375} = 3.125$$

$$\mathbb{C}_1 = \frac{\sum P_1(x)^2}{\sum P_0(x)^2} = \frac{27.34375}{6} = 4.557292$$

$$P_2(x) = (x - 3.125)^2 - 4.557292$$

•
$$c_0 = \frac{\sum f P_0(x)}{\sum P_0(x)^2} = \frac{1.024}{6} = 0.170667$$

•
$$c_1 = \frac{\sum f P_1(x)}{\sum P_1(x)^2} = \frac{-0.63}{27.34375} = -0.02304$$

•
$$c_2 = \frac{\sum f P_2(x)}{\sum P_2(x)^2} = \frac{0.273958}{91.145834} = 0.003006$$

$$p_2(x) = 0.170667 - 0.02304(x - 3.125) + 0.003006[(x - 3.125)^2 - 4.557292]$$

6.2
$$M(x) = c_1 x + c_2 \sin(x)$$

$$\begin{cases} \Phi_1(x) = x \\ \Phi_2(x) = \sin(x) \end{cases}$$

	x_i	f_i	$\Phi_1(x_i)$	$\Phi_2(x_i)$	$\Phi_1(x_i)^2$	$\Phi_2(x_i)^2$	$\Phi_1(x_i)\Phi_2(x_i)$	$f_i\Phi_1(x_i)$	$f_i\Phi_2(x_i)$
	1	122	1	0.841471	1	0.708073	0.841471	122	102.659460
	3	188	3	0.14112	9	0.019915	0.423360	564	26.530562
	6	270	6	-0.279415	36	0.078073	-1.676493	1620	-75.442185
	10	160	10	-0.544021	100	0.295959	-5.440211	1600	-87.043378
	12	120	12	-0.536573	144	0.28791	-6.438875	1440	-64.388750
\sum					290	1.389930	-12.290748	5346	-97.684291

$$\begin{pmatrix} \sum \Phi_1(x)^2 & \sum \Phi_1(x)\Phi_2(x) & | & \sum f_i\Phi_1(x) \\ \sum \Phi_1(x)\Phi_2(x) & \sum \Phi_2(x)^2 & | & \sum f\Phi_2(x) \end{pmatrix} \longrightarrow$$

$$\begin{pmatrix} 290 & -12.290748 & | & 5346 \\ -12.290748 & 1.389930 & | & -97.684291 \end{pmatrix} \xrightarrow{m_{21}} \begin{pmatrix} 290 & -12.290748 & | & 5346 \\ 0 & 0.869024 & | & 128.889881 \end{pmatrix}$$

$$\begin{cases} c_1 = 24.720381 \\ c_2 = 148.315675 \end{cases}$$

$$M(x) = 24.720381x + 148.315675\sin(x)$$

$$f(8) \approx M(8) = 344.500384.$$

6.3 a)
$$p_1(x) = c_0 P_0(x) + c_1 P_1(x)$$

	x_i	f_i	$P_1(x_i)$	$P_1(x_i)^2$	$f_i P_1(x_i)$
	1.5	4.9	-1.125	1.265625	-5.5125
	2	3.3	-0.625	0.390625	-2.0625
	3	2	0.375	0.140625	0.75
	4	1.5	1.375	1.890625	2.0625
\sum	10.5	11.7		3.6875	-4.7625

•
$$P_0(x) = 1$$
, $C_0 = 0$, $P_{-1}(x) = 0$

•
$$P_1(x) = x - B_0$$

$$B_0 = \frac{\sum x P_0(x)^2}{\sum P_0(x)^2} = \frac{10.5}{4} = 2.625$$

$$P_1(x) = x - 2.625$$

•
$$c_0 = \frac{\sum f P_0(x)}{\sum P_0(x)^2} = \frac{11.7}{4} = 2.925$$

•
$$c_1 = \frac{\sum f P_1(x)}{\sum P_1(x)^2} = \frac{-4.7625}{3.6875} = -1.291525$$

$$p_1(x) = 2.925 - 1.291525(x - 2.625)$$

b)
$$M(x; c_1, c_2) = \frac{c_1}{x} + c_2 x$$

$$\begin{cases} \Phi_1(x) = \frac{1}{x} \\ \Phi_2(x) = x \end{cases}$$

	x_i	f_i	$\Phi_1(x_i)$	$\Phi_2(x_i)$	$\Phi_1(x_i)^2$	$\Phi_2(x_i)^2$	$\Phi_1(x_i)\Phi_2(x_i)$	$f_i\Phi_1(x_i)$	$f_i\Phi_2(x_i)$
	1.5	4.9	0.666667	1.5	0.444444	2.25	1	3.266667	7.35
	2	3.3	0.5	2	0.25	4	1	1.65	6.6
	3	2	0.333333	3	0.111111	9	1	0.666667	6
	4	1.5	0.25	4	0.0625	16	1	0.375	6
\sum					0.868055	31.25	4	5.958334	25.95

$$\begin{pmatrix} \sum_{i} \Phi_{1}(x_{i})^{2} & \sum_{i} \Phi_{1}(x_{i}) \Phi_{2}(x_{i}) & | & \sum_{i} f_{i} \Phi_{1}(x_{i}) \\ \sum_{i} \Phi_{1}(x_{i}) \Phi_{2}(x_{i}) & \sum_{i} \Phi_{2}(x_{i})^{2} & | & \sum_{i} f_{i} \Phi_{2}(x_{i}) \end{pmatrix} \longrightarrow$$

$$\begin{pmatrix} 0.868055 & 4 & | & 5.958334 \\ 4 & 31.25 & | & 25.95 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 4 & 31.25 & | & 25.95 \\ 0.868055 & 4 & | & 5.958334 \end{pmatrix} \xrightarrow{} m_{21} = -0.217014$$

$$\begin{pmatrix} 4 & 31.25 & | & 25.95 \\ 0 & -2.781680 & | & 0.326827 \end{pmatrix}$$

$$\begin{cases} c_1 = 7.405414 \\ c_2 = -0.117493 \end{cases}$$

$$M\left(x \right) = \frac{7.405414}{x} - 0.117493x$$

c) Cálculo da soma dos quadrados dos resíduos

	x_i	f_i	$p_1(x_i)$	$M(x_i)$	$(f_i - p_1(x_i))^2$	$(f_i - M(x_i))^2$
	1.5	4.9	4.377966	4.760703	0.27252	0.019404
	2	3.3	3.732203	3.467721	0.1868	0.02813
	3	2	2.440678	2.115992	0.194197	0.013454
	4	1.5	1.149153	1.381382	0.123094	0.01407
\sum					0.776611	0.075058

O modelo M(x) ajusta-se melhor no sentido dos mínimos quadrados porque a soma dos quadrados dos resíduos é menor que para o modelo $p_1(x)$ (0.075058 < 0.776611).

6.4 a)
$$s_1(t) = 0.2\alpha_1 \sin(20\pi t) + 0.2\beta_1 \sin(22\pi t)$$

$$\begin{cases} \Phi_1(t) = 0.2\sin(20\pi t) \\ \Phi_2(t) = 0.2\sin(22\pi t) \end{cases}$$

	t_i	f_i	$\Phi_1(t_i)$	$\Phi_2(t_i)$	$\Phi_1(t_i)^2$	$\Phi_2(t_i)^2$	$\Phi_1(t_i)\Phi_2(t_i)$	$f_i\Phi_1(t_i)$	$f_i\Phi_2(t_i)$
	0.11	-3.1127	0.117557	0.193717	0.01382	0.037526	0.022773	-0.36592	-0.602983
	0.52	0.0625	0.190211	-0.196457	0.03618	0.038595	-0.037368	0.011888	-0.012279
	0.79	3.0351	-0.11756	-0.185955	0.01382	0.034579	0.02186	-0.356797	-0.564393
\sum					0.06382	0.1107	0.007265	-0.710829	-1.179655

$$\begin{pmatrix} \sum \Phi_1(x)^2 & \sum \Phi_1(x)\Phi_2(x) & | & \sum f\Phi_1(x) \\ \sum \Phi_1(x)\Phi_2(x) & \sum \Phi_2(x)^2 & | & \sum f\Phi_2(x) \end{pmatrix} \longrightarrow$$

$$\begin{pmatrix} 0.06382 & 0.007265 & | & -0.710829 \\ 0.007265 & 0.1107 & | & -1.179655 \end{pmatrix} \xrightarrow{m_{21} = -0.113836} \begin{pmatrix} 0.06382 & 0.007265 & | & -0.710829 \\ 0 & 0.109873 & | & -1.098737 \end{pmatrix}$$

$$\begin{cases} \alpha_1 &= -9.999664 \\ \beta_1 &= -10.000064 \end{cases}$$

$$s_1(t) = -0.2 \times 9.999664 \times \sin(20\pi t) - 0.2 \times 10.000064 \times \sin(22\pi t)$$

b)
$$\begin{cases} s_1(t) = -2\sin(20\pi t) - 2\sin(22\pi t) \\ s_2(t) = 2\sin(20\pi t) + 2\cos(20\pi t) \end{cases}$$

	t_i	f_i	$s_1(t_i)$	$s_2(t_i)$	$(f_i - s_1(t_i))^2$	$(f_i - s_2(t_i))^2$
	0.1	1.9863	-1.175571	2	9.997425	0.000188
	0.45	-2.01	0.618034	-2	6.906563	0.0001
	0.63	1.2742	-1.050554	1.284079	5.404483	0.000098
\sum					22.308471	0.000386

O sinal transmitido foi s_2 porque tem menor soma dos quadrados dos resíduos.

6.5 a)
$$M(x; c_1, c_2) = c_1 x^2 + c_2 \frac{1}{x}$$

$$\begin{cases} \Phi_1(x) = x^2 \\ \Phi_2(x) = \frac{1}{x} \end{cases}$$

	x_i	f_i	$\Phi_1(x_i)$	$\Phi_2(x_i)$	$\Phi_1(x_i)^2$	$\Phi_2(x_i)^2$	$\Phi_1(x_i)\Phi_2(x_i)$	$f_i\Phi_1(x_i)$	$f_i\Phi_2(x_i)$
	1	20	1	1	1	1	1	20	20
	3	7.5	9	0.333333	81	0.111111	3	67.5	2.5
	4	6.5	16	0.25	256	0.0625	4	104	1.625
	6	7	36	0.166667	1296	0.027778	6	252	1.1666667
	9	10	81	0.111111	6561	0.012346	9	810	1.1111111
	12	A	144	0.083333	20736	0.006944	12	144A	$\frac{A}{12}$
Σ					28931	1.220679	35	1253.5 + 144A	$26.402778 + rac{A}{12}$

$$\begin{pmatrix} \sum \Phi_1(x)^2 & \sum \Phi_1(x)\Phi_2(x) & | & \sum f\Phi_1(x) \\ \sum \Phi_1(x)\Phi_2(x) & \sum \Phi_2(x)^2 & | & \sum f\Phi_2(x) \end{pmatrix} \longrightarrow$$

$$\begin{pmatrix} 28931 & 35 & | & 1253.5 + 144A \\ 35 & 1.220679 & | & 26.402778 + \frac{A}{12} \end{pmatrix}$$

b)
$$A = 15$$

$$\begin{pmatrix} 28931 & 35 & | & 3413.5 \\ 35 & 1.220679 & | & 27.652778 \end{pmatrix} \xrightarrow{m_{21}} = -0.001210 \begin{pmatrix} 28931 & 35 & | & 3413.5 \\ 0 & 1.178329 & | & 23.523211 \end{pmatrix}$$

$$\begin{cases} c_1 & = 0.093837 \\ c_2 & = 19.963194 \end{cases}$$

$$M(x) = 0.093837x^2 + 19.963194\frac{1}{x}$$

6.6 a)
$$p_2(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x)$$

	x_i	f_i	$P_1(x_i)$	$P_1(x_i)^2$	$x_i P_1(x_i)$	$f_i P_1(x_i)$	$P_2(x_i)$	$P_2(x_i)^2$	$f_i P_2(x_i)$
	0	15.43	-11.2	125.44	0	-172.816	47.567571	2262.673830	733.967624
	8	10.2	-3.2	10.24	81.92	-32.64	-45.837837	2101.107283	-467.545935
	12	10.2	0.8	0.64	7.68	8.16	-44.540541	1983.859775	-454.313516
	16	11.86	4.8	23.04	368.64	56.928	-11.243245	126.410554	-133.344883
	20	15.43	8.8	77.44	1548.8	135.784	54.054051	2921.840451	834.054010
\sum	56	63.12		236.8	2007.04	-4.584		9395.891892	512.817299

•
$$P_0(x) = 1$$
, $C_0 = 0$, $P_{-1}(x) = 0$

•
$$P_1(x) = x - B_0$$

$$B_0 = \frac{\sum x P_0(x)^2}{\sum P_0(x)^2} = \frac{56}{5} = 11.2$$

$$P_1(x) = x - 11.2$$

•
$$P_2(x) = (x - B_1)P_1(x) - \mathbb{C}_1$$

$$B_1 = \frac{\sum x P_1(x)^2}{\sum P_1(x)^2} = \frac{2007.04}{236.8} = 8.475676$$

$$\mathbb{C}_1 = \frac{\sum P_1(x)^2}{\sum P_0(x)^2} = \frac{236.8}{5} = 47.36$$

$$P_2(x) = (x - 8.475676)(x - 11.2) - 47.36$$

•
$$c_0 = \frac{\sum f P_0(x)}{\sum P_0(x)^2} = \frac{63.12}{5} = 12.624$$

•
$$c_1 = \frac{\sum f P_1(x)}{\sum P_1(x)^2} = \frac{-4.584}{236.8} = -0.019358$$

•
$$c_2 = \frac{\sum f P_2(x)}{\sum P_2(x)^2} = \frac{512.817299}{9395.891892} = 0.054579$$

$$p_2(x) = 12.624 - 0.019358(x - 11.2) + 0.054579\left[(x - 8.475676)(x - 11.2) - 47.36\right]$$

$$f(10) \approx p_2(10) = 9.962539.$$

$$p_2'(x) = 0.109158x - 1.09323$$

$$p_2'(x) = 0 \Leftrightarrow x = 10.015116 \approx 10$$

$$p_2''(x) = 0.109158 > 0 \Rightarrow x = 10$$
 é mínimo

c)
$$M(x; c_1, c_2) = c_1 e^{1-0.1x} + c_2 e^{0.1x-1}$$

$$\begin{cases} \Phi_1(x) = e^{1-0.1x} \\ \Phi_2(x) = e^{0.1x-1} \end{cases}$$

	x_i	f_i	$\Phi_1(x_i)$	$\Phi_2(x_i)$	$\Phi_1(x_i)^2$	$\Phi_2(x_i)^2$	$\Phi_1(x_i)\Phi_2(x_i)$	$f_i\Phi_1(x_i)$	$f_i\Phi_2(x_i)$
	0	15.43	2.718282	0.367879	7.389056	0.1353353	1	41.943089	5.6763798
	8	10.2	1.221403	0.818731	1.491825	0.67032	1	12.458308	8.3510537
	12	10.2	0.818731	1.221403	0.67032	1.4918247	1	8.3510537	12.458308
	16	11.86	0.548812	1.822119	0.301194	3.3201169	1	6.508906	21.610329
	20	15.43	0.367879	2.718282	0.135335	7.3890561	1	5.6763798	41.943089
Σ					9.98773	13.006653	5	74.937736	90.039159

$$\begin{pmatrix} \sum \Phi_1(x)^2 & \sum \Phi_1(x)\Phi_2(x) & | & \sum f\Phi_1(x) \\ \sum \Phi_1(x)\Phi_2(x) & \sum \Phi_2(x)^2 & | & \sum f\Phi_2(x) \end{pmatrix} \longrightarrow$$

$$\begin{pmatrix} 9.98773 & 5 & | & 74.937736 \\ 5 & & 13.006653 & | & 90.039159 \end{pmatrix} \xrightarrow{m_{21} = -0.500614} \begin{pmatrix} 9.98773 & 5 & | & 74.937736 \\ 0 & & 10.503582 & | & 29.903390 \end{pmatrix}$$

$$\begin{cases} c_1 & = 2.846971 \\ c_2 & = 6.077745 \end{cases}$$

$$M(x) = 2.846971e^{1-0.1x} + 6.077745e^{0.1x-1}.$$

6.7
$$M(x; c_1, c_2, c_3) = c_1 e^{-x} + c_2 x + c_3$$

$$\begin{cases} \Phi_1(x) = e^{-x} \\ \Phi_2(x) = x \\ \Phi_3(x) = 1 \end{cases}$$

$$\begin{pmatrix} \sum \Phi_1(x)^2 & \sum \Phi_1(x)\Phi_2(x) & \sum \Phi_1(x)\Phi_3(x) & | & \sum f\Phi_1(x) \\ \sum \Phi_2(x)\Phi_1(x) & \sum \Phi_2(x)^2 & \sum \Phi_2(x)\Phi_3(x) & | & \sum f\Phi_2(x) \\ \sum \Phi_3(x)\Phi_1(x) & \sum \Phi_3(x)\Phi_2(x) & \sum \Phi_3(x)^2 & | & \sum f\Phi_3(x) \end{pmatrix} \longrightarrow$$

$$\left(\begin{array}{ccccc}
\sum e^{-2x} & \sum x e^{-x} & \sum e^{-x} & | & \sum f e^{-x} \\
\sum x e^{-x} & \sum x^2 & \sum x & | & \sum f x \\
\sum e^{-x} & \sum x & \sum 1 & | & \sum f
\end{array}\right)$$

	x_i	f_i	e^{-2x_i}	e^{-x_i}	$x_i e^{-x_i}$	x_{1}^{2}	$f_i e^{-x_i}$	$f_i x_i$
	-1	1.4	7.389056	2.718282	-2.718282	1	3.805595	-1.4
	0	0	1	1	0	0	0	0
	1	0.75	0.135335	0.367879	0.367879	1	0.27591	0.75
	2	2.3	0.018316	0.135335	0.270671	4	0.311271	4.6
\sum	2	4.45	8.542707	4.221496	-2.079732	6	4.392776	3.95

$$\begin{pmatrix} 8.542707 & -2.718282 & 4.221496 & | & 4.392776 \\ -2.079732 & 6 & 2 & | & 3.95 \\ 4.221496 & 2 & 4 & | & 4.45 \end{pmatrix} \xrightarrow{m_{21} = 0.243451} m_{31} = -0.494164$$

$$\begin{pmatrix} 8.542707 & -2.718282 & 4.221496 & | & 4.392776 \\ 0 & 5.493687 & 3.027728 & | & 5.019426 \\ 0 & 3.027728 & 1.913890 & | & 2.279249 \end{pmatrix} \xrightarrow{m_{32} = -0.551129}$$

$$\begin{pmatrix} 8.542707 & -2.718282 & 4.221496 & | & 4.392776 \\ 0 & 5.493687 & 3.027728 & | & 5.019426 \\ 0 & 0 & 0.245223 & | & -0.487100 \end{pmatrix}$$

$$\begin{cases} c_1 = 1.984748 \\ c_2 = 2.008409 \\ c_3 = -1.986356 \end{cases}$$

$$M\left(x\right) = 1.984748e^{-x} + 2.008409x - 1.986356$$

$$f(0.5) \approx M(0.5) = 0.221659.$$

6.8
$$p_1(x) = c_0 P_0(x) + c_1 P_1(x)$$

	x_i	f_i	$P_1(x_i)$	$P_1(x_i)^2$	$f_i P_1(x_i)$
	-3	-10	-4	16	40
	0	a	-1	1	-a
	2	0	1	1	0
	5	b	4	16	4b
\sum	4	a + b - 10		34	-a + 4b + 40

•
$$P_0(x) = 1$$
, $C_0 = 0$, $P_{-1}(x) = 0$

•
$$P_1(x) = x - B_0$$

$$B_0 = \frac{\sum x P_0(x)^2}{\sum P_0(x)^2} = \frac{4}{4} = 1$$

$$P_1(x) = x - 1$$

•
$$c_0 = \frac{\sum f P_0(x)}{\sum P_0(x)^2} = \frac{a+b-10}{4}$$

•
$$c_1 = \frac{\sum f P_1(x)}{\sum P_1(x)^2} = \frac{-a + 4b + 40}{34}$$

$$p_1(x) = \frac{a+b-10}{4} + \frac{-a+4b+40}{34}(x-1) = \frac{a+b-10}{4} + \frac{-a+4b+40}{34}x - \frac{-a+4b+40}{34}$$

$$\begin{cases} \frac{-a+4b+40}{34} & = & 2\\ \frac{a+b-10}{4} - \frac{-a+4b+40}{34} & = & -4 \end{cases} \Leftrightarrow \begin{cases} -a+4b & = & 28\\ 19a+9b & = & -22 \end{cases}$$

$$\begin{pmatrix} -1 & 4 & | & 28 \\ 19 & 9 & | & -22 \end{pmatrix} \xrightarrow{} 1 \leftrightarrow 2 \begin{pmatrix} 19 & 9 & | & -22 \\ -1 & 4 & | & 28 \end{pmatrix} \xrightarrow{} m_{21} = 0.052632 \begin{pmatrix} 19 & 9 & | & -22 \\ 0 & 4.474684 & | & 26.842105 \end{pmatrix}$$

$$\begin{cases} a = -4 \\ b = 6 \end{cases}$$

7 Optimização não linear sem restrições

7.1 Os pontos estacionários satisfazem f'(x) = 0.

$$f'(x) = 3x^2 - 12x + 9 = 0 \Leftrightarrow x = \frac{12 \pm \sqrt{144 - 4 \times 3 \times 9}}{2 \times 3} \Leftrightarrow x = 3 \lor x = 1$$
 $f''(x) = 6x - 12$
 $f''(1) = 6 \times 1 - 12 = -6 < 0 \Rightarrow x = 1 \text{ \'e maximizante.}$
 $f''(3) = 6 \times 3 - 12 = 6 > 0 \Rightarrow x = 3 \text{ \'e minimizante.}$

7.2
$$\max P(t) = -\min(-P(t))$$

$$\min -e^{0.4t - 0.01t^2}$$

$$p(t) = -P(t) = -e^{0.4t - 0.01t^2}$$

Iniciar o algoritmo DSC: $t_1 = 30, \delta = 2, M = 0.05, \varepsilon = 0.1$

• 1ª iteração

$$\begin{cases} t_1 = 30 \\ p(t_1) = -20.0855 & \underline{procurar\ para\ a\ direita} \end{cases}$$

$$\begin{cases} t_2 = 30 + \delta = 30 + 2 = 32 \\ p(t_2) = -12.9358 & \uparrow & \underline{procurar\ para\ a\ esquerda} \end{cases}$$

$$\begin{cases} t_{-1} = 30 - \delta = 30 - 2 = 28 \\ p(t_{-1}) = -28.7892 & \downarrow & \underline{continuar} \end{cases}$$

$$\begin{cases} t_{-2} = 28 - 2 \times \delta = 28 - 2 \times 2 = 24 \\ p(t_{-2}) = -46.5255 & \downarrow & \underline{continuar} \end{cases}$$

$$\begin{cases} t_{-3} = 24 - 4 \times \delta = 24 - 4 \times 2 = 16 \\ p(t_{-3}) = -46.5255 & = & \underline{continuar} \end{cases}$$

$$\begin{cases} t_{-4} = 16 - 8 \times \delta = 16 - 8 \times 2 = 0 \\ p(t_{-4}) = -1 & \uparrow & \underline{parar\ e\ calcular\ ponto\ m\'edio} \end{cases}$$

$$\begin{cases} t_m = \frac{0+16}{2} = 8\\ p(t_m) = -12.9358 \end{cases}$$

Como $p(t_m) \ge p(t_{-3})$ escolher os três pontos igualmente espaçados: $p(t_m), p(t_{-3}), p(t_{-2})$

$$\begin{bmatrix}
 \mathbf{t_1} \leftarrow 8 & p(\mathbf{t_1}) = -12.9358 \\
 \mathbf{t_2} \leftarrow 16 & p(\mathbf{t_2}) = -46.5255 \\
 \mathbf{t_3} \leftarrow 24 & p(\mathbf{t_3}) = -46.5255
 \end{bmatrix}
 \Delta = 8$$

$$t^*(q) = \mathbf{t_2} + \Delta \frac{p(\mathbf{t_1}) - p(\mathbf{t_3})}{2(p(\mathbf{t_3}) - 2p(\mathbf{t_2}) + p(\mathbf{t_1}))} = 20, \qquad p(t^*(q)) = -54.5982.$$

• Critério de Paragem

$$\Delta \le \varepsilon \Leftrightarrow 8 \le 0.1$$
 (falso)
 $\delta = M\delta = 0.05 \times 2 = 0.1$

• 2ª iteração

$$\begin{cases} t_1 = 20 \\ p(t_1) = -54.5982 & \underline{procurar\ para\ a\ direita} \end{cases}$$

$$\begin{cases} t_2 = 20 + \delta = 20 + 0.1 = 20.1 \\ p(t_2) = -54.5927 & \uparrow & \underline{procurar\ para\ a\ esquerda} \end{cases}$$

$$\begin{cases} t_{-1} = 20 - \delta = 20 - 0.1 = 19.9 \\ p(t_{-1}) = -54.5927 & \uparrow & \underline{ordenar\ pontos} \end{cases}$$

$$\left. \begin{array}{ll} \mathbf{t_1} \leftarrow 19.9 & p(\mathbf{t_1}) = -54.5927 \\ \mathbf{t_2} \leftarrow 20 & p(\mathbf{t_2}) = -54.5982 \\ \mathbf{t_3} \leftarrow 20.1 & p(\mathbf{t_3}) = -54.5927 \end{array} \right\} \qquad \Delta = 0.1$$

$$t^*(q) = \mathbf{t_2} + \Delta \frac{p(\mathbf{t_1}) - p(\mathbf{t_3})}{2(p(\mathbf{t_3}) - 2p(\mathbf{t_2}) + p(\mathbf{t_1}))} = 20$$
 $p(t^*(q)) = -54.5982$

• Critério de Paragem

$$\Delta \le \varepsilon \Leftrightarrow 0.1 \le 0.1$$
 (verdadeiro)

O pior momento é aos 20 dias com 54.5982 % de pessoas doentes.

7.3 a) Formular problema sem restrições

min
$$6x_1 + 4x_2$$

s.a. $x_1^2 + x_1x_2 = 50^2$ $\Rightarrow x_2 = \frac{2500 - x_1^2}{x_1}$
min $6x_1 + 4 \times \frac{2500 - x_1^2}{x_1}$

b) Iniciar o algoritmo DSC: $x_1 = 50, \delta = 5, M = 0.1, \varepsilon = 0.05$

• 1ª iteração

Theragan
$$\begin{cases} x_1 = 50 \\ f(x_1) = 300 & \underline{procurar\ para\ a\ direita} \end{cases}$$

$$\begin{cases} x_2 = 50 + \delta = 50 + 5 = 55 \\ f(x_2) = 291.818182 & \underline{continuar} \end{cases}$$

$$\begin{cases} x_3 = 55 + 2 \times \delta = 55 + 2 \times 5 = 65 \\ f(x_3) = 283.846154 & \underline{continuar} \end{cases}$$

$$\begin{cases} x_4 = 65 + 4 \times \delta = 65 + 4 \times 5 = 85 \\ f(x_4) = 287.647059 & \underline{parar\ e\ calcular\ ponto\ m\'edio} \end{cases}$$

$$\begin{cases} x_m = \frac{65 + 85}{2} = 75 \\ f(x_m) = 283.3333333 \end{cases}$$

Como $f(x_m) < f(x_1)$ escolher 3 pontos igualmente espaçados: $f(x_3), f(x_m), f(x_4)$

$$\mathbf{x_1} \leftarrow 65 \quad f(\mathbf{x_1}) = 283.846154$$

$$\mathbf{x_2} \leftarrow 75 \quad f(\mathbf{x_2}) = 283.3333333$$

$$\mathbf{x_3} \leftarrow 85 \quad f(\mathbf{x_3}) = 287.647059$$

$$\Delta = 10$$

$$x^*(q) = \mathbf{x_2} + \Delta \frac{f(\mathbf{x_1}) - f(\mathbf{x_3})}{2(f(\mathbf{x_3}) - 2f(\mathbf{x_2}) + f(\mathbf{x_1}))} = 71.062501 \qquad f(x^*(q)) = 282.846196$$

• Critério de Paragem

$$\Delta \le \varepsilon \Leftrightarrow 10 \le 0.05$$
 (falso)
 $\delta = M\delta = 5 \times 0.1 = 0.5$

• 2^a iteração

$$\begin{cases} x_1 = 71.062501 \\ f(x_1) = 282.846196 & \underline{procurar\ para\ a\ direita} \end{cases}$$

$$\begin{cases} x_2 = 71.062501 + \delta = 71.062501 + 0.5 = 71.562501 \\ f(x_2) = 282.862991 & \uparrow & \underline{procurar\ para\ a\ esquerda} \end{cases}$$

$$\begin{cases} x_{-1} = 71.062501 - \delta = 71.062501 - 0.5 = 70.562501 \\ f(x_{-1}) = 282.843335 & \downarrow & \underline{continuar} \end{cases}$$

$$\begin{cases} x_{-2} = 70.062501 - 2 \times \delta = 70.062501 - 1 = 69.562501 \\ f(x_{-2}) = 282.880615 & \uparrow & \underline{parar\ e\ calcular\ ponto\ m\'edio} \end{cases}$$

$$\begin{cases} x_m = \frac{70.562501 + 69.562501}{2} = 70.062501 \\ f(x_m) = 282.854706 \end{cases}$$

Como $f(x_m) < f(x_{-1})$ escolher 3 pontos igualmente espaçados: $f(x_{-1}), f(x_m), f(x_1)$

$$\begin{array}{c} \mathbf{x_1} \leftarrow 70.062501 \quad f(\mathbf{x_1}) = 282.854706 \\ \mathbf{x_2} \leftarrow 70.562501 \quad f(\mathbf{x_2}) = 282.843335 \\ \mathbf{x_3} \leftarrow 71.062501 \quad f(\mathbf{x_3}) = 282.846196 \end{array} \right\} \qquad \Delta = 0.5$$

$$x^*(q) = \mathbf{x_2} + \Delta \frac{f(\mathbf{x_1}) - f(\mathbf{x_3})}{2(f(\mathbf{x_3}) - 2f(\mathbf{x_2}) + f(\mathbf{x_1}))} = 70.711988 \qquad f(x^*(q)) = 282.842713$$

• Critério de Paragem

$$\Delta \le \varepsilon \Leftrightarrow 0.5 \le 0.05$$
 (falso)
 $\delta = M\delta = 0.5 \times 0.1 = 0.05$

• 3ª iteração

$$\begin{cases} x_1 = 70.711988 \\ f(x_1) = 282.842713 & \underline{procurar\ para\ a\ direita} \end{cases}$$

$$\begin{cases} x_2 = 70.711988 + \delta = 70.711988 + 0.05 = 70.761988 \\ f(x_2) = 282.842787 & \underline{procurar\ para\ a\ esquerda} \end{cases}$$

$$\begin{cases} x_{-1} = 70.711988 - \delta = 70.711988 - 0.05 = 70.661988 \\ f(x_{-1}) = 282.842780 & \underline{ordenar\ pontos} \end{cases}$$

$$\mathbf{x_1} \leftarrow 70.661988 \quad f(\mathbf{x_1}) = 282.842780 \\ \mathbf{x_2} \leftarrow 70.711988 \quad f(\mathbf{x_2}) = 282.842713 \\ \mathbf{x_3} \leftarrow 70.761988 \quad f(\mathbf{x_3}) = 282.842787 \end{cases}$$

$$\Delta = 0.5$$

$$x^*(q) = \mathbf{x_2} + \Delta \frac{f(\mathbf{x_1}) - f(\mathbf{x_3})}{2(f(\mathbf{x_3}) - 2f(\mathbf{x_2}) + f(\mathbf{x_1}))} = 70.710747 \qquad f(x^*(q)) = 282.842713$$

• Critério de Paragem

$$\Delta \le \varepsilon \Leftrightarrow 0.05 \le 0.05$$
 (verdadeiro)

 $x_1 \approx 70.710747, x_2 \approx -35.355442$ e o custo mínimo ≈ 282.842713

7.4
$$v(x) = (60 - 2x)^2 x = (3600 - 240x + 4x^2)x = 4x^3 - 240x^2 + 3600x$$

$$\max v(x) = -\min(-v(x))$$

$$\min -4x^3 - 240x^2 + 3600x$$

$$f(x) = -v(x) = -4x^3 - 240x^2 + 3600x$$
Iniciar o algoritmo DSC: $x_1 = 5, \delta = 1, M = 0.5, \varepsilon = 0.5$

• 1^a iteração

$$\begin{cases} x_1 = 5 \\ f(x_1) = -12500 & \underline{procurar \ para \ a \ direita} \end{cases}$$

$$\begin{cases} x_2 = 5 + \delta = 5 + 1 = 6 \\ f(x_2) = -13824 & \downarrow & \underline{continuar} \end{cases}$$

$$\begin{cases} x_3 = 6 + 2 \times \delta = 6 + 2 \times 1 = 8 \\ f(x_3) = -15488 & \downarrow & \underline{continuar} \end{cases}$$

$$\begin{cases} x_4 = 8 + 2 \times \delta = 8 + 4 \times 1 = 12 \\ f(x_4) = -15552 & \downarrow & \underline{continuar} \end{cases}$$

$$\begin{cases} x_5 = 12 + 8 \times \delta = 12 + 8 \times 1 = 20 \\ f(x_5) = -8000 & \uparrow & \underline{parar\ e\ calcular\ o\ ponto\ m\'edio} \end{cases}$$

$$\begin{cases} x_m = \frac{12 + 20}{2} = 16 \\ f(x_m) = -12544 \end{cases}$$

Como $f(x_m) \ge f(x_4)$ escolher 3 pontos igualmente espaçados: $f(x_m), f(x_3), f(x_4)$

$$x^*(q) = \mathbf{x_2} + \Delta \frac{f(\mathbf{x_1}) - f(\mathbf{x_3})}{2(f(\mathbf{x_3}) - 2f(\mathbf{x_2}) + f(\mathbf{x_1}))} = 10.08$$
 $f(x^*(q)) = -15999.23$

• Critério de Paragem

$$\Delta \le \varepsilon \Leftrightarrow 4 \le 0.5$$
 (falso)
 $\delta = M\delta = 0.5 \times 1 = 0.5$

• 2ª iteração

$$\begin{cases} x_1 = 10.08 \\ f(x_1) = -15999.23 & \underline{procurar\ para\ a\ direita} \end{cases}$$

$$\begin{cases} x_2 = 10.08 + \delta = 10.08 + 0.5 = 10.58 \\ f(x_2) = -15960.41 & \uparrow & \underline{procurar\ para\ a\ esquerda} \end{cases}$$

$$\begin{cases} x_{-1} = 10.08 - \delta = 10.08 - 0.5 = 9.58 \\ f(x_{-1}) = -15978.54 & \uparrow & \underline{ordenar\ pontos} \end{cases}$$

$$\mathbf{x_1} \leftarrow 9.58 & f(\mathbf{x_1}) = -15978.54 \\ \mathbf{x_2} \leftarrow 10.08 & f(\mathbf{x_2}) = -15999.23 \\ \mathbf{x_3} \leftarrow 10.58 & f(\mathbf{x_3}) = -15960.41 \end{cases}$$

$$\Delta = 0.5$$

$$x^*(q) = \mathbf{x_2} + \Delta \frac{f(\mathbf{x_1}) - f(\mathbf{x_3})}{2(f(\mathbf{x_3}) - 2f(\mathbf{x_2}) + f(\mathbf{x_1}))} = 10.00$$
 $f(x^*(q)) = -16000$

• Critério de Paragem

$$\Delta \le \varepsilon \Leftrightarrow 0.1 \le 0.1$$
 (verdadeiro)

$$x_{\min} \approx 10.00, v_{\max} \approx 16000$$

7.5
$$f(t) = 10 + 3 \operatorname{sen}(\frac{2\pi}{365}(t - 80))$$

 $\max f(t) = -\min(-f(t))$
 $\min - (10 + 3 \operatorname{sen}(\frac{2\pi}{365}(t - 80)))$
 $F(t) = -f(t) = -(10 + 3 \operatorname{sen}(\frac{2\pi}{365}(t - 80)))$
Iniciar o algoritmo DSC: $t_1 = 200, \delta = 10, M = 0.1, \varepsilon = 2$

• 1^a iteração

$$\begin{cases} t_1 = 200 \\ F(t_1) = -12.6400 & \underline{procurar\ para\ a\ direita} \end{cases}$$

$$\begin{cases} t_2 = 200 + \delta = 200 + 10 = 210 \\ F(t_2) = -12.3569 & \uparrow & \underline{procurar\ para\ a\ esquerda} \end{cases}$$

$$\begin{cases} t_{-1} = 200 - \delta = 200 + 10 = 190 \\ F(t_{-1}) = -12.8451 & \downarrow & \underline{continuar} \end{cases}$$

$$\begin{cases} t_{-2} = 190 - 2 \times \delta = 190 - 2 \times 10 = 170 \\ F(t_{-2}) = -12.9993 & \downarrow & \underline{continuar} \end{cases}$$

$$\begin{cases} t_{-3} = 170 - 4 \times \delta = 170 - 4 \times 10 = 130 \\ F(t_{-3}) = -12.2749 & \uparrow & parar \ e \ calcular \ ponto \ m\'edio \end{cases}$$

$$\begin{cases} t_m = \frac{130 + 170}{2} = 150 \\ F(t_m) = -12.8015 \end{cases}$$

Como $F(t_m) \geq F(t_{-2})$ escolher 3 pontos igualmente espaçados: $F(t_m), F(t_{-2}), F(t_{-1})$

$$\mathbf{t_1} \leftarrow 150 \quad F(\mathbf{t_1}) = -12.8015$$

$$\mathbf{t_2} \leftarrow 170 \quad F(\mathbf{t_2}) = -12.9993$$

$$\mathbf{t_3} \leftarrow 190 \quad F(\mathbf{t_3}) = -12.8451$$

$$\Delta = 20$$

$$t^*(q) = \mathbf{t_2} + \Delta \frac{F(\mathbf{t_1}) - F(\mathbf{t_3})}{2(F(\mathbf{t_3}) - 2F(\mathbf{t_2}) + F(\mathbf{t_1}))} = 171.2386 \qquad F(t^*(q)) = -13$$

• Critério de Paragem

$$\Delta \le \varepsilon \Leftrightarrow 20 \le 2$$
 (falso)
 $\delta = M\delta = 0.1 \times 10 = 1$

• 2ª iteração

$$\begin{cases} t_1 = 171.2386 \\ F(t_1) = -13 & \underline{procurar\ para\ a\ direita} \end{cases}$$

$$\begin{cases} t_2 = 171.2386 + \delta = 171.2386 + 1 = 172.2386 \\ F(t_2) = -12.9996 & \uparrow & \underline{procurar\ para\ a\ esquerda} \end{cases}$$

$$\begin{cases} t_{-1} = 171.2386 - \delta = 171.2386 - 1 = 170.2386 \\ F(t_{-1}) = -12.7576 & \uparrow & \underline{ordenar\ pontos} \end{cases}$$

$$\mathbf{t_1} \leftarrow 170.2386 & F(\mathbf{t_1}) = -12.7576 \\ \mathbf{t_2} \leftarrow 171.2386 & F(\mathbf{t_2}) = -13 \\ \mathbf{t_3} \leftarrow 172.2386 & F(\mathbf{t_3}) = -12.9996 \end{cases}$$

$$\Delta = 1$$

$$t^*(q) = \mathbf{t_2} + \Delta \frac{F(\mathbf{t_1}) - F(\mathbf{t_3})}{2(F(\mathbf{t_3}) - 2F(\mathbf{t_2}) + F(\mathbf{t_1}))} = 171.7370$$
 $F(t^*(q)) = -12.9999$

• Critério de Paragem

$$\Delta \le \varepsilon \Leftrightarrow 1 \le 2$$
 (verdadeiro)

 $t_{\rm max}\approx 171.7370, f_{\rm max}\approx 12.9999$

7.6
$$f(x_1, x_2) = x_1^2(1 - x_1)^2 + x_1x_2$$

$$\nabla f(x) = \begin{pmatrix} 2x_1(1-x_1)^2 - 2x_1^2(1-x_1) + x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} 2x_1(1-x_1)(1-x_1-x_1) + x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} (2x_1 - 2x_1^2)(1-2x_1) + x_2 \\ x_1 \end{pmatrix}$$

$$\nabla f(x) = 0 \Leftrightarrow \begin{cases} x_2 = 0 \\ x_1 = 0 \end{cases}$$

$$\nabla^2 f(x) = \begin{pmatrix} (2 - 4x_1)(1 - 2x_1) - 2(2x_1 - 2x_1^2) & 1\\ 1 & 0 \end{pmatrix}$$

$$x^* = (0,0)$$

$$\nabla^2 f(x^*) = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

 $\det(2) = 2 > 0 \qquad \det(\nabla^2 f(x^*)) = -1 < 0 \text{ logo a matriz \'e indefinida} \Rightarrow x^* \'e \text{ ponto sela}.$

7.7
$$f(x,y) = 3x^2 - y^2 + x^3$$

$$\nabla f(x,y) = \begin{pmatrix} 6x + 3x^2 \\ -2y \end{pmatrix}$$

$$(x,y)^* = (-2,0)$$

$$\nabla f((x,y)^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow x^* \text{ \'e ponto estacion\'ario}$$

$$(x,y)^{**} = (0,0)$$

$$\nabla f((x,y)^{**}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow x^{**}$$
 é ponto estacionário

$$\nabla f(x,y) = 0 \Leftrightarrow \begin{cases} 6x + 3x^2 = 0 \\ -2y = 0 \end{cases} \Leftrightarrow \begin{cases} 3x(2+x) = 0 \\ y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \lor x = -2 \\ y = 0 \end{cases}$$

Os únicos pontos estacionários são (-2,0) e (0,0).

$$\nabla^2 f(x,y) = \begin{pmatrix} 6+6x & 0\\ 0 & -2 \end{pmatrix}$$

$$\nabla^2 f((x,y)^*) = \begin{pmatrix} -6 & 0\\ 0 & -2 \end{pmatrix}$$

 $\det(-6) = -6 < 0$, $\det(\nabla^2 f((x,y)^*)) = 12 > 0$, logo a matriz é definida negativa $\Rightarrow (x,y)^*$ é maximizante.

$$\nabla^2 f((x,y)^{**}) = \begin{pmatrix} 6 & 0\\ 0 & -2 \end{pmatrix}$$

 $\det(6) = 6 > 0$, $\det(\nabla^2 f((x, y)^{**})) = -12 < 0$, logo a matriz é indefinida $\Rightarrow (x, y)^{**}$ é ponto sela.

7.8
$$f(x_1, x_2, x_3) = 5x_1^2 + 2x_2^2 + x_3^4 - 32x_3 + 6x_1x_2 + 5x_2$$

$$\nabla f(x) = \begin{pmatrix} 10x_1 + 6x_2 \\ 4x_2 + 6x_1 + 5 \\ 4x_3^3 - 32 \end{pmatrix}$$

$$\nabla f(x) = 0 \Leftrightarrow \begin{cases} 10x_1 + 6x_2 = 0 \\ 4x_2 + 6x_1 + 5 = 0 \\ 4x_3^3 - 32 = 0 \end{cases} \Leftrightarrow \begin{cases} 10x_1 + 6x_2 = 0 \\ 4x_2 + 6x_1 = -5 \\ x_3 = 2 \end{cases}$$

Cálculo de x_1 e x_2 :

$$\begin{pmatrix} 10 & 6 & | & 0 \\ 6 & 4 & | & -5 \end{pmatrix} \xrightarrow{m_{21} = -0.6} \begin{pmatrix} 10 & 6 & | & 0 \\ 0 & 0.4 & | & -5 \end{pmatrix} \rightarrow \begin{cases} x_1 = 7.5 \\ x_2 = -12.5 \end{cases}$$

$$x^* = (7.5, -12.5, 2)$$

$$\nabla^2 f(x) = \begin{pmatrix} 10 & 6 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 12x_3^2 \end{pmatrix}$$

$$\nabla^2 f(x^*) = \begin{pmatrix} 10 & 6 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 48 \end{pmatrix}$$

$$A_1 = 10$$
 $A_2 = \begin{pmatrix} 10 & 6 \\ 6 & 4 \end{pmatrix}$ $A_3 = \nabla^2 f(x^*) = \begin{pmatrix} 10 & 6 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 48 \end{pmatrix}$

Cálculo do determinante de A_3 por EGPP

$$\begin{pmatrix} 10 & 6 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 48 \end{pmatrix} \longrightarrow \begin{pmatrix} 10 & 6 & 0 \\ 0 & 0.4 & 0 \\ 0 & 0 & 48 \end{pmatrix}$$

 $\det(A_1) = 10 > 0$, $\det(A_2) = 4 > 0$, $\det(A_3) = 10 \times 0.4 \times 48 = 192 > 0$, logo a matriz é definida positiva $\Rightarrow x^*$ é minimizante.

7.9
$$f(x_1, x_2) = 4x_1^2 - 4x_1x_2 + x_2^2$$

$$\nabla f(x) = \begin{pmatrix} 8x_1 - 4x_2 \\ -4x_1 + 2x_2 \end{pmatrix}$$

$$\nabla f(x) = 0 \Leftrightarrow \begin{cases} 8x_1 - 4x_2 = 0 \\ -4x_1 + 2x_2 = 0 \end{cases}$$

$$\begin{pmatrix} 8 & -4 & | & 0 \\ -4 & 2 & | & 0 \end{pmatrix} \xrightarrow{m_{21} = 0.5} \begin{pmatrix} 8 & -4 & | & 0 \\ -4 & 2 & | & 0 \end{pmatrix} \longrightarrow 8x_1 - 4x_2 = 0$$

 $8x_1 - 4x_2 = 0 \Leftrightarrow x_2 - 2x_1 = 0$ Sistema possível e indeterminado

$$\nabla^2 f(x) = \begin{pmatrix} 8 & -4 \\ -4 & 2 \end{pmatrix}$$

 $\det(8) = 8 > 0$, $\det(\nabla^2 f(x)) = 0$ logo a matriz é semi-definida positiva \Rightarrow condição necessária para um ponto ser minimizante.

Como $x_2 - 2x_1 = 0 \Leftrightarrow x_2 = 2x_1$, substituindo em $f(x_1, x_2)$ resulta $f(x) = 8x_1^2 - 8x_1^2 = 0$, logo todos os pontos de $x_2 - 2x_1 = 0$ são minimizantes.

7.10
$$\max \overline{f}(x_1, x_2) = -\sin(x_1 - 1) - x_2^4$$

$$\min f(x_1, x_2) = \sin(x_1 - 1) + x_2^4$$

$$\nabla f(x) = \begin{pmatrix} \cos(x_1 - 1) \\ 4x_2^3 \end{pmatrix}$$

$$\nabla^2 f(x) = \begin{pmatrix} -\sin(x_1 - 1) & 0\\ 0 & 12x_2^2 \end{pmatrix}$$

Iniciar o algoritmo de Segurança de Newton: $x^1=(1,1), \eta=10^{-6}, \mu=10^{-6}, \varepsilon=1$

• 1^a iteração

$$x^1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $\nabla f(x^1) = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ $\nabla^2 f(x^1) = \begin{pmatrix} 0 & 0 \\ 0 & 12 \end{pmatrix}$

Cálculo da direcção d_N^1

$$\begin{pmatrix} 0 & 0 & | & -1 \\ 0 & 12 & | & -4 \end{pmatrix} \rightarrow \text{sistema impossível} \Rightarrow d_{SN}^1 = -\nabla f(x^1) = \begin{pmatrix} -1 \\ -4 \end{pmatrix}$$

Cálculo de α

$$\alpha = 1$$

$$x^{\text{aux}} = x^{1} + \alpha d_{SN}^{1} = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$

$$\begin{cases} f(x^{1}) = 1 \\ f(x^{\text{aux}}) = 80.158562 & \uparrow \end{cases}$$

$$\alpha = 0.5 \times 1 = 0.5$$

$$x^{\text{aux}} = x^1 + \alpha d_{SN}^1 = \begin{pmatrix} 0.5 \\ -1 \end{pmatrix}$$

$$\begin{cases} f(x^1) = 1 \\ f(x^{\text{aux}}) = 0.520574 & \downarrow \end{cases}$$

Critério de Armijo

$$f(x^{\text{aux}}) \leq f(x^1) + \mu \alpha \nabla f(x^1)^T d_{SN}^1 \Leftrightarrow 0.520574 \leq 1 + 10^{-6} \times 0.5 \times (-17)$$

 $\Leftrightarrow 0.520574 \le 1.0000085$ (verdadeiro) logo a descida é significativa.

$$x^2 = \begin{pmatrix} 0.5 \\ -1 \end{pmatrix}$$

• Critério de Paragem

$$\|\nabla f(x^2)\|_2 = \left\| \begin{pmatrix} 0.877583 \\ -4 \end{pmatrix} \right\|_2 = 4.095138 \le \varepsilon \quad \text{(falso)}$$

• 2ª iteração

$$x^{2} = \begin{pmatrix} 0.5 \\ -1 \end{pmatrix} \qquad \nabla f(x^{2}) = \begin{pmatrix} 0.877583 \\ -4 \end{pmatrix} \qquad \nabla^{2} f(x^{2}) = \begin{pmatrix} 0.479426 & 0 \\ 0 & 12 \end{pmatrix}$$

Cálculo da direcção d_N^2

$$\begin{pmatrix} 0.479426 & 0 & | & -0.877583 \\ 0 & 12 & | & 4 \end{pmatrix} \rightarrow d_N^2 = \begin{pmatrix} -1.830487 \\ 0.333333 \end{pmatrix}$$

O sistema tem solução única.

$$\nabla f(x^2)^T d_N^2 = \left(0.877583 - 4\right) \begin{pmatrix} -1.830487\\ 0.333333 \end{pmatrix} = -2.939736$$

 $\left|\nabla f(x^2)^T d_N^2\right| = 2.939736 > 10^{-6},$ logo d_N^2 não é ortogonal ao gradiente.

 $\nabla f(x^2)^T d_N^2 = -2.939736 > 10^{-6},$ logo d_N^2 não é ascendente.

$$d_{SN}^2 = d_N^2 = \begin{pmatrix} -1.830487\\ 0.333333 \end{pmatrix}$$

Cálculo de α

$$\alpha = 1$$

$$x^{\text{aux}} = x^2 + \alpha d_{SN}^2 = \begin{pmatrix} -1.330487 \\ -0.666667 \end{pmatrix}$$

$$\begin{cases} f(x^2) = 0.520574 \\ f(x^{\text{aux}}) = -0.527518 & \downarrow \end{cases}$$

Critério de Armijo

 $f(x^{\text{aux}}) \leq f(x^2) + \mu \alpha \nabla f(x^2)^T d_{SN}^2 \Leftrightarrow -0.527518 \leq 0.520574 + 10^{-6} \times 1 \times (-2.939736)$ (verdadeiro), logo a descida é significativa.

$$x^3 = \begin{pmatrix} -1.330487 \\ -0.666667 \end{pmatrix}$$

• Critério de Paragem

$$\|\nabla f(x^3)\|_2 = \left\| \begin{pmatrix} -0.688697 \\ -1.185187 \end{pmatrix} \right\|_2 = 1.676108 \le \varepsilon \quad \text{(falso)}$$

Como o número máximo de iterações é dois,

$$x_{\text{max}} \approx \begin{pmatrix} -1.330487 \\ -0.666667 \end{pmatrix} e f_{\text{max}} \approx 0.527518$$

7.11 a) Formular problema sem restrições

$$\min x_1^2 + x_2^2 + x_3^2$$
s.a. $x_1 + x_2 + x_3 = 40 \Rightarrow x_3 = 40 - x_1 - x_2$

$$\min x_1^2 + x_2^2 + (40 - x_1 - x_2)^2$$

$$\nabla f(x) = \begin{pmatrix} 2x_1 - 2(40 - x_1 - x_2) \\ 2x_2 - 2(40 - x_1 - x_2) \end{pmatrix}$$

$$\nabla^2 f(x) = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}$$

b) Iniciar o algoritmo de Segurança de Newton: $x^1=(10,10), \eta=0.00001, \mu=0.001, \varepsilon=0.001$

• 1ª iteração
$$x^1 = \begin{pmatrix} 10 \\ 10 \end{pmatrix} \qquad \nabla f(x^1) = \begin{pmatrix} -20 \\ -20 \end{pmatrix} \qquad \nabla^2 f(x^1) = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 2 & | & 20 \\ 2 & 4 & | & 20 \end{pmatrix} \xrightarrow{M} \begin{pmatrix} 4 & 2 & | & 20 \\ 0 & 3 & | & 10 \end{pmatrix} \rightarrow d_N^1 = \begin{pmatrix} 3.333333 \\ 3.333333 \end{pmatrix}$$

O sistema tem solução única

$$\nabla f(x^1)^T d_N^1 = \begin{pmatrix} -20 & -20 \end{pmatrix} \begin{pmatrix} 3.333333 \\ 3.333333 \end{pmatrix} = -133.333320$$

 $\left|\nabla f(x^1)^T d_N^1\right| = 133.333320 > 0.00001$ logo d_N^1 não é ortogonal ao gradiente.

$$\nabla f(x^1)^T d_N^1 = -133.333320 \le 0.00001 \text{ logo } d_N^1 \text{ \'e descendente.}$$

$$d_{SN}^1 = d_N^1 = \begin{pmatrix} 3.333333 \\ 3.333333 \end{pmatrix}$$

$$d_{SN}^1 = d_N^1 = \begin{pmatrix} 3.333333 \\ 3.333333 \end{pmatrix}$$

Cálculo de α

$$\begin{split} \alpha &= 1 \\ x^{\mathrm{aux}} &= x^1 + \alpha d_{SN}^1 = \begin{pmatrix} 13.333333 \\ 13.333333 \end{pmatrix} \\ \begin{cases} f(x^1) &= 600 \\ f(x^{\mathrm{aux}}) &= 533.333333 \end{cases} \quad \downarrow \end{split}$$

Critério de Armijo

 $533.333333 \leq 599.866667$ (verdadeiro), logo a descida é significativa.

$$x^2 = \begin{pmatrix} 13.333333 \\ 13.3333333 \end{pmatrix}$$

Critério de Parager

$$\|\nabla f(x^2)\|_2 = \left\| \begin{pmatrix} -0.000002\\ -0.000002 \end{pmatrix} \right\|_2 = 0.000003 \le \varepsilon \quad \text{(verdadeiro)}$$

• 2ª iteração

$$x^{2} = \begin{pmatrix} 13.333333 \\ 13.333333 \end{pmatrix} \qquad \nabla f(x^{2}) = \begin{pmatrix} -0.000002 \\ -0.000002 \end{pmatrix} \qquad \nabla^{2} f(x^{2}) = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 2 & | & 0.000002 \\ 2 & 4 & | & 0.000002 \end{pmatrix} \xrightarrow{m_{21} = -0.5} \begin{pmatrix} 4 & 2 & | & 0.000002 \\ 0 & 3 & | & 0.000001 \end{pmatrix} \rightarrow d_N^2 = \begin{pmatrix} 0.000000 \\ 0.000000 \end{pmatrix}$$

O sistema tem solução única.

$$x^3 = x^2 = \begin{pmatrix} 13.333333 \\ 13.3333333 \end{pmatrix}$$

• Critério de Paragem

$$\|\nabla f(x^3)\|_2 = 0.000003 \le \varepsilon$$
 (verdadeiro)

 $x_1 \approx 13.333333, x_2 \approx 13.333333, x_3 \approx 13.333334$ e $f_{\min} \approx 533.333333$

7.12 a) Formular problema sem restrições

min
$$0.1 + 0.25x + 0.08 + 0.12y + 0.00125y^2 + 0.05 + 0.09z + 0.001z^2 + 0.0001z^3$$

s.a. $x + y + z = 100 \Rightarrow x = 100 - y - z$

min
$$f(y,z) = 0.23 + 0.25(100 - y - z) + 0.12y + 0.00125y^2 + 0.09z + 0.001z^2 + 0.0001z^3$$

= $25.23 - 0.13y + 0.00125y^2 - 0.16z + 0.001z^2 + 0.0001z^3$

$$\nabla f(y,z) = \begin{pmatrix} -0.13 + 0.0025y\\ -0.16 + 0.002z + 0.0003z^2 \end{pmatrix}$$

$$\nabla^2 f(y, z) = \begin{pmatrix} 0.0025 & 0\\ 0 & 0.002 + 0.0006z \end{pmatrix}$$

b) Iniciar o algoritmo de Segurança de Newton: $(y^1,z^1)=(30,50), \eta=0.0001, \mu=0.01, \varepsilon=0.5$

• 1ª iteração

$$(y^1, z^1) = \begin{pmatrix} 30\\50 \end{pmatrix} \qquad \nabla f(y^1, z^1) = \begin{pmatrix} -0.055\\0.69 \end{pmatrix} \qquad \nabla^2 f(y^1, z^1) = \begin{pmatrix} 0.0025 & 0\\0 & 0.032 \end{pmatrix}$$

Cálculo da direcção d_N^1

$$\begin{pmatrix} 0.0025 & 0 & | & 0.055 \\ 0 & 0.032 & | & -0.69 \end{pmatrix} \rightarrow d_N^1 = \begin{pmatrix} 22 \\ -21.5625 \end{pmatrix}$$

O sistema tem solução única.

$$\nabla f(y^1, z^1)^T d_N^1 = \begin{pmatrix} -0.055 & 0.69 \end{pmatrix} \begin{pmatrix} 22 \\ -21.5625 \end{pmatrix} = -16.088125$$

 $\left|\nabla f(y^1,z^1)^T d_N^1\right| = 16.088125 > 0.0001$ logo d_N^1 não é ortogonal ao gradiente.

 $\nabla f(y^1,z^1)^T d_N^1 = -16.088125 \leq 0.0001$ logo d_N^1 é descendente.

$$d_{SN}^1 = d_N^1 = \begin{pmatrix} 22\\ -21.5625 \end{pmatrix}$$

Cálculo de α

 $\alpha = 1$

$$(y^{\text{aux}}, z^{\text{aux}}) = (y^1, z^1) + \alpha d_{SN}^1 = \begin{pmatrix} 52\\28.4375 \end{pmatrix}$$

$$\begin{cases} f(y^1, z^1) = 29.455 \\ f((y^{\text{aux}}, z^{\text{aux}})) = 20.408408 & \downarrow \end{cases}$$

Critério de Armijo

$$\begin{split} f((y^{\text{aux}}, z^{\text{aux}})) & \leq f(y^1, z^1) + \mu \alpha \nabla f(y^1, z^1)^T d_{SN}^1 \Leftrightarrow 20.408408 \leq 29.455 + 0.01 \times 1 \times \\ & (-16.088125) \Leftrightarrow 20.408408 \leq 29.294119 \text{ (verdadeiro) logo a descida \'e significativa.} \end{split}$$

$$(y^2, z^2) = \begin{pmatrix} 52\\ 28.4375 \end{pmatrix}$$

• Critério de Paragem

$$\|\nabla f(y^2, z^2)\|_2 = 0.139482 \le \varepsilon$$
 (falso)

• 2ª iteração

$$(y^2, z^2) = \begin{pmatrix} 52 \\ 28.4375 \end{pmatrix} \qquad \nabla f(y^2, z^2) = \begin{pmatrix} 0 \\ 0.139482 \end{pmatrix} \qquad \nabla^2 f(y^2, z^2) = \begin{pmatrix} 0.0025 & 0 \\ 0 & 0.019063 \end{pmatrix}$$

Cálculo da direcção d_N^2

$$\begin{pmatrix} 0.0025 & 0 & | & 0 \\ 0 & 0.019063 & | & -0.139482 \end{pmatrix} \rightarrow d_N^2 = \begin{pmatrix} 0 \\ -7.316897 \end{pmatrix}$$

O sistema tem solução única.

$$\nabla f(y^2, z^2)^T d_N^2 = \begin{pmatrix} 0 & 0.139482 \end{pmatrix} \begin{pmatrix} 0 \\ -7.316897 \end{pmatrix} = -1.020575$$

 $\left|\nabla f(y^2,z^2)^T d_N^2\right| = 1.020575 > 0.0001$ logo $d_N^{(2)}$ não é ortogonal ao gradiente.

 $\nabla f(y^2,z^2)^T d_N^2 = -1.020575 \leq 0.0001$ logo $d_N^{(2)}$ é descendente.

$$d_{SN}^{(2)} = d_N^{(2)} = \begin{pmatrix} 0\\ -7.316897 \end{pmatrix}$$

Cálculo de α

$$\begin{split} \alpha &= 1 \\ (y^{\text{aux}}, z^{\text{aux}}) &= (y^2, z^2) + \alpha d_{SN}^2 = \begin{pmatrix} 52 \\ 21.120603 \end{pmatrix} \\ \begin{cases} f(y^2, z^2) &= 20.408408 \\ f(y^{\text{aux}}, z^{\text{aux}}) &= 19.858931 \end{cases} \downarrow \end{split}$$

Critério de Armijo

$$\begin{split} f(y^{\text{aux}}, z^{\text{aux}}) &\leq f(y^2, z^2) + \mu \alpha \nabla f(y^2, z^2)^T d_{SN}^{(2)} \Leftrightarrow 19.858931 \leq 20.408408 + 0.01 \times \\ 1 \times (-1.020575) &\Leftrightarrow 19.858931 \leq 20.398202 \text{ (verdadeiro) logo a descida \'e significativa.} \end{split}$$
 tiva.

$$(y^3, z^3) = \begin{pmatrix} 52\\21.120603 \end{pmatrix}$$

• Critério de Paragem

$$\|\nabla f(y^3, z^3)\|_2 = 0.016065 \le \varepsilon$$
 (verdadeiro)

$$(x, y, z)_{\min} \approx \begin{pmatrix} 26.879397 \\ 52 \\ 21.120603 \end{pmatrix} e f_{\min} \approx 19.858931$$