

1) Publication number:

0 411 946 A2

(12)

EUROPEAN PATENT APPLICATION

(1) Application number: 90308530.6

(f) Int. Ci.5: C12P 21/02, C12N 15/12

② Date of filing: 02.08.90

The applicant has filed a statement in accordance with Rule 28 (4) EPC (issue of a sample only to an expert). Accession number(s) of the deposit(s): FERM BP-2999 and FERM BP-2912.

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

- Priority: 03.08.89 JP 200230/89 31.05.90 JP 140069/90
- Date of publication of application: 06.02.91 Bulletin 91/06
- Designated Contracting States:
 AT BE CH DE ES FR GB IT LI NL SE

- Applicant: Kishimoto, Tadamitsu 5-31 Nakanocho 3-chome Tondabayashi-shi Osaka(JP)
- 2 Inventor: Kishimoto, Tadamitsu 5-31 Nakanocho 3-chome Tondabayashi-shi Osaka(JP)
- (4) Representative: Kearney, Kevin David Nicholas et al KILBURN & STRODE 30 John Streeteet London, WC1N 2DD(GB)

- (54) Human GP130 protein.
- Thuman gp130 protein having at least the following properties: (1) the protein has an affinity with a complex of IL-6 (interleukin-6) and an IL-6 receptor (interleukin-6 receptor); (2) the protein shows an apparent molecular weight of 130 kDa in SDS-polyacrylamide electrophoresis; and (3) the protein participates in the transmission of IL-6 signal; DNA coding for the protein, an expression plasmid containing the DNA; and a process for production of the protein using the expression plasmid.

HUMAN GP130 PROTEIN

The present invention relates to a human gp130 protein, which is a protein participating in the transmission of an IL-6 signal, a DNA coding for this protein, and a means for and a method of producing this protein by genetic engineering.

٠1

Interleukin-6 (IL-6) is a protein participating broadly in the proliferation and differentiation of an organism, and is characterized in that the protein plays an important role in the defense system of an organism such as immunity, hematopoiesis or inflammation (see Kishimoto, Blood, 74, page 1, 1989). It is reported that an abnormal production of IL-6 may become a factor in the cause of various autoimmune diseases (see Kishimoto and Hirano, Ann. Rev. Immunol., 6 page 485, 1988).

The inventor isolated a gene for human IL-6 receptor on the cell membrane, which is specifically bonded to human IL-6, and determined the primary structure thereof (see Japanese Patent Application No. 63-194885). Then the inventor isolated a gene of mouse IL-6 receptor on the cell membrane, which is specifically bonded to mouse IL-6, and determined the primary structure thereof (see Japanese Patent Application No. 1-292230). Furthermore, the inventor prepared a soluble IL-6 receptor (extracellular portion of an IL-6 receptor), considered to be usable for a therapeutic or diagnostic medicine, from the human IL-6 receptor gene as the starting material (see Japanese Patent Application No. 1-9774).

An artificial control of the function of IL-6 strongly exerting physiological activities in an organism is considered usable as a new mechanism for the therapy of various diseases, and knowledge of the course of the transmission of an IL-6 signal is important in the development of a medicinal substance for enhancing or inhibiting the function of IL-6.

The inventor investigated the mechanism of the transmission of the IL-6 signal, and as a result, found that, in addition to the IL-6 and IL-6 receptor, there exists, as a third factor, a protein participating in the transmission of the IL-6 signal. Since this protein has an apparent molecular weight of 130 kb, the inventors named his protein "human gp130". To further analyze the transmission of IL-6 signals or to develop a soluble gp130 (the extracellular portion of a gp130 protein) as an inhibitor for IL-6, a large quantity of a purified product of soluble gp130 must be obtained but the amount of gp130 produced in an organism is very small. A DNA sequence coding for gp130 is indispensable for producing gp130 in a large quantity by a genetic engineering method.

Therefore, a primary object of the present in-

vention is to provide a human gp130, a DNA coding for the gp130, and a process for producing the gp130 by using the DNA.

The inventor carried out research into the transmission of the IL-6 signal and found a protein on the cell membrane which participates in the transmission of IL-6 signals, and furthermore, proved that the IL-6 receptor on the cell membrane is bonded to this membrane protein through the bonding to IL-6, this membrane protein mediates the transmission of the IL-6 signal, and the intracellular region of the IL-6 receptor does not participate in the transmission of IL-6 signals.

Also, the inventor succeeded in cloning a DNA coding for human gp130, and determined the nucleotide sequence of this DNA.

The present invention is based on the results of these researches. More specifically, the present invention provides a gp130 participating in the transmission of the IL-6 signal; a DNA sequence coding for human gp130; a replicable vector capable of expressing this DNA sequence in a recombinant microorganism or cultured cell; a microorganism or cultured cell transformed by this expression vector; and a process for the production of human gp130, which comprises expressing a DNA sequence coding for gp130 in this microorganism or cultured cell.

Figure 1 shows autoradiographic patterns obtained when U266 cells internally labelled with ³⁵S-methionine are lysed after treatment with IL-6 (lanes 2 and 4) or without treatment with IL-6 (lanes 1 and 3), and then immunoprecipitated by an IL-6 receptor antibody MT18 immobilized on Sepharose B4, and polyacrylamide gel electrophoresis in sodium dodecyl sulphate (SDS/PAGE) is carried out under non-reducing conditions (lanes 1 and 2) or under reducing conditions (lanes 3 and 4);

Figure 2 shows autoradiographic patterns obtained when M12IL6R cells surface-labelled with ¹²⁵I are lysed after treatment with IL-6 (lane 2) or without treatment with IL-6 (lane 1), and is then treated in the same manner as in Figure 1;

Figure 3 shows autoradiographic patterns obtained when M12 cells are incubated in the presence (lanes 2 and 4) or absence (lanes 1 and 3) of IL-6 and in the presence of a culture supernatant of COS7 cells containing solluble IL-6 receptor (lanes 3 and 4) or not containing soluble IL-6 receptor (lanes 1 and 2) and lysed, and is then treated in the same manner as in Figure 1;

Figure 4 shows incorporation of ³H-labelled thymidine by MI cells in the presence of IL-6 at various concentrations, and in the presence or absence of a soluble IL-6 receptor;

Figure 5 shows a restriction enzyme map of λA and \(\mathbb{B} \) and a schematic structure of a corresponding human gp130 protein, in which E represents the EcoRI site, SS represents the signal sequence, EC represents the extracellular region, TM represents the membrane penetration region, and C represents the intracellular region;

Figure 6 shows the structure of a plasmid pGP130;

Figures 7-1 through 7-6 show the results of the analysis of the nucleotide sequence (Sequence ID N°. 1) of insert DNA of pGP130, i.e. DNA coding for human gp130, and show the presumed amino acid sequence of a protein, i.e. human gp130 produced when this DNA sequence is expressed, in which the underlined portion represents a hydrophobic amino acid region on the N-terminal side and the double-underlined portion represents a hydrophobic amino acid region on the C-terminal side; and,

Figure 8 shows the results of a Northern blot analysis of various cells conducted by using human gp130 CDNA as the probe.

1. gp130 Protein.

The cell membrane-derived protein participating in the transmission of the IL-6 signal according to the present invention, i.e. gp130, exerts an important function when IL-6 is bonded to an IL-6 receptor to finally cause various cells to exert biological activities such as proliferation and differentiation, and in the natural state, this protein is located on the cell membrane. The IL-6 referred to herein includes IL-6 produced in an organism, IL-6 produced by a genetic engineering method, and derivatives thereof. Furthermore, the IL-6 receptor includes an IL-6 receptor present on the cell membrane produced in an organism or by a genetic engineering method, a soluble IL-6 receptor isolated from the cell membrane, and derivatives thereof.

This protein has the following properties.

- (1) The protein is bonded to a complex of IL-6 and an IL-6 receptor.
- (2) The protein is not bonded to IL-6 alone or IL-6 receptor alone.
- (3) The protein shows an apparent molecular weight of 130 kDa in the SDS/PAGE. This protein participates in the transmission of the IL-6 signal and in the natural state, has an amino acid sequence (referred to herein as formula (I) of from Met at the 1-site to G1n at the 918-site as shown in Figure 7. In the present invention, the protein may be any protein having the above-mentioned amino acid sequence, and a protein or polypeptide having a portion of the above-mentioned amino acid se-

quence that makes a contribution to the specific bonding to a complex of IL-6 and IL-6 receptor. Namely, all proteins and polypeptides having an amino acid sequence in which at least one amino acid residue of the above-mentioned amino acid sequence is substituted by another amino acid residue(s), or at least one amino acid is deleted from the above- mentioned amino acid sequence, or at least one amino acid is added to the abovementioned amino acid sequence, whereby the protein still retains a capacity of being specifically bonded to a complex of IL-6 and IL-6 receptor, are included within the scope of the pg130 of the present invention. For example included within the term "pg130" are proteins in which an amino acid sequence or amino acid residue not making a contribution to the bonding to the complex of IL-6 and IL-6 receptor in the above-mentioned amino acid sequence is modified by substitution, deficiency or insertion; proteins in which an amino acid sequence and/or an amino acid residue portion is added to the N-terminal side and/or the C-terminal side of the above-mentioned amino acid sequence; and proteins formed by a fusion of another protein, such as a human growth hormone, to the abovementioned amino acid sequence.

The amino acid sequence represented by formula (I) consists of 918 amino acid residues, and hydrophobic amino residues are located in the region of from leucine at the second position from the N-terminal side to glycine located at the 22nd position and the region of from alanine at the 620th position to phenylalanine at the 641st position. It is considered that, of these two regions, the former region is a signal peptide region and the latter region is a membrane penetration region.

2. DNA Sequence.

DNA coding for human gp130 protein of the present invention encodes, for example, an amino acid sequence of from Met at 1-position to Gln at 918-position as shown in Figure 7. Representative cDNA has a base sequence of from A at 273position to G at 3026- position as shown in Figure 7. The present invention covers not only the abovementioned DNA sequence but also DNA in which at least one nucleotide of the above-mentioned DNA sequence is substituted with another nucleotide, or at least one nucleotide is deleted from the above-mentioned DNA sequence, or at least one nucleotide is added to the above-mentioned DNA sequence, and which codes for a protein having a capacity of being specifically bonded to the IL-6/IL-6 receptor complex. For example, there can be mentioned DNA sequences coding for proteins having the amino acid sequences as men20

tioned in formula (I) above.

3. Process for Preparation of gp130 Protein.

According to a first process of the present invention, the cell membrane-derived protein participating in the transmission of the IL-6 signal is prepared from animal cells producing this protein. As the cells, there can be mentioned IL-6 receptorproducing cells, for example, human myeloma cell U266, mouse leukemia cell line M1, and human B cell line CL4. The protein of the present invention participating in the transmission of the IL-6 signal also can be produced by the cells not producing IL-6 receptor. As the cells of this type, mouse B cell line M12, human T cell line Jurkat, and mouse T cell line CTLL2 can be mentioned. Namely, the protein participating in the transmission of the IL-6 signal according to the present invention can be obtained from these cells.

As pointed out hereinbefore, the protein of the present invention is bonded to the IL-6 receptor in the presence of IL-6 but is not bonded to the IL-6 receptor in the absence of IL-6, and therefore, the protein of the present invention can be isolated by utilizing this property.

For example, to isolate the protein from cells producing both the IL-6 receptor and the protein of the present invention, a process can be adopted in which the producing cells are cultured, IL-6 is artificially added to the cultured cells, incubation is carried out for a time sufficient to allow a reaction between the cells and the added IL-6 under physiological conditions, for example, for about 30 minutes at about 37°C in a conventional culture medium such as RPMI1640, and the cells are then lysed by a customary method, for example, by a treatment with a triethanolamine buffer solution containing 1% of digitonine, whereby a cell lysate containing a complex in which IL-6, the IL-6 receptor and the protein of the present invention are bonded together is obtained. Alternatively, after the cells are lysed by a customary method, incubation is carried out in the above-mentioned manner to obtain a cell lysate containing the above-mentioned complex. An antibody to IL-6 receptor, for example, MT18 antibody (prepared according to Referential Example 1 given hereinafter; see Japanese Patent Application No. 63-194885) is immobilized by a solid carrier, for example, Sepharose 4B, by the cyanogen bromide activation method. By placing this immobilized antibody to IL-6 receptor in contact with the above-mentioned cell lysate, the complex containing the protein of the present invention is immobilized on the above-mentioned solid carrier through the specific reaction between the IL-6 receptor and the IL-6 receptor antibody. Then, this solid carrier is washed to remove non-specifically bonded or adhering impurities, and the complex is eluted from the solid carrier by a conventional means using, for example, urea or guanidine, to free the desired protein of the present invention from the IL-6 receptor-containing protein complex.

To isolate and purify the desired protein of the present invention from the obtained solution, customary means adopted for the isolation and purification of proteins, such as precipitation using ammonium sulfate, column chromatography, for example, reversed phase chromatography and ion exchange chromatography, and electrophoresis can be used. During this isolation and purification process, an active fraction can be selected by utilizing the bonding to the IL-6 receptor in the presence of IL-6, non-bonding to the IL-6 receptor in the absence of IL-6, and confirming the molecular weight of 130 kDa as the criterion.

Where cells producing the protein of the present invention but not producing the IL-6 receptor are used, incubation is carried out in the presence of a soluble IL-6 receptor and IL-6, and the cells are then lysed to obtain a cell lysate containing an IL-6/IL-6 receptor/desired protein complex. Alternatively, the abovementioned cells producing the protein of the present invention are lysed, an incubation of IL-6 and the IL-6 receptor is carried out, and finally, a cell lysate containing an IL-6/IL-6 receptor/desired protein complex is obtained. The desired protein can be isolated and purified from this cell lysate in the above-mentioned manner.

The second process for the production of the protein participating in the transmission of IL-6 signals according to the present invention utilizes gene recombination, or recombinant DNA techniques. In this process, DNA coding for an amino acid sequence of a protein on the cell membrane, which participates in the transmission of the IL-6 signal can be obtained by various methods. For example, a cDNA library may be formed from cells expressing the above-mentioned protein thereon, such as human myeloma cells, according to customary procedures, and this library is selected according to various methods, for example, the method in which a probe designed on the basis of a partial amino acid sequence of the purified protein is used, and the method in which cDNA is expressed and the selection is made based on the property of the produced protein, for example, the specific bonding to the IL-6-bonded IL-6 receptor. The protein of the present invention is produced by expressing the thus-cloned DNA according to customary procedures.

4. DNA Coding gp130 Protein.

55

The DNA to be used for the above-mentioned process can be prepared based on desired messenger RNA selected from various messenger RNA's extracted, for example, for the human placenta by a known method, by using a probe prepared based on the DNA sequence of Figure 7 provided by the present invention. Alternatively, a part or all of this DNA can be chemically synthesized according to the disclosure of the present invention.

5. Expression Vector.

As the replicable expression vector capable of expressing the DNA sequence coding human gp130 provided according to the present invention, any vector having a replicating origin, control sequences and a sequence coding for gp130, and capable of transforming a selected host can be appropriately used without limitation. For example, plasmids such as pBR322 and pBR327 can be used when E. coli is used as the host, and when cultured cells of a mammal or the like is used as the host, a vector having a DNA replicating origin derived from SV40 virus, can be used.

Of the control sequences for expressing the coding sequence, the promoter system is important, and an appropriate promoter system should be elected according to the relationship to the selected host. When E. coli is used as the host, a lactose promoter system, a tryptophan promoter system or hybrid promoter systems thereof are preferably selected. When cultured cells derived from a mammal are used as the host, an SV40 promoter system, adenovirus promoter system, and cytomegalovirus promoter system are preferably selected.

6. Host.

Microorganisms or cultured cells customarily used for producing proteins by genetic engineering can be used as the host without limitation. As the microorganism, there can be mentioned E. coli such as K-12 or W-3110, Bacillus subtilis and yeast, and as the cultured cells, there can be mentioned COS cells (monkey renal fibroblast), CHO cells (Chinese hamster oocyte), and myeloma cells.

The host explained in (6) above, which has been transformed by the vector explained in (5) above, is cultured to express the DNA sequence coding for human gp130 in the vector DNA, whereby human gp130 is produced. This is realized by the activation of the promoter system in the control sequences linked to the DNA sequence coding for

human gp130.

A polyclonal antibody or monoclonal antibody to the protein of the present invention can be prepared according to customary procedures by using the protein of the present invention prepared according to various processes as described above, or the cell producing this protein as an immunogen. As the cell source and animal to be used in this preparation process, there can be mentioned organisms such as human, mouse, rabbit, goat and sheep.

The cell membrane-derived protein participating in the transmission of the IL-6 signal provided according to the present invention, can be used as a reagent for clarifying the signal transmission mechanism of IL-6 and developing valuable substances such as therapeutic agents for controlling the function of IL-6. For example, by using, as a detection criterion, the property of the present protein which transmits IL-6 signal while being specifically bonded to the IL-6 receptor bonded to IL-6, substances controlling the function of IL-6 can be screened. As the substances to be screened, there can be mentioned natural substances, synthetic chemicals, IL-6 and an IL-6 receptor produced by genetic engineering, derivatives thereof, and antibodies to IL-6, the IL-6 receptor, and antibodies to these proteins.

Furthermore, by bonding the soluble IL-6 receptor which has been bonded to IL-6 to the present protein, the function of IL-6 can be enhanced, and the function of IL-6 can be exerted even on a cell having no IL-6 receptor in the cell surface layer. On the other hand, if the bonding of the above-mentioned protein to the IL-6 receptor which has been bonded to IL-6 is inhibited by an antibody to IL-6, IL-6 receptor or the above-mentioned protein, the biological activity of IL-6 will be inhibited. Accordingly, it is considered that the protein of the present invention will be usable as an active ingredient of a medicine.

Furthermore, by the DNA sequence coding for human gp130 according to the present invention, and the means and process for producing this protein by genetic engineering, this protein, which is produced only in a very small amount in the natural state, can be produced in a large quantity.

The present invention will now be described in detail with reference to the following examples, that by no means limit the scope of the invention. It should be noted that the protein of the present invention is sometimes called "gp130" in the examples for convenience.

Example 1

55

Bonding of Protein (gp130) on Human Cell Membrane to Human IL-6 Receptor in Presence of Human IL-6

Human myeloma cells U266 (cells producing the IL-6 receptor and gp130 protein) (2 x 107 cells) were internally labelled with 1 mCi of 35Smethionine and divided into two parts. One part was incubated in 0.5 ml of PRMI1640 culture medium at 37°C for 30 minutes in the presence of IL-6 (1 ug/ml), and the other part was similarly incubated in the absence of IL-6. Then, the U266 cells were lysed with 1 ml of a 10 mM triethanolamine buffer solution (having a pH value of 7.4) containing 1% of digitonine (supplied by Wako Junyaku), 0.15 M NaCl, and 1 mM pAPMSF (a commercially available plasmid supplied by Wako Junyaku). Separately, the IL-6 receptor antibody MT18 (Referential Example 1) was bonded to Sepharose 4B activated by cyanogen bromide, and the bonded antibody then mixed with the supernatant of the above-mentioned cell lysate, whereby the solubilized IL-6 receptor was bonded to the MT18 antibody on the resin.

The non-specifically bonded substances were washed away by the above-mentioned solution containing 1% of digitonine. Then, under reducing or non-reducing conditions, polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS/PAGE) and autoradiography were carried out. The results are shown in Figure 1. In Figure 1, the band of 80 kDa shows the 35 S-methionine-labelled IL-6 receptor derived from the U266 cell, and the band of 130 kDa shows the gp130 protein of the present invention. From the results shown in Figure 1, it is seen that the IL-6 receptor bonded to IL-6 is bonded to the human protein (gp130) having a monomer molecular weight of 130 kDa within 30 minutes at 37°C.

Example 2

Bonding of Human IL-6 receptor to Protein (gp130) on Mouse Cell Membrne in Presence of Human IL-6

A plasmid prepared by inserting a human IL-6 receptor cDNA into the BamHI site in the plasmid pZipNeoSV(X)I (see Cepko et al, Cell, 37, page 1053, 1984) was introduced into a mouse B cell strain M12 not expressing the IL-6 receptor on the cell surface, by the electropolation method, and the transformed cell was screened based on the resistance to an antibiotic substance G418 (neomycin analogue - supplied by Sigma). The thus-established mouse B cell M12-derived clone expressing the human IL-6 receptor on the cell surface was named "M12IL6R".

Then, 107 of M121L6R cells were washed with PBS and suspnded in 0.1 ml of 50 mM Tris (having a pH value of 7.4) and 0.15 M NaCl. Next, 1 mCi of Na 1251 and two lodobeads (supplied by Pierce) were reacted at room temperature for 5 minutes in 0.1 ml of the above-mentioned buffer solution, the reaction liquid was mixed with the above-mentioned cell suspension, and incubation was carried out at room temperature for 30 minutes. Then 1 ug/ml of IL-6 was added to the thus-labelled cells, or was not added, and the reaction was carried out at 37°C for 30 minutes, and the cell was lysed according to the method described in Example 1, an immunoprecipitation by MT18 (see reference Example 1) was carried out, and SDS/PAGE and autoradiography were then carried out. The results are shown in Figure 2. In Figure 2, the band of 80 kDa shows the IL-6 receptor produced by the IL-6 receptor cDNA introduced into an M12 cell, and the band of 130 kDa shows a gp130 protein inherently produced by the M12 cell. From the results shown in Figure 2, it is seen that the human IL-6 receptor on M12IL6R bonded to human IL-6 is bonded to the mouse protein (gp130) derived from M12IL6R, at 37°C within 30 minutes.

Example 3

35

Bonding of Soluble IL-6 Receptor to gp130 in Presence of IL-6

According to the method described in Example 2, 2 x 107 of M12 cells (cells not producing IL-6 receptor) were labelled, 5 x 106 of the labelled cells were added to 1 ml of a culture supernatant of COS7 cells containing or not containing the soluble IL-6 receptor in the presence or presence of IL-6 (1 ug/ml), and the reaction was carried out at 37 °C for 30 minutes. Then the cells were lysed with digitonine according to the method described in Example 1, immunoprecipitation was carried out by MT18 antibody, and the SDS/PAGE and autoradiography were then carried out. The results are shown in Figure 3. In Figure 3, the band of 130 kDa shows the gp130 protein produced by M12 cells. Note, in this example, since the soluble IL-6 receptor was radiography. From the results shown in Figure 3, it is seen that the complex of IL-6 and the soluble IL-6 receptor is bonded to the protein (gp130) on the cell membrane, and the soluble IL-6 receptor alone is not bonded to gp130.

Example 4

10

15

Enhancement of Function of IL-6 by Soluble IL-6 Receptor in Presence of IL-6

M1 cells (1 x 10⁵ cells/ml) were cultured at 0.2 ml/well in a culture medium containing II-6 at various concentrations as well as COS7 cell supernatant or soluble IL-6 receptor-containing COS7 cell supernatant in an amount of 25%. Within 60 to 70 hours from the start of the culturing, ³H-labelled thymidine was added, and by measuring the radioactivity incorporated into the cells, the proliferation of the cells was examined. Figure 4 shows that the effect of inhibiting the proliferation of M1 cells, possessed by IL-6, is enhanced by the soluble IL-6 receptor. Namely, the function of IL-6 is enhanced by the bonding of the IL-6-bonded soluble IL-6 receptor to gp130 of M1 cell.

Example 5

Isolation of Human gp130 cDNA

A series of gene recombintion operations (extraction of m-RNA, cleavage of DNA by restriction enzyme, and the like) were carried out according to the process of Maniatis et al (see Molecular Cloning, Cold Spring Harbor Laboratory, 1982) and the process of Harwin et al (see DNA Cloning, A Practical Approach, vol. 1, page 49, IRL, Oxford, 1985). Screening by the antibody of λgt11 cDNA library was carried out according to the conventional method.

First, a messenger (m) RNA was extracted from human myeloma cell U266 (see Cell, volume 58, page 573, 1989), and a cDNA library was prepared by using λ gt11 (supplied by Clontech). Then, using mouse-derived monoclonal antibodies AM64 and AM277 (see Japanese Patent Application No. 2-15090) to gp130, about 500,000 clones were screened, and finally, two colonies and $(\lambda_A$ and $\lambda_B)$ were obtained. The insert cDNA of each of λA and λB was analyzed, and the results are shown in Figure 5. As shown in Figure 5, the insert cDNAS did not contain the full length human gp130-coding region.

Accordingly, an EcoRI fragment of λ_A and the EcoRI fragment of λ_B were inserted, while connecting them in the orientation of reading of cDNA, to the EcoRI site of a vector pBluescript SK (supplied by Stratagene) to prepare a plasmid pGP130 having an insert DNA containing the complete human gp130-coding region. The structure of pGP130 is shown in Figure 6, and the sequence of the insert DNA of pGP130, i.e. the sequence of human gp130 cDNA determined from insert cDNA sequences of λA and λB , and the presumed amino acid se-

quence, are shown in Figure 7.

E. coli HB101/pGP130 containing this plasmid pGP130 was internationally deposited as deposition No. FERM BP-2912 under the Budapest Treaty on May 15, 1990 with the Fermentation Research Institute, Agency of Industrial Science and Technology, located at 1-3, Higashi 1-Chome, Tsujuka-shi, Ibaragi-ken, Japan.

Example 6

Expression of Human gp130 mRNA in Various Cells

To examine the expression of human gp130 in various cells, Northern blot analysis was carried out. The culturing of cells, extraction of mRNA from the cells, electrophoresis, blotting, probe labelling, hybridization, filter washing, and autoradiography were carried out according to standard methods.

mRNA was extracted from human myeloma cells U266, human B cells CESS, human Burkitt's lymphoma Jijoye, human T cells Jurkat, and NK cells YT, and 1 ug of each mRNA then denaturated by the formamide method and subjected to electrophoresis with 0.8% agarose gel, and to Northern blotting on a nylon filter membrane. Then an insert cDNA of λ_A obtained by the method described in Example 5 was extracted, and using this extracted insert cDNA, hybridization was carried out at 42 $^{\circ}$ C for 24 hours. The product was then washed and autoradiography was carried out.

The results are shown in Figure 8, and it is seen that the manifestation of gp130 mRNA is strong in U266 and YT, medium in CESS, and weak in Jijoye and Jurkat. This has a relation to the reactivity of the IL-6 of each cell.

Referential Example 1

Preparation of Monoclonal Antibody to Human IL-6 Receptor

To prepare a mouse monoclonal antibody to human IL-6 receptor, mouse T cells having human IL-6 receptors expressed on the cell membrane surface were prepared as an antigen, according to the following method. Namely, pBSF2R.236 and pSV2neo disclosed in Japanese Patent Application No. 1-9744 were introduced in mouse T-cells CTLL-2 (ATCC, TIB214) according to a conventional procedure, and screening was carried out according to the conventional method using antibiotic G-418. Finally, the strain in which about

45

30,000 IL-6 receptors per cell were expressed was established, and this strain was named "CTBC2".

The immunization was carried out in the following manner. The CTBC2 cells were cultured according to a conventional method using PRMI1640 culture medium, and the cultured CTBC2 cells were washed four times with a PBS buffer and used intraperitoneally to immunize C57BL6 mouse in an amount of 1 x 10⁷ cells per mouse once a week, six times as a whole.

The spleen cells of the immunized mouse were fused to the myeloma cells P3U1 as the parent cell line, according to a conventional method using polyethylene glycol.

Screening was carried out in the following manner. Namely, pBRF2R.236 and pSV2neo were introduced into the IL-6 receptor-negative human T cell strain JURKAT (ATCC, CRL8163) according to a conventional method, and by screening, a strain expressing about 100,000 IL-6 receptors per cell was established, and this strain was named "NJBC8". One clone of a hybridoma producing an antibody recognizing the cell contents of NJBC8 lysed by NP40 but not recognizing the cell contents of JURKAT lysed by NP40 was isolated and named "MT18". The monoclonal antibody produced by this hybridoma was named "MT18 antibody".

The above-mentioned hybridoma MT18 was deposited at the Fermentation Research Institute (FRI) Agency of Industrial Science and Technology 1-3 Yatabe-cho Higashi 1-chome Ibaraki Japan as FERM P-10840 on July 12, 1989, and transferred to an international deposition under the Budapest Treaty as FERM BP-2999 on July 10, 1990.

The cell line AM64 was deposited with the Fermention Research Institute (FRI) Agency of Industrial Science and Technology, located at 1-3 Yatabe-cho Higashi 1-chome Ibaraki Japan, on January 12, 1990, as FERM P-11194; and the cell line AM277 was deposited with the FRI on January 12, 1990, as FERM P-11195. Availability of deposited materials is not necessary for practice of the present invention, which may be performed using the teachings of the present disclosure in combination with publicly available materials and information and techniques well known in the arts of molecular biology, recombinant DNA, and chimeric gene expression.

Claims

- Recombinant human gp130 protein which bonds to the IL-6 receptor in the presence of IL-6 but does not bond to the IL-6 receptor in the absence of IL-6.
- 2. Human gp130 protein having at least the follow-

ing properties:

- (1) the protein has an affinity with a complex of IL-6 (interleukin-6) and an IL-6 receptor (interleukin-6 receptor);
- (2) the protein shows an apparent molecular weight of 130 kDa in SDS-polyacrylamide electrophoresis; and
- (3) the protein participtes in the transmission of II-6 signal.
- 3. Human gp130 protein as claimed in Claim 1 or Claim 2, characterized in that it has an amino acid sequence from Met at the 1st site to Gln at the 918th position in Figure 7.
 - DNA coding for human gp130 protein as claimed in Claim 1, 2 or 3.
 - 5. DNA as claimed in Claim 4, characterized in that it codes for a human gp130 protein having an amino acid sequence of from Met at the 1st position to Gln at the 918th position in Figure 7.
- 6. DNA as claimed in Claim 5, characterized in that it has a nucleotide sequence from A at the 273rd position to G at the 3026th position in Figure 7.
 - 7. A vector containing DNA as claimed in Claim 4, 5 or 6.
- 8. A vector as claimed in Claim 7 which is an expression vector capable of expressing the said DNA in a host cell.
 - 9. The plasmid pPG130.
 - 10. A host cell transformed by an expression vector as claimed in Claim 8.
 - 11. A process for the production of human gp130 protein, which comprises culturing a host cell as claimed in Claim 10.
 - 12. Human gp130 protein substantially free of another human protein, which is produced by using DNA as claimed in Claim 4, 5 or 6.

50

8

SEQ ID NO: 1 SEQUENCE TYPE: Nucleotide sequence with corresponding proteins SEQUENCE LENGTH: 3102 base pairs	
GAATTCGGGG CCGGGGCGAG CAGCCAAAAG GCCCGCGGAG TCGCGCTGGG	50
CCGCCCCGGC GCAGCTGAAC CGGGGGCCGC GCCTGCCAGG CCGACGGGTC	100
TGGCCCAGCC TGGCGCCAAG GGGTTCGTGC GCTGTGGAGA CGCGGAGGGT	150
CGAGGCGGCG CGGCCTGAGT GAAACCCAAT GGAAAAAGCA TGACATTTAG	200
AAGTAGAAGA CTTAGCTTCA AATCCCTACT CCTTCACTTA CTAATTTTGT	250
GATTTGGAAA TATCCGCGCA AG ATG TTG ACG TTG CAG ACT TGG Met Leu Thr Leu Gln Thr Trp 5	293
GTA GTG CAA GCC TTG TTT ATT TTC CTC ACC ACT GAA TCT ACA Val Val Gln Ala Leu Phe Ile Phe Leu Thr Thr Glu Ser Thr 10 15 20	335
GGT GAA CTT CTA GAT CCA TGT GGT TAT ATC AGT CCT GAA TCT Gly Glu Leu Asp Pro Cys Gly Tyr Ile Ser Pro Glu Ser 25	377
CCA GTT GTA CAA CTT CAT TCT AAT TTC ACT GCA GTT TGT GTG Pro Val Val Gln Leu His Ser Asn Phe Thr Ala Val Cys Val	419
CTA AAG GAA AAA TGT ATG GAT TAT TTT CAT GTA AAT GCT AAT Leu Lys Glu Lys Cys Met Asp Tyr Phe His Val Asn Ala Asn 50 55 60	461
TAC ATT GTC TGG AAA ACA AAC CAT TTT ACT ATT CCT AAG GAG Tyr Ile Val Trp Lys Thr Asn His Phe Thr Ile Pro Lys Glu 65 70 75	503
CAA TAT ACT ATC ATA AAC AGA ACA GCA TCC AGT GTC ACC TTT Gln Tyr Thr Ile Ile Asn Arg Thr Ala Ser Ser Val Thr Phe 80 85 90	545
ACA GAT ATA GCT TCA TTA AAT ATT CAG CTC ACT TGC AAC ATT Thr Asp Ile Ala Ser Leu Asn Ile Gln Leu Thr Cys Asn Ile 95	587
CTT ACA TTC GGA CAG CTT GAA CAG AAT GTT TAT GGA ATC ACA Leu Thr Phe Gly Gln Leu Glu Gln Asn Val Tyr Gly Ile Thr 110 115	629
ATA ATT TCA GGC TTG CCT CCA GAA AAA CCT AAA AAT TTG AGT Ile Ile Ser Gly Leu Pro Pro Glu Lys Pro Lys Asn Leu Ser 120	671

TGC ATT GTC Cys Ile Val	AAC GAG Asn Glu	GGG AAG Gly Lys 140	AAA /	ATG / Met /	AGG T Arg C	CGT GAG Cys Glu 145	TGG Trp	GAT Asp	713
GGT GGA AGG Gly Gly Arg 150	Glu Thr	CAC TTG His Leu	GAG AGIU 1	ACA I	AAC T Asn P	TC ACT he Thr	TTA Leu 160	AAA Lys	755
TCT GAA TGO Ser Glu Tr	GCA ACA Ala Thr 165	CAC AAG His Lys	Phe .	GCT (Ala <i>l</i> 170	GAT T Asp C	GC AAA ys Lys	GCA Ala	AAA Lys 175	797
CGT GAC ACC Arg Asp Thi	CCC ACC Pro Thr 180	TCA TGC Ser Cys	ACT (Val A	GAT T Asp T 185	AT TCT Tyr Ser	ACT Thr	GTG Val	839
TAT TTT GTO Tyr Phe Val	AAC ATT Asn Ile	GAA GTC Glu Val 195	TGG (GTA (Val (Glu A	CA GAG la Glu 00	AAT Asn	GCC Ala	881
CTT GGG AAC Leu Gly Lys 205	GTT ACA Val Thr	TCA GAT Ser Asp 210	His	ATC I	AAT T Asn P	TTT GAT he Asp 215	CCT Pro	GTA Val	923
TAT AAA GTO Tyr Lys Val 220	Lys Pro	AAT CCG Asn Pro	Pro 1 225	CAT / His /	AAT T Asn L	TA TCA eu Ser	GTG Val 230	ATC Ile	965
AAC TCA GAC Asn Ser Glu	GAA CTG Glu Leu 235	TCT AGT Ser Ser	Ile :	TTA I Leu l 240	AAA T Lys L	TG ACA eu Thr	TGG Trp	ACC Thr 245	1007
AAC CCA AG Asn Pro Se	ATT AAG : Ile Lys 250	AGT GTT Ser Val	ATA . Ile	Ile 1	CTA A Leu L 255	AA TAT ys Tyr	AAC Asn	ATT Ile	1049
CAA TAT AGG Gln Tyr Arg 260	ACC AAA Thr Lys	GAT GCC Asp Ala 265	TCA . Ser	ACT !	Trp S	GC CAG Ser Gln 270	ATT Ile	CCT Pro	1091
CCT GAA GAG Pro Glu Ası 275	ACA GCA Thr Ala	TCC ACC Ser Thr 280	Arg	TCT S	TCA T Ser P	TTC ACT The Thr 285	GTC Val	CAA Gln	1133
GAC CTT AAA Asp Leu Lys 290	Pro Phe	ACA GAA Thr Glu	TAT Tyr 295	GTG : Val 1	TTT A Phe A	AGG ATT	CGC Arg 300	TGT Cys	1175

ATG Met	AAG Lys	GAA Glu	GAT Asp 305	GGT Gly	AAG Lys	GGA Gly	TAC Tyr	TGG Trp 310	AGT Ser	GAC Asp	TGG Trp	AGT Ser	GAA Glu 315	1217
GAA Glu	GCA Ala	AGT Ser	GGG Gly	ATC Ile 320	ACC Thr	TAT Tyr	GAA Glu	GAT Asp	AGA Arg 325	CCA Pro	TCT Ser	AAA Lys	GCA Ala	1259
CCA Pro 330	AGT Ser	TTC Phe	TGG Trp	TAT Tyr	AAA Lys 335	ATA Ile	GAT Asp	CCA Pro	TCC Ser	CAT His 340	ACT Thr	CAA Gln	GGC Gly	1301
TAC Tyr	AGA Arg 345	ACT Thr	GTA Val	CAA Gln	CTC Leu	GTG Val 350	TGG Trp	AAG Lys	ACA Thr	TTG Leu	CCT Pro 355	CCT Pro	TTT Phe	1343
GAA Glu	GCC Ala	AAT Asn 360	GGA Gly	AAA Lys	ATC Ile	TTG Leu	GAT Asp 365	TAT Tyr	GAA Glu	GTG Val	ACT Thr	CTC Leu 370	ACA Thr	1385
AGA Arg	TGG Trp	AAA Lys	TCA Ser 375	CAT His	TTA Leu	CAA Gln	AAT Asn	TAC Tyr 380	ACA Thr	GTT Val	AAT Asn	GCC Ala	ACA Thr 385	1427
AAA Lys	CTG Leu	ACA Thr	GTA Val	AAT Asn 390	CTC Leu	ACA Thr	AAT Asn	GAT Asp	CGC Arg 395	TAT Tyr	CTA Leu	GCA Ala	ACC Thr	1469
CTA Leu 400	ACA Thr	GTA Val	AGA Arg	AAT Asn	CTT Leu 405	GTT Val	GGC Gly	AAA Lys	TCA Ser	GAT Asp 410	GCA Ala	GCT Ala	GTT Val	1511
TTA Leu	ACT Thr 415	ATC Ile	CCT Pro	GCC Ala	TGT Cys	GAC Asp 420	TTT Phe	CAA Gln	GCT Ala	ATC Thr	CAC His 425	CCT Pro	GTA Val	1553
ATG Met	GAT Asp	CTT Leu 430	AAA Lys	GCA Ala	TTC Phe	CCC Pro	AAA Lys 435	GAT Asp	AAC Asn	ATG Met	CTT Leu	TGG Trp 440	GTG Val	1595
GAA Glu	TGG Trp	ACT Thr	ACT Thr 445	CCA Pro	AGG Arg	GAA Glu	TCT Ser	GTA Val 450	AAG Lys	AAA Lys	TAT Tyr	ATA Ile	CTT Leu 455	1637
GAG Glu	TCG Trp	TGT Cys	GTG Val	TTA Leu 460	TCA Ser	GAT Asp	AAA Lys	GCA Ala	CCC Pro 465	TGT Cys	ATC Ile	ACA Thr	GAC Asp	1679

					TAT Tyr		1721
					ACA Thr 495		1763
					TCC Ser		1805
					CCT Pro		1847
					TTA Leu		1889
					ATC Ile		1931
					GAA Glu 565		1973
					TTG Leu		2015
					GCA Ala		2057
					ACT Thr		2099
					ATA Ile		2141
					CTG Leu 635		2183
					AAA Lys		2225

TGG CCT	AAT GTT Asn Val	Pro Asp	CCT TCA Pro Ser	AAG AG Lys Se 660	T CAT ATT r His Ile	GCC CAG Ala Gln 665	2267
TGG TCA	CCT CAC Pro His	ACT CCT Thr Pro 670	CCA AGG	CAC AA His As: 67	T TTT AAT n Phe Asn 5	TCA AAA Ser Lys	2309
GAT CAA Asp Gln 680	ATG TAT Met Tyr	TCA GAT Ser Asp 685	Gly Asn	TTC AC	r GAT GTA r Asp Val 690	AGT GTT Ser Val	2351
GTG GAA Val Glu 695	Ile Glu	A GCA AAT A Ala Asn	GAC AAA Asp Lys 700	AAG CC Lys Pr	T TTT CCA o Phe Pro 705	GAA GAT Glu Asp	2393
CTG AAA Leu Lys	TCA TTO Ser Lev 710	GAC CTG	TTC AAA Phe Lys 715	Lys Gl	A AAA ATT u Lys Ile	AAT ACT Asn Thr 720	2435
GAA GGA Glu Gly	CAC AGO His Ser 725	Ser Gly	ATT GGG	GGG TC Gly Se 730	T TCA TGC r Ser Cys	ATG TCA Met Ser 735	2477
TCT TCT Ser Ser	AGG CCA	A AGC ATT Ser Ile 740	TCT AGO Ser Ser	AGT GA Ser As 74	T GAA AAT p Glu Asn 5	GAA TCT Glu Ser	2519
TCA CAA Ser Gln 750	AAC ACT	TCG AGO Ser Ser 755	Thr Val	CAG TA Gln Ty	T TCT ACC r Ser Thr 760	GTG GTA Val Val	2561
CAC AGT His Ser 765	Gly Ty	AGA CAC	CAA GTT Gln Val 770	CCG TC Pro Se	A GTC CAA r Val Gln 775	GTC TTC Val Phe	2603
TCA AGA Ser Arg	TCC GAG Ser Glu 780	TCT ACC	CAG CCC Gln Pro 785	Leu Le	A GAT TCA u Asp Ser	GAG GAG Glu Glu 790	2645
CGG CCA Arg Pro	GAA GA' Glu Ası 79	Leu Glr	TTA GTA	GAT CA Asp Hi 800	T GTA GAT s Val Asp	GGC GGT Gly Gly 805	2687

													TGC Cys	2729
			_		AGT Ser 825								AGG Arg	2771
					TCA Ser								AGA Arg	2813
					TCA Ser								GGA Gly	2855
					ATG Met									2897
					ACT Thr								GAA Glu	2939
													AAA Lys	2981
					ACT Thr								CCT Pro	3023
CAG TGAAGGACTA GTAGTTCCTG CTACAACTTC AGCAGTACCT Gln 918													3066	
ATA	AGT	AAA C	CTA!	LAATO	A TI	TTTAT	CTGT	GA	ATTC					3102

Fig.1

Fig. 2

Fig. 3

Fig. 4

Fig.5

Fig. 6

Fig. 7-1

SEG		_		~ ~	7.0		10	•
> P 1.	111		N.			1 1	1) [

GAA	TTCG	GGG	CCGG	GCG	AG C	AGCC	AAAA	G GC	CCGC	GGAG	TCG	CGCT	GGG	50
CCG	cccc	GGC	GCAG	CTGA	AC C	GGGG	GCCG	G GC	CTGC	CAGG	CCG	ACGG	GTC	100
TGG	CCCA	GCC '	TGGC	GCCA	AG G	3ĠTT(CGTG	C GC	rgtg	GAGA	CGC	GGAG	gg t	150
CGA	GCG	GCG (CGGC	CTGA	GT G	AAAC	CCAA!	r GG	AAAA	AGCA	TGA	CATT	PAG	200
AAGʻ	TAGA	AGA (CTTA	3CTT(CA A	ATCC	CTAC!	r cc	PTCA	CTTA	CTA	ATTT.	rgt	250
											5			
GAT	r t gg/	AAA '	ratc(CGCG	CA AC					GL:				293
		10					15					20		
Val	Val	Gln	Ala	Leu	Phe	Ile	Phe	Leu	Thr	Thr	Glu	Ser	Thr	335
GTA	GTG	CAA	GCC	TTG	TTT	ATT	TTC	CTC	ACC	ACT	GAA	TCT		333
~1	~1	T	25	3	D	0	G1	30	71.	C	D	~1	35	
GIY	GAA	CTT	CTA	GAT	CCA	TGT	GIY	TAT	ATC	Ser AGT	CCT	GAA	TCT	377
				40					45					
Pro	Val	Val	Gln		His	Ser	Asn	Phe		Ala	Val	Cys	Val	
CCA	GTT	GTA	CAA	CTT	CAT	TCT	AAT	TTC	ACT	GCA	GTT	TGT	GTG	419
50					55					60				
Leu	Lys	Glu	Lys	Cys	Met	Asp	Tyr	Phe	His	Val	Asn	Ala	Asn	463
CTA	AAG	GAA	AAA	TGT	ATG	GAT	TAT	TTT	CAT	GTA	AAT	GCT	AAT	461
	65	**- 1		•	m 1	70	•••	5 1	m \	-1 -	75	-	61	
TAC	ATT	GTC	TGG	LYS AAA	ACA	ASR	CAT	TTT	ACT	Ile ATT	CCT	LYS	GAG	503
		80					85					90		
Gln	Tyr		Ile	Ile	Asn	Arq		Ala	Ser	Ser	Val		Phe	
CAA	TĀT	ACT	ATC	ATA	AAC	AGÁ	ACA	GCA	TCC	AGT	GTC	ACC	TTT	545
			95					100					105	
Thr	Asp	Ile	Ala	Ser	Leu	Asn	Ile	Gln	Leu	Thr	Cys	Asn	Ile	
ACA	GAT	ATA	GCT	TCA	TTA	AAT	ATT	CAG	CTC	ACT	TGC	AAC	ATT	587
		_		110					115					
Leu CTT	Thr	Phe	Gly,	Gln	CTT	Glu	Gln	Asn AAT	Val GTT	Tyr TAT	GLY	ATC	ACA	629
						~	J							
120 Tle	Tle	Ser	Glv	Leu	125 Pro	Pro	Ğlu	Lvs	Pro	130 Lys	Asn	Leu	Ser	
ATA	ATT	TCA	GGC	TTG	CCT	CCA	GAA	AAA	CCT	AAA	AAT	TTG	AGT	671

Fig. 7-2

Cys TGC	135 Ile ATT	Val GTG	Asn AAC	Glu GAG	Gly GGG	140 Lys AAG	Lys AAA	Met ATG	Arg AGG	Cys TGT	145 Glu GAG	Trp TGG	Asp GAT	713
Gly GGT	Gly GGA	150 Arg AGG	Glu GAA	Thr ACA	His CAC	Leu TTG	155 Glu GAG	Thr ACA	Asn AAC	Phe TTC	Thr ACT	160 Leu TTA	Lys AAA	755
Ser TCT	Glu GAA	Trp TGG	165 Ala GCA	Thr ACA	His CAC	Lys AAG	Phe TTT	170 Ala GCT	Asp GAT	Cys TGC	Lys AAA	Ala GCA	175 Lys AAA	797
Arg CGT	Asp GAC	Thr ACC	Pro CCC	180 Thr ACC	Ser TCA	Cys TGC	Thr ACT	Val GTT	185 Asp GAT	Tyr TAT	Ser TCT	Thr ACT	Val GTG	839
190 Tyr TAT	Phe TTT	Val GTC	Asn AAC	Ile ATT	195 Glu GAA	Val GTC	Trp TGG	Val GTA	Glu GAA	200 Ala GCA	Glu GAG	Asn AAT	Ala GCC	881
Leu CTT	205 Gly GGG	Lys AAG	Val GTT	Thr ACA	Ser TCA	210 Asp GAT	His CAT	Ile ATC	Asn AAT	Phe TTT	215 Asp GAT	Pro CCT	Val GTA	923
Tyr TAT	Lys AAA	220 Val GTG	Lys AAG	Pro CCC	Asn AAT	Pro CCG	225 Pro CCA	His CAT	Asn AAT	Leu TTA	Ser TCA	230 Val GTG	Ile ATC	965
Asn AAC	Ser TCA	Glu GAG	235 Glu GAA	Leu CTG	Ser TCT	Ser AGT	Ile ATC	240 Leu TTA	YYY Tàa	Leu TTG	Thr ACA	Trp TGG	245 Thr ACC	1007
Asn AAC	Pro CCA	Ser AGT	Ile ATT	250 Lys AAG	Ser AGT	Val GTT	Ile ATA	Ile ATA	255 Leu CTA	Lys AAA	Tyr TAT	Asn AAC	Ile ATT	1049
260 Gln CAA	Tyr TAT	Arg AGG	Thr ACC	Lys AAA	265 Asp GAT	Ala GCC	Ser TCA	Thr ACT	Trp TGG	270 Ser AGC	Gln CAG	Ile ATT	Pro CCT	1091
Pro CCT	275 Glu GAA	Asp GAC	Thr ACA	Ala GCA	Ser TCC	280 Thr ACC	Arg CGA	Ser TCT	Ser TCA	Phe TTC	285 Thr ACT	Val GTC	Gln CAA	1133
Asp	Leu CTT	290 Lys	Pro CCT	Phe TTT	Thr ACA	Glu GAA	295 Tyr TAT	Val GTG	Phe TTT	Arg AGG	Ile ATT	300 Arg CGC	Cys TGT	1175

Fig.7-3

Met	Lys	Glu	305 Asp	Gly	Lys	Gly	Tyr	310 Trp	Ser	Asp	Trp	Ser	315 Glu GAA	1217
	Ala			320					325					1217
GAA	GCA	AGT	GGG	ATC	ACC	TAT	GAA	GAT	AGA	CCA	TCT	AĀĀ	GCA	1259
330 Pro CCA	Ser AGT	Phe TTC	Trp TGG	Tyr TAT	335 Lys AAA	Ile ATA	Asp GAT	Pro CCA	Ser TCC	340 His CAT	Thr ACT	Gln CAA	Gly GGC	1301
Tyr TAC	345 Arg AGA	Thr ACT	Val GTA	Gln CAA	Leu CTC	350 Val GTG	Trp TGG	Lys AAG	Thr ACA	Leu TTG	355 Pro CCT	Pro CCT	Phe TTT	1343
		360	_				365					370		
Glu GAA	Ala GCC	Asn AAT	Gly GGA	Lys	Ile ATC	Leu TTG	Asp GAT	TYT	Glu GAA	Val GTG	ACT	CTC	Thr ACA	1385
		•	375	**	•	9 1	•	380	mh	**- 1	3	310	385	
Arg AGA	Trp TGG	AAA Lys	TCA	CAT	TTA	CAA	AAT	TAC	ACA	GTT	AAT	GCC	ACA	1427
				390					395		_			
Lys AAA	Leu CTG	Thr ACA	Val GTA	Asn AAT	Leu CTC	Thr	Asn AAT	Asp GAT	Arg CGC	Tyr TAT	Leu CTA	Ala GCA	Thr ACC	1469
400					405					410		_ •	•	
Leu CTA	Thr ACA	Val GTA	Arg AGA	Asn AAT	Leu CTT	Val GTT	GLY	Lys	Ser TCA	Asp GAT	Ala GCA	GCT	GTT	1511
	415					420					425		_	
Leu FTA	Thr ACT	Ile	Pro CCT	Ala GCC	Cys TGT	Asp GAC	Phe TTT	Gln CAA	Ala GCT	Thr	His CAC	Pro	Val GTA	1553
		430					435					440	_	
Met ATG	Asp GAT	Leu CTT	Lys AAA	Ala GCA	Phe TTC	Pro	Lys AAA	Asp GAT	Asn AAC	Met ATG	Leu CTT	Trp	Val GTG	1595
			445	•				450					455	-
Glu GAA	Trp TGG	Thr ACT	Thr ACT	Pro CCA	Arg AGG	Glu GAA	Ser TCT	Val GTA	Lys AAG	Lys AAA	Tyr TAT	Ile ATA	Leu CTT	1637
				460					465					
Glu	Trp	Cys TGT	Val GTG	Leu TTA	Ser	Asp GAT	Lys	Ala GCA	Pro	Cys TGT	Ile	Thr	Asp GAC	1679

Fig.7-4

470					475					480				
Trp TGG	Gln CAA	Gln CAA	Glu GAA	Asp GAT	Gly GGT	Thr	Val GTG	His CAT	Arg CGC	Thr	Tyr TAT	Leu TTA	Arg AGA	1721
Gly GGG	485 Asn AAC	Leu TTA	Ala GCA	Glu GAG	Ser AGC	490 Lys AAA	Cys TGC	Tyr TAT	Leu TTG	Ile ATA	495 Thr ACA	Val GTT	Thr ACT	1763
Pro CCA	Val GTA	500 Tyr TAT	Ala GCT	Asp GAT	Gly GGA	Pro CCA	505 Gly GGA	Ser AGC	Pro CCT	Glu GAA	Ser TCC	510 Ile ATA	Lys AAG	1805
Ala GCA	Tyr TAC	Leu CTT	515 Lys AAA	Gln CAA	Ala GCT	Pro CCA	Pro CCT	520 Ser TCC	Lys AAA	Gly GGA	Pro CCT	Thr ACT	525 Val GTT	1847
										Val GTC			Trp TGG	1889
540 Asp GAC	Gln CAA	Leu CTT	Pro CCT	Val GTT	545 Asp GAT	Val GTT	Gln CAG	Asn AAT	Gly GGA	550 Phe TTT	Ile ATC	Arg AGA	Asn AAT	1931
fyr TAT	555 Thr ACT	Ile ATA	Phe TTT	Tyr TAT	Arg AGA	560 Thr ACC	Ile ATC	Ile ATT	Gly GGA	Asn AAT	565 Glu GAA	Thr ACT	Ala GCT	1973
/al GTG	Asn AAT	570 Val GTG	Asp GAT	Ser TCT	Ser TCC	His CAC	575 Thr ACA	Glu GAA	Tyr TAT	Thr ACA	Leu TTG	580 Ser TCC	Ser TCT	2015
Leu FTG	Thr ACT	Ser AGT	585 Asp GAC	Thr ACA	Leu TTG	Tyr TAC	Met ATG	590 Val GTA	Arg CGA	Met ATG	Ala GCA	Ala GCA	595 Tyr TAC	2057
Chr ACA	Asp GAT	Glu GAA	Gly GGT	600 Gly GGG	Lys AAG	Asp GAT	Gly GGT	Pro CCA	605 Glu GAA	Phe TTC	Thr ACT	Phe TTT	Thr ACT	2099
510 Chr ACC	Pro CCA	Lys AAG	Phe TTT	Ala GCT	615 Gln CAA	Gly GGA	Glu GAA	Ile ATT	Glu GAA	620 Ala GCC	Ile ATA	Val GTC	Val GTG	2141
Pro	625 Val GTT	Cys TGC	Leu TTA	Ala GCA	Phe TTC	630 Leu CTA	Leu TTG	Thr ACA	Thr ACT	Leu CTT	635 Leu CTG	Gly GGA	Val GTG	2183
Leu	Phe	640 Cvs	Phe	Asn	Lvs	Ara	645 Asp	Leu	Ile	Lys AAA	Lys	650 His	Ile	. 2225

Fig.7-5

Trp TGG	Pro CCT	Asn AAT	655 Val GTT	Pro CCA	Asp GAT	Pro CCT	Ser TCA	660 Lys AAG	Ser AGT	His CAT	Ile ATT	Ala GCC	665 Gln CAG	2267
Trp TGG	Ser TCA	Pro CCT	His CAC	670 Thr ACT	Pro CCT	Pro CCA	Arg AGG	His CAC	675 Asn AAT	Phe TTT	Asn AAT	Ser TCA	Lys AAA	2309
680 Asp GAT	Gln CAA	Met ATG	Tyr TAT	Ser TCA	685 Asp GAT	Gly GGC	Asn AAT	Phe TTC	Thr ACT	690 Asp GAT	Val GTA	Ser AGT	Val GTT	2351
Val GTG	695 Glu GAA	Ile ATA	Glu GAA	Ala GCA	Asn AAT	700 Asp GAC	Lys AAA	Lys AAG	Pro CCT	Phe TTT	705 Pro CCA	Glu GAA	Asp GAT	2393
Leu CTG	Lys AAA	710 Ser TCA	Leu TTG	Asp GAC	Leu CTG	Phe TTC	715 Lys AAA	Lys AAG	Glu GAA	Lys AAA	Ile ATT	720 Asn AAT	Thr ACT	2435
Glu GAA	Gly GGA	His CAC	725 Ser AGC	Ser AGT	Gly GGT	Ile ATT	Gly GGG	730 Gly GGG	Ser TCT	Ser TCA	Cys TGC	Met ATG	735 Ser TCA	2477
Ser TCT	Ser TCT	Arg AGG	Pro CCA	740 Ser AGC	Ile ATT	Ser TCT	Ser AGC	Ser AGT	745 Asp GAT	Glu GAA	Asn AAT	Glu GAA	Ser TCT	2519
750 Ser TCA	Gln CAA	Asn AAC	Thr ACT	Ser TCG	755 Ser AGC	Thr ACT	Val GTC	Gln CAG	Tyr TAT	760 Ser TCT	Thr ACC	Val GTG	Val GTA	2561
His CAC	765 Ser AGT	Gly GGC	Tyr TAC	Arg AGA	His CAC	770 Gln CAA	Val GTT	Pro CCG	Ser TCA	Val GTC	775 Gln CAA	Val GTC	Phe TTC	2603
Ser TCA	Arg AGA	780 Ser TCC	Glu GAG	Ser TCT	Thr ACC	Gln CAG	785 Pro CCC	Leu TTG	Leu TTA	Asp GAT	Ser TCA	790 Glu GAG	Glu GAG	2645
Arg CGG	Pro CCA	Glu GAA	795 Asp GAT	Leu CTA	Gln CAA	Leu TTA	Val GTA	800 Asp GAT	His CAT	Val GTA	Asp GAT	Gly GGC	805 Gly GGT	2687

Fig. 7-6

				810					815					
Asp GAT	Gly GGT	Ile ATT	Leu TTG	Pro	Arg AGG	Gln CAA	Gln CAG	Tyr TAC	Phe	Lys AAA	Gln CAG	Asn AAC	Cys TGC	2729
820 Ser AGT	Gln CAG	His CAT	Glu GAA	Ser TCC	825 Ser AGT	Pro CCA	Asp GAT	Ile ATT	Ser TCA	830 His CAT	Phe TTT	Glu GAA	Arg AGG	2771
Ser TCA	835 Lys AAG	Gln CAA	Val GTT	Ser TCA	Ser TCA	840 Val GTC	Asn AAT	Glu GAG	Glu GAA	Asp GAT	845 Phe TTT	Val GTT	Arg AGA	2813
Leu CTT	Lys AAA	850 Gln CAG	Gln CAG	Ile ATT	Ser TCA	Asp GAT	855 His CAT	Ile ATT	Ser TCA	Gln CAA	Ser TCC	860 Cys TGT	Gly GGA	2855
Ser TCT	Gly GGG	Gln CAA	865 Met ATG	Lys AAA	Met ATG	Phe TTT	Gln CAG	870 Glu GAA	Val GTT	Ser TCT	Ala GCA	Ala GCA	875 Asp GAT	2897
Ala GCT	Phe TTT	Gly GGT	Pro CCA	880 Gly GGT	Thr ACT	Glu GAG	Gly GGA	Gln CAA	885 Val GTA	Glu GAA	Arg AGA	Phe TTT	Glu GAA	2939
890 Thr ACA	Val GTT	Gly GGC	Met ATG	Glu GAG	895 Ala GCT	Ala GCG	Thr ACT	Asp GAT	Glu GAA	900 Gly GGC	Met ATG	Pro CCT	Lys AAA	2981
Ser AGT	905 Tyr TAC	Leu TTA	Pro CCA	Gln CAG	Thr ACT	910 Val GTA	Arg CGG	Gln CAA	Gly GGC	Gly GGC	915 Tyr TAC	Met ATG	Pro CCT	3023
918 Gln CAG	TGAZ	AGGA(CTA (TAG	rtcc:	rg C	PACA	ACTT(C AG	CAGT	ACCT			3066
ATA	AAGT	AAA (GCTA!	AAAT(GA T	rtta:	rctg:	r GA	ATTC					3102

Fig.8

11 Publication number:

0 411 946 A3

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 90308530.6

Application number. 90306530.6

② Date of filing: 02.08.90

(5) Int. CI.5: **C12N** 15/12, C12P 21/02, C07K 13/00

- Priority: 03.08.89 JP 200230/89 31.05.90 JP 140069/90
- Date of publication of application: 06.02.91 Bulletin 91/06
- Designated Contracting States:
 AT BE CH DE ES FR GB IT LI NL SE
- Bate of deferred publication of the search report: 12.02.92 Bulletin 92/07
- Applicant: Kishimoto, Tadamitsu
 5-31 Nakanocho 3-chome
 Tondabayashi-shi Osaka(JP)
- Inventor: Kishimoto, Tadamitsu 5-31 Nakanocho 3-chome Tondabayashi-shi Osaka(JP)
- Representative: Kearney, Kevin David Nicholas et al KILBURN & STRODE 30 John Street London, WC1N 2DD(GB)

- (S) Human GP130 protein.
- F) Human gp130 protein having at least the following properties: (1) the protein has an affinity with a complex of IL-6 (interleukin-6) and an IL-6 receptor (interleukin-6 receptor); (2) the protein shows an apparent molecular weight of 130 kDa in SDS-polyacryla mide electrophoresis; and (3) the protein participates in the transmission of IL-6 signal; DNA coding for the protein, an expression plasmid containing the DNA; and a process for production of the protein using the expression plasmid.

EUROPEAN SEARCH REPORT

Application Number

EP 90 30 8530

					EF 90 30 030		
D	OCUMENTS CONSI	DERED TO BE RELE	VANT				
Category		th indication, where appropriate, evant passages		evant claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)		
P,X	1990, page A1918, abstract thesda, MD, US; M. HIBI et	(P. BIOL.), vol. 4, no. 7, 26th A no. 1311, FASEB Journal, Be- al.: "Characterization and mole receptor (IL-6R)-associated sig	ec-	10	C 12 N 15/12 C 12 P 21/02 C 07 K 13/00		
P,Y	IDEM		9				
D,P,X	Press, Cambridge, MA, US;	ugust 1989, pages 573-581, Co T. TAGA et al.: "Interleukin-6 ts receptor with a possible sign					
Y		vo excision properties"	t 9				
P,X	BIOLOGY, vol. 54, no. 2, 19 tory Press, US; T. TAGA et unique mechanism of its sig	YMPOSIA ON QUANTITATIVE 189, pages 713-722, CSH Labo al.: "Interleukin-6 receptor and gnal transduction" In, line 19 - page 720, left-hand	ra- a		TECHNICAL FIELDS SEARCHED (Int. CI.5)		
P,Y	IDEM		3-12	2			
Y	1194-1198, National Acad.	vol. 80, no. 5, March 1983, pag Science, Washington, US; R.A. lation of genes by using antibo		2			
	The present search report has	been drawn up for all claims					
	Place of search	Date of completion of search		1	Examiner		
	The Hague	19 November 91			HORNIG H.O.		
Y: A: O: P:	CATEGORY OF CITED DOCT particularly relevant if taken alone particularly relevant if combined wit document of the same catagory technological background non-written disclosure intermediate document theory or principle underlying the in	h another D: c	he filing dat locument ci	ted in the ted for oth	er reasons		