Decoding

How well can we learn what the stimulus is by looking at the neur? responses?

Making a decision

Predictable from neural activity?

Given one sees a firing rate, one response, one trial from this neuron when trying to make a decision, how should one decode that firing rate in order to get the best guess about whether the stimulus was moving upward or downward?

Britten et al. '92

Behavioral performance

Britten et al. '92

Signal detection theory

How many errors are you going to make

Decoding means that we'd like a policy that tells us if we see some value r, we can map the stimulus unto either an upper going or downward going stimulus.

False alarms: $P[r \ge z|-]$ Good calls = $P[r \ge z|+]$

This choice of z maximizes P[correct]

Likelihood ratio

The likelihood ratio test is the most efficient statistic, in that it has the most power for a given Size

Power = probability of a false negative
Size = probability of a false positive

Neyman-Pearson lemma

Neurons vs organisms

Close correspondence between neuron decoding ana lehavior..

So why so many neurons?

Let's just consider for a moment

Now let's say we don't have to decide immediately...

Accumulated evidence for accumulated evidence

Kiani, Hanks & Shadlen, Nature Neuroscience (2006)

Back to one trial: building in what we already know

Role of *priors*:

Find z by maximizing P[correct] = p[+] b(z) + p[-](1 - a(z))

The wind or a tiger?

Rieke lab

That's prior knowledge: how about costs?

Building in cost

Cut your losses: answer + when / Colors

i.e.
$$L_{+}P[-|r] < L_{-}P[+|r]$$
.

Bayesian Rule

$$\Rightarrow p[r|+]/p[r|-] \Rightarrow L_+P[-]/L_-P]+$$