NUME:	
PRENUME:	
GRUPA:	

Examen Analiză Numerică & Metode Numerice Matematică Aplicată & Matematică-Informatică, Anul III

- I. (a) Prezentați algoritmul metodei secantei.
 - (b) Enumerați avantajele și dezavantajele metodei secantei (i.e. cerințele, dependența de prima aproximare, izolarea soluției, viteza de convergență a metodei).
 - (c) Determinați relația dintre două erori consecutive ale șirului de aproximări date de metoda secantei.
 - (d) Propuneți o metodă iterativă de punct fix cu viteza de convergență pătratică pentru determinarea unei soluții, $x^* \in [a, b]$, cu ordinul de multiplicitate $m \in \mathbb{N}$, m > 1, a ecuației neliniare f(x) = 0, $x \in [a, b]$, presupunând că ordinul de multiplicitate este cunoscut.

Justificaţi răspunsul demonstrând că metoda iterativă propusă este o metodă iterativă de punct fix cu viteza de convergență pătratică.

II. Fie $\mathbf{A} = (a_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(\mathbb{R}), n \geq 3$, o matrice tridiagonală astfel încât

$$a_{ii} = 2$$
, $i = \overline{1, n}$; $a_{i, i+1} = a_{i+1, i} = -1$, $i = \overline{1, n-1}$;

şi matricele $\mathbf{A}^{(k)} = (a_{ij})_{i,j=\overline{1,k}} \in \mathscr{M}_k(\mathbb{R}), k = \overline{1,n}.$

- (a) Daţi definiţia normelor matriciale $\|\cdot\|_1$ şi $\|\cdot\|_{\infty}$, precum şi formulele de calcul ale acestora. Calculaţi $\|\mathbf{A}\|_1$ şi $\|\mathbf{A}\|_{\infty}$.
- (b) Calculați det $(\mathbf{A}^{(k)})$, $k = \overline{1, n}$, și arătați că matricea \mathbf{A} admite factorizarea LU fără pivotare, i.e. $\mathbf{A} = \mathbf{L} \mathbf{U}$, unde $\mathbf{L} = (\ell_{ij})_{i,j=\overline{1,n}}$ inferior triunghiulară, cu $\ell_{ii} = 1$, $i = \overline{1,n}$, și $\mathbf{U} = (u_{ij})_{i,j=\overline{1,n}}$ superior triunghiulară.
- (c) Determinați ℓ_{ij} și u_{ij} , $i, j = \overline{1, n}$.
- III. Fie $f: \mathbb{R} \longrightarrow \mathbb{R}$, $x \in \mathbb{R}$ fixat şi nodurile echidistante $x_0 = x h$, $x_1 = x$ şi $x_2 = x + h$, unde h > 0.
 - (a) Determinați polinomul de interpolare Lagrange, $P_2 \in \mathscr{P}_2$, asociat funcției f și nodurilor de interpolare x_0, x_1 și x_2 .
 - (b) Dacă $f \in C^3[x_0, x_2]$, aplicați teorema de interpolare Lagrange pentru f(y) și $P_2(y)$, unde $y \in [x_0, x_2]$.
 - (c) Folosind (a) şi (b), determinaţi formula de aproximare cu diferenţe finite centrale pentru f'(x) şi ordinul său de aproximare.
 - (d) Aplicați un pas al metodei de extrapolare Richardson pentru formula de aproximare cu diferențe finite centrale obținută la punctul (c).

- IV. O formulă de cuadratură pentru funcțiile integrabile $f: [-1,1] \longrightarrow \mathbb{R}$, notată cu $\widetilde{I}(f)$, folosește nodurile $x_0 = -\alpha$ și $x_1 = \alpha$, unde $\alpha \in (0,1]$, și ponderile $w_0, w_1 \in \mathbb{R}$.
 - (a) Dacă formula de cuadratură $\widetilde{I}(f)$ este exactă pentru orice $f \in \mathscr{P}_1$, arătați că $w_0 = w_1 = 1$ independent de valoarea lui $\alpha \in (0,1]$.
 - (b) Determinați $\alpha \in (0,1]$ pentru care formula de cuadratură $\widetilde{I}(f)$ este exactă pentru orice $f \in \mathscr{P}_2$. Arătați că, în acest caz, formula de cuadratură $\widetilde{I}(f)$ este exactă pentru orice $f \in \mathscr{P}_3$.
 - (c) Aproximați integrala $I(f) = \int_0^1 e^x dx$ prin formula de cuadratură sumată a trapezului pentru $m \in \mathbb{N}^*$ subintervale egale. Rezultatul trebuie obținut în formă închisă.
 - (d) Să se arate că în cazul formulelor de cuadratură Newton-Cotes închise cu n+1 noduri de interpolare, $x_k, k = \overline{0, n}$, pentru o funcție integrabilă $f: [a, b] \longrightarrow \mathbb{R}$, ponderile, $w_k, k = \overline{0, n}$, satisfac relația:

$$w_0 + w_1 + \ldots + w_n = b - a.$$

BAREM:

Problema	Oficiu	(a)	(b)	(c)	(d)
I	1	3	3	2	2
II	1	3	3	4	_
III	1	3	3	2	2
IV	1	2	3	3	2

TIMP DE LUCRU: 180 minute