

Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Sommersemester 2021

Lineare Algebra II

Musterlösung zu Übungsblatt 13

19.07.21

Dieses Übungsblatt geht nicht mehr in die Bewertung ein.

Aufgabe 1 (Eine Verallgemeinerung von Aufgabe 2 von Blatt 7)

Es sei V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Für einen Endomorphismus $\theta \colon V \to V$ definieren wir die bilineare Abbildung

$$\beta_{\theta} \colon V \times V \to \mathbb{R}$$

 $(x, y) \mapsto \langle \theta(x), y \rangle$

Beweisen Sie die folgenden Aussagen:

- a) Für jede beliebige Bilinearform $\beta \colon V \times V \to \mathbb{R}$ gibt es genau einen Endomorphismus θ , sodass $\beta = \beta_{\theta}$ ist.
- b) Für jede beliebige symmetrische Bilinearform $\beta \colon V \times V \to \mathbb{R}$ gibt es genau einen bzgl. $\langle \cdot, \cdot \rangle$ selbstadjungierten Endomorphismus θ , sodass $\beta = \beta_{\theta}$ ist.
- c) Falls $\beta = \beta_{\theta}$ symmetrisch ist, erfüllen die Untervektorräume

$$V_{+} \coloneqq \bigoplus_{\substack{\lambda \in \operatorname{Spec}(\theta), \\ \lambda > 0}} E_{\lambda}(\theta), \quad V_{-} \coloneqq \bigoplus_{\substack{\lambda \in \operatorname{Spec}(\theta), \\ \lambda < 0}} E_{\lambda}(\theta), \quad V_{0} = \ker(\theta)$$

die Bedingungen im Trägheitssatz von Sylvester. Dabei sei $\operatorname{Spec}(\theta)$ die Menge aller Eigenwerte von θ .

Das heißt, $V_+, V_-, V_0 \subseteq V$ sind paarweise orthogonal, es gilt $V = V_+ \oplus V_- \oplus V_0$ und $\beta|_{V_+ \times V_+}$ ist positiv definit, $\beta|_{V_- \times V_-}$ ist negativ definit und $\beta|_{V_0 \times V_0}$ ist die Nullform.

- d) Für jede beliebige symmetrische Bilinearform $\beta \colon V \times V \to \mathbb{R}$ gibt es eine Orthogonalbasis B von $\langle \cdot, \cdot \rangle$, die gleichzeitig eine Orthogonalbasis von β ist.
- e) Welche der Aussagen a) d) gelten immer noch, wenn $\langle \cdot, \cdot \rangle$ kein Skalarprodukt, sondern nur eine nicht entartete symmetrische Bilinearform ist?
- f) Welche der Aussagen a) d) gelten immer noch, wenn $\langle \cdot, \cdot \rangle$ eine entartete symmetrische Bilinearform ist?

Lösung zu Aufgabe 1

a) Es sei B eine Basis von V. Wir definieren die Matrizen

$$A := \mathrm{FM}_{\mathsf{B}}(\beta_{\theta}), \qquad F := \mathrm{FM}_{\mathsf{B}}(\langle \cdot, \cdot \rangle), \qquad C := \mathrm{M}_{\mathsf{BB}}(\theta)$$

und bezeichnen die Einträge mit a_{ij} , f_{ij} bzw. c_{ij} .

Es gilt

$$a_{ij} = \beta_{\theta}(b_i, b_j) = \langle \theta(b_i), b_j \rangle = \left\langle \sum_{k=1}^{n} c_{ki} \, b_k, b_j \right\rangle = \sum_{k=1}^{n} c_{ki} \, \langle b_k, b_j \rangle = \sum_{k=1}^{n} c_{ki} \, f_{kj} = (C^{\top} F)_{ij}$$

Also gilt
$$\beta = \beta_{\theta} \iff A = \text{FM}_{\mathsf{B}}(\beta) = C^{\top}F \iff C = (F^{-1}A)^{\top}.$$

Die inverse Matrix F^{-1} existiert, da F die Fundamentalmatrix eines Skalarprodukts ist, und Skalarprodukte nicht entartet sind. Da der Endomorphismus θ durch seine Abbildungsmatrix C eindeutig gegeben ist, gibt es also genau ein solches θ .

Die Rechung vereinfacht sich, wenn man B als Orthonormalbasis von V wählt. In diesem Fall gilt $F = \mathbb{1}_n$ und $\beta = \beta_\theta \iff C = A^\top$.

b) Es gilt

$$\beta_{\theta}(w, v) = \langle \theta(w), v \rangle = \langle v, \theta(w) \rangle = \langle \theta^*(v), w \rangle.$$

Damit ist β_{θ} genau dann symmetrisch, wenn $\langle \theta(v), w \rangle = \langle \theta^*(v), w \rangle$ für alle $v, w \in V$ gilt, also genau dann, wenn $\theta^* = \theta$ gilt.

In a) wurde schon gezeigt, dass es zu jedem β genau ein θ mit $\beta = \beta_{\theta}$ gibt. Nun wissen wir, dass dieses θ selbstadjungiert ist, falls β symmetrisch ist. Damit ist die Aussage gezeigt.

c) Falls $\beta = \beta_{\theta}$ symmetrisch ist, muss θ selbstadjungiert sein. Damit ist θ orthogonal diagonalisierbar (Satz 2.6.8), und es gilt

$$V = \bigoplus_{\lambda \in \operatorname{Spec}(\theta)} E_{\lambda}(\theta) = \bigoplus_{\lambda \in \operatorname{Spec}(\theta), \atop \lambda > 0} E_{\lambda}(\theta) \oplus \bigoplus_{\lambda \in \operatorname{Spec}(\theta), \atop \lambda < 0} E_{\lambda}(\theta) \oplus E_{0}(\theta) = V_{+} \oplus V_{-} \oplus V_{0}.$$

Da die Eigenräume von θ paarweise orthogonal sind, sind auch V_+, V_-, V_0 paarweise orthogonal.

Jeder Vektor $v \in V_+$ lässt sich eindeutig als $v = \sum_{\substack{\lambda \in \text{Spec}(\theta),\\ \lambda > 0}} v_{\lambda}$ mit $v_{\lambda} \in E_{\lambda}(\theta)$ schreiben und somit

gilt

$$\beta(v, v) = \left\langle \theta \left(\sum_{\substack{\lambda \in \operatorname{Spec}(\theta), \\ \lambda > 0}} v_{\lambda} \right), \sum_{\substack{\mu \in \operatorname{Spec}(\theta), \\ \mu > 0}} v_{\mu} \right\rangle$$

$$= \sum_{\substack{\lambda, \mu \in \operatorname{Spec}(\theta), \\ \lambda, \mu > 0}} \langle \theta(v_{\lambda}), v_{\mu} \rangle$$

$$= \sum_{\substack{\lambda, \mu \in \operatorname{Spec}(\theta), \\ \lambda, \mu > 0}} \lambda \langle v_{\lambda}, v_{\mu} \rangle$$

Die einzelnen Summanden sind nichtnegativ, denn es gilt $\lambda > 0$, $\langle v_{\lambda}, v_{\mu} \rangle = 0$ für $\lambda \neq \mu$, und $\langle v_{\lambda}, v_{\lambda} \rangle \geq 0$. Falls $\beta(v, v) = 0$ gilt, müssen also alle Summanden verschwinden, also insbesondere $v_{\lambda} = 0$ für alle $\lambda > 0$ gelten. In diesem Fall ist aber v = 0, also ist $\beta|_{V_{+} \times V_{+}}$ positiv definit.

Analog zeigt man, dass $\beta(v, v) < 0$ für $v \in V_- \setminus \{0\}$ gilt.

Für
$$v, w \in \ker(\theta) = E_0(\theta)$$
 gilt $\beta(v, w) = \langle \theta(v), w \rangle = \langle 0, w \rangle = 0$, also $\beta|_{V_0 \times V_0} = 0$.

Da dies sogar für alle $w \in V$ gilt, sieht man hieran auch $\text{Null}(\beta) = \text{ker}(\theta)$.

- d) Es sei β eine symmetrische Bilinearform. Wir haben bereits gezeigt, dass es einen selbstadjungierten Endomorphismus θ mit $\beta = \beta_{\theta}$ gibt. Für diesen gibt es eine Orthonormalbasis B von V aus Eigenvektoren von θ .
 - Für zwei verschiedene der Basisvektoren b_i, b_j , mit $b_i \in E_{\lambda}(\theta)$ gilt $\beta(b_i, b_j) = \langle \theta(b_i), b_j \rangle = \lambda \langle b_i, b_j \rangle = 0$. Damit ist B auch eine Orthogonalbasis von β .
- e) Welche der Aussagen a) d) gelten immer noch, wenn $\langle \cdot, \cdot \rangle$ kein Skalarprodukt, sondern nur eine nicht entartete symmetrische Bilinearform ist?
 - a) gilt immer noch, da wir nur benutzt haben, dass die Fundamentalmatrix von $\langle \cdot, \cdot \rangle$ invertierbar ist.
 - b) gilt ebenfalls noch (auch wenn wir streng genommen den Begriff "selbstadjungiert" nur für Skalarprodukte definiert haben).
 - c) gilt nicht mehr, da die Vorzeichen nicht mehr stimmen könnten. Falls $\langle \cdot, \cdot \rangle$ z.B. negativ definit ist, sind V_+ und V_- vertauscht.
 - d) gilt nicht mehr. Der Spektralsatz (Satz 2.6.8) gilt nur, wenn $\langle \cdot, \cdot \rangle$ ein Skalarprodukt ist, und lässt sich nicht auf den Fall nicht entarteter symmetrischer Bilinearformen verallgemeinern. Ein Beispiel dafür ist durch $F \coloneqq \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, C \coloneqq \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, A \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ gegeben.
- f) Welche der Aussagen a) d) gelten immer noch, wenn $\langle \cdot, \cdot \rangle$ eine entartete symmetrische Bilinearform ist?
 - a) gilt nicht mehr. Für alle $v \in \text{Null}(\langle \cdot, \cdot \rangle)$ gilt $\beta_{\theta}(w, v) = \langle \theta(w), v \rangle = 0$ für alle $w \in V$. Daraus folgt $\text{Null}(\langle \cdot, \cdot \rangle) \subseteq \text{Null}(\beta)$. Damit können wir nicht mehr alle Bilinearformen darstellen.
 - Wenn zum Beispiel $\langle \cdot, \cdot \rangle = 0$ ist, muss auch $\beta_{\theta} = 0$ sein.
 - b) gilt nicht mehr, aus demselben Grund wie bei a).
 - c) gilt nicht mehr. Einerseits tritt das gleiche Problem wie e) auf. Andererseits kann es z.B. passieren, dass $V_+ \cap \text{Null}(\langle \cdot, \cdot \rangle) \neq \emptyset$ und somit auch $V_+ \cap \text{Null}(\beta) \neq \emptyset$ gilt. In diesem Fall ist aber $\beta|_{V_+ \times V_+}$ entartet.
 - d) gilt nicht mehr, für ein Gegenbeispiel siehe e).

Aufgabe 2 (Stumpfe Winkel und lineare Unabhängigkeit)

Es sei V ein euklidischer Vektorraum. Wir bezeichnen eine Menge aus k Vektoren $\{v_1, \ldots v_k\} \subseteq V$ als stumpfwinkliges System, falls $v_i \neq 0$ und $\langle (v_i, v_j) \rangle \frac{\pi}{2}$ für alle $i, j \in \{1, \ldots, k\}$ mit $i \neq j$ gilt.

a) Beweisen Sie: Für zwei Vektoren v_1, v_2 gilt die Äquivalenz

$$\langle (v_1, v_2) \rangle = \frac{\pi}{2} \iff \langle v_1, v_2 \rangle < 0.$$

- b) Finden Sie ein Beispiel für ein stumpfwinkliges System $\{v_1, v_2, v_3\}$ in $V = \mathbb{R}^2$ mit dem Standardskalarprodukt.
- c) Finden Sie ein Beispiel für ein stumpfwinkliges System $\{v_1, v_2, v_3, v_4\}$ in $V = \mathbb{R}^3$ mit dem Standardskalarprodukt.

d) Beweisen Sie: Ist $\{v_1,\ldots,v_k\}$ ein stumpfwinkliges System in V, dann ist auch

$$\left\{ \pi_{v_k^{\perp}}(v_1), \pi_{v_k^{\perp}}(v_2), \dots, \pi_{v_k^{\perp}}(v_{k-1}) \right\}$$

ein stumpfwinkliges System. Dabei bezeichnet π_U die Orthogonalprojektion auf einen Untervektorraum $U \subseteq V$.

- e) Beweisen Sie: Ist $\{v_1, \dots, v_k\}$ ein stumpfwinkliges System in V, und $\{\pi_{v_k^{\perp}}(v_1), \dots \pi_{v_k^{\perp}}(v_{k-2})\}$ ist linear unabhängig, dann ist auch $\{v_1, \dots v_{k-2}, v_k\}$ linear unabhängig.
- f) Beweisen Sie: Ist $\{v_1, \ldots, v_k\}$ ein stumpfwinkliges System mit $k \geq 2$, dann ist $\{v_1, \ldots, v_{k-1}\}$ linear unabhängig.

Hinweis: Führen Sie einen Beweis per vollständiger Induktion und benutzen Sie d) und e). Die Reihenfolge der Vektoren spielt keine Rolle.

Lösung zu Aufgabe 2

- a) Definitionsgemäß ist $\cos(\sphericalangle(v_1,v_2)) = \frac{\langle v_1,v_2 \rangle}{\|v_1\|\cdot\|v_2\|}$. Außerdem gilt $\sphericalangle(v_1,v_2) \in [0,\pi]$. Damit gilt $\langle v_1,v_2 \rangle < 0 \iff \frac{\langle v_1,v_2 \rangle}{\|v_1\|\cdot\|v_2\|} < 0 \iff \cos(\sphericalangle(v_1,v_2)) < 0 \iff \sphericalangle(v_1,v_2) > \frac{\pi}{2}.$
- b) In \mathbb{R}^2 können wir z.B. $v_i \coloneqq \begin{pmatrix} \cos(\varphi_i) \\ \sin(\varphi_i) \end{pmatrix}$ mit $\varphi_1 = 0, \varphi_2 = \frac{2\pi}{3}, \varphi_2 = \frac{4\pi}{3}$ wählen. Dann gilt $\sphericalangle(v_i, v_j) = \frac{2\pi}{3}$ für alle $i \neq j$.
- c) Die Standardbasis $e_1, \dots e_n$ in \mathbb{R}^n ist nicht stumpfwinklig, da die Winkel alle $\frac{\pi}{2}$ betragen. Wir können aber einen weiteren Vektor hinzufügen und daraus durch eine kleine Änderung ein stumpfwinkliges System machen: Es sei $0 < \varepsilon < \frac{1}{n}, v_{n+1} \coloneqq \begin{pmatrix} -1 \\ \vdots \\ -1 \end{pmatrix}$ und $v_i \coloneqq e_i + \varepsilon \, v_{n+1}$

$$\forall i \in \{1, \dots, n\} : \qquad \langle v_{n+1}, v_i \rangle = \langle v_{n+1}, e_i + \varepsilon \, v_{n+1} \rangle$$

$$= \langle v_{n+1}, e_i \rangle + \varepsilon \, \langle v_{n+1}, v_{n+1} \rangle$$

$$= -1 + n \, \varepsilon$$

$$< 0$$

$$\forall i, j \in \{1, \dots, n\}, i \neq j : \qquad \langle v_i, v_j \rangle = \langle e_i + \varepsilon \, v_{n+1}, e_j + \varepsilon \, v_{n+1} \rangle$$

$$= \langle e_i, e_j \rangle + \varepsilon \, \langle e_i, v_{n+1} \rangle + \varepsilon \, \langle v_{n+1}, e_j \rangle + \varepsilon^2 \, \langle v_{n+1}, v_{n+1} \rangle$$

$$= -2\varepsilon + n \, \varepsilon^2$$

$$< 0$$

und somit sind die Winkel alle stumpf.

für $i \in \{1, \ldots, n\}$. Dann gilt:

d) Angenommen $\{v_1, \ldots, v_k\}$ ist ein stumpfwinkliges System in V. Nach der Vorlesung gilt $\pi_{v_k^{\perp}}(v_i) = v_i - \pi_{\mathrm{LH}(v_k)}(v_i) = v_i - \frac{\langle v_i, v_k \rangle}{\langle v_k, v_k \rangle} v_k$ (siehe Satz 1.4.5) und somit

$$\begin{split} \langle \pi_{v_k^{\perp}}(v_i), \pi_{v_k^{\perp}}(v_j) \rangle &= \left\langle v_i - \frac{\langle v_i, v_k \rangle}{\langle v_k, v_k \rangle} v_k, v_j - \frac{\langle v_j, v_k \rangle}{\langle v_k, v_k \rangle} v_k \right\rangle \\ &= \langle v_i, v_j \rangle - \frac{\langle v_j, v_k \rangle}{\langle v_k, v_k \rangle} \langle v_i, v_k \rangle - \frac{\langle v_i, v_k \rangle}{\langle v_k, v_k \rangle} \langle v_k, v_j \rangle + \frac{\langle v_i, v_k \rangle}{\langle v_k, v_k \rangle} \frac{\langle v_j, v_k \rangle}{\langle v_k, v_k \rangle} \langle v_k, v_k \rangle \\ &= \langle v_i, v_j \rangle - \frac{\langle v_i, v_k \rangle \langle v_j, v_k \rangle}{\langle v_k, v_k \rangle} < 0 \end{split}$$

für $i \neq j$, da $\langle v_i, v_j \rangle$, $\langle v_i, v_k \rangle$, $\langle v_j, v_k \rangle < 0$ gilt. Nach a) folgt daraus, dass $\left\{ \pi_{v_k^{\perp}}(v_1), \dots, \pi_{v_k^{\perp}}(v_{k-1}) \right\}$ ein stumpfwinkliges System ist.

e) Angenommen, $\{v_1, \ldots, v_k\}$ ist ein stumpfwinkliges System und $\pi_{v_k^{\perp}}(v_1), \ldots, \pi_{v_k^{\perp}}(v_{k-2})$ sind linear unabhängig.

Angenommen, wir haben $\alpha_1, \ldots, \alpha_{k-2}, \alpha_k \in \mathbb{R}$ mit $\left(\sum_{i=1}^{k-2} \alpha_i v_i\right) + \alpha_k v_k = 0$. Dann folgt

$$0 = \pi_{v_k^{\perp}}(0) = \left(\sum_{i=1}^{k-2} \alpha_i \pi_{v_k^{\perp}}(v_i)\right) + \alpha_k \pi_{v_k^{\perp}}(v_k)$$
$$= \sum_{i=1}^{k-2} \alpha_i \pi_{v_k^{\perp}}(v_i)$$

Da $\pi_{v_k^{\perp}}(v_1), \dots \pi_{v_k^{\perp}}(v_{k-2})$ linear unabhängig sind, gilt folglich $\alpha_1, \dots, \alpha_{k-2} = 0$, woraus wegen $v_k \neq 0$ auch $\alpha_k = 0$ folgt. Damit ist $\{v_1, \dots, v_{k-2}, v_k\}$ linear unabhängig.

f) Bemerkung: Technisch gesehen ist die Aussage auch für k=1 korrekt: Wenn $\{v_1\}$ ein stumpfwinkliges System in V ist, dann ist \emptyset linear unabhängig.

Induktionsanfang für k = 2:

Angenommen, $\{v_1, v_2\}$ ist ein stumpfwinkliges System. Dann ist $\{v_1\}$ linear unabhängig, denn $v_1 \neq 0$.

Induktionsannahme: Wenn $\{v_1, \ldots, v_{k-1}\}$ ein stumpfwinkliges System aus k-1 Vektoren ist, ist $\{v_1, \ldots, v_{k-2}\}$ linear unabhängig.

Induktionsschluss von k-1 auf k: Angenommen, $\{v_1, \ldots, v_k\}$ ist ein stumpfwinkliges System.

Dann ist nach d) auch $\pi_{v_k^{\perp}}(v_1), \dots \pi_{v_k^{\perp}}(v_{k-1})$ ein stumpfwinkliges System aus k-1 Vektoren und nach der Induktionsannahme ist dann $\pi_{v_k^{\perp}}(v_1), \dots \pi_{v_k^{\perp}}(v_{k-2})$ linear unabhängig.

Nach e) ist also $\{v_1, \ldots, v_{k-2}, v_k\}$ linear unabhängig.

Vertauscht man in dem Argument die Vektoren v_{k-1} und v_k , dann sieht man, dass auch $\{v_1, \ldots, v_{k-2}, v_{k-1}\}$ linear unabhängig ist.