Cross-temporal Probabilistic Forecast Reconciliation: online appendix

Daniele Girolimetto

Department of Statistical Sciences, University of Padova Email: daniele.girolimetto@phd.unipd.it

George Athanasopoulos

Department of Econometrics and Business Statistics, Monash University Email: george.athanasopoulos@monash.edu

Tommaso Di Fonzo

Department of Statistical Sciences, University of Padova Email: tommaso.difonzo@unipd.it

Rob J Hyndman

Department of Econometrics and Business Statistics, Monash University Email: rob.hyndman@monash.edu

29 March 2023

A Alternative forms of the cross-temporal covariance matrix

In this appendix, some derivations of the solutions proposed in Section 4 to obtain an estimator of the cross-temporal covariance matrix are reported. Starting from the the definition of cross-temporal covariance matrix we obtain the first equivalence in (10). Therefore, we have that

The high-frequency time series representation (the second equivalence) can be derived in the following manner:

$$egin{aligned} \mathbf{\Omega} &= S_{ct} \mathbf{\Omega}_{hf ext{-}bts} S_{ct}' \ &= \left(S_{cs} \otimes S_{te}
ight) \mathbf{\Omega}_{hf ext{-}bts} \left(S_{cs} \otimes S_{te}
ight)' \ &= \left(\mathbf{I}_n \otimes S_{te}
ight) \left(S_{cs} \otimes \mathbf{I}_{m+k^*}
ight) \mathbf{\Omega}_{hf ext{-}bts} \left(S_{cs} \otimes \mathbf{I}_{m+k^*}
ight)' \left(\mathbf{I}_n \otimes S_{te}
ight)' \ &= \left(\mathbf{I}_n \otimes S_{te}
ight) \mathbf{\Omega}_{hf} \left(\mathbf{I}_n \otimes S_{te}
ight)' \end{aligned}$$

where $\Omega_{hf} = (S_{cs} \otimes I_{m+k^*}) \Omega_{hf\text{-}bts} (S_{cs} \otimes I_{m+k^*})'$ and $S_{ct} = S_{cs} \otimes S_{te} = (I_n \otimes S_{te}) (S_{cs} \otimes I_{m+k^*}).$ We can apply the shrinkage estimator as

The bottom time series representation (the third equivalence) follows by

$$egin{aligned} \mathbf{\Omega} &= S_{ct} \mathbf{\Omega}_{hf ext{-}bts} S_{ct}' \ &= \left(S_{cs} \otimes S_{te}
ight) \mathbf{\Omega}_{hf ext{-}bts} \left(S_{cs} \otimes S_{te}
ight)' \ &= \left(S_{cs} \otimes I_{m+k^*}
ight) \left(I_n \otimes S_{te}
ight) \mathbf{\Omega}_{hf ext{-}bts} \left(I_n \otimes S_{te}
ight)' \left(I_n \otimes S_{te}
ight)' \ &= \left(S_{cs} \otimes I_{m+k^*}
ight) \mathbf{\Omega}_{bts} \left(S_{cs} \otimes I_{m+k^*}
ight)', \end{aligned}$$

where $\Omega_{bts} = (I_n \otimes S_{te}) \, \Omega_{hf\text{-}bts} \, (I_n \otimes S_{te})'$ and $S_{ct} = S_{cs} \otimes S_{te} = (S_{cs} \otimes I_{m+k^*}) \, (I_n \otimes S_{te})$. Finally we have that

$$\lambda \widehat{\mathbf{\Omega}}_{bts,D} + (1 - \lambda) \widehat{\mathbf{\Omega}}_{bts}
\Downarrow
\widehat{\mathbf{\Omega}}_{B} = (\mathbf{S}_{cs} \otimes \mathbf{I}_{m+k^{*}}) \left[\lambda \widehat{\mathbf{\Omega}}_{bts,D} + (1 - \lambda) \widehat{\mathbf{\Omega}}_{bts} \right] (\mathbf{S}_{cs} \otimes \mathbf{I}_{m+k^{*}})'
= \lambda \left(\mathbf{S}_{cs} \otimes \mathbf{I}_{m+k^{*}} \right) \widehat{\mathbf{\Omega}}_{bts,D} \left(\mathbf{S}_{cs} \otimes \mathbf{I}_{m+k^{*}} \right)' +$$

Figure A.1: The four graphs on the left represent the number of different parameters in the covariance matrix for the various approaches presented for different values of m and n (n_b , the number of bottom time series, is about 60% of the total). On the right, we have the boxplot of the percentage reduction in the number of parameters compared to the global approach.

$$(1-\lambda)\left(S_{cs}\otimes I_{m+k^*}\right)\widehat{\Omega}_{bts}\left(S_{cs}\otimes I_{m+k^*}\right)'.$$

In general, the covariance matrix of the reconciled forecasts is equal to $M\widehat{\Omega}M'$ where $M=S_{ct}G$ is the projection matrix. When using the HB approach, the covariance matrix of the reconciliation and the base forecasts will be identical. Indeed, it can be shown (see Panagiotelis et al. 2021 for more details) that if M is a projection matrix (6) then $MS_{ct}=S_{ct}GS_{ct}=S_{ct}$, and we obtain that

$$egin{aligned} M\widehat{\Omega}_{HB}M' &= MS_{ct}\widehat{\Omega}_{hf ext{-}bts,HB}S'_{ct}M' \ &= S_{ct}GS_{ct}\widehat{\Omega}_{hf ext{-}bts,HB}S'_{ct}G'S'_{ct} \ &= S_{ct}\widehat{\Omega}_{hf ext{-}bts,HB}S'_{ct} &= \widehat{\Omega}_{HB}. \end{aligned}$$

Figure A.1 shows the number of parameters for different values of m and n, with n_b fixed to approximately 60% of n. The right panel reports the boxplot of the percentage reductions in the number of parameters compared to the global approach.

B Cross-temporal covariance matrix for the Monte Carlo simulation

We assume two AR(2) processes with correlated errors such that

$$y_{i,t} = \phi_{i,1}y_{i,t-1} + \phi_{i,2}y_{i,t-2} + \varepsilon_{i,t}$$

where $\varepsilon_t \sim \mathcal{N}_2\left(\mathbf{0}_{(2\times 1)}, \mathbf{\Omega}_{cs}\right)$ and $i \in \{B, C\}$. Let $y_{i,T+h}$ be the true observation for the i^{th} series and $\widetilde{y}_{i,T+h}$ the corresponding forecasts such that

$$y_{i,T+1} = \phi_{i,1}y_{i,T} + \phi_{i,2}y_{i,T-1} + \varepsilon_{i,T+1}$$

 $y_{i,T+2} = \phi_{i,1}y_{i,T+1} + \phi_{i,2}y_{i,T} + \varepsilon_{i,T+2}$ and $\widetilde{y}_{i,T+1} = \phi_{i,1}y_{i,T} + \phi_{i,2}y_{i,T-1}$
 $\widetilde{y}_{i,T+2} = \phi_{i,1}\widetilde{y}_{i,T+1} + \phi_{i,2}y_{i,T}$,

then

$$y_{i,T+1} - \widetilde{y}_{i,T+1} = \varepsilon_{i,T+1}$$

$$y_{i,T+2} - \widetilde{y}_{i,T+2} = \varepsilon_{i,T+2} + \phi_{i,1}\varepsilon_{i,T+1}.$$

Finally, we can compute each element of the high frequency bottom time series covariance matrix

$$Var (y_{i,T+1} - \widetilde{y}_{i,T+1}) = \sigma_{i}^{2}, \quad \forall i \in \{B,C\}$$

$$Var (y_{i,T+2} - \widetilde{y}_{i,T+2}) = \sigma_{i}^{2} (1 + \phi_{i,1}^{2}), \quad \forall i \in \{B,C\}$$

$$Cov [(y_{i,T+2} - \widetilde{y}_{i,T+2}), (y_{i,T+1} - \widetilde{y}_{i,T+1})] = Cov [(y_{i,T+1} - \widetilde{y}_{i,T+1}), (y_{i,T+2} - \widetilde{y}_{i,T+2})]$$

$$= \phi_{i,1}\sigma_{i}^{2}, \quad \forall i \in \{B,C\}$$

$$Cov [(y_{i,T+1} - \widetilde{y}_{i,T+1}), (y_{j,T+1} - \widetilde{y}_{j,T+1})] = Cov [(y_{j,T+1} - \widetilde{y}_{j,T+1}), (y_{i,T+1} - \widetilde{y}_{i,T+1})]$$

$$= \sigma_{i,j}, \quad \forall i, j \in \{B,C\}, \quad i \neq j$$

$$Cov [(y_{i,T+2} - \widetilde{y}_{i,T+2}), (y_{j,T+1} - \widetilde{y}_{j,T+1})] = Cov [(y_{j,T+1} - \widetilde{y}_{j,T+1}), (y_{i,T+2} - \widetilde{y}_{i,T+2})]$$

$$= \phi_{i,1}\sigma_{i,j}, \quad \forall i, j \in \{B,C\}, \quad i \neq j$$

$$Cov [(y_{i,T+2} - \widetilde{y}_{i,T+2}), (y_{j,T+2} - \widetilde{y}_{j,T+2})] = Cov [(y_{j,T+2} - \widetilde{y}_{j,T+2}), (y_{i,T+2} - \widetilde{y}_{i,T+2})]$$

$$= \sigma_{i,j} (1 + \phi_{i,1}\phi_{i,1}), \quad \forall i, j \in \{B,C\}, \quad i \neq j$$

In conclusion,

$$\boldsymbol{\Omega}_{\textit{hf-bts}} = \begin{bmatrix} \sigma_{\textit{B}}^{2} & & & & & & \\ \phi_{\textit{B,1}}\sigma_{\textit{B}}^{2} & \sigma_{\textit{B}}^{2} \left(1 + \phi_{\textit{B,1}}^{2}\right) & & & & \\ \sigma_{\textit{BC}} & \phi_{\textit{B,1}}\sigma_{\textit{BC}} & \sigma_{\textit{C}}^{2} & & & \\ \phi_{\textit{C,1}}\sigma_{\textit{BC}} & \sigma_{\textit{BC}} \left(1 + \phi_{\textit{B,1}}\phi_{\textit{C,1}}\right) & \phi_{\textit{C,1}}\sigma_{\textit{C}}^{2} & \sigma_{\textit{C}}^{2} \left(1 + \phi_{\textit{C,1}}^{2}\right) \end{bmatrix}$$

and

$$oldsymbol{\Omega}_{ct} = S_{ct} oldsymbol{\Omega}_{\mathit{hf ext{-}bts}} S_{ct}'.$$

C Monte Carlo Simulation: one-step residuals and shrinkage covariance matrix

In Section 4.1, we discussed the use of one-step residuals in estimating the covariance matrix. In particular we point out that one-step residuals lead to a biased estimate of the covariance matrix where some correlation are zeros by definition (see Figure C.2). In addition, Tables C.1, C.2 and C.3 show the Frobenius norm, CRPS, and ES skill scores as explained in the paper to investigate the effectiveness of one-step residuals. Moreover, in Tables C.4 and C.5, we have utilized a shrinkage matrix rather than the sample covariance matrix to assess the performance of our approach.

			Genera	tion of th	ne base fo	recasts	paths		
			Gaussi	an appro	ach: samp	ole cova	riance m	atrix	
Reconciliation approach	ctjb]	In-sample	M	Multi-step residuals				
11		G	В	Н	HB	G	В	Н	HB
base	8.260	17.638	16.733	22.178	21.789	7.748	6.549	3.409	2.215
ct(bu)	3.195	21.789	21.789	21.789	21.789	2.215	2.215	2.215	2.215
$\operatorname{ct}(shr_{cs},bu_{te})$	3.202	21.942	21.789	21.942	21.789	2.224	2.215	2.224	2.215
$\operatorname{ct}(wlsv_{te},bu_{cs})$	3.183	18.237	18.237	21.789	21.789	2.188	2.188	2.215	2.215
oct(wlsv)	3.766	19.174	18.611	22.304	21.789	3.082	2.191	2.910	2.215
oct(bdshr)	3.203	18.559	18.416	21.937	21.789	2.195	2.184	2.224	2.215
oct(shr)	5.217	25.015	23.457	23.413	21.789	2.260	2.202	2.226	2.215
oct(bshr)	5.282	23.772	23.997	22.146	21.789	2.720	2.220	2.756	2.215
oct(hshr)	6.161	11.336	10.940	23.598	21.789	4.138	4.167	2.225	2.215
oct(hbshr)	5.731	11.379	10.940	22.146	21.789	5.085	4.167	2.756	2.215
$\operatorname{oct}_h(shr)$	3.251	20.965	19.992	22.079	21.789	2.260	2.202	2.226	2.215
$\operatorname{oct}_h(bshr)$	3.602	21.306	21.022	22.146	21.789	2.720	2.220	2.756	2.215
$\operatorname{oct}_h(hshr)$	4.869	11.405	10.940	22.037	21.789	4.138	4.167	2.225	2.215
$\operatorname{oct}_h(hbshr)$	5.731	11.379	10.940	22.146	21.789	5.085	4.167	2.756	2.215

Table C.1: Frobenius norm between the true and the estimated covariance matrix for different reconciliation approaches and different techniques for simulating the base forecasts. Entries in bold represent the lowest value for each column, while the blue entry represent the global minimum. The reconciliation approaches are described in Table 2.

Figure C.2: Comparison of estimated covariance and correlation matrices (first simulation) for base forecasts using a parametric Gaussian (with one-step residuals) approach. The true covariance and correlation matrices are shown in Figure 7.

			Genera	tion of t	he base	forecas	ts paths		
			Gaussi	an appr	oach: sa	mple cov	variance	matrix	
Reconciliation	ctjb	Ir		e residua		-	lulti-step		als
approach	, I	G	В	Н	НВ	G	В	Н	НВ
		<u> </u>				<u> </u>		11	110
_				$x \in \{2,1\}$					
base	1.000	1.008	1.009	1.044	1.047	0.998	0.999	1.002	1.004
ct(bu)	0.901	0.930	0.929	0.929	0.929	0.900	0.900	0.900	0.900
$\operatorname{ct}(shr_{cs},bu_{te})$	0.901	0.929	0.928	0.929	0.928	0.900	0.899	0.900	0.900
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.910	0.930	0.929	0.939	0.939	0.916	0.916	0.916	0.917
oct(wlsv)	0.922	0.942	0.944	0.951	0.953	0.930	0.930	0.930	0.931
oct(bdshr)	0.910	0.930	0.930	0.939	0.938	0.916	0.915	0.916	0.916
oct(shr)	0.941	0.999	0.985	0.983	0.973	0.903	0.902	0.902	0.903
oct(bshr)	0.951	0.995	1.000	0.983	0.986	0.922	0.922	0.921	0.922
oct(hshr)	0.987	0.995	0.993	1.039	1.026	0.972	0.972	0.974	0.975
oct(hbshr)	0.987	0.995	0.996	1.024	1.028	0.985	0.985	0.987	0.989
$\operatorname{oct}_h(shr)$	0.904	0.929	0.928	0.932	0.932	0.903	0.902	0.902	0.903
$\operatorname{oct}_h(bshr)$	0.923	0.948	0.952	0.951	0.954	0.922	0.922	0.921	0.922
$\operatorname{oct}_h(hshr)$	0.974	0.982	0.982	1.012	1.012	0.972	0.972	0.974	0.975
$\operatorname{oct}_h(hbshr)$	0.987	0.995	0.996	1.024	1.028	0.985	0.985	0.987	0.989
				k = 1					
base	1.000	1.017	1.019	1.017	1.019	0.998	0.999	0.999	1.000
ct(bu)	0.978	0.994	0.994	0.994	0.994	0.976	0.976	0.977	0.977
$\operatorname{ct}(shr_{cs},bu_{te})$	0.977	0.993	0.993	0.994	0.993	0.976	0.976	0.976	0.976
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.986	1.002	1.002	1.003	1.003	0.993	0.993	0.993	0.993
oct(wlsv)	0.998	1.014	1.015	1.015	1.016	1.006	1.006	1.007	1.007
oct(bdshr)	0.986	1.002	1.002	1.003	1.003	0.992	0.992	0.993	0.993
oct(shr)	1.037	1.082	1.067	1.064	1.056	0.979	0.978	0.979	0.979
oct(bshr)	1.041	1.071	1.074	1.060	1.062	0.998	0.998	0.998	0.998
oct(hshr)	1.080	1.090	1.091	1.119	1.105	1.050	1.050	1.053	1.053
oct(hbshr)	1.065	1.080	1.081	1.088	1.090	1.063	1.064	1.066	1.068
$\operatorname{oct}_h(shr)$	0.980	0.996	0.995	0.996	0.996	0.979	0.978	0.979	0.979
$\operatorname{oct}_h(bshr)$	0.999	1.016	1.018	1.016	1.018	0.998	0.998	0.998	0.998
$\operatorname{oct}_h(hshr)$	1.052	1.067	1.066	1.074	1.075	1.050	1.050	1.053	1.053
$\operatorname{oct}_h(hbshr)$	1.065	1.080	1.081	1.088	1.090	1.063	1.064	1.066	1.068
				k = 2					
base	1.000	0.998	0.999	1.071	1.075	0.998	0.999	1.005	1.008
ct(bu)	0.831	0.869	0.869	0.869	0.869	0.830	0.829	0.829	0.830
$\operatorname{ct}(shr_{cs},bu_{te})$	0.830	0.869	0.868	0.868	0.868	0.830	0.829	0.829	0.830
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.840	0.863	0.862	0.879	0.878	0.846	0.844	0.845	0.846
oct(wlsv)	0.851	0.875	0.877	0.891	0.893	0.859	0.859	0.859	0.861
oct(bdshr)	0.839	0.863	0.863	0.879	0.878	0.845	0.844	0.845	0.846
oct(shr)	0.854	0.922	0.909	0.908	0.897	0.833	0.831	0.832	0.832
oct(bshr)	0.869	0.925	0.931	0.911	0.915	0.851	0.851	0.851	0.852
oct(hshr)	0.901	0.908	0.904	0.966	0.952	0.900	0.899	0.901	0.902
oct(hbshr)	0.915	0.917	0.919	0.964	0.969	0.913	0.913	0.914	0.917
$\operatorname{oct}_h(shr)$	0.834	0.868	0.865	0.872	0.872	0.833	0.831	0.832	0.832
$\operatorname{oct}_h(bshr)$	0.852	0.886	0.890	0.890	0.894	0.851	0.851	0.851	0.852
$\operatorname{oct}_h(hshr)$	0.902	0.904	0.904	0.953	0.952	0.900	0.899	0.901	0.902
$\operatorname{oct}_h(hbshr)$	0.915	0.917	0.919	0.964	0.969	0.913	0.913	0.914	0.917

Table C.2: Simulation experiment. AvgRelCRPS defined in Section 5.1. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

Reconciliation approach ctjb In-sample residuals Multi-step residual G B H HB G B H	HB 1.004 0.895
Reconciliation approachctjbIn-sample residualsMulti-step residual G B H H G B H $\forall k \in \{2,1\}$	HB 1.004
	1.004
	0.895
ct(<i>bu</i>) 0.897 0.924 0.923 0.924 0.923 0.895 0.896 0.897	0.000
$ct(shr_{cs}, bu_{te})$ 0.896 0.924 0.923 0.923 0.922 0.895 0.895 0.896	0.896
$\operatorname{ct}(wlsv_{te}, bu_{cs})$ 0.906 0.924 0.923 0.933 0.932 0.912 0.911 0.910	0.912
oct(wlsv) 0.916 0.935 0.937 0.944 0.945 0.923 0.923 0.923	0.924
oct(bdshr) 0.906 0.923 0.923 0.932 0.932 0.910 0.910 0.911	0.912
oct(shr) 0.938 0.993 0.980 0.977 0.969 0.898 0.898 0.898	0.897
oct(bshr) 0.947 0.990 0.995 0.979 0.981 0.915 0.915 0.915	0.915
oct(<i>hshr</i>) 0.978 0.987 0.985 1.027 1.016 0.963 0.964 0.966	0.967
oct(hbshr) 0.977 0.986 0.985 1.012 1.016 0.974 0.976 0.977	0.978
$\operatorname{oct}_h(shr)$ 0.900 0.923 0.922 0.926 0.925 0.898 0.898 0.897	0.898
$\operatorname{oct}_h(bshr)$ 0.916 0.940 0.943 0.942 0.945 0.914 0.916 0.915	0.916
$\operatorname{oct}_h(hshr)$ 0.967 0.974 0.974 1.002 1.002 0.964 0.964 0.966	0.967
$\operatorname{oct}_h(hbshr)$ 0.978 0.984 0.986 1.012 1.015 0.975 0.976 0.977	0.980
k = 1	
base 1.000	1.000
ct(bu) 0.969 0.985 0.983 0.985 0.984 0.967 0.968	0.968
$ct(shr_{cs}, bu_{te})$ 0.968 0.984 0.983 0.984 0.983 0.968 0.967 0.968	0.968
$ct(wlsv_{te}, bu_{cs})$ 0.977 0.991 0.992 0.992 0.984 0.983 0.981	0.984
oct(wlsv) 0.989 1.002 1.004 1.003 1.004 0.994 0.995 0.995	0.997
oct(bdshr) 0.977 0.989 0.991 0.992 0.992 0.981 0.982 0.983	0.985
oct(shr) 1.028 1.070 1.056 1.053 1.046 0.969 0.969 0.970	0.969
oct(bshr) 1.034 1.061 1.065 1.051 1.053 0.985 0.987 0.986	0.987
oct(hshr) 1.066 1.075 1.076 1.099 1.090 1.037 1.037 1.039	1.039
oct(hbshr) 1.050 1.065 1.065 1.070 1.073 1.048 1.049 1.049	1.052
$\operatorname{oct}_h(shr)$ 0.971 0.985 0.985 0.986 0.986 0.969 0.969 0.969	0.969
$\operatorname{oct}_h(bshr)$ 0.987 1.002 1.005 1.002 1.005 0.986 0.987 0.987	0.988
$oct_h(hshr)$ 1.040 1.053 1.053 1.059 1.058 1.036 1.036 1.040	1.040
$\operatorname{oct}_h(hbshr)$ 1.051 1.064 1.063 1.071 1.073 1.047 1.049 1.051	1.052
k = 2	
base 1.000 0.997 0.999 1.063 1.073 0.996 0.998 1.003	1.008
ct(bu) 0.831 0.867 0.867 0.867 0.867 0.829 0.829 0.830	0.828
$ct(shr'_{cs}, bu_{te})$ 0.829 0.867 0.866 0.866 0.865 0.828 0.829 0.829	0.829
$ct(wlsv_{te}, bu_{cs})$ 0.839 0.860 0.860 0.877 0.876 0.844 0.844 0.844	0.845
oct(wlsv) 0.849 0.872 0.875 0.887 0.890 0.858 0.856 0.856	0.857
oct(bdshr) 0.839 0.861 0.861 0.876 0.875 0.845 0.843 0.845	0.844
oct(shr) 0.856 0.921 0.909 0.907 0.898 0.832 0.831 0.832	0.831
oct(bshr) 0.868 0.924 0.930 0.911 0.915 0.849 0.848 0.849	0.848
oct(hshr) 0.897 0.905 0.901 0.959 0.947 0.895 0.896 0.898	0.899
oct(hbshr) 0.910 0.912 0.912 0.957 0.961 0.906 0.909 0.909	0.910
$\operatorname{oct}_h(shr)$ 0.835 0.865 0.862 0.870 0.868 0.833 0.833 0.831	0.832
$\operatorname{oct}_h(bshr)$ 0.850 0.881 0.885 0.886 0.889 0.847 0.849 0.849	0.850
$\operatorname{oct}_h(hshr)$ 0.900 0.902 0.901 0.947 0.948 0.897 0.896 0.897	0.899
$oct_h(hbshr)$ 0.910 0.910 0.914 0.957 0.961 0.907 0.908 0.909	0.912

Table C.3: Simulation experiment. ES ratio indices defined in Section 5.1. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

			Genera	tion of t	he base	forecas	ts paths		
			Gaussia	n approa	ach: shri	nkage co	ovarianc	e matrix	:
Reconciliation approach	ctjb	Ir	n-sample	residua	ls	M	lulti-step	residua	nls
upprouerr		G	В	Н	HB	G	В	Н	HB
			$\forall k$: ∈ {2,1]	}				
base	1.007	1.009	1.044	1.046	0.997	0.999	1.002	1.003	1.000
ct(bu)	0.929	0.929	0.929	0.929	0.899	0.900	0.900	0.900	0.901
$\operatorname{ct}(shr_{cs},bu_{te})$	0.929	0.928	0.929	0.928	0.899	0.899	0.900	0.900	0.901
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.930	0.930	0.939	0.938	0.915	0.916	0.917	0.916	0.910
oct(wlsv)	0.943	0.944	0.951	0.952	0.929	0.930	0.931	0.930	0.922
oct(bdshr)	0.930	0.930	0.938	0.938	0.915	0.916	0.916	0.916	0.910
oct(shr)	0.994	0.982	0.980	0.973	0.902	0.902	0.903	0.902	0.941
oct(bshr)	0.995	0.998	0.983	0.986	0.921	0.922	0.922	0.922	0.951
oct(hshr)	0.994	0.994	1.035	1.025	0.971	0.972	0.974	0.974	0.987
oct(hbshr)	0.995	0.997	1.025	1.027	0.984	0.986	0.988	0.988	0.987
$\operatorname{oct}_h(shr)$	0.929	0.928	0.932	0.932	0.902	0.902	0.903	0.902	0.904
$\operatorname{oct}_h(bshr)$	0.948	0.951	0.951	0.953	0.921	0.922	0.922	0.922	0.923
$\operatorname{oct}_h(hshr)$	0.982	0.982	1.011	1.011	0.971	0.972	0.974	0.974	0.974
$\operatorname{oct}_h(hbshr)$	0.995	0.997	1.025	1.027	0.984	0.986	0.988	0.988	0.987
				k = 1					
base	1.017	1.019	1.017	1.019	0.998	0.999	0.999	0.999	1.000
ct(bu)	0.994	0.994	0.994	0.994	0.976	0.976	0.977	0.976	0.978
$\operatorname{ct}(shr_{cs},bu_{te})$	0.993	0.993	0.993	0.993	0.975	0.976	0.976	0.976	0.977
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.002	1.002	1.003	1.003	0.992	0.993	0.993	0.993	0.986
oct(wlsv)	1.015	1.015	1.015	1.016	1.005	1.007	1.007	1.007	0.998
oct(bdshr)	1.002	1.002	1.003	1.002	0.992	0.992	0.993	0.992	0.986
oct(shr)	1.076	1.065	1.061	1.056	0.978	0.978	0.979	0.978	1.037
oct(bshr)	1.070	1.072	1.060	1.062	0.997	0.998	0.998	0.998	1.041
oct(hshr)	1.090	1.092	1.114	1.105	1.049	1.050	1.053	1.052	1.080
oct(hbshr)	1.080	1.081	1.089	1.090	1.062	1.064	1.066	1.066	1.065
$\operatorname{oct}_h(shr)$	0.996	0.995	0.996	0.996	0.978	0.978	0.979	0.978	0.980
$\operatorname{oct}_h(bshr)$	1.016	1.018	1.016	1.018	0.997	0.998	0.998	0.998	0.999
$\operatorname{oct}_h(hshr)$	1.066	1.067	1.075	1.075	1.049	1.050	1.053	1.052	1.052
$\operatorname{oct}_h(hbshr)$	1.080	1.081	1.089	1.090	1.062	1.064	1.066	1.066	1.065
				k = 2					
base	0.997	0.999	1.071	1.074	0.997	0.999	1.005	1.008	1.000
ct(bu)	0.869	0.868	0.868	0.868	0.829	0.829	0.830	0.830	0.831
$\operatorname{ct}(shr_{cs},bu_{te})$	0.868	0.867	0.868	0.867	0.829	0.829	0.830	0.829	0.830
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	0.863	0.862	0.878	0.878	0.845	0.845	0.846	0.846	0.840
oct(wlsv)	0.876	0.877	0.891	0.892	0.859	0.860	0.860	0.860	0.851
oct(bdshr)	0.863	0.863	0.878	0.877	0.844	0.845	0.846	0.845	0.839
oct(shr)	0.918	0.906	0.906	0.897	0.832	0.832	0.833	0.832	0.854
oct(bshr)	0.924	0.928	0.911	0.915	0.850	0.851	0.852	0.851	0.869
oct(hshr)	0.907	0.905	0.962	0.951	0.898	0.899	0.902	0.902	0.901
oct(hbshr)	0.917	0.919	0.964	0.968	0.912	0.913	0.915	0.916	0.915
$\operatorname{oct}_h(shr)$	0.867	0.864	0.872	0.871	0.832	0.832	0.833	0.832	0.834
$\operatorname{oct}_h(bshr)$	0.886	0.890	0.890	0.893	0.850	0.851	0.852	0.851	0.852
$\operatorname{oct}_h(hshr)$	0.904	0.905	0.952	0.952	0.898	0.899	0.902	0.902	0.902
$\operatorname{oct}_h(hbshr)$	0.917	0.919	0.964	0.968	0.912	0.913	0.915	0.916	0.915

Table C.4: Simulation experiment. AvgRelCRPS defined in Section 5.1. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

			Genera	tion of t	he base	forecas	ts paths		
			Gaussia	n approa	ach: shri	nkage co	ovarianc	e matrix	:
Reconciliation approach	ctjb	Ir	n-sample	residua	ls	M	lulti-step	residua	nls
ирргоисп		G	В	Н	HB	G	В	Н	HB
-			$\forall k$: ∈ {2,1]	}				
base	1.005	1.008	1.039	1.045	0.996	0.999	1.000	1.003	1.000
ct(bu)	0.923	0.923	0.923	0.923	0.895	0.896	0.897	0.897	0.897
$\operatorname{ct}(shr_{cs},bu_{te})$	0.923	0.922	0.922	0.922	0.896	0.895	0.895	0.895	0.896
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.924	0.924	0.932	0.932	0.910	0.911	0.911	0.911	0.906
oct(wlsv)	0.935	0.937	0.944	0.945	0.922	0.924	0.923	0.923	0.916
oct(bdshr)	0.924	0.924	0.932	0.931	0.909	0.911	0.911	0.910	0.906
oct(shr)	0.989	0.978	0.975	0.968	0.897	0.898	0.898	0.898	0.938
oct(bshr)	0.990	0.993	0.978	0.981	0.915	0.915	0.915	0.915	0.947
oct(hshr)	0.986	0.985	1.024	1.015	0.963	0.964	0.966	0.967	0.978
oct(hbshr)	0.985	0.986	1.012	1.015	0.973	0.976	0.977	0.978	0.977
$\operatorname{oct}_h(shr)$	0.923	0.922	0.925	0.925	0.897	0.898	0.898	0.898	0.900
$\operatorname{oct}_h(bshr)$	0.941	0.943	0.942	0.945	0.913	0.915	0.915	0.915	0.916
$\operatorname{oct}_h(hshr)$	0.974	0.975	1.001	1.001	0.964	0.964	0.966	0.966	0.967
$\operatorname{oct}_h(hbshr)$	0.985	0.986	1.013	1.016	0.973	0.976	0.977	0.978	0.978
				k = 1					
base	1.014	1.018	1.015	1.019	0.997	0.999	0.997	0.998	1.000
ct(bu)	0.983	0.984	0.984	0.984	0.967	0.967	0.969	0.969	0.969
$\operatorname{ct}(shr_{cs},bu_{te})$	0.983	0.982	0.982	0.983	0.966	0.967	0.966	0.966	0.968
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.991	0.992	0.993	0.992	0.983	0.983	0.983	0.983	0.977
oct(wlsv)	1.002	1.004	1.004	1.004	0.994	0.995	0.994	0.996	0.989
oct(bdshr)	0.990	0.991	0.992	0.991	0.981	0.983	0.984	0.982	0.977
oct(shr)	1.065	1.054	1.051	1.045	0.969	0.970	0.970	0.969	1.028
oct(bshr)	1.061	1.063	1.050	1.052	0.986	0.986	0.987	0.985	1.034
oct(hshr)	1.076	1.077	1.095	1.088	1.036	1.036	1.040	1.038	1.066
oct(hbshr)	1.064	1.065	1.071	1.073	1.047	1.048	1.050	1.050	1.050
$\operatorname{oct}_h(shr)$	0.984	0.985	0.986	0.986	0.969	0.969	0.969	0.968	0.971
$\operatorname{oct}_h(bshr)$	1.003	1.005	1.003	1.005	0.985	0.987	0.987	0.986	0.987
$\operatorname{oct}_h(hshr)$	1.054	1.054	1.059	1.059	1.036	1.037	1.038	1.039	1.040
$\operatorname{oct}_h(hbshr)$	1.063	1.065	1.071	1.074	1.046	1.048	1.049	1.051	1.051
				k = 2					
base	0.996	0.998	1.064	1.073	0.995	0.999	1.003	1.007	1.000
ct(bu)	0.867	0.866	0.867	0.866	0.829	0.829	0.830	0.830	0.831
$\operatorname{ct}(shr_{cs},bu_{te})$	0.867	0.866	0.866	0.866	0.830	0.829	0.830	0.830	0.829
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	0.861	0.861	0.875	0.875	0.843	0.845	0.845	0.845	0.839
oct(wlsv)	0.873	0.874	0.888	0.889	0.856	0.857	0.857	0.856	0.849
oct(bdshr)	0.862	0.861	0.876	0.874	0.843	0.844	0.844	0.844	0.839
oct(shr)	0.918	0.907	0.905	0.898	0.831	0.832	0.832	0.832	0.856
oct(bshr)	0.924	0.928	0.911	0.915	0.849	0.849	0.849	0.849	0.868
oct(hshr)	0.904	0.901	0.957	0.946	0.895	0.896	0.898	0.900	0.897
oct(hbshr)	0.912	0.913	0.956	0.961	0.905	0.909	0.909	0.911	0.910
$\operatorname{oct}_h(shr)$	0.866	0.863	0.869	0.869	0.830	0.831	0.832	0.832	0.835
$\operatorname{oct}_h(bshr)$	0.882	0.886	0.886	0.889	0.846	0.848	0.849	0.848	0.850
$\operatorname{oct}_h(hshr)$	0.901	0.902	0.947	0.946	0.896	0.896	0.898	0.899	0.900
$\operatorname{oct}_h(hbshr)$	0.912	0.914	0.958	0.961	0.905	0.908	0.910	0.909	0.910

Table C.5: Simulation experiment. ES ratio indices defined in Section 5.1. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

D Forecast reconciliation of the Australian GDP dataset

Athanasopoulos et al. (2020) proposed using state-of-the-art forecast reconciliation methods to improve the accuracy of macroeconomic forecasts and facilitate aligned decision-making. In their empirical analysis, they applied cross-sectional forecast reconciliation to 95 Australian QNA time series that represent the Gross Domestic Product (GDP) calculated using both the income and expenditure approaches. These two approaches correspond to two distinct hierarchical structures, with GDP at the top and 15 lower-level aggregates in the income approach, and GDP as the top-level aggregate in a hierarchy of 79 time series in the expenditure approach (for more information, see Athanasopoulos et al. 2020, pp. 702–705 and figures 21.4–21.7). Bisaglia et al. (2020) showed how to obtain a "one-number" forecast where the GDP reconciled forecasts are coherent for both the expenditure and income sides. Di Fonzo & Girolimetto (2022*c*,*d*) extended the one number forecasts idea to obtain fully reconciled probabilistic forecasts, and Di Fonzo & Girolimetto (2023*a*) computed cross-temporally reconciled point forecasts.

D.1 One-step residuals and shrinkage covariance matrix

			Ge	eneration	n of the b	ase fore	casts pat	ths		
Reconciliation approach	ctjb	C	Saussian	approacl	h*	ctjb	G	Gaussian	approacl	h*
11		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}
		$\forall k$	$c \in \{4, 2,$	1}				k = 1		
base	1.000	0.979	0.995	0.968	0.976	1.000	0.988	0.988	0.971	0.971
$ct(shr_{cs}, bu_{te})$	0.937	0.956	0.956	0.976	0.976	0.992	1.008	1.008	1.029	1.029
$\operatorname{ct}(wls_{cs},bu_{te})$	0.930	0.917	0.917	0.898	0.898	0.986	0.974	0.975	0.956	0.956
oct(wlsv)	0.926	0.919	0.920	0.900	0.900	0.984	0.981	0.979	0.959	0.959
oct(bdshr)	0.940	0.965	0.945	0.992	0.957	0.997	1.019	1.003	1.044	1.018
oct(shr)	0.944	1.020	0.940	1.094	0.988	1.015	1.095	1.010	1.160	1.059
oct(hshr)	0.988	0.972	1.002	0.974	1.001	1.048	1.037	1.060	1.034	1.061
$oct_o(wlsv)$	0.926	0.911	0.912	0.896	0.895	0.984	0.971	0.970	0.954	0.954
$oct_o(bdshr)$	0.978	0.964	0.946	0.952	0.930	1.034	1.016	1.003	1.005	0.989
$oct_o(shr)$	0.950	0.946	0.922	0.925	0.903	1.014	1.003	0.985	0.987	0.968
$oct_o(hshr)$	0.989	0.966	0.984	0.954	0.965	1.047	1.028	1.038	1.012	1.023
$oct_{oh}(shr)$	1.102	1.059	1.001	1.094	0.988	1.172	1.109	1.066	1.160	1.059
$oct_{oh}(hshr)$	1.006	0.983	1.009	0.974	1.001	1.068	1.046	1.059	1.034	1.061
			k = 2			•		k = 4		
base	1.000	0.984	0.993	0.968	0.976	1.000	0.966	1.004	0.964	0.981
$ct(shr_{cs}, bu_{te})$	0.949	0.966	0.966	0.987	0.987	0.874	0.896	0.896	0.914	0.914
$ct(wls_{cs}, bu_{te})$	0.942	0.928	0.928	0.909	0.909	0.866	0.853	0.853	0.834	0.834
oct(wlsv)	0.938	0.929	0.931	0.911	0.911	0.860	0.853	0.855	0.835	0.834
oct(bdshr)	0.953	0.976	0.956	1.003	0.969	0.874	0.904	0.880	0.931	0.889
oct(shr)	0.955	1.031	0.951	1.113	1.002	0.866	0.940	0.864	1.015	0.909
oct(hshr)	1.001	0.985	1.014	0.987	1.016	0.919	0.900	0.935	0.904	0.931
$oct_o(wlsv)$	0.938	0.921	0.923	0.907	0.906	0.860	0.847	0.848	0.832	0.830
$oct_o(bdshr)$	0.991	0.974	0.957	0.964	0.942	0.914	0.905	0.883	0.892	0.865
$oct_o(shr)$	0.965	0.958	0.934	0.938	0.916	0.877	0.882	0.852	0.854	0.831
$oct_o(hshr)$	1.002	0.979	0.996	0.967	0.978	0.922	0.898	0.923	0.888	0.898
$\operatorname{oct}_{oh}(shr)$	1.120	1.069	1.013	1.113	1.002	1.020	1.002	0.928	1.015	0.909
$oct_{oh}(hshr)$	1.021	0.996	1.021	0.987	1.016	0.934	0.912	0.951	0.904	0.931

^{*}The Gaussian method employs a sample covariance matrix:

Table D.6: AvgRelCRPS indices defined in Section 5.1 for the Australian QNA dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

 G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

	Generation of the base forecasts paths										
Reconciliation approach	ctjb	C	Gaussian	approacl	n*	ctjb	C	aussian	approacl	n*	
11		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}	
		$\forall k$	$x \in \{4, 2, 1\}$	1}				k = 1			
base	1.000	0.970	0.988	0.960	0.970	1.000	0.977	0.977	0.965	0.965	
$ct(shr_{cs}, bu_{te})$	0.897	0.944	0.944	0.973	0.973	0.964	1.001	1.001	1.033	1.033	
$ct(wls_{cs}, bu_{te})$	0.886	0.880	0.880	0.860	0.860	0.954	0.944	0.945	0.928	0.928	
oct(wlsv)	0.890	0.890	0.894	0.872	0.872	0.958	0.957	0.957	0.938	0.939	
oct(bdshr)	0.905	0.956	0.934	0.992	0.954	0.972	1.014	0.994	1.048	1.018	
oct(shr)	0.895	0.979	0.895	1.053	0.944	0.973	1.060	0.969	1.121	1.015	
oct(hshr)	0.951	0.940	0.973	0.959	0.992	1.017	1.010	1.034	1.023	1.055	
$\operatorname{oct}_o(wlsv)$	0.891	0.879	0.881	0.864	0.864	0.958	0.945	0.945	0.931	0.931	
$oct_o(bdshr)$	0.940	0.928	0.910	0.918	0.895	1.004	0.986	0.971	0.980	0.961	
$oct_o(shr)$	0.900	0.899	0.876	0.878	0.858	0.973	0.963	0.944	0.949	0.930	
$oct_o(hshr)$	0.956	0.936	0.955	0.922	0.936	1.021	1.004	1.012	0.987	1.000	
$oct_{oh}(shr)$	1.059	1.015	0.956	1.053	0.945	1.130	1.063	1.019	1.121	1.016	
$oct_{oh}(hshr)$	0.986	0.968	0.999	0.959	0.992	1.053	1.034	1.049	1.024	1.055	
			k = 2					k = 4			
base	1.000	0.972	0.985	0.959	0.969	1.000	0.959	1.000	0.957	0.976	
$ct(shr_{cs}, bu_{te})$	0.915	0.961	0.960	0.991	0.991	0.818	0.874	0.874	0.899	0.900	
$\operatorname{ct}(wls_{cs},bu_{te})$	0.904	0.896	0.896	0.877	0.877	0.807	0.805	0.805	0.782	0.783	
oct(wlsv)	0.909	0.907	0.912	0.889	0.889	0.811	0.813	0.819	0.794	0.794	
oct(bdshr)	0.925	0.976	0.953	1.013	0.974	0.825	0.883	0.860	0.920	0.876	
oct(shr)	0.913	1.000	0.914	1.076	0.963	0.807	0.885	0.808	0.967	0.861	
oct(hshr)	0.973	0.960	0.993	0.978	1.014	0.871	0.856	0.897	0.881	0.913	
$oct_o(wlsv)$	0.908	0.895	0.898	0.881	0.882	0.812	0.802	0.806	0.786	0.786	
$oct_o(bdshr)$	0.960	0.947	0.929	0.938	0.915	0.860	0.856	0.836	0.841	0.816	
$oct_o(shr)$	0.921	0.919	0.896	0.898	0.878	0.814	0.821	0.796	0.794	0.775	
$oct_o(hshr)$	0.977	0.956	0.976	0.942	0.957	0.876	0.854	0.882	0.844	0.856	
$oct_{oh}(shr)$	1.082	1.029	0.973	1.076	0.963	0.971	0.954	0.882	0.967	0.861	
$oct_{oh}(hshr)$	1.007	0.988	1.017	0.979	1.014	0.904	0.888	0.934	0.881	0.913	

Table D.7: ES ratio indices defined in Section 5.1 for the Australian QNA dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

^{*}The Gaussian method employs a sample covariance matrix: G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

	Generation of the base forecasts paths										
Reconciliation approach	ctjb	C	Gaussian	approacl	h [*]	ctjb	G	aussian	approacl	n*	
**		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}	
		$\forall k$	$c \in \{4, 2,$	1}				k = 1			
base	1.000	0.979	1.011	0.968	0.987	1.000	0.988	0.988	0.971	0.971	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.937	0.960	0.961	0.962	0.960	0.992	1.001	1.001	1.004	1.000	
$ct(wls_{cs}, bu_{te})$	0.930	0.951	0.953	0.911	0.915	0.986	0.997	0.998	0.964	0.967	
oct(wlsv)	0.926	0.972	0.957	0.918	0.917	0.984	1.010	1.003	0.971	0.970	
oct(bdshr)	0.940	0.986	0.966	0.981	0.956	0.997	1.015	1.006	1.016	1.000	
oct(shr)	0.944	0.999	0.962	1.051	0.995	1.015	1.047	1.021	1.105	1.058	
oct(hshr)	0.988	1.000	1.021	0.979	1.002	1.048	1.045	1.066	1.034	1.053	
$oct_o(wlsv)$	0.926	0.961	0.948	0.914	0.912	0.984	1.000	0.993	0.966	0.965	
$oct_o(bdshr)$	0.978	0.956	0.949	0.949	0.934	1.034	0.984	0.983	0.988	0.977	
$oct_o(shr)$	0.950	0.957	0.946	0.933	0.917	1.014	0.998	0.995	0.986	0.974	
$oct_o(hshr)$	0.989	0.997	1.013	0.967	0.982	1.047	1.039	1.054	1.019	1.032	
$oct_{oh}(shr)$	1.102	1.010	1.006	1.051	0.995	1.172	1.059	1.063	1.105	1.058	
$oct_{oh}(hshr)$	1.006	0.989	1.004	0.979	1.002	1.068	1.037	1.050	1.034	1.053	
			k = 2					k = 4			
base	1.000	0.984	1.009	0.968	0.987	1.000	0.966	1.037	0.964	1.002	
$ct(shr_{cs}, bu_{te})$	0.949	0.972	0.972	0.974	0.971	0.874	0.910	0.911	0.910	0.910	
$ct(wls_{cs}, bu_{te})$	0.942	0.962	0.964	0.923	0.927	0.866	0.897	0.900	0.851	0.855	
oct(wlsv)	0.938	0.988	0.968	0.931	0.929	0.860	0.921	0.903	0.856	0.856	
oct(bdshr)	0.953	1.004	0.979	0.996	0.970	0.874	0.942	0.914	0.932	0.900	
oct(shr)	0.955	1.016	0.973	1.070	1.010	0.866	0.937	0.895	0.981	0.922	
oct(hshr)	1.001	1.015	1.034	0.993	1.017	0.919	0.942	0.965	0.913	0.937	
$oct_o(wlsv)$	0.938	0.976	0.959	0.927	0.925	0.860	0.910	0.894	0.853	0.852	
$oct_o(bdshr)$	0.991	0.970	0.963	0.963	0.948	0.914	0.917	0.905	0.899	0.880	
$oct_o(shr)$	0.965	0.973	0.959	0.948	0.931	0.877	0.903	0.886	0.868	0.850	
$oct_o(hshr)$	1.002	1.013	1.026	0.980	0.996	0.922	0.943	0.962	0.905	0.921	
$oct_{oh}(shr)$	1.120	1.026	1.019	1.070	1.010	1.020	0.947	0.939	0.981	0.922	
$\operatorname{oct}_{oh}(hshr)$	1.021	1.005	1.017	0.993	1.017	0.934	0.929	0.946	0.913	0.937	

Table D.8: AvgRelCRPS indices defined in Section 5.1 for the Australian QNA dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

^{*}The Gaussian method employs a shrinkage covariance matrix: G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

	Generation of the base forecasts paths										
Reconciliation approach	ctjb	C	Gaussian	approacl	n*	ctjb	C	Gaussian	approacl	n*	
11		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}	
		$\forall k$	$x \in \{4, 2, 1\}$	1}				k = 1			
base	1.000	0.967	1.002	0.957	0.980	1.000	0.973	0.973	0.961	0.962	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.897	0.968	0.969	0.963	0.962	0.964	1.012	1.012	1.009	1.004	
$\operatorname{ct}(wls_{cs},bu_{te})$	0.886	0.939	0.944	0.882	0.888	0.954	0.994	0.998	0.947	0.952	
oct(wlsv)	0.890	0.966	0.959	0.897	0.901	0.958	1.017	1.012	0.960	0.965	
oct(bdshr)	0.905	0.997	0.981	0.986	0.960	0.972	1.031	1.021	1.024	1.005	
oct(shr)	0.895	0.979	0.945	1.021	0.962	0.973	1.041	1.011	1.083	1.028	
oct(hshr)	0.951	0.997	1.023	0.973	1.005	1.017	1.051	1.073	1.034	1.063	
$\operatorname{oct}_o(wlsv)$	0.891	0.950	0.945	0.889	0.892	0.958	1.002	0.997	0.953	0.956	
$oct_o(bdshr)$	0.940	0.935	0.933	0.922	0.909	1.004	0.965	0.964	0.969	0.959	
$oct_o(shr)$	0.900	0.935	0.928	0.895	0.884	0.973	0.984	0.982	0.960	0.950	
$oct_o(hshr)$	0.956	0.997	1.015	0.945	0.965	1.021	1.049	1.062	1.007	1.024	
$oct_{oh}(shr)$	1.059	0.981	0.983	1.021	0.962	1.130	1.034	1.041	1.083	1.029	
$oct_{oh}(hshr)$	0.986	0.996	1.014	0.973	1.005	1.053	1.050	1.064	1.034	1.063	
			k = 2					k = 4			
base	1.000	0.970	0.999	0.955	0.980	1.000	0.958	1.033	0.953	1.000	
$ct(shr_{cs}, bu_{te})$	0.915	0.987	0.988	0.983	0.982	0.818	0.909	0.910	0.902	0.902	
$\operatorname{ct}(wls_{cs},bu_{te})$	0.904	0.958	0.962	0.900	0.906	0.807	0.871	0.876	0.805	0.812	
oct(wlsv)	0.909	0.988	0.979	0.916	0.920	0.811	0.896	0.891	0.820	0.825	
oct(bdshr)	0.925	1.024	1.005	1.010	0.984	0.825	0.938	0.919	0.926	0.895	
oct(shr)	0.913	1.006	0.967	1.045	0.982	0.807	0.898	0.864	0.940	0.881	
oct(hshr)	0.973	1.020	1.046	0.994	1.028	0.871	0.924	0.954	0.897	0.929	
$oct_o(wlsv)$	0.908	0.972	0.964	0.908	0.911	0.812	0.882	0.876	0.812	0.816	
$oct_o(bdshr)$	0.960	0.959	0.957	0.945	0.932	0.860	0.884	0.879	0.857	0.841	
$\operatorname{oct}_o(shr)$	0.921	0.958	0.950	0.917	0.905	0.814	0.867	0.857	0.815	0.803	
$oct_o(hshr)$	0.977	1.021	1.038	0.966	0.987	0.876	0.926	0.949	0.868	0.889	
$oct_{oh}(shr)$	1.082	1.002	1.003	1.045	0.982	0.971	0.910	0.911	0.941	0.882	
$oct_{oh}(hshr)$	1.007	1.017	1.036	0.994	1.028	0.904	0.924	0.947	0.896	0.929	

Table D.9: ES ratio indices defined in Section 5.1 for the Australian QNA dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

^{*}The Gaussian method employs a shrinkage covariance matrix: G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

E Australian Tourism Demand dataset

Table E.10: Geographic divisions of Australia in States, Zones e Regions. Zones formed by a single region are highlighted in italics and not numbered.

Series	Name	Label	Series	Name	Label
Total			continue	es Regions	
1	Australia	Total	49	Gippsland	BCB
States			50	Phillip Island	BCC
2	New South Wales (NSW)	A	51	Central Murray	BDA
3	Victoria (VIC)	В	52	Goulburn	BDB
4	Queensland (QLD)	C	53	High Country	BDC
5	South Australia (SA)	D	54	Melbourne East	BDD
6	Western Australia (WA)	E	55	Upper Yarra	BDE
7	Tasmania (TAS)	F	56	MurrayEast	BDF
8	Northern Territory (NT)	G	57	Mallee	BEA
Zones			58	Wimmera	BEB
9	Metro NSW	AA	59	Western Grampians	BEC
10	Nth Coast NSW	AB	60	Bendigo Loddon	BED
	Sth Coast NSW	AC	61	Macedon	BEE
11	Sth NSW	AD	62	Spa Country	BEF
12	Nth NSW	ΑE	63	Ballarat	BEG
	ACT	AF	64	Central Highlands	BEG
13	Metro VIC	BA	65	Gold Coast	CAA
	West Coast VIC	BB	66	Brisbane	CAB
14	East Coast VIC	ВС	67	Sunshine Coast	CAC
15	Nth East VIC	BD	68	Central Queensland	CBA
16	Nth West VIC	BE	69	Bundaberg	CBB
17	Metro QLD	CA	70	Fraser Coast	CBC
18	Central Coast QLD	CB	71	Mackay	CBD
19	Nth Coast QLD	CC	72	Whitsundays	CCA
20	Inland QLD	CD	73	Northern	CCB
21	Metro SA	DA	74	Tropical North Queensland	CCC
22	Sth Coast SA	DB	75	Darling Downs	CDA
23	Inland SA	DC	76	Outback	CDB
24	West Coast SA	DD	77	Adelaide	DAA
25	West CoastWA	EA	78	Barossa	DAB
20	Nth WA	EB	79	Adelaide Hills	DAC
	SthWA	EC	80	Limestone Coast	DBA
	Sth TAS	FA	81	Fleurieu Peninsula	DBB
26	Nth East TAS	FB	82	Kangaroo Island	DBC
27	Nth West TAS	FC	83	Murraylands	DCA
28	Nth Coast NT	GA	84	Riverland	DCB
29	Central NT	GB	85	Clare Valley	DCC
Regions	Central IVI	GD	86	Flinders Range and Outback	DCD
30	Cridnov	AAA	87		DDA
31	Sydney Central Coast	AAB	88	Eyre Peninsula Yorke Peninsula	DDB
32	Hunter	ABA	89	Australia's Coral Coast	EAA
33	North Coast NSW	ABB	90	Experience Perth	EAB
34	South Coast	ACA	91	Australia's SouthWest	EAC
35	Snowy Mountains	ADA	92	Australia's North West	EBA
36	Capital Country	ADB	93	Australia's Golden Outback	ECA
37	The Murray	ADC	94	Hobart and the South	FAA
38	Riverina	ADD	95	East Coast	FBA
39	Central NSW	AEA	96	Launceston, Tamar and the North	FBB
40	New England North West	AEB	97	North West	FCA
41	Outback NSW	AEC	98	WildernessWest	FCB
42	Blue Mountains	AED	99	Darwin	GAA
43	Canberra	AFA	100	Kakadu Arnhem	GAB
44	Melbourne	BAA	101	Katherine Daly	GAC
45	Peninsula	BAB	102	Barkly	GBA
46	Geelong	BAC	103	Lasseter	GBB
47	Western	BBA	104	Alice Springs	GBC
48	Lakes	BCA	105	MacDonnell	GBD

Source: Wickramasuriya et al. (2019), Di Fonzo & Girolimetto (2022b)

E.1 Dealing with negative reconciled forecasts

One issue in working with time series data is the presence of negative values, which can cause difficulties for certain types of models or analyses. For the base forecasts, using the bootstrap approach produces forecasts naturally non negative (ETS model with the log-transformation), while this is not true for the Gaussian approach. In this case, any negative forecast is set equal to zero. For the cross-temporal reconciliation, Di Fonzo & Girolimetto (2022a, 2023b) propose two solutions: either a state-of-the-art numerical optimization procedure (osqp, Stellato et al. 2020, 2022), or a simple heuristic strategy called set-negative-to-zero (sntz). With sntz, any negative high frequency bottom time series reconciled forecasts are set to zero, and then a cross-temporal reconciliation bottom-up is used to obtain the complete set of fully coherent forecasts. Di Fonzo & Girolimetto (2023b) found that both methods produce similar quality forecasts, but the optimization method required much more time and computational effort compared to the sntz heuristic. To reduce computational demands, we used the less time-intensive heuristic approach for reconciliation.

E.2 Tables for all the temporal aggregation orders

			Ge	neration	of the l	oase fore	ecasts pa	iths		
Reconciliation approach	ctjb	G	aussian	approac	h*	ctjb	G	aussian	approac	h*
11		G	В	Н	HB		G	В	Н	HB
		$\forall k \in \cdot$	[12, 6, 4,	3,2,1}				k = 1		
base	1.000	0.971	0.971	0.973	0.973	1.000	0.972	0.972	0.972	0.972
ct(bu)	1.321	1.011	1.011	1.011	1.011	1.077	0.983	0.982	0.982	0.982
$\operatorname{ct}(shr_{cs},bu_{te})$	1.057	0.974	0.969	0.974	0.969	0.976	0.963	0.962	0.963	0.962
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.062	0.974	0.974	0.972	0.972	0.976	0.965	0.965	0.966	0.966
oct(ols)	0.989	0.989	0.989	0.987	0.987	0.982	0.986	0.988	0.986	0.989
oct(struc)	0.982	0.962	0.961	0.961	0.959	0.970	0.963	0.963	0.963	0.963
oct(wlsv)	0.987	0.959	0.959	0.958	0.957	0.952	0.957	0.957	0.957	0.957
oct(bdshr)	0.975	0.956	0.953	0.952	0.951	0.949	0.955	0.953	0.954	0.954
$\operatorname{oct}_h(hbshr)$	0.989	1.018	1.020	1.016	1.018	0.982	1.004	1.007	1.004	1.009
$\operatorname{oct}_h(bshr)$	0.994	1.018	1.020	1.016	1.019	0.988	1.007	1.013	1.006	1.012
$\operatorname{oct}_h(hshr)$	0.969	0.993	0.993	0.990	0.991	0.953	0.977	0.977	0.979	0.979
$\operatorname{oct}_h(shr)$	1.007	0.980	0.972	0.970	0.970	1.000	0.986	0.977	0.976	0.974
			k = 2					k = 3		
base	1.000	0.970	0.969	0.970	0.971	1.000	0.971	0.971	0.972	0.973
ct(bu)	1.189	0.999	0.999	0.999	0.999	1.273	1.010	1.010	1.010	1.010
$\operatorname{ct}(shr_{cs},bu_{te})$	1.015	0.972	0.970	0.972	0.970	1.041	0.977	0.974	0.977	0.974
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.016	0.971	0.971	0.970	0.970	1.046	0.976	0.976	0.974	0.974
oct(ols)	0.992	0.991	0.991	0.990	0.991	0.994	0.992	0.993	0.991	0.992
oct(struc)	0.982	0.966	0.965	0.965	0.965	0.986	0.967	0.966	0.966	0.965
oct(wlsv)	0.972	0.961	0.960	0.960	0.960	0.983	0.963	0.962	0.962	0.962
oct(bdshr)	0.964	0.958	0.957	0.956	0.956	0.972	0.960	0.958	0.957	0.957
$\operatorname{oct}_h(hbshr)$	0.992	1.013	1.015	1.012	1.015	0.994	1.019	1.021	1.018	1.020
$\operatorname{oct}_h(bshr)$	0.997	1.015	1.018	1.013	1.017	0.999	1.021	1.022	1.018	1.022
$\operatorname{oct}_h(hshr)$	0.965	0.987	0.987	0.986	0.987	0.971	0.994	0.994	0.992	0.993
$\operatorname{oct}_h(shr)$	1.005	0.986	0.978	0.976	0.975	1.009	0.986	0.978	0.976	0.976
			k = 4					k = 6		
base	1.000	0.973	0.973	0.974	0.975	1.000	0.976	0.976	0.978	0.978
ct(bu)	1.340	1.016	1.015	1.015	1.015	1.450	1.023	1.023	1.023	1.023
$\operatorname{ct}(shr_{cs},bu_{te})$	1.061	0.978	0.973	0.978	0.973	1.094	0.978	0.972	0.978	0.972
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.068	0.977	0.977	0.974	0.974	1.103	0.977	0.977	0.974	0.974
oct(ols)	0.993	0.991	0.992	0.990	0.990	0.989	0.989	0.989	0.987	0.986
oct(struc)	0.986	0.965	0.964	0.964	0.963	0.986	0.961	0.960	0.959	0.957
oct(wlsv)	0.990	0.962	0.961	0.961	0.960	1.001	0.960	0.959	0.958	0.957
oct(bdshr)	0.977	0.959	0.956	0.955	0.954	0.985	0.956	0.953	0.950	0.948
$\operatorname{oct}_h(hbshr)$	0.993	1.021	1.023	1.019	1.021	0.989	1.024	1.026	1.022	1.022
$\operatorname{oct}_h(bshr)$	0.997	1.022	1.022	1.019	1.022	0.994	1.022	1.022	1.020	1.022
$\operatorname{oct}_h(hshr)$	0.973	0.996	0.997	0.994	0.995	0.976	1.000	1.001	0.996	0.997
$\operatorname{oct}_h(shr)$	1.009	0.984	0.976	0.973	0.973	1.010	0.978	0.970	0.967	0.967
1	1 000	0.060	k = 12	0.060	0.060					
base	1.000	0.968	0.967	0.969	0.969					
ct(bu)	1.675	1.038	1.037	1.037	1.038					
$\operatorname{ct}(shr_{cs},bu_{te})$	1.163	0.977	0.965	0.977	0.965					
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.174	0.978	0.978	0.971	0.971					
oct(ols)	0.982	0.982	0.983	0.980	0.975					
oct(struc)	0.982	0.951	0.949	0.947	0.943					
oct(wlsv)	1.025	0.954	0.953	0.949	0.947					
oct(bdshr)	1.002	0.950	0.944	0.939	0.935					
$\operatorname{oct}_h(hbshr)$ $\operatorname{oct}_h(bshr)$	0.982 0.987	1.027 1.024	1.029 1.021	1.024 1.021	1.021 1.019					
$oct_h(bshr)$ $oct_h(hshr)$	0.987	1.024	1.021	0.996	0.997					
$\operatorname{oct}_h(nshr)$ $\operatorname{oct}_h(shr)$	1.010	0.963	0.956	0.950	0.957					
och (sin)	1.010	0.703	0.750	0.752	0.702	I				

^{*}The Gaussian method employs a sample covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals.

Table E.11: AvgRelCRPS defined in Section 5.1 for the Australian Tourism Demand dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

			Ge	neration	of the l	oase fore	ecasts pa	iths		
Reconciliation approach	ctjb	G	aussian	approac	h*	ctjb	G	aussian	approac	h*
• •		G	В	Н	HB		G	В	Н	HB
		$\forall k \in \mathcal{A}$	{12, 6, 4,	3,2,1}				k = 1		
base	1.000	0.956	0.955	0.958	0.951	1.000	0.952	0.950	0.952	0.950
ct(bu)	2.427	0.983	0.983	0.983	0.983	1.759	0.982	0.982	0.982	0.982
$\operatorname{ct}(shr_{cs},bu_{te})$	1.243	0.886	0.879	0.886	0.879	1.098	0.929	0.928	0.930	0.927
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	1.499	0.977	0.977	0.971	0.972	1.241	0.975	0.975	0.973	0.974
oct(ols)	0.955	0.893	0.891	0.893	0.888	0.975	0.937	0.936	0.936	0.935
oct(struc)	1.085	0.917	0.915	0.916	0.912	1.027	0.943	0.942	0.943	0.942
oct(wlsv)	1.132	0.933	0.929	0.931	0.927	1.050	0.951	0.949	0.950	0.949
oct(bdshr)	1.047	0.904	0.897	0.897	0.891	1.009	0.936	0.933	0.934	0.931
$\operatorname{oct}_h(hbshr)$	0.956	0.889	0.886	0.888	0.884	0.975	0.937	0.936	0.937	0.935
$\operatorname{oct}_h(bshr)$	0.931	0.867	0.866	0.863	0.860	0.965	0.927	0.927	0.925	0.923
$\operatorname{oct}_h(hshr)$	1.081	0.935	0.931	0.935	0.927	1.028	0.952	0.951	0.952	0.950
$\operatorname{oct}_h(shr)$	1.068	0.899	0.878	0.875	0.864	1.023	0.935	0.923	0.921	0.916
			k = 2					k = 3		
base	1.000	0.958	0.954	0.956	0.953	1.000	0.961	0.958	0.960	0.955
ct(bu)	2.176	1.001	1.001	1.001	1.001	2.428	0.998	0.997	0.997	0.997
$\operatorname{ct}(shr_{cs},bu_{te})$	1.192	0.927	0.921	0.927	0.921	1.245	0.911	0.904	0.911	0.904
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.400	0.992	0.992	0.988	0.988	1.500	0.991	0.991	0.986	0.987
oct(ols)	0.985	0.935	0.932	0.934	0.930	0.976	0.918	0.915	0.917	0.912
oct(struc)	1.075	0.949	0.947	0.948	0.944	1.096	0.939	0.936	0.938	0.933
oct(wlsv)	1.110	0.960	0.958	0.958	0.955	1.142	0.953	0.949	0.951	0.946
oct(bdshr)	1.045	0.938	0.933	0.933	0.929	1.060	0.926	0.920	0.921	0.915
$\operatorname{oct}_h(hbshr)$	0.984	0.933	0.931	0.933	0.928	0.975	0.915	0.912	0.915	0.909
$\operatorname{oct}_h(bshr)$	0.967	0.917	0.916	0.913	0.908	0.954	0.895	0.895	0.892	0.887
$\operatorname{oct}_h(hshr)$	1.073	0.962	0.959	0.963	0.956	1.093	0.955	0.951	0.956	0.949
$\operatorname{oct}_h(shr)$	1.064	0.933	0.916	0.913	0.904	1.082	0.923	0.903	0.900	0.890
			k = 4					k = 6		
base	1.000	0.960	0.960	0.962	0.956	1.000	0.961	0.959	0.964	0.956
ct(bu)	2.585	0.996	0.996	0.995	0.996	2.849	1.004	1.003	1.003	1.004
$\operatorname{ct}(shr_{cs},bu_{te})$	1.277	0.898	0.890	0.899	0.891	1.339	0.882	0.873	0.883	0.874
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.559	0.990	0.990	0.984	0.985	1.662	0.997	0.997	0.991	0.992
oct(ols)	0.966	0.905	0.902	0.904	0.899	0.962	0.889	0.887	0.890	0.885
oct(struc)	1.106	0.930	0.927	0.928	0.924	1.132	0.923	0.919	0.922	0.916
oct(wlsv)	1.157	0.947	0.943	0.945	0.939	1.192	0.942	0.937	0.941	0.934
oct(bdshr)	1.065	0.917	0.909	0.910	0.903	1.084	0.907	0.897	0.898	0.890
$\operatorname{oct}_h(hbshr)$	0.967	0.901	0.898	0.900	0.895	0.964	0.882	0.880	0.883	0.877
$\operatorname{oct}_h(bshr)$	0.943	0.879	0.878	0.876	0.871	0.932	0.856	0.855	0.851	0.848
$\operatorname{oct}_h(hshr)$	1.101	0.949	0.944	0.949	0.941	1.126	0.945	0.939	0.945	0.936
$\operatorname{oct}_h(shr)$	1.089	0.915	0.893	0.890	0.878	1.107	0.899	0.875	0.871	0.858
1	1 000	0.042	k = 12	0.054	0.007	1				
base	1.000	0.942	0.947	0.951	0.937					
ct(bu)	2.990	0.922	0.921	0.923	0.923					
$\operatorname{ct}(shr_{cs}, bu_{te})$	1.326	0.779	0.767	0.777	0.766					
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	1.679	0.917	0.917	0.906	0.908					
oct(ols)	0.872	0.783	0.784	0.783	0.779					
oct(struc)	1.077	0.826	0.822	0.823	0.818					
oct(wlsv)	1.149 1.021	0.851 0.808	0.845 0.796	0.847 0.796	0.840 0.787					
oct(bdshr) $oct_h(hbshr)$	0.872	0.775	0.796	0.796	0.787					
$\operatorname{oct}_h(hbshr)$	0.872	0.773 0.741	0.772 0.741	0.772	0.770 0.735					
$\operatorname{oct}_h(bshr)$ $\operatorname{oct}_h(hshr)$	1.066	0.741	0.741	0.737	0.733					
$\operatorname{oct}_h(nshr)$	1.043	0.831	0.768	0.764	0.750					
ocin (om)	1.040	0.1 /1	0.7 00	0.7 0 1	0.700	I				

^{*}The Gaussian method employs a sample covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals.

Table E.12: ES ratio indices defined in Section 5.1 for the Australian Tourism Demand dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

	Generation of the base forecasts paths									
Reconciliation approach	ctjb	Gaussian approach*				ctjb	Gaussian approach*			h*
11		G	В	Н	HB		G	В	Н	HB
		$\forall k \in \cdot$	12, 6, 4,	3,2,1}				k = 1		
base	1.000	0.971	0.972	0.971	0.972	1.000	0.972	0.971	0.972	0.971
ct(bu)	1.321	1.017	1.018	1.017	1.017	1.077	0.983	0.983	0.983	0.983
$\operatorname{ct}(shr_{cs},bu_{te})$	1.057	1.013	0.971	1.013	0.971	0.976	0.987	0.961	0.988	0.961
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.062	1.069	1.070	0.974	0.974	0.976	0.986	0.986	0.965	0.965
oct(ols)	0.989	1.163	1.052	1.139	0.987	0.982	1.038	0.992	1.047	0.987
oct(struc)	0.982	1.099	1.039	1.037	0.960	0.970	1.007	0.971	0.999	0.962
oct(wlsv)	0.987	1.080	1.041	0.992	0.958	0.952	1.004	0.969	0.978	0.956
oct(bdshr)	0.975	1.072	1.032	0.985	0.950	0.949	0.999	0.965	0.975	0.952
$\operatorname{oct}_h(hbshr)$	0.989	1.189	1.076	1.171	1.021	0.982	1.045	1.000	1.063	1.009
$\operatorname{oct}_h(bshr)$	0.994	1.202	1.073	1.168	1.021	0.988	1.046	1.012	1.063	1.012
$\operatorname{oct}_h(hshr)$	0.969	1.066	1.052	1.008	0.994	0.953	0.994	0.972	0.991	0.979
$\operatorname{oct}_h(shr)$	1.007	1.090	1.046	1.000	0.970	1.000	1.035	0.992	0.998	0.973
			k = 2					k = 3		
base	1.000	0.969	0.969	0.968	0.968	1.000	0.971	0.970	0.969	0.970
ct(bu)	1.189	1.000	1.000	1.000	1.000	1.273	1.013	1.013	1.013	1.013
$\operatorname{ct}(shr_{cs},bu_{te})$	1.015	1.004	0.968	1.004	0.968	1.041	1.013	0.973	1.014	0.973
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.016	1.043	1.044	0.969	0.969	1.046	1.067	1.068	0.974	0.974
oct(ols)	0.992	1.118	1.037	1.092	0.989	0.994	1.153	1.053	1.124	0.990
oct(struc)	0.982	1.075	1.022	1.020	0.963	0.986	1.099	1.041	1.033	0.964
oct(wlsv)	0.972	1.064	1.021	0.987	0.958	0.983	1.083	1.041	0.993	0.960
oct(bdshr)	0.964	1.057	1.015	0.983	0.953	0.972	1.075	1.033	0.988	0.955
$\operatorname{oct}_h(hbshr)$	0.992	1.136	1.055	1.116	1.014	0.994	1.178	1.075	1.153	1.020
$\operatorname{oct}_h(bshr)$	0.997	1.145	1.059	1.114	1.016	0.999	1.190	1.075	1.151	1.021
$\operatorname{oct}_h(hshr)$	0.965	1.050	1.029	1.001	0.986	0.971	1.067	1.051	1.009	0.994
$\operatorname{oct}_h(shr)$	1.005	1.083	1.035	1.001	0.973	1.009	1.097	1.050	1.004	0.974
			k = 4					k = 6		
base	1.000	0.973	0.973	0.971	0.973	1.000	0.976	0.977	0.975	0.977
ct(bu)	1.340	1.021	1.021	1.021	1.021	1.450	1.032	1.033	1.032	1.033
$\operatorname{ct}(shr_{cs},bu_{te})$	1.061	1.018	0.974	1.018	0.974	1.094	1.023	0.974	1.024	0.974
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.068	1.087	1.089	0.976	0.976	1.103	1.108	1.110	0.978	0.978
oct(ols)	0.993	1.186	1.068	1.148	0.989	0.989	1.223	1.080	1.184	0.987
oct(struc)	0.986	1.120	1.057	1.042	0.962	0.986	1.141	1.071	1.054	0.959
oct(wlsv)	0.990	1.100	1.059	0.996	0.959	1.001	1.115	1.076	0.998	0.958
oct(bdshr)	0.977	1.091	1.049	0.989	0.952	0.985	1.103	1.064	0.989	0.949
$\operatorname{oct}_h(hbshr)$	0.993	1.215	1.095	1.182	1.022	0.989	1.258	1.112	1.225	1.026
$\operatorname{oct}_h(bshr)$	0.997	1.230	1.089	1.178	1.023	0.994	1.278	1.101	1.219	1.025
$\operatorname{oct}_h(hshr)$	0.973	1.084	1.071	1.012	0.996	0.976	1.097	1.091	1.017	1.002
$\operatorname{oct}_h(shr)$	1.009	1.108	1.062	1.003	0.972	1.010	1.113	1.070	1.000	0.968
	1 4 000		k = 12		0.054					
base	1.000	0.968	0.969	0.969	0.971					
ct(bu)	1.675	1.056	1.057	1.057	1.057					
$\operatorname{ct}(shr_{cs},bu_{te})$	1.163	1.032	0.974	1.033	0.974					
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.174	1.128	1.130	0.982	0.982					
oct(ols)	0.982	1.277	1.085	1.252	0.982					
oct(struc)	0.982	1.158	1.074	1.075	0.950					
oct(wlsv)	1.025	1.122	1.085	1.001	0.954					
oct(bdshr)	1.002	1.110	1.071	0.989	0.941					
$\operatorname{oct}_h(hbshr)$	0.982	1.322	1.125	1.305	1.033					
$\operatorname{oct}_h(bshr)$	0.987	1.347	1.107	1.297	1.031					
$\operatorname{oct}_h(hshr)$	0.978 1.010	1.106 1.107	1.107 1.067	1.021 0.991	1.010 0.959					
$\operatorname{oct}_h(shr)$	1.010	1.10/	1.007	0.271	0.233	<u> </u>				

^{*}The Gaussian method employs a shrikage covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals..

Table E.13: AvgRelCRPS defined in Section 5.1 for the Australian Tourism Demand dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

	Generation of the base forecasts paths										
Reconciliation approach	ctjb	Gaussian approach*			ctjb	Gaussian approach*					
mp promess		G	В	Н	HB		G	В	Н	HB	
$\forall k \in \{12, 6, 4, 3, 2, 1\}$ $k = 1$											
base	1.000	0.958	0.984	0.972	0.992	1.000	0.954	0.958	0.954	0.958	
ct(bu)	2.427	1.040	1.042	1.040	1.041	1.759	1.001	1.002	1.002	1.002	
$\operatorname{ct}(shr_{cs},bu_{te})$	1.243	0.988	0.913	0.990	0.913	1.098	1.011	0.938	1.013	0.938	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.499	1.117	1.120	1.025	1.025	1.241	1.019	1.020	0.990	0.990	
oct(ols)	0.955	1.000	0.984	0.985	0.922	0.975	0.983	0.961	0.987	0.945	
oct(struc)	1.085	1.094	1.047	1.018	0.952	1.027	1.054	0.981	1.022	0.953	
oct(wlsv)	1.132	1.137	1.065	1.059	0.969	1.050	1.078	0.989	1.043	0.960	
oct(bdshr)	1.047	1.085	1.013	1.011	0.927	1.009	1.050	0.966	1.019	0.942	
$\operatorname{oct}_h(hbshr)$	0.956	1.018	0.981	1.016	0.919	0.975	0.991	0.961	1.002	0.947	
$\operatorname{oct}_h(bshr)$	0.931	1.002	1.001	0.982	0.889	0.965	0.980	0.975	0.985	0.933	
$\operatorname{oct}_h(hshr)$	1.081	1.109	1.039	1.076	0.973	1.028	1.061	0.978	1.052	0.963	
$\operatorname{oct}_h(shr)$	1.068	1.088	1.008	0.995	0.896	1.023	1.061	0.966	1.011	0.924	
			k = 2					k = 3			
base	1.000	0.960	0.971	0.958	0.972	1.000	0.963	0.981	0.966	0.986	
ct(bu)	2.176	1.035	1.036	1.035	1.035	2.428	1.042	1.044	1.042	1.043	
$\operatorname{ct}(shr_{cs},bu_{te})$	1.192	1.020	0.942	1.021	0.942	1.245	1.009	0.931	1.011	0.931	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.400	1.104	1.106	1.018	1.019	1.500	1.127	1.130	1.029	1.029	
oct(ols)	0.985	1.028	1.008	1.002	0.950	0.976	1.020	1.004	0.994	0.938	
oct(struc)	1.075	1.115	1.051	1.039	0.967	1.096	1.117	1.064	1.033	0.965	
oct(wlsv)	1.110	1.149	1.065	1.070	0.979	1.142	1.160	1.082	1.073	0.981	
oct(bdshr)	1.045	1.105	1.024	1.033	0.949	1.060	1.109	1.032	1.029	0.943	
$\operatorname{oct}_h(hbshr)$	0.984	1.041	1.007	1.024	0.951	0.975	1.036	1.002	1.023	0.937	
$\operatorname{oct}_h(bshr)$	0.967	1.029	1.025	0.998	0.928	0.954	1.024	1.025	0.993	0.911	
$\operatorname{oct}_h(hshr)$	1.073	1.122	1.042	1.083	0.983	1.093	1.129	1.054	1.090	0.984	
$\operatorname{oct}_h(shr)$	1.064	1.110	1.019	1.018	0.922	1.082	1.116	1.030	1.015	0.915	
			k = 4					k = 6			
base	1.000	0.962	0.987	0.973	0.996	1.000	0.963	0.998	0.984	1.011	
ct(bu)	2.585	1.052	1.054	1.053	1.053	2.849	1.083	1.085	1.083	1.084	
$\operatorname{ct}(shr_{cs},bu_{te})$	1.277	1.000	0.923	1.002	0.923	1.339	0.999	0.921	1.000	0.920	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.559	1.150	1.153	1.037	1.037	1.662	1.189	1.193	1.066	1.066	
oct(ols)	0.966	1.022	1.008	0.994	0.931	0.962	1.023	1.014	1.003	0.930	
oct(struc)	1.106	1.120	1.076	1.031	0.963	1.132	1.132	1.100	1.039	0.972	
oct(wlsv)	1.157	1.167	1.097	1.075	0.982	1.192	1.187	1.124	1.090	0.995	
oct(bdshr)	1.065	1.112	1.041	1.025	0.939	1.084	1.121	1.058	1.029	0.940	
$\operatorname{oct}_h(hbshr)$	0.967	1.041	1.005	1.027	0.929	0.964	1.046	1.008	1.042	0.924	
$\operatorname{oct}_h(bshr)$	0.943	1.028	1.028	0.994	0.900	0.932	1.029	1.032	1.000	0.887	
$\operatorname{oct}_h(hshr)$	1.101	1.137	1.068	1.093	0.986	1.126	1.153	1.089	1.110	0.999	
$\operatorname{oct}_h(shr)$	1.089	1.118	1.039	1.012	0.910	1.107	1.118	1.045	1.006	0.902	
-			k = 12								
base	1.000	0.948	1.010	1.002	1.033						
ct(bu)	2.990	1.028	1.031	1.029	1.029						
$\operatorname{ct}(shr_{cs},bu_{te})$	1.326	0.897	0.830	0.899	0.830						
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.679	1.119	1.123	1.009	1.009						
oct(ols)	0.872	0.927	0.914	0.930	0.840						
oct(struc)	1.077	1.028	1.012	0.950	0.894						
oct(wlsv)	1.149	1.089	1.041	1.006	0.922						
oct(bdshr)	1.021	1.015	0.964	0.935	0.855						
$\operatorname{oct}_h(hbshr)$	0.872	0.955	0.906	0.978	0.833						
$\operatorname{oct}_h(bshr)$	0.833	0.927	0.927	0.927	0.784						
$\operatorname{oct}_h(hshr)$	1.066	1.056	1.005	1.026	0.926						
$\operatorname{oct}_h(shr)$	1.043	1.011	0.952	0.909	0.809						

^{*}The Gaussian method employs a shrikage covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals.

Table E.14: ES ratio indices defined in Section 5.1 for the Australian Tourism Demand dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

References

- Athanasopoulos, G., Gamakumara, P., Panagiotelis, A., Hyndman, R. J. & Affan, M. (2020), Hierarchical Forecasting, *in* P. Fuleky, ed., 'Macroeconomic Forecasting in the Era of Big Data', Vol. 52, Springer International Publishing, Cham, pp. 689–719.
- Bisaglia, L., Fonzo, T. D. & Girolimetto, D. (2020), Fully reconciled GDP forecasts from Income and Expenditure sides, *in* A. Pollice, N. Salvati & F. Schirripa Spagnolo, eds, 'Book of Short Papers SIS 2020', Pearson, pp. 951–956.
- Di Fonzo, T. & Girolimetto, D. (2022*a*), 'Enhancements in cross-temporal forecast reconciliation, with an application to solar irradiance forecasts', *arXiv*:2209.07146.
- Di Fonzo, T. & Girolimetto, D. (2022*b*), 'Forecast combination-based forecast reconciliation: Insights and extensions', *International Journal of Forecasting*. in press.
- Di Fonzo, T. & Girolimetto, D. (2022c), Fully reconciled probabilistic GDP forecasts from Income and Expenditure sides, *in* A. Balzanella, M. Bini, C. Cavicchia & R. Verde, eds, 'Book of Short Papers SIS 2022', Pearson, pp. 1376–1381.
- Di Fonzo, T. & Girolimetto, D. (2022*d*), 'Point and probabilistic forecast reconciliation for general linearly constrained multiple time series', *Working paper*.
- Di Fonzo, T. & Girolimetto, D. (2023*a*), 'Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives', *International Journal of Forecasting* **39**(1), 39–57.
- Di Fonzo, T. & Girolimetto, D. (2023*b*), 'Spatio-temporal reconciliation of solar forecasts', *Solar Energy* **251**, 13–29.
- Panagiotelis, A., Athanasopoulos, G., Gamakumara, P. & Hyndman, R. J. (2021), 'Forecast reconciliation: A geometric view with new insights on bias correction', *International Journal of Forecasting* **37**(1), 343–359.
- Stellato, B., Banjac, G., Goulart, P., Bemporad, A. & Boyd, S. (2020), 'OSQP: An operator splitting solver for quadratic programs', *Mathematical Programming Computation* **12**(4), 637–672.
- Stellato, B., Banjac, G., Goulart, P., Boyd, S. & Bansal, V. (2022), osqp: Quadratic Programming Solver using the 'OSQP' Library. R package v0.6.0.7.

 URL: osqp.org
- Wickramasuriya, S. L., Athanasopoulos, G. & Hyndman, R. J. (2019), 'Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization', *Journal of the American Statistical Association* **114**(526), 804–819.