QXD0013 - Sistemas Operacionais Threads

Thiago Werlley Bandeira da Silva¹

¹Universidade Federal do Ceará, Brazil

27/10/2021

Introdução

- SOs tradicionais: única thread de controle
- SOs modernos: múltiplas threads
- Também denominadas miniprocessos
- Por que?
 - Múltiplas atividades dentro de uma mesma aplicação
 - Simplificação do modelo de programação
 - Sem chaveamento de contexto
- Atividades paralelas compartilhando endereçamento
- Criação/Destruição mais simples (e rápida)
- Desempenho
 - \circ CPU bound \to não há ganho
 - \circ CPU + E/S equivalentes ightarrow aceleração da aplicação

Exemplo: Editor de texto

- Arquivo de 800 páginas
- Ações do usuário
 - o Remoção de conteúdo na página 1
 - o Em seguida, visualizar página 600
- Ações requeridas para a aplicação
 - o Reformatar todo documento até a página 600
 - o Apresentar página 600 após formatação
- Atraso na apresentação da página 600
- Modelo com duas threads:
 - o Interação com o usuário
 - o Formatação em segundo plano
- Possível terceira thread para salvar o arquivo

Exemplo: Editor de texto

Exemplo: Servidor Web

- Despachante
 - Laço infinito recebendo requisições
 - o Ativa operário
- Operário
 - Laço infinito recebendo requisições
 - Se página no chache, entrega ao despachante
 - o Caso contrário, acessa disco

Exemplo: Servidor Web


```
while (TRUE) {
   get_next_request(&buf);
   handoff_work(&buf);
while (TRUE) {
   wait_for_work(&buf)
   look_for_page_in_cache(&buf, &page);
   if (page_not_in_cache(&page))
      read_page_from_disk(&buf, &page);
   return_page(&page);
```


- Thread dependente do processo
- Conceitos distintos
 - o Processo: agrupamento de recursos
 - Thread: contador de programa
- Múltiplas execuções dentro do processo
- Threads em um processo ↔ Processos em um computador
- Threads compartilham endereçamento
 ← Processos compartilham memória
- Também chamadas de processos leves (lightweight process)
- ullet CPUs multithread o Suporte para chaveamento de multithreads

- Dependência entre Threads
 - Não há proteção
 - Cooperação
- Mesma máquina de estados dos processos
- Criação e destruição similares aos processos
- Não existe hierarquia entre threads
- Problemas:
 - Heranças entre processos
 - Compartilhamento de dados
- Cuidados específicos no projeto

Per-process items	Per-thread items	
Address space	Program counter	
Global variables	Registers	
Open files	Stack	
Child processes	State	
Pending alarms		
Signals and signal handlers		
Accounting information		

Threads POSIX

- Padrão IEEE 1003.1c
- Portabilidade
- Pacote Pthreads (mais de 60 funções)
- Propriedades de uma thread *Pthreads*:
 - Identificador
 - Registros
 - Atributos

Threads POSIX

Thread call	Description
Pthread_create	Create a new thread
Pthread_exit	Terminate the calling thread
Pthread_join	Wait for a specific thread to exit
Pthread_yield	Release the CPU to let another thread run
Pthread_attr_init	Create and initialize a thread's attribute structure
Pthread_attr_destroy	Remove a thread's attribute structure

Threads POSIX

```
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUMBER_OF_THREADS
void *print_hello_world(void *tid)
    /* Esta função imprime o identificador do thread e sai. */
     printf("Hello World. Greetings from thread %d\n", tid);
     pthread_exit(NULL);
int main(int argc, char *argv[])
     /* O programa principal cria 10 threads e sai. */
     pthread_t threads[NUMBER_OF_THREADS];
     int status, i:
     for(i=0: i < NUMBER_OF_THREADS: i++) {
          printf("Main here. Creating thread %d\n", i);
          status = pthread_create(&threads[i], NULL, print_hello_world, (void *)i);
          if (status != 0) {
               printf("Oops, pthread_create returned error code %d\n", status);
               exit(-1);
     exit(NULL);
```


Implementação de Threads

- Modo usuário
- Modo núcleo (kernel)
- Modo híbrido

Threads em Modo Usuário

- Núcleo não é informado sobre sua existência
- SO que não suporta threads
- Implementação através de uma biblioteca
- Processo → Tabela de Threads
- Chaveamento com poucas instruções
- Escalonamento personalizado
- Problemas:
 - Sistemas bloqueantes
 - o Thread deve ceder CPU voluntariamente

Threads em Modo Usuário

Threads em Modo Núcleo

- Núcleo gerencia as threads
- Tabela de threads do sistema
- Chamadas ao núcleo para criação/destruição
- Thread bloqueado
 - Mesmo processo
 - Mudar processo
- Custo maior \rightarrow reciclagem

Threads em Modo Núcleo

Threads em Modo Híbrido

- Combina duas abordagens
- Threads de núcleo ↔ Threads de usuário
 - Multiplexação

Threads em Modo Híbrido

