INDEX TO ECE 3210 Mircoelectronic Circuits

<u>Syllabus</u>

Kirchoff's Laws

Voltage-Current (V-I) Characteristics

Superposition in Linear Circuits

Thevenin Equivalent Circuits

Review (Chapter 1 Sedra/Smith)

Fourier Transform

Signal Processing

Digital Signal Processing

Amplifiers

Power Supply, Biasing, Saturation

Circuit Models for Amplifiers

Other Amplifer Models

Frequncy Response of Amplifiers

STC (single time constant) R-C Circuits

Single - Time - Constant Networks

Digital Logic

Operational Amplifier

Inverting Configuration

Finite Open Loop Gain

Input and Output Resistance

Other Applications of the Inverting Configuration

Other Applications (cont.)

Non-inverting Configuration

Op-AmpExercise

Examples of O₂ Amp Circuits

Strain Gage Project

Instrumentation Amp

Phase Shifter (1st order all-pass filter)

Nonlinear or Amp Circuits

Non-idea Performance Op Amps

Effect on Closed-loop Amplifiers

Feedback Interpretation

Gain-bandwidth Product

Large Signal Operation of Op Amps

Input Offset Voltage

Input Bias Current

Ideal Diode

Indexer
Simple Diode Circuits
Crystalline Silicon
Transport of Carriers
Pn Junction Under Bias
Characteristics of p-n junction Diodes
Temperature dependence
Review for Exam
Analysis of Diode Circuits
Piece-Wise Linear Model
Small Signal Model
Separate de Bias Analysis and Signal Analysis
Zener Diodes
Zener Shunt Regulaor
Rectifier Circuits
Full Wave Rectifiers
<u>Limiting Circuits</u>
Clamping Circuits
Three Terminal Devices
<u>BJT</u>
I-V Curves
BJT Analysis
BJT Design
BJT Amplifier
Small Signal Voltage Gain
Small Signal Models
Example 4.24
Example 4.25
Example 4.11
Biasing for BJT's
Common Emitter Amplifier
Common Emitter Amplifier (small signal analysis)
Example 4.24
Common Emitter Configuration
Example 4.31
Common Emitter with Feedback Resistor
Example 4.32
Common Collector Configuration (or Emitter Follower)
Common Base Configuration
Simple BJT Current Source
MOSFET's or IGFETs

Effect of Incresing Vds

MOSFET I-V Characteristics

Finite Output Resistance Ro

P-Channel MOSFET

MOSFET vs. BJT Circuits

Body Effect

MOSFET Bias

FET-DC exercises

MOS Amplifier

Small Signal Model

Excercises

Resistive Bias of MOS

MOS Current Source

Active Load CMOS Common Source Amplifier

Resistive Load Common Source Amplifier with feedback Resistor

Source Follower (Common Drain)

CMOS Inverter - Static

CMOS Inverter - Dynamic

CMOS NAND and NOR gates

CMOS Transmission Gate

Pass Transistor Logic

Download Word Document with the first set of notes, syllabus, and Design project 1

Syllabus for ECE 3220 - 3

ECE 3210 - 3: Electronics I

Instructor: Professor J. Alspector, x3510, josh@eas.uccs.edu

Office hours: Mon. and Wed. 12:30 - 1:30 pm in EN 294

Classes: Mon. and Wed. 1:40 - 2:55 pm in EN 233 (Multimedia Education Lab)

Text: Sedra and Smith - Microelectronic Circuits (Fourth Edition)

Additional materials: Project descriptions, computerized class notes, P-Spice files

Software: P-Spice, (Rendezvous and RealAudio for distance learning mode)

Prerequisites: ECE 2210 - 3. Circuit Analysis I

Grading components: a) Homework (~20%) b) 3 class projects (~30%) c) 3 exams and final (~50%)

Syllabus: Weekly topics (approximate)

- 1. Introduction and review of Kirchoff's laws, signals, frequency spectrum, amplifiers
- 2. Ideal operational amplifiers and circuits
- 3. Realistic models and circuits using Op Amps, SPICE Intro
- 4. Asign design project 1, ideal diodes and circuits
- 5. Rectifiers, clamping circuits, semiconductor diode physics
- 6. Course questionnaire, quiz 1, design project 1 due
- 7. Bipolar junction transistors, device physics, models, characteristics
- 8. Transistor amplifiers, design techniques
- 9. Single stage amplifiers, switching circuits, second order effects
- 10. Quiz 2, design project 2
- 11. Field effect transistors, device physics, characteristics
- 12. DC analysis, FET amplifiers, single stage amplifier configurations
- 13. Quiz 3, design project 3
- 14. IC MOS amplifier, FET switches, CMOS logic
- 15. Review, final exam

Kirchoff's Laws

Voltage

$$\sum_{loov} \triangle_{\mathcal{V}} = 0$$

Current

$$\sum_{node} i = 0$$

KVL

$$V_0 = V_1 + V_2 = V_3 + V_4 + V_5$$

Sum of voltages between any two nodes is the same regardless of path

<u>KCL</u>

$$\underline{i}_0 = i_1 + i_3$$
 at x

$$i_1 = i_2$$
 at y

$$i_3 = i_4 = i_5$$
 at A,B

Q:

Does arrow direction matter?

What about capacitors?

Sum of current flowing into a node equal sum flowing out of a node

Voltage - Current (V-I) Characteristics

Resistor

Port Example - Plot V-I

Not Passive, define i_x as positive out of x

KVL
$$v_{x} = v_{1} - i_{x}R_{1} \Rightarrow i_{x} = \frac{v_{1} - v_{x}}{R_{1}} = -\frac{1}{R_{1}}v_{x} + \frac{v_{1}}{R_{1}}$$

$$v_{x} = \text{intercept } (i_{1} = 0) \qquad \text{Slope} \qquad i_{x} \text{ intercept}$$

Superposition in Linear Circuits

Linear Element has form

$$V = ai_1 + bi_2$$

or $i = cv_1 + dv_2$

(coefficient are constant or linear operators like I dt or d/dt e.g. $v=a (di_1/dt) + b I$ i₂dt)

Superposition:

Response of linear circuit to sum of inputs is sum of responses with each input applied individually If $i_1 = f(v_1)$ and $i_2 = f(v_2)$ then $i_3 = f(v_1 + v_2) = f(v_1) + f(v_2) = i_1 + i_2$

Example: Plot V-I

$$R_{1}=10k\Omega \longrightarrow i_{x}?$$

$$V_{I}: set \ v_{2}=0 \ (short) \ and \ I_{0}=0 \ (open)$$

$$v_{x}'=R_{2}i_{2}=R_{2}\frac{v_{1}}{R_{1}+R_{2}}=5k\Omega \frac{5v}{10k\Omega+5k\Omega}=1.67v$$

$$v_{x}''=R_{2}i_{2}=R_{2}\frac{v_{1}}{R_{1}+R_{2}}=0.33v$$

$$v_{2}: v_{1}''=I_{0}(R_{1} \parallel R_{2})=1.5m \ A(10m\Omega \parallel 5m)=5V$$

By superposition: $v_x = v_x' + v_x'' + v_x''' = 1.67 + 0.33 + 5v = 7V$ for no load (open ckt at x x')

Short ckt xx':

$$i_{5c} = i_{\pi} \Big|_{\mathbf{v}_{\lambda=0}} = I_0 + \frac{v_1 + v_2}{R_1} = 1.5 mA + \frac{5v + 1v}{10 m\Omega} = 2.1 mA$$

Slope =
$$-\frac{2.1mA}{7V} = -0.3\frac{mA}{V}$$
 $i_x = -0.3\frac{mA}{V}V_x + 2.1mA$

Thevenin Equivalent Circuits

Any port of resistive ckt (resistors + linear sources) can be modeled by a voltage source and resistor

Find open circuit voltage V_{0c} at port. This is V_{thev} Find short-circuit current i_{sc} by connecting a short at port. $R_{thev} = V_{thev}/i_{sc}$ Applies also to capacitors and inductors with ac signals

$$\vec{z}_c = \frac{1}{jwc}$$

$$\vec{z}i = \frac{1}{jwL}$$

Norton Equivalent

is "dual" of Thevenin

$$V_{oc} = I_{Nor} R_{thor}$$
$$i_{sc} = i_{nor}$$

Resistance looking into port (open ckt current source) is $R_{\mbox{\scriptsize thev}}$

Review (Chapter 1 Sedra/Smith)

- O Microelectronic Technology 1 Cs 10⁷-10⁸ devise / 1 cm² chip
 - Signals Transducers

Frequency domain

- sine wave

Fourier Transform

• Fourier series – any periodic function can be expressed as a sum of sines (possibly infinite series)

$$v(t) = \frac{4v}{\pi} \left(\sin w_0 t + \frac{1}{3} \sin 3w_0 t + \frac{1}{5} \sin 5w_0 t + \dots \right)$$
fundamental harmonics

• Frequency spectrum

- useful because spectrum has major components in small region of freq. space.
 - Non-periodic sound e.g. speech

Exercise 1.1-1.3

Signal Processing

- Analog & Digital Signals
- natural signals are analog
- analog circuits processing advantage in that signals

to real world

analogous

- sample the amplitude periodically
 - -> discrete time signal
- sequence of numbers -> digitalsignal

C

- advantage of digital
- Processed by digital computer-type circuits
- Flexible
- Amplifiers (analog processing)
- why? Microphone (microvolts) -> speakers (amps) linearity so signal is not distorted

Digital Signal Processing

• Each sample is binary word

with value

$$D = b_0 2^0 + b_1 2^1 + ... + b_{n-1} 2^{n-1}$$

• ADC quantizes signal into one of 2ⁿ levels

ex 1.4

Amplifiers

• Voltage amp

Input

Voltage gain

$$A_{\mathbf{v}} \equiv \frac{V_0}{V_I}$$
 (transformer)

Power gain

$$A_{\!F} \equiv \frac{LoadPowe(Pi)}{InputPowe(Pz)} = \frac{V_0I_0}{VtI_I}$$

Current gain

$$A_{i} \equiv \frac{I_{0}}{I_{I}} \frac{N.B. A_{p} = A_{v} A_{I}}{N.B. A_{p}}$$

• Logarithmic measure – decibels

 $20 \log_{10} |A_v| \leftarrow$ to remove phase shift

$$20\log_{10}|A_i|$$

N.B.
$$-20 \rightarrow A_v = 0.1$$

$$10\log_{10}A_p$$

(power is i^2 or v^2)

Supply

$$P_{dc} = V_1I_1 + V_2I_2$$

Power balance:

$$P_{dc} + P_{I} = P_{L}^{\text{power delivered}} + P_{dissipated(in amp)}$$

$$\eta \equiv \frac{P_L}{P_{dc}} \times 100 \text{ (in percent)}$$
Efficiency:
$$\approx P_L + P_{dissipated} \qquad \text{(in percent)}$$

Saturation - Non-linearity

Output voltage doesn't usually exceed supply voltage

$$\underset{Linear\ range:}{\underline{L} \cdot} \frac{L \cdot}{A \mathtt{v}} \leq V_{\mathbf{i}} \leq \frac{L \cdot}{A \mathtt{v}}$$

fig 1.13

Bias

Single bias input with V_s to operate in linear region

 $V_{I}(t) = V_{I} + V_{i}(t)$

$$V_0(t) = V_0 + V_0(t)$$

$$V_0(t) = A_v \; V_i(t)$$

$$A_{\overline{v}} = \left. \frac{dV_0}{dV_I} \right|_{\underline{u}t0}$$

e.g. 1.12

ex 1.5, 1.6, 1.7

Circuit Models for Amplifiers

Voltage Amp

$$V_0 = Av_0 V_i \frac{R_L}{R_L + R_0}$$
 want $R_0 << R_L$

$$A_{\text{W}} \equiv \frac{V_0}{V_i} = A_{\text{W}0} \frac{R_{\text{L}}}{R_{\text{L}} + R_0}$$

$$\uparrow \text{ open circuit voltage gain } (R_{\text{L}} = \infty)$$

$$V_i = V_3 \frac{V_3}{R_i + R_S} \text{ want } R_i >> R_S$$

e.g. 1.3: 3 stage amp

ex 1.3, 1.9, 1.10

Other Amplifer Models

Tsh ort circuit or rent gain (RL = 0)

 ${}^{\lessgtr}\,\mathrm{R}_{\!\scriptscriptstyle
m L}$

Transconductance amp

 $i_0 = A_i s i_1 \frac{R_0}{R_0 + R_1}$ $A_{i} \equiv \frac{i_{0}}{i_{i}} = A_{is} \frac{--}{R_{0}} \text{ want } R_{0} << R_{L}$

$$i_i = i_3 \frac{R_S}{R_S + R_i}$$
 want $R_i \le R_3$

Gm is short circuit transconductance (mhos A/V)

Transresistance (or trans impedance) amp

 R_{m} is open circuit transresistance (ohms V/A)

Input R: apply V_S , measure i_i

Output R: apply V_i , V_x to output, measure i_x

Note that all these models are related (and unidirectional lateral)

$$A_{\text{v0}}V_{i} = A_{i\text{s}}\!\left(\!\frac{V_{i}}{R_{i}}\!\right)\!R_{0} \,\rightarrow\, A_{\text{v0}} = A_{i\text{s}}\frac{R_{0}}{R_{i}}$$

show $A_{v0} = G_m R_{0, Av0} = Rm/Ri$; e.g. 1.4 BJT;

Frequency Response of Amplifiers

Transfer function

 $Amplitude response |T(w)| = \frac{V_0}{V_i}$

$$T(w) = \frac{V_0(w)}{V_i(w)}$$

Phase response $\P T(w) = \Phi$

Bandwidth

Complex frequency variables (includes both amplitude and phase)

Reactive components: Inductance L has impedance jwL or sL

Capacitance C has impedance 1/jwC or 1/sC

T(w) is a complex function

$$T(s) \equiv \frac{V_0(s)}{V_i(s)}$$
 : replace s by jw to get physical frequencies

STC (single time constant) R-C circuits

Step response

$$V_0(t=0) = 0$$
, $V_0(t=\infty) = V_0$

$$i_R = \frac{V_{\text{I-}}V_0}{R} = \frac{V_0}{R} e^{\text{-t/RC}}$$

Sinusoidal Steady State

 $V_C(t) = R_e[\vec{\nabla} ce^{jwt}]$ (= phas or magnitude & phase)

Capacitor eq.

$$\frac{dv_c}{dt} = \frac{i_c}{c} \quad \text{becomes} \quad jw \vec{\nabla}_c = \frac{\vec{I}_c}{C}$$

Impedance

$$\vec{Z}_c = \frac{\vec{\nabla}_c}{\vec{I}_c} = \frac{1}{iwC}$$

(= jwL for inductor)

(=R for resistor)

Low pass

$$\vec{\nabla}_0 = \vec{\nabla} \cdot \frac{\vec{Z}_c}{\vec{Z}_c + Z_R} = \nabla r \cdot \frac{\frac{1}{2} \, \text{WC}}{\frac{1}{2} \, \text{WC} + R} = \vec{\nabla} r \cdot \frac{1}{1 + j \, \text{wRC}}$$

$$\left(\text{low pass response } \frac{K}{1+j\frac{w}{w_0}}\right)$$

$$\frac{\left|\frac{\vec{\nabla}_0}{\vec{\nabla}_I}\right|}{\left|\frac{\vec{\nabla}_0}{\vec{\nabla}_I}\right|} = \frac{1}{\left[1 + (wRC)^2\right]^{1/2}} \underset{\text{phase}}{\text{phase}} \not \leq \vec{\nabla}_0 = -\tan^{-1}wRC$$

<u>Single – time – constant Networks</u>

STC nets: reduced to 1 reactive component and 1 resistance

W

ex 1.15, 1.16, 1.19

Digital Logic

<u>Inverter – basic building</u> <u>block</u>

Transfer characteristic

Noise Margins (for 1 inverter driving another)

$$NM_H = V_{OH} - V_{IH}$$

$$NM_L = V_{IL} - V_{OL}$$

Ideal VTC

Homework: Read pp 60-92 D1.2, 1.33, 1.49

Example Circuit

How can you make a NAND / NOR circuit?

Operational Amplifiers

• IC opamp – versatile, easy to design with, not basic device but building block

- Ideal OpAmp
- infinite input impedance no current drawn from terminals 1 & 2
- out $V_3 = A (V_2 V_1)$
 - o independent of current drawn
 - o output impedance is zero
- $V_2 = V_1 \rightarrow V_3 = 0$ regardless of input offset common mode rejection infinite
- dc coupled
- A constant from w = 0 to $w = \infty$
- A = ∞

ex 2.3

Inverting Configuration

- Negative feedback stable & accurate
- Virtual ground at V₁ ~ 0 (v₁ tracks v₁ not a short!)

$$i_i = \frac{V_{I-(\sim 0)}}{R_1}$$
 since A

• i_i goes into R₂ not into opamp since infinite input impedance

$$V_0 = V_1 \text{--} i i R_2 = \text{--} \frac{V_i}{R_1} R_2$$

$$i_2 \sim i_1 \sim \frac{V_I}{R_I}$$

$$G \equiv \frac{V_0}{V_1} = -\frac{R_2}{R_1}$$

output is inverted and amplified

Finite Open Loop Gain

$$V_0 = A(V_2 - V_1) = -AV_1 \Rightarrow V_1 = -\frac{V_0}{A} \quad (\text{not zero})$$

$$V_{1-}(-\frac{V_0}{A}) \qquad -\frac{V_0}{A} - V_0$$

$$i_1 = \frac{V_1 - \left(-\frac{V_0}{A}\right)}{R_1} \approx i_2 = \frac{-\frac{V_0}{A} - V_0}{R_2}$$

$$-\frac{R_1}{R_2} V_0 (1 + \frac{1}{A}) - \frac{V_0}{A} = V_1 \Longrightarrow V_0 (1 + \frac{1}{A} + \frac{R_2}{R_1} \frac{1}{A}) = -\frac{R_2}{R_1} V_1$$

$$G = \frac{V_0}{V_I} = \frac{-\frac{R_2}{R_I}}{1 + (1 + \frac{R_2}{R_I})/A}$$

$$1 + \frac{R_2}{R_1} << A$$

• Want $1 + \frac{R_2}{R_1} << A$ to minimize effect of finite open loop gain

e.g. 2.1

a)
$$\underline{A}$$
 \underline{G} ,=
b₁.bbbb

$$D = b_1 2^0 + b_1 2^1 + ... + b_{n-1} 2^{n-1}$$

e.g. 2.1

$$10^3 - 91$$

$$10^4 - 99$$

$$10^4 - 99$$

$$10^7 - 99.9$$

$$-0.1\%$$

b)
$$A = 10^5 \rightarrow 0.5 \times 10^5 |G|: 99.9 \rightarrow 99.8 \sim -0.1\%$$

Don't need extremely large open loop gain for G ~ 100

Input and Output Resistances

$$R_{in} \equiv \frac{V_{I}}{i_{i}} = \frac{V_{I}}{v_{I/R_{I}}} = R_{1}$$
 sine $V_{1} = 0$ for $A = \infty$

for high gain R_1 can't be too high (or R_2/R_1 is low) in inverting configuration

R_{out} ~ zero (ideal voltage source)

e.g. 2.2
$$V_{S} \xrightarrow{i_{1}} V_{R_{1}} \xrightarrow{i_{2}} R_{2} \xrightarrow{i_{3}} R_{4}$$

$$V_{S} \xrightarrow{R_{1}} V_{1} \xrightarrow{\overline{z}} V_{1} \xrightarrow{\overline{z}} V_{2} \xrightarrow{\overline{z}} V_{3}$$

$$V_1 = -\frac{V_0}{A} = 0$$
 $i_1 = \frac{V_1 - 0}{R_1} = i_2$ $V_2 = 0 - i_2 R_2 = -\frac{V_1}{R_1} R_2$

$$_{i3}\!=\!\frac{_{-}\!\left(-\frac{R_2}{R_1}\,V_s\right)}{R_3}$$

•
$$V_0$$
 $i_4 = i_3 + i_2 = \frac{V_I}{R_1} + \frac{R_2}{R_1 R_3} V_I$

$$\begin{split} V_0 &= V_{x-14} R_4 = -V_1 \frac{R_2}{R_1} - V_1 \frac{R_4}{R_1} + \frac{R_2 R_4}{R_1 R_3} V_1 \\ &= -\frac{R_2}{R_1} V_1 \left(1 + \frac{R_4}{R_2} + \frac{R_4}{R_3} \right) \end{split}$$

Choose
$$R_1=1\Omega$$
, limit $R_2=1M\Omega$
Can get $G=-100$ if $1+R/R_2+R_4/R_3=100$
 $R_4=1M\Omega \rightarrow R_4/R_3=100$ -2 = 98; $R_3=10.2k\Omega$
avoid a choice of

$$R_2 = 100 \text{ M}\Omega \text{ for } R_{in} = 1 \text{M}\Omega$$

Other Applications of the Inverting Configuration

$$\frac{V_0}{V_I} = -\frac{Z_2}{Z_1}$$

Miller Integrator

$$Z_1 = R$$
, $Z_2 = \frac{1}{SC} \Rightarrow \frac{V_0}{V_I} = -\frac{1}{jwCR}$ $\left\{ \text{lowpass like } \frac{1 < \text{lowpass like } \frac{1 < \text{lowpass like } \frac{w}{w_0} >> 1} \right\}$

Differentiator $z_1 = 1/SC$, $Z_2 = R$

$$\frac{V_0}{V_i} = -sCR = -jwCR$$

$$\Rightarrow V_0(t) = -CR \frac{dV_I(t)}{dt}$$

Other Applications (cont.)

Weighted Summer

Can integrate, differentiate, sum \rightarrow math operations \rightarrow "operational" amplifier (for analog computer) ex, 2.6, D2.7, D2.8, D2.9

$$\begin{split} \frac{V_0}{V_i} &= -\frac{Z_2}{Z_1} = -\frac{(R_2||C_2)}{R_1} = \frac{-\frac{1}{\frac{1}{R^2} + jwC_2}}{R_1} \\ &= -\frac{R_2/R_1}{1 + jwC_2R_2} \quad \underline{LP \ type} \ \left(\frac{k}{1 + jW/W_0}\right) \end{split}$$

dcgain =
$$-R_2/R_1 = -100 \text{ v/v}$$

$$w(3db) = 1/C_2R_2 = 1/(10^{-9} \cdot 10^5) = 10^4 \text{ rad/s}$$

Non-inverting Configuration

virtual short between input

$$v_2 - v_1 = \frac{V_0}{A} \sim 0 \quad \text{ for } A \to \infty$$

$$V_0 = V_I + \left(\frac{V_I}{R_1}\right) R_2$$

$$\frac{V_0}{V_I} = 1 + \frac{R_2}{R_1}$$
 note voltage divider on V_0

$$V_1 \sim V_1 = V_0 \frac{R_1}{R_1 + R_2}$$

Positive gain

input impedance $\sim \infty$ (great as buffer amp) output impedance ~ 0 (taken at voltage source)

Unity Gain $R_2 = 0$

Buffer Amp

 $R_1 =$

"Voltage Follower"

 $V_0 = V_1$

good to connect high output impedance source to low input impedance load (microphone to speaker)

ex 2.10, 2.11, D2.12, 2.13

Op-amp Exercises

Want
$$A_r = 2$$
 with $I_p = 10\mu$ A@10V

$$\frac{V_0}{V_1} = 1 + \frac{R_2}{R_1} = 2 \rightarrow \frac{R_2}{R_1} = 1$$

$$i = \frac{10v}{R_1 + R_2} = 10 \mu A$$

$$\frac{10v}{2R_1} = 10 \mu A$$

$$i = \frac{10v}{R_1 + R_2} = 10 \text{ MA}$$
 $\frac{10v}{2R_1} = 10 \text{ MA}$ $R_1 = \frac{5V}{10 \times 10^{-6} \text{ A}} = .5 \text{ M} = R_2 = R_1$

ex 2.13 if A_{V0} is finite

$$\begin{split} &V_0 = V_I - V_0 / A = \frac{R_1}{R_1 + R_2} V_0 \qquad V_0 \left(\frac{R_1}{R_1 + R_2} + \frac{1}{A} \right) = V_I \\ &G \equiv \frac{V_0}{V_I} = \frac{A(R_1 + R_2)}{R_1 A + R_1 + R_2} = \frac{1 + R_2 / R_1}{1 + \frac{R_1 + R_2}{R_1} \frac{1}{A}} = \frac{1 + R_2 / R_1}{1 + \left(1 + R_2 / R_1 \right) \frac{1}{A}} \quad Q \in \mathcal{D} \end{split}$$

b.

$$\epsilon \sim \left(1 + \frac{R_2}{R_1}\right) \frac{1}{A} = \frac{1+9}{10^3} \sim 10^{-2} = 1\% .1\% .01\%$$

if
$$V_1 = 1v$$
 $V_2 - V_1 \sim 1 \sim (10^{-2}) \sim 10 \text{mV} \cdot 1 \text{mV} \cdot 0.1 \text{mV}$
= V_0 / A
 $A \sim 10^2$

H.W. Read pp 85-108

Probs. 2.2, 2.8, 2.28, 2.46

Examples of O_p Amp Circuits

e.g. 2.5 high input R voltmeter

 100μ A full scale ?R for V = +10v

$$i = \frac{V}{R} = \frac{10V}{R} = 100 \mu A \implies R = 100 k\Omega$$

 R_{m} does not matter! $R_{internal} = \infty$!

e.g. difference amp-combine inv + non-inv

 $i_2 = i_1$, $i_4 = i_3$, $v_- = v_+$ (here, without superposition)

$$V_{0} = V_{1} + i_{2}R_{2} + i_{1}R_{1}, \quad i_{1} = \frac{V_{-} - V_{1}}{R_{1}}$$

$$\downarrow$$

$$V_{+} = V_{2} \frac{R_{4}}{R_{3} + R_{4}} \rightarrow i_{1} = \frac{V_{2} \frac{R_{4}}{R_{3} + R_{4}} - V_{1}}{R_{1}}$$

$$V_0 = V_1 + \left(\frac{V_2}{R_1} \frac{R_4}{R_3 + R_4} - \frac{V_1}{R_1}\right) (R_2 + R_1) = \frac{1 + \frac{R_2}{R_1}}{1 + \frac{R_2}{R_4}} V_2 - \frac{R_2}{R_1} V_1$$

For a true difference amp want $V_0 = 0$ for $V_2 = V_1 \Rightarrow \text{set } R_2/R_1 = R_4/R_5$

$$\Rightarrow V_0 = \frac{R_2}{R_1}(V_2 - V_1) \text{ simplify further } R_3 = R_1 \ R_4 = R_2 \text{, } R_{\text{in}} \ \equiv \frac{V_2 - V_1}{i}$$

$$V_2 - V_1 = R_1 i + 0 + R_1 i$$

$$V_2 - V_1 = R_1 i + 0 + R_1 i$$

$$V_3 - V_1 = R_1 i + 0 + R_1 i$$

Note: can't have high Rin and high gain

$$R_{in} \equiv \frac{V2 - V1}{i} = 2R_1$$

Instrumentation Amp: rejection common mode with high input R and high gain

Instrumentation Amp

e.g. 2.7

$$V_{01} - V_{02} = \frac{V_1 - V_2}{R_1} (R_2 + R_1 + R_2) = \left(1 + \frac{2R_2}{R_1}\right) (V_1 - V_2)$$

1st stage:

$$V_0 = \frac{R_4}{R_4} (V_{02} - V_{01}) = \underbrace{\frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_1}\right)}_{\text{A.i.s. differential solution}} \underbrace{(V_2 - V_1)}_{\text{A.i.s. differential solution}}$$

2nd stage:

$$V_{cm}$$
 appears as $V_{01} = V_{02}$ if $V_d = 0 \Rightarrow V_0 = 0$

Vary Gain by varying R₁

Input impedance ~ ∞

Usually design 2^{nd} stage for gain = $1 \rightarrow R_3 = R_4 = 10 \text{ k}\Omega$ say

Problem: design $1\underline{st}$ stage for gain of $2 \to 1000~W_1~100~k\Omega$ potentiometer

$$1 + \frac{2R_2}{R_{\text{lf}} + R_{\text{lv}}} = 2 \rightarrow 100 \Rightarrow 1 + \frac{2R_2}{R_{\text{lf}}} = 1000 \qquad \qquad 1 + \frac{2R_2}{R_{\text{lf}} + 100 k\Omega} = 2$$

Phase Shifter (1st order all-pass filter)

$$\frac{V_0(s)}{V_i(s)} = \frac{R - \frac{1}{SC}}{R + \frac{1}{SC}} = \frac{S - \frac{1}{RC}}{S + \frac{1}{RC}} = -\frac{\frac{1}{RC} - jw}{\frac{1}{RC} + jw}$$

$$\left|\frac{V_0}{V_1}\right| = 1 \qquad \varnothing = 180^{\circ} - 2\tan^{-1}(wCR)$$
(-sign)

H.W. Read pp. 92-108

Prob D2.54 (due Sept 15 along with next week's assignments) + Project1

Next class in PC lab for PSpice - will not be on whiteboard but will have voice

Nonlinear Op Amp Circuits

Open-loop comparator

 $V^+ = 10$

 $V^{-} = -10$

Very susceptible to noise if $V_I \sim V_{RCF}$

Schmitt Trigger – use positive feedback to help hold state

$$V_{+} = \frac{R_{1}}{R_{1} + R_{2}} V^{+}$$
 if output is positive; $= \frac{R_{1}}{R_{1} + R_{2}} V^{-}$ if negative

Hysteresis

bistable

used as memory

point at which switching takes place depends on state

Non-idea Performance of O_p Amps

Finite open-loop gain & band width

Typical of internally compensated (capacitor feedback for stability)

$$A(s) = \frac{A_0}{1 + s/w_b}$$

$$w_b \text{ is "break" frequency}$$

$$(\cong 2\pi \times 10 \text{ rad/s})$$

for
$$w>>w_b$$

$$A(jw) \cong \frac{A_0 w_b}{jw} ; \text{ reaches unit gain (0db) at } W_t = A_0 W_b$$

 $A(jw) \cong \frac{wt}{jw}$; w_t is "unity gain bandwidth" integrator with $\tau = 1/w_t$

$$\text{Gain Magnitude} \hspace{0.1cm} \mid \mathbb{A}(jw) \mid \, \cong \frac{W_t}{W} = \frac{f_t}{f}$$

-20 db/decade is "single pole" or "dominant pole" model

W_t is important spec.

Effect on Closed-loop Amplifiers

Inverting

$$\begin{split} \frac{V_0}{V_i} &= \frac{-R_2/R_1}{1 + (1 + R_2/R_1)/A} \quad \text{where} \quad A = \frac{A_0}{1 + S/W_b} \cong W_b / S \quad \text{ for } W >> W_b \\ &= \frac{-R_2/R_1}{1 + \frac{1}{A_0} \left(1 + \frac{R_2}{R_1}\right) + \frac{s}{W_b} \left(H \frac{R_2}{R_1}\right)} \end{split}$$

$$\inf A_0 >> 1 + R_2/R_1 \ \text{then} \ \frac{V_0(s)}{V_i(s)} \cong \frac{-R_2/R_1}{1 + \frac{1}{A_0} \left(1 + \frac{R_2}{R_1}\right) + \frac{s}{w_i} \left(1 + \frac{R_2}{R_1}\right)} \qquad \text{low pass STC} \quad (k/1 + s/W_0)$$

 $W_{3db} = \frac{W_t}{1 + R_2 / R_1}$ Corner freq.

Non-inverting

$$\frac{V_0}{\text{similarly}} = \frac{1 + R_2/R_1}{1 + (1 + R_2/R_1)/A}$$

$$\Rightarrow \frac{V_0(s)}{V_i(s)} \cong \frac{1 + R_2/R_1}{1 + \frac{s}{W_t/(1 + R_2/R_1)}}$$
 low pass STC with same W_{3db}

e.g. $2.8 f_t = 1 MHz$

Nominal closed loop gain 1000 100 10 1 -1 -10 -100	$ \frac{R_{2}/R_{1}}{999} $ $ \frac{999}{99} $ $ \frac{9}{0} $ $ \frac{1}{10} $	$f_{3dB} = \frac{f_t}{1 + R_2 / R_1}$ $\frac{10^6 / 1000 = 1 \text{ kHz}}{100 \text{ kHz}}$ $\frac{100 \text{ kHz}}{1 \text{ MHz}}$ $\frac{1 \text{ MHz}}{10^6 / 2 = 0.5 \text{ MHZ}}$ $\frac{10^6 / 11 = 90.9 \text{ kHz}}{1000 \text{ kHz}}$
	_	10 ⁶ / 11= 90.9 kHz 9.9 kHz ~ 1 kHz

$$G_{\text{inv}} = -\frac{R_2 \, / \, R_1}{1 + \left(1 + R_2 \, / \, R_1\right) \, / \, A} \sim -R_2 \, / \, R_1$$

$$G_{\rm n.i.--} - \frac{1 + R_2 \, / \, R_1}{1 + \left(1 + R_2 \, / \, R_1\right) \, / \, A} \sim 1 + R_2 \, / \, R_1$$

Feedback Interpretation

- both have same feedback loops (if short v_i)
- same dependence on finite gain and bandwidth (f_{3dB})

Voltage Divider feedback ratio

negative loop gain -AB feedback

Amount of feedback $\equiv 1 - loop \ gain = 1 + A\beta$

 $f_{3db} = \beta f_t$

ex 2.18 - 2.19

Gain-bandwidth Product

 $W_{fb} = W_b \; (1 + A_0 \; \beta \;)$ where $1/\beta = 1 \, + \, R_2/R_1$ or 3dB

$$\frac{A_0}{1 + A_0 \, \mathcal{S}} W_{fb} = A_0 W_b$$

$$A_{fb} = \frac{A_0}{1 + A_0 \mathcal{S}}$$

Large Signal operation of O_p Amps

Output Saturation

keep output below $L^{\scriptscriptstyle +}$ for linear rated output voltage $V_{0\text{max}}$

Slew rate

$$SR = \frac{dV0}{dt} \Big|_{max}$$
in
$$calculated$$
out
$$\frac{V_0}{V_1} = \frac{1}{1 + S/W_1}$$

$$actual$$
out

low pass STC response to step

$$\Rightarrow$$
 V₀(t) = V (1-e^{t/ τ})

at step $V_{-} = V_{+}$ will be large transcond. stage supplies max I to 2^{nd} stage

Full Power Bandwidth

$$V_i = \hat{V}_i \sin(wt) \cdot \frac{\mathrm{d}V_i}{\mathrm{d}t} = \underbrace{wV_i}_{peak \text{ walke}} \cos(wt)$$

if
$$wV_i > SR \Rightarrow distortion$$

spec f_m = full power bandwidth is freq. at which output with ampl. at V_{0max} shows SR distortion

WINDOWS\DESKTOP\research\html documents\large signal operation of op amps

$$W_{\textbf{m}} V_{\textbf{0max}} = SR$$

$$f_{\textbf{m}} = \frac{SR}{2pV_{\textbf{0max}}}; \ V_{\textbf{0}} = V_{\textbf{0max}} \frac{W_{\textbf{m}}}{W} \text{ for } w \geq w_{\textbf{m}} \text{ get distortion at } V_{\textbf{0max}}$$

Input Offset Voltage

$$V_0$$
 at L^+ or L^- , 1 nce gain is high $V_{os} \sim 1-5$ mV depends on temp

$$V_0 = V_{0S} [1 + R_2 / R_1]$$

e.g.
$$1 + R_2 / R_1 = 10^3$$
, $V_{0S} = 5 \text{mv} \rightarrow V_0 = 5 \text{v}$ zero V_-

741 op amp has add'd terminals to trim $V_{0S}\,$

Capacitive coupling

$$R_1 dc \sim \infty \rightarrow V_{0S} gain (dc) = 1$$

for
$$W >> W_0 = 1/CR_1$$
; gain = $-R_2/R_1$

Miller integrator

$$V_0 = V_{0S} + \frac{V_{0S}}{CR}t$$
; integrates I to saturation add R_F so that V_0

$$A(s) = \frac{A_0}{1 + s/W} \log R_F \rightarrow \text{low output offset} \rightarrow \text{less ideal integrator}$$

Input Bias Current

To reduce V_{0dc} add R₃

spec:

Average IB =
$$\frac{I_{B1} + I_{B2}}{2}$$
 input bias current: $\frac{1}{2} \sim 100$ nA (B>T) \sim pA (ϵ FT)

input offset current: $I_{0S} = |I_{B1} - I_{B2}| \sim 10 \text{ nA}$

output dc voltage (inv and ni) $V_{0dc} = I_{b1}R_2 \sim I_BR_2$

$$V_{0dc}(V_I = 0) = -I_{B2}R_3 + R_2 [I_{B1}-I_{B2}(R_3/R_1)]$$

$$\begin{split} \underline{\text{If } I_{0S}} &= 0, \, I_{B1} = I_{B2} = I_{B} \Rightarrow V_{0} = I_{B} \, [R_{2} - R_{3} \, (1 + R_{2} \, / R_{1})] \\ &= \frac{W}{W} \frac{t}{W} = \frac{f \, t}{f} \\ &= I_{B1} = I_{B} + B_{0S} \, / \, 2, \, I_{B2} = I_{B} - I_{0S} \, / \, 2 \Rightarrow \underbrace{V_{0} = I_{0S}}_{\sim \, 1 \, / \, 10 \, \text{G}_{B} \text{R}} \, R_{2} \, \text{for} \, R_{3} = R_{1} || \, R_{2} \\ &= \underbrace{If \, I_{0S} \neq 0}_{\sim \, 1 \, / \, 10 \, \text{G}_{B} \text{R}} \end{split}$$

∴ make R_3 at + s.t. = R_{in} (= $R_1 \parallel R_3$) at – input for <u>dc coupling</u>

for ac coupling

H.W. 2.75, 2.80, 2.85

Read Chap 3 pp 122-137

Ideal Diode

Rectifier

ex 3.3 $V_{Ipeak} = 10V$, $R=1k\ i_Dpeak = 10V/1k = 10\ ma$

$$\operatorname{avg} = \operatorname{Vac} = \frac{10 \left[\int_{0}^{\pi} \sin \frac{\partial x}{\partial t} \, \partial^{2} + \int_{\pi}^{2\pi} \frac{\partial x}{\partial t} \, \partial^{2} \right]}{\int_{0}^{2\pi} d \, \partial^{2}} = \frac{10 V [2+0]}{2 \pi} = \frac{10}{\pi} = 3.18 V$$

Pass Transistor Logic

H.W. 5.92, 5.93, 5.100, 5.101. 5.107, 5.108

every circuit node must always have a low resistance path to V_{DD} or V_{SS} (gnd)

Input signals are driven by inverters or active eMOS logic

Can't cascade PTL circuits if y becomes a high impedance note

PTL - fast, area efficient

Simple Diode Circuits

Diode Logic

$$\mathbf{Y} = \mathbf{A} \boldsymbol{\cdot} \, \mathbf{B} \boldsymbol{\cdot} \, \mathbf{C}$$

since any of A, B, C, = $low \Rightarrow Y low$

:. all must high for Y to be high

ex 3.4

assume on

$$I = 5/2.5 \text{ k} = 2$$
 ma

V=0 (really ϵ)

(b)

- 1) assume on I = 2 ma NOT POSSIBLE since reverse biased
- 2) assume off I = 0; V = 5V

- 1. assume all on V = 3V
 - 0) 2, 1 reverse \Rightarrow off
- 2. 2,1 off I = 3V/1k = 3ma V = 3V

$$V_{\text{avg}} = \frac{10 \int_{0}^{2\pi} \sin \frac{\partial t}{\partial t} \frac{\partial^2}{\partial t}}{\int_{0}^{2\pi} d\frac{\partial^2}{\partial t}} = -\frac{-\cos \frac{\partial^{\text{pr}}_{0}}{\partial t} - 10}{2\pi} = \frac{10}{\pi}$$

$$I_{avg} = \frac{V_{avg}}{R + 50}$$

$$I_{AVG} = 1ma$$

$$R = \frac{V_{avg}}{I_{avg}} - 50 = \frac{3.18}{10^{-3}} - 50$$

 $= 3.13 \text{ k}\Omega$

Crystalline Silicon

4 valence elections – Si^4 – Diamond x-tal structure all bonds complete at $0^{o}k$ – insulator "intrinstic semiconductors" – no imparities $T>0^{o}k$ – lattice vibrations – break bonds thermal generation of mobile elections and "holes"

(also optical generation – silicon solar cell)

#of bonds = $4N_{Si} = 2x10^{23}$ cm⁻³

Thermal Equilibrium

 $\begin{array}{ccc} n_0 \ p_0 = n_i^2(T) & n_i & doubles \ every \ 10^\circ \\ \hline \text{moble election} & \text{hole} & n_{i^{\sim}} 10^{10} \text{cm}^{-3} \ \text{at} \ 300^\circ \text{k} \ (1 \ \text{in} \ 2 \ \text{x} \ 10^{13} \ \text{bonds are broken}) \end{array}$

Doping Donors- Group V - P, As, Sb - donate a free election to lattice

Still neutral since As+ ion is bound in lattice

"extrinsic" silicon: $n_0 \cong N_d$ indep of T

of donors $N_d >> n_i - "n-type"$

hole concentration suppressed since large # of e's combine

$$n_0 p_0 = n_i^2$$

e's – majority carriers

h's – minority carriers

Acceptors - Group III Boron

Transport of Carriers

 $V_{\text{therm d}} \sim 10^7 \text{cm} / \text{s} \text{ at } 300^{\circ} \text{k}$

electron mobility ~1400 cm²/V-s

$$V_{dp} = \mu_p E$$

 \sim hole mobility ~ 500 cm²/V-s

Diffusion

- carriers go from high concentration to low by thermal motion

ph junction

current E

causes drift current α

diffusion current

balances

P_n junction under bias

 $\underline{Forward} - carrier \ den \ sities \ P_n = P_{n0} \ e^{Vd/Vt} \ n_p = n_{p0} e^{Vd/Vt}$

saturation or scale current

Reverse

- increase barrier by qV_D decrease diffusion of majority carriers
- no effect on minority carriers which wander near jcn and are swept across
- ullet upset in eq. \to I_{sat} due to thermal generation
- increase depletion layer width land charges it like a non-linear capacitor

Contacts - Ohmic (non-rectifying)

junction potential V_0 is compensated at contracts under open circuits conditions

Characteristics of p-n Junction Diodes

Forward Bias

 $V_t = \frac{kT}{q}$

~25mV at room temp

$\text{for } i >> \text{Ls} \quad i \cong \text{Le}^{\frac{\overline{v}}{nV_{e}}} \quad \Longrightarrow \quad V = nV_{T} \underbrace{\log_{e}}_{b_{D}} \frac{i}{\text{Ls}} = 2.3 n \ V_{T} \log_{10} \frac{i_{0}}{\text{Ls}}$

at 2 different voltages V_1 , V_2

$$\frac{I_2}{I_1} = e^{(V_2 = V_1) \hbar n / V_1} \implies V_2 - V_1 = 2.3 n \ V_T log_{10} \frac{I_2}{I_1}$$

 \therefore every factor of 10 increases in current $\rightarrow 2.3 \text{nV}_{\text{T}}$ increase in V

rule of thumb:

0.1v/decade

60 mV for n = 1

120 mV n = 2

e.g. 3.3

1 mA dioade at V = 0.7

$$i = Is e^{\pi/nV_c}$$

$$\Rightarrow$$
 Is = i e^{-V/nV_c}

$$\begin{array}{ll} n=1 & \text{Is} = 10^{-3} \text{ e}^{-0.7/0.025} = 6.4 \text{ x } 10^{-16} \\ n=2 & \text{Is} = 10^{-3} \text{ e}^{-0.7/0.050} = 8.3 \text{ x } 10^{-10} \end{array} \right\} \begin{array}{ll} 10^6 \text{ diff in I}_s \\ \text{because of exp in n} \end{array}$$

Temperature Dependence I_S and V_T depend on T

Rule: V decrease $\sim 2\text{mV}$ for increase of 1° C \rightarrow electronic thermometer

Ex 3.6 $n = 1.5 i_1 0.1 \text{ ma} \rightarrow 10 \text{ma}, A V?$

$$\Delta V = 2.3 \text{ n V} \cdot \log 10 \frac{I_2}{I_1} = 2.3(1.5)(2.5 \text{mV}) \cdot \underbrace{\log 10100}_{2} = 172.5 \text{ mV}$$

Ex 3.8 I_S rises by 15%/° C $I_S = 10^{-14}$ A at 25° C, I_S (125° C)?

Is
$$(125^{\circ}\text{C}) = \underbrace{(1.15)^{100}}_{\sim 10^{6}} 10^{-14} \,\text{A} = 1.17 \,\text{x} \, 10^{-8} \,\text{A}$$
 $(10^{6} \, / \, 100^{\circ}\text{C})$

Reverse bias region

$$i = Is \left(\underbrace{e^{V h V h}}_{\text{sm all for } w = -\text{several } n V h} - 1 \right)$$

 $\ddot{o} i = I_S$ hence <u>saturation</u> current

but real divides have $|i| >> |I_S|$ by $\sim 10^4 - 10^5$ due to leakage defects

 $(10^{-14} \rightarrow 10^{-9} \text{ A still small})$

Breakdown region

breakdown voltage at "knee" of i-v curve is

Skim pp 138-155

Read pp 155-171

HW 3.9, 3.16, 3.23

Review for Exam

Op-Amps 1> Two inputs track each other 2> No current flows input inputs

(first order approximation)

Derive V_0 / V_I for

- . Non-inverting amp
- b. Inverting
- c. Summer
- d. Difference amplified

Finite Open Loop Gain and Bandwidth

Diodes

simplest model

$$i_D = \mathrm{Is}\; (e^{\,V h_I V_T} - 1) \sim \mathrm{Is}\; e^{\,V h_I V_T}$$

$$V_T = kT/q = 25mV$$
 at 25°

$$V_2 - V_1 = \underbrace{2.3 \, \text{nV}_T}_{\sim 0.1 \, \text{wolts}} \log \, I_2/I_1$$

PWL model

Analysis of Diode Circuits

Algebraic method:

$$I_{\mathbf{D}} = I_{\mathbf{S}} e_{\mathbf{n}V_{\mathbf{T}}}$$

$$I_{\mathbf{D}} = \frac{V_{\mathbf{DD}} V_{\mathbf{P}}}{R}$$
Solve for (May need a computer program)

Graphical Method

e.g. 3.4 V_{DD} = 5V, R = 1k Ω , I_D = 1mm V_D = 0.7V, V_D changes by 0.1V/(decade I_D)

<u>Iterative</u> method

(1) assume
$$V_D = \underbrace{0.7v}_{V_1 \text{ I}_1 = 1mm}$$
, (2) $I_D = \frac{V_{DD} - V_D}{R} = \frac{5 - 0.7}{1k\Omega} = \underbrace{4.3mA}_{I_2}$ (estimate 1)

$$V_2 - V_1 = \underbrace{2.3 \text{ n } V_T}_{0.1} \log \frac{I_2}{I_1} \Rightarrow (3) V_2 = 0.7 \text{ v} + 0.1 \log \frac{4.3 \text{ ma}}{1 \text{ ma}} = 0.7631$$
use in

(4) assume
$$V_D = 0.763 I_D = (5-.763)/1 = 4.237 \text{ ma}$$

(5)
$$V_D = 0.763 + 0.1 \log 4.237/4.3 = 0.762 \text{ stop}$$

p-spice works this way

Piece-Wise Linear Model

$$i_D = 0$$
 for $V_D \le V_{DD} \leftarrow eg \ 0.65v$

$$i_D = \frac{V_D - V_{DD}}{r_D}$$
 for $V_D > V_{DD}$
 $e.g. 20 \Omega$

if diode 10x area $\rightarrow V_D = 2\Omega$,

$$V_{DD} = 0.65v$$

correct to ± 0.1 V from 0.1 $\rightarrow 10$ mA good 1st approx

see eg 3.5

b) PWL
$$V_{DD} = 0.65 r_D = 20\Omega$$

c) const $V_D = 0.7$

. Iterative

$$V_{D} = 0.7v \rightarrow I_{D} = \frac{V_{DD} - V_{D}}{R} = \frac{5 - 0.7}{10k} = 0.43ma$$

$$V_{2} = 0.7v + 0.1log_{10} \frac{.43}{1} = 0.663 \rightarrow I_{D} = .434mA$$

$$I_{D} = \frac{V_{DD} + V_{D0}}{R + r_{D}} = \frac{5 - 0.65}{10k + 20} = \frac{4.35}{1020} = 0.434mA$$

$$I_{D} = V_{DD} + I_{D}V_{D} = 0.65 + 0.434x10^{-3}(20) = 0.659V$$

$$I_{D} = \frac{V_{DD} - V_{D0}}{R} = \frac{5 - 0.7}{101c} = 0.43mA \qquad V_{D} = 0.7V$$

Ex D3.18

Want each diode to drop 0.8v

 \therefore need 10mA current since 0.761 + 0.1 v/decade

$$V_2 = 0.7 + 0.1 \log I_2 / = 0.8$$

Small Signal Model

If
$$V_d << nV_T (< 10mV) \Rightarrow i_D \cong I_D (1 + V_d/nV_T)$$

small signal approximation

$$\mathbf{\dot{l}}_{D}(t) = \underbrace{\square_{0}}_{dc \text{ current}} + \underbrace{\frac{\square \not t D}{\square V T}}_{small \text{ signal componet}} V d(t)$$

$$\mathbf{r}_{\mathrm{d}} = \frac{\mathrm{nV}_{\mathrm{d}}}{\mathrm{I}_{\mathrm{D}}}$$

diode small signal resistance

Note:

$$\mathbf{r}_{\mathbf{d}} = \frac{1}{\frac{\delta \mathbf{i}_{\mathbf{D}}}{\delta \mathbf{V}_{\mathbf{D}}}}$$

Note:
$$\mathbf{r}_{d} = \frac{1}{\underbrace{8\dot{\mathbf{l}}_{D}}} \qquad \text{since } \frac{\partial i_{0}}{\partial V_{0}}\bigg|_{i_{D} = I_{D}Q} = I_{D} \frac{1}{nV_{T}} e^{V_{d}hV_{i}} = \frac{\dot{\mathbf{l}}_{D}}{nV_{T}}\bigg|_{i_{D} = I_{D}R} = \frac{I_{D}}{nV_{T}} = \frac{1}{\sqrt{d}} \quad \begin{array}{c} \text{diode} \\ \text{small} \\ \text{signal} \\ \text{conduction} \end{array}$$

$$\begin{array}{c} \text{at } I_D, \, V_D = V_{d0} \\ \Rightarrow i_D = \frac{1}{r_D} (V_D - V_{D0}) \\ \downarrow I_D + i_d \\ \Rightarrow V_D = V_D + \underbrace{i_d \, r_d}_{\text{bias pt}} V_d \\ \text{voltage} \\ \end{array} \begin{array}{c} \text{ideal} \\ V_D \\ \downarrow V_D$$

Separate de bias analysis & signal analysis

Sum the results of 2 analyses:

ex D 3.23

want
$$V_0 = 3V$$
 when $I_L = 0$; $r V_0/r I_L = 40 \text{mV}/1 \text{ma}$;

what is R? what's Area of VEN rel. to 1ma, n=1

- $4V_D = 3V$ @ $I_L = 0 \Rightarrow V_D = 0.75V$
- $4r_d = 40 mV/1 ma \Rightarrow r_d = 10\Omega$; $r_d = nV_T/I_D = 25 mV/I_D$ for $n = 1 \Rightarrow I_D = 35 mV/10\Omega = 2.5 mA$
- at $I_L = 0$, $(15-3)V = (2.5mA)R \Rightarrow R = 4.8k\Omega$
 - $\bullet\;$ Relative Junction Area $\alpha\;I_S$

$$I_{D} \cong I_{S} e^{V_{0}/nV_{T}}; 2.5 \text{mA} = I_{S} e^{75/25 \text{mV}} \left\{ \frac{I_{S}}{I_{S_{1}}} = \frac{2.5/e^{.75/.025}}{1/e^{.7/.025}} = \frac{2.5}{e^{2}} = .338 \right\}$$

H.W. Probs 3.48, 3.57, D3.50, 3.68; Collect on Monday

Zener Diodes

- operate in breakdown region
- good for regulation because of steep slope
- close to linear; incremental or dynamic resistance r_z

I increases rapidly from I_{sat} at $-V_{zk} \rightarrow$ avoid knee region of operation $I > I_{zk}$

see e.g. 3.8

Zener Shunt Regulator

e.g. 3.9 choose
$$R = \frac{V_{smin} - V_{zo} - r_z I_{zmin}}{I_{zmin} + I_{tmax}}$$
 from
$$I = \frac{V_s - V_z}{R} = I_{zmin} + I_{tmax}$$

Note: V_Z is temperature dependent TC in $mV/^{\circ}$ C

$$<5V \rightarrow neg TC$$
 $>5V \rightarrow posTC$ design w. combo forward diode $-2mV/0C$

Pz (max power) at
$$Iz(IL = 0) = \frac{Vs - Vz}{R} = \frac{15 - 5.6}{470} = 20ma$$
; $Pz = Iz \cdot Vz = 20ma \cdot 5.6V$
112mW

$$I_{Z} = (15-4.75)/(200 + 7) = 20$$

$$V_{Z0} = 5.1 V - (50ma) 7 = 4.75 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z0} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma) 7 = 5.1 V$$

$$V_{Z} (I_{L} = 0) = V_{Z} + I_{Z} r_{z} = 4.75 + (50ma$$

Rectifier Circuits

Half-wave rectifier

b)

Important Specs: -peak current, P voltage

- choose $\sim 50\%$ greater than 1/3

 $\underline{ex~3.27}~\text{neglect}~r_D;~V_S=V_S~\text{sin}\theta$, $V_0=V_S~\text{sin}\theta$ - $V_{D0}~(V_S>V_{D0})$

$$\sin \theta = \frac{V_{D0}}{V_S}$$
 at conduction $\Rightarrow \theta_{\text{start}} = \sin^{-1} \frac{V_{\infty}}{V_S}$; $\theta_{\text{end}} = \pi - \theta_{\text{tart}}$; total $= \frac{\pi - 20}{\text{cycle}}$

average dc level
$$\frac{\int\limits_{\theta s}^{\theta c} V_0(\theta) d\theta}{\int\limits_{0}^{2\pi} d\theta} = \frac{V_S}{2\pi} \left[\cos(\sin^{-1}\frac{V_{D0}}{V_S}) - \cos(\pi - \sin^{-1}\frac{V_{D0}}{V_S}) \right] - \frac{V_{D0}}{2\pi} [2\theta - \pi]$$
if $V_{D0} << V_S$

$$\cong \frac{V_S}{\pi} - \frac{V_{D0}}{2}$$

c) Peak diode current $I_{peak} = (V_S - V_{D0})/R$

$$V_S(rms) = 12 V_{D0} = 0.7V, R = 100$$

$$V_S(peak)=12 \sqrt{2}$$

.
$$\theta = \sin^{-1}(.7/17) = 2.4^{\circ} \text{ conduction } \hat{U} = 175^{\circ}/360^{\circ}$$

b.
$$V_{dc} = 1/\pi \ 17 - .7/2 = 5.4 - .34 = 5.06V$$

c.
$$I_{peak}=17\text{-}.7/=163ma$$
 ; $P|V=12\sqrt{2}=17V$

Full Wave Rectifiers

$$P|V = 2V_S - V_{DD}$$
 (center top)

$$P|V=V_3-2V_{D0}+V_S-V_{D0} \ (bridge)$$

Peak Rectifier

want CR >> T

$$i_L = V_0/R$$

$$i_D = i_C + i_L$$

$$= C(dV_0/dt) + i_L$$

V_R is peak to peak ripple voltage

 V_0 varies from V_P to $V_P - V_T \sim V_P$ for CR >> T

 $V_{0avg} = output \ dc \ voltage = V_p - 1/2V_r$

during diode off $V_0 = V_p \; e$, at end of T $V_P - V_r \cong V_p$

$$\Rightarrow$$
 $V_r \cong V_p$ T/CR for CR $>>$ T ; for $V_r << V_p$ $I_L \cong V_P/R$ (~ const)

conduction interval r t; $V_p \cos(wr t) = V_P - V_r$

for small lwr $t \cos(wr t) \cong 1 - \frac{1}{2} (wr t)^2$

$$\Rightarrow w\!\triangle\!t = \sqrt{\frac{2V_r}{V_p}}$$

$$Q_{\text{supplied}}$$
 (r t) to $C = i_{\text{cavg}}$ r t $Q_{\text{lost}} = CV_{\text{r}}$

$$\it i_{\rm Dawg} = I_L\!\!\left(_{1+m}\!\sqrt{\frac{2\,V\!P}{V\!R}}\right) \! \gg I_L \ for \ V_{\rm T} \ << \ V_{\rm P}$$

$$i_{\mathbf{D}}$$
 at onset $(t = -\Delta t)$ use $i_{\mathbf{D}} = C \frac{dv}{dt} + i_{\mathbf{L}}$

$$i_{\,\mathrm{Dmax}} = \mathrm{I}_L\!\!\left({}_{1+2\pi}\sqrt{\!\frac{2\,\mathrm{VP}}{\mathrm{Vr}}}\right)$$

Full wave peak rectifier

$$V_r = \frac{V_P}{2fCR} - \text{need C only half as large (ripple freq is } 2x \ T \rightarrow T/2)$$

$$\dot{\mathbf{1}}_{\text{Dar}} = \text{LL}\Big(\mathbf{1} + \pi \sqrt{\frac{\text{VP}}{2\text{VT}}}\Big); \, \dot{\mathbf{1}}_{\text{Dmax}} = \text{LL}\Big(\mathbf{1} + 2\pi \sqrt{\text{VP} / 2\text{Vr}}\Big) \quad \text{currents in each diode are half size}$$

Take V_{D0} into account $V_P \to V_P - V_{D0} \, {}^{1\!\!}/_{\!\! 2} \, w + CT \, V_P \to V_P - 2V_{D0}$ bridge

Bridge rect + filter C across R, trans. secondary 12V(rms)@6V V_{D0} = 0.8V, R = 100 Ω ex D3.30 ? C for IV p-p ripple

$$\begin{split} V_{r} = & \frac{V_{P} - 2V_{D0}}{2fCR} = 1V \Rightarrow C = \frac{V_{P} - 2V_{D0}}{2fRV_{r}} = \frac{12\sqrt{2} - 1.6}{2 \cdot 60s^{-1} \cdot 100\Omega} = 1283 \mu F \\ V_{0} \cong & V_{P} - 2V_{D0} = 15.4 \quad V_{0} (better \ est.) = V_{P} - 2V_{D0} - V_{r} / 2 = 14.9V \\ I_{L} = & V_{0} / R = 0.149A \end{split}$$

$$\begin{split} &\text{condition angle W} \Delta t \cong \sqrt{\frac{2\,V_r}{V_p - 2\,V_{D0}}} = \sqrt{\frac{2}{15.4}} = .36 \text{ rad} = 20.6^{\circ} \\ &\mathbf{i}_{\text{DaV}} = I_L \!\!\left(1 + \pi\,\sqrt{\frac{V_P - 2\,V_{P0}}{2\,V_r}}\right) = \!\!.15 \!\!\left(1 + 3.14 \sqrt{\frac{15.4}{2}}\right) = 1.44A \\ &P|V = V_D - V_{D0} = 17 - 0.8 = 16.2V \\ &\mathbf{i}_{\text{Dmax}} = I_L \!\!\left(1 + 2\pi\,\sqrt{\frac{V_P - 2\,V_{\pi\,0}}{2\,V_r}}\right) \!\!\!\! \leq 2.7A \end{split}$$
 Select diode w 30% margin
$$\underbrace{4A, 20\,V}$$

Simple BJT Current Source

Current Mirror

 $I_0=I_{REF}$ if:

- . Q2 is in the active region $[V_0>V_B(Q_2)]$
- b. B goes to infinity
- c. $r_0(Q2)$ goes to infinity

$$I_0 \approx \frac{I_{\mathit{REF}}}{1 + \frac{2}{B}} \Biggl(1 + \frac{V_0 + V_{\mathit{EE}} - V_{\mathit{EE}}}{V_{\mathit{A}}} \Biggr)$$

Current Source Circuit

Choose R_{REF} so that:

$$I_{\mathit{REF}} = \frac{V_{\mathrm{CC}} - V_{\mathit{EF}} - (-V_{\mathit{EF}})}{R_{\mathit{REF}}}$$

MOSFETs or IG FETs

These is a four terminal device consisting of the Body, source Gate and Drain.

IG FET (Insulated Gate Field Effect Transistor)

unipolar device ie current is: electrons for nFET

holes for pFET

MOSFET (Metal –Oxide- Semiconductor FET)- only silicon has a good oxide

As V_{GS} increases from zero, holes are repelled from surface (depletion) and electrons are attracted from the source and drain (accumulation).

An n-inversion layer forms creating a path (channel) from the source to the drain at

 $V_{GS} = V_t$ (threshold voltage) {Note: this is not V_T which is the thermal voltage = 25mV @ T = 25 C.}

If V_{DS} is above zero, current flows across channel

For small V_{DS} this current is linear with $V_{GS} - V_t$ (excess gate voltage) and is also linear with V_{DS} (voltage controlled resistor)

The voltage between the gate and channel depends on location along channel length and decreases from source to drain. As V_{DS} increases, channel tapers and becomes more resistive at the drain end. When $V_{GS}-V_{DS}=V_t$, the channel "pinches off" at the drain. Increasing V_{DS} beyond $V_{GS}-V_t$ does not increase current. (This is known as the constant current region; and is also known as saturation, unfortunately).

Sub-Threshold Region

Triode Region:

 $V_{GD} \equiv V_{GS} - V_{DS} > V_t$ where V_{DS} is small

$$i_D = K \left[2 \left(V_{GS} - V_t \right) V_{DS} - V_{DS}^{2} \right] \text{ where } K = \frac{1}{2} u_n C_{ox} \left(\frac{w}{l} \right)$$

 u_n : electron mobility in n channel

 C_{ox} : oxide capacitance

Constant Current Region (pinchoff):

$$V_{GS} - V_{DS} \equiv V_{GD} \le V_t$$

$$V_{DS} \geq V_{GS} - V_t$$

The constant current I_D equation is as follows:

$$i_D = K(V_{GS} - V_t)^2$$

The equation comes from substituting $V_{DS} = V_{GS} - V_t$ into the triode equation.

The boundary of the constant current region is given by:

$$i_D = KV_{DS}^{-2}$$

Notes:

 $k'_{x} = u_{0}C_{ox}$: process transconductance parameter.

$$K = \frac{1}{2}k'_{n}\left(\frac{w}{l}\right)$$
: can be set by the designer.

MOSFET_IV_Characteristics

Finite Output Resistance ro

As V_{DS} increases, pinch off point moves toward source -channel length modulation.

N+
$$K\alpha \frac{w}{l}$$
; $\frac{\Delta l}{L} = \lambda_n V_{DS}$

$$\lambda \approx \frac{0.1 \mu n V^{-1}}{L}$$

So, K (effective increases)

$$\begin{split} i_D &= K (V_{GS} - V_t)^2 \big[1 + \lambda v_{DS} \big] \\ & \text{x-intercept at } v_{DS} = \frac{1}{-\lambda} = -V_A \\ & \text{if } V_A \approx 100 V, \quad \lambda \approx 0.01 \\ i_D &= K (V_{GS} - V_t)^2 \bigg[1 + \frac{v_{DS}}{V_A} \bigg] \end{split}$$

$$\begin{split} r_0 &\equiv \frac{1/\partial i_D}{\partial \nu_{GS}} \text{ evaluated at } \nu_{GS} = const. \\ &= \frac{1}{\lambda K (\nu_{GS} - \nu_t)^2} \approx \frac{1}{\lambda I_D} \text{ or we can say} \\ r_0 &= \frac{V_A}{I_D} \end{split}$$

Large Signal nMOS Model in CCR

P-Channel MOSFET

 $V_{GS} < V_{t}$ to induce channel (enhanceme nt normally off)

$$\begin{split} i_{D(\text{triode})} &= K \Big[2 \big(v_{GS} - V_t \big) v_{DS} - {v_{DS}}^2 \, \Big] \\ K &= \frac{1}{2} \mu p Cox \bigg(\frac{w}{l} \bigg) \\ k' p &= \mu p Cox \end{split}$$

$$\nu_{DS} \leq \nu_{GS} - V_t \text{ for pinchoff } \quad (" \geq " \text{ for nFET})$$

CCR:

$$i_{D(CCR)} = K \big(v_{GS} - V_t \big)^2 \big(1 + \lambda v_{DS} \big)$$

1. MOS

- infinite output resistance
- very useful for voltage source with high R's in common source ckt
- can't be used for current source input

2. MOS

BJT

$$-gm\alpha\sqrt{I_D}$$
 -relatively small $<1\frac{\text{mA}}{\text{V}^2}$

 $gm\alpha I_c$ -relativley large

good for amplifiers

3. CMOS

- -high density, low power.(approx. zero static power)
- dominant technology for digital ckts.

Body Effect- Backgate Bias	Body	Effect-	Bac	kgate	Bias
----------------------------	------	---------	-----	-------	------

As V_{BS} (backgate bias) goes negative, the depletion region deepens; Also, V_{t} increases

B is like another gate; (back gate)

 $\underline{Punch\text{-}Through}$

- at V_{DS} > 20V or so, the depletion region from the drain "reaches through" to source and current increases rapidly.

Avalanche Breakdown

 $V_{\rm gB} > 50V$ electron/hole pair creation at junction.

Oxide Breakdown

 $V_{GS}\!>\!\!50V$ current between the gate and substrate causes permanent damage; usually due to static buildup.

- input protection is important at the pads.

MOSFET Bias

Source Resistor bias

$$_{\mathrm{Want}}$$
 $V_{\mathrm{DS}} > V_{\mathrm{GS}} - V_{t}$ for CCR region

$$I_S = I_D$$
 (like $\beta = infinity$);

Set this by
$$K(V_{GS} - V_t)^2$$

And
$$V_S = -V_{SS} + I_S R_S$$

And
$$V_D = V_{DD} - I_D R_D$$

Can set V_{GG} by a parallel resistor setup (See figure below)

Ex 5.12 (5.1)

$$0.4\text{mA} = I_D = K \left(V_{GS} - V_t \right)^2 = 0.4 \frac{mA}{V^2} \left(V_{GS} - 2 \right)^2$$

$$(V_{GS} - 2)^2 = 1$$
; $V_{GS} = 3$, need $V_{GS} > V_t$

Since, $V_G = 0 V_S = -3V$.

$$R_S = \frac{V_S - V_{SS}}{I_D} = \frac{-3 - (-5)}{0.4} = 5k \text{ ohms}$$

$$R_D = \frac{V_{DD} - V_D}{I_D} = \frac{(5-1)mA}{0.4V} = 10k \text{ ohms}$$

For $V_D = 1V$;

What is the largest R_D for the CCR region?

 $_{\mbox{Need}} \ V_{\rm DS} > V_{\rm GS} - V_{t} \ \ (\mbox{like} \ V_{\rm C} > V_{\rm B} \ \mbox{in BJT.})$

$$V_D - (-3V) > 0 - (-3V) - 2V \Rightarrow V_{DMN} > -2V$$

$$R_{DMAX} = \frac{V_{DD} - V_{DMIN}}{I_D} = \frac{[5 - (-2)]V}{0.4 mA} = 17.5k \text{ ohms}$$

ex 5.13 (eg 5.2)

Q1: Design R for $I_D = 0.4$ mA

$$V_D - V_G = 0 \implies V_D > V_G - V_t$$

$$I_D = K(V_{GS} - V_t)^2 = 0.1 \frac{mA}{V^2} (V_G - 2)^2 = 0.4 mA$$

$$V_G = 4$$
, and $V_D = 4$

$$R = \frac{V_{DD} - V_D}{I_D} = \frac{10 - 4}{0.4} = 15k \text{ ohms}$$

<u>Q2:</u>

$$I_{D2} = K(V_{GS} - V_{t})^{2} = 0.1(4 - 2)^{2} = .4mA$$
 (Curent Mirror)

Note: V_{GS} and V_t are the same values as in Q1.

$$V_{D2} = 10V - 0.4(10) = 6V$$

ex 5.14

MOSFET Amplifier

Small Signal:

$$\begin{split} &V_{GS} = V_{GS} + V_{gs} \\ &i_D = K \Big[\Big(V_{GS} + v_{gs} \Big) - V_t \Big]^2 = K \big(V_{GS} - V_t \big)^2 + 2K \big(V_{GS} - V_t \big) V_{gs} + \text{K} \left[V_{gs} \right]^2 \end{split}$$

In the previous equation:

$$\begin{split} &K(V_{GS}-V_t)^2=I_D\\ &2K(V_{GS}-V_t)V_{gs}=i_d \ \text{ and } \\ &K\ {\rm V_{gs}}^2 \text{ is small for } {\rm V_{gs}}<<2(V_{GS}-V_t) \end{split}$$

$$gm \equiv \frac{i_d}{V_{gs}} \ 2K(V_{GS} - V_t) \ \text{where} \ 2K = u_n C_{ox} \, \frac{w}{l}$$

ote:
$$(V_{GS} - V_t) = \sqrt{\frac{I_D}{K}}$$

Increase g_m with $\frac{w}{l}$, excess V_{GS} reduces signal swing.

$$g_{m} = \sqrt{2k'n} \sqrt{\frac{w}{l}} \sqrt{I_{D}}$$

$$k'n = u_n C_{ox}$$

$$\sqrt{\frac{w}{l}}$$
 is independent of junct. area in BJT.

$$I_D \propto \mathrm{I_C}$$
 in BJT.

For
$$k'n = 20 \frac{uA}{V^2}$$
 at $I_D = 1mA$

$$g_m = 0.2 \frac{mA}{V}$$
 for $\frac{w}{l} = 100$

$$g_m$$
 of BJT at $1mA = 40 \frac{mA}{V}$

Small Signal Model of Body Effect

$$g_{m} \equiv \frac{\partial i_{D}}{\partial V_{GS}}$$
 evaluated at: $V_{DS} = constant$
$$V_{BS} = constant \ (0)$$

$$V_{GS} = V_{GS}$$

$$g_{mb} \equiv \frac{\partial i_D}{\partial V_{BS}}$$
 evaluated at: $V_{DS} = {
m constant}$
$$V_{GS} = {
m constant}$$

$$V_{BS} = V_{BS}$$

$$g_{mb} = \chi g_m$$
 where $\chi = \frac{\partial V_t}{\partial V_{SB}}$ typically $0.1 \rightarrow 0.3$

Can beignored when the substrate is connected to the source.

Harmonic Distortion:

$$I_{D} = 1 \frac{mA}{V^{2}} [5 - 2]^{2} = 9mA$$

$$V_{D} = 20V - 9mA \times 1.33k\Omega = 8V$$

$$g_{m} = 2K(V_{GS} - V_{t}) = 2 \cdot 1 \cdot (5 - 2) = 6 \frac{mA}{V}$$
b.

$$\frac{v_d}{v_{gs}} = -g_m R_D = -6(1.33) = -8 \frac{V}{V}$$
c. Voltage Gain:

 $v_{gs} = .5 \sin wt$; $v_d = -8(0.5) \sin wt = -4 \sin wt$ assumes a small signal.

$$v_{DMIN} = 8 - 4 = 4V$$
; $v_{DMAX} = 8 + 4 = 12V$ both $v_D > V_{GS} - V_t$

e) Total Current:

$$i_D = K(V_{GS} - V_t)^2 + 2K(V_{GS} - V_t)v_{gs} + Kv_{gs}^2$$
; where Kv_{gs}^2 is the non-linear distortion term
= $1 \cdot (5-2)^2 + 2 \cdot 1 \cdot (5-2) \cdot 0.5 \sin wt + 1(0.5)^2 \sin^2 wt$; recall that $\sin^2 wt = \frac{1}{2} - \frac{1}{2} \cos 2wt$
= $9.125 + 3 \sin wt - 0.125 \cos 2wt$

From the 9.125 term we can see that the dc shift from 9mA is .125mA

The 0.125cos2wt gives the 2nd harmonic componet which is $\frac{0.125}{2} = \frac{1}{24} = 4.16\%$

Ex. 5.18 NMOS

$$u_{\rm m}C_{\rm ox} = 20\frac{uA}{V^2}, \frac{w}{l} = 64, \ V_{\rm t} = 1V \ \lambda = 0.01 = \frac{1}{V_{\rm A}}, \ {\rm g_{m}}, r_{\rm O} = ?$$

$$V_{GS} = 2V;$$
 $g_m = k' n \frac{w}{l} (V_{GS} - V_t) = 2K (V_{GS} - V_t)$

$$= 20 \times 64(2-1) = 1.28 \frac{mA}{V}$$

$$I_D = K(V_{GS} - V_t)^2 = \frac{1}{2}k'n\frac{w}{l}(V_{GS} - V_t)^2 = \frac{1}{2} \bullet 20 \bullet 64(2-1)^2 = 0.64mA$$

$$r_O \cong \frac{V_A}{I_D} = \frac{1}{\lambda I_D} = \frac{1}{0.01 \times 0.64} = 156k\Omega$$

$$I_D = 1mA$$

$$\begin{split} g_{m} &= \sqrt{2k'n\bigg(\frac{w}{l}\bigg)I_{D}} = \sqrt{2\bullet20\bullet64\bullet1000} = 1600\frac{uA}{V} = 1.6\frac{mA}{V} \\ r_{O} &= \frac{1}{\lambda I_{D}} = \frac{1}{0.01\times1.0} = 100k\Omega \end{split}$$

Biasing MOSFETs with Resistors

$$\begin{split} V_{GG} &= V_{GS} + I_D R_S \\ \Rightarrow I_D &= \frac{V_{GG}}{R_S} - \frac{1}{R_S} V_{GS} \end{split}$$

Negative Feedback action of \boldsymbol{R}_{S} tends to keep \boldsymbol{I}_{D} stable as \boldsymbol{i}_{D} increases

$$\Delta \nu_{s} = R_{S} \Delta i_{D} \Longrightarrow \Delta \nu_{GS} = -\Delta \nu_{s} = -R_{S} \Delta i_{D} \Longrightarrow \mathrm{reduces} \; i_{D}$$

Use large R_G to set gate voltage at drain voltage.

$$u_{DS} = \nu_{GS} > \nu_{GS} - V_T$$
 at dc, so always in CCR. (unless signal swing forces $\nu_{\rm ds} < V_T$)

Negative feedback action of R_G tends to keep I_D stable. As i_D increases, ν_D decreases by $R_D \Delta i_D$.

 $\Rightarrow\! \nu_{\scriptscriptstyle G}$ decreases by $R_{\scriptscriptstyle D}\!\Delta i_{\scriptscriptstyle D}$ also $\Rightarrow\! {\rm reduces}\, i_{\scriptscriptstyle D}$

$$K = 0.25 \frac{mA}{V^2} V_t = 2V, \ V_{DD} = +10V, \ V_{SS} = -10V, \ I_D = 1mA, \ V_{Dswing} = \pm 2V, \ R_{in} = 1M\Omega, \ \lambda = 0$$

$$\begin{split} R_G &= 1M\Omega \\ I_D &= 1mA = K\big(V_{GS} - V_t\big)^2 = 0.25\big(V_{GS} - 2\big)^2 \implies V_{GS} = 4V \\ V_G &= 0, \implies V_S = -4V \end{split}$$

$$R_{s}=\frac{-4V-(-10)}{1mA}=6k\Omega$$

Signal Swing $V_{D \min} = v_G - V_t \cong 0 - 2 = -2V$ neglecting signal og v_G (assume << 2V) so, set $V_D = 0V \Rightarrow R_D = \frac{10 - 0}{1mA} = 10k\Omega$

$$\begin{split} I_{D1} &= K (V_{GS} - V_t)^2 & \text{neglect } r_O \\ I_{D1} &= I_{REF} = \frac{V_{DD} - V_{GS}}{R_{REF}} \end{split}$$

Solve for $V_{\rm GS}$ and $R_{\rm REF}$ given a desired ${
m I}_{
m REF}$

$$I_O = \frac{\left(\frac{\mathcal{W}}{l}\right)_2}{\left(\frac{\mathcal{W}}{l}\right)_1} I_{\mathit{REF}} \qquad \text{Can adjust } \frac{\mathcal{W}}{l} \text{ for desired current level}$$

No β effect as in BJT source, but r_0 of \mathbb{Q}_2 must be considered

$$I_O = I_{REF} \left(1 + \frac{V_O - V_{GS1}}{V_{A2}} \right)$$

$$For \left(\frac{w}{l} \right)_1 = \left(\frac{w}{l} \right)_2$$
 Matched Transistor s

Ex 5.24 and eq. 5.9

$$k'n = 20 \frac{uA}{V^2} \ L_{\rm L2} = 10 \, \mu m \ W_{\rm L2} = 100 \, \mu m \ \rm V_{\rm t} = 1V, \ V_{\rm A} = 10 \, L \, \frac{V}{\mu m}$$

$$I_{REF} = 100 \mu A = \frac{1}{2} \bullet 20 \bullet \frac{100}{10} (V_{GS1} - 1)^{2}$$

$$\Rightarrow V_{GS1} = 2V$$

$$R = \frac{5 - 2}{100 \mu A} = 30 k\Omega$$

MOS_current_source

For V_{OMIN} keep V_{DS2} in CCR $>V_{GS}-V_{\star}$

 $V_{OMIN} = 2 - 1 = 1V$ - below 1V current source in triode and curent drops rapidly.

$$\mathbf{V_A} = 10L = 10\frac{V}{\mu m} \bullet 10 \mu m = 100V$$

$$r_O = \frac{V_A}{I_D} = 1M\Omega$$

$$I_{O}=100 \mu A$$
 at $V_{O}=V_{GS}=2V$

If
$$V_0 \rightarrow V_0 + 3 = 5V$$
 $\Delta I_0 = \frac{\Delta V_0}{r_0} = \frac{3V}{1M\Omega} = +3\mu A$ (3% greater)

If we want $I_0 = 200uA$ by changing W_2 , then:

Need
$$W_2 = 2 \times 100 \mu m = 200 \mu m$$

$$r_o = \frac{100V}{200\,\mu A} = 0.5M\Omega$$

At
$$V_o = 5V$$
 $\Delta I_o = \frac{\Delta V_o}{r_o} = \frac{3V}{0.5M\Omega} = 6\mu A$

$$I_{O}$$
 at $V_{O}=2V=200\,\mu A$, so at $V_{0}=5V$, $I_{O}=206\,\mu A$ (also 3% greater)

Active load CMOS Common Source Amplifier

 $r_{01} = rac{| extsf{Val}|}{I_{ extsf{Ref}}}$ $r_{02} = rac{| extsf{Vaz}|}{I_{ extsf{Ref}}}$

For Q₁,Q₂ in CCR

Small signal model

$$\mathbf{\dot{V}_0} = \frac{\mathbf{V}_0}{\mathbf{V}_0} = -\mathbf{g}_{m,1}(m_1||m_2)$$

$$K_1 = \frac{1}{2} k_n^1 \left(\frac{w}{L}\right)_1 \text{ and } |V_{A1}| \sim |V_{A2}| = |V_A|$$

 $R_{in} = \infty$

 $R_{out} = r_{01} || r_{02}$

$$Aw = -\sqrt{k_1} \, \frac{V_A}{\sqrt{I_{REF}}}$$

and no load

$$W/L_{np} = \frac{100 \mu \text{ m}}{1.6 \mu \text{ m}}, k_n^1 = 90 \frac{\mu \text{ A}}{r^2}, k_p^1 = 30 \mu \text{ A}/V^2$$

ex 5.26 CMOS common source amp

$$I_{REF}=100\mu$$
 A, $V_{An}\!=8L$ V/m m $|V_{AP}|=12LV/\!\mu$ m

$$g_{m1} = \sqrt{2k_{n}^{1} \left(\frac{W}{L}\right) I_{REF}} = \sqrt{2 \cdot 90 \cdot \frac{100}{1.6} \cdot 100} = \underline{\frac{1.06 \frac{mA}{V}}{V}} \frac{f_{airly 1ow}}{f_{airly 1ow}}$$

$$r_{01} = \frac{V_{A1}}{I_{REF}} = \frac{8 \cdot 1.6}{0.1 mA} = \underline{\frac{127 k\Omega}{V}}$$

$$I_{REF} = 0.1 mA = \frac{127 mB}{I_{REF}}$$

$$r_{02} = \frac{|V_{A2}|}{I_{REF}} = \frac{12 \cdot 1.6}{0.1} = \underline{192 k\Omega}$$

$$A_V = -g_{m1} (r_{01} || r_{02}) = -1.06 (128 || 192) = -81.4 V/V$$

So get good gain with mall g_m due to high r_0 [Active loads can also be used with BJT's, but may not give same voltage gain effect - Why?]

High!

Resistive Load Common Source Amplifier with feedback Resistor

assume $r_0 >> R_D$

$$V_S = g_m \; v_{gs} \; R_s$$

$$V_I = V_{gs} + V_s = (1 + g_m R_S)V_{gs}$$

$$V_0 = -g_m V_{gs}R_D$$

$$Awo \equiv \frac{V_0}{V_I} = \frac{-g_m R_D}{1 + g_m R_S}$$

$$R_{in} = R_1 \parallel R_2 R_{out} = R_D$$

Thevenin equivalent

Voltage amplifier

$$A_{\text{V}} = A_{\text{V0}} \cdot \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} \cdot \frac{R_{\text{L}}}{R_{\text{L}} + R_{\text{out}}} \qquad \text{from} \quad A_{\text{V}} = \frac{V_{\text{0L}}}{V_{\text{sig}}} = \frac{V_{\text{I}}}{V_{\text{sig}}} \frac{V_{\text{0}}}{V_{\text{I}}} \frac{V_{\text{0L}}}{V_{\text{0}}}$$

Source Follower (Common Drain)

Voltage gain

$$Av = \frac{g_{m1}}{g_{m1} + g_{mb1} + \frac{1}{\sqrt{01}} + \frac{1}{\sqrt{02}} + \frac{1}{Rc}} \le 1$$

body effect $g_{mb1} = xg_{m1}$ reduces gain by 10% to 30%

$$R_0 = \left(\frac{1}{g_{m,1}}\right) \left\| \left(\frac{1}{g_{m,b,1}}\right) \right\| r_{01} ||_{r_{02}} \sim \frac{1}{g_{m,1}(1+x)} \quad \text{for } r_{01,02} >> \frac{1}{g_{m,v}}$$

If p-well: can avoid body effect by trying well to source of Q₁ or descrete

note:
$$A_{V_{RL}} = A_{V_{RL} = \omega} \frac{R_L}{R_0 + R_L}$$

$$\mu_n \to k_n^1 \text{ so it reads } k_n^1 \frac{W}{L} = 2mA / V^2; D5.70$$

D 5.72, 5.80

Read 425-441

$$g_{m,1} = \sqrt{2k_{m}^{1} \left(\frac{W}{L}\right)_{1} I_{REF}} = \sqrt{2 \cdot 90 \cdot \frac{100}{16} \times 100} = \underline{1.06 mA / V}$$

$$g_{m,b1} = X g_{m,1} = 0.15 \times 1.06 = \underline{0.16 mA / V}$$

$$m_1 = \frac{V_{A1}}{I_{REF}} = \frac{8 \times 16}{01} = \underline{128 k\Omega}$$

$$m_2 = \frac{V_{A2}}{I_{DEF}} = \underline{128 k\Omega}$$

$$\frac{1}{\mathbf{r}_{01}} = \frac{1}{128k} \sim .008 mA/V$$

Note: is small compared to gmi

Av
$$\cong \frac{g_{m1}}{g_{m1} + g_{mb1}} = \frac{1}{1+x} = \frac{1}{1.15} = 0.87V/V$$
 neglect m, r\omega

$$R_0 = \frac{1}{g_{m,1}} ||\frac{1}{g_{m,b_1}}||r_{01}||r_{02} = \frac{1}{1.06} ||\frac{1}{0.16}||128||128 \quad k\Omega = 809\Omega$$

If connect to a $10k\Omega$ resistance

$$\mathbf{A}_{V} = \mathbf{A}_{V}|_{RL=\infty} \frac{RL}{RL+R_{0}} = 0$$
$$= 0.87 \times \frac{10}{10+0.809} = \underline{0.8 \ V/V}$$

CMOS Inverter - Static

5. triode idn =
$$k_n^1 \frac{W}{L} [(V_{\text{OS}} - V_{\text{th}}) V_{\text{DS}} - \frac{1}{2} V_{\text{DS}}^2]$$

near $V_{\text{OSP}} = 0$ idn $\sim k_n^1 (\frac{W}{L})_n (V_{\text{DD}} - V_{\text{th}}) V_{\text{OS}}$
 $V_{\text{OSP}} = V_{\text{DD}}$ $r_{\text{DSN}} = \frac{V_{\text{DS}}}{i d} = \frac{1}{k_n^1 (\frac{W}{L})_n (V_{\text{DD}} - V_{\text{th}})}$

1: near VDSP = 0, VGSP = -VDD

$$rDSP = \frac{1}{k_p^1 \left(\frac{W}{L}\right)_p \underbrace{\left(VDD - |V_{t_0}|\right)}_{-(-VDO + V_{t_0})}}$$

N, B₁ zero static power, current only follows during switching

CMOS Inverter - Dynamic

If
$$V_t \sim 0.2 V_{DD}$$

$$T_{\text{PHL}} \sim \frac{1.6 \text{ CL}}{k_n^1 \left(\frac{W}{L}\right)_n V_{\text{DD}}}$$

NMH = Von - Vm
$$\sim \frac{1}{8}(3\text{Voo} + Z\text{Vr})$$

$$\sim \frac{3.4\text{V}_{DD}}{8} (\sim 2.1\text{V}_{DO} \cdot \frac{SV}{\text{Voo}})$$

$$Ec=\frac{1}{2}\,C_LV_{DD}^2$$
 stored in capacitor

$$P_D=fC_2V_{DD}^2$$

Dissipate $^{\frac{1}{2}\,C_L\,V_{DD}^2}$ in Q_P during charging

Dissipate $\frac{1}{2}C_LV_{DD}^2$ in Q_N during discharging

(also dissipate some during switching, not in C_r)

Delay Power Product

ex 5.32
$$V_{tn} = |V_{tp}| = 2V$$
, 2 $(W/L)_n = (W/L)_P = 40$, $\mu_n C_{0X} = 20 \mu$ A/V², $V_{DD} = 10 V$

Max sink current for $V_0 \le$ 0.5V at $V_I = V_{DD}$

$$V_{DS} \leq 0.5 < V_{GS} - V_{t} = 10 - 8 = 8 \ \underline{trode}$$

$$i_{0max} = \mu_{n} C_{ox} (w/L)_{n} [(V_{I} - V_{tn}) V_{0} - 1/2 V_{0}^{2}]$$

$$= 20 \cdot 20 \ [(10 - 2)0.5 - 1/2 \ (0.5)^{2}]$$

$$= 400 \ [4 - 0.125] \mu \ A = \underline{1.55mA}$$

 $5.36 \text{ if } C_L = 15 \text{ pF}$

$$t_{\text{P}} = \frac{1.6C_{\text{L}}}{k_{\text{n}}^{1} (\frac{\text{W}}{\text{L}})_{\text{n}} V_{\text{DD}}} = \frac{1.6 \times 15 \times 10^{-12}}{20 \times 10^{-6} \times 20 \times 10} = \frac{6ns}{20 \times 10^{-6} \times 20 \times 10^{-12}}$$

5.37 no C_L

Peak current at $V_{I} = V_{th} = V_{DD} \, / \, 2 = 5V,$ both n & p in CCP

$$\begin{split} i_{\text{peak}} &= \tfrac{1}{2} \, k_{\text{n}}^{1} \big(\tfrac{W}{L} \big)_{\text{n}} \big(V_{\text{th}} - V_{\text{tn}} \big)^{2} \qquad \{ \text{also} \ = \ \tfrac{1}{2} \, k_{\text{p}}^{1} \big(\tfrac{W}{L} \big)_{\text{p}} \big(\big| V_{\text{tp}} \big| - V_{\text{th}} \big)^{2} \} \\ &= \tfrac{1}{2} \, 20 \, 20 \, (5 - 2)^{2} \, \mu \ A = \underline{1.8 \ \text{mA}} \end{split}$$

 $5.38 C_{L} = 15pf f = 2 MHz$

$$P_D = fCV_{DD}^2 = 2 \times 10^6 \times 15 \times 10^{-12} * 100 = 3mW$$

$$I_{aw} = \frac{P_D}{V_{PD}} = \frac{3 \times 10^{-3}}{10} = \frac{0.3 mA}{10}$$

CMOS NAND and NOR gates

NOR

if A,B are both low n's off, P's on $V_0 = V_{DD} = logic 1$

else at least 1 p off, 1n on $V_0=0 = logic 0$

NAND

if A, B are both high p's off, n's on $V_0 = 0 = logic 0$

else at least 1 p A, 1 n off $V_0=V_{DD}=logic$ 1

Sizing

arrange

$$\left(\frac{W}{L}\right)_{N}$$
, $\left(\frac{W}{L}\right)_{p}$ for equal pull-up and pull-down

$$\mu_n \sim 2 \cdot \mu_p \Rightarrow \left(\frac{W}{L}\right)_n = \left(\frac{W}{L}\right)_p \text{for NAND}$$

$$\left(\frac{W}{L}\right)_n = \left(\frac{W}{L}\right)_P \text{for NAND}$$

A	В	A + B	$\overline{A \cdot B}$
0	0	1	1
0	1	0	1
1	0	0	1
1	1	0	0

CMOS Transmission Gate

bi-directional analog switch

 $V_{BP} = -5V$, $V_{BN} = -5V$ to avoid forward biasing junctions

transmits analog signals from -5V to +5V

set $(W/L)_P = 2(W/L)_n$ for equal r_{DS}

$$\overline{V}_c$$
 = +5V, V_c = -5V - both n and p utoff for all signals between -5 and +5

<u>ON</u>

$$\overline{V}_{\text{C}}$$
 = +5V, V_{C} = -5V - both n and p utoff for all signals between -3 and +3 for V_{in} < - 3V only nFET conducts; pFET: V_{GSp} = -5-(-3)=-2 \Rightarrow V_{GSp} - V_{tp} = 0 for V_{in} < + 3V only pFET conducts; nFET: V_{GSN} = 5-3 = 2 \Rightarrow V_{GSN} - V_{tN} = 0

 \therefore using only nFET or pFET makes for a limiting design using both: as r_{DS} one increases, other decreases \Rightarrow

nFET only switch

 $Vgs = V_t$ so it just starts conducting

 $\begin{aligned} &\text{if } V_S > V - V_t, V_{GS} < V_t \text{ and} \\ &\text{nFET is cut off} \end{aligned}$

ex 5.40 $|V_t|_{p,n} = 2 (k^1 w/l)_{p;n} = 100 \mu A/r^2$, $R_i = 50 k\Omega r_{switch}$, V_0

a) $V_I = -5V$, V_0 will approx -5V (a little less due to t_{switch})

QP off since $|V_{Gs}| < |V_t| = 2V \underline{r_{DSP}} = \infty$

QN in triode region since $V_{DS} \overline{\text{small}} < V_{GS} - V_t = 10 - 2$

for V_{DS} small

$$r_{\text{DSN}} = \frac{1}{k_{\text{n}}^{1}(\frac{\text{w}}{L})_{\text{n}}(V_{\text{GS}} - V_{\text{t}})} = \frac{1}{0.1 \frac{\text{m.A}}{r^{2}}(5 - (-5) - 2)} = 1.25 k\Omega$$

b)
$$V_I = -2V |V_{SGP}| - |V_t| \sim -2 - 2 - (-5) \sim 1V > V_{DSP}$$
 since $V_0 \sim 2 |V|$ (a bit less)

both in triode region

$$\begin{split} r_{\text{DSN}} &\cong \frac{1}{0.1(5-(-2)-2)} = 2k\Omega \qquad r_{\text{DSP}} \cong \frac{1}{k_p^1(\frac{W}{L})_p(V_{\text{SGP}}|V_{\text{t}|_p})} = \frac{1}{0.1(V_0-(-5)-2)} \\ r_{\text{switch}} &\sim \frac{(10)(2)}{10+2} \sim 2k\Omega \qquad \qquad \sim \underline{10k\Omega} \text{ (a bit less)} \\ V_0 &= \frac{50k}{51.66k}(-2) = \underline{-1.9V} \end{split}$$

$$\begin{split} r_{\text{DSN}} &\cong \frac{1}{0.1(5-(-2)-2)} = 2k\Omega & r_{\text{DSP}} \cong \frac{1}{k_{\text{p}}^1(\frac{W}{L})_{\text{p}}(V_{\text{SGP}}|V_{\text{t}}|_{\text{p}})} = \frac{1}{0.1(V_0-(-5)-2)} \\ r_{\text{switch}} &\sim \frac{(10)(2)}{10+2} \sim 2k\Omega & \sim \underline{10k\Omega} (\text{a bit less}) \\ V_0 &= \frac{50k}{51.66k} (-2) = \underline{-1.9V} \end{split}$$

c) $V_I = 0V \Rightarrow \text{no conduction} \Rightarrow \underline{V_0 = 0V}$

$$r_{\text{DSN}} = \frac{1}{0.1(5-0-2)} = 333k\Omega \qquad V_{\text{DSP}} = \frac{1}{(0.1)(0-(-5)-2)} = 3.33k\Omega$$

$$r_{\text{SWitch}} = (.5)(3.33k\Omega) = 1.67k\Omega$$