

Exem	ple	d'examen
LACIII		u camicii

le d'examen 4ème année

Durée : 1.5 heure

N.B. Le seuil de signification est par défaut 5% sauf indication contraire.

Nom & Prénom:

Exercice 1:(3 pts)

Un laboratoire d'agronomie a effectué une étude sur le maintien du pouvoir germinatif des graines de Papivorus subquaticus après une conservation de 3 ans. Le laboratoire souhaite vérifier si la probabilité de germination des graines de Papivorus subquaticus après trois ans de conservation est égale à p_0 . Il effectue le test d'hypothèse dont la sortie R est la suivante :

```
> prop.test(47, 80, p = NULL,
+ alternative = "two.sided",
+ conf.level = 0.95, correct = TRUE)
```

1-sample proportions test with continuity correction

```
data: 47 out of 80, null probability 0.5
X-squared = 2.1125, df = 1, p-value = 0.1461
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
    0.4718584 0.6946700
sample estimates:
    p
0.5875
```

1.	Donner la taille de l'échantillon utilisé pour le test. (0.5 pts)
2.	Donner une estimation par intervalle de confiance de la proportion. (0.5 pts)
3.	Identifier les hypothèses du test qu'il effectue le laboratoire. (1 pts)
4.	Le laboratoire peut-il affirmer que la probabilité de germination des graines de Papivorus subquaticus après trois ans de conservation est égale à $p_0.(1~{\rm pts})$

Exercice 2:(2.5 pts)

- 1. On souhaite étudier la qualité de deux races différents des veaux. On mesure le poids à la naissance de 14 veaux du race A et 12 veaux du rache B. Identifier les tests d'hypothèse et interpréter les résultats des cas suivants
 - a) Test 1: (1 pts)

```
> var.test(a,b,conf.level=0.95)
                          F test to compare two variances
                 F = 0.40482, num df = 13, denom df = 11, p-value = 0.1239
                 alternative hypothesis: true ratio of variances is not equal to 1
b) Test 2 : (1 pts)
                 > t.test(a,b,var.equal = T)
                          Two Sample t-test
                 data: a and b
                 t = 0.16358, df = 24, p-value = 0.8714
                 alternative hypothesis: true difference in means is not equal to 0
```

2. (0.5 pts)On souhaite étudier la variabilité d'une variable Y. On effectue deux modèles de régression linéaire. Le premier modèle M1 en fonction de X_1 et le deuxième M2 en fonction de X_2 . On note R_1^2 le coefficient de détermination du modèle $\mathbf{M1}$ et R_2^2 celui de $\mathbf{M2}$. On admet le modèle M1 si on a

Exercice 4:(5 pts)

On effectue une régression linéaire sur une base de données et on obtient le résultat suivant :

	<pre>lm(formula = medv ~ chas + nox + rm + age + ptratio + lstat + indus + dis, data = Boston)</pre>
	Residuals:
	Min 1Q Median 3Q Max -15.4059 -2.8264 -0.6814 1.8507 28.3351
	Coefficients:
	Estimate Std. Error t value Pr(> t)
	(Intercept) 36.479713 4.581184 7.963 1.15e-14 ***
	chas 3.309827 0.886715 3.733 0.000211 ***
	nox -16.881183 3.680144 -4.587 5.70e-06 ***
	rm 4.083762 0.415798 9.822 < 2e-16 ***
	age -0.004199 0.013494 -0.311 0.755809
	ptratio -0.966587 0.117658 -8.215 1.85e-15 ***
	1stat -0.559438 0.050422 -11.095 < 2e-16 ***
	indus -0.059159 0.056946 -1.039 0.299373
	dis -1.215437 0.187701 -6.475 2.27e-10 ***
	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
	Residual standard error: 4.937 on 497 degrees of freedom
	Multiple R-squared: 0.7164, Adjusted R-squared: 0.7119
	F-statistic: 157 on 8 and 497 DF, p-value: < 2.2e-16
	pts) Donner les estimations numériques des paramètres du modèle.
(1 p	ts) Donner le coefficient de détermination et interpréter la qualité du modèle.
•	pts) Donner le test d'hypothèses des paramètres du modèle(le test de significativité in
alvia	uelle).
(1 p	\mathbf{ts}) Identifier les variables les moins significatives et justifier votre choix.
(- P	

Call:

Exercice 4:(4 pts)

L'ensemble de données "**ToothGrowth**" inclus dans R décrit l'effet de la vitamine C sur la croissance des dents chez les cobayes.Le fichier contient 3 variables :

- len : Longueur des dents
- **dose** : Dose en milligrammes (0.5, 1, 2)
- supp : Type de supplément (VC ou OJ)

Des statistiques inférentielles sont utilisées pour déterminer si la longueur des dents est infuencée par les doses de vitamine C. On souhaite appliquer l'analyse de la variance à un facteur.

(1 pts) Citer les conditions nécessaire d'app	
2 pts) Interpréter les outputs R suivants	
data: X[[i]] W = 0.76709, p-value = 1.742e-05	
> tapply(len,dose,shapiro.test) \$`0.5`	Output 1:
Shapiro-Wilk normality test	
data: X[[i]] W = 0.94065, p-value = 0.2466	
\$`1`	
Shapiro-Wilk normality test	
data: X[[i]] W = 0.93134, p-value = 0.1639	
\$`2`	
Shapiro-Wilk normality test	
data: X[[i]] W = 0.97775, p-value = 0.9019	
Output 1	
> bartlett.test(len~dose)	
Bartlett test of ho	omogeneity of variances
data: len by dose Bartlett's K-squared = 0.66	6547, df = 2, p-value = 0.717
Or	itput 2

	de l'analyse dose Residuals	Df S	um Sq 2224	Mean Sq	F value 105.1 1		***	
	Signif. co	des:	0 ****	0.001	*** 0.01	·*/ 0.0	5 '.' 0.1	· / 1
pts)	Les doses de	vitami	ne C in	fluencent	-elles la cro	oissance d	es dents?	