Throughout, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

1 Conditional expectation

Theorem 1.1 (Existence and uniqueness of conditional expectation). Let $X \in L^1$, and $\mathcal{G} \subseteq \mathcal{F}$. Then there exists a random variable Y such that

- Y is G-measurable
- $Y \in L^1$, and $\mathbb{E}X\mathbf{1}_A = \mathbb{E}Y\mathbf{1}_A$ for all $A \in \mathcal{G}$.

Moreover, if Y' is another random variable satisfying these conditions, then Y' = Y almost surely.

We call Y a (version of) the conditional expectation given G.

Proof. (Existence)

Case 1: $X \in L^2$.

Recall that L^2 is a Hilbert space, and that the set of \mathcal{G} -measurable random variables is a closed subspace of L^2 (it is closed because the space $L^2(\Omega, \mathcal{G}, \mathbb{P})$ is complete). The projection theorem then gives us the existence and uniqueness of $Y \in L^2 \subseteq L^1$.

Case 2: $X \ge 0 \in L^1$.

Let $X_n = X \wedge n \in L^2$. Then by case 1, we can define $Y_n = \mathbb{E}(X_n \mid \mathcal{G}) \in L^2$. We make the following observation

Lemma 1.1.1. Suppose (X, Y) and (X', Y') are two pairs of random variables satisfying the conditions of the theorem, then $X \ge X'$ implies $Y \ge Y'$ almost surely.

Proof. Let
$$A = \{Y < Y'\}$$
. Then $\mathbb{E}Y \mathbf{1}_A = \mathbb{E}X \mathbf{1}_A \ge \mathbb{E}X' \mathbf{1}_A = \mathbb{E}Y' \mathbf{1}_A$, so $\mathbb{E}(Y - Y') \mathbf{1}_A \ge 0$ and $\mathbb{P}(A) = 0$.

It follows that there is some random variable Y such that $Y_n \uparrow Y$. Clearly Y is \mathcal{G} -measurable. For any $A \in \mathcal{G}$, we have

$$\mathbb{E}Y\mathbf{1}_{A} = \lim_{n \to \infty} \mathbb{E}Y_{n}\mathbf{1}_{A}$$

$$= \lim_{n \to \infty} \mathbb{E}X_{n}\mathbf{1}_{A}$$

$$= \mathbb{E}X\mathbf{1}_{A}$$
(MCV)

Case 3: $X \in L^1$.

Write $X = X^+ - X^-$, and apply case 2 to X^+ and X^- .

(Uniqueness) Suppose Y and Y' are two random variables satisfying the conditions of the theorem. The $\{Y > Y'\}$ is in \mathcal{G} so $\mathbb{E}Y\mathbf{1}_{\{Y > Y'\}} = \mathbb{E}Y'\mathbf{1}_{\{Y > Y'\}} \implies \mathbb{E}(Y - Y')\mathbf{1}_{\{Y > Y'\}} = 0 \implies \mathbb{P}(Y > Y') = 0$. Similarly, $\mathbb{P}(Y' > Y) = 0$.

Remark. The above can also be proved using the Radon-Nikodym theorem.

(Proof via Radon-Nikodym) First recall the Radon-Nikodym theorem

Proposition (Radon-Nikodym theorem). Let μ, ν be two σ -finite measures on (Ω, \mathcal{F}) such that $\nu \ll \mu$. Then there exists a unique (up to a.e. equivalence) $f \in L^1(\Omega, \mathcal{F}, \mu)$ such that $\nu(A) = \int_A f \, d\mu$ for all $A \in \mathcal{F}$.

Consider the measure on (Ω, \mathcal{G}) given by

$$\mu(A) = \mathbb{E}X\mathbf{1}_A, \quad A \in \mathcal{G}$$

so $\mu \ll \mathbb{P}$. By the Radon-Nikodym theorem, there exists a unique $Y \in L^1(\Omega, \mathcal{G}, \mathbb{P})$ such that $\mu(A) = \int_A Y d\mathbb{P}$ for all $A \in \mathcal{G}$.

For general $X \in L^1$, we can write $X = X^+ - X^-$ and apply the above to X^+ and X^- .

Proposition (Equivalent definition for conditional expectation). Let X, \mathcal{G} be as above. Then there exists a random variable Y such that

- Y is \mathcal{G} -measurable
- $Y \in L^1$ and $\mathbb{E}XZ = \mathbb{E}YZ$ for all $Z \in L^{\infty}(\mathcal{G})$

Moreover, $Y = \mathbb{E}(X \mid \mathcal{G})$ almost surely.

Proof. (Existence) Set $Y = \mathbb{E}(X \mid \mathcal{G})$. It is straightforward to see that Y satisfies the conditions of the proposition for simple functions Z. Note that simple functions that are in L^p are dense in L^p for $1 \leq p \leq \infty$. Let $Z_n \in L^{\infty}(\mathcal{G})$ be a sequence of simple functions such that $Z_n \to Z$ in L^{∞} (in particular, we have almost sure pointwise convergence). Then

$$\mathbb{E}XZ = \lim_{n \to \infty} \mathbb{E}XZ_n$$

$$= \lim_{n \to \infty} \mathbb{E}YZ_n$$

$$= \mathbb{E}YZ$$
(DCT)

(Uniqueness) Note that any two random variables satisfying the conditions of the proposition are versions of the conditional expectation given \mathcal{G} , which was shown to be unique.

Lemma 1.1.2 (Conditional expectation as a function). Let $X,Y:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$. Then Y is measurable with respect to $\sigma(X)$ if and only if there exists a Borel-measurable function $f:\mathbb{R}\to\mathbb{R}$ such that $Y(\omega)=f(X(\omega))$ for all $\omega\in\Omega$.

Proposition (Properties of conditional expectation). All (in)equality relations below hold almost surely.

- 1. If $X \geq 0$ a.s., then $\mathbb{E}(X \mid \mathcal{G}) \geq 0$
- 2. If X and \mathcal{G} are independent, then $\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}[X]$
- 3. If $\alpha, \beta \in \mathbb{R}$ and $X_1, X_2 \in L^1$, then

$$\mathbb{E}(\alpha X_1 + \beta X_2 \mid \mathcal{G}) = \alpha \mathbb{E}(X_1 \mid \mathcal{G}) + \beta \mathbb{E}(X_2 \mid \mathcal{G}).$$

4. Tower property: If $\mathcal{H} \subseteq \mathcal{G}$, then

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}) = \mathbb{E}(X \mid \mathcal{H}).$$

5. If Z is bounded and \mathcal{G} -measurable, then

$$\mathbb{E}(ZX \mid \mathcal{G}) = Z\mathbb{E}(X \mid \mathcal{G}).$$

6. Let $X \in L^1$ and $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$. Assume that $\sigma(X, \mathcal{G})$ is independent of \mathcal{H} . Then

$$\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(X \mid \sigma(\mathcal{G}, \mathcal{H})).$$

Proof. 1. Follows from the proof of existence and uniqueness of conditional expectation, or just use monotonicity.

- 2. Let $A \in \mathcal{G}$. Then $\mathbb{E}(\mathbb{E}(X)\mathbf{1}_A) = \mathbb{E}X\mathbb{E}1_A = \mathbb{E}(X1_A)$
- 3. Use linearity of conditional expectation.
- 4. Let $A \in \mathcal{H}$. Then $\mathbb{E}\left[\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H})\mathbf{1}_A\right] = \mathbb{E}\left[\mathbb{E}(X \mid \mathcal{G})\mathbf{1}_A\right] = \mathbb{E}(X\mathbf{1}_A)$
- 5. Easy if Z is an indicator function. Then use linearity and covergence theorems.
- 6. Note $\mathbb{E}(X \mid \mathcal{G})$ is $\sigma(\mathcal{G}, \mathcal{H})$ -measurable and $\sigma(\mathcal{G}, \mathcal{H})$ is generated by the π -system $\{A \cap B : A \in \mathcal{G}, B \in \mathcal{H}\}$. We show that $\mathbb{E}(X \mid \mathcal{G})$ satisfies the defining property of $\mathbb{E}(X \mid \sigma(\mathcal{G}, \mathcal{H}))$. Let $A \in \mathcal{G}$ and $B \in \mathcal{H}$. Then for any element of the π -system, we have

$$\mathbb{E}(\mathbb{E}(X\mid\mathcal{G})\mathbf{1}_{A\cap B}) = \mathbb{E}[\mathbb{E}(X\mid\mathcal{G})\mathbf{1}_{A}\mathbf{1}_{B}] = \mathbb{E}[\mathbb{E}(X\mathbf{1}_{A}\mid\mathcal{G})\mathbf{1}_{B}] = \mathbb{E}(\underbrace{X\mathbf{1}_{A}}_{\in\sigma(\mathcal{G},X)})\mathbb{E}(\mathbf{1}_{B}) = \mathbb{E}(X\mathbf{1}_{A\cap B})$$

Since finite measures extend uniquely from π -systems, the above holds if $A \cap B$ is replaced by any element of $\sigma(\mathcal{G}, \mathcal{H})$

Proposition (Properties of conditional expectation). All (in)equality relations below hold almost surely.

1. Jensen's inequality: If $c: \mathbb{R} \to \mathbb{R}$ is convex, then

$$\mathbb{E}(c(X) \mid \mathcal{G}) \ge c(\mathbb{E}(X) \mid \mathcal{G}).$$

2. For $p \ge 1$,

$$\|\mathbb{E}(X \mid \mathcal{G})\|_{p} \leq \|X\|_{p}.$$

- 3. Monotone convergence theorem Suppose $X_n \uparrow X$ is a sequence of non-negative random variables. Then $\mathbb{E}(X_n \mid \mathcal{G}) \uparrow \mathbb{E}(X \mid \mathcal{G})$.
- 4. Fatou's lemma: If X_n are non-negative measurable, then

$$\mathbb{E}\left(\liminf_{n\to\infty} X_n \mid \mathcal{G}\right) \leq \liminf_{n\to\infty} \mathbb{E}(X_n \mid \mathcal{G}).$$

5. Dominated convergence theorem: If $X_n \to X$ and $Y \in L^1$ such that $Y \ge |X_n|$ for all n, then $\mathbb{E}(X_n \mid \mathcal{G}) \to \mathbb{E}(X \mid \mathcal{G})$.

Proof. 1. Note that a convex function is the supremum of countably many affine functions $c(x) = \sup_{i \in I} a_i x + b_i$. Then

$$\mathbb{E}(c(X) \mid \mathcal{G}) = \mathbb{E}\left(\sup_{i \in I} (a_i X + b_i) \mid \mathcal{G}\right)$$

$$\geq \mathbb{E}(a_i X + b_i \mid \mathcal{G}) \quad \forall i \in I$$
 (monotonicity)

So $\mathbb{E}(c(X) \mid \mathcal{G}) \ge \sup_{i \in I} \mathbb{E}(a_i X + b_i \mid \mathcal{G}) = c(\mathbb{E}(X \mid \mathcal{G})).$

- 2. Jensen
- 3. By monotonicity, $\mathbb{E}(X_n \mid \mathcal{G}) \uparrow Y$ for some Y. By the usual monotone convergence theorem, $\mathbb{E}\mathbb{E}(X_n \mid \mathcal{G}) = \mathbb{E}X_n \to \mathbb{E}Y \leq \mathbb{E}X$ so $Y \in L^1$. Since each of the $\mathbb{E}(X_n \mid \mathcal{G})$ are \mathcal{G} -measurable, so is Y. Finally, for any $A \in \mathcal{G}$,

$$\mathbb{E}Y\mathbf{1}_{A} = \lim_{n \to \infty} \mathbb{E}\mathbb{E}(X_{n} \mid \mathcal{G})\mathbf{1}_{A}$$

$$= \lim_{n \to \infty} \mathbb{E}X_{n}\mathbf{1}_{A}$$

$$= \mathbb{E}X\mathbf{1}_{A}$$
(MCV)

4.

$$\mathbb{E}\left(\liminf_{n\to\infty} X_n \mid \mathcal{G}\right) = \mathbb{E}\left(\lim_{n\to\infty} \inf_{\substack{m\geq n \\ increasing}} X_m \mid \mathcal{G}\right)$$

$$= \lim_{n\to\infty} \mathbb{E}\left(\inf_{m\geq n} X_m \mid \mathcal{G}\right) \qquad (MCV)$$

$$= \lim_{n\to\infty} \inf_{n\to\infty} \mathbb{E}\left(\inf_{\substack{m\geq n \\ \leq X_n}} X_m \mid \mathcal{G}\right)$$

$$\leq \lim_{n\to\infty} \inf_{n\to\infty} \mathbb{E}(X_n \mid \mathcal{G}) \qquad (monotonicity)$$

5. Use Fatou's lemma on $Y + X_n$ and $Y - X_n$.

2 Martingales

Definition ((Discrete) stochastic process). A stochastic process (in discrete time) is a collection of random variables $(X_n)_{n\in\mathbb{N}}$. A stochastic process is is integrable if $X_n\in L^1$ for all n.

Definition (Filtration). A filtration is a sequence of σ -algebras $\mathcal{F}_n \subseteq \mathcal{F}$ such that $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$ for all n. We define $F_{\infty} = \sigma(\bigcup_{n=1}^{\infty} \mathcal{F}_n)$. The natural filtration of a stochastic process X is the filtration $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$. A stochastic process is adapted to a filtration \mathcal{F}_n if X_n is \mathcal{F}_n -measurable for all n.

Definition (Martingale). An integrable adapted process $(X_n)_{n\geq 0}$ is a martingale if for all $n\geq m$, we have

$$\mathbb{E}(X_n \mid \mathcal{F}_m) = X_m.$$

We say it is a *super-martingale* if

$$\mathbb{E}(X_n \mid \mathcal{F}_m) \leq X_m$$

and a *sub-martingale* if

$$\mathbb{E}(X_n \mid \mathcal{F}_m) \ge X_m,$$

By the tower property, it is sufficient to check the martingale property for n = m + 1.

Theorem 2.1 (Doob decomposition, non-examinable). Let X_n be an integrable adapted process. Then there exists a martingale M_n and an integrable predictable process A_n such that $X_n = M_n + A_n$ and $A_0 = 0$, where predictable means that A_n is \mathcal{F}_{n-1} -measurable for all $n \geq 1$. Moreover, M_n and A_n are unique up to a.s. equivalence.

Proof. (Existence) Add up the 'known' bits to get A and the 'surprises' to get M. Formally,

$$A_{n} = A_{n-1} + \mathbb{E}(X_{n} \mid \mathcal{F}_{n-1}) - X_{n-1}$$

$$M_{n} = M_{n-1} + \underbrace{X_{n} - \mathbb{E}(X_{n} \mid \mathcal{F}_{n-1})}_{\text{surprise}}$$

(Uniqueness) Let $X_n = M_n + A_n = M'_n + A'_n$. Then $M_n - M'_n = A'_n - A_n$ is \mathcal{F}_{n-1} -measurable. But $M_n - M'_n$ is a martingale, so $\mathbb{E}(M_n - M'_n \mid \mathcal{F}_{n-1}) = 0$ so $M_n = M'_n$ almost surely. Similarly, $A_n = A'_n$ almost surely.

Definition (Stopping time). A random variable $T: \Omega \to \mathbb{N} \cup \{\infty\}$ is a stopping time if $\{T \leq n\} \in \mathcal{F}_n$ for all n.

In the discrete case, we can equivalently require that $\{T=n\}\in\mathcal{F}_n$ for all n.

Definition (X_T) . Let X be a stochastic process and T a stopping time. Then $X_T: \Omega \to \mathbb{R}$ is defined by cases

$$X_T(\omega) = \begin{cases} X_n(\omega) & T(\omega) = n \\ 0 & T(\omega) = \infty \end{cases}$$

Definition (Stopped σ -algebra). Let T be a stopping time. Then the stopped σ -algebra is

$$\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T \le n \} \in \mathcal{F}_n \text{ for all } n \}.$$

Example. Let N = # of times a random walk hits -5 before it first hits 10 and T be the first time the random walk hits 10. N is \mathcal{F}_T -measurable

Definition (Stopped process). Let X be a stochastic process and T a stopping time. Then the *stopped process* is $X_n^T = X_{T \wedge n}$

Proposition.

1. If $T, S, (T_n)_{n\geq 0}$ are all stopping times, then

$$T\vee S, T\wedge S, \sup_n T_n, \inf T_n, \limsup T_n, \liminf T_n$$

are all stopping times.

- 2. \mathcal{F}_T is a σ -algebra
- 3. If $S \leq T$, then $\mathcal{F}_S \subseteq \mathcal{F}_T$.
- 4. $X_T \mathbf{1}_{T<\infty}$ is \mathcal{F}_T -measurable.
- 5. If (X_n) is an adapted process, then so is $(X_n^T)_{n\geq 0}$ for any stopping time T.
- 6. If (X_n) is an integrable process, then so is $(X_n^T)_{n\geq 0}$ for any stopping time T.

Proof.

- 1. Elementary
- 2. Elementary
- 3. Let $A \in \mathcal{F}_S$. For any n, we have $A \cap \{S \leq n\} \in \mathcal{F}_n$ and $A \cap \{T \leq n\} = A \cap \{S \leq n\} \cap \{T \leq n\} \in \mathcal{F}_n$.
- 4. $X_T \mathbf{1}_{T<\infty} = \sum_{n=1}^{\infty} X_n \mathbf{1}_{\{T=n\}}$ where each of the terms is \mathcal{F}_T -measurable.
- 5. $X_n^T = X_n \mathbf{1}_{\{T \ge n\}} + X_T \mathbf{1}_{\{T < n\}} \mathbf{1}_{\{T < \infty\}}.$
- 6. $X_n^T = X_n \mathbf{1}_{\{T \ge n\}} + \sum_{k=1}^{n-1} X_k \mathbf{1}_{\{T = k\}}$ so $E|X_n^T| \le E|X_n| + \sum_{k=1}^{n-1} E|X_k| < \infty$.

Theorem 2.2 (Equivalent definitions for super-martingales). Let $(X_n)_{n\geq 0}$ be an integrable and adapted process. Then the following are equivalent:

- 1. $(X_n)_{n\geq 0}$ is a super-martingale.
- 2. For any bounded stopping times T and any stopping time S,

$$\mathbb{E}(X_T \mid \mathcal{F}_S) \leq X_{S \wedge T}.$$

- 3. (X_n^T) is a super-martingale for any stopping time T.
- 4. For bounded stopping times S,T such that $S \leq T$, we have

$$\mathbb{E}X_T \leq \mathbb{E}X_S$$
.

Proof. $-(2) \Rightarrow (1)$: Let $n \ge m$ and set T = n, S = m.

- $-(2) \Rightarrow (4)$: Tower rule
- (2) \Rightarrow (3): Let $n \geq m$

$$\mathbb{E}(X_n^T \mid \mathcal{F}_m) = \mathbb{E}(X_{T \wedge n} \mid \mathcal{F}_m) \le X_{T \wedge m \wedge n} = X_m^T.$$

 $- (1) \Rightarrow (2) \text{ Let } T \leq N$

$$X_T = X_{S \wedge T} + \sum_{k=0}^{N} (X_{k+1} - X_k) \mathbf{1}_{S \le k < T}$$
 (*)

Let $A \in \mathcal{F}_S$.

$$\mathbb{E}\left[(X_{k+1} - X_k)\mathbf{1}_{S \le k < T}\mathbf{1}_A\right] = \mathbb{E}\left[\mathbb{E}\left[(X_{k+1} - X_k)\underbrace{\mathbf{1}_{S \le k < T}\mathbf{1}_A}_{\in \mathcal{F}_k} \mid \mathcal{F}_k\right]\right]$$

$$= \mathbb{E}\left[\mathbf{1}_{S \le k < T}\mathbf{1}_A\underbrace{\mathbb{E}\left[(X_{k+1} - X_k) \mid \mathcal{F}_k\right]}_{\le 0}\right]$$

$$< 0$$

so $\mathbb{E}X_T\mathbf{1}_A \leq \mathbb{E}X_{S\wedge T}\mathbf{1}_A$. By Radon-Nikodym, $\mathbb{E}(X_{S\wedge T}-X_T\mid \mathcal{F}_S)\geq 0$. But $X_{S\wedge T}$ is \mathcal{F}_S -measurable, so $X_{S\wedge T}-X_T\geq 0$ almost surely.

 $-(4) \Rightarrow (2)$ Let $n \geq m$ and $A \in \mathcal{F}_m$. One can check that $T = m\mathbf{1}_A + n\mathbf{1}_{A^c} \leq n$ is a stopping time such that

$$\mathbb{E}((X_n - X_m)\mathbf{1}_A) = \mathbb{E}(X_n - X_T) \le 0$$

By Radon-Nikodym, $\mathbb{E}(X_m - X_n \mid \mathcal{F}_m) \ge 0$ so $\mathbb{E}(X_n \mid \mathcal{F}_m) \le X_m$.

 $-(3) \Rightarrow (1)$ Let $T = \infty$

Theorem 2.3 (Optional stopping). Let $(X_n)_{n\geq 0}$ be a martingale and T a stopping time. Then $E(X_T)=E(X_0)$ if any of the following conditions hold:

1. T is almost surely bounded, i.e. there is some N such that $T \leq N$ almost surely.

- 2. X has bounded increments, i.e. there is some K such that $|X_{n+1} X_n| \le K$ for all n almost surely and T is integrable
- 3. There exists an integrable random variable Y such that $|X_n| \le Y$ for all n almost surely and T is finite almost surely, i.e. $\mathbb{P}(T < \infty) = 1$.

Proof. 1. Use (4) of the previous theorem with S=0, or prove directly.

- 2. placeholder
- 3. placeholder