Warmup Questions

- 1. for a strongly-typed programming language, what are the advantages of a type system?
 - abstraction

1. Structuring

optimization

2. Documentation

3. Safety Efficiency

- safety
- 2. Describe the concepts of weakening, exchange and substitution.
 - Weakening

Generally: if a term T has property P under context Θ, Θ' then T will still have property P in the context Θ, α, Θ' .

Concretely, weakening for Simply Typed Lambda Calculus (STLC) is defined as:

$$\Theta, \Theta' \vdash e : A \implies \Theta, x : X, \Theta' \vdash e : A$$

• Exchange

Generally: if a term T has property P under context $\Theta, \alpha, \beta, \Theta'$ then T will still have property P in the context $\Theta, \beta, \alpha, \Theta'$. Intuitively, exchange means that the order in which objects occur in the context is not important.

Concretely, exchange for the STLC is defined as:

$$\Theta, x: X, y: X, \Theta' \vdash e: A \implies \Theta, y: Y, x: X, \Theta' \vdash e: A$$

For: Herr Sebastian Funk

Concretely, substitution for the STLC is defined as:

$$\Theta, x : X \vdash e : A \land \Theta \vdash e' : X \implies \Theta \vdash [e'/x]e : A$$

The two properties of Type Safety are Progress and Type Preservation.

Definition 1 (Progress). If an expression e is well-typed then it is either a value, or there exists some expression e' such that $e \leadsto e'$.

Definition 2 (Type Preservation). If an expression e has the type T and $e \leadsto e'$ then e' also has they type T.

4. What is the Curry-Howard Correspondence?

The Curry Howard Correspondence is a correspondence between types systems an proof systems. The exact correspondences are in Table 1.

Type Systems	Proof Systems
unit type	truth
null type	falsehood
functions	implication
sum type	logical or
product type	logical and
reduction	normalisation
value	cut-free proof
reduction order	normalisation order

Table 1: Correspondences in the Curry Howard Correspondence

5. Give the typing rules and operational semantics of TLC for functions, pairs and sums.

Typing Rules:

$$\frac{\Gamma, x: A \vdash e: B}{\Gamma \vdash \lambda x: A. e: A \rightarrow B} \qquad \frac{\Gamma \vdash e: A \rightarrow B}{\Gamma \vdash e \: e': B}$$

$$\frac{\Gamma \vdash e_1 : A \qquad \Gamma \vdash e_2 : B}{\Gamma \vdash (e_1, e_2) : A \times B} \qquad \frac{\Gamma \vdash e : A \times B}{\Gamma \vdash \operatorname{fst} e : A} \qquad \frac{\Gamma \vdash e : A \times B}{\Gamma \vdash \operatorname{snd} e : B}$$

$$\frac{\Gamma \vdash e_1 : A}{\Gamma \vdash L \: e_1 : A + B} \qquad \frac{\Gamma \vdash e_2 : B}{\Gamma \vdash R \: e_1 + e_2 : A + B} \qquad \frac{\Gamma \vdash e : A + B \quad \Gamma, x : A \vdash e_1 : C \quad \Gamma, y : B \vdash e_2 : C}{\Gamma \vdash \mathsf{case}(e, L \: x \to e_1, R \: y \to e_2) : C}$$

Operational Semantics:

$$\frac{e \leadsto e'}{e \ e'' \leadsto e' \ e''} \qquad \frac{e' \leadsto e''}{v \ e' \leadsto v \ e''} \qquad \frac{(\lambda x. \ e) \ v \leadsto [v/x] e}{}$$

$$\frac{e_1 \leadsto e_1'}{(e_1,e_2) \leadsto (e_1',e_2)} \qquad \frac{e_2 \leadsto e_2'}{(v_1,e_2) \leadsto (v_1,e_2')} \qquad \frac{e \leadsto e'}{\operatorname{fst} \, e \leadsto e'} \qquad \frac{e \leadsto e'}{\operatorname{snd} \, e \leadsto e'}$$

$$\frac{e\leadsto e'}{L\,e\leadsto L\,e'} \qquad \frac{e\leadsto e'}{R\,e\leadsto L\,e'} \qquad \frac{e\leadsto e'}{{\rm case}(e',L\,x\to e_1,R\,y\to e_2)}$$

2 Regular Questions

1. Extend the type preservation and progress proof to cover AND.

$$\Phi(e,\tau) \triangleq e: \tau \implies e \text{ is a value} \vee \exists e'.e \leadsto e'$$

Prove Progress by structural induction on the derivation of $e:\tau$. Let $\Phi(e,\tau)$ be the induction hypothesis:

Case (AND):

$$\frac{e_1 : \text{bool}}{e_1 \land e_2 : \text{bool}}$$
 by assumption

Case e_1 is not a value

$$e_1 \leadsto e_1'$$
 by induction hypothesis $e_1 \wedge e_2 \leadsto e_1' \wedge e_2$ by the reduction rules

Case e_1 is a value

$$e_2 \leadsto e_2'$$
 by induction hypothesis $e_1 \wedge e_2 \leadsto e_1 \wedge e_2'$ by the reduction rules

Case e_2 is a value

$$e_1 \wedge e_2$$
 is a value

we can apply the reduction rules

$$\Phi(e, e', \tau) \triangleq e : \tau \land e \leadsto e' \implies e' : \tau$$

Almost, though the operational rules are defined differently so this part of the proof looks incorrect.

Prove Type Preservation by structural induction on the derivation $e:\tau$. Let $\Phi(e,e',\tau)$ be the induction hypothesis:

Case (AND):

$$e \leadsto e'$$
 by assumption $e_1 : bool$ $e_2 : bool$ by assumption $e = e_1 \land e_2$ by assumption by assumption

Case e_1 is not a value

$$e_1 \leadsto e_1'$$
 by Progress Isn't this by the operational rules? e_1' : bool by induction hypothesis $e_1 \land e_2 \leadsto e_1' \land e_2$ by the reduction rules $e_1' \land e_2 = e'$ by determinacy e' : bool by (AND)

Case e_1 is a value

Case e_2 is not a value

$$e_2 \leadsto e_2'$$
 by Progress e_2' : bool by induction hypothesis $e_1 \wedge e_2 \leadsto e_1 \wedge e_2'$ by the reduction rules $e_1 \wedge e_2 = e'$ by determinacy e' : bool by (AND)

Case e_1 is a value

 $e_1 \wedge e_2$ is a value. Thus e is a value and $\not\equiv e'.e \leadsto e'$: the premise was false in this case so Φ holds trivially.

- 2. Prove type safety for the unit and function cases of TLC.
 - Progress

$$\Phi(\Gamma, e, \tau) \triangleq \Gamma \vdash e : \tau \implies e \text{ is a value } \forall \exists e'. e \rightsquigarrow e'$$

I will prove this by structural induction on the derivation $\Gamma \vdash e : \tau$ with the induction hypothesis that for all subexpressions e, $\Phi(\Gamma, e, \tau)$. I will prove only the unit and function cases.

- Case unit

By assumption, we have:

$$\overline{\Gamma \vdash \langle \rangle : 1}$$

We have that $\langle\rangle$ is a value. Thus we have Φ in this case.

- Case abstr

By assumption, we have:

$$\frac{\Gamma, x: A \vdash e: B}{\Gamma \vdash \lambda x: A.\, e: A \rightarrow B}$$

 $\lambda x.\,e$ is a value. Thus we have Φ in this case.

- Case app

By assumption, we have:

$$\begin{array}{ccc} \Gamma \vdash e_1 : A \to B & \Gamma \vdash e_2 : A \\ \hline \Gamma \vdash e_1 e_2 : B & \\ \Gamma \vdash e_1 : A \to B & \text{subderivation} \\ \Gamma \vdash e_2 : A & \text{subderivation} \end{array}$$

By the induction hypothesis, we have that e_1 is a value or $\exists e_1'.e_1 \leadsto e_1'$

Case
$$\exists e_1'. e_1 \leadsto e_1'$$

$$\frac{e_1 \leadsto e_1'}{e_1 \, e_2 \leadsto e_1' \, e_2}$$

Thus we have that $e \leadsto e_1' e_2$

Case e_1 is a value

By the induction hypothesis, we have that e_2 is a value or $\exists e_2'. e_2 \leadsto e_2'$

Case
$$\exists e_2'. e_2 \leadsto e_2'$$

$$\frac{e_2 \leadsto e_2'}{e_1 \, e_2 \leadsto e_1 \, e_2'}$$

Thus we have that $e \rightsquigarrow e_1 e_2'$

Case e_2 is a value v_2

For e_1 to be a value and have type $A \to B$, we have that it must be of the form $\lambda x : A. e_3$ for some e_3

$$\overline{(\lambda x: A. e_3) v_2 \leadsto [v_2/x]e_3}$$

Thus we have that $e \leadsto [v_2/x]e_3$

• Type Preservation

$$\Phi(\Gamma, e, \tau) \triangleq \Gamma \vdash e : \tau \land e \leadsto e' \implies \Gamma \vdash e' : \tau$$

I will prove this by structural induction on the derivation of $e \leadsto e'$ with the induction hypothesis that for all subexpressions e, $\Phi(\Gamma, e, \tau)$. I will prove only the unit and function cases.

- Case Unit

There is no reduction rule for any expression of type unit. Therefore, the premise of Φ is false and so it holds trivially.

- Case app1

$$\begin{split} &\frac{e_1 \leadsto e_1'}{e_1 \, e_2 \leadsto e_1' \, e_2} \\ &\Gamma \vdash e_1 \, e_2 : \tau \\ &\frac{\Gamma \vdash e_1 : \tau' \to \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 : \tau' \to \tau} \\ &\frac{\Gamma \vdash e_1 : \tau' \to \tau}{\Gamma \vdash e_2 : \tau} \\ &\frac{\Gamma \vdash e_1 : \tau' \to \tau}{\Gamma \vdash e_2 : \tau} \\ &\frac{\Gamma \vdash e_1' : \tau' \to \tau}{\Gamma \vdash e_1' : \tau' \to \tau} &\frac{\Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1' \, e_2 : \tau} \end{split}$$

by assumption

by assumption

by inversion

subderivation

subderivation

by induction hypothesis

Thus, we have proved Φ in this case!

- Case app2

$$\begin{split} &\frac{e_2 \leadsto e_2'}{v \, e_2 \leadsto v \, e_2'} \\ &\Gamma \vdash v \, e_2 : \tau \\ &\frac{\Gamma \vdash v : \tau' \to \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash v : \tau' \to \tau} \\ &\frac{\Gamma \vdash v : \tau' \to \tau}{\Gamma \vdash e_2 : \tau} \\ &\frac{\Gamma \vdash e_2 : \tau}{\Gamma \vdash e_2 : \tau} \\ &\frac{\Gamma \vdash e_1 : \tau' \to \tau \qquad \Gamma \vdash e_2' : \tau}{\Gamma \vdash e_1 \, e_2' : \tau} \end{split}$$

by assumption

by assumption

by inversion

subderivation

subderivation

by induction hypothesis

Thus, we have proved Φ in this case!

- Case sub

$\overline{(\lambda x:\tau'.e)v\leadsto [v/x]e}$	by assumption
$\Gamma \vdash (\lambda x : \tau'.e) v : \tau$	by assumption
$\frac{\Gamma \vdash \lambda x : \tau' \cdot e : \tau' \to \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash v \cdot e_2 : \tau}$	by inversion
$\Gamma \vdash \lambda x : \tau'. e : \tau' \to \tau$	subderivation
$\Gamma \vdash e_2 : au$	subderivation
$\frac{\Gamma, x : \tau' \vdash e : \tau}{\Gamma \vdash \lambda x. e : \tau' \to \tau}$ $\Gamma, x : \tau' \vdash e : \tau$	by inversion subderivation
·	
$\Gamma \vdash [v/x]e : au$	substitution

Thus, we have proved Φ in this case!

3. In the simply typed λ -calculus, is there any context Γ and type Y for which $\Gamma \vdash x \, x : Y$ (where x is a free variable defined in Γ)? If so, give Γ , Y and show a typing derivation, otherwise prove that no such context and type exists.

No such type exists! Consider the following proof by contradiction.

Assume that there exists a context Γ and type Y such that $\Gamma \vdash x\, x : Y$. Thus the following proof tree must hold.

$$\frac{\overline{\Gamma \vdash x : X \to Y} \qquad \overline{\Gamma \vdash x : X}}{\Gamma \vdash x : x : Y}$$

However, this implies that both $x:X\to Y\in\Gamma$ and $x:X\in\Gamma$. Since these are not equal types, we have that Γ is an ill-formed typing context. This is a contradiction! Thus there exists no context Γ and type Y such that $\Gamma\vdash x\,x:Y$.

- 4. Under the Curry-Howard Correspondence (CHC), a proposition P is represented by a type π . Proving P corresponds to providing a term t such that $\cdot \vdash p : \pi$.
 - (a) We represent the negation $\neg P$ by a type $\pi \to 0$. why is this a reasonable representation?

By the CHC, we have that $\pi \to 0$ corresponds to the logical expression $P \supset 0$.

$$P \subset 0 \equiv \neg P \lor 0 \equiv \neg P$$

Thus, by the CHC, we have that the proposition represented by this type is logically equivalent to the proposition $\neg P$.

(b) Try to prove De Morgan's laws by converting each propositional formula to a type and providing a term of that type in the empty context.

Let π be the type corresponding to the propositional formula P, and let ρ be the type corresponding to the propositional formula Q.

i.
$$\neg P \land \neg Q \supset \neg P \lor Q$$

For: Herr Sebastian Funk

By the CHC we have that $\neg P \land \neg Q \supset \neg P \lor Q$ corresponds to the type $(\pi \to 0) \times (\rho \to 0) \to (\pi + \rho) \to 0$. I will prove that this proposition holds by showing that there exists a term which has that type for arbitrary π , ρ .

Let
$$\Gamma = x : (\pi \to 0) \times (\rho \to 0), y : \pi + \rho$$

	$\Gamma, a: \pi \vdash x: (\pi \to 0) \times (\rho \to 0)$		$\Gamma, a: \pi \vdash x: (\pi \to 0) \times (\rho \to 0)$	
	$\Gamma, a: \pi \vdash \text{fst } x: \pi \to 0$	$\Gamma, a: \pi \vdash a: \pi$	$\Gamma, a: \pi \vdash \operatorname{snd} x: \rho \to 0$	$\Gamma, b: \pi \vdash b: \rho$
$\Gamma \vdash : \pi + \rho$	$\Gamma, a: \pi \vdash (\operatorname{fst} x) \ a: 0$	a:0	$\Gamma, a: \pi \vdash (\operatorname{fst} x) a: 0$	u:0
	$\Gamma \vdash \operatorname{case}(y, L a \to A)$	$\Gamma \vdash \operatorname{case}(y, L a \to (\operatorname{fst} x) a, R b \to (\operatorname{snd} x) b) : 0$	(1x)b):0	
x:($\overline{x:(\pi\to 0)\times(\rho\to 0)\vdash \lambda y:\pi+\rho.\operatorname{case}(y,La\to(\operatorname{fst} x)a,Rb\to(\operatorname{snd} x)b):(\pi+\rho)\to 0}$	$\exists (y, L \ a \to (\operatorname{fst} x) \ a,$	$Rb \to (\operatorname{snd} x)b): (\pi + \rho) \to 0$	
$x:(\pi\to 0)$	$(\pi \to 0) \times (\rho \to 0) \cdot \lambda y : \pi + \rho \cdot \operatorname{case}(y, La \to (\operatorname{fst} x) a, Rb \to (\operatorname{snd} x) b) : (\pi \to 0) \times (\rho \to 0) \to (\pi + \rho) \to 0$	$(\operatorname{fst} x) a, Rb \to (\operatorname{sn}$	$(d x) b = (\pi \rightarrow 0) \times (\rho \rightarrow 0) \rightarrow (\pi \rightarrow 0)$	$+\rho \rightarrow 0$
	Figure 1: Typing derivation for a term of type $(\pi \to 0) \times (\rho \to 0) \to (\pi + \rho) \to 0$	a term of type (π –	$(0) \times (\rho \to 0) \to (\pi + \rho) \to 0$	\
				<i></i>

ii.
$$\neg (P \lor Q) \supset \neg P \land \neg Q$$

By the CHC we have that $\neg P \land \neg Q \supset \neg P \lor Q$ corresponds to the type $((\pi + \rho) \to 0) \supset (\pi \to 0) \times (\rho \to 0)$. I will prove that this proposition holds by showing that there exists a term which has that type for arbitrary π , ρ .

Let
$$\Gamma = x : (\pi + \rho) \to 0$$
.

iii.
$$\neg P \lor \neg Q \supset \neg (P \land Q)$$

By the CHC, we have that the type this proposition corresponds to is $((\pi \to 0) + (\rho \to 0)) \to (\pi \times \rho \to 0)$.

Let
$$\Gamma = x : (\pi \to 0) + (\rho \to 0), y : \pi \times \rho$$

iv.
$$\neg (P \land Q) \supset \neg P \lor \neg Q$$

This law does not hold! The type it corresponds to under the CHC is $(\pi \times \rho \to 0) \to (\pi \to 0) \times (\rho \to 0)$. No term can have this type in the empty context. Such a term would take a function $f:(\pi \times \rho) \to 0$ and return functions $g_1:\pi \to 0, g_2:\rho \to 0$. Either function individually only takes a term of type π or ρ and so cannot call f. Thus the only way such a term could exist is if it could make terms of type 0 — which would imply the language was unsound.

The STLC does not correspond to propositional logic.

5. Extend logical relation to support products and sums.

We define a logical relation $Halt_T$ for all types T:

$$\begin{split} \operatorname{Halt}_0 &= \emptyset \\ \operatorname{Halt}_1 &= \{e \mid e \text{ halts}\} \\ \operatorname{Halt}_{X \to Y} &= \{e \mid e \text{ halts} \land \forall e' \in \operatorname{Halt}_X. e \ e' \in \operatorname{Halt}_X\} \\ \operatorname{Halt}_{X \times Y} &= \{e \mid e \text{ halts}\} \\ \operatorname{Halt}_{X \times Y} &= \{e \mid e \text{ halts}\} \\ \operatorname{Halt}_{X + Y} &= \{L \ e \mid e \in \operatorname{Halt}_X\} \cup \{R \ e \mid e \in \operatorname{Halt}_Y\} \\ &\qquad \qquad \{e \mid e \sim \operatorname{Le} \land e \in \operatorname{Halt}_X\} \lor \{R \ e \mid e \in \operatorname{Halt}_Y\} \\ \end{split}$$

6. 3 2023 Paper 8 Question 13

Consider Gödel's T, the Simply-Typed Lambda Calculus with function and natural number types, with zero, successor and iterator term formers for teh natural number type.

I define an intermediate logical relation and use this to define a logical relation which is suitable for establishing termination in the language.

https://www.cl.cam.ac.uk/ teaching/exams/pastpapers/ y2023p8q13.pdf

$$\overline{\Gamma, y : \pi \vdash x : (\pi + \rho) \to 0} \quad \overline{\Gamma, y : \pi \vdash y : \pi}$$

$$\overline{\Gamma, y : \pi \vdash x : (\pi + \rho) \to 0} \quad \overline{\Gamma, y : \pi \vdash Ly : (\pi + \rho)} \quad \overline{\Gamma, y : \rho \vdash x : (\pi + \rho) \to 0} \quad \overline{\Gamma, y : \rho \vdash Ry : (\pi + \rho)}$$

$$\overline{\Gamma, y : \pi \vdash x : (Ly) : 0}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

$$\overline{\Gamma \vdash \lambda y : \pi \vdash x : (Ly) : (\pi \to 0)}$$

		$\Gamma, a: \pi \to 0 \vdash y: \pi \times \rho$	$\Gamma, b: ho - $	$\Gamma, b: \rho \to 0 \vdash y: \pi \times \rho$
	$\Gamma, a: \pi \to 0 \vdash a: \pi \to 0$	$\Gamma, a: \pi \to 0 \vdash \text{fst } y: \pi$	$\overline{\Gamma,b:\rho\to 0\vdash b:\rho\to 0} \overline{\Gamma,b:\rho\to 0\vdash \operatorname{snd} y:\rho}$	$\rightarrow 0 \vdash \text{snd } y : \rho$
$(0 \leftarrow \rho) + (\rho \rightarrow 0) :$	$\Gamma, a: \pi \to 0 \vdash a (\operatorname{fst} y): 0$	$a\left(\operatorname{fst}y\right):0$	$\Gamma, b: \rho \to 0 \vdash b $ (snd y): 0	0:
	$\Gamma \vdash \operatorname{case}(x, La \rightarrow$	$\Gamma \vdash \operatorname{case}(x, L a \to a (\operatorname{fst} y), b \to b (\operatorname{snd} y)) : 0$	0	
$x:(\pi\to 0)$	_	$+ (\rho \to 0) \vdash \lambda y : \pi \times \rho \cdot \operatorname{case}(x, La \to a \operatorname{(fst} y), b \to b \operatorname{(snd} y)) : \pi \times \rho \to 0$	$b (\operatorname{snd} y) : \pi \times \rho \to \overline{0}$	
$-\lambda x: (\pi \to 0) + (\rho \to 0)$	$\rightarrow 0$). $\lambda y : \pi \times \rho$. case $(x, L a \rightarrow$	$a (\operatorname{fst} y), b \to b (\operatorname{snd} y)) : ($	$). \lambda y : \pi \times \rho. \operatorname{case}(x, L a \to a (\operatorname{fst} y), b \to b (\operatorname{snd} y)) : ((\pi \to 0) + (\rho \to 0)) \to (\pi \times \rho \to 0)$	
Fis	gure 3: Typing derivation for	a term of type $((\pi \to 0))$	e 3: Typing derivation for a term of type $((\pi \to 0) + (\rho \to 0)) \to (\pi \times \rho \to 0)$	

The definition of the intermediate logical relation is as follows:

$$\begin{aligned} \operatorname{Halt}_1 = & \{e \mid e \text{ halts}\} \\ \operatorname{Halt}_{\mathbb{N} \leq 0} = & \{e \mid e \leadsto^* z\} \\ \forall i \in \mathbb{N}. \operatorname{Halt}_{\mathbb{N} \leq i+1} = & \{e \mid e \leadsto^* s(e') \land e' \in \operatorname{Halt}_{\mathbb{N} \leq i}\} \\ \operatorname{Halt}_{\mathbb{N}} = \bigcup_{i \in \mathbb{N}} \operatorname{Halt}_{\mathbb{N} \leq i} \end{aligned} \qquad \begin{aligned} & \text{There's a simpler definition.} \\ \operatorname{Halt}_{X \to Y} = & \{e \mid e \text{ halts} \land \forall e' \in \operatorname{Halt}_X. e e' \in \operatorname{Halt}_Y\} \\ & \cup \{\operatorname{iter}(e, z \to e_1, s(x) \to e_2) \mid e \in \operatorname{Halt}_{\mathbb{N}} \land e_1 \in \operatorname{Halt}_{X \to Y} \\ & \land \lambda x : X \to Y. e_2 \in \operatorname{Halt}_{X \to Y} \\ \end{aligned}$$

(b) State the fundamental lemma for this language.

$$x_1: X_1, x_2: X_2, \dots, x_n: X_n \vdash e: T \land \forall i \in \{1, \dots n\}. \vdash v_i: X_i \implies [v_1/x_1, \dots, v_n/x_n]e \in \mathsf{Halt}_T$$

(c) State formally what it means for a set of terms X to he "closed under reduction". The set of terms X is "closed under reduction" if, and only if:

$$\forall e \in X.e \leadsto e' \implies e' \in X$$

(d) Prove the fundamental lemma holds for the iterator case.

Prove the fundamental lemma for Gödel's T by structural induction on $x_1: X_1, \ldots, x_n: X_n \vdash e: Z.$

For brevity, let
$$\Gamma = x_1 : X_1, x_2 : X_2, \dots, x_n : X_n$$
 and $\gamma = [v_1/x_1, \dots, v_n/x_n]$ Case (iter):

$$\begin{array}{ll} \Gamma \vdash e : Z & \text{by assumption} \\ e = \operatorname{iter}(e_0, z \to e_1, s(x) \to e_2) & \text{by assumption} \\ \frac{\Gamma \vdash e_0 : \mathbb{N} \quad \Gamma \vdash \operatorname{Te} \mathbb{N} \mathbb{Z} \quad \Gamma, x : Z \vdash e_2 : X}{\Gamma \vdash \operatorname{iter}(e_0, z \to e_1, s(x) \to e_2) : X} & \text{by assumption} \\ \Gamma \vdash e_0 : \mathbb{N} & \text{subderivation} \\ \Gamma \vdash e_1 : Z & \text{subderivation} \\ \Gamma, x : Z \vdash e_2 : Z & \text{subderivation} \\ \forall i \in \{1, \dots, n\}. \ v_i : X_i & \text{by assumption} \\ \gamma e \\ = \gamma \operatorname{iter}(e_0, z \to e_1, s(x) \to e_2) & \text{by assumption} \\ \Rightarrow \operatorname{iter}(\gamma e_0, z \to \gamma e_1, s(x) \to \gamma e_2) & \text{by definition of substitution} \\ \gamma e_0 \in \operatorname{Halt}_{\mathbb{N}} & \text{by the induction hypothesis} \\ \gamma e_1 \in \operatorname{Halt}_Z & \text{by the induction hypothesis} \\ \end{array}$$

Notice that since we have $\gamma e_0 \in \operatorname{Halt}_{\mathbb{N}}$, we have $\gamma e_0 \leadsto^* n$. I will perform structural induction on n for the remainder of the proof (i.e. to prove γ iter($e_0, z \to e_1, s(x) \to e_2$) $\in \operatorname{Halt}_Z$)

November 10, 2023

Case (z)

$$\gamma e_0 \leadsto^* z$$
 by assumption $\gamma \operatorname{iter}(e_0, z \to e_1, s(x) \to e_2) \leadsto^* \gamma \operatorname{iter}(z, z \to e_1, s(x) \to e_2)$ by the reduction rules $\gamma \operatorname{iter}(z, z \to e_1, s(x) \to e_2) \leadsto \gamma e_1$ by the reduction rules by assumption, since $\gamma e_1 \in \operatorname{Halt}_Z$ $\gamma \operatorname{iter}(z, z \to e_1, s(x) \to e_2) \leadsto^* v$ by transivitity of reduction
$$\operatorname{Case}(s(v'))$$

$$\gamma e_0 \leadsto^* s(\cancel{z})$$
 by assumption
$$\gamma \operatorname{iter}(e_0, z \to e_1, s(x) \to e_2) \leadsto \gamma \operatorname{iter}(s(v'), z \to e_1, s(x) \to e_2)$$
 by the reduction rules
$$\gamma \operatorname{iter}(s(v'), z \to e_1, s(x) \to e_2) \leadsto \gamma \operatorname{iter}(s(v'), z \to e_1, s(x) \to e_2)$$
 by the reduction rules by the reduction rules

I don't think this is proving the fundamental lemma?

by transivitity of reduction

by assumption, since $\gamma[v'/x]e_1 \in \operatorname{Halt}_Z$

We have now proved the fundamental lemma in the iter case!

4 2020 Paper 8 Question 15

 $\gamma iter(s(v'), z \to e_1, s(x) \to e_2) \leadsto^* v$

 $\gamma [v'/x]e_1 \leadsto^* v$

(b) (i) Give the typing rules for Peano natural numbers and their eliminator.

Peano natural numbers can be represented either as z (for zero) or s(x) for the successor of some other natural number x. Their eliminator is the iter function – which can be interpreted as bounded recursion.

https://www.cl.cam.ac.uk/ teaching/exams/pastpapers/ y2020p8q15.pdf

$$\frac{\Gamma \vdash x : \mathbb{N}}{\Gamma \vdash z : \mathbb{N}} \qquad \frac{\Gamma \vdash x : \mathbb{N}}{\Gamma \vdash s(x) : \mathbb{N}} \frac{\Gamma \vdash e : \mathbb{N} \qquad \Gamma \vdash e_1 : X \qquad \Gamma, x : X \vdash e_2 : X \to X}{\mathrm{iter}(e, z \to e_1, s(x) \to e_2) : X}$$

(ii) Using the rules given above, define the addition function.

add
$$\triangleq \lambda m. \lambda n. iter(m, z \to n, s(x) \to s(x))$$

(iii) Let a binary tree be either a leaf Leaf or a node Node(1, x, r) where 1 and r are subtrees, and x is a natural number. Give typing rules for trees corresponding to this prose description, including an eliminator.

I will consider the eliminator fold which aggregates the nodes in a tree with a user-defined ternary operation. For example $\operatorname{Fold}(e,\operatorname{Leaf}\to z,\operatorname{Node}(l,x,r)\to\operatorname{add}(l,\operatorname{add}(x,r)))$ would sum all the nodes in the tree.

$$\frac{\Gamma \vdash e_1 : \text{tree}}{\Gamma \vdash \text{Leaf} : \text{tree}} \qquad \frac{\Gamma \vdash e_1 : \text{tree}}{\Gamma \vdash \text{Node}(e_1, x, e_2) : \text{tree}}$$

$$\frac{\Gamma \vdash e : \text{tree} \qquad \Gamma \vdash e_1 : X \qquad \Gamma, l : X, x : \mathbb{N}, r : X \vdash e_2 : X}{\Gamma \vdash \text{fold}(e, \text{Leaf} \rightarrow e_1, \text{Node} \rightarrow e_2) : X}$$

November 10, 2023

(iv) Using the rules given above, define a function size which takes a binary tree and returns the total number of nodes in the tree.

 $\operatorname{size} = \lambda x : \operatorname{tree.fold}(x,\operatorname{Leaf} \to z,\operatorname{Node}(l,x,r) \to s(\operatorname{add}(l,r))$

5 Extension Questions

1. Find a context Γ under which the term $f \, x \, y$ has type Bool. i.e. $\Gamma \vdash f \, x \, y$: Bool. In the STLC the representation of Bool is given by 1+1. I will work in this langauge.

$$\Gamma = f: 1 \to 1 \to 1 + 1, x: 1, y: 1$$

2. Can you give a simple description of the set of all such contexts?

$$G = \{(f: X \rightarrow Y \rightarrow 1 + 1, x: X, y: Y) \mid X, Y \text{ are valid types}\}$$

3. OCaml has a polymorphic equals-function. That is, equal : $a \to a \to \text{bool}$ is defined for all types. What are the implications on safety of the type system?

From computation theory; we have that for the lambda calculus, the existence of an equals function implies that there are expressions which loop infinitely. Applying similar logic here means that the existence of a polymorphic equals function means there is an expression in OCaml which loops infinitely.

For: Herr Sebastian Funk