PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-327882

(43)Date of publication of application: 28.11.2000

(51)Int.Cl.

CO8L 61/34

CO8G 59/40

CO8L 61/06

CO8L 63/00 H01L 23/29

H01L 23/31

(21)Application number : 11-144728

(71)Applicant : HITACHI CHEM CO LTD

(22)Date of filing:

25.05.1999

(72)Inventor: NAGASE HIDEO

AIZAWA TERUKI

HIRAI YASUYUKI

NANAUMI KEN **FURUSAWA FUMIO**

IKEZAWA RYOICHI KATAYOSE MITSUO

TENDOU KAZUYOSHI

AKAGI SEIICHI

(54) RESIN COMPOSITION FOR SEMICONDUCTOR SEALING AND RESIN- SEALED TYPE SEMICONDUCTOR DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a resin composition for sealing a semiconductor excellent in flame-retardancy and storage safety, and a semiconductor device sealed with the composition.

SOLUTION: A semiconductor element is sealed with a resin composition for sealing a semiconductor which comprises as an indispensable ingredient 100 pts.wt. of a thermosetting resin composition having incorporated therewith 200-1,200 pts.wt. of an inorganic filler, which thermosetting resin composition comprising a thermosetting resin having a dihydrobenzoxazine ring synthesized from phenols, formaldehydes and aromatic diamines selected from the group (A) below, an epoxy resin and a phenol resin, a mixture of these three ingredients having a melt viscosity of not higher than 2 P at 150° C. (A): 4,4'- diaminodiphenylmethane, 4,4'diaminodiphenyl ether, 1,3-bis(4-aminophenoxy) benzene, a, a'-bis(4-aminophenyl)-1,4diisopropylbenzene.

LEGAL STATUS

[Date of request for examination]

28.03.2006

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration] [Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-327882 (P2000-327882A)

(43)公開日 平成12年11月28日(2000.11.28)

茨城県下館市大字小川1500番地 日立化成

茨城県下館市大字小川1500番地 日立化成

工業株式会社下館工場内

工業株式会社下館工場内

弁理士 若林 邦彦

(72)発明者 相沢 輝樹

(74)代理人 100071559

(51) Int.Cl.'		識別記号	ΡI				รั	·-マコード(参考)		
C 0 8 L	61/34		C08L 6	1/34				4 J O O 2		
C 0 8 G	59/40		C08G 5	9/40				4J036		
C08L	61/06		C08L 6	61/06				4M109		
	63/00		6	3/00			Α			
H01L	23/29		H01L 2	3/30			R			
		審查請	水 未請求 請求功	質の数 6	OL	(全	7 頁)	最終頁に続く		
(21)出願番号		特膜平11-144728	(71)出頭人	000004455 日立化成工業株式会社						
(22)出顧日		平成11年5月25日(1999.5.25)	(72)発明者	東京都		西新宿2丁目1番1号				

最終頁に続く

(54) 【発明の名称】 半導体封止用樹脂組成物及び樹脂封止型半導体装置

(57)【要約】 (修正有)

【課題】難燃性及び保存安全性に優れた半導体封止用樹脂組成物及び該組成物により封止した半導体装置を提供する。

【解決手段】フェノール類、ホルムアルデヒド類、及び下記(A)の群れから選ばれた芳香族ジアミンから合成されるジヒドロベンゾオキサジン環を有する熱硬化性樹脂、エポキシ樹脂及びフェノール樹脂からなり、且つこれら3成分の混合物の150℃における溶融粘度が2P以下となる熱硬化性樹脂組成物を必須成分とし、この熱硬化性樹脂組成物100重量部に対し、無機充填材200~1200重量部を含有してなる半導体封止用樹脂組成物で半導体素子を封止する。

(A) 4, 4, -ジアミノジフェニルメタン、4, 4, -ジアミノジフェニルエーテル、1, 3-ビス(4アミノフェノキシ)ベンゼンまたは α 、 α , -ビス(4- γ ミノフェニル)-1, 4- γ ジイソプロピルベンゼン

1

【特許請求の範囲】

【請求項1】フェノール類、ホルムアルデヒド類、及び下記(A)の群れから選ばれた芳香族ジアミンから合成されるジヒドロベングオキサジン環を有する熱硬化性樹脂、エポキシ樹脂及びフェノール樹脂からなり、且つこれら3成分の混合物の150℃における溶融粘度が2P以下となる熱硬化性樹脂組成物を必須成分とし、この熱硬化性樹脂組成物100重量部に対し、無機充填材200~1200重量部を含有してなる半導体封止用樹脂組成物。

(A) 4, 4, -ジアミノジフェニルメタン、4, 4, 4, -ジアミノジフェニルエーテル、1, 3-ビス(4アミノフェノキシ)ベンゼンまたは α 、 α , -ビス(4- γ ミノフェニル)-1, 4-ジイソプロピルベンゼン

【請求項2】ホルムアルデヒド類が92%以上のホルムアルデヒドの含有量であるパラホルムである請求項1記載の半導体封止用樹脂組成物。

【請求項3】エポキシ樹脂がピフェニル型エポキシ樹脂 又はピスフェノールF型エポキシ樹脂である請求項1記 載の半導体封止用樹脂組成物。

【請求項4】フェノール樹脂がキシリレン変性フェノール樹脂、ピフェニル変性フェノール樹脂またはキシレン変性フェノール樹脂である請求項1記載の半導体封止用樹脂組成物。

【請求項5】請求項1~5のいずれか記載の半導体封止 用樹脂組成物を硬化して得られる樹脂硬化物。

【請求項6】請求項1~6のいずれか記載の半導体封止 用樹脂組成物により封止してなる樹脂封止型半導体装 置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体封止用樹脂組成物及び樹脂封止型半導体装置に関し、特に従来一般に用いられているエポキシ樹脂封止材を難燃性、電気特性、耐リフロー性、保存安定性等において総合的に陵駕するジヒドロベンゾオキサジン系樹脂の半導体封止用樹脂組成物及び樹脂封止型半導体装置に関する。

[0002]

【従来の技術】樹脂封止型半導体装置には、従来エポキシ樹脂がそのバランスのとれた機械特性、耐熱性、生産 40性の高い成形性等により広く用いられている。しかし、半導体装置の薄型高密度化や表面実装方式の普及により半導体装置に求められる特性はより厳しくなり、それに伴って封止用樹脂にもより優れた上記特性やより多くの機能が要求されるようになってきている。そのような要求に応じるためにとられてきたエポキシ樹脂の改質方法としては、具体的には、可撓化剤での変成、アロイ化による低弾性率化、官能基密度の増加等が挙げられるが、これらの手法による改質も限界に近づきつつある。また更に近年は、環境保全の観点から、難燃性を維持する上 50

で不可欠とされてきたハロゲン化物及びアンチモンの添加量の低減が求められている。更に耐リフロー性の良好なエポキシ樹脂組成物は、常温での保存安定性が24時間以下と非常に短いため、低温保存が不可欠であるだけでなく、硬化性を維持するために湿度管理も必要であるなど設備管理面での負担が大きくなる。これらの点からも新しい樹脂系の開発が求められている。

【0003】上記要求を達成する方法として、いくつか の試みがなされており、例えば、特開平2-3445号 10 公報にはポリイミド樹脂を用いた組成物が半導体封止用 樹脂組成物として例示されている。しかしながらポリイ ミド樹脂は可撓性、接着性が不十分であることに加え極 めて高価であり成形性も劣るという欠点がある。そこ で、新規の樹脂系としてジヒドロベンゾオキサジン化合 物が提案されている(特開昭49-47387号公報、 米国特許5152939号明細書参照)。この化合物の 硬化反応は、エポキシ樹脂と類似の、ジヒドロベンゾオ キサジン環の開環重合反応を利用するものであるため、 揮発分の発生を殆ど伴わないといった特徴がある。一 方、開環重合反応を利用したジヒドロベンブオキサジン 化合物の硬化物は、従来知られている熱硬化性樹脂と比 較して耐熱性が良好であり、しかも高強度且つ可撓性に 優れている。しかし、従来公知のジヒドロベンソオキサ ジン化合物においては、硬化に長時間を要するととも に、硬化物の架橋密度が低くモールド成形直後の成形品 の硬度が低く、抜型が難しいため半導体封止用途として は使いづらいものであった。特開平9-272786号 公報には、硬化性が改良された樹脂組成物について開示 されているが、耐リフロークラック性の向上に必要なイ 30 ンサート類との接着力、特にリードフレームとして用い られる42アロイとの接着性が不十分であった。

[0004]

【発明が解決しようとする課題】本発明は、かかる状況に鑑みなされたもので、ジヒドロベンゾオキサジン環を有する熱硬化性樹脂の特徴である機械特性や低吸水率等の諸特性を低下させることなく、インサート類特に42アロイとの接着力に優れ耐リフロークラック性が良好で、且つ一般のエポキシ樹脂封止材の問題点である難燃剤の低減及び保存安全性に優れた半導体封止用樹脂組成物及び該組成物により封止した半導体装置を提供することを目的とする。

[0005]

【課題を解決するための手段】本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、芳香族ジアミンから誘導されるジヒドロベンゾオキサジン環を有する熱硬化性樹脂、1分子中にエポキシ基を2個以上有するエポキシ樹脂及びフェノール樹脂、並びに特定量の無機質充填材を配合することにより、硬化性すなわち硬化速度、及びモールド成形直後の成形品の硬度を飛躍的に向上でき、更にインサートとの接着力に優れ、この組成物

で封止した半導体装置は耐リフロークラック性に優れることを見出した。更にノンハロゲン、ノンアンチモンで UL-94の判定V0が達成できることを見出した。すなわち本発明は、フェノール類、ホルムアルデヒド類、及び下記(A)の群れから選ばれた芳香族ジアミンから合成されるジヒドロベンゾオキサジン環を有する熱硬化性樹脂、エポキシ樹脂及びフェノール樹脂からなり、且つこれら3成分の混合物の150℃における溶融粘度が2P以下となる熱硬化性樹脂組成物を必須成分とし、この熱硬化性樹脂組成物100重量部に対し、無機充填材200~1200重量部を含有してなる半導体封止用樹脂組成物および該組成物で封止した半導体装置に関する。

【発明の実施の形態】本発明に用いられるジヒドロベン ゾオキサジン環を有する熱硬化性樹脂は、フェノール性 水酸基を有する化合物とホルムアルデヒド類及び芳香族 ジアミン類から合成される。フェノール性水酸基を有す る化合物としては、フェノール、o, m, p-クレゾー ル、キシレノール、ノニルフェノール、p-t-ブチル フェノール、オクチルフェノール等、一価のフェノール 類が例示でき、これら化合物のうち1種以上を併用して 用いることもできる。また、ホルムアルデヒド源として は80%以上のホルムアルデヒド含有品、特に92%以 上の濃度を有するパラホルムが枝分れの少ない樹が得ら れ好ましい。芳香族ジアミン類としては、mーフェニレ · ンジアミン、pーフェニレンジアミン、4, 4'ージア ミノジフェニルメタン、4,4'ージアミノジフェニル エーテル、4,4'ージアミノジフェニルスルホン、 2, 2-ビス〔(4-アミノフェノキシ)フェニル〕プ ロパン、1, 3-ビス(4-アミノフェノキシ)ベンゼ ン、 α 、 α ービス $(4-P \in J \supset x = N) - 1, 4-$ ジイソプロピルベンゼン (通称ビスアニリン-M) 等が 挙げられる。これらジアミン類は単独でまたは2種以上 併用して用いることもできる。特に4,4'ージアミノ ジフェニルメタン、4,4'ージアミノジフェニルエー 40 テルを用いると作業性、特性向上の点で好ましく、1, 3-ビス (4アミノフェノキシ) ベンゼンまたは α 、 ロピルベンゼンを用いると難燃性レベルが向上する。 【0007】反応に用いられる溶剤として、メタノー ル、エタノール、プロパノール、ブタノール等の低級ア ルコールが挙げられる。特に、メタノールが価格、パラ ホルムとの親和性の点から好ましい。上記ジヒドロベン ゾオキサジン環を有する熱硬化性樹脂の合成は、フェノ ール類とパラホルムを溶剤中で懸濁させた後、50℃~

70℃に加温し芳香族ジアミン類を15~30分かけて 添加するのが好ましい。50℃未満では、芳香族ジアミ ン類及びパラホルムが溶解しないままに反応が進み、未 反応のパラホルム、芳香族ジアミン類が反応系内に残り 好ましくない。70℃を越えると部分的に反応が進み均 質な樹脂が得られない。芳香族ジアミン類を添加後、反 応温度を還流温度(約80℃)に昇温し、乳化後2時間 反応させる。反応終了後、減圧下で溶剤及び水分を除去 しジヒドロベンゾオキサジン環を有する熱硬化性樹脂を 得る。上記反応において、使用する溶剤の量は、パラホ ルムの量の0.5倍~2倍、特に1.0倍~1.5倍が 好ましい。 0. 5倍未満では、パラホルムの未溶解部分 が多く、均一に反応しないため樹脂中に未反応原料が残 り、特性の優れた樹脂は得られない。また2倍を越える 場合には、反応で副生する水を除去するのに時間がかか り過ぎる等の問題が生ずるので好ましくない。上記のジ ヒドロベンゾオキサジン環を有する熱硬化性樹脂は、1 50℃以上、望ましくは170~220℃に加熱するこ とにより、触媒や硬化剤を用いないでも、副生成物を生 じることなく硬化する。

【0008】本発明に用いられるジヒドロベンゾオキサ ジン環を有する熱硬化性樹脂は、150℃での溶融粘度 が3P以下、好ましくは2P以下のものが用いられ2種 類以上を組み合わせて用いることもできる。本発明に用 いられるエポキシ樹脂としては、150℃での溶融粘度 が6P以下のもの、好ましくは3P以下のエポキシ樹脂 が用いられる。特に好ましくは1分子中にエポキシ基を 2個有するエポキシ樹脂を用いることで、例えばビフェ ニル系エポキシ樹脂、ビスフェノールA系エポキシ樹脂 が挙げられる。また必要により1分子中にエポキシ基を 3個以上有するエポキシ樹脂を併用することもでき、例 えばフェノールノボラック型エポキシ樹脂、オルソクレ ゾールノボラック型エポキシ樹脂或いはサリチルアルデ ヒド系エポキシ樹脂等がある。特に好ましくは結晶性を 有するビフェニル型エポキシ樹脂又はビスフェノールF 型エポキシ樹脂が作業性が良好で高接着力が得られる。 上記エポキシ樹脂の配合割合は、樹脂分全体の3~70 重量%、更に好ましくは5~60重量%である。3重量 %未満であると架橋密度が低く、成形直後の成形品に十 分な硬度が得られず、70重量%を越えると吸水率が上 昇する。本発明において、前記熱硬化性樹脂に配合され るフェノール樹脂としては、150℃での溶融粘度が3 P以下、特に好ましくは2P以下のフェノール樹脂が用 いられる。フェノール樹脂としては、フェノールノボラ ック樹脂、ビスフェノールノボラック樹脂、キシリレン 変性フェノール樹脂、キシレン変性フェノール樹脂、ナ フトール変性フェノール樹脂、ナフタレン変性フェノー ル樹脂、ビフェニル変性フェノール樹脂、あるいはメラ ミン変性フェノール樹脂等が挙げられる。これらは2種 以上併用してもよい。特に好ましくは、キシリレン変性

フェノール樹脂、キシレン変性フェノール樹脂、ビフェニル変性フェノール樹脂が低粘度で充填材の高充填が可能であるとともにフェニル骨格が多く存在するため難燃性の点で有利である。

【0009】ジヒドロベンゾオキサジン環を有する熱硬 化性樹脂は、それ自体自硬化性であるが硬化反応が遅 い。そこで、フェノール樹脂を樹脂分全体の10~30 重量%、好ましくは15~25重量%配合することによ り、機械特性を低下させずに硬化性を向上させることが できる。フェノール樹脂が10重量%未満の場合は十分 10 な硬化性が得られず、30重量%を越えると硬化性は向 上するが吸水率が増加し、機械特性が低下することがあ る。本発明では、上記ジヒドロベンソオキサジン環を有 する熱硬化性樹脂、エポキシ樹脂及びフェノール樹脂を それぞれ所定量配合させてなる熱硬化性樹脂組成物であ り、且つこの熱硬化性樹脂の150℃での溶融粘度が2 P以下となることが良好な硬化性及び成形性を得るため に重要である。溶融粘度が2Pを超えると無機充填材の 充填が困難となり、成形不良を生じ易い。本発明におい て用いられる無機充填材としては、溶融二酸化珪素粉 末、硼酸亜鉛、及び水酸化アルミニウム等が挙げられ る。これらは1種または2種以上の混合物として用いら れる。溶融二酸化珪素粉末は、球状のもの又は破砕状の もののいずれをも用いることができ、あるいは両者を併 用することも可能である。その粒径は0.5~30μm が適当であり、この範囲を逸脱すると強度の低下あるい は成形不良が生じる。また、予め所定のカップリング剤 で表面処理した無機充填材を使用することもできる。無 機充填材の配合量は、熱硬化性樹脂100重量部に対 し、200~1200重量部、更に好ましくは300~ 30 800重量部が適当である。200重量部未満では強度 の低下及び熱膨張係数の低減効果の低下が見られ、12 00重量部を越えると成形が困難となる。

【0010】本発明の半導体封止用樹脂組成物には、必 要に応じ、硬化促進剤、離型剤、接着付与剤、着色剤、 難燃剤等の添加剤を配合することができる。硬化促進剤 としては、カテコール、ビスフェノールA等の多官能フ エノール化合物、pートルエンスルホン酸、pーフェノ ールスルホン酸等のスルホン酸類、安息香酸、サリチル 酸、シュウ酸、アジピン酸等のカルボン酸類、コバルト 40 (II) アセチルアセテート、アルミニウム(III) アセチ ルアセテート、ジルコニウム (IV) アセチルアセトネー ト等の金属錯体、酸化カルシウム、酸化コバルト、酸化 マグネシウム、酸化鉄等の金属酸化物、水酸化カルシウ ム、イミダゾール及びその誘導体、ジアザビシクロウン デセン、ジアザビシクロノネン等の第三級アミン及びこ れらの塩、トリフェニルホスフィン、トリフェニルホス フィン・ベンゾキノン誘導体、トリフェニルホスフィン ・トリフェニルボロン塩、テトラフェニルホスホニウム ・テトラフェニルボレート等のリン系化合物及びその誘 50

導体が挙げられる。これらは1種で又は2種以上の混合物として用いられる。硬化促進剤の配合量は、熱硬化性樹脂組成物100重量部に対し、5重量部以下、更に好ましくは3重量部以下であり、5重量部を超えると吸水率の増加及び保存安定性が悪化する。

【0011】離型剤としては、ポリエステル系ワック ス、モンタン酸エステルワックス、カルナバワックスや ポリエチレンワックス等が、着色剤としてカーボンブラ ック等を用いることができる。接着付与剤としては、シ ランカップリング剤、例えばアミノシラン、ジアミノシ ラン、トリアミノシラン、ウレイド変性アミノシラン、 ビニルシラン、ビニルベンジルアミノシラン、ベンジル アミノシラン、カチオニックシラン、エポキシシラン、 アニリノシラン等が挙げられる。これらは1種で又は2 種以上の混合物として用いられる。また、必要に応じて 一般に用いられている難燃剤を配合することもできる。 【0012】従来のエポキシ樹脂系半導体封止用樹脂組 成物では、難燃性を付与するために臭素系エポキシ樹脂 および三酸化アンチモンが用いられてきたが、本発明の 樹脂組成物ではノンハロゲン、ノンアンチモンでULー 94のV-0が達成できる。上記組成物を用いて半導体 素子を封止する方法としては、特に制限はないが加熱ロ ール等により60~120℃で混練し、しかる後に金型 内に半導体素子を配置し、次いで樹脂混練物を160~ 220℃、成形圧20~120kgf/cm²で1~1 0分間圧縮成形又は移送成形することにより成形し、更 に160~220℃で1~6時間後硬化させることによ り、樹脂封止型半導体装置が得られる。

[0013]

【実施例】以下、本発明の実施例及びその比較例によって、本発明を更に具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。

実施例1~6、比較例1~6

[1] ジヒドロベンゾオキサジン環を有する熱硬化性樹脂の合成(I)

フェノール0.94kg(10mol Hai)、メタノール900ml、95%パラホルム0.63kg(20mol Hai)を混合し、加熱還流して、パラホルムをフェノールに懸濁する。懸濁液を加温し50℃になった時点で、4,4' ージアミノジフェニルメタン0.99kg(5mol Hai) を分割して添加する。添加終了後、反応温度を上昇させ還流させる。反応液は乳化する。乳化してから反応を2時間継続する。反応終了後、減圧下に溶剤及び副生成した水を留去し、ジヒドロベンゾオキサジン環を有する熱硬化性樹脂を得た(溶融粘度:1.2p/150℃)。

[2] ジヒドロベンゾオキサジン環を有する熱硬化性樹脂の合成 (II)

o-クレゾール0.65kg (6mol相当)、メタノール800ml、95%パラホルム0.4kg (12m

o l 相当)を混合し、加熱還流しつつパラホルムを懸濁 させる。懸濁液が50℃になったら、ビスアニリンーM (三井化学ファイン (株) 製) 1. 03 kg (3 m o l 相当)を分割して添加する。その後上記[1]と同様な 方法でジヒドロベンゾオキサジン環を有する熱硬化性樹 脂を得た(溶融粘度:1.8P/150℃)。

7

[3] ジヒドロベンゾオキサジン環を有する熱硬化性樹 脂の合成(III)

ビスフェノールF1. Okg (5mol相当)、アニリ ン0.93kg(10mol相当)をメチルエチルケト 10 ン0.5kg中で混合し、80℃で5時間撹拌し、均一 な混合溶液を調整した。5リットルフラスコ中に、ホル マリン1.62kgを仕込み90℃に加熱し、ここへ前 記ビスフェノールF/アニリン/メチルエチルケトン混 合溶液を30分間かけて少しずつ添加した。添加終了後 30分間、還流温度に保ち、然る後に100℃で2時間 6666.1Pa以下に減圧して縮合水を除去し、反応 し得るヒドロキシル基の75%がジヒドロベンゾオキサ ジン化された熱硬化性樹脂を得た(溶融粘度:0.8 P **/150℃**) 。

【0014】[4]ノボラック型フェノール樹脂の合成 (A)

フェノール2. 4 k g、ホルマリン (37%水溶液) 0.13kg,パラホルム0.5kg、シュウ酸3gを 5リットルフラスコに仕込み、還流温度で4時間反応さ せた。引き続き、内部を6666.1Pa以下に減圧し て未反応のフェノール及び水を除去した。 (溶融粘度: 2P/150°C).

[5] エポキシ樹脂

ビフェニル型エポキシ樹脂 (油化シェルエポキシ (株) 製 商品名YX-4000H エポキシ当量:192g /eq 溶融粘度:0.1P)

ビスフェノールF型エポキシ樹脂 (新日鉄化学 (株) 製 商品名ESLV-80XY エポキシ当量: 186 g /eq 溶融粘度:0.1P)

[6] フェノール樹脂

キシリレン型フェノール樹脂 (三井東圧化学 (株) 製 商品名 X L - 2 2 5 - 3 L 水酸基当量: 1 7 1 g 溶融 粘度:1.5P)

ビフェニル型フェノール樹脂 (明和化成 (株) 製 商品 40 名MEH-7851水酸基当量:192g 溶融粘度: 1. 5 P)

【0015】[7] その他の配合物

硬化促進剤としてはトリフェニルホスフィン・ベンゾキ ノン誘導体(北興化学(株)製商品名P2)を使用し た。シランカップリング剤として、γ – グリドキプロピ ルトリメトキシシランとメチルトリメトキシシランの混 合物を用いた。また、充填剤として、平均粒径25μm の球状溶融シリカ(マイクロン(株)製 商品名S-C OX-31)、平均粒径10μmの球状溶融シリカ(龍 森(株)製 商品名FB-301)及び平均粒径0.7 μ mの球状溶融シリカ ((株) アドマテックス製 商品 名SO-25R) を7:2:1で混合したものを用い た。

【0016】 [硬化] 表1に示す配合組成により原材料 を混合し、二軸加熱ロールを用いて90℃で15分間混 練後これを粉砕し、粉末状の樹脂組成物を作製した。な お、樹脂組成物中の溶融二酸化珪素粉末の充填量は、標 準80容積%とした。次いで、移送成形機の金型キャビ ティ内に半導体素子を配置し、175℃、70kgf/ cm^{*}、90秒間の条件で上記金型内で各樹脂組成物の 移送成形を行い、QFP54ピン(外寸20mm×14 mm×2mm、リードフレーム材質42アロイ、半導体 素子寸法8mm×10mm)の半導体装置を得た。また 175℃、6時間の条件で後硬化を行った。

【0017】 [特性評価] 樹脂組成物の機械特性、耐熱 性、難燃性、接着性等の一般特性を知るため、上記と同 条件で板状の硬化物である試験片も作製した。硬化物の 特性は、機械特性・電気特性については JIS K69 11に準じ、難燃性についてはUL-94に準じて測定 した。溶融粘度については、コーンプレート粘度計を用 い、150℃の粘度を測定した。熱時硬度については、 30 175℃で90秒間モールド成形した直後の成形品の硬 度を測定した。保存安定性については、樹脂組成物を2 5℃50%RH高温槽中に放置し、スパイラルフローが 90%になる時間を測定した。耐リフロークラック性 は、成形した半導体装置を85℃、85%RHの条件下 で吸湿させた後、215℃で90秒間の熱処理を行い (リフロークラック試験) パッケージクラックの発生率 (半導体装置5個当たりのパッケージクラックを生じた 半導体装置の数)を求め、半導体装置の耐湿信頼性を評 価した。以下、各実施例、比較例における配合組成、測 定結果を表2に示す。なお、配合組成すべて重量部で示

[0018]

【表1】

した。

9	奢	<u> 1</u>							1	0		
			比較例									
	1	2	3	4	5	6	1	2	3	4	5	6
ジヒドロベンゾオキサジン環を 有する敷硬化性樹脂 皿	45	45	45	85	25	45		45	20	90	80	80
ピフェニル型エポキシ樹脂	30		30	10	50		60	30	40	5	20	
ピスフェノールF型エポキシ樹脂		30										
キシリレン型フェノール樹脂	25	25		5	25	25	40	25	40	5		20
ビフェニル型フェノール樹脂			25									
リン系硬化促進剤	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
カルナパワックス	1	1	1	1	1	1	1	1	1	1	1	1
カーボンブラック	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
シランカップリング剤	1	. 1	1	1	1	1	1	1	1	1	1	1

883

[0019]

溶融性シリカ粉末

*【表2】

883

883

		表 2			7 (
		実施例							比較例						
		1	2	3	4	5	6	1	2	3	4	5	6		
溶融粘度(P)		1.2	1.2	1.2	1.8	1.2	2	8.0	1.0	1.2	1.8	1.8	1,8		
ゲル化時間(1	80°C)(\$\rightarrow\$)	10	10	10	20	20	10	20	20	20	30	1000	30		
	(Hr)	192	192	192	336	168	192	24	192	72	720	1000<	720		
熱時硬度		80	80	80	80	77	78	75	70	78	70	5	35		
室温 曲行		160	160	160	160	180	180	158	160	155	185		190		
曲げ	単性率(Gpa)	30	30	30	30	30	28	22	30	30	29		28		
被断	伸び率(%)	0.6	0.6	0.8	0.6	0.6	0.6	0.7	0.6	0.6	0,5	成	0.5		
215℃ 曲げ	強度 (Mpa)	30	30	30	50	29	22	26	32	30	44		18		
曲げる	弹性率(Gps)	2.4	2.1	2.1	3.4	1.8	1.2	1.4	1.9	1.4	0.6		0.6		
破断	伸び率(%)	1.5	1.5	1.5	1.5	1.6	1.8	1.9	1.7	. 1.7	1_8		2.7		
ガラス転移温度(℃)		153	154	153	158	120	118	110	128	117	155	形	143		
數學張係數(E-5/°C)	1.0	1.0	1.0	1.0	1.0	1.0	1.1	0.9	0.9	0.9		0.8		
驳水平(%)	24h	0.06	0.06	0.08	0.08	0.06	0.06	0.05	0.06	0.06	0.06		0.08		
(85°C∕85R		0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18		0.18		
耐リフロークラ	ツク 24h	0/5	0/5	0/5	0/5	0/5	0/5	0/5	5/5	0/5	5/5	不	5/5		
	72h	0/5	0/5	0/5	5/5	0/5	0/5	0/5	5/5	0/5	5/5		5/5		
	96h	5/5	5/5	5/5	5/5	0/5	5/5	0/5	5/5	5/5	5/5		5/5		
	168h	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5		5/5		
AIピール接着	力(N/m)	600	600	600	500	750	650	800	220	65D	500	2	500		
42アロイ接着	力(Kgf)	10.5	10.6	10.5	9.4	12.3	10.8	15	1.2	10.8	2.4		2.4		
難燃性 Flat	ming MAX(s)	. 7	7	7	đ	В	5	27	22	13	6	4	7		
Fla	ming Total(s)	30	30	28	24	42	20	94	54	54	23		30		
	利定	V-0	V-0	V-0	V-0	V-0	V-0	V-1	V-1	V-1	V-0		V-(

[0020]

【発明の効果】本発明の半導体封止用樹脂組成物を用い ることにより、インサート類特に42アロイとの接着力 に優れ耐リフロークラック性が良好で、且つ一般のエポ※

※キシ樹脂封止材の問題点である難燃剤の低減及び保存安 全性に優れた半導体封止用樹脂組成物及び該組成物によ り封止した半導体装置を提供することが可能になった。

フロントページの続き

(51) Int. Cl. ⁷

識別記号

FI

テーマコート'(参考)

HO1L 23/31

(72) 発明者 平井 康之

茨城県下館市大字小川1500番地 日立化成 工業株式会社下館工場内

(72)発明者 七海 憲

茨城県下館市大字小川1500番地 日立化成 工業株式会社下館工場内

(72)発明者 古沢 文夫 茨城県結城市大字鹿窪1772-1 日立化成 工業株式会社下館工場内

(72)発明者 池沢 良一 茨城県結城市大字鹿窪1772-1 日立化成 工業株式会社下館工場内

(72)発明者 片寄 光雄 茨城県結城市大字鹿窪1772-1 日立化成 工業株式会社下館工場内

(72)発明者 天童 一良 茨城県結城市大字鹿窪1772-1 日立化成 工業株式会社下館工場内 (72)発明者 赤城 清一 茨城県結城市大字鹿窪1772-1 日立化成 工業株式会社下館工場内

F 夕一ム(参考) 4J002 CC03W CC07Y CC12Y CC15W CD05X DE146 DJ016 DK006 FB096 FD090 FD130 FD150 FD160 FD200 FD206 GQ05 4J036 AD01 AD07 AD08 AF01 AF06 AF07 AF19 AF21 DB05 DB14 DD01 FB07 FB08 4M109 AA01 BA01 CA21 EA03 EA06 EB03 EB04 EB06 EB07 EB08 EB09 EB12 EB19 EC01 EC03 EC09 EC14