Government of Karnataka

Department of Technical Education

Board of Technical Examinations, Bengaluru

Course Title: Fundamenta	Course Title: Fundamentals of Digital Electronics			
Mode (L:T:P) : 4:0:0 Credits:4		Core/ Elective: Core		
Type of Course: Lectures & Student Activities		Total Contact Hours: 52		
CIE= 25 Marks		SEE= 100 Marks		

Prerequisites: Knowledge of Mathematics, Basic Electrical and Electronics Engineering
Course objective: Understand the integrated approach to mechatronics system and basics of
Digital system

Course Outcomes: At the end of the course, the students will be able to

- Understand interdisciplinary & integrated approach to Mechatronics engineering and differentiate analog/digital signals
- Understand number system concepts, conversion rules, and different codes and apply the same to perform arithmetic operations on numbers.
- Apply different Boolean laws, rules and K-map to simplify Boolean expressions and Implement the logic gates to perform a specific logic function.
- 4. Implement various combinational circuits
- 5. Implement Synchronous and Asynchronous sequential circuits
- 6. Implement programmable logic devices

	Course Outcome	Cognitive level	Linked with PO	Teaching Hours
CO1	Understand interdisciplinary & integrated approach to Mechatronics engineering and differentiate analog/digital signals	U,	1,2	4
CO2	Understand number system concepts, conversion rules, and different codes and apply the same to perform arithmetic operations on numbers	U/A	1,2	8
CO3	Apply different Boolean laws, rules and K-map to simplify Boolean expressions and Implement the logic gates to perform a specific logic function	R/U/A	1,2	10
CO4	Implement various combinational circuits	U/A	1,2	12
C05	Implement Synchronous and Asynchronous sequential circuits	U/A	1,2	13
C06	Implement programmable logic devices	U/A	1,2	5
		Total s	essions	52

Legend: R; Remember, U: Understand A: Application

Mapping of Course Outcomes with Program Outcomes

Course				Progr	amme	Outo	comes			
	1	2	3	4	5	6	7	8	9	10
Fundamentals Of Digital Electronics	3	3	-	(#3)	•	8		-	1 <u>=</u>	Ē

Level 3- Highly Addressed, Level 2-Moderately Addressed, Level 1-Low Addressed.

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO. If ≥40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3 If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2 If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1 If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

Course Content and Weightage For SEE

Unit No	Unit Name	CO	Hour	- 201 to (201 to an)	s allocated ent Cogni- tions	Marks weightage (%)	
				R	U	A	
1	Introduction to Mechatronics and Digital principles	1	4	:=	15	-	10.34
2	Number System	2	8	-	05	15	13.79
3	Logic gates & Boolean algebra	3	10	05		25	20.68
4	Combinational Logic Circuits	4	12	-	05	25	20.68
5	Sequential Logic Circuits	5	13	-	15	20	24.13
6	Programmable Logic Devices	6	5	-	05	10	10.34
	Total		52	145 Marks		100	

Contents

Unit-I

Introduction to Mechatronics and Digital principles

Introduction to Mechatronics – Definition, Mechatronics system, building block, domains, constituents, key elements, applications, merits & demerits. Introduction to Digital system – Definition of analog and digital signals, examples, Comparisons, Advantages of digital technology, Digital system design stages.

4 Hours

Unit-II

Number System

Review of Binary, Octal & Hexadecimal number systems, Conversion of numbers from one radix to another radix, Binary arithmetic operations, Representation of signed numbers, Subtraction of numbers using 1's and 2's complement arithmetic, Numeric codes - BCD, Excess-3, Gray code, Alphanumeric codes - ASCII, EBCDIC.

8 Hours

Unit-III

Logic gates & Boolean algebra

10 Hours

Unit-IV

Combinational Logic Circuits

Design procedure – Half adder , Full adder , Half Subtractor , Full Subtractor , Binary Ripple carry adder , Multiplexer – 2:1 Mux, 4.1 Mux & 8.1 Mux, De-multiplexer – 1: 4 De-mux & 1:8 De-mux, Encoder – DECIMAL to BCD, Decoder – 3 to 8 line & BCD to DECIMAL Decoders , Magnitude Comparator - 1-bit Comparator, Parity generators-4 bit Parity generator.

12Hours

Unit-V

Sequential Logic Circuits

Introduction, comparison with combinational circuits, Flip-Flops - Types of triggering , Edge triggered S-R, D , J-K, T, J-K Master slave Flip-Flop's, Race around condition, Applications , Shift Registers, Types – SISO, SIPO, PISO, PIPO, Bidirectional shift register , Applications , Counters – Classification, comparisons , Asynchronous Ripple counters (4-bit up ,4-bit down), 3-bit Asynchronous Up/Down counter, Modulo-N Ripple Counters - Mod-5 & Mod-10 (up counters), Mod-3 Synchronous up counter , Applications.

13 Hours

Unit-VI

Programmable Logic Devices

Introduction, Basic structure of PLD'S – PAL, PLA, PROM, Implementation of simple combinational logic circuits and Boolean expressions using PLD's, Advantages, Comparisons.

5 Hours

Reference:

- 1. Mechatronics M D Singh, J G Joshi.---PHI Publication
- 2. Fundamentals of Digital circuits A.Anand Kumar, 3rd edition, PHI publication.
- 3. Digital Fundamentals Thomas L. Floyd, Pearson Education.
- 4. Digital Fundamentals- Basavaraju
- 6. Logic and computer design fundamentals M.Moris Mano, Charles. R. Kime
- 7. Digital Electronics By Tokchim, Tata McGraw-Hill Edition

e-Reference:

- 1. www.sriengg.com
- 2. www.ssit.edu.in
- 3. http://www.wiziq.com/tutorial/567997-digitalelectronicslecture/introduction
- www.authorstream.com/presentation/psureshvenugopal-1137243digitalelectronicsbasics

Student Activity

Activity No	Description of the Activity
1	Write a chart to represent decimal numbers from 0 to 50 in binary, octal and hexadecimal number systems.
2	Collect the information about any three digital systems and highlight the difference between analog and digital systems.
3	Collect the information on signed and unsigned binary numbers. Prepare a chart to represent the decimal numbers from -20 to +20 in 8-bit format in signed and signed-magnitude representation.
4	Perform binary multiplication and division with examples.
5	List the features of BCD, ASCII excess-3 codes with examples.
6	Simulate a realistic digital circuit containing at least six logic gates
7	Collect the catalogues and specification sheets or a chart displaying various logic ICs (At least 10)

Note:

- 1. Each student should do above activity or any other similar activity related to the course COs and get it approved from concerned Teacher and HOD.
- 2. No student should have activity repeated or similar
- 3. Teacher should ensure activities by group must cover all COs
- 4. Teacher should asses every student by using suitable Rubrics approved by HOD

Rubrics

Dimension	Exemplary	Accomplished	Developing	Beginning	Roll No. of the Student		nt		
	5/4	3	2	1	1	2	3	4	5
Organization	Information presented in logical, interesting sequence	Information in logical sequence	Difficult to follow presentation student jumps around	Cannot understand presentation no sequence of information	Ex: 2				
Subject Knowledge	Demonstrates full knowledge by answering all class questions with explanations and elaborations	At ease with expected answers to questions but does not elaborate	Uncomfortable with information and is able to answer only rudimentary questions	Does not have a grasp of the information. Cannot answer questions about subject	3				

Graphics	Explain and reinforce screen text and presentation	Relate to text and presentation	Occasionally uses graphics that rarely support text and presentation	Uses superfluous graphics or no graphics	4	
Oral Presentation	Maintains eye contact and pronounces all terms precisely. All audience members can hear	Maintains eye contact most of the time and pronounces most words correctly. Most audience members can hear presentation	Occasionally uses eye contact, mostly reading presentation, and incorrectly pronounces terms. Audience members have difficulty hearing	Reads with no eye contact and incorrectly pronounces terms. Speaks too quietly	5	
	Total Sc	ore=2+3+4+5=14/	4=3.5=4			

Course Assessment Pattern

Par	rticulars		Max Marks	Evidence	Course outcomes
Direct Assessment	CIE	Three test (Average of three tests)	20	Blue books	1,2,3,4,5,6
		Student Activity	05	Student Activity Sheets	1,2,3,4,5,6
	SEE	End of the course	100	Answer scripts at BTE	1,2,3,4,5,6
Indirect Assessment	Student Feedback on course	Middle of the course		Feedback forms	1, 2&3
	on course	End of the course		Feedback forms	1,2,3, 4, 5&6

Note: I.A. test shall be conducted for 20 marks. Average marks of three tests shall be rounded off to the next higher digit.

FORMAT OF I A TEST QUESTION PAPER (CIE)

Test/Date	and Time	Semester/year	Course/Course Code	Max M		ks
		3200 - 2400 HO - 2000		1,72		
	o th weak of	I/II SEM		20		
sem 10)-11 Am	Year:				
Name of Co CO's:	ourse coordin	ator :		Units:_	_	
Question no		Question	MARKS	CL	со	РО
1						
2						
3						

Note: Internal Choice may be given in each CO at the same cognitive level (CL).

Model Question Paper (CIE)

Date and	Time	Semester	Course	M	Iax Ma	rks
0.26	2Test(10 th weak of II SEM		Fundamentals Of Digital Electronics	S	20	
sem) 10-1	II Am	Year: 2015-16	Course code:15MC21T			
Name of Co All question			90	Units:3,	,4 Co: 3	5,4
Question No		(Question	CL	CO	PO
1		the operation of the ba & logic expression	sic gates with truth table, logic	U	3	1,2
			OR			
	Explain the following with respect to logic gate.					
	i) Fan- out ii) Propagat	ion delay .			
2	Explain	Boolean constants, var	riables & function with example	U	3	1,2
			OR			
	Show th	at ABC+B+BD+ABD	+AC=B+C			
3		Realize Half-Adder circuit using basic gates & write the output expression		A	4	1,2
			OR			
		the operation of BCD diagram.	to Decimal Decoder using truth table			

4	Explain the operation of 4 to 1 multiplexer with logic symbol, truth table & logic diagram.	A	4	1,2
	OR			
	Explain the operation of 3 to 8 line Decoder using truth table & logic diagram.			

Model Question Paper II Semester Diploma in Mechatronics Engineering Fundamentals of Digital Electronics

Instructions: Answer any six questions from part A and Seven full questions from part B

PART-A

Answer any six questions.

5X6=30 marks

- 1. Explain the constituents of Mechatronics system.
- 2. Explain 8421 Binary code
- 3. Subtract 16 from 46 using 2's compliment method.
- 4. State Demorgan's theorems.
- 5. Realize EX-OR & EX-NOR gates using NAND and NOR gates.
- 6. Realize Half-Adder circuit using basic gates & write the output expression.
- 7, Realize Half-Subtractor circuit using basic gates & write the output expression.
- 8. Explain the significance of PRESET and CLEAR inputs in the flip-flop
- 9. Compare the three combinational PLD's (PROM, PAL, and PLA)...

PART-B

Answer any seven full questions.

10X7=70marks

- 1. Describe the building blocks of Mechatronic system with the help of block diagram. 10m
- 2. Perform the following operations.
 - i) 11101₂ Binary to decimal number.
 - ii) $1101.101_{(2)} + 111.011_{(2)}$.
 - iii) 100110011₍₂₎ convert in to gray code.
 - iv) 5BC₁₆ Hexadecimal to decimal number.

2x5=10m

v) Find 1's of 110011001₍₂₎

3. a) Solve Y = (A + B) (A + B + C) + AB using Boolean algebra.

5m

b) Show that ABC+B+BD+ABD+AC=B+C

5m

4. a) Realize AND & OR gates using NOR gate.

5m

b) Solve the following function using K-map.

$$F(X, Y, Z) = \sum m(0, 2, 4, 6)$$
 5m

5. Explain the operation of Full-Subtractor circuit using truth table, output expression and logic diagram.

6. Explain the operation of 4 to 1 multiplexer with logic symbol, truth table & logic diagram.

10m

- 7. a) Determine the number of flip-flops in each of the Counters.
 - i) mod-3 ii) mod-8
- iii) mod-25

05m

b) Compare asynchronous and synchronous counters

05m

8. Explain the operation of mod -3 synchronous up counter with the help of logic diagram (use T- ff), Truth table and timing diagram

10m

9. Explain the operation of 4-bit SISO shift register with the help of logic diagram (Use D-ff) and truth table.

10m

10. Implement the following Boolean functions using PLA.

$$f1 (A, B, C) = A B C + A C + A B C$$

$$f2(A, B, C) = ABC + BC$$

10m

Model Question Bank II Semester Diploma in Mechatronics Engineering Fundamentals of Digital Electronics

Unit -1

Introduction to Mechatronics and Digital principles Cognitive level- Understanding

- 1. Explain Mechatronic system with example.
- 2. Explain the domain of Mechatronics.
- 3. Explain the constituents of Mechatronics system.
- 4. Justify the multidisciplinary approach in Mechatronics.
- 5. Explain the merits of Mechatronics system.
- 6. Discuss the general applications of Mechatronics.
- 7. Explain the scope of Mechatronics.
- 8. Explain analog signal. Give two examples.
- 9. Explain digital signal. Give two examples.
- 10. Distinguish between analog & digital signal.
- 11. Discus the advantages of digital technology.
- 12. Discuss the limitations of digital technology and Name the three stages of digital system design and explain.
- 13. Describe building blocks of Mechatronics system with the help of block diagram

Unit-II

Number System

Cognitive level- Understanding

- 1. Explain Number system. Write its classification.
- 2. Explain positional weighted codes. Give examples.
- 3. Explain 8421 Binary code.
- 4. Describe the procedure to convert Binary to Decimal with an example.
- 5. Discuss Binary Coded Decimal system
- 6. Describe the procedure to convert octal number to Binary with an example
- 7. Discuss the procedure to convert Binary number to octal number with an example

- 8. Discuss the procedure to convert octal number to Decimal with an example
- 9. Discuss the procedure to convert Binary number to Hexa Decimal number
- 10. Discuss the procedure to convert Hexadecimal to binary number
- 11. Discuss the procedure to convert Decimal to Hexadecimal
- 12. Describe the sign magnitude representation of signed numbers with an example
- 13. Describe how signed numbers are represented in 2's complement form with an example.
- 14. Describe how signed numbers are represented in 1's complement form with an example
- 15. Discuss the steps to perform subtraction using 1's complement method
- 16. Discuss the steps to perform subtraction using 2's complement method
- 17. Discuss the properties of gray code.
- 18. Discuss the properties of BCD code.
- 19. Discuss the properties of Excess-3 code
- 20. Discuss the procedure to convert Binary to Gray code with an example
- 21. Discuss the procedure to convert Gray to Binary code with an example
- 22. Discuss the importance of ASCII code
- 23. Discuss the importance of EBCDIC code.

1Convert the following Binary number to Decimal.

- i)10101₍₂₎
- ii) 101011.101₍₂₎
- 2 Describe the procedure to convert Decimal to Binary with an example (repeated division by 2 method)
- 3 Convert the following to Binary.
 - i) 121₍₁₀₎
- iii) 49₍₁₀₎
- 4. Convert the following to Binary.
 - i) 123.6875₍₁₀₎
- ii) 32.625₍₁₀₎
- 5 Convert the following decimal to BCD
 - i) 345₍₁₀₎
- ii) 9990₍₁₀₎

6 perform the Binary addition for the following.

i)
$$1101.101_{(2)} + 111.011_{(2)}$$
 ii) $110011_{(2)} + 111111_{(2)}$

7 Perform the Binary subtraction for the following.

i)
$$1111.101_{(2)} - 111.011_{(2)}$$
 ii) $110011_{(2)} - 1011_{(2)}$

8 Perform the Binary multiplication for the following.
i) Multiply 1101 ₍₂₎ by 110 ₍₂₎
ii) Multiply 1011.101 ₍₂₎ by 101.01 ₍₂₎
9. Convert the following to binary number.
i) 367.527 ₍₈₎ ii) 123.564 ₍₈₎
10 Convert the following to octal number.
i) 111011.111010 ₍₂₎ ii)10101111001.0111 ₍₂₎
11 Convert the following to Decimal number
i) 4057.06 ₍₈₎ ii)123.456 ₍₈₎
12 Convert the following to Hexadecimal.
i) 1011011011 ₍₂₎ ii) 111100001010 ₍₂₎
13 Convert the following to Hexadecimal number.
i) 577 ₍₈₎ ii) 145 ₍₈₎
14 Convert the following to octal number
i) AB3 _(H) ii) BCD7 _(H)
15 Convert the following to base 2.
i) 5C7 _(H) ii) A8F1 _(H)
16 Convert the following to Hexadecimal.
i) 25.675 ₍₁₀₎ ii) 496 ₍₁₀₎
17 Represent the following signed numbers in sign-magnitude, 2's complement & 1's
compliment form.
i) +31 ii) -51.
18 Subtract 16 from 46 using 8 bit 2's compliment method.
19 Subtract 23 from 15 using 8 bit 2's compliment method.
20 Subtract 49 from 76 using 8 bit 1's compliment method.
21 Subtract 56 from 20 using 8 bit 1's compliment method.
22 Find the 1's complement of the following.
i) -99 ii) -77.25
23 Find the 2's complement of the following.
i) -47 ii) -23.25
24 Convert the following to gray code.
i) 100110011 ₍₂₎ ii) 3A7 (H) iii) 527 ₍₈₎
25 Convert the 10110010 Gray number in to

- i) Hex ii) Binary iii) Decimal.
- 26 Convert the Decimal number 597 to excess-3.
- 27 Perform the following operations.
 - i) 11101₂ Binary to decimal number.
 - ii) $1101.101_{(2)} + 111.011_{(2)}$.
 - iii) 100110011₍₂₎ convert in to gray code.
 - iv) 5BC₁₆ Hexadecimal to decimal number.
 - v) Find 1's of 110011001₍₂₎
- 28 a) Subtract 49 from 76 using 8 bit 1's compliment method.
 - b) Convert the following to base 2.
 - i) 5C7_(H)

ii) A8F1 (H)

Unit -III

Logic gates & Boolean Algebra.

Cognitive level- Remembering

- 1. Define a logic gate
- 2. Define Universal gate .Give examples
- 3. Define the following with respect to logic gate. i) Fan- out ii) Propagation delay iii) Fan-in iv) Noise margin v) Power dissipation
- 4. Define Boolean constants, variables & function with example
- 5. Define K Map

Cognitive level- Understanding

- 1. Describe the concepts of positive and negative logic
- Explain the operation of the basic gates with truth table, logic symbol & logic expression
- 3. Write the truth table. Logic symbol, logic expression of EX-OR and EX-NOR gates.
- 4. Write the truth table and logic diagram for the following expression Y = AB + BC
- 5. List the rules and laws of Boolean algebra.
- 6. prove Demorgan's theorem
- 7. Write rules of K-MAP& Prepare K-MAP for 2, 3, and 4 Variables

- 1. Realize all Basic gates using NAND gate.
- 2. Realize all Basic gates using NOR gate.
- 3. Realize EX-OR & EX-NOR gates using NAND and NOR gates
- Simplify the following Boolean function using the laws of Boolean algebra & implement the same using logic gates

- 5. Show that ABC+B+BD+ABD+AC=B+C
- 6. Solve the following expression using K-MAP to obtain minimal expression & write logic diagram. F $(x, y, z) = \sum m(0, 2, 4, 6)$
- 7. Solve the following expression using K-MAP to obtain minimal expression & write logic diagram. $f(x, y, z) = \sum m(1,3,7,11,15) + \sum d(0,2,5)$
- 8. Simplify the following Boolean function using the laws of Boolean algebra & implement the same using logic gates

Solve the given expression to obtain the minimal SOP expression and implement it in NAND logic.

$$Y=\sum m(2,3,5,7,9,11,12,13,14,15)$$

10. Simplify Y = (A+B)(A+B+C) + AB

Unit-IV

Combinational Logic Circuits

Cognitive level- Understanding

- 1. Distinguish between combinational circuits and sequential circuits
- 2. Explain the concept of delay in a digital circuit with an example
- 3. Explain the operation of 4-bit parallel Adder

- 1. Realize Half-Adder circuit using basic gates & write the output expression
- 2. Realize a Full-Adder circuit using two Half-Adder circuit
- 3. Realize Half-Subtractor circuit using basic gates & write the output expression
- **4.** Explain the operation of 4 to 1 multiplexer with logic symbol, truth table & logic diagram
- Explain the operation of Full-Subtractor circuit using truth table, output expression and logic diagram
- Explain the operation of Full-Adder circuit using truth table, output expression. And logic diagram
- Explain the operation of 8 to 1 multiplexer with logic symbol, truth table & logic diagram
- 8. Explain the operation of 1to 4 De- multiplexer with logic symbol truth table &logic diagram
- Explain the operation of Decimal to Binary Encoder using truth table & logic diagram.
- **10.**Explain the operation of 1 to 8 De-Multiplexer with logic symbol, truth table & logic diagram
- 11. Explain the operation of 3 to 8 line Decoder using truth table & logic diagram
- 12. Explain the operation of BCD to Decimal Decoder using truth table & logic diagram
- 13. Explain 1-bit magnitude Comparator using truth table & logic diagram
- 14. Explain the operation of 4-bit odd Parity generator using Logic diagram & truth table.
- 15. Explain the operation of 4-bit Even Parity generator using Logic diagram & truth table.

Unit -V

Sequential Logic Circuits

Cognitive level- Understanding

- 1. Explain the Flip-Flop and write its applications
- 2. What is meant by clocked Flip-Flop? How it is different from a Latch
- 3. What are the different types of triggering? Explain
- **4.** Explain the significance of PRESET and CLEAR inputs in the flip-flop

- 5. What is shift register and write its applications
- **6.** What is a counter and write its applications
- 7. Explain the two basic types of counters
- **8.** Compare asynchronous and synchronous counters
- What is meant by race around condition? How it is eliminated in Master-Slave JK flip-flop.

- 1. Determine the number of flip-flops in each of the Counters. i) mod-3 ii) mod-8 iii) mod-25
- 2. What is the maximum modulus of a counter with each of the following number of FF's? i) 2 ii) 8 iii) 10
- Draw the schematic circuit of an edge triggered SR flip-flop using NAND gates
 and explain its operation with the help of a truth table.
- Explain the operation of an edge triggered D-flip-flop with the help of truth table
 Logic diagram
- 5. Draw the schematic circuit of an edge triggered JK flip-flop using NAND gates and explain its operation with the help of a truth table
- 6. Draw the schematic circuit of an edge triggered JK flip-flop using NAND gates and explain its operation with the help of a truth table.
- 7. Draw the schematic circuit of an edge triggered T flip-flop using NAND gates and explain its operation with the help of a truth table
- Draw the schematic circuit of pulse triggered Master-Slave JK flip-flop using NAND gates and explain its operation with the help of a truth table.
- 9. Explain the operation of 4-bit SISO shift register with the help of logic diagram (Use D-ff) and truth table.
- Explain the operation of 4-bit SIPO shift register with the help of logic diagram (Use D-ff) and truth table
- Explain the operation of 4-bit SIPO shift register with the help of logic diagram (Use D-ff) and truth table.
- Explain the operation of 4-bit PIPO shift register with the help of logic diagram (Use D-ff) and truth table.
- 13. Explain the operation of 4-bit bidirectional shift register with the help of logic diagram (use D-ff) and truth table.

- 14. Explain the operation of 3-bit Binary asynchronous (Ripple) Up counter with the help of logic diagram (use T- ff), Truth table and timing diagram
- 15. Explain the operation of 3-bit Binary asynchronous (ripple) down counter with the help of logic diagram (use T- ff), Truth table and timing diagram
- 16. Explain the operation of 3-bit Binary asynchronous (ripple) up/down counter with the help of logic diagram (use T- ff) &Truth table
- 17. Explain the operation of mod -5 ripple up counter with the help of logic diagram (Use T- ff), truth table and timing diagram
- 18. Explain the operation of mod -10 (decade) ripple up counter with the help of logic diagram (use T- ff), Truth table and timing diagram
- 19. Explain the operation of mod -3 synchronous up counter with the help of logic diagram (use T- ff), Truth table and timing diagram.

Unit VI

Programmable Logic Devices

Cognitive level- Understanding

- 1. What is a PLD? List the advantages of PLD's over fixed array logic
- 2. Compare the three combinational PLD's (PROM, PAL, and PLA).
- 3. Explain the features of PLA
- 4. Explain the features of PAL
- 5. Explain the features of PROM

Cognitive level- Application

- 1. Implement Full-adder using PAL with Boolean expression for o/p's
- 2. Implement Full-Subtractor using PAL with Boolean expression for o/p
- 3. Implement Half-Subtractor using PAL with Boolean expression for o/p.
- 4. Implement half-adder using PAL with Boolean expression for o/p.
- 5. Prove that $A + \bar{A}B = 1$
- 6. Implement logic gates to perform the 2:1 multiplexer
- 7. Implement the following Boolean functions using PLA f1 (A, B, C) = A B C+A C + A B C