

PENGOLAHAN AIR LIMBAH

TL 4001 Rekayasa Lingkungan 2009 Program Studi Teknik Lingkungan ITB

Air Limbah (Wastewater)

Kualitas Air Limbah (Domestik)

- Umumnya seragam,
 Perbedaan → konsumsi air, pola makan
- Parameter

☐ Senyawa organik : BOD5 dan COD

☐ Senyawa golongan Nitrogen : NH3, NO3, NO2, N-organik

□ Padatan : TSS

□ Bahan lain : Deterjen□ Mikrobiologi : Total coli

Kualitas Air Limbah (Domestik)...(2)

Parameter Kunci:

□ TSS, BOD5, Oil&Grease, pH

■ Baku Mutu Effluen :

Keputusan Menteri Lingkungan Hidup No. 112 Tahun 2003 tentang Baku Mutu Effluen Air Limbah Domestik

Baku Mutu Effluen Kepmen. LH No. 112 Tahun 2003

Parameter	Satuan	Konsentrasi
TSS	mg/l	100
рН		6-8
BOD5	mg/l	100

Karakteristik Air Limbah

Japan International Corporation Agency – Departemen Pekerjaan Umum RI.	BOD
High Income	43,9 gr/org/hari
Middle Income	31,7 gr/org/hari
Low Income	26,8 gr/org/hari
Proyek Pengembangan Baku Mutu Lingkungan – Departemen Pekerjaan Umum RI (Komposisi Air Buangan Indonesia).	BOD
Kuat	400 ppm
Medium	220 ppm
Lemah	110 ppm
Metcalf, 1991 (USA)	TSS 60 – 115 gr/org/hari
WPCF , 1959 (USA)	TSS 90 gr/org/hari
Randal, 1980	TSS 36 gr/org/hari

Kualitas Air Limbah (Domestik)...(3)

- Perhitungan Timbulan dan Konsentrasi Air Limbah
 - □ Setiap orang Indonesia menghasilkan 40 gr BOD per hari
 - □ Pemakaian air bersih 125 liter per orang perhari
- Timbulan Air Limbah (asumsi 60-80%)
 - = 80% x 125 L/o.hari
 - = 100 L/o.hari
- Konsentrasi Air Limbah
 - = (40 gr BOD/o.hari)/(100 L/o.hari)
 - = 0.4 gr/l = 400 mg/l = 400 ppm BOD

Kualitas Air Limbah (Domestik)-4

- Senyawa organik : BOD5 atau COD
- Rasio BOD/COD → indikasi seberapa sulit suatu air limbah dapat diolah secara biologi
- COD > BOD → makin sulit jenis limbah tersebut diolah dengan proses biologi

BOD

- BOD is an indirect measure of organic content.
- BOD is measured by oxidizing organics using microorganisms (under specific conditions) and directly measuring the amount of oxygen consumed in the process.

What is BOD?

<u>Food</u> - Organic material (carbon), exerts carbonaceous oxygen demand (CBOD)

Biochemical Oxygen Demand (BOD)

- Mengukur tingkat (rate) penguraian materi organik (memerlukan oksigen) oleh mikroba
 - Pengukuran dalam gelap
 - Pada 20°C untuk 5 hari, didefinisikan sbg BOD₅
 - Menggunakan botol BOD standar 300 mL

- COD is an indirect measure of organics.
- COD is measured by oxidizing organics with a strong oxidant (dichromate) and measuring the amount of oxidant consumed in the reaction.
- Correlation between COD and BOD is sample specific and may not always be possible.

What is COD?

COD Reaction

$$16 \text{ CO}_2 + 46 \text{ H}_2\text{O} + 10 \text{ Cr}_2(\text{SO}_4)_3 + 11 \text{ K}_2\text{SO}_4$$

Carbon Dioxide

Water

Chromic lon

Chemical Oxygen Demand (COD)

- Jumlah oksidan-oksidan yang bereaksi dalam sebuah contoh air.
- Jumlah oksigen yang dikonsumsi diekspreskan dalam oxygen equivalent: mg/L of O₂
- Dapat jadi parameter tingkat pencemaran limbah domestik dan industri

- Picky bugs vs Clean Plate Club chemicals
 - □ COD measurements will always be higher than BOD measurements

Kualitas Air Limbah (Industri)

- Berbeda dengan air limbah domestik
- Bervariasi →jenis industri dan proses
- Parameter Kimia : beragam
 - □ Logam berat : industri elektroplating, industri metal, industri penyamakan kulit, industri batu batere dll.
 - □ BOD/COD
 - industri makanan-minuman : biodegradable
 - Industri kimia/farmasi BOD/COD kecil

Kuantitas Air Limbah

- Domestik
 - □ cukup seragam ~ pemakaian air bersih 80% pemakaian air bersih
 - □ pola discharge mengikuti pemakaian air keb domestik
- Industri
 - □ sulit diprediksi → pola pemakaian air di industri → perlu survey lapangan
 - □ Bila tidak ada proses basah → tidak ada air limbahnya (industri) hanya dari kegiatan domestik

Fluktuasi Pemakaian Air

Perbedaan Limbah Cair Domestik dan Industri

PARAMETER	SATUAN	DOMESTIK	INDUSTRI
BOD	mg/l	100-300	0 -70.000
COD	mg/l	150-500	0-100.000
SS	mg/l	100-500	0->>
NH ₄ ⁺	mg/l	15-50	0->>
Logam berat	mg/l	0	0->>

Skema Pengolahan Air Limbah

- Pre-treatment (Primary Treatment)
- Secondary Treatment
- Tertiary Treatment (Advance Treatment)
- Sludge Handling

Pengolahan Air Limbah

- Pre-treatment (Primary Treatment)
 - Menghilangkan Suspended solid dan materi-materi kasar
- Secondary Treatment
 - Menghilangkan kandungan organik terlarut
- Tertiary Treatment (Advance Treatment)
 - Menghilangkan nutrien (N&P) atau bahan-bahan pencemar sepesifik yang tidak dapat dihilangkan pada pengolahan tingkat sebelumnya
- Sludge Handling
 - Mengolah lumpur yang dihasilkan dalam proses sebelumnya sehingga siap dibuang ke lingkungan

Skema pengolah limbah

Pengolahan Air Limbah (Unit Proses)

- Pengolahan secara Fisika
- Pengolahan secara Kimia
- Pengolahan secara Biologi

Pengolahan Air Limbah (Unit Proses)...(2)

- Pengolahan secara Fisika-Kimia
 - □ Diaplikasikan untuk menghilangkan bahan tersuspensi, senyawa yang tidak biodegradable serta logam-logam
 - □ Contoh:
 - Koagulasi Flokulasi
 - Oksidasi
 - Presipilatasi
 - Filtrasi
 - Teknologi Membran

Pengolahan Air Limbah (Unit Proses)...(3)

- Pengolahan Secara Biologi
 - □ Ditujukan untuk menghilangkan bahan-bahan organik terutama yang terlarut dalam air limbah
 - □ Prinsip
 - Menggunakan mikroorganisme (biokatalis) dalam reaksi perombakan (degradasi) bahan organik menjadi mineral (CO₂ dan H₂O (aerob) atau CH₄ (anaerob)
 - □ Mikroorganisme → Biomassa diukur sebagai Mixed Liquor Volatile Suspended Solid (MLVSS)

Primary Treatment Solids Removal

Pre Treatment & Primary Treatment

- Pre-Treatment
 - □ Proses Fisika
 - Bar Screen
 - Grit Removal unit
 - Flotation unit
 - Comminution
- Primary Treatment
 - □ Proses Fisika
 - Sedimentasi
 - Straining

1 Rake

Grit Removal

Comminution

Fat Flotation

Sedimentation

Secondary Treatment

- Proses Kimia
- Proses Biologi

Jenis Pengolahan Secara Biologi

- Berdasarkan kebutuhan oksigen:
 - □ Pengolahan secara aerob
 - → COD < 4000 mg/l (relatif rendah)
 - Contoh:
 - ☐ Kolam (Kolam Stabilisasi, aerated Lagoon)
 - □ Trickling Filter
 - □ Rotating Biological Contractor
 - □ Activated Sludge
 - Modifikasi Activated Sludge (Kontak Stabilisasi, Extended Aeration, Oxidation Ditch)
 - □ Pengolahan secara anaerob
 - Contoh:
 - Imhoff Tank
 - ☐ Up flow Anaerobic Sludge Blanket (UASB)

Konsep Pengolahan Biologi

Secondary Sedimentation

5 Secondary treatment basin

Tangki Aerasi dan Clarifier

C. Ophardt c. 1999

Reaktor Dengan Menggunakan Feedback Biomassa (Lumpur Aktif)

RBC – Rotating Biological Contractor

Kombinasi Extended Aeration DENGAN Contact Stabilization

- Total waktu untuk aerasi untuk Extended Aeration adalah 20 jam
- Total waktu untuk contact stabilization adalah 6-7 jam
- Sistem TSB mempunyai spare capacity 3 kali bila dioperasiikan sebagai contact stabilisasi

Advance Treatment

- Proses Kimia
- Proses Biologi
- Proses Fisika

Sludge Handling

On-site Sanitation

- Dalam pengelolaan limbah domestik dikenal sistem pengolahan terpusat (off-site sanitation) dan sistem pengolahan setempat (on-site sanitation).
- Sistem off-site sanitation: sistem dimana air limbah disalurkan melalui sewer (saluran pengunpul air limbah) lalu kemudian masuk ke instalasi pengolahan terpusat menggunakan salah satu dari jenis pengolahan yang telah diterangkan sebelumnya.
- Sistem on-site sanitation: sistem dimana penghasil limbah mengolah air limbahnya secara individu, misalkan dengan menggunakan tangki septik.

Komponen On-site Sanitation

Sumber: www.abeeseptic.com (diakses tanggal 15 Februari 2009)

Komponen On-site Sanitation...(2)

One-Compartment Septic Tank

Pengembangan Lanjut

- Perkembangan Teknologi
- Jenis/Tipe Pengolahan
- Kontrol Proses
- Model Proses Pengolahan (Parameter C, N, P)

Two-Compartment Septic Tank

Sumber: www.abeeseptic.com (diakses tanggal 15 Februari 2009)

