# Single-Atom Catalysis Data Analysis

## Package and Data Loading

The single-atom catalysis data is stored in data/single\_atom\_catalysis.RData, and the raw data is available at this Github repo. In this vignette, we will demonstrate how to use **iBART** in a real data application and reproduce Figure 7 of the paper. Before loading the **iBART** package, we must allocate enough memory for Java to avoid out of memory errors.

```
# Allocate 10GB of memory for Java. Must be called before library(iBART)
options(java.parameters = "-Xmx10g")
library(iBART)
```

Next, we load the real data set and examine what data are needed to run iBART.

```
load("../data/single_atom_catalysis.RData")
ls()
#> [1] "head" "unit" "X" "y"
```

The data set consists of 4 objects:

- y: a numeric vector of binding energy of metal-support pairs. This is our response variable.
- X: a matrix of physical properties of the metal-support pairs. This is our primary features (predictors).
- head: a character vector storing the column names of X.
- unit: a (optional) list of named numeric vectors. This stores the unit information of the primary features X. This can be generated using the helper function generate\_unit(unit, dimension). See ?iBART::generate\_unit for more detail.

#### **iBART**

Now let's apply iBART to this data set. Besides the usual regression data (X,y), we need to specify the descriptor generating strategy through opt. Here we specify opt = c("binary", "unary", "binary"), meaning there will be 3 iterations and we want to alternate between binary and unary operators, starting with binary operators  $\mathcal{O}_b$ . We can also use all operators  $\mathcal{O}$  in an iteration. For example, opt = c("all", "all") will apply all operators  $\mathcal{O}$  for 2 iterations.

```
#> iBART descriptor selection...
#> avg......null......
#> Constructing descriptors using unary operators...
#> Iteration 3
#> iBART descriptor selection...
#> avg.....null......
#> Constructing descriptors using binary operators...
#> BART iteration done!
#> LASSO descriptor selection...
#> L-zero regression...
#> Total time: 149.783242940903 secs
```

iBART() returns many interesting outputs. For example, iBART\_results\$iBART\_gen\_size and iBART\_results\$iBART\_sel\_size store dimension of the newly generated / selected descriptor space for each iteration. Let's plot them and see how iBART use nonparametric variable selection for dimension reduction.

```
library(ggplot2)
df_dim <- data.frame(dim = c(iBART_results\siBART_sel_size, iBART_results\siBART_gen_size),</pre>
                     iter = rep(0:3, 2),
                     type = rep(c("Selected", "Generated"), each = 4))
ggplot(df_dim, aes(x = iter, y = dim, colour = type, group = type)) +
  theme(text = element_text(size = 15), legend.title = element_blank()) +
  geom line(size = 1) +
  geom_point(size = 3, shape = 21, fill = "white") +
  geom text(data = df dim, aes(label = dim, y = dim + 40, group = type),
            position = position_dodge(0), size = 5, colour = "blue") +
 labs(x = "Iteration", y = "Number of descriptors") +
  scale_x_continuous(breaks = c(0, 1, 2, 3))
#> Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
#> i Please use `linewidth` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
```



We can access the selected k-descriptor via iBART\_results\$Lzero\_names and the corresponding regression model in iBART\_results\$Lzero\_models. For instance, the selected 3-descriptor model is

```
iBART_results$Lzero_names[[3]]
#> [1] "(s EA*Hf)"
                                    "abs((Hfo/Oxv))"
#> [3] "abs(((m_n13/m_N_val)/0xv))"
summary(iBART results$Lzero models[[3]])
#>
#> Call:
#> lm(formula = y_train ~ ., data = dat_train)
#> Residuals:
#>
                 1Q Median
      Mi.n.
                                   3Q
                                           Max
#> -1.70871 -0.42326  0.05825  0.44715  1.97315
#>
#> Coefficients:
#>
                                Estimate Std. Error t value Pr(>|t|)
#> (Intercept)
                                 -0.01707
                                            0.12675 -0.135 0.893
#> `(s_EA*Hf)`
                                 0.40427
                                            0.04441 9.104 2.75e-14 ***
#> `abs((Hfo/Oxv))`
                                 -0.58838
                                            0.09857 -5.969 5.05e-08 ***
#> `abs(((m_n13/m_N_val)/Oxv))` -19.62963
                                            4.25098 -4.618 1.33e-05 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.6378 on 87 degrees of freedom
#> Multiple R-squared: 0.9534, Adjusted R-squared: 0.9518
#> F-statistic: 593.9 on 3 and 87 DF, p-value: < 2.2e-16
```

### OIS vs non-OIS

The OIS model differs from the non-OIS model in that the former builds on nonlinear descriptors (composition of  $\mathcal{O}$  on X) while the latter builds on the primary features X. The OIS model has many advantages. In particular, it reveals interpretable nonlinear relationship between y and X, and improves prediction accuracy over a simple linear regression model (or non-OIS model). We showcase the improved accuracy over non-OIS model using Figure 7 in the paper.

```
# Train a non-OIS model with 3 predictors
set.seed(123)
model_no_OIS <- k_var_model(X_train = X, y_train = y, k = 3, parallel = FALSE)</pre>
#### Figure 7 ####
library(ggpubr)
model OIS <- iBART results$Lzero model[[3]]</pre>
# Prepare data for plotting
data_OIS <- data.frame(y = y, y_hat = model_OIS$fitted.values)</pre>
data_no_OIS <- data.frame(y = y, y_hat = model_no_OIS$models$fitted.values)</pre>
p1 <- ggplot(data_OIS, aes(x = y_hat, y = y)) +
  geom_point() +
  geom_abline() +
  xlim(c(min(data_OIS$y_hat, data_OIS$y) - 0.2, max(data_OIS$y_hat, data_OIS$y) + 0.2)) +
  ylim(c(min(data_OIS$y_hat, data_OIS$y) - 0.2, max(data_OIS$y_hat, data_OIS$y) + 0.2)) +
  xlab("") +
 ylab("") +
```

```
annotate("text", x = -12, y = -3, parse = TRUE,
           label = paste("R^{2} ==", round(summary(model_OIS)$r.squared, 4)))
p2 <- ggplot(data_no_OIS, aes(x = y_hat, y = y)) +</pre>
  geom_point() +
  geom_abline() +
  xlim(c(min(data_no_OIS$y_hat, data_no_OIS$y) - 0.2, max(data_no_OIS$y_hat, data_no_OIS$y) + 0.2)) +
  ylim(c(min(data_no_OIS$y_hat, data_no_OIS$y) - 0.2, max(data_no_OIS$y_hat, data_no_OIS$y) + 0.2)) +
  xlab("") +
 ylab("") +
  annotate("text", x = -12, y = -3, parse = TRUE,
           label = paste("R^{2} ==", round(summary(model_no_OIS$models)$r.squared, 4)))
fig <- ggarrange(p1, p2,</pre>
                 labels = c("OIS", "non-OIS"),
                 ncol = 2, nrow = 1)
annotate_figure(fig,
                bottom = text_grob("Predicted binding energy from descriptors (eV)"),
                left = text_grob("DFT binding energy (eV)", rot = 90))
```



Predicted binding energy from descriptors (eV)

#### R. Session Info

```
sessionInfo()
#> R version 4.0.5 (2021-03-31)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 22621)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=English_United States.1252
#> [2] LC_CTYPE=English_United States.1252
#> [3] LC_MONETARY=English_United States.1252
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=English_United States.1252
```

```
#> attached base packages:
#> [1] stats
                graphics grDevices utils
                                             datasets methods
                                                                 base
#> other attached packages:
#> [1] ggpubr_0.6.0 ggplot2_3.4.4 iBART_0.0.3.3
#>
#> loaded via a namespace (and not attached):
#> [1] shape_1.4.6
                          tidyselect\_1.2.0
                                               xfun_0.40
#> [4] purrr_1.0.2
                          splines_4.0.5
                                               rJava_1.0-4
#> [7] lattice_0.20-44
                          carData\_3.0-5
                                               colorspace_2.0-3
#> [10] vctrs_0.6.4
                           generics_0.1.3
                                               htmltools\_0.5.6.1
#> [13] yaml_2.3.5
                           utf8_1.2.2
                                               survival\_3.2-11
#> [16] rlang_1.1.1
                           pillar_1.9.0
                                               glue_1.6.2
#> [19] withr_2.5.1
                          foreach_1.5.1
                                               lifecycle_1.0.3
#> [22] munsell_0.5.0
                          ggsignif\_0.6.4
                                               gtable_0.3.4
#> [25] codetools_0.2-18
                           evaluate_0.22
                                               labeling_0.4.3
#> [28] knitr_1.44
                           fastmap_1.1.1
                                               parallel_4.0.5
                           itertools\_0.1-3
#> [31] fansi_1.0.3
                                               broom_1.0.5
#> [34] bartMachine_1.2.6 scales_1.2.1
                                               backports_1.4.1
#> [37] abind_1.4-5
                           farver_2.1.0
                                               gridExtra_2.3
#> [40] digest_0.6.33
                          rstatix_0.7.2
                                               dplyr_1.1.3
#> [43] cowplot_1.1.1
                           grid_4.0.5
                                               cli_3.6.1
#> [46] tools_4.0.5
                           magrittr\_2.0.3
                                              missForest_1.4
#> [49] glmnet_4.1-1
                           tibble_3.2.1
                                               randomForest_4.6-14
#> [52] crayon_1.5.2
                           tidyr_1.3.0
                                               car_3.1-2
#> [55] pkqconfiq_2.0.3
                           Matrix_1.3-4
                                               bartMachineJARs_1.1
#> [58] rmarkdown_2.25
                         rstudioapi\_0.15.0 iterators\_1.0.13
#> [61] R6_2.5.1
                        compiler\_4.0.5
```