B.Sc. 3rd Semester (Programme) Examination, 2023-24

MATHEMATICS

Course ID: 32118 Course Code: SP-MTH-301/C-1C

Course Title: Algebra

[Syllabus - 2017]

Time: 2 Hours

Full Marks: 40

The figures in the right margin indicate marks.

Candidates are required to answer in their own words as far as practicable.

UNIT-I

1. Answer any five from the following questions:

 $5 \times 2 = 10$

. . .

- a) State fundamental theorem of classical algebra.
- b) Prove that $\frac{(n+1)^n}{2^n} > n!$
- c) Find the values of i^i .
- d) Show that the function $f: R \to R$ defined by f(x) = |x| + x is neither injective nor surjective.
- e) Show that the relation p defined on R by the rule "xpy iff x + y is irrational" is not an equivalence relation.

 f) Use Cayley-Hamilton theorem to compute A⁻¹ where,

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$

g) Determine the rank of the matrix A2 where

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 3 & 0 \\ 6 & 2 & 3 \end{bmatrix}$$

Find the dimension of the subspace W of R³ defined by

$$W = \{(x, y, z) \in R^3 : x + y + z = 0\}$$

UNIT-II

2. Answer any four from the following questions.

$$4 \times 5 = 20$$

- a) If one root of the equation $x^3 + ax + b = 0$ is twice the difference of the other two, then prove that one root is $\frac{13b}{3a}$.
- b) i) Show that $1!.3!.5!...(2n-1)! > (n!)^n$.
 - ii) Prove that number of primes is infinite.

- c) How many different relations can be defined on a set with n elements? How many of these are reflexive? Give reason. 3+2
- d) Find a linear operator T on R^3 such that Ker T is the subspace $U = \{(x, y, z) \in R^3 : 2x + y z = 0\} \text{ of } R^3.$
- f) If α be an eigen value of a real orthogonal matrix A, then prove that $\frac{1}{\alpha}$ is also an eigen value of A.

UNIT-III

3. Answer any one from the following questions:

 $1 \times 10 = 10$

- a) i) Prove that the eigen values of a real skew-symmetric matrix are purely imaginary or zero.
 - ii) Find the least positive residue in $2^{41} \pmod{23}$. 5+5=10

b) i) If
$$(1+x)^n = a_0 + a_1 x + a_2 x^2 + ...$$
, prove that
$$a_0 + a_4 + a_8 + ... = 2^{n-2} + 2^{\frac{n-2}{2}} \cos \frac{n\pi}{4}$$

ii) A mapping
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 is defined by
$$T(x,y,z) = (x+y+z,2x+y+2z,x+2y+z), (x,y,z) \in \mathbb{R}^3$$
 Show that T is a linear mapping. Find Ker T and the dimension of Ker T.

5+5=10