Calculus 3 Notes

Matthew Stringer

Matthew Stringer Calculus 3

Contents

		tion 13.2 Ideal Projectile Motion	3
2	Sect	tion 14.6	3
	2.1	Standard Linear Approximation	3
	2.2	The Error in the Standard Linear Approximation	3
	2.3	Tangent Plane	3
	2.4	Normal Line	3

Matthew Stringer Calculus 3

1 Section 13.2

1.1 Ideal Projectile Motion

If v_0 makes an angle α with the horizon, then

$$v_0 = (|v_0|\cos\alpha)\hat{\mathbf{i}} + (|v_0|\sin\alpha)\hat{\mathbf{j}}$$

Also, assume $r_0 = 0\hat{i} + 0\hat{j}$. With these formulas it can be derived that

$$r(t) = -\frac{1}{2}gt^2\hat{\mathbf{j}} + v_0t$$

2 Section 14.6

2.1 Standard Linear Approximation

For f(x,y) at (x_0,y_0) , the Standard Linear Approximation of f(x,y) is:

$$L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$
(2.1.1)

2.2 The Error in the Standard Linear Approximation

If f has continuous first and second partial derivative throughout an open set containing a rectangle R centered at (x_0, y_0) and if M is any upper bound for the values of $|f_{xx}|, |f_{yy}|$, and $|f_{xy}|$ on R, then the error E(x, y) incurred in replacing f(x, y) on R by its linearizion satisfies the inequality

$$|E(x,y)| \le \frac{1}{2}M(|x-x_0|+|y-y_0|)^2.$$
 (2.2.1)

2.3 Tangent Plane

For f(x,y) at (x_0,y_0) , the tangent plane of f(x,y) is:

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$
(2.3.1)

If you have a surface z = f(x, y) at $P(x_0, y_0, z_0)$ use

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0$$
(2.3.2)

2.4 Normal Line

The normal line to f(x, y, z) at $P_0(x_0, y_0, z_0)$ has the following equations:

$$x = x_0 + f_x(P_0)t$$
$$y = y_0 + f_y(P_0)t$$
$$z = z_0 + f_z(P_0)t$$