1.0 Set theory Review

Dr. Uma Ravat

PSTAT 120A: Introduction to Probability

University of California at Santa Brabara

Review Basic Set Theory

Set, element, empty set

Definition (Set)

A set is a collection of things. { } notation is used to denote a set

$$S = \{\text{cat, dog, mouse}\}, T = \{1, 2, 3\}, U = \{1, 2, a, b\}.$$

Definition (Element)

An element is a member of a set

Notation (∈)

$$cat \in S, 2 \in T, a \in U$$

Definition (Empty set)

The empty set is a set with no elements. Usually denoted by \emptyset .

Subset

Definition (Subset) Let A and B be two sets. A is a subset of B, denoted by $A \subseteq B$ if every element of A is also in B.

 $A = \{3, 4, \pi\}$ is a subset of $B = \{1, 2, 3, 4, 5, \pi\}$ denoted as $A \subseteq B$

More Sets and Venn Diagrams

Definition (Union, OR)The union of *A* and *B* is the set that contains all elements that are in A or in B or both

$$A \cup B = \{x ; x \in A \text{ or } x \in B\}$$

Also denoted as A or B

More Events and Venn Diagrams

Definition (Intersection, AND)The intersection of *A* and *B* is the set that contains all elements that are in A and in B

$$A \cap B = \{x ; x \in A \text{ and } x \in B\}$$

*Also denoted as A and B, AB

More Sets and Venn Diagrams

Definition (Complement)

 A^c , the complement of A, contains all elements that are in S and not in A.

$$A^c = \{x : | x \notin A\}$$

* Also denoted as A', notA, A', $S \setminus A$

More Sets and Venn Diagrams

Definition (Disjoint sets) If $A \cap B = \emptyset$ then A and B are disjoint.

Pairwise disjoint/mutually exclusive

Definition (Pairwise disjoint/mutually exclusive)

An indexed family of subsets $\{A_i : i \in I\}$ of the set S, where I is a set of index, is pairwise disjoint if

$$A_i \cap A_j = \emptyset$$
 for every $i \neq j$.

Definition (Exhaustive)

An indexed family of sets $\{A_i : i \in I\}$ of the set S, where I is a set of index, is exhaustive if

$$\bigcup_{i\in I}A_i=S.$$

8

Partition

Definition (Partition)

A family of sets $\{A_i : i \in I\}$ of set S is a partition of S if

$$\begin{cases} A_i \cap A_j = \emptyset & \text{ for every } i \neq j, \text{mutually exclusive} \\ \bigcup_{i \in I} A_i = S. & \text{exhaustive} \end{cases}$$

 $\{A, A^c\}$ forms a partition of S because

$$A \cap A' = \emptyset$$

 $A \cup A' = S$

De Morgan's law

Definition $((A \cap B)^c)$ and $(A \cup B)^c)$ Let S be a set, and A, B be two subsets of S.

• Recall the complements of A in S by

$$A^c = S \backslash A$$
.

The following identities hold

$$(A\cap B)^c=A^c\cup B^c$$

•

$$(A \cup B)^c = A^c \cap B^c.$$

Under complementation, Union and intersection switch.