

Series & Parallel Circuits

Before You Begin

Technical Background

Series Circuits

In a simple series circuit such as the one given here, electrical energy passes through one component before entering the next.

Parallel Circuits

In parallel circuits, electrical energy splits along multiple paths. This allows voltage to remain the same across all components, while dividing current.

Resistors in Series

Because resistors are used to restrict the flow of electricity, or *current*, they behave differenty in series circuits versus parallel circuits.

In series circuits, the total resistance in the circuit is calculated as the sum of each resistor.

Example

$$\begin{aligned} \mathsf{R}_{\text{total}} &= \mathsf{R}_1 + \mathsf{R}_2 + \mathsf{R}_3 \\ &= 220 + 1000 + 330 \\ &= 1550 \ \Omega \end{aligned}$$

Calculating Total Resistance in a Series Circuit

ß

The above example yields the following formula:

$$R_{\text{total}} = R_1 + R_2 + \dots + R_n$$

This is a very simple formula, but can be applied in a variety of ways to create circuits with various target resistances.

Resistors in Parallel

To understand what is going on, let's make a small chart of values for the current passing through each resistor. Remember: in a parallel circuit such as this one the voltage across all components remains the same. Keep in mind that Ohm's Law gives us a formula for current: $I = \frac{V}{R}$.

	\mathbf{R}_1	${f R}_2$	\mathbf{R}_3
V	3	3	3
I	$\frac{3}{220} \approx 0.0136$	$\frac{3}{470} \approx 0.0064$	$\frac{3}{1000} = 0.0030$
R	220	470	1000

From the above table, we can see that the *total current* in the circuit is approximately 0.023 amps (23 mA). Once again using Ohm's Law $\left(R = \frac{V}{I}\right)$ gives us a *total resistance* of: $R = \frac{3}{0.023} \approx 130.435~\Omega$.

Calculating Total Resistance of a Parallel Circuit

•

The above work can be summarized by the following formula:

$$R_{\text{total}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}}$$

 $\mathsf{R}_{\mathsf{total}} = \frac{1}{\frac{1}{\mathsf{R}_1} + \frac{1}{\mathsf{R}_2} + \dots + \frac{1}{\mathsf{R}_n}}$ Although it looks complicated, the end result of this formula is identical to making a chart of values similar to what we did previously.

Developing Technical Skills

Reflections

