Customer Churn Prediction Using Machine Learning

This project focuses on predicti	ing customer churn using r	machine learning	algorithms	based on a
Telco customer dataset.				
## Author				
Name: S.Abdul Azees Alhas	hani			
Register Number: 41062324	3001			
## Dataset				
Source:	[Telco	Customer		Churn
Dataset](https://www.kaggle.com/datasets/blastchar/telco-customer-churn)				
File Used: `telco.csv`				
## Project Overview				
This project uses data preproces	ssing, feature encoding, and	d three different m	nodels:	
- Logistic Regression				
- Decision Tree Classifier				
- Random Forest Classifier				
## Requirements				
To run this notebook, make sure	you have the following Pyth	hon libraries insta	alled:	
```bash				
pip install pandas numpy matplo	otlib seaborn scikit-learn			
***				

## ## Project Structure

Customer_Churn_Prediction/

- Customer_Churn_Prediction.ipynb # Jupyter Notebook with full code
- telco.csv # Dataset
- README.md # Project overview

#### ## How to Run

- 1. Open the notebook using [Jupyter Notebook](https://jupyter.org/install) or [Google Colab](https://colab.research.google.com/).
- 2. Upload both the notebook and dataset file.
- 3. Run each cell sequentially.

# ## Output

- Classification reports and accuracy for each model
- Confusion matrix plots
- Sample prediction using the trained Random Forest model

## ## Future Improvements

- Use deep learning techniques like neural networks
- Add model performance visualizations
- Build a Flask web app for user input and prediction