LGS GROUP OF COLLEGES

TEST#

W-T-2

[XII MATHEMATICS] Exercise 3.1 and 3.2

Paper Code: 1207	Name:	Roll No:
Time: 35 Minutes	Objective + Subjective	Marks = 15

OBJECTIVE TYPE

Q# 1. Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question. $(1 \times 4 = 4)$

	question.		$(1 \times 4 = 4)$
1	If $V = x^3$, then differential of V is:		mo JN Landau
	$(A) 3x^2 dx$	(B)	$3x^2$
	(C) $x^3 dx$	(D)	$3x^2 dy$
2	$\int (3x^2 + 2x) dx$ is equal to:		
	(A) $6x + 2$	(B)	$x^3 + x^2$
	(C) $3x + 2$	(D)	$\frac{x^3}{3} + \frac{x^2}{2}$
3	$\int \sin 5x \ dx = \underline{\qquad}$		
	$(A) \qquad -\frac{1}{a}\cos x + c$		$-\frac{1}{5}\cos 5x + c$
	(C) $\frac{1}{5}\sin x + c$	(D)	$\frac{1}{5}\cos 5x + c$
4	$\int \frac{\sin 2x}{4\sin x} dx =$		
	(A) $\sin 2x + c$	(B)	$2\sin 2x + c$
	$(C) \qquad \frac{1}{2}\sin x + c$	(D)	$2\sin x + c$

SUBJECTIVE TYPE

SECTION - 1

Q# 2. Attempt ALL SHORT Questions:

 $(2 \times 3 = 6)$

i	Find δy if $y = \sqrt{x}$
ii	Find $\frac{dy}{dx}$ if $xy - \ln x = c$.
iii	Evaluate $\int \frac{\left(\sqrt{\theta}-1\right)^2}{\sqrt{\theta}} d\theta$.

SECTION - II

Attempt LONG Question:

 $(5 \times 1 = 5)$

Q# 3. Evaluate $\int \frac{\cos 2x - 1}{1 + \cos 2x} dx$.

