PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-042822

(43) Date of publication of application: 16.02.2001

(51)Int.Cl.

G09G 3/30 // H05B 33/14

(21)Application number : 11-220291

(71)Applicant: PIONEER ELECTRONIC CORP

(22)Date of filing:

03.08.1999

(72)Inventor: ISHIZUKA SHINICHI

(54) ACTIVE MATRIX TYPE DISPLAY DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a display device, in which no dispersion of luminance gradation exists over the entire surface of a display panel, by providing a means to stop the light emitting of light-emitting elements after a prescribed light emitting period has elapsed for every

SOLUTION: A controller 26 controls a light-emitting control driver 31 to supply control signals to make a switching circuit conductive and to make organic electroluminescence (EL) elements of the pixels having the data indicating lightemitting emit light. Moreover the controller 26 supplies a signal, which instructs stopping of light-emitting of the organic EL elements of the driver 31 when a beforehand determined light emitting interval time elapses for a first subfield. The driver 31 supplies control signals to stop lightemitting of the organic EL elements to all the switching circuits of a first row and the elements comes to be in nonlight emitting state. Then, the controller 26 repeats similar operations for the case of a first subfield, and corresponding

light emitting is conducted from the first subfield to the eighth subfield.

LEGAL STATUS

[Date of request for examination]

19.09.2003

[Date of sending the examiner's decision of

28.01.2004

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

JP 2001-042822 English Translation

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to a active-matrix mold indicating equipment and the indicating equipment which used the active-matrix mold luminescence panel which has light emitting devices, such as an organic electroluminescence element, especially. [0002]

[Description of the Prior Art] An organic electroluminescence element (an organic EL device is called hereafter) can control the luminescence brightness by the current which flows a light emitting device, and development of the matrix mold display using the luminescence panel constituted by arranging such a light emitting device in the shape of a matrix is furthered widely. As a luminescence panel using this organic EL device, there are a passive-matrix mold luminescence panel which has only arranged the organic EL device in the shape of a matrix, and a active-matrix mold luminescence panel which added the driver element which becomes each of the organic EL device which has arranged in the shape of a matrix from a transistor. Compared with a passive-matrix mold luminescence panel, a active-matrix mold luminescence panel is a low power, and has an advantage, like there are few cross talks between pixels, and fits the big screen display and the high definition display especially. [0003] Drawing 1 shows one example of the circuitry corresponding to one pixel 10 of the conventional active-matrix mold luminescence panel. This circuitry is indicated by JP,8-241057, A. In drawing 1, the gate G of FET (Field Effect Transistor) 11 (transistor for address selections) is connected to the address scan electrode line (address line) by which an address signal is supplied, and the source S of FET11 is connected to the data electrode line (data line) by which a data signal is supplied. It connects with the gate G of FET12 (transistor for a drive), and the drain D of FET11 is grounded through the capacitor 13. The source S of FET12 is grounded, it connects with the cathode of an organic EL device 15, and Drain D is connected to the power source through the anode plate of an organic EL device 15. If the luminescence control action of this circuit is described, if ON state voltage is supplied to the gate G of FET11 in drawing 1, FET11 will pass first the current corresponding to the electrical potential difference of the data supplied to Source S from Source S to Drain D. FET11 becomes that the gate G of FET11 is OFF state voltage with the so-called cut-off, and the drain D of FET11 will be in an opening condition. Therefore, the gate G of FET11 is charged at the period of ON state voltage, the electrical potential difference of Source S is charged by the capacitor 13, the electrical potential difference is supplied to the gate G of FET12, to FET12, the current based on the gate voltage and source electrical potential difference flows from Drain D to Source S through an organic EL device 15, and an organic EL device 15 is made to emit light. Moreover, if the gate G of FET11 becomes OFF state voltage, FET11 will be in an opening condition, the electrical potential difference of Gate G will be held with the charge accumulated in the capacitor 13, FET12 will maintain a drive current till the next scan, and luminescence of an organic EL device 15 will also be maintained. In addition, since a gate input capacitance exists between the gate G of FET12, and Source S, even if it does not form a capacitor 13, the same actuation as the above is possible.

[0004] The circuit corresponding to 1 pixel of the display panel which performs luminescence control by active-matrix drive is constituted in this way, and when the organic EL device 15 of the pixel concerned drives, luminescence of the pixel concerned is maintained. Control of the brightness gradation of each pixel of the above-mentioned active-

matrix mold luminescence panel was performed by carrying out amplitude modulation of the electrical potential difference concerning the gate G of FET12. That is, since the source-drain current of FET12 changes with the electrical potential differences concerning Gate G, the amount of drive currents which flows to an organic EL device 15 can be adjusted by adjusting the magnitude of the electrical potential difference impressed to Gate G according to the input video signal supplied. Therefore, the instant brightness of an organic EL device 15 was adjusted by adjusting the amount of drive currents of an organic EL device 15. [0005]

[Problem(s) to be Solved by the Invention] However, since the relation between the electrical-potential-difference value applied to the gate of Drive FET in the display which performs a brightness gradation display by amplitude modulation which was mentioned above, and the current value which flows between a source-drain, i.e., the current-voltage characteristic of Drive FET, was nonlinear, dispersion arose in brightness gradation by property dispersion during the drive FET within a display-panel side, and there was a problem that where of the multi-tone display with a high precision was difficult.

[0006] This invention is made in view of this point, and the place made into the purpose is to offer the display of the active-matrix mold in which the highly precise multi-tone display which continues all over a display panel and does not have dispersion in brightness gradation is possible.

[0007]

[Means for Solving the Problem] The light emitting device by which the indicating equipment by this invention has been arranged in the shape of a matrix, and the holding circuit which accumulates a data signal current and is held, It is a display using the luminescence panel of the active-matrix mold containing the driver element which drives each of a light emitting device according to the held this electrical potential difference. A setting means to set up two or more subfield periods within the unit frame period corresponding to the synchronous timing of input image data, A display-control means to scan each line of a luminescence panel sequentially for every above-mentioned subfield period, and to make a light emitting device emit light according to two or more above-mentioned input image data, When the address period which is a period which the scan of all the lines of a luminescence panel takes to a luminescence control means to each of a subfield period is longer than a predetermined luminescence period When each luminescence period of a light emitting device reaches at a predetermined luminescence period, it is characterized by having the luminescence means for stopping which makes each luminescence of a light emitting device stop.

[0008] The above-mentioned luminescence means for stopping makes luminescence of a light emitting device stop for every line of a luminescence panel as other descriptions of this invention. Moreover, the above-mentioned luminescence means for stopping has the switching circuit which intercepts each flow of a driver element according to the output of a timer and a timer as other descriptions of this invention. Furthermore, the above-mentioned switching circuit is connected to the serial between the driver element and the holding circuit as other descriptions of this invention.

[0009] As further description of this invention, the above-mentioned switching circuit is connected to juxtaposition in the holding circuit. Moreover, the above-mentioned switching circuit is connected to the light emitting device as other descriptions of this invention at the serial.

[0010]

[Embodiment of the Invention] The example of this invention is explained to a detail, referring to a drawing. In addition, in drawing explained below, the same reference mark is substantially given to the equivalent part. <u>Drawing 2</u> shows roughly the configuration of the

organic electroluminescence display 20 using the active-matrix mold luminescence panel which is the 1st example of this invention.

[0011] In drawing 2, the analog-to-digital (A/D) transducer 21 is changed into digital videosignal data in response to an analog video-signal input. The digital video signal acquired by conversion is supplied to a frame memory 24 from A/D converter 21, and the digital videosignal data of an one-frame unit are once memorized by the frame memory 24. On the other hand, the display and control section (a controller is called hereafter) 26 which controls each part in the organic electroluminescence display 20 By two or more subfields (below, the case of eight subfields is explained to an example) which make a parameter luminescence time amount which is different from each other By controlling the digital video-signal data memorized by the above-mentioned frame memory 24 using the train address counter 2 and the line address counter 23 It changes into the gradation indicative data of plurality (here eight pieces), and a multiplexer 25 is supplied one by one with luminescence and nonluminescent data corresponding to the address of the pixel of the luminescence panel 30, respectively.

[0012] Moreover, a controller 26 is controlled to make the string data corresponding to each subfield hold to the data latch circuit which the train driver 28 has in order of the array of a pixel one by one from the 1st line out of luminescence and nonluminescent data supplied to the multiplexer 25. While a controller 26 supplies the string data for every subfield in which sequential maintenance was carried out by the data latch circuit to the luminescence panel 30 per one line, it is made to emit light to coincidence in the pixel train which the line which corresponds by the line driver 27 has. moreover, the controller 26 -- a time check -- it has equipment (timer) inside (not shown), the luminescence control driver 31 is controlled, and the luminescence period of each pixel is controlled for every subfield. This actuation is the data unit of one frame, and is performed about each string data from the 1st subfield to the 8th subfield (here, carried out 8 times). To each of each subfield supplied, luminescence control only of the predetermined luminescence period mentioned later is carried out, and each pixel of the luminescence panel 30 can perform the luminescence display for one frame by multi-tone display.

[0013] In addition, as shown in drawing 3, it sets to this example. The one-frame period in the above-mentioned input video signal is divided into eight subfields. phase contrast of the brightness within each subfield period -- respectively -- 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 1/256 () That is, it is set up so that it may become the 1st subfield - the 8th subfield at order, and 256 kinds of brightness gradation displays (namely, subfield 2n display by the approach based on a gradation method) can be made with the alternative combination of those subfields. [0014] The organic electroluminescence indicating equipment in this invention is constituted in this way, and can perform the luminescence display of a frame unit by multi-tone display to the analog video signal inputted by repeating the luminescence control by the address scan of the whole screen of a luminescence panel for every subfield. Drawing 4 shows the circuitry corresponding to 1 pixel of the active-matrix mold luminescence panel which is the 1st example of this invention. That this example differs from the circuitry of the conventional technique shown in drawing 1 is the point that the switching circuit 32 which controls the flow of FET12 for a drive and controls nonluminescent [of an organic EL device 15 / luminescence and nonluminescent (luminescence halt)] is formed between the node of the source S of FET11 for address selections, and a capacitor 13, and the gate G of FET12 for a drive. The switching circuit 32 has two FET 33 and 34 which switches according to the luminescence control signal from the luminescence control driver 31 mentioned later. In the switching circuit 32, FET33 is connected between the node of the source S of FET11, and a capacitor 13, and the gate G of FET12, and FET34 is connected between the gate G of FET12, and a gland (GND). Therefore, when FET33 flows and FET34 is un-flowing, a switching

circuit 32 performs (ON) luminescence control which makes an organic EL device 15 emit light, and when [that] reverse, it performs luminescence control which makes luminescence of an organic EL device 15 stop (OFF).

[0015] It explains to a detail, referring to the timing diagram shown in <u>drawing 5</u> and <u>drawing 6</u> about the luminescence control action which a controller 26 controls luminescence and the nonluminescent one of the luminescence panel 30 below based on the digital video-signal data memorized by the frame memory 24, and realizes a multi-tone display below. First, a controller 26 will write the digital video-signal data for one frame in a frame memory 24, if digital video-signal data are supplied to a frame memory 24. Next, a controller 26 issues the command of the purport which outputs the data of the 1st subfield (SF1) to a multiplexer 25. Next, a controller 26 issues the command of the purport which specifies the 1st train to the train address counter 22 while issuing the command of the purport which specifies the 1st line to the line address counter 23.

[0016] The digital video-signal data for one frame of the specified address (the 1st line, the 1st train) are changed into eight gradation indicative datas corresponding to each subfield by this, and a multiplexer 25 is supplied one by one as data containing luminescence and nonluminescent data corresponding to the address of the pixel of the luminescence panel 30. A controller 26 outputs the data of the 1st subfield to the train driver 28 out of the data of the address (the 1st line, the 1st train) which was supplied to the multiplexer 25 and by which assignment was carried out [above-mentioned]. In the train driver 28, this data is held by the data latch circuit (not shown) prepared in the train driver 28.

[0017] Next, a controller 26 issues the command which updates one train to the train address counter 22. That is, the command of the purport which specifies the 2nd train to the train address counter 22 is issued. The same actuation as the case where the address (the 1st line, the 2nd train) was specified by this, and the address (the 1st line, the 1st train) described previously is specified is repeated. Thus, a controller 26 is made to hold by repeating the above-mentioned actuation one by one to each train of the 1st line to the data latch circuit in which the train driver 28 has data of all the trains of the 1st line.

[0018] After all the string data of the 1st line are latched, a controller 26 writes each of string data of the 1st line in the pixel of each corresponding train at drawing 5 so that it may be shown. That is, you make it flow through FET11 for address selections corresponding to each pixel. Can come, simultaneously the control signal which a controller 26 controls [control signal] the luminescence control driver 31, and makes it flow through a switching circuit 32 (luminescence control ON) is made to supply, and the organic EL device of the pixel which has data in which luminescence is shown is made to emit light. In addition, a controller 26 supplies the signal which directs a halt of luminescence of the above-mentioned organic EL device to the luminescence control driver 31, when the predetermined luminescence period (TL1) beforehand decided to the 1st subfield passes further. The luminescence control driver 31 supplies the control signal (luminescence control OFF) which makes luminescence of an organic EL device stop to all the switching circuits 32 of the 1st line, and an organic EL device serves as nonluminescent.

[0019] A controller 26 issues the command of the purport which specifies the train address counter 22 as the 1st train while issuing the command of the purport which specifies the line address counter 23 as the 2nd line as a step after all the string data of the 1st line were latched. Like the above-mentioned actuation in the 1st line, control is performed so that the data latch of all string data of the 2nd line may be performed. Luminescence control action of the pixel of each train of the 2nd line is performed like the case of the 1st above-mentioned line after the 2nd-line latch of all string data.

[0020] By covering all lines (namely, 1st line - the m-th line), and performing such actuation, a controller 26 can make the data of the 1st subfield able to respond, and can perform

luminescence control of all the pixels of the luminescence panel 30. Next, a controller 26 emits the command of the purport which outputs the data of the 2nd subfield to a multiplexer 25. Hereafter, a controller 26 repeats the same actuation as the case of the 1st subfield described previously, and luminescence corresponding to the data of the 2nd subfield is made. [0021] Thus, although luminescence which corresponded even to the 8th subfield from the 1st subfield is made, since it has a means to make luminescence of a light emitting device stop, as a description in this invention after a predetermined luminescence period passes for every subfield, it is possible to assign the luminescence period of arbitration shorter than an address period (TA) to a subfield. That is, that a luminescence period shorter than an address period cannot be assigned to a subfield when it does not have a luminescence means for stopping cannot stop luminescence of the pixel which was emitting light until luminescence (or nonluminescent) of a pixel was updated by initiation of the address period of the next subfield, but the next subfield is because it cannot start until the address period which is a period which the scan of all lines takes expires.

[0022] <u>Drawing 5</u> shows the case where luminescence of each Rhine is controlled by the luminescence period shorter than an address period (TA) to the k-th subfield (1<=k<=8). Luminescence control of each line is carried out in the predetermined luminescence period (TLk) set up to this subfield by the control same with having mentioned [which is depended on a controller 26] above. For example, when displaying one frame by 60Hz, one frame is about 16.7 mses (ms). The case where a luminescence period [in / for an address period / the 1st subfield (1/2)] is set up with 1/2 or less value of an one-frame period, for example, 5ms, here, respectively for 0.84ms (40%x1/8 of an one-frame period) is explained to an example. At this time, the luminescence period in the subfield after the 2nd subfield is set to 1/21 of the luminescence period of the 1st subfield, 1/22, 1/23, ..., 2.5ms that is 1/27, 1.25ms, 0.625ms, and ... and 0.039ms, respectively. Therefore, in this case, although the luminescence period in the subfield after the 4th subfield (the 4th - the 8th subfield) is shorter than an address period (TA=0.84ms), control is made so that it may have a desired luminescence period to each subfield.

[0023] As it described above, when the display control from the 1st subfield to the 8th subfield is completed, the display of one frame is completed. Then, a controller 26 rewrites the data memorized by the frame memory 24 to the data corresponding to the following frame, and performs the display control of the following frame. Therefore, since luminescence is controllable by the luminescence period of arbitration shorter than an address period to each subfield with the luminescence halt control mentioned above according to this invention, an extensive gradation display is possible.

[0024] <u>Drawing 7</u> shows the circuitry corresponding to 1 pixel of the active-matrix mold luminescence panel which is the 2nd example of this invention. That this example differs from the 1st example is the point of having FET35 by which the switching circuit 32 was connected to the capacitor 13 at juxtaposition. That is, the drain D of FET35 is connected at the source S of FET11, and the node of a capacitor 13, and Source S is grounded in the gland. Therefore, it is stopped by luminescence of an organic EL device 15 when FET35 flows according to the control signal supplied to Gate G.

[0025] <u>Drawing 8</u> shows the circuitry corresponding to 1 pixel of the luminescence panel which is the 3rd example of this invention. That this example differs from the abovementioned example is the point of having FET36 by which the switching circuit 32 was connected with the capacitor 13 between the gates G of FET12 at the serial. That is, the drain D of FET36 is connected at the source S of FET11, and the node of a capacitor 13, and Source S is connected to the gate G of FET12. Therefore, it is stopped by luminescence of an organic EL device 15 when FET36 is un-flowing according to the control signal supplied to Gate G.

[0026] <u>Drawing 9</u> thru/or 11 show the circuitry corresponding to 1 pixel of the luminescence panel which are other examples of this invention, respectively. That each example differs from the above-mentioned example is the point of having FET37 by which the switching circuit 32 was connected with the organic EL device 15 at the serial. That is, it is stopped by luminescence of an organic EL device 15 when FET37 is un-flowing according to the control signal supplied to the gate G of FET37.

[0027] As described above, since luminescence is controllable by the luminescence period of arbitration shorter than an address period to each subfield, an extensive gradation display is realizable according to this invention with the luminescence halt control mentioned above. In addition, each numeric value shown in the above-mentioned example is an example, and may be changed suitably. Moreover, various kinds of switching circuits etc. can be combined suitably, and can be used.

[0028]

[Effect of the Invention] Since the luminescence period in each subfield is controllable to arbitration clearly from having described above according to this invention, the display of the active-matrix mold in which the highly precise multi-tone display which continues all over a display panel and does not have dispersion in brightness gradation is possible is realizable.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is drawing of the circuitry corresponding to one pixel of the conventional active-matrix mold luminescence panel showing one example roughly.

[Drawing 2] It is drawing showing roughly the configuration of the organic electroluminescence display using the active-matrix mold luminescence panel which is the example of this invention.

[Drawing 3] It is drawing showing the one-frame period, subfield period, and address period of a digital video signal.

[Drawing 4] It is drawing showing the circuitry corresponding to 1 pixel of the active-matrix mold luminescence panel which is the 1st example of this invention.

[Drawing 5] A controller is the timing diagram which shows the timing of the luminescence control performed for every subfield.

[Drawing 6] A controller is the timing diagram which shows the control timing which controls luminescence by the luminescence period shorter than an address period.

[Drawing 7] It is drawing showing the circuitry corresponding to 1 pixel of the active-matrix mold luminescence panel which is the 2nd example of this invention.

[Drawing 8] It is drawing showing the circuitry corresponding to 1 pixel of the luminescence panel which is the 3rd example of this invention.

[Drawing 9] It is drawing showing the circuitry corresponding to 1 pixel of the luminescence panel which are other examples of this invention.

[Drawing 10] It is drawing showing the circuitry corresponding to 1 pixel of the luminescence panel which are other examples of this invention.

[Drawing 11] It is drawing showing the circuitry corresponding to 1 pixel of the luminescence panel which are other examples of this invention.

[Description of Notations in the Main Part]

10 Pixel

11 FET for Address Selections

12 FET for Drive

13 Capacitor

15 Light Emitting Device

- 20 Display
- 21 A/D Converter
- 22 Train Address Counter
- 23 Line Address Counter
- 24 Frame Memory
- 25 Multiplexer
- 26 Controller
- 27 Line Driver
- 28 Train Driver
- 30 Luminescence Panel
- 31 Luminescence Control Driver
- 32 Switching Circuit
- 33,34,35,36 FET

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-42822

(P2001-42822A)

(43)公開日 平成13年2月16日(2001.2.16)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

G 0 9 G 3/30 // H 0 5 B 33/14 G 0 9 G 3/30

K 3K007

H05B 33/14

A 5C080

審査請求 未請求 請求項の数8 OL (全 7 頁)

(21)出願番号

特願平11-220291

(22)出顧日

平成11年8月3日(1999.8.3)

(71)出願人 000005016

パイオニア株式会社

東京都目黒区目黒1丁目4番1号

(72)発明者 石塚 真一

埼玉県鶴ヶ島市富士見6丁目1番1号 パ

イオニア株式会社総合研究所内

(74)代理人 100079119

弁理士 藤村 元彦

Fターム(参考) 3K007 AB00 AB02 BA06 BB07 DA00

DB03 EB00 FA01 GA00 GA04

5C080 AA06 BB05 DD05 EE29 FF12

GG12 JJ02 JJ03 JJ04

(54) 【発明の名称】 アクティブマトリクス型表示装置

(57)【要約】

【目的】 表示パネルの全面に亘って輝度階調のばらつきのない高精度の多階調表示が可能なアクティブマトリクス型の表示装置を提供する。

【解決手段】 入力映像データの同期タイミングに対応する単位フレーム期間内に、複数のサブフィールド期間を設定する設定手段と、上記複数のサブフィールド期間毎に発光パネルの各行を順次走査して、上記複数の入力映像データに応じて発光素子を発光せしめる表示制御手段と、サブフィールド期間の各々に対し、発光制御手段が発光パネルの全ての行の走査に要する期間であるアドレス期間が所定の発光期間よりも長い場合に、発光素子の各々の発光期間が所定の発光期間に達した時に発光素子の各々の発光を停止せしめる発光停止手段と、を有する。

【特許請求の範囲】

【請求項1】 マトリクス状に配置された発光素子と、 データ信号電流を蓄積して保持する保持回路と、該保持 された電圧に応じて前記発光素子の各々を駆動する駆動 素子と、を含むアクティブマトリクス型の発光パネルを 用いた表示装置であって、

入力映像データの同期タイミングに対応する単位フレー ム期間内に、複数のサブフィールド期間を設定する設定 手段と、

前記サブフィールド期間毎に前記発光パネルの各行を順 10 次走査して、前記入力映像データに応じて前記発光素子 を発光せしめる表示制御手段と、

前記複数のサブフィールド期間の各々に対し、前記発光 素子の各々の発光期間が所定発光期間に達した時に前記 発光素子の各々の発光を停止せしめる発光停止手段と、 を有することを特徴とする表示装置。

【請求項2】 前記発光停止手段は、前記発光パネルの 各行毎に前記発光素子の発光を停止せしめることを特徴 とする請求項1に記載の表示装置。

【請求項3】 前記発光停止手段は、タイマと、前記タ イマの出力に応じて前記駆動素子の各々の導通を遮断す るスイッチ回路と、を有することを特徴とする請求項1 又は2に記載の表示装置。

【請求項4】 前記スイッチ回路は、前記駆動素子及び 前記保持回路の間に直列に接続されていることを特徴と する請求項3に記載の表示装置。

【請求項5】 前記スイッチ回路は、前記保持回路に並 列に接続されていることを特徴とする請求項3に記載の 表示装置。

前記保持回路の間に直列に接続された第1のスイッチ素 子及び前記駆動素子に並列に接続された第2のスイッチ 素子を少なくとも有することを特徴とする請求項3に記 載の表示装置。

【請求項7】 前記スイッチ回路は、前記発光素子に直 列に接続されているととを特徴とする請求項3に記載の 表示装置。

【請求項8】 前記所定発光期間は、サブフィールド2 "階調法に基づいて定められることを特徴とする請求項 1ないし7に記載の表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はアクティブマトリク ス型表示装置、特に、有機エレクトロルミネセンス素子 等の発光素子を有するアクティブマトリクス型発光パネ ルを用いた表示装置に関する。

[0002]

【従来の技術】有機エレクトロルミネセンス素子(以 下、有機EL素子と称する)は発光素子を流れる電流に よってその発光輝度を制御することができ、このような 50 FET12のゲートGにかかる電圧を振幅変調すること

発光素子をマトリクス状に配置して構成される発光バネ ルを用いたマトリクス型ディスプレイの開発が広く進め られている。かかる有機EL素子を用いた発光パネルと して、有機EL素子を単にマトリクス状に配置した単純 マトリクス型発光パネルと、マトリクス状に配置した有 機EL素子の各々にトランジスタからなる駆動素子を加 えたアクティブマトリクス型発光パネルがある。アクテ ィブマトリクス型発光パネルは単純マトリクス型発光パ ネルに比べて、低消費電力であり、また画素間のクロス トークが少ないなどの利点を有し、特に大画面ディスプ レイや髙精細度ディスプレイに適している。

【0003】図1は、従来のアクティブマトリクス型発 光パネルの1つの画素10に対応する回路構成の1例を 示している。かかる回路構成は、例えば、特開平8-2 41057号公報に開示されている。図1において、F ET(Field Effect Transistor) 1 1 (アドレス選択用 トランジスタ)のゲートGは、アドレス信号が供給され るアドレス走査電極線(アドレスライン)に接続され、 FET11のソースSはデータ信号が供給されるデータ 20 電極線 (データライン) に接続されている。FET11 のドレインDはFET12 (駆動用トランジスタ) のゲ ートGに接続され、キャパシタ13を通じて接地されて いる。FET12のソースSは接地され、ドレインDは 有機EL素子15の陰極に接続され、有機EL素子15 の陽極を通じて電源に接続されている。この回路の発光 制御動作について述べると、先ず、図1においてFET 11のゲートGにオン電圧が供給されると、FET11 はソースSに供給されるデータの電圧に対応した電流を ソースSからドレインDへ流す。FET11のゲートG 【請求項6】 前記スイッチ回路は、前記駆動素子及び 30 がオフ電圧であるとFET11はいわゆるカットオフと なり、FET11のドレインDはオープン状態となる。 従って、FET11のゲートGがオン電圧の期間に、ソ ースSの電圧がキャパシタ13に充電され、その電圧が FET12のゲートGに供給されて、FET12にはそ のゲート電圧とソース電圧に基づいた電流が有機EL素 子15を通じてドレインDからソースSへ流れ、有機E L素子15を発光せしめる。また、FET11のゲート Gがオフ電圧になると、FET11はオープン状態とな り、FET12はキャパシタ13に蓄積された電荷によ 40 りゲートGの電圧が保持され、次の走査まで駆動電流を 維持し、有機EL素子15の発光も維持される。尚、F ET12のゲートGとソースSの間にはゲート入力容量 が存在するのでキャパシタ13を設けなくとも上記と同 様な動作が可能である。

> 【0004】アクティブマトリクス駆動により発光制御 を行う表示パネルの1画素に対応する回路はこのように 構成され、当該画素の有機EL素子15が駆動された場 合に当該画素の発光が維持される。上記したアクティブ マトリクス型発光パネルの各画素の輝度階調の制御は、

3

によって行なわれていた。すなわち、FET12のソー スードレイン電流はゲートGにかかる電圧によって変化 するので、供給される入力映像信号に応じて、ゲートG に印加する電圧の大きさを調整することにより、有機E L素子15に流れる駆動電流量を調整することができ る。従って、有機EL素子15の駆動電流量を調整する ことによって有機EL素子15の瞬時輝度を調整してい た。

[0005]

【発明が解決しようとする課題】しかしながら、上述し たような振幅変調によって輝度階調表示を行う表示装置 においては、駆動FETのゲートにかかる電圧値とソー スードレイン間を流れる電流値の関係、すなわち、駆動 FETの電流-電圧特性が非線形であるため、表示パネ ル面内の駆動FET間の特性ばらつきによって輝度階調 にばらつきが生じ、精度の高い多階調表示が困難である という問題があった。

【0006】本発明はかかる点に鑑みてなされたもので あり、その目的とするところは、表示パネルの全面に亘 って輝度階調のばらつきのない高精度の多階調表示が可 20 能なアクティブマトリクス型の表示装置を提供すること にある.

[0007]

【課題を解決するための手段】本発明による表示装置 は、マトリクス状に配置された発光素子と、データ信号 電流を蓄積して保持する保持回路と、該保持された電圧 に応じて発光素子の各々を駆動する駆動素子と、を含む アクティブマトリクス型の発光パネルを用いた表示装置 であって、入力映像データの同期タイミングに対応する 定する設定手段と、上記サブフィールド期間毎に発光パ ネルの各行を順次走査して、上記複数の入力映像データ に応じて発光素子を発光せしめる表示制御手段と、サブ フィールド期間の各々に対し、発光制御手段が発光パネ ルの全ての行の走査に要する期間であるアドレス期間が 所定発光期間よりも長い場合に、発光素子の各々の発光 期間が所定発光期間に達した時に発光素子の各々の発光 を停止せしめる発光停止手段と、を有することを特徴と している。

【0008】本発明の他の特徴として、上記発光停止手 40 段は、発光パネルの各行毎に発光素子の発光を停止せし める。また、本発明の他の特徴として、上記発光停止手 段は、タイマとタイマの出力に応じて駆動素子の各々の 導通を遮断するスイッチ回路と、を有している。更に、 本発明の他の特徴として、上記スイッチ回路は駆動素子 及び保持回路の間に直列に接続されている。

【0009】本発明の更なる特徴として、上記スイッチ 回路は保持回路に並列に接続されている。また、本発明 の他の特徴として、上記スイッチ回路は発光素子に直列 に接続されている。

[0010]

【発明の実施の形態】本発明の実施例を図面を参照しつ つ詳細に説明する。尚、以下に説明する図において、実 質的に同等な部分には同一の参照符を付している。図2 は、本発明の第1の実施例であるアクティブマトリクス 型発光パネルを用いた有機EL表示装置20の構成を概 略的に示している。

【0011】図2において、アナログ/デジタル(A/ D)変換器21は、アナログ映像信号入力を受けてデジ タル映像信号データに変換する。変換により得られたデ ジタル映像信号はA/D変換器21からフレームメモリ 24へ供給され1フレーム単位のデジタル映像信号デー タが一旦フレームメモリ24に記憶される。一方、有機 EL表示装置20内の各部の制御をなす表示制御部(以 下、コントローラと称する)26は、相異なる発光時間 をパラメータとする複数のサブフィールド(以下では8 個のサブフィールドの場合を例に説明する)によって、 上記フレームメモリ24に記憶されたデジタル映像信号 データを、列アドレスカウンタ2及び行アドレスカウン タ23を用いて制御することにより、複数(ここでは8 個)の階調表示データに変換し、それぞれ発光パネル3 0の画素のアドレスに対応する発光・非発光データと共 に順次マルチプレクサ25に供給する。

【0012】また、コントローラ26は、マルチプレク サ25に供給された発光・非発光データの中から各サブ フィールドに対応する列データを第1行目から順次画素 の配列順に列ドライバ28が有するデータラッチ回路に 保持させるように制御する。コントローラ26は、デー タラッチ回路によって順次保持された各サブフィールド 単位フレーム期間内に、複数のサブフィールド期間を設 30 毎の列データを、1行単位で発光パネル30に供給する と共に、行ドライバ27によって対応する行が有する画 素列において同時に発光させる。また、コントローラ2 6は計時装置(タイマ)を内部に有し(図示しない)、 発光制御ドライバ31を制御して、各サブフィールド毎 に各画素の発光期間を制御する。この動作は、1 フレー ムのデータ単位で、第1サブフィールドから第8サブフ ィールドまでのそれぞれの列データに関して行なわれる (とこでは8回行なわれる)。発光パネル30の各画素 は、供給される各サブフィールドの各々に対し、後述す る所定の発光期間だけ発光制御され、1フレーム分の発 光表示を多階調表示によって行うことができる。

> 【0013】なお、図3に示すように、本実施例におい ては、上記入力映像信号における1フレーム期間を8個 のサブフィールドに分割し、各サブフィールド期間内に おける輝度の相対比がそれぞれ1/2,1/4,1/ $8. \ 1/16. \ 1/32. \ 1/64. \ 1/256$ わち、順に第1サブフィールド〜第8サブフィール ド),となるように設定され、それらのサブフィールド の選択的組合せにより256通りの輝度階調表示(すな 50 わち、サブフィールド2"階調法に基づいた方法による

表示)をなすことができる。

【0014】本発明における有機EL表示装置は、この ように構成され、入力されるアナログ映像信号に対し、 各サブフィールド毎に発光パネルの画面全体のアドレス 走査による発光制御を繰り返すことにより、フレーム単 位の発光表示を多階調表示によって行うことができる。 図4は、本発明の第1の実施例であるアクティブマトリ クス型発光パネルの1画素に対応する回路構成を示した ものである。本実施例が図1に示した従来技術の回路構 成と異なるのは、アドレス選択用FET11のソースS 10 タラッチ回路に保持させる。 及びキャパシタ13の接続点と駆動用FET12のゲー トGとの間に、駆動用FET12の導通を制御して有機 EL素子15の発光及び非発光(発光停止)を制御する スイッチ回路32が設けられている点である。スイッチ 回路32は、後述する発光制御ドライバ31からの発光 制御信号に応じてスイッチングを行う2つのFET3 3、34を有している。スイッチ回路32において、F ET33はFET11のソースS及びキャパシタ13の 接続点とFET12のゲートGとの間に接続され、FE T34はFET12のゲートGとグランド (GND) 間 20 に接続されている。従って、FET33が導通し、FE T34が非導通となったとき、スイッチ回路32は有機 EL素子15を発光せしめる(ON)発光制御を行い、 その逆の場合に有機EL素子15の発光を停止せしめる (OFF) 発光制御を行う。

【0015】以下に、コントローラ26が、フレームメ モリ24に記憶されたデジタル映像信号データに基づい て発光パネル30の発光・非発光を制御して多階調表示 を実現する発光制御動作について、図5及び図6に示す タイムチャートを参照しつつ詳細に説明する。先ず、コ ントローラ26は、デジタル映像信号データがフレーム メモリ24に供給されると、1フレーム分のデジタル映 像信号データをフレームメモリ24に書き込む。次に、 コントローラ26は、マルチプレクサ25に対し第1サ ブフィールド(SF1)のデータを出力する旨の指令を 出す。次に、コントローラ26は、行アドレスカウンタ 23に対して第1行を指定する旨の指令を出すと共に、 列アドレスカウンタ22に対して第1列を指定する旨の 指令を出す。

【0016】これにより、指定されたアドレス(第1 行、第1列)の1フレーム分のデジタル映像信号データ が、各サブフィールドに対応する8つの階調表示データ に変換され、発光パネル30の画素のアドレスに対応す る発光・非発光データを含んだデータとして順次マルチ プレクサ25に供給される。コントローラ26は、マル チブレクサ25に供給された上記指定されたアドレス (第1行、第1列)のデータの中から第1サブフィール ドのデータを列ドライバ28に出力する。列ドライバ2 8では、列ドライバ28内に設けられたデータラッチ回 路(図示しない)によってこのデータを保持する。

【0017】次に、コントローラ26は、列アドレスカ ウンタ22に対して列を1つ更新する指令を出す。すな わち、列アドレスカウンタ22に対して第2列を指定す る旨の指令を出す。このことにより、アドレス(第1 行、第2列)が指定され、先に述べたアドレス(第1 行、第1列)が指定された場合と同様の動作を繰り返 す。このようにして、コントローラ26は、第1行の各 列に対し順次、上記した動作を繰り返すことにより、第 1行の全ての列のデータを列ドライバ28が有するデー

【0018】第1行の全ての列データがラッチされた 後、図5に示すように、コントローラ26は第1行の列 データのそれぞれを、対応する各列の画素に書き込む。 すなわち、各画素に対応するアドレス選択用FET11 を導通せしめる。とれと同時に、コントローラ26は発 光制御ドライバ31を制御してスイッチ回路32を導通 (発光制御〇N) させる制御信号を供給せしめ、発光を 示すデータを有する画素の有機EL素子を発光せしめ る。尚、コントローラ26は、更に、第1サブフィール ドに対し予め決められた所定の発光期間(Ti)が経過 したときに、上記有機EL素子の発光の停止を指示する 信号を発光制御ドライバ31に供給する。発光制御ドラ イバ31は第1行の全てのスイッチ回路32に有機EL 素子の発光を停止せしめる制御信号(発光制御〇FF) を供給し、有機EL素子は非発光となる。

【0019】コントローラ26は、第1行の全ての列デ ータがラッチされた後のステップとして、行アドレスカ ウンタ23を第2行に指定する旨の指令を出すと共に、 列アドレスカウンタ22を第1列に指定する旨の指令を 30 出す。上記した第1行の場合の動作と同様にして、第2 行の全ての列データのデータラッチを行うように制御を 実行する。第2行の全ての列データのラッチ後、上記し た第1行の場合と同様にして第2行の各列の画素の発光 制御動作が実行される。

【0020】コントローラ26は、このような動作を全 ての行(すなわち、第1ライン~第mライン)に亘って 行うことにより、第1サブフィールドのデータに対応さ せて発光パネル30の全ての画素の発光制御を行うこと ができる。次に、コントローラ26は、マルチプレクサ 40 25に対し第2サブフィールドのデータを出力する旨の 指令を発する。以下、コントローラ26は、先に述べた 第1サブフィールドの場合と同様の動作を繰り返し、第 2サブフィールドのデータに対応した発光がなされる。 【0021】このようにして、第1サブフィールドから 第8 サブフィールドまでに対応した発光がなされるが、 本発明における特徴として、各サブフィールド毎に所定 の発光期間が経過した後、発光素子の発光を停止せしめ る手段を有しているので、アドレス期間(Tx)よりも 短い任意の発光期間をサブフィールドに対し割り当てる 50 ことが可能である。すなわち、発光停止手段を有しない (5)

場合にアドレス期間よりも短い発光期間をサブフィール ドに割り当てることができないのは、次のサブフィール ドのアドレス期間の開始によって画素の発光(又は非発 光) が更新されるまで、発光していた画素の発光を停止 できず、次のサブフィールドは、全ての行の走査に要す る期間であるアドレス期間が終了するまで開始できない からである。

【0022】図5は、第kサブフィールド(1≦k≦ 8) に対し、アドレス期間 (T_A) よりも短い発光期間 で各ラインの発光を制御する場合を示している。コント ローラ26による前述したのと同様な制御により、各行 はこのサブフィールドに対して設定された所定の発光期 間(T」、)で発光制御される。例えば、1フレームを6 0Hzで表示する場合、1フレームは約16.7ミリ秒 (ms) である。ここで、アドレス期間を0.84ms (1フレーム期間の40%×1/8)、第1サブフィー ルド(1/2)における発光期間を1フレーム期間の1 /2以下の値、例えば5msとそれぞれ設定する場合を 例に説明する。このとき、第2サブフィールド以降のサ ールドの発光期間の1/2¹, 1/2², 1/2³, ・・ \cdot , 1/27c32.5ms, 1.25ms, 0.6 25 m s, · · · , 0. 039 m s となる。従って、こ の場合、第4サブフィールド以降のサブフィールド(第 4~第8サブフィールド) における発光期間はアドレス 期間(T₄=0.84ms)よりも短いが、各サブフィ ールドに対し所望の発光期間を有するように制御がなさ れる。

【0023】上記したようにして、第1サブフィールド から第8サブフィールドまでの表示制御が終了した時点 30 で1フレームの表示が完了する。その後、コントローラ 26は、フレームメモリ24に記憶されるデータを次の フレームに対応するデータに書き替えて、次のフレーム の表示制御を行う。従って、本発明によれば、上述した 発光停止制御により、各サブフィールドに対しアドレス 期間よりも短い任意の発光期間で発光を制御できるの で、広範な階調表示が可能である。

【0024】図7は、本発明の第2の実施例であるアク ティブマトリクス型発光パネルの 1 画素に対応する回路 構成を示したものである。本実施例が第1の実施例と異 なるのは、スイッチ回路32がキャパシタ13に並列に 接続されたFET35を有している点である。すなわ ち、FET35のドレインDはFET11のソースS及 びキャパシタ13の接続点に接続され、ソースSはグラ ンドに接地されている。従って、ゲートGに供給される 制御信号に応じてFET35が導通したときに有機EL 素子15の発光は停止される。

【0025】図8は、本発明の第3の実施例である発光 バネルの 1 画素に対応する回路構成を示したものであ る。本実施例が前述の実施例と異なるのは、スイッチ回 50 【図8】本発明の第3の実施例である発光パネルの1画

路32がキャパシタ13とFET12のゲートGとの間 に直列に接続されたFET36を有している点である。 すなわち、FET36のドレインDはFET11のソー スS及びキャパシタ13の接続点に接続され、ソースS はFET12のゲートGに接続されている。従って、ゲ ートGに供給される制御信号に応じてFET36が非導 通となったときに有機EL素子15の発光は停止され る。

【0026】図9ないし11は、本発明の他の実施例で 10 ある発光パネルの1画素に対応する回路構成をそれぞれ 示したものである。各実施例が前述の実施例と異なるの は、スイッチ回路32が有機EL素子15と直列に接続 されたFET37を有している点である。すなわち、F ET37のゲートGに供給される制御信号に応じてFE T37が非導通となったときに有機EL素子15の発光 は停止される。

【0027】上記したように、本発明によれば、上述し た発光停止制御により、各サブフィールドに対しアドレ ス期間よりも短い任意の発光期間で発光を制御できるの ブフィールドにおける発光期間はそれぞれ第1サブフィ 20 で、広範な階調表示が実現できる。尚、上記した実施例 において示した各数値は例であって適宜変更してもよ い。また、各種のスイッチング回路等は、適宜組み合わ せて用いることができる。

[0028]

【発明の効果】上記したことから明らかなように、本発 明によれば、各サブフィールドにおける発光期間を任意 に制御できるので、表示パネルの全面に亘って輝度階調 のばらつきのない髙精度の多階調表示が可能なアクティ ブマトリクス型の表示装置を実現できる。

【図面の簡単な説明】

【図1】従来のアクティブマトリクス型発光パネルの1 つの画素に対応する回路構成の1例を概略的に示す図で ある。

【図2】本発明の実施例であるアクティブマトリクス型 発光パネルを用いた有機EL表示装置の構成を概略的に 示す図である。

【図3】デジタル映像信号の1フレーム期間、サブフィ ールド期間、及びアドレス期間を示す図である。

【図4】本発明の第1の実施例であるアクティブマトリ 40 クス型発光パネルの1画素に対応する回路構成を示す図

【図5】コントローラがサブフィールド毎に実行する発 光制御のタイミングを示すタイムチャートである。

【図6】コントローラが、アドレス期間よりも短い発光 期間で発光を制御する制御タイミングを示すタイムチャ ートである。

【図7】本発明の第2の実施例であるアクティブマトリ クス型発光パネルの1画素に対応する回路構成を示す図 である。

)

素に対応する回路構成を示す図である。

【図9】本発明の他の実施例である発光パネルの1画素 に対応する回路構成を示す図である。

【図10】本発明の他の実施例である発光パネルの1画素に対応する回路構成を示す図である。

【図11】本発明の他の実施例である発光パネルの1画素に対応する回路構成を示す図である。

【主要部分の符号の説明】

- 10 画素
- 11 アドレス選択用FET
- 12 駆動用FET
- 13 キャパシタ
- 15 発光素子

*20 表示装置

- 21 A/D変換器
- 22 列アドレスカウンタ
- 23 行アドレスカウンタ
- 24 フレームメモリ
- 25 マルチプレクサ
- 26 コントローラ
- 27 行ドライバ
- 28 列ドライバ
- 10 30 発光パネル
 - 31 発光制御ドライバ
 - 32 スイッチ回路
- * 33, 34, 35, 36 FET

【図1】

【図2】

【図3】

【図7】

