Week 3: Data types, summary statistics, & transformations

ANTH 674: Research Design & Analysis in Anthropology

Professor Andrew Du

Andrew.Du2@colostate.edu

1

Different data types How are they described, summarized, and plotted?

Lecture outline

- 1. Different types of data ("qualitative" vs. quantitative)
 - 1. How are they described & summarized?
 - 2. How are they plotted (visualizing the distribution)?
- 2. Different types of data transformations
 - 1. What are they & what are they used for?
- 3. Plotting two data types against each other

2

What is data?

- Wikipedia: Data are characteristics or <u>information</u>, usually numerical, that are collected through observation
- Want to learn something from data through analysis and/or visualization (plotting)

3

Summary statistics

- Used to summarize distribution of data w/ one number (except for multivariate distributions)
- 1. Location or central tendency
- 2. Spread or variation

5

6

8

Different types of data

"Qualitative"

Categorical/nominal

Ordinal

Quantitative

- Discrete
- Continuous

Data type tells you which summary statistics, plots, and analyses to use!

"Qualitative" data

9

What is "qualitative" data?

- Data assigned to groups, usually based on some qualitative property
- 1. Categorical/nominal data (unordered)
- 2. Ordinal data (ordered)

10

Categorical/nominal data

- Unordered qualitative data
- E.g., head/tail (binomial); basalt/chert/quartz (multinomial)
- Quantified as counts or proportions
- = factors in R

11 12

Central tendency

• Mode: most common category

Black

Brown

Red

Blond

Blond

Blond

13

Spread

	black	brown	red	blond
#	108	286	71	127
prop.	0.18	0.48	0.12	0.21

- Information theory measures (most common is Shannon's index)
- · Not commonly used

$$-\sum p_i \log(p_i) \quad \begin{array}{ll} p_i = \text{proportion} \\ \text{of } i^{\text{th}} \text{ category} \end{array}$$

 $-[0.18 \times \log(0.18) + 0.48 \times \log(0.48) + 0.12 \times \log(0.12) + 0.21 \times \log(0.21)] = 1.25$

Claude Shannon

14

15

Ordinal data

- Ordered qualitative data
- Distance between categories not known
- E.g., small/medium/large; juvenile/adult
- Quantified as counts or proportions
- = ordered factor levels in R

Plotting ordinal data

• Bar plot

*Here, order along x-axis

DOES matter and has meaning!

small med. large
11 7 14

17

Central tendency

• <u>Median</u>: middle value in ordered data (first convert to ranks: 1, 2, 3)

18

19

Questions?

Quantitative data

21

What is quantitative data?

• Each data point is a number, and distances have meaning (e.g., 1 vs. 3)

Discrete

22

Continuous

- Finite or countable values
 (e.g., integers)
- Any value within a continuous interval (e.g., 2.4575)
- In practice, all continuous numbers are discrete due to limited precision of measurements (e.g., 1.21, 1.22, 1.23)

23

Discrete data

- Finite or countable values
- E.g., count data, anything measured in integers
- Treated as numeric class in R

25

Plotting discrete data

• Line plot (like a bar plot w/ more categories)

26

28

Plotting discrete data

• Density plot ("smoothed histogram")

Central tendency & spread

· Same as with continuous data

Continuous data

- Any value within a *continuous* interval (e.g., 2.4575)
- E.g., stone tool mass, hominin femur length
- Treated as numeric class in R

29

30

Plotting continuous data • Histogram mtcars\$mpg

Miles per gallon

31

Q

33

An example

90% of *Nature*'s 2004 impact factor was based on only 25% of its publications

• Journal impact factor: average # of times articles from journal published in the past two years have been cited in year of consideration

Central tendency

 $(\prod_{i \neq i} x_i)^{\frac{1}{n}} \text{ \sharp elem.}$

 Geometric mean: nth root of elements multiplied together

E.g., x <- c(1, 2, 3)

$$GM = \sqrt[3]{(1 \times 2 \times 3)}$$

 Same as taking arithmetic mean of logtransformed values & calculating antilog

$$GM = \exp\left(\frac{\sum \log(x_i)}{n}\right)$$
 E.g., $GM = \exp\left(\frac{\log(1) + l - (2) + \log(3)}{3}\right)$

37

Geometric mean (on lognormal distribution) Arithmetic mean = 5.6 Frequency 400 Median = 1.06Geometric mean = 1.08 Raw data Geometric mean & Arithmetic mean = 0.07 median identical if exp(mean) = 1.08Frequency 50 150 distribution is truly lognormal! Ó Log-transformed data

Central tendency (geometric mean)

- Used when dealing with data produced by multiplicative processes (e.g., % increases) → lognormal distributions
- E.g., population size, body size, household income, citation numbers
- Can't use when you have zeros or negative numbers

38

Spread

- <u>Variance</u>: measures how far values deviate from the arithmetic mean
- Subtract the mean from each element, square the results, add them up, and divide by number of elements minus 1

*i*th element
$$\sum (x_i - \bar{x})^2$$
 Arithmetic mean # elements $\rightarrow n-1$

 Square-root of variance = <u>standard</u> <u>deviation</u>

41

42

Spread (standard deviation) 68–95–99.7 rule 70 70 13.6% 13.6% 2.1% 13.6% 2.1% 13.6% 2.1% 13.6% 2.1% 13.6% 2.1%

· As with the arithmetic mean, variance and SD

are most interpretable for normal distributions

What if data are non-normal?

- Interquartile range
- Doesn't depend on arithmetic mean or type of distribution

43

Geometric standard deviation

- Used when you would use the geometric mean (e.g., lognormal data)
- Calculate std. dev. of log-transformed values and take the antilog

46

Summary: which statistic to use?

Data type	Location	Spread		
Categorical	Mode	Information		
		measures		
Ordinal	Median	Interquartile range		
Discrete/Continuous				
Normal	Arithmetic mean	- Variance		
		- Standard deviation		
Non-normal	- Median	- Interquartile range		
	- Geometric	- Geometric SD		
	mean			

Summary: which plot to make to visualize distribution?

Data type	Plot	
Categorical	Bar plot	
Ordinal	Bar plot	
Discrete	Line plot	
	Histogram	
	Density plot	
Continuous	Histogram	
	Density plot	

47

48

What is data transformation?

- Applying a mathematical function to data to change its distribution
- Rank order of data maintained (monotonic transformation)

51

Why transform data?

• To make data & results easier to understand and visualize

Why transform data?

- To make data & results easier to understand and visualize
- To make sure assumptions of statistical methods are not violated

Types of data transformations

- 1. Centering and scaling
- 2. Log transformations
- 3. Square-root transformations
- 4. Arcsine & logit transformations

54

Centering and scaling

- Transforms data to have mean = 0 & standard deviation = 1 (i.e., Z-scores)
- Subtract the mean & divide by SD
- Converts data to units of standard deviation, so variables of different units can be compared (e.g., mass & inches)
- · Can be used on non-normal data!

Centering and scaling

- Transforms data to have mean = 0 & standard deviation = 1 (i.e., Z-scores)
- · Subtract the mean & divide by SD

55

Log transformations

- Replaces data with their logarithms
- $b^a = x$; $\log_b x = a$
- Base e (analyses) and 10 (plotting) most common
- Cannot transform zeros and negative numbers

58

Log transformations

- What if you are interested in multiplicative/relative/proportional/percent change?
- Log-transformations: multiplicative → additive
- $\log\left(\frac{2}{1}\right) = \log(2) \log(1) = 0.69$
- $\log\left(\frac{200}{100}\right) = \log(200) \log(100) = 0.69$
- Doubling from 1 to 2 now treated the same as doubling from 100 to 200!
- Can now use linear methods to investigate multiplicative change

Log transformations

- Many statistical & plotting methods deal with additive/absolute/linear change
- E.g., linear regression: y = a + bx

•1 → 2: +1 •100 → 200: +100

Treated differently w/ linear methods

•1 → 2: x2 •100 → 200: x2 But multiplicative/ relative change the

same!

59

61

Log transformations

9/4/2024

Log transformations

• Can aid visualization if data vary over orders of magnitude (spreads out small numbers and squeezes large ones)

Barro Colorado Island trees

62

Other transformations

Removes dependence between mean & variance of a variable

1. Square-root: \sqrt{x}

• Used for count data

2. Arcsine: $arcsine(\sqrt{x})$

• Used for proportions

3. <u>Logit</u>: $\log(\frac{x}{1-x})$

Used for proportions

63

64

Why do this?

- Want to see how two variables are related to each other
- Good way to visually describe two variables

67

First, a note on ordinal & discrete data when plotting

- Ordinal treated as categorical (maintaining order of categories)
- Discrete treated as continuous
- When ordinal data have many categories, can mimic discrete data (e.g., ranks of all countries by GDP)
- When discrete data are too few, can mimic ordinal data (e.g., 3, 4, & 5 number of forward gears in mtcars)

Which plot to make

		X-axis		
		Categorical	Continuous	
r-axis	Categorical	Bar plot	Box plot Violin plot	
Y- a	Continuous	Box plot Violin plot	Scatter plot	

68

Box plots (categorical vs. continuous) iris dataset Median (2nd quartile) Petal length (cm) 3 4 5 1st & 3rd quartiles 1.5x IQR from median or min/max values setosa versicolor virginica Species

Scatter plots (continuous vs. continuous) Plants in the Galapagos Number of species 100 150 200 2 Area (km2)

78

Plotting summary

- These are the general rules of plotting (R will actually automatically make these plots according to your variable type)
- BUT, use best judgment for showing what YOU want to show (according to your research question)
- Data visualization is very important: want to convey your data and results as clearly & effectively as possible!

Questions?

80

Summary

- There are four main data types: categorical, ordinal, discrete, & continuous
- Data type tells you which summary statistics and plots to use
- Data transformations aid visualization and interpretation & help data satisfy statistical assumptions
- How to plot & compare two variables depends on data type

Statistics vignette

- What is Euler's number & where does it come from?
- $e \approx 2.71828$
- Used as base of natural logarithm
- Fundamental to continuous growth & rate of change

Leonhard Euler

82

Derivation using compound interest

- You have \$1 in your bank, which offers 100% interest every year
 - After one year, $$1 \rightarrow 2
- 50% interest twice a year
 - After one year, $\$1 \rightarrow \$1.50 \rightarrow \$2.25$
- 1/12th interest every month
 - After one year, $\$1 \rightarrow \$1.08 \rightarrow ... \rightarrow \2.61
- General formula: $N_0 \left(1 + \frac{1}{n}\right)^n$

Derivation using compound interest

• Every day: $1\left(1+\frac{1}{365}\right)^{365}=2.715$

• Every hour: $1\left(1+\frac{1}{8760}\right)^{8760} = 2.718$

84

85

A probability interpretation

 Probability every dropped chocolate is placed in wrong position = 1/e (as # chocolates → ∞)

Widely considered the most beautiful equation in math

• Euler's identity

87

$$e^{i\pi} + 1 = 0$$