Index issues

Solutions

(1)
$$(xy)^{\frac{1}{2}} = x^{\frac{1}{2}}y^{\frac{1}{2}}$$

Is the left-hand side the same as the right-hand side?

$$(xy)^{\frac{1}{2}} = \sqrt{xy} = \sqrt{x}\sqrt{y} = x^{\frac{1}{2}}y^{\frac{1}{2}}$$

It would seem so from the reasoning above, however what happens if x=-2 and y=-8? \sqrt{xy} will give us an answer of 4 but $\sqrt{x}\sqrt{y}$ will not be defined.

We can only get a real value from a square root when the number is not negative, so $x \ge 0$ and $y \ge 0$.

The overall value of the expression $(xy)^{\frac{1}{2}}$ (and therefore $x^{\frac{1}{2}}y^{\frac{1}{2}}$) will also be ≥ 0 .

We have said that the value of the expressions $(xy)^{\frac{1}{2}}$ and $x^{\frac{1}{2}}y^{\frac{1}{2}}$ will be ≥ 0 . But will they always be positive? We may think not, as a square root has two solutions: a positive and a negative one.

However, the square root symbol $\sqrt{}$, and writing something as raised to the power of $\frac{1}{2}$, denotes the *principal* root, which is always the positive root. If we take a square root, as part of rearranging an equation then we may need to write $\pm \sqrt{}$ or $\pm ($ $)^{\frac{1}{2}}$ depending on the situation.

Can you think of an equation which involves taking a square root where you will always want the positive root only?

(2)
$$(xy)^{\frac{5}{3}} = x^{\frac{5}{3}}y^{\frac{5}{3}}$$

$$(xy)^{\frac{5}{3}} = (\sqrt[3]{xy})^5 = (\sqrt[3]{x})^5 (\sqrt[3]{y})^5 = x^{\frac{5}{3}}y^{\frac{5}{3}}$$

Is there anywhere this chain of reasoning breaks down? Does it make a difference if we write $\sqrt[3]{x^5}$ instead of $\left(\sqrt[3]{x}\right)^5$?

We can cube root any real value, positive or negative, so $x, y \in \mathbb{R}$. What values can $(xy)^{\frac{5}{3}}$ take?

(3)
$$(xy)^{\frac{2}{3}} = x^{\frac{2}{3}}y^{\frac{2}{3}}$$

$$(xy)^{\frac{2}{3}} = (\sqrt[3]{xy})^2 = (\sqrt[3]{x})^2 (\sqrt[3]{y})^2 = x^{\frac{2}{3}}y^{\frac{2}{3}}$$

We know we can cube root any number, so $x, y \in \mathbb{R}$. The value of $(xy)^{\frac{2}{3}}$ however, is restricted. How is it different from the value of $(xy)^{\frac{5}{3}}$ and why is that?

Explanation

A cube root can give a positive or negative answer. Raising a negative to the power of 5 (or any odd number), will give you a negative answer so $(xy)^{\frac{5}{3}}$ can take any value. This is unlike $(xy)^{\frac{2}{3}}$, as squaring any number will always result in a positive answer. So $(xy)^{\frac{2}{3}}$ is restricted to being greater than or equal to zero.

(4)
$$(xy)^{-\frac{1}{2}} = x^{-\frac{1}{2}}y^{-\frac{1}{2}}$$

This is similar to the first question. It only involves square roots, so we know x and y cannot be negative. What happens to either side of the equation if x or y = 0?

(5)
$$(xy)^{\frac{1}{2}} = x^{\frac{1}{3}}y^{\frac{2}{3}}$$

On first glance, we might easily dismiss this as being incorrect. The question that was asked though, is 'for what values of x and y do these statements make sense?' Are there any values of x and y when this equation would be true?

If x = 0 or y = 0, then the equation is satisfied, but to see if there are any other possibilities we should try to solve this equation.

$$(xy)^{\frac{1}{2}} = x^{\frac{1}{3}}y^{\frac{2}{3}}$$

For the left hand side to be defined, $xy \ge 0$. In addition, x and y cannot be negative. Can you explain why?

We can write

$$x^{\frac{1}{2}}y^{\frac{1}{2}} = x^{\frac{1}{3}}y^{\frac{2}{3}},$$

then divide by $x^{\frac{1}{3}}y^{\frac{1}{2}}$, assuming $x, y \neq 0$, to get

$$x^{\frac{1}{6}} = y^{\frac{1}{6}}.$$

Therefore

$$x = y$$

is a solution for x, y > 0, along with x = 0 or y = 0.

This is perhaps more solutions than we might have first thought. Can you see why this happens? Try some numbers if you are not sure.

(6)
$$(xy)^{-2} = x^2y^2$$

Once again, this is not true for all values, but may still be true for certain values of x and y.

It can also be written

$$\frac{1}{(xy)^2} = x^2 y^2,$$

so we can see that if x or y was zero the left-hand side would not exist, therefore $x, y \neq 0$. We can multiply by $(xy)^2$

$$1 = x^4 v^4$$

then take the fourth root. This gives us a positive and negative value so we get

$$1 = xy \text{ or } -1 = xy$$

giving us the solutions

$$x = \frac{1}{y} \text{ and } x = -\frac{1}{y}.$$

(7)
$$\left(\frac{x}{y}\right)^{-\frac{1}{3}} = x^{-\frac{1}{3}}y^{\frac{1}{3}}$$

From the $\left(\frac{x}{y}\right)$ on the left hand side we can see that $y \neq 0$, even though it could be on the right hand side.

On the right hand side we have $x^{-\frac{1}{3}}$ which is $\frac{1}{\sqrt[3]{x}}$ and so $x \neq 0$.

Otherwise we can cube root any value so $x, y \in \mathbb{R}$ except for $x, y \neq 0$ and the value of the expressions can also take any value except 0.

(8)
$$\left(\frac{x}{y} - \frac{1}{y}\right)^{\frac{1}{2}} = y^{-\frac{1}{2}}(x-1)^{\frac{1}{2}}$$

On the left hand side we require $y \neq 0$ and $\frac{x}{y} - \frac{1}{y} \geq 0$, which implies that $x \geq 1$ or $x \leq 1$ depending on whether y is positive or negative.

On the right hand side we have $y^{-\frac{1}{2}}$ which requires y > 0, and $(x - 1)^{\frac{1}{2}}$ which also requires $x \ge 1$.

Putting these together gives us y > 0 and $x \ge 1$ and the value of either side of the equation must be ≥ 0 .

Remember that although square rooting something gives us a positive and negative solution, the notation of 'to the power of $\frac{1}{2}$ ' denotes the *principal root* which is positive.