清华大学本科生期中考试试题纸

《电子电路与系统基础上	由阳由煦》	2012 年春季学期期中考试试题
	H-14H H-1014 //	ZUIZ 中有字子别别中有以似数

1、

	班级	学号		姓名			
	逐题:(51 分,答案直接均 300μW 的功率是(率,是()dBm 的功率。			
b)	$2e^{j\frac{\pi}{6}} = ($	(用复数实部虚	部表示)。				
c)	某调频广播电台的中心	频率为 97MHz,F	电波波长为()m,10km 距离电	.台		
d)	无线电波传播需要的时间为()。 d) 请画出 $V(t)=2\cos\omega_0t(V)$ 的频谱结构,标明每根单谱线的位置和幅度大小。						
e)	某正弦波信号作用于 50		频谱结构图 铁得功率为 0c	dBm,用示波器观察该电阻	上的		
	信号波形, 其峰峰值为	() V _°					
f)	某周期信号表达式为 f($ (t) = \begin{cases} +1 & \cos \\ -1 & \cos \end{cases} $	$\omega_0 t > 0$,请怎	后出其傅立叶级数表达式:			
	f(t) = ()(前四项)			
g) h) i)	为 6×10 ⁻¹⁶ S/m,基本可	⁶ S/m,基本可以 以判定它是(判定它是 ()。)。),B 物质的电导 个横截面,该横截面在此 1			
j)	内的平均电流为(A 点到地的电压为+6V,		去w p 占 f	自圧力 () V			
)) k)	信号 1 通过某线性系统 载电阻 R _L 同样获得 1m ^M 率为 () mW。	,负载电阻 R _L 获? W 功率,信号 1 +	得 1mW 功率, 信号 2 通过记	信号 2 通过该线性系统, 该线性系统,负载电阻获得	功		
I)	基带低频信号为 $v_b(t)$,什么类型的调制信号?	正弦载波为 $v_c(t)$ =	$=V_{cm}\cos(\omega_c t),$	下面形式的波形表达式对	应		
	i. $v_M(t) = (V_{cm} + k \cdot v_b)(t)$	$(\omega_c t)$	()			
i	ii. $v_M(t) = V_{cm} \cos \left(\omega_c t + \omega_c t\right)$	$+k\int_{0}^{t}v_{b}(t)dt$	()			
ii	ii. $v_M(t) = V_{cm} \cos(\omega_c t + \omega_c t)$	$+kv_b(t)$	()			
m)			出电阻为 R _o ,	跨导增益为 gm, 该跨导放	大		
n)	器的最大功率增益为(加图 1 所示。同党在测)。 	. 涮得端口由	压为 3V. 在测试端口接由	渧		

图 1 某实验电路

图 2 某电路

- o) 如图 2 所示, 该电路中有 5 个基本电路元件:
 - i. 首先在图上标记每个元件的电压电流参考方向,第 i 个元件的电压记为 V_i ,第 i 个元件的电流记为 I_i ;
 - ii. 用 2b 法,本电路可列出 () 个元件约束条件方程,可列出 () 个 KVL 方程,可列出 () 个 KCL 方程;
 - iii. 请用 2b 法,列写出 10 个电路方程,首先是 5 个元件约束方程,其后是 KVL 方程,最后是 KCL 方程。要求方程左侧为未知量,右侧为激励量。

1.	()
2.	()
3.	()
4.	()
5.	()
6.	()
7.	()
8.	()
9.	()
10.	()

- p) 某线性网络引出一个端口,该端口开路电压为 $5cosω_0t$ (V),端口短路电流为 $cosω_0t$ (mA),那么从端口看入的阻抗为 () Ω。
- q) 已知某非线性电阻的伏安特性方程为 $i=v+0.2v^2+0.05v^3$,其中,v 的单位为伏特,i 的单位为毫安,现在把直流工作点设置在 $v=V_0=1V$ 的位置,该直流工作点位置的静态电阻为() Ω ,微分电阻为() Ω 。假设输入电压信号为 $v=(1+V_{im}cos\omega_0t)(V)$, V_{im} 足够小,输出电流表达式为 i=()(mA)。
- r) 某二极管电路如图 3a 所示,已知电阻 $R_L = 1k\Omega$,信源电压为 $V_S = (3+0.1\sin\omega_0 t)(V)$,如果二极管采用一阶模型,则二极管上的电压为() V,二极管上的电流为() mA,二极管的平均功耗为() mW。

图 3a 二极管电路 I

图 3b 二极管电路 II

s) 二极管采用一阶模型,请画出图 3b 所示二极管电路的输入输出电压转移特性曲线;可用于信号传输的区域为(),此区域电压传输系数为()。

 V_{c} S S S S

图 3b 二极管电路输入输出电压转移特性曲线

图 4 简单逆变器电路

- t) 图 4 所示为一简单逆变器电路, 开关受控于方波信号: 当方波为 3V 时, 开关闭合, 5V 电压加载到 50Ω电阻上; 当方波电压为 0V 时, 开关断开。电阻上消耗的平均功率为 (), 开关上消耗的平均功率为 ()
- u) 源内阻为 R₅, 负载电阻为 R_L, 最大功率传输匹配条件为()。
- 2、图 5 是一个电路中的部分电路抽取,其中有 5 个电阻,其阻值全部为 50Ω,求从端口看入的戴维南等效电压和戴维南等效电阻,并画出等效电路。(10 分)
- 3、已知单端口元件的伏安特性曲线如图 6a 和 6b 所示,其中元件端口电压和端口电流的 参考方向如图 6c 定义(12 分)
 - a) 给出图 6a 元件伏安特性的数学方程 描述和等效电路图。(6分)
 - b) 给出图 6b 元件伏安特性的数学方程 描述和等效电路图。(6分)

图 5 大电路系统中的部分电路

注意: 画出的等效电路中,只允许出现线性电阻、线性负阻、短接线、理想电源等理想元件,可以分段进行描述和建模。

6a 伏安特性曲线 I

6b 伏安特性曲线 II 6c 端口压流参考方向定义图 6 单端口元件的伏安特性曲线

4、图 7 是一个双运放负反馈运算电路,其中 R_w 是可调电位器, $R_1 = R_2 = R_3 = R_4 = R$ 。用 理想运放的虚短、虚断特性分析,给出输出电压与两个输入电压之间的关系式。(8 分)

图 7 双运放电路

图 8 非线性电路的交直流分析

5、如图 8 所示,二极管伏安特性方程为 $I_D=1\times 10^{-17}\times \left(e^{\frac{V_D}{v_T}}-1\right)(A)$,其中 $v_T=26mV$,图中

 C_B 、 C_C 为耦合电容,具有直流开路交流短路性质, RFC_C 为高频扼流圈,具有直流短路交流开路性质。(+19 分)

- a) 画出直流分析电路图(+4)
- b) 列写直流分析电路方程(+2)
- c) 根据方程,求得二极管直流电压 V_D、二极管电流 I_D,进而获得流控流源电流 I_C(+2) (注:如果第 c 步未求出直流解,则假设二极管直流电流为 I_{DD},后面交流分析给出公式即可)
- d) 假设信源 v_s 电压幅度很小,则可线性化处理,获得二极管微分电阻 r_d ,画出交流分析电路图(+5 分)
- e) 求出二极管交流电流 i_d ,和流控流源电流 i_c ,这里以 v_s 为激励量(+4)
- f) 求电压增益 A_v=v_L/v_s(+2)
- 6、 附加题:分析图 9 所示的运放二极管电路,分析时,二极管采用一阶模型。画出输入电压 V_{in} 输出电压 V_{out} 之间的转移特性曲线。(附加题,额外 8 分)

图 9 运放二极管电路