CSC 339 – Theory of Computation Fall 2022-2023

5. Regular Expressions and Regular Languages

Outline

- Regular expressions
- Regular languages
- Union
- Concatenation
- Star
- Reverse
- Complement
- Intersection
- Equivalence of regular expressions with finite automata

Regular Expressions

- Algebraic way to describe languages
- Describe exactly regular languages
- If E is a regular expression, then L(E) is the regular language it defines.
- AWK, GREP in UNIX PERL, text editors.
- Notation: Empty string ε
- eg.
 Regular expression R: (0+1)0*;
 Language it denotes L(R)=({0}∪{1}){0}*
- eg. R: (0+1)*; L(R)= {0, 1}*

Formal Definition

- Definition (inductive definition) R is a regular expression if R is
 - $-a \in \Sigma$
 - $-\varepsilon$
 - $-\phi$

The languages obtained are regular:

- $-L(R_1)\cup L(R_2)$, R_1 and R_2 are regular expressions
- $-L(R_1R_2)$, R_1 and R_2 are regular expressions
- R: regular expression,R* is a regular expression; L(R*)=L(R)*

Examples

```
• e.g., \Sigma = \{0, 1\}
    - 0*10*
                            \{w: w \text{ has exactly a single } 1\}
    - Σ*1Σ*
                            (w has at least 1)
    -\Sigma*001\Sigma*
                            (contains the substring 001)
                            (strings of even length)
    -(\Sigma\Sigma)^*
    -01+10
                            ({01,10})
    -0\Sigma*0+1\Sigma*1+0+1 (strings starting and ending with
                            the same symbol)
                            01*+1*
    -(0+\varepsilon)1*
    -(0+\varepsilon)(1+\varepsilon)
                            \{\varepsilon, 0, 1, 01\}
    − 1*¢
                            φ
    − φ*
                            {ε}
         (the language is empty, the * operator can put together 0
         strings, giving only the empty string)
```

Examples

- R: regular expression
 L(R)∪φ = L(R)
 (adding the empty language to any other language does not change it).
 L(Rλ) = L(R)
- $L(R+\varepsilon)=L(R)$? $L(R)\phi = L(R)$?
- If R = 0 then
 - $-L(R)=\{0\}$ and $L(R+\varepsilon)=\{0,\varepsilon\}$
 - $-L(R)=\{0\}$ and $L(R)\phi=\phi$

Identities and Annihilators

- Ø is a regular expression that represents the language that does not contain any strings.
- \emptyset is the identity for +

$$-R+\varnothing=R$$

• ε is the identity for concatenation

$$-\varepsilon R = R\varepsilon = R$$

• Ø is the annihilator for concatenation

$$- \varnothing R = R\varnothing = \varnothing$$

Regular languages L_1 and L_2

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Are regular

Languages

Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: $L_1 *$

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Are regular

Languages

A useful transformation: use one accept state NFA 2 accept states Equivalent NFA 1 accept state

Extreme case

NFA without accepting state

Add an accepting state without transitions

Consider two languages

Regular language L_1

Regular language L_2

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M_1

Single accepting state

NFA M_2

Single accepting state

$$M_1$$

$$L_1 = \{a^n b\}$$

$$n \ge 0$$

 M_2

$$L_2 = \{ba\}$$
 \xrightarrow{b}

Concatenation

• NFA for L_1L_2

Example:

$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

Reverse

- 1. Reverse all transitions.
- 2. Make the initial state an accepting state and vice versa.

$$L_1^R = \{ba^n\}$$

Complement

- 1. Take the DFA that accepts $L_{
 m l}$
- 2. Make accepting states non-final, and vice-versa.

$$L_1 = \{a^n b\}$$

$$\overline{L_1} = \{a,b\} * -\{a^n b\} \qquad a,b$$

24

 M_1

Intersection

De Morgan's Law:
$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

$$L_1$$
, L_2 regular

$$\overline{L_1}$$
, $\overline{L_2}$ regular

$$\overline{L_1} \cup \overline{L_2}$$
 regular

$$\overline{L_1} \cup \overline{L_2}$$
 regular

$$L_1 \cap L_2$$
 regular

Example:

$$L_1 = \{a^n b\}$$
 regular $L_1 \cap L_2 = \{ab\}$ $L_2 = \{ab, ba\}$ regular regular

• Theorem:

A language is regular if and only if some regular expression describes it.

• Lemma:

If a language is described by a regular expression then it is regular.

• Proof:

Let R be a regular expression describing some language A

Goal: Convert R into an NFA N.

$$-R=a \in \Sigma, L(R)=\{a\} \rightarrow \bigcirc$$

$$-R=\varepsilon, L(R)=\{\varepsilon\}$$

$$-R=\phi, L(R)=\phi$$

$$-R=R_1+R_2$$

$$-R=R_1R_2$$

$$-R=R_1*$$

-(a+b)*aba

