8. Лабораторная работа №8

8.1. Цель лабораторной работы

Лабораторная работа проверяет знания функций Бернштейна, использование этих функций в качестве базиса для построения кривых Безье. Использование алгоритма де Кастельжо для эффективного вычисления точек кривой Безье.

8.2. Задания

8.2.1. Задание №1

Написать функцию, которая вычисляет значения полинома Бернштейна $B_n^i(t)$ для заданных параметров i,n и t. Сколько полиномов существует при n=1,2,3,4,5,6? Постройте их графики и сверьте с картинками из презентации.

8.2.2. Задание №2

Напишите программу, которая вычисляет точки кривой Безье любого порядка с помощью полиномов Бернштейна. Порядок кривой должен вычисляться автоматически на основе количества точек, которые используются для построения. Сверьте результаты работы программы с таблицей 5 и с рисунком 19. Координаты точек: (1,1), (2,2), (4,2), (5,1), (2,0), (1,1).

	x	y
$\mathbf{B}(5, 0.1)$	1.5796	1.4005
${f B}(5, 0.2)$	2.2352	1.608
${f B}(5, 0.3)$	2.8438	1.6405
${f B}(5, 0.4)$	3.2944	1.528
${f B}(5, 0.5)$	3.5	1.3125
${f B}(5, 0.6)$	3.4096	1.048
${f B}(5, 0.7)$	3.0202	0.8005
${f B}(5, 0.8)$	2.3888	0.648
${f B}(5, 0.9)$	1.6444	0.6805

Таблица 5: Данные для проверки вычисления точек кривой Безье 5-го порядка

Рис. 19: Кривая Безье 5-го порядка

8.2.3. Задание №3

Для кривых B(2,t), B(3,t), B(4,t) используйте матричные формулы. Сравните быстродействие универсальной функции из задания \mathbb{N}^2 с матричным вариантом (естественно для n=2,3,4).

8.2.4. Задание №4

Реализуйте построение кривой Безье по алгоритму де Кастельжо. Нарисуйте опорные ломанные, точки на которых вычисляет алгоритм де Кастельжо.

8.2.5. Задание №5

Сделаете анимацию движения опорных ломанных из алгоритма де Кастельжо.