Exact formulas for partial sums of the Möbius function expressed by partial sums weighted by the Liouville lambda function

Maxie Dion Schmidt Georgia Institute of Technology School of Mathematics

Wednesday $11^{\rm th}$ May, 2022

Abstract

The Mertens function, $M(x) \coloneqq \sum_{n \le x} \mu(n)$, is defined as the summatory function of the classical Möbius function for $x \ge 1$. The Dirichlet inverse function $g(n) \coloneqq (\omega + 1)^{-1}(n)$ is defined in terms of the shifted strongly additive function $\omega(n)$ that counts the number of distinct prime factors of n without multiplicity. Discrete convolutions of the partial sums of g(n) with the prime counting function provide new exact formulas for M(x) that are weighted sums of the Liouville function multiplied by the unsigned summands |g(n)| for $n \le x$. We study the distribution of the unsigned function |g(n)| whose Dirichlet generating function (DGF) is $\zeta(2s)^{-1}(1-P(s))^{-1}$ through the auxiliary unsigned sequence $C_{\Omega}(n)$ whose DGF is given by $(1-P(s))^{-1}$ for Re(s) > 1 where $P(s) = \sum_{p} p^{-s}$ is the prime zeta function. We prove formulas for the average order and variance of both $\log C_{\Omega}(n)$ and $\log |g(n)|$ and conjecture a central limit theorem for the distribution of their values over $n \le x$ as $x \to \infty$.

Keywords and Phrases: Möbius function; Mertens function; Liouville lambda function; prime omega function; Dirichlet inverse; Dirichlet generating function; prime zeta function.

Math Subject Classifications (2010): 11N37; 11A25; 11N60; and 11N64.

Table of Contents

1	Introduction	3
	1.1 Definitions	3
	1.2 Statements of the main results	3
	1.3 Discussion of the new results	4
	1.4 Organization of the manuscript	5
2	Properties of the function $C_{\Omega}(n)$	5
	2.1 Definitions	5
	2.2 Logarithmic average order and variance	5
	2.3 Remarks	8
3	Properties of the function $g(n)$	9
	3.1 Definitions	9
	3.2 Signedness	9
	3.3 Relations to the function $C_{\Omega}(n)$	10
	3.4 Logarithmic average order and variance	11
4	The distributions of the unsigned functions	12
5	Proofs of the new exact formulas for the Mertens function	14
	5.1 Formulas relating $M(x)$ to the partial sums of $g(n)$	14
	5.2 Plots and numerical experiments	16
	5.3 Local cancellation in the new formulas for the Mertens function	17
6	Conclusions	18
	6.1 Summary	18
	6.2 Discussion of the new results	18
R	eferences	19
$\mathbf{A}_{\mathbf{j}}$	ppendices on supplementary material	
\mathbf{A}	The distributions of $\omega(n)$ and $\Omega(n)$	20
В	The incomplete gamma function	21
	Inversion of partial sums of Dirichlet convolutions	23

1 Introduction

1.1 Definitions

For integers $n \ge 2$, we define the strongly and completely additive functions, respectively, that count the number of prime divisors of n by

$$\omega(n) = \sum_{p|n} 1$$
, and $\Omega(n) = \sum_{p^{\alpha}||n} \alpha$.

We adopt the convention that the functions $\omega(1) = \Omega(1) = 0$. The Möbius function is defined as the signed indicator function of the squarefree integers by

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1; \\ (-1)^{\omega(n)}, & \text{if } n \ge 2 \text{ and } \omega(n) = \Omega(n) \text{ (i.e., if } n \text{ is squarefree}); \\ 0, & \text{otherwise.} \end{cases}$$

The Mertens function is the summatory function defined by the partial sums [21, A008683; A002321]

$$M(x) = \sum_{n \le x} \mu(n), \text{ for } x \ge 1.$$
 (1.1)

The Liouville lamda function is defined for all $n \ge 1$ by $\lambda(n) := (-1)^{\Omega(n)}$. The partial sums of this function are defined by [21, A008836; A002819]

$$L(x) := \sum_{n \le x} \lambda(n), \text{ for } x \ge 1.$$
 (1.2)

For any arithmetic functions f and h, we define their Dirichlet convolution by

$$(f * h)(n) := \sum_{d|n} f(d)h\left(\frac{n}{d}\right), \text{ for } n \ge 1.$$

The arithmetic function f has a unique inverse with respect to Dirichlet convolution, denoted by f^{-1} , that satisfies $(f * f^{-1})(n) = (f^{-1} * f)(n) = \delta_{n,1}$ if and only if $f(1) \neq 0$. We define the Dirichlet inverse [21, A341444]

$$g(n) := (\omega + 1)^{-1}(n), \text{ for } n \ge 1.$$
 (1.3)

This Dirichlet inverse function is computed recursively by the formula [1, §2.7]

$$g(n) = \begin{cases} 1, & \text{if } n = 1; \\ -\sum_{\substack{d \mid n \\ d > 1}} (\omega(d) + 1) g\left(\frac{n}{d}\right), & \text{if } n \ge 2. \end{cases}$$

We let $|g(n)| = \lambda(n)g(n)$ denote the absolute value of g(n) (see Proposition 3.3). The partial sums of g(n) are defined as follows [21, A341472]:

$$G(x) := \sum_{n \le x} g(n) = \sum_{n \le x} \lambda(n) |g(n)|, \text{ for } x \ge 1.$$
 (1.4)

1.2 Statements of the main results

For any $x \ge 1$, the function $\pi(x) := \sum_{p \le x} 1$ in the next theorem denotes the classical prime counting function.

Theorem 1.1. For all $x \ge 1$

$$M(x) = G(x) + \sum_{1 \le k \le x} |g(k)| \pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) \lambda(k), \tag{1.5a}$$

$$M(x) = G(x) + \sum_{1 \le k \le \frac{x}{2}} \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k+1} \right\rfloor \right) \right) G(k), \tag{1.5b}$$

$$M(x) = G(x) + \sum_{p \le x} G\left(\left\lfloor \frac{x}{p} \right\rfloor\right). \tag{1.5c}$$

An exact expression for g(n) involving the auxiliary function $C_{\Omega}(n)$ is given by (see Lemma 3.4 and Corollary 3.5)

$$\lambda(n)g(n) = \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega}(d), n \ge 1.$$
 (1.6)

The sequence $\lambda(n)C_{\Omega}(n)$ has the Dirichlet generating function (DGF) of $(1 + P(s))^{-1}$ and $C_{\Omega}(n)$ has the DGF $(1 - P(s))^{-1}$ for Re(s) > 1 where $P(s) := \sum_{p} p^{-s}$ is the prime zeta function. The function $C_{\Omega}(n)$ was considered in [9] with an exact formula given by (cf. equation (3.4) in the proof of Proposition 3.3)

$$C_{\Omega}(n) = \begin{cases} 1, & \text{if } n = 1; \\ (\Omega(n))! \times \prod_{p^{\alpha} \mid n} \frac{1}{\alpha!}, & \text{if } n \ge 2. \end{cases}$$
 (1.7)

The DGF of g(n) is given by $\zeta(s)^{-1}(1+P(s))^{-1}$ for Re(s) > 1 (see Proposition 3.3). The DGF of |g(n)| is given by $\zeta(2s)^{-1}(1-P(s))^{-1}$ for Re(s) > 1 (see Remark 3.6).

Theorem 1.2. As $n \to \infty$, there is an absolute constant $B_0 > 0$ such that

$$\frac{1}{n} \times \sum_{k \le n} \log C_{\Omega}(k) = B_0(\log \log n) (\log \log \log n) (1 + o(1)).$$

Conjecture. For any fixed z > 0, as $x \to \infty$

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : -z \le |g(n)| - \frac{1}{n} \times \sum_{k \le n} |g(k)| \le z \right\} = \Phi \left(\frac{\log \left(\frac{\pi^2 z}{6}\right) - B_0 \cdot (\log \log x)(\log \log \log x)}{B_0 \cdot (\log \log x)(\log \log \log x)} \right) + o(1).$$

We can show that the constant B_0 in the conjecture is identically one assuming that for any y > 0

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : \frac{C_{\Omega}(n)}{(\log \log x)(\log \log \log x)} \le y \right\} = \Phi(y-1) + o(1), \text{ as } x \to \infty.$$

1.3 Discussion of the new results

For $n \geq 2$, let the function $\mathcal{E}[n] := (\alpha_1, \alpha_2, \dots, \alpha_r)$ denote the unordered partition of exponents for which $n = p_1^{\alpha_1} \times \dots \times p_r^{\alpha_r}$ is the factorization of n into powers of distinct primes. For any $n_1, n_2 \geq 2$

$$\mathcal{E}[n_1] = \mathcal{E}[n_2] \implies C_{\Omega}(n_1) = C_{\Omega}(n_2) \text{ and } g(n_1) = g(n_2). \tag{1.8}$$

The Mertens function is related to the partial sums in (1.2) via the relation [12, 13]

$$M(x) = \sum_{d \le \sqrt{x}} \mu(d) L\left(\left\lfloor \frac{x}{d^2} \right\rfloor\right), \text{ for } x \ge 1.$$
 (1.9)

The relation in (1.9) gives an exact expression for M(x) with summands involving L(x) that are oscillatory. In contrast, the exact expansions for the Mertens function given in Theorem 1.1 express M(x) as finite sums over $\lambda(n)$ with weighted coefficients that are unsigned. The property of the symmetry of the distinct values of |g(n)| with respect to the prime factorizations of $n \ge 2$ in (1.8) suggests that the unsigned weights on $\lambda(n)$ in the new formulas from the theorem yield new insights compared to the formula for M(x) in terms of L(x) from equation (1.9).

1.4 Organization of the manuscript

The focus of the article is on the unsigned functions $C_{\Omega}(n)$ and |g(n)|. The new formulas for M(x) given in Theorem 1.1 provide a window from which we can view classically difficult problems about asymptotics for this function in terms of the auxiliary unsigned functions. We first prove formulas for the first and second moments of the functions $C_{\Omega}(n)$ and g(n). We then establish the proof of Theorem 1.1 in Section 5. The appendix sections provide supplementary material on topics that can be separated from the main sections of the article.

2 Properties of the function $C_{\Omega}(n)$

The function $C_{\Omega}(n)$ is key to understanding the unsigned inverse sequence |g(n)| through the formula in equation (1.6). In this section, we define the function $C_{\Omega}(n)$ and explore its properties.

2.1 Definitions

Definition 2.1. We define the following bivariate sequence for integers $n \ge 1$ and $k \ge 0$:

$$C_k(n) := \begin{cases} \varepsilon(n), & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1} \left(\frac{n}{d}\right), & \text{if } k \ge 1. \end{cases}$$
 (2.1)

Using the notation for iterated convolution in Bateman and Diamond [2, Def. 2.3; §2], we have $C_0(n) \equiv \omega^{*0}(n)$ and $C_k(n) \equiv \omega^{*k}(n)$ for integers $k \ge 1$ and $n \ge 1$. The special case of (2.1) where $k := \Omega(n)$ occurs frequently in the next sections of the article. To avoid cumbersome notation when referring to this common function variant, we suppress the duplicate index n by writing $C_{\Omega}(n) := C_{\Omega(n)}(n)$ [21, A008480].

Remark 2.2. By recursively expanding the definition of $C_k(n)$ at any fixed $n \ge 2$, we see that we can form a chain of at most $\Omega(n)$ iterated (or nested) divisor sums by unfolding the definition of (2.1) inductively. We also see that at fixed n, the function $C_k(n)$ is non-zero only possibly for $1 \le k \le \Omega(n)$ when $n \ge 2$. By equation (1.7) we have that $C_{\Omega}(n) \le (\Omega(n))!$ for all $n \ge 1$ with equality precisely at the squarefree integers so that $(\Omega(n))! = (\omega(n))!$ if and only if $\mu^2(n) = 1$.

2.2 Logarithmic average order and variance

Proof of Theorem 1.2. We first use (1.7) to see that there is an absolute constant $P_0 \ge \frac{6}{\pi^2}$ such that

$$\sum_{k\geq 1} \sum_{\substack{n\leq x\\\Omega(n)=k}} \log C_{\Omega}(n) = \sum_{k\geq 1} P_0 \times \#\{n\leq x: \Omega(n)=k\} \times \log(k!)(1+o(1)). \tag{2.2}$$

A complete proof that equation (2.2) holds is provided below. We will split the full sum on the left-handside of (2.2) into two sums over disjoint indices that respectively form the main and error terms. For $x \ge 3$, consider the following partial sums:

$$L_{\Omega}(x) \coloneqq \sum_{1 \le k \le \frac{3}{2} \log \log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} \log C_{\Omega}(n).$$

For any $z \ge 0$, Binet's formula for the log-gamma function is stated as follows [19, §5.9(i)]:

$$\log z! = \left(z + \frac{1}{2}\right) \log(1+z) - z + O(1).$$

If equation (2.2) holds, Theorem A.2 (see appendix) shows that there is an absolute constant $B_0 > 0$ such that

$$L_{\Omega}(x) = \sum_{1 \le k \le \frac{3}{2} \log \log x} \frac{B_0 x (\log \log x)^{k-1}}{(\log x)(k-1)!} \times \left(\left(k + \frac{1}{2}\right) \log(1+k) - k\right) (1+o(1)). \tag{2.3}$$

The right-hand-side of (2.3) can be approximated by Abel summation using the next functions for $1 \le u \le \frac{3}{2} \log \log x$.

$$A_x(u) := \frac{B_0 x \Gamma(u, \log \log x)}{\Gamma(u)}; f(u) := \frac{(2u+1)}{2} \log(1+u) - \frac{(2u+1)}{2}.$$

We have by Proposition B.3 that

$$L_{\Omega}(x) = A_x \left(\frac{3}{2}\log\log x\right) f\left(\frac{3}{2}\log\log x\right) - \int_0^{\frac{3}{2}} A_x(\alpha\log\log x) f'(\alpha\log\log x) d\alpha$$
$$= B_0 x(\log\log x)(\log\log\log x) (1 + o(1)).$$

It suffices to show that as $x \to \infty$

$$\sum_{\substack{n \le x \\ \Omega(n) \ge \frac{3}{2} \log \log x}} \log C_{\Omega}(n) = o\left(x(\log \log x)(\log \log \log x)\right). \tag{2.4}$$

Because $r - 1 - r \log r \approx -0.108198$ when $r := \frac{3}{2}$ and

$$\log C_{\Omega}(n) \ll \Omega(n) \log \Omega(n), \text{ for } n \le x, \tag{2.5}$$

we can argue using Rankin's method [15, Thm. 7.20; §7.4] that (2.4) holds. In particular, Theorem A.1 together with applications of the Cauchy-Schwarz and (logarithmic) AGM inequalities complete the details to a proof verifying that the bound in (2.4) holds for all sufficiently large x. The assertion on the upper bound for $\log C_{\Omega}(n)$ in (2.5) holds for all $n \ge 1$ even when the right-hand-side terms involving $\Omega(n)$ oscillate in magnitude over $1 \le n \le x$. This is justified by maximizing (minimizing) the ratio of the right-hand-side of (2.5) to Binet's log-gamma formula numerically to find explicit bounded real $z \equiv \Omega(n) \in [1,11)$ that yield the global extremum of the function.

Proof of equation (2.2). The key to this argument is in understanding that the main term of the sum on the left-hand-side of the equation is obtained by summing over only the squarefree $n \le x$. We claim that

$$\sum_{k\geq 1} \sum_{\substack{n\leq x\\\Omega(n)=k}} \log C_{\Omega}(n) \sim \sum_{k\geq 1} \sum_{\substack{n\leq x\\\mu^{2}(n)=1\\\Omega(n)=k}} \log C_{\Omega}(n).$$

For integers $x \ge 1$ and $1 \le k \le \log_2(x)$, let the sets

$$\mathcal{S}_k\left(\left\{\varpi_j\right\}_{j=1}^k;x\right)\coloneqq\left\{2\leq n\leq x:\mu(n)=0,\omega(n)=k,\frac{n}{\mathrm{rad}(n)}=p_1^{\varpi_1}\times\cdots\times p_k^{\varpi_k},\ p_i\neq p_j\ \mathrm{prime\ if}\ 1\leq i< j\leq k\right\}.$$

The function rad(n) is the radix of n which evaluates to the largest squarefree factor of n, or equivalently the product of all primes p|n. Let

$$\mathcal{N}_k(\varpi_1,\ldots,\varpi_k;x) \coloneqq \frac{\left|\mathcal{S}_k\left(\{\varpi_j\}_{j=1}^k;x\right)\right|}{x}.$$

Let the special case where $\{\varpi_j\}_{1\leq j\leq k}\equiv\{1\}$ (with multiplicity of exactly one) be denoted by

$$\widehat{T}_k(x) \coloneqq \mathcal{N}_k(1,0,\ldots,0;x).$$

If $2 \le n \le x$ is not squarefree and $n \in \mathcal{S}_k\left(\{\varpi_j\}_{j=1}^k; x\right)$, then we must have that $\varpi_j \ge 1$ for at least one $1 \le j \le k$. We clearly have that for any $k \ge 1$ and non-trivial $\{\varpi_j\}_{1 \le j \le k} \ne \{0\}$

$$\lim_{x\to\infty} \mathcal{N}_k(\varpi_1,\ldots,\varpi_k;x) \leq \lim_{x\to\infty} {k \choose 1} \times \widehat{T}_k(x).$$

We will require the following bounds on $\widehat{T}_k(x)$:

$$\widehat{T}_k(x) \ll \#\{n \le x : \Omega(n) = k\}, \text{ for all } k \ge 1, \text{ as } x \to \infty.$$

Intuition about the quality of the upper bounds we will need follows by evaluating asymptotic formulae for $k \in \{1, 2\}$ explicitly.

$$\widehat{T}_1(x) = \sum_{p \le \sqrt{x}} 1 = \frac{2\sqrt{x}}{\log x} (1 + o(1)),$$

$$\widehat{T}_2(x) = \sum_{p \le \sqrt{x}} \widehat{T}_1\left(\frac{x}{p}\right) \ll \frac{\sqrt{x}}{\log x} \times \sum_{p \le \sqrt{x}} \frac{1}{\sqrt{p}} \times \left(1 + \frac{\log p}{\log x}\right) \ll \frac{\sqrt{x(\log\log x)}}{\log x}$$

We have applied a famous theorem of Mertens to reach the last equation: $\sum_{p \le x} p^{-1} = (\log \log x)(1 + o(1))$ as $x \to \infty$. We argue by induction that for any $k \ge 1$

$$\widehat{T}_k(x) \ll x^{0.905466} \times (\log x)^{k-2}$$
, as $x \to \infty$.

We must have that $k \ll \log x$ and that $(\log x)^{\log x} = o(x)$ by L'Hopital's rule as $x \to \infty$. It follows that for all sufficiently large x

$$\sum_{k\geq 1} \#\{n\leq x: \Omega(n)=k, \mu(n)=0\} \times \log(k!) \ll \sum_{k\geq 1} \#\{n\leq x: \Omega(n)=k, \mu^2(n)=1\} \times \log(k!).$$

The previous argument applied to equation (1.7) shows that as $x \to \infty$

$$\sum_{\substack{n \le x \\ \mu(n)=0}} \log C_{\Omega}(n) \ll \sum_{\substack{n \le x \\ \mu^2(n)=1}} \log C_{\Omega}(n).$$

That is, the main term of the sums on the left of equation (2.2) is given by

$$\sum_{n \le x} \log C_{\Omega}(n) \sim \sum_{k \ge 1} \sum_{\substack{n \le x \\ \Omega(n) = k}} \log(k!).$$

The sum of denominator differences from (1.7) subtracted from the main term is asymptotically insubstantial by the upper bounds on the functions $\widehat{T}_k(x)$ from above at any $1 \le k \le \log_2(x)$. Since $C_{\Omega}(n) = (\Omega(n))!$ for all squarefree $n \ge 1$ and the limiting density of positive squarefree integers is $\frac{6}{\pi^2}$, the constant P_0 has the (sharp) bound stated before equation (2.2).

Definition 2.3. For any integers $x \ge 1$, we define the expected (averaged) value of the function $\log C_{\Omega}(n)$ for $1 \le n \le x$ by

$$\mathbb{E}\left[\log C_{\Omega}(x)\right] \coloneqq \frac{1}{x} \times \sum_{n \le x} \log C_{\Omega}(n).$$

The variance of this function is defined by the centralized second moments

$$\operatorname{Var}\left(\log C_{\Omega}(x)\right) \coloneqq \sum_{n \leq x} \left(\log C_{\Omega}(n) - \mathbb{E}\left[\log C_{\Omega}(x)\right]\right)^{2}.$$

Proposition 2.4. For $n > e^e$, the variance of the function $\log C_{\Omega}(n)$ is given by

$$\sqrt{\operatorname{Var}(\log C_{\Omega}(x))} = B_0(\log\log\log n)(\log\log\log n)(1+o(1)), \text{ as } n \to \infty.$$

Proof. Suppose that $n \ge 16$. We have that for all $n \ge 1$

$$S_{2,\Omega}(n) := \sum_{k \le n} \log^2 C_{\Omega}(k) - \left(\sum_{k \le n} \log C_{\Omega}(k)\right)^2 = 2 \times \sum_{1 \le j < k \le n} \log C_{\Omega}(j) \log C_{\Omega}(k). \tag{2.6}$$

Let the next first and second moment sums be denoted in respectively by

$$E_{\Omega}(n) \coloneqq \frac{1}{n} \times \sum_{k \le n} \log C_{\Omega}(k), \text{ and } V_{\Omega}(n) \coloneqq \sqrt{\frac{1}{n} \times \sum_{k \le n} \log^2 C_{\Omega}(k)}, \text{ for } n \ge 1.$$

The expansion on the right-hand-side of (2.6) is rewritten as

$$S_{2,\Omega}(n) = V_{\Omega}^{2}(n) - E_{\Omega}^{2}(n) = 2 \times \sum_{1 \le j < n} \log C_{\Omega}(j) \left(E_{\Omega}(n) - E_{\Omega}(j) \right). \tag{2.7}$$

Equation (2.7) implies that as $n \to \infty$

$$V_{\Omega}^{2}(n) \sim B_{0}^{2} \left(3E_{\Omega}^{2}(n) - 2(\log\log n)^{2} (\log\log\log n)^{2} + I_{A}(n) \right)$$

$$= B_{0}^{2} \left((\log\log n)^{2} (\log\log\log n)^{2} + I_{A}(n) \right) (1 + o(1)). \tag{2.8}$$

The integral term in the last equations is

$$I_A(x) \coloneqq 2 \times \int_{e^e}^x t(\log \log t)^2 (\log \log \log t)^2 dt.$$

For $x > e^e$, we can exactly integrate

$$\int_{e^{e}}^{x} \frac{(\log \log t)^{2} (\log \log \log t)^{2}}{t(\log t)} dt = \frac{1}{3} (\log \log x)^{3} (\log \log \log x)^{3} (1 + o(1)), \text{ as } x \to \infty.$$

The mean value theorem shows that for large x there is a bounded constant $c \equiv c(x) \in [e^e, x]$ such that

$$I_A(x) = \frac{2}{3}c(x)\log c(x)(\log\log x)^3(\log\log\log x)^3(1+o(1)).$$

We can differentiate the previous equation, discarding lower order terms, to solve for the main term of c(x) to find that as $x \to \infty$

$$c(x) \ll \frac{\log \log \log \log \log x}{W(\log \log \log \log \log x)} \ll \frac{\log \log \log \log \log \log x}{\log \log \log \log \log \log x}$$
.

This implies that $I_A(x) = o(E_{\Omega}(x))$ at large x. The conclusion follows from equation (2.8).

2.3 Remarks

In the same way we will see in the proof of Theorem 3.7 in the next section, a formula for the average order of $C_{\Omega}(n)$ is required to evaluate asymptotics for the average order of |g(n)|. One approach to evaluating the average order of the former function is to consider the order of growth of the next sums for $1 \le k \le R \log \log x$ and $|z| \le 9$ when $R \in (1,2)$.

$$\sum_{\substack{n \le x \\ \Omega(n) = k}} \frac{(-1)^{\omega(n)} C_{\Omega}(n) z^{2\Omega(n)}}{(\Omega(n))!}, \text{ and } \sum_{\substack{n \le x \\ \Omega(n) = k}} \frac{(-1)^{\omega(n)} C_{\Omega}(n)}{(\Omega(n))!}$$

The sums of these forms may be accurately approximated by a long and technical argument that invokes the Selberg-Delange method [24, §II.6.1] [15, §7.4]. In particular, we can extract the coefficients of $z^{2\Omega(n)}$ from the expansions of the DGF products

$$\sum_{n\geq 1} \frac{C_{\Omega}(n)}{(\Omega(n))!} \cdot \frac{(-1)^{\omega(n)} z^{\Omega(n)}}{n^s} = \prod_{p} \left(1 + \sum_{r\geq 1} \frac{z^{\Omega(p^r)}}{r! p^{rs}} \right)^{-1} = \exp\left(-zP(s)\right), \text{ for } \operatorname{Re}(s) > 1.$$

Integration by parts together with a mean value theorem type application of the signed sums in Lemma B.5 yield exact asymptotic formulae for the restricted partial sums of the function $C_{\Omega}(n)$ over all $n \leq x$ such that $\Omega(n) = k$ uniformly for $1 \leq k \leq R \log \log x$. The growth of the resulting main term of this average order is large and is approximately on the order of

$$\frac{1}{x} \times \sum_{n \le x} C_{\Omega}(n) = A \cdot x^{Bx+C} (1 + o(1)), \text{ as } x \to \infty,$$

for absolute constants A, B, C > 0. A motivating application that leverages the new results in this article and involves the growth of the average order of the function |g(n)| is posed in Remark 4.4 below.

3 Properties of the function g(n)

In this section, we prove key properties of the inverse function g(n). The partial sums of this sequence yield the new formulas for M(x) stated in Theorem 1.1 proved in Section 5 below.

3.1 Definitions

Definition 3.1. For integers $n \ge 1$, we define the Dirichlet inverse function taken with respect to the operation of Dirichlet convolution to be

$$g(n) = (\omega + 1)^{-1}(n)$$
, for $n \ge 1$.

The function |g(n)| denotes the unsigned inverse function.

Remark 3.2 (Motivation). Let $\chi_{\mathbb{P}}(n)$ denote the characteristic function of the primes, suppose that $\varepsilon(n) = \delta_{n,1}$ be the multiplicative identity with respect to Dirichlet convolution, and denote by $\omega(n)$ the strongly additive function that counts the number of distinct prime factors of n (without multiplicity). We can see using elementary methods that

$$\chi_{\mathbb{P}} + \varepsilon = (\omega + 1) * \mu. \tag{3.1}$$

The result in (3.1) follows by Möbius inversion since $\mu * 1 = \varepsilon$ and

$$\omega(n) = \sum_{p|n} 1 = \sum_{d|n} \chi_{\mathbb{P}}(d), \text{ for } n \ge 1.$$

We recall an inversion theorem of summatory functions proved in [1, §2.14] for any Dirichlet invertible arithmetic function $\alpha(n)$ stated in the form of

$$G(x) = \sum_{n \le x} \alpha(n) F\left(\frac{x}{n}\right) \implies F(x) = \sum_{n \le x} \alpha^{-1}(n) G\left(\frac{x}{n}\right), \text{ for } x \ge 1.$$
 (3.2)

Hence, to express the new formulas for M(x) we may consider the inversion of the right-hand-side of the partial sums

$$\pi(x)+1=\sum_{n\leq x}\left(\chi_{\mathbb{P}}+\varepsilon\right)(n)=\sum_{n\leq x}(\omega+\mathbb{1})\star\mu(n), \text{ for } x\geq 1.$$

3.2 Signedness

Proposition 3.3. The sign of the function g(n) is $\lambda(n)$ for all $n \ge 1$.

Proof. The series $D_f(s) := \sum_{n\geq 1} f(n) n^{-s}$ defines the Dirichlet generating function (DGF) of any arithmetic function f which is convergent for all $s \in \mathbb{C}$ satisfying $\text{Re}(s) > \sigma_f$ where σ_f is the abscissa of convergence of the series. Recall that $D_1(s) = \zeta(s)$, $D_{\mu}(s) = \zeta(s)^{-1}$ and $D_{\omega}(s) = P(s)\zeta(s)$ for Re(s) > 1. By (3.1) and since whenever $f(1) \neq 0$ the DGF of $f^{-1}(n)$ is $D_f(s)^{-1}$, we have

$$D_{(\omega+1)^{-1}}(s) = \frac{1}{\zeta(s)(1+P(s))}, \text{ for } Re(s) > 1.$$
(3.3)

It follows that $(\omega + 1)^{-1}(n) = (h^{-1} * \mu)(n)$ for $h := \chi_{\mathbb{P}} + \varepsilon$. We first show that $\operatorname{sgn}(h^{-1}) = \lambda$ which implies that $\operatorname{sgn}(h^{-1} * \mu) = \lambda$.

We recover exactly that [9, cf. §2]

$$h^{-1}(n) = \begin{cases} 1, & n = 1; \\ \lambda(n)(\Omega(n))! \times \prod_{p^{\alpha}||n} \frac{1}{\alpha!}, & n \ge 2. \end{cases}$$

In particular, by expanding the DGF of h^{-1} formally in powers of P(s) (where |P(s)| < 1 whenever $Re(s) \ge 2$) we count that

$$\frac{1}{1+P(s)} = \sum_{n\geq 1} \frac{h^{-1}(n)}{n^s} = \sum_{k\geq 0} (-1)^k P(s)^k,
= 1 + \sum_{\substack{n\geq 2\\ n=p_1^{\alpha_1} p_2^{\alpha_2} \times \dots \times p_k^{\alpha_k}}} \frac{(-1)^{\alpha_1 + \alpha_2 + \dots + \alpha_k}}{n^s} \times {\alpha_1 + \alpha_2 + \dots + \alpha_k \choose \alpha_1, \alpha_2, \dots, \alpha_k},
= 1 + \sum_{\substack{n\geq 2\\ n=p_1^{\alpha_1} p_2^{\alpha_2} \times \dots \times p_k^{\alpha_k}}} \frac{\lambda(n)}{n^s} \times {\alpha(n) \choose \alpha_1, \alpha_2, \dots, \alpha_k}.$$
(3.4)

Since λ is completely multiplicative we have that $\lambda\left(\frac{n}{d}\right)\lambda(d) = \lambda(n)$ for all divisors d|n when $n \ge 1$. We also have that $\mu(n) = \lambda(n)$ whenever n is squarefree so that

$$g(n) = (h^{-1} * \mu)(n) = \lambda(n) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) |h^{-1}(n)|, \text{ for } n \ge 1.$$

The notation $|h^{-1}(n)|$ from the last proof identically matches values of the function $C_{\Omega}(n)$ for all $n \ge 1$.

3.3 Relations to the function $C_{\Omega}(n)$

Lemma 3.4. For all $n \ge 1$

$$g(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega}(d).$$

Proof. We expand the recurrence relation for the Dirichlet inverse for $g(1) = g(1)^{-1} = 1$ as

$$g(n) = -\sum_{\substack{d|n\\d>1}} (\omega(d) + 1)g\left(\frac{n}{d}\right) \quad \Longrightarrow \quad (g*1)(n) = -(\omega*g)(n). \tag{3.5}$$

For $1 \le m \le \Omega(n)$, we can inductively expand the implication on the right-hand-side of (3.5) in the form of $(g * 1)(n) = F_m(n)$ where $F_m(n) := (-1)^m (C_m(-) * g)(n)$ as

$$F_{m}(n) = -\begin{cases} (\omega * g)(n), & m = 1; \\ \sum\limits_{\substack{d \mid n \\ d > 1}} F_{m-1}(d) \times \sum\limits_{\substack{r \mid \frac{n}{d} \\ r > 1}} \omega(r) g\left(\frac{n}{dr}\right), & 2 \le m \le \Omega(n); \\ 0, & \text{otherwise.} \end{cases}$$

When $n \ge 2$ and $m := \Omega(n)$, i.e., with the expansions in the previous equation taken to a maximal depth, we obtain

$$(g * 1)(n) = \lambda(n)C_{\Omega}(n). \tag{3.6}$$

The formula follows from equation (3.6) by Möbius inversion.

Corollary 3.5. For all $n \ge 1$

$$|g(n)| = \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega}(d). \tag{3.7}$$

Proof. The result follows from Lemma 3.4, Proposition 3.3 and the complete multiplicativity of $\lambda(n)$. Since $\mu(n)$ is non-zero only at squarefree integers and since at any squarefree $d \ge 1$ we have $\mu(d) = (-1)^{\omega(d)} = \lambda(d)$, we have

$$|g(n)| = \lambda(n) \times \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega}(d)$$
$$= \lambda(n^{2}) \times \sum_{d|n} \mu^{2}\left(\frac{n}{d}\right) C_{\Omega}(d).$$

The leading term $\lambda(n^2) = 1$ for all $n \ge 1$ since the number of distinct prime factors (counting multiplicity) of any square integer is even.

Remark 3.6. We have the following remarks on consequences of Corollary 3.5:

• Whenever $n \ge 1$ is squarefree

$$|g(n)| = \sum_{d|n} C_{\Omega}(d). \tag{3.8a}$$

Since all divisors of a squarefree integer are squarefree, for all squarefree integers $n \ge 1$, we have that

$$|g(n)| = \sum_{m=0}^{\omega(n)} {\omega(n) \choose m} \times m!.$$
 (3.8b)

• The formula in (3.7) shows that the DGF of the unsigned inverse function |g(n)| is given by the meromorphic function $\zeta(2s)^{-1}(1-P(s))^{-1}$ for all $s \in \mathbb{C}$ with Re(s) > 1. This DGF has a pole to the right of the line at Re(s) = 1 which occurs for the unique real $\sigma \approx 1.39943$ such that $P(\sigma) = 1$ on $(1, \infty)$.

3.4 Logarithmic average order and variance

Theorem 3.7. $As n \rightarrow \infty$

$$\frac{1}{n} \times \sum_{k \le n} \log |g(k)| = \frac{B_0}{2} \left((\log \log n) (\log \log \log n) - \log \left(\frac{\pi^2}{6} \right) \right) (1 + o(1)).$$

Proof. An elementary formula for the number of squarefree integers $n \le x$ states that [11, §18.6] [21, A013928]

$$Q(x) = \sum_{n \le x} \mu^2(n) = \frac{6x}{\pi^2} + O(\sqrt{x}), \text{ as } x \to \infty.$$

Therefore, by summing over the right-hand-side of equation (3.7), we find that as $n \to \infty$

$$\frac{1}{n} \times \sum_{k \le n} |g(k)| = \frac{1}{n} \times \sum_{d \le n} C_{\Omega}(d) Q\left(\left\lfloor \frac{n}{d} \right\rfloor\right)$$

$$\sim \sum_{d \le n} C_{\Omega}(d) \left(\frac{6}{\pi^2 n d} + O\left(\frac{1}{\sqrt{dn}}\right)\right)$$

$$= \frac{6}{\pi^2} \left(\frac{1}{n} \times \sum_{k \le n} C_{\Omega}(k) + \sum_{d \le n} \sum_{k \le d} \frac{C_{\Omega}(k)}{d^2}\right) (1 + o(1)).$$
(3.9)

We claim that

$$|g(n)| - \frac{1}{n} \times \sum_{k \le n} |g(k)| \sim \frac{6}{\pi^2} C_{\Omega}(n), \text{ as } n \to \infty.$$

$$(3.10)$$

Let the backwards difference operator be defined for $x \ge 2$ and any arithmetic function f by $\Delta_x[f] := f(x) - f(x-1)$. We see from equation (3.9) that

$$|g(n)| = \Delta_n \left[\sum_{k \le n} g(k) \right] \sim \frac{6}{\pi^2} \times \Delta_n \left[\sum_{d \le n} C_{\Omega}(d) \frac{n}{d} \right]$$

$$= \frac{6}{\pi^2} \left(C_{\Omega}(n) + \sum_{d < n} C_{\Omega}(d) \frac{n}{d} - \sum_{d < n} C_{\Omega}(d) \frac{(n-1)}{d} \right)$$

$$\sim \frac{6}{\pi^2} C_{\Omega}(n) + \frac{1}{n-1} \times \sum_{k < n} |g(k)|, \text{ as } n \to \infty.$$

The logarithm of equation (3.10) yields

$$\frac{1}{n} \times \sum_{k \le n} \log|g(k)| = \frac{B_0}{2} (\log\log n) (\log\log\log n) - \frac{B_0}{2} \log\left(\frac{\pi^2}{6}\right) + O\left(\frac{1}{n^2} \times \sum_{k \le n} \log|g(k)|\right). \quad \Box$$

The argument from the proof of Proposition 2.4 shows that the variance of $\log |g(n)|$ is

$$\sqrt{\operatorname{Var}(\log|g(x)|)} = \frac{\sqrt{2}B_0}{2}(\log\log\log n)(\log\log\log n)(1+o(1)), \text{ as } n \to \infty.$$

4 The distributions of the unsigned functions

In this section, we motivate a conjecture that provides a limiting central limit type distribution for the function $\log C_{\Omega}(n)$. The relations between $C_{\Omega}(n)$ and g(n) we proved in Section 3.3 allow us to state a central limit theorem for the distribution of |g(n)| (assuming the conjecture holds).

Definition 4.1. For any $z \in (-\infty, \infty)$, the cumulative density function of any standard normal random variable is

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \times \int_{-\infty}^{z} e^{\frac{-t^2}{2}} dt.$$

Conjecture 4.2. For any $z \in (-\infty, \infty)$, as $x \to \infty$

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : \frac{\log C_{\Omega}(n) - B_0 \cdot (\log \log x)(\log \log \log x)}{B_0 \cdot (\log \log x)(\log \log \log x)} \le z \right\} = \Phi(z) + o(1).$$

Proof Sketch. A complete proof outside of the scope of this manuscript. We sketch the details to prove the conjecture by the outline in the following steps:

• Given a fixed $n \ge 1$, we select another integer $N \equiv N(n)$ uniformly at random from $\{1, 2, ..., n\}$. For each prime p we define

$$C_p^{(n)} \coloneqq \begin{cases} 0, & p + N(n); \\ \alpha, & p^{\alpha} || N(n), \text{ for some } \alpha \ge 1. \end{cases}$$

For integers $k \ge 1$ and primes p, we have limiting convergence in distribution of $C_p^{(n)} \stackrel{d}{\Longrightarrow} Z_p$ where Z_p is a geometric random variable with parameter $\frac{1}{p}$ so that [20, §1.2]

$$\lim_{n \to \infty} \mathbb{P}\left[C_p^{(n)} = k\right] = \left(1 - \frac{1}{p}\right) \left(\frac{1}{p}\right)^k.$$

• For $n \ge 1$, we use equation (1.7) and Binet's log-gamma formula [19, §5.9(i)] to show that

$$\log C_{\Omega}(n) = \log(\Omega(n))! - \sum_{\substack{p^{\alpha} || n \\ \alpha \ge 2}} \log(\alpha!)$$

$$= \Omega(n) \log \Omega(n) - \sum_{\substack{p^{\alpha} || n \\ \alpha > 2}} \alpha \log(1 + \alpha) + O(\Omega(n)). \tag{4.1}$$

Since $\Omega(n) = 1$ only for n within a subset of the positive integers with asymptotic density of zero, we may restrict our considerations to the $n \ge 2$ such that $\Omega(n) \ge 2$.

• For any $2 \le N(x) \le x$ chosen uniformly at random with $\Omega(N(x)) \ge 2$, we write the expansion of $\log C_{\Omega}(N(x))$ from (4.1) as the difference $\Theta_{N(x)} - A_{N(x)}$ where we define

$$\begin{split} \Theta_{N(x)} &\coloneqq \Omega(N(x)) \log \Omega(N(x)) + O(1), \\ A_{N(x)} &\coloneqq \sum_{p \le x} C_p^{(x)} \log C_p^{(x)} \times \mathbb{1}_{\{C_p^{(x)} \ge 2\}}(p) + O(1). \end{split}$$

We can show that as $x \to \infty$

$$\mathbb{E}[A_{N(x)}] \ll \sum_{p \le x} \mathbb{E}\left[C_p^{(x)} \log C_p^{(x)}\right] \times \mathbb{P}\left[C_p^{(x)} \ge 2\right] = o\left(\mathbb{E}[\Theta_{N(x)}]\right).$$

Analogous bounds can be proved to relate the variance of these two random variables as $x \to \infty$.

• Let $\mu_n := \mathbb{E}[\log C_{\Omega}(n)]$ and $\sigma_n^2 := \operatorname{Var}(\log C_{\Omega}(x))$ denote the respective moments of $\log C_{\Omega}(n)$ from Definition 2.3. Suppose that the Lindeberg condition holds for any $\varepsilon > 0$ in the following form:

$$\lim_{x\to\infty}\frac{1}{\sigma_x^2}\times\sum_{n\leq x}\mathbb{E}\left[\left(\log C_{\Omega}(n)-\mu_n\right)^2\times\mathbb{1}_{\{|\log C_{\Omega}(n)-\mu_n|>\varepsilon\sigma_x\}}(n)\right]=0.$$

Then we may apply the Lindeberg central limit theorem using Theorem 1.2 and Proposition 2.4 to obtain the convergence in distribution given by [4, §27]

$$\frac{\log C_{\Omega}(n) - B_0(\log\log x)(\log\log\log x)}{B_0(\log\log x)(\log\log\log x)} \stackrel{d}{\Longrightarrow} Z_{0,1}, \text{ for any } 2 \le n \le x, \text{ as } x \to \infty,$$

where $Z_{0,1}$ is a standard normal random variable.

Proposition 4.3. Suppose that Conjecture 4.2 is true. For any z > 0, as $x \to \infty$

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : -z \le |g(n)| - \frac{1}{n} \times \sum_{k \le n} |g(k)| \le z \right\} = \Phi \left(\frac{\log \left(\frac{\pi^2 z}{6} \right) - B_0 \cdot (\log \log x)(\log \log \log x)}{B_0 \cdot (\log \log x)(\log \log \log x)} \right) + o(1).$$

Proof. The result follows from equation (3.10) as a re-normalization of Conjecture 4.2.

Remark 4.4. An obvious application of the proposition is to apply the limiting distribution of |g(n)| from the last conjectured proposition to find new asymptotic bounds for the $\lambda(n)$ -signed summands of the partial sums of g(n). To cover the spread at the center of the right-hand-side distribution as $\Phi(w) \leq M \in (0,1]$, the values of $\pm z$ we need to consider in Proposition 4.3 are bounded by

$$|z| \ll \left(\frac{\Gamma(\log\log x + 1)(\log x)}{\sqrt{2\pi\log\log x}}\right)^{B_0 \cdot \left(1 + \sqrt{2}\operatorname{erf}^{-1}(|2M - 1|)\right)}.$$

We can select $M_x \ll \sqrt{\log \log x}$ so that for large x we have $\Phi(M_x) = 1 + O\left(\frac{1}{\log x}\right)$. We then apply the bound on z in the previous equation to evaluate the cases of z that contribute only non-negligible weight to sums over the function of n in Proposition 4.3. The large order growth of the average order of |g(n)| is problematic in predicting the likelihood (on average) that $|\sum_{n\leq x}g(n)|\leq T$ for any fixed T>0. We expect enormous cancellation almost everywhere in the summatory function terms in (1.5c) of Theorem 1.1. A possible extension of the work in this article is to find new ways to exploit the cancellation in this formula to extract hidden information about the frequency of the sign changes of $\lambda(n)$ on bounded subintervals of [1,x] based on the large expected spread of the functions in Proposition 4.3 as $x\to\infty$.

5 Proofs of the new exact formulas for the Mertens function

In this section, we prove the formulas for M(x) involving the partial sums of the function g(n) stated in Theorem 1.1. The new formulas exactly identify the Mertens function with partial sums of positive unsigned arithmetic functions whose summands are weighted by the sign of $\lambda(n)$. These formulas show that better understanding of the asymptotics of the summatory function of g(n) provides insight into the behavior of M(x) (cf. Remark 4.4).

5.1 Formulas relating M(x) to the partial sums of g(n)

Definition 5.1. For any $x \ge 1$, let the partial sums of the Dirichlet convolution r * h be defined by

$$S_{r\star h}(x) \coloneqq \sum_{n \le x} \sum_{d|n} r(d) h\left(\frac{n}{d}\right).$$

Theorem 5.2. Let $r, h : \mathbb{Z}^+ \to \mathbb{C}$ be any arithmetic functions such that $r(1) \neq 0$. Suppose that $R(x) := \sum_{n \leq x} r(n)$, $H(x) := \sum_{n \leq x} h(n)$, and that $R^{-1}(x) := \sum_{n \leq x} r^{-1}(n)$ for $x \geq 1$. The following formulas hold for all integers $x \geq 1$:

$$S_{r*h}(x) = \sum_{d=1}^{x} r(d) H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$S_{r*h}(x) = \sum_{k=1}^{x} H(k) \left(R\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - R\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right).$$

Moreover, for any $x \ge 1$

$$H(x) = \sum_{j=1}^{x} S_{r*h}(j) \left(R^{-1} \left(\left\lfloor \frac{x}{j} \right\rfloor \right) - R^{-1} \left(\left\lfloor \frac{x}{j+1} \right\rfloor \right) \right)$$
$$= \sum_{k=1}^{x} r^{-1}(k) S_{r*h}(x).$$

Theorem 5.2 is proved in Appendix C of the article by matrix methods.

Corollary 5.3. Suppose that r is an arithmetic function such that $r(1) \neq 0$. Let the summatory function of $r * \mu$ be defined by $\widetilde{R}(x) := \sum_{n \leq x} (r * \mu)(n)$. The Mertens function is expressed by the following partial sums for any $x \geq 1$:

$$M(x) = \sum_{k=1}^{x} \left(\sum_{j=\lfloor \frac{x}{k+1} \rfloor + 1}^{\lfloor \frac{x}{k} \rfloor} r^{-1}(j) \right) \widetilde{R}(k).$$

Definition 5.4. The summatory functions of g(n) and |g(n)|, respectively, are defined for all $x \ge 1$ by the partial sums

$$G(x) \coloneqq \sum_{n \le x} g(n) = \sum_{n \le x} \lambda(n) |g(n)|$$
, and $|G|(x) \coloneqq \sum_{n \le x} |g(n)|$.

Proof of (1.5a) and (1.5b) of Theorem 1.1. By applying Theorem 5.2 to equation (3.1) we have that

$$M(x) = \sum_{k=1}^{x} \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right) g(k)$$
$$= G(x) + \sum_{k=1}^{\frac{x}{2}} \pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) g(k)$$

Figure 5.1

$$=G(x)+G\left(\left\lfloor \frac{x}{2}\right\rfloor\right)+\sum_{k=1}^{\frac{x}{2}-1}\left(\pi\left(\left\lfloor \frac{x}{k}\right\rfloor\right)-\pi\left(\left\lfloor \frac{x}{k+1}\right\rfloor\right)\right)G(k).$$

The upper bound on the sum is truncated to $k \in [1, \frac{x}{2}]$ in the second equation above because $\pi(1) = 0$. The third formula above follows directly by summation by parts.

Proof of (1.5c) of Theorem 1.1. Lemma 3.4 shows that

$$G(x) = \sum_{d \le x} \lambda(d) C_{\Omega}(d) M\left(\left\lfloor \frac{x}{d} \right\rfloor\right).$$

The identity in (3.1) implies

$$\lambda(d)C_{\Omega}(d) = (g * 1)(d) = (\chi_{\mathbb{P}} + \varepsilon)^{-1}(d).$$

We recover the stated result from the classical inversion of summatory functions in equation (3.2).

Figure 5.2

5.2 Plots and numerical experiments

The plots shown in the figures in this section compare the values of M(x) and G(x) with scaled forms of related auxiliary partial sums:

- In Figure 5.1, we plot comparisons of M(x) to scaled forms of G(x) for $x \le 5000$. The absolute constant $C_2 := \zeta(2)$ where the partial sums defined by the function $Q(x) := \sum_{n \le x} \mu^2(n)$ count the number of squarefree integers $1 \le n \le x$. In (a) the shift to the left on the x-axis of the former function is compared and seen to be similar in shape to the magnitude of M(x) on this initial subinterval. It is unknown whether the similar shape and magnitude of these two functions persists for much larger x. In (b) we have observed unusual reflections and symmetry between the two ratios plotted in the figure. We have numerically modified the plot values to shift the denominators of M(x) by one at each $x \le 5000$ for which M(x) = 0.
- In Figure 5.2, we compare envelopes on the logarithmically scaled values of $G(x)x^{-1}$ to other variants of the partial sums of g(n) for $x \le 4500$. In (a) we define $G(x) := G_+(x) G_-(x)$ where the functions $G_+(x) > 0$ and $G_-(x) > 0$ for all $x \ge 1$, i.e., the signed component functions $G_\pm(x)$ denote the unsigned

contributions of only those summands |g(n)| over $n \le x$ where $\lambda(n) = \pm 1$, respectively. The summatory function $Q(x) = \frac{6x}{\pi^2} \left(1 + O\left(\frac{1}{\sqrt{x}}\right)\right)$ in (b) has the same definition as in Figure 5.1 above. The second plot suggests that for large x

$$|G(x)| \ll \frac{|G|(x)}{(\log x)\sqrt{\log\log x}} = \frac{1}{(\log x)\sqrt{\log\log x}} \times \sum_{n \le x} |g(n)|.$$

5.3 Local cancellation in the new formulas for the Mertens function

Definition 5.5. Let p_n denote the n^{th} prime for $n \ge 1$ [21, $\underline{A000040}$]. The set of primorial integers is defined by [21, $\underline{A002110}$]

$$\{n\#\}_{n\geq 1} = \left\{\prod_{k=1}^{n} p_k\right\}_{n\geq 1}.$$

Proposition 5.6. As $m \to \infty$, each of the following holds:

$$-G((4m+1)\#) \approx (4m+1)!,$$
 (A)

$$G\left(\frac{(4m+1)\#}{p_k}\right) \approx (4m)!, \text{ for any } 1 \le k \le 4m+1.$$
 (B)

Proof. We have by (3.8b) that for all squarefree integers $n \ge 1$

$$|g(n)| = \sum_{j=0}^{\omega(n)} {\omega(n) \choose j} \times j! = (\omega(n))! \times \sum_{j=0}^{\omega(n)} \frac{1}{j!}$$
$$= (\omega(n))! \times \left(e + O\left(\frac{1}{(\omega(n) + 1)!}\right) \right).$$

Let m be a large positive integer. We obtain main terms of the form

$$\sum_{\substack{n \le (4m+1) \# \\ \omega(n) = \Omega(n)}} \lambda(n)|g(n)| = \sum_{0 \le k \le 4m+1} {4m+1 \choose k} (-1)^k k! \left(e + O\left(\frac{1}{(k+1)!}\right) \right)$$

$$= -(4m+1)! + O\left(\frac{1}{4m+1}\right).$$
(5.2)

The formula for $C_{\Omega}(n)$ stated in (1.7) then implies the result in (A). This happens because the contributions from the summands of the inner summation on the right-hand-side of (5.2) off of the squarefree integers are at most a bounded multiple of $(-1)^k \times k!$ when $\Omega(n) = k$. We can similarly derive that for any $1 \le k \le 4m+1$

$$G\left(\frac{(4m+1)\#}{p_k}\right) \approx \sum_{0 \le k \le 4m} {4m \choose k} (-1)^k k! \times \left(e + O\left(\frac{1}{(k+1)!}\right)\right) = (4m)! + O\left(\frac{1}{4m+1}\right). \quad \Box$$

Remark 5.7. The Riemann hypothesis (RH) is equivalent to showing that

$$M(x) = O\left(x^{\frac{1}{2} + \epsilon}\right), \text{ for all } 0 < \epsilon < \frac{1}{2}.$$
 (5.3)

We expect that there is usually (almost always) a large amount cancellation between the successive values of the summatory function in (1.5c). Proposition 5.6 demonstrates the phenomenon well along the infinite subsequence of the primorials $\{(4m+1)\#\}_{m\geq 1}$. If the RH is true, the sums of the leading constants with opposing signs on the asymptotic bounds for the functions from the last proposition are necessarily required to match. In particular, we have that [5, 6]

$$n# \sim e^{\vartheta(p_n)} \times n^n (\log n)^n e^{-n(1+o(1))}$$
, as $n \to \infty$.

The observation on the necessary cancellation in (1.5c) then follows from the fact that if we obtain a contrary result, then for some fixed $\delta_0 > 0$

$$\frac{M((4m+1)\#)}{\sqrt{(4m+1)\#}} \gg [(4m+1)\#]^{\delta_0}, \text{ as } m \to \infty.$$

If the last equation were to hold, we would find a contradiction to the condition required by equation (5.3). Assuming the RH, we can state a stronger bound for the Mertens function along this subsequence by considering the error terms given in the proof of Proposition 5.6.

6 Conclusions

6.1 Summary

We have identified a sequence, $\{g(n)\}_{n\geq 1}$, that is the Dirichlet inverse of the shifted strongly additive function $\omega(n)$. There is a natural combinatorial interpretation to the repetition of distinct values of |g(n)| in terms of the configuration of the exponents in the prime factorization of any $n\geq 2$. The sign of g(n) is given by $\lambda(n)$ for all $n\geq 1$. This leads to a new exact relations of the summatory function G(x) to M(x) and the classical partial sums L(x). We have formalized a new perspective from which we might express our intuition about features of the distribution of G(x) via the properties of its $\lambda(n)$ -sign-weighted summands. The new results proved within this article are significant in providing a new window through which we can view bounding M(x) through asymptotics of the unsigned sequences and their partial sums.

6.2 Discussion of the new results

Probabilistic models of the Möbius function lead us to consider the behavior of M(x) as a sum of independent and identically distributed (i.i.d.) random variables. Suppose that $\{X_n\}_{n\geq 1}$ is a sequence of i.i.d. $\{-1,0,1\}$ -valued random variables such that for all $n\geq 1$

$$\mathbb{P}[X_n = -1] = \frac{3}{\pi^2}, \mathbb{P}[X_n = 0] = 1 - \frac{6}{\pi^2}, \text{ and } \mathbb{P}[X_n = +1] = \frac{3}{\pi^2},$$

i.e., so that the sequence provides a randomized model of the values of $\mu(n)$ on the average. Under the assumption of this model, we may approximate the partial sums as $M(x) \cong \sum_{n \leq x} X_n$. This viewpoint models predictions of certain limiting asymptotic behavior of the Mertens function such as

$$\mathbb{E}\left[\sum_{1\leq n\leq x}X_n\right] = 0, \text{Var}\left(\sum_{1\leq n\leq x}X_n\right) = \frac{6x}{\pi^2}, \text{ and } \limsup_{x\to\infty}\frac{\left|\sum_{1\leq n\leq x}X_n\right|}{\sqrt{x\log\log x}} = \frac{2\sqrt{3}}{\pi} \text{ (almost surely)}.$$

The property of the symmetry of the distinct values of |g(n)| with respect to the prime factorizations of $n \ge 2$ in (1.8) shows that the unsigned weights on $\lambda(n)$ in the new formulas Theorem 1.1 are comparatively easier to work with than the known exact expressions for M(x) like equation (1.9).

Finding tight bounds on the distribution of L(x) is a problem that is equally as difficult as understanding the growth of M(x) along infinite subsequences (cf. [10, 8, 23]). Indeed, $\lambda(n) = \mu(n)$ for all squarefree $n \ge 1$ so that $\lambda(n)$ agrees with $\mu(n)$ at most large n as the asymptotic density of the squarefree integers is positive. We should infer that $\lambda(n)$ must then inherit the pseudo-randomized quirks of $\mu(n)$ predicted by models of this function in Sarnak's conjecture. On the other hand, arguments for why the formulas in Theorem 1.1 are more desirable to explore than other classical formulae for M(x) have the following counter points:

• Breakthrough work in recent years due to Matomäki, Radziwiłł and Soundararajan to bound multiplicative functions in short intervals has proven fruitful when applied to $\lambda(n)$ [22, 14]. The analogs of results of this type corresponding to the Möbius function are not clearly attained;

- The squarefree $n \ge 1$ on which $\lambda(n)$ and $\mu(n)$ must identically agree are in some senses easier integer cases to handle insomuch as we can prove very regular properties that govern the distributions of the distinct values of $\omega(n)$, $\Omega(n)$ and their difference over $n \le x$ as $x \to \infty$ [15, cf. §2.4; §7.4];
- The function $\lambda(n)$ is completely multiplicative. Hence, sign weighting by the function $\lambda(n)$ may eventually reflect a nicer cousin to the multiplicative $\mu(n)$ along the integers $n \geq 4$ for which $\mu(n) = 0$. This idea, and applications to bounding M(x) via G(x) through equation (1.5c), remain intentionally imprecise for now.

References

- [1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1976.
- [2] P. T. Bateman and H. G. Diamond. Analytic Number Theory. World Scientific Publishing, 2004.
- [3] P. Billingsley. On the central limit theorem for the prime divisor function. *Amer. Math. Monthly*, 76(2):132–139, 1969.
- [4] P. Billingsley. Probability and measure. Wiley, third edition, 1994.
- [5] P. Dusart. The k^{th} prime is greater than $k(\log k + \log \log k 1)$ for $k \ge 2$. Math. Comp., 68(225):411–415, 1999.
- [6] P. Dusart. Estimates of some functions over primes without R.H., 2010.
- [7] P. Erdős and M. Kac. The Gaussian errors in the theory of additive arithmetic functions. *American Journal of Mathematics*, 62(1):738–742, 1940.
- [8] N. Frantzikinakis and B. Host. The logarithmic Sarnak conjecture for ergodic weights. *Ann. of Math.* (2), 187(3):869–931, 2018.
- [9] C. E. Fröberg. On the prime zeta function. BIT Numerical Mathematics, 8:87–202, 1968.
- [10] B. Green and T. Tao. The Möbius function is strongly orthogonal to nilsequences. Ann. of Math. (2), 175(2):541–566, 2012.
- [11] G. H. Hardy and E. M. Wright, editors. An Introduction to the Theory of Numbers. Oxford University Press, 2008 (Sixth Edition).
- [12] P. Humphries. The distribution of weighted sums of the Liouville function and Pólya's conjecture. J. Number Theory, 133:545–582, 2013.
- [13] R. S. Lehman. On Liouville's function. Math. Comput., 14:311–320, 1960.
- [14] K. Matomäki and M. Radziwiłł. Multiplicative functions in short intervals. *Ann. of Math.*, 183:1015–1056, 2016.
- [15] H. L. Montgomery and R. C. Vaughan. *Multiplicative Number Theory: I. Classical Theory*. Cambridge, 2006.
- [16] G. Nemes. The resurgence properties of the incomplete gamma function II. Stud. Appl. Math., 135(1):86–116, 2015.
- [17] G. Nemes. The resurgence properties of the incomplete gamma function I. Anal. Appl. (Singap.), 14(5):631–677, 2016.
- [18] G. Nemes and A. B. Olde Daalhuis. Asymptotic expansions for the incomplete gamma function in the transition regions. *Math. Comp.*, 88(318):1805–1827, 2019.

- [19] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. *NIST Handbook of Mathematical Functions*. Cambridge University Press, 2010.
- [20] A. D. Barbour R. Arratia and Simon Tavaré. Logarithmic Combinatorial Structures: A Probabilistic Approach. Preprint draft, 2002.
- [21] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences, 2021. http://oeis.org.
- [22] K. Soundararajan. The Liouville function in short intervals (after Matomäki and Radziwiłł). arXiv:1606.08021, 2016.
- [23] T. Tao. The logarithmically averaged Chowla and Elliott conjectures for two-point correlations. *Forum of Mathematics*, 4:e8, 2016.
- [24] G. Tenenbaum. Introduction to Analytic and Probabilistic Number Theory. American Mathematical Society, 2015.

A The distributions of $\omega(n)$ and $\Omega(n)$

As $n \to \infty$, we have that

$$\frac{1}{n} \times \sum_{k \le n} \omega(k) = \log \log n + B_1 + o(1),$$

and

$$\frac{1}{n} \times \sum_{k \le n} \Omega(k) = \log \log n + B_2 + o(1),$$

where $B_1 \approx 0.261497$ and $B_2 \approx 1.03465$ are absolute constants [11, §22.10]. The next theorems reproduced from [15, §7.4] bound the frequency of the number of times $\Omega(n)$ $n \leq x$ diverges substantially from its average order at integers $n \leq x$ when x is large (cf. [7, 3]).

Theorem A.1. For $x \ge 2$ and r > 0, let

$$A(x,r) := \# \{ n \le x : \Omega(n) \le r \log \log x \},$$

 $B(x,r) := \# \{ n \le x : \Omega(n) \ge r \log \log x \}.$

If $0 < r \le 1$, then

$$A(x,r) \ll x(\log x)^{r-1-r\log r}, \text{ as } x \to \infty.$$

If $1 \le r \le R < 2$, then

$$B(x,r) \ll_R x(\log x)^{r-1-r\log r}$$
, as $x \to \infty$.

Theorem A.2. For integers $k \ge 1$ and $x \ge 2$

$$\widehat{\pi}_k(x) := \#\{2 \le n \le x : \Omega(n) = k\}.$$

For 0 < R < 2, uniformly for $1 \le k \le R \log \log x$

$$\widehat{\pi}_k(x) = \frac{x}{\log x} \times \mathcal{G}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right), \ as \ x \to \infty. \tag{A.1}$$

For $0 \le |z| < R$, the leading factor in equation (A.1) is defined in terms of the function

$$\mathcal{G}(z) \coloneqq \frac{1}{\Gamma(1+z)} \times \prod_{p} \left(1 - \frac{z}{p}\right)^{-1} \left(1 - \frac{1}{p}\right)^{z}.$$

We can extend the proofs in [15, §7] to obtain results on the distribution of $\omega(n)$.

Remark A.3. For integers $k \ge 1$ and $x \ge 2$, we define

$$\pi_k(x) := \#\{2 \le n \le x : \omega(n) = k\}.$$

For fixed 0 < R < 2, as $x \to \infty$ we have uniformly for $1 \le k \le R \log \log x$ that

$$\pi_k(x) = \frac{x}{\log x} \times \widetilde{\mathcal{G}}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right). \tag{A.2}$$

The leading factor in equation (A.2) is defined in terms of the function

$$\widetilde{\mathcal{G}}(z) := \frac{1}{\Gamma(1+z)} \times \prod_{p} \left(1 + \frac{z}{p-1}\right) \left(1 - \frac{1}{p}\right)^{z}, \text{ for } |z| \le R < 2.$$

B The incomplete gamma function

We cite correspondence online with Gergő Nemes from the Alfréd Rényi Institute of Mathematics and thank him for his careful notes on the limiting asymptotics for the sums in this section. These proofs based on his work in [16, 17, 18] are adapted below.

Definition B.1. The (upper) incomplete gamma function is defined by [19, §8.4]

$$\Gamma(a,z) = \int_z^\infty t^{a-1} e^{-t} dt$$
, for $a \in \mathbb{R}$ and $|\arg z| < \pi$.

The function $\Gamma(a,z)$ can be continued to an analytic function of z on the universal covering of $\mathbb{C}\setminus\{0\}$. For $a\in\mathbb{Z}^+$, the function $\Gamma(a,z)$ is an entire function of z.

Facts B.2. The following properties hold [19, §8.4; §8.11(i)]:

$$\Gamma(a,z) = (a-1)!e^{-z} \times \sum_{k=0}^{a-1} \frac{z^k}{k!}, \text{ for } a \in \mathbb{Z}^+ \text{ and } z \in \mathbb{C},$$
(B.1a)

$$\Gamma(a,z) \sim z^{a-1}e^{-z}$$
, for fixed $a \in \mathbb{R}$ and $z > 0$ as $z \to \infty$. (B.1b)

For z > 0, as $z \to \infty$ we have that [16]

$$\Gamma(z,z) = \sqrt{\frac{\pi}{2}} z^{z-\frac{1}{2}} e^{-z} + O\left(z^{z-1} e^{-z}\right),$$
(B.1c)

For fixed, finite real $|\rho| > 0$, we define the sequence $\{b_n(\rho)\}_{n \ge 0}$ by the following recurrence relation:

$$b_n(\rho) = \rho(1-\rho)b'_{n-1}(\rho) + \rho(2n-1)b_{n-1}(\rho) + \delta_{n,0}.$$

If $z, a \to \infty$ with $z = \rho a$ for some $\rho > 1$ such that $(\rho - 1)^{-1} = o(\sqrt{|a|})$, then [16]

$$\Gamma(a,z) \sim z^a e^{-z} \times \sum_{n\geq 0} \frac{(-a)^n b_n(\rho)}{(z-a)^{2n+1}}.$$
 (B.1d)

Proposition B.3. Let a, z, ρ be positive real parameters such that $z = \rho a$. If $\rho \in (0,1)$, then as $z \to \infty$

$$\Gamma(a,z) = \Gamma(a) + O_{\rho}\left(z^{a-1}e^{-z}\right). \tag{B.2a}$$

If $\rho > 1$, then as $z \to \infty$

$$\Gamma(a,z) = \frac{z^{a-1}e^{-z}}{1-\rho^{-1}} + O_{\rho}\left(z^{a-2}e^{-z}\right). \tag{B.2b}$$

If $\rho > W(1)$, then as $z \to \infty$

$$\Gamma(a, ze^{\pm \pi i}) = -e^{\pm \pi i a} \frac{z^{a-1} e^z}{1 + \rho^{-1}} + O_\rho \left(z^{a-2} e^z \right). \tag{B.2c}$$

Remark B.4. The first two estimates in the proposition are only useful when ρ is bounded away from the transition point at one. We cannot write the last expansion above as $\Gamma(a, -z)$ directly unless $a \in \mathbb{Z}^+$ as the incomplete gamma function has a branch point at the origin with respect to its second variable. This function becomes a single-valued analytic function of its second input by continuation on the universal covering of $\mathbb{C} \setminus \{0\}$.

Proof of Proposition B.3. The first asymptotic estimate follows directly from the following asymptotic series expansion that holds as $z \to \infty$ [18, Eq. (2.1)]:

$$\Gamma(a,z) \sim \Gamma(a) + z^a e^{-z} \times \sum_{k>0} \frac{(-a)^k b_k(\rho)}{(z-a)^{2k+1}}.$$

Using the notation from (B.1d) and [17]

$$\Gamma(a,z) = \frac{z^{a-1}e^{-z}}{1-\rho^{-1}} + z^a e^{-z} R_1(a,\rho).$$

From the bounds in $[17, \S 3.1]$, we have

$$|z^a e^{-z} R_1(a,\rho)| \le z^a e^{-z} \times \frac{a \cdot b_1(\rho)}{(z-a)^3} = \frac{z^{a-2} e^{-z}}{(1-\rho^{-1})^3}$$

The main and error terms in the previous equation can also be seen by applying the asymptotic series in (B.1d) directly.

The proof of the third equation above follows from the asymptotics [16, Eq. (1.1)]

$$\Gamma(-a,z) \sim z^{-a}e^{-z} \times \sum_{n>0} \frac{a^n b_n(-\rho)}{(z+a)^{2n+1}},$$

by setting $(a, z) \mapsto (ae^{\pm\pi i}, ze^{\pm\pi i})$ so that $\rho = \frac{z}{a} > W(1) \approx 0.56714$. The restriction on the range of ρ over which the third formula holds is made to ensure that the formula from the reference is valid at negative real a.

Lemma B.5. $As x \rightarrow \infty$

$$\frac{x}{\log x} \times \left| \sum_{1 \le k \le \log \log x} \frac{(-1)^k (\log \log x)^{k-1}}{(k-1)!} \right| = \frac{x}{2\sqrt{2\pi \log \log x}} \left(1 + O\left(\frac{1}{(\log \log x)}\right) \right).$$

Proof. We have for $n \ge 1$ and any t > 0 by (B.1a) that

$$\sum_{1 \le k \le n} \frac{(-1)^k t^{k-1}}{(k-1)!} = -e^{-t} \times \frac{\Gamma(n, -t)}{(n-1)!}.$$

Suppose that $t = n + \xi$ with $\xi = O(1)$. By the third formula in Proposition B.3 with the parameters $(a, z, \lambda) \mapsto (n, t, 1 + \frac{\xi}{n})$, we deduce that as $n, t \to \infty$.

$$\Gamma(n,-t) = (-1)^{n+1} \times \frac{t^n e^t}{t+n} + O\left(\frac{nt^n e^t}{(t+n)^3}\right) = (-1)^{n+1} \times \frac{t^n e^t}{2n} + O\left(\frac{t^{n-1} e^t}{n}\right).$$

Accordingly, we see that

$$\sum_{1 \le k \le n} \frac{(-1)^k t^{k-1}}{(k-1)!} = (-1)^n \times \frac{t^n}{2n!} + O\left(\frac{t^{n-1}}{n!}\right).$$

By the form of Stirling's formula in [19, cf. Eq. (5.11.8)], we have

$$n! = \Gamma(1+t-\xi) = \sqrt{2\pi}t^{t-\xi+\frac{1}{2}}e^{-t}(1+O(t^{-1})) = \sqrt{2\pi}t^{n+\frac{1}{2}}e^{-t}(1+O(t^{-1})).$$

Hence, as $n \to \infty$ with $t := n + \xi$ and $\xi = O(1)$, we obtain that

$$\sum_{k=1}^{n} \frac{(-1)^k t^{k-1}}{(k-1)!} = (-1)^n \times \frac{e^t}{2\sqrt{2\pi t}} + O\left(e^t t^{-\frac{3}{2}}\right).$$

The conclusion follows by taking $n := \lfloor \log \log x \rfloor$ and $t := \log \log x$.

An adaptation of the proof of Lemma B.5 shows that for any $a \in (1, W(1)^{-1}) \subset (1, 1.76321)$

$$\frac{x}{\log x} \times \left| \sum_{k=1}^{a \log \log x} \frac{(-1)^k (\log \log x)^{k-1}}{(k-1)!} \right| = \frac{\sqrt{a}x}{\sqrt{2\pi} (a+1) a^{\{a \log \log x\}}} \times \frac{(\log x)^{a-1-a \log a}}{\sqrt{\log \log x}} \left(1 + O\left(\frac{1}{\log \log x}\right) \right).$$

The function $\{x\} = x - \lfloor x \rfloor \in [0,1)$ denotes the fractional part of any $x \in \mathbb{R}$. The function $a-1-a\log a$ is negative and monotone decreasing on $(1, W(1)^{-1})$.

C Inversion of partial sums of Dirichlet convolutions

Proof of Theorem 5.2. Suppose that h, r are arithmetic functions such that $r(1) \neq 0$. The following formulas hold for all $x \geq 1$:

$$S_{r*h}(x) := \sum_{n=1}^{x} \sum_{d|n} r(n)h\left(\frac{n}{d}\right) = \sum_{d=1}^{x} r(d)H\left(\left\lfloor \frac{x}{d}\right\rfloor\right)$$
$$= \sum_{i=1}^{x} \left(R\left(\left\lfloor \frac{x}{i}\right\rfloor\right) - R\left(\left\lfloor \frac{x}{i+1}\right\rfloor\right)\right)H(i). \tag{C.1}$$

The first formula on the right-hand-side above is well known from the references. The second formula is justified directly using summation by parts as [19, §2.10(ii)]

$$S_{r*h}(x) = \sum_{d=1}^{x} h(d)R\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i \le x} \left(\sum_{j \le i} h(j)\right) \times \left(R\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - R\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right)\right).$$

For Boolean-valued conditions cond, we adopt Iverson's convention that $[cond]_{\delta}$ evaluates to one precisely when cond is true and to zero otherwise. We form the invertible matrix of coefficients (denoted by \hat{R} below) associated with the linear system that defines H(j) for $1 \le j \le x$ in (C.1) by defining

$$R_{x,j} \coloneqq R\left(\left\lfloor \frac{x}{j} \right\rfloor\right) [j \le x]_{\delta},$$

and

$$r_{x,j} \coloneqq R_{x,j} - R_{x,j+1}, \text{ for } 1 \le j \le x.$$

Since $r_{x,x} = R(1) = r(1) \neq 0$ for all $x \geq 1$ and $r_{x,j} = 0$ for all j > x, the matrix we have defined in this problem is lower triangular with a non-zero constant on its diagonals, and so is invertible. If we let $\hat{R} := (R_{x,j})$, then the next matrix is expressed by applying an invertible shift operation as

$$(r_{x,j}) = \hat{R}(I - U^T).$$

The $N \times N$ square matrix U has $(i,j)^{th}$ entries for all $1 \le i,j \le N$ when $N \ge x$ that are defined by $(U)_{i,j} = \delta_{i+1,j}$ so that

$$\left[\left(I - U^T \right)^{-1} \right]_{i,j} = \left[j \le i \right]_{\delta}.$$

We observe that

$$\left\lfloor \frac{x}{j} \right\rfloor - \left\lfloor \frac{x-1}{j} \right\rfloor = \begin{cases} 1, & \text{if } j | x; \\ 0, & \text{otherwise.} \end{cases}$$

The previous equation implies that

$$R\left(\left\lfloor \frac{x}{j}\right\rfloor\right) - R\left(\left\lfloor \frac{x-1}{j}\right\rfloor\right) = \begin{cases} r\left(\frac{x}{j}\right), & \text{if } j|x; \\ 0, & \text{otherwise.} \end{cases}$$
 (C.2)

We use the property in (C.2) to shift the matrix \hat{R} , and then invert the result to obtain a matrix involving the Dirichlet inverse of r as

$$\left(\left(I - U^T\right)\hat{R}\right)^{-1} = \left(r\left(\frac{x}{j}\right)[j|x]_{\delta}\right)^{-1} = \left(r^{-1}\left(\frac{x}{j}\right)[j|x]_{\delta}\right).$$

Our target matrix in the inversion problem is

$$(r_{x,j}) = (I - U^T) \left(r\left(\frac{x}{j}\right)[j|x]_{\delta}\right) (I - U^T)^{-1}.$$

We can express the inverse by a similarity transformation conjugated by shift operators by

$$(r_{x,j})^{-1} = (I - U^T)^{-1} \left(r^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} r^{-1}(k) \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} r^{-1}(k) - \sum_{k=1}^{\left\lfloor \frac{x}{j+1} \right\rfloor} r^{-1}(k) \right).$$

The summatory function H(x) is given exactly by a vector product with the inverse matrix from the previous equation as

$$H(x) = \sum_{k=1}^{x} \left(\sum_{j=\lfloor \frac{x}{k+1} \rfloor + 1}^{\lfloor \frac{x}{k} \rfloor} r^{-1}(j) \right) \times S_{r*h}(k), \text{ for } x \ge 1.$$

We can prove a second inversion formula providing the coefficients of the summatory function $R^{-1}(j)$ for $1 \le j \le x$ from the last equation by adapting our argument to prove (C.1) above. This leads to the following alternate expression for H(x):

$$H(x) = \sum_{k=1}^{x} r^{-1}(k) \times S_{r*h}\left(\left\lfloor \frac{x}{k} \right\rfloor\right), \text{ for } x \ge 1.$$