Lecture 1. -1-Chapter I. Generators & Relations.

1. Free semigroups. Let X be a non-empty set. We will call X an alphabet and each of its elements a letter in the alphabet. It word in X is either a finite sequence of letters written justaposed next to one another or the empty word For example, if $X = \{\alpha_1, \alpha_2, \dots \}$ then X3 X4 X3 X1 is a word in X.

We denote the set of all words in the alphabet X as X*.

Then X' is a multiplicative temigroup

with multiplication defined by concatenation of words. Example. Let $v = \mathcal{X}_3 \mathcal{X}_4 \mathcal{X}_1$, $w = \mathcal{X}_3$. Then $v \cdot w = x_3 x_4 x_2 x_3$, $w \cdot v = x_3^2 x_4 x_1$. Proposition Let S be a semigroup. An extends to a homomorphism X > 5. Proof. Given 4: X -> 5 define 4 sending a word v = 2i, 2i, ... 2ix to 4(v) = 4(xi1).4(xi2) --- 4(xix)

here multiplication in S

Deb. Let 5 be a semigroup. An equivalence relation $\sim \leq 5 \times 5$ is called a congruence if anb, and \Rightarrow ac $\sim 6d$.

In this case we can define the semigroup on $5/n = \{equivalence\}$ semigroup on $5/n = \{equivalence\}$ classes $\}$. Moreover $5 \rightarrow 5/n$, $a \rightarrow a/n$ is a homomorphism of semigroups. Given a homomorphism $\varphi: 5_1 \rightarrow 5_2$ of semigroups $a \rightarrow b$ if and only if, $\varphi(a) = \varphi(b)$

is a conquence.

Conquence = analog of a normal subgroup

in GROUPS and an ideal in RINGS.

Suppose that a semigroup S is generated by a subset (Di, i EI) = S.

Consider the alphabet

 $X = \{ x_i, i \in I \}$

and the mapping

 $\varphi: \mathcal{X}_i \to \mathcal{A}_i$, $i \in \mathcal{I}$. The mapping φ extends to an epimorphism

 $\overline{\varphi}: \chi^* \to S$

Let $a \sim b$ iff $\overline{\varphi}(a) = \overline{\varphi}(b)$; $a, b \in X$.

$$S \cong X^*/\sim$$

So, every semigroup is a homomorphic image of a free semigroup of an appropriate rank.

Remember: ~ = X * X *

We say that RC~ generates ~ if ~ is the smallest congruence that contains ~, 50

 $\sim = \bigcap (all congruences an X^* + Hrat$ contain R)

Then R uniquely determines a and, hence, uniquely determines the hence, uniquely determines the semigroup S up to isomorphism. semigroup S up to isomorphism.

Semigroup S up to isomorphism.

Set R = { a; x b; } = X*x*; C; b; are let R = { a; x b; } = J

words. We write:

 $S = \langle X \mid a_j = b_j, j \in J \rangle$

why is it important to have a nice presentation by generators and relations?

Let S be a semigroup and let In, ..., In be a Let of generators of S.

Let T be another temigroup.

Not every mapping $J_i \to t_k T$, $1 \le i \le \mu$, extends to a homomorphism $S \to T$.

How can we find out if it extends or not?

Suppose that we know a presentation of the semigroup S in those generators.

 $S = \langle \mathcal{Q}_1, ..., \mathcal{Q}_n | \alpha_1(x) = b_1(x), ..., \alpha_m(x) = b_m(x)$

It means the following:

let n be the congruence that on X^* that corresponds to the homomorphism $\mathfrak{P}_i \to A_i$, $1 \le i \le n$. The congruence n is generated by $a_1 \times b_1$, ..., $a_m \times b_m$.

Proposition I.1.2. Let $\varphi: A_i \rightarrow t_i \in T$, is is to be a mapping. This mapping extends to a homomorphism $S \rightarrow T$ if and only if $a: (t_1, t_2, ..., t_n) = B_i: (t_1, ..., t_n), 1 \le i \le m$.

Proof. In one direction the assertion is clear: if 4 extends to a homomorphism then ailti, t2,..., tu = bilti,..., tu).

Now suppose that these equalities

hold. Consider the homomorphisms

yi → si S T

Let n' be the congruence that corresponds to the homomorphism $Vi \rightarrow ti', 1 \in i \leq n$.

We have $a_i(t_1,...,t_n)=b_i(t_1,...,t_n), 1\leq i\leq n,$ hence $a_i(Y)\sim'b_i(Y), 1\leq i\leq n,$ hence \sim' contains $a_i \times b_i, 1\leq i\leq n.$ Hence

~ =~'

This implies that the mapping *

u(4,,..., In) -> u(t,,..,tn), u = *

is well defined.

-5.4-Indeed, of u(11..., In) = v(0,, In) then unv. This implies teltimotal with that un'v, i.e. ulti,..., &u) = v(ti,..., tu) This mapping is a homomorphism. This completes the proof of the Proposition.

Equalities $a_j = b_j$, $j \in J$, are called defining relations.

Let v, w be words in the alphabet x.

We say that w is obtained from v by

Substitution if some word a_i is a subword

of v, $v = v'a_i$, v'' and $w = v'b_i$, v'' or

Some word b_i is a subword of v, $v = v'b_i$. v''and $w = v'a_i$, v''.

In this case we write $V \rightarrow w$. This relation is Symmetric, if $V \rightarrow w$, then $w \rightarrow v$. -7.1.3.

Proposition V Let $S = \langle x \mid a_j = b_j, j \in J \rangle$.

Words v, w are equal in S if and only if there is a finite sequence V=V0→V1→V2→ ···→ VK=W.

Proof. Let v be the conquence in X* generated by all elements a, x b, , i = J. We need to prove that vaw if and only of there is a finite sequence

ル= vo → v, → v2 →---→ vk= W.

Défine another congruence à asfollows: v ~ w if and only if there exists a finite seguence

ひ=ひのつびつかーーーひんこひ.

It is easy to see that & is a conquence,

All elements ajxbj, i = J, belong to 2. Since v is a minimal congruence contains all aj x bj, j & J, we conclude that

On the other hand of

 $v = v_0 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = w$

then vnv1, v1 nv2, ..., vk-, nw, hence

In other words, ~ sn. We proved that

A semigroup S is called finitely presented if it has a finite presentation $S \cong \langle x_1, \dots, x_n | a_i = k_1, \dots, a_m = k_m \rangle$ ai, bi e x*.

It means that Singenerated by a finite subset X_i^* , X_i^* ,

Proposition V Let S be a semigroup. Let

[41,..., Su] and [5',..., S'x] be finite

generating subsets of S. If S is finitely

presented in [41,..., Su] then it is finitely

presented also in [1',..., 1x'].

Proof. Let r be the congruence on $\{x_1,...,x_n\}^*$ that corresponds to the homomorphism $2c \rightarrow 2i$, $1 \le i \le N$. Let n' be the congruence on $(y_1,...,y_K)^k$ that corresponds to the homomorphism $y_j \to j_j'$, $1 \le j \le K$.

Let n be generated by the relations $Q_{\mu}\left(\mathfrak{X}_{1},...,\mathfrak{X}_{n}\right) \sim b_{\mu}\left(\mathfrak{X}_{1},...,\mathfrak{X}_{n}\right),$

n rund over a finite det of number.

Let di = Ci (di,...,dx), le isu, ciely, yx

generated by

an (C, (y,..., yk),..., Cn (y,..., yk))

bu (C, (y,..., yk),..., Cn (y,..., yk)).

First, we notice that

Let Dj = dj (d1, ..., dn), 1 = j = K, dj = {00, -., xn}.

Then

au (C1 (y,..., yk),..., Cn (y,..., yk)~ (I) ви (C1 (У1, ..., Ук), ..., Сп (У1, ..., Ук)),

4, ~ dj (C1(y1,.., y2),..., Cu(y1,..., y2)) (II)

We claim that the congruence ~ 'is generated by (I) and (I).

In other words: if n"is a conjumence on 4 omb

an (G(4),..., Cn(4) ~" by (G(4),..., Cn(4)),

y, ~ "d; (G(Y), -.., Cu(Y))

then $n' \subseteq n''$. Let $T = Y^*/n''$.

Consider the mapping Si > Ci(Y)/n".

By the Proposition this mapping extends

to a bromomorphism 4:5-T.

Since di'=di(si,-., su) and we have

4 (4;1) = d; (C,(Y), ..., C,(Y))/n" = 4;/n"

Now, if u(y,,..., yx) ~'v(y,,..., yx) i.e.

u(di,...,de') = v (di,...,de') then

u (y,,..., yx) ~ "v (y,,..., yx). We proved that

 $\sim' \subseteq \sim'$