Algebraic Topology Homework

Math 382C

Simon Xiang

Dr. Allock, M 382C The University of Texas at Austin August 25, 2020

Homework 0

Problem 1. Prove that the finite product of manifolds is a manifold.

Proof. We prove $M \times N$ is a manifold, where M is an m-manifold and N is an n-manifold, which is a sufficient condition for the finite product

$$\prod_{i=1}^{n} M_i$$

to be a manifold for M_i a m_i -manifold, $m_i \in \mathbb{N}$. First, note that the product of two T_2 spaces is T_2 . Take τ_1, τ_2 to be topological spaces, and let X be their product. We have two distinct points (a,b),(c,d) in X, which we can separate by open sets $X_1 \times U_2$, $X_1 \times V_2 \in X$ for $X_1 \in \tau_1$, $U_2, V_2 \in \tau_2$ if a = c (which implies $b \neq d$), and $U_1 \times X_2$, $V_1 \times X_2$ for $U_1, V_1 \in \tau_1$, $X_2 \in \tau_2$ if $a \neq c$.

Now let (a,b) be in X, where a is in τ_1 and b is in τ_2 . Then there exist $U_1 \in \tau_1, U_2 \in \tau_2$ such that $a \in U_1, b \in U_2$, and U_1 homeomorphic to \mathbb{R}^m , U_2 homeomorphic to \mathbb{R}^n . Simply take the open set $U_1 \times U_2 \in X$ containing the point (a,b), and define the homeomorphism $f: M \times N \to \mathbb{R}^m \times \mathbb{R}^n$ by f(x,y) = (g(x),h(y)), where g and h are the homeomorphisms of U_1 onto \mathbb{R}^m and U_2 onto \mathbb{R}^n respectively. Clearly f is continuous since g and h are continuous, and by the same logic f^{-1} exists and is continuous, and is given by $f^{-1}(x,y) = (g^{-1}(x),h^{-1}(y))$ (whose components are continuous since g and h are homeomorphisms).

Finally, we have $\mathbb{R}^m \times \mathbb{R}^n$ homeomorphic to $\mathbb{R}^{m+n} = \mathbb{R}^{n+m}$, so we conclude the product manifold $M \times N$ is indeed an n+m-manifold.

Problem 2. Prove that a manifold is connected if and only if it is path-connected.

Proof. First, note that every path-connected space is connected. By way of contradiction, assume that a path-connected topological space (X, τ) is not connected, that is, there exist $U, V \in \tau$ such that $U \cap V = \emptyset$ and $U \cup V = X$.

Recall that an *interval* is a set $I \subset \mathbb{R}$ such that for all $a,b \in I$, a < x < b implies $x \in I$. Furthermore, all intervals are connected (we omit the proof for brevity). Since τ is path-connected, for all $x,y \in X$ there exists a path $f:[a,b] \to X$ such that f is continuous and f(a) = x and f(b) = y. Now the image of the path denoted f([a,b]) is connected, since the image of a connected set under a continuous function is connected. Choose $x \in U$ and $y \in V$: then the path f cannot connect x and y since $U \cap V = \emptyset$, and f([a,b]) must either be fully contained in U or V. Therefore path-connected spaces (and manifolds) are connected, proving the reverse implication.

For the forward implication, let $a \in M$. Consider X, the set of points that are path-connected to a. Note that $a \in X$ so $X \neq \emptyset$ (this is important). We claim

X and X^c are open: to see this, let $x \in X$. Then we have an open neighborhood of x homeomorphic to \mathbb{R}^n , let us denote its image under the homeomorphism f as $U \subset \mathbb{R}^n$. We can find a convex neighborhood of f(x) denoted $B(f(x), \epsilon) \subset U$ that is path-connected by definition. Since path-connectedness is preserved under a continuous map, the inverse image of the convex neighborhood containing f(x) under the homeomorphism f denoted $f^{-1}\left(B(f(x), \epsilon)\right)$ is path-connected. Note that $x \in f^{-1}\left(B(f(x), \epsilon)\right)$, so there exists a path between every point in $f^{-1}\left(B(f(x), \epsilon)\right)$ and x, therefore $x \in f^{-1}\left(B(f(x), \epsilon)\right) \subset X$ and is open. Since for all $x \in X$ we have $x \in X^c$, we conclude X is open. A similar argument follows for the fact that X^c is open: simply examine $y \in X^c$ and $B(f(y), \delta)$ instead.

We reach the final stage of this proof. By assumption, our manifold M is connected. This is equivalent to the fact that the only subsets of M that are both open and closed are M and \emptyset : if there existed an $A \subset M$ that were both open and closed, then $A \cap A^c = \emptyset$ and $A \cup A^c = M$, contradicting the fact that M is connected. Now we have constructed a path-connected set X that is both open and closed—both X and X^c are open, and $X \neq \emptyset$ as stated earlier in the proof. We conclude that X = M, and so the manifold M is path-connected. \boxtimes

Problem 3. Suppose a finite group G acts on a manifold M. Suppose the action is *free*, meaning that only the identity element has any fixed points. Then the orbit space M/G is also a manifold. ("Lying in the same G-orbit" is an equivalence relation on M. M/G means the set of equivalence classes. The topology on M induces one on M/G, which is the one you must work with.)

Proof. Why helppppp

G acts on M: a map $*: G \times M \to M \ni ex = x \forall x \in M, *(g1,g2)x = *(g1 * (g2,x)) \forall g_1,g_2 \in G, x \in M$ or alternatively $(g_1g_2)x = g_1(g_2x) \forall x \in M, g_1,g_2 \in G.$ M is a G-set.

Free action: $g \in G \land \exists x \in X \ni gx = x \implies g = e$.

Orbit of $x \in X$: $Gx = \{gx \mid g \in G\}$ for some $x \in X$. $x \sim y$ iff $\exists g \in G \ni gx = y \implies$ orbits are equivalence classes under this relation.

Orbit space: set of all equivalence classes (under the same orbit relation), denoted X/G (also called quotient, space of coinvariants).

Things to consider: G is finite, M is a manifold (locally Euclidian), the action is free, WTS: M/G is locally euclidian, T2, etc.

Hello

 \boxtimes