EECS 482 Introduction to Operating Systems Fall 2020

Peter Chen
University of Michigan

https://grader2.eecs.umich.edu/eecs482

Professors

3-4:30 lecture

1:30-3 lecture

Post-lecture Q&A

GSIs and IAs

Agenda for today

- Why do we need EECS 482?
- Course syllabus and logistics

- Why do we need an OS and what does it do?
- How did OSes evolve to what we have today?

Overview of CS/CE Curriculum

But some mysteries remain...

How does a computer start when you turn it on?

How to get new program into memory and start executing it?

How to

The OS does all of this.

How to

How to

How to

How to

How to

After this semester, you should be able to answer all of these questions!

How to receive e-mail when you're not on the computer?

Syllabus

Prerequisites

Lectures

- Two lecture sections (loosely synchronized)
- Lectures will be interactive
- Attend lecture and participate
 - Via chat
 - Via audio/video: "raise hand" in participant window, then turn on camera and mic when called on
- Recordings and slides posted after lecture
 - Ask/upvote questions on Piazza live Q&A
- If I lose connectivity during lecture
 - Stay on call and wait 10 minutes
 - If I'm not back, I'll record and post rest of lecture

Labs

7 lab sections

Pre-lab questions will be posted on course web page a week in advance

Do them before going to your section

First lab section is this Friday

Course material

Course web page:

https://grader2.eecs.umich.edu/eecs482

Piazza

Textbook (recommended)

 Operating Systems: Principles and Practice, by Tom Anderson and Mike Dahlin

Projects

Project 1: Concurrent programming

Project 2: Thread manager

Project 3: Virtual memory manager

Project 4: Multi-threaded, secure network file system

By the end of the semester, you'll have built the main parts of an operating system

Projects

Challenging

Little code

My total code = 1137 lines

Lots of thinking

- Many new concepts
- Concurrent threads running on multiple processors
- Multiple address spaces spread across memory and disk
- Persistent data structures
- Distributed computing

What's the same?

- Lectures
- Lab sections
- Project 1
- Exams (probably)

What's different?

- 6-credit students implement advanced features in Projects 2, 3, 4
- Class time for EECS 498-002 structured as extra office hours (12-24 hours/week)

	Core project	Advanced features
Project 1		
Project 2	1 CPU	> 1 CPU
Project 3	Process starts with empty arena	Process starts with copy of parent's arena
Project 4	Reader/writer locks Statically allocated locks	Upgradable reader/writer locks Dynamically allocated locks

	Core project	Advanced features
Project 1	67 LOC	
Project 2	1 CPU 210 LOC	> 1 CPU
Project 3	Process starts with empty arena 242 LOC	Process starts with copy of parent's arena
Project 4	Reader/writer locks Statically allocated locks 523 LOC	Upgradable reader/writer locks Dynamically allocated locks
Total	1042 LOC	

	Core project	Advanced features
Project 1	67 LOC	67 (+0) LOC
Project 2	1 CPU 210 LOC	> 1 CPU 249 (+39) LOC
Project 3	Process starts with empty arena 242 LOC	Process starts with copy of parent's arena 268 (+26) LOC
Project 4	Reader/writer locks Statically allocated locks 523 LOC	Upgradable reader/writer locks Dynamically allocated locks 553 (+30) LOC
Total	1042 LOC	1137 (+95) LOC

Project tips

Start early!

Develop project incrementally

Build a little functionality, then test, test, test, ...

Expect to spend most of your time debugging

Project tips

Make good use of staff – we are here to help

- Visit office hours (45 hours/week + extra hours when projects are due)
- Participate in discussion on Piazza
- Look for help in lecture, lab, and textbook

Our goal is to help you solve your problems (not to solve them for you)

Project groups

Projects 2-4 done in groups of 2 or 3

- Declare your group (by Sep. 17) redeclare if you declared before August 31
- Post to Piazza if you don't know anyone

Choose group members carefully

- Check schedule, class goals, working style, etc.
- Mix of 4-credit and 6-credit students strongly discouraged

We'll evaluate every member's contributions

- Peer feedback
- git statistics

Project policies

Development

- Github: EECS 482 will provide private repositories
- Commits should match contributions

Submission

- 1 feedback/day + 3 bonus feedbacks/project
- Due by midnight ET (hard deadline!)
- 3 late days across all projects

Collaboration

- Okay to clarify project handout or discuss C++ syntax
- Not okay to discuss solutions
- Not okay to benefit from past solutions

Exams

- Midterm: Oct. 20, 7-9 pm (ET)
- Final: Dec. 10, 8-10 am (ET)
- Alternate time for those in incompatible time zones

Schedule of topics

 Operating system manages and abstracts hardware resources

Before midterm: CPU, memory

After midterm: storage, distributed systems, case studies

Administrative break

- Wait list
 - All students on wait list should be able to enroll
- Register your github ID on course web page
- Look for a project group
- Go to lab this Friday

What is an OS?

 The operating system is the software layer between application programs and the hardware

What if there were no OS?

What is an OS?

 The operating system is the software layer between application programs and the hardware

What if there were no OS?