Listing of Claims:

1. (Previously Presented) A pharmaceutical composition comprising core-shell particles, said core-shell particles comprising a core component and a shell component, the core component comprising a potassium-binding cation exchange polymer, the shell component comprising a polymer having a permeability for potassium ion that is higher than the permeability for a competing cation, said core-shell particles having a capacity for binding potassium ion in a gastrointestinal tract of an animal subject suffering from renal insufficiency or renal failure, and retaining a significant amount of said bound potassium ion during a period of residence of the core-shell particles in the gastrointestinal tract of the animal subject suffering from renal insufficiency or renal failure.

2-9. (canceled)

10. (Previously Presented) The pharmaceutical composition of claim 1 wherein said shell component polymer is capable of modulating movement of said competing cation into or out of said core-shell particle.

11-15. (canceled)

- 16. (Previously Presented) The pharmaceutical composition of claim 1 wherein said permeability of said shell component polymer to potassium ion is independent of said permeability of said shell component polymer to said competing cation.
- (Previously Presented) The pharmaceutical composition of claim 1wherein said core component is physically or chemically attached to said shell component.

18-19	. (canceled)
20. component po potassium ior	(Previously Presented) The pharmaceutical composition of claim 1 wherein said shell olymer exhibits a greater interaction with said competing cation compared to said n.
21.	(Previously Presented) The pharmaceutical composition of claim 1wherein said shell olymer repels said competing cation by ionic interaction.
22. about 1nm to	(Previously Presented) The invention of claim 1 or 45 wherein said shell component is about 50 μm thick.

(Previously Presented) The invention of claim 1 or 45 wherein said core-shell particle is

(Previously Presented) The invention of claim 1 or 45 wherein said shell component is

25-30. (canceled)

23.

24.

about 200 nm to about 2 mm in size.

about 0.005 microns to about 20 microns thick.

- (Previously Presented) The pharmaceutical composition of claim 1wherein said shell component is deposited with a coating process.
- 32. (Previously Presented) The pharmaceutical composition of claim 1 further comprising an enteric coating.

33-44. (canceled)

45. (Previously Presented) A method of removing potassium ion from a gastrointestinal tract of an animal subject suffering from renal insufficiency or renal failure, the method comprising:

administering to the animal subject suffering from renal insufficiency or renal failure a composition comprising core-shell particles, the core-shell particles comprising a core component and a shell component, the core component comprising a potassium-binding cation exchange polymer, the shell component comprising a polymer having a permeability for potassium ion that is higher than a permeability for a competing cation,

binding potassium ion with the core-shell particles in the gastrointestinal tract of the animal subject, and

retaining a significant amount of the bound potassium ion with the core-shell particles for a period of residence of the core-shell particles in the gastro-intestinal tract of the animal subject suffering from renal insufficiency or renal failure.

 (Previously Presented) The invention of claim 1 or 45 wherein the core component comprises a crosslinked cation-exchange polymer.

	(Previously Presented) The invention of claim 1 or 45 wherein the core component tion-exchange polymer comprising acidic functional groups.
comprises a ca	(Previously Presented) The invention of claim 1 or 45 wherein the core component tion-exchange polymer comprising functional groups selected from the group consisting phosphonate, sulfate, sulfamate and combinations thereof.
	(Previously Presented) The invention of claim 1 or 45 wherein the shell component osslinked polymer.
	(Previously Presented) The invention of claim 1 or 45 wherein the shell component osslinked synthetic polymer.

comprises a crosslinked vinylic polymer.

51.

(Previously Procomprises a vinylic polymer.

53.

comprises an ethylenic polymer.

(Previously Presented) The invention of claim 1 or 45 wherein the shell component

(Previously Presented) The invention of claim 1 or 45 wherein the shell component

(Previously Presented) The invention of claim 1 or 45 wherein the shell component

- 54. (Previously Presented) The invention of claim 1 or 45 wherein the shell component is essentially not disintegrated during the period of residence of the core-shell particles in the gastrointestinal tract.
- 55. (Previously Presented) The invention of claim 1 or 45 wherein the core-shell particles retain at least about 50% of the bound potassium ion with the core-shell particles for the period of residence of the core-shell particles in the gastro-intestinal tract.
- 56. (Previously Presented) The invention of claim 1 or 45 wherein the core-shell particles retain at least about 75% of the bound potassium ion with the core-shell particles for the period of residence of the core-shell particles in the gastro-intestinal tract.
- 57. (Previously Presented) The invention of claim 1 or 45 wherein the core-shell particles selectively bind potassium ion over the competing cation during the period of residence of the core-shell particles in the gastro-intestinal tract.
- 58. (Previously Presented) The invention of claim 1 or 45 wherein the animal subject is a human suffering from end stage renal disease (ESRD).
- (Previously Presented) The invention of claim 1 or 45 wherein the animal subject is a human dialysis patient.
- (Previously Presented) The invention of claim 1 or 45 wherein the animal subject is a human suffering from hyperkalemia.