

MATHEMATICS FOR ELECTRONIC ENGINEERS Complex Analysis

Ravikumar. R

Science and Humanities

Class number #2

TOPICS

Limit, Continuity, Differentiability

LIMIT OF A COMPLEX FUNCTION

A function w = f(z) is said to tend to a limit l as z approaches a point z_0 , if for every ε , we can find a +ve real number δ such that $|f(z) - l| < \varepsilon$ for $|z - z_0| < \delta$. i.e. for every $z \neq z_0$ in the δ -disc of z-plane, f(z) has a value lying in the ε -disc of w-plane and is written as

$$\lim_{z \to z_0} f(z) = l$$

Note: In real calculus x approaches x_0 only along the real line, where as in complex calculus z-approaches z_0 in different paths in z-plane.

LIMITS: INTERPRETATION

$$\lim_{x\to x_0} f(x) = l$$
 If $|x-x_0| < \delta \ \exists \ \varepsilon$ such that $|f(x)-l| < \varepsilon$.

If
$$|x - x_0| < \delta \exists \varepsilon$$
 such that $|f(x) - l| < \varepsilon$.

The complex plane

CONTINUITY (Real valued function)

PES UNIVERSITY ONLINE

Let f(x) be a function such that $f: R \rightarrow R$, f(x) is said to be continuous at x_0 iff:

- ✓ f is defined in a neighbourhood of x_0 i.e., $f(x_0)$ exists.
- ✓ The limit exists

$$\checkmark \lim_{x \to x_0} f(x) = f(x_0)$$

Geometrical meaning of continuous function:

If the function is continuous and if we draw the graph, there is

no break in the curve.

For example: f(x) = 3x.

CONTINUITY (COMPLEX VALUED FUNCTION)

PES UNIVERSITY

- Let f(z) be a function such that $f: C \to C$. f(z) is said to be continuous at z_0 iff:
 - ✓ f is defined in a neighbourhood of z_0 i.e., $f(z_0)$ exists.
 - ✓ The limit exists
 - $\checkmark \lim_{z \to z_0} f(z) = f(z_0)$

Continuity

Discontinuity

DERIVATIVE OF *f(Z)*:

Let f(x) be a real-valued function defined in a neighbourhood of x_0 . Then the derivative of f(x) at x_0 is given by

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Let f(z) be a complex-valued function defined in a neighbourhood of z_0 . Then the derivative of f(z) at z_0 is given by

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

OR

$$\frac{dw}{dz} = f'(Z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
 (with $z = z_0 + \Delta z$)

Provided this limit exists. The limit f'(z) is known as the derivative of f(z) at z_0 .

The above limit should be unique along every path from z to z_0

Given
$$f(z) = \begin{cases} \frac{xy(y-ix)}{x^2+y^2} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$$
 Discuss differentiability of $f(z)$ at $z=0$.

w.k.t
$$f'(z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

$$f'(z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

$$= \lim_{z \to 0} \frac{f(z) - 0}{z - 0}$$

$$= \lim_{z \to 0} \frac{\frac{xy(y-ix)}{x^2+y^2}}{x+iy}$$

I Path:
$$\lim_{x \to 0} \frac{\frac{xy(y-tx)}{x^2+y^2}}{x+iy} = 0$$

II path:
$$\lim_{y\to 0} \frac{\frac{xy(y-ix)}{x^2+y^2}}{x+iy} = 0,$$

Continued.....

III path:
$$y = mx$$

$$= \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x(mx)(mx - ix)}{(x^2 + (mx)^2)(x + imx)}$$

$$= \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3(m)(m-i)}{x^3(1+(m)^2)(1+im)}$$

 \Rightarrow f'(z) is not unique, as f'(z) takes different values for different m.

Therefore f(z) is not differentiable at origin.

THANK YOU

Ravikumar. R

Science and Humanities

Ravikumarr@pes.edu