MIDTERM: 90 Minutes

Last Name:	
First Name:	
RIN:	
Section:	

Answer ALL questions. You may use one double sided $8\frac{1}{2} \times 11$ crib sheet. NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

1	2	3	4	5	Total
100	40	40	40	40	250

(10 bonus points)

1 Circle one answer per question. 10 points for each correct answer.

- (a) Which theorem below is true (n is a natural number, r is a real)?
 - $\boxed{\mathbf{A}}$ n^2 is divisible by 4 if and only if n is divisible by 4.
 - $\boxed{\mathrm{B}}$ If n^2 is divisible by 4 then n is divisible by 4.
 - $\boxed{\mathbf{C}}$ $n^3 + 5$ is odd if and only if n is even.
 - $\boxed{\mathrm{D}}$ If \sqrt{r} is irrational then r is irrational.
- (b) How many subsets of $\{a, b, c, d, e, f, g\}$ contain a or g?
 - A 90
 - B 92
 - C 94
 - D 96
- (c) Estimate the value of the sum $\sum_{i=0}^{10} \sum_{j=0}^{20} 2^{i+j}.$
 - $\boxed{A} 4 \times 10^6.$
 - $\boxed{\mathrm{B}} 4 \times 10^9.$
 - $\boxed{\text{C}} \ 4 \times 10^{12}.$
 - $\boxed{D} 4 \times 10^{15}.$
- (d) Which is the correct asymptotic order relationship between 2^{n+1} and 2^{2n}
 - $\boxed{\mathbf{A}} \ 2^{n+1} \in \Theta(2^{2n}).$
 - $\boxed{\mathbf{B}} \ 2^{n+1} \in \omega(2^{2n}).$
 - $\boxed{\mathbf{C}} \ 2^{n+1} \in o(2^{2n}).$
 - D None of the above.
- (e) Compute the sum $S = \sum_{i=1}^{3} \sum_{j=1}^{3} (i+j)$
 - $\boxed{\mathbf{A}} S = 30.$
 - $\boxed{\mathbf{B}} S = 32.$
 - $\boxed{\mathbf{C}} S = 34.$
 - $\boxed{\mathbf{D}} S = 36.$

(f)	What is the last digit of n (i.e. remainder when divided by 10), where $n = 3^{2016} + 4^{2016} + 7^{2016}$?					
	$\boxed{ ext{A}} r = 1$					
	$oxed{f B} r=3$					
	$oxed{ ext{C}} r = 6$					
	$\boxed{\mathrm{D}} \ r = 8$					
(g)	A friendship network has 5 people. The degrees (number of friends) of the people are 1,1,2,2,3. How many edges (friendship links) are in this friendship network?					
	A d edges					
	B 5 edges					
	C Not enough information to determine the number of edges					
	D This friendship network cannot possibly exist					
(h)	A friendship network has 5 people. The degrees (number of friends) of the people are 0,1,2,3,4. How many edges (friendship links) are in this friendship network?					
	A 4 edges					
	B 5 edges					
	C Not enough information to determine the number of edges					
	D This friendship network cannot possibly exist					
(i)	Here is some information about ice-skate options: $Colors:$ White, Beige, Pink, Yellow, Blue $Sizes:$ 4,5,6,7,8 $Extras:$ Tassels, Stripes, Bells					
	Skates can have any combination of extras (including none). An example skate is (pink; size 5; with stripes and bells). How many types of skates are there?					
	A 150.					
	B 175.					
	C 200.					
	$oxed{ ext{D}}$ 225.					
(j)	In an NBA game, 8 players suit up for a game. At any time only 5 players can be on the floor, playing the game. Using the 8 players, in how many ways can the 5 players on the floor be chosen?					
	A 56.					
	B 57.					
	C 58.					
	$\left[\underline{\mathbf{D}} \right]$ 59.					

2 Modular square-root

Let p be prime. **Prove:** $x^2 \equiv y^2 \pmod{p}$ if and only if $x \equiv y \pmod{p}$ or $x \equiv -y \pmod{p}$. (If your proof uses facts from class or the book, explicitly state them as "from class" or "from the book".)

3	Playing	with	postage

(a) Prove: Any postage greater than 7¢ can be made using 3¢ and 5¢ stamps.

(b) **Prove:** For any $k \ge 1$, there is a postage $n \ge k$ that cannot be made using 4c and 6c stamps.

4 GCD of consecutive Fibononacci numbers

Let F_n be the *n*th Fibonacci number: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for n > 2. **Prove:** $gcd(F_n, F_{n+1}) = 1$ for $n \ge 1$. (Any two consecutive Fibonacci numbers are relatively prime.)

5 Recursively defined strings

Define the set of strings \mathcal{P} recursively as follows (The minimality clause is there by default.).

- ② There are two constructor rules: $x \in \mathcal{P} \to x \, 0 \, x \in \mathcal{P};$ $x \in \mathcal{P} \to x \, 1 \, x \in \mathcal{P}.$

Prove that every string in \mathcal{P} is a palindrome (a string that equals its reversal) and has odd length.

SCRATCH

SCRATCH