Algebraic Geometry Aug 6
(i) Zariski Topology.
Finite unions - do union of two
X = V(A) $Y = V(B)$
$X \cup Y = Y (1 - 1 - 1)$
= V ({ab laeA, beB})
courtion - Infinite unions are not clusted
eg. / Closed subsets are finite
(finite) could be int [infinite]

.

. . .

.

.

.

.

Pictures - What do Zanski closed Subsets "look like"? V(f) C/A2 f(214)=0 "curve" $V(t^{12}) =$

Is the set V(f)=0 a manifold?	
V(xy)	"Singular"
A V(A)	

(2) (3) Radical ideals 8,
$$V_S$$
.

VI an ideal 20 dosed under addition

 $f \in VI \implies f \in I$
 $g \in VI \implies g^m \in I$

($f+g$) $\in I$.

 $2\sqrt{I}$

 $(f+g) \in I \qquad \sqrt[3]{I}$

1) I finitely many li,--, lm & L 5.t. every le L can be written as $l = Poly in l_1, -, lm$ coeff in k. Q l = Linear exp in li,-, lin Not true if Lis not a field. k -> k [x1, xu] not a field.

k-) L field ext. L fingen as Thm => L/k is finite ext. Finite =) alg. ext Any le L satisfies (monic) irred. 1 + 9n1 1 + - - + a0 = 0 a; Ek k aly closed. > all irred monics are $(x-a) = 0 \quad a \in k.$

k ~ L => k ~ L alg d. algebraic

 $=\langle \alpha_1-\alpha_1, ---, \alpha_n-\alpha_n \rangle$

k ~> & [x_-, x_]/m

to aly

{max. ideals} < > Points} $(\alpha_1, \dots, \alpha_n)$ (2,-a,,-,, 2,-an) (5) If $V(I) = \emptyset$ then I = (1). i.e. I +(1) then V(I) + Ø $Tcm \Rightarrow V(m) \subset V(I)$ { Point? max-ideals I Pts of V(I)

(6) Consider
$$V(I) = X$$

If $f \in k[X_1,...,X_N]$ is

Zero on X .

i.e. $\int f(x) = 0 + x \in X$

then $f^n \in I$ for some $n > 0$.

$$\begin{cases}
9 = 0 \\
9 \in I
\end{cases} + \begin{cases}
f \neq 0 \\
f \neq 0
\end{cases}$$
Trick: Extra "y" $k[X_1,...,X_N,Y]$

$$\begin{cases}
9(X_1,...,X_N) = 0 \\
9(X_1,...,X_N) = 0
\end{cases}$$

$$\begin{cases}
9(X_1,...,X_N) = 0 \\
9(X_1,...,X_N) = 0
\end{cases}$$

SUMS (X1, --, Xn, y) of ()

$$I = \begin{cases} C_{i}(x_{1}, ..., y) & g_{i}(x_{1}, ..., y_{n}) \\ + c(x_{1}y) & (y + (x_{1}, ..., x_{n}) - 1) \end{cases}$$

$$Set \begin{cases} y = \frac{1}{f(x_{1}, ..., x_{n})} \in k(x_{1}, ..., x_{n}) \\ f(x_{1}, ..., x_{n}) \end{cases}$$

$$I = \sum_{i=1}^{n} \left[C_{i}^{i} \left(\chi_{i,-1} \chi_{n}, \frac{1}{t} \right) \right] g_{i}^{i} \left(\chi_{i,-1} \chi_{n} \right)$$

$$holds in k \left(\chi_{i,-1} \chi_{n} \right)$$

$$f N = \sum_{i=1}^{n} \left[Poly \right] \cdot \left[g_{i}^{i} \right]$$

$$E \prod_{i=1}^{n} \left[\chi_{i,-1} \chi_{n} \right]$$

$$\mathcal{E} = \mathbf{I}$$
in

Nullst I radical $\frac{1}{2} = \frac{1}{2} \times V(I)$ $\mathbb{T}^{1}\left((\mathbb{T}^{1})^{n}\right) = \mathbb{T}^{1}$ Nothing extra. fe I (V(I)) i.e. f=100100011V(I). =) fre I =) fe I

