S == $\iiint (\mathcal{B}^{\alpha} \mathcal{J}_{\alpha} + 2\alpha_{1} (-\partial_{\alpha}\mathcal{B}_{\beta} + \partial_{\beta}\mathcal{B}_{\alpha}) \partial^{\beta}\mathcal{B}^{\alpha})[t, x, y, z]$ dzdydxdt

Wave operator

PSALTer results panel

$$\begin{array}{c|cccc}
0 & 1 & \mathcal{B}_{\alpha} \\
1 & \mathcal{B}^{\alpha} & 2 & \alpha & k^{\alpha} \\
\end{array}$$

Saturated propagator

$\begin{array}{c|c} 0^{+} \mathcal{J} \\ 0^{+} \mathcal{J} + 0 & 1 \mathcal{J}_{\alpha} \\ 1 \mathcal{J} + \alpha & \frac{1}{2 \alpha_{1} k^{2}} \end{array}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^+\mathcal{J}=0$	$\partial_{\alpha}\mathcal{J}^{\alpha} == 0$	1
Total expected gauge generators: 1		1

Massive spectrum

(No particles)

Massless particle

Pole residue:
$$\left| -\frac{1}{\alpha_1} > 0 \right|$$

Polarisations: 2

Unitarity conditions