What is... it like to lower the mixed volume?

Dimitris Bogiokas

Freie Universität Berlin

BMS Friday - What is...? Seminar 08. Feb. 2019

Outline

Setup

2 Talking About the Volumes

Mixed Volume

Outline

Setup

2 Talking About the Volumes

Mixed Volume

Outline

Setup

Talking About the Volumes

Mixed Volume

- The set \mathcal{K}_n of all convex, compact sets in \mathbb{R}^n .
- The set $\mathcal{P}_n \subseteq \mathcal{K}_n$ of all convex polytopes in \mathbb{R}^n .
- The volume $V_n(K)$ of some $K \in \mathcal{K}_n$.
- The stretching λK of some $K \in \mathcal{K}_n$, by any $\lambda > 0$.
- The Minkowski sum K + L of some $K, L \in \mathcal{K}_n$.

- The set \mathcal{K}_n of all convex, compact sets in \mathbb{R}^n .
- The set $\mathcal{P}_n \subseteq \mathcal{K}_n$ of all convex polytopes in \mathbb{R}^n .
- The volume $V_n(K)$ of some $K \in \mathcal{K}_n$.
- The stretching λK of some $K \in \mathcal{K}_n$, by any $\lambda \geq 0$.
- The Minkowski sum K + L of some $K, L \in \mathcal{K}_n$.

- The set \mathcal{K}_n of all convex, compact sets in \mathbb{R}^n .
- The set $\mathcal{P}_n \subseteq \mathcal{K}_n$ of all convex polytopes in \mathbb{R}^n .
- The volume $V_n(K)$ of some $K \in \mathcal{K}_n$.
- The stretching λK of some $K \in \mathcal{K}_n$, by any $\lambda \geq 0$.
- The Minkowski sum K + L of some $K, L \in \mathcal{K}_n$.

- The set \mathcal{K}_n of all convex, compact sets in \mathbb{R}^n .
- The set $\mathcal{P}_n \subseteq \mathcal{K}_n$ of all convex polytopes in \mathbb{R}^n .
- The volume $V_n(K)$ of some $K \in \mathcal{K}_n$.
- The stretching λK of some $K \in \mathcal{K}_n$, by any $\lambda \geq 0$.
- The Minkowski sum K + L of some $K, L \in \mathcal{K}_n$.

- The set \mathcal{K}_n of all convex, compact sets in \mathbb{R}^n .
- The set $\mathcal{P}_n \subseteq \mathcal{K}_n$ of all convex polytopes in \mathbb{R}^n .
- The volume $V_n(K)$ of some $K \in \mathcal{K}_n$.
- The stretching λK of some $K \in \mathcal{K}_n$, by any $\lambda \geq 0$.
- The Minkowski sum K + L of some $K, L \in \mathcal{K}_n$.

- The set \mathcal{K}_n of all convex, compact sets in \mathbb{R}^n .
- The set $\mathcal{P}_n \subseteq \mathcal{K}_n$ of all convex polytopes in \mathbb{R}^n .
- The volume $V_n(K)$ of some $K \in \mathcal{K}_n$.
- The stretching λK of some $K \in \mathcal{K}_n$, by any $\lambda \geq 0$.
- The Minkowski sum K + L of some $K, L \in \mathcal{K}_n$.

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

Definition

$$K + L := \{u + v \in \mathbb{R}^n : u \in K, v \in L\}$$

The Brunn-Minkowski Inequality

Theorem (Brunn '87, Minkowski '96)

Let $K, L \in \mathcal{K}_n$ be two compact, convex sets, then:

$$V_n(K+L)^{\frac{1}{n}} \geq V_n(K)^{\frac{1}{n}} + V_n(L)^{\frac{1}{n}}$$

Corollary

Let $K, L \in \mathcal{K}_n$ be two compact, convex sets, then:

$$V_n(K+L) \geq V_n(K) + V_n(L)$$

Proof (by picture)

Corollary

Let $K, L \in \mathcal{K}_n$ be two compact, convex sets, then:

$$V_n(K+L) \geq V_n(K) + V_n(L)$$

Proof (by picture).

Corollary

Let $K, L \in \mathcal{K}_n$ be two compact, convex sets, then:

$$V_n(K+L) \geq V_n(K) + V_n(L)$$

Proof (by picture).

Corollary

Let $K, L \in \mathcal{K}_n$ be two compact, convex sets, then:

$$V_n(K+L) \geq V_n(K) + V_n(L)$$

Proof (by picture).

Proof of Brunn-Minkowski Inequality.

For
$$K = [0, x_1] \times \cdots \times [0, x_n]$$
 and $L = [0, y_1] \times \cdots \times [0, y_n]$:

$$\frac{V_n(K)^{\frac{1}{n}} + V_n(L)^{\frac{1}{n}}}{V_n(K+L)^{\frac{1}{n}}} = \left(\prod_{i=1}^n \frac{x_i}{x_i + y_i}\right)^{\frac{1}{n}} + \left(\prod_{i=1}^n \frac{y_i}{x_i + y_i}\right)^{\frac{1}{n}} \\
\leq \frac{1}{n} \sum_{i=1}^n \frac{x_i}{x_i + y_i} + \frac{1}{n} \sum_{i=1}^n \frac{y_i}{x_i + y_i} \\
= 1$$

Proof (cont.)

$$\begin{aligned} V_{n}(K+L) &\geq V_{n}(K_{-}+L_{-}) + V_{n}(K_{+}+L_{+}) \\ &\geq \left(V_{n}(K_{-})^{\frac{1}{n}} + V_{n}(L_{-})^{\frac{1}{n}}\right)^{n} + \left(V_{n}(K_{+})^{\frac{1}{n}} + V_{n}(L_{+})^{\frac{1}{n}}\right)^{n} \\ &= V_{n}(K_{-}) \left(1 + \frac{V_{n}(L)^{\frac{1}{n}}}{V_{n}(K)^{\frac{1}{n}}}\right)^{n} + V_{n}(K_{+}) \left(1 + \frac{V_{n}(L)^{\frac{1}{n}}}{V_{n}(K)^{\frac{1}{n}}}\right)^{n} \\ &= V_{n}(K) \left(1 + \frac{V_{n}(L)^{\frac{1}{n}}}{V_{n}(K)^{\frac{1}{n}}}\right)^{n} = \left(V_{n}(K)^{\frac{1}{n}} + V_{n}(L)^{\frac{1}{n}}\right)^{n} \end{aligned}$$

For the general case, approximate with boxes.

Find Highest Volume Under Constant Surface Area

Theorem (Isoperimetric Inequality)

Let $K \in \mathcal{K}_n$ be a compact, convex set, then:

$$V_n(K) \leq V_n(rB^n)$$

where B_n is the unit ball of dimension n and r is chosen so that:

$$V_{n-1}(K) = V_{n-1}(rB^n)$$

Corollary

An equivalent statement of the theorem is that for every $K \in \mathcal{K}_n$:

$$\frac{V_n(K)^{\frac{1}{n}}}{V_{n-1}(K)^{\frac{1}{n-1}}} \leq \frac{V_n(B^n)^{\frac{1}{n}}}{V_{n-1}(B^n)^{\frac{1}{n-1}}}$$

Find Highest Volume Under Constant Surface Area

Theorem (Isoperimetric Inequality)

Let $K \in \mathcal{K}_n$ be a compact, convex set, then:

$$V_n(K) \leq V_n(rB^n)$$

where B_n is the unit ball of dimension n and r is chosen so that:

$$V_{n-1}(K) = V_{n-1}(rB^n)$$

Corollary

An equivalent statement of the theorem is that for every $K \in \mathcal{K}_n$:

$$\frac{V_n(K)^{\frac{1}{n}}}{V_{n-1}(K)^{\frac{1}{n-1}}} \leq \frac{V_n(B^n)^{\frac{1}{n}}}{V_{n-1}(B^n)^{\frac{1}{n-1}}}$$

But What is Surface Area?

Definition

Let $K \in \mathcal{K}_n$. Then define the surface area of K to be the limit:

$$V_{n-1}(K) := \lim_{\varepsilon \to 0^+} \frac{V_n(K_\varepsilon) - V_n(K)}{\varepsilon}$$

where $K_{\varepsilon} := K + \varepsilon B^n$.

Example

$$V_{n-1}(B^n) = \lim_{\varepsilon \to 0^+} \frac{V_n((1+\varepsilon)B^n) - V_n(B^n)}{\varepsilon}$$
$$= V_n(B^n) \lim_{\varepsilon \to 0^+} \frac{(1+\varepsilon)^n - 1}{\varepsilon}$$
$$= nV_n(B^n)$$

But What is Surface Area?

Definition

Let $K \in \mathcal{K}_n$. Then define the surface area of K to be the limit:

$$V_{n-1}(K) := \lim_{\varepsilon \to 0^+} \frac{V_n(K_\varepsilon) - V_n(K)}{\varepsilon}$$

where $K_{\varepsilon} := K + \varepsilon B^n$.

Example

$$V_{n-1}(B^n) = \lim_{\varepsilon \to 0^+} \frac{V_n((1+\varepsilon)B^n) - V_n(B^n)}{\varepsilon}$$
$$= V_n(B^n) \lim_{\varepsilon \to 0^+} \frac{(1+\varepsilon)^n - 1}{\varepsilon}$$
$$= nV_n(B^n)$$

Proof of Isoperimetric using B-M

Proof of Isoperimetric Inequality.

Let $\varepsilon > 0$. Then:

$$\frac{V_n(K+\varepsilon B^n)-V_n(K)}{\varepsilon} \geq \frac{\left(V_n(K)^{\frac{1}{n}}+\varepsilon V_n(B^n)^{\frac{1}{n}}\right)^n-V_n(K)}{\varepsilon}$$
$$= n\left(V_n(K)^{\frac{1}{n}}\right)^{n-1}V_n(B^n)^{\frac{1}{n}}+O(\varepsilon)$$

Taking the limit on both sides, for $\varepsilon \to 0^+$:

$$V_{n-1}(K) \ge nV_n(K)^{rac{n-1}{n}}V_n(B^n)^{rac{1}{n}} \ \Rightarrow rac{V_n(K)^{rac{1}{n}}}{V_{n-1}(K)^{rac{1}{n-1}}} \le rac{V_n(B^n)^{rac{1}{n}}}{V_{n-1}(B^n)^{rac{1}{n-1}}}$$

Can We Speak In General About Linear Combinations Of Convex Bodies?

Example

Let $K = [0, 1]^2$ and $L = B^2$. Then:

$$V_2(\lambda K + \mu L) = \lambda^2 + 4\lambda \mu + \pi \mu^2$$

Can We Speak In General About Linear Combinations Of Convex Bodies?

Example

Let $K = [0, 1]^2$ and $L = B^2$. Then:

$$V_2(\lambda K + \mu L) = \lambda^2 + 4\lambda \mu + \pi \mu^2$$

Theorem

Let $K_1, \ldots, K_m \in \mathcal{K}_n$. Then, the Volume

$$V_n(\lambda_1K_1+\cdots+\lambda_mK_m)$$

is a homogeneous polynomial in $\lambda_1, \ldots, \lambda_m$

Mixed Volumes

Definition

Let $K_1, \ldots, K_n \in \mathcal{K}_n$, then their mixed Volume $V(K_1, \ldots, K_n)$ is defined to be the coefficient of $\lambda_1 \lambda_2 \cdots \lambda_n$ of the polynomial $V_n(\lambda_1 K_1 + \cdots + \lambda_n K_n)$ over n!.

Corollary

For any $K_1, \ldots, K_m \in \mathcal{K}_n$, we can write:

$$V_n(\lambda_1 K_1 + \cdots + \lambda_m K_m) = \sum_{i_1, \dots, i_n \in [m]} V(K_{i_1}, \dots, K_{i_n}) \lambda_{i_1} \cdots \lambda_{i_n}$$

Some Properties

Symmetric
$$V(K_1, K_2, \ldots, K_n) = V(K_2, K_1, \ldots, K_n)$$

Multilinear $V(\lambda K_1 + \mu K_1', K_2, \ldots, K_n) = \lambda V(K_1, K_2, \ldots, K_n) + \mu V(K_1', K_2, \ldots, K_n)$
Nomalized $V(K, K, \ldots, K) = V_n(K)$
Monotone $V(K_1, \ldots, K_n) \leq V(K_1', \ldots, K_n)$, if $K_1 \subseteq K_1'$

Example

In the example $K = [0, 1]^2$, $L = B^2$ we had:

$$V(\lambda K + \mu L) = \lambda^2 + 4\lambda \mu + \pi \mu^2$$

And thus:

$$V(K, K) = 1$$
 $V(K, L) = V(L, K) = 2$ $V(L, L) = 7$

Some Properties

Symmetric
$$V(K_1, K_2, \dots, K_n) = V(K_2, K_1, \dots, K_n)$$

Multilinear $V(\lambda K_1 + \mu K_1', K_2, \dots, K_n) = \lambda V(K_1, K_2, \dots, K_n) + \mu V(K_1', K_2, \dots, K_n)$
Nomalized $V(K, K, \dots, K) = V_n(K)$
Monotone $V(K_1, \dots, K_n) \leq V(K_1', \dots, K_n)$, if $K_1 \subseteq K_1'$

Example

In the example $K = [0, 1]^2$, $L = B^2$ we had:

$$V(\lambda K + \mu L) = \lambda^2 + 4\lambda \mu + \pi \mu^2$$

And thus:

$$V(K, K) = 1$$
 $V(K, L) = V(L, K) = 2$ $V(L, L) = \pi$

A Special Case That Motivated Us

We started at trying to compute $V_n(K + \varepsilon B^n)$.

Definition

Let $K \in \mathcal{K}_n$ and $i \in \{0, ..., n\}$. The *i*-th Quermassintegral of K is defined to be:

$$W_i(K) = V(K, \ldots, K, B^n, \ldots, B^n)$$

where we have n-i copies of K and i copies of B^n

Corollary

$$V_n(K + rB^n) = \sum_{k=0}^n \binom{n}{k} W_i(K) r^i$$

But How Can We Compute The Mixed Volume

Using the inclusion-exclusion formula:

Theorem

Let $K_1, \ldots, K_n \in \mathcal{K}_n$. Then:

$$V(K_1, \ldots, K_n) = \frac{1}{n!} \sum_{k=1}^{n} (-1)^{n+k} \sum_{i_1 < \cdots < i_k} V_n(K_{i_1} + \cdots + K_{i_k})$$

Mixed Subdivision

We now make a detour through Polytopes

Definition

Let $P_1, \ldots, P_m \in \mathcal{P}_n$. A subdivision of $P_1 + P_2 + \cdots + P_m$ is a collection of cells $\mathcal{C} = \{F_1 + F_2 + \cdots + F_m : F_i \subseteq P_i\}$ partitioning the Minkowski sum $P_1 + \cdots + P_n$, where each F_i is a face of P_i . A subdivision is called fine, if it is generic enough.

Definition

Given P_1, \ldots, P_n and C as above, a cell $C \in C$ is called mixed, if every face involved is of dimension ≤ 1 .

Mixed Subdivision

We now make a detour through Polytopes

Definition

Let $P_1, \ldots, P_m \in \mathcal{P}_n$. A subdivision of $P_1 + P_2 + \cdots + P_m$ is a collection of cells $\mathcal{C} = \{F_1 + F_2 + \cdots + F_m : F_i \subseteq P_i\}$ partitioning the Minkowski sum $P_1 + \cdots + P_n$, where each F_i is a face of P_i . A subdivision is called fine, if it is generic enough.

Definition

Given P_1, \ldots, P_n and \mathcal{C} as above, a cell $C \in \mathcal{C}$ is called mixed, if every face involved is of dimension ≤ 1 .

The Mixed Volume Equals the Sum of Volumes of the Mixed Cells

Theorem

Let $P_1, \ldots, P_n \in \mathcal{P}_n$, \mathcal{C} a fine subdivision of $P_1 + \cdots + P_n$ and $\mathcal{M} \subseteq \mathcal{C}$ the set of all mixed cells of \mathcal{C} . Then:

$$V(P_1,\ldots,P_n)=\sum_{C\in\mathcal{M}}V_n(C)$$

Example

Let P_1, P_2 as in the picture, where the underlying lattice is \mathbb{Z}^2 .

Then $V(P_1, P_2) = 3$, because there are 3 mixed cells in this decomposition, all having volume 1.

Finding Some Fine Subdivision

Theorem

Let $P_1, \ldots, P_n \in \mathcal{P}_n$ generic enough polytopes and $\phi_1, \ldots, \phi_n : \mathbb{R}^n \to \mathbb{R}$ generic enough affine maps. The surface of $\phi_1 P_1 + \cdots + \phi_n P_n$ is naturally partitioned in some cells $\tilde{\mathcal{C}}$. Then, the lower (resp. upper) cell subdivision

$$\mathcal{C} := \{ p(C) : C \in \tilde{\mathcal{C}}^- \}$$

is a fine subdivision of $P_1 + \cdots + P_n$, where \tilde{C}^- are the cells subdividing the "lower" part of the surface.

Setup

Setup

