CS 285 hw1

oliver song

October 2023

1

1.1

Suppose the probability ϵ_t of making a mistake at time t is given by

$$\pi_{\theta}(a \neq \pi^*(s_t)|s_t) = \epsilon_t$$

From the given condition we can show that

$$\frac{1}{T} \sum_{i=1}^{T} \epsilon_i \le \epsilon$$

We can denote the state distribution at time t as $p_{\pi_{\theta}}(s_t)$, which can be written as the sum of probability of getting the correct state $p_{\pi^*}(s_t)$ and of getting the wrong state $p_{mistake}(s_t)$:

$$p_{\pi_{\theta}}(s_t) = \prod_{i=1}^{t} (1 - \epsilon_i) \cdot p_{\pi^*}(s_t) + (1 - \prod_{i=1}^{t} (1 - \epsilon_i)) \cdot p_{mistake}(s_t)$$

Applying some mathematical transformation to the equation yields

$$|p_{\pi_{\theta}}(s_t) - p_{\pi^*}(s_t)| = (1 - \prod_{i=1}^t (1 - \epsilon_i))|p_{\pi^*}(s_t) - p_{mistake}(s_t)|$$

$$\leq 2 \sum_{i=1}^t \epsilon_t$$

$$\leq 2\epsilon T$$

$$(1)$$

1.2

1.2.1

From 1.1 we know that the bias of the last state has dimension $O(T\epsilon)$. Since the reward is only related to the final state, the bias of return should also have dimension $O(T\epsilon)$

1.2.2

From the conclusion in 1.1 we can also know that at every state s_t , the distribution bias is bounded by $2T\epsilon$. According to the definition of $J(\pi)$,

$$J(\pi^*) - J(\pi_\theta) \le 2T^2 \epsilon R_{max}$$

which has the dimension $O(T^2\epsilon)$