

example: the sequence detector for W=(0).

1. State Diagram (Menly model)

2. State Table

DC	N. S. W=0 W=1		0 = 0 W= 1		
	W=0	W=	W= 0	W=	
A	Α	B	0		
B	C	В	0	0	
C	A	B	0	l	

3. State-assigned Toble

	y2 y1	V=0 Y_2Y_1	W=1 Y2 Y1	W=0 2	W= 2	
A B	00	00	01	0	0	_
B	01	10	01	0	0	
C	(0)	00	01	O	1	

Nent state expressions: $\frac{1}{2} = \overline{W}_{1}^{y}$, $\frac{1}{2} = W$ Output expression: $\frac{1}{2} = W y_{2}$

to do one-hot encoding

$$y_1 = y_1 \overline{w} + y_3 \overline{w}$$

$$\chi_2 = y_1 w + y_2 w + y_3 w = w$$

$$\chi_3 = y_2 \overline{W}$$

$$z = y_3 W$$

State minimization

-> partitioning procedure example: (0) détector

·	Pis.	' O N-2 1		1
		W=0	W=1	2
S A	Som	A Sous	E Sion	0
lB	S00 1	A Sow	E Sion	0
ζc	Suio	B Soul	F S101	U
\ \bar{D}	Soll	B Soul	F Stor	O
$+\epsilon$	Sion	C Solo	G 5110	0
36	S101 S110	C Solo	V	1
(H	S (10	D Soll	H Su	0
	* * 1	1 2 3 0 ()	2111	

$$p_{i} = (ABCDEFGH)$$

$$P_2 = (ABCDEGH)(F)$$

according to Z

$$P_3 = (AB \in GH)(cD)(F)$$

looking at the 1-successors

looking at the 1-successors of (ABCDEGH)

They are EEFFGHH &

111111 (: CD should be in a diff.

purtition than (ABEGH).

 $P_4 = (AB)(EGH)(CD)(F) \leftarrow looking at the v-successors$ $P_5 = (AB)(EGH)(CD)(F) \leftarrow more dividing$

		N	-S	
P5=P4 Stop!	Ρ, S.	W=0	-S W=	2
AB -> A	A	A	EFEE	0
$c D \rightarrow C$	C	A	F	0
FGH -> E	E	C	E	0
$F \longrightarrow F$	(-	C	E	1