Les embrayages

1 - Un embrayage est destiné à séparer ou accoupler deux arbres sous l'action d'une commande extérieure.

Un limiteur de couple est un organe de sécurité qui peut momentanément et sans intervention extérieure, séparer 2 arbres quand le couple transmis dépasse la valeur dite de "tarage".

Les principes mis en oeuvre pour la réalisation des embrayages et limiteurs de couple sont comparables dans leurs grandes lignes. On distingue:

- les embrayages à crabots
- les embrayages à disques à contact axial (monodisque, multidisque)
- les embrayages coniques
- les embrayages à contact radial : à sabots (éléments de friction extérieurs)
 - à segments (éléments de friction intérieurs de type centrifuge)
- les embrayages à grenaille métallique
- les embrayages électromagnétiques à poudre métallique
- les embrayages (ou coupleurs) hydrauliques
- les embrayages électromagnétiques asynchrones
- 2 Soit la chaîne cinématique installée en aval de l'embrayage :
 - Si $I_{\Delta S}$ est le moment d'inertie des organes mobiles solidaires de l'arbre de sortie (S) (si l'on néglige l'inertie des organes intermédiaires) ; le **moment d'inertie équivalent** (ramené sur l'arbre 2) est :

$$I_2 = k^2 . I_{\triangle S}$$
 avec $k = \frac{\omega_s}{\omega_e} I_2 \text{ et } I_{\triangle S} \text{ en kg.m}^2$

• Si C_s est le couple transmis à l'arbre de sortie (S), alors le couple transmis à l'arbre (2) de l'embrayage est :

$$C_2 = k.C_s$$

- Le couple moteur C_M, disponible sur l'arbre primairede l'embrayage est fonction de la fréquence angulaire et de la nature même du moteur comme l'indiquent les graphes.
- La **fréquence angulaire de synchronisme** ω est la fréquence commune aux arbres primaire et secondaire de l'embrayage quand ces derniers s'accouplent au terme d'une période de glissement.
- Dans le cas particulier où les couples C_M, C₂ et C (C = couple transmissible par l'embrayage) sont supposés constants

La fréquence angulaire de synchronisme est :

$$\omega = \frac{\Omega_{1/0} \frac{C - C_2}{I_2} + \Omega_{2/0} \frac{C_M - C}{I_1}}{\frac{C_M - C}{I_1} + \frac{C - C_2}{I_2}}$$

3 - Quand les garnitures de friction d'un embrayage à disques se déforment sous l'action d'un effort presseur, on peut en première appriximation, supposer une répartition uniforme des pressions de contact. Avec cette hypothèse, les couples transmissibles sont les suivants :

Hypothèse de calcul	Embrayage à disque(s)	Embrayage cônique
pression uniforme	$C = \frac{4}{3} nNf \frac{r_2^3 - r_1^3}{r_2^2 - r_1^2}$	$C = \frac{2}{3\sin\alpha} Nf \frac{r_2^3 - r_1^3}{r_2^2 - r_1^2}$
$p = \text{constante } \forall r$	$\begin{pmatrix} \approx 2nNfr_{moy} \\ \text{si } r_1 \text{ proche de } r_2 \end{pmatrix}$	$\begin{pmatrix} \approx \frac{1}{\sin \alpha} N f r_{moy} \\ \sin r_1 \text{ proche de } r_2 \end{pmatrix}$
n: nombre de disques (2 faces acti	f: facteur de fi	rottement;

α: 1/2 angle au sommet du cône;

N: effort presseur;

 r_1 : rayon intérieur;

 r_2 : rayon extérieur.

Le couple transmissible par un embrayage à segments à contact radial (centrifuge) a pour expression : (en supposant deux éléments de friction (3) diamétralement opposés)

$$C = \frac{2m.a.r.f \,\omega^2 \sin\alpha}{r + f.R}$$

avec : - m = masse de l'élément de friction en kg

- ω = fréquence de rotation de l'ensemble tournant en rad/s

- R = rayon du tambour en m

- r, α = cf figure

- C = couple transmissible en N.m

Hypothèse: La répartition des pressions est supposée uniforme.

4 - L'embrayage monodisque équipant les véhicules automobiles a les particularités suivantes:

- l'effort presseur est le plus souvent assuré par la **déformation élastique d'un diaphragme** (le comportement de ce dernier est comparable à celui d'une rondelle "Belleville")
- le mécanisme d'embrayage à billes peut être du type "poussé" ou "tiré"
- la butée d'embrayage à billes peut fonctionner :
 - avec une garde nulle (dans ce cas l'usure du diaphragme est notablement réduite)
 - avec une garde non nulle (dans ce cas l'usure de la partie centrale du diaphragme est accélérée)
- cette butée à billes peut être remplacée par une butée en graphite
- outre sa fonction d'organe de friction, le disque d'embrayage assure aussi celle d'un amortisseur de couple.

5 - Tableau faisant l'inventaire des réalisations d'embrayages à usages divers

		, 0			
	Principe d'entraînement		Nature de la commande extérieure (Assurant l'existence de l'effort presseur)	Exemples d'application	
Embrayages de type « tout ou rien »	Crabot	Tenons Cannelures Denture radiale Denture radiale	Mécanique Mécanique Éléctromagnétique Pneumatique ou Hydraulique	Machines-outils Machines agricoles Motoculteurs Motocyclettes Transmissions diverses	
Embrayages à contact axial	Contact axial	Multidisque Multidisque Multidisque Multidisque Friction unilatérale mixte	Mécanique (manuelle) Pneumatique ou Hydraulique Pneumatique (chambre à air) Électromagnétique (avec réglage de l'entrefer) Électromagnétique (sans réglage de l'entrefer)	Machines-outils Matériel de levage Machines pour l'industrie sidérurgique (pour couple élevé) Marine: entraînement de l'hélice Machines-outils Matériels de levage Machines pour l'industrie sidérurgique	
Embrayage cônique	Contact cônique	Deux cônes de friction (en prise séparément)	Mécanique	Inverseur de marche pour moteur hors-bord de bateau	
Embrayages à contact radial	Contact	Sabots À segments rivetés	Pneumatique (chambre à air) Effet centrifuge	Équipement de forage pétrolier Automobile	
Embrayage à grenaille métallique	Grenaille métallique		Effet centrifuge Réglage possible du couple transmis (par modification du volume de grenaille)	Toute transmission avec moteur thermique ou électrique Agit aussi comme limiteur de couple	
Embrayage à poudre métallique	Poudre métallique		Magnétique + effet centrifuge Réglage possible du couple transmis (par variation du courant dans les inducteurs)	Machines à bobiner Appareils de levage Possibilité d'asservissement	
Embrayage asynchrone	Loi de Lenz		Magnétique	Utilisé plutôt comme variateur (par variation de l'intensité du courant électrique dans les inducteurs)	

Représentation simplifiée d'un embrayage monodisque d'automobile .

Représentation simplifiée d'un embrayage multidisques à commande hydraulique ou pneumatique.

Caractéristiques constructives indicatives de quelques garnitures					
matériaux en frottement	coefficient de frottement (f)		pression maxi	température	
	à sec	dans l'huile	admissible N/mm ²	maximale °C	
métal fritté sur fonte	0,1 à 0,4	0,05 à 0,1	1	500 à 600	
métal fritté sur acier	0,1 à 0,3	0,05 à 0,1	2	500 à 600	
garnitures tissées sur acier ou fonte	0,3 à 0,6	0,1 à 0,2	0,3 à 0,7	175 à 260	
garnitures moulées sur acier ou fonte	0,2 à 0,5	0,08 à 0,12	0,35 à 1	200 à 260	
acier sur fonte	0,1 à 0,2	0,04	0,7 à 1,7	250	