APELLIDO Y NOMBRE: CARRERA:

T. I	P1	P2	P3	_ T1	T 2	Т3	T4	Nota
	3.8	7	3	1.75	·······································	2.5	2.5	
	3.0	22	-		75		600	9

Miércoles 26 de Julio de 2006

Parte práctica:

(L) SOLO PARA LIBRES (ELIMINATORIO): ¿Con qué precisión relativa necesitamos conocer el número π para calcular $\sqrt{\pi}$ con cuatro dígitos correctos de precisión relativa?

1. Sea L = C[-1,1] el espacio de funciones continuas en el intervalo [-1,1], equipado con el producto escalar $(f,g) = \int_{-1}^{1} f(x)g(x)dx$.

(a) Construir una familia de polinomios ortogonales φ_0 , φ_1 y φ_2 tales que $gr(\varphi_i) = i$ y $\varphi_i(1) = 1$, con i = 0, 1, 2.

(b) Aproximar la función $f(x) = e^x$ utilizando un polinomio de grado 2 en el sentido de los cuadrados mínimos (Ayuda: use el punto (a)).

2. Decir si son verdaderas o falsas las siguientes afirmaciones y justificar.

(a) Si la matriz A es simétrica, entonces el método de Jacobi es convergente.

(b) Sea $A \in \mathbb{R}^{n \times n}$. Probar que $\lambda = 1$ es autovalor de la matriz de Jacobi (Gauss-Seidel) si y sólo si A es no inversible.

(c) Si la matriz A es diagonalmente dominante en sentido fuerte entonces el método de Jacobi es convergente.

3. Determinar valores a, b y c reales para que la función:

$$s(x) = \begin{cases} ax^3 + bx^2 + cx, & \text{si } x \in [0, 1], \\ x^3 + 7x^2 + 2x + 1, & \text{si } x \in [1, 2], \end{cases}$$

resulte una función spline cúbica.

Parte teórica:

1. (a) Enunciar y demostrar el teorema de la convergencia del método de bisección.

(b) Mostrar que si r es una raíz de orden p de una función f suficientemente diferenciable, entonces el método de Newton modificado es de orden al menos 2.

2. Enunciar y demostrar el teorema de la existencia y unicidad del polinomio interpolatorio.

Deducir la regla del Simpson compuesta mostrando su fórmula y error.

4. Demostrar que toda norma vectorial es continua respecto de la norma vectorial infinito.

