CLAIMS

***** · *	1	•	
What i	s cla	ımea	110'

1	1. A method in a computer graphics system for rendering on an output device, having a finite
2	number of pixels, a non-zero thickness line segment with reduced aliasing, comprising:
3	expanding an edge of the line segment touching but not covering a pixel center of the line
4	segment to be rendered on the output device so that the expanded line segment covers the center
5	of the pixel touched;
6	determining, using the pixel centers, the pixels to be included in the expanded line
7	segment, the line segment being distinguishable from a background over which said line segment
8	is rendered by having a shade different from a shade of the background; and
9	for each pixel that is included in said non-zero thickness expanded line segment,
10	determining the area of the pixel partially or fully covered by said line segment;
11	and
12	based on the area of the pixel covered, determining a shading value for the pixel
13	by interpolating between the shade of said line segment and the shade of the background.
1	2. A method for rendering a non-zero thickness line segment as recited in claim 1,
2	wherein the output device has a x-y coordinate system established thereon and the pixels
3	of the output device each have centers with an x-y coordinate; and
4	wherein the step of expanding an edge includes moving the edge of said line segment by
5	an amount equal to (a+b)/2a in the x-direction to include the center of a pixel that has a corner
6	traversed by an edge of said line segment, wherein a is greater than or equal to zero and b is
7	greater than or equal to zero.
1	3. A method for rendering a non-zero thickness line as recited in claim 1,
2	wherein the output device has a x-y coordinate system established thereon and the pixels
3	of the output device each have centers with an x-y coordinate;
4	wherein an edge of said line segment has an equation $ax + by + c = 0$; and
5	wherein the step of expanding an edge includes altering the equation of an edge of said
6	line segment by adding an amount (a + b)/2 to the congresser of the equation

I	4. A method for rendering a non-zero thickness line as recited in claim 1,
2	wherein the output device has a x-y coordinate system established thereon and the pixels
3	of the output device each have centers with an x-y coordinate; and
4	wherein the step of determining the pixels to be included in the non-zero thickness line
5	includes:
6	evaluating the equation of an edge of said expanded line segment with the x and
7	y-coordinates of the center of each pixel; and
8	testing whether the result of the computation is greater than or equal to zero.
1	5. A method for rendering a non-zero thickness line as recited in claim 4, wherein evaluating the
2	equation of an edge of said expanded line segment with the x and y-coordinates of the center of
3	each pixel includes computing $ax_0 + by_0 + c + (a + b)/2$, where x_0 and y_0 are the coordinates of
4	the pixel center.
1	6. A method for rendering a non-zero thickness line as recited in claim 1,
2	wherein the shade of the pixel covered and the shade of the background are each
3	indicated by a numerical value; and
4	wherein the step of determining the shading value of the pixel by interpolating includes:
5	forming a first product of the shade numerical value of said line segment and a
6	fraction f representing the area of the pixel covered;
7	forming a second product of the shade numerical value of the background and a
8	fraction (1-f) representing the area of the pixel not covered; and
9	adding the first and second products.
1	7. A method for rendering a non-zero thickness line as recited in claim 1,
2	wherein the output device has a x-y coordinate system established thereon and said line
3	segment has a slope factor sf related to the slope of said line segment and a parameter p
4	proportional to an x-distance between an edge of said line segment traversing a pixel and a pixel
5	boundary; and
6	wherein, for an edge of said line segment that traverses a partially covered pixel, the step
7	of determining the area of a partially covered pixel includes:

8	determining that the area covered is less than or equal to a first predetermined
9	limit; and
10	computing the triangular area covered by said line segment.
1	8. A method for rendering a non-zero thickness line as recited in claim 7,
2	wherein the parameter p is equal to the product of the slope factor sf and the distance
3	between an edge of said line segment traversing the pixel and a pixel boundary;
4	wherein the line segment has a slope m and the slope factor sf equals $m/(m+1)$; and
5	wherein the step of computing the triangular area covered by said line segment includes
6	forming a product $\frac{1}{2} * p^2 * (1-sf)^{-1} * sf^1$ to find the area.
1	9. A method for rendering a non-zero thickness line as recited in claim 1,
2	wherein the output device has an x-y coordinate system established thereon and said line
3	segment has a slope factor sf related to the slope of said line segment and a parameter p
4	proportional to an x-directed distance between an edge of said line segment traversing a pixel
5	and a pixel boundary; and
6	wherein, for an edge of said line segment that traverses a partially covered pixel, the step
7	of determining the area of a partially covered pixel includes:
8	determining that the area covered is greater than a first predetermined limit;
9	computing the maximum triangular area covered by said line segment;
10	computing the area of a parallelogram covered by said line segment; and
11	computing the sum of the maximum triangular area and the parallelogram area.
1	10. A method for rendering a non-zero thickness line as recited in claim 9, wherein the slope
2	factor sf equals $m/(m+1)$, where m is the slope of said line segment.
1	11. A method for rendering a non-zero thickness line as recited in claim 9, wherein the p
2	parameter equals the product of said x-directed distance and the slope factor sf.

- 1 12. A method for rendering a non-zero thickness line as recited in claim 11, wherein said x-
- directed distance is computed as the quotient $ax_0+by_0+c+(|a|+|b|)/2$ and a, where x_0 and y_0 are
- 3 the coordinates of the center of the pixel and the line segment edge has an equation ax+by+c=0.
- 1 13. A method for rendering a non-zero thickness line as recited in claim 9, wherein the first
- 2 predetermined limit is the maximum area triangular area covered by said line segment traversing
- 3 through the pixel.
- 1 14. A method for rendering a non-zero thickness line as recited in claim 9, wherein the step of
- 2 computing the maximum triangular area covered by said line segment includes forming a
- 3 product $\frac{1}{2}$ * (1-sf) * sf^1 to find the maximum triangular area.
- 1 15. A method for rendering a non-zero thickness line as recited in claim 9, wherein the step of
- 2 computing the parallelogram area covered by said line segment includes forming a sum of $p*sf^1$
- 3 and $(1-sf^1)$ to find the parallelogram area.
- 1 16. A method for rendering a non-zero thickness line as recited in claim 1, wherein, for an edge
- 2 of said line segment that traverses a partially covered pixel, the step of determining the area of a
- 3 partially covered pixel includes:
- determining that the area covered is greater than a second predetermined limit, leaving a
- 5 triangular area not covered;
- 6 computing the triangular area not covered by said line segment; and
- 7 computing the difference between one and the triangular area not covered to find the area
- 8 of the pixel covered.
- 1 17. A method for rendering a non-zero thickness line as recited in claim 16, wherein the second
- 2 predetermined limit is the sum of the maximum triangular area and the maximum parallelogram
- 3 area of said line segment traversing the pixel.

- 1 18. A method for rendering a non-zero thickness line as recited in claim 16, wherein the step of
- 2 computing the triangular area covered by said line segment includes forming a product $\frac{1}{2} * p^2 *$
- 3 $(1-sf)^{-1} * sf^{-1}$ to find the triangular area covered.
- 1 19. A method for rendering a non-zero thickness line as recited in claim 1, wherein when two
- 2 parallel edges of said line segment traverse a partially covered pixel, the step of determining the
- area of the partially covered pixel includes:
- 4 computing a first area of the pixel not covered by the first parallel edge;
- 5 computing a second area of the pixel not covered by the second edge; and
- 6 summing the first and second areas and subtracting the sum from one.
- 1 20. A method for rendering a non-zero thickness line as recited in claim 1, wherein when a first
- 2 edge along said line segment and a second edge orthogonal to said line segment traverse a
- 3 partially covered pixel, the step of determining the area of the partially covered pixel includes:
- 4 computing a first area of the pixel not covered by the first parallel edge and subtracting
- 5 the first area from one to form a first difference;
- 6 computing a second area of the pixel not covered by the second edge and subtracting the
- 7 second area from one to form a second difference; and
- 8 forming a product of the first and second differences.
- 1 21. A method for rendering a non-zero thickness line as recited in claim 1, wherein when two
- 2 parallel edges and a third orthogonal edge of said line segment traverse a partially covered pixel,
- 3 the step of determining the area of the partially covered pixel includes:
- 4 computing a first area of the pixel not covered by the first parallel edge;
- 5 computing a second area of the pixel not covered by the second parallel edge; and
- summing the first and second areas and subtracting the sum from one to form a first
- 7 difference;
- 8 computing a third area of the pixel not covered by the third orthogonal edge and
- 9 subtracting the third area from one to form a second difference; and
- forming a product of the first difference and the second difference.

- 1 22. A method for rendering a non-zero thickness line as recited in claim 1, wherein, when two
- 2 parallel edges and a third and forth orthogonal edge of said line segment traverse a partially
- 3 covered pixel, the step of determining the area of the partially covered pixel includes:
- 4 computing a first area of the pixel not covered by the first parallel edge;
- 5 computing a second area of the pixel not covered by the second parallel edge; and
- 6 summing the first and second areas and subtracting the sum from one to form a first
- 7 difference;
- 8 computing a third area of the pixel not covered by the third orthogonal edge;
- 9 computing a fourth area of the pixel not covered by the fourth orthogonal edge;
- summing the third and fourth areas and subtracting the sum from one to form a second
- 11 difference; and
- forming a product of the first difference and the second difference.
- 1 23. A graphics pipeline for rendering a non-zero thickness line segment on an output device,
- 2 having a finite number of pixels, comprising:
- an interpolator processor for computing a parameter proportional to a displacement
- 4 representing an x-directed distance between an edge of said line segment and the boundary of a
- 5 pixel that is partially covered by said line segment, the edge of said line segment having a known
- 6 edge relation that defines a slope factor for the edge, the pixel having a center with known x and
- 7 y coordinates; and
- 8 a shading processor for computing the area of the pixel covered by said line based on the
- 9 displacement parameter, the slope factor of said line segment, the edge relation and the x and y
- 10 coordinates of the pixel center.
- 1 24. A graphics pipeline as recited in claim 23, wherein said x-directed distance is computed as
- 2 the quotient ax0+by0+c+(a+b)/2 and a, where x0 and y0 are the coordinates of the center of
- 3 the pixel and the edge relation is $ax+by+c \ge 0$, and the slope factor is a/(a+b).
- 1 25. A graphics pipeline as recited in claim 23, said displacement parameter is computed as sf *
- $x_0+(1-sf) * y_0 + sf * c/a + 1/2$, where x0 and y0 are the coordinates of the center of the pixel, the
- 3 edge relation is $ax+by+c \ge 0$, and the slope factor is a/(a+b).

- 1 26. A graphics pipeline as recited in claim 23,
- wherein the pixel has center coordinates (x0, y0), the edge relation of the line segment is $ax+by+c \ge 0$, and the slope factor is a/(a+b);
- wherein said interpolator process evaluates interpolator function, Ps + Px * x + Py * y, to
- 5 perform interpolation calculations; and
- wherein displacement parameter is computed by setting Ps to (sf * $c/a + \frac{1}{2}$), Px to sf and
- 7 Py to (1-sf) and evaluating the interpolator function at (x0, y0).
- 1 27. A graphics pipeline as recited in claim 23, wherein the interpolator processor is a fixed
- 2 function single-instruction, multiple-data (SIMD) processor capable of operating on multiple
- data items with the same instruction.
- 1 28. A graphics pipeline as recited in claim 23, wherein the shading processor is an instruction-
- 2 based computing element.