

NDP408A / NDP408AE / NDP408B / NDP408BE NDB408A / NDB408AE / NDB408B / NDB408BE N-Channel Enhancement Mode Field Effect Transistor

General Description

These N-channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation modes. These devices are particularly suited for low voltage applications such as automotive, DC/DC converters, PWM motor controls, and other battery powered circuits where fast switching, low in-line power loss, and resistance to transients are needed.

Features

- 12 and 11A, 80V. $R_{DS(ON)} = 0.16$ and 0.20Ω .
- Critical DC electrical parameters specified at elevated temperature.
- Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor.
- 175°C maximum junction temperature rating.
- High density cell design (3 million/in²) for extremely low R_{DS(ON)}.
- TO-220 and TO-263 (D²PAK) package for both through hole and surface mount applications.

Absolute Maximum Ratings

 $T_{c} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	NDP408A NDP408AE NDB408A NDB408AE	NDP408B NDP408BE NDB408B NDB408BE	Units
V _{DSS}	Drain-Source Voltage		V	
V_{DGR}	Drain-Gate Voltage ($R_{gs} \le 1 M\Omega$)		V	
V _{GSS}	Gate-Source Voltage - Continuous	±	V	
	- Nonrepetitive (t _p < 50 μs)	±	V	
I _D	Drain Current - Continuous	12	11	Α
	- Pulsed	36	33	Α
P _D	Total Power Dissipation @ T _C = 25°C		W	
	Derate above 25°C	0	.33	W/°C
T_J,T_{STG}	Operating and Storage Temperature Range	- 65 t	°C	
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	2	°C	

Symbol	Parameter	Conditions		Туре	Min	Тур	Max	Units
DRAIN-S	OURCE AVALANCHE RATINGS	(Note 1)						
E _{AS}	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = 25 \text{ V}, I_{D} = 12 \text{ A}$		NDP408AE NDP408BE			40	mJ
I _{AR}	Maximum Drain-Source Avalance	che Current		NDB408AE NDB408BE			12	Α
OFF CH	ARACTERISTICS							
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{gs} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		ALL	80			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80 \text{ V},$ $V_{GS} = 0 \text{ V}$		ALL			250	μA
		66	$T_J = 125^{\circ}C$				1	mA
GSSF	Gate - Body Leakage, Forward	$V_{gs} = 20 \text{ V}, V_{DS} = 0 \text{ V}$		ALL			100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$		ALL			-100	nA
ON CHAI	RACTERISTICS (Note 2)							
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$ $T_J = 125^{\circ}C$	ALL	2	2.9	4	V	
				1.4	2.3	3.6	V	
$R_{DS(ON)}$	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V},$ $I_{D} = 6 \text{ A}$		NDP408A NDP408AE NDB408A		0.11	0.16	Ω
		$T_J = 125$ °C	NDB408AE		0.19	0.32	Ω	
		$V_{es} = 10 \text{ V},$ $I_{D} = 5.5 \text{ A}$		NDP408B NDP408BE NDB408B			0.2	Ω
			T _J = 125°C	NDB408BE			0.5	Ω
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$		NDP408A NDP408AE NDB408A NDB408AE	11			A
				NDP408B NDP408BE NDB408B NDB408BE	10			A
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_{D} = 6 \text{ A}$		ALL	3	5.3		S
	CHARACTERISTICS							
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, \ V_{GS} = 0 \text{ V},$ f = 1.0 MHz		ALL		380	500	рF
C _{oss}	Output Capacitance			ALL		115	125	рF
C _{rss}	Reverse Transfer Capacitance			ALL		35	50	рF

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Units
SWITCH	ING CHARACTERISTICS (N	lote 2)					
t _{D(ON)}	Turn - On Delay Time	$V_{DD} = 40 \text{ V}, I_{D} = 12 \text{ A},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 24 \Omega$	ALL		7.5	20	nS
t _r	Turn - On Rise Time		ALL		48	80	nS
t _{D(OFF)}	Turn - Off Delay Time		ALL		22	40	nS
ţ,	Turn - Off Fall Time		ALL		32	60	nS
\dot{Q}_{g}	Total Gate Charge	$V_{DS} = 64 \text{ V},$ $I_{D} = 12 \text{ A}, V_{GS} = 10 \text{ V}$	ALL		12	17	nC
$\overline{Q_{gs}}$	Gate-Source Charge		ALL		2.5		nC
Q_{gd}	Gate-Drain Charge		ALL		6		nC
DRAIN-S	OURCE DIODE CHARACTERI	STICS					
I _s	Maximum Continuos Drain-Source Diode Forward Current		NDP408A NDP408AE NDB408A NDB408AE			12	A
			NDP408B NDP408BE NDB408B NDB408BE			11	A
I _{SM}	Maximum Pulsed Drain-Source	e Diode Forward Current	NDP408A NDP408AE NDB408A NDB408AE			36	A
			NDP408B NDP408BE NDB408B NDB408BE			33	A
V_{SD}	Drain-Source Diode Forward Voltage	$V_{gs} = 0 V$,	ALL		0.87	1.3	V
(Note 2)		$I_s = 6 \text{ A}$ $T_J = 125^{\circ}\text{C}$			0.74	1.2	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, I_{S} = 12 \text{ A},$	ALL		68	100	ns
I _{rr}	Reverse Recovery Current	$dl_{s}/dt = 100 A/\mu s$	ALL		4.7	7	Α
	L CHARACTERISTICS	•			1		
R _{eJC}	Thermal Resistance, Junction-to-Case		ALL			3	°C/W
R _{eJA}	Thermal Resistance, Junction-to-Ambient		ALL			62.5	°C/W

Notes: 1. NDP408A/408B and NDB408A/408B are not rated for operation in avalanche mode. 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Typical Electrical Characteristics

Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Gate Voltage and Drain Current.

Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Drain Current and Temperature.

Figure 5. Transfer Characteristics.

Figure 6. Gate Threshold Variation with Temperature.

Typical Electrical Characteristics (continued)

Figure 7. Breakdown Voltage Variation with Temperature.

Figure 9. Capacitance Characteristics.

Figure 11. Switching Test Circuit.

Figure 8. Body Diode Forward Voltage Variation with Current and Temperature.

Figure 10. Gate Charge Characteristics.

Figure 12. Switching Waveforms.

Typical Electrical Characteristics (continued)

Figure 13. Transconductance Variation with Drain Current and Temperature.

Figure 14. Unclamped Inductive Load Circuit and Waveforms.

Figure 15. Maximum Safe Operating Area.

Figure 16. Transient Thermal Response Curve.