SY2158

1024 x 8 Static Random Access Memory

Features

- 120nsec Maximum Access Time
- Fully Static Operation:
 No Clocks or Strobes Required
- Automatic CE Power Down
- Identical Cycle and Access Times
- Single +5V Supply (± 10%)

- Pin Compatible with 2716 16K EPROM
- Totally TTL Compatible: All Inputs and Outputs
- Common Data Input and Output
- Three-State Output
- Output Enable Function (OE)

Description

The Synertek SY2158 is a 8192 bit static Random Access Memory organized 1024 words by eight bits and is fabricated using Synertek's new scaled n-channel silicon gate technology. It is designed using fully static circuitry, therefore requiring no clocks or refreshing to operate. The common data input and three-state output pins optimize compatibility with systems utilizing a bidirectional data bus.

The SY2158 offers an automatic power down feature under the control of the chip enable (\overline{CE}) input. When \overline{CE} goes high, deselecting the chip, the device will automatically power down and remain in a standby power mode as long

as $\overline{\text{CE}}$ remains high. This feature provides significant system level power savings.

The SY2158 is available in two versions. For the "A" version, the select reference input (A_R) must be at V_{IL} and for the "B" version A_R must be at $V_{IH}.$

The SY2158 is pin compatible with 16K ROMs, EPROMs and E²PROMs thus offering the user the flexibility of switching between RAM, ROM, EPROM, and E²PROM with a minimum of board layout changes.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias-10° C to 85° C Storage Temperature-65° C to 150° C Voltage on Any Pin with Respect to Ground -3.5V to +7V
Power Dissipation 1.0W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics $T_A = 0^{\circ} C$ to $+70^{\circ} C$, $V_{CC} = 5V \pm 10\%$ (Unless otherwise specified)

		2158-	2/-3/-4				
Symbol	Parameter	Min.	Max.	Unit	Conditions		
ILI	Input Load Current (All input pins)		10	μΑ	$V_{CC} = Max$, $V_{IN} = Gnd to V_{CC}$		
I _{LO}	Output Leakage Current		10	μΑ	$\overline{CE} = V_{IH}, V_{CC} = Max$ $V_{OUT} = Gnd to 4.5V$		
I _{cc}	Power Supply Current		95 100	mA mA	$ \begin{array}{c c} \hline T_A = 25^{\circ}C & V_{CC} = Max, \ \overline{CE} = V_{IL} \\ \hline T_A = 0^{\circ}C & Outputs \ Open \\ \end{array} $		
I _{SB}	Standby Current		20	mA	$V_{CC} = Min to Max, \overline{CE} = V_{IH}$		
I _{PO}	Peak Power-on Current Note 6		40	mA	V_{CC} = Gnd to V_{CC} Min \overline{CE} = Lower of V_{CC} or V_{IH} Min.		
V _{IL}	Input Low Voltage	-3.0	0.8	V			
V _{IH}	Input High Voltage	2.0	6.0	V			
V _{OL}	Output Low Voltage		0.4	V	I _{OL} = 3.2 mA		
V _{OH}	Output High Voltage	2.4		V	I _{OH} = -1.0 mA		

Capacitance $T_A = 25^{\circ}C$, f = 1.0 MHz

Symbol	Test	Тур.	Max.	Unit
COUT	Output Capacitance		5	pF
CIN	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested. **A.C. Characteristics** $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5$

 $T_A = 0^{\circ} C \text{ to } +70^{\circ} C, V_{CC} = 5V \pm 10\% \text{ (Note 7)}$

READ CYCLE

	Parameter	215	2158-2		2158-3		2158-4		
Symbol		Min.	Max.	Min.	Max.	Min.	Max.	Unit	Conditions
tRC	Read Cycle Time	120		150		200		ns	
tAA	Address Access Time		120		150		200	ns	
tACE	Chip Enable Access Time		120		150		200	ns	
^t AOE	Output Enable Access Time		50		60		70	ns	
^t OH	Output Hold from Address Change	10		10		10		ns	
^t LZ	Output Low Z Time	10		10		10		ns	Note 5
tHZ	Output High Z Time	0	40	0	50	0	60	ns	Note 5
tPU	Chip Enable to Power Up Time	0		0		0		ns	
tPD	Chip Disable to Power Down Time		60		80		100	ns	
RITECY	CLE								
tWC	Write Cycle Time	120		150	T	200		ns	
tcw	Chip Enable to End of Write	90		120		150		ns	
tAW	Address Valid to End of Write	90		120		150		ns	
†AS	Address Setup Time	0		0		0		ns	
tWP	Write Pulse Width	70		90		120		ns	
tWR	Write Recovery Time	0		0		0		ns	
tDW	Data Valid to End of Write	50		70		90		ns	
^t DH	Data Hold Time	0		0		0		ns	
twz	Write Enabled to Output in High Z	0	40	0	50	0	60	ns	Note 5
	Output Active from End of Write	0	1	0		0	1	ns	Note 5

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 24 Pin Molded DIP

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type	AR
SYP2158A-2	120ns	100mA	20mA	Molded DIP	II.
SYP2158A-3	150ns	100mA	20mA	Molded DIP	VIL
SYP2158A-4	200ns	100mA	20mA	Molded DIP	VIL
SYP2158B-4	120ns	100mA	20mA	Molded DIP	VII
SYP2158B-3	150ns	100mA	20mA	Molded DIP	VIL
SYP2158B-2	200ns	100mA	20mA	Molded DIP	VIL