Abgabe: 7.11.2010 (bis 15:15 Uhr)

Übungen zur Vorlesung

Diskrete Mathematik

WS 11/12

Übungsblatt 03

Aufgabe 3.1 An einer Schule werden 5 Sportkurse mit je verschiedenen Sportarten angeboten. 7 neue Schüler müssen sich jeweils für einen von diesen entscheiden.

- a) Wie viele Verteilungsmöglichkeiten gibt es dafür?
- b) Wie viele Möglichkeiten gibt es, wenn an jedem Kurs mindestens einer der Neuen teilnehmen soll?
- c) Es kommen drei Brüder neu auf die Schule, die sich ständig streiten und prügeln. Deswegen müssen sie unbedingt in verschiedene Sportkurse eingetragen werden. Wie viele Verteilungsmöglichkeiten gibt es für die drei?

Aufgabe 3.2 Zeige, dass folgende Aussagen über Stirling-Zahlen stimmen! Für $n \in \mathbb{N}$ gilt:

- a) $S_{n,2} = 2^{n-1} 1$
- b) $s_{n+1,n} = S_{n+1,n}$

Aufgabe 3.3 In einem Casino wird folgendes Spiel gespielt:

- Der Einsatz pro Runde beträgt 5 €
- Im Falle eines Gewinnes erhält der Spieler 10 € zurück
- Im Falle eines Verlustes geht der Spieler leer aus

Erwin beginnt das Spiel mit $15 \in$ in der Tasche. Nach genau 25 Spielen geht ihm das Geld aus. Wie viele Möglichkeiten für Erwins Spielverlauf (d.h. Abfolgen von Gewinn und Verlust) gibt es?

Aufgabe 3.4 Trage in die folgende Tabelle die Verhältnisse der unten angegebenen Funktionen bezüglich der \mathcal{O} -Notation ein. D.h. gilt $f = \Psi(g)$ so erhält das Kästchen in der f-Zeile und g-Spalte das Zeichen Ψ (mit $\Psi \in \{O, o, \Omega, \omega, \Theta\}$). Verwende dabei die Symbole $O, o, \Omega, \omega, \Theta$ so genau wie möglich.

$f \setminus g$	e^n	10^{n}	$\sum_{i=1}^{n} i$	$n\log(n)$	$2^{(2^{n+1})}$	$100^{\ln n}$	$2^{(2^n)}$	$2^{\sqrt{\log n}}$
e^n								
10^n								
$\sum_{i=1}^{n} i$								
$n\log(n)$								
$2^{(2^{n+1})}$								
$100^{\ln n}$								
$2^{(2^n)}$								
$2^{\sqrt{\log n}}$								

Tipp: Beachte die Symmetrie und Transitivität der Landau-Symbole.