Qualitative Discovery of Marine Population Trends

Student: Andrea Baisero

Community Partner: Benjamin Moran

Overview

Problem Description

Design

Conclusions

Problem Description

Problem Description

Project Partner:

Benjamin Moran, undergraduate Senior in Marine Biology.

Data Description:

Sample statistics on various fish species obtained over the course of 20 years in 3 regions: the Florida Keys, Dry Tortugas National Park, Southeast Florida Coral Reef Initiative (SEFCRI) areas.

Datasets

Taxonomy: Biological hierarchy of family, genera, and species.

Samples: Histogram:

- Region, i.e. (FLA KEYS, DRY TORT, SEFCRI);
- Date;
- Location, i.e. latitude and longitude;
- Size, (sometimes negative!!!);
- Depth;
- Protection Status, (location dependent);
- Count, (not always integer!!!);

Strata: Info on sampling areas, e.g. grid sizes, prot. status

Notes

- 1) Very big (samples.csv \sim 1GB)
- 2) Infested with missing fields, semantically wrong values (!!!).
- 3) Original data server has been offline for various weeks.

Problem Description

Project Partner:

Benjamin Moran, undergraduate Senior in Marine Biology.

Visualization Needs:

Discover explanatory conditions for variations in sample statistics.

Dependent variables: size and abundance.

Independent variables: location, date, protection status, depth, distance from shore, and habitat type.

Design

Design Goals

- Visualize sample data on top of a geographic map.
- Filter data according to region, taxonomy, location, date, protection status, . . .
 - ⇒ Visualize, navigate, and select elements of taxonomy tree.
- In-detail views specific to selected filters, with appropriate within-view and inter-view comparison capabilities.
- Preliminary analysis via standard ML techniques (e.g. KDE for data density estimation, GP for data regression lines)

Design Overview

Taxonomy Tree

Goal: Show, navigate and select Family, Genus or Species.

Difficulties: Shallow, but high branching factor.

Key concern: space efficiency.

Solution: Inspired by Zoomable Sunburst¹, with key

domain-specific changes.

¹Zoomable Sunburst. https://bl.ocks.org/mbostock/4348373.

Taxonomy Tree – Visualization

Domain-specific features:

- Flattened out to exploit horizontal screen extension.
- Ordered hierarchically/alphabetically, to aid search.
- Labels only shown if sufficient space is available.
 (More details available via tooltip + navigation)
- Palette chosen to aide distinction between families (small variations in hue applied to descendant genera/species)

Taxonomy Tree – Navigation and Selection

Clicking on an element...

... expands it, revealing new labels and allowing for tree navigation.

Ctrl + click selects a family/genus/species for filtering purposes.

Geographic View

Goal: Show, navigate and select by regions and area

Key Concern: Simple navigation (zooming, panning).

Solution: Based on Google Maps².

Pros: Many built-in functionalities (zooming, panning,

coordinates-to-pixel mappings).

Cons: Somewhat slow, and JS-blocking!!!

https://developers.google.com/maps/documentation/javascript/.

²Google Maps JavaScript API.

Geographic View – Elements

Key Elements

- Map
- Date Slider
- Region drop-down selection
- P. Status drop-down selection
- Empty space for labels + hover info

Geographic View – Examples

Detail Views

Goal: Maximum flexibility in view manipulation, (similar to "From Detail to Overview" and "Glo-stix").

Key Concerns: Maintaining data persistency.

Ability to explore all sorts of potential relationships.

Detail Views - Controls

Detail Views – Avoiding Standard Plotting Biases

Axis Origin:

Linked Axes:

Detail Views – Averaging over Sample Y-Axis values

Detail Views - KDE

Gaussian Kernel (varying length-scales):

Detail Views - GP Regression

Gaussian Kernel:

Locally Periodic Kernel:

Live Demo

Conclusions

Conclusions

Achieved Design Goals

- Efficient taxonomy navigation and selection.
- Axis manipulation aids exploration of relationships within- and between- detail view.
- Basic ML analysis.

Future Work

- Improve data fields and data server efficiency.
- Switch from Google Maps to lighter d3-geo solution.
- Extend data-dim / axis manipulation.
- Better management of combined filters.

Questions?

Questions?

References

- Google Maps JavaScript API. https:
 - //developers.google.com/maps/documentation/javascript/.
- Stolper, Charles D et al. "Glo-stix: Graph-level operations for specifying techniques and interactive exploration". In: *IEEE transactions on visualization and computer graphics* 20.12 (2014), pp. 2320–2328.
- Van den Elzen, Stef and Jarke J Van Wijk. "Multivariate network exploration and presentation: From detail to overview via selections and aggregations". In: *IEEE Transactions on Visualization and Computer Graphics* 20.12 (2014), pp. 2310–2319.
- Zoomable Sunburst. https://bl.ocks.org/mbostock/4348373.