

GLIEDERUNG

- 1. Problemvorstellung
- 2. Idee Warum ein Färbungsproblem?
- 3. Unsere Umsetzung
 - 1. Erste Schritte
 - 2. Algorithmen
 - 3. Live-Demo
- 4. Laufzeitdiskussion

PROBLEMSTELLUNG

- Problembeschreibung:
 - Verantwortlichkeit für die Umsetzung eines Stundenplans
 - Verschiedene MODULE müssen in geeignete BLÖCKE unterteilt werden
 - Module werden genau einem DOZIERENDEN und einem SEMESTER zugeordnet
 - Manche Module müssen in einem bestimmten RAUM stattfinden
- Aufgabe:
 - GRAPHALGORITHMUS entwickeln, der die MINIMALE ANZAHL AN BLÖCKEN bestimmt

- Wie kann daraus ein Graph entstehen?
 - Knoten: Module
 - Kanten: Zwischen den Modulen, die nicht im gleichen Block liegen dürfen

• Wie kann daraus ein Graph entstehen?

• Knoten: Module

• Kanten: Zwischen den Modulen, die nicht im gleichen Block liegen dürfen

• Beispiel:

Module	Dozent	Semester	Raum
1	1	1	-
2	1	2	-
3	2	1	1
4	2	1	1
5	2	2	-

• Wie kann daraus ein Graph entstehen?

• Knoten: Module

• Kanten: Zwischen den Modulen, die nicht im gleichen Block liegen dürfen

Beispiel:

Module	Dozent	Semester	Raum
1	1	1	-
2	1	2	-
3	2	1	1
4	2	1	1
5	2	2	-

• Wie kann daraus ein Graph entstehen?

• Knoten: Module

• Kanten: Zwischen den Modulen, die nicht im gleichen Block liegen dürfen

Beispiel:

Module	Dozent	Semester	Raum
1	1	1	-
2	1	2	-
3	2	1	1
4	2	1	1
5	2	2	-

• Beispiel:

Module	Dozent	Semester	Raum
1	1	1	-
2	1	2	-
3	2	1	1
4	2	1	1
5	2	2	-

• Jede Farbe stellt einen Block dar

UNSERE UMSETZUNG - ERSTE SCHRITTE

- Überschaubare UML-Diagramme erstellt
- Testinstanzen angeschaut
 - 3 Textdateien für Dozenten, Semester und Raum
- Java-Klassen für Knoten, Kanten und Graphen erstellt
- Klasse CalculateTimetable erstellt
 - Textdateien einlesen
 - Graph mit entsprechenden Knoten und Kanten erstellen

UNSERE UMSETZUNG - ALGORITHMEN

- Alle Algorithmen aus Unterricht umgesetzt:
 - Sequenzieller Algorithmus
 - Johnson Algorithmus
 - Backtracking
- Können in Klasse Graph aufgerufen werden

Module	Farben
1	-
2	_
3	-
4	-
5	-

• Idee: Bestimme die Farbe der Knoten über die Färbung der Nachbarn

Module	Farben
1	-
2	_
3	-
4	-
5	-

Module	Farben
1	Blau
2	-
3	-
4	-
5	-

Module	Farben
1	Blau
2	-
3	-
4	-
5	-

Module	Farben
1	Blau
2	-
3	-
4	-
5	-

Module	Farben
1	Blau
2	Orange
3	-
4	-
5	-

Module	Farben
1	Blau
2	Orange
3	Orange
4	_
5	-

Module	Farben
1	Blau
2	Orange
3	Orange
4	Grün
5	-

Module	Farben
1	Blau
2	Orange
3	Orange
4	Grün
5	Blau

- Nachteile:
 - Abhängig von der Reihenfolge
 - Liefert nicht die chromatische Farbe x(G)

• Idee: Bestimmt die Färbung mithilfe des Knotengrads

Module	Grad	Farbe
1	3	-
2	2	-
3	3	-
4	3	-
5	3	-

Knotenmenge W

Module	Grad
1	3
2	2
3	3
4	3
5	3

Knotenmenge U

Module	Grad	Farbe
1	3	_
2	2	_
3	3	-
4	3	_
5	3	-

Knotenmenge W

Module	Grad
1	3
2	2
3	3
4	3
5	3

Knotenmenge U

Module	Grad	Farbe
1	3	-
2	2	Orange
3	3	_
4	3	_
5	3	-

Knotenmenge W

Module	Grad
1	3
2	2
3	3
4	3
5	3

Knotenmenge U

Module	Grad	Farbe
1	2	-
2	-	Orange
3	3	-
4	3	-
5	2	-

Knotenmenge W

Module	Grad
3	1
4	1

Knotenmenge U

Module	Grad	Farbe
1	2	-
2	_	Orange
3	-	Orange
4	2	-
5	1	_

Knotenmenge W

Module	Grad

Module	Grad	Farbe
1	1	-
2	_	Orange
3	-	Orange
4	2	-
5	1	-

Knotenmenge W

Neue Farbel

Module	Grad
1	1
4	2
5	1

Module	Grad	Farbe
1	-	Blau
2	_	Orange
3	-	Orange
4	1	-
5	1	-

Knotenmenge W

Module	Grad
5	0

Knotenmenge U

Module	Grad	Farbe
1	-	Blau
2	_	Orange
3	-	Orange
4	0	-
5	-	Blau

Knotenmenge W

Module	Grad
riodate	0100

Module	Grad	Farbe
1	-	Blau
2	-	Orange
3	-	Orange
4	0	-
5	-	Blau

Knotenmenge W

Neue Farbel

Module	Grad
4	0

Module	Grad	Farbe
1	-	Blau
2	_	Orange
3	-	Orange
4	-	Grün
5	-	Blau

Knotenmenge W

Module	Grad

RECAP: BACKTRACKING ALGORITHMUS

• Idee: Bestimme die Farbe, indem alle Möglichkeiten durchlaufen werden • Baumstruktur stellt gesamten Lösungsraum dar • Wenn Möglichkeit invalide, muss Teilbaum nicht durlaufen werden • Blätter entsprechen entweder nicht korrekter Teillösung oder Gesamtlösung • Optimierungsproblem: Weiterführung nach Finden der Gesamtlösung

LAUFZEITDISKUSSION

- Ab wann lohnt es sich die chromatische Farbe x(G) zu bestimmen?
- Braucht man eine perfekte Lösung oder eine effiziente Lösung?

LAUFZEITDISKUSSION

- Ab wann lohnt es sich die chromatische Farbe x(G) zu bestimmen?
- Braucht man eine perfekte Lösung oder eine effiziente Lösung?
- Laufzeit in unseren Fällen:

Algorithmus	0-Notation	Laufzeit der Testinstanzen	Laufzeit bei 50 Modulen
Sequenzieller Algorithmus	$O(n^*m) = O(n^3)$	ca. 0–2ms	ca. 0–2ms / Färbung: 7
Johnson Algorithmus	$O(n^3)$	ca. 0–2ms	ca. 0–2ms / Färbung: 7
Backtracking Algorithmus	$O(n^n)$	ca. 0–2ms	ca. 5min / Färbung: 5

LAUFZEITDISKUSSION - FAZIT

- Wahl des Algorithmus ist abhängig von Problem:
 - Einmalige oder Mehrfache Berechnungen notwendig?
 - Datengröße? Wie groß ist der Graph?
- Für unseren Fall: Backtracking Algorithmus geeignet
 - Keine großen Daten
 - Einmalige Berechnung

• Das Limit gibt die maximal möglichen Farben an

Knoten	Coloring	Maximum
1	1	1
2	1	3
3	1	3

- lst das eine korrekte Teillösung?
 - Nein: Knoten 1 und 2 haben die gleiche Farbe und sind benachbart
- Farbe für Knoten 2 wird angehoben

Knoten	Coloring	Maximum
1	1	1
2	2	3
3	1	3

- Ist das eine korrekte Teillösung? Ja!
 - Anpassen des Maximums für Knoten 2
 - Formel: Max(coloring[k], maximum[k-1])
- Betrachten des nächsten Knotens

Knoten	Coloring	Maximum
1	1	1
2	2	2
3	1	3

- Ist das eine korrekte Teillösung? Ja!
 - Anpassen des Maximums für Knoten 3
- Anpassen des Limits, weil mögliche Gesamtlösung
 - Limit entspricht Maximum von Knoten 3
- Gibt es eine bessere Lösung? Setze Algorithmus fort...

Knoten	Coloring	Maximum
1	1	1
2	2	2
3	1	2

Limit: 2

- Kann ich die Farbe für Knoten 3 noch verändern?
 - Ja, aktuelle Farbe entspricht nicht dem Maximum
 - Probieren der nächsten Farbe

Knoten	Coloring	Maximum
1	1	1
2	2	2
3	2	2

limit: 2

- lst das eine korrekte Teillösung?
 - Nein: Knoten 2 und 3 haben die gleiche Farbe und sind benachbart
- Ende für Knoten 3 erreicht, betrachte Knoten 2...

Knoten	Coloring	Maximum
1	1	1
2	2	2
3	2	2

- Kann ich die Farbe für Knoten 2 noch verändern?
 - Nein: Maximum wird überschritten
- Ende für Knoten 2 erreicht
- Knoten 1 muss nicht nochmal betrachtet werden

Knoten	Coloring	Maximum
1	1	1
2	2	2
3	2	2

Limit: 2

- Alle Lösungen durchgegangen
- Das ist die korrekte Lösung!

Knoten	Coloring	Maximum
1	1	1
2	2	2
3	1	2

limit: 2

