Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

Übungsaufgabe 0.1 Seien \leq , R, R_1 und R_2 innere Relationen über derselben Basismenge A.

- 1. Sei \leq eine partielle Ordnung. Ist $R = (\leq \cup \leq^{-1})$ eine Äquivalenzrelation?
- 2. Zeige: Seien R_1 und R_2 partielle Ordnungen, dann ist $R_1 \cap R_2$ ebenfalls eine partielle Ordnung.
- 3. Zeige: Seien R_1 und R_2 partielle Ordnungen, dann ist $R_1 \cup R_2$ i.a. keine partielle Ordnung.

 $x \le x$ (Reflexivität)

 $x \le y \land y \le x \implies x = y$ (Antisymmetrie)

 $x \leq y \land y \leq z \ \Rightarrow \ x \leq z$ (Transitivität)

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

Übungsaufgabe 0.2 Gegeben sei das folgende Zeitskalenmodell. Die Ereignisse ϕ_i werden in der Abbildung mit i abgekürzt. Geben Sie $LT(\phi_i)$ für alle ϕ_i an.

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

Übungsaufgabe 0.3 Betrachten Sie das folgende Zeitskalenmodell.

- 1. Geben Sie $VC(\phi_i)$ für alle ϕ_i an.
- 2. Geben sie für jeden der vier Prozesse jeweils ein Ereignis an, so dass die vier Ereignisse paarweise durch die Relation **vor** angeordnet sind.
- 3. Geben Sie für jeden der Prozesse jeweils ein Ereignis an, so dass die Ereignisse paarweise unabhängig sind.

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

Übungsaufgabe 0.4 Zeitskalen.

- 1. Ist die Relation ·vor· i.a. eine strikte Ordnung? Eine totale strikte Ordnung?
- 2. Warum gilt $\phi_1 \operatorname{vor} \phi_2 \Longrightarrow LT(\phi_1) < LT(\phi_2)$?
- 3. Warum gilt aber die Umkehrung $LT(\phi_1) < LT(\phi_2) \Longrightarrow \phi_1 \operatorname{\mathbf{vor}} \phi_2$ nicht?
- 4. Was ändert sich an Teilfragen 2 und 3, wenn wir mit vektoriellen Zeitstempeln arbeiten?

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

Übungsaufgabe 0.5 Eine Firma entwickelt folgenden Workflow zur Beschwerdebearbeitung:

- 0. start
- 1. register (nach 0.)
- 2. send questionaire (nach 1.)
- 3. evaluate (nach 1.)
- 4. process questionaire (nach 2.)
- 5. archive (nach 4. und 11.)
- 6. end (nach 5.)
- 7. processing required (nach 3.)
- 8. process complaint if any (nach 4. und 7. und 10.)
- 9. check processing (nach 8.)
- 10. processing NOK (nach 9.)
- 11. processing OK (nach 9.)

Fragen:

- a) Deuten Sie die einzelnen Aktionen und stellen Sie die direkten Präzedenzen als Graph und als Relation dar!
- b) Ist der transitive Abschluss eine Striktordnung? Falls dies nicht der Fall ist, wie kann man die Relation durch minimale Änderung so modifizieren, dass der transitive Abschluss eine Striktordung wird?

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

Übungsaufgabe 0.6 Gegeben sei das folgende P/T Netz N. Sei $m_1 = 3'a + 2'b + 4'c + d$.

- 1. Gilt $m_1 \xrightarrow{u}$?
- 2. Für welche m' gilt $m_1 \xrightarrow{u} m'$? Gibt es mehrere?
- 3. Für welche $k \in \mathbb{N}$ gilt $(m_1 k'a) \xrightarrow{u} ?$
- 4. Für welche $k \in \mathbb{N}$ gilt $(m_1 k'c) \xrightarrow{u} ?$
- 5. Bestimme die Menge aller Markierungen, für die die Transition u nicht aktiviert ist.

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

Übungsaufgabe 0.7 P/T-Netze

Die Größe eines P/T-Netzes $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$ sei definiert durch $|\mathcal{N}| := |P| + |T| + |F|$ (d.h. die Kantengewichte und die Anfangsmarkierung zählen nicht mit). Geben Sie jeweils ein P/T-Netz minimaler Größe, aber mit $|\mathcal{N}| > 0$ an, bei dem

- a) keine Transition schalten kann,
- b) eine Transition genau einmal schalten kann,
- c) eine Transition beliebig oft schalten kann, die Gesamtmarkenzahl aber beschränkt bleibt.
- d) eine Transition beliebig oft schalten kann, die Gesamtmarkenzahl aber nicht beschränkt bleibt.

Geben Sie den Errreichbarkeitsgraphen an.

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

Übungsaufgabe 0.8 Betrachte das P/T Netz N.

- 2. Sei $m_0 = 2'a + 1'b + 1'c$. Konstruiere den Erreichbarkeitsgraphen RG(N).
- 3. Ist (N, m_0) beschränkt? ...lebendig? ...reversibel?