BÀI 33. ĐẠO HÀM CẤP HAI

- CHƯƠNG 9. ĐẠO HÀM
- | FanPage: Nguyễn Bảo Vương

PHẨN B. BÀI TẬP TỰ LUẬN (PHẨN DẠNG)

Dạng 1. Tính đạo hàm cấp hai

Câu 1. (SGK - KNTT 11 - Tập 2) Tính đạo hàm cấp hai của các hàm số sau:

- a) $y = xe^{2x}$;
- b) $y = \ln(2x+3)$.

Lời giải

a) Ta có:
$$y' = x'e^{2x} + x(e^{2x})' = e^{2x} + xe^{2x}(2x)' = (1+2x)e^{2x}$$
.

$$y'' = (1+2x)'e^{2x} + (1+2x)(e^{2x})' = 2e^{2x} + (1+2x)e^{2x}(2x)' = (4+4x)e^{2x}.$$

Vậy hàm số $y = xe^{2x}$ có đạo hàm cấp hai là $y'' = 4(1+x)e^{2x}$.

b) Ta có:
$$y' = \frac{(2x+3)'}{2x+3} = \frac{2}{2x+3}$$
.

$$y'' = \left(\frac{2}{2x+3}\right)' = -\frac{2}{(2x+3)^2}(2x+3)' = -\frac{4}{(2x+3)^2}.$$
 Vậy hàm số $y = \ln(2x+3)$ có đạo hàm cấp hai là:

$$y'' = -\frac{4}{(2x+3)^2}.$$

Câu 2. (SGK - KNTT 11 - Tập 2) Cho hàm số $f(x) = x^2 e^x$. Tính f''(0).

Lời giải

Ta có:
$$f'(x) = (x^2)' e^x + x^2 (e^x)' = (2x + x^2) e^x$$
 và
$$f''(x) = (2x + x^2)' e^x + (2x + x^2)(e^x)' = (2 + 2x)e^x + (2x + x^2)e^x = (x^2 + 4x + 2)e^x.$$
 Thay $x = 0$ ta được $f''(0) = 2$.

Câu 3. (SGK - KNTT 11 - Tập 2) Tính đạo hàm cấp hai của các hàm số sau:

- a) $y = \ln(x+1)$;
- b) $y = \tan 2x$.

Lời giải

a) Ta có:
$$y' = \frac{(x+1)'}{x+1} = \frac{1}{x+1}$$
 và $y'' = -\frac{(x+1)'}{(x+1)^2} = -\frac{1}{(x+1)^2}$.

b) Ta có:
$$y' = \frac{(2x)'}{\cos^2 2x} = \frac{2}{\cos^2 2x} = 2(1 + \tan^2 2x)$$
 và

$$y'' = 4 \tan 2x (\tan 2x)' = 8 \tan 2x (1 + \tan^2 2x).$$

Câu 4. (SGK - KNTT 11 - Tập 2) Cho hàm số $P(x) = ax^2 + bx + 3$ (a, b là hằng số). Tìm a, b biết P'(1) = 0 và P''(1) = -2.

Lời giải

Ta có: P'(x) = 2ax + b và P''(x) = 2a. Do P'(1) = 0 và P''(1) = -2 nên 2a + b = 0 và 2a = -2. Từ đó, ta tìm được a = -1, b = 2.

Câu 5. (SGK - KNTT 11 - Tập 2) Cho hàm số $f(x) = 2\sin^2\left(x + \frac{\pi}{4}\right)$. Chứng minh rằng $\left|f''(x)\right| \le 4$ với mọi x.

Lời giải

Ta có

$$f'(x) = 4\sin\left(x + \frac{\pi}{4}\right)\left(\sin\left(x + \frac{\pi}{4}\right)\right)' = 4\sin\left(x + \frac{\pi}{4}\right)\cos\left(x + \frac{\pi}{4}\right)\left(x + \frac{\pi}{4}\right)'$$
$$= 2\sin\left(2x + \frac{\pi}{2}\right) = 2\cos 2x \text{ và } f''(x) = -2(2x)'\sin 2x = -4\sin 2x.$$

Từ đó, ta có: $|f''(x)| = 4 |\sin 2x| \le 4$ với mọi x.

Câu 6. Tính đạo hàm cấp hai của các hàm số sau:

a)
$$y = \sqrt{2} \cos \left(4\pi t + \frac{\pi}{3} \right)$$

 $=(x^2-4x+2)e^{-x}$

b)
$$y = x^2 e^{-x}$$

Giải

a) Ta có:

$$y' = -\sqrt{2}\sin\left(4\pi t + \frac{\pi}{3}\right)\left(4\pi t + \frac{\pi}{3}\right)' = -4\pi\sqrt{2}\sin\left(4\pi t + \frac{\pi}{3}\right)$$

$$y'' = -4\pi\sqrt{2}\cos\left(4\pi t + \frac{\pi}{3}\right)\left(4\pi t + \frac{\pi}{3}\right)' = -16\pi^{2}\sqrt{2}\cos\left(4\pi t + \frac{\pi}{3}\right)'$$
b) Ta có:
$$y' = (x^{2})'e^{-x} + x^{2}(e^{-x})' = 2xe^{-x} - x^{2}e^{-x}$$

$$y'' = (2x - x^{2})'e^{-x} + (2x - x^{2})(e^{-x})'$$

$$= (2 - 2x)e^{-x} - (2x - x^{2})e^{-x}$$

Câu 7. Cho hàm số $f(x) = \ln(x + \sqrt{1 + x^2})$. Tính f''(0).

Giải

Ta có:

$$f'(x) = \frac{\left(x + \sqrt{1 + x^2}\right)'}{x + \sqrt{1 + x^2}} = \frac{1 + \frac{\left(1 + x^2\right)'}{2\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} = \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} = \frac{\sqrt{1 + x^2} + x}{\left(x + \sqrt{1 + x^2}\right)\sqrt{1 + x^2}} = \frac{1}{\sqrt{1 + x^2}}$$

$$f''(x) = -\frac{\left(\sqrt{1 + x^2}\right)'}{\left(\sqrt{1 + x^2}\right)^2} = -\frac{1}{1 + x^2} \cdot \frac{\left(1 + x^2\right)'}{2\sqrt{1 + x^2}} = -\frac{x}{\left(1 + x^2\right)\sqrt{1 + x^2}}$$

Thay x = 0 vào biểu thức trên ta được f''(0) = 0.

Câu 8. Tính đạo hàm cấp hai của các hàm số sau:

a)
$$y = \frac{x^4}{4} - 2x^2 + 1$$

b)
$$y = \frac{2x+1}{x-1}$$

Lời giải

a)
$$y'' = 3x^2 - 4$$

b)
$$y'' = \frac{6}{(x-1)^3}$$

Câu 9. Tính đạo hàm cấp hai của các hàm số sau:

a)
$$y = \ln |2x - 1|$$
;

b)
$$y = \tan\left(x + \frac{\pi}{3}\right)$$

Lời giải

a)
$$y'' = -\frac{4}{(2x-1)^2}$$
;

b)
$$y' = \tan\left(x + \frac{\pi}{3}\right)' = \frac{1}{\cos^2\left(x + \frac{\pi}{3}\right)} = 1 + \tan^2\left(x + \frac{\pi}{3}\right)$$

$$y'' = 2\tan\left(x + \frac{\pi}{3}\right) \left(\tan\left(x + \frac{\pi}{3}\right)\right)' = \frac{2\tan\left(x + \frac{\pi}{3}\right)}{\cos^2\left(x + \frac{\pi}{3}\right)}$$

Câu 10. Cho hàm số $f(x) = xe^{x^2} + \ln(x+1)$.

Tính f'(0) và f''(0).

Lời giải

Ta có:

$$f'(x) = (1+2x^2)e^{x^2} + \frac{1}{x+1}$$

$$f''(x) = (6x+4x^3)e^{x^2} - \frac{1}{(x+1)^2}$$

Thay x = 0 ta được f'(0) = 2 và f''(0) = -1.

Câu 11. Cho $f(x) = (x^2 + a)^2 + b(a, b \text{ là tham số})$. Biết f(0) = 2 và f''(1) = 8, tìm a và b.

Lời giải

Tính đạo hàm cấp hai ta được $f''(x) = 12x^2 + 4a$. Từ đó có f''(1) = 12 + 4a = 8 nên a = -1. Mặt khác, $f(0) = a^2 + b = 2$. Thay a = -1 ta được b = 1. Vậy a = -1, b = 1 là các giá trị cần tìm.

Câu 12. Tính đạo hàm cấp hai của các hàm số sau:

a)
$$y = 3x^3 - x^2 + 3x - 1$$
;

b)
$$y = \cos^2 x$$
.

Giải

a)
$$y' = 3.3x^2 - 2x + 3 = 9x^2 - 2x + 3$$
, $y'' = 9.2x - 2 = 18x - 2$.

b) Đặt $u = \cos x$ thì $y = u^2$.

Ta có $u'_x = -\sin x$ và $y'_u = 2u$.

Suy ra $y'_x = y'_u \cdot u'_x = 2u \cdot (-\sin x) = -2\cos x \cdot \sin x = -\sin 2x$. $y'' = -(2x)' \cdot \cos 2x = -2\cos 2x$.

Câu 13. Tính đạo hàm cấp hai của các hàm số sau:

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

a) $y = x \sin 2x$;

b)
$$y = \cos^2 x$$
;

c)
$$y = x^4 - 3x^3 + x^2 - 1$$
.

Lời giải

a) $y'' = 4\cos 2x - 4x\sin 2x$;

b)
$$y'' = -2\cos 2x$$
;

c)
$$y'' = 12x^2 - 18x + 2$$
.

Câu 14. Cho hàm số $f(x) = x^2 + 2x - 1$.

a) Tìm đạo hàm cấp hai của hàm số.

b) Tính đạo hàm cấp hai của hàm số tại điểm $x_0 = 0, x_0 = 1$.

Giải

a) Ta có:
$$f'(x) = 2x + 2$$
 và $f''(x) = (2x + 2)' = 2$.

b) Vì
$$f''(x) = 2$$
 nên $f''(0) = f''(1) = 2$.

Câu 15. Cho hàm số $g(x) = \cos x$.

a) Tìm đạo hàm cấp hai của hàm số.

b) Tính đạo hàm cấp hai của hàm số tại $x_0 = \frac{\pi}{6}$.

Giải

a) Ta có:
$$g'(x) = -\sin x, g''(x) = (-\sin x)' = -\cos x$$
.

b) Vì
$$g''(x) = -\cos x$$
 nên $g''(\frac{\pi}{6}) = -\cos \frac{\pi}{6} = -\frac{\sqrt{3}}{2}$.

Câu 16. Cho hàm số $h(x) = \ln x, x > 0$.

a) Tìm đạo hàm cấp hai của hàm số.

b) Tính đạo hàm cấp hai của hàm số tại $x_0 = \sqrt{2}$.

Giải

a) Ta có:
$$h'(x) = \frac{1}{x}, h''(x) = \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$$

b) Vì
$$h''(x) = -\frac{1}{x^2}$$
 nên $h''(\sqrt{2}) = -\frac{1}{(\sqrt{2})^2} = -\frac{1}{2}$.

Câu 17. Cho hàm số $k(x) = \sin x \cdot \cos x$.

a) Tìm đạo hàm cấp hai của hàm số.

b) Tính đạo hàm cấp hai của hàm số tại $x_0 = \frac{\pi}{3}$.

Giải

a) Ta có:
$$k(x) = \frac{1}{2}\sin 2x$$
, suy ra $k'(x) = \cos 2x$, $k''(x) = (\cos 2x)' = -2\sin 2x$.

b) Vì
$$k''(x) = -2\sin 2x$$
 nên $k''(\frac{\pi}{3}) = -2\sin(2\cdot\frac{\pi}{3}) = -\sqrt{3}$.

Câu 18. Cho hàm số $f(x) = x^2 - 4x$. Giải phương trình f'(x) = f''(x).

Giải

Ta có:
$$f'(x) = 2x - 4$$
, $f''(x) = 2$.

Khi đó, ta có phương trình

$$f'(x) = f''(x) \Leftrightarrow 2x - 4 = 2 \Leftrightarrow x = 3.$$

Câu 19. Tìm đạo hàm cấp hai của mỗi hàm số sau:

a)
$$f(x) = \frac{1}{3x+5}$$

b)
$$g(x) = 2^{x+3x^2}$$

Lời giải

a) Ta có:
$$f'(x) = -\frac{(3+5)^{'}}{(3x+5)^{2}} = \frac{-3}{(3x+5)^{2}}$$
,

$$f''(x) = \frac{(-3)'(3x+5)^2 - \left[(3x+5)^2\right]'(-3)}{(3x+5)^4} = \frac{18}{(3x+5)^3}.$$

b) Ta có:
$$g'(x) = (x+3x^2)' \ln 2 \cdot 2^{x+3x^2} = (6x+1) \ln 2 \cdot 2^{x+3x^2}$$
,

$$g''(x) = \ln 2 \left[(6x+1)' \cdot 2^{x+3x^2} + (6x+1) \cdot \left(2^{x+3x^2} \right)' \right]$$
$$= 6 \ln 2 \cdot 2^{x+3x^2} + \left[(6x+1) \ln 2 \right]^2 \cdot 2^{x+3x^2}.$$

Câu 20. Cho hàm số $f(x) = \sin x \cdot \cos x \cdot \cos 2x$.

- a) Tìm đạo hàm cấp hai của hàm số.
- b) Tính đạo hàm cấp hai của hàm số tại $x_0 = \frac{\pi}{6}$.

Lời giải

a) Ta có:
$$f(x) = \sin x \cdot \cos x \cdot \cos 2x = \frac{1}{2} \sin 2x \cdot \cos 2x = \frac{1}{4} \sin 4x$$
.

Khi đó,
$$f'(x) = \frac{1}{4}(4x)'\cos 4x = \cos 4x$$
, $f''(x) = (4x)'(-\sin 4x) = -4\sin 4x$.

b) Vì
$$f''(x) = -4\sin 4x$$
 nên $f''(\frac{\pi}{6}) = -4\sin(4\cdot\frac{\pi}{6}) = -2\sqrt{3}$.

Câu 21. Cho hàm số $f(x) = x^3 + 4x^2 + 5$. Giải bất phương trình $f'(x) - f''(x) \ge 0$.

Lời giải

Ta có:
$$f'(x) = 3x^2 + 8x$$
, $f''(x) = 6x + 8$.

Khi đó,
$$f'(x) - f''(x) = 3x^2 + 8x - 6x - 8 \ge 0 \Leftrightarrow 3x^2 + 2x - 8 \ge 0 \Leftrightarrow \begin{bmatrix} x \le -2 \\ x \ge \frac{4}{3} \end{bmatrix}$$

Dạng 2. Ứng dụng

Câu 22. Chuyển động của một vật gắn trên con lắc lò xo (khi bỏ qua ma sát và sức cản không khí) được cho bởi phương trình sau: $x(t) = 4\cos\left(2\pi t + \frac{\pi}{3}\right)$, ở đó x tính bằng centimét và thời gian t tính bằng giây. Tìm gia tốc tức thời của vật tại thời điểm t = 5 giây (làm tròn kết quả đến hàng đơn vị).

Giải

Vận tốc của vật tại thời điểm t là $v(t) = x'(t) = -\left(2\pi t + \frac{\pi}{3}\right) \cdot 4\sin\left(2\pi t + \frac{\pi}{3}\right) = -8\pi\sin\left(2\pi t + \frac{\pi}{3}\right)$.

Gia tốc tức thời của vật tại thời điểm t

là
$$a(t) = v'(t) = -8\pi \left(2\pi t + \frac{\pi}{3}\right)' \cdot \cos\left(2\pi t + \frac{\pi}{3}\right) = -16\pi^2 \cos\left(2\pi t + \frac{\pi}{3}\right).$$

Tại thời điểm t = 5 giây, gia tốc của vật là

$$a(5) = -16\pi^2 \cos\left(10\pi + \frac{\pi}{3}\right) = -16\pi^2 \cos\frac{\pi}{3} \approx -79\left(\frac{cm}{s^2}\right).$$

Câu 23. (SGK - KNTT 11 - Tập 2) Một vật chuyển động thẳng có phương trình $s = 2t^2 + \frac{1}{2}t^4$ (s tính bằng mét, t tính bằng giây). Tìm gia tốc của vật tại thời điểm t = 4 giây.

Lời giải

Ta có: $s'(t) = 4t + 2t^3$. Gia tốc của vật tại thời điểm t giây là: $a(t) = s''(t) = 4 + 6t^2$. Tại thời điểm t = 4 giây, gia tốc của vật là: $a(4) = 4 + 6 \cdot 4^2 = 100 \left(\frac{m}{s^2} \right)$.

Câu 24. (SGK - KNTT 11 - Tập 2) Phương trình chuyển động của một hạt được cho bởi $s(t) = 10 + 0.5 \sin\left(2\pi t + \frac{\pi}{5}\right)$, trong đó s tính bằng centimét và t tính bằng giây. Tính gia tốc của hạt tại thời điểm t = 5 giây (làm tròn kết quả đến chữ số thập phân thứ nhất).

Lời giải

Ta có: $s'(t) = 0.5 \left(2\pi t + \frac{\pi}{5}\right)' \cos\left(2\pi t + \frac{\pi}{5}\right) = \pi \cos\left(2\pi t + \frac{\pi}{5}\right)$. Gia tốc của hạt tại thời điểm t giây là: $a(t) = s''(t) = -\pi \left(2\pi t + \frac{\pi}{5}\right)' \sin\left(2\pi t + \frac{\pi}{5}\right) = -2\pi^2 \sin\left(2\pi t + \frac{\pi}{5}\right).$

Tại thời điểm t = 5 giây, gia tốc của hạt là: $a(5) = -2\pi^2 \sin\left(10\pi + \frac{\pi}{5}\right) = -11, 6\left(\frac{cm}{s^2}\right)$.

Câu 25. Phương trình chuyển động của một hạt được cho bởi công thức $s(t) = 15 + \sqrt{2} \sin\left(4\pi t + \frac{\pi}{6}\right)$, trong đó s tính bằng centimét và t tính bằng giây. Tính gia tốc của hạt tại thời điểm t = 3 giây (làm tròn kết quả đến chữ số thập phân thứ nhất).

Lời giải

Gia tốc của hạt tại thời điểm t là: $a(t) = s''(t) = -16\pi^2 \sqrt{2} \sin\left(4\pi t + \frac{\pi}{6}\right)$. Tại thời điểm t = 3 giây, gia tốc của hat là:

$$a = -16\pi^2 \sqrt{2} \sin\left(12\pi + \frac{\pi}{6}\right) \approx -111,7 \, m \, / \, s^2$$

Câu 26. Một chuyển động thẳng xác định bởi phương trình $s(t) = -2t^2 + 15t + 3$, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc và gia tốc của chuyển động tại thời điểm t = 2.

Giải

Ta có s'(t) = -2.2t + 15 = -4t + 15, suy ra s''(t) = -4.

Vận tốc và gia tốc của chuyển động tại thời điểm t = 2 lần lượt là $s'(2) = 7 \, m \, / \, s$ và $s''(2t) = -4 \, m \, / \, s^2$.

Câu 27. Một chất điểm chuyển động thẳng có phương trình $s = 100 + 2t - t^2$ trong đó thời gian được tính bằng giây và s được tính bằng mét.

- a) Tại thời điểm nào chất điểm có vận tốc bằng 0?
- b) Tìm vận tốc và gia tốc của chất điểm tại thời điểm t = 3s.

Lời giải

a)
$$s'(t) = 2 - 2t$$

$$s'(t) = 0 \Rightarrow 2 - 2t = 0 \Rightarrow t = 1$$
.

Vận tốc chất điểm bằng 0 khi t = 1s.

b) Khi t = 3s.

$$s'(3) = 2 - 2.3 = -4(m/s);$$

$$s''(3) = -2 \Rightarrow a(3) = -2 m / s^2$$
.

Vậy khi t = 3s thì vận tốc của vật là -4m/s. Gia tốc của vật là $-2m/s^2$.

Câu 28. Một chuyển động thẳng xác định bởi phương trình $s(t) = -2t^3 + 75t + 3$, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc và gia tốc của chuyển động tại thời điểm t=3.

Lời giải

Ta có $s'(t) = -6t^2 + 75$ suy ra s''(t) = -12t.

Vận tốc và gia tốc của chuyển động tại thời điểm t = 3 là s'(3) = 21 và s''(3) = -36.

Câu 29. Một chất điểm chuyển động theo phương trình $s(t) = \frac{1}{3}t^3 - 3t^2 + 5t + 4$, trong đó t > 0, t tính bằng giây, s(t) tính bằng mét. Tính gia tốc tức thời của chất điểm tại thời điểm t = 3(s).

Giải

Ta có:
$$s'(t) = t^2 - 6t + 5$$
.

Gia tốc tức thời của chất điểm tại thời điểm t(s) là:

s''(t) = 2t - 6. Vậy gia tốc tức thời của chất điểm tại thời điểm t = 3(s) là:

$$s''(3) = 2 \cdot 3 - 6 = 0 (m/s^2).$$

Câu 30. Một chất điểm có phương trình chuyển động $s(t) = 6\sin\left(3t + \frac{\pi}{4}\right)$, trong đó t > 0, t tính bằng

giây, s(t) tính bằng centimét. Tính gia tốc tức thời của chất điểm tại thời điểm $t = \frac{\pi}{6}(s)$.

Giải

Ta có:
$$s'(t) = 18\cos\left(3t + \frac{\pi}{4}\right)$$
.

Gia tốc tức thời của chất điểm tại thời điểm t(s) là: $s''(t) = -54 \sin\left(3t + \frac{\pi}{4}\right)$.

Vậy gia tốc tức thời của chất điểm tại thời điểm $t = \frac{\pi}{6}(s)$ là:

$$s''\left(\frac{\pi}{6}\right) = -54\sin\left(3\cdot\frac{\pi}{6} + \frac{\pi}{4}\right) = -27\sqrt{2}\left(cm/s^2\right).$$

Câu 31. Một chất điểm chuyển động theo phương trình $s(t) = \frac{1}{3}t^3 - 3t^2 + 8t + 2$, trong đó t > 0, t tính bằng giây, s(t) tính bằng mét. Tính gia tốc tức thời của chất điểm: a) Tai thời điểm t = 5(s). b) Tại thời điểm mà vận tốc tức thời của chất điểm bằng -1m/s.

Lời giải

Ta có: $s'(t) = t^2 - 6t + 8$, s''(t) = 2t - 6.

a) Gia tốc tức thời của chất điểm tại thời điểm t = 5 (s) là: $s''(5) = 4(m/s^2)$.

b) Theo giả thiết, $s'(t) = t^2 - 6t + 8 = -1 \Leftrightarrow t = 3$ (s).

Gia tốc tức thời của chất điểm tại thời điểm t = 3 (s) là: $s''(3) = 0 (m/s^2)$.

Câu 32. Một chất điểm có phương trình chuyển động $s(t) = 3\sin\left(t + \frac{\pi}{3}\right)$, trong đó t > 0, t tính bằng giây, s(t) tính bằng centimét. Tính gia tốc tức thời của chất điểm tại thời điểm $t = \frac{\pi}{2}(s)$.

Lời giải

Ta có:
$$s''(t) = -3\sin\left(t + \frac{\pi}{3}\right)$$
.

Gia tốc tức thời của chất điểm tại thời điểm $t = \frac{\pi}{2}$ (s) là:

$$s''\left(\frac{\pi}{2}\right) = -3\sin\left(\frac{\pi}{2} + \frac{\pi}{3}\right) = \frac{-3}{2}\left(cm/s^2\right).$$

Augustin Bio Viume