Learning Multi-Step Reasoning by Solving Arithmetic Task

ACL 2023

Tianduo Wang, Wei Lu

StatNLP Research Group
Singapore University of Technology and Design

Math Word Problem Solving

- Answer a mathematical query according to the text description
- Generate equations to obtain final answer

All Problems
Require Equation
Ma

Math Word Problem Solving

Math23K (Wang et al., 2017)

Problem: 1 day, 1 girl was organizing her book case making sure each of the shelves had exactly 9 books on it. She has 2 types of books - mystery books and picture books. If she had 3 shelves of mystery books and 5 shelves of picture books, how many books did she have in total?

Equation & Solution

$$(1 \times 1) + (9 \times 1) = x$$

$$x = 10$$

Operators

Problem Type:

Linear Algebra

Some Problems

Math Quesition Answering

DROP (Dheeru Dua et al, 2019)

Passage (some parts shortened)

In 1517, the seventeen-year-old King sailed to Castile. There, his Flemish court In May 1518, Charles traveled to Barcelona in Aragon.

Question

Where did Charles travel to first, Castile or Barcelona?

Reasoning Solution 1517: Castile Castile

1517 > 1518

1518: Charles

Yan Wang et al. Deep Neural Solver for Math Word Problems. EMNLP. 2017.

Dheeru Dua et al. Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. NAACL. 2019.

Mathematical Reasoning

- Theorem Proving
- Geometry Problem Solving
- Math Question Answering
- Other Quantitative Problems
 - Diagram, Finance, Science, Programming

Mathematical Reasoning

- Chain-of-thought prompting (Wei et al., 2022)
 - Pros: Elicit LLM's ability to decompose a complex problem into several intermediate steps
 - Cons: Such ability only emerges from sufficiently large models (100B parameters)
- To address the issue: Our proposed work
 - Examine how to incorporate moderate-sized LMs e.g., RoBERTa (Liu et al., 2019), with such multi-step reasoning ability via continual pre-training to improve the performance on math problems

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Figure: Chain-of-thought reasoning processes

Mathematical Reasoning

- Chain-of-thought prompting (Wei et al., 2022)
 - Pros: Elicit LLM's ability to decompose a complex problem into several intermediate steps
 - Cons: Such ability only emerges from sufficiently large models (100B parameters)
- To address the issue: Our proposed work
 - Examine how to incorporate moderate-sized LMs e.g., RoBERTa (Liu et al., 2019), with such multi-step reasoning ability via continual pre-training to improve the performance on math problems

Medium-sized	LMs
--------------	-----

Model	Size
BERTBASE	110M
BERT _{LARGE}	336M
ROBERT _{BASE}	125M
$ROBERT_{LARGE}$	355M

Correctly understanding numbers

- Medium-sized LMs have a deficiency in numerical comprehension
- Previous work
 - Masking numbers with special tokens, and generating symbolic expressions with a structured neural decoder
 - Pre-trains LMs on synthetic numerical tasks, which requires models to learn how to perform computation involving numbers

Critical limitations

- For symbolic methods, they neglect the information carried by the numbers
- As for continual pre-training methods, LMs' arithmetic skills are not reliable Such skills are highly influenced by the training data and hard for extrapolation

```
Question: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can have 3 tennis balls. How many tennis balls does he have now?
```

```
Math expression: 5 + 2 \times 3 Ans: 11

Symbolic expression: <Num0> + <Num1> × <Num2>
```

Chain-of-thought (Wei et al., 2022):

Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Proposed methods

- Training Process
 - First pre-train moderate-sized LMs on a synthetic dataset called MSAT (Multi-step Arithmetic Tasks)
 - Then fine-tune on downstream task
- To make sure LMs capture the information carried by the numbers
 - Keep the numbers in the questions instead of masking them during both pre-training and finetuning
- Instead of making LMs conduct computation internally
 - MSAT encourages LMs to generate a series of intermediate steps leading to the answer

Digit tokenization for numbers

- Sub-word tokenization methods, e.g., Byte Pair Encoding (BPE)
 - BPE-based tokenizers split text based on the token frequency in the training corpus, which can be counter-intuitive when dealing with numbers
 - Such inconsistent tokenization strategy for numbers undermines LM's numerical understanding ability
- To address the issue
 - Tokenize numbers digit-by-digit for both pre-training and fine-tuning

Multi-step Arithmetic Tasks (MSAT)

- Seq2Seq task
 - Input: a question context, equation, and question variable
 - **Equation** is a sequence of symbols and operators $(+, -, \times, \div, =)$ that builds equality relationship between symbols
 - Only one of the symbols is set as the question variable,
 while other symbols will be listed in question context with their numerical values
 - Output: a multi-step reasoning chain leading to the answer
 - Each step consists of two sub-steps: variable assignment and calculation
 - Variable assignment: Numbers appear in the input sequence are assigned to the variable names that are exclusive for decoder
 - Calculation: a new variable is generated from the calculation of the existing variables

```
Question: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can have 3 tennis balls. How many tennis balls does he have now?
```

```
Math expression: 5 + 2 \times 3 Ans: 11

Symbolic expression: <Num0> + <Num1> × <Num2>
```

```
Code-style multi-step expression (ours):

N0 = 2. N1 = 3. N2 = N1 * N0. (step 1)

N3 = 5. Ans = N2 + N3. (step 2)
```

Construction of MSAT (Multi-step Arithmetic Tasks)

- Input sequence construction
 - Each equation template contains no more than **3 binary operators** (+, -, ×, ÷)
 - Instantiate an equation from an equation template
 - An equation template "<Num0> + <Num1> = <Num2>"
 - Assign each variable a value that makes the equality hold and a variable name selected from the capitalized letters
 - The numbers in the questions are sampled from 0 to 10,000
 - Randomly pick a variable as the question variable
 - The resulting input arithmetic question "A=1. C=3. A+B=C. B?"

MSAT Example

Item	Text
Question	B = number0 . B + number1 = N . N ?
Equation	+ number0 number1
Numbers	343 32
Answer	375

Decompose Question Context

$$\circ$$
 B = number0

$$\circ$$
 B + number 1 = N

• N?

Construction of MSAT (Multi-step Arithmetic Tasks)

- Output sequence construction
 - Given an equation and a question variable, the output is first constructed as a math expression leading to the value of the question variable
 - Equation can be represented as a binary tree
 - The variables are the terminal nodes and operators are the non-terminal nodes

Tree inversion algorithm

11

Pre-training via adapter-tuning

- Directly training on synthetic data harms performance (Geva et al., 2020).
 - Synthetic data are largely different from the natural language corpus
- Adopt a two-stage tuning strategy (Wang and Lu, 2022):
 - 1) Perform adapter-tuning (Houlsby et al., 2019) on MSAT
 - 2) Jointly fine-tune adapter and LM backbone on downstream tasks
 - Inject reasoning skills into model
 - It mitigates catastrophic forgetting because LM's original parameters are largely preserved during adapter-tuning

Pre-training via adapter-tuning

- Consider two backbone models to verify the effectiveness of our method
 - Select models for adopting RoBERTa_{base} to encode the input questions
 - A sequence-to-sequence (RoBERTaGEN) model (Lan et al., 2021)
 - Directed acyclic graph (DAG) structured model (Jie et al., 2022)

 Two-stage tuning strategy: Adapter-tuning (Houlsby et al., 2019)

Vanilla fine-tuning

 A modification is made to the top layer of the network

Tuning with adapter modules

- The weights of the original network are untouched whilst the new adapter layers are initialized at random
- Train new layer normalization parameters per task

Result on GLUE (a collection of 9 NLP tasks)

	Total num params	Trained params / task	Total
BERT _{LARGE}	9.0×	100%	80.4
Adapters (8-256)	1.3×	3.6%	80.0
Adapters (64)	1.2×	2.1%	79.6

Neil Houlsby et al. Parameter-efficient transfer learning for nlp. ICML. 2019.

Pre-training via adapter-tuning

- Consider two backbone models to verify the effectiveness of our method
 - Select models for adopting $RoBERTa_{base}$ to encode the input questions
 - A sequence-to-sequence ($RoBERTa_{GEN}$) model (Lan et al., 2021)
 - Directed acyclic graph (DAG) structured model (Jie et al., 2022)

Two-stage tuning strategy: Jointly fine-tune adapter and LM backbone on downstream tasks

- Output sequence construction
 - Given an equation and a question variable, the output is first constructed as a math expression leading to the value of the question variable
 - Equation can be represented as a binary tree
 - The variables are the terminal nodes and operators are the non-terminal nodes

Tree inversion algorithm

- Backbone: Sequence-to-sequence model (RoBERTaGEN))
 - Run RoBERTaGEN in MWPToolkit (Lan et al., 2021)

Backbone: Directed acyclic graph structured model (Jie et al., 2022)

- Observation: MWP solving can be viewed as a complex relation extraction problem
 - The task of identifying the complex relations among the quantities in the problem text
 - Each primitive arithmetic operation ("+", " ", ...) defines a different type of relation

Deductive Reasoner

- The procedure to obtain the expression " $q_1 \div q_2 \times q_3$ "
 - Encoding: e.g., 2,088 -> a quantity token " < quant > "
 - Adopt a pre-trained language model ROBERTa
 - Obtain the representation of quantity pairs (q_i,q_j) at step t
 - Assign a score for the best expression
 - Decide termination step of the procedure

Benchmark

MAWPS

ASDiv-A

- SVAMP
 - Variations(changing questions, adding irrelevant information, etc) from ASDiv-A
- SVAMP (hard)
 - Evaluate models' extrapolation ability on the out-of-distribution numbers
 - Replace the original numbers in SVAMP

Existing dataset statistics

Dataset	# Data	Avg. input length	Avg. output reasoning steps
MAWPS	1,987	30.3	1.4
ASDiv-A	1,217	32.3	1.2
SVAMP	1,000	34.7	1.2

Baselines

- Seq2Seq model(139.71M)
 - ROBERTaGEN(w/ or w/o MSAT) + Transformer decoder
- DAG structured model(142.40M)
 - DeductReasoner(w/ or w/o MSAT) + DAG decoder
- LLMs
 - PaLM(540B), Codex(175B), Chain-Of-Thought prompting (COT)

Tokenization

- Previous work: Symbolic mask tokens
 - Models(Seq2Seq model, DAG structured model) replace numbers with symbolic mask tokens
- Ablation study on our work: Digit tokenization
 - Both models uses actual numbers with digit tokenization

Baselines

- Digit tokenization baselines perform worse than symbolic mask counterparts
- The models trained with MSAT surpass both baselines
- SVAMP (hard): Our model is more robust in handling out-of-distribution numbers

Model	MAWPS		ASDiv-A		SVAMP		SVAMP (hard)	
	Acc.	Δ	Acc.	Δ	Acc.	Δ	Acc.	Δ
Large language models w/ Chain-of-Thought prompting	(PaLM 5 93.3	40B)	(code-d 80.4	lavici-002)	(PaLM 5 79.0	40B)	-	
Seq2Seq models ROBERTAGEN (Lan et al., 2021) (139. w/ symbolic masks w/ digit tokenization MsAT-ROBERTAGEN (OURS)	71 M) 88.4 84.1 91.6	(-4.3) (+3.2)	72.1 71.9 81.8	(-0.2) (+9.7)	30.3 27.6 39.8	(-2.7) (+9.5)	30.3 [♥] 19.6 36.2	(-10.7) (+5.9)
DAG structured models DEDUCTREASONER (Jie et al., 2022) (w/ symbolic masks w/ digit tokenization MSAT-DEDUCTREASONER (OURS)	142.40M) 92.0 91.6 94.3	(-0.4) (+2.3)	85.0 84.1 87.5	(-0.9) (+2.5)	45.0 44.4 48.9	(-0.6) (+3.9)	45.0 [♥] 42.8 48.2	(-2.2) (+3.2)

Pre-training analysis

- Learn multi-step reasoning gradually from the synthetic task MSAT
- Pre-training task MSAT is transferred to the downstream MWP solving tasks

Result with expect to the pre-training steps

Reasoning format of MSAT

- Substitute MSAT for step-by-step output sequences with only numerical answers
- · Confirm the necessity of producing intermediate reasoning steps during pre-training

Comparison between different output expression formats

Difficulty level of MSAT

- The advantage of enabling highly customizable difficulty levels for the training data
- The difficulty level of a reasoning task is not solely determined by the number of reasoning steps

Performance with respect to pre-training difficulty

Perform adapter-tuning on MSAT

- Adapter-tuning outperforms fine-tuning on all downstream MWP datasets
- Demonstrate the benefits of performing adapter-tuning on MSAT

Result according to the pre-training steps

Part 5. Conclusion

Synthetic pre-training task, MSAT

- Incorporate LMs with multi-step reasoning skills that improve performance on MWP tasks
- Encourage LMs to generate intermediate reasoning steps instead of predicting final numerical answers directly
- The proposed method is effective in improving the moderate-sized LM's performance on MWP solving tasks

Part 5. Conclusion

Limited number of operators considered

- Previous methods
 - Only consider binary operators (+, -, ×, and ÷)
- Adopt a code-style output format
 - Introduce other non-binary operators supported by the Python interpreter e.g., sum() and max()
- Obtain labeled data with such operators may require laborious efforts
- It is an interesting research question on exploring how to teach models to solve practical questions
 - e.g., math word problems, by writing code in a low-resource setting (Jie and Lu, 2023)