17.05.2021

Jan Jakubiak

289834

EOPSY

Lab 4 – Memory Management

Memory management, which is the focal point of this laboratory, is a process done by the operating system. It dynamically allocates parts of its memory to programs and processes, freeing it and allocating to different processes when it's no longer needed.

One of the methods used in memory management, and the one we will be trying out in this laboratory is called paging. In this method the computer uses the secondary, hard-drive memory to store data in regularly sized parts called pages. Paging allows programs to use more memory than physically available in the computer, and as such is used regularly.

Task 4 starts with us having to manually map the 8 first pages of virtual memory to any 8 pages of physical memory we wanted. I mapped them in a following way:

```
memory.conf
  Open ▼
                                                                              Save
             virt page # physical page # R (read from) M (modified) inMemTime (ns)
 1 // memset
  lastTouchTime (ns)
 2 memset 0 4 0 0 0 0
 3 memset 1 5 0 0 0 0
 4 memset 2 6 0 0 0 0
 5 memset 3 7 0 0 0 0
 6 memset 4 0 0 0 0 0
 7 memset 5 1 0 0 0 0
 8 memset 6 2 0 0 0 0
9 memset 7 3 0 0 0 0
10
11
12 // enable_logging 'true' or 'false'
13 // When true specify a log_file or leave blank for stdout
14 enable_logging true
15
16 // log_file <FILENAME>
17 // Where <FILENAME> is the name of the file you want output
18 // to be print to.
19 log_file tracefile
20
21 // page size, defaults to 2^14 and cannot be greater than 2^26
22 // pagesize <single page size (base 10)> or <'power' num (base 2)>
23 pagesize 16384
25 // addressradix sets the radix in which numerical values are displayed
26 // 2 is the default value
27 // addressradix <radix>
28 addressradix 10
29
30 // numpages sets the number of pages (physical and virtual)
31 // 64 is the default value
32 // numpages must be at least 2 and no more than 64
33 // numpages <num>
34 numpages 64
```

We then had to configure the commands file to perform the "read" operation from one address for every virtual page. Having set the pagesize to 16384 addresses, the addresses used were equal to 16384 * i, where i is the page number – from 0 to 63. Attempting to read from an address from every virtual page allows us to check if all the pages are properly mapped and usable.

4 DEAD	0		
1 READ	0	33 READ	524288
2 READ	16384	34 READ	540672
3 READ	32768	35 READ	557056
4 READ	49152	36 READ	573440
5 READ	65536	37 READ	589824
6 READ	81920	38 READ	606208
7 READ	98304	39 READ	622592
8 READ	114688	40 READ	638976
9 READ	131072	41 READ	655360
10 READ	147456	42 READ	671744
11 READ	163840	43 READ	688128
12 READ	180224	44 READ	704512
13 READ	196608	45 READ	720896
14 READ	212992	46 READ	737280
15 READ	229376	47 READ	753664
16 READ	245760	48 READ	770048
17 READ	262144	49 READ	786432
18 READ	278528	50 READ	802816
19 READ	294912	51 READ	819200
20 READ	311296	52 READ	835584
21 READ	327680	53 READ	851968
22 READ	344064	54 READ	868352
23 READ	360448	55 READ	884736
24 READ	376832	56 READ	901120
25 READ	393216	57 READ	917504
26 READ	409600	58 READ	933888
27 READ	425984	59 READ	950272
28 READ	442368	60 READ	966656
29 READ	458752	61 READ	983040
30 READ	475136	62 READ	999424
31 READ	491520	63 READ	1015808
32 READ	507904	64 READ	1032192

This was the simulation program before running the simulation. We can see the first 8 pages mapped in a way we specified in the memory.conf file, and the next pages up to 32nd are mapped by default – each to its corresponding virtual page.

Since the virtual pages from 32 upwards are not mapped to any physical pages, we can expect a page fault when trying to access them. A page fault is an error occurred when trying to reference a page that is not mapped – exactly what we will be attempting when running the simulation.

After running the simulation and going through all 64 pages, we can see the following output from the program:

	- h		-1	ties out tool
virtual	physical	virtual	physical	time: 640 (ns)
page 0		page 32	page 4	instanction DEID
page 1		page 33 l	page 5	instruction: READ
page 2		page 34	page 6	address: 1032192
page 3		page 35	page 7	614 NEO
_page_4_		page 36 l	page 0	page fault: YES
page 5		page 37	page 1	
page 6		page 38	page 2	virtual page: 42
page 7		page 39	page 3	physical page: 10
page 8		page 40	page 8	R: 0
page 9		page 41	page 9	M: 0
page 10		page 42	page 10	inMemTime: 220
page 11		page 43	page 11	lastTouchTime: 220
page 12		page 44	page 12	low: 688128
page 13		page 45	page 13	high: 704511
page 14		page 46	page 14	
page 15		page 47	page 15	
page 16		page 48	page 16	
page 17		page 49	page 17	
page 18		page 50	page 18	
page 19		page 51	page 19	
page 20		page 52	page 20	
page 21		page 53	page 21	
page 22 l		page 54	page 22	
page 23 I		page 55	page 23	
page 24		page 56	page 24	
page 25		page 57	page 25	
page 26		page 58	page 26	
_page_27_		page 59	page 27	
page 28 I		page 60 l	page 28	
page 29 I		page 61	page 29	
page 30 l		page 62 l	page 30	
page 31		page 63 l	page 31	

We can see that the pages from 0 to 31 are now not mapped, while all the higher pages are. That's the result of the page fault, which was met here – as can be seen on the screenshot above (page fault: YES). When the page fault occurs, the page replacement algorithm decides which physical page to map the troublesome virtual page to. Output from the tracefile confirms these observations, and shows that trying to access the pages from 32 upwards caused a page fault in each case:

```
1 READ 0 ... okay
 2 READ 16384 ... okay
 3 READ 32768 ... okay
 4 READ 49152 ... okay
 5 READ 65536 ... okay
 6 READ 81920 ... okay
 7 READ 98304 ... okay
 8 READ 114688 ... okay
9 READ 131072 ... okay
10 READ 147456 ... okav
11 READ 163840 ... okav
12 READ 180224 ... okay
13 READ 196608 ... okay
14 READ 212992 ... okay
15 READ 229376 ... okay
16 READ 245760 ... okay
17 READ 262144 ... okay
18 READ 278528 ... okay
19 READ 294912 ... okay
20 READ 311296 ... okay
21 READ 327680 ... okay
22 READ 344064 ... okay
23 READ 360448 ... okay
24 READ 376832 ... okay
25 READ 393216 ... okay
26 READ 409600 ... okay
27 READ 425984 ... okay
28 READ 442368 ... okay
29 READ 458752 ... okay
30 READ 475136 ... okay
31 READ 491520 ... okay
32 READ 507904 ... okay
33 READ 524288 ... page fault
34 READ 540672 ... page fault
35 READ 557056 ... page fault
36 READ 573440 ... page fault
37 READ 589824 ... page fault
38 READ 606208 ... page fault
39 READ 622592 ... page fault
40 READ 638976 ... page fault
41 READ 655360 ... page fault
42 READ 671744 ... page fault
43 READ 688128 ... page fault
44 READ 704512 ... page fault
45 READ 720896 ... page fault
46 READ 737280 ... page fault
47 READ 753664 ... page fault
48 READ 770048 ... page fault
49 READ 786432 ... page fault
50 READ 802816 ... page fault
51 READ 819200 ... page fault
52 READ 835584 ... page fault
53 READ 851968 ... page fault
54 READ 868352 ... page fault
55 READ 884736 ... page fault
56 READ 901120 ... page fault
57 READ 917504 ... page fault
58 READ 933888 ... page fault
59 READ 950272 ... page fault
60 READ 966656 ... page fault
61 READ 983040 ... page fault
62 READ 999424 ... page fault
63 READ 1015808 ... page fault
64 READ 1032192 ... page fault
```

The last thing we need to do is to check what page replacement algorithm was used and how it works. The file PageFault.java has the algorithm and its description inside.

```
/**
    * The page replacement algorithm for the memory management sumulator.
    * This method gets called whenever a page needs to be replaced.
    * 
    * The page replacement algorithm included with the simulator is
    * FIFO (first-in first-out). A while or for loop should be used
    * to search through the current memory contents for a canidate
    * replacement page. In the case of FIFO the while loop is used
    * to find the proper page while making sure that virtPageNum is
    * not exceeded.
```

The First In First Out is the simplest page replacement algorithm. The system keeps the pages from the memory in a queue, sorted according to their age, with the oldest page being in the front of the queue. When a page fault occurs, the page from the front of the queue is removed and remapped to the page causing the error. We can see it confirmed in the screenshots – after the simulation, pages 32-63 are all mapped to the physical pages in the same order the pages 0-32 were previously.

virtual	physical	virtual
page_0_l	page 4	_page 32 [
page 1	page 5	page 33 l
page 2	page 6	page 34 l
page 3 I	page 7	page 35 l
page 4	page 0	page 36 l
page 5 I	page 1	page 37 l
page 6	page 2	page 38 I
page 7	page 3	page 39 I
page 8	page 8	page 40
page 9	page 9	page 41
page 10	page 10	page 42
page 11	page 11	page 43
page 12	page 12	page 44
page 13	page 13	page 45
page 14	page 14	page 46
page 15	page 15	page 47 I
page 16	page 16	page 48 I
page 17	page 17	page 49 I
page 18 I	page 18	page 50 I
page 19	page 19	page 51
page 20 I	page 20	page 52
page 21	page 21	page 53 l
page 22 I	page 22	page 54
page 23 l	page 23	page 55
page 24	page 24	page 56
page 25 l	page 25	_page_57_1
_page_26_!	page 26	page 58 I
_page_27_/	page 27	page 59
_page_28_!	page 28	page 60 l
_page_29_	page 29	page 61
_page_30_l	page 30	page 62
page 31	page 31	page 63 l

virtual	physical	virtual	physical
page 0		_page_32_	page 4
page 1		_page_33_1	page 5
page 2		_page_34_	page 6
page 3		page 35 I	page 7
page 4		page 36 l	page 0
page 5		_page_37_1	page 1
page 6		_page 38 I	page 2
page 7		_page 39 1	page 3
page 8 1		page 40	page 8
page 9		_page_41_	page 9
page 10		page 42 l	page 10
page 11		page 43 l	page 11
page 12		page 44	page 12
page 13 l		page 45	page 13
page 14		page 46	page 14
page 15		page 47	page 15
page 16		page 48	page 16
page 17		page 49	page 17
page 18		page 50 l	page 18
page 19		page 51	page 19
page 20 l		page 52	page 20
page 21		page 53 l	page 21
page 22 l		page 54	page 22
page 23 l		page 55	page 23
page 24		page 56	page 24
page 25 I		page 57	page 25
page 26 l		page 58 J	page 26
page 27 I		page 59	page 27
page 28 I		page 60 l	page 28
page 29 l		page 61	page 29
page 30 l		page 62 l	page 30
page 31		page 63 l	page 31
	·		