

- L实验报告如有雷同,雷同各方当次实验成绩均以 0 分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。
- 4.实验报告文件以 PDF 格式提交。

院系	计	算机科学与技术	班级	超级计	十 算方向	组长	林天皓	
学号	18	324034						
学生								
实验分工								
林天皓		预习并完成实验			<u>朱德鹏</u>	<u> 预习并完成实验</u>		
张钺奇		预习并完成实验					_	

【实验题目】搭建自组网(Ad-Hoc)模式无线网络。

【实验目的】掌握自组网(Ad-Hoc)模式无线网络的概念及搭建方法。

【实验拓扑】

图 Ad-Hoc 无线网络

【实验设备】

带无线网卡的 PC 3 台(参考教材 P400)。

【实验原理】

自组网(Ad-Hoc)模式无线网络是一种省去了无线接入点而搭建起的对等网络结构,也称 SoftAP,只要安装了无线网卡的计算机彼此之间即可实现无线互联。

自组网(Ad-Hoc)模式无线网络的架设过程较为简单,但是传输距离相当有限,因此该种模式 较适合满足一些临时性的计算机无线互联需求。

【实验原理】

自组网(Ad-Hoc)模式无线网络是一种省去了无线接入点而搭建起的对等网络结构,也称 SoftAP,只要安装了无线网卡的计算机彼此之间即可实现无线互联。

自组网(Ad-Hoc)模式无线网络的架设过程较为简单,但是传输距离相当有限,因此该种模式较适合满足一些临时性的计算机无线互联需求。

【实验步骤】

要求 1: 了解所用无线网卡的品牌、性能特点,将无线网卡信息填入下表。

品牌	插槽形式	插槽形式 支持标准 传输速率		天线	信号传输范围	
Ralink RT61 Turbo	PCI	802.11b 802.11g	54Mbps	2dBi 全	室内距	
Wireless LAN Card				向天线	离:35-100 米	
					或更远	
					户外距	
					离 :100-300	
					米	

要求 2: 用 ipconfig 命令查看无线网卡信息,贴出截图(注意: 只贴出无线网卡的信息),并进行解读。

信息截图


```
D:\>netsh wlan show drivers
接口名称:WLAN
                              : Ralink RT61 Turbo Wireless LAN Card
                               Ralink Technology Corp. Ralink Technology Corp.
                               2010/6/2
                               3.0.9.1
                               本机 WLAN 驱动程序
                               802.11b 802.11g
       ...s 140-2 模式:
802.11w 管理帧保
的承载网络 : 县
结构提一
     础结构模式中支持的身份验证和密码:
                                                  WEP-40bit
                                                  WEP-104 位
                                                  WEP
                                                 CCMP
                                                 TKIP
   临时模式中支持的身份验证和密码:
                                                  WEP-40bit
                                                  ₩EP-104 位
                                                  WEP
                                                 CCMP
                                           WLAN 驱动程序:否)
   支持的无线显示器: 否
                        (图形驱动程序:
```

图 1-查看无线网卡驱动

信息解读

通过 netsh wlan show drivers 查看无线网卡信息。

可查看无线网卡的驱动程序名称,供应商,提供程序,为 Ralink 公司。

该网卡驱动的日期为2010/6/2

驱动版本为 3.0.9.1

可查看支持的无线电类型为 802.11b, 802.11g

其中支持的承载网络为是, 我们可以使用这个网卡建立接入点。

支持的身份验证和密码有多种,包括无密码,wpa 等

不支持无线连接显示器

要求 3: 右击卓面右角网卡图标,点击"管理无线网络"选项;点击"添加"选项卡;点击"创建 临时网络",在"手动连接到无线网络"窗口贴出输入信息后的截图。指出所输入信息意义。在组网 的其他 PC 上做相应设置。

信息截图

\windows\system32>netsh wlan set hostednetwork mode=allow ssid=test13 key=12345678 载网络模式已设置为允许。 成功更改承载网络的 SSID。 成功更改托管网络的用户密钥密码。

图 2-设置承载网络的 ssid 与密码

\windows\system32>netsh wlan start hostednetwork 己启动承载网络。

图 3-开启承载网络

无线局域网适配器 WLAN:

媒体状态 连接特定的 DNS 后缀 . .

无线局域网适配器 本地连接* 1:

连接特定的 DNS 后缀 本地链接 IPv6 地址. IPv4 地址 fe80::30a3:5a54:9002:da8a%21 : 192.168.137.1 : 255.255.255.0

图 4-PC1 的网络设置信息

无线局域网适配器 WLAN:

: mshome.net

fe80::2101:c72f:ab26:8b32%4 192.168.137.142

接特定的 DNS 后缀 地链接 IPv6 地址. v4 地址 : 255, 255, 255, 0 : 192. 168. 137. 1

图 5-PC2 的网络设置信息

无线局域网适配器 WLAN:

连接特定的 DNS 后缀 mshome.net

本地链接 IPv6 地址. : fe80::d0f8:2ded:9e:f30f%4

图 6-PC3 的网络设置信息

信息解读

该部分为在PC1上建立可供其他PC连接的无线网络。

首先开启 hostnetworked 功能,设置 ssid 为 test13,密码为 12345678

然后使用 netsh wlan start hostnetwork 启动承载网络。

通过 ipconfig, 我们可以查看到目前建立的承载网络信息。

PC1 承载网络 IP 地址为 192.168.137.1

子网掩码为 255.255.255.0

下面我们使用PC2与PC3通过无线网络连接到PC1上。

通过 windows10 的任务栏连接完成以后,通过 ipconfig 查看 PC2 与 PC3 的 ip 地址, 分别为 192.168.137.142, 192.168.137.225.子网掩码均为 255.255.255.0

确定后, ipconfig 查重无线网卡信息, 其 IP 地址是:

IP 子网掩码 网关

PC2: 192.168.137.142 255.255.255.0 无

解读信息:

目前三台 PC 已经处于同一个局域网内,下面测试三台 PC 的连通性。

检查各 PC 的连通性,说明原因

```
C:\windows\system32>ping 192.168.137.1

正在 Ping 192.168.137.1 具有 32 字节的数据:
来自 192.168.137.1 的回复: 字节=32 时间=1ms TTL=64
来自 192.168.137.1 的回复: 字节=32 时间=1ms TTL=64
来自 192.168.137.1 的回复: 字节=32 时间=4ms TTL=64
来自 192.168.137.1 的回复: 字节=32 时间<1ms TTL=64

192.168.137.1 的回复: 字节=32 时间<1ms TTL=64

192.168.137.1 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 4ms,平均 = 1ms
```

图 7 - PC2 ping PC1

分析:使用 PC2 ping PC1,相互之间可以连通

```
C:\Users\Administrator>ping 192.168.137.142

正在 Ping 192.168.137.142 具有 32 字节的数据:
来自 192.168.137.142 的回复:字节=32 时间<1ms TTL=64
来自 192.168.137.142 的回复:字节=32 时间=6ms TTL=64
来自 192.168.137.142 的回复:字节=32 时间=1ms TTL=64
来自 192.168.137.142 的回复:字节=32 时间<1ms TTL=64

192.168.137.142 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 6ms,平均 = 1ms
```

图 8 – PC3 ping PC2

分析:使用PC3 ping PC2、相互之间可以连通

```
C:\windows\system32>ping 192.168.137.225
正在 Ping 192.168.137.225 具有 32 字节的数据:
来自 192.168.137.225 的回复: 字节=32 时间=3ms TTL=64
来自 192.168.137.225 的回复: 字节=32 时间=4ms TTL=64
来自 192.168.137.225 的回复: 字节=32 时间=15ms TTL=64
来自 192.168.137.225 的回复: 字节=32 时间=9ms TTL=64
192.168.137.225 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 3ms,最长 = 15ms,平均 = 7ms
```

图 9-PC1 ping PC3

分析:使用 PC1 ping PC3,相互之间可以连通

分析: 综上所述, 测试连通性中, 三台计算机之间可以相互连通。

手工设置无级网卡的 IP 信息,检查各 PC 的连通性,说明与上一步骤区别

下面将PC2,PC3的IP地址更改

PC2: IP 地址更改为 192.168.1.2, 子网掩码 255.255.255.0

无线局域网适配器 WLAN:

fe80::2101:c72f:ab26:8b32%4

192. 168. 137. 2 255, 255, 255, 0

图 10 - 设置 PC2 IP 地址为 192.168.137.2

PC3: IP 地址更改为 192.168.1.3, 子网掩码 255.255.255.0

无线局域网适配器 WLAN:

fe80::d0f8:2ded:9e:f30f%4

本地链接 IPv6 地址. IPv4 地址 . . . : 192. 168. 137. 3 255, 255, 255, 0

图 11 - 设置 PC2 IP 地址为 192.168.137.3

按照 windows 共享文件的方法设置文件共享,下面进行传输测试。

要求 4: 共享其中一台 PC 的文件,进行文件传输。一台传输与多台同时传输时,测试传输速率。解 释原因。

1对1传输

图 14 - 一对二网络传输测试, PC1 同时向 PC2 与 PC3 传输

图 15 - 一对三网络传输测试, PC2 同时向 PC1 与 PC3 和 PC4 传输

图 16 - 一对三网络传输测试, PC1 同时向 PC2 与 PC3 和 PC4 传输

上述传输情况分析

在一对一的传输实验中,为 PC2 向 PC3 传送,由于两台机器的传送的数据包需要经过 PC1,传输速度较慢,平均速度约为 350KB/s。

在一对二的传输实验中,首先我们测试了使用 PC2 同时对 PC1 与 PC3 的进行传输实验,我们发现对于向 PC1 传输的速度更快,平均速度达到了 3MB/s, PC2 向 PC3 的传输速度只有 350KB/s。

这是因为 PC2 向 PC1 的传输,只需要经过一次传输,可以直接送达,而向 PC3 的传输则需要经过 PC1 的转发。导致了带宽的占用更大,所以速度较慢。

进项的第二次一对二传输实验选用了 PC1 对 PC2 和 PC3 进行传输测试,这次测试中, PC1 向两个 PC 发送的速度都为 350KB/s 左右,且数据较为均匀。

在一对三的传输实验中,首先使用 PC2 向 PC1,PC3,PC4 同时进行传输数据,由于网络数据包的发送并不均匀,导致了三台计算机的传输速度非常不均匀,朝向 PC1 的速度为 2MB/s,但是朝向 PC3 和 PC4 的数据传输都很难开始,这是因为不均匀的传输速度导致控制数据包很难送达对应的客户机,导致传输未开始。

第二次的一对三的数据传输实验中,使用 PC1 向 PC2,PC3,PC4 传输,此时针对三台 PC 的传输实验中,传输都能很快开始,平均速度大约为 1MB/s。

要求 5: 尝试捕获实验时的无线数据包,并解读。

192.168.13/.2	192.168.13/.4	NR22	1514 NBSS Continuation Message
192.168.137.4	192.168.137.2	TCP	54 445 → 4888 [ACK] Seq=85 Ack=1414741 Win=273 Len=0
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.4	192.168.137.2	TCP	54 445 → 4888 [ACK] Seq=85 Ack=1417661 Win=273 Len=0
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.4	192.168.137.2	TCP	54 445 → 4888 [ACK] Seq=85 Ack= <mark>1420581 Win=273 Len=0</mark>
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.4	192.168.137.2	TCP	66 [TCP Dup ACK 3751#1] 445 → 4888 [ACK] Seq=85 Ack 1420581 Vin=27
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.4	192.168.137.2	TCP	66 [TCP Dup ACK 3751#2] 445 → 4888 [ACK] Seq=85 Ack=1420581 Win=27
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.4	192.168.137.2	TCP	66 [TCP Dup ACK 3751#3] 445 → 4888 [ACK] Seq=85 Ack=1420581 Nin=27
192.168.137.2	192.168.137.4	NBSS	1514 [TCP Fast Retransmission] NBSS Continuation Message
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.4	192.168.137.2	TCP	66 [TCP Dup ACK 3751#4] 445 → 4888 [ACK] Seq=85 Ack=1420581 Win=27
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.4	192.168.137.2	TCP	66 [TCP Dup ACK 3751#5] 445 → 4888 [ACK] Seq=85 Ack=1420581 Win=27
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.4	192.168.137.2	TCP	66 [TCP Dup ACK 3751#6] 445 → 4888 [ACK] Seq=85 Ack=1420581 Win=27
192.168.137.2	192.168.137.4	NBSS	1514 NBSS Continuation Message
192.168.137.4	192.168.137.2	TCP	54 445 → 4888 [ACK] Seq=85 Ack=1432261 Win=273 Len=0
192.168.137.4	192.168.137.2	TCP	54 445 → 4888 [ACK] Seq=85 Ack=1435181 Win=273 Len=0
100 160 107 0	103 160 137 /	NDCC	151/ NDCC Continuation Massage

图 18- 网络传输中的数据包

无线传输中使用的传输层协议均为 TCP, 截取在传输过程中的一段数据包, 分析发现该段出现了三次 ACK=1420581 触发的快速重传。

图 19 - 网络传输中的数据包种类

分析:由于无线信号的复杂性在传输中有较多次的特殊情况触发,包括重新传输和快速重传等等。

V					
协议	按分组百分比	分组	按字节百分比	字节	比特/
▼ Frame	100.0	12942	100.0	11836726	7058k
▼ Ethernet	100.0	12942	1.5	181188	108k
✓ Internet Protocol Version 4	96.8	12534	2.1	250680	149k
▼ Transmission Control Protocol	96.8	12523	96.1	11370492	6780
▼ NetBIOS Session Service	31.1	4030	77.3	9155403	5459
SMB2 (Server Message Block Protocol version 2)	0.1	10	0.0	800	477
Data	0.0	1	0.0	255	152
Internet Control Message Protocol	0.1	11	0.1	6116	3646
Data	3.1	397	0.2	27942	16k
Address Resolution Protocol	0.1	11	0.0	308	183

图 20 - 网络传输中的数据包各个类型统计

根据显示该段时间内网络数据包的传输速度达到了7MB/s。

图 20-TCP 传输中的序列号变化

对于通过 wireshark 的分析功能,可以查看在传输过程中的序列号变化情况,每一次的阶梯提高表示 TCP 中的传输窗口传输结束,开启一轮新的窗口进行传输。


```
Frame 3853: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on interface \Device\NPF {DB291E69-E6F3-4
> Ethernet II, Src: BarcoPro_4b:18:3c (00:0d:0a:4b:18:3c), Dst: BarcoPro_4b:17:a1 (00:0d:0a:4b:17:a1)
> Internet Protocol Version 4, Src: 192.168.137.2, Dst: 192.168.137.4
Transmission Control Protocol, Src Port: 4888, Dst Port: 445, Seq: 1499421, Ack: 85, Len: 1460
    Source Port: 4888
    Destination Port: 445
    [Stream index: 0]
    [TCP Segment Len: 1460]
    Sequence Number: 1499421
                              (relative sequence number)
    Sequence Number (raw): 1676749939
    [Next Sequence Number: 1500881
                                   (relative sequence number)]
    Acknowledgment Number: 85
                              (relative ack number)
    Acknowledgment number (raw): 1597864667
    0101 .... = Header Length: 20 bytes (5)
  > Flags: 0x010 (ACK)
    Window: 64
    [Calculated window size: 64]
    [Window size scaling factor: -1 (unknown)]
    Checksum: 0x4e16 [unverified]
    [Checksum Status: Unverified]
    Urgent Pointer: 0
  SEQ/ACK analysis]
      [Bytes in flight: 8760]
      [Bytes sent since last PSH flag: 1080400]

▼ [TCP Analysis Flags]
      > [Expert Info (Note/Sequence): This frame is a (suspected) fast retransmission]
      > [Expert Info (Note/Sequence): This frame is a (suspected) retransmission]
  > [Timestamps]
    TCP payload (1460 bytes)
NetBIOS Session Service
```

对具体的网络数据包进行分析,该数据包为 PC2 向 PC4 传输的数据包,使用的传输层协议为 TCP,源地址使用的端口号为 4888,目的地使用的端口为 445,序列号为 1499421,ACK 为 1597864667,通过分析该传输是一次三次收到同一个 ACK 导致的快速重传。最后使用的表示层协议为 NetBIOS,其中包含了我们在传输中的数据 323132313231······

综上本次实验中,使用 PC 上的无线网卡建立承载网络的接入点,其他 PC 连接到 PC1,从而完成了 ADHOC 网络的搭建,PC 之间可以互相连接,然后通过 WINDOWS 的 共享文件,进行了一对一,一对二,一对三的传输实验,并对其中的传输数据包进行具体的分析。