

Monte-Carlo Tree Search

Hassen Doghmen

Tao, Inria Saclay-IDF

We adapt the EXP3 Algorithm, an efficient algorithm solving the adversarial bandit problem, to the case of tree-structured partially observable games. Every player will select his/her strategy along repeated games with a Monte-Carlo Tree Search algorithm, receiving observations from other players via a referee. We give experimental results for the game of Phantom Tic-Tac-Toe.

Multi-Armed Bandit Problem

K one-armed bandit slot machines.

- At each new timestep the player :
- pulls an arm i_t according to his strategy, which can depend on past observation and be randomized
- observes the reward $r_{i_t}(t)$ of the chosen arm i_t
- Stochastic Setting: rewards are given by stationnary unknown probability distributions r_i
- Adversarial Setting: an opponent, aware of the player's past decisions and rewards, chooses simultaneously with the player a (possibly randomized) reward $r_i(t)$ for each arm.

What can you do in the adversarial case?

- impossible to "maximize" reward
- You can try to minimize the **external regret**: difference at time T between one's gain and the gain which could have been obtained by allways pulling $the \ same \ arm$

$$R_T = \max_{i=1...k} \left(\sum_{t=1}^{T} r_i(t) \right) - \sum_{t=1}^{T} r_{i_t}(t)$$

External regret can be minimized (in expectation or with high probability) by the EXP3 Algorithm [ACBFS03]

EXP3 Algorithm

Parameter : real $\gamma \in]0;1]$

Initialization: define the weight $w_i(t) = 1$ for t = 1 and all

 $i=1,\ldots k$

For each $t = 1, 2, \dots$

1. Set

$$p_i(t) = (1 - \gamma) \frac{w_i(t)}{\sum_{j=1}^{k} w_j(t)} + \frac{\gamma}{K}$$

for $i = 1, \dots K$.

- 2. Select randomly an arm i_t according the probabilities $p_1(t), \ldots, p_K(t)$
- 3. Observe the reward $r_{i_t}(t)$
- 4. Update the weight of i_t by

$$w_{i_t}(t+1) = w_{i_t}(t) \exp(\frac{\gamma}{K} \frac{r_{i_t}(t)}{p_{i_t}(t)})$$

and set $w_j(t+1) = w_j(t)$ for other arms.

- In order to find good actions EXP3 maintains a balance between
- **exploration**: weighting actions according to the reward: 1γ term in the probability, and
- **exploration**: the uniform term $\frac{\gamma}{K}$ ensures that unsufficiently tested actions will be regularly selected.

Theorem [Auer et al [ACBFS03]] When run with parameter

 $\gamma = \min 0.8 \sqrt{\frac{\ln K}{TK}, \frac{1}{K}}$

the expected regret satisfies

$$\frac{R_T}{T} \le 2.7 \sqrt{\frac{K \ln K}{T}}$$

External regret and Zero-Sum Matrix Games

- \bullet Two players simultaneously choose a column i and a line j of a given matrix M
- The line player receives $M_{i,j}$ and the column player receives $-M_{i,j}$. Exemple: the Rock-Paper-Scissors game

$$\begin{pmatrix} Rock & Cissors & Paper \\ Rock & 0 & +1 & -1 \\ Cissors & -1 & 0 & +1 \\ Paper & +1 & 0 & -1 \end{pmatrix}$$

If both players repeatedly play, selecting their strategies with an algorithm minimizing external regret, then the empirical frequencies of play converge to optimal strategies ("Nash Equilibrium").

Monte-Carlo Tree Search Algorithms

- MCTS Algorithms are efficient algorithms designed for tree-searching with huge inputs.
- They have been used to design computer players in games with full observation, e.g. Go
- Mogo was the first algorithm to win against professional Go players

- \bullet As in the multi-armed bandit problem we must balance exploitation and exploration
- classical implementations [KS06] use the UCB bandit algorithm [LR85], designed for the stochastic setting.

Multiple Tree Monte-Carlo Tree Search

We propose an adaptation of MCTS algorithms, using EXP3, for partially observable games (e.g. card games)

- Each player runs a separate MCTS algorithm and sees other players' moves via observations sent by the referee
- in a Player Node "P", the player chooses his next action with the EXP3 algorithm
- in an Observation Node "O" the player waits for the referee to send an observation

Properties: consistant, efficient, online

Main advantage: the tree is only partially explored, as opposed to [ZJBP08]

Application to the game of Phantom Tic-Tac-Toe

- Played like standard Tic-Tac-Toe but one does not see where the opponent plays.
- In case of an illegal move the player must play somewhere else

Whereas standard Tic-Tac-Toe is a draw, in Phantom Tic-Tac-Toe the first player can force 85 % of victories with only 4% of losses.

A Phantom Tic-Tac-Toe personal Olympiad

simulations

Opponents are:

- MMCTS 500K, 5M and 50M, mixed strategies obtained by our algorithm after 500K, 5M or 50M iterations
- Belief Sampler, who plays standard tic-tac-toe perfectly and randomizes his moves according to optimal strategies compatible with observations (standard approach for P.O. games, see e.g [Caz06])

Rando	om Player,	a dumr	ny uniform	random	n player.
P1 \ P2	MMCTS 500K	MMCTS 5M	MMCTS 50M	Random	B.Sampler
M.500K	$65\% \setminus 25\%$	51% \ 37%	$44\% \setminus 47\%$	$67\% \setminus 22\%$	40% \ 43%
M. 5M	88% \ 06%	82% \ 10%	78% \ 17%	88% \ 05%	$78\% \setminus 10\%$
M. 50M	$93\% \setminus 02\%$	89% \ 03%	85% \ 04%	$93\% \setminus 02\%$	82% \ 03%
Random	55% \ 33%	48% \ 39%	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$59\% \setminus 28\%$	30% \ 53%
B.Sampler	$77\% \setminus 14\%$	73% \ 18%	$68\% \setminus 22\%$	$79\% \setminus 12\%$	$56\% \setminus 28\%$

References

- [ACBFS03] P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2003.
- [Caz06] T. Cazenave. A Phantom-Go program. Advances in Computer Games, pages 120–125, 2006.
- [KS06] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. *Machine Learning: ECML 2006*, pages 282–293, 2006.
- [LR85] T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, $6(1):4-22,\ 1985.$
- ZJBP08] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in games with incomplete information.

 Advances in Neural Information Processing Systems, 20:1729–1736, 2008.