Ejercicios Tema 4

- 1. Estudia cuáles de las siguientes aplicaciones $f: \mathbb{R}^3 \to \mathbb{R}^3$ son lineales
 - (a) f(x, y, z) = (x, 1, z),
- (b) f(x, y, z) = (y, z, 0).
- (c) f(x, y, z) = (2x, y, 3y),
- (d) f(x, y, z) = (x 1, x, y).
- 2. Estudia si la aplicación $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por f(x, y, z) = (0, x y, y) es lineal y en caso afirmativo calcula Ker f, Im f y sus dimensiones respectivas
- 3. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la aplicación lineal definida por f(1,0,0) = (2,1,0), f(0,1,0) = (1,0,0) y f(0,0,1) = (3,1,0). Calcula bases y las dimensiones respectivas de Ker f y de Im f.
- 4. Sea $f: \mathbb{R}^4 \to \mathbb{R}^3$ la aplicación lineal definida por $f(1,1,0,0) = (1,1,0), \ f(0,1,1,0) = (1,1,0), \ f(0,0,1,1) = (1,2,1), \ f(0,0,0,1) = (1,2,1).$ Calcula bases y las dimensiones respectivas de Ker f y de Im f.
- 5. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la aplicación lineal definida por f(x, y, z) = (x y, y, x + z).
 - (a) Calcula una base de Ker f;
 - (b) Decide si el vector $(8, 1, 5) \in \text{Im } f$;
 - (c) Para $U = \{(x, y, z) \in \mathbb{R}^3 \mid 5x 4y + z = 0\}$, calcula dim f(U).
- 6. Estudia si existe una aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ satisfaciendo:
 - (a) Ker $f = \mathcal{L}(\{(1,2,-1)\})$ y f(u) = u para todo $u \in \mathcal{L}(\{(1,1,0),(2,2,3)\})$.
 - (b) Ker $f = \mathcal{L}(\{(1, -3, -1)\}), f(-2, 1, 3) = (-2, 1, 3), y f(5, 5, -9) = (5, 5, -9).$
- 7. ¿Existe una aplicación lineal invectiva $f: \mathbb{R}^2 \to \mathbb{R}^3$ que cumpla f(1,1) = (1,0,2)?
- 8. ¿ Existe una aplicación lineal sobreyectiva $f: \mathbb{R}^2 \to \mathbb{R}^3$ que cumpla f(1,1) = (1,0,2)?
- 9. Razona la veracidad o falsedad de las siguientes afirmaciones:
 - (a) Si $f: \mathbb{R}^3 \to \mathbb{R}^2$ es una aplicación lineal entonces f es invectiva.
 - (b) Si $f: V \to W$ es una aplicación lineal, f es invectiva si y sólo si dim $V = \dim f(V)$.
- 10. Para una aplicación lineal $f: \mathbb{R}^5 \to \mathbb{R}^3$ razona si, para algún valor $a \in \mathbb{R}$ existe una aplicación lineal sobreyectiva $f: \mathbb{R}^5 \to \mathbb{R}^3$ tal que

$$\operatorname{Ker} f = \mathcal{L}(\{(1,1,-1,1,1),(0,1,2,1,2),(2,3,0,3,a)\})$$

- 11. Estudia si puede existir una aplicación lineal:
 - (a) $f: \mathbb{R}^4 \to \mathbb{R}^5$ inyectiva tal que $\text{Im } f = \mathcal{L}(\{(1, 0, 0, 1, 2), (0, 1, 2, 1, 0)\});$
 - (b) $f: \mathbb{R}^3 \to \mathbb{R}^3$ sobreyectiva tal que f(1, -2, 0) = (0, 0, 0);
 - (c) $f: \mathbb{R}^3 \to \mathbb{R}^2$ sobreyectiva tal que f(1, -1, 2) = (0, 0);
 - (d) $f: \mathbb{R}^3 \to \mathbb{R}^4$ tal que Im $f = \mathcal{L}(\{(1,0,0,1),(0,1,1,3)\})$ y f(1,0,0) = (0,1,0,1).

12. Sea $T: \mathbb{R}^3 \to \mathbb{R}^4$ la aplicación lineal cuya matriz asociada con respecto a las bases canónicas es la que sigue:

$$[T]_{C_3C_4} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

(a) Calcula la expresión general de T;

$$T(x_1, x_2, x_3) =$$

- (b) Calcula el rango de T;
- (c) Para la base $B = \{v_1 = (1, -1, 0), v_2 = (-1, 0, 1), v_3 = (0, 1, 1)\}$ calcula $[T]_{BC_4}$;
- (d) Calcula T(u) y T(v) sabiendo que $[u]_{C_3} = \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix}$ y que $[v]_B = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$.
- 13. Sea $T: \mathbb{R}^3 \to M_{2\times 2}(\mathbb{R})$ la aplicación lineal cuya expresión general viene dada por:

$$T(x_1, x_2, x_3) = \begin{pmatrix} x_1 - x_2 & x_1 + 2x_2 - x_3 \\ 2x_1 + x_2 - x_3 & -3x_1 + x_3 \end{pmatrix}, \quad (x_1, x_2, x_3) \in \mathbb{R}^3.$$

- (a) Calcula la matriz asociada a T con respecto a las bases canónicas C_3, C_4 ;
- (b) Calcula una base de Ker T;
- (c) Expresa $\operatorname{Im} T$ como $\operatorname{Null} H$, el subespacio de soluciones de un sistema $HX=\mathbf{0}$;
- (d) Si $B = \{v_1 = (1, 1, 0), v_2 = (0, 2, 1), v_3 = (0, 0, 3)\}$ es base de \mathbb{R}^3 , calcula $[T]_{BC}$;
- (e) Sabiendo que $[v]_B = \begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix}$, calcula T(v) utilizando $[T]_{BC_4}$ y $[T]_{C_3C_4}$.
- 14. De una aplicación lineal $T: \mathbb{R}^4 \to \mathbb{R}^3$ se sabe que la matriz asociada en las bases canónicas es:

$$[T]_{C_4C_3} = \begin{pmatrix} 1 & 2 & 0 & a \\ 2 & 4 & 1 & b \\ -3 & -6 & 2 & c \end{pmatrix} \quad \text{y que} \quad T(2,3,3,-2) = (2,3,-8)$$

- (a) Calcula $a, b, c \in \mathbb{R}$ para completar la matriz $[T]_{C_4C_3}$;
- (b) Calcula una base de $\ker T$;
- (c) Calcula un sistema de ecuaciones para el cual Im T es el subespacio solución.
- 15. Sea $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}^3$ la aplicación lineal que satisface: $T\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = (1, 1, 0),$ $T\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (1, 1, 0), \ T\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = (1, 2, 1), \ T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = (1, 2, 1).$
 - (a) Calcula la matriz asociada a T con respecto a las bases canónicas C_4, C_3 ;
 - (b) Decide si $(2, 1, -1) \in \text{Im } T$;

16. Considera la aplicación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ cuya matriz asociada en la base $B = \{v_1, v_2, v_3\}$ es:

$$[T]_{BB} = \left(\begin{array}{rrr} 2 & -1 & 4 \\ 1 & 0 & 3 \\ -1 & 2 & 2 \end{array}\right).$$

Si $B' = \{w_1, w_2, w_3\}$ es otra base de \mathbb{R}^3 donde $w_1 = v_1$, $w_2 = 2v_2$ y $w_3 = -v_1 + v_2 + v_3$, calcula las matrices $[Id_{\mathbb{R}^3}]_{BB'}$, $[Id_{\mathbb{R}^3}]_{B'B}$, $[T]_{BB'}$, $[T]_{B'B}$ y $[T]_{B'B'}$, y expresa las relaciones que existen entre ellas.

17. Considera las bases $B_1 = \{(1,2), (1,0)\}$ y $B_2 = \{(2,1), (3,1)\}$ de \mathbb{R}^2 , y la base de \mathbb{R}^3 $B = \{(1,2,3), (0,1,2), (0,0,1)\}.$

Para la aplicación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ dada por T(x, y, z) = (2x - y, 3x + z):

- (a) Calcula las matrices $[T]_{BB_1}$, $[T]_{BB_2}$ y la matriz cambio de base $[Id_{\mathbb{R}^2}]_{B_1B_2}$;
- (b) Calcula $\operatorname{Ker} T$ y $\operatorname{Im} T$ dando una base de cada uno de estos subespacios.
- 18. Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$ la aplicación lineal definida por T(x,y) = (x-y,x,-y). Para las bases $B = \{(1,0),(1,1)\}$ de \mathbb{R}^2 y $B' = \{(1,1,0),(0,1,0),(0,1,1)\}$ de \mathbb{R}^3 :
 - (a) Calcula la matriz de cambio de base de C_3 a B';
 - (b) Si $[v]_B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, calcula las coordenadas de T(v) respecto a B' y a C_3 .
- 19. Sea $B = \{u_1, u_2, u_3\}$ una base de \mathbb{R}^3 y $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ la aplicación lineal que cumple:

$$T(u_1) = u_1 + u_2 + u_3$$
, $T(u_2) = u_2 - u_3$, $\text{Ker } T = \mathcal{L}(2u_1 + u_3)$.

- (a) Calcula la matriz $[T]_{BB}$;
- (b) Sea $D = \{u_1, u_2 u_1, u_3 u_1\}$. Demuestra que D es base de \mathbb{R}^3 y calcula $[T]_{DD}$.
- 20. Sean $B = \{(-1, 2, 0), (2, -1, 1), (1, 3, 2)\}$ y $B' = \{(2, 1, -1), (1, 2, 3), (1, 0, -2)\}$ bases de \mathbb{R}^3 . Para $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ con matriz asociada $[T]_{BB'} = \begin{pmatrix} -2 & -4 & 1 \\ 3 & 6 & 1 \\ -1 & -2 & 3 \end{pmatrix}$:
 - (a) Calcula las matrices $[T]_{BC_3}$, $[T]_{C_3B'}$;
 - (b) Calcula T(1, 3, 2);
 - (c) Calcula las dimensiones de $\operatorname{Ker} T$ y de $\operatorname{Im} T$.
- 21. Sea $B = \{u_1, u_2, u_3, u_4, u_5\}$ una base de un espacio vectorial V. Define una aplicación lineal $T: V \to V$ que cumpla todas y cada una las condiciones siguientes:
 - $u_1 u_2 \in \text{Ker } T$, $T(u_1) = u_2 + u_4$, $T(u_1 + u_3) = u_2$,
 - $\bullet T(u_4) = T(u_2) , \qquad \bullet u_1 u_5 \in \operatorname{Im} T.$

Calcula las dimensiones de KerTy de $\operatorname{Im} T.$ Estudia si T es un isomorfismo.