平成 23 年度 京都大学大学院理学研究科 (数学・数理解析専攻)

数学系 入学試験問題 数学 II

- \otimes 問題は8題あり、次の4つの分野群に分かれる. 分野群 [A] の問題は 1 と 2 の2題、分野群 [B] の問題は 3 と 4 の2題、分野群 [C] の問題は 5 から 7 の3題、分野群 [D] の問題は 8 の1題である.
- ⊗ この8問題中、3問題を2つ以上の分野群から選択して解答せよ.
- ⊗ 解答時間は 4時間 である.
- ⊗ 参考書・ノート類の持ち込みは 禁止 する.

「注意]

- 1. 指示のあるまで開かぬこと.
- 2. 解答用紙・計算用紙のすべてに、受験番号・氏名を記入せよ.
- 3. 解答は各問ごとに別の解答用紙を用い、問題番号を各解答用紙の枠内に記入せよ.
- 4. 1 問を 2 枚以上にわたって解答するときは、つづきのあることを用紙下端に明示して次の用紙に移ること.
- 5. 提出の際は、解答用紙を問題番号順に重ね、計算用紙をその下に揃え、選択表を上におき、記入した面を外にして一括して二つ折にして提出すること.
- 6. この問題用紙は持ち帰ってよい.

[記号]

以下の問題で \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} はそれぞれ,自然数の全体,整数の全体,有理数の全体,実数の全体,複素数の全体を表す.また, \mathbb{R}^n の元 $x=(x_1,\ldots,x_n)$ に対して $|x|=\sqrt{x_1^2+\cdots+x_n^2}$ と書く.

- $\lfloor 1
 floor p \geq 3$ を奇素数, \mathbb{F}_p を p 個の元からなる有限体とする. \mathbb{F}_p の元を成分とする正則な 2 次正方行列全体のなす群を $\mathrm{GL}_2(\mathbb{F}_p)$ とおく.
 - (1) $GL_2(\mathbb{F}_p)$ の元で固有値がすべて 1 となるものの個数を求めよ.
 - (2) $\mathrm{GL}_2(\mathbb{F}_p)$ の半単純でない元の個数を求めよ. ただし, $A\in\mathrm{GL}_2(\mathbb{F}_p)$ が 半単純とは, \mathbb{F}_p の代数的閉包 $\overline{\mathbb{F}_p}$ の元を成分とする正則な 2 次正方行列 P が存在して $P^{-1}AP$ が対角行列となることである.
- $\fbox{2}$ 複素数体の部分体 K を $K=\mathbb{Q}(\sqrt{17+4\sqrt{17}}\,i)$ によって定める.
 - (1) *K* は $\mathbb Q$ の 4 次の Galois 拡大体であることを示せ.
 - (2) K の \mathbb{Q} 上の Galois 群 $\operatorname{Gal}(K/\mathbb{Q})$ を求めよ.
- 3 n を 1 以上の整数とし、 $S^n=\{x\in\mathbb{R}^{n+1}\mid |x|=1\}$ とする.また、0 でない実数 a に対して a/|a| を a の符号と呼ぶことにする.

 C^{∞} 級写像 $f: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ は原点 O を正則値にもつとする. すなわち, 任意の $x \in f^{-1}(O)$ における f の微分 df_x は非退化である.

(1) $f^{-1}(O) = \{O\}$ をみたすとき写像

$$F: S^n \to S^n$$

を

$$F(x) = \frac{f(x)}{|f(x)|} \quad (x \in S^n)$$

で定める. このとき F の写像度が $\det(df_O)$ の符号に等しいことを示せ.

(2) $f^{-1}(O) = \{P,Q\}$ $(P \neq Q)$ で $\max\{|P|,|Q|\} < 1$ をみたすとする. 写像

$$F: S^n \to S^n$$

を

$$F(x) = \frac{f(x)}{|f(x)|} \quad (x \in S^n)$$

で定めるとき, F の写像度が $\det(df_P)$ の符号と $\det(df_Q)$ の符号の和になることを示せ.

- |4| 境界つき多様体 M の境界を ∂M と書く. D を 2 次元単位閉円板, I を閉区間 [0,1] とし, I において 0 と 1 を同一視した商空間を 1 次元トーラス T^1 とし, 通常の可微分構造を考える. 同相写像 $h_1:\partial D\to T^1$ を 1 つ与える.
 - (1) 3次元トーラス $T^3=T^1\times T^1\times T^1$ の境界つき部分多様体で 3 次元単位 閉球体に可微分同相なものを $\overline{B_1},\overline{B_2}$ とし、これらは $\overline{B_1}\cap\overline{B_2}=\emptyset$ をみた すとする. また $\overline{B_1},\overline{B_2}$ の内部を B_1,B_2 とする.

$$X = T^3 \setminus (B_1 \cup B_2)$$

とおくとき X の有理係数ホモロジー群を求めよ.

(2) $x,y\in \partial(I\times I)=\left(\{0,1\}\times I\right)\cup\left(I\times\{0,1\}\right)$ のとき $x\sim_1 y$ とする. これにより $I\times I$ に同値関係 \sim_1 を定める. 商空間 $I\times I/\sim_1$ を S^2 とし、 $T^2=T^1\times T^1$ とする. これにより、自然な写像 $f:T^2\to S^2$ を与える. 同相写像 $h_2:S^2\to\partial(T^3\setminus B_1)$ を 1 つ与え、次の合成写像を g とする.

$$\partial(T^1 \times D) = T^1 \times \partial D \xrightarrow{\mathrm{id}_{T^1} \times h_1} T^2 \xrightarrow{f} S^2 \xrightarrow{h_2} \partial(T^3 \setminus B_1) \hookrightarrow \partial X.$$

この g を用いて $x \in \partial(T^1 \times D), y = g(x)$ のとき $x \sim_2 y$ とする. これにより $X \sqcup (T^1 \times D)$ に同値関係 \sim_2 を定める.

商空間 $Y=X\sqcup (T^1\times D)/\sim_2$ の有理係数ホモロジー群を求めよ.

- \mathbb{R}^3 上の Lebesgue 可測な実数値函数の列 $\{f_n\}_{n=1}^\infty$ が次の条件 (1),(2) を満たすとする.
 - (1) 任意の $3/2 \le p \le 3$ に対して

$$\sup_{n\geq 1} \|f_n\|_p < \infty.$$

(2) 任意のコンパクト集合 $K \subset \mathbb{R}^3$ に対して

$$\lim_{n \to \infty} \int_K |f_n(x)| dx = 0.$$

このとき

$$\lim_{n \to \infty} \int_{\mathbb{R}^3} \frac{|f_n(x)|}{|x|^{3/2}} dx = 0$$

となることを示せ.

ただし dx は3次元 Lebesgue 測度であり

$$||f||_p = \left(\int_{\mathbb{R}^3} |f(x)|^p dx\right)^{1/p}$$

とする.

|6| $[0,\infty)$ 上の実数値有界連続函数全体に、ノルム

$$||f|| = \sup_{x \ge 0} |f(x)|$$

を与えた Banach 空間を B とする. 実 Hilbert 空間 $L^2([0,\infty))$ から B への 線型作用素 T を

$$Tf(x) = \frac{1}{1+x} \int_0^x f(y)dy, \quad x \in [0, \infty)$$

と定める. T はコンパクト作用素であることを示せ.

 $ig| 7 ig| f(x,y),\, g(x,y)$ は \mathbb{R}^2 で定義された C^1 級函数で

$$xf(x,y) + yg(x,y) \le (1 + x^2 + y^2)\sqrt{\log(1 + x^2 + y^2)}$$

を満たすものとする. このとき常微分方程式

$$\frac{dx}{dt} = f(x,y), \quad \frac{dy}{dt} = g(x,y)$$

は, 任意の $(x_0,y_0)\in\mathbb{R}^2$ に対して, $t\in[0,\infty)$ で定義され $x(0)=x_0,y(0)=y_0$ をみたす解 (x(t),y(t)) を持つことを示せ.

- |8| 二分木の集合 B を以下を満たす最小の集合とする.
 - (a) Lf $\in B$.
 - (b) $l, r \in B$ ならば $Nd(l, r) \in B$.

関数 $f_0: B \times B \to B$ および再帰関数 $g: B \to B, f_1: B \times B \to B$ を以下のように定義する.

$$\begin{split} f_0(t,\mathsf{Lf}) &= \mathsf{Nd}(\mathsf{Nd}(\mathsf{Lf},t),\mathsf{Lf}) \\ f_0(t,\mathsf{Nd}(l,r)) &= \mathsf{Nd}(\mathsf{Nd}(l,t),r) \\ g(\mathsf{Lf}) &= \mathsf{Lf} \\ g(\mathsf{Nd}(\mathsf{Lf},r)) &= \mathsf{Nd}(\mathsf{Lf},r) \\ g(\mathsf{Nd}(\mathsf{Nd}(l_1,r_1),r)) &= g(\mathsf{Nd}(l_1,\mathsf{Nd}(r_1,r))) \\ f_1(t,\mathsf{Lf}) &= \mathsf{Lf} \\ f_1(t,\mathsf{Nd}(\mathsf{Lf},\mathsf{Lf})) &= \mathsf{Lf} \\ f_1(t,\mathsf{Nd}(\mathsf{Nd}(l_1,r_1),\mathsf{Lf})) &= f_1(t,g(\mathsf{Nd}(\mathsf{Nd}(l_1,r_1),\mathsf{Lf}))) \\ f_1(t,\mathsf{Nd}(l,\mathsf{Nd}(l_2,r_2))) &= \mathsf{Nd}(l,r_2) \end{split}$$

任意の $t_1,\cdots,t_n\in B$ および $b_1,\cdots,b_n\in\{0,1\}\ (n\geq 1)$ に対して $,s_0,s_1,\cdots,s_n\in B$ を

$$s_0 = \mathsf{Lf}, \qquad s_k = f_{b_k}(t_k, s_{k-1}) \ (1 \le k \le n)$$

で定めるとき, s_0 から s_n を計算するのに要する関数 f_0 , g, および f_1 の呼び出し回数 (再帰呼び出しも含む) の総和が高々O(n) であることを証明せよ.