Solutions des exercices Capteurs et Métrologie

Série N° 1:

Exercice I.1

Lorsque X=0 (R_0 = 100 Ω), pour avoir U= 0 on doit utiliser un pont de Weatstone avec à l'équilibre R1 R3 =R2 R0. Pour avoir une sensibilité maximale du pont on choisit

$$R1 = R2 = R3 = R0 = 100\Omega$$

La puissance dissipée dans le capteur est $P = R_0 I^2 = E^2 / R_0 < 100 \text{ mW}$ soit E < 6.32 V

On choisit E=6 V (4 piles de 1,5 V)

Lorsque X=Xmax , R=120 Ω la tension de déséquilibre du pont est

U= (120*100-100*100)*6/200*220 = 0,27 V pour avoir une sortie de 1 V on doit rajouter un amplificateur de gain G = 1/0,27 = 3,67

Exercice I.2

- 1) La valeur moyenne Xmoy = 960 ; L'écart standard S = 2,89 ; L'intervalle de confiance à 99 % est $\frac{2,89*2,86}{\sqrt{20}} = 1,85$
- 2) On rassemble en classes d'amplitude 3

classe	Effectif
[952 955[1
[955 958[4
[958 961[7
[961 964[6
[964 967[2

On trace I histogramme et on remarque que sa forme ressemble à la loi normale de Gauss.

Exercice I.3

- 1) Les lois de variations sont : $R_{pt} = 100(1+0.004\theta)$ $R_{CTN} = 0.0069$ $e^{4689/T}$ et $U_{th} = 5 \cdot 10^{-5}$ (θ -20)
- 2) Pour avoir une tension de déséquilibre du pont qui varie de 0 à 400 mV lorsque θ varie de 0 à 40 °C on choisit : R1=R2=R3=R0=100 Ω et E=10,8 V
- 3) L'erreur relative maximale qu'on commet en approximant la variation de la tension du pont par une relation linéaire est $\Delta U/U = \alpha \theta_{max}/2 = 8 \%$
- 4) Pour réaliser un capteur de même sensibilité que le précédent en utilisant le thermocouple, on doit le faire suivre d'un amplificateur de gain G = 216 sans approximation linéaire ou G=200 avec approximation linéaire.
- 5) La résistance de linéarisation RI = 48 k Ω avec Ti = 293 K; R_{CTN}(Ti)=49,6 k Ω ; R_{CTN}'(Ti)=-2,6k Ω /K Req(Ti) = 24,4 k Ω ; Req' (Ti)=-0,62k Ω /K et la relation linéaire par laquelle elle est approximée est : R_{ap} =36,8 (1-0,620/36,8)
- 6) Pour mettre la thermistance linéarisée dans un pont de Weatstone on c choisit : R1=R2=R3=R0=36,8 k Ω et on trouve Uap = 45 θ (mV). La sensibilité est 45 mV/°C, elle est plus de 4 fois supérieure .

Exercice I.4

- 1) R= 50 (1+0,005 θ)
- 2) A l'équilibre R1 R3 = R2 R0 d où R3 = 50Ω
- 3) La tension de déséquilibre du pont varie linéairement $U=\alpha\theta E/4~$ pour θ =100 °C on doit avoir U=1V on trouve E=8 V
- 4) Pour U=400 mV on trouve θ =40°C
- 5) Lorsque le capteur est parcouru par un courant I il dissipe une puissance $P=R0 I^2 = E^2/4R0=0,32 W = 320 mW$ et produit une élévation de température (auto échauffement) $\theta=320/30=10,66 °C$ la température réelle est 40-10,66=29,33 °C