

Sistemas Digitales

Circuitos Combinatorios

Primer Cuatrimestre 2024

Sistemas Digitales DC - UBA Repaso: Algebra de Boole

Axiomas

(A1) Existen dos elementos:
$$X=1$$
 si $X\neq 0$ ó $X=0$ si $X\neq 1$

- (A1) Existen dos elementos: X=1 si $X\neq 0$ ó X=0 si $X\neq 1$
- (A2) Existe el operador negación $\overline{()}$ tal que: $Si X = 1 \Rightarrow \overline{X} = 0$

- (A1) Existen dos elementos: X=1 si $X\neq 0$ ó X=0 si $X\neq 1$
- (A2) Existe el operador negación $\overline{()}$ tal que: $Si X = 1 \Rightarrow \overline{X} = 0$
- (A3) $0 \cdot 0 = 0$ 1 + 1 = 1

- (A1) Existen dos elementos: X=1 si $X\neq 0$ ó X=0 si $X\neq 1$
- (A2) Existe el operador negación $\overline{()}$ tal que: $Si X = 1 \Rightarrow \overline{X} = 0$
- (A3) $0 \cdot 0 = 0$ 1 + 1 = 1
- (A4) $1 \cdot 1 = 1$ 0 + 0 = 0

- (A1) Existen dos elementos: X = 1 si $X \neq 0$ ó X = 0 si $X \neq 1$
- (A2) Existe el operador negación $\overline{()}$ tal que: $Si X = 1 \Rightarrow \overline{X} = 0$
- (A3) $0 \cdot 0 = 0$ 1 + 1 = 1
- (A4) $1 \cdot 1 = 1$ 0 + 0 = 0
- (A5) $0 \cdot 1 = 1 \cdot 0 = 0$ 0 + 1 = 1 + 0 = 1

Propiedades

De los axiomas anteriores se derivan las siguientes propiedades:

Propiedad AND		OR
Identidad	1.A = A	0+A=A
Nulo	0.A = 0	1 + A = 1
Idempotencia	A.A = A	A + A = A
Inverso	$A.\overline{A}=0$	$A + \overline{A} = 1$
Conmutatividad	A.B = B.A	A+B=B+A
Asociatividad	(A.B).C = A.(B.C)	(A + B) + C = A + (B + C)
Distributividad	A + (B.C) = (A + B).(A + C)	A.(B+C) = A.B + A.C
Absorción	A.(A+B)=A	A + A.B = A
De Morgan	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B}=\overline{A}.\overline{B}$

Propiedades

De los axiomas anteriores se derivan las siguientes propiedades:

		OR
Identidad	1.A = A	0 + A = A
Nulo	0.A = 0	1 + A = 1
Idempotencia	A.A = A	A + A = A
Inverso	$A.\overline{A}=0$	$A+\overline{A}=1$
Conmutatividad	A.B = B.A	A + B = B + A
Asociatividad	(A.B).C = A.(B.C)	(A+B)+C=A+(B+C)
Distributividad A	+ (B.C) = (A + B).(A + C)	A.(B+C)=A.B+A.C
Absorción	A.(A+B)=A	A + A.B = A
De Morgan	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B}=\overline{A}.\overline{B}$

Tarea: ¡Demostrarlas!

Demostrar si la siguiente igualdad entre funciones booleanas es verdadera o falsa:

$$(X+\overline{Y})=\overline{(\overline{X}\cdot Y)}\cdot Z+X\cdot \overline{Z}+\overline{(Y+Z)}$$

Demostrar si la siguiente igualdad entre funciones booleanas es verdadera o falsa:

$$(X + \overline{Y}) = \overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)}$$

$$\overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)} \longleftarrow \text{ De Morgan}$$

Demostrar si la siguiente igualdad entre funciones booleanas es verdadera o falsa:

$$(X + \overline{Y}) = \overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)}$$

$$\frac{\overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)} \longleftarrow \text{ De Morgan}}{(\overline{X} \cdot Y) \cdot Z + X \cdot \overline{Z} + \overline{Y} \cdot \overline{Z} \longleftarrow \text{ Distributiva}}$$

Demostrar si la siguiente igualdad entre funciones booleanas es verdadera o falsa:

$$(X + \overline{Y}) = \overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)}$$

$$\frac{\overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)}}{\overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{Y} \cdot \overline{Z}} \longleftarrow \text{De Morgan}}{\overline{(\overline{X} \cdot Y)} \cdot Z + (X + \overline{Y}) \cdot \overline{Z}} \longleftarrow \text{De Morgan}}$$

Demostrar si la siguiente igualdad entre funciones booleanas es verdadera o falsa:

$$(X + \overline{Y}) = \overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)}$$

Demostrar si la siguiente igualdad entre funciones booleanas es verdadera o falsa:

$$(X + \overline{Y}) = \overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)}$$

Demostrar si la siguiente igualdad entre funciones booleanas es verdadera o falsa:

$$(X + \overline{Y}) = \overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)}$$

Demostrar si la siguiente igualdad entre funciones booleanas es verdadera o falsa:

$$(X + \overline{Y}) = \overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)}$$

Notación

En el lenguaje coloquial vamos a llamar a las operaciones indistintamente de la siguiente forma:

$$A + B \equiv A OR B$$

En el lenguaje coloquial vamos a llamar a las operaciones indistintamente de la siguiente forma:

$$A + B \equiv A OR B$$

 $AB \equiv A.B \equiv A AND B$

En el lenguaje coloquial vamos a llamar a las operaciones indistintamente de la siguiente forma:

$$A + B \equiv A \ OR \ B$$

 $AB \equiv A.B \equiv A \ AND \ B$
 $\overline{A} \equiv NOT \ A$

Compuertas, señales y tablas de verdad

Compuertas

Son modelos idealizados de dispositivos electrónicos o de computo, que realizan operaciones booleanas.

Las podemos representar gráficamente:

Compuertas

Son modelos idealizados de dispositivos electrónicos o de computo, que realizan operaciones booleanas.

Las podemos representar gráficamente:

O describir mediante lenguaje, por ejemplo en SystemVerilog: assign o = a & b;

Χ	Υ	F
0	0	
0	1	
1	0	
1	1	

¹Como resulta esperable, esta representación puede volverse muy compleja cuando el número de variables y salidas crece

Χ	Υ	F
0	0	1
0	1	
1	0	
1	1	

¹Como resulta esperable, esta representación puede volverse muy compleja cuando el número de variables y salidas crece

Χ	Υ	F
0	0	1
0	1	0
1	0	
1	1	

¹Como resulta esperable, esta representación puede volverse muy compleja cuando el número de variables y salidas crece

Χ	Υ	F
0	0	1
0	1	0
1	0	1
1	1	

¹Como resulta esperable, esta representación puede volverse muy compleja cuando el número de variables y salidas crece

Χ	Υ	F
0	0	1
0	1	0
1	0	1
1	1	1

¹Como resulta esperable, esta representación puede volverse muy compleja cuando el número de variables y salidas crece

Compuertas - NOT

Gráficamente:

Tabla de verdad:

Compuertas - AND

Tabla de verdad:

Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

$$assign o = a \& b;$$

Compuertas - OR

Gráficamente:

Tabla de verdad:

A	4	В	A OR B
()	0	0
()	1	1
	L	0	1
	L	1	1

$$assign o = a | b;$$

Compuertas - XOR u OR-EXCLUSIVA

Tabla de verdad:

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

$$assign o = a \hat{b};$$

Entradas y salidas - Categorización

Distintas vistas de un circuito

Por momentos vamos a querer abstraer nuestros circuitos en módulos de los cuáles observaremos solamente sus entradas y salidas. Veamos un ejemplo donde ocultamos parte de la complejidad pasando de una vista interna del circuito (caja blanca) a una externa (caja negra).

Desde el museo: ALU 74181

ALU revisitada

Aplicando lo anterior, podemos trabajar con la ALU viéndola de la siguiente manera:

Entradas/Salidas

Establecen el sentido de la información:

En la ALU anterior se representan con las flechas...

Entradas/Salidas

Establecen el sentido de la información:

En la ALU anterior se representan con las flechas...

```
En SystemVerilog:
```

```
module ALU #(parameter DATA_WIDTH = 16)
        (input [DATA_WIDTH-1:0] operandoZ,
        input [DATA_WIDTH-1:0] operandoY,
        input [2:0] opcode,
        output [DATA_WIDTH-1:0] salidas,
        output overflow);
end module:
```

Entradas/Salidas: Tipos

En la ALU, ¿son funcionalmente todas iguales las entradas y salidas?

Entradas/Salidas: Tipos

En la ALU, ¿son funcionalmente todas iguales las entradas y salidas?

NODatos vs. Control

Lógica proposicional a circuitos

combinatorios

Motivación

El estudio de la lógica proposicional y del álgebra de Boole tiene que ver con que vamos a querer implementar funciones lógicas en nuestro soporte electrónico con circuitos combinatorios.

Traduciendo una fórmula

Sabemos que se puede describir el comportamiento de un circuito combinatorio construyendo una tabla de verdad que determine las salidas que corresponden a cada combinación de los valores de entrada. Vamos a utilizar esto para describir un procedimiento que nos permite construir un circuito combinatorio cuyo comportamiento implementa cualquier fórmula proposicional φ .

Traduciendo una fórmula

Habrá casos en los que nos resultará difícil derivar un circuito de la fórmula, ya sea porque no vemos un vínculo directo entre la expresión y las compuertas básicas, o porque es conveniente expresarlo con una tabla de verdad.

El mecanismo es el siguiente:

• Si tenemos una fórmula φ que se expresa en función de las variables x_1, \ldots, x_n (las entradas).

- Si tenemos una fórmula φ que se expresa en función de las variables x_1, \ldots, x_n (las entradas).
- Construimos una tabla de verdad con una fila para cada combinación posible de las entradas (por ej. $x_1 \rightarrow 1, x_2 \rightarrow 0, \dots, x_n \rightarrow 1$) y en la columna de la salida y ingresamos el valor de la fórmula evaluada en esos valores $\varphi(1,0,\dots,1)$.

El mecanismo es el siguiente:

• Vamos a utilizar solamente las filas en las que la función vale 1.

- Vamos a utilizar solamente las filas en las que la función vale
 1.
- Para cada fila i en la que φ es verdadera (vale 1) vamos a construir un término t_i como conjunción (y lógico) de todas las entradas, donde cada variable aparece negada si su valor era 0 en la fila y sin negar en caso contrario.

- Vamos a utilizar solamente las filas en las que la función vale
 1.
- Para cada fila i en la que φ es verdadera (vale 1) vamos a construir un término t_i como conjunción (y lógico) de todas las entradas, donde cada variable aparece negada si su valor era 0 en la fila y sin negar en caso contrario.
- Por ejemplo, si en la fila 4 la asignación (valuación) de las variables era $x_1 \to 1, x_2 \to 0, \dots, x_n \to 1$, t_4 va a ser $x_1 \wedge \neg x_1 \wedge \dots x_n$.

El mecanismo es el siguiente:

• Una vez que tenemos los términos t_i, t_j, \ldots para cada fial en la que la función vale 1, vamos a hacer una disyunción (o lógico) de todos los términos $\varphi' = t_i \vee t_j \vee \ldots$

- Una vez que tenemos los términos t_i, t_j,... para cada fial en la que la función vale 1, vamos a hacer una disyunción (ο lógico) de todos los términos φ' = t_i ∨ t_j ∨
- A esto se conoce como suma de productos y nos da una expresión de φ o de la tabla de verdad que puede traducirse fácilmente a un circuito combinatorio.

Volviendo al ejemplo

La fórmula $(F = X + \overline{Y})$ se representa:

Χ	Υ	F
0	0	1
0	1	0
1	0	1
1	1	1

Volviendo al ejemplo

La fórmula $(F = X + \overline{Y})$ se representa:

Χ	Υ	F
0	0	1
0	1	0
1	0	1
1	1	1

En este caso los términos serían $t_1 = \neg x \land \neg y, t_3 = \neg x \land y$ y $t_4 = x \land y$ y $\varphi' = (\neg x \land \neg y) \lor (\neg x \land y) \lor (x \land y).$

A esta expresión se conoce como suma de productos.

Circuitos básicos

Armar un circuito que invierta o no tres entradas de acuerdo al valor de una entrada adicional que actúa como control. En otras palabras, un inversor de k-bits es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = \overline{e_i}$ $\forall i < k$
- Si $e_k = 0$, entonces $s_i = e_i$ $\forall i < k$

inversor
$$(1,011)=100$$

Armar un circuito que invierta o no tres entradas de acuerdo al valor de una entrada adicional que actúa como control. En otras palabras, un inversor de k-bits es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = \overline{e_i}$ $\forall i < k$
- Si $e_k = 0$, entonces $s_i = e_i$ $\forall i < k$

inversor
$$(1,011)=100$$
 inversor $(0,011)=011$

Armar un circuito que invierta o no tres entradas de acuerdo al valor de una entrada adicional que actúa como control. En otras palabras, un inversor de k-bits es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = \overline{e_i}$ $\forall i < k$
- Si $e_k = 0$, entonces $s_i = e_i$ $\forall i < k$

inversor
$$(1,011)=100$$
 inversor $(0,011)=011$ inversor $(1,100)=011$

Armar un circuito que invierta o no tres entradas de acuerdo al valor de una entrada adicional que actúa como control. En otras palabras, un inversor de k-bits es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = \overline{e_i}$ $\forall i < k$
- Si $e_k = 0$, entonces $s_i = e_i$ $\forall i < k$

¡Divide y conquista! Primero, con un bit...

ei	ek	si
0	0	0
0	1	1
1	0	1
1	1	0

¡Divide y conquista! Primero, con un bit...

ei	ek	si
0	0	0
0	1	1
1	0	1
1	1	0

Como suma de productos,

$$(\overline{ei} \cdot ek) + (ei \cdot \overline{ek})$$

¡Divide y conquista! Primero, con un bit...

ei	ek	si
0	0	0
0	1	1
1	0	1
1	1	0

Como suma de productos,

$$(\overline{ei} \cdot ek) + (ei \cdot \overline{ek})$$

¡Oh! casualidad, es una XOR (⊕)

$$(\overline{A} \cdot B) + (A \cdot \overline{B}) = A \oplus B$$

¡Divide y conquista! Primero, con un bit...

ei	ek	si
0	0	0
0	1	1
1	0	1
1	1	0

Extendiendo a 3 bits..

Como suma de productos,

$$(\overline{ei} \cdot ek) + (ei \cdot \overline{ek})$$

jOh! casualidad, es una XOR (\oplus)

$$(\overline{A} \cdot B) + (A \cdot \overline{B}) = A \oplus B$$

¡Divide y conquista! Primero, con un bit...

ei	ek	si
0	0	0
0	1	1
1	0	1
1	1	0

Como suma de productos,

$$(\overline{ei} \cdot ek) + (ei \cdot \overline{ek})$$

jOh! casualidad, es una XOR (\oplus)

$$(\overline{A} \cdot B) + (A \cdot \overline{B}) = A \oplus B$$

Extendiendo a 3 bits... Solucion con XOR:

Armar un **sumador de 1 bit**. Tiene que tener dos entradas de un bit y dos salidas, una para el resultado y otra para indicar si hubo o no acarreo.

Armar un **sumador de 1 bit**. Tiene que tener dos entradas de un bit y dos salidas, una para el resultado y otra para indicar si hubo o no acarreo.

Solución:

Armar un **sumador de 1 bit**. Tiene que tener dos entradas de un bit y dos salidas, una para el resultado y otra para indicar si hubo o no acarreo.

Solución:

Α	В	Sum	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Armar un **sumador de 1 bit**. Tiene que tener dos entradas de un bit y dos salidas, una para el resultado y otra para indicar si hubo o no acarreo.

Solución:

Α	В	Sum	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Ejercicio III - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sólo una compuerta a elección, arme un **sumador completo**. El mismo tiene 2 entradas de 1 bit y una tercer entrada interpretada como C_{In} , tiene como salida C_{Out} y S.

Ejercicio III - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sólo una compuerta a elección, arme un **sumador completo**. El mismo tiene 2 entradas de 1 bit y una tercer entrada interpretada como C_{In} , tiene como salida C_{Out} y S. **Solución**:

Ejercicio III - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sólo una compuerta a elección, arme un **sumador completo**. El mismo tiene 2 entradas de 1 bit y una tercer entrada interpretada como C_{In} , tiene como salida C_{Out} y S. **Solución**:

C_{in}	Α	В	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ejercicio III - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sólo una compuerta a elección, arme un **sumador completo**. El mismo tiene 2 entradas de 1 bit y una tercer entrada interpretada como C_{In} , tiene como salida C_{Out} y S. **Solución**:

C_{in}	Α	В	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ejercicio IV - Sumador Completo de 3 bits

Armar un sumador completo de 3 bits.

Ejercicio IV - Sumador Completo de 3 bits

Armar un sumador completo de 3 bits.

Ejercicio IV - Sumador Completo de 3 bits

Armar un sumador completo de 3 bits.

Solución:

¡Tarea!

Armar un circuito de 3 *bits*. Este deberá mover a izquierda o a derecha los bits de entrada de acuerdo al valor de una entrada extra que actúa como control. En otras palabras, un shift *izq-der* de *k-bits* es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

Armar un circuito de 3 *bits*. Este deberá mover a izquierda o a derecha los bits de entrada de acuerdo al valor de una entrada extra que actúa como control. En otras palabras, un shift *izq-der* de *k-bits* es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

$$shift_{lr}(1,011) = 110$$

Armar un circuito de 3 *bits*. Este deberá mover a izquierda o a derecha los bits de entrada de acuerdo al valor de una entrada extra que actúa como control. En otras palabras, un shift *izq-der* de *k-bits* es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

$$shift_{r}(1,011) = 110 \quad shift_{r}(0,011) = 001$$

Armar un circuito de 3 *bits*. Este deberá mover a izquierda o a derecha los bits de entrada de acuerdo al valor de una entrada extra que actúa como control. En otras palabras, un shift *izq-der* de *k-bits* es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

$$shift_{r}(1,011) = 110 \quad shift_{r}(0,011) = 001$$

 $shift_{r}(1,100) = 000$

Armar un circuito de 3 bits. Este deberá mover a izquierda o a derecha los bits de entrada de acuerdo al valor de una entrada extra que actúa como control. En otras palabras, un shift izq-der de k-bits es un circuito de k+1 entradas $(e_k, ..., e_0)$ y k salidas $(s_{k-1}, ..., s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

$$\begin{array}{ll} \text{shift_lr}(\textcolor{red}{1},011) = 110 & \text{shift_lr}(\textcolor{red}{0},011) = 001 \\ \text{shift_lr}(1,100) = 000 & \text{shift_lr}(1,101) = 010 \\ \end{array}$$

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

$$s_2 = \begin{bmatrix} 0 & \operatorname{si} e_3 = 0 \\ e_1 & \operatorname{si} e_3 = 1 \end{bmatrix}$$

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

Solución:

$$s_2 = \begin{bmatrix} 0 & \operatorname{si} e_3 = 0 \\ e_1 & \operatorname{si} e_3 = 1 \end{bmatrix}$$

 $e_3.e_1$

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

Solución:

$$s_2 = \begin{bmatrix} 0 & \operatorname{si} e_3 = 0 \\ e_1 & \operatorname{si} e_3 = 1 \end{bmatrix} \quad s_0 = \begin{bmatrix} 0 & \operatorname{si} e_3 = 1 \\ e_1 & \operatorname{si} e_3 = 0 \end{bmatrix}$$

 $e_3.e_1$

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

$$s_2 = \begin{bmatrix} 0 & \operatorname{si} e_3 = 0 \\ e_1 & \operatorname{si} e_3 = 1 \end{bmatrix} \quad s_0 = \begin{bmatrix} 0 & \operatorname{si} e_3 = 1 \\ e_1 & \operatorname{si} e_3 = 0 \end{bmatrix}$$

$$e_3.e_1 \qquad \qquad \overline{e_3}.e_1$$

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

$$s_{2} = \begin{bmatrix} 0 & \text{si } e_{3} = 0 \\ e_{1} & \text{si } e_{3} = 1 \end{bmatrix} \quad s_{0} = \begin{bmatrix} 0 & \text{si } e_{3} = 1 \\ e_{1} & \text{si } e_{3} = 0 \end{bmatrix} \quad s_{1} = \begin{bmatrix} e_{0} & \text{si } e_{3} = 1 \\ e_{2} & \text{si } e_{3} = 0 \end{bmatrix}$$

$$e_{3}.e_{1} \qquad \qquad \overline{e_{3}}.e_{1}$$

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

$$s_2 = \begin{bmatrix} 0 & \text{si } e_3 = 0 \\ e_1 & \text{si } e_3 = 1 \end{bmatrix}$$
 $s_0 = \begin{bmatrix} 0 & \text{si } e_3 = 1 \\ e_1 & \text{si } e_3 = 0 \end{bmatrix}$ $s_1 = \begin{bmatrix} e_0 & \text{si } e_3 = 1 \\ e_2 & \text{si } e_3 = 0 \end{bmatrix}$

$$s_0 = \begin{vmatrix} 0 & \sin e_3 = 1 \\ e_1 & \sin e_3 = 0 \end{vmatrix}$$

$$\frac{s_1}{e_2} = \begin{bmatrix} e_0 & \text{si } e_3 = 1 \\ e_2 & \text{si } e_3 = 0 \end{bmatrix}$$

$$\overline{e_3}.e_1$$

$$e_3.e_0 + \overline{e_3}.e_2$$

Más combinatorios: Multiplexor y Demultiplexor

Las líneas de control *c* permiten seleccionar una de las entradas *e*, la que corresponderá a la salida *s*.

Las líneas de control c permiten seleccionar cual de las salidas s tendrá el valor de e.

Multiplexor y Demultiplexor

• Ejemplo,

Más combinatorios: Codificador y Decodificador

Cada combinación de las líneas e corresponderá a una sola línea en alto de la salida s.

Una y sólo una línea en alto de *e* corresponderá a una combinación en la salida *s*.

Codificador y Decodificador

• Ejemplo,

¡Las compuertas no son instantáneas!

Revisitemos nuestro Shift LR:

Ejercicio:

En el circuito Shift LR anterior, suponiendo (de forma optimista) que todas las compuertas tardan 10ps en poner un resultado válido en sus salidas:

- Dibujar el diagrama de tiempos para cuando todas las entradas cambian simultáneamente de '0' a '1'.
- ¿Cuánto es el mínimo tiempo que se debe esperar para leer un resultado válido de su salida?

Solución: Hagamos un diagrama de tiempos²:

²Y nombremos a las señales que no tienen nombre

Solución: Diagrama de tiempos

Solución: Es interesante notar:

Solución: Es interesante notar:

 En un circuito combinatorio el tiempo que tarda la salida en estabilizarse depende de la cantidad de capas de compuertas (latencia)

Solución: Es interesante notar:

- En un circuito combinatorio el tiempo que tarda la salida en estabilizarse depende de la cantidad de capas de compuertas (latencia)
- En este caso debemos esperar al menos $3 \cdot 10ps = 30ps$ para poder leer la salida.

Solución: Es interesante notar:

- En un circuito combinatorio el tiempo que tarda la salida en estabilizarse depende de la cantidad de capas de compuertas (latencia)
- En este caso debemos esperar al menos $3 \cdot 10ps = 30ps$ para poder leer la salida.

¿Cómo enfrentamos este problema? Secuenciales...

Conclusiones

La práctica...

- Con lo visto hoy pueden realizar la parte A de la práctica 2.
- Pueden usar el purple<u>Logisim evolution</u> (Requiere Java 16 o superior. Para ejecutarlo, teclear en una consola java -jar logisim-evolution-3.8.0-all.jar desde la carpeta donde se encuentra el archivo descargado.)
- El martes 18 de abril(el 11 hay paro) tenemos el primer taller de la materia, el cual es obligatorio. Será en los laboratorios del pabellón Cero+Infinito (ver cuales en el cronograma, que está en el campus).
- Bibliografía recomendada: The Essentials of Computer Organization and Architecture - Linda Null - Capítulo 3