Session # 16: Precision through differences: Wheatstone Bridge Notes

These notes are drawn from *Alexander and Sadiku*, 2013, *O'Malley*, 2011, WIKIPEDIA, and other sources. They are intended to offer a summary of topics to guide you in focused studies. You should augment this handout with notes taken in class, reading textbook(s), and working additional example problems.

Learning Objective: In this module, we consider a technique used to measure small differences when an absolute reference may be unavailable. The resulting circuit configuration is known as the *Wheatstone Bridge*.

The Wheatstone bridge (or resistance bridge) circuit is used in applications where a precision measurement is desired. The guiding principle being the relative precision of observing a zero (or null) is higher than that of measuring some non-zero value. Any technique, including the Wheatstone configuration, relies on at least one (usually three) precision elements.

Consider the circuit below:

Figure 4.63

The Wheatstone bridge; R_x is the resistance to be measured.

The variable resistance is adjusted until no current flows through the galvanometer, which is essentially a d'Arsonval movement operating as a sensitive current-indicating device, like an ammeter, in the μA range. When a null occurs (no current flow), it follows that $v_1 = v_2$. Hence, we have the equivalent ratios:

$$v_1 = v_2 \implies \frac{R_1}{R_2} = \frac{R_3}{R_x}$$

and any algebraic equivalent.

The estimated value of R_x is only as precise as the precision of the other circuit elements: resistors R_1 and R_3 , and precision variable resistor R_2 .

Homework: None (You may look at Chapter 4 # 90, 91)

- (a) Find i when $R = 4 \Omega$.
- (b) Determine the maximum power from the box.

$R(\Omega)$	$V(\mathbf{V})$	i(A)
2	3	1.5
8	8	1.0
14	10.5	0.75

- **4.87** A transducer is modeled with a current source I_s and \mathbf{e} a parallel resistance R_s . The current at the terminals of the source is measured to be 9.975 mA when an ammeter with an internal resistance of 20 Ω is used.
 - (a) If adding a 2-k Ω resistor across the source terminals causes the ammeter reading to fall to 9.876 mA, calculate I_s and R_s .
 - (b) What will the ammeter reading be if the resistance between the source terminals is changed to $4 \text{ k}\Omega$?
- **4.88** Consider the circuit in Fig. 4.144. An ammeter with internal resistance R_i is inserted between A and B to measure I_o . Determine the reading of the ammeter if: (a) $R_i = 500 \Omega$, (b) $R_i = 0 \Omega$. (*Hint*: Find the Thevenin equivalent circuit at terminals *a-b*.)

Figure 4.144 For Prob. 4.88.

4.89 Consider the circuit in Fig. 4.145. (a) Replace the resistor R_L by a zero resistance ammeter and determine the ammeter reading. (b) To verify the reciprocity theorem, interchange the ammeter and the 12-V source and determine the ammeter reading again.

Figure 4.145 For Prob. 4.89.

4.90 The Wheatstone bridge circuit shown in Fig. 4.146 is used to measure the resistance of a strain gauge. The adjustable resistor has a linear taper with a maximum value of 100 Ω . If the resistance of the strain gauge is found to be 42.6 Ω , what fraction of the full slider

travel is the slider when the bridge is balanced?

Figure 4.146 For Prob. 4.90.

e d

4.91 (a) In the Wheatstone bridge circuit of Fig. 4.147, select the values of R_1 and R_3 such that the bridge can measure R_x in the range of 0–10 Ω .

Figure 4.147 For Prob. 4.91.

- (b) Repeat for the range of 0–100 Ω .
- *4.92 Consider the bridge circuit of Fig. 4.148. Is the e Ω d bridge balanced? If the 10-k Ω resistor is replaced by an 18-k Ω resistor, what resistor connected between terminals a-b absorbs the maximum power? What is this power?

Figure 4.148 For Prob. 4.92.