Digital Signal Processing Term Project

"Filter Design and Implement"

In this project students will design digital filters using Pole-Zero placement method and implement these filters. The project is of two parts.

A) Design a Band-Pass Filter

Design a BPF with the center frequency of ω_0 and 3 dB cut off ω_c , i.e., it has the following specifications:

$$|H(\omega_0)| = 1,$$
 $|H(\omega_c)| = 1/\sqrt{2}$

Group No. versus frequencies:

Group_1:
$$\omega_0 = 0.2\pi$$
, $\omega_c = 0.23\pi$

Group_2:
$$\omega_0 = 0.25\pi$$
, $\omega_c = 0.22\pi$

Group_3:
$$\omega_0 = 0.42\pi$$
, $\omega_c = 0.37\pi$

Group_4:
$$\omega_0 = 0.33\pi$$
, $\omega_c = 0.35\pi$

Group 5:
$$\omega_0 = 0.19\pi$$
, $\omega_c = 0.23\pi$

Group 6:
$$\omega_0 = 0.28\pi$$
, $\omega_c = 0.25\pi$

Group_7:
$$\omega_0 = 0.32\pi$$
, $\omega_c = 0.28\pi$

Group_8:
$$\omega_0 = 0.35\pi$$
, $\omega_c = 0.31\pi$

Group_9:
$$\omega_0 = 0.41\pi$$
, $\omega_c = 0.45\pi$

Group_10:
$$\omega_0 = 0.26\pi$$
, $\omega_c = 0.29\pi$

Group_11:
$$\omega_0 = 0.45\pi$$
, $\omega_c = 0.41\pi$

Group_12:
$$\omega_0 = 0.28\pi$$
, $\omega_c = 0.32\pi$

Report: You must provide the following:

- 1) The difference equation of the filter.
- 2) Test the filter by implementing the filter as a difference equation and by giving the input signal $\cos(wn)$ and measuring the output amplitude and finding the gain (Vout/Vin) for $(\omega = 0 \rightarrow \pi \ step : 0.05\pi)$.

Plot the resulting 20-point frequency response.

3) Comment on the curve.

B) De-scrambling of a spectrum folded scrambled voice signal

```
As you load the file {speech_scmb_1}
MATLAB loading Instruction: load speech_scmb_1
```

you will have a vector $\{x\}$ which contains a scrambled voice signal sampled with a frequency of fs=44100 sample/second. $\{x\}$ was obtained by folding the spectral components of a speech signal as shown in Fig.1 below:

De-scrambling operation:

- 1) Multiply the input x signal by $cos(0.15\pi n)$ to refold the spectrum.
- 2) Pass the result in a 3-stage LPF. Each stage is a one-pole, (0.06π) 3 dB cut-off frequency.
- 3) Display the descrambled speech signal. For comparison, display the scrambled speech also.

What is required:

- 1) Provide the complete MATLAB program for descrambling and speech display.
- 2) Display the speech to show your work. You should here intelligible voice signal.

Hint:

The following MATLAB command will display speech found in a vector named {z} to speaker.

```
load speech_scmb_1
Fs=44100;
%%%% The following commands are for playing the speech with
suitable level %%%%
%% The input vector is {x}

%%% The output is z %%%%

gt=1.755*100000;
nm=(norm(z))^2;
gain=sqrt(gt/nm);
zz=z*gain;
player = audioplayer(zz, Fs);
play(player);
```


