1 Définition du polynôme caractéristique

Définition 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle polynôme caractéristique de A, noté en général P_A , le polynôme de $\mathbb{K}[X]$ défini par

$$P_A(X) = \det(A - XI_n).$$

2 Propriétés

Proposition 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Le polynôme caractéristique P_A de la matrice A est un polynôme de degré n à coefficients dans \mathbb{K} et dont le coefficient dominant est $(-1)^n$.

Proposition 2

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

- $-P_A(0) = \det(A).$
- $-P_A=P_{^t\!A},$ où $^t\!A$ est la transposée de A.

Définition 2

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. On dit que A est semblable à B s'il existe une matrice inversible $P \in GL_n(\mathbb{K})$ telle que :

$$A = PBP^{-1}.$$

Proposition 3

Si A et B sont deux matrices semblables alors $P_A = P_B$.

Théorème 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$, les assertions suivantes sont équivalentes :

- 1. $KerA = \{0\}$;
- $2. \det(A) \neq 0.$

3 Ordre de multiplicité d'une valeur propre

Définition 3– Si λ est une racine simple de P_A , on dit que λ est valeur propre simple ou de multiplicité 1.

- Si λ est une racine d'ordre α de P_A , on dit que λ est valeur propre de multiplicité α .

4 Théorème de Cayley-Hamilton

Théorème 2 (de Cayley-Hamilton)

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $P_A \in \mathbb{K}[X]$ le polynôme caractéristique de A. Alors

$$P_A(A) = 0_{\mathcal{M}_n(\mathbb{K})}.$$