Diskreta fördelningar (q = 1 - p)

$\overline{X} \sim$	n (la)	emm8er (4 T P)	E[V]	U(V)
$\Lambda \sim$	$p_X(k)$		E[X]	$V(\Lambda)$
Bin(n, p)	$\binom{n}{k} p^k q^{n-k}$	$k = 0, 1, \dots, n$	np	npq
$\mathrm{Hyp}(N,n,m), p = \frac{m}{N}$	$\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}$	$k = 0, 1, \dots, \min(n, m)$	np	$\frac{N-n}{N-1}npq$
$Po(\lambda)$	$\frac{\lambda^k}{k!}e^{-\lambda}$	$k=0,1,\ldots$	λ	λ
$\mathrm{ffg}(p)$	$q^{k-1}p$	$k=1,2,\ldots$	$\frac{1}{p}$	$\frac{q}{p^2}$
Geo(p)	$q^k p$	$k=0,1,\ldots$	$rac{q}{p}$	$\frac{q}{p^2}$
$\mathrm{NegBin}(r,p)$	$\binom{k-1}{r-1}q^{k-r}p^r$	$k = r, r + 1, \dots$	$rac{r}{p}$	$\frac{rq}{p^2}$

Kontinuerliga fördelningar

$X \sim$	$f_X(x)$	$F_X(x)$		E[X]	V(X)
$\operatorname{Re}(a,b)$	$\frac{1}{b-a}$	$\frac{x-a}{b-a}$	$a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\operatorname{Exp}(\beta)$	$\beta e^{-\beta x}$	$1 - e^{-\beta x}$	$x \ge 0$	$\frac{1}{\beta}$	$\frac{1}{\beta^2}$
N(0, 1)	$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$	$\Phi(x)$	$-\infty < x < \infty$	0	1
$N(\mu,\sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$	$-\infty < x < \infty$	μ	σ^2