MOwNiT - Rozwiązywanie równań i układów równań nieliniowych

Jakub Frączek

12 maja 2024

1 Wstęp

Zadanie polegało na wyzaczneniu pierwiastków równania f(x) = 0 na zadanym przedziale [a, b]. W zadaniu należało wykorzystać metodę Newtona i metodę Siecznych, a punkty wybrać co 0.1 na przedziale [a, b]. Dla metody siecznych jeden z końców przedziału miał być ustalony tak jak dla metody Newtona, a drugi jako początek albo koniec przedziału [a, b]. Następnie porównać działania tych metod stosując dwa rózne kryteria stopu.

2 Funkcja dla której przeprowadzone zostało doświadczenie

$$f(x) = x^2 - n * \sin(x)^m$$

gdzie:

$$n = 10, m = 15, x \in [-1.8, 0.2]$$

zatem:

$$f(x) = x^2 - 10 * sin(x)^{15}, x \in [-1.8, 0.2]$$

Zatem wykres zadanej funkcji wygląda następująco:

3 Dane techniczne

3.1 Hardware

Laptop z procesorem Intel Core i5-9300H 2.4GHz oraz 32 GB pamięci RAM.

3.2 Software

Wykorzystany został system Windows 11 x64 oraz język Python w wersji 3.11.8 wraz z bibliotekami:

- math
- enum
- matplotlib
- numpy

4 Kryteria stopu

Kryteria stopu służą do zatrzymania wykonywania programu, gdy przyblizenie miejsca zerowego uznajemy za "dość dobre".

4.1 Wartość bezwzględna różnicy dwóch ostatnich przybliżeń pierwiastka

Jednym z kryteriów była wartość bezwzględna rówżnicy dwóch ostatnich przybliżeń pierwiastka równania f(x) = 0.

$$|x^{(i+1)} - x^{(i)}| < \rho$$

4.2 Wartość bezwzględna wartości funkcji

Kolejnym kryterium była wartość bezwzględna wartości funkcji f, w punkcie przybliżającym położenie pierwiastka.

$$|f(x)^{(i)}| < \rho$$

5 Metoda Newtona

Do zaimplementowania metody Newtona wykorzystałem wzór:

$$f(\alpha) = 0 = f(x_{i-1} + h) = f(x_{i-1}) + h \cdot f'(x_{i-1}) + \dots (pomijamy)$$

gdzie:

$$\alpha$$
 – prosty pierwiastek, x – przblienie α , $h = -\frac{f(x_{x-1})}{f'(x_{i-1})}$

zatem otrzymujemy wzór iteracyjny:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

6 Metoda siecznych

Do zaimplementowania metody siecznych wykorzystałem wzór:

$$x_{i+2} = x_{i+1} - \frac{x_{i+1} - x_i}{f_{i+1} - f_i} \cdot f_{i+1}$$

Przy czym, startujemy z x_0 , x_1 i nie badamy $f_0 \cdot f_1$

7 Wyniki

Analizę przeprowadziałem dla wartości $\rho \in [10^{-1}, \ 10^{-20}]$, wartości x zaczynając od początku dziedziny, robiąc krok co 0.1 i kończąc lewym krańcu przedziału. Za maksymalną liczbę iteracji wybrałem liczbę 1000. Dodatkowo analiza została przeprowadzona dla dwóch różnych kryteriów stopu.

7.1 Wyniki dla metody Newtona

Wyniki zostały podzielone ze względu na kryterium stopu oraz wartości parametru ρ . Poza tym, w każdym przypadku $x \in [-1.8, 0.2]$.

7.1.1 Kryterium wartości bezwzględnej wartości funkcji, $\rho \in [10^{-1},\ 10^{-10}]$

Jak widać na poniższych wykresach, dla x=0 nie udało się obliczyć wartości pierwiastka, z kolei w innych punktach była ona dośc bliska prawdziwej wartości, a precyzja zwiększała się wraz z zwiększeniem dokładnośći (zmniejszeniem wartości pamametru ρ). Jak widać zwiększanie dokładności oraz oddalenie od położenia pierwiastka prowadzi do zwiększenia liczby iteracji, ale nie do spadku dokładności.

Wykres 1: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 2: Wykres liczby iteracji w zależności od ρ i x

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	-1.8e-03
Liczba iteracji	11
Wartość ρ	1.0e-10
Wartość początkowa x	-1.8

7.1.2 Kryterium wartości bezwzględnej wartości funkcji, $\rho \in [10^{-11},\ 10^{-20}]$

Na poniższych wykresach doskonale widać, że zmniejszenie wartości parametru ρ prowadzi w każdym przypadku do zwiększenia dokładności oraz liczby iteracji. Ponownie widać, że wybierając coraz bardziej oddalone punkty od prawdziej wartości pierwiastka otrzymujemy coraz większa liczbę iteracji.

Wykres 3: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 4: Wykres liczby iteracji w zależności od ρ i x

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	-5.7e-06
Liczba iteracji	19
Wartość ρ	1.0e-20
Wartość początkowa x	-0.9

7.1.3 Wartość bezwzględna różnicy dwóch ostatnich przybliżeń pierwiastka, $\rho \in [10^{-1},\ 10^{-10}]$

Jak widać, w tym przypadku sytuacja jest bardzo podobna. Również otrzymujemy dobre przybliżenie pierwiastka, jednak liczba potrzebnych iteracji jest niemal dwukrotnie większa, niż w przypadku krytrium stopu związageo z wartością bezwzględną wartości funkcji. Ponownie liczba iteracji zwiększa się wraz z wzrostem odległości od pierwiastka

Wykres 5: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 6: Wykres liczby iteracji w zależności od ρ i x

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	-1.1e-10
Liczba iteracji	35
Wartość ρ	1.0e-10
Wartość początkowa x	-1.8

7.1.4 Wartość bezwzględna różnicy dwóch ostatnich przybliżeń pierwiastka, $\rho \in [10^{-11}, 10^{-20}]$

Ponownie na poniższych wykresach doskonale widać, że zmniejszenie wartości parametru ρ prowadzi w każdym przypadku do zwiększenia dokładności oraz liczby iteracj oraz że wybierając coraz bardziej oddalone punkty od prawdziej wartości pierwiastka otrzymujemy coraz większa liczbę iteracji.

Wykres 7: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 8: Wykres liczby iteracji w zależności od ρ i x

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	-1.0e-20
Liczba iteracji	69
Wartość ρ	1.0e-20
Wartość początkowa x	-0.9

7.2 Wyniki dla metody siecznych

Wyniki zostały podzielone ze względu na kryterium stopu oraz wartości parametru ρ . Poza tym, w każdym przypadku jeden z początków przedziału stanowi początek lub koniec [a, b], a drugi $x \in [-1.8, 0.2]$. Z uwagi na to, że za każdym razem dla przedziału, który kończy lub zaczyna od 0.0 otrzymuję dokładną wartość pierwiastka. Pominąłęm przy szukaniu najlepszego przybliżenia i w tabelach pod mapami cieplnymi pokazane są drugie najlepsze przybliżenia.

7.2.1 Kryterium wartości bezwzględnej wartości funkcji, $\rho \in [10^{-1}, 10^{-10}]$, początek przedziału ustalony na -1.8

Jak widać na poniższym wykresie wszystkie wartości są bardzo zbliżone do szukanego pierwiastka. Natomiast z uwagi na specyfikę funkcji tj. f(0) = 0, dla przedziału [-1.8, 0.0] otrzymujemy dokładny wynik w pierwszej iteracji.

Wykres 9: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 10: Wykres liczby iteracji w zależności od ρ i x

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	-6.3e-06
Liczba iteracji	23
Wartość ρ	1.0e-10
Początek przedziału	-1.8
Koniec przedziału	-0.3

Tabela 1: Wartość drugiego najlepszego przybliżenia

7.2.2 Kryterium wartości bezwzględnej wartości funkcji, $\rho \in [10^{-11}, 10^{-20}]$, początek przedziału ustalony na -1.8

Ponownie zmniejszenie wartości ρ prowadzi do otrzymania lepszego przybliżenia (poza punktem 0.0).

Wykres 11: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 12: Wykres liczby iteracji w zależności od ρ i x

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	-6.6e-11
Liczba iteracji	46
Wartość ρ	1.0e-20
Początek przedziału	-1.8
Koniec przedziału	-0.2

Tabela 2: Wartość drugiego najlepszego przybliżenia

7.2.3 Kryterium wartości bezwzględnej wartości funkcji, $\rho \in [10^{-1}, 10^{-10}]$, koniec przedziału ustalony na 0.2

Otrzymane wyniki są bliskie szukanemu pierwiastkowi, a zmniejszenie parametru ρ prowadzi do zwiększenia dokładności. Ponownie najlepsze otrzymane przybliżenie jest tożsame z prawdziwą wartością pierwiastka.

Wykres 13: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 14: Wykres liczby iteracji w zależności od ρ i x

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	6.2-06
Liczba iteracji	26
Wartość ρ	1.0e-10
Początek przedziału	-0.4
Koniec przedziału	0.2

Tabela 3: Wartość drugiego najlepszego przybliżenia

7.2.4 Kryterium wartości bezwzględnej, $\rho \in [10^{-11}, 10^{-20}]$, koniec przedziału ustalony na 0.2

Zmniejszenie parametru ρ znacznie polepszyło otrzymane przybliżenie. Jak widać na mapie cieplnej przybliżena się bardzo bliskie szukanemu pierwiastkowi.

Wykres 15: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 16: Wykres liczby iteracji w zależności od ρ i x

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	6.7-11
Liczba iteracji	48
Wartość ρ	1.0e-20
Początek przedziału	-0.2
Koniec przedziału	0.2

Tabela 4: Wartość drugiego najlepszego przybliżenia

7.2.5 Wartość bezwzględna różnicy dwóch ostatnich przybliżeń pierwiastka, $\rho \in [10^{-1}, 10^{-10}]$, początek przedziału ustalony na -1.8

Jak widać na poniższym wykresie wszystkie wartości są bliskie szukanemu pierwiastkowi, poza wartościami, gdzie $\rho \in [1e-01, 1e-02]$. W tym przedzialem otrzymane przybliżenie jest dość słabe.

Wykres 17: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 18: Wykres liczby iteracji w zależności od ρ i x

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	-1.1e-10
Liczba iteracji	45
Wartość ρ	1.0e-10
Początek przedziału	-1.8
Koniec przedziału	-0.2

Tabela 5: Wartość drugiego najlepszego przybliżenia

7.2.6 Wartość bezwzględna różnicy dwóch ostatnich przybliżeń pierwiastka, $\rho \in [10^{-11}, 10^{-20}]$, początek przedziału ustalony na -1.8

Ponownie nie ma żadnych zaskoczeń, przybliżenie w każdym przypadku jest bardzo dobre i bliskie szukanej wartości.

Wykres 19: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 20: Wykres liczby iteracji w zależności od ρ i x

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	-1.0e-20
Liczba iteracji	103
Wartość ρ	1.0e-20
Początek przedziału	-1.8
Koniec przedziału	-1.7

Tabela 6: Wartość drugiego najlepszego przybliżenia

7.2.7 Wartość bezwzględna różnicy dwóch ostatnich przybliżeń pierwiastka, $\rho \in [10^{-1}, 10^{-10}]$, koniec przedziału ustalony na 0.2

W tym przypadku, przy wybraniu początku przedziału jako -0.2 lub -0.1 i wartości $\rho \in [1e-0.1, 1e08]$ przybliżenie jest bardzo złe podobnie dzieje się przy wybraniu poczatku przedziału jako liczbę z zakresu [-1.8, -0.3] i $\rho = 1e-01$ oraz początku przedziału z zakresu [-1.8, -1.3] i $\rho = 1e-02$.

Wykres 21: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 22: Wykres liczby iteracji w zależności od ρ i x

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	-1.1e-10
Liczba iteracji	103
Wartość ρ	1.0e-10
Początek przedziału	-0.2
Koniec przedziału	0.2

Tabela 7: Wartość drugiego najlepszego przybliżenia

7.2.8 Wartość bezwzględna różnicy dwóch ostatnich przybliżeń pierwiastka, $\rho \in [10^{-11}, 10^{-20}]$, koniec przedziału ustalony na 0.2

W tym przypadku już przybliżenie w każdej sytuacji jest dobre, i polepsza się wraz z zmniejszeniem wartości ρ .

Wykres 23: Wykres wartości pierwiastka w zależności od ρ i x

Wykres 24: Wykres liczby iteracji w zależności od ρ i x

Z uwagi na to, że za każdym razem dla przedziału, który kończy lub zaczyna od 0.0 otrzymuję dokładną wartość pierwiastka. Pominąłem ją w tym zestawieniu i w tabli poniżej przedstawiona została druga

Prawdziwa wartość pierwiastka	0.0
Najlepsze przybliżenie	-1.0e-20
Liczba iteracji	95
Wartość ρ	1.0e-20
Początek przedziału	-0.2
Koniec przedziału	0.2

8 Porównanie efektywności obu algorytmów

Na poniższych wykresach (25 i 26) wyraźnie widać, że metoda siecznych wykonuje znacznie więcej iteracji od metody newtona. Obie metody przy odpowiednio dobranym ρ dają akceptowalny wynik.

Wykres 25: Porównanie metody Newtona i Siecznych dla kryterium wartości bezwzględnej

Wykres 26: Porównanie metody Newtona i Siecznych dla kryterium wartości bezwzględnej różnicy dwóch ostatnich przybliżeń pierwiastka

9 Najlepsze otrzymane przybliżenie

Najlepsze przybliżenie otrzymałem przy wykorzystaniu metody siecznych, ustaleniu początku lub końca przedziału x=0.0 i dowolnej wartości ρ . Powodem tego jest, to że funkcja f dla wartości 0 również zwraca 0.

10 Wnioski

- Metoda Newtona wykonuje znacznie mniej iteracji i często zwraca lepsze przybliżenie
- Metoda siecznych nie wymaga znania pochodnej funkcji, co może być dużą zaletą