Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Д. С. Шевченко

Отчет по лабораторной работе «Построение управляющих автоматов с помощью генетических алгоритмов»

Вариант №14

Санкт-Петербург 2011

Постановка задачи	
Sugara oo ymiiom mypabbe S	0
Автомат Мура	
Эволюционная стратегия	
Функция приспособленности	
Мутации	
Результаты	_
Мутация номера следующего состояния	
Мутация выходного воздействия	
Мутация предиката	
Мутация номера стартового состояния1	
Проверка результатов1	
Заключение	
Источники1	

Постановка задачи

Задача лабораторной работы — исследовать эффективность применения различных вероятностей мутации для генов различного типа при генерации автоматов, решающих задачу об умном муравье-3. Эффективность применения мутации определяется значением функции приспособленности, усредненным по нескольким опытам с одинаковыми условиями.

Для решения задачи используется **(1+1)-эволюционная стратегия**. Способ представления особи — автомат Мура, представленный сокращенными таблицами.

Задача об умном муравье-3

В задаче используется квадратное поле размером 32 на 32 клетки, представляющее из себя поверхность тора. В каждой из клеток поля с вероятностью 5% перед запуском муравья располагается еда. Задача муравья — передвигаясь по соседним клеткам, собрать за **200** ходов как можно большую долю еды. За один ход муравей может совершить одно из следующих действий:

- перейти на одну клетку вперёд и, если там находится еда, забрать ее;
- повернуться на 90 градусов по часовой стрелке;
- повернуться на 90 градусов против часовой стрелки.

Перед каждым ходом муравей видит перед собой восемь клеток, из которых **четыре** могут влиять на его действие (рис. 1).

Рис. 1 — Видимые поля и предикат. Фрагмент визуализатора

Автомат Мура

Автомат Мура — детерминированный конечный автомат, выходные воздействия в котором зависят только от номера состояния. В задаче применяется автомат Мура первого рода (рис. 2): при переходе из одного состояния в другое выходное воздействие определяется старым состоянием. Переходы задаются сокращенными таблицами: среди восьми видимых клеток выделяются четыре, входящие в предикат, и для каждого возможного значения предиката из любого состояния существует ровно один переход.

Рис. 2 — Пример автомата Мура с входными воздействиями $\{0,1\}$ и выходными воздействиями $\{a,b,c\}$

Эволюционная стратегия

Алгоритм использует (1+1)-эволюционную стратегию. Первая особь-автомат генерируется случайно. В каждом последующем поколении существующая особь дублируется, и к дублю с некоторыми вероятностями последовательно применяются четыре мутации. После этого автоматы тестируются на 100 одинаковых для всех поколений случайных полях с вероятностью еды 5% в каждой клетке. Функция приспособленности усредняется по полям, и лучшая из двух особей переходит в следующее поколение.

Функция приспособленности

Функция приспособленности, или fitness-функция, — мера успешности особи при прохождении испытаний. В данной задаче функция бралась равной доле еды, собранной автоматом за 200 ходов.

Мутации

- В работе исследуется зависимость эффективности алгоритма от четырех видов мутации.
- 1. Мутация номера следующего состояния: случайно выбираются состояния автомата s, s' и маска предиката p, и переход из s по p заменяется на s'.
- 2. Мутация выходного воздействия: случайно выбираются состояние автомата s и действие t, и выходным воздействием для s становится t.
- 3. Мутация предиката: одно из четырех значимых полей заменяется на другое, не являвшееся значимым.
- 4. Мутация номера стартового состояния: стартовое состояние заменяется на случайное.

Результаты

Для определения зависимости эффективности алгоритма от вероятностей различных видов мутации проводилась серия опытов. В каждом из опытов значение вероятности тестируемой мутации являлось равным одному из следующих значений: 10%, 30%, 50%, 70%, 100%, — а для оставшихся видов мутации — 0%. Таким образом, предполагалось, что на зависимость эффективности алгоритма от вероятности конкретной мутации не влияют другие мутации.

Мутация номера следующего состояния

Применение мутации номера следующего состояния ведет к постоянному росту функции приспособленности (рис. 3). Это является особенностью данной мутации: мутирующих генов очень много, значит, много и возможностей улучшить поведение автомата. При стопроцентной мутации особи прогрессируют быстрее всего.

Рис. 3 — Зависимость функции приспособленности, усредненной по 100 запускам, от вероятности мутации номера следующего состояния

Мутация выходного воздействия

Стопроцентная мутация позволяет достичь лучших результатов, находя более эффективный автомат, но при этом прогресс останавливается уже после двухсотого поколения (рис. 4).

Рис. 4 — Зависимость функции приспособленности, усредненной по 100 запускам, от вероятности мутации выходного воздействия

Мутация предиката

Чем выше вероятность мутации, тем быстрее стабилизируется функция приспособленности (рис. 5). И если при 100% прогресс останавливается в достаточно низком локальном оптимуме, то при 10% автомат изменяется слишком медленно. Лучший результат показывается при 50% мутации.

Рис. 5 — Зависимость функции приспособленности, усредненной по 100 запускам, от вероятности мутации предиката

Мутация номера стартового состояния

Алгоритм, использующий 10% мутацию, сработал лучше своих аналогов с другими вероятностями (рис. 6), но это можно объяснить случайностью: слишком уж невелико поле изменяемых генов.

Рис. 6 — Зависимость функции приспособленности, усредненной по 100 запускам, от вероятности мутации номера стартового состояния

Проверка результатов

После получения результатов алгоритм был запущен с лучшими вероятностями мутаций. Был получен автомат (рис. 7), в среднем за 200 ходов успевающий собрать около 42,2% еды.

Рис. 7 — Визуализатор поля и лучшего из сгенерированных автоматов

В общем и целом, применение сразу четырех мутаций положительно сказывается на эффективности алгоритма (рис. 8).

Рис. 8— Зависимость функции приспособленности, усредненной по 20 запускам, от номера поколения при применении всех видов мутации

Заключение

В результате серии опытов была получена зависимость эффективности эволюционной стратегии от вероятностей мутации различных генов. Результат показывает, что постоянные попытки изменений не всегда позитивно влияют на свойства лучшего автомата, а малые вероятности мутации не дают возможности алгоритму вести быстрый и эффективный поиск. В качестве лучших значений можно порекомендовать:

- для мутации номера следующего состояния 100%;
- для мутации выходного воздействия 100%;
- для мутации предиката 50%;
- для мутации номера стартового состояния 10%.

Исходный код эволюционной стратегии, а также визуализатора графиков, поля и автомата можно найти в репозитории: https://github.com/shevchen/CleverAnt3.

Источники

1. Царев Ф. Н. Методы представления конечных автоматов в генетических алгоритмах .

 $\underline{http://rain.ifmo.ru/\sim}buzdalov/lab-2011/presentations/automata-representation.pdf$

2. Evolution Strategies.

http://www.scholarpedia.org/article/Evolution strategies

3. Sean Luke. The Mersenne Twister in Java.

http://www.cs.gmu.edu/~sean/research/

4. JfreeChart — Java chart library.

http://www.jfree.org/jfreechart/