Problem Set 4

Due Wednesday February 5, 4pm

Data Exercises

- (1) Extract data on the aggregate level of U.S. quarterly imports, seasonally adjusted, in real 2017 chained dollars, currently available for 1947Q1 through 2024Q4.¹ The FRED label is IMPGSC1. Create a time index.
 - (a) For the period 1947 2005, plot the level of imports, and its natural log, against time.
 - (b) By inspection, determine if the imports series is better represented using a linear or exponential trend.
 - (c) Estimate an exponential trend model using the estimation period 1947 2005. Report results.
 - (d) Generate point and 90% interval forecasts for the log-level of imports for 2006Q1-2024Q4. Plot the data (log-levels) up to 2005Q4 and your forecast for 2006Q1-2024Q4. Comment.
 - (e) Plot your forecasts against the actual data (log-levels) for 2006Q1-2024Q4. How did the forecast perform?
 - (f) Generate point and 90% interval forecasts for the level of imports for 2006 2024Q4. Plot the data (levels) up to 2005Q4 and your forecast for 2006Q1-2024Q4. Comment.
 - (g) Plot your forecasts against the actual data for 2006Q1-2024Q4. How did the forecast perform?
 - (h) Now re-estimate using the full sample 1947 2024Q4. Report results. Generate point and 90% interval forecasts for the level of imports for the next 16 quarters (4 years).
 - (i) Do the forecasts appear reliable or unreliable?

¹In matlab you can do this via fred(...) and fetch(...) commands.

Theoretical Questions

(2) Although this problem can be solved on a computer, try to solve it with a pen and paper (and maybe a calculator) to get a better feel for what is behind trend estimation. Your friend has a knitting business and she want to estimate a linear trend model without an intercept for her annual profit. She has five years of data:

Time	Profit
2020	300
2021	350
2022	630
2023	780
2024	1020

(a) Estimate a model

$$y_t = \beta \cdot t + \varepsilon_t, \ t = 1, \dots, 5$$

by minimizing the sum of squared residuals (i.e., by OLS) based on observed data.

- (b) Make a 5-year-ahead point forecast of your friend's profit.
- (3) In the trend model

$$y_t = T_t + \varepsilon_t, \quad T_t = \beta_0 + \beta_1 Time_t$$

suppose $\beta_1 > 0$.

- (a) Does this mean that the series y_t is expected to grow or decline in subsequent periods?
- (b) Does this mean that the series y_t will grow with certainty in every period?