Task 3

Generate a 500 element sample from $\mathcal{N}(1,1)$. Find \overline{X},S^2 , confint

Воспользуемся правилом двух сигм, которое дает нам 95(почти) процентный доверительный интервал для X

```
In [227]: conf_int <- c(mean - 2 * sd ** 2, mean + 2 * sd ** 2)
In [228]: conf_int
-1 3</pre>
```

Проеверим, сколько элементов выборки не попали в данный интервал

```
In [229]: out_number <- 0
for(elem in our_sample) {
    if ((elem < -1) || (3 < elem))
        out_number <- out_number + 1
}

In [230]: out_number

22

In [231]: out_number / sample_size # 0.044 Не попадает, то что мы и хотели)

0.044
```

Task4

Open given data, choose 3 regressors and build a linear regression. find \mathbb{R}^2 , and draw Q-Q plot on residuals from the model

```
In [76]: data4 <- read.table("./housing.data.txt")</pre>
```

In [356]: head(data4)

V1	V 2	V 3	V 4	V 5	V 6	V 7	V 8	V 9	V 10	V11	V12	V 13	V 14
0.00632	18	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
0.02985	0	2.18	0	0.458	6.430	58.7	6.0622	3	222	18.7	394.12	5.21	28.7

```
In [80]: data4_for_linreg <- data4[c('V3', 'V6', 'V8', 'V14')]</pre>
```

In [357]: head(data4_for_linreg)

V 3	V 6	V 8	V 14	
2.31	6.575	4.0900	24.0	
7.07	6.421	4.9671	21.6	
7.07	7.185	4.9671	34.7	
2.18	6.998	6.0622	33.4	
2.18	7.147	6.0622	36.2	
2.18	6.430	6.0622	28.7	

```
In [91]: summary(data4.lr1)
    print('-----')
    summary(data4.lr2)
    print('-----')
    summary(data4.lr3)
```

```
Call:
lm(formula = V14 ~ V3 + V6 + V8, data = data4 for linreg)
Residuals:
                      3Q
   Min
           1Q Median
                              Max
-17.676 -3.207 -0.365 2.686 39.548
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -19.41680 3.29971 -5.884 7.31e-09 ***
                    0.06142 -7.075 5.03e-12 ***
V3
           -0.43458
V6
           7.71008 0.43272 17.818 < 2e-16 ***
           V8
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.248 on 502 degrees of freedom
Multiple R-squared: 0.5413, Adjusted R-squared: 0.5385
F-statistic: 197.4 on 3 and 502 DF, p-value: < 2.2e-16
[1] "----"
Call:
lm(formula = V14 \sim V6 + V7 + V8, data = data4[c("V6", "V7", "V8",
   "V14")])
Residuals:
           1Q Median 3Q
   Min
                              Max
-21.179 -2.808 -0.215 2.166 40.505
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -21.87279 3.17796 -6.883 1.76e-11 ***
                    0.41047 20.563 < 2e-16 ***
           8.44063
V6
          V7
           V8
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.286 on 502 degrees of freedom
Multiple R-squared: 0.5356, Adjusted R-squared: 0.5328
F-statistic: 193 on 3 and 502 DF, p-value: < 2.2e-16
```

[1] "----"

```
Call:
          lm(formula = V14 \sim V5 + V11 + V13, data = data4[c("V5", "V11",
              "V13", "V14")])
          Residuals:
                         1Q Median
               Min
                                          3Q
                                                   Max
          -12.2428 -3.6412 -0.8629 1.8791 26.9049
          Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
          (Intercept) 54.05255 2.58783 20.887 <2e-16 ***
          V5
                     -0.01226
                                 2.75640 -0.004
                                                    0.996
          V11
                     -1.14528
                                 0.12834 -8.924 <2e-16 ***
                                  0.04736 -17.315 <2e-16 ***
                      -0.82006
          V13
          Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
          Residual standard error: 5.785 on 502 degrees of freedom
          Multiple R-squared: 0.6067, Adjusted R-squared: 0.6043
          F-statistic: 258.1 on 3 and 502 DF, p-value: < 2.2e-16
In [100]: print(c(summary(data4.lr1)$r.squared, 'fst model'))
          print(c(summary(data4.lr2)$r.squared, 'snd_model'))
          print(c(summary(data4.lr3)$r.squared, 'thrd model'))
          [1] "0.54127176772878" "fst model"
          [1] "0.535597869878533" "snd model"
          [1] "0.60665463084166" "thrd model"
In [110]: resid1 <- summary(data4.lr1)$residual</pre>
          resid2 <- summary(data4.lr2)$residual</pre>
          resid3 <- summary(data4.lr3)$residual</pre>
In [113]: | shapiro.test(resid1)
          shapiro.test(resid2)
          shapiro.test(resid3)
                  Shapiro-Wilk normality test
          data: resid1
          W = 0.89827, p-value < 2.2e-16
                  Shapiro-Wilk normality test
          data: resid2
          W = 0.88723, p-value < 2.2e-16
                  Shapiro-Wilk normality test
          data: resid3
          W = 0.89576, p-value < 2.2e-16
```

```
In [121]: | qqplot
           function (x, y, plot.it = TRUE, xlab = deparse(substitute(x)),
                ylab = deparse(substitute(y)), ...)
           {
                sx <- sort(x)</pre>
                sy <- sort(y)</pre>
                lenx <- length(sx)</pre>
                leny <- length(sy)</pre>
                if (leny < lenx)
                     sx \leftarrow approx(1L:lenx, sx, n = leny)$y
                if (leny > lenx)
                     sy \leftarrow approx(1L:leny, sy, n = lenx)$y
                if (plot.it)
                     plot(sx, sy, xlab = xlab, ylab = ylab, ...)
                invisible(list(x = sx, y = sy))
           }
In [123]: | qqqq <= qqnorm(resid1)</pre>
```



```
In [127]: qqnorm(resid1); qqline(resid1, col = 1)
    qqnorm(resid2); qqline(resid1, col = 2)
    qqnorm(resid3); qqline(resid1, col = 3)
```


Да и по графику видно, что они не распределены нормально, слишком уж сильно они отклоняются от прямой

Task 5

$$X \sim f(x), Y \sim g(x).$$
 $\frac{f(x)}{g(x)} \le c$

Algo: 1) Generate y from Y

2) assign value from first step as x, return to the step 1 otherwise

 $f(x) = 20x(1-x)^3, x \in [0,1]$, выбрав в качестве g(x) равномерную плотность на U[0,1].

```
In [140]: seq.gen <- function(c_val) {
    c = c_val
    function() {
        cur_val <- -1
        while (cur_val < runif(1)) {
            new_y <- runif(1)
            cur_val <- (20 * new_y * (1 - new_y) ** 3.) / c
        }
        return(cur_val)
        }
}</pre>
```

```
In [359]: ksi <- seq.gen(12)
```

0.136843833830102

Докажем, что действуя таким алгоритмом мы все же получим величину с нужной плотностью

$$P(X \le x) = P(Y < x \mid U \le \frac{f(Y)}{cg(Y)}) = \frac{P(Y < x, U \le \frac{f(Y)}{cg(Y)})}{P(U \le \frac{f(Y)}{cg(Y)})}$$

А это то же самое что и:

$$\int_{-\infty}^{x} \int_{cg(y)}^{f(y)} g(y)dudx$$

$$+\infty \int_{-\infty}^{f(y)} \int_{cg(y)}^{f(y)} g(y)dudx$$

$$-\infty \int_{0}^{\infty} g(y)dudx$$

где g - равномерное распределение. Тогда это превращается в

$$c \cdot \int_{-\infty}^{x} \frac{f(y)}{c} dy = \int_{-\infty}^{x} f(y) dy$$

О, так это и есть нужное нам распределение!

Task6 AIC & BIC

Прямой алгоритм отбора признаков по AIC (BIC) производится так: начинаем с 0 признаков в модели, далее подбираем модель с одним признаком, у которой наи- больший AIC (BIC), потом варьируем второй признак, считая первый признак уже включенным в модель, и так далее. Откройте выданные вам данные в R и реализуй- те на них (использовать bestglm нельзя) прямой алгоритм отбора признаков по AIC и BIC. Одинаковые ли модели получились? Как вы это объясните?

$$AIC = 2k + n(ln\frac{RSS}{n} + 1)$$

$$BIC = 2klnn + n(ln\frac{RSS}{n} + 1)$$

$$RSS = \sum_{i} (y_i - y_i^n)^2$$

```
In [339]: epsilon <- 1e-6
           prev aic <- 1e7
           cur aic <- 1e6
           top_columns <- c('V14')
           cols_to_test <- c('V14')</pre>
           remaining columns <- colnames(data4)[-14]
           while(prev_aic - cur_aic > epsilon || length(remaining_columns) > 0
           ) {
               best_column <- ''</pre>
               best aic <- 1e7
                for(column in remaining_columns) {
                    cols_to_test <- append(cols_to_test, column)</pre>
                    coeffs <- lm(data4[cols to test])$coefficients</pre>
                    y_hat <- c()
                    for(i in 1:nrow(data4[cols_to_test])) {
                         row <- data4[cols_to_test][i,]</pre>
                        y hat <- append(y hat, coeffs[1] + sum(coeffs[-1] * row
           [-1]))
                    rss <- sum((data4['V14'] - y_hat) ** 2)
                    k <- length(cols_to_test)</pre>
                    n <- length(y hat)</pre>
                    aic <-2 * k + n * (log(rss / n) + 1)
                    if(aic < best_aic) {</pre>
                        best_aic <- aic</pre>
                        best column <- column
                    cols_to_test <- head(cols_to_test, -1)</pre>
                top columns <- append(top columns, best column)</pre>
               remaining_columns <- setdiff(remaining_columns, best_column)</pre>
               cols_to_test <- top_columns</pre>
               prev_aic <- cur_aic</pre>
               cur_aic <- best_aic</pre>
           }
In [340]: top_columns # for AIC
               'V14' 'V13' 'V6' 'V11' 'V8' 'V5' 'V4' 'V12' 'V2' 'V1' 'V9' 'V10'
               'V3' 'V7'
In [341]: length(top_columns)
```

Чего и следовало ожидать, ведь у нас признаков не так уж и много, они все важны для нас

The same for BIC Model

14

```
In [344]: remaining columns
                'V1' 'V2' 'V3' 'V4' 'V5' 'V6' 'V7' 'V8' 'V9' 'V10' 'V11' 'V12'
               'V13'
In [349]: cols_to_test
               'V14' '' 'V1'
In [347]: cols to test[2]
In [353]: epsilon <- 1e-6
           prev_bic <- 1e20
           cur_bic <- 1e20
           top columns bic <- c('V14')
           cols_to_test <- c('V14')</pre>
           remaining columns <- colnames(data4)[-14]
           while(prev_bic - cur_bic > epsilon || length(remaining_columns) > 0
           ) {
               best_column <- ''</pre>
                best bic <- 1e15
                for(column in remaining_columns) {
                    cols to test <- append(cols to test, column)</pre>
                    coeffs <- lm(data4[cols_to_test])$coefficients</pre>
                    y_hat <- c()</pre>
                    for(i in 1:nrow(data4[cols to test])) {
                        row <- data4[cols to test][i,]</pre>
                        y hat <- append(y hat, coeffs[1] + sum(coeffs[-1] * row</pre>
           [-1]))
                    rss <- sum((data4['V14'] - y_hat) ** 2)
                    k <- length(cols to test)</pre>
                    n <- length(y_hat)</pre>
                    bic <-2 * k * log(n) + n * (log(rss / n) + 1)
                    if(bic < best bic) {</pre>
                        best bic <- bic
                        best_column <- column</pre>
                    cols to test <- head(cols to test, -1)</pre>
                top_columns_bic <- append(top_columns bic, best column)</pre>
                remaining_columns <- setdiff(remaining_columns, best_column)</pre>
                cols to test <- top columns bic
                prev_bic <- cur_bic</pre>
                cur bic <- best bic</pre>
           }
```

```
In [355]: length(top_columns_bic)
```

Все же модели оказались одинаковыми в с	илу
важности всех признаков, так как их не так	уж и
много при таком размере выборки	

In []:			
---------	--	--	--