Tổng quan về vi xử lý (microprocessor)

Electrical Engineering

1

Tổng quan

- 3.1 Lịch sử phát triển
- 3.2. Kiến trúc hệ Vi xử lý
- 3.3 Thành phần cơ bản hệ Vi xử lý
 - 3.3.1 Bus
 - 3.3.2 Rom
 - 3.3.3 Ram

Electrical Engineering

3.1.1 Định nghĩa

- Mạch vi xử lý là vi mạch cỡ cực lớn (VLSI), trên đó có thể xử lý được dữ liệu theo một thuật toán xác định
- Cấu tạo
 - Phần cứng (phần vi mạch điện tử)
 - Phần mềm (phần tập lệnh gắn chặt với phần cứng)
- Vi xử lý 4bit, 8 bit, 16 bit, 32 bit, 64 bit

Electrical Engineering

3

3.1.2 Phân biệt các loại máy tính

- Mainframe: dùng sử lý khối lượng thông tin phức tạp, tốc độ cao, IBM 4381, Honeywell DSP8, Crây, kết hợp nhiều hệ VXL lại
- Máy tính con (minicomputer), xử lý dữ liệu ít hơn và dung lượng nhỏ hơn(VAX 6360 DEC)
- Máy vi tính xử dụng các hệ vi xử lý

Electrical Engineering

3.1.3 Máy tính Việt nam

- Máy tính Việt nam ra đời (VT81,VT82)
- Trương Trọng Thi, Micral
 - http://www.pcworld.com.vn/pcworld/magazine. asp?t=mzdetail&atcl_id=5f5e5c585d5a5f

8

Electrical Engineering

3.1.3 Lịch sử phát triển (tiếp)

- Hệ DSP (Digital Signal Processing)
 - Texax Instruments (TMS 320...)
- Atmel phát triển ARM
- Motorola –
 Freescale phát triển ColdFire

Architecture	Processor	Manufacturer
AMD	Aulxxx	Advanced Micro Devices,
ARM	ARM7, ARM9,	ARM,
C16X	C167CS, C165H, C164CI,	Infincon,
ColdFire	5282, 5272, 5307, 5407,	Motorola/Freescale,
1960	1960	Vmetro,
M32/R	32170, 32180, 32182, 32192,	Renesas/Mitsubishi,
M Core	MMC2113, MMC2114,	Motorola/Freescale
MIPS32	R3K, R4K, 5K, 16,	MTI4kx, IDT, MIPS Technologies,
NEC	Vr55xx, Vr54xx, Vr41xx	NEC Corporation,
PowerPC	82xx, 74xx,8xx,7xx,6xx,5xx,4xx	IBM, Motorola/Freescale,
68k	680x0 (68K, 68030, 68040, 68060,), 683xx	Motorola/Freescale,
SuperH (SH)	SH3 (7702,7707, 7708,7709), SH4 (7750)	Hitachi,
SHARC	SHARC	Analog Devices, Transtech DSP, Radstone,
strongARM	strongARM	Intel
SPARC	UltraSPARC II	Sun Microsystems,
TMS320C6xxx	TMS320C6xxx	Texas Instruments,
x86	X86 [386,486,Pentium (II, III, IV)]	Intel, Transmeta, National Semiconductor, Atlas,
TriCore	TriCore1, TriCore2,	Infineon,

Electrical Engineering

3.2.1 Các kiến trúc thông dụng của Vi xử lý

- Kiến trúc Von Neumann (1903-1957)
 CPU sử dụng chung đường bus cho đọc/ghi dữ liệu từ bộ nhớ và từ chương trình
- Hai quá trình tương tác với lệnh hoặc với dữ liệu không thể thực hiện cùng lúc.
- Bộ lọc Von Neumann là thỏa đáng khi chúng ta quan tâm đến việc thực hiện các nhiệm vụ tuần tư.
- Hầu hết các vi xử lý hiện tại đều sử dụng thiết kế Von Neumann.

Electrical Engineering

3.2.1 Kiến trúc Havard

- Kiến trúc Harvard được nghiên cứu tại Harvard do Howard Aiken (1900-1973)
- Đường bus dữ liệu và chương trình được cung cấp độc lập
- Hầu hết các bộ xử lý DSP hiện nay sử dụng kiến trúc 2 bus này. AVR Atmel, dsPIC RIST

Electrical Engineering

3.2.2 Kiến trúc SHARC

- **Kiến trúc SHARC** Super Harvard Architecture sử dụng bởi Analog Devices trong chip ADSP-2106, 2111
- Tương tự kiến trúc Harvard nhưng thêm kết nối giữa CPU và bộ nhỡ chương trình.
- Điều này cho phép đọc dữ liệu hằng nhanh chóng mà không phải copy dữ liệu chương trình vào bộ nhớ RAM trước

Electrical Engineering

3.3 Đặc tính chung

- Số bít: 4 bit, 8 bit, 16 bit, 32 bit
- Số chân tín hiệu:
 - 12, 16, 28, 40 chân cho VXL 8 bit
 - 68 chân VXL 32 bit
 - 168 chân VXL 64 bit
 - Tương ứng với các chân là khả năng kiểm soát bộ nhớ 2ⁿ

Electrical Engineering

14

3.3.1 Đặc tính chung

- Tần số xung nhịp (1MH 3.2 GHZ)
- Tính năng ứng dụng:
 - Loại độc lập (one chip)
 - Mạch VXL đa năng

Electrical Engineering

3.3.2 Cấu trúc chung của hệ thống vi xử lý VXL 8051 ROM RAM RAM RAM RAM RAM REctrical Engineering

3.3.1 Các phần cơ bản hệ VXL

- Bộ vi xử lý (processor)
- Bộ nhớ (memory)
- Ghép nối (I/O, interface)

Electrical Engineering

3.3.2 Processor

- Thực hiện chương trình lưu trong bộ nhớ theo thứ tự
- Tập hợp lệnh gồm
 - Chuyển dữ liệu (MOV)
 - Phép toán và logic
 - Lệnh điều kiện và rẽ nhánh

Electrical Engineering

3.3.2 Thanh ghi

- Cho phép lưu trữ các giá trị tạm thời
- Các thanh ghi 8bit, 16 bit, 32bit tùy từng loại CPU
- Thanh ghi cơ bản như PC, Accumulator

Electrical Engineering

2

3.3.2 Memory

- Tập hợp nhiều thanh ghi để lưu trữ dữ liệu dưới dạng nhị phân
- ROM, RAM
- Mỗi thanh ghi nhớ có địa chỉ duy nhất

8

Electrical Engineering

3.3.2 Interface (I/0)

- Thanh ghi để ghép nối với thiết bị bên ngoài
- Có thể là thanh ghi nhớ nằm ở các vị trí đặc biệt trong RAM
- Ví du, 8051, SFR 91, serial
- Ví dụ như vi mạch ghép nôi 8255

Electrical Engineering

3.3.3 BUS

- Bus là tập các dây dẫn nối song song với nhau (bên trong VXL hoặc bên ngoài) đề truyền thông tin
 - Bus Địa chỉ
 - Bus Dữ liêu
 - Bus Điều khiển
- Trong VXL, các thanh ghi, ALU, thiết bị ngoại vi ghép nối với nhau thông qua đường BUS
- Bus điều khiển Mạch thời gian và điều khiển đảm bảo rằng mỗi loại tín hiệu sử dụng đường BUS tại một thời điểm xác định (RD/WD)

Electrical Engineering

29

3.3.3 Bus địa chỉ/dữ liệu

- Bộ nhớ và thiết bị ngoại vi nhận dạng bởi CPU thông qua bus địa chỉ
 - Địa chỉ cho mỗi thiết bị là duy nhất
 - CPU đặt địa chỉ lên đường bus và mạch giải mã (decoder) nhiệm vụ tìm ra thiết bị tương ứng
- Trong mạch vi xử lý 8 bit, 8bit BUS chứa dữ liệu và 16 bít BUS chứa đia chỉ
 - Bus dữ liệu cho phép truyền và nhận dữ liệu từ thiết bị
- Ghép nối để mở rộng dung lượng nhớ (ROM, RAM), mở rộng số cổng vào ra
- Tối đa 16 bít địa chỉ, 65536 byte.

Electrical Engineering

3.3.4 Bộ nhớ

• Định nghĩa:

Là thiết bị dùng để lưu trữ thông tin gồm chương trình và dữ liệu

- Phân loại:
 - Bộ nhớ chính: là bộ nhớ hoạt động, yêu cầu tốc độ cao. Chế tạo dưới dạng bộ nhớ bán dẫn. VD: RAM
 - Bộ nhớ phụ: yêu cầu cao về dung lượng lưu trữ và thời gian lưu trữ. VD: ROM, HDD...

Electrical Engineering

3

3.3.4 Tổ chức của bộ nhớ:

Bộ nhớ được tạo thành từ các ô nhớ sắp xếp cạnh nhau về mặt logic. Các tham số của ô nhớ gồm:

- Vị trí (logic) của ô nhớ: là địa chỉ của ô nhớ, do bus địa chỉ truyền đi trong hệ
- Nội dung của ô nhớ: là dữ liệu chứa trong ô nhớ, do bus dữ liệu truyền đi trong hệ. Thông thường, mỗi ô nhớ có độ lớn là 8bit (1byte)
- Quản lý bộ nhớ bằng phương pháp địa chỉ hóa các ô nhớ

Electrical Engineering

3.3.4 Các phương pháp địa chỉ hóa ô nhớ - Phương pháp địa chỉ tuyệt đối: • Địa chỉ của một ô nhớ chính là khoảng cách của nó so với địa chỉ gốc • Địa chỉ gốc thường được xác định là 0 • Ứng dụng cho các loại bộ nhớ dung lượng nhỏ

11 10 15 ô nhớ

3.3.4 Phương pháp địa chỉ đoạn (tiếp)

- Các thiết bị lưu trữ địa chỉ ô nhớ có kích thước nhỏ
 - Ví dụ: 8085A địa chỉ hóa ô nhớ bằng 16bit -> Dùng 2 thanh ghi 8bit, 1 thanh ghi chứa địa chỉ segment, 1 chứa đia chỉ offset
 - Quản lý được bộ nhớ có dung lượng lớn
- Không gian nhớ: toàn bộ địa chỉ có thể địa chỉ hóa được của bộ nhớ
 - Nếu bus địa chỉ có n bit thì không gian nhớ là 2ⁿ địa chỉ

Electrical Engineering

3

3.3.4 Bản đồ bộ nhớ:

- cho thấy bộ nhớ hay các thiết bị có kết nối với bus địa chỉ được đặt ở đâu trong không gian nhớ
- Ví du:

Electrical Engineering

36 ₃₆

3.3.5 Thiết bị nhớ

- Đối với Vi xử lý, 2 loại bộ nhớ chính :
 - ROM (Read only memory)
 - RAM (Random access memory), (read and write memory)

Electrical Engineering

37

3.3.5 EPROM (Erasable PROM)

- ROM có thể lập trình được nhiều lần
- One-time programmable (OTP) EPROM
- EEPROM electrically erasable PROMs
 - Giáo tiếp sử dụng I2C như 2401,2402
- Flash EPROMs

Electrical Engineering

3.3.5 Đọc bộ nhớ

- Ví trí đọc đưa vào bus địa chỉ
- Lệnh READ gửi tới bộ nhớ
- Dữ liệu truyền từ bộ nhớ lên Bus dữ liệu

Electrical Engineering

3.3.6 RAM

- Static RAM
 - Battery-backed CMOS SRAM
- Dynamic RAM

Electrical Engineering

43

3.3.6 Static RAM

- Mỗi bít dữ liệu được lưu trữ bởi cặp flip-flop
- Cấu trúc đơn giản
- Ghi và xóa tín hiệu bằng điên
- Dữ liệu mất đi khi mất điện
- Tiêu thụ năng lượng lớn khi có điện
- Kích thước lớn khi dung lượng lớn
- 6216, 6232, ..62256

