Funções

Patrick Terrematte

UFRN patrickt@imd.ufrn.br

2022.2

Patrick (UFRN) FMC2 2022.2 1/38

Agenda

¶ Funções

FUNCÕES

Definição de Função

função parcial é relação na qual cada elemento do domínio está relacionado com, no máximo (exatamente), um elemento da Imagem (contra-domínio)

```
[CC] Para cada indivíduo a de A há no máximo
                                                                          (função parcial)
            um indivíduo b de B tal que a \stackrel{f}{\mapsto} b
Formalmente: (\forall a:A)(\forall b, c:B)((a \xrightarrow{t} b \land a \xrightarrow{t} c) \rightarrow b = c)
[MAT] Para todo indivíduo a de A há exatamente
                                                                             (função total)
             um indivíduo b de B tal que a \stackrel{f}{\mapsto} b
Formalmente: (\forall a:A)(\exists!b:B) \ a \stackrel{f}{\mapsto} b
```

3 / 38

Patrick (UFRN) FMC₂

Definição de Função

Dizemos que uma relação f é uma **função** se, para todo $a \in Dom(f)$, existe exatamente um b tal que $(a,b) \in f$ (ou a f b). Nesse caso, dizemos que f(a) = b.

Observação: Funções são Relações

Toda função é uma relação

- Domínio Dom(f) e Imagem Img(f)
- Relação Composta g o f de f com g (também é Função)
- Relação Inversa f⁻¹ de f (nem sempre é Função)

Patrick (UFRN) FMC2 2022.2 4/38

Definição de Função

Dizemos que uma relação f é uma **função** se, para todo $a \in Dom(f)$, existe exatamente um b tal que $(a,b) \in f$ (ou a f b). Nesse caso, dizemos que f(a) = b.

Observação: Funções são Relações

Toda função é uma relação.

- Domínio Dom(f) e Imagem Img(f)
- Relação Composta g o f de f com g (também é Função)
- Relação Inversa f^{-1} de f (nem sempre é Função)

Definição de Função

Dizemos que uma relação f é uma **função** se, para todo $a \in Dom(f)$, existe exatamente um b tal que $(a,b) \in f$ (ou a f b). Nesse caso, dizemos que f(a) = b.

Observação: Funções são Relações

Toda função é uma relação.

- Domínio Dom(f) e Imagem Img(f)
- Relação Composta $g \circ f$ de f com g (também é Função)
- Relação Inversa f^{-1} de f (nem sempre é Função)

Definição de Função

Dizemos que uma relação f é uma **função** se, para todo $a \in Dom(f)$, existe exatamente um b tal que $(a,b) \in f$ (ou a f b). Nesse caso, dizemos que f(a) = b.

Observação: Funções são Relações

Toda função é uma relação.

- Domínio Dom(f) e Imagem Img(f)
- Relação Composta $g \circ f$ de f com g (também é Função)
- Relação Inversa f^{-1} de f (nem sempre é Função)

$$f = \{\langle a, 1 \rangle, \langle c, 4 \rangle, \langle d, 5 \rangle\}$$

$$g = \{\langle 1, x \rangle, \langle 2, y \rangle, \langle 4, y \rangle, \langle 5, z \rangle\}$$

 $g \circ f = \{\langle a, x \rangle, \langle c, z \rangle, \langle d, z \rangle\}$

Patrick (UFRN) FMC2 2022.2 5/38

 $g \circ f = \{\langle a, x \rangle, \langle c, z \rangle, \langle d, z \rangle\}$

Patrick (UFRN) FMC2 2022.2 5/38

Patrick (UFRN) FMC2 2022.2 5/38

$$f = \{\langle a, 1 \rangle, \langle c, 4 \rangle, \langle d, 5 \rangle\}$$

$$g = \{\langle 1, x \rangle, \langle 2, y \rangle, \langle 4, y \rangle, \langle 5, z \rangle\}$$

$$g \circ f = \{\langle a, x \rangle, \langle c, z \rangle, \langle d, z \rangle\}$$

Patrick (UFRN) FMC2 2022.2 5 / 38

 $g\circ f$: relação composta de f com g é função

$$(x,z) \in g \circ f \Longrightarrow \exists y : (x,y) \in f \land (y,z) \in g$$

 $\Longrightarrow y = f(x) \land z = g(y)$
 $\Longrightarrow z = g(f(x))$

 $g \circ f(x) = g(f(x))$ é apenas um valor: $g \circ f$ é função

- $Dom(g \circ f) = Dom(f)$.
- $Im(g \circ f) \subseteq Im(g)$.
- $\bullet \ \mathsf{Se} \ f: A \to B \ \mathsf{e} \ g: B \to C, \ \mathsf{ent} \tilde{\mathsf{ao}} \ g \circ f: A \xrightarrow{} \mathcal{C} \\ \\ \bullet \ \ \mathsf{Se} \ f: A \to B \ \mathsf{e} \ g: B \to C, \ \mathsf{ent} \tilde{\mathsf{ao}} \ \mathsf{ent} \\ \mathsf{ent} \tilde{\mathsf{ao}} \mathsf{ent} \tilde{\mathsf{ent}} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{en$

 $g\circ f$: relação composta de f com g é função

$$(x,z) \in g \circ f \Longrightarrow \exists y : (x,y) \in f \land (y,z) \in g$$

 $\Longrightarrow y = f(x) \land z = g(y)$
 $\Longrightarrow z = g(f(x))$

 $g \circ f(x) = g(f(x))$ é apenas um valor: $g \circ f$ é função.

- $Dom(g \circ f) = Dom(f)$.
- $Im(g \circ f) \subseteq Im(g)$.
- $\bullet \ \mathsf{Se} \ f: A \to B \ \mathsf{e} \ g: B \to C, \ \mathsf{ent} \tilde{\mathsf{ao}} \ g \circ f: A \xrightarrow{} C \\ \\ \bullet \ \mathsf{pos} \$

 $g\circ f$: relação composta de f com g é função

$$(x,z) \in g \circ f \Longrightarrow \exists y : (x,y) \in f \land (y,z) \in g$$

 $\Longrightarrow y = f(x) \land z = g(y)$
 $\Longrightarrow z = g(f(x))$

 $g\circ f(x) \ = \ g(f(x))$ é apenas um valor: $g\circ f$ é função.

- $Dom(g \circ f) = Dom(f)$.
- $Im(g \circ f) \subseteq Im(g)$.
- $\bullet \ \mathsf{Se} \ f: A \to B \ \mathsf{e} \ g: B \to C, \ \mathsf{ent} \tilde{\mathsf{ao}} \ g \circ f: A \xrightarrow{} \mathcal{C} \\ \\ \bullet \ \ \mathsf{Se} \ f: A \to B \ \mathsf{e} \ g: B \to C, \ \mathsf{ent} \tilde{\mathsf{ao}} \ \mathsf{ent} \\ \mathsf{ent} \tilde{\mathsf{ao}} \mathsf{ent} \tilde{\mathsf{ent}} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \ \mathsf{ent} \\ \mathsf{ent} \ \mathsf{ent}$

Patrick (UFRN) FMC2 2022.2 6/38

 $g\circ f$: relação composta de f com g é função

$$(x,z) \in g \circ f \Longrightarrow \exists y : (x,y) \in f \land (y,z) \in g$$

 $\Longrightarrow y = f(x) \land z = g(y)$
 $\Longrightarrow z = g(f(x))$

 $g \circ f(x) = g(f(x))$ é apenas um valor: $g \circ f$ é função.

- $Dom(g \circ f) = Dom(f)$.
- $Im(g \circ f) \subset Im(g)$.
- Se $f:A\to B$ e $g:B\to C$, então $g\circ f:A\xrightarrow{}C$

FUNÇÕES - Domínio, Imagem

Definição de Domínio

• $Dom(f) = \{a : \exists b, f(a) = b\}$

Definição de Imagem

- $Img(f) = \{b : \exists a, f(a) = b\}$
- Alternativamente.

```
Para quaisquer conjuntos A B,

\forall f: A \rightarrow B,

\forall y,

y \in f(A) \stackrel{\text{def}}{=} \exists x, (x \in A \land y = f(x))
```

Patrick (UFRN) FMC2 2

FUNÇÕES - ContraDomínio

```
Notação f:A \rightarrow B e Contra Domínio
```

Escrevemos $f: A \rightarrow B$ quando Dom(f) = A e $Img(f) \subseteq B$.

Nessa notação, dizemos que B é o **ContraDomínio** de f.

Contra Domínio só faz sentido na notação $f: A \rightarrow B$.

Patrick (UFRN) FMC2 2022.2 8 / 38

Sejam S=0,2,4,6 e T=1,3,5,7. Determine se cada um dos conjuntos de pares ordenados a seguir é uma função com domínio S e contradomínio T. Se esse for o caso, a função é injetora? É sobrejetora?

- {(0,2),(2,4),(4,6),(6,0)}
- {(6,3),(2,1),(0,3),(4,5)}
- $\{(2,3),(4,7),(0,1),(6,5)\}$
- \bullet {(2,1), (4,5), (6,3)}
- \bullet {(6,1), (0,3), (4,1), (0,7), (2,5)}

Patrick (UFRN) FMC2 2022.2 9/38

Sejam S=0,2,4,6 e T=1,3,5,7. Determine se cada um dos conjuntos de pares ordenados a seguir é uma função com domínio S e contradomínio T. Se esse for o caso, a função é injetora? É sobrejetora?

- {(0,2), (2,4), (4,6), (6,0)}
- \bullet {(6,3), (2,1), (0,3), (4,5)}
- $\{(2,3),(4,7),(0,1),(6,5)\}$

9 / 38

Patrick (UFRN) FMC₂

Sejam S=0,2,4,6 e T=1,3,5,7. Determine se cada um dos conjuntos de pares ordenados a seguir é uma função com domínio S e contradomínio T. Se esse for o caso, a função é injetora? É sobrejetora?

- {(0,2),(2,4),(4,6),(6,0)}
- {(6,3),(2,1),(0,3),(4,5)}
- {(2,3), (4,7), (0,1), (6,5)}
- $\{(2,1),(4,5),(6,3)\}$
- {(6,1),(0,3),(4,1),(0,7),(2,5)}

9 / 38

Patrick (UFRN) FMC2 2022.2

Sejam S=0,2,4,6 e T=1,3,5,7. Determine se cada um dos conjuntos de pares ordenados a seguir é uma função com domínio S e contradomínio T. Se esse for o caso, a função é injetora? É sobrejetora?

- {(0,2), (2,4), (4,6), (6,0)}
- {(6,3), (2,1), (0,3), (4,5)}
- \bullet {(2,3), (4,7), (0,1), (6,5)}
- \bullet {(2,1), (4,5), (6,3)}
- {(6,1),(0,3),(4,1),(0,7),(2,5)}

9 / 38

Patrick (UFRN) FMC₂

Sejam S=0,2,4,6 e T=1,3,5,7. Determine se cada um dos conjuntos de pares ordenados a seguir é uma função com domínio S e contradomínio T. Se esse for o caso, a função é injetora? É sobrejetora?

- {(0,2),(2,4),(4,6),(6,0)}
- {(6,3),(2,1),(0,3),(4,5)}
- {(2,3), (4,7), (0,1), (6,5)}
- $\{(2,1),(4,5),(6,3)\}$
- {(6,1),(0,3),(4,1),(0,7),(2,5)}

9 / 38

Patrick (UFRN) FMC2 2022.2

Seja S = o conjunto de todos os cidadãos brasileiros vivos. Quais dessas funções são injetoras? Quais são sobrejetoras?

- Contradomínio = o alfabeto, f(pessoa) = inicial do segundo nome da pessoa.
- Contradomínio = o conjunto de datas entre 1.o de janeiro e 31 de dezembro, f(pessoa) = dia do nascimento da pessoa.
- Ontradomínio = números com 11 algarismos; f (pessoa) = o número do CPF da pessoa.

Patrick (UFRN) FMC2

Seja S = o conjunto de todos os cidadãos brasileiros vivos. Quais dessas funções são injetoras? Quais são sobrejetoras?

- Contradomínio = o alfabeto, f(pessoa) = inicial do segundo nome da pessoa.
- ② Contradomínio = o conjunto de datas entre 1.0 de janeiro e 31 de dezembro, f(pessoa) = dia do nascimento da pessoa.
- Ontradomínio = números com 11 algarismos; f (pessoa) = o número do CPF da pessoa.

Patrick (UFRN) FMC2 2022

Seja S = o conjunto de todos os cidadãos brasileiros vivos. Quais dessas funções são injetoras? Quais são sobrejetoras?

- Contradomínio = o alfabeto, f(pessoa) = inicial do segundo nome da pessoa.
- ② Contradomínio = o conjunto de datas entre 1.0 de janeiro e 31 de dezembro, f(pessoa) = dia do nascimento da pessoa.
- Ontradomínio = números com 11 algarismos; f (pessoa) = o número do CPF da pessoa.

Patrick (UFRN) FMC2 2022.2 10/38

FUNÇÕES - Inversa

Relação Inversa de uma função f

- $f^{-1} = \{ (f(x), x) : x \in Dom(f) \}$
- Alternativamente,

```
Para quaisquer conjuntos A B,

\forall f : A \rightarrow B,

\forall x,

x \in f^{-1}(B) \stackrel{\text{def}}{=} (x \in A \land f(x) \in B)
```

Patrick (UFRN) FMC2

FUNÇÕES - Inversa - Exercício

Exercício 1

 $f: \mathbf{R} \to \mathbf{R}$. Determine se a inversa é uma função.

- (a) $f(x) = x^3$.
- (b) $f(x) = e^x$.
- (c) f(x) = sen(x).
- (d) $f(x) = x^5 + x$.
- (e) $f(x) = x^5 x$.

Solução

- (a) $f^{-1}(x) = x^{1/3}$. SIM é função
- (b) $f^{-1}(x) = \ell n(x)$. SIM é função
- (c) $f^{-1}(x) = arcsen(x)$. NÃO é função, pois $f(2\pi) = f(0) = 0$
- (d) $f^{-1}(x)$ SIM é função, pois $f'(x) = 5x^4 + 1 > 0 \implies f$ é estritamente crescente
- (e) $f^{-1}(x)$ NÃO é função, pois f(0) = f(1) = 0

Patrick (UFRN) FMC2 2022.2 12 / 38

FUNÇÕES - Inversa - Exercício

Exercício 1

 $f: \mathbf{R} \to \mathbf{R}$. Determine se a inversa é uma função.

- (a) $f(x) = x^3$.
- (b) $f(x) = e^x$.
- (c) f(x) = sen(x).
- (d) $f(x) = x^5 + x$.
- (e) $f(x) = x^5 x$.

Solução:

- (a) $f^{-1}(x) = x^{1/3}$. SIM é função.
- (b) $f^{-1}(x) = \ell n(x)$. SIM é função.
- (c) $f^{-1}(x) = arcsen(x)$. NÃO é função, pois $f(2\pi) = f(0) = 0$
- (d) $f^{-1}(x)$ SIM é função, pois $f'(x) = 5x^4 + 1 > 0 \implies f$ é estritamente crescente.
- (e) $f^{-1}(x)$ NÃO é função, pois f(0) = f(1) = 0

Patrick (UFRN) FMC2 2022.2 12 / 38

FUNÇÕES - Injetora, Sobrejetora, Bijetora

Uma função injetiva, mas não sobrejetiva (**injeção**, mas é não uma bijeção)

Uma função injetiva e sobrejetiva (bijeção)

Uma função sobrejetiva, mas não injetiva (sobrejeção, não é uma bijeção)

Uma função nem injetiva, nem sobrejetiva (também não é uma bijeção)

FUNÇÕES - Injetora, Sobrejetora, Bijetora

f é Injetora

Uma função f é Injetora se e só se:

- $f(x_1) = f(x_2) \implies x_1 = x_2$ para todo $x_1, x_2 \in Dom(f)$; ou seja,
- $\forall y \in Im(f) : \exists !x \in Dom(f), f(x) = y$

14 / 38

Patrick (UFRN) FMC2

FUNÇÕES - Injetora, Sobrejetora, Bijetora

f é Injetora

Uma função f é Injetora se e só se:

• $\forall x_1, x_2 \in Dom(f), (x_1 \neq x_2 \implies f(x_1) \neq f(x_2)).$

Patrick (UFRN) FMC2 2022.2 15/38

FUNÇÕES - Sobrejetora

```
f:A \rightarrow B é Sobrejetora
```

Uma função $f: A \to B$ é Sobrejetora se e só se Im(f) = B. Ou seja, $\forall y \in B: \exists x \in A, f(x) = y$.

Para quaisquer conjuntos A B,

 $\forall f : \mathbf{A} \rightarrow \mathbf{B},$

f é uma função sobrejetiva $\stackrel{\text{def}}{=} \forall y, (y \in B \Rightarrow \exists x, (x \in A \land y = f(x)))$

16 / 38

Patrick (UFRN) FMC2 2022.2

FUNÇÕES - Bijetora

$$f: A \rightarrow B$$
 é Bijetora

Uma função $f: A \rightarrow B$ é Bijetora se é injetora e sobrejetora.

Patrick (UFRN) FMC2 2022.2 17/38

FUNÇÕES - Imagem

$$f(A) = \{f(x) : x \in A \cap Dom(f)\}$$

$$\bullet \ x \in A \Rightarrow f(x) \in f(A)$$

$$\bullet \ f(x) \in f(A) \implies x \in A \quad \text{(contraexemplo: } f(x) = 7, \forall x \in Z\text{)}$$

FUNÇÕES - Imagem

```
f(A) = \{f(x) : x \in A \cap Dom(f)\}\
```

- $x \in A \Rightarrow f(x) \in f(A)$
- $f(x) \in f(A) \not\Rightarrow x \in A$ (contraexemplo: $f(x) = 7, \forall x \in Z$)

Patrick (UFRN) FMC2 2022.2 18 / 38

FUNÇÕES - Imagem Reversa de conjunto

Sejam f uma função, A, B subconjuntos de Dom(f) e U, V subconjuntos de Img(f).

```
f^{-1}(U) = \{x \in Dom(f) : f(x) \in U\}
• f(x) \in U \iff x \in f^{-1}(U)
• f(f^{-1}(U)) = U \cap Img(f)
f(f^{-1}(U)) = \{f(x) : x \in f^{-1}(U)\}
= \{f(x) : f(x) \in U\}
= U \cap Img(f)
```

Patrick (UFRN) FMC2 2022.2 19 / 38

Sejam f uma função, A, B subconjuntos de Dom(f) e U, V subconjuntos de Img(f).

$$f^{-1}(U) = \{x \in Dom(f) : f(x) \in U\}$$
• $f(x) \in U \iff x \in f^{-1}(U)$

•
$$f(f^{-1}(U)) = U \cap Img(f)$$

$$f(f^{-1}(U)) = \{f(x) : x \in f^{-1}(U)\}\$$

= \{f(x) : f(x) \in U\}
= U \cap \limplift[\text{Img}(f)

Patrick (UFRN) FMC2

Conclusões para $C \subseteq Img(f)$:

- $f(x) \in C \iff x \in f^{-1}(C)$
- $x \in A \Longrightarrow f(x) \in f(A) \Longleftrightarrow x \in f^{-1}(f(A))$
- $f(x) \in C \iff x \in f^{-1}(C) \iff f(x) \in f(f^{-1}(C))$
- Conclusões: $f^{-1}(f(A)) \supseteq A$ e $f(f^{-1}(C)) = C$

20 / 38

Patrick (UFRN) FMC2 2022.2

Conclusões para $C \subseteq Img(f)$:

- $f(x) \in C \iff x \in f^{-1}(C)$
- $x \in A \Longrightarrow f(x) \in f(A) \Longleftrightarrow x \in f^{-1}(f(A))$
- $f(x) \in C \iff x \in f^{-1}(C) \iff f(x) \in f(f^{-1}(C))$
- Conclusões: $f^{-1}(f(A)) \supseteq A$ e $f(f^{-1}(C)) = C$

Patrick (UFRN) FMC2

Conclusões para $C \subseteq Img(f)$:

- $f(x) \in C \iff x \in f^{-1}(C)$
- $x \in A \Longrightarrow f(x) \in f(A) \Longleftrightarrow x \in f^{-1}(f(A))$
- $f(x) \in C \iff x \in f^{-1}(C) \iff f(x) \in f(f^{-1}(C))$
- Conclusões: $f^{-1}(f(A)) \supseteq A$ e $f(f^{-1}(C)) = C$

20 / 38

Patrick (UFRN) FMC2 2022.2

Conclusões para $C \subseteq Img(f)$:

- $f(x) \in C \iff x \in f^{-1}(C)$
- $x \in A \Longrightarrow f(x) \in f(A) \Longleftrightarrow x \in f^{-1}(f(A))$
- $f(x) \in C \iff x \in f^{-1}(C) \iff f(x) \in f(f^{-1}(C))$
- Conclusões: $f^{-1}(f(A)) \supseteq A$ e $f(f^{-1}(C)) = C$

20 / 38

Patrick (UFRN) FMC2

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

- (a) $f(C \cup D) = f(C) \cup f(D)$.
- (b) f(C D) = f(C) f(D).
- (c) $D \subseteq C \iff f(D) \subseteq f(C)$.
- (d) $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$.
- (e) $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$.

Patrick (UFRN) FMC2 2022.2 21/38

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(a)
$$f(C \cup D) = f(C) \cup f(D)$$
.

(a) SIM: (⇒)

Seja um y arbitrário,

 $y \in f(C \cup D) \Longrightarrow \exists x, (x \in C \cup D \land f(x) = y),$ pela def. de imagem

 ${\sf Caso}\,\,{f 1}\colon {\sf Seja}\,$ um $\,x_1\,$ arbitrário $\,,\,\,x_1\in {\cal C},\,$ por hip

 $\Longrightarrow y \in f(C)$, pela def. de imagem

 $\Longrightarrow y \in f(C) \cup f(D)$, pela def. de \cup

Caso 2: Seja um x_2 arbitrário , $x_2 \in D$, por hip.

 $\Longrightarrow y \in f(D)$, pela def. de imagem.

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (a) $f(C \cup D) = f(C) \cup f(D)$.
- (a) SIM: (⇒)

Seja um y arbitrário,

 $y \in f(C \cup D) \Longrightarrow \exists x, (x \in C \cup D \land f(x) = y)$, pela def. de imagem. Caso 1: Seja um x_1 arbitrário , $x_1 \in C$, por hip.

 $\Longrightarrow y \in f(C)$, pela def. de imagem.

 $\Longrightarrow y \in f(C) \cup f(D)$, pela def. de \cup .

Caso 2: Seja um x_2 arbitrário , $x_2 \in D$, por hip.

 $\Longrightarrow y \in f(D)$, pela def. de imagem.

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (a) $f(C \cup D) = f(C) \cup f(D)$.
- (a) SIM: (⇒)

Seja um y arbitrário,

$$y \in f(C \cup D) \Longrightarrow \exists x, (x \in C \cup D \land f(x) = y), \text{pela def. de imagem.}$$

Caso 1. Seja ulli x1 arbitrario, x1 e c,

 $\Longrightarrow y \in f(C)$, pela def. de imagem.

 $\Longrightarrow y \in f(C) \cup f(D)$, pela def. de \cup .

Caso 2: Seja um x_2 arbitrário , $x_2 \in D$, por hip.

 $\Longrightarrow y \in f(D)$, pela def. de imagem..

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (a) $f(C \cup D) = f(C) \cup f(D)$.
- (a) SIM: (⇒)

Seja um y arbitrário,

$$y \in f(C \cup D) \Longrightarrow \exists x, (x \in C \cup D \land f(x) = y), \text{pela def. de imagem.}$$

Caso 1: Seja um x_1 arbitrário , $x_1 \in C$, por hip.

 \implies $y \in f(C)$, pela def. de imagem.

 $\Longrightarrow y \in f(C) \cup f(D)$, pela def. de \cup .

Caso 2: Seja um x_2 arbitrário , $x_2 \in D$, por hip

 $\Longrightarrow y \in f(D)$, pela def. de imagem.

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (a) $f(C \cup D) = f(C) \cup f(D)$.
- (a) SIM: (⇒)

Seja um y arbitrário,

$$y \in f(C \cup D) \Longrightarrow \exists x, (x \in C \cup D \land f(x) = y), \text{pela def. de imagem.}$$

Caso 1: Seja um x_1 arbitrário , $x_1 \in C$, por hip.

 \implies $y \in f(C)$, pela def. de imagem.

 $\Longrightarrow y \in f(C) \cup f(D)$, pela def. de \cup .

Caso 2: Seja um x_2 arbitrário , $x_2 \in D$, por hip.

 $\Longrightarrow y \in f(D)$, pela def. de imagem.

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (a) $f(C \cup D) = f(C) \cup f(D)$.
- (a) SIM: (⇒)

Seja um y arbitrário,

$$y \in f(C \cup D) \Longrightarrow \exists x, (x \in C \cup D \land f(x) = y), \text{ pela def. de imagem.}$$

Caso 1: Seja um x_1 arbitrário, $x_1 \in C$, por hip.

 \implies $y \in f(C)$, pela def. de imagem.

 $\Longrightarrow y \in f(C) \cup f(D)$, pela def. de \cup .

Caso 2: Seja um x_2 arbitrário , $x_2 \in D$, por hip.

 $\Longrightarrow y \in f(D)$, pela def. de imagem.

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (a) $f(C \cup D) = f(C) \cup f(D)$.
- (a) SIM: (⇒)

Seja um y arbitrário,

$$y \in f(C \cup D) \Longrightarrow \exists x, (x \in C \cup D \land f(x) = y), \text{pela def. de imagem.}$$

Caso 1: Seja um x_1 arbitrário , $x_1 \in C$, por hip.

 \implies $y \in f(C)$, pela def. de imagem.

 $\Longrightarrow y \in f(C) \cup f(D)$, pela def. de \cup .

Caso 2: Seja um x_2 arbitrário , $x_2 \in D$, por hip.

 $\implies y \in f(D)$, pela def. de imagem.

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (a) $f(C \cup D) = f(C) \cup f(D)$.
- (a) SIM: (⇒)

Seja um y arbitrário,

$$y \in f(C \cup D) \Longrightarrow \exists x, (x \in C \cup D \land f(x) = y), \text{pela def. de imagem.}$$

Caso 1: Seja um x_1 arbitrário , $x_1 \in C$, por hip.

 \implies $y \in f(C)$, pela def. de imagem.

 $\Longrightarrow y \in f(C) \cup f(D)$, pela def. de \cup .

Caso 2: Seja um x_2 arbitrário , $x_2 \in D$, por hip.

 \implies $y \in f(D)$, pela def. de imagem.

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (a) $f(C \cup D) = f(C) \cup f(D)$.
- (a) SIM: (⇒)

Seja um y arbitrário,

$$y \in f(C \cup D) \Longrightarrow \exists x, (x \in C \cup D \land f(x) = y), \text{pela def. de imagem.}$$

Caso 1: Seja um x_1 arbitrário , $x_1 \in C$, por hip.

 \implies $y \in f(C)$, pela def. de imagem.

 $\Longrightarrow y \in f(C) \cup f(D)$, pela def. de \cup .

Caso 2: Seja um x_2 arbitrário , $x_2 \in D$, por hip.

 \implies $y \in f(D)$, pela def. de imagem.

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (a) $f(C \cup D) = f(C) \cup f(D)$.

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem

 \implies $x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists . \implies $x_1 \in C \cup D$, pela def. de \cup .

 $\implies y \in f(C \cup D)$, pela def. de imagem

Caso 2: $y \in f(D)$, por hip.

 $\Rightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem \Rightarrow Seia um x_2 arbitrário.

 $\Longrightarrow x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists . $\Longrightarrow x_2 \in C \cup D$, pela def. de \cup .

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (a) $f(C \cup D) = f(C) \cup f(D)$.

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip

 $\Rightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

 $\Longrightarrow x_1 \in \mathcal{C}$ e $f(x_1) = y$, por hip. da eliminação do \exists

 $\implies v \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip.

 $\implies \exists x, (x \in D \land f(x) = y)$, pela def. de imagem. $\implies Seia um xa arbitrário$

 $\implies x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists . $\implies x_2 \in C \cup D$, pela def. de \cup .

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (a) $f(C \cup D) = f(C) \cup f(D)$.

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem

Seja um x_1 arbitrário,

 $\implies x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do Ξ

 \implies $x_1 \in C \cup D$, pela def. de \cup .

 $\Longrightarrow y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

 \Longrightarrow Seja um x_2 arbitrário,

 \implies $x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists .

 $\implies y \in f(C \cup D)$, pela def. de imagem

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(a)
$$f(C \cup D) = f(C) \cup f(D)$$
.

(a) SIM: (←=)

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seja um x_1 arbitrário,

 $\Longrightarrow x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup .

 $\Longrightarrow y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

 $\implies x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists . $\implies x_2 \in C \cup D$, pela def. de \cup .

 $\Longrightarrow y \in f(C \cup D)$, pela def. de imagem

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (a) $f(C \cup D) = f(C) \cup f(D)$.

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seja um x_1 arbitrário,

 \Rightarrow $x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists

XI C C O D, pela del. de O.

 $\implies y \in r(C \cup D)$, pela der. de image

Caso 2: $y \in f(D)$, por hip

 $\implies \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

 $\Longrightarrow x_2 \in D$ e $f(x_2) = y$, por hip, da eliminação do \exists . $\Longrightarrow x_2 \in C \cup D$, pela def. de \cup

 \implies $y \in f(C \cup D)$, pela def. de imagem

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (a) $f(C \cup D) = f(C) \cup f(D)$.

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seja um x₁ arbitrário,

 $\Longrightarrow x_1 \in \mathcal{C}$ e $f(x_1) = y$, por hip. da eliminação do \exists

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup .

 $\Longrightarrow y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip.

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem...

 \Longrightarrow Seja um x_2 arbitrário,

 \Rightarrow $x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_2 \in C \cup D$, pera der. de \cup .

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (a) $f(C \cup D) = f(C) \cup f(D)$.

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seja um x₁ arbitrário,

 $\Longrightarrow x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup

 $\implies y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

 \Longrightarrow Seja um x_2 arbitrário,

 \Rightarrow $x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_2 \in C \cup D$, pela def. de \cup .

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (a) $f(C \cup D) = f(C) \cup f(D)$.

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seja um x_1 arbitrário,

 $\Longrightarrow x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup .

 \implies $y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem

 \Longrightarrow Seja um x_2 arbitrário,

 $\Longrightarrow x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_2 \in C \cup D$, pela def. de \cup .

 $\Longrightarrow y \in f(C \cup D)$, pela def. de imagem

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (a) $f(C \cup D) = f(C) \cup f(D)$.

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seja um x₁ arbitrário,

 $\Longrightarrow x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup .

 \implies $y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

 \implies Seja um x_2 arbitrário,

 $\Longrightarrow x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_2 \in C \cup D$, pela def. de \cup .

 $\implies y \in f(C \cup D)$, pela def. de imagem

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (a) $f(C \cup D) = f(C) \cup f(D)$.

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seja um x₁ arbitrário,

 $\Longrightarrow x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup .

 \implies $y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip.

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

 \Longrightarrow Seja um x_2 arbitrário,

 $\Longrightarrow x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists

 \implies $x_2 \in C \cup D$, pela def. de \cup .

 $\Longrightarrow y \in f(C \cup D)$, pela def. de imagem

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(a)
$$f(C \cup D) = f(C) \cup f(D)$$
.

(a) SIM: (←)

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seja um x_1 arbitrário,

 $\implies x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup .

 \implies $y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip.

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (a) $f(C \cup D) = f(C) \cup f(D)$.

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seja um x_1 arbitrário,

 $\implies x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup .

 \implies $y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip.

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

 \implies Seja um x_2 arbitrário,

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(a)
$$f(C \cup D) = f(C) \cup f(D)$$
.

(a) SIM: (←)

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seia um x1 arbitrário.

 $\implies x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup .

 \implies $y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip.

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

 \implies Seja um x_2 arbitrário,

 $\implies x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists .

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(a)
$$f(C \cup D) = f(C) \cup f(D)$$
.

(a) SIM: (←)

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seia um x1 arbitrário.

 \implies $x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup .

 \implies $y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip.

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

 \implies Seja um x_2 arbitrário,

 \implies $x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_2 \in C \cup D$, pela def. de \cup .

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(a)
$$f(C \cup D) = f(C) \cup f(D)$$
.

(a) SIM: (←)

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seia um x1 arbitrário.

 \implies $x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup .

 \implies $y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip.

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

 \implies Seja um x_2 arbitrário,

 \implies $x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_2 \in C \cup D$, pela def. de \cup .

 $\implies y \in f(C \cup D)$, pela def. de imagem.

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(a)
$$f(C \cup D) = f(C) \cup f(D)$$
.

(a) SIM: (←)

Seja um arbitrário y,

$$y \in f(C) \cup f(D)$$

Caso 1: $y \in f(C)$, por hip.

 $\Longrightarrow \exists x, (x \in C \land f(x) = y)$, pela def. de imagem.

Seia um x1 arbitrário.

 \implies $x_1 \in C$ e $f(x_1) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_1 \in C \cup D$, pela def. de \cup .

 \implies $y \in f(C \cup D)$, pela def. de imagem.

Caso 2: $y \in f(D)$, por hip.

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

 \implies Seja um x_2 arbitrário,

 \implies $x_2 \in D$ e $f(x_2) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_2 \in C \cup D$, pela def. de \cup .

 $\implies y \in f(C \cup D)$, pela def. de imagem.

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(b)
$$f(C - D) = f(C) - f(D)$$
.

Solução:

- (b) NÃO. Contra Ex:
- f(1)=f(2)=3
- $C = \{1\}, D = \{2\},\$
- $f(C)=f(D)=\{3\}$

Patrick (UFRN) FMC2

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(b)
$$f(C - D) = f(C) - f(D)$$
.

Solução:

$$f(1)=f(2)=3.$$

$$C = \{1\}, D = \{2\},\$$

$$f(C) = f(D) = \{3\}.$$

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(b)
$$f(C - D) = f(C) - f(D)$$
.

Solução:

$$f(1)=f(2)=3.$$

$$C = \{1\}, D = \{2\},\$$

$$f(C) = f(D) = \{3\}$$

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(b)
$$f(C - D) = f(C) - f(D)$$
.

Solução:

$$f(1)=f(2)=3.$$

$$C = \{1\}, D = \{2\},\$$

$$f(C)=f(D)={3}.$$

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(b)
$$f(C - D) = f(C) - f(D)$$
.

Solução:

$$f(1)=f(2)=3.$$

$$C = \{1\}, D = \{2\},\$$

$$f(C)=f(D)={3}.$$

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (c) $D \subseteq C \iff f(D) \subseteq f(C)$.
- (c) SIM p/ ida (\Longrightarrow)

$$D\subseteq C \implies (\forall x:x\in D\to x\in C)$$
, pela def. de \subseteq .
Seja um arbitrário y,
 $y\in f(D)$, por hip.
 $\Longrightarrow \exists x,(x\in D\land f(x)=y)$, pela def. de imagem.
Seja um x_1 arbitrário,
 $\Longrightarrow x_1\in D$ e $f(x_1)=y$, por hip. da eliminação do \exists .
 $\Longrightarrow x_1\in C$, pela def. de \subseteq .
 $\Longrightarrow y\in f(C)$, pela def. de \subseteq .

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (c) $D \subseteq C \iff f(D) \subseteq f(C)$.
- (c) SIM p/ ida (⇒):

$$D \subseteq C \implies (\forall x : x \in D \rightarrow x \in C)$$
, pela def. de \subseteq .

Seja um arbitrário y,

$$y \in f(D)$$
, por hip.

$$\Longrightarrow \exists x, (x \in D \land f(x) = y)$$
, pela def. de imagem.

$$\Longrightarrow$$
 $x_1\in D$ e $f(x_1)=y$, por hip. da eliminação do \exists .

$$\Longrightarrow x_1 \in C$$
, pela def. de \subseteq

$$\Longrightarrow y \in f(C)$$
, pela def. de imagem.

$$\Longrightarrow f(D) \subseteq f(C)$$
, pela def. de \subseteq .

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (c) $D \subseteq C \iff f(D) \subseteq f(C)$.
- (c) SIM p/ ida (\Longrightarrow) :

$$D \subseteq C \implies (\forall x : x \in D \rightarrow x \in C)$$
, pela def. de \subseteq .
Seja um arbitrário y,

$$y \in f(D)$$
, por hip.

$$\Longrightarrow \exists x, (x \in D \land f(x) = y)$$
, pela def. de imagem.

$$\Longrightarrow$$
 $x_1\in D$ e $f(x_1)=y$, por hip. da eliminação do \exists .

$$\Longrightarrow x_1 \in C$$
, pela def. de \subseteq

$$\Longrightarrow y \in f(C)$$
, pela def. de imagem.

$$\Longrightarrow f(D) \subseteq f(C)$$
, pela def. de \subseteq .

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (c) $D \subseteq C \iff f(D) \subseteq f(C)$.
- (c) SIM p/ ida (⇒):

$$D \subseteq C \implies (\forall x : x \in D \rightarrow x \in C)$$
, pela def. de \subseteq .
Seja um arbitrário y,

$$y \in f(D)$$
, por hip.

$$\Longrightarrow \exists x, (x \in D \land f(x) = y)$$
, pela def. de imagem.

$$\Longrightarrow x_1 \in D$$
 e $f(x_1) = y$, por hip. da eliminação do \exists .

$$\Longrightarrow x_1 \in C$$
, pela def. de \subseteq .

$$\Longrightarrow y \in f(C)$$
, pela def. de imagem.

$$\Longrightarrow f(D) \subseteq f(C)$$
, pela def. de \subseteq .

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

- (c) $D \subseteq C \iff f(D) \subseteq f(C)$.
- (c) SIM p/ ida (⇒):

$$D \subseteq C \implies (\forall x : x \in D \rightarrow x \in C)$$
, pela def. de \subseteq .

Seja um arbitrário y,

$$y \in f(D)$$
, por hip.

$$\Longrightarrow \exists x, (x \in D \land f(x) = y)$$
, pela def. de imagem.

Seja um x_1 arbitrário,

$$\Longrightarrow x_1 \in D$$
 e $f(x_1) = y$, por hip. da eliminação do \exists .

$$\Longrightarrow x_1 \in C$$
, pela def. de \subseteq

 $\Longrightarrow y \in f(C)$, pela def. de imagem

$$\implies f(D) \subseteq f(C)$$
, pela def. de \subseteq .

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (c) $D \subseteq C \iff f(D) \subseteq f(C)$.
- (c) SIM p/ ida (⇒):

$$D \subseteq C \implies (\forall x : x \in D \rightarrow x \in C)$$
, pela def. de \subseteq .

Seja um arbitrário y,

$$y \in f(D)$$
, por hip.

$$\Longrightarrow \exists x, (x \in D \land f(x) = y)$$
, pela def. de imagem.

$$\implies x_1 \in D$$
 e $f(x_1) = y$, por hip. da eliminação do \exists .

$$\Longrightarrow x_1 \in C$$
, pela def. de \subseteq

$$\implies$$
 $y \in f(C)$, pela def. de imagem

$$\Longrightarrow f(D) \subseteq f(C)$$
, pela def. de \subseteq .

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (c) $D \subseteq C \iff f(D) \subseteq f(C)$.
- (c) SIM p/ ida (\Longrightarrow) :

$$D \subseteq C \implies (\forall x : x \in D \rightarrow x \in C)$$
, pela def. de \subseteq .

Seja um arbitrário y,

$$y \in f(D)$$
, por hip.

$$\Longrightarrow \exists x, (x \in D \land f(x) = y)$$
, pela def. de imagem.

$$\Longrightarrow x_1 \in D$$
 e $f(x_1) = y$, por hip. da eliminação do \exists .

$$\Longrightarrow x_1 \in C$$
, pela def. de \subseteq .

$$\implies$$
 $y \in f(C)$, pela def. de imagem

$$\Longrightarrow f(D) \subseteq f(C)$$
, pela def. de \subseteq

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (c) $D \subseteq C \iff f(D) \subseteq f(C)$.
- (c) SIM p/ ida (\Longrightarrow) :

$$D \subseteq C \implies (\forall x : x \in D \rightarrow x \in C)$$
, pela def. de \subseteq .

Seja um arbitrário y,

$$y \in f(D)$$
, por hip.

$$\Longrightarrow \exists x, (x \in D \land f(x) = y)$$
, pela def. de imagem.

Seja um x₁ arbitrário,

$$\Longrightarrow x_1 \in D$$
 e $f(x_1) = y$, por hip. da eliminação do \exists .

$$\Longrightarrow x_1 \in C$$
, pela def. de \subseteq .

$$\implies$$
 $y \in f(C)$, pela def. de imagem.

$$\Longrightarrow f(D) \subseteq f(C)$$
, pela def. de \subseteq

Dada uma função f, subconjuntos $C,D\subseteq Dom(f)$ e $U,V\subseteq Img(f)$, demonstre ou refute:

- (c) $D \subseteq C \iff f(D) \subseteq f(C)$.
- (c) SIM p/ ida (\Longrightarrow) :

$$D \subseteq C \implies (\forall x : x \in D \rightarrow x \in C)$$
, pela def. de \subseteq .

Seja um arbitrário y,

$$y \in f(D)$$
, por hip.

$$\Longrightarrow \exists x, (x \in D \land f(x) = y)$$
, pela def. de imagem.

Seja um x₁ arbitrário,

$$\Longrightarrow x_1 \in D$$
 e $f(x_1) = y$, por hip. da eliminação do \exists .

$$\Longrightarrow x_1 \in C$$
, pela def. de \subseteq .

$$\implies$$
 $y \in f(C)$, pela def. de imagem.

$$\Longrightarrow f(D) \subseteq f(C)$$
, pela def. de \subseteq

Dada uma função f, subconjuntos $C, D \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

- (c) $D \subseteq C \iff f(D) \subseteq f(C)$.
- (c) SIM p/ ida (\Longrightarrow) :

$$D \subseteq C \implies (\forall x : x \in D \rightarrow x \in C)$$
, pela def. de \subseteq .

Seja um arbitrário y,

 $y \in f(D)$, por hip.

 $\Longrightarrow \exists x, (x \in D \land f(x) = y)$, pela def. de imagem.

Seja um x_1 arbitrário,

 $\Longrightarrow x_1 \in D$ e $f(x_1) = y$, por hip. da eliminação do \exists .

 $\Longrightarrow x_1 \in C$, pela def. de \subseteq .

 \implies $y \in f(C)$, pela def. de imagem.

 $\Longrightarrow f(D) \subseteq f(C)$, pela def. de \subseteq .

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(d)
$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$
.

26 / 38

Patrick (UFRN) FMC₂

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(d)
$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$
.

(d) SIM.

$$x \in f^{-1}(U \cap V) \iff f(x) \in U \cap V$$

$$\iff f(x) \in U \land f(x) \in V$$

$$\iff x \in f^{-1}(U) \land x \in f^{-1}(V)$$

$$\iff x \in f^{-1}(U) \cap f^{-1}(V).$$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(d)
$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$
.

(d) SIM.

Seja um arbitrário x,

$$x \in f^{-1}(U \cap V) \iff f(x) \in U \cap V$$

$$\iff f(x) \in U \land f(x) \in V$$

$$\iff x \in f^{-1}(U) \land x \in f^{-1}(V)$$

$$\iff x \in f^{-1}(U) \cap f^{-1}(V)$$

26 / 38

Patrick (UFRN) FMC2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(d)
$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$
.

(d) SIM.

Seja um arbitrário x,

$$x \in f^{-1}(U \cap V) \iff f(x) \in U \cap V$$

$$\iff f(x) \in U \land f(x) \in V$$

$$\iff x \in f^{-1}(U) \land x \in f^{-1}(V)$$

$$\iff x \in f^{-1}(U) \cap f^{-1}(V).$$

Patrick (UFRN) FMC2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(d)
$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$
.

(d) SIM.

$$x \in f^{-1}(U \cap V) \iff f(x) \in U \cap V$$

$$\iff f(x) \in U \land f(x) \in V$$

$$\iff x \in f^{-1}(U) \land x \in f^{-1}(V)$$

$$\iff x \in f^{-1}(U) \cap f^{-1}(V).$$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(d)
$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$
.

(d) SIM.

Seja um arbitrário x,

$$x \in f^{-1}(U \cap V) \iff f(x) \in U \cap V$$

$$\iff f(x) \in U \land f(x) \in V$$

$$\iff x \in f^{-1}(U) \land x \in f^{-1}(V)$$

$$\iff x \in f^{-1}(U) \cap f^{-1}(V).$$

Patrick (UFRN) FMC2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(e)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
.

$$x \in f^{-1}(U \cup V) \Longrightarrow f(x) \in U \cup V$$

$$\Longrightarrow f(x) \in U \vee f(x) \in V$$

$$\Longrightarrow x \in f^{-1}(U) \vee x \in f^{-1}(V)$$
Caso 1: $f(x) \in U$

$$\Longrightarrow x \in f^{-1}(U) \cup f^{-1}(V)$$
Caso 2: $f(x) \in V$

$$\Longrightarrow x \in f^{-1}(V)$$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(e)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
.

(e) SIM. (⇒)

$$x \in f^{-1}(U \cup V) \Longrightarrow f(x) \in U \cup V$$

$$\Longrightarrow f(x) \in U \lor f(x) \in V$$

$$\Longrightarrow x \in f^{-1}(U) \lor x \in f^{-1}(V)$$
Caso 1: $f(x) \in U$

$$\Longrightarrow x \in f^{-1}(U) \cup f^{-1}(V).$$
Caso 2: $f(x) \in V$

$$\Longrightarrow x \in f^{-1}(V).$$

$$\Longrightarrow x \in f^{-1}(V).$$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(e)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
.

(e) SIM. (⇒)

$$x \in f^{-1}(U \cup V) \Longrightarrow f(x) \in U \cup V$$

$$\Longrightarrow f(x) \in U \vee f(x) \in V$$

$$\Longrightarrow x \in f^{-1}(U) \vee x \in f^{-1}(V)$$
Caso 1: $f(x) \in U$

$$\Longrightarrow x \in f^{-1}(U) \cup f^{-1}(V)$$
Caso 2: $f(x) \in V$

$$\Longrightarrow x \in f^{-1}(V)$$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(e)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
.

(e) SIM. (⇒)

Seja um arbitrário x,

$$x \in f^{-1}(U \cup V) \Longrightarrow f(x) \in U \cup V$$

$$\Longrightarrow f(x) \in U \vee f(x) \in V$$

$$\Longrightarrow x \in f^{-1}(U) \vee x \in f^{-1}(V)$$
Caso 1: $f(x) \in U$

$$\Longrightarrow x \in f^{-1}(U) \cup f^{-1}(V)$$
Caso 2: $f(x) \in V$

$$\Longrightarrow x \in f^{-1}(V)$$

FMC₂

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(e)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
.

(e) SIM. (\Longrightarrow)

$$x \in f^{-1}(U \cup V) \Longrightarrow f(x) \in U \cup V$$

$$\Longrightarrow f(x) \in U \vee f(x) \in V$$

$$\Longrightarrow x \in f^{-1}(U) \vee x \in f^{-1}(V)$$
Caso 1: $f(x) \in U$

$$\Longrightarrow x \in f^{-1}(U) \cup f^{-1}(V)$$
.
Caso 2: $f(x) \in V$

$$\Longrightarrow x \in f^{-1}(V)$$
.

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(e)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
.

(e) SIM. (⇒)

$$x \in f^{-1}(U \cup V) \Longrightarrow f(x) \in U \cup V$$

$$\Longrightarrow f(x) \in U \vee f(x) \in V$$

$$\Longrightarrow x \in f^{-1}(U) \vee x \in f^{-1}(V)$$
Caso 1: $f(x) \in U$

$$\Longrightarrow x \in f^{-1}(U) \cup f^{-1}(V).$$
Caso 2: $f(x) \in V$

$$\Longrightarrow x \in f^{-1}(V).$$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(e)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
.

(e) SIM. (⇒)

$$x \in f^{-1}(U \cup V) \Longrightarrow f(x) \in U \cup V$$

$$\Longrightarrow f(x) \in U \vee f(x) \in V$$

$$\Longrightarrow x \in f^{-1}(U) \vee x \in f^{-1}(V)$$
Caso 1: $f(x) \in U$

$$\Longrightarrow x \in f^{-1}(U) \cup f^{-1}(V)$$
Caso 2: $f(x) \in V$

$$\Longrightarrow x \in f^{-1}(V)$$

$$\Longrightarrow x \in f^{-1}(V) \cup f^{-1}(V)$$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(e)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
.

(e) SIM. (⇒)

$$x \in f^{-1}(U \cup V) \Longrightarrow f(x) \in U \cup V$$

$$\Longrightarrow f(x) \in U \lor f(x) \in V$$

$$\Longrightarrow x \in f^{-1}(U) \lor x \in f^{-1}(V)$$
Caso 1: $f(x) \in U$

$$\Longrightarrow x \in f^{-1}(U) \cup f^{-1}(V).$$
Caso 2: $f(x) \in V$

$$\Longrightarrow x \in f^{-1}(V).$$

$$\Longrightarrow x \in f^{-1}(U) \cup f^{-1}(V).$$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(e)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
.

(e) SIM. (⇒)

$$x \in f^{-1}(U \cup V) \Longrightarrow f(x) \in U \cup V$$

$$\Longrightarrow f(x) \in U \vee f(x) \in V$$

$$\Longrightarrow x \in f^{-1}(U) \vee x \in f^{-1}(V)$$
Caso 1: $f(x) \in U$

$$\Longrightarrow x \in f^{-1}(U) \cup f^{-1}(V).$$
Caso 2: $f(x) \in V$

$$\Longrightarrow x \in f^{-1}(V).$$

$$\Longrightarrow x \in f^{-1}(U) \cup f^{-1}(V).$$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (f) $f^{-1}(U - V) = f^{-1}(U) - f^{-1}(V)$.

Solução:

(f) SIM

 $x \in f^{-1}(U - V) \iff f(x) \in U - V$ $\iff f(x) \in U \land f(x) \notin V$ $\iff x \in f^{-1}(U) \land x \notin f^{-1}(V)$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (f) $f^{-1}(U - V) = f^{-1}(U) - f^{-1}(V)$.

Solução:

(f) SIM.

Seja um arbitrário x,

$$x \in f^{-1}(U - V) \iff f(x) \in U - V$$

$$\iff f(x) \in U \land f(x) \notin V$$

$$\iff x \in f^{-1}(U) \land x \notin f^{-1}(V)$$

$$\iff x \in f^{-1}(U) - f^{-1}(V)$$

28 / 38

Patrick (UFRN) FMC2 2022.2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (f) $f^{-1}(U - V) = f^{-1}(U) - f^{-1}(V)$.

Solução:

(f) SIM.

Seja um arbitrário x,

$$x \in f^{-1}(U - V) \iff f(x) \in U - V$$

$$\iff f(x) \in U \land f(x) \notin V$$

$$\iff x \in f^{-1}(U) \land x \notin f^{-1}(V)$$

$$\iff x \in f^{-1}(U) - f^{-1}(V)$$

28 / 38

Patrick (UFRN) FMC2 2022.2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (f) $f^{-1}(U - V) = f^{-1}(U) - f^{-1}(V)$.

Solução:

(f) SIM.

Seja um arbitrário x,

$$x \in f^{-1}(U - V) \iff f(x) \in U - V$$

$$\iff f(x) \in U \land f(x) \notin V$$

$$\iff x \in f^{-1}(U) \land x \notin f^{-1}(V)$$

$$\iff x \in f^{-1}(U) - f^{-1}(V).$$

28 / 38

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute: (f) $f^{-1}(U - V) = f^{-1}(U) - f^{-1}(V)$.

Solução:

(f) SIM.

Seja um arbitrário x,

$$x \in f^{-1}(U - V) \iff f(x) \in U - V$$

$$\iff f(x) \in U \land f(x) \notin V$$

$$\iff x \in f^{-1}(U) \land x \notin f^{-1}(V)$$

$$\iff x \in f^{-1}(U) - f^{-1}(V).$$

28 / 38

Patrick (UFRN) FMC2 2022.2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$ demonstre ou refute: (f) $f^{-1}(U - V) = f^{-1}(U) - f^{-1}(V)$.

Solução:

(f) SIM.

Seja um arbitrário x,

$$x \in f^{-1}(U - V) \iff f(x) \in U - V$$

$$\iff f(x) \in U \land f(x) \notin V$$

$$\iff x \in f^{-1}(U) \land x \notin f^{-1}(V)$$

$$\iff x \in f^{-1}(U) - f^{-1}(V).$$

Patrick (UFRN) FMC2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(g)
$$U \subseteq V \iff f^{-1}(U) \subseteq f^{-1}(V)$$
.

(g) SIM:

$$U \subseteq V \iff (\forall y : y \in U \to y \in V)$$

$$\iff (\forall x : f(x) \in U \to f(x) \in V)$$

$$\iff (\forall x : x \in f^{-1}(U) \to x \in f^{-1}(V)$$

$$\iff f^{-1}(U) \subseteq f^{-1}(V)$$

Patrick (UFRN) FMC2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(g)
$$U \subseteq V \iff f^{-1}(U) \subseteq f^{-1}(V)$$
.

(g) SIM:

$$U \subseteq V \iff (\forall y : y \in U \to y \in V)$$

$$\iff (\forall x : f(x) \in U \to f(x) \in V)$$

$$\iff (\forall x : x \in f^{-1}(U) \to x \in f^{-1}(V))$$

$$\iff f^{-1}(U) \subseteq f^{-1}(V)$$

Patrick (UFRN) FMC2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(g)
$$U \subseteq V \iff f^{-1}(U) \subseteq f^{-1}(V)$$
.

(g) SIM:

$$U \subseteq V \iff (\forall y : y \in U \to y \in V)$$

$$\iff (\forall x : f(x) \in U \to f(x) \in V)$$

$$\iff (\forall x : x \in f^{-1}(U) \to x \in f^{-1}(V))$$

$$\iff f^{-1}(U) \subseteq f^{-1}(V)$$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(g)
$$U \subseteq V \iff f^{-1}(U) \subseteq f^{-1}(V)$$
.

(g) SIM:

$$U \subseteq V \iff (\forall y : y \in U \to y \in V)$$

$$\iff (\forall x : f(x) \in U \to f(x) \in V)$$

$$\iff (\forall x : x \in f^{-1}(U) \to x \in f^{-1}(V))$$

$$\iff f^{-1}(U) \subseteq f^{-1}(V)$$

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(g)
$$U \subseteq V \iff f^{-1}(U) \subseteq f^{-1}(V)$$
.

(g) SIM:

$$U \subseteq V \iff (\forall y : y \in U \to y \in V)$$

$$\iff (\forall x : f(x) \in U \to f(x) \in V)$$

$$\iff (\forall x : x \in f^{-1}(U) \to x \in f^{-1}(V))$$

$$\iff f^{-1}(U) \subseteq f^{-1}(V)$$

Patrick (UFRN) FMC2

FUNÇÕES - Inversa - Exercício

Exercício 2

Dada uma função f, subconjuntos A, $B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(h)
$$f^{-1}(f(A)) = A$$
.

30 / 38

Patrick (UFRN)

FUNÇÕES - Inversa - Exercício

Exercício 2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(h)
$$f^{-1}(f(A)) = A$$
.

Solução:

- (h) NÃO: Contra Ex:
- $f(x)=7, \forall x \in \mathbb{Z}.$
- $A = \{0\}, f(A) = \{7\},\$
- $f^{-1}({7})=Z$
- (h) $f^{-1}(f(A)) \supseteq A$. Já visto

Patrick (UFRN) FMC2

FUNCÕES - Inversa - Exercício

Exercício 2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(h)
$$f^{-1}(f(A)) = A$$
.

Solução:

(h) NÃO: Contra Ex:

$$f(x)=7, \forall x \in \mathbb{Z}.$$

$$A = \{0\}, f(A) = \{7\},\$$

$$f^{-1}({7})=Z$$

30 / 38

FUNÇÕES - Inversa - Exercício

Exercício 2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(h)
$$f^{-1}(f(A)) = A$$
.

Solução:

(h) NÃO: Contra Ex:

$$f(x)=7, \forall x \in \mathbb{Z}.$$

$$A = \{0\}, f(A) = \{7\},$$

$$f^{-1}(\{7\}) = \mathbb{Z}.$$

(h)
$$f^{-1}(f(A)) \supseteq A$$
. Já visto.

30 / 38

Patrick (UFRN) FMC2 2022.2

FUNCÕES - Inversa - Exercício

Exercício 2

Dada uma função f, subconjuntos $A, B \subseteq Dom(f)$ e $U, V \subseteq Img(f)$, demonstre ou refute:

(h)
$$f^{-1}(f(A)) = A$$
.

Solução:

- (h) NÃO: Contra Ex:
- $f(x)=7, \forall x \in \mathbb{Z}.$
- $A = \{0\}, f(A) = \{7\},\$
- $f^{-1}(\{7\})=Z$.
- (h) $f^{-1}(f(A)) \supseteq A$. Já visto.

30 / 38

Patrick (UFRN) FMC₂

Sejam $f:A\to B$ e $g:B\to C$. Prove que se f e g são injetoras então $g\circ f$ é injetora.

Solução:

$$g(f(x_1)) = g(f(x_2)) \stackrel{g.inj}{\Longrightarrow} f(x_1) = f(x_2)$$
$$\stackrel{f.inj}{\Longrightarrow} x_1 = x_2$$

Patrick (UFRN) FMC2 2022.2 31/38

Sejam $f:A\to B$ e $g:B\to C$. Prove que se f e g são injetoras então $g\circ f$ é injetora.

Solução:

$$g(f(x_1)) = g(f(x_2)) \stackrel{g.inj}{\Longrightarrow} f(x_1) = f(x_2)$$
$$\stackrel{f.inj}{\Longrightarrow} x_1 = x_2$$

Patrick (UFRN) FMC2 2022.2 31/38

Sejam $f:A\to B$ e $g:B\to C$. Prove que se f e g são injetoras então $g\circ f$ é injetora.

Solução:

$$g(f(x_1)) = g(f(x_2)) \stackrel{g.inj}{\Longrightarrow} f(x_1) = f(x_2)$$
$$\stackrel{f.inj}{\Longrightarrow} x_1 = x_2$$

31 / 38

Patrick (UFRN) FMC2 2022.2

Prove que uma função f tem função inversa f^{-1} se e só se f é injetora.

Seja
$$A = Dom(f) = Img(f^{-1})$$
 e $B = Im(f) = Dom(f^{-1})$.
$$f^{-1} \text{ \'e funç\'ao} \iff \forall b \in B : \exists !a, (b, a) \in f^{-1}$$
$$\iff \forall b \in B : \exists !a, (a, b) \in f$$
$$\iff \forall b \in B : \exists !a, f(a) = b \in f \text{ \'e injetora}$$

Patrick (UFRN) FMC2 2022.2 32 / 38

Prove que uma função f tem função inversa f^{-1} se e só se f é injetora.

Seja
$$A = Dom(f) = Img(f^{-1})$$
 e $B = Im(f) = Dom(f^{-1})$.
$$f^{-1} \text{ \'e func\~ao} \iff \forall b \in B : \exists !a, (b, a) \in f^{-1}$$

$$f^{-1}$$
 ê tunção $\iff \forall b \in B: \exists !a, (b, a) \in f^{-1}$
 $\iff \forall b \in B: \exists !a, (a, b) \in f$
 $\iff \forall b \in B: \exists !a, f(a) = b \in f$
 $\iff f$ é injetora

Patrick (UFRN) FMC2 2022.2 32/38

Prove que uma função f tem função inversa f^{-1} se e só se f é injetora.

Seja
$$A = Dom(f) = Img(f^{-1})$$
 e $B = Im(f) = Dom(f^{-1})$.

$$f^{-1}$$
 é função $\stackrel{def}{\Longleftrightarrow} \forall b \in B : \exists ! a, (b, a) \in f^{-1}$
 $\iff \forall b \in B : \exists ! a, (a, b) \in f$
 $\iff \forall b \in B : \exists ! a, f(a) = b \in f$
 $\iff f$ é injetora

Patrick (UFRN) FMC2 2022.2 32 / 38

Prove que uma função f tem função inversa f^{-1} se e só se f é injetora.

Seja
$$A = Dom(f) = Img(f^{-1})$$
 e $B = Im(f) = Dom(f^{-1})$.
$$f^{-1} \text{ \'e funç\'ao} \iff \forall b \in B : \exists !a, (b, a) \in f^{-1}$$
$$\iff \forall b \in B : \exists !a, (a, b) \in f$$
$$\iff \forall b \in B : \exists !a, f(a) = b \in f$$
$$\iff f \text{\'e injetora}$$

Patrick (UFRN) FMC2 2022.2 32 / 38

Exercício 6

Sejam $f:A\to C$ e $g:B\to D$ duas funções injetoras. Considere a função $h:A\times B\to C\times D$ tal que h(a,b)=(f(a),g(b)). Prove que h é uma função injetora.

Solução:

$$h(a,b) = h(x,y) \Longrightarrow (f(a),g(b)) = (f(x),g(y))$$

$$\Longrightarrow f(a) = f(x) \land g(b) = g(y)$$

$$\stackrel{f,g \ inj.}{\Longrightarrow} (a = x) \land (b = y)$$

$$\Longrightarrow (a,b) = (x,y)$$

Como vale para quaisquer pares (a, b) e (x, y), então h é injetora.

Exercício 6

Sejam $f:A\to C$ e $g:B\to D$ duas funções injetoras. Considere a função $h:A\times B\to C\times D$ tal que h(a,b)=(f(a),g(b)). Prove que h é uma função injetora.

Solução:

$$h(a,b) = h(x,y) \Longrightarrow (f(a),g(b)) = (f(x),g(y))$$

$$\Longrightarrow f(a) = f(x) \land g(b) = g(y)$$

$$\stackrel{f,g \ inj.}{\Longrightarrow} (a = x) \land (b = y)$$

$$\Longrightarrow (a,b) = (x,y)$$

Como vale para quaisquer pares (a, b) e (x, y), então h é injetora.

Exercício 7

Seja f uma função e sejam $A, B \subseteq Dom(f)$. Prove que **(a)** $f(A \cap B) \subseteq f(A) \cap f(B)$.

Solução:

$$y \in f(A \cap B) \Longleftrightarrow \exists x \in A \cap B : f(x) = y$$
$$\Longrightarrow (\exists x \in A : f(x) = y) \land (\exists x' \in B : f(x') = y)$$
$$\Longleftrightarrow y \in f(A) \cap f(B)$$

Contraexemplo p/ =:
$$f(1) = f(2) = 3$$
, $A = \{1\}$, $B = \{2\}$. $f(A \cap B) = \emptyset$, $f(A) \cap f(B) = \{3\}$.

Patrick (UFRN) FMC2 2022.2 34 / 38

Exercício 7

Seja f uma função e sejam $A, B \subseteq Dom(f)$. Prove que (a) $f(A \cap B) \subseteq f(A) \cap f(B)$.

Solução:

$$y \in f(A \cap B) \Longleftrightarrow \exists x \in A \cap B : f(x) = y$$
$$\Longrightarrow (\exists x \in A : f(x) = y) \land (\exists x' \in B : f(x') = y)$$
$$\Longleftrightarrow y \in f(A) \cap f(B)$$

Contraexemplo p/ =:
$$f(1) = f(2) = 3$$
, $A = \{1\}$, $B = \{2\}$. $f(A \cap B) = \emptyset$, $f(A) \cap f(B) = \{3\}$.

Patrick (UFRN) FMC2 2022.2 34 / 38

Exercício 7

Seja f uma função e sejam $A, B \subseteq Dom(f)$. Prove que **(b)** se f é injetora, então $f(A \cap B) = f(A) \cap f(B)$.

Exercício 7

Seja f uma função e sejam $A, B \subseteq Dom(f)$. Prove que **(b)** se f é injetora, então $f(A \cap B) = f(A) \cap f(B)$.

Solução:

(b)

$$y \in f(A \cap B) \Longleftrightarrow \exists x \in A \cap B : f(x) = y$$
$$\iff (\exists x \in A : f(x) = y) \land (\exists x' \in B : f(x') = y)$$
$$\iff y \in f(A) \cap f(B)$$

Exercício 7

Seja f uma função e sejam $A, B \subseteq Dom(f)$. Prove que **(c)** se f é injetora, então $f(B) \subseteq f(A)$ se e só se $B \subseteq A$.

Solução:

(c)

$$B \subseteq A \iff (\forall x : x \in B \to x \in A)$$
$$\iff (\forall x : f(x) \in f(B) \to f(x) \in f(A))$$
$$\iff f(B) \subseteq f(A).$$

Exercício 7

Seja f uma função e sejam $A, B \subseteq Dom(f)$. Prove que (c) se f é injetora, então $f(B) \subseteq f(A)$ se e só se $B \subseteq A$.

Solução:

(c)

$$B \subseteq A \iff (\forall x : x \in B \to x \in A)$$

$$\iff (\forall x : f(x) \in f(B) \to f(x) \in f(A))$$

$$\iff f(B) \subseteq f(A).$$

Exercício 8

Seja R uma relação de A para B. Escreva expressões lógicas formais (sem palavras, apenas variáveis e símbolos), com todos os quantificadores necessários, que expresse as afirmações: (a) "A relação R é transitiva". (b) "A relação R é uma função injetora".

Solução:

(a)
$$\forall x, y, z : ((x, y) \in R \land (y, z) \in R) \longrightarrow (x, z) \in R$$

- (a) $\forall x, y, z : (xRy \land yRz) \longrightarrow xRz$
- (b) $\forall x_1, x_2, y_1, y_2 : ((x_1 R y_1 \land x_1 R y_2) \longrightarrow y_1 = y_2) \land ((x_1 R y_1 \land x_2 R y_1) \longrightarrow x_1 = x_2)$

Patrick (UFRN) FMC2

Exercício 8

Seja R uma relação de A para B. Escreva expressões lógicas formais (sem palavras, apenas variáveis e símbolos), com todos os quantificadores necessários, que expresse as afirmações: (a) "A relação R é transitiva". (b) "A relação R é uma função injetora".

Solução:

(a)
$$\forall x, y, z : ((x, y) \in R \land (y, z) \in R) \longrightarrow (x, z) \in R$$

(a)
$$\forall x, y, z : (xRy \land yRz) \longrightarrow xRz$$

(b)
$$\forall x_1, x_2, y_1, y_2 : ((x_1 R y_1 \land x_1 R y_2) \longrightarrow y_1 = y_2) \land ((x_1 R y_1 \land x_2 R y_1) \longrightarrow x_1 = x_2)$$

2022.2

Exercício 8

Seja R uma relação de A para B. Escreva expressões lógicas formais (sem palavras, apenas variáveis e símbolos), com todos os quantificadores necessários, que expresse as afirmações: (a) "A relação R é transitiva". (b) "A relação R é uma função injetora".

Solução:

(a)
$$\forall x, y, z : ((x, y) \in R \land (y, z) \in R) \longrightarrow (x, z) \in R$$

(a)
$$\forall x, y, z : (xRy \land yRz) \longrightarrow xRz$$

(b)
$$\forall x_1, x_2, y_1, y_2 : ((x_1 R y_1 \land x_1 R y_2) \longrightarrow y_1 = y_2) \land ((x_1 R y_1 \land x_2 R y_1) \longrightarrow x_1 = x_2)$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ト り ぬ (で)

Exercício 8

Seja R uma relação de A para B. Escreva expressões lógicas formais (sem palavras, apenas variáveis e símbolos), com todos os quantificadores necessários, que expresse as afirmações: (a) "A relação R é transitiva". (b) "A relação R é uma função injetora".

Solução:

(a)
$$\forall x, y, z : ((x, y) \in R \land (y, z) \in R) \longrightarrow (x, z) \in R$$

(a)
$$\forall x, y, z : (xRy \land yRz) \longrightarrow xRz$$

(b)
$$\forall x_1, x_2, y_1, y_2 : ((x_1 R y_1 \land x_1 R y_2) \longrightarrow y_1 = y_2) \land ((x_1 R y_1 \land x_2 R y_1) \longrightarrow x_1 = x_2)$$

 Questões?

