

OVERVIEW OF OPENSHMEM

Barbara Chapman

HPE and Stony Brook University

With thanks to Tony Curtis, Stony Brook University and Naveen Ravi, HPE

OVERVIEW

www.openshmem.org

OpenSHMEM

- PGAS-based library interface specification
- Semantics and syntax of the model defined by the OpenSHMEM specification committee
- Members include vendors (AMD, HPE, Intel, Nvidia,), labs (ANL, LANL, ORNL,), and universities (SBU, TU Dresden), individual contributors are welcome to join (it's free!)

Brief history

- SHMEM first introduced by Cray for their T3D in 1993
 - Roughly the same time as first MPI standard
 - Lack of standard led to divergent implementations (HP SHMEM, IBM SHMEM, ..)
- Work began on OpenSHMEM version 1.0 for C and Fortran in 2010
 - First reference implementation 2011

OPENSHMEM IN A NUTSHELL

- SPMD parallel programming library
 - Many functions similar to MPI (point-to-point, collectives)
 - Broadcast, reduction, barrier synchronization, ,...
- Partitioned Global Address Space = PGAS
 - Private and shared data (symmetric arrays, variables)
 - Shared data objects remotely accessible (put/get/collectives/atomics)

```
• Focus on performance via fast one-sided and collective communication
```

- Remote data transfer: Remote Direct Memory Access (RMA, or RDMA)
 - -MPI RMA is more cumbersome, has different address semantics
- Direct exploitation of low-level network APIs, maximal asynchrony

shmem finalize()

NEED FOR OPENSHMEM

• MPI provides generality, sometimes at the cost of efficiency

OpenSHMEM

Library interface specification

- Ineffective for certain specific use cases
 - Applications with single-word or small-message communications
 - Applications with compute-defined communications with irregular and random-access patterns
 - Dynamic work stealing models
- Efficiently implemented PGAS programming scheme can satisfy these application requirements
 - OpenSHMEM RMA provides high performance, enables high levels of asynchrony
- Library approach has benefits with respect to maintainability and adaptability
 - Facilitates implementation of language-based PGAS model (e.g. Fortran coarrays, Chapel, UPC++)
- Active community with multiple implementations of the specification, including:
 - HPE Cray OpenSHMEMX, IBM Spectrum
 - Intel/Sandia SHMEM (SOS), Open MPI OSHMEM; Ohio State MVAPICH2-X; ANL OSHMPI
 - Reference implementation: Stony Brook University / OSSS

HPE CRAY OPENSHMEMX

- What is HPE Cray OpenSHMEMX?
 - A key implementation of the OpenSHMEM specification
 - Implementation is over 25 years old
 - HPE proprietary library distributed as part of the HPE Cray Programming Environment
- Provides a scalable and performant implementation of the OpenSHMEM specification
- Introduces experimental features to allow users to evaluate capabilities for standardization
- Default OpenSHMEM implementation for various mission critical large-scale systems
 - Cray OpenSHMEMX = OpenSHMEM + X = specification-defined APIs + implementation-specific APIs
- Supports x86 and aarch64 platforms with specific optimizations for HPE Slingshot NIC
 - GPU awareness coming in 2024
- Multiple experimental features standardized over time e.g. teams, multi-threading, non-blocking AMOs
- Some features under consideration for the specification are already being experimented with
 - Available to customers as SHMEMX-prefixed APIs

HPE Cray OpenSHMEMX

Implementation of the specification

THANK YOU