Solutions to Homework One

CSE 101

- 1. (a) By the usual formula for a geometric series, $1+2+\cdots+2^n=2^{n+1}-1\leq 2\cdot 2^n$. Thus it is $O(2^n)$.
 - (b) $1 + \frac{1}{2} + \dots + \frac{1}{2^n} \le 2$, and thus the sum is O(1).
 - (c) By the geometric series formula,

$$S(n) = \frac{c^{n+1} - 1}{c - 1}.$$

When c < 1, the formula above can more conveniently be written as

$$S(n) = \frac{1 - c^{n+1}}{1 - c},$$

from which we see that S(n) lies between 1 and 1/(1-c) and is hence $\Theta(1)$. For c=1, S(n)=n+1, which is $\Theta(n)$. For c>1, by the formula, S(n) lies between c^n and $\frac{c}{c-1} \cdot c^n$ and is thus $\Theta(c^n)$.

2. Let S(n) denote the statement $1+3+\cdots+(2n-1)=n^2$. We'll show by induction that S(n) is true for all positive integers n.

Base case: n = 1. This is immediate.

Inductive step. Suppose $S(1), \ldots, S(k)$ are true. We'll show that S(k+1) is also true. This is because

$$1+3+\cdots+(2k+1) = (1+3+\cdots+(2k-1))+(2k+1) = k^2+(2k+1)$$

where the last equation uses the inductive hypothesis to simplify $1 + 3 + \cdots + (2k - 1)$. We finish by simplifying $k^2 + (2k + 1) = (k + 1)^2$.

- 3. Define $S(n) = 1^c + \dots + n^c$.
 - (a) Each term in the series is at most n^c . Therefore, $S(n) \le n^c + \cdots + n^c = n \cdot n^c = n^{c+1}$.
 - (b) Each term in the 2nd half of the series is at least $(n/2)^c$, so $S(n) \ge (n/2) \cdot (n/2)^c = n^{c+1}/2^{c+1}$.
- 4. (a) Using m bits, we can write down all the numbers $< 2^m$. Therefore, writing down a number n requires $O(\log n)$ bits.
 - (b) n needs to be halved $O(\log n)$ times before it goes below 1; therefore "hello" is printed this often.
 - (c) Subroutine A is invoked on $n, n/2, n/4, n/8, \ldots$ The time for division is dominated by the time taken by A. Thus the total running time is

$$O\left(n^3 + \left(\frac{n}{2}\right)^3 + \left(\frac{n}{4}\right)^3 + \left(\frac{n}{8}\right)^3 + \cdots\right) = O(n^3) \times \left(1 + \frac{1}{2^3} + \frac{1}{4^3} + \frac{1}{8^3} + \cdots\right) = O(n^3).$$

- 5. (a) True. $\log_2 n = (\log_2 3)(\log_3 n)$, which is $O(\log_3 n)$.
 - (b) False. $2^{\log_2 n} = n$ whereas $2^{\log_3 n} = 2^{(\log_3 2)(\log_2 n)} = (2^{\log_2 n})^{\log_3 2} = n^{\log_3 2}$, which is much smaller than n.
 - (c) True. $(\log_2 n)^2 = ((\log_2 3)(\log_3 n))^2 = (\log_2 3)^2(\log_3 n)^2$.
- 6. (a) $100n^3 + 3^n = O(3^n)$.
 - (b) $200n \log(200n) = O(n \log n)$.
 - (c) $100n^22^n + 3^n = O(3^n)$.
 - (d) $100n \log n + 20n^3 + \sqrt{n} = O(n^3)$.
 - (e) $1^3 + 2^3 + \dots + n^3 = O(n^4)$.
- 7. d-ary tree. Here $d \geq 2$.
 - (a) The maximum number of nodes at level j is d^{j} .
 - (b) The maximum number of nodes in a tree of depth k is at most $1 + d + \cdots + d^k < d^{k+1}$.
 - (c) If the tree has n nodes, its depth k must satisfy $n \leq d^{k+1}$, and thus k is $\Omega(\log_d n)$.