Appendix: Mathematical Skeleton

The following appendix provides a preliminary mathematical scaffold for Fractal Causality. These formulations are not a complete proof but demonstrate internal consistency and establish a foundation for testable predictions.

5D Field & Projection

Define M5 as a 5D manifold with metric g_AB (A,B=0..4). A scalar burst field $\Phi(x^{\mu}, y)$ on M5 has Lagrangian density:

 $L_5 = (1/2) \nabla_A \Phi \nabla^A \Phi - V(\Phi).$

Kaluza–Klein reduction on y = const hypersurfaces induces an effective 4D stress–energy tensor sourcing Einstein equations:

 $G_{\mu\nu} = 8\pi G (T_{\mu\nu}^{matter} + T_{\mu\nu}^{\Phi}).$

CQB activity enters as a source term $S(\Phi) = dV/d\Phi$, injecting bursts into the 4D sector.

Continuity with Source-Sink

In FRW cosmology with scale factor a(t): $d\rho/dt + 3H(\rho + p) = J_cqb(t) - J_bh(t)$, with H = (1/a)(da/dt). Circuit closure requires $\int (J_cqb - J_bh) dt = 0$ over a cycle τ .

Law of Expansion (LOE)

H^2 = (8πG/3) ρ_eff, with ρ_eff = ρ_std + α f(Φ , $\partial \Phi$). CQB contribution J_cqb = β g(Φ , $\partial \Phi$). For α , $\beta \to 0$, Λ CDM is recovered.

Black Hole Filtration & GSL

Each black hole satisfies:

 $S_BH = A / (4 \blacksquare_p^2), T_H = \kappa / (2\pi).$

Generalized Second Law: d/dt (S_out + S_BH) ≥ 0 .

Filtration map χ : ρ_{-} in $\to \sigma$ ensures information is preserved at 5D level, with $S(\sigma) + \Delta S_{-}BH \ge S(\rho_{-}$ in).

Consistency Conditions

- Λ CDM limit: Φ constant, J cqb = J bh = 0 recovers standard cosmology.
- Standard Model unaffected: Φ couples only gravitationally in 4D.
- Observables: H(z), expansion history, BH growth must fit CMB, BAO, BBN constraints.

Testable Signatures

- Oscillatory departures in H(z) consistent with small net J_cqb J_bh.
- Black-hole recycling leaves imprints in stochastic gravitational wave background.
- Entropy flow near AGN may reveal filtration dynamics.