```
import\ {\tt matplotlib.pyplot}\ as\ {\tt plt}
import pandas as pd
import scipy
import seaborn as sns
dataset=pd.read_csv("/content/car_crashes.csv")
```

dataset.head()

	total	speeding	alcohol	${\sf not_distracted}$	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA

dataset.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 51 entries, 0 to 50 Data columns (total 8 columns):

Data	cordinis (cocar	o corumns).	
#	Column	Non-Null Count	Dtype
0	total	51 non-null	float64
1	speeding	51 non-null	float64
2	alcohol	51 non-null	float64
3	${\tt not_distracted}$	51 non-null	float64
4	no_previous	51 non-null	float64
5	ins_premium	51 non-null	float64
6	ins_losses	51 non-null	float64
7	abbrev	51 non-null	object

dtypes: float64(7), object(1) memory usage: 3.3+ KB

```
plt.scatter(dataset.total,dataset.speeding,color='g')
sns.set_style('dark')
plt.xlabel("total");
plt.ylabel("speeding")
plt.show()
```



```
plt.scatter('not_distracted','alcohol',data=dataset,color='m')
sns.set_style('darkgrid',{'grid.color':'.5'})
plt.xlabel("not distracted")
plt.ylabel("alcohol")
sns.despine()
```



```
b=dataset['alcohol'];
a=dataset['total'];
sns.barplot(x=a[0:5],y=b[0:5],data=dataset,palette="PuRd")
```

<ipython-input-50-680e6273203f>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le sns.barplot(x=a[0:5],y=b[0:5],data=dataset,palette="PuRd") <Axes: xlabel='total', ylabel='alcohol'>


```
sns.boxplot(x=dataset.speeding)
plt.xlabel("speeding")
plt.title("speeding")
plt.show()
```


 $\label{eq:sns.pointplot} sns.pointplot(x="total", y="alcohol", data=dataset) \\ plt.show()$

plt.hist(dataset.alcohol,color='r',bins=20)

$$(\operatorname{array}([2.,\ 0.,\ 1.,\ 2.,\ 6.,\ 7.,\ 7.,\ 6.,\ 4.,\ 7.,\ 1.,\ 1.,\ 2.,\ 2.,\ 0.,\ 0.,\ 0.,$$

$$0..\ 1..\ 2.1).$$

df=pd.read_excel("/content/add.xlsx")
df.head()

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

x=df["CGPA"]
y=df["TOEFL Score"]
sns.boxplot(x=x[0:20],y=y[0:20],data=df)

7.9 8.0 8.2 8.21 8.3 8.4 8.5 8.6 8.67 8.7 8.8 8.87 9.0 9.1 9.349.65 CGPA

plt.hist("chance to Admit")

(array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.]), array([-0.5, -0.4, -0.3, -0.2, -0.1, 0. , 0.1, 0.2, 0.3, 0.4, 0.5]), <BarContainer object of 10 artists>)

