Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 0521 CALIBRATION DATE: 16-Jan-21

SBE 16 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = -5.50219481e-006

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (kHz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
22.0000	0.0000	0.0000	2.88423	0.0000	0.00000
1.0000	34.6387	2.96223	8.25529	2.96221	-0.00002
4.4999	34.6190	3.26793	8.61931	3.26796	0.00003
15.0000	34.5782	4.24548	9.69030	4.24548	-0.00001
18.5000	34.5695	4.58915	10.03922	4.58914	-0.00001
24.0000	34.5601	5.14471	10.57851	5.14472	0.00001
29.0000	34.5544	5.66423	11.05855	5.66423	-0.00000
32.5001	34.5461	6.03419	11.38823	6.03466	0.00047

f = Instrument Output (kHz)

 $t = temperature (^{\circ}C); \quad p = pressure (decibars); \quad \delta = CTcor; \quad \epsilon = CPcor;$

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4)/10 (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

