Math 10A Fall 2024 Worksheet 2

CJ Dowd

September 3 2024

1 Vectors, visually

(a) [-1, 2, 0]

1.	Plot the following vectors in the Cartesian plane.
	(a) $[-1,2]$ (b) $[3,0]$ (c) $[5,5]$
2.	Use the head-to-tail method to add the following vectors graphically. Then check your answer by computing the sum directly (by adding coordinates).
	(a) $[1,0] + [0,2]$ (b) $[-3,3] + [1,-2]$, (c) $[5,-2] + [-5,2]$ (d) $[-1,4] + [0,0]$
3.	Plot the following vectors in 3D space. Practice drawing 3D coordinate axes and getting comfortable working in 3D!

4. Compute [-1, 2, 0] + [3, 1, 3] using the head-to-tail method to add these vectors graphically. Then check your answer by computing the sum directly (by adding coordinates).

(b) [3,1,3] (c) [1,-4,-2] (d) [-5,0,2]

2 Length and unit vectors

2. Rescale each of the vectors in the previous question to a vector of length 3.

3 Angles between vectors

Recall that the angle θ between two nonzero vectors \vec{v}, \vec{w} is given by the formula $||\vec{v}|| ||\vec{w}|| \cos \theta = \vec{v} \cdot \vec{w}$.

1. Compute the angle between the following pairs of vectors. Express your answer in radians and simplify where possible.

(a) [0,1] and [1,0] (b) [2,-2] and [-4,4] (c) $[1,\sqrt{3}]$ and [1,0] (d) [-3,2] and [1,2] (e) [-4,6] and [-8,9]

2. Plot the pairs of vectors from the previous question in the Cartesian plane. Check to see whether the angle you found seems reasonable. (If necessary, use a calculator to evaluate the angle numerically. Convert to degrees if you find degrees more intuitive than radians.)

3. Let \vec{v} and \vec{w} be unit vectors. What is $\vec{v} \cdot \vec{w}$ when these vectors are

- (a) Pointing in the same direction?
- (b) Pointing in opposite directions?
- (c) Pointing orthogonally to each other?

Check your answer by figuring out what the angle formula says in each of these cases.

¹Google will compute inverse trig functions for you!

Solutions

1 Vectors, visually

- 2. (a) [1, 2] (b) [-2, 1] (c) [0, 0] (d) [-1, 4]
- 4. [2, 3, 3]

2 Length and unit vectors

- 1. (a) [3/5,4/5] (b) $[-1/\sqrt{2},1/\sqrt{2}]$ (c) [1/3,-2/3,-2/3] (d) $[3/\sqrt{14},-2/\sqrt{14},1/\sqrt{14}]$ (e) $[1/\sqrt{7},1/\sqrt{7},1/\sqrt{7},1/\sqrt{7},1/\sqrt{7},1/\sqrt{7}]$ (f) Impossible to make a unit vector
- 2. (a) [9/5,12/5] (b) $[-3/\sqrt{2},3/\sqrt{2}]$ (c) [1,-2,-2] (d) $[9/\sqrt{14},-6/\sqrt{14},3/\sqrt{14}]$ (e) $[3/\sqrt{7},3/\sqrt{7},3/\sqrt{7},3/\sqrt{7},3/\sqrt{7},3/\sqrt{7}]$ (f) Impossible

3 Angles between vectors

- 1. (a) $\pi/2$ (b) π (c) $\pi/3$ (d) $\arccos(1/\sqrt{65}) \approx 1.45 \text{ rad} \approx 83^{\circ}$ (e) $\arccos\left(\frac{86}{2\sqrt{1885}}\right) \approx 0.139 \text{ rad} \approx 7.943^{\circ}$
- 3. (a) 1 (b) -1 (c) 0