Задание номер 1

H. K. Животовский nikita.zhivotovskiy@phystech.edu

19 февраля 2017 г.

Задание принимается до 2.00 утра 6 марта по адресу slt.fupm.2017@gmail.com. В начале текста задания *обязательно* указывается:

- С кем вы делали это задание.
- Какие источники (кроме материалов лекций) вы использовали.

Задание оформляется в формате pdf (текст набирается либо в latex/Word) и в таком виде, чтобы ваши коллеги могли разобрать текст решения. Задания, оформленные не в соответствии с указанными правилами, не принимаются. Желательно оставлять зазоры между задачами для пометок.

Упражнение 1.

- Привести пример случайной величины $X \ge 0$, для которой в неравенстве Маркова достигается точное равенство.
- Привести пример случайной величины Y, для которой в неравенстве Чебышева достигается точное равенство.

Упражнение 2 [От хвостов к математическим ожиданиям]

• Пусть для с.в. Y, некоторых $A \geq 2, B > 0$ и для любого $\varepsilon \geq 0$ выполнено

$$P(Y \ge \varepsilon) \le A \exp\left(-\frac{\varepsilon^2}{B^2}\right).$$

Докажите, что существует абсолютная константа C > 0, такая что

$$\mathbb{E}Y \leq CB\sqrt{\log(A)}$$
.

• Какая оценка на $\mathbb{E}Y$ получится в случае $P(Y \ge \varepsilon) \le A \exp\left(-\frac{\varepsilon}{B}\right)$?

Указание. Используйте, что для с.в. $Y \geq 0$ имеет место $\mathbb{E}Y = \int\limits_0^\infty P(Y>\varepsilon)d\varepsilon.$

Упражнение 3

- Докажите, что сумма двух субгассовских случайных величин с параметрами σ_1, σ_2 также является субгауссовской случайной величиной. Оценить сверхну параметр σ для суммы через σ_1, σ_2 . Достигается ли ваша оценка?
- Верно ли, что произведение субгауссовских также субгауссовское?
- Докажите, что условие $\mathbb{E} X=0$ является необходимым условием того, что $\mathbb{E}\exp(\lambda X) \leq \exp(\frac{\lambda^2\sigma^2}{2})$ для всех $\lambda \in \mathbb{R}$.
- Докажите, что если X субгассовская случайная величина с параметром σ , то

$$||X||_{L_p} = (\mathbb{E}|X|^p)^{\frac{1}{p}} \le K\sqrt{p},$$

где K зависит только от σ для всех p > 1.

Упражнение 4 Пусть $\psi(x)$ — плотность распределения с. в. $X \sim \mathcal{N}(0,1)$.

- Докажите, что $\psi'(x) + x\psi(x) = 0$.
- Докажите, что для всех x > 0

$$\psi(x)\left(\frac{1}{x} - \frac{1}{x^3}\right) \le P(X \ge x) \le \psi(x)\left(\frac{1}{x} - \frac{1}{x^3} + \frac{3}{x^5}\right).$$

- Сравнить верхнюю оценку в последнем неравенстве с оценкой, получаемой с помощью метода Чернова.
- Сравнить для всех значений параметра p для схемы испытаний Бернулли хвост, получаемый с помощью неравенства Хеффдинга с асимптотическим хвостом, получаемым с помощью предельной теоремы Муавра-Лапласа. Верно ли, что хвосты Хеффдинга всегда слабее?

Упражнение 5 В задаче классификации с двумя классами $\mathcal{Y} = \{1, -1\}$ и бинарной функцией потерь

- Докажите что $f^*(x) = \text{sign}(\eta(x))$, где $\eta(x) = E[Y|X=x]$.
- Пусть известно, что $|\eta(x)| \geq h$, где $h \in [0,1]$. Докажите, что $L(f^*) \leq \frac{1}{2}(1-h)$.

Задача 1. Приведите пример класса функций \mathcal{F} , для которого алгоритм голосования большинства (Halving) неоптимален. То есть пример такого класса, для которого число ошибок на любой конечной выборке в худшем случае будет строго меньше, если не всегда следовать большинству.

Задача 2 Рассмотрим задачу классификации с двумя классами $\mathcal{Y}=\{1,-1\}$ и бинарной функцией потерь такую, что для некоторого $f\in\mathcal{F}$ выполнено Y=f(X). Предположим, что мы заменили определение обучаемости следующим образом. Если ранее требовался малый риск с вероятностью $1-\delta$, то теперь требуется лишь с вероятностью $\frac{1}{2}$. Докажите, что множество обучаемых классов не поменяется от такого изменения определения. Другими словами, если $\mathcal F$ обучаем в постановке $1-\delta$, то он обучаем и в постановке $\frac{1}{2}$.