Esercizio (tratto dal Problema 14.15 del Mazzoldi 2)

Una macchina termica irreversibile lavora tra due sorgenti alle temperature $T_2=434.5\,\mathrm{K}$ e $T_1=290\,\mathrm{K}$. La sostanza lavorante è costituita da n=1.2 moli di gas ideale biatomico, ed il ciclo ha le seguenti caratteristiche. Il gas viene prima fatto espandere reversibilmente a contatto con la sorgente a T_2 dal volume $V_A=5\cdot 10^{-3}\,\mathrm{m}^3$ al volume V_B . A questo punto si interrompe il contatto termico e si fa espandere il gas in maniera adiabatica irreversibile, fino al volume V_C e alla temperatura T_1 . Si pone quindi il gas in contatto termico con la sorgente a T_1 e lo si comprime reversibilmente fino al volume V_A . Infine si rimette il gas a contatto termico con la sorgente T_2 mantenendo costante il volume. Il rendimento del ciclo è pari a $\eta=0.216$ e ΔS_{univ} in un ciclo è pari a $2.67\,\mathrm{J/K}$. Calcolare:

- 1. i calori scambiati dal gas in un ciclo;
- 2. i volumi V_B e V_C .

