EE 602 – Algorithm I

(UH Manoa, Fall 2020)

Algorithms Assignment 4

September 23, 2020

Instructor: Yingfei Dong Name: Frendy Lio Can

Problem 1

To prove this, we have to show that there exists constants $c_1, c_2, n_0 > 0$ such that $0 \le c_1 n^b \le (n+a)^b \le c_2 n^b$, $\forall n \ge n_0$.

We also can observe that $n+a \leq 2n$, when $|a| \leq n;$ and $n+a \geq \frac{1}{2}n$, when $|a| \leq \frac{n}{2}.$

Thus, if $n \ge 2|a|$

$$0 \le \frac{n}{2} \le n + a \le 2n \Leftrightarrow$$

$$\Leftrightarrow 0^b \le \frac{n^b}{2} \le (n+a)^b \le (2n)^b, \quad b > 0$$

$$\Leftrightarrow 0 \le 2^{-b} n^b \le (n+a)^n \le 2^b n^b$$

$$\therefore$$
 $(n+a)^b = \Theta(n^b)$ \therefore $\exists c_1, c_2, n_0 : c_1 = 2^{-b}, c_2 = 2^b, n_0 = 2|a|$ when $b > 0$

Problem 2

Yes, $2^{n+1} = O(2^n)$ and $2^2n \neq O(2^n)$.

For $2^{n+1} = O(2^n)$

Assume that $2^{n+1} = O(2^n)$. Thus, we need to prove that there exists constants $c, n_0 > 0$ such that $0 \le 2^{n+1} \le c2^n$, $\forall n \ge n_0$. We can observe that $0 \le 2^{n+1} \le c2^n \Leftrightarrow 0 \le 2 \cdot 2^n \le c2^n$.

Clearly, we can observe that there exists constants $c, n_0 > 0$ such that $c_0 \ge 2, n \ge 1$. Therefore $2^{n+1} = O(2^n)$.

For $2^2n \neq O(2^n)$

Assume that $2^2n = O(2^n)$. Thus, we need to prove that there exists constants $c, n_0 > 0$ such that $0 \le 2^{2n} \le c2^n$, $\forall n \ge n_0$. We can observe that $0 \le 2^{2n} \le c2^n \Leftrightarrow 0 \le 2^n \cdot 2^n \le c2^n$.

Clearly, we can observe that there does not exists any constants c when $n \to \infty$. This contradicts the assumption $2^2n = O(2^n)$. Therefore, we can conclude that $2^2n \neq O(2^n)$

Problem 3

If $T(n) = O(n^2)$, there must exists constants $c, n_0 > 0$ such that $T(n) \le cn^2$, $\forall n \ge n_0$.

$$T(n) = T(n-1) + n \le c(n-1)^2 + n$$

$$\le cn^2 - 2cn + 1 + n$$

$$\le cn^2 + (-2c+1)n + 1$$

$$\le cn^2 + (-2c+1)n$$

$$\le cn^2 - 2cn$$

$$< cn^2$$

We can observe that for $n \to \infty$ and $c \ge 1$, $T(n) \le cn^2$. Therefore, $T(n) = O(n^2)$.

Problem 4

Recursion tree:

We can observed that f(n) = cn, a = c and $b = 1/(1 - \alpha)$.

Therefore, in order to calculate the lower bound, we add the cost of each level of the tree by knowing that the tree is completed when the Recursion tree level is $log_b n$:

$$T(n) = \sum_{j=0}^{\log_b \cdot n} f(n)$$

$$= \sum_{j=0}^{\log_b \cdot n} cn$$

$$= \sum_{j=1}^{\log_b \cdot n} cn + cn$$

$$\geq n \log_b n$$

$$\geq n \log n$$

$$\geq n \log n$$

$$\therefore T(n) = \Omega(n \log n)$$

In order to calculate the upper bound, we assume that there exists a constant b such that $T(n) \leq b \cdot n \cdot lgn$.

Thus, the upper bound is:

$$\begin{split} T(n) = & T(\alpha n) + T((1-\alpha)n) + cn \\ \leq & b(\alpha n) \cdot lg(\alpha n) + b[(1-\alpha)n] \cdot lg[(1-\alpha)n] + cn \\ \leq & [b\alpha nlg\alpha + b\alpha nlgn] + [b(1-\alpha)nlg(1-\alpha) + b(1-\alpha)nlgn] + cn \\ \leq & bnlgn + bn(\alpha lg\alpha + (1-\alpha)lg(1-\alpha)) + cn \\ \leq & bnlgn \end{split}$$

We can apply the same logic and find the lower bound which is:

$$T(n) \ge bnlgn$$

We can conclude that $T(n) = \Theta(nlgn)$, for any $n \ge n_0$ and $c \ge -b(\alpha lg\alpha + (1-\alpha)lg(1-\alpha))$.

Problem 5

a)
$$T(n) = 2T(\frac{n}{2}) + n^3$$

We have $a=2, b=2, f(n)=n^3$ and $n^{log_ba}=n^{log_22}=n$. We can observe that case 3 of the master method applies since $f(n)=\Omega(n^{log_ba+\epsilon}), \epsilon=3$.

Therefore, $T(n) = \Theta(n^3)$.

b)
$$T(n) = T(\frac{9n}{10}) + n$$

We have a=1, b=10/9, f(n)=n and $n^{\log_{10/9}1}=n^0=1$. We can observe that case 3 of the master method applies since $f(n)=\Omega(n^{\log_b a+\epsilon}), \epsilon=1$.

Therefore, $T(n) = \Theta(n)$.

c)
$$T(n) = 16T(\frac{n}{4}) + n^2$$

We have $a = 16, b = 4, f(n) = n^2$ and $n^{log_416} = n^2$. We can observe that case 2 of the master method applies since $f(n) = \Theta(n^{log_ba})$.

Therefore, $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(n^2 \lg n)$.

d)
$$T(n) = 7T(\frac{n}{3}) + n^2$$

We have $a=7, b=3, f(n)=n^2$ and $n^{\log_3 7}=n^{1.77}$. We can observe that case 3 of the master method applies since $f(n)=\Omega(n^{\log_b a+\epsilon}), \epsilon\approx 0.23$.

Therefore, $T(n) = \Theta(n^2)$.

e)
$$T(n) = 7T(\frac{n}{2}) + n^2$$

We have $a=7, b=2, f(n)=n^2$ and $n^{\log_2 7}=n^{2.81}$. We can observe that case 1 of the master method applies since $f(n)=\Omega(n^{\log_b a-\epsilon}), \epsilon\approx 0.81$.

Therefore, $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_2 7}).$

f)
$$T(n) = 2T(\frac{n}{4}) + n^{1/2}$$

We have $a = 2, b = 4, f(n) = n^{1/2}$ and $n^{\log_4 2} = n^{1/2}$. We can observe that case 2 of the master method applies since $f(n) = \Omega(n^{\log_b a})$.

Therefore, $T(n) = \Theta(n^{\log_4 2} lgn)$.

g)
$$T(n) = T(n-1) + n$$

$$T(n) = T(n-1) + n$$

$$T(n-1) = T(n-2) + n - 1$$

$$T(n-2) = T(n-3) + n - 2$$

Therefore,

$$T(n) = T(n-1) + n = T(n-2) + n - 1 + n = T(n-3) + n - 2 + n - 1 + n$$

 $T(n) = T(n-k) + kn - k(k-1)/2$

Thus, if our base case for T(1) is $n - k = 1 \Rightarrow k = n - 1$. Thus,

$$T(n) = T(1) + (n-1)n - \frac{(n-1)(n-2)}{2}$$

We can clearly observed that it has complexity $\Theta(n^2)$.

h)
$$T(n) = T(n^{1/2}) + 1$$

Let $n = 2^m$. Thus, $T(2^m) = T(2^{m \cdot 1/2}) + 1$. Assume the $T(2^m) = S(m)$ where S is some function of m.

Thus,
$$S(m) = S(m/2) + 1$$

We have a = 1, b = 2, f(n) = 1 and $n^{\log_2 1} = 1$. We can observe that case 2 of the master method applies since $f(n) = \Omega(1)$.

Therefore, $S(m) = \Theta(lgm)$. Thus, since $n = 2^m \Rightarrow lgn = m$, $T(n) = \Theta(lg(lgn))$