PROBLEMAS DE PROCESOS ESTOCÁSTICOS I SEMESTRE 2013-II

POSGRADO EN CIENCIAS MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

GERÓNIMO URIBE BRAVO

Problema 1. Sean $X_{nn\in}$ un proceso estocástico con valores reales y $A\subset$ un boreliano. Pruebe que si $T_0=0$ y $T_{n+1}=\min n>T_n:X_n\in A$ entonces T_n es un tiempo de paro para toda n y $T_n\to\infty$ puntualmente conforme $n\to\infty$.

Categorías: Tiempos de paro

Problema 2 (Lo que siempre tiene una posibilidad razonable de suceder lo hará; (casi seguramente) – y pronto). *Tomado de* [?, E10.5, p.223]

Suponga que T es un tiempo de paro tal que para algún $N \in \mathbf{y}$ $\varepsilon > 0$ se tiene que para toda $n \in :$

$$(T \le N + n|_n) > \varepsilon$$
 casi seguramente

Al verificar la desomposición

$$(T > kN) = (T > kN, T > (k-1)N),$$

pruebe por inducción que para cada k = 1, 2, ...:

$$(T > kN) \le 1^{-k}.$$

Pruebe que $T < \infty$.

Categorías: Tiempos de paro.

Problema 3. Tomado de Mathematical Tripos, Part III, Paper 33, 2012, http://www.maths.cam.ac.uk/postgrad/mathiii/pastpapers/

Sean X_i , $i \in \text{variables}$ aleatorias independientes con $X_i = \pm 1 = 1/2$. Sean $S_0 = 0$ y $S_n = \sum_{i=1}^n X_i$.

- (1) Sea $T_1 = \min n \ge 0$: $S_n = 1$. Explique por qué T_1 es un tiempo de paro y calcule su esperanza.
- (2) Mediante el inciso anterior, construya una martingala que converge casi seguramente pero no lo hace en L_1 .
- (3) Sea $T = \min n \ge 2$: $S_n = S_{n-1}$ y U = T 2. ¿Son T y U tiempos de paro? Justifique su respuesta.
- (4) Para la variable T que hemos definido, calcule T.

Categorías: Tiempos de paro, problema de la ruina

Problema 4 (Extensiones del teorema de paro opcional). Sea $M = M_n, n \in \text{una}$ (super)martingala respecto de una filtración $n, n \in y$ sean S y T tiempos de paro.

- (1) Pruebe que $S \wedge T$, S + T y $S \vee T$ son tiempos de paro.
- (2) Sea $T = A \in A \cap T \le n \in n$ para toda nes una σ -álgebra, a la que nos referimos como la σ -álgebra detenida en τ . Comente qué puede fallar si T no es tiempo de paro. Pruebe que T es F_T -medible.
- (3) Pruebe que si T es finito, entonces M_T es $_T$ -medible.
- (4) Pruebe que si $S \leq T \leq n$ entonces $S \subset T$. Si además T es acotado entonces $X_S, X_T \in L_1$ y $M_{TS} \leq M_S$.
- (5) Si $X = X_n, n \in$ es un proceso estocástico n-adaptado y tal que $X_n \in L_1$ y tal que para cualesquiera tiempos de paro acotados S y T se tiene que $X_S = X_T$ entonces X es una martingala. Sugerencia: considere tiempos de paro de la forma $nA + (n+1)A^c$ con $A \in n$.

Categorías: Tiempos de paro, Muestreo opcional