Facultad de Matemática y Computación (UH) Ciencia de la Computación Matemática Numérica

Clase Práctica 8:

Derivar puede cualquiera, integrar también (si sabe numérica y usa Sympy)

Curso 2024

Lo más sencillo

Ejercicio 1: Lo básico de las integrales (20000 créditos)

Dada una función integrable $f: \mathbb{R} \to \mathbb{R}$, y un intervalo [a, b], implemente una función en Python que calcule el valor de $\int_a^b f(x)dx$ usando:

- a) El método compuesto del rectángulo.
- b) El método compuesto de los trapecios.
- c) El método compuesto del punto medio.
- d) El método compuesto de Simpson.

Ejercicio 2: Y una demostración sencilla (30000 créditos)

Demuestra que si un método simple que permite aproximar la integral $\int_a^b f(x)dx$ tiene un error $O((b-a)^n)$, entonces si se usa el método compuesto correspondiente con N intervalos, se obtiene una aproximación con un error $O(h^{n-1})$, donde $h=\frac{b-a}{N}$.

Ejercicio 3: Mejor error conocido y acotado... (40000 créditos)

Para cada uno de los métodos compuestos implementados por usted en el ejercicio 1 para calcular $\int_a^b f(x)dx$, diga en cuántos subintervalos es necesario dividir el intervalo [a,b] para obtener una aproximación de la integral con un error que sea menor que una tolerancia predeterminada.

Ejercicio 4: Lo mínimo de las derivadas aproximadas (60000 créditos)

Dada una función $f \in C^{\infty}[a, b]$, un punto $\bar{x} \in [a, b]$ y un valor de $h \in \mathbb{R}_+$, seleccione un método para aproximar derivadas usando diferencias finitas¹ e implemente una función en Python que:

- a) Devuelva el valor de la derivada de $f(\bar{x})$, evaluada en el punto \bar{x} .
- b) Grafique las funciones f(x) y f'(x) en el intervalo [a, b].
- c) Para un valor fijo de \bar{x} grafique el error que se comete al aproximar $f'(\bar{x})$ usando distintos valores de h si se usa el método seleccionado por usted.

Ejercicios integradores

Ejercicio 5: De coraje, manos sucias y errores (80000 créditos)

Hasta ahora se sabe que la primera derivada de una función f(x) se puede aproximar como

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$
 y $f'(x) = \frac{f(x+h) - f(x-h)}{2h}$,

y que la primera aproximación tiene un error O(h) y la segunda $O(h^2)$.

Sin embargo, esas aproximaciones también se pueden obtener interpolando la función y derivando el polinomio de interpolación².

- a) Demuestre que si la función se aproxima por un polinomio de interpolación que pasa por los puntos $(x_0, f(x_0))$ y $(x_0 + h, f(x_0 + h))$, se obtiene la primera aproxmación, con su correspondiente error.
- b) Demuestre que si la función se aproxima por un polinomio de interpolación que pasa por los puntos $(x_0, f(x_0))$, $(x_0 h, f(x_0 h))$, $(x_0 + h, f(x_0 + h))$, se deriva, y se evalúa la derivada en el punto x_0 se obtiene la segunda aproxmación, con su correspondiente error.
- c) ¿Qué expresiones se obtienen si la función se interpola en tres puntos, se deriva el polinomio de interpolación y se evalúa en los puntos x_0 y x_2 ?
- d) ¿Qué error se comete en cada caso?

Ejercicio 6: Órdenes de precisión y sistemas de ecuaciones lineales (100000 créditos)

Dada una función f(x) cualquiera se puede aproximar la integral $\int_a^b f(x)dx$ como una suma: $w_1f(x_1) + w_2f(x_2) + \ldots + w_nf(x_n)$, donde w_i son números reales seleccionados convenientemente.

¹¡Taratatáaan! Acabas de encontrar una pregunta secreta por un valor de 20000 créditos: ¿qué son diferencias finitas? :-/

²Al menos eso fue lo que dijo el profe en la conferencia, pero a los profesores no siempre se les puede creer todo...¡Hay que demostrar lo que ellos dicen!

- a) Diga qué valores deben tener los números w_i de forma que las integrales $\int_a^b f_i(x) dx$ se puedan calcular de manera exacta para todas las funciones $f_i(x) = x^i$, con $i = \overline{0, n}$.
- b) Diseñe e implemente un algoritmo que reciba el valor de n y devuelva los valores de las constantes w_i , con $i = \overline{1, n}$.

Y dos ejercicios para responderlos todos

Ejercicio 7: Todas las derivadas por el precio de un Sympy³ (200000 créditos)

Utilizando las facilidades que brinda Sympy y sus⁴ conocimientos de interpolación y su uso en la aproximación de derivadas numéricas:

- a) Implemente una función que reciba dos enteros n y p y devuelva una función y un número $h_{best} \in \mathbb{R}$ donde:
 - a) La función recibe tres argumentos: una función y dos números donde
 - 1) la función es la implementación en Python de una función $f \in C^{\infty}[-\infty, +\infty]$,
 - 2) el primer número es un punto $x \in \mathbb{R}$ donde se desea aproximar la derivada n-ésima de f(x), y
 - 3) el segundo número es un valor $h \in \mathbb{R}$ con el que se desea aproximar la derivada. y que devuelva: una aproximación de la derivada $f^{(n)}(x)$ que tenga un error $O(h^p)$.
 - b) El valor h_{best} es una recomendación de qué valor de h es el más apropiado⁵ para aproximar la derivada de orden \mathbf{n} con un error $O(h^p)$.

Ejercicio 8:
$$\int_a^b f(x)dx$$
 + Sympy = :-D (300000 créditos)

Una forma de aproximar la integral de una función f(x) en un intervalo [a, b] es interpolar la función en n puntos e integrar el polinomio de interpolación.

- a) Diseñe un algoritmo que reciba un número n y devuelva una fórmula para hallar la integral de una función f(x) en un intervalo [a,b] utilizando un polinomio de interpolación con n puntos.
- b) ¿Qué error se comete al aproximar la integral por la expresión propuesta por usted en el inciso anterior?
- c) Utilice su algoritmo para hallar fórmulas de integración basada en 1, 2, y 3 puntos, y los errores cometidos en cada caso.

³Este ejercicio puede estar difícil de hacer, pero si se hace, los demás deberían poderse hacer muy rápido.

⁴ "sus conocimientos" se refiere a los conocimientos de la persona que lee estas líneas, y no a los de Sympy.

 $^{^5}$ ¡Taratatáaan! Se acerca una pregunta secreta por un valor de 20000 créditos: ¿Por qué hace falta un valor de h que sea "el más apropiado" y no simplemente coger uno bien pequeño?

Bibliografía recomendada

- Elementary Numerical Analysis, An algorithmic approach. 3rd Edition. S. D. Conte y Carl de Boor. McGraw-Hill Book Company. 1980.
- Numerical Methods. 9th Edition. J. D. Faires y R. L. Burden. Brooks Cole Publishing, 2011.
- Numerical Computing with Matlab. C. Moler. 2004.
- *Matemática Numérica II. Notas de Clase* A. León Mecías. Facultad de Matemática y Computación, UH. 2014.