Intelligent Multi Agent Systems

Single Agent Reinforcement Learning

Gerhard Neumann

Agenda

- So far, we have only considered simple games with no/very simple state dynamics
- →In a realistic setup, we have the agent's living and interacting with a complex environment
- ⇒ We want to maximize the future reward considering future states of the agents
- Can be formulated as a Markov Decision Process (MDP)
- Learning in an MDP: Reinforcement Learning

Today: We will start with a single agent

Outline

Known Model: Markov Decision Processes

- ⇒ Value Functions and Policy Evaluation
- → Policy Iteration and Value Iteration

Unknown Model: Reinforcement Learning

- → Temporal Difference Learning
- →TD-Learning for Control: Q-Learning and Sarsa
- ⇒ Value Function Approximation
- → Least-Squares Temporal Difference Learning

Markov Decision Processes (MDP)

A MDP is defined by:

- its state space $s \in \mathcal{S}$
- its action space $a \in \mathcal{A}$
- its transition dynamics $\,\mathcal{P}(oldsymbol{s}_{t+1}|oldsymbol{s}_t,oldsymbol{a}_t)$
- its reward function $r(\boldsymbol{s}, \boldsymbol{a})$
- and its initial state probabilities $\mu_0(\boldsymbol{s})$

Markov property:

$$\mathcal{P}(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, \dots) = \mathcal{P}(s_{t+1}|s_t, a_t)$$

Transition dynamics depends on only of current time step

Optimality Objective

The goal of the agent is to find an optimal policy π^* that maximizes its expected long term reward J_π

$$\pi^* = \operatorname{argmax}_{\pi} J_{\pi}, \qquad J_{\pi} = \mathbb{E}_{\mu_0, \mathcal{P}, \pi} \left[\sum_{t=0}^{\infty} \gamma^t r(\boldsymbol{s}_t, \boldsymbol{a}_t) \right]$$

- $0 \le \gamma < 1$... discount factor
- Discount Factor trades-off long term vs. immediate reward
- Time Horizon: Infinite

Example: Two State Problem

States: s^1, s^2

$$\mathcal{P}(s^1|s^1, a^1) = 1, \ \mathcal{P}(s^2|s^1, a^1) = 0, \ \mathcal{P}(s^1|s^1, a^2) = 0, \ \mathcal{P}(s^2|s^1, a^2) = 1$$

$$\mathcal{P}(s^1|s^2, a^1) = 1, \ \mathcal{P}(s^2|s^2, a^1) = 0, \ \mathcal{P}(s^1|s^2, a^2) = 1, \ \mathcal{P}(s^2|s^2, a^2) = 0$$

Rewards: $r(s^1) = 1$, $r(s^2) = 0$

Policy: What is the optimal policy?

How do we find an optimal policy?

Typically done iteratively:

1. Policy Evaluation:

Estimate quality of states (and actions) with current policy

2. Policy Improvement:

Improve policy by taking actions with the highest quality

This algorithm is called **Policy Iteration**

Value functions

Value function $V^{\pi}(s)$:

Expected long-term reward when beeing in state s and following policy $\pi(a|s)$

$$V^{\pi}(s) = E_{\mathcal{P},\pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s \right]$$

V(s) is a Quality measure for state s

 \Rightarrow "How good" is it to be in state s under policy $\pi(a|s)$?

Value functions

Illustration:

Policy always goes directly to the star Going through puddles is punished

State-Action Value Functions

Q-function $Q^{\pi}(s, a)$:

Long-term reward for taking action ${m a}$ in state ${m s}$ and subsequently following policy $\pi({m a}|{m s})$

$$Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}) = \mathbb{E}_{\mathcal{P}, \pi} \Big[\sum_{t=0}^{\infty} \gamma^t r(\boldsymbol{s}_t, \boldsymbol{a}_t) | \boldsymbol{s}_0 = \boldsymbol{s}, \boldsymbol{a}_0 = \boldsymbol{a} \Big]$$

Q(s,a) is a quality measure for taking action a in state a

 \Rightarrow "How good" is it to take action a in state s under policy $\pi(a|s)$?

Value Functions

They can be computed from each other

Computing V-Function from Q-Function

$$V^{\pi}(s) = \mathbb{E}_{\pi}\Big[Q^{\pi}(s, a)|s\Big] = \int \pi(a|s)Q^{\pi}(s, a)da$$

- **⇒** Expectation over the policy
- Computing Q-Function from V-Function

$$Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}) = r(\boldsymbol{s}, \boldsymbol{a}) + \gamma \mathbb{E}_{\mathcal{P}} \left[V^{\pi}(\boldsymbol{s}') \big| \boldsymbol{s}, \boldsymbol{a} \right]$$
$$= r(\boldsymbol{s}, \boldsymbol{a}) + \gamma \int \mathcal{P}(\boldsymbol{s}' | \boldsymbol{s}, \boldsymbol{a}) V^{\pi}(\boldsymbol{s}') d\boldsymbol{s}'$$

Uses value of the next state

Recursive Updates

... both functions can also be estimated recursively

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r(s, \boldsymbol{a}) + \gamma \mathbb{E}_{\mathcal{P}} \left[V^{\pi}(s') \right] \middle| s \right]$$
$$= \int \pi(\boldsymbol{a} | s) \left(r(s, \boldsymbol{a}) + \gamma \int \mathcal{P}(s' | s, \boldsymbol{a}) V^{\pi}(s') ds' \right) d\boldsymbol{a}$$

$$Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}) = r(\boldsymbol{s}, \boldsymbol{a}) + \gamma \mathbb{E}_{\mathcal{P}, \pi} \left[Q^{\pi}(\boldsymbol{s}', \boldsymbol{a}') \big| \boldsymbol{s}, \boldsymbol{a} \right]$$
$$= r(\boldsymbol{s}, \boldsymbol{a}) + \gamma \int \mathcal{P}(\boldsymbol{s}' | \boldsymbol{s}, \boldsymbol{a}) \int \pi(\boldsymbol{a}' | \boldsymbol{s}') Q^{\pi}(\boldsymbol{s}', \boldsymbol{a}') d\boldsymbol{a}' d\boldsymbol{s}'$$

If I know the value of the next state s', I can compute the value of the current state

Iterating these equations converges to the true V or Q function

Policy Evaluation Algorithm

Algorithm (for discrete states)

Init:
$$V_0^{\pi}(s) \leftarrow 0, \forall s \text{ and } k = 0$$

Repeat

Compute Q-Function (for each state action pair)

$$Q_{k+1}^{\pi}(s,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a) V_k^{\pi}(s')$$

Compute V-Function (for each state)

$$V_{k+1}^{\pi}(s) = \sum_{a} \pi(a|s) Q_{k+1}^{\pi}(s,a)$$

 $k = k+1$

until convergence

Example: Two State Problem

States: s^1, s^2

Actions: red (a^1) and blue (a^2) edges

Transition:

$$\mathcal{P}(s^1|s^1, a^1) = 1, \ \mathcal{P}(s^2|s^1, a^1) = 0, \ \mathcal{P}(s^1|s^1, a^2) = 0, \ \mathcal{P}(s^2|s^1, a^2) = 1$$

$$\mathcal{P}(s^1|s^2, a^1) = 1, \ \mathcal{P}(s^2|s^2, a^1) = 0, \ \mathcal{P}(s^1|s^2, a^2) = 1, \ \mathcal{P}(s^2|s^2, a^2) = 0$$

Rewards: $r(s^1) = 1$, $r(s^2) = 0$

Policy Evaluation: Policy $\pi(a|s) = 0.5, \forall s, a$

Compute V(s) and Q(s,a): Blackboard

How do we find an optimal policy?

Typically done iteratively:

1. Policy Evaluation:

Estimate quality of states (and actions) with current policy

2. Policy Improvement:

Improve policy by taking actions with the highest quality

This algorithm is called **Policy Iteration**

How do we find an optimal policy?

Policy Improvement:

Improve policy by taking actions with the highest quality

$$\pi(\boldsymbol{a}|\boldsymbol{s}) = \begin{cases} 1, & \text{if } \boldsymbol{a} = \operatorname{argmax}_{\boldsymbol{a}'} Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}') \\ 0, & \text{otherwise} \end{cases}$$

This policy update is called greedy, as it greedily maximizes the Q-function (without exploration)

Iterating Policy Evaluation and Policy Improvement converges to the optimal policy and is called Policy Iteration

Policy Iteration Algorithm

Init:
$$V_0^{\pi}(s) \leftarrow 0, \pi \leftarrow \text{uniform}$$
 Repeat

Repeat
$$k = k + 1$$

Compute Q-Function (for each state action pair)

$$Q_{k+1}^{\pi}(s,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a) V_k^{\pi}(s')$$

Compute V-Function (for each state)

$$V_{k+1}^{\pi}(s) = \sum_{a} \pi(a|s) Q_{k+1}^{\pi}(s,a)$$

until convergence of V

Update Policy:

$$\pi(\boldsymbol{a}|\boldsymbol{s}) = \begin{cases} 1, & \text{if } \boldsymbol{a} = \operatorname{argmax}_{\boldsymbol{a}'} Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}') \\ 0, & \text{otherwise} \end{cases}$$

until convergence of policy

Can we also **stop policy evaluation before convergence** and perform a policy update?

Yes! We will still converge to the optimal policy!

"Extreme" case: Stop policy evaluation after 1 iteration

$$V^*(s) = \max_{a} \left(r(s, a) + \gamma \mathbb{E}_{\mathcal{P}} \left[V^*(s') | s, a \right] \right)$$

- ightharpoonupThis equation is called the Bellman Equation $V^*(s)$
- → Iterating this equation computes the value function of the optimal policy

Value Iteration

Alternatively we can also iterate Q-functions...

$$Q^*(\boldsymbol{s}, \boldsymbol{a}) = r(\boldsymbol{s}, \boldsymbol{a}) + \gamma \mathbb{E}_{\mathcal{P}} \left[\max_{\boldsymbol{a}'} Q^*(\boldsymbol{s}', \boldsymbol{a}') \middle| \boldsymbol{s}, \boldsymbol{a} \right]$$

More Identities:

Computing optimal V-Function from optimal Q-Function

$$V^*(\boldsymbol{s}) = \max_{\boldsymbol{a}} Q^*(\boldsymbol{s}, \boldsymbol{a})$$

... using the definition of the optimal policy

Computing optimal Q-Function from optimal V-Function

$$Q^*(\boldsymbol{s}, \boldsymbol{a}) = r(\boldsymbol{s}, \boldsymbol{a}) + \gamma \mathbb{E}_{\mathcal{P}} \left[V^*(\boldsymbol{s}') | \boldsymbol{s}, \boldsymbol{a} \right]$$

The Value Iteration Algorithm

Init:
$$V_0^*(s) \leftarrow 0$$

Repeat

$$k = k + 1$$

Compute optimal Q-Function

$$Q_{k+1}^*(s,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a) V_k^*(s')$$

Compute optimal V-Function

$$V_{k+1}^*(s) = \max_a Q_{k+1}^*(s, a)$$

until convergence of V

This algorithm is also called Dynamic Programming

Example: Two State Problem

States: s^1, s^2

Actions: red (a^1) and blue (a^2) edges

Transition:

$$\mathcal{P}(s^1|s^1, a^1) = 1, \ \mathcal{P}(s^2|s^1, a^1) = 0, \ \mathcal{P}(s^1|s^1, a^2) = 0, \ \mathcal{P}(s^2|s^1, a^2) = 1$$

$$\mathcal{P}(s^1|s^2, a^1) = 1, \ \mathcal{P}(s^2|s^2, a^1) = 0, \ \mathcal{P}(s^1|s^2, a^2) = 1, \ \mathcal{P}(s^2|s^2, a^2) = 0$$

Rewards: $r(s^1) = 1$, $r(s^2) = 0$

Value iteration:

Compute V*(s) and Q*(s,a): Blackboard

Wrap Up

To compute an optimal policy, we can either use

Policy Iteration:

- ⇒Fix current policy and evaluate its value function
- Compute new policy greedily on the value function

Value Iteration:

- Directly iterate optimal value function
- →Policy can be obtained afterwards from optimal Q-Function

Wrap-Up: Dynamic Programing

We now know how to compute optimal policies if we know the model

Wait, there is a catch!

Unfortunately, we can only do this in 2 cases

Discrete Systems

Easy: integrals turn into sums

...but the world is not discrete!

 Linear Systems, Quadratic Reward, Gaussian Noise (LQR)

... but the world is not linear!

Dynamic Programing

In all other cases, we have to use approximations!

Why?

1. Representation of the V-function:

How to represent V in continuous state spaces?

2. We need to solve:

 $\max_{\boldsymbol{a}} Q^*(\boldsymbol{s}, \boldsymbol{a})$: difficult in continuous action spaces $\mathbb{E}_{\mathcal{P}}\left[V^*(\boldsymbol{s}')\big|\boldsymbol{s}, \boldsymbol{a}\right]$: difficult for arbitrary functions V and models \mathcal{P}

Outline

Known Model: Markov Decision Processes

- ⇒ Value Functions and Policy Evaluation
- → Policy Iteration and Value Iteration

Unknown Model: Reinforcement Learning

- → Temporal Difference Learning
- →TD-Learning for Control: Q-Learning and Sarsa
- ⇒ Value Function Approximation
- → Least-Squares Temporal Difference Learning

Temporal Difference Learning

If the model is not known, we have to rely on trajectory data

$$\mathcal{D} = \{s_t, a_t, r_t, s_{t+1}\}_{t=1...N}$$
 discrete state-actions for now

Temporal Difference Methods:

- Online methods, update after each sample
- ⇒ Use the temporal difference error for the update

$$\delta_t = r_t + \gamma V_t(s_{t+1}) - V_t(s_t)$$

→ Update of the Value Function:

$$V_{t+1}(s_t) = V_t(s_t) + \alpha_t(r_t + \gamma V_t(s_{t+1}) - V_t(s_t))$$
$$= V_t(s_t) + \alpha_t \delta_t$$

ightharpoonup Learning Rate: $lpha_t$

Temporal difference learning

The TD error update

$$V_{t+1}(s_t) = V_t(s_t) + \alpha_t(r_t + \gamma V_t(s_{t+1}) - V_t(s_t))$$

$$= (1 - \alpha_t) \underbrace{V_t(s_t)}_{\text{current estimate}} + \alpha_t \underbrace{(r_t + \gamma V_t(s_{t+1}))}_{\text{1-step prediction}} = \hat{V}_t(s_t)$$

interpolates between the **one-time step lookahead prediction** and the **current estimate** of the value function

$$\Rightarrow$$
 if $V_t(s_t) < \hat{V}_t(s_t)$ than $V_t(s_t)$ is increased

$$\Rightarrow$$
 if $V_t(s_t) > \hat{V}_t(s_t)$ than $V_t(s_t)$ is decreased

Dopamine as TD-error?

Monkey brains seem to have it...

- Unpredicted Reward (Liquid) > Positive TD Error > higher firing rate of neurons
- Predicted Reward (Sound Event) No TD Error
- Unpredicted Predictor (Sound) Positive TD Error high firing rate of neurons

So far: Policy evaluation with TD methods

Can we also do the policy improvement step with samples?

$$\pi(\boldsymbol{a}|\boldsymbol{s}) = \begin{cases} 1, & \text{if } \boldsymbol{a} = \operatorname{argmax}_{\boldsymbol{a}'} Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}') \\ 0, & \text{otherwise} \end{cases}$$

TD learning for control

Policy Improvement Step:

$$\pi(\boldsymbol{a}|\boldsymbol{s}) = \begin{cases} 1, & \text{if } \boldsymbol{a} = \operatorname{argmax}_{\boldsymbol{a}'} Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}') \\ 0, & \text{otherwise} \end{cases}$$

For control, we need to know the Q-function

Just knowing the V-function is only sufficient if we would have the model!

$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha_t(r_t + \gamma Q_t(s_{t+1}, a_t)) - Q_t(s_t, a_t)$$

= $Q_t(s_t, a_t) + \alpha_t \delta_t$

Exploration

We do not know the real Q-values:

- ⇒ By using the greedy policy, we might miss out better actions
- So we still need to explore!
- **Exploration-Exploitation Tradeoff**, one of the hardest problems in RL

Common Exploration Policies (discrete actions)

⇒ Epsilon-Greedy Policy:

$$\pi(\boldsymbol{a}|\boldsymbol{s}) = \begin{cases} 1 - \epsilon + \epsilon/|\mathcal{A}|, & \text{if } \boldsymbol{a} = \operatorname{argmax}_{\boldsymbol{a}'} Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}') \\ \epsilon/|\mathcal{A}, & \text{otherwise} \end{cases}$$

Take random action with probability ϵ

Soft-Max Policy:

 $\pi(a|s) = \frac{\exp(Q(s,a)/\beta)}{\sum_{s} \exp(Q(s,a')/\beta)}$ Higher Q-Value, higher probability. $\beta \dots$ temperature

SARSA and Q-Learning

Update equations for learning the Q-function

$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha_t (r_t + \gamma Q_t(s_{t+1}, a_t)) - Q_t(s_t, a_t)$$

Two different methods to estimate

ightharpoonup Q-learning: $a_? = \arg \max_a' Q(s_{t+1}, a')$

Estimates Q-function of optimal policy

Off-policy samples: $a_? \neq a_{t+1}$

 \Rightarrow SARSA: $a_? = a_{t+1}$, where $a_{t+1} \sim \pi(a|s_{t+1})$

Estimates Q-function of exploration policy

On-policy samples

Both methods perform quite similarly

Outline

Known Model: Markov Decision Processes

- ⇒ Value Functions and Policy Evaluation
- → Policy Iteration and Value Iteration

Unknown Model: Reinforcement Learning

- → Temporal Difference Learning
- →TD-Learning for Control: Q-Learning and Sarsa
- ⇒ Value Function Approximation
- → Least-Squares Temporal Difference Learning

Value Function Approximation

Yet, the world is not discrete...

- →In most cases value function can not be represented exactly
- ⇒ We need to approximate it!
- Lets keep it simple, we use a linear model to represent the V-function

$$V^{\pi}(s) pprox V_{oldsymbol{\omega}}(s) = oldsymbol{\phi}^T(s)oldsymbol{\omega}$$

ightharpoonup How can we find the parameters ω ?

		+1
		-1
START		

Approximating the Value Function

Ok, lets use again the Dynamic Programming idea of the recursive V-function estimation:

$$MSE(\boldsymbol{\omega}) \approx MSE_{BS}(\boldsymbol{\omega}) = 1/N \sum_{i=1}^{N} (\hat{V}^{\pi}(\boldsymbol{s}_i) - V_{\boldsymbol{\omega}}(\boldsymbol{s}_i))^2$$

Bootstrapping (BS): Use the old approximation $V_{\omega_{\mathrm{old}}}$ to get the target values for a new approximation

$$\hat{V}^{\pi}(s) = \mathbb{E}_{\pi} \Big[r(s, a) + \mathbb{E}_{\mathcal{P}} \left[V_{\boldsymbol{\omega}_{\mathrm{old}}}(s') | s, a \right] \Big]$$

How can we **minimize** this function?

Lets use stochastic gradient descent

Stochastic Gradient Descent

Consider an expected error function,

$$E_{\omega} = \mathbb{E}_p[e_{\omega}(x)] \approx 1/N \sum_{i=1}^N e_{\omega}(x_i), \quad x_i \sim p(x)$$

We can find a local minimum of E by gradient descent:

$$\omega_{k+1} = \omega_k - \alpha_k \frac{dE_{\omega}}{d\omega} = \omega_k - \alpha_k \sum_{i=1}^N \frac{de_{\omega}(x_i)}{d\omega}$$

Learning rate α_k

Stochastic Gradient Descent does the gradient update already after a single sample

$$\boldsymbol{\omega}_{k+1} = \boldsymbol{\omega}_k - \alpha_k \frac{de_{\boldsymbol{\omega}}(x_k)}{d\boldsymbol{\omega}}$$

Converges under the stochastic approximation conditions

$$\sum_{k=1}^{\infty} \alpha_k = \infty, \quad \sum_{k=1}^{\infty} \alpha_k^2 < \infty$$

TD-Learning with Function Approximation

Stochastic gradient descent on our error function MSE_{BS}

$$MSE_{BS} = 1/N \sum_{t} \left(\underbrace{r_t + V_{\boldsymbol{\omega}_{old}}(\boldsymbol{s}_{t+1})}_{1\text{-step prediction w. old model}} - \underbrace{V_{\boldsymbol{\omega}}(\boldsymbol{s}_t)}_{\text{currente estimate}} \right)^2$$

Update rule (for current time step t)

$$\omega_{t+1} = \omega_t + \alpha \Big(r(s_t, a_t) + \gamma V_{\omega_t}(s_{t+1}) - V_{\omega_t}(s_t) \Big) \phi^T(s_t)$$
$$= \omega_t + \alpha \delta_t \phi^T(s_t)$$

where $\delta_t = r(s_t, a_t) + \gamma V_{\omega_t}(s_{t+1}) - V_{\omega_t}(s_t)$ is again the temporal difference error

TD-Learning with Function Approximation

We just derived the TD-Learning Update rule with linear FA

$$\omega_{t+1} = \omega_t + \alpha \Big(r(s_t, a_t) + \gamma V_{\omega_t}(s_{t+1}) - V_{\omega_t}(s_t) \Big) \phi^T(s_t)$$
$$= \omega_t + \alpha \delta_t \phi^T(s_t)$$

The discrete case is a special case with tabular features

$$\phi(s^i) = e_i \dots i$$
th unit vector

The ω vector directly contains the values for each state $V_{\omega}(s^i) = \phi(s^i)^T \omega = \omega_i$

Plugging in the tabular features:

$$\boldsymbol{\omega}_{t+1} = \boldsymbol{\omega}_t + \alpha(r_t + \gamma V_t(\boldsymbol{s}_{t+1}) - V_t(\boldsymbol{s}_t))\boldsymbol{e}_i$$

Only the ith element will change

$$V_{t+1}(s_t^i) = \omega_{t+1,i} = \omega_{t,i} + \alpha(r_t + \gamma V_t(s_{t+1}) - V_t(s_t))$$

Q-Learning with FA

⇒Q-learning:

$$\boldsymbol{\omega}_{t+1} = \boldsymbol{\omega}_t + \alpha_t \left(r_t + \gamma \max_{\boldsymbol{a}'} Q_t(\boldsymbol{s}_{t+1}, \boldsymbol{a}') - Q_t(\boldsymbol{s}_t, \boldsymbol{a}_t) \right) \boldsymbol{\phi}(\boldsymbol{s}_t)^T$$

⇒SARSA:

$$\boldsymbol{\omega}_{t+1} = \boldsymbol{\omega}_t + \alpha_t \left(r_t + \gamma Q_t(\boldsymbol{s}_{t+1}, \boldsymbol{a}_{t+1}) - Q_t(\boldsymbol{s}_t, \boldsymbol{a}_t) \right) \boldsymbol{\phi}(\boldsymbol{s}_t)^T$$

Some results with Q-Learning

Backgammon: World-Champion Level

Atari-Games: Human Level Performance

No prior knowledge

Pixels as input of the algorithm

Outline

Known Model: Markov Decision Processes

- ⇒ Value Functions and Policy Evaluation
- → Policy Iteration and Value Iteration

Unknown Model: Reinforcement Learning

- → Temporal Difference Learning
- →TD-Learning for Control: Q-Learning and Sarsa
- ⇒ Value Function Approximation
- → Least-Squares Temporal Difference Learning

Batch-Mode Reinforcement Learning

Online methods are typically data-inefficient as they use each data point

$$D = \left\{ \boldsymbol{s}_i, \boldsymbol{a}_i, r_i, \boldsymbol{s}_i' \right\}_{i=1...N}$$

only once

Can we re-use the whole "batch" of data to increase data-efficiency?

- Least-Squares Temporal Difference (LSTD) Learning
- Fitted Q-Iteration (not in this lecture...)

Computationally much more expensive then TD-learning!

Least-Squares Temporal Difference (LSTD)

Minimize the bootstrapped MSE objective (MSE_{BS})

$$\begin{aligned} \text{MSE}_{\text{BS}} &= 1/N \sum_{i=1}^{N} \left(r(\boldsymbol{s}_i, \boldsymbol{a}_i) + \gamma V_{\boldsymbol{\omega}_{\text{old}}}(\boldsymbol{s}_i') - V_{\boldsymbol{\omega}}(\boldsymbol{s}_i) \right)^2 \\ &= 1/N \sum_{i=1}^{N} \left(r(\boldsymbol{s}_i, \boldsymbol{a}_i) + \gamma \boldsymbol{\phi}^T(\boldsymbol{s}_i') \boldsymbol{\omega}_{\text{old}} - \boldsymbol{\phi}^T(\boldsymbol{s}_i) \boldsymbol{\omega} \right)^2 \end{aligned}$$

Least-Squares Solution: The solution for omega can be obtained in closed form

$$\boldsymbol{\omega} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T (\boldsymbol{R} + \gamma \mathbf{\Phi}' \boldsymbol{\omega}_{\mathrm{old}})$$

State-Feature matrix:

$$oldsymbol{\Phi} = \left[oldsymbol{\phi}(oldsymbol{s}_1), oldsymbol{\phi}(oldsymbol{s}_2), \ldots, oldsymbol{\phi}(oldsymbol{s}_N)
ight]^T$$

Next-State Feature matrix: $\mathbf{\Phi}' = \left[oldsymbol{\phi}(oldsymbol{s}_1'), oldsymbol{\phi}(oldsymbol{s}_2'), \ldots, oldsymbol{\phi}(oldsymbol{s}_N')
ight]^T$

Least-Squares Temporal Difference (LSTD)

Least-Squares Solution:

$$\boldsymbol{\omega} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T (\mathbf{R} + \gamma \mathbf{\Phi}' \boldsymbol{\omega}_{\mathrm{old}})$$

Fixed Point:

In case of convergence, we want to find a fixed point, i.e. $\omega_{
m old}=\omega$ $\omega=(\Phi^T\Phi)^{-1}\Phi^T(R+\gamma\Phi'\omega)$

$$egin{aligned} \left(m{I} - \gamma(m{\Phi}^Tm{\Phi})^{-1}m{\Phi}^Tm{\Phi}'
ight)m{\omega} &= (m{\Phi}^Tm{\Phi})^{-1}m{\Phi}^Tm{R} \ (m{\Phi}^Tm{\Phi})^{-1}m{\Phi}^T\left(m{\Phi} - \gammam{\Phi}'
ight)m{\omega} &= (m{\Phi}^Tm{\Phi})^{-1}m{\Phi}^Tm{R} \ m{\Phi}^T\left(m{\Phi} - \gammam{\Phi}'
ight)m{\omega} &= m{\Phi}^Tm{R} \ m{\omega} &= \left(m{\Phi}^T(m{\Phi} - \gammam{\Phi}'
ight)
ight)^{-1}m{\Phi}^Tm{R} \end{aligned}$$

- ⇒ Same solution as convergence point of TD-learning
- → One shot! No iterations necessary for policy evaluation

Least-Squares Temporal Difference (LSTD)

LSQ: Adaptation for learning the Q-function

$$oldsymbol{\Phi} = \left[oldsymbol{\phi}(oldsymbol{s}_1,oldsymbol{a}_1),oldsymbol{\phi}(oldsymbol{s}_2,oldsymbol{a}_2),\ldots,oldsymbol{\phi}(oldsymbol{s}_N,oldsymbol{a}_N)
ight]^T$$

$$\mathbf{\Phi}' = [\boldsymbol{\phi}(s_1', \pi(s_1')), \dots, \boldsymbol{\phi}(s_N', \pi(s_N'))]^T$$

Used for Least-Squares Policy Iteration (LSPI)

Update Policy with...

⇒ Epsilon-Greedy Policy:

$$\pi(\boldsymbol{a}|\boldsymbol{s}) = \begin{cases} 1 - \epsilon + \epsilon/|\mathcal{A}|, & \text{if } \boldsymbol{a} = \operatorname{argmax}_{\boldsymbol{a}'} Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}') \\ \epsilon/|\mathcal{A}, & \text{otherwise} \end{cases}$$

⇒ Soft-Max Policy:

$$\pi(a|s) = \frac{\exp(Q(s,a)/\beta)}{\sum_{a'} \exp(Q(s,a')/\beta)}$$

Policy Evaluation:

Estimate the Value Function V^{π}

Policy Improvement:

Update the Policy π

Learning to Ride a Bicycle

State space: $s = [\theta, \dot{\theta}, \omega, \dot{\omega}, \ddot{\omega}, \psi]$

heta angle of handlebar, ω vertical angle of bike, ψ angle to goal

Action space: 5 discrete actions (torque applied to handle, displacement of rider)

Feature space: 20 basis functions...

$$(1, \omega, \dot{\omega}, \omega^2, \dot{\omega}^2, \omega \dot{\omega}, \theta, \dot{\theta}, \theta^2, \dot{\theta}^2, \theta \dot{\theta}, \omega \theta, \omega \theta^2, \omega^2 \theta, \psi, \psi^2, \psi \theta, \bar{\psi}, \bar{\psi}^2, \bar{\psi}\theta)^{\mathsf{T}}$$

Summary & Outlook

In order to do optimal decisions, we can learn the value function

- → Temporal Difference Learning
- → Value Function Approximation
- ⇒ Batch Reinforcement Learning

Other approaches for reinforcement learning:

- **⇒** Policy Search:
 - → Directly optimize parameters of the policy
 - → Avoids V-Function approximation errors
 - Good for continuous actions
- → Model-Based Methods:
 - ➡ Learn Model of the MDP
 - ⇒ Use planning to obtain optimal policy