MVP

Cláudia Jacy Barenco Abbas

MOTIVAÇÃO

Possuo um Startup de Auditoria e Segurança em aplicações Web 3.0 então procurei desenvolver um MVP relacionado com esta área.

O objetivo deste MVP é o estudo das plataformas de classificação de reputação de investidores da moeda Bitcoin (plataforma Alpha e Plataforma OTC) para verificar se estas avaliações são consistentes e assim poderiam ser usada na detecção de nós fraudadores relacionando os resultados deste MVP com as informações publicadas nas mídias sobre ataques ao blockchain do Bitcoin.

PERGUNTAS

- QUANTOS E QUAIS NÓS FORAM MAL AVALIADOS EM AMBAS PLATAFORMAS (< 5)
- EM QUE ÉPOCA HOUVE MAIS NÓS MAL AVALIADOS ?
- COM O PASSAR DO TEMPO HOUVE MENOS NÓS MAL AVALIADOS ?
- ESTAS PLATAFORMAS PODEM SER UMA FERRAMENTA PARA APONTAR UMA TENDÊNCIA NO AUMENTO DOS NÓS ATACADOS ?
- PARA OS ANOS MAIS RECENTES. TEMOS OS MESMOS RESULTADOS ?

BUSCA PELOS DADOS

SNAP: Signed network datasets: Bitcoin Alpha web of trust network (stanford.edu)

BITCOIN ALPHA

This is who-trusts-whom network of people who trade using Bitcoin on a platform called <u>Bitcoin Alpha</u>. Since Bitcoin users are anonymous, there is a need to maintain a record of users' reputation to prevent transactions with fraudulent and risky users. Members of Bitcoin Alpha rate other members in a scale of -10 (total distrust) to +10 (total trust) in steps of 1. This is the first explicit weighted signed directed network available for research.

SOURCE, TARGET, RATING, TIME

S. Kumar, B. Hooi, D. Makhija, M. Kumar, V.S. Subrahmanian, C. Faloutsos. <u>REV2: Fraudulent User Prediction in Rating Platforms</u>. 11th ACM International Conference on Web Searchand Data Mining (WSDM), 2018.

where

- SOURCE: node id of source, i.e., rater
- TARGET: node id of target, i.e., ratee
- RATING: the source's rating for the target, ranging from -10 to +10 in steps of 1
- TIME: the time of the rating, measured as seconds since Epoch. (This can be converted to human readable data easily as described here)

Dataset statistics	
Nodes	3,783
Edges	24,186
Range of edge weight	-10 to +10
Percentage of positive edges	93%

Similar network from another Bitcoin platform, Bitcoin OTC, is available here.

BITCOIN OTC

#bitcoin-otc

This is who-trusts-whom network of people who trade using Bitcoin on a platform called <u>Bitcoin OTC</u>. Since Bitcoin users are anonymous, there is a need to maintain a record of users' reputation to prevent transactions with fraudulent and risky users. Members of Bitcoin OTC rate other members in a scale of -10 (total distrust) to +10 (total trust) in steps of 1. This is the first explicit weighted signed directed network available for research

Dataset statistics	
Nodes	5,881
Edges	35,592
Range of edge weight	-10 to +10
Percentage of positive edges	89%

CRIAÇÃO DO BANCO DE DADOS COM O JOIN DAS DUAS TABELAS NO SQLLITESTUDIO

TRATAMENTO DOS DADOS

Foi necessária a conversão do dado time para um dado que seja de fácil leitura.

VISUALIZAÇÃO GRÁFICA DOS DADOS

UTILIZAÇÃO NEO4J AURA DB para para importar e manusear os dados a partir de arquivos no formato JSON.

Import results X

Total time: 00:00:14

Explore results

Close

neo4j\$ **(b) Database Information** Nodes (5,413) neo4j\$ MATCH (n:`Bitcoin Bitcoin Node ७ Node`) RETURN n LIMIT 25; Relationships (0) Q ↓ Graph RAW Property keys data id name Node ID Source (:Bitcoin Node {Node ID Source: 1, Node ID Target: 5925 (:Bitcoin Node {Node ID Source: 10, Node ID Target: 41, (:Bitcoin Node {Node ID Source: 100, Node ID Target: 41 (:Bitcoin Node {Node ID Source: 1000, Node ID Target: 5 (:Bitcoin Node {Node ID Source: 1001, Node ID Target: 3 (:Bitcoin Node {Node ID Source: 1002, Node ID Target: 1 (:Bitcoin Node {Node ID Source: 1003, Node ID Target: 1 (:Bitcoin Node {Node ID Source: 1004, Node ID Target: 9 (:Bitcoin Node {Node ID Source: 1005, Node ID Target: 1, € Started streaming 25 records after 38ms and completed after 43ms.

Realização dos Cypher Query

• QUAIS NÓS FORAM MAL AVALIADOS EM AMBAS PLATAFORMAS (RATING < 5)

RESULTADOS

• QUANTOS NÓS FORAM MAL AVALIADOS ?

Foram encontrados 4795 nós Bitcoin mal avaliados.

• EM QUE ÉPOCA HOUVE MAIS NÓS MAL AVALIADOS ?

Para responder esta pergunta foi criado um relacionamento DATE (TEM_RATING_EM)

Import results X

Total time: 00:00:09

Close

Explore results

Database Information

Bitcoin Node Date

Relationships (17,687)

Tem_Rating_Em

Property keys

QUERY PARA OBTER O RESULTADO

O ano de 2011 foi o que teve mais nós mal avaliados com 206 avaliações em 05 de agosto de 2011.

COM O PASSAR DO TEMPO HOUVE MENOS NÓS MAL AVALIADOS ?

QUERY PARA OBTER O RESULTADO

Como pode-se ver em 2016 temos somente 19 más avaliações de nós mas em 2015 363 **e o pico** foi no ano de 2013. Então conclui-se que não houve um padrão de diminuissão no número de ataques.

• ESTAS PLATAFORMAS PODEM SER UMA FERRAMENTA PARA APONTAR UMA TENDÊNCIA NO AUMENTO DOS NÓS ATACADOS ?

BUSCA NA INTERNET POR NOTÍCIAS SOBRE ATAQUES A REDE DO BITCOIN NO ANO DE 2013

Basenado-se nos dados mostrados neste site pode-se notar que de 2011 a 2016 o ano de 2013 tivemos mais advertências de ataques ao blockchain do Bitcoin e o segundo ano foi 2012 tendo uma relação positiva com os dados da quantidade de nós mal avaliados no estudo anterior. (Referência: Common Vulnerabilities and Exposures - Bitcoin Wiki)

2011 -> 1

2012 -> 6

2013 -> 11

2014 -> 2

2015 -> 2

2016 -> 1

CVE-2011-4447	2011-11-11	wxBitcoin and bitcoind	Exposure ^[6]	Hard	Wallet non-encryption
CVE-2012-1909	2012-03-07	Bitcoin protocol and all clients	Netsplit ^[1]	Very hard	Transaction overwriting
CVE-2012-1910	2012-03-17	bitcoind & Bitcoin-Qt for Windows	Unknown ^[7]	Hard	Non-thread safe MingW exceptions
BIP 0016	2012-04-01	All Bitcoin clients	Fake Conf ^[8]	Miners ^[9]	Softfork: P2SH
CVE-2012-2459	2012-05-14	bitcoind and Bitcoin-Qt	Netsplit ^[1]	Easy	Block hash collision (via merkle root)
CVE-2012-3789	2012-06-20	bitcoind and Bitcoin-Qt	DoS ^[3]	Easy	(Lack of) orphan txn resource limits
CVE-2012-4682		bitcoind and Bitcoin-Qt	DoS ^[3]		
CVE-2012-4683	2012-08-23	bitcoind and Bitcoin-Qt	DoS ^[3]	Easy	Targeted DoS by CPU exhaustion using alerts
CVE-2012-4684	2012-08-24	bitcoind and Bitcoin-Qt	DoS ^[3]	Easy	Network-wide DoS using malleable signatures in alerts
CVE-2013-2272	2013-01-11	bitcoind and Bitcoin-Qt	Exposure ^[6]	Easy	Remote discovery of node's wallet addresses
CVE-2013-2273	2013-01-30	bitcoind and Bitcoin-Qt	Exposure ^[6]	Easy	Predictable change output
CVE-2013-2292	2013-01-30	bitcoind and Bitcoin-Qt	DoS ^[3]	Hard	A transaction that takes at least 3 minutes to verify
CVE-2013-2293	2013-02-14	bitcoind and Bitcoin-Qt	DoS ^[3]	Easy	Continuous hard disk seek
CVE-2013-3219	2013-03-11	bitcoind and Bitcoin-Qt 0.8.0	Fake Conf ^[8]	Miners ^[9]	Unenforced block protocol rule
CVE-2013-3220	2013-03-11	bitcoind and Bitcoin-Qt	Netsplit ^[1]	Hard	Inconsistent BDB lock limit interactions
BIP 0034	2013-03-25	All Bitcoin clients	Fake Conf ^[8]	Miners ^[9]	Softfork: Height in coinbase
BIP 0050	2013-05-15	All Bitcoin clients	Netsplit ^[1]	Implicit ^[2]	Hard fork to remove txid limit protocol rule
CVE-2013-4627	2013-06-??	bitcoind and Bitcoin-Qt	DoS ^[3]	Easy	Memory exhaustion with excess tx message data
CVE-2013-4165	2013-07-20	bitcoind and Bitcoin-Qt	Theft ^[10]	Local	Timing leak in RPC authentication
CVE-2013-5700	2013-09-04	bitcoind and Bitcoin-Qt 0.8.x	DoS ^[3]	Easy	Remote p2p crash via bloom filters
CVE-2014-0160	2014-04-07	Anything using OpenSSL for TLS	Unknown ^[7]	Easy	Remote memory leak via payment protocol
CVE-2015-3641	2014-07-07	bitcoind and Bitcoin-Qt prior to 0.10.2	DoS ^[3]	Easy	(Yet) Unspecified DoS
BIP 66	2015-02-13	All Bitcoin clients	Fake Conf ^[8]	Miners ^[9]	Softfork: Strict DER signatures
BIP 65	2015-11-12	All Bitcoin clients	Fake Conf ^[8]	Miners ^[9]	Softfork: OP_CHECKLOCKTIMEVERIFY
BIPs 68, 112 & 113	2016-04-11	All Bitcoin clients	Fake Conf ^[8]	Miners ^[9]	Softforks: Rel locktime, CSV & MTP locktime

PARA OS ANOS MAIS RECENTES. TEMOS OS MESMOS RESULTADOS ?

Para este estudo utilizou-se o serviço AWS Glue para realizar o ETL (Extract, Transform and Load). Foram criadas a seguintes etapas :

1. Foi criado um bucket S3 chamado bitcoin-alpha-otc (<u>s3://bitcoin-alpha-otc</u>) e os dois arquivos .csv foram carregados ao bucket.

Bitcoin Nodes Last modified on 24/09/2023, 1:42:00 PM

Bitcoin Nodes

09/25/2023 21:19:19

Job name

Bitcoin Nodes

2880 minutes

 Id
 Run status
 Glue version

 jr_7e76faa7287e6e538091879cacfb0bfba7dfc22c51f

 ② Succeeded

 4,0

 1d1709f3a4070c8ba235e

 □

G.1X

=

Retry attempt number Start time End time Start-up time Initial run September 25, 2023 9:19:19 PM September 25, 2023 9:20:28 PM Execution time Last modified on Trigger name Security configuration September 25, 2023 9:20:28 PM 1 minute 2 seconds Timeout Max capacity Number of workers Worker type

10 DPUs