Due: Monday, November 18th

HW 18: Section 8.3

Due: Monday, November 18th in SQRC by 9pm

Learning Goals:

- Use the integral test to determine if a series converges or not
- Use the comparison test to determine if a series converges or not
- Develop critical thinking, problem solving, and creativity when working with series

Questions:

- 1. Writing exercise 8.3.1 Notice that the comparison test doesn't always give us information about the convergence or divergence. If $a_k \leq b_k$ for each k and $\sum_{k=1}^{\infty} b_k$ diverges, explain why you can't tell whether or not $\sum_{k=1}^{\infty} a_k$ diverges. Give some examples to support your reasoning.
- 2. Problem 8.3.6 Determine convergence or divergence of the series

a)
$$\sum_{k=1}^{\infty} \frac{2k}{k^3 + 1}$$

b)
$$\sum_{k=1}^{\infty} \frac{k^2 + 1}{k^3 + 3k + 2}$$

3. Problem 8.3.6 Determine convergence or divergence of the series

a)
$$\sum_{k=1}^{\infty} \frac{e^{-\sqrt{k}}}{\sqrt{k}}$$

b)
$$\sum_{k=1}^{\infty} \frac{ke^{-k^2}}{4 + e^{-k}}$$

4. Problem 8.3.6 Determine convergence or divergence of the series

a)
$$\sum_{k=1}^{\infty} \frac{1}{\cos^2(k)}$$

b)
$$\sum_{k=1}^{\infty} \frac{e^{1/k} + 1}{k^3}$$

- 5. Choose one of the following two problems to turn in:
- Problem 8.3.38 If $a_k > 0$ and $\sum_{k=1}^{\infty} a_k$ converges, show that $\sum_{k=1}^{\infty} a_k^2$ also converges. (hint: the comparison test might be useful)

- Problem 8.3.42 Show that the every-other-term harmonic series $1+\frac{1}{3}+\frac{1}{5}+\cdot$ diverges. (hint: you can write the series as $\sum_{k=1}^{\infty}\frac{1}{2k+1}$). What about the every-third-term harmonic series $1+\frac{1}{4}+\frac{1}{7}+\cdots$?
 - 6. Problem 8.3.50 in the book.