Question	Angwar		Mark
Number	Answer		IVIark
16a	Wave reflected	(1)	
	at the pulley	(1)	
	Superposition/interference (takes place)	(1)	3
16b	Use of $W = mg$	(1)	
	Use of $v = \sqrt{(T/\mu)}$	(1)	
	Use of $v = f\lambda$ to find λ	(1)	
	1 – 1 2 (m)	(1)	
	$\lambda = 1.2 \text{ (m)}$	(1)	
	node to node distance = $\lambda/2$, so there is a node at R		
	Or See $\lambda/2 = 0.6$ m, so there is a node at R	(1)	5
	(MP4 requires evidence of calculation)		
	Example of calculation		
	Tension in string = $W = mg = (0.300 \text{ kg}) (9.81 \text{ N kg}^{-1}) = 2.94 \text{N}$		
	$v = \sqrt{T/\mu} = \sqrt{\frac{2.94 \text{ N}}{2.27 \times 10^{-3} \text{ kg m}^{-1}}} = 36.0 \text{ m s}^{-1}$		
	$\sqrt{2.27 \times 10^{-3} \text{ kg m}^{-1}}$ $\sqrt{2.27 \times 10^{-3} \text{ kg m}^{-1}}$		
	$\lambda = \frac{v}{f} = \frac{(36.0 \text{ m s}^{-1})}{(30 \text{ Hz})} = 1.20 \text{ m}$		
	, ()		
	node to node distance = $\lambda/2$, so node to node distance = 0.60 m.		
16-2	G 1T : (1.1 O 1000 (G.1 O 11 (G.1	(1)	
16ci	S and T are in antiphase Or 180° out of phase Or π radians out of phase	(1)	
	S and T are in adjacent node-to-node regions		
	Or S and T are in adjacent loops	(1)	2
	or s and r are in adjacent loops		
16cii	S has a greater amplitude than T	(1)	
		. /	
	S is at an antinode and T is between a node and antinode		
	Or S is at an antinode and T is not	(1)	,
	Or T is closer to a node than S	(1)	2
	(MP2 dependent on MP1)	_	4.5
	Total for question 16		12