1.) 4.3, 4.5, 4.2, 4.6, 4.5, 4.4, 4.5, 4.4 & n=8 X, S=? $\bar{\chi} = \frac{1}{n} \sum_{i=1}^{n} \chi_i = \frac{1}{8} \sum_{i=1}^{8} \chi_i = \frac{1}{8} (4.3 + 4.5 + ... + 4.4) = \frac{4.425}{10.325}$ $S^2 = \frac{1}{N-1} \sum_{k=1}^{N} (X_k - \bar{X})^2 = \frac{1}{N-1} \sum_{k=1}^{N} (X_k - 4.425)^2 = 0.01643 \Rightarrow S = 0.128$ 2.) $D^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \alpha)^{2}$ $y^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$, $dolaji: D^{2} = y^{2} + (\overline{x} - \alpha)^{2}$ $D^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x} + \overline{x} - \alpha) = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha) + (\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha) + (\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha) + (\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha) + (\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha) + (\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha) + (\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha) + (\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha) + (\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha) + (\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha) + (\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha) + (\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})(\overline{x} - \alpha)^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^$ $D = \int_{0}^{\infty} \sum_{i=1}^{\infty} (x_{i} - \overline{x})^{2} + \frac{2}{n} \sum_{i=1}^{\infty} (x_{i} - \overline{x})(\overline{x} - \alpha) + \int_{0}^{\infty} \sum_{i=1}^{\infty} (\overline{x} - \alpha)^{2} =$ = $\int_{-\infty}^{\infty} + \frac{2}{n} (\bar{x} - a) \cdot \sum_{i=1}^{\infty} (\bar{x}_{i} - \bar{x}) + (\bar{x} - a)^{2} = \int_{-\infty}^{\infty} + \frac{2}{n} (\bar{x} - a) (\sum_{i=1}^{\infty} x_{i} - n\bar{x}) + (\bar{x} - a)^{2} = \int_{-\infty}^{\infty} + \frac{2}{n} (\bar{x} - a) \cdot \sum_{i=1}^{\infty} (\bar{x} - a)^{2} = \int_{-\infty}^{\infty} + \frac{2}{n} (\bar{x} - a) \cdot \sum_{i=1}^{\infty} (\bar{x} - a)^{2} = \int_{-\infty}^{\infty} + \frac{2}{n} (\bar{x} - a) \cdot \sum_{i=1}^{\infty} (\bar{x} - a)^{2} = \int_{-\infty}^{\infty} + \frac{2}{n} (\bar{x} - a) \cdot \sum_{i=1}^{\infty} (\bar{x} - a)^{2} = \int_{-\infty}^{\infty} + \frac{2}{n} (\bar{x} - a)^$ $= \gamma^{2} + \frac{2}{n} (\bar{x} - a) (n\bar{x} - n\bar{x}) + (\bar{x} - a)^{2}$ $D^2 = \gamma^2 + (\bar{x} - a)^2$ 3.) h=164.32 m => E(x)=a=h=164.32 164.16, 164.33, 164.38, 164.44, 164.12, 164.30, 164.56, 164.47, 164.55, 164.22 D= 12 (Xe-a) = 10 E (Xe-164.32) = 0.02271 D= 0.02741 = 0,1507 4.) očekivanje nije poznata -> poduci iz prostog zadatka 5= n-1 = (XE-X)= f. E (XE-164,353)= 0,15499 $\bar{X} = \frac{\sum_{k=1}^{n} X_k}{N} = 164,353$

5) iderval
$$n_{k}$$
 $210-21.3$
 2
 $21.5-21.6$
 8
 21.45
 P
 $21.5-21.2$
 15
 $21.5-21.2$
 15
 $21.7-21.2$
 15
 $21.7-21.2$
 15
 $21.7-21.2$
 15
 $21.7-21.2$
 15
 $21.7-21.2$
 15
 $21.7-21.2$
 15
 $21.7-21.2$
 15
 $21.7-21.3$
 24
 $21.7-21.3$
 24
 $21.7-21.4$
 15
 $21.7-21.4$
 15
 $21.7-21.4$
 15
 $21.7-21.4$
 15
 $21.7-21.4$
 15
 $21.7-21.4$
 15
 $21.7-21.4$
 15
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21.4$
 $21.7-21$

SLUŽBENA RJEŠENJA:

§ 10. Matematička statistika

1. $\bar{x} = 4.425$, $\hat{s}_x = 0.128$.

3.
$$\bar{x}=164.353$$
, $\hat{\sigma}^2=0.021624$, $\hat{d}^2=\hat{\sigma}^2+(\bar{x}-m)^2=0.02271$. Nepristrana korekcija je $\tilde{d}=k_{11}\hat{d}=1.025\cdot0.1507=0.1545$.

4. $\bar{x}=164.353$, $\hat{s}=0.15499$. Nepristrana korekcija je $\hat{s}=k_{10}\hat{s}=0.15933$.

5. U računu koristi za x_k vrijednosti sredina intervala, i zatim pomakni podatke za C=22.5. $\bar{x}=22.487$, $\hat{s}^2=.298$.

6. Broj pojavljivanja događaja ima razdiobu $m \sim \mathscr{B}(np,npq)$ Zato je disperzija frekvencija m/n jednaka pq/n. Maksimalna disperzija 1/4n dobiva se za p=0.5.

7. Za disperziju vrijedi $D(\hat{x}) = \sum_{i=1}^n t_i^2 \sigma_i^2$. Treba minimizirati ovu funkciju, uz uvjet $t_1 + \ldots + t_n = 1$. Minimum se postiže ako je $t_i = \lambda/s_i^2$ za svaki i, a $\lambda = 1/(\sum 1/\sigma_i^2)$.

8. X ima jednoliku razdiobu na [a,b] pa je njezina fnkcija razdiobe jednaka

$$F(x) = \frac{x - a}{b - a}.$$

Razdiobe varijabli x_m i x_M su:

$$F_{X_m}(x) = 1 - (1 - F(x))^n,$$

 $F_{X_M}(x) = F(x)^n$

Odavde se izračunaju očekivanja i disperzije varijabli x_m i x_M . Dobivamo: $E(x_m) = a + \frac{b-a}{n+1}$ $E(x_M) = b - \frac{b-a}{n+1}$, pa je $E(\hat{c}) = \frac{a+b}{2} = c$ i procjena je nepristrana. Nadalje, $D(\hat{c}) = \frac{1}{4}D(x_m) + \frac{1}{4}D(x_M) + 2E(x_mx_M) = \frac{(b-a)^2}{2(n+1)(n+2)}$. Disperzija teži k nuli pa je procjena valjana.

9. Funkcija izglednosti je $f(p) = 10p^3(1-p)^2 \cdot 15p^4(1-p)^2$. Najizgledniji p je $p = \frac{7}{11}$.

11. Na temelju vrijednosti uzorka, izračuna se $\bar{x}=8.4$. Vrijeme do sljedećeg poziva ima eksponencijalnu razdiobu. Procjena parametra je $\lambda=1/\bar{x}=0.119$. Tražena je vjerojatnost jednaka $1-F(5)=e^{-\lambda 5}=0.55$.

13.
$$\lambda = n / \sum_{i=1}^n \ln x_i$$
.

LITERATURA: [1] Neven Elezović: Statistika i procesi, Element 2010.godine