# elisp literate library

a literate programming tool to write emacs lisp codes in org mode.

# Jingtao Xu

December 15, 2018

# **Contents**

| 1 | Introduction                                  |  |
|---|-----------------------------------------------|--|
| 2 | How to do it?                                 |  |
| 3 | Implementation                                |  |
|   | 3.1 Preparation                               |  |
|   | 3.2 stream read functions                     |  |
|   | 3.3 handle org mode syntax                    |  |
|   | 3.4 load/compile org file with new syntax     |  |
|   | 3.5 function to tangle org file to elisp file |  |
| 4 | References                                    |  |

#### 1 Introduction

An emacs library or configuration file can write in org mode then tangle to an elisp file later, here is one example: Emacs configurations written in Org mode .

But What if I want to write a library or a configuration file in org file and load it to emacs directly? If it can, then we will have an uniform development environment without keeping multiple copies of codes. Furthermore, we can jump to the elisp definition in an org file directly when required. That will be a convenient way for our daily development.

# 2 How to do it?

In org mode, the comment line start with character # (see org man-ual), and the emacs lisp codes surround by lines between #+begin\_src elisp and #+end\_src (see org manual).

```
#+BEGIN_SRC elisp :tangle no
(message "this is a test.~%")
#+END_SRC
```

So to let emacs lisp can read an org file directly, all lines out of surrounding by #+begin\_src elisp and #+end\_src should mean nothing, and even codes surrounding by them should mean nothing if the options in a code block request such behavior.

Here is a trick, a new emacs lisp reader function get implemented (by binding elisp variable load-read-function) to replace original read function when using elisp function load to load a org file.

The new reader will make elisp reader enter into org mode syntax, which means it will ignore all lines until it meet #+BEGIN\_SRC elisp.

When #+begign\_src elisp occur, org options for this code block will give us a chance to switch back to normal emacs lisp reader or not.

And if it switch back to normal emacs lisp reader, the end line #+END\_SRC should mean the end of current code block, so if it occur, then the reader will switch back to org mode syntax. if not, then the reader will continue to read subsequent stream as like the original emacs lisp reader.

# 3 Implementation

## 3.1 Preparation

There is a debug variable to switch on/off the log messages for this library.

```
(defvar literate-elisp-debug-p nil)
```

There is also a dynamic Boolean variable bounded by our read function while parsing is in progress. It'll indicate whether org mode syntax or elisp mode syntax is in use.

```
(defvar literate-elisp-org-code-blocks-p nil)
```

#### 3.2 stream read functions

To give us the ability of syntax analysis, stream read actions such as peek a character or read and drop next character should get implemented.

The input streams are the same streams used by the original elisp read function.

### 3.2.1 literate-peek

```
(defun literate-peek (in)
  'Return the next character without dropping it from the stream.
Argument IN: input stream."
  (cond ((bufferp in)
         (with-current-buffer in
           (when (not (eobp))
             (char-after))))
        ((markerp in)
         (with-current-buffer (marker-buffer in)
           (when (< (marker-position in) (point-max))</pre>
             (char-after in))))
        ((functionp in)
         (let ((c (funcall in)))
           (when c
             (funcall in c))
           c))))
```

#### 3.2.2 literate-next

```
(defun literate-next (in)
  "Given a stream function, return and discard the next character.
Argument IN: input stream.'
  (cond ((bufferp in)
         (with-current-buffer in
           (when (not (eobp))
             (prog1
               (char-after)
               (forward-char 1)))))
        ((markerp in)
         (with-current-buffer (marker-buffer in)
           (when (< (marker-position in) (point-max))</pre>
             (prog1
               (char-after in)
                (forward-char 1)))))
        ((functionp in)
         (funcall in))))
```

#### 3.2.3 literate-read-until-end-of-line

when read org file character by character, if current line determines as an org syntax, then the whole line should ignore, so there should exist such a function.

Before then, let's implement an abstract method to read characters repeatly while a predication meet.

Now reading until end of line is easy to implement, the ignored string return from this function because it may be useful sometimes, for example when reading options after #+begin\_src elisp.

# 3.3 handle org mode syntax

## 3.3.1 source code block option tangle

There are a lot of different elisp codes occur in one org file, some for function implementation, some for demo, and some for test, so an org code block option tangle to decide to read them or not should define, and it has three meanings:

- yes
   It means that current code block should load normally, it is the default mode when the option tangle is not provided.
- no
   It means that current code block should ignore by elisp reader.

```
(defun literate-tangle-p (flag)
  "Tangle current elisp code block or not
Argument FLAG: flag symbol."
  (case flag
      (no nil)
      (t t)))
```

Let's implement a function to read options after #+BEGIN\_SRC elisp, and convert every key and value to a elisp symbol.

```
(defun literate-read-org-options (options)
   "Read org code block options.
Argument OPTIONS: a string to hold the options."
   (loop for token in (split-string options)
        collect (intern token)))
```

#### 3.3.2 basic read routine for org mode syntax.

Let's define the main read routine to read an org file input stream. the basic idea is simple, ignore all lines out of elisp source block, and be careful about the special character #.

#### 3.3.3 how to handle when meet #

- 1. The basic logic
  - a) if it is inside an org syntax, check if it is #+begin\_src elisp
    - i. if it is not, continue to use org syntax and ignore this line
    - ii. if it is, read source block options for this code block
      - A. if it should tangle, switch to elisp syntax context
      - B. if it should not tangle, continue to use org syntax and ignore this line
  - b) if it is inside an elisp syntax, then check if it is #+
    - i. if it is, then switch to org mode syntax. because this is the only legal meaning when it is equal to '#+end<sub>src</sub>', so the test here is a little simple.
    - ii. if it is not, then use original elisp reader to read the
       following stream

it should be some legal elisp expressions such like #'(lambda
()).

#### 2. The implementation

```
(defvar literate-elisp-begin-src-id "#+BEGIN_SRC elisp")
(defun literate-read-after-sharpsign (in)
 "Read after #.
Argument IN: input stream."
  (literate-next in)
        ;; 1. if it is not inside an elisp syntax
  (cond ((not literate-elisp-org-code-blocks-p)
         ;; 1.1 check if it is '#+begin_src elisp'
         (if (loop for i from 1 below (length literate-elisp-begin-src-id)
                   for c1 = (aref literate-elisp-begin-src-id i)
                   for c2 = (literate-next in)
                   thereis (not (char-equal c1 c2)))
         ;; 1.2. if it is not, continue to use org syntax and ignore this line
           (progn (literate-read-until-end-of-line in)
                 nil)
         ;; 1.3 if it is, read source block options for this code block
           (let ((org-options (literate-read-org-options (
               → literate-read-until-end-of-line in))))
             (when literate-elisp-debug-p
               (message "found org elisp src block, options:%s" org-options))
             (cond ((literate-tangle-p (getf org-options :tangle))
         ;; 1.4 if it should be tangled, switch to elisp syntax context
                    (when literate-elisp-debug-p
                      (message "enter into a elisp code block"))
                    (setf literate-elisp-org-code-blocks-p t)
                    nil)))))
         ;; 1.5 if it should not be tangled, continue to use org syntax and
             → ignore this line
        ;; 2. if it is inside an elisp syntax
         (let ((c (literate-next in)))
           (when literate-elisp-debug-p
             (message "found #%c inside a org block" c))
           (case c
             ;; 2.1 check if it is \sim \#+\sim, which has only legal meaning when it is
                 → equal '#+end_src'
             (?\+
              (let ((line (literate-read-until-end-of-line in)))
                (when literate-elisp-debug-p
                  (message "found org elisp end block:%s" line)))
             ;; 2.2. if it is, then switch to org mode syntax.
              (setf literate-elisp-org-code-blocks-p nil))
             ;; 2.3 if it is not, then use original elip reader to read the

→ following stream

             (t (read in)))))))
```

# 3.4 load/compile org file with new syntax

#### 3.4.1 literate reader is in use when loading a org file

```
(defun literate-read (&optional in)
"Literate read function.
Argument IN: input stream."
```

#### 3.4.2 an interactive command to load a literate org file directly from emacs

```
(defun literate-load-file (file)
  "Load the Lisp file named FILE.
Argument FILE: target file path."
  ;; This is a case where .elc and .so/.dll make a lot of sense.
  (interactive (list (read-file-name "Load org file: " nil nil 'lambda)))
  (literate-load (expand-file-name file)))
```

### 3.4.3 a function to byte compile a literate org file

This feature is not in work yet.

```
(defun literate-byte-compile-file (file &optional load)
  "Byte compile an org file.
Argument FILE: file to compile."
  (interactive
   (let ((file buffer-file-name)
        (file-dir nil))
     (and file
          (derived-mode-p 'org-mode)
          (setq file-dir (file-name-directory file)))
     (list (read-file-name (if current-prefix-arg
                             "Byte compile and load file: "
                             "Byte compile file: ")
                          file-dir buffer-file-name nil)
           current-prefix-arg)))
  (let ((literate-elisp-literate-compile-p t)
       (literate-elisp-org-code-blocks-p nil))
    (byte-compile-file file load)))
```

#### 3.5 function to tangle org file to elisp file

So one can build an emacs lisp file from an org file without depending on literate-elisp library.

```
(target-buffer (find-file-noselect el-file))
     ({\tt load-read-function\ (symbol-function\ 'literate-read)})
     (org-path-name (concat (pathname-name file) "." (pathname-type file)))
    (literate-elisp-org-code-blocks-p nil))
(with-current-buffer target-buffer
  (delete-region (point-min) (point-max))
  (when header
    (insert header "\n"))
  (insert ";; This file is automatically generated by function 'literate-tangle'
     ";; It is not readable by a human and is generated to load by emacs

    directly without library `literate-elisp'.\n"

          ";; you should read file `" org-path-name "' to find out the usage and
              \hookrightarrow implementation detail of this source file.\n\n"
          ";;; Code:\n\n")
  (insert
   (with-output-to-string
       (with-current-buffer source-buffer
         (goto-char (point-min))
         (loop for obj = (progn
                           ;; ignore whitespace or newline because reader can't
                               \hookrightarrow handle them.
                           (while (find (char-after) '(?\n ?\ ?\t))
                             (forward-char 1))
                           (literate-read-datum source-buffer))
               if obi
                 do (pp obj)
                    (princ "\n")
               until (eobp)))))
  (when tail
    (insert "\n" tail))
  (save-buffer)
  (kill-current-buffer))))
```

And when a new version of ./literate-elisp.el can release from this file, the following code should execute.

The head and tail lines require by MELPA repository.

# 4 References

- Literate. Programming. by Donald E. Knuth
- Literate Programming a site of literate programming
- Literate Programming in the Large a talk video from Timothy Daly, one of the original authors of Axiom.
- literate programming in org babel
- A collection of literate programming examples using Emacs Org mode