Lagrange Multipliers & KKT 几何关联推导

目的

我们想要找到一个满足一些约束的函数的最大值或最小值

公式描述

给定一个函数 f, 不等式约束 g_1, \ldots, g_m 和等式约束 h_1, \ldots, h_l 都在在定义域 $\Omega \subset \mathbb{R}^n$ 上的优化问题:

$$egin{aligned} \min_{x \in \varOmega} \; f(x) \ &s. \, t. egin{cases} orall i & g_i(x) \leq 0 \ orall j & h_j(x) = 0 \end{cases}$$

No constraints

Assume: Let $f: \Omega \to \mathbb{R}$ be a continuously differentiable function. 在定义域上连续可微

【局部最小值】的【充要条件】(Necessary and sufficient conditions):

 x^* is a local minimum of f(x) 当且仅当

1. f 在 x^* 处是零梯度 (zero gradient):

$$\nabla_x f(x^*) = 0$$

2. f 的 Hessian 矩阵在 x^* 处是半正定的 (positive semi-definite): 保证 f 在 x^* 处是"波谷"

$$v^t(
abla^2 f(x^*))v \geq 0, orall v \in \mathbb{R}^n$$

$$abla_{xx}^2 f(x) = egin{bmatrix} rac{\partial^2 f(x)}{\partial x_1^2} & rac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f(x)}{\partial x_1 \partial x_n} \ rac{\partial^2 f(x)}{\partial x_2 \partial x_1} & rac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \cdots & rac{\partial^2 f(x)}{\partial x_2 \partial x_n} \ dots & dots &$$

【局部最大值】的【充要条件】(Necessary and sufficient conditions): x^* is a local minimum of f(x) 当且仅当

1. f 在 x^* 处是零梯度 (zero gradient):

$$\nabla_x f(x^*) = 0$$

2. f 的 Hessian 矩阵在 x^* 处是半正定的 (positive semi-definite): 保证 f 在 x^* 处是"波谷"

$$v^t(
abla^2 f(x^*))v \leq 0, orall v \in \mathbb{R}^n$$

$$abla^2 f(x) = egin{bmatrix} rac{\partial^2 f(x)}{\partial x_1^2} & rac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f(x)}{\partial x_1 \partial x_n} \ rac{\partial^2 f(x)}{\partial x_2 \partial x_1} & rac{\partial^2 f(x)}{\partial x_2^2} & \cdots & rac{\partial^2 f(x)}{\partial x_2 \partial x_n} \ dots & d$$

Equality Constrainsts

问题提出:

$$egin{aligned} \min_{x \in \mathbb{R}^2} \; f(x) \ s.t. \quad h_i(x) = 0, \; orall i \in \{1, 2, \dots, l\} \end{aligned}$$

举例:

$$f(x) = x_1 + x_2 \ s.\,t. \,\, h(x) = x_1^2 + x_2^2 - 2$$

- 1. 可行点 (feasible point) $x_F\in$ 可行域 (feasible region) 满足约束 $h(x)=x_1^2+x_2^2-2=0$,图形上的表示就是在 $x_1^2+x_2^2-2$ 的圆上
- 2. 目标函数 $f(x)=x_1+x_2$ 的梯度方向 $\nabla_x f(x)=[1,1]^T$,所以它的负梯度方向为 $-\nabla_x f(x)=[-1,-1]^T$
- 3. 我们找到一个点 x_i 满足约束: 其中 α 为步长, δx_i 为 x_i 点的运动方向
 - $h(x_F + \alpha \delta x_i) = 0$ (确保在圆上)
 - $f(x_F + \alpha \delta x) < f(x_F)$ (确保移动后的函数值 < 移动前)

4. 一个点 x_i 要沿着 f(x) 的最速下降 (the steepest descent) 方向,即负梯度方向为 $-\nabla_x f(x) = [-1,-1]^T$;但是 x_i 还要满足等式约束,所以我们要确保 δx_i 与 负梯度方向 $-\nabla_x f(x)$ 的夹角为锐角,即内积 $\delta x_i \cdot (-\nabla_x f(x_F)) > 0$

- 至此,我们就找到了满足约的点 x_i 移动的方向,即与目标函数 f(x) 负梯度方向的夹角为锐角的约束函数 h(x) 的切线方向。那么,什么时候停止移动呢?
- 5. 从图像中我们可以看到,当目标函数 f(x) 与约束函数 h(x) 相切的时候,我们可以取到局部极值点 (临界点 critical point),即 目标函数 f(x) 的梯度方向与约束函数 h(x) 的梯度方向共线:

$$abla_x f(x_F) = \mu
abla_x h(x_F) \quad \Rightarrow \quad
abla_x f(x_F) + \mu
abla_x h(x_F) = 0 \quad
abla_x f(x_F) = 0 \quad
abla_x f(x$$

这个条件【确保局部极值】

而此时, x_i 移动的方向 δx_i 始终与约束函数 g(x) 梯度方向 $\nabla_x h(x)$ 正交, 即

$$\delta x_i \cdot \mu \nabla_x h(x_F) = \delta x_i \cdot (-\nabla_x h(x_F))$$

6. 我们重新构造这个优化问题 (\mathcal{P}),并推广到多等式约束:

$$egin{aligned} \min_{x \in \mathbb{R}^2} \ f(x) \ s.t. \quad h_i(x) = 0, \ orall i \in \{1, 2, \dots, l\} \end{aligned}$$

我们定义拉格朗日函数 L:

$$\mathcal{L}(x,\mu) = f(x) + \sum_{i=1}^l \mu_i h_i(x)$$

当 x^* 是局部最小值时,存在唯一的 μ^* 满足约束:

- $lacksquare
 abla_x \mathcal{L}(x^*,\mu^*) = 0 \qquad \Leftarrow$ $abla_x f(x_F) + \mu
 abla_x h(x_F) = 0 \quad \textcircled{1}$
- $\nabla_{\mu}\mathcal{L}(x^*, \mu^*) = 0$ \Leftarrow $\frac{\partial \mathcal{L}(x, \mu_i)}{\partial \mu_i} = h_i(x) = 0$ 满足约束条件
 $\nabla^2_{xx}\mathcal{L}(x^*, \mu^*) \succeq 0$ \Leftarrow Hessain matrix 半正定: 满足局部极小

Inequality Constraints

问题提出:

$$egin{aligned} \min_{x \in \mathbb{R}^2} \ f(x) \ s.t. \quad g_j(x) \leq 0, \ orall j \in \{1,2,\ldots,m\} \end{aligned}$$

Case 1: 可退化到无约束

举例:

$$f(x) = x_1^2 + x_2^2 \ s.\,t.\,\, h(x) = x_1^2 + x_2^2 - 1$$

- 1. 可以从图像中看出,当 f(x) 不加约束条件时的最优点为 (0,0)
- 2. 可行点 (feasible point) $x_F \in$ 可行域 (feasible region) 满足约束 $h(x)=x_1^2+x_2^2-1=0$,图形上的表示就是在 $x_1^2+x_2^2-1$ 的圆上
- 3. 当 f(x) 加入约束条件时的最优点还是 (0,0)
- 4. 说明有无约束条件对这个问题的求解并没有影响
- 5. 此时我们就可以将这个约束优化问题退化成无约束问题:
 - f(x) 在 x^* 处是零梯度 (zero gradient): $\nabla_x f(x^*) = 0$
 - f 的 Hessian 矩阵在 x^* 处是半正定的 (positive definite) : $\nabla^2_{xx} f(x^*) \succeq 0$

Case 2:不等式约束

我们更改上一例题的条件:

$$f(x) = (x_1 - 1.1)^2 + (x_2 - 1.1)^2$$

s.t. $h(x) = x_1^2 + x_2^2 - 1$

- 1. 可以从图像中看出,当 f(x) 不加约束条件时的最优点为 (1.1, -1.1)
- 2. 可行点 (feasible point) $x_F \in$ 可行域 (feasible region) 满足约束 $h(x) = x_1^2 + x_2^2 1 = 0$,图形上的表示就是在 $x_1^2 + x_2^2 1$ 的圆上
- 3. 当 f(x) 加入约束条件时的最优点并不在原来的 (1.1, -1.1) 点
- 4. 在这种情况下,极值在约束面上,即 $g(x^*)=0$,此时就与等式约束条件一致了
- 5. 所以参考等式约束问题,最优值出现在目标函数 f(x) 的梯度方向与约束函数 h(x) 的梯度方向共线:

$$-
abla_x f(x) = \lambda
abla_x g(x), \lambda > 0 \quad \Rightarrow \quad
abla_x f(x) + \lambda
abla_x g(x) = 0 \quad ext{(2)}$$

总结两种情况

$$egin{aligned} \min_{x \in \mathbb{R}^2} \ f(x) \ s.t. \quad g_j(x) \leq 0, \ orall j \in \{1,2,\ldots,m\} \end{aligned}$$

Case 1: 无约束时的局部极小值的可行域【中】

1.
$$g(x^*) < 0$$
 \leftarrow 在可行域里

3.
$$\nabla^2_{xx} f(x^*) \succeq 0$$
 \leftarrow $Hessian$ 矩阵是半正定的

Case 2: 无约束时的局部极小值的可行域【外】

1.
$$g(x^*) = 0$$
 \leftarrow \mathcal{KKT} 条件3

3.
$$\nabla^2_{xx} f(x^*) \succeq 0$$
 \leftarrow $Hessian$ 矩阵是半正定的

KKT 条件4: x^* 是可行点

多等式和多不等式的 KKT 条件

给定一个函数 f,不等式约束 g_1, \ldots, g_m 和等式约束 h_1, \ldots, h_l 都在在定义域 $\Omega \subset \mathbb{R}^n$ 上的优化问题:

$$egin{aligned} (\mathcal{P}): & \min_{x \in arOmega} f(x) \ s.t. & egin{cases} h_i(x) = 0, \ orall i \in \{1,2,\ldots,l\} \ g_j(x) \leq 0, \ orall j \in \{1,2,\ldots,m\} \end{cases} \end{aligned}$$

我们定义拉格朗日函数 \mathcal{L} :

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \sum_{i=1}^l \mu_i h_i(x) + \sum_{j=1}^m \lambda_j g_j(x))$$

当 x^* 是局部最小值时,存在唯一的 μ^* 满足约束:

$$lacksquare
abla_x \mathcal{L}(x^*,\mu^*,\lambda^*) = 0 \qquad \Leftarrow \qquad
abla_x f(x^*) + \sum_{i=1}^l \mu_i
abla_x h_i(x^*) + \sum_{j=1}^m \lambda_j
abla_x g_j(x^*) = 0$$

•
$$\lambda_j^* \geq 0$$
 for $j = 1, \ldots, m$

•
$$\lambda_{i}^{*}g_{i}(x^{*}) = 0 \text{ for } j = 1, \dots, m$$

•
$$g_j(x^*) \le 0 \text{ for } j = 1, \dots, m$$

$$g_i(x^*) = 0 \text{ for } i = 1, \dots, l$$

■
$$\nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) \succ 0$$
 \Leftarrow Hessain matrix 正定: 满足局部极小