# Detection of Invasive Ductal Carcinoma

Binary classification of Breast Histopathology Images

Zeyu Fu, Yuanrong Liu, Yu Liu

## Background

**Invasive Ductal Carcinoma** (IDC) is the **most common** subtype of breast cancers. Accurately identifying and categorizing breast cancer subtypes is an important clinical task, and automated methods can be used to **save time** and **reduce error**.

A common method for automatic aggressiveness grading is to **delineate the exact regions** of IDC inside of a whole slide images from patients.

We used **c**onvolutional **n**eural **n**etwork approaches to classify the positive or negative of IDC for more than **270,000** slide image patches with size **50x50** from 162 patients. This dataset is from Kaggle.

# Image Data



# Data Balancing



# Data Split



#### **Evaluation**

#### predicted labels

(made by the classifier)

true labels (given in the testing data)



regular ("overall") accuracy

$$\frac{9+8}{9+1+2+8} = 0.85$$

$$\frac{TP + TN}{TP + FN + FP + TN}$$

balanced accuracy

$$\left[ \frac{9}{9+1} + \frac{8}{2+8} \right] / 2 = 0.8$$

$$\left[\frac{TP}{TP + FN} + \frac{TN}{TN + FP}\right] / 2$$

#### Predicted Labels Made by the classifier

True Labels Given in the testing data



#### Models







#### **AlexNet**





Regular accuracy is 83.37%

Balanced accuracy is 83.10%

testing on **70,765** test examples

# Zero Padding BatchNormalization X5 Dense Block Transitional Block Dense Block X 23 GlobalAveragePooling DenseNet

#### DenseNet



Regular accuracy is **85.28%** 

Balanced accuracy is **85.39%** 

testing on **70,765** test examples

#### Conv2D Max pooling Dropout Conv2D Max pooling Dropout Conv2D Max pooling Dropout Dense VGG

### **VGG**



Regular accuracy is **90.90%** 

Balanced accuracy is **90.50%** 

over **70,765** test examples

#### Conclusion

|        | Pr     | Rc/Sen | Spc    | F1     | BAC    |
|--------|--------|--------|--------|--------|--------|
| CNN    | 0.6540 | 0.7960 | 0.8886 | 0.7180 | 0.8423 |
| FCH    | 0.7086 | 0.6450 | 0.9298 | 0.6753 | 0.7874 |
| RGBH   | 0.7564 | 0.5956 | 0.9493 | 0.6664 | 0.7724 |
| GH     | 0.7102 | 0.5240 | 0.9434 | 0.6031 | 0.7337 |
| JPEGCH | 0.7570 | 0.4646 | 0.9605 | 0.5758 | 0.7126 |
| M7Edge | 0.7360 | 0.4372 | 0.9585 | 0.5485 | 0.6979 |
| NT     | 0.6246 | 0.2851 | 0.9547 | 0.3915 | 0.6199 |
| LBP    | 0.7575 | 0.2291 | 0.9806 | 0.3518 | 0.6048 |
| NA     | 0.6184 | 0.2413 | 0.9606 | 0.3472 | 0.6009 |
| HSVCH  | 0.7662 | 0.2223 | 0.9821 | 0.3446 | 0.6022 |

Cruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S., ... & Madabhushi, A. (2014, March). Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In *Medical Imaging 2014: Digital Pathology* (Vol. 9041, p. 904103). International Society for Optics and Photonics.

| Method                         | F-score | Balance accuracy |
|--------------------------------|---------|------------------|
| Alexnet, Resize                | 0.7648  | 0.8468           |
| Alexnet, Resize + Dropout      | 0.757   | 0.8423           |
| Alexnet, Cropping              | 0.7533  | 0.8415           |
| Alexnet, Cropping + Additional | 0.7558  | 0.8368           |
| Rotations                      |         |                  |

Janowczyk, A., & Madabhushi, A. (2016). Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. *Journal of pathology informatics*, 7.

Our best is 90.50%!!!

# Thank you