Machine Learning Workshop

Nicolas Känzig

Email: nkaenzig@gmail.com

Workshop Repository: https://github.com/nkaenzig/ml-workshop

Contenido

Modulo 1

Introducción ML - Python

Modulo 2

- Análisis de datos
- Preprocesamiento de datos

Modulo 3

- Modelos de ML
- Técnicas de evaluación

Machine Learning Introducción

Terminologías

- Artificial Intelligence (AI)
 - Machine Learning
 - Algoritmos que aprenden de datos
 - Deep Learning
 - Subconjunto de Machine Learning
 - Redes neuronales artificiales
 - General Al
 - Pensar, razonar, generalizar, curiosidad, ...
 - El futuro

Terminologías

- Artificial Intelligence (AI)
 - Machine Learning
 - Algoritmos que aprenden de datos
 - Deep Learning
 - Subconjunto de Machine Learning
 - Redes neuronales artificiales
 - General Al
 - Pensar, razonar, generalizar, curiosidad, ...
 - El futuro

Recommendations for you

Your Orders

Computers & Accessories

Electronics

Popular products inspired by this item

Related to items you viewed

>

Page 1 of 5

Page 1 of 4

>

Inicio Programas Películas Agregados recientemente Mi lista

Nuestra selección para Nicolas

Photo

Uber

Stanford algorithm can diagnose pneumonia better than radiologists

Stanford researchers have developed a deep learning algorithm that evaluates chest X-rays for signs of disease. In just over a month of development, their algorithm outperformed expert radiologists at diagnosing pneumonia.

BY TAYLOR KUBOTA

"Interpreting X-ray images to diagnose pathologies like pneumonia is very challenging, and we know that there's a lot of variability in the diagnoses radiologists arrive at," said Pranav

Artificial Intelligence Outperforms Doctors in Diagnosing Skin Cancer

Que es Machine Learning?

$$f(x,\theta)$$

$$\theta^* = \operatorname*{argmin}_{\theta} L(x, y, \theta)$$

e.g.
$$L(x, y, \theta) = |f(x, \theta) - y|^2$$

Machine Learning

- Optimización
- Matemática numérica
- Estadística
- Algebra lineal
- Computer Science
- **-** ...

Frameworks

- Implementación de modelos
- Algoritmos de optimización
- Computación rápida y paralela
 - Python: API
 - C/C++: Algoritmos

Traditional Programming vs. Machine Learning

Traditional Programming / Rule-Based

```
if condition1:
    # Do something
elif condition2:
    # Do something else
else:
    # Default action
```

Machine Learning

Workflow

Supervised vs. Unsupervised Learning

Supervised Learning

Regression

$$f(x,\theta) = \theta_0 + \theta_1 x$$

Classification

Unsupervised Learning (Clustering)

Overfitting

Underfitting vs. Overfitting

Training vs. Validation

- División de los datos en 3 partes:
 - Training set (70%)
 - Validation set (20%)
 - Test set (10%)

Overfitting vs. Model Complexity

Que es el Input / Formato de los datos?

Que es el Input?

Datasets

- Tabulas (Excel, CSV, SQL, ...)
- Textos
- Imágenes (Deep Learning)
- Audio (Deep Learning)
- ...

Features vs. Labels

Columns = Features/Label Rows = Samples

Categorical Features

country

0 russia

1 colombia

2 germany

3 korea

4 ecuador

Enumeration

$O_{n_{e,L_{I}}}$	Encoding
Tot	Enco
	Coding

	country		
0	1		
1	2		
2	3		
3	4		
4	5		

	colombia	ecuador	germany	korea	russia
0	0	0	0	0	1
1	1	0	0	0	0
2	0	0	1	0	0
3	0	0	0	1	0
4	0	1	0	0	0

Desventajas

Enumeration

- Distancia euclidiana da falsa información
 - |Russia Colombia| = |1 2| = 1
 - |Colombia Ecuador| = |2 5| = 3

country	country-code	
russia	1	
colombia	2	
germany	3	
korea	4	
ecuador	5	

One-Hot Encoding

- "The curse of dimensionality" ("La maldición de la dimensionalidad")
 - 10'000 categorías → 10'000 columnas nuevas
 - Sparsity: Casi todos los valores de la matriz son 0
 - Uso de memoria

Similaridad?

	Α	В
x[0]	3	335448

	Α	В
x[1]	100	335440
x[2]	2	10000

Similaridad?

Λ Β			Α	В	Distancia Euclidiana	
	A	A B	x[1]	100	335440	dist(x[0], x[1]) = 97.33
x[0]	3	335448	x[2]	2	10000	dist(x[0], x[2]) = 325448

Y si A son [km] y B son [mm]?

Standardización

Dificultades

- Entender los datos
- Datos en un formato adecuado para entrenar modelos (Matriz)
- Definir la tarea (Regression, Classification, ...)
- Conseguir suficiente datos
- Conseguir Labels
- Seleccionar un modelo y encontrar los mejores parámetros
- Prevenir Overfitting
- Computación / Memoria

Python

Porque Python?

- La lenguaje mas usada en la industria (ML & DS)
- Python es muy sencillo de enseñar y de usar
- Muchas Liberarías / Frameworks para ML
- Instalación es muy fácil

Code Example 1

Code Example 1

12 Hello World

- No hay declaración de tipo de datos
- Asignación de variables con "="
 - Primera asignación crea variable
- Comentarios: #
- Operadores lógicos son palabras:
 - and, or, not
- Special use of + for string concatenation
- Printing command: print()
- Scope declaration with indentations (no {})

Naming Conventions

Case sensitive

```
Name = "Alejandra"
name = "Jorge"
```

- Upper case no es muy común
- Snake case for variables

```
a_variable_with_a_long_name = 22
```

CamelCase for class names

```
class MyClassName
```

Reserved words

```
and, or, not, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if, import, in, is, lambda, pass, print, raise, return, try, while
```

Basic Datatypes

Integers

```
x = 1

y = 5 / 2 \# result is 2.5 for Python3, 2 for Python2
```

Floats

```
x = 3.256
```

Strings

```
x = "Machine Learning"
```

Boolean

```
x = True
y = False
```

Conditional Branching

```
if condition_a:
    # do something
elif condition_b:
    # do something else
else:
    # default action
```

Loops

```
# For-Loop
for i in range(10):
    print(i)

# While-loop
i=0
while i < 10:
    print(i)
    i += 1</pre>
```

Complex Datatypes

```
    Lists
        x = [2, "ML", 2, 3.75, [1, "a"]]
    Tuples
        x = (2, "ML", 2, 3.75, [1, "a"]) # immutable
    Dictionaries
        x = {"name": "Alejandra", "age": 21}
    Sets
        x = {"Alejandra", "Jorge", "Maria"} # not ordered
```

Lists

```
x = [2, "ML", 3.75]

# Add element to List
x.append(5) # [2, "ML", 3.75, 5]

# List concatenation
y = [2, 1]
z = x + y # [2, "ML", 3.75, 5, 2, 1]
```

Lists

```
x = [2, "ML", 3.75, 5]
# Indexing
x[0] # 2
x[-1] # 2
x[1:] # ["ML", 3.75, 5]
x[:2] # [2, "ML"]
x[1:3] # ["ML", 3.75]
# Check if contains element
if "ML" in x:
    # do something
```

Lists

Tuples

Same as List, but immutable

```
x = (2, "ML", 2, 3.75, [1, "a"])
>>> x[2] = "test"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: "tuple" object does not support item assignment
```

Dictionaries

```
x = {"name": "Alejandra", "age": 21}
x["age"] = 5 # overrides current value assigned to key "age"
del x["name"] # deletes the key "name" and its value
keys = x.keys()
values = x.values()
# iterate over keys
for key in x:
    # do something
# iterate over keys & values
for key, value in x.items():
    # do something
```

Sets

```
x = {"A", "B", "C"}
x.add("D") # adds D to set
x.add("D") # won"t change set, as D already exists
x.update(["E", "F", "G"]) # adds multiple elements to set
x.remove("A")
x.remove("Z") # raises error
x.dicard("Z") # no error
a = set([1, 2, 3])
b = set([2, 3, 4])
                                                 A \cap B
intersection = a.intersection(b) # or a&b
                                                A \cup B
union = a.union(b) # or a|b
difference = a.difference(b) # or a-b
                                                 A \setminus B
```

Iterators

Functions

```
def calculate_sum(a,b):
    return a+b

f = lambda x: x*2
f(4) # 8

a = ["bla_4", "bla_2", "bla_8"]
sorted(a, key=lambda x: x[-1])
```

Classes

```
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

p = Person("John", 36)

print(p.name)
print(p.age)
```

Type Conversion

```
x = 2.54
int(x) # 2
float(2.0) # 2
str(x) # "2"

x_list = [2, 2, 2, 55, 12, 3]
x_set = set(x_list)
y_list = list(x_set)

indices = list(range(20))
```

File I/O

```
# Read file line-by-line
with open(filepath, "r") as fp:
   for line in fp:
     print(line)

# Write line to file
with open(filepath, "w") as fp:
   fp.write("test\n")
```

Exception Handling

```
try:
    x = 1/0
except ZeroDivisionError:
    print("Division by zero exception")
except:
    print("Any other exception")
```

String Methods

```
age = 21
print(f"Alejandra is {age} years old") # Python >= 3.6
print("Alejandra is {} years old".format(age))
price = 100000.2356412
print(f"The house costs {price:.{2}f} USD") # Python >= 3.6
print("This house costs {:.2f} USD".format(price))
csv = "12; Test; 987.11"
csv splitted = csv.split(";") # ["12", "Test", "987.11"]
csv joined = splitted.join(";") # csv == csv_joined
str with spaces = " test string "
str striped = str with spaces.strip() # "test string"
```

https://docs.python.org/3/library/stdtypes.html?highlight=upper#string-methods

Libraries

• Install/Uninstall modules: pip install pandas pip install pandas==0.21.0 pip uninstall pandas import pandas as pd import numpy as np # load mylibrary.py import sys sys.path.insert(1, "/path/to/application/app/library_folder") import mylibrary