CLAIMS

What is claimed is:

1	1.	A radio communications system comprising:

- an antenna array adapted to transmit and receive radio communications signals
- 3 with a plurality of other terminals the communications signals each using a particular
- 4 minimum bandwidth;
- a transmit chain to transmit a calibration signal through the antenna array to a
- 6 transponder;
- 7 a receive chain to receive through the antenna array a transponder signal from the
- 8 transponder, the transponder signal being based on the calibration signal and having a
- 9 bandwidth narrower than the minimum bandwidth; and
- a signal processor to measure characteristics of the transponder signal as received
- 11 through the receive chain.
- 1 2. The system of claim 1, wherein the calibration signal has a bandwidth
- 2 narrower than the minimum bandwidth.
- 1 3. The system of claim 1, wherein the transponder signal is reduced in carrier
- 2 bandwidth and converted in frequency as compared to the calibration signal.
- 1 4. The system of claim 1, wherein the measured characteristics of the
- 2 transponder signal include phases and amplitudes.
- 1 5. The system of claim 4:
- wherein the receive chain comprises a plurality of receive chains;
- 3 wherein each receive chain receives the transponder signal; and
- 4 wherein the signal processor determines a receive calibration vector by comparing
- 5 the phases and amplitudes of the transponder signal as received by each receive chain.

1

2

3

1

2

1

2

3

1

2

3

1

2

3

- 1 6. The system of claim 5 wherein the signal processor determines the receive 2 calibration vectors by forming a vector whose complex elements have phases and 3 amplitudes corresponding to the relative difference in phase and amplitude of the
- 7. The system of claim 5, wherein each receive chain comprises a receive channel from an antenna to the conversion to a digital representation of the received signal.

channels from each receive chain.

- 8. The system of claim 5, wherein one of the plurality of receive chains is selected as a reference chain and the complex elements of phase and amplitude of the receive calibration vector for the reference chain are set equal to one.
- 9. The system of claim 5, wherein the receive calibration vector is formed by averaging several receive calibration vectors.
 - 10. The system of claim 5 wherein the signal processor determines a transmit calibration vector using measured phases and amplitudes of several receptions of the transponder signal.
- 11. The system of Claim 4 wherein the signal processor determines an uplink signature of the transponder at the antenna array using the measured phases and amplitudes of the transponder signal.
- 12. The system of Claim 11 wherein the signal processor further determines a receive calibration vector for the receive chain using the uplink signature of the transponder.
- 1 13. The system of Claim 4 wherein the signal processor determines a
 2 downlink signature of the transmit chain at the transponder using the measured phases
 3 and amplitudes of the transponder signal.

- 1 14. The system of Claim 13 wherein the signal processor further determines a 2 transmit calibration vector for the transmit chain using the downlink signature of the 3 transmit chain.
- 1 15. The system of claim 1:
- wherein the transmit chain comprises a plurality of transmit chains;
- wherein each transmit chain transmits the calibration signal; and
- wherein the signal processor determines a downlink signature of the transmit
- 5 chain at the transponder by comparing the calibration signal from each transmit chain as
- 6 reflected in the measured characteristics of the transponder signal.
- 1 16. The system of claim 15, wherein the calibration signal comprises a
- 2 plurality of signals, one from each transmit chain, each signal being individually
- 3 identifiable based on a unique spreading function.
- 1 The system of claim 15, wherein the calibration signal comprises a
- 2 plurality of signals, one from each transmit chain, each signal being individually
- 3 identifiable based on a unique modulation sequence.
- 1 18. The system of claim 15, wherein the measured characteristics of the
- 2 transponder signal include phases and amplitudes and wherein the signal processor
- determines a transmit calibration vector by forming a vector whose complex elements
- 4 have phases and amplitudes corresponding to the relative difference in phase and
- 5 amplitude of the channels from each transmit chain.
- 1 19. The system of Claim 15 wherein one of the plurality of transmit chains is
- 2 selected as a reference chain and the complex elements of phase and amplitude of the
- 3 transmit calibration vector defined with reference to the reference chain.

2

3

7

8

9

10

1

2

1	20.	The system of claim 15, wherein the transmit calibration vector is formed
2	by averaging	several transmit calibration vectors.
1	21.	The system of claim 1, wherein the antenna array includes a plurality of
2	antennas each	of which transmits and receives signals.

- 22. The system of claim 1, wherein the antenna array includes a first plurality of antennas for transmitting the calibration signal and a second plurality of antennas for receiving the transponder signal.
- 1 23. The system of claim 22:
- wherein each antenna has a corresponding transmit chain and a corresponding receive chain;
- 4 wherein each transmit chain transmits the calibration signal;
- wherein each receive chain receives the narrowband transponder signal based on the transmitted calibration signal; and
 - wherein the signal processor determines a transmit calibration vector by comparing the calibration signal from each transmit chain as reflected by the measured characteristics and determines a receive calibration vector by comparing the transponder signal received at each receive chain as reflected by the measured characteristics.
 - 24. The system of claim 23, wherein the calibration signal is transmitted substantially simultaneously from each transmit chain.
- 1 25. The system of claim 23, wherein the receive calibration vector and the 2 transmit calibration vector are determined based on the same transponder signal 3 reception.

1	26.	The system of claim 1, wherein the antenna array, receive chain and		
2	transmit chains are components of a code division multiple access cellular			
3	communication	communications system.		
1	27.	A method comprising:		
2	transn	nitting a calibration signal from an antenna array, the antenna array being		
3	adapted to transmit and receive radio communication signals each using a particular			
4	minimum bandwidth;			
5	receiv	ring a transponder signal at the antenna array, the transponder signal being		
6	based on the	calibration signal and having a bandwidth narrower than the minimum		
7	bandwidth; a	nd		
8	measi	aring characteristics of the transponder signal as received through the receive		
9	chain.			
1	28.	The method of claim 27, further comprising generating a calibration		
2	vector using the measured characteristics.			
1	29.	The method of claim 27, further comprising generating a transmit		
2	calibration v	ector by comparing the transponder signal as received by the individual		
3	elements of t	he transmit antenna array using the measured characteristics.		
1	30.	The method of claim 27, wherein transmitting comprises transmitting a		
2	calibration signal having a bandwidth narrower than the minimum bandwidth using the			
3	antenna arra	y.		
1	31.	The method of claim 27, wherein the transponder signal is frequency		
2	shifted in comparison to the calibration signal.			

- 1 32. The method of claim 27, wherein each antenna has a corresponding
- 2 transmit chain and a corresponding receive chain, wherein transmitting comprises
- 3 transmitting the calibration signal from each transmit chain, wherein receiving comprises
- 4 receiving the transponder signal at each receive chain, and further comprising
- 5 determining a transmit calibration vector by comparing the calibration signal from each
- 6 transmit chain as received as a transponder signal by each receive chain.
- 1 33. The method of claim 27, wherein the calibration signal is transmitted
- 2 substantially simultaneously from each transmit chain.
- 1 34. The method of claim 28 further comprising generating a transmit
- 2 calibration vector using the measured characteristics of the transponder signal as received
- 3 by individual antenna elements.
- 1 35. The method of claim 34, further comprising generating a receive
- 2 calibration vector by comparing the measured characteristics of the transponder signal as
- 3 received by the individual antenna elements.
- 1 36. The method of claim 27 further comprising determining a spatial signature
- 2 for the transponder signal using the measured characteristics as received through the
- 3 receive chain.
- The method of claim 36 wherein determining a spatial signature comprises
- 2 determining an uplink spatial signature by comparing the transponder signal as received
- 3 by each receive chain.
- 1 38. The method of claim 36, wherein determining the spatial signature
- 2 comprises forming a vector whose complex elements have phases and amplitudes
- 3 corresponding to the relative difference in phase and amplitude of the channels from
- 4 each receive chain.

- 1 39. The method of claim 36, further comprising determining calibration 2 vectors for the receive chain and the transmit chain using the spatial signature.
- 1 40. The method of claim 36, wherein the spatial signature is formed by averaging 2 several spatial signatures.

1	41. A calibration transponder for use in a radio communications system
2	comprising:
3	a receive antenna to receive a wideband calibration signal from a system to be
4	calibrated;
5	a bandpass filter to convert the wideband calibration signal into a narrowband
6	signal; and
7	a transmit chain including a transmit antenna to transmit the narrowband signal to
8	the system to be calibrated.
1	42. The transponder of claim 41, wherein the calibration signal is a spread
2	spectrum signal, the transponder further comprising a filter to convert the spreading code
3	of the calibration to a different spreading code.
1	43. The transponder of claim 41, further comprising a mixer to convert the
2	frequency of the calibration signal to a different frequency before transmitting