Redes Neurais no MATLAB 6.1

Redes Neurais no MATLAB

- Duas formas de utilização:
 - Linhas de comando, e m-files
 - Interface gráfica (NNTool)

Redes Neurais no MATLAB

- Duas formas de utilização:
 - I Linhas de comando, e m-files
 - Interface gráfica (NNTool)

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Definindo os Padrões

X ₁	X_2	valor
0	0	0
0	1	1
1	0	1
1	1	0

Vetor de entrada:
$$P = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \rightarrow P = \begin{bmatrix} 0 & 0 & 1 & 1; & 0 & 1 & 0 & 1 \end{bmatrix}$$

Vetor de saída: $T = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Inicializando a Rede Neural

Redes Feed-forward: Função "newff"

(limites dos padrões de entrada) (número de neurônios de cada camada) (função de ativação de cada camada) (algoritmo de treinamento)

Funções de Ativação

purelin Linear logsig Sigmóide

tansig Tangente hiperbólica satlin(s) Linear com saturação

Algoritmos de Treinamento

traingd Gradient descent backpropagation

traingdm Gradient descent backpropagation com momentum traingda Gradient descent backpropagation com taxa adaptativa traingdx Gradient descent backpropagation com momentum e

taxa adaptativa

trainlm Levenberg-Marquardt backpropagation (default)

trainrp Resilient backpropagation (Rprop)

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Definindo parâmetros de treinamento

```
net.trainParam.epochs = 100;
net.trainParam.goal = 1e-8;
net.trainParam.lr = 0.01;
net.trainParam.lr = 0.01;
Taxa de aprendizado
net.trainParam.show = 25;
Taxa de momentum

net.trainParam.lr_inc = 1.05;
net.trainParam.lr_dec = 0.7;
net.trainParam.lr_dec = 0.7;
net.trainParam.max_perf_inc = 1.04;
Incremento máximo do erro
```


- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Treinando a Rede Neural

net = train(net, P, T);

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Testando a Rede Neural C = sim(net, P);

Validação Cruzada

- Dividir os padrões disponíveis em três conjuntos:
 - I treinamento (70%): matrizes Ptrain, Ttrain
 - validação (20%): matrizes Pvalid, Tvalid
 - l teste (10%): matrizes Ptest, Ttest

Validação Cruzada

```
% Inicializa a rede neural
net = newff([min(P')' max(P')'],[10 1],{'tansig' 'logsig'},'traingd');
net.trainParam.goal = 1e-8;
% Treina a rede iterativamente, de 5 em 5 epochs,
% até o total de 100 epochs, calculando os erros
Nepoch = 5i
mape_min = 1e38;
for i = 1:NN,
 net.trainParam.epochs = Nepoch;
 net = train(net, Ptrain, Ttrain);
  Ctrain = sim(net, Ptrain);
  Cvalid = sim(net, Pvalid);
  \mbox{\ensuremath{\$}} Calcula os erros MAPE para os padrões de treinamento e validação
  mape_train(i) = 100*mean(abs((Ttrain-Ctrain)./Ttrain))
  mape_valid(i) = 100*mean(abs((Tvalid-Cvalid)./Tvalid))
                                                                        <u>ICN</u>
```

Validação Cruzada

```
% encontra o número de epochs ótimo
if (mape_valid(i) < mape_min)
    mape_min = mape_valid(i);
    net_opt = net;
    Noptim = Nepoch * i;
    end
end

% Melhor rede:
net = net_opt;

% Testa a rede com os 3 conjuntos de padrões
Ctrain = sim(net, Ptrain);
Cvalid = sim(net, Pvalid);
Ctest = sim(net, Ptest);</pre>
```


Redes Neurais no MATLAB

- Duas formas de utilização:
 - Linhas de comando, e m-files
 - Interface gráfica (NNTool)

Interface Gráfica NNTool Network/Data Manager Inputs: Networks: Outputs: Input Delay States: Layer Delay States: Networks and Data New Network. Networks only Intialize... Birrulate... Train... Adapt...

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Definindo os Padrões Network/Data Manager P Network/Data Manager P Networks: Outputs: P Input Delay States: Networks and Data Help New Data. New Network Import. Export. View Delete Networks only Initialize Simulate Train. Adapt.

Passos para a Criação de uma RN Definir os padrões Criar a rede Inicializar a rede Definir os parâmetros de treinamento Treinar a rede Testar a rede

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Definição dos Padrões de Entrada

- Cada dígito (padrão): 20 bits
- Número de padrões: 10 dígitos
- Representação: Matriz 20 x 10
 - Cada coluna representa um dígito
 - I Cada linha representa um bit
 - Cada bit está associado com um neurônio de entrada

Definição dos Padrões de Saída

Conversão dos Arquivos

- >> load digitos.txt
- >> save digitos
- >> load saidas.txt
- >> save saidas

Importação dos Dados p/ NNTool Import or Load to Network/Data Manager Source Select a Variable Import from disk file MAT-file Name CAUCA/CENPESts aidas mat Browse Caucal Browse Cancel Load Cancel Load

Definição das Redes

- Network name: network25
- Tipo: feed-forward backprop
- Input Ranges: Get from input
- Training Function: TRAINGDM
- Number of layers: 2
 - Layer 1: 25 neurons TANSIG
 - Layer 2: 10 neurons PURELIN

Definição das Redes

- Network name: network35
- Tipo: feed-forward backprop
- Input Ranges: Get from input
- **Training Function**: TRAINGDM
- Number of layers: 2
 - Layer 1: 35 neurons TANSIGLayer 2: 10 neurons PURELIN

Treinamento das Redes

■ Epochs: 10000

☐ Goal (MSE): 0.5e-3

Learning Rate (Ir): 0.1

■ Momentum: 0.0

ICN

Treinamento das Redes

■ Epochs: 10000

☐ Goal (MSE): 0.5e-3

Learning Rate (Ir): 0.4

■ Momentum: 0.0

CIN

Treinamento das Redes

■ Epochs: 10000

☐ Goal (MSE): 0.5e-3

Learning Rate (Ir): 0.9

■ Momentum: 0.0

ICN

Treinamento das Redes

Epochs: 10000

☐ Goal (MSE): 0.5e-3

Learning Rate (Ir): 0.1

■ Momentum: 0.4

ICA

Treinamento das Redes | Epochs: 10000 | Goal (MSE): 0.5e-3 | Learning Rate (Ir): 0.9 | Momentum: 0.4

