

Automated Machine Learning on Graphs: A Survey

Ziwei Zhang, Xin Wang, Wenwu Zhu Tsinghua University

Graphs are Ubiquitous

Biology Network

Social Network

Traffic Network

Graph Tasks

Link Prediction

Graph Classification

Node Classification

Images are from search engines

Graph Applications

Natural Language Processing

Computer Vision

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, *EMNLP 2017*Neural Motifs: Scene Graph Parsing with Global Context, *CVPR 2018*Learning by Abstraction: The Neural State Machine. *NeurIPS 2019*

Graph Applications

Drug Repurposing for Covid-19

JAX, M.D. A Framework for Differentiable Physics, *NeurIPS* 2020

Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19, *arXiv* 2020

Graph in Industry

- Application scenario: recommendation, prediction, classification, anomaly detection, generation, etc.
- Many tech giants have developed their graph systems
 - Alibaba: Graph-Learn(AliGraph), Euler
 - Amazon: Deep Graph Library (DGL)
 - Baidu: Paddle Graph Learning (PGL)
 - DeepMind: Graph Nets
 - Facebook: PyTorch-BigGraph (PBG)
 - Tencent: Plato

.

Machine learning on graphs has important and diverse applications!

Machine Learning on Graphs

Network Embedding

Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. A Survey on Network Embedding. *IEEE TKDE*, 2018.

Graph Neural Networks

Ziwei Zhang, Peng Cui, Wenwu Zhu. Deep Learning on Graphs: A Survey. *IEEE TKDE*, 2020.

Network Embedding

- Learn vectorized representation of nodes
- Then apply classical vector-based machine learning algorithms

Graph Neural Network

- Design neural networks directly applicable for graphs for end-to-end learning
- Message-passing framework: nodes exchange messages along structures

Problems in Existing Graph Learning Methods

- Manually design architectures and hyper-parameters through trial-and-error
- Each task needs be handled separately

Automated graph machine learning is critically needed!

A Glance of AutoML

Design ML methods → Design AutoML methods

ML vs. AutoML

- Tedious trail-and-error
- □ Low tuning efficiency
- ☐ Limited by human design

- ☐ Free human out of the loop
- ☐ **High** optimization **efficiency**
- □ Discover & extract patterns and

combinations automatically

Automated Graph Learning

- Automated Machine Learning on Graph
 - □ Graph Hyper-Parameter Optimization (HPO)
 - ☐ Graph Neural Architecture Search (NAS)
- The key: Graph Structure!

Various diverse graph structures may place complex impacts on graph HPO and graph NAS

Challenge: Uniqueness of graph ML

Semi-Supervised Classification with Graph Convolutional Networks, *ICLR* 2017

NAS-Bench-201 Extending the Scope of Reproducible Neural Architecture Search, *ICLR* 2020

NAS-Bench-NLP Neural Architecture Search Benchmark for Natural Language Processing, *arXiv* 2020

Challenge: Complexity and diversity of graph tasks

Various graph properties

Various applications

Various domains

No single method can perfectly handle all scenarios

Challenge: Scalability

Social Networks

- WeChat: 1.2 billion monthly active users (Sep 2020)
- □ Facebook: 2.8 billion active users (2020)

E-commerce Networks

Citation Networks

■ 133 million authors, 277 million publications, 1.1 billion citations (AMiner, Feb 2021)

Challenge: how to handle billion-scale graphs?

Hyper-Parameter Optimization

Goal: automatically find the optimal hyper-parameters

□ Formulation: bi-level optimization

$$\min_{\alpha \in \mathcal{A}} \mathcal{L}_{val} \left(\mathbf{W}^*(\alpha), \alpha \right)$$
s.t.
$$\mathbf{W}^*(\alpha) = \underset{\mathbf{W}}{\operatorname{arg min}} \left(\mathcal{L}_{train} \left(\mathbf{W}, \alpha \right) \right)$$

□ Challenge: each trial of the inner loop on graph is computationally expensive, especially for large-scale graphs

AutoNE: Framework

Transfer the knowledge about optimal hyper-parameters from sampled subgraphs to the original massive graph

Tu Ke, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu Zhu. AutoNE: Hyperparameter optimization for massive network embedding. *KDD 2019.*

AutoNE: Sampling Module

- Goal: sample representative subgraphs that share similar properties with the original large-scale graph
- □ Challenge: preserve diversity of the origin graph
- Method: multi-start random walk strategy
 - Supervised: nodes with different labels
 - Unsupervised: from different discovered communities, e.g., a greedy algorithm that maximizes modularity

AutoNE: Signature Extraction Module

- **Goal**: learn a vector representation for each subgraph so that knowledge can be transferred across different subgraphs
- □ Challenge: learn comprehensive graph signatures
- **Method**: NetLSD [Tsitsulin et al. KDD18]
 - Based on spectral graph theory, heat diffusion process on a graph

$$h_t(G) = tr(H_t) = tr(e^{-tL}) = \sum_i e^{-t\lambda_j}$$

AutoNE: Meta-Learning Module

- **Goal**: transfer knowledge about hyper-parameters in sampled subgraphs to the original large-scale graph
- Assumption: two similar graphs have similar optimal hyper-parameter
- Method: Gaussian Process based meta-learner

$$\ln p(\mathbf{f} \mid \mathbf{X}) = -\frac{1}{2} \mathbf{f}^{\top} K(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f} - \frac{1}{2} \ln \det(K(\mathbf{X}, \mathbf{X})) + constant.$$

Neural Architecture Search (NAS)

□ Goal: automatically learn the best neural architecture

NAS for Graph Machine Learning

■ Summary of NAS for graph ML

Method	Micro		arch sp Poolii		Layers		sks Graph	Search Strategy	Performance Estimation	Other Characteristics
GraphNAS [2020]	1	1	X	X	Fixed	1	X	RNN controller + RL	-	-
AGNN [2019]	1	X	X	X	Fixed	1	X	Self-designed controller + RL	Inherit weights	-
SNAG [2020a]	1	1	X	×	Fixed	1	X	RNN controller + RL	Inherit weights	Simplify the micro search space
PDNAS [2020c]	1	1	X	X	Fixed	1	X	Differentiable	Single-path one-shot	
POSE [2020]	1	1	X	X	Fixed	1	X	Differentiable	Single-path one-shot	Support heterogenous graphs
NAS-GNN [2020]	1	X	X	1	Fixed	1	X	Evolutionary algorithm		-
AutoGraph [2020]	1	1	X	×	Various	1	X	Evolutionary algorithm	-	-
GeneticGNN [2020b]	1	X	X	1	Fixed	1	X	Evolutionary algorithm	1-	
EGAN [2021a]	1	1	X	X	Fixed	1	/	Differentiable	One-shot	Sample small graphs for efficienc
NAS-GCN [2020]	1	1	1	×	Fixed	X	/	Evolutionary algorithm	-	Handle edge features
LPGNAS [2020b]	1	1	X	X	Fixed	1	X	Differentiable	Single-path one-shot	Search for quantisation options
You et al. [2020b]	1	1	X	1	Various	1	/	Random search	-	Transfer across datasets and tasks
SAGS [2020]	1	X	X	X	Fixed	1	1	Self-designed algorithm		•
Peng et al. [2020]	1	X	X	X	Fixed	X	1	CEM-RL [2019]	-	Search spatial-temporal modules
GNAS[2021]	1	1	X	X	Various	1	1	Differentiable	One-shot	
AutoSTG[2021]	X	1	X	X	Fixed	1	X	Differentiable	One-shot+meta learning	Search spatial-temporal modules
DSS[2021]	1	1	X	X	Fixed	1	X	Differentiable	One-shot	Dynamically update search space
SANE[2021b]	1	1	X	×	Fixed	1	X	Differentiable	One-shot	
AutoAttend[2021b]	1	1	X	X	Fixed	1	/	Evolutionary algorithm	One-shot	Cross-layer attention

Table 1: A summary of different NAS methods for graph machine learnings.

messages

Graph NAS Search Space

■ Message-passing framework of GNNs

$$\begin{aligned} \mathbf{m}_i^{(l)} &= \mathrm{AGG}^{(l)} \left(\left\{ a_{ij}^{(l)} \mathbf{W}^{(l)} \mathbf{h}_i^{(l)}, \forall j \in \mathcal{N}(i) \right\} \right) \\ \mathbf{h}_i^{(l+1)} &= \sigma \left(\mathrm{COMBINE}^{(l)} \left[\mathbf{m}_i^{(l)}, \mathbf{h}_i^{(l)} \right] \right), \end{aligned}$$

- \square $\mathbf{h}_{i}^{(l)}$: the representation of node v_{i} in the l^{th} layer
- \square $\mathbf{m}_{i}^{(l)}$: the received message of node v_{i} in the l^{th} layer
- Micro search space:
 - \square Aggregation function AGG(·): mean, max, sum, etc.
 - □ Combining function COMBINE(·): CONCAT, SUM, MLP, etc.
 - \square Aggregation weights a_{ij} and attention heads
 - □ Non-linearity $\sigma(\cdot)$: Sigmoid, ReLU, tanh, etc.
 - Dimensionality

Type	Formulation
CONST	$a_{ij}^{\text{const}} = 1$
GCN	$a_{ij}^{\text{gčn}} = \frac{1}{\sqrt{ \mathcal{N}(i) \mathcal{N}(j) }}$
GAT	$a_{ij}^{\text{gat}} = \text{LeakyReLU}\left(\text{ATT}\left(\mathbf{W}_{a}\left[\mathbf{h}_{i},\mathbf{h}_{j}\right]\right)\right)$
SYM-GAT	$a_{ij}^{\text{sým}} = a_{ij}^{\text{gat}} + a_{ji}^{\text{gat}}$
COS	$a_{ij}^{\cos} = \cos\left(\mathbf{W}_a \mathbf{h}_i, \mathbf{W}_a \mathbf{h}_i\right)$
LINEAR	$a_{ij}^{\text{lin}} = \tanh\left(\text{sum}\left(\mathbf{W}_a\mathbf{h}_i + \mathbf{W}_a\mathbf{h}_j\right)\right)$
GENE-LINEAR	$\begin{vmatrix} a_{ij}^{\text{lin}} = \tanh\left(\text{sum}\left(\mathbf{W}_a\mathbf{h}_i + \mathbf{W}_a\mathbf{h}_j\right)\right) \\ a_{ij}^{\text{gene}} = \tanh\left(\text{sum}\left(\mathbf{W}_a\mathbf{h}_i + \mathbf{W}_a\mathbf{h}_j\right)\right)\mathbf{W}_a' \end{vmatrix}$

Neural message passing for quantum chemistry. *ICML*, 2017. Graph Neural Architecture Search, *IJCAI* 2020.

Graph NAS Search Space

- Macro search space: how to arrange different layers
 - □ Residual connection, dense connection, etc.

■ Formulation:

$$\mathbf{H}^{(l)} = \sum_{j < l} \mathcal{F}_{jl} \left(\mathbf{H}^{(j)} \right)$$

- \square \mathcal{F}_{il} : connectivity pattern from j^{th} to the l^{th} layer
 - ZERO (not connecting), IDENTITY (residual connection), MLP, etc.

DeepGCNs: Can GCNs Go as Deep as CNNs? *ICCV* 2019 Graph Neural Architecture Search, *IJCAI* 2020.

Graph NAS Search Space

- Other search spaces
 - fill Pooling methods: ${f h}_{\cal G} = {
 m POOL}\,({f H})$
 - □ Aggregate node-level representation into graph-level representation
 - □ Hyper-parameters: similar to HPO for graphs
 - □ Number of layers, number of epochs, optimizer, dropout rate, etc.
 - Spaces for specific tasks:
 - E.g., spatial-temporal graph operators

Graph NAS Search Strategy

- Most previous general NAS search strategies can be directly applied
 - □ Controller (e.g., RNN) + Reinforcement learning (RL)
 - Evolutionary
 - Differentiable

- □ Controller samples architecture (e.g., as a sequence)
- □ RL feedback rewards (e.g., validation performance) to update the controller

Graph NAS Search Strategy

- Most previous general NAS search strategies can be directly applied
 - □ Controller (e.g., RNN) + Reinforcement learning (RL)
 - Evolutionary
 - Differentiable

- Need to define how to sample parents, generate offspring, and update populations
- E.g., remove the worst individual (Real, et al., 2017), remove the oldest individual (Real, et al., 2018), or no remove (Liu, et al., 2018)

Graph NAS Search Strategy

- Most previous general NAS search strategies can be directly applied
 - □ Controller (e.g., RNN) + Reinforcement learning (RL)
 - Evolutionary
 - Differentiable

- ☐ Generate a super-network to combine operations of the search space
- □ Continuous relaxation to make the model differentiable

DARTS: Differentiable Architecture Search, ICLR 2019

Graph NAS Performance Estimation

- Low-fidelity training
 - Reduce number of epochs
 - Reduce training data: sample subgraphs as in HPO
- Inheriting weights
 - □ Challenge: parameters in graph ML (e.g., GNNs) are unlike other NNs
 - E.g., constraints by AGNN (Zhou et al., 2019)
 - Same weight shapes
 - Same attention and activation functions
- Weight sharing in differentiable NAS with one-shot model

AutoML library on Graph

□ Graph related

PyTorch BigGraph

□ AutoML related

Introduction – AutoGL

■ We design the world's first autoML framework & toolkit for machine learning on graphs.

Open source

Easy to use

Flexible to be extended

https://mn.cs.Tsinghua.edu.cn/AutoGL https://github.com/THUMNLab/AutoGL

Modular Design

- Key modules:
 - □ AutoGL Dataset: manage graph datasets
 - AutoGL Solver: a high-level API to control the overall pipeline
 - ☐ Five functional modules:
 - □ Auto Feature Engineering,
 - Neural Architecture Search,
 - Hyper-parameter Optimization
 - Model Training
 - Auto Ensemble

Feature Engineering

NetworkX

level

Neural Architecture Search

Hyper-Parameter Optimization

Model Training

Trainer

- Learning rate
- Epochs
- Optimizer
- Loss
- Early Stopping

Model

- Forward
- Ops & Architectures
- Dropout & Hidden

•••

Currently supported models

- Node classification
 - ☐ GCN
 - **□** GAT
 - GraphSAGE
- Link Prediction
- ☐ Graph classification
 - TopKPool
 - ☐ GIN

Ensemble

Example Results

Table 1: The results of node classification

Model	Cora	CiteSeer	PubMed
GCN	80.9 ± 0.7	70.9 ± 0.7	78.7 ± 0.6
GAT	82.3 ± 0.7	71.9 ± 0.6	77.9 ± 0.4
GraphSAGE	74.5 ± 1.8	67.2 ± 0.9	76.8 ± 0.6
AutoGL	83.2 ± 0.6	72.4 ± 0.6	79.3 ± 0.4

Table 2: The results of graph classification

		<u> </u>	
Model	MUTAG	PROTEINS	IMDB-B
Top-K Pooling GIN AutoGL	80.8 ± 7.1 82.7 ± 6.9 87.6 ± 6.0	69.5 ± 4.4 66.5 ± 3.9 73.3 ± 4.4	71.0 ± 5.5 69.1 ± 3.7 72.1 ± 5.0

Table 3: The results of different HPO methods for node classification

Tuble 3: The results of different the 6 methods for hode classification								
			ora		Seer	PubMed		
Method	Trials	GCN	GAT	GCN	GAT	GCN	GAT	
None		80.9 ± 0.7	82.3 ± 0.7	70.9 ± 0.7	71.9 ± 0.6	78.7 ± 0.6	77.9 ± 0.4	
random	1 10 50	81.0 ± 0.6 82.0 ± 0.6 81.8 ± 1.1	$81.4 \pm 1.1 82.5 \pm 0.7 83.2 \pm 0.7$	$70.4 \pm 0.7 \\ 71.5 \pm 0.6 \\ 71.1 \pm 1.0$	70.1 ± 1.1 72.2 ± 0.7 72.1 ± 1.0	78.3 ± 0.8 79.1 ± 0.3 $\mathbf{79.2 \pm 0.4}$	76.9 ± 0.8 78.2 ± 0.3 78.2 ± 0.4	
TPE	1 10 50	$81.8 \pm 0.6 \\ 82.0 \pm 0.7 \\ 82.1 \pm 1.0$	81.9 ± 1.0 82.3 ± 1.2 83.2 ± 0.8	70.1 ± 1.2 71.2 ± 0.6 72.4 ± 0.6	$\begin{array}{c} 71.0 \pm 1.2 \\ 72.1 \pm 0.7 \\ 71.6 \pm 0.8 \end{array}$	78.7 ± 0.6 79.0 ± 0.4 79.1 ± 0.6	77.7 ± 0.6 78.3 ± 0.4 78.1 ± 0.4	

AutoGL Plans

Incoming new features:

- DGL backend
- More large-scale graph support
 - □ E.g., sampling, distributed, etc.
- More graph tasks
 - □ E.g., heterogenous graphs, spatial-temporal graphs, etc.

Warmly welcome all feedbacks and suggestions!

Contact: <u>autogl@tsinghua.edu.cn</u>

Overview of Our Representative Works

Our roadmap for automated machine learning on graphs

AutoGL Tool and Library

Summary and Future Directions

- Machine Learning on Graphs
- Automate Graph Machine Learning
 - □ Graph HPO
 - □ Graph NAS
- AutoGL Platform
- □ Open Problems:
 - □ Graph models for AutoML
 - E.g., regard each NN as a Directed Acyclic Graph (DAG)
 - □ E.g., using GNNs as surrogate models in model performance prediction
 - Robustness and explainability
 - Hardware-aware models
 - Comprehensive evaluation protocols

Thanks!

Ziwei Zhang, Tsinghua University

zwzhang@tsinghua.edu.cn

https://zw-zhang.github.io/