# Hourly energy demand and prices: an analysis on risk measures and correlation

Camilo Oberndorfer Mejía

Gregorio Pérez Bernal

Luisa Toro Villegas

Miguel Valencia Ochoa

May 24, 2021

#### Abstract

blah blah lo que vamos a usar blah blah.

The previously mentioned methodologies will be applied to the hourly energy demand generation in Spain from 2015 to 2019. The hope to this paper is to find a way to predict energy prices using correlation techniques and understand how demand affects supply and vicersa.

#### 1 Introduction

## 2 Data description

## 2.1 Original dataset

#### 2.2 Modifications

Montly= Demand

## 3 Estimation and results

Historical data





## 3.1 Identifying underlying distribution

To construct a thorough analysis on any given set of data, a crucial first step is to attempt to understand that way the data is distributed. If the data follow a normal distribution, the following analysis could have a smaller margin of error, but it is rare to see that any real life data follows a normal distribution.

The data's energy generation histogram and quantile-quantile plot (qqplot) are graphic tools that help identify normality, which are shown in the following figures:





The previous figures are a characteristic example of under-dispersed data (for example a uniform distribution or any other beta distribution) and the qqplot, which compares the theoric quantiles and sample quantiles, shows an s-shape, which bleah blah blah.

Linealization?

#### 3.2 Stability tests

Given the data's underlying bleh bleh window volatility (ya) and asymptotic volatility (si alguien lo encuentra)





Cartas de control: hablar sobre esto.



Estimaciones de las volatilidades con el método de suavizamiento exponencial

#### 3.3 Performance and prediction error



#### 3.4 Extreme values and outliers

Metricas (Distancia euclidiana, mahalanobis)

Mahalanobis distance is used to detect outliers in multivariant testing.



¿Cuales otras comparaciones hacemos?

EVT ? El método de picos sobre el umbral, POT por sus siglas en inglés, identifica los valores extremos de la serie de retornos como aquellos que excedan un umbral u , estos valores son conocidos

como excesos de retorno39

Funciones de densidad (izquierda) y distribución (derecha) de las distribuciones de valor extremo. partir de la teoría del valor extremo es posible introducir otras medidas de riesgo que se concentran en la frecuencia y la magnitud de la realización de eventos extremos. Estas medidas son conocidas como el Return level y el Return period.

## 3.5 Measuring dependency

las funciones de autocorrelación simple y parcial, FAC y FACP, (hay que buscar que es eso) A copula helps detect dependency structures in multivariate data.



Coeficiente de correlacion (R2)

| Table                                           | TotalEnergyGeneration   | EnergyDemand | EnergyPrice |
|-------------------------------------------------|-------------------------|--------------|-------------|
| "Correlation coeficient between variables (R2)" | 0.74797                 | 0.81922      | 0.46958     |
| Coeficiente de correlacion (R2                  | ) con matriz de covaria | nzas robusta |             |
| Table                                           | TotalEnergyGeneration   | EnergyDemand | EnergyPrice |
|                                                 |                         |              |             |
| "Correlation coeficient between variables (R2)" | 0.82075                 | 0.83201      | 0.27476     |

Coeficiente de correlacion (R2) con matriz de covarianzas robusta entre dos variables de interés

| Table | TotalEnergyGeneration | EnergyDemandPrediction |
|-------|-----------------------|------------------------|
|       |                       |                        |

"Correlation coeficient between variables (R2)"

0.83751

0.83751



proecciones

Esto no se puede borrar, hay que buscar donde ponerlo [MV06] [GP09] [Jha19]

## References

- [GP09] Humberto Gutiérrez Pulido. Control estadístico de la calidad y seis sigma. Segunda Edición, 2009.
- [Jha19] Nicolas Jhana. Hourly energy demand generation and weather. Kaggle, 2019.
- [MV06] Luis Fernando Melo Velandia. Medidas de riesgo, características y técnicas de medición: una aplicación del var y el es a la tasa interbancaria de colombia. 2006.