Verifying Post-Quantum Signatures in 8 kB of RAM

Ruben Gonzalez¹, Andreas Hülsing², Matthias J. Kannwischer³, Juliane Krämer⁴, Tanja Lange², Marc Stöttinger⁵, Elisabeth Waitz⁶, Thom Wiggers⁷, and Bo-Yin Yang⁸

PQCrypto 2021, 20. - 22. July 2021 Presenter: Ruben Anthony Gonzalez

Background

- We're at Round 3
 - → Let's look at the real world
- PQC for Embedded Systems Workshop
 - Bringing together industry and academia

Use Case

- **→** Feature Activation in Cars
 - → Short signed messages

Use Case

- **→** Feature Activation in Cars
 - → Short signed messages
- → Protocol already exists
 - → Uses ECC

User		Authorization Entity: AE		Device : D
	Req. feature	Validate feature		
		activation request		
	Req.			
	authentication			
	$\xrightarrow{\text{Authenticate}}$	Verify authentication		
		Generate A_{msg}		
		$T_1: Sign_{pr_{AE}}(A_{msg})$	$\xrightarrow{\text{Send } \{A_{msg} T_1\}}$	Verify T_1 using pb_{AE}
				Update feature policies
				Activate feature
				Secure hash of the feature policies
		Update feature polices of D	$\leftarrow \frac{\text{Send } \{A_{rec}\}}{}$	Generate A_{rec}

Use Case

- **→** Feature Activation in Cars
 - → Short signed messages
- → Protocol already exists
 - → Uses ECC
- → HSM has to verify signatures and Pubkey
 - Is resource constrained
 - → Holds hash of public key
 - Stores activated features in secure memory
 - → Simulated on a STM32-F207ZG

Experimental Setup

Investigated Schemes

SPHINCS+

Hash Based

GeMSS

Rainbow

Multivariate

Dilithium

Falcon

Lattice Based

SPHINCS+ (SHA256-128)

SPHINCS+ (SHA256-128)

- → Hold pubkey in memory
- **→** Stream signature
 - → in chunks of n × 16B
- - Majority of time is spend in hash function

Rainbow (I-classic)

Rainbow (I-classic)

Rainbow (I-classic)

- → Hold signature in memory
- → Stream public key
 - → In chunks of n × 32B
- Based on bitslice implementation

GeMSS (128)

GeMSS (128)

- → Hold signature in memory
- Stream public key 4 times
 - → Verification has 4 iterations
 - → in chunks of n × 2174B
- → Based on reference code
 - No embedded implementation available

Dilithium (2)

Dilithium (2)

- Hold signature in memory
- Stream public key
 - One polynomials at a time
 - → in chunks of 320B
- Based on optimized round 2 implementation for Cortex-M3/4
 - → Updated for round 3 parameters

Falcon

- Everything fits in memory
- → No streaming required
- Cortex-M3 compatible optimized implementation available
 - → No FPU on M3, has to be emulated
 - Only tiny modification needed for memory constraints

Results¹

	streaming data			streaming time		
	pk	sig	total	$500 \; \mathrm{kbit/s}$	20 Mbit/s	
sphincs-s ^a	32	7856	7888	126.2 ms	$3.2 \mathrm{\ ms}$	
${\tt sphincs-f}^{\rm b}$	32	17 088	17120	273.9 ms	6.9 ms	
rainbowI-classic	161600	66	161 666	$2586.7~\mathrm{ms}$	64.7 ms	
gemss-128	352188	33	$1408785^{\rm c}$	$22540.6~\mathrm{ms}$	563.5 ms	
dilithium2	1312	2420	3732	59.7 ms	1.5 ms	
falcon-512	897	690	1587	25.4 ms	$0.6~\mathrm{ms}$	
$^{ m a}$ -sha256-128s-simple $^{ m b}$ -sha256-128f-simple $^{ m c}$ $4\cdot pk + sig $						

Data Volume

	w/o pk vrf.	w/ pk verification			w/ streaming
		pk vrf.	total	$\mathrm{time^{e}}$	20 Mbit/s
sphincs-sa	8741k	0	$8741\mathrm{k}$	87.4 ms	$90.6 \; \mathrm{ms}$
$\mathtt{sphincs-f}^{\mathrm{b}}$	$26186{ m k}$	0	$26186\mathrm{k}$	261.9 ms	268.7 ms
rainbowI-classic	333k	$6850{ m k}^{ m d}$	$7182\mathrm{k}$	71.8 ms	136.5 ms
gemss-128	$1619{ m k}$	$109938{ m k}^{ m c}$	$111557\mathrm{k}$	$1115.6~\mathrm{ms}$	$1679.1 \; \mathrm{ms}$
dilithium2	1 990k	$133k^c$	$2123\mathrm{k}$	21.2 ms	21.8 ms
falcon-512	581k	$91k^{c}$	672k	$6.7~\mathrm{ms}$	$8.2~\mathrm{ms}$

 $^{^{\}rm a}$ -sha256-128s-simple $^{\rm b}$ -sha256-128f-simple $^{\rm c}$ SHA-3/SHAKE $^{\rm d}$ SHA-256 $^{\rm e}$ At 100 MHz (no wait states)

Cycle Counts

	memory				code
	total	buffer	.bss	stack	.text
sphincs-s ^a	6 904	4928	780	1196	2724
${\tt sphincs-f}^{\rm b}$	7536	4864	780	1892	2586
rainbowI-classic	8 168	6 848	724	596	2194
gemss-128	8 176	4560	496	3120	4740
dilithium2	8 048	40	6352	1656	7940
falcon-512	6552	897	5255	400	5 784

 $^{^{\}rm a}\,\text{-sha256-128s-simple}$ $^{\rm b}\,\text{-sha256-128f-simple}$

Memory Usage

¹for 1000 iterations

Resources

Paper: https://ia.cr/2021/662

Code: https://git.fslab.de/pqc/streaming-pq-sigs/

Hyptertree visualization by Abid Khan.

