National Textile University, Faisalabad Department of Computer Science

Assignment # 1

Name	Rameen Fatima
Section	BSCS-B
Semester	5 th
Registration no.	23-NTU-CS-1086
Course title	Embedded IOT systems
Submitted to	Sir Nasir
Submission date	23-10-2025

Documentation of Task A

Question 3

Implementation

ESP32 LED Mode Cycling with OLED Display

Circuit & Working Explanation

1. Introduction

This project demonstrates how an ESP32 microcontroller can control three LEDs using two push buttons, with real-time feedback displayed on an OLED screen.

The system implements PWM (Pulse Width Modulation) to control LED brightness and supports multiple operation modes that are selected using the buttons.

2. Circuit Overview

- The ESP32 controls three LEDs connected to GPIO 25, 26, and 33.
- Two push buttons are connected as:
 - o **GPIO 14** \rightarrow Mode Button (to switch between LED modes)
 - o **GPIO 27** \rightarrow Reset Button (to return to initial mode)
- One **OLED Display** (0.96", 128×64, I2C) is connected as:
 - \circ SDA \rightarrow GPIO 21
 - \circ SCL \rightarrow GPIO 22
- Each LED is connected in series with a 220Ω resistor for current limiting.
- All components share a common ground (GND) connection with the ESP32.

Pin Diagram		
Component	ESP32 Pin	Description
LED 1	25	First LED (PWM CH 0)
LED 2	26	Second LED (PWM CH 1)
LED 3	33	Third LED (PWM CH 2)
Mode Button	14	Switches between modes
Reset Button	27	Resets to Mode 0 (OFF)
OLED SDA	21	I ² C Data Line
OLED SCL	22	I ² C Clock Line
OLED VCC	3.3V	Power Supply
OLED GND	GND	Common Ground

4. Working Principle

Step 1: Initialization

- ESP32 initializes I/O pins for LEDs, buttons, and OLED.
- Configures PWM channels for LED brightness control.
- Displays "System Ready" message on OLED at startup.

Step 2: Button Input Handling

- Mode Button (GPIO 14): Cycles through the 4 LED modes.
- Reset Button (GPIO 27): Returns to the default OFF state.
- Buttons use internal pull-up resistors and software debouncing for stable input.

Step 3: Operating Modes

1. Mode 0 – All LEDs OFF

Turns off all LEDs and shows "ALL OFF" on OLED.

2. Mode 1 – Alternate Blinking

LEDs blink one after another in sequence (LED1 \rightarrow LED2 \rightarrow LED3).

3. Mode 2 – All LEDs ON

All LEDs glow continuously.

4. Mode 3 – PWM Fading Mode

LED brightness gradually increases and decreases using PWM.

Step 4: PWM Control

• PWM allows analog-like brightness control using digital signals.

• Channels: 0, 1, 2

• Frequency: 5 kHz

• **Resolution:** 8-bit (0–255 duty cycle)

Step 5: OLED Display Feedback

- OLED shows the active mode (e.g., "Mode 1: Alternate Blink").
- In fade mode, a progress bar represents LED brightness.
- Updates dynamically with each button press.

5. Key Concepts Demonstrated

- PWM (Pulse Width Modulation): For LED brightness control.
- **Debouncing:** To avoid multiple false button presses.
- I'C Communication: Between ESP32 and OLED display.
- State Machine Logic: For smooth mode switching.
- Real-Time Feedback: User sees active mode on OLED.

CODE:

```
ledcSetup(PWM_CH1, PWM_FREQ, PWM_RES);
ledcSetup(PWM_CH2, PWM_FREQ, PWM_RES);
ledcSetup(PWM_CH3, PWM_FREQ, PWM_RES);
ledcAttachPin(LED1, PWM_CH1);
ledcAttachPin(LED2, PWM_CH2);
ledcAttachPin(LED3, PWM_CH3);
Wire.begin(21, 22); // Set custom I2C pins
if (!display.begin(SSD1306_SWITCHCAPVCC, OLED_ADDR)) {
 Serial.println("OLED not found!");
display.clearDisplay();
display.setTextSize(1);
display.setTextColor(SSD1306_WHITE);
display.setCursor(15, 25);
display.println("System Ready...");
display.display();
delay(1000);
display.clearDisplay();
```

```
case 1: {
 drawUIFrame("1: Alternate Blink");
 display.setCursor(20, 35);
 display.println("Blinking in Sequence");
 ledcWrite(PWM_CH1, 255);
 ledcWrite(PWM_CH2, 0);
 ledcWrite(PWM_CH3, 0);
 display.fillCircle(95, 38, 3, SSD1306_WHITE);
 display.display();
 delay(300);
 ledcWrite(PWM_CH1, 0);
 ledcWrite(PWM_CH2, 255);
 ledcWrite(PWM_CH3, 0);
 display.fillCircle(105, 38, 3, SSD1306_WHITE);
 display.display();
 delay(300);
 ledcWrite(PWM_CH1, 0);
 ledcWrite(PWM_CH2, 0);
 ledcWrite(PWM_CH3, 255);
 display.fillCircle(115, 38, 3, SSD1306_WHITE);
 display.display();
 delay(300);
 break:
```

```
case 2: {
 drawUIFrame("2: All ON");
 ledcWrite(PWM_CH1, 255);
 ledcWrite(PWM_CH2, 255);
 ledcWrite(PWM_CH3, 255);
 display.setCursor(20, 35);
 display.println("All LEDs ON");
 break;
 drawUIFrame("3: PWM Fade");
  ledcWrite(PWM_CH1, brightness);
 ledcWrite(PWM_CH2, 255 - brightness);
 ledcWrite(PWM_CH3, brightness / 2); // third LED half intensity pattern
 int barLength = map(brightness, 0, 255, 0, 100);
  display.drawRect(15, 34, 100, 10, SSD1306_WHITE);
  display.fillRect(15, 34, barLength, 10, SSD1306_WHITE);
  display.setCursor(20, 48);
  display.print("Brightness: ");
  display.println(brightness);
```

```
// Update brightness for next cycle
brightness += fadeAmount;
if (brightness <= 0 || brightness >= 255) fadeAmount = -fadeAmount;
delay(25);
break;
}

// --- Update OLED Display ---
display.display();
}
```

Build success:

```
void loop() {
          switch (mode) {
             case 3: {
                display.fillRect(15, 34, barLength, 10, SSD1306_WHITE);
                display.setCursor(20, 48);
                display.print("Brightness: ");
               display.println(brightness);
               brightness += fadeAmount;
               if (brightness <= 0 || brightness >= 255) fadeAmount = -fadeAmount;
            OUTPUT DEBUG CONSOLE TERMINAL PORTS
                                                                                                                                                             ≥ powershell
Advanced Memory Usage is available via "PlatformIO Home > Project Inspect" RAM: [= ] 6.7% (used 22080 bytes from 327680 bytes) Flash: [== ] 23.4% (used 307005 bytes from 1310720 bytes)
                                                                                                                                                           ▶ Build Task ∨
Building .pio\build\nodemcu-32s\firmware.bin esptool.py v4.9.0
Creating esp32 image...
Merged 2 ELF sections
Successfully created esp32 image.
                                           ======== [SUCCESS] Took 32.26 seconds ==========
* Terminal will be reused by tasks, press any key to close it.
```

Upload success:

Hardware output:

Mode 0 (ALL OFF):

Mode 1 (Alternate blink):

Mode 2 (ALL ON):

Mode 3 (PWM fade):

Handwritten code images:

Rameen Fatima 23-NTU-CS-1086 BSCS-5th B
Rameen Fatima 23-NIO-65 1020 ASSIGNMENT 1
Task (a)
Waste (ce)
LED mode cycling with OLED display:
Code :-
include < Wire h7
1 de Martin GEX:h >
include < Adafruit_SSD1306.h7
define SCREEN_WIDTH 128
define SCREEN_HEIGHT 64
define OLED_ADDR 0×3C
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT
, &wire, -1);
11 Pin Configuration
define LED1 25
define LED2 26
define LED3 33 # define BTN_Mode 14
define BTN_RESET 27
11 PWM Configuration
us 1-C - District Class C
define PWM_CH1 0
define PWM_CH2 1
define PWM_CH3 2
define PMM_FREQ 5000

```
# define PMM RES 8: 1-
  unsigned long lastPress = 0
int brightness = 0;
int fadeAmount = 10;
   void setup () }
serial begin (115200);
   PinMode (BTN_Mode, INPUT_PULLUP);
   pinMode (BIN_RESET, INPUT_PULLUP);
   ledcSetup (PMM_CH1, PMM_FREQ, PMM_RES);
   ledc Setup (PWM_CH2, PWM_FREQ, PWM_RES);
ledc Setup (PWM_CH3, PWM_FREQ, PWM_RES);
  ledc Attach Pin (LED1, PMM_CH1);
ledc Attach Pin (LED2, PMM_CH2);
  ledcAttach Pin (LED3, PWM_CH3);
  Wire begin (21,22);
if (Idisplay begin (SSD1306_SWITCHAPVCC,
                        OLED_ADDR)) {
   Serial print In ("OLED not found!
    while (true);
         Startup Message ---
  display clear Display ();
display set TextSize (1);
  display setTextColor (SSD1306_WHITE);
display. set Cursor (15, 25);
```

```
display print In ("System Ready ... ");
 display display ();
delay (1000);
display clear Display ();
  void draw UI Frame (String mode Text) }
  display clear Display ();
  display fill Rect (0,0,128,12, SSD1306_WHITE);
  display setTextColor (SSD1306_BLACK);
 display SetCursor (3,2);
display print ("ESP32 LED Controller");
 display. draw Rect (O, O, SCREEN_WIDTH,
  SCREEN_HEIGHT, SSD1306_WHITE);
 display set TextColor (SSD 1306_WHITE);
display set Text Size (1);
display set Cursor (5,18);
 display print ("Mode: ")
display print In (mode Text);
display drawline (0, 54, 128, 54, SSD1306_WHTE)
display setCursor (5,56),
display print ("Mode = 14 RESET = 27");
void loop () {
  if (! digitalRead (BIN_Mode) && millis () -
last Press > 250) {
  mode = (mode +1) % 4;
   Last Press = millis ():
```

```
if (! digitalRead (BTN_RESET) && millis() -
Last Press > 250) }
     mode = 0;
last Press = millis ();
 11 --- Mode logic + OLED display -
  switch (mode) ?
 11 MODE 0 : ALL LEDS OFF
  case 0: §
    drawulframe ("O: ALL OFF");
   Ledc Write (PWM_CH1, 0);
   LedoWrite (PWM_CH2, 0);
   Ledc. Write (PWM_CH3, 0);
  display set cursor (20, 35);
display println ("ALL LEDS OFF");
  break
11 MODE 1: Alternate Blinking LEDs
 case 1: 3
  draw Ulframe ("1: Alternate Blink");
  display setCursor (20, 35);
  display println ("Blinking in sequence");
 Ledowrite (PWM_CH1, 255);
  ledowrite (PWM_CH2, 0);
 ledcWrite (PWM_CH3, 0);
display fill Circle (95, 38, 3, SSD1306_WHITE);
display display ();
```

```
delay (300);
  Ledowrite (PWM_CH1, 0);
  ledc Write (PWM_CH2, 255);
  ledc Write (PWM_CH3, 0);
  display fill Circle (105, 38, 3, SSD1306_WHITE);
 display display ();
delay (300);
  Ledo Write (PWM_CH1, 0);
 LedcWrite (PWM_CH2, 0);
  ledc Write (PWM_CH3, 255);
 display fill Circle (115, 38, 3, SSD1306_WHITE);
 display display ();
 delay (300);
 break;
11 MODE 2: All LEDS ON
case 2: 9
 draw UIFrame ("2: ALL ON");
LedcWrite ( PWM_CH1, 255)
Ledc Write (PWM_CH2, 255);
Ledowrite ( PWM-CH3, 255);
display setCursor (20, 35);
display println ("ALL LEDS ON");
break;
  MODE 3: PWM Fade Mode
case 3: §
draw UI Frame ("3: PWM Fade");
LedcWrite (PWM_CH1, brightness);
```

```
Ledc Write (PWM_CH2, 255-brightness);
Ledc Write (PWM_CH3, brightness /2);
int barlength = map (brightness, 0, 255, 0, 100);

display drawRect (15, 34, 100, 10, SSD1306_WHITE);

display fill Rect (15, 34, barlength, 10, SSD1306_WHITE);
display setCursor (20, 48);
display print ("Brightness: ");
display print in (brightness);
 brightness == fadleAmount;
if (brightness <= 0 11 brightness >= 255)
fadeAmount = - fadeAmount;
 delay (25);
break;
display display ();
```

Hand sketch Diagram:

Wokwi circuit diagrams:

Button1:

Mode 0 (ALL OFF):

Mode 1 (Alternate Blink):

Mode 2 (ALL ON):

Mode 3 (PWM fade):

Button 2:

Reset to Mode 0:

Wokwi Project Link:

https://wokwi.com/projects/445351775582333953