Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan Volume 46, Number 1, 2020, Pages 68–78 https://doi.org/10.29228/proc.18

LOCAL SOLVABILITY OF THE $\bar{\partial}$ -EQUATIONS ON l^2

KHEIRA MEMCHOUT AND ABDALLAH TALHAOUI

Abstract. In this work, we establish sufficient conditions for the existence of solutions of the Cauchy-Riemann equations on the unit ball B of the Hilbert space l^2 for a particular class of $\overline{\partial}$ -closed \mathcal{C}^{∞} smooth (0,1)-forms ω . The used method is based on the expansion in Fourier series of the indefinitely differentiable functions on the closed unit ball of \mathbb{C}^N .

1. Introduction

This paper addresses a fundamental problem that arises in infinite dimensional complex analysis that concerns the solvability of inhomogeneous Cauchy-Riemann, or $\bar{\partial}$ -equations for (0,1)-forms on Banach spaces.

Up to now precious little has been known about the solvability of the infinite equation

$$\overline{\partial} f = \omega, \quad (\overline{\partial} \omega = 0)$$
 (1.1)

when ω is a (0,1)-form, even on Hilbert space. However, we must mention some important results. First, Coeuré in [3] gave an example of (0,1)-form ω on l^2 of class \mathcal{C}^1 for which (1.1) is not solvable on any open set. No other example is known with ω of class \mathcal{C}^p $(1 . Second, L. Lempert gets local exactness on the space <math>l^1$ and on any Banach space when the forms are real analytical [1, 2].

In this work, we study the local solvability of $\overline{\partial}$ in the closed unit ball of l^2 denoted \overline{B} for a particular class of \mathcal{C}^{∞} smooth (0,1)-forms of the type

$$\omega(z) = \sum_{k=1}^{\infty} \omega_k(z^k), \quad z = (z_i) \text{ in } l^2$$
(1.2)

where $\mathbb{N} = \cup I_k$ is a partition of \mathbb{N} , (card $I_k = N_k < +\infty$) with $z^k = (z_i)_{i \in I_k}$ standing for the projection of z on \mathbb{C}^{N_k} . We assume the following assumptions (H):

i) Each form ω_k is indefinitely differentiable on the closed unit ball of \mathbb{C}^{N_k} provided with the norm of l^2 , and of the form

$$\omega_k(z^k) = \sum_{i \in I_k} z_i \omega_k^i(z^k) d\overline{z}_i.$$

ii) The series (1.2) is supposed to be absolutely convergent.

²⁰¹⁰ Mathematics Subject Classification. 32F20, 46G20. Key words and phrases. $\overline{\partial}$ operator, (0,1)-form, l^2 -space, Fourier series.

The used method is based on the expansion in Fourier series of the indefinitely differentiable functions on the closed unit ball of \mathbb{C}^N . According to ([5], Theorem 2.1) each function ω_k^i admits necessarily a Fourier expansion of the form

$$\omega_k^i(z^k) = \sum_{(\alpha,\beta) \in \mathbb{N}^{2N_k}} (z^k)^{\alpha} (\overline{z^k})^{\beta} \omega_{k,(\alpha,\beta)}^i(|z^k|^2), \text{ for all } i \text{ and } k,$$

where $|z^{k}|^{2} = (|z_{i}|^{2})_{i \in I_{k}}$ and $(z^{k})^{\alpha} = \prod_{i \in I_{k}} z_{i}^{\alpha_{i}}$.

In ([5, 6, 7]) the second author studied the local exactness of $\overline{\partial}$ for a restricted class of forms ω which respond moreover to the additional assumption (\widetilde{H}):

$$\omega_k^i(z^k) = \sum_{\alpha \in \mathbb{N}^{N_k}} (z^k)^{\alpha} \omega_{k,\alpha}^i(|z^k|^2), \text{ for all } i \text{ and } k,$$

and gets positive results in some particular cases, especially when the sequence (N_k) is bounded.

In this paper, in order to solve the $\overline{\partial}$ -equation for a large class of forms ω , we drop the hypothesis (\widetilde{H}) , and we prove another positive result more general than the earlier ones. The main result in this work is

Theorem 1.1 (Main Theorem). Let ω be a closed (0,1)-form of class C^{∞} on \overline{B} according to the type $\omega = \sum_k \omega_k$ satisfying (H) and one of the following assumptions.

- (1) There exists a positive integer n such that the coefficients $\omega_{k,(\alpha,\beta)}^i$ are null if $(|\alpha| |\beta|) > n$, for all k and all i in I_k , and the derivatives $D^m \omega_k^i$ are uniformly bounded in i and k on B for $0 \le m \le n$.
- (2) There exists a real number $\lambda > 0$ such that the coefficients $\omega_{k,(\alpha,\beta)}^i$ are null if $(|\alpha| |\beta|) < \lambda N_k$, for all k and all i in I_k , and the derivatives $D^m \omega_k^i$ are uniformly bounded in i and k on B for $0 \le m \le 2$.

Then there exists a real number r > 0, a positive integer M and a function F of class C^{∞} on the ball of radius r that satisfies the equation $\overline{\partial}F = \omega$ such that

$$|F(z)| \le C \sup_{\substack{i,k \ 0 \le m \le M}} \|D^m \omega_k^i\|_{\infty} \text{ for } \|z\| < r,$$

where C is a constant and D designates the differentiation operator.

2. Preliminaries

2.1. Notations. In this work, unless indicated otherwise, $\| \|$ will denote the l^2 -norm on l^2 or on \mathbb{C}^N : if $z = (z_i) \in l^2$ or \mathbb{C}^N , $\|z\| = \sum |z_i|^2$. B(r) resp. $B_N(r)$ will denote the ball $\|z\| < r$ in l^2 resp. \mathbb{C}^N . When r = 1, we simply write B resp. B_N for B(1) resp. $B_N(1)$.

In the sequel α denote a multiindex. A multiindex $\alpha = (\alpha_i)_{i=1}^{\infty}$ for us is a sequence of integers $\alpha_i \geq 0$ with $\alpha_i = 0$ for i large enough. The length of α is $|\alpha| = \sum_{i=1}^{\infty} \alpha_i$. We let $\alpha! = \prod_{i=1}^{\infty} \alpha_i!$, where the usual convention 0! = 1 is observed. For a sequence of complex numbers $z = (z_i)_{i=1}^{\infty}$, we put $z^{\alpha} = \prod_{i=1}^{\infty} z_i^{\alpha_i}$, where 0^0 is defined to be 1.

If z and w are in \mathbb{C}^N , we denote:

$$z'_i = (z_1, \dots, z_i); \quad z''_i = (z_i, \dots, z_N) \quad (i = 1, \dots, N)$$

 $|z|^2 = (|z_1|^2, \dots, |z_N|^2), \quad zw = (z_1w_1, \dots, z_Nw_N).$

If f is in $C^{\infty}(\overline{B}_N)$, then for each $m \in \mathbb{N}$, we put

$$||D^m f||_{\infty} = \sup_{z \in \overline{B}_N} ||D^m f(z)||,$$

where $||D^m f(z)||$ is the operator norm of the *m*th Fréchet derivative $D^m f$ of f. The norm $||D^m \omega||_{\infty}$ of a \mathcal{C}^{∞} smooth (0,1)-form ω on \overline{B}_N is defined by

$$||D^m \omega||_{\infty} = \sup_{(z,h) \in \overline{B}_N^2} ||D^m f(z,h)||,$$

where $f(z,h) = \omega(z)h$ for $z,h \in \overline{B}_N$.

2.2. Auxiliary results. To prove Theorem 1.1, we require some preliminary results.

If $z=(z_i)_{i=1}^{\infty}$ is in the unit ball of l^2 , we put

$$P_n(z) = \sum_{|\alpha| > n} \frac{|\alpha|^{\frac{|\alpha|}{2}}}{\alpha^{\frac{\alpha}{2}}} z^{\alpha}, \quad n \in \mathbb{N},$$

where $\alpha^{\frac{\alpha}{2}} = \prod_{i=1}^{\infty} \alpha_i^{\frac{\alpha_i}{2}}$.

Lemma 2.1. There is a constant Q > 1 such that if $z \in B_N(r)$ with $r < \frac{1}{Q}$, then

$$|P_n(z)| \le (Qr)^n 2^N.$$

for every $n \in \mathbb{N}$.

Proof. Let us consider in \mathbb{C} the entire function $g(z) = \sum_{\alpha \geq 0} \frac{z^{\alpha}}{\alpha^{\alpha/2}}$. For every $\epsilon \in]0, \frac{1}{2}[$, we have

$$|g(z)| \leq \sum_{\alpha \geq 0} \frac{|z|^{\alpha}}{\epsilon^{\alpha/2} \sqrt{\alpha!}} \epsilon^{\alpha/2}.$$

Using Cauchy-Schwarz inequality, we obtain

$$|g(z)| \le \left(\sum_{\alpha \ge 0} \frac{|z|^{2\alpha}}{\epsilon^{\alpha} \alpha!}\right)^{1/2} \left(\sum_{\alpha \ge 0} \epsilon^{\alpha}\right)^{1/2}.$$

Let $q \in \mathbb{N}$, and $z \in \mathbb{C}^N$, we observe that the series $\sum_{|\alpha|=q} \frac{z^{\alpha}}{\alpha^{\alpha/2}}$ is the homogeneous component of degree q of the product $g(z_1) \cdots g(z_N)$. It follows, when $z \in B_N(\sqrt{q})$, the majorization

$$\left| \sum_{|\alpha|=q} \frac{z^{\alpha}}{\alpha^{\alpha/2}} \right| \le 2^{N/2} \exp\left(\frac{q}{2\epsilon}\right).$$

By homothety on the ball of radius r, we get

$$\left| \sum_{|\alpha|=q} \frac{|\alpha|^{\frac{|\alpha|}{2}}}{\alpha^{\frac{\alpha}{2}}} z^{\alpha} \right| \le r^q \exp\left(\frac{q}{2\epsilon}\right) 2^{N/2}.$$

Therefore, if r is sufficiently small, we get

$$|P_n(z)| \le \left(2e^{1/2\epsilon}r\right)^n 2^N.$$

Theorem 2.1. If f is in $C^{\infty}(\overline{B}_N)$, then it admits the Fourier series expansion

$$f(z) = \sum_{(\alpha,\beta)\in\mathbb{N}^{2N}} z^{\alpha} \overline{z}^{\beta} f_{(\alpha,\beta)}(|z|^2), \tag{2.1}$$

The series (2.1) is normally convergent with its derivatives on \overline{B}_N ; the coefficients $f_{(\alpha,\beta)}$ are \mathcal{C}^{∞} on the closed unit ball of \mathbb{R}^N provided with the l^1 -norm, that satisfy

$$\forall (\alpha, \beta) \in \mathbb{N}^{2N}; z^{\alpha} \overline{z}^{\beta} f_{(\alpha, \beta)}(|z|^2) = \int_{[0, 2\pi]^N} f(ze^{i\theta}) e^{-i(\alpha \cdot \theta)} e^{i(\beta \cdot \theta)} \frac{d\theta}{(2\pi)^N}$$
 (2.2)

where
$$(\alpha \cdot \theta) = \sum_{i=1}^{N} \alpha_i \theta_i$$
, $e^{i\theta} = (e^{i\theta_1}, \dots, e^{i\theta_N})$, and $\frac{d\theta}{(2\pi)^N} = \frac{d\theta_1}{2\pi} \dots \frac{d\theta_N}{2\pi}$.

For the proof see ([5], Theorem 2.1).

3. Closure characterization

Let ω be a \mathcal{C}^{∞} smooth (0,1)- form on the closed unit ball of \mathbb{C}^N according to the type

$$\omega(z) = \sum_{i=1}^{N} z_i \omega^i(z) d\overline{z}_i, \quad z = (z_i)_{i=1}^{N} \text{ in } \overline{B}_N$$

According to Theorem 2.1, for all i the function ω^i admits a Fourier series expansion in the form $\omega^i(z) = \sum_{(\alpha,\beta) \in \mathbb{N}^{2N}} z^{\alpha} \overline{z}^{\beta} \omega^i_{(\alpha,\beta)}(|z|^2)$, where the coefficients $\omega^i_{(\alpha,\beta)}$ are functions of class \mathcal{C}^{∞} on the closed unit ball of \mathbb{R}^N , and the series is normally convergent with its derivatives on \overline{B}_N .

Put

$$\omega_{(\alpha,\beta)}(z) = \sum_{i=1}^{N} z_i z^{\alpha} \overline{z}^{\beta} \omega_{(\alpha,\beta)}^{i}(|z|^2) d\overline{z}_i$$

It is easy to check that ω is closed if and only if $\omega_{(\alpha,\beta)}$ is closed for every $(\alpha,\beta) \in \mathbb{N}^{2N}$.

Proposition 3.1. Let ω be a C^{∞} smooth (0,1)-form on the closed unit ball of \mathbb{C}^N of the type $\omega(z) = \sum_{i=1}^N z_i \omega^i(z) d\overline{z}_i$. Then ω is $\overline{\partial}$ -closed on \overline{B}_N if and only if $\Phi_{(\alpha,\beta)}(t) = \sum_{i=1}^N t^{\beta} \omega^i_{(\alpha,\beta)}(t) dt_i$ is d-closed on the closed unit ball of \mathbb{R}^N for every $(\alpha,\beta) \in \mathbb{N}^{2N}$.

Proof. ω is closed on \overline{B}_N if and only if

$$z_i z^{\alpha} \frac{\partial}{\partial \overline{z}_j} \left(\overline{z}^{\beta} \omega^i_{(\alpha,\beta)}(|z|^2) \right) = z_j z^{\alpha} \frac{\partial}{\partial \overline{z}_i} \left(\overline{z}^{\beta} \omega^j_{(\alpha,\beta)}(|z|^2) \right)$$

for every $(\alpha, \beta) \in \mathbb{N}^{2N}$ and $(i, j) \in \mathbb{N}^2$.

By multiplying the above equality by z^{β} , one obtains

$$z_i z^{\alpha} \frac{\partial}{\partial \overline{z}_i} \left(|z|^{2\beta} \omega^i_{(\alpha,\beta)}(|z|^2) \right) = z_j z^{\alpha} \frac{\partial}{\partial \overline{z}_i} \left(|z|^{2\beta} \omega^j_{(\alpha,\beta)}(|z|^2) \right)$$

If we put $t = |z|^2$, this implies

$$z_i z_j z^{\alpha} \frac{\partial}{\partial t_i} \left(|z|^{2\beta} \omega^i_{(\alpha,\beta)}(|z|^2) \right) = z_j z_i z^{\alpha} \frac{\partial}{\partial t_i} \left(|z|^{2\beta} \omega^j_{(\alpha,\beta)}(|z|^2) \right)$$

Thus, ω is $\overline{\partial}$ -closed on \overline{B}_N if and only if $\Phi_{(\alpha,\beta)}$ is d-closed on the closed unit ball of \mathbb{R}^N .

Now, we consider a closed (0,1)-form ω of class C^{∞} on the closed unit ball of l^2 according to the type $\omega = \sum_k \omega_k$ and satisfying the assumption (H). For all $z \in \overline{B}$, all t in the closed unit ball of \mathbb{R}^{N_k} , and all $(\alpha, \beta) \in \mathbb{N}^{2N_k}$ we put

$$\omega_{k,(\alpha,\beta)}(z^k) = \sum_{i \in I_k} z_i (z^k)^{\alpha} (\overline{z^k})^{\beta} \omega_{k,(\alpha,\beta)}^i (|z^k|^2) d\overline{z}_i$$

$$\Phi_{k,(\alpha,\beta)}(t) = \sum_{i \in I_k} t^{\beta} \omega_{k,(\alpha,\beta)}^i(t) dt_i$$
(3.1)

Theorem 3.1. ω is closed on \overline{B} if and only if for all $k \geq 1$, and $(\alpha, \beta) \in \mathbb{N}^{2N_k}$

$$(z^k)^{\beta}\omega_{k,(\alpha,\beta)}(z^k) = \sum_{i \in I_k} z_i(z^k)^{\alpha} \frac{\partial \Omega_{k,(\alpha,\beta)}}{\partial t_i} (|z^k|^2) d\overline{z}_i, \tag{3.2}$$

where $\Omega_{k,(\alpha,\beta)}$ is an indefinitely differentiable function on the closed unit ball of \mathbb{R}^{N_k} .

Proof. ω_k is the restriction to \mathbb{C}^{N_k} of ω , thus ω is closed on \overline{B} if and only if ω_k is closed on \overline{B}_{N_k} for every k. By using Proposition 3.1, and Poincare's lemma, there exists for all k and $(\alpha, \beta) \in \mathbb{N}^{2N_k}$, a function $\Omega_{k,(\alpha,\beta)}$ indefinitely differentiable on the closed unit ball of \mathbb{R}^{N_k} provided with the norm of l^1 such that

$$d\Omega_{k,(\alpha,\beta)} = \Phi_{k,(\alpha,\beta)}. (3.3)$$

Now, (3.2) follows immediately from (3.1) and (3.3).

4. Solvability

Let ω be a $\overline{\partial}$ -closed \mathcal{C}^{∞} smooth (0,1)-form on the closed unit ball of l^2 according to the type $\omega = \sum_k \omega_k$ such that $\omega_k = \sum_{(\alpha,\beta) \in \mathbb{N}^{2N_k}} \omega_{k,(\alpha,\beta)}$, where

$$\omega_{k,(\alpha,\beta)}(z^k) = \sum_{i \in I_k} z_i(z^k)^{\alpha} (\overline{z^k})^{\beta} \omega_{k,(\alpha,\beta)}^i(|z^k|^2) d\overline{z}_i,$$

and $\omega_{k,(\alpha,\beta)}$ is $\overline{\partial}$ -closed (0,1)-form of class \mathcal{C}^{∞} on the closed unit ball of \mathbb{C}^{N_k} . For each $(\alpha,\beta) \in \mathbb{N}^{2N_k}$ we can solve the equation

$$\overline{\partial}U_{k,(\alpha,\beta)} = (z^k)^\beta \omega_{k,(\alpha,\beta)} \tag{4.1}$$

with $U_{k,(\alpha,\beta)} \in \mathcal{C}^{\infty}(\overline{B}_{N_k})$, by putting

$$U_{k,(\alpha,\beta)}(z^k) = (z^k)^{\alpha} \Omega_{k,(\alpha,\beta)}(|z^k|^2).$$

This determines $U_{k,(\alpha,\beta)}$ up to a holomorphic term. To determine $U_{k,(\alpha,\beta)}$ unambiguously we assign to each $\alpha \in \mathbb{N}^{N_k}$ a fixed point $M_{\alpha} = \left(M_{\alpha}^i\right)_{i \in I_k}$ in the closed unit ball of \mathbb{R}^{N_k} such that $M_{\alpha}^i = 0$ if $\alpha_i = 0$ and require that $\Omega_{k,(\alpha,\beta)}\left(M_{\alpha}\right) = 0$.

Lemma 4.1. Let $\Omega_{k,(\alpha,\beta)}$ be an antiderivative of $\Phi_{k,(\alpha,\beta)}$ that vanishes at the point M_{α} , then

$$F_{k,(\alpha,\beta)}(z^k) = \frac{(z^k)^{\alpha} (\overline{z^k})^{\beta}}{|z^k|^{2\beta}} \Omega_{k,(\alpha,\beta)}(|z^k|^2)$$

define C^{∞} smooth function on \overline{B}_{N_k} that solves the equation $\overline{\partial} F_{k,(\alpha,\beta)} = \omega_{k,(\alpha,\beta)}$.

Proof. By applying Taylor formula to the function $\Omega_{k,(\alpha,\beta)}$ at the point M_{α} , and by using (3.3), it follows that

$$\Omega_{k,(\alpha,\beta)}(t) = t^{\beta} H_{k,(\alpha,\beta)}(t)$$

where $H_{k,(\alpha,\beta)}$ is \mathcal{C}^{∞} smooth on the closed unit ball of \mathbb{R}^{N_k} . Therefore $F_{k,(\alpha,\beta)}$ is of class \mathcal{C}^{∞} on \overline{B}_{N_k} .

Since $U_{k,(\alpha,\beta)}(z^k) = (z^k)^{\beta} F_{k,(\alpha,\beta)}(z^k)$, it follows from (4.1) that

$$\overline{\partial} F_{k,(\alpha,\beta)} = \omega_{k,(\alpha,\beta)}.$$

Remark 4.1. Suppose that for some $M \geq 1$, the derivatives $D^m \omega_k^i$ are uniformly bounded in i and k on the unit ball of l^2 for $0 \leq m \leq M$, and put $F_k = \sum_{(\alpha,\beta) \in \mathbb{N}^{2N_k}} F_{k,(\alpha,\beta)}$. Then, by applying ([3],Appendix 3, Lemma 5), for some 0 < r < 1, the function $F = \sum_{k=1}^{\infty} F_k$ define a \mathcal{C}^{∞} -smooth solution of the equation $\overline{\partial} F = \omega$ on B(r) if there exists C > 0, such that

$$|F_k(z^k)| \le C \sup_{\substack{i,k\\0 \le m \le M}} ||D^m \omega_k^i||_{\infty} < +\infty$$

for every $z \in B(r)$ and $k \ge 1$.

From this observation the problem is reduced to the existence of an antiderivative $\Omega_{k,(\alpha,\beta)}$ such that the series F_k converge and satisfies an estimate independent of the dimension N_k . We give a positive response for two particular cases.

The polynomial case. Let us choose for $\Omega_{k,(\alpha,\beta)}$ the integral of $\Phi_{k,(\alpha,\beta)}$ along a path connecting the origin to $|z^k|^2$ inside the unit ball of \mathbb{R}^{N_k} provided with the l^1 -norm, then we get the following result

Proposition 4.1. If there exists a positive integer M such that the coefficients $\omega_{k,(\alpha,\beta)}^i$ are null if $(|\alpha|-|\beta|)>M$, for all k and all i in I_k , and if the derivatives $D^m\omega_k^i$ are uniformly bounded in i and k on B for $0 \le m \le M$, then the series F_k converge and define indefinitely differentiable functions on \overline{B}_{N_k} that satisfies

$$|F_k(z^k)| \le C ||z^k||^2 \sup_{m \le M} ||D^m \omega||_{\infty} < +\infty,$$

where C is a constant independent of k.

Proof. By applying Lemma 4.1, we have

$$F_{k}(z^{k}) = \sum_{q=-\infty}^{M} \sum_{|\alpha|-|\beta|=q} \int_{0}^{1} (z^{k})^{\alpha} (\overline{z^{k}})^{\beta} u^{|\beta|} \sum_{i \in I_{k}} \omega_{k,(\alpha,\beta)}^{i} (u|z^{k}|^{2}) \cdot |z_{i}|^{2} du$$

$$= \sum_{q=-\infty}^{M} \int_{0}^{1} \int_{0}^{2\pi} \frac{1}{(\sqrt{u})^{q+1}} < \omega_{k}(\sqrt{u}z^{k}e^{i\theta}), z^{k} > e^{-iq\theta} \frac{d\theta}{2\pi} du,$$

where $<\omega_k(\sqrt{u}z^ke^{i\theta}), z^k>=\omega_k(\sqrt{u}z^ke^{i\theta})z^k=\sum_{i\in I_k}|z_i|^2\omega_k^i(\sqrt{u}z^ke^{i\theta}).$ By making q integrations by parts relatively to θ in each term of the above sum when $1\leq q\leq M$, we obtain

$$|F_k(z^k)| \le C||z^k||^2 \sup_{m \le M} ||D^m \omega||_{\infty},$$

where C is a constant independent of k, and hence

$$|F(z)| \le C||z||^2 \sup_{m \le M} ||D^m \omega||_{\infty}.$$

Thus we have proved the first part of Theorem 1.1.

Non-polynomial case. Let ω be a $\overline{\partial}$ -closed \mathcal{C}^{∞} smooth (0,1)- form on the closed unit ball of \mathbb{C}^N according to the type

$$\omega(z) = \sum_{i=1}^{N} z_i \omega^i(z) d\overline{z}_i, \quad z = (z_i)_{i=1}^{N} \text{ in } \overline{B}_N$$

We recall that ω^i admits a Fourier series expansion of the type

$$\omega^{i}(z) = \sum_{(\alpha,\beta) \in \mathbb{N}^{2N}} z^{\alpha} \overline{z}^{\beta} \omega^{i}_{(\alpha,\beta)}(|z|^{2}).$$

We also recall that $\Phi_{(\alpha,\beta)}$ designates the closed form in \mathbb{R}^N defined by

$$\Phi_{(\alpha,\beta)}(t) = \sum_{i=1}^{N} t^{\beta} \omega_{(\alpha,\beta)}^{i}(t) dt_{i}.$$

The anti-derivates of $\Phi_{(\alpha,\beta)}$ is given by $\Omega_{(\alpha,\beta)}(|z|^2) = \int_{\gamma} \Phi_{(\alpha,\beta)}$, where the path γ defined below joins the point $|z|^2$ to a fixed point of the closed unit ball of \mathbb{R}^N_+ . We can take the function

$$F(z) = \sum_{(\alpha,\beta) \in \mathbb{N}^{2N}} \frac{z^{\alpha} \overline{z}^{\beta}}{|z|^{2\beta}} \Omega_{(\alpha,\beta)}(|z|^2)$$

for a $\overline{\partial}$ - anti-derivate of ω conditioned by its series convergence.

If we suppose that there exists a real number $\lambda > 0$ such that the coefficients $\omega^i_{(\alpha,\beta)}$ are null if $(|\alpha|-|\beta|) < \lambda N$, then we shall prove that for some 0 < r < 1 and for a suitable choice of the path γ , the series F converge and define \mathcal{C}^{∞} -functions

on $B_N(r)$ with estimates independent of N.

Put for $\alpha \in \mathbb{N}^N$

$$M_{\alpha} = \begin{cases} 0 & \text{if } \alpha = 0\\ \alpha/|\alpha| & \text{otherwise,} \end{cases}$$

Given ||z|| < r < 1, and $(\alpha, \beta) \in \mathbb{N}^{2N}$, we denote by γ the union of the adjacent segments $[M^m, M^{m+1}]$ (m = 0, 1, 2), connecting $M^0 = |z|^2$ to the point $M^3 = M_{\alpha}$ with $M^1 = \frac{1}{r^2}|z|^2$ and

$$M_i^2 = \begin{cases} \frac{1}{r^2} |z_i|^2 & \text{if } \alpha_i \neq 0\\ r^2 |z_i|^2 & \text{if } \alpha_i = 0 \end{cases}$$

In the sequel, we shall use the majorization of the following lemma.

Lemma 4.2. Let n be a natural number, then for any $z \in B_N(r)$, we have

$$\sum_{|\alpha|=n} \int_{M^2}^{M^3} \frac{|z|^{\alpha}}{t^{\frac{\alpha}{2}}} dt \le (Qr)^n \, 2^N. \tag{4.2}$$

where Q is the constant of Lemma 2.1.

Proof. Let $[0,1] \ni u \mapsto t(u) = (1-u)M^2 + uM^3$ be the parametrization of the segment $[M^2, M^3]$, we can write

$$\int_{M^2}^{M^3} \frac{|z|^{\alpha}}{t^{\frac{\alpha}{2}}} dt = \int_0^{\frac{1}{2}} \frac{|z|^{\alpha}}{(t(u))^{\frac{\alpha}{2}}} du + \int_{\frac{1}{2}}^1 \frac{|z|^{\alpha}}{(t(u))^{\frac{\alpha}{2}}} du.$$

When u describes $[0,\frac{1}{2}]$, we observe that $(t(u))^{\frac{\alpha}{2}} \geq \frac{|z|^{\alpha}}{(\sqrt{2r})^{|\alpha|}}$. Therefore

$$\int_0^{\frac{1}{2}} \frac{|z|^{\alpha}}{(t(u))^{\frac{\alpha}{2}}} du \le \frac{1}{2} \left(\sqrt{2}r\right)^{|\alpha|} \le \left(\sqrt{2}r\right)^{|\alpha|}. \tag{4.3}$$

On the other hand, we have the inequality $t(u) \ge \frac{\alpha}{2|\alpha|}$ for every $u \in [\frac{1}{2}, 1]$. Hence

$$\int_{\frac{1}{2}}^{1} \frac{|z|^{\alpha}}{(t(u))^{\frac{\alpha}{2}}} du \le \frac{|\alpha|^{\frac{|\alpha|}{2}}}{\alpha^{\frac{\alpha}{2}}} |2z|^{\alpha}. \tag{4.4}$$

From (4.3) and (4.4) we get the majorization

$$\sum_{|\alpha|=n} \int_{M^2}^{M^3} \frac{|z|^{\alpha}}{t^{\frac{\alpha}{2}}} dt \le \sum_{|\alpha|=n} \frac{|\alpha|^{\frac{|\alpha|}{2}}}{\alpha^{\frac{\alpha}{2}}} \left(|2z|^{\alpha} + \left(2r^2 \frac{\alpha}{|\alpha|} \right)^{\frac{\alpha}{2}} \right).$$

If we choose r sufficiently small then an application of Lemma 2.1 implies the required estimate (4.2).

Remark 4.2. Following Proposition 4.1, we may suppose $|\alpha| - |\beta| \ge 2$.

The proof of the second part of Theorem 1.1 is a direct consequence of the forthcoming proposition.

Proposition 4.2. Let ω be a $\overline{\partial}$ -closed \mathcal{C}^{∞} smooth (0,1)- form on \overline{B}_N according to the type $\omega(z) = \sum_{i=1}^N z_i \omega^i(z) d\overline{z}_i$ such that there exists a real number $\lambda > 0$ such that the coefficients $\omega^i_{(\alpha,\beta)}$ are null if $(|\alpha| - |\beta|) < \lambda N$. We assume furthermore that the derivatives $D^m \omega^i$ are uniformly bounded in i and k on B for $0 \le m \le 2$. Then there exists 0 < r < R < 1 such that the series F converge and defines a C^{∞} -smooth $\overline{\partial}$ -antiderivative of ω on $\overline{B}_N(r)$ for which

$$|F(z)| \le C (||z||^2 + R^N) \sup_{\substack{0 \le m \le 2}} ||D^m \omega^i||_{\infty}$$
 (4.5)

where C is a constant independent of N.

Proof. For every $z \in B_N$, we put

$$F^{m}(z) = \sum_{(|\alpha|-|\beta|) > \lambda N} \frac{z^{\alpha} \overline{z}^{\beta}}{|z|^{2\beta}} \int_{M^{m}}^{M^{m+1}} \Phi_{(\alpha,\beta)}(t) dt, \quad m = 0, 1, 2.$$

According to Lemma 4.1, we have $F = F^0 + F^1 + F^2$, so it will be enough to prove that, for m = 0, 1, 2, the series F^m converges and satisfies an estimate independent of N.

Let us start with the case m = 0.

$$F^{0}(z) = \sum_{(|\alpha| - |\beta|) \ge \lambda N} \int_{1}^{\frac{1}{r^{2}}} z^{\alpha} \overline{z}^{\beta} u^{|\beta|} \sum_{i=1}^{N} \omega_{(\alpha,\beta)}^{i}(u|z|^{2}) \cdot |z_{i}|^{2} du$$

$$= \sum_{q=\lambda N}^{+\infty} \int_{1}^{\frac{1}{r^{2}}} \int_{0}^{2\pi} \frac{1}{(\sqrt{u})^{q+1}} < \omega(\sqrt{u}ze^{i\theta}), z > e^{-iq\theta} \frac{d\theta}{2\pi} du.$$

By making two integrations by parts relatively to θ in each term of the above sum, we obtain

$$|F^{0}(z)| \le C||z||^{2} \sup_{m \le 2} ||D^{m}\omega||_{\infty}.$$
 (4.6)

where C is a constant independent of N.

Now, let us consider the series F^1 .

Let J be a (possibly empty) subset of $\{1, 2, ..., N\}$, we denote by A_J the set of multi-indices $(\alpha, \beta) \in \mathbb{N}^{2N}$ such that $\alpha_i = 0$ if and only if $i \in J$.

Note that A_J constitute a partition of \mathbb{N}^{2N} . Let

$$\omega_J = \sum_{i \in J} z_i \left[\sum_{(\alpha,\beta) \in A_J} z^{\alpha} \overline{z}^{\beta} \omega^i_{(\alpha,\beta)}(|z^k|^2) \right] d\overline{z}_i.$$

We have $F^1 = \sum_J F_J^1$, with

$$F_J^1(z) = \sum_{(\alpha,\beta)\in A_J} \int_{\frac{1}{r^2}}^{r^2} z^{\alpha} \overline{z}^{\beta} u^{|\beta|} \sum_{i\in J} \omega_{(\alpha,\beta)}^i(t(u)) \cdot |z_i|^2 du.$$

Note that if $J = \emptyset$ we have $F_J^1 = 0$, hence it is enough to consider $J \neq \emptyset$. By a change of numerotation we may suppose that $J = \{\nu, \dots, N\}$ $(\nu \leq N)$, thus we can write

$$F_{J}^{1}(z) = \sum_{q-p \ge \lambda N} \sum_{|\alpha|=q} \sum_{|\beta|=p} \int_{\frac{1}{r^{2}}}^{r^{2}} z^{\alpha} \overline{z}^{\beta} u^{p} \sum_{i=\nu}^{N} \omega_{(\alpha,\beta)}^{i} (\frac{1}{r^{2}} |z'_{\nu-1}|^{2}, u |z''_{\nu}|^{2}) \cdot |z_{i}|^{2} du$$

$$= \sum_{p=0}^{+\infty} \sum_{q=p+\lambda N}^{+\infty} \int_{\frac{1}{r^{2}}}^{r^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} r^{q} \sqrt{u^{p}} < \omega_{J} (\frac{1}{r} z'_{\nu-1} e^{i\theta}, \sqrt{u} z''_{\nu} e^{i\varphi}), z''_{\nu+1} >$$

$$\times e^{-i(q\theta-p\varphi)} \frac{du d\theta d\varphi}{4\pi^{2}}.$$

An easy computation shows that

$$r^p \int_{r^2}^{1/r^2} \sqrt{u}^p du \le \frac{1}{r^2}.$$

By making two integrations by parts relatively to φ in each term of the above sum we are led to the majorization

$$|F_J^1(z)| \le Cr^{\lambda N} ||z||^2 \sup_{m \le 2} ||D^m \omega||_{\infty}$$

Hence

$$|F^{1}(z)| \le C||z||^{2} \sup_{m \le 2} ||D^{m}\omega||_{\infty}$$
 (4.7)

where C is a constant independent of N.

It remains to consider the series F^2 , we have

$$\begin{split} F^{2}(z) &= \sum_{q-p \geq \lambda N} \sum_{|\alpha|=q} \sum_{|\beta|=p} \int_{0}^{1} z^{\alpha} \overline{z}^{\beta} (1-u)^{p} r^{2p} \sum_{i=1}^{N} \omega_{(\alpha,\beta)}^{i}(t(u)) t_{i}'(u) du \\ &= \sum_{p=0}^{+\infty} \sum_{q=p+\lambda N}^{+\infty} \int_{0}^{1} \int_{0}^{2\pi} \frac{z^{\alpha} (1-u)^{\frac{p}{2}} r^{p}}{(t(u))^{\frac{\alpha}{2}}} \sum_{i=1}^{N} \omega^{i} (\sqrt{(t(u)} e^{i\theta}) e^{-i(q-p)\theta} t_{i}'(u) \frac{du d\theta}{2\pi} \end{split}$$

By applying Lemma 4.2 and by choosing r sufficiently small, we get

$$|F^2(z)| \le CR^N \sup_i \|\omega^i\|_{\infty} \tag{4.8}$$

where 0 < R < 1 and C are independent of N.

Now, the required estimate (4.5) follows immediately from (4.6), (4.7) and (4.8).

References

- [1] L. Lempert, The Dolbeault complex in infinite dimension 1, J. Amer. Math. Soc 11 (1998), 775–793.
- [2] L. Lempert, The Dolbeault complex in infinite dimension 2, J. Amer. Math. Soc 12 (1999), 485–520.
- [3] P. Mazet, Analytic sets in locally convex space. North Holland Math. Studies, Amsterdam. 89 (1984).
- [4] R. A. Ryan, Holomorphic mappings in l^1 , Trans. Amer. Math. Soc **302** (1987), 797–811

- [5] A. Talhaoui, Exactness of some (0,1)-forms in Hilbert spaces of infinite dimension, *Math. Nachr* **8-9** (2011), 1172–1184.
- [6] A. Talhaoui, The Cauchy-Riemann equations in the unit ball of l^2 , end. Circ. Mat. Palermo. **63** (2014), 181–192.
- [7] A.Talhaoui, The Cauchy-Riemann equations for a class of (0,1)-forms in l^2 , Mat. Stud 46 (2016), 171–177.

Kheira Memchout

Department Mathematics, University of Mascara, Mascara 29000, Algeria. E-mail address: www.memchoutkh@yahoo.fr

Abdallah Talhaoui

Department of Mathematics and informatics, National Polytechnic School of Oran, P.O. Box 1523 ELMenaouer, Oran 31000, Algeria.

E-mail address: abdellah.talhaoui@enp-oran.dz

Received: July 12, 2019; Revised: November 29, 2019; Accepted: December 21, 2019