Review - Second Order Systems

$$a_2 \frac{d^2 v(t)}{dt^2} + a_1 \frac{dv(t)}{dt} + a_0 v(t) = b_0 f(t)$$
(1)

$$\frac{1}{\omega_n^2} \frac{d^2 v(t)}{dt^2} + \frac{2\zeta}{\omega_n} \frac{dv(t)}{dt} + v(t) = K_s f(t)$$
(2)

$$\begin{split} &\omega_n = \sqrt{\frac{a_0}{a_2}} &\longrightarrow & \text{natural frequency} \\ &\zeta = \left(\frac{a_1}{2}\right)\sqrt{\frac{1}{a_0a_2}} &\longrightarrow & \text{damping coefficient} \\ &K_s = \frac{b_0}{a_0} &\longrightarrow & \text{DC gain (steady-state response; not "t"-damped)} \end{split}$$

Assume solution of the form:

$$v(t) = Ae^{st} (3)$$

Plug into Equation 2:

$$\frac{1}{\omega_n^2} s^2 \mathcal{A} e^{st} + \frac{2\zeta}{\omega_n} s \mathcal{A} e^{st} + \mathcal{A} e^{st} \tag{4}$$

Characteristic equation:

$$\frac{s^2}{\omega_n^2} + \frac{2\zeta}{\omega_n}s + 1 = 0 \tag{5}$$

Solve:

$$s^2 + 2\zeta\omega_n + \omega_n^2 = 0 \longrightarrow 2 \text{ roots } (s_1 + s_2)$$
 (6)

$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} \tag{7}$$

$\zeta > 1$	2 real + distinct roots	overdamped
$\zeta = 1$	real, repeated root	critically-damped
	$s_{1,2} = -\zeta \omega_n$	critically-damped
$\zeta < 1$	2 complex conjugate roots	under-damped
	$s_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$	under-damped

Underdamped System Response - pressure response of 'step excitation' of a balloon popping

Sum of 2 sinusoids at ω_d with exponential decay:

$$v(t) = e^{-\zeta \omega_n t} \left[A\cos\left(\omega_n t \sqrt{1 - \zeta^2}\right) + B\sin\left(\omega_n t \sqrt{1 - \zeta^2}\right) \right]$$
 (8)

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} \tag{9}$$

Envelope at:

$$e^{-t/\tau}$$
 (10)

$$\tau = \frac{1}{\zeta \omega_n} \tag{11}$$

 $e^{-\frac{\pi}{2}}$

Figure 1: Balloon Pop - step excitation

Figure 2: Time Domain - underdamped repsonse

Figure 3: Frequency Domain - underdamped response

From the frequency domain, the half-power bandwidth can be calculated from the -3 dB points ($\omega_2 - \omega_1$).

$$\frac{\omega_2 - \omega_1}{\omega_n} = 2\zeta = \frac{1}{Q} \tag{12}$$

Consider: Step is broadband. What about steady-state sinusoidal inputs?