ЛАБОРАТОРНА РОБОТА № 1

ОПЕРЕДНЯ ОБРОБКА ТА КОНТРОЛЬОВАНА КЛАСИФІКАЦІЯ ДАНИХ

Мета роботи: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідити попередню обробку та класифікацію даних.

Хід роботи:

Завдання 2.1. Попередня обробка даних.

```
Binarized data:
import numpy as np
                                                                                           [1. 0. 0.]]
                                                                                          Std deviation = [3.12039661 6.36651396 4.0620192 ]
data_binarized = preprocessing.Binarizer(threshold=2.1).transform(input_data)

AFTER:
                                                                                          Mean = [1.11022302e-16 0.00000000e+00 2.77555756e-17]
                                                                                          Std deviation = [1. 1. 1.]
                                                                                          Min max scaled data:
print("Std deviation =", input_data.std(axis=0))
                                                                                            [[0.74117647 0.39548023 1.
                                                                                           [1. 0. 0.17021277]]
                                                                                           [[ 0.45132743 -0.25663717 0.2920354 ]
                                                                                           [-0.0794702 0.51655629 -0.40397351]
[ 0.609375 0.0625 0.328125 ]
[ 0.33640553 -0.4562212 -0.20737327]]
data_scaler_minmax = preprocessing.MinMaxScaler(feature_range=(0, 1))
print("\nMin max scaled data:\n", data_scaled_minmax)
# <u>Hopmaniaauia даних</u>
data_normalized_l1 = preprocessing.normalize(input_data, norm='l1')
data_normalized_l2 = preprocessing.normalize(input_data, norm='l2')
                                                                                          l2 normalized data:
                                                                                           [[ 0.75765788 -0.43082507 0.49024922]
pmint("\nl1 normalized data:\n", data_normalized_l1)
print("\nl2 normalized data:\n", data_normalized_l2)
```

Рис. 1. Код та результит програми

Висновок до завдання: основна відмінність полягає в тому, як обчислюється норма для нормалізації і в тому, як ці норми впливають на розподіл даних. L1-нормалізація призводить до розподілення даних більш рівномірно, тоді як L2-нормалізація спрямована на зменшення впливу великих відхилень.

3мн.	Арк.	№ докум.	Підпис	Дата	ДУ «Житомирська політехніка». 23.121.6.000 — Лр1				
Розроб.		Палій І.В.				/lim.	Арк.	Аркушів	
Перевір.		Щур Н.О.			Звіт з		1		
Керівник					лабораторної роботи <i>ФІКТ Гр. ІПЗ</i>		IП3-20-2		
Н. контр.									
Зав. каф.						F			

```
P LR_1_task_1.py
python 1.py
        from sklearn import preprocessing
       encoder = preprocessing.LabelEncoder()
       encoder.fit(input_labels)
       # Виведення відображення
                                                                                            Label mapping:
                                                                                            green --> 2
       # перетворення міток за допомогою кодувальника test_labels = ['green', 'red', 'black']
       encoded_values = encoder.transform(test_labels)
       print("\nLabels =", test_labels)
                                                                                            yellow --> 5
                                                                                            Labels = ['green', 'red', 'black']
                                                                                            Encoded values = [2, 3, 1]
       encoded_values = [3, 0, 4, 1]
                                                                                            Encoded values = [3, 0, 4, 1]
```

Рис. 2. Код та результит програми

Рис. 3. Код та результит програми

		Палій І.В.		
		Щур Н.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 4. Код та результит програми

Рис. 5. Код та результит програми

		Палій І.В.		
		Щур Н.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 5. Код та результит програми

Рис. 6. Код та результит програми

		Палій І.В.		
		Щур Н.О.	·	
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 7. Результит програми

Висновок: За цими результатами можна зробити висновок, що наївний байєсівський класифікатор добре справляється з класифікацією даних і показує стабільну та високу точність на різних наборах даних.

Висновок до пункту 2.5.1: Ці результати показують, що модель RF превосходить модель LR в усіх метриках при порозі 0.5. RF має вищу точність (Accuracy), вищий відновлення (Recall), більшу точність (Precision) і більш високу F1-меру порівняно з LR. Важливо враховувати, що вибір порогу залежить від конкретної задачі і вимог до моделі. Встановлення більшого порогу може бути важливим, якщо точність є пріоритетом і допустимі ложні позитиви обмежені, в той час як менший поріг може бути корисним, якщо важливіше уникнути ложних негативів і відновити більше позитивних класів. В даному випадку, модель RF виявилася більш ефективною з точки зору цих метрик при порозі 0.5.

		Палій І.В.		
		Щур Н.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Арк.

Висновок до пункту 2.5.2: На основі метрик і площі під ROC-кривими можна зробити висновок, що RF ϵ кращою моделлю у цьому конкретному наборі даних і задачі класифікації. RF ма ϵ кращу точність, полноту та загальну здатність до класифікації, ніж Logistic Regression (LR).

Висновок до пункту 2.6: Кращий вибір моделі може залежати від конкретних обставин вашого завдання. У даному випадку, якщо точність ϵ основним критерієм і

		Палій І.В.				$Ap\kappa$.
		Щур Н.О.			ДУ «Житомирська політехніка».23.121.6.000 — Лр1	6
Змн.	Арк.	№ докум.	Підпис	Дата		0

ресурси для обчис.	лень не обмеж	ені, то модел	ь SVM може (бути кращим вар	віантом.
Однак, якщо у вас	обмежені обч	ислювальні р	есурси і моде	ль байєсівського	о класи-
фікатора видає зад	овільну точніс	сть, то вона та	кож може бут	и прийнятним ві	ибором.
Посилання на реп	юзиторій Gitl	Hub: https://g	ithub.com/Iva	anPaliy/A.ILab	-1-IPZ-
Palii.git					
Палій I.B.	 				Ap
Щур Н.О.		ДУ «Житоми	<i>эрська політехнік</i>	а».23.121.6.000 - Лр1	

Підпис

Дата

Змн.

Арк.

№ докум.