





### Blanded Learning Format



- Offline Video Learning on COOL
  - anytime/anywhere you want
- Physical Discussion Session
  - R402, Xinsheng Lecture Building (新生大樓)
  - 11~12h, every working Monday
- Office Hour Session
  - Your TAs: Zoey Chao (趙珮君); Landon (王懷葳)
  - RDV location/time to be determined









| Date  | Topics                             | Date  | Topics                      |
|-------|------------------------------------|-------|-----------------------------|
| 02/20 | Preview & Review                   | 04/17 | Supervised ML Algorithms    |
| 02/27 | Regression Analysis                | 04/24 | Supervised ML Algorithms    |
| 03/06 | Regression Analysis                | 05/01 | Unsupervised ML Algorithms  |
| 03/13 | Multivariate Statistical Inference | 05/08 | Unsupervised ML Algorithms  |
| 03/20 | Dimension Reduction                | 05/15 | Machine Learning Techniques |
| 03/27 | Partial Least Squares Regression   | 05/22 | Deep Neural Nets            |
| 04/03 | Big Data Infrastructure            | 05/15 | Deep Neural Nets            |
| 04/10 | Mid-term Exam                      | 06/05 | Challenge Presentation Day  |





#### **Prerequisites**

- Fundamental Calculus
- Linear Algebra
- Programming: R or Python
  - R (4.x, RStudio, \*.rmd and \*.html)
  - Python (3.x, Jupyter Notebook, \*.ipynb and \*.pdf)
  - RStudio Cloud or Google Colab can be used for coding assignments
- Probability & Statistics
  - will be reexamined with Homework#1
- Understanding the following 6 questions





#0

# Data science is about pythoning/coding with machine/deep learning packages?





### #1 What is the gradient of f(x) at $x_0$ ?

A. 
$$\frac{f(x)}{x_0}$$

B. 
$$f'(x_0)$$

C. 
$$f(x_0) - f(0)$$

$$D. \quad \frac{f(x-x_0)}{x_0}$$





### #2 What is true for $X_{n \times p}$ ?

- A. The column space of X is in n-dimensional space.
- B. The column space of X is in p-dimensional space.
- C. If  $n \gg p$ , the column space of **X** is more likely consisted of n bases.
- D. If  $n \gg p$ , the column space of **X** is more likely consisted of p bases.



# #3 Given $X_{n \times p}$ with n samples and p variable. How to know if the variables are dependent?

A. 
$$tr(X) = 0$$

B. 
$$rank(X) = p$$

C.  $\mathbf{X}^T \mathbf{X}$  is positive definite

D. 
$$\left| \frac{1}{n-1} \mathbf{X}^T \left( \mathbf{I} - \frac{1}{n} \mathbf{J} \right) \mathbf{X} \right| = 0$$







- A. Normal Dist. 

  3
- B. Poisson Dist. → 2
- C. Exponential Dist. 👈 1
- D. Uniform Dist. 🕇 1





### #5 What is true for $f(x) = x^2 - x - 1$ ?

- A. It has the maximal value at x = 0.5
- B. It has the minimal value at  $x = \frac{1-\sqrt{5}}{2}$
- C. It has the maximal value at  $x = \frac{1+\sqrt{5}}{2}$
- D. It has the minimal value at x = 0.5





- writing exercises (pdf only), coding exercise in R (\*.rmd and \*.html), in Python (\*.ipynb and \*.pdf)
- unless specified, each writing exercise costs 10 points.
- code grading policy, each coding assignment costs 15 points.
  - fulfill basic requirements: 15pts
  - result presentation: 2pts
  - discussion & remarks: 3pts
- late penalty: 10% off per day and no later than 7 days of delay.
- plagiarism leads to 0's for both copies.
- Mid-term (writing exam): 35% (past exams will NOT be provided)
- Team Challenge: 37% = 20% (Ranking) + 12% (Presentation) + 5% (Report)
  - 2 or 3 in one team (> 3 → project score is discounted)
  - team with mixed nationality, project score is promoted
  - ranking is weekly announced
  - oral presentation
    - · describe the work breakdown at the beginning
    - each team member presents
    - peer review, 100% presence in the presentation session for everyone (obligatory)
  - slides uploaded to COOL as the final report, revise it if necessary
- Participation/Typo Hunting: (3%)
  - Each typo found in the slides is graded 0.1 point directly to the final score.



Homework #1

is awaiting







A Probable Magic

#### **ALL ROADS LEAD TO ROMA**





#### **ARE THERE THEORIES?**



## The Relation between Probability & Statistics





**MODEL** 

Population



**Probab**ility



**EXPERIMENT** 

Sample







George E. P. Box (1919-2013)

#### ALL MODELS ARE WRONG, BUT SOME ARE USEFUL.





### Revisit Probability & Statistics



- Probability
  - Law of Total Probability → Bayes' Theorem
  - Random Distributions → Central Limit Theorem (CLT)
- Statistics
  - Descriptive Statistics
  - Statistical Inference





#### Law of Total Probability

• Let  $A_1, ..., A_n$  be mutually exclusive and exhaustive events. Then for any other event B,

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$





#### Bayes' Theorem

Let  $A_1, ..., A_n$  be a collection of n mutually exclusive and exhaustive events with  $P(A_i) > 0$  for i = 1, ..., n. Then for any other event B with P(B) > 0

posterior knowledge

Graph / Statistic

$$P(A_k|B) = \frac{P(A_k \cap B)}{P(B)} = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^n P(B|A_i)P(A_i)}$$
 prior know

prior knowledge





#### The Monty Hall Problem

You have one chance to change, will you?



- One door with big prize, the other two with goats.
- The host knows exactly by heart where is the prize.
- You pick door A, the host then open one of the two unchosen doors with goat.



## /Monty Hall roblem (Given that you choose door A)



- $A_p$ : door A has the prize  $\rightarrow P(A_p) = \frac{1}{3} = P(B_p) = P(C_p)$
- $B_g$ : host opens door B with a goat  $\rightarrow P(B_g) = \frac{1}{2}$ , HOW?
  - Case 1: door A with prize  $\rightarrow P(B_g|A_p) = \frac{1}{2}$
  - Case 2: door C with prize  $\rightarrow P(B_g|C_p) = 1$
  - $-P(B_g) = \frac{1}{2} \times \frac{1}{3} + 1 \times \frac{1}{3} = \frac{1}{2}$
- The probability of door A with the prize while the host opens door B with a goat  $\rightarrow$   $P(A_p|B_q) = ?$

$$- P(A_p|B_g) = \frac{P(A_p \cap B_g)}{P(B_g)} = P(B_g|A_p) \times \frac{P(A_p)}{P(B_g)} = \frac{1}{3}$$

$$- P(C_p|B_g) = \frac{P(C_p \cap B_g)}{P(B_g)} = P(B_g|C_p) \times \frac{P(C_p)}{P(B_g)} = \frac{2}{3}$$



# Monty Hall Problem (Given that you choose door A) A Contingency Table View

|                   | Door B Opened | Door C Opened | Sum           |
|-------------------|---------------|---------------|---------------|
| Door A with Prize | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{3}$ |
| Door B with Prize | 0             | $\frac{1}{3}$ | $\frac{1}{3}$ |
| Door C with Prize | $\frac{1}{3}$ | 0             | $\frac{1}{3}$ |
| Sum               | $\frac{1}{2}$ | $\frac{1}{2}$ | 1             |





#### Random Variable (RV, R.V., r.v.)

• For a given sample space of some experiments, a <u>random variable</u> is <u>any rule</u> that associates a number with each outcome in the sample space. A random variable is always denoted by a capital letter (e.g. *X*, *Y*, etc.).

#### Types:

- discrete → if the set of possible values is discrete
- continuous → if the set of possible values is an entire interval of numbers



## Important Distributions & Their Moments



#### Discrete

- Bernoulli
- Geometric
- Binominal
- Poisson

#### Continuous

- Exponential
- Uniform
- (Standard) Normal
- -t
- $-\chi^2$
- -F

$$E[X] = \mu_x = \sum_{x \in D} x \cdot p(x) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$
$$V[X] = \sigma_x^2 = \sum_{x \in D} (x - \mu)^2 \cdot p(x) = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx$$



## When 2 Random Variables Meet: Joint Distribution



$$Y = X_1 + X_2$$

• E[Y] =?, V[Y] =?

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}, X_i \overset{i.i.d.}{\sim} (\mu, \sigma^2)$$

- $E[\overline{X}] = ?$ ,  $V[\overline{X}] = ?$
- Convolution of 2 Random Variables:  $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_x(a-y) f_y(y) dy$





#### **Central Limit Theorem (CLT)**

If  $X_1, X_2, ..., X_n$  is a random sample of size n taken from a population (either finite or infinite) with mean  $\mu$  and finite variance  $\sigma^2$ . Let  $\overline{X}$  denote the sample mean, the limiting form of the distribution of

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

as  $n \to \infty$ , is the standard normal distribution.





| 1             | 2             | 3             | 4             | 5             | 6             |
|---------------|---------------|---------------|---------------|---------------|---------------|
| $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | <u>1</u><br>6 | $\frac{1}{6}$ | $\frac{1}{6}$ |





|   | 1   | 2   | 3   | 4   | 5   | 6   |
|---|-----|-----|-----|-----|-----|-----|
| 1 | 1   | 1.5 | 2   | 2.5 | 3   | 3.5 |
| 2 | 1.5 | 2   | 2.5 | 3   | 3.5 | 4   |
| 3 | 2   | 2.5 | 3   | 3.5 | 4   | 4.5 |
| 4 | 2.5 | 3   | 3.5 | 4   | 4.5 | 5   |
| 5 | 3   | 3.5 | 4   | 4.5 | 5   | 5.5 |
| 6 | 3.5 | 4   | 4.5 | 5   | 5.5 | 6   |

| 1  | 1.5 | 2  | 2.5 | 3  | 3.5 | 4  | 4.5 | 5  | 5.5 | 6  |
|----|-----|----|-----|----|-----|----|-----|----|-----|----|
| 1  | 2   | 3  | 4   | 5  | 6   | 5  | 4   | 3  | 2   | 1  |
| 36 | 36  | 36 | 36  | 36 | 36  | 36 | 36  | 36 | 36  | 36 |



### The Averages of Rolling n Dices



2017/18

0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.04



6



CLT is also known as de Moivre-Laplace

Theorem







raham de Moivre Pierre-Simon marquis de Laplace (1667-1754) (1749-1827)

- discovered by French.
- regarded as First Principle in Probability (unofficially)
- is the fundamental of mathematical statistics
- key to the parametric estimation, hypothesis testing







#### "Probability" in Summary

- Fundamental Probability Concepts
  - Event Relations: Union; Intersection; Complement
  - Event Types: Mutually Exclusive; Exhaustive; Independent
  - Event Operations: Permutation; Combination
  - Law of Total Probability
- Bayes' Theorem
- Random Variable and Its Distribution
  - Mean (Expected Value) and Variance:  $V[X] = E[X^2] (E[X])^2$
  - Discrete Distribution: Bernoulli; Geometric; Binominal; Poisson
  - Continuous Distribution: Uniform; Normal; Standard Normal; Exponential;  $\chi^2$ ; Gamma;
- Relationships of Multiple R.V.
  - Joint Distribution: p(X = x, Y = y); f(X = x, Y = y)
  - Marginal Distribution:  $p_X(x) = \sum_y p(x,y)$ ;  $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$
  - Dependence of 2 R.V.: covariance  $\sigma_{XY}$ ; correlation  $\rho_{XY}$
  - Convolutional Distribution:  $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$
- Central Limit Theorem









There are three kinds of lies:

LIES, DAMN LIES, STATISTICS

Mark Twain

Benjamin Disraeli

#### DA01: Preview & Review - Jakey BLUE







|    | Made | Attempt | %   |
|----|------|---------|-----|
| 2P | 10.8 | 21.2    | 51% |
| 3P | 0.5  | 1.7     | 29% |
| FG | 11.3 | 22.9    | 49% |

|    | Made | Attempt | %   |
|----|------|---------|-----|
| 2P | 4.1  | 7.9     | 52% |
| 3P | 1.8  | 4.7     | 38% |
| FG | 5.9  | 12.6    | 47% |

### Simpson's Paradox





To describe the data (sample)

# SUMMARIZATION VISUALIZATION





#### Random Sampling and Summarization

- To measure the central tendency: sample mean
  - SAMPLE Mean of a set of numbers  $x_1, x_2, ..., x_n$  is given by

$$\overline{x} = \frac{x_1 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$$

- To measure the dispersion: sample variance
  - SAMPLE Variance of the set  $x_1, x_2, ..., x_n$  of numerical observations, denoted by  $s^2$  is given by

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$





#### Degrees of Freedom (ν, d.f., DoF)

- Why it is n-1 in the denominator of sample variance formula?
  - The number of independent pieces of information.
  - The number of values free to vary in calculation of a statistic.
- $\overline{x} = 10$ ,  $x_1 = 5$ ,  $x_2 = 15$ , can you calculate the sample variance  $s^2$ ?





# Sample Relationship

Sample Covariance

$$cov(x,y) = s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

• Sample Correlation: (Pearson's correlation coefficient)

$$r_{xy} = \frac{s_{xy}}{s_x s_y} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Correlation doesn't imply Causality



and Opinions

#### Per capita consumption

2017/18 2016/17

12lbs

10lbs

9lbs

Graph / Statisty

Mozzarella cheese consumption

cheese correla

Civil engineering









# Grades of Probability

- 72 students are tested.
  - 4 exercises  $\{A, B, C, D\}$
  - Courses are done in 3 groups  $\{X, Y, Z\}$
  - 5 points/question
- Questions to ask?
  - averages of the class, groups?
  - variations of the class, groups?
  - correlations among the exercises?
  - behavior among 3 groups?

| Group | Α   | В   | С   | D   | Total |
|-------|-----|-----|-----|-----|-------|
| Х     | 5   | 2   |     | 5   | 15    |
| Х     | 2   | 3   | 0   | 4.5 | 9.5   |
| Х     |     | 2   | 2   | 5   | 12    |
| Х     | 1   | 3   | 5   | 1   | 10    |
| Х     | 5   | 4   | 5   | 5   | 19    |
| Х     | 5   | 2   | 4   | 5   | 16    |
| Х     | 5   |     | 5   | 5   | 18    |
| Х     | 3   | 3   | 4   | 5   | 15    |
| Х     | 5   | 1.5 | 5   | 5   | 16.5  |
| Υ     | 5   | 2.5 | 4   | 5   | 16.5  |
|       | 2   | 1   | 0   | 4   | 7     |
| Υ     | 5   | 2   | 5   | 5   | 17    |
| Υ     | 1   | 4   | 5   | 5   | 15    |
| Υ     | 5   | 1   | 4   | 5   | 15    |
| Υ     | 4   | 2   | 5   |     | 14    |
| Υ     | 2   | 2   | 2   | 4   | 10    |
| Υ     | 5   | 1.5 | 0   | 5   | 11.5  |
| Y     | 5   | 1.5 | 4   | 3   | 13.5  |
| Υ     | 5   | 4.5 | 1   | 3.5 | 14    |
| Υ     | 4   | 3.5 | 4   | 2   | 13.5  |
| Υ     | 5   | 4   | 0   |     | 12    |
| Υ     | 4   | 3.5 | 3   | 3   | 13.5  |
| Υ     | 5   | 2   | 5   | 5   | 17    |
| Υ     | 5   | 2   | 5   | 5   | 17    |
| Υ     | 5   | 2   | 1   | 4   | 12    |
| Υ     | 4   | 2   | 0   | 5   | 11    |
| Υ     |     | 3.5 | 1   |     | 10.5  |
| Υ     | 2   | 1.5 | 3.5 | 5   | 12    |
| Υ     | 3.5 | 2   | 4.5 | 4   | 14    |
| Υ     | 5   | 2   | 3   | 5   | 15    |
|       |     |     |     |     |       |









| $\overline{x}/_{S}$ | A         | В         | С         | D         | Average /<br>Stdev. |
|---------------------|-----------|-----------|-----------|-----------|---------------------|
| Group X             | 3.5 / 1.8 | 2.5 / 1.1 | 3.5 / 1.4 | 4.1 / 1.3 | 13.6 / 3.3          |
| Group Y             | 4.1 / 1.2 | 2.4 / 1.0 | 3.0 / 1.9 | 4.2 / 0.9 | 13.7 / 2.7          |
| Group Z             | 4.3 / 1.1 | 2.5 / 1.2 | 3.9 / 1.6 | 3.9 / 1.5 | 14.6 / 3.8          |
| Average /<br>Stdev. | 4.0 / 1.4 | 2.5 / 1.1 | 3.4 / 1.7 | 4.1 / 1.3 | 14.0 / 3.3          |





# **Sample Correlation Matrix**

| Correlation Coefficient $(r)$ | A     | В     | С    | D    |
|-------------------------------|-------|-------|------|------|
| A                             | 1     | -0.03 | 0.20 | 0.20 |
| В                             | -0.03 | 1     | 0.14 | 0.01 |
| С                             | 0.20  | 0.14  | 1    | 0.24 |
| D                             | 0.20  | 0.01  | 0.24 | 1    |











# Comparing the Grades among 3 Groups



#### Age distribution of Olympic Athletes by Sport and Gender: All-time Female = Pink, Male = Blue, Both = Green





# Are the grades "Normally" distributed? Q-Q Plot







## **Descriptive Statistics in Summary**

- Sample Summarization
  - Sample Mean (Average); Sample Variance
  - Degrees of Freedom
  - Sample Covariance; Sample Correlation
- Data Visualization
  - Meta Data; Correlation Matrix
  - Histogram
  - BoxPlot
  - Probability Plot (Q-Q Plot)









- A statistic is any function of the random variables constituting one or more samples, provided that the function does not depend on any unknown parameter values
  - for examples: sample mean, sample variance
- Sample data:
  - A **sample** = A set of sample observations  $[x_1, x_2, ..., x_i, ..., x_n]$  and **sample size** = n
  - A sample **observation** = A piece of data vector  $x_i = [x_{i1}, x_{i2}, ..., x_{ij}, ..., x_{im}]$





# What Can We INFER?



#### Point Estimate

- To estimate the parameters of the probability models with sample data.
- To evaluate how good the estimators are.

#### Hypothesis Testing

- To check/test whether the model parameter(s) has changed.
- To evaluate how good the tests are (two types errors?).

#### Modeling of Statistics for Performance Evaluation

- Model sample observations as "random variables".
- Statistic is then a function of random variables and is also a random variable.



It is actually more than one point.

## **POINT ESTIMATE**





### What is a Point Estimate?

- A point estimate of a parameter  $\theta$  is a single number that can be regarded as the most plausible value of  $\theta$ .
- A point estimate is obtained by selecting a suitable statistic and computing its value from the given sample data.
- The selected statistic is called the point estimator of  $\theta \leftarrow \hat{\theta}$ .
- A point estimator is itself a random variable with a distribution.

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$



# Which one is more ACCURATE?











# How can we say if an estimate is good?

- On target? → Unbiased
- Very sure? → Minimum variance
- Minimum Variance Unbiased Estimator (MVUE)
  - Among all the unbiased estimators, the one with the minimum variance.
- Example: sample mean is a MVUE for normally distributed populations.
- However, sometimes a biased estimator is preferable to the MVUE. Why?





## Different Point Estimates of Mean

- Point estimates:  $\bar{X}$ ,  $\tilde{X}$ ,  $\bar{X}_e$ ,  $\bar{X}_{tr(m)}$ 
  - $\bar{X}$  is the arithmetic average called sample mean.
  - $\tilde{X}$  is the median that is the center observation of the entire sample.
  - $\bar{X}_e$  is the extreme mean (an average of two extreme observations).
  - $\bar{X}_{tr(m)}$  is a trimmed mean that trims m% of observations from each end of the sample.



# Is the Arithmetic Average $\overline{X}$ the Best?



- In 1998, the University of North Carolina at Chapel Hill made a statistics census on the income of its graduates.
  - Graduates from the Department of Cultural Geography earns most not only in NCSU but also among whole US.







### **Common Methods of Point Estimate**

#### **Moment Estimator**

- Raw Moments:  $m_k = E[X^k], k = 1, 2, ..., \infty$
- Central Moments:  $E[(X \mu_X)^k]$
- Let  $M_X(t) = E[e^{tX}] = \begin{cases} \sum_x p(x)e^{tx} \\ \int_{-\infty}^{\infty} f(x)e^{tx} dx \end{cases}$  be the Moment Generating Function.
  - $m_k = M_X^{(k)}(0)$ , e.g.,  $m_1 = M_X'(0) = \mu$ ,  $m_2 = M_X''(0) = E[X^2]$



# Maximum Likelihood Estimate (MLE)



- Let  $X_1, X_2, ..., X_n$  are independent random sample observations from a population following an identical probability model with likelihood function P(X) or f(X).
  - The joint likelihood for  $X_1 = x_1, X_2 = x_2, ..., X_n = x_n$  is:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = P(X = x_1)P(X = x_2) \cdots P(X = x_n)$$

$$f(x_1, x_2, ..., x_n) = f(x_1)f(x_2) \cdots f(x_n)$$

• MLE is the estimate of a parameter that maximizes the joint likelihood function is maximized.





## MLE for $\mu$ of Normal Distribution

- Let X follow a  $(\mu, \sigma^2)$  normal distribution and  $\mu$  is unknown.
  - We take a sample of *n* observed values  $x_1, x_2, ..., x_n$ .
  - the joint likelihood function:

$$f(x_1, ..., x_n | \mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)} = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \frac{1}{\sigma^n} e^{\left(-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right)}$$

• Maximizing  $f(x_1, ..., x_n)$  is equivalent to maximizing log  $f(x_1, ..., x_n)$ . Take the derivative of  $\log f(x_1, ..., x_n)$  and set it to zero:

$$\frac{d}{d\mu}\log f(x_1,\dots,x_n|\mu) = \frac{\sum_{i=1}^n (x_i - \hat{\mu})}{\sigma^2} = 0 \Rightarrow \hat{\mu} = \frac{\sum_{i=1}^n x_i}{n}$$





An extension to Unsupervised Learning, explained later.

**MLE** → **EM** (Expectation Maximization)





Confidence Region/Interval

## POINT ESTIMATE HAS A RANGE.



# THE Very Much Useful "Interval"

2017/18







# Student t Distribution



$$f_{v}(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} \frac{1}{\left(\frac{(1+x^{2})}{\nu}\right)^{\frac{\nu+1}{2}}}$$

William Sealy Gosset (1876-1937)

- Bell-shaped and centered at 0 → very similar to Normal.
- $\nu \uparrow$  distribution spread  $\downarrow$
- The distribution spreads wider than the normal distribution (heavier tails).
- $\nu \rightarrow \infty$ ,  $t_{\nu} \rightarrow$  Standard Normal N(0, 1).



Ronald Aylmer Fisher (1890-1962)



## Student t Distribution

2017/18







### t statistics: C.I. for Unknown σ

•  $\bar{X}$  is the average of a random sample of size n from a normal distribution with mean  $\mu$  . Then, the random variable

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

follows a probability distribution called t distribution with n-1 degrees of freedom.



# Confidence Interval Using t Statistic



Then a  $100(1-\alpha)\%$  confidence interval for  $\mu$  is:  $(\bar{x}-t_{1-\frac{\alpha}{2},v}\frac{s}{\sqrt{n}},\bar{x}-t_{\frac{\alpha}{2},v}\frac{s}{\sqrt{n}}).$ 

$$(ar{x}-t_{1-rac{lpha}{2},arphi}rac{s}{\sqrt{n}}$$
 ,  $ar{x}-t_{rac{lpha}{2},arphi}rac{s}{\sqrt{n}})$ 





 $H_0$  vs.  $H_a$ 

# **HYPOTHESIS TESTING**







- Motivation
  - To reject an initial claim and to statistically prove that a scientific effort really makes differences
- Example: medical experiments, pool results, social science experiments
- Initial claim
  - Null hypothesis  $H_0$
- Claim otherwise
  - Alternative hypothesis  $H_1$  or  $H_a$



# The Delates on Hypothesis Testing





Jerzy Neyman (1894-1981)



Egon Pearson (1895-1980)

Neyman-Pearson Lemma

 $H_0 \& H_a$  Critical Regions

Fisher's Test of Significance

 $H_0$  p-values



Ronald Fisher (1890-1962)



# There s a Test, There are Errors!



- Type I error: rejecting the null hypothesis  $H_0$  when it is true
  - Probability of type I error,  $\alpha$ .
- Type II error: not rejecting  $H_0$  when  $H_0$  is false
  - Probability of type II error,  $\beta$ .

|                                     | $H_0$ is TRUE                         | $H_0$ is FALSE                        |  |
|-------------------------------------|---------------------------------------|---------------------------------------|--|
| Reject $H_0$                        | Type I Error, $\alpha$ False Positive | BINGO!<br>True Negative               |  |
| Do Not Reject <i>H</i> <sub>0</sub> | BINGO!<br>True Positive               | Type II Error, $\beta$ False Negative |  |









He is really innocent.

He is guilty.

I think he is guilty.

OK, he is innocent.

| H <sub>0</sub> : The prisoner is innocent! | $H_0$ is TRUE       | H <sub>0</sub> is FALSE |  |
|--------------------------------------------|---------------------|-------------------------|--|
| Reject $H_0$                               | INJUSTICE!!         | Got YOU!                |  |
| Do Not Reject H <sub>0</sub>               | You are free to go. | At large.               |  |













# Common Hypothesis Tests



| Purpose                                                | Sample<br>Statistics              | Critical Region                                                                                                         | Condition                                                                                 |
|--------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| population mean $(\mu)$                                | $\overline{x}$                    | $\pm z_{1-rac{lpha}{2}}rac{\sigma}{\sqrt{n}}$                                                                         | $X$ is normally distributed and $\sigma$ is known; or $n \ge 30$                          |
| population mean $(\mu)$                                | $\overline{x}$                    | $\pm t_{1-\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}}$                                                                      | $n < 30$ ; and/or $\sigma$ unknown                                                        |
| population proportion $(p)$                            | ŷ                                 | $\pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$                                                        | $n\hat{p} \& n(1-\hat{p}) \ge 10$                                                         |
| difference of two population means $(\mu_1 - \mu_2)$   | $\overline{x}_1 - \overline{x}_2$ | $\pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$                         | $X_1, X_2$ are normally distributed or $n_1, n_2 \ge 30$ ; $\sigma_1, \sigma_2$ are known |
| difference of two population means $(\mu_1 - \mu_2)$   | $\overline{x}_1 - \overline{x}_2$ | $\pm t_{1-\frac{\alpha}{2},n_1+n_2-1} \sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}$                               | $n_1, n_2 \le 30$ ; and/or $\sigma_1, \sigma_2$ are unknown                               |
| difference of two population proportions $(p_1 - p_2)$ | $\widehat{p}_1 - \widehat{p}_2$   | $\pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{1}(1-\hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1-\hat{p}_{2})}{n_{2}}}$ | $n\hat{p} \& n(1-\hat{p}) \ge 10$ for the two groups                                      |



# Proceeding a Hypothesis Testing



- 1. Define the Null Hypothesis,  $H_0$
- 2. Find the Test Statistic: a function of the sample data on which the decision (reject  $H_0$  or not) is to be based. Try to think about we actually turn the whole data into a value.
- 3. Set the Critical Value and reject region based on the distribution of the test statistic under  $H_0$  and the Type I error probability  $\alpha$ .
- 4.  $H_0$  will then be rejected if and only if the observed or computed test statistic values falls in the reject region.



# Mean Test while $\sigma$ UNKNOWN $\rightarrow t$ Test



• 
$$H_0$$
:  $\mu = \mu_0$   
 $H_1$ :  $H_0$  is false, or,  $\mu \neq \mu_0$ 

Test statistic: 
$$t$$
-test =  $\frac{\overline{x} - \mu_0}{s/\sqrt{n}}$ 

• Distribution under  $H_0$ : t-Distribution with  $\nu = n - 1$ .





#### Test Criteria to Reject $H_0$ : Reject Region



• 
$$H_0$$
:  $\mu = \mu_0$ , Test statistic:  
 $t$ -test =  $\frac{\overline{x} - \mu_0}{s/\sqrt{n}}$ 

• Reject  $H_0$  when t-test  $\geq t_{1-\alpha,n-1} \Rightarrow H_1: \mu > \mu_0$ 

 $H_0$  Distribution: t distribution with  $\nu = n - 1$ 



0



### t Test Type I Error Probability of Rejecting H<sub>0</sub>



- Reject  $H_0$  when t-test  $\geq$   $t_{1-\alpha,n-1} \Rightarrow H_1: \mu > \mu_0$  holds.
- Probability ( $\mu = \mu_0$  but you reject  $H_0$  and accept  $H_1$ ) =  $\alpha$

 $H_0$  Distribution: t distribution with  $\nu = n - 1$ 





#### Meaning of p-value (R. Fisher's Test of Significance)



- p-value defines the probability of getting an "UNEXPECTED/EXTREME SAMPLE" given that  $H_0$  is assumed to be true. (Fisher's Test of Significance)
- Once the p-value of the sample dataset has been calculated, the testing conclusion at a given significance level  $\alpha$  can be made by comparing the p-value with  $\alpha$ .
  - CAUTION: Fisher's Test of Significance does not define/require any  $\alpha$ , which exists only in the Neyman-Pearson Lemma as the Type I error.





Using another distribution for hypothesis testing

$$\chi^2$$
 TEST



#### $\chi^2$ Test for WHAT?



- Proposed by Karl Pearson (correlation coefficient) in 1900.
- Used to test the population properties other than the parameters.
  - Goodness of Fit (to quantify Q-Q Plot)
    - if the population is following certain distribution
  - Test of Independence
    - if two random variables are independent
  - Test of Homogeneity
    - if two or more than two populations are from the same distribution





#### Goodness of Fit (GoF)

Compare the "observed frequency",  $O_i$ , with "expected frequency",  $E_i$  in a sample data set. The Test Statistics is

$$C = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i} \sim \chi_{n-k-1}^2$$

- where *n* is the number of samples and *k* is the number of unknown parameters in the population distribution.
- Hypothesis Testing

 $H_0$ : The sampling data set is following the distribution  $H_1$ :  $H_0$  is not true



## [Example] Are the tastes of customers the same?



• A company wants to know if its 3 products with different flavors create different preferences. 120 customers are interviewed.

| Product     | A  | В  | С  |
|-------------|----|----|----|
| Preferred # | 35 | 42 | 43 |

- What does it mean that the 3 products make no preference?
- What are the expected frequencies?



## [Example] Are the tastes of customers the same?



• Let  $p_i$  denote the preference rate of product i.

$$H_0: p_A = p_B = p_C = \frac{1}{3}$$
  
 $H_1: p_A \neq p_B \neq p_C$ 

| Product | A  | В  | С  |
|---------|----|----|----|
| $O_i$   | 35 | 42 | 43 |
| $E_i$   | 40 | 40 | 40 |

$$C = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i} = \frac{(35 - 40)^2 + (42 - 40)^2 + (43 - 40)^2}{40} = 0.95$$
$$\chi^2_{\nu=3-1,\alpha=0.05} = 5.99$$



## [Example Is it a POISSON distribution?



• The times of French people who ever visited Asia is said to follow a Poisson Distribution, is it true?

| times been to Asia | 0  | 1  | 2 | ≥3 |
|--------------------|----|----|---|----|
| $O_i$              | 32 | 12 | 6 | 0  |
| $E_i$              | ?  | ?  | ? | ?  |

– How do we calculate the "expected frequency"?

- Remember 
$$P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$$
?



# [Example Is it a POISSON distribution?



 $H_0$ : It is following Poisson distribution

 $H_1$ :  $H_0$  is not true

• Firstly we need to estimate  $\hat{\lambda} = \frac{1 \times 12 + 2 \times 6}{50} = 0.48$ 

- 
$$P_i = P(X = i) = \frac{e^{-\hat{\lambda}}\hat{\lambda}^i}{i!}, i = 0, 1, 2$$

| times been to Asia | 0     | 1     | 2    | ≥3   |
|--------------------|-------|-------|------|------|
| $O_i$              | 32    | 12    | 6    | 0    |
| $P_i$              | 0.62  | 0.30  | 0.07 | 0.01 |
| $E_i$              | 30.94 | 14.85 | 3.56 | 0.65 |

$$C = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i} = 2.89 < \chi^2_{\nu = 4 - 1 - 1, \alpha = 0.05} = 5.99$$





#### **Test of Independence**

The paired random variables can be arranged in a  $r \times c$  Contingency Table.

| $X \setminus Y$ | 1               | 2               |     | С        | row total |
|-----------------|-----------------|-----------------|-----|----------|-----------|
| 1               | 0 <sub>11</sub> | 0 <sub>12</sub> |     | $O_{1c}$ | $R_1$     |
| 2               | 0 <sub>21</sub> | 022             | *** | $O_{2c}$ | $R_2$     |
| :               | :               | ÷               | `,  | ÷        | :         |
| r               | $O_{r1}$        | $O_{r2}$        | ••• | $O_{rc}$ | $R_r$     |
| column total    | $C_1$           | $C_2$           |     | $C_c$    | n         |

Hypothesis Testing

 $H_0$ : X, Y are independent;

 $H_1: X, Y$  are dependent





#### Where to find $E_{ij}$ 's? Find $p_{ij}$ first!

- According to  $H_0$ , if X and Y are independent  $p_{ij} = p_i \times p_j$  where i = 1, ..., r and j = 1, ..., c.
- What are  $p_i$  and  $p_j$ ?  $p_i$  are the ratios of row total to n  $p_j$  are the ratios of column total to n

| $X \setminus Y$                            | 1             | 2             |     | С             | $\operatorname{row} p_i$ |
|--------------------------------------------|---------------|---------------|-----|---------------|--------------------------|
| 1                                          | $p_{11}$      | $p_{12}$      |     | $p_{1c}$      | $p_1 = R_1/n$            |
| 2                                          | $p_{21}$      | $p_{22}$      |     | $p_{2c}$      | $p_2 = R_2/n$            |
| :                                          | :             | ÷             | ٠,  | :             | :                        |
| r                                          | $p_{r1}$      | $p_{r2}$      | *** | $p_{rc}$      | $p_r = R_r/n$            |
| $\operatorname{column} p_{\boldsymbol{j}}$ | $p_1 = C_1/n$ | $p_2 = C_2/n$ |     | $p_c = C_c/n$ | 1                        |





#### Therefore, $E_{ij} = p_{ij} \times n$

With  $O_{ij}$  and  $E_{ij}$ , we can again use  $\chi^2$  test.

Test Statistics: 
$$C = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \sim \chi^2_{(r-1)(c-1)}$$



#### [Example] Does the ducation level impact the supporting rate?

| $\boldsymbol{o}_{ij}$ vs. $\boldsymbol{E}_{ij}$ | high school | bachelor degree | master or higher | total |
|-------------------------------------------------|-------------|-----------------|------------------|-------|
| support                                         | 25 vs. 32   | 30 vs. 24       | 25 vs. 24        | 80    |
| not support                                     | 35 vs. 28   | 15 vs. 21       | 20 vs. 21        | 70    |
| total                                           | 60          | 45              | 45               | 150   |

$$E_{11} = p_{ij} \times n = p_i \times p_j \times 150 = \frac{60}{150} \frac{80}{150} \times 150 = 32$$

$$C = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} \left(\sim \chi_{(r-1)(c-1)}^{2}\right)$$

$$= \frac{(25 - 32)^{2}}{32} + \frac{(30 - 24)^{2}}{24} + \frac{(25 - 24)^{2}}{24} + \frac{(35 - 28)^{2}}{28} + \frac{(15 - 21)^{2}}{21} + \frac{(20 - 21)^{2}}{21} = 6.58$$

$$\chi^2_{\nu=(2-1)(3-1), \alpha=0.05} = \chi^2_{\nu=2,\alpha=0.05} = 5.99$$





#### "Statistics" in Summary

- Point Estimate
  - Accuracy vs. Precision
  - Unbiased Estimate
  - Maximum Likelihood Estimate (MLE)
  - $(1 \alpha)$  Confidence Interval
  - Student *t*-Distribution
- Hypothesis Testing
  - $H_0$  vs.  $H_1$
  - t-Test on the mean level
- $\chi^2$  Test
  - Goodness of Fit
  - Test of Independence
  - Test of Homogeneity