

MĚŘENÍ RCD CITIGOE

Jan Ezr, Robin Chocholoušek

Revize 1

LABORATOŘ BATERIOVÝCH SYSTÉMŮ A EMOBILITY FM <u>TUL</u>

Obsah

1 Zadání	3
1.1 Seznam použitých přístrojů a zařízení	
2 Měření a zpracování dat	
2.1 Průběh měření	5
2.2 Zpracování dat	5
2.2.1 Rychlost	6
2.2.2 Proud Baterie	
2.2.3 Napětí baterie	8
2.2.4 Otáčky motoru	
2.2.5 Kroutící moment elektrického pohonu	
2.2.6 Příkon/Výkon elektrického pohonu	
3 Závěr	
Seznam literatury	12
Seznam obrázků	
Historie revizí	-

LABORATOŘ BATERIOVÝCH SYSTÉMŮ A EMOBILITY FM TUL

1 Zadání

Použité rekvizity

vozidlo: Škoda Citigoe iV

OBD adaptér: OBDlink LX

- doporučený Bluetooth adaptér s velmi širokou podporou a rozumnou cenou,
- podpora v aplikaci RaceChrono
- https://www.obdlink.com/products/obdlink-lx/

GPS s Bluetooth: Qstarz BL-1000GT

- použitá 10Hz Bluetooth GPS s podporou RaceChrono, docela drahá záležitost
- podpora GNSS, log na SDkartu, integrovaná IMU (akcelerometr), baterie na 12h provozu, USBmikro
- pořízená kvůli nedostupnosti Garmin GLO2, slušná přesnost GPS
- http://racing.gstarz.com/Products/BL-1000GT.html

Aplikace pro sběr dat: RaceChrono

- doporučená mobilní aplikace pro sběr RDC dat za rozumnou cenu, Android i Apple
- zdarma, ale pro možnost delšího záznamu než 5 min je třeba dokoupit licenci cca 200 Kč
- pro záznam dat do logu vyžaduje externí BLE GPS (pozor na kompatibilní modely GPS)
- podporuje jak ISO-TP (OBDII) tak i odposlech dat z CAN sběrnice vozu s možností automatického rozklíčování při znalosti rovnic/kódování
- výstup dat je možné generovat v mnoha formátech. Pro spolupráci s aplikací VBOX je vhodné nastavit formát .vbo
- https://racechrono.com/

Aplikace pro práci s daty: VBOX Test Suite

- doporučená aplikace pro rychlé vyhodnocení RDC dat
- zdarma, vyžaduje bezplatnou registraci k odstranění otravné hlášky
- podpora dat ve formátu .vbox
- https://www.vboxautomotive.co.uk/index.php/en/software-overview

Vysvětlivky:

RDC - Real Driving Cycle

LABORATOŘ BATERIOVÝCH SYSTÉMŮ A EMOBILITY FM TUL

Pro základní zobrazení průběhů naměřených dat slouží jednoduchý program VBOX, stahujte z odkazu uvedeného výše.

Lze si přidávat grafy pro zobrazení všech měřených hodnot, data lze exportovat do CSV souboru pro následné zpracování například v matlabu, stačí dát Save AS a zde zakliknout all.

Z naměřených dat z jízdy vložte do protokolu průběhy těch veličin, které jsou (pro Vás) nejzajímavější a zdůvodněte to.

Najděte data, jako je maximální proud z baterie do měniče motoru, maximální proud rekuperace zpět do baterie, maximální moment motoru, maximální výkon motoru a další, které jsou z dat jasně viditelná. Pokud tyto data nenajde v datech z vlastní jízdy, podívejte se na jízdy ostatních.

Zpracujte krátký protokol z jízd vozidlem Citigoe iV, žádné dlouhé slohové úlohy, jde hlavně o to, abyste si uvědomili, co se v autě během jízdy děje.

Soubory logu .vbo jsou číslovány postupně, jak jezdily skupiny na cvičení.

V protokolu uvádějte název (číslo) souboru měření jízdy!

1.1 Seznam použitých přístrojů a zařízení

Tabulka 1: Seznam použitých přístrojů

Přístroj	Model
Vozidlo	Škoda Citigo ^e iV
OBD adaptér	OBDlink LX
GPS s Bluetooth	Qstarz BL-1000GT

2 Měření a zpracování dat

2.1 Průběh měření

Měření bylo prováděno na vozidle Škoda Citigo^e během jízdy po předem zvoleném okruhu v délce přibližně 30 km v okolí Liberce. Trasa zahrnovala různé typy komunikací – městské ulice, mimoměstské úseky i silnici pro motorová vozidla, aby bylo možné zachytit chování vozu v různých jízdních režimech.

Pro sběr dat byl použit OBD adaptér, který byl propojen s mobilním telefonem. Adaptér umožnil získávat údaje přímo z palubní jednotky vozidla. Během jízdy tak byla zaznamenávána data týkající se například rychlosti vozidla, zrychlení, napětí baterie a dalších parametrů.

2.2 Zpracování dat

Získaná data byla uložena ve formátu .vbox. Tento soubor byl následně otevřen v softwaru VBOX Test Suite, kde byl proveden export do formátu .csv, jenž je vhodnější pro následné zpracování.

Veškerá analýza probíhala v prostředí Matlab, kde byl vytvořen skript pro načtení a vizualizaci dat. Pomocí tohoto skriptu byly generovány různé grafy (např. rychlost v čase, změny napětí baterie, Otáčky motoru apod.).

2.2.1 Rychlost

Graf 1: Rychlost

2.2.2 Proud Baterie

Graf 2: Proud baterie

Maximální dosažený proud baterie: 213.98 A

Maximální dosažená rekuperace baterie: 133.46 A

2.2.3 Napětí baterie

Graf 3: Napětí baterie

Maximální napětí baterie: 331.97 V

Minimální napětí baterie: 301.05 V

Napětí baterie na konci měření: 313.8 V

2.2.4 Otáčky motoru

Graf 4: Otáčky motoru

Maximální dosažené otáčky motoru: 8137 RPM

2.2.5 Kroutící moment elektrického pohonu

Graf 5: Kroutící moment elektrického pohonu

Maximální dosažený kroutící moment motoru: 143.37 N/m

Maximální dosažený kroutící moment motoru při rekuperaci: 125.24 N/m

2.2.6 Příkon/Výkon elektrického pohonu

Graf 6: Příkon/Výkon elektrického pohonu

Nejvyšší dosažený příkon motoru: 64.60 kW

Nejvyšší dosažený výkon motoru: 63.56 kW

Účinnost elektrického pohonu byla vypočítána na 96.19 %

3 Závěr

Měřením jsme získali ucelený přehled o chování vozu Škoda Citigo^e v reálném provozu při jízdě po různých typech komunikací. Díky propojení OBD adaptéru s mobilním telefonem bylo možné přesně sledovat vybrané parametry vozidla. Následným zpracováním dat v programu Matlab jsme vytvořili přehledné grafy a identifikovali klíčové hodnoty.

Seznam literatury

- [1] **ŠKODA AUTO a.s.** Škoda Citigoe iV Technické parametry. Mladá Boleslav: ŠKODA AUTO a.s., vydání: 22. 10. 2020 Dostupné z: https://cdn.skoda-storyboard.com/2019/09/TD-CITIGOe-iV-cz.pdf
- [2] **ScanTool.net LLC.** OBDLink LX OBD-II Adaptér s Bluetooth. Texas: ScanTool.net LLC, Dostupné z: https://www.obdsol.com/wp-content/uploads/LX_spec_sheet_20160809.pdf
- [3] **Qstarz International Co., Ltd.** Qstarz BL-1000GT High Performance Bluetooth GPS Receiver. Taipei: Qstarz, Dostupné z: http://racing.qstarz.com/Products/BL-1000GT.html

LABORATOŘ BATERIOVÝCH SYSTÉMŮ A EMOBILITY FM <u>TUL</u>

Seznam obrázků

Graf 1: Rychlost	6
Graf 2: Proud baterie	7
Graf 3: Napětí baterie	8
Graf 4: Otáčky motoru	9
Graf 5: Kroutící moment elektrického pohonu	10
Graf 6: Příkon/Výkon elektrického pohonu	11
Tabulka 7: Historie revizí dokumentu	14

Historie revizí

Tabulka 7: Historie revizí dokumentu

Revize	Datum	Popis změn	Autor
1	8.4.2025	Úvodní vydání	Jan Ezr, Robin Chocholoušek