Esame di Ingegneria del software Appello del 10 gennaio 2018

soluzioni

Il punteggio relativo a ciascuna domanda, indicato fra parentesi, è in trentesimi. I candidati devono consegnare entro un'ora dall'inizio della prova.

1	Disegnare un diagramma di classi che specifichi quanto segue: un ascensore	(5)
	serve uno stabile di N piani, incluso il piano terra; la cabina è mossa da un	
	motore elettrico; la cabina ha una porta scorrevole azionata da un motore;	
	la porta ha un sensore antischiacciamento e due sensori di fine corsa; nella	
	cabina si trovano una pulsantiera per scegliere il piano di destinazione, ed un	
	indicatore di piano (display); ogni piano ha un pulsante di chiamata. Indicare	
	le molteplicità. Non sono richiesti attributi ed operazioni.	
2	Disegnare uno statechart UML che specifichi quanto segue: la porta di un	(5)
	ascensore in attesa a un piano è aperta; quando un utente attraversa la porta, il	
	sensore antischiacciamento manda un segnale di porta occupata; quando la porta	
	torna libera, il sensore manda un segnale di porta libera; dopo che un utente	
	ha scelto un piano, la porta inizia a chiudersi; se la porta diviene occupata,	
	la porta si blocca; quando la porta si e' chiusa completamente, la cabina si	
	mette in moto; quando la cabina raggiunge il piano richiesto, si ferma; quando	
	la cabina si e' fermata, la porta si apre e l'ascensore resta in attesa.	
3	Con riferimento alla Fig. 1, rispondere alle domande.	(5)
	get_temp viene eseguita infinite volte.	$V \square F \boxtimes$
	fire_emergency e power_emergency vengono eseguite lo stesso numero di volte.	$V \square F \boxtimes$
	Quando p diviene falso, il ciclo contenente pwr_up termina.	$V \boxtimes F \square$
	La sequenza {fire_alert, fire_emergency} può essere interrotta.	$V \square F \boxtimes$
	La sequenza {power_alert, power_emergency} può essere interrotta.	$V \boxtimes F \square$
4	Con riferimento alla Fig. 2, rispondere alle domande.	(5)
	Client usa l'interfaccia di Robot.	$V \square F \boxtimes$
	RobotAdapter usa l'interfaccia di Robot.	$V \boxtimes F \square$
	Robot realizza Actuator.	$V \square F \boxtimes$
	Actuator implementa Client.	$V \square F \boxtimes$
	Client dipende da Actuator.	$V \boxtimes F \square$
5	Completare la seguente tabella di verità dell'operatore booleano ternario	(5)
	if-then-else	

\boldsymbol{x}	y	z	if x then y else z
F	F	F	F
F	\mathbf{F}	T	T
F	${\rm T}$	F	F
F	${\rm T}$	Τ	T
Τ	\mathbf{F}	F	F
Τ	\mathbf{F}	Τ	${ m F}$
Τ	Τ	F	${ m T}$
Τ	Τ	Τ	T

Tutte le formule ben formate sono valide.

 $V \square F \boxtimes$

Figura 1: Domanda 3.

Figura 2: Domanda 4.

Figura 3: Domanda 1, soluzione.

Figura 4: Domanda 2, soluzione.