INTEGRATING VISIBLE LIGHT FOR ENHANCED THERMAL IMAGING: PARAMETERIZED SCENE-BASED NON-UNIFORMITY CORRECTION SUPPLEMENTARY MATERIAL

Anonymous

Anonymous

1. SOLVABILITY OF LINEAR NON-UNIFORMITY MODEL WITH MULTIPLE IMAGES

Consider the vectors $\mathbf{x}^{(k)}, \mathbf{z}^{(k)} \in \mathbb{R}^{D \times 1}$, which denote the kth clean and noisy infrared images, respectively, with x_i, z_i representing the pixel values at the ith index. We form arrays of pixel values $\mathbf{x}_i = \left[x_i^0, x_i^1, \dots, x_i^{k-1}\right]$ and $\mathbf{z}_i = \left[z_i^0, z_i^1, \dots, z_i^{k-1}\right]$, capturing various scene pixel values from both clean and noisy datasets. By applying the linear noise model parameters (α_i, β_i) , the relationship between these two pixel stacks can be expressed as detailed in Eq. 1.

$$\mathbf{x}_i = \alpha_i \mathbf{z}_i + \beta_i + \eta \tag{1}$$

Here the η denotes the zero mean un-modeled noise component which is not captured by our linear non uniformity model. Given that the $\mathbf{x}^{(k)}$ is known, the Eq. 1 is a basic form of the linear regression problem and by defining the augmented vector $\mathbf{\bar{z}}_i = [\mathbf{z}_i | \mathbf{1}]$ the solution can be determined using the ordinary least squares solution as given in the Eq 2.

$$\begin{bmatrix} \alpha_i \\ \beta_i \end{bmatrix} = (\bar{\mathbf{z}}_i^\mathsf{T} \bar{\mathbf{z}}_i)^{-1} \bar{\mathbf{z}}_i^\mathsf{T} \mathbf{x}_i \tag{2}$$

For this naive approach to work, $\overline{\mathbf{z}}_i^{\mathsf{T}}\overline{\mathbf{z}}_i$ have to be full-rank, meaning that the \mathbf{z}_i must not be a constant vector. Considering the quantization level (ϵ) of the image, the vector is deemed constant if $|z_i^j-z_i^0| \leq \epsilon/2$ for all $j \in \{1,\dots,k-1\}$. Assuming that the pixel values of the noisy image are independent normally distributed random variables with a distribution of $z_i^j \sim \mathbb{N}(\mu,\sigma)$, the difference between two such variables, defined as $z_i^{j,0} \coloneqq z_i^j - z_i^0$, also follows a normal distribution with parameters $z_i^{j,0} \sim \mathbb{N}(0,\sqrt{2}\sigma)$. Leveraging the independence of pixel distributions, we can compute the probability that \mathbf{z}_i is constant as described in Eq. 3.

Note that, $z_i^{1,0}$ is a normally distributed random variable and the $\mathbf{P}(-\epsilon/2 \le z_i^{1,0} \le \epsilon/2)$ can be computed using the standard normal distribution function Φ as follows.

$$P_k = \left(\Phi(\frac{\epsilon}{2\sqrt{2}\sigma}) - \Phi(-\frac{\epsilon}{2\sqrt{2}\sigma})\right)^{k-1} \tag{4}$$

2. ANALYSIS ON CATS DATASET

Since we are using **8-bit infrared** data, the pixel level difference is denoted by $\epsilon=1/255$, and based on the analysis on the **CATS** dataset we model the distribution of the normalized image data as $z_i^j \sim \mathbb{N}(\mu=0.3706,\sigma=0.1858)$. Substituting these parameters into Eq. 4, it is determined that the probability P_k follows a geometric decay with a factor of $P_k=(0.0168)^{k-1}$, indicating that $\overline{\mathbf{z}}_i^{\mathsf{T}}\overline{\mathbf{z}}_i$ is invertible with a $1-P_k$ probability. Since each image used in this study has $D=288\times288$ pixels in total, the total probability that the all pixels are invertible will be $Q(k)=(1-P_k)^D$. Using the Taylor series approximation for $e^x\approx1+x$ for $x\ll1$, we can compute the invertibility of all image pixels as $Q(k)\approx e^{-P_kD}$ and for some values of k, the probabilites are given in Table 1.

Table 1. Probability that all of the linear equations are solvable for a 288×288 image where each pixel is independently normally distributed according to the $z_i^j \sim \mathbb{N}(\mu = 0.3706, \sigma = 0.1858)$ distribution.

$$P_{k} = \mathbf{P}(|z_{i}^{1} - z_{i}^{0}| \leq \frac{\epsilon}{2})\mathbf{P}(|z_{i}^{2} - z_{i}^{0}| \leq \frac{\epsilon}{2}) \dots \mathbf{P}(|z_{i}^{k-1} - z_{i}^{0}| \leq \frac{\epsilon}{2})$$

$$= \mathbf{P}(|z_{i}^{1} - z_{i}^{0}| \leq \frac{\epsilon}{2})^{k-1}$$

$$= \mathbf{P}(-\frac{\epsilon}{2} \leq z_{i}^{1,0} \leq \frac{\epsilon}{2})^{k-1}$$
(3)