PEU 438 Assignment 3

Mohamed Hussien El-Deeb (201900052)

Contents

8.21	3
8.23	4
8.31	5
8.32	6
8.33	7
8.41	8
8.42	9
8.43	10
8.44	11
8.45	12
8.46	13
8.51	14
8.52	15
8.53	16
8.54	17
References	
	18

- (a) The radiation is mostly directed in the direction of the electron's motion (beaming). Hence the radiation, polarized and unpolarized, is mostly from electrons heading in the direction of the observer.
 - Acceleration is parallel to the emitted electric vector E.
- (b) The acceleration an is normal to the magnetic field from $\mathbf{F} = q(v \times \mathbf{B})$. Hence the bright regions indicate static B fields that are directed normal to the polarizer direction and are coherent over large distances.
- (c) Polarizing filters do not distinguish between \boldsymbol{E} vectors in opposing directions. Hence, with optical polarizing filters, one can not distinguish regions with opposing static \boldsymbol{B} fields.
- (d) The extent of the bright regions is of order $1' = 2.91 \times 10^{-4}$ rad.

At a distance of 6000 LY, this corresponds to

$$\begin{split} dd &= 2.91 \times 10^{-4} \times 6000 \text{ LY} = 1.75 \text{ LY} \\ d_x &= x \times dd = 4 \times 1.75 \text{ LY} = 7 \text{ LY} \\ d_y &= y \times dd = 6 \times 1.75 \text{ LY} = 10.5 \text{ LY} \\ \text{GeoAvg}(d) &= \sqrt{d_x d_y} = \sqrt{7 \times 10.5} \text{ LY} = 8.23 \text{ LY} \\ \text{ArithAvg}(d) &= \frac{d_x + d_y}{2} = \frac{7 + 10.5}{2} \text{ LY} = 8.75 \text{ LY} \end{split}$$

The diameter of the bright regions is of order 8.5 LY.

- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)

References

[1] M. El-Deeb, "PEU-438 Assignments." [Online]. Available: https://github.com/mhdeeb/peu/tree/main/peu-438