COMP251: DATA STRUCTURES & ALGORITHMS

Instructor: Maryam Siahbani

Computer Information System University of Fraser Valley

^{*} Some slides by Henry Kautz

Hashing

Data Structures so far

	unsorted list	sorted array	Trees BST – average AVL – worst case
insert	$\theta(n)$	$\theta(n)$	$\theta(\log n)$
find	$\theta(n)$	θ(log n)	θ(log n)
remove	$\theta(n)$	$\theta(n)$	θ(log n)

Faster ADT

What if $\theta(\log n)$ is still to big?

Internet has grown to millions of users generating terabytes of content every day

With such large data sets, how do we find anything?

Hash-Tables

- Suppose our intent is to find an item in O(1)
 - That is, constant time or time does not depend on data size n
- In most cases, we only care about
 - Finding and retrieving things quickly
 - Updating and inserting things quickly
- We do not care about
 - Order statistics of the data

Hash-Tables

- Strategy: Hashing
- Data structure: Hash-Tables

Hash-Tables: Basic Idea

- Use a key (arbitrary string or number) to index directly into an array – O(1) time to access records
 - A["kreplach"] = "tasty stuffed dough"
 - Need a hash function to convert the key to an integer: h("kiwi") = 2

	Key	Data
0	kim chi	spicy cabbage
1	kreplach	tasty stuffed dough
2	kiwi	Australian fruit

Hash Functions

- A hash function maps a key to a value
- Simplest form:
 - A[i] key is an integer
- Keys can be anything
 - strings, objects, ...

Properties of Good Hash Functions

- Must return number 0, ..., tablesize
- Equal keys should be mapped to the same index:

•
$$x = y \implies h(x) = h(y)$$

- Should be efficiently computable O(1) time
- Should not waste space unnecessarily
 - For every index, there is at least one key that hashes to it
 - Load factor lambda λ = (number of keys / TableSize)
- Should minimize collisions
 - = different keys hashing to same index in the hash-table

Examples

- Idealistic goal: distribute the keys uniformly.
 - Efficiently computable.
 - Each table position equally likely for each key.
- Practical challenge: need different approach for each type of key
 - Ex: Social Security numbers.
 - Ex: Phone numbers
 - Ex: date of birth

Integer Keys

- Hash(x) = x % TableSize
 - Too many collisions
 - Not applicable to many types

Strings as Keys

- If keys are strings, can get an integer by adding up ASCII values of characters in key
 - A string is simply an array of bytes:
 - Each byte stores a value from 0 to 255

```
for (i=0;i<key.length();i++)
  hashVal += key.charAt(i);</pre>
```

Strings as Keys

- Problem1: What if TableSize is 10,000 and all keys are 8 or less characters long?
- Problem2: What if keys often contain the same characters ("abc", "bca", etc.)?

Strings as Keys

Not very good:

- A poor distribution
- Words with the same characters hash to the same code:
 - "form" and "from"
- -Slow run time: $\Theta(n)$

Hashing Strings

Let the individual characters represent the coefficients of a polynomial in x:

$$c_0 x^{n-1} + c_1 x^{n-2} + \dots + c_{n-3} x^2 + c_{n-2} x + c_{n-1}$$

Then apply integer keys:

$$(c_0 x^{n-1} + c_1 x^{n-2} + \dots + c_{n-3} x^2 + c_{n-2} x + c_{n-1})$$
% Table Size

E.g.,
$$x = 128$$
,
 $h(\text{"abc"}) = (\text{"a" } 128^2 + \text{"b" } 128^1 + \text{"c"})\%\text{TableSize}$

Hashing Strings

Problem: although a char can hold 128 values (8 bits), only a subset of these values are commonly used (26 letters plus some special characters)

So just use a smaller "base"

$$h(\text{``abc''}) = (\text{`a'} 32^2 + \text{`b'} 32^1 + \text{`c'})\%\text{TableSize}$$

Making the String Hash Easy to Compute

```
int hash(String s) {
  h = 0;
  for (i = s.length() - 1; i >= 0; i--) {
    h = (s.keyAt(i) + h<<5) % tableSize;
  }
  return h;
}

What is
  happening
  here???</pre>
```

Advantages:

How Can You Hash...

• A set of values – (name, birthdate)?

An arbitrary pointer in C?

An arbitrary reference to an object in Java?

How Can You Hash...

A set of values – (name, birthdate)?
 (Hash(name) ^ Hash(birthdate))% tablesize

An arbitrary pointer in C?

What's this?

((int)p) % tablesize

An arbitrary reference to an object in Java?

Hash(obj.toString())

or just obj.hashCode() % tablesize

Collisions and their Resolution

- A collision occurs when two different keys hash to the same value
 - E.g. For TableSize = 17, the keys 18 and 35 hash to the same value
 - 18 mod 17 = 1 and 35 mod 17 = 1
- Cannot store both data records in the same slot in array!
- Two different methods for collision resolution:
 - Separate Chaining: Use a dictionary data structure (such as a linked list) to store multiple items that hash to the same slot
 - Closed Hashing (or *probing*): search for empty slots using a second function and store item in first empty slot that is found

A Rose by Any Other Name...

Separate chaining = Open hashing

Closed hashing = Open addressing

Hashing with Separate Chaining

- Put a little container at each entry
 - choose type as appropriate
 - common case is unordered linked list (*chain*)
- Properties
 - performance degrades with length of chains
 - $-\lambda$ can be greater than 1

Load Factor with Separate Chaining

• Search cost (assuming simple uniform hashing)

• Load factor:

Load Factor with Separate Chaining

• Search cost (assuming simple uniform hashing) linear in terms of λ , $O(\lambda)$

• Load factor:

- $-\lambda$ is not bound by 1; it can be >1.
- But if λ is between ½ and 1 is fast and makes good use of memory.

Problem with separate chaining:

Memory consumed by pointers – 32 (or 64) bits per key!

- two objects that hash to the same spot can't both go there
- first one there gets the spot
- next one must go in another spot

Problem with separate chaining:

Memory consumed by pointers – 32 (or 64) bits per key!

- two objects that hash to the same spot can't both go there
- first one there gets the spot
- next one must go in another spot

Problem with separate chaining:

Memory consumed by pointers – 32 (or 64) bits per key!

- two objects that hash to the same spot can't both go there
- first one there gets the spot
- next one must go in another spot

Problem with separate chaining:

Memory consumed by pointers – 32 (or 64) bits per key!

- two objects that hash to the same spot can't both go there
- first one there gets the spot
- next one must go in another spot

Problem with separate chaining:

Memory consumed by pointers – 32 (or 64) bits per key!

- two objects that hash to the same spot can't both go there
- first one there gets the spot
- next one must go in another spot
- Properties
 - $-\dot{\lambda} \leq 1$
 - performance degrades with difficulty of finding right spot

Collision Resolution by Closed Hashing

- Given an item X, try cells
 h₀(X), h₁(X), h₂(X), ..., h_i(X)
- h_i(X) = (Hash(X) + F(i)) mod *TableSize* Define F(0) = 0
- F is the *collision resolution* function. Some possibilities:
 - Linear: F(i) = i
 - Quadratic: $F(i) = i^2$
 - Double Hashing: F(i) = iHash₂(X)

Closed Hashing I: Linear Probing

- Main Idea: When collision occurs, scan down the array one cell at a time looking for an empty cell
 - $h_i(X) = (Hash(X) + i) \mod TableSize (i = 0, 1, 2, ...)$
 - Compute hash value and increment it until a free cell is found

```
insert(14)
                 14\%7 = 0
TableSize = 7
                 3
                 4
                 5
                 6
```

probes:

1

```
insert(14)
              insert(8)
 14\%7 = 0
               8\%7 = 1
     14
                   14
 3
               3
 4
               4
 5
               5
 6
               6
```

probes:

TableSize = 7

$$(21+1)\%7 = 1$$

$$(21+2)\%7 = 2$$

probes:

TableSize = 7

probes:

TableSize = 7

1

1

3

2

Drawbacks of Linear Probing

- Works until array is full, but as number of items N
 approaches TableSize (λ ≈ 1), access time approaches
 O(N)
- Very prone to clustering problem (as in our example)
 - As long as table is big enough, a free cell can always be found, but the time to do so can get quite large.
 - Worse: even if the cluster is relatively empty, blocks of occupied cells start forming. This effect is know as:
 - Primary clustering clusters grow when keys hash to values close to each other
 - Does not satisfy good hash function criterion of distributing keys uniformly

Closed Hashing II: Quadratic Probing

 Main Idea: Spread out the search for an empty slot – Increment by i² instead of i

```
    h<sub>i</sub>(X) = (Hash(X) + i<sup>2</sup>) % TableSize
    h0(X) = Hash(X) % TableSize
    h1(X) = Hash(X) + 1 % TableSize
```

- h2(X) = Hash(X) + 4 % TableSize
- h3(X) = Hash(X) + 9 % TableSize

```
insert(\frac{14}{4})
14\%7 = 0
0 \boxed{14}
```


(21+1)%7 = 1

 $(21+2^2)\%7 = 4$

Problem With Quadratic Probing

probes:

1

3

1

??

Closed Hashing II: Quadratic Probing

- Although quadratic probing works better than linear probing regarding to clustering problem, it is still prone to clustering problem which in this case is called secondary clustering
- Quadratic probing needs very large TableSize and cannot use the whole space of hash-table (just like the last example)
 - Usually (λ ≈ 0.5) (means we just use half of the hasttable)

Closed Hashing III: Double Hashing

- Idea: Spread out the search for an empty slot by using a second hash function
 - No primary or secondary clustering
- h_i(X) = (Hash₁(X) + i*Hash₂(X)) mod *TableSize* for i = 0, 1, 2, ...
- Good choice of Hash₂(X) can guarantee does not get "stuck" as long as λ < 1
 - Integer keys:

```
Hash_2(X) = R - (X \mod R)
```

where R is a prime smaller than TableSize

```
insert(\frac{14}{4}) 14\%7 = 0
```



```
insert(\frac{14}{9}) insert(\frac{8}{9}) \frac{14\%7 = 0}{8\%7 = 1}
```


insert(14) insert(8) insert(21)
$$14\%7 = 0$$
 $8\%7 = 1$ $21\%7 = 0$ $5-(21\%5)=4$ tableSize:7 0 14 1 8 2 2 2 3 3 3 4 4 4 4 4 5 5 6 6 6 6

probes:

tableSize:7

R:5

probes:

compare it to quadratic probing