- Heuristisches Verfahren
- **Greedy-Algorithmus**
- Versucht eine Lösung für das Problem des Handlungsreisenden zu finden

	Beschreibung
Eingabe:	Ein vollständiger Graph T mit Kantengewichten $c(e)$
Ausgabe:	Ein Hamilton-Kreis
Schritt 1:	Wähle einen beliebigen Knoten als Startknoten \boldsymbol{v}
Schritt 2:	Ermittle die niedrigste Kante welche den aktuellen Knoten \boldsymbol{v} mit einem unbesuchten Knoten \boldsymbol{v}_u verbindet.
Schritt 3:	Setze $v = v_u$
Schritt 4:	Wenn noch nicht alle Knoten besucht wurden gehe wieder zu Schritt 2
Schritt 5:	Füge die Kante vom letzten besuchten Knoten zum Startknoten hinzu um den Kreis zu schließen.

	AC	BN	D	F	K	W
AC		91	80	259	70	121
BN	91		77	175	27	84
D	80	77		232	47	29
F	259	175	232		189	236
K	70	27	47	189		55
W	121	84	29	236	55	

	Beschreibung
Eingabe:	Ein vollständiger Graph T mit Kantengewichten $c(e)$
Ausgabe:	Ein Hamilton-Kreis
Schritt 1:	Wähle einen beliebigen Knoten als Startknoten \emph{v}
Schritt 2:	Ermittle die niedrigste Kante welche den aktuellen Knoten v mit einem unbesuchten Knoten v_u verbindet.
Schritt 3:	Setze $v = v_u$
Schritt 4:	Wenn noch nicht alle Knoten besucht wurden gehe wieder zu Schritt 2
Schritt 5:	Füge die Kante vom letzten besuchten Knoten zum Startknoten hinzu um den Kreis zu schließen.

	AC	BN	D	F	K	W
AC		91	80	259	70	121
BN	91		77	175	27	84
D	80	77		232	47	29
F	259	175	232		189	236
K	70	27	47	189		55
W	121	84	29	236	55	

Gesamtkosten: 698

Keine optimale Lösung

AC-K-BN-F-W-D-AC Gesamtkosten: 617

- Wie schlecht kann das Ergebnis werden?
- Aufgabe: Wende den Algorithmus auf den Graphen an. Wähle A als Startknoten

	Beschreibung
Schritt 1:	Wähle einen beliebigen Knoten als Startknoten \emph{v}
Schritt 2:	Ermittle die niedrigste Kante welche den aktuellen Knoten \boldsymbol{v} mit einem unbesuchten Knoten \boldsymbol{v}_u verbindet.
Schritt 3:	Setze $v = v_u$
Schritt 4:	Wenn noch nicht alle Knoten besucht wurden gehe wieder zu Schritt 2
Schritt 5:	Füge die Kante vom letzten besuchten Knoten zum Startknoten hinzu um den Kreis zu schließen.

Wie schlecht kann das Ergebnis werden?

Gesamtkosten: 1 + 1 + 1 + x

- Von Rosenkranz, Stearns und Lewis (1977)
- Berechnet einen Hamilton-Kreis

	Beschreibung		
Eingabe:	Ein vollständiger Graph K_n mit Kantengewichten $c(e)$		
Ausgabe:	Ein Hamilton-Kreis		
Schritt 1:	Konstruiere einen minimal spannenden Baum T von K_n		
Schritt 2:	Verdopple alle Kanten von T (daraus resultiert ein eulerscher Graph T_d).		
Schritt 3:	Berechne eine Euler-Tour in T_d		
Schritt 4:	Durchlaufe die Euler Tour von einem Startknoten aus. Falls dabei ein Knoten schon besucht wurde, nehme die Abkürzung zum nächsten unbesuchten Knoten auf der Tour.		

Eingabe:

Ein vollständiger Graph K_n mit euklidischen Abstand der Knoten als Kantengewicht (Kante und Gewicht hier nicht eingezeichnet)

Schritt 1: Konstruiere einen minimal spannenden Baum T von K_n

Schritt 2:

Verdopple alle Kanten von T (daraus resultiert ein eulerscher Graph T_d).

Berechne eine Euler-Tour in T_d Schritt 3:

Schritt 4:

Durchlaufe die Euler Tour von einem Startknoten aus. Falls dabei ein Knoten schon besucht wurde, nehme die Abkürzung zum nächsten unbesuchten Knoten auf der Tour.

Ausgabe:

Ein Hamilton-Kreis

- Wie gut ist das Ergebnis des Algorithmus?
- Forderung der Dreiecksungleichung

Algorithmus

Einschub: Dreiecksungleichung

Kosten c zweier Knoten:
 Kantengewicht der verbindenden Kante

Definition: Dreiecksungleichung

Die Dreiecksungleichung garantiert bei einem vollständigen Graphen, dass für alle Knoten u, v und w gilt:

$$c(u,v) \le c(u,w) + c(w,v)$$

Algorithmus Doppelter Baum - Abschätzung

Wie gut ist das Ergebnis des Algorithmus?

	Beschreibung
Eingabe:	Ein vollständiger Graph K_n mit Kantengewichten $c(e)$, die die Dreiecksungleichung erfüllen.

Satz

 K_n sei ein vollständiger Graph mit Kantengewichten welche die Dreiecksungleichung erfüllen.

Ferner sei T' das Ergebnis des Doppelten-Baum-Algorithmus und OPT eine optimale Lösung.

Dann gilt:

$$c(T') \le 2 * c(OPT)$$

"Die durch den Algorithmus bestimmte Tour ist maximal doppelt so lange wie eine optimale Tour"

Algorithmus Doppelter Baum – Abschätzung (Beweis)

Wie kommt man darauf?

 Der minimale Spannbaum T wird verdoppelt und daraus wird eine Euler-Tour gebildet (Schritt 2 & 3 im Algorithmus).

Länge der Euler-Tour: 2 * c(T)

- 2. Im vierten Schritt wird die Euler-Tour verfolgt oder eine direkte Kante gewählt.

 Die direkte Kante ist günstiger als ein Umweg (Dreiecksungleichung)
- 3. Für die resultierende Hamilton-Tour T' gilt:

$$c(T') \le 2 * c(T)$$
 (obere Schranke)

Algorithmus Doppelter Baum – Abschätzung (Beweis)

4. Entfernt man eine Kante aus der optimalen Tour *OPT*, erhält man einen spannenden Baum

Dieser ist aber nicht billiger als der minimalspannende Baum T.

Es gilt also: $c(T) \le c(OPT)$ (untere Schranke)

Algorithmus Doppelter Baum – Abschätzung (Beweis)

$$c(T') \le 2 * c(T)$$

(obere Schranke)

$$c(T) \le c(OPT)$$

(untere Schranke)

$$c(T') \le 2 * c(OPT)$$

(Satz)