1. Ache o polinômio de Taylor do n-ésimo grau com resto de Lagrange no número a para a função definida pela equação dada:

a)
$$f(x) = \frac{1}{x-2}$$
; $a = 1$; $n = 3$

b)
$$f(x) = x^{3/2}$$
; $a = 4$; $n = 3$

c)
$$f(x) = sen(x); a = \frac{\pi}{6}; n = 3$$

d)
$$f(x) = \cosh(x)$$
; $a = 0$; $n = 4$

e)
$$f(x) = \ln(x)$$
; $a = 1$; $n = 3$

f)
$$f(x) = \ln(x+2)$$
; $a = -1$; $n = 3$

g)
$$f(x) = \ln(\cos x)$$
; $a = \frac{\pi}{3}$; $n = 3$

- Calcule o valor exato de e até a quinta casa decimal e prove que sua resposta tem a precisão pedida.
 Resp.: 2,71828
- 3. Estime o erro que se comete quando $\cos(x)$ é substituído por $1-\frac{1}{2}x^2$ se |x|<0.1 Resp.: $|erro|<\frac{(0.1)^4}{24}<0.000005$
- 4. Calcule $sen~(31^o)$ com precisão de três casas decimais, usando o polinômio de Taylor do exercício 1c em $\frac{\pi}{6}$ (Use a aproximação $\frac{1}{180}\pi=0.0175$) Resp.: 0,515
- 5. Use o Polinômio de Maclaurin para a função definida por $f(x) = ln \frac{1+x}{1-x}$ para calcular o valor de ln(1,2) com precisão até a quarta casa decimal Resp.: 0.1823
- 6. Mostre que a fórmula $(1+x)^{-1/2} \cong 1 \frac{1}{2}x$ é precisa até a segunda casa decimal se $-0.1 \le x \le 0$.
- 7. Aplique a fórmula de Taylor para expressar o polinômio $P(x) = x^4 x^3 + 2x^2 3x + 1$ em potências de x 1.

Resp.:
$$2(x-1) + 5(x-1)^2 + 3(x-1)^3 + (x-1)^4$$