12. Podstawowe operacje na klasach

Korzystając z uwagi 11.2 możemy określić następujące klasy.

Definicja 12.1. Dla dowolnych $Z : \underline{\text{Univ}} \text{ i } A, B : \underline{\text{Class}}, Z \text{ nazywamy:}$

- (i) sumq (alt. uniq) klas A i $B :\Leftrightarrow Z = A \cup B := \{x | x : A \lor x : B\} //\Phi(x) := "x : A \lor x : B" : LFun(x)//;$
- (ii) iloczynem (alt. przecięciem) klas A i $B :\Leftrightarrow Z = A \cap B := \{x | x : A \wedge x : B\} //\!/ \Phi(x) :=$ " $x : A \wedge x : B$ " : LFun(x)//;
- (iii) różnicą klas A i B //czyli od klasy A odejmujemy klasę B// : $\Leftrightarrow Z = A \backslash B := \{x | x : A \land \sim x : B\}$ // $\Phi(x) := "x : A \land \sim x : B" : \underline{LFun}(x)$ //;
- (iv) różnicą symetryczną klas A i $B :\Leftrightarrow Z = A \div B := \{x | x : A \vee x : B\} //\Phi(x) := "x : A \vee x : B" : LFun(x)//;$
- (v) dopelnieniem klasy $A :\Leftrightarrow Z = A^c := \{x \mid \sim x : A\} //\!/ \Phi(x) := "\sim x : A" : \underline{\mathsf{LForm}}(x) /\!/.$

Ćwiczenie 12.2. Wykazać, że dla dowolnych A, B, C: Class zachodzą równości:

- (i) $A \cup B = B \cup A$ i $A \cap B = B \cap A$;
- (ii) $(A \cup B) \cup C = A \cup (B \cup C)$ i $(A \cap B) \cap C = A \cap (B \cap C)$;
- (iii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ i $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$;
- (iv) $(A \cup B)^c = A^c \cap B^c$ i $(A \cap B)^c = A^c \cup B^c$;
- (v) $A \backslash B = A \cap B^c$;
- (vi) $A \div B = (A \backslash B) \cup (B \backslash A) = (A \cap B^c) \cup (B \cap A^c) = (A \cup B) \backslash (A \cap B);$
- (vii) $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$ i $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$.

Dla przykładu wykażemy pierwszą z równości w (iv). Dla dowolnego x: Univ mamy:

$$x: (A \cup B)^c \leftarrow /\!\!/ \text{def. } 12.1 \text{ (v)} /\!\!/ \rightarrow \sim x: A \cup B \leftarrow /\!\!/ \text{def. } 12.1 \text{ (i)} /\!\!/ \rightarrow$$

$$\sim (x:A \ \lor x:B) \leftarrow /\!\!/ \sim (\alpha \lor \beta) \Leftrightarrow \sim \alpha \land \sim \beta : \underline{\mathrm{Taut}} /\!\!/ \rightarrow$$

$$\sim x: A \land \sim x: B \leftarrow /\!\!/ \text{def. } 12.1 \text{ (v)} /\!\!/ \rightarrow x: A^c \land x: B^c \leftarrow /\!\!/ \text{def. } 12.1 \text{ (ii)} /\!\!/ \rightarrow x: A^c \cap B^c.$$

Stąd na mocy tautologii $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) \Leftrightarrow (\alpha \Leftrightarrow \beta), x : (A \cup B)^c \Leftrightarrow x : A^c \cap B^c$ dla $x : \underline{\text{Univ}}$. Korzystając z aks. C3 dostajemy $(A \cup B)^c = A^c \cap B^c$, c.n.d.

Ćwiczenie 12.3. Wykazać, że dla dowolnych $A,B:\underline{\mathrm{Class}}$ zachodzą własności:

- (i) $A \cap B = A \Leftrightarrow A \subset B$;
- (ii) $A \cup B = B \Leftrightarrow A \subset B$;
- (iii) $A \cap B = A \cup B \Leftrightarrow A = B$.

//Zauważmy, że dla wszystkich A,B: Class implikacja $A\cap B=A\cup B\Rightarrow A=B$ wynika z własności (i) w ćw. 12.3 oraz oczywistych inkluzji $A\subset A\cup B$ i $A\cap B\subset A$. Istotnie, dla dowolnych A,B: Class mamy:

$$A \cap B = A \cup B - /\!/A \subset A \cup B \text{ and } A \cap B \subset A /\!/ \rightarrow A \subset A \cap B \text{ and } A \cap B \subset A - /\!/\text{\'ew}. 11.8 /\!/ \rightarrow A \cap B = A - /\!/\text{\'ew}. 12.3 (i) /\!/ \rightarrow A \subset B.$$

$$A \cap B = A \cup B - /\!/B \subset A \cup B \text{ and } A \cap B \subset B /\!/ \rightarrow B \subset A \cap B \text{ and } A \cap B \subset B - /\!/\text{\'ew}. 11.8 /\!/ \rightarrow A \cap B = B - /\!/\text{\'ew}. 12.3 (i) /\!/ \rightarrow B \subset A.$$

$$A \subset B \text{ and } B \subset A - /\!/\text{\'ew}. 11.8 /\!/ \rightarrow A = B.$$

Implikacja odwrotna $A = B \Rightarrow A \cap B = A \cup B$ jest oczywista, ponieważ $A \cap A = A = A \cup A$.

Definicja 12.4. Dla dowolnego $Z: \underline{\text{Univ}}, Z$ nazywamy $rodzinq \ klas: \Leftrightarrow$

$$Z: \underline{\mathrm{FClass}} := \Big\{ K \, \Big| \, K: \underline{\mathrm{Class}} \wedge \bigwedge_{x:K} x: \underline{\mathrm{Class}} \Big\}.$$

$$/\!/\Phi(K) := "K : \underline{\operatorname{Class}} \wedge \bigwedge_{x:K} x : \underline{\operatorname{Class}} " : \underline{\operatorname{LFun}}(K)./\!/$$

Definicja 12.5. Dla dowolnych $Z: \underline{\text{Univ}}$ i $A: \underline{\text{Class}}, Z$ nazywamy klasq potęgową <math>klasy $A:\Leftrightarrow Z: \underline{\text{PClass}}(A):=\{K|K:\underline{\text{Class}} \land K\subset A\}.$ $/\!/\Phi(K):=$ " $K:\underline{\text{Class}} \land \bigwedge(x:K\Rightarrow x:A)$ ": $\underline{\text{LFun}}(K)./\!/$

Dla przykładu, $\underline{PClass}(\{x,y\}) = \{K | K = \emptyset \lor K = \{x\} \lor K = \{y\} \lor K = \{x,y\}\}.$

Ćwiczenie 12.6. Wykazać, że dla każdego A: Class, PClass(A): FClass.

Definicja 12.7. Dla dowolnych $Z : \underline{\text{Univ}} \text{ i } F : \underline{\text{FClass}}, Z \text{ nazywamy:}$

- (i) sumq (alt. unią) rodziny klas $F :\Leftrightarrow Z = \bigcup(F) := \{x \mid \bigvee_{K:F} x : K\};$
- (ii) iloczynem (alt. przecięciem) rodziny klas $F :\Leftrightarrow Z = \bigcap(F) := \{x \mid \bigwedge_{K:F} x : K\}.$

Ćwiczenie 12.8. Wykazać, że dla dowolnych $A, B : \underline{Class}, \{A, B\} : \underline{FClass} \text{ oraz } \bigcup (\{A, B\}) = A \cup B \text{ i } \bigcap (\{A, B\}) = A \cap B.$

Ćwiczenie 12.9. Wykazać, że dla dowolnych $F : \underline{FClass}$ i $A : F, \bigcap (F) \subset A \subset \bigcup (F)$.

Uwaga 12.10. Z aks. C1 i def. 12.4 wynika, że <u>Class</u>: <u>FClass</u>. Ponadto z aks. C1 mamy <u>Univ</u>: <u>Class</u> i $A \subset \underline{\text{Univ}}$ dla $A : \underline{\text{Class}}$. Stąd $\bigcup(\underline{\text{Class}}) \subset \underline{\text{Univ}}$. Na odwrót, z ćw. 12.9 wynika, że $\underline{\text{Univ}} \subset \bigcup(\underline{\text{Class}})$, skąd na mocy ćw. 11.8, $\bigcup(\underline{\text{Class}}) = \underline{\text{Univ}}$. Ponieważ $\varnothing : \underline{\text{Class}}$, więc z ćw. 12.9 wynika, że $\bigcap(\underline{\text{Class}}) \subset \varnothing$. Na odwrót, z własności (11.14) dostajemy inkluzję $\varnothing \subset \bigcap(\underline{\text{Class}})$, skąd na mocy ćw. 11.8, $\bigcap(\underline{\text{Class}}) = \varnothing$.

Definicja 12.11. Dla dowolnych $Z, Z' : \underline{\text{Univ}}, Z, Z'$ nazywamy *klasami rozłącznymi* : $\Leftrightarrow Z, Z' : \underline{\text{Class}} \ i \ Z \cap Z' = \emptyset$.

Uwaga 12.12. Z własności (11.12) i (11.13) wynika, że dla dowolnych A, B: <u>Class</u> następujące własności są parami równoważne:

- (i) A i B są klasami rozłącznymi;
- (ii) $\sim \bigvee (x : A \land x : B);$
- (iii) $\bigwedge_{x}^{x} (\sim x : A \lor \sim x : B).$

Definicja 12.13. Dla dowolnego $Z:\underline{\text{Univ}},\,Z$ nazywamy rodziną klas parami rozłącznych : \Leftrightarrow $Z:\underline{\text{FClass}}$ i zachodzi warunek

(12.14)
$$A \neq B \Rightarrow A \cap B = \emptyset \quad dla \quad A, B : Z.$$

//To oznacza, że każde dwie różne klasy rodziny Zsą rozłączne.//