Admission No:

Department of Computer Science and Engineering, SVNIT, Surat B.Tech. III – Semester 6, Global Elective Course – Cryptography (CS362) Date: 25th April, 2022 Total Marks: 20 Marks

1.	Find the last digit of 7 201 (a) 4 mod 10				Ans
2.	Find 29 ²⁵ mod 11	(b) 1 mod 10	(c) 7 mod 10	(d) 2013 mod 10	
	(a) 1 mod 11				
3.		(b) 10 mod 11	(c) 27 mod 11	(d) 7 mod 11	
٠.	Which of the following is the functionality provided by Digital Signature but not by Message Authentication Code?				
	(a) Authentication	Ib) tobourts			-
4.	Find 2 ²⁰ + 3 ³⁰ + 4 ⁴⁰ + 5 ⁵⁰	(b) Integrity	(c) Non-repudiation	(d) Availability	-
-	(a) 1 mod 7	(b) 5 mod 7	110	Transcript and	-
5.	The one-time pad is susc		(c) 0 mod 7	(d) 6 mod 7	-
	(a) known plaintext	(b) known ciphertext	17.1	6.0	
	attack	attack	(c) chosen plaintext attack	(d) none of these	
6.	Which of the following is/are invalid size for a finite field?				-
	(a) 100 (b) 89 (c) 289 (d) 133				-
7.	Which of the following is	s synonymous with "hash of	3 messaga"?	(0) 155	
	(a) digital signature over	(b) message digest	(c) message	(d) all of the above	+
	a message	1-4anaBe gibere	authentication code	(u) all of the above	
8.	The relation between th	e RSA encryption and decryp	otion keys is		
	(a) $ed \equiv 1 \pmod{n}$	(b) $ed \equiv 1 \pmod{\emptyset(n)}$	$(c) ed \equiv 0 \pmod{n}$	(d) $ed \equiv 0 \pmod{\emptyset(n)}$	-
9.	In the following mode of	operation, a single bit error	r in transmission may caus	se many hit errors in that	-
	block but no errors in su	bsequent blocks		committee of the control of the control	
	(a) CFB mode	(b) CBC mode	(c) ECB mode	(d) all of the above	
10.	The principal advantage	of public key cryptography	over secret key cryptogram	phy is	
	(a) simplified key	(b) lower chip area	(c) improved speed	(d) higher security	
	management			(4,100	
11.	Birthday attack can be prevented by,				
	(a) using non-	(b) using larger hash	(c) using padding	· (d) using smaller hash	
	cryptographic hash	value		value	
	function				
13.	The ratio of "Time to encrypt a 10 KB message with 56-bit DES" to "Time to compute hash of a 10KB				
	message with SHA-1" is				
	(a)>1	(b)<1	(c)=1	(d)=0	
	ine man-in-the-middle a	attack in Diffie-Hellman key		e solved using,	
	(a) encrypted	(b) authenticated	(c) hash function	(d) all of the above	
	communication	communication			
14.	If an efficient algorithm for computing integer factorization is discovered, which of the following schemes				100
	will be no more secure?				
War.	(a) Diffle-Hellman	(b) Elgamal	(c) RSA	(d) Both a and b	
15.		ised in Digital Signature, a ha			
	(a) Public key	(b) Private key	(c) Shared secret key	(d) One time password	
16.	Following can be impler	nented using hash functions	1		+-
	(a) Pseudo random	(b) digital signature	(c) One-time password	(d) All of the above	-
	number generator	(a) a Bron a Brondie	generator	(u) All of the above	
17.	The elliptic curve is defined over finite field F ₁₇ , with coefficient values A=3 and B=8. What is the value of				
	3P if point P is (13, 0), the value of 3P is,				
	(a) (13,0)	(b) Point at infinity	(c) (39,0)	(d) undefined	
18.		multiplied in GF(28) by using	g irreducible polynomial o	f	
	(a) degree 7 (b) degree 8 (c) degree 28 (d) none of the above				
19.	Cryptographic hash function can be constructed using,				
	(a) One way trapdoor	(b) trapdoor function	(c) one way function	(d) encryption function	
	function			The second second	
20.	Public key cryptography can be constructed using,				
	(a) One way trapdoor	(b) trapdoor function	(c) one way function	(d) encryption function	