Задание 13.

Задана система булевых функций $f_1 = 10110110$ и $f_2 = 00110011$. Проверьте данную систему на полноту. Выполнить полную проверку для обеих функций.

Решение:

Проверим выполнение теоремы Поста о полноте.

Класс P_0 : Первый бит f_1 не 0, эта функция ноль не сохраняет, первый бит функции f_2 – ноль, эта функция ноль сохраняет.

Класс P_1 : Последний бит f_1 - 0, эта функция единицу не сохраняет, последний бит функции f_2 – один, эта функция единицу сохраняет.

Класс S: Проведем проверку по схеме (делим каждую функцию пополам и, двигаясь от центра проверим что все биты различны):

Класс М: Разобьем каждую из функций пополам и проведем побитовое сравнение полученных частей. Если функция монотонна, то каждый бит первой половины должен быть «меньше или равен» соотвествующего бита второй половины. Продолжаем этот процесс до конца.

Для f_1 :	Для f_2 :
<u>1</u> 011	0011
<u>0</u> 110	0011

Не выполняется в подчеркнутой позиции.

Класс L: для каждой функции построим полином Жегалкина (см. задание 8). Получим:

 $f_1 = 1 + z + yz + x + xy + xyz$ - не линейна, т.к. есть конъюнкции,

 $f_2 = y$ - линейна, т.к. нет конъюнкций.

Сведем все результаты в таблицу:

	P_0	P_1	S	M	L
f_1	-	-	-	-	-
f_2	+	+	+	+	+

В каждом столбце есть «минус», следовательно условия теоремы Поста выполняются! Данная система функций является полной!