		Przetwarzanie danych

Metody przetwarzania obrazów

- Przekształcenia geometryczne
- Przekształcenia punktowe
- Użycie filtrów
- Przetwarzanie w dziedzinie częstotliwości

Przekształcenia geometryczne

- Skalowanie (zmiana rozdzielczości obrazu)
- Obroty
- Odbicia

Histogramy

Histogram to wykres, który dla każdej barwy (odcienia szarości) w obrazie podaje liczbę pikseli o tej barwie znajdujących się w obrazie

Przekształcenia punktowe

Wartość piksela w obrazie docelowym obliczana jest na podstawie wartość piksela z obrazu zródłowego

$$p_n = f(p_n)$$

*Progowanie

$$f(p) = \begin{cases} 0 & dla & p < c \\ I & dla & p \ge c \end{cases}$$

Zmiana jasnos

$$f(p) = c * p$$

=Kolorowanie

Krzywe tonalne

Funkcje okreslające sposób przypisania nowyc wartości jasności (barwy) piksela na podstawie piksela z obrazu źródłowego

Filtracja obrazu (1)

Wartose jasności (barwy) piksela wynikowego obliczana jest na podstawie zbioru pikseli z obrazu źródłowego

$$p_{x,y} = \frac{\sum_{i,j=-m}^{m} W_{ij} p_{x-i,y+j}}{\sum_{i,j=-m}^{m} W_{ij}}$$

Filtracja obrazu (2)

Maska filtru reprezentowana jest przez macierz wagową określających wpływ piksela i jego otoczenia na barwę piksela wynikowego

Filtr górnoprzepustowy

0	0	0

Wykrywanie krawedzi

1	

Filtr uśredniajacy

0	0	0	

Wykrywanie krawedzi

Przykład

Oblicz wartość jasności piksela, jaką uzyskamy stosując filtr uśredniający do zestawu pikseli

reprezentowanych
$$p = \begin{bmatrix} 4 & 3 & 2 \\ 3 & 6 & 1 \\ 6 & 0 & 2 \end{bmatrix}$$

. Iaska filtru usredniającego
$$M = {1 \atop 9} {1 \atop 1} {1 \atop 1} {1 \atop 1}$$

Kolor piksela wynikowego

$$y = ((2^{n}4) - (1^{n}3) - (1^{n}2) - (1^{n}2) - (1^{n}3) - (1^{n}6) - (1^{n}1) - (1^{n}6) - (1^{n}0) - (1^{n}2) - (1^{$$

Kompresja stratna

- Duży stopień kompresji osiągany jest kosztem utraty szczególów
- Metody stratnej kompresji obrazu można w ogólności podzielić na trzy grupy:
 - metody bezpośrednie (w dziedzinie obrazu),
 - · metody fraktalne,
 - · metody transformat

Kompresja JPEG

- Najpopularniejszy standard wykorzystujący dyskretna transformate cosinusowa (DCT) oraz proces kwantyzacje obrazu
- Wykorzystuje fakt niedostrzegania szybkich przejeść barw przy krawedziach (wiekszość informacji o obrazie zgrupowana jest w obszarze wysokich czestotliwości i malych amplitud
 - i dotyczy łagodnych zmian kolorów)
- Artefakty zniekształcenia obrazu:
 - "aureolki" powstają wzdłuż krawędzi gdy odrzucono zbyt wiele składowy wysokiej częstotliwości
 - artofakty błokowe przy dużym stopniu kompresji blędy kwantyzacji spowodowały, że kwantyzowane bloki przyjely jednakowe kolory

Schemat kodera JPEG

(składowe chrominancji są w rozdzielezości niższej niż sam obraz).

Bloki obrazu YCbCr o rozmiarze 8x8 pikseli są przenoszone do dziedzin częstotliwości przez wyznaczenie dyskretnej transformaty cosinusowej.

Kwantyzowanie współczynników transformaty, spora część składowyc (wyższych częstotliwości) uzyskuje wartości zerowe.

Zmiana modelu barw z RGB na YCbCr

- Duży stopień kompresji uzyskiwany jest dzięki uwzględnieniu zależności, jakie występują między następującymi po sobie obrazami.
- Do najczęściej spotykanych standardów kompresji obrazów ruchomych należą:
 - MPEG (Moving Picture Experts Group)
 - M-JPEG (Motion JPEG)
 - · SONY SX

Kompresja MPEG (1)

W kompresji wykorzystujemy częściowy zapisy kolejnych klatek filmu i szacowaniu ich wyglądu na podstawie, wybranych klatek

- MPEG1 publikacja w 1992 r., optymalizowany dla prędkości 1410 kb s. do przesylania pojedynezych programów w strumieniu (VideoCD)
- MPEG2 rozszerzony MPEG-2, przystosowany do transmisji wielu programów w jednym strumieniu (satelitama i kablowa TV, HDTV, SuperVideoCD, DVD)
- MPEG4 zoptymalizowany dla przepustowości 880 kb s (wideo konferencje, Div.X)

zalety MPEG-4

- * skalowalność do internetu (kb/s) i wysoka jakość (Mb/s)
 - możliwość wyboru rozdzielezość
 - niezależne kodowanie statycznych i ruchomych obrazów
 - rozszerzona korekcja błędów

Algorytm kompresja – MPEG (2)

W algorytmie MPEG wykorzystujemy

- kompensacja ruchu pod kątem nadmiarowość międzyramkowej (nadmiarowość czasowa)
- kompresja DCT do nadmiarowości wewnątrzramkowej (nadmiarowość przestrzenna).

Kompresja MPEG (3)

- Sekwencja obrazów jest dzielona na trzy rodzaje ramek:
 - Ramkí odniesienia I. które nie zależą od zadnych innych ramek
 - Ramki P, które przedstawiają obraz będący różnica miedzy bieżaca ramka a ramka odniesienia
 - Ramki B. które mają dwie ramki odniesienia wcześniejsza i późniejsza.
- Ramki P i B zawierają informacje o ruchu fragmentów ramki odniesienia (fragmenty mają 16x16 pikseli).

Kolejność kodowania sekwencji obrazów MPEG

Kompresja M-JPEG

Cechy standardu M-JPEG

- jest rozszerzeniem metody JPEG i przeznaczony jest do kompresji obrazow ruchomych,
- dokonuje kompresji kazdej ramki w sekweneji obrazu wizyjnego,
- można uznać, że jest bardzo uproszczoną wersją standardu MPEG (bez kompensacji ruchu), czyli bez kodowania międzyramkowego (wszystkie ramki są typu I).
- ezas kompresji (złożoność) M-JPEG jest mniejsza niż dla MPEG, gdyż nie trzeba dokonywać predykcji ramek typu i B oraz dokonywać kosztownego przeszukiwania ramek dopasowania podczas kompensacji ruchu,
- · dostęp swobodny do dowolnej ramki jest natychmiastow

Formaty rastrowe

- Formatów plików zawierających obrazy rastrowe jest bardzo dużo.
- Przy wyborze formatu, należy zwrócić uwagę na następujące kwestie:
 - Czy obraz ma być udostępniany, czy też publikowany na stronach www.
 - Jaki jest rodzaj obrazu (komputerowy, zdjęcie)
 - Czy mamy dodatkowe wymagania przezroczystość, zachowanie struktury obiektów warstw.

Format GIF

- Przeznaczony do kompresji obrazów z paletą 256 kolorów (8 bitów na piksel).
- Korzysta z kompresji LZW
- Pozwala na wskazanie jednego koloru jako koloru ...przezroczystego".
- W jednym pliku może być zapisanych wiele bloków obrazu. Bloki mogą korzystać z globalnej albo lokalnej palety kolorów.
- Pozwala na zapis obrazu z przeplotem.

Przeznaczony do zapisu obrazów generowanych komputerowo.

Format GIF

- Pozwala na zapisanie sekwencji obrazów. Każdy z obrazów może używać globalnej, lub lokalnej palety kolorów.
- Można zapisywać jedynie różnice między kolejnymi klatkami (obrazami).
- Można zadać czas ekspozycji każdej klatki.
- Można określić odtwarzanie ciągle lub określona liczbę razy.

Format JPEG

- Dokladnie jest to format JFIF, ezyli JPEG File Interchange Format.
- Określa sposób zapisu w pliku (lub transmisji) obrazu skompresowanego przy użyciu kompresji JPEG oraz danych niezbędnych do jego dekodowania.
- Pozwala na różne ustawienia podpróbkowania składowych chrominancji.
- Pozwala na progresywny zapis obrazu, tzn. taki w ktorym w czasie transmisji dostajemy cały obraz kiepskiej jakości, a kiedy odbieramy kolejne części pliku jakośc obrazu się poprawia.

Format AVI

- Pozwala na zapisanie w pliku strumienia wideo, audio. MIDI oraz tekstowego.
- Kompresja danych jest wykonywana przez zainstalowane w systemie kodery dekodery (codec)
- Niezależnie od kodeka, format umożliwia użycieklatek kluczowych, z określeniem częstości ich występowania.
- Pozostale szczególy kompresji są zależne od użytego kodeka. Jak zwykle w takich przypadkach pojawiają się problemy z przenośnością plików.

Widzenie przestrzenne – stereowizja

- Wywołanie wrazenia widzenia przestrzennego
- Pobieranie informacji przestrzennej na podstawie obrazów
 - Nieinwazyjność (pasywność)
 - Duża baza algorytmów
 - Niewielka dokładność
 - Konieczność kalibracji kamer
 - Wysoka złożoność obliczeniowa

Pierwsze wzmianki

- · Arystoteles 380 p.n.e. podwojny obraz
- Dziela Euklidesa 300 p.n.e. optyka i fizjologia
- · Rozwoj badan nad stereowizja XVIII w.

Stereoskopia

Technika, polegająca na wywołaniu wrażenia widzenia przestrzennego

Postrzeganie wzajemnych zależność przestrzennych obiektów (odległość od obserwatora.

glębię sceny)

Wymaga wygenerowania dwoch odrębnych obrazów dla prawego i lewego oka obserwatora

