Contrôle de Chimie – N°2 – R

Durée 1 heure

Corrigés

Veuillez répondre à toutes les questions suivantes et indiquer les réponses sur les lignes et/ou dans les espaces qui suivent les données.

Annexe: le tableau périodique + l'échelle d'électronégativité

1. Donner les formules brutes des composés qui se forment à partir des couples d'ions suivants (charge des ions non donnée, attention à l'ordre des atomes dans le composé!).

(5 points)

- a. Br / Rb RbBr b. Al / sulfate Al₂(SO₄)₃
- **c.** Fe(II) / O **FeO d.** H / Mg e. hydroxyde / Sn(II) Sn(OH)₂ MgH_2
- 2. Donner les trois réactions chimiques équilibrées entre les éléments/molécules suivants:

(3 points)

- a. potassium (K) et soufre (S): $2 K + S \rightarrow K_2 S$
 - $Ca + 2 H_2O \rightarrow Ca(OH)_2 + H_2$ **b.** calcium (Ca) et l'eau:
 - $Na_2O + 2 HCL \rightarrow 2 NaCl + H_2O$ **c.** Na₂O(s) et HCl(aq):
- $\bf 3$ a. Classer les atomes suivants selon l'ordre **croissant** de la première énergie d'ionisation, I_1 : / 2 points)

$$Al - B - C - F - N - Na - Ne - O$$
 $Na < Al < B < C < O < N < F < Ne$

b. Classer les espèces des ensembles suivants selon l'ordre croissant de leur volume :

/ 2 points)

(i)
$$F^- - N^{3-} - O^{2-}$$
 $F^- < O^{2-} < N^{3-}$

(ii)
$$Br^- - Cl^- - K^+ - Na^+$$
 $Na^+ < K^+ < Cl^- < Br^-$

- c. Parmi les expressions suivantes pour un atome X, laquelle correspond à la définition exacte de l'énergie de deuxième ionisation ? Souligner la bonne réponse. / 1 point)
- a. $X(g) + e^{-} \rightarrow X^{-}(g)$ b. $X^{-}(g) \rightarrow X(g) + e^{-}$ c. $X(s) \rightarrow X^{+}(s) + e^{-}$

- d. $X(g) \rightarrow X^{+}(g) + e^{-}$ e. $X^{+}(g) + e^{-} \rightarrow X(g)$ d. $X^{+}(g) \rightarrow X^{2+}(g) + e^{-}$

4. Quelles sont les propriétés magnétiques (para- ou diamagnétique) du Fe, du Fe ²⁺ et du Fe ³⁺ ? Justifier les réponses à l'aide des cases quantiques et comparer l'intensité magnétique (classement sans calcul) des trois espèces avec explication. (/ 4 points)				
Fe: $[Ar]4s^23d^6$	<u>paramagnétique</u>			
$Fe^{2+}:[Ar]4s^03d^6$	<u>paramagnétique</u>			
Fe ³⁺ : [Ar] $4s^03d^5$	<u>paramagnétique</u>			
Comparaison et explication :	$\underline{\text{Fe }(4e^{-}\text{c\'elib·}) = \text{Fe}^{2+}(4e^{-}\text{c\'elib.})} < \text{Fe}^{3+}(5e^{-}\text{c\'elib.})$			
5 . Représenter les espèces suivante l'atome central) :	s selon la notation de Lewis et leur géométrie (l'atome en gras est (/ 4 points)			
N_2H_2 N_2F_2	NCl ₃ CaCO ₃			
6. L'ammoniac (NH ₃) est produit à	partir de ses constituants élémentaires gazeux. Ecrire			
 a) l'équation chimique équilibrée de cette réaction et b) la formation d'une molécule de NH₃ selon la notation de Lewis (à partir des atomes!) (/ 2 points) 				
 a) réaction équilibrée : N₂ + 3 H₂ → 2 NH₃ b) réaction selon Lewis : Voir polycopié « Résultats des exercices » page 161. 				
7. Quelles sont les deux conditions atomes différents d'être qualifié co a. une liaison doit être polais b. pas de symétrie qui ann	(/ 2 points)			
8. Préciser et justifier <u>tous</u> les types de liaison pour les molécules suivantes. (/ 5 points)				

covalente polaire, $\Delta X = 0.76$ <u>liaison non-métal / non-métal</u>

a. HBr:

b. $CaCO_3$: covalente polaire entre C et O ($\Delta X = 0.89$), ionique entre Ca et O ($\Delta X = 2.44$),

c. Au: métallique (réseau métallique)

d. F_2 : covalente pure ($\Delta X = 0.0$),

e. Na₂O: ionique ($\Delta X = 2.51$), liaison métal / non-métal

9. Les molécules suivantes, peuvent-elles en principe exister? Répondre à l'aide des diagrammes des orbitales moléculaires et de l'ordre de liaison. Préciser aussi, si elles sont dia- ou paramagnétiques et justifier la réponse.

(/ 6 points)

 \mathbf{a} . Be₂

(2-2)/2 = 0 diamagnétique pas possible

 $b. O_2^+$

ordre :	(6-1)/2 = 2.5	paramagnétique	possible
di di C .	(0 1)/2 2:0	paramagnetique	DOSSIDIC

Nombre de points : ______/ 36 points Note : ______