Assignment 3: CS 736, Algorithms for Medical Image Processing

Alankar Kotwal – 12 D070010, Riddhish Bhalodia – 12 0070003 March 26, 2015

Part (a)

The RRMSE between the noisy and ifft of imageKdata images is 0.2249.

Part (b)

Prior Type	a*	b*	τ	$\mathcal{R}(a*,b*)$	$\mathcal{R}(1.2a*,b*)$	$\mathcal{R}(0.8a*,b*)$	$\mathcal{R}(a*, 1.2b*)$	$\mathcal{R}(a*, 0.8b*)$
Quadratic	0.8	-	0.1	0.0837	0.1571	0.1379	-	-
Huber	0.055	0.5	0.1	0.0599	0.0609	428(NC)	0.0600	0.0599
Disc-adapt	0.26	0.2	0.1	0.1066	0.1220	0.1167	0.1070	0.1135

The Huber function's results become insensitive to gamma after a threshold. Note that RRMSE in case of a = 1.2a* has been evaluated at a = 1 if 1.2a* > 1. NC means not-converging result.

Part (c)

Figure 1: Noiseless image

Figure 2: Data image

 ${\bf Figure~3:~Quadratic\hbox{-}Reconstruction~image}$

Figure 4: Huber-Reconstruction image

Figure 5: Discontinuity-adaptive Reconstruction image

Part (d)

Figure 6: Quadratic-Reconstruction objective function

Figure 7: Huber-Reconstruction objective function

Figure 8: Discontinuity-adaptive Reconstruction objective function

