# **Quantum Computing**

- Lecture 8 (May 28, 2025)
- Today:
  - Entanglement
  - Pure states and mixed states
  - Exercises and Homework

### **Postulates of Quantum Computing**

- Postulate 1: State space
- Postulate 2: Evolution and unitary transformation
- Postulate 3: Quantum Measurement
  - Projective measurement
- Postulate 4: Composite system

### **Postulates of Quantum Computing**

- Postulate 1: State space (isolated systems)
- Postulate 2: Evolution and unitary transformation (closed systems)
- Postulate 3: Quantum Measurement
  - Projective measurement
- Postulate 4: Composite system

• CNOT: If  $b_0=0$ , output  $b_1$ ; Else, output  $1\oplus b_1$  (i.e., flip  $b_1$  if  $b_0=1$ )



• CNOT: If  $b_0=0$ , output  $b_1$ ; Else, output  $1\oplus b_1$  (i.e., flip  $b_1$  if  $b_0=1$ )



- $|00\rangle \rightarrow |00\rangle$
- $|01\rangle \rightarrow |01\rangle$
- $|10\rangle \rightarrow |11\rangle$
- $|11\rangle \rightarrow |10\rangle$
- Exercise (2min): Write the unitary of CNOT (in the computational basis)



- $|00\rangle \rightarrow |00\rangle$
- $|01\rangle \rightarrow |01\rangle$
- $|10\rangle \rightarrow |11\rangle$
- $|11\rangle \rightarrow |10\rangle$



- $|01\rangle \rightarrow |01\rangle$
- $|10\rangle \rightarrow |11\rangle$
- $|11\rangle \rightarrow |10\rangle$





 $|\psi_2\rangle$ 

- $|00\rangle \rightarrow |00\rangle$
- $|01\rangle \rightarrow |01\rangle$
- $|10\rangle \rightarrow |11\rangle$
- $|11\rangle \rightarrow |10\rangle$



- $|00\rangle \rightarrow |00\rangle$
- $|01\rangle \rightarrow |01\rangle$
- $|10\rangle \rightarrow |11\rangle$
- $|11\rangle \rightarrow |10\rangle$



- $|00\rangle \rightarrow |00\rangle$
- $|01\rangle \rightarrow |01\rangle$
- $|10\rangle \rightarrow |11\rangle$
- $|11\rangle \rightarrow |10\rangle$



John Stewart Bell (source: Wikipedia)

**Bell state:** 

Impossible to be split into a tensor product of two states  $|\varphi_1\rangle \otimes |\varphi_2\rangle$ 

### **Quantum Entanglement**



### **Quantum Entanglement**



Now the two systems are entangled

Pure state: Can be described by a state vector

Mixed state: Cannot ...

### **Quantum Entanglement**



#### **Small Exercise: (pure or mixed)**

- 1. The initial state of system 1 is \_\_\_\_.
- 2. The states of system 1 and 2 (after H and CNOT) are \_\_\_\_\_.
- 3. The state of the total system (after H and CNOT) is \_\_\_\_\_.



- Formalizing Partial Measurement (Do it on board)
  - Let's focus on the computational basis
  - General measurement:  $\{M_m\}_m \to \{M_m \otimes I\}_m$
  - Projective measurement:  $M \otimes I = (\sum_m m P_m) \otimes I$
- Important notes:
  - $\{M_m \otimes I\}_m$  still satisfies the completeness equation
  - $M \otimes I$  is still an observable

- Example (Exercise):
  - Partial measurement on the state  $\alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$







## **Action at a Distance (Fernwirkung)**







Single-qubit System 2  $\rho_2$ 

Total state:  $\frac{|00\rangle + |11\rangle}{\sqrt{2}}$ 











• "spukhafte Fernwirkung"



- "spukhafte Fernwirkung"
- A quick question: Is it a faster-than-light communication?



- "spukhafte Fernwirkung"
- A quick question: Is it a faster-than-light communication?
- Next topic: **Quantum transportation** (e.g., superdense coding)

#### **Next Week**

Quantum transportation

- No lecture tomorrow (Ascension Day, May 29)
- **Homework 2** (about Simon algorithm, to be announced)