基本的な量子力学用語

用語	簡潔な解説	数式表現
ケット (Ket)	量子状態を表すベクトル。ヒルベルト空間の要素であり、縦ベクトルに対応し、列ベクトルとして扱われる。	$ \psi angle$
ブラ (Bra)	ケット $ \psi\rangle$ と対をなす、その複素共役転置(エルミート共役) $ \psi\rangle^\dagger$ に対応する行べクトル。内積を定義する。	$\langle \psi $
スカラー	大きさ(値)のみを持ち、方向を持たない 量。座標系の回転に対して不変です。	E,T,m
ベクトル	大きさと方向を持つ量。量子力学ではケット $ \psi\rangle$ や位置 ${f r}$ が該当します。	${f A}$ または $ \psi angle$
テンソル	スカラー (0 階) とベクトル (1 階) を一般化した高階の量。成分が複数の添字を持ちます。	$T_{ij},$ または $\mathbf{A}\otimes\mathbf{B}$
ノルム	ベクトルや状態の「長さ」を示す量。量 子力学では状態の規格化条件として重要 です。	$\ \mathbf{A}\ = \sqrt{\mathbf{A} \cdot \mathbf{A}}, \ \ket{\psi}\ = \sqrt{\langle \psi \psi \rangle}$
ネイピア数	$e \approx 2.718$ と呼ばれる超越数。連続的な成長や減衰を表す微分方程式の解として現れます。	$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$
ネイピア数の微分	指数関数 e^x は、微分しても形が変わらないという特別な性質を持ちます。これは、自然界の成長・減衰現象の基本です。	$\frac{d}{dx}e^x = e^x$
自然対数	ネイピア数 e を底とする対数 $\log_e x$ (通常 $\ln x$ と表記)のこと。指数関数の逆関数であり、連続的な変化の時間を求めるときなどに使われます。	$\ln x = \log_e x$
オイラーの公式	複素指数関数と三角関数(cos と sin)を 結びつける、物理学において振動や波を 扱う上で最も重要な公式。	$e^{i\theta} = \cos\theta + i\sin\theta$

用語	簡潔な解説	数式表現
一次独立	ベクトルの組 $\{ \psi_i\rangle\}$ の線形結合がゼロとなるのが、係数 c_i がすべてゼロの場合に限られること。	$\sum_i c_i \ket{\psi_i} = 0 \implies c_i = 0 \ ($ すべて $)$
基底	あるベクトル空間内の任意のベクトルを、 一意的に線形結合で表すことができる、 一次独立なベクトルの組。	$ \psi\rangle = \sum_{i} c_i e_i\rangle$
次元	ベクトル空間を張るために必要な、一次 独立なベクトルの最小数(基底の数) N 。	$\dim(V) = N$
エルミート演算子	自身のエルミート共役 (†) が自分自身と 等しい演算子。量子力学で物理量に対応 します。	$\hat{F}=\hat{F}^{\dagger}$
エルミート行列	自身の共役転置が自分自身と等しい行列。 固有値は必ず実数です。	$H=H^{\dagger}$
対角化	行列 H を固有ベクトル P で変換し対角 行列 Λ にすること。あるいは、演算子 \hat{F} をその固有ベクトル基底で表現したとき に行列要素が対角成分のみを持つこと。	$\Lambda = P^{-1}HP, \langle \lambda_i \hat{G} \lambda_j \rangle = \mu_i \delta_{ij}$
行列要素 (演算子)	演算子 \hat{F} を、基底ベクトル $\{ \lambda_i\rangle\}$ を用いて行列表示したときの i 行 j 列の成分 g_{ij} の定義。	$f_{ij} = ra{\lambda_i} \hat{F} \ket{\lambda_j}$
交換子 $[\hat{F},\hat{G}]$	2 つの演算子の作用順序を交換したときの差を表します。	$[\hat{F},\hat{G}]=\hat{F}\hat{G}-\hat{G}\hat{F}$
交換	交換子がゼロになること。対応する物理 量が同時に正確に測定可能です。	$[\hat{F},\hat{G}] = 0$
固有値方程式	演算子 \hat{F} が固有ベクトル $ \psi\rangle$ に作用すると、固有値 λ 倍される関係。	$\hat{F}\ket{\psi} = \lambda \ket{\psi}$
スペクトル分解	演算子 \hat{F} を、固有値 λ_i と射影演算子 $ \psi_i angle\langle\psi_i $ を用いて表現する形式。	$\hat{F} = \sum_{i=1}^{n} \lambda_i \psi_i\rangle \langle \psi_i $

用語	簡潔な解説	数式表現
完全性関係	固有ベクトル $\{ \lambda_i\rangle\}$ が正規直交基底をなすとき、すべての固有状態の和は恒等演算子 \hat{I} になります。	$\hat{I} = \sum_{i=1}^{n} \lambda_i\rangle \langle \lambda_i $
内積	2 つの状態 $ \phi\rangle$, $ \psi\rangle$ からスカラー値を得る演算。直交性やノルム(長さ)を定義します。	$\langle \phi \psi \rangle = \int \phi^*(\mathbf{r}) \psi(\mathbf{r}) d\tau$
外積 (ケット・ブラ)	状態 $ \psi\rangle$ から $ \phi\rangle$ への射影演算子(またはその要素)を構成します。	$\hat{P} = \psi\rangle\langle\phi $
ベクトル積	3 次元ベクトル A と B から、両者に垂 直な新しいベクトル C を返す演算。	$\mathbf{A} imes \mathbf{B} = \mathbf{C}$
δ 関数	ディラックのデルタ関数。積分されたときに、任意の関数 $f(x)$ の特定点での値を取り出します。	$\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(a)$
クロネッカーの δ	2つの離散的な添字 i と j が等しいときに 1 、等しくないときに 0 となる関数。ベクトルの直交性を示す。	$\delta_{ij} = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$
正規直交基底	互いに直交し(内積が 0)、かつ長さが 1 (内積が 1)のベクトルの組 $\{ e_i\rangle\}$ 。	$\langle e_i e_j \rangle = \delta_{ij}, \delta_{ij} = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$
確率振幅	状態 $ \psi\rangle$ を、観測量 \hat{F} の固有状態 $ \lambda_i\rangle$ に射影した成分。その絶対値の 2 乗が確率となる。	$c_i = \langle \lambda_i \psi angle$
確率	物理量 \hat{F} を観測したとき、特定の固有値 λ_i が得られる可能性の度合い(ボルンの 規則)。	$P_i = \left\langle \lambda_i \psi \right\rangle ^2$
観測量	測定によって得られる物理的な量(エネルギー、運動量など)。必ずエルミート演算子 \hat{F} に対応する。	$\hat{F}=\hat{F}^{\dagger}$