# Math 42 Project: NBA Season Prediction Model

# Casey Tattersall, Taylor McAdams, William Sun12/4/2022

# Contents

| 1 | Intr | roduction                                             | 2  |
|---|------|-------------------------------------------------------|----|
|   | 1.1  | Project Background                                    | 2  |
|   | 1.2  | Data Gathering                                        |    |
| 2 | Met  | thodology                                             | 3  |
|   | 2.1  | Exploratory Data Analysis                             | 3  |
|   |      | 2.1.1 Example: Net Rating                             |    |
|   | 2.2  | Model Development                                     |    |
|   |      | 2.2.1 Statistic 1: Net Rating                         |    |
|   |      | 2.2.2 Statistic 2: Defensive EFG%                     |    |
|   |      | 2.2.3 Statistic 3: 3-Point Percentage                 |    |
|   |      | 2.2.4 Statistic 4: Assist/Turnover Ratio              |    |
|   |      | 2.2.5 Statistic 5: Avg. Corner 3-Point Shots Per Game |    |
|   |      | 2.2.6 Generating Team Score                           |    |
| 3 | Disc | cussion of the Results                                | 9  |
|   | 3.1  | 2021-22 Season (Original Data)                        | 9  |
|   | 3.2  | 2018-19 Season                                        |    |
|   | 3.3  | 2019-20 Season                                        |    |
|   | 3.4  | 2020-21 Season                                        |    |
|   | 3.5  | Current 2022-23 Season: First 20 Games                |    |
| 4 | Cor  | nclusion                                              | 17 |
| 5 | Ref  | erences                                               | 17 |

# 1 Introduction

# 1.1 Project Background

Over the course of the long regular seasons in sports leagues like the NBA, fans and sportswriters have always loved to pass the time by ranking all of the league's teams from best to worst (and then arguing over each other's rankings). In the past, these rankings only used rudimentary statistics, and were instead heavily based on the writer's personal opinions for each team (using the so-called "eye test" as justification). In recent years, however, the invention of many new advanced statistics and the collection of massive amounts of data has allowed for a new ranking strategy to emerge: a mathematical model that can use all of this data to objectively rank the league's teams, free from any human bias - in theory, at least.

One example of a modeling-based approach to ranking teams that we used as inspiration for this project is FiveThirtyEight's NBA rankings model. They have made a name for themselves in recent years by producing incredibly accurate predictions and foreseeing the rise of underrated teams far before the general public. While their modeling structure is far beyond the scope of this project (using head-to-head matchup data for their ELO model and detailed individual player statistics for their RAP-TOR player rating model), we found this subject very interesting, and decided to pursue it for our project.

FiveThirtyEight's predictions for the current NBA season using their ELO model:

|                   |                 |                    |            | REGULAR SEASON              |                 |                       |                                 | PLAYOFFS                    |                            |                          |  |
|-------------------|-----------------|--------------------|------------|-----------------------------|-----------------|-----------------------|---------------------------------|-----------------------------|----------------------------|--------------------------|--|
| CURRENT<br>RATING |                 | TEAM               | CONFERENCE | FULL-<br>STRENGTH<br>RATING | PROJ.<br>RECORD | PROJ. POINT<br>DIFF/G | CHANCE OF<br>MAKING<br>PLAYOFFS | FULL-<br>STRENGTH<br>RATING | CHANCE OF<br>MAKING FINALS | CHANCE OF WINNING FINALS |  |
| 1691              |                 | Celtics 17-4       | East       | 1717                        | 61-21           | +7.3                  | >99%                            | 1749                        | 44%                        | 30%                      |  |
| 1582              | <b>F</b>        | Grizzlies 12-8     | West       | 1666                        | 53-29           | +4.1                  | 98%                             | 1695                        | 28%                        | 13%                      |  |
| 1620              | Ŷ               | Bucks 14-5         | East       | 1658                        | 53-29           | +4.1                  | 97%                             | 1688                        | 19%                        | 11%                      |  |
| 1573              | ø               | Suns 14-8          | West       | 1652                        | 52-30           | +4.5                  | 97%                             | 1678                        | 22%                        | 10%                      |  |
| 1578              | ္<br><b>7</b> 6 | <b>76ers</b> 12-9  | East       | 1639                        | 50-32           | +3.6                  | 92%                             | 1682                        | 14%                        | 8%                       |  |
| 1583              |                 | Nuggets 13-7       | West       | 1617                        | 52-30           | +3.3                  | 96%                             | 1654                        | 16%                        | 6%                       |  |
| 1584              |                 | Warriors 11-10     | West       | 1616                        | 47 - 35         | +2.3                  | 87%                             | 1654                        | 13%                        | 5%                       |  |
| 1499              | *               | Heat 10-11         | East       | 1612                        | 46-36           | +1.9                  | 79%                             | 1643                        | 7%                         | 3%                       |  |
| 1588              | 7               | Raptors 11-9       | East       | 1616                        | 48-34           | +2.8                  | 86%                             | 1624                        | 6%                         | 3%                       |  |
| 1560              |                 | Pelicans 12-8      | West       | 1589                        | 48-34           | +3.0                  | 86%                             | 1606                        | 7%                         | 2%                       |  |
| 1581              |                 | Mavericks 9-10     | West       | 1586                        | 45-37           | +2.1                  | 76%                             | 1604                        | 6%                         | 2%                       |  |
| 1534              | C               | Cavaliers 13-8     | East       | 1581                        | 48-34           | +3.0                  | 83%                             | 1599                        | 4%                         | 1%                       |  |
| 1432              |                 | Clippers 12-9      | West       | 1568                        | 42-40           | -0.1                  | 64%                             | 1596                        | 4%                         | 1%                       |  |
| 1556              |                 | Nets 11-11         | East       | 1566                        | 43-39           | +1.0                  | 62%                             | 1598                        | 3%                         | 1%                       |  |
| 1548              | 2               | Hawks 11-10        | East       | 1567                        | 44-38           | +0.9                  | 67%                             | 1580                        | 2%                         | 0.8%                     |  |
| 1511              |                 | Timberwolves 10-11 | West       | 1532                        | 40-42           | -0.6                  | 45%                             | 1539                        | 1%                         | 0.3%                     |  |

For our project, we decided to create a simplified version of this model using team-wide statistics to predict what will happen in the current 2022-23 NBA season, which was about 25% complete at the conclusion of our project. To accomplish this, we decided to build a dataset containing a wide variety of statistics and choose a handful that had a moderate to strong correlation with winning (using linear regression models). Then, we would develop a formula that weighted all of these statistics and output a number that would represent the expected number of wins for that team in a full season (either 82 or 72 games, depending on the year).

# 1.2 Data Gathering

One unique advantage to conducting a data science project in the world of sports is the relatively easy access to extensive cleaned datasets. For our project, we used <code>basketball-reference.com</code> for all of our data. As a free source, it doesn't provide many of the cutting-edge aggregate statistics used in more advanced models, but it will work fine for our purposes.

For each of the five seasons that we analysed (from 2018 to 2022), we downloaded the data we needed into an Excel spreadsheet, and after some modifications there, we imported it into Python for further analysis:

| 4]: d | df_2021.head() |                      |                    |      |    |    |      |      |            |      |      |  |            |            |            |               |      |               |                |                |          |                          |
|-------|----------------|----------------------|--------------------|------|----|----|------|------|------------|------|------|--|------------|------------|------------|---------------|------|---------------|----------------|----------------|----------|--------------------------|
| 1]:   |                | TEAM                 | PLAYOFF\$          | AGE  | w  | L  | FG   | FGA  | FG<br>RATE | 3P   | ЗРА  |  | DEF<br>EFG | DEF<br>TOV | DEF<br>DRB | DEF<br>FT/FGA | DIST | LAYUP<br>FREQ | CORNER<br>FREQ | CORNER<br>RATE | AST/TOV  | Corne<br>3-pt Pe<br>Game |
| (     | 0              | Atlanta<br>Hawks     | Made<br>Playoffs   | 26.1 | 43 | 39 | 41.5 | 88.3 | 0.470      | 12.9 | 34.4 |  | 0.543      | 11.5       | 76.9       | 0.177         | 14.5 | 0.293         | 0.221          | 0.426          | 2.067227 | 3.23862                  |
|       | 1              | Boston<br>Celtics    | Made Final<br>Four | 26.1 | 51 | 31 | 40.7 | 87.4 | 0.466      | 13.2 | 37.1 |  | 0.502      | 12.5       | 77.3       | 0.183         | 14.8 | 0.334         | 0.231          | 0.389          | 1.823529 | 3.33376                  |
| :     | 2              | Brooklyn<br>Nets     | Made<br>Playoffs   | 29.1 | 44 | 38 | 42.0 | 88.4 | 0.475      | 11.5 | 31.7 |  | 0.521      | 11.7       | 75.1       | 0.201         | 13.9 | 0.304         | 0.235          | 0.393          | 1.794326 | 2.92765                  |
| ;     | 3              | Charlotte<br>Hornets | Missed<br>Playoffs | 25.5 | 43 | 39 | 42.8 | 91.4 | 0.468      | 13.9 | 38.2 |  | 0.544      | 13.1       | 74.8       | 0.187         | 13.8 | 0.297         | 0.273          | 0.418          | 2.112782 | 4.35915                  |
|       | 4              | Chicago<br>Bulls     | Made<br>Playoffs   | 26.3 | 46 | 36 | 41.7 | 86.9 | 0.480      | 10.6 | 28.8 |  | 0.541      | 11.9       | 78.3       | 0.199         | 13.9 | 0.364         | 0.287          | 0.372          | 1.867187 | 3.07480                  |

# 2 Methodology

# 2.1 Exploratory Data Analysis

The first step in our project was to conduct exploratory data analysis on the various statistics in our dataset. We decided to use data from the most recent complete full season (2021-22) for this section.

For each statistic, we created a scatterplot with the stat on the x-axis and each team's total wins on the y-axis, fit a linear regression model to the data, and calculated the  $r^2$  value. We were able to speed up this process using the following python script and looping over all columns in the dataset:

```
In [7]: # Function to make scatterplot and generate regression line and r^2 value given dataframe and statistic column
        def test_statistic(df, stat, figsize = (8, 5), y = "W", playoffs = "PLAYOFFS", s = 50,
                            title = 'Default', xlabel = 'Default', ylabel = 'Default'):
            if title == 'Default':
                 title = f'{stat} effect on Wins'
             if xlabel == 'Default':
                 xlabel = stat
            if ylabel == 'Default':
    ylabel = 'Wins'
            plt.figure(figsize = figsize)
             scatter = sns.scatterplot(x = stat, y = y, data = df, hue = playoffs, palette = colors, s = s)
             scatter.set(title = title, xlabel = xlabel, ylabel = ylabel)
             x = df[stat].values.reshape(-1, 1)
            y = df[y].values
model = LinearRegression().fit(x, y)
            plt.plot(x, model.predict(x), color = 'black', alpha = 0.6)
             r_2 = r2_score(y, model.predict(x))
            r2_dict[stat] = r_2
            plt.show()
            print(f'R-squared: {r_2}')
```

All graphs seen throughout this paper will either use this exact function, or a modified version of it. It is easy to see the general trend for each statistic in regards to wins, and one can also use the color scheme to see how the season's most successful teams (in regards to playoff success) performed. This

difference between regular season wins and playoff success will be touched on later.

From here, we then began to create some new statistics by combining existing ones to try to find stronger correlations, an example of which can be seen in the following section.

#### 2.1.1 Example: Net Rating

While the vast majority of statistics that we analysed had little to no correlation with winning, one stood out far above the rest: net rating (NRTG). This statistic is calculated by finding the difference between two statistics in our dataset: offensive rating (ORTG), and defensive rating (DRTG).

Offensive rating represents the average number of points a team scores per 100 possessions (higher is better). This had a pretty strong correlation with winning, with an  $r^2$  value of 0.639:



R-squared: 0.6389571497748235

Defensive rating represents the average number of points a team allows per 100 possessions (lower is better). This also had a pretty strong correlation with winning, with an  $r^2$  value of 0.593:



R-squared: 0.5929527875025281

However, these numbers could be improved significantly by looking at net rating (ORTG - DRTG). Intuitively, this works because a team may be very good at offense (and has a great ORTG), but if they're very bad at defense (and has an awful DRTG), they still won't win a lot of games. However, if a team has a good net rating, then they must have a good offense and good defense. This can be seen with a much stronger  $r^2$  value of 0.895:



R-squared: 0.8946227362831126

Net rating is such a strong predictor of a team's success that we decided to use it as the foundation of our model, and the majority of a team's score will be calculated from their NRTG.

# 2.2 Model Development

After repeating the previous steps for nearly 100 different statistics, we chose 5 to build our model around. In this section, we will go over each of the five statistics, and discuss why they were chosen and how much they will be weighted in the model.

#### 2.2.1 Statistic 1: Net Rating

Model Weight: 70%

As seen previously, Net Rating is an extremely strong predictor of a team's success. We decided that a weight of 70% was best for our model, as it will provide a strong baseline for each team's score, but won't dominate the model too much. With the remaining 30%, we can use other statistics to develop a stronger correlation with winning than NRTG does by itself.

#### 2.2.2 Statistic 2: Defensive EFG%

Model Weight: 13%

Along with the DRTG half of NRTG, Defensive EFG% is the only other defensive statistic in our model. This stat represents how well opposing teams shoot against the team's defense, adjusting for the difficulty of the shot (for example, making a 3-pointer increases the percentage more than making a 2-pointer would.

Since the statistic is a percentage of how many shots are made against our team, a lower score is better.

In 2021-22, Defensive EFG% had a moderate correlation with winning, with an  $r^2$  value of 0.428:



R-squared: 0.42811115977657477

#### 2.2.3 Statistic 3: 3-Point Percentage

Model Weight: 11%

3-Point Percentage refers to the percentage of three point shots a team makes. While this is by far the simplest statistic included in our model, we found that it had a surprisingly high correlation with winning.

While a great individual player can shoot over 40% from 3, it is incredibly rare for an entire team to shoot anywhere close to that high. Additionally, as 3-pointers have become a greater focus of the modern game, team 3-point percentages have significantly increased over the years.

In 2021-22, 3-Point Percentage had a moderate correlation with winning, with an  $r^2$  value of 0.480:



R-squared: 0.48007715010468777

#### 2.2.4 Statistic 4: Assist/Turnover Ratio

Model Weight: 4%

Assist/Turnover Ratio refers to the number of team assists per turnover. Since an assist comes as a result of a good pass, and a turnover often comes as a result of a bad pass, the AST/TOV ratio is known

as a good estimate for how good a team is at passing.

Interestingly enough, assists and turnovers alone didn't have a very strong correlation to winning, with  $r^2$  values of 0.125 and 0.207 respectively:



R-squared: 0.12462828425935257



R-squared: 0.20709105774634007

However, when combining the two into a ratio, the  $r^2$  value increases to represent a weak to moderate correlation of 0.300:



R-squared: 0.30012218167053795

By taking magnitude out of the equation and looking at this data as a ratio, we were able to find a stronger correlation with winning. It appears that a team's passing efficiency (good passes per bad pass) is a better predictor of success than a team's passing frequency (total number of good passes).

#### 2.2.5 Statistic 5: Avg. Corner 3-Point Shots Per Game

#### Model Weight: 2%

One shot at the forefront of modern data analytics in the NBA is the corner 3-pointer. Due to the shape of the court, this shot is slightly shorter than a normal 3-pointer (and therefore easier to make), but still rewards the team with three points when made. From a mathematical standpoint, no shot is more desirable than a proficient shooter taking an open corner 3-pointer, outside of an open dunk or layup.

While many teams are still stuck in the past, a few have begun emphasizing this shot in their game plans, designing plays to generate open corner threes and even signing players to focus entirely on shooting corner 3s and playing defense. This can be seen in the graph below, as while there isn't a very strong correlation with winning ( $r^2 = 0.35$ ), a few teams shoot more corner 3s than everyone else - and all of them are incredibly successful at the moment. For this reason, we decided to give a small bonus to teams that shot a lot of corner 3s in our model.



R-squared: 0.35018765881148994

#### 2.2.6 Generating Team Score

Using these five statistics, it's now time to calculate each team's score. To do this, we use the following formula:

$$0.70*\frac{NRTG+12.5}{25}+0.13*\frac{DEFEFG-0.5}{0.06}+0.11*\frac{3PRATE-0.31}{0.07}+\\0.04*\frac{AST/TOV-1.5}{0.6}+0.02*\frac{CORNER3/G-2.5}{1.5}$$

The formula assigns each team a score between 0 and 1 for each of the five statistics by finding where it fell on the range of scores over the past five seasons in a linear normalization. For example, NRTG tends to be distributed between -12.5 and +12.5 (with most teams near the middle of that range), so a team with a NRTG of 0 would receive a NRTG score of 0.5.

Then, each statistic score was multiplied by the model weight of that statistic, and all of this was added together. Continuing the previous example, since NRTG had a weight of 0.7, a team with a NRTG of 0 would contribute 0.35 to its final score from NRTG alone.

We then multiplied each team's score, which is roughly distributed between 0 and 1, by the number of games in a season (which is 82 in a normal season, but was 72 in the covid-shortened seasons of 2019-20 and 2020-21) to get an estimated number of wins for each team.

# 3 Discussion of the Results

# 3.1 2021-22 Season (Original Data)

After constructing the model, we began by testing it on the 2021-22 season, using the same data that we conducted our EDA on. This generated the following results:



R-squared: 0.894503871749798

| Team                   | Wins | Rank | Score   | Modeled Rank | Difference |
|------------------------|------|------|---------|--------------|------------|
| Phoenix Suns           | 64   | 1    | 65.9608 | 1            | 1.9608     |
| Memphis Grizzlies      | 56   | 2    | 56.5062 | 6            | 0.5062     |
| Golden State Warriors  | 53   | 3    | 59.7124 | 3            | 6.7124     |
| Miami Heat             | 53   | 3    | 58.0478 | 5            | 5.0478     |
| Dallas Mavericks       | 52   | 5    | 52.1356 | 7            | 0.1356     |
| Boston Celtics         | 51   | 6    | 64.8702 | 2            | 13.8702    |
| Philadelphia 76ers     | 51   | 6    | 51.0122 | 8            | 0.0122     |
| Milwaukee Bucks        | 51   | 6    | 50.5448 | 9            | -0.4552    |
| Utah Jazz              | 49   | 9    | 58.1708 | 4            | 9.1708     |
| Toronto Raptors        | 48   | 10   | 46.0348 | 16           | -1.9652    |
| Denver Nuggets         | 48   | 10   | 47.3550 | 13           | -0.6450    |
| Chicago Bulls          | 46   | 12   | 41.3608 | 20           | -4.6392    |
| Minnesota Timberwolves | 46   | 12   | 48.1914 | 10           | 2.1914     |
| Brooklyn Nets          | 44   | 14   | 46.1332 | 15           | 2.1332     |
| Cleveland Cavaliers    | 44   | 14   | 48.0766 | 11           | 4.0766     |
| Atlanta Hawks          | 43   | 16   | 47.5190 | 12           | 4.5190     |
| Charlotte Hornets      | 43   | 16   | 44.9688 | 17           | 1.9688     |
| Los Angeles Clippers   | 42   | 18   | 47.0024 | 14           | 5.0024     |
| New York Knicks        | 37   | 19   | 42.9680 | 19           | 5.9680     |
| New Orleans Pelicans   | 36   | 20   | 33.3986 | 21           | -2.6014    |
| Washington Wizards     | 35   | 21   | 33.3248 | 22           | -1.6752    |
| San Antonio Spurs      | 34   | 22   | 43.3534 | 18           | 9.3534     |
| Los Angeles Lakers     | 33   | 23   | 31.4716 | 23           | -1.5284    |
| Sacramento Kings       | 30   | 24   | 23.6324 | 25           | -6.3676    |
| Portland Trail Blazers | 27   | 25   | 13.3906 | 30           | -13.6094   |
| Indiana Pacers         | 25   | 26   | 28.8968 | 24           | 3.8968     |
| Oklahoma City Thunder  | 24   | 27   | 17.0560 | 28           | -6.9440    |
| Detroit Pistons        | 23   | 28   | 18.0154 | 27           | -4.9846    |
| Orlando Magic          | 22   | 29   | 19.2946 | 26           | -2.7054    |
| Houston Rockets        | 20   | 30   | 15.2028 | 29           | -4.7972    |

While the correlation between our model's score and regular season wins was about what we expected  $(r^2 = 0.895)$ , there were a few interesting things we noted.

First, our model overrated all of the teams that made deep playoff runs to the conference finals (the last four teams in the playoffs) including the Celtics (+13.9, by far the biggest positive outlier) and the Warriors (+6.7).

Since many teams don't try their hardest to win every regular season game, but give everything they have to win in the playoffs, an argument can be made that regular season wins is just another statistic that can be used to estimate how good a team is. This suggests that our model could be better at finding the best teams than regular season wins alone, but further analysis would need to be done to confirm that.

#### 3.2 2018-19 Season

The 2018-2019 season provided the best results out of all the seasons we studied, with a correlation of 0.958 between wins and model predicted wins. Nearly all playoff teams were correctly predicted, and the league's best teams again set themselves apart.



R-squared: 0.9580910796022633

|    | Team                    | Wins | Rank | Score   | Modeled Rank | Difference |
|----|-------------------------|------|------|---------|--------------|------------|
| 16 | Milwaukee Bucks*        | 60   | 1    | 66.5184 | 1            | 6.5184     |
| 27 | Toronto Raptors*        | 58   | 2    | 62.0658 | 3            | 4.0658     |
| 9  | Golden State Warriors*  | 57   | 3    | 65.7312 | 2            | 8.7312     |
| 7  | Denver Nuggets*         | 54   | 4    | 53.1688 | 8            | -0.8312    |
| 24 | Portland Trail Blazers* | 53   | 5    | 52.5046 | 9            | -0.4954    |
| 10 | Houston Rockets*        | 53   | 5    | 54.1528 | 7            | 1.1528     |
| 22 | Philadelphia 76ers*     | 51   | 7    | 50.6104 | 11           | -0.3896    |
| 28 | Utah Jazz*              | 50   | 8    | 58.3348 | 4            | 8.3348     |
| 1  | Boston Celtics*         | 49   | 9    | 57.0064 | 5            | 8.0064     |
| 20 | Oklahoma City Thunder*  | 49   | 9    | 49.3804 | 13           | 0.3804     |
| 12 | Los Angeles Clippers*   | 48   | 11   | 49.4952 | 12           | 1.4952     |
| 11 | Indiana Pacers*         | 48   | 11   | 54.7104 | 6            | 6.7104     |
| 26 | San Antonio Spurs*      | 48   | 11   | 51.4304 | 10           | 3.4304     |
| 2  | Brooklyn Nets*          | 42   | 14   | 42.9598 | 16           | 0.9598     |
| 21 | Orlando Magic*          | 42   | 14   | 46.6662 | 14           | 4.6662     |
| 8  | Detroit Pistons*        | 41   | 16   | 40.7786 | 18           | -0.2214    |
| 15 | Miami Heat              | 39   | 17   | 43.4682 | 15           | 4.4682     |
| 3  | Charlotte Hornets       | 39   | 17   | 38.0972 | 19           | -0.9028    |
| 25 | Sacramento Kings        | 39   | 17   | 41.7052 | 17           | 2.7052     |
| 13 | Los Angeles Lakers      | 37   | 20   | 36.0308 | 23           | -0.9692    |
| 17 | Minnesota Timberwolves  | 36   | 21   | 36.4408 | 22           | 0.4408     |
| 6  | Dallas Mavericks        | 33   | 22   | 37.4084 | 20           | 4.4084     |
| 18 | New Orleans Pelicans    | 33   | 22   | 36.7360 | 21           | 3.7360     |
| 14 | Memphis Grizzlies       | 33   | 22   | 34.6286 | 24           | 1.6286     |
| 29 | Washington Wizards      | 32   | 25   | 30.7910 | 25           | -1.2090    |
| 0  | Atlanta Hawks           | 29   | 26   | 25.4364 | 26           | -3.5636    |
| 4  | Chicago Bulls           | 22   | 27   | 17.9498 | 27           | -4.0502    |
| 5  | Cleveland Cavaliers     | 19   | 28   | 10.8650 | 30           | -8.1350    |
| 23 | Phoenix Suns            | 19   | 28   | 12.6444 | 29           | -6.3556    |
| 19 | New York Knicks         | 17   | 30   | 14.9896 | 28           | -2.0104    |

# 3.3 2019-20 Season

The 2019-20 season was an interesting one. This was the first of two shortened seasons caused by the Covid-19 Pandemic, with only 72 regular season games played. Additionally, this year's playoffs were played in a "bubble" with no fans in attendance, leading to many fascinating statistical outliers. One of these was the fact that many teams shot the ball far more efficiently than they had in the past, likely due to not having to deal with crowd noise during games and travel-related distractions between games.

The Los Angeles Lakers won the finals this year despite our model only ranking them 6th - the lowest ranking of any champion that we studied. One reason for this is that the Lakers weren't a great defensive or 3-point shooting team during the regular season (34.9%), which our model didn't like, but they improved significantly in the playoffs, especially from their star players.



R-squared: 0.9200875384236137

|    | Team                    | Wins | Rank | Score   | Modeled Rank | Difference |
|----|-------------------------|------|------|---------|--------------|------------|
| 16 | Milwaukee Bucks*        | 56   | 1    | 62.1216 | 1            | 6.1216     |
| 27 | Toronto Raptors*        | 53   | 2    | 55.2816 | 2            | 2.2816     |
| 13 | Los Angeles Lakers*     | 52   | 3    | 49.7592 | 6            | -2.2408    |
| 12 | Los Angeles Clippers*   | 49   | 4    | 54.6408 | 3            | 5.6408     |
| 1  | Boston Celtics*         | 48   | 5    | 52.7328 | 4            | 4.7328     |
| 7  | Denver Nuggets*         | 46   | 6    | 41.3064 | 11           | -4.6936    |
| 11 | Indiana Pacers*         | 45   | 7    | 45.1440 | 9            | 0.1440     |
| 10 | Houston Rockets*        | 44   | 8    | 41.1264 | 12           | -2.8736    |
| 15 | Miami Heat*             | 44   | 8    | 46.6056 | 7            | 2.6056     |
| 28 | Utah Jazz*              | 44   | 8    | 45.5472 | 8            | 1.5472     |
| 20 | Oklahoma City Thunder*  | 44   | 8    | 40.8672 | 13           | -3.1328    |
| 6  | Dallas Mavericks*       | 43   | 12   | 50.1768 | 5            | 7.1768     |
| 22 | Philadelphia 76ers*     | 43   | 12   | 43.7112 | 10           | 0.7112     |
| 24 | Portland Trail Blazers* | 35   | 14   | 35.9136 | 16           | 0.9136     |
| 2  | Brooklyn Nets*          | 35   | 14   | 36.3240 | 15           | 1.3240     |
| 23 | Phoenix Suns            | 34   | 16   | 36.5040 | 14           | 2.5040     |
| 14 | Memphis Grizzlies       | 34   | 16   | 34.4880 | 19           | 0.4880     |
| 21 | Orlando Magic*          | 33   | 18   | 31.9032 | 20           | -1.0968    |
| 26 | San Antonio Spurs       | 32   | 19   | 35.3232 | 18           | 3.3232     |
| 25 | Sacramento Kings        | 31   | 20   | 30.9816 | 21           | -0.0184    |
| 18 | New Orleans Pelicans    | 30   | 21   | 35.5032 | 17           | 5.5032     |
| 29 | Washington Wizards      | 25   | 22   | 23.6736 | 24           | -1.3264    |
| 3  | Charlotte Hornets       | 23   | 23   | 18.8856 | 26           | -4.1144    |
| 4  | Chicago Bulls           | 22   | 24   | 25.8840 | 23           | 3.8840     |
| 19 | New York Knicks         | 21   | 25   | 18.0360 | 27           | -2.9640    |
| 8  | Detroit Pistons         | 20   | 26   | 28.8648 | 22           | 8.8648     |
| 0  | Atlanta Hawks           | 20   | 26   | 15.0408 | 28           | -4.9592    |
| 17 | Minnesota Timberwolves  | 19   | 28   | 22.9320 | 25           | 3.9320     |
| 5  | Cleveland Cavaliers     | 19   | 28   | 13.3272 | 29           | -5.6728    |
| 9  | Golden State Warriors   | 15   | 30   | 12.4992 | 30           | -2.5008    |

# 3.4 2020-21 Season

Nothing too special happened in the 2020-21 season regarding our analysis. While the correlation between wins and model predicted wins wasn't as strong as the previous two years, nearly all playoff teams were still predicted correctly.

In fact, the only incorrect playoff prediction was the Golden State Warriors, who received a high score from our model (predicted 42.99 wins, actual 39 wins) likely due to our model recognizing their exceptional 3-point shooting ability, but failing to recognize all of the team's weaknesses.



R-squared: 0.8833750678771104

|    | Team                    | Wins | Rank | Score   | Modeled Rank | Difference |
|----|-------------------------|------|------|---------|--------------|------------|
| 28 | Utah Jazz*              | 52   | 1    | 63.8424 | 1            | 11.8424    |
| 23 | Phoenix Suns*           | 51   | 2    | 53.3520 | 3            | 2.3520     |
| 22 | Philadelphia 76ers*     | 49   | 3    | 51.2208 | 5            | 2.2208     |
| 2  | Brooklyn Nets*          | 48   | 4    | 51.0984 | 6            | 3.0984     |
| 7  | Denver Nuggets*         | 47   | 5    | 48.2472 | 8            | 1.2472     |
| 12 | Los Angeles Clippers*   | 47   | 5    | 57.5568 | 2            | 10.5568    |
| 16 | Milwaukee Bucks*        | 46   | 7    | 51.9192 | 4            | 5.9192     |
| 24 | Portland Trail Blazers* | 42   | 8    | 41.5440 | 13           | -0.4560    |
| 6  | Dallas Mavericks*       | 42   | 8    | 42.2280 | 11           | 0.2280     |
| 13 | Los Angeles Lakers*     | 42   | 8    | 42.0912 | 12           | 0.0912     |
| 0  | Atlanta Hawks*          | 41   | 11   | 43.6608 | 9            | 2.6608     |
| 19 | New York Knicks*        | 41   | 11   | 49.0752 | 7            | 8.0752     |
| 15 | Miami Heat*             | 40   | 13   | 35.8344 | 18           | -4.1656    |
| 9  | Golden State Warriors   | 39   | 14   | 42.9912 | 10           | 3.9912     |
| 14 | Memphis Grizzlies*      | 38   | 15   | 39.3840 | 15           | 1.3840     |
| 1  | Boston Celtics*         | 36   | 16   | 39.7296 | 14           | 3.7296     |
| 11 | Indiana Pacers          | 34   | 17   | 38.8440 | 16           | 4.8440     |
| 29 | Washington Wizards*     | 34   | 17   | 30.7872 | 23           | -3.2128    |
| 3  | Charlotte Hornets       | 33   | 19   | 31.9896 | 20           | -1.0104    |
| 26 | San Antonio Spurs       | 33   | 19   | 31.7880 | 21           | -1.2120    |
| 18 | New Orleans Pelicans    | 31   | 21   | 31.7736 | 22           | 0.7736     |
| 4  | Chicago Bulls           | 31   | 21   | 35.7768 | 19           | 4.7768     |
| 25 | Sacramento Kings        | 31   | 21   | 26.8992 | 24           | -4.1008    |
| 27 | Toronto Raptors         | 27   | 24   | 35.8632 | 17           | 8.8632     |
| 17 | Minnesota Timberwolves  | 23   | 25   | 20.8728 | 26           | -2.1272    |
| 5  | Cleveland Cavaliers     | 22   | 26   | 11.5488 | 29           | -10.4512   |
| 20 | Oklahoma City Thunder   | 22   | 26   | 8.6760  | 30           | -13.3240   |
| 21 | Orlando Magic           | 21   | 28   | 12.2184 | 28           | -8.7816    |
| 8  | Detroit Pistons         | 20   | 29   | 24.4728 | 25           | 4.4728     |
| 10 | Houston Rockets         | 17   | 30   | 14.6376 | 27           | -2.3624    |

# 3.5 Current 2022-23 Season: First 20 Games

Now, what we've all been waiting for: what will the model predict for the current NBA season?

At the time of writing, each team has played approximately 20 out of their 82 games, so the data we'll be working with is a bit limited. Plenty of weak teams get off to strong starts before falling off later in the season, while plenty of strong teams start off slowly before figuring everything out. Additionally, many mediocre to bad teams will realize that they aren't going to go on a deep playoff run as the season continues, causing them to start "tanking" (trading away their good players and losing on purpose to secure a higher draft pick the following year). Since our model can't predict that, we have to interpret the results while knowing which teams are decent now, but could start tank later in the year (such as the Pacers, Jazz, and Thunder).

Our model predicted the following final standings for the Eastern Conference:

| TEAM                | REC   | PCT   |
|---------------------|-------|-------|
| Boston Celtics      | 66-16 | 0.805 |
| Cleveland Cavaliers | 61-21 | 0.744 |
| Milwaukee Bucks     | 54-28 | 0.659 |
| Philadelphia 76ers  | 54-28 | 0.659 |
| Brooklyn Nets       | 48-34 | 0.585 |
| Indiana Pacers      | 44-38 | 0.537 |
| Chicago Bulls       | 39-43 | 0.476 |
| Atlanta Hawks       | 38-44 | 0.463 |
| Toronto Raptors     | 37-45 | 0.451 |
| Washington Wizards  | 37-45 | 0.451 |
| Miami Heat          | 35-47 | 0.427 |
| New York Knicks     | 31-51 | 0.378 |
| Charlotte Hornets   | 26-56 | 0.317 |
| Orlando Magic       | 21-61 | 0.256 |
| Detroit Pistons     | 17-65 | 0.207 |

#### And the Western Conference:

| TEAM                   | REC   | PCT   |
|------------------------|-------|-------|
| Phoenix Suns           | 64-18 | 0.780 |
| New Orleans Pelicans   | 56-26 | 0.683 |
| Utah Jazz              | 46-36 | 0.561 |
| Golden State Warriors  | 45-37 | 0.549 |
| Memphis Grizzlies      | 44-38 | 0.537 |
| Denver Nuggets         | 44-38 | 0.537 |
| Dallas Mavericks       | 43-39 | 0.524 |
| Sacramento Kings       | 42-40 | 0.512 |
| Los Angeles Clippers   | 42-40 | 0.512 |
| Portland Trail Blazers | 39-43 | 0.476 |
| Minnesota Timberwolves | 36-46 | 0.439 |
| Oklahoma City Thunder  | 35-47 | 0.427 |
| Los Angeles Lakers     | 31-51 | 0.378 |
| Houston Rockets        | 21-61 | 0.256 |
| San Antonio Spurs      | 8-64  | 0.098 |

The model predicts an eventual finals matchup between the Boston Celtics and Phoenix Suns, who have set themselves apart from the other 28 teams.

Additionally, it expects the San Antonio Spurs to have one of the worst seasons of any team in NBA history. Given that the Spurs started to tank well before the season even began by trading their best player to the Hawks, this prediction isn't as outlandish as it seems.

When comparing these results to the current NBA standings, we see that our model believes teams like the Warriors and Cavaliers will improve throughout the year (which makes sense, as they are strong defensive and 3-point shooting teams) while teams like the Miami Heat and Toronto Raptors will decline.

# 4 Conclusion

Overall, we are happy with how our model performed given its limited input. It is difficult to predict who will win an NBA game given only team-wide statistics, as there are so many other factors at play.

If we wanted to improve the model, we would pursue one of the following:

#### 1. Include individual statistics, not just team-wide statistics.

The modern NBA is dominated by a select few star players, especially at the end of close games. Teams that have one or two superstars and a bunch of decent players tend to be more successful than teams that have a bunch of good players, but no true star. However, since our model only looks at team statistics, it would prefer the latter team.

#### 2. Incorporate Head to Head Data

Incorporating head to head data (which teams beat which other teams) into our model would likely improve its predictions. FiveThirtyEight's ELO model is primarily focused on this data, and it has been very successful.

#### 3. Use More Advanced Statistics

As previously mentioned, we were limited to relatively simple statistics in our project. There are many advanced statistics being developed by data scientists working for teams and sportsbooks, and it would be interesting to see how our model performs using those. Unfortunately, they are not freely available online.

# 5 References

All data and information used in our project was acquired from the links below.

```
2018-19 NBA Season Data:
https://www.basketball-reference.com/leagues/NBA_2019.html
2019-20 NBA Season Data:
https://www.basketball-reference.com/leagues/NBA_2020.html
2020-21 NBA Season Data:
https://www.basketball-reference.com/leagues/NBA_2021.html
2021-22 NBA Season Data:
https://www.basketball-reference.com/leagues/NBA_2022.html
2022-23 NBA Season Data:
https://www.basketball-reference.com/leagues/NBA_2023.html
FiveThirtyEight Predictions:
https://projects.fivethirtyeight.com/2023-nba-predictions/
```

GRADESCOPE SUBMISSION NOTE: The final drafts of our datasets and EDA/analysis, in addition to our presentation slides, are included in the github repository below. Much of our preliminary analysis and unused data was not saved.

https://github.com/Kc1227/Math-42-Final-Project