

Dokumentace projektu IMP

Meteostanice

Prosinec 2022

1 Úvod

Tento dokument slouží k dokumentaci projektu IMP na téma Meteostanice. Meteostanice byla realizována na desce Wemos D1 R32 s OLED displejem SSD1306 a senzorem teploty a vlhkosti SHT-31 pomocí vývojového prostředí PlatformIO.

Pro realizaci byly využity již existující knihovny pro displej [2] i senzor [1], které obsahují funkce pro inicializaci I2C a komunikaci s jednotlivými komponenty. Knihovna pro displej byla upravena (odebrány některé funkce; konkrétně pro inicializaci a komunikaci přes rozhraní SPI) pro potřeby projektu. Mj. byly využity RTOS funkce pro vytvoření $task\mathring{u}$.

Bylo použito následující zapojení:

- D16 SDA (displej a senzor)
- D17 SCL (displej a senzor)
- 3V3 VCC (displej a senzor)
- GND (1) GND (displej)
- GND (2) GND (senzor)

Obr. 1: Zapojení senzoru a displeje (breadboard nebyl dostupný, proto bylo nutné improvizovat)

2 Implementace

Meteostanice je implementována pomocí 2 $RTOS\ task\mathring{u}$ - task pro aktualizaci hodnot vlhkosti, teploty a aktualizace displeje a task pro změnu flagu obsahu displeje.

Každých 5 sekund je provedena aktualizace flagu pro obsah displeje. Na základě tohoto flagu je při aktualizaci hodnot zobrazena informace o teplotě nebo vlhkosti. Tato aktualizace probíhá každé 3 sekundy. Při zobrazení těchto informací je na displeji zobrazena číselná hodnota, text informující o způsobu reprezentace této číselné hodnoty (teplota/vlhkost) a ikona plnící stejnou funkčnost jako text (kapka - reprezentující vlhkost / teploměr - reprezentující teplotu).

2.1 Senzor

Se senzorem je možné komunikovat pomocí 2 módů - *Single shot* a *Periodic*. Zamýšlené použití *single shot* módu je získání informaci o teplotě/vlhkosti v nepriodických intervalech nebo v intervalech s velkou šířkou (větší než 0.5 sekund). *Periodic* mód je použit v přesně opačném případě, kdy perioda je menší než 0.5 sekund (největší jednotka meření za sekundu).

Při implementaci byl zvolen single shot mód s periodou 1 sekundy. S takovou malou periodou je možné zvolit i periodický mód. Pokud bychom však takovou meteostanici chtěli někde reálně použít, tak by bylo vhodné (dle případu užití) zvolit větší periodu, aby mezi jednotlivými měřeními mohl být senzor v režimu spánku pro snížení spotřeby energie. Perioda o velikosti 1 sekundy byla tedy zvolena primárně pro demonstrační účely.

Použití senzoru v single shot módu je možné shrnout do 3 kroků:

- 1. Zaslání příkazu (I2C write header a data 0x2400)
- 2. Vyčkání na dokončení měření
- 3. Přečtení dat (I2C read header)

Condition		Hex. code	
Repeatability	Clock stretching	MSB	LSB
High	enabled	0x2C	06
Medium			0D
Low			10
High	disabled	0x24	00
Medium			0B
Low			16

e.g. 0x2C06: high repeatability measurement with clock stretching enabled

Obr. 3: Příkazy pro získání informací ze senzoru pro single shot mód. [3]

Na obrázku výše je možné vidět, že je možné nastavit 2 parametry:

- Clock stretching, který obecně slouží pro zpomalení (- dočasné zastavení) SCL signálu slave zařízením (senzorem v tomto případě) v případě, že toto zařízení právě vykonává nějakou činnost (probíhá měření). Zvolen "disabled".
- Repeatability, který určuje, jak dlouho bude probíhat měření. Maximální doba měření je 2.5ms (low), 6.5ms (medium) a 15.5ms (high). Delší měření jsou přesnější, avšak mají větší spotřebu. Zvolen "high".

Senzor je možné provozovat pouze v pracovních teplotách 5°C - 60°C . Dle datasheetu SHT3x [3] může vystavení senzoru mimo pracovní teplotu způsobit odchylku od reálných hodnot. Dlouhodobé vystavení těmto podmínkám může uskutečnit tuto odchylku permanentní.

3 Shrnutí

Ověření vlastností meteostanice bylo prováděno za pokojové teploty. Ověřování probíhalo takovým způsobem, že meteostanice byla přes noc ponechána běžet a následující den bylo zkontrolováno, že nedošlo k žádné chybě a měření stále probíhá správně. Správnost hodnot získaných z měření nebyla ověřena porovnáním, avšak bylo dospěno k závěru, že hodnoty, které meteostanice ukazuje přibližně odpovídají realitě - pokojová teplota odpovídá; při změně podmínek (otevření okna) se patřičně změní i teplota, aj.

References

- [1] gschorcht. Driver for sht3x digital temperature and humidity sensor, 2018. https://github.com/gschorcht/sht3x-esp-idf.
- [2] nopnop2002. Ssd1306/sh1106 driver for esp-idf, 2022. https://github.com/nopnop2002/esp-idf-ssd1306.
- [3] Sensirion. Datasheet sht3x-dis, 2019. https://sensirion.com/media/documents/213E6A3B/61641DC3/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf.