International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

horses

Language: en-MKD

Коњи

Mansur сака да одгледува коњи. Сега има најголемо стадо во селото. Но, кога бил млад бил копук со само еден коњ. Тој сонувал да се збогати и да стане чорбаџија.

Нека ги нумерираме годините со 0 до N-1 во хронолошки редослед (т.е., годината N-1 е најпоследната). Временските услови секоја година се различни и влијаат на порастот на стадото. За секоја година i, Mansur памти позитивен цел број како коефициент за раст X[i]. Ако годината започнала i со h коњи во стадото, истата ќе заврши со $h \cdot X[i]$ во стадото.

Коњите може да се продаваат на крајот на годината. За секоја година i, Mansur памти позитивен цел број Y[i]: цената за која можел да продаде еден коњ, на крај на годината i. После секоја година, можело да се продадат произволно многу коњи, секој по цена од Y[i].

Мапsur се прашува која е најголемата сума пари која тој ќе можел да ја заработи ако ги изберел најдобрите моменти за продажба на коњите во текот на N-те години. ВИе сте на гости кај Mansur и тој вам ви го поставил прашањето.

Сеќавањата му се враќаат на Mansur во текот на вечерта, па затоа прави низа од M ажурирања. Секое ажурирање ќе промени или една вредност од X[i] или една вредност од Y[i]. После секое ажурирање, тој пак препрашува за најголемата сума која би ја имал со продажба на коњите. Ажурирањата на Mansur се кумулативни: секој ваш одговор треба да ги земе предвид сите претходни ажурирања. Запазете дека едно исто X[i] или Y[i] може да се ажурира повеќе пати.

Одговорот кој Mansur може да го добие може да е ОГРОМЕН. За да се избегне работа со големи броеви вие треба да го дадете одговорот ПО МОДУЛ 10^9+7 .

Пример

Нека има N=3 години, со следната информација:

	0	1	2
Χ	2	1	3
Υ	3	4	1

За овие почетни вредности, Mansur може да заработи најмногу ако ги продаде двата коња после годината 1. Целиот процес ќе оди вака:

- Прво, Mansur има 1 коњ.
- После годината 0 ќе има $1 \cdot X[0] = 2$ коњи.
- После годината 1 ќе има $2 \cdot X[1] = 2$ коњи.

• Сега може да продаде 2 коња. Вкупно ќе заработи $2 \cdot Y[1] = 8$.

Потоа, претпоставете дека има M=1 ажурирање: промена на Y[1] во 2.

По ажурирањето имаме:

	0	1	2
Х	2	1	3
Y	3	2	1

Во овој случај едно оптимално решение е да продаде еден коњ после годината 0 и потоа 3 коња после годината 2.

Целиот процес ќе оди вака:

- Прво, Mansur има 1 коњ.
- После годината 0 ќе има $1 \cdot X[0] = 2$ коња.
- Сега може да продаде еден од тие коњи за цена Y[0] = 3, и за му остане еден коњ.
- После годината 1 ќе има $1 \cdot X[1] = 1$ коњ.
- После годината 2 ќе има $1 \cdot X[2] = 3$ коњи.
- Сега сите 3 може да ги продаде по цена $3 \cdot Y[2] = 3$. Вкупната заработка е 3 + 3 = 6.

Задача

Дадени ви се N, X, Y, и листа на ажурирања. Пред првото ажурирање и после секое ажурирање, пресметајте ја максималната сума на пари која Mansur може да ја добие за своите коњи, ПО МОДУЛ $\mathbf{10^9} + \mathbf{7}$.

You need to implement the functions init, updateX, and updateY.

- init (N, X, Y) The grader will call this function first and exactly once.
 - N: the number of years.
 - lacktriangledown X: an array of length N. For $0 \leq i \leq N-1$, X[i] gives the growth coefficient for year i
 - lacksquare Y: an array of length N. For $0 \leq i \leq N-1, Y[i]$ gives the price of a horse after year i
 - Note that both X and Y specify the initial values given by Mansur (before any updates).
 - After init terminates, the arrays X and Y remain valid, and you may modify their contents if you wish.
 - The function should return the maximal amount of money Mansur could get for these initial values of X and Y, modulo $10^9 + 7$.
- updateX(pos, val)

- pos: an integer from the range $0, \dots, N-1$.
- val: the new value for X[pos].
- The function should return the maximal amount of money Mansur could get after this update, modulo $10^9 + 7$.
- updateY(pos, val)
 - pos: an integer from the range $0, \ldots, N-1$.
 - val: the new value for Y[pos].
 - The function should return the maximal amount of money Mansur could get after this update, modulo $10^9 + 7$.

You may assume that all the initial, as well as updated values of X[i] and Y[i] are between 1 and 10^9 inclusive.

After calling init, the grader will call updateX and updateY several times. The total number of calls to updateX and updateY will be M.

Subtasks

subtask	points	N	M	additional constraints
1	17	$1 \le N \le 10$	M = 0	$X[i], Y[i] \le 10, \ X[0] \cdot X[1] \cdot \ldots \cdot X[N-1] \le 1,000$
2	17	$1 \leq N \leq 1,000$	$0 \le M \le 1,000$	none
3	20	$1 \leq N \leq 500,000$	$0 \leq M \leq 100,000$	$X[i] \ge 2$ and $val \ge 2$ for init and updateX correspondingly
4	23	$1 \leq N \leq 500,000$	$0 \leq M \leq 10,000$	none
5	23	$1 \leq N \leq 500,000$	$0 \le M \le 100,000$	none

Sample grader

The sample grader reads the input from the file horses.in in the following format:

- line 1: N
- line 2: X[0] ... X[N 1]
- line 3: Y[0] ... Y[N 1]
- line 4: M
- lines 5, ..., M + 4: three numbers type pos val (type=1 for updateX and type=2 for updateY).

The sample grader prints the return value of init followed by the return values of all calls to updateX and updateY.