

1968 1969	Dependent Variable:		A11 T2: 13			p_cited_by_co			M. P. 1	
Appendix 1969 19		All PDB	All Fields High PDB	CEM				All PDB	Medicine High PDB	CEM
Commenternal AI	AlphaFold	0.132***	0.176***	0.141***	0.097***	0.206***	0.141***	0.215***	0.108*	0.141***
Connectional No. Al	Counterfactual AI									
Applied 1965	Counterfactual No AI									
Connecimiental Al - Method (2012) (2012) (2014) (2012) (2014) (2012) (2014) (2012) (2014) (2012) (2014) (2012) (2014) (2012) (2014) (20		(0.035)	(0.048)	(0.033)	(0.023)	(0.051)	(0.033)	(0.047)	(0.082)	(0.033)
Commenderatal No. A Machand (1962)		(0.013)	(0.011)	(0.014)	(0.011)	(0.021)	(0.014)	(0.013)	(0.012)	(0.014)
Mathematical political partical parti		(0.020)	(0.051)	(0.021)	(0.030)	(0.077)	(0.021)	(0.037)	(0.121)	(0.021)
1.64 1.64 1.67 1.68 1.69		(0.017)	(0.021)	(0.018)	(0.026)	(0.027)	(0.018)	(0.017)		(0.018)
infel art. and almomatis in a proper section of the art. and almomatis and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the art. and almomatis in a proper section of the ar	$field_agricultural_and_biological_sciences$									
Mathodolos of the pattern of the p	field_arts_and_humanities	1.11	19.2	1.74	29.8	69.4	1.74	-0.505	-37.8	1.74
1806 1806	$field_biochemistry_genetics_and_molecular_biology$	7.56***	7.97***	7.39***	7.01***	6.72***	7.39***	3.91*	10.6***	7.39***
Second properties 1,20	$field_business_management_and_accounting$	10.7	32.3**	5.91	20.3*	16.7	5.91	13.2	147.5	5.91
incid_clanematry	field_chemical_engineering	25.8***	51.2**	26.9***	31.4**	65.6***	26.9***	18.1	124.5^{*}	26.9***
1 (1.55) (2.66) (1.28) (1.67) (1.68) (1.69) (1.28) (1.67) (1.28) (1.67) (1.28) (1.67) (1.28)	field_chemistry									
1.50 1.50		(1.25)	(2.66)	(1.28)	(1.76)	(3.80)	(1.28)	(3.10)	(8.39)	(1.28)
Second S	-	(1.94)	(5.90)	(1.88)	(3.11)	(7.97)	(1.88)	(7.18)	(13.7)	(1.88)
sied_north_and_planetary_sciences		(3.98)	(20.4)	(2.78)	(11.5)	(30.4)	(2.78)	(19.0)	(95.4)	(2.78)
incide Journal and Spinners 5-07" 8-58" 5-09" 5.30 16.1 5-09" 16.5 5-388 5-09" 16.5 10.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5-09" 16.5 5.30 16.1 5.30 16.	field_dentistry	(3.79)	(10.5)	(3.95)	(7.50)	(20.5)	(3.95)	(7.20)	(40.6)	(3.95)
mile de commeries exonoméries	field_earth_and_planetary_sciences	-5.07***	-8.65**	-5.69***	5.30	16.1	-5.69***	-16.5	-39.8	-5.69***
indile purpoy	${\it field_economics_econometrics_and_finance}$	11.9***	19.3	15.5***	-6.28	-33.6	15.5***	9.74*	9.18	15.5***
mela denigemengemeng 179" 83" 17,0" 149" 17,6" 23" 5.14 17,0" 1.69" 1.66 6.45 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 6.64 Lowith part of the state of the sta	$field_energy$	25.2***	12.3**	23.5***	25.2***	18.3*	23.5***	49.5***	-46.3	23.5***
1.59 3.39 1.67 1.65	field_engineering	17.9***	8.81**	17.6***	17.0***	14.9***	17.6***	22.3***	5.14	17.6***
1.00 1.00	field_environmental_science									
1. 1. 1. 1. 1. 1. 1. 1.		(1.02)	(3.76)	(1.18)	(2.17)	(5.18)	(1.18)	(4.62)	(10.5)	(1.18)
1,000 1,00		(2.75)	(17.5)	(2.98)	(7.41)	(22.1)	(2.98)	(4.62)	(21.9)	(2.98)
1.72 (1.79)		(2.60)	(2.72)	(2.33)	(1.71)	(3.75)	(2.33)	(2.95)	(5.42)	(2.33)
1. 1. 1. 1. 1. 1. 1. 1.	field_materials_science									
inelal medicinice 10.6" 11.8" 10.9" 7.85" 9.53" 10.9" 11.2" 9.07" 10.9" 10	field_mathematics									
field_numscience	field_medicine	10.6***	11.8***	10.9***	7.85***	9.53***	10.9***	11.2***	9.07***	10.9***
inchi	field_neuroscience	13.3***	17.7***	13.6***	12.9***	23.3***	13.6***	18.5***	11.6	13.6***
field_pharmacology_toxicology_and_pharmaceuties	$field_nursing$	14.3***	11.3*	13.3***	9.71**	8.25	13.3***	15.0***	23.3	13.3***
1.5 1.5	field_pharmacology_toxicology_and_pharmaceutics									(1.87) 9.19***
1.36 1.56 1.56 1.59 1.09			(5.67)	(3.20)	(5.05)	(7.10)	(3.20)	(5.35)	(15.8)	(3.20)
18.0 18.0		(1.36)	(4.58)	(1.36)	(5.09)	(10.9)	(1.36)	(7.66)	(21.3)	(1.36)
		(3.80)	(13.9)	(3.56)	(6.08)	(23.5)	(3.56)	(4.41)	(32.6)	(3.56)
mesh. (3.68) (1.37) (3.64) (1.13) (3.64) (1.13) (3.64) (7.30) (3.64) (7.30) (3.64) (7.30) (3.64) (7.30) (3.64) (3.64) (3.64) (4.19) (4.73) (9.34) (1.20) (9.34) (1.20) (9.34) (1.20) (1.20) (1.20) (1.20) (1.20) (1.80) (3.59) (9.80) (1.70) (3.89) (9.80) mesh A (9.37) (2.10) (0.799) (1.22) (2.12) (0.729) (2.22) (0.729) (2.42) (0.729) (2.42) (0.729) (2.42) (0.729) (2.42) (0.729) (2.42) (0.729) (2.42) (0.729) (2.42) (0.729) (2.42) (0.729) (2.29) (0.729) (2.42) (0.729) (2.42) (0.729) (2.42) (0.729) (2.42) (0.729) (2.42) (0.740) (1.12) (2.42) (0.44) (1.33) (0.44) (1.43) (0.729) (0.729) (0.729) (0.723)	held_social_sciences									
mesh, (9.27) (34.3) (9.34) (1.49) (47.3) (34.3) (1.19) (47.3) (47.3) (1.59) (1.29) (62.6) (9.34) (1.29) (62.6) (9.34) (1.29) (62.6) (9.34) (1.29) (62.6) (9.34) (1.29) (62.6) (9.34) (1.29) (62.6) (1.39) (1.	field_veterinary									
Marsh A 9.34" 15.2" 9.15" 12.2" 18.1" 9.15" 10.8" 10.8" 10.4" 9.15" 10.8" 10	mesh_	59.7***	118.8***	70.3***	59.4***	54.7	70.3***	79.8***	182.6***	70.3***
mesh B 8.93"** 12.0"** 8.74"** 11.2"* 7.85"* 8.74"** 19.0"** 20.1"** 8.74"** mesh C 10.9"** 18.9"** 11.1"** 11.3"** 15.3"** 11.1"** 10.6"** 25.1"** 11.1"** mesh D 10.9"** 18.9"** 11.1"** 11.3"** 15.3"** 11.1"** 10.6"** 25.1"** 11.1"** mesh D 3.49"** 5.66"** 3.72"** 2.80"** 5.65"** 3.72"** 6.57"* 6.51"* 6.51"** 6.81"* 3.72"** mesh E 3.60"** 9.38"** 3.83"* 3.53"* 7.35" 3.83"** 4.62"* 16.3" 3.83"** mesh F 8.71"** 0.239 (0.940) (1.47) (0.38) (0.940) (1.74) (6.21) (5.94) (1.94) (0.940) (1.74) (6.21) (6.94) (1.94) (0.940) (1.74) (3.80) (0.940) (1.74) (6.21) (6.94) (1.94) (1.94) (1.10 (1.25)	mesh_A	9.34***	15.2***	9.15****	12.2***	18.1***	9.15***	10.8***	16.4***	9.15***
18.9 11.1 11.2 15.3 15.3 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1 11.1 11.3 10.6 25.1	mesh_B	8.93***	12.0***	8.74***	11.2***	7.85**	8.74***	19.0***	20.1***	8.74***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\operatorname{mesh_C}$	10.9***	18.9***	11.1***	11.3***	15.3***	11.1***	10.6***	25.1***	11.1***
mesh.E 0.383 0.810 0.4388 0.499 0.104 0.488 0.614 0.185 0.438 0.438 0.488 0.614 0.185 0.438 0.488 0.614 0.185 0.438 0.614 0.185 0.438 0.614 0.614 0.185 0.438 0.614 0.61	mesh_D				(1.18)	(2.91)				
(9.901 (2.94) (0.940) (1.47) (3.80) (0.940) (1.74) (8.21) (0.940) (1.74) (8.21) (0.940) (1.74) (8.21) (0.940) (1.74) (8.21) (0.940) (1.74) (8.21) (0.940) (1.74) (8.21) (0.940) (1.74) (8.21) (0.940) (1.74) (8.21) (0.940) (1.74) (8.21) (0.940) (1.74) (8.21) (1.81) (2.01) (1.81)		(0.383)	(0.810)	(0.438)	(0.499)	(1.04)	(0.438)	(0.614)	(1.85)	(0.438)
mesh.G		(0.901)	(2.94)	(0.940)	(1.47)	(3.80)	(0.940)	(1.74)	(8.21)	(0.940)
mesh.H (9.718) (1.97) (0.713) (0.905) (2.25) (0.713) (1.69) (5.18) (0.713) (1.69) (1.6		(1.81)	(7.93)	(2.01)	(2.95)	(10.2)	(2.01)	(3.37)	(13.1)	(2.01)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh_G	(0.718)			(0.905)			(1.69)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh_H	18.7***	36.6***	15.4***	20.1***	43.8***	15.4***	27.1***	41.8	15.4***
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathrm{mesh}_{\mathtt{J}}\mathrm{I}$	-0.519	23.3	-1.87	5.66	74.5	-1.87	-0.795	-12.6	-1.87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh_J	4.42***	23.5***	4.88***	7.45***	23.3***	4.88***	14.7***	-18.3	4.88***
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh_K	-12.3*	13.4	-31.2**	10.7	69.0	-31.2**	-77.4**	-345.3**	-31.2**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh.L		(47.5)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1.36)	(5.84)	(1.51)	(2.50)	(7.55)	(1.51)	(4.57)	(18.4)	(1.51)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1.93)	(8.85)	(1.77)	(3.64)	(11.9)	(1.77)	(2.65)	(15.9)	(1.77)
18.4 2 2.98 8.06 23.2 2.98 4.92 35.4 2.98 2.98 1.08 1.08 2.08 1.0		(0.983)	(7.22)	(1.04)	(2.88)	(9.33)	(1.04)	(2.62)	(17.1)	(1.04)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh_Z			(2.98)	(8.06)		(2.98)	(4.92)		
AlphaFold × Counterfactual AI 0.019 -0.055 0.010 0.019 -0.063 0.010 -0.078 -0.083 0.010 0.041 AlphaFold × Counterfactual No AI 0.027 0.073 0.016 0.039 (0.041) 0.0679 0.068 0.010 0.041 AlphaFold × Counterfactual No AI 0.027 0.073 0.016 0.032 0.007 0.016 0.025 0.121 0.016 AlphaFold - Method × Counterfactual AI - Method 0.031 0.009 0.022 0.008 0.009	mesh_n	6.15^*	-10.1	5.79*	9.69*	16.7	5.79*	9.20*	-28.6	5.79*
AlphaFold × Counterfactual No AI 0.027 0.073 0.016 0.032 0.007 0.016 -0.025 0.121 0.016 0.059	Alpha Fold \times Counterfactual AI	0.019	-0.055	0.010	0.019	-0.063	0.010	-0.078	-0.083	0.010
AlphaFold - Method × Counterfactual AI - Method -0.009 -0.022 -0.048 -0.045 -0.109*** -0.048 0.003 0.019 -0.048 -0.069** -0.009** -0.009** -0.0009	Alpha Fold \times Counterfactual No AI	0.027	0.073	0.016	0.032	0.007	0.016	-0.025	0.121	0.016
AlphaFold - Method × Counterfactual No AI - Method -0.003** 0.0002 -0.0009** -0.0009 -0.0007 -0.0009** -0.003* 0.0010 -0.009** -0.0009** -0.0007 -0.0009** -0.0009** -0.0009** -0.0009** -0.0007 -0.0009** -0.0009	Alpha Fold - Method \times Counterfactual AI - Method	-0.009	-0.022	-0.048	-0.045	-0.109***	-0.048	0.003	0.019	-0.048
Fixed-effects Yes <	Alpha Fold - Method \times Counterfactual No AI - Method	-0.003**	0.0002	-0.009**	-0.0009	-0.0007	-0.009**	-0.003*	0.0010	-0.009**
pi.id Yes										
	pi_id									
	quarter_year institution_type	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes

Dependent Variable:		411 7		_	ln1p_cit_0				
	All PDB	All Fields High PDB	CEM	All PDB	olecular Biolo High PDB	CEM	All PDB	Medicine High PDB	CEM
AlphaFold	0.136***	0.197***	0.127***	0.070**	0.178***	0.127***	0.225***	0.168**	0.127***
Counterfactual AI	(0.028) 0.083***	(0.047) 0.068	(0.026) 0.082***	(0.026) 0.087**	(0.052) 0.066*	(0.026) 0.082***	(0.049) 0.157***	(0.079) -0.086	(0.026) 0.082***
Counterfactual No AI	(0.026) 0.209***	(0.043) 0.279***	(0.023) 0.207***	(0.035) 0.090***	(0.038) 0.156*	(0.023) 0.207***	(0.044) 0.269***	(0.106) 0.239*	(0.023) 0.207***
AlphaFold - Method	(0.064) -0.014	(0.100) -0.028*	(0.057) -0.006	(0.032) 0.024*	(0.077) 0.018	(0.057) -0.006	(0.082) -0.031	(0.138) -0.035**	(0.057) -0.006
Counterfactual AI - Method	(0.018)	(0.016) 0.052	(0.018)	(0.013)	(0.023) 0.040	(0.018)	(0.019)	(0.016) 0.169	(0.018) 0.004
	(0.021)	(0.047)	(0.024)	(0.028)	(0.069)	(0.024)	(0.043)	(0.122)	(0.024)
Counterfactual No AI - Method	0.034 (0.024)	0.022 (0.026)	0.037 (0.024)	0.015 (0.019)	-0.014 (0.020)	0.037 (0.024)	0.014 (0.020)	0.004 (0.021)	0.037 (0.024)
$field_agricultural_and_biological_sciences$	9.76*** (1.39)	10.5*** (2.76)	9.83*** (1.53)	10.8*** (1.64)	12.9*** (3.68)	9.83*** (1.53)	19.0*** (2.86)	18.8** (9.19)	9.83*** (1.53)
field_arts_and_humanities	2.91 (2.67)	15.2 (10.4)	3.50 (2.99)	35.8*** (12.6)	99.8** (43.7)	3.50 (2.99)	-2.75 (17.2)	-11.7 (49.8)	(2.99)
$field_biochemistry_genetics_and_molecular_biology$	5.24*** (1.45)	5.62*** (1.34)	5.11*** (1.35)	5.09***	5.13*** (1.09)	5.11*** (1.35)	0.136	3.09 (3.59)	5.11*** (1.35)
$field_business_management_and_accounting$	4.98	31.1	2.16	5.69	16.5	2.16	2.65	91.5	2.16
field_chemical_engineering	(5.40) 18.6***	(22.2) 20.6	(6.21) 18.8***	(13.0)	(39.2) 24.5	(6.21) 18.8***	(8.30) 2.77	(113.5) -78.7	(6.21) 18.8***
field_chemistry	(4.11) 8.62***	(15.1) 8.95***	(4.30) 9.97***	(8.75) 6.83***	(23.7) 8.83***	(4.30) 9.97***	(22.6) 3.92	(87.4) 7.70	(4.30) 9.97***
field_computer_science	(0.977) 9.89***	(2.29) 7.02	(1.06) 11.4***	(1.37) 7.16**	(2.69) -2.37	(1.06) 11.4***	(3.21) 6.16	(7.09) 9.41	(1.06) 11.4***
field_decision_sciences	(1.66) 2.13	(6.43) -11.6	(1.67) 0.052	(2.96) -1.77	(7.36) 0.468	(1.67) 0.052	(6.09) -0.107	(13.4) 46.2	(1.67) 0.052
	(2.17)	(21.0)	(1.95)	(7.08)	(34.9)	(1.95)	(17.1)	(44.8)	(1.95)
field_dentistry	8.09**	24.1*** (7.57)	7.80** (3.78)	-2.31 (7.55)	27.7 (17.9)	7.80** (3.78)	15.8** (7.29)	7.92 (25.7)	7.80**
field_earth_and_planetary_sciences	-3.32** (1.53)	-4.52 (3.19)	-3.31** (1.51)	9.03 (6.06)	15.1 (19.3)	-3.31** (1.51)	-31.5 (25.2)	-70.2* (40.7)	-3.31** (1.51)
${\it field_economics_econometrics_and_finance}$	14.2*** (3.23)	35.5* (19.3)	16.6*** (3.32)	3.61 (10.3)	50.1 (47.3)	16.6*** (3.32)	9.33* (4.66)	18.8 (35.2)	16.6*** (3.32)
field_energy	19.7*** (2.93)	3.34 (4.73)	18.7*** (2.86)	14.0*** (4.44)	5.27 (9.34)	18.7*** (2.86)	30.1*	-47.7 (33.6)	18.7*** (2.86)
field_engineering	12.1***	4.78*	11.7***	9.37***	6.76*	11.7***	13.0***	-3.74	11.7***
$field_environmental_science$	(1.14) 9.54***	(2.73) 4.35	(1.23) 9.33***	(1.61) 10.1***	(3.81)	(1.23) 9.33***	(2.73) 7.81**	(12.9) -6.62	(1.23) 9.33***
field_health_professions	(0.986) 3.22	(3.10) -10.6	(1.14) 2.70	(1.84) 5.82	(3.92) 21.9	(1.14) 2.70	(3.77) -1.38	(11.4) -39.2**	(1.14) 2.70
field_immunology_and_microbiology	(2.25) 4.76***	(15.5) 6.20**	(2.40) $5.10***$	(6.60) 8.44***	(21.1) 10.1***	(2.40) 5.10***	(3.94) 1.66	(17.6) 7.45	(2.40) 5.10***
field_materials_science	(1.68) 7.43***	(2.50) 1.72	(1.46) 6.70***	(1.18) 10.4***	(3.16) 3.17	(1.46) 6.70***	(2.08) 10.6**	(4.47) 7.52	(1.46) 6.70***
	(1.12)	(1.27)	(1.24)	(2.04)	(3.01)	(1.24)	(4.06)	(10.7)	(1.24)
field_mathematics	63.3*** (9.45)	96.9*** (22.9)	64.1*** (9.37)	13.4 (9.30)	70.7** (27.2)	64.1*** (9.37)	70.2*** (10.7)	76.0** (33.2)	64.1*** (9.37)
field_medicine	8.87*** (1.71)	12.1*** (2.30)	8.86*** (1.65)	4.50*** (1.02)	5.80*** (2.03)	8.86*** (1.65)	8.15*** (0.845)	8.19*** (2.68)	8.86*** (1.65)
field_neuroscience	8.08*** (1.09)	12.6*** (3.38)	8.30*** (0.989)	9.38*** (1.43)	17.9*** (3.98)	8.30*** (0.989)	8.62*** (2.50)	-7.23 (10.0)	8.30*** (0.989)
field_nursing	8.05*** (1.67)	4.16 (5.46)	7.88*** (1.78)	3.66 (3.51)	7.41 (7.58)	7.88*** (1.78)	4.08 (4.32)	-3.01 (23.5)	7.88*** (1.78)
$field_pharmacology_toxicology_and_pharmaceutics$	5.76*** (2.04)	4.64	5.71**	5.39	5.99	5.71**	-0.601 (4.97)	9.23	5.71**
${\it field_physics_and_astronomy}$	5.12***	(3.99) 8.13**	5.31***	(4.73) 8.61**	(5.80) 14.3**	5.31***	-3.35	(16.6) 14.7	5.31***
field_psychology	(1.14) 15.7***	(3.30) -16.6	(1.12) 15.0***	(4.04) 11.4	(6.36) -13.0	(1.12) 15.0***	(5.10) 16.7***	(24.4) 12.6	(1.12) 15.0***
field_social_sciences	(3.51) 13.0***	(11.8) 16.4	(3.21) 13.3***	(7.23) 0.617	(19.1) 7.59	(3.21) 13.3***	(5.24) 12.1	(34.1) 42.3	(3.21) 13.3***
field_veterinary	(2.89) -6.11*	(10.2) 1.12	(3.01) -7.88***	(4.80) -8.08	(12.4) 1.27	(3.01) -7.88***	(7.39) -18.2***	(35.8) -26.6	(3.01) -7.88***
mesh_	(3.09) 55.9***	(11.5) 121.9***	(2.78) 65.3***	(8.58) 52.2***	(31.5) 36.3	(2.78) 65.3***	(6.19) 67.5***	(29.0) 187.0**	(2.78) 65.3***
	(8.84)	(33.5)	(11.1)	(12.1)	(40.4)	(11.1)	(18.0)	(76.3)	(11.1)
mesh_A	4.36*** (0.668)	7.69*** (2.21)	4.09*** (0.699)	6.65*** (0.922)	10.7*** (2.91)	4.09*** (0.699)	3.88** (1.51)	7.07 (4.36)	4.09*** (0.699)
mesh_B	7.04*** (0.666)	9.30*** (2.13)	6.88*** (0.656)	7.70*** (1.03)	6.13** (2.62)	6.88*** (0.656)	17.0*** (2.10)	16.3*** (5.62)	6.88*** (0.656)
mesh_C	6.69*** (1.30)	9.40*** (3.16)	6.59*** (1.27)	5.27*** (1.04)	7.05** (2.79)	6.59*** (1.27)	7.34*** (1.58)	18.5** (7.35)	6.59*** (1.27)
mesh_D	2.19*** (0.341)	3.86*** (0.602)	2.34*** (0.371)	1.54*** (0.400)	3.42*** (0.718)	2.34*** (0.371)	4.40*** (0.582)	4.98*** (1.82)	2.34*** (0.371)
$mesh_E$	2.76***	7.44***	2.80***	4.02***	8.69***	2.80***	2.30	11.7	2.80***
mesh.F	(0.597)	(2.42)	(0.593)	(1.05)	(2.59)	(0.593)	(1.45)	(7.77) 7.76	(0.593)
$\mathrm{mesh}_{\text{-}}\mathrm{G}$	(1.22) 6.58***	(7.62) 5.16***	(1.20) 5.96***	(2.28) 7.41***	(7.01) 4.71***	(1.20) 5.96***	(2.40) 9.66***	(15.8) 8.58*	(1.20) 5.96***
mesh_H	(0.703) 14.6***	(1.66) 28.8***	(0.707) $11.7***$	(0.828) 17.6***	(1.67) 35.6***	(0.707) 11.7***	(1.53) 23.3***	(4.50) 42.7	(0.707) 11.7***
mesh J	(2.22) -1.48	(6.70) 22.8	(2.35) -2.77	(3.95)	(9.89) 88.7*	(2.35) -2.77	(7.91) -2.05	(41.4) 12.2	(2.35) -2.77
mesh_J	(3.02)	(50.2) 12.1**	(2.44) 1.35	(8.41) 3.07*	(52.4) 14.4**	(2.44) 1.35	(9.24) 2.14	(74.1) -8.29	(2.44) 1.35
mesh_K	(0.742)	(4.92)	(0.865)	(1.57)	(5.67)	(0.865)	(3.78)	(21.6)	(0.865)
	2.77 (4.81)	-17.6 (42.8)	-10.3 (10.5)	-3.96 (17.5)	0.776 (50.9)	-10.3 (10.5)	-15.7 (24.9)	-167.0 (215.6)	-10.3 (10.5)
mesh_L	9.55*** (1.01)	16.7*** (4.75)	8.78*** (1.13)	9.85*** (1.54)	18.2*** (5.69)	8.78*** (1.13)	15.2*** (3.77)	-13.7 (16.1)	8.78*** (1.13)
mesh_M	8.30*** (1.65)	29.8*** (9.89)	7.27*** (1.64)	5.78* (3.02)	-3.20 (11.1)	7.27*** (1.64)	12.0*** (1.94)	31.9** (12.2)	7.27*** (1.64)
mesh_N	8.14*** (1.01)	27.7*** (8.09)	7.79*** (0.977)	13.0*** (2.29)	26.4** (10.4)	7.79*** (0.977)	13.7*** (2.35)	38.9*** (13.8)	7.79*** (0.977)
$\operatorname{mesh}_{-}\!Z$	3.15	-14.0	2.80	-3.44	-5.41	2.80	-3.56	-11.0	2.80
mesh_n	(1.98) 4.93*	2.69	4.98*	(6.54) 9.04**	(25.0) 14.5	(2.00) 4.98*	(4.54)	(39.1) -5.71	(2.00) 4.98*
AlphaFold \times Counterfactual AI	(2.62) 0.056*	(11.2) -0.091	(2.54) 0.021	(4.26) 0.017	(11.4) -0.147	(2.54) 0.021	(4.51) -0.008	(19.6) -0.061	(2.54) 0.021
AlphaFold × Counterfactual No AI	(0.030) 0.003	(0.097) -0.004	(0.034) 0.002	(0.061) 0.013	(0.094) -0.025	(0.034) 0.002	(0.066) -0.054	(0.263) 0.071	(0.034) 0.002
AlphaFold - Method × Counterfactual AI - Method	(0.101)	(0.158)	(0.099) -0.043	(0.045)	(0.115) -0.108**	(0.099)	(0.115)	(0.196)	(0.099)
AlphaFold - Method × Counterfactual No AI - Method	(0.030)	(0.049) -0.0009	(0.039) -0.007	(0.064) -0.002	(0.043) -0.0002	(0.039) -0.007	(0.041)	(0.063) -0.0009	(0.039) -0.007
- Appear out - Method A Counterfactual No AI - Metho	(0.002)	(0.001)	(0.005)	(0.0010)	(0.001)	(0.005)	(0.002)	(0.002)	(0.005)
Fixed-effects pi_id	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
quarter_year institution_type	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
	* 00	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Dependent Variable:		All Fields		Mo	ln1p_cit_1 olecular Biolo	gy		Medicine	
	All PDB	High PDB	CEM	All PDB	High PDB	CEM	All PDB	High PDB	CEM
AlphaFold	0.107*** (0.025)	0.172*** (0.044)	0.110*** (0.022)	(0.028)	0.172*** (0.047)	0.110*** (0.022)	0.189*** (0.033)	0.137** (0.064)	0.110*** (0.022)
Counterfactual AI	0.045* (0.026)	0.060 (0.041)	0.050^* (0.025)	0.061* (0.034)	0.049 (0.053)	0.050^* (0.025)	0.075 (0.051)	-0.080 (0.085)	0.050^* (0.025)
Counterfactual No AI	0.168*** (0.045)	0.204*** (0.056)	0.172*** (0.042)	0.080*** (0.025)	0.187*** (0.037)	0.172*** (0.042)	0.209*** (0.059)	0.161* (0.087)	0.172*** (0.042)
AlphaFold - Method	-0.026 (0.021)	-0.060*** (0.016)	-0.018 (0.022)	-0.024 (0.036)	-0.049 (0.032)	-0.018 (0.022)	-0.034* (0.017)	-0.058*** (0.012)	-0.018 (0.022)
Counterfactual AI - Method	-0.004 (0.026)	0.049 (0.052)	0.025 (0.024)	-0.002 (0.034)	0.076 (0.071)	(0.025)	0.025 (0.044)	0.146 (0.112)	0.025 (0.024)
Counterfactual No AI - Method	0.013 (0.023)	-0.011 (0.023)	0.015 (0.023)	-0.019 (0.030)	-0.007 (0.031)	0.015 (0.023)	0.005 (0.022)	-0.034 (0.022)	0.015 (0.023)
ield_agricultural_and_biological_sciences	11.8*** (1.66)	10.8*** (2.27)	12.3***	13.8***	13.9***	12.3*** (1.89)	19.1*** (2.67)	16.8*	12.3*** (1.89)
ield_arts_and_humanities	0.922	14.7	(1.89)	(1.71)	(3.74)	1.31	8.17	(8.58)	1.31
eld_biochemistry_genetics_and_molecular_biology	(2.38)	(12.0) 6.89***	(2.59) 6.54***	(19.1) 6.29***	(54.2)	(2.59)	(17.8)	(49.3) 7.98**	(2.59) 6.54***
eld_business_management_and_accounting	(1.93) 7.75	(1.50) 37.5**	(1.83) 2.60	(1.27) 7.83	(1.24) 23.8	(1.83) 2.60	(1.83) 9.26	(2.94) 100.6	(1.83) 2.60
ld_chemical_engineering	(5.69) 22.4***	(15.0) 47.7***	(6.48) 23.8***	(12.4) 27.5**	(36.3) 64.9***	(6.48) 23.8***	(10.0) 9.33	(98.1) 43.3	(6.48) 23.8***
ld_chemistry	(4.76) 11.4***	(14.9) 9.77***	(4.76) 12.7***	(11.0) 10.5***	(18.3) 11.5***	(4.76) 12.7***	(20.6) 8.69***	(38.1) 5.26	(4.76) 12.7***
eld_computer_science	(1.15) 11.0***	(2.63) 9.18	(1.17) 13.0***	(1.62) 6.17^*	(3.47) -2.76	(1.17) 13.0***	(2.66) 5.52	(7.77) 17.3	(1.17) 13.0***
ld_decision_sciences	(2.15) 0.904	(5.81) -4.47	(1.94) -1.88	(3.36)	(8.24) 2.04	(1.94) -1.88	(6.78) 9.74	(10.5) 17.4	(1.94) -1.88
eld_dentistry	(2.60) 15.5***	(16.4) 50.1***	(2.77) 15.0***	(11.9) 17.8**	(26.8) 59.6***	(2.77) 15.0***	(17.8) 28.7***	(72.4) 41.6	(2.77) 15.0***
	(3.39)	(9.60)	(3.65)	(7.53)	(19.2)	(3.65)	(7.19)	(33.3)	(3.65)
eld_earth_and_planetary_sciences	-4.63** (1.81)	-10.3*** (3.14)	-5.25*** (1.74)	7.82 (5.97)	14.1 (15.7)	-5.25*** (1.74)	-18.1 (24.6)	-42.4 (31.2)	-5.25*** (1.74)
d_economics_econometrics_and_finance	12.5*** (3.02)	20.5 (22.8)	14.5*** (3.52)	0.866 (11.4)	-8.05 (59.7)	(3.52)	10.1* (5.18)	-11.6 (32.2)	(3.52)
ld_energy	(3.83)	9.06 (5.75)	20.5*** (3.89)	20.2*** (5.02)	14.2 (9.24)	20.5*** (3.89)	37.0** (16.6)	-31.2 (45.4)	20.5*** (3.89)
d_engineering	15.7*** (2.02)	7.34** (3.19)	15.5*** (1.95)	14.8*** (2.17)	13.0*** (4.50)	15.5*** (1.95)	20.4*** (3.90)	-0.363 (11.3)	15.5*** (1.95)
l_environmental_science	12.2*** (1.34)	9.58***	12.2*** (1.35)	12.2*** (2.10)	12.3** (5.02)	12.2*** (1.35)	17.5*** (4.60)	8.31 (12.3)	12.2*** (1.35)
d_health_professions	3.87	-0.229 (14.2)	2.70 (2.64)	8.38 (7.01)	16.2 (21.7)	2.70 (2.64)	2.15 (4.26)	-0.745 (19.5)	2.70 (2.64)
d_immunology_and_microbiology	8.36***	7.92***	8.92***	12.1***	10.6***	8.92***	5.97**	12.1**	8.92***
l_materials_science	(2.26) 8.34***	(2.59) 1.32	(2.05) 7.26***	(1.49) 15.2***	(3.19)	(2.05) 7.26***	(2.44) 14.6***	(4.50) 12.8	(2.05) 7.26***
_mathematics	(1.57) 47.5***	(1.33) 90.7***	(1.63) 48.2***	(2.48) 12.3	(3.85) 53.9*	(1.63) 48.2***	(3.43) 51.7***	(13.8) 76.7***	(1.63) 48.2***
_medicine	(7.46) 9.94***	(20.8) 11.5***	(7.68) 10.1***	(9.10) 7.02***	(26.9) 7.68***	(7.68) 10.1***	(7.98) 10.3***	(25.9) 8.48***	(7.68) 10.1***
l_neuroscience	(1.98) 11.9***	(2.05) 17.1***	(1.93) 12.1***	(1.18) 12.6***	(2.29) 23.2***	(1.93) 12.1***	(0.898) 14.5***	(2.26) 5.55	(1.93) 12.1***
l_nursing	(1.09) 10.6***	(3.39) 6.06	(1.05) 9.65***	(1.47) 9.29**	(4.43) 7.35	(1.05) 9.65***	(2.29) 10.5**	(8.08) 16.3	(1.05) 9.65***
_	(1.67) 8.62***	(4.85) 6.64	(1.64) 8.25***	(3.64) 9.57**	(8.41) 6.50	(1.64) 8.25***	(4.43) 1.21	(15.4) 3.47	(1.64) 8.25***
l_pharmacology_toxicology_and_pharmaceutics	(2.54)	(5.03)	(2.90)	(4.68)	(7.03)	(2.90)	(5.14)	(16.5)	(2.90) 5.37***
_physics_and_astronomy	5.18*** (1.49)	12.1*** (4.43)	5.37*** (1.52)	7.66 (5.02)	18.5* (10.6)	5.37*** (1.52)	-8.39 (7.93)	41.6** (19.7)	(1.52)
l_psychology	(3.84)	-7.69 (11.9)	(3.62)	12.7* (6.25)	-18.2 (21.7)	(3.62)	(4.82)	19.7 (32.2)	(3.62)
_social_sciences	13.1*** (3.02)	18.0* (10.6)	12.9*** (3.02)	-1.21 (5.79)	17.4 (12.6)	12.9*** (3.02)	11.6 (7.06)	49.1 (36.6)	12.9*** (3.02)
veterinary	3.45 (3.00)	4.05 (13.0)	3.75 (3.05)	-5.84 (9.68)	8.44 (27.1)	3.75 (3.05)	-0.253 (6.78)	-42.8 (28.8)	3.75 (3.05)
1_	60.8***	125.1*** (32.8)	72.7***	51.2*** (15.8)	50.6 (40.4)	72.7*** (10.2)	82.0*** (21.7)	184.8*** (62.6)	72.7*** (10.2)
h_A	6.97*** (0.730)	11.8*** (2.53)	6.85*** (0.782)	9.46*** (1.05)	15.0*** (3.15)	6.85*** (0.782)	6.83*** (1.69)	10.6*** (3.81)	6.85*** (0.782)
h_B	8.01***	10.4***	7.71***	9.22***	5.81**	7.71***	18.6***	18.0***	7.71***
h_C	(0.764) 9.63***	(2.04)	(0.735)	(1.14) 9.57***	(2.68)	(0.735)	(2.28)	(5.84)	(0.735)
h_D	(1.14)	(2.91) 5.66***	(1.13)	(1.10)	(2.56) 5.55***	(1.13)	(1.32) 5.96***	(6.68) 6.32***	(1.13)
h_E	(0.382)	(0.704) 10.1***	(0.435) $3.84****$	(0.466) 4.61***	(0.909) 9.97***	(0.435) $3.84****$	(0.577) 3.69**	(1.71) 13.3	(0.435) 3.84***
h_F	(0.786) 6.06***	(2.57) -10.2	(0.808) $5.64***$	(1.38) 6.11**	(3.17) -1.44	(0.808) 5.64***	(1.71) 12.3***	(7.92) 16.7	(0.808) 5.64***
h_G	(1.62) 8.71***	(8.23) 6.26***	(1.72) 8.12***	(2.60) 9.56***	(10.9) 6.64***	(1.72) 8.12***	(3.32) 12.4***	(21.9) 7.30	(1.72) 8.12***
sh_H	(0.732) 17.8***	(1.84) 35.0***	(0.711) 15.4***	(0.823) 20.4***	(2.17) 38.5**	(0.711) 15.4***	(1.45) 22.7**	(5.06) 36.0	(0.711) 15.4***
	(2.35)	(9.29)	(2.27)	(4.51)	(15.0)	(2.27)	(9.22)	(44.4)	(2.27)
n.J.	-2.55 (3.98)	21.4 (50.7)	-2.66 (3.86)	-0.843 (6.62)	82.4 (71.8)	-2.66	-4.82 (11.3)	15.0 (83.6)	-2.66 (3.86)
h_J	3.17*** (0.961)	17.5*** (4.78)	3.64*** (1.15)	5.06** (2.00)	15.6** (6.39)	3.64*** (1.15)	10.8** (4.36)	3.19 (18.9)	(1.15)
h_K	-11.5* (6.12)	25.8 (41.4)	-28.0** (12.2)	-5.32 (24.4)	76.6 (56.5)	-28.0** (12.2)	-34.5 (26.4)	-304.2* (173.2)	-28.0** (12.2)
h.L	12.6*** (1.19)	24.7*** (5.45)	11.2*** (1.40)	13.2*** (2.21)	23.8*** (7.50)	11.2*** (1.40)	19.0*** (4.22)	-10.6 (16.0)	(1.40)
sh_M	10.9***	34.0***	10.9***	(3.25)	4.82	10.9*** (1.66)	13.6*** (2.51)	38.9**	10.9*** (1.66)
sh_N	10.9*** (0.972)	23.7*** (7.68)	10.4*** (1.04)	18.0***	24.7** (9.44)	10.4*** (1.04)	17.3*** (2.37)	33.6**	10.4*** (1.04)
h"Z	1.14	-17.3	1.22	(2.57)	11.7	1.22	-6.28	(15.7) -24.4	1.22
h_n	(2.55)	-5.03	5.96**	(7.18) 12.0**	(24.9)	(2.65) 5.96**	(5.06) 9.04*	(32.4)	(2.65) 5.96**
haFold × Counterfactual AI	(2.90) 0.041	(11.3) -0.062	(2.59) 0.030	(4.51) 0.029	(14.0) -0.064	(2.59) 0.030	(5.16) -0.129*	(22.2) -0.117	(2.59) 0.030
haFold × Counterfactual No AI	(0.038) -0.026	(0.122) 0.065	(0.038) -0.029	(0.079) -0.004	(0.134) -0.011	(0.038) -0.029	(0.075) -0.095	(0.211) 0.132	(0.038) -0.029
ohaFold - Method × Counterfactual AI - Method	(0.078) 0.005	(0.093) 0.011	(0.076) -0.042	(0.072) -0.016	(0.103) -0.065	(0.076) -0.042	(0.076) 0.046	(0.107) 0.042	(0.076) -0.042
phaFold - Method × Counterfactual No AI - Method	(0.029) -0.002	(0.039) 0.0002	(0.040) -0.006	(0.056) -0.0003	(0.045) -0.0002	(0.040) -0.006	(0.055) -0.002	(0.058) 0.002	(0.040) -0.006
ixed-effects	(0.002)	(0.0008)	(0.006)	(0.002)	(0.002)	(0.006)	(0.002)	(0.003)	(0.006)
_id arter_year	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
stitution_type stitution_cited_bv_count	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes

Dependent Variable:		All Fields		Mo	ln1p_fwci olecular Biolo	gy		Medicine		Dependent Variable:	
	All PDB	High PDB	CEM	All PDB	High PDB	CEM	All PDB	High PDB	CEM		_
AlphaFold	0.033**	0.049**	0.035***	0.012 (0.021)	0.047 (0.031)	0.035***	0.071***	0.073	0.035*** (0.011)	AlphaFold	I
Counterfactual AI	(0.013)	(0.018)	(0.011)	0.003	-0.026	(0.011)	(0.017)	(0.045)	-0.007		
Counterfactual No AI	(0.010)	(0.028)	(0.011)	(0.020)	(0.041) -0.0005	(0.011)	(0.023)	(0.074) -0.019	(0.011)	Counterfactual AI	-(
AlphaFold - Method	(0.012) 0.001	(0.022) -0.014*	(0.012) 0.008	(0.014) 0.012**	(0.032) 0.001	(0.012) 0.008	(0.017) -0.009	(0.042) -0.033***	(0.012) 0.008	Counterfactual No AI	
Counterfactual AI - Method	(0.006) 0.008	(0.008) 0.101**	(0.007) 0.031*	(0.005) 0.017	(0.013) 0.120**	(0.007) 0.031*	(0.006) 0.014	(0.009) 0.189**	(0.007) 0.031*	AlphaFold - Method	-(
Counterfactual No AI - Method	(0.013) 0.005	(0.038)	(0.018) 0.007	(0.019)	(0.057) -0.001	(0.018) 0.007	(0.030)	(0.090)	(0.018) 0.007	Counterfactual AI - Method	
field_agricultural_and_biological_sciences	(0.009) 2.17***	(0.011) 3.07	(0.010) 2.25***	(0.017) 1.35*	(0.020) 6.42**	(0.010) 2.25***	(0.008) 0.955	(0.015) 2.76	(0.010) 2.25***	Counterfactual No AI - Method	
field_arts_and_humanities	(0.431)	(2.16) 0.152	(0.500) -1.30	(0.768) 9.41	(2.50)	(0.500) -1.30	(1.41)	(5.80) -82.9***	(0.500) -1.30	field_agricultural_and_biological_sciences	(
ield_biochemistry_genetics_and_molecular_biology	(1.85) -2.13***	(6.21)	(1.93)	(9.91)	(29.6) -0.667*	(1.93)	(10.8) -2.28**	(26.1) -1.60	(1.93) -2.19***	field_arts_and_humanities	
ield_business_management_and_accounting	(0.450) -5.70	(0.359) -10.5	(0.496) -7.88**	(0.203) -15.3**	(0.390)	(0.496) -7.88**	(0.858) -5.36	(2.29) 56.8	(0.496) -7.88**	$field_biochemistry_genetics_and_molecular_biology$	
	(3.69)	(12.2)	(3.84)	(7.46)	(25.8)	(3.84)	(5.44)	(80.2)	(3.84)	${\it field_business_management_and_accounting}$	
ield_chemical_engineering	-0.010 (3.26)	-5.04 (12.1)	1.66 (3.57)	-2.15 (5.55)	-16.6 (12.9)	1.66 (3.57)	-14.5 (13.6)	-7.95 (25.6)	1.66 (3.57)	field_chemical_engineering	
ield_chemistry	-2.66*** (0.573)	-1.45 (1.56)	-2.30*** (0.644)	-1.75* (0.901)	-1.27 (2.21)	-2.30*** (0.644)	-3.63 (2.17)	-4.48 (6.70)	-2.30*** (0.644)	field_chemistry	
ield_computer_science	-0.955 (0.855)	-0.510 (3.20)	-0.010 (0.916)	-4.01** (1.74)	-11.1** (4.35)	-0.010 (0.916)	-5.72** (2.62)	3.31 (8.66)	-0.010 (0.916)	field_computer_science	
ield_decision_sciences	-5.71*** (2.09)	-2.93 (12.6)	-6.85*** (1.61)	0.806 (8.56)	7.44 (19.6)	-6.85*** (1.61)	-11.7 (10.2)	24.4 (53.0)	-6.85*** (1.61)	field_decision_sciences	
field_dentistry	4.98** (1.91)	15.9** (5.88)	4.25** (1.91)	-0.596 (4.10)	18.6 (12.7)	4.25** (1.91)	7.39* (4.20)	23.4 (19.5)	4.25** (1.91)	$field_dentistry$	
ield_earth_and_planetary_sciences	-1.20 (1.08)	-4.52* (2.35)	-1.38 (1.24)	-2.49 (3.43)	-5.04 (11.6)	-1.38 (1.24)	-10.5 (11.4)	-38.1 (26.8)	-1.38 (1.24)	$field_earth_and_planetary_sciences$	
ield_economics_econometrics_and_finance	-0.375 (2.59)	-15.8* (8.33)	0.707 (2.84)	-10.3 (7.01)	-10.8 (19.2)	0.707 (2.84)	-4.22 (3.35)	-8.70 (11.7)	0.707 (2.84)	$field_economics_econometrics_and_finance$	
ield_energy	-3.30* (1.72)	-10.7*** (3.50)	-4.30** (1.65)	0.454 (2.80)	-5.04 (5.15)	-4.30** (1.65)	-7.71 (8.43)	-42.1** (20.2)	-4.30** (1.65)	field_energy	
ield_engineering	-1.89*** (0.609)	-0.930 (1.80)	-1.88** (0.706)	-3.22*** (0.990)	(5.15) -5.49** (2.35)	(1.65) -1.88** (0.706)	(8.43) -5.66** (2.18)	-24.7*** (7.76)	-1.88** (0.706)	field_engineering	
ield_environmental_science	-1.06*	0.079	-0.858	0.294	0.202	-0.858	-3.87	-8.18	-0.858	field_environmental_science	
field_health_professions	(0.564) -5.65*** (1.00)	(1.34) -12.6 (17.4)	(0.591) -5.67** (2.25)	(1.35) -3.64 (4.96)	(2.53) 3.59	(0.591) -5.67**	(2.40) -11.0*** (2.30)	(7.94) -56.8*** (20.5)	(0.591) -5.67** (2.25)	field_health_professions	
field_immunology_and_microbiology	(1.99)	(17.4) -4.65***	(2.25)	(4.96) 1.01	(14.8)	(2.25)	(2.30)	(20.5)	(2.25)	field_immunology_and_microbiology	
ield_materials_science	(0.536)	(1.30)	(0.658)	(0.717)	(2.28)	(0.658)	(1.22)	(3.27) 5.27	(0.658) -0.093	field_materials_science	
ield_mathematics	(0.348) 8.11***	(0.925) $30.3**$	(0.382) 8.66***	(0.893) 2.93	(2.09) 10.6	(0.382) 8.66***	(2.15) 12.3***	(6.66) 26.7	(0.382) 8.66***	field_mathematics	
ield_medicine	(2.20) -0.132	(11.6) 2.47***	(2.37) 0.026	(6.01) -0.666*	(18.5) 0.497	(2.37) 0.026	(3.37) -1.95***	(20.7) 0.485	(2.37) 0.026	field_medicine	
eld_neuroscience	(0.279)	(0.489) 1.35	(0.312) -2.24***	(0.382)	(0.914) 1.06	(0.312)	(0.435)	(0.946) -7.81	(0.312) -2.24***	field_neuroscience	
eld_nursing	(0.751) -1.79*	(1.91) 2.96	(0.771) -2.56**	(0.998) -2.06	(2.04) 4.36	(0.771) -2.56**	(1.81)	(6.78) -1.92	(0.771) -2.56**	field_neuroscience field_nursing	
ield_nursing	(0.974) (0.151	(2.97) 1.64	(1.07) -0.076	-2.06 (2.13) 1.49	(3.72) 5.82	-2.56 (1.07) -0.076	-8.13 (3.06) -5.36**	-1.92 (18.3) -5.69	-2.56 (1.07) -0.076	-	
	(1.21)	(3.40)	(1.34)	(1.78)	(4.69)	(1.34)	(2.48)	(15.3)	(1.34)	field_pharmacology_toxicology_and_pharmaceutics	
eld_physics_and_astronomy	-2.49 (1.65)	1.62 (4.15)	-2.33 (1.57) 3.83*	-4.25 (3.84)	8.46 (9.04)	-2.33 (1.57) 3.83*	-9.23* (4.89)	9.52 (17.0)	-2.33 (1.57) 3.83*	field_physics_and_astronomy	
eld_psychology	3.43* (1.88)	-0.533 (7.06)	3.83* (2.17)	-3.73 (4.69)	-11.1 (12.7)	3.83* (2.17)	(3.39)	12.0 (18.8)	3.83* (2.17)	field_psychology	
ield_social_sciences	-0.217 (1.67)	1.08 (5.51)	-1.23 (1.84)	-7.13** (2.75)	2.03 (8.13)	-1.23 (1.84)	-3.51 (4.06)	-2.11 (24.9)	-1.23 (1.84)	field_social_sciences	
ield_veterinary	1.23 (2.70)	1.71 (9.58)	1.25 (2.93)	-9.49 (6.27)	-5.96 (14.4)	1.25 (2.93)	-2.76 (4.38)	-2.07 (18.8)	1.25 (2.93)	field_veterinary	
nesh_	34.2*** (6.30)	74.1*** (17.9)	38.0*** (5.75)	42.3*** (8.43)	44.8 (29.6)	38.0*** (5.75)	32.8*** (10.7)	105.1*** (33.1)	38.0*** (5.75)	mesh_	
nesh_A	4.20*** (0.370)	7.21*** (1.77)	4.07*** (0.410)	5.66*** (0.532)	7.75*** (2.18)	4.07*** (0.410)	5.52*** (1.01)	10.7*** (2.50)	4.07*** (0.410)	mesh_A	
mesh_B	3.62*** (0.316)	2.54** (1.09)	3.58*** (0.363)	4.18*** (0.815)	0.839 (1.49)	3.58*** (0.363)	7.50*** (1.15)	3.45 (3.50)	3.58*** (0.363)	mesh_B	
mesh_C	1.68*** (0.451)	4.99*** (1.70)	1.59*** (0.490)	1.29**	3.49* (1.79)	1.59*** (0.490)	1.22*	7.77* (4.58)	1.59*** (0.490)	$\operatorname{mesh_C}$	
nesh_D	(0.451) 0.854*** (0.143)	(1.70) 1.60*** (0.383)	(0.490) 0.925*** (0.151)	(0.636) 0.470* (0.246)	(1.79) 1.44** (0.560)	(0.490) 0.925*** (0.151)	(0.689) 2.47*** (0.335)	(4.58) 2.55* (1.30)	(0.490) 0.925*** (0.151)	mesh_D	
nesh_E	-0.484	1.03	-0.240	-0.211	(0.560) 2.09 (2.06)	-0.240	-1.09	2.74	-0.240	mesh_E	
nesh.F	(0.406) 1.06 (0.947)	(1.72) -1.17 (4.64)	(0.407) 1.27	(0.818) 2.50 (1.63)	7.47*	(0.407) 1.27	(0.925) 3.78*	(4.76) -0.170 (10.4)	(0.407) 1.27	mesh_F	
mesh_G	(0.947)	(4.64)	(1.01) 3.08***	(1.63) 3.72***	(4.35) 1.98	(1.01) 3.08***	(2.06)	(10.4) -0.879	(1.01) 3.08***	$\operatorname{mesh_G}$	
nesh_H	(0.323)	(1.09) 15.2**	(0.353)	(0.527) 6.71**	(1.19)	(0.353)	(0.896)	(3.39)	(0.353)	$\mathrm{mesh}_{\mathtt{L}}\mathrm{H}$	
nesh_I	(1.42) -0.0002	(6.67) 12.3	(1.39)	(3.04)	(10.6) -5.49	(1.39)	(3.76)	(27.4) -20.5	(1.39)	mesh_I	
nesh_J	(2.95) 1.07**	(25.3) 2.00	(2.70) 1.00**	(10.1) 1.20	(35.5) 5.88*	(2.70) 1.00**	(4.73) 8.60***	(29.4) -7.66	(2.70) 1.00**	mesh _J	
nesh_K	(0.442)	(2.40) -35.0	(0.487) -13.8	(1.01) 3.26	(3.46) -21.4	(0.487)	(2.22)	(12.6) -93.5	(0.487)	$\mathrm{mesh}_{-}\mathrm{K}$	
nesh_L	(4.13) 6.90***	(21.9) 13.9***	(9.07) 5.75***	(14.9) 7.93***	(32.5) 13.8**	(9.07) 5.75***	(19.6) 12.6***	(144.3) -7.48	(9.07) 5.75***	$\mathrm{mesh}_{-}\mathrm{L}$	
nesh_M	(0.867) 7.37***	(3.77)	(0.927) 7.32***	(1.65) 7.81***	(5.16) 1.31	(0.927) 7.32***	(2.19) 9.50***	(7.39) 26.2**	(0.927) 7.32***	mesh_M	
	(0.928)	(7.53)	(1.07)	(1.91)	(10.8)	(1.07)	(1.46)	(12.8)	(1.07)	mesh_N	
esh_N	5.47*** (0.540)	4.64 (3.92)	5.12*** (0.599)	(1.54)	9.91 (5.91)	(0.599)	8.57*** (1.44)	4.02 (14.0)	5.12*** (0.599)	mesh_Z	
nesh_Z	0.995	-11.3 (11.4) 5		1.83 (4.77)	22.6 (17.6)	0.906 (1.53)	-1.04 (2.82)	-6.74 (21.0)	0.906 (1.53)	mesh_n	
esh_n	9.24*** (2.14)	10.1 (7.40)	9.19*** (2.03)	12.4*** (3.24)	21.8** (9.34)	9.19*** (2.03)	11.5*** (3.11)	0.495 (15.6)	9.19*** (2.03)	AlphaFold × Counterfactual AI	
lpha Fold \times Counterfactual AI	0.030 (0.026)	-0.143* (0.072)	-0.003 (0.029)	-0.025 (0.054)	-0.167* (0.085)	-0.003 (0.029)	-0.012 (0.038)	-0.008 (0.175)	-0.003 (0.029)	AlphaFold × Counterfactual Al AlphaFold × Counterfactual No Al	
lpha Fold \times Counterfactual No AI	0.040 (0.031)	0.072 (0.055)	0.025 (0.034)	0.059 (0.035)	0.072 (0.085)	0.025 (0.034)	0.026	0.087	0.025 (0.034)		
llpha Fold - Method \times Counterfactual AI - Method	0.004 (0.026)	-0.015 (0.019)	0.003	-0.018 (0.029)	-0.043* (0.025)	0.003 (0.036)	-0.003 (0.027)	-0.027 (0.051)	0.003 (0.036)	AlphaFold - Method × Counterfactual AI - Method	
lpha Fold - Method \times Counterfactual No AI - Method	-0.002**	0.0003	-0.006**	-0.0007	-0.0009	-0.006**	-0.0009	0.002	-0.006**	AlphaFold - Method × Counterfactual No AI - Method	1
ixed-effects	(0.0006)	(0.0003)	(0.003)	(0.0005)	(0.0009)	(0.003)	(0.0008)	(0.002)	(0.003)	Fixed-effects pi_id	
i.id narter_year	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	quarter_year	
narter_year stitution_type stitution_cited_by_count	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	institution_type institution_cited_by_count institution_2vr_mean_citedness	

Mathematical	Dependent Variable:		411 72: 11		ln1		M. P. C			
Description		All PDB	All Fields High PDB	CEM				All PDB	Medicine High PDB	CEM
Counterferiant AI	AlphaFold	-0.014	0.023	0.0004	-0.029***	-0.016	0.0004	-0.022	-0.022	0.0004
Commerciant No. Al	Counterfactual AI	(0.009) -0.023**			(0.008) -0.017**				(0.072) -0.170	(0.008) -0.012
Mathol	Counterfactual No AI									(0.008)
Commerication Commerication Commerication Commerication Commerication Commerication Commerication Commerication Commercication Commercicati		(0.019)	(0.055)	(0.017)	(0.008)	(0.023)	(0.017)	(0.035)	(0.104)	(0.017)
Company		(0.008)	(0.015)	(0.008)	(0.005)	(0.007)	(0.008)	(0.010)	(0.021)	(0.008)
	Counterfactual AI - Method									0.013* (0.007)
Bold particular and Diological circoness 0.800	Counterfactual No AI - Method									-0.016 (0.010)
Seld and almanemins	field_agricultural_and_biological_sciences	0.840***	2.78	0.825***	0.794	2.81	0.825***	7.98**	23.9*	(0.259)
Selbisensity sensition and annoembar biology 0,301 0,305 0,307 0,306	field_arts_and_humanities	-0.076	-0.836	0.153	9.16	29.5	0.153	-10.1*	-16.7	0.153
field Intering instantament and accounting (a.6) 1.6 (1) (1) (2) (2) (1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	field_biochemistry_genetics_and_molecular_biology	0.301	0.058	0.202	0.549***	0.584	0.202	-0.968	-2.77	(0.465) 0.202
Beld-Lemeinschampinering 221 417 225 333 0055 226 444 878 216 146 146 147 147 148	field_business_management_and_accounting									(0.206) 2.39
Belder Comment Comme	field chemical engineering									(2.07) 2.26
Beld Accomputer science		(1.43)	(5.79)	(1.49)	(3.25)	(11.0)	(1.49)	(11.9)	(38.8)	(1.49) 0.512
Belde 1968		(0.380)	(1.13)	(0.440)	(0.593)	(1.65)	(0.440)	(1.71)	(7.82)	(0.440)
1. 1. 1. 1. 1. 1. 1. 1.	field_computer_science									0.858 (0.515)
field-denarthanting planetary sciences 0.236 6.64 0.226 1.57 1.46 0.28 2.77 2.27 0.29 field-aconthal-planetary sciences 0.154 1.03 0.050 0.153 0.050 0.153 0.163 0.050 0.154 0.163 0.050 0.154 0.163 0.050 0.153 0.163 0.050 0.154 0.163 0.050 0.157 0.07 2.28 1.07 0.28 0.153 0.164 0.000	field_decision_sciences									-0.509 (0.844)
Bold accommiss commetries and dismans	field_dentistry	0.236	-5.64*	0.428	1.57	1.46	0.428	-2.37	-32.3*	0.428
	field_earth_and_planetary_sciences	-0.412	0.139	-0.535	0.483	5.51	-0.535	-10.4**	-34.9*	(0.955)
1.50 1.50	field_economics_econometrics_and_finance							-3.28		(0.368) 0.077
1.0 1.0		(1.96)	(5.43)	(1.86)	(3.36)	(13.8)	(1.86)	(2.13)	(14.6)	(1.86) 0.275
1.0 1.0		(0.653)	(1.98)	(0.649)	(1.75)	(3.24)	(0.649)	(5.27)	(24.0)	(0.649)
Company		(0.264)	(0.964)	(0.262)	(0.554)	(1.50)	(0.262)	(1.13)	(12.7)	0.534** (0.262)
field-laneunlogy and microbiology	field_environmental_science	0.469	-0.338	0.292	1.11	2.64	0.292	0.771	-2.38	0.292 (0.312)
field-immonlogy and microbiology 0.426 1.26 0.568 1.04* 0.822* 0.588 0.023* 5.49 0.5 field amterials science 0.271* -0.248* 0.117* 0.021* 0.118* 0.101* 0.125* 0.101* 0.125* 0.101* 0.125* 0.101* 0.125* 0.101* 0.125* 0.101* 0.125* 0.101* 0.125* 0.101* 0.125* 0.125* 0.125* 0.125* 0.125* 0.125* 0.125* 0.125* 0.125* 0.125* 0.125* 0.125* 0.124* 0.005* 0.024* 0.005* 0.024* 0.005* 0.024* 0.005* 0.024* 0.005* 0.024* 0.005* 0.024* 0.005* 0.024* 0.005* 0.024* 0.005* 0.024* 0.005* 0.024* 0.005* 0.024* 0.007* 0.004* 0.004* 0.004* 0.004* 0.004* 0.004* 0.004* 0.004* 0.004* 0.004* 0.004* 0.004* 0.004* 0.004* 0.004* 0.0	field_health_professions	0.285	-8.44	0.859	1.56	-0.086	0.859	-1.32	-31.5*	0.859 (0.600)
field materials science 0.271 -0.288 0.117 -0.529 -1.80 0.117 0.85 8.48 0 0.1037 (1.00) (1.	field_immunology_and_microbiology	0.426	1.26	0.568	1.04*	0.822	0.568	-0.023	5.49	0.568
	field_materials_science									(0.521) 0.117
164 164 164 163 164 163 164 163 163 165	field_mathematics						(0.192)	(1.95) 11.7***		(0.192) 9.71***
Field 1.5 1.		(3.09)	(16.4)	(3.33)	(5.27)	(45.0)	(3.33)	(4.00)	(23.2)	(3.33)
1		(0.538)	(1.61)	(0.503)	(0.245)	(1.08)	(0.503)	(0.486)	(1.46)	(0.503)
Find plantmacology and plantmaceutis	field_neuroscience									0.0005 (0.290)
Field_playmancology_toxicology_and_pharmaceuties	field_nursing	0.341	-2.85	0.258	1.09	-1.69	0.258	-0.676	-17.1*	0.258 (0.458)
field_physics and astronomy	field_pharmacology_toxicology_and_pharmaceutics	-0.331	-0.837	-0.095	-0.255	-1.76	-0.095	-1.66	-8.00	-0.095
field_speckplology 0.788 1.13 0.628 1.53 -6.06 0.628 0.124 1.33 0.07 3.79 1.30 0.05 0.161 0.25 0.007 3.79 1.30 0.007 -0.604 1.76 0.00 field_secial_sciences (0.975) (5.48) 0.933 (2.1) (7.20 0.015 5.27 1.24 0.05 mesh_ (1.48) (6.47) (1.19) (2.50 0.019 1.67 0.06 0.02 0.01 5.27 1.24 0.05 mesh_A (6.44) (27.2) (6.40) (1.09) (3.10) (6.04) (1.02 0.06 0.828 0.060 0.828 0.060 0.828 0.060 0.828 0.060 0.828 0.060 0.828 0.060 0.828 0.060 0.828 0.060 0.828 0.060 0.828 0.060 0.828 0.060 0.828 0.060 0.828 0.060 0.828 0.074 0.029 0.378 0.029	field_physics_and_astronomy	0.473	-0.585	0.563	-0.534	-2.03	0.563	-3.19	-13.7	(0.791) 0.563
10,000 1	field_psychology									(0.447) 0.628
				(0.583)						(0.583) 0.007
		(0.975)	(5.48)	(0.953)	(2.51)	(7.26)	(0.953)	(2.64)	(22.4)	(0.953)
meshA (6.24) (27.2) (6.40) (0.10) (31.0) (6.40) (9.30) (52.5) (6.60) meshA (0.233) (1.26) (0.253) (0.640) (0.788) (0.230) (0.788) (0.253) (0.263) (0.263) (0.263) (0.263) (0.253) (0.263) (0.253) (0.261) (0.253) (0.261) (0.273) (0.273) (0.251) (0.261) (0.261) (0.274) (0.251) (0.104) (0.251) (0.104) (0.251) (0.104) (0.251) (0.104) (0.251) (0.104) (0.251) (0.104) (0.024) (0.024) (0.024) (0.024) (0.025) (0.104) (0.034) (0.104) (0.104) (0.102) (0.1030) (0.1030) (0.1030) (0.1030) (0.102) (0.308) (0.1030) (0.102) (0.308) (0.102) (0.308) (0.122) (0.1030) (0.1030) (0.122) (0.1030) (0.102) (0.102) (0.102) (0.102) (0.0300) (0.102) (0.002) (0.102) </td <td></td> <td>(1.48)</td> <td>(6.47)</td> <td>(1.49)</td> <td>(2.65)</td> <td>(5.99)</td> <td>(1.49)</td> <td>(4.25)</td> <td>(26.6)</td> <td>-0.115 (1.49)</td>		(1.48)	(6.47)	(1.49)	(2.65)	(5.99)	(1.49)	(4.25)	(26.6)	-0.115 (1.49)
meshA 0.448* -0.076 0.328 0.066* 0.378* 0.036* 0.141 0.028* 0.063* 1.177* 0.3 mesh B 1.00**** 1.38* 0.878*** 1.22*** 0.428* 0.878*** 4.47*** 2.87* 0.87* mesh C 0.555*** 0.555** 5.05*** 0.746*** 0.96*** 3.01** 0.746** 0.96** 0.74 0.96*** 3.01** 0.746** 0.96** 0.74 0.97** 0.03** 0.04** 0.03** 0.04** 0.03** 0.04** 0.03** 0.04** 0.03** 0.04** 0.04** 0.04** 0.04** 0.04** 0.04** 0.02** 0.04** 0.04** 0.06** 0.04** 0.05**	mesh_									16.7** (6.40)
mesh B 1.00*** 1.38 0.878*** 1.23*** 0.428 0.878*** 4.47*** 2.87 0.87 mesh C 0.850** 5.05*** 0.746** 0.967*** 3.01* 0.746** 0.093 7.06 0.7.0 mesh D 0.850** 5.05*** 0.746** 0.033* 0.031* 0.16** 0.538** 2.16** 0.522** 0.003 0.877** 0.552** 1.85** 5.57** 0.55** 0.03 0.877** 0.552** 1.85** 5.57** 0.55** 0.03 0.877** 0.552** 1.85** 0.52** 0.03 0.877** 0.552** 1.85** 0.558** 0.558** 1.16** 5.57** 0.558** 1.16** 2.24** 0.059** 0.079** 0.058** 1.16** 2.24** 0.059** 0.620** 0.18** 0.0290** 0.18** 0.020** 0.18** 0.020** 0.18** 1.16** 0.220** 0.18** 0.020** 0.059** 0.07** 0.020** 0.05** 0.05** 0.05**	mesh_A	0.448*	-0.076	0.328	0.606*	0.878	0.328	0.063	-1.77	0.328 (0.253)
mesh.C 0.850** 5.05** 0.746** 0.960*** 3.01* 0.746** 0.093 7.06 0.75 mesh.D 0.349* 1.196* 0.353*** 2.16*** 0.552*** 0.033 0.87*** 0.552*** 1.85*** 5.57*** 0.55 mesh.E 1.06** 5.21*** 1.47*** 3.46*** 6.85*** 1.47*** 2.49*** 11.6* 1.44*** mesh.F 0.0291* (1.58)* (0.302) (0.620) (1.81) (0.302) (0.729) (0.60) 1.0 -0 mesh.F 0.035 6.27 -0.005 0.58** 1.10** 0.12** 1.64**	mesh_B	1.00***	1.38	0.878***	1.23***	0.428	0.878***	4.47***	2.87	0.878***
mesh D 0.538*** 2.16**** 0.552**** 0.003 0.87*** 0.552*** 1.85*** 5.57*** 0.57*** mesh E 1.60*** 5.21*** 1.47*** 3.46*** 6.85*** 1.47** 2.40*** 11.6* 1.48** mesh F (0.291) (1.58) (0.302) (0.600) (1.81) (0.729) (0.600) (0.81) mesh F (0.593) (5.29) (0.593) (0.955) (3.67) (0.593) (1.60*** 0.72** 0.01 0.40 mesh G (0.593) (5.29) (0.593) (0.955) (3.67) (0.593) (1.60***) 0.52** 0.03 mesh G (0.167) (0.837) (0.188) (0.993) (0.975) (0.171) (0.189) 0.574 (0.90 0.171 0.349 0.579 0.518 0.03 0.074 0.01 0.02 0.183 0.01 0.02 0.183 0.02 0.183 0.02 0.183 0.02 0.193 0.02 0.193 0.0	mesh_C									(0.251) 0.746**
mesh_E (0.116) (0.424) (0.122) (0.179) (0.399) (0.122) (0.388) (1.58) (0.138) mesh_F (0.291) (1.58) (0.302) (0.620) (1.81) (0.302) (0.729) (6.60) (0.338) mesh_F (0.035) -6.27 -0.005 0.538 -1.38 -0.005 0.908 -1.10 -0.005 mesh_G (0.451** -1.34 0.349* 0.730** 0.171 0.488 0.579 -5.45 0.33 mesh_H 0.809 -2.40 0.919 1.77 -7.55* 0.919 0.121 -1.35 0.99 mesh_H 0.201 -3.34 0.679 0.692 (2.19) 0.692 0.19 1.27 -7.55* 0.919 0.121 -1.35 0.99 mesh_J 0.221 -3.34 0.679 0.91 1.92 0.679 0.863 46.3 0.02 mesh_J 0.123 2.10 0.230 0.160 3.88 0.230 <td>mesh_D</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(5.15) 5.57***</td> <td>(0.336) 0.552***</td>	mesh_D								(5.15) 5.57***	(0.336) 0.552***
mesh,F (0.291) (1.58) (0.302) (0.620) (1.81) (0.302) (0.729) (6.60) (0.31) mesh,G (0.053) (5.29) (0.593) (0.935) (3.67) (0.503) (1.12) (0.837) (0.167) (0.0837) (0.188) (0.307) (0.171) (0.683) (1.69) (0.593) (0.935) (3.67) (0.183) (0.593) (0.935) (3.67) (0.533) (1.16) (1.22) (0.583) (0.347) (0.188) (0.347) (0.188) (0.347) (0.188) (0.347) (0.188) (0.347) (0.188) (0.347) (0.188) (0.347) (0.188) (0.347) (0.188) (0.347) (0.188) (0.347) (0.188) (0.347) (0.188) (0.341) (0.982) (0.992)										(0.122) 1.47***
mesh G (0.593) (5.29) (0.593) (0.935) (3.67) (0.503) (1.16) (1.12) (0.53) mesh G (0.451**) 1.34 0.349* 0.739* 0.579* 5.45 0.3 mesh H (0.167) (0.837) (0.188) (0.304) (0.771) (0.188) (0.574) (3.90) (0.1 mesh J (0.274) (2.95) (0.692) (1.65) (3.92) (0.692) (2.11) (3.3 0.979 0.91 1.92 0.679 -0.83 -4.63 0.0 0.0 0.91 1.92 0.679 -0.83 -4.63 0.0 0.0 0.91 1.92 0.679 -0.83 -4.63 0.0		(0.291)	(1.58)	(0.302)	(0.620)	(1.81)	(0.302)	(0.729)	(6.60)	(0.302)
mesh,G 0.451** 1.34 0.349** 0.730** 0.171 0.349* 0.579 5.45* 0.30 mesh,H 0.060** 0.240* 0.919* 1.77 -7.55* 0.919 0.121 1.33.5 0.0 mesh,J 0.080* -2.40 0.919 1.67* -7.55* 0.919 0.121 1.33.5 0.0 mesh,J 0.074 (0.295) (0.692) (1.65) 0.91 1.77 -7.55* 0.919 0.121 -1.33.5 0.0 mesh,J 0.021 -3.34 0.679 6.91 1.92 0.679 -0.83 4.63 0.0 mesh,J 0.123 2.10 0.230 0.160 3.68 0.230 -3.99* 4.55 0.2 mesh,K 0.124 (2.05) (0.308) (0.737) (2.77) (0.305) (1.83) (1.60 (0.52) mesh,L 0.024 0.175 (2.269) (6.31) (2.99) (0.23) (0.13) (1.35 <th< td=""><td>mesh_F</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-0.005 (0.593)</td></th<>	mesh_F									-0.005 (0.593)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh_G	0.451**	-1.34	0.349*	0.730**	0.171	0.349*	0.579	-5.45	0.349* (0.188)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh_H	0.809	-2.40	0.919	1.77	-7.55*	0.919	0.121	-13.5	0.919
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh_I	0.211	-3.34	0.679	6.91	1.92	0.679	-0.863	-46.3	(0.692) 0.679
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh_J						0.230			(0.892) 0.230
1.28		(0.274)	(2.05)	(0.305)	(0.737)	(2.77)	(0.305)	(1.83)	(16.0)	(0.305)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1.28)	(17.5)	(2.69)	(6.31)	(29.8)	(2.69)	(10.3)	(87.6)	(2.69)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.496)	(1.38)	(0.529)	(0.764)	(1.99)	(0.529)	(1.41)	(9.09)	1.38** (0.529)
Mesh N 1.00	mesh_M	-0.485								-0.474 (0.600)
mesh.Z -0.962 -2.9.0° -0.865 -1.4 -28.2°*** -0.865 -3.16 -58.8°** -0.0 mesh.n (0.84) (1.31) (0.913) (2.08) (1.02) (0.913) (2.09) (0.913) (2.00) (0.913) (2.00) (0.913) (2.00) (0.913) (2.00) (0.913) (2.00) (0.913) (2.00) (0.913) (2.00) (0.913) (2.00) (0.913) (2.00) (0.840) (1.64) (2.1) (0.00)	mesh_N	-0.092	9.81	-0.152	-1.23	2.28	-0.152	0.312	31.9	-0.152 (0.330)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh_Z	-0.962	-23.0*	-0.865	-1.54	-28.2***	-0.865	-3.16	-58.8**	-0.865
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mesh_n		10.000	0 1 5 44						(0.913) 1.54*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.832)	(7.76)	$\mathbf{O}_{(0.840)}$	(1.69)	(5.78)	(0.840)	(1.64)	(21.9)	(0.840)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.017)	(0.053)	(0.013)	(0.029)	(0.067)	(0.013)	(0.048)	(0.185)	(0.013)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.025)	(0.050)	(0.026)	(0.014)	(0.039)	(0.026)	(0.043)	(0.097)	-0.061** (0.026)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Alpha Fold - Method \times Counterfactual AI - Method	0.011		0.013*	0.010	0.010	0.013*	0.006	0.029	0.013* (0.007)
Fixed-effects	Alpha Fold - Method \times Counterfactual No AI - Method	0.002**	0.005***	0.001	0.002***	0.002**	0.001	0.003**	0.007**	0.001
	Fixed-effects	(0.0009)	(0.002)	(0.002)	(0.0000)	(0.0001)	(0.002)	(0.001)	(0.003)	(0.002)
	pi_id						Yes			Yes Yes
institution_type Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	institution_type	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
										Yes Yes

Dependent Variable:		412 724 11			ln1p_ca_coun						
	All PDB	All Fields High PDB	CEM	All PDB	olecular Biole High PDB	ogy CEM	All PDB	Medicine High PDB	CEM		
AlphaFold	0.072***	0.083***	0.054***	0.006	0.024**	0.054***	0.152***	0.157**	0.054***		
Counterfactual AI	(0.016) -0.028**	(0.022) -0.009	(0.014) -0.031**	(0.006) -0.014*	(0.011) 0.021	(0.014) -0.031**	(0.031) -0.013	(0.059) -0.039	(0.014) -0.031**		
Counterfactual No AI	(0.012) 0.177***	(0.021) 0.254***	(0.011) 0.145***	(0.007) 0.022*	(0.015) 0.037**	(0.011) 0.145***	(0.026) 0.230***	(0.073) 0.320***	(0.011) 0.145***		
AlphaFold - Method	(0.042)	(0.055) -0.020**	(0.036) -0.015	(0.011) -0.002	(0.017) 0.0006	(0.036) -0.015	(0.051) -0.027**	(0.075) -0.024**	(0.036) -0.015		
-	(0.011)	(0.009)	(0.011)	(0.002)	(0.002)	(0.011)	(0.012)	(0.009)	(0.011)		
Counterfactual AI - Method	-0.00009 (0.009)	0.008 (0.025)	-0.0007 (0.009)	-0.0010 (0.005)	-0.008 (0.014)	-0.0007 (0.009)	-0.002 (0.035)	0.059 (0.110)	-0.0007 (0.009)		
Counterfactual No AI - Method	0.046** (0.021)	0.067** (0.030)	0.038** (0.019)	0.019 (0.012)	0.023 (0.019)	(0.019)	0.034* (0.018)	0.052* (0.030)	0.038** (0.019)		
field_agricultural_and_biological_sciences	-0.029 (0.192)	1.87* (0.959)	-0.006 (0.171)	-0.435 (0.286)	-0.684** (0.273)	-0.006 (0.171)	3.00* (1.52)	10.4* (5.92)	-0.006 (0.171)		
field_arts_and_humanities	-1.71 (1.22)	-10.5*** (3.49)	-1.27 (1.08)	-1.00 (2.44)	-0.601 (2.07)	-1.27 (1.08)	-13.1* (6.77)	-16.6 (27.0)	-1.27 (1.08)		
$field_biochemistry_genetics_and_molecular_biology$	-0.643*** (0.187)	-0.594*** (0.211)	-0.597*** (0.189)	-0.384*** (0.115)	-0.286** (0.130)	-0.597*** (0.189)	-3.09*** (0.847)	-3.69** (1.49)	-0.597*** (0.189)		
$field_business_management_and_accounting$	-4.22**	-2.14	-3.33*	2.24	-4.31*	-3.33*	-11.3***	-20.9	-3.33*		
field_chemical_engineering	(1.89) -0.148	(4.87) -4.59	(1.85) -0.215	(3.34)	(2.20) -3.28	(1.85) -0.215	(4.09) 3.85	(46.2) -35.9	(1.85) -0.215		
field_chemistry	(0.775) -0.401	(4.01) -0.465	(0.797) -0.148	(1.32) -0.628**	(3.47)	(0.797) -0.148	(7.80) -2.67**	(69.7) -2.43	(0.797) -0.148		
field_computer_science	(0.259) -1.42***	(0.290) -1.76	(0.199) -0.975**	(0.249) -0.665	(0.302) 0.607	(0.199) -0.975**	(1.23) -6.60***	(2.77) -9.27**	(0.199) -0.975**		
field_decision_sciences	(0.477) 0.526	(1.50) -11.4**	(0.459) -0.168	(0.400) -0.516	(1.58) -5.07	(0.459) -0.168	(2.18) 9.37	(4.34) -44.5	(0.459) -0.168		
	(0.772)	(4.82)	(0.660)	(1.29)	(3.18)	(0.660)	(8.70)	(46.7)	(0.660)		
field_dentistry	1.78 (1.45)	(2.89)	1.88 (1.61)	2.46 (1.91)	1.53 (1.99)	1.88 (1.61)	-2.98 (3.79)	-5.71 (26.4)	1.88		
field_earth_and_planetary_sciences	-0.583** (0.266)	-0.965 (0.685)	-0.460* (0.236)	-1.52* (0.836)	-1.96 (1.75)	-0.460* (0.236)	-1.16 (4.94)	-42.7* (24.2)	-0.460* (0.236)		
$field_economics_econometrics_and_finance$	1.24 (3.39)	-11.8 (7.21)	2.01 (4.07)	4.18 (3.26)	-4.89 (3.40)	2.01 (4.07)	-4.08 (2.64)	-9.48 (11.6)	2.01 (4.07)		
field_energy	-1.50** (0.634)	-0.777 (0.595)	-1.35** (0.603)	-0.795 (0.483)	-0.354 (0.513)	-1.35** (0.603)	-6.14 (4.33)	-43.7* (24.0)	-1.35** (0.603)		
field_engineering	-0.068	-0.572	0.031	-0.318	-0.194	0.031	-0.255	-4.95	0.031		
${\it field_environmental_science}$	(0.204)	(0.424)	(0.205)	(0.222)	(0.616)	(0.205)	(1.30)	(8.45) -6.18	(0.205)		
field_health_professions	(0.290) -0.667	(0.640) -11.1**	(0.292) -0.638	(0.379) 5.32**	(0.438) 9.84	(0.292) -0.638	(2.18) -4.19*	(9.76) -13.0	(0.292) -0.638		
field_immunology_and_microbiology	(1.41) -0.780**	(5.40) -0.584	(1.48) -0.749*	(2.60) 0.003	(6.25) 0.902	(1.48) -0.749*	(2.14) -2.84***	(9.89) -0.503	(1.48) -0.749*		
field_materials_science	(0.342)	(0.840) 0.184	(0.376) -0.182	(0.253) -0.015	(0.702) -0.052	(0.376) -0.182	(0.952) -2.41	(3.34) -0.507	(0.376) -0.182		
	(0.334)	(0.160)	(0.284)	(0.169)	(0.237)	(0.284)	(2.08)	(5.37)	(0.284)		
field_mathematics	14.6*** (4.89)	55.0*** (13.9)	15.2*** (5.08)	6.04 (3.58)	12.9** (5.74)	15.2*** (5.08)	19.3*** (6.17)	48.6** (20.6)	15.2*** (5.08)		
field_medicine	2.79*** (0.635)	3.88*** (1.14)	2.64*** (0.622)	0.757*** (0.233)	0.707* (0.374)	2.64*** (0.622)	1.76*** (0.444)	2.86* (1.43)	2.64*** (0.622)		
field_neuroscience	-0.239 (0.209)	-0.617 (0.599)	-0.197 (0.234)	-0.102 (0.207)	0.643 (1.01)	-0.197 (0.234)	-2.15** (0.870)	-6.28 (3.73)	-0.197 (0.234)		
field_nursing	0.709 (0.607)	-0.951 (1.48)	0.814 (0.604)	0.910 (0.604)	1.33	0.814 (0.604)	-0.143 (1.62)	-7.77 (9.18)	(0.604)		
$field_pharmacology_toxicology_and_pharmaceutics$	-0.992*	-0.518	-1.04**	-0.291	0.266	-1.04**	-4.30**	-8.20	-1.04**		
$field_physics_and_astronomy$	(0.513)	(0.994)	(0.490)	(0.701)	(0.784)	(0.490)	(1.69) -5.20*	(6.72) -11.8	(0.490)		
field_psychology	(0.419) 5.89***	(0.473) 10.3**	(0.366) 4.64***	(0.330) 2.52	(0.615) 12.4	(0.366) 4.64***	(2.79) 9.24***	(10.2) 15.8	(0.366) 4.64***		
field_social_sciences	(1.54) 8.74***	(4.32) 25.5**	(1.45) 7.40***	(2.16) 1.47	(8.39) 0.469	(1.45) 7.40***	(3.19) 16.4***	(27.9) 82.9***	(1.45) 7.40***		
field_veterinary	(2.29)	(10.6) -2.41	(2.10) -2.61**	(1.85) -1.96	(2.99) -0.652	(2.10) -2.61**	(4.32) -9.08**	(29.7) -14.7**	(2.10) -2.61**		
mesh_	(1.18) 13.8***	(2.48) 36.8***	(1.07) 14.1***	(1.69) 3.92**	(1.94) 11.6**	(1.07) 14.1***	(3.97) 23.2**	(6.13) 33.5	(1.07) 14.1***		
	(4.27)	(11.4)	(5.06)	(1.61)	(5.66)	(5.06)	(10.6)	(37.7)	(5.06)		
mesh_A	0.195 (0.125)	0.143 (0.450)	0.214 (0.130)	0.051 (0.092)	0.003 (0.177)	0.214 (0.130)	0.771 (0.525)	1.56 (1.90)	0.214 (0.130)		
mesh_B	0.792*** (0.202)	0.938 (0.644)	0.720*** (0.190)	0.627 (0.397)	0.251 (0.284)	0.720*** (0.190)	2.66*** (0.725)	-1.40 (2.62)	0.720*** (0.190)		
mesh_C	(0.305)	-1.56 (1.06)	0.681** (0.291)	0.673** (0.247)	0.562 (0.437)	0.681** (0.291)	0.267 (0.497)	-1.18 (2.79)	(0.291)		
mesh_D	0.480*** (0.141)	0.504** (0.217)	0.415*** (0.132)	0.127** (0.062)	(0.051	0.415*** (0.132)	2.04*** (0.560)	2.10** (1.02)	0.415*** (0.132)		
mesh_E	0.760*** (0.196)	1.58*	0.607***	0.324** (0.142)	0.298 (0.256)	0.607*** (0.175)	1.94** (0.738)	7.48	0.607*** (0.175)		
$\operatorname{mesh}_{-}\!F$	-0.500	-3.75	(0.175)	-0.933*	-1.82	-0.402	0.216	2.84	-0.402		
mesh_G	(0.485)	(2.23) 0.032	(0.495) 0.426**	(0.532) 0.054	(1.52) 0.147	(0.495) 0.426**	(0.937) 1.19*	(5.94) 1.91	(0.495) 0.426**		
mesh_H	(0.178) 0.540	(0.297) -1.85	(0.159) 0.325	(0.144) 0.663	(0.121) 1.97	(0.159) 0.325	(0.619) 3.22	(1.85) -8.31	(0.159) 0.325		
mesh.J	(0.518) -2.35*	(1.58) -13.2	(0.436) -2.17*	(0.672) -1.54	(2.22) 8.61	(0.436) -2.17*	(2.46) -5.30	(12.7) -10.5	(0.436) -2.17*		
mesh.J	(1.33) -0.037	(10.6) 1.36	(1.26) 0.001	(2.07) 0.169	(7.19) 0.382	(1.26) 0.001	(4.03) -1.11	(28.2) 6.01	(1.26) 0.001		
	(0.115)	(1.22)	(0.114)	(0.199)	(0.508)	(0.114)	(1.22)	(10.5)	(0.114)		
mesh_K	-2.80** (1.32)	-22.3 (13.9)	-4.05* (2.12)	-3.63 (4.06)	-12.8* (6.77)	-4.05* (2.12)	-13.2 (11.6)	-37.9 (59.5)	-4.05* (2.12)		
mesh_L	0.705*** (0.232)	0.271 (0.512)	0.507** (0.221)	0.767* (0.442)	0.791 (0.701)	0.507** (0.221)	-0.288 (1.63)	-7.03 (6.86)	0.507** (0.221)		
mesh_M	3.86*** (1.37)	28.1*** (8.34)	3.64** (1.48)	2.07* (1.05)	2.38 (1.91)	3.64** (1.48)	5.71*** (1.73)	35.3*** (12.9)	3.64** (1.48)		
$\mathrm{mesh}_{\omega}N$	1.58***	3.10	1.47**	1.73**	3.65*	1.47**	3.14**	3.23	1.47**		
$\mathrm{mesh}_* \! Z$	(0.571)	(2.86)	(0.549)	(0.724)	(2.02)	(0.549)	(1.48) 5.46**	(8.23)	(0.549)		
mesh_n	(0.818) -0.222	(13.2) 5.08	7 (0.951)	(1.23) -0.686	(5.09) 1.26	(0.951) -0.408	(2.68) 1.70	(21.2) 14.4	(0.951) -0.408		
AlphaFold \times Counterfactual AI	(1.34)	(6.55) -0.009	(1.27)	(0.891) 0.004	(2.36) -0.004	(1.27) -0.004	(2.19) -0.056	(14.2) -0.093	(1.27) -0.004		
AlphaFold × Counterfactual No AI	(0.019)	(0.052)	(0.020) 0.003	(0.015)	(0.041)	(0.020)	(0.044)	(0.148)	(0.020)		
-	(0.091)	(0.111)	(0.079)	(0.013)	(0.037)	(0.079)	(0.100)	(0.122)	(0.079)		
AlphaFold - Method × Counterfactual AI - Method	(0.015)	(0.025)	-0.0006 (0.013)	(0.011)	-0.001 (0.010)	-0.0006 (0.013)	(0.023)	(0.056)	-0.0006		
Alpha Fold - Method \times Counterfactual No AI - Method	-0.004** (0.002)	-0.004** (0.002)	-0.008** (0.004)	-0.0008 (0.0006)	-0.001 (0.0009)	-0.008** (0.004)	-0.004*** (0.002)	-0.005** (0.002)	-0.008** (0.004)		
Fixed-effects	V	V							V		
pi_id quarter_year	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
institution_type institution_cited_by_count	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
institution_2yr_mean_citedness	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		

Dependent Variable:		All Fields			db_submissic olecular Biolo			Medicine		Dependent Variable:
	All PDB	High PDB	CEM	All PDB	High PDB	CEM	All PDB	High PDB	CEM	Dependent variable.
AlphaFold	0.031*** (0.007)	0.100*** (0.035)	0.034*** (0.007)	0.038*** (0.013)	0.118** (0.051)	0.034*** (0.007)	0.021*** (0.007)	0.032 (0.049)	0.034*** (0.007)	AlphaFold
Counterfactual AI	0.017** (0.007)	0.018 (0.026)	0.014 (0.009)	0.025 (0.015)	0.011 (0.047)	0.014 (0.009)	0.024 (0.017)	0.014 (0.074)	0.014 (0.009)	-
Counterfactual No AI	0.008	0.023	0.007	0.013	0.046 (0.073)	0.007	0.005	-0.008 (0.042)	0.007	Counterfactual AI Counterfactual No AI
AlphaFold - Method	0.002	-0.013 (0.008)	0.002	0.011*	0.005 (0.017)	0.002	0.002	-0.004 (0.010)	0.002	
Counterfactual AI - Method	0.005	-0.002	0.009	-0.001	-0.021	0.009	0.005	-0.044	0.009	AlphaFold - Method
Counterfactual No AI - Method	(0.007) 0.021**	(0.033)	(0.010)	(0.013) 0.039	(0.052) 0.063**	(0.010) 0.023**	(0.017) 0.017**	(0.064) 0.024	(0.010)	Counterfactual AI - Method
field_agricultural_and_biological_sciences	(0.008) 0.122	(0.020) 4.73**	(0.009)	(0.025)	(0.028)	(0.009) 0.099	(0.007) 4.52***	(0.015) 18.8***	(0.009)	Counterfactual No AI - Method
field_arts_and_humanities	(0.190) 0.926*	(2.04) 5.32	(0.208) 0.922	(0.627) 5.08	(2.84) 18.7	(0.208) 0.922	(1.22) -1.61	(6.22) 6.39	(0.208) 0.922	field_agricultural_and_biological_sciences
field_biochemistry_genetics_and_molecular_biology	(0.532) 1.74***	(5.81) 5.62***	(0.583) 1.84***	(5.36) 1.30***	(32.1)	(0.583) 1.84***	(1.78) 0.517*	(54.0) 1.74	(0.583) 1.84***	field_arts_and_humanities
field_business_management_and_accounting	(0.377) 0.139	(0.996) 17.1	(0.393)	(0.276) 1.99	(0.846) 12.9	(0.393) -0.005	(0.289)	(2.44) -9.13	(0.393) -0.005	field_biochemistry_genetics_and_molecular_biology
field_chemical_engineering	(1.51) -1.44	(12.0) 7.05	(1.85) -2.10	(3.06) 2.24	(18.8) 27.7	(1.85) -2.10	(1.84) -4.74	(63.8) 29.7	(1.85) -2.10	field_business_management_and_accounting
field_chemistry	(1.92) 1.90***	(15.5) 5.25***	(1.98) 2.30***	(3.98) 3.18***	(23.3) 4.12	(1.98) 2.30***	(7.55) 3.32**	(105.0) 0.962	(1.98) 2.30***	field_chemical_engineering
field_computer_science	(0.498)	(1.62) -4.37	(0.579)	(0.958)	(2.81) -4.38	(0.579) -0.117	(1.49) 0.871	(5.33)	(0.579) -0.117	field_chemistry
field_decision_sciences	(0.514) 0.320	(4.32) 18.2	(0.601) 0.316	(1.02) 2.47	(6.69) 29.5	(0.601) 0.316	(2.49)	(18.3) -49.7	(0.601) 0.316	field_computer_science
field_dentistry	(0.557) 0.584	(13.7) 5.60	(0.626)	(3.11)	(21.1)	(0.626)	(1.76)	(50.5) 32.5	(0.626)	field_decision_sciences
v	(0.727)	(8.24)	(0.834	1.38 (2.03)	9.87 (9.19)	(0.834	(2.26)	(26.3)	(0.857)	field_dentistry
field_earth_and_planetary_sciences	-1.21* (0.631)	-5.51*** (2.00)	(0.740)	-0.579 (2.74)	-0.733 (15.6)	(0.740)	-11.2 (6.79)	-70.6 (50.4)	(0.740)	field_earth_and_planetary_sciences
${\it field_economics_econometrics_and_finance}$	0.402 (0.547)	9.59 (12.3)	0.823 (0.658)	-0.182 (3.09)	43.5 (37.3)	0.823 (0.658)	-1.14 (0.959)	-9.52 (25.5)	0.823 (0.658)	$field_economics_econometrics_and_finance$
field_energy	2.81* (1.52)	3.38 (6.08)	3.10* (1.65)	7.97** (3.57)	13.1 (9.08)	3.10* (1.65)	-0.871 (4.57)	-37.3* (21.0)	3.10* (1.65)	field_energy
field_engineering	-0.555* (0.289)	-1.14 (1.75)	-0.674** (0.312)	-0.940 (0.827)	(3.30)	-0.674** (0.312)	-1.07 (0.942)	-13.3 (8.62)	-0.674** (0.312)	field_engineering
field_environmental_science	(0.376)	7.13*** (1.71)	1.66*** (0.421)	(0.943)	(3.75)	1.66*** (0.421)	6.00*** (1.94)	24.1* (13.6)	1.66*** (0.421)	field_environmental_science
field_health_professions	-0.382 (0.412)	-1.25 (6.90)	-0.309 (0.494)	-1.65 (2.03)	-1.43 (19.5)	-0.309 (0.494)	-1.02* (0.592)	-12.6 (11.7)	-0.309 (0.494)	field_health_professions
$field_immunology_and_microbiology$	1.17*	6.93**	0.910*	-0.485 (0.636)	-0.076 (3.09)	0.910* (0.463)	0.892	6.00 (5.34)	0.910*	field_immunology_and_microbiology
field_materials_science	1.50***	3.02**	1.65***	5.66***	10.7***	1.65***	8.67***	36.7***	1.65***	field_materials_science
$field_mathematics$	(0.443)	(1.26)	(0.499)	(1.17)	(3.19)	(0.499)	(2.43)	(11.8)	(0.499)	field_mathematics
field_medicine	(0.612) 0.594**	(10.5) 4.41***	(0.840) 0.577**	(1.88) 0.245	(29.7) 2.76**	(0.840) 0.577**	(1.25) 0.190	(15.3) -1.56	(0.840) 0.577**	field_medicine
field_neuroscience	(0.235) 1.27***	(1.05) 12.0***	(0.246) 1.30**	(0.275) $3.15****$	(1.20) 20.1***	(0.246) 1.30**	(0.165) -0.670	(1.39) -5.76	(0.246) 1.30**	field_neuroscience
field_nursing	(0.448) 1.02	(3.92) 10.7**	(0.507) 1.45**	(1.11) 3.48**	(6.49) 9.99	(0.507) 1.45**	(0.520) 0.286	(7.60) 16.7	(0.507) 1.45**	field_nursing
field_pharmacology_toxicology_and_pharmaceutics	(0.615) 0.500	(5.05) 5.69	(0.656) 0.781	(1.66) 2.52	(7.05) 11.5*	(0.656) 0.781	(0.998) -2.23*	(17.3) -31.7***	(0.656) 0.781	field_pharmacology_toxicology_and_pharmaceutics
field_physics_and_astronomy	(0.633) 0.183	(4.21) -2.36	(0.788) 0.039	(1.69) -0.349	(5.73) -6.63	(0.788) 0.039	(1.22) 2.07	(9.58) -2.72	(0.788) 0.039	field_physics_and_astronomy
field_psychology	(0.411) -0.057	(2.55) 7.47	(0.466) 0.150	(1.87) 1.23	(4.98) 16.5	(0.466) 0.150	(3.01) -0.178	(20.8) -6.79	(0.466) 0.150	field_psychology
field_social_sciences	(0.354) -0.894*	(7.96) -6.36	(0.400) -1.29**	(2.27)	(22.6) -5.54	(0.400) -1.29**	(0.491) -2.40***	(15.6) -15.7	(0.400) -1.29**	field_social_sciences
field_veterinary	(0.465)	(3.88) 0.778	(0.592)	(1.75)	(10.6) 4.49	(0.592)	(0.794) -3.07**	(15.0) -17.8	(0.592)	field_veterinary
	(0.724)	(6.90)	(0.801)	-5.75 (3.52)	(18.5)	(0.801)	(1.43)	(18.4)	(0.801)	v
mesh_	0.571 (2.88)	4.21 (23.3)	-0.303 (2.48)	1.77 (7.02)	8.53 (34.3)	-0.303 (2.48)	3.08 (4.30)	-10.1 (59.2)	-0.303 (2.48)	mesh_
mesh_A	-1.86*** (0.190)	-10.6*** (1.56)	-2.02*** (0.192)	-2.49*** (0.321)	-8.47*** (2.23)	-2.02*** (0.192)	-2.25*** (0.406)	-11.5*** (3.29)	-2.02*** (0.192)	mesh_A
mesh_B	1.07*** (0.175)	7.14*** (1.48)	1.06*** (0.195)	1.38*** (0.356)	5.45*** (1.79)	1.06*** (0.195)	3.23*** (0.761)	12.8*** (4.63)	1.06*** (0.195)	mesh_B
mesh_C	-1.26*** (0.163)	-7.61*** (1.59)	-1.31*** (0.171)	-1.91*** (0.300)	-6.68*** (2.21)	-1.31*** (0.171)	-1.36*** (0.186)	-7.18** (3.30)	-1.31*** (0.171)	mesh_C
mesh_D	(0.131)	6.92*** (0.703)	1.93*** (0.154)	2.75*** (0.236)	6.93*** (0.869)	1.93*** (0.154)	1.83*** (0.251)	6.63*** (1.60)	1.93*** (0.154)	mesh_D
mesh_E	2.92*** (0.293)	19.4*** (2.01)	3.17*** (0.327)	5.53*** (0.623)	20.6*** (2.83)	3.17*** (0.327)	3.01*** (0.524)	32.0***	3.17*** (0.327)	mesh_E
mesh_F	-0.700**	-5.07	-0.687*	-1.17 (0.872)	-0.657 (8.76)	-0.687*	-1.15**	-8.97 (13.9)	-0.687*	mesh_F
mesh_G	(0.302)	(5.49) 5.64***	(0.357)	1.98***	5.22***	(0.357)	(0.439)	8.64***	(0.357)	mesh_G
mesh_H	(0.141)	(0.928)	(0.154)	(0.238)	(1.21) -8.77	(0.154)	(0.443)	(3.03)	(0.154) -2.17***	mesh_H
mesh_I	(0.554) 0.340	(5.62) -29.9**	(0.621) 0.401	(0.947) -0.482	(9.54) -115.4***	(0.621) 0.401	(1.26) -1.19	(20.0) -63.3*	(0.621) 0.401	mesh_I
mesh_J	(0.474) -1.74***	(14.3) -10.3***	(0.533) -1.82***	(2.15) -4.20***	(29.7) -13.6***	(0.533) -1.82***	(1.04) -3.59***	(34.3) 0.761	(0.533) -1.82***	mesh_J
mesh_K	(0.244) 0.619	(2.89) -5.79	(0.268) 0.197	(0.604) -5.00	(3.60) -25.3	(0.268) 0.197	(0.967) 1.42	(17.4) 141.9*	(0.268) 0.197	mesh_K
mesh_L	(1.22) -0.472*	(30.2) -0.343	(3.07) -0.482	(5.73) -1.49***	(40.3) -0.585	(3.07) -0.482	(6.31) 2.29*	(81.4) 7.19	(3.07) -0.482	mesh_L
mesh_M	(0.264) 0.394	(2.73) -1.14	(0.320) 0.418	(0.490) 1.43**	(3.43)	(0.320) 0.418	(1.18) 0.228	(12.7) 4.67	(0.320) 0.418	mesh_M
	(0.297)	(6.79)	(0.323)	(0.606)	(6.78) -28.1***	(0.323)	(0.534)	(14.9)	(0.323)	mesh_N
mesh_N	-0.957*** (0.166)	-17.9*** (3.58)	-1.01*** (0.167)	-3.17*** (0.610)	(7.03)	-1.01*** (0.167)	-0.704** (0.282)	-11.3 (7.95)	-1.01*** (0.167)	$\operatorname{mesh}_{-}\!Z$
mesh_Z	-0.126 (0.440)	-6.91 (7.85) {		1.31 (1.06)	13.9 (17.9)	-0.003 (0.563)	-1.95** (0.714)	-39.0** (19.1)	-0.003 (0.563)	mesh_n
mesh_n	-1.98*** (0.474)	-7.86 (5.97)	-2.18*** (0.534)	-5.28*** (1.17)	-16.5* (9.25)	-2.18*** (0.534)	-1.82** (0.806)	-17.1 (16.3)	-2.18*** (0.534)	AlphaFold \times Counterfactual AI
AlphaFold \times Counterfactual AI	(0.020	0.089 (0.106)	0.025 (0.039)	0.002 (0.049)	0.066 (0.140)	0.025 (0.039)	-0.008 (0.058)	-0.302 (0.219)	(0.025)	AlphaFold × Counterfactual No AI
Alpha Fold \times Counterfactual No AI	-0.026* (0.014)	-0.076 (0.061)	-0.028* (0.015)	0.0004	0.039	-0.028* (0.015)	-0.025* (0.013)	-0.090* (0.052)	-0.028* (0.015)	AlphaFold - Method × Counterfactual AI - Method
Alpha Fold - Method \times Counterfactual AI - Method	-0.024 (0.019)	-0.096*** (0.024)	-0.046** (0.022)	-0.038 (0.041)	-0.108*** (0.026)	-0.046** (0.022)	0.026 (0.025)	0.047 (0.070)	-0.046** (0.022)	AlphaFold - Method × Counterfactual No AI - Method
Alpha Fold - Method \times Counterfactual No AI - Method	-0.001 (0.0007)	-0.001 (0.001)	-0.0002 (0.002)	-0.002 (0.002)	-0.003 (0.002)	-0.0002 (0.002)	-0.001 (0.001)	-0.001 (0.003)	-0.0002 (0.002)	Fixed-effects
Fixed-effects pi_id	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	pi_id quarter_year
quarter_year institution_type	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	institution_type institution_cited_by_count
institution_cited_by_count	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	institution_2yr_mean_citedness

| All | All