Local Cohomology

Swayam Chube

Last Updated: August 2, 2025

§1 The *I*-torsion functor

DEFINITION 1.1. Let R be a ring, $I \leq R$ an ideal, and M an R-module. Define

$$\Gamma_I(M) := \{x \in M : \text{ there is a positive integer } n \in \mathbb{N} \text{ such that } I^n x = 0\} = \bigcup_{n \ge 1} (0 :_M I^n).$$

This is known as the *I-torsion functor*.

It is clear that $\Gamma_I(M)$ is a submodule of M and any R-linear map $\varphi: M \to N$ restricts to an R-linear map $\Gamma_I(\varphi): \Gamma_I(M) \to \Gamma_I(N)$. Thus, $\Gamma_I:_R \mathfrak{Mod} \to_R \mathfrak{Mod}$ is a functor.

LEMMA 1.2. The functor Γ_I is left-exact.

Proof. Let $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ be a short exact sequence of *R*-modules.

DEFINITION 1.3. The right derived functors of $\Gamma_I :_R \mathfrak{Mod} \to_R \mathfrak{Mod}$ are called the *local cohomology functors* with support in I.

Henceforth R is a Noetherian ring unless specified otherwise.

There are some properties of Γ_I which are trivial to verify:

- $\Gamma_I(M) = \Gamma_{\sqrt{I}}(M)$ as submodules of M.
- If $\Gamma_I(M) = 0$, then I cannot be contained in any associated prime of M. In particular, if M is a finite R-module, then $\mathrm{Ass}_R(M)$ is finite, and hence, using Prime Avoidance, there is an M-regular element in I, that is, $\mathrm{depth}(I,M) \geqslant 1$.
- Given a family of R-modules $\{M_\alpha\}_{\alpha\in\Lambda}$, $\Gamma_I\left(\bigoplus_{\alpha\in\Lambda}M_\alpha\right)=\bigoplus_{\alpha\in\Lambda}\Gamma_I(M_\alpha)$ as submodules of $\bigoplus_{\alpha\in\Lambda}M_\alpha$.
- If $S \subseteq R$ is a multiplicative subset, then $\Gamma_{S^{-1}I}(S^{-1}M) = S^{-1}\Gamma_I(M)$ as submodules of $S^{-1}M$.
- For $\mathfrak{p} \in \operatorname{Spec}(R)$,

$$\Gamma_I(E_R(R/\mathfrak{p})) = egin{cases} E_R(R/\mathfrak{p}) & I \subseteq \mathfrak{p} \\ 0 & \text{otherwise}. \end{cases}$$

In particular if E is an injective R-module, then $\Gamma_I(E)$ is an injective R-module, and is a direct summand of E.

Since all the above isomorphisms are natural, these extend to isomorphisms on local cohomology, that is, for $i \ge 0$:

- $H_I^i(M) = \Gamma_{\sqrt{I}}(M)$ as submodules of M.
- Given a family of R-modules $\{M_{\alpha}\}_{\alpha \in \Lambda}$, $H_I^i \left(\bigoplus_{\alpha \in \Lambda} M_{\alpha}\right) = \bigoplus_{\alpha \in \Lambda} \Gamma_I(M_{\alpha})$ as submodules of $\bigoplus_{\alpha \in \Lambda} M_{\alpha}$.

 $\bullet \ \ \text{If } S\subseteq R \ \text{is a multiplicative subset, then } H^i_{S^{-1}I}(S^{-1}M)=S^{-1}\Gamma_I(M) \ \text{as submodules of } S^{-1}M.$

LEMMA 1.4. Let M be an R-module. If $\Gamma_I(M) = M$, then $\Gamma_I(E_R(M)) = E_R(M)$.

Proof. Suppose not and choose some $x \in E_R(M) \setminus \Gamma_I(E_R(M))$. Since R is Noetherian, there is an associated prime $\mathfrak p$ of $E_R(M)$ containing $\operatorname{Ann}_R(x)$. But since there is no power of I annihilating x, we must have $I \not\subseteq \mathfrak p$.

On the other hand, since $\operatorname{Ass}_R(E_R(M)) = \operatorname{Ass}_R(M)$, it follows that there is some $y \in M$ with $\mathfrak{p} = \operatorname{Ann}_R(y)$. Further, since $\Gamma_I(M) = M$, there is a positive integer n > 0 such that $I^n y = 0$, i.e., $I^n \subseteq \mathfrak{p}$, and hence, $I \subseteq \mathfrak{p}$, a contradiction.

COROLLARY 1.5. Let M be an R-module. If $\Gamma_I(M) = M$, then $H^i(M) = 0$ for i > 0.

Proof. Let $0 \to M \to E^{\bullet}$ be a minimal injective resolution of M. Due to Lemma 1.4, it follows that $\Gamma_I(E^i) = E^i$ for $i \ge 0$, and the conclusion follows, since the resolution remains unchanged after applying Γ_I .

PROPOSITION 1.6. Let M be an R-module, and set $N := M/\Gamma_I(M)$. Then $\Gamma_I(N) = 0$ and $H_I^i(N) \cong H_I^i(M)$ for i > 0.

Proof. Set $L := \Gamma_I(M)$. Then there is a short exact sequence $0 \to L \to M \to N \to 0$, and L is Γ_I -acyclic. It is then clear from the long exact sequence that $H^i_I(N) \cong H^i_I(M)$ for i > 0. Finally, since the induced map $\Gamma_I(L) \to \Gamma_I(M)$ is an isomorphism and $H^1_I(L) = 0$, it follows that $\Gamma_I(N) = 0$.

THEOREM 1.7 (GROTHENDIECK VANISHING THEOREM). Let (R, \mathfrak{m}, k) be a Noetherian local ring, $I \subseteq R$ an ideal, and M a finite R-module. Then $H_I^j(M) = 0$ for $j > \dim_R M$.

Proof. We argue by induction on $d := \dim_R(M)$. If d = 0, then M is Artinian, so that $\operatorname{Ass}_R(M) = \{\mathfrak{m}\}$. It follows that every element of M is annihilated by a power of \mathfrak{m} , and thus by a power of I. Consequently, $\Gamma_I(M) = M$. Due to Corollary 1.5, $H_I^i(M) = 0$ for i > 0, and this establishes the base case.

Suppose now that d>0. Set $N:=M/\Gamma_I(M)$. As we have seen in Proposition 1.6, $\Gamma_I(N)=0$ and $H_I^i(N)\cong H_I^i(M)$ for i>0. Further, $\dim_R N\leqslant d$. If this inequality is strict, then we are done due to the induction hypothesis. Hence we may assume that $\dim_R N=d$. As we remarked earlier, since $\Gamma_I(N)=0$, and N is a finite R-module, $\operatorname{depth}(I,N)\geqslant 1$. Choose an N-regular element $a\in I$. Let $x\mapsto \overline{x}$ denote the natural surjection $M \twoheadrightarrow M/aM=:\overline{M}$ and $\mu_a:M\to M$ be multiplication by a. The short exact sequence $0\to M\xrightarrow{\mu_a} M\to \overline{M}\to 0$ induces a long exact sequence:

$$\cdots \to H_I^{i-1}(\overline{M}) \to H_I^i(M) \xrightarrow{\mu_a} H_I^i(M) \to H_I^i(\overline{M}) \to \cdots.$$

For i>d, note that $i-1>d-1=\dim_R\overline{M}$, so that $H_I^{i-1}(\overline{M})=H_I^i(\overline{M})=0$. This shows that $\mu_a:H_I^i(M)\to H_I^i(M)$ is an isomorphism of R-modules. Recall that $H_I^i(M)$ is I-torsion and $a\in I$. If $H_I^i(M)\neq 0$, then for $n\gg 0$, the composition μ_a^n would have non-trivial kernel, which is absurd since it is an isomorphism. This shows that $H_I^i(M)=0$ for i>d, as desired.

PROPOSITION 1.8. Let (R, \mathfrak{m}, k) be a Gorenstein local ring with $d = \dim R$. Then

$$H_{\mathfrak{m}}^d(R) \cong E_R(k)$$
.

Proof. It is well-known that the minimal injective resolution of a Gorenstein local ring looks like:

$$0 \to R \to \bigoplus_{\mathrm{ht}\, \mathfrak{p} = 0} E_R(R/\mathfrak{p}) \to \bigoplus_{\mathrm{ht}\, \mathfrak{p} = 1} E_R(R/\mathfrak{p}) \to \cdots \to E_R(k) \to 0.$$

Further, it is clear that

$$\Gamma_{\mathfrak{m}}\left(E_{R}(R/\mathfrak{p})\right) = egin{cases} E_{R}(k) & \mathfrak{p} = \mathfrak{m} \\ 0 & ext{otherwise,} \end{cases}$$

whence the conclusion follows.

It is also possible to characterize the depth of an ideal using the local cohomology modules:

PROPOSITION 1.9. Let R be a Noetherian ring and $I \leq R$ an ideal. If M is a finite R-module such that $IM \neq M$, then

$$depth(I, M) = \inf \left\{ i : H_I^i(M) \neq 0 \right\}.$$

Proof. We induct on $d = \operatorname{depth}(I, M)$. If d = 0, then $I \subseteq \mathfrak{p}$ for some associated prime \mathfrak{p} of M.

§§ The Mayer-Vietoris Sequences

Let *M* be an *R*-module and $I, J \leq R$ be two ideals. It is easy to see that

$$0 \to \Gamma_{I+J}(M) \xrightarrow{x \mapsto (x,x)} \Gamma_I(M) \oplus \Gamma_J(M) \xrightarrow{(x,y) \mapsto x-y} \Gamma_{I \cap J}(M) \to 0$$

is exact.

THEOREM 1.10 (MAYER-VIETORIS, VERSION 1). Let R be a Noetherian ring, $I, J \leq R$ be ideals, and M an R-module. Then there is a long exact sequence

$$0 \to \Gamma_{I+J}(M) \to \Gamma_{I}(M) \oplus \Gamma_{J}(M) \to \Gamma_{I\cap J}(M) \to H^{1}_{I+J}(M) \to H^{1}_{I}(M) \oplus H^{1}_{J}(M) \to H^{1}_{I\cap J}(M) \to H^{2}_{I+J}(M) \to \cdots$$

Proof. Let $0 \to M \to E^{\bullet}$ be an R-injective resolution of M. In view of the above remark, there is a short exact sequence of complexes

$$0 \to \Gamma_{I+J}\left(E^{\bullet}\right) \to \Gamma_{I}\left(E^{\bullet}\right) \oplus \Gamma_{J}\left(E^{\bullet}\right) \to \Gamma_{I\cap J}\left(E^{\bullet}\right) \to 0.$$

Taking cohomologies, the conclusion follows.

THEOREM 1.11 (MAYER-VIETORIS, VERSION 2). Let R be a Noetherian ring, $x \in R$, $I \leq R$ an ideal, and M an R-module. Then there is a long exact sequence

$$0 \to \Gamma_{(I,x)}(M) \to \Gamma_{I}(M) \to \Gamma_{IR_x}(M_x) \to H^1_{(I,x)}(M) \to H^1_{I}(M) \to H^1_{IR_x}(M_x) \to H^2_{(I,x)}(M) \to \cdots$$

Proof.

§§ Set-theoretic Complete Intersections

LEMMA 1.12. Let R be a Noetherian ring, $I \leq R$ an ideal, and M an R-module. If I is generated by n elements, then $H_I^j(M) = 0$ for j > n.

Proof. We shall argue by induction on n. If n=0, then I=0, where it is clear that $H_I^j(M)=0$ for j>0. Suppose now that n>0. Then there exists an ideal $J\subseteq I$ and $x\in I$ such that J is generated by n-1 elements and I=(J,x). Using Theorem 1.11, for j>n, we have an exact sequence

$$H_{JR_x}^{j-1}(M_x) \rightarrow H_I^j(M) \rightarrow H_J^j(M)$$
.

Since j-1>n-1, $H_J^j(M)=0$ and since JR_x is generated by n-1 elements, $H_{JR_x}^{j-1}(M_x)=0$. It follows that $H_J^j(M)=0$ too.

DEFINITION 1.13. Let R be a Noetherian ring and $I \leq R$ an ideal. We define the *arithmetic rank* of I to be

$$\operatorname{ara}(I) = \min \left\{ n \in \mathbb{Z}_{\geqslant 0} \colon \text{there exist } a_1, \dots, a_n \in R \text{ such that } \sqrt{I} = \sqrt{(a_1, \dots, a_n)} \right\}.$$

§§ Connectedness of the Punctured Spectrum

THEOREM 1.14 (HARTSHORNE). Let (R, \mathfrak{m}, k) be a Noetherian local ring such that depth $R \ge 2$. Then $\operatorname{Spec}^{\circ}(R) := \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}$ is connected in the Zariski topology.

Proof. Suppose $\operatorname{Spec}^{\circ}(R)$ is not connected. Then there exist ideals I and J of R such that

$$\operatorname{Spec}^{\circ}(R) = (V(I) \setminus \{\mathfrak{m}\}) \sqcup (V(J) \setminus \{\mathfrak{m}\})$$

and $V(I) \setminus \{\mathfrak{m}\}$ is not empty, nor the entire $\operatorname{Spec}^{\circ}(\mathfrak{m})$. The latter condition is equivalent to the fact that I and J are neither \mathfrak{m} -primary or nilpotent. Further, the first condition is equivalent to $\sqrt{I+J}=\mathfrak{m}$ and $I\cap J$ being nilpotent.

With this setup, using Theorem 1.10, there is a long exact sequence

$$0 \to \Gamma_{I+J}(R) \to \Gamma_{I}(R) \oplus \Gamma_{J}(R) \to \Gamma_{I\cap J}(R) \to H^{1}_{I+J}(R) \to H^{1}_{I}(R) \oplus H^{1}_{J}(R) \to H^{1}_{I\cap J}(R) \to \cdots$$

Since $I \cap J$ is nilpotent, it follows that $\Gamma_{I \cap J}(R) = R$ and $H^j_{I \cap J}(R) = 0$ for j > 0. Since $\sqrt{I + J} = \mathfrak{m}$, $H^j_{I + J}(R) = H^j_{\mathfrak{m}}(R)$ for $j \ge 0$. But due to Proposition 1.9, $H^j_{\mathfrak{m}}(R) = 0$ for j = 0, 1. Hence, the above exact sequence gives

$$R \cong \Gamma_I(R) \oplus \Gamma_J(R)$$
,

But R being a direct sum of R-modules is equivalent to R being a product of rings, which is absurd since R is local.

§2 Čech Cohomology

DEFINITION 2.1. Let R be a Noetherian ring, and $\underline{a} = a_1, \dots, a_n \in R$. Let $\check{C}^{\bullet}(a_i)$ denote the cochain complex:

$$\cdots 0 \rightarrow R \rightarrow R_{a} \rightarrow 0 \rightarrow \cdots$$

and define $\check{C}^{\bullet}(a)$ to be the cochain complex:

$$\check{C}^{\bullet}(a_1) \otimes \cdots \otimes \check{C}^{\bullet}(a_n).$$

Further, if M is an R-module, then define $\check{C}^{\bullet}(\underline{a},M) := \check{C}^{\bullet}(\underline{a}) \otimes M$. This is known as the $\check{C}ech$ complex. The cohomology modules of this cochain complex are known as the $\check{C}ech$ cohomology modules and are denoted by $\check{H}^i_a(M)$.

REMARK 2.2. Since the tensor product of chain complexes is associative and commutative, the order of tensoring above doesn't matter.

THEOREM 2.3. Let R be a Noetherian ring, $I \leq R$ an ideal, and $\underline{a} := a_1, \dots, a_n \in R$ such that $\sqrt{(a_1, \dots, a_n)} = \sqrt{I}$. Then

$$\check{H}_a^j(M) \cong H_I^j(M)$$

for every R-module M.

Proof.

PROPOSITION 2.4. If $R \to S$ is a flat morphism of Noetherian rings, M an R-module, and I an ideal in R, then

$$H^j_I(M)\otimes_R S\cong H^j_{IS}(M\otimes_R S)$$

as S-modules.

PROPOSITION 2.5. Let $R \to S$ be a homomorphism of Noetherian rings, $I \leq R$ an ideal, and M an S-module. Then

$$H_I^j(M) \cong H_{IS}^j(M)$$

as S-modules.

DEFINITION 2.6. Let R be a Noetherian ring and $I \leq R$ an ideal. Define the *cohomological dimension* of I in R to be

$$\operatorname{cdim}(I,R)\coloneqq\inf\left\{i:H_I^j(M)=0\text{ for all }R\text{-modules }M\text{ and all }j>i\right\}.$$

PROPOSITION 2.7.

$$\operatorname{cdim}(I,R) = \inf \left\{ i : H_I^j(R) = 0 \text{ for all } j > i \right\}.$$

COROLLARY 2.8. Let (R, \mathfrak{m}, k) be a Noetherian local ring. Then $\operatorname{cdim}(I, R) = \operatorname{cdim}(\widehat{I}, \widehat{R})$.

Proof. This is immediate from Proposition 2.7 and the fact that $R \to \hat{R}$ is faithfully flat.

References