Дискретні та неперервні випадкові величини

Теорія ймовірностей, ймовірнісні процеси і математична статистика

Випадкова величина — це величина, яка в результаті експерименту з випадковим результатом набуває того чи іншого числового значення.

Випадкова величина — це величина, яка в результаті експерименту з випадковим результатом набуває того чи іншого числового значення.

- а) кількість очок, яка випадає на верхній грані за одне підкидання грального кубика;
- **б)** кількість бракованих виробів серед n навмання вибраних;
- в) кількість підкидань монети до першої появи герба;
- г) кількість викликів, які надходять на телефонну станцію протягом деякого проміжку часу;
- д) тривалість часу обслуговування покупця;
- е) час виконання деякого завдання і т.д.

Випадкова величина — це величина, яка в результаті експерименту з випадковим результатом набуває того чи іншого числового значення.

- а) кількість очок, яка випадає на верхній грані за одне підкидання грального кубика;
- **б)** кількість бракованих виробів серед n навмання вибраних;
- в) кількість підкидань монети до першої появи герба;
- г) кількість викликів, які надходять на телефонну станцію протягом деякого проміжку часу;
- д) тривалість часу обслуговування покупця;
- е) час виконання деякого завдання і т.д.

Випадкові величини — це функції на просторі елементарних подій.

Випадкова величина — це величина, яка в результаті експерименту з випадковим результатом набуває того чи іншого числового значення.

- а) кількість очок, яка випадає на верхній грані за одне підкидання грального кубика;
- **б)** кількість бракованих виробів серед n навмання вибраних;
- в) кількість підкидань монети до першої появи герба;
- г) кількість викликів, які надходять на телефонну станцію протягом деякого проміжку часу;
- д) тривалість часу обслуговування покупця;
- е) час виконання деякого завдання і т.д.

Випадкові величини — це функції на просторі елементарних подій.

Випадкові величини поділяються на **дискретні**, множини можливих значень яких скінченні або зліченні, — приклади а) – г) і **неперервні**, множини можливих значень яких суцільно заповнюють деякий інтервал, — приклади д), е).

Для того, щоб описати випадкову величину, необхідно:

- а) вказати множину її можливих значень;
- б) охарактеризувати ймовірності всіх можливих подій, пов'язаних із випадковою величиною (наприклад, ймовірність того, що вона набуде того чи іншого значення або потрапить у деякий інтервал).

Такий повний опис випадкової величини називається її **законом роз**поділу.

Нехай (Ω, \mathcal{F}, P) — довільний ймовірнісний простір.

Нехай (Ω, \mathcal{F}, P) — довільний ймовірнісний простір.

Не будь-які функції, визначені на Ω , можна розглядати як випадкові величини.

Нехай (Ω, \mathcal{F}, P) — довільний ймовірнісний простір.

Не будь-які функції, визначені на Ω , можна розглядати як випадкові величини.

Яка ймовірність того, що значення випадкової величини $X(\omega)$ належать до тієї чи іншої множини?

Нехай (Ω, \mathcal{F}, P) — довільний ймовірнісний простір.

Не будь-які функції, визначені на Ω , можна розглядати як випадкові величини.

Яка ймовірність того, що значення випадкової величини $X(\omega)$ належать до тієї чи іншої множини?

Для достатньо широкого класу множин $\{B\}$ на числовій прямій повинна бути впевненість, що множина $\{\omega: \ X(\omega) \in B\}$ належить σ -алгебрі подій \mathcal{F} , і тому можна розглядати ймовірність $P\{\omega: \ X(\omega) \in B\}$.

Нехай (Ω, \mathcal{F}, P) — довільний ймовірнісний простір.

Не будь-які функції, визначені на Ω , можна розглядати як випадкові величини.

Яка ймовірність того, що значення випадкової величини $X(\omega)$ належать до тієї чи іншої множини?

Для достатньо широкого класу множин $\{B\}$ на числовій прямій повинна бути впевненість, що множина $\{\omega: \ X(\omega) \in B\}$ належить σ -алгебрі подій \mathcal{F} , і тому можна розглядати ймовірність $P\{\omega: \ X(\omega) \in B\}$.

Достатньо припустити, що для кожного інтервалу $(-\infty,x)$ множина $\{\omega: X(\omega) \in (-\infty,x)\} = \{\omega: X(\omega) < x\}$ належить σ -алгебрі подій $\mathcal F$, і тоді для кожної множини дійсних чисел B, яка зображається як об'єднання або перетин скінченної або зліченної кількості проміжків, отримаємо, що $\{\omega: X(\omega) \in B\} \in \mathcal F$.

<u>Оз</u>начення

Нехай (Ω,\mathcal{F},P) — ймовірнісний простір. Випадковою величиною назвемо дійсну функцію $X=X(\omega)$ визначену на Ω таку, що для кожного дійсного числа x виконується співвідношення:

$$\{\omega: X(\omega) < x\} \in \mathcal{F}.$$

Означення

Функція дійсної змінної x, $x \in \mathbb{R}$ визначена рівністю

$$F(x) = P\{\omega : X(\omega) < x\} = P\{X < x\},$$

називається функцією розподілу випадкової величини.

Функція розподілу є найбільш загальною формою закону розподілу, придатною для характеристики всіх випадкових величин (як дискретних, так і неперервних). Знаючи функцію розподілу F(x) випадкової величини X, можна обчислити ймовірності будь-яких подій, які з нею пов'язані.

 ${f F1^0}.$ Ймовірність того, що випадкова величина X набуде значення з проміжку [a,b) дорівнює приросту її функції розподілу на цьому проміжку, тобто

$$P\{a \le X < b\} = F(b) - F(a).$$

 ${f F1^0}.$ Ймовірність того, що випадкова величина X набуде значення з проміжку [a,b) дорівнює приросту її функції розподілу на цьому проміжку, тобто

$$P{a \le X < b} = F(b) - F(a).$$

 ${f F2^0}.$ Значення функції розподілу належать відрізку [0,1], тобто $0 \le F(x) \le 1.$

 ${f F1^0}$. Ймовірність того, що випадкова величина X набуде значення з проміжку [a,b) дорівнює приросту її функції розподілу на цьому проміжку, тобто

$$P\{a \le X < b\} = F(b) - F(a).$$

 ${f F2^0}.$ Значення функції розподілу належать відрізку [0,1], тобто $0 \le F(x) \le 1.$

 ${\bf F3^0}$. Якщо $x_1 \le x_2$, то $F(x_1) \le F(x_2)$, тобто F(x) — неспадна функція.

 ${f F1^0}$. Ймовірність того, що випадкова величина X набуде значення з проміжку [a,b) дорівнює приросту її функції розподілу на цьому проміжку, тобто

$$P{a \le X < b} = F(b) - F(a).$$

 ${f F2^0}.$ Значення функції розподілу належать відрізку [0,1], тобто $0 \le F(x) \le 1.$

 ${f F3^0}$. Якщо $x_1 \leq x_2$, то $F(x_1) \leq F(x_2)$, тобто F(x) — неспадна функція.

$$\mathbf{F4^0}. \lim_{x \to \infty} F(x) = 1 i \lim_{x \to -\infty} F(x) = 0.$$

 ${f F1^0}$. Ймовірність того, що випадкова величина X набуде значення з проміжку [a,b) дорівнює приросту її функції розподілу на цьому проміжку, тобто

$$P\{a \le X < b\} = F(b) - F(a).$$

 ${f F2^0}.$ Значення функції розподілу належать відрізку [0,1], тобто $0 \le F(x) \le 1.$

 ${f F3^0}$. Якщо $x_1 \leq x_2$, то $F(x_1) \leq F(x_2)$, тобто F(x) — неспадна функція.

$$\mathbf{F4^0}. \lim_{x \to \infty} F(x) = 1 \text{ i } \lim_{x \to -\infty} F(x) = 0.$$

 ${f F5^0}.\ \lim_{x o x_0-0}F(x)=F(x_0)$, тобто функція F(x) — неперервна зліва.

 ${f F1^0}$. Ймовірність того, що випадкова величина X набуде значення з проміжку [a,b) дорівнює приросту її функції розподілу на цьому проміжку, тобто

$$P{a \le X < b} = F(b) - F(a).$$

 ${f F2^0}.$ Значення функції розподілу належать відрізку [0,1], тобто $0 \le F(x) \le 1.$

 ${f F3^0}$. Якщо $x_1 \leq x_2$, то $F(x_1) \leq F(x_2)$, тобто F(x) — неспадна функція.

$$\mathbf{F4^0}. \lim_{x \to \infty} F(x) = 1 i \lim_{x \to -\infty} F(x) = 0.$$

 ${f F5^0}. \lim_{x o x_0 = 0} F(x) = F(x_0)$, тобто функція F(x) — неперервна зліва.

F6⁰.
$$P\{X = x\} = F(x+0) - F(x)$$
.

Означення

Випадкова величина називається дискретною, якщо множина її можливих значень є скінченною або зліченною.

Означення

Випадкова величина називається дискретною, якщо множина її можливих значень є скінченною або зліченною.

Нехай X — дискретна випадкова величина, можливими і єдино можливими значеннями якої є числа x_1, x_2, \ldots, x_n .

Означення

Випадкова величина називається дискретною, якщо множина її можливих значень є скінченною або зліченною.

Нехай X — дискретна випадкова величина, можливими і єдино можливими значеннями якої є числа x_1,x_2,\ldots,x_n . Через $p_k=P\{X=x_k\}$ позначимо ймовірність того, що випадкова величина X набуває значення $x_k,\,p_k>0$.

Означення

Випадкова величина називається дискретною, якщо множина її можливих значень є скінченною або зліченною.

Нехай X — дискретна випадкова величина, можливими і єдино можливими значеннями якої є числа x_1,x_2,\ldots,x_n . Через $p_k=P\{X=x_k\}$ позначимо ймовірність того, що випадкова величина X набуває значення $x_k,\,p_k\geq 0$.

Події $\{X=x_k\},\ k=\overline{1,n}$ утворюють повну групу попарно несумісних подій, тому $\sum\limits_{k=1}^n p_k=p_1+p_2+\cdots+p_n=1.$

Означення

Випадкова величина називається **дискретною**, якщо множина її можливих значень є скінченною або зліченною.

Нехай X — дискретна випадкова величина, можливими і єдино можливими значеннями якої є числа x_1,x_2,\ldots,x_n . Через $p_k=P\{X=x_k\}$ позначимо ймовірність того, що випадкова величина X набуває значення $x_k,\,p_k\geq 0$.

Події $\{X=x_k\}$, $k=\overline{1,n}$ утворюють повну групу попарно несумісних подій, тому $\sum\limits_{k=1}^n p_k=p_1+p_2+\cdots+p_n=1.$

Означення

Законом розподілу ймовірностей (законом розподілу) дискретної випадкової величини називається відповідність між усіма її можливими значеннями та їхніми ймовірностями.

Табличний запис закону розподілу — це таблиця значень x_k випадкової величини та відповідних їхніх ймовірностей p_k :

x_k	x_1	x_2		x_n
p_k	p_1	p_2	• • •	p_n

Табличний запис закону розподілу — це таблиця значень x_k випадкової величини та відповідних їхніх ймовірностей p_k :

x_k	x_1	x_2	 x_n
p_k	p_1	p_2	 p_n

За допомогою табличного запису закону розподілу можна визначити функцію розподілу F(x) випадкової величини X за формулою:

$$F(x) = P\{X < x\} = \sum_{k: x_k < x} p_k,$$

у якій сумування проводиться за всіма індексами k, для яких $x_k < x$.

У випадку, коли множина різних значень x_k випадкової величини X є нескінченною і зліченною, її закон розподілу також можна записати у формі таблиці, яка складатиметься з двох нескінченних рядків:

$$x_k: \quad x_1,x_2,\dots,x_n,\dots$$
 і $p_k: \quad p_1=P\{X=x_1\},p_2=P\{X=x_2\},\dots,p_n=P\{X=x_n\},\dots,$ до того ж $\sum\limits_{k=1}^\infty p_k=1.$

Біномний закон розподілу.

Біномний закон розподілу.

Нехай проводиться n незалежних випробувань за схемою Бернуллі і p=P(A) — ймовірність появи події A в кожному окремому випробуванні. Сформулюємо задачу: написати закон розподілу дискретної випадкової величини X — кількості появ події A в цих n випробуваннях.

Біномний закон розподілу.

Нехай проводиться n незалежних випробувань за схемою Бернуллі і p=P(A) — ймовірність появи події A в кожному окремому випробуванні. Сформулюємо задачу: написати закон розподілу дискретної випадкової величини X — кількості появ події A в цих n випробуваннях.

Випадкова величина X може набути значень

$$x_0 = 0, x_1 = 1, x_2 = 2, \dots, x_n = n.$$

Біномний закон розподілу.

Нехай проводиться n незалежних випробувань за схемою Бернуллі і p=P(A) — ймовірність появи події A в кожному окремому випробуванні. Сформулюємо задачу: написати закон розподілу дискретної випадкової величини X — кількості появ події A в цих n випробуваннях.

Випадкова величина X може набути значень

$$x_0 = 0, x_1 = 1, x_2 = 2, \ldots, x_n = n.$$

Ймовірності можливих значень x_k випадкової величини X обчислюються за біномною формулою:

$$p_k = P_n(k) = C_n^k p^k q^{n-k}, \qquad q = 1 - p$$

Біномний закон розподілу.

Нехай проводиться n незалежних випробувань за схемою Бернуллі і p=P(A) — ймовірність появи події A в кожному окремому випробуванні. Сформулюємо задачу: написати закон розподілу дискретної випадкової величини X — кількості появ події A в цих n випробуваннях.

Випадкова величина X може набути значень

$$x_0 = 0, x_1 = 1, x_2 = 2, \dots, x_n = n.$$

Ймовірності можливих значень x_k випадкової величини X обчислюються за біномною формулою:

$$p_k = P_n(k) = C_n^k p^k q^{n-k}, \qquad q = 1 - p$$

Описана випадкова величина X має біномний закон розподілу

$X = x_k$	0	1	2	 n
$p = p_k$	q^n	$C_n^1 pq^{n-1}$	$C_n^2 p^2 q^{n-2}$	 p^n

Розподіл Пуассона.

Розподіл Пуассона.

Розподіл ймовірностей дискретної випадкової величини X, яка набуває значень

$$x_k: 0, 1, 2, \ldots, n, \ldots$$

з ймовірностями

$$p_k = P\{X = x_k\} = \frac{\lambda^k}{k!} e^{-\lambda}, \qquad k = 0, 1, 2, \dots,$$

називається *законом розподілу Пуассона*, що залежить від параметра $\lambda,\ \lambda>0.$

Розподіл Пуассона.

Розподіл ймовірностей дискретної випадкової величини X, яка набуває значень

$$x_k: 0, 1, 2, \ldots, n, \ldots$$

з ймовірностями

$$p_k = P\{X = x_k\} = \frac{\lambda^k}{k!} e^{-\lambda}, \qquad k = 0, 1, 2, \dots,$$

називається *законом розподілу Пуассона*, що залежить від параметра $\lambda,\ \lambda>0.$

$X = x_k$	0	1	2	 n	
$p = p_k$	$e^{-\lambda}$	$\frac{\lambda}{1!}e^{-\lambda}$	$\frac{\lambda^2}{2!}e^{-\lambda}$	 $\frac{\lambda^n}{n!}e^{-\lambda}$	

Геометричний закон розподілу.

Геометричний закон розподілу.

Розглянемо незалежні випробування Бернуллі, у кожному з яких подія A настає з ймовірністю $p,\,0< p<1$, і не настає з ймовірністю q=1-p. Нехай випробування ведуться до появи події A, тобто, це означає: якщо подія A з'явилася у m-му випробуванні, то у попередніх m-1 її не було.

Основні закони розподілу дискретних випадкових величин

Геометричний закон розподілу.

Розглянемо незалежні випробування Бернуллі, у кожному з яких подія А настає з ймовірністю p, 0 , і не настає з ймовірністю <math>q = 1 - p. Нехай випробування ведуться до появи події A, тобто, це означає: якщо подія A з'явилася у m-му випробуванні, то у попередніх m-1її не було.

Позначимо через X випадкову величину, що означає кількість випробувань, які треба провести до першої появи події A, тобто

$$x_k: 1, 2, \ldots, m, \ldots$$

Основні закони розподілу дискретних випадкових величин

Геометричний закон розподілу.

Розглянемо незалежні випробування Бернуллі, у кожному з яких подія A настає з ймовірністю $p,\,0< p<1$, і не настає з ймовірністю q=1-p. Нехай випробування ведуться до появи події A, тобто, це означає: якщо подія A з'явилася у m-му випробуванні, то у попередніх m-1 її не було.

Позначимо через X випадкову величину, що означає кількість випробувань, які треба провести до першої появи події A, тобто

$$x_k: 1, 2, \ldots, m, \ldots$$

Тоді ймовірність p_k дорівнює $p_k = P\{X = x_k\} = q^{k-1}p$, $k = 1, 2, 3, \ldots$, а закон розподілу дискретної випадкової величини X називається **геометричним** і його можна подати таблицею:

$X = x_k$	1	2	3	 m	
$p = p_k$	p	qp	q^2p	 $q^{m-1}p$	

Означення

Випадкову величину X називають **неперервною (або абсолютно неперервною)**, якщо існує невід'ємна функція p(x) така, що для всіх x функція розподілу випадкової величини X визначається у вигляді

$$F(x) = P\{X < x\} = \int_{-\infty}^{x} p(u)du,$$

до того ж функція p(x) — неперервна всюди, крім, можливо, скінченної кількості точок.

Означення

Випадкову величину X називають **неперервною (або абсолютно неперервною)**, якщо існує невід'ємна функція p(x) така, що для всіх x функція розподілу випадкової величини X визначається у вигляді

$$F(x) = P\{X < x\} = \int_{-\infty}^{x} p(u)du,$$

до того ж функція p(x) — неперервна всюди, крім, можливо, скінченної кількості точок.

Функція розподілу неперервної випадкової величини — неперервна.

Функція p(x) називається **щільністю розподілу ймовірностей** випадкової величини X.

В точках своєї неперервності функцію p(x) можна визначити як похідну функції розподілу: p(x) = F'(x).

$$P\{a \leq X < b\}$$

$$P\{a \le X < b\} = F(b) - F(a)$$

$$P\{a \le X < b\} = F(b) - F(a) = \int_{-\infty}^{b} p(u)du - \int_{-\infty}^{a} p(u)du$$

$$P\{a \le X < b\} = F(b) - F(a) = \int_{-\infty}^{b} p(u)du - \int_{-\infty}^{a} p(u)du = \int_{a}^{b} p(x)dx.$$

$$P\{a \le X < b\} = F(b) - F(a) = \int_{-\infty}^{b} p(u)du - \int_{-\infty}^{a} p(u)du = \int_{a}^{b} p(x)dx.$$

3 неперервності функції розподілу неперервної випадкової величини отримуємо, що $P\{X=x\}=F(x+0)-F(x)=0.$

$$P\{a \le X < b\} = F(b) - F(a) = \int_{-\infty}^{b} p(u)du - \int_{-\infty}^{a} p(u)du = \int_{a}^{b} p(x)dx.$$

$$P\{a \leq X \leq b\} = P\{a < X \leq b\} = P\{a \leq X < b\} = P\{a < X < b\}.$$

$$P\{a \le X < b\} = F(b) - F(a) = \int_{-\infty}^{b} p(u)du - \int_{-\infty}^{a} p(u)du = \int_{a}^{b} p(x)dx.$$

3 неперервності функції розподілу неперервної випадкової величини отримуємо, що $P\{X=x\}=F(x+0)-F(x)=0$. Тому для неперервної випадкової величини X

$$P\{a \le X \le b\} = P\{a < X \le b\} = P\{a \le X < b\} = P\{a < X < b\}.$$

Використовуючи те, що $F(+\infty)=1$ отримуємо основну властивість щільності розподілу

$$\int_{-\infty}^{\infty} p(x)dx = 1.$$

Рівномірний закон розподілу.

Рівномірний закон розподілу.

Нехай на проміжок [a,b] навмання кидають точку, отже, ймовірність потрапляння точки на деяку частину проміжку пропорційна довжині цієї частини проміжку.

Рівномірний закон розподілу.

Нехай на проміжок [a,b] навмання кидають точку, отже, ймовірність потрапляння точки на деяку частину проміжку пропорційна довжині цієї частини проміжку.

Випадкову величину визначимо як координату тієї точки відрізка, в яку влучила кинута точка:

$$X(\omega) = \omega, \qquad \omega \in [a, b].$$

Рівномірний закон розподілу.

Нехай на проміжок [a,b] навмання кидають точку, отже, ймовірність потрапляння точки на деяку частину проміжку пропорційна довжині цієї частини проміжку.

Випадкову величину визначимо як координату тієї точки відрізка, в яку влучила кинута точка:

$$X(\omega) = \omega, \qquad \omega \in [a, b].$$

Визначимо функцію розподілу випадкової величини X.

Рівномірний закон розподілу.

Нехай на проміжок [a,b] навмання кидають точку, отже, ймовірність потрапляння точки на деяку частину проміжку пропорційна довжині цієї частини проміжку.

Випадкову величину визначимо як координату тієї точки відрізка, в яку влучила кинута точка:

$$X(\omega) = \omega, \qquad \omega \in [a, b].$$

Визначимо функцію розподілу випадкової величини X.

Якщо
$$x \le a$$
, то $F(x) = P\{X < x\} = P(\emptyset) = 0$.

Рівномірний закон розподілу.

Нехай на проміжок [a,b] навмання кидають точку, отже, ймовірність потрапляння точки на деяку частину проміжку пропорційна довжині цієї частини проміжку.

Випадкову величину визначимо як координату тієї точки відрізка, в яку влучила кинута точка:

$$X(\omega) = \omega, \qquad \omega \in [a, b].$$

Визначимо функцію розподілу випадкової величини X.

Якщо
$$x \leq a$$
, то $F(x) = P\{X < x\} = P(\emptyset) = 0$.

Якщо
$$x \in (a,b]$$
, то $F(x) = P\{X < x\} = c(x-a)$.

Рівномірний закон розподілу.

Нехай на проміжок [a,b] навмання кидають точку, отже, ймовірність потрапляння точки на деяку частину проміжку пропорційна довжині цієї частини проміжку.

Випадкову величину визначимо як координату тієї точки відрізка, в яку влучила кинута точка:

$$X(\omega) = \omega, \qquad \omega \in [a, b].$$

Визначимо функцію розподілу випадкової величини X. Якщо x < a, то $F(x) = P\{X < x\} = P(\emptyset) = 0$.

Якщо
$$x \le a$$
, то $F(x) = F\{X < x\} = F(y) = 0$.

Тоді

$$F(b) = P\{X < b\} = P(\Omega) = 1 = c(b - a) \implies c = \frac{1}{b - a}.$$

Рівномірний розподіл задають функцією

$$F(x) = \begin{cases} 0, & x \le a; \\ \frac{x-a}{b-a}, & a < x \le b; \\ 1, & x > b, \end{cases}$$

Рівномірний розподіл задають функцією

$$F(x) = \begin{cases} 0, & x \le a; \\ \frac{x-a}{b-a}, & a < x \le b; \\ 1, & x > b, \end{cases}$$

Щільність розподілу ймовірностей:

$$p(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b]; \\ 0, & x \notin [a,b]. \end{cases}$$

Показниковий закон розподілу.

Показниковий закон розподілу.

Означення

Неперервна випадкова величина X називається розподіленою за показниковим законом або показниково розподіленою, з параметром λ , якщо щільність розподілу її ймовірностей має вигляд:

$$p(x) = \begin{cases} 0, & x < 0; \\ \lambda e^{-\lambda x}, & x \ge 0. \end{cases}$$

Показниковий закон розподілу.

<u>Оз</u>начення

Неперервна випадкова величина X називається розподіленою за показниковим законом або показниково розподіленою, з параметром λ , якщо щільність розподілу її ймовірностей має вигляд:

$$p(x) = \begin{cases} 0, & x < 0; \\ \lambda e^{-\lambda x}, & x \ge 0. \end{cases}$$

Функція розподілу:

$$F(x) = \begin{cases} 0, & x < 0; \\ 1 - e^{-\lambda x}, & x \ge 0. \end{cases}$$

Ймовірність попадання значень показниково розподіленої випадкової величини у заданий інтервал:

$$P\{a < X < b\} = e^{-\lambda a} - e^{-\lambda b}.$$

Ймовірність попадання значень показниково розподіленої випадкової величини у заданий інтервал:

$$P\{a < X < b\} = e^{-\lambda a} - e^{-\lambda b}.$$

Серед усіх законів розподілу неперервних випадкових величин лише показниковому притаманна властивість відсутності післядії

Ймовірність попадання значень показниково розподіленої випадкової величини у заданий інтервал:

$$P\{a < X < b\} = e^{-\lambda a} - e^{-\lambda b}.$$

Серед усіх законів розподілу неперервних випадкових величин лише показниковому притаманна властивість відсутності післядії:

якщо випадкову величину пов'язати з часом, то для показникового закону розподілу минуле не впливає на передбачення подій у майбутньому.

Ймовірність попадання значень показниково розподіленої випадкової величини у заданий інтервал:

$$P\{a < X < b\} = e^{-\lambda a} - e^{-\lambda b}.$$

Серед усіх законів розподілу неперервних випадкових величин лише показниковому притаманна властивість відсутності післядії:

якщо випадкову величину пов'язати з часом, то для показникового закону розподілу минуле не впливає на передбачення подій у майбутньому.

Наприклад, якщо випадкова величина T — тривалість безвідмовної роботи приладу має показниковий розподіл, то час роботи приладу впродовж інтервалу часу $(0,t_0)$ не впливає на величину ймовірності його безвідмовної роботи впродовж наступного інтервалу часу (t_0,t_0+t) , а залежить лише від довжини t цього інтервалу.

Нормальний закон розподілу.

Нормальний закон розподілу.

Означення

Неперервна випадкова величина X називається **розподіленою за нормальним законом**, або **нормально розподіленою**, з параметрами $-\infty < a < \infty$ і $\sigma > 0$, якщо її щільність розподілу має вигляд:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad -\infty < x < \infty.$$

Нормальний закон розподілу.

Означення

Неперервна випадкова величина X називається **розподіленою за нормальним законом**, або **нормально розподіленою**, з параметрами $-\infty < a < \infty$ і $\sigma > 0$, якщо її щільність розподілу має вигляд:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad -\infty < x < \infty.$$

Нормальний закон розподілу з параметрами a і σ позначають $N(a,\sigma)$.

Нормальний закон розподілу.

<u>Оз</u>начення

Неперервна випадкова величина X називається **розподіленою за нормальним законом**, або **нормально розподіленою**, з параметрами $-\infty < a < \infty$ і $\sigma > 0$, якщо її щільність розподілу має вигляд:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad -\infty < x < \infty.$$

Нормальний закон розподілу з параметрами a і σ позначають $N(a,\sigma)$.

Зауваження

Якщо випадкова величина X розподілена за нормальним законом з параметрами a=0 і $\sigma=1$, тобто N(0,1), то такий розподіл називається **нормованим нормальним розподілом** або **стандартним нормальним розподілом**. Функцією щільності у цьому випадку є функція Гауса $\varphi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$.

Ймовірність попадання значень нормально розподіленої випадкової величини в інтервал (α,β) дорівнює різниці значень функції Лапласа $\Phi(x)$ в точках $\frac{\beta-a}{\sigma}$ і $\frac{\alpha-a}{\sigma}$:

$$P\{\alpha < X < \beta\} = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right).$$

Ймовірність попадання значень нормально розподіленої випадкової величини в інтервал (α,β) дорівнює різниці значень функції Лапласа $\Phi(x)$ в точках $\frac{\beta-a}{\sigma}$ і $\frac{\alpha-a}{\sigma}$:

$$P\{\alpha < X < \beta\} = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right).$$

Якщо взяти $\alpha=a-arepsilon$, $\beta=a+arepsilon$, то отримаємо:

$$P\{a-\varepsilon < X < a+\varepsilon\} = P\{|X-a| < \varepsilon\} = \Phi\left(\frac{\varepsilon}{\sigma}\right) - \Phi\left(\frac{-\varepsilon}{\sigma}\right) = 2\Phi\left(\frac{\varepsilon}{\sigma}\right),$$

Ймовірність попадання значень нормально розподіленої випадкової величини в інтервал (α, β) дорівнює різниці значень функції Лапласа $\Phi(x)$ в точках $\frac{\beta-a}{2}$ і $\frac{\alpha-a}{2}$:

$$P\{\alpha < X < \beta\} = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right).$$

Якщо взяти $\alpha = a - \varepsilon$, $\beta = a + \varepsilon$, то отримаємо:

$$P\{a-\varepsilon < X < a+\varepsilon\} = P\{|X-a| < \varepsilon\} = \Phi\left(\frac{\varepsilon}{\sigma}\right) - \Phi\left(\frac{-\varepsilon}{\sigma}\right) = 2\Phi\left(\frac{\varepsilon}{\sigma}\right),$$

тобто

$$P\{|X - a| < \varepsilon\} = 2\Phi\left(\frac{\varepsilon}{\sigma}\right).$$

Ймовірність попадання значень нормально розподіленої випадкової величини в інтервал (α,β) дорівнює різниці значень функції Лапласа $\Phi(x)$ в точках $\frac{\beta-a}{\sigma}$ і $\frac{\alpha-a}{\sigma}$:

$$P\{\alpha < X < \beta\} = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right).$$

Якщо взяти $\alpha=a-arepsilon$, $\beta=a+arepsilon$, то отримаємо:

$$P\{a-\varepsilon < X < a+\varepsilon\} = P\{|X-a| < \varepsilon\} = \Phi\left(\frac{\varepsilon}{\sigma}\right) - \Phi\left(\frac{-\varepsilon}{\sigma}\right) = 2\Phi\left(\frac{\varepsilon}{\sigma}\right),$$

тобто

$$P\{|X - a| < \varepsilon\} = 2\Phi\left(\frac{\varepsilon}{\sigma}\right).$$

Покладемо $\varepsilon = 3\sigma$.

Ймовірність попадання значень нормально розподіленої випадкової величини в інтервал (α,β) дорівнює різниці значень функції Лапласа $\Phi(x)$ в точках $\frac{\beta-a}{\sigma}$ і $\frac{\alpha-a}{\sigma}$:

$$P\{\alpha < X < \beta\} = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right).$$

Якщо взяти $\alpha=a-arepsilon$, $\beta=a+arepsilon$, то отримаємо:

$$P\{a-\varepsilon < X < a+\varepsilon\} = P\{|X-a| < \varepsilon\} = \Phi\left(\frac{\varepsilon}{\sigma}\right) - \Phi\left(\frac{-\varepsilon}{\sigma}\right) = 2\Phi\left(\frac{\varepsilon}{\sigma}\right),$$

тобто

$$P\{|X - a| < \varepsilon\} = 2\Phi\left(\frac{\varepsilon}{\sigma}\right).$$

Покладемо $\varepsilon=3\sigma.$ Одержимо:

$$P\{|X - a| < 3\sigma\} = 2\Phi(3) = 2 \cdot 0,49865 = 0,9973,$$

$$P\{|X - a| < 3\sigma\} = 2\Phi(3) = 2 \cdot 0,49865 = 0,9973.$$

Правило «трьох сигм»: якщо випадкова величина нормально розподілена, то практично вірогідно, що абсолютна величина її відхилення від параметра a не перевищує потроєного параметра σ .