Exercice 1 [Gronwall]

Soit u, v deux fonctions définies de I intervalle de \mathbb{R} dans \mathbb{R}^+ , $\alpha \in \mathbb{R}^+$ et $a \in I$ telle que pour tout $t \in I$:

$$u(t) \le \alpha + \int_a^t u(s)v(s)ds.$$

Montrer alors que pour tout $t \in I$, $u(t) \leq \alpha e^{\int_a^t v(s)ds}$.

On suppose maintenant que u vérifie :

$$u(t) \le \alpha + \alpha \int_a^t u(s)(1 + \log[1 + \log(u(s))])ds.$$

Trouver une borne sur u.

Exercice 2 Soit U un ouvert de \mathbb{R}^n , I =]a, b[un ouvert de \mathbb{R} et f une fonction de $I \times U \to \mathbb{R}^n$ continue. Pour $(t_0, x_0) \in I \times U$ on considère le système (1) suivant.

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$$

- 1. Soit (J, x) une solution de (1), telle que $\beta = \sup J < b$ et x bornée au voisinage de β , montrer que (J, x) peut être prolongé au dela de β en une solution de (1).
- 2. On suppose de plus que pour tout segment S de I il existe deux constantes positives C_s, A_s telles que $\forall (t, x) \in S \times U, |f(t, x)| \leq C_s |x| + A_s$. Montrer alors que toutes solution de (1) peut être prolongée en une solution globale.

Exercice 3 Montrer que les solutions maximales de l'EDO réele $x' = x^2 + t^2$ sont définies sur des intervalles bornées.

Exercice 4 Soit I un intervalle ouvert de \mathbb{R} , et $h: \mathbb{R}^n \to \mathbb{R}^n$ une application continue. On suppose de plus qu'il existe C telle que

$$\forall x, y \in \mathbb{R}^n, \langle h(x) - h(y), x - y \rangle \ge C|x - y|^2.$$

On va montrer que h est un homéomorphisme de E dans E.

- 1. Soit (J, x) une solution de $x'(t) = -h(x(t)), x(t_0) = x_0$, pour un certain $(t_0, x_0) \in I \times \mathbb{R}^n$. Montrer que $\forall t \in J$, $|x'(t)| \leq |x'(0)|e^{-Ct}$. (Indication : On pourra poser $u_{\varepsilon}(t) := ||x(t+\varepsilon) x(t)||^2$, pour ε suffisamment petit.)
- 2. En déduire que l'équation différentielle ci-dessus admet une solution x définie sur \mathbb{R}^+ , montrer que x a une limite l en $+\infty$ et donner la valeur de h(l).

3. Conclure en appliquant le même raisonnement à $\tilde{h}(x) = -h(x) + z$ pour tout z dans \mathbb{R}^n .

Exercice 5 [Valeurs propres du laplacien 1D]

1. Soit $\lambda \in \mathbb{R}$, trouver les fonctions u de $[-1,1] \to \mathbb{R}$, C^2 , telle que

$$-u'' = \lambda u$$
,

$$u(-1) = u(1) = 0.$$

2. Soit $\lambda \in \mathbb{R}$, Montrer qu'il existe u de $[-1,1] \to \mathbb{R}^+$, C^2 , telle que

$$-u'' = \lambda |u|^{p-1}u,$$

$$u(-1) = u(1) = 0.$$

Exercice 6 [Équation de transport à coefficients constants avec bord] Soit $b, f \in C(\mathbb{R}, \mathbb{R}^n)$ et $g \in C^1(\mathbb{R}^n)$, on s'intéresse au problème suivant :

$$\begin{cases} \partial_t u + b \nabla u = f, & \forall t, x \in \mathbb{R} \times \mathbb{R}^n, \\ u(0, x) = g(x), & \forall x \in \mathbb{R}^n. \end{cases}$$

Construire les caractéristiques du problème (i.e. les courbes sur lesquelles u reste constante). En déduire une construction explicite de la solution lorsque b est constante.

Exercice 7 [méthode des caractéristiques]

Résoudre à l'aide de la méthode des caractéristiques les problèmes aux limites, définies sur un ouvert $U \in \mathbb{R}^2$ et un bord $\Gamma \in \mathbb{R}^2$ suivants :

1.

$$\begin{cases} x\partial_y u - y\partial_x u = u, & \forall x, y > 0 \\ u(x, 0) = g(x), & \forall x > 0. \end{cases}$$

2.

$$\begin{cases} x\partial_y u - y\partial_x u = 0, & \forall x, y > 0 \\ u(x, 0) = g(x), & \forall x > 0. \end{cases}$$

3.

$$\begin{cases} x\partial_x u + y\partial_y u = 2u, \\ u(x,1) = g(x). \end{cases}$$