Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}}{(t_1 + 2k^2t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{2 k^2 r_1 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{}-\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
	1.5						
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	$\frac{12 i k}{(3+2 k^2)^2 t_1}$	$\frac{12 k^2}{(3+2 k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$ $ au_{1}^{\#1}{}_{lphaeta}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1} - \frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	$\frac{12}{(3+2k^2)^2t_1} \left \frac{12ik}{(3+2k^2)^2t_2} \right $	$-\frac{12ik}{(3+2k^2)^2t_1} \frac{12k^2}{(3+2k^2)^2t_1}$	0 0	0 0	0 0	0 0
$\sigma_{1}^{\#1}{}_{lphaeta} \qquad \sigma_{1}^{\#2}{}_{lphaeta}$	$\frac{6}{(3+2k^2)^2t_1} \left -\frac{6\sqrt{2}}{(3+2k^2)^2t_1} \right -$	' -		$\sigma_{1}^{\#1} \dagger^{\alpha} = 0 = 0$	$\sigma_1^{\#2} + \alpha$ 0 0 0 0	$t_1^{\#1} + \alpha$ 0 0 0 0	$\tau_1^{\#2} + \alpha$ 0 0 0

	$\sigma_{0^+}^{\#1}$	$\tau_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

$f_{1}^{#2}$	0	0	0	$i k t_1$	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ar{\imath}kt_1$
$f_{1}^{\#1}$	$-\frac{ikt_1}{3\sqrt{2}}$	<i>ikt</i> 1 3	$\frac{k^2 t_1}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1}{3\sqrt{2}}$	£13	$-\frac{1}{3}\bar{l}kt_1$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	د ً1 و	$-\frac{t_1}{3\sqrt{2}}$	$\frac{i k t_1}{3 \sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} +^{\alpha\beta}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_1^{\#_1} +^\alpha$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{#2} + ^{\alpha}$

$\omega_{2}^{\#1} + \alpha \beta \qquad \omega_{2}^{\#1} + \alpha \beta \qquad f_{2}^{\#1}$ $\omega_{2}^{\#1} + \alpha \beta \qquad \frac{t_{1}}{2} \qquad -\frac{ikt_{1}}{\sqrt{2}}$ $\varepsilon_{2}^{\#1} + \alpha \beta \qquad \frac{ikt_{1}}{\sqrt{2}} \qquad k^{2}t_{1}$ $\varepsilon_{2}^{\#1} + \alpha \beta \chi \qquad 0 \qquad 0$	$\omega_{2^{^{-}}}^{\#1}{}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$	
	$f_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0	
$\int_{2^{+}}^{\#1} + \alpha \beta$ $\int_{2^{+}}^{\#1} + \alpha \beta$ $\int_{2^{-}}^{\#1} + \alpha \beta \chi$	$\omega_2^{\#1}{}_+\alpha\beta$			0	
3 7 3		$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{#1} + ^{\alpha\beta}$	$\omega_{2^{-}}^{\#1} +^{lphaeta\chi}$	

	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}\dagger$	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0}^{\#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	0
	_	_		

uge generators	Multiplicities	1	1	1	3	3	3	3	2	20
source constraints/gauge generators	30(3) irreps		.#2 == 0	$^{\#1}_{0^+} - 2 \bar{l} k \sigma^{\#1}_{0^+} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \ \sigma_1^{\#2}{}^{\alpha} == 0$	$t_1^{\#1}\alpha == 0$	$t_{1+}^{\#1}\alpha\beta - 2ik \sigma_{1+}^{\#1}\alpha\beta == 0$	$\Omega_{1+}^{\#1}\alpha\beta + \Omega_{1+}^{\#2}\alpha\beta = 0$	$I_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	otal constraints:

Massive and massless spectra

(No massless particles)

 $\frac{t_1}{2r_1} > 0$

Odd

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$