CNN - Based Music Genre Recognition

Georgopoulos Panagiotis 2407 Verykokidis Apostolos 2415

The "Problem"

- Different subgenres of techno music
- 8 second clips
- From more than 250 songs
- Single label case

1st Approach - Let's try some Machine Learning!

Incorporated some machine learning to start with, specifically SVM, XGBoost and LightGBM.

- Feature Extraction from the clips with both Librosa & pyAudioAnalysis
- 80-20 split
- Training the models

Best ML Results

All approaches were practically equal, but the best results were with the use of Soft Vote Stacking (tuned XGBoost & tuned LightGBM):

	precision	recall	f1-score	support
bouncy	0.71	0.67	0.69	48
tekno	0.66	0.70	0.68	53
warzone	0.77	0.83	0.80	52
industrial	0.78	0.69	0.73	61
non-techno-drop	0.92	0.98	0.95	47
accuracy			0.77	261
macro avg	0.77	0.77	0.77	261
weighted avg	0.77	0.77	0.76	261

2nd Approach: Moving on to the CNN - Basic Guidelines

Before setting up and training the model, some adjustments needed to be made.

- Creating the mel-spectrograms with the use of Librosa and Matplotlib
- Splitting the spectrograms into the Train-Validation-Test sets in accordance to the track they came from -> all clips from the same track go to the same split to avoid overfitting
- Using grayscale for melgrams, in order to save on computing power & time, and since mel-spectrograms represent intensity/power of frequency components over time, and each pixel encodes a scalar value; therefore RGB would be quite an overkill for our task

CNN First Attempts

The first implementations we did of CNN architectures were pretty simple, and done over a part of the data, since the annotation was a difficult and timely process.

- Training accuracies of no more than 50-60% for training and validation...
- ...Which was the best case scenario, since the other option was extreme overfitting (80 train, 45 validation)
- Small architectural tweaks and different splits didn't help much

The solution? More data + class weighting!

Finally enough data (?) — Weighting classes (?)

After collecting more data (1772 mel-spectrograms of 128x128 input size), we got the final splits

Train clips: 872

Val clips: 207

Test clips: 226

And we are ready to test more architectures!

Class weighting during training significantly improved generalization & more consistency in the results; and battled *imbalances* caused by uneven class distributions, especially in the validation & test sets, that are obviously smaller

Best Architecture

```
model = Sequential([
Conv2D(32, (3,3), activation='relu', input shape=(128, 128, 1), padding='same'),
MaxPooling2D(2,2),
Conv2D(64, (3,3), activation='relu', padding='same'),
MaxPooling2D(2,2),
Conv2D(128, (3,3), activation='relu', padding='same'),
MaxPooling2D(2,2),
 Flatten(),
Dense(256, activation='relu'),
 Dropout (0.5),
Dense(len(labels list), activation='softmax')
])
```

Results - Train/Validation

```
# run 1
# Best epoch = 14
                                                     # run 4
# train_acc 0.8647 | train_loss 0.3721
                                                     # Best epoch = 23
# val_acc 0.8068 | val_loss 0.6143
                                                     # train_acc 0.9025 | train_loss 0.2604
# Weighted F1 (val): 0.8050
                                                     # val acc 0.8213 | val loss 0.5751
                                                     # Weighted F1 (val): 0.8134
# run 2
                                                     # run 5
# Best epoch = 22
                                                     # Best epoch = 16
# train acc 0.9472 | train loss 0.1642
                                                     # train acc 0.9071 | train loss 0.2971
# val acc 0.8454 | val loss 0.5026
                                                     # val acc 0.8696 | val loss 0.5438
# Weighted F1 (val): 0.8448
                                                     # Weighted F1 (val): 0.8668
# run 3
                                                     Avg. Best Epoch 17.8
# Best epoch = 14
                                                     Avg. Val Loss 0.5571
# train_acc 0.8784 | train_loss 0.3704
                                                     Avg. Val Acc 0.8387
# val acc 0.8502 | val_loss 0.5496
                                                     Avg. Val F1 0.8356
# Weighted F1 (val): 0.8482
```

Final Evaluation on the test set

	pre	ecision	recall	f1-score	support
# Weighted F1 (test): 0.7621 # Weighted F1 (test): 0.8101 # Weighted F1 (test): 0.7641 # Weighted F1 (test): 0.7938	bouncy tekno warzone industrial non-techno-drop	0.89 0.67 0.87 0.55 1.00	0.79 0.67 0.77 0.74 0.92	0.84 0.67 0.82 0.63 0.96	42 46 44 42 52
# Weighted F1 (test): 0.7904	accuracy macro avg weighted avg	0.80 0.81	0.78 0.78	0.78 0.78 0.79	226 226 226

Avg. Test F1-score ~0.78 after 5 runs

Transfer Learning case

GTZAN Music Genre Classification Dataset

- 10 Classes
- Spectrograms of 10 second snippets

The results...

# 1/	Weighted F1 (test): 0.624	7		
#		precision		f1-score	support
#	blues	0.59	0.67	0.62	15
#	classical	0.81	0.87	0.84	15
#	country	0.44	0.53	0.48	15
#	disco	0.40	0.53	0.46	15
#	hiphop	0.56	0.60	0.58	15
#	jazz	0.85	0.73	0.79	15
#	metal	0.79	0.73	0.76	15
#	рор	0.64	0.60	0.62	15
#	reggae	0.89	0.53	0.67	15
#	rock	0.46	0.40	0.43	15

Average test-set F1-score after 5 CNN runs ~0.626

