5

10

15

20

25

What is claimed is:

A compound of the formula $\begin{array}{c} CH_3 \\ \hline \\ R^1 \\ H_3C \\ \hline \\ N''' \\ \hline \\ R^2 \\ \hline \\ N''' \\ \hline \\ N''' \\ \hline \\ N''' \\ \hline \\ 13 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\$

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:

X is Cl, Br, I, or F

Y is =O, or =NOR⁵\or Y means both -H and -OR⁵; or both -H and -NR⁵R¹⁰;

 R^1 , R^2 , and R^3 are independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, (4- to 10-membered neterocyclic) C_1 - C_6 alkyl, (4- to 10-membered heterocyclic) C_2 - C_6 alkynyl, (C_6 - C_{10} aryl) C_1 - C_6 alkyl, (C_6 - C_{10} aryl) C_2 - C_6 alkenyl, and (C_6 - C_{10} aryl) C_2 - C_6 alkynyl wherein said alkyl moieties of the foregoing groups are optionally substituted by halo or C_1 - C_6 alkyl, and wherein said heterocyclic moieties are optionally substituted by 4- to 10-membered heterocyclic, (4- to 10-membered heterocyclic) C_1 - C_6 alkyl, or (C_6 - C_{10} aryl) C_1 - C_6 alkyl, and further wherein the aryl and heterocyclic moieties of each of the foregoing groups and optional substituents is optionally substituted by 1 to 4 R^7 groups;

 R^4 is selected from H, C_1 - C_{10} alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $(C_1$ - C_6 alkoxy) C_1 - C_6 alkyl, $(C_1$ - C_6 alkylthio) C_1 - C_6 alkyl, $(C_5$ - C_8 cycloalkyl) C_2 - C_5 alpha branched alkyl, C_3 - C_8 cycloalkyl, C_5 - C_8 cycloalkenyl, 3 to 6 membered O or S containing heterocyclic group, or phenyl, wherein each R^4 group may be substituted with from 1 to 3 substituents independently selected from hydroxy, halo, $(C_6$ - C_{10} aryl) C_2 - C_6 alkenyl, and C_1 - C_4 alkyl;

 R^5 and R^{10} are independently selected from H, C_1 - C_6 alkyl, C_6 - C_{10} aryl, 4- to 10-membered heterocyclic, (4- to 10-membered heterocyclic) C_1 - C_6 alkyl and (C_6 - C_{10} aryl) C_1 - C_6 alkyl, wherein said aryl and heterocyclic groups are optionally substituted by 1 to 4 R^7 groups;

R⁶ is H, -C(O)C₁-C₆ alkyl, benzyl, benzyloxycarbonyl, or (C₁-C₆ alkyl)₃ silyl;

 R^7 is independently selected from halo, cyano, hitro, trifluoromethyl, trifluoromethoxy, azido, $-C(O)R^8$, $-C(O)OR^8$, $-OC(O)R^8$, $-NR^8C(O)R^9$, $-C(O)NR^8R^9$, $-NR^8R^9$, hydroxy, C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, C_6-C_{10} aryl, 4- to 10-membered heterocyclic, and C_1-C_6 alkoxy; and

23913

each R⁸ and R⁹ is independently selected from H, C₁-C₆ alkyl, C₆-C₁₀ aryl, and 4- to 10-membered heterocyclic.

- 2. The compound of claim 1 wherein Y is =0 or =NOR 5 , R 1 is (4- to 10-membered heterocyclic) C₁-C₆ alkyl substituted by 4- to 10-membered heterocyclic, R 2 is C₁-C₁₀ alkyl or C₂-C₁₀ alkenyl, R 3 is C₁-C₆ alkyl, R 4 is ethyl, R 5 is C₁-C₆ alkyl, and R 6 is H.
 - 3. The compound of claim 1 of the formula

or a pharmaceutically acceptable salt thereof wherein:

10 Y is =0 or $=NOR^5$;

 \mbox{R}^2 is $\mbox{C}_{\mbox{\scriptsize 1-}}\mbox{C}_{\mbox{\scriptsize 10}}$ alkyl or $\mbox{C}_{\mbox{\scriptsize 2-}}\mbox{C}_{\mbox{\scriptsize 10}}$ alkenyl; and

 R^6 is H, -C(O)C₁-C₆ alkyl, benzyl, benzyloxycarbonyl, or (C₁-C₆ alkyl)₃ silyl.

- 4. The compound of claim 3 wherein Y is =O and R⁶ is H.
- 5. The compound of claim 3 wherein Y is =NOR⁵ and R⁶ is H.
- 6. The compound of claim 4 wherein R² is CH₃, CH₂CH₃, CH₂CH=CH₂, trans-CH₂CH=CHCH₃, trans-CH₂CH=CHCH₃, or trans-CH₂-CH=C(CH₃)CH₂CH=(CH₃)CH₃.

5

10

15

20

25

or a pharmaceutically acceptable salt prodrug, or solvate thereof, wherein

X is Cl, Br, I, or F;

Y is =0, or =NOR⁵; or Y mean both -H and -OR⁵; or both -H and -NR⁵R¹⁰;

 R^1 , R^2 , and R^3 are independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, (4- to 10-membered heterocyclic) C_1 - C_6 alkyl, (4- to 10-membered heterocyclic) C_2 - C_6 alkynyl, (C_6 - C_{10} aryl) C_1 - C_6 alkyl, (C_6 - C_{10} aryl) C_2 - C_6 alkenyl, and (C_6 - C_{10} aryl) C_2 - C_6 alkynyl wherein said alkyl moieties of the foregoing groups are optionally substituted by halo or C_1 - C_6 alkyl, and wherein said heterocyclic moieties are optionally substituted by 4- to 10-membered heterocyclic, (4- to 10-membered heterocyclic) C_1 - C_6 alkyl, or (C_6 - C_{10} aryl) C_1 - C_6 alkyl, and further wherein the aryl and heterocyclic moieties of each of the foregoing groups and optional substituents is optionally substituted by 1 to 4 R^7 groups;

 R^4 is selected from H, C_1 - C_{10} alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $(C_1$ - C_6 alkoxy) C_1 - C_6 alkyl, $(C_1$ - C_6 alkylthio) C_1 - C_6 alkyl, $(C_5$ - C_8 cycloalkyl) C_2 - C_5 alpha branched alkyl, C_3 - C_8 cycloalkyl, C_5 - C_8 cycloalkenyl, 3 to 6 membered O or S containing heterocyclic group, or phenyl, wherein each R^4 group may be substituted with from 1 to 3 substituents independently selected from hydroxy, halo, $(C_6$ - C_{10} aryl) C_2 - C_6 alkenyl, and C_1 - C_4 alkyl;

 R^5 and R^{10} are independently selected from H, C_1 - C_6 alkyl, C_6 - C_{10} aryl, 4- to 10-membered heterocyclic, (4- to 10-membered heterocyclic) C_1 - C_6 alkyl and (C_6 - C_{10} aryl) C_1 - C_6 alkyl, wherein said aryl and heterocyclic groups are optionally substituted by 1 to 4 R^7 groups;

 R^6 is H, $-C(O)C_1-C_6$ alkyl, benzyl, benzyloxycarbonyl, or $(C_1-C_6$ alkyl) $_3$ silyl;

 R^7 is independently selected from halo, cyano, ntro, trifluoromethyl, trifluoromethoxy, azido, $-C(O)R^8$, $-C(O)OR^8$, $-OC(O)R^8$, $-NR^8C(O)R^9$, $-C(O)NR^8R^9$, $-NR^8R^9$, hydroxy, C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, C_6-C_{10} aryl, 4- to 10-membered heterocyclic, and C_1-C_6 alkoxy; and

each R⁸ and R⁹ is independently selected from H, C₁-C₆ alkyl, C₆-C₁₀ aryl, and 4- to 10-membered heterocyclic;

5

10

15

which comprises deprotecting a compound of the formula

$$\begin{array}{c}
CH_{3} \\
CH_{3}
\end{array}$$

$$\begin{array}{c}
CH_{3}
\end{array}$$

wherein P is a protecting group.

8. The method of claim 7 further wherein the compound of formula II is prepared by treating a compound of the formula

with a strong base and a compound of formula R²-L, where L is a leaving group.

- 9. A pharmaceutical composition for the treatment of a bacterial infection or a protozoa infection in a mammal, fish, or bird which comprises a therapeutically effective amount of a compound of-claim 1, or a pharmaceutically acceptable salt, prodrug, or solvate thereof, and a pharmaceutically acceptable carrier.
- 10. A method of treating a bacterial infection or a protozoa infection in a mammal, fish, or bird which comprises administering to said mammal, fish or bird a therapeutically effective amount of a compound of claim 1, or a pharmaceutically acceptable salt, prodrug, or solvate thereof.