**Analog and Digital Control** 

7<sup>th</sup> Group of Theoretical Exercises

Κοσμάς Παπαζαχαρίας ΤΛ20441

Παναγιώτης Κουζής ΤΛ20411

Νικήτας Μενούνος ΤΛ20412

1) For the following plant:

$$G_P(s) = \frac{0.01}{(s+0.1)(s+0.2)(s+0.3)}$$

- (a) design P, PI and PID controllers via the Ziegler Nichols method.
- (b) Evaluate the steady state errors to the following reference inputs:
  - (1) Step of magnitude 2
  - (2) Ramp of slope 3
  - (3) Quadratic
- (c) What is the CLCS "type"?

(a)

Με χρήση της matlab κατασκευάζουμε το διάγραμμα απόκρισης του συστήματος.



Από το παραπάνω διάγραμμα παρατηρούμε ότι A=1.8 , B =30-3=27 και  $t_d$ = 3 . Άρα  $\theta=\frac{A}{B}=\frac{1,8}{30}=0.06$  .

| Controller | Кр                                                      | Ti                          | Td                          |
|------------|---------------------------------------------------------|-----------------------------|-----------------------------|
| P          | $\frac{1}{t_d * \theta} = \frac{1}{3 * 0.06} = 5.6$     |                             |                             |
| P-I        | $\frac{0.9}{t_d * \theta} = \frac{0.9}{3 * 0.06} = 5$   | $3.3 * t_d = 3.3 * 3 = 9.9$ |                             |
| P-I-D      | $\frac{1.2}{t_d * \theta} = \frac{1.2}{3 * 0.06} = 6.7$ | $2 * t_d = 2 * 3 = 6$       | $0.5 * t_d = 0.5 * 3 = 1.5$ |

Σύμφωνα με τον παραπάνω πίνακα έχουμε ότι :

$$G_C(s) = \frac{M(s)}{E(s)} = K_P + \left(\frac{K_P}{T_I}\right) * \frac{1}{s} + (K_P * T_D) * s = \begin{cases} P = 5.6\\ P - I = 5 + 0.5/s\\ P - I - D = 6.7 + \frac{1.1}{s} + 10 * s \end{cases}$$

(b),(c)

| Gp (5)                 | 0.01<br>(s+0.1) (s+0.2) (s+0.3)                                                                  |                                                |
|------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------|
| Ge(s) - 5.6 Ge(        | $5) - 5 + \frac{0.5}{5} = \frac{55 + 0.5}{5}$                                                    | G3(s)= 6.7+1.1+10s=                            |
| 7/                     | - Marie - Marie Ma                                                                               | 6.75+1.1+1052                                  |
|                        |                                                                                                  | 5                                              |
| Apa:                   |                                                                                                  |                                                |
| F1(5) = 6:(3).60(5)    |                                                                                                  | $= \frac{0.056}{s^3 + 0.6s^2 + 0.11s + 0.006}$ |
| o its a control of     | (5+0.1) (5+0.2) (5+0.3)                                                                          | s3+0.652+0.11s+0.006                           |
| (77(5) = 6°(5).60(5) - | 0.05s+0.005                                                                                      | 0.055+0.005                                    |
|                        | 0.05s+0.005<br>5+0.653+0.1152+0.006s                                                             | 5 (53+0.652+0.11s+0.006,                       |
| G3 (5) = 63(5).60(5)   | 0.15 <sup>2</sup> +0.0675+0.011<br>5 <sup>4</sup> +0.65 <sup>3</sup> +0.115 <sup>2</sup> +0.0065 | 0.1s2+0.067s+0.011                             |
| 21.7 06(0) 06(0)=      | 54+0.653+0.1152+0.0065                                                                           | 5 (53+0.652+0.11s+0.906)                       |
| H 6, (5) Eiron         | timov O                                                                                          |                                                |
| . —                    | τύπου 1                                                                                          |                                                |
| 4 G3 (5) ELVOU         | בטחסט 1                                                                                          |                                                |

$$\int_{ca} \overline{G_1(s)} : \frac{1}{k_p} = \lim_{s \to 0} \frac{1}{s} \frac{$$

The 
$$G_2(s)$$
:
$$k_U = \lim_{s \to 0} 5G_2(s) \cdot s^2 = \frac{0.005}{0.006} = 0.8$$

$$Appe: esc = \frac{\lambda}{k_U} = \frac{3}{0.8} = 3.75$$

2) For the following plant:

$$G_P(s) = \frac{6}{(s+2)(s^2+2s+5)} = \frac{6}{s^3+4s^2+9s+10}$$

- (c) Design P, PI and PID controllers via the Ziegler Nichols method.
- (d) Evaluate the steady state errors to the following reference inputs:
  - (1) Step of magnitude 4
  - (2) Ramp of slope 5
  - (3) Quadratic
- (c) What is the CLCS "type"?

(a)

Με χρήση της matlab κατασκευάζουμε το διάγραμμα απόκρισης του συστήματος.



Παρατηρούμε ότι το σύστημα έχει ταλαντωτική συμπεριφορά, οπότε σύμφωνα με την δεύτερη μέθοδο των Ziegler-Nichols αυξάνουμε την τιμή του  $\widetilde{K_P}$  μέχρις ότου η βηματική απόκρισή κάνει μία σταθερή ταλάντωση. Αυτό γίνεται όταν το  $\widetilde{K_P}$  πάρει τιμή 4.35, παράγοντας το παρακάτω αποτέλεσμα.



Η περίοδος ταλάντωσης είναι  $\tilde{T}=7.563-5.448=2.1$ 

## Άρα :

| Controller | Кр                                            | Ti                                               | Td                                           |
|------------|-----------------------------------------------|--------------------------------------------------|----------------------------------------------|
| Р          | $0.5 * \widetilde{K_p} = 0.5 * 4.35 = 2.17$   |                                                  |                                              |
| P-I        | $0.45 * \widetilde{K_p} = 0.45 * 4.35 = 1.95$ | $\frac{\tilde{T}}{1.2} = \frac{2.1}{1.2} = 1.75$ |                                              |
| P-I-D      | $0.6 * \widetilde{K_p} = 0.6 * 4.35 = 2.6$    | $\frac{\tilde{T}}{2} = \frac{2.1}{2} = 1.05$     | $\frac{\tilde{T}}{8} = \frac{2.1}{8} = 0.26$ |

Σύμφωνα με τον παραπάνω πίνακα έχουμε ότι:

$$G_C(s) = \frac{M(s)}{E(s)} = K_P + \left(\frac{K_P}{T_I}\right) * \frac{1}{s} + (K_P * T_D) * s = \begin{cases} P = 2.17 \\ P - I = 1.95 + 1.1/s \\ P - I - D = 2.6 + \frac{2.5}{s} + 0.7 * s \end{cases}$$

(b),(c)

| Gp (s) = 6<br>59+45=+95+10                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $G_{c}^{1}(s) = 2.17, G_{c}^{2}(s) = 1.95 + 1.1/s = \frac{1.95 + 1.1}{5}, G_{c}^{3}(s) = \frac{0.7 + 1.2 + 1.65 + 1.5}{5}$                                                             |
| Apa:                                                                                                                                                                                   |
| $\frac{G_1(s) = G_c'(s) \cdot G_p(s) = \frac{13}{s^3 + 4s^2 + 9s + 10}}$                                                                                                               |
| Gr (s)=Gr(s)-Gp (s)= 11.7s+6.6<br>s(3+4s+9s+10)                                                                                                                                        |
| $G_3(s) = G_3^3 \cdot G_p(s) = \frac{4.2s^2 + 15.6s + 15}{s(s^3 + 4s^3 + 9s + 10)}$                                                                                                    |
| H G <sub>1</sub> (5) Eival zinov 0<br>H G <sub>2</sub> (5) Eival zinov 1<br>H G <sub>3</sub> (5) Eival zinov 1                                                                         |
| $ \Gamma_{con}  \overline{G}_{1}(s): $ $ k_{p} = \lim_{s \to 0} \overline{G}_{1}(s) \cdot \overline{S} = \frac{13}{10} = 1.3 $ $ Apa: ess = \frac{2}{1+k_{p}} = \frac{4}{2.3} = 1.73 $ |
| Tra G2(5):  ku=lim 55 G2(5) = 6.6 = 0.66  5>0                                                                                                                                          |

Apa: ess= 2 = 5 = 7.57

$$\Gamma_{La} = \overline{G_3(s)}:$$

$$k_0 = \lim_{s \to 0} \overline{S_s} \cdot \overline{G_3(s)} \cdot \overline{S} = \frac{15}{10} = 1.5$$

$$Apa: e_{ss} = \frac{2}{k_0} = \frac{5}{1.5} = 3.3$$

## 3) Assume the following CLCS:



$$G_P(s) = \frac{1}{s+2} \qquad G_C(s) = \frac{(140\,s + 500) \cdot (s+2) \cdot (s+4)}{s \cdot (s^3 + 17\,s^2 + 192\,s + 500)} \qquad M(s) = 1 \qquad F(s) = \frac{4}{s+4}$$

- (a) Derive the expression for the total TF.
- (b) Evaluate the steady state errors to unit reference inputs.
- (c) What is the CLCS "type"?

| _ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | G(S) = GECS) · M(S) · Gp(S) = (140s+500) · (5+2)(s+4) . 1. 1 = 5 · (53+1752+1925+500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (1905+500)·(5+4)<br>S(53+1752+1925+500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | (140s+500)(s+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | $G = \frac{G}{1 + G \cdot F - G} = \frac{5 \cdot (5^3 + 175 + 1925 + 500)}{1 \cdot (1405 + 500)(5 + 4)} = \frac{1}{1 $ |
|   | $\overline{G} = \frac{G}{s \cdot (s^3 + 17s^2 + 192s + 500)} = \frac{(140s + 500)(s + 4)}{1 + \frac{(140s + 500)(s + 4)}{s(s^3 + 17s^2 + 192s + 500)} \cdot \frac{4}{(s + 4)} - \frac{(140s + 500)(s + 4)}{s(s^3 + 17s^2 + 192s + 500)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | (140:150)(:24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 5(53+1752+1925+500) (140+500).4 (140+500)(c+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | $\frac{5(s^{3}+17s^{2}+192s+500)}{5(s^{3}+17s^{2}+192s+500)} + \frac{(140s+500)(s+4)}{5(s^{3}+17s^{2}+192s+500)} + \frac{(140s+500)(s+4)}{5(s^{3}+17s^{2}+192s+500)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | (1405+500) (5+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 54+1753+19252+5005+5605+2000-14052-5605-5005-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (140s+500)(s+4) = (140s+500)(s+4) = G(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | $5^{4}+175^{2}+525^{2}$ $5^{2}(5^{2}+175+52)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Άρα η Ε(5) είναι τύρου 2 αφού έχει δύο ελεύθερους                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7 | ολοκληρωτές.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _ | Αρα έχει:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | σφαλμα βηματικής Ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _ | ogazpa camp 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _ | $kac o gad pa quadratec \frac{\lambda}{ka} = \frac{2}{ka}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | inou $k_a = \lim_{s \to 0} \frac{1}{s^2} \frac{1}{s^2} \frac{1}{s^2} = \frac{2000}{52} = \frac{38.4}{52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | Apa ess = = = = = = 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |