logistic Regrossion Cost function: new stuff from ml course
-> new Stuff from ml Course
The stain the parameters $W \& b$ of logistic regression model, you need to define a cost function. $f = \sigma(W^{T} \times + b) \text{where } \sigma(z) = \frac{1}{1+e^{-z}}$ given $\{(\chi^{(i)}, y^{(i)}) (\chi^{m}, y^{(m)})\}$ we want $\hat{y}^{(i)} \not = y^{(i)}$
$f = \sigma(w^{\dagger} \times + b)$ where $\sigma(z) = \frac{1}{1+c^{-2}}$
given { (x(1),y(1)) (xm,y(m))} ver want (3(1) & y(1))
Loss (error function): You could do $L(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$ - half square error This basically measures how well our also is doing
this basically measures how well our also is doing
> If you do this however, the optimization problem (later) becomes non-convex -> end up with optimization problem with lots of local optim
gradient descent might not find local optima
2] another wary [(9,7) = - ({y log ŷ}+{(i-y) log (i-ŷ)})
rationale: if $y=1$ $L(\hat{y},y)=-\log \hat{y}$ (a want as small as possible) $\hat{y}=\log (\hat{y},y)=-\log (1-y)$
if $y=0$ ($(\hat{y},y)=-\log(1-y)$ want by 1-i large want is small
X Cost function
> loss for was defined wrt single training example > Cost for determines how well you're doing on entire training set
-> Cost for determines how well you're doing on entire training set
J (w,b) = 1 2 (90, y0) = 2 2 (90)
basically gives average of L(7,7)
-> In training log reg model we're going to find params will that