CS207 (Discrete Structures) Exercise Problem Set 3

August 8, 2015

Instructions:

- Attempt all questions.
- If you have any doubts or you find any typos in the questions, post them on piazza at once!

Relations

- 1. Give an example for each of the following, if such an example exists. Else prove why it cannot exist.
 - (a) A relation that is irreflexive, antisymmetric and not transitive.
 - (b) A relation that is neither symmetric nor antisymmetric.
 - (c) An antisymmetric relation which has a symmetric relation as its subset.

Equivalence relations

- 2. Suppose R_1 and R_2 are two equivalence relations on set S.
 - (a) Is $R_1 \cap R_2$ an equivalence relation?
 - (b) Is $R_1 \cup R_2$ an equivalence relation?
 - (c) Let $f: S \to S$ be a function. Then is the relation R_3 , defined by aR_3b if $f(a)R_1f(b)$, an equivalence relation?

For each of the above, if your answer is "yes", you must prove it, and if your answer is "no", you must provide a counterexample.

- 3. Consider a necklace made of 3 beads, each of which can be either red, white or blue. Let S be the set of all such necklaces. Define the following relation R on S as: N_1 R N_2 iff necklace N_2 can be obtained from necklace N_1 by rotating it (and *not* allowing to flip the necklace).
 - (a) Show that R is an equivalence relation.
 - (b) What are the equivalence classes of R?
 - (c) Is the number of elements in each equivalence class the same? Is there a relationship between the number of elements in an equivalence class of R and the total number of elements in S?
 - (d) If in the definition of the relation, we allow flipping of the necklace as well: that is, $N_1 R' N_2$ iff necklace N_2 can be obtained from necklace N_1 by rotating or flipping it. Is R' an equivalence relation? Why or why not?

Posets, chains and anti-chains

- 4. Let (S, \preceq) be a (non-empty) poset. We write $a \prec b$ if we have $a \prec b$ and $a \neq b$. An element $a \in S$ is called *maximal* if $\exists b \in S$ s.t. $a \prec b$. Similarly, an element $a \in S$ is called *minimal* if $\exists b \in S$ s.t. $b \prec a$.
 - (a) Consider the poset $\{\{2,4,5,10,12,20,25\},\}$. What are its maximal and minimal elements?
 - (b) Consider poset $(\mathcal{P}(S),\subseteq)$. What are its maximal and minimal elements?
- 5. Prove carefully that each finite poset has a topological sort (i.e., a linearization).
- 6. For all t > 0, prove that any poset with n elements must have either a chain of length greater than t or an antichain with at least $\frac{n}{t}$ elements.
- 7. *Consider a permutation of the numbers from 1 to n arranged as a sequence from left to right on a line. Using Mirsky's theorem done in class, prove that there exists a \sqrt{n} -length subsequence of these numbers that is completely increasing or completely decreasing as you move from right to left.
 - For example, the sequence 2, 3, 4, 7, 9, 5, 6, 1, 8 has an increasing subsequence of length 3, for example: 2, 3, 4, and a decreasing subsequence of length 3, for example: 9, 6, 1. (Hint: Use the previous question!)