

Adversarial search

CHAPTER 5 IN THE TEXTBOOK

Types of Games

Many different kinds of games!

- Axes:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Zero sum?
 - Perfect information (can you see the state)?
- Want algorithms for calculating a strategy (policy) which recommends a move from each state

Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s_0)
 - Players: $P = \{1 ... N\}$ (usually take turns)
 - Actions: *A* (may depend on player / state)
 - Transition Function: $S \times A \rightarrow S$
 - Terminal Test: $S \rightarrow \{T, F\}$
 - Terminal Utilities: $S \times P \to \mathbb{R}$

• Solution for a player is a policy: $S \rightarrow A$

Zero-Sum Games

- Zero-Sum Games
 - Agents have opposite utilities (values on outcomes)
 - Lets us think of a single value that one maximizes and the other minimizes
 - Adversarial, pure competition

- General Games
 - Agents have independent utilities (values on outcomes)
 - Cooperation, indifference, competition, and more are all possible
 - More later on non-zero-sum games

Single-Agent Trees 8 2

Value of a State

Adversarial Game Trees

Minimax Values

Terminal States:

$$V(s) = \text{known}$$

Tampere University

- In principle Chess is easy to solve:
 - A finite number of moves for both players to choose from
 - Build up a tree where the players take turns to choose piece movements on the board configuration that has evolved
 - No matter what search strategy we use, in practice all board configurations cannot be evaluated

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Optimal Decisions in Games

- The two players: min and max
- The initial board position is like the rules of the game dictate and max is the first to move
- Successor function S(n) determines legal moves and resulting states
- A terminal test determines when the game is over
- max (min) aims at maximizing (minimizing) the value of the utility function
- The initial state and the successor function determine a game tree, where the players take turns to choose an edge to travel

Tampere University

- In our quest for the optimal game strategy, we will assume that also the adversary is infallible
- Player min chooses the moves that are best for it
- To determine the optimal strategy, we compute for each node n its minimax value MM(n):

$$MM(n) = \begin{cases} PAYOFF(n), & \text{if } n \text{ is a terminal state} \\ \max_{s \in S(n)} MM(s), & \text{if } n \text{ is a max node} \\ \min_{s \in S(n)} MM(s), & \text{if } n \text{ is a min node} \end{cases}$$

return v

Minimax Implementation

def max-value(state): initialize v = -∞ for each successor of state: v = max(v, min-value(successor))

$$V(s) = \max_{s' \in \text{successors}(s)} V(s')$$

def min-value(state):
 initialize v = +∞
 for each successor of state:
 v = min(v, max-value(successor))
 return v

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

Minimax Implementation (Dispatch)

```
def value(state):
  if the state is a terminal state: return the state's utility
  if the next agent is MAX: return max-value(state)
  if the next agent is MIN: return min-value(state)
```

```
def max-value(state):
    initialize v = -∞
    for each successor of state:
        v = max(v, value(successor))
    return v
```

```
def min-value(state):
    initialize v = +∞
    for each successor of state:
        v = min(v, value(successor))
    return v
```

Tampere University

Tampere University

- The play between two optimally playing players is completely determined by the minimax values
- For max the minimax values gives the worst-case outcome the opponent min is optimal
- If the opponent does not choose the best moves, then max will do at least as well as against min
- Against suboptimal opponents there may be other strategies that do better than minimax
- The minimax algorithm performs a complete depth-first exploration of the game tree
- Therefore, the time complexity is $O(b^m)$, where b is the number of legal moves at each point and m is the maximum depth
- For real games, exponential time cost is totally impractical

Video of Demo Min vs. Rnd (Min)

Video of Demo Min vs. Rnd (Rnd)

Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: $O(b^m)$
 - Space: *0*(*bm*)
- For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?
- Optimal against a perfect player.
 Otherwise?

8 9 1 4

- Examining the game tree we could find out which successive moves lead White to win and which of them lead to a win for Black
- The branching factor for chess is b = 35, and the length of longest play is infinite
- No matter what search strategy we use, in practice all board configurations cannot be evaluated

- Instead use a payoff (or utility)
 function to estimate how the board configuration evolves as moves are chosen
- The simplest payoff could be determined at the end of the game; did we win (1), draw (½), or lose (0)
- More applicable is to estimate any board position by, e.g., summing up the (difference of) material values of remaining pieces

pawn 1, knight 3, bishop 3, rook 5, queen 9

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search

 - Instead, search only to a limited depth in the tree
 Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - $\alpha \beta$ reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Alpha-beta pruning

- The exponential complexity of minimax search can be alleviated by pruning the nodes of the game tree that get evaluated
- It is possible to compute the correct minimax decision without looking at every node in the game tree
- Alpha-beta pruning gets its name from the parameters that describe bounds on the backed-up values that appear anywhere along the path
 - α = the value of the best (highest-value) choice we have found so far at any choice point along the path for max
 - β = the value of the best (lowest-value) choice we have found so far at any choice point along the path for min

Tampere University

Tampere University

Alpha-Beta Pruning

- General configuration (MIN version)
 - ullet We're computing the MIN-VALUE at some node n
 - We're looping over *n*'s children
 - n's estimate of the childrens' min is dropping
 - Who cares about n's value? MAX
 - Let *a* be the best value that MAX can get at any choice point along the current path from the root
 - If n becomes worse than a, MAX will avoid it, so we can stop considering n's other children (it's already bad enough that it won't be played)
- MAX version is symmetric

Alpha-Beta Implementation

α: MAX's best option on path to rootβ: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
\label{eq:def-min-value} \begin{split} &\text{def min-value}(\text{state }, \alpha, \beta): \\ &\text{initialize } v = +\infty \\ &\text{for each successor of state:} \\ &v = \min(v, \, \text{value}(\text{successor}, \, \alpha, \, \beta)) \\ &\text{if } v \leq \alpha \, \text{return } v \\ &\beta = \min(\beta, \, v) \\ &\text{return } v \end{split}
```


Behavior from Computation

Video of Demo Mystery Pacman

