OGL

Theorem 0.1 (ogl). For any cyclic group G with cardinality s and generator g, $g \neq g^0$, there exists a function $f: G^2 \to G$ such that f can be complexly composed with itself to form any function mapping $G^2 \to G$.

Let op be the function op(x,y) = x == y?x * g : C where C is any element in G. Let logish be the function $logish : G \to Z_{|G|}$ with rule $logish(g^n) = n$. To prove that op satisfies ''0.1 we will prove the following lemmas.

Lemma 0.2 (rot). let rot_n be the function $rot_1(x) = op(x, x)$, $rot_n = rot(rot_{n-1})$ and $rot_0(x) = x$. rot_n will also have the rule $rot_n(x) = x * g^n$.

Corollary 0.2.1. let the functions A_n and B_n have the rule $A_n(x,y) = rot_n(x) = x * g^n$ and $B_n(x,y) = rot_n(y)$. Thus, $A_n(x) = x * g^n$ and $B_n = y * g^n$.

Lemma 0.3 (F-funcs). Let $F_{a,b}$ be a function where $F_{a,b}(x,y) = rot_b(op(A_a(x,y),B_b(x,y)))$. Thus, $F_{a,b}(x,y) = x = y?x*g^{a+b+1}: C*g^b$.

Lemma 0.4 (N-funcs). Let $\overline{a}(x,y) = rot_a(op(A_0(x,y),A_1(x,y)))$. Thus, $\overline{a}(x,y) = C * g^a$.

Lemma 0.5 (isolator). Let $\overline{(a,b,c)}(x,y) = op(F_{logish(c)-logish(C),-logish(C)}(A_a,B_b),\overline{g})$, then $\overline{(a,b,c)}(x,y) = (x == g^a) \land (y == g^b)$?c : C

Lemma 0.6 (S). Let $\overline{S_a}(x,y) = F_{-a+logish(C)-1,a-logish(C)}(\overline{(g^0,a,a)}(x,y),\overline{(a,g^0,a)}(x,y))$, then when $a \neq g^0$ $\overline{S_a} = (x = g^a \land y = g^0) \lor (x = g^0 \land y = g^a)$? $g^a : C$

Lemma 0.7 (AS). Let $\overline{AS_a}b(x,y) =$