

Курс "Машинное обучение" Лабораторная работа

Ridge regression

Шаров К.И., M18-504 Вариант 1-04

Исходные данные

Представляют собой пары свободной переменной — x и зависимой переменной — y Общее количество пар — 300

Кросс-валидация методом Holdout (70/30).

Используемые методы и формулы

Класс регрессионных моделей: $h(x) = \sum_{i=1}^m \beta_i x^i$

МНК:
$$Q(\beta) = \|F\beta - y\|^2$$

$$\beta^* = \arg\min(Q(\beta)), \quad \text{где } F = \begin{bmatrix} x_1 & \cdots & x_n \\ \vdots & \ddots & \vdots \\ x_1^m & \cdots & x_n^m \end{bmatrix}, \beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}, y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Решение: $\beta^* = (F^T F)^{-1} F^T y$

Гребневая регрессия:
$$Q_{\lambda}(\beta) = \|F\beta - y\|^2 + \lambda \|\beta\|^2$$
 $\beta^* = (F^T F + \lambda I_n)^{-1} F^T y.$

Зависимость MSE от числа регрессоров линейной регрессионной модели

Зависимость MSE от числа регрессоров гребневой регрессионной модели при $\lambda \approx 0$

Зависимость MSE от числа регрессоров гребневой регрессионной модели при $\lambda \gg 0$

График зависимости выхода линейной регрессионной модели от x, наложенный на диаграмму рассеяния (m=5)

График зависимости выхода гребневой регрессионной модели $\lambda \approx 0$ от x, наложенный на диаграмму рассеяния (m=5)

$$\lambda = 0.001$$

График зависимости выхода гребневой регрессионной модели $\lambda \gg 0$ от x, наложенный на диаграмму рассеяния (m=5)

Гистограммы распределения дисперсий отклика модели для обучающей и тестовой выборок при линейной регрессии (m=5)

Гистограммы распределения дисперсий отклика модели для обучающей и тестовой выборок при гребневой регрессии $\lambda \approx 0 \; (m=5)$

Гистограммы распределения дисперсий отклика модели для обучающей и тестовой выборок при гребневой регрессии $\lambda\gg 0\ (m=5)$

Графики зависимости остатков модели для линейной регрессии (m=5)

Математическое ожидание остатков регрессионной модели: -0.0746

Графики зависимости остатков модели для гребневой регрессии $\lambda \approx 0 \; (m=5; \lambda=0.001)$

Математическое ожидание остатков регрессионной модели: -0.0746

Графики зависимости остатков модели для гребневой регрессии $\lambda \gg 0 \; (m=5; \lambda=100)$

Математическое ожидание остатков регрессионной модели: -0.063

Выводы

- Использование параметра λ позволяет сгладить выбросы MSE, проявляющиеся при использовании моделей с большим числом регрессоров (m ≥ 30).
- При малых значениях λ ($\lambda \approx 0$) графики выходов линейной и гребневой регрессионных моделей не отличаются существенно; при больших значениях λ ($\lambda \gg 0$) график выходов гребневой регрессии приближается к прямой.
- С ростом λ коэффициенты моделей гребневой регрессии стремятся к нулю.

Выводы

- Исходя из анализа гистограмм распределения дисперсий отклика моделей можно сделать вывод, что дисперсия откликов не зависит от входа модели.
- Исходя из визуального анализа графиков остатков регрессионных моделей можно сделать следующие выводы:
 - Математическое ожидание остатков всех моделей приблизительно равно нулю;
 - Дисперсия остатков всех моделей постоянна;
 - На графиках всех моделей отсутствуют неслучайные паттерны.