Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	25 October 2023
Team ID	4.3
Project Name	Network Anomaly Detection
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	The system must be able to train a machine learning model to detect anomalous network traffic patterns.	USN-1	As a network security analyst, I want to use machine learning to detect anomalous network traffic patterns that may indicate a security breach. This would allow me to identify and respond to security threats more quickly and effectively.	2	High	Manasa Dhiraj Om Nivas Lasya
Sprint-1	The system must be able to train a machine learning model to detect and troubleshoot routing problems.	USN-2	As a network engineer, I want to use machine learning to identify and diagnose network performance issues. This would allow me to improve the quality of service for my users and reduce the amount of time spent troubleshooting network problems.	2	High	Manasa Dhiraj Om Nivas Lasya
Sprint-2	The system must be able to pre-process and extract features from the collected financial market data.	USN-3	As a financial services company, we want to use machine learning to detect fraudulent transactions in real time. This would help us to protect our customers from financial loss and reduce the risk of fraud.	1	Medium	Manasa Dhiraj Om Nivas Lasya
Sprint-3	The system must be able to generate alerts for detected cyberattacks.	USN-4	As a healthcare provider, we want to use machine learning to detect anomalous medical device data that may indicate a patient's health is deteriorating.	1	Medium	Manasa Dhiraj

			This would allow us to intervene early and prevent serious medical complications.			Om Nivas Lasya
Sprint-4	The system must be able to generate alerts for detected anomalies.	USN-5	As a manufacturing company, we want to use machine learning to detect anomalous machine sensor data that may indicate a potential equipment failure. This would allow us to schedule preventive maintenance and avoid costly unplanned downtime.	2	High	Manasa Dhiraj Om Nivas Lasya

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	25	8 Days	28 Sept 2023	5 Oct 2023	25	5 Oct 2023
Sprint-2	25	6 Days	7 Oct 2023	12 Oct 2023	25	12 Oct 2023
Sprint-3	25	5 Days	14 Oct 2023	18 Oct 2023	25	18 Oct 2023
Sprint-4	25	6 Days	20 Oct 2023	25 Oct 2023	25	25 Oct 2023

Velocity:

$$AV = \frac{Sprint duration}{Velocity} = \frac{25}{25} = 1$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

