Введение в теорию сложности вычислений

Эдуард Алексеевич Гирш

http://logic.pdmi.ras.ru/~hirsch

СП6ГУ и ПОМИ РАН

лекция 12 ноября 2020 г.

HMT

Инструкции k-ленточной ДМТ можно записать как функцию (таблицу)

 $\delta\colon Q\times \Sigma^k \to Q\times \Sigma^k \times \{\leftarrow, \to, \cdot\}^k.$ Буручи т Эрина сашто Эрина пути Недетерминированная машина Тьюринга (HMT) допускает больше

одной инструкции для данных $q \in Q$ и $c_1, \dots, c_k \in \Sigma$, т.е. δ для неё —

 $(9,c) \rightarrow (9',c')$ многозначная функция.

Так появляется дерево вычислений...

В машины (ДМТ, НМТ) с заведомо ограниченным временем работы можно встроить будильник и считать время вычислений на входах одной длины всегда одним и тем же.

НМТ принимает вход, если \exists путь в дереве вычислений, заканчивающийся q_Y .

НМТ и **NP** — другие определения (эквивалентные)

Недетерминированная машина Тьюринга (HMT) — это просто ДМТ, у которой есть дополнительный аргумент (подсказка w, на второй ленте).

НМТ M принимает вход x, если $\exists w$, для которой вычисление заканчивается в q_Y (пишем M(x,w)=1).

Вычислительный путь в старом определении \sim подсказка в новом. Можно считать, что длина подсказки определяется длиной входа.

НМТ и **NP** — другие определения (эквивалентные)

Недетерминированная машина Тьюринга (HMT) — это просто ДМТ, у которой есть дополнительный аргумент (подсказка *w* на второй ленте).

НМТ M принимает вход x, если $\exists w$, для которой вычисление заканчивается в q_Y (пишем M(x,w)=1).

Вычислительный путь в старом определении \sim подсказка в новом. Можно считать, что длина подсказки определяется длиной входа.

Ещё одно определение **NP**:

NP — класс языков, принимаемых полиномиальными по времени НМТ.

Сведения (Сводимости)

Сведение языков по Карпу: $L_1 \rightarrow L_2$, если имеется полиномиально вычислимая f:

 $\forall x \ x \in L_1 \Leftrightarrow f(x) \in L_2.$

f, h AMT output tape

Сведение задач поиска по Левину: $R_1 {
ightarrow} R_2$, если $\exists f,g,h \ \forall x_1,y_1,y_2$

$$ightharpoonup R_1(x_1,y_1) \Rightarrow R_2(f(x_1),g(x_1,y_1)),$$

- $R_1(x_1, h(f(x_1), y_2)) \leftarrow R_2(f(x_1), y_2),$
- ightharpoonup f и h полиномиально вычислимы, а g ограничена полиномом.

Классы P, \widetilde{NP} , $\widetilde{\widetilde{P}}$, $\widetilde{\widetilde{NP}}$ замкнуты относительно этих сведений.

$$R_2 \in \mathcal{F}$$
, $R_1 \rightarrow R_2 \implies R_1 \in \widehat{P}$ $(R_2 - n.o. h.n. \times \rightarrow \mathcal{F})$
 \widehat{NP} $(R_1 - n.o. h.n. \times \rightarrow \mathcal{F})$

Сведе́ния (Сводимости)

Оракульная МТ имеет доступ к оракулу, который за 1 шаг даёт ей ответ на вопрос.

Формально: состояния $q_{
m in}$, $q_{
m out}$ и "фантастический переход" из $q_{
m in}$ в $q_{
m out}$, заменяющий содержимое [третьей] ленты на ответ оракула.

 M^B — оракульная машина M, которой дали конкретный оракул B.

Сведение чего угодно по Тьюрингу: A o B, если имеется оракульная полиномиальная по времени машина $M^{\bullet,\bullet}$ такая, что M^B решает A (например, если A — язык, то $A = L(M^B)$).

Сведения (Сводимости)

Сведение языков по Карпу: $L_1 \rightarrow L_2$, если имеется полиномиально вычислимая f:

 $\forall x \ x \in L_1 \Leftrightarrow f(x) \in L_2.$

Сведение задач поиска по Левину: $R_1 {
ightarrow} R_2$, если $\exists f, g, h \ \forall x_1, y_1, y_2$

- $ightharpoonup R_1(x_1,y_1) \Rightarrow R_2(f(x_1),g(x_1,y_1)),$
- $ightharpoonup R_1(x_1, h(f(x_1), y_2)) \Leftarrow R_2(f(x_1), y_2),$
- ightharpoonup f и h полиномиально вычислимы, а g ограничена полиномом.

B = SAT $M^{\circ}(x) = X \neq 0$ A = UNSAT Сведение чего угодно по Тьюрингу: $A \rightarrow B$, если имеется оракульная A = UNSAT полиномиальная по времени машина M^{\bullet} , такая, что M^{B} решает A = (Hanpumep, если <math>A = SAT (Например, если A = SAT (Например) (Например)

Классы P, \widetilde{P} замкнуты относительно этих сведений. $(1 \stackrel{\longleftarrow}{P})^{\widetilde{P}}$ Классы $(NP)^{\widetilde{NP}}$ могут быть незамкнуты относительно сведений по Тьюрингу.

Трудные и полные задачи

Задача A — трудная для класса ${\bf C}$, если $\forall C \in {\bf C}$ $C \to A$.

Задача — полная для \mathbf{C} , если она трудная и принадлежит $\dot{\mathbf{C}}$.

Теорема

Если

- ▶ A NP-трудная,
- ▶ A ∈ P,

то P = NP.

Следствие

Если A - NP-полная, то

$$A \in P \Leftrightarrow P = NP$$
.

NP-полная задача: ВН

Теорема

Задача об ограниченной остановке — NP-полная, а соответствующий язык — NP-полный.

Замечание

Принадлежность **NP** использует существование универсальной ДМТ, которая может эффективно промоделировать вычисление ДМТ, описание которой дано ей на вход.

Булева схема

- ▶ Ориентированный граф без циклов.
- Бинарные (и унарные) операции над битами: ∧, ∨, ⊕, . . .
- ▶ Пример (4 гейта):

NP-полная задача: CIRCUIT SAT

$$\widetilde{\text{CIRCUIT_SAT}} = \{(C, w) \mid C - \text{схема}, \ C(w) = 1\}.$$

 $BH \rightarrow CIRCUIT SAT:$

- ▶ этаж схемы конфигурация ДМТ;
- время $t \Rightarrow t$ больших этажей схемы;
- время $t \Rightarrow t$ ячеек на этаже;
- переход между этажами реализует один шаг ДМТ:

$$(q', c'_i, d'_i) \longleftrightarrow (q, c_{i-1}, c_i, c_{i+1}, d_{i-1}, d_i, d_{i+1}),$$

где d_i, d_i' — «головка в j-й позиции»:

$$c: c_1 c_2 \ldots c_{i-1}$$

 $d: \cdot \cdot \cdot$

$$M, t \rightarrow C$$
, $3cmal + b \times q$ $C(w)$

$$c: c_1 c_2 \ldots c_{i-1} c_i c_{i+1}$$
.
 $d: \cdot \cdot \cdot \cdot \cdot \cdot$

- входы схемы подсказка НМТ (вход НМТ уже подставлен).
- выход схемы попадание в q_Y .

