# Machine Learning (CSE 574) - 3

# PROBLEM STATEMENT:

Implement Logistic Regression to classify hand-written digit images into correct corresponding labels. Build 10 binary-classifiers (one for each class) to distinguish a given class from all other classes. Implement multi-class Logistic Regression. Build 1 classifier that can classify 10 classes at the same time.

Below are the tasks to be performed: -

- (i) Implement Logistic Regression and give the prediction results.
- (ii) Use the Support Vector Machine (SVM) toolbox sklearn.svm.SVM to perform classification.
- (iii) Implement the gradient descent minimization of multi-class Logistic Regression (using softmax function)

# **SOLUTION:**

Dataset MNIST - (mnist all.mat) has been provided. The task is to implement Binary and Multinomial Logistic Regression and evaluate its performance in classifying handwritten digit images into correct corresponding labels.

Preprocessing has already been done on the data set to obtain the training, validation and the test data.

## → Binary Logistic Regression (blrObjFunction() / blrPredict())

"blrObjFunction" takes in 3 parameters as input. The bias is added at the beginning of the vector. The logistic regressor is trained using the given data X (Preprocessed feature vectors of MNIST data) with labels y. The output of the function is an error value and the gradient error.

The final accuracies obtained for blr function are:

'Training Accuracy' - 92.734%

'Validation Accuracy' - 91.52%

'Test Accuracy' - 92.0%

#### → <u>BLR Confusion Matrix and Classification Report</u>

#### **Training Set Confusion Matrix**

| BL | R Tı | caini | ng Cor | nfusic | n Mat | crix |      |      |      |        |
|----|------|-------|--------|--------|-------|------|------|------|------|--------|
| [[ | 4819 | ) :   | 1 9    | 9 8    | 3     | 7 18 | 3 23 | 3 (  | 5 30 | 2]     |
| [  | 1    | 5620  | 28     | 13     | 3     | 14   | 3    | 11   | 43   | 6]     |
| [  | 29   | 39    | 4524   | 63     | 50    | 17   | 50   | 62   | 109  | 15]    |
| [  | 16   | 23    | 121    | 4607   | 8     | 137  | 20   | 43   | 107  | 49]    |
| [  | 9    | 20    | 22     | 5      | 4541  | 9    | 25   | 13   | 48   | 150]   |
| [  | 41   | 18    | 30     | 138    | 40    | 3903 | 77   | 18   | 107  | 49]    |
| [  | 23   | 12    | 29     | 3      |       | 64   | 4739 | 4    | 25   | 2 ]    |
| [  | 11   | 21    | 51     | 12     | 41    | 9    | 4    | 4970 | 12   | 134]   |
| [  | 39   | 107   | 50     | 119    | 29    | 120  | 30   | 20   | 4252 | 85]    |
| [  | 23   | 22    | 17     | 86     | 164   | 36   | 1    | 158  | 44   | 4398]] |

In the above training set confusion matrix, the non-diagonal elements show the number of observations that were not predicted correctly against the true labels whereas the diagonal elements show the count of correctly predicted observations. For example, for class 0, 4819 values were correctly predicted whereas (1+9+8+7+18+23+6+30+2=) 104 were not predicted correctly. Similarly, results can be predicted for other classes.

# **Training Set Classification Report**

| _ | _        |       |                |           |          |         |
|---|----------|-------|----------------|-----------|----------|---------|
|   | BLR Trai | ining | Classification | on Report |          |         |
|   |          |       | precision      | recall    | f1-score | support |
|   |          |       |                |           |          |         |
|   |          | 0     | 0.98           | 0.96      | 0.97     | 5011    |
|   |          | 1     | 0.98           | 0.96      | 0.97     | 5883    |
|   |          | 2     | 0.91           | 0.93      | 0.92     | 4881    |
|   |          | 3     | 0.90           | 0.91      | 0.90     | 5054    |
|   |          | 4     | 0.94           | 0.93      | 0.93     | 4900    |
|   |          | 5     | 0.88           | 0.90      | 0.89     | 4327    |
|   |          | 6     | 0.96           | 0.95      | 0.96     | 4972    |
|   |          | 7     | 0.94           | 0.94      | 0.94     | 5305    |
|   |          | 8     | 0.88           | 0.89      | 0.88     | 4777    |
|   |          | 9     | 0.89           | 0.90      | 0.89     | 4890    |
|   |          |       |                |           |          |         |
|   | micro    | avg   | 0.93           | 0.93      | 0.93     | 50000   |
|   | macro    | avg   | 0.93           | 0.93      | 0.93     | 50000   |
| ١ | weighted | avg   | 0.93           | 0.93      | 0.93     | 50000   |
|   | -        | _     |                |           |          |         |

The above classification report shows a representation of the blr training set classification metrics on a per-class basis to give a better intuition of the classifier performance on the training data. The **best** 

train results can be checked using the "f1-score" and were obtained for class 0, 1 and 6, while the worst train results were obtained for class 5, 8 and 9.

#### **Test Set Confusion Matrix**

| BL | BLR Test Confusion Matrix |      |     |     |     |     |     |     |     |       |  |
|----|---------------------------|------|-----|-----|-----|-----|-----|-----|-----|-------|--|
| ]] | 961                       | L 0  | 0   | 2   | 1   | 5   | 5   | 4   | 1   | 1]    |  |
| [  | 0                         | 1113 | 3   | 1   | 0   | 1   | 5   | 1   | 11  | 0]    |  |
| [  | 10                        | 9    | 917 | 19  | 10  | 4   | 12  | 13  | 34  | 4]    |  |
| [  | 4                         | 1    | 19  | 919 | 2   | 19  | 4   | 13  | 19  | 10]   |  |
| [  | 1                         | 3    | 6   | 2   | 914 | 0   | 10  | 2   | 5   | 39]   |  |
| [  | 10                        | 3    | 1   | 47  | 12  | 758 | 16  | 7   | 29  | 9]    |  |
| [  | 9                         | 4    | 7   | 2   | 4   | 19  | 909 | 1   | 3   | 0]    |  |
| [  | 2                         | 9    | 21  | 5   | 9   | 1   | 1   | 950 | 3   | 27]   |  |
| [  | 14                        | 12   | 6   | 18  | 14  | 30  | 7   | 11  | 850 | 12]   |  |
| [  | 8                         | 8    | 1   | 13  | 35  | 12  | 1   | 24  | 10  | 897]] |  |

In the above test set confusion matrix, for example, for class 0, 961 values were correctly predicted whereas (0+0+2+1+5+5+4+1+1=) 19 were not predicted correctly. Similarly, results can be predicted for other classes.

#### **Test Set Classification Report**

| BLR Tes  | t Cla | ssification | Report |          |         |
|----------|-------|-------------|--------|----------|---------|
|          |       | precision   | recall | f1-score | support |
|          | •     |             | 0.04   | 0.06     | 1010    |
|          | 0     | 0.98        | 0.94   | 0.96     | 1019    |
|          | 1     | 0.98        | 0.96   | 0.97     | 1162    |
|          | 2     | 0.89        | 0.93   | 0.91     | 981     |
|          | 3     | 0.91        | 0.89   | 0.90     | 1028    |
|          | 4     | 0.93        | 0.91   | 0.92     | 1001    |
|          | 5     | 0.85        | 0.89   | 0.87     | 849     |
|          | 6     | 0.95        | 0.94   | 0.94     | 970     |
|          | 7     | 0.92        | 0.93   | 0.93     | 1026    |
|          | 8     | 0.87        | 0.88   | 0.88     | 965     |
|          | 9     | 0.89        | 0.90   | 0.89     | 999     |
|          |       |             |        |          |         |
| micro    | avg   | 0.92        | 0.92   | 0.92     | 10000   |
| macro    | avg   | 0.92        | 0.92   | 0.92     | 10000   |
| weighted | avg   | 0.92        | 0.92   | 0.92     | 10000   |

The above classification report shows a representation of the blr test set classification metrics on a per-class basis to give a better intuition of the classifier performance on the test data. The **best test results** can be checked using the "**f1-score**" and were obtained for **class 0 and 1**, while the **worst test results** were obtained for **class 5**, **8 and 9**.

#### → Multinomial Logistic Regression (mlrObjFunction() / mlrPredict() )

Logistic Regression can also be used to implement multi-class classification. Hence, "mlrObjFunction" is used to build 1 classifier that can classify 10 classes at the same time. The function takes in 3 parameters as input. The bias is added at the beginning of the vector. The logistic regressor is trained using the given data X (Preprocessed feature vectors of MNIST data) with labels y. The output of the function is an error value and the gradient error.

The final accuracies obtained for mlr function are:

# → MLR Confusion Matrix and Classification Report

#### **Training Set Confusion Matrix**

| MLR Training Confusion |      |      |      |      | n Mat | rix  |      |      |      |        |
|------------------------|------|------|------|------|-------|------|------|------|------|--------|
| [[                     | 4801 | 1 1  | l 15 | 5 5  | 9     | 28   | 3 20 | ) (  | 3 33 | 3]     |
| [                      | 1    | 5636 | 26   | 12   | 4     | 17   | 2    | 9    | 26   | 9 ]    |
| [                      | 25   | 52   | 4541 | 70   | 51    | 16   | 41   | 49   | 99   | 14]    |
| [                      | 23   | 27   | 113  | 4636 | 4     | 135  | 15   | 32   | 96   | 50]    |
| [                      | 11   | 28   | 31   | 3    | 4516  | 6    | 39   | 11   | 31   | 166]   |
| [                      | 52   | 29   | 51   | 117  | 32    | 3898 | 58   | 16   | 127  | 41]    |
| [                      | 32   | 16   | 43   | 0    | 29    | 53   | 4715 | 2    | 26   | 2 ]    |
| [                      | 9    | 22   | 57   | 17   | 36    | 11   | 3    | 4925 | 15   | 170]   |
| [                      | 26   | 124  | 57   | 92   | 19    | 100  | 18   | 9    | 4350 | 56]    |
| [                      | 22   | 31   | 11   | 55   | 103   | 28   | 2    | 107  | 31   | 4559]] |

<sup>&#</sup>x27;Training Accuracy' - 93.166%

<sup>&#</sup>x27;Validation Accuracy' - 92.41%

<sup>&#</sup>x27;Test Accuracy' - 92.51%

In the above training set confusion matrix, the non-diagonal elements show the number of observations that were not predicted correctly against the true labels whereas the diagonal elements show the count of correctly predicted observations. For example, for class 0, 4801 values were correctly predicted whereas (1+9+8+7+18+23+6+30+2=) 104 were not predicted correctly. Similarly, results can be predicted for other classes.

#### **Training Set Classification Report**

| MLR Trai | ining | Classification | n Report |          |         |
|----------|-------|----------------|----------|----------|---------|
|          |       | precision      | recall   | f1-score | support |
|          | 0.0   | 0.96           | 0.98     | 0.97     | 4923    |
|          | 1.0   |                | 0.98     |          | 5742    |
|          |       | 0.94           |          | 0.96     |         |
|          | 2.0   | 0.92           | 0.92     | 0.92     | 4958    |
|          | 3.0   | 0.93           | 0.90     | 0.91     | 5131    |
|          | 4.0   | 0.94           | 0.93     | 0.94     | 4842    |
|          | 5.0   | 0.91           | 0.88     | 0.89     | 4421    |
|          | 6.0   | 0.96           | 0.96     | 0.96     | 4918    |
|          | 7.0   | 0.95           | 0.94     | 0.94     | 5265    |
|          | 8.0   | 0.90           | 0.90     | 0.90     | 4851    |
|          | 9.0   | 0.90           | 0.92     | 0.91     | 4949    |
|          |       |                |          |          |         |
| micro    | avg   | 0.93           | 0.93     | 0.93     | 50000   |
| macro    | avg   | 0.93           | 0.93     | 0.93     | 50000   |
| weighted | avg   | 0.93           | 0.93     | 0.93     | 50000   |

The above classification report shows a representation of the mlr test set classification metrics on a per-class basis to give a better intuition of the classifier performance on the training data. The **best train results** can be checked using the "**f1-score**" and were obtained for **class 0, 1 and 6**, while the **worst test results** were obtained for **class 5** and 8.

## **Test Set Confusion Matrix**

In the below test set confusion matrix, for example, for class 0, 964 values were correctly predicted whereas (0+1+3+0+4+3+4+1+0=)

16 were not predicted correctly. Similarly, results can be predicted for other classes.

| MLI | R T€ | est Co | nfusi | on Mat | trix |     |     |     |     |       |
|-----|------|--------|-------|--------|------|-----|-----|-----|-----|-------|
| [[  | 964  | 1 0    | 1     | 3      | 0    | 4   | 3   | 4   | 1   | 0]    |
| [   | 0    | 1120   | 4     | 1      | 0    | 1   | 3   | 2   | 4   | 0]    |
| [   | 7    | 12     | 926   | 14     | 9    | 4   | 14  | 8   | 33  | 5]    |
| [   | 5    | 2      | 20    | 914    | 0    | 22  | 4   | 10  | 24  | 9 ]   |
| [   | 1    | 3      | 10    | 1      | 910  | 0   | 7   | 5   | 6   | 39]   |
| [   | 10   | 3      | 4     | 43     | 9    | 761 | 12  | 6   | 36  | 8 ]   |
| [   | 14   | 3      | 5     | 2      | 8    | 15  | 906 | 3   | 2   | 0]    |
| [   | 1    | 11     | 21    | 6      | 7    | 1   | 0   | 943 | 2   | 36]   |
| [   | 8    | 16     | 7     | 22     | 9    | 20  | 11  | 7   | 864 | 10]   |
| [   | 11   | 9      | 1     | 8      | 23   | 6   | 0   | 14  | 8   | 929]] |

## **Test Set Classification Report**

| MLR | Test | Classification | Report |
|-----|------|----------------|--------|
|-----|------|----------------|--------|

|                |     |              | or           |              |                |
|----------------|-----|--------------|--------------|--------------|----------------|
|                |     | precision    | recall       | f1-score     | support        |
|                | 0.0 | 0.94         | 0.98         | 0.96         | 980            |
|                | 1.0 | 0.95         | 0.99         | 0.97         | 1135           |
|                | 2.0 | 0.93         | 0.90         | 0.91         | 1032           |
|                | 3.0 | 0.90         | 0.90         | 0.90         | 1010           |
|                | 4.0 | 0.93         | 0.93         | 0.93         | 982            |
|                | 5.0 | 0.91         | 0.85         | 0.88         | 892            |
|                | 6.0 | 0.94         | 0.95         | 0.94         | 958            |
|                | 7.0 | 0.94         | 0.92         | 0.93         | 1028           |
|                | 8.0 | 0.88         | 0.89         | 0.88         | 974            |
|                | 9.0 | 0.90         | 0.92         | 0.91         | 1009           |
| micro<br>macro | -   | 0.92<br>0.92 | 0.92<br>0.92 | 0.92<br>0.92 | 10000<br>10000 |
| weighted       | _   | 0.92         | 0.92         | 0.92         | 10000          |

The above classification report shows a representation of the mlr test set classification metrics on a per-class basis to give a better intuition of the classifier performance on the test data. The **best test results** can be checked using the "**f1-score**" and were obtained for **class 0** and **1**, while the **worst test results** were obtained for **class 5** and **8**.

# → <u>Comparison (Multiclass vs One-vs-All Strategy)</u>

# Below table shows the overall final accuracies comparison:

| Strategy   | Training Accuracy (%) | Validation Accuracy (%) | Test Accuracy (%) |
|------------|-----------------------|-------------------------|-------------------|
| Multiclass | 93.166                | 92.41                   | 92.51             |
| One-vs-All | 92.734                | 91.52                   | 92.0              |

Below table shows the misclassification results (error count) and the corresponding error percentage in the training and test set of BLR and MLR functions:

|       | BLR Fu   | unction Misclas | sification | n (Error) | MLR Function Misclassification (Error) |           |      |           |
|-------|----------|-----------------|------------|-----------|----------------------------------------|-----------|------|-----------|
| Class | Training | Error (%)       | Test       | Error (%) | Training                               | Error (%) | Test | Error (%) |
| 0     | 104      | 2.11            | 19         | 1.93      | 122                                    | 2.47      | 16   | 1.63      |
| 1     | 122      | 2.12            | 22         | 1.93      | 106                                    | 1.84      | 15   | 1.32      |
| 2     | 434      | 8.75            | 115        | 11.14     | 417                                    | 8.41      | 106  | 10.27     |
| 3     | 524      | 10.21           | 91         | 9.00      | 495                                    | 9.64      | 96   | 9.50      |
| 4     | 301      | 6.21            | 68         | 6.92      | 326                                    | 6.73      | 72   | 7.33      |
| 5     | 518      | 11.71           | 134        | 15.02     | 523                                    | 11.82     | 131  | 14.68     |
| 6     | 179      | 3.63            | 49         | 5.11      | 203                                    | 4.12      | 52   | 5.42      |
| 7     | 295      | 5.60            | 78         | 7.58      | 340                                    | 6.45      | 85   | 8.26      |
| 8     | 599      | 12.34           | 124        | 12.73     | 501                                    | 10.32     | 110  | 11.29     |
| 9     | 551      | 11.1            | 112        | 11.1      | 390                                    | 7.88      | 80   | 7.92      |

#### → Support Vector Machines (SVM)

SVM models are difficult to scale well to a large dataset. Hence, the model is first fit by randomly sampling the training data set for 10000 records. This data is then further used to fit the model in 4 different ways:

## → <u>Linear Kernel</u>

Using the scikit learn SVM SVC model, fit the linear kernel and keep all the other parameters fixed. Fit the sampled 10000 training data to the model.

The accuracies obtained for Linear Kernel with **default Gamma** are:

#### → Radial Basis function (RBF) - Gamma set to 1

Similar to above, fit the 'rbf' kernel with gamma value set to 1.

The accuracies obtained for RBF kernel are:

The above results show that the model suffers from overfitting.

#### → Radial Basis function (RBF) – Gamma set to default

On fitting the radial basis model with default gamma.

The accuracies obtained for RBF kernel are:

The above results show that although the model still suffers from overfitting but performs better than when Gamma was set to 1.

| Kernel | Kernel Gamma |              | Validation   | Test         |
|--------|--------------|--------------|--------------|--------------|
|        |              | Accuracy (%) | Accuracy (%) | Accuracy (%) |
| Linear | default      | 99.68        | 91.16        | 91.93        |
| RBF    | 1            | 100.0        | 10.0         | 11.35        |
| RBF    | default      | 92.92        | 91.8         | 92.39        |

#### → Radial Basis function default Gamma setting and varying C values

Now, learn the data by varying the cost values. Select a range of 1 to 100 with an increment of 10.

Below are the different accuracies that obtained using the different C values.

<sup>&#</sup>x27;Training Accuracy' - 99.68%

<sup>&#</sup>x27;Validation Accuracy' - 91.16%

<sup>&#</sup>x27;Test Accuracy' - 91.93%

<sup>&#</sup>x27;Training Accuracy' - 100.0%

<sup>&#</sup>x27;Validation Accuracy' - 10.0%

<sup>&#</sup>x27;Test Accuracy' – 11.35%

<sup>&#</sup>x27;Training Accuracy' - 92.92%

<sup>&#</sup>x27;Validation Accuracy' - 91.8%

<sup>&#</sup>x27;Test Accuracy' - 92.39%

| Cost Values | Train Accuracy (%) | Validation Accuracy (%) | Test Accuracy (%) |
|-------------|--------------------|-------------------------|-------------------|
| 1           | 92.92              | 91.8                    | 92.39             |
| 10          | 96.93              | 94.07                   | 94.3              |
| 20          | 97.96              | 94.28                   | 94.81             |
| 30          | 98.6               | 94.34                   | 94.98             |
| 40          | 99.14              | 94.37                   | 94.95             |
| 50          | 99.35              | 94.44                   | 94.89             |
| 60          | 99.54              | 94.47                   | 94.94             |
| 70          | 99.63              | 94.59                   | 94.86             |
| 80          | 99.73              | 94.56                   | 94.84             |
| 90          | 99.8               | 94.54                   | 94.87             |
| 100         | 99.85              | 94.53                   | 94.89             |

# → <u>Training SVM – Full Data Set with best C-Value</u> – RBF kernel The accuracies obtained using full data set for RBF when **optimum**C=70 are:

'Training Accuracy' - 91.956%

'Validation Accuracy' - 91.8%

'Test Accuracy' - 92.39%

# → Plot to show the variation of accuracies with C values



It can be observed that the value of C has an impact over the accuracies of the model. This is because with the variation of C values the width of the margin varies. With a lower C value, the margin width is bigger as the weighed error is low. Thus, a lower penalty is set on the misclassification error. Whereas upon increasing the C values the margin width decreases as a result of which the misclassification also decreases and a higher accuracy is obtained.

But this might not always be the same as there is also a decrease in accuracy as well after an optimum C value.

# **CONCLUSION**:

As it can be observed from the SVM models, the best results are obtained from the Radial Kernel with a **C value** set to **70**.

Finally, training the model with the **complete data set** - 50000 records below are the **accuracies** obtained:

Validation - 91.8%; Test - 92.39%

To conclude, with high values of gamma the model over fits very badly. Also, for this dataset, radial models outperform the linear model. The variation of C values as explained above also have a considerable effect on the classification of the model. Having too high C-value can cause over-fitting while small C-value can lead to under-fitting.

Logistic regression works in just classifying the data by learning a line which might not work well with a different data set while SVM models try to learn the best line that can classify the data. It learns a margin as well. Using the concept learning there is a good chance that this line and margin will also be able to work with a different data set as well. When the input dimensions are quite high it becomes very complex for the Logistic regression model to learn all the parameters. This is not the case for SVM models.

The difference between training and test error could be because the training error is obtained when the trained model is run back on the training data but while test error is obtained when the trained model is run on the data that has never been exposed to before.