Bounded Rationality and Industrial Organization Chapter 11 2nd part

Kei Ikegami

Graduate School of Economics, The University of Tokyo

May 17, 2018

Index

Proposition 11.3

Effective Marketing Property

Statement

Proposition 11.3

Let σ be a symmetric Nash equilibrium strategy. Then

- 1. Firms earn the max-min payoff $\frac{1}{2} c_{x^*}$
- 2. For every $M \in S(\sigma)$, $|M| = 2 \Rightarrow b(M) = x^*$
- 3. $\beta_{\sigma}(x^*) = 1 2c_{r^*}$

About 1

Firms earn the max-min payoff $\frac{1}{2} - c_{x^*}$

- This payoff coincides with the rational consumer benchmark.
- ► The main reason for this is that "M beats M'" needs not only the sensational temptation but also switching the default.
- ▶ In other words, $\{x^*\}$ is never beaten in this sense.

Proof sketch

- From lemma 11.1, x^* beats no menu in $S(\sigma)$. And it is not beaten by any menu in $S(\sigma)$ because x^* is utility maximizer.
- ▶ So menu $\{x^*\}$ always gives a market share $\frac{1}{2}$. And the cost is c_{x^*} . Then the payoff is $\frac{1}{2} c_{x^*}$
- ▶ Then the expected payoff of this strategy is also $\frac{1}{2} c_{x^*}$.

About 2

For every $M \in S(\sigma)$, $|M| = 2 \Rightarrow b(M) = x^*$

- ► This means that pure attention grabbers are included in a menu only when the menu has x* in equilibrium.
- ▶ If there is such a menu M in $S(\sigma)$, $\{x^*\}$, which is also included in $S(\sigma)$, has an incentive to include the same pure attention grabber of M.
- lacktriangle Then σ is not an equilibrium.

Proof sketch

- Show its contraposition
- The condition for including some pure attention grabber in M results in the profitable deviation from $\{x^*\}$ to $\{x^*, r(M)\}$, where r(M) denotes the pure attention grabber in M.

About 3

$$\beta_{\sigma}(x^*) = 1 - 2c_{r^*}$$

- This means that the probability utility maximizer is offered is entirely determined by the cost of the attention grabber.
- ▶ As the sensations become costly, the less likely the utility maximizer is offered.
- ▶ This is directly derived from the fact $\{x^*\}$ and $\{x^*, r^*\}$ are indifferent. And both of them are included in $S(\sigma)$

Proof sketch

- Show there is no incentive to deviate from $\{x^*\}$ to $\{x^*, r^*\}$.
- ▶ To make it rational we confirm that the pure strategy $\{r^*\}$ gives the better payoff than σ if $\{x^*, r^*\}$ is out of σ .
- At first glance $\{x^*, r^*\}$ has wasteful costly alternative r^* , but it actually works for the higher market share.