Mathematical Methods for Computer Science 1 Fall 2017

Series 8

Sylvain Julmy

1

(a)

In order to show that $\{\to, \neg\}$ is complete, we have to found the equivalent formula of $a \lor b$ and $a \land b$ ($\neg a$ and $a \to b$ are trivial...).

 $a \vee b$

$$(\neg a) \to b = (\neg \neg a) \lor b = a \lor b$$

and the truth table to validate the result :

 $a \wedge b$

$$\neg(a \to \neg b) = \neg(\neg a \lor \neg b)$$
$$= \neg \neg(a \land b)$$
$$= (a \land b)$$

and the truth table to validate the result :

(b)

In order to show that $\{\uparrow\}$ is complete, we have to found the equivalent formula of $a \to b$ and $\neg a$, because we just showed that $\{\neg, \to\}$ is complete.

We know that $a \uparrow b \leftrightarrow \neg (a \land b)$.

 $\neg a$

$$a \uparrow a = \neg(a \land a) = \neg a$$

and the truth table to validate the result:

 $a \rightarrow b$

$$a \to b = \neg a \lor b$$

$$= \neg \neg (\neg a \lor b)$$

$$= \neg (a \land \neg b)$$

$$= \neg (a \land \underbrace{\neg (b \land b)})$$

$$= \underbrace{\neg (a \land (b \uparrow b))}_{a \uparrow (b \uparrow b)}$$

$$= a \uparrow (b \uparrow b)$$

and the truth table to validate the result:

2

Note : we denote \top the formula which represent true and \bot the formula which represent false using the following equivalence :

We can also use the following equivalence:

$$(A \wedge B) \vee A \leftrightarrow A$$

We can also use the following equivalence :

$$(A \wedge B) \vee A \leftrightarrow A$$

and use thr truth table for proving the equivalence:

a b	((a	&	b)	\vee	a)	\leftrightarrow	a
1 1	1	1	1	1	1	1	1
1 0		0	0	1	1	1	1
0 1	0	0	1	0	0	1	0
0 0	0	0	0	0	0	1	0

(a)

$$(p \to q) \land ((q \lor r) \to p) = (\neg p \lor q) \land (\neg (q \lor r) \lor p)$$

$$= (\neg p \lor q) \land ((\neg q \land \neg r) \lor p)$$

$$= (\neg p \lor q) \land (p \lor \neg q) \land (p \lor \neg r)$$

$$= ((p \land (\neg p \lor q)) \lor (\neg q \land (\neg p \lor q))) \land (p \lor \neg r)$$

$$= ((p \land \neg p) \lor (p \land q) \lor (\neg q \land \neg p) \lor ((\neg q \land q)) \land (p \lor \neg r)$$

$$= ((p \land q) \lor (\neg q \land \neg p)) \land (p \lor \neg r)$$

$$= ((p \lor \neg r) \land (\neg q \land \neg p)) \lor ((p \lor \neg r) \land (p \land q))$$

$$= ((p \lor \neg r) \land (p \land q)) \lor ((p \lor q \land \neg r) \land (p \land q)) \lor ((p \land q \land \neg r))$$

$$= ((p \land \neg r \land \neg p) \lor (p \land q) \lor (p \land q \land \neg r))$$

$$= ((p \land \neg r \land \neg p) \lor (p \land q) \lor (p \land q \land \neg r))$$

$$= ((p \land \neg r \land \neg p) \lor (p \land q) \lor (p \land q \land \neg r))$$

$$= ((p \land \neg r \land \neg p) \lor (p \land q) \lor (p \land q \land \neg r))$$

(b)

Truth table of $\phi = (p \to q) \land ((q \lor r) \to p)$:

p q r	(p	\rightarrow	\mathbf{q}) & ((q	\vee	\mathbf{r}	\rightarrow	p)
1 1 1	1	1	1	1	1	1	1	1	1
1 1 0	1	1	1	1	1	1	0	1	1
1 0 1	1	0	0	0	0	1	1	1	1
$1 \ 0 \ 0$	1	0	0	0	0	0	0	1	1
$0 \ 1 \ 1$	0	1	1	0	1	1	1	0	0
$0 \ 1 \ 0$	0	1	1	0	1	1	0	0	0
$0 \ 0 \ 1$	0	1	0	0	0	1	1	0	0
$0 \ 0 \ 0$	0	1	0	1	0	0	0	1	0

We pick the row where $\phi = 1$ and we construct the DNF form :

$$\begin{array}{c} (p \wedge q \wedge r) \vee (\neg p \wedge \neg q \wedge \neg r) \vee (p \wedge q) \\ \\ = \\ (\neg p \wedge \neg q \wedge \neg r) \vee (p \wedge q) \end{array}$$

Because

$$(p \land q \land r) \lor (p \land r) \leftrightarrow (p \land r)$$

3

Using De Morgan's law, $\neg (DNF) = CNF$ and A is already in DNF.

$$A = (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$$

$$\begin{split} \neg A &= \neg ((p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \vee (\neg p \wedge \neg q \wedge \neg r)) \\ &= (\neg (p \wedge q \wedge \neg r) \wedge \neg (p \wedge \neg q \wedge r) \wedge \neg (\neg p \wedge \neg q \wedge \neg r)) \\ &= (\neg p \vee \neg q \vee r) \wedge (\neg p \vee q \vee \neg r) \wedge (p \vee q \vee r) \end{split}$$

(b)

We can turn out the formulation into the following formula :

$(A \leftrightarrow B)$	A is equivalent to B
$\land (A \leftrightarrow (C \lor F))$	${\cal A}$ contains a sub-formula ${\cal F}$
$\wedge (A \leftrightarrow (C \vee G))$	B is the sub-formula A with F replace by B
$\rightarrow (G \leftrightarrow F)$	implies that F is equivalent to G

Using the following truth table, we can see that the formula is not a tautology, because F and G can be different in the formula but A and B still remains equivalent.

ABCFG	$((A \leftrightarrow$	$+$ B $) \land ((A$	$\Lambda \leftrightarrow (C \lor$	$(F) \wedge (B)$	\leftrightarrow (C \vee G	$(F_{1})))) \rightarrow (G_{1} \leftrightarrow F_{2})$
1 1 1 1 1	1 1	1 1 1	. 1 1 1	1 1 1	1 1 1 1	1 1 1 1
1 1 1 1 0	1 1	1 1 1	. 1 1 1	1 1 1	1 1 1 0	0 0 0 1
1 1 1 0 1	1 1	1 1 1	1 1 1	0 1 1	1 1 1 1	0 1 0 0
1 1 1 0 0	1 1	1 1 1	1 1 1	0 1 1	1 1 1 0	1 0 1 0
1 1 0 1 1	1 1	1 1 1	1 0 1	1 1 1	1 0 1 1	1 1 1 1
1 1 0 1 0	1 1	1 0 1	1 0 1	1 0 1	0 0 0 0	1 0 0 1
$1 \ 1 \ 0 \ 0 \ 1$	1 1	1 0 1	0 0 0	0 0 1	1 0 1 1	1 1 0 0
1 1 0 0 0	1 1	1 0 1	0 0 0	0 0 1	0 0 0 0	1 0 1 0
$1 \ 0 \ 1 \ 1 \ 1$	1 0	0 0 1	1 1 1	1 0 0	0 1 1 1	1 1 1 1
$1 \ 0 \ 1 \ 1 \ 0$	1 0	0 0 1	1 1 1	1 0 0	0 1 1 0	1 0 0 1
$1 \ 0 \ 1 \ 0 \ 1$	1 0	0 0 1	1 1 1	0 0 0	0 1 1 1	1 1 0 0
$1 \ 0 \ 1 \ 0 \ 0$	1 0	0 0 1	1 1 1	0 0 0	0 1 1 0	1 0 1 0
$1 \ 0 \ 0 \ 1 \ 1$	1 0	0 0 1	1 0 1	1 0 0	0 0 1 1	1 1 1 1
1 0 0 1 0	1 0	0 0 1	1 0 1	1 1 0	1 0 0 0	1 0 0 1
$1 \ 0 \ 0 \ 0 \ 1$	1 0	0 0 1	0 0 0	0 0 0	0 0 1 1	1 1 0 0
1 0 0 0 0	1 0	0 0 1	0 0 0	0 0 0	1 0 0 0	1 0 1 0
$0 \ 1 \ 1 \ 1 \ 1$	0 0	1 0 (0 1 1	1 0 1	1 1 1 1	1 1 1 1
$0 \ 1 \ 1 \ 1 \ 0$	0 0	1 0 (0 1 1	1 0 1	1 1 1 0	1 0 0 1
$0 \ 1 \ 1 \ 0 \ 1$	0 0	1 0 (0 1 1	0 0 1	1 1 1 1	1 1 0 0
$0 \ 1 \ 1 \ 0 \ 0$	0 0	1 0 (0 1 1	0 0 1	1 1 1 0	1 0 1 0
$0 \ 1 \ 0 \ 1 \ 1$	0 0	1 0 (0 0 1	1 0 1	1 0 1 1	1 1 1 1
$0 \ 1 \ 0 \ 1 \ 0$	0 0	1 0 (0 0 1	1 0 1	0 0 0 0	1 0 0 1
$0 \ 1 \ 0 \ 0 \ 1$	0 0	1 0 (1 0 0	0 1 1	1 0 1 1	1 1 0 0
0 1 0 0 0	0 0	1 0 (1 0 0	0 0 1	0 0 0 0	1 0 1 0
$0 \ 0 \ 1 \ 1 \ 1$	0 1	0 0 (0 1 1	1 0 0	0 1 1 1	1 1 1 1
$0 \ 0 \ 1 \ 1 \ 0$	0 1	0 0 (0 1 1	1 0 0	0 1 1 0	1 0 0 1
$0 \ 0 \ 1 \ 0 \ 1$	0 1	0 0 (0 1 1	0 0 0	0 1 1 1	1 1 0 0
$0 \ 0 \ 1 \ 0 \ 0$	0 1	0 0 (0 1 1	0 0 0	0 1 1 0	1 0 1 0
$0 \ 0 \ 0 \ 1 \ 1$	0 1	0 0 0	0 0 1	1 0 0	0 0 1 1	1 1 1 1
$0 \ 0 \ 0 \ 1 \ 0$	0 1	0 0 0	0 0 1	1 0 0	1 0 0 0	1 0 0 1
$0 \ 0 \ 0 \ 0 \ 1$	0 1	0 0 0	1 0 0	0 0 0	0 0 1 1	1 1 0 0
0 0 0 0 0	0 1	0 1 (1 0 0	0 1 0	1 0 0 0	1 0 1 0

4

(a)

 $(p \to q) \to ((p \to \neg q) \to \neg p)$ is a tautology :

$$\begin{split} (p \to q) &\to ((p \to \neg q) \to \neg p) = (\neg p \lor q) \to ((\neg p \lor \neg q) \to \neg p) \\ &= (\neg p \lor q) \to (\neg (\neg p \lor \neg q) \lor \neg p) \\ &= (\neg p \lor q) \to ((p \land q) \lor \neg p) \\ &= (\neg p \lor q) \to \underbrace{((\neg p \lor p) \land (\neg p \lor q))}_{\top} \\ &= (\neg p \lor q) \to (\neg p \lor q) \\ &= \top \end{split}$$

 $A \to A$ is a tautology:

$$A \to A = \neg A \lor A = \top$$

So $(\neg p \lor q)$ can be substitute by A, then we would have $A \to A$.

(b)

 $\neg(p \to q) \lor (\neg p \lor q)$ is a tautology :

$$\neg(p \to q) \lor (\neg p \lor q) = \neg(\neg p \lor q) \lor (\neg p \lor q)$$
$$= (\neg \neg p \land \neg q) \lor (\neg p \lor q)$$
$$= (p \land \neg q) \lor (\neg p \lor q)$$

Here, we put $A = (p \land \neg q)$, so $\neg A = \neg (p \land \neg q) = (\neg p \lor \neg \neg q) = (\neg p \lor q)$. So we have $A \lor \neg A$ (by substitution) and this is a tautology.

(c)

 $\phi = (p \lor q \lor r) \land (p \lor q \lor \neg s)$ is not a tautology. For example, the following interpretation I does not satisfies the formula :

$$I = \{ p \mapsto \bot, q \mapsto \bot, r \mapsto \bot, s \mapsto \top \}$$

$$\phi^I = \underbrace{(\bot \lor \bot \lor \bot)}_{\bot} \land \underbrace{(\bot \lor \bot \lor \neg \top)}_{\bot} = \bot \land \bot = \bot$$

5

(a)

$$(\neg p \land \neg q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land r)$$

We can transform $(\neg p \land q \land r) \lor (p \land q \land r)$ into $(q \land r)$, because if p is true, we don't look at $(\neg p \land q \land r)$ because it would be false anyway and if p is false, we don't look at $(p \land q \land r)$ because it would be false anyway.

$$(\neg p \land \neg q \land \neg r) \lor (q \land r)$$

We can't simplify this anymore.

(b)

$$(\neg p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee r) \wedge (p \vee q \vee r)$$

We can use the same principle as before, if p is true, $(p \lor q \lor r)$ would be true and $(\neg p \lor q \lor r)$ would be transform to $(q \lor r)$, else if p is false, $(\neg p \lor q \lor r)$ would be true and $(p \lor q \lor r)$ would be equal to $(q \lor r)$.

$$(\neg p \lor \neg q \lor \neg r) \land (p \lor q)$$

(c)

We can use the following function ϕ , we denote the arguments of ϕ by $\lambda = \{\underbrace{a,b,\ldots}_{|\lambda|}\}$:

$$\phi(\lambda) = \bigwedge_{\alpha \in \lambda} \alpha = a \wedge b \wedge c \wedge \cdots$$

The DNF form of such a formula can't be less than $|\lambda|$, because each variable needs to appear in the DNF form. If one of the variable would be false, the whole formula is going to be false.