

Module: Business Intelligence

Filière & Semestre : CI-ISBD/S8

Mai 2025

Compte Rendu:

TP Entrepôt de Données - Production Industrielle au Maroc (2005-2013)

Réalisé complétement avec SSIS

Encadré par :

Prof. Hamid Hrimech

Réalisé par :

GARHOUM Hafid

Table des matières

1. Introduction	3
2. Modélisation de l'entrepôt de données	3
3. Phase d'intégration ETL avec SSIS	4
4. Chargement de l'entrepôt final via SSIS	7
5. Visualisation et Prédiction avec Power BI	8
6. Conclusion	q

1. Introduction

Ce projet a pour objectif la construction d'un entrepôt de données (Data Warehouse) sur la production industrielle au Maroc entre 2005 et 2013. L'analyse se base sur deux sources principales : les statistiques industrielles et les données pluviométriques.

Les indicateurs étudiés sont :

- Le taux de croissance en %
- Le taux de valeur ajoutée
- Le taux d'investissement
- Le taux d'exportation

Les branches industrielles concernées :

- Agro-alimentation
- Textile et cuir
- Chimie et parachimie
- Mécanique et métallurgique
- Électricité et électronique

2. Modélisation de l'entrepôt de données

2.1. Table de faits : fact_production

Contient les mesures quantitatives liées aux indicateurs.

```
CREATE TABLE fact_production (
    id_fact INT IDENTITY(1,1) PRIMARY KEY,
    id_temps INT,
    id_branche INT,
    id_indicateur INT,
    valeur FLOAT,
    FOREIGN KEY (id_temps) REFERENCES dim_temps(id_temps),
    FOREIGN KEY (id_branche) REFERENCES dim_branche(id_branche),
    FOREIGN KEY (id_indicateur) REFERENCES dim_indicateur(id_indicateur));
```

2.2. Tables de dimensions

a. dim_temps : contient les années et la situation pluviométrique

```
CREATE TABLE dim_temps (
id_temps INT PRIMARY KEY,
annee INT UNIQUE,
pluviometrie_annuelle FLOAT,
situation NVARCHAR(50)
);
```

b. dim_branche : contient les branches industrielles

```
CREATE TABLE dim_branche (
id_branche INT IDENTITY(1,1) PRIMARY KEY,
nom_branche NVARCHAR(100) UNIQUE
);
```

c. dim_indicateur : contient les types d'indicateurs

```
CREATE TABLE dim_indicateur (
id_indicateur INT IDENTITY(1,1) PRIMARY KEY,
nom_indicateur NVARCHAR(100) UNIQUE
);
```

3. Phase d'intégration ETL avec SSIS

3.1. Source de données

• Fichier Excel: statistiques industrielles 2006-2012

• Fichier Excel: pr_1991_2015

3.2. Flux de données SSIS : Préparation des données

a. Data Flow Task : Staging_industrielles

- Excel Source : sélection de plages comme SELECT * FROM [Feuil1\$A4:H8] (par bloc)
- 2. Unpivot : transformation des années en lignes
- 3. Derived Column: ajout de colonne "Indicateur" à valeur dans l'ensemble {'Structure', 'TauxDeValeur', 'TauxInvestissement', 'TauxExportation'}
- 4. Union All: union des 4 indicateurs (Structure, ValeurAjoutee, Investissement, Exportation)
- 5. OLE DB Destination: insertion dans staging_indust

Table staging:

```
CREATE TABLE staging_indust (
annee INT,
branche NVARCHAR(100),
indicateur NVARCHAR(50),
valeur FLOAT
);
```

	Branche	Annee	Valeur	Indicateur
67	Électricité et éle	2009	24,7660626097007	TauxDeValeur
68	Électricité et éle	2010	26,9184268772797	TauxDeValeur
69	Électricité et éle	2011	23,981799350382	TauxDeValeur
70	Électricité et éle	2012	24,2973376841344	TauxDeValeur
71	Agro-alimentation	2006	28,1643752890493	Structure
72	Agro-alimentation	2007	28,3699666526222	Structure
73	Agro-alimentation	2008	26,9439830443455	Structure
74	Agro-alimentation	2009	31,3278719917532	Structure
75	Agro-alimentation	2010	28,556783237201	Structure
76	Agro-alimentation	2011	26,2229843357307	Structure
77	Agro-alimentation	2012	27,1388783161015	Structure
				a

b. Data Flow Task : Staging_pluviometrie

- Excel File
- Derived Column pour nettoyer ou renommer les colonnes si besoin
- OLE DB Destination Vers staging_pluviometrie

Table staging:

```
CREATE TABLE staging_pluviometrie ( annee INT, pluviometrie_annuelle FLOAT, situation NVARCHAR(50) );
```

	Annee	PluviometrieAnnuelle	Situation
1	2006	347.2393	Normale
2	2007	226.7025	Normale
3	2008	347.7388	Normale
4	2009	360.4693	Pluvieuse
5	2010	432.4490	Pluvieuse
6	2011	362.9758	Pluvieuse
7	2012	332.6006	Normale

4. Chargement de l'entrepôt final via SSIS

Etapes dans SSIS:

1. Créer un Execute SQL Task pour vider les tables si besoin :

DELETE FROM fact_production; DELETE FROM dim_temps; DELETE FROM dim_branche; DELETE FROM dim_indicateur;

(Si contraintes FK : supprimer les FK, puis TRUNCATE, puis recréer FK)

2. Data Flow Task: AlimentDims

Utiliser des Lookup (Recherche) pour alimenter les dimensions dim_branche, dim_indicateur, dim_temps

3. Data Flow Task: AlimentTableDesFaits

Utiliser des composants
Lookup pour faire correspondre
les identifiants (ID) aux
dimensions existantes dans la
table de faits, et intégrer les
données de pluviométrie dans
la dimension
dim_pluviometrie, en
établissant une relation avec la
dimension temporelle via
id_temps provenant de
dim_temps.

4. Destination finale: fact_production

	id_fact	id_temps	id_branche	id_indicateur	valeur
1	1	36	21	19	15,7415775677227
2	2	37	21	19	15,4075411917842
3	3	38	21	19	15,0048966894142
4	4	39	21	19	14,0975229361472
5	5	40	21	19	12,6417268268278
6	6	41	21	19	12,0840850243434
7	7	42	21	19	12,6462043366197
8	8	36	25	19	65,7989948959283
9	9	37	25	19	64,4204815803166
10	10	38	25	19	62,9746024627937
11	11	39	25	19	60,7950462216327

Remarque

Les données pluviométriques, quand c'est nécessaire, peuvent être reliées à la table de faits via une jointure avec id temps dans dim temps.

5. Visualisation et Prédiction avec Power BI

5.1. Schéma des données

- Courbes d'évolution par année
- Comparaison entre branches
- Impact de la pluviométrie sur l'investissement ou la production
- Prédiction via Power BI appliquées aux données de pluviométrie

6. Conclusion

Ce projet a permis de maîtriser les différentes étapes de création d'un entrepôt de données, depuis l'intégration jusqu'à la visualisation. SSIS a joué un rôle crucial dans la transformation et l'automatisation des flux de données. Power BI a permis d'interpréter les résultats de manière visuelle et intuitive.