

Diplomski studij

Informacijska i komunikacijska tehnologija Telekomunikacije i informatika

Računarstvo Računarska znanost Programsko inženjerstvo i informacijski sustavi

Raspodijeljeni sustavi

Pitanja za provjeru znanja 3. blok predavanja

Ak.g. 2008./2009.

Napomena: Preporučena literatura su bilješke s predavanja.

- **Zadatak 1** Disk za trajno spremanje podataka ispunjava 50 zahtjeva u sekundi. Srednje vrijeme obrade zahtjeva operacija pisanja i čitanja je 10 ms. Disk ima prosječno 1 zahtjev u repu. Koliko je prosječno vrijeme čekanja na obradu zahtjeva?
- **Zadatak 2** Web aplikacija uključuje podršku korisnicima putem chat usluge. Kupci sami odabiru jedan od 10 repova čekanja. Mjerenja pokazuju da zahtjevi prosječno dolaze 3 upita u minuti te da svaki kupac prosječno čeka 3 minute u repu i prosječno provodi 2 minute u konverzaciji. Koliko je srednje vrijeme zadržavanja kupaca za zadani sustav?
- **Zadatak 3** Prikažite elemente osnovnog modela repa čekanja. Koje su osnovne veličine, a koje izvedene u modelu repa čekanja ? Kako je definirano stacionarno stanje sustava?
- **Zadatak 4** Objasnite razliku između ispada sustava i neispravnosti u sustavu.
- **Zadatak 5** Pretpostavite da grupa procesa treba postići sporazum. U slučaju da su dva procesa grupe u stanju bizantskog ispada, koji je minimalni ukupni broj procesa u grupi za postizanje sporazuma?
- Zadatak 6

 U grupi od 4 procesa s identifikatorima a, b, c i d proces a je neispravan (pretpostavite bizantski ispad). Grupa procesa želi postići sporazum o identifikatorima ostalih procesa grupe. U koracima 1 i 3 procesi međusobno razmjenjuju podatke, a u koracima 2 i 4 prikupljaju i analiziraju primljene podatke. Nacrtajte na slici koje podatke procesi razmjenjuju u koracima 1 i 3 (nacrtajte strelice i razmijenjene podatke uz svaku strelicu), a za korake 2 i 4 navedite podatke (napišite ih u pripremljene kućice) koje pojedini proces ima na raspolaganju radi donošenja odluke o sporazumu.

- Zadatak 7 Pretpostavite da se u grupi procesa s ispadima poštuje načelo virtualne sinkronosti. Proces p šalje poruku m grupi procesa G. Tijekom isporuke poruke m dogodi se ispad procesa p. Što se događa isporukom poruke m?
- Zadatak 8 Pretpostavite da procesi P1 i P2 šalju poruke koje se isporučuju procesima P3 i P4 prema tablici. Navedite koju vrstu pouzdane komunikacije podržava grupa procesa P1, P2, P3 i P4?

Proces P1	Proces P2	Proces P3	Proces P4
šalje m11	šalje m21	prima m11	prima m11
šalje m12	šalje m22	prima m21	prima m12
šalje m13		prima m22	prima m21
		prima m12	prima m13
		prima m13	prima m22

- Zadatak 9 Navedite obilježja pouzdane komunikacije grupe procesa pod nazivom atomic multicast.
- Objasnite razliku protokola three-phase commit u odnosu na two-phase commit. Zadatak 10
- U spletu računala se koriste 3 komunikacijska sloja: primjenski sloj, sloj prividne Zadatak 11 mreže i transportni sloj. Ukratko opišite primjenski sloj.
- Navedite i opišite osnovne elemente za uspostavu sigurnosti u spletovima računala. Zadatak 12
- Na primjeru opišite značajke raspoređivanja zasnovanog na korištenju prostorne Zadatak 13 lokalnosti.
- Zadatak 14 Prikažite i opišite elemente modela grozda računala.
- Prikažite primjer ostvarivanja razmjernog rasta sustava primjenom metode Zadatak 15 prosljeđivanje zahtjeva na strani korisnika.