IC MEASUREMENT – ASSIGNMENT 2 LOW-PASS FILTER CHARACTERIZATION USING AD3

- 1. Frequency Response Analysis (WaveForms GUI)
- (i) Use the Wavegen tool in WaveForms to generate sine waves at multiple frequencies. Suggested test frequencies: 100 Hz, 500 Hz, 1 kHz, 2 kHz, 5 kHz, and 10 kHz.
- → (a) 100 Hz

Wavegen and then measuring the frequency in Scope:

(b) 500 Hz

Wavegen and then measuring the frequency using Scope:

We get the frequency as $500\ Hz$

(c) 1 kHz

Wavegen and then measuring the frequency using Scope:

We get the frequency as 1 kHz

(d) 2 kHz

Wavegen and then measuring the frequency using Scope:

We get the frequency as 2 kHz

(e) 5 kHz

Wavegen and then measuring the frequency using Scope:

We get the frequency as 5 kHz

(f) 10 kHz

Wavegen and then measuring the frequency using Scope:

We get the frequency as 10 kHz

- 2. Using the Scope tool, measure the output voltage of the fixed RC low-pass filter for each frequency.
- → Assumption:

Amplitude = 1 V, i.e., V_{pp} = 2 x Amplitude = 2 V_{pp} Let the cut-off frequency of the LPF be 1 kHz. Now, the frequency of the sine source be:

(a) 100 Hz

(b) 500 Hz

(c) 1 kHz

(d) 2 kHz

(e) 5 kHz

(f) 10 kHz

Frequency	Vin (V)	Vout	Gain(db) = 20log(Vin/Vout)
100 Hz	1.004	1.004 V	0
500 Hz	1.004	978.3mV	-0.2252
1 kHz	1.004	709.7mV	-3.0131
2 kHz	1.004	243mV	-12.3225
5 kHz	1.004	44.76mV	-27.0168
10 kHz	1.004	19mV	-34.4596

Observations for Each Case:

1.100 Hz

- Vin = 1.004 V, Vout = 1.004 V, Gain = 0 dB
- At very low frequencies (well below the filter's cutoff), the capacitor acts like an open circuit. Almost the entire input passes to the output, so the filter behaves like a wire (unity gain).
- **Observation:** Signal passes through unaffected.

2.500 Hz

- Vin = 1.004 V, Vout = 998.3 mV, Gain ≈ -0.225 dB
- Still below cutoff, so attenuation is negligible. The output is slightly less than input due to the capacitor beginning to react.
- **Observation:** Minimal attenuation, response almost flat.

3. 1 kHz

- Vin = 1.004 V, Vout = 799.7 mV, Gain ≈ -3.01 dB
- At this frequency, attenuation reaches approximately **-3 dB**, which is the standard definition of the **cutoff frequency (fc)**.
- At cutoff, the output power is half of the input, and the capacitor has equal reactance to the resistor.
- **Observation:** This marks the -3 dB point, identifying the cutoff of the RC filter.

4.2 kHz

- Vin = 1.004 V, Vout = 243 mV, Gain ≈ -12.32 dB
- Now frequency is **above cutoff**. Capacitor reactance has decreased, shunting more of the signal to ground. Output voltage drops significantly.
- **Observation:** Strong attenuation begins; signal is much weaker.

5. 5 kHz

- Vin = 1.004 V, Vout = 44.76 mV, Gain ≈ -27.02 dB
- Much higher than cutoff, the capacitor strongly conducts, shorting most of the AC signal to ground.
- **Observation:** Output is very small compared to input, steep attenuation is seen.

6. 10 kHz

- Vin = 1.004 V, Vout = 19 mV, Gain ≈ -34.46 dB
- Very high compared to cutoff. The filter strongly attenuates, output signal nearly gone.
- **Observation:** Only a small fraction of the input passes through consistent with the roll-off trend.

General Behaviour of the RC Low-Pass Filter:

- Below cutoff (100–500 Hz): output \approx input (flat response).
- At cutoff (\approx 1 kHz): output drops to **70.7% amplitude (-3 dB)**.
- Above cutoff (2–10 kHz): output reduces steeply, at approximately
 -20 dB per decade slope (the theoretical slope for a 1st-order low-pass filter).
- This matches your plotted response curve flat at low frequency, dropping after cutoff.