

Basic Electrical Technology

4. Three Phase AC Circuits

L21 - Generation & Representation of three phase supply

Topics Covered

- **→**Generation of Three Phase Supply
- **→**Representation of Three Phase Excitation
- **→**Relationship between Phase and Line Voltages
- →3 Phase Supply & Loads

Generation of Three Phase

Courtesy: www.ece.umn.edu

3 Phase Excitation (Phase Voltages)

Phase Voltages,

$$\hat{V}_{RN} = V_m \, Sin(\omega t)$$

$$\hat{V}_{YN} = V_m Sin(\omega t - 120^\circ)$$

$$\hat{V}_{BN} = V_m Sin(\omega t - 240^\circ)$$

Three Phase Source

Summing up the phase voltages,

$$\hat{V}_{RN} + \hat{V}_{YN} + \hat{V}_{RN} = 0$$

3 Phase Excitation (Phase Voltages)..

3 Phase Excitation (Line Voltages)

Three Phase Source

Line Voltages,

$$\hat{V}_{RY} = \hat{V}_{RN} - \hat{V}_{YN}$$

$$= V_m \sin(\omega t) - V_m \sin(\omega t - 120^\circ)$$

$$= \sqrt{3} \times V_m \sin(\omega t + 30)$$

3 Phase Excitation (Line Voltages)..

Similarly,

$$\begin{split} \hat{V}_{YB} &= \hat{V}_{YN} - \hat{V}_{BN} \\ &= V_m \, Sin(\omega t - 120) - V_m \, Sin(\omega t - 240^\circ) \\ &= \sqrt{3} \times V_m \, Sin(\omega t - 90) \\ &= V_{RY} \, Sin(\omega t - 120) \end{split}$$

$$\hat{V}_{BR} = \hat{V}_{BN} - \hat{V}_{RN}$$
$$= V_{RY} Sin(\omega t + 120)$$

Summing up the Line voltages,

$$\hat{V}_{RY} + \hat{V}_{YB} + \hat{V}_{BR} = 0$$

In a Three Phase balanced Supply, the summation of Phase voltages and summation of Line Voltages is zero.

Relation b/w Phase & Line Voltages

Phase Voltages

$$\hat{V}_{RN} = V_m Sin(\omega t)$$

$$\hat{V}_{YN} = V_m Sin(\omega t - 120^\circ)$$

$$\hat{V}_{BN} = V_m Sin(\omega t - 240^\circ)$$

Line Voltages

$$\hat{V}_{RY} = \sqrt{3} \times V_m \, Sin(\omega t + 30)$$

$$\hat{V}_{YB} = \sqrt{3} \times V_m \, Sin(\omega t - 90)$$

$$\hat{V}_{BR} = \sqrt{3} \times V_m \, Sin(\omega t + 150)$$

$$|V_{Line}| = \sqrt{3} |V_{Phase}|$$

Phase Sequence

I. RYB

2. RBY

Phase Sequence is the order in which three phases attain their peak or maximum values

Exercise-I

Given the phase voltage V_{RN} of a 3 phase balanced RYB system as 240V, express the phase and line voltages mathematically. Also sketch the phasor diagram.

Solution:

Phase Voltages:

$$\hat{V}_{RN} = 240 \times \sqrt{2} \times Sin(\omega t)$$

$$\hat{V}_{YN} = 240 \times \sqrt{2} \times Sin(\omega t - 120^{\circ})$$

$$\hat{V}_{BN} = 240 \times \sqrt{2} \times Sin(\omega t - 240^{\circ})$$

Line Voltages:

$$\hat{V}_{RY} = \sqrt{3} \times 240 \times \sqrt{2} \times Sin(\omega t + 30^{\circ})$$

$$\hat{V}_{YB} = \sqrt{3} \times 240 \times \sqrt{2} \times Sin(\omega t - 90^{\circ})$$

$$\hat{V}_{BR} = \sqrt{3} \times 240 \times \sqrt{2} \times Sin(\omega t + 150^{\circ})$$

3 Phase 3 Wire & 4 Wire Supply

3 Phase 3 Wire Supply

3 Phase 4 Wire Supply

3 Phase Load

- Star Connected Load
- Delta Connected Load

Star Connected Load

Phase Voltages:

$$V_{RO}, V_{YO}, V_{BO}$$

Line Voltages:

$$\hat{V}_{RY} = \hat{V}_{R'O} - \hat{V}_{Y'O}$$

$$\hat{V}_{YB} = \hat{V}_{Y'O} - \hat{V}_{B'O}$$

$$\hat{V}_{BR} = \hat{V}_{B'O} - \hat{V}_{R'O}$$

Line Currents = Phase Currents

For Balanced load,

Line Voltage = $\sqrt{3}$ X Phase Voltage

Delta Connected Load

Phase Currents:

 $I_{RY'}, I_{YB'}, I_{BR'}$

Line Currents:

$$\hat{I}_R = \hat{I}_{R'Y'} - \hat{I}_{B'R'}$$

$$\hat{I}_Y = \hat{I}_{Y'B'} - \hat{I}_{R'Y'}$$

$$\hat{I}_B = \hat{I}_{B'R'} - \hat{I}_{Y'B'}$$

Phase Voltages = Line Voltages

For Balanced load,

Line Current = $\sqrt{3}$ X Phase Current

3 Phase 4 Wire System

3 Phase 3 wire System

Delta Connected Load

Summary

In a three phase balanced supply,

- ✓ Summation of phase voltages = zero
- ✓ Summation of Line voltages = zero
- ✓ Line voltage is $\sqrt{3}$ x Phase Voltage
- ✓ In an RYB sequence, V_{RY} leads V_{RN} by 30 °
- ✓ Power transmission is generally through 3 phase 3 wire network and distribution is through 3 phase 4 wire network.
- ✓ For Balanced Star connected load, the line voltage = $\sqrt{3}$ x phase voltage.
- ✓ For Balanced Delta connected load, the line current = $\sqrt{3}$ x phase current