Introduction to statistical learning: supervised and unsupervised learning

prof. Janez Povh, Ph.D.

University in Ljubljana, Faculty of mechanical engineering

21st February 2017

Contents

Supervised and unsupervised learning

What is SL?

- Statistical learning (SL) is about (deeper) understanding of the data!
- SL tries to answer:

Question: SL

What are the hidden relations between the data instances and/or the data variables?

Example: regression

Example: SL

- dataset of songs;
- song's complexity: **UNIGRAM** and **BIGRAM** entropy.

Example: regression

Question: SL

What is the relation between BIGRAM and UNIGRAM?

Example: classification

Example: SL

We have a dataset of songs. For each song we know:

- song's complexity: UNIGRAM and BIGRAM.
- song's popularity: popular and non-popular.

Example: classification

Question: SL

Can we **predict** popularity based on BI-GRAM and UNI-GRAM entropy?

Supervised learning - **definition**

Definition: Supervised learning

- We consider variables X_1, X_2, \dots, X_p (predictors) and Y (response);
- We measured X_1, X_2, \dots, X_p and Y on given (training) set;
- We look for function f such that

$$\mathbf{Y}=\mathbf{f}(\mathbf{X}_1,\ \mathbf{X}_2,\cdots,\mathbf{X}_p).$$

Examples: classification, linear regression.

Example: **clustering**

Example

- Dataset of Slovenian scientists that published at least 1 paper in 1970-2015;
- Their collaboration in 1970, 1980, 1990 and 2010:

Example: clustering

Question

Can we explain the groups (communities) from the figure?

Example: dimension reduction

Example

- Dataset of cancer patients;
- p variables X_1, X_2, \dots, X_p (features): sickness history, current status etc.
- How to best visualize these data in 2-dimensions?

Example: dimension reduction

Example

- Dataset of cancer patients;
- p variables X_1, X_2, \dots, X_p (features): sickness history, current status etc.
- How to best visualize these data in 2-dimensions?

Example: dimension reduction

Example

- Dataset of cancer patients;
- p variables X_1, X_2, \dots, X_p (features): sickness history, current status etc.
- How to best visualize these data in 2-dimensions?

Unsupervised learning - **definition**

Definition: Unsupervised learning

- We consider variables X_1, X_2, \dots, X_p ;
- We measured X_1, X_2, \dots, X_p on given set;
- We look for
 - hidden groups of data instances (clusters) (⇒
 CLUSTERING) OR
 - few new variables enabling better visualization: (⇒ PRINCIPAL COMPONENT ANALYSIS) OR
 - few new variables enabling better interpretation: (=> FACTOR ANALYSIS).

Supervised vs. unsupervised learning - summary

	SUPERVISED LEARNING	UNSUPERVISED LEARNING
AVAILABLE DATA	<i>X</i> ₁ , <i>X</i> ₁ ,, <i>X</i> _p , <i>Y</i>	X ₁ , X ₁ ,, X _p
GROUND TRUTH	 We know the answer on available data Results can be evaluated Results can be compared 	 Several solutions possible No universal measure to compare solutions Subjectivity