ECE 30 Day 16 Notes

Elijah Hantman

Agenda

- Sinusoidal Traveling Waves Complete
- Magnitism Introduction
- Magnetic Force

Sinusoidal Traveling Waves

By definition:

$$v = \frac{\lambda}{T}$$

therefore:

$$y(x,t) = Asin(2\pi(\frac{x}{\lambda} - \frac{t}{T}))$$

The Wave number $k \triangleq \frac{2\pi}{\lambda}$:

We know $\omega = \frac{2\pi}{T}$:

$$y(x,t) = Asin(kx - \omega t)$$

In general:

$$y(x,t) = Asin(kx - \omega t + \phi)$$

Magnetism

There exists a magnetic field, written with \vec{B} which is measured in Teslas (T).

The direction of \vec{B} is the direction of a compass needle held at that point.

Magnetic fields always flow from North poles to South poles. Similar to Electric fields which always flow from Positive to Negative.

We can define \vec{B} at any point in space by the magnetic force exerted on a charged particle moving ad \vec{v} Magnetic force is written $\vec{F_B}$

Magnetic Forces

We can empirically determine:

- 1. $|\vec{F_B}| \propto q_1 |\vec{v}|$
- 2. If \vec{v} is parallel to \vec{B} then $\vec{F_B}=0$
- 3. The direction of $\vec{F_B}$ is perpendicular to both \vec{v} and \vec{B}
- 4. $\vec{F_B}$ on a positive charge is opposite $\vec{F_B}$ on a negative charge.
- 5. $|\vec{F_B}| \propto |\vec{v} \times \vec{B}|$

These properties imply that:

$$\vec{F_B} = k(\vec{v} \times \vec{B})$$

Magnetic fields use the right hand rule. We curl our right hand from \vec{v} to \vec{B} , and our thumb points in the direction of $\vec{F_B}$. The standard cross product uses this rule. This only applies if q is positive.

Therefore:

$$\vec{F_B} = q(\vec{v} \times \vec{B})$$

This is one of the cases which motivated the creation of the cross product.

We also get the identity:

$$|\vec{F_B}| = q|\vec{v}||\vec{B}|sin(\theta)$$

This comes from the definition of the cross product.

 $ec{B}$ on a current carrying conductor can has the following properties according to experiments

1.
$$d\vec{B} \propto \vec{r}, d\vec{s}$$