Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 705 354 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:11.06.1997 Bulletin 1997/24
- (21) Application number: 94910199.2
- (22) Date of filing: 25.02.1994

- (51) Int Cl.6: D04H 1/64
- (86) International application number: PCT/US94/02178
- (87) International publication number: WO 94/28223 (08.12.1994 Gazette 1994/27)
- (54) NONWOVEN ARTICLES AND METHODS OF PRODUCING SAME
 NICHTGEWEBTE MATERIALIEN UND METHODE ZUR HERSTELLUNG DERSELBEN
 ARTICLES NON-TISSES ET LEURS PROCEDES DE PRODUCTION
- (84) Designated Contracting States: **DE ES FR GB IT**
- (30) Priority: 02.06.1993 US 70270
- (43) Date of publication of application: 10.04.1996 Bulletin 1996/15
- (73) Proprietor: MINNESOTA MINING AND MANUFACTURING COMPANY
 St. Paul, Minnesota 55133-3427 (US)
- (72) Inventors:
 - TRUONG, Jack, G.
 Saint Paul, MN 55133-3427 (US)

- STUDINER, Willa, M.
 Saint Paul, MN 55133-3427 (US)
- WRIGHT, Bradford, B.
 Saint Paul, MN 55133-3427 (US)
- ROCK, Michael, M., Jr.
 Saint Paul, MN 55133-3427 (US)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)
- (56) References cited: US-A- 4 341 213 US-A- 4 689 264

US-A- 4 605 589

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

25

35

50

55

Synthetic wiping articles comprised of a nonwoven web made from polyvinyl alcohol (PVA) fibers and subsequently coated with covalently crosslinked PVA binder resins are known and have been sold as commercial products for many years. Chemically crosslinked PVAs provide distinct advantages in their usage in synthetic wipes. They increase and improve the elements of a dry wipe, non-linting of the wipe surface, mechanical strength, hydrophilic properties, and may also be cured in the presence of pigments to generate a colored wiping product. While their use has enjoyed considerable success, the currently known PVA binders used in synthetic wipes are chemically crosslinked in immersion baths containing potentially toxic materials, such as formaldehyde, various dialdehydes, methylolamines, and diisocyanates.

Glass and other fibers are sometimes sized (i.e., coated) with PVA coatings insolubilized with polyacrylic acid, or crosslinked with metal complexes, such as aluminum, titanium, silicon, or zirconium chelates, and the like.

U.S. Pat. No. 3,253,715 describes boil proof nonwoven filter media comprising a nonwoven fiber substrate and a binder comprising polyvinyl alcohol and polyacrylic acid. Although cellulosic fibers suitable for filters are described, there is no mention of polyvinyl alcohol fibers having utility. The polyvinyl alcohol fibers used in the present invention are prone to severe shrinkage under the pH and/or temperature conditions described in the '715 patent. In addition, the inventors herein have found that ratios of polyacrylic acid to polyvinyl alcohol in binders described in the '715 patent result in strong, but extremely rubbery, absorbent articles with poor "hand" and dry-wipe properties.

Natural chamois is a highly absorbent article derived from a goat-like antelope, and is commonly used to dry automobiles after washing. The absorbent properties of natural chamois have been emulated in several "synthetic chamois." Synthetic chamois commercially available may be formed from PVA fibers and a PVA binder crosslinked by formaldehyde, which undesirable for ecological reasons. Other synthetic chamois are known to be made from nonwoven fibers and an originally hydrophobic acrylic latex binder which has functional groups to make the binder, and thus the article, hydrophilic. These latter are inexpensive, but have very high drag property.

US-A-4,341,213 cited in the ISR teaches the use of silane or organo titanates as coupling agents to react with aluminum oxide filler materials and thereby solubilized aluminum oxide within certain latex emulsions. This reference discloses a surface reaction of aluminum oxide filler particles with a silane (or a titanate) to modify the surface properties of the oxide from hydrophilic to one which is compatible with a latex polymer.

US-A-4,258 849 describes the use of boric acid as a crosslinking agent for polyvinyl alcohol to increase the wet strength of wet packaged tissues or towelettes. The resulting crosslinked PVA binder is a gel which is coated over a nonwoven fabric web.

US-A-4,551,377 describes "meat pads" made of an absorbent nonwoven with a binder which may be a polyvinyl acetate or an acrylic. This reference describes a method for the manufacture of these pads by entangling the fibers of the web prior to coating with a binder.

US-A-4,350,788 describes acetoacetylated polyvinyl alcohol as an emulsifier during the emulsion polymerization process.

It would be desirous to develop a nonwoven article suitable for use in absorbing hydrophilic materials employing hydrophilic binders and fibers, without the use of formaldehyde. Such an article would allow the articles to exhibit high durability, good hand properties, low drag, and good dry-wiping properties (picks up water with no streaking) while maintaining absorption and "wet out" properties comparable to known articles. Such articles could be produced using ingredients and methods which are not as harmful to manufacturing personnel, users or the environment as are currently used ingredients. Finally, it would be advantageous if such binders could be cured in the presence of pigments to generate colored wiping products.

In accordance with the present invention, absorbent nonwoven articles are presented which are produced using binder crosslinking agents which are less troublesome to handle, and which afford the inventive articles with as good or better absorbency and physical properties than known articles. In addition, certain preferred embodiments of the inventive articles may be made without the use of any chemical crosslinkers.

As used herein the term "absorbent" means the articles of the invention are hydrophilic (and therefore absorbent of aqueous materials).

Thus, a first aspect of the invention is an absorbent nonwoven article characterized by:

- (a) a nonwoven web comprised of organic fibers, the organic fibers comprised of polymers having a plurality of pendant fiber hydroxyl groups; and
- (b) a binder comprising an at least partially crosslinked and at least partially hydrolyzed polymeric resin having a plurality of pendant resin hydroxyl groups, the resin crosslinked by a crosslinking agent, the crosslinking agent selected from the group consisting of organic titanates and amorphous metal oxides, the polymeric resin derived from monomers selected from the group consisting of monomers within the general formula

wherein:

10

15

20

25

35

40

45

50

X is selected from the group consisting of Si(OR⁴OR⁵OR⁶) and O(CO)R⁷; and

R¹-R⁷ inclusive are independently selected from the group consisting of hydrogen and organic radicals having from 1 to about 10 carbon atoms, inclusive, and combinations thereof.

Preferably, the binder is bonded to at least a portion of the organic fibers through bonds between the pendant fiber hydroxyl groups, a bonding agent, and the pendant resin hydroxyl groups, wherein the crosslinking agent and bonding agent are independently selected from the group consisting of organic titanates and amorphous metal oxides. Also preferred articles in accordance with this aspect of the invention are those wherein the crosslinking agent and bonding agent are the same compounds, and wherein R⁴ - R⁷ inclusive are methyl (-CH₃).

Two particularly preferred articles within this aspect of the invention are those in which the organic titanate crosslinking and/or bonding agent is dihydroxybis(ammonium lactato)titanium or a titanium complex with an alpha-hydroxy acid (e.g., lactic acid) and an alditol (e.g., D-glucitol).

As used herein the terms "bond" and "bonding" are meant to include hydrogen bonds, hydrophobic interactions, hydrophilic interactions, ionic bonds, and/or covalent bonds. The term "crosslinking" means chemical (covalent or ionic) crosslinking.

Especially preferred binders useful in this and other aspects of the invention are aqueous compositions comprising copolymers of vinyl trialkyloxysilane and vinyl monomers such as vinyl/acetate, at least partially hydrolyzed with alkali, and at least partially crosslinked with inorganic ions and chelating organic titanates. The inorganic ions (e.g., aluminum, zirconium) react or otherwise coordinate with silanol groups, while the titanates react with secondary hydroxyl groups on the resin. This unique dual curing approach, with possibly different crosslinking chain lengths, allows intermolecular bonding between the PVA polymers of the binder and, theoretically, between the fiber hydroxyl groups and PVA polymers of the binder.

A second aspect of the invention is drawn toward nonwoven absorbent articles similar to those of the first aspect of the invention, wherein the crosslinking agent is selected from the group consisting of dialdehydes, titanates, and amorphous metal oxides.

A third aspect of the invention is an absorbent nonwoven article characterized by:

- (a) a nonwoven web comprised of a plurality of organic fibers comprising polymers having a plurality of pendant hydroxyl groups; and
- (b) a binder coating at least a portion of the fibers, the binder comprising polyvinyl alcohol insolubilized with an effective amount of a polymeric polycarboxylic acid (preferably polyacrylic acid).

Preferred within this aspect of the invention are those articles further characterized by all of the polymers making up the fibers being at least partially hydrolyzed polymerized monomers selected from the group consisting of monomers within the general formula

$$\begin{array}{c}
R^2 \\
| \\
R^1-C=C-R^3 \\
| \\
X
\end{array}$$

with the provisos mentioned above. The nonwoven web may further include a minor portion of fibers selected from the group consisting of cotton, viscose rayon, cuprammonium rayon, polyesters, polyvinyl alcohol, and combinations thereof.

In contrast to the articles described in the above-mentioned U.S. Pat. No. 3,253,715, we have found that very low amounts of polymeric polycarboxylic acid (in the range of 1 to 5 wt.% as weight of total binder weight) afford the best

wiping properties while effectively eliminating binder washout. Further, we have found that pH (negative logarithm of the hydrogen ion concentration in aqueous compositions) ranging from 3 to 3.3 specified by the above-mentioned '715 patent is suitable for the present invention, but pH values up to 4.6 may be utilized, which is much more useful for reducing web shrinkage. The articles of this aspect of the invention employ a polymeric polycarboxylic acid to insolubilize aqueous polyvinyl alcohol, thereby providing absorbent articles with superior water absorption, dry-wipe, and improved strength compared to known articles.

A fourth aspect of the invention is an absorbent nonwoven article characterized by:

- (a) a nonwoven web comprised of organic fibers, the organic fibers comprised of polymers having a plurality of pendant hydroxyl groups; and
- (b) a binder coated onto at least a portion of the fibers comprising syndiotactic polyvinyl alcohol, the syndiotactic polyvinyl alcohol having a syndiotacticity of at least 30%.

Articles employing the binder system mentioned in part (b) of this aspect of the invention employ syndiotactic polyvinyl alcohol (s-PVA) as a major (or only) component in the binder. The advantage of this binder is that s-PVA may be employed without a chemical crosslinking agent. This is because s-PVA tends to form microcrystalline regions. Chemical crosslinking through the use of titanates, inorganic ions, and dialdehydes may be employed, but they are rendered optional.

A fifth aspect of the invention is a method of making an absorbent nonwoven article, the method characterized by the steps of:

- (a) forming an open, lofty, three-dimensional nonwoven web comprised of organic fibers, the organic fibers comprised of polymers having a plurality of pendant hydroxyl groups;
- (b) entangling the fibers of the web using means for entanglement to form an entangled fiber web;
- (c) coating a major portion of the fibers of the entangled fiber web with a binder precursor composition to form a first coated web having first and second major surfaces, the binder precursor composition adapted to form the binder of the second aspect of the invention; and
- (d) exposing the first coated web to energy sufficient to at least partially cure the binder precursor composition to form a nonwoven bonded web of fibers.

Preferred are those methods further characterized by a step before step (c) in which the entangled fiber web is calendered, and those methods characterized by a step after step (c) in which the first coated web is coated on at least one of its first and second major surfaces with a second binder precursor composition. Also preferred are those methods further characterized by the exposing step including drying the second binder precursor composition uniformly to form a dried and cured nonwoven web having a surface coating, and those methods wherein the dried and cured nonwoven web is calendered, thereby smoothing and fusing the surface coating.

A sixth aspect of the invention is another method of making an absorbent nonwoven article comprised of a nonwoven web of fibers, at least a portion of the fibers having a binder coated thereon, the method characterized by the steps of:

- (a) forming a nonwoven web comprised of a plurality of organic fibers comprising polymers having a plurality of pendant fiber hydroxyl groups, a major portion of the polymers comprising polyvinyl alcohol;
- (b) entangling the fibers of the web using means for entanglement to form an entangled fiber web;
- (c) coating a major portion of the fibers of the entangled fiber web with a binder precursor composition to form a first coated web having first and second major surfaces, the binder precursor composition consisting essentially of polyvinyl alcohol and an effective amount of a polymeric polycarboxylic acid; and
- (d) exposing the first coated web to energy sufficient to insolubilize the polyvinyl alcohol resin to form a nonwoven bonded web of fibers.

Optionally, bonding and crosslinking agents, as discussed herein, may be added to the binder precursor composition. Finally, a seventh aspect of the invention is another method of making an absorbent nonwoven article comprised of a nonwoven web of fibers, at least a portion of the fibers having a binder coated thereon, the method characterized by the steps of:

- (a) forming a nonwoven web comprised of organic fibers, the organic fibers comprised of polymers having a plurality of pendant hydroxyl groups;
- (b) entangling the fibers of the web using means for entanglement to form an entangled fiber web;
- (c) coating a major portion of the fibers of the entangled fiber web with a binder precursor composition to form a

30

10

20

25

40

45

50

first coated web having first and second major surfaces, the binder precursor composition consisting essentially of syndiotactic polyvinyl alcohol having a syndiotacticity of at least 30%; and

(d) exposing the first coated web to energy sufficient to at least partially cure the binder precursor composition to form a nonwoven bonded web of fibers.

An important aspect of the invention is that articles of the invention may employ inventive binders which allow the articles to exhibit high durability, good feel, reduced drag, and good dry wiping properties while maintaining comparable water absorption and "wet out" properties to existing wipes. In addition, wiping articles of the present invention may also be cured in the presence of pigments to generate colored wiping products.

Preferred articles within the invention may also include in the binder efficacious amounts of functional additives such as, for example, fillers,

reinforcements, plasticizers, grinding aids, and/or conventional lubricants (of the type typically used in wiping articles) to further adjust the absorbance, durability, and/or hand properties.

The binders useful in the articles of the invention improve on conventional formaldehyde crosslinking agents which tend to embrittle the web fibers, reducing web strength, softness, and absorption, and which present chemical hazards.

Regarding the methods of the invention, in preferred methods the "exposing" step is preferably carried out in a fashion to afford uniform drying throughout the thickness of the web. Typically and preferably the exposing step is a two stage process wherein the coated web is first dried at a low temperature and subsequently exposed to a higher temperature to cure the binder precursor. In some embodiments, a third, higher temperature curing step is employed. As discussed herein below, to achieve uniformly dried and cured articles, both major surfaces of the uncured web are preferably exposed to a heat source simultaneously, or both major surfaces are sequentially exposed to the heat source. The methods of the invention may also encompass perforating and slitting the dried and cured bonded non-woven into various finished products.

FIG. 1 is a perspective view of a wipe made in accordance with the invention:

FIG. 2 is a cross-section along the lines 2-2 of the article of FIG. 1; and

10

15

25

30

35

40

45

55

FIG. 3 is a schematic diagram of a preferred method of making articles of the invention.

Embodiments within the first aspect of the invention include articles comprising a nonwoven web of fibers having coated thereon a binder comprising polyvinyl alcohol (preferably silanol modified) crosslinked with inorganic ions, chelating organic titanates, or combinations thereof.

The nonwoven web of fibers may be made from many types of hydrophilic fibers, and may include a minor portion of hydrophobic fibers, selected from the following fiber types: cellulosic-type fibers, such as PVA (including hydrolyzed copolymers of vinyl esters, particularly hydrolyzed copolymers of vinyl acetate), cotton, viscose rayon, cuprammonium rayon and the like, and thermoplastics such as polyesters, polypropylene, polyethylene and the like. The preferred cellulosic-type fibers are rayon and polyvinyl alcohol. Webs containing 100% PVA fibers, 100% rayon fibers, and blends of PVA fibers and rayon fibers in the wt.% range of 1:100 to 100:1 are within the invention, and those webs having PVA:rayon within the weight range of 30:70 to about 70:30 are particularly preferred in this aspect of the invention, since the coated products exhibit good hydrophilicity, strength, and hand.

Some aspects of the nonwoven fiber web are common to all article embodiments of the invention. The fibers employed typically and preferably have denier ranging from about 0.5 to about 10 (about 0.06 to about 11 tex), although higher denier fibers may also be employed. Fibers having denier from about 0.5 to 3 (0.06 to about 3.33 tex) are particularly preferred. ("Denier" means weight in grams of 9000 meters of fiber, whereas "tex" means weight in grams per kilometer of fiber.) Fiber stock having a length ranging from about 0.5 to about 10 cm is preferably employed as a starting material, particularly fiber lengths ranging from about 3 to about 8 cm.

Nonwoven webs of fibers for use in the articles of the invention may be made using methods well documented in the nonwoven literature (see for example Turbak, A. "Nonwovens: An Advanced Tutorial", Tappi Press, Atlanta, Georgia, (1989). The uncoated (i.e., before application of any binder) web should have a thickness in the range of about 10 to 100 mils (0.254 to 2.54 mm), preferably 30 to 70 mils (0.762 to 1.778 mm), more preferably 40 to 60 mils (1.02 to 1.524 mm). These preferred thicknesses may be achieved either by the carding/crosslapping operation or via fiber entanglement (e.g., hydroentanglement, needling, and the like). The basis weight of the uncoated web preferably ranges from about 50 g/m²up to about 250 g/m².

Binders within the first aspect of the invention preferably are crosslinked via secondary hydroxyl groups on the PVA backbone with chelating organic titanates, and optionally with dialdehydes such as glyoxal. The resultant binder system will theoretically further react with hydroxyl groups on the fibers when cured at elevated temperatures to produce coated webs with excellent wiping properties.

Particularly preferred are "dual" crosslinked binders, wherein an amorphous metal oxide coordinates with silanol groups on the PVA backbone and titanates and/or glyoxal coordinate with secondary hydroxyl groups on the PVA

backbone.

15

20

25

30

35

45

50

Silanol modified PVA's used in the present invention was may be made via the copolymerization of any one of a number of ethylenenically unsaturated monomers having hydrolyzable groups with an alkoxysilane-substituted ethylenenically unsaturated monomer. Examples of the former are vinyl acetate, acetoxyethyl acrylate, acetoxyethylmethacrylate, and various propyl acrylate and methacrylate esters. Examples of alkoxysilane-substituted ethylenenically unsaturated monomers include vinyl trialkoxysilanes such as vinyl trimethoxysilane and the like.

One particularly preferred silanol-modified PVA may be produced from the copolymerization of vinyl acetate and vinyl trialkoxysilane, followed by the direct hydrolysis of the copolymer in alkaline solution (see below). One commercially available product is that known under the trade designation "R1130" (Kuraray Chemical KK, Japan). This preferred base copolymer contains from about 0.5 to about 1.0 molar % of the silyl groups as vinylsilane units, a degree of polymerization of about 1700, and degree of hydrolysis of the vinyl acetate units preferably of 99+ %.

The theoretical crosslink density may range from 1 to about 40 mole % based on mole of ethyleneically unsaturated monomer. This may be achieved by addition of one or more aqueous titanates and, optionally, dialdehyde/NH₄Cl solutions to a polyvinyl alcohol binder resin. Though dialdehydes such as glyoxal and several classes of titanium complexes have been shown to crosslink aqueous compositions of polyvinyl alcohol, we have found that chelating titanates such as dihydroxybis(ammonium lactato) (available under the trade designation "Tyzor LA" from du Pont) and titanium orthoesters such as Tyzor 131 provide excellent crosslinking for wiping articles described in this invention. It is desired that crosslinking be avoided until curing conditions (i.e., high temperatures) are present. Thus, organic acids, such as citric acid, may help to stabilize titanates such as dihydroxybis(ammonium lactato) titanium in aqueous compositions until the binder precursors are exposed to crosslinking and curing conditions.

To improve the tensile and tear strength of the inventive articles, and to reduce lint on the surface of the articles, it may be desirable to entangle (such as by needletacking, hydroentanglement, and the like) the uncoated web, or calender the uncoated and/or coated and cured nonwoven articles of the invention. Hydroentanglement may be employed in cases where fibers are water insoluble. Calendering of the binder coated web at temperatures from about 5 to about 40°C below the melting point of the fiber may reduce the likelihood of lint attaching to the surface of the inventive articles and provide a smooth surface. Embossing of a textured pattern onto the wipe may be performed simultaneously with calendering, or in a subsequent step.

In addition to the above-mentioned components of the articles of this invention, it may also be desirable to add colorants (especially pigments), softeners (such as ethers and alcohols), fragrances, fillers (such as for example silica, alumina, and titanium dioxide particles), and bactericidal agents (for example iodine, quaternary ammonium salts, and the like) to add values and functions to the wiping articles described herein.

Coating of the binder resin may be accomplished by methods known in the art, including roll coating, spray coating, immersion coating, gravure coating, or transfer coating. The binder weight as a percentage of the total wiping article may be from about 1% to about 95%, preferably from about 10% to about 60%, more preferably 20 to 40%.

The absorbent nonwoven articles in accordance with the second aspect of the invention comprise a nonwoven web of a plurality of organic fibers comprising polymers having a plurality of pendant hydroxyl groups, a major portion of the polymers being at least partially hydrolyzed polymerized monomers selected from the group consisting of monomers within the general formula

$$\begin{array}{c}
R^2 \\
| \\
R^1-C=C-R^3 \\
| \\
X
\end{array}$$

with the provisos mentioned above. A binder coats at least a portion of the fibers, the binder consisting essentially of polyvinyl alcohol insolubilized with an effective amount of polyacrylic acid. Optionally, chemical crosslinking agents and/or bonding agents may also be employed.

The nonwoven web of fibers is substantially the same as that described in the first embodiment above. Any fiber type, such as polyesters, polyolefins, cellulosics, acrylics, and the like, may be employed, alone or in combination. Preferably, the nonwoven web of fibers comprises one or more of the following fibers: cotton, viscose rayon, cuprammonium rayon, polyvinyl alcohols including hydrolyzed copolymers of vinyl esters, particularly hydrolyzed copolymers of vinyl acetate and the like. Preferred cellulosic-type fibers are rayon and polyvinyl alcohol. Blends of rayon and polyvinyl alcohol fibers in the weight ranges given above in the first embodiment are preferred.

The fiber denier and length are also as previously described in the first embodiment above, as well as the preferred ranges for uncoated web thickness and weight.

Coating of the binder resin may accomplished by the previously mentioned methods, including roll coating, spray

coating, immersion coating, transfer coating, gravure coating, and the like. The binder weight as a percentage of the total nonwoven article weight for this aspect of the invention may range from about 5% to about 95%, preferably from about 10% to about 60%, more preferably 20 to 40%.

Polymeric polycarboxylic acids useful in the invention include polyacrylic acid, polymethacrylic acid, copolymers of acrylic acid, methacrylic acid or maleic acid containing more than 10% acidic monomer, provided that such copolymers or their salts are water soluble the specified pH levels; and vinyl methyl ether/maleic anhydride copolymer.

Polyacrylic acid, the most preferred polymeric polycarboxylic acid useful in the present invention preferably has a weight average molecular weight ranging from about 60,000 to about 3,000,000. More preferably, the weight average molecular weight of polyacrylic acid employed ranges from 300,000 to about 1,000,000.

Optionally, small amounts (i.e., less than about 5 wt.% of the total weight of binder) of additional monomers (such as, for example, functionalized acrylate monomers like hydroxyethylmethacrylate, vinyl azlactone monomers, and the like) may be incorporated in the PVA binder polymer to reduce binder washout during repeated use.

As with previously described embodiments, chemical crosslinkers may be used. Preferred crosslinkers are titanates, dialdehydes, borates, and the like.

The nonwoven articles of the second embodiment of the invention may be calendered as previously described in the first embodiment to reduce lint on the surface of the article and provide a smooth surface for printing. Embossing of a textured pattern onto the wipe may be performed simultaneously with calendering, or in a subsequent step.

The above-mentioned optional components (colorants, softeners, fragrances, fillers) may also be employed in the nonwoven articles of this aspect of the invention.

Triad isotacticity, as used herein, means that of a triad of three pendant hydroxyl groups, all three are on the same side of the polymer chain. This is opposed to atactic, which means that he hydroxyl groups are randomly arranged, and syndiotactic, meaning the hydroxyl groups are positioned in alternating pattern from side-to-side on the polymer chain.

Nonwoven absorbent articles within the third embodiment of the invention comprise a nonwoven web of fibers comprised of polymers having a plurality of pendant hydroxyl groups. The binder for articles within this aspect of the invention comprises polyvinyl alcohol having a syndiotacticity of at least 30%. Optionally, a chemical crosslinking agent may also be present.

The nonwoven web of fibers comprises fibers substantially the same as those described above as useful for the other articles of the invention. The fiber length and denier, and uncoated web thickness and weight are also as above-described in the first embodiment. Coating of the binder resin may be accomplished by the above-mentioned methods known in the art including roll coating, spray coating, immersion coating, transfer coating, gravure coating, and the like. The binder weight as a percentage of the total article weight for articles within this aspect of the invention may range from about 5% to about 95%, preferably from about 10% to about 60%, more preferably 20 to 40%.

For preparing syndiotactic PVA, vinyl trihaloacetoxy monomers are commonly employed, such as, vinyl trifluoroacetate, trifluoroacetoxyethyl acrylate, trifluoroacetoxyethyl methacrylate, and the like.

Polyvinyl trifluoroacetate is a preferred precursor ester for preparation of syndiotactic polyvinyl alcohol used in practice of the invention due to its high chemical reactivity making conversion to polyvinyl alcohol relatively facile. It may be hydrolyzed with alcoholic alkali, but is preferably hydrolyzed with methanolic ammonia (see Example 64 below). Polyvinyl trifluoroacetate is readily prepared by polymerization of vinyl trifluoroacetate.

Optionally, small amounts (i.e., less than about 5 wt.%) of additional monomers may be incorporated in the parent polymer to improve various properties of the polyvinyl alcohol derived therefrom. A particularly preferred syndiotactic PVA (and used in Examples 65-91 below) is poly(vinyl trifluoroacetate-co-[3-allyl-2,2'-dihydroxy-4,4'-dimethoxybenz-ophenone]) (99.95:0.05 by weight, abbreviated as PVTFA). The triad syndiotacticity measured by ¹H NMR was 51%, isotacticity = 7%, atacticity = 42%.

The syndiotacticity of the polyvinyl alcohol binder employed in this aspect of the invention typically and preferably ranges from about 45% to 100% syndiotacticity. It is known that increasing syndiotacticity at constant degree of polymerization results in increased melting point for the gel. (See Matsuzawa, S. et al., "Colloid Poly. Sci. 1981", 259(12), pp. 1147-1150.) For this reason higher syndiotacticity is preferred since mechanical strength and thermal stability are improved, but aqueous compositions of polyvinyl alcohol become more viscous and/or thixotropic as syndiotacticity increases due to gel formation. For these reasons, and owing to methods of preparation, the preferred range of syndiotacticity when coated from aqueous compositions preferably ranges from about 25 to about 65% syndiotacticity.

Although detrimental to the flexibility of the nonwoven articles of the invention, it may be advantageous to incorporate a small amount (e.g., up to about 10 mole%) of a chemical crosslinker such as those mentioned above in order to eliminate washout of the binder during use. Preferred crosslinkers are the above-mentioned titanates, with dialdehydes and the like being suitable but less preferred for ecological reasons.

Referring now to the drawing figures, FIG. 1 illustrates a perspective view of an absorbent nonwoven article 10 made in accordance with the invention. Article 10 has a plurality of fibers 12 at least partially coated with binder.

FIG. 2 is a cross-sectional view of the article of FIG. 1 taken through the section 2-2 of FIG. 1. FIG. 2 illustrates a

7

10

5

15

20

25

30

35

45

50

preferred article wherein the major surfaces 14 and 16 (illustrated in exaggerated thickness) comprise a combination of calendered and fused organic fibers and binder. Surfaces 14 and 16 form a sandwich with nonwoven material 18.

FIG. 3 illustrates a preferred method of producing the nonwoven articles illustrated in FIGs. 1 and 2. Staple fibers are fed via a hopper 20 or other means into a carding station 22, such devices being well known and not requiring further explanation. A moving conveyer transports a carded web 26 from carding station 22, typically to a crosslapper, not shown, which forms a layered web having fibers at various angles to machine direction. Carded web 26 then typically and preferably passes through a needling station 28 to form a needled web 30 which is passed through calender station 32. At this point the calendered web 34 is not more than about 60 mils (1:524 mm) thick. Calendered web 34 then passes through an immersion bath 36 where an aqueous binder precursor composition 37 is applied. Web 34 passes under rollers 38 and emerges as a coated web 40, which then passes through a drying station 42 to form a dried web 44. Drying station 42 typically and preferably exposes the web to a temperature and for a residence time which allows substantially all of the water to be removed from the binder precursor to form a dried web 44.

Depending on the composition of the binder precursor, type of crosslinking and/or bonding agent used, amount of water present, etc., web 44 may be suitable for use without further curing. In some embodiments, it is desirable to pass dried web 44 through a final curing station 46, which is at a temperature higher than the temperature of drying station 42, to form a dried and cured web 48.

Web 48 may then be passed through another set of calender rollers 50, which may be used to emboss a pattern, fuse the surfaces, and impart other qualities to the article. Web 52 generally has a thickness of no more than 60 mils (1.524 mm), and a weight ranging from about 50 g/m² to about 250 g/m².

Web 52 may then pass through a second needling station 54 to perforate the web for decorative or other purposes, after which the web is slit and wound onto take-up roll 56.

The features of the various aspects of the invention will be better understood in reference to the following Test Methods and Examples, wherein all parts and percentages are by weight. Names of ingredients in quotation marks indicate trade designations.

Test Methods

Tensile Strength

Tensile strength measurements were made on 1 x 3 inch (2.54 x 7.62 cm) wringer damp, die cut samples using an Instron Model "TM", essentially in accordance with ASTM test method D-5035. A constant rate of extension (CRE) was employed, and jaws were clamp-type. Rate of jaw separation was 9.3 inches/min. (23.6 cm/min).

35 Elmendorf Tear

Elmendorf tear tests were conducted on 2.5 x 11 inch (6.35 x 27.94 cm) damp, die-cut, notched (20 mm) samples, essentially in accordance with ASTM D-1424, using an Elmendorf Tear Tester model number 60-32, from Thwing-Albert Co., with a 3200 gram pendulum. An average of four measurement was used. A high value is desired.

Absorption

Absorption measurements were made on 6 x 8 inch (15.24 x 20.32 cm) samples which were die-cut in damp conditions. The absorption measurements are reported using the following terms:

- (a) Dry Weight = the dried weight of the sample, in grams.
- (b) No Drip Weight = the maximum total weight of the sample and water absorbed, in grams.
- (c) With Drip Weight = the total weight of the sample, in grams, after dripping for 60 seconds.
- (d) Damp Weight = the weight of the sample after passing through nip rollers.
- (e) Wet Out = the time it takes for a droplet of water placed on the wipe surface to be completely absorbed into
- (f) % Weight (H2O) Loss = (No Drip Weight With Drip Weight)/No Drip Weight.
- (g) Grams Water Absorbed per Square foot (grams/929 cm²) = 3 x (No Drip Weight Dry Weight).
- (h) Grams Water Absorbed per Gram Dry Weight = (No Drip Weight Dry Weight)/Dry Weight.
- (i) MD = machine direction,

CD = cross direction,

"abs" = absorbed, and

"eff" = effective

8

25

30

15

20

40

45

50

(j) effective water absorption = 3 x (no drip weight - damp weight).

Materials Description

5

The materials are used in the examples which follow:

	"R1130"	"is the trade designation for a copolymer of vinyl silane and vinyl acetate containing from about 0.5 to about 1.0 molar % of the silyl groups as vinylsilane units, a degree of polymerization of about 1700,	
		and degree of hydrolysis of the vinyl acetate units preferably of 99+% (Kuraray Chemical KK, Japan).	
10	"Tyzor LA"	is the trade designation for dihydroxybis(ammonium lactato) titanium (50 wt.% aqueous solution, available from du Pont Company, Du Pont Company), glyoxal (40 wt.% aqueous solution, Aldrich	
		Chemicals) are then added to the silanol modified PVA solution at various proportions and combina-	
		tions as described in the examples to follow.	
	"Tyzor 131"	is the trade designation for a mixture of titanium orthoester complexes (20 wt.% aqueous solution,	
15		also available from DuPont.	
	"Nalco 8676"	is the trade designation for a nanoscale, amorphous aluminum hydrous oxide colloid (10 wt.% aqueous solution), available from Nalco Chemical Company.	
	glyoxal	is a dialdehyde of formula HCOCOH, available as a 40 wt.% aqueous solution from Aldrich Chemicals,	
		Co.	
20	"Airvol 165"	is the trade designation for a 99.5+% hydrolyzed polyvinyl alcohol from Air Products and Chemicals,	
		Inc.	

EXAMPLES ·

25 General Procedure I for Preparing Inventive Articles

Nonwoven webs consisting of a blend of polyvinyl alcohol and rayon fibers (45% polyvinyl alcohol fiber having 1.5 denier and a length of 1.5 inch (3.81 cm) purchased from Kuraray, Japan, and 55% rayon fiber having 1.5 denier and a length of 1 and 9/16 inch (3.97 cm) purchased from BASF) were made using a web, making machine known under the trade designation "Rando-Webber". The resultant web had a nominal basis weight of 11.5 g/ft² (123.8 g/m²) and an average thickness of 0.052 inch (0.132 cm).

Silanol modified polyvinyl alcohol granules ("R1130") were added to deionized water in proportions up to 10 wt.% solid in a stirred flask. The flask was then heated to 95°C until reflux condition is achieved. The polymeric solution was then kept at reflux for a minimum of 45 minutes with adequate mixing. The solution was then cooled down to room temperature (about 25°C). The silanol modified PVA solution was then diluted to 2.5 wt.% solid. Reactants such as Nalco 8676, Tyzor LA, Tyzor 131, and glyoxal were then added to the silanol modified PVA solution at various proportions and combinations as described in the examples to follow.

A 12 x 15 inch (30.48 x 38.1 cm) piece of this nonwoven web was placed in a pan and saturated with approximately 200 g of an aqueous coating solution containing 5.00 g of total polymer.

Saturated samples were then dried and cured in a flow-through oven at various conditions to be described in the examples below. When curing was completed, the samples were conditioned for 60 minutes in 60 - 80°F (140 - 176°C) tap water then dried. Samples were then analyzed for hydrophilicity, water retention and absorption, tensile strength, tear strength; and dry wiping properties.

5 Examples 1-10 and Comparative Example A

The results of testing on Comparative Example A, a nonwoven wipe originally 59 mils (0.149 cm) thick, and known under the trade designation "Brittex-11" (available from Vileda, a division of Freudenberg Co., Germany, and which is a PVA web coated with a PVA binder crosslinked with formaldehyde) were as follows:

```
Wet Out = 3 sec.;
% Water Loss = 12.8;
Total Water Absorption = 137.5 g/ft² (1479 g/m²);
g of water absorbed/g of wipe = 7.9;
tensile strength (machine direction) = 273 lbs/in² (1882 KPa);
tensile strength (cross direction) = 203 lbs/in² (1399 KPa);
Elmendorf Tear strength (machine direction and damp) = 86;
Elmendorf Tear strength (cross direction and damp) = 100+.
```

The test results for the inventive nonwovens of Examples 1 - 10 are presented in Tables 1 and 2. The nonwovens of Examples 1 - 10 were prepared as described in General Procedure I. For each example, 200 g of the polymeric solution (2.5 wt.% of R1130) was added with the reactants described below along with 0.1 g of Orcabrite Green BN 4009 pigment. The wt.% designated below represents the wt.% of active reactant (solid) over the R1130 polymer. The coated samples were dried at 150°F (65.5°C) for 2 hrs. then 250°F (121.1°C) for 2 hrs. and finally cured at 300°F (148.8°C) for 10 minutes. All samples had excellent dry wiping properties, low drag, and good feel.

Table 1

Ex.#	Sample Description	Wet out (sec)	g H2O abs/g of Dry wipe	g H2O abs/(ft ²)	% H2O Loss
1	Uncoated nonwoven substrate COMPARATIVE	0	11.37	148.7	24.78
2	R1130	0	8.90	158.6	18.55
3	R1130/0.5 wt.% Nalco 8676/5 wt.% Tyzor 131	0	8.37	159.7	17.2
4	R1130/0.5 wt: % Nalco 8676/15 wt.% Tyzor 131	0	7.46	145.7	21.2
5	R1130/0.5 wt. % Nalco 8676/5 wt.% Tyzor LA	0	8.42	150.3	15.95
6	R1130/0.5 wt. % Nalco 8676/15 wt.% Tyzor LA	0	7.79	155.9	16.73
7	R1130/5 wt.% Tyzor 131	0	8.26	145.5	15.71
8	R1130/15 wt.% Tyzor 131	0	7.83	150.4	17.11
9	R1130/5 wt.% Tyzor LA	. 0	8.53	151.1	16.47
10	R1130/15 wt.% Tyzor LA	0	8.06	136.6	12.93

Table 2

Ex.#	Sample Description	Tensile Strength (KPa)		Elmendorf Tear	
		MD	CD	MD	CD
1	Uncoated nonwoven substrate COMPARATIVE	1289	641	74.7	56.3
2	R1120	2126	2011	85.5	93.0
3	R1130/0.5 wt.% Nalco 8676/5 wt.% Tyzor 131	2555	2012	95.0	88.0
4	R1130/0.5 wt. % Nalco 8676/15 wt.% Tyzor 131	2770	2032	86.3	100
5	R1130/0.5 wt. % Nalco 8676/5 wt.% Tyzor LA	2543	2001	76.7	85.0
6	R1130/0.5 wt. % Nalco 8676/15 wt.% Tyzor LA	2802	1921	90.3	100
7	R1130/5 wt.% Tyzor 131	2481	2155	77.0	84.5
8	R1130/15 wt.% Tyzor 131	2327	2201	90.8	84.0
9	R1130/5 wt.% Tyzor LA	2356	1787	80.3	82.5
10	R1130/5 wt.% Tyzor LA	2769	2090	78.0	87.5

Examples 11 - 20

10

15

20

25

30

35

40

45

50

The wipes of Example 11 - 20 were prepared as described in General Procedure I, and dried and cured as in Examples 1 - 10, except that the final 10 minute cure at 300°F (121.1°C) was eliminated. The absorbency, tensile strength and tear test results are presented in Tables 3 and 4.

It can be seen comparing the data of Tables 3 and 4 with the data of Tables 1 and 2 that addition of Tyzor LA or Tyzor 131, and the final 121.1°C cure, gave immediate wet-out and consistently higher tensile strength and Elmendorf

tear values.

. 5

Table 3

Ex.#	Sample Description	Wet out (sec)	g H2O abs/g of dry wipe	g H2O abs/(ft²)	% H2O Loss
11	R1130/0.5 wt.% Nalco 8676	28	8.87	152.8	17.7
12	R1130/1 wt.% Naico 8676	. 60+	7.80	141.5	14.09
13	R1130/1.5 wt.% Nalco 8676	60+	7.65	141.7	13.99
14	R1130/2.0 wt.% Nalco 8676	60+	7.48	138.7	14.92
15	R1130/0.5 wt.% Nalco 8676/1 wt.% Tyzor LA	0	8.35	160.7	19.60
16	R1130/0.5 wt.% Nalco 8676/ 5 wt.% Tyzor LA	0	8.49	161.5	19.70
17	R1130/0.5 wt.% Nalco 8676/10 wt.% Tyzor LA	0	8.31	155.6	16.57
18	R1130/0.5 wt.% Nalco 8676/ 1 wt.% Tyzor 131	0	8.49	164.2	18.63
19	R1130/0.5 wt.% Nalco 8676/ 5 wt.% Tyzor 131	0	8.12	165.0	19.69
20	R1130/0.5 wt.% Nalco 8676/10 wt.% Tyzor 131	0	8.61	164.8	21.33

Table 4

Ex.#	Sample Description	Tensile Strength (Kpa)		Elmendorf Tear	
		MD	CD	MD	CD
11	R1130/0.5 wt.% Nalco 8676	2218	2022	91.7	85.0
12	R1130/1 wt.% Nalco 8676	2212	1856	88.8	100.0
13	R1130/1.5 wt.% Nalco 8676	2678	1948	83.3	90.0
14	R1130/2.0 wt.% Nalco 8676	2961	2164	86.3	100.0
15	R1130/0.5 wt.% Nalco 8676/1 wt.% Tyzor LA	2425	1783	78.3	100.0
16	R1130/0.5 wt.% Nalco 8676/ 5 wt.% Tyzor LA	2182	2086	74.5	100.0
17	R1130/0.5 wt.% Nalco 8676/10 wt.% Tyzor LA	2379	2130	100.0	95.0
18	R1130/0.5 wt.% Nalco 8676/1 wt.% Tyzor 131	2390	1959	90.3	92.0
19	R1130/0.5 wt.% Nalco 8676/5 wt.% Tyzor 131	2295	1904	85.0	100.0
20	R1130/0.5 wt.% Nalco 8676/10 wt.% Tyzor 131	2419	1837	78.0	100.0

Examples 21 - 27

The inventive nonwovens of Examples 21 - 27 were prepared as described in General Procedure I. For each sample, 200 g of the polymeric solution (2.5 wt.% of R1130) was mixed with 1.54 g of glyoxal (40 wt.% aqueous solution) and 0.25 g of NH₄Cl and then reacted with the reactants described below. The wt.% designated below represents the wt.% of active reactant (solid) over the R1130 polymer. The coated samples were dried at 110°F (92.2°C) for 4 hrs. All samples had excellent dry wiping properties, low drag, and good feel. The results of the absorbency, tensile strength, and tear strength are presented in Tables 5 and 6.

Table 5

Ex.#	Sample Description	Wet out (sec)	g H20 abs/g of Dry wipe	g H20 abs /(ft²)	% H20 Loss
21	NONE: COMPARATIVE	0	7.40	127.9	15.27
22	1 wt.% Nalco 8676	60+	8.86	157.1	24.28
23	3 wt.% Nalco 8676	60+	9.39	162.9	26.12
24	5 wt.% Nalco 8676	60+	8.03	139.3	23.10
25	1 wt.% A12 (SO4)3 (100% solid)	31	8.25	148.7	19.70
26	3 wt.% A12 (SO4)3 (100% solid)	16	8.53	153.8	21.82
27	5 wt.% A12 (SO4)3 (100% solid)	60+	8.54	147.1	21.32

Table 6

1					
Ex.#	Sample Description .	Tensile Str	ength (KPa)	Elmendorf Tear	
		MD	CD	MD	CD
21	NONE: COMPARATIVE	1717	2616	100.0	.86.3
22	1 wt.% Nalco 8676	1693	2639	94.0	94.3
23	3 wt.% Nalco 8676	2509	1915		91.0
24	5 wt.% Nalco 8676	2248	3230	100.0	90.3
25	1 wt.% A12 (SO4)3 (100% solid)	1880	2202	100.0	82.7
26	3 wt.% A12 (SO4)3 (100% solid)	1813	2273	100.0	85.0
27	5 wt.% A12 (SO4)3 (100% solid)	2449	2030	100.0	96.0

Examples 28 - 29

Examples 28 - 29 demonstrated the use of nonwoven web containing 100% PVA fibers. The nonwoven web was made from 100% PVA fibers which were 1.5 denier and 1.5 inch long (3.81 cm), purchased from Kuraray, Japan, with a basis weight of 7.0 g/ft² (75.3 g/m²) using a carding machine known under the trade designation "Rando-Webber." A 12 x 15 inch (30.48 x 38.1 cm) sample of this web was coated with a solution containing: 130 g of R1130 solution (2.5 wt.% solid), 0.16 g of Nalco 8676 (10% solid), 1.63 g of Tyzor 131 (20 wt.% in water), and 0.16 g of Orcobrite Royal blue pigment # R2008. The coated sample was dried at 150°F (65.5°C) for 2 hrs. then cured at 300°F (148.9°C) for an additional 15 minutes. The coated sample had a rubbery feel. The absorbency and tensile strength data are presented in Tables 7 and 8.

			Table 7		
Ex.#	Sample Description	Wet out (sec)	g H20 abs /g of dry wipe	g H2O abs /(ft²)	% H20 Loss
28	Uncoated 100% PVA fiber web COMPARATIVE	0	12.74	159.3	30.71
29	Coated 100% PVA fiber web	7	4.74	81.3	13.32

Table 7

Table 8

Ex. #	Sample Description	Tensile Strength (KPa	
		MD -	CD
28	Uncoated 100% PVA fiber web COMPARATIVE	1751	2042
29	Coated 100% PVA fiber web	2752	2352

Examples 30 - 31

20

25

30

35

50

Examples 30 - 31 demonstrated the use of a nonwoven web containing a blend of PVA and cotton I fibers. The nonwoven web was made from 50 wt.% PVA fibers which were 1.5 denier and 1.5 inch (3.81 cm) in length, purchased from Kuraray, Japan, and 50 wt.% cotton fibers with a resultant basis weight of 5.5 g/ft² (59.2 g/m²) using a web making machine known under the trade designation "Rando-Webber." A 12 x 15 inch (30.48 x 38.1 cm) sample of this web was coated with a solution containing: 110 g of R1130 solution (2.5 wt.% solid in H_2O), 0.13 g of Nalco 8676 (10% solid in H_2O), 1.38 g of Tyzor 131 (20% solid in H_2O), and 0.14 g of Orcobrite Royal blue pigment # R2008. The coated sample was dried at 150°F (65.5°C) for 2 hours, then cured at 300°F (148.9°C) for an additional 15 minutes. The coated sample had excellent dry wiping properties, low drag, and good feel. The absorbency and tensile strength data are presented in Tables 9 and 10.

Table 9

Ex.#	Sample Description	Wet out (sec)	g H20 abs /g of dry wipe	g H20 abs /(ft ²)	% H20 Loss
30	Uncoated 50/50 blend of PVA/Cotton fibers web: COMPARATIVE	0	22.27	170.4	50.16
31	Coated 50/50 blend of PVA/ Cotton fibers web	4	5.82	57.7	17.41

Table 10

Ex. #	Sample Description		Tensile Strength (KPa)		
		MD	CD		
30	Uncoated 50/50 blend of PVA/Cotton fibers web: COMPARATIVE	384	411		
31	Coated 50/50 blend of PVA/Cotton fibers web	3689	- 2919		

Example 32

The nonwoven web used in Example 32 was made from 100% rayon fibers which were 3.0 denier and 2.5 inches (6.35 cm) long from Courtalds Chemical Company, England, using a carding/crosslap/needletacking process. Its basis weight was 16.2 g/ft² (174.3 g/m²). A 15 x 15 inch sample of this web (38.1 x 38.1 cm) was coated with a solution containing: 250 g of R1130 solution (2.5% solid in H_2O), 0.31 g of Nalco 8676 (10% solid in H_2O), 3.13 g of Tyzor 131 (20 wt.% in H_2O), and 0.4 g of Orcobrite Royal blue pigment # R2008. The coated sample was dried at 150°F (65.5°C) for 2 hours and then at 250°F (121.1°C) for 2 hours, and finally at 300°F (148.8°C) for an additional 10 minutes. The coated sample had excellent dry wiping properties, low drag, and soft feel.

Example 33

Example 33 demonstrated the preparation of a bactericidal wipe based on iodine and the polyvinyl alcohol/polyiodide complex. A solution of 1.2 g potassium iodide, 0.64 g iodine crystals, and 50 g of water was prepared. This solution was then saturated on a wipe prepared using the procedure of Example 5. Initially, a brown color was observed where the sample had been treated. The brown color gradually changed to blue color which is a characteristic of the polyvinyl alcohol/polyiodide complex. When rinsed with water, iodine color and odor were plainly evident.

General Procedure II for Preparing Inventive Articles

Nonwoven webs consisting a blend of polyvinyl alcohol and rayon fibers (45% polyvinyl alcohol fiber having a denier of 1.5 and a length of 1.5 inch (3.81 cm) purchased from Kuraray KK, and 55% rayon fiber having a denier of 1.5 and a length of 1 and 9/16 inch (3.97 cm) purchased from BASF) were made using a web making machine known under the trade designation Rando-Webber. The resultant web had an average dry weight of 12 g/ft² (129 g/m²) and nominal thickness of 0.056 inch (0.142 cm).

An aqueous binder precursor solution was prepared for each example containing various amounts of Airvol 165 (a 99.8% hydrolyzed polyvinyl alcohol with molecular weight 110,000 and degree of polymerization 2500, obtained from Air Products) reacted with Tyzor LA and/or Tyzor 131 and optionally, glyoxal as described in Examples 34 - 47 and NH₄Cl, an acid catalyst. The binder precursor solutions also may have contained optional crosslinker(s) and pH modifiers as detailed in the Examples. A 12 x 15 inch (30.48 x 38.1 cm) piece of this nonwoven web was placed in a pan and saturated with approximately 200 g of an aqueous coating solution containing 5.00 g of total polymer.

Saturated samples were dried in a flow-through oven at 150°F (65.5°C), for between 30 minutes and 4 hours, and cured in a flow-through oven, preferably for greater than 10 minutes, at temperatures greater than 220°F (104°C). The samples were flipped every 10 - 30 minutes to aid in even drying conditions. When curing was completed, the samples were conditioned for 60 minutes in 60 - 80°F (15.6 - 26.7°C) tap water then dried. Samples were then analyzed for hydrophilicity, water retention and absorption, tensile strength, tear strength, and dry wiping properties.

Examples 34 - 38

20

30

35

40

45

Examples 34 - 38 illustrated the advantages of employing a titanate crosslinked PVA binder in wiping articles according to the invention. The wipes of Examples 34 - 38 were prepared as described in General Procedure II with the compositions described below at an initial coating weight of 5 g of polymeric material per 200 g solution and dried slowly at 150°F (65.5°C), followed by curing at 300°F (148.9°C). The absorbency, tensile strength, and tear data are presented in Tables 11 and 12, respectively.

Table 11

Ex. #	Description	Wet Out (sec.)	%H ₂ 0 Loss	g H ₂ 0 abs./ft ²	H ₂ 0 Abs/Dry wgt. (g/g)	Eff g H ₂ 0/ft ²
34	Airvol 165 without Titanate	0	20.49	157.62	8.20	116.22
35	Airvol 165 with 5% Tyzor LA	0	17.52	149.55	7.95	109.86
36	Airvol 165 with 5% Tyzor LA	0	13.10	142.83	7.51	101.49
37	Airvol 165 with 15% Tyzor 131	0	18.89	144.96	7.77	106.56
38	Airvol 165 with 15% Tyzor 131	0	15.79	133.47	7.21	96.06

Table 12

Ex.#	Description	Av. Tensile Stress (KPa)		Elmendorf Tear (Damp)		
<u> </u>		Machine	Cross	Machine	Cross	
34	Airvol 165 without Titanate	2489	1999	100+	88	
35	Airvol 165 with 5% Tyzor LA	2916	2330	100+	. 89	
36	Airvol 165 with 15% Tyzor LA	2985	2489	83	96	
37	Airvol 165 with 5% Tyzor 131	2930	2296	86	93	
38	Airvol 165 with 15% Tyzor 131	3103	2530	75	88	

Examples 39 - 45

10

15

20

25

30

35

Examples 39 - 45 illustrated the advantages of employing a titanate, and optionally, glyoxal crosslinked PVA binder in wiping articles according to the invention. The wipes of Examples 39 - 45 were prepared at an initial coating weight of 5 g total PVA, 1.59 g glyoxal, and 0.25 g NH₄Cl per 200 g solution and dried slowly at 150°F (65.5°). The absorbency, tensile strength, and tear data are presented in Tables 13 and 14, respectively.

Table 13

Ex.#	Sample Description	Wet Out (sec.)	% H ₂ 0 Loss	g H ₂ 0 Abs./ft ²	H ₂ 0 Abs/Dry wgt. (g/g)	Eff g H20/ft ²
39	Airvol 165 with Glyoxal, NH4Cl, w/out Titanate	1	14.47	125.37	7.42	. 88.11
40	Airvol 165 with Glyoxal, NH4Cl, and 1% Tyzor LA	1	14.91	124.62	7.39	87.81
41	Airvol 165 with Glyoxal, NH4Cl, and 5% Tyzor LA	1	14.65	128.88	7.34	92.64
42	Airvol 165 with Glyoxal, NH4Cl, and 10% Tyzor LA	, 1	14.75	130.53	7.35	93.33
43	Airvol 165 with Glyoxal, NH4Cl, and 1% Tyzor 131	1 to 25	13.83	121.05	7.34	84.36
44	Airvol 165 with Glyoxal, NH4Cl, and 5% Tyzor 131	1 to 20	15.27	128.61	7.48	91.23
45	Airvol 165 with Glyoxal, NH4Cl, and 10% Tyzor 131	1	14.58	121.92	7.27	83.97

Table 14

40	Ex.#	Description	PVA Retention	Avg. Tensile S	tress (KPa)	Elmendon Tear (Damp)	
	A			Machine	Cross	Machine	Cross
	39	Airvol 165 with Glyoxal, NH4Cl, w/out Titanate	80.5	2482	2255	98	100+
45	40	Airvol 165 with Glyoxal, NH4Cl, and 1% Tyzor LA	83	2709	2193	86	100
	41	Airvol 165 with Glyoxal, NH4Cl, and 5% Tyzor LA	91.2	2592	2055	86	95
50	42	Airvol 165 with Glyoxal, NH4Cl, and 10% Tyzor LA	91.9	2758	2034	88	95
	43	Airvol 165 with Glyoxal NH4Cl, and 1% Tyzor 131	78.2	2696	2055	97	100+
55	44	Airvol 165 with Glyoxal, NH4Cl, and 5% Tyzor 131	86.1	2772	2392	94	100+

Table 14 (continued)

	Ex.#	Description	PVA Retention	Avg. Tensile Stress (KPa)		Elmendorf Tear (Damp)	
ļ			·	Machine	Cross	Machine	Cross
	45	Airvol 165 with Glyoxal, NH4Cl, and 10% Tyzor 131	75.1	2558	2310	100+	M100+

Example 46

10

20

25

35

40

45

50

Example 46 demonstrated the ability to color the wiping articles of this invention made in accordance with General Procedure II in varying colors and shades. A binder binder precursor solution was prepared consisting of 100 g 5 wt. % Airvol 165, 1.68 g Tyzor LA, 0.03 g, 0.06 g, 0.13 g, 0.25 g, or 0.5 g pigment dispersion, and deionized water to achieve a total solution weight of 200 g for each run. The binder precursor solution was coated onto a 12 x 15 inch (30.48 cm x 38.1 cm) piece of PVA/rayon nonwoven produced as described in General Procedure II, dried at 120°F (48.9°C) for 2 hours, and finally cured for one hour at 140°F (57.0°C). Upon completion of run, the samples were conditioned for 60 minutes in 60 - 80°F (140 - 176°C) water and dried. Results are shown below.

Pigment, Amount	Results
"Orcobrite Red BN", 0.03 to 0.5 g	Good color and fastness.
"Orcobrite Yellow 2GN", 0.03 to 0.5 g	Good color and fastness.
"Orcobrite Green BN", 0.03 to 0.5 g	Good color and fastness.
"Aqualor Green"	Good color, binder washout.
"Aqualor Blue"	Good color, binder washout.

The aqueous pigment dispersions KUTTD "Aqualor" were obtained from Penn Color (Doylestown, PA), while those KUTTD Orcobrite aqueous pigment dispersions were obtained from Organic Dyestuffs (Concord, NC). Good results were obtained with a wide variety of the "Orcobrite" series of pigments. A major difference between the "Aqualor" and "Orcobrite" pigment dispersions, as supplied, was the substantially higher alkalinity of "Aqualor" pigment dispersions, perhaps leading to insufficient cure by the titanate crosslinking agent. Generally speaking it was found that the best results with regard to coloring were obtained at cure temperatures of 240 - 250°F (115.6 - 121°C), although higher temperatures were also useful.

Example 47

Example 47 demonstrated the ability to impregnate the synthetic wipes of the invention made in accordance with General Procedure II with a number of antibacterial, antifungal, and disinfecting solutions for use in the health care, business, and/or food service trades. A nonwoven produced in accordance with General Procedure II was saturated with an aqueous solution containing 1.2 g potassium iodide, 0.64 g solid iodine crystals, and 50 g deionized water.

Initially, a brown color was observed where the sample had been treated. The brown color gradually changed to blue, characteristic of the polyvinyl alcohol/polyiodide complex. When the article was rinsed with water, the iodine color and odor were plainly evident.

General Procedure III for Preparing Inventive Articles

A 12 by 15 inch (30.48 x 38.1 cm) piece of polyvinyl alcohol/rayon (45% polyvinyl alcohol fiber having a denier of 1.5 and a length of 1.5 inch (3.81 cm) purchased from Kuraray KK, and 55% rayon fiber having a denier of 1.5 and a length of 1 9/16 inch purchased from BASF) blended nonwoven fiber substrate (thickness = 56 mil (0.142 cm), basis weight = 11.5 g/ft² (123.8 g/m²), prepared using a web marking of Rando-Webber) was placed in a pan and saturated with 200 g of an aqueous binder precursor solution containing 5.00 g total polyvinyl alcohol and polyacrylic acid, prepared by mixing a 5% aqueous solution of "Airvol 165" with a 2.5% aqueous solution of the polyacrylic acid. "Airvol 165" (a 99.8% hydrolyzed polyvinyl alcohol, MW = 110,000, DP = 2500 obtained from Air Products) was used in combination with polyacrylic acid (750,000 MW, Aldrich Chemical Co.). The binder precursor solution pH was adjusted with 85% phosphoric acid. The sample and tray were placed in a flow through drying oven at 120 - 150°F (48.9 - 65.5°C) for 2 hours followed by curing at 300°F (148.9°C) as specified in Table 15. The samples were flipped over after about

30 minutes and 60 minutes to aid in maintaining even drying. When curing was completed the samples were conditioned for 60 minutes in 60 - 80°F water then dried.

Examples 48-62

Example wipes 48-62 were made in accordance with General Procedure III at the conditions specified in Table 15, and subsequently analyzed for wet out, absorptivity, tensile strength, tear strength, and dry wiping properties. The test results are presented in Tables 16 - 17. Examples 48 - 62 each contained 0.1 g "Orcobrite Yellow 2GN 9000" (a yellow pigment, available from Organic Dyestuffs, Corp.).

Table 15

.	Ex.#	Description	Cure Conditions	% Coating Loss During Conditioning	Conditioned Coat Wt. (g/m²)
•• "	48	Polyacrylic Acid, pH=3.0, COMPARATIVE	2 HR 120°F (48.9°C)/ 5 MIN 300°F (148.9°C)	4	40.5
	49	Airvol 165 (polyvinyl alcohol), pH=3.0, COMPARATIVE	2 HR 120°F (48.9°C)/ 5 MIN 300°F (148.9°C)	1	48.4
	50	l part Polyacrylic acid/ 2 parts Airvol 165, pH=3.0	2 HR 120°F (48.9°C)/ 5 MIN 300°F (148.9°C)	0	49.5
	51	l part Polyacrylic acid/ 3 parts Airvol 165, pH=3.0	2 HR 120°F (48.9°C)/ 5 MIN 300°F (148.9°C)	0	48.2
	52	l part Polyacrylic acid/ 5 parts Airvol 165, pH=3.0	2 HR 120°F (48.9°C)/ 5 MIN 300°F (148.9°C)	0	56.9
	53	1 part Polyacrylic acid/ 10 parts Airvol 165, pH=3.0	2 HR 120°F (48.9°C)/ 5 MIN 300°F (148.9°C)	0	58.5
	54	1 part Polyacrylic acid/ 99 parts Airvol 165, pH=3.5	2 HR 150°F (65.6°C)/ 5 MIN 300°F (148.9°C)	0	52.4
	55	1 part Polyacrylic acid/ 99 parts Airvol 165, pH=3.5	2 HR 150°F (65.6°C)/ 15 MIN 300°F (148.9°C)	0	51.6
	56	l part Polyacrylic acid/ 99 parts Airvol 165, pH≈3.5	2 HR 150°F (65.6°C)/ 25 MIN 300°F (148.9°C)	0	55.4
	57	0.1 part Polyacrylic acid/ 99 parts Airvol 165, pH=3.5	2 HR 150°F (65.6°C)/ 5 MIN 300°F (148.9°C)	1	49.5
	58	0.5 part Polyacrylic acid/ 99 parts Airvol 165, pH=3.5	2 HR 150°F (65.6°C)/ 5 MIN 300°F (148.9°C)	1	53.5

Ex.#	Description	Cure Conditions	<pre>% Coating Loss During Conditioning</pre>	Conditioned Coat Wt. (g/m²)
59	l part Polyacrylic acid/ 99 parts Airvol 165, pH=3.5	2 HR 150°F (65.6°C)/ 5 MIN 300°F (148.9°C)	0	55.4
60	l part Polyacrylic acid/ 99 parts Airvol 165, pH=4.0	2 HR 150°F (65.6°C)/ 5 MIN 300°F (148.9°C)	0	49.7
61	1 part Polyacrylic acid/ 99 parts Airvol 165, pH=4.6	2 HR 150°F (65.6°C)/ 5 MIN 300°F (148.9°C)	0	52.3
62	l part Polyacrylic acid/ 99 parts Airvol 165, pH=3.3	2 HR 150°F (65.6°C)/ 5 MIN 300°F (148.9°C)	1	48.3

Table 16

Ex. #	Tensile Strength Machine Direction (KPa)	Tensile Strength Cross Web Direction (KPa)	Elmendorf Tear Test (Machine Direction)	Elmendori Tear Test (Cross Web Direction)	% H ₂ O Loss
48	1910	1014	65	73	11
49	3054	2240	53	90	11
50	2937	2420	. 54	100+	10
51	3296	2117	74	86	- 11
52	2379	1751	87	100+	11
53	2779	1813	81	82	13
54	2772	2737	. 79	100+	18
55	2958	2565	77	100+	20
56	2854	2399	. 79	90	21
57	2758	2365	91	100+	16
58	2523	2324	88	100+	18
59	2723	2461	85	100+	20
60	2737	2392	89	100+	22
61	2785	2358	87	100+	22
62	2909	2275	90	100+	19

Table 17

Ex.#	Total H ₂ O Abs. (g/ft ²)	H ₂ O Abs./Dry Wt. (g/g)	Eff. H ₂ O Abs. (g/ft ²)
48	175.7	9.70	105.2
49	137.7	7.70	98.9
50	142.7	7.63	101.1
51	139.4	7.27	94.5
52	126.2	6.13	84.9
53	136.3	6.67	96.3
54	158.7	7.78	114.0
55	157.0	8.03	111.4
56	156.0	7.46	111.1
. 57	148.6	7.41	105.0
58	159.7	7.86	115.3
59	160.9	8.31	116.7
60	158.7	8.55	116.1
61	162.1	8.21	118.3
62	150.8	7.76	108.7

Example 63

10

20

25

55

This example demonstrated the preparation of a bactericidal wipe based on iodine and a polyvinyl alcohol/polyiodide complex, and made in accordance with General Procedure III. A solution of 1.2 g potassium iodide, 0.64 g iodine crystals, and 50 g water was prepared. This solution was coated onto a sample of 1.2 polyacrylic acid/polyvinyl alcohol wipe prepared as in General Procedure III above. Initially, a brown color was observed where the sample had been treated. The brown color gradually changed to blue characteristic of the polyvinyl alcohol/polyiodide complex. When rinsed with water iodine color and odor were plainly evident.

General Procedure IV for Preparing Inventive Articles

A 12 by 15 inch (30.48 x 38.1 cm) piece of polyvinyl alcohol/rayon (45% polyvinyl alcohol fiber having a denier of 1.5 and a length of 1.5 in (3.81 cm) purchased from Kuraray KK, and 55% rayon fiber having a denier of 1.5 and a length of 1.56 inch (3.96 cm) purchased from BASF) blended nonwoven fiber substrate (thickness = 56 mil (0.142 cm), basis weight 11.5 g/ft² (123.8 g/cm²), prepared using a web making machine known under the trade designation "Rando-Webber") was placed in a pan and saturated with 200 g of an aqueous binder precursor solution containing 5.00 g total polyvinyl alcohol. "Airvol 165" (a 99.8% hydrolyzed polyvinyl alcohol, MW = 110,000, DP = 2500 obtained from Air Products) was used in combination with syndiotactic polyvinyl alcohol prepared in Example 64 to comprise the polyvinyl alcohol content in Examples 65 - 91. The binder precursor solutions may also have contained optional crosslinker(s), and pH modifiers depending on the Example. The sample and tray were placed in a flow through drying oven at 120 - 50°F (48.9-65.6°C) for 3 to 4 hours as specified. The samples were flipped over after about 30 minutes and 60 minutes to aid in maintaining even drying. When curing was completed the samples were conditioned for 60 minutes in 60 - 80°F (15.6 - 26.7°C) water then dried. Samples were then analyzed for wet out, absorptivity, tensile strength, tear strength, and dry wiping properties, with the results reported in Tables 18 - 27.

Example 64: Preparation of Syndiotactic PVA

This example illustrated the preparation of syndiotactic polyvinyl alcohol employed in Examples 65 - 91.

The polyvinyl trifluoroacetate (PVTFA) copolymer described above (300 g) was dissolved in 700 g acetone. This solution was slowly added to 1700 g of 10% methanolic ammonia that had been cooled in ice to 15°C. Despite vigorous mechanical stirring a large ball of solid material formed on the stirrer blade making stirring ineffective. After addition was complete the ball of material was broken up by hand and the mixture was shaken vigorously. The process was

repeated twice more (elapsed time was about 3 hr). The divided mass was vigorously mechanically stirred for 20 minutes and allowed to stand at room temperature overnight.

The supernatant liquid was decanted off leaving a mixture of white powder and yellow fibrils. The solids were collected by filtration and spread in a tray at 15.6°C to evaporate residual solvent. The solids were collected when constant weight over 2 hr was achieved. The solid was chopped in a blender to give 87.3 g of beige powder, 92% yield, referred to hereinafter as "Syn". Analysis of this material was carried out using IR and 'H NMR spectroscopy, and Gel Permeation Chromatography. The results indicated the likely presence of traces of trifluoroacetate esters and salts. The triad syndiotacticity measured by ¹H NMR in DMSO-d₆was 33%, atacticity = 50%, isotacticity = 17%, The difference between the hydrolyzed polymer and the trifluoroacetate precursor polymer may be due to acid catalyzed epimerization of hydroxyl groups during drying or solution in boiling water.

Examples 65 - 70

Examples 65 - 70 illustrated the advantages of employing syndiotactic polyvinyl alcohol alone or in blends with atactic polyvinyl alcohol in wiping articles according to the invention. The articles were prepared at an initial coating weight of 5 g total PVA/200 g solution. Curing conditions were 4 hr at 48.9°C.

Tah	ĺ۵	1	2

			Table 10			
Ex. #	Description	Tensile Strength Machine Direction (KPa)	Tensile Strength Cross Direction (KPa)	% Coating Weight Loss During Conditioning	Elmendorf Tear Machine Direction	Elmendorf Teal Cross Direction
65	100% AIRVOL 165	2061	1131	10.1	63(5)	95(7)
66	99% AIRVOL 165:1% Syn	2186	1496	8.9	79(2)	100+
67	95% AIRVOL 165:5% Syn	2027	1427	8.4	74(7)	89(0)
68	90% AIRVOL 165:10% syn	2475	1799	7.8	75(4)	86(7)
69	80% AIRVOL 165:20% Syn	2109	1510	6.2	100+	95(4)
70	100% Syn	2661	1979	5.5	. 100+	91(0)

Table 19

Ex. #	Description	Wet Out (sec)	% Water Loss	Total Water Absorption (g/. ft ²)	Water Absorption/ Dry wt. of Sample (g/g)	Effective Water Absorption (g/ ft ²)
65	100% AIRVOL 165	0	17.4	134.52	7.92	99.60
66 ·	99% AIRVOL 165:1 % Syn	0	20.0	150.09	8.38	112.50
67	95% AIRVOL 165:5 % Syn	0	15.0	136.17	7.81	99.90
68	90% AIRVOL 165:10 % Syn	0	14.8	130.50	7.63	95.40
69	80% AIRVOL 165:20 % Syn	0	15.8	131.58	7.14	94.80

Table 19 (continued)

Ex. #	Description	Wet Out (sec)	% Water Loss	Total Water Absorption (g/ ft ²)	Water Absorption/ Dry wt. of Sample (g/g)	Effective Water Absorption (g/ ft ²)
70	100% Syn	2	16.8	143.25	7.33	106.71

Examples 71 - 83

15

50

These examples demonstrated the use of syndiotactic polyvinyl alcohol with chemical crosslinkers (Tyzor LA and/ or glyoxal) in wiping articles according to the invention. Curing conditions were 3.5 hr at 150°F (65.5°C). Mole % crosslinking amounts for Tyzor LA were based on four bonds between titanium and polyvinyl alcohol. Mole % crosslinking amounts for glyoxal were based on four bonds between glyoxal and polyvinyl alcohol.

Ex. #	Description	Wet Out (sec)	0/ 14/-1-1			
	j.	wet out (sec)	% Water Loss	Total Water Absorption (g/ ft ²)	Water Absorption/ Dry wt. of Sample (g/g)	Effective Wa Absorption ft ²)
71	1% Blend of Syn in Airvol 165 with 20 mol% Tyzor LA crosslinking	0	25.1	129.2	8.65	119.49
72	1% Blend of Syn in Airvol 165 with 20 mol% Tyzor LA crosslinking	0	20.1	137.4	8.12	117.36
73	5% Blend of Syn in Airvol 165 with 20 mol% Tyzor LA crosslinking	0	16.9	134.7	7.71	106.92
74	5% Blend of Syn in Airvol 165 with 20 mol% Tyzor LA crosslinking	0	17.8	135.2	7.62	108.00
75	10% Blend of Syn in Airvol 165 with 20 mol% Tyzor LA crosslinking	0	21.7	128.4	7.96	110.28

Table 21

				Table			
5 .	Ex. #	Description	Wet Out (sec)	% Water Loss	Total Water Absorption (g/	Water Absorption/Dry	Effective Water Absorption (g/
3					ft ²)	wt. of Sample (g/ g)	ft²)
	· 76	10% Blend of Syn in Airvol	0	18.2	133.8	7.70	108.2
10	*.	165 with 20 mol% Tyzor	f		(¥)		
		LA crosslinking					
15	77	1% Blend of Syn in Airvol 165 with 40 mol% Glyoxal	0.	15.6	137.8	8.42	107.7
		crosslinking					
20	78	1% Blend of Syndiotactic in Airvol 165 with	0	17,	139.4	8.58	111.4
25		40 mol% Tyzor Glyoxal crosslinking	*				
	79	5% Blend of Syndiotactic in Airvol 165 with	0 .	15.8	145.4	8.35	114.7
30		40 mol% Glyoxal crosslinking			'		£1.
35	80	5% Blend of Syndioactic in Airvol 165 with 40 mol% Glyoxal crosslinking	0	17.3	139.7	8.80	113.3
40	81	10% Blend of Syndioactic in Airvol 165 with 40 mol% Glyoxal crosslinking	0	11.2	139.4	8.40	107.1
45 50	82	10% Blend of Syndioactic in Airvol 165 with 40 mol% Glyoxal crosslinking	0	16.9	154.8	8.30	122.3
	83	10% Blend of Syndioactic in Airvol 165	0	13.1	141.9	7.46	105.2

Table 22

Ex.#	Description	Tensile Strength Machine Direction (KPa)	Tensile Strength Cross Direction (KPa)	% Coating Weight Loss During Conditioning
71	1% Blend of Syn in Airvol 165 with 20 mol% Tyzor LA crosslinking	2158	2082	4.3
72	1% Blend of Syn in Airvol 165 with 20 mol% Tyzor LA crosslinking	2971	1724	4.2
73	5% Blend of Syn in Airvol 165 with 20 mol 5 Tyzor LA crosslinking	2572	2199	4.4
74	5% Blend of Syn in Airvol 165 with 20 mol% Tyzor LA crosslinking	2737	1979	4.5

		Table 2	3	with the second second
Ex.#	Description	Tensile Strength Machine Direction (KPa)	Tensile Strength Cross Direction (KPa)	%Coating Weight Loss During Conditioning
75	10% Blend of Syn in Airvol 165 with 20 mol% Tyzor LA crosslinking	2475	1944	5.1
76	10% Blend of Syn in Airvol 165 with 20 mol% Tyzor LA crosslinking	2910	2240	4.8
77	1% Blend of Syn in Airvol 165 with 40 mol% Glyoxal crosslinking	2820	1889	5.1
78	1% Blend of Syndioactic in Airvol 165 with 40 mol% Glyoxal crosslinking	2351		3.5
79	5% Blend of Syndioactic in Airvol 165 with 40 mol% Glyoxal crosslinking	2482	2006	3.2
80	5% Blend of Syndioactic in Airvol 165 with 40 mol% Glyoxal crosslinking	2199	1841	3.5
81	10% Blend of Syndioactic in Airvol 165 with 40 mol% Glyoxal crosslinking	2227	1696	3.5
82	10% Blend of Syndioactic in Airvol 165 with 40 mol% glyoxal crosslinking	2379	1786	3.0

Table 23 (continued)

Ex.#	Description	Tensile Strength Machine Direction (KPa)	Tensile Strength Cross Direction (KPa)	%Coating Weight Loss During Conditioning
83	10% Blend of Syndioactic in Airvol 165	2365	1696	1.8

Examples 84 - 86

10

20

25

35

45

50

Examples 84 - 86 demonstrated the effect of coat weight on wiping parameters of articles made in accordance with General Procedure IV. A binder precursor solution consisting only of 30% syndiotactic PVA was coated onto nonwoven substrates at various coating weights (i.e., Ig, 2g, 5g total PVA in coating solution) as indicated in Tables 24 and 25, which also present the absorbency and strength test results.

Table 24

	**					
Ex. #	Description	Tensile Strength Machine Direction (KPa)	Tensile Strength Cross Direction (KPa)	% Weight Loss During Conditioning	Elmendorf Tear Machine Direction	Elmendorf Tear Cross Direction
84	5g:100% Syn	2661 ± 117	1979 ± 69	5.5	100+	91 ± 0
.85	2g: 100% Syn	2006 ± 131	1351 ± 34	3.3	75 ± 6	96 ± 2
86	1g: 100% Syn	1441 ± 138	1186 ± 89	2.9	84 ± 9	100+

Table 25

Ex. #	Description	Wet Out (sec)	% Water Loss	Total Water Absorption (g/ ft ²)	Water Absorption/ Dry wt. of Sample (g/g)	Effective Water Absorption (g/ ft ²)
84	5g: 100% Syn	2	16.8	143.25	7.33	106.71
85	2g: 100% Syn	0	18.2	146.31	8.31	116.40
86	1g: 100% Syn	0	20.5	157.68	10.43	127.62

Examples 87 - 89

Examples 87 - 89 demonstrated the results of direct ammonolysis of polyvinyl trifluoroacetate after the binder precursor solutions was coated on the nonwoven substrate. The absorbency and strength of these articles (Tables 26 and 27) were superior to those of 30% syndiotactic polyvinyl alcohol coated from water described in the preceding examples. One explanation of the benefits observed is that acid catalyzed loss of syndiotacticity was minimized by use of this method which probably provided greater surface area for ammonolysis.

Table 26

Ex. #	Description	Tensile Strength Machine Direction (KPa)	Tensile Strength Cross Direction (KPa)	% Weight Loss During Conditioning
. 87	16g PVTFA/ ammonolyzed (5 g PVA)	3744	3041	0

Table 26 (continued)

Ex. #	Description	Tensile Strength Machine Direction (KPa)	Tensile Strength Cross Direction (KPa)	% Weight Loss During Conditioning
88	6.5 g PVTFA/ ammonolyzed (2 g PVA)	2544	2082	0
89	3.2 g PVTFA/ ammonolyzed (1 g PVA)	1551	1165	0

Table 27

Ex. #	Description	Wet Out (sec)	% Water Loss	Total Water Absorption (g/ ft ²)	Water Absorption/ Dry wt. of Sample (g/g)	Effective Water Absorption (g/ ft ²)
87	16g PVTFA/ ammonolyzed (5 g PVA)	0	22.5	114.4	5.86	81.5
88	6.5 g PVTFA/ ammonolyzed (2 g PVA)	0	23.0	143.2	7.90	107.6
89	3.2 g PVTFA/ ammonolyzed (1 g PVA)	0	30.1	166.2	9.82	134.1

Example 90

10

15

20

25

30

35

40

45

50

55

This example demonstrated the preparation of a bactericidal wipe based on iodine and the polyvinyl alcohol/polyiodide complex utilizing General Procedure IV. A solution of 1.2 g potassium iodide, 0.64 g iodine crystals, and 50 g water was prepared. This solution was coated onto a sample of a wipe as prepared in Examples 84 - 86. Initially, a brown color was observed where the sample had been treated: The brown color gradually changed to blue characteristic of the polyvinyl alcohol/polyiodide complex. When rinsed with water iodine color and odor were plainly evident.

Example 91

A sample containing 5 g 30% syndiotactic PVA as the only binder component in 200 g total solution was prepared and coated as in Examples 84 - 86 containing 0.1 g "Orcobrite Blue 2GN" pigment (Organic Dyestuffs Corp., Concord, NC). The sample was cured at 250°F (121°C) for 2 hours. The sample discolored slightly and had a strong odor, but was colorfast after conditioning in luke-warm water for 2 hours.

Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope of the claims, and it should be understood that the claims are not to be unduly limited to the illustrated embodiments set forth herein.

Claims

- 1. An absorbent nonwoven article characterized by:
 - (a) a nonwoven web comprised of organic fibers, said organic fibers comprised of polymers having a plurality of pendant hydroxyl groups; and
 - (b) a binder comprising a crosslinked and at least partially hydrolyzed polymeric resin having a plurality of pendant resin hydroxyl groups, and a crosslinking agent, the resin crosslinked by the crosslinking agent, the

crosslinking agent selected from the group consisting of organic titanates and amorphous metal oxides, the polymeric resin derived from the copolymerization of first and second monomers, said first monomer selected from the group consisting of monomers within the general formula

R²

|
R¹—C=C—R³

|
X

15 wherein:

10

20

25

30

X is Si(OR4OR5OR6);

said second monomer selected from the group consisting of monomers within the general formula

R²
|
R¹—C=C—R¹
|
Y

wherein:

Y is O(CO)R7; and

R¹, R², R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from the group consisting of hydrogen and organic radicals having from 1 to about 10 carbon atoms.

- 2. An absorbent article in accordance with claim 1 further characterized by said binder being bonded to at least a portion of the organic fibers through bonds between the pendant fiber hydroxyl groups, a bonding agent, and said pendant resin hydroxyl groups, wherein said crosslinking agent and said bonding agent are independently selected from the group consisting of organic titanates and amorphous metal oxides.
- 40 3. An absorbent article in accordance with claim 1 further characterized by said organic titanate being selected from the group consisting of titanium salts of chelating organic acids, titanium complexes with betadiketones, titanium complexes with tri(hydroxyalkyl)amines, dihydroxybis(ammonium lactato) titanium, and titanium complexes with alpha-hydroxy organic acids and alditols.
- 4. An absorbent article in accordance with claim 1 further characterized by said organic fibers being selected from the group consisting of cotton, viscose rayon, cuprammonium rayon, polyesters, polypropylene, polyvinyl alcohol, and combinations thereof.
- An absorbent article in accordance with claim 1 further characterized by X being selected from the group consisting of Si(OCH₃)₃ and O(CO)CH₃.
 - 6. An absorbent article in accordance with claim 1 further characterized by said amorphous metal oxide is amorphous aluminum hydrous oxide.
- 55 7. An absorbent nonwoven article characterized by
 - (a) a nonwoven web comprised of a plurality of organic fibers comprising polymers having a plurality of fiber pendant hydroxyl at least major portion of said polymers being at least partially hydrolyzed polymerized mon-

omers selected from the group consisting of monomers within the general formula

wherein:

15

20

25

30

35

40

45

50

55

X is $O(CO)R^7$, and R^1 - R^3 inclusive and R^7 are independently selected from the group consisting of hydrogen and organic radicals having from 1 to about 10 carbon atoms, inclusive, and combinations thereof; and

- (b) a binder coating at least a portion of said fibers, said binder consisting essentially of polyvinyl alcohol insolubilized with an effective amount of a polymeric polycarboxylic acid.
- 8. An absorbent article in accordance with claim 7 further characterized by all of said polymers being at least partially hydrolyzed polymerized monomers selected from the group consisting of monomers within the general formula

$$R^{1}-C=C-R^{2}$$

wherein X is $O(CO)R^7$, and R^1-R^3 inclusive and R^7 are independently selected from the group consisting of and organic radicals having from 1 to about 10 carbon atoms, inclusive, and combinations thereof.

- 9. An absorbent article in accordance with claim 8 further characterized by said polyvinyl alcohol being at least partially crosslinked by a crosslinking agent, said crosslinking agent selected from the group consisting of organic titanates and dialdehydes.
- 10. An absorbent article in accordance with claim 9 further characterized by said polyvinyl alcohol being bonded to at least a portion of said fibers through bonds between said pendant hydroxyl groups on said fibers and a bonding agent, said bonding agent independently selected from the group consisting of organic titanates and dialdehydes.
 - 11. An absorbent article in accordance with claim 9 further characterized by said organic titanate being selected from the group consisting of titanium salts of chelating organic acids, titanium complexes with beta diketones, titanium complexes with tri(hydroxyalkyl)amines, dihydroxybis(ammonium lactato) titanium, and titanium complexes with alpha-hydroxy organic acids and alditols.
- 12. An absorbent article in accordance with claim 7 further characterized by said polymeric polycarboxylic acid being selected from the group consisting of polyacrylic acid; polymethacrylic acid; copolymers of acrylic acid, methacrylic acid and maleic acid; and vinyl methyl ether/maleic anhydride copolymer.
- 13. An absorbent article in accordance with claim 7 further characterized by said nonwoven web having a major portion of fibers selected from the group consisting of cotton, viscose rayon, cuprammonium rayon, polyesters, polypropylene, polyvinyl alcohol, and combinations thereof.
- 14. An absorbent nonwoven article characterized by:
 - (a) a nonwoven web comprised of organic fibers, said organic fibers comprised of polymers having a plurality of pendant hydroxyl groups, and
 - (b) a binder coated onto at least a portion of said fibers, said binder comprising syndiotactic polyvinyl alcohol having a plurality of hydroxyl groups, said syndiotactic polyvinyl alcohol having a syndiotacticity of said hydroxyl groups of at least 30%.

15. An absorbent article in accordance with claim 14 further characterized by said binder being an unhydrolyzed polymer derived from monomers selected from the group consisting of monomers within the general formula

wherein:

. 10

15

20

30

35

40

50

X is selected from the group consisting of Si(OR4OR5OR6) and O(CO)R7; and R1-R7 inclusive are independently selected from the group consisting of hydrogen and organic radicals having from 1 to about 10 carbon atoms, inclusive, and combinations thereof.

- 16. An absorbent article in accordance with claim 14 further characterized by said syndiotactic polyvinyl alcohol being bonded to at least a portion of said organic fibers through bonds between said pendant hydroxyl groups on said fibers, a bonding agent, and said pendant hydroxyl groups on said syndiotactic polyvinyl alcohol, said bonding agent selected from the group consisting of organic titanates and dialdehydes.
- 17. An absorbent article in accordance with claim 14 further characterized by said syndiotactic polyvinyl alcohol being at least partially crosslinked by a crosslinking agent selected from the group consisting of organic titanates and dialdehydes.
- 18. An absorbent article in accordance with claim 15 further characterized by said syndiotactic polyvinyl alcohol being at least partially crosslinked by a crosslinking agent selected from the group consisting of organic titanates and dialdehydes.
 - 19. An absorbent article in accordance with claim 14 further characterized by said web including fibers derived from materials selected from the group consisting of cotton, viscose rayon, cuprammonium rayon, polyesters, polypropylene, and combinations thereof.
 - 20. A method of making an absorbent nonwoven article comprised of a nonwoven web of fibers, at least a portion of the fibers having a binder coated thereon, the method characterized by the steps of:
 - (a) forming an open lofty, three-dimensional nonwoven web comprised of organic fibers, said organic fibers comprised of polymers having a plurality of pendant hydroxyl groups;
 - (b) entangling the fibers of the web using means for entanglement to form an entangled fiber web;
 - (c) coating a major portion of the fibers of the entangled fiber web with a binder precursor composition to form a first coated web having first and second major surfaces, said binder precursor composition comprising an at least partially crosslinked and at least partially hydrolyzed polyvinyl alcohol resin and a crosslinking agent, said crosslinking agent selected from the group consisting of organic titanates, dialdehydes, and amorphous metal oxides, said resin derived from the copolymerization of first and second monomers, said first monomer selected from the group consisting of monomers within the general formula

R²
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

wherein: X is Si(OR4OR5OR6), said second monomer selected from the group consisting of monomers within the general formula

wherein:

10

15

20

25

35

40

50

55

Y is O(CO)R7.

R¹, R², R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from the group consisting of hydrogen and organic radicals having from 1 to about 10 carbon atoms; and

(d) exposing the first coated web to energy sufficient to at least partially cure the binder precursor composition to form a nonwoven bonded web of fibers.

21. Method in accordance with claim 20 further characterized by a step before step (c) in which the entangled fiber web is calendered.

22. Method in accordance with claim 20 further characterized by a step after step (c) in which the first coated web is coated on at least one of said first and second major surfaces with a second binder precursor composition.

- 23. Method in accordance with claim 22 further characterized by said exposing step including drying said second binder precursor composition uniformly to form a dried and cured nonwoven web having a surface coating.
- 24. Method in accordance with claim 22 further characterized by said dried and cured nonwoven web being calendered thereby smoothing and fusing said surface coating.
 - 25. A method of making an absorbent nonwoven article comprised of a nonwoven web of fibers, at least a portion of the fibers having a binder coated thereon, the method characterized by the steps of:
 - (a) forming a nonwoven web comprised of a plurality of organic fibers comprising polymers having a plurality of pendant fiber hydroxyl groups, a major portion of the polymers comprising polyvinyl alcohol;
 - (b) entangling the fibers of the web using means for entanglement to form an entangled fiber web;
 - (c) coating a major portion of the fibers of the entangled fiber web with a binder precursor composition to form a first coated web having first and second major surfaces, the binder precursor composition consisting essentially of polyvinyl alcohol and an effective amount of a polymeric polycarboxylic acid; and
 - (d) exposing the first coated web to energy sufficient to insolubilize the polyvinyl alcohol resin to form a non-woven bonded web of fibers.
- 26. A method of making an absorbent nonwoven article comprised of a nonwoven web Of fibers, at least a portion of the fibers having a binder coated thereon, the method characterized by the steps of:
 - (a) forming a nonwoven web comprised of organic fibers, said organic fibers comprised of polymers having a plurality of pendant hydroxyl groups;
 - (b) entangling the fibers of the web using means for entanglement to form an entangled fiber web;
 - (c) coating a major portion of the fibers of the entangled fiber web with a binder precursor composition to form a first coated web having first and second major surfaces, said binder precursor composition comprising syndiotactic polyvinyl alcohol having a syndiotacticity of at least 30%; and
 - (d) exposing the first coated web to energy sufficient to at least partially cure the binder precursor composition to form a nonwoven bonded web of fibers.
 - 27. An absorbent nonwoven article characterized by:

(a) a nonwoven web comprised of organic fibers and a binder, said organic fibers consisting of rayon; and (b) a binder comprising a crosslinked and at least partially hydrolysed polymeric resin having a plurality of pendant resin hydroxyl groups, and a crosslinking agent, the resin crosslinked by the crosslinking agent, the crosslinking agent selected from the group consisting of organic titanates and amorphous metal oxides, the polymeric resin derived from the copolymerization of first and second monomers, said first monomer selected from the group consisting of monomers within the general formula

wherein:

5

10

15

20

25

35

40

45

50

55

X is Si(OR4OR5OR6),

said second monomer selected from the group consisting of monomers within the general formula

wherein

Y is O(CO)R⁷, R¹, R², R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from the group consisting of hydrogen and organic radicals having from 1 to about 10 carbon atoms.

Patentansprüche

- 1. Saugfähiges Vliesmaterial, gekennzeichnet durch:
 - (a) einen organische Fasern umfassenden Vliesstoff, wobei die organischen Fasern Polymere umfassen, die mehrere Hydroxylseitengruppen aufweisen; und
 - (b) ein Bindemittel, umfassend ein vernetztes und wenigstens teilweise hydrolysiertes Polymerharz mit mehreren Hydroxylseitengruppen am Harz und ein Vernetzungsmittel, wobei das Harz durch das Vernetzungsmittel vernetzt ist und das Vernetzungsmittel gewählt ist aus der Gruppe bestehend aus organischen Titanaten und amorphen Metalloxiden und das Polymerharz abgeleitet ist von der Copolymerisation von ersten und zweiten Monomeren, wobei das erste Monomer gewählt ist aus der Gruppe, bestehend aus Monomeren der allgemeinen Formel

X Si(OR4OR5OR6) darstellt;

und das zweite Monomer gewählt ist aus der Gruppe bestehend aus Monomeren der allgemeinen Formel

$$R^{1} - C = C - R^{3}$$

wobei:

15

20

25

40

45

50

55

Y O (CO)R⁷ darstellt; und R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ unabhängig voneinander gewählt sind aus der Gruppe bestehend aus Wasserstoffatomen und organischen Resten mit 1 bis etwa 10 Kohlenstoffatomen.

- 2. Saugfähiges Material nach Anspruch 1, weiterhin dadurch gekennzeichnet, daß das Bindemittel wenigstens an einen Teil der organischen Fasern über Bindungen zwischen den Hydroxylseitengruppen der Fasern, einem Haftmittel und den Hydroxylseitengruppen des Harzes gebunden ist, wobei das Vernetzungsmittel und das Haftmittel unabhängig voneinander gewählt sind aus der Gruppe, bestehend aus organischen Titanaten und amorphen Metalloxiden.
- 3. Saugfähiges Material nach Anspruch 1, weiterhin dadurch gekennzeichnet, daß die organischen Titanate gewählt sind aus der Gruppe bestehend aus Titansalzen von chelatisierenden organischen Säuren, Titankomplexen mit B-Diketonen, Titankomplexen mit Tri(hydroxyalkyl)aminen, Dihydroxybis(ammoniumlactat)titan und Titankomplexen mit organischen α-Hydroxysäuren und Alditolen.
- Saugfähiges Material nach Anspruch 1, weiterhin dadurch gekennzeichnet, daß die organischen Fasern gewählt sind aus der Gruppe bestehend aus Baumwolle, Viskoserayon, Kupferrayon, Polyestern, Polypropylen, Polyvinylalkohol und Kombinationen davon.
 - 5. Saugfähiges Material nach Anspruch 1, weiterhin dadurch gekennzeichnet, daß X gewählt ist aus der Gruppe bestehend aus Si(OCH₃)₃ und O(CO)CH₃.
- 35 6. Saugfähiges Material nach Anspruch 1, weiterhin dadurch gekennzeichnet, daß das amorphe Metalloxid amorphes wäßriges Aluminiumoxid ist.
 - 7. Saugfähiges Vliesmaterial, gekennzeichnet durch:
 - (a) einen Vliesstoff, umfassend mehrere organische Fasern, die Polymere umfassen, und die mehrere Hydroxylseitengruppen an den Fasern aufweisen, wobei ein Hauptteil der Polymere wenigstens aus teilweise hydrolysierten polymerisierten Monomeren besteht, gewählt aus der Gruppe bestehend aus Monomeren der allgemeinen Formel

wobei:

XO(CO)R⁷ ist und R¹ bis einschließlich R³, und R⁷ unabhängig voneinander gewählt sind aus der Gruppe bestehend aus Wasserstoffatomen und organischen Resten mit 1 bis etwa 10 Kohlenstoffatomen einschließlich und Kombinationen davon; und (b) einem Bindemittel, das wenigstens einen Teil der Fasern bedeckt, wobei das Bindemittel im wesentlichen aus Polyvinylalkohol, der mit einer wirksamen Menge an polymeren Polycarbonsäuren unlöslich gemacht ist,

besteht.

5

10

20

25

30

35

40

45

8. Saugfähiges Material nach Anspruch 7, weiterhin dadurch gekennzeichnet, daß alle Polymere wenigstens aus teilweise hydrolysierten polymerisierten Monomeren bestehen, die gewählt sind aus der Gruppe bestehend aus Monomeren der allgemeinen Formel

wobei X O(CO)R⁷ und R¹ bis einschließlich R³, und R⁷ unabhängig voneinander gewählt sind aus der Gruppe bestehend aus Wasserstoffatomen und organischen Resten mit 1 bis einschließlich etwa 10 Kohlenstoffatomen und Kombinationen davon.

- 9. Saugfähiges Material nach Anspruch 8 weiterhin dadurch gekennzeichnet, daß der Polyvinylalkohol wenigstens teilweise durch ein Vernetzungsmittel vernetzt ist, wobei das Vernetzungsmittel gewählt ist aus der Gruppe bestehend aus organischen Titanaten und Dialdehyden.
- 10. Saugfähiges Material nach Anspruch 9, weiterhin dadurch gekennzeichnet, daß der Polyvinylalkohol wenigstens an einen Teil der Fasern über Bindungen zwischen den Hydroxylseitengruppen der Fasern und einem Haftmittel gebunden ist, wobei das Haftmittel unabhängig gewählt ist aus der Gruppe bestehend aus organischen Titanaten und Dialdehyden.
- 11. Saugfähiges Material nach Anspruch 9, weiterhin dadurch gekennzeichnet, daß die organischen Titanate gewählt sind aus der Gruppe bestehend aus Titansalzen von chelatisierenden organischen Säuren, Titankomplexen mit 8-Diketonen, Titankomplexen mit Tri(hydroxyalkyl)aminen, Dihydroxybis(ammoniumlactat)titan und Titankomplexen mit organischen α-Hydroxysäuren und Alditolen.
- 12. Saugfähiges Material nach Anspruch 7, weiterhin dadurch gekennzeichnet, daß die polymeren Polycarbonsäuren gewählt sind aus der Gruppe bestehend aus Polyacrylsäure; Polymethacrylsäure; Copolymeren der Acrylsäure, Methacrylsäure und Maleinsäure; und Vinylmethylether/Maleinsäureanhydrid-Copolymer.
- 13. Saugfähiges Material nach Anspruch 7, weiterhin dadurch gekennzeichnet, daß der Vliesstoff einen Hauptteil an Fasern aufweist, gewählt aus der Gruppe bestehend aus Baumwolle, Viskoserayon, Kupferrayon, Polyestern, Polypropylen, Polyvinylalkohol und Kombinationen davon.
- 14. Saugfähiges Vliesmaterial, gekennzeichnet durch:
 - (a) einen Vliesstoff, umfassend organische Fasern, wobei die organischen Fasern Polymere mit mehreren Hydroxylseitengruppen umfassen; und
 - (b) einem Bindemittel, mit dem wenigstens ein Teil der Fasern überzogen ist, wobei das Bindemittel syndiotaktischen Polyvinylalkohol mit mehreren Hydroxylgruppen umfaßt und der syndiotaktische Polyvinylalkohol eine Syndiotaktizität der Hydroxylgruppen von wenigstens 30 % aufweist.
- 15. Saugfähiges Material nach Anspruch 14, weiterhin dadurch gekennzeichnet, daß das Bindemittel ein nicht-hydrolysiertes Polymer ist, abgeleitet von Monomeren, gewählt aus der Gruppe, bestehend aus Monomeren mit der allgemeinen Formel

5

10

15

20

25

30

35

40

45

50

55

X gewählt ist aus der Gruppe bestehend aus Si(OR4OR5OR6) und O(CO)R7, und R1 bis einschließlich R7 unabhängig voneinander gewählt sind aus der Gruppe bestehend aus Wasserstoffatomen und organischen Resten mit 1 bis einschließlich etwa 10 Kohlenstoffatomen und Kombinationen davon.

- 16. Saugfähiges Material nach Anspruch 14, weiterhin dadurch gekennzeichnet, daß der syndiotaktische Polyvinylalkohol wenigstens an einen Teil der organischen Fasern über Bindungen zwischen den Hydroxylseitengruppen der Fasern, einem Haftmittel und den Hydroxylseitengruppen des syndiotaktischen Polyvinylalkohols gebunden ist, wobei das Haftmittel gewählt ist aus der Gruppe bestehend aus organischen Titanaten und Dialdehyden.
- 17. Saugfähiges Material nach Anspruch 14, weiterhin dadurch gekennzeichnet, daß der syndiotaktische Polyvinylalkohol wenigstens teilweise durch ein Vernetzungsmittel gewählt aus der Gruppe bestehend aus organischen Titanaten und Dialdehyden vernetzt ist.
 - 18. Saugfähiges Material nach Anspruch 15, weiterhin dadurch gekennzeichnet, daß der syndiotaktische Polyvinylalkohol wenigstens teilweise durch ein Vernetzungsmittel gewählt aus der Gruppe bestehend aus organischen Titanaten und Dialdehyden vernetzt ist.
 - 19. Saugfähiges Material nach Anspruch 14, weiterhin dadurch gekennzeichnet, daß der Stoff Fasern einschließt, die abgeleitet sind von Materialien, gewählt aus der Gruppe bestehend aus Baumwolle, Viskoserayon, Kupferrayon, Polyestern, Polypropylen und Kombinationen davon.
 - 20. Verfahren zur Herstellung eines saugfähigen Vliesmaterials, umfassend einen Vliesstoff, wobei wenigstens ein Teil der Fasem mit einem Bindemittel beschichtet ist, und das Verfahren durch die Schritte gekennzeichnet ist:
 - (a) Bilden eines offenen, lose gesponnenen, dreidimensionalen Vliesstoffs, umfassend organische Fasern, wobei die organischen Fasern Polymere mit mehreren Hydroxylseitengruppen umfassen;
 - (b) Verflechten der Fasern des Stoffs unter Verwendung von Mitteln zur Verflechtung, um einen verflochtenen Faserstoff zu bilden;
 - (c) Beschichten eines Hauptteils der Fasern des verflochtenen Faserstoffs mit einer Bindemittelvorstufenzusammensetzung, um einen ersten beschichteten Stoff mit erster und zweiter Hauptoberfläche zu bilden, wobei die Bindemittelvorstufenzusammensetzung ein wenigstens teilweise vernetztes und wenigstens teilweise hydrolysiertes Polyvinylalkoholharz und ein Vernetzungsmittel umfaßt, wobei das Vernetzungsmittel gewählt ist aus der Gruppe bestehend aus organischen Titanaten, Dialdehyden und amorphen Metalloxiden, und das Harz abgeleitet ist von der Copolymerisation von ersten und zweiten Monomeren, wobei das erste Monomer gewählt ist aus der Gruppe bestehend aus Monomeren der allgemeinen Formel

R² | R¹-C=C-R³ | X

wobei:

X Si (OR4OR5OR6) ist,

das zweite Monomer gewählt ist aus der Gruppe bestehend aus Monomeren der allgemeinen Formel

10

25

35

40

50

55

Y O(CO)R7 ist.

- R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ unabhängig voneinander gewählt sind aus der Gruppe bestehend aus Wasserstoffatomen und organischen Resten mit 1 bis etwa 10 Kohlenstoffatomen; und
- (d) Aussetzen des ersten beschichteten Stoffs einer Energie die ausreicht, um wenigstens teilweise die Bindemittelvorstufenzusammensetzung zu härten, um einen gebundenen Vliesstoff zu bilden.
- 21. Verfahren nach Anspruch 20, weiterhin gekennzeichnet durch einen Schritt vor Schritt (c), in dem der verflochtene Faserstoff kalandriert wird.
- 22. Verfahren nach Anspruch 20, weiterhin gekennzeichnet durch einen Schritt nach Schritt (c), in dem der erste beschichtete Stoff auf wenigstens einer der ersten und zweiten Hauptoberfläche mit einer zweiten Bindemittelvorstufenzusammensetzung beschichtet wird.
 - 23. Verfahren nach Anspruch 22, weiterhin dadurch gekennzeichnet, daß der Schritt des Aussetzens das gleichförmige Trocknen der zweiten Bindemittelvorstufenzusammensetzung beeinhaltet, um einen getrockneten und gehärteten Vliesstoff mit einer Oberflächenbeschichtung zu bilden.
 - 24. Verfahren nach Anspruch 22, weiterhin dadurch gekennzeichnet, daß der getrocknete und gehärtete Vliesstoff kalandriert wird, wodurch die Oberflächenbeschichtung erweicht und geschmolzen wird.
- 25. Verfahren zur Herstellung eines saugfähigen Vliesmaterials, umfassend einen Vliesstoff, wobei wenigstens ein Teil der Fasem mit einem Bindemittel überzogen ist, wobei das Verfahren gekennzeichnet ist durch die Schritte:
 - (a) Bilden eines Vliesstoffs umfassend mehrere organische Fasern, die Polymere mit einer Mehrzahl von Hydroxylseitengruppen an der Faser umfassen, wobei ein Hauptteil der Polymere Polyvinylalkohol umfaßt;
 - (b) Verflechten der Fasern des Stoffs unter Verwendung von Mitteln zur Verflechtung, um einen verflochtenen Faserstoff zu bilden;
 - (c) Beschichten eines Hauptteils der Fasern des verflochtenen Faserstoffs mit einer Bindemittelvorstufenzusammensetzung, um einen ersten beschichteten Stoff mit erster und zweiter Hauptoberfläche zu bilden, wobei die Bindemittelvorstufenzusammensetzung im wesentlichen aus Polyvinylalkohol und einer wirksamen Menge an einer polymeren Polycarbonsäure besteht; und
 - (d) Aussetzen des ersten beschichteten Stoffs einer Energie die ausreicht, um das Polyvinylalkoholharz unlöslich zu machen, um einen gebundenen Vliesstoff zu bilden.
- 26. Verfahren zur Herstellung eines saugfähigen Vliesmaterials, umfassend einen Vliesstoff, wobei wenigstens ein Teil der Fasem mit einem Bindemittel überzogen ist, und das Verfahren gekennzeichnet ist durch die Schritte:
 - (a) Bilden eines Vliesstoffs, umfassend organische Fasern, wobei die organischen Fasern Polymere mit mehreren Hydroxylseitengruppen umfassen;
 - (b) Verflechten der Fasern des Stoffs unter Verwendung von Mitteln zur Verflechtung, um einen verflochtenen Faserstoff zu bilden;
 - (c) Beschichten eines Hauptteils der Fasern des verflochtenen Faserstoffs mit einer Bindemittelvorstufenzusammensetzung, um einen ersten beschichteten Stoff mit erster und zweiter Hauptoberfläche zu bilden, wobei die Bindemittelvorstufenzusammensetzung syndiotaktischen Polyvinylalkohol mit einer Syndiotaktizität von wenigstens 30 % umfaßt; und
 - (d) Aussetzen des ersten beschichteten Stoffs einer Energie die ausreicht, um wenigstens teilweise die Bindemittelvorstufenzusammensetzung zu härten, um einen gebundenen Vliesstoff zu bilden.
 - 27. Saugfähiges Vliesmaterial, gekennzeichnet durch:

- (a) einen Vliesstoff, umfaßt von organischen Fasern und einem Bindemittel, wobei die organischen Fasern aus Rayon bestehen; und
- (b) einem Bindemittel, das ein vernetztes und wenigstens teilweise hydrolysiertes Polymerharz mit einer Mehrzahl von Hydroxylseitengruppen am Harz und ein Vernetzungsmittel umfaßt, wobei das Harz durch das Vernetzungsmittel vernetzt ist, und das Vernetzungsmittel gewählt ist aus der Gruppe bestehend aus organischen Titanaten und amorphen Metalloxiden und das Polymerharz abgeleitet ist aus der Copolymerisation von ersten und zweiten Monomeren, wobei das erste Monomer gewählt ist aus der Gruppe bestehend aus Monomeren mit der allgemeinen Formel

$$R^{1} - C = C - R^{3}$$

5

10

15

20

25

30

40

45

50

X Si(OR4OR5OR6) ist und das zweite Monomer gewählt ist aus der Gruppe bestehend aus Monomeren mit der allgemeinen Formel

$$R^{1} - C = C - R^{3}$$

wobei

Y O(CO)R7,

R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ unabhängig voneinander gewählt sind aus der Gruppe bestehend aus Wasserstoffatomen und organischen Resten mit 1 bis etwa 10 Kohlenstoffatomen.

35 Revendications

- Article non tissé absorbant caractérisé par:
 - (a) une toile non tissée composée de fibres organiques, lesdites fibres organiques étant composées de polymères ayant une pluralité de groupes hydroxyle pendants; et
 - (b) un liant comprenant une résine polymère réticulée et au moins partiellement hydrolysée ayant une pluralité de groupes hydroxyle pendants de résine, et un agent de réticulation, la résine étant réticulée par l'agent de réticulation, l'agent de réticulation étant choisi dans le groupe formé par les titanates organiques et les oxydes métalliques amorphes, la résine polymère provenant de la copolymérisation d'un premier et d'un deuxième monomères, ledit premier monomère étant choisi dans le groupe formé par les monomères ayant la formule générale:

dans laquelle:

X est Si(OR4OR5OR6);

ledit deuxième monomère étant choisi dans le groupe formé par les monomères ayant la formule générale:

dans laquelle:

5

10

15

40

45

50

55

Y est O(CO)R7; et

R¹, R², R³, R⁴, R⁵, R⁶ et R² sont indépendamment choisis dans le groupe formé par un atome d'hydrogène et les radicaux organiques ayant de 1 à environ 10 atomes de carbone.

- 2. Article absorbant selon la revendication 1, caractérisé de plus en ce que ledit liant est lié à au moins une portion des fibres organiques par l'intermédiaire de liaisons entre les groupes hydroxyle pendants de fibres, un agent de liaison, et lesdits groupes hydroxyle pendants de résine, dans lequel ledit agent de réticulation et ledit agent de liaison sont indépendamment choisis dans le groupe formé par les titanates organiques et les oxydes métalliques amorphes.
- 20 3. Article absorbant selon la revendication 1, caractérisé de plus en ce que ledit titanate organique est choisi dans le groupe formé par les sels de titane d'acides organiques chélatants, les complexes de titane avec les bétadicétones, les complexes de titane avec les tri(hydroxyalkyl)amines, le dihydroxybis(ammonium lactato)-titane et les complexes de titane avec les alpha-hydroxy acides organiques et les alditols.
- 4. Article absorbant selon la revendication 1, caractérisé de plus en ce que lesdites fibres organiques sont choisies dans le groupe formé par le coton, la rayonne de viscose, la rayonne au cuivre, les polyesters, le polypropylène, le poly(alcool vinylique) et leurs combinaisons.
- Article absorbant selon la revendication 1, caractérisé de plus en ce que X est choisi dans le groupe formé par Si
 (OCH₃)₃ et O(CO)CH₃.
 - Article absorbant selon la revendication 1, caractérisé de plus en ce que ledit oxyde métallique amorphe est l'oxyde d'aluminium hydraté amorphe.
- 35 7. Article non tissé absorbant caractérisé par:
 - (a) une toile non tissée composée d'une pluralité de fibres organiques comprenant des polymères ayant une pluralité de groupes hydroxyle pendants de fibres, une portion principale desdits polymères étant au moins des monomères polymérisés au moins partiellement hydrolysés choisis dans le groupe formé par les monomères ayant la formule générale:

dans laquelle:

X est O(CO)R⁷), et R¹ à R³ inclus et R⁷ sont indépendamment choisis dans le groupe formé par un atome d'hydrogène et les radicaux organiques ayant de 1 à environ 10 atomes de carbone, inclus, et leurs combinaisons, et

(b) un liant revêtant au moins une portion desdites fibres, ledit liant se composant essentiellement de poly (alcool vinylique) insolubilisé avec une quantité efficace d'un acide polycarboxylique polymère.

8. Article absorbant selon la revendication 7, caractérisé de plus en ce que tous lesdits polymères sont des monomères polymérisés au moins partiellement hydrolysés choisis dans le groupe formé par les monomères ayant la

formule générale:

$$R^{1}$$
 $C=C-R^{3}$

10

dans laquelle X est O(CO)R⁷), et R¹ à R³ inclus et R⁷ sont indépendamment choisis dans le groupe formé par un atome d'hydrogène et les radicaux organiques ayant de 1 à environ 10 atomes de carbone, inclus, et leurs combinaisons.

15

9. Article absorbant selon la revendication 8, caractérisé de plus en ce que ledit poly(alcool vinylique) est au moins partiellement réticulé par un agent de réticulation, ledit agent de réticulation étant choisi dans le groupe formé par les titanates organiques et les dialdéhydes.

20

10. Article absorbant selon la revendication 9, caractérisé de plus en ce que ledit poly(alcool vinylique) est lié à au moins une portion desdites fibres par l'intermédiaire des liaisons entre lesdits groupes hydroxyle pendants sur lesdites fibres et un agent de liaison, ledit agent de liaison étant indépendamment choisi dans le groupe formé des titanates organiques et des dialdéhydes.

25

11. Article absorbant selon la revendication 9, caractérisé de plus en ce que ledit titanate organique est choisi dans le groupe formé par les sels de titane d'acides organiques chélatants, les complexes de titane avec les bétadicétones, les complexes de titane avec les tri(hydroxyalkyl)-amines, le dihydroxybis(ammonium lactato)titane, et les complexes de titane avec les alpha-hydroxyacides organiques et les alditols.

30

12. Article absorbant selon la revendication 7, caractérisé de plus en ce que ledit acide polycarboxylique polymère est choisi dans le groupe formé par l'acide polyacrylique; l'acide polyméthacrylique; les copolymères d'acide acrylique, d'acide méthacrylique et d'acide maléique; et le copolymère de vinylméthyléther/anhydride maléique.

35

13. Article absorbant selon la revendication 7, caractérisé de plus en ce que ladite toile non tissée ayant une portion principale de fibres choisie dans le groupe formé par le coton, la rayonne de viscose, la rayonne au cuivre, les polyesters, le polypropylène, le poly(alcool vinylique) et leurs combinaisons.

14. Article non tissé absorbant caractérisé par:

40

(a) une toile non tissée composée de fibres organiques, lesdites fibres organiques étant composées de polymères ayant une pluralité de groupes hydroxyle pendants; et

45

(b) un liant déposé sur au moins une portion desdites fibres, ledit liant comprenant le poly(alcool vinylique) syndiotactique ayant une pluralité de groupes hydroxyle, ledit poly(alcool vinylique) syndiotactique ayant une syndiotacticité desdits groupes hydroxyle d'au moins 30%.

50

15. Article absorbant selon la revendication 14, caractérisé de plus en ce que ledit liant est un polymère non hydrolysé provenant de monomères choisis dans le groupe formé par les monomères ayant la formule générale:

55

dans laquelle X est choisi dans le groupe formé par Si(OR4OR5OR6) et O(CO)R7; et R1 à R7 inclus sont indépendamment choisis dans le groupe formé par un atome d'hydrogène et les radicaux organiques ayant de 1 à environ 10 atomes de carbone, inclus, et leurs combinaisons.

- 16. Article absorbant selon la revendication 14, caractérisé de plus en ce que ledit poly(alcool vinylique) syndiotactique est lié à au moins une portion desdites fibres organiques par l'intermédiaire des liaisons entre lesdits groupes hydroxyle pendants sur lesdites fibres, un agent de liaison, et lesdits groupes hydroxyle pendants sur ledit poly (alcool vinylique) syndiotactique, ledit agent de liaison étant choisi dans le groupe formé par les titanates organiques et les dialdéhydes.
- 17. Article absorbant selon la revendication 14, caractérisé de plus en ce que le poly(alcool vinylique) syndiotactique est au moins partiellement réticulé par un agent de réticulation choisi dans le groupe formé par les titanates organiques et les dialdéhydes.
- 18. Article absorbant selon la revendication 15, caractérisé de plus en ce que ledit poly(alcool vinylique) syndiotactique est au moins partiellement réticulé par un agent de réticulation choisi dans le groupe formé par les titanates organiques et les dialdéhydes.
- 19. Article absorbant selon la revendication 14, caractérisé de plus en ce que ladite toile inclut les fibres dérivées de matières choisies dans le groupe formé par le coton, la rayonne de viscose, la rayonne au cuivre, les polyesters, le polypropylène et leurs combinaisons.
- 20. Procédé de fabrication d'un article non tissé absorbant composé d'une toile non tissée de fibres, au moins une portion des fibres ayant un liant déposé dessus, le procédé étant caractérisé par les étapes consistant:
 - (a) à former une toile non tissée tridimensionnelle, élevée, ouverte composée de fibres organiques, lesdites fibres organiques étant composées de polymères ayant une pluralité de groupes hydroxyle pendants;
 - (b) à entremêter les fibres de la toile en utilisant un moyen pour entremêter afin de former une toile de fibres entremêtées;
 - (c) à revêtir une portion principale des fibres de la toile de fibres entremêlées avec une composition précurseur de liant pour former une première toile revêtue ayant une première et une deuxième surfaces principales, ladite composition précurseur de liant comprenant une résine de poly(alcool vinylique) au moins partiellement réticulée et au moins partiellement hydrolysée et un agent de réticulation, ledit agent de réticulation étant choisi dans le groupe formé par les titanates organiques, les dialdéhydes et les oxydes métalliques amorphes; ladite résine provenant de la copolymérisation d'un premier et d'un deuxième monomères, ledit premier monomère étant choisi dans le groupe formé par les monomères ayant la formule générale:

$$R^1$$
 $C=C-R^3$

dans laquelle:

5

10

25

30

35

40

X est Si(OR4OR5OR6),

ledit deuxième monomère étant choisi dans le groupe formé par les monomères ayant la formule générale

$$R^{1}$$
 $C=C-R^{3}$

dans laquelle:

Y est O(CO)R7,

- R¹, R², R³, R⁴, R⁵, R⁶ et R⁷ sont indépendamment choisis dans le groupe formé par un atome d'hydrogène et les radicaux organiques ayant de 1 à environ 10 atomes de carbone; et
- (d) à exposer la première toile revêtue à une énergie suffisante pour durcir au moins partiellement la compo-

sition précurseur de liant pour former une toile liée non tissée de fibres.

- 21. Procédé selon la revendication 20, caractérisé de plus par une étape avant l'étape (c) dans laquelle la toile de fibre entremêlée est calandrée.
- 22. Procédé selon la revendication 20, caractérisé de plus par une étape après l'étape (c) dans laquelle la première toile revêtue est déposée sur au moins une desdites première et deuxième surfaces principales avec une deuxième composition précurseur de liant.
- 23. Procédé selon la revendication 22, caractérisé de plus en ce que ladite étape d'exposition inclut le séchage uniforme de ladite deuxième composition précurseur liante -pour former un tissu non tissé durci et séché ayant un revêtement de surface.
- 24. Procédé selon la revendication 22, caractérisé de plus en ce que ladite toile non tissée séchée et durcie est calandrée, lissant et fusionnant ainsi ledit revêtement de surface.
 - 25. Procédé de fabrication d'un article non tissé absorbant composé d'une toile non tissée de fibres, au moins une portion des fibres ayant un liant déposé dessus, le procédé étant caractérisé par les étapes consistant:
- (a) à former une toile non tissée composée d'une pluralité de fibres organiques comprenant des polymères ayant une pluralité de groupes hydroxyle pendants de fibres, une portion principale des polymères comprenant le poly(alcool vinylique)
 - (b) à entremêler les fibres de la toile en utilisant un moyen pour entremêler afin de former une toile de fibres entremêlées;
 - (c) à revêtir une portion principale des fibres de la toile de fibres entremêlées avec une composition précurseur de liant pour former une première toile revêtue ayant une première et une deuxième surfaces principales, la composition précurseur de liant se composant essentiellement de poly(alcool vinylique) et d'une quantité efficace d'un acide polycarboxylique polymère; et
 - (d) à exposer la première toile revêtue à une énergie suffisante pour insolubiliser la résine poly(alcool vinylique) afin de former une toile liée non tissée de fibres.
 - 26. Procédé de fabrication d'un article non tissé absorbant composé d'une toile non tissée de fibres, au moins une portion des fibres ayant un liant déposé dessus, le procédé étant caractérisé par les étapes consistant:
 - (a) à former une toile non tissée composée de fibres organiques, les dites fibres organiques se composant de polymères ayant une pluralité de groupes hydroxyle pendants;
 - (b) à entremêler les fibres de la toile en utilisant un moyen pour entremêler afin de former une toile de fibres entremêlées;
 - (c) à revêtir une portion principale des fibres de la toile de fibres entremêlées avec une composition précurseur de liant pour former une première toile revêtue ayant une première et une deuxième surfaces principales, la composition précurseur de liant se composant de poly(alcool vinylique) syndiotactique ayant une syndiotacticité d'au moins 30%; et
 - (d) à exposer la première toile revêtue à une énergie suffisante pour durcir au moins partiellement la composition précurseur liante afin de former une toile liée non tissée de fibres.
 - 27. Article non tissé absorbant caractérisé par:

5

25

30

35

40

45

50

- (a) une toile non tissée composée de fibres organiques et d'un liant, lesdites fibres organiques étant composées de rayonne; et
- (b) un liant comprenant une résine polymère réticulée et au moins partiellement hydrolysée ayant une pluralité de groupes hydroxyle pendants de résine, et un agent de réticulation, la résine étant réticulée par l'agent de réticulation, l'agent de réticulation étant choisi dans le groupe formé par les titanates organiques et les oxydes métalliques amorphes, la résine polymère provenant de la copolymérisation d'un premier et d'un deuxième monomères, ledit premier monomère étant choisi dans le groupe formé par les monomères ayant la formule générale:

dans laquelle:

X est Si(OR⁴OR⁵OR⁶);

ledit deuxième monomère étant choisi dans le groupe formé par les monomères ayant la formule générale:

dans laquelle:

Y est O(CO)R7; et

R¹, R², R³, R⁴, R⁵, R⁶ et R⁵ sont indépendamment choisis dans le groupe formé par un atome d'hydrogène et les radicaux organiques ayant de 1 à environ 10 atomes de carbone.

Fig.1

Fig. 2

Orden Mark John SMI