CMIP6 Model Documentation

Institute: CSIRO

Model: ACCESS-ESM1-5

Topic: ocean

Doc. Generated: 2020-04-08
Doc. Seeded From: Spreadsheet

Specialization Version: 1.0.4

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	10
3	Timestepping Framework	12
4	Advection	15
5	Lateral Physics	18
6	Vertical Physics	23
7	Uplow Boundaries	28
8	Boundary Forcing	30

1 Key Properties

Ocean key properties

1.1.1	Top	level	pro	perties
-------	-----	-------	-----	---------

Ocean key properties

1.1.1.1 Name *

 $Name\ of\ ocean\ model\ code$

GFDL MOM5.1

1.1.1.2 Keywords *

 $Keywords\ associated\ with\ ocean\ model\ code$

Boussinesq, level-coordinate (z-star), non-eddy resolving

1.1.1.3 Overview *

 $Overview\ of\ ocean\ model.$

Enter TEXT:

1.1.1.4	Model	Family	*
---------	-------	---------------	---

Type of ocean model.

M	OGCM
	Slab ocean
	Mixed layer ocean
\Box	Other - please specify

1.1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ ocean.$

\bowtie	Primitive equations
	Non-hydrostatic
\boxtimes	Boussinesq
	Other - please specify:

1.1.1.6 I	Prognostic Variables *	
List of pro	gnostic variables in the ocean component.	
	Potential temperature	
\boxtimes	Conservative temperature	
\boxtimes	Salinity	
\boxtimes	U-velocity	
\boxtimes	V-velocity	
	W-velocity	
	SSH - Sea Surface Height	
	Other - please specify:	
1.2.1 S	eawater Properties	
Physical	properties of seawater in ocean	
1.2.1.1 I	Eos Type *	
Type of E	OS for sea water	
Select	SINGLE option:	
	Linear	
	Wright, 1997	
	Mc Dougall et al.	
	Jackett et al. 2006	
	TEOS 2010	
	Other - please specify:	
1 0 1 0 I	a 1a 4: 1 m *	
	Eos Functional Temp * re used in EOS for sea water	
	SINGLE option:	
	Potential temperature	
	Conservative temperature	
1.2.1.3 I	Eos Functional Salt *	
Salinity used in EOS for sea water		
Select SINGLE option:		

	Practical salinity Sp
	Absolute salinity Sa
	Eos Functional Depth * pressure used in EOS for sea water ?
Selec	t SINGLE option:
	Pressure (dbars)
	Depth (meters)
1.2.1.5	Ocean Freezing Point *
	used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure
Selec	t SINGLE option:
	TEOS 2010
	Other - please specify:
Specific h	Ocean Specific Heat * eat in ocean (cpocean) in J/(kg K) r FLOAT value:
1.2.1.7	Ocean Reference Density *
Boussines	sq reference density (rhozero) in $kg / m3$
Ente	r FLOAT value:
	Bathymetry ies of bathymetry in ocean
	Reference Dates *
Reference	date of bathymetry
\boxtimes	Present day
	21000 years BP
	6000 years BP
	LGM - Last Glacial Maximum
	Pliocene

Other - please specify:
1.3.1.2 Type *
Is the bathymetry fixed in time in the ocean?
☐ False
1.3.1.3 Ocean Smoothing *
Describe any smoothing or hand editing of bathymetry in ocean
Enter TEXT:
1.3.1.4 Source *
Describe source of bathymetry in ocean
Enter TEXT:
1.4.1 Nonoceanic Waters
Non oceanic waters treatement in ocean
1.4.1.1 Isolated Seas
Describe if/how isolated seas is performed
Enter TEXT:
1.4.1.2 River Mouth
Describe if/how river mouth mixing or estuaries specific treatment is performed
Enter TEXT:
1.5.1 Software Properties
Software properties of ocean code
1.5.1.1 Repository
Location of code for this component.
Https://github.com/mom-ocean/MOM5.git
1.5.1.2 Code Version
Code version identifier.

MOM5.1

1.5.1.3 Code Languages

 $Code\ language(s).$

Fortran 90

1.6.1 Resolution

Resolution in the ocean grid

1.6.1.1 Name *

This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.

Enter TEXT:

1.6.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.

1 degree

1.6.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 50(Equator)-100km or 0.1-0.5 degrees etc.

Enter TEXT:

1.6.1.4 Number Of Horizontal Gridpoints *

Total number of horizontal (XY) points (or degrees of freedom) on computational grid.

108000

1.6.1.5 Number Of Vertical Levels *

Number of vertical levels resolved on computational grid.

50

1.6.1.6 Is Adaptive Grid *

Default is False. Set true if grid resolution changes during execution.

☐ True ☐ False

1.6.1.7 Thickness Level 1 *

 $Thickness\ of\ first\ surface\ ocean\ level\ (in\ meters)$

10

1.7.1 Tuning Applied

Tuning methodology for ocean component

1.7.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.7.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.7.1.3 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ (e.g\ THC,\ AABW,\ regional\ means\ etc)\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

1.7.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

1.8.1 Conservation

Conservation in the ocean component

1.8.1.1 Description *

Brief description of conservation methodology

Enter TEXT:

1.8.1.2 Scheme *

Pr

operties	s conserved in the ocean by the numerical schemes
Selec	t MULTIPLE options:
	Energy
	Enstrophy
	Salt
	Volume of ocean
	Momentum
	Other - please specify:

1.8.1.3 Consistency Properties
$Any \ additional \ consistency \ properties \ (energy \ conversion, \ pressure \ gradient \ discretisation, \ \ldots)?$
Enter COMMA SEPARATED list:
1.8.1.4 Corrected Conserved Prognostic Variables
Set of variables which are conserved by *more* than the numerical scheme alone.
Enter COMMA SEPARATED list:
1.8.1.5 Was Flux Correction Used
Does conservation involve flux correction ?
Select either TRUE or FALSE:
☐ True ☐ False

2 Grid

 $Ocean\ grid$

2.1.1 Top level properties

 $Ocean\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ ocean\ model.$

ACCESS-OM

2.1.1.2 Overview

Overview of grid in ocean model.

Enter TEXT:

2.1.2 Vertical

 $Properties \ of \ vertical \ discretisation \ in \ ocean$

2.1.2.1 Coordinates *

Type of vertical coordinates in ocean			
	Z-coordinate		
\boxtimes	Z*-coordinate		
	S-coordinate		
	Isopycnic - sigma 0 - Density referenced to the surface		
	Isopycnic - sigma 2 - Density referenced to 2000 m $$		
	Isopycnic - sigma 4 - Density referenced to 4000 m $$		
	Isopycnic - other - Other density-based coordinate		
	Hybrid / Z+S		
	Hybrid / Z+isopycnic		
	Hybrid / other		
	Pressure referenced (P)		
	P*		
	Z**		
	Other - please specify:		

2.1.2.2	Partial Steps *
Using par	rtial steps with Z or Z^* vertical coordinate in ocean ?
	True
2.1.3]	Horizontal
Type of	horizontal discretisation scheme in ocean
2.1.3.1	Type *
Horizont	al grid type
	Lat-lon
	Rotated north pole
\boxtimes	Two north poles (ORCA-style)
	Other - please specify:
2.1.3.2	Staggering
Horizont	al grid staggering type
\boxtimes	Arakawa B-grid
	Arakawa C-grid
	Arakawa E-grid
	N/a
	Other - please specify:
2.1.3.3	Scheme *
Horizont	al discretisation scheme in ocean
Selec	et SINGLE option:
	Finite difference
	Finite volumes
	Finite elements
	Unstructured grid
	Other - please specify:

3 Timestepping Framework

Ocean Timestepping Framework

3.1.1 Top level properties

 $Ocean\ Timestepping\ Framework$

3.1.1.1 Name

Commonly used name for the timestepping framework in ocean model.

Enter TEXT:

3.1.1.2 Overview

 $Overview\ of\ ocean\ time stepping\ framework\ in\ ocean\ model.$

Enter TEXT:

3.1.1.3 Diurnal Cycle *

 $Diurnal\ cycle\ type$

Select SINGLE option:

None - No diurnal cycle in ocean
Via coupling - Diurnal cycle via coupling frequency
Specific treatment - Specific treament

3.2.1 Tracers

Properties of tracers time stepping in ocean

Other - please specify:

3.2.1.1 Scheme *

 ${\it Tracers\ time\ stepping\ scheme}$

Select SINGLE option:

	$\label{lem:leap-frog} \mbox{Leap-frog scheme with Asselin filter} \ \ \mbox{Leap-frog scheme with Asselin filter}$
	Leap-frog + Periodic Euler - Leap-frog scheme with Periodic Euler
	Predictor-corrector - Predictor-corrector scheme
	Runge-Kutta 2 - Runge-Kutta 2 scheme
	AM3-LF - AM3-LF such as used in ROMS
П	Forward-backward - Forward-backward scheme

	Forward operator - Forward operator scheme
	Other - please specify:
0010	The Cu *
_	Time Step *
	ime step (in seconds)
Ente	r INTEGER value:
3.3.1 l	Baroclinic Dynamics
Baroclin	ic dynamics in ocean
3.3.1.1	Type *
Baroclinic	c dynamics type
Selec	t SINGLE option:
	Preconditioned conjugate gradient
	Sub cyling - Sub cycling relative to tracers
	Other - please specify:
	Scheme *
	c dynamics scheme
Selec	tt SINGLE option:
	Leap-frog + Asselin filter - Leap-frog scheme with Asselin filter
	$\label{eq:Leap-frog} \mbox{Leap-frog scheme with Periodic Euler} - \mbox{Leap-frog scheme with Periodic Euler}$
	Predictor-corrector - Predictor-corrector scheme
	Runge-Kutta 2 - Runge-Kutta 2 scheme
	AM3-LF - AM3-LF such as used in ROMS
	Forward-backward - Forward-backward scheme
	Forward operator - Forward operator scheme
	Other - please specify:
	Time Step
ратосити	c time step (in seconds)

Enter INTEGER value:

3.4.1 Barotropic

 $Barotropic\ time\ stepping\ in\ ocean$

3.4.1.1 Splitting *

 $Time\ splitting\ method$

Selec	t SINGLE option:
	None
	Split explicit
	Implicit
	Other - please specify:

3.4.1.2 Time Step

 $Barotropic\ time\ step\ (in\ seconds)$

Enter INTEGER value:

3.5.1 Vertical Physics

Vertical physics time stepping in ocean

3.5.1.1 Method *

 $Details\ of\ vertical\ time\ stepping\ in\ ocean$

Enter TEXT:

Advection 4 Ocean advection 4.1.1 Top level properties $Ocean\ advection$ 4.1.1.1 Name Commonly used name for the advection in ocean model. 4.1.1.2 Overview Overview of ocean advection in ocean model. Enter TEXT: 4.2.1 Momentum Properties of lateral momentum advection scheme in ocean 4.2.1.1 Type * Type of lateral momentum advection scheme in ocean Select SINGLE option: Flux form Vector form 4.2.1.2 Scheme Name * Name of ocean momentum advection scheme Enter TEXT:

4.2.1.3 ALE

Using ALE for vertical advection ? (if vertical coordinates are sigma)

Select either TRUE or FALSE: $\begin{tabular}{lll} \hline & True & \begin{tabular}{lll} \hline & False \\ \hline \end{tabular}$

4.3.1 Lateral Tracers

 $Properties\ of\ lateral\ tracer\ advection\ scheme\ in\ ocean$

4.3.1.1 Order *
Order of lateral tracer advection scheme in ocean
Enter INTEGER value:
4.3.1.2 Flux Limiter *
Monotonic flux limiter for lateral tracer advection scheme in ocean ?
☐ True ☐ False
4.3.1.3 Effective Order *
Effective order of limited lateral tracer advection scheme in ocean
Enter FLOAT value:
4.3.1.4 Name *
Descriptive text for lateral tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,)
Enter TEXT:
4.2.1.5 Descious The same
4.3.1.5 Passive Tracers Passive tracers advected
Select MULTIPLE options:
Ideal age
CFC 11
☐ CFC 12
□ SF6
U Other - please specify:
4.3.1.6 Passive Tracers Advection
Is advection of passive tracers different than active ? if so, describe.
Enter TEXT:

4.4.1 Vertical Tracers

Properties of vertical tracer advection scheme in ocean

4.4.1.1 Name *
$Descriptive\ text\ for\ vertical\ tracer\ advection\ scheme\ in\ ocean\ (e.g.\ MUSCL,\ PPM-H5,\ PRATHER,)$
Enter TEXT:
4.4.1.2 Flux Limiter *
Monotonic flux limiter for vertical tracer advection scheme in ocean ?
Select either TRUE or FALSE:
True False

5 Lateral Physics

Ocean lateral physics

5.	1.	1	Ton)]	lev	\mathbf{el}	pro	per	ties

Ocean lateral physics

_	-	-	-1	TA. T	-		
h.	. І.	. І	. Т	N	a	m	e

 $Commonly\ used\ name\ for\ the\ lateral\ physics\ in\ ocean\ model.$

Enter TEXT:

5.1.1.2 Overview

 $Overview\ of\ ocean\ lateral\ physics\ in\ ocean\ model.$

Enter TEXT:

5.1.1.3 Scheme *

 ${\it Type~of~transient~eddy~representation~in~ocean}$

Select SINGLE option:				
	None - No transient eddies in ocean			
	Eddy active - Full resolution of eddies			
	Eddy admitting - Some eddy activity permitted by resolution			

5.1.2 Operator

 $Properties\ of\ lateral\ physics\ operator\ for\ momentum\ in\ ocean$

5.1.2.1 Direction *

Direction of lateral physics momentum scheme in the ocean

rection	of lateral physics momentum scheme in the ocean
	Horizontal
	Isopycnal
\boxtimes	Isoneutral
	Geopotential
	Iso-level
	Other - please specify:

5.1.2.2	Order *
$Order\ of$	lateral physics momentum scheme in the ocean
Selec	et SINGLE option:
	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:
5.1.2.3	Discretisation *
Discretise	ation of lateral physics momentum scheme in the ocean
Selec	et SINGLE option:
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
	Eddy Viscosity Coeff ies of eddy viscosity coeff in lateral physics momentum scheme in the ocean
5.1.3.1	Type *
Lateral pi	hysics momentum eddy viscosity coeff type in the ocean
	Constant
	Space varying
\boxtimes	Time + space varying (Smagorinsky)
	Other - please specify:
5.1.3.2	Constant Coefficient
If constan	nt, value of eddy viscosity coeff in lateral physics momentum scheme (in m2/s)
Ente	r INTEGER value:
	Variable Coefficient varying, describe variations of eddy viscosity coeff in lateral physics momentum scheme
	r TEXT:

5.1.3.4	Coeff Background *
Describe l	background eddy viscosity coeff in lateral physics momentum scheme (give values in m2/s)
Enter	TEXT:
F 1 0 F	Cooff Produces *
	Coeff Backscatter *
	ackscatter in eddy viscosity coeff in lateral physics momentum scheme?
Selec	t either TRUE or FALSE:
Ш	True La False
5.2.1	Tracers
Properti	es of lateral physics for tracers in ocean
5.2.1.1	Mesoscale Closure *
Is there a	mesoscale closure in the lateral physics tracers scheme ?
\boxtimes	True
5.2.1.2	Submesoscale Mixing *
Is there a	$submesoscale\ mixing\ parameterisation\ (i.e\ Fox-Kemper)\ in\ the\ lateral\ physics\ tracers\ scheme\ ?$
Selec	t either TRUE or FALSE:
	True
5.2.2 (Operator
	es of lateral physics operator for tracers in ocean
5.2.2.1	Direction *
Direction	of lateral physics tracers scheme in the ocean
	Horizontal
	Isopycnal
\boxtimes	Isoneutral
	Geopotential
	Iso-level
	Other - please specify

5.2.2.2	Order *
$Order\ of\ l$	ateral physics tracers scheme in the ocean
Select	t SINGLE option:
	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:
5.2.2.3	Discretisation *
Discretisa	tion of lateral physics tracers scheme in the ocean
Select	t SINGLE option:
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
Propertie	Eddy Diffusity Coeff es of eddy diffusity coeff in lateral physics tracers scheme in the ocean
5.2.3.1	
Lateral ph	ysics tracers eddy diffusity coeff type in the ocean
Select	t SINGLE option:
	Constant
	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.2.3.2	Constant Coefficient
If constan	t, value of eddy diffusity coeff in lateral physics tracers scheme (in m2/s)
Enter	· INTEGER value:
5.2.3.3	Variable Coefficient
If space-ve	arying, describe variations of eddy diffusity coeff in lateral physics tracers scheme

Enter TEXT:

5.2.3.4 Coeff Background *		
$Describe\ background\ eddy\ diffusity\ coeff\ in\ lateral\ physics\ tracers\ scheme\ (give\ values\ in\ m2/s)$		
Enter INTEGER value:		
5.2.3.5 Coeff Backscatter *		
Is there backscatter in eddy diffusity coeff in lateral physics tracers scheme ?		
Select either TRUE or FALSE:		
☐ True ☐ False		
5.2.4 Eddy Induced Velocity		
Properties of eddy induced velocity (EIV) in lateral physics tracers scheme in the ocean		
5.2.4.1 Type *		
Type of EIV in lateral physics tracers in the ocean		
GM - Gent and McWilliams		
Other - please specify:		
Cener - piease speeny.		
5.2.4.2 Constant Val		
If EIV scheme for tracers is constant, specify coefficient value $(M2/s)$		
Enter INTEGER value:		
5.2.4.3 Flux Type *		
Type of EIV flux (advective or skew)		
Skew flux		
5.2.4.4 Added Diffusivity *		
Type of EIV added diffusivity (constant, flow dependent or none)		
Enter TEXT:		

6 Vertical Physics

Ocean Vertical Physics

6.	1.1	Top	level	pro	perties

 $Ocean\ Vertical\ Physics$

6.1.1.1 Name

Commonly used name for the vertical physics in ocean model.

Enter TEXT:

6.1.1.2 Overview

Overview of ocean vertical physics in ocean model.

Enter TEXT:

6.1.2 Details

Properties of vertical physics in ocean

6.1.2.1 Langmuir Cells Mixing *

Is there Langmuir cells mixing in upper ocean?

6.1.3 Tracers

Properties of boundary layer (BL) mixing on tracers in the ocean

6.1.3.1 Type *

Type of boundary layer mixing for tracers in ocean

Select SINGLE option:

Constant value
Turbulent closure - TKE
Turbulent closure - KPP
Turbulent closure - Mellor-Yamada
Turbulent closure - Bulk Mixed Layer

Richardson number dependent - PP

	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	Other - please specify:
6.1.3.2	Closure Order
If turbule	nt BL mixing of tracers, specific order of closure (0, 1, 2.5, 3)
Ente	r FLOAT value:
0100	
	Constant at BL mixing of tracers, specific coefficient (m2/s)
	r INTEGER value:
Line	in in the control of
6.1.3.4	Background *
Backgrou	nd BL mixing of tracers coefficient, (schema and value in m2/s - may by none)
Ente	r TEXT:
$6.1.4{ m I}$	Momentum
Properti	es of boundary layer (BL) mixing on momentum in the ocean
6.1.4.1	Type *
Type of b	oundary layer mixing for momentum in ocean
Selec	t SINGLE option:
	Constant value
	Turbulent closure - TKE
	Turbulent closure - KPP
	Turbulent closure - Mellor-Yamada
	Turbulent closure - Bulk Mixed Layer
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	imbeded as isopycine vertical coordinate

If turbulent BL mixing of momentum, specific order of closure (0, 1, 2.5, 3)
Enter FLOAT value:
6.1.4.3 Constant
If constant BL mixing of momentum, specific coefficient (m2/s)
Enter INTEGER value:
6.1.4.4 Background *
Background BL mixing of momentum coefficient, (schema and value in m2/s - may by none
Enter TEXT:
6.1.5 Details
Properties of interior mixing in the ocean
Troperties of theerest meaning he are securi
6.1.5.1 Convection Type *
Type of vertical convection in ocean
Non-penetrative convective adjustment
Enhanced vertical diffusion
Included in turbulence closure
Other - please specify:
6.1.5.2 Tide Induced Mixing *
Describe how tide induced mixing is modelled (barotropic, baroclinic, none)
Baroclinic tides Barotropic tides
<u>-</u>
6.1.5.3 Double Diffusion *
Is there double diffusion
Select either TRUE or FALSE:
☐ True ☐ False

6.1.4.2 Closure Order

6.1.5.4 Shear Mixing * Is interior shear mixing explicitly parameterised ?
Select either TRUE or FALSE:
☐ True ☐ False
0.1.0 M
6.1.6 Tracers
Properties of interior mixing on tracers in the ocean
6.1.6.1 Type *
Type of interior mixing for tracers in ocean
Select SINGLE option:
Constant value
Turbulent closure / TKE
Turbulent closure - Mellor-Yamada
Richardson number dependent - PP
Richardson number dependent - KT
Imbeded as isopycnic vertical coordinate
Other - please specify:
6.1.6.2 Constant
If constant interior mixing of tracers, specific coefficient $(m2/s)$
Enter INTEGER value:
6.1.6.3 Profile *
Is the background interior mixing using a vertical profile for tracers (i.e is NOT constant)?
Select either TRUE or FALSE:
☐ True ☐ False
6.1.6.4 Background *
Background interior mixing of tracers coefficient, (schema and value in $m2/s$ - may by none)
Enter TEXT:

6.1.7 Momentum

Properties of interior mixing on momentum in the ocean

6.1.7.1	Type *	
Type of in	terior mixing for momentum in ocean	
Select	SINGLE option:	
	Constant value	
	Turbulent closure / TKE	
	Turbulent closure - Mellor-Yamada	
	Richardson number dependent - PP	
	Richardson number dependent - KT	
	Imbeded as isopycnic vertical coordinate	
	Other - please specify:	
6.1.7.2 Constant If constant interior mixing of momentum, specific coefficient (m2/s) Enter INTEGER value:		
	Profile * cground interior mixing using a vertical profile for momentum (i.e is NOT constant)? TEXT:	
	Background * d interior mixing of momentum coefficient, (schema and value in m2/s - may by none)	
	TEXT:	

7 Uplow Boundaries

Ocean upper / lower boundaries

7.1.1 Top level properties

Ocean upper / lower boundaries

7.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ uplow\ boundaries\ in\ ocean\ model.$

Enter TEXT:

7.1.1.2 Overview

Overview of ocean upper / lower boundaries in ocean model.

Enter TEXT:

7.2.1 Free Surface

Properties of free surface in ocean

7.2.1.1 Scheme *

Free surface scheme in ocean

Select SINGLE option:		
	Linear implicit	
	Linear filtered	
	Linear semi-explicit	
	Non-linear implicit	
	Non-linear filtered	
	Non-linear semi-explicit	
	Fully explicit	
	Other - please specify:	

7.2.1.2 Embeded Seaice *

Is the sea-ice embeded in the ocean model (instead of levitating)?

Select either TRUE or FALSE:

☐ True ☐ False

7.3.1 Bottom Boundary Layer

Properties of bottom boundary layer in ocean

7.3.1.1 Overview *

 $Overview\ of\ bottom\ boundary\ layer\ in\ ocean$

Enter TEXT:

7.3.1.2 Type Of Bbl \ast

 ${\it Type~of~bottom~boundary~layer~in~ocean}$

Select SINGLE option:		
	Diffusive	
	Acvective	
	Other - please specify:	

7.3.1.3 Lateral Mixing Coef

If bottom BL is diffusive, specify value of lateral mixing coefficient (in m2/s)

Enter INTEGER value:

7.3.1.4 Sill Overflow *

Describe any specific treatment of sill overflows

Enter TEXT:

8 Boundary Forcing

Ocean boundary forcing

8.1.1 Top level properties

Ocean boundary forcing

8.1.1.1 Name

Commonly used name for the boundary forcing in ocean model.

Enter TEXT:

8.1.1.2 Overview

Overview of ocean boundary forcing in ocean model.

Enter TEXT:

8.1.1.3 Surface Pressure *

 $Describe\ how\ surface\ pressure\ is\ transmitted\ to\ ocean\ (via\ sea-ice,\ nothing\ specific,...)$

Enter TEXT:

8.1.1.4 Momentum Flux Correction

Describe any type of ocean surface momentum flux correction and, if applicable, how it is applied and where.

None

8.1.1.5 Tracers Flux Correction

Describe any type of ocean surface tracers flux correction and, if applicable, how it is applied and where.

Enter TEXT:

8.1.1.6 Wave Effects *

Describe if/how wave effects are modelled at ocean surface.

None

8.1.1.7 River Runoff Budget *

Describe how river runoff from land surface is routed to ocean and any global adjustment done.

Enter TEXT:

8.1.1.8 Geothermal Heating *

 $Describe\ if/how\ geothermal\ heating\ is\ present\ at\ ocean\ bottom.$

None

8.1.2 Bottom Friction

Properties of momentum bottom friction in ocean

8.1.2.1 Type *		
Type of m	nomentum bottom friction in ocean	
Selec	t SINGLE option:	
	Linear	
	Non-linear	
	Non-linear (drag function of speed of tides)	
	Constant drag coefficient	
	None	
	Other - please specify:	
8.1.3 I	Lateral Friction	
Properti	es of momentum lateral friction in ocean	
8.1.3.1	Type *	
Type of m	nomentum lateral friction in ocean	
	None	
	Free-slip	
\boxtimes	No-slip	
	Other - please specify:	
8.1.4 \$	Sunlight Penetration	
Properti	es of sunlight penetration scheme in ocean	
8.1.4.1	Scheme *	
Type of s	unlight penetration scheme in ocean	
	1 extinction depth	
\boxtimes	2 extinction depth	
	3 extinction depth	
	Other - please specify:	

8.1.4.2 O	cean Colour *
Is the ocean	$sunlight\ penetration\ scheme\ ocean\ colour\ dependent\ ?$
□ Tr	ue
8.1.4.3 E	xtinction Depth Description
Describe ext	$inctions\ depths\ for\ sunlight\ penetration\ scheme\ (if\ applicable).$
Enter	TEXT:
8.1.4.4 E	xtinction Depths
List extincti	ons depths for sunlight penetration scheme (if applicable).
Ocean	bottom
8.1.5 Fr	esh Water Forcing
Properties	of surface fresh water forcing in ocean
8.1.5.1 Fi	rom Atmopshere *
Type of surf	ace fresh water forcing from atmos in ocean
⊠ F	reshwater flux
	irtual salt flux
	Other - please specify:
8.1.5.2 Fi	rom Sea Ice *
Type of surf	ace fresh water forcing from sea-ice in ocean
⊠ F	reshwater flux
	irtual salt flux
F	Real salt flux
	Other - please specify:
Q 1 5 2 Tv	orced Mode Restoring *
	ace salinity restoring in forced mode (OMIP)

Enter TEXT:

32