Fields in the vertex Variational derivative of Lagrangian by fields $A_{\mu} = A_{\nu} = -\frac{1}{M_{\rho}^{2} \cdot \cos \theta_{w}^{2}} \left(\cos \theta_{w}^{2} \cdot M_{\rho}^{2} \cdot p_{1}^{\rho} p_{1}^{\rho} g^{\mu\nu} - \cos \theta_{w}^{2} \cdot M_{\rho}^{2} \cdot p_{1}^{\mu} p_{1}^{\nu} + 2 \cos \theta_{w}^{2} \cdot M_{W}^{2} \cdot \sin \theta_{w}^{2} \cdot a^{2} \cdot p_{1}^{\mu} p_{1}^{\nu} + 2 \cos \theta_{w}^{2} \cdot M_{\rho}^{2} \cdot M_{W}^{2} \cdot \sin \theta_{w}^{2} \cdot a^{2} \cdot g^{\mu\nu} \right)$ $A_{\mu} = \omega_{\nu} = -\frac{M_{W} \cdot \sin \theta_{w} \cdot a}{M_{\phi} \cdot \cos \theta_{w}^{2}} g^{\mu\nu} \left(\cos \theta_{w}^{2} M_{\rho}^{2} - M_{W}^{2} \sin \theta_{w}^{2} a^{2}\right)$	
$-2\cos\theta_w^2 \cdot M_W^2 \cdot \sin\theta_w^2 \cdot a^2 \cdot p_1^{\mu} p_1^{\nu} + 2\cos\theta_w^2 \cdot M_{\rho}^2 \cdot M_W^2 \cdot \sin\theta_w^2 \cdot a^2 \cdot g^{\mu\nu}$	
	1
$A_{\mu} \omega_{\nu} = -\frac{M_W \cdot \sin \theta_w \cdot a}{M_{\nu} \cos \theta^2} g^{\mu\nu} (\cos \theta_w^2 M_{\rho}^2 - M_W^2 \sin \theta_w^2 a^2)$	$M_W^4 \cdot \sin \theta_w^2$
$V_{ij} = V_{ij} = V_{ij} = V_{ij}$	
$A_{\mu} \rho^{0}_{\nu} \qquad \qquad \left -\frac{M_{W} \cdot \sin \theta_{w} \cdot a}{M_{\rho}} g^{\mu\nu} (M_{\rho}^{2} - M_{W}^{2} a^{2}) \right $	
$ A_{\mu} Z_{\nu} = -\frac{M_{W}^{2} \cdot \sin \theta_{w} \cdot a^{2}}{\cos \theta_{w}^{3} \cdot M_{\rho}^{2}} (\cos \theta_{w}^{2} \cdot p_{1}^{\rho} p_{1}^{\rho} g^{\mu\nu} - 2 \cos \theta_{w}^{2} \cdot \sin \theta_{w}^{2} \cdot p_{1}^{\rho} p_{1}^{\rho} g^{\mu\nu} - \cos \theta_{w}^{2} \cdot p_{1}^{\mu} p_{1}^{\nu} $	$+2\cos\theta_w^2\cdot\sin\theta$
$+\cos\theta_{w}^{2} \cdot M_{\rho}^{2} \cdot g^{\mu\nu} - 2\cos\theta_{w}^{2} \cdot M_{\rho}^{2} \cdot \sin\theta_{w}^{2} \cdot g^{\mu\nu} + 2M_{W}^{2} \cdot \sin\theta_{w}^{2} \cdot a^{2} \cdot g^{\mu\nu}$	$'-M_W^2\cdot a^2\cdot g^\mu$
$\left \begin{array}{cc} ar{b}_{ap} & b_{bq} \end{array}\right \left \begin{array}{cc} -p_1^\mu \delta_{pq} \gamma_{ac}^\mu \delta_{cb} \end{array}\right $	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
$igg ar{d}_{ap} = d_{bq} = igg -p_1^\mu \delta_{pq} \gamma_{ac}^\mu \delta_{cb}$	
$egin{array}{ccc} ar{e}_a & e_b & & & & & & & & & & & & & & & & & & &$	
$\left egin{array}{cc} ar{\mu}_a & \mu_b \end{array} \right \left -p_1^\mu \gamma_{ac}^\mu \delta_{cb} ight $	
$\left \begin{array}{ccc} ar{ au}_a & au_b \end{array} \right \left \begin{array}{ccc} -p_1^\mu \gamma_{ac}^\mu \delta_{cb} \end{array} \right $	
$igg H = H = igg -(MH^2-p_1^\mu p_1^\mu)$	
$\left ar{ u}^e{}_a u^e{}_b \qquad \left -p_1^\mu \gamma^\mu_{ac} rac{(1-\gamma^5)_{cb}}{2} ight $	
$\left \; ar{ u}^{\mu}_{\;\;a} \;\;\; u^{\mu}_{\;\;b} \;\;\;\; \left \; -p_{1}^{\mu} \gamma^{\mu}_{ac} rac{(1-\gamma^{5})_{cb}}{2} \;$	
$\left \begin{array}{ccc} ar{ u}^{ au}{}_a & u^{ au}{}_b \end{array} \right \left \begin{array}{ccc} -p_1^{\mu} \gamma_{ac}^{\mu} & \frac{(1-\gamma^5)_{cb}}{2} \end{array} \right $	
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 \cdot p_1^{\mu} p_1^{\nu} - M_W^4 \cdot$
$-3\cos\theta_{w}^{2} \cdot M_{\rho}^{2} \cdot M_{W}^{2} \cdot \sin\theta_{w}^{2} \cdot a^{2} \cdot g^{\mu\nu} + \cos\theta_{w}^{4} \cdot M_{\rho}^{2} \cdot p_{1}^{\rho} p_{1}^{\rho} g^{\mu\nu} - \cos\theta_{w}^{4} \cdot m_{\rho}^{2} \cdot p_{2}^{\rho} p_{1}^{\rho} g^{\mu\nu} - \cos\theta_{w}^{4} \cdot m_{\rho}^{2} \cdot g^{\mu\nu} + \cos\theta_{w}^{4} \cdot m_{\rho}^{2} \cdot g^{\mu\nu}$	$M_{\rho}^2 \cdot p_1^{\mu} p_1^{\nu} - M_V$
$\left \begin{array}{cc} \omega_{\mu} & \rho^{0}_{\nu} \end{array}\right = \frac{M_{W}^{4} \cdot \sin \theta_{w}^{2} \cdot a^{2}}{\cos \theta_{w}^{2} \cdot M_{\rho}^{2}} \cdot g^{\mu \nu}$	
	$a^2 \cdot g^{\mu\nu}$
$+M_{\rho}^{2} \cdot p_{1}^{\rho} p_{1}^{\rho} g^{\mu\nu} - M_{\rho}^{2} \cdot p_{1}^{\mu} p_{1}^{\nu} - M_{W}^{4} \cdot a^{2} \cdot g^{\mu\nu})$	
$\left \begin{array}{ccc} ho^{+}_{\ \mu} & W^{-}_{\ \nu} \end{array} \right = \frac{M_{W} \cdot a}{M_{ ho}} g^{\mu \nu} (M_{ ho}^{\ 2} - M_{W}^{\ 2} a^{2} + M_{W}^{\ 2})$	
$\rho^{\mu} W^+_{\nu} = -\frac{M_W \cdot a}{M_\rho} g^{\mu\nu} (M_\rho^2 - M_W^2 a^2 + M_W^2)$	
	$a^2 \cdot g^{\mu\nu}$

Fields in the vertex	Variational derivative of Lagrangian by fields
	$+M_{\rho}^{2} \cdot p_{1}^{\rho} p_{1}^{\rho} g^{\mu\nu} - M_{\rho}^{2} \cdot p_{1}^{\mu} p_{1}^{\nu} - M_{W}^{4} \cdot a^{2} \cdot g^{\mu\nu})$
$\rho^0_{\ \mu} Z_{ u}$	$-\frac{M_W \cdot a}{\cos \theta_w \cdot M_\rho} g^{\mu\nu} (\cos \theta_w^2 M_\rho^2 - \cos \theta_w^2 M_W^2 a^2 + M_W^2)$
$ar{S}_{ap}$ S_{bq}	$-p_1^\mu \delta_{pq} \gamma_{ac}^\mu \delta_{cb}$
$ig ar{t}_{ap}$ t_{bq}	$-p_1^\mu \delta_{pq} \gamma_{ac}^\mu \delta_{cb}$
$ \bar{u}_{ap} u_{bq} $	$-p_1^\mu \delta_{pq} \gamma_{ac}^\mu \delta_{cb}$
$W^+_{\mu} W^{\nu}$	$ -\frac{1}{M_{\rho^2}} (M_{\rho^2} \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu} - M_{\rho^2} \cdot p_1^{\mu} p_1^{\nu} + M_W^2 \cdot a^2 \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu} - M_W^2 \cdot a^2 \cdot p_1^{\mu} p_1^{\nu} - M_W^4 \cdot a^4 \cdot g^{\mu\nu}) $
	$+M_{\rho}^{2} \cdot M_{W}^{2} \cdot a^{2} \cdot g^{\mu\nu} - M_{\rho}^{2} \cdot M_{W}^{2} \cdot g^{\mu\nu})$
Z_{μ} $Z_{ u}$	$ -\frac{1}{M_{\rho}^{2} \cdot \cos \theta_{w}^{4}} (\cos \theta_{w}^{4} \cdot M_{\rho}^{2} \cdot p_{1}^{\rho} p_{1}^{\rho} g^{\mu\nu} - \cos \theta_{w}^{4} \cdot M_{\rho}^{2} \cdot p_{1}^{\mu} p_{1}^{\nu} - 2 \cos \theta_{w}^{4} \cdot M_{W}^{2} \cdot \sin \theta_{w}^{2} \cdot a^{2} \cdot p_{1}^{\rho} p_{1}^{\rho} $
	$+\cos\theta_w^2 \cdot M_W^2 \cdot a^2 \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu} + 2\cos\theta_w^4 \cdot M_W^2 \cdot \sin\theta_w^2 \cdot a^2 \cdot p_1^{\mu} p_1^{\nu} - \cos\theta_w^2 \cdot M_W^2 \cdot a^2 \cdot p_1^{\mu} p_1^{\nu}$
	$-2\cos\theta_w^{\ 4} \cdot M_{\rho}^{\ 2} \cdot M_W^{\ 2} \cdot \sin\theta_w^{\ 2} \cdot a^2 \cdot g^{\mu\nu} + \cos\theta_w^{\ 2} \cdot M_{\rho}^{\ 2} \cdot M_W^{\ 2} \cdot a^2 \cdot g^{\mu\nu} + 3\cos\theta_w^{\ 2} \cdot M_W^{\ 4} \cdot \sin\theta_w^{\ 4}$
	$-M_W^4 \cdot a^4 \cdot g^{\mu\nu} - \cos\theta_w^2 \cdot M_\rho^2 \cdot M_W^2 \cdot g^{\mu\nu})$
$A_{\mu} \rho^{+}_{\nu} \rho^{-}_{\rho}$	$\frac{e}{M_{\rho^2}}(M_W^2 \cdot a^2 \cdot p_2^{\rho}g^{\mu\nu} - M_W^2 \cdot a^2 \cdot p_2^{\mu}g^{\nu\rho} - M_W^2 \cdot a^2 \cdot p_3^{\nu}g^{\mu\rho} + M_W^2 \cdot a^2 \cdot p_3^{\mu}g^{\nu\rho})$
	$ + M_W^2 \cdot a^2 \cdot p_1^{\nu} g^{\mu\rho} - M_W^2 \cdot a^2 \cdot p_1^{\rho} g^{\mu\nu} + M_{\rho}^2 \cdot p_2^{\rho} g^{\mu\nu} - M_{\rho}^2 \cdot p_2^{\mu} g^{\nu\rho} - M_{\rho}^2 \cdot p_3^{\nu} g^{\mu\rho} + M_{\rho}^2 \cdot p_3^{\mu} g^{\nu\rho} + M_{\rho}^2 $
	$+M_{ ho}^{2}\cdot p_{1}^{ u}g^{\mu ho}-M_{ ho}^{2}\cdot p_{1}^{ ho}g^{\mu u})$
A_{μ} W^{+}_{ν} W^{-}_{ρ}	$\frac{e}{M_{\rho^2}} (M_{\rho^2} \cdot p_2^{\rho} g^{\mu\nu} - M_{\rho^2} \cdot p_2^{\mu} g^{\nu\rho} - M_{\rho^2} \cdot p_3^{\nu} g^{\mu\rho} + M_{\rho^2} \cdot p_3^{\mu} g^{\nu\rho} + M_{\rho^2} \cdot p_1^{\nu} g^{\mu\rho})$
	$-M_{\rho}^{2} \cdot p_{1}^{\rho} g^{\mu\nu} + M_{W}^{2} \cdot a^{2} \cdot p_{2}^{\rho} g^{\mu\nu} - M_{W}^{2} \cdot a^{2} \cdot p_{2}^{\mu} g^{\nu\rho} - M_{W}^{2} \cdot a^{2} \cdot p_{3}^{\nu} g^{\mu\rho} + M_{W}^{2} \cdot a^{2} \cdot p_{3}^{\mu} g^{\nu\rho}$
	$+M_W^2 \cdot a^2 \cdot p_1^{\nu} g^{\mu\rho} - M_W^2 \cdot a^2 \cdot p_1^{\rho} g^{\mu\nu})$
\bar{b}_{ap} b_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$ar{b}_{ap}$ b_{bq} ω_{μ}	$-\frac{1}{6} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} (6M_\rho^2 \cdot \sin \theta_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - 4M_\rho^2 \cdot \frac{(1+\gamma^5)_{cb}}{2}$
	$-4M_W^2 \cdot \sin\theta_w^2 \cdot a^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - 3M_\rho^2 \cdot \sin\theta_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 2M_\rho^2 \cdot \frac{(1-\gamma^5)_{cb}}{2}$
	$+2M_W^2 \cdot \sin\theta_w^2 \cdot a^2 \cdot \frac{(1-\gamma^5)_{cb}}{2})$
\bar{b}_{ap} b_{bq} $\rho^0_{\ \mu}$	$\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$ig ar{b}_{ap} b_{bq} Z_{\mu}$	$-\frac{1}{6} \frac{e}{\cos \theta_w \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} (2\sin \theta_w^2 \cdot \delta_{cb} - 3\frac{(1-\gamma^5)_{cb}}{2})$
$ \bar{b}_{ap} c_{bq} \rho^{\ \mu}$	$ \frac{\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_{\rho^3 \cdot \sin \theta_w}} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_{\rho^2} + 2M_W^2 a^2)}{-\frac{1}{6} \frac{e}{\cos \theta_w \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} (2 \sin \theta_w^2 \cdot \delta_{cb} - 3 \frac{(1 - \gamma^5)_{cb}}{2})}{-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot V \cdot cb \cdot a \cdot e}{M_{\rho^3 \cdot \sin \theta_w}} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_{\rho^2} + 2M_W^2 a^2)} $
\bar{b}_{ap} c_{bq} W^{-}_{μ}	$-\frac{1}{2} \frac{\sqrt{2 \cdot V cb \cdot e}}{\sin \theta_w} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$

Fields i	n the vertex	Variational derivative of Lagrangian by fields
\bar{b}_{ap} t_{bq}	$ ho^-{}_\mu$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot Vtb \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$ \bar{b}_{ap} t_{bq}$	$W^-{}_\mu$	$-\frac{1}{2}\frac{\sqrt{2}\cdot Vtb\cdot e}{\sin\theta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$ \bar{b}_{ap} u_{bq}$	$ ho^-{}_\mu$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot Vub \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$ \bar{b}_{ap} u_{ba}$	W^{μ}	$-\frac{1}{2}\frac{\sqrt{2}\cdot Vub\cdot e}{\sin\theta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{c}_{ap} b_{bq}	$ ho^+{}_\mu$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot V cb \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
\bar{c}_{ap} b_{bq}	W^+_{μ}	$-\frac{1}{2}\frac{\sqrt{2}\cdot V \cdot cb \cdot e}{\sin \theta_w} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
\bar{c}_{ap} c_{bq}	A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{c}_{ap} c_{bq}	ω_{μ}	$\frac{1}{6} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} (3M_\rho^2 \cdot \sin \theta_w^2 \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 2M_\rho^2 \cdot \frac{(1 - \gamma^5)_{cb}}{2}$
		$ -2M_W^2 \cdot \sin \theta_w^2 \cdot a^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 12M_{\rho}^2 \cdot \sin \theta_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - 8M_{\rho}^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} $
		$-8M_W^2 \cdot \sin\theta_w^2 \cdot a^2 \cdot \frac{(1+\gamma^5)_{cb}}{2})$
\bar{c}_{ap} c_{bq}	$ ho^0{}_\mu$	$-\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
\bar{c}_{ap} c_{bq}	Z_{μ}	$\frac{1}{6} \frac{e}{\cos \theta_w \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} (4 \sin \theta_w^2 \cdot \delta_{cb} - 3 \frac{(1 - \gamma^5)_{cb}}{2})$
\bar{c}_{ap} d_{bq}	$ ho^+_{\mu}$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot V \cdot cd \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
\bar{c}_{ap} d_{bq}	W^+_{μ}	$-\frac{1}{2}\frac{\sqrt{2}\cdot V cd\cdot e}{\sin\theta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{c}_{ap} s_{bq}	ρ^+_{μ}	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot V \cdot c \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
\bar{c}_{ap} s_{bq}	W^+_{μ}	$-\frac{1}{2}\frac{\sqrt{2}\cdot Vcs\cdot e}{\sin\theta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$ \bar{d}_{ap} c_{bq}$	$ ho^\mu$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot V \cdot cd \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$ \bar{d}_{ap} c_{bq}$	W^{-}_{μ}	$-\frac{1}{2}\frac{\sqrt{2}\cdot V cd\cdot e}{\sin\theta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\int \bar{d}_{ap} d_{be}$	$_{q}$ A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$\int \bar{d}_{ap} d_{be}$	$_{q}$ ω_{μ}	$ -\frac{1}{6} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} (6M_\rho^2 \cdot \sin \theta_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - 4M_\rho^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} $
		$-4M_W^2 \cdot \sin \theta_w^2 \cdot a^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - 3M_\rho^2 \cdot \sin \theta_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 2M_\rho^2 \cdot \frac{(1-\gamma^5)_{cb}}{2}$
		$+2M_W^2 \cdot \sin\theta_w^2 \cdot a^2 \cdot \frac{(1-\gamma^5)_{cb}}{2})$
$\int \bar{d}_{ap} d_{be}$	$_{q}$ $ ho^{0}{}_{\mu}$	$\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$\left \begin{array}{ccc} \bar{d}_{ap} & d_{ba} \\ \bar{d}_{ap} & d_{ba} \end{array} \right $	$_{q}$ Z_{μ}	$-\frac{1}{6} \frac{e}{\cos \theta_w \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} (2 \sin \theta_w^2 \cdot \delta_{cb} - 3 \frac{(1 - \gamma^5)_{cb}}{2})$
\bar{d}_{ap} t_{bq}	$ ho^-{}_\mu$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot Vtd \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$

Fields in the vertex	Variational derivative of Lagrangian by fields
\bar{d}_{ap} t_{bq} W^{μ}	$-\frac{1}{2}\frac{\sqrt{2\cdot Vtd\cdot e}}{\sin\theta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{d}_{ap} u_{bq} ρ^{μ}	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot Vud \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
\bar{d}_{ap} u_{bq} W^{μ}	$-\frac{1}{2} \frac{\sqrt{2 \cdot Vud \cdot e}}{\sin \theta_w} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
\bar{e}_a e_b A_μ	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$ar{e}_a$ e_b ω_μ	$ -\frac{1}{2} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} (3M_\rho^2 \cdot \sin \theta_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - 2M_\rho^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - 2M_W^2 \cdot \sin \theta_w^2 \cdot a^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} $
	$+6M_{\rho}^{2} \cdot \sin \theta_{w}^{2} \cdot \frac{(1+\gamma^{5})_{cb}}{2} - 4M_{\rho}^{2} \cdot \frac{(1+\gamma^{5})_{cb}}{2} - 4M_{W}^{2} \cdot \sin \theta_{w}^{2} \cdot a^{2} \cdot \frac{(1+\gamma^{5})_{cb}}{2})$
$\bar{e}_a e_b {\rho^0}_\mu$	$\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$egin{array}{cccc} ar{e}_a & e_b & Z_{\mu} \end{array}$	$-\frac{1}{2}\frac{e}{\cos\theta_w\cdot\sin\theta_w}\gamma_{ac}^{\mu}(2\sin\theta_w^2\cdot\delta_{cb}-\frac{(1-\gamma^5)_{cb}}{2})$
$\bar{e}_a \nu^e{}_b \rho^-{}_\mu$	$ -\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2) $
$\bar{e}_a \nu^e{}_b W^-{}_\mu$	$-\frac{1}{2}\frac{\sqrt{2}\cdot e}{\sin\theta_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\mu}_a$ μ_b A_μ	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$egin{array}{cccc} ar{\mu}_a & \mu_b & \omega_\mu \end{array}$	$ -\frac{1}{2} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} (3M_\rho^2 \cdot \sin \theta_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - 2M_\rho^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - 2M_W^2 \cdot \sin \theta_w^2 \cdot a^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} $
	$+6M_{\rho}^{2} \cdot \sin \theta_{w}^{2} \cdot \frac{(1+\gamma^{5})_{cb}}{2} - 4M_{\rho}^{2} \cdot \frac{(1+\gamma^{5})_{cb}}{2} - 4M_{W}^{2} \cdot \sin \theta_{w}^{2} \cdot a^{2} \cdot \frac{(1+\gamma^{5})_{cb}}{2})$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$ar{\mu}_a$ μ_b Z_μ	$-\frac{1}{2}\frac{e}{\cos\theta_w\cdot\sin\theta_w}\gamma_{ac}^{\mu}(2\sin\theta_w^2\cdot\delta_{cb}-\frac{(1-\gamma^5)_{cb}}{2})$
$\bar{\mu}_a { u^\mu}_b { ho^-}_\mu$	$-\frac{1}{2}\frac{M_W\cdot\sqrt{2}\cdot a\cdot e}{M_\rho^3\cdot \sin\theta_w}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}(M_\rho^2+2M_W^2a^2)$
$\bar{\mu}_a \nu^{\mu}{}_b W^{-}{}_{\mu}$	$-\frac{1}{2}\frac{\sqrt{2}\cdot e}{\sin\theta_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{ au}_a$ $ au_b$ A_μ	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$ar{ au}_a$ $ au_b$ ω_μ	$ -\frac{1}{2} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} (3M_\rho^2 \cdot \sin \theta_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - 2M_\rho^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - 2M_W^2 \cdot \sin \theta_w^2 \cdot a^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} $
	$+6M_{\rho}^{2} \cdot \sin \theta_{w}^{2} \cdot \frac{(1+\gamma^{5})_{cb}}{2} - 4M_{\rho}^{2} \cdot \frac{(1+\gamma^{5})_{cb}}{2} - 4M_{W}^{2} \cdot \sin \theta_{w}^{2} \cdot a^{2} \cdot \frac{(1+\gamma^{5})_{cb}}{2})$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$ar{ au}_a$ $ au_b$ Z_μ	$-\frac{1}{2}\frac{e}{\cos\theta_w \cdot \sin\theta_w} \gamma_{ac}^{\mu} (2\sin\theta_w^2 \cdot \delta_{cb} - \frac{(1-\gamma^5)_{cb}}{2})$
$\bar{ au}_a$ $\nu^{ au}_b$ ρ^μ	$-\frac{1}{2}\frac{M_W\cdot\sqrt{2}\cdot a\cdot e}{M_\rho^3\cdot \sin\theta_w}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}(M_\rho^2+2M_W^2a^2)$
$\bar{\tau}_a$ $\nu^{ au}_b$ W^{μ}	$-\frac{1}{2}\frac{\sqrt{2}\cdot e}{\sin\theta_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
H H H	$-\frac{3}{2}\frac{MH^2 \cdot e}{M_W \cdot \sin \theta_w}$

Fields in the vertex	Variational derivative of Lagrangian by fields
H ω_{μ} ω_{ν}	$\frac{M_W^3 \cdot \sin \theta_w^3 \cdot a^2 \cdot e}{\cos \theta_w^4 \cdot M_\rho^2} \cdot g^{\mu\nu}$
$H \omega_{\mu} {\rho^0}_{\nu}$	$-\frac{M_W^3 \cdot \sin \theta_w \cdot a^2 \cdot e}{\cos \theta_w^2 \cdot M_\rho^2} \cdot g^{\mu\nu}$
H ω_{μ} $Z_{ u}$	$rac{M_W^2 \cdot \sin heta_w \cdot a \cdot e}{\cos heta_w^3 \cdot M_ ho} \cdot g^{\mu u}$
$H \rho^+_{\ \mu} \rho^{\ \nu}$	$\frac{M_W^3 \cdot a^2 \cdot e}{M_{ ho}^2 \cdot \sin \theta_w} \cdot g^{\mu u}$
$H \rho^+_{\ \mu} W^{\ \nu}$	$-rac{M_W^2 \cdot a \cdot e}{M_ ho \cdot \sin heta_w} \cdot g^{\mu u}$
H ρ^{μ} W^+_{ν}	
$H \rho^0_{\ \mu} \rho^0_{\ \nu}$	$\frac{M_W^3 \cdot a^2 \cdot e}{M_{\rho}^2 \cdot \sin \theta_w} \cdot g^{\mu\nu}$
$H \rho^0_{\mu} Z_{\nu}$	$-\frac{M_W^2 \cdot a \cdot e}{\cos \theta_w \cdot M_\rho \cdot \sin \theta_w} \cdot g^{\mu \nu}$
H W^+_{μ} W^{ν}	$rac{M_W \cdot e}{\sin heta_w} \cdot g^{\mu u}$
H Z_{μ} $Z_{ u}$	$\frac{M_W \cdot e}{\cos \theta_w^2 \cdot \sin \theta_w} \cdot g^{\mu\nu}$
$\bar{\nu}^e{}_a e_b {\rho^+}_{\mu}$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$\bar{\nu}^e{}_a$ e_b $W^+{}_\mu$	$-\frac{1}{2}\frac{\sqrt{2}\cdot e}{\sin\theta_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^e{}_a$ $\nu^e{}_b$ ω_μ	$-\frac{1}{2} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (3M_\rho^2 \sin \theta_w^2 - 2M_\rho^2 - 2M_W^2 \sin \theta_w^2 a^2)$
$\bar{\nu}^e{}_a$ $\nu^e{}_b$ $\rho^0{}_\mu$	$-\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$\bar{ u}^e{}_a$ $ u^e{}_b$ Z_μ	$-\frac{1}{2}\frac{e}{\cos\theta_w\cdot\sin\theta_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{ u}^{\mu}{}_{a}$ μ_{b} $\rho^{+}{}_{\mu}$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot a \cdot e}{M_{\rho^3} \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_{\rho^2} + 2M_W^2 a^2)$
$\bar{\nu}^{\mu}{}_{a}$ μ_{b} $W^{+}{}_{\mu}$	$-rac{1}{2}rac{\sqrt{2}\cdot e}{\sin heta_w}\cdot\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ $\nu^{\mu}{}_{b}$ ω_{μ}	$-\frac{1}{2} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (3M_\rho^2 \sin \theta_w^2 - 2M_\rho^2 - 2M_W^2 \sin \theta_w^2 a^2)$
$\bar{\nu}^{\mu}{}_{a}$ $\nu^{\mu}{}_{b}$ $\rho^{0}{}_{\mu}$	$-\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$\bar{\nu}^{\mu}{}_{a}$ $\nu^{\mu}{}_{b}$ Z_{μ}	$-\frac{1}{2}\frac{e}{\cos\theta_w\cdot\sin\theta_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{ u}^{ au}{}_a$ $ au_b$ $ ho^+{}_{\mu}$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$\bar{\nu}^{\tau}{}_{a}$ τ_{b} $W^{+}{}_{\mu}$	= t w =
$\bar{ u}^{ au}{}_{a}$ $ u^{ au}{}_{b}$ ω_{μ}	$-\frac{1}{2} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (3M_\rho^2 \sin \theta_w^2 - 2M_\rho^2 - 2M_W^2 \sin \theta_w^2 a^2)$
$\bar{ u}^{ au}{}_a$ ${ u^{ au}}_b$ ${ ho^0}_\mu$	$-\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$\bar{ u}^{ au}{}_{a}$ $ u^{ au}{}_{b}$ Z_{μ}	$-\frac{1}{2}\frac{e}{\cos\theta_w\cdot\sin\theta_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$

Fields in the vertex	Variational derivative of Lagrangian by fields
ρ^+_{μ} ρ^{ν} ρ^0_{ρ}	$-\frac{e}{M_{\rho^{3} \cdot M_{W} \cdot \sin \theta_{w} \cdot a}} (M_{W}^{4} \cdot a^{4} \cdot p_{1}^{\nu} g^{\mu \rho} - M_{W}^{4} \cdot a^{4} \cdot p_{1}^{\rho} g^{\mu \nu} - M_{W}^{4} \cdot a^{4} \cdot p_{2}^{\mu} g^{\nu \rho} + M_{W}^{4} \cdot a^{4} \cdot p_{2}^{\rho} g^{\mu \nu}$
	$+M_W{}^4 \cdot a^4 \cdot p_3^{\mu} g^{\nu\rho} - M_W{}^4 \cdot a^4 \cdot p_3^{\nu} g^{\mu\rho} - M_{\rho}{}^4 \cdot p_1^{\nu} g^{\mu\rho} + M_{\rho}{}^4 \cdot p_1^{\rho} g^{\mu\nu} + M_{\rho}{}^4 \cdot p_2^{\mu} g^{\nu\rho} - M_{\rho}{}^4 \cdot p_2^{\rho} g^{\mu\nu}$
	$-M_{ ho}{}^4 \cdot p_3^{\mu} g^{ u ho} + M_{ ho}{}^4 \cdot p_3^{ u} g^{\mu ho})$
ρ^+_{μ} ρ^{ν} Z_{ρ}	$\frac{\cos\theta_w \cdot e}{M_{\rho}^2 \cdot \sin\theta_w} (M_W^2 \cdot a^2 \cdot p_1^{\nu} g^{\mu\rho} - M_W^2 \cdot a^2 \cdot p_1^{\rho} g^{\mu\nu} - M_W^2 \cdot a^2 \cdot p_2^{\mu} g^{\nu\rho} + M_W^2 \cdot a^2 \cdot p_2^{\rho} g^{\mu\nu}$
	$+ M_W^2 \cdot a^2 \cdot p_3^{\mu} g^{\nu\rho} - M_W^2 \cdot a^2 \cdot p_3^{\nu} g^{\mu\rho} + M_{\rho}^2 \cdot p_1^{\nu} g^{\mu\rho} - M_{\rho}^2 \cdot p_1^{\rho} g^{\mu\nu} - M_{\rho}^2 \cdot p_2^{\mu} g^{\nu\rho} + M_{\rho}^2 \cdot p_2^{\rho} g^{\mu\nu}$
	$+ M_{ ho}^{\; 2} \cdot p_3^{\mu} g^{ u ho} - M_{ ho}^{\; 2} \cdot p_3^{ u} g^{\mu ho})$
$\rho^+{}_\mu \rho^0{}_\nu W^-{}_\rho$	$\frac{e}{M_{\rho^2 \cdot \sin \theta_w}} (M_W^2 \cdot a^2 \cdot p_1^{\rho} g^{\mu\nu} - M_W^2 \cdot a^2 \cdot p_1^{\nu} g^{\mu\rho} - M_W^2 \cdot a^2 \cdot p_3^{\mu} g^{\nu\rho} + M_W^2 \cdot a^2 \cdot p_3^{\nu} g^{\mu\rho})$
	$+M_W{}^2 \cdot a^2 \cdot p_2^{\mu} g^{\nu\rho} - M_W{}^2 \cdot a^2 \cdot p_2^{\rho} g^{\mu\nu} + M_{\rho}{}^2 \cdot p_1^{\rho} g^{\mu\nu} - M_{\rho}{}^2 \cdot p_1^{\nu} g^{\mu\rho} - M_{\rho}{}^2 \cdot p_3^{\mu} g^{\nu\rho} + M_{\rho}{}^2 \cdot p_3^{\nu} g^{\mu\rho} + M_{\rho}{}^2 \cdot p_3^{\nu} g^{\nu\rho} + M_{\rho}$
	$+M_ ho^2\cdot p_2^\mu g^{ u ho}-M_ ho^2\cdot p_2^ ho g^{\mu u})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{e}{M_{\rho^2 \cdot \sin \theta_w}} (M_W^2 \cdot a^2 \cdot p_3^{\mu} g^{\nu \rho} - M_W^2 \cdot a^2 \cdot p_3^{\nu} g^{\mu \rho} - M_W^2 \cdot a^2 \cdot p_1^{\rho} g^{\mu \nu} + M_W^2 \cdot a^2 \cdot p_1^{\nu} g^{\mu \rho})$
	$+M_W{}^2 \cdot a^2 \cdot p_2^{\rho} g^{\mu\nu} - M_W{}^2 \cdot a^2 \cdot p_2^{\mu} g^{\nu\rho} + M_{\rho}{}^2 \cdot p_3^{\mu} g^{\nu\rho} - M_{\rho}{}^2 \cdot p_3^{\nu} g^{\mu\rho} - M_{\rho}{}^2 \cdot p_1^{\rho} g^{\mu\nu} + M_{\rho}{}^2 \cdot p_1^{\nu} g^{\mu\rho} + M_{\rho}{}^2 \cdot p_2^{\nu} g^{\nu\rho} + M_{\rho}$
	$+ M_{ ho}{}^2 \cdot p_2^{ ho} g^{\mu u} - M_{ ho}{}^2 \cdot p_2^{\mu} g^{ u ho})$
\bar{s}_{ap} c_{bq} ρ^{μ}	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot V cs \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
\bar{s}_{ap} c_{bq} W^{μ}	$-rac{1}{2}rac{\sqrt{2}\cdot Vcs\cdot e}{\sin heta_w}\cdot\delta_{pq}\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} s_{bq} A_{μ}	$rac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$ar{s}_{ap}$ s_{bq} ω_{μ}	$-\frac{1}{6} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} (6M_\rho^2 \cdot \sin \theta_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - 4M_\rho^2 \cdot \frac{(1+\gamma^5)_{cb}}{2}$
	$-4M_W^2 \cdot \sin \theta_w^2 \cdot a^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - 3M_\rho^2 \cdot \sin \theta_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 2M_\rho^2 \cdot \frac{(1-\gamma^5)_{cb}}{2}$
	$+2M_W^2 \cdot \sin\theta_w^2 \cdot a^2 \cdot \frac{(1-\gamma^5)_{cb}}{2})$
\bar{s}_{ap} s_{bq} ρ^0_{μ}	$\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
\bar{s}_{ap} s_{bq} Z_{μ}	$-\frac{1}{6}\frac{e}{\cos\theta_w\cdot\sin\theta_w}\delta_{pq}\gamma_{ac}^{\mu}(2\sin\theta_w^2\cdot\delta_{cb}-3\frac{(1-\gamma^5)_{cb}}{2})$
\bar{s}_{ap} t_{bq} ρ^{μ}	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot V t s \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$ \bar{s}_{ap} t_{bq} W^{\mu}$	$-rac{1}{2}rac{\sqrt{2}\cdot Vts\cdot e}{\sin heta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$ \bar{s}_{ap} u_{bq} \rho^{\ \mu}$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot Vus \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$ \bar{s}_{ap} u_{bq} W^{\mu}$	$-rac{1}{2}rac{\sqrt{2}\cdot Vus\cdot e}{\sin heta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$ \bar{t}_{ap} b_{bq} \rho^+_{\ \mu}$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot Vtb \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$

Fields in the vertex	Variational derivative of Lagrangian by fields
\bar{t}_{ap} b_{bq} W^{+}_{μ}	$-rac{1}{2}rac{\sqrt{2\cdot Vtb\cdot e}}{\sin heta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$ \bar{t}_{ap} d_{bq} {\rho^+}_{\mu}$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot V t d \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
	$-\frac{1}{2}\frac{\sqrt{2}\cdot Vtd\cdot e}{\sin\theta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot V t s \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
\bar{t}_{ap} s_{bq} W^{+}_{μ}	$-rac{1}{2}rac{\sqrt{2}\cdot Vts\cdot e}{\sin heta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{t}_{ap} t_{bq} A_{μ}	$-rac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$egin{array}{cccc} ar{t}_{ap} & t_{bq} & \omega_{\mu} \end{array}$	$\frac{1}{6} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} (3M_\rho^2 \cdot \sin \theta_w^2 \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 2M_\rho^2 \cdot \frac{(1 - \gamma^5)_{cb}}{2}$
	$-2M_W^2 \cdot \sin \theta_w^2 \cdot a^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 12M_{\rho}^2 \cdot \sin \theta_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - 8M_{\rho}^2 \cdot \frac{(1+\gamma^5)_{cb}}{2}$
	$-8M_W^2 \cdot \sin\theta_w^2 \cdot a^2 \cdot \frac{(1+\gamma^5)_{cb}}{2})$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$egin{array}{cccc} ar{t}_{ap} & t_{bq} & Z_{\mu} \end{array}$	$\frac{1}{6} \frac{e}{\cos \theta_w \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \left(4 \sin \theta_w^2 \cdot \delta_{cb} - 3 \frac{(1 - \gamma^5)_{cb}}{2} \right)$
\bar{u}_{ap} b_{bq} ρ^+_{μ}	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot Vub \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
\bar{u}_{ap} b_{bq} W^{+}_{μ}	$-\frac{1}{2}\frac{\sqrt{2}\cdot Vub\cdot e}{\sin\theta_w}\cdot\delta_{pq}\gamma^{\mu}_{ac}\frac{(1-\gamma^5)_{cb}}{2}$
$ \bar{u}_{ap} d_{bq} \rho^+_{\ \mu}$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot Vud \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
\bar{u}_{ap} d_{bq} W^{+}_{μ}	$-\frac{1}{2}\frac{\sqrt{2}\cdot Vud\cdot e}{\sin\theta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$ \bar{u}_{ap} s_{bq} \rho^+_{\ \mu}$	$-\frac{1}{2} \frac{M_W \cdot \sqrt{2} \cdot Vus \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$ \bar{u}_{ap} s_{bq} W^+_{\ \mu}$	$-\frac{1}{2}\frac{\sqrt{2}\cdot Vus\cdot e}{\sin\theta_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{u}_{ap} u_{bq} A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$ \bar{u}_{ap} u_{bq} \omega_{\mu}$	$\frac{1}{6} \frac{M_W \cdot a \cdot e}{\cos \theta_w^2 \cdot M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} (3M_\rho^2 \cdot \sin \theta_w^2 \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 2M_\rho^2 \cdot \frac{(1 - \gamma^5)_{cb}}{2}$
	$-2M_W^2 \cdot \sin\theta_w^2 \cdot a^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 12M_{\rho}^2 \cdot \sin\theta_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - 8M_{\rho}^2 \cdot \frac{(1+\gamma^5)_{cb}}{2}$
	$-8M_W^2 \cdot \sin\theta_w^2 \cdot a^2 \cdot \frac{(1+\gamma^5)_{cb}}{2})$
\bar{u}_{ap} u_{bq} ρ^0_{μ}	$-\frac{1}{2} \frac{M_W \cdot a \cdot e}{M_\rho^3 \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2} (M_\rho^2 + 2M_W^2 a^2)$
$ \bar{u}_{ap} u_{bq} Z_{\mu}$	$\frac{1}{6} \frac{e}{\cos \theta_w \cdot \sin \theta_w} \delta_{pq} \gamma_{ac}^{\mu} (4 \sin \theta_w^2 \cdot \delta_{cb} - 3 \frac{(1 - \gamma^5)_{cb}}{2})$
1	$\frac{\cos\theta_w \cdot e}{\sin\theta_w \cdot M_{\rho^2}} (M_{\rho^2} \cdot p_1^{\nu} g^{\mu\rho} - M_{\rho^2} \cdot p_1^{\rho} g^{\mu\nu} - M_{\rho^2} \cdot p_2^{\mu} g^{\nu\rho} + M_{\rho^2} \cdot p_2^{\rho} g^{\mu\nu} + M_{\rho^2} \cdot p_3^{\mu} g^{\nu\rho}$
	$-M_{\rho}^{2} \cdot p_{3}^{\nu} g^{\mu\rho} + M_{W}^{2} \cdot a^{2} \cdot p_{1}^{\nu} g^{\mu\rho} - M_{W}^{2} \cdot a^{2} \cdot p_{1}^{\rho} g^{\mu\nu} - M_{W}^{2} \cdot a^{2} \cdot p_{2}^{\mu} g^{\nu\rho} + M_{W}^{2} \cdot a^{2} \cdot p_{2}^{\rho} g^{\mu\nu}$

Fields in the vertex	Variational derivative of Lagrangian by fields
	$+M_W^2 \cdot a^2 \cdot p_3^{\mu} g^{\nu\rho} - M_W^2 \cdot a^2 \cdot p_3^{\nu} g^{\mu\rho})$
$A_{\mu} A_{\nu} \rho^{+}{}_{\rho} \rho^{-}{}_{\sigma}$	$-\frac{e^2}{M_{\rho^2}}(2M_W^2 \cdot a^2 \cdot g^{\mu\nu}g^{\rho\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\rho}g^{\nu\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma}g^{\nu\rho})$
	$+2M_{\rho}^{2}\cdot g^{\mu\nu}g^{\rho\sigma}-M_{\rho}^{2}\cdot g^{\mu\rho}g^{\nu\sigma}-M_{\rho}^{2}\cdot g^{\mu\sigma}g^{\nu\rho})$
$A_{\mu} A_{\nu} W^{+}{}_{\rho} W^{-}{}_{\sigma}$	$-\frac{e^2}{M_{\rho^2}}(2M_{\rho^2} \cdot g^{\mu\nu}g^{\rho\sigma} - M_{\rho^2} \cdot g^{\mu\rho}g^{\nu\sigma} - M_{\rho^2} \cdot g^{\mu\sigma}g^{\nu\rho} + 2M_W^2 \cdot a^2 \cdot g^{\mu\nu}g^{\rho\sigma})$
	$-M_W^2 \cdot a^2 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho})$
$A_{\mu} \rho^{+}_{\ \nu} \rho^{-}_{\ \rho} \rho^{0}_{\ \sigma}$	$\frac{e^2}{M_{\rho^3} \cdot M_W \cdot \sin \theta_w \cdot a} (2M_W^4 \cdot a^4 \cdot g^{\mu\sigma} g^{\nu\rho} - M_W^4 \cdot a^4 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^4 \cdot a^4 \cdot g^{\mu\nu} g^{\rho\sigma})$
	$-2M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} + M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} + M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma})$
$A_{\mu} \rho^{+}_{\ \nu} \rho^{-}_{\ \rho} Z_{\sigma}$	$-\frac{\cos\theta_w \cdot e^2}{M_\rho^2 \cdot \sin\theta_w} (2M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho} - M_W^2 \cdot a^2 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma})$
	$+2M_{\rho}^{2}\cdot g^{\mu\sigma}g^{\nu\rho}-M_{\rho}^{2}\cdot g^{\mu\rho}g^{\nu\sigma}-M_{\rho}^{2}\cdot g^{\mu\nu}g^{\rho\sigma})$
$A_{\mu} \rho^{+}_{\ \nu} \rho^{0}_{\ \rho} W^{-}_{\ \sigma}$	$-\frac{e^2}{M_{\rho^2 \cdot \sin \theta_w}} (2M_W^2 \cdot a^2 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho} - M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma})$
	$+2M_{\rho}^{2}\cdot g^{\mu\rho}g^{\nu\sigma} - M_{\rho}^{2}\cdot g^{\mu\sigma}g^{\nu\rho} - M_{\rho}^{2}\cdot g^{\mu\nu}g^{\rho\sigma})$
$A_{\mu} \rho^{-}_{\ \nu} \rho^{0}_{\ \rho} W^{+}_{\ \sigma}$	$-\frac{e^2}{M_{\rho^2 \cdot \sin \theta_w}} (2M_W^2 \cdot a^2 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho})$
	$+2M_{\rho}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - M_{\rho}^{2} \cdot g^{\mu\nu}g^{\rho\sigma} - M_{\rho}^{2} \cdot g^{\mu\sigma}g^{\nu\rho})$
$A_{\mu} W^{+}_{\nu} W^{-}_{\rho} Z_{\sigma}$	Sill ow 111p
	$-M_W^2 \cdot a^2 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma})$
H H H	$-rac{3}{4}rac{MH^2\cdot e^2}{M_W^2\cdot \sin heta_w^2}$
H H ω_{μ} $\omega_{ u}$	$\frac{1}{2} \frac{M_W^2 \cdot \sin \theta_w^2 \cdot a^2 \cdot e^2}{\cos \theta_w^4 \cdot M_\rho^2} \cdot g^{\mu\nu}$
H H ω_{μ} ρ^{0}_{ν}	$-rac{1}{2}rac{M_W^2\cdot a^2\cdot e^2}{\cos heta_w^2\cdot M_ ho^2}\cdot g^{\mu u}$
H H ω_{μ} $Z_{ u}$	$rac{1}{2}rac{M_W\cdot a\cdot e^2}{\cos heta_w{}^3\cdot M_ ho}\cdot g^{\mu u}$
H H ρ^+_{μ} ρ^{ν}	$rac{1}{2}rac{M_W^2\cdot a^2\cdot e^2}{M_ ho^2\cdot \sin heta_w^2}\cdot g^{\mu u}$
H H ρ^+_{μ} W^{ν}	$-rac{1}{2}rac{M_W\cdot a\cdot e^2}{M_ ho\cdot\sin heta_w^2}\cdot g^{\mu u}$
H H ρ^{μ} W^+_{ν}	$-rac{1}{2}rac{M_W\cdot a\cdot e^2}{M_ ho\cdot\sin heta_w^2}\cdot g^{\mu u}$
$H H \rho^0_{\mu} \rho^0_{\nu}$	$\left rac{1}{2} rac{M_W^2 \cdot a^2 \cdot e^2}{M_ ho^2 \cdot \sin heta_w^2} \cdot g^{\mu u} ight.$
H H ρ^0_{μ} Z_{ν}	$-\frac{1}{2} \frac{M_W \cdot a \cdot e^2}{\cos \theta_w \cdot M_\rho \cdot \sin \theta_w^2} \cdot g^{\mu\nu}$
$\begin{array}{ c c c c c c }\hline H & H & W^+_{\ \mu} & W^{\ \nu} \\ \hline \end{array}$	$\frac{1}{2} \frac{e^2}{\sin \theta_w^2} \cdot g^{\mu \nu}$

Fields in the vertex	Variational derivative of Lagrangian by fields
H H Z_{μ} Z_{ν}	$\frac{1}{2} \frac{e^2}{\cos \theta_w^2 \cdot \sin \theta_w^2} \cdot g^{\mu\nu}$
ρ^+_{μ} ρ^+_{ν} ρ^{ρ} ρ^{σ}	$\frac{e^2}{M_{\rho}^4 \cdot M_W^2 \cdot \sin \theta_w^2 \cdot a^2} (2M_W^6 \cdot a^6 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^6 \cdot a^6 \cdot g^{\mu\sigma} g^{\nu\rho} + 2M_{\rho}^6 \cdot g^{\mu\nu} g^{\rho\sigma}$
	$-M_{\rho}^{6} \cdot g^{\mu\sigma}g^{\nu\rho} - M_{W}^{6} \cdot a^{6} \cdot g^{\mu\rho}g^{\nu\sigma} - M_{\rho}^{6} \cdot g^{\mu\rho}g^{\nu\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ -\frac{e^2}{M_{\rho^3} \cdot M_W \sin \theta_w^2 \cdot a} (2M_W^4 \cdot a^4 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^4 \cdot a^4 \cdot g^{\mu\sigma} g^{\nu\rho} - M_W^4 \cdot a^4 \cdot g^{\mu\rho} g^{\nu\sigma} $
	$-2M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma} + M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} + M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{e^2}{M_{\rho^2 \cdot \sin \theta_w^2}} (2M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho} + 2M_{\rho^2}^2 \cdot g^{\mu\nu} g^{\rho\sigma})$
	$-M_{\rho}^{2} \cdot g^{\mu\sigma}g^{\nu\rho} - M_{W}^{2} \cdot a^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - M_{\rho}^{2} \cdot g^{\mu\rho}g^{\nu\sigma})$
$\rho^+_{\mu} \rho^{\nu} \rho^{\rho} W^+_{\sigma}$	$ -\frac{e^2}{M_{\rho^3} \cdot M_W \cdot \sin \theta_w^2 \cdot a} (2M_W^4 \cdot a^4 \cdot g^{\mu\sigma} g^{\nu\rho} - M_W^4 \cdot a^4 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^4 \cdot a^4 \cdot g^{\mu\nu} g^{\rho\sigma}) $
	$-2M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} + M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} + M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ -\frac{e^2}{M_{\rho^4} \cdot M_W^2 \cdot \sin \theta_w^2 \cdot a^2} (2M_W^6 \cdot a^6 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^6 \cdot a^6 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^6 \cdot a^6 \cdot g^{\mu\sigma} g^{\nu\rho}) $
	$+2M_{\rho}{}^{6}\cdot g^{\mu\nu}g^{\rho\sigma} - M_{\rho}{}^{6}\cdot g^{\mu\rho}g^{\nu\sigma} - M_{\rho}{}^{6}\cdot g^{\mu\sigma}g^{\nu\rho})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\cos\theta_w \cdot e^2}{M_{\rho^3} \cdot M_W \cdot \sin\theta_w^2 \cdot a} (2M_W^4 \cdot a^4 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^4 \cdot a^4 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^4 \cdot a^4 \cdot g^{\mu\sigma} g^{\nu\rho}$
	$-2M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma} + M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} + M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho})$
$\rho^{+}_{\mu} \rho^{-}_{\nu} W^{+}_{\rho} W^{-}_{\sigma}$	$\frac{e^2}{M_{\rho^2 \cdot \sin \theta_w^2}} (2M_W^2 \cdot a^2 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho} - M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma})$
	$+2M_{\rho}^{2}\cdot g^{\mu\rho}g^{\nu\sigma}-M_{\rho}^{2}\cdot g^{\mu\sigma}g^{\nu\rho}-M_{\rho}^{2}\cdot g^{\mu\nu}g^{\rho\sigma})$
$\rho^+_{\mu} \rho^{\nu} Z_{\rho} Z_{\sigma}$	$-\frac{\cos\theta_w^2 \cdot e^2}{M_{\rho^2} \cdot \sin\theta_w^2} (2M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho})$
	$+2M_{\rho}^{2}\cdot g^{\mu\nu}g^{\rho\sigma}-M_{\rho}^{2}\cdot g^{\mu\rho}g^{\nu\sigma}-M_{\rho}^{2}\cdot g^{\mu\sigma}g^{\nu\rho})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{e^2}{M_{\rho^3} \cdot M_W \cdot \sin \theta_w^2 \cdot a} (2M_W^4 \cdot a^4 \cdot g^{\mu\sigma} g^{\nu\rho} - M_W^4 \cdot a^4 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^4 \cdot a^4 \cdot g^{\mu\rho} g^{\nu\sigma}$
	$-2M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} + M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma} + M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma})$
$\left \begin{array}{cccc} \rho^+{}_{\mu} & \rho^0{}_{\nu} & W^-{}_{\rho} & Z_{\sigma} \end{array}\right $	$-\frac{\cos\theta_w \cdot e^2}{M_{\rho^2} \cdot \sin\theta_w^2} (2M_W^2 \cdot a^2 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho})$
	$+2M_{\rho}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - M_{\rho}^{2} \cdot g^{\mu\nu}g^{\rho\sigma} - M_{\rho}^{2} \cdot g^{\mu\sigma}g^{\nu\rho})$
	$\frac{e^2}{M_{\rho^2 \cdot \sin \theta_w^2}} (2M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho} + 2M_{\rho^2}^2 \cdot g^{\mu\nu} g^{\rho\sigma})$
	$-M_{\rho}^{2} \cdot g^{\mu\sigma}g^{\nu\rho} - M_{W}^{2} \cdot a^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - M_{\rho}^{2} \cdot g^{\mu\rho}g^{\nu\sigma})$
	$\frac{e^2}{M_{\rho^3} \cdot M_W \cdot \sin \theta_w^2 \cdot a} (2M_W^4 \cdot a^4 \cdot g^{\mu\sigma} g^{\nu\rho} - M_W^4 \cdot a^4 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^4 \cdot a^4 \cdot g^{\mu\nu} g^{\rho\sigma}$
	$-2M_{\rho}{}^4 \cdot g^{\mu\sigma}g^{\nu\rho} + M_{\rho}{}^4 \cdot g^{\mu\rho}g^{\nu\sigma} + M_{\rho}{}^4 \cdot g^{\mu\nu}g^{\rho\sigma})$
Fields in the vertex	Variational derivative of Lagrangian by fields

Fields in the vertex	Variational derivative of Lagrangian by fields
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{\cos\theta_w \cdot e^2}{M_{\rho^2} \cdot \sin\theta_w^2} (2M_W^2 \cdot a^2 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho} - M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma})$
	$+2M_{\rho}^{2}\cdot g^{\mu\rho}g^{\nu\sigma} - M_{\rho}^{2}\cdot g^{\mu\sigma}g^{\nu\rho} - M_{\rho}^{2}\cdot g^{\mu\nu}g^{\rho\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{e^2}{M_{\rho^2 \cdot \sin \theta_w^2}} (2M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\rho} g^{\nu\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho})$
	$+2M_{\rho}^{2}\cdot g^{\mu\nu}g^{\rho\sigma}-M_{\rho}^{2}\cdot g^{\mu\rho}g^{\nu\sigma}-M_{\rho}^{2}\cdot g^{\mu\sigma}g^{\nu\rho})$
$W^{+}_{\mu} W^{+}_{\nu} W^{-}_{\rho} W^{-}_{\sigma}$	$\frac{e^2}{\sin\theta_w^2 \cdot M_{\rho^2}} (2M_{\rho^2} \cdot g^{\mu\nu} g^{\rho\sigma} - M_{\rho^2} \cdot g^{\mu\sigma} g^{\nu\rho} + 2M_W^2 \cdot a^2 \cdot g^{\mu\nu} g^{\rho\sigma} - M_W^2 \cdot a^2 \cdot g^{\mu\sigma} g^{\nu\rho})$
	$-M_{\rho}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - M_{W}^{2} \cdot a^{2} \cdot g^{\mu\rho}g^{\nu\sigma})$
$W^+_{\mu} W^{\nu} Z_{\rho} Z_{\sigma}$	$-\frac{\cos\theta_{w}^{2} \cdot e^{2}}{\sin\theta_{w}^{2} \cdot M_{\sigma}^{2}} (2M_{\rho}^{2} \cdot g^{\mu\nu}g^{\rho\sigma} - M_{\rho}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - M_{\rho}^{2} \cdot g^{\mu\sigma}g^{\nu\rho} + 2M_{W}^{2} \cdot a^{2} \cdot g^{\mu\nu}g^{\rho\sigma}$