

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

(11) International Publication Number:

WO 93/25691

C12N 15/54, 15/63, 9/12

A1

(43) International Publication Date:

23 December 1993 (23.12.93)

(21) International Application Number:

PCT/IT93/00058

(22) International Filing Date:

10 June 1993 (10.06.93)

(30) Priority data:

RM92A000438

11 June 1992 (11.06.92)

IT

(71) Applicant (for all designated States except US): CONSIG-LIO NAZIONALE DELLE RICERCHE [IT/IT]; P.le

Aldo Moro, 7, I-00185 Rome (IT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PISANI, Francesca, Maria [IT/IT]; ROSSI, Mosé [IT/IT]; Istituto di Biochimica delle Proteine ed Enzimologia, Via Marconi, 10, I-80125 Napoli (IT). DE ROSA, Mario [IT/IT]; Istituto Biochimica delle Macromolecole, Ia Fac. Medicina e Chirurgia, Università di Napoli, Via Costantinopoli, 16, I-Napoli (IT).

(74) Agents: BANCHETTI, Marina et al.; Ing. Barzanò & Zanardo Roma S.p.A., Via Piemonte, 26, I-00187 Rome (IT).

(81) Designated States: AT, AU, BB, BG, BR, CA, CH, CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SÉ, SK, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: NUCLEOTIDE SEQUENCES CODING FOR A THERMOSTABLE DNA POLYMERASE, DNA POLYMER-ASE AND USES THEREOF

(57) Abstract

Nucleotide sequences coding a polypeptide or fragments thereof having a thermostable and thermophilic DNA polymerase activity, preferably derived from DNA of bacteria of Sulfolobus genus, DNA polymerase and uses thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
ΑU	Australia	GA	Gabon	MW	Malawi
BB	Barhados	GB	United Kingdom	NL	Netherlands
BE	Belgium	, GN	Guinca	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	ΙE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation .
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'Ivoire	KZ	Kazakhstan	SN	Senegal
CM	Cameroon	LI	Liechtenstein	SU	Soviet Union
cs	Czechoslovakia	LK	Sri Lanka	TD	Chad
CZ	Czech Republic	1.0	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	UA	Ukraine
DK	Denmark	MC	Madagascar	us	United States of America
ES	Spain	Ml.	Mali	VN	Vict Nam
FI	Finland	MN	Mongolia		

WO 93/25691 PCT/TT93/00058

5

10

15

20

25

30

1

NUCLEOTIDE SEQUENCES CODING FOR A THERMOSTABLE DNA POLYMERASE, DNA POLYMERASE AND USES THEREOF

SPECIFICATION

The present invention concerns the isolation and the identification of sequences coding a DNA polymerase from bacteria belonging to the Archaea domain (Woese C.R. et al. 1990, Proc. Natl. Acad.Sci. USA 87, 4576-4579), to the protein coded by said sequence and to uses thereof.

DNA polymerases are enzymes responsible of the duplication of genomic DNA and, therefore, of the inheritance of the genetic material. Sequences coding DNA polymerase from bacteria belonging to the Archaea domain are not known in the prior art. grow at high bacteria are adapted to Such evolutionary far from are temperatures, and Eubacteria.

DNA polymerases may be classified in two (Ito, J., and Braithwaite, D.K. (1991)classes 4045-4057). Class 19, Acids Res. Nucleic comprises dideoxynucleotide inhibition sensitive and aphidicolin resistant enzymes, as pol I from E. coli (Joyce, C.M., Kelley, W.S., and Grindley, N.D. F. (1982) J. Biol. Chem. 257, 1958-1964); class B heterogeneous, comprising aphidicolin more dideoxynucleotide and partially sensitive inhibition resistant enzymes.

The authors of the instant invention have demonstrated that DNA polymerase extracted from bacteria of thermostable and thermofilic Sulfolobus solfataricus species has a molecular weight of of filtration gel 100 kDa, by means glycerol gradient of and chromatoghraphy centrifugation. An electrophoresis in denaturing WO 93/25691 PCT/IT93/00058

5

.

10

15

20

25

30

35

2

conditions on polyacrylammide gel shows, other than the 100 kDa protein, two major bands, respectively of 50 e 40 kDa. These bands represent proteolytic cleavage fragments of the 100 kDa protein, being able to react with antisera raised against 100 protein. kDa native kDa Moreover the 50 fragment keeps a DNA polymerase activity (Karawya, Swack, J.A., and Wilson, S.H. (1983) Anal. Biochem. 135, 318-325).

The authors of the present invention have isolated and sequenced the gene coding the DNA polymerase from S. solfataricus, and have deduced protein. Upon the aminoacid sequence of the insertion into procaryotic or eucaryotic expression vectors and transformation of suitable hosts, the possible the production through gene makes recombinant DNA techniques of the DNA polymerase enzyme.

the invention the According to "thermofilic" refers to enzymes with a peak of activity at temperatures comprised between 50°C and 85°C, preferably 75°C, when a substrate of DNA from is activated calf thymus used; the "thermostable" refers to the fact that the enzyme keeps 100% of activity after incubation for 40 min at 75°C.

It is an object of the invention a nucleic acid of natural, recombinant or synthetic origin, comprising a nucleotide sequence coding a having polypeptide or fragments thereof thermostable and thermofilic DNA polymerase activity. Preferably said nucleotide sequence derived from DNA of bacteria of the Archaeadomain, preferably of the Sulfolobus genus, more preferably of the S. solfataricus species.

10

15

20

25

30

35

In a preferred embodiment said polypeptide or fragments thereof have also a 3'-5' exonuclease activity.

Preferably said nucleotide sequence codes the polypeptide having the aminoacid sequence of SEQ ID N2, or fragments thereof, alternatively deleted or substituted for one or more aminoacids, so that said DNA polymerase activity is maintained.

Further object of the invention is a nucleic SEQ ID in the sequence of acid comprised 1 in that from nucleotide to characterized a non coding sequence, from is nucleotide 197 nucleotide 2843 coding 198 to nucleotide polypeptide with a thermostable and thermofilic DNA polymerase activity and from nucleotide 2844 non coding sequence. nucleotide 3112 is а Alternatively said nucleotide sequence lacks or is substituted of one or more nucleotides so that said DNA polymerase activity is maintained.

the invention object of Another nucleotide sequences able to hybridize at medium sequences of the nucleotide stringency to preferably said sequences invention, are complementary to the sequences of the invention.

It is another object of the invention a polypeptide with a thermostable and thermofilic DNA polymerase activity, preferably produced through recombinant DNA techniques by nucleotide sequences according to the invention, preferably by the nucleotide sequence comprised in SEQ ID N1.

According to the invention said polypeptide has a sequence comprised in SEQ ID N2.

It is a further object of the invention recombinant cloning or expression vectors, having a plasmid or viral derivation, comprising the

10

15

20

25

4

(X)

nucleotide sequences of the invention, preferably said vector is the plasmid pFCpolS (DSM N.7091).

Another object are cells transformed with said vectors.

The invention will be described in the following examples, with reference to the following figures:

figure 1 which represents a restriction map of the coding region of the DNA polymerase gene of S. solfataricus:

figures 2a and 2b which represent a sequence analysis of DNA polymerase sequences from different organisms.

Example 1 <u>Partial aminoacid sequence of DNA</u> polymerase from *S. solfataricus*

 $30~\mu g$ of DNA polymerase purified from S. solfataricus, as described in Rossi M. et al. 1986, System. Appl. Microbiol. 7, 337-341, is loaded on a 10% polyacrylammide gel in denaturing conditions. The gel is then electro-transferred on a PVDF

membrane (Problott, Applied Biosystems), as described in Matsudaira, P. (1987) J. Biol. Chem. 262, 10035-10038. The membrane is stained with Coomassie Brilliant Blue R-250. Three protein bands of 100, 50 e 40 kDa are cutted and loaded directly on a gas-phase aminoacid sequencer (M. 470

directly on a gas-phase aminoacid sequencer (M. 470 A, Applied Biosystems), with an analyzer PTH 120 A. N-terminal sequences of 50 e 40 kDa peptides are:

50 kDa GYKGAVVIDP

30 40 kDa SAPVEEKKVVR

Example 2 <u>Isolation and sequence of the DNA</u> polymerase gene of *S. solfataricus*

By using aminoacid sequences the following degenerated oligonucleotides are sinthesized:

35 29-mer SSDP50K corresponding to the Nterminal sequence of the 50 kDa fragment: WO 93/25691 PCT/IT93/00058

5

10

15

20

25

30

35

5

5'-GGATA(T/C) GG(T/A) GG(T/A) GC(T/A) GT(T/A) GT(T/A) GT(T/A) GAT CC-3'

23-mer SSDP40K corresponding to the N-terminal sequence of the 40 kDa fragment:

5'-GC(T/A) CC(T/A) GT(T/A) GA(A/G) AA(A/G) AA(A/G) GT-3'.

Each oligonucleotide is labelled at its 5' end with $\chi P^{32}ATP$ by means of T4 polynucleotide kinase and used to screen a genomic library of S. solfataricus, strain MT4 (ATCC n. 49155), in the $\boldsymbol{\lambda}$ site, according gtllvector, at the ECORI standard methods. Filter hybridization are made at 45°C with the SSDP40K probe and at 50°C with the SSDP50K probe, in 6 x saline citrate buffer (SSC) as described in Maniatis, T., Fritsch, E. F., and Molecular Cloning. J. (1989) in Sambrook, Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor. Inserts of positive phages pA1, pC5 e pE1 are subcloned into the EcoRI site of the pUC18 vector, and sequenced (Sequenase, USB). The inserts have partial overlapping regions and an open reading frame, as shown in Fig. 1.

Another genomic library obtained in the $\boldsymbol{\lambda}$ EMBL3 vector with MboI partially digested DNA of S. solfataricus, producing fragments of around 15 Kb, according to standard methods. The library screened with the EcoRI insert of pC5 clone as probe. Hybridizations are performed on filters at 65°C, 6 x SSC, according to Maniatis, T., Fritsch, in Molecular J. (1989) F., and Sambrook, Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor. Two positive phages λ 4B and λ 2P are purified and digested with 1). (Fig. The EcoRI-PstI enzymes restriction fragment, present in both phages, and able to hybridize with pE1, pA1 and pC5 clones is inserted

10

15

20

1

into the pEMBL8 vector, producing the plasmid named pFCpolS (DSM N. 7091). The sequence is shown in SEQ ID N1. The sequence shows a region of 882 codons with an open reading frame, in agreement with the 100 kDa molecular weight of the protein. The 5' end non coding region does not comprise sequences homologous promoter to Archaeabacterial promoters (Reiter, W.D., Palm, P., and Zillig, W. (1988) Nucleic Acids Res. 16, 1-19; Reiter, W.D., Hudepohl, U., and Zillig, W. (1990) Proc. Natl. Acad. Sci USA 87, 9509-9513. pirimidine rich region comprising the TTTTTAT sequence is present at the 3'end of the termination in analogy with other terminators Archaea bacteria (Cubellis, M.V., Rozzo, C., Nitti, G., Arnone, M.I, Marino, G., and Sannia, G. (1989) Eur. J. Biochem. 186, 375-381; Cubellis, M.V., Rozzo, C., Montecucchi, P., and Rossi, M. (1990) Gene 94, 89-94; Reiter, W.D., Palm, P., and Zullig, W. (1989) Nucleic Acid Res. 16, 2445-2459).

Example 3 <u>Sequence homology with other DNA</u> polymerases

A sequence analysis shows homologies with class B DNA polymerases, as viral eucaryote 25 replicases (Gibbs, J.S., Chiou, H.C., Hall, J.D., Mount, D.W., Retondo, M.J., Weller, S.K., and Coen, D.M. (1985) Proc. Natl. Acad. Sci. USA 82, 7973; Kouzarides, T., Bankier, A.T., Satchwell, S.C., Weston, K., Tomlison, P., and Barrel, B.G. 30 (1987) J. Virol. 61, 125-133; Earl, P.L., Jones, E.V., and Moss, B. (1986) Proc. Natl. Acad. Sci. USA 83, 3659-3663), human replicases (Wong, S.W., Wahl, A.F., Yuan, P.M., Arai, N., Pearson, B. E., Arai, K.-I., Korn, D., Hunkapiller, M.W., and Wang, 35 T. S.-F. (1988) EMBO J. 7, 37-47) and polymerase α ofi S. cerevisiae (Pizzagalli, A.,

WO 93/25691 PCT/TT93/00058

5

25

7

Valsasnini, P., Plevani, P., and Lucchini, G. (1988) Proc. Natl. Acad. Sci. USA 85, 3772-3776). Few homologies are evident with *E. coli* DNA polymerases (Joyce, C.M., Kelley, W.S., and Grindley, N.D. F. (1982) J. Biol. Chem. 257, 1958-1964).

Class B DNA polymerases show conserved motifs (Ito, J., and Braithwaite, D.K. (1991) Nucleic Acids Res. 19, 4045-4057; Wong. S.W., Zahl, A.F., Yuan, P.-M., Arai, N., Pearson, B. E., Arai, 10 K.-I., Korn, D., Hunkapiller, M.W., and Wang, S.-F. (1988) EMBO J. 7, 37-47; Iwasaki, H., Ishino, Y., Toh, H., Nakata, A., and Shinagawa, H. (1991) Mol. Gen. Genet. 226, 24-33; Larder, B.A., Kemp, S.D., and Darby, G. (1987) EMBO J. 6, 169-175; 15 Bernard, A., Zaballos, A., Salas,, M., and Blanco, (1987) EMBO J. 6, 4219-4225; Blanco, Bernard, A., Blasco, M.A., and Salas, M. (1991) Gene 100, 27-38), which are found also in the sequence of the invention, as shown in Figs. 2a and 2b, 20 regions 1-8.

Regions 1, 2 e 3 correspond to EXO motifs found in DNA polymerases with 3'-5' exonuclease activity (Morrison, A., Bell, J.B., Kunkel, T.A., and Sugino, A. (1991) Proc. Natl. Acad. Sci. USA 88, 9473-9477), where three aspartic acid and one glutammic acid residues are maintained.

SEQUENCE LISTING .

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: Consiglio Nazionale delle Ricerche
 - (B) STREET: P.le Aldo Moro 5
 - (C) CITY: Roma
 - (D) STATE: Italy
 - (E) COUNTRY: Italy
 - (F) POSTAL CODE (ZIP): 00185
 - (ii) TITLE OF INVENTION: Nucleotide sequences coding for a DNA polymerase, DNA polymerase and uses thereof
 - (iii) NUMBER OF SEQUENCES: 2
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3112 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO

WO 93/25691 PCT/IT93/00058

(A) ORGANISM: Sulfolobus solfataricus

(vi) ORIGINAL SOURCE:

(ix) FEATURE:	
(A) NAME/KEY: CDS	
(B) LOCATION: 1982846	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
ATCTGGTGTT TITCTTCTC ATGCATATTA ATAATGTTTA CTAAGATTCA AGGCATATC	CT 60
CTTAAGAAAT GGCTAGATGA ATGAGAGGAG CAGGAGTAGC TTAAGAATCT TAAAACTTA	AG 120
GTTCTTCATA AATGTCTATT TTTTCTCCCG CATTAAAACT TATAGCGTAT TTCTCAGAA	AA 180
ATAATATATG TTAGAAA ATG ACT AAG CAA CTT ACC TTA TIT GAT ATT CCT	230
Met Thr Lys Gln Leu Thr Leu Phe Asp Ile Pro	
1 5 10	
•	
TCA TCT AAA CCC GCT AAG AGT GAA CAA AAT ACT CAA CAA TCG CAA CAG	278
Ser Ser Lys Pro Ala Lys Ser Glu Gln Asn Thr Gln Gln Ser Gln Gln	
15 20 25	
AGT GCT CCC GTT GAG GAA AAA AAG GTA GTT AGG AGG GAA TGG CTT GAA	326
Ser Ala Pro Val Glu Glu Lys Lys Val Val Arg Arg Glu Trp Leu Glu	
30 35 40	
GAG GCT CAG GAA AAT AAG ATA TAC TTC CTA TTG CAA GTA GAT TAT GAT	374
Glu Ala Gln Glu Asn Lys Ile Tyr Phe Leu Leu Gln Val Asp Tyr Asp	
45 50 55	
GGT AAG AAA GGT AAG GCT GTA TGT AAG CTA TTC GAT AAA GAA ACT CAA	42
Gly Lys Lys Gly Lys Ala Val Cys Lys Leu Phe Asp Lys Glu Thr Gln	
60 65 70 75	

AAG	ATC	TAT	GCC	CTA	TAT	GAT	AAT	ACT	GGA	CAT	AAG	CCC	TAC	TTT	CTA	470
Lys	Ile	Tyr	Ala		Tyr	Asp	Asn	Thr	Gly	His	Lys	Pro	Tyr	Phe	Leu	
				80					85					90.		
GTA	САТ	بلسلت	GAA	رري	GAT	ΔΔΔ	СТА	GGT	44	מידמ	ССТ	ממ	יוייני ע	ىلىلت	AGA	518
			Glu													310
			95		F	- <i>y</i> -		100	_1 _			_,_	105		5	
GAT	CCA.	TCT	TTT	GAT	CAC	ATA	GAG	ACT	GTG	AGT	AAG	ATA	GAC	CCG	TAT	566
Asp	Pro	Ser	Phe	Asp	His	Ile	Glu	Thr	Val	Ser	Lys	Ile	Asp	Pro	Tyr	
		110					115					120				
א ריידי	TYCK	יייממ	AAA	المنابين	אאא	עיובויא	א כיתי	222	አጥር	Curan	Curur	202	CAT		ርንጥ	614
			Lys													014
	125		-1-		_, _	130		_, _			135	3				
GCA	GTG	AGA	AGA	TTA	AGG	AAT	GAT	GTT	CCA	AAA	GCG	TAT	GAG	GCT	CAC	662
Ala	Val	Arg	Arg	Leu	Arg	Asn	Asp	Val	Pro	Lys	Ala	Tyr	Glu	Ala	His	
140					145					150					155	
מידמ	3 7 7	ייו עייו	TTT	7 7 C	220		3 mv	ma m	C N C	אמוזא	CCIII	CITI'N	NIIIC	000	oom.	710
			Phe													710
	<i>L</i> ₁ 5	-7-	1110	160	ASII	171	Mec	+ y +	165	116	GIY	TEG	116	170	GIY	
ATG	CCT	TAT	GTT	GTT	AAG	AAT	GGG	AAG	TTA	GAA	AGT	GTC	TAT	TTG	TCT	758
Met	Pro	Tyr	Val	Val	Lys	Asn	Gly	Lys	Leu	Glu	Ser	Val	Tyr	Leu	Ser	
			175					180					185			
ጥጥ ርኋ	GAC	GNG	AAA	CAT	Cutati	CAC	CNC	N errer	777	222	ccc		CCTT	Cam	mca.	806
			Lys													806
	p	190	my S	чэр	Val	314	195	116	цуз	Буз	ALG	200	AIG	Asp	261	
		-														
GAT	GAA	ATG	ACT	AGA	CAA	ATG	GCA	GTC	GAT	TGG	CTT	CCC	ATA	TTT	GAA	854
Asp	Glu	Met	Thr	Arg	Gln	Met	Ala	Val	Asp	Trp	Leu	Pro	Ile	Phe	Glu	
	205					210					215					

ΔСΤ	GAA	ATA	CCT	AAA	ATA	AAA	AGG	GTT	GCG	ATA	GAT	ATT	GAG	GTA	TAT	902
							Arg									
220				4	225	•				230					235	
ACA	CCA	GTT	AAG	GGT	AGA	ATC	CCA	GAC	TCT	CAG	AAG	GCT	GAG	TTT	CCA	950
							Pro									
				240					245			•		250		
ATT	ATA	AGT	ATA	GCA	TTA	GCG	GGG	AGT	GAT	GGA	TTA	AAG	AAG	GTT	CTT	998
Ile	Ile	Ser	Ile	Ala	Leu	Ala	Gly	Ser	Asp	Gly	Leu	Lys	Lys	Val	Leu	
			255					260	•				26 5			
							•									
							AAT								_	1046
Val	Leu	Asn	Arg	Asn	Asp	Val	Asn	Glu	Gly	Ser	V al		Leu	Asp	Gly	
		270					275					280				
							ACA									1094
Ile		Val	Glu	Arg	Phe		Thr	Glu	Tyr	Glu		Leu	GIĀ	Arg	Pue	
	285					290					295					
				~~~~				3.003	Omm.	CHALL	202	יייייי	ייימג	CCA	'GNC	1142
							CCG Pro									1142
	Asp	TIE	Leu	Leu	305	TAT	PIO	176	VQI	310	1111		71011	0.7	315	
300					303					220						
CAT	بالعلمان	ሮልጥ	מידיני	CCT	TAC	ATT	TAC	TTT	AGG	GCG	TTA	AAG	TTA	GGT	TAT	1190
							Tyr									
				320	-2-,		•		325			_		330		
TTT	CCA	GAG	GAA	ATT	CCC	ATA	GAT	GTA	GCT	GGT	AAG	GAT	GAA	GCC	AAG	1238
Phe	Pro	Glu	Glu	Ile	Pro	Ile	Asp	Val	Ala	Gly	Lys	Asp	Glu	Ala	Lys	
			335					340					345			
TAT	CTA	GCT	GGT	CTT	CAT	ATA	GAC	TTG	TAC	AAA	TTC	TTC	TTT	AAT	AAG	1286
Tyr	Leu	Ala	Gly	Leu	His	Ile	Asp	Leu	Tyr	Lys	Phe	Phe	Phe	Asn	Lys	
	,	350					355					360				

GCA	GTG	AGG	AAT	TAT	GCA	TTT	GAG	GGA	AAG	TAT	AAT	GAA	TAC	AAT	TTA	1334
					Ala											
	365			_		370			-	-	375		-			
GAT	GCA	GTT	GCA	AAG	GCC	TTA	TTA	GGG	ACA	TCA	AAA	GTT	AAG	GTA	GAT	1382
Asp	Ala	Val	Ala	Lys	Ala	Leu	Leu	Gly	Thr	Ser	Lys	Val	Lys	Val	Asp	
380					385					390					395	
ACG	CTA	ATA	TCT	TTC	TTA	GAT	GTA	GAA	AAA	TTA	ATA	GAA	TAT	AAC	TTT	1430
Thr	Leu	Ile	Ser	Phe	Leu	Asp	Val	Glu	Lys	Leu	Ile	Glu	Tyr	Asn	Phe	
				400					405					410		
AGG	GAT	GCC	GAA	ATC	ACA	CTT	CAG	CTT	ACT	ACA	TTT	AAT	AAC	GAC	CTA	1478
Arg	Asp	Ala	Glu	Ile	Thr	Leu	Gln	Leu	Thr	Thr	Phe	Asn	Asn	Asp	Leu	
			415					420					425			
					GTA											1526
Thr	Met	_	Leu	Ile	Val	Leu		Ser	Arg	Ile	Ser	•	Leu	Gly	Ile	
		430					435					440				
C T C	<i>(</i> , )		3 CC	666	3.63	<b>63.3</b>	2002				~~~					
					ACA											1574
Glu	445	пец	TIII	Arg	Thr	450	TTE	Sel	1111	пр	455	rys	ASII	rea	TYT	
	113					450					455					
TAT	TGG .	GAA	CAT	AGA	AAA	AGA	AAT	TGG	TTA	ATT	ССТ	Chala	AAG	GAA	GAA	1622
					Lys											
460	-				465	- 3				470			-, -		475	
ATC	TTA	GCG	AAA	TCC	TCT	AAT	ATA	AGA	ACT	TCT	GCT	CTA	ATA	AAG	GGA	1670
Ile	Leu	Ala	Lys	Ser	Ser	Asn	Ile	Arg	Thr	Ser	Ala	Leu	Ile	Lys	Gly	
				480					485					490		
AAA	GGA	TAT	AAA	GGC	GCA	GTA	GTT	ATA	GAC	CCA	CCT	GCT	GGA	ATA	TTC	1718
Lys	Gly	Tyr	Lys	Gly	Ala	Val	Val	Ile	Asp	Pro	Pro	Ala	Gly	Ile	Phe	
			495					500					505			

TT	T.	AAC	ATA	ACT	GTT	TTA	GAT	TTT	GCA	TCA	CTA	TAT	CCI	TCA	ATA	ATT	1766
Ph	e.	Asn	Ile	Thr	Val	Leu	Asp	Phe	Ala	Ser	Leu	Tyr	Pro	Ser	Ile	Ile	
			510					515					520			•	
			•														
						AGT											1814
Ar	g	Thr	Trp	Asn	Leu	Ser	Tyr	Glu	Thr	Val	Asp	Ile	Gln	Gln	Cys	Lys	
		525					530					<b>5</b> 35					
						AAG											1862
Ly	S	Pro	Tyr	Glu	Val	Lys	Asp	Glu	Thr	Gly	Glu	Val	Leu	His	Ile		
54	0					545					550	•				555	
								•									1010
						GGT											1910
Су	S	Met	Asp	Arg		Gly	Ile	Thr	Ala		Ile	Thr	GIÀ	Leu		Arg	
					560					565					570		
	_										~~~			com	2 2 17	<b>አ</b> አጥ	1958
						ATA											1330
As	p	Phe	Arg		Lys	Ile	TYT	Lys		гÃг	Ala	гÃе	ASII		ASII	ASII	
				575					580					585			
		~~~	<i>~</i>	<b>CD</b> D		CTA	OTTO	TT A TT	CAC	GTIN.	CTA	CNG	»G»	GC _A	ልጥሮ	222	2006
						Leu											2000
56	:I	GIU	590	GIII	nys	neu	пеа	595	Asp	var	var	9211	600	,,,,,	1100	-,-	
			390					333									
G1	מי	שירי	ልጥል	አልጥ	درست	ACT	TAC	GGT	GTA	TTT	GGA	GCT	GAA	ACA	TTT	CCG	2054
						Thr											
•	_	605					610	 1			2	615					
ייני	'A	TAT	GCG	CCA	CGT	GTA	GCG	GAG	AGT	GTT	ACT	GCA	CTG	GGG	AGA	TAC	2102
						Val											
62		•			J	625					630					635	
	·																
G7	ľT	ATT	ACC	AGT	ACC	GTA	AAG	AAA	GCT	AGG	GAA	GAA	GGT	TTA	ACT	GTA	2150
						Val											
					640		_	_		645					650		

מידים	ምአ ር	CCT	GAT	יוייי) ע	ርአጥ	un Crati	מיושה	بالملت	CTTC	بلحلت	አአጥ	CCT	ccc	AAG	ידיתת	2198
			Asp													2136
Беа	171	Gry	655	1111	Asp	261	Dea	660	Deu	пси	ASII	110	665	Lys	Abn	
			055					000					005			
AGT	TTA	GAA	AAT	ATT	ATA	AAA	TGG	GTT	AAA	ACT	ACT	TTC	AAT	TTA	GAT	2246
Ser	Leu	Glu	Asn	Ile	Ile	Lys	Trp	V al	Lys	Thr	Thr	Phe	Asn	Leu	Asp	
		670				_	675		_			680			_	
			•													
TTG	GAA	GTT	GAT	AAA	ACC	TAC	AAG	TTT	GTG	GCT	TTT	TCT	GGA	TTG	AAG	2294
Leu	Glu	Val	Asp	Lys	Thr	Tyr	Lys	Phe	Val	Ala	Phe	Ser	Gly	Leu	Lys	
	685					690					695				•	
															•	
AAG	AAT	TAC	TTT	GGA	GTA	TAC	CAA	GAC	GGG	AAG	GTT	GAT	ATA	AAG	GGG	2342
Lys	Asn	Tyr	Phe	Gly	Val	Tyr	Gln	Asp	Gly	Lys	Val	Asp	Ile	Lys	Gly	
700					705					710					715	
			AAG													2390
Met	Leu	Val	Lys	_	Arg	Asn	Thr	Pro		Phe	Val	Lys	Lys		Phe	
				720					725					730		
220	CNC	Cm3	7 7 C	CAC	COUR.	2000	3.00	maa	200	220	mcc	CCI	7 7 C	Cam	CTC	2420
			AAG Lys													2438
ven	Gra	Val	735	Giu	neu	Met	TTE	740	TTE	Mon	SET	PIO	745	wah	·	
			,55					740					743			
AAG	GAG	ATT	AAA	AGA	AAA	ATT	GTA	GAC	GTA	GTT	AAA	GGA	TCA	TAT	GAA	2486
			Lys	_												
		750			_		755					760				
														-		
AAA	CTA	AAA	AAC	AAA	GGA	TAC	AAT	CTG	GAC	GAA	TTA	GCG	TTT	AAA	GTA	2534
Lys	Leu	Lys	Asn	Lys	Gly	Tyr	Asn	Leu	Asp	Glu	Leu	Ala	Phe	Lys	Val	
	765					770					775					
ATG	CTA	TCG	AAG	CCT	TTA	GAT	GCG	TAC	AAA	AAG	AAC	ACT	CCC	CAA	CAC	2582
Met	Leu	Ser	Lys	Pro	Leu	Asp	Ala	Tyr	Lys	Lys	Asn	Thr	Pro	Gln	His	
780					785					790					795	

GTA	AAG	GCA	GCT	CTA	CAA	CTT	AGA	CCA	TTT	GGA	GTT	AAC	GTA	TTA	CCA	2630
Val	Lys	Ala	Ala	Leu	Gln	Leu	Arg	Pro	Phe	Gly	Val	Asn	Val	Leu	Pro	
				800			•		805					810		
CGA	GAT	ATA	ATA	TAC	TAT	GTT	AAG	GTT	AGA	TCT	AAA	GAT	GGA	GTG	AAA	2678
Arg	Asp	Ile	Ile	Tyr	Tyr	Val	Lys	Val	Arg	Ser	Lys	Asp	Gly	Val	Lys	
		•	815					820					825			
CCA	GTA	CAA	CTA	GCT	AAA	GTT	ACT	GAA	ATA	GAC	GCA	GAG	AAA	TAT	TTA	2726
Pro	Val	Gln	Leu	Ala	Lys	Val	Thr	Glu	Ile	Asp	Ala	Glu	Lys	Tyr	Leu	
		830					835					840	-			
							•									
														GGA		2774
Glu	Ala	Leu	Arg	Ser	Thr	Phe	Glu	Gln	Ile	Leu		Ala	Phe	Gly	Val	
	845					850					855					
														TTT		2822
	Trp	Asp	Glu	Ile		Ala	Thr	Met	Ser		Asp	Ser	Pne	Phe		
860					865					870					875	
	003	s &m		663		3.CM		·····	722 7	. <i>a</i> . m		\ m m		7 TT 7 T	.	2873
							TAA.	LTAAC	JAA A	AGW IA	AGCA1	41 I	.114	AATAA:	L	2013
ıyr	Pro	ser	гуя	880	ASII	ser										
				880				rau								
A A A 7	Inininin	ראכן	א א כב כיז	7 2 444	יים יודיו	ארררי <u>י</u>	מראב	a ac	ייי איייו	DAAA	A Turu	rtra(ZAA :	AATT	TAAATC	2933
THUI.	• • • • •	ing i	2100				10111	110								
GTA	rater	ייייין	ATTC	TTCC	rc c	rctt	CCTC	r aa'	TTCT.	rcct	TTA	ATTC	rrc '	TTGT	TTCTGC	2993
ATA	CCCA	AGT Z	AAAG	GAAA'	TA Gʻ	TTAA'	TAA	G AA	AGAT	AGCA	ATT	CTTC	ATA .	ATAA	ATTTTT	3053
					•											
AGA	AGCA	ATT '	TTTA	CCCA	CA T	AAGT	TATA	A AG	ATTT	TTAG	AAA	ATTT	AAA	TCGT	TTATT	3112
		_														

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 882 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
- Met Thr Lys Gln Leu Thr Leu Phe Asp Ile Pro Ser Ser Lys Pro Ala 1 5 10 15
- Lys Ser Glu Gln Asn Thr Gln Gln Ser Gln Gln Ser Ala Pro Val Glu 20 25 30
- Glu Lys Lys Val Val Arg Arg Glu Trp Leu Glu Glu Ala Gln Glu Asn 35 40 45
- Lys Ile Tyr Phe Leu Leu Gln Val Asp Tyr Asp Gly Lys Lys Gly Lys
 50 55 60
- Ala Val Cys Lys Leu Phe Asp Lys Glu Thr Gln Lys Ile Tyr Ala Leu 65 70 75 80
- Tyr Asp Asn Thr Gly His Lys Pro Tyr Phe Leu Val Asp Leu Glu Pro 85 90 95
- Asp Lys Val Gly Lys Ile Pro Lys Ile Val Arg Asp Pro Ser Phe Asp 100 105 110
- His Ile Glu Thr Val Ser Lys Ile Asp Pro Tyr Thr Trp Asn Lys Phe 115 120 125

WO 93/25691 PCT/IT93/00058

Lys Leu Thr Lys Ile Val Val Arg Asp Pro His Ala Val Arg Arg Leu 130 135 140

Arg Asn Asp Val Pro Lys Ala Tyr Glu Ala His Ile Lys Tyr Phe Asn 145 150 155 160

Asn Tyr Met Tyr Asp Ile Gly Leu Ile Pro Gly Met Pro Tyr Val Val 165 170 175

Lys Asn Gly Lys Leu Glu Ser Val Tyr Leu Ser Leu Asp Glu Lys Asp 180 185 190

Val Glu Glu Ile Lys Lys Ala Phe Ala Asp Ser Asp Glu Met Thr Arg 195 200 205

Gln Met Ala Val Asp Trp Leu Pro Ile Phe Glu Thr Glu Ile Pro Lys 210 215 220

Ile Lys Arg Val Ala Ile Asp Ile Glu Val Tyr Thr Pro Val Lys Gly
225 230 235 240

Arg Ile Pro Asp Ser Gln Lys Ala Glu Phe Pro Ile Ile Ser Ile Ala 245 250 255

Leu Ala Gly Ser Asp Gly Leu Lys Lys Val Leu Val Leu Asn Arg Asn 260 265 270

Asp Val Asn Glu Gly Ser Val Lys Leu Asp Gly Ile Ser Val Glu Arg 275 280 285

Phe Asn Thr Glu Tyr Glu Leu Leu Gly Arg Phe Phe Asp Ile Leu Leu 290 295 300

Glu Tyr Pro Ile Val Leu Thr Phe Asn Gly Asp Asp Phe Asp Leu Pro 305 310 315 320

- Tyr Ile Tyr Phe Arg Ala Leu Lys Leu Gly Tyr Phe Pro Glu Glu Ile Pro Ile Asp Val Ala Gly Lys Asp Glu Ala Lys Tyr Leu Ala Gly Leu His Ile Asp Leu Tyr Lys Phe Phe Phe Asn Lys Ala Val Arg Asn Tyr Ala Phe Glu Gly Lys Tyr Asn Glu Tyr Asn Leu Asp Ala Val Ala Lys Ala Leu Leu Gly Thr Ser Lys Val Lys Val Asp Thr Leu Ile Ser Phe Leu Asp Val Glu Lys Leu Ile Glu Tyr Asn Phe Arg Asp Ala Glu Ile Thr Leu Gln Leu Thr Thr Phe Asn Asn Asp Leu Thr Met Lys Leu Ile Val Leu Phe Ser Arg Ile Ser Arg Leu Gly Ile Glu Glu Leu Thr Arg Thr Glu Ile Ser Thr Trp Val Lys Asn Leu Tyr Tyr Trp Glu His Arg Lys Arg Asn Trp Leu Ile Pro Leu Lys Glu Glu Ile Leu Ala Lys Ser
- Ala Val Val Ile Asp Pro Pro Ala Gly Ile Phe Phe Asn Ile Thr Val 500 505 510

Ser Asn Ile Arg Thr Ser Ala Leu Ile Lys Gly Lys Gly Tyr Lys Gly

Leu Asp Phe Ala Ser Leu Tyr Pro Ser Ile Ile Arg Thr Trp Asn Leu Ser Tyr Glu Thr Val Asp Ile Gln Gln Cys Lys Lys Pro Tyr Glu Val Lys Asp Glu Thr Gly Glu Val Leu His Ile Val Cys Met Asp Arg Pro Gly Ile Thr Ala Val Ile Thr Gly Leu Leu Arg Asp Phe Arg Val Lys Ile Tyr Lys Lys Lys Ala Lys Asn Pro Asn Asn Ser Glu Glu Gln Lys Leu Leu Tyr Asp Val Val Gln Arg Ala Met Lys Val Phe Ile Asn Ala Thr Tyr Gly Val Phe Gly Ala Glu Thr Phe Pro Leu Tyr Ala Pro Arg Val Ala Glu Ser Val Thr Ala Leu Gly Arg Tyr Val Ile Thr Ser Thr Val Lys Lys Ala Arg Glu Glu Gly Leu Thr Val Leu Tyr Gly Asp Thr

Asp Ser Leu Phe Leu Leu Asn Pro Pro Lys Asn Ser Leu Glu Asn Ile
660 665 670

Ile Lys Trp Val Lys Thr Thr Phe Asn Leu Asp Leu Glu Val Asp Lys

Thr Tyr Lys Phe Val Ala Phe Ser Gly Leu Lys Lys Asn Tyr Phe Gly

Val Tyr Gln Asp Gly Lys Val Asp Ile Lys Gly Met Leu Val Lys Lys Arq Asn Thr Pro Glu Phe Val Lys Lys Val Phe Asn Glu Val Lys Glu Leu Met Ile Ser Ile Asn Ser Pro Asn Asp Val Lys Glu Ile Lys Arg Lys Ile Val Asp Val Val Lys Gly Ser Tyr Glu Lys Leu Lys Asn Lys Gly Tyr Asn Leu Asp Glu Leu Ala Phe Lys Val Met Leu Ser Lys Pro Leu Asp Ala Tyr Lys Lys Asn Thr Pro Gln His Val Lys Ala Ala Leu Gln Leu Arg Pro Phe Gly Val Asn Val Leu Pro Arg Asp Ile Ile Tyr Tyr Val Lys Val Arg Ser Lys Asp Gly Val Lys Pro Val Gln Leu Ala Lys Val Thr Glu Ile Asp Ala Glu Lys Tyr Leu Glu Ala Leu Arg Ser Thr Phe Glu Gln Ile Leu Arg Ala Phe Gly Val Ser Trp Asp Glu Ile Ala Ala Thr Met Ser Ile Asp Ser Phe Phe Ser Tyr Pro Ser Lys Gly

Asn Ser

15

20

25

CLAIMS

- 1. Nucleic acid of natural, recombinant or synthetic origin, comprising a nucleotide sequence coding a polypeptide or fragments thereof having a thermostable and thermofilic DNA polymerase activity.
- 2. Nucleic acid according to Claim 1 wherein said nucleotide sequence is derived from bacteria of the *Archaea*domain.
- 3. Nucleic acid according to Claim 2 wherein said nucleotide sequence is derived from bacteria of the *Sulfolobus* genus.
 - 4. Nucleic acid according to Claim 2 wherein said nucleotide sequence is derived from bacteria of the S. solfataricusspecies.
 - 5. Nucleic acid according to any of previous Claims wherein said polypeptide or fragments thereof have also a 3'-5' exonuclease activity.
 - 6. Nucleic acid according to Claim 5 wherein said nucleotide sequence codes the polypeptide having the aminoacid sequence of SEQ ID N2 or fragments thereof.
 - 7. Nucleic acid according to Claim 6 wherein said nucleotide sequence codes the polypeptide having the aminoacid sequence of SEQ ID N2 or fragments thereof, deleted or substituted for one or more aminoacids, so that said DNA polymerase activity is maintained.
- 8. Nucleic acid comprised in the sequence of SEQ ID N1 characterized in that from nucleotide 1 to nucleotide 197 is a non coding sequence, from nucleotide 198 to nucleotide 2843 coding a polypeptide with a thermostable and thermofilic DNA polymerase activity and from nucleotide 2844 to nucleotide 3112 is a non coding sequence.

- 9. Nucleic acid according to Claim 8 wherein said coding sequence lacks or is substituted of one or more nucleotides so that said DNA polymerase activity is maintained.
- 5 10. Nucleic acid able to hybridize at least at medium stringency to a nucleic acid according to any of previous Claims.

15

- 11. Nucleic acid according to Claim 10 complementary to nucleotide sequences from Claim 1 to 9.
- 12. Polypeptide with a thermostable and thermofilic DNA polymerase activity.
- 13. Polypeptide according to Claim 12 produced through recombinant DNA techniques by nucleic acids according to any of previous Claims from 1 to 11.
- 14. Polypeptide according to Claim 13 produced by the nucleotide sequence comprised in SEQ ID N1.
- 20 15. Polypeptide according to Claim 14 having a sequence comprised in SEQ ID N2.
 - 16. Recombinant cloning or expression vectors, having a plasmid or viral derivation, comprising nucleotide sequences accoprding to any of previous Claims from 1 to 11.
 - 17. Recombinant vector according to Claim 16 being the plasmid pFCpolS (DSM N.7091).
 - 18. Cells transformed with vectors according to Claims 16 or 17.

FIG. 1

SSDP 40k

SSDP 50k

λ 4Β

FIG. 2a

FILLLDFNSLYPSIIOEF YVLVHDFNSLYPSIIOEF SVLVLDYKSLYPSIIRTF	- V L I F D Y M S L F I L L L D F M S L Y V L V M D F N S L S V L V L D Y K S L	****
-	DLTSL	S

_				_	_	_	_	_	_																				
•	Æ	Œ	_	=	=	=	=	_	GE																				
_			_	1				0																					
•	9	9	-	9	9	9	_	9	B																				
	_		⋖	-		~	~	4	_																				
	⋖	-	⋖	S	>	22	*	-	⋖		>-	_	×	×	>	-	-	z	0										
	—	-	0	-	-	-	_	_	ဗ		>	>	_	36	_	_	_		œ					- (
	>	>	=	ပ	>	>	-	-	Z				_	-	⋖	≪<	G		_					7					
	S	-	0	S	_		S	⋖	w			_	<u>.</u>	_	⋖	⋖	~	≪	1					C	ソ				
	ш	⋖	0	≥ <	⋖	2	ဟ	-	¥		Ξ	_	_	_	_	>	<u> </u>	_	>										
	≪	⋖	S	⋖	≪	~	~	~	_		_		-		_	Ĺ	<u>-</u>	~	_			•							
	>	>	L	S	_	_	_	2	>-			Ξ	_	_	Ξ	\overline{z}	Ξ	_	_						F16. 2D				
	~	Ŧ	>	⋖	۵	۵.	œ	œ	۵.		_	_	_	×	Ξ	Ξ	<u>~</u>	Ξ	~					_	_				
	۵.	_	-	>-	*	×	٥.	_	>	_	_	-												•	ſ				
	≪	ပ	ı	S	≪.	⋖	0	0	~	7	_	≪	•	S	~	•	S	•	32					L					
			¥	>	_	_		>	9	8									_										
	_	_			u.	u.	•	>-	-	61	98	937	34	111	2	45	12	5	90										
	_			<<			~		>	REGION	9	6	6	7	2	2	9	1	4										
				S					0																				
	<u></u>		_		>		₹		_																				
			×		S	>	_		22			ဗ	u	_		_	w	144	ı										
	w —	_	<u></u>						S			-	_	_		4		_	· -										
	9 9	9	_	9	9	≻	9		⋖		S	A	-	>	Ξ.		S	>	0										
			_		•	Ψ.	•						~	6			=	-	_										
		_	u.	=	_		_		•	•	z	_					- W	•											
	>	4	S			ပ		≪	~		~		=	0									•					<u>~</u>	u
	9	9	9	9	9	9	9	9	9			9	9				9	~			_	_	Ξ		_	_		_	
	>	>	_	>	>	>	_	>	>		٩		~	0	Z	9	×		-		۵.	-							
	•	>	_	>			•	_	_		==	ပ	w	-	-	-			9		-	3	_	S	-		_		_
	~	S	~	S	S	S	~	S	S		_	_	-	w	Z	0	*	ပ	-		Z	æ	0	>	3			S	
•	=		=	=	=	=	=	=	-		_	>	>	-	-	_	. >	>	_		œ	z	_	0	0		0	S	-
	-	ပ	S	⋖	⋖	≪	=	\blacksquare			Ŀ	4	4	u.	=	Æ	•	>	=		×		9	œ	Œ	~	_	0	>
	L	>		>	-	•	\vdash	_	*		_	_	_	>	_	>	-	>			×	œ	w	œ	~			0	_
	>	>	_	\blacksquare	_	_	\vdash	\vdash	_		S	S	တ	S	S	S	S	S	S		>	>	•	-	>	×	>	1	ı
	*	*	×	×	*	*	×	\blacksquare	$\boldsymbol{\succeq}$		0		0	0	0	0					_	_	⋖	w	-	I	-	-	
	=		⋖	>	_	_	_	œ	⋖		-	_	-	-	-	-	•	-	-		- 1	0	⋖	S	0	0	ш	w	0.
	≪	≪(-		≪	•	-	22	_		0	0	0		0	0		0			=	>	¥	-		_	_	X	v.
	œ	≪	S	>	×	0	0	ب.	0		9	ø	9	9	9	9	9	9	ပ		9	9	9	9	9	5	9	9	Œ
	0	0	œ	0	0	0	si.	. 0	24		>	<u> </u>	>	>	>	>	_	≪<	>		*	×	¥	×	¥	×	=	30	•
	>	0		=	œ	œ		Z	_		_	_	>	>	-	>	-	≪	-		—	\blacksquare	≪	z	_	>	4.	-	•
	>	<u>~</u>	-	S	-	•	۰	-	≪		>	-	S	S	>	>	>	-	-				œ	ı	1	•	1	*	>
	0				0	0		=			_	œ	> <	œ	w	_	0		œ		0	_	_	-	w	w	>	_	_
			2	<u> </u>				⋖			_	×	_	ц.			>	4	0		>	X	t	- 1	0	_	=	•	
	٠,			_				_			ی	S	۵.	œ	z	æ	9	0	>-		~	*	×	œ	*	>	œ	Ŧ	24
	_	_		-	_	_	_	_	-,		_																		
	_	٠.		_			_	_			_	_	_	cn.	ю	0	~	2	6		0	ō,	2	6		Ŋ	~	_	0
	594	8	989	627	₹	ĕ	8	548	2		648	879	8	719	ğ	8	23	61	7.		7	94	95	79	0	1965	627	72	~
2	u)	ω	4	9	51	31	-7	u,	٠٠,	9	-	_	~		٠.			_	_	œ						-			
										=			٥.							8			2						
20	_	_	2	>			H		_	2	_	_	Ö	>	20		Ξ		0	3		>	6	2			H		0
REGION	စ္တ	HSV	å	ac	8	2	្ជ	- +	\$ 29	REGION	50	5	ğ	VacV	ञ्च	Š	2	2	¢29	Ę	SS	HSV	Ad	20	Ŧ	လွ	Ecli	7	ç
œ	S	=	•	>	Ŧ	S	ш	_	-	Œ	U)		_		_	-,	_			_									

IN ERNATIONAL SEARCH REPORT

Υ

International Application No.

PCT/IT 93/00058

L. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all)6 According to International Patent Classification (IPC) or to both National Classification and IPC C12N15/63: Int.Cl. 5 C12N15/54: IL FIELDS SEARCHED Minimum Documentation Searched? Classification Symbols Classification System **C12N** Int.Cl. 5 Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched III. DOCUMENTS CONSIDERED TO BE RELEVANT? Relevant to Claim No.13 Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Category o 1-6,8, EMBL Database Accesion number X64466; 30 May 1992 12-15 1,2,5, EP,A,O 455 430 (NEW ENGLAND BIOLABS, INC) X 12-16,18 6 November 1991 see page 4, line 3 - line 16; examples I-VI 12-15 THE ITALIAN JOURNAL OF BIOCHEMISTRY vol. 39, no. 2, April 1990, pages 83 - 99 R. RELLA ET AL. 'Purification and properties of a thermophilic and thermostable DNA polymerase from the Archaebacterium Sulfolobus solfataricus! see page 83, paragraph 3 - page 84, paragraph 1 see page 94, paragraph 1 -paragraph 3; figures 7.8 -/--"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Special categories of cited documents: 10 "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or in the art. document published prior to the international filing date but later than the priority date claimed "A" document member of the same patent family IV. CERTIFICATION Date of Mailing of this International Search Report Date of the Actual Completion of the International Search 23. 09. 93 13 SEPTEMBER 1993 Signature of Authorized Officer International Searching Authority MONTERO LOPEZ B. **EUROPEAN PATENT OFFICE**

	International Application No	
III. DOCUME	NIS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	Data
Category °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
X	SYSTEM. APPL. MICROBIOL. vol. 7, 1986, pages 337 - 341 M. ROSSI ET AL. 'Struture and properties of a thermophilic and thermostable DNA polymerase isolated from Sulfolobus solfataricus' see abstract see page 340, left column, paragraph 2; figure 4	12-15
P,X	NUCLEIC ACIDS RESEARCH. vol. 20, no. 11, 11 June 1992, ARLINGTON, VIRGINIA US pages 2711 - 2716 PISANI, F.M. ET AL. 'A DNA polymerase from the archaeon Sulfolobus solfataricus shows sequence similarity to family B DNA polymerases'	1-6,8, 12-18
	·	
	•	
-		
	,	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

9300058 IT SA 75960

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

13/0 13/09/93

Patent document cited in search report	Publication date	Paten men	t family nber(s)	Publication date
EP-A-0455430	06-11-91	US-A- JP-A-	5210036 5068547	11-05-93 23-03-93
	.eu.===####==#####	,		
				•
				٠