主纤维丛结构下量子机制的策略控制系统的统 一建模框架

作者: GaoZheng日期: 2025-05-19

基于:

- 主纤维丛版广义非交换李代数 (用于表达微分动力与非交换路径演化)
- B-A交替演化模型(将塌缩与纠缠整合为偏序路径现象)
- 交易系统的泛属性状态编号机制与参数反馈优化闭环结构 (策略控制核心)

一、系统建模目的

本框架旨在将量子演化机制(包括塌缩、纠缠、路径干涉)映射为一组**策略可控、路径压强驱动、参数 自适应反馈更新**的演化过程。实现**结构控制论与动态演化机制**的统一。

二、结构主变量与映射定义

概念层	对应结构	解释
\mathcal{S}	泛属性状态编号集	表征策略系统所有可能状态切面
$P(\sigma) \in \mathbb{R}^d$	状态属性向量	如能量、自旋、动量、位置信息、策略压强等
$\mu(\sigma_i,\sigma_j;w)$	微分动力量子	描述两状态之间的策略跃迁压强
$L(\gamma;w)$	路径积分逻辑值	整个路径的策略自然性或演化紧张度
$D_{ m ext{ iny RB}}$	策略微分子结构	可嵌套的子控制器,对应D结构的决策内核
$T\subset \mathcal{S} imes \mathcal{S}$	允许跃迁拓扑	动态生成的主纤维丛连接网络

三、主控制流程与模块化结构

1. 状态初始化与编号

• 所有策略状态切面 $\sigma_i \in \mathcal{S}$ 编号为 S_i , 每个具备属性嵌入:

$$P(\sigma_i) = (p_1, p_2, \ldots, p_d)$$

• 初始化微分权重向量 $w=(w_1,\ldots,w_d)$, 代表当前压强方向倾向。

2. 演化路径生成与压强反馈

• 计算所有路径 $\gamma = \{\sigma_0, \sigma_1, \dots, \sigma_n\}$ 的路径积分:

$$L(\gamma;w) = \sum_{k=1}^n anh\left(\mu(\sigma_{k-1},\sigma_k;w)
ight)$$

- 路径积分作为策略可执行性判断基础:
 - 。 $L(\gamma) > \theta$: 路径被执行;
 - 。 $L(\gamma) < \delta$: 视为策略塌缩。

3. 策略反馈与D结构更新

• 每次路径完成后,反馈路径积分结果更新策略微分子结构 $D_{ ext{ iny 8}}$,实现策略调控:

$$w^{(t+1)} = w^{(t)} + \eta \cdot
abla_w L(\gamma)$$

• 若局部演化表现为高压强但低积累,则触发 D 结构"模式切换"机制,进行控制策略迁移。

4. B-A交替策略与演化调度

• B 模式: 非交换扩展路径 (高压强 → 多路径)

• A 模式:逻辑塌缩决策 (路径压强收敛 → 明确指令)

策略切换控制公式

$$\mathrm{Mode}_{t+1} = egin{cases} B, & ext{if } \max_{\gamma} L(\gamma; w) - \min_{\gamma} L(\gamma; w) > arepsilon \ A, & ext{if } orall \gamma, L(\gamma; w) < \delta \end{cases}$$

四、主纤维丛结构建模下的策略动态映射

1. 局部主纤维联络

每一策略状态 σ_i 附带主纤维 F_i ,其中包含:

- 决策惯性方向(历史路径压强惯性)
- 局部自由度调整空间(压强扰动对下一跳策略选择的影响)

$$\mathcal{F}(\sigma_i) = \{$$
方向,容错,预期跃迁集 $\}$

2. 纤维滑移与策略扰动适应

在非交换演化下,若出现策略扰动 $\Delta \mu$,则纤维结构发生滑移:

- 局部连接变换;
- 可达策略集合变动;
- 局部D结构切换或双D结构交替控制。

五、全局闭环调控公式总结

总结构

$$(\mathcal{S},P,w,T)$$
 演化与积分 $L(\gamma)$ 反馈优化 w' 联络调节 T'

其中:

- γ: 策略路径;
- w: 压强结构;
- T: 策略拓扑网络;
- $L(\gamma)$: 演化路径的"可执行性"量化;

• $D_{\text{策略}}$: 提供动态D结构以应对演化中策略异常与切换;

F:局部纤维联络调节局部路径结构;

• 控制目标: **最小逻辑压强跳跃** → **最大路径连贯度**。

六、策略系统在量子机制中的映射意义

量子现象	策略系统映射	
态叠加	并行路径压强叠加 (多策略路径)	
干涉	非交换路径逻辑积分不同导致路径竞争	
纠缠	主纤维丛联络共享+压强耦合路径	
塌缩	局部路径压强低于阈值,触发策略终止决策	
演化	局部压强最大路径推进,带有路径记忆与结构惯性	

七、应用场景

• 量子系统控制器优化: 如可调超导量子比特的参数闭环压强控制;

• **AI推演引擎设计**:将策略逻辑路径演化替代统计优化;

• 金融博弈仿真器: 模拟交易路径逻辑性与策略分叉;

• 宏观复杂系统决策器: 如货币演化、地缘系统、军事策略演化等。

许可声明 (License)

Copyright (C) 2025 GaoZheng

本文档采用知识共享-署名-非商业性使用-禁止演绎 4.0 国际许可协议 (CC BY-NC-ND 4.0)进行许可。