RC 5 Power Series

If you find it is very hard to do Fourier transformation, don't worry. You'll be expert of it if you take VE216. Today we'll focus on power series.

Fourier at the Funeral

The Power Series Solution

For an ODE

$$x'' + p(t)x' + q(t)x = 0 (1)$$

If p(t) and q(t) have power series expansion with radius ρ_1 and ρ_2 , then the solution x has power series expansion of at least $min\rho_1$, ρ_2 . (assume the center is t = 0)

Then we can assume $x(t)=\sum_{\infty}^k a_k t^k$, plug into the equation, let the coefficients to be 0 and solve out ai .

Excercise

Discuss the solution for the Legendre Function at x = 0:

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + l(l+1)y = 0 (2)$$

Legendre Function is important in mathematical physics, especially electromegnetics. You'll find further explanation and calculation if you take VE 230 (or VP260).

Some website you can reference for this famous problem:

https://mathworld.wolfram.com/LegendreDifferentialEquation.html

http://zhiqihuang.top/mmp/lectures/MMP25_PlYlmMore.pdf

Regular Singular Points

The point is, if you met a sigular point at the point you want to find a approximate solution, what should you do?

Absolutely, it is impossible for you to find solutions for all the cases. We need to find the case where we can write out with finite number of series with minus sign, which is the intuition of "regular" singular points.

For equation

$$P(t)x'' + Q(t)x' + R(t)x = 0 (3)$$

If $P(t_0)=0$, then the solution $x(t)=\sum_{\infty}^k a_k(t-t_0)^k$ may fail.

The equation

$$t^2x'' + \alpha tx' + \beta x = 0 \tag{4}$$

is called Euler's Equation.

For t > 0 and t < 0, assume x = t^r, plug into the ODE, we have:

$$r^2 + (\alpha - 1)r + \beta = 0 \tag{5}$$

The general solution is

$$x(t) = \begin{cases} c_1 |t|^{r_1} + c_2 |t|^{r_2} & \text{r is real} \\ c_1 |t|^{r_1} + c_2 |t|^{r_1} \ln |t| & r_1 = r_2 \\ c_1 |t|^{\lambda} \cos(\mu \ln |t|) + c_2 |t|^{\lambda} \sin(\mu \ln |t|) & \text{if } r = \lambda \pm \mu i \end{cases}$$
(6)

For equation

$$x'' + p(t)x' + q(t)x = 0 (7)$$

if either p or q is not analytic at $t=t_0$, then t_0 is called a singular point for this ODE. If p has a pole of order not more than 1 and q has a pole of order not more than 2 at t_0 , then t_0 is called a regular singular point. For example, Euler equation

$$t^2x'' + \alpha tx' + \beta x = 0 \tag{8}$$

has regular singular point t=0. For equation

$$x'' + p(t)x' + q(t)x = 0, (9)$$

we only cares about the situation where $(t-t_0)p(t)$ and $(t-t_0)^2q(t)$ is analyatic.

The Method of Frobenius

For equation x''+p(t)x'+q(t)x=0 with regular singular point at ${\tt t=0}$, we rewrite the ODE as

$$t^2x'' + t(tp(t))x' + t^2q(t)x = 0.$$
 (10)

,

Then assume $x(t) = t^r \sum_{k=0}^{\infty} a_k t^k$.

Denote p_i the Taylor coefficient for tp(t), q_i the Taylor coefficient for $t^2q(t)$. Set $F(x) := x(x-1) + p_0x + q_0$. Our conclusion is:

- F(r) = 0
- ullet $a_mF(r+m)=-\sum_{k=0}^{m-1}(q_{m-k}+(r+k)p_{m-k})a_k$, for $m\geq 1$

Two solutions of r should give two independent solutions.

General Steps (Condition 1):

- 1. Calculate r_1 , r_2 , p_i , q_i .
- 2. For r_1 , calculate a_1 . a_0 is typically arbitrary, and can be set to 1.
- 3. Derive recurrence relation for a_i .
- 4. For r_2 , if $r_1 \neq r_2$, use the same method. Otherwise, proceed to condition 2.

Theorm: If z_0 is the sigular point of the function

$$rac{d^2w}{dz^2}+p(z)rac{dw}{dz}+q(z)w=0, \hspace{1.5cm} (11)$$

then in the circular area $0<|z-z_0|< R$ where p(z) and q(z) are both analytic, two linearly independent solution are:

$$w_1(z) = (z-z_0)^{r_1} \sum_{k=0}^{\infty} c_k (z-z_0)^k \ w_2(z) = g w_1 ln(z-z_0) + (z-z_0)^{r_2} \sum_{k=0}^{\infty} d_k (z-z_0)^k$$

where r_1, r_2 , and g are constants.

Exercise

Find the solution for Bessel Function at x = 0:

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + (1 - \frac{\nu^2}{x^2})y = 0 \tag{13}$$

Suppose $\nu \notin \mathbb{N}$.

Reference

Chongshi Wu, Mathematical Physics Methods.

Shuyu Wu, TA-VV286.