

Urban Energy Systems

Nilay Shah

Centre for Process Systems Engineering

Why cities? Urbanisation trends

Why cities? Cities are in flux and compete

Population by Residence and Settlement Size; Urban Energy

- ☐ Few Mega-cities with <10% of urban population</p>
- □ Urban settlements with less than half-million >50% of urban population
- LDR city dwellers use 3 x more energy than rural dwellers

Source: **Dhakal, 2008,** based on: United Nations, Department of Economic and Social Affairs, Population Division (2006). World Urbanization Prospects: The 2005 Revision. Working Paper No. ESA/P/WP/200.

Today's cities are inefficient

Energy and Exergy Flows Vienna 2006

Source: Gruebler, 2012; Wien Energie, 2009; (rough) exergy efficiencies based on Gilli et al., 1996.

But energy density provides opportunities

Solution: Structured, systematic approach

Smart service systems

Resource flow optimisation

People and behaviour

Land use/built environment

Our integrated modelling approach looks at two key questions:

- How does
 resource demand
 arise and how can
 it be reduced? E.g.
 Land use changes,
 technology, policy
- How to design systems to supply (reduced) resource demands in effective, integrated ways?

Land use

What do we model in a city?

How the space is organised: built environment and its functions (activity locations); transport system

How agents use the space

How resource demands vary in space and time

What is the best resource interconversion technology and flow network?

What is the best engineering service network?

UrbEn – integrated modelling framework

The system is composed of four integrated models:

- 1. Layout model optimises or describes how the space is organised
- 2. Active agent model establishes how agents are likely to use the space over time and estimates resource demands by location and time
- 3. Resource-Technology Network model determines the best resource interconversion technology and flow network (i.e. the core energy system)
- 4. Service Network Model establishes the engineering service network configuration appropriate for the resource flow

Layout model

Combinatorial optimisation (cf. VLSI & chip design)

Proxy for transport energy consumption and clustering benefit

· To be revisited once many studies complete

Generates gross layout

Ensures "well-connectedness" of cities and access to activities

Can incorporate a wealth of constraints

Various objective functions possible

Solution can be starting point for urban designer

Smart design: layout and built environment

UK eco-town: original master plan

Layout Model

UK eco-town: unconstrained low energy design

UK eco-town: constrained, "livable" low energy design

ABMS: Land use and transport Service networks Resource flow **Temporal fixity** 3 a.m. on Agent activities Home-**Before**day d Work **Work Tour Commute Home-Stay Work-Stay Home-Stay** Land use **Duration Duration Duration** Leave home **Arrive back** Leave for **Arrive at** Leave work for non-work activities home work work **Temporal** fixity Work-3 a.m. on Work-**After Work Based** day d+1 Home **Tour Tour Work-Stay Home-Stay Home-Stay** Commute **Duration Duration Duration Arrive back** Arrive back Leave work **Arrive back Leave home** at work home for non-work home activities

How do citizens use the 2D/3D space?

Start time (hour)

People: Results of London Travel Study

RESOURCE FLOW/CONVERSION OPTIMISATION

Resource (service) demands

Known for every location and every time point (season, day of week, part of day)

How to supply optimally: Resource Technology Network model

RTN model

Key elements

Space

Time

Resources

Technologies

Infrastructure/Networks

Resource Technology Network: Example

Lingang New City

Energy System Optimisation

>50% GHG reductions compared to BAU

Overall System Design

Network provides:

- Heating in winter
- Cooling in summer

UK studies – 50% reduction cost effecive

City MACCs and urban energy transitions

Summary

- ☐ Cities provide massive opportunities for climate change mitigation
- ☐ Cities at the forefront of innovation; often more aspirational than nation states
- Tools for smart and systematic design of urban energy systems becoming available

