01 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2070 Ashad

Exam.	New Back (2066 & Later Bat		
Level	BE	Full Marks	80
Programme	All (Except B.Arch)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. State Leibnitz's Theorem on higher derivatives. If $y = \sin{(m \sin^{-1}x)}$ then show that $(1-x^2) y_{n+2} (2n+1) x y_{n+1} + (m^2-n^2) y_n = 0$
- 2. State Rolle's Theorem and verify it for the function $f(x) = \frac{x(x+3)}{e^{\frac{x}{2}}}$, $x \in [-3,0]$
- 3. Evaluate: $x \xrightarrow{Lt} 0 \left(\frac{\tan x}{x} \right)^{\frac{1}{x^2}}$
- 4. Find the asymptotes of the curve $(x^2 y^2)^2 2(x^2 + y^2) + x 1 = 0$
- 5. Show that the radius of curvature at any point (r,θ) of the curve $r^m = a^m \cos m\theta$ is $\frac{a^m}{(m+1)r^{m+1}}$
- 6. Show that $\int_0^1 \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8} \log 2$
- 7. Evaluate by using the rule of differentiation under the sign of integration $\int_0^\infty \frac{e^{-x} \sin bx}{x} dx$
- 8. Use Gamma function to prove $\int_0^{\frac{\pi}{6}} \cos^4 3\theta$. $\sin^2 6\theta = \frac{5\pi}{192}$
- 9. Find the area bounded by the curve $x^2y = a^2(a-y)$ and X axis

OR

Show that the volume of the solid formed by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the line x = 2a is $4\pi^2 a^2 b$ cubic units.

- 10. Solve the differential equation $(1+y^2)$ dy = $(\tan^{-1} y x)$ dx
- 11. Solve the differential equation $y = yp^2 + 2px$ where $p = \frac{dy}{dx}$

- 12. Solve the differential equation $(D^2 2D + 5)y = e^{2x} \cdot \sin x$
- 13. Solve the differential equation $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + 2y = x \log x$

OR

Newton's law of cooling states that the temperature of an object changes at the rate proportional to the difference of temperature between the object and its surroundings. Supposing water at 100°C cools to 80°C in 10 minutes in a room temperature of 30°C find the time when the temperature of water will become 40°C?

- 14. If the axes be turned through an angle $\tan \theta = 2$ what does the equation $4xy 3x^2 a^2 = 0$ becomes.
- 15. Find the condition that the straight line $x \cos \alpha + y \sin \alpha = p$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- 16. Find the centre, length of axes and eccentricity of the conic $9x^2 + 4xy + 6y^2 22x 16y + 9 = 0$

OR

Describe and sketch the graph of the equation $\tau = \frac{12}{3 + 2\cos\theta}$