

arm-linux

http://armboard.taobao.com/

博客园:首页:博问:闪存:新随笔:联系:订阅 🏧:管理:512 随笔:0 文章:46 评论:105万 阅读

BootLoader(7) C/C++编程(15) C + + /C(5)

C语言程序设计(19) Google Android JNI(4)

更多

随笔档案

Linux framebuffer - - - double buffer

【什么是FrameBuffer】

FrameBuffer直译就是, 帧缓冲。

Frame帧:你所看到的屏幕的图像,或者在一个窗口中的图像,就叫一帧。

Buffer缓冲:一段RAM,用来暂存图像数据,这些数据会被直接写入到显示设备。

帧缓冲就相当于介于 图形操作 和 图像输出中间的一个中间人。将程序对图形数据的处理操作,反馈到显示输出上。

显卡(显存中的数据) <-> 帧缓冲(程序对其中的数据进行处理) <-> 显示器(输出图像)

帧缓冲可用于,实现原先视频卡并不支持的分辨率。

显卡可能并不支持你当前某个更大分辨率的显示器,但是可以通过帧缓冲获取显卡的显存中的数据,处理之后,实现更大的分辨率的图像,然后将数据直接输出到显示器上。

【双显示器例子】

一个例子,可能就是双显示,最近刚刚看到实际某开发者的系统,就是两个显示器,鼠标移动超过单个显示器,到最右边的时候,就跑到另一个显示器了。对于常常用多系统或者需要打开很多东西的开发人员,这个功能很实用。 帧缓冲可以用于 页面交换page flipping(也常叫做 双缓冲double buffering),许多游戏都是采用此技术,以实现更流畅的视频输出,以便用户获得更好的游戏体验。此技术也被用于3D图形加速。

【双缓冲的主要实现原理】

假如你的显示器是VGA模式,640×400,也就是虚拟的分辨率是640X800,也就是800线(每一行的数据,称为一条线,也就是640X1的数据了)。800线的数据存储于Framebuffer,而实际的显示内容,只是400线,Linux内核中的 Framebuffer模型中,对应有个变量yoffset,就是表示的这个具体的纵坐标,默认是0,所以显示的内容就是,0-399线,由于和实际显示页面大小等同,所以此处可以简称为第一帧。如果yoffset改变了,比如此例中变为400,那就是显 示剩余的部分,400-799线。此处简称为第二帧。

在系统显示第一帧的时候,系统在后台悄悄地准备第二帧的数据,所以,等第一帧显示完成,多数时候,第二帧的数据也准备好了,就可以直接显示,同时系统又在准备接下来的一帧的数据,这样就可以大大提高显示效率。

【平滑地滚动页面的实现原理】

同上,在显示完第一帧数据的时候,也就是0-399线的时候,将voffset设置为1,就可以显示1-400线的数据了,显示完成后,再设置 voffset为2,就显示2-401线的数据,这样,就可以一点点地,平滑地显示整个滚动画面了。其实也就 是画面在垂直方向的滚动。其中yoffset 的增加,可以使用定时器,各个一段时间,比如10us,增加1,系统自动会更新显示对应的内容,这样我们所看到的内容就是滚动的画面了。

此外,Linux中的Framebuffer模型中,提供了一些ioctl功能,给定一些参数,然后系统可以实现对应的功能,其中有个参数就是FBIOPAN DISPLAY。具体也就是类似如下调用:

ioctl (framebuffer handler, FBIOPAN DISPLAY, &variable info);

而这个调用,如果显示不支持framebuffer的双缓冲的话,那么其framebuffer的缓冲大小,就是和物理上的显示器大小等同,那么对应的yoffset也就不会像双缓冲那样变化了。

也就是说,如果显卡/显示屏控制器不支持双缓冲,那么yoffset就应该一直为0,并且在运行时候,也不应该改变,也不应该去给FBIOPAN_DISPLAY的参数调用ioctl。

分类: Linux Framebuffer

2011年2月(17) 更多 阅读排行榜

2012年12月(1)

2012年2月(14)

2012年1月(3)

2011年12月(5)

2011年9月(10)

2011年8月(1) 2011年7月(5)

2011年6月(3)

2011年5月(6) 2011年4月(7) 2011年3月(29)

2012年3月(5)

1. snprintf函数用法(54589)

2. YUV格式分析(44294) 3. linux下C语言多线程编程实例(40

431) 4. ARM中的程序状态寄存器 (CPS

R) (25829)

5. LCD工作原理(25755)

评论排行榜

1. YUV格式分析(3) 2. Android Hal 分析(3)

3. 感觉Ruby没有Python好(3)

4. LCD工作原理(2) 5. 对FrameBuffer的一夜hack(2)

推荐排行榜 1. android surfaceflinger研究--

显示系统(3)

2. YUV格式分析(3) 3. LCD工作原理(3)

4. Android Hal 分析(3)

5. 对YUV格式的详细描述,以及存储 形式(2)

最新评论

1. Re:理解 "统一编址与独立编址、 I/O端口与I/O内存"

真的很详细啊,谢谢!

--chili_dog

2. Re:YUV格式分析

有一个地方错了哟: 4:2:2示例 如果 原始数据三个像素是 Y0 U0 V0,Y1 U1 V1,Y2 U2 V2,Y3 U3 V3 经过 4:2:2采样后,数据变成了Y0 U0 ,Y1 V1 ,Y2 ... --zywhehe

3. Re:对FrameBuffer的一夜hack 请问 有将图片显示在framebuffer

上面的教程不 --纤雨520

4. Re:Linux C:遍历输出指定目录

下的所有文件 您好专业呀,拜服!想请教您一个

问题。我想通过linux脚本,从一个 大文件中将100条为一打(以entity开 始和结束标签为一条数据)的数据查 询出来并写到一个个新文件中,直 到大文件中的所有数据都被写出完... --爱笑的berg

5. Re:面向对象编程语言中的函数式 编程--为命令模式和访问者模式正

学习一下

--自由布鲁斯

arm-linux 关注 - 0 粉丝 - 285

+加关注

« 上一篇: 对FrameBuffer的一夜hack

» 下一篇: Pydev下django开发环境的安装方法

posted on 2011-03-13 17:07 arm-linux 阅读(1642) 评论(1) 编辑 收藏 举报

🤜 登录后才能查看或发表评论, 立即 登录 或者 逛逛 博客园首页

· [.NET 与树莓派] 用 MPD 制作数字音乐播放器

· 3D 穿梭效果?使用 CSS 轻松搞定

· Asp.net core 配置信息读取的源码分析梳理

· [WPF] 玩玩彩虹文字及动画

· 记一次 .NET 某风控管理系统 内存泄漏分析

· 旗舰芯、120 Hz 高刷和 HDMI 2.1 接口,入门价的 Redmi X 2022 款电视到底什么水平?(2021-11-12 13:21)

· App 开屏摇一摇广告,你快「摇了我吧」(2021-11-12 13:13)

- 达达集团11.11战报: 达达快送连锁商家配送单量同比超翻倍 (2021-11-12 13:08)

· 转转集团双11战报: B2C业务手机3C成交17.1万单,减碳超430万公斤(2021-11-1213:02)

· 物理学家终于解决茶壶效应——这次是真的 (2021-11-12 12:55)

» 更多新闻..

Powered by: 博客园 Copyright © 2021 arm-linux Powered by .NET 6 on Kubernetes

0 負推荐

0 印反对

刷新评论 刷新页面 返回顶部