## CS-663 Assignment 5 Q6

Soham Naha (193079003) Akshay Bajpai (193079002) Mohit Agarwala (19307R004)

November 15, 2020

6

Consider two different Laplacian filter kernels 
$$k_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 and  $k_2 = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$ .

Write down the formulae for their N,N-point Discrete Fourier Transforms in the report. Compute their N,N-point Discrete Fourier Transforms in MATLAB with N=201, i.e. where the spatial and frequency indices range from -100 to 100 in both canonical directions. Display the magnitude of the DFT on a log scale using the imshow and surf functions in MATLAB along with a colorbar. Besides the plots, include the code snippet for the DFT computation and display in the report. Comment on the difference in the Fourier transforms of the two kernels. [10+5=15 points]

The first kernel given is as 
$$k_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Here, N = 201.

Thus, for the above  $k_1$ , we will appropriately zero-pad to get a new  $k_1$  which is a NN matrix. Hence,  $DFT(k_1)$  at a particular frequency (u, v) is given as:

$$K_1(u,v) = 2 * \exp(-\frac{j2\pi(u+v)(N+1)}{2N}) \{\cos(\frac{2\pi u}{N}) + \cos(\frac{2\pi v}{N}) - 2\}$$
 (1)

Similarly, for the kernel  $k_2 = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$  with N=201, the  $DFT(k_2)$  of the padded kernel  $k_2$ 

at frequency (u, v) will be given as the equation:

$$K_1(u,v) = 2*\exp(-\frac{j2\pi(u+v)(N+1)}{2N})\left\{4-\cos(\frac{2\pi u}{N})-\cos(\frac{2\pi v}{N})-\cos(\frac{2\pi(u+v)}{N})-\cos(\frac{2\pi(u+v)}{N})\right\}$$
(2)

The same equations have been used to calculate the DFT of the kernels and their plots. myDFT.py

```
import numpy as np
                    import matplotlib.pyplot as plt
                    import cmath
                   from mpl_toolkits.mplot3d import axes3d
   4
  5
                    def computeDFT(N, matrix, KernelType, verbose=True):
  6
                                     center = (N+1)/2
  7
                                     fac = 2*np.pi/N
   8
                                     X = np.linspace(-(N-1)/2, (N-1)/2, num=N)
  9
                                     Y = np.linspace(-(N-1)/2, (N-1)/2, num=N)
10
11
                                     my_ft_lap = np.zeros((N,N)).astype(np.complex64)
12
                                     for u in range(N):
13
                                                      for v in range(N):
                                                                        if KernelType=="Normal":
                                                                                         \label{eq:my_ft_lap} \texttt{my_ft_lap[u,v]} \ = \ 2*\texttt{cmath.exp(-1}j*\texttt{fac}*\texttt{center}*(\texttt{u+v}))*(\texttt{np.cos(fac}*\texttt{u})+\texttt{np.cos(fac}*\texttt{v})-2) 
                                                                        elif KernelType.startswith("Diagonal"):
17
                                                                                        my_ft_lap[u,v] = 2*cmath.exp(-1j*fac*center*(u+v))*(4 - 1j*fac*center*(u+v))*(4 - 1j*fac*cente
18
                                                                                                                                             np.cos(fac*u)-np.cos(fac*v)-np.cos(fac*(u+v))-np.cos(fac*(u-v)))
19
20
```

```
my_ft_lap = np.fft.fftshift(my_ft_lap)
21
22
         magnitude = np.log(np.abs(my_ft_lap)+1)
23
24
         if verbose:
             plt.figure()
25
26
             # plt.colorbar(cmap="jet")
             plt.title("Log Magnitude plot of kernel "+KernelType)
27
             plt.imshow(magnitude,extent=[-100,100,-100,100])
28
             plt.set_cmap("jet")
29
             plt.colorbar()
30
             \#plt.xlim(xmin = np.min(X), xmax=np.max(X))
31
             #plt.ylim(ymin = np.min(Y), ymax=np.max(Y))
32
             plt.savefig("../images/"+ KernelType +"LogMagnitude.png", cmap="jet", bbox_inches="tight")
33
             fig = plt.figure()
36
             ax = plt.axes(projection ='3d')
             plt.set_cmap("jet")
37
             x,y = np.meshgrid(X,Y)
38
             surf = ax.plot_surface(x, y, magnitude, cmap="jet")
39
             fig.colorbar(surf, ax=ax)
40
             plt.title("Surface Plot of "+KernelType + " Laplacian Kernel")
41
             #plt.show()
42
             plt.savefig("../images/"+ KernelType +"SurfacePlot.png", cmap="jet",
43
                         bbox_inches="tight")
45
     if __name__=="__main__":
46
47
         N = 201
         laplacianMatrix1 = np.array([[0,1,0],[1,-4,1],[0,1,0]])
48
         laplacianMatrix2 = np.array([[-1,-1,-1],[-1,8,-1],[-1,-1,-1]])
49
         computeDFT(N, laplacianMatrix1, "Normal")
50
         computeDFT(N, laplacianMatrix2, "Diagonal Added")
51
```



Figure 1: (a) Log Magnitude Plot of  $k_1$  (b) Surface Plot of  $k_1$ 



Figure 2: (a) Log Magnitude Plot of  $k_2$  (b) Surface Plot of  $k_2$ 

## Discussions:

For an ideal high-pass (differentiating) system, we would want the frequency response to be cylindrical with low values at low frequencies, with sharp-rise at the cut-off frequency and beyond.

From the images/contour plots, we can observe that both the kernels have circular contours in the low frequency ranges, thus it acts ideally in this frequency range.

The gradient of the cone in the center frequency regions for laplacian kernel  $k_2$  is quite sharp as compared to that of the kernel  $k_1$ . So, the kernel  $k_2$  sharpens the image better than the kernel  $k_1$ , as the cutoff frequency  $D_0$  changes as the shape of the filter changes.

The frequency response of both the plots become parabolic at the end frequency regions, with the structure of  $k_1$  facing upwards, while that of  $k_2$  forming a paraboloid type of structure, with almost constant magnitude like that of ideal highpass filter.

We observe that  $k_2$  is a better high-pass than the kernel  $k_1$ .