Programação Linear - IME/UERJ

Lista de Exercícios Extra nº 3 - Gabarito

- 1. No final da Fase I, a variável artificial $a_1 = 6 \neq 0$. Logo, o PPL original é inviável (sem solução).
- 2. No último tableau, $z_1-c_1=-4$, mas $a_{11}=-1<0$ e $a_{21}=-1<0$. Logo, o problema é ilimitado.
- 3. Solução ótima: $\alpha (2/3, 5/3) + (1 \alpha) (4, 0)$, $0 \le \alpha \le 1$.
- 4. (a) Este exercício deve ser resolvido pelo Método das Duas Fases, pois $c_5=4\neq 0$ e $c_6=1\neq 0$. Logo, x_5 e x_6 não são variáveis básicas. Solução ótima 1: $(x_1^*,x_2^*,x_3^*,x_4^*,x_5^*,x_6^*)=(0.5,3,0,0,6.5,1)$, valor máximo de z: 55.5.
 - (b) Sim. No último tableau, $z_3 c_3 = 0$ e x_3 não está na base, ou seja, $x_3 = 0$. Logo, devemos fazer x_3 entrar na base, e assim, a solução ótima alternativa é $(x_1^*, x_2^*, x_3^*, x_4^*, x_5^*, x_6^*) = (0, 5.5, 0.5, 0.7, 17)$.

Então, a solução geral é dada por:

$$\alpha (0.5, 3, 0, 0, 6.5, 1) + (1 - \alpha) (0, 5.5, 0.5, 0, 7, 17), 0 \le \alpha \le 1.$$

5. (a) $x_1^B = x_3, x_2^B = x_1$.

No último tableau da Fase II, $z_4 - c_4 = -7$, mas $a_{14} = -1 < 0$ e $a_{24} = -3 < 0$. Logo, o problema é ilimitado.

(b) $x_1^B = x_4, x_2^B = x_1.$

Solução ótima: $(x_1^*, x_2^*, x_3^*) = (9/2, 1/2, 0).$

(c) $x_1^B = x_1, x_2^B = x_5.$

A variável artificial $x_5 = 0$ ao final da Fase I, mas ela ainda está na base. Logo, ela deve sair da base e devemos escolher uma variável que não esteja na base para entrar em seu lugar (qualquer uma entre x_2 , x_3 , x_4). Como o termo independente é zero na linha do tableau onde está a variável artificial x_5 e existem termos negativos na mesma linha, podemos multiplicar a linha por -1. Após x_5 sair da base, podemos retirar a coluna relativa à variável x_5 do tableau na Fase II. A solução ótima é: $(x_1^*, x_2^*, x_3^*) = (9/2, 1/2, 0)$.

(d) $x_1^B = x_5, x_2^B = x_1.$

 $\bar{z}^a=-2<0,$ pois a variável artificial $x_5=2$ no tableau final da Fase I. Logo, o PPL original é inviável.