Social and Information Networks 1: Structure

Internet Analytics (COM-308)

Prof. Matthias Grossglauser School of Computer and Communication Sciences

Overview

- Networks
 - Models for social and technical systems
 - Key properties
- Giant component
 - Random graph model
- Clustering
 - Transitivity
- Strong and weak ties
 - Some ties cluster more than others
- Distances: everything is close
 - Networks are very efficient
- Small world networks
 - Small distances, large clustering not mutually exclusive

Models of networks

- George E. P. Box:
 - "All models are wrong, but some models are useful"
- Many technical and social systems:
 - Networks are central abstractions
- What are models for:
 - (a): Explanation of phenomenon ("physics")
 - Occam's razor: simplest possible model preferred
 - Usually embodies salient features of system
 - Example: economics skewed income distribution
 - (b): Prediction and inference ("machine learning")
 - Favor performance, not parsimony or explanation
 - Can be "black-box", large # of parameters
 - Example: deep neural networks

Social networks

- Ties between individuals and their digital manifestation
- Ties=friendship / business relationship / romantic
 / shared interest or life situation
- As old as mankind...
 - Or older: many social animals (mammals, insects)
- Social living is complex: explanation for evolution of human intelligence = dealing with large, complex society
 - Trust, behavioral traits, who knows what, trading, rites and rituals,...
 - Dunbar number (~ 150): cognitive limit to group size

Social networks

- Tie formation:
 - Complex social process
 - Many types and gradations of ties
- Most parsimonious model: "social network"
 - Graph
 - Undirected edges without attributes or weights
 - Vertices without attributes
 - "Only structure"
- Clearly a strong abstraction!
 - Nevertheless, very rich insights
 - Half a century of research

Social Network Analysis: then and now

- Pre-digital:
 - Sources: surveys etc.
 - Designed, controlled → exactly what you want
 - Scale: small

- Internet:
 - Sources: online databases
 - Research is secondary goal → gaps, inconsistencies, etc.
 - Scale: potentially huge

Information networks

- Web
 - Sir Tim Berners-Lee, CERN, 1989
 - WWW: platform-independent information representation
 - Hypertext concept predates
 - 1990: first HTTP transfer
- Key idea:
 - Universal Resource Locator (URL): global address
 - Structured documents (SGML, XML)
 - Hyperlinks: doc can <u>refer</u> to other doc
- Links are asymmetric
 - Existence under control of link tail
 - Represented as directed graph

Information networks

- Internet
 - Traffic exchange arrangements (peering) w/o central coordination
- Wikipedia
 - References to related concepts
- Scientific literature
 - Bibliography: citing prior related work
- Dictionary
 - Explaining one term in terms of other terms

Recent developments

- Google Knowledge Graph
 - Mining graph of entities (people, places, events, ...), enhanced with semantic information

Some common features

- Unconstrained
 - Any link can exist a-priori
- No rules or centralized design
 - Local decisions and incentives drive network formation
- Nobody has global information
 - Every actor typically knows its "neighborhood" only
- An element of chance
 - This suggests random models

Do these common features give rise to common properties?

Property 1: giant component

- Definition:
 - Connected component that is
 - (a) much larger than other connected components
 - (b) significant fraction of whole network
- Q: why should there be a GC?
 - There could be several very large components
- Finding GC:
 - Finding component: start at vertex u, and run BFS/DFS to exhaustion
 - Find dominant component

Random graphs

• G(n,p) model:

- se genera el grafo G a partir de n y p
- n vertices (usually very large)
- Every edge (u, v) exists independently with prob. p

Giant component in G(n, p)

- Conditions for GC in G(n,p)?
- Precise question:

Giant component in G(n, p)

- Discovery process
 - Start at a node u
 - Find u's neighbors recursively until done (BFS/DFS)

Giant component discovery in G(n, p)

- Using Principle of Deferred Decision (PDD)
 - Edges: flip coin only when needed

Giant component discovery

- kth step:
 - A_k: # active
 k: # saturated (used)
 n k A_k: # potential
- Number of new active nodes from old active node:
 - $X_k \sim \text{Binom}(n k A_k, p)$
 - Independent
- Approximation:
 - While k and $A_k \ll n$, $\operatorname{Binom}(n-k-A_k,p) \cong \operatorname{Binom}(n,p)$

Branching process: termination

Discovery process:

Condition for GC in G(n, p)

- Set $p = \frac{c}{n}$
 - c: average degree
 - Number of offspring $\sim \text{Binom}(n, \frac{n}{c}) \rightarrow \text{Poisson}(c)$

Theorem:

- If c > 1, then G(n, p) has a single component of size $\theta(n)$ asymptotically almost surely; all other components are small (of size o(n))
- If c < 1, then G(n, p) has only small components

Condition for GC in G(n, p)

Interpretation:

- Giant component emerges naturally, even with completely random edge generation
- No network-wide "coordination" needed
- Sharp threshold phase transition!
 - At avg degree c = 1

transicion escalonada analogia con el agua y el hielo a los 0°C

Note:

- More to prove: (i) that there's a **single** component; (ii) impact of ignoring $k + A_k$ negligible
- Below threshold (c < 1): all small components are trees
- Class "Models and Methods for Random Networks" for more details and properties of G(n,p)

Example giant component

https://youtu.be/mpe44sTSoF8

G(n, p) model: connectivity

- Another phase transition:
 - Consider threshold function $t(n) = \frac{\log n}{n}$
- Theorem:
 - If $p(n)/t(n) \to \infty$, then G(n,p) is connected (a.a.s.)
 - If $p(n)/t(n) \rightarrow 0$, then G(n,p) is not connected (a.a.s.)
 - Gap between these two → harder to analyze
- Intuition: Coupon collector problem
 - $n \log n$ balls (~edges) needed to have no empty bins (~nodes)

Coupon Collector problem

- Suppose n-i empty bins, i bins have ≥ 1 ball
- X_i : # balls to go from i to i + 1 filled bins
 - $X_i \sim Geom\left(\frac{n-i}{n}\right)$
- Z_n : # balls to fill all n bins
 - $Z_n = X_0 + X_1 + \dots + X_{n-1}$
- $E[Z_n] = E[X_0] + E[X_1] + \dots + E[X_{n-1}] =$ $= \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1} =$ $= n\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) = \theta(n\log n)$
- Back to G(n,p): also need to show «single component» \rightarrow beyond scope

G(n, p) model: other phase transitions

- First published 1959 by Erdös & Rényi
 - Focus on existence results
 - Very active field of research in probability
- Phase transitions:
 - Giant component
 - Connectivity
 - Existence of subgraphs
 - Chromatic number
 - Automorphism group
 - etc.

Property 2: clustering

Clustering

Clustering metrics for single node

- Clustering = transitivity
 - Two nodes with common neighbor likely to be connected
- Clustering coefficient:

$$c_u = \frac{|\{(v,w) \in E: (u,v) \in E, (u,w) \in E\}|}{\binom{d_u}{2}} \text{ max n° edges among friends (edges entre nodos que conectados a u)}$$

- = # links among friends / # possible links among friends
- = empirical probability that (v, w) exists given (u, v) and (u, w) exist
- If links were entirely random (G(n, p)):

$$E[c_u] = p \triangleq \frac{E[m]}{\binom{n}{2}} \cong \frac{2E[m]}{n^2}$$

where m = # edges in network

• So $c_n \gg p$ means the network has high clustering

Clustering: two network-wide metrics

Def 1: Average clustering coefficient

•
$$c_G = \frac{1}{n} \sum_u c_u$$

 Def 2: Weighted average clustering coefficient (also called "transitivity"):

$$c_G = \frac{\sum_u \binom{d_u}{2} c_u}{\sum_u \binom{d_u}{2}} = \frac{\sum_{\substack{\text{en connected triple se especifica el nodo que está en el centro. Implicitamente v y w estan contectados a través de u, i ndependientemente de que esten conectados tmb entre ellos$$

 $= \frac{\text{# closed triples}}{\text{# connected triples}}$

• =
$$3 \frac{\text{# triangles}}{\text{# connected triples}}$$

W

Triangle:

 $\{u, v, w\}$

Property 3: strong and weak ties

- Granovetter 1974: "The Strength of Weak Ties"
 - Observation from a survey:
 - Classify your social ties as either "strong" (close friends, family,...) or "weak" (acquaintances, professional colleagues,...)
 - If you found your last job through word-of-mouth, who told you?
 - Surprising result: job information came predominantly through weak ties!

Bridges: "essential edges"

- Bridge (a, b):
 - Removing (a, b) disconnects
- Local bridge (a, b):
 - Removing (a, b) makes d(a, b) > 2
 - Equivalently: (a, b) have no common neighbors
- Informally:
 - "local bridge does not have short alternatives"

Strong and weak ties

- Edge property:
 - Strong tie: friendship, family, etc.
 - Weak tie: acquaintance, colleagues, etc.
- Strong Triadic Closure (STC) node property:
 - A node a violates STC if there are two strong edges (a, b) and (a, c), but there is no edge (b, c)
- Informally:
 - "two of a's close friends are likely to know each other"

All nodes satisfy STC

STC ⇒ local bridges are weak ties

Lemma:

• If a node a satisfies STC (and has at least two strong ties), then any local bridge (a,b) is weak.

Proof:

- Assume node a satisfies STC, but (a, b) is strong and local bridge
- By assumption, there is at least one other strong tie (a,c)
- By STC, (b, c) must exist
- But then a and b have common neighbor c, so (a,b) is not a local bridge
- Contradiction

Insight:

 Social ties to other communities usually go through weak links

Property 4: short paths

- Milgram 1969 experiment:
 - Letter passed through social links to find target

Distances in random graphs

- Theorem (simplified):
 - G(n,p) has diameter $\log(n) / \log(np)$
- Intuition:
 - The graph looks close to a tree from every node
 - Randomness creates very "efficient" graphs, i.e., edges used well to reach a large number of nodes
 - Few short cycles, incl. triangles

Recap: common network properties

1	Giant component
2	Clustering
3	Strong and weak ties
4	Compact

(2) and (4) seem mutually exclusive: Paradox?

Small Worlds: Watts-Strogatz model

Evolution of avg distance with shortcuts

Avg distance on circle:

cn

 Avg distance with one "ideal" shortcut:

• *cn*/2

With k shortcuts:

• $O\left(\frac{n}{2^k}\right)$

 Distance drops quickly with k

Evolution of clustering coeff with shortcuts

- As long as $k \ll n$, small impact on clustering coefficient
 - Number of potential triangles does not increase much

Clustering and diameter of WS

Density k/n of shortcuts

Summary & lessons

- Main properties of many types of "real world" and "self-organizing" networks:
 - Giant component: almost everything connected
 - Clustering: transitivity
 - Strong and weak ties: links connecting communities
 - Compact: everything is close
- Next week:
 - Network evolution and growth
- Lab objectives:
 - Explore real networks: degree distribution, giant component, small-world property
 - Using these properties, distinguish a road network from an internet graph
 - ...and more related to next 3 lectures

References

- [D. Easley and J. Kleinberg: Networks, Crowds, and Markets (2010), chapter 3]
- [Bollobas, Random Graphs]
- [Newman, Networks]
- [Watts & Strogatz, Small Worlds]
- [Grossglauser & Thiran, Models and Methods for Random Networks (class notes), 2022]