Série 2 : Structures Répétitives

Exercice 1:

1- Ecrire un programme qui teste si un nombre entré par l'utilisateur est premier ou pas

N.B: Un nombre premier est un nombre qui n'est divisible uniquement par 1 et par lui-même (1 est considéré comme premier).

2- Afficher les 100 premiers nombres premiers.

Exercice 2:

Déterminer si un nombre est parfait : un nombre est dit parfait lorsqu'il est égal à la somme de ses diviseurs (1 est considéré comme un diviseur mais pas le nombre lui-même). Exemple : 6 est parfait car 1, 2 et 3 sont ses diviseurs et que 1 + 2 + 3 = 6

Exercice 3:

On appelle suite de Syracuse une suite d'entiers naturels définie de la manière suivante : On part d'un nombre entier plus grand que zéro entré par l'utilisateur ; s'il est pair, on le divise par 2 ; s'il est impair, on le multiplie par 3 et on ajoute 1

Exemple:

L'utilisateur entre: 7

Ensuite le programme affiche

```
u0 = 22
```

u1 = 11

 $u^2 = 34$

u3 = 17

u4 = 52

u5 = 26

u6 = 13

u7 = 40

u8 = 20

u9 = 10

u10 = 5

u11 = 16

u12 = 8

```
u14 = 2
u15 = 1
Exercice 4:
Ecrire des programmes pour afficher les formes suivantes :
   1. un Carré : Exemple un carré de 5.
      ****
     ****
     ****
      ****
      ****
  2. Un carré vide
     ****
     *
      *
          *
      *
          *
      ****
  3. Triangle 1 : Exemple un triangle de 5
      **
     ***
     ****
     ****
  4. Triangle 2
      ****
       ****
        ***
```

Exercice 5:

** *

u13 = 4

Faire un programme permettant de calculer d'afficher la table des produits pour N variant de 1 à 10 :

X×Y	Ι	0	1	2	3	4	5	6	7	8	9	10
0	I	0					0	Ø	0	0	0	0
1	Ι	Ø	1	2	3	4	5	6	7	8	9	10
2	Ι	Ø	2	4	6	8	10	12	14	16	18	20
3	Ι	Ø	3	6	9	12	15	18	21	24	27	30
4	Ι	Ø	4	8	12	16	20	24	28	32	36	40
5	Ī	Ø	5	10	15	20	25	30	35	40	45	50
6	Ī	Ø	6	12	18	24	30	36	42	48	54	60
7	Ī	Ø	7	14	21	28	35	42	49	56	63	70
8	Ī	Ø	8	16	24	32	40	48	56	64	72	80
9	Ī	ā	9	18	27	36	45	54	63	72	$8\overline{1}$	90
10	Ī	Ø	10	20	30	40	50	60	70	80	90	100

Exercice 6:

Ecrire un algorithme permettant :

1-d'Afficher le menu suivant :

- Entrer a et b
 Afficher le produit des nombres entre a et b
 Quitter

 Votre choix :
- 2- S'il s'agit du choix 1:
- 2.1- On demande à l'utilisateur de saisir un entier a
- 2.2- Et ensuite on demande à l'utilisateur de saisir un entier b qui doit etre supérieur strictement à a , sinon on demande de le ressaisir jusque la réponse convienne
- 2.3- On réaffiche le menu
- 3- S'il s'agit du choix 2:
- 3.1- On vérifie si a et b on été saisi, sinon on affiche un message d'erreur
- 3.2- S'ils ont été saisis, on affiche le produit des nombres compris entre eux
- 3.3- On réaffiche le menu
- 4- S'il s'agit du choix 3:

On affiche le message « Merci » Et on met fin à l'execution

- 5- S'il s'agit d'un autre choix :
- 5.1- On affiche un message d'erreur
- 5.2- On réaffiche le menu