MATH 494 Jakob Loedding

LINEAR PROGRAMMING, ZERO-FORCING, AND MAXIMALLY DIVERSE OPTIMA

(Progress Documentation)

1 Integer Program for Zero Forcing Diameter

Denote the zero forcing diameter model as ZFD (G, s^*) , where $G \in \mathbb{G}$ and s^* is an optimal solution to ZIP (G). That is, s^* is the zero forcing number of G. The integer program ZFD (G, s^*) presented in (1a) -(1k) computes the minimum intersection of two distinct zero forcing sets of G. We reference these sets by B and B'. Note that every edge in E(G) is represented by two directed edges with opposite direction. The binary variables s_v and $s_v^{'}$ indicate whether v is in B or B' respectively. The variables $x_v, x_v^{'} \in \mathbb{Z}$ ranging in $\{0,1,...,T\}$ specify at which time steps vertex v is forced given its corresponding initial zero forcing set. Note that T is the maximum difference in the forcing times of two vertices. The binary variables $y_e, y_e^{'}$, for each directed edge e = (u, v), indicate whether u forces v given B or B' initially. Lastly, the notation $\delta^-(v)$ references the set of edges pointing toward vertex v and N(u) denotes the set of all vertices $v \in V(G)$ that are adjacent to u. Note that the vertex and edge sets of G are denoted by V and E respectively.

minimize
$$\sum_{v \in V} z_v \tag{1a}$$

subject to
$$s_v + \sum_{e \in \delta^-(v)} y_e = 1, \quad \forall \ v \in V,$$
 (1b)

$$s_{v}^{'} + \sum_{e \in \delta^{-}(v)} y_{e}^{'} = 1, \quad \forall \ v \in V, \tag{1c}$$

$$x_u - x_v + (T+1)y_e \le T, \quad \forall \ e = (u,v) \in E, \tag{1d}$$

$$x_{u}^{'} - x_{v}^{'} + (T+1)y_{e}^{'} \le T, \quad \forall e = (u,v) \in E,$$
 (1e)

$$x_w - x_v + (T+1)y_e \le T, \quad \forall \ e = (u,v) \in E, \ \forall \ w \in N(u) \setminus \{v\}, \tag{1f}$$

$$x_{w}^{'} - x_{v}^{'} + (T+1)y_{e}^{'} \le T, \quad \forall \ e = (u,v) \in E, \ \forall \ w \in N(u) \setminus \{v\},$$
 (1g)

$$\sum_{v \in V} s_v = s^*,\tag{1h}$$

$$\sum_{v \in V} s_v' = s^*,\tag{1i}$$

$$s_v + s_v' - z_v \le 1 \quad \forall \ v \in V, \tag{1j}$$

$$s, s', z \in \{0, 1\}^n, \ x, x' \in \{0, \dots, T\}^n, \ y, y' \in \{0, 1\}^m$$
 (1k)

The triples (s, x, y) and (s', x', y'), where $s, s' \in \{0, 1\}^n$; $x, x' \in \{0, ..., T\}^n$, and $y, y' \in \{0, 1\}^m$, make a feasible solution of ZFD (G, s^*) provided that (s, x, y) and (s', x', y') satisfy (1b)-(1k). Additionally, if s and s' are minimal with respect to the objective function (1a), then we say that (s, x, y) and (s', x', y') is an optimal solution of ZFD (G, s^*) . The corresponding minimal value of the objective function (1a) is the optimal value of ZFD (G, s^*) .

Proposition 1.1. Given an optimal solution to ZFD (G, s^*) , $z_v = 1$ for some $v \in V$ if and only if $s_v = s'_v = 1$.

Proof. Suppose $z_v = 1$ for some $v \in V$. By way of contradiction, also suppose either $s_v = 0$ or $s_v' = 0$. Then constraint (1j) will be true if $z_v = 0$. This contradicts the fact that we have an optimal solution to ZFD (G, s^*) , i.e., the objective function (1a) would not be minimized. Thus, our assumption that $s_v = 0$ or $s_v' = 0$ must be false. Hence, $s_v = s_v' = 1$.

Conversely, let $s_v = s_v' = 1$ for some $v \in V$. Then constraint (1j) holds only when $z_v = 1$. Therefore, given an optimal solution to ZFD (G, s^*) , $z_v = 1$ for some $v \in V$ if and only if $s_v = s_v' = 1$.

2 Zero Forcing Diameter/Graphical Interpretation of ZFD (G, s^*)

Given a feasible solution of ZFD (G, s^*) , the value of the objective function (1a) can be defined as $|B \cap B'|$, where B and B' are zero forcing sets of G. Furthermore, the *optimal value* of ZFD (G, s^*) is equal to $\min |B \cap B'|$, where $B, B' \in S$ and S is the set of all minimal zero forcing sets of G. We define the zero forcing diameter of a graph $G \in \mathbb{G}$ as

$$d(G) = zf(G) - \min|B \cap B'| \tag{2}$$

where $B, B' \in S$ and zf(G) is the zero forcing number of G. Note that $zf(G) = s^*$ in terms of the interprogram ZFD (G, s^*) given in equations (1a) -(1k).

Proposition 2.1. Given a graph $G \in \mathbb{G}$, d(G) = 0 if and only if G is an empty graph.

Proof. Suppose $G \in \mathbb{G}$ and d(G) = 0, i.e., $zf(G) = \min|B \cap B'|$. This implies there is only one unique zero-forcing set of G, which is only possible if no forcings occur. Hence, our zero-forcing set must include all vertices in G. This implies that G has no edges. Thus, G is an empty graph by definition.

Conversely, suppose G is an empty graph. Since G has no edges by definition, then the only way to force all of its vertices blue is to include them in our zero-forcing set. Hence, $\min |B \cap B'| = zf(G)$ where B, B' are minimal zero-forcing sets of G. Thus, d(G) = 0. Therefore, d(G) = 0 if and only if G is an empty graph.

Proposition 2.2. Given a path graph P_n , $d(P_n) = 1 \ \forall \ n \in \mathbb{N}$.

Proof. Suppose P_n is a path graph such that $n \in \mathbb{N}$. By definition, P_n contains at least 2 vertices and $zf(P_n) = 1$ [citation]. Thus, $\min |B \cap B'| = 0$, where B and B' are minimum zero-forcing sets containing the leftmost and rightmost vertices of P_n respectively. Therefore, d(G) = 1 by definition.

Proposition 2.3. Given a complete graph K_n , $d(K_n) = 1 \ \forall \ n \in \mathbb{N}$.

Proof. Suppose K_n is a complete graph such that $n \in \mathbb{N}$. Note that $zf(K_n) = n-1$ [citation]. To calculate $d(K_n)$, let B be a minimum zero-forcing set containing n-1 arbitrary vertices in $V(K_n)$. Let B' be another minimum zero-forcing set containing the vertex in the set $V(K_n) - B$ in addition to n-2 unique, arbitrary vertices in $V(K_n)$. Since |B| = n-1 and $V(K_n) - B \subseteq B'$, then $\min |B \cap B'| = n-2$. Therefore, $d(K_n) = (n-1) - (n-2) = 1$.

Proposition 2.4. Given a star graph S_n , $d(S_n) = 1 \ \forall \ n \in \mathbb{N}$.

Proof. Suppose S_n is a star graph such that $n \in \mathbb{N}$ and let $L(S_n) \subseteq V(S_n)$ be the set of leaves in the graph S_n . Note that $zf(S_n) = n-2$ [citation]. To calculate $d(S_n)$, let B be a minimum zero-forcing set of S_n containing $|L(S_n)| - 1$ arbitrary leaves in $L(S_n)$, i.e., n-2 vertices in $V(S_n)$. Similarly, let B' be another minimum zero-forcing set of S_n containing the vertex in the set $L(S_n) - B$ and $|L(S_n)| - 2$ unique, arbitrary leaves in $L(S_n)$. Since |B| = n-2, $L(S_n) - B \subseteq B'$, and the root of S_n is not in B or B', then $\min |B \cap B'| = n-3$. Therefore, $d(S_n) = (n-2) - (n-3) = 1$.

Proposition 2.5. Given a cycle graph C_n , $d(C_n) = 2 \ \forall \ n \geq 4 \in \mathbb{N}$.

Theorem 2.6. For all graphs $G \in \mathbb{G}$, we have that $0 \le d(G) \le \lfloor n/2 \rfloor$ where n is the order of G.

Proof. Suppose $G \in \mathbb{G}$. By definition, $0 \leq d(G) \leq zf(G)$. Hence, $d(G) \geq 0$. By way of contradiction, suppose $d(G) > \lfloor n/2 \rfloor$, i.e., $d(G) = \lfloor n/2 \rfloor + c$ where $0 < c < \lfloor n/2 \rfloor$. Then $zf(G) - \min |B \cap B'| = \lfloor n/2 \rfloor + c$. This implies $zf(G) \geq \lfloor n/2 \rfloor + c$, and it follows that $\min |B \cap B'| \geq c$ for all zero-forcing sets B and B'. Hence, $d(G) \leq \lfloor n/2 \rfloor$, which contradicts our assumption that $d(G) > \lfloor n/2 \rfloor$. Therefore, $0 \leq d(G) \leq \lfloor n/2 \rfloor$ for all $G \in \mathbb{G}$.