Matematická analyza II Obraz a vzor zobrazení

Nechť být X, Y neprázdné množiny, $f: X \to Y$ zobrazení, a $A \subset X$, $B \subset Y$.

• Obraz množiny A při zobrazení f je množina

$$f[A] = \{ f(x) : x \in A \} \subset Y;$$

• Vzor množiny B při zobrazení f je množina

$$f^{-1}[B] = \{x : f(x) \in B\} \subset X.$$

 \check{R} íkáme, že f je

- na (surjektivní; anglicky onto), když f[X] = Y (resp. f[A] = B);
- prosté (injektivní; anglicky one-to-one), když pro každé $x, y \in X, x \neq y$ platí $f(x) \neq f(y)$.

Co jsem říkal v lekci pravda není: $X = f^{-1}[Y]$ platí vždycky, a to už kvůli tomu, že f[X] je podmnožina z Y, tak celý obraz množiny X při f už je v Y a když dáme víc bodů z Y, nic se nemění (nemůžeme mít "větší" X). Příklad: $X = \{1,2\}, Y = \{1,2,3\}, f(1) = 1, f(2) = 2$. Pak $f^{-1}[\{1,2\}] = X$, ale samozřejmě i $f^{-1}[Y] = X$, i když $f^{-1}[\{3\}] = \emptyset$. (Že $\{3\}$ "nevadí" je důsledek toho, že $f^{-1}[A_1 \cup A_2] = f^{-1}[A_1] \cup f^{-1}[A_2]$. Zkuste to dokazat!)

Že zobrazení je na se lze vyjádřit i takto: Pro každé $y \in Y$ existuje $x \in X$ tak, aby platilo f(x) = y ("trefíme" každé $y \in Y$).

Platí věta:

Věta: Pro každé zobrazení platí

- 1) $f[A] \subset B \Leftrightarrow A \subset f^{-1}[B]$
- 2) $f[f^{-1}[B]] \subset B$ a platí rovnost pravě, když f je na
- 3) $f^{-1}[f[A]] \supset A$ a platí rovnost pravě, když f je $\mathit{prost\'e}$

Dokazujeme jen rovnosti v 2 a 3 (je dobře si to nakreslit na papír):

- 2) Potřebujeme ukázat, že máme-li $b \in B$ a f je na, pak $b \in f[f^{-1}[B]]$. Pravě proto, že f je na, existuje nějaké $a \in f^{-1}[B]$ tak, aby platilo f(a) = b. Podle definice obrazu to ale znamená, že $b \in f[f^{-1}[B]]$. (Zkuste si vzít příklad nahoře a najít místo, kde $\{3\}$ v tomto důkazu vadí.)
- 3) Potřebujeme ukázat, že máme-li $a \in f^{-1}[f[A]]$ a f je $prost\acute{e}$, pak $a \in A$. Protože $a \in f^{-1}[f[A]]$ existuje nějaký bod $b \in f[A]$ tak, aby f(a) = b. Když teď $a \not\in A$, pak $f(a) \not\in f[A]$, jelikož f je $prost\acute{e}$ (jinak by existovalo jiné $c \in A$ tak, aby platilo f(c) = f(a), což není možné). To ale je protimluv, protože máme zároveň $b \in f[A]$ i $b = f(a) \not\in f[A]$, a to znamená, že $a \in A$.