Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики N 4.3.4

Преобразование Фурье в оптике

Автор:

Филиппенко Павел Б01-001

Долгопрудный, 2022

Рис. 1: Схема лабораторной установки для определения ширины щели

Цель работы: исследовать явление дифракции Фринеля и Фраунгофера на щели, изучить влияние дифракции наразрешающую способность оптических приборов.

В работе используются: гелий-неоновый лазер, кассета с набором сеток разного периода, щель с микрометрическим винтом, линзы, экран, линейка.

1 Введение

Анализ сложного волнового поля во многих случаях целесообразно проводить, разлагая его на простейшие составляющие, например, представляя его в виде разложения по плоским волнам. При этом оказывается, что если мы рассматриваем поле, полученное после прохождения плоской монохроматической волны через предмет или транспарант (изображение предмета на фотоплёнке или стеклянной пластинке) с функцией пропускания t(x), то разложение по плоским волнам соответствует преобразованию Фурье от этой функции. Если за предметом поставить линзу, то каждая плоская волна сфокусируется в свою точку в задней фокальной плоскости линзы. Таким образом, картина, наблюдаемая в фокальной плоскости линзы, даёт нам представление о спектре плоских волн падающего на линзу волнового поля. Поэтому можно утверждать, что с помощью линзы в оптике осуществляется пространственное преобразование Фурье.

2 Определение ширины щели

2.1 Определение ширины щели по изображению

Схема установки представлена на рис. 1. Щель переменной ширины D, снабжённая микрометрическим винтом , освещается параллельным пучком света, излучаемым лазером. Цена деления винта $10\,$ мкм.

Увеличенное изображение щели с помощью линзы Л1 проецируется на экран Э. Величина изображения D_1 зависит от расстояний от линзы до предмета – a_1 и до изображения — b_1 , т. е. от увеличения Γ системы:

$$\Gamma = \frac{D_1}{D} = \frac{b_1}{a_1} \tag{1}$$

D, MKM	D_1 MM		
50	2		
100	4		
150	6		
200	7		
250	8		
300	10		
350	12		
400	13		
450	14		
500	15		

Таблица 1: Таблица эксперементальных данных – зависимость $D_1(D)$

Снимем зависимость ширины изображения щели D_1 от D, результаты занесем в таблицу 1.

F=43 мм — фокусное расстояние линзы Л1 L=1339 мм — расстояние от щели до экрана $a_1=50$ мм — расстояние от щели до линзы $b_1=1289$ мм — расстояние от линзы до экрана $D_0=630$ мкм — начало отсчета ширины щели

Используя измеренные величины a_1 и b_1 найдем увеличение линзы

$$\Gamma = \frac{b_1}{a_1} = 25.78$$

Решая уравнение

$$\frac{1}{a_1} + \frac{1}{L - a_1} = \frac{1}{F}$$

получаем $a_1 \approx 44.48$ мм, откуда $b_1 \approx$ мм. Таким образом, можем найти увеличение линзы

$$\Gamma = \frac{L - a_1}{a_1} \approx 29.1$$

По эксперементальным данным построим график зависимости $D_1(D)$, по наклону графика и пересечению его с осью Ох определим увеличение линзы.

Увеличение линзы $\Gamma = 28,97.$

2.2 Определение ширины щели по спектру

Убрав линзу, можем наблюдать на экране спектр светового луча после прохождения через щель.

Изменяя ширину щели измерим расстояние между m-ми максимумами спектрального разложения. Результаты представлены в таблице 2.

По результатам эксперемента вычислим ширину щели, используя соотношение

$$\Delta X = \frac{X}{2m} = \frac{\lambda}{D_s} L \tag{2}$$

где L=1342 мм — расстояние от щели до экрана, а lambda — длина волны. Длина волны лазера He-Ne $\lambda=632.8$ нм.

Рис. 2: Зависимость D1(D)

Рис. 3: Спектр щели

D, MKM	X, mm	m	D_s , mm
50	85	2	0,04
100	53	2	0,06
150	56	4	0,12
200	55	6	0,19
250	66	10	0,26
300	39	8	0,35
350	47	10	0,36
400	42	10	0,40
450	35	8	0,39

Таблица 2: Результаты второго эксперемента

3 Определение периода сеток

3.1 Определение периода сеток по спектру

Поставим кассету с двумерными решётками (сетками) вплотную к выходному окну лазера. Для каждой сетки измерим расстояние X между m-ми пиками и отметим m – количество пиков. Рассчитаем расстояния ΔX между соседними максимумами и определим период каждой решётки d, используя соотношения:

$$\Delta X = \frac{X}{m} = \frac{\lambda}{d}L\tag{3}$$

где $L=1317\ \mathrm{mm}$ – расстояние от касеты до экрана. Результаты занесем в таблицу 3.

Решетка	X, mm	m	d, mm
1	147	2	0.02
2	99	2	0.03
3	50	2	0.07
4	37	3	0.14
5	28	3	0.18

Решетка	X, mm	m	d, mm
2	210	1	0.03
3	104	1	0.06
4	105	2	0.12
5	79	2	0.16

Таблица 3: Дифракция без линзы

Таблица 4: Дифракция с линзой

3.2 Определение периода сеток по увеличенному изображению спектра

Далее линзу Л2 с максимальным фокусом ($F_2=110$ мм поставим на расстоянии $\simeq F_2$ от кассеты. В плоскости Ф линза Л2 даёт Фурье-образ – сетки её спектр, а короткофокусная линза Л3 ($F_3=25$ мм) создаёт на экране увеличенное изображение этого спектра. Измерим X и m для всех сеток, где это возможно. Так как экран достаточно удалён ($b_3\gg a_3$), то практически $a_3=F_3$, и расстояние между линзами $\simeq F_2+F_3$. Результаты измерений представлены в таблице 4.

Вычислим увеличение линзы Л3: $\Gamma_3=\frac{b_3}{a_3}.$ $a_3\approx F_3$, из геометрических соображений очевидно, что $b_3=L-F_3-2F_1$. Тогда $b_3=1072$ мм, откуда $\Gamma_3=42.88$.

Тогда для нахождения периода сетки воспользуемся соотношением

$$\frac{\Delta X}{\Gamma_3} = \frac{\lambda}{d} F_2 \tag{4}$$

откуда

Рис. 4: text

Решетка	Y, mm	K	Δy , mm
1	102	4	3.58
2	72	4	2.53
3	36	4	1.26
4	27	6	0.63
5	21	6	0.49

Таблица 5: Мультиплицирование

$$d = \frac{2m\lambda\Gamma_3 F_2}{X}$$

4 Исследование мультиплицированного изображения щели

Снова поставим тубус со щелью к окну лазера и найдем на экране резкое изображение щели с помощью линзы $\Pi 2$ ($F_2=110$ мм). В фокальной плоскости Φ линзы $\Pi 2$ поставим кассету с сетками, которые будут «рассекать» Φ урье-образ щели — осуществлять пространственную фильтрацию.

Снимем зависимость Y (расстояние между удалёнными изображениями щели и и K (число промежутков между изображениями) от n (номер сетки) для фиксированной ширины входной щели. Данные занесем в таблицу 5.

L=1339 мм — расстояние от щели до экрана $a_2=165$ мм — расстояние от щели до линзы $b_2=1174$ мм — расстояние от линзы до экрана $F_2=110$ мм —фокусное расстояние линзы D=340 мм — ширина щели

Увеличение линзы $\Gamma_2 \approx 7.12$. Рассчитаем периоды Δy «фиктивных» решёток, которые дали бы такую же периодичность на экране: $\Delta y = \Delta Y/\Gamma_2$, где $\Delta Y = Y/K$. Результаты представлены в таблице 5.

Рис. 5: Мультиплицирование

Δy , mm	3,58	2,53	1,26	0,63	0,49
d, mm	0,02	0,03	0,07	0,14	0,18

Построим график зависимости $\Delta y(\frac{1}{d})$, где d – период решетки, определенный по спектру. Зависимость должна быть линейной, поскольку

$$\Delta y = \lambda F_2 \frac{1}{d} \tag{5}$$

5 Вывод

Рис. 6: график зависимости $\Delta y(\frac{1}{d})$