Microbiome: Pooled analysis bacteria

Indoor dust bacterial and fungal microbiota composition and allergic diseases: a scoping review

Javier Mancilla Galindo, MSc student Supervisors: Inge M. Wouters and Alex Bossers Examiner: Lidwien A.M. Smit

2024-06-18

Table of contents

Session	3
Description	4
Nigerian(Fakunle et al., 2023) and Dutch (unpublished) households	4
Finnish households (Hickman et al., 2022)	
Danish households	7
(Amin et al., 2022)	7
(Vestergaard et al., 2018)	8
Merge phyloseq objects	9
Alpha diversity	12
Relative abundance	13
Beta diversity	18
Axes 1 and 2	18
Axes 1 and 3	19
Hellinger transformed	20
Axes 1 and 2	
Axes 1 and 3	21
Permanova	22
Results Permanova	22

Dispersion Test Pairwise Perman									
Package References									24
Study References									26

Session

R version 4.2.2 Patched (2022-11-10 r83330)

Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 20.04.6 LTS

waming ander. obanea 20.01.0 21,

Matrix products: default

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1]	report_0.5.8	htmltools_0.5.5	gt_0.10.1
[4]	pals_1.7	RColorBrewer_1.1-3	phyloseq_1.42.0
[7]	vegan_2.6-4	lattice_0.22-5	permute_0.9-7
[10]	<pre>lubridate_1.9.2</pre>	forcats_1.0.0	stringr_1.5.0
[13]	dplyr_1.1.2	purrr_1.0.1	readr_2.1.4
[16]	tidyr_1.3.0	tibble_3.2.1	ggplot2_3.4.2
F		D	

[19] tidyverse_2.0.0 BiocManager_1.30.22

Description

A selection of studies included in the scoping review that had available raw sequence data and a comparable dust collection method were identified to retrieve sequence data to undergo processing in the same pipeline, as a proof of concept that pooled analyses could offer insight into the composition of the indoor dust microbiome and to identify potential needs and difficulties for the performance of such pooled microbiome analyses. The type of indoor environment was restricted to dwellings as this was the most common type of indoor environment. A total of **3 studies**(Amin et al., 2022; Fakunle et al., 2023; Vestergaard et al., 2018) following the electrostatic dust collector (EDC) method and **2 studies**(Adams et al., 2020; Hickman et al., 2022) using the petri dish method were selected due to the known comparability of these sample collection methods.(Adams et al., 2015) Additionally, previously unpublished data from a study sampling Dutch households with the EDC method was also included. Out of the 6 studies, 5 studies reported bacterial indoor dust sequences, whereas 4 made fungal ITS sequences publicly available.

This report includes the processing and analysis of bacterial 16S sequences.

Nigerian(Fakunle et al., 2023) and Dutch (unpublished) households

Dutch and Nigerian indoor dust samples follow similar methods of collection through EDC and were processed and analyzed together in the laboratory. These samples have been sequenced for the 16S rRNA combined V5-V6 hypervariable region for bacteria, and the ITS1 region between the 18S and 5.8S rRNA subunits for fungi. After processing, these were compared against the SILVA (bacteria) and UNITE datasets to determine the microbial composition of the samples.

The Dutch samples are from a cross-sectional study aiming to assess environmental factors as determinants of the indoor house dust microbial composition. The study population consisted of households located in Utrecht and surrounding areas of whose inhabitants were invited between April and May 2017 to participate in a survey in which diverse household characteristics, socioeconomic data, and health status variables were collected, as well as airborne dust samples from the household. Participants were instructed to place electrostatic dust collectors at a height of at least 1.25 meters above floor level in the main living room. Out of 600 homes selected to represent different housing characteristics, to which invitations were sent, seventy-nine ultimately provided the answered questionnaires and household dust samples. Only one adult per household provided responses to the questionnaire including their health status and was responsible for collecting and delivering the samples.

The Nigerian samples are from a case-control study of the relationship between indoor airborne dust microbiome and childhood lower respiratory tract infections. (Fakunle et al., 2023)

Phyloseg object containing both NL and NG samples + controls:

Only residential households were kept, since this was similarly done with retrieved samples from studies captured in the literature review to reduce the number of samples to process. This was done under the assumption that quality control has already been done for all published and unpublished studies.

Phyloseq object containing both NL and NG samples, after removing controls:

Since there is limited metadata from other studies that would allow comparison by additional environmental determinants or health outcome, this analysis will be limited to a comparison by the country of origin of the samples.

Finnish households (Hickman et al., 2022)

PRJNA892469

Total observations per sample

Danish households

PRJNA801418 corresponds to cow farmers' homes (Amin et al., 2022), and PRJNA417363 / SRP124427, to pig farmers' homes and suburban dwellings. (Vestergaard et al., 2018)

(Amin et al., 2022)

Total observations per sample

(Vestergaard et al., 2018)

```
{\tt phyloseq-class} \ {\tt experiment-level} \ {\tt object}
```

otu_table() OTU Table: [25737 taxa and 184 samples]

sample_data() Sample Data: [184 samples by 1 sample variables]
tax_table() Taxonomy Table: [25737 taxa by 8 taxonomic ranks]

Total observations per sample

Merge phyloseq objects

Check if rank names are equal

```
[1] "Kingdom" "Phylum"
                         "Class"
                                    "Order"
                                              "Family" "Genus"
                                                                    "Species"
                    "Phylum"
                                                    "Order"
[1] "Kingdom"
                                    "Class"
                                                                    "Family"
[6] "Genus"
                    "Species"
                                    "GenusSpecies"
                    "Phylum"
[1] "Kingdom"
                                    "Class"
                                                    "Order"
                                                                    "Family"
[6] "Genus"
                    "Species"
                                    "GenusSpecies"
[1] "Kingdom"
                    "Phylum"
                                    "Class"
                                                    "Order"
                                                                    "Family"
[6] "Genus"
                    "Species"
                                    "GenusSpecies"
```

The GenusSpecies rank is missing in the NL and NG data. I will remove it and check if they are now equal:

[1] TRUE

Merge into a single phyloseq object

Save unrarefied data:

```
saveRDS(
  bacter,
  paste0(psfolder,"/bacter_combined.rds")
)
```

Sample sums plot:

I will keep 95% of samples.

Save bacter_keep:

```
saveRDS(
  bacter,
  paste0(psfolder,"/bacter_keep.rds")
)
```

The construction of rarefaction curves was done with the following script:

```
source("scripts/rarefaction_plot_bacter.R")
```


Rarefying above 10,000 leads to very large losses of samples. Thus, I will rarefy at 10,000 which leads to loosing close to $\sim 10\%$ (n=80) of samples.

```
bacter_rar <- rarefy_even_depth(
  bacter,
  sample.size=10000,
  rngseed=seed,
  replace=FALSE
)</pre>
```

80 samples removedbecause they contained fewer reads than sample.size. 532310TUs were removed because they are no longer present in any sample after random subsampling

The number of samples is now 688.

Alpha diversity

Relative abundance

The figures were generated with the following script:

source("scripts/relative_abundance_plots_bacter.R")

Beta diversity

PCoA plot will be generated with the following code:

source("scripts/ordination_plots_fungi.R")

Hellinger transformed

Perhaps there is improvement with Hellinger transformation:

Permanova

Permanova done with the following code:

```
source("scripts/permanova_bacteria.R")
```

Results Permanova

Df	SumOfSqs	R2	F	Pr(>F)
3	100.3225	0.3365802	115.6738	0.001
684	197.7417	0.6634198	NA	NA
687	298.0643	1.0000000	NA	NA

Dispersion Test

```
$Pvalues
           p.values
Country 1.153885e-65
$betadisper
$betadisper[[1]]
    Homogeneity of multivariate dispersions
Call: betadisper(d = dist.mat, group = vars[, i])
No. of Positive Eigenvalues: 685
No. of Negative Eigenvalues: 2
Average distance to median:
          FΙ
                 NG
0.5876 0.4569 0.5413 0.5291
Eigenvalues for PCoA axes:
(Showing 8 of 687 eigenvalues)
PCoA1 PCoA2 PCoA3 PCoA4 PCoA5 PCoA6 PCoA7 PCoA8
```

54.136 39.690 14.094 12.798 10.206 7.874 3.050 2.864

Pairwise Permanova

Pairs	F.Model	R2	Pr(>F)	p.adj	sig
FI vs DK	129.76312	0.2496582	0.001	0.001	**
FI vs NG	167.46582	0.2945926	0.001	0.001	**
FI vs NL	109.23161	0.2872765	0.001	0.001	**
DK vs NG	112.98566	0.2148075	0.001	0.001	**
$\mathrm{DK}\ \mathrm{vs}\ \mathrm{NL}$	67.79775	0.1932673	0.001	0.001	**
NG vs NL	37.26529	0.1124938	0.001	0.001	**

Updated figure:

Package References

- Cheng J, Sievert C, Schloerke B, Chang W, Xie Y, Allen J (2023). htmltools: Tools for HTML. R package version 0.5.5, https://CRAN.R-project.org/package=htmltools.
- Grolemund G, Wickham H (2011). "Dates and Times Made Easy with lubridate." *Journal of Statistical Software*, 40(3), 1-25. https://www.jstatsoft.org/v40/i03/.
- Iannone R, Cheng J, Schloerke B, Hughes E, Lauer A, Seo J (2024). gt: Easily Create Presentation-Ready Display Tables. R package version 0.10.1, https://CRAN.R-project.org/package=gt.
- Makowski D, Lüdecke D, Patil I, Thériault R, Ben-Shachar M, Wiernik B (2023). "Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption." CRAN. https://easystats.github.io/report/.
- McMurdie PJ, Holmes S (2013). "phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data." *PLoS ONE*, 8(4), e61217. http://dx.plos.org/10.1371/journal.pone.0061217.
- Microsoft, Weston S (2022). foreach: Provides Foreach Looping Construct. R package version 1.5.2, https://CRAN.R-project.org/package=foreach.
- Morgan M, Ramos M (2023). BiocManager: Access the Bioconductor Project Package Repository. R package version 1.30.22, https://CRAN.R-project.org/package=BiocManager.
- Müller K, Wickham H (2023). *tibble: Simple Data Frames*. R package version 3.2.1, https://CRAN.R-project.org/package=tibble.
- Neuwirth E (2022). *RColorBrewer: ColorBrewer Palettes*. R package version 1.1-3, https://CRAN.R-project.org/package=RColorBrewer.
- Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2022). vegan: Community Ecology Package. R package version 2.6-4, https://CRAN.R-project.org/package=vegan.
- R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
- Sarkar D (2008). Lattice: Multivariate Data Visualization with R. Springer, New York. ISBN 978-0-387-75968-5, http://lmdvr.r-forge.r-project.org.
- Simpson G (2022). permute: Functions for Generating Restricted Permutations of Data. R package version 0.9-7, https://CRAN.R-project.org/package=permute.
- Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
- Wickham H (2022). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.5.0, https://CRAN.R-project.org/package=stringr.
- Wickham H (2023). forcats: Tools for Working with Categorical Variables (Factors). R package version 1.0.0, https://CRAN.R-project.org/package=forcats.

- Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). "Welcome to the tidyverse." *Journal of Open Source Software*, 4(43), 1686. doi:10.21105/joss.01686 https://doi.org/10.21105/joss.01686.
- Wickham H, François R, Henry L, Müller K, Vaughan D (2023). dplyr: A Grammar of Data Manipulation. R package version 1.1.2, https://CRAN.R-project.org/package=dplyr.
- Wickham H, Henry L (2023). purrr: Functional Programming Tools. R package version 1.0.1, https://CRAN.R-project.org/package=purrr.
- Wickham H, Hester J, Bryan J (2023). readr: Read Rectangular Text Data. R package version 2.1.4, https://CRAN.R-project.org/package=readr.
- Wickham H, Vaughan D, Girlich M (2023). *tidyr: Tidy Messy Data*. R package version 1.3.0, https://CRAN.R-project.org/package=tidyr.
- Wright K (2021). pals: Color Palettes, Colormaps, and Tools to Evaluate Them. R package version 1.7, https://CRAN.R-project.org/package=pals.

Study References

- Adams, R.I., Sylvain, I., Spilak, M.P., Taylor, J.W., Waring, M.S., Mendell, M.J., 2020. Fungal Signature of Moisture Damage in Buildings: Identification by Targeted and Untargeted Approaches with Mycobiome Data. Applied and Environmental Microbiology 86, e01047–20. https://doi.org/10.1128/AEM.01047-20
- Adams, R.I., Tian, Y., Taylor, J.W., Bruns, T.D., Hyvärinen, A., Täubel, M., 2015. Passive dust collectors for assessing airborne microbial material. Microbiome 3, 46. https://doi.org/10.1186/s40168-015-0112-7
- Amin, H., Šantl-Temkiv, T., Cramer, C., Vestergaard, D.V., Holst, G.J., Elholm, G., Finster, K., Bertelsen, R.J., Schlünssen, V., Sigsgaard, T., Marshall, I.P.G., 2022. Cow Farmers' Homes Host More Diverse Airborne Bacterial Communities Than Pig Farmers' Homes and Suburban Homes. Frontiers in Microbiology 13, 883991. https://doi.org/10.3389/fmicb. 2022.883991
- Fakunle, A.G., Jafta, N., Bossers, A., Wouters, I.M., Kersen, W. van, Naidoo, R.N., Smit, L.A.M., 2023. Childhood lower respiratory tract infections linked to residential airborne bacterial and fungal microbiota. Environmental Research 231, 116063. https://doi.org/10.1016/j.envres.2023.116063
- Hickman, B., Kirjavainen, P.V., Täubel, M., Vos, W.M. de, Salonen, A., Korpela, K., 2022. Determinants of bacterial and fungal microbiota in Finnish home dust: Impact of environmental biodiversity, pets, and occupants. Frontiers in Microbiology 13, 1011521. https://doi.org/10.3389/fmicb.2022.1011521
- Vestergaard, D.V., Holst, G.J., Basinas, I., Elholm, G., Schlünssen, V., Linneberg, A., Šantl-Temkiv, T., Finster, K., Sigsgaard, T., Marshall, I.P.G., 2018. Pig Farmers' Homes Harbor More Diverse Airborne Bacterial Communities Than Pig Stables or Suburban Homes. Frontiers in Microbiology 9, 870. https://doi.org/10.3389/fmicb.2018.00870