VLSI Course Project 4-Bit CLA adder

Vedant Tejas 2023112018 vedant.tejas@research.iiit.ac.in UG2, ECD

IIITH

I. INTRODUCTION

4 bit CLA adder adds two 4-bit numbers and gives the final 4-bit sum

However, unlike normal 4-bit Ripple Carry Adder which calculates each carry one at a time, CLA Adder calculates all the carry simultaneously, reducing the propagation delay.

1. Construction and logic:

We have to create three blocks. First we generate pi and gi (Propogate and Generate) for CLA block

$$gi = ai \cdot bi$$

Then we calculate all carries in CLA block by following the logic which is given by this equation.

$$c_{i+1} = p_i c_i + g_i$$

From this, we can calculate all carries ci 's from the propagates and generates (pi 's and gi 's).

$$c1 = (p0 \cdot c0) + g0$$

$$c2 = (p1 - p0 \cdot c0) + (p1 \cdot g0) + g1$$

$$c3 = (p2 \cdot p1 \cdot p0 \cdot c0) + (p2 \cdot p1 \cdot g0) + (p2 \cdot g1)$$

$$+ g2$$

$$c4 = (p3 \cdot p2 \cdot p1 \cdot p0 \cdot c0) + (p3 \cdot p2 \cdot p1 \cdot g0) + (p3 \cdot p2 \cdot g1) + (p3 \cdot g2) + g3$$

Finally we can get the final sum by following the logic

$$Si = pi \bigoplus ci$$

II.DESIGN TOPOLOGY

For XOR, AND & OR gates, we use PTL (Pass Transistor Logic) Topology and CMOS Topology for Inverters.

Fig. 2: Circuit for CLA Adder

D FLIP FLOP

For D flipflop, we use TSPC (True Single Phase Clock) topology. Given below is the circuit for flipflop along with its size.

III. PRE-LAYOUT SIMULATIONS IN NGSPICE

CLA ADDER

For CLA Adder, we take input as a = 1001 and b=1101 at t=5ns. The output is as follows.

Here the output is 10110

Thus this cla is working as expected For the analysis of the propogation delays we are giving a=1111 and b=1111 as well as cin=1. From here we get output as 11111. Here we see the delays of the sum and final carry unit.

Measurements for T:	ransient Analysis		
tpd_s1 tpd_s2 tpd_s3	= 4.498190e-11 targ= = 4.629391e-10 targ= = 8.350323e-10 targ= = 8.265227e-10 targ= = 7.256877e-10 targ=	5.467939e-09 trig= 5.840032e-09 trig= 5.831523e-09 trig=	5.005000e-09 5.005000e-09 5.005000e-09 5.005000e-09 5.005000e-09

 $Tpd_{min}=44.9ps$ $Tpd_{max}=83.5ps$

D-FLIP FLOP

For D-flipflop where assuming a positive edge, we get the following simulation:

As we can see, Q is updated to D at +ve edge only. Hence its working properly

Minimum tpcq

Maximum Tpcq

IV. SETUP TIME, HOLD TIME AND PROPAGATION DELAY FROM CLK TO Q IN FLIPFLOP

We have used TSPC topology for our D-FlipFlop. Since there is no use of (clk)', we have zero hold time (t hold = 0). For setup time, we did trial and error and found it to be tsetup = 0.11ns. Any input given less than tsetup before next +ve edge, either input is not registered or output is being corrupted. For propagation delay from clk to Q (tpcq), we can see the minimum and maximum tpcq. The values are as follows:

DOG T	= 1.603104e-10 targ= 5.175310e-09 trig= 5.015000e-09
pog f	= 1.133849e-10 targ= 1.512838e-08 trig= 1.501500e-08
pcq_r pcq_f pcq	= 1.36848e-10
AND DESCRIPTION OF	a to the same and
pog r	= 2.335070e-10 targ= 5.248507e-09 trig= 5.015000e-09
tpcq_r tpcq_f	= 2.335070e-10 targ= 5.248507e-09 trig= 5.015000e-09 = 1.819591e-10 targ= 1.519696e-08 trig= 1.501500e-08

 $\begin{array}{c} T_{\text{pcqmin}}{=}0.136 ns \; T_{\text{pcqmax}}{=}0.207 ns \\ V \; STICK \; DIAGRAMS \; FOR \; ALL \; UNIQUE \; GATES \; AND \\ FLIPFLOPS \end{array}$

	PRE-LAYOUT	POST LAYOUT		
T _{PCQ MIN}	0.136NS	0.143NS		
T _{PCQ MAX}	0.207ns	0.288NS		

VI POST LAYOUT SIMULATIONS

D-FlipFlop

Here we make the circuit given in MAGIC Layout and perform post-Layout simulations.

Here we can see that we get a similar output as pre-layout simulations. However, the tpcq value would be different.

B. CLA-ADDER

Here we make the circuit given in MAGIC Layout and perform post-layout simulations. We again perform a simulation with input a = 1001 and b = 1101 at t=5ns and get the following result (next

As we can see, with some delay, we get the final output s =10110 which is the same as pre-layout simulations. By giving a and b as 1111 as well as cin = 1 for s = 1111, we get

Now comparing delays with pre-layout simulations, we get:

tpd s0	=	7.954170e-11 targ=	5.084542e-09 trig=	5.005000e-09
tpd_s1	=	5.824552e-10 targ=	5.587455e-09 trig=	5.005000e-09
tpd s2	=	6.905608e-10 targ=	5.695561e-09 trig=	5.005000e-09
tpd s3	=	6.639990e-10 targ=	5.668999e-09 trig=	5.005000e-09
tpd carry	=	5.585690e-10 targ=	5.563569e-09 trig=	5.005000e-09

	PRE-LAYOUT	POST LAYOUT
T _{PCQ MIN}	44.9ps	79.54ps
T _{PCO MAX}	83.5ps	69ps

VIII. FLOOR PLAN AND MAGIC LAYOUT FOR FINAL CIRCUIT

```
Root cell box:

width x height ( llx, lly ), ( urx, ury ) area (units^2)

microns: 226.08 x 259.56 (-157.50, -255.51), (68.58, 4.05 ) 58681.33

lambda: 2512 x 2884 (-1750, -2839 ), ( 762, 45 ) 7244608
```


X. VERILOG SIMULATIONS AND WAVEFORMS

Now, we create the final CLA Circuit in verilog. We give two inputs, a = 1001, b = 1101 and a = 1010, b = 01101. We get the following output:

Γime			10 sec		20 sec		30 sec	4	0 sec
clk [3:0]	0000	1001		1100)0	000			
[3:0]	0000	1001		0011		900			
[3:0]	xxxx			0010		1111		0000	

As we can see, when we give the input, we get the output in the next cycle. We get sum=10110 and sum=01111 after the next input has been given, that is, in the next +ve edge of the clock. In GTKWave, we get the following waveforms:

XI. FPGA AND HARDWARE SIMULATIONS

Now, we give inputs in FPGA board and get the output as shown: 1010+0101=1111

As we can see, we are getting 3.31V for HIGH (bit 1) and some noise (in mV) for LOW (bit 0). Here we also are getting the sum.

XII. CONCLUSION

So, like this, we are able to design a CLA Adder which takes input at one +ve edge and gives output at next +ve edge clock. This makes sure that the CLA adder has enough time to calculate the sum bits.

REFERENCES

CMOS VLSI design Weste and Harris Verilog HDL-Samir Palnitkar Google IEEE Research Papers