Segment trees

Need of segment trees

Let us take an example of returning and updating the sum of the subarray a[i....j] of an array of size n.

Example

Query: Output the sum from i=1 to i=5.

<u>Update</u>: Update the element at i^{th} index. Example: put a[4] = 13.

Approach 1

For query: Iterate from i=1 to i=5 and calculate the sum.

Time complexity: O(n)

For update: Update the ith index, simply put a[i] = updated_element

Query	Update
O(n)	O(1)

Approach 2 (Prefix Sum Approach)

Build the prefix sum array

Given array:

	5	3	2	4	1	8	6	10
L	0	1	2	3	4	5	6	7

Prefix sum array:

For query: Output sum from i to j $(0 \le i \le j \le n)$ (say i=1 to i=5)

$$\begin{aligned} Sum[i....j] &= pref[j]\text{-}pref[i\text{-}1] & \text{ {\it if i!=0}} \\ & pref[j] & \text{ {\it if i = 0}} \end{aligned}$$

Time complexity: O(1)

For update: Put a[i] = updated_value

To update in the prefix array, we need to change all $pref[i_1]$ $\{i_1 >= i\}$

Example: Update the 4th indexed element to 13.

Original Array becomes:

Prefix sum array becomes:

Time complexity: O(n)

Time complexity of this approach

Query	Update		
O(1)	O(n)		

If we want both the operations to be in reasonable time, we use segment trees.

Time Complexity comparison table

Approach	Query	Update		
Approach 1	O(n)	O(1)		
Approach 2	O(1)	O(n)		
Segment tree	O(log(n))	O(log(n))		

Requirement of log(n) time complexity: Many a times, number of queries and number of updates are of the order of 10^5 - 10^6 , we will get tle if we use Approach 1 or Approach 2.

Segment tree construction

Given array:

	5	3	2	4	1	8	6	10
ı	0	1	2	3	4	5	6	7

Power of number 2 in programming

- 1. Binary Representation of numbers All operations be it sum / subtraction/ product, all are accomplished in O(1).
- 2. Division of array (Divide and conquer)

We can divide the above array as

<u>Number of nodes</u> = n + n/2 + n/4 + ... + 2 + 1, which is geometric progression Let number of terms in the above G.P. be x, which denotes the height of the segment tree. We know,

$$ar^{x-1} = n$$

$$putting \ a = 1, \ r = 2, \ we \ get$$

$$(2)^{x-1} = n$$

$$log_2(2^{x-1}) = log_2n$$

$$x = 1 + log_2n$$

Number of nodes =
$$1 + 2 + 4 + ... + n/4 + n/2 + n$$
.
= $1((2)^{1+log(n)} - 1) / 2-1$
= $2 \cdot 2^{log(n)} - 1$
= $2n-1$

For safety, we make segment tree of size 4*n.

Structure of segment tree

Building a segment tree

It is very simple to build a segment tree, we use divide and conquer approach to build the segment tree.

Code:

```
int tree[4*N];
int a[N];

void build(int node, int st, int en)
{
    if(st == en)
    {
        tree[node] = a[st];
        return;
    }

    int mid = (st+en)/2;
    build(2*node, st, mid);
    build(2*node+1, mid+1, en);

    tree[node] = tree[2*node] + tree[2*node+1];
}
```

Query

For query, we see two types of segments

- <u>Complete overlapping segments</u> When our st Partial overlapping segments and en lies completely in the range [l,r], it is called complete overlapping segment.
- <u>Partial overlapping segments</u> When our st and en does not lie completely in the range [l,r], it is called partial overlapping segment.

Code:

Update

Updating an element in the segment tree is very similar to binary search. We find out mid, and compare our index with mid and two conditions arise

- 1. Idx <= mid, then we recursively call the left child of the tree's node.
- 2. Idx > mid, then we recursively call the right child of the tree's node.

Code:

```
void update(int node, int st, int en, int idx, int val)
{
    if(st == en)
    {
        a[st] = val;
        tree[node] = val;
        return;
    }

    int mid = (st+en)/2;

    if(idx<=mid)
        update(2*node, st, mid, idx, val);
    else
        update(2*node+1, mid+1, en, idx, val);

    tree[node] = tree[2*node] + tree[2*node+1];
}</pre>
```