

Single Precision Floating Point Fused Multiply-Add

Simone Catenacci

Marco Salvatori

Introduzione

□ Il progetto si concentra sull'analisi dell'architettura del *fused multiply-add* (FMA), una delle operazioni fondamentali nel calcolo floating point. L'FMA combina moltiplicazione e somma in un unico passaggio, riducendo errori di arrotondamento e migliorando l'efficienza computazionale

$$out = x \cdot y + w$$

■ Le CPU e diversi acceleratori hardware progettati per il calcolo *floating point*, sfruttano l'FMA per eseguire calcoli intensivi con prestazioni elevate, riducendo il numero di cicli e il consumo energetico

Floating Point – Standard IEEE 754

- □ Rappresentazione binary32 \Rightarrow $\begin{cases} (-1)^{S} \cdot (1.M) \cdot 2^{E-127}, & 0 < E < 255 \\ (-1)^{S} \cdot (0.M) \cdot 2^{-126}, & E = 0 \end{cases}$
- ☐ Uso di una rappresentazione normalizzata → Riduzione dynamic range tramite denormals
- ☐ Special values:
 - \Box ±Infinito \rightarrow E=2e-1 F=0
 - \square NaN \rightarrow E=2e-1 F \neq 0
 - ☐ Zero → E=0 F=0

exponent	mantissa				
10000110	1101010000000000000000000				
8 bit	23 bit				
32 bit —					
	10000110				

S_{x}	E_{\times}	M_{\times}		V
0	00000000	0.0000000000000000000000000000000000000	=	0
0	01111111	1.000000000000000000000000000000000000	=	$2^{127-127} \cdot (1.0)_2 = 1$
0	01111110	1.0000000000000000000000000000000000000	=	$2^{126-127} \cdot (1.0)_2 = 0.5$
0	10000000	1.0000000000000000000000000000000000000	=	$2^{128-127} \cdot (1.0)_2 = 2$
0	10000001	1.101000000000000000000000000000000000	=	$2^{129-127} \cdot (1.101)_2 = 6.5$
1	10000001	1.101000000000000000000000000000000000	=	$-[2^{129-127} \cdot (1.101)_2] = -6.5$
0	0000001	1.0000000000000000000000000000000000000	=	$2^{1-127} \cdot (1.0)_2 = 2^{-126}$
0	00000000	0.1000000000000000000000000000000000000	=	$2^{-126} \cdot (0.1)_2 = 2^{-127}$
0	00000000	0.0000000000000000000000000000000000000	=	$2^{-126} \cdot (0.0000000000000000000000000000000000$
			=	2^{-149} (Smallest positive value)
0	11111111	000000000000000000000000000000000000000	=	∞
1	11111111	000000000000000000000000000000000000000	=	-∞
1	11111111	100000000000000000000000000000000000000	=	$\sqrt{-1}$ (NaN)

Fused Multiply-Add

- \Box Z = W + X * Y
- ☐ Step:
 - 1) $M_X * M_Y$
 - 2) $E_X + E_Y$
 - 3) Determinare lo shift di allineamento e shifting di M_W
 - 4) $E_Z = max(E_X + E_Y)$
 - 5) Somma tra il prodotto e M_W allineato
 - 6) Normalizzare output adder e update dell'esponente
 - 7) Rounding
 - 8) Determinare flag e special values

[1] Milos D. Ercegovac, Tomàs Lang, Digital Arithmetic

Implementazione

- ☐ Basata su [2]
- ☐ FMA single precision (parametrizzabile in half precision)
- ☐ Supporto per tutti gli exception
- ☐ 4 Modalità di Rounding

[2] Alberto Nannarelli, Fused Multiply-Add for Variable Precision Floating Point

Multiplier

[3] Neil H. Weste, David Money Harris, CMOS VLSI Design: A Circuits and Systems Perspective

$$E_X + E_Y > E_W \rightarrow E_Z = E_X + E_Y - B - (LSHAMT - 27)$$

$$E_W > E_X + E_Y \rightarrow E_Z = E_W + RSHAMT - LSHAMT$$

Exp. Update & Shift Distance

$$D = (E_X + E_Y - B) - E_W \rightarrow RSHAMT = D + 27$$

INPUT 1+74 1 R 1 G RND RD_OVF 24 OUTPUT

Rounding

- Modalità:
 - ❖ Round to Nearest (Tie to Even) → $rnd = G \ AND \ (R \ OR \ T \ OR \ L)$
 - ❖ Round to +∞ → $rnd = \overline{S_z} AND (G OR R OR T)$
 - ❖ Round to $-\infty$ → $rnd = S_z$ AND (G OR R OR T)
 - ❖ Round toward zero → trunc(IN)
- ☐ Bit per il calcolo:
 - ❖ Guard bit → primo bit oltre l'LSB del risultato
 - ❖ Round bit → bit successivo al guard-bit
 - Sticky bit → indica se i bit dopo al round-bit sono ≠ 0
 - ❖ LSB del risultato normalizzato → Per decidere in caso di parità

EOP & Sign

$$EOP = (S_X \oplus S_Y) \oplus S_W$$

Special Values

INV

Rivela il caso +∞-∞ oppure se uno degli input è NaN

ZERO

. . .

rileva se uno o entrambi gli input x e y sono zero e l'input w è zero

Pipelining $\mathsf{E}_\mathsf{W} \quad \mathsf{E}_\mathsf{y} \quad \mathsf{E}_\mathsf{x}$ S_x S_y S_w S_x S_y S_w 24 / 24 R-SHIFTER MULTIPLIER R-SHIFTER MULTIPLIER SHIFT EOP UNIT SHIFT DISTANCE EOP UNIT 48 DISTANCE 48 BIT-INVERT BIT-INVERT CSA 3:2 CSA 3:2 ADDER ADDER 2's COMPL 2's COMPL LOD ZERO ZERO L-SHIFTER L-SHIFTER EXP 74 74 SIGN UNIT SIGN UNIT RD_OVF RD_OVF UPDATE UPDATE EXP_UND ROUNDING EXP_UND ROUNDING 74 00...000 00...000 **∤**23 OVF INV UND OVF INV UND

Risultati Implementativi

Risorse	Utilizzate	Disponibili	Utilizzo (%)	
LUT	1823	230400	0.79	
FF	301	460800	0.07	
Ю	133	204	65.20	

- ☐ FPGA → Zynq UltraScale+ MPSoCs
- ☐ Frequenza massima di clock → 333 MHz

Risultati Simulativi

- **□** N° di vettori: 1.000.000
- ☐ **Distribuzione inputs**: Uniforme
- ☐ Inputs esatti in float32 (senza arrotondamenti)
- ☐ Outputs desiderati calcolati in float128
- **0 errori**, esclusi i casi con output subnormal

Error PDF - RTNE

Relative error distribution

$$Error_{rel} = \frac{OUT_{exp} - OUT}{|OUT_{exp}|}$$

*Uscite overflow e subnormal escluse

Error PDF - RTZ

^{*}Uscite overflow e subnormal escluse

Error PDF – Round To Plus Infinity

^{*}Uscite overflow e subnormal escluse

Error PDF – Round To Minus Infinity

^{*}Uscite overflow e subnormal escluse

Simulazione Corner Case

X	Y	W	OUT	OVF	UND	INV
0	0	0	0	0	0	0
-0	0	-0	-0	0	0	0
2.5	0	0	0	0	0	0
3.403e38	3.403e38	3.403e38	∞	1	0	0
1.175e-38	1.175e-38	0	0	0	1	0
∞	2.5	2.5	∞	1	0	0
$-\infty$	2.5	2.5	$-\infty$	1	0	0
∞	∞	∞	∞	1	0	0
$-\infty$	$-\infty$	∞	∞	1	0	0
∞	2.5	$-\infty$	NaN	0	0	1
∞	$-\infty$	∞	NaN	0	0	1
NaN	2.5	2.5	NaN	0	0	1
NaN	NaN	NaN	NaN	0	0	1

Subnormal (1)

- Design ottimizzato di un FMA per processori Intel E-Core
- ☐ Supporto completo per input subnormal e output underflow
- ☐ Supporto per tutti le 4 modalità di rounding (per IEEE 754)
- ☐ Rispetto alle FMA tradizionali:
 - ❖ Riduzione area del 10/30 %
 - ❖ Riduzione latenza 10/20 %

[5] J. Sohn, D. K. Dean, E. Quintana, W. S. Wong, Enhanced Floating-Point Multiply-Add with Full Denormal Support

Subnormal (2)

- ☐ Input a 64-bit vengono formattati o in un valore double precision o in due single precision
- □ Cycl → exponent difference, allineamento, Booth encoding, e la prima parte del multiply array
- ☐ Cyc2 → resto del multiply array, main adder, incrementor e LZA
- ☐ Cyc3 → normalizzazione e rounding
- □ Cyc4 → ultimo MUX e bypass/writeback logic

[5] J. Sohn, D. K. Dean, E. Quintana, W. S. Wong, Enhanced Floating-Point Multiply-Add with Full Denormal Support

Subnormal (3)

- All'interno del blocco **Exponent Difference**, il bias viene sottratto di uno se uno dei due operandi del moltiplicatore è *subnormal*. Allo stesso modo, E_C viene regolato ad uno se C è *subnormal*.
- Il J-bit è implicito per i numeri normalizzati, ma ,per gestire i numeri subnormal, il bit J deve essere trattato come zero: $Jbit = \begin{cases} 1 & if \exp \neq 0 \\ 0 & otherwise \end{cases}$
- ☐ Il J-bit della mantissa dell'addendo viene rilevato in parallelo con il primo livello della differenza dell'esponente in modo che non vi sia alcun *delay* aggiuntivo
- ☐ L'allineamento della mantissa consiste in quattro livelli di shifter e un MUX

[5] J. Sohn, D. K. Dean, E. Quintana, W. S. Wong, Enhanced Floating-Point Multiply-Add with Full Denormal Support

Subnormal (4)

- Si presuppone che entrambi i J-bit siano uno, quindi si sottrae una linea di correzione J-bit nell'array di moltiplicazione, che richiede un'altra linea di prodotto parziale e alcuni bit per il complemento a due. Se A è subnormal, viene sottratto M_B e se B è subnormal, viene sottratto M_Δ
- ☐ Il risultato del **Main Adder** deve essere normalizzato.

 Per accelerare la normalizzazione, la LZA viene eseguita in parallelo con il **Main Adder**
- ☐ L'underflow viene rilevato se il J-bit dopo la normalizzazione è zero, il che significa avere una mantissa risultante *subnormal*, e l'esponente è impostato su zero

[5] J. Sohn, D. K. Dean, E. Quintana, W. S. Wong, Enhanced Floating-Point Multiply-Add with Full Denormal Support

^{*}inv = upper allones & inc & truesub

Conclusioni

- ■Realizzazione di un architettura FMA floatingpoint
- ■Analisi risultati simulativi e implementativi
- ■Studio e analisi architettura FMA *subnormal*

Sviluppi futuri

- □Confronto con altri design FMA floating-point
- □Implementazione architettura *subnormal*
- □Progettazione di altri design per i *subnormal*