Wstęp do Machine Learning (IML)

Informatyka – SI, inżynierskie stacjonarne, 5 sem., 30 godz. wykładu, 30 godz. laboratorium

Dr inż. Paweł Syty, psyty@pjwstk.edu.pl

Politechnika Gdańska, Instytut Fizyki i Informatyki Stosowanej – adiunkt

- relatywistyczna fizyka atomowa; inżynieria biomedyczna; inżynieria oprogramowania; uczenie maszynowe

Polsko-Japońska Akademia Technik Komputerowych – współpraca (MLR, dawniej TIN)

Radiato.ai, TITAN, MIDAS – Product Owner, Al Scientific Expert, webmaster

AiBay (Zatoka Sztucznej Inteligencji) – członek założyciel, webmaster

NlightniN Production – Software Engineer & Machine Learning Expert w projekcie NlightVR (EEG + VR) oraz AI MySalad

Dawniej: **Fido Intelligence** (uczenie maszynowe w lingwistyce); **Currenda** (kontekstowe rozpoznawania tekstów, w szczególności pozwów sądowych); **Adar** (problem transportowy); i wiele innych...

Forma zaliczenia przedmiotu:

- ocena indywidualnego projektu głównego (10 p.)
- ocena zadań cząstkowych, realizowanych na laboratorium (40 p.)

Program zajęć

- Historia i definicja uczenia maszynowego. Modele maszynowe. Omówienie zastosowań uczenia maszynowego.
- Rola danych i ich jakości w uczeniu maszynowym. Przygotowywanie danych do procesu uczenia.
- Hiperparametry. Metryki. Badanie korelacji. Istotność statystyczna.
- Podstawy biologiczne sztucznych sieci neuronowych.
- Historia i podstawy sztucznych sieci neuronowych. Podstawowe architektury. Funkcje aktywacji.
- Metody uczenia sieci neuronowych. Funkcje błędu. Zdolność uogólniania sieci neuronowej.
- Wybór optymalnej architektury sieci neuronowej.
- Rozpoznawanie obrazów. Sieci splotowe. Wstęp do uczenia głębokiego.
- Metody regularyzacji. Sprawdzian krzyżowy.
- Sieci autoasocjacyjne. Transfer learning.
- Sieci rekurencyjne.
- Elementy wyjaśnialnej sztucznej inteligencji.
- Inne metody uczenia maszynowego: k-najbliższych sąsiadów, maszyna wektorów nośnych (SVM), drzewo decyzyjne, las losowy, klasyfikator bayesowski, logika rozmyta, systemy ekspertowe, algorytmy genetyczne, automaty komórkowe, liniowe metody mieszane, metody zespołowe.
- Uczenie nienadzorowane analiza skupień metodą centroidów (k-means). Analiza szeregów czasowych.
- Praktyczne zagadnienia uczenia maszynowego, np. uczenie na CPU vs GPU.
- Zastosowania rzeczywiste przykłady wykorzystania uczenia maszynowego.

Narzędzia:

• Interpreter języka Python 3.x, biblioteki TensorFlow, TensorBoard, tf-explain, sci-kit learn, OpenCV

Przykładowa literatura

Podstawowa

- Daniel T. Larose "Metody i modele eksploracji danych", PWN 2022
- Aurélien Géron, "Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow", Helion 2020
- Robert Johansson "Matematyczny Python. Obliczenia naukowe i analiza danych z użyciem NumPy, SciPy i Matplotlib", Helion 2021
- Sebastian Raschka, Vahid Mirjalili "Python. Machine learning i deep learning. Biblioteki scikit-learn i TensorFlow 2", Helion 2021
- Aileen Nielsen, "Szeregi czasowe. Praktyczna analiza i predykcja z wykorzystaniem statystyki i uczenia maszynowego", Helion 2020

Uzupełniająca

- Joel Grus, "Data science od podstaw. Analiza danych w Pythonie", Helion 2020
- Dokumentacja pakietów Keras i Tensorflow

Efekty kształcenia

- Student zna i rozumie podstawowe zastosowania wybranych narzędzi uczenia maszynowego
- Student wie, że jakość danych ma kluczowe znaczenie w przypadku uczenia maszynowego
- Student zna i rozumie metody przechowywania danych dla uczenia maszynowego
- Student potrafi wybrać odpowiednie narzędzie do rozwiązania problemu zaistniałego w przedsiębiorstwie, a wymagającego użycia uczenia maszynowego
- Student potrafi poprawnie przygotować dane i stworzyć na ich podstawie zbiory uczące, walidujące i testowe
- Student potrafi dobrać właściwe parametry wejściowe, by zoptymalizować działanie wybranych algorytmów.
- Student potrafi przeprowadzić analizę otrzymanych wyników
- Student jest gotów do ciągłego podnoszenia swoich kompetencji zawodowych, osobistych i społecznych oraz zna możliwości dokształcania się przez całe życie

Wstęp do ML

Wykład 1.

Historia i definicja uczenia
maszynowego. Omówienie
zastosowań uczenia
maszynowego. Rola danych i ich
jakości w uczeniu maszynowym.
Przygotowywanie danych do
procesu uczenia.

Uczenie maszynowe

Dziedzina nauki, wchodząca w skład sztucznej inteligencji.

Sztuczna inteligencja – definicja wg. Komisji Europejskiej

Sztuczna inteligencja odnosi się do systemów zaprojektowanych przez ludzi, które ze względu na założony cel działają w świecie fizycznym lub cyfrowym, postrzegając swoje środowisko, interpretując zgromadzone ustrukturyzowane lub nieustrukturyzowane dane, wnioskując na podstawie wiedzy uzyskanej z tych danych i decydują o najlepszych działaniach / akcjach możliwych do podjęcia w kierunku osiągnięcia tego celu, zgodnie z predefiniowanymi parametrami.

Uczenie maszynowe rozszerza tę definicję o **możliwość doskonalenia się sztucznego systemu** przy pomocy **zgromadzonego doświadczenia** (na podstawie dostępnych danych) i nabywania na tej podstawie **nowej wiedzy**.

Dziedzina interdyscyplinarna (głównie informatyka, robotyka, statystyka)

Arthur Samuel (1959; twórca programów szachowych, pionier SI): "Uczenie maszynowe to dziedzina nauki, która daje komputerom możliwość uczenia się, lecz bez ich bezpośredniego programowania"

Donald Michie (1991): "System uczący się wykorzystuje zewnętrzne dane empiryczne w celu tworzenia i aktualizacji podstaw dla udoskonalonego działania na podobnych danych w przyszłości oraz wyrażania tych podstaw w zrozumiałej i symbolicznej postaci"

Uwaga! Uczenie się "maszynowe" ma tu nieco inny kontekst, niż w pojęciu potocznym. Zadaniem procesu uczenia się systemu jest osiąganie rezultatów opartych na wiedzy cząstkowej, samodoskonalenie, tworzenie nowych pojęć, wnioskowanie indukcyjne

Kamienie milowe w rozwoju uczenia maszynowego

- programy do nauki szachów (Arthur Samuel, Stanford, USA, 1959)
- system ekspertowy Dendral (Stanford, USA, 1965) identyfikacja molekuł związków organicznych
- program AM Automated Mathematician (Douglas Lenat, Stanford, USA, 1977) algorytmy heurystyczne do poszukiwania/udoskonalania twierdzeń
- TD-Gammon (Gerald Tesauro, IBM, USA, 1991) program do gry w backgammona
- Deep Blue (IBM, USA, 1997) program szachowy, pierwszy system komputerowy, który wygrał z aktualnym mistrzem świata
- Watson (IBM, USA, 2011) system do gry w teleturnieju Jeopardy! (w Polsce Va banque)

Watson wygrał 77 141 \$, eksperci (najlepsi zawodnicy w historii Jeopardy!): Ken – 24 000\$, Brad – 21 600 \$

Reguły były niekorzystne dla maszyny, bo ludzie zgłaszają się słysząc pytanie natychmiast po jego zakończeniu, a maszyna ma opóźnienie zanim przeanalizuje pytanie i może się zgłosić

Poprawność odpowiedzi to ok. 95%

Watson działa na superkomputerze IBM Blue Gene/P, 15 TB RAM, 2 880 rdzeni procesorów, 80 Tflop

Baza danych: encyklopedie, słowniki, artykuły, bazy leksykalne, literaturę piękną. Użyto ok. 100 algorytmów do analizy tekstu

Watson zaliczył parę nietypowych wpadek, np. kategoria: "Also On Your Computer Keys", pytanie: "It's an abbreviation for Grand Prix auto racing", prawidłowa odpowiedź: "What is F1?". Watson jej nie udzielił

- Alphago (DeepMind Google, 2017) wygrana w GO
- ChatGPT (OpenAI, 2022) interaktywny model uniwersalnego zastosowania, w formie chatbota

Główne cele i zastosowania uczenia maszynowego

- Zdobywanie nowej wiedzy dzięki interakcji z otoczeniem
- Uogólnianie zdobytej wiedzy
- Formułowanie reguł decyzyjnych
- Tworzenie nowych pojęć
- Wykrywanie prawidłowości w danych
- Modyfikowanie, uogólnianie i precyzowanie danych
- Użytkowane dużych baz danych, w szczególności poszukiwanie i analiza zależności między danymi
- Analiza, badanie i opracowywanie złożonych problemów naukowych i technicznych
- Prowadzenie działań w zmiennych warunkach (robotyka, sterowanie produkcją)

BostonDynamics

Przykładowe zastosowania praktyczne

- Rozpoznawanie mowy
 - o rozpoznawanie mowy ludzkiej; automatyczne tłumaczenie; dyktowanie tekstów; interfejsy użytkownika sterowane głosem; automatyzacja głosem czynności domowych; interaktywne biura obsługi...
- Nawigacja i sterowanie
 - o kierowanie pojazdem / robotem; odnajdywanie drogi w nieznanym środowisku; automatyzacja produkcji...
- Analiza i klasyfikacja danych
 - o medycyna; rozpoznawanie pisma; aproksymacja danych; przewidywanie trendów; wykrywanie zależności; klasyfikacja obiektów; bankowość...

Wybrane metody uczenia maszynowego

- Wnioskowanie i uczenie z przykładów (proste wnioskowanie na podstawie posiadanych danych)
- Uczenie analityczne (uogólnianie na podstawie przykładów)
- Uczenie się zbioru reguł (np. klauzule Horna, reguły produkcji)
- Uczenie indukcyjne (empiryczne regularności -> hipotezy)
- Uczenie bayesowskie (wnioskowanie probabilistyczne)
- Uczenie przez wzmacnianie (kara / nagroda)

Inny podział metod

- Uczenie nadzorowane (ang. supervised)
 - Mamy dostęp do danych wejściowych jak i żądanych wyjściowych (zbiór treningowy)
- Uczenie nienadzorowane (ang. *unsupervised*)
 - o Mamy dostęp do danych wejściowych, system sam dokonuje strukturyzacji danych
- Uczenie ze wzmocnieniem (ang. reinforcement)
 - Mamy dostęp do danych wejściowych i informację o tym, czy wykonane działanie przyniosło korzyść czy też nie
- Metody leniwe (ang. lazy) i gorliwe (ang. eager)
 - Te pierwsze nie wymagają wstępnego treningu

Federated learning (Google, 2017): Wykorzystanie urządzeń mobilnych do procesu uczenia

Modele

Zastosowanie wybranej metody uczenia maszynowego prowadzi do stworzenia modelu (inaczej – hipotezy lub ich zestawu). Model służy do dalszej predykcji na kolejnych danych.

Najczęściej stosowane modele:

- Sztuczne sieci neuronowe (w tym jako wynik tzw. uczenia głębokiego)
- Klasyfikator bayesowski
- Drzewo decyzyjne
- Las losowy
- k-najbliższych sąsiadów (kNN)
- Maszyna wektorów nośnych
- Algorytmy genetyczne
- Logika rozmyta
- Systemy ekspertowe
- Automaty komórkowe
- Liniowe modele mieszane
- Modele zespołowe (ang. ensemble), w tym modele wzmacniane (ang. gradient boosting)

Dane i ich rola w uczeniu maszynowym

"If you put into the machine the wrong figures, will the right answer come out?" - Charles Babbage (1864)

"Garbage in, garbage out" – The United States Internal Revenue Service (1963)

"There are no clean datasets." - Josh Sullivan, Booz Allen Hamilton VP, in Fortune (2015)

Problemy z danymi

- Wiedza może być niepewna, niepełna, niedokładna
 - o niepewność: prawdziwość niektórych stwierdzeń nie jest pewna
 - o niepełność: niektóre prawdziwe stwierdzenia nie są znane, lecz nie można z tego powodu zakładać ich nieprawdziwości
 - o niedokładność: przynależność stwierdzenia do niektórych relacji nie jest znana dokładnie; dane mogą być sprzeczne
- Różne sposoby organizacji danych
 - Dane tekstowe

set_id,price,freight_length,load_date,unload_date,from_lat,from_lng,target_lat,target_lng

39,860.000000,717,"2014-03-03 20:00:00","2014-03-05 12:00:00",52.4658000,6.7931000,47.4875000,5.0634000

39,500.000000,396,"2014-03-05 08:00:00","2014-03-06 08:00:00",46.8856000,5.6597000,43.8768000,4.6303000

39,400.000000,496,"2014-03-06 16:00:00","2014-03-07 08:00:00",43.7867000,5.0046000,44.6000000,0.7167000

39,1100.000000,1327,"2014-03-07 07:00:00","2014-03-10 08:00:00",44.2354000,-0.9137000,45.9586000,11.4359000

39,2150.000000,1407,"2014-03-11 12:00:00","2014-03-13 12:00:00",45.4928000,10.8849000,48.1149000,2.1030000

Dane binarne (dźwięki, obrazy)

o Klauzule Horna, formuły w postaci standardowej Skolema

$$L_0 \vee \neg L_1 \vee \dots \vee \neg L_n$$

$$(\forall \dots)(\forall \dots)(\forall \dots) \dots (\forall \dots) \alpha.$$

$$(\forall x)(\forall v)(\neg P(x, h_1(x)) \vee P(h_2(x), b)) \wedge (\neg P(x, h_1(x)) \vee \neg R(v, b)) \wedge$$

$$\wedge (\neg Q(h_1(x), a) \vee P(h_2(x), b)) \wedge (\neg Q(h_1(x), a) \vee \neg R(v, b))$$

Reguły produkcji

IF Kultura bakteryjna rozwinęła się we krwi

i odczyn jest gramopozytywny

i bakterie wniknęły przez jelito

i żołądek lub miednica są miejscem infekcji

THEN Istnieją silne poszlaki, że klasą bakterii, które są za to odpowiedzialne są Enterobacteriacae.

Grafy wiedzy

• Różne formaty przechowywania danych

- o Pliki tekstowe ustrukturyzowane (CSV, JSON, XML, HTML) albo i nie...
- o Relacyjne (MySQL, MSSQL, PostgreSQL, Oracle...) i nierelacyjne bazy danych (MongoDB...)
- Arkusze kalkulacyjne (Excel i inne)
- o Pliki PDF
- Pliki HTML (Web scraping)
- o Obrazy skompresowane lub nie
- Muzyka skompresowana lub nie
- Tysiące innych formatów, otwartych / zamkniętych

Różne kodowanie znaków

- Unicode vs reszta świata
- Różne znaki końca wiersza
 - \n kontra \r\n

Typy danych

- o Liczby i daty/godziny w różnych formatach
- o Teksty sformatowane i niesformatowane; białe znaki
- Typy logiczne
- Zbiory i enumeratory
- Dane binarne

- Różny sposób dostępu do danych
 - o Plik
 - Interaktywny frontend do systemu
 - Strumień danych
 - O API
 - Systemy schyłkowe

Proces obróbki danych

- Analiza i zrozumienie problemu
- Zebranie i przechowywanie danych
- Czyszczenie danych
- Uczenie maszynowe
- Reprezentacja wyników i ich wizualizacja

Uwaga techniczna

Każdy etap należy odpowiednio dokumentować! Na przykład w pracy w zespole SCRUM-owym: tworzyć zadanie w tablicy sprintów (np. "Import pliku HTML z danymi giełdowymi") i opisywać wykonane w ramach zadania czynności (np. "W pliku wejściowym wystąpiły błędy formatowania, takie jak niezamknięte cudzysłowy i znaczniki HTML. Błędy te zostały poprawione za pomocą skryptu w Pythonie: correctHTML.py").

obrazy to jak zdjęć kolorowych na wejściu są osobno 3 kanały kolorów, czerwony niebieski i zielony a u nas mamy czarnobiałe zdjęcie ale moglbyśmy spróbować jako różne kanały dać różne fazy. Ale istnieje duże prawdopodobieństwo że to by dużo nie dało albo nawet przeszkodziło zwłaszcza że mamy mało danych więc dla takiej sieci 4x więcej informacji mógłby tylko utrudnić dopasowanie

Inny przykład dokumentacji zadania (modyfikacja tabeli w bazie danych):

(usunięte ch1, zmiana RawEEG na Electrode, Epoch zostaje z domyslnym NULL)

Więcej o czyszczeniu danych

• Wizualne sprawdzenie danych

timestamp	rejestracja	VehicleOrDeviceName	lat	Ion	licznik	ignition	speed	rpm	event	fuel	fuelpercentage	BatteryVoltage	Sterownik
1536867185		133129			0								pulson.133129
1536867185	XXX01ML	Kia XXX01ML	54.346984	18.635423	59208.6	false	0	0	28	2.57	5	12.59	albatross.59540
1536867185	XXX10ML	Kia XXX10ML	54.355079	18.65553	44766.8	false	0	0	12	3.758	7	12.94	albatross.59632
1536867185	XXX07ML	Kia XXX07ML	50.242721	19.128997	43118.3	false	0	0	32	3.366	6	11.94	albatross.59512
1536867185	XXX09ML	Kia XXX09ML	54.326324	18.321937	46733	false	0	0	3	4.203	8	12.62	albatross.78078
1536867185	XXX13ML	Kia XXX13ML	54.348262	18.671075	48846.1	false	0	0	3	0.408	1	12.65	albatross.59489
1536867185	XXX12ML	Kia XXX12ML	54.382152	18.28701	53559.2	false	0	0	3	1.394	3	12.81	albatross.78085
1536867185	XXX11ML	Kia XXX11ML	54.493053	18.438251	44072	false	0	0	3	0.355	1	12.94	albatross.59481
1536867185	XXX08ML	Kia XXX08ML	54.339691	17.889526	74831.6	false	0	0	3	2.125	4	12.81	albatross.78091
1536867185	XXX14ML	Kia XXX14ML	54.202232	16.180894	62530.3	false	0	0	3	2.38	4	12.62	albatross.78079
1536867185	XXX15ML	Kia XXX15ML	54.535095	17.741743	49293.9	false	0	0	28	0.61	1	13	albatross.59491
1536867185	XXX05ML	Partner XXX05ML	53.368419	20.407041	84346.2	false	0	0	3	132	220	12.84	albatross.78108
1536867185	XXX03ML	Partner XXX03ML	53.363834	20.426134	35788.8	false	0	0	3	127.059	212	12.75	albatross.78076
1536867185	XXX04ML	Boxer XXX04ML	54.321681	18.249071	50728	false	0	0	3	58.5	65	12.97	albatross.78080
1536867185	XXX06ML	Boxer XXX06ML	53.989288	20.411775	49789	false	0	0	3	86.4	96	12.62	albatross.78086
1536867185	XXX27MP	Kia XXX27MP	54.258892	18.631664	61599	false	0	0	3	0	0	12.71	albatross.78103
1536867185	XXX63MP	Kia XXX63MP	52.868949	20.606254	62320.4	false	0	0	32	1.77	3	12.84	albatross.59587
1536867185	XXX67MP	Kia XXX67MP	54.263526	18.656728	66361.3	false	0	0	3	3.387	6	12.68	albatross.78092
1536867185	XXX65MP	Kia XXX65MP	52.412635	16.989149	107577.8	false	0	0	28	1.68	3	12.84	albatross.78074
1536867185	XXX70MP	Kia XXX70MP	54.298584	18.61638	48915.6	false	0	0	32	0.816	2	12.71	albatross.59506
1536867185	XXX72MP	Kia XXX72MP	50.057506	22.134044	95296.8	false	0	0	3	3.673	7	12.68	albatross.59478
1536867185	XXX71MP	Kia XXX71MP	50.081901	20.000398	68362.1	false	0	0	3	0	0	12.91	albatross.59510
1536867185	XXX75MP	Crafter XXX75MP	54.419834	18.252807	29675.3	false	0	0	3	0	0	12.68	albatross.78088
1536867185	XXX74MP	Crafter XXX74MP	52.731365	19.69662	74437.8	false	0	0	28	-375	-500	13.2	albatross.78077
1536867185	XXX79MP	Crafter XXX79MP	52.291603	21.054407	92826.2	false	0	0	3	-362.5	-483	12.88	albatross.78087
1536867185	XXX64MP	Crafter XXX64MP	51.461696	19.214952	78263.3	false	0	0	3	-487.5	-650	12.91	albatross.78371
1536867185	XXX78MP	Crafter XXX78MP	51.853984	17.936836	74142.6	false	0	0	3	-225	-300	12.88	albatross.78357
1536867185	XXX76MP	Crafter XXX76MP	53.344074	18.193109	84148.2	false	0	0	3	-50	-67	12.71	albatross.78366
1536867185	XXX47MP	Kia XXX47MP	50.112693	18.540325	65651.4	false	0	0	32	3.456	7	12.65	albatross.59504
1536867185	XXX45MP	Kia XXX45MP	51.418785	21.963575	91425.9	false	0	0	3	1.394	3	13.07	albatross.78083

- Zastosowanie metod statystycznych
 - o Policzenie i analiza średnich, median, odchyleń standardowych, percentyli i na tej podstawie identyfikacja

anomalii w danych

- Tymczasowe posortowanie danych
- Zliczenie częstości występowania wybranych danych
- Analiza graficzna danych (np. histogramy, mapy)

429496729.5

AKRES: 429496729.5

RCENTYL 90%: 36.6

199080.4651410694

ANCJA: 85455965440071.64

STANDARDOWE: 9244239.58149461

- Zignorowanie, uzupełnienie lub usunięcie błędnych danych?
 - O Czasem błędne dane można zignorować, jeżeli oczywistym jest że nie wpłyną na wynik uczenia
 - Jeżeli błędnych danych jest mało (<5%), zwykle można je usunąć bez szkody dla procesu uczenia
 - O Błędne dane można poprawić wykorzystując np. medianę, średnią z pozostałych danych, czasem wstawić zero
 - NULL vs EMPTY vs 0

• Czasem dane wymagają wstępnej obróbki przed przystąpieniem do uczenia maszynowego

- W danych mogą występować zakłócenia, związane z daną dziedziną bądź środowiskiem pomiarowym
 - o okresowe
 - o przypadkowe

Dane w takim przypadku należy odfiltrować przy wykorzystaniu metod matematycznych / statystycznych

Do zapamiętania: bardzo rzadko dane są wystarczającej jakości, żeby dało się je wykorzystać bezpośredniego; zwykle należy je oczyścić i wstępnie przetworzyć.

Python

- Zaprojektowany w 1991 roku jako język ogólnego przeznaczenia, pierwsza stabilna wersja została wydana w 1994 r., wersja (gałąź)
 2 w r. 2000 a wersja (gałąź) 3 w 2008.
- Interpretowany, obiektowy.
- Stopniowo podbił społeczność naukową i wyrósł na dojrzały ekosystem specjalistycznych pakietów do przetwarzania i analizy danych.
- Pozwala na eksperymenty i szybką, łatwą implementację teorii i szybkie wdrożenia aplikacji naukowych.
- Inne zastosowania: strony WWW (framework Django, CMS Plone), systemy automatyki domowej (Home Assistant), mikrokontrolery (MicroPython), skrypty do administracji systemami komputerowymi i wiele innych.

Zalety

- Jest bardzo uniwersalny. Można programować w różnych stylach (obiektowo lub proceduralnie), niezależnie od poziomu umiejętności.
- Jest wieloplatformowy działa płynnie na systemach operacyjnych Windows, Linux i Mac.
- Chociaż interpretowany, jest niewątpliwie szybki w porównaniu do innych języków analizy danych takich jak R czy MATLAB (choć oczywiście sporo wolniejszy od C czy Javy). Wersja 3.11 z 2022 r. stanowi duży skok wydajnościowy.
- Są też szybkie implementacje, porównywalne z językami kompilowanymi np. darmowy Intel Python.
- Można też pisać w języku Cython, który jest nadzbiorem Pythona i zapewnia wydajność jak w języku C.
- Może pracować na dużych danych umieszczonych w pamięci, ze względu na jej minimalne zużycie i doskonałe nią zarządzanie. Posiada efektywny odśmiecacz (ang. *garbage collector*).

- Jest dość prosty do nauczenia i używania.
- Bez problemu przetwarza bardzo duże liczby oraz liczby w systemie dwójkowym, ósemkowym, szesnastkowym.
- Łatwo przetwarza nowoczesne języki formalne do reprezentowania danych (np. YAML).
- Ma bogatą bibliotekę standardową i wiele dodatkowych modułów, z różnych dziedzin nauki i techniki.
- Istnieją specjalizowane dystrybucje (czyli sam język + wygodny edytor + gotowe do wykorzystania biblioteki) do analizy i przetwarzania danych, np. Anaconda.

Wady

- Dwie gałęzie, 2.x, 3.x, niekompatybilne ze sobą (gałąź 2.x nie jest już wspierana).
- Częsta niekompatybilność pakietów między sobą.
- Oznaczanie bloków programu za pomocą wcięć może być uciążliwe przy większych programach.
- Niekompatybilność tabulatorów i spacji przy wcięciach.
- Czasem (ale mimo wszystko wyjątkowo) niespójna składnia.

Instalacja, zarządzanie

- Podstawowa instalacja: https://www.python.org/ albo kompletna platforma Anaconda: https://www.anaconda.com/
- Program zarządzający: pip (w Anacondzie: conda), np. python -m pip install tensorflow
- Edytory / IDE : Idle (domyślny), Spyder (https://www.spyder-ide.org/), PyCharm, Jupyter (https://jupyter.org/)