Linear discriminant functions

The Perceptron Algorithm
Least squares Algorithm
Logistic Regression

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 1

Introduction

■ In the present chapter :

- We do not assume anything about the underlying probabilities.
- But we suppose that the classes are <u>linearly separable</u>
- We consider supervised learning, i.e. we have in hand a set of labeled samples, $\mathcal{D} = \{\mathbf{x}_k, t_k\}_{k=1...N}$

Following [Guttierez]

<u>Directly</u> estimate the parameters of the discriminant function?

- Once again, the problem is set up as an optimization problem
 - ✓ Numerous criteria were proposed, several algorithms exist
- We will study three main approaches:
 - ✓ the Perceptron, least squares and logistic regression algorithms.
- We will first consider the 2-class case (dichotomy), then we will study the generalization to C classes.

Summary of previous episodes

- In the previous chapters, we have seen how we can
 - Estimate parametric or non-parametric probability density functions in a supervised framework;
 - Select or extract a subset of pertinent features for classification;
 - · Perform an unsupervised classification, i.e. from unlabeled data.
- Most of the classification methods we studied so far where introduced in the Bayesian framework,
 - i.e. based on the knowledge of underlying probabilities.
- What can be done were these probabilities are too complex or/and difficult to estimate?
- Is it possible to directly set up decision surfaces by doing some hypotheses on their shape (linear or not)?

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

2

A hierarchy of methods

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Linear discriminant: classification rule (C=2)

Linear discriminants implement a classification rule of the following kind

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 \overset{\omega_1}{\underset{\sim}{<}} 0 \quad \text{or} \quad \mathbf{a}^T \mathbf{y} \overset{\omega_1}{\underset{\sim}{<}} 0 \quad \text{with:} \quad \mathbf{y} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

- In this expression, **W** is called the *weight vector* and W_0 is the *bias* or threshold weight. These are the parameters we have to optimize
- We may gather them in a vector, **a** and consider **v**, an *augmented* feature
- NB: we might also consider $y = [1, \phi(\mathbf{x})]^T$ and apply the following methodologies in a transformed space... We will go back to this later on!

Machine learning and Pattern Recognition

Pierre CHARBONNIEF 2024-2025

Graphical representation

[Duda, p. 217]

- The separating hyper-plane *H* is perpendicular to w
- Take x_0 on H

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = \mathbf{w}^T (\mathbf{x} - \mathbf{x}_0) + \underbrace{\mathbf{w}^T \mathbf{x}_0 + w_0}_{0, \, since \, \mathbf{x}_0 \in H} = \mathbf{w}^T (\mathbf{x} - \mathbf{x}_0)$$

- → H splits feature space in two decision regions. R_1 for ω_1 and R_2 for ω_2
 - Since g is positive for $x \in R_1$, the vector w points towards R_1 : x lies on the positive side of H.

Graphical representation

[Duda, p. 217]

• If x_1 and x_2 both lie on the separating hyper-plane, g(x) = 0, then:

$$\mathbf{w}^{T}\mathbf{x}_{1} + w_{0} = 0 = \mathbf{w}^{T}\mathbf{x}_{2} + w_{0}$$
 $\mathbf{w}^{T}(\mathbf{x}_{1} - \mathbf{x}_{2}) = 0$

→ The separating hyper-plane *H* is perpendicular to w

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Graphical representation

[Duda, p. 217]

- The separating hyper-plane H is perpendicular to w
- H splits feature space in two decision regions. R_1 for ω_1 and R_2 for ω_2 , w points towards R1
- Now, consider the orthogonal projection x_n of x on H
 - · We may write

$$\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

where r is the signed distance to H. We have that

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0 = \mathbf{w}^T \left(\mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + \mathbf{w}_0$$

$$g(\mathbf{x}) = \underbrace{\mathbf{w}^T \mathbf{x}_p + w_0}_{0, \text{ since } \mathbf{x}_n \in H} + r \frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|} = r \|\mathbf{w}\|$$

Machine learning and Pattern Recognition Pierre CHARBONNIER

2024-2025

• Discriminant function \propto signed distance r from x to H

Graphical representation

[Duda, p. 217]

- The separating hyper-plane H is perpendicular to w
- H splits feature space in two decision regions. R_1 for ω_1 and R_2 for ω_2 , w points towards R1
- The discriminant function measures the signed distance r from x to H

$$r = \frac{g(\mathbf{x})}{\|\mathbf{w}\|}$$

■ The position of *H* is determined by the threshold (or bias) w_0 .

$$d = \frac{w_0}{\|\mathbf{w}\|}$$

- $w_0 > 0$ if the origin is on the positive side of H.
- Classification according to sign(g(x))
- Learning : estimate w and w_0

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Solution region

- In the space of weights: $\mathbf{a}^T \mathbf{v}_{\nu} = 0$
 - Every training sample y_k defines a hyper-plane passing through the origin and orthogonal to y_k .
 - · The solution lies on the positive side of all hyper-planes for $\mathbf{y}_k \in \omega_1$ and on the negative side for $y_k \in \omega_2$: their intersection defines a region in which any vector is solution.
 - · The boundaries of the solution region depend on the closest samples to the separating hyperplane

→ The solution may not be unique

Linear discriminant: learning • Estimate direction, w and bias, w_0

- → Design a criterion and optimize it

- Some existing criteria
 - Fisher LDA (already studied)
 - Perceptron (related to Neural Nets)
 - Least Squares
 - · Logistic regression
 - SVM (see chapter later)

- Optimization
 - · Most of the time, iterative and deterministic

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

« Normalization »

- « Normalization »:
 - $\begin{cases} \mathbf{a}^{\mathsf{T}} \mathbf{y}_k > 0 \text{ and } \mathbf{x}_k \in \omega_1 \\ \mathbf{a}^{\mathsf{T}} \mathbf{y}_k < 0 \text{ and } \mathbf{x}_k \in \omega_2 \end{cases}$ · Correct classification iff
 - Simplification: replace $\mathbf{y}_k \in \omega_2$ by its opposite.
 - The problem is then to find **a** such that:

NB: Normalization amounts to multiplying each (augmented) sample by its label t_k , provided that $t_k \in \{-1,1\}$

$$t_k(\mathbf{w}^T\mathbf{x}_k + w_0) > 0$$

$$t_k(\mathbf{a}^T\mathbf{y}_k) > 0$$

Following [Duda]

The « Perceptron » criterion

- To estimate a, we first have to define an objective function
 - · It penalize solutions that misclassify data
 - Let us denote the set of misclassified samples by \mathcal{Y}
 - The Perceptron criterion is (proportional to) the sum of their absolute distance to the decision boundary:

$$J_p(\mathbf{a}) = \sum_{\mathbf{y} \in \mathcal{Y}} -t(\mathbf{a}^T \mathbf{y})$$

- *I*, is non-negative
- I_n is zero iff $\mathcal{Y} = \{\emptyset\}$
- *I*_n is decreasing and piecewise linear (discontinuities correspond to points where the number of misclassified samples changes)

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

The Perceptron algorithm

- Also called « batch » Perceptron because all the samples are processed at the same time:
 - Initialize a and choose δ
 - - ✓ Classify samples according to $t(\mathbf{a}^T y) > 0$ and detect errors $\Rightarrow \mathcal{Y}$
 - √ Form correction term and update a
 - Until convergence
- Sequential algorithm (variant where samples are processed one by one) with fixed increment
 - Initialize a and choose δ
 - Cycle through the list of y's
 - ✓ If y is misclassified then $a \leftarrow a + \delta ty$
 - ✓ Otherwise leave a unchanged
 - · Until all samples are correctly classified

The Perceptron algorithm

■ J_n is "well suited" to gradient descent

$$\mathbf{a} \leftarrow \mathbf{a} - \delta \frac{\partial J_p(\mathbf{a})}{\partial \mathbf{a}}$$

where δ may be constant, or not

• Differentiating J_n is straightforward

$$\frac{\partial J_p(\mathbf{a})}{\partial \mathbf{a}} = \sum_{\mathbf{v} \in \mathcal{V}} -t\mathbf{v}$$

- Note: the gradient is not defined at discontinuities of I_n (hence the ".")
- Iteration

$$\mathbf{a} \leftarrow \mathbf{a} + \delta \sum_{\mathbf{y} \in \mathcal{Y}} t\mathbf{y}$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Graphical interpretation (4 samples)

Machine learning and Pattern Recognition 2024-2025

Graphical interpretation (4 samples)

Remarks

The Perceptron is not an ordinary gradient descent algorithm

- The gradient is discontinuous. A special convergence proof is required.
- If classes are linearly separable, the Perceptron algorithm converges in a finite number of iterations else, it may not converge

■ The Perceptron generated many variants

- Variable increment, by decreasing δ ,
 - ✓ Helps convergence in the non-lineraly separable case
- · Fractional correction
 - \checkmark If y is misclassified, fix the step δ according to the distance between a and the separating plane:

$$\mathbf{a} \leftarrow \mathbf{a} + \delta t \mathbf{y} = \mathbf{a} + \lambda \frac{(\mathbf{a}^T \mathbf{y})}{\|\mathbf{y}\|^2} t \mathbf{y} = \mathbf{a} + \lambda . r. \frac{\mathbf{y}}{\|\mathbf{y}\|}$$

✓ Taking $\lambda > 1$ ensures that a moves beyond the separation plane, to its positive side.

The Perceptron in 5 lines of code, $t_k \in \{-1,1\}$

- 1. Initialize parameter vector: $\mathbf{a} = 0$
- **2.** For k = 1 ... N
- $l_k = sign(\mathbf{a}^T \mathbf{y}_k)$
- 4. if $l_k \neq t_k$ then
- $\mathbf{a} = \mathbf{a} + \boldsymbol{\delta} t_k \mathbf{y}_k$

Repeat:

- · Until convergence
- · For a number of epochs
- Loop invariant: a is a weighted sum of training samples
 - So, a = ∑_k α_k t_k y_k, where α_k counts the number of times y_k was misclassified from the beginning of the algorithm (note that t_k y_k is the *normalized* vector) and the discriminant is a^Ty = ∑_k α_k t_ky_k^Ty = ∑_k α'_k y_k^Ty, where α'_k = α_kt_k
 - This defines the dual form of the Perceptron
- The algorithm may be *kernelized* to deal with nonlinear classif.
 - See later (chapter on SVM's) and Computer Exercise

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 18

The Least Squares (LS) criterion

- The Perceptron only uses misclassified data.
- The LS criterion uses all samples.
- Difference between approaches
 - The Perceptron tries making all scalar products $t_k(\mathbf{a}^T\mathbf{y}_k)$ positive
 - LS try to have $t_k(\mathbf{a}^T\mathbf{y}_k) = b_k$, $\forall k$, where the b_k 's are arbitrary positive constants.
- This leads to solving a set of linear equations

$$Ya = b$$

- Each line of Y contains one (augmented and normalized) sample, $t_k \mathbf{y}_k$.
- Y is of size N x (d+1).

Direct Least Squares solution

- The direct solution a=Y-1b is generally not available
 - There are more samples than the dimension of feature space.
 - The system is over-determined
- One shall rather minimize the error norm: J_{IS}=|| Y a b ||²
- As usual, we have to cancel the derivative of J_{LS}

$$\frac{\partial J_{LS}}{\partial a} = 2Y^{T}(Ya - b) = 0 \longrightarrow Y^{T}Ya = Y^{T}b$$

■ YTY is square-sized and most often non-singular, hence

$$a = (Y^T Y)^{-1} Y^T b = Y^{\dagger} b$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

2

Iterative Least Squares solution

- One can also minimize J_{LS} iteratively
 - This avoids singularity problems (stopping iterations = regularization)
 - This avoids inverting large matrices
- \blacksquare The gradient descent iteration on J_{LS} is

$$a^{k+1} = a^k + \delta^k Y^T (b - Ya)$$

- This sequence converges if δ_k decreases as 1/k. (regularization!)
- To save memory, samples may be considered in a sequential fashion

$$\mathbf{a} = \mathbf{a} + \delta^{i} (\mathbf{b}_{i} - \mathbf{a}^{\mathsf{T}} \mathbf{y}_{i}) \mathbf{y}_{i}$$

■ This is called LMS or Widrow-Hoff iteration

Regularized Least Squares solution

- Note that if Y is non singular, the pseudo-inverse Y[†] coincides with the usual inverse.
- In some cases, Y^TY may become almost singular.
 - One must then regularize the solution
 - e.g. ridge regression [Guttierez]

$$a = \left((1 - \varepsilon) Y^T Y + \varepsilon \frac{tr(Y^T Y)}{d} J \right)^{-1} Y^T b$$

• ϵ is a regularization parameter

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

2

Remarks

- Relationship with Fisher's linear discriminant
 - Using normalization: $y \leftarrow [-y], \forall y \in \omega_2$

- $Y = \begin{bmatrix} 1_1 & X_1 \\ -1_2 & -X_2 \end{bmatrix}$
- If n_1 samples belong to ω_1 and the other $n_2,$ to ω_2
- For a particular choice of b, the LS solution is Fisher's linear discriminant (see [Duda, pp.242-243], [Bishop p.190])

$$a = \begin{bmatrix} w_0 \\ w \end{bmatrix} \qquad b = \begin{bmatrix} \frac{n}{n_1} \mathbf{1}_1 \\ \frac{n}{n_2} \mathbf{1}_2 \end{bmatrix}$$

- Bayesian interpretation
 - Recall that the MAP Bayesian discriminant function is $g_0(x)=P(\omega_1|x)-P(\omega_2|x)$
 - The mean quadratic error due to the approximation of g_0 by a^Ty is

$$\varepsilon^2 = \int (\mathbf{a}^\mathsf{T} \mathbf{y} - \mathbf{g}_0(\mathbf{x}))^2 \, p(\mathbf{x}) \, d\mathbf{x}$$

 It may be shown that minimizing J_{LS} is equivalent to minimizing ε² when the number of samples becomes arbitrarily large [Duda, Webb].

Conclusion

- Contrary to the Perceptron, LS always lead to a solution, even if the classes are not separable...
- However, there is no warranty that the solution corresponds to a separating hyper-plane, even in the separable case.

- It depends on the choice of b...
- If the classes are separable, there should exist a* and b* such that $Ya^* = b^* > 0$ (i.e. with a certain *margin*)
 - Note: this is in the normalized framework
 - Implementation: Ho-Kashyap procedure

Machine learning and Pattern Recognition Pierre CHARBONNIEF 2024-2025

Logistic regression, NB: $t_k \in \{0,1\}$

- Despite its name, classification algorithm
 - But learning = regression
- Intuition: Bayesian decision
 - The farthest x from H, the closest: $P(\omega_1|\mathbf{x})$ to 1, so $\mathbf{x} \to \omega_1$ **or** $P(\omega_1|\mathbf{x})$ to 0, so $\mathbf{x} \to \omega_2$
 - If x lies on H, $P(\omega_1|\mathbf{x}) = P(\omega_2|\mathbf{x}) = \frac{1}{2}$
- $\rightarrow P(\omega_1|\mathbf{x}) = \sigma$, function of signed distance to H: $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = \mathbf{a}^T \mathbf{y}$

S-shaped function = logistic sigmoid

Ho-Kashyap Procedure (1965)

- This time, we have 2 unknowns:
 - The weight vector, which defines the separating hyper-plane, a*
 - The vector b*, which defines the separation margin and must be positive.
- Algorithm: choose b*0 positive
 - Repeat
 - ✓ Find the values of b* using gradient descent with positivity constraint

$$b^{*k+1} = b^{*k} - \delta \frac{e - |e|}{2} \qquad e = b$$

✓ Estimate the weight vector (ML solution)

$$a^{*k+1} = Y^{\dagger}b^{*k+1}$$

- until (b* does not evolve) or (maximal number of iterations reached)
- If large residuals |e/ remain, we know that the samples are not separable!

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Logistic regression: decision rule

$$P(\omega_1|x) = \sigma(g) = \frac{1}{1 + \exp(-g)}$$

$$P(\omega_2|x) = 1 - \sigma(g) = \frac{\exp(-g)}{1 + \exp(-g)}$$

Corresponds to usual Bayesian decision (MAP) rule

$$\frac{P(\omega_{1}|x)}{P(\omega_{2}|x)} > 1$$

$$\omega_{2}$$

Logistic regression: learning

- Estimate $\mathbf{a} = (\mathbf{w}, w_0)^T$ from a set of labeled data $\{\mathbf{x}_k, t_k\}_{k=1...N}$
 - We suppose that $t_k \in \{0,1\}$. Recall that $\mathbf{y}_k = (1, \mathbf{x}_k)^T$.
- Maximum Likelihood estimation
 - Each t_k is a Bernoulli variable of parameter $P(\omega_1|\mathbf{x}_k) = \sigma(g(\mathbf{x}_k)) \stackrel{\text{def}}{=} \sigma_k$
 - · The likelihood is

$$p(\mathbf{t}|\mathbf{a}) = \prod_{k=1}^{k=N} \sigma_k^{t_k} (1 - \sigma_k)^{1 - t_k}$$

• The negative log-likelihood is the *cross-entropy* error function

$$E(\mathbf{a}) = -ln[p(\mathbf{t}|\mathbf{a})] = -\sum_{k=1}^{k=N} \{t_k ln(\sigma_k) + (1 - t_k) ln(1 - \sigma_k)\}$$

· Whose gradient is

$$\nabla_{a}E = \sum_{k=1}^{k=N} (\sigma_k - t_k) \mathbf{y}_k$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

2

Logistic regression: learning

Logistic Regression is nonlinear

- No closed-form solution (contrary to LS)
- ...but simple expression for the gradient

Iterative descent algorithms

- Gradient descent: $a \leftarrow a \delta \nabla_{\!a} E$
 - ✓ e.g. sequential

$$\mathbf{a} \leftarrow \mathbf{a} + \delta (t_k - \sigma(\mathbf{a}^T \mathbf{y}_k)) \mathbf{y}_k$$

- ✓ Compare to Widrow-Hoff iteration !
- Newton-Raphson (a \leftarrow a $-H^{-1}\nabla_a E$), IRLS

■ Remark (cf. [Bishop, PRML])

• More robust than LS (see figures & Computer Exercise)

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 30

Generalization to C classes

- Attempting to construct a C class discriminant from a set of two-class discriminants may lead to ambiguities
 - One-versus-the-rest : C 1 hyper-planes
 - One-versus-one : C(C-1)/2 hyper-planes (+ majority vote)

- Solution: use the following approach
 - Evaluate C discriminant functions, $g_i(\mathbf{x}) = \mathbf{a}_i^T \mathbf{y}$ and choose the maximum
 - Decision regions are singly connected and convex

Generalization of the Perceptron to C classes

- Generalization of the fixed increment algorithm
 - Choose arbitrary initial values for a_i
 - · Consider each training sample in turn
 - If the sample y^k belongs to ω_i while the maximal discriminant function is g_j , then both vectors \mathbf{a}_i and \mathbf{a}_i are updated

$$\begin{cases} \mathbf{a}_i \leftarrow \mathbf{a}_i + \boldsymbol{\delta}.\,\mathbf{y}^{\mathrm{R}} \\ \mathbf{a}_j \leftarrow \mathbf{a}_j - \boldsymbol{\delta}.\,\mathbf{y}^{\mathrm{R}} \end{cases}$$

In other words:

2024-2025

- The weight of the true (desired) category is increased
- The weight of the wrong category is decreased
- · Other weights do not change
- Convergence results (convergence in a finite number of iterations) generalize: Kesler's construction

Generalization of LS to C classes [Duda pp. 268-269]

- A is the $(d+1) \times C$ matrix of $A = [a_1 \quad a_2 \quad \cdots \quad a_C]$ weighting coefficients (one vector a_1 per class)
- Y is a $N \times (d+1)$ matrix, where Y_i gathers all augmented samples from class ω_i . $Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_C \end{bmatrix}$
- T is a $N \times C$ matrix, whose columns T_i are zero, except the i-th one, which is 1 (1-of-C or one-hot encoding) $T = \begin{bmatrix} T_1 \\ T_2 \\ \vdots \\ T_{C-1} \end{bmatrix}$
- LS minimize $\operatorname{tr}\{(YA-T)^T(YA-T)\}$, leading to $\widehat{A}=Y^{\dagger}T$

Machine learning and Pattern Recognition
Pierre CHARBONNIER
2024-2025

3

Summary

- Finding a separating hyper-plane (learning)
 - Is ill-posed (many possible solutions ∈ solution region), is solved by optimizing a criterion
- The Perceptron algorithm
 - Penalizes misclassified samples
 - Always finds a separating hyper-plane when the classes are separable
 - May not converge if the classes are not separable
- Least-squares
 - Minimize the quadratic error between g(x) and a margin, b
 - Always converge
 - Find a solution which may not be a separating boundary, even if the samples are separable! The Ho-Kashyap procedure is a solution to this problem
- Logistic regression
 - Relates linear discriminants to Bayesian decision
 - Maximum likelihood estimation, descent algorithms
 - Is more robust to outliers
- These algorithms generalize to C classes
- Extension to nonlinear discrimination: consider $\phi(x)$ instead of x

Generalization of logistic regression to C classes

- Use Bayes theorem: $P(\omega_k | \mathbf{x}) = \frac{p(\mathbf{x} | \omega_k) P(\omega_k)}{\sum_j p(\mathbf{x} | \omega_j) P(\omega_j)}$ and consider $g_k(\mathbf{x}) = \ln p(\mathbf{x} | \omega_k) P(\omega_k)$
- The posterior probabilities are given by the normalized exponential of $g_k(\mathbf{x}) = \mathbf{a}_k^T \mathbf{y}$, a.k.a. the softmax function

$$P(\omega_k | \mathbf{x}) = \frac{\exp(g_k(\mathbf{x}))}{\sum_j \exp(g_j(\mathbf{x}))}$$

- When $g_k(\mathbf{x}) \gg g_j(\mathbf{x}), \forall j \neq k$, then $P(\omega_k | \mathbf{x}) \cong 1$ and $P(\omega_i | \mathbf{x}) \cong 0 \ \forall j \neq k$
- When C = 2, $P(\omega_1 | \mathbf{x}) = 1/(1 + \exp{-\mathbf{a}^T \mathbf{y}})$ with $\mathbf{a} = \mathbf{a}_1 \mathbf{a}_0$ (check it!)
- Learning $E(\mathbf{a}) = -ln[p(\mathbf{T}|\mathbf{a})] = -\sum_{n=1}^{n=N} \sum_{k=1}^{k=C} t_{nk} ln(P(\omega_k|\mathbf{x_n}))$
 - · ML estimation: minimize cross-entropy by iterative (descent) algorithms

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 34

Kesler's construction ([Duda, p.266])

• Correct classification ($y \in \omega_i$) iff

$$(\mathbf{a}_{i}^{\mathrm{T}}\mathbf{y} - \mathbf{a}_{i}^{\mathrm{T}}\mathbf{y}) > 0 \Leftrightarrow \boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\eta}_{ij} > 0, \quad \forall j \neq i, j \in [1 \dots C]$$

provided a C(D+1) weight vector α and, for each sample y, (C-1) extended observation vectors η_{ij}

$$\boldsymbol{\alpha} = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_C \end{bmatrix}$$

Perceptron (fixed increment) rule

$$\alpha \leftarrow \alpha + \eta_{ij} \Leftrightarrow \begin{cases} \mathbf{a}_i \leftarrow \mathbf{a}_i + \delta \cdot \mathbf{y} \\ \mathbf{a}_i \leftarrow \mathbf{a}_i - \delta \cdot \mathbf{y} \end{cases}$$

Neural approaches

Multilayer Perceptron

Back-Propagation Algorithm

Radial Basis Functions

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

A hierarchy of methods

Summary of previous episodes

- In the first chapters, we studied
 - The Bayesian classification framework,
 - · Dimensionality reduction and learning methods,
- ...in the previous chapter, we saw how it is possible to design classifiers with linear decision boundaries, or linear classifiers.
- In the next two chapters, we will focus on ways to generalize these techniques to nonlinear discrimination.
- Neural approaches represent the first one...

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

2

The Perceptron: a linear neuron model

- In the previous chapter,
 - We have seen how to learn a linear machine by minimizing a criterion: Least Squares, Logistic or the Perceptron
 - Perceptron is the name of one of the earliest model of artificial neural networks that were proposed in the literature (Rosenblatt, 1957).
- Once the parameters of the Perceptron, a=(w,w₀)^T have been learned, the classification is performed using:

$$g(x) = \mathbf{w}^{\mathsf{T}} x + \mathbf{w}_0 \overset{\boldsymbol{\omega}_1}{<} 0$$

 It is possible to devise an automata that computes g(x) and thresholds the result, providing a binary answer: this is the artificial neuron or Perceptron.

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Graphical representation

This machine may be represented in the following way

- The neuron computes the weighted sum of its entries (synapses), then applies an <u>activation function</u> to it
 - The weights are called synaptic weights or, simply, synapses
 - w₀ is the threshold (or bias)
 - The step function is only one of many possible choices for the activation function. Moreover, the outputs (class labels) are sometimes 0 and 1.

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

2024-2025

5

Other representations

Other representations may be found in the literature

- The linear classifier may also be represented as a <u>feed-forward</u> network with 2 layers:
 - The input layer: linear-response neurons (they only copy their entries)
 - The output layer has only one neuron in the 2-class case.

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

6

Linear discriminants as feed-forward Neural Net

Linear discriminants as feed-forward Neural Net

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Historical notes (1)

following [Guttierez]

Earliest works trace back to the 1940's

- McCulloch and Pitts (a neuro-anatomist and a mathematician) explore artificial neural networks with binary activation functions (1943)
- Hebb introduces learning: the efficiency of a synapse between two neurons is increased by repeated activations of one neuron

Rosenblatt (1957)

Introduces the 2-layer Perceptron, its learning algorithm and convergence proof

by the other across the synapse (1949)

■ Widrow and Hoff (1959)

- PERCEPTRON—Mark I perceptron, balls by the Cornell Aeronautic La sention, Bulfalo, N.Y., can be 'trained' to recognize automatically the lettered, of the alphabet, Amergineer is admiring the photo cell "get" in recognize
- Propose the ADALINE (ADAptive Linear Neuron), similar to the Perceptron but with a linear activation function, as well as the LS learning algorithm.
- The limitations of the Perceptron (linearity) were pointed out by (Minsky and Papert 1969): the famous "XOR case"...

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Neural linear classifier

Neural implementation

The case of the OR function is straightforward,

 X_2 $A \qquad A$

A linear classifier for the AND function

■ Truth table of the AND function

x1	x2	x1 and x2	Class
0	0	0	В
0	1	0	В
1	0	0	В
1	1	1	Α

Graphical representation

Coefficients

$$w_1 = 1$$

$$w_2 = 1$$

$$w_3 = -3/2$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

10

Example of the XOR function

Truth table of the XOR function:

x1	x2	x1 XOR x2	Class
0	0	0	В
0	1	1	Α
1	0	1	Α
1	1	0	В

Linear discrimination using a single line is not achievable

- · But we can make it using 2 lines...
- This amounts to decomposing the problem into 2 successive phases: compute y1 and y2, then perform classification using these new features
- Note: XOR = (OR) AND NOT (AND)

x1	x2	y1 = x1 OR x2	y2 = x1 AND x2	y = y1 AND NOT y2	Class
0	0	0	0	0	В
0	1	1	0	1	Α
1	0	1	0	1	Α
1	1	1	1	0	В

The XOR case (continued)

The first phase involves two discriminant functions: g₁(x) and g₂(x), with respective coefficients

$$w_1 = 1$$
, $w_2 = 1$, $w_0 = -3/2$
 $w_1 = 1$, $w_2 = 1$, $w_0 = -1/2$

■ These samples are separable using g(x), with coefficients:

$$w_1 = 1$$
, $w_2 = -1$, $w_0 = -1/2$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

- 1

15

Graphical representation

(following [Duda])

- The XOR is implemented as a fully connected network with 2-2-1 topology.
- "Excited" synapses (positive weights) are shown in black, "inhibited" ones (negative weights), in cyan.
- The 3D plots show the discriminant functions implemented by the neurons

The XOR case: neural implementation

- The first phase transformed the non-separable problem into a linearly separable one.
- A possible realization in the form of a neural network is:

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

14

The multilayer Perceptron

- We have just devised a simple multilayer Perceptron:
 - 1 input layer
 - ✓ No calculations
 - ✓ As many nodes (neurons) as feature space dimensions
 - 1 hidden layer
 - √ here, neurons of phase 1
 - 1 output layer
 - ✓ here, the unique neuron which implements phase 2
- This architecture may be generalized
 - Two or more hidden layers
 - More neurons in the hidden layer (best number of neurons?)
 - More neurons in the output layer (C>2): C neurons
 - · Other kinds of activation functions

Representation capabilities

Multilayer Perceptrons

- with 1 hidden layer implement (as for the XOR) polyhedric decision regions
- Using a sufficiently large number of neurons, they can approximate arbitrarily complex functions [Cybenko 1989] (beware of over-fitting, anyway!)

 Networks with 2 hidden layers can discriminate classes stemming from the union of polyhedric regions

Following [Bishop95]

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

.

Lincou f(x) - x

Activation functions

- Linear: f(x) = x
 - The neuron transmits the value of the weighted sum of its inputs
- Rectifier: f(x)=max(x,0)
 - Used for *Deep Learning* in *Rectified Linear Units* (ReLU)
- Step function: f(x) = 1 if x>0, -1 (or 0) otherwise
 - The neuron transmits the sign of the weighted sum of its inputs
- Sigmoid (i.e. s-shaped functions)
 - Logistic function: $f(x) = 1/(1 + \exp(-\alpha x))$
 - Hyperbolic tangent : $f(x) = c (1-exp(-\alpha x))/(1+exp(-\alpha x)) = c tanh(\alpha x/2)$
 - Take care to the effect of parameters on the shape of the function (saturation)
- Softmax: for output units (C>2)
 - $f(x_c) = \exp(x_c) / \sum_{c'=1}^{c'=c} \exp(x_{c'})$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

18

Historical notes (2)

following [Guttierez]

■ The question of learning multilayer Perceptron...

- Remained unsolved for many years, despite the efforts of connectionnists
- Neural networks remained limited to linear discrimination!
- This is probably the reason why neural networks received less attention during the 1970...

■ 1986 is a key date:

- Announcement of the discovery of an algorithm that allowed a network to learn to discriminate nonlinearly separable classes, namely the error Back-Propagation algorithm...
- This algorithm was indeed first proposed in 1974 (Werbos PhD), but became popular since 1986! (Rumelhart, Hinton, Williams, Le Cun)
- We now study the derivation of this well-known algorithm

Multilayer Perceptron: notations

Back-propagation

- The learning problem
 - Find the weights W that best model the input/output correspondence from a set of training samples, {x_n, t_n}_{n=1...N}
 - As usual, we set this as an optimization problem, e.g. minimize the quadratic error between expected outputs, t, and measured outputs, z (other loss functions might be used)
 - For the sake of simplicity, we first consider the case of a single sample (otherwise, the criterion must be averaged over the samples)

$$J(W) = \frac{1}{2} \sum_{k=1}^{C} (t_k - z_k)^2 = \frac{1}{2} ||t - z||^2$$

Back-propagation is essentially a gradient descent algorithm.
 For a weight w, the update rule is (where η = learning rate)

$$w = w - \eta \frac{\partial J(W)}{\partial w}$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

- 7

Computing the updates (hidden layer)

■ Using the chain rule

$$\frac{\partial J}{\partial w_{ji}} = \frac{\partial J}{\partial y_{j}} \frac{\partial y_{j}}{\partial net_{j}} \frac{\partial net_{j}}{\partial w_{ji}}$$
$$\frac{\partial J}{\partial w_{ji}} = \frac{\partial J}{\partial y_{i}} f'(net_{j}) x_{i}$$

- Computing $\partial J/\partial y_j$ seems more difficult than for the output layer because we have no idea of target values
- This is the credit assignment problem that puzzled connectionists for many years

Computing the updates (output layer)

Easy using the chain rule

$$\frac{\partial J}{\partial w_{kj}} = \frac{\partial J}{\partial z_k} \frac{\partial z_k}{\partial net_k} \frac{\partial net_k}{\partial w_{kj}}$$

One obtains

$$\frac{\partial J}{\partial w_{kj}} = -(t_k - z_k)f'(net_k)y_j \equiv -\delta_k^O y_j$$

- If f(x) = x, one obtains the LS (Widrow-Hoff) solution
- The update (sensitivity, δ_k^O) is proportional to the error, t_k - z_k

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

22

Computing the updates (hidden layer)

The trick is to note that all z_k's depend on y_i

$$J = J(z_1(y_j),...,z_k(y_j),...,z_c(y_j))$$

■ Hence,

$$\frac{\partial J}{\partial y_j} = \sum_{k=1}^{C} \frac{\partial J}{\partial z_k} \frac{\partial z_k}{\partial y_j}$$

$$\frac{\partial J}{\partial y_j} = -\sum_{k=1}^{C} \left(t_k - z_k \right) f'(net_k) w_{kj}$$

Finally,

$$\frac{\partial J}{\partial w_{ji}} = -\left[\sum_{k=1}^{C} w_{kj} \delta_{k}^{O}\right] f'(net_{j}) x_{i} \equiv -\delta_{j}^{H} x_{i}$$

The error is back-propagated from output neurons, via δ_k

Back-propagation

■ Then, finally, we obtain similar expressions:

$$\boxed{\frac{\partial J}{\partial w_{kj}} = -(t_k - z_k)f'(net_k)y_j \equiv -\delta_k^O y_j}$$

For weights in the output layer

$$\boxed{\frac{\partial J}{\partial w_{ji}} = -\left[\sum_{k=1}^{C} w_{kj} \delta_{k}^{O}\right] f'(\text{net}_{j}) x_{i} \equiv -\delta_{j}^{H} x_{i}}$$

For weights in the hidden layer

Remark: the same procedure may be recursively applied to learn the weights of other (deeper) hidden layers, if needed

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

2

Remarks

- The name of the algorithm stems from the fact that, as just explained:
 - During the learning stage, the error must be propagated from the output layer to the hidden layer, hence backward!
 - However, back-propagation is essentially a gradient descent algorithm dedicated to a stratified structure. Using differentiation composition rules allows differentiating the LMS criterion with respect to all the weights of the model...
- The behavior of the algorithm depends on its starting point.

It is important to avoid setting all initial weights to zero!

- If $w_{ki} = 0$, the back-propagated error is zero and weights in hidden layers never change!
- This derivation may be generalized to more complex cases
 - · e.g. Convolutional Neural Networks (for image or speech recognition)

Back-propagation and multilayer learning

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

26

Implementation details

- Sequential algorithm or batch algorithm ?
 - Batch gradient descent uses the whole data set at once
 - Seems more reasonable but has poor performance!
 - · One may use conjugate gradient or quasi-Newton methods
 - · Other possibility: multiple random initializations
- Sequential algorithms: stochastic gradient descent (Le Cun et al, 1989)
 - Uses repeated updates by cycling through the data either in sequence or at random
 - May also use small sets of data points or "mini-batches" (intermediate scenario)
 - Better convergence properties
 - Used in Deep Learning
- Avoiding over-fitting ?
 - · Learn with noisy data
 - Stop learning sufficiently early (according to the value of J(w), for example)

A Bayesian flavor

- Each neuron k in the output layer computes a discriminant for class ω_k : $g_k(x;w)$
 - It can be shown [Duda pp. 303-304] that minimizing J(W) becomes equivalent to minimizina:

$$\varepsilon^{2} = \sum_{k=1}^{C} \int (P(\omega_{k}|x) - g_{k}(x;w))^{2} p(x) dx$$

as the number of samples goes to the infinity

- ⇒ The multilayer Perceptron becomes then optimal (equivalent to MAP classifier)
- This explains the success of neural networks in pattern recognition problems

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Radial Basis Functions (RBF)

RBF's are an alternative way of introducing non-linearity in linear discriminant models

$$g(x) = w^T x + w_0$$

$$g(x) = w^{T}x + w_{0}$$
 $g(x) = \sum_{k=1}^{M} w_{k} \varphi(x, c_{k}) + w_{0}$

- RBF's resemble exact interpolation techniques (Powell 1987)
 - · A basis function is placed on each center, xk

$$h(x) = \sum_{k=1}^{M} w_k \varphi(x, x_k) = \Phi w$$

• Then, the weights are optimized to minimize the Mean Square error at these points (LS solution)

$$h(x_k) = t_k \longrightarrow \mathbf{w} = \mathbf{\Phi}^{\dagger} \mathbf{t}$$

RBF's are, also, related to kernel-based PDF estimation methods (but M<<N!)

Basis functions

As their name suggests, the basis functions are radial, hence functions of $|| x - c_k ||$.

Radial basis functions (RBF's)

Examples:

Machine learning and Pattern Recognition

2024-2025

$$\varphi(x, c_k) = \exp\left(-\frac{1}{2\sigma_k^2} \|x - c_k\|^2\right)$$
$$\varphi(x, c_k) = \frac{\sigma_k^2}{\sigma_k^2 + \|x - c_k\|^2}$$

- The spread of the function is a parameter (related to σ)
- Gaussian kernels are the more widely used functions

Neural interpretation (2-classes case)

Nonlinear hidden laver and linear output laver

- Remark: here, 2 classes ⇒ 1 output neuron
 - · Contrary to the Perceptron, RBF neurons in the hidden layer do not sum their entries, but compute φ
 - In the Perceptron, the hidden layer realizes a projection, whose value is identical on a hyper-plane, hence global. In RBF's, iso-surfaces are hyperellipsoids, hence with local range
 - RBF's generally need more centers to attain the same level of performance as Perceptrons. However, they "learn" faster.

Machine learning and Pattern Recognition Pierre CHARBONNIEF 2024-2025

Example (1/2)

- Back to the XOR problem
- Choose 2 centers:

$$c_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $c_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

and consider

$$\varphi(x, c_k) = \exp(-\|x - c_k\|^2)$$

The hidden layer implements the following transformation:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \exp(-\|x - c_1\|^2) \\ \exp(-\|x - c_2\|^2) \end{bmatrix}$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Example (2/2)

Hence:
$$x = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow y = \begin{bmatrix} \exp(-2) \\ 1 \end{bmatrix}$$
 $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \rightarrow y = \begin{bmatrix} 1 \\ \exp(-2) \end{bmatrix}$

$$x = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow y = \begin{bmatrix} \exp(-1) \\ \exp(-1) \end{bmatrix}$$
 $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow y = \begin{bmatrix} \exp(-1) \\ \exp(-1) \end{bmatrix}$

Interpretation

- We computed a function which sums 2 Gaussians, with variance 1/2, centered on the samples from class B.
- Then, we put a threshold at height 1.

- The C-class case: C neurons in the output layer
 - · Compute C discriminant functions, gk, and affect sample to the class that realizes the maximum

$$g_k(x) = \sum_{j=1}^{M} w_{kj} \varphi(x, c_j) + w_{0k}$$

Learning RBF's

- As in the XOR case, where it was arbitrary, the choice of centers is an important question.
 - The problem is to approximate as well as possible the distribution of sample.
 One may use:
 - ✓ Random sampling, but this requires a large number of centers
 - ✓ A clustering algorithm, such as k-means or EM spreading parameters are either estimated separately (k-means) or given by the method (EM)

37

- Learning the weights is performed using a linear technique, e.g. LS.
- Some methods perform these steps simultaneously, to minimize a unique criterion
 - Orthogonal Least Squares (OLS) iterate
 - ✓ Center selection
 - ✓ Computation of weights using the pseudo-inverse

Machine learning and Pattern Recognition
Pierre CHARBONNIER
2024-2025

Take-away remarks

Neural Networks

- Efficient and flexible, allow generating arbitrarily complex decision boundaries (beware of the generalization issue!)
- · Require some "know-how".
- We studied the simplest architecture. Many others exist, for solving different problems:
 - ✓ Dimensionality reduction: non-linear PCA
 - ✓ Non-supervised learning and classification: ART,
 - ✓ "Mix" of both: Kohonen networks, Self-Organizing Maps...
- Deep learning methods (i.e. large number of hidden layers) are beating records in many applications
- Radial Basis Function (RBF) are one alternative way of accounting for non-linearity.

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025