Week9 Assignment

Task 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

Il tempo oggi in Piacenza Lunedi, 02 Dicembre 2019												
	13:00	14:00	16:00	18:00	20:00	21:00	22:00					
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud					
Temperatura effettiva	10°C	10°C	9°C	6°C	7°C	7°C	8°C					
Temperatura percepita	10°C	10°C	8°C	5°C	7°C	6°C	7°C					
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm					
Umidità	79 %	77 %	89 %	90 %	90 %	92 %	91 %					
Pressione atmosferica	1016 hPa	1015 hPa	1016 hPa	1017 hPa	1019 hPa	1019 hPa	1020 hPa					

According to the data on the website, it' 13:00, 02 December.

Umidità(Relative humidity): 79%, Pressione atmosferica(Air total pressure): 101.6 kPa, Temperatura effettiva(temperature to be utilized): 10°C (233K).

Through the chart: $\omega = 0.0055$

$$\begin{split} &\omega = \frac{0.622 P_v}{P_a} = \frac{0.622 P_v}{P-P_v} = 0.0055, \ P = 101.6 \ kPa \\ &\rightarrow P_v = 0.89 \ kPa \\ &\varphi = \frac{m_v}{m_g} = 79\% \\ &m = \frac{P_v}{R_{sp}.T} \ , R_{sp} = 0.4615 \\ &\rightarrow m_v = \frac{0.89}{0.4615*233} = 0.00828 \ V \end{split}$$
 And according to the formula, $m_g = \frac{m_v}{79\%} = 0.01048 \ V$

Task 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

	BRINDISI, Italy												WMO#:	163200			
	Lat	40.65N	Long:	17.95E	Elev:	10	StdP:	101.2		Time Zone:	1.00 (EU	N)	Period:	86-10	WBAN:	99999	
Annual Heating and Humidification Design Conditions																	
					Hum	idification D	P/MCDB and	HR		Coldest month WS/MCDB MCWS						ı	
	Coldest Heating DB Month				99.6%			99%		0.4% 19			% to 99.6		6% DB		
	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
	(0)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	ooling, Dehu	midificatio	n, and Entha	lpy Design	Conditions	s .										
	Hottest	Hottest			Evaporation WB/MCDB						MCWS/PCW						
	Month 0.4%			1% 2%			0.4% 1%					to 0.4					
		DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(e)	(1)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
				Dehumidific	ation DP/M	CDB and HF	₹					Hours					
		0.4%			1%			2%						%	8 to 4 &		
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
Extreme Annual Design Conditions																	
				Extreme		F-t	Assessed DD				- V D-	burn Davind	Makan of F	-t DD			
	Extreme Annual WS			Extreme Annual DB Max Mean Standard deviation			deviation	n-Year Return Period n=5 years n=10 years				n=20 years n=50			vears		
	1% 2.5% 5%		5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

$$q_{ig,s} = 136 + 2.2A_{cf} + 22N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W$$

$$q_{ig,l} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 W$$

$$A_{ul} = 1.4 \text{ cm}^2/\text{m}^2$$

$$A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 \text{ m}^2$$

$$A_L = A_{es} * A_{ul} = 344 + 1.4 = 481.6 \text{ cm}^2$$

$$T_{cooling} = 24 \, ^{\circ}\text{C}, T_{heating} = 20 \, ^{\circ}\text{C}$$

In Brindisi, Italy,

$$\Delta T_{cooling} = 31.1 - 24 = 7.1 \, ^{\circ}\text{C}, \ \Delta T_{heating} = 20 - (-4.1) = 24.1 \, ^{\circ}\text{C}$$

DR=7.1°C

$$IDF_{heating} = 0.073 \frac{L}{s \cdot cm^2}$$

$$IDF_{cooling} = 0.033 \frac{L}{s \cdot cm^2}$$

$$Q_{i,heating} = A_L * IDF_{heating} = 481.6 * 0.073 = 35.16 \frac{L}{s}$$

$$Q_{i,cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 = 15.89 \frac{L}{s}$$

$$Q_{v} = 0.05A_{cf} * 3.5(N_{br} + 1) = 0.05 * 200 + 3.5(1 + 1) = 17\frac{L}{s}$$

$$Q_{i-v,heating} = Q_{i,heating} + Q_v = 15.16 + 17 = 52.16 \frac{L}{s}$$

$$Q_{i-v,cooling} = Q_{i,cooling} + Q_v = 15.89 + 17 = 32.89 \frac{L}{s}$$

$$C_{sensible} = 1.23, C_{latent} = 3010, \Delta\omega_{cooling} = 1.23*32.89*7.1 = 287.25 \text{ W}$$

$$\dot{q}_{inf-ventilation_{coolingsensible}} \, = C_{sensible} * Q_{i-v,cooling} * \Delta T_{cooling}$$

$$= 1.23 * 32.89 * 7.1 = 287.25 W$$

$$\dot{q}_{inf-ventilation_{coolinglatent}} = C_{latent} * Q_{i-v,cooling} * \Delta \omega_{cooling}$$

$$= 3010 * 32.89 * 0.0039 = 386.13 \text{ W}$$

$$\dot{q}_{inf-ventilation_{coolinglatent}} = C_{sensible} * Q_{i-v,heating} * \Delta T_{heating}$$

$$= 1.23 * 52.16 * 24.1 = 1546.09 W$$