Task 1 Download the dataset

The Churn_Modelling.csv dataset is downloaded

Task 2 Load the Dataset

0.00

```
import pandas as pd
import numpy as np
df = pd.read csv('/content/Churn Modelling.csv')
df
                  CustomerId
                                 Surname CreditScore Geography
      RowNumber
                                                                    Gender
Age
               1
                    15634602
                                                    619
                                                                    Female
                                Hargrave
                                                            France
42
               2
                    15647311
                                    Hill
1
                                                    608
                                                             Spain
                                                                    Female
41
               3
                                     Onio
2
                    15619304
                                                    502
                                                            France
                                                                    Female
42
               4
3
                    15701354
                                     Boni
                                                    699
                                                            France
                                                                    Female
39
4
               5
                    15737888
                                Mitchell
                                                    850
                                                            Spain
                                                                    Female
43
                          . . .
                                                    . . .
                                                                        . . .
                    15606229
                                Obijiaku
9995
           9996
                                                    771
                                                            France
                                                                      Male
39
9996
           9997
                    15569892
                               Johnstone
                                                    516
                                                            France
                                                                      Male
35
                                                            France Female
9997
           9998
                    15584532
                                      Liu
                                                    709
36
9998
           9999
                    15682355
                               Sabbatini
                                                    772
                                                                      Male
                                                          Germany
42
9999
          10000
                    15628319
                                  Walker
                                                    792
                                                            France
                                                                    Female
28
                           NumOfProducts
                                           HasCrCard
                                                       IsActiveMember
      Tenure
                 Balance
0
           2
                    0.00
                                        1
                                                    1
                                                                     1
            1
                83807.86
                                                    0
                                                                     1
1
                                        1
2
           8
               159660.80
                                        3
                                                    1
                                                                     0
3
                                        2
                                                                     0
            1
                    0.00
                                                    0
           2
4
               125510.82
                                        1
                                                    1
                                                                     1
           5
                                        2
9995
                    0.00
                                                                     0
                                                    1
9996
          10
                57369.61
                                        1
                                                    1
                                                                     1
```

9998 9999	3 75075.31 4 130142.79		2 1	1 1	0 0
0 1 2 3 4	EstimatedSalary 101348.88 112542.58 113931.57 93826.63 79084.10	Exited 1 0 1 0			
9995 9996 9997 9998 9999	96270.64 101699.77 42085.58 92888.52 38190.78	0 0 1 1			
[1000	0 rows x 14 column	ıs]			

Task 3 Perform Visualizations

```
Univariate Analysis
df['Age'].mean()
38.9218
df['Balance'].median()
97198.54000000001
```

Bivariate Analysis

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.barplot(x = df['Exited'] , y = df['Balance']);
```


Multi Variate Analysis

sns.heatmap(df.corr());

sns.pairplot(df)

<seaborn.axisgrid.PairGrid at 0x7f544f833c50>

Task 4 Perform descriptive statistics on the dataset df.describe()

	RowNumber	CustomerId	CreditScore	Age
Tenure	\			
count 10000.0	10000.00000	1.000000e+04	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800
5.01280	-			
std	2886.89568	7.193619e+04	96.653299	10.487806
2.89217 min	1.00000	1.556570e+07	350.000000	18.000000
IIITII	1.00000	1.3303/06+0/	220.00000	10.00000

0.000000)						
25%		1.56285	3e+07	584.000000	32	.000000	
3.000000 50%	, 5000.50000	1.56907	4 e+07	652.000000	37	.000000	
5.000000		1130307	10.07	032100000	3,		
75%		1.57532	3e+07	718.000000	44	.000000	
7.000000 max 1) 10000.00000	1.58156	9e+07	850.000000	92	.000000	
10.00000		1130130	30.07	030100000	32	100000	
count	Balance 10000.000000		Products 0.000000	HasCrCar 10000.0000	-	ctiveMember	/
mean	76485.889288		1.530200	0.7055		0.515100	
std	62397.405202		0.581654	0.4558	-	0.499797	
min	0.000000		1.000000	0.0000		0.000000	
25%	0.000000		1.000000	0.0000		0.000000	
50%	97198.540000		1.000000	1.0000		1.000000	
75% 1	27644.240000)	2.000000	1.0000	0	1.000000	
max 2	250898.090000		4.000000	1.0000	00	1.000000	
F	EstimatedSala	rv	Exited	4			
count	10000.0000	-	00.000000				
mean	100090.2398		0.203700				
std	57510.4928		0.402769				
min	11.5800	00	0.00000	9			
25%	51002.1100	00	0.000000	9			
50%	100193.9150		0.00000				
75%	149388.2475		0.000000				
max	199992.4800	00	1.000000	9			

Task 5 Handle the Missing values df.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

There are no null values present in the given dataset

Task 6 Find the outliers and replace the outliers

sns.boxplot(df['Age']);

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

sns.boxplot(df['EstimatedSalary']);

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

sns.boxplot(df['Tenure']);

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

sns.boxplot(df['Balance']);

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

sns.boxplot(df['NumOfProducts']);

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.


```
outliers=[]
def detect_outliers(data):
    threshold=3
    mean = np.mean(data)
    std =np.std(data)
    for i in data:
        z_score= (i - mean)/std
        if np.abs(z_score) > threshold:
            outliers.append(y)
            return outliers
outlier_pt=detect_outliers(df)
outlier_pt
```

Task 7 Check for Categorical columns and perform encoding

df.info() #There are few columns that are in oblject data type instead
of int64 or float 64 these columns are called Categorial Columns

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
                      Non-Null Count
#
     Column
                                      Dtype
     -----
 0
     RowNumber
                      10000 non-null
                                      int64
 1
    CustomerId
                      10000 non-null int64
 2
     Surname
                      10000 non-null
                                      object
 3
                      10000 non-null
    CreditScore
                                      int64
     Geography
                      10000 non-null
                                      object
```

```
5
     Gender
                       10000 non-null
                                       object
                       10000 non-null
                                       int64
 6
     Age
 7
     Tenure
                       10000 non-null
                                       int64
 8
     Balance
                       10000 non-null
                                       float64
 9
     NumOfProducts
                       10000 non-null
 10 HasCrCard
                       10000 non-null
                                       int64
                       10000 non-null
                                       int64
 11
    IsActiveMember
 12
    EstimatedSalary
                       10000 non-null float64
 13
    Exited
                       10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Geography'] = le.fit_transform(df['Geography'])
df['Gender'] = le.fit transform(df['Gender'])
df
      RowNumber CustomerId
                                Surname CreditScore
                                                       Geography Gender
Age
              1
                               Hargrave
                                                                0
                                                                        0
                    15634602
                                                  619
42
              2
                    15647311
                                   Hill
                                                  608
                                                                2
                                                                        0
1
41
2
              3
                   15619304
                                   Onio
                                                  502
                                                                0
                                                                        0
42
              4
                   15701354
                                                  699
3
                                   Boni
                                                                0
                                                                        0
39
              5
                               Mitchell
4
                    15737888
                                                  850
                                                                2
                                                                        0
43
. . .
                                     . . .
                                                  . . .
            . . .
                         . . .
                                                              . . .
9995
           9996
                    15606229
                               Obijiaku
                                                  771
                                                                0
                                                                        1
39
9996
           9997
                   15569892
                              Johnstone
                                                  516
                                                                0
                                                                        1
35
9997
           9998
                    15584532
                                    Liu
                                                  709
                                                                0
                                                                        0
36
9998
           9999
                   15682355
                              Sabbatini
                                                  772
                                                                1
                                                                        1
42
                                                                        0
9999
          10000
                   15628319
                                 Walker
                                                  792
                                                                0
28
                          NumOfProducts HasCrCard IsActiveMember
      Tenure
                Balance
0
           2
                    0.00
                                      1
                                                  1
                                                                   1
1
           1
               83807.86
                                      1
                                                  0
                                                                   1
2
                                      3
              159660.80
                                                  1
                                                                   0
```

3	1	0.00	2	0	0
4	2	125510.82	1	1	1
9995	5 10 7 3 4	0.00 57369.61 0.00 75075.31 130142.79	2 1 1 2 1	1 1 0 1	0 1 1 0 0

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]

Task 8 and Task 10 Split the data into dependent and independent variables

df.drop(columns = ['RowNumber'])

_	ustomerId	Surname	CreditScore	Geography	Gender	Age	
Tenure 0 2	15634602	Hargrave	619	Θ	0	42	
1	15647311	Hill	608	2	0	41	
2	15619304	Onio	502	0	0	42	
3	15701354	Boni	699	0	Θ	39	
4 2	15737888	Mitchell	850	2	0	43	
9995 5	15606229	Obijiaku	771	0	1	39	
9996	15569892	Johnstone	516	0	1	35	
10 9997 7	15584532	Liu	709	0	Θ	36	

9998 3	15682355	Sabbatini	772	1	1	42		
9999 4	15628319	Walker	792	0	0	28		
Ectimo			HasCrCard	IsActiveMember				
	tedSalary 0.00	1	1	1				
	83807.86	1	0	1				
	159660.80	3	1	0				
	0.00	2	0	0				
	125510.82	1	1	1				
	0.00 54	2	1	0				
9996 101699	57369.61 .77	1	1	1				
9997 42085.5		1	0	1				
9998 92888.5	75075.31 52	2	1	0				
9999 38190.7	130142.79 78	1	1	0				
	Exited 1							
0	0							
2 3 4	1 0 0							
9995 9996 9997 9998 9999	0 0 1 1 0							
[10000 rows x 13 columns]								

x = df.iloc[: , 0:13].values
y = df.iloc[: , 13:14].values

from sklearn.model_selection import train_test_split

```
xtrain , xtest , ytrain , ytest = train_test_split(x , y , test_size =
0.3 , random_state = 0)

xtrain.shape , xtest.shape

((7000, 13), (3000, 13))

#Task 9 Scale the independent variables

from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import StandardScaler

n = MinMaxScaler()
s = StandardScaler()

x = df[['Age', 'Tenure']].values
y = df['Gender'].values
n_xtrain = n.fit_transform(xtrain)
n_xtest = n.fit_transform(xtest)
```