

MORIAH COLLEGE

Year 12

MATHEMATICS

Extension 1 and 2 Common

Date:

Tuesday 13th March, 2001

Time Allowed:

45 minutes

Examiners:

N. Franks, D. Steel

Instructions:

- Start each question on a separate page.
- Show all necessary working.
- Mark values are shown but are subject to change.

Extension 1 and 2 Common March Assessment

1)

a) i) Find the differential of:
$$\sin^{-1}(\sqrt{1-4x^2})$$

$$\sin^{-1}(\sqrt{1-4x^2})$$

(2 marks)

ii) Find
$$\int \frac{dx}{\sqrt{25-4x^2}}$$

(2 marks)

iii) Evaluate
$$\int_{0}^{1} \frac{x dx}{1 + x^{4}}$$
 using the substitution $u = x^{2}$

(3 marks)

b) Sketch the graphs of

(6 marks)

i)
$$y = 4\cos^{-1}(3x-2)$$

ii)
$$y = cos^{-1}(sin x)$$

- a) Without the use of a calculator give your answer in exact form: [marks will be allocated for working]
 - i) Evaluate $\cos(2\sin^{-1}\frac{-3}{5})$ (3 marks)
 - ii) Find x if $tan^{-1}x = tan^{-1}(\frac{1}{3}) + tan^{-1}(-2)$ (3 marks)
 - b) The graph of $f(x) = \frac{x^2 4}{x + 1}$ is below. (7 marks)

- i) Explain why f(x) does not have an inverse function, $f^{-1}(x)$.
- ii) State the largest domain containing x = 0 for which f(x) has an inverse function.
- iii) State the domain and range of this inverse function, $f^{-1}(x)$.
- iv) On the graph at the back of the question paper, draw the line y = x and draw $f^{-1}(x)$.

3.

a) $P(\frac{\pi}{4},1)$ is a point on $y=\tan x$ and O is the origin. Find to the nearest minute, the acute angle between OP and the tangent to $y=\tan x$ at P. (5 marks)

b)

- i) Using a series of diagrams, write down the maximum number of regions into which a circle can be divided, by
 - α) 1 line
 - β) 2 lines
 - γ) 3 lines
 - δ) 4 lines.
- ii) Using the diagrams in part (i), show that the n^{th} line adds n regions and the $(n+1)^{th}$ line adds (n+1) regions.
- iii) Hence, use the method of Mathematical Induction to prove that the greatest number of regions that n straight lines can divide a circle is $\frac{1}{2}(n^2+n)+1$, $n \ge 1$

(9 marks)