

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: PHYSICS (P1) FISIESE WETENSKAPPE: FISIKA (V1)

NOVEMBER 2012

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 12 pages. *Hierdie memorandum bestaan uit 12 bladsye.*

SECTION A

QUESTION 1/VRAAG 1

1.1	Frequency/ <i>Frekwensie</i> ✓	(1)
1.2	Capacitor/ <i>Kapasitor</i> ✓	(1)
1.3	Split ring commutator ✓ Splitringkommutator	(1)
1.4	Photons/Fotone ✓	(1)
1.5	Relative velocity/Relatiewe snelheid ✓	(1) [5]
QUEST	ΓΙΟΝ 2/VRAAG 2	
2.1	D✓✓	(2)
2.2	C✓✓	(2)
2.3	D✓✓	(2)
2.4	D✓✓	(2)
2.5	A ✓✓	(2)
2.6	A 🗸 🗸	(2)
2.7	D✓✓	(2)
2.8	C✓✓	(2)
2.9	C✓✓	(2)
2.10	A 🗸 🗸	(2) [20]

TOTAL SECTION A/TOTAAL AFDELING A: 25

SECTION B/AFDELING B

QUESTION 3/VRAAG 3

3.1 Downward/afwaarts ✓ (1)

3.2

3.2.1 Upwards positive/Opwaarts positief:

$$V_f = V_i + a\Delta t$$
 ✓
= 8 √ + (-9,8)(4) ✓
= -31,2 m·s⁻¹
∴ $V_f = 31,2 \text{ m·s}^{-1}$ ✓

Downwards positive/Afwaarts positief:

$$V_f = V_i + a\Delta t \checkmark$$

= -8 \(\forall + (9,8)(4) \(\forall \)
\(\therefore\) \(\text{t} = 31,2 \text{ m·s}^{-1} \(\forall \)

3.2.2 **OPTION 1/OPSIE 1**

Upwards positive/Opwaarts positief:

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$
= (8)(4) \(\forall + \frac{1}{2}(-9,8)(4)^2 \) \(= -46,4 \) m

Height of balcony/Hoogte van balkon:

$$60 - 46,4 \checkmark = 13,6 \text{ m} \checkmark$$

Downwards positive/Afwaarts positief:

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$
= (-8)(4) \(\frac{1}{2} + \frac{1}{2} (9,8)(4)^2 \)
= 46,4 m

Height of balcony/Hoogte van balkon:

$$60 - 46,4 \checkmark = 13,6 \text{ m} \checkmark$$

OPTION 2/OPSIE 2

Upwards positive/Opwaarts positief:

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

= $(27,13) \checkmark (6) \checkmark + \frac{1}{2} (-9,8)(6)^2 \checkmark$
= $-13,62 \text{ m}$

Height of balcony/Hoogte van balkon:

$$= 13,62 \text{ m} \checkmark$$

Downwards positive/Afwaarts positief:

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

= (-27,13) \checkmark (6) \checkmark + $\frac{1}{2}$ (9,8)(6)² \checkmark
= 13,62 m

Height of balcony/Hoogte van balkon:

Please turn over/Blaai om asseblief

3.3 **OPTION 1/OPSIE 1**

Criteria for graph/Kriteria vir grafiek:	
Shape has two parallel lines with a gradient.	√
Vorm het twee ewewydige lyne met gradient.	
First part of graph starts at $v = 8 \text{ m} \cdot \text{s}^{-1}$ at $t = 0 \text{ s}$	/
Eerste deel van grafiek begin by $v = 8 \text{ m} \cdot \text{s}^{-1}$ by $t = 0 \text{ s}$.	•
Positive marking from QUESTION 3.2.1:	
Positiewe nasien vanaf VRAAG 3.2.1:	
First part of the graph extends below the x axis until $v = -31,2 \text{ m} \cdot \text{s}^{-1}$./
at $t = 4$ s.	'
Eerste deel van die grafiek verleng onder x-as tot v = -31,2 m·s ⁻¹	
by $t = 4$ s.	
Graph is discontinuous and object changes direction at 4 s.	
Grafiek is nie kontinu nie en voorwerp verander van rigting by 4 s.	•
Second part of graph starts at $v = 27,13 \text{ m} \cdot \text{s}^{-1}$ at $t = 4 \text{ s}$.	./
Tweede deel van grafiek begin by $v = 27,13 \text{ m} \cdot \text{s}^{-1}$ by $t = 4 \text{ s}$.	· ·
Second part of graph extends below the x axis until $t = 10$ s.	
Tweede deel van grafiek verleng onder x-as tot $t = 10$ s.	•

OPTION 2/OPSIE 2 Upwards negative/Opwaarts negatief:

Criteria for graph/Kriteria vir grafiek:	
Correct shape as shown (two parallel lines).	./
Korrekte vorm soos aangetoon (twee ewewydige lyne).	V
First part of graph starts at $v = -8 \text{ m} \cdot \text{s}^{-1}$ at $t = 0 \text{ s}$./
Eerste deel van grafiek begin by $v = -8 \text{ m} \cdot \text{s}^{-1}$ by $t = 0 \text{ s}$	v
Positive marking from QUESTION 3.2.1.	
Positiewe nasien vanaf VRAAG 3.2.1.	
First part of the graph extends above the x axis until $v = 31.2 \text{ m} \cdot \text{s}^{-1}$./
at $t = 4$ s.	v
Eerste deel van die grafiek verleng bokant x-as tot v = 31,2 m·s ⁻¹	
by $t = 4$ s.	
Graph is discontinuous and object changes direction at 4 s.	./
Grafiek is nie kontinu en voorwerp verander van rigting by 4 s.	V
Second part of graph starts at $v = -27,13 \text{ m} \cdot \text{s}^{-1}$ at $t = 4 \text{ s}$.	
Tweede deel van grafiek begin by $v = -27,13 \text{ m/s}^{-1}$ by $t = 4 \text{ s}$.	v
Second part of graph extends above the x axis until t = 10 s.	./
Tweede deel van grafiek verleng bokant x-as tot $t = 10$ s.	٧

(6) **[16]**

QUESTION 4/VRAAG 4

40 m·s⁻¹ ✓ east/oos ✓ 4.1 (2)

4.2 The total (linear) momentum remains constant/is conserved ✓ in an isolated/a closed system/the absence of external forces/ if the impulse of external forces is zero. ✓

> Die totale (liniêre) momentum bly konstant/behoue ✓ in 'n geïsoleerde sisteem/geslote sisteem/ die afwesigheid van eksterne kragte./ indien die impuls van eksterne kragte nul is.√

East positive/Oos positief: 4.3

$$\begin{split} & \Sigma p_i = \Sigma p_f \; \checkmark \\ & m(20) \; \checkmark + 2m(-20) \; \checkmark = (m + 2m) v_f \; \checkmark \\ & \therefore v_f = -6,67 \; m \cdot s^{-1} \\ & \therefore v_f = 6,67 \; m \cdot s^{-1} \; \checkmark \; west \, /wes \; \checkmark \end{split}$$

East negative/Oos negatief:

$$\Sigma p_i = \Sigma p_f \checkmark$$

 $m(-20) \checkmark + 2m(+20) \checkmark = (m + 2m)v_f \checkmark$
 $\therefore v_f = 6,67 \text{ m} \cdot \text{s}^{-1} \checkmark \text{ west /wes} \checkmark$

(6)

4.4

F√ 4.4.1 Newton's Third Law of motion/Newton se Derde Bewegingswet ✓

4.4.2 -½ a /½ a√

(Same/*Dieselfe*
$$F_{net}$$
), $a \propto \frac{1}{m} \checkmark$

(Same/*Dieselfe* F_{net}), $a \alpha \frac{1}{m} \checkmark$ (2)

Car driver ✓ 4.4.3

> (Car - driver system) have greater acceleration. ✓ (Car - driver system) have greater change in velocity /greater Δv.√

Motorbestuurder ✓

(Motor -bestuurder sisteem) het groter versnelling. ✓ (Motor -bestuurder sisteem) het groter verandering in snelheid / groter ∆v.√

(3)[17]

(2)

(2)

QUESTION 5/VRAAG 5

5.1

(3)

(2)

(4)

5.2 The <u>net (total) work</u> (done on an object) is <u>equal to</u> ✓ the <u>change in kinetic energy</u> (of the object.) ✓ Die <u>netto</u> (totale) <u>arbeid verrig</u> (op 'n voorwerp) is <u>gelyk aan</u> ✓ die <u>verandering in kinetiese energie</u> (van die voorwerp). ✓

5.3

5.3.1 $W_{\text{net}} = \Delta E_k / \Delta K \checkmark \mathbf{OR} / \mathbf{OF} F_{\text{net}} \Delta x \cos \theta = \frac{1}{2} m (v_f^2 - v_i^2)$ $\frac{F_{\text{net}}(1,02) \cos 180^\circ}{F_{\text{net}}} \checkmark = \frac{1}{2} \frac{(1\ 200)(0-20^2)}{(2,35\ x\ 10^5\ N)}$

5.3.2 **OPTION 1** / OPSIE 1

 $\overline{F_{\text{net}}\Delta t} = m\Delta v \checkmark$ ∴ (-235 294,12) $\Delta t \checkmark$ = (1 200)(0 - 20) \checkmark ∴ $\Delta t = 0,1 \text{ s} \checkmark (0,102 \text{ s})$

OPTION 2/OPSIE 1 $\Delta x = \left(\frac{V_i + V_f}{2}\right) \Delta t \checkmark$ $1,02 \checkmark = \left(\frac{20 + 0}{2}\right) \Delta t \checkmark$ $\Delta t = 0,1 \text{ s}\checkmark$

(4) [**13**]

QUESTION 6/VRAAG 6

- 6.1 Frequency/*Frekwensie* ✓ (1)
- 6.2 There is relative motion between the bird and the bird watcher. ✓

 Daar is relatiewe beweging tussen die voël en die voëlkyker nie. ✓

 (1)

6.3
$$0.2 \,\mathrm{m} \,\checkmark$$
 (1)

6.4

6.4.1 $v = f\lambda \checkmark$ $340 = f(0,2) \checkmark$ $\therefore f = 1700 \text{ Hz} \checkmark$ (3)

6.4.2
$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \text{ OR/OF } f_{L} = \frac{v}{v - v_{s}} f_{s} \checkmark$$

$$\therefore 1700 \checkmark = \frac{340}{340 - v_{s}} \checkmark (1650) \checkmark$$

$$\therefore v_{s} = 10 \text{ m·s}^{-1} \checkmark (5)$$

[11]

QUESTION 7/VRAAG 7

7.1 <u>Double slit/Dubbelspleet</u> \checkmark (1)

7.2 (Alternate) dark and bright/blue bands. ✓
Bright / blue bands of equal broadness (width). ✓

(Afwissellende) donker en helder/blou bande. ✓
Helder / blou bande van gelyke breedte. ✓

(2)

7.3 7.3.1

 $\tan \theta = \frac{\frac{1}{2} \text{central band}}{\text{screen distance}} / \frac{\frac{1}{2} \text{sentraleband}}{\text{skermafstand}}$

$$\therefore \tan \theta = \frac{\frac{1}{2}(0,22)}{1,4}$$

$$\therefore \theta = 4,49^{\circ} \checkmark$$
(3)

7.3.2

OPTION 1/OPSIE 1:	OPTION 2/OPSIE 2:	
$\sin \theta = \frac{m\lambda}{2}$	$\sin \theta = \frac{m\lambda}{2}$	
a , , , , , , , , , , , , , , , , , , ,	a (*), (*)	
$\sin 4,49 = \frac{(1)(470 \times 10^{-9})}{2}$	$\sin (-4,49^{\circ}) = \frac{(-1)(470 \times 10^{-9})}{3}$	
a	a	
\therefore a = 6×10 ⁻⁶ m \checkmark (6 003,67 nm)	$\therefore a = 6 \times 10^{-6} \text{ m} \checkmark (6 003,67 \text{ nm})$	(5)

7.4 $\lambda_{\text{red light}} > \lambda_{\text{blue light}} \checkmark$

(Degree of) diffraction/sin θ / θ α wavelength (λ) \checkmark

 λ rooilig > λ bloulig \checkmark Diffraksie α golflengte (λ) \checkmark

(2) [**13**]

QUESTION 8/VRAAG 8

8.1
$$R = \frac{V}{I} \checkmark$$

$$1 000 = \frac{12}{I} \checkmark$$

$$\therefore I = 0.01 \text{ A} \checkmark$$

8.2 12 V ✓ (1)

8.3
$$C = \frac{Q}{V} \checkmark$$

120 x 10⁻⁶ =
$$\frac{Q}{12}$$

∴ Q = 1,44 x 10⁻³ C ✓

 $\therefore Q = 1,44 \times 10^{\circ} C \checkmark \tag{3}$

8.4.1 Decreases/*Verminder* ✓ (1)

8.4.2 Increases/Vermeerder √ (1)

8.5 8.5.1

Criteria for sketch:/Kriteria vir skets:	Marks/ Punte
Parallel lines equally spaced. Parallelle lyne eweredig gespasieer.	✓
Direction from positive plate towards negative plate.(Polarity of plates must be indicated) Rigting vanaf positiewe plaat na negatiewe plaat.(Polariteit van plate moet aangedui word)	√
Field curved at the ends of the plates. Veld gekrom aan einde van die plate.	✓

(3)

(3)

8.5.2

$$E = \frac{V}{d} \checkmark$$

$$= \frac{12}{12 \times 10^{-3}} \checkmark$$

$$\therefore E = 1 \ 000 \ V \cdot m^{-1} \checkmark$$

(3) **[15]**

QUESTION 9/VRAAG 9

9.1

9.1.1
$$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \checkmark$$
$$= \frac{1}{60} + \frac{1}{60} \checkmark$$
$$\therefore R_{p} = 30 \ \Omega \checkmark$$

(3)

(3) **[20]**

9.2 9.2.1 1,5 V ✓ (1)

9.2.2 gradient/m = $\frac{\Delta V}{\Delta I}$ = $\frac{0.65 - 1.5}{1.0 - 0}$ = -0.85Ω \checkmark (3)

9.2.3 <u>Internal resistance</u> √√

<u>Interne weerstand</u> (2)

9.2.4 Decreases/Verminder ✓

When I increases/Wanneer I toeneem:

"Lost volts"/ Ir increases./"Verlore volts"/Ir neem toe. ✓
Vert = emf - Ir decreases. ✓ /Vert = emk - Ir neem af

 $V_{\text{ext}} = \underline{\text{emf} - \text{Ir decreases.}} \checkmark / V_{\text{ext}} = \underline{\text{emk} - \text{Ir neem af.}}$

QUESTION 10/VRAAG 10

10.2

Criteria for graph/Kriteria vir grafiek:	Marks <i>Punt</i> e
Correct shape as shown; accept more than one cycle. Korrekte vorm soos aangetoon; aanvaar meer as een siklus.	//
If no/wrong labels: minus 1 mark	
Indien geen/verkeerde byskifte: minus 1 punt	

(2)

OPTION 1/OPSIE 1 10.3

$$V_{rms/wgk} = \frac{V_{max/maks}}{\sqrt{2}} \checkmark$$

$$= \frac{30 \times 10^{3}}{\sqrt{2}} \checkmark$$

$$= 2,12 \times 10^{4} \text{ V}$$

$$P_{ave} = V_{rms}I_{rms}/P_{gem.} = V_{wgk}I_{wgk} \checkmark$$

$$4,45 \times 10^{9} \checkmark = (2,12 \times 10^{4})I_{rms/wgk}$$

$$\therefore I_{rms/wgk} = 2,10 \times 10^{5} \text{ A} \checkmark$$

$$\begin{array}{c} \underline{\text{OPTION 2 / OPS/E 2}} \\ P_{\text{ave}} = V_{\text{rms}} I_{\text{rms}} / P_{\text{gem.}} = V_{\text{wgk}} I_{\text{wgk}} \\ P_{\text{ave/gem.}} = \frac{V_{\text{max}} I_{\text{rms}}}{\sqrt{2}} / \frac{V_{\text{maks}} I_{\text{wgk}}}{\sqrt{2}} \checkmark \checkmark \\ 4,45 \times 10^9 \checkmark = \frac{(30 \times 10^3) I_{\text{rms/wgk}}}{\sqrt{2}} \checkmark \\ \therefore I_{\text{rms/wgk}} = 2,10 \times 10^5 \text{ A} \checkmark \end{array}$$

(5)

10.4 Less loss in (electrical) energy (as heat). ✓ Minder verlies aan (elektriese) energie (as hitte). ✓

(1)[9]

150

QUESTION 11/VRAAG 11

TOTAL SECTION B/TOTAAL AFDELING B:	125
Remains the same/Bly dieselfde √	(1) [11]
hf = hf ₀ + E _k \int (6,63 x 10 ⁻³⁴)(14 x 10 ¹⁴) \checkmark = (6,63 x 10 ⁻³⁴)(9 x 10 ¹⁴) \checkmark + E _k \therefore E _k =3,32 x 10 ⁻¹⁹ J \checkmark (3,31 x 10 ⁻¹⁹ J)	(4)
$E = W_0 + E_k$ $hf = hf_0 + E_k$ $\checkmark Any one / Enige een$	
9 x 10 ¹⁴ Hz ✓	(1)
The minimum frequency needed to emit electrons ✓ from (the surface of) a metal. ✓ Die minimum frekwensie benodig om elektrone vry te stel vanaf (die oppervlak van) 'n metaal.	(2)
(Type of) metal ✓ (Soort) metaal ✓	(1)
Frequency / Frekwensie√(f)	(1)
Kinetic energy / <i>Kinetiese energie</i> (E _k)√	(1)
	Frequency / Frekwensie < (f) (Type of) metal < (Soort) metaal < The minimum frequency needed to emit electrons from (the surface of) a metal. Die minimum frekwensie benodig om elektrone vry te stel vanaf (die oppervlak van) 'n metaal.