数学建模(1)建模介绍

赵亮 2021年6月

讲师介绍

- 赵亮
- 2008年毕业于清华大学数学系
- 2017年获得纽约城市大学博士学位
- 现居于纽约
- 热爱数学
- 科研经历丰富

内容

- 从现实对象到数学模型
- 数学建模实例
- 怎样学习数学建模
- 课程介绍

从现实对象到数学模型

现实中的模型

模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型替代物。模型集中反映了人们对原型所需要的那一部分特征。

数学中的模型

考虑一个航行问题:长江从宜昌经过1500公里流到上海。一艘船从宜昌经过60小时开到上海,从上海返回宜昌用了100小时,假设船的速度和水流的速度均为常数。请问船速是多少?

解:假设船的速度为x km/h, 水流的速度为 y km/h, 根据 路程 = 速度 * 时间 得到 方程

$$1500 = (x + y) * 60$$

$$1500 = (x - y) * 100$$

解方程得到 x = 20, y = 5. 由此可得船的速度为20 km/h.

航行问题建立数学模型的基本步骤

- 做出简化假设:船速、水速为常数
- 用符号表示有关量:x-船速,y-水速
- 用物理定律列出数学式子:二元一次方程
- 求解得到答案: x = 20, y = 5
- 回答原问题:平均船速为20 km/h.

数学模型和数学建模

数学模型:

对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学表述。

数学建模:

建立数学模型的全过程-表述、求解、解释、检验等

将数学工具和计算机作为认识世界的工具

- 电子计算机的飞速发展
- 数学以空前的广度和深度向各个领域渗透
 - 工程技术
 - 数据分析
 - 社会科学
 - 金融

数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视。

数学建模示例

椅子能在不平的地面上放稳吗

问题分析:

- 通常情况椅子只能三只脚着地, 第四只脚悬空
- 当位置改变时,悬空脚的高度一般会随之变化

模型假设

- 四条腿一样长,每只椅脚与地面上的一个点接触,四只椅脚连线呈正方形
- 地面高度连续变化
- 地面相对平坦, 使得椅子在任意位置上都至少有三只脚着地

如何将这个问题转化为一个数学问题?

模型构造

模型假设

- 四条腿一样长,每只椅脚与地面上的一个点接触,四只椅脚 连线呈正方形
- 地面高度连续变化
- 地面相对平坦, 使得椅子在任意位置上都至少有三只脚着地

让我们用数学的符号和语言将椅子四只脚的位置和它 们与地面的关系表示出来。

- 用正方形的四个顶点ABCD来表示椅脚的位置
- 以正方形的中心 O点为原点建立坐标系
- 设OA与x轴正方向的距离为θ
- 每个椅脚与地面的距离分别是一个关于θ的函数
- 设A、C两脚与地面的距离之和为f(θ), B、D两脚与地面的距离之和为g(θ)

正方形ABCD 绕O点旋转

模型探索

我们如何将下列事实用数学语言表述为 $f(\theta)$ 和 $g(\theta)$ 的性质?

● 椅子在任意位置至少三只脚着地

 $f(\theta)$ 和 $g(\theta)$ 至少有一个为零。 $f(\theta)g(\theta)=0$.

● 地面为连续曲面

f(θ) 和 g(θ) 都是连续函数。

● 希望找出一点使得椅子能够放稳

 $f(\theta) = 0$, $g(\theta) = 0$. (其实只需要 $f(\theta) = g(\theta)$)

将现实问题转化为数学问题

椅子能在不平的地面上放稳吗?

 \Rightarrow

已知 $f(\theta)$, $g(\theta)$ 为连续函数. 对任意 θ , $f(\theta)g(\theta)=0$. 证明: 存在 θ_0 使得 $f(\theta_0)=g(\theta_0)=0$.

如何证明这个结论?

模型求解

提示:利用连续函数的性质, 如果存在 θ_1 使得 $h(\theta_1)>0$, 并且存在 θ_2 使得 $h(\theta_2)<0$, 则必然存在 θ_0 使得 $h(\theta_0)=0$.

- 不妨假设g(0)=0, f(0)>0.
- 将椅子旋转90度,根据对称性得到f(π/2)=0, g(π/2)>0
- 因为 $f(\theta)$ 和 $g(\theta)$ 都是连续函数, 所以 $h(\theta)$ 也是连续函数
- 因此必然存在 θ_0 使得 $h(\theta_0)=0$.
- 因此, 椅子在不平的地面上也存在放稳的可能。

思考

建模的关键:

- 将椅脚与地面之间的距离表示为关于夹角θ的函数。
- 巧妙利用连续函数的性质

所有的假设条件都是必要的吗?

结论分析:

- 存在性 vs. 构造性
- 结论的拓展

商人们怎样安全过河

三名商人与三名随从通过摆渡过河。小船一次只能载两人。随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。商人们如何才能安全过河?

模型构造

这是一个多步骤的决策过程

- 每一步:决定上船的人员
- 要求:任何一岸上随从的人数都不能多于商人的数量
- 最终要求全部人员过河

模型探索

这四个数量之间有什么关系?

- X_L:第k次渡河前此岸的商人数
- y_k:第k次渡河前此岸的随从数
- u_ν: 第k次渡河时渡船上的商人数
- v_k: 第k次渡河时渡船上的随从数

- Given x_k , y_k , u_k , v_k , how to calculate x_{k+1} , y_{k+1} ?
- If k is even, $x_{k+1} = x_k + u_k$, $y_{k+1} = y_k + v_k$.
- If k is odd, $x_{k+1} = x_k u_k$, $y_{k+1} = y_k v_k$.

If $0 < X_k < 3$, then $X_k = Y_k$.

这四个数量需要满足哪些条件?

- $0 < u_{\nu} + v_{\nu} <= 2$ (the boat has capacity 2)
- If $x_k > 0$, then $x_k >= y_k$ (number of merchants cannot be less than number of servants)
- If $3 x_k > 0$, then $3 x_k >= 3 y_k$ (If $x_k < 3$, $x_k <= y_k$)
- $-0 \le x \le 3.0 \le y \le 3$

模型探索

- x_ν: 第k次渡河前此岸的商人数
- y_k: 第k次渡河前此岸的随从数
- u_レ: 第k次渡河时渡船上的商人数
- V_k: 第k次渡河时渡船上的随从数

这四个数量之间有什么关系?

- K odd: $x_{k+1} = x_k + u_k, y_{k+1} = y_k + v_k$
- K even: $x_{k+1} = x_k u_k, y_{k+1} = y_k v_k$

这四个数量需要满足哪些条件?

- $0 \le X_k \le 3$, $0 \le y_k \le 3$
- $0 \le U_k + V_k \le 2$
- $x_k > y_k$ if $x_k > 0$
- $3 x_k > 3 y_k$ if $x_k < 3$

将问题转化为数学问题

商人和随从能否安全渡河? ⇒

求合理的 (u_1, v_1) , (u_2, v_2) , ..., (u_n, v_n) , 使得在满足转移律的情况下形成 $x_n = y_n = 0$.

这个数学问题如何求解?

- 能否进行穷举?如何穷举?
- 有没有更好的方法?

图解法

允许的状态:10个绿色格点

允许决策:移动1-2格

K为奇数:只能向左下方移动 k为偶数:只能向右上方移动

状态(x_k, y_k):16个格点

- 初始点(x₁, y₁)在哪里?
- 如果 $u_1=1$, $v_1=0$, 那么 (x_2, y_2) 会在哪里?
- 如果u₁=0, v₁ = 1, 那么(x₂, y₂)会在哪里?
- 如果u₁=1, v₁ = 1, 那么(x₂, y₂)会在哪里?
- 为什么(1,3)这个状态是不被允许的?
- 为什么(2,0)这个状态是不被允许的?
- 哪一些点是安全的点?
- 哪一些点是不安全的?
- 最终目标是哪个点?

图解法

状态(x_k, y_k):16个格点

• 允许的状态:10个绿色格点

• 允许决策:移动1-2格

• K为奇数:只能向左下方移动

• k为偶数:只能向右上方移动

思考

建模的关键:将智力游戏转化为多部决策过程

- 如何有效利用计算机进行求解?
- 如何将解法推广到更多的人或更大的船?
- 这个解法能否解决其他问题?

怎样学习数学建模

学习数学建模

- 数学建模是技术与艺术的结合
- 磨练参与者思维深度与广度
- 锻炼参与者研究与实践的能力
- 从学习、分析、评价、改进前人的模型开始
- 亲自动手, 认真作几个项目

美国高中数学建模竞赛(HiMCM)

- 美国高中生数学建模竞赛(HiMCM)是美国数学及应用联合会(COMAP)主办的一项国际性的数学竞赛活动
- 网址: https://www.comap.com/highschool/contests/himcm/index.html
- 竞赛始于1999年,每年11月份举行,6月份开放注册
- 每队参赛选手将使用应用数学相关的知识来解决现实中的实际问题
- 为学生提供在作为团队成员竞赛中发挥特长的机会,从而激发和改善他们解 决问题和写作的能力

美国高中数学建模竞赛(HiMCM)

- 团队人数: 2-4 名
- 使用英语进行写作
- 比赛费用:\$100/team
- 比赛题量:1题,从Problem A和Problem B中任选一道进行答题
- 比赛题型:来源实际生活场景的问答题,用一定的数学模型解答后,形成一篇 论文提交
- 评分方式:根据文章的逻辑思维、解决问题方法的有效性、可行性和创新性等 对论文进行评分

为什么要参与数学建模竞赛

- 了解数学的意义与用途
- 锻炼逻辑思维与量化思维
- 体验研究式学习
- 提高编程能力
- 接触科技论文的写作

课程安排

每次以一个专题为主,介绍常见数学模型以及建模相关技能

- 初等模型:方程组,不等式
- 优化模型:找到问题的最优解
- 微分方程模型:研究数量随时间的变化
- 博弈论模型:探索多方博弈的最优方案
- 概率模型:研究具有随机性的问题
- 统计与机器学习模型:通过分析数据来找到规律
- 图模型:解决几何问题

课程安排

- 编程语言入门: 学习使用Python写一些简单的程序, 了解科学运算库
- 研究型学习的方法与技巧
- 科技论文写作指导
- 用LaTex生成数学公式和符号
- 图表的制作与展示
- 优秀论文赏析

课程计划(暂定)

2021年夏季学期课程规划-HiMCM数学建模

讲次	日期	星期	时间	课程内容	课时
1	6/5/2021	六	9:00 - 11:00	试听课	2
2	6/6/2021	日	9:00 - 11:00	Python语言入门	2
3	6/12/2021	六	9:00 - 11:00	初等模型	2
4	6/13/2021	日	9:00 - 11:00	优化模型	2
5	6/19/2021	六	9:00 - 11:00	数学语言写作指导	2
6	6/20/2021	日	9:00 - 11:00	博弈论模型	2
7	6/26/2021	六	9:00 - 11:00	概率模型	2
8	6/27/2021	日	9:00 - 11:00	统计模型	2

课程计划(暂定)

17 18	7/8/2021 7/9/2021	四五	9:00 - 11:00 9:00 - 11:00	待定 待定	2
16	7/7/2021	Ξ	9:00 - 11:00	建模实例练习	2
15	7/6/2021	Ξ	9:00 - 11:00	优秀论文赏析	2
14	7/5/2021	P <u></u>	9:00 - 11:00	图模型	2
13	7/4/2021	日	9:00 - 11:00	微分方程模型	2
12	7/3/2021	六	9:00 - 11:00	数据可视化	2
11	7/2/2021	五	9:00 - 11:00	机器学习模型 (二)	2
10	7/1/2021	四	9:00 - 11:00	机器学习模型 (一)	2
9	6/30/2021	Ξ	9:00 - 11:00	科技论文的阅读与写作	2

思考问题

- 1. 深圳一共有多少辆汽车?
- 2. 中国一共养殖了多少头牛?
- 3. 需要多少乒乓球可以装满一架波音747飞机?
- 4. 长方形的椅子能在不平的地面上放稳吗?