# Analiza porównawcza algorytmów minimalizacji stochastycznej PRS i GA w optymalizacji funkcji Ackleya i Alpine02

Adrian Krawczyk, Damian Chłus
30 stycznia 2025

#### Streszczenie

Niniejszy eksperyment przedstawia szczegółową analizę porównawczą efektywności algorytmów Pure Random Search (PRS) i Algorytmu Genetycznego (GA) w kontekście minimalizacji dwóch funkcji testowych: Ackleya i Alpine02. Przeprowadzono kompleksowe eksperymenty w przestrzeniach 2-, 10- i 20-wymiarowych, wykonując po 100 niezależnych prób dla każdej konfiguracji przy limicie 1000 ewaluacji funkcji. Wyniki wskazują na znaczącą przewagę GA w przypadku funkcji Ackleya, szczególnie w niższych wymiarach, podczas gdy dla funkcji Alpine02 algorytm PRS wykazał lepszą efektywność w wyższych wymiarach. Badanie dostarcza istotnych wskazówek dotyczących wyboru odpowiedniego algorytmu w zależności od charakterystyki problemu optymalizacyjnego.

## 1 Wprowadzenie

Optymalizacja funkcji wielowymiarowych stanowi fundamentalne wyzwanie w dziedzinie algorytmów obliczeniowych i sztucznej inteligencji. W praktyce często spotykamy się z problemami optymalizacyjnymi o różnej charakterystyce i złożoności, co wymaga odpowiedniego doboru metod optymalizacji. W niniejszym eksperymencie skupiamy się na porównaniu dwóch fundamentalnie różnych podejść:

- Pure Random Search (PRS) algorytm działa poprzez losowe generowanie punktów w przestrzeni poszukiwań. Każdy nowy punkt jest porównywany z dotychczas najlepszym znalezionym rozwiązaniem. Jeśli wartość funkcji celu w nowym punkcie jest niższa, aktualizujemy najlepsze znane rozwiązanie. Po zakończeniu iteracji wynik algorytmu stanowi wartość funkcji w ostatnio zarejestrowanym najlepszym punkcie.
- Algorytm Genetyczny (GA) metoda optymalizacji inspirowana mechanizmami ewolucji, takimi jak selekcja, krzyżowanie i mutacja. Proces rozpoczyna się od losowego wygenerowania początkowej populacji rozwiązań. Następnie każdemu rozwiązaniu przypisywana jest wartość funkcji celu, a najlepsze osobniki są wybierane do dalszej reprodukcji. Poprzez operacje genetyczne, takie jak krzyżowanie (łączenie cech dwóch rodziców) i mutacja (wprowadzanie losowych zmian), tworzone są nowe potencjalnie lepsze rozwiązania. Proces powtarza się przez określoną liczbę iteracji lub do osiągnięcia satysfakcjonującego wyniku.

Celem badania jest określenie efektywności obu metod w kontekście różnych funkcji testowych i wymiarowości przestrzeni rozwiązań, co ma istotne znaczenie praktyczne przy wyborze odpowiedniej metody optymalizacji dla konkretnych zastosowań.

# 2 Metodologia badań

### 2.1 Środowisko eksperymentalne

Wszystkie eksperymenty przeprowadzono w środowisku R, wykorzystując następujące biblioteki:

- smoof do implementacji funkcji testowych
- ecr do implementacji algorytmu genetycznego
- ggplot2 do wizualizacji wyników
- stats do analiz statystycznych

#### 2.2 Implementacja algorytmów

#### 2.2.1 Pure Random Search (PRS)

Implementacja PRS opiera się na następujących założeniach:

• Liczba ewaluacji funkcji celu: 1000

#### 2.2.2 Algorytm Genetyczny (GA)

Konfiguracja GA objęła następujące parametry:

- Wielkość populacji:  $\mu = 50$  osobników
- Liczba potomków:  $\lambda = 25$  w każdej generacji
- Operator mutacji: mutacja gaussowska z adaptacją do granic przestrzeni poszukiwań
- Kryterium stopu: 1000 ewaluacji funkcji celu

# 3 Funkcje testowe

#### 3.1 Funkcja Ackleya

$$f(\mathbf{x}) = -20 \exp\left(-0.2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$
 (1)



Rysunek 1: Wizualizacja funkcji Ackleya w 3D

#### Charakterystyka:

• Minimum globalne:  $f(\mathbf{0}) = 0$ 

• Dziedzina:  $x_i \in [-32.768, 32.768]$ 

• Wielomodalna z wieloma lokalnymi minimami

• Symetryczna względem początku układu współrzędnych

• Charakterystyczny kształt "igły w stogu siana"

### 3.2 Funkcja Alpine02

$$f(\mathbf{x}) = \prod_{i=1}^{n} \sqrt{x_i} \sin(x_i)$$
 (2)



Rysunek 2: Wizualizacja funkcji Alpine02 w 3D

#### Charakterystyka:

- Dziedzina:  $x_i \in [0, 10]$
- Złożona struktura z wieloma lokalnymi ekstremami
- Nieliniowa zależność między wymiarami
- Nieregularna powierzchnia

# 4 Wyniki eksperymentalne

| Funkcja  | Wymiar | Algorytm | Średnia                 | Oczekiwane Minimum | Mediana                 | Wartość p              | Bliżej Minimum |
|----------|--------|----------|-------------------------|--------------------|-------------------------|------------------------|----------------|
| Ackley   | 2D     | PRS GA   | $4.159 \\ 0.285$        | 0                  | 4.115<br>0.001          | $8.62 \times 10^{-46}$ | GA             |
| Ackley   | 10D    | PRS GA   | 18.115<br>8.743         | 0                  | 18.295<br>8.786         | $4.63 \times 10^{-68}$ | GA             |
| Ackley   | 20D    | PRS GA   | 19.829<br>10.953        | 0                  | 19.866<br>11.017        | $2.89 \times 10^{-82}$ | GA             |
| Alpine02 | 2D     | PRS GA   | -6.078<br>-6.129        | -6.1295            | -6.092<br>-6.130        | $4.52 \times 10^{-18}$ | GA             |
| Alpine02 | 10D    | PRS GA   | -793.323<br>-1814.709   | -23700.88          | -589.665<br>-1457.397   | $2.46 \times 10^{-10}$ | GA             |
| Alpine02 | 20D    | PRS GA   | -38843.84<br>-393902.27 | -722667254         | -12494.70<br>-161473.80 | $1.27 \times 10^{-5}$  | GA             |

## 4.1 Wykresy dla funkcji Ackleya



Rysunek 3: Wyniki dla funkcji Ackleya w przestrzeni 2D



Rysunek 4: Wyniki dla funkcji Ackleya w przestrzeni 10D



Rysunek 5: Wyniki dla funkcji Ackleya w przestrzeni 20D

### 4.2 Wykresy dla funkcji Alpine02



Rysunek 6: Wyniki dla funkcji Alpine02 w przestrzeni 2D



Rysunek 7: Wyniki dla funkcji Alpine02 w przestrzeni 10D



(a) Histogram 1 Ito (20D) (b) Histogram GA (20D) (c) I ofowname boxplot (2

Rysunek 8: Wyniki dla funkcji Alpine02 w przestrzeni 20D



Rysunek 9: Zbiorcze porównanie wyników dla wszystkich funkcji i wymiarów

### 5 Wnioski końcowe

#### 5.1 Analiza porównawcza metod

- Funkcja Ackleya: Algorytm Genetyczny (GA) konsekwentnie przewyższał PRS we wszystkich badanych wymiarach. W przestrzeni 2D osiągał wyniki bliskie minimum globalnemu, podczas gdy PRS utknął w płaskich regionach funkcji. W wyższych wymiarach (10D, 20D) GA zachował znaczną przewagę dzięki zdolności do systematycznej eksploracji przestrzeni.
- Funkcja Alpine02: GA wykazał lepszą efektywność we wszystkich analizowanych przypadkach. W 2D precyzyjnie lokalizował minima, podczas gdy PRS wykazywał większą wariancję wyników. W wymiarach 10D i 20D różnice w skuteczności stały się szczególnie wyraźne na korzyść GA.

### 5.2 Czynniki sukcesu GA

- Strategia mutacji z kontrolą adaptacyjną zapobiegała przedwczesnej zbieżności
- Równoległa ewaluacja populacji pozwalała na efektywne wykorzystanie budżetu obliczeniowego
- Zachowanie równowagi między eksploracją i eksploatacją przestrzeni rozwiązań

### 5.3 Ograniczenia PRS

- Brak mechanizmów uczenia się z historii poszukiwań
- Wrażliwość na wzrost wymiarowości przestrzeni (klątwa wymiarowości)
- Niska powtarzalność wyników w funkcjach o złożonej topologii
- Nieefektywne wykorzystanie informacji z poprzednich iteracji

### 5.4 Sugestie praktyczne

- Dla funkcji wielomodalnych (Ackley): GA powinien być preferowanym wyborem niezależnie od wymiarowości
- Dla funkcji o nieregularnej charakterystyce (Alpine02): Wymagana ostrożna konfiguracja parametrów GA
- PRS może pełnić rolę pomocniczą jako mechanizm restartów w hybrydowych podejściach
- W wysokich wymiarach zalecane zwiększenie liczby iteracji dla obu metod