Envariabelanalys Sammanfattning av definitioner och satser

Jacob Adlers

March 15, 2016

1 Funktioner

1.1 Definition

En funktion f är en regel som för varje element i en mängd, definitionsmängden av f, tilldelar ett unikt element i värdemängden av f.

1.2 Definition

Om f(x) är en funktion definerad på ett intervall I så säger vi att f(x) är:

- 1. Strängt växande på I om $\forall x_1, x_2 \in I$ $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$
- 2. Växande på I om $\forall x_1, x_2 \in I$ $x_2 > x_1 \Rightarrow f(x_2) \geq f(x_1)$
- 3. Strängt avtagande på I om $\forall x_1, x_2 \in I \quad x_2 > x_1 \Rightarrow f(x_2) < f(x_1)$
- 4. Avtagande på I om $\forall x_1, x_2 \in I$ $x_2 > x_1 \Rightarrow f(x_2) \leq f(x_1)$

1.3 Definition

Vi säger att f(x) är injektiv om $f(x_1) = f(x_2 \Rightarrow x_1 = x_2)$.

1.4 Sats (Bevis sid 51)

$$cos(s-t) = cos(s)cos(t) + sin(s)sin(t)$$

1.5 Sats

Om f(x) är både jämn och udda då är $f(x) = 0 \quad \forall x$

1.6 Sats

Om p(x) är ett polynom och p(a) = 0 så finns det ett polynom q(x) sådant att p(x) = q(x)(x-a)

2 Gränsvärden

2.1 Definition

Vi säger att f(x) går mot $L \in \mathcal{R}$ när x går mot o
ändligheten $(f(x) \to L$ då $x \to \infty$ $\lim_{x \to \infty} f(x) = L)$.

Det gäller om det $\forall \varepsilon>0$ existerar ett R_ε sådant att om $x>R_\varepsilon$ så $|f(x)-L|<\varepsilon$

2.2 Definition

Vi säger att en funktion f(x) går mot L då x går mot a om det $\forall \varepsilon > 0$ existerar ett $\delta_{\varepsilon} > 0$ sådant att $0 < |x - a| < \delta_{\varepsilon}$. Det medför att $|f(x) - L| < \varepsilon$

2.3 Definition??

$$\lim_{x \to a^+} f(x) = L$$

2.4 Sats

- 1. $\lim_{x \to \infty} \frac{\log_a(x)}{x^{\alpha}} = 0 \quad \forall \alpha > 0$
- 2. $\lim_{x \to \infty} \frac{x^{\alpha}}{a^x} \quad \forall a > 1, \alpha \in \mathcal{R}$

3 Kontinuitet

3.1 Definition

Vi säger att en funktion f(x) är kontinuerlig i en inre punkt c av sitt definitionsområde om $\lim_{x\to c} f(x) = f(c)$

3.2 Definition

Vi säger att f(x) är vänster/(höger)-kontinuerlig i en punkt c om: $\lim_{x\to c^-} f(x) = f(c)$ $(\lim_{x\to c^+} f(x) = f(c))$

3.3 Sats

Om f(x) och g(x) är kontinuerliga så kommer f(x)+g(x), f(x)-g(x), f(x)g(x) och f(g(x)) att vara kontinuerliga där de är definerade.

3.4 Sats

Om f(x) är kontinuerlig på ett slutet och begränsat intervall [a,b] då kommer det att finnas två punkter $p,q\in [a,b]$ sådant att $f(p)\leq f(x)\leq f(q) \quad \forall x\in [a,b]$

3.5 Sats om mellanliggande värden

Om f(x) är kontinuerlig på [a,b] och om s ligger mellan f(a) och f(b) då finns det ett $x \in [a,b]$ sådant att f(x) = s

4 Derivata

4.1 Definition

Vi säger att derivatan av en funktion f(x) ges av $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ om gränsvärdet existerar.

4.2 Definition

Om f(x) är deriverbar i punkten x_0 så är linjen $y = f'(x_0)(x - x_0) + f(x_0)$ tangenten till f(x) i x_0 .

4.3 Sats

Om f(x) och g(x) är deriverbara så gäller följande:

- 1. $D(f(x)) \stackrel{+}{=} g(x)$ (Summaregeln)
- 2. D(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) (Produktregeln)
- 3. $D(\frac{f(x)}{g(x)}) = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$ (Kvotregeln) Om $g(x) \neq 0$

4.4 Sats

Om en funktion g(x) är deriverbar i x_0 så är g(x) kontinuerlig i x_0 . Alltså, g(x) deriverbar $\Rightarrow g(x)$ kontinuerlig.

4.5 Sats

- 1. Dx = 1
- $2. Dx^r = rx^{r-1} \quad r \in \mathcal{R}$
- 3. $D\sin(x) = \cos(x)$
- 4. $D\cos(x) = -\sin(x)$

4.6 Medelvärdessatsen

Om f(x) är kontinuerlig på ett intervall [a,b] och f(x) är deriverbar på (a,b) då finns en punkt $c \in (a,b)$ så att: $\frac{f(b)-f(a)}{b-a} = f'(c)$

4.7 Följdsats till medelvärdessatsen

Antag att f'(x) > 0 på (a, b). Då är f(x) strängt växande på samma intervall.

5 Differentialekvationer

5.1 Definition

Vi säger att $y_h(x)$ är en homogen lösning om $y''_h(x) + ay'_h(x) + by_h(x) = 0$

5.2 Definition

Vi säger att $y_p(x)$ är en partikulärlösning till y''(x) + ay'(x) + by(x) = f(x) om $y_p(x)$ är någon funktion som uppfyller ekvationen.

5.3 Lösningsstrategi

$$y''(x) + ay'(x) + by(x) = f(x), \quad y(x_0) = \alpha, \quad y'(x_0) = \beta$$

- 1. Hitta alla homogena lösningar $y_h(x)$
 - (a) Hitta rötterna till det karakteristiska polynomet $r^2 + ar + b = 0 \Rightarrow r_1, r_2 = -\frac{a}{2} \pm \sqrt{(\frac{a}{2})^2 b}$
 - (b) i. Om $r_1 \neq r_2$ och $r_1, r_2 \in \mathcal{R}$ då är: $y_h(x) = Ce^{r_1x} + De^{r_2x}$ för några $C, D \in \mathcal{R}$
 - ii. Om $r_1=r_2$ och $r_1,r_2\in\mathcal{R}$ då är: $y_h(x)=Cxe^{r_1x}+De^{r_1x}$ för några $C,D\in\mathcal{R}$
 - iii. Om $r_1, r_2 = k \pm i\omega$ då är: $y_h(x) = Ce^{kx}\sin(\omega x) + De^{kx}\cos(\omega x) \text{ för några } C, D \in \mathcal{R}$
- 2. Om $f(x) \neq 0$ gissa en partikulärlösning enligt tabellen och bekräfta den.

f(x)	Gissning av y_p
Konstant	$y_p = \text{Konstant}$
Polynom	$y_p = \text{Polynom av samma grad}$
$e^{\lambda x}$	$y_p = Ae^{\lambda x}$
$e^{\mu x}\sin(\lambda x)$ eller $e^{\mu x}\cos(\lambda x)$	$y_p = Ae^{\mu x}\sin(\lambda x) + Be^{\mu x}\cos(\lambda x)$

Om gissningen är en homogen lösning så multiplicera den partikulära lösningen med x alternativt x^2 om multiplikation med x också är en homogen lösning. Kombination av f(x) ger kombination av gissningar enligt tabellen ovan.

3. Ansätt $y(x) = y_h(x)(+y_p(x))$ och beräkna C och D genom att använda initialdatan. Vi får då ett linjärt ekvationsystem på formen:

$$\begin{cases} y(x_0) = \alpha \\ y'(x_0) = \beta \end{cases}$$