

UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA CENTRO UNIVERSITARIO DE JALAPA FACULTAD DE INGENIERIA

Alumno/a: Esvin Giovanni Gonzalez de la Cruz	Carné: 0907-22-12653
--	----------------------

Asignatura:	Algebra Lineal	Código:	0907-007	Semestre:	Segundo	
Ciclo:	Segundo				Tarea 4	
Catedrático:				Ia	rea 4	

Espacios Vectoriales

Resuelva los ítems que se le presentan a continuación a mano o en cualquier herramienta digital.

1. Pruebe con los Axiomas si el conjunto de vectores V en R^2 es un espacio vectorial Real. V = $\{(x, y) / y = -3x\} \forall x, y \in R^2$

No es un espacio vectorial real porque no cumple con adición multiplicación

2. Pruebe con los Axiomas si el conjunto de vectores V en R^2 es un espacio vectorial Real. $V = \{(x, y) / y = -3x + 1\} \ \forall x,y \in R^2$

No es un espacio vectorial real porque no cumple con adición multiplicación

3. Pruebe con los Axiomas si el conjunto de vectores V en R^2 es un espacio vectorial Real. V = $\{(x,y) / \forall (x,y) \in R^2 \}$

Definida por:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2 + 1, y_1 + y_2 + 1)$$

 $\alpha(x,y) = (\alpha + \alpha x - 1, \alpha + \alpha y - 1)$

4. Sean A = $\{ (1,a) / a \in R \}$, el cuerpo o campo de los reales, la adición y multiplicación por un escalar definidas por:

$$(1, a) + (1, b) = (1, a + b)$$
 $\forall (1, a), (1, b) \in A$ $\alpha(1, a) = (1, \alpha a)$ $\forall \alpha \in R$

Determine si el conjunto A es un espacio vectorial sobre R.

1) (1, a) +	(1b) F E				
	BIEA				
	mple Comp	le			
2) ((1,0)+	(1,60)+(1,0)=(1,	a)+ ((1,b)+(1,c))	
(1,a)	b) + (1,c)	= (1.0)) + (1, b+c		
	(1,0+b+c	(1) = (1, 1)	athtic)	Cumple	Н
3) (1,0)+(4)3 (1,0	DEA (1, e) + (1, a) =	(1,0)
	(6) = (1,	6+0)		1 (1-1-2) (1)	
	Cumple		Existe Co	mple (1.0+a) = (1,0 0) EA (2=0	13
5) H (1,1)	CALCINI	(11)-(10)	0+0,	OFF C-O	
071 (1,17	(10)	(i) = (10)	6)00	(1,a) EA	
i = C1	(1,a+	-a Existe		(1,00) EA	
				Cumple	
7) × ((1,0)+(16))=	d (1,0) to	(1,6)		
0 (1	atb) =	(1,00)+(1	db)		
L'AC	(a+b) =	(1x (atb)	3		
			9) 0	(B(10))=(xB)(10	0
8)(2+B)((1,6)	(1,0) = ox (1,a)+B(1,0) 0	(1,80) = (1,x80)	
(1, Cd.	(1,0) = (1,0	xa)+C!Ba		1, x Ba) = (1x Ba)	
	- ()	aut buy		Comple	
Cun	1910 = C3	(dipid)			
				A 15 un Espacio	
10)	3 X ER) & C1,0	1) = (1,0)	Vectorial Sobre	
	∃ X € R Exis	(1,00) = (7,0)	105 R	
	LX15	ite a	-		

5. Determine si el conjunto $A = \{ x / x \in R^+ \}$ y las operaciones de adición y multiplicación por un escalar definidas por:

$$x + y = xy$$
 $\forall x,y \in R^+$
 $\alpha x = x^{\alpha}$ $\forall \alpha \in R$
es un espacio vectorial.

DXTYEA	X= O + X A 3 O E (+
Cumple	Existe $\bar{0} \times \bar{0} = X$
(x+y)+z = x+(y+z)	
$\begin{array}{cccc} xy+z &=& x+yz \\ xyz &=& xyz \\ \text{Comple} \end{array}$	5) $\exists i \in A \mid X + i = 7$ $Xi = 1$ Existe $i = \frac{1}{X}$
$\begin{array}{c} x + y = y + x \\ xy = yx \end{array}$	6) (XX) E A XX E A Comple
Comple $ \begin{array}{l} (x + y) = \alpha x + \alpha y \\ (x + y) = x + y \\ (x + y) = x + y \\ (x + y) = (x + y) \\ (x + y) = (x + y) = (x + y) = (x + y) \\ (x + y) = (x + y) = (x + y) = (x + y) \\ (x + y) = (x + y) = (x + y) = (x + y) = (x + y) \\ (x + y) = (x$	8) (\alpha + \beta) \times = \alpha \times + \beta \times \times \alpha \times + \times \beta = \times \alpha \times \beta = \times \beta \times \beta \times \beta = \times \beta \times \beta = \times \beta \times \beta = \times \beta \times \beta \times \beta = \times \beta \times \beta \times \beta \times \beta = \times \beta \times \beta \times \beta \times \beta \times \beta \times \beta \times \beta = \times \beta \t
q) $\propto (BX) = (\propto B) X$ $\propto (XB) = X^{\alpha B}$ $(XB)^{\alpha} = X^{\alpha B}$ $(XB)^{\alpha} = X^{\alpha}$	$10) \exists x \in \mathbb{R} \mid x = x$ $x = x$ $x = 1$ Existe
A es un Espa	acio Vectorial

6. Sea el conjunto V = {0}. Determine si V es un espacio vectorial sobre el campo o cuerpo K si la operación adición en V y la multiplicación de un vector por un escalar se definen como:

$$0 + 0 = 0$$

 $\alpha 0 = 0 \quad \forall \alpha \in K$

- 7. Determine si V = {1} un espacio vectorial.No es un espacio vectorial real porque no cumple con adición multiplicación
- **8.** Determine si $V = \{(x, y) / y = mx, donde m es un número real fijo <math>y x \in R\}$ es un espacio vectorial.

No es un espacio vectorial real porque no cumple con adición multiplicación

V consiste en todos los puntos que están sobre la recta y = mx que pasa por el origen y tiene pendiente m.

Ing. M.A. Samuel de Jesús García Docente de Algebra Lineal