Robust Stability for MIMO systems

Jan-Willem van Wingerden

Delft Center for Systems and Control Delft University of Technology J.W.vanWingerden@TUDelft.nl

SC42145, 2024/25

Previous lecture we introduced an uncertainty block Δ .

For MIMO systems it is of interest to consider several Δ_i 's

Approach: We collect all the uncertainties in a big block diagonal uncertainty block:

$$\Delta = egin{bmatrix} \Delta_1 & & & & \\ & \ddots & & \\ & & \Delta_i & & \\ & & & \ddots & \\ & & & \ddots & \\ & & & & \ddots & \\ \end{pmatrix}$$

If we now pull out all the uncertainties and controller:

Useful for controller synthesis

Previous lecture we introduced an uncertainty block Δ .

For MIMO systems it is of interest to consider several Δ_i 's

Approach: We collect all the uncertainties in a big block diagonal uncertainty block:

$$\Delta = egin{bmatrix} \Delta_1 & & & & \\ & \ddots & & \\ & & \Delta_i & & \\ & & & \ddots & \\ & & & \ddots & \\ & & & & \ddots & \\ \end{pmatrix}$$

If we now pull out all the uncertainties: Δu W

Previous lecture we introduced an uncertainty block Δ .

For MIMO systems it is of interest to consider several Δ_i 's

Approach: We collect all the uncertainties in a big block diagonal uncertainty block:

$$\Delta = egin{bmatrix} \Delta_1 & & & & \\ & \ddots & & \\ & & \Delta_i & & \\ & & & \ddots & \\ & & & \ddots & \\ & & & & \ddots & \\ \end{pmatrix}$$

If we now pull out all the uncertainties:

Useful for RS

Example

Suppose we have the following SISO system:

$$\dot{x} = \underbrace{\begin{bmatrix} -(1+k) & 0 \\ 1 & -(1+k) \end{bmatrix}}_{A_p} x + \underbrace{\begin{bmatrix} \frac{1-k}{k} \\ -1 \end{bmatrix}}_{B_p} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

where $k = 0.5 + 0.1\delta$ where $|\delta| < 1$.

Example

Suppose we have the following SISO system:

$$\dot{x} = \underbrace{\begin{bmatrix} -(1+k) & 0 \\ 1 & -(1+k) \end{bmatrix}}_{A_p} x + \underbrace{\begin{bmatrix} \frac{1-k}{k} \\ -1 \end{bmatrix}}_{B_p} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

where $k = 0.5 + 0.1\delta$ where $|\delta| < 1$.

Example (cont'd)

Observe:

- We have a diagonal block uncertainty
- We have considered a SISO system
- There is more structure all the $\delta's$ are the same

Generalization

- For every Δ_i we have $\overline{\sigma}(\Delta_i(j\omega)) \leq 1 \forall \omega$
- Due to diagonal structure $||\Delta||_{\infty} \leq 1$
- Remember that Δ has structure, so we don't allow all Δ 's
- Therefore we will introduce in this lecture the structured singular value, μ
- μ can directly be used for analysis
- μ can be used for synthesis (solving a couple of scaled H_{∞} problems)

The representation of parametric uncertainty carries straight over to MIMO systems

Unstructured perturbations are often used to get a simple uncertainty model. One uncertainty source is considered to be full. For example:

Additive uncertainty: Π_A : $G_p = G + w_A \Delta_A$

For SISO lump uncertainties in a single complex uncertainty. For MIMO?

The representation of parametric uncertainty carries straight over to MIMO systems

Unstructured perturbations are often used to get a simple uncertainty model. One uncertainty source is considered to be full. For example:

Multiplicative input uncertainty: Π_I : $G_p = G(I + w_I \Delta_I)$

For SISO lump uncertainties in a single complex uncertainty. For MIMO?

The representation of parametric uncertainty carries straight over to MIMO systems

Unstructured perturbations are often used to get a simple uncertainty model. One uncertainty source is considered to be full. For example:

Multiplicative output uncertainty: $\Pi_O: G_p = (I + w_O \Delta_O)G$

For SISO lump uncertainties in a single complex uncertainty. For MIMO?

The representation of parametric uncertainty carries straight over to MIMO systems

Unstructured perturbations are often used to get a simple uncertainty model. One uncertainty source is considered to be full. For example:

Inv. additive uncertainty: Π_{iA} : $G_p = G(I - w_{iA}\Delta_{iA}G)^{-1}$

For SISO lump uncertainties in a single complex uncertainty. For MIMO?

The representation of parametric uncertainty carries straight over to MIMO systems

Unstructured perturbations are often used to get a simple uncertainty model. One uncertainty source is considered to be full. For example:

Inv. multiplicative input uncertainty: Π_{iI} : $G_p = G(I - w_{iI}\Delta_{iI})^{-1}$

For SISO lump uncertainties in a single complex uncertainty. For MIMO?

The representation of parametric uncertainty carries straight over to MIMO systems

Unstructured perturbations are often used to get a simple uncertainty model. One uncertainty source is considered to be full. For example:

Inv. multiplicative output uncertainty: Π_{iO} : $G_p = (I - w_{iO}\Delta_{iO})^{-1}G$ For SISO lump uncertainties in a single complex uncertainty.

For MIMO?

SISO vs MIMO uncertainty descriptions (cont'd)

You can but, uncertainty set becomes bigger

Example: We consider the following unstructured input uncertainty: $G_p = G(I + E_I)$

We can simply apply the SISO approach to find a multiplicative input uncertainty description:

$$l_I(\omega) = \max_{E_I} \overline{\sigma} \left(G^{-1} \left(G_p - G \right) \right) = \max_{E_I} \overline{\sigma} \left(E_I \right)$$

We can simply apply the SISO approach to find a multiplicative output uncertainty description:

$$l_O(\omega) = \max_{E_I} \overline{\sigma} \left((G_p - G) G^{-1} \right) = \max_{E_I} \overline{\sigma} \left(G E_I G^{-1} \right)$$

For SISO $l_O = l_I$ for MIMO $l_O \sim \gamma l_I$ where γ is the condition number.

Note that if $l_I(\omega)$ or $l_O(\omega)$ is above 1 the system can basically not be controlled at that frequency.

Input uncertainty

Input uncertainty comes from: amplifier dynamics, signal converter

The physical input to the system is $m_i = h_i(s)u_i$ (typically decoupled for every channel i)

The known dynamics is typically absorbed in the plant model but the uncertainty can easily be presented by a multiplicative uncertainty: $h_{pi}(s) = h_i(s)(1 + w_{Ii}(s)\delta_s(s)), \quad |\delta_i(j\omega)| \le 1, \forall \omega$

Combining this leads to: $G_p = G(I + W_I \Delta_I)$ where both W_I and Δ_I are diagonal matrices (Typically w_{Ii} is given by $\frac{\tau s + r_o}{\tau s + 1}$)

Diagonal input uncertainty should always be considered:

- It is always present in a real system
- It often restricts the performance with MIMO control

Obtaining P, N, and M

Representing Uncertainty for MIMO

$$M: [y_{\Delta}] = [-W_I KG(I + KG)^{-1}][u_{\Delta}]$$

Use N=lft (P, K) and M=lft (Δ , N) to generate systems

Question

Given:
$$\frac{y}{u}=\frac{s+a}{s+b}=G(s)$$
 Find P such that $F_l\left(P,\begin{bmatrix} a & 0 \\ 0 & b\end{bmatrix}\right)=G(s)$

Definition robust stability and performance

We have the $N\Delta$ structure (unstructured Δ block):

$$\begin{array}{ll} N: & \begin{bmatrix} y_{\Delta} \\ z \end{bmatrix} = \begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix} \begin{bmatrix} u_{\Delta} \\ w \end{bmatrix} \end{array}$$

$$F_u(N, \Delta) \triangleq N_{22} + N_{21}\Delta(I - N_{11}\Delta)^{-1}N_{12}$$
 (e.g. $F_u(N, \Delta) = W_P S_p$)

NS: N is internally stable

NP: $||N_{22}||_{\infty} < 1$ and **NS**

RS: $F_u(N, \Delta)$ is stable for all Δ , $||\Delta||_{\infty} \leq 1$ and **NS**

RP: $||F_u(N,\Delta)||_{\infty} < 1$ for all Δ , $||\Delta||_{\infty} \le 1$ and **NS**

Robust stability of the $M\Delta$ structure

$$F_u(N,\Delta) \triangleq N_{22} + N_{21}\Delta (I-N_{11}\Delta)^{-1}N_{12}$$
 we assume **NS** $(N_{11},\,N_{21},\,N_{12},\,$ and N_{22} stable)

We also assume Δ to be stable

We have **RS** if $(I - M\Delta)^{-1}$ is stable with $M = N_{11}$

Remember generalized Nyquist theorem:

- The $det(I M\Delta)$ will not encircle the point 0, $\forall \Delta$
- $\det(\mathbf{I} \mathbf{M}\Delta) \neq 0, \forall \Delta, \forall \omega$
- $\lambda_i(M\Delta) \neq 1, \forall i, \Delta, \forall \omega$

Remember: $\det(I\lambda_i - M\Delta) = 0$ characteristic polynominal $M\Delta$ and λ_i eigenvalues of $M\Delta$

RS: $\rho(M\Delta(j\omega)) < 1$, $\forall \omega, \forall \Delta$ (or $\max_{\Delta} \rho(M\Delta(j\omega)) < 1$, $\forall \omega$)

Robust stability of the $M\Delta$ structure: complex unstructured uncertainty

Now we assume that Δ is allowed to be any (full) complex transfer function with $||\Delta||_{\infty} \leq 1$ (Unstructured uncertainty). For this case the following equality holds:

$$\max_{\Delta} \rho(M\Delta) = \max_{\Delta} \overline{\sigma}(M\Delta) = \max_{\Delta} \overline{\sigma}(\Delta) \overline{\sigma}(M) = \overline{\sigma}(M)$$

Sketch of proof: We know that:

 $\max_{\Delta} \rho(M\Delta) \leq \max_{\Delta} \overline{\sigma}(M\Delta) \leq \max_{\Delta} \overline{\sigma}(\Delta) \overline{\sigma}(M) = \overline{\sigma}(M)$

- \Rightarrow For every M there exists a Δ' such that $\rho(M\Delta') = \overline{\sigma}(M)$
- $\Rightarrow \Delta' = VU^H$ where $M = U\Sigma V^H$
- $\Rightarrow \max_{\Delta} \rho(U\Sigma U^H) = \max_{\Delta} \overline{\sigma}(U\Sigma U^H) = 1 \times \overline{\sigma}(U\Sigma V^H) = \overline{\sigma}(U\Sigma V^H)$

RS: $\overline{\sigma}(M) < 1$, $\forall \omega$ (or $||M||_{\infty} < 1$)

Application of the unstructured RS condition

Remember all the six uncertainty structures and redefine $E = W_2 \Delta W_1$, with $||\Delta||_{\infty} < 1$.

We now isolate the perturbations to obtain $M = W_1 M_0 W_2$

We now have:

•
$$G_p = G + E_A$$
: $M_o = K(I + GK)^{-1} = KS$

•
$$G_p = G(I + E_I)$$
: $M_o = K(I + GK)^{-1}G = T_I$

•
$$G_p = (I + E_O)G$$
: $M_o = GK(I + GK)^{-1} = T$

RS:
$$||W_1 M_o W_2||_{\infty} < 1$$

Multiplicative Input uncertainty (scalar weight): $||w_I T_I||_{\infty} < 1$

Robust stability with structured uncertainty

Structured uncertainty: **RS** if $\overline{\sigma}(M) < 1$, $\forall \omega$ (note if and not iff)

We introduce scaling: $D = diag\{d_iI_i\}$

New $M:DMD^{-1}$

The following should also hold: **RS** if $\overline{\sigma}(DMD^{-1}) < 1$, $\forall \omega$

To obtain the least conservative **RS** condition: **RS** if $\min_{D(\omega) \in \mathcal{D}} \overline{\sigma}(D(\omega)M(j\omega)D(\omega)^{-1}) < 1, \forall \omega$

μ -The structured singular value

The structured singular value is a generalization of the maximum singular value (also μ , Mu, mu, SSV)

Find the smallest structured Δ (measured in terms of $\overline{\sigma}(\Delta)$) which makes the matrix $I - M\Delta$ singular; then $\mu(M) = 1/\overline{\sigma}(\Delta)$

Or:
$$\frac{1}{\mu(M)} \triangleq \min_{\Delta} \{ \overline{\sigma}(\Delta) | \det(\mathbf{I} - \mathbf{M}\Delta) = 0 \text{ for structured } \Delta \}$$

$$\frac{\mathsf{Or:}}{1} \frac{1}{\mu(M)} \triangleq \min\{k_m | \det(\mathbf{I} - \mathbf{k_m} \mathbf{M} \Delta) = 0 \quad \text{for} \quad \text{structured} \quad \overline{\sigma}(\Delta) \leq 1\}$$

Small μ is good, large μ bad

The scalar μ gives a measure instead of yes/no condition.

The scalar μ depends on M and the structure of Δ .

μ-The structured singular value (cont'd)

Remember: **RS** if
$$\det(I - M\Delta(j\omega)) \neq 0$$
, $\forall \omega, \forall \Delta, \overline{\sigma}(\Delta(j\omega)) \leq 1$

Note that this is a yes or no condition

Find the smallest k_m such that $\det(I - k_m M \Delta(j\omega)) = 0$

From the definition of μ we have $\mu = \frac{1}{k_m}$ and allowing structured uncertainty

RS iff
$$\mu(M(j\omega)) < 1$$
, $\forall \omega$

μ -The structured singular value (cont'dd)

Some properties (assuming complex perturbations):

- **2** For a scalar α it holds that $\alpha \mu(M) = \mu(\alpha M)$
- **o** For $\Delta = I\delta$ (δ a complex scalar) it holds that $\mu(M) = \rho(M)$
- For a full complex Δ it holds that $\mu(M) = \overline{\sigma}(M)$
- In general it holds that $\rho(M) < \mu(M) < \overline{\sigma}(M)$
- **o** Consider $\Delta D = D\Delta$ it holds that $\mu(DMD^{-1}) = \mu(M)$
- Upper bound: $\mu(M) < \overline{\sigma}(DMD^{-1})$ (using 5 and 6)

Remarks: In practice a really tight bound and a convex problem

Example 8.9:

$$G = \frac{1}{\tau s + 1} \begin{bmatrix} -87.8 & 1.4 \\ -108.2 & -1.4 \end{bmatrix}, K = \frac{1 + \tau s}{s} \begin{bmatrix} -0.0015 & 0 \\ 0 & -0.075 \end{bmatrix}, w_I = \frac{s + 0.2}{0.5s + 1}$$

RS if $\sigma(M(j\omega)) < 1$, $\forall \omega$ or for this example if $\overline{\sigma}(T_I) < \frac{1}{|w_I|} \quad \forall \omega$

RS iff $\mu(M(j\omega)) < 1$, $\forall \omega$ or for this example iff $\mu(T_I) < \frac{1}{|w_I|} \quad \forall \omega$

Example 8.9 (cont'd):

NS: N internally stable

NP: $\overline{\sigma}(N_{22}) < 1 \quad \forall \omega \text{ and NS}$

RS: $\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega$ and **NS**

NS: N internally stable

NP: $\overline{\sigma}(N_{22}) < 1 \quad \forall \omega \text{ and NS}$

RS: $\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega$ and **NS**

NS: N internally stable

NP: $\overline{\sigma}(N_{22}) < 1 \quad \forall \omega \text{ and NS}$

RS: $\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega \text{ and NS}$

NS: N internally stable

NP: $\overline{\sigma}(N_{22}) < 1 \quad \forall \omega \text{ and NS}$

RS: $\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega$ and **NS**

