Key Truth: Reduction Works on BOTH Saturated and Non-Saturated Sets

You can use reduction on ANY set - the saturation property doesn't determine whether reduction works.

Method Selection Rules:

For NON-SATURATED Sets:

- Must use direct reduction (K \leq m A or $\overline{K} \leq$ m A)
- Cannot use Rice's theorem (only applies to saturated sets)
- Cannot use Rice-Shapiro (only applies to saturated sets)

For SATURATED Sets:

- Can use Rice's theorem (easiest for non-recursiveness)
- Can use Rice-Shapiro (for r.e. classification)
- Can still use direct reduction (always works, but more work)

Examples from Your Materials:

Non-Saturated Set (must use reduction):

- $A = \{x \mid x^2 \in Ex\} \leftarrow Your example$
- K = {x | φx(x) ↓} ← Classic halting set
- {x | program x has length ≤ 10}

Saturated Set (multiple options):

- A = {x | φx total}
 - Easy way: Rice's theorem → not recursive
 - **Hard way**: Direct reduction K ≤m A

Strategic Decision Tree:

The Pattern Recognition:

- Index-dependent conditions (like x², x ∈ Wx, φx(x) = x) → Usually non-saturated → Reduction required
- Pure function properties (like φx total, Wx infinite) → Usually saturated → Rice theorems available

Bottom line: Reduction is the universal tool that works everywhere, but Rice theorems are shortcuts that only work on saturated sets. When you see non-saturated sets, reduction becomes your only option.

Strategic Method Selection:

Primary Decision Rule:

When to Use Reduction on Saturated Sets:

Use reduction only when Rice theorems don't fit:

- 1. Rice gives wrong conclusion
 - Example: Need to prove A is r.e., but Rice only tells you "not recursive"
- 2. Rice-Shapiro is too complex
 - Sometimes direct reduction K ≤m A is cleaner than finding finite subfunctions
- 3. Need specific r.e. status
 - Want to show A is r.e. but Ā is not r.e.
 - Rice-Shapiro might require tricky finite subfunction analysis
- 4. Emergency backup
 - Can't remember Rice theorem conditions precisely
 - Reduction construction is clearer to you

Exam Time Management:

DON'T use reduction as double-check because:

- Wastes precious exam time (5-10 minutes)
- Rice theorems are faster and less error-prone
- Double-checking doesn't add points

DO use this priority:

- 1. **Non-saturated?** → Reduction (forced)
- 2. **Saturated?** → Rice/Rice-Shapiro (default choice)
- 3. Rice doesn't work? → Fall back to reduction

Example Decision Process:

Set $A = \{x \mid \varphi x \text{ total}\}$

- Saturated? YES √
- Rice applicable? YES \rightarrow A \neq Ø, A \neq N, non-trivial semantic property
- Conclusion: Not recursive (done in 30 seconds)
- No need for reduction!

Set B = $\{x \mid x^2 \in Ex\}$

- Saturated? NO X (index-dependent)
- Must use reduction: K ≤m B
- No choice but reduction

Bottom Line: Use reduction when forced (non-saturated) or when Rice methods fail, but not as routine double-checking. Save time for other problems!