

CSCE 580: Introduction to Al

Lecture 16 Machine Learning – NN, DL

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 10TH OCT, 2024

Carolinian Creed: "I will practice personal and academic integrity."

Credits: Copyrights of all material reused acknowledged

CSCE 580, 581 - FALL 2023

1

Organization of Lecture 16

- Introduction Segment
 - Recap of Lecture 16
- Main Segment
 - Neural Networks
 - Deep Learning
 - Trust Issues
 - Adversarial Attacks
- Concluding Segment
 - Course Project Discussion
 - About Next Lecture Lecture 17
 - Ask me anything

Introduction Section

Recap of Lecture 18

- Topic discussed
 - Trust/ Explanations, LIME Recap
 - Unsupervised ML Algorithms

Intelligent Agent Model

Relationship Between Main Al Topics

Where We Are in the Course

CSCE 580/581 - In This Course

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2-3: Data: Formats, Representation and the Trust Problem
- Week 4-5: Search, Heuristics Decision Making
- Week 6: Constraints, Optimization Decision Making
- Week 7: Classical Machine Learning Decision Making, Explanation
- Week 8: Machine Learning Classification
- Week 9: Machine Learning Classification Trust Issues and

Mitigation Methods

- Topic 10: Learning neural network, deep learning, Adversarial attacks
- Week 11: Large Language Models Representation, Issues
- Topic 12: Markov Decision Processes, Hidden Markov models Decision making
- Topic 13: Planning, Reinforcement Learning Sequential decision making
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 Safe AI/ Chatbots

Main Section

Credit: Retrieved from internet

Machine Learning – Insights from Data

- Descriptive analysis
 - Describe a past phenomenon
 - Methods: classification (feedback from label), clustering, dimensionality reduction, anomaly detection, <u>neural methods</u>, reinforcement learning (feedback from hint/ reward)
- Predictive analysis
 - Predict about a new situation
 - Methods: time-series, neural networks
- Prescriptive analysis
 - What an agent should do
 - Methods: simulation, reinforcement learning, reasoning

- New areas
 - Counterfactual analysis
 - Causal Inferencing
 - Scenario planning
 - Representation learning

Neural Network Methods

Model Depth and Learning Ability

(a) A shallow model, such as linear regression, has short computation paths between inputs and output. (b) A decision list network has some long paths for some possible input values, but most paths are short. (c) A deep learning network has longer computation paths, allowing each variable to interact with all the others.

Adapted from:

Russell & Norvig, Al: A Modern Approach

Node (Unit) of a NN

- Notations and meanings
 - a_i: output of a unit j
 - $w_{i,j}$: weight of link from unit i to unit j
 - $a_{j=} g_{j}$ (Σ $w_{i,j} a_{i}$), where g_{j} is a nonlinear activation function
- $a_{j} = g_{j}$ ($\mathbf{w}^{T} \mathbf{x}$), where \mathbf{w} is vector of weights leading into unit j and \mathbf{x} is the inputs to unit j

Popular Activation Functions

- Logistics or sigmoid function: $\sigma(x)$ = 1/(1 + e^{-x})
- ReLU (rectified linear unit): max (0, x)
- Softplus function: log(1 + e^x)
 - Smooth version of ReLU
- $tanh(x) = (e^{2x} 1) / (e^{2x} + 1)$
 - Scaled and shifter version of sigmoid; $tanh(x) = 2\sigma(2x) 1$

a) the logistic or sigmoid function

Adapted from:

Russell & Norvig, AI: A Modern Approach

Note: All activation functions are non-linear

Loss functions

Mean squared error

$$MSE = \frac{1}{n} \sum_{j=1}^{n} [f(X_{j.}) - y_j]^2$$

Categorical Cross Entropy

$$Cost = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} [y_{ij} log(\hat{y}_{ij})]$$

k is classes,y = actual value**Ŷ** = prediction

More loss functions:

https://www.analyticsvidhya.com/blog/2022/06/understanding-loss-function-in-deep-learning/

NN – Multi Layer Perceptron

Content and Image Courtesy:

https://github.com/Thanasis1101/MLP-from-scratch

(Stochastic) Gradient Descent

Gradient Descent

w ← any point in the parameter space

While not converged do:

For each w_i in **w** do:

 $w_i \leftarrow w_i - \alpha \ (\underline{\partial} / \underline{\partial} w_i) \text{ Loss } (\mathbf{w})$

Calculate the gradient of the loss function with respect to the weights along the gradient direction to reduce the loss.

Stochastic Gradient Descent (SGD)

Randomly select a small number of training examples at each step

Sources:

- https://en.wikipedia.org/wiki/Stochastic_gradient_descent
- Russell & Norvig, AI: A Modern Approach, Chapter 19

Logistic Regression in a Slide

Function estimate (linear)

W: weight, b: bias

$$f(X_j) = X_j W + b$$

Update Weight

$$W^* = W - \eta \frac{dL}{dW}$$

Error Term (mean squared error)

$$MSE = \frac{1}{n} \sum_{j=1}^{n} [f(X_{j\cdot}) - y_j]^2$$

Common Code Pattern

y = tf.matmul(x, W) + b loss = tf.reduce_mean(tf.square(y - y_label))

NN Concepts

- **Epoch**: The number of times the learning algorithm will iterate over the entire dataset
- Batch: how many samples are processed before updating the model's internal parameters.
 - Batch Gradient Descent: Batch Size = Size of Training Set
 - Stochastic Gradient Descent: Batch Size = 1
 - Mini-Batch Gradient Descent: 1 < Batch Size < Size of Training Set

Credit: https://rentry.org/llm-training

Universal Approximation Theorem

- A network with just two layers of computation units, first nonlinear, and the second linear, can approximate any continuous function to an arbitrary degree of accuracy.
- Why: a sufficiently large network can implement a lookup table for continuous functions
 - Nonlinear layer is the key

Sources:

- https://en.wikipedia.org/wiki/Universal_approximation_theorem
- Russell & Norvig, AI: A Modern Approach, Chapter 21

Datasets

- In keras, https://keras.io/api/datasets/
 - boston_housing
 - cifar10 module, cifar100, fashion_mnist, mnist
 - imdb module
 - reuters module
- In TF, https://www.tensorflow.org/datasets/catalog/overview#all_datasets

Keras Walkthrough

- Package: https://keras.io/about/
- Example model:
 - Sequential: https://keras.io/guides/sequential_model/
- Many examples: classification, image, text, audio
 - https://keras.io/examples/
- Future Keras: https://keras.io/keras core/
 - Keras Core run Keras workflows on top of TensorFlow, JAX, and PyTorch; preview of Keras 3.0

CSCE 580, 581 - FALL 2023 2

Code Examples With Keras and TF

1. Classification – diabetes

- 2. Try code
 - Play with hyper-parameters
- Look at keras features used

Code location:

https://github.com/biplav-s/course-ai-tai-f23/tree/main/sample-code/Class19-To-21-DL

CSCE 580, 581 - FALL 2023 2:

Discussion

- Impact of network structure:
 - Nodes / layer:
 - Layers:
 - Inter-connection structure:
- Impact of hyper-parameters:
 - Epochs:
 - Batch size:

Code Examples With Keras and TF

- 1. Classification diabetes
- 2. Prediction/ representation learning autoencoder

Code location:

https://github.com/biplav-s/course-ai-tai-f23/tree/main/sample-code/Class19-To-21-DL

Discussion

- Impact of network structure:
 - Nodes / layer:
 - Layers:
 - Inter-connection structure:
- Impact of hyper-parameters:
 - Epochs:
 - Batch size:

Code Examples With Keras and TF

- 1. Classification diabetes
- 2. Prediction/representation learning autoencoder
- 3. Classification MNIST

Code location:

https://github.com/biplav-s/course-ai-tai-f23/tree/main/sample-code/Class19-To-21-DL

Discussion

- Impact of network structure:
 - Nodes / layer:
 - Layers:
 - Inter-connection structure:
- Impact of hyper-parameters:
 - Epochs:
 - Batch size:

Keras and TensorFlow

- By Example:
 - https://github.com/biplav-s/course-nl-f22/blob/main/sample-code/l11-nn-dl/Basic%20TensorFlow%20and%20Keras.ipynb
 - TensorFlow's NMIST tutorial
 - https://www.tensorflow.org/tutorials/quickstart/beginner
- More examples
 - Number Addition by sequence learning: https://keras.io/examples/nlp/addition_rnn/
 - AutoEncoder: https://machinelearningmastery.com/lstm-autoencoders/

NN/ MLP

- Code examples:
 - https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l6-l7-l8-supervised-ml/Supervis
- Scikit Library:
 - MLP: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

Consideration: Which NN/DL Tool to Use

- See:
 - https://www.simplilearn.com/keras-vs-tensorflow-vs-pytorch-article
 - In theory, keras supports all major ones
 - Pytorch used in academic research more
 - TF used in production systems

Trust: Adversarial Attacks

Example (Gu et al. 2017)

- ML Application: Detect and classify street signs in images
- **Poisoning method**: Insert images where a special sticker is added to stop signs and the label changed to speed limit
- Backdoor: Adversaries ensure that any stop sign is misclassified simply by placing a sticker on it

Trust: Adversarial Attacks

- Cat and mouse on attacks and defenses
 - Example code: https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/notebooks/adversarial_training_mnist.ipynb
- Tools
 - Adversarial Robustness Toolbox (ART) Python library for Machine Learning Security, https://github.com/Trusted-Al/adversarial-robustness-toolbox

Trust Issues with NN

- Robustness: can the model give the results in the presence of (input) perturbation? Noise?
- Computation/ footprint: why does the learning take so much compute resources?
- Data: is the data representative? How was the data obtained?
- Explainability: why does the model work?
- Fairness: Is the output fair to user groups?

Resources and Books

- Understanding Deep Learning, https://udlbook.github.io/udlbook/
- Deep Learning, Ian Goodfellow, Yoshua Bengio and Aaron Courville, https://www.deeplearningbook.org/
- AI A Modern Approach, Russell & Norvig, https://aima.cs.berkeley.edu/
- Websites of libraries Keras.

Course Project

Discussion: Projects

- New: two projects
 - Project 1: model assignment
 - Project 2: single problem/ Ilm based solving / fine-tuning/ presenting result

CSCE 580- FALL 2024 36

Lecture 19 & 20: Summary

- We talked about
 - Neural Networks
 - Deep Learning
 - Adversarial attacks
 - Trust Issues
- Others
 - Quiz 3 due today

Concluding Section

About Next Lecture – Lecture 17

580, 581 - FALL 2023

Lecture 17: Text, Large Language Models

- Text processing
- Language Models (LMs)
- Large LMs

13	Oct 1 (Tu)	Machine Learning –
		Classification – Decision Trees,
		Random Forest, NBC, Gradient
		Boosting, ML-Text
14	Oct 3 (Th)	ML – Unsupervised / Clustering
15	Oct 8 (Tu)	Student presentations - project
16	Oct 10 (Th)	ML – NN, Deep Learning
		-
17	Oct 15 (Tu)	Processing Natural Languages/
		Language Models
	Oct 17 (Th)	
18	Oct 22 (Tu)	Large Language Models
		(LLMs) / Foundation Models
19	Oct 24 (Th)	Using LLMs – how and when?