Examenul de bacalaureat 2011 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
 Se acordă 10 puncte din oficiu.

• Timpul efectiv de lucru este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Varianta 3

- Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
 Puterea disipată de o sursă de tensiune electrică, de rezistență interioară r, într-un circuit exterior de
- **1.** Puterea disipată de o sursă de tensiune electrică, de rezistență interioară r, într-un circuit exterior de rezistenă electrică R variabilă, este maximă atunci când:
- a. $R \rightarrow \infty$
- **b.** R = 4r
- c. R = r
- **d.** $R \rightarrow 0$

(3p)

2. Simbolurile mărimilor fizice și ale unităților de măsură fiind cele din manualele de fizică, unitatea de

măsură în S.I. a mărimii fizice exprimată prin $\rho \frac{\ell}{S}$ este:

a. A

- b. V
- c. W
- d. Ω

(3p)

- **3.** Bornele unei surse de tensiune electromotoare E şi rezistență interioară r sunt conectate printr-un fir de rezistență electrică neglijabilă. Intensitatea curentului electric ce străbate sursa are expresia:
- a. $\frac{2E}{r}$
- b. $\frac{E}{r}$
- c. $\frac{E}{2r}$
- d. $\frac{E}{4r}$

(3p)

4. Graficele din figura alăturată redau dependența puterii totale de intensitatea curentului prin sursă, pentru trei surse diferite având tensiunile electromotoare E_1 , E_2 şi E_3 . Relația corectă între tensiunile electromotoare ale celor trei surse este:

- **a.** $E_1 > E_2 > E_3$
- **b.** $E_3 > E_2 > E_1$
- $c.E_2 > E_1 > E_3$
- $\mathbf{d}.E_3 > E_1 > E_2$
- **5.** Se consideră montajul din figura alăturată, în care conductoarele de legătură au rezistențe electrice neglijabile, iar rezistoarele au aceeaşi rezistență electrică *R*. Rezistența echivalentă a montajului între punctele A și D este:

- **a.** 3R
- b.R

- $\mathbf{c}.\frac{2R}{3}$
- $\mathbf{d} \cdot \frac{R}{2}$

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Se consideră circuitul electric a cărui schemă este reprezentată în figura alăturată. Se cunosc: $R_1 = 30 \Omega$, $R_2 = 120 \Omega$. Cele două surse sunt identice rezistenta internă a unei. A

 $R_2=120\,\Omega$, $R_3=20\,\Omega$. Cele două surse sunt identice, rezistența internă a unei surse fiind $r=2\,\Omega$. Când întrerupătorul k este deschis, intensitatea curentului electric indicată de ampermetrul ideal ($R_A\cong 0$) are valoarea $I_D=1$ A. Rezistența electrică a conductoarelor de legătură se neglijează. Determinați:

- a. tensiunea electromotoare a unei surse;
- **b.** tensiunea între punctele A și B când întrerupătorul k este deschis;
- c. indicația ampermetrului când întrerupătorul k este închis;
- ${f d.}$ intensitatea curentului electric prin rezistorul R_2 când întrerupătorul k este închis.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O baterie cu tensiunea electromotoare $E=120\,\mathrm{V}$ se conectează la montajul serie al rezistoarelor având rezistențele electrice $R_1=24\,\Omega$ și $R_2=30\,\Omega$. Puterea disipată în rezistorul de rezistență R_1 este $P_1=96\,\mathrm{W}$. Determinați:

- **a.** tensiunea la bornele rezistorului R_1 ;
- b. puterea disipată în ansamblul celor două rezistoare;
- c. rezistența internă a sursei ;
- d. randamentul transferului de putere de la sursă la cele două rezistoare.