Содержание

1.	Предварительные сведения	2
2.	Неприводимые подмодули в $S(2 1)$	2
	2.1. Основные понятия и обозначения	2
	2.2. Теорема Стейнберга	2
	2.3. Вычисление формальных характеров	3

1. Предварительные сведения

2. Неприводимые подмодули в S(2 | 1)

2.1. Основные понятия и обозначения

Пусть $\lambda = (\lambda_1, \lambda_2 \,|\, \lambda_3)$ – полиномиальный вес и L_{λ} - неприводимый подмодуль костандартного модуля $V = \nabla(\lambda)$ со старшим весом λ . Согласно [2] если вес λ является старшим весом L_{λ} , то либо $\lambda_2 > 0$, либо $\lambda_2 = 0$ и $p \,|\, \lambda_3$.

Определение 1. *Назовем вес* $\lambda = (\lambda_1, \lambda_2 | \lambda_3)$

- регулярным, если $(\lambda_1 + \lambda_3 + 1)(\lambda_2 + \lambda_3) \not\equiv 0 \pmod{p}$;
- критическим, если $\lambda_1 + \lambda_3 + 1 \equiv 0$, но $\lambda_2 + \lambda_3 \not\equiv 0 \pmod{p}$;
- сильно критическим, если $\lambda_2 + \lambda_3 \equiv 0 \pmod{p}$.

Обозначим $d = c_{11}c_{22} - c_{12}c_{21}, y_1 = \frac{c_{22}c_{13} - c_{12}c_{23}}{d}, y_2 = \frac{-c_{21}c_{13} + c_{11}c_{23}}{d}$

Определим следующие элементы:

$$v_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} - \lambda_3 c_{33}^{\lambda_3 - 1} (c_{31} y_1 + c_{32} y_2) + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3 - 2} c_{31} y_1 c_{32} y_2)$$

веса $(\lambda_1 - i, \lambda_2 + i \mid \lambda_3)$,

$$w_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} - \lambda_3 c_{33}^{\lambda_3 - 1} c_{32} y_2) y_1$$

веса $(\lambda_1 - i - 1, \lambda_2 + i \mid \lambda_3 + 1),$

$$u_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} - \lambda_3 c_{33}^{\lambda_3 - 1} c_{31} y_1) y_2$$

веса $(\lambda_1 - i, \lambda_2 + i - 1 \mid \lambda_3 + 1),$

$$r_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i c_{33}^{\lambda_3} y_1 y_2$$

веса $(\lambda_1 - i - 1, \lambda_2 + i - 1 \mid \lambda_3 + 2)$. Они порождают $H^0(\lambda)$ как суперпространство для любого (не обязательно полиномиального) старшего веса λ . Обоснование можно найти в [4].

Суперпроизводные $_{ij}D$ определяются следующим действием на элементах $A(2 \mid 1)$: $(c_{kl})_{ij}D = \delta_{li}c_{kl}$, где δ_{li} – символ Кронекера.

Обозначим через $\chi(\lambda)$ формальный характер простого модуля L_{λ} и через $p_j(x_1,x_2)=\sum\limits_{0\leq i\leq j}x_1^ix_2^{j-i}$ полную симметрическую функцию от x_1,x_2 степени j.

2.2. Теорема Стейнберга

Определение 2. Вес λ называется p-ограниченным, если он является доминантным $u \ \lambda_i - \lambda_{i+1} для <math>i = 1, \ldots, m-1 \$ $u \ i = m+1, \ldots, m+n-1.$

В нашем случае для веса $\mu=(\mu_1,\mu_2\,|\,\mu_3)$ и p-ограниченность означает, что $\mu_1-\mu_2=t< p$. Запишем разность $\lambda_1-\lambda_2=t+pk$, где $0\leq t< p$, и выделим из веса λ p-ограниченную часть.

а) Если $\lambda_2 > 0$, то $\lambda_3 = p\lambda_3' + \lambda_3''$, где $\lambda_3'' < p$, и

$$(\lambda_1, \lambda_2 | \lambda_3) = (t + \lambda_2, \lambda_2 | \lambda_3'') + p(k, 0 | \lambda_3').$$

b) Если $\lambda_2=0$, то $\lambda_3=p\lambda_3'$ и

$$(\lambda_1, \lambda_2 | \lambda_3) = (t, 0 | 0) + p(k, 0 | \lambda_3').$$

Заметим, что для если вес λ является регулярным (критическим, сильно критическим), то p-ограниченная часть также будет регулярной (критической, сильно критической).

Обозначим через $M^{[p]}$ скручивание Фробениуса модуля M. Подробное описание можно найти в [1], [3]. Для нас важным является то, что скуручивание Фробениуса действует на элементы модуля M возведением в p-ю степень. Таким образом, если $\chi(M) = \sum \dim V_{\lambda} t^{\lambda}$, то $\chi(M^{[p]}) = \sum \dim V_{\lambda} t^{p\lambda}$.

Теорема 1. (Стейнберг).

Для p-ограниченного веса λ и доминантного веса μ

$$L(\lambda + p\mu) \cong L(\lambda) \otimes L_{ev}(\mu)^{[p]},$$

где $L_{ev}(\mu)$ – неприводимый $GL(m) \times GL(n)$ -супермодуль старшего веса μ .

$$L_{ev}(\mu)=L_{ev}(\mu_+)\otimes L_{ev}(\mu_-)$$
, т.е. в нашем случае $L_{ev}(\mu)=L_{ev}(k,0)\otimes L_{ev}(\lambda_3')$

Следствие 1. В условиях теоремы Стейнберга

$$\chi(\lambda + p\mu) = \chi(\lambda) \chi(L_{ev}(\mu_+)^{[p]}) \chi(L_{ev}(\mu_-)^{[p]}).$$

2.3. Вычисление формальных характеров

Сначала вычислим общую часть формального характера для случаев $\lambda_2 > 0$ и $\lambda_2 = 0$, т.е. $\chi(L_{ev}(k,0 \mid \lambda_3)^{[p]})$.

Лемма 1. Если k < p, то $L_{ev}(k,0) = p_k(x_1,x_2)$.

Доказательство. Для вычисления формального характера $L_{ev}(k,0)$ нужно найти его базис.

Обозначим $v_i = c_{11}^{k-i}c_{12}^i$. Очевидно, $L_{ev}(k,0)$ порождается старшим вектором $v_0 = c_{11}^k$ веса (k,0) Поскольку $v_i^{12D} = (k-i)v_{i+1}$, а $v_i^{11D} = iv_{i-1}$, то базис $L_{ev}(k,0)$ составляют векторы v_0, \ldots, v_k . Следовательно, $\chi(L_{ev}(k,0)) = \sum_{i=0}^k x_1^{k-i}x_2^i = p_k(x_1,x_2)$.

Лемма 2.
$$\chi(L_{ev}(k,0\,|\,\lambda_3)^{[p]}) = x^{p\lambda_3} \prod_{i=0}^s p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}}), \ \epsilon \partial \epsilon \ k = \sum_{i=0}^s k_i p^i.$$

Доказательство. $L_{ev}(\lambda_3)$ – одномерный модуль, порожденный элементом c_{33} , поэтому $\chi(L_{ev}(\lambda_3)) = x^{\lambda_3}$. Следовательно $\chi(L_{ev}(\lambda_3)^{[p]}) = x^{p\lambda_3}$.

Пусть $k = \sum_{i=0}^{s} k_i p^i$. Тогда $L_{ev}(k,0) \cong \bigotimes_{i=0}^{s} L_{ev}(k_i,0)^{p_i}$, следовательно, $\chi(L_{ev}(k,0)) = \prod_{i=0}^{s} \chi(L_{ev}(k_i,0)^{p_i})$. Тогда по предыдущей лемме $\chi(L_{ev}(k,0)) = \prod_{i=0}^{s} p_{k_i} (x_1^{p^i}, x_2^{p^i})$,

$$\chi(L_{ev}(k,0)^{[p]}) = \prod_{i=0}^{s} p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}}).$$

Осталось только перемножить $\chi(L_{ev}(k,0)^{[p]})$ и $\chi(L_{ev}(\lambda_3)^{[p]})$.

Утверждение 1. Пусть $k = \sum_{i=0}^{s} k_i p^i$. Обозначим $t_k = (k_0 + 1) \dots (k_s + 1)$.

(a) Eсли λ - pегулярный вес, mо

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} p_t(x_1, x_2) [x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3^2] \prod_{i=0}^s p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}})$$

$$u \dim(L_{\lambda}) = 4(t+1)t_k.$$

(b) $E c \lambda - \kappa p u m u u e c \kappa u \ddot{u} e e c, mo$

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} [p_t(x_1, x_2) x_1 x_2 + p_{t+1}(x_1, x_2) x_3] \prod_{i=0}^s p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}})$$

$$u \dim(L_{\lambda}) = (2t+3)t_k.$$

(c) Если λ - критический вес, то

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2} x_3^{\lambda_3} [p_t(x_1, x_2) + p_{t-1}(x_1, x_2) x_3] \prod_{i=0}^s p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}})$$

 $u \dim (L_{\lambda}) = (2t+1)t_k.$

Для доказательства достаточно доказать утверждение для p-ограниченной части.

Лемма 3. Пусть $\lambda = (t + \lambda_2, \lambda_2 | \lambda_3), \quad 0 \le t < p.$

(a) Eсли λ - pегулярный вес, mо

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} p_t(x_1, x_2) [x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3^2]$$

$$u \dim(L_{\lambda}) = 4(t+1)t_k.$$

(b) Eсли λ - κ ритический вес, то

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} [p_t(x_1, x_2) x_1 x_2 + p_{t+1}(x_1, x_2) x_3]$$

$$u \dim(L_{\lambda}) = (2t + 3)t_k.$$

(c) Eсли λ - κ ритический вес, то

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2} x_3^{\lambda_3} [p_t(x_1, x_2) + p_{t-1}(x_1, x_2) x_3]$$

$$u \dim (L_{\lambda}) = (2t+1)t_k.$$

Доказательство. $\lambda_2 > 0$. Тогда векторы v_i, w_i, u_i и r_i полиномиальны для $i = 0, \dots, \lambda_1 - \lambda_2$ и образуют базис модуля $\nabla(\lambda)$. Базис L_{λ} составляют векторы, порожденные из старшего вектора суперпроизводными ${}_{12}D,{}_{13}D,{}_{23}D$.

Вычислим v_i^{13D} . Запишем вспомогательные равенства, которые понадобятся далее: $dy_1y_2 = \frac{(c_{22}c_{13}-c_{12}c_{23})(c_{11}c_{23}-c_{21}c_{13})}{d} = \frac{c_{22}c_{13}c_{11}c_{23}+c_{12}c_{23}c_{21}c_{13}}{d} = c_{13}c_{23},$

 $dc_{31}y_1c_{32}y_2 = -c_{31}c_{32}dy_1y_2 = -c_{31}c_{32}c_{13}c_{23} = c_{31}c_{13}c_{32}c_{23},$

 $c_{13}(c_{31}y_1 + c_{32}y_2) = \frac{c_{13}c_{31}(c_{22}c_{13} - c_{12}c_{23}) + c_{13}c_{32}(c_{11}c_{23} - c_{21}c_{13})}{d} = \frac{-c_{13}c_{23}(c_{32}c_{11} - c_{31}c_{12})}{d} = c_{11}c_{32}y_2y_1 + c_{12}c_{31}y_1y_2,$

$$c_{11}y_1 + c_{12}y_2 = \frac{c_{11}(c_{22}c_{13} - c_{12}c_{23}) + c_{12}(c_{11}c_{23} - c_{21}c_{13})}{d} = \frac{c_{11}c_{22}c_{13} - c_{12}c_{21}c_{13}}{d} = c_{13}.$$

Учитывая их, перепишем вектор v_i в виде

$$v_i = d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} d - \lambda_3 c_{33}^{\lambda_3 - 1} (c_{31} dy_1 + c_{32} dy_2) + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3 - 2} c_{31} c_{13} c_{32} c_{23}).$$

$$\begin{split} v_i^{\scriptscriptstyle 13D} &= d^{\lambda_2-1} c_{11}^{\lambda_1-\lambda_2-i} c_{12}^i (c_{33}^{\lambda_3} y_1 d - \lambda_3 c_{33}^{\lambda_3-1} (-c_{33} dy_1 - 2c_{32} c_{13} c_{23}) - \lambda_3 (\lambda_3-1) c_{33}^{\lambda_3-2} c_{33} c_{13} c_{32} c_{23}) + \\ & (\lambda_1-\lambda_2-i) d^{\lambda_2-1} c_{11}^{\lambda_1-\lambda_2-i-1} c_{13} c_{12}^i (c_{33}^{\lambda_3} d - \lambda_3 c_{33}^{\lambda_3-1} (c_{31} dy_1 + c_{32} dy_2) + \lambda_3 (\lambda_3-1) c_{33}^{\lambda_3-2} c_{31} c_{13} c_{32} c_{23}) + \\ & (\lambda_2-1) d^{\lambda_2-1} y_1 c_{11}^{\lambda_1-\lambda_2-i} c_{12}^i (c_{33}^{\lambda_3} d - \lambda_3 c_{33}^{\lambda_3-1} (c_{31} dy_1 + c_{32} dy_2) + \lambda_3 (\lambda_3-1) c_{33}^{\lambda_3-2} c_{31} c_{13} c_{32} c_{23}) = \\ & t_1+t_2+t_3=(*) \end{split}$$

$$t_1 = d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} y_1 d + \lambda_3 c_{33}^{\lambda_3} dy_1 + 2\lambda_3 c_{33}^{\lambda_3 - 1} c_{32} c_{13} c_{23} + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3 - 1} c_{32} c_{13} c_{23}) = d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i ((\lambda_3 + 1) c_{33}^{\lambda_3} y_1 d - (\lambda_3 + 1) \lambda_3 c_{33}^{\lambda_3 - 1} c_{32} c_{23} c_{13}) = (\lambda_3 + 1) w_i$$

$$t_3 = (\lambda_2 - 1)d^{\lambda_2 - 1}y_1c_{11}^{\lambda_1 - \lambda_2 - i}c_{12}^i(c_{33}^{\lambda_3}d - \lambda_3c_{33}^{\lambda_3 - 1}c_{32}dy_2) = (\lambda_2 - 1)w_i$$

$$\begin{split} t_2 &= (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i (c_{33}^{\lambda_3} c_{13} - \lambda_3 c_{33}^{\lambda_3 - 1} c_{13} (c_{31} y_1 + c_{32} y_2)) = \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} c_{13} + (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (-\lambda_3 c_{33}^{\lambda_3 - 1} c_{32} y_2 y_1) + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^{i + 1} (-\lambda_3 c_{33}^{\lambda_3 - 1} c_{32} y_1 y_2) = (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} c_{13} + \\ &(\lambda_1 - \lambda_2 - i) w_i - (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i c_{33}^{\lambda_3} y_1 + (\lambda_1 - \lambda_2 - i) u_{i+1} - \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^{i + 1} c_{33}^{\lambda_3} y_2 = (\lambda_1 - \lambda_2 - i) w_i + (\lambda_1 - \lambda_2 - i) u_{i+1} + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} (c_{13} - c_{11} y_1 - c_{12} y_2) = (\lambda_1 - \lambda_2 - i) w_i + (\lambda_1 - \lambda_2 - i) u_{i+1} \end{split}$$

$$(*) = (\lambda_3 + 1)w_i + (\lambda_2 - 1)w_i + (\lambda_1 - \lambda_2 - i)w_i + (\lambda_1 - \lambda_2 - i)u_{i+1} = (\lambda_1 + \lambda_3 - i)w_i + (\lambda_1 - \lambda_2 - i)u_{i+1}.$$

Аналогично вычисляются остальные производные.

$$v_i^{12D} = (\lambda_1 - \lambda_2 - i)v_{i+1},$$

$$v_i^{13D} = (\lambda_1 + \lambda_3 - i)w_i + (\lambda_1 - \lambda_2 - i)u_{i+1},$$

$$v_i^{23D} = iw_{i-1} + (\lambda_2 + \lambda_3 + i)u_i,$$

$$v_i^{21D} = iv_{i-1}, v_i^{31D} = v_i^{32D} = 0$$

$$w_i^{12D} = (\lambda_1 - \lambda_2 - i)w_{i+1},$$

$$w_i^{13D} = (\lambda_1 - \lambda_2 - i)r_{i+1},$$

$$w_i^{23D} = (\lambda_2 + \lambda_3 + i + 1)r_i,$$

$$w_i^{21D} = -u_i - iw_{i-1}, w_i^{31D} = v_i, w_i^{32D} = 0,$$

$$u_i^{12D} = -w_i + (\lambda_1 - \lambda_2 - i)u_{i+1},$$

$$u_i^{13D} = (i - \lambda_1 - \lambda_3 - 1)r_i,$$

$$u_i^{23D} = -ir_{i-1},$$

$$u_i^{21D} = iu_{i-1}, u_i^{31D} = 0, u_i^{32D} = v_i,$$

$$r_i^{12D} = (\lambda_1 - \lambda_2 - i)r_{i+1},$$

$$r_i^{13D} = r_i^{23D} = 0,$$

$$r_i^{21D} = ir_{i-1}, r_i^{31D} = -u_i, r_i^{32D} = w_i.$$

Отсюда следует, что $v_0,\dots,v_t\in L_\lambda$, а поэтому $v_i^{{}_{13}D}$ и $v_{i+1}^{{}_{23}D}$ тоже принадлежат L_λ при $0\leq i< t$. Для $0\leq i< t$ представим $v_i^{{}_{13}D}$ и $v_{i+1}^{{}_{23}D}$ как линейную комбинацию векторов w_i,u_{i+1} подпространства с весом $(\lambda_1-i-1,\lambda_2+i\,|\,\lambda_3)$. Зависимость выражается матрицей

$$\begin{pmatrix} \lambda_1 + \lambda_3 - i & \lambda_1 - \lambda_2 - i \\ i + 1 & \lambda_2 + \lambda_3 + i + 1 \end{pmatrix}.$$

Её определитель det $\lambda = (\lambda_1 + \lambda_3 + 1)(\lambda_2 + \lambda_3)$.

(a) λ регулярный.

Так как $\det \lambda \not\equiv 0 \pmod{p}$, то $w_i, u_{i+1} \in L_\lambda$, а следовательно и $r_i \in L_\lambda$ для $0 \leq i < t$. Получаем, что $v_0, \ldots, v_t, w_0, \ldots, w_t, u_0, \ldots, u_t, r_0, \ldots, r_t$ составляют базис L_λ . Следовательно,

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} p_t(x_1, x_2) [x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3^2]$$

и dim $(L_{\lambda})=4(t+1)$.

(b) λ критический.

Так как $\lambda_2 + \lambda_3 \not\equiv 0 \pmod{p}$ и $v_0^{23D} = (\lambda_2 + \lambda_3)u_0$, то $u_0 \in L_\lambda$. Кроме того, $\lambda_1 + \lambda_3 - t \equiv \lambda_2 + \lambda_3 \not\equiv 0 \pmod{p}$ и $v_t^{13D} = (\lambda_1 + \lambda_3 - t)w_t$, поэтому $w_t \in L_\lambda$.

 v_i^{13D} и v_{i+1}^{23D} линейно зависимы, поэтому рассмотрим только $q_i=v_i^{13D}=-(i+1)w_i+(t-i)u_{i+1}\in L_\lambda$ при $0\leq i< t-1.$

Выясним, какие векторы порождаются векторами u_0, w_t и q_i :

$$w_t^{12D}=(\lambda_1-\lambda_2-t)w_i=0, w_t^{13D}=0, w_t^{23D}=(\lambda_2+\lambda_3+t+1)r_i=(\lambda_1+\lambda_3+1)r_i=0,$$
 $u_0^{12D}=-w_0+(\lambda_1-\lambda_2)u_1=q_0, u_0^{13D}=(-\lambda_1-\lambda_3-1)r_i=0, u_0^{23D}=0,$ $q_i^{12D}=-(i+1)(t-i)w_{i+1}+(t-i)(-w_{i+1}+(t-(i+1))u_{i+2}=(t-i)q_{i+1},$ $q_i^{13D}=-(i+1)(t-i)r_{i+1}+(t-i)(i+1-\lambda_1-\lambda_3-1)r_{i+1}=(t-i)(-\lambda_1-\lambda_3-1)r_{i+1}=0,$ $q_i^{23D}=-(i+1)(\lambda_2+\lambda_3+i+1)-(t-i)(i+1)r_i=-(i+1)(t+\lambda_2+\lambda_3+1)r_i=0.$ Таким образом, новые векторы не появляются, следовательно, векторы $v_0,\ldots,v_t,u_0,w_t,q_0,\ldots,q_{t-1}$ составляют базис L_λ . Учитывая, что вес q_i совпадает с весом w_i , получаем

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} [p_t(x_1, x_2) x_1 x_2 + p_{t+1}(x_1, x_2) x_3]$$

и dim $(L_{\lambda})=2t+3$.

(c) λ сильно критический.

Аналогично предыдущему пункту рассматриваем только $q_i = v_i^{13D} = (\lambda_1 + \lambda_3 - i)w_i + (t-i)u_{i+1} = (t-i)(w_i + u_{i+1}) \in L_\lambda$ при $0 \le i < t$.

 $q_i^{{}_{12}D}=(t-i)q_{i+1},q_i^{{}_{13}D}=0,q_i^{{}_{23}D}=0$ при $0\leq i< t.$ Кроме того, $v_0^{{}_{23}D}=(\lambda_2+\lambda_3)u_0$ и $v_t^{{}_{13}D}=(\lambda_1+\lambda_3-t)w_t=0,$ поэтому $u_0,w_t\notin L_\lambda.$ Следовательно,

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2} x_3^{\lambda_3} [p_t(x_1, x_2) + p_{t-1}(x_1, x_2) x_3]$$

и dim $(L_{\lambda}) = 2t + 1$.

Замечание 1. Если $\lambda_2 = 0$, то $\lambda_3'' = 0$, поэтому вес λ является сильно критическим, поэтому

$$\chi(\lambda) = x_3^{\lambda_3} [p_t(x_1, x_2) + p_{t-1}(x_1, x_2)x_3] \prod_{i=0}^{s} p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}})$$

Список литературы

- [1] S. Donkin. Symmetric and exterior powers, linear source modules andrepresentations of schursuperalgebras. *London Mathematical Society*, 83:647–680, 2001.
- [2] J. Kujawa J. Brundan. A new proof of the mullineux conjecture. *Journal of Algebraic Combinatorics*, 18:13–39, 2003.
- [3] J. Kujawa. The steinberg tensor product theorem for gl(m|n). American Mathematical Society, 413:123–132, 2006.
- [4] А.Н. Зубков. О некоторых свойствах общих линейных супергрупп и супералгебр Шура. Алгебра и логика, 45(3):257–299, 2006.