ch13print

Sherri Verdugo

November 10, 2014

Contents

Chapter 13
Prologue
Setting up
Example of data used for Regression
Example from textbook pg. 445
Introduction of terms:
Graphs
Cartesian coordinates
Cartesian Coordinates Review
Cartesian Coordinates Review
Cartesian Coordinates Review
The concept of linearity
Key terms:
Example of a linear relationship
Examples: Diamonds
Cartasian Plats

Chapter 13

- Correlation and Regression
- Presented by: Sherri Verdugo, M.S.
- Instructor, CSUF Sociology Department
- Class: Soc 303

Prologue

Regression and Correlation evaluate the strength of a relationship between variables. This time we are looking at interval or ratio levels of measurement. Our question of interest is: "What is the strength of t he relationship between the variables" for at least two variables. This time, we are looking at making a prediction. We do this using the techniques presented in Chapter 13 and Chapter 14.

First we introduce a correlation coefficient, to ascertain the magnitude of relationship between two variables. If the value is large enough, we generate a linear regression equation. The larger our correlation coefficient, the more accurate the predictions will be.

For example, does variable x have a relationship with variable y? Can we make a prediction about the variable from given information?

Setting up

When is correlation-regression analysis used?

Info.	Outcome
Given	Two individual (raw score) variables measured by interval/ratio scales
Task	Measure the strength of the relationship between variables
Output	If that relationship is sufficiently strong, describe the nature of the relationship between the two variables in suc

Example of data used for Regression

data(iris) head(iris)

##	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
## 1	5.1	3.5	1.4	0.2	setosa
## 2	4.9	3.0	1.4	0.2	setosa
## 3	4.7	3.2	1.3	0.2	setosa
## 4	4.6	3.1	1.5	0.2	setosa
## 5	5.0	3.6	1.4	0.2	setosa
## 6	5.4	3.9	1.7	0.4	setosa

Example from textbook pg. 445

We might be interested in other data besides Iris information. For example, we might want to look at political corruption:

Employee	X	у
1	80	160
2	70	95
3	52	97
4	45	85

• x = Annual income (in thousands of US dollars)

- y = Mean Monthly contribution in US dollars
- Question: does a relationship exist between annual income and mean monthly contribution?
- Question: how strong is the relationship?
- Question: can we make a prediction?
- Question: what is the prediction?

Introduction of terms:

- Correlation Coefficient [page 446]:
 - Measure of strength of a relationship in which data are not grouped in tables but are individual raw scores.
- Pearson's Product-Moment Correlation Coefficient (a.k.a. Pearson's r) [page 446]:
 - Coefficient that is used when both variables are an interval or a ratio level of measurement.
- Coefficient of Determination (r^2) [page 446]:
 - Indicates the proportion of variation in the dependent variable (y) that can be explained by variation in the independent variable (x).
- Regression Equation [page 447]:
 - the mechanism for estimating a y score from the respective x score.
- Correlation-regression Analysis [page 447]:
 - The presentation of correlation and regression techniques together.

Graphs

Cartesian coordinates

Sometimes we need to plot the data and we have some key terms that we need to understand:

- Cartesian Plots and Coordinates [page 447]:
 - A pictoral representation of the relationship between two or more variables under study. This
 method was developed by Rene Descartes.
- Origin of a Graph [page 448]:
 - The point of a graph where the two axes intersect indicating a value of zero on each axis.
- x-axis [page 448]:
 - the axis that extends horizontally.
- y-axis [page 448]:
 - the axis that extends vertically.

- Ordered Pair [page 450]: a set of two numbers in parentheses separated by a comma, indicating a point on a graph.
- x-coordinate [page 450]:
 - the first number in an ordered pair
- y-coordinate [page 450]:
 - the second number in an ordered pair

Cartesian Coordinates Review

We put two number lines together in a single plot.

- x = horizontal
- y = vertical

Cartesian Coordinates Review

- Quadrant I: x is positive and y is positive
- Quadrant II: x is negative and y is positive
- Quadrant III: x is negative and y is negative
- Quadrant IV: x is positive and y is negative

Cartesian Coordinates Review

Look at the origin and the coordinates.

- We have x = 6
- We have y = 4

The concept of linearity

Key terms:

- Function [page 452]:
 - The case where a score on the dependent variable (y) may be predicted from a score on the independent variable (x). The value of (y) is obtained either graphically or by an equation.
- Linearity (linear related) [page 452]:
 - Relationship that is shown as an exact straight line.

Example of a linear relationship

Respondents	X	у
Daryl	0	0
Carol	4	2
Maggie	8	4
Glenn	12	6
Abraham	16	8
Rick	20	10

x = Education and y = Total Savings in thousands of dollars

```
library(ggplot2)
education=as.numeric(c(0,4,8,12,16,20))
savings=as.numeric(c(0,2,4,6,8,10))
row.names=c("Daryl", "Carol", "Maggie", "Glenn", "Abraham", "Rick")
walking=data.frame(cbind(row.names,education, savings))
walking
```

```
row.names education savings
                         0
                                  0
## 1
         Daryl
## 2
         Carol
                         4
                                  2
                         8
                                  4
## 3
        Maggie
         Glenn
                        12
                                  6
## 5
       Abraham
                        16
                                  8
## 6
          Rick
                        20
                                 10
```

```
w=qplot(education, savings)
w+ annotate("text", x=education, y=savings, label=c("Daryl", "Carol", "Maggie", "Glenn", "Abraham", "Ri
```


Add a line to the graph

```
library(ggplot2)
education=as.numeric(c(0,4,8,12,16,20))
savings=as.numeric(c(0,2,4,6,8,10))
row.names=c("Daryl", "Carol", "Maggie", "Glenn", "Abraham", "Rick")
walking=data.frame(cbind(row.names,education, savings))
walking
```

```
##
     row.names education savings
## 1
         Daryl
                        0
                                0
                                2
## 2
         Carol
                        4
                        8
## 3
        Maggie
                                4
                       12
                                6
## 4
         Glenn
                       16
                                8
## 5
       Abraham
## 6
          Rick
                       20
                               10
```

```
w=qplot(education, savings)
w+stat_smooth(method="lm")
```


Examples: Diamonds

```
library(ggplot2)
data(diamonds)
head(diamonds,4)
```

```
##
    carat
              cut color clarity depth table price
                                                 X
                                                        У
## 1 0.23
                     Ε
                           SI2 61.5
                                       55 326 3.95 3.98 2.43
            Ideal
## 2 0.21 Premium
                     E
                           SI1 59.8
                                       61 326 3.89 3.84 2.31
## 3 0.23
                     Ε
                           VS1 56.9
                                       65 327 4.05 4.07 2.31
             {\tt Good}
## 4 0.29 Premium
                     Ι
                           VS2 62.4
                                       58
                                            334 4.20 4.23 2.63
```

Cartesian Plots

```
qplot(carat, price, data=diamonds, color=clarity)
```

