重庆大学物理实验报告

\max.	J. M. side YEE	实验项目	用直流电标测		实	验项目类	[型	
课程 名称	大学物理 实验	名称	用直流电桥测量电阻温度系数	验证	演示	综合	设计	其他
指导教师		成绩	Uo					

实验目的: / 掌握惠斯斯通电桥测量电阻的 原理和使用方法

2. 测定电阻温度系数

实验原理:

1. 惠斯通电桥原理

R1, R2, R3, Rx构成封闭国路,中间接入检流计补为电桥,通过调节 RI. R. RI 可使 ⑤上元电流通过,指针不偏转,此时的为电桥平衡,有 测得别见了计算得比。

2. 由阻温度系数

金属导体电阻与温度之间存在线性关系、Pt-Poll+at). Pt-t曲 伐近侧为一条直线,K=Rod, b=Ro. 由半导体材料制成负温度参数的 趣敏电阻,在t变化不大范围内、RT t T而 l, RT=R。ef ⇒ In RT= f+InRo 捌丁和PT在可作图平解

钠光灯、读数显微镜 (量程 o~ 50mm. 最小量 o.o1mm. 位该是 在o-oolmm). 干玻璃片.牛顿环

实验步骤:

1. 洞节读数显微镜

钠光灯直电发生荧光后, 调节反光玻片的前度和方向, 以及灯的位 置,使显微镜内视场明亮均匀

凋节目镜,使又丝像清晰

- 2. 用丰顿环测评凸重航凸面的由半半径
- 1)将牛顿环放水载物台上,从下向上凋节望远镜筒,得到清晰的 干涉条议: 调节位置,使某环在从向又出现主民方向移动时始终 与横向又丝相切
- 2)观察牛顿环条纹分布情况,并测量环的直径, 该数时间向 一个方向移动
 - 3) 根据 Dm=4XR(m+m). 则量数据计算12

3. 观察解尖干涉, 测量薄片厚度.

将劈尖放在载物台上,参照牛顿环洞节先路,使薄片直边与 干涉条汉平行,根据公式测量 e.

实验记录: /mm

	Z/mm	60= 1 X20- X0/	Ltz	L左	L= L/E-L/E
Xo	X20	- 7117	0-016	28.505	28-489
122.181	25.928	3.141			

2. 牛顿班

2.7	41/2/1	_			_	T .	T.	To	0	7	1	1	平均值
x=m	16	15	14	13	12	11	(0	17	8	/	6	-	
/	21.745.	150	21 110	51.040	21.349	71.230	21.118	20.39	20.840	20.695	20.36	20.410	
DE	21.143.	21.130	2(-57)	21-711	9.0	2/11/1	120	10.44	-16.772	10.35	16.00)	16000	
D左	14.890	14.990	15.0%	13.194	13-278	15.410	13-770	[50]	10	47 17	11. 50.16	11.130	/
	6.855	6.660	6.457	6.252	6.051	\$.820	5 589	5-354	5.008	4:745	4304	411/0	
	46.19/		14 483	29 081	34.613	33.872	31.337	29.665	25.685	22.496	20-286	17.556	32.378
y	46.77/	44.50	41.0/	27.000	10.0.7			130	20 to 11.0	127 47	1317	27 780	371 98
xy	751.86	65.34	\$83.70	t08.14	439.38	3725	312-31	25/1/4	203.40	131-41	12172	01./00	3/1/0
10 9	191.00			10	111			00	1.11	49	36	25	122
X2	256	215	196	169	1644	121	100	81	64	1	70	"	1

数据处理:

1. 劈尖

已知 入=589.3 nm, n=1

根据实验数据,X=20, Lx=3.747mm, L=28.489mm

可计算得薄片厚度 e= 台· X· 台 = 0.04481 mm

2. 牛顿环.

$$\begin{cases} x=m \\ y=D_{m}^{2} \end{cases} \qquad \begin{cases} \alpha = \frac{\overline{x} \cdot \overline{y} - x\overline{y}}{(\overline{x})^{2} - x^{2}} \\ b = 4\lambda Rm_{0} \end{cases}$$

$$\bar{X} = \int_{1-1}^{12} X_1^2 / R^2 = 10$$

$$\bar{xy} = \sum_{i=1}^{12} \bar{xy}_{i}, /12 = 371.98 mm$$

数据处理:

$$\overline{X}^2 = \frac{12}{12} X_1^2 / 12 = 122$$

$$\therefore a = \frac{\overline{x}\overline{y} - \overline{x}\overline{y}}{(\overline{x})^2 - \overline{x}^2} = 2.2$$

$$b=\bar{y}-a\bar{x}=10$$

EFF R = 1024mm

- 讨论:①旗数中视野变暗可移动彻灯 ②只能同一方向旋转以消除回程差 ③牛顿环实验前要将孔调至中央

物理实验 原始实验数据记录

2020年 11月15日

实验名称 等厚干涉一群尖和牛顿环 实验仪器: 零位误差 仪器误差 估读误差 最小量 量程 仪器名称 钠光灯 0.004mm ontomm orolmm 0.001 mm

物理现象及数据记录 (表格自拟):

1. 劈尖 /mm

1.777	_ //////				1
χo	X20	lo = 1 x20 - X0/	L左	LE	L=14-15.
	25.928	3.747	0.016	28.505	78.489

2. 牛顿环

k=m	16	15	14	13	12	11	10	9	8	7	6	5	平均值
D左	21.745	21.650	21.555	21.446	21.349	2120	21:119	20.999	20-840	20.619	20.场为	20:410	
D左	14.890	14.990	15.098	15.194	15.298	15410	15.530	15.645	15.772	15.90	16.061	16.220	
N-be-Del	6.8tt	6.660	6.457	6.0\$2	6.051	\$ 820	5.589	5-354	5.068	4713	4.504	4.190	
N=D2	14. 891	04.356	UI. 693	39.088	36 615	23.87	31-23	28.66	14:183	22.49	20.286	17.556	32.378
y-0	751 86	11534	£\$3.70	t02.14	439.38	372.59	312-37	257.98	215.4	157.4	121.72	27.780	371-98
xy	751.00	225	196	169	144	121	(00	81	64	49	36	15	122

R标=1024mm. 入=589.3nm

指导教师: