YIHUA ZHANG Ph.D. Student in Computer Science

J (+1) 517-980-3880

zhan1908@msu.edu ♦ www.yihua-zhang.com ♠ NormalUhr ♠ Yihua Zhang

Personal Information

I am a second-year Ph.D. student in computer science at Michigan State University, where I am advised by Dr. Sijia Liu. I am interested in the optimization foundation of trustworthy and scalable machine learning, including the optimization theories to improve the robustness, explainability, fairness, and scalability of current machine learning algorithms.

EDUCATION

Doctor of Computer Science 01 2022 - Present Michigan State University, East Lansing, USA Advisor: Dr. Sijia Liu **OPTML Lab Bachelor of Engineering** 092015 - 062019Huazhong University of Science and Technology, Wuhan, China **AWARDS Scholarly Awards**

Best Paper Runner-up Award of UAI 2022	2022
NeurIPS Scholar Award	2022
NeurIPS Top Reviewer	2022
UAI Student Scholarship	2022
Travel Grants	
AAAI 2023 Travel Award	2023
Travel Grant Award of ICML 2022	2022
Undergraduate Award	

National Scholarship, by Ministry of Education of China (Top 1%, highest undergraduate honor) 2017

National Scholarship, by Ministry of Education of China (Top 1%, highest undergraduate honor) 2016

PUBLICATIONS

Conference Papers

(* represents equal contributions)

- [1] Y. Zhang, P. Sharma, P. Ram, M. Hong, K. R. Varshney, S. Liu "What Is Missing in IRM Training and Evaluation? Challenges and Solutions", [link], 11th International Conference on Learning Representations (ICLR'23), [PDF].
- [2] B. Hou, Y. Zhang, J. Jia G. Zhang, Y. Zhang, S. Liu, S. Chang "TextGrad: Advancing Robustness Evaluation in NLP by Gradient-Driven Optimization", [link], 11th International Conference on Learning Representations (ICLR'23), [PDF].
- [3] Y. Zhang*, Y. Yao*, P. Ram, P. Zhao, T. Chen, M. Hong, Y. Wang, S. Liu, "Advancing Model Pruning via Bi-level Optimization", 36th Conference on Neural Information Processing Systems (NeurIPS'22), [PDF], [Code], [Poster], [Project Website].
- [4] Y. Zhang*, G. Zhang*, Y. Zhang, W. Fan, Q. Li, S. Liu, S. Chang "Fairness Reprogramming", 36th Conference on Neural Information Processing Systems (NeurIPS'22), [PDF], [Code], [Poster], [Project Website].
- [5] G. Zhang*, S. Lu*, Y. Zhang, X. Chen, P. Chen, Q. Fan, L. Martie, M. Hong, S. Liu, "Distributed Adversarial Training to Robustify Deep Neural Networks at Scale", 38th Conference on Uncertainty in Artificial Intelligence (UAI'22 - Oral, Best Paper Runner-up Award), [PDF], [Code], [Poster], [Slides], [Award].
- [6] Y. Zhang*, G. Zhang*, P. Khanduri, M. Hong, S. Chang, S. Liu, "Fast-BAT: Revisiting and Advancing Fast Adversarial Training through the Lens of Bi-level Optimization", 39th International Conference on Machine Learning (ICML'22), [PDF], [Code], [Poster], [Slides], [Talk].
- [7] Y. Zhang*, T. Chen*, Z. Zhang*, S. Chang, S. Liu, Z. Wang "Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free", Computer Vision and Pattern Recognition Conference 2022 (CVPR'22), [PDF], [Code], [Poster], [Project Website].

Papers under Submission

[8] Y. Zhang, R. Cai, T. Chen, G. Zhang, P. Chen, H. Zhang, S. Chang, W. Zhang, S. Liu "Robust Mixture-of-Expert Training for Convolutional Neural Networks", submitted to CVPR 2023.

RESEARCH OF INTEREST

Bilevel Optimization in Deep Learning: Theory, Algorithm, and Application

02 2019 - Present

Bi-level optimization (BLO) is a challenging mathematical problem, while many of the deep learning tasks can be naturally formulated as a BLO and thus, the effective and efficient algorithms to solve BLO is cherished by the research community. My research in this direction are as follows:

- Summarize different BLO formulations and corresponding theories/algorithms in deep learning. Develop a ToolBox for BLO in Python (current work).
- Design effective and efficient BLO algorithms for specific deep learning tasks, such as pruning [3] and adversarial training [6, 2].
- Provide new perspectives to interpret the current deep learning tasks and possible existing algorithms from the lens of BLO. Related publications/submissions: [3, 6]

Trustworthy Machine Learning: Robust, Interpretable, and Fair

02 2019 - Present

The robustness of the deep learning models have become a research hotspot in the last decade. However, to build a trustworthy machine learning algorithm requires more than robustness. My research interest in this topic is summarized as follows:

- Design effective, efficient, and scalable robust training algorithm [5, 6, 2] to improve the adversarial robustness.
- Improve the fairness of the model [4].
- Design defense strategy against backdoor attacks [7].

Related publications/submissions: [4, 5, 6, 7, 8, 2]

TUTORIALS/INVITED TALKS

- 02/2023: "Bi-level Optimization in Machine Learning: Foundations and Applications", AAAI 2023 (Tutorial)
- 11/2022: "Invariant Risk Minimization through Bi-level Optimization and Beyond", Invited Talk in UMN
- 10/2022: "Revisiting and Advancing Fast Adversarial Training through the Lens of Bi-level Optimization", INFORMS Annual Meeting (2022)
- 04/2022: "Adversarial Training via Bi-level Optimization", Invited Talk in UCSB.

PROFESSIONAL ACTIVITIES

- Reviewer: NeurIPS'22, AISTATS'23, ICLR'23, ICASSP'23, CVPR'23, TMRL
- TPC for KDD'22 Workshop 4th Workshop on Adversarial Learning Methods for Machine Learning and Data Mining.
- Student Chair for ICML'22 Workshop AdvML: New Frontiers in Adversarial Machine Learning.
- TPC for NeurIPS'21 Workshop NFFL: New Frontiers in Federated Learning: Privacy, Fairness, Robustness, Personalization and Data Ownership.

SKILLS

Programming Languages Python, C++, Java, C **Libraries** PyTorch, OpenCV, NumPy, Matplotlib.

Last updated: January 21, 2023.