

第十章: 关系

二元关系 —— 关系

- > 定义
- 二元关系是笛卡儿积的子集

有序对的集合

- 口 对集合 $A \cap B$, $A \times B$ 的任一子集称为 $A \cap B$ 的一个二元关系,一般记作R;
 - 二元关系是集合A和B元素之间的联系
- □ 若 $\langle x, y \rangle \in R$,可记作 xRy; 若 $\langle x, y \rangle \notin R$,可记作 xRy
- \Box 在A=B时, $A\times A$ 的任一子集称为A上的一个二元关系

二元关系

▶ n元组的集合定义n元关系:

 $A_1 \times A_2 \times ... \times A_n$ 的任一子集称为从 A_1 到 A_n 上的一个n元关系。

- > 特殊的关系
 - (1) A上的恒等关系 I_A 定义为 $I_A = \{\langle x, x \rangle | x \in A\}$
 - (2) A上的全域关系(全关系) E_A 定义为 $E_A = \{\langle x, y \rangle | x \in A \land y \in A\}$
 - (3) Ø是A上的空关系

$$\partial A = \{1, 2\}$$
,则

$$I_A = \{<1, 1>, <2, 2>\}$$

$$I_A = \{<1, 1>, <2, 2>\}$$
 $E_A = \{<1, 1>, <2, 1>, <1, 2>, <2, 2>\}$

二元关系

> 定义域和值域

对A到B的一个关系R,可以定义

(1) R的定义域 dom(R)为

$$\mathbf{dom}(R) = \{x \mid (\exists y)(\langle x, y \rangle \in R)\}$$

(2) R的值域ran(R)为

$$\operatorname{ran}(R) = \{y | (\exists x)(\langle x, y \rangle \in R)\}$$
$$= \{x | (\exists y)(\langle y, x \rangle \in R)\}$$

(3) R的域fld(R)为

$$fld(R)=dom(R)\cup ran(R)$$

设
$$A = \{a, b, c\}, B = \{b, c, d\},$$
 $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle b, d \rangle\},$
 $dom(R) = \{a, b\}$
 $ran(R) = \{b, c, d\}$
 $fld(R) = \{a, b, c, d\}$
 $\cup R = \{\{a\}, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}\}\}$
 $\cup R = \{a, b, c, d\}$

二元关系

 \rightarrow 对A到B的关系R如果< $x,y>\in R$,则 $x\in \cup \cup R$, $y\in \cup \cup R$

证明: 已知 $< x, y > \in R$, 即 $\{\{x\}, \{x, y\}\} \in R$.

> 对A到B的关系R,则 fld(R) = ∪∪R

证明 对任意的x, 若 $x \in \text{fld}(R)$ 则 $x \in \text{dom}(R)$ 或 $x \in \text{ran}(R)$

则存在y,使 $\langle x, y \rangle \in R$ 或 $\langle y, x \rangle \in R$ $\longrightarrow x \in \cup \cup R$

对任意的 t, 若 $t \in \cup \cup R$, R的元素的形式是 $\{\{x\},\{x,y\}\}$

必存在u,使 $\{t\},\{t,u\}\} \in R$ 或 $\{\{u\},\{u,t\}\} \in R$ $\longrightarrow t \in fld(R)$

关系矩阵和关系图

> 关系矩阵

设集合 $X = \{x_1, x_2, ..., x_m\}$, $Y = \{y_1, y_2, ..., y_n\}$,

若R是X到Y的一个关系,则R的关系矩阵是 $m \times n$ 矩阵 (m行, n列的矩阵)

$$M(R) = (r_{ij})_{m \times n}$$

矩阵元素是 r_{ij} 且

$$r_{ij} = \begin{cases} 1, & \exists \langle x_i, y_j \rangle \in R \\ 0, & \exists \langle x_i, y_j \rangle \notin R \end{cases}$$

R是X上的一个关 系,则R的关系 矩阵是 $m \times m$ 方阵

其中 $1 \le i \le m$, $1 \le j \le n$

关系矩阵和关系图

> 关系矩阵

例: 设
$$X = \{x_1, x_2, x_3, x_4\}, Y = \{y_1, y_2, y_3\}, X$$
到 Y 的关系 R 为 $R = \{\langle x_1, y_1 \rangle, \langle x_1, y_3 \rangle, \langle x_2, y_3 \rangle, \langle x_4, y_2 \rangle\}$

则R的关系矩阵是

$$M(R) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} x_{1} x_{2} x_{3}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ y_{1} & y_{2} & y_{3} \end{pmatrix}$$

关系矩阵和关系图

> 关系图

设集合 $X = \{x_1, x_2, ..., x_m\}$, $Y = \{y_1, y_2, ..., y_n\}$, 若R是X到Y的一个关系,则R的关系图是

- ✓ 有向图 $G(R) = \langle V, E \rangle$
- ✓ 顶点集是V=X∪Y
- ✓ 边集是E,从 x_i 到 y_j 的有向边 $e_{ij} \in E$, 当且仅当< $x_i, y_i > \in R$

关系矩阵和关系图

$$\blacktriangleright$$
 关系图 $R = \{\langle x_1, y_1 \rangle, \langle x_1, y_3 \rangle, \langle x_2, y_3 \rangle, \langle x_4, y_2 \rangle\}$

$$M(R) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} x_{1} \qquad x_{1} \sim y_{2} \sim y_{2} \sim y_{2} \sim y_{3} \sim y_{3} \sim y_{4} \sim y_{1} \sim y_{2} \sim y_{3} \sim y_{3} \sim y_{4} \sim y_{1} \sim y_{2} \sim y_{3} \sim y_{3} \sim y_{4} \sim y_{1} \sim y_{2} \sim y_{3} \sim y_{3} \sim y_{4} \sim y_{4} \sim y_{4} \sim y_{1} \sim y_{2} \sim y_{3} \sim y_{3} \sim y_{4} \sim y_{$$

 $对 A = \{a, b, c\} \bot$ 的关系 $R = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, b \rangle, \langle b, c \rangle\}$

关系的逆、合成、限制和象

- \rightarrow 对X到Y的关系R,Y到Z的关系S,定义
 - (1) R的逆 R^{-1} 为Y到X的关系 $R^{-1} = \{ \langle x, y \rangle | \langle y, x \rangle \in R \}$
 - (2) R与S的合成S。R为X到Z的关系

颠倒有序对就是 R^{-1}

关系图每条有向边的方向 颠倒得到 R^{-1} 的关系图

$$S \circ R = \{ \langle x, y \rangle | (\exists z) (\langle x, z \rangle \in R \land \langle z, y \rangle \in S) \}$$

求S·R需把R 中每个有序对 与S中每个有 序对一一配合

例: $R=\{<1, 2>, <5, 6>\}$, $S=\{<3, 4>, <6, 7>\}$

$$S \circ R = \{\langle 5, 7 \rangle\}$$

关系的逆、合成、限制和象

- \rightarrow 对X到Y的关系R,Y到Z的关系S,定义
 - (3) R在A上的限制RIA为A到Y的关系

$$R \upharpoonright A = \{\langle x, y \rangle | (\langle x, y \rangle \in R \land x \in A)\}$$

(4) A在R下的象R[A]为集合

$$R[A] = \{y | (\exists x)(x \in A \land \langle x, y \rangle \in R)\}$$

 $R \cap A$ 是关系R 的子集,每 个有序对< x, y > 满足 $x \in A$

R↑A是A到Y的关系

当 $dom(R) \subseteq A$ 时, $R \upharpoonright A = R$

R[A]是一个集合,实质上是R[A]的值域

设集合 $A = \{a, \{a\}\}\}$ 上的关系 $R \supset R = \{\langle a, \{a\}\rangle, \langle \{a\}\}\rangle\}$ $R^{-1} = \{\langle \{a\}, a\rangle, \langle \{a\}\}, \{a\}\rangle\} \quad R \cap R = \{\langle a, \{\{a\}\}\rangle\} \quad R \cap \{a\}\} = \{\langle \{a\}\}, \{\{a\}\}\}\} \quad R \cap \{\{a\}\}\} = \{\{\{a\}\}\}\}$

关系的逆、合成、限制和象

$$M(S \circ R) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- ► S∘R的关系矩阵
 - \square R^{-1} 的关系矩阵 $M(R^{-1})$ 就是R的关系矩阵的转置矩阵
 - \square 如果A是有限集合,|A|=n.关系R和S都是A上的关系,R和S的关系矩阵 $M(R)=(r_{ij})$ 和 $M(S)=(s_{ij})$ 都是 $n\times n$ 的方阵,则

 $S \circ R$ 的关系矩阵 $M(S \circ R) = M(R)M(S)$

设集合
$$A = \{1,2,3,4\}$$
, A 上的关系 $R = \{<1,2>,<3,4>,<2,2>\}$
 $S = \{<4,2>,<2,4>,<3,1>,<1,3>\}$

$$M(R) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} M(S) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} M(R \circ S) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

关系的逆、合成、限制和象

- \triangleright 性质 对X到Y的关系R和Y到Z的关系S,则
 - $(1) \operatorname{dom}(R^{-1}) = \operatorname{ran}(R)$
 - $(2) \operatorname{ran}(R^{-1}) = \operatorname{dom}(R)$
 - $(3) (R^{-1})^{-1} = R$
 - $(4) (S \circ R)^{-1} = R^{-1} \circ S^{-1}$

证明 (4) 对任意的 $\langle x, y \rangle$, 有

$$\langle x, y \rangle \in (S \circ R)^{-1} \Leftrightarrow \langle y, x \rangle \in S \circ R$$

$$\iff (\exists z)(\langle y,z\rangle \in R \land \langle z,x\rangle \in S)$$

$$\Leftrightarrow (\exists z)(\langle x,z\rangle \in S^{-1} \land \langle z,y\rangle \in R^{-1})$$

$$\Leftrightarrow \langle x, y \rangle \in R^{-1} \circ S^{-1}$$

关系的逆、合成、限制和象

 \rightarrow 对X到Y的关系Q, Y到Z的关系S, Z到W的关系R, 则

$$(R \circ S) \circ Q = R \circ (S \circ Q)$$

满足结合律,但不满足交 换律, $--般S \circ R \neq R \circ S$

证明 对任意的 $\langle x, y \rangle$, 有

$$\langle x, y \rangle \in (R \circ S) \circ Q$$

$$\Leftrightarrow (\exists u)(\langle x,u\rangle \in Q \land \langle u,y\rangle \in (R \circ S))$$

$$\Leftrightarrow (\exists u)(\langle x,u\rangle \in Q \land (\exists v)(\langle u,v\rangle \in S \land \langle v,y\rangle \in R))$$

$$\iff (\exists v)(\langle x,v\rangle \in (S \circ Q) \land \langle v,y\rangle \in R)$$

$$\Leftrightarrow \langle x, y \rangle \in R \circ (S \circ Q)$$

关系的逆、合成、限制和象

- \rightarrow 对X到Y的关系 R_2 和 R_3 ,Y到Z的关系 R_1 ,有
 - $(1) R_1 \circ (R_2 \cup R_3) = R_1 \circ R_2 \cup R_1 \circ R_3$
 - $(2) R_1 \circ (R_2 \cap R_3) \subseteq R_1 \circ R_2 \cap R_1 \circ R_3$
- \rightarrow 对X到Y的关系 R_3 , Y到Z的关系 R_1 、 R_2 , 有
 - (3) $(R_1 \cup R_2) \circ R_3 = R_1 \circ R_3 \cup R_2 \circ R_3$
 - $(4) (R_1 \cap R_2) \circ R_3 \subseteq R_1 \circ R_3 \cap R_2 \circ R_3$

(关系合成符优先于集合运算符)

二元关系

设
$$A = \{0, 1\}, B = \{a, b\}, 则$$

$$R_1 = \{<0, a>\}$$

$$R_2 = \{<0, a>, <0, b>, <1, a>\}$$

$$R_3 = \{<0, 1>, <1, 0>\}$$

$$R_4 = \{<0, 1>, <0, 0>, <1, 0>\}$$

A到B的两个 一元关系

A上的两个 二元关系

关系的逆、合成、限制和象

- \rightarrow 对X到Y的关系R和集合A、B有
 - (1) $R[A \cup B]=R[A]\cup R[B]$
 - (2) $R[\cup A] = \cup \{R[B] | B \in A\}$
 - (3) $R[A \cap B] \subseteq R[A] \cap R[B]$
 - (4) $R[\cap A] \subseteq \cap \{R[B] | B \in A\}, A \neq \emptyset$
 - (5) $R[A]-R[B] \subseteq R[A-B]$

证明 (3)对任意的y,可得

$$y \in R[A \cap B] \Leftrightarrow (\exists x)(x \in A \cap B \land \langle x, y \rangle \in R)$$

$$\Leftrightarrow (\exists x)(x \in A \land x \in B \land \langle x, y \rangle \in R)$$

$$\Rightarrow (\exists x)(x \in A \land \langle x, y \rangle \in R) \land (\exists x)(x \in B \land \langle x, y \rangle \in R)$$

$$\Leftrightarrow y \in R[A] \land y \in R[B] \Leftrightarrow y \in R[A] \cap R[B]$$

关系的性质

如果R是A上自反的,则M(R)的主对角元素都是1,G(R)的每个顶点都有自环

> 对A上的关系R,若对任意的x∈A都有xRx,则称R为A上自反的

R是A上自反的 $\Leftrightarrow (\forall x)(x \in A \rightarrow xRx)$

> 若对任意的x ∈ A都有 $x \not R x$,则称 $R \to A$ 上非自反的

R是A上非自反的 $\Leftrightarrow (\forall x)(x \in A \rightarrow xRx)$

如果R是A上非自 反的,则M(R)的 主对角元素都是0, G(R)的每个顶点 都没有自圈

- \Box 在非空集合A上的恒等关系 I_A 和全关系 E_A 都是自反的
- □ 在非空集合A上的空关系Ø是非自反的.
- □ 在非空集合*A*上存在不是自反的也不是非自反的关系, 不存在既自反又非自反的关系

关系的性质

M(R)是对称矩阵

G(R)中任意两个顶点之间或者没有有向边,或者互有有向边 e_{ij} 和 e_{ji}

Arr *R为A*上的关系,对任意的x, y∈A, 若xRy→yRx, 则称R为A上对称的关系

R是A上对称的 $\Leftrightarrow (\forall x)(\forall y)((x \in A \land y \in A \land xRy) \rightarrow yRx)$

 \geq 若 $(xRy \wedge yRx) \rightarrow (x=y)$,则称R为A上反对称的关系

R是A上反对称的 $\Leftrightarrow (\forall x)(\forall y)((x \in A \land y \in A \land xRy \land yRx) \rightarrow x = y)$

R是A上反对称的 $\Leftrightarrow (\forall x)(\forall y)((x \in A \land y \in A \land xRy \land x\neq y) \rightarrow y\not (x)$

M(R)是反对称矩阵

G(R)中任意两个顶点之间或者没有 有向边,或者仅有一条有向边

□ 存在既是对称的又是反对称的关系,也存在既不是 对称又不是反对称的关系

关系的性质

R是A上传递的 \Leftrightarrow ($\forall x$)($\forall y$)($\forall z$)(($x \in A \land y \in A \land z \in A \land x R y \land y R z$) $\rightarrow x R z$)

- □ 在集合A上的全关系、恒等关系、空关系都是传递的
- □ 在集合*A* = {1, 2, 3}上的关系*R*={<1, 2>, <2, 3>}不是传递的关系

关系的性质

- ho R_1 , R_2 是A上自反的关系,则 ${R_1}^{-1}$, $R_1 \cap R_2$, $R_1 \cup R_2$ 也是A上自反的关系
- ho R_1 , R_2 是A上对称的关系,则 ${R_1}^{-1}$, $R_1 \cap R_2$, $R_1 \cup R_2$ 也是A上对称的关系

证明 对任意的<x,y>,有

$$\langle x, y \rangle \in R_1 \cup R_2 \iff \langle x, y \rangle \in R_1 \lor \langle x, y \rangle \in R_2$$

 $\Leftrightarrow \langle y, x \rangle \in R_1 \lor \langle x, y \rangle \in R_2$
 $\Leftrightarrow \langle y, x \rangle \in R_1 \cup R_2$

 $ightharpoonup R_1, R_2$ 是A上反对称的关系,则 $R_1^{-1}, R_1 \cap R_2$ 也是A上反对称的关系

关系的性质

 $ightharpoonup R_1, R_2$ 是A上反对称的关系,则 $R_1^{-1}, R_1 \cap R_2$ 也是A上反对称的关系

证明 反对称性的充要条件等价改写为

$$(\forall x)(\forall y)(x \neq y \rightarrow (\langle x, y \rangle \notin R \lor \langle y, x \rangle \notin R))$$

对任意的x,y∈ A有

$$x \neq y \to (\langle x, y \rangle \notin R_1 \lor \langle y, x \rangle \notin R_1)$$

$$\Leftrightarrow x \neq y \to (\langle y, x \rangle \notin R_1^{-1} \lor \langle x, y \rangle \notin R_1^{-1})$$

 $> R_1 ∪ R_2$ 不一定是反对称的

$$在A = \{1, 2, 3\}$$
上的关系 $R_1 = \{<1, 2>\}, R_2 = \{<2, 1>\}$ $R_1 \cup R_2 = \{<1, 2>, <2, 1>\}$ 不是 A 上反对称的

关系的性质

 R_1 , R_2 是A上传递的关系,则 R_1^{-1} , $R_1 \cap R_2$ 也是A上传递的关系证明 对任意的 $\langle x, y \rangle$, $\langle y, z \rangle$, 有

$$\langle x, y \rangle \in R_1 \cap R_2 \land \langle y, z \rangle \in R_1 \cap R_2$$

$$\Leftrightarrow \langle x, y \rangle \subseteq R_1 \land \langle x, y \rangle \subseteq R_2 \land \langle y, z \rangle \subseteq R_1 \land \langle y, z \rangle \subseteq R_2$$

$$\Rightarrow \langle x, z \rangle \in R_1 \land \langle x, z \rangle \in R_2$$

$$\Leftrightarrow \langle x, z \rangle \in R_1 \cap R_2$$

 $ightharpoonup R_1 \cup R_2$ 不一定是传递的

$$在A=\{1,2,3\}$$
上的关系 $R_1=\{<1,2>\}, R_2=\{<2,3>\}$

$$R_1 \cup R_2 = \{<1, 2>, <2, 3>\}$$
不是A上传递的

关系的性质

- \rightarrow 对A上的关系R,则
 - (1) R是对称的 \Leftrightarrow R=R⁻¹,
 - (2) R是反对称的 \Leftrightarrow $R \cap R^{-1} \subseteq I_A$

设R是反对称的,对任意的 $\langle x, y \rangle$,可得

$$\langle x, y \rangle \in R \cap R^{-1}$$

$$\Leftrightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in R^{-1}$$

$$\Leftrightarrow \langle x, y \rangle \in R \land \langle y, x \rangle \in R$$

$$\Rightarrow x = y$$

$$\Rightarrow \langle x, y \rangle \in I_A$$

$$\partial R \cap R^{-1} \subseteq I_A$$
 , 对任意的 $\langle x, y \rangle$, 可得

$$\langle x, y \rangle \in R \land \langle y, x \rangle \in R$$

$$\Leftrightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in R^{-1}$$

$$\Leftrightarrow \langle x, y \rangle \in R \cap R^{-1}$$

$$\Rightarrow \langle x, y \rangle I_A$$

$$\Longrightarrow x=y$$

关系的闭包

- \triangleright 对非空集合A上的关系R,如果有A上另一个关系R',满足:
 - (1) R'是自反的(对称的, 传递的)
 - $(2) R \subseteq R'$
 - (3) 对A上任何自反的(对称的,传递的)关系R'',有

$$R \subseteq R'' \to R' \subseteq R''$$

则称关系R'为R的自反(对称,传递)闭包,记作r(R)(s(R), t(R))

 \rightarrow 三个闭包: 自反闭包r(R), 对称闭包s(R), 传递闭包t(R)

r(R)是有自反性的R的 "最小" 超集合,

s(R)是有对称性的R的|"最小"超集合,

t(R)是有传递性的R的 "最小" 超集合。

关系的闭包

在R的关系图中加入最少的边使之成为自反 (对称,传递)的,即是自反(对称,传递)闭包

关系的闭包

> 闭包的性质

对非空集合A上的关系R,有

- (1) R是自反的 \Leftrightarrow r(R) = R
- (2) R是对称的 \Leftrightarrow s(R) = R
- (3) R是传递的 $\Leftrightarrow t(R) = R$
- 证明 (2) 设R是对称的,由于 $R \subseteq R$,且任何包含R的对称关系R'',有 $R \subseteq R''$ 即R满足s(R)的定义,s(R) = R。 再设s(R) = R;由s(R)的定义,R是对称的

关系的闭包

- > 闭包的性质
 - □ 对非空集合A上的关系 R_1 , R_2 , $\exists R_1 \subseteq R_2$, 则
 - $(1) r(R_1) \subseteq r(R_2)$
 - $(2) s(R_1) \subseteq s(R_2)$
 - $(3) t(R_1) \subseteq t(R_2)$
 - \square 对非空集合A上的关系 R_1 , R_2 则
 - $(1) r(R_1) \cup r(R_2) = r(R_1 \cup R_2)$
 - $(2) s(R_1) \cup s(R_2) = s(R_1 \cup R_2)$
 - $(3) t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$

关系的闭包

集合 $A = \{a, b, c\}$ 上的关系 R_1 和 R_2 为 $R_1 = \{\langle a, b \rangle\}, R_2 = \{\langle b, c \rangle\}.$

则
$$t(R_1)$$
= R_1 ={< a, b >}, $t(R_2)$ = R_2 ={< b, c >}.

$$t(R_1) \cup t(R_2) = \{ \langle a, b \rangle, \langle b, c \rangle \}$$

$$t(R_1 \cup R_2) = \{ \langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle \}$$

显然
$$t(R_1) \cup t(R_2) \subset t(R_1 \cup R_2)$$

关系的闭包

> 闭包的构造方法

构造R的自反闭包,只要把所有的 $x \in A$ 构成的 $\langle x, x \rangle$ 加入R中

对非空集合A上的关系R,有 $r(R)=R\cup R^0$.

证明 对任意的 $x \in A$, $\langle x, x \rangle \in R^0$, 有 $\langle x, x \rangle \in R \cup R^0$,

- ① 故 $R \cup R^0$ 是A上自反的

因此 $r(R)=R\cup R^0$

③ 对A上任意的自反关系R'',如果 $R \subseteq R''$,则对任意的 $\langle x, y \rangle$ 若 $\langle x, y \rangle \in R \cup R^0$,即 $\langle x, y \rangle \in R$,或者 $\langle x, y \rangle \in R^0$ 当 $\langle x, y \rangle \in R$,由 $R \subseteq R''$ 有 $\langle x, y \rangle \in R''$. 若 $\langle x, y \rangle \in R^0$,则 x = y,即有 $\langle x, y \rangle \in R''$

关系的闭包

> 闭包的构造方法

构造R的对称闭包,只要对任何< x, $y> \in R$ 且< y, $x> \notin R$ 把< y, x>加入R中.

对非空集合A上的关系R,有 $s(R) = R \cup R^{-1}$

证明 对任意的 $\langle x, y \rangle$, 可得 $\langle x, y \rangle \in R \cup R^{-1}$

$$\Leftrightarrow \langle x, y \rangle \in R \lor \langle x, y \rangle \in R^{-1}$$

$$\Leftrightarrow \langle y, x \rangle \in R^{-1} \ \lor \langle y, x \rangle \in R$$

$$\Leftrightarrow \langle y, x \rangle \in R \cup R^{-1}$$

 \bigcirc $R \cup R^{-1}$ 是A 上对称关系

$$\mathcal{Q} \quad R \subseteq R \cup R^{-1}$$

③ 对A上任意的包含R的对称关系 R'',对任意的< x, y> 若 $< x, y> \subseteq R \cup R^{-1}$,则 $< x, y> \in R$ 或 $< x, y> \in R^{-1}$ 当 $< x, y> \in R$,由 $R \subseteq R''$ 有 $< x, y> \in R''$ 当 $< x, y> \in R''$,数 $< x, y> \in R$,如 $< y, x> \in R$,如 $< y, x> \in R''$,数 $< x, y> \in R''$

关系的闭包

> 对A上的关系R, n∈N, 关系R的n次幂 R^n 定义如下:

(1)
$$R^0 = \{\langle x, x \rangle | x \in A\} = I_A$$

$$(2) R^{n+1} = R^n \circ R (n \ge 0)$$

例: 集合 $A = \{a, b, c, d\}$ 上的关系 $R \to R = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}$

关系的闭包

- ightharpoonup 设A 是有限集合,|A|=n,R 是A 上的关系,则存在自然数s 和t, $s \neq t$,使得 $R^s = R^t$
- \triangleright 设A是有限集合,R是A上的关系,m和n是非零自然数,则
 - (1) $R^m \circ R^n = R^{m+n}$
 - $(2) (R^m)^n = R^{mn}$

证明 (1) 对任意的m, 施归纳于n

当
$$n=1$$
时, $R^m \circ R^1 = R^{m+1}$

假设 $n=k(k\geq 1)$ 时结论成立,即有 $R^m \circ R^k$

令
$$n=k+1$$
,则 $R^m \circ R^{k+1} = R^m \circ (R^k \circ R) = (R^m \circ R^k) \circ R$
$$= R^{m+k} \circ R$$

$$= R^{m+k+1}$$

关系的闭包

- \triangleright 设A是有限集合,R是A上的关系,若存在自然数s和t,s < t,使得 $R^s = R^t$,则
 - (1) $R^{s+k} = R^{t+k}$, 其中k为自然数
 - (2) $R^{s+kp+i} = R^{s+i}$, k和i为自然数, p=t-s
 - (3) 令 $B = \{R^0, R^1, ..., R^{t-1}\}$,则R的各次幂均为B的元素,即对任意的自然数q,有 $R^q \in B$.

$$R^q = R^{s+kp+i} = R^{s+i}$$

此外, $s+i \le s+p-1=t-1$ $R^q = R^{s+i} \in B$

关系的闭包

> 闭包的构造方法

对非空集合A上的关系R, 有 $t(R) = R \cup R^2 \cup R^3$...

证明 先证 $R \cup R^2 \cup R^3 \dots \subseteq t(R)$.

需要证明对任意的 $n \ge 1$, $n \in \mathbb{N}$, 有 $\mathbb{R}^n \subseteq t(\mathbb{R})$

- ① 当n=1时, $R\subseteq t(R)$.
- ② 假设n=k时有 $R^k \subseteq t(R)$.令n=k+1,对任意的< x, y>有

$$\langle x, y \rangle \in R^{k+1} \iff \langle x, y \rangle \in R^k \circ R$$

 $\iff (\exists z)(\langle x, z \rangle \in R \land \langle z, y \rangle \in R^k)$
 $\implies (\exists z)(\langle x, z \rangle \in t(R) \land \langle z, y \rangle \in t(R))$

$$\Rightarrow \langle x, y \rangle \in t(R)$$

故 $R^{k+1} \subseteq t(R)$,则有 $R \cup R^2 \cup R^3 \dots \subseteq t(R)$.

关系的闭包

$$t(R) = R \cup R^2 \cup R^3 \dots$$

> 闭包的构造方法

再证 $t(R) \subseteq R \cup R^2 \cup R^3 \dots$ 对任意的 $\langle x, y \rangle$ 和 $\langle y, z \rangle$,

可得 $\langle x, y \rangle \in R \cup R^2 \cup R^3 \dots \land \langle y, z \rangle \in R \cup R^2 \cup R^3 \dots$

 $\Leftrightarrow (\exists s)(\langle x,y\rangle \in R^s) \land (\exists t)(\langle y,z\rangle \in R^t)$ 其中s和t是非零自然数

 $\Rightarrow (\exists s)(\exists t)(\langle x,z\rangle \in R^t \circ R^s)$

 $\Leftrightarrow (\exists s)(\exists t)(\langle x,z\rangle \in R^{t+s})$

 $\Rightarrow \langle x, z \rangle \in R \cup R^2 \cup R^3 \dots$

故 $R \cup R^2 \cup R^3$...是传递的,且包含R

则 $t(R) \subseteq R \cup R^2 \cup R^3 \dots$

关系的闭包

> 闭包的构造方法

$$\square t(R) = R \cup R^2 \cup R^3 \dots$$

□ A为非空有限集合, |A|=n, R是A上的关系,则存在—个正整 $k \le n$,使得

$$t(R) = R^+ = R \cup R^2 \cup R^3 \dots \cup R^k$$

□或

$$t(R) = R \cup R^2 \cup R^3 \dots \cup R^n$$

关系的闭包

例: 集合 $A = \{a, b, c\}$ 上的关系 $R \to R = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle\}$

则
$$r(R)=R\cup R^0=\{\langle a,b\rangle,\langle b,c\rangle,\langle c,a\rangle,\langle a,a\rangle,\langle b,b\rangle,\langle c,c\rangle\}$$

$$\overrightarrow{\text{m}} s(R) = R \cup R^{-1} = \{ \langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, b \rangle, \langle c, a \rangle, \langle a, c \rangle \}$$

$$M(R) = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad M(R^2) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad M(R^3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

則
$$t(R) = R \cup R^2 \cup R^3$$

={ $\langle a, b \rangle, \langle a, c \rangle, \langle b, c \rangle, \langle b, a \rangle, \langle c, a \rangle, \langle c, b \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle$ }

□ Warshall算法

关系的闭包

- \rightarrow 对非空集合A上的关系R,有
 - (1) 若R是自反的,则s(R)和t(R)是自反的
 - (2) 若R是对称的,则r(R)和t(R)是对称的
 - (3) 若R是传递的,则r(R)是传递的
- \rightarrow 对非空集合A上的关系R,有

$$(1) rs(R) = sr(R)$$

$$(2) rt(R) = tr(R)$$

$$(3)$$
 $st(R) \subseteq ts(R)$

其中
$$rs(R) = r(s(R))$$
,
其他类似

证明
$$(1) sr(R) = s(R \cup R^0)$$

 $= (R \cup R^0) \cup (R \cup R^0)^{-1}$
 $= R \cup R^0 \cup R^{-1} \cup (R^0)^{-1}$
 $= R \cup R^{-1} \cup R^0$
 $= (R \cup R^{-1}) \cup (R \cup R^{-1})^0$
 $= rs(R)$

关系的闭包 (2) rt(R) = tr(R) $tr(R) = t(R \cup R^0)$

(2) 先证 $(R \cup R^0)^n = R^0 \cup R^1 \cup ... \cup R^n$

当
$$n=1$$
时, $(R \cup R^0)^1 = R \cup R^0 = R^0 \cup R^1$
假设 $n=k(k\geq 1)$ 时有 $(R \cup R^0)^k = R^0 \cup R^1 \cup ... \cup R^k$,令 $n=k+1$,则有
 $(R \cup R^0)^{k+1} = (R \cup R^0)^k \circ (R \cup R^0)$

$$= (R^0 \cup R^1 \cup ... \cup R^k) \circ (R \cup R^0)$$

$$= ((R^{0} \cup R^{1} \cup ... \cup R^{k}) \circ R) \cup ((R^{0} \cup R^{1} \cup ... \cup R^{k}) \circ R^{0})$$

$$= (R^1 \cup R^2 \cup ... \cup R^{k+1}) \cup (R^0 \cup R^1 \cup ... \cup R^k)$$

$$= R^0 \cup R^1 \cup ... \cup R^{k+1}$$

$$t(R \cup R^{0}) = (R \cup R^{0})^{1} \cup (R \cup R^{0})^{2} \cup (R \cup R^{0})^{3} \cup \dots$$

$$= (R^{0} \cup R^{1}) \cup (R^{0} \cup R^{1} \cup R^{2}) \cup \dots$$

$$= R^{0} \cup R^{1} \cup R^{2} \cup R^{3} \cup \dots = R^{0} \cup t(R) = t(R) \cup (t(R))^{0} = rt(R)$$

关系的闭包

因为
$$ts(R)$$
是对称的 \longrightarrow $sts(R)=ts(R)$

则 $st(R) \subseteq ts(R)$.

若要求出R的自反、对称且传递的闭包

- 先求r(R), 再求sr(R), 最后求tsr(R).
- 先求tr(R), 再求str(R), 则str(R)不一定是传递的

等价关系和划分

> 等价关系

对非空集合A上的关系R,如果R是自反的、对称的和传递的,则称R为A上的等价关系

- ✓ 非空集合A上的恒等关系I_A和全关系E_A都是等价关系
- ✓ 在所有谓词公式的集合上的等值关系⇔是等价关系
- ✓ 已知集合 $A = P(X), C \subseteq X, A$ 上的关系 $R = \{\langle x, y \rangle \mid x \oplus y \subseteq C\}$

等价关系和划分

等价关系和划分

▶ R是非空集合A上的等价关系,对任意的x ∈ A,令

$$[x]_R = \{y \mid y \in A \land xRy\}$$

则称集合 $[x]_R$ 为x关于R的等价类,简称x的等价类,也可记作[x]

$$[1]_R = \{1, 4, 7\} = [4]_R = [7]_R$$

 $[2]_R = \{2, 5, 8\} = [5]_R = [8]_R$
 $[3]_R = \{3, 6\} = [6]_R$

各元素均有一个等价类 等价类间或相等或不相交 所有等价类的并集是A

等价关系和划分

- > R是非空集合A上的等价关系,对任意的x, y∈A, 有
 - (1) $[x]_R \neq \emptyset$ $\coprod [x]_R \subseteq A$
 - (2) 若xRy, 则 $[x]_R = [y]_R$
 - (3) 若x R y ,则 $[x]_R \cap [y]_R = \emptyset$
 - $(4) \cup \{[x]_R \mid x \in A\} = A$
- 证明 (4) 对任意的 $x \in A$, $[x]_R \subseteq A$, 有 $\cup \{[x]_R | x \in A\} \subseteq A$ 对任意的 $x \in A$, $x \in [x]_R$, 有 $x \in \cup \{[x]_R | x \in A\}$ 则 $A \subseteq \cup \{[x]_R | x \in A\}$

$$\longrightarrow \bigcup \{[x]_R \mid x \in A\} = A$$

等价关系和划分

 \triangleright 对非空集合A上的关系R,以R的不相交的等价类为元素的集合称为A的商集,记作A/R

$$A/R = \{y | (\exists x)(x \in A \land y = [x]_R)\}$$

$$[1]_R = \{1, 4, 7\} = [4]_R = [7]_R$$

 $[2]_R = \{2, 5, 8\} = [5]_R = [8]_R$
 $[3]_R = \{3, 6\} = [6]_R$

$$A/R = \{[1]_R, [2]_R, [3]_R\}$$
$$= \{\{1, 4, 7\}, \{2, 5, 8\}, \{3, 6\}\}$$

等价关系和划分

- 》 划分: 对非空集合A, 若存在集合π, 满足下列条件:
 - $(1) (\forall x)(x \in \pi \rightarrow x \subseteq A)$
 - $(2) \emptyset \notin \pi$
 - $(3) \cup \pi = A$
 - $(4) (\forall x)(\forall y)((x \in \pi \land y \in \pi \land x \neq y) \longrightarrow x \cap y = \emptyset)$

则称 π 为A的一个划分,称 π 中的元素为A的划分块.

- □ A的一个划分 π ,是A的非空子集的集合(即 π \subseteq P(A)且 $\emptyset \notin \pi$)
- □ A的这些子集互不相交,且并集为A.

对集合
$$A = \{a, b, c, d\}$$
 $\pi_4 = \{\{a, b, d\}\}$ $\pi_1 = \{\{a\}, \{b, c\}, \{d\}\}$ $\pi_3 = \{\{a, b\}, \{c\}, \{a, d\}\}\}$

等价关系和划分

- \rightarrow 对非空集合A上的等价关系R, A的商集A/R就是A的划分
 - \square 称为由等价关系R诱导出来的A的划分,记作 π_R
- \rightarrow 对非空集合A的一个划分 π ,令A上的关系 R_{π} 为

$$R_{\pi} = \{ \langle x, y \rangle | (\exists z) (z \in \pi \land x \in z \land y \in z) \}$$

则R_π为A上的等价关系

- □ 称 R_{π} 为划分 π 诱导出的A上的等价关系
- > 对非空集合A的一个划分π和A上的等价关系R,π诱导R当且仅当R诱导π

划分与等价一一对应

相容关系和覆盖

不必是传递的

- \triangleright 对非空集合A上的关系R,如果R是自反的、对称的,则称 R为A上的相容关系.
 - □ 相容关系的关系图中,每个顶点都有 自圈,且若一对顶点间有边则有向边 成对出现.

- □ 简化关系图:不画自圈,并用无向边代 替一对来回的有向边.
- ightharpoonup 对非空集合A上的相容关系R,若C $\subseteq A$,且C中任意两个元素x和y有xRy,则称C是由相容关系R产生的相容类,简称相容类。

$$C = \{x | x \in A \land (\forall y)(y \in C \rightarrow xRy)\}$$

 $\{x_1, x_2\}$ $\{x_3, x_4\}$ $\{x_6\}$ $\{x_2, x_4, x_5\}$

相容关系和覆盖

- - □ 对最大相容类C_R有下列性质:

$$(\forall x)(\forall y)((x \in C_R \land y \in C_R) \rightarrow xRy)$$
$$(\forall x)(x \in A - C_R \rightarrow (\exists y)(y \in C_R \land xRy))$$

在相容关系的简化图中,最大完全多边形 是每个顶点与其他所 有顶点相连的多边形

- □ 在简化图中最大完全多边形的顶点集合才是最大相容类
- □ 一个孤立点的集合也是最大相容类
- □ 如果两点连线不是最大完全多边形的边,这两个顶点 的集合也是最大相容类

相容关系和覆盖

- ightharpoonup 对非空集合A,若存在集合 Ω 满足下列条件:
 - $(1) (\forall x)(x \in \Omega \rightarrow x \subseteq A)$
 - $(2) \emptyset \notin \Omega$
 - $(3) \cup \Omega = A$

一个相容关系R,可确定一个 $C_R(A)$;一个覆盖,也可确定一个相容关系;不同的覆盖,可能确定同一个相容关系

则称 Ω 为A的一个覆盖,称 Ω 中的元素为 Ω 的覆盖块

- □ 一个划分是一个覆盖,但一个覆盖不一定是一个划分, 因为划分中各元素不相交,覆盖中各元素可能相交。
- ightharpoonup 对非空集合A上的相容关系R,最大相容类的集合是A的一个覆盖,称为A的完全覆盖,记作 $C_R(A)$,而且 $C_R(A)$ 是唯一的。
- ightharpoonup 对非空集合A的一个覆盖 $\Omega=\{A_1,A_2,...,A_n\}$,由 Ω 确定的关系R = $A_1 \times A_1 \cup A_2 \times A_2 \cup ... \cup A_n \times A_n$ 是A上的相容关系。

相容关系和覆盖

集合A={1, 2, 3, 4}的两个覆盖

$$\Omega_1 = \{\{1, 2, 3\}, \{3, 4\}\}$$

$$\Omega_2 = \{\{1, 2\}, \{2, 3\}, \{3, 1\}, \{3, 4\}\}$$

一个相容关系R,可确定一个 $C_R(A)$;一个覆盖,也可确定一个相容关系;不同的覆盖,可能确定同一个相容关系

可以确定相同的相容关系

$$R = \{ \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 1, 3 \rangle, \langle 3, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 2 \rangle, \langle 3, 4 \rangle, \langle 4, 3 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle \}$$

偏序关系

▶ 偏序关系和拟序关系

对非空集合A上的关系R,如果R是自反的、对称的和传递的,则称R为A上的等价关系

- \square 对非空集合A上的关系R,如果R是自反的、反对称的和传递的,则称R为A上的偏序关系
 - ✓ 偏序关系R通常记作 \le ,当xRy时,可记作 $x\le y$,读作x"小于等于"y.
- \square 对非空集合A上的关系R,如果R是非自反的和传递的,则称R为A上的拟序关系
 - ✓ 拟序关系R通常记作<, 当xRy时, 可记作x < y, 读作x"小于" y

偏序关系又称弱偏序关系,或半序关系,拟序关系又称强偏序关系

偏序关系

拟序关系和偏序关系的区别只是自反性

► R为A上的拟序关系,则R是反对称的.

证明: 假设R不是反对称的.

则存在 $x \in A, y \in A, x \neq y, \notin \langle x, y \rangle \in R$ 且 $\langle y, x \rangle \in R$ 由传递性, $\langle x, x \rangle \in R$;与非自反性矛盾。

- > 对A上的拟序关系R, R∪ R0 A2 A2 上的偏序关系.
- \rightarrow 对A上的偏序关系R, R- R^0 是A上的拟序关系,
- ▶ 集合A与A上的关系R一起称为一个结构;集合A与A上的偏序关系R一起称为一个偏序结构,或称偏序集,并记作<A,R>.
 - $\square < N, \le > \pi < P(A), \subseteq >$ 都是偏序集

偏序关系

> 哈斯图

利用偏序关系的性质, 其关系图可简化为哈斯图

首先,由于自反性,每个顶点都有自圈,则可不画自圈

其次,由于反对称性,两个顶点之间至多一条有向边,则可约 定箭头指向上方或斜上方并适当安排顶点位置,以便用无向边 代替有向边.

最后,由于传递性,依传递可得到的有向边可以不画.

偏序关系

> 对偏序集<A, ≤>,如果x, y ∈A, x ≤y, x ≠y,且不存在元 \$z ∈A 使得x ≤z且z ≤y,则称y盖住x.

A上的盖住关系covA定义为

 $covA = \{ \langle x, y \rangle | x \in A \land y \in A \land y$ 盖住 $x \}$

□ 集合 $A = \{1,2,3,4,6,12\}$ 上的整除关系 D_A 是A上的偏序关系,则A上的盖住关系covA为

□ 对偏序集<A, $\le>$, A上的 盖住关系covA是唯一的

- □ 作图规则为:
- (1) 每个顶点代表A的一个元素
- (2) 若 $x \le y$ 且 $x \ne y$,则顶点y 在顶点x 上方
- (3) 若 $\langle x, y \rangle \in covA$, 则x, y间连无向边

偏序的关系图简化 ■

哈斯图

偏序关系

 $\forall A = \{a, b, c\}, \langle P(A), \subseteq \rangle E$ 偏序集,它的哈斯图为

- > 对偏序集<A,≤>,且 $B \subseteq A$,
- (1) 若 $(\exists y)(y \in B \land (\forall x)(x \in B \rightarrow y \leq x))$, 则称y为B的最小元
- (2) 若 $(\exists y)(y \in B \land (\forall x)(x \in B \rightarrow x \leq y))$, 则称y为B的最大元
- (3) 若 $(\exists y)(y \in B \land (\forall x)((x \in B \land x \leq y) \rightarrow x = y))$, 则称y为B的极小元
- (4) 若 $(\exists y)(y \in B \land (\forall x)((x \in B \land y \leq x) \rightarrow x = y))$, 则称y为B的极大元

$$B = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\}$$

$$B = \{\{a\}, \{b\}, \{a,b\}, \{b,c\}\}\}$$

最小元(最大元)不一定存在,若存在必唯一.

在非空有限集合B中,极小元(极大元)必存在,不一定唯一.

偏序关系

- ightharpoonup 对偏序集 $\langle A, \leq \rangle$,且 $B \subseteq A$,
- (1) 若 $(\exists y)(y \in A \land (\forall x)(x \in B \rightarrow x \leq y))$,则称 $y \rightarrow B$ 的上界
- (2) 若 $(\exists y)(y \in A \land (\forall x)(x \in B \rightarrow y \leq x))$,则称y为B的下界
- (3) 若集合 $C = \{y | y \in B$ 的上界 $\}$,则C的最小元称为B的上确界或最小上界
- (4) 若集合 $C = \{y | y \in B$ 的下界 $\}$,则C的最大元称为B的下确界或最大下界

集合 $A=\{2,3,4,6,9,12,18\}$, A上的整除关系 D_A 是偏序关系,偏序集 $< A, D_A >$

 $B_1 = \{2, 4\}$ \longrightarrow 上界是4和12, 上确界是4, 下界和下确界是2.

 $B_2 = \{4, 6, 9\}$ **→** 没有上下界,没有上下确界.

 $B_3 = \{2,3\}$ **一** 上界是6,12,18,上确界是6,没有下界和下确界.

B的上下界和上下确界可能在B中,可能不在B中,但一定在A中.上界(下界)不一定存在,不一定唯一.上确界(下确界)不一定存在,若存在必唯一.

全序关系和链

N上的小于等于关系是全序关系, 对非空集合A,P(A)上的包含关系不是全序关系

- ightharpoonup 对偏序集<A, $\le>$, 且 $B \subseteq A$,
 - (1) 如果对任意的 $x, y \in B$, x和y都是可比的,则称B为A上的链,B中元素个数称为链的长度
 - (2) 如果对任意的 $x,y \in B$,x和y都不是可比的,则称B为A上的 反链,B中元素个数称为反链的长度.

集合 $A=\{2,3,4,6,9,12,18\}$, A上的整除关系 D_A 是偏序关系.

{3,6,18}, {3,9}, {18}都是链; {4,6,9}, {12,18}, {4,9}都是反链

全序关系和链

- \triangleright 对偏序集<A, $\le>$,设A中最长链的长度是n,则将A中元素分成不相交的反链,反链个数至少是n.

良序关系

- Arr 对偏序集<A, $\le>$,如果A的任何非空子集都有最小元,则称 \le 为良序关系,称<A, $\le>$ 为良序集
 - □ <N, ≤>是全序集, 也是良序集
 - □ <Z,≤>是全序集,不是良序集 因为Z⊆Z,但是Z没有最小元.
- > 一个良序集一定是全序集.
- > 一个有限的全序集一定是良序集.

良序关系

对一个非良序的集合,可定义集合上的一个全序关系,使该集合成为良序集

- □ <Z,≤>不是良序集.
- □ 在Z上定义全序关系R为:

定义R的过程 称为良序化

 $\forall a, b \in \mathbb{Z}$, 若 $|a| \leq |b|$, 则aRb; 若a > 0,则-aRa

- 0R-1, -1R1, 1R-2, -2R2, ...
- \longrightarrow Z的最小元是0,Z的子集都有最小元, $\langle Z, R \rangle$ 是良序集
- > (良序定理) 任意的集合都是可以良序化的.