

Idée. (4; 5; -1; 9) est une liste (ou tuple), c'est un ensemble fini de nombres pour lequel l'ordre importe. On peut modéliser une liste par une fonction $u: \{1; 2; 3; 4\} \to \mathbb{R}$ avec u(1) = 4; u(2) = 5; u(3) = -1; u(4) = 9.

Une suite est une liste infinie de nombres : (1; 3; 5; 7; 9; 11; ...). On étudie les suites dans ce chapitre.

Définition. Une suite numérique est une fonction u à valeurs dans \mathbb{R} et définie sur \mathbb{N} (tous les entiers) ou plus généralement, sur tous les entiers à partir d'un certain entier initial n_0 .

Une suite u associe à tout entier n, un réel noté u_n (au lieu de l'écriture habituelle u(n)).

On note la suite u parfois $(u_n)_{n\geq 0}$ ou juste (u_n) . Pour tout n, u_n est le terme général de rang n de la suite.

Attention : Il ne faut pas confondre u_n qui est en général un nombre et (u_n) qui désigne la fonction u.

Définition. Définir une suite par une formule explicite, c'est donner u_n en fonction de n directement.

Exemples. - La suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = n^2 - 1$. Le premier terme est u_0 et $u_0 = -1$

- La suite $(u_n)_{n\geq 6}$ définie pour tout entier $n\geq 6$ par $u_n=\frac{1}{n-5}$. Le premier terme est u_6 et $u_6=1$

Définition. Définir une suite par une relation de récurrence, c'est donner un ou plusieurs premiers termes et une relation permettant de calculer un terme à partir d'un ou plusieurs termes précédents.

Exemple. La suite (u_n) définie par $u_0 = -6$ et, pour tout $n \in \mathbb{N}$, par $u_{n+1} = 3u_n + 15$.

Pour n = 0, on a $u_{0+1} = 3u_0 + 15$, c'est-à-dire $u_1 = 3 \times (-6) + 15 = -3$

Pour n = 1, on a $u_{1+1} = 3u_1 + 15$, c'est-à-dire $u_2 = 3 \times (-3) + 15 = 6$

Pour calculer un terme, on doit connaître le précédent. Par exemple, $u_{20} = 3u_{19} + 15$

Remarque. Il ne faut pas confondre u_{n+1} , qui désigne le terme suivant u_n , et $u_n + 1$.

Méthode. Pour représenter une suite dans un repère (1.), on place les points de coordonnées $(n; u_n)$.

Méthode. Si la suite est définie par $u_{n+1} = f(u_n)$, alors (2.) on peut parfois construire les termes à l'aide de la courbe représentative de la fonction f et de la droite d'équation y = x

Définition. Une suite (u_n) est **croissante** ssi, pour tout entier $n, u_{n+1} \ge u_n$.

Définition. Une suite (u_n) est **décroissante** ssi, pour tout entier n, $u_{n+1} \le u_n$.

Définition. Une suite (u_n) est **monotone** ssi elle est soit croissante, soit décroissante.

Définition. Une suite (u_n) est **constante** ssi, pour tout entier n, $u_{n+1} = u_n$.

Définition. Comme pour les fonctions, si on remplace les inégalités larges par des inégalités strictes, on parle de suite strictement croissante, strictement décroissante, ou strictement monotone.

Propriété. Si pour tout n, $u_{n+1} - u_n \ge 0$ (resp. > 0), alors la suite est croissante (resp. strictement).

Propriété. Si pour tout n, $u_{n+1} - u_n \le 0$ (resp. < 0), alors la suite est décroissante (resp. strictement).

Méthode. Pour étudier <u>les variations</u> d'une suite on peut étudier <u>le signe</u> de $u_{n+1} - u_n$.

Exemple. Soit (u_n) la suite définie par $u_0 = 5$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + n^2 + 1$.

Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = n^2 + 1 \ge 1 > 0$. Donc la suite (u_n) est strictement croissante.

Méthode. Pour montrer qu'une suite n'est pas croissante, il suffit de trouver un n tel que $u_n > u_{n+1}$

Exemple. $((-1)^n)_{n\geq 0}$ n'est pas croissante car pour n=0 on a : $(-1)^0=1>(-1)^1=-1$

Exemple. $((-1)^n)_{n\geq 0}$ n'est pas décroissante car pour n=1 on a : $(-1)^1=-1<(-1)^2=1$

Exemples. Allure d'une suite croissante, d'une suite décroissante, et d'une suite non monotone.

Remarque. Il existe des suites qui ne sont pas monotones, comme la suite (u_n) définie par $u_n = (-1)^n$.

Définition. Une **suite** (u_n) **est arithmétique** ssi la différence de deux termes consécutifs est <u>constante</u>. Plus précisément, (u_n) est arithmétique ssi il existe un réel r, tel que pour tout $n \in \mathbb{N}$, on ait $u_{n+1} = u_n + r$. r est appelé **raison de la suite arithmétique** (u_n) .

Exemple. La suite (u_n) définie par $u_0 = -2$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$ est la suite arithmétique de raison r = 3 et de premier terme $u_0 = -2$.

Méthode. Pour montrer qu'une suite (u_n) est arithmétique, on peut chercher à montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n$ est constante (ne dépend pas de n).

Propriété. Terme général d'une suite arithmétique. Soit (u_n) une suite arithmétique de raison r. Pour tout $n \in \mathbb{N}$, $u_n = u_0 + nr$ (Deux termes distants de n rangs diffèrent de n fois la raison)

Pour tout $n \in \mathbb{N}$, $u_n = \overline{u_1 + (n-1)r}$

Pour tout $n \in \mathbb{N}$ et tout $p \in \mathbb{N}$, $u_n = u_p + (n-p)r$

Exemple. Soit (v_n) la suite définie par $v_0 = 3$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n - 0.5$.

Cette suite est arithmétique de raison r = -0.5 et de premier terme $v_0 = 3$.

Donc, pour tout $n \in \mathbb{N}$, $v_n = v_0 + r \times n = 3 - 0.5n$.

Propriété. Sens de variation d'une suite arithmétique. Soit (u_n) une suite arithmétique de raison r.

- Si r > 0, alors la suite est strictement croissante.
- Si r < 0, alors la suite est strictement décroissante.
- Si r = 0, alors la suite est constante.

Définition. Une **suite** (u_n) **est géométrique** ssi le quotient de deux termes consécutifs est <u>constant</u>. Plus précisément, (u_n) est géométrique s'il existe un réel q, tel que pour tout $n \in \mathbb{N}$, on ait $u_{n+1} = q \times u_n$. q est appelé **raison de la suite géométrique** (u_n) .

Exemple. La suite (u_n) définie par $u_0=0.5$ et, pour tout $n\in\mathbb{N}$, $u_{n+1}=2u_n$ est la suite géométrique de raison q=2 et de premier terme $u_0=0.5$.

Méthode. Pour montrer qu'une suite est géométrique, si les termes sont $\neq 0$, on peut montrer que $\frac{u_{n+1}}{u_n}$ est constante (ne dépend pas de n).

Propriété. Terme général d'une suite géométrique. Soit (u_n) une suite géométrique de raison q.

Pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n$

Pour tout $n \in \mathbb{N}$, $u_n = u_1 \times q^{n-1}$

Pour tout $n \in \mathbb{N}$ et tout $p \in \mathbb{N}$, $u_n = u_p \times q^{n-p}$

Exemple. La suite (u_n) définie par $u_0=0.5$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=2u_n$ est géométrique de raison q=2 et de premier terme $u_0=0.5$, donc, pour tout $n\in\mathbb{N}$, $u_n=u_0\times q^n=0.5\times 2^n$.

Propriété. Sens de variation d'une suite géométrique non nulle.

- Si q > 1 et $u_0 > 0$, alors la suite est strictement croissante.
- Si q > 1 et $u_0 < 0$, alors la suite est strictement décroissante.
- Si 0 < q < 1 et $u_0 > 0$, alors la suite est strictement décroissante.
- Si $u_0 < 0$, alors la suite est strictement croissante.
- Si q = 0 ou q = 1, alors la suite est constante.
- Si q < 0, alors la suite n'est pas monotone.

Propriété. Somme des n premiers entiers.

Pour tout entier $n \ge 1$, on a $1 + 2 + \dots + n = \frac{n \times (n+1)}{2}$

Propriété. Somme des termes consécutifs d'une S.A. = nombre de termes $\times \frac{(1\text{er terme+dernier terme})}{2}$

Propriété. Somme des n premières puissances d'un réel différent de 1.

Soit q un réel $\neq 1$. Pour tout entier $n \geq 1$, $1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$

Propriété. Somme des termes consécutifs d'une S.G. = 1^{er} terme $\times \frac{1-q^{\text{nombre de termes}}}{1-q}$