Pearson Edexcel International Advanced Level Mechanics M3 Advanced/Advanced Subsidiary Sample Assessment Material Time: 1 hour 30 minutes Centre Number Candidate Number Candidate Number Candidate Number Paper Reference WME03/01	Sample Assessment Mater		Paper Reference WME03/01
Pearson Edexcel International Advanced Level Centre Number Candidate Numb	Advanced/Advanced	d Subsidiary	
Pearson Edexcel Centre Number Candidate Number International			
Surname Other names	nternational	Centre Number	Candidate Number
Write your name here			ames

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take g = 9.8 m s⁻², and give your answer to either two significant figures or three significant figures.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- ase this as a gaide as to now mach time to spend on each question

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

S45006A
©2013 Pearson Education Ltd.

PEARSON

Leave blank

Figure 1

A garden game is played with a small ball B of mass m attached to one end of a light inextensible string of length 13l. The other end of the string is fixed to a point A on a vertical pole as shown in Figure 1. The ball is hit and moves with constant speed in a horizontal circle of radius 5l and centre C, where C is vertically below A. Modelling the ball as a particle, find

(a)	the tension in the string,	
		(3)

(b)	the speed of the ball.
-----	------------------------

1.

Question 1 continued	Leave blank
	21
(Total 7 marks)	

		L
2.	A particle P of mass m is above the surface of the Earth at distance x from the centre of the Earth. The Earth exerts a gravitational force on P . The magnitude of this force is inversely proportional to x^2 .	
	At the surface of the Earth the acceleration due to gravity is g . The Earth is modelled as a sphere of radius R .	
	(a) Prove that the magnitude of the gravitational force on P is $\frac{mgR^2}{x^2}$.	
	A particle is fired vertically upwards from the surface of the Earth with initial speed $3U$. At a height R above the surface of the Earth the speed of the particle is U .	
	(b) Find U in terms of g and R .	
	(7)	

	Leave
Question 2 continued	

	Leave
	blank
Question 2 continued	
<i>(</i>	
	1

uestion 2 continued	

Leave blank

3.

Figure 2

A particle of mass 0.5 kg is attached to one end of a light elastic spring of natural length 0.9 m and modulus of elasticity λ newtons. The other end of the spring is attached to a fixed point O on a rough plane which is inclined at an angle θ to the horizontal, where $\sin \theta = \frac{3}{5}$. The coefficient of friction between the particle and the plane is 0.15. The particle is held on the plane at a point which is 1.5 m down the line of greatest slope from O, as shown in Figure 2. The particle is released from rest and first comes to rest again after moving 0.7 m up the plane.

Find the value of λ .	(9
	(*

Question 3 continued	Leave

	Leave
	blank
Question 3 continued	

Question 3 continued		Leave blank
	.	
	.	
	.	Q3
(Total 9 marks)		

Leave blank

4.

Figure 3

A container is formed by removing a right circular solid cone of height 4l from a uniform solid right circular cylinder of height 6l. The centre O of the plane face of the cone coincides with the centre of a plane face of the cylinder and the axis of the cone coincides with the axis of the cylinder, as shown in Figure 3. The cylinder has radius 2l and the base of the cone has radius l.

(a) Find the distance of the centre of mass of the container from O.

Figure 4

The container is placed on a plane which is inclined at an angle θ° to the horizontal. The open face is uppermost, as shown in Figure 4. The plane is sufficiently rough to prevent the container from sliding. The container is on the point of toppling.

(b) Find the value of θ .

(4)

	Leave
Question 4 continued	

	Leave
	blank
Question 4 continued	
	I

Question 4 continued	L b
	(Total 10 marks)

Leave blank

5.

Figure 5

A particle P of mass m is attached to one end of a light inextensible string of length a. The other end of the string is fixed at the point O. The particle is initially held with OP horizontal and the string taut. It is then projected vertically upwards with speed u, where $u^2 = 5ag$. When OP has turned through an angle θ the speed of P is v and the tension in the string is T, as shown in Figure 5.

(a) Find, in terms of a, g and θ , an expression for v^2 .

(3)

(b) Find, in terms of m, g and θ , an expression for T.

(4)

(c) Prove that *P* moves in a complete circle.

(3)

(d) Find the maximum speed of P.

(2)

Overtion 5 continued	Leave
Question 5 continued	

	Leave blank
Question 5 continued	
	I

Question 5 continued		bla
		(
	(Total 12 marks)	

At time $t = 0$, a particle P is at the origin O moving with speed 2 m s ⁻¹ along the positive x-direction. At time t seconds $(t > 0)$, the acceleration of P has m	the <i>x</i> -axis in agnitude
$\frac{3}{(t+1)^2}$ m s ⁻² and is directed towards O .	
(a) Show that at time t seconds the velocity of P is $\left(\frac{3}{t+1}-1\right)$ m s ⁻¹ .	(5)
(b) Find, to 3 significant figures, the distance of <i>P</i> from <i>O</i> when <i>P</i> is instant rest.	taneously at
	(7)

Question 6 continued	Leave

	Leave blank
Question 6 continued	

Question 6 continued	
	(Total 12 marks)

A light elastic string, of natural length $3a$ and modulus of elasticity $6mg$, has one end attached to a fixed point A . A particle P of mass $2m$ is attached to the other end of the string and hangs in equilibrium at the point O , vertically below A . (a) Find the distance AO . (3) The particle is now raised to point C vertically below A , where $AC > 3a$, and is released from rest. (b) Show that P moves with simple harmonic motion of period $2\pi \sqrt[3]{\frac{a}{8}}$. (5) It is given that $OC = \frac{1}{4}a$. (c) Find the greatest speed of P during the motion. (3) The point D is vertically above O and $OD = \frac{1}{8}a$. The string is cut as P passes through D , moving upwards. (d) Find the greatest height of P above O in the subsequent motion.		
 (a) Find the distance AO. (3) The particle is now raised to point C vertically below A, where AC > 3a, and is released from rest. (b) Show that P moves with simple harmonic motion of period 2π√(a/g). (5) It is given that OC = 1/4 a. (c) Find the greatest speed of P during the motion. (3) The point D is vertically above O and OD = 1/8 a. The string is cut as P passes through D, moving upwards. (d) Find the greatest height of P above O in the subsequent motion. 	attached to a fixed point A . A particle P of mass $2m$ is attached to the other end of the	
 The particle is now raised to point C vertically below A, where AC > 3a, and is released from rest. (b) Show that P moves with simple harmonic motion of period 2π/(a/g). (5) It is given that OC = 1/4 a. (c) Find the greatest speed of P during the motion. (3) The point D is vertically above O and OD = 1/8 a. The string is cut as P passes through D, moving upwards. (d) Find the greatest height of P above O in the subsequent motion. 	string and hangs in equilibrium at the point O , vertically below A .	
The particle is now raised to point C vertically below A , where $AC > 3a$, and is released from rest. (b) Show that P moves with simple harmonic motion of period $2\pi \sqrt{\frac{a}{g}}$. (5) It is given that $OC = \frac{1}{4}a$. (c) Find the greatest speed of P during the motion. (3) The point D is vertically above O and $OD = \frac{1}{8}a$. The string is cut as P passes through D , moving upwards. (d) Find the greatest height of P above O in the subsequent motion.		(2)
from rest. (b) Show that P moves with simple harmonic motion of period $2\pi / \left(\frac{a}{g}\right)$. It is given that $OC = \frac{1}{4}a$. (c) Find the greatest speed of P during the motion. (3) The point D is vertically above O and $OD = \frac{1}{8}a$. The string is cut as P passes through D , moving upwards. (d) Find the greatest height of P above O in the subsequent motion.		3)
It is given that $OC = \frac{1}{4}a$. (c) Find the greatest speed of P during the motion. (3) The point D is vertically above O and $OD = \frac{1}{8}a$. The string is cut as P passes through D , moving upwards. (d) Find the greatest height of P above O in the subsequent motion.	from rest.	ed
 (c) Find the greatest speed of P during the motion. (3) The point D is vertically above O and OD = 1/8 a. The string is cut as P passes through D, moving upwards. (d) Find the greatest height of P above O in the subsequent motion. 	(b) Show that P moves with simple harmonic motion of period $2\pi \sqrt{\frac{a}{g}}$.	(5)
 (3) The point D is vertically above O and OD = 1/8 a. The string is cut as P passes through D, moving upwards. (d) Find the greatest height of P above O in the subsequent motion. 	It is given that $OC = \frac{1}{4}a$.	
 (3) The point D is vertically above O and OD = 1/8 a. The string is cut as P passes through D, moving upwards. (d) Find the greatest height of P above O in the subsequent motion. 	'	
moving upwards. (d) Find the greatest height of <i>P</i> above <i>O</i> in the subsequent motion.		(3)
	The point <i>D</i> is vertically above <i>O</i> and $OD = \frac{1}{8}a$. The string is cut as <i>P</i> passes through a moving upwards.	D,
		(4)
		_
		_
		_

Question 7 continued	

	Leave
	blank
Question 7 continued	

Question 7 continued	Leave blank

uestion 7 continued		Le
destion / continued		
	(Total 15 marks)	
	TOTAL FOR PAPER 75 MARKS	