Mathematical Proofs

CHAPTER 3 – SETS (EXERCISE SOLUTIONS)
LASSE HAMMER PRIEBE

Table of Contents

Section 1: Describing a Set	
Exercises	3
Section 2: Subsets	4
Exercises	4
Section 3: Set Operations	6
Exercises	6
Section 4: Indexed Collections of Sets	
Exercises	10
Section 5: Partitions of Sets	
Exercises	12
Section 6: Cartesian Products of Sets	14
Exercises	14

Section 1: Describing a Set

Exercises

- 1) Which of the following are sets?
 - a) 1, 2, 3 Not a set
 - b) {1, 2}, 3 Not a set
 - c) {{1}, 2}, 3 Not a set
 - d) {1, {2,}, 3} Set
 - e) {1, 2, a, b} Set
- 2) Let $S = \{-2, -1, 0, 1, 2, 3\}$. Describe each of the following sets as $\{x \in S: p(x)\}$, where p(x) is some condition on x.
 - a) $A = \{1, 2, 3\} = \{x \in S: x > 0\}$
 - b) $B = \{0, 1, 2, 3\} = \{x \in S : x \ge 0\}$
 - c) $C = \{-2, -1\} = \{x \in S: x < 0\}$
 - d) $D = \{-2, 2, 3\} = \{x \in S: |x| \ge 2\}$
- 3) Determine the cardinality of each of the following sets:
 - a) $A = \{1, 2, 3, 4, 5\}$ |A| = 5
 - b) $B = \{0, 2, 4, ..., 20\}$ |B| = 11
 - c) $C = \{25, 26, 27, ..., 75\}$ |C| = 51
 - d) $D = \{\{1, 2\}, \{1, 2, 3, 4\}\}$ |D| = 2
 - e) $E = \{\emptyset\}$ |E| = 1
 - f) $F = \{2, \{2, 3, 4\}\}$ |F| = 2
- 4) Write each of the following sets by listing its elements within braces.
 - a) $A = \{n \in \mathbb{Z}: -4 < n \le 4\} = \{-3, -2, -1, 0, 1, 2, 3, 4\}$
 - b) $B = \{n \in \mathbb{Z}: n^2 < 5\} = \{-2, -1, 0, 1, 2\}$
 - c) $C = \{n \in \mathbb{N}: n^3 < 100\} = \{1, 2, 3, 4\}$
 - d) $D = \{x \in \mathbb{R}: x^2 x = 0\} = \{0, 1\}$
 - e) $E = \{x \in \mathbb{R}: x^2 + x = 0\} = \{-1, 0\}$
- 5) Write each of the following sets in the form $\{x \in \mathbb{Z}: p(x)\}$, where p(x) is a property concerning

х.

- a) $A = \{-1, -2, -3, ...\} = \{x \in \mathbb{Z} : x < 0\}$
- b) $B = \{-3, -2, ..., 3\} = \{x \in \mathbb{Z} : |x| \le 3\}$
- c) $C = \{-2, -1, 1, 2\} = \{x \in \mathbb{Z}: 0 < |x| \le 2\}$
- 6) The set $E = \{2x : x \in \mathbb{Z}\}$ can be described by listing its elements, namely $E = \{..., -4, -2, 0, 2, 4, ...\}$. List the elements of the following sets in a similar manner.
 - a) $A = \{2x + 1 : x \in \mathbb{Z}\} = \{..., -3, -1, 1, 3, 5, ...\}$
 - b) $B = \{4n : n \in \mathbb{Z}\} = \{..., -8, -4, 0, 4, 8, ...\}$
 - c) $C = \{3q + 1 : q \in \mathbb{Z}\} = \{..., -5, -2, 1, 4, 7, ...\}$

- 7) The set $E = \{..., -4, -2, 0, 2, 4, ...\}$ of even integers can be described by means of a defining condition by $E = \{y = 2x : x \in \mathbb{Z}\} = \{2x : x \in \mathbb{Z}\}$. Describe the following sets in a similar manner.
 - a) $A = \{..., -4, -1, 2, 5, 8, ...\} = \{3x 1 : x \in \mathbb{Z}\}$
 - b) $B = \{..., -10, -5, 0, 5, 10, ...\} = \{5x : x \in \mathbb{Z}\}$
 - c) $C = \{1, 8, 27, 64, 125, ...\} = \{x^3 : x \in \mathbb{N}\}\$
- 8) Let $A = \{n \in \mathbb{Z} : 2 \le |n| < 4\}, B = \{x \in \mathbb{Q} : 2 < x \le 4\}, C = \{x \in \mathbb{R} : x^2 (2 + \sqrt{2})x + 2\sqrt{2} = 0\}$ and $D = \{x \in \mathbb{Q} : x^2 (2 + \sqrt{2})x + 2\sqrt{2} = 0.$
 - a) Describe the set A by listing its elements.
 - i) $A = \{-2, -3, 2, 3\}$
 - b) Give an example of three elements that belong to B but do not belong to A.
 - i) $\frac{5}{2}, \frac{7}{3}, \frac{9}{4}$
 - c) Describe the set C by listing its elements.
 - i) $C = \{\sqrt{2}, 2\}$
 - d) Describe the set D in another manner.
 - i) $D = \{2\}$
 - e) Determine the cardinality of the sets A, C and D.
 - i) |A| = 4; |C| = 2; |D| = 1
- 9) For $A = \{2, 3, 5, 7, 8, 10, 13\}$, let $B = \{x \in A : x = y + z, where \ y, z \in A\}$ and $C = \{r \in B : r + s \in B \ for \ some \ s \in B\}$. Determine C.
 - a) $B = \{5, 7, 8, 10, 13\}$
 - b) $C = \{5, 8\}$ (because 5 + 8 = 13 and 8 + 5 = 13)

Section 2: Subsets

- 10) Give examples of three sets A, B and C such that
 - a) $A \subseteq B \subset C$
 - i) $A = \{1\}; B = \{1\}; C = \{1, 2\}$
 - b) $A \in B, B \in C \text{ and } A \notin C$
 - i) $A = \{1\}; B = \{\{1\}\}; C = \{\{\{1\}\}\}\}$
 - c) $A \in B$ and $A \subset C$
 - i) $A = \{1\}; B = \{\{1\}\}; C = \{1, 2\}$
- 11) Let (a, b) be an open interval of real numbers and let $c \in (a, b)$. Describe an open interval I centered at c such that $I \subseteq (a, b)$.
 - a) Let $r = \min(c a, b c)$, then I = (c r, c + r)
- 12) Which of the following sets are equal?
 - a) $A = \{n \in \mathbb{Z} : |n| < 2\} = \{-1, 0, 1\}$
 - b) $B = \{n \in \mathbb{Z} : n^3 = n\} = \{-1, 0, 1\}$
 - c) $C = \{n \in \mathbb{Z} : n^2 \le n\} = \{0, 1\}$

- d) $D = \{n \in \mathbb{Z} : n^2 \le 1\} = \{-1, 0, 1\}$
- e) $E = \{-1, 0, 1\}$
- f) Conclusion: The elements in $\{A, B, D, E\}$ are equal and C is on its own.
- 13) For a universal set $U = \{1, 2, ..., 8\}$ and two sets $A = \{1, 3, 4, 7\}$ and $B = \{4, 5, 8\}$, draw a Venn diagram that represents these sets

- 14) Find $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for
 - a) $A = \{1, 2\}$;
 - i) $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\};$
 - ii) $|\mathcal{P}(a)| = 2^{|A|} = 2^2 = 4$
 - b) $A = \{\emptyset, 1, \{a\}\};$
 - i) $\mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{1\}, \{\{a\}\}, \{\emptyset, 1\}, \{\emptyset, \{a\}\}, \{1, \{a\}\}, \{\emptyset, 1, \{a\}\}\}\}$
 - ii) $|\mathcal{P}(A)| = 2^{|A|} = 2^3 = 8$
- 15) Find $\mathcal{P}(A)$ for $A = \{0, \{0\}\}.$
 - a) $\mathcal{P}(A) = \{\emptyset, \{0\}, \{\{0\}\}, \{0, \{0\}\}\}\} = \{\emptyset, \{0\}, \{\{0\}\}, A\}$
- 16) Find $\mathcal{P}(\mathcal{P}(\{1\}))$ and its cardinality.
 - a) $\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}$
 - b) $\mathcal{P}(\mathcal{P}(\{1\})) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}\}$ c) $|\mathcal{P}(\mathcal{P}(\{1\}))| = 2^{|\mathcal{P}(\{1\})|} = 2^2 = 4$
- 17) Find $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for $A = \{0, \emptyset, \{\emptyset\}\}$.
 - a) $\mathcal{P}(A) = \{\emptyset, \{0\}, \{\emptyset\}, \{\{\emptyset\}\}, \{0, \emptyset\}, \{0, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, A\}\}$
 - b) $|\mathcal{P}(a)| = 2^{|A|} = 2^3 = 8$
- 18) For $A = \{x : x = 0 \text{ or } x \in \mathcal{P}(\{0\})\}$, determine $\mathcal{P}(A)$.
 - a) $\mathcal{P}(\{0\}) = \{\emptyset, \{0\}\}\$
 - b) $A = \{\emptyset, 0, \{0\}\}$
 - c) $\mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{0\}, \{\{0\}\}, \{\emptyset, 0\}, \{\emptyset, \{0\}\}, \{0, \{0\}\}, A\}\}$
- 19) Give an example of a set S such that
 - a) $S \subseteq \mathcal{P}(\mathbb{N})$
 - i) $S = \emptyset$
 - b) $S \in \mathcal{P}(\mathbb{N})$
 - i) $S = \{1\}$

- c) $S \subseteq \mathcal{P}(\mathbb{N})$ and |S| = 5
 - i) $S = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 2, 3\}\}$
- d) $S \in \mathcal{P}(\mathbb{N})$ and |S| = 5
 - i) $S = \{1, 2, 3, 4, 5\}$
- 20) Determine whether the following statements are true or false.
 - a) If $\{1\} \in \mathcal{P}(A)$, then $1 \in A$ but $\{1\} \notin A$
 - i) **False**, e.g. $A = \{1, \{1\}\}$
 - b) If A, B and C are sets such that $A \subset \mathcal{P}(B) \subset C$ and |A| = 2, then |C| can be 5 but |C| cannot be 4.
 - i) **True**. If |A| = 2, then the cardinality of $\mathcal{P}(B) = 2^2 = 4$. Since $\mathcal{P}(B)$ is a proper subset of C, C must at least have a cardinality of 5.
 - c) If a set B has one more element than a set A, then $\mathcal{P}(B)$ has at least two more elements than $\mathcal{P}(A)$.
 - i) **False**, if $A = \emptyset$ then $|\mathcal{P}(A)| = 2^{|\emptyset|} = 2^0 = 1$ and $|\mathcal{P}(B)| = 2^{|\emptyset|+1} = 2^1 = 2$. (It is true if $A \neq \emptyset$)
 - d) If four sets A, B, C and D are subsets of $\{1, 2, 3\}$ such that |A| = |B| = |C| = |D| = 2, then at least two of these sets are equal.
 - i) **True**. Different combinations of $\{1, 2, 3\}$ with cardinality 2: $\frac{3!}{(3-2)!*2!} = \frac{3!}{2!} = \frac{3*2}{2} = 3$. Namely $\{1, 2\}, \{1, 3\}$ and $\{2, 3\}$.
- 21) Three subsets A, B and C of {1, 2, 3, 4, 5} have the same cardinality. Furthermore,
 - a) 1 belongs to A and B but not to C.
 - b) 2 belongs to A and C but not to B.
 - c) 3 belongs to A and exactly one of B and C.
 - d) 4 belongs to an even number of A, B and C.
 - e) 5 belongs to an odd number of A, B and C.
 - f) The sums of the elements in two of the sets A, B and C differ by 1.
 - g) What is B?
 - i) $A = \{1, 2, 3\}$
 - ii) $B = \{1, 4, 5\}$
 - iii) $C = \{2, 3, 4\}$

Section 3: Set Operations

- 22) Let $U = \{1, 3, ..., 15\}$ be the universal set, $A = \{1, 5, 9, 13\}$, and $B = \{3, 9, 15\}$. Determine the following.
 - a) $A \cup B = \{1, 3, 5, 9, 13, 15\}$
 - b) $A \cap B = \{9\}$
 - c) $A B = \{1, 5, 13\}$
 - d) $B A = \{3, 15\}$
 - e) $\bar{A} = U A = \{3, 7, 11, 15\}$
 - f) $A \cap \overline{B} = A B = \{1, 5, 13\}$

- 23) Give examples of two sets A and B such that $|A B| = |A \cap B| = |B A| = 3$. Draw the accompanying Venn diagram.
 - a) $A = \{1, 2, 3, 4, 5, 6\}; B = \{4, 5, 6, 7, 8, 9\}$

- 24) Give examples of three sets A, B and C such that $B \neq C$ but B A = C A
 - a) $A = \{1, 2\}$
 - b) $B = \{1, 2, 3\}$
 - c) $C = \{1, 3\}$
- 25) Give examples of three sets A, B and C such that
 - a) $A \in B, A \subseteq C$ and $B \nsubseteq C$
 - i) $A = \{1\}$
 - ii) $B = \{\{1\}\}$
 - iii) $C = \{1\}$
 - b) $B \in A, B \subset C$ and $A \cap C \neq \emptyset$
 - i) $A = \{\{1\}\}$
 - ii) $B = \{1\}$
 - iii) $C = \{1, \{1\}\}$
 - c) $A \in B, B \subseteq C \text{ and } A \nsubseteq C$
 - i) $A = \{1\}$
 - ii) $B = \{\{1\}\}$
 - iii) $C = \{\{1\}\}$
- 26) Let U be a universal set and let A and B be two subsets of U. Draw a Venn diagram for each of the following sets.
 - a) $\overline{A \cup B}$

b) $\overline{A} \cap \overline{B}$

c) $\overline{A \cap B}$

d) $\bar{A} \cup \bar{B}$

- 27) Give an example of a universal set U, two sets A and B and accompanying Venn diagram such that $|A \cap B| = |A - B| = |B - A| = \overline{|A \cup B|} = 2$
 - a) $U = \{1, 2, ..., 8\}; A = \{1, 2, 3, 4\}; B = \{3, 4, 5, 6\}$

- 28) Let A, B and C be nonempty subsets of a universal set U. Draw a Venn diagram for each of the following set operations.
 - a) $(C-B) \cup A$

b) $C \cap (A - B)$

- 29) Let $A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}.$
 - a) Determine which of the following are elements of A: \emptyset , $\{\emptyset\}$, $\{\emptyset, \{\emptyset\}\}$
 - i) \emptyset and $\{\emptyset\}$ are elements of A
 - b) Determine |A| = 3
 - c) Determine which of the following are subsets of A: \emptyset , $\{\emptyset\}$, $\{\emptyset, \{\emptyset\}\}$
 - i) \emptyset , $\{\emptyset\}$ and $\{\emptyset, \{\emptyset\}\}$ are subsets of A

For (d)-(i), determine the indicated sets.

- d) $\emptyset \cap A = \emptyset$
- e) $\{\emptyset\} \cap A = \{\emptyset\}$
- f) $\{\emptyset, \{\emptyset\}\} \cap A = \{\emptyset, \{\emptyset\}\}\$
- g) $\emptyset \cup A = A$
- h) $\{\emptyset\} \cup A = A$
- i) $\{\emptyset, \{\emptyset\}\} \cup A = A$
- 30) Let $A = \{x \in \mathbb{R} : |x 1| \le 2\}$, $B = \{x \in \mathbb{R} : |x| \ge 1\}$ and $C = \{x \in \mathbb{R} : |x + 2| \le 3\}$.
 - a) Express A, B and C using interval notation.
 - i) $A = \{x \in \mathbb{R} : -1 \le x \le 3\} = [-1, 3]$
 - ii) $B = (-\infty, -1] \cup [1, \infty)$
 - iii) $C = \{x \in \mathbb{R} : -5 \le x \le 1\} = [-5, 1]$
- 31) Give an example of four different sets A, B, C and D such that (1) $A \cup B = \{1, 2\}$ and $C \cap D = \{2, 3\}$ and (2) if B and C are interchanged and \cup and \cap are interchanged, then we get the same result $(A \cap C = \{1, 2\} \text{ and } B \cup D = \{2, 3\}.$
 - a) $A = \{1, 2\}$
 - b) $B = \{2\}$
 - c) $C = \{1, 2, 3\}$
 - d) $D = \{2, 3\}$
- 32) Give an example of four different subsets A, B, C and D of {1, 2, 3, 4} such that all intersections of two subsets are different.
 - a) $A = \{1, 2, 3\}$
 - b) $B = \{2, 4\}$
 - c) $C = \{2, 3, 4\}$
 - d) $D = \{1, 3, 4\}$
 - i) $A \cap B = B \cap A = \{2\}$
 - ii) $A \cap C = C \cap A = \{2, 3\}$
 - iii) $A \cap D = D \cap A = \{1, 3\}$
 - iv) $B \cap C = C \cap B = \{2, 4\}$
 - v) $B \cap D = D \cap B = \{4\}$
 - vi) $C \cap D = D \cap C = \{3, 4\}$
- 33) Give an example of two nonempty sets A and B such that $\{A \cup B, A \cap B, A B, B A\}$ is the power set of some set.
 - a) $A = \{1\}$
 - b) $B = \{2\}$
 - c) $\mathcal{P}(\{\{1,2\}\}) = \{\{1,2\},\emptyset,\{1\},\{2\}\}$
- 34) Give examples of two subsets A and B of $\{1, 2, 3\}$ such that all of the following sets are different: $A \cup B$, $A \cup \overline{B}$, $\overline{A} \cup B$, $\overline{A} \cup \overline{B}$, $A \cap B$, $A \cap \overline{B}$, $\overline{A} \cap B$, $\overline{A} \cap \overline{B}$.
 - a) $A = \{1, 2\}$
 - b) $B = \{2, 3\}$
 - c) Then the different results are: $\{1, 2, 3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, \{2\}, \{1\}, \{3\}, \emptyset$

- 35) Give examples of a universal set U and sets A, B and C such that each of the following sets contains exactly one element: $A \cap B \cap C$, $(A \cap B) C$, $(A \cap C) B$, $(B \cap C) A$, $A (B \cup C)$, $B (A \cup C)$, $C (A \cup B)$, $\overline{A \cup B \cup C}$. Draw the accompanying Venn diagram.
 - a) $U = \{1, 2, ..., 8\}$
 - b) $A = \{1, 2, 3, 5\}$
 - c) $B = \{1, 2, 4, 6\}$
 - d) $C = \{1, 3, 4, 7\}$
 - e) Then the different results are: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}.

Section 4: Indexed Collections of Sets

- 36) For a real number r, define S_r to be the interval [r-1,r+2]. Let $A=\{1,3,4\}$. Determine $\bigcup_{\alpha\in A}S_\alpha$ and $\bigcap_{\alpha\in A}S_\alpha$.
 - a) $\bigcup_{\alpha \in A} S_{\alpha} = [0,3] \cup [2,5] \cup [3,6] = [0,6]$
 - b) $\bigcap_{\alpha \in A} S_{\alpha} = [0,3] \cap [2,5] \cap [3,6] = \{3\}$
- 37) Let $A = \{1, 2, 5\}, B = \{0, 2, 4\}, C = \{2, 3, 4\} \text{ and } S = \{A, B, C\}.$ Determine $\bigcup_{X \in S} X \text{ and } \bigcap_{X \in S} X$.
 - a) $\bigcup_{X \in S} X = \{1, 2, 5\} \cup \{0, 2, 4\} \cup \{2, 3, 4\} = \{0, 1, 2, ..., 5\}$
 - b) $\bigcap_{X \in S} X = \{1, 2, 5\} \cap \{0, 2, 4\} \cap \{2, 3, 4\} = \{2\}$
- 38) For a real number r, define $A_r=\{r^2\}$, B_r as the closed interval [r-1,r+1] and C_r as the interval (r,∞) . For $S=\{1,2,4\}$, determine
 - a) $\bigcup_{\alpha \in S} A_{\alpha}$ and $\bigcap_{\alpha \in S} A_{\alpha}$
 - i) $\bigcup_{\alpha \in S} A_{\alpha} = \{1^2\} \cup \{2^2\} \cup \{4^2\} = \{1, 4, 16\}$
 - ii) $\bigcap_{\alpha \in S} A_{\alpha} = \emptyset$
 - b) $\bigcup_{\alpha \in S} B_{\alpha}$ and $\bigcap_{\alpha \in S} B_{\alpha}$
 - i) $\bigcup_{\alpha \in S} B_{\alpha} = [0, 2] \cup [1, 3] \cup [3, 5] = [0, 5]$
 - ii) $\bigcap_{\alpha \in S} B_{\alpha} = \emptyset$
 - c) $\bigcup_{\alpha \in S} C_{\alpha}$ and $\bigcap_{\alpha \in S} C_{\alpha}$
 - i) $\bigcup_{\alpha \in S} C_{\alpha} = (1, \infty) \cup (2, \infty) \cup (4, \infty) = (1, \infty)$
 - ii) $\bigcap_{\alpha \in S} C_{\alpha} = (4, \infty)$
- 39) Let $A = \{a, b, ..., z\}$ be the set consisting of the letters of the alphabet. For $\alpha \in A$, let A_{α} consist of α and the two letters that follow it, where $A_{\nu} = \{y, z, a\}$ and $A_{z} = \{z, a, b\}$. Find a

set $S \subseteq A$ of smallest cardinality such that $\bigcup_{\alpha \in S} A_{\alpha} = A$. Explain why your set S has the required properties.

- a) $S = \{a, d, g, j, m, p, s, v, y\}; |S| = 9$
- b) 26 letters in the alphabet divided by 3 (cardinality og any A_{α}) = $\frac{26}{3}$ = 8,6 \approx 9
- 40) For $i \in \mathbb{Z}$, let $A_i = \{i 1, i + 1\}$. Determine the following:
 - a) $\bigcup_{i=1}^{5} A_{2i} = \{1, 3\} \cup \{3, 5\} \cup ... \cup \{9, 11\} = \{1, 3, ..., 11\}$
 - b) $\bigcup_{i=1}^{5} (A_i \cap A_{i+1}) = (\{0,2\} \cap \{1,3\}) \cup (\{1,3\} \cap \{2,4\}) \cup ... \cup (\{4,6\} \cap \{5,7\}) = \emptyset$
 - c) $\bigcup_{i=1}^{5} (A_{2i-1} \cap A_{2i+1}) = (\{0,2\} \cap \{2,4\}) \cup (\{2,4\} \cap \{4,6\}) \cup ... \cup (\{8,10\} \cap \{10,12\}) = (\{0,2\} \cap \{2,4\}) \cup (\{2,4\} \cap \{4,6\}) \cup ... \cup (\{8,10\} \cap \{10,12\}) = (\{0,2\} \cap \{2,4\}) \cup (\{2,4\} \cap \{4,6\}) \cup ... \cup (\{8,10\} \cap \{10,12\}) = (\{0,2\} \cap \{2,4\}) \cup (\{2,4\} \cap \{4,6\}) \cup ... \cup (\{8,10\} \cap \{10,12\}) = (\{0,2\} \cap \{2,4\}) \cup (\{2,4\} \cap \{4,6\}) \cup ... \cup (\{8,10\} \cap \{10,12\}) = (\{0,2\} \cap \{2,4\}) \cup (\{2,4\} \cap \{4,6\}) \cup ... \cup (\{8,10\} \cap \{10,12\}) = (\{0,2\} \cap \{2,4\}) \cup (\{2,4\} \cap \{4,6\}) \cup ... \cup (\{8,10\} \cap \{10,12\}) = (\{0,2\} \cap \{2,4\}) \cup (\{2,4\} \cap \{4,6\}) \cup ... \cup (\{8,10\} \cap \{10,12\}) = (\{0,2\} \cap \{2,4\}) \cup (\{2,4\} \cap \{4,6\}) \cup ... \cup (\{8,10\} \cap \{10,12\}) = (\{0,2\} \cap \{2,4\}) \cup (\{2,4\} \cap \{4,6\}) \cup ... \cup (\{8,10\} \cap \{10,12\}) = (\{0,2\} \cap \{2,4\}) \cup (\{2,4\} \cap \{2,4\}) \cup (\{2,4\}$ $\{2, 4, ..., 10\}$
- 41) For each of the following, find an indexed collection $\{A_n\}_{n\in\mathbb{N}}$ of distinct sets (that is, no two sets are equal) satisfying the given conditions.
 - a) $\bigcap_{n=1}^{\infty} A_n = \{0\}$ and $\bigcup_{n=1}^{\infty} A_n = [0,1]$
 - i) $\{A_n\}_{n\in\mathbb{N}}$, where $A_n = \left\{x \in \mathbb{R} : 0 \le x \le \frac{1}{n}\right\} = \left[0, \frac{1}{n}\right]$

 - b) $\bigcap_{n=1}^{\infty} A_n = \{-1, 0, 1\}$ and $\bigcup_{n=1}^{\infty} A_n = \mathbb{Z}$ i) $\{A_n\}_{n \in \mathbb{N}}$, where $A_n = \{a \in \mathbb{Z} : |a| \le n\}$
- 42) For each of the following collections of sets, define a set A_n for each $n \in \mathbb{N}$ such that the indexed collection $\{A_n\}_{n\in\mathbb{N}}$ is precisely the given collection of sets. Then find both the union and intersection of the indexed collections of sets.
 - a) $\left\{ [1, 2+1), \left[1, 2+\frac{1}{2}\right), \left[1, 2+\frac{1}{3}\right), \dots \right\}$
 - i) $\{A_n\}_{n\in\mathbb{N}}$ where $A_n = \{x \in \mathbb{R} : 1 \le x < 2 + \frac{1}{n}\} = [1, 2 + \frac{1}{n}]$
 - b) $\{(-1,2), (-\frac{3}{2},4), (-\frac{5}{3},6), (-\frac{7}{4},8), ...\}$
 - i) $\{A_n\}_{n\in\mathbb{N}}$ where $A_n = \{x \in \mathbb{R} : -\frac{2n-1}{n} < x < 2n\} = (-\frac{2n-1}{n}, 2n)$
- 43) For $r \in \mathbb{R}^+$, let $A_r = \{x \in \mathbb{R} : |x| < r\}$. Determine $\bigcup_{r \in \mathbb{R}^+} A_r$ and $\bigcap_{r \in \mathbb{R}^+} A_r$.
 - a) $\bigcup_{r\in\mathbb{R}^+} A_r = \mathbb{R}$
 - b) $\bigcap_{r \in \mathbb{R}^+} A_r = \{0\}$
- 44) Each of the following sets is a subset of $A = \{1, 2, ..., 10\}$: $A_1 = \{1, 5, 7, 9, 10\}$, $A_2 = \{1, 1, 2, ..., 10\}$ $\{1, 2, 3, 8, 9\}, A_3 = \{2, 4, 6, 8, 9\}, A_4 = \{2, 4, 8\}, A_5 = \{3, 6, 7\}, A_6 = \{3, 8, 10\}, A_7 = \{3, 6, 7\}, A_8 = \{3, 6, 7\}, A_8 = \{3, 8, 10\}, A_8 = \{3, 6, 7\}, A_8 = \{3, 6,$ $\{4, 5, 7, 9\}, A_8 = \{4, 5, 10\}, A_9 = \{4, 6, 8\}, A_{10} = \{5, 6, 10\}, A_{11} = \{5, 8, 9\}, A_{12} = \{6, 10\}, A_{13} = \{1, 10\}, A_{14} = \{1, 10\}, A_{15} = \{$
 - $\{6, 7, 10\}, A_{13} = \{6, 8, 9\}.$
 - a) Find a set $I \subseteq \{1, 2, ..., 13\}$ such that for every two distinct elements $j, k \in I, A_j \cap A_k = \emptyset$ and $|\bigcup_{i\in I} A_i|$ is maximum.
 - i) $I = \{1, 4\}$
- 45) For $n \in \mathbb{N}$, let $A_n = \left(-\frac{1}{n}, 2 \frac{1}{n}\right)$. Determine $\bigcup_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} A_n$.
 - a) $\bigcup_{n\in\mathbb{N}} A_n = (-1,2)$
 - b) $\bigcap_{n \in \mathbb{N}} A_n = [0, 1]$

Section 5: Partitions of Sets

- 46) Which of the following are partitions of $A = \{a, b, c, d, e, f, g\}$? For each collection of subsets that is not a partition of A, explain your answer.
 - a) $S_1 = \{ \{a, c, e, g\}, \{b, f\}, \{d\} \}$; This is a partition of A
 - b) $S_2 = \{\{a, b, c, d\}, \{e, f\}\}\$; This is not a partition, because $\forall s \in S_2, g \notin s$
 - c) $S_3 = \{A\}$; This is a partition of A
 - d) $S_4 = \{\{a\}, \emptyset, \{b, c, d\}, \{e, f, g\}\}$; This is not a partition because $\emptyset \in S_4$
 - e) $S_5 = \{\{a, c, d\}, \{b, g\}, \{e\}, \{b, f\}\}\}$; This is not a partition because b is in $\{b, f\}$ and in $\{b, g\}$.
- 47) Which of the following sets are partitions of $A = \{1, 2, 3, 4, 5\}$?
 - a) $S_1 = \{\{1, 3\}, \{2, 5\}\}$; This is not a partition since the element 4 belongs to no element of S_1 .
 - b) $S_2 = \{\{1, 2\}, \{3, 4, 5\}\}$; This is a partition
 - c) $S_3 = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}\}$; This is not a partition, since 2, 3 and 4 appear in multiple elements of S_3 .
 - d) $S_4 = A$; This is not a partition, since it isn't a collection of subsets of A, but the set A itself.
- 48) Let $A = \{1, 2, 3, 4, 5, 6\}$. Give an example of a partition S of A such that |S| = 3 a) $S = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}$
- 49) Give an example of a set A with |A| = 4 and two disjoint partitions S_1 and S_2 of A with $|S_1| = |S_2| = 3$
 - a) $A = \{1, 2, 3, 4\}$
 - b) $S_1 = \{\{1\}, \{2\}, \{3, 4\}\}$
 - c) $S_2 = \{\{1, 2\}, \{3\}, \{4\}\}$
- 50) Give an example of a partition of $\mathbb N$ into three subsets.
 - a) $S = \{ \{1\}, \{x \in \mathbb{N} : x > 1 \text{ and } x \text{ is even} \}, \{x \in \mathbb{N} : x > 1 \text{ and } x \text{ is odd} \} \}$
- 51) Give an example of a partition of \mathbb{Q} into three subsets.
 - a) $S = \{ \{ x \in \mathbb{Q} : x < 0 \}, \{ 0 \}, \{ x \in \mathbb{Q} : x > 0 \} \}$
- 52) Give an example of three sets A, S_1 , S_2 such that S_1 is a partition of A, S_2 is a partition of S_1 and $|S_2| < |S_1| < |A|$.
 - a) $A = \{1, 2, 3, 4\}$
 - b) $S_1 = \{\{1\}, \{2\}, \{3, 4\}\}$
 - c) $S_2 = \{\{\{1\}, \{2\}\}, \{\{3, 4\}\}\}\}$
 - d) Then |A| = 4; $|S_1| = 3$; $|S_2| = 2$; and $|S_2| < |S_1| < |A|$.
- 53) Give an example of a partition of \mathbb{Z} into four subsets.
 - a) $S = \{A_1, A_2, A_3, A_4\}$
 - i) $A_1 = \{x \in \mathbb{Z} : x < 0 \text{ and } x \text{ is odd}\}$
 - ii) $A_2 = \{x \in \mathbb{Z} : x < 0 \text{ and } x \text{ is even}\}$

```
iii) A_3 = \{x \in \mathbb{Z} : x \ge 0 \text{ and } x \text{ is odd} \}
iv) A_4 = \{x \in \mathbb{Z} : x \ge 0 \text{ and } x \text{ is even} \}
```

- 54) Let $A = \{1, 2, ..., 12\}$. Give an example of a partition S of A satisfying the following requirements: (i) |S| = 5, (ii) there is a subset T of S such that |T| = 4 and $|\bigcup_{X \in T} X| = 10$ and (iii) there is no element $B \in S$ such that |B| = 3.
 - a) $S = \{\{1, 2, 3, 4\}, \{5, 6\}, \{7, 8\}, \{9, 10\}, \{11, 12\}\}$
 - b) $T = \{\{1, 2, 3, 4\}, \{5, 6\}, \{7, 8\}, \{9, 10\}\}$
 - c) $\bigcup_{X \in T} X = \{1, 2, 3, ..., 10\}$
- 55) A set S is partitioned into two subsets S_1 and S_2 . This produces a partition \mathcal{P}_1 of S where $\mathcal{P}_1 = \{S_1, S_2\}$ and so $|\mathcal{P}_1| = 2$. One of the sets in \mathcal{P}_1 is then partitioned into two subsets, producing a partition \mathcal{P}_2 of S with $|\mathcal{P}_2| = 3$. A total of $|\mathcal{P}_1|$ sets in \mathcal{P}_2 are partitioned into two new subsets each, producing a partition \mathcal{P}_3 of S. Next, a total of $|\mathcal{P}_2|$ sets in \mathcal{P}_3 are partitioned into two new subsets, each producing a partition \mathcal{P}_4 of S. This is continued until partition \mathcal{P}_6 of S. What is $|\mathcal{P}_6|$?
 - a) $|\mathcal{P}_1| = 2$
 - b) $|\mathcal{P}_2| = 3$
 - c) $|\mathcal{P}_3| = 5$ (since $|\mathcal{P}_1|$ subsets are partitioned into two new subsets each)
 - d) $|\mathcal{P}_4| = 8$ (since $|\mathcal{P}_2|$ subsets are partitioned into two new subsets each)
 - e) $|\mathcal{P}_5| = 13$ (since $|\mathcal{P}_3|$ subsets are partitioned into two new subsets each)
 - f) $|\mathcal{P}_6| = 21$ (since $|\mathcal{P}_4|$ subsets are partitioned into two new subsets each)
- 56) We mentioned that there are three ways that a collection S of subsets of a nonempty set A is defined to be a partition of A. **Definition 1**: The collection S consists of pairwise disjoint nonempty subsets of A and every element of A belongs to a subset in S. **Definition 2**: The collection S consists of nonempty subsets of A and every element of A belongs to exactly one subset in S. **Definition 3**: The collection S consists of subsets of A satisfying the three properties (1) every subset in S is nonempty, (2) every two subsets of A are equal or disjoint and (3) the union of all subsets in S is A.
 - a) Show that any collection S of subsets of A satisfying Definition 1 satisfies Definition 2.
 - i) In definition 1, the subsets of A in S are pairwise disjoint and every element of A belongs to a subset in S.
 - ii) Since the subsets are pairwise disjoint, each element of A is contained in only one subset of S.
 - iii) This is the same as saying, each element of A belongs to exactly one subset in S, which is the premise of definition 2.
 - b) Show that any collection S of subsets of A satisfying Definition 2 satisfies Definition 3.
 - i) In definition 3, the union of all subsets in S is A. Thus any element $x \in A$ can be found in a subset of S
 - ii) Definition 3 also states that the subsets of S must be pairwise disjoint, which together with previous statement implies that and every element of A belongs to exactly one subset in S.
 - c) Show that any collection S of subsets of A satisfying Definition 3 satisfies Definition 1.

- i) In definition 3, the union of all subsets in S is A. Thus any element $x \in A$ can be found in a subset of S. This is the same as stated in definition 1: every element of A belongs to a subset in S.
- ii) Definition 1 also states: the collection S consists of pairwise disjoint nonempty subsets of A. This is the same as in definition 3: every subset in S is nonempty and every two subsets of A are equal or disjoint.

Section 6: Cartesian Products of Sets Exercises

- 57) Let $A = \{x, y, z\}$ and $B = \{x, y\}$. Determine $A \times B$. a) $A \times B = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\}$
- 58) Let $A = \{1, \{1\}, \{\{1\}\}\}$. Determine $A \times A$.
 - a) $A \times A = \{(1,1),(1,\{1\}),(1,\{\{1\}\}),(\{1\},1),(\{1\},\{1\}),(\{\{1\}\},1),(\{\{1\}\},\{1\}),(\{\{1\}\},\{1\}))\}$
- 59) For $A = \{a, b\}$, determine $A \times \mathcal{P}(A)$.
 - a) $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
 - b) $A \times \mathcal{P}(A) = \{(a,\emptyset), (a,\{a\}), (a,\{b\}), (a,\{a,b\}), (b,\emptyset), (b,\{a\}), (b,\{b\}), (b,\{a,b\})\}$
- 60) For $A = \{\emptyset, \{\emptyset\}\}\$, determine $A \times \mathcal{P}(A)$.
 - a) $\mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$
- 61) For $A = \{1,2\}$ and $B = \{\emptyset\}$, determine $A \times B$ and $\mathcal{P}(A) \times \mathcal{P}(B)$.
 - a) $A \times B = \{(1,\emptyset), (2,\emptyset)\}$
 - b) $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$
 - c) $\mathcal{P}(B) = \{\emptyset, \{\emptyset\}\}\$
 - d) $\mathcal{P}(A) \times \mathcal{P}(B) = \{(\emptyset, \emptyset), (\emptyset, \{\emptyset\}), (\{1\}, \emptyset), (\{1\}, \{\emptyset\}), (\{2\}, \emptyset), (\{2\}, \{\emptyset\}), (\{1,2\}, \emptyset), (\{1,2\}, \{\emptyset\})\}\}$
- 62) Describe the graph of the circle whose equation is $x^2 + y^2 = 4$ as a subset of $\mathbb{R} \times \mathbb{R}$.
 - a) $\{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 4\}$
- 63) For the elements of the set $S = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : |x| + |y| = 3\}$. Plot the corresponding points in the Euclidean xy-plane.
 - a) $S = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : |x| + |y| = 3\} = \{(-3, 0), (-2, -1), (-2, 1), (-1, -2), (-1, 2) \dots\}$

- 64) For $A = \{1, 2\}$ and $B = \{1\}$, determine $\mathcal{P}(A \times B)$.
 - a) $A \times B = \{(1,1), (2,1)\}$
 - b) $\mathcal{P}(A \times B) = \{\emptyset, \{(1,1)\}, \{(2,1)\}, \{(1,1), (2,1)\}\}$
- 65) For $A = \{x \in \mathbb{R} : |x 1| \le 2\}$ and $B = \{y \in \mathbb{R} : |y 4| \le 2\}$, give a geometric description of the points in the xy-plane belonging to $A \times B$.
 - a) $A \times B = [-1, 3] \times [2, 6]$ which is the set of all points within the square bounded by x = -1, x = 3, y = 2 and y = 6.
- 66) For $A = \{a \in \mathbb{R} : |a| \le 1\}$ and $B = \{b \in \mathbb{R} : |b| = 1\}$, give a geometric description of the points in the xy-plane belonging to $(A \times B) \cup (B \times A)$.
 - a) $(A \times B) \cup (B \times A) = ([-1, 1] \times \{-1, 1\}) \cup (\{-1, 1\} \times [-1, 1])$, which is the set of all points outlining the sides of the square bounded by x = -1, x = 1, y = -1 and y = 1.