National Bureau of Standards Library, N.W. Bldg

MAY 8 1964

Technical Mote

153

A GENERAL SURVEY OF THE SEMICONDUCTOR FIELD

GEORGE WILLIAM REIMHERR

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of non-periodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 (\$1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (Includes Titles of Papers Published in Outside Journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

NATIONAL BUREAU OF STANDARDS Technical Mote

153

AUGUST 1962

A GENERAL SURVEY OF THE SEMICONDUCTOR FIELD

George William Reimherr

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

TABLE OF CONTENTS

			Page					
I.	INTRODUCTION							
II.	II. SINGLE ELEMENT AND BINARY COMPOUND SEMICONDUCTORS							
	Α.	The Key to Table I	3					
	в.	Table of Single Element and Binary Compound Semiconductors (Table I)	5					
	c.	Additional Comments	36					
III.	OTH	IER TYPES OF SEMICONDUCTORS	39					
	A.	Ferrites	39					
	в.	Ternary Compounds	39					
	c.	Mixed Crystals and Alloys	39					
	D.	Organics	39					
SEI	LECT	ED BIBLIOGRAPHY	41					
		LIST OF TABLES						
Tal	ole I.	A Listing of Various Single Element and Binary Compound Semiconductors, Along With Some of Their Physical Properties and Applications	6-35					
Tal	ole II.	Crystal Structure Types of the Principal Single Element and Binary Compound Semiconductors	38					

by

George William Reimherr

ABSTRACT

This survey presents a listing of some of the properties and applications of a number of single-element and binary compound inorganic semiconductors. Brief mention is made of other types of semiconductors (ternary compounds, mixed crystals, alloys, ferrites, and organics). The toxicity problem presented by many semiconductors is noted.

SECTION I

INTRODUCTION

Electronics has become a semiconductor-oriented industry. This situation has come about logically, because semiconductors appear to offer a large reduction in size and power, as well as a potential for increased reliability over previous methods. Many new semiconductor devices have come into being within the last decade.

The computer industry promises to be one of the major potential markets for semiconductors. The drive to increase the speed, reliability, and applications of modern digital computers has naturally focused increased attention on semiconductor devices. Actual or potential uses for semiconductors include such things as circuit elements (resistors, capacitors, diodes, transistors, etc.), storage elements (tunnel diodes, delay lines, electroluminescent cell-photoconductive cell combinations, etc.), power sources (solar cells, thermoelectric generators), various measuring devices (germanium thermometers, Hall effect ammeters, etc.), thermoelectric cooling devices, and others.

Present-day semiconductor devices are still dominated by the two giants of the semiconductor field -- silicon and germanium. These two enjoy an advantage over all other semiconductors in that their technology is comparatively well advanced, resulting in a high degree of crystal perfection. While silicon and germanium do possess good physical and electrical properties, their properties are not neces - sarily the ultimate for a given practical application. As a result, there is increasing competition from other semiconductors, one or

more of which may someday rival silicon and germanium in overall importance. The present survey represents an attempt to list some of the properties and applications of present-day semiconductors. It runs the gamut from relatively unimportant semiconductors to those that are extremely important. The survey certainly does not exhaust the field of possible semiconductors. Some are not important enough as semiconductors to merit mention. Many other semiconductors are still experimentally unconfirmed in the laboratory. The number of usable semiconductors is further reduced by the occurrence of phase changes or low melting points.

The survey includes the 12 single-element semiconductors known to exist and also the most important binary compound inorganic semiconductors. Brief mention is given to the other types -- the ternary compounds, the mixed crystals, the alloys, the ferrites, and the organics. Also included are a few comments concerning the crystal structures of the semiconductors and the toxicity problem presented by many of the inorganic compound semiconductors.

SECTION II

SINGLE ELEMENT AND BINARY COMPOUND SEMICONDUCTORS

This section, by far the biggest part of this survey consists mostly of the data of Table I.

The Key to Table I

The following items represent the various physical properties and applications of the semiconductors listed in Table I. These items are given in the same order as the column headings in Table I.

- 1. Semiconductors. This is a listing of the most important single element and binary compound semiconductors mentioned in the recent literature (1957 1961).
- 2. Eg. This represents the width of the energy gap of the semiconductor in electron volts (e.v.). The superscript r, given beside the reference number, refers to the value at room temperature, whereas the superscript* refers to the value extrapolated to 0°K. The absence of a superscript indicates that the reference temperature is not known to the author.
- 3. This is the dielectric constant of the semiconductor.

 For example, germanium has a dielectric constant of 16.
- 4. u_n, u_p. These represent the quoted values for electron mobility (u_n) and hole mobility (u_p), respectively, in units of cm²/volt-sec., and at room temperature.
- 5. Crystal Structure. This represents the ordered arrangement of the atoms in the crystal lattice. "Strukturbericht" symbols are used (see Table II). In particular, B1 refers to the rock salt structure, B3 to the zinc blende structure, and B4 to the wurtzite structure.
- 6. Physical Appearance. This indicates how the semiconductor might look to an observer.
- 7. Known Number of Research Groups. This indicates the number of different research groups, domestic or foreign, submitting papers recently concerning that particular semiconductor. The sampling of papers included thousands of articles (53) and therefore serves as an indication of the relative importance of, or interest in, that semiconductor. For example, the sampling indicated that 82 research groups submitted at least one research paper each on germanium, whereas only 6 different research groups submitted papers concerning A1Sb. The absence of a

number in this column indicates that the sampling of articles taken for that particular semiconductor was too small to make any number meaningful in the relative sense mentioned above.

- 8. Thin Film. An X in this column indicates that the material has reportedly been prepared as a thin film.
- 9. Electronic Applications. This is a listing of the various electronic applications for which the particular semiconductor has been considered. An attempt was made to separate those applications that have resulted in commercial devices from those applications still only under study in the research laboratory. It is quite possible that a device listed under lab study may since have become commercially available.
- 10. Comments. This is a group of miscellaneous comments that for one reason or another did not properly fit into one of the other columns, but did still merit brief mention.
- 11. References. The references are listed in parentheses. See Selected Bibliography at the end of the report.

OTHER ABBREVIATIONS

1.	A	Angstrom units
2.	atm	atmosphere
3.	b. c	body centered
4.	CC	cubic centimeters
5.	cm	centimeters
6.	cr	crystalline
7.	hex	hexagonal
8.	monocl	monoclinic
9.	orthor	orthorhombic
10.	rhomb.	rhombohedral (hex.
11.	sec	second system)
12.	temp	temperature
13.	tetr	tetragonal
14.	thermoel	thermoelectric
15.	~	about, approximate-
		ly

Table 1. A Listing of Various Single Element and Binary Compound Semiconductors, Along with Some of Their Physical Properties and Applications

COMMENTS -		AgI is used in medicine,photography, and artificial rainmaking attempts (4).	Ag ₂ S is a semiconductor below 177 ⁰ C, but at higher temperatures it tends to have metallic conduction properties. It is noted for its large ionic conductivity in its low temperature form (3). In 1833, Faraday made probably the first significant observation in the first significant of resistance(6) Silver sulfide has a negative temperature coefficient of resistance(6) Silver sulfide becomes metallic at 65,000 atm, pressure (7).	The phase change occurring during cooling of the material from the melt makes it difficult to prepare large single crystals (9). Metallic behavior is noted above the transition temp. of 133°C (8).	Phase changes at 130°C cause difficulties in the growth of single crystals (10). While apparently not competitive with Bi ₂ Te ₃ for room-temperature cooling applications, Ag-Te ₃ might prove useful at lower temperaturés in its extrinsic conductivity range (10).
APPLICATIONS	LAB STUDY	ı	photoconductive and photovoltaic cells (3)	thermoel. studies	thermoel.
APPLIC	COMMERCIAL DEVICES	1	1	1	1
THIN	FILM	1	1	1	1
KNOWN	NESEARCH GROUPS		0	٦	
PHYSICAL	STRUCTURE APPEARANCE	pale yellow powder, darkening on exposure to light	grayish- black, black, powder (4)	thin gray plates (5)	gray (5)
CRYSTAL	STRUCTURE	B3 and B4 (3)	(5) (5)	cubic above 133°C (9); orthor. at room temp.	cubic above 1300C; 1500C; thai thai
	40	1	ı		1
MOBILITY (cm²/ VOLT - SEC)	μn	3 (2)	1	2,000	1
		1	1	ı	1
E g	(ev)	2.8 (1) ^r (2)	S G G mmen L	0.075	0.17 (1) r 0.02 (10)
SEMI -	CONDUCTORS	1. Ag1	2. Ag ₂ S	3. Ag ₂ Se	4. Ag2Te

- STNJUNG	COMMENS	Both AlAS and AlP are quite unstable when exposed to a moist atmosphere (2). They hydolyze slowly under atmospheric conditions, evolving AsH ₃ and PH ₃ (16). Few electrical measurements appear to have been made on either AlAs or AlP(2).	Alb is a very hard material, following directly behind diamond and boron carbide in the scale of hardness (5).		Aluminum oxide is one of the best overall dielectric materials available. When formed on high purity aluminum foil, it has a dielectric constant of from 7 to 10, and a dielectric strength of 2.5 million volts per 0.1 inch of thickness (19).	See comments for AlAs.
ATIONS	LAB STUDY	1	possible use at high temperatures.	electro- luminescence studies (4254)	-thin film majority carrier amplifier -masers	1
APPLIC	COMMERCIAL DEVICES	1	1		-insulator for vacuum tube heater elements -dielectric in electrolytic capacitors	1
THIN	FILM	1	1	:	×	ı
- E	RCH PS	0	-	м	= '	2
PHYSICAL	APPEARANCE	solid; highly toxic (15)		clear White Cr. (5)	colorless (5)	
CRYSTAL	STRUCTURE	83 (14)	1	84 (17)	05 1 (18)	8 3
LT - SEC)	μр	200 (13)	1	1	ı	1
(cm ² / v0	μn	1200	ı	1	1	3500 (13)
u	r	1	ı	ı	see comments	11.6
Eg	(ev)	2.16 (12) r 2.2 (11) r	large (6998)	1	2,5 (18) ~7 (16)	2.42 (7589) ⁷ 3.1 (13) ⁷
SEMI -	CONDUCTORS	5. AlAs	6. A1B	7. AlN	8. A12 ⁰ 3	9. A1P
_	Eg cm ² / VOLT-SEC) GRYSTAL PHYSICAL NUMBER THIN APPLICATIONS	1S (eV) ξ (cm ² /V0LT-SEC) CRYSTAL PHYSICAL NUMBER THIN APPLICATIONS 1S (eV) ξ (μη μρ STRUCTURE APPEARANCE RESEARCH COMMERCIAL LAB 6ROUPS (ROUPS)	E g (cm²/ V0IT – SEC) CRYSTAL (CeV) PHYSICAL (CeV) NUMBER (A DE STRUCTIONS) THIN (COMMERCIAL LAB STUDY) 2.16 (12) (12) (13) (13) (13) (13) (15) (13) (13) (15) (15) (14) (15) (15) (15) (15) (15) (15) (15) (15)	E g ξ (cm²/ V0IT – SEC) CRYSTAL PHYSICAL NUMER OF PEARANCE (RESEARCH FILM OF FILM OF FILM OF SROUPS) THIN OF PEARANCE (RESEARCH FILM OF PEARANCE (ROUPS) THIN OF PEARANCE (ROUPS) COMMERCIAL LAB STUDY 2.16 (12) (12) (13) (13) (13) (13) (13) (13) (13) (13	Eg ξ (cm²/Voll-SEC) GRYSTAL PHYSICAL NUMBER (EQ.) THIN OF FILM APPLICATIONS 2.16 (12) (13) (13) (13) (13) (13) (14) (13) (15) (15) \$ \$0\$ id; \$ \$0\$ id; \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Eg (cm² Voluments) FRUGUIDS PHYSICAL GROWPS NUMBER (FILM DEVICES) THIN STRUCTURE APPERANCE GROWPS PHYSICAL GROWPS COMMERCIAL LAB STUDY 2.16 r - 1200 200 83 \$0.13/15 0 -

		II.				
PANDENTE		Alsb in particular, but all the antimonides to some degree show sensitivity of surface properties to account of an antimosphere (11). Alsb has about the same theoretical conversion efficiency as a photovoltaic device as has GaAs (22).	Arsenic is a metal in its usual form. However, when evaporated as a thin film, it is amorphous and this gray arsenic shows some semiconducting properties.	1	As ₂ Te ₃ has a low melting point, 362°C, and a fairly large energy gap. Since it is easily liquified, it may prove useful to study the effect of lattice order on the electrical properties of semiconductors.	
APPLICATIONS	LAB STUDY	rectifier for high temp, applications, photovoltaic cellinfra-red optics, (21)	ı	1	t	
APPLIC	COMMERCIAL DEVICES		L	1	-	
NIHL	FILM	4	×	ı	1	
KNOWN	OF RESEARCH GROUPS	v	1	ı	0	
PHYSICAL	APPEARANCE	1	gray powder (see comments)	amorphous or glassy	1 	
CRYSTAL	STRUCTURE	(14)	see comments	1	monocl. (16) (19)	
	μр	150 (3) (2) 200 (20) > 400 (6362)	~ 65 (2)	ı	80 (2)	
MOBILITY (Cm ² / VOLT - SEC)	μη	35 (3) 50 (11) 400 (2) 200 (13)	~65 (2)	ı	170 (18)	
4	r	8.4 (3) 10.1 (13) (16)	1	-	ı	
E	(64)	1.52 (11) 1.6 (2)* (12) ^r	~1.2 (2)*	1.6 (2) r	1.0 (2) ((18)	
SEMI-	CONDUCTORS	10. A1Sb	11. AS	12. AS ₂ Se ₃	13. As ₂ Te ₃	

COUNTRY		Boron is one of the least understood semiconductors. It is also one of the most difficult to work with (3). It, like diamond, has purely valence bonds (20). It has exceptionally low carrier mobilities, with hole mobility being slightly greater than electron mobility (2).	ı	BN in its cubic form is an extremely hard material. It may eventually prove useful for semiconductor applications in extreme environments.	1	BaO reacts rapidly with moisture in the air (16). Little is known concerning the semiconducting properties of two other alkaline earth oxides, CaO and SrO (16). The fourth member of the group, MgO. has received some attention as a semiconductor.
APPLICATIONS	LAB STUDY	1	ı		1	,
APPLIC	COMMERCIAL DEVICES	ı	1	ı	1	oxide cathodes
N.E.	FILM	×		1	i	1
KNOWN. NUMBER	RESEARCH GROUPS	9	1	2	ы	1
PHYSICAL	APPEARANCE	very soft, brown, amorphous powder or as crys- ignites in air	-	white (5)	maroon powder (5)	colorless (16)
CRYSTAL	STRUCTURE	complex (3) complex tetr. (2)	83 (2035)	6066)	83 (2035)	81 (18)
LT – SEC)	μp	₹ 7	-	t	100 (13) ~300 (4552)	ı
MOBILITY (Cm ² / VOLT-SEC)	μn	(S) 1		1	1	small; ~3 at ~500°K (16)
3	,	6.2	ı	ı	11.6	34 (16)
63	(ev)	13) 1,1 (20) 1,6 (11) 1,7 (2)*	-	4.6 (16) (20) -about twice that of dia- mond (6066)	5.9 (4552) ~6 (13)	23.8 (16)
SEMI -	CONDUCTORS	14. B	15. BAS	16. BN	17. BP	1B. Ba0

COMMENTS -		Bil ₃ is mentioned here only as an example of one of the group VB tri-iodides that are known to be semi-conducting (14).	1	Most semiconductors can conveniently be written as normal ionic compounds – (e.g., Cd ⁺² + 5 ⁻² — CdS). Bise is mentioned merely as an example of an exception to this rule. (18) Otherwise, no exceptional importance was noted for Bise.	Bi ₂ Se ₃ - Bi ₂ Te ₃ alloys have been investigated for thermoelectric applications (23).	The electrical properties of Bi ₂ Te ₃ show a high degree of anisotropy (2) Bi ₂ Te ₃ is the most intensively studied of all the thermoelectric materials, it has been used as a Pellier cooling material since 1954 (23). It is an attractive thermoelectric material and partly because of its low thermal conductivity (11). Other compounds have been developed by substituting either Sb for part of the Bi, or Se for part of the Te (23).
APPLICATIONS	LAB STUDY	1	1	I	thermoelectric study	thermoelectric
APPLIC	COMMERCIAL DEVICES	1	1	1	1	1
THIN	FILM	1	×	1	ı	1
KNOWN	RESEARCH GROUPS	0	ı	Ф	-	16
PHYSICAL	STRUCTURE APPEARANCE	grayish- black, metallic, glisten- ing crystals.	blackish- brown powder (4)	1	black (5)	gray hexagonal platelets (4)
CRYSTAL	STRUCTURE	hex. (5)	orthor. (16)	1	(33 (18) (9)	(18)
ITY _T - SEC)	μр	1	1	ı	1	(2)
MOBILITY (cm ² / VOLT - SEC)	μ	1	ı		600 (18) (2) 1600 (8268)	800 (18) 1200 (2)
w		ı	ı	1		1
E g	(ev)	1	1.3 (2) ^r (16) ^r	1	0.3 (2) r 0.35 (16) r (18)	0.15 (18) 0.16 (21) 0.2 (2)*
SEM! -	CONDUCTORS	19. BiI ₃	20. Bi ₂ S ₃	21. BiSe	81 ₂ Se ₃	8 i 2 Te 3

J.H. JHING	Semiconducting diamonds are rare in nature, accounting for less than one percent of natural diamonds. Only p-type semiconducting diamonds have successfully been grown in the laboratory (23). Semiconducting diamonds are designated as type III diamonds do not have absorption bands between 6 and 13 microns, whereas type I diamonds do have absorption bands in this wavelength region (3724). Type IIb conductivity an addition, have moderate conductivity an addition, have moderate conductivity of 270.—cm at 200C (16).		Graphite is the stable form of carbon at room temperature (3). Its conductivity is highly anisotropic. The conductivity along the plane of the crystals has been found to be on the order of 100 times greater than the norder of 100 times greater than that normal to the planes (3). It is in this direction normal to the planes that graphite shows semiconductor properties, whereas its properties are more metallic along the planes (20).	It is necessary to handle Ca ₂ Pb, Ca ₂ Si, and Ca ₂ Sn under an inert atmosphere in order to prevent their decomposition (16)
APPLICATIONS	LAB STUDY	- Thermistors (8457) -Possible use at high temperatures and/or under severe ambient conditions.	-windows for Soft x-rays -carbon element cryogenic temp.probe temp.probe	ı
APPLIC	COMMERCIAL OEVICES	1	ı	•
THIN	FILM	1	1	1
KNOWN	RESEARCH GROUPS	16	11	0
PHYSICAL	APPEARANCE	semi- conduct- ing diamonds prepared With boron impurity are biue (23) hardest sub- stance known (4)	black, metallic like sub- stance with greasy feel (3)	ı
CRYSTAL	STRUCTURE	diamond	hex., also rhomb. (less common) (24)	(16)
11TY 1LT – SEC)		1200 (1) (11) 1300 (2)	ı	ı
MOBILITY (cm²/ VOLT - SEC)	μn	1800	1	
	5.7 (586) (586)		ı	ı
F.g	(ev)	5.3 (20) (20) 5.6 (11)	1	0.46(1),*
SEMI-	CONDUCTORS	24. C (diamond)	25. (graph- ite)	26. Ca ₂ Pt

_	•			T		
	COMMENTS -	See comments for Ca ₂ PD.	See comments for Ca ₂ Pb.	Both the electrical and the optical properties of CdAS ₂ show marked anisotropy (29) The conductivity was found to be four times greater in the c-direction (crystallographic) than in the addirection (4281).	$C_{J}AS_{Z}$ is remarkable in that it has a high value of electron mobility at room temperature $(u_{n} \sim 10,000~\mathrm{cm}/\mathrm{volt})$ see.) at high levels of conduction electron density $(\sim 10^{18}/\mathrm{cc})$ (4612). The other high electron mobility compounds [insb. inAs, HgSe, and HgTe) all have the zinc blende structure.	Cd1 ₂ is used in photography, medicine, etc. (4).
APPLICATIONS	LAB STUDY		ı	1	1	1
APPLIC	COMMERCIAL		1	1		1
THIN	FILM	1	1	1	×	1
KNOWN	OF RESEARCH GROUPS	0	0	-	2	0
PHYSICAL	APPEARANCE	1	1	1	dark gray (5)	white, flaky crystals, becoming yellow when exposed to light and air (4)
CRYSTAL	STRUCTURE	tetr. (16)	tetr. (16)	(25)	05 ₉ (9)	(18)
	40	1	ı	no p-type (25)	no p-type: reported (25)	
MOBILITY (cm ² / VOLT-SEC)	μn	1	1	>300 (2) 100, a-axis; (25)	10,000 (2) 15,000 (25) (7027)	
4.7	,	1	ı		ı	1
E g	(60)	0.9 (1) ^r 1.9 (11) ^r (16)*	0.9 (1) ^r (16) *	1.00, EHC. 1.04, ELC (25) ^r 1.1	0.13 (25) ^r (7027) ^r 0.5 (2)*	1
SEMI -	CONDUCTORS	27. Ca ₂ Si	28. Ca ₂ Sn	.cdAs2	30. Cd ₃ As ₂	31. Cd1 ₂

- 21212		CdO was used in some of the earlier studies on semiconductors (2).	CdS is one of the most sensitive materials for the detection of visible light (via photoconductivity) (20). Photoconductive cells made, from it have spectral peaks from 5100 Å to 6500 Å (26). CdS crystals are strongly piezoelectric (23). CdS is an excellent detector for short wavelength radiation.	CdSb has anion — anion bonds. The anions are linked in pairs (14).	Photoconductive cells made of CdSe peak in the range from 7000 A to 8000 A (26).
ATIONS	LAB STUDY	ı	-thin film majority carrier amplifier -solar cells -photorectifier -phototransistor	thermoelectric devices	ı
APPLICATIONS	COMMERCIAL Devices	1	-photoconductive cells - Y-ray detector -scintillation counters (4) -phosphors	1	photoconductive cells
THIN	FILM	×	×	1	×
KNOWN	RESEARCH GROUPS	ı	37	4	J
PHYSICAL	APPEARANCE	yellowish- red, or red, or red to brownish- black powder (4)	light yellow or orange powder (4)	ı	usually a red powder, but may also occur gray to brown (4)
CRYSTAL	STRUCTURE	81 (2) (18)	B3 and B4 (3)	orthor. (5)	84 (5) (9) 83 (18)
ITY LT – SEC)	μр	1	ı	300-700 (2) 900-1200 (25)	1
MOBILITY (cm ² / VOLT - SEC)	μn	20 (2)	210 (2) (18) 295 (13)	(2)	100 (2) 700 (18) 500 (13)
4	,	ı	11.6 (20) 5.4 (13)	1	1
E ₉	(ev)	2.3 (2) ^C ~2 (8422)	2.4 (2)* (1) ^r	0.46 (25) 0.48 (9) 0.48 (9) 0.51 (11,436) (4281)	1,74 (1) (18) 1,85 (2)*
SEMI -	CONDUCTORS	32. Cd0	33. CdS	34. CdSb	35. CdSe

- STAMMENTS		CdTe oxidizes on prolonged exposure to moist air (4).	-	•	-CS ₃ Sb is useful because of its photo- emissive properties. In spite of its wide band gap, CS ₃ Sb has a relatively high rgom temperature conductivity- about 10 ² A ₁ -1cm ¹ . This is probably because of a departure from stoichiometry (27).
APPLICATIONS	LAB STUOY	-photoconductive and photovoltaic cells -infra-red detection -high temp. rectifiers and transistors	thermoelectric applications (20)	1	-photocathodesphotovoltaic effects in Cs ₃ Sb films noted (11,459)-
APPLIC	COMMERCIAL OEVICES	1	1	I	ı
THIN	FILM	×	ı	ı	×
KNOWN NUMBER	RESEARCH GROUPS	ω	1	~	
PHYSICAL	STRUCTURE APPEARANCE	brownish- black, cubic crystals (4)	1	1	1
CRYSTAL	STRUCTURE	83 (18)	I	cubic, CsCl type (4284)	cubic (28)
ITY LT - SEC)	μр	90 (2) 100 (13)	I	ı	~10 (23)
MOBILITY (Cm ² / VOLT - SEC)	μn	300 (18) 950 (2) 800 (13)	t	1	ı
ų	r	~ 11 (13)	1	ı	ı
Eg	(ev)	1.4 (18) 1.45 (1) 1.6 (2)*	1	probábly between 2.6 and 3.3 (4284)	1.6 (27)
SEMI-	CONDUCTORS	36. CdTe	37. CoSb ₃	38. CsAu	29. Cs ₃ Sb

	COMMENTS -	-Cu ₂ O is always p-type (29)Cu ₂ O was probably the first semi- conductor in which intrinsic conductivity was recognized (3)Cu ₂ C has been used as a rectifier material for a long time.	Mobility values of about 100 cm²/voltsec. have been observed above the Curie point in the oxides ${\rm Fe_20_3}$ and ${\rm Fe_30_4}$ (2).	Pyrites are very widely distributed, being the most common sulfide mineral (4). Pyrites have historical significance. It was one of the first materials found to show rectifying properties when used with metal contacts (6).
APPLICATIONS	LAB STUDY	-electro- luminescence studies -photovoltaic cells	thermoelectric generator (30)	1
APPLIC	COMMERCIAL DEVICES	rectifiers	-	-
THIN	FILM	ı	1	1
KNOWN	OF RESEARCH GROUPS	7	I.	0
PHYSICAL	APPEARANCE	reddish- brown cr. powder (4)	dense, dark-red powder (4)	brass- yellow or brown tarnished mineral, metallic luster (4)
CRYSTAL	STRUCTURE	(18)	05 ₁ (18)	(5) (5) (18)
	T	60 - 80 (20) 100 (2)	1	1
MOBILITY (cm ² / VOLT - SEC)	μ	see comments	1	
		8.75 (20)	1	
Ea	(ev)	2.0 (2)* 2.1 (1) (1) (1)	2.3	1
SEMI-	CONDUCTORS	40. Cu ₂ 0	41. Fe ₂ 0 ₃	FeS ₂ (pyrites)

		<u> </u>	
	COMMENIO -	-Most of the GaAs produced by routine production methods is n-type, with a carrier concentration between 1016 and 1017 per cc, and having a resistivity below one ohm-m. (33). The present problem with GaAs is that of getting the material with sufficient purity for reasonable carrier lifetimes. As a result, its present uses are limited to devices not requiring long lifetimes (23) - e.g., fast switching computer diodes. -Theoretically, GaAs transistors could have the excellent high-frequency characteristics of germanium tranhave the excellent high-frequency characteristics of germanium tranhandling capability exceeding that of silon transistors (34). -GaAs is one of the most useful piezoresistive materials, along with silicon and germanium (35). -GaAs is close to the optimum materialfor photovoltaic solar energy conversion for temperature below 2000 (6519). Conversion efficiency as high as 13% has been achieved (42). GaAs solar cells have relatively high radiation damage resistance (22).	GaP has exhibited electroluminescence under a rectifying point contact (16).
APPLICATIONS	LAB STUDY	-solar cells -switching transistors -infra-red optics -ultrasonic delay lines	-power rectifiers -transistors -high temp. diodes -electro- luminescence studies
APPLIC	COMMERCIAL DEVICES	-varactor diodes -tunnel -tunnel diodes diodes	1
THIN	FILM	*	×
KNOWN	RESEARCH GROUPS	23	10
PHYSICAL	APPEARANCE	ı	pale orange, trans- trans- crystals or or whiskers (4)
CRYSTAL	STRUCTURE	(6) (6)	(14)
ITY LT – SEC)	dη	400 (2) (22) 450 (31) (6357)	20 (2) 100 (13)
MOBILITY (cm ² / VOLT - S	υμ	4000 (11) (31) 5000 (22) 6700 (356) 7500 (13) 8600 (23)	(13)
w	,	11.1 (16) (22) (13) (13)	~B.4 (16) 8.8 (13)
E 9	(ev)	1,35 (11) (31) (32) 1,6 (2)*	2.20 (4679) ^r 2.25 (11) ^r 2.4 (11) ^r (2)*
SEMI -	CONDUCTORS	6aAs	GaP

2 FILL THE TOP OF	- 0 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	GaSb looks and handles like germanium; chemically, it is a little more reactive than is germanium (22).	-The properties of GaSe crystals are very similar to those of ZnTe crystals in many way: (37).	1	1	
APPLICATIONS	LAB STUDY	-rectifiers -transistors	photoconductivity	1	ı	
APPLIC	COMMERCIAL DEVICES	tunnel diodes	ı	1	ı	
E N	E.	1	1	1	I -	
KNOWN	RESEARCH GROUPS	ထ	1	1	٦	
PHYSICAL	APPEARANCE	ı	dark red-brown, greasy leaf (5)	reddish- black; hard, brittle (5)	black; hard, brittle cr. (5)	
CRYSTAL	STRUCTURE	(9)	1	83 (18)	83 (18)	, mark
LTY LT - SEC)	μр	850 (22) 1000 (2) (3) (11)	15 (37)	1	L	
(cm ² / VOLT - SEC)	μn	4000 (22) 5000 (2) (11) (20)	1	ı	1	
	,	14.0 (3) (16) (22)	l	I	I	
Eg	(ev)	0.68 (36) 0.70 (32) 0.78 (1) (1) (2)* (2)* (3)	1.97	1.88 (37) ^r	1.8 (3429)*	
SEMI-	CONDUCTORS	45. GaSb	46. Gase	6a ₂ Se ₃	48. Ga2Te ₃	

COMMENTS -		-Ge is perhaps the most important of presently known semiconductors. It is also the most widely studied from the research point of view (3). -Ge has the distinction of being the purest of all solids. The impurity concentration in the best germanium is now about one part in 1010 (2). -Thin polycrystalline films of germanium form oxide layers rather rapidly when exposed to air (3). -Ge acts much the same as glass when hit or dropped. The same is true for silicon and for tellurium (3). -Liquid germanium has been shown to be a metal (3). The melting point of Ge is 9400°C.	1	1	
APPLICATIONS	LAB STUOY	-bistable cryosars -cryosistors -photomagneto-electric (PME) light detector -thermoelectric power generator, when alloyed with silicon	1	1	
APPLIC	COMMERCIAL DEVICES	-diodes (ordinary) -tunnel diodes -varactor diodes -transistors -hhototransistors -infra-red detectors -infra-red red ferences -infra-red detectors -infra-red fillers, and detectors -infra-red fillers, and detectors -infra-red	1	1	
THIN	FILM	×	ı	1	
KNOWN	RESEARCH GROUPS	88	-	a a	
PHYSICAL	APPEARANCE	bright silvery, metallic luster (3)	yellow- red amorphous or black (5)	1	
CRYSTAL	STRUCTURE	diamond	80th 816 and 829 types noted	tetr. (18); orthor. (3259)	
LT – SEC)	μρ	1800 (1) 1900 (22) (31) (38)	1	1	
MOBILITY (cm ² / VOLT - SEC)	μn	3800 (1) (3) 3900 3900 (31) (13) (13)	1	1	
w.	P	16.0 (22) (29)	1	1	
Eg	(ev)	0.66 (38) ^r (31) ^r (32) ^r (3) [*] (3) [*] (2) [*] (2) [*]	1.8 (18)	1	
SEMI -	CONOUCTORS	49. Ge	50. GeS	51. 6e.se	

	CORMENTS -	GETE has always emerged as a p-type material. It was recently discovered as a thermoelectric material. It shows some promise of future importance in this field, especially when some 81.3 substituted for some Ge ⁺ 2, in order to lower the carrier concentration. Thus, a composition 97% GeTe, 5% 81 ₂ Te ₃ is almost twice as efficient as is the GeTe by itself (23).	1	!	HgSe is an extremely volatile compound semiconductor (9); it is highly toxic (15).	The high mobilities of HgSe and HgTe seem to confirm the remark that maximum mobilities occur in compounds having a slight ionic component in their bonding (18).
APPLICATIONS	LAB STUDY	thermoelectric applications	ı	1	infra-red detector (11,513)	1
APPLIC	COMMERCIAL DEVICES	1	ı	ı	1	ı
THIN	FILM	1	1	1	ı	ı
KNOWN	OF RESEARCH GROUPS		0	1	-	ഗ
PHYSICAL	STRUCTURE APPEARANCE	1	red crystals (4)	cubic, black; hex., red (5)	oray plates (5)	ı
CRYSTAL	STRUCTURE	81+ (18)	C13 (18)	83 (18) also hex. (5)	83 (9) (18)	83 (9) (18)
-SEC)	μр	1	I	ı	ı	200 (2) 160 (13)
MOBILITY (Cm ² / VOLT	μn	see comments	ı	1	15,000 (18) 18,000 (2) 18,500 (13)	16,000 (3502) 17,000 (3501) 20,000 (2) 25,000 (18)
4		ı	1	1	5.8 (13)	1
fq	(ev)	1	ı	2 (2)* (13)	0.16 (18) 0.6 (32) ^r (13)	0.02 (9) (32) (3501)* (3502)
SEMI~	CONDUCTORS	52. GeTe	53 . H91 ₂	54. HgS	55. HgSe	Нд те

- SINGS		Optical investigations showed iodine single crystals to be a semiconductor with a large activation energy (6998).	-The small energy band gap tends to make links unsuitable as a transistor material for room temperature operation (38). Valence electrons activated across the small band gap would tend to swamp any modulation of carrier concentration that might be induced by electrical means. -Inds and the other III-V semiconductor compounds have been examined for use as possible thermoelectric materials. In their faovr are their unusually high electron mobilities and low effective masses; in their disfavor are their rather high thermal conductivities and small energy gaps (23). The ternary compound, Inds].xx has a higher figure of merit 2, for certain values of x than has	InP has been reported to show transistor action (38). Actually, transistor action has been observed in a number of materials, but usually only under special conditions (39). Se, for example, the comments for InSb, below.	
ATIONS	LAB STUDY	1	-thermistors -transistors -magneto- resistance devices -thermoel. studies -tunnel	-solar cells -photocells -infa-red optics -high temp. rectifiers and transistors -electro- luminescence	
APPLICATIONS	COMMERCIAL DEVICES	ı	Hall generator	I	
THIN	FILM	1	×	1	
KNOWN	RESEARCH GROUPS	-	13	σ	
PHYSICAL	APPEARANCE	heavy, grayish- black plates or granules; metallic luster; poisonous, corrosive	1	ı	
CRYSTAL	STRUCTURE	orthor.	(38).	83 (14)	
	μр	~ 25 (2)	100 (1) (20) 200 (11) 240 (22) 250 (2) 500 (38)	100 (2) 150. (20) (38) 650 (1) 700 (11)	
MOBILITY (cm2/ VOLT-SEC)	M0BILT (Cm ² / v0L1 # n		20,000 (11) 22,600 (31) 23,000 (1) (20) 30,000 (2) 33,000 (38) 50,000 (22)	3400 (1) (20) 3500 (11) 4600 (2) 5000 (38)	
	w		11.7 (16) (22)	10.9 (16) (13)	
F 9	E9 (ev)		0.33 (1) (32) (32) 0.36 (13) (38) 0.37 (31) (31) 0.45 (2)*	1.25 (1) (4679) 1.28 (38) r 1.3 (2)* (11) r (12)*	
SEMI-	S		InAs	59 . InP	

		W		
	COMMENTS -	InSb is the most extensively studied member of the group III-V compounds (16). It is relatively easy to prepare as a single crystal, with purity lavels one to 3 orders of magnitude higher than that available for the other III-V compounds (16). Compounds in which the band gap is very low have been found generally to be less sensitive to the presence of impurities (38). InSb has the highest known electron mobility at room temperature; however, it loses this honor to Pofe at temperatures below 200K (2). InSb has a room temperature however, it loses this honor to Pofe at temperatures below 200K (2). InSb has a room temperature for esistivity of about 0.02.0-cm. (resistivity of about 0.02.0-cm. (righest value to date). This compares with intrinsic resistivities at 220C of 47.0-cm. for Ge and 3 x 105.0-cm. for Silicon (3). The small energy band gap of InSb seriously impairs its use in devices to be operated at room temperature. Such devices would be very temperature. Such devices would be very temperature.	1	ı
APPLICATIONS	LAB STUOY	-thermoelectric studies -tunnel diodes -tunnel diodes -transistors -transistors -thermistors -magnetoresist-ance voltage regulator	1	ı
APPLIC	COMMERCIAL	infra-red detector, detectors, hith cooling used	1	
E E	FILM	×	1	1
KNOWN	OF RESEARCH GROUPS	39	1	-
PHYSICAL	Ā	1		1
CRYSTAL	STRUCTURE	(14)	ı	83 (18)
ITY LT – SEC)	40	780 (31) 800 (38) 1250 (1) (22) 1400 (2)	ı	-
(cm ² / VOLT - SEC)	μn	75,000 (22) 77,000 (1) 78,000 (38) 80,000 (2) (11) (20)	(8E) 006	30 (38)
	v	15.9 (3) (16) (22)	ı	1
Ea	(ev)	0.17 (11) (116) (31) (31) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	1,05 (38)	1,2 (18) (38) r
SEMI -	CONOUCTORS	Insb	61. InSe	. In ₂ Se ₃

- SINII		$\ln_2 Te_3$ has a loose crystal structure, with many scattering centers. This results in a low value of mobility (20).	The alkali metals form semiconducting compounds with antimony in the ratio of 3 to one; e.g., Na ₃ Sb, K ₃ Sb, Ra ₃ Sb, Cs ₃ Sb, and various multi-alkali materials, such as Na ₃ KSb. These materials are efficient photoemitters (27).	The crystal structure of Li ₃ Bi is a superposition of the fluorite (C1) and the rock-salt (B1) structures (14).	Mg_Ce reacts with water vapor (11). This strong possibility of surface Contamination could present reliability problems for devices made of this material.	MgO is the most refractory of all the alkaline earth oxides, with melting point about 25000C (16). Its semiconducting properties have received intreasing interest of late, largely because of the availability of large. single crystals (16).
APPLICATIONS	LAB STUDY	ı	photoemission studies	ı	ı	thermionic emission studies ((40)
APPLIC	COMMERCIAL 0EVICES	1	ı	1	ı	1
THIN	FILM	1	ı	ı	ı	×
KNOWN	RESEARCH GROUPS	2	1	0	~	ı
	APPEARANCE	1	yellow- green (5); highly toxic (15)	ı	1	white powder (4)
CRYSTAL	STRUCTURE	83 (18) (20)	hex. (27)	003 (18)	anti- fluorite (16)	(3)
(DEC)	μр	ı	1	ı	100 (2) 110 (2038)	~ 2 (2) 11e is
(cm ² / VOLT - S	μn	See	ı	ı	280 (2036) 500 (2)	very little is known (16)
w	,		1	1	1	4
P. 9	(ev)	0.88 (optical) 1.02 (electrical) (a12) (3429)	(27)	ı	0.69 (2038)* 0.7 (1) ^f (2)*	7.3 (16) 7.4 (2) (2) (40)
SEMI-	CONOUCTORS	63. In ₂ Te ₃	64. K ₃ Sb	65. Li ₃ Bi	. Mg ₂ Ge	67. Mg0

	CONMENTS -	1	Mg_Si reacts with water vapor(11).	Mg_Sm reacts with water vapor (11). It is difficult to get pure enough material to determine Eg accurately (2). The II-IV compounds typified by Mg_Sm, attracted attention a few years ago in the search for infra-red materials (2).		1	MnO is used for medicine, ceramics, dry batteries, paints, colored glass, textile printing etc. (4).	1	
APPLICATIONS	LAB STUDY	I	t	1	rectifiers	thermoelectric studies	1	1	
APPLIC	COMMERCIAL DEVICES	1	1	1	1	ſ	1	1	
THIN	FILM	1	ı	1	×	1	1	1	
KNOWN	OF RESEARCH GROUPS	0		~	2	e	ı	ı	
	APPEARANCE	metallic (5)	1	ı	1	1	grass- green powder (4)	gray (5)	
CRYSTAL	STRUCTURE	1	C1 (5)	(5)	84 (18)	1	81 (3)	81 (18)	
		80 (2)	56 (2039) 70 (2)	250 (2)	ı	~200	1	I	
MOBILITY (cm ² / VOLT - SEC)	μn	20 (2)	~400 (2) (2039)	300 (2)	i	>200 (41)	1	ı	
4		ı	1	ı	ı	1	1	1	
g ³	(ev)	0.82 (1) (2)*	0.7 (1) r 0.77 (2)*	0.3 (1) (2)*		~0.5B (41)	0.5 (18) 1.25 (20)	0.1	
SEMI -	CONDUCTORS	68. Mg_3Sb_2	.69. Mg ₂ Si	70. Mg ₂ Sn	71. MgTe	72. MnA1 ₃	73. Mn0	74. MnSe	

		U					
OTH BUILD		MnTe was one of the first thermoelectric materials investigated for use in the 8000 - 1000°C range. Unfortunately, it had a rather low flgure of merit, 2 (23).	MoO ₃ has a high dielectric constant and an extremely small Hall effect (20).	MoS ₂ finds use as a lubricant in greases, oil dispersions, etc., especially under conditions of extreme pressures and high vacua (4).	See the comments for K ₃ Sb	NiO is of interest because by simple band theory, it should exhibit metallic conduction; instead, it is almost an insulator (2). Mobilities of over 800 cm²/volt-sec. have been reported (2).	Phosphorus exists in several allotropic forms - white, red, and black (4). The latter form is probably a semiconductor (2).
APPLICATIONS	LAB STUDY	thermoelectric studies	1	1	photoemission studies	thermoelectric generator (30)	1
APPLIC	COMMERCIAL DEVICES	1	1	ı	1	1	1
THIN	FILM	ı	1	ı	1	×	×
KNOWN	RESEARCH GROUPS	1	1	ı	1	ı	1
	APPEARANCE	1	white- yellowish or colorless (5)	black, lustrous powder (4)	blue (5)	green powder, becoming yellow (4)	black lustrous crystals, crsembling graphite (4)
CRYSTAL	STRUCTURE	88 (18)	orthor. (5)	hex. (5)	hex. (27)	81 (3)	orthor.
OLT - SEC)	μр	1	1	150	ı	1	350 (2)
MOBILITY (cm2/ VOLT - S	υπ	1	1	1	ı	on the order of 10 ³ (42)	220 (2)
ų	,	ı	high (20)	ı	1	ı	1
E g	(ev)	1	1	1,45	1,1	1.7 to 1.9 (20)	0,33 (2)*
SEMI -	CONDUCTORS	75. MnTe	76. MoO ₃	77. MoS ₂	78. Na ₃ Sb	79. NiG	90°

THE DRIVE	- CINDENIO	The mineral galena, which is naturally occurring PbS, had historical significance in showing non-ohmic properties, and as use as a catwhisker detector (6). The combination of low energy gaps and high mobilities have made PbS, PbSe, and PbTe very useful as infra-red detectors (2).	Values of mobility for the 3 compounds, PbS, PbSe, and PbTe have been found to vary considerally between different specimens. The quoted values are order of magnitude of the maximum value. In any given sample, un is always greater than up, although of comparable magnitude (2).	At temperatures below 20%, PbTe has a higher mobility than any other material (2). An electron mobility as large as at X106 cm²/volt-sec. has been observed at 4.20% in a PbTe crystal with an electron concentration of about X 1017/cc. (43). PbTe has been used as a thermoelectric power generating material for over 10 years (23). However, it is an extremely brittle material (30). has a tendency to oxidize (30).7 and is confined to use at relatively low temperatures. A discussion of the possible causes for the widely differing values of E obtained by thermal measurements at elevated temperatures as opposed to optical measurements at some temperature on the compound PbTe is given in the literature (44).
APPLICATIONS	LAB STUDY	thermoel. devices transistors (39)	thermoel. devices	magneto-tunneling studies, using PoTe tunnel diodes (9)
APPLIC	COMMERCIAL DEVICES	infra-red thermoel, detectors photoconductivity transistors cells (39)	infra-red detectors (below 9 microns)	-infra-red detectors (below 9 microns) microns) power generator
NE NE	FILM	×	ı	1
KNOWN	RESEARCH GROUPS	16	v	14
	APPEARANCE	black, with a strong metallic sheen (3)	cr. (15)	white (5)
CRYSTAL	STRUCTURE	B1 (14) (18)	81 (18)	(18)
MOBILITY (cm2/ VOLT-SEC)	μ,ρ	200 (1) 250 (31) 500 (2)	700 (1) 1400 (2)	300 400 (3) 2000 (2)
M0BI (cm ² / V	(cm²/ vol 400 (3) 500 (2) 600 (1) 650 (31) 800 (18)		900 (1) 1200 (18) 1400 (2)	1300 (3) 2000 (2) 2100 (18)
w.	4		unusu- a 1 1 y h i gh (2)	unusu- a 1 1 y (2)
F ₉	(ev)	0.34 (18) 0.34 0.37 (1) (3) 0.39 (2)	0.25 (18) 0.27 (1) ^r (2) ^r	0.22 (18) 0.25 (3) (1) (1) (2) (2)
SEMI -	SS		92. PbSe	93. PbTe

		·				
- STNDRAG		See the comments for $K_3{ m Sb}$	Sulfer is one of the best insulators in the dark, having a dark conductivity of the order of $10^{-18} \mathcal{A}_{-1} cm^{-1}$. However, it shows marked photoconductivity when illuminated (especially with blue light), with conductivity increasing 3 to 6 orders of magnitude (20).	Antimony is one of the semi-metals. It is almost metallic, but does show some semiconductor properties. A binary alloy, consisting of bismuth and between 5 and 30% of antimony has been found to be a semiconductor with a very small energy gap (2).	Sb ₂ S ₃ finds use in such things as pigments, pyrotechnics, matches, ruby glass, fireproofing fabrics and paper, etc. (4).	1
APPLICATIONS	LAB STUDY	photoemission studies	1	low current, extremely fast acting switches, switches, computer networks (21)	1	infra-red sensitivity studies
APPLIC	COMMERCIAL DEVICES	1	1		I	1
THIN	FILM	ı	1	×	×	1
KNOWN NUMBER	RESEARCH GROUPS	1	1	2	П	2
PHYSICAL	APPEARANCE	ı	yellow crystals (4)	silver- white, lustrous, hard, brittle metal (4)	black crystals as the mineral stibnite; orange-red crystals as a precipitate (4)	gray cr. (5)
CRYSTAL	STRUCTURE	hex? (27)	orthor. (5)	rhomb. (3)	05 ₈ (18)	058 (18)
LT -SEC)	μр	1	t.	1	45 (2)	45 (16) 270 (2)
MOBILITY (cm2/ VOLT-SEC)	μη	ı	1	1	(2)	15 (16) (18)
u	p	1	ı	I	1	
Eg	(ev)	1.0 (27)	1	1	1.7 (2) ^r (18)	0,82 (4653) 1,2 (2) r (18)
SEMI-	CONDUCTORS	84. Rb ₃ Sb	s . S	86. Sb	87. SP ₂ S ₃	5t ₂ Se ₃

O THE STATE OF THE	225	1	Selenium and its compounds are quite poisonous, like arsenic (4). The photoconductivity of selenium was discovered in 1873 (6). It was perhaps the first semiconductor to achieve real importance (20). Although studied in great detail, selenium remains one of the most complicated and least understood of all the Semiconductors (3). Selenium is always p-type (2): (29).	Silicon has a thermal conductivity that is extraordinarily high for a nonmetallic substance (11). Silicon is second only to germanium in having the highest purity of all the solids (2). It is now possible to grow silicon (and germanium) crystals virtually free from dislocations. Perfect specimens weighing as much as 50 grams have already been made (46). Silicon has proven to be a useful material for the study of crystal dislocations. This is a consequence of its transparency to infra-red radiation, and man's ability to grow relatively perfect crystals of silicon. Therefore, by using infra-red radiation along with a suitable decoration (e.g., a copper impurity), it is possible to observe individual dislocations in silicon crystals (46). Silicon is much more refractory than is germanium; its melting point is
ATIONS	LAB STUDY	1		cryosars (10,778) delay lines (45)
APPLICATIONS	COMMERCIAL DEVICES	1	-rectifiers -solar cells -photoconductive cells	-diodes -photodiodes -tunnel diodes -varactor diodes -power rectifiers -transistors -4-layer Switching devices -solar cells -bhotoswitches -detector for neutrons and for charged particles -strain gages -strain gages -infra-red windows and lenses
NE NE	FILM	ı	×	×
KNOWN	RESEARCH GROUPS	5	15	88
	APPEARANCE	gray (5)	steel- gray; very high luster; cr. cr. on be ing broken (4)	metallic lister, darker in hue than germanium (3)
CRYSTAL	STRUCTURE	(33 (9) (18)	, 20 (3) (3)	d i amond
	40	~270	(1) in many specimens (3) (2) (2)	400 (1) 480 (31) 500 (22) (22)
MOBILITY (cm ² / VOLT - SEC)	μn	1	See Comments	1200 (22) 1300 (2) 1350 (31) 1600 (1) (1)
~		1	ı	11.7 (586) 11.8 (22)
E 9	(64)	0.3 (2) (18)	0.8 (20) 1.5 (3) 1.8 (18) (18) ((1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
SEMI -	CONDUCTORS	89. Sb2Te3	° 06	si Si

COMMENTS -		Sic is a highly refractory material. It decomposes at about 22000 (3). Refractory materials such as Sic may be quite resistant to surface contamination (11). Commercially produced Sic crystals cover a wide range in color, from white to yellow to green to black. They also have a wide range of electrical and mechanical properties. The green and yellow crystals are often netype semicolulus crystals are often netype semicolulus. The properties of Sic, suitable for electronic work, have proven disappointing, despite much effort. This may lessen interest in it as a transistor material (39). The main electrical applications of Sic at the present time, such as lightning arrestors, depend more on the nonlinear resistance characteristics of the contacts between individual grains than on the bulk properties (3).	Gray tin is the stable form of tin below 130C; it has the diamond structure. White tin is stable above 130C; it has a tetragonal structure. The conversion from white to gray tin takes place very slowly at temperatures only slightly below 130C. The conversion rate is a maximum at -400C. Addition of a few tenths of a percent of bismuth inhibits the conversion almost completely (3). Because the conversion is a solid-solid process resulting in a large change in volume, the gray tin product is in a poor mechanical condition, full of holes cracks, and lattice defects. There is no liquid phase of gray tin (3). However, a method of growing gray tin single crystals from a liquid amangam is presented in the literature (47).
APPLICATIONS	LAB STUDY	transistors for high for high tempuse resistance healing elements, of tem used for infra-ed for infra-ed sources (3)	1
	COMMERCIAL DEVICES	-Symmetrical varistors -rectifiers for high temperature use -abrasives	-
THIN	FILM	×	×
KNOWN NUMBER OF RESEARCH GROUPS		27	٥
PHYSICAL APPEARANCE		trans- parent crystals when pure (2)	gray, brittle (4)
CRYSTAL		83 with at least 100 modifications (3); also hex.	diamond (3)
LT - SEC)	μр	250 (2) (13)	2400 (2)
MOBILITY (Cm ² / VOLT - SEC)	μn	~ 100 (2) 60 (13)	2500 (2) 3000 (20) (30)
45		6.7 (20) (13) 10.2 (586)	50 (20)
Eg (ev)		2.86 (36) 2.86 (16) (3) (3) (3) (3) (11) for the type; 3.0 for the for the for the for the (2)* (2)*	0.068 (3496) 0.08 (1) r (2) * (3) (16)
SEMI- CONDUCTORS		92. S1C	93 . Sn

_			r		1		
COMMENTS -		The hole mobility at room temperature in a plane perpendicular to the c-axis was found to be about 90 cm2/voll-sec., whereas it was about 5 times smaller in the direction of the c-axis (48).	SnS ₂ is a semiconductor; however, most compounds of AX ₂ composition are predominantly ionic (14).	SnSe has a sheet-like crystal structure, behaving similar to mica. The cleavage planes are perpendicular to the c-axis. (4280).	1	Tellurium is known for its peculiar Hall effect inversion. A D-type sample at low temperatures may make an apparently normal conversion to n-type when passing from the impurity to the intrinsic range of temperature. At still higher temperatures, the Hall conficient reverses sign again, and the material is once again p-type (3). Tellurium becomes metallic at 44,000 atm. pressure (7).	
APPLICATIONS	LAB STUDY	ı	1	ı	thermoel. applications when alloyed with PbTe (23)	- thermoel. devices (4)photo cathode material, in combination with rubidium (23)-	
APPLIC	COMMERCIAL DEVICES	ı	ı	ı	ı	1	
THIN	FILM	ı	1	ł	ı	1	
KNOWN	RESEARCH GROUPS	٦	0	-	m	01	
PHYSICAL	APPEARANCE	dark-gray or black cr. powder (4)	yellow to brown powder (arti- ficial gold)	steel- gray cr. (5)	gray cr. (5)	silver- white mitallic mitallic mitallic mitallic mitallic mital mitallic m	
CRYSTAL	STRUCTURE	829 (18)	(18)	829 (18)	(18)	ле (3).	
LT -SEC)	μр	~90 (48) see comments	1	100 (6132)	ı	1200 (2) (20)	
MOBILITY (cm ² / VOLT-SEC)	μn	1	1	only p-type report- ed (6132)	1	1500 (20) 1700 (2)	
Eg &		19.5	1	1	ı	23 (3)	
		1.08 (48)	ı	ı	1	0.33 (2)* 0,34 (3) (20)	
SEMI – CONDUCTORS		94. SnS	. SnS 2	96. SnSe	97. SnTe	98. Te	

COMMENTS -		Tic is of interest because of its extreme hardness, about equal to that of SiC, and its high melting point, 3250c (49). Experiment has shown that oxygen-free TiC (deposited on an Al ₂ O ₃ substrate) has a metallic behavior, while, with a slight uptake of oxygen (by depositing on a SiO ₂ substrate), TiC shows semiconductor properties with a negative temperature coefficient (49).	Rutile has the highest density and is the most stable of the 3 crystal forms for TiO ₂ —1.e., anatase, brookite, and rutile (20). Rutile is widely known as a sparkling gemstone. Its index of refraction is about 2.5 (3). Rutile is noted for its high dielectric constant—about 83 in a direction perpendicular to the principle axis, to about 167 in a direction perallal to the principle axis (20). Some investigators have found that the dielectric constant decreases slightly with temperature, going through a minimum value at about 150—2000C, after which it begins to rise very rapidly. There are indications that its value for temperatures above 600C may be 10 or 100 times greater than its room temperature value (42). The extremely low values quoted for electron mobility are subject to perhaps large revision when TiO ₂ of more nearstoichiometric composition is	Ti ₂ 0 ₃ can be made by partially reducing rutile with hydrogen (20).		
APPLICATIONS	LAB STUDY	1	-retifiers for high temp. Use -single are rystals are high temp. transducers (4)	ı		
	COMMERCIAL DEVICES	ı	1	ı		
THIN		1	×	1		
KNOWN NUMBER OF RESEARCH GROUPS		0	12	1		
PHYSICAL APPEARANCE		cr.solid, with a gray, metallic color (4)	white to black powder, powder, powder, on purity (Ti02 has the greatest hidner of mail the white pigments) (4)	violet- black (5)		
CRYSTAL		81 (5) (49)	(7utile)	(5)		
(cm ² / volt - SEC) C	μр	1	ı	—3 (7309)		
	μn	1	0.2 (3) (3) (3) (20)	1		
w		1	comments			
Eg (ev)			(2) * (2) * (20) (20)			
SEMI- CONDUCTORS		71.C	100. Tio ₂	101. Ti ₂ 0 ₃		

O ALLIANT	0 N N N N N N N N N	1	1	TiSe ₂ may possibly be metallic, although its resistivity is rather high for a true metal (7).	right up to its melting properties. right up to its melting point, and retains these properties without any marked quantitative changes even after melting (20). Thallium sulfide is one of the most sensitive photoconductors. However, photocoalis made from it tend to lose their photp-sensitivity after only a few months use (20).
APPLICATIONS	LAB STUDY	measurements to determine effect of pressure on resistivity (7)	measurements to determine effect of pressure on resistivity (7)	measurements to determine effect of pressure on resistivity (7)	photoconductive and photovoltaic cells (infra-red sensitive photocells) (4)
APPLIC	COMMERCIAL DEVICES	1	1	,	1
THIN	FILM	ı	ı	I	ı
KNOWN	RESEARCH GROUPS	1			1
PHYSICAL	STRUCTURE APPEARANCE	yellow scales (5)	ı	ı	blue-black, lustrous, microscopic crystals or amorphous powder; poisonous (4)
CRYSTAL	STRUCTURE	(5)	1	(5)	T
	μр	ı	ı	I	ı
MOBILITY (cm ² / VOLT - SEC)	μn	i	ı	ı	I
3	,	1	1	1	1
Eg	(ev)	1	1	ı	1
SEMI	CONDUCTORS	102. TiS ₂	103. TiS ₃	104. TiSe ₂	105.

Г			10.00	1-	,	
COMMENTS -		Tise has a low melting point only 3300C (9).	UO ₂ has a relatively high temperature coefficient of resistivity. This, plus its great stability, make it a possible thermistor material (20).	Mobility values of about 0.01 cm $^2/\text{volt-sec.}$ have been reported for $^1/\text{volt-sec.}$	In spite of its n-type conduction, WO ₃ has an extremely high contact potential exceeding that of gold. As a result, a junction between WO ₃ and a p-type semiconductor might not give a rectifying barrier layer (20).	The electrical and optical properties of ZnAS ₂ show marked anisotrophy (25) .
APPLICATIONS	LAB STUOY	1	thermistors (20)		ı	1
APPLIC	COMMERCIAL OEVICES	1	1	ı		1
NH L	FILM	1	1	1	ı	1
KNOWN	RESEARCH GROUPS	2	ı	н	1	1
	APPEARANCE	single crystals (9)	black crystals (4)	black crystals (4)	canary yellow, heavy powder (4)	1
CRYSTAL	STRUCTURE	837 (18)	ı	05 ₁ (5)	1	monocol. primi- tive unit coli (3726)
	μр	25 to 50 (9); (9); (9); (9); (9); (9); (9); (9)	ı	ments	ı	92 (25)
MOBILITY (cm2/ VOLT-SEC)	μn	1	1	See Comments	very small (20)	ı
w	p	1	1	1	high (20)	1
Eg	(ev)	(9)	-	1	1	0.90, E II C; 0.93, E E I C; (25) r
SEMI-	CONOUCTORS	106. 71Se	107. UO ₂	108. V2 ⁰ 3	109. ^{МО} З	IIG. ZnAs ₂

COMMENTS -		- Zn ₃ As ₂ is highly toxic (15).	ZnO is always n-type (29).	ZnS is always n-type (2). Zinc-blende crystals (B3 form of ZnS) are known to be piezo-electric (9). Electroluminescent ZnS:Cu:Cl behaves like a highly ionic semiconductor (6080).	ZnSb was known over 100 years ago, but was "rediscovered" as a thermoelectric material in 1936. (23). Better quality ZnSb crystals have been produced recently, yielding higher values of mobility than those quoted previously (50).
APPLICATIONS	LAB STUDY	ı	1	- crystal detectors	thermoel. material
APPLIC	COMMERCIAL DEVICES	1	ı	phosphors - electro- luminescent cells	1
E E	FILM	I	×	×	1
KNOWN	RESEARCH GROUPS	1	W	23	~
PHYSICAL	APPEARANCE	ſ	white or yellowish-white powder (4)	yellowish- white powder (4); also, coloriess crystals	1
CRYSTAL	STRUCTURE	650	84 (18)	B3 and B4 (3)	1
LITY DLT – SEC)	μр	10 (25) (30 (7027)	See Comments	See Comments	300 (2) 350-575 (25)
(cm ² / VOLT	r 4	ı	150 100 200 (2) 1000 (18)	100 (18) (13)	п
w	P	ı	8.5 (16)	5,13 (13)	,
F ₉	(ev)	0.93 r (25) r (7027) r	3.0 (4921) 3.2 (2) (2) (3) (4)	3.6 3.6 3.8 3.58 10 10 10 10 10 10 10 10 10 10 10 10 10	0.3 (6363) 0.49 (50) 0.53 (12) (2)*
SEMI -	CONDUCTORS	2n3 ^{AS} 2 (0	112. ZnO	zns.	2nSb (

				l			
COMMENTS -		ZnSe is widely used in cathode- luminescence. It has high photo- sensitivity (7397).	2nte has potential value in high temperature applications (52).	$2r_0^2$ is a commercial refractory material of very high heat resistance (4).	I	1	
APPLICATIONS	LAB STUDY	t	photoconductivity studies	1	measurements to determine effect of pressure on resistivity (7)	measurements to determine effect of pressure on resistivity (7)	
APPLIC	COMMERCIAL Devices	1	1	1	1	1	
THIN	FILM	1	ı	×	1	1	
KNOWN	RESEARCH GROUPS	ഗ	v	1	-	-	
PHYSICAL	STRUCTURE APPEARANCE	yellow, shaped crystals were grown (51)	red (5)	heavy white amorphous powder (4)	steel- gray cr. (5)	1	
CRYSTAL	STRUCTURE	83 (18)	B3 (18)	hex. (5)	(5)	1	
TY T-SEC)	μр	16 (13)	50 (13)	ı	1		
MOBILITY (Cm ² / VOLT-SEC)	μn	~100 (18) 260 (13)	1	1	ı	1	
40	ŗ	5,75 (13)	~9 (13)	1	ı	1	
Eg	(ev)	2.58 (18) 2.60 (1) 2.67 (32) r (2) r	0.85 (2) ^r 2.1 (13) (32) ^r 2,2 (18)	1	ı	1	
SEMI-	CONDUCTORS	115. 2nSe	116. ZnTe	117. 2 r0 ₂	118. 2rS ₂	2rS ₃	

COMMENTS -		ı	ZrTe ₂ may possibly be metallic, although its resistivity is rather high for a true metal (7).
APPLICATIONS	LAB STUDY	measurements to determine effect of pressure on resistivity (7)	measurements to determine effect of pressure on resistivity (7)
APPLIC	COMMERCIAL DEVICES	ı	ı
THIN	FILM	1	
KNOWN	RESEARCH GROUPS	1	ı
PHYSICAL	STRUCTURE APPEARANCE	ı	1
CRYSTAL	STRUCTURE	ı	1
MOBILITY (cm2/ VOLT - SEC)	40	1	1
M0BII (cm ² / V(μn	1	1
	,	1	1
E ₉	(ev)	ı	
SEMI-	CONDUCTORS	120. 2rSe ₃	2rTe ₂

Additional Comments

A few additional comments are given below concerning the data of Table I:

- 1. It is quite apparent, from Table I, that different investogators get different results for the values of the intrinsic constants of the various semiconductors. This follows directly from the fact that the measured values of the intrinsic constants, expecially the mobilities, are extremely sensitive to the quality of the material. Probably the purest materials available are germanium and silicon, with only InSb approaching them in purity (2). Therefore, the range in values noted for these constants should not be surprising, since a very high degree of crystalline perfection is required in order to find the true intrinsic values.
- 2. Interest in the field of semiconductors is so widespread that any listing of laboratory or commercial devices made from them must necessarily be incomplete, since no one investigator can know what all the other investigators in his field are doing. An example of this interest is noted in that it is estimated that there are up to 1,000 companies and groups (many not in the electronics industry) active in the field of thermoelectric devices alone (54).
- 3. There are 12 elements now known to show semiconducting properties:

Germanium	Boron	Arsenic
Silicon	Selenium	Antimony
Carbon	Tellurium	Sulphur
Tin	Phosphorus	Iodine

The last five (phosphorus, arsenic, antimony, sulphur, and iodine), while showing semiconductor properties, are not usually considered as semiconductors. Arsenic and antimony are generally thought of as metals, while phosphorus, sulphur, and iodine are generally thought of as insulators (3).

4. One of the striking features of the more important compound semiconductors is their moderate-to-high degree of toxicity. In some cases, this may be the fault of the cation, e.g., in compounds of mercury or lead. However, an examination of the semiconductors in Table I will reveal that most of the important compound semiconductors seem to fall into the following categories:

- a. Antimonides
- b. Arsenides
- c. Oxides
- d. Phosphides

- e. Selenides
- f. Sulfides
- g. Tellurides

The antimonides, arsenides, phosphides, selenides, and tellurides are all more than moderately toxic (15). Additional hazards include, among others, the high vapor pressures of the selenides and tellurides (23), and the tendency of the phosphides to decompose to phosphine upon contact with moisture or acids (15). Sulfides tend to be much less toxic, although they can be a fire hazard, and they do tend to evolve hydrogen sulfide upon contact with moisture or acids (15). The oxides are the safest of the above mentioned groups, their degree of safety depending largely on the properties of the cation. An example of a practically nontoxic semiconductor 1s titanium dioxide, TiO₂ (15).

5. The crystal structure types of the principle single element and binary compound semiconductors are given in Table II. It shows that semiconductivity is confined to no one structure type, even though certain types seem favored.

Table II. Crystal Structure Types of the Principal Single Element and Binary Compound Semiconductors

SYI	MBOL*	STRUCTURE* TYPE	CRYSTAL* SYSTEM	REPRESENTATIVE SEMICONDUCTORS
1.	В1	NaCl	cubic	CdO, GeTe, MgO, MnO, MnSe, NiO, PbS, PbSe, PbTe, SnTe, TiC
2.	В3	ZnS (zinc blende)	cubic	AlAs, AlP, AlSb, BAs, BN, BP, CdS, CdTe, GaAs, GaP, GaSb, Ga ₂ Se ₃ , Ga ₂ Te ₃ , HgSe, HgTe, InAs, InP, InSb, In ₂ Se ₃ , In ₂ Te ₃ , SiC, ZnS, ZnSe, ZnTe
3.	В4	ZnO (wurtzite)	hex.	AlN, CdS, CdSe, MgTe, ZnO, ZnS
4.	В8	NiAs	hex.	MnTe
5.	B29	SnS	orthor.	GeS, SnS, SnSe
6.	B37	T1Se	tetr.	T lSe
7.	C1	CaF ₂	cubic	Mg ₂ Si, Mg ₂ Sn
8.	C2	FeS ₂	cubic	FeS2
9.	C3	Cu ₂ O	cubic	Cu ₂ O
10.	C4	SnO ₂	tetr.	TiO ₂
11.	C6	CdI ₂	hex.	CdI ₂ , SnS ₂ , TiS ₂ , TiSe ₂ , ZrS ₂
12.	C13	HgI ₂	tetr.	HgI ₂
13.	C33	Bi ₂ Te ₃	rhomb.	Bi ₂ Se ₃ , Bi ₂ Te ₃ , Sb ₂ Te ₃
14.	DO ₃	BiF ₃	cubic	Li ₃ Bi
15.	D5 ₁	Fe ₂ ⁰ 3	rhomb.	Al ₂ 0 ₃ , Fe ₂ 0 ₃ , Ti ₂ 0 ₃ , V ₂ 0 ₃
16.	D5 ₈		orthor. (5)	Sb ₂ S ₃ , Sb ₂ Se ₃
17.	D5 ₉	Zn ₃ P ₂	tetr.	Cd ₃ As ₂ , Zn ₃ As ₂

^{*}Reference (18).

SECTION III

OTHER TYPES OF SEMICONDUCTORS

Ferrites

Although ferrites are semiconductors, having a practical range of resistivity between about 10¹ to about 10⁹ ohm-cm., their possible use in semiconductor devices appears to have but little mention in the literature. Ferrites may eventually prove useful in particular semiconductor applications where a high value of magnetic permeability (u) is desirable. However, it appears that ferrite semiconductors would be rather complex compounds, with rather low mobilities (11). A practical difficulty, as with oxide materials in general, is the preparation of good single crystals (2). Articles describing the successful growth of single-crystal ferrites have appeared recently in the literature (55), (56).

Ternary Compounds

Another group of semiconductors includes the ternary compounds. Several of these compounds have been the subject of recent investigation, such as CdSnAs2 (9). As yet, however, ternary compounds are relatively unimportant when compared to the simpler single element and binary element semiconductors.

Mixed Crystals and Alloys

Another group of inorganic semiconductors are those in which two or more semiconductors are combined to form alloys, solid solutions, or mixed crystals. These are becoming increasingly important in the field of thermoelectricity. (See, for example, the comments for Bi₂Se₃ and for GeTe. Another recently announced thermoelectric material (23) consists of an alloy of silicon and germanium.) The reason for this interest is that the performance of thermoelectric materials may be improved by using mixed crystals, since the disorder introduced into the crystal lattice may reduce the thermal conductivity more than it reduces the electrical conductivity (2).

A brief but relatively thorough review of semiconductor alloys, coupled with a large list of references, is available in the literature (57).

No discussion of materials for the optical maser is given in this survey. However, information concerning details of construction, applications, and materials for the optical maser may be found in the literature (58).

Organics

There is at present considerable interest in the field of organic semiconductors. This interest arises in large part because of the possibility of using an enormous quantity of new materials -- there are about 900,000 separate organic materials now classified (21) -- permitting the possible tailoring of electrical properties through organic chemistry. It is believed that between 20 and 30 laboratories in the United States are now conducting research in the field of semiconduction phenomena in organic polymers, with a similar interest being shown in Europe, particularly in Russia (59).

An organic semiconductor may be defined as a solid containing an appreciable number of carbon-carbon bonds, capable of supporting electronic conduction (60). A major goal of present-day research is to understand the mechanism of electronic conductivity in these materials and to relate these mechanisms to the structure of the solid. The present state of this understanding has been compared to that of inorganic semiconductors about 25 years ago (60).

Some success has been reported in the use of organic semiconductors in that current rectification, photovoltaic production and photoconduction sensitivity have been demonstrated in the lab. The conductivity of organic polymers has been found to range between 10⁴ to 10⁻² reciprocal ohm-cm. (59). However, much more work must be done with organic semiconductors before practical devices made from them can replace those made now with inorganic semiconductors.

Possibly the biggest difficulty in examining the properties of organic semiconductors arises from the fact that, in order to observe the basic semiconduction of organic crystals, purification techniques as extensive as those applied to inorganic molecules should be used (60). At one time it was hoped that such careful processing would be unnecessary. Values of mobility for organic materials have generally been found to be only moderate or low; therefore, such materials would not be useful in applications requiring a rather high value of mobility (e.g., a Hall generator).

Devices made of organic semiconductors may eventually prove practical. For example, anthracene is used in scintillation counters in nuclear physics experiments. In addition, current research in the field of organic semiconductors should add to our knowledge of electron transfer processes in molecular solids and to our understanding of certain important biological processes, such as photosynthesis. Reference (59) is a current state-of-the-art report in the study of organic semiconductors.

SELECTED BIBLIOGRAPHY

- (1) C. Kittel, Introduction to Solid State Physics
 John Wiley and Sons, Inc. (1956) pp 351-352
- (2) E. H. Putley, The Hall Effect and Related Phenomena Butterworth & Co., Ltd. (1960)
- (3) W. C. Dunlap, Jr., An Introduction to Semiconductors
 John Wiley & Sons, Inc. (1957)
- (4) The Condensed Chemical Dictionary, Sixth Edition Reinhold Publishing Corp., (1961)
- (5) Handbook of Chemistry and Physics, 39th Edition Chemical Rubber Publishing Co. (1957)
- (6) G. L. Pearson and W. H. Brattain, Proc. of the IRE,43, 1794 (1955)
- (7) S. D. Hamann, Australian J. of Chem., 11, 391 (1958)
- (8) J. B. Conn and R. C. Taylor, J. Electrochem. Soc., 107, 977 (1960)
- (9) Quarterly Progress Reports, Solid State Research (Division 8), Lincoln Laboratory, MIT
- (10) P. F. Taylor and C. Wood, J. Appl. Phys. 32, 1 (1961)
- (11) H. L. Armstrong, Electronic Industries, Vol. 18, No. 5; 90 (1959)
- (12) W. Paul, J. Appl. Phys. 32, 2082 (1961)
- (13) Leaflet Published by a Leading Chemical Manufacturing Company
- (14) E. Mooser, Science 132, 1285 (1960)
- (15) N. I. Sax, Dangerous Properties of Industrial Materials
 Reinhold Publishing Corp. (1957)
- (16) N. B. Hannay, Semiconductors, Reinhold Publishing Corp., (1959)
- (17) P. Delavignette et al, J. Appl. Phys. 32, 1098 (1961)
- (18) A. J. Cornish, J. Electrochem. Soc. <u>106</u>, 685 (1959)
- (19) Electronic Industries, Vol. 19, No. 10; 105 (1960)

SELECTED BIBLIOGRAPHY (Continued)

- (20) A. F. Ioffe, Physics of Semiconductors, Academic Press, Inc. (1960)
- (21) Electronic Industries, Vol. 20, No. 12; 151 (1961)
- (22) Comments from Various Speakers at the 1961 Electron Devices Meeting, Wash., D.C., Oct. 26-28, 1961
- (23) Comments Taken from Articles from Various Issues of Electronic News, Fairchild Publications, Inc.
- (24) Science, 133, 1821 (1961)
- (25) W. J. Turner et al, J. Appl. Phys. 32, 2241 (1961)
- (26) Control Engineering, Vol. 8, No. 9, 142 (1961)
- (27) W. E. Spicer, J. Appl. Phys. 31, 2077 (1960)
- (28) W. H. McCarroll, J. Appl. Phys. 32, 2051 (1961).
- (29) J. N. Shive, The Properties, Physics, and Design of Semiconductor Devices, D. Van Nostrand Co., Inc. (1959)
- (30) R. D. Fenity, Electronics, Vol. 5, No. 5; 39 (1962)
- (31) R. F. Schwarz, Electrical Manufacturing, p. 107, (Jan. 1959)
- (32) M. Cardona, J. Appl. Phys. 32, 2151 (1961)
- (33) C. H. Gooch et al, J. Appl. Phys. 32, 2069 (1961)
- (34) T. A. Longo, Northeast Electronics Research and Engineering Meeting, 1961; NEREM Record, p. 61
- (35) Control Engineering, Vol. 8, No. 9, 134 (1961)
- (36) J. M. Carroll, Electronics, Vol. 34, No. 39; 94, (1961)
- (37) R. H. Bube and E. L. Lind, Phys. Rev., 115, 1159 (1959)
- (38) Electronic Engineering, Vol. 32, No. 388, 373 (1960)
- (39) W. C. Dunlap, Northeast Electronics Research and Engineering Meeting, 1961; NEREM Record, p. 62

SELECTED BIBLIOGRAPHY (Continued)

- (40) J. R. Stevenson and E. B. Hensley, J. Appl. Phys. 32, 166 (1961)
- (41) N. V. Kolomoets and E. A. Popova, Soviet Phys., Solid State; Vol. 2, No. 8, 1758 (1961)
- (42) E. H. Greener and D. H. Whitmore, J. Appl. Phys. 32, 1320 (1961)
- (43) Y. Kanai et al, J. Appl. Phys. 32, 2146 (1961)
- (44) E. Miller et al, J. Appl. Phys. 32, 2457 (1961)
- (45) J. J. Sein and S. N. Levine Digest of Technical Papers, 1962 International Solid-State Circuits Conference; p. 82
- (46) W. C. Dash and A. G. Tweet, Scientific American, Vol. 205, No. 4; 107 (1961)
- (47) A. W. Ewald and O. N. Tufte, J. Appl. Phys. 29, 1007 (1958)
- (48) W. Albers et al, J. Appl. Phys. 32, 2220 (1961)
- (49) L. E. Hollander, J. Appl. Phys. 32, 996 (1961)
- (50) R. L. Eisner et al, J. Appl. Phys. 32, 1833 (1961)
- (51) D. C. Reynolds et al, J. Appl. Phys. 32, 2250 (1961)
- (52) J. A. Dillon, Jr., J. Appl. Phys. 33, 669 (1962)
- (53) Solid State Abstracts (formerly Semiconductor Electronics), Cambridge Communications Corp. Issues included are those from Jan. 1957 to those issues available as of Feb. 1, 1962 (approx.)
- (54) Electronic Industries, Vol. 21, No. 2; 210 (1962)
- (55) F. H. Horn, J. Appl. Phys. <u>32</u>, 900 (1961)
- (56) A. Ferretti, J. Appl. Phys. 32, 905 (1961)
- (57) V. Sadagopan, Solid State Abstracts 2, 231 (1961)
- (58) Electronic Design, Vol. 10, No. 4; 86 (1962)
- (59) H. A. Pohl, Electro-Technology, Vol. 67, No. 5; 85 (1961)
- (60) J. A. Brophy, Physics Today, Vol. 14, No. 8; 40 (1961)

The following references used in Table I (in parentheses) are numbers of specific abstracts from the general reference (53), with the time restriction of reference (53) not applying:

586	2035	3259	4254	6066	7027	10778
723	2038	3429	4280	6080	7309	10974
	2039	3496	4281	6132	7397	11436
	2377	3501	4284	6356	7589	11459
		3502	4552	6357	8268	11513
		3724	4612	6362	8422	
		3726	4653	6363	8457	
			4679	6519		
			4921	6998		

U. S. DEPARTMENT OF COMMERCE Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Scale. Volumetry and Densimetry.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research. Crystal Chemistry.

Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion Controls.

Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Characterization. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research.

Metallurgy. Engineering Metallurgy. Microscopy and Diffraction. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition.

Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials. Metallic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Operations Research.

Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis.

Atomic Physics. Spectroscopy. Infrared Spectroscopy. Solid State Physics. Electron Physics. Atomic Physics. Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Molecular Kinetics. Mass Spectrometry.

Office of Weights and Measures.

BOULDER, COLO.

Cryogenic Engineering Laboratory. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Cryogenic Technical Services.

CENTRAL RADIO PROPAGATION LABORATORY

Ionosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics.

Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Modulalation Research. Antenna Research. Navigation Systems.

Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.

RADIO STANDARDS LABORATORY

Radio Physics. Radio Broadcast Service. Radio and Microwave Materials. Atomic Frequency and Time-Interval Standards. Millimeter-Wave Research.

Circuit Standards. High Frequency Electrical Standards. Microwave Circuit Standards. Electronic Calibration Center.

