Contents

2	Class Lecture 9/25
	More Skipping Around
	Quiz 2 Review
2	Class Lecture 9/28
	Well-Ordering Principle
	Induction

2 Class Lecture 9/25

 Def^n : Prime

 Def^n : Relatively Prime

Axiom: For any non-zero ratio $r=\frac{p}{z}$, where $p, z \in \mathbb{Z}$, p and q are relatively prime. **Thm. 2.2.2:** $\sqrt{2}$ is irrational.

Proof:

- 1. By contradiction. Assume $\sqrt{2}$ is rational.
- 2. $\therefore \sqrt{2} = \frac{p}{z}$, where p and q are relatively prime.
- 3. $\left(\sqrt{2}\right)^2 = (p)^2$
- 4. $\left(\sqrt{2}\right)^2 (q)^2 = (p)^2$
- 5. $2q^2 = p^2$
- 6. : p^2 is even. What does tat about p?
- 7. Because odd odd = odd, p must be even
- 8. : 2|p, so p = 2k for some $k \in U$
- 9. $2q^2 = (2k)^2 \rightarrow 2q^2 = 4k^2$: $q^2 = 2k^2$
- 10. By the same arguments as above, q is even \therefore 2|q. So 2|p and 2|q.
- 11. Hence, p and q are not relatively prime. So p and q are relatively prime and p and q are not relatively prime.
- 12. : Our assumption that $\sqrt{2}$ is ratiional must be false; i.e. $\sqrt{2}$ is irrational. **QED**

Thm: There are irrational numbers r, s so that r^s is rational.

Proof

- 1. Consider $r = \sqrt{2}$ and $s = \sqrt{2}$. Look at $r^s = \sqrt{2}^{\sqrt{2}}$
 - (a) $\sqrt{2}^{\sqrt{2}}$ is rational. Done this case! r=p and s=q
 - (b) $\sqrt{2}^{\sqrt{2}}$ is irrational: Consider $r=\sqrt{2}^{\sqrt{2}}$ and $s=\sqrt{2}$. Double rational needs fixing

More Skipping Around

Axiom: Well-Ordering Princple – Every non-empty subset of $\mathbb N$ contains a least element

$$\forall A \subseteq \mathbb{N} \left[A \neq \emptyset \rightarrow \exists x \in A (\forall X \in A (x \le y)) \right]$$

Thm 2.2.4 Every natural number > 1 is divisible by some prime.

$$\forall n \in \mathbb{N} (n > 1 \rightarrow \exists p \in \mathbb{N} (pisprime and p|n))$$

Proof:

- 1. Let $n \in \mathbb{N}$. Assume n > 1.
- 2. Case 1: n is prime.
 - (a) n|n, because $n = n \times 1$. Done
- 3. Case 2: n is composite.
 - (a) \therefore n has a non-trivial divisor
 - (b) : there is a d such that 1 < d < n and d|n
 - (c) Let $A = \{x | 1 < x < n \text{ and } x | n\}$
 - (d) So $d \in A$: $A \neq \emptyset$

Quiz 2 Review

3b.
$$\exists x \in D (\forall y \in U (f(\pi y) = 0))$$

2 Class Lecture 9/28

Well-Ordering Principle

Theorem 2.1 (Well Ordered Principle). $\forall n \in \mathbb{N} (n > 1 \to \exists p \in \mathbb{N} (p \text{ is prime } \land p|n))$

Proof. Let $n \in \mathbb{N}$. Assume n > 1. Case 1: n is prime. $n \mid n \checkmark$. Case 2: n is not prime. $\exists d \mathbb{N}((1 < d < n) \land (d \mid n))$. A is of the form $A = \{x \mid (1 < x < n) \land (x \mid n)\}$. $A \neq \emptyset$ because $d \subset A$. By the Well Ordering Principle A has a least element $d^* \in A$. ∴ $(1 < r^* < n) \land (r^* \mid n)$. Claim: r^* is prime.

Proof:

- 1. Let $n \in \mathbb{N}$. Assume n > 1
 - (a) f
- i. Proof of Claim: by Contradiction.
 - A. Assume r^* is not prime.
 - B. : there is an s within $1 < s < r^*$ such that $s | r^*$.
 - C. So $1 < s < r^* < n \text{ and } s | r^* \text{ and } r^* | n$.
 - D. Hence 1 < s < n and s|n.
 - E. $s \in A$ and $s < r^*$, the least element of A
 - F. $\therefore r^*$ must be prime, **QED** for claim.
- (b) $r^*|n$ and r^* is prime. Hence n has a prime divisor **QED**.

There are infinitely many primes...

Thm. 2.2.5 There are infinitely many primes.

Proof: By Contradiction

- 1. Assume $p_1, p_2, ..., p_k$ is a finite list of **all** the primes.
- 2. Let $n = p_1 \times p_2 \times p_3 \times ... \times p_k + 1$. $n > p_i$ for all primes.
- 3. \therefore n is not prime.
- 4. However, n is divisible by a prime. \therefore for some $i \leq k$, $p_i | n$.
- 5. Call $p_1, p_2, ..., p_k = m$
- 6. So n=m+1, and $p_i|n$, so $n=p_iq$ for some $q\in\mathbb{Z}$
- 7. pi|m because $m = p_i(p_1p_2,...,p_{i-1},p_{i+1},...p_k)$
- 8. n = m + 1, $p_i q = p_i(t) + 1$, hence $1 = p_i \underbrace{(q t)}_{\in \mathbb{Z}}$
- 9. **QED**

Induction

Proving "∀ statement" about a well-ordered set.

Idea:

Setting: Want to prove
$$\forall n \in \mathbb{N} \left(n \ge a \to \underbrace{P(n)}_{some\ statement} \right)$$

Proof: Base case

- 1. Prove P(a) is true.
- 2. Induction Step $\rightarrow \forall k \in \mathbb{N}((k \geq a \land P(k)) \rightarrow P(k+1))$: Assume $k \geq a \land P(k)$
 - (a) From this assumption, prove P(k+1)

Prove:

$$\forall n \in \mathbb{N}(0+1+...+n=\sum_{i=0}^{n}i=\frac{n(n+1)}{2}$$

- 1. Proof by induction. Base Case: n = 0.
- 2. Induction Step: Let $k \ge 0$ and assume $\sum_{i=0}^{n} i = \frac{k(k+1)}{2}$

(a) To Show:
$$\sum_{i=0}^{k+1} i = 0 + 1 + 2 + \dots + k + (k+1) = \frac{(k+1)((k+1)+1)}{2}$$

3. sumation =
$$(k(k+1))/2 + (k+1) = (k+1)(k/2 + 1) = (k+1)(k/2 + 2/2) = (k+1)((k+2)/2) = (k+1)((k+1)+1)/2$$
 QED