Análise de Algoritmos

CLRS 4.2 e KT 5.5

Essas transparências foram adaptadas das transparências do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

Multiplicação de matrizes

Problema: Dadas duas matrizes X[1 ... n, 1 ... n] e Y[1 ... n, 1 ... n] calcular o produto $X \cdot Y$.

Os algoritmo tradicional de multiplicação de matrizes consome tempo $\Theta(n^3)$.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} r & s \\ t & u \end{pmatrix}$$

$$r = ae + bg$$

$$s = af + bh$$

$$t = ce + dg$$

$$u = cf + dh$$

Solução custa R\$ 8,04

(1)

Divisão e conquista

$$R = AE + BG$$

$$S = AF + BH$$

$$T = CE + DG$$

$$U = CF + DH$$

Algoritmo de Multi-Mat

Algoritmo recebe inteiros X[1..n] e Y[1..n] e devolve $X \cdot Y$.

```
MULTI-M (X, Y, n)
        se n=1 devolva X \cdot Y
       (A, B, C, D) \leftarrow \mathsf{PARTICIONE}(X, n)
       (E, F, G, H) \leftarrow \mathsf{PARTICIONE}(Y, n)
        R \leftarrow \mathsf{MULTI\text{-}M}(A, E, n/2) + \mathsf{MULTI\text{-}M}(B, G, n/2)
        S \leftarrow \text{MULTI-M}(A, F, n/2) + \text{MULTI-M}(B, H, n/2)
        T \leftarrow \mathsf{MULTI-M}(C, E, n/2) + \mathsf{MULTI-M}(D, G, n/2)
        U \leftarrow \mathsf{MULTI-M}(C, F, n/2) + \mathsf{MULTI-M}(D, H, n/2)
        P \leftarrow \mathsf{CONSTROI\text{-}MAT}(R, S, T, U)
  9
        devolva P
```

T(n) = consumo de tempo do algoritmo para multiplicar duas matrizes de n linhas e n colunas.

linha todas as execuções da linha

1 =
$$\Theta(1)$$

2 = $\Theta(n^2)$
3 = $\Theta(n^2)$
4 = $T(n/2) + T(n/2)$
5 = $T(n/2) + T(n/2)$
6 = $T(n/2) + T(n/2)$
7 = $T(n/2) + T(n/2)$
8 = $\Theta(n^2)$
9 = $\Theta(n^2)$

total =
$$8T(n/2) + \Theta(n^2)$$

As dicas no nosso estudo de recorrências sugere que a solução da recorrência

$$T(n) = 8T(n/2) + \Theta(n^2)$$

está na mesma classe 🖯 que a solução de

$$T'(1) = 1$$

 $T'(n) = 8T'(n/2) + n^2$ para $n = 2, 2^2, 2^3, ...$

n	1	2	4	8	16	32	64	128	256
T'(n)	1	12	112	960	7936	64512	520192	4177920	33488896

Solução assintótica da recorrência

Considere a recorrência

$$R(1) = 1$$

 $R(n) = 8R(\lceil \frac{n}{2} \rceil) + n^2$ para $n = 2, 3, 4, ...$

Verifique por indução que $R(n) \le 20(n-1)^3 - 2n^2$ para $n = 2, 3, 4 \dots$

n	1	2	3	4	5	6	7	8
R(n)	1	12	105	112	865	876	945	960
$20(n-1)^3 - 2n^2$	-2	12	142	508	1230	2428	4222	6732

Conclusões

$$R(n) \notin \Theta(n^3)$$
.

Conclusão anterior+Exercício
$$\Rightarrow$$
 $T(n) \notin \Theta(n^3)$.

O consumo de tempo do algoritmo MULTI-M é $\Theta(n^3)$.

Strassen: $X \cdot Y$ por apenas R\$ 7,18

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \times \left(\begin{array}{cc} e & f \\ g & h \end{array}\right) = \left(\begin{array}{cc} r & s \\ t & u \end{array}\right)$$

Strassen: $X \cdot Y$ por apenas R\$ 7,18

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} r & s \\ t & u \end{pmatrix}$$

$$p_1 = a(f - h) = af - ah$$

$$p_2 = (a + b)h = ah + bh$$

$$p_3 = (c + d)e = ce + de$$

$$p_4 = d(g - e) = dg - de$$

$$p_5 = (a + d)(e + h) = ae + ah + de + dh$$

 $p_6 = (b-d)(g+h) = bg + bh - dg - dh$

 $p_7 = (a-c)(e+f) = ae + af - ce - cf$

(4)

Strassen: $X \cdot Y$ por apenas R\$ 7,18

$$p_1 = a(f - h) = af - ah$$

 $p_2 = (a + b)h = ah + bh$
 $p_3 = (c + d)e = ce + de$
 $p_4 = d(g - e) = dg - de$
 $p_5 = (a + d)(e + h) = ae + ah + de + dh$
 $p_6 = (b - d)(g + h) = bg + bh - dg - dh$
 $p_7 = (a - c)(e + f) = ae + af - ce - cfd$

$$r = p_5 + p_4 - p_2 + p_6 = ae + bg$$

$$s = p_1 + p_2 = af + bh$$

$$t = p_3 + p_4 = ce + dg$$

$$u = p_5 + p_1 - p_3 - p_7 = cf + dh$$

Algoritmo de Strassen

```
STRASSEN (X, Y, n)
       se n = 1 devolva X \cdot Y
       (A, B, C, D) \leftarrow \mathsf{PARTICIONE}(X, n)
       (E, F, G, H) \leftarrow \mathsf{PARTICIONE}(Y, n)
       P_1 \leftarrow \mathsf{STRASSEN}(A, F - H, n/2)
 5
      P_2 \leftarrow \mathsf{STRASSEN}(A+B,H,n/2)
      P_3 \leftarrow \mathsf{STRASSEN}(C+D, E, n/2)
 6
      P_4 \leftarrow \mathsf{STRASSEN}(D, G - E, n/2)
       P_5 \leftarrow \mathsf{STRASSEN}(A+D,E+H,n/2)
 8
       P_6 \leftarrow \mathsf{STRASSEN}(B-D,G+H,n/2)
      P_7 \leftarrow \mathsf{STRASSEN}(A-C,E+F,n/2)
10
11
       R \leftarrow P_5 + P_4 - P_2 + P_6
12
      S \leftarrow P_1 + P_2
13
      T \leftarrow P_3 + P_4
14 U \leftarrow P_5 + P_1 - P_3 - P_7
       devolva P \leftarrow \text{CONSTROI-MAT}(R, S, T, U)
15
```

linha to		das as execuções da linha					
1	=	$\Theta(1)$					
2-3	=	$\Theta(n^2)$					
4-10	=	$7, T(n/2) + \Theta(n^2)$					
11-14	=	$\Theta(n^2)$					
15	=	$\Theta(n^2)$					
total	=	$7T(n/2) + \Theta(n^2)$					

As dicas no nosso estudo de recorrências sugeri que a solução da recorrência

$$T(n) = 7T(n/2) + \Theta(n^2)$$

está na mesma classe 🖯 que a solução de

$$T'(1) = 1$$

 $T'(n) = 7T'(n/2) + n^2$ para $n = 2, 2^2, 2^3, ...$

	n	1	2	4	8	16	32	64	128	256
-	T'(n)	1	11	93	715	5261	37851	269053	1899755	13363821

Solução assintótica da recorrência

Considere a recorrência

$$R(1) = 1$$

 $R(\mathbf{n}) = 7R(\lceil \frac{n}{2} \rceil) + n^2$ para $n = 2, 3, 4, \dots$

Verifique por indução que $R(n) \le 19(n-1)^{\lg 7} - 2n^2$ para $n=2,3,4\ldots$

$$2,80 < \lg 7 < 2,81$$

n	1	2	3	4	5	6	7	8
R(n)								
$19(n-1)^{\lg 7} - 2n^2$	-1	11	115	327	881	1657	2790	4337

Conclusões

$$R(n) \notin \Theta(n^{\lg 7}).$$

$$T(n) \in \Theta(n^{\lg 7}).$$

O consumo de tempo do algoritmo STRASSEN é $\Theta(n^{\lg 7})$ (2,80 < $\lg 7 <$ 2,81).

Mais conclusões

Consumo de tempo de algoritmos para multiplicação de matrizes:

Ensino fundamental	$\Theta(n^3)$
--------------------	---------------

Strassen
$$\Theta(n^{2.81})$$

. . .

Coppersmith e Winograd
$$\Theta(n^{2.38})$$

Stothers (2010)
$$O(n^{2.3736})$$

Williams (2011)
$$O(n^{2.3727})$$