A Q-Theoretic solution to A'ingae postlabial raising

Maksymilian Dąbkowski University of California, Berkeley

Overview

TYPOLOGICALLY UNUSUAL POSTLABIAL RAISING IN A'INGAE (OR COFÁN, ISO 639-3: con)

(1) a. $/ai/ \rightarrow [ii]/B_b$ b. $/ae/ \rightarrow [oe]/B_c$. $/a/ \rightarrow [a]/B_b$ / $/ae/ \rightarrow [oe]/B_c$ c. $/a/ \rightarrow [a]/B_b$ / $/ae/ \rightarrow [oe]/B_c$ /

where B stands for m, mb, p, p^h , f, v

- Theoretically interesting for two reasons:
- -no obvious phonetic or cognitive motivation,
- -ffects different diphthongs differently (1a-b) and it does not affect monophthongs (1c)
- Accounting for the difference between (1a) and (1b):
- -a weighting of feature IDENTITY constraints such that [ii] and [oe] are the optimal candidates given input /ai/ and /ae/, respectively
- Accounting the underapplication of postlabial raising to /a/:
- -Q-Theoretic (Garvin, Lapierre, and Inkelas, 2018; Garvin, Lapierre, Schwarz, et al., 2020; Inkelas et al., 2016, 2017) representation of vowels:
- * the monophthongal a consists of three subsegments (a^1, a^2, a^3)
- * the a-component of a diphthong only of two (a^1, a^2, i^3, i^4)

ONE VOCALIC TARGET OF A DIPHTHONG CORRESPONDS TO FEWER SUBSEGMENTS THAN A MONOPHTHONG

- Assuming each subsegment is subject to Identity, this predicts:
- diphthongs might show TETU effects (McCarthy et al., 1994)
- while monophthongs surface faithfully

PREDICTION BORNE OUT BY A'INGAE POSTLABIAL RAISING, CONTRIBUTING A NOVEL ARGUMENT FOR Q-THEORY

Licit diphthongs and /ea, ia/ → [ia], /ae/ → [ai]

A'ingae has the five vowels: i, i, e, a, o and seven licit diphthongs (2).

(2) Licit diphthongs: ai, ia, oe, oa, oi, ii, ao All of the A'ingae diphthongs have i or o as their non-syllabic component. All the vowels have nasal counterparts.

The sequences *[ea], *[ae], *[ia], and *[ai] are not licit diphthongs. Underlying /ea/, /ae/, and /ia/ surface as licit diphthongs (3).

(3) a.
$$/ea/ \rightarrow [ia]$$
 b. $/ia/ \rightarrow [ia]$ c. $/ae/ \rightarrow [ai]$ $/ ko?fe - a/$ $/ pa^n dza - e/$ $[ko?fia]$ $[indzia]$ $[pa^n dzai]$ play -CAUS green -ADN hunt -CAUS

Postlabial raising

After a non-labial consonant, any diphthong is allowed, including the *a*-initial *ai* (4a-b) and *ao* (4c-d) as well as other diphthongs (4e-f).

(4) a. dzai b. sai c. tsao?pad. tao?pa e. koe?he f. tii sit pull out nest fluff sun splash However, aV diphthongs may not appear after a B. Sequences *BaV do not appear in roots. In derived environments, they undergo:

Postlabial raising: $/ai/ \rightarrow [ii]/B _ (/ai/ \rightarrow [ai]/elsw)$

- (5) a. / koehefa -ite / b. / waita / (Kichwa). / bailar / (Spanish)
 [koehefiite] [(rosa)viita] [biira]
 summer -PRD calendula dance
- (6) a. / na -ite / b. / airo / (Secoya)

 [naite] [airo]

 fruit -PRD mountain

Postlabial raising: $/ae/ \rightarrow [oe]/B_{-}(/ae/ \rightarrow [ai]/elsw)$

(7) a. / sefa -ẽ / b. / atapa -ẽ / c. / sema -ẽ / d. / paⁿdza -ẽ / [sefõẽ] [atapõẽ] [semõẽ] [paⁿdzãĩ] end -caus breed -caus work -caus hunt -caus

No postlabial raising: $/a/ \rightarrow [a]/B$

(8) a. / sefa / b. / atapa / c. / sema / [sefa] [atapa] [sema] work

Analysis of /ea, $ia/ \rightarrow [ia]$, /ae/ $\rightarrow [ai]$

I analyze the diphthongal processes as aimed at averting marked structures. I assume the featural specifications of (11).

- (9) Licit, or: Lic Assign a violation mark for a sequence of two vowels which do not form a licit diphthong in the language.
- (10) Identity (Feature), or: Idf Assign a violation mark each time F(EATURE) has a different value in the input than in the output.

(11)	i	į	e	a	0
H(igh)	+	+	_	_	+
B(ACK)	_	+		+	+
R(ound)	_				+

(12)	oα	Lic	IDH 14.5	IdR	IDB	\mathcal{H}
(12)	eu 	17.7	14.5	9.7	6.9	<i>J U</i>
i. 6	га	1				17.7
je ii. i	ia		1			14.5
iii. (oa		1	1	1	31.1
iv. i	ii			2	2	33.2

						_							
(13) ia	Lic 17.7	IDH 14.5	IbR 9.7	IDB 6.9	\mathcal{H}		(14)	ae	Lic 17.7	IDH 14.5	IbR 9.7	IDB 6.9	\mathcal{H}
i. i a	1				17.7		i.	ae	1				17.7
ii. ia				1	6.9		je ii.	ai		1			14.5
iii. oa			1		9.7		iii.	ao		1	1	1	31.1
iv. ii		1		1	21.4		iv.	oe		1	1		24.2
						-							

Analysis of postlabial raising

I propose that postlabial raising reveals a dispreference for sequences of a labial consonant followed by a low vowel (15).

(15) *C[+labial]V[-high], or: *BA Assign a violation mark for each low vowel after a labial consonant.

PROBLEM 1: postlabial raising does not affect monophthongs: $/Ba/ \rightarrow [Ba]$. Unless something more is said about the difference between monophthongs and diphthongs, *BA targets the two equally. If *BA has a weight high enough to correctly predict diphthongal outputs (16), it will incorrectly predict the raising of monophthongs after labials (17), and vice versa (18).

					-
(16) Bai $\frac{\text{Lic}}{17.7} *BA$	A IDH H	(17) Ba $\frac{\text{Lic}}{17.7}$	*BA Idl 7 15 14.	$\frac{H}{5}$ \mathcal{H}	(18)
i. Bai 1	15	⊚ i. Ba	1	15	a * i.
ii. Bii	1 14.5	🍼 ii. Bɨ	1	14.5	⊜ ii.

)	(18)	Bai	Lic 17.7	*BA 12.1	IDH 14.5	\mathcal{H}
-	g * i.	Bai		1		12.1
l .5	😂 ii.	Bɨi			1	14.5

PROBLEM 2: different diphthongs undergo different processes: $|Bai| \rightarrow [Bii]$ but $|Bae| \rightarrow [Boe]$.

Solution to problem 1: capturing postlabial raising seen in diphthongs as well as its underapplication to monophthongs with subsegments of Q-Theory (Inkelas et al., 2016):

- -each segment (Q) consists of subsegments, commonly closure (q^1) , hold (q^2) , and release (q^3)
- –segments (Q) with one articulatory target have identical cues (q), e. g. $a = (a^1, a^2, a^3)$
- internally complex segments (Q) have different cues (q), e. g. $ts = (t^1, s^2, s^3)$, $bm^b = (b^1, m^2, b^3)$
- I model A'ingae diphthongs with four q's. The first two q's correspond the the first target of the diphthong; the other two q's to the second one, e. g. $ai = (a^1, a^2, i^3, i^4)$, $oe = (o^1, o^2, e^3, e^4)$:
- I assume that changing the feature of a q incurs only $0.\overline{3}$ of an Identity violation:
- -predicts that a monophthong may surface faithfully, while the same vowel in a diphthong exhibits a TETU effect; PREDICTION BORNE OUT BY THE A'INGAE POSTLABIAL RAISING

(19)	Ba = B(a, a, a)	Lic	*BA	IpH	IdR	IDB	\mathcal{U}		
	Da - D(a)	ı, u, u)	17.7	12.1	14.5	9.7	6.9	JU	
	i.	Ba = B(a)	, a, a)		1				12.1
	ii.	Bo = B(o,	0,0)			1	1		24.2
	iii.	$Bi = B(i, \cdot)$	i, i)			1			14.5

SOLUTION TO PROBLEM 2: /ai/ surfaces as [ii], but /ae/ surfaces as [oe].

- different outcomes are due to phonological optimization given licit diphthong inventory
- modeled with relative weights of the feature IDENT constraints

(20)	Bai = B(a, a, i, i)	Lic	*BA	IpH	IdR	IDB	\mathcal{H}
(-0)		17.7	12.1	14.5	9.7	6.9	
i.	Bae = B(a, a, e, e)	1	1	0.6			39.5
ii.	Boe = B(o, o, e, e)			1.3	$0.\overline{6}$		25.8
iii.	Bie = B(i, i, e, e)	1		1.3			37.0
iv.	Bai = B(a, a, i, i)		1				12.1
F V.	Bii = B(i, i, i, i)			0.6			9.7

(21) $Bae = B(a, a, e, e)$	Lic 17.7	*BA 12.1	IDH 14.5	IDR 9.7	IDB 6.9	\mathcal{H}
i. $Bae = B(a, a, e, e)$	1	1				29.8
ii. Boe = $B(o, o, e, e)$			0.6	0.6		16.1
iii. B $ie = B(i, i, e, e)$	1		0.6			27.4
iv. $Bai = B(a, a, i, i)$		1	0.6			21.8
v. Bii = B(i, i, i, i)			1.3			19.3

Q-Theory's subsegmental representations capture A'ingae postlabial raising