Cryptography Lecture 1

Arkady Yerukhimovich

August 26, 2024

Outline

1 Principles of Modern Cryptography (Ch. 1.1, 1.4)

2 Private-Key Encryption (Ch. 1.2)

A (Very) Brief History of Cryptography

- For 1000s of years, cryptography was "the art of writing or solving codes"
- Largely heuristic approaches to design codes, leading to a break-fix cycle

 In the 70s and 80s, modern cryptography turned cryptography into a science, giving it a strong mathematical basis.

Principles of Modern Cryptography

- Formal definitions
- Precise assumptions
- Proofs of security

Kerckhoffs' Principle

"The cipher method must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience."

The Rule of Modern Crypto

No security by obscurity!

Outline

1 Principles of Modern Cryptography (Ch. 1.1, 1.4)

2 Private-Key Encryption (Ch. 1.2)

Key kMessage m

Key k

Message mEncrypt $m: c \leftarrow \operatorname{Enc}_k(m)$

Key kReceive ciphertext cDecrypt c: $m = Dec_k(c)$

Security

Eve gets to observe c, but can not learn m

Defining Encryption Functionality

Private-key (symmetric-key) encryption scheme:

- Gen: Outputs randomly chosen key k
- $\operatorname{Enc}(k, m) : c \leftarrow \operatorname{Enc}_k(m)$
- $Dec(k, c) : m = Dec_k(c)$

Terminology

m - plaintext

c - ciphertext

Correctness

For all k output by Gen and all messages m, $Dec_k(Enc_k(m)) = m$

Security Guarantee

What is a successful attack?

Threat Model

Security Guarantee

What is a successful attack?

• A learns the key k

Threat Model

Security Guarantee

What is a successful attack?

- A learns the key k
- ullet \mathcal{A} learns the message m

Threat Model

Security Guarantee

What is a successful attack?

- A learns the key k
- ullet ${\cal A}$ learns the message m
- ullet ${\cal A}$ learns any character of m

Threat Model

Security Guarantee

What is a successful attack?

- A learns the key k
- \mathcal{A} learns the message m
- ullet \mathcal{A} learns any character of m
- Semantic security:
 Regardless of what A knows
 about m, she learns no new
 information

Threat Model

Security Guarantee

What is a successful attack?

- A learns the key k
- \bullet \mathcal{A} learns the message m
- ullet \mathcal{A} learns any character of m
- Semantic security:
 Regardless of what A knows
 about m, she learns no new
 information

Threat Model

What does the adversary know?

ciphertext-only

Security Guarantee

What is a successful attack?

- A learns the key k
- \bullet \mathcal{A} learns the message m
- ullet ${\cal A}$ learns any character of m
- Semantic security:
 Regardless of what A knows
 about m, she learns no new
 information

Threat Model

- ciphertext-only
- known-plaintext

Security Guarantee

What is a successful attack?

- A learns the key k
- \bullet \mathcal{A} learns the message m
- ullet ${\cal A}$ learns any character of m
- Semantic security:
 Regardless of what A knows
 about m, she learns no new
 information

Threat Model

- ciphertext-only
- known-plaintext
- chosen-plaintext

Security Guarantee

What is a successful attack?

- A learns the key k
- \bullet \mathcal{A} learns the message m
- ullet \mathcal{A} learns any character of m
- Semantic security:
 Regardless of what A knows
 about m, she learns no new
 information

Threat Model

- ciphertext-only
- known-plaintext
- chosen-plaintext
- chosen-ciphertext