proyecto2

March 2, 2025

1 Proyecto 2 "House Prices: Advanced Regression Techniques"

1.1 1. Importación de librerías y carga de datos

En esta sección importaremos las librerías necesarias y cargaremos el dataset de entrenamiento y prueba.

```
[37]: import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      from sklearn.model_selection import train_test_split
      from sklearn.preprocessing import StandardScaler, LabelEncoder
      import statsmodels.api as sm
      from sklearn.linear_model import LinearRegression, Lasso, Ridge
      from sklearn.metrics import mean_squared_error, r2_score
      # Para ver las gráficas de matplotlib "inline" en jupyter
      %matplotlib inline
      # Carga de los datos (modifica la ruta según tu entorno)
      train = pd.read_csv('train.csv')
      test = pd.read_csv('test.csv') # Opcional, si necesitas el dataset de prueba_
       ⇒para algún análisis adicional
      # Dimensiones del dataset
      print("Dimensiones del dataset de entrenamiento:", train.shape)
      train.head()
```

Dimensiones del dataset de entrenamiento: (1460, 81)

```
[37]:
              MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \
      0
          1
                       60
                                 RL
                                             65.0
                                                       8450
                                                              Pave
                                                                      NaN
                                                                                Reg
          2
                       20
                                RL
                                             0.08
                                                       9600
                                                              Pave
                                                                      NaN
      1
                                                                                Reg
      2
          3
                       60
                                R.T.
                                             68.0
                                                      11250
                                                              Pave
                                                                      NaN
                                                                                IR1
      3
          4
                       70
                                RL
                                             60.0
                                                       9550
                                                              Pave
                                                                      {\tt NaN}
                                                                                IR1
      4
          5
                                R.T.
                                             84.0
                                                      14260
                                                              Pave
                                                                                TR.1
                       60
                                                                      NaN
```

LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold \

0	Lvl	AllPub	•••	0	NaN	NaN	NaN	0	2
1	Lvl	AllPub	•••	0	NaN	NaN	NaN	0	5
2	Lvl	AllPub	•••	0	NaN	NaN	NaN	0	9
3	Lvl	AllPub	•••	0	NaN	NaN	NaN	0	2
4	Lvl	AllPub	•••	0	NaN	NaN	NaN	0	12

	YrSold	${ t SaleType}$	SaleCondition	SalePrice
0	2008	WD	Normal	208500
1	2007	WD	Normal	181500
2	2008	WD	Normal	223500
3	2006	WD	Abnorml	140000
4	2008	WD	Normal	250000

[5 rows x 81 columns]

1.2 2. Revisión inicial de la estructura de los datos

En esta parte: 1. Observamos el tipo de cada columna (numérica o categórica). 2. Revisamos estadísticas descriptivas básicas de variables numéricas.

```
[]: # Información sobre tipos de datos y valores nulos train.info()

# Descripción estadística de variables numéricas train.describe()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	${\tt LandContour}$	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object

17	OverallQual	1460	non-null	int64
18	OverallCond	1460	non-null	int64
19	YearBuilt	1460	non-null	int64
20	YearRemodAdd	1460	non-null	int64
21	RoofStyle	1460	non-null	object
22	RoofMatl	1460	non-null	object
23	Exterior1st	1460	non-null	object
24	Exterior2nd	1460	non-null	object
25	MasVnrType	588 n	on-null	object
26	MasVnrArea	1452	non-null	float64
27	ExterQual	1460	non-null	object
28	ExterCond	1460	non-null	object
29	Foundation	1460	non-null	object
30	BsmtQual	1423	non-null	object
31	BsmtCond	1423	non-null	object
32	BsmtExposure	1422	non-null	object
33	BsmtFinType1	1423	non-null	object
34	BsmtFinSF1	1460	non-null	int64
35	BsmtFinType2	1422	non-null	object
36	BsmtFinSF2	1460	non-null	int64
37	BsmtUnfSF	1460	non-null	int64
38	TotalBsmtSF	1460	non-null	int64
39	Heating	1460	non-null	object
40	HeatingQC	1460	non-null	object
41	CentralAir	1460	non-null	object
42	Electrical	1459	non-null	object
43	1stFlrSF	1460	non-null	int64
44	2ndFlrSF	1460	non-null	int64
45	LowQualFinSF	1460	non-null	int64
46	GrLivArea	1460	non-null	int64
47	BsmtFullBath	1460	non-null	int64
48	BsmtHalfBath	1460	non-null	int64
49	FullBath	1460	non-null	int64
50	HalfBath	1460	non-null	int64
51	BedroomAbvGr	1460	non-null	int64
52	KitchenAbvGr	1460	non-null	int64
53	KitchenQual	1460	non-null	object
54	TotRmsAbvGrd	1460	non-null	int64
55	Functional	1460	non-null	object
56	Fireplaces	1460	non-null	int64
57	FireplaceQu	770 n	on-null	object
58	GarageType	1379	non-null	object
59	GarageYrBlt	1379	non-null	float64
60	GarageFinish	1379	non-null	object
61	GarageCars	1460	non-null	int64
62	GarageArea	1460	non-null	int64
63	GarageQual	1379	non-null	object
64	GarageCond	1379	non-null	object

65	PavedDrive	1460 non-null	object
66	WoodDeckSF	1460 non-null	int64
67	OpenPorchSF	1460 non-null	int64
68	${\tt EnclosedPorch}$	1460 non-null	int64
69	3SsnPorch	1460 non-null	int64
70	ScreenPorch	1460 non-null	int64
71	PoolArea	1460 non-null	int64
72	PoolQC	7 non-null	object
73	Fence	281 non-null	object
74	MiscFeature	54 non-null	object
75	MiscVal	1460 non-null	int64
76	MoSold	1460 non-null	int64
77	YrSold	1460 non-null	int64
78	SaleType	1460 non-null	object
79	${\tt SaleCondition}$	1460 non-null	object
80	SalePrice	1460 non-null	int64
dtyp	es: float64(3),	int64(35), obje	ct(43)
memo	rv usage: 924.0	+ KB	

memory usage: 924.0+ KB

[]:		Id	MSSubClass	LotFrontage	LotArea	OverallQual	\	
	count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000		
	mean	730.500000	56.897260	70.049958	10516.828082	6.099315		
	std	421.610009	42.300571	24.284752	9981.264932	1.382997		
	min	1.000000	20.000000	21.000000	1300.000000	1.000000		
	25%	365.750000	20.000000	59.000000	7553.500000	5.000000		
	50%	730.500000	50.000000	69.000000	9478.500000	6.000000		
	75%	1095.250000	70.000000	80.000000	11601.500000	7.000000		
	max	1460.000000	190.000000	313.000000	215245.000000	10.000000		
		OverallCond	YearBuilt	${\tt YearRemodAdd}$	MasVnrArea	BsmtFinSF1		\
	count	1460.000000	1460.000000	1460.000000	1452.000000	1460.000000		
	mean	5.575342	1971.267808	1984.865753	103.685262	443.639726		
	std	1.112799	30.202904	20.645407	181.066207	456.098091		
	min	1.000000	1872.000000	1950.000000	0.000000	0.000000		
	25%	5.000000	1954.000000	1967.000000	0.000000	0.000000		
	50%	5.000000	1973.000000	1994.000000	0.000000	383.500000		
	75%	6.000000	2000.000000	2004.000000	166.000000	712.250000		
	max	9.000000	2010.000000	2010.000000	1600.000000	5644.000000		
		WoodDeckSF	OpenPorchSF	EnclosedPorch	3SsnPorch	${\tt ScreenPorch}$	\	
	count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000		
	mean	94.244521	46.660274	21.954110	3.409589	15.060959		
	std	125.338794	66.256028	61.119149	29.317331	55.757415		
	min	0.000000	0.000000	0.000000	0.000000	0.000000		
	25%	0.000000	0.000000	0.000000	0.000000	0.000000		
	50%	0.000000	25.000000	0.000000	0.000000	0.000000		
	75%	168.000000	68.000000	0.000000	0.000000	0.000000		

max	857.000000	547.000000	552.000000	508.000000	480.000000
	PoolArea	MiscVal	MoSold	YrSold	SalePrice
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000
mean	2.758904	43.489041	6.321918	2007.815753	180921.195890
std	40.177307	496.123024	2.703626	1.328095	79442.502883
min	0.000000	0.000000	1.000000	2006.000000	34900.000000
25%	0.000000	0.000000	5.000000	2007.000000	129975.000000
50%	0.000000	0.000000	6.000000	2008.000000	163000.000000
75%	0.000000	0.000000	8.000000	2009.000000	214000.000000
max	738.000000	15500.000000	12.000000	2010.000000	755000.000000

[8 rows x 38 columns]

1.3 3. Análisis de valores faltantes

- 1. Identificamos qué columnas tienen más valores nulos.
- 2. Evaluamos la proporción de faltantes y decidimos si imputar o eliminar.
- 3. Revisamos si ciertas variables usan "NA" como categoría válida (ej. "No Garage").

```
[]: total_nulos = train.isnull().sum().sort_values(ascending=False)
porc_nulos = (train.isnull().sum() / train.shape[0]).

sort_values(ascending=False)

missing_data = pd.concat([total_nulos, porc_nulos], axis=1, keys=['Total', using_data])
sort_values(ascending=False)

missing_data = pd.concat([total_nulos, porc_nulos], axis=1, keys=['Total', using_data])
missing_data.head(20) # Muestra las 20 columnas con más valores nulos
```

Г1:		Total	Porcentaje
Г].	D100		•
	PoolQC	1453	0.995205
	${ t MiscFeature}$	1406	0.963014
	Alley	1369	0.937671
	Fence	1179	0.807534
	${ t MasVnrType}$	872	0.597260
	FireplaceQu	690	0.472603
	LotFrontage	259	0.177397
	${\tt GarageYrBlt}$	81	0.055479
	GarageCond	81	0.055479
	${\tt GarageType}$	81	0.055479
	${\tt GarageFinish}$	81	0.055479
	GarageQual	81	0.055479
	${\tt BsmtFinType2}$	38	0.026027
	${\tt BsmtExposure}$	38	0.026027
	BsmtQual	37	0.025342
	${\tt BsmtCond}$	37	0.025342
	${\tt BsmtFinType1}$	37	0.025342
	MasVnrArea	8	0.005479

```
Electrical 1 0.000685
Id 0 0.000000
```

1.4 4. Clasificación de variables

Separaremos las columnas en numéricas y categóricas, para tratarlas de manera distinta en nuestro análisis.

```
[]: numerical feats = train.select_dtypes(include=[np.number]).columns
     categorical_feats = train.select_dtypes(include=['object']).columns
     print("Variables numéricas:", numerical_feats)
     print("Variables categóricas:", categorical_feats)
    Variables numéricas: Index(['Id', 'MSSubClass', 'LotFrontage', 'LotArea',
    'OverallQual',
           'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1',
           'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF',
           'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath',
           'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd',
           'Fireplaces', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF',
           'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea',
           'MiscVal', 'MoSold', 'YrSold', 'SalePrice'],
          dtype='object')
    Variables categóricas: Index(['MSZoning', 'Street', 'Alley', 'LotShape',
    'LandContour', 'Utilities',
           'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2',
           'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st',
           'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation',
           'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2',
           'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'KitchenQual',
           'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual',
           'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature',
           'SaleType', 'SaleCondition'],
          dtype='object')
```

1.5 5. Análisis univariante de la variable objetivo (SalePrice)

SalePrice es la variable que queremos predecir. Revisamos su distribución y outliers.

```
[5]: # Histograma y KDE de SalePrice
sns.histplot(train['SalePrice'], kde=True)
plt.title('Distribución de SalePrice')
plt.show()

# Estadísticos básicos
print(train['SalePrice'].describe())
```

```
# (Opcional) Transformación logarítmica para ver si se acerca más a la normal
train['LogSalePrice'] = np.log(train['SalePrice'])
sns.histplot(train['LogSalePrice'], kde=True)
plt.title('Distribución de SalePrice (en escala log)')
plt.show()
```

Distribución de SalePrice

${\tt count}$	1460.000000
mean	180921.195890
std	79442.502883
min	34900.000000
25%	129975.000000
50%	163000.000000
75%	214000.000000
max	755000.000000
NT	0-1-D-3

Name: SalePrice, dtype: float64

1.6 6. Análisis univariante de las demás variables

1.6.1 Variables numéricas

Generamos histogramas y curvas KDE para detectar asimetría, picos y presencia de outliers.

```
[6]: for col in numerical_feats:
    plt.figure()
    # Eliminamos NaN con dropna()
    sns.histplot(train[col].dropna(), kde=True)
    plt.title(f'Distribución de {col}')
    plt.show()
```


1.6.2 6.2 Variables categóricas

Mostramos cuántas entradas hay para cada categoría. Podemos usar gráficos de barras o tablas.

```
[7]: for col in categorical_feats:
    plt.figure()
    train[col].value_counts().plot(kind='bar')
    plt.title(f'Conteo de categorías - {col}')
    plt.show()

# Si deseas ver la tabla numérica:
    display(train[col].value_counts())
```


MSZoning

RL 1151 RM 218 FV 65 RH 16 C (all) 10

Street

Pave 1454 Grvl 6

Alley Grvl 50 Pave 41

LotShape

Reg 925 IR1 484 IR2 41 IR3 10

LandContour Lvl 1311 Bnk 63 HLS 50 Low 36

Utilities AllPub 1459 NoSeWa 1

LotConfig Inside 1052 Corner 263 CulDSac 94

FR2 47 FR3 4

LandSlope

Gtl 1382 Mod 65 Sev 13

Nei	ghborhoo	d

225
150
113
100
86
79
77
74
73
59
58
51
49
41
38
37

 ${\tt ClearCr}$ 28 ${\tt StoneBr}$ 25 SWISU 25 MeadowV 17 Blmngtn 17 BrDale 16 Veenker 11 NPkVill 9 2 Blueste

Name: count, dtype: int64

Condition1

Norm	1260
Feedr	81
Artery	48
RRAn	26
PosN	19
RRAe	11
PosA	8

RRNn 5 RRNe 2

Name: count, dtype: int64

Conteo de categorías - Condition2

${\tt Condition2}$

 Norm
 1445

 Feedr
 6

 Artery
 2

 RRNn
 2

 PosN
 2

 PosA
 1

 RRAn
 1

 RRAe
 1

BldgType
1Fam 1220
TwnhsE 114
Duplex 52
Twnhs 43
2fmCon 31

HouseStyle

1Story 726 2Story 445 1.5Fin 154 SLvl 65 SFoyer 37 1.5Unf 14 2.5Unf 11 2.5Fin8

RoofStyle Gable 1141 Hip 286 Flat 13 Gambrel 11 Mansard 7 Shed 2

RoofMatl		
CompShg	1434	
Tar&Grv	11	
WdShngl	6	
WdShake	5	
Metal	1	
Membran	1	
Roll	1	
ClyTile	1	

Exterio	or1st		
VinylSo	i 51	.5	
HdBoard	i 22	22	
MetalSo	i 22	20	
Wd Sdng	g 20)6	
Plywood	i 10	8(
CemntBo	i 6	31	
BrkFace	e 5	50	
WdShing	g 2	26	
Stucco	2	25	
AsbShng	g 2	20	
BrkComm	n	2	
Stone		2	
AsphShr	ı	1	
ImStuc	3	1	
${\tt CBlock}$		1	
Name: o	count,	dtype:	int64

Exterior2nd		
VinylSd	504	
MetalSd	214	
HdBoard	207	
Wd Sdng	197	
Plywood	142	
CmentBd	60	
Wd Shng	38	
Stucco	26	
BrkFace	25	
AsbShng	20	
ImStucc	10	
Brk Cmn	7	
Stone	5	
AsphShn	3	
Other	1	
CBlock	1	

Name: count, dtype: int64

${\tt MasVnrType}$

BrkFace 445 Stone 128 BrkCmn 15

ExterQual

TA 906

Gd 488

Ex 52 Fa 14

ExterCond

TA 1282 Gd 146 Fa 28 Ex 3 Po 1

Foundation

PConc 647 CBlock 634 BrkTil 146 Slab 24 Stone 6 Wood 3

BsmtQual

TA 649

Gd 618

Ex 121

Fa 35

${\tt BsmtCond}$

TA 1311 Gd 65 Fa 45 Po 2

BsmtExposure

No 953 Av 221 Gd 134 Mn 114

BsmtFinType1 Unf 430 GLQ 418 ALQ 220 BLQ 148 Rec 133

 $L \mathtt{w} \mathtt{Q}$

Name: count, dtype: int64

74

BsmtFinType2	
Unf	1256
Rec	54
LwQ	46
BLQ	33
ALQ	19
GT.O	14

Heating	
GasA	1428
GasW	18
Grav	7
Wall	4
OthW	2
Floor	1

${\tt HeatingQC}$

Ex 741 TA 428 Gd 241

Fa 49 Po 1

CentralAir Y 1365 N 95

Electrical

SBrkr 1334 FuseA 94 FuseF 27 FuseP 3 Mix 1

KitchenQual

735 TA586 Gd Ex 100 39

Fa

Functional				
Тур	1360			
Min2	34			
Min1	31			
Mod	15			
Maj1	14			
Maj2	5			
Sev	1			

FireplaceQu

Gd 380 TA 313 Fa 33 Ex 24 Po 20

GarageType Attchd 870 Detchd 387 BuiltIn 88 Basment 19 CarPort 9 2Types 6

${\tt GarageFinish}$

Unf 605 RFn 422 Fin 352

GarageQual TA 1311 Fa 48

Gd 14 Ex 3

GarageCond

TA 1326 Fa 35 Gd 9 Po 7 Ex 2

PavedDrive

Y 1340

N 90 P 30

PoolQC

Gd 3

Ex 2 Fa 2

Fence
MnPrv 157
GdPrv 59
GdWo 54
MnWw 11

${\tt MiscFeature}$

Shed 49
Gar2 2
Othr 2
TenC 1

1267
122
43
9
5
5
4
3
2

SaleCondition

Normal 1198
Partial 125
Abnorml 101
Family 20
Alloca 12
AdjLand 4

Name: count, dtype: int64

1.7 7. Análisis bivariante: correlación con la variable objetivo (SalePrice)

- 1. Calculamos la correlación (Pearson) para variables numéricas.
- 2. Graficamos un heatmap de las más correlacionadas con SalePrice.
- 3. Vemos ejemplos de boxplots o scatterplots con variables que más destacan.

```
[9]: # Filtrar únicamente las columnas numéricas (asegúrate de que 'SalePrice' sea⊔ → numérica).

numeric_df = train.select_dtypes(include=['int64','float64'])
```

```
# Matriz de correlación para ver relación con SalePrice (solo columnas_{\sqcup}
 →numéricas)
corr_matrix = numeric_df.corr()
# Seleccionamos las 10 variables con mayor correlación (en valor absoluto) con
top_corr = corr_matrix['SalePrice'].abs().sort_values(ascending=False).head(10)
print("Variables con mayor correlación con SalePrice:\n", top_corr)
# Heatmap con las variables más correlacionadas
top vars = top corr.index
plt.figure(figsize=(10, 8))
sns.heatmap(numeric_df[top_vars].corr(),
            annot=True, cmap='RdBu', vmin=-1, vmax=1)
plt.title('Matriz de correlación de variables más relevantes')
plt.show()
# Ejemplo de análisis con OverallQual o GrLivArea:
# Estas variables deben existir en train.
# Si no las filtras, asegúrate de que la columna sea numérica.
sns.boxplot(x='OverallQual', y='SalePrice', data=train)
plt.title('SalePrice vs OverallQual')
plt.show()
```

Variables con mayor correlación con SalePrice:

SalePrice 1.000000 LogSalePrice 0.948374 OverallQual 0.790982 GrLivArea 0.708624 GarageCars 0.640409 GarageArea 0.623431 TotalBsmtSF 0.613581 1stFlrSF 0.605852 FullBath 0.560664 TotRmsAbvGrd 0.533723

Name: SalePrice, dtype: float64

1.8 8. Análisis de agrupamiento (Clustering)

Usamos K-Means para crear grupos de casas similares y describirlos.

	OverallQual	${\tt GrLivArea}$	GarageCars	TotalBsmtSF	YearBuilt
Cluster					
0	5.898305	1893.214689	1.638418	889.451977	1927.355932
1	4.852814	1085.935065	1.021645	813.045455	1951.588745
2	8.040161	2098.714859	2.650602	1620.738956	1999.867470
3	6.323427	1491.601399	2.024476	1061.578671	1988.300699

1.9 9. División del Dataset en conjuntos de Entrenamiento y Prueba

Separamos aleatoriamente el conjunto de datos preprocesados ya que se trata de una regresión y no de una clasificación o balanceo.

Componente principal 1

```
df_cleaned[cat_cols] = df_cleaned[cat_cols].apply(lambda x: x.fillna(x.

mode()[0]))
# 3. Codificar variables categóricas
label_encoders = {}
for col in cat cols:
    le = LabelEncoder()
    df_cleaned[col] = le.fit_transform(df_cleaned[col])
    label_encoders[col] = le # Guardamos los codificadores por si se necesitan_
 ⇔luego
# 4. Escalar variables numéricas
scaler = StandardScaler()
df_cleaned[num_cols] = scaler.fit_transform(df_cleaned[num_cols])
# 5. Dividir en entrenamiento y prueba (80% - 20%)
train_df, test_df = train_test_split(df_cleaned, test_size=0.2, train_size=0.8)
\# Guardar los conjuntos preprocesados, comentamos esto porque se crean los_{\sqcup}
⇔archivos csv cada que se ejecuta
#train_path = "train_preprocessed.csv"
#test_path = "test_preprocessed.csv"
#train_df.to_csv(train_path, index=False)
#test_df.to_csv(test_path, index=False)
# Mostrar el número de filas en cada conjunto
print(f"Tamaño del conjunto de entrenamiento: {len(train_df)} filas")
print(f"Tamaño del conjunto de prueba: {len(test_df)} filas")
```

Tamaño del conjunto de entrenamiento: 1168 filas Tamaño del conjunto de prueba: 292 filas

1.10 10. Ingeniería de características

Para determinar qué variables pueden ser los mejores predictores para el precio de las casas, nos basamos en la matriz de correlación de las variables más relevantes con respecto a SalePrice

Según los resultados de la matriz de correlación, las variables que pueden ser mejores predictores para el precio de las casas son OverallQual que es la calidad general, GrLivArea que representa el área habitable, GarageCars que es la capacidad del garage de la casa, GarageArea que se refiere al tamaño del garaje, TotalBsmtSF que es el área total del sotano y el área del primer piso 1stFlrSF. Todas las variables anteriores tienen una correlación alta o mayor a 0.5 lo que indica que son las mejores o son las que más se relacionan con el precio de una casa.

1.11 11. Modelo univariado de regresión lineal para predecir el precio de las casas

Para este modelo se seleccionó a la variable OverallQual que representa la calidad general de las casas

```
xtest = X_test['OverallQual'].values.reshape(-1,1)
# Crear el modelo de regresión lineal
lm = LinearRegression()
lm.fit(Xtrain, ytrain)
# Hacer predicciones
y_pred = lm.predict(xtest)
# Calcular métricas del modelo
r2 = r2 score(ytest, y pred)
mse = mean_squared_error(ytest, y_pred)
print(f"Mean Squared Error: {mse:.2f}")
print(f"R squared: {r2:.2f}")
# Crear gráfico de regresión
plt.figure(figsize=(8, 6))
plt.scatter(xtest, ytest, label="Datos reales", alpha=0.6)
plt.plot(xtest, y_pred, color="red", label="Regresión lineal")
plt.xlabel("OverallQual (Calidad General)")
plt.ylabel("SalePrice (Precio de Venta)")
plt.title(f"Regresión Lineal: OverallQual vs SalePrice (R2={r2:.2f})")
plt.legend()
plt.show()
# Resumen del modelo con statsmodels
X_train_sm = sm.add_constant(Xtrain) # Agregar constante para el modelo
model_sm = sm.OLS(ytrain, X_train_sm).fit()
model_summary = model_sm.summary()
# Mostrar métricas y resumen del modelo
print(model_summary)
```

Mean Squared Error: 0.38

R squared: 0.68

Regresión Lineal: OverallQual vs SalePrice (R2=0.68)

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Sur s:	Least Squar 1, 02 Mar 21:22	2025 2:27 934 932 1	Adj. F-sta Prob	nared: R-squared: atistic: (F-statistic): Likelihood:		0.632 0.631 1598. 2.45e-204 -881.31 1767. 1776.
	coef	std err		t	P> t	[0.025	0.975]
	0.0220 0.8212	0.020 0.021	1 39	. 079 . 978	0.281	-0.018 0.781	0.062 0.861
Omnibus: Prob(Omnibus): Skew:		0	.668 .000 .893		in-Watson: ne-Bera (JB): (JB):		1.976 4934.059 0.00

Kurtosis: 13.604 Cond. No. 1.02

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Según la regresión lineal que se obtuvo, tenemos un coeficiente de determinación R cuadrado de 0.68 que indica que el 68% de la variabilidad en el precio de las casas se explica por OverallQual. Podemos observar que la regresión lineal es positiva por lo que los datos siguen esta tendencia, lo cual es lógico porque entre mejor sea la calidad de las casas mayor será el precio de estas. Sin embargo, se puede notar dispersión, lo que indica que otras variables también influyen en el precio de las casas, justo como se pudo observar en la matriz de correlación.

1.11.1 11.1 Residuos

```
[30]: #Analizando residuales
    residuos = ytest - y_pred
    print("Los residuos son: ", len(residuos))

plt.plot(xtest, residuos, 'o', color='darkblue')
    plt.axhline(0,color='blue')
    plt.title("Gráfico de Residuales")
    plt.xlabel("Variable independiente")
    plt.ylabel("Residuales")
    plt.show()

sns.histplot(residuos, kde=True) # kde=True para incluir la curva de densidad
    plt.xlabel("Residuales")
    plt.title("Distribución de los Residuales")
    plt.show()
```

Los residuos son: 234

Según los resultados de los residuos, su distribución parece tener una forma normal de campa simetrica, lo que indica que los errores están distribuidos de manera normal. la mayoría de los residuos se agrupan alrededor de cero, que quiere decir que el modelo no tiene un sesgo sistemático en las predicciones.

1.12 12. Modelo multivariado de regresión lineal para predecir el precio de las casas

Para este modelo utilizamos todas las variables numericas para predecir el precio de las casas

```
# Dividir los datos en conjunto de entrenamiento (80%) y prueba (20%)
→random_state=42)
# Crear el modelo de regresión lineal
lm = LinearRegression()
lm.fit(X train, y train)
# Hacer predicciones en el conjunto de prueba
y_pred = lm.predict(X_test)
# Calcular métricas del modelo
r2 = r2_score(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")
print(f"R squared: {r2:.2f}")
# Análisis del modelo con statsmodels
X train sm = sm.add constant(X train) # Agregar constante para la regresión
model_sm = sm.OLS(y_train, X_train_sm).fit()
print(model_sm.summary())
# Gráfico de predicciones vs valores reales
plt.figure(figsize=(8, 6))
sns.scatterplot(x=y_test, y=y_pred, alpha=0.6)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color="red",__
 ⇔linestyle="--") # Línea de referencia
plt.xlabel("Valores Reales")
plt.ylabel("Predicciones")
plt.title(f"Predicciones vs Valores Reales (R2={r2:.2f})")
plt.show()
Variables utilizadas en el modelo: ['Id', 'MSSubClass', 'MSZoning',
'LotFrontage', 'LotArea', 'Street', 'LotShape', 'LandContour', 'Utilities',
'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2',
'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt',
'YearRemodAdd', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd',
'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond',
'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1', 'BsmtFinType2', 'BsmtFinSF2',
'BsmtUnfSF', 'TotalBsmtSF', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical',
'1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath',
'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr',
'KitchenQual', 'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu',
'GarageType', 'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea',
'GarageQual', 'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
```

'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold',

'YrSold', 'SaleType', 'SaleCondition']

Mean Squared Error: 0.16

R squared: 0.87

OLS Regression Results

		ULS Regres	sion kesuit			
======================================		G-1-D :			=======	
Dep. Variable	:	SalePrice	_			0.911 0.904
Model:	_			Adj. R-squared:		
Method:		east Squares				123.1
Date:	Sun,	02 Mar 2025				0.00
Time:		21:22:39	Log-Likel	ihood:		-215.59
No. Observati	ons:	934	AIC:			577.2
Df Residuals:		861	BIC:			930.5
Df Model:		72				
Covariance Ty	pe:	nonrobust				
========	========			=======		=======
=						
	coef	std err	t	P> t	[0.025	
0.975]						
_	0.0405	0.007	0 140	0.000	0.606	
const	-0.0425	0.287	-0.148	0.882	-0.606	
0.521	0 0054	0.044	0 405	2 211		
Id	-0.0051	0.011	-0.467	0.641	-0.026	
0.016						
MSSubClass	-0.0120	0.025	-0.488	0.626	-0.060	
0.036	0.0004	0.004	4 440	0.004	0 004	
MSZoning	-0.0231	0.021	-1.118	0.264	-0.064	
0.017	0.0050	0.045	0.044	2 224	2 225	
LotFrontage	0.0356	0.015	2.314	0.021	0.005	
0.066						
LotArea	0.0662	0.012	5.358	0.000	0.042	
0.090						
Street	0.3963	0.174	2.283	0.023	0.056	
0.737						
LotShape	-0.0086	0.008	-1.036	0.300	-0.025	
0.008						
LandContour	-0.0047	0.017	-0.274	0.784	-0.038	
0.029						
Utilities	-4.172e-16	2.01e-16	-2.071	0.039	-8.13e-16	
-2.17e-17						
LotConfig	-0.0085	0.007	-1.220	0.223	-0.022	
0.005						
LandSlope	-0.0506	0.046	-1.104	0.270	-0.141	
0.039						
Neighborhood	0.0007	0.002	0.358	0.721	-0.003	
0.005						
Condition1	-0.0107	0.013	-0.812	0.417	-0.037	

0.015 Condition2	-0.0103	0.037	-0.282	0.778	-0.082
0.062					
BldgType 0.003	-0.0334	0.019	-1.781	0.075	-0.070
HouseStyle 0.015	-0.0016	0.008	-0.199	0.842	-0.018
OverallQual 0.176	0.1354	0.021	6.590	0.000	0.095
OverallCond 0.082	0.0540	0.014	3.772	0.000	0.026
YearBuilt	0.1034	0.030	3.428	0.001	0.044
YearRemodAdd 0.067	0.0323	0.017	1.849	0.065	-0.002
RoofStyle	0.0139	0.015	0.947	0.344	-0.015
RoofMatl	0.0173	0.019	0.891	0.373	-0.021
Exterior1st	-0.0169	0.006	-2.608	0.009	-0.030
Exterior2nd 0.022	0.0104	0.006	1.806	0.071	-0.001
MasVnrArea 0.069	0.0440	0.013	3.402	0.001	0.019
ExterQual -0.144	-0.1923	0.025	-7.830	0.000	-0.240
ExterCond 0.041	0.0101	0.016	0.642	0.521	-0.021
Foundation 0.037	-0.0027	0.020	-0.133	0.894	-0.042
BsmtQual -0.062	-0.0973	0.018	-5.450	0.000	-0.132
BsmtCond 0.070	0.0333	0.019	1.791	0.074	-0.003
BsmtExposure	-0.0254	0.011	-2.287	0.022	-0.047
BsmtFinType1 0.036	0.0205	0.008	2.535	0.011	0.005
BsmtFinSF1	0.1433	0.014	10.108	0.000	0.115
BsmtFinType2 0.046	0.0129	0.017	0.772	0.440	-0.020
BsmtFinSF2 0.056	0.0253	0.016	1.620	0.106	-0.005
BsmtUnfSF -0.009	-0.0306	0.011	-2.728	0.006	-0.053
TotalBsmtSF	0.1274	0.016	7.756	0.000	0.095

0.160 Heating	0.0012	0.035	0.034	0.973	-0.067
0.070					
HeatingQC 0.006	-0.0093	0.008	-1.192	0.234	-0.025
CentralAir 0.150	0.0386	0.057	0.680	0.496	-0.073
Electrical	-0.0144	0.012	-1.205	0.228	-0.038
0.009 1stFlrSF 0.180	0.1421	0.019	7.336	0.000	0.104
2ndFlrSF 0.206	0.1748	0.016	11.068	0.000	0.144
LowQualFinSF	0.0029	0.012	0.243	0.808	-0.021
GrLivArea 0.283	0.2500	0.017	14.640	0.000	0.216
BsmtFullBath 0.022	-0.0112	0.017	-0.656	0.512	-0.045
BsmtHalfBath 0.026	0.0029	0.012	0.247	0.805	-0.020
FullBath 0.011	-0.0271	0.019	-1.403	0.161	-0.065
HalfBath 0.010	-0.0222	0.016	-1.369	0.171	-0.054
BedroomAbvGr -0.049	-0.0833	0.017	-4.776	0.000	-0.118
KitchenAbvGr -0.012	-0.0386	0.014	-2.842	0.005	-0.065
KitchenQual	-0.0813	0.018	-4.480	0.000	-0.117
TotRmsAbvGrd	0.0355	0.024	1.494	0.136	-0.011
Functional 0.092	0.0674	0.012	5.471	0.000	0.043
Fireplaces	0.0297	0.015	2.040	0.042	0.001
FireplaceQu -0.010	-0.0375	0.014	-2.722	0.007	-0.065
GarageType 0.029	0.0136	0.008	1.717	0.086	-0.002
GarageYrBlt 0.056	0.0164	0.020	0.807	0.420	-0.024
GarageFinish 0.063	0.0271	0.018	1.464	0.143	-0.009
GarageCars 0.087	0.0348	0.027	1.302	0.193	-0.018
GarageArea	0.0117	0.026	0.445	0.657	-0.040

0.064						
GarageQual 0.041	-0.0045	0.023	-0.194	0.846	-0.050	
${\tt GarageCond}$	0.0496	0.027	1.864	0.063	-0.003	
0.102						
PavedDrive	-0.0162	0.026	-0.617	0.538	-0.068	
0.035	0.0000	0.040	0 555	0 570	0.047	
WoodDeckSF 0.030	0.0066	0.012	0.555	0.579	-0.017	
OpenPorchSF	0.0071	0.012	0.592	0.554	-0.016	
0.031	0.0071	0.012	0.392	0.554	-0.010	
EnclosedPorch	0.0097	0.012	0.800	0.424	-0.014	
0.033	0.0001	0.012	0.000	0.121	0.011	
3SsnPorch	-0.0014	0.011	-0.131	0.896	-0.023	
0.020						
ScreenPorch	0.0323	0.011	3.041	0.002	0.011	
0.053						
PoolArea	0.0559	0.011	5.267	0.000	0.035	
0.077						
MiscVal	0.0027	0.010	0.282	0.778	-0.016	
0.022						
MoSold	-0.0164	0.011	-1.483	0.138	-0.038	
0.005	0.0100	0.011	0.000	0.200	0.020	
YrSold 0.011	-0.0109	0.011	-0.992	0.322	-0.032	
SaleType	-0.0025	0.007	-0.348	0.728	-0.017	
0.012	0.0025	0.007	0.040	0.720	0.011	
SaleCondition	0.0322	0.011	2.997	0.003	0.011	
0.053						
	=======					
Omnibus:		273.746			2.0	
Prob(Omnibus):		0.000	-	ra (JB):	2450.4	
Skew:		1.071				00
Kurtosis:		10.640	Cond. No.		1.01e+	

Notes

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The smallest eigenvalue is 5.97e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

En la regresión lineal que se obtuvo con todas las variables numéricas, presenta un coeficiente de determinación R cuadrado de 0.87 que indica que el 87% de la variabilidad en el precio de las casas se explica por las variables numéricas. Se puede observar que los puntos están cerca de la línea roja, lo que indica que el modelo está funcionando bien.

1.13 12.1 Residuos

```
[32]: # Analizando los residuos
    residuos = y_test - y_pred

# Gráfico de distribución de residuos
    plt.figure(figsize=(8, 6))
    sns.histplot(residuos, bins=30, kde=True, color="purple")
    plt.xlabel("Residuos")
    plt.ylabel("Frecuencia")
    plt.title("Distribución de Residuos")
    plt.show()
```


1.13.1 13. Análisis de multicolinealidad, correlación y detección de sobreajuste

En este paso, se analizan las posibles correlaciones entre las variables predictoras y se determina si existe multicolinealidad. También se revisa el ajuste del modelo para identificar si está ocurriendo un sobreajuste (overfitting).

Pasos principales: 1. Calcular la matriz de correlación para las variables numéricas y observar las variables más correlacionadas entre sí y con la variable respuesta (SalePrice). 2. Calcular el Factor de Inflación de Varianza (VIF) para detectar multicolinealidad. 3. Entrenar un modelo de Regresión Lineal Múltiple con todas las variables numéricas seleccionadas (en pasos previos). 4. Analizar la puntuación R² en entrenamiento y en validación (o prueba) para evidenciar posible sobreajuste.

Según los resultados de los residuos, su distribución parece tener una forma normal de campa simétrica, lo que indica que los errores están distribuidos de manera normal. la mayoría de los residuos se agrupan alrededor de cero, que quiere decir que el modelo no tiene un sesgo sistemático en las predicciones.

```
[35]: # 1. Matriz de correlación (variables numéricas)
# Asegurar de seleccionar solo columnas numéricas
```

```
numeric_features = X_train.select_dtypes(include=[np.number])
corr_matrix = numeric_features.corr()
plt.figure(figsize=(12, 8))
plt.matshow(corr_matrix, fignum=0)
plt.title("Matriz de correlación (variables numéricas)", pad=100)
plt.colorbar()
plt.show()
# 2. Función para calcular el VIF de cada variable
def calcular vif(df):
    Calcula el VIF de cada columna en un DataFrame.
    VIF = 1 / (1 - R^2)
    11 11 11
    vif_data = []
    # Se añade la constante para usar en el modelo
    df_const = sm.add_constant(df)
    for i, col in enumerate(df.columns):
        # Se elimina la columna 'col' para ver su VIF
        X_temp = df_const.drop(columns=[col], errors='ignore')
        y_temp = df_const[col]
        model = sm.OLS(y_temp, X_temp)
        results = model.fit()
        r2 = results.rsquared
        vif = np.inf if r2 == 1 else 1/(1 - r2)
        vif_data.append((col, vif))
    # Ordenamos de mayor a menor VIF
    vif_data.sort(key=lambda x: x[1], reverse=True)
    return vif_data
# Calculamos el VIF ignorando la variable 'SalePrice' si estuviera en l
 \hookrightarrow numeric_features
vif_resultados = calcular_vif(numeric_features.drop(columns=['SalePrice'],__
 ⇔errors='ignore'))
print("VIF de las variables (orden descendente):")
for var, val in vif_resultados:
    print(f"{var}: {val:.2f}")
# 3. Entrenar el modelo de Regresión Lineal con TODAS las variables numéricas
linreg_all = LinearRegression()
linreg_all.fit(X_train, y_train)
```

```
# 4. Métricas en el conjunto de entrenamiento para ver si hay sobreajuste
y_pred_train = linreg_all.predict(X_train)
r2_train = r2_score(y_train, y_pred_train)

# mean_squared_error sin el parámetro 'squared'
mse_train = mean_squared_error(y_train, y_pred_train)
rmse_train = np.sqrt(mse_train)

print("R2 (Train) con todas las variables:", r2_train)
print("RMSE (Train) con todas las variables:", rmse_train)

# Métricas en el conjunto de prueba
y_pred_test = linreg_all.predict(X_test)
r2_test = r2_score(y_test, y_pred_test)

mse_test = mean_squared_error(y_test, y_pred_test)

rmse_test = np.sqrt(mse_test)

print("R2 (Test) con todas las variables:", r2_test)
print("RMSE (Test) con todas las variables:", rmse_test)
```


/ Users/hansellopez/Documents/Projects/DataMining/Modelos-Regresion-Lineal-Data-Mining/.venv/lib/python3.12/site-

packages/statsmodels/regression/linear_model.py:1782: RuntimeWarning: invalid value encountered in scalar divide

return 1 - self.ssr/self.centered_tss

VIF de las variables (orden descendente):

Utilities: nan
BsmtFinSF1: inf
BsmtFinSF2: inf
BsmtUnfSF: inf
TotalBsmtSF: inf
1stFlrSF: inf

2ndFlrSF: inf LowQualFinSF: inf GrLivArea: inf YearBuilt: 8.22 GarageCars: 6.77 GarageArea: 6.53 MSSubClass: 5.37 TotRmsAbvGrd: 5.17 BldgType: 4.40 Exterior1st: 4.07 Exterior2nd: 4.00 GarageYrBlt: 3.91 OverallQual: 3.84 FullBath: 3.48 YearRemodAdd: 2.81 BedroomAbvGr: 2.77 BsmtFullBath: 2.67 ExterQual: 2.62 HalfBath: 2.47 BsmtFinType2: 2.38 HouseStyle: 2.34 BsmtQual: 2.24 GarageFinish: 2.16 Foundation: 2.09 KitchenQual: 2.08 BsmtFinType1: 2.05 Fireplaces: 1.94 OverallCond: 1.93 KitchenAbvGr: 1.83 LotFrontage: 1.82 CentralAir: 1.82 GarageType: 1.79 LotArea: 1.72 LandSlope: 1.70 GarageQual: 1.69 HeatingQC: 1.67 BsmtExposure: 1.53 PavedDrive: 1.51 GarageCond: 1.50 FireplaceQu: 1.47 MasVnrArea: 1.44 Heating: 1.40 MSZoning: 1.38 Functional: 1.37 Electrical: 1.35 LandContour: 1.34

EnclosedPorch: 1.34 OpenPorchSF: 1.32

BsmtHalfBath: 1.32
WoodDeckSF: 1.32
ExterCond: 1.31
RoofStyle: 1.31
Neighborhood: 1.27
RoofMatl: 1.26
LotShape: 1.25
ScreenPorch: 1.22
Street: 1.19

LotConfig: 1.18
SaleCondition: 1.18

SaleType: 1.17
BsmtCond: 1.16
Condition1: 1.14
YrSold: 1.13
MoSold: 1.11
PoolArea: 1.11
Condition2: 1.10

Id: 1.08

3SsnPorch: 1.07 MiscVal: 1.06

R2 (Train) con todas las variables: 0.9114577089724687 RMSE (Train) con todas las variables: 0.3047950156392137 R2 (Test) con todas las variables: 0.8656974161878999 RMSE (Test) con todas las variables: 0.3959902743662094

Lo anterior se basa en que:

- TotalBsmtSF ya resume la información de BsmtFinSF1, BsmtFinSF2 y BsmtUnfSF.
- GrLivArea agrupa el área habitable de 1er y 2do piso, además de LowQualFinSF.
- GarageCars y GarageArea miden casi lo mismo; conviene elegir la que mejor se correlacione con SalePrice.
- Utilities suele no variar o aportar mucho, por lo que suele eliminarse.
- YearBuilt puede resultar prescindible si YearRemodAdd está muy correlacionado y refleja mejor la actualización de la casa.

1.13.2 14. Nuevo modelo (reducción de variables o regularización) y análisis de residuos

Si se detecta multicolinealidad (VIF alto en algunas variables) o signos de sobreajuste (alta diferencia de desempeño entre entrenamiento y prueba), podemos: - Eliminar variables con VIF muy alto para reducir multicolinealidad. - Emplear modelos de regularización (por ejemplo, Lasso o Ridge). - Seleccionar solo las variables más predictivas según análisis de correlación o importancia del modelo.

Luego de ajustar el nuevo modelo, se analizan los residuos para verificar la calidad del ajuste (normalidad de residuos, homocedasticidad, etc.). Se suelen graficar: - Gráfico de valores predichos vs. residuos. - Histograma o Q-Q plot de residuos para ver su distribución.

```
# Regularización con Ridge
      import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.linear_model import Ridge
     from sklearn.metrics import mean_squared_error, r2_score
      # Variables a eliminar (según análisis de VIF y correlaciones)
     vars_a_eliminar = [
         "BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", # ya se resume en TotalBsmtSF
         "1stFlrSF", "2ndFlrSF", "LowQualFinSF", # ya se incluye en GrLivArea
                                                  # muy correlacionada con
         "GarageArea",
       \hookrightarrow GarageCars
         "Utilities",
                                                  # poca variación / utilidad
         "YearBuilt"
                                                  # fuertemente correlacionada con_
      \hookrightarrow YearRemodAdd
      # Reducción de columnas en train y test
     X train_reduced = X_train.drop(columns=vars_a_eliminar, errors='ignore')
     X_test_reduced = X_test.drop(columns=vars_a_eliminar, errors='ignore')
      # Entrenar el modelo con Ridge (penalización alpha=10.0)
     ridge_model = Ridge(alpha=10.0)
     ridge_model.fit(X_train_reduced, y_train)
     # Predicciones en el set de entrenamiento
     y_train_pred_ridge = ridge_model.predict(X_train_reduced)
     residuos_train = y_train - y_train_pred_ridge
     # Cálculo de métricas en entrenamiento
     r2_train_ridge = r2_score(y_train, y_train_pred_ridge)
     mse_train_ridge = mean_squared_error(y_train, y_train_pred_ridge)
     rmse_train_ridge = np.sqrt(mse_train_ridge)
     print("R2 (Train) [Ridge]:", r2_train_ridge)
     print("MSE (Train) [Ridge]:", mse_train_ridge)
     print("RMSE (Train) [Ridge]:", rmse_train_ridge)
     # ========
      # Análisis de residuos
      # ========
      # Gráfica de residuos vs. predicciones
     plt.figure(figsize=(6,4))
     plt.scatter(y_train_pred_ridge, residuos_train, alpha=0.5)
     plt.axhline(y=0, color='r', linestyle='--')
```

```
plt.title("Residuos vs Predicciones (Ridge)")
plt.xlabel("Predicciones (Train)")
plt.ylabel("Residuos")
plt.show()

# Histograma de residuos para ver su distribución
plt.figure(figsize=(6,4))
plt.hist(residuos_train, bins=30)
plt.title("Distribución de residuos (Ridge, Train)")
plt.xlabel("Residuo")
plt.ylabel("Frecuencia")
plt.show()
```

R2 (Train) [Ridge]: 0.9018920049655823 MSE (Train) [Ridge]: 0.1029364926729259 RMSE (Train) [Ridge]: 0.32083717470537276

Residuos vs Predicciones (Ridge)

1.13.3 15. Uso de cada modelo con el conjunto de prueba y eficiencia en la predicción

En este punto, utilizamos los modelos entrenados (por ejemplo, el modelo de Regresión Lineal con todas las variables y el modelo de Ridge regularizado con variables reducidas) para predecir en el conjunto de prueba. Luego comparamos las métricas (R², RMSE, etc.) para determinar la calidad de las predicciones de cada modelo. Haciendo uso de métricas como: - R² (Coeficiente de Determinación) - RMSE (Raíz del Error Cuadrático Medio) - MAE (Error Absoluto Medio), etc.

Se comparan los resultados para determinar cuál modelo realiza mejores predicciones.

```
[40]: # Evaluación del modelo original (linreg_all) en Test
    y_pred_test_all = linreg_all.predict(X_test)
    r2_test_all = r2_score(y_test, y_pred_test_all)
    mse_test_all = mean_squared_error(y_test, y_pred_test_all)
    rmse_test_all = np.sqrt(mse_test_all)

print("=== Modelo Original (todas las variables) ===")
    print("R2 (Test):", r2_test_all)
    print("MSE (Test):", mse_test_all)
    print("RMSE (Test):", rmse_test_all)
    print("RMSE (Test):", rmse_test_all)
    print()

# Evaluación del modelo Ridge (vars reducidas) en Test
    y_pred_test_ridge = ridge_model.predict(X_test_reduced)
```

```
r2_test_ridge = r2_score(y_test, y_pred_test_ridge)
mse_test_ridge = mean_squared_error(y_test, y_pred_test_ridge)
rmse_test_ridge = np.sqrt(mse_test_ridge)

print("=== Modelo Ridge (variables reducidas) ===")
print("R2 (Test):", r2_test_ridge)
print("MSE (Test):", mse_test_ridge)
print("RMSE (Test):", rmse_test_ridge)

=== Modelo Original (todas las variables) ===
R2 (Test): 0.8656974161878999
MSE (Test): 0.15680829739262583
RMSE (Test): 0.3959902743662094

=== Modelo Ridge (variables reducidas) ===
R2 (Test): 0.8667792695374293
MSE (Test): 0.15554515280558212
RMSE (Test): 0.3943921307602145
```