Introduction to Bioinformatics

Introduction to Omics and Application in R

Data Frames

Data frames:

- are tabular data objects
- can contain different types of data inside it
- contain vector of equal length

(Follow up on) Data Frames

Data frames:

- are tabular data objects
- can contain different types of data inside it
- contain vector of equal length

```
> data.frame(
                                                          height weight
                                                  gender
    gender = c("Male", "Male", "Female"),
                                                                          Age
                                                  Male
                                                           152.0
                                                                    81
                                                                           42
    height = c(152, 171.5, 165),
                                                  Male
                                                           171.5
                                                                    93
                                                                           38
    weight = c(81,93,78),
                                             3
                                                                           26
                                                  Female
                                                          165.0
                                                                    78
    Age = c(42,38,26)
```

DPLYR

dplyr is a grammar of data manipulation, providing a consistent set of verbs that help you solve the most common data manipulation challenges

Previous subsets []

- select()
- filter()
- group_by()
- summarize()
- mutate()

Installing and using DPLYR (and other packages)

installing is simple, you just have to type the following
install.packages("name_of_the_packages")

Installing and using DPLYR (and other packages)

Installing is simple, you just have to type the following
install.packages("name_of_the_packages")

Installing packages from BioConductor is a bit different if (!requireNamespace('BiocManager', quietly = TRUE)) install.packages('BiocManager')

BiocManager::install("minfi")

Installing and using DPLYR (and other packages)

Installing is simple, you just have to type the following
install.packages("name_of_the_packages")

Installing packages from BioConductor is a bit different
if (!requireNamespace('BiocManager', quietly = TRUE))
 install.packages('BiocManager')

BiocManager::install("minfi")

To load the installed library we can use library("package_name")

DPLYR

Common functions in DPLYR

- select(): select our intended column
- filter(): filter the data by some conditions
- group_by(): group the data by column
- summarize(): summarize the results of grouping
- mutate(): mutate a column, create new column with new logic

Genomics

DNA

Epigenomics

Epigenetic Modification

Transcriptomics

mRNA

Proteomics

Protein

Metabolomics

Metabolite

Genomics

J. (,

Exploring Variants

Epigenomics

Epigenetic Modification

Quantifying Epigenetic Modification

Transcriptomics

mRNA

Gene Expression

Proteomics

Protein

Post Translational Modifications

Metabolomics

Metabolite

Determining phenotypes

Genomics

DNA

Epigenomics

Bisulfite treated DNA, Immunoprecipitation

Transcriptomics

mRNA -> cDNA

Proteomics

Protein

Metabolomics

Metabolite

Genomics

DNA

DNA-Seq (WGS, WES)

Epigenomics

Bisulfite treated DNA, Immunoprecipitation

BiSulfite Sequencing, EpicArray, ChipSEQ

Transcriptomics

mRNA -> cDNA

RNA-Seq, Expression Microarray

Proteomics

Protein

Protein Microarray, Spectometry

Metabolomics

Metabolite

Liquid Chromatography

BiSulfite Sequencing, EpicArray Bisulfite treated DNA Epigenomics

Epigenomics

Epigenomics

Bisulfite treated DNA

BiSulfite Sequencing

Methylation Assay

Identify epigenetics modification in global level (e.g methylation levels)

- For each CpG sites, there are two things that we measure:
 - Unmethylated Intensity (U)
 - Methylated Intensity (M)

- For each CpG sites, there are two things that we measure:
 - Unmethylated Intensity (U)
 - Methylated Intensity (M)
- These value then can be used to determine the methylation levels
 - M-value (log₂(M/U))
 - Beta-value (M / (M+ U)) => percentage

- For each CpG sites, there are two things that we measure:
 - Unmethylated Intensity (U)
 - Methylated Intensity (M)
- These value then can be used to determine the methylation levels

 - Beta- value (M / (M+ U))
- Beta values are generally preferable for describing the level of methylation at a locus or for graphical presentation because percentage methylation is easily interpretable. However, due to their distributional properties, M-values are more appropriate for statistical testing (Du et al. 2010)

- Illumina raw data files are usually either in plain text or binary format.
- The binary "IDAT" files (stands for "intensity data file") are generated by the scanner and can be parsed using R/BioConductor packages such as illuminaio)
- You can find the data for training in GEO Omnibus usually written under the
 Methylation profiling by array tag

Let's Remember the Previous Lesson

Pipeline Summary

The pipeline allows you to choose between running either Bismark or bwa-meth / MethylDackel. Choose between workflows by using --aligner bismark (default, uses bowtie2 for alignment), --aligner bismark_hisat Or --aligner bwameth.

Step	Bismark workflow	bwa-meth workflow
Generate Reference Genome Index (optional)	Bismark	bwa-meth
Raw data QC	FastQC	FastQC
Adapter sequence trimming	Trim Galore!	Trim Galore!
Align Reads	Bismark	bwa-meth
Deduplicate Alignments	Bismark	Picard MarkDuplicates
Extract methylation calls	Bismark	MethylDackel
Sample report	Bismark	2
Summary Report	Bismark	(2)
Alignment QC	Qualimap	Qualimap
Sample complexity	Preseq	Preseq
Project Report	MultiQC	MultiQC

For array data it's a bit shorter

Main flow:

- Quality control
- Filtering
- Normalization
- Data exploration

Downstream Analysis:

- Probe wise differential methylation analysis
- Differential variability analysis
- GO analysis
- etc.

Loading the data

Before loading the data you have to import the needed libraries in R

- **Minfi**: provides tools for analyzing Illumina's Methylation arrays, specifically the 450k and EPIC
- IlluminaHumanMethylation450kanno.ilmn12.hg19: Annotation for Illumina's 450k methylation arrays
- IlluminaHumanMethylation450kmanifest: Annotation for Illumina's 450k methylation arrays
- **missMethyl**: normalization, removal of unwanted variation in differential methylation analysis, differential variability testing and gene set analysis

Loading the data

Before loading the data you have to import the needed libraries in R

- **Minfi**: provides tools for analyzing Illumina's Methylation arrays, specifically the 450k and FPIC
- **IlluminaHumanMethylation450kmanifest**: Annotation for Illumina's 450k methylation arrays
- **missMethyl**: normalization, removal of unwanted variation in differential methylation analysis, differential variability testing and gene set analysis

How do I Install those packages?

Installing is simple, you just have to type the following
install.packages("name_of_the_packages")

How do I Install those packages?

Installing is simple, you just have to type the following
install.packages("name_of_the_packages")

Installing packages from BioConductor is a bit different if (!requireNamespace('BiocManager', quietly = TRUE)) install.packages('BiocManager')

BiocManager::install("minfi")

How do I Install those packages?

Installing is simple, you just have to type the following
install.packages("name_of_the_packages")

Installing packages from BioConductor is a bit different
if (!requireNamespace('BiocManager', quietly = TRUE))
 install.packages('BiocManager')

BiocManager::install("minfi")

To load the installed library we can use library("package_name")

- Some samples may contain outlier

- Some samples may contain outlier
- Similar to the NGS one in quality control we want to measure the signal detection for each sample

Quality Control in NGS

More information on interpreting:

https://hbctraining.github.io/Int ro-to-rnaseq-hpc-salmon/lesson s/qc_fastqc_assessment.html

- Some samples may contain outlier
- Similar to the NGS one in quality control we want to measure the signal detection for each sample
- We calculate the p-value of each probe

- Some samples may contain outlier
- Similar to the NGS one in quality control we want to measure the signal detection for each sample
- We calculate the p-value of each probe
- Very small p-values are indicative of a reliable signal whilst large p-values, for example >0.01, generally indicate a poor quality signal.

- Some samples may contain outlier
- Similar to the NGS one in quality control we want to measure the signal detection for each sample
- We calculate the p-value of each probe
- Very small p-values are indicative of a reliable signal whilst large p-values, for example >0.01, generally indicate a poor quality signal.
- The method used by minfi to calculate detection p-values compares the total signal (M+U) for each probe to the background signal level

- Some samples may contain outlier
- Similar to the NGS one in quality control we want to measure the signal detection for each sample
- We calculate the p-value of each probe
- Very small p-values are indicative of a reliable signal whilst large p-values, for example >0.01, generally indicate a poor quality signal.
- The method used by minfi to calculate detection p-values compares the total signal (M+U) for each probe to the background signal level
- Poor quality samples can be easily excluded from the analysis using a detection p-value cutoff, for example >0.05

 Normalisation is being done to minimise the unwanted variation within and between samples. Why?

- Normalisation is being done to minimise the unwanted variation within and between samples. Why?
- Many different types of normalisation have been developed for methylation arrays

- Normalisation is being done to minimise the unwanted variation within and between samples. Why?
- Many different types of normalisation have been developed for methylation arrays
- Several methods have been built into minfi and can be directly applied within its framework

- Normalisation is being done to minimise the unwanted variation within and between samples. Why?
- Many different types of normalisation have been developed for methylation arrays
- Several methods have been built into minfi and can be directly applied within its framework
- There is no BEST normalisation method, but a recent study by Fortin et al. (2014) has suggested that a good rule of thumb within the minfi framework to use:
 - preprocessFunnorm (for datasets with global methylation differences such as cancer/normal or vastly different tissue types,
 - whilst the preprocessQuantile function (Touleimat and Tost 2012) is more suited for datasets where you do not expect global differences between your samples, for example a single tissue.

Data Exploration

- We perform data exploration in case we want to explore more about our array data
- Maybe this way we can get new insights or new information regarding something that is not seen by our eyes (through data viz)
- Most common approach:
 - MDS (Multidimensional Scaling): Look similarity between samples
 - Samples that are very similar should be clustered together

Data Exploration

Data Exploration

Filtering

- Poor performing probes are generally filtered out prior to differential methylation analysis.
- As the signal from these probes is unreliable, by removing them we perform fewer statistical tests and thus incur a reduced multiple testing penalty.
- We filter out probes that have failed in one or more samples based on detection p-value.

Quality Control

Quality Control

Filtering

