Well-ordered Proof

Definition a set S is partially ordered if there exists a binary predicate $R: S \times S \rightarrow \{T, F\}$ satisfying a. Reflective R(x, x) = Tb. Asymmetric (R(x,y)AND R(y,x))IMPLIES (x = y)c. Transitive (R(x,y)AND R(y,z)) IMPLIES R(x,z)R is a partial order of S **Example** Some examples of partial order: $\leq : \mathbb{R} \times \mathbb{R}$ Divides: $\mathbb{Z}^+ \times \mathbb{Z}^+$ \subseteq : S (any set) $\times \mathcal{P}(S)$ $=: \mathbb{R} \times \mathbb{R}$ Some examples of not partial order: $\langle \mathbb{R} \to \mathbb{R}$ (not reflective) $\leq : \mathbb{C} \to \mathbb{C} (\forall x \in \mathbb{C}. \forall y \in \mathbb{C}. x \leq y \text{ IFF } |x| \leq |y|), \leq (-1,1) \text{ AND } \leq (1,-1) - 1 \neq 1, \text{ not}$ asymmetric **Definition** S is totally ordered if there exists a partial order R on S such that $\forall x, y \in$ S.R(x,y) ORR(y,x)**Example** $\leq : \mathbb{R} \times \mathbb{R}$ **Not** total order: Divides: $\mathbb{Z}^+ \times \mathbb{Z}^+, \subseteq : \mathcal{P}(S) \times \mathcal{P}(S)$ **Definition** a paritial order R for S is a well ordering of S, if every non-empty subset of S has a smallest element. $\forall T \in \mathcal{P}(s). \exists m \in T. \forall x \in T. R(m, x)$ **Example** $\leq : \mathbb{N} \times \mathbb{N}$ is a well-ordering, $\leq : \mathbb{Z} \times \mathbb{Z}$ is not $(\forall x \in \mathbb{Z}. \exists y \in \mathbb{Z}. y \leq x)$ Let an ordering $<^*$: $\mathbb{Z} := |x| < |y|$ OR |x| = |y| AND x < y. i.e. $0 <^* -1 <^* 1 <^* -2 <^* 2$... Let an ordering \ll : $\mathbb{Q}^+ \coloneqq$ comparing max(numerator, denumerator), then the acutal value, i.e. $\frac{1}{1} \ll \frac{1}{2} \ll \frac{2}{1} \ll \frac{1}{3} \ll \frac{2}{3} \ll \frac{3}{1}$ is a well ordering. **Well-ordering Proof** To prove $\forall e \in S$. P(e), where \ll is a well ordering of S L1 Suppose $\exists e \in S$. NOT P(e) is false (construct a contradiction) L2 Let $C = \{e \in S \mid P(e) = F\}$ be the set of counter examples L3 C \neq Ø by L1, L2 L4 Let e be the smallest element of C, e exists since S is well-ordered and $\emptyset \neq C \subseteq S$ Let $e' \in S$... L5 e' ∈ C L6 $e' \neq e$ L7 $e' \ll e$ Contradiction since e is not the smallest element of C $\forall e \in S. P(e)$ by contradiction **Theorem** Every element $\frac{m}{n} \in \mathbb{Q}^+$ can be expressed in reduced form $c = \frac{m'}{n'}$, gcd(m', n') = 1Proof Suppose $\exists \frac{m}{n} \in \mathbb{Q}^+$ that can't be expressed in reduced form.

Let $C = \left\{ m \in \mathbb{Z}^+ \ \middle| \ \exists n \in \mathbb{Z}^+ \ \text{such that} \frac{m}{n} \ \text{can't be expressed in reduced form} \right\}$ By assumption $C \neq \emptyset$ Since \mathbb{Z}^+ is well-ordered, C has the smallest element, take such m_0 By definition of C, take $n_0 \in \mathbb{Z}^+$, $\frac{m_0}{n_0}$ can't be expressed in reduced form, in particular

$$\begin{split} & \gcd(m_0,n_0) > 1 \\ & \text{Take } n_0' = \frac{n_0}{\gcd(m_0,n_0)} \in \mathbb{Z}^+, m_0' = \frac{m_0}{\gcd(m_0,n_0)} \in \mathbb{Z}^+, n_0' < n_0, m_0' < m_0 \\ & \text{Since } \frac{m_0'}{n_0'} = \frac{m_0}{n_0}, m_0' \in C. \end{split}$$

Because $m_0' < m_0, m_0' \in C$, m_0' is not the smallest element in C. Every element $\frac{m}{n} \in \mathbb{Q}^+$ can be expressed in reduced form $c = \frac{m'}{n'}$, gcd(m', n') = 1 by contradiction