



#### 250 mA ultra low noise LDO





Flip-Chip4

DFN4-1x



#### SOT23-5L

#### **Features**

- Ultra low output noise: 6.5 μV<sub>RMS</sub>
- Operating input voltage range: 1.5 V to 5.5 V
- Output current up to 250 mA
- Very low quiescent current: 12 μA at no-load
- Controlled I<sub>a</sub> in dropout condition
- Very low-dropout voltage: 250 mV at 250 mA
- Very high PSRR: 80 dB@100 Hz, 60 dB @ 100 kHz
- Output voltage accuracy: 2% across line, load and temperature
- Output voltage versions: from 1 V to 5 V, with 50 mV step
- Logic-controlled electronic shutdown
- · Output discharge feature
- Internal soft-start
- Overcurrent and thermal protections
- Temperature range: from -40 °C to +125 °C
- Packages: Flip-Chip4, DFN4-1x1, SOT23-5L

#### **Applications**

- · Smartphones/tablets
- · Image sensors
- Instrumentation
- VCO and RF modules

### Maturity status link

LDLN025

#### **Description**

The LDLN025 is a 250 mA low-dropout voltage regulator, able to work with an input voltage range from 1.5 V to 5.5 V.

The typical dropout voltage at 250 mA load is 120 mV.

The very low quiescent current, which is just 12  $\mu$ A at no-load, extends battery-life of applications requiring very long standby time.

Thanks to its ultra low noise value and high PSRR, the LDLN025 provides a very clean output, suitable for ultra-sensitive loads. It is stable with ceramic capacitors.

The enable logic control function puts the device into shutdown mode allowing a total current consumption lower than 1  $\mu$ A.

The device also includes short-circuit and thermal protection.

Typical applications are noise sensitive loads such as ADC, VCO in mobile phones and tablets, wireless LAN devices. The LDLN025 is designed to keep the quiescent current under control and at a low value also during dropout operation, extending the operating time of battery-powered devices.

Several small package options are available.



# 1 Block diagram

Figure 1. Block diagram



AMG280620171000MT

DS11756 - Rev 8 page 2/27



## 2 Pin configuration

Figure 2. Pin configuration



Table 1. Pin description

| Symbol           | DFN4-1x1    | Flip-Chip4 | SOT23-5L | Description                                                                                    |
|------------------|-------------|------------|----------|------------------------------------------------------------------------------------------------|
| V <sub>IN</sub>  | 4           | A1         | 1        | LDO Supply voltage                                                                             |
| V <sub>OUT</sub> | 1           | A2         | 5        | LDO Output voltage                                                                             |
| GND              | 2           | B2         | 2        | Ground                                                                                         |
| EN               | 3           | B1         | 3        | Enable input: set $V_{EN}$ = high to turn on the device; $V_{EN}$ = low to turn off the device |
|                  |             |            |          | This pin is internally pulled down via 1 $M\Omega$ resistor                                    |
| NC               | -           | -          | 4        | Not internally connected: can be connected to GND                                              |
| Exposed pad      | Exposed pad | -          | -        | Must be connected to GND                                                                       |

DS11756 - Rev 8 page 3/27



# 3 Typical application diagram

Figure 3. Typical application diagram



AMG010720161412MT

DS11756 - Rev 8 page 4/27



# 4 Maximum ratings

Table 2. Absolute maximum ratings

| Symbol            | Parameter                      | Value                        | Unit |
|-------------------|--------------------------------|------------------------------|------|
| V <sub>IN</sub>   | Input supply voltage           | -0.3 to 7                    | V    |
| V <sub>OUT</sub>  | Output voltage                 | -0.3 to V <sub>IN</sub> +0.3 | V    |
| I <sub>OUT</sub>  | Output current                 | Internally limited           | А    |
| EN                | Enable pin voltage             | -0.3 to V <sub>IN</sub> +0.3 | V    |
| P <sub>D</sub>    | Power dissipation              | Internally limited           | W    |
| ESD               | Charge device model            | ±1000                        | V    |
| E3D               | Human body model               | ±2000                        | V    |
| T <sub>J-OP</sub> | Operating junction temperature | -40 to 125                   | °C   |
| $T_{J-MAX}$       | Maximum junction temperature   | 150                          | °C   |
| T <sub>STG</sub>  | Storage temperature            | -55 to 150                   | °C   |

Table 3. Thermal data

| Symbol            | Parameter                                   | DFN4-1x1 | Flip-Chip4 | SOT23-5L | Unit |
|-------------------|---------------------------------------------|----------|------------|----------|------|
| R <sub>thja</sub> | Thermal resistance, junction-to-<br>ambient | 220      | 210        | 200      | °C/W |

DS11756 - Rev 8 page 5/27



### 5 Electrical characteristics

(T<sub>J</sub> = 25 °C, V<sub>IN</sub> = V<sub>OUT(nom)</sub> + 1 V or 1.5 V, whichever is greater; V<sub>EN</sub> = 1.2 V; C<sub>IN</sub> = 1  $\mu$ F; C<sub>OUT</sub> = 1  $\mu$ F; I<sub>OUT</sub> = 1 mA)

**Table 4. Electrical characteristics** 

| Symbol                                  | Parameter                               | Test conditions                                                                  | Min. | Тур.     | Max.  | Unit              |  |
|-----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|------|----------|-------|-------------------|--|
| V <sub>IN</sub>                         | Operating input voltage range           |                                                                                  | 1.5  |          | 5.5   | V                 |  |
|                                         |                                         | V <sub>OUT</sub> + 1 V < V <sub>IN</sub> < 5.5 V, <sup>(1)</sup>                 |      |          |       |                   |  |
|                                         |                                         | 1 mA < I <sub>OUT</sub> < 0.25 A, V <sub>OUT</sub> ≥ 1.8 V,                      | -2.0 |          | +2.0  |                   |  |
| \/ <del></del>                          | Output voltage accuracy                 | -40 °C < T <sub>J</sub> < 125 °C                                                 |      |          |       | 0/                |  |
| V <sub>OUT</sub>                        | (Flip-Chip package)                     | V <sub>OUT</sub> + 1 V < V <sub>IN</sub> < 5.5 V, <sup>(1)</sup>                 |      |          |       | %                 |  |
|                                         |                                         | 1 mA < I <sub>OUT</sub> < 0.25 A, V <sub>OUT</sub> < 1.8 V,                      | -3.0 |          | +3.0  |                   |  |
|                                         |                                         | -40 °C < T <sub>J</sub> < 125 °C                                                 |      |          |       |                   |  |
|                                         |                                         | V <sub>OUT</sub> + 1 V < V <sub>IN</sub> < 5.5 V, <sup>(1)</sup>                 |      |          |       |                   |  |
|                                         |                                         | 1 mA < I <sub>OUT</sub> < 0.25 A, V <sub>OUT</sub> ≥ 1.8 V,                      | -2.0 |          | +2.0  |                   |  |
| V                                       | Output voltage accuracy                 | -40 °C < T <sub>J</sub> < 125 °C                                                 |      |          |       | %                 |  |
| V <sub>OUT</sub>                        | (DFN and SOT23 packages)                | V <sub>OUT</sub> + 1 V < V <sub>IN</sub> < 5.5 V, <sup>(1)</sup>                 |      |          |       | %                 |  |
|                                         |                                         | 1 mA < I <sub>OUT</sub> < 0.25 A, V <sub>OUT</sub> < 1.8 V,                      | -4.0 | -4.0 +4. | +4.0  |                   |  |
|                                         |                                         | -40 °C < T <sub>J</sub> < 125 °C                                                 |      |          |       |                   |  |
|                                         | Static line regulation                  | V <sub>OUT</sub> + 1 V < V <sub>IN</sub> < 5.5 V <sup>(1)</sup>                  |      | 0.02     |       | %/V               |  |
| ΔV <sub>OUT</sub> /<br>ΔV <sub>IN</sub> |                                         | -40 °C < T <sub>J</sub> < 125 °C                                                 |      |          | 0.06  |                   |  |
| IIV                                     | Line transient (2)                      | $\Delta V_{IN}$ = +/- 0.6 V, $t_{rise}$ = $t_{fall}$ = 30 $\mu s$                | -1   |          | +1    | mV                |  |
|                                         | Static load regulation                  | 1 mA < I <sub>OUT</sub> < 0.25 A, V <sub>OUT</sub> ≥ 1.8 V                       |      | 0.002    |       | 0//               |  |
|                                         |                                         | -40 °C < T <sub>J</sub> < 125 °C, V <sub>OUT</sub> ≥ 1.8 V                       |      |          | 0.007 | - %/mA            |  |
| $\Delta V_{OUT}/$<br>$\Delta I_{OUT}$   |                                         | 1 mA < I <sub>OUT</sub> < 0.25 A, V <sub>OUT</sub> < 1.8 V                       |      | 20       |       | mV                |  |
|                                         | Load transient <sup>(2)</sup>           | $\Delta I_{OUT}$ = 1 mA to 250 mA and back, $t_{rise}$ = $t_{fall}$ = 10 $\mu s$ | -40  |          | +40   | mV                |  |
| $\Delta V_{OUT}$                        | Overshoot on startup <sup>(2)</sup>     | Percentage of V <sub>OUT(nom)</sub>                                              |      |          | 5     | %                 |  |
|                                         |                                         | I <sub>OUT</sub> = 0.1 A                                                         |      | 50       |       |                   |  |
|                                         |                                         | I <sub>OUT</sub> = 0.25 A                                                        |      | 120      |       | _                 |  |
| $V_{DROP}$                              | Dropout voltage <sup>(3)</sup>          | I <sub>OUT</sub> = 0.25 A, -40 °C < T <sub>J</sub> < 125 °C<br>(Flip-Chip4)      |      |          | 200   | mV                |  |
|                                         |                                         | I <sub>OUT</sub> = 0.25 A, -40 °C < T <sub>J</sub> < 125 °C (DFN4-1x1)           |      |          | 250   |                   |  |
| eN                                      | Output poigo voltago (2)                | f = 10 Hz to 100 kHz; I <sub>OUT</sub> = 1 mA                                    |      | 10       |       | μV <sub>RMS</sub> |  |
| CIN                                     | Output noise voltage (2)                | f = 10 Hz to 100 kHz; I <sub>OUT</sub> = 250 mA                                  |      | 6.5      |       | PYRMS             |  |
|                                         |                                         | f = 100 Hz; I <sub>OUT</sub> = 20 mA                                             |      | 80       |       |                   |  |
| SVR                                     | Supply voltage rejection <sup>(2)</sup> | f = 1 kHz; I <sub>OUT</sub> = 20 mA                                              |      | 80       |       | dB                |  |
|                                         | , , , , , , , , , , , , , , , , , , ,   | f = 10 kHz; I <sub>OUT</sub> = 20 mA                                             |      | 75       |       |                   |  |

DS11756 - Rev 8 page 6/27



| Symbol            | Parameter                                 | Test conditions                                                          | Min. | Тур.  | Max. | Unit |  |
|-------------------|-------------------------------------------|--------------------------------------------------------------------------|------|-------|------|------|--|
| SVR               | Supply voltage rejection <sup>(2)</sup>   | f = 100 kHz; I <sub>OUT</sub> = 20 mA                                    |      | 60    |      | dB   |  |
|                   |                                           | I <sub>OUT</sub> = 0 A                                                   |      | 12    |      |      |  |
|                   | 0                                         | I <sub>OUT</sub> = 0 A; -40 °C < T <sub>J</sub> < 125 °C                 |      |       | 25   | μA   |  |
| IQ                | Quiescent current <sup>(4)</sup>          | I <sub>OUT</sub> = 0.25 A                                                |      | 250   |      |      |  |
|                   |                                           | I <sub>OUT</sub> = 0.25 A; -40 °C < T <sub>J</sub> < 125 °C              |      |       | 425  | μA   |  |
|                   | Shutdown current                          | V <sub>EN</sub> = 0 V                                                    |      | 0.2   | 1    | μA   |  |
| I <sub>SC</sub>   | Short-circuit current                     | V <sub>OUT</sub> = 0 V                                                   | 250  | 500   |      | mA   |  |
| R <sub>LOW</sub>  | Output discharge resistance               | V <sub>EN</sub> = 0 V                                                    |      | 230   |      | Ω    |  |
|                   | V <sub>IL</sub> , enable input logic low  | V <sub>OUT</sub> + 1 V < V <sub>IN</sub> < 5.5 V -40 °C < T <sub>J</sub> |      |       | 0.4  |      |  |
| V <sub>EN</sub>   | V <sub>IH</sub> , enable input logic high | < 125 °C <sup>(1)</sup>                                                  | 1.2  |       |      | V    |  |
|                   | Fachla nin innut aumant                   | V <sub>IN</sub> = V <sub>EN</sub> = 5.5 V                                | 5.5  |       |      |      |  |
| I <sub>EN</sub>   | Enable pin input current                  | V <sub>IN</sub> = 5.5 V; V <sub>EN</sub> = 0 V                           |      | 0.001 |      | μA   |  |
| t <sub>ON</sub>   | Turn-on time <sup>(2)</sup>               | From $V_{EN} > V_{IH}$ to $V_{OUT}$ = 95 % of $V_{OUT(nom)}$             |      | 80    | 150  | μs   |  |
| Tours             | Thermal shutdown <sup>(2)</sup>           | I <sub>OUT</sub> > 1 mA                                                  |      | 160   |      | °C   |  |
| T <sub>SHDN</sub> | Hysteresis                                |                                                                          |      | 20    |      |      |  |

- 1.  $V_{IN} = V_{OUT} + 1 \text{ V or } 1.5 \text{ V}$ , whichever is greater. Not applicable for 5 V output voltage versions.
- 2. Guaranteed by design.
- 3. Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value.
- 4. The quiescent current is defined as  $I_{IN}$ - $I_{OUT}$  and does not include the EN pin current.

Table 5. Recommended input and output capacitors

| Symbol           | Parameter                | Test conditions | Min. | Тур. | Max. | Unit |
|------------------|--------------------------|-----------------|------|------|------|------|
| C <sub>IN</sub>  | Input capacitance        | Stability       | 0.7  | 1    |      | μF   |
| C <sub>OUT</sub> | Output capacitance       | Stability       | 0.7  | 1    | 10   | μΓ   |
| ESR              | Output/input capacitance |                 | 5    |      | 500  | mΩ   |

DS11756 - Rev 8 page 7/27



## 6 Typical characteristics

(The following plots are referred to LDLN025J2925R in the typical application circuit and, unless otherwise noted, at  $T_A$  = 25 °C).









DS11756 - Rev 8 page 8/27



Figure 8. Quiescent current vs. temperature (I<sub>OUT</sub> = 0 mA)



Figure 9. Quiescent current vs. temperature (I<sub>OUT</sub> = 250 mA)



Figure 10. GND current vs. input voltage



Figure 11. Off-state current vs. temperature



Figure 12. Quiescent current vs. output current



Figure 13. Quiescent current vs. output current (zoom)



DS11756 - Rev 8 page 9/27



Figure 14. Dropout voltage vs. temperature



Figure 15. Dropout voltage vs. load current



Figure 16. Output voltage vs. input voltage



Figure 17. Short circuit current vs. dropout voltage



Figure 18. Enable threshold vs. temperature



Figure 19. Stability region vs.  $C_{OUT}$  and ESR



DS11756 - Rev 8 page 10/27



Figure 20. PSRR vs. frequency (V<sub>OUT</sub> = 2.75 V)

100
80
80
40
1 mA
20mA
50mA
100mA
1 10mA
200mA
200mA
200mA
200mA
7 f [Hz]
V<sub>IN</sub> = 3.75 V + V<sub>fipple</sub>, V<sub>OUT</sub> = 2.75 V, no C<sub>IN</sub>, C<sub>OUT</sub> = 1 µF, V<sub>EN</sub> = 1.2 V
AMG010720161046MT











DS11756 - Rev 8 page 11/27







V<sub>OUT</sub>

V<sub>IN</sub>

V<sub>IN</sub>

Oh1 5.0V Oh2 2.0V M4.0.0x1.25MS/z 800ns/pt

A Ch3 x 380m V

V<sub>IN</sub> = 3.925 V, V<sub>EN</sub> = from 0 V to 3.925 V, I<sub>OUT</sub> = 0 mA, t<sub>e</sub> = 1 µs, C<sub>IN</sub> = C<sub>OUT</sub> = 1 µF (X7R)

AMG010720161052MT



DS11756 - Rev 8 page 12/27



## 7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

### 7.1 Flip-Chip4 package information

Figure 30. Flip-Chip4 package outline





BOTTOM VIEW

8387748 option F

DS11756 - Rev 8 page 13/27



Table 6. Flip-Chip4 mechanical data

| Dim.              | mm    |       |       |  |  |
|-------------------|-------|-------|-------|--|--|
| Dim.              | Min.  | Тур.  | Max.  |  |  |
| Α                 | 0.375 | 0.410 | 0.445 |  |  |
| A1                | 0.145 | 0.160 | 0.175 |  |  |
| A2 <sup>(1)</sup> | 0.230 | 0.250 | 0.270 |  |  |
| b                 | 0.189 | 0.210 | 0.231 |  |  |
| D                 | 0.598 | 0.628 | 0.658 |  |  |
| D1                |       | 0.350 |       |  |  |
| E                 | 0.598 | 0.628 | 0.658 |  |  |
| E1                |       | 0.350 |       |  |  |
| SD                |       | 0.175 |       |  |  |
| SE                |       | 0.175 |       |  |  |
| f                 |       | 0.139 |       |  |  |
| ccc               |       | 0.075 |       |  |  |

<sup>1.</sup> Including back coating.

Figure 31. Flip-Chip4 recommended footprint





DS11756 - Rev 8 page 14/27



### 7.2 Flip-Chip4\_160304-47\_carrier\_tape

Figure 32. Flip-Chip4 carrier tape



DS11756 - Rev 8 page 15/27



### 7.3 DFN4-1x1 package info

Figure 33. DFN4-1x1 package outline



DS11756 - Rev 8 page 16/27



Table 7. DFN4-1x1 package mechanical data

| Dim  | mm   |            |      |  |
|------|------|------------|------|--|
| Dim. | Min. | Тур.       | Max. |  |
| Α    | 0.34 | 0.37       | 0.40 |  |
| A1   | 0.00 | 0.02       | 0.05 |  |
| A3   |      | 0.127 REF. |      |  |
| b    | 0.17 | 0.22       | 0.27 |  |
| D    | 0.95 | 1.00       | 1.05 |  |
| E    | 0.95 | 1.00       | 1.05 |  |
| е    |      | 0.65 BSC   |      |  |
| D2   | 0.43 | 0.48       | 0.53 |  |
| E2   | 0.43 | 0.48       | 0.53 |  |
| K    | 0.15 |            |      |  |
| L    | 0.20 | 0.25       | 0.30 |  |
| N    | 4    |            |      |  |
| ND   |      | 2          |      |  |

Figure 34. DFN4-1x1 recommended footprint



DS11756 - Rev 8 page 17/27



## 7.4 DFN4\_1x1x0.38\_pitch\_4mm\_carrier\_tape

Figure 35. DFN4 (1x1x0.38 pitch 4 mm) carrier tape



DS11756 - Rev 8 page 18/27



#### 7.5 SOT23-5L mechanical data

Figure 36. SOT23-5L package outline







7049676\_k

Table 8. SOT23-5L package mechanical data

| Dim.   | mm   |      |      |  |  |
|--------|------|------|------|--|--|
| Dilli. | Min. | Тур. | Max. |  |  |
| Α      | 0.90 |      | 1.45 |  |  |
| A1     | 0    |      | 0.15 |  |  |
| A2     | 0.90 |      | 1.30 |  |  |
| b      | 0.30 |      | 0.50 |  |  |
| С      | 0.09 |      | 0.20 |  |  |
| D      |      | 2.95 |      |  |  |
| E      |      | 1.60 |      |  |  |
| е      |      | 0.95 |      |  |  |
| Н      |      | 2.80 |      |  |  |
| L      | 0.30 |      | 0.60 |  |  |
| θ      | 0°   |      | 8°   |  |  |

DS11756 - Rev 8 page 19/27



Figure 37. SOT23-5L recommended footprint



Note: Dimensions are in mm

DS11756 - Rev 8 page 20/27



# 8 Ordering information

Table 9. Order code

| Order code      | Package     | Output voltage (V) | Marking | Packing       |
|-----------------|-------------|--------------------|---------|---------------|
| LDLN025PU12R    |             | 1.2                | 12      |               |
| LDLN025PU18R    |             | 1.8                | 18      | -             |
| LDLN025PU25R    |             | 2.5                | 25      | -             |
| LDLN025PU275R   |             | 2.75               | 2Z      |               |
| LDLN025PU28R    | DFN4-1x1    | 2.8                | 28      | -             |
| LDLN025PU29R    | DFN4-1X1    | 2.9                | 29      | -             |
| LDLN025PU30R    |             | 3.0                | 30      |               |
| LDLN025PU32R    |             | 3.2                | 32      |               |
| LDLN025PU33R    |             | 3.3                | 33      | -             |
| LDLN025PU50R    |             | 5.0                | 50      |               |
| LDLN025J12R     |             | 1.2                | М       | -             |
| LDLN025J18R     |             | 1.8                | Е       | -             |
| LDLN025J25R     |             | 2.5                | Н       | -             |
| LDLN025J28R     |             | 2.8                | I       | Town and soal |
| LDLN025J29R     | Flin Chin 4 | 2.9                | S       | Tape and reel |
| LDLN025J2925R   | Flip-Chip4  | 2.925              | К       | -             |
| LDLN025J30R (1) |             | 3.0                | G       | -             |
| LDLN025J32R     |             | 3.2                | N       | -             |
| LDLN025J33R     |             | 3.3                | F       | -             |
| LDLN025J50R     |             | 5.0                | Р       |               |
| LDLN025M12R     |             | 1.2                | LN12    | -             |
| LDLN025M15R     |             | 1.5                | LN15    | 1             |
| LDLN025M18R     |             | 1.8                | LN18    | 1             |
| LDLN025M25R     | COT22 51    | 2.5                | LN25    | 1             |
| LDLN025M28R     | SOT23-5L    | 2.8                | LN28    | 1             |
| LDLN025M30R     |             | 3.0                | LN30    | 1             |
| LDLN025M33R     |             | 3.3                | LN33    | 1             |
| LDLN025M45R     |             | 4.5                | LN45    | -             |

<sup>1.</sup> Part number in development. Contact our sales office.

DS11756 - Rev 8 page 21/27



### 8.1 Marking information

Figure 38. Flip-Chip marking composition (marking view)



AMG260720161100MT

Note: the symbol # indicates the marking digit, as per Table 9. Order code.

DS11756 - Rev 8 page 22/27



## **Revision history**

Table 10. Document revision history

| Date        | Revision                                     | Changes                                                                                                         |
|-------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 03-Aug-2016 | 1                                            | First release.                                                                                                  |
| 04 Con 2016 | 2                                            | Updated Table 8: "Order code".                                                                                  |
| 01-Sep-2016 | 2                                            | Minor text changes.                                                                                             |
| 24-Oct-2016 | Updated Table 2: "Absolute maximum ratings". |                                                                                                                 |
| 24-001-2010 | 3                                            | Minor text changes.                                                                                             |
| 17-Nov-2016 | 4                                            | Updated Section 9: "Ordering information". Minor text changes.                                                  |
|             |                                              | Added SOT23-5L package.                                                                                         |
|             |                                              | Modified silhouette, features, Figure 1: "Block                                                                 |
|             |                                              | diagram", Section 2: "Pin configuration" and Table 4:                                                           |
| 12-Jul-2017 | 5                                            | "Electrical characteristics".                                                                                   |
|             |                                              | Added Section 7.5: "SOT23-5L package information".                                                              |
|             |                                              | Updated Table 9: "Order code".                                                                                  |
|             |                                              | Minor text changes.                                                                                             |
| 09-Oct-2018 | 6                                            | Added Figure 21. PSRR vs. frequency (VOUT = 1.8 V), Figure 22. PSRR vs. frequency (VOUT = 5 V), new order codes |
|             |                                              | LDLN025PU12R and LDLN025J29R in Table 9. Order code.                                                            |
| 08-May-2019 | 7                                            | Added footnote on A2 parameter in Table 6. Flip-Chip4 mechanical data                                           |
| 16-Jul-2021 | 8                                            | Update Figure 33. DFN4-1x1 package outline and Table 7. DFN4-1x1 package mechanical data                        |

DS11756 - Rev 8 page 23/27



### **Contents**

| 1   | Bloc     | ck diagram                     | 2  |  |  |  |  |  |
|-----|----------|--------------------------------|----|--|--|--|--|--|
| 2   | Pin      | Pin configuration              |    |  |  |  |  |  |
| 3   | Турі     | Typical application diagram    |    |  |  |  |  |  |
| 4   | Max      | Maximum ratings                |    |  |  |  |  |  |
| 5   | Elec     | ctrical characteristics        | 6  |  |  |  |  |  |
| 6   | Турі     | oical characteristics          | 8  |  |  |  |  |  |
| 7   | Pac      | ckage information              | 13 |  |  |  |  |  |
|     | 7.1      | Flip-Chip4 package information | 13 |  |  |  |  |  |
|     | 7.2      | Flip-Chip4 packing information | 15 |  |  |  |  |  |
|     | 7.3      | DFN4-1x1 package information   | 16 |  |  |  |  |  |
|     | 7.4      | DFN4-1x1 packing information   | 18 |  |  |  |  |  |
|     | 7.5      | SOT23-5L package information   | 19 |  |  |  |  |  |
| 8   | Ord      | lering information             | 21 |  |  |  |  |  |
|     | 8.1      | Marking information            |    |  |  |  |  |  |
| Re  | vision   | history                        | 23 |  |  |  |  |  |
| Со  | ntents   | s                              | 24 |  |  |  |  |  |
| Lis | t of ta  | ables                          | 25 |  |  |  |  |  |
| Lis | t of fig | gures                          | 26 |  |  |  |  |  |



### **List of tables**

| Table 1.  | Pin description                         | 3  |
|-----------|-----------------------------------------|----|
|           | Absolute maximum ratings                |    |
|           | Thermal data                            |    |
| Table 4.  | Electrical characteristics              | 6  |
| Table 5.  | Recommended input and output capacitors | 7  |
| Table 6.  | Flip-Chip4 mechanical data              | 14 |
| Table 7.  | DFN4-1x1 package mechanical data        | 17 |
| Table 8.  | SOT23-5L package mechanical data        | 19 |
| Table 9.  | Order code                              | 21 |
| Table 10. | Document revision history               | 23 |



# **List of figures**

| Figure 1.  | Block diagram                                                 | . 2 |
|------------|---------------------------------------------------------------|-----|
| Figure 2.  | Pin configuration                                             |     |
| Figure 3.  | Typical application diagram                                   |     |
| Figure 4.  | Output voltage vs. temperature (V <sub>IN</sub> = 3.925 V)    | . 8 |
| Figure 5.  | Output voltage vs. temperature (V <sub>IN</sub> = 5.5 V)      | . 8 |
| Figure 6.  | Load regulation vs. temperature                               | . 8 |
| Figure 7.  | Line regulation vs. temperature                               | . 8 |
| Figure 8.  | Quiescent current vs. temperature (I <sub>OUT</sub> = 0 mA)   | . 9 |
| Figure 9.  | Quiescent current vs. temperature (I <sub>OUT</sub> = 250 mA) | . 9 |
| Figure 10. | GND current vs. input voltage                                 | . 9 |
| Figure 11. | Off-state current vs. temperature                             | . 9 |
| Figure 12. | Quiescent current vs. output current                          | . 9 |
| Figure 13. | Quiescent current vs. output current (zoom)                   | . 9 |
| Figure 14. | Dropout voltage vs. temperature                               | 10  |
| Figure 15. | Dropout voltage vs. load current                              | 10  |
| Figure 16. | Output voltage vs. input voltage                              |     |
| Figure 17. | Short circuit current vs. dropout voltage                     |     |
| Figure 18. | Enable threshold vs. temperature                              |     |
| Figure 19. | Stability region vs. C <sub>OUT</sub> and ESR                 |     |
| Figure 20. | PSRR vs. frequency (V <sub>OUT</sub> = 2.75 V)                | 11  |
| Figure 21. | PSRR vs. frequency (V <sub>OUT</sub> = 1.8 V)                 | 11  |
| Figure 22. | PSRR vs. frequency (V <sub>OUT</sub> = 5 V)                   | 11  |
| Figure 23. | Noise density                                                 | 11  |
| Figure 24. | Line transient (I <sub>OUT</sub> = 1 mA)                      | 11  |
| Figure 25. | Line transient (I <sub>OUT</sub> = 250 mA)                    | 11  |
| Figure 26. | Load transient                                                | 12  |
| Figure 27. | Inrush current                                                | 12  |
| Figure 28. | Enable transient (I <sub>OUT</sub> = 0 mA)                    | 12  |
| Figure 29. | Enable transient (I <sub>OUT</sub> = 250 mA)                  | 12  |
| Figure 30. | Flip-Chip4 package outline                                    | 13  |
| Figure 31. | Flip-Chip4 recommended footprint                              |     |
| Figure 32. | Flip-Chip4 carrier tape                                       | 15  |
| Figure 33. | DFN4-1x1 package outline                                      | 16  |
| Figure 34. | DFN4-1x1 recommended footprint                                | 17  |
| Figure 35. | DFN4 (1x1x0.38 pitch 4 mm) carrier tape                       | 18  |
| Figure 36. | SOT23-5L package outline                                      | 19  |
| Figure 37. | SOT23-5L recommended footprint                                | 20  |
| Figuro 38  | Flin Chin marking composition (marking view)                  | 22  |



#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS11756 - Rev 8 page 27/27