모두를 위한 R데이터 분석 입문

Chapter 06 다중변수 자료의 탐색

목차

- 1. 산점도
- 2. 상관분석
- 3. 선그래프
- 4. 자료의 탐색 실습

Section 01 산점도

- **다중변수 자료(또는 다변량 자료):** 변수가 2개 이상인 자료
- 다중변수 자료는 2차원 형태를 나타내며, 이는 매트릭스나 데이터 프레임에 저장하여 분석
- 산점도(scatter plot): 2개의 변수로 구성된 자료의 분포를 알아보는 그래프

그림 6-1 다중변수 자료인 iris 데이터셋

1. 두 변수 사이의 산점도

■ mtcars 데이터셋에서 자동차의 중량(wt)과 연비(mpg) 사이의 관계

코드 6-1

그림 6-2 pch 값에 따른 점의 모양

■ 중량이 증가할수록 연비는 감소하는 경향 확인

2. 여러 변수들 간의 산점도

코드 6-2

```
vars <- c("mpg","disp","drat","wt") # 대상 변수
target <- mtcars[,vars]</pre>
head(target)
                                      # 대상 데이터
pairs(target,
         main="Multi Plots")
 > vars <- c("mpg","disp","drat","wt")</pre>
                                        # 대상 변수
 > target <- mtcars[,vars]</pre>
 > head(target)
                        disp drat
                   mpg
                                       wt
 Mazda RX4
                         160 3.90 2.620
                  21.0
                 21.0
 Mazda RX4 Wag
                         160 3.90
                                    2.875
 Datsun 710
                 22.8
                         108 3.85 2.320
 Hornet 4 Drive
                  21.4
                         258
                              3.08 3.215
 Hornet Sportabout 18.7
                         360
                              3.15 3.440
 Valiant
                  18.1
                         225
                              2.76 3.460
```


그림 6-3 다중 산점도의 예

3. 그룹 정보가 있는 두 변수의 산점도

- 그룹 정보를 알고 있다면 산점도를 작성 시 각 그룹별 관측값들을 다른 색깔과 점의
 모양으로 표시할 수 있음
- 이렇게 작성된 산점도는 두 변수 간의 관계뿐만 아니라 그룹 간의 관계도 파악할 수 있어서 편리

코드 6-3

> iris.2 <- iris[,3:4]</pre>

데이터 준비

```
> point <- as.numeric(iris$Species)</pre>
               # 점의 모양
> point
               # point 내용 출력
> color <- c("red", "green", "blue") # 점의 컬러
> plot(iris.2,
  main="Iris plot",
  pch=c(point),
  col=color[point])
 Iris plot
```


- Petal.Length(꽃잎의 길이)의 길이가 길 수록 Petal.Width(꽃잎의 폭)도 커짐
- setosa 품종은 다른 두 품종에 비해 꽃잎의 길이와 폭이 확연히 작음
- virginica 품종은 다른 두 품종에 비해 꽃잎의 길이와 폭이 제일 큼

Section 02 상관분석

1. 상관분석과 상관계수

- 자동차의 중량이 커지면 연비는 감소하는 추세
- 추세의 모양이 선(線, line) 모양이어서 중량과 연비는 '선형적 관계'에 있다고 표현
- 선형적 관계라고 해도 강한 선형적 관계가 있고 약한 선형적 관계도 있음
- 상관분석(correlation analysis) : 얼마나 선형성을 보이는지 수치상으로 나타낼 수 있는 방법

그림 6-4 선형적 관계에 있는 두 변수

■ 피어슨 상관계수(Pearson's correlation coefficient)

$$r = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

- $-1 \le r \le 1$
- r > 0 : 양의 상관관계(x가 증가하면 y도 증가)
- r < 0 : 음의 상관관계(x가 증가하면 y는 감소)
- r이 1이나 –1에 가까울수록 x, y의 상관성이 높음

그림 6-5 상관계수값에 따른 관측값들의 분포

2. R을 이용한 상관계수의 계산

■ 음주정도와 혈중 알콜농도의 상관성 조사

beers	5	2	9	8	3	7	3	5	3	5
bal	0.10	0.03	0.19	0.12	0.04	0.095	0.07	0.06	0.02	0.05

코드 6-4

```
> beers <- c(5,2,9,8,3,7,3,5,3,5)
                                    # 자료 입력
> bal <- c(0.1,0.03,0.19,0.12,0.04,0.0095,0.07, # 자료 입력
       0.06,0.02,0.05)
> tbl <- data.frame(beers,bal)</pre>
                             # 데이터프레임 생성
> tbl
  beers bal
     5 0.1000
1
2
     2 0.0300
3
     9 0.1900
     8 0.1200
4
5
     3 0.0400
6
     7 0.0095
7
     3 0.0700
8
     5 0.0600
9
     3 0.0200
10
     5 0.0500
```


코드 6-5

cor(iris[,1:4])

4개 변수 간 상관성 분석

```
> cor(iris[,1:4])
                                  # 4개 변수 간 상관성 분석
           Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length
              1.0000000 -0.1175698
                                      0.8717538
                                               0.8179411
Sepal.Width
            -0.1175698 1.0000000
                                     -0.4284401 -0.3661259
Petal.Length
              0.8717538 -0.4284401
                                      1.0000000 0.9628654
Petal.Width
              0.8179411 -0.3661259
                                      0.9628654
                                                 1.0000000
```

Section 03 선그래프

1. 선그래프의 작성

month	1	2	3	4	5	6	7	8	9	10	11	12
late	5	8	7	9	4	6	12	13	8	6	6	4

코드 6-6

```
month = 1:12 # 자료 입력
                          # 자료 입력
late = c(5,8,7,9,4,6,12,13,8,6,6,4)
plot(month,
                               # x data
                               # y data
       late,
                               # 제목
       main="지각생 통계",
                               # 그래프의 종류 선택(알파벳)
       type= "l",
                               # 선의 종류(line type) 선택
       Ity=1,
                           # 선의 굵기 선택
       lwd=1,
                            # x축 레이블
       xlab="Month",
       ylab="Late cnt"
                               # y축 레이블
```

```
> month = 1:12 # 자료 입력
> late = c(5,8,7,9,4,6,12,13,8,6,6,4) # 자료 입력
```

```
# x data
> plot(month,
     late,
                                         # y data
    main="지각생 통계",
                                         # 제목
+ type= "l",
                                         # 그래프의 종류 선택(알파벳)
   lty=1,
                                         # 선의 종류(line type) 선택
  lwd=1,
                                         # 선의 굵기 선택
+ xlab="Month",
                                         # x축 레이블
    ylab="Late cnt"
                                         # y축 레이블
+ )
                                     _
 Files Plots Packages Help Viewer Presentation
 🦛 📦 🔑 Zoam 📲 Expart 🔻 🧿 🥑
                  지각생 통계
   7
   9
Late cnt
   \infty
   9
          2
                         8
                              10
                                   12
                    Month
```


그림 6-6 매개변수 타입에 따른 다양한 선그래프

- 다중변수 자료의 변수 중 하나가 연월일과 같이 시간을 나타내는 값을 갖는 경우 x축을 시간 축으로 하여 선그래프를 그리면 시간의 변화에 따른 자료의 증감 추이를 쉽게 확인할 수 있음
- 시간의 변화에 따라 자료를 수집한 경우, 이를 시계열 자료(times series data)라고 함
- 선그래프는 시계열 자료의 내용을 파악하는 가장 기본적인 방법

2. 복수의 선그래프의 작성

■ 어느 학급의 월별 지각생 통계

month	1	2	3	4	5	6	7	8	9	10	11	12
late1	5	8	7	9	4	6	12	13	8	6	6	4
late2	4	6	5	8	7	8	10	11	6	5	7	3

코드 6-7

```
month = 1:12
late1 = c(5,8,7,9,4,6,12,13,8,6,6,4)
late2 = c(4,6,5,8,7,8,10,11,6,5,7,3)
plot(month,
                                    # x data
                                    # y data
         late1,
         main="Late Students",
                                    # 그래프의 종류 선택(알파벳)
         type= "b",
                                    # 선의 종류(line type) 선택
         Ity=1,
                                    # 선의 색 선택
         col="red",
                                    # x축 레이블
         xlab="Month ",
                                    # y축 레이블
         ylab="Late cnt",
                                    # y축 값의 (하한, 상한)
         ylim = c(1, 15)
```

```
lines(month, # x data
late2, # y data
type = "b", # 선의 종류(line type) 선택
col = "blue") # 선의 색 선택
```

```
> month = 1:12
> late1 = c(5,8,7,9,4,6,12,13,8,6,6,4)
> late2 = c(4,6,5,8,7,8,10,11,6,5,7,3)
> plot(month,
                                     # x data
     late1,
                                     # v data
+ main="Late Students",
  type= "b",
                                     # 그래프의 종류 선택(알파벳)
+
 lty=1,
                                     # 선의 종류(line type) 선택
+
  col="red",
                                     # 선의 색 선택
+ xlab="Month",
                                    # x축 레이블
    ylab="Late cnt",
                                    # y축 레이블
+
                                     # y축 값의 (하한, 상한)
     ylim=c(1, 15)
+
+ )
```


Section 04 자료의 탐색 실습

1. Boston Housing 데이터셋 소개

- 미국 보스턴 지역의 주택 가격 정보와 주택 가격에 영향을 미치는 여러 요소들에 대한 정보를 담고 있음
- 총 14개의 변수로 구성이 되어 있는데, 여기서는 이중에 5개의 변수만 선택하여 분석
- mlbench 패키지에서 제공

표 6-1 BostonHousing 데이터셋의 변수 설명

변수	설명					
crim	지역의 1인당 범죄율					
rm	주택 1가구당 방의 개수					
dis	보스턴의 5개 직업 센터까지의 거리					
tax	재산세율					
medv	주택 가격					

2. 탐색적 데이터 분석 과정

1.1 분석 대상 데이터셋 준비

- > library(mlbench)
- > data("BostonHousing")
- > myds <- BostonHousing[,c("crim","rm","dis","tax","medv")]</pre>

1.2 grp 변수 추가

■ grp는 주택 가격을 상(H), 중(M), 하(L)로 분류한 것으로 25.0 이상이면 상(H), 17.0 이하이면 하(L), 나머지를 중(M)으로 분류

```
> grp <- c()
> for (i in 1:nrow(myds)) {
                                          # myds$medv 값에 따라 그룹 분류
     if (myds\mbox{medv[i]} >= 25.0) {
    grp[i] <- "H"
     } else if (myds$medv[i] <= 17.0) {</pre>
    grp[i] <- "L"
+ } else {
    arp[i] <- "M"
+ }
                                          # 문자 벡터를 팩터 타입으로 변경
> grp <- factor(grp)</pre>
> grp <- factor(grp, levels=c("H","M","L")) # 레벨의 순서를 H, L, M -> H, M, L
> myds <- data.frame(myds, grp)</pre>
                                            # myds에 grp 열 추가
```

1.3 데이터셋의 형태와 기본적인 내용 파악

```
> str(myds)
'data.frame':506 obs. of 6 variables:
$ crim: num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
$ rm : num 6.58 6.42 7.18 7 7.15 ...
$ dis : num 4.09 4.97 4.97 6.06 6.06 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311 ...
$ medv: num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
$ grp : Factor w/ 3 levels "H", "L", "M": 3 3 1 1 1 1 3 1 2 3 ...
> head(myds)
    crim
               dis tax medv grp
            rm
1 0.00632 6.575 4.0900 296 24.0 M
2 0.02731 6.421 4.9671 242 21.6
3 0.02729 7.185 4.9671 242 34.7
4 0.03237 6.998 6.0622 222 33.4
5 0.06905 7.147 6.0622 222 36.2
6 0.02985 6.430 6.0622 222 28.7
> table(myds$grp)
                                               # 주택 가격 그룹별 분포
   M L
 н
132 247 127
```

1.4 히스토그램에 의한 관측값의 분포 확인

```
> par(mfrow=c(2,3))
                                    # 2x3 가상화면 분할
> for(i in 1:5) {
   hist(myds[,i], main=colnames(myds)[i], col="yellow")
+ }
   Plots Packages Help
🦛 🖐 🔑 Zoom 🔑 Export 🕶 🔘
                                   S- Publish • 3
    0 20 40 60 80
      myds[, i]
                     myds[, i]
                                   myds[, i]
                                              rm, mdev 변수만 종 모양의 정규분포에
                     medv
                                               가깝고, crim, dis는 관측값들이 한쪽으
                                              로 쏠려서 분포
                                              tax는 중간에 관측값이 없는 빈 구간이
      400 600
                   10 20 30 40 50
                                               존재하는 특징
                     myds[, i]
> par(mfrow=c(1,1))
                                   # 2x3 가상화면 분할 해제
```

1.5 상자그림에 의한 관측값의 분포 확인

1.6 그룹별 관측값 분포의 확인

주택 가격이 높은 지역이나 중간 지역의 범죄율은 낮고, 주택 가격이 낮은 지역의 범죄율이 높게 나타남

1.6 그룹별 관측값 분포의 확인

- 주택 가격이 높으면 방의 개수도 많다는 것을 알 수 있음
- 주택 가격이 중간인 지역과 하위인 지역의 방의 개수 평균은 큰 차이가 나지 않음
- 중간 그룹의 방의 개수가 5.2~6.8 사이로 비교적 균일한 반면 하위그룹의 방의 개수는 4.5~7.2 사이로 넓게 퍼져 있는 것을 알 수 있음

1.7 다중 산점도를 통한 변수 간 상관 관계의 확인

- medv(주택 가격)과 양의 상관성이 있는 변수는 rm(가구당 방의 개수)
- crim(1인당 범죄율)은 주택 가격과 음의 상관성이 있는 것으로 보임

1.8 그룹 정보를 포함한 변수 간 상관 관계의 확인

```
> point <- as.integer(myds$grp)</pre>
                                                 # 점의 모양 지정
> color <- c("red", "green", "blue")</pre>
                                                 # 점의 색 지정
> pairs(myds[,-6], pch=point, col=color[point])
      crim
                           tax
```

- (crim-medv), (rm-medv), (dis-medv), (tax-medv) 산점도에서 그룹별로 분포 위치가 뚜렷하게 구분
- 주택 가격 중간 그룹(녹색점들)은 상위 그룹(빨간색), 하위 그룹(파란색)에 비해 주택 가격의 변동폭이 좁음

1.9 변수 간 상관계수의 확인

코드 6-8

```
if (myds\medv[i] >= 25.0) {
  grp[i] <- "H"
} else if (myds$medv[i] <= 17.0) {</pre>
  grp[i] <- "L"
} else {
  grp[i] <- "M"
                                 # 문자벡터를 팩터 타입으로 변경
grp <- factor(grp)</pre>
grp <- factor(grp, levels=c("H","M","L")) # 레벨의 순서를 H,L,M -> H,M,L
myds <- data.frame(myds, grp) # myds 에 grp 컬럼추가
## (3) 데이터셋 파악 -----
str(myds)
head(myds)
                                  # 주택 가격 그룹별 분포
table(myds$grp)
```

```
## (4) histogram -----
par(mfrow=c(2,3))
                           # 2x3 가상화면 분할
for(i in 1:5) {
 hist(myds[,i], main=colnames(myds)[i], col="yellow")
                                # 2x3 가상화면 분할 해제
par(mfrow=c(1,1))
## (5) boxplot -----
                           # 2x3 가상화면 분할
par(mfrow=c(2,3))
for(i in 1:5) {
  boxplot(myds[,i], main=colnames(myds)[i])
                          # 2x3 가상화면 분할 해제
par(mfrow=c(1,1))
## (6) boxplot by group -----
boxplot(myds$crim~myds$grp, main="1인당 범죄율")
boxplot(myds$rm~myds$grp, main="방의 수")
boxplot(myds$dis~myds$grp, main="직업센터까지의 거리")
boxplot(myds$tax~myds$grp, main="재산세")
```

```
## (7) scatter plot ------
pairs(myds[,-6])

## (8) scatter plot with group ------
point <- as.integer(myds$grp) # 점의 모양 지정
color <- c("red","green","blue") # 점의 색 지정
pairs(myds[,-6], pch=point, col=color[point])

## (9) correlation coefficient ------
cor(myds[,-6])
```

Thank you!

