Let S_5 be the projective plane \mathbb{P}^2 blown up at 5 points P_1, \ldots, P_5 . Define $E_i = p^{-1}(P_i)$ for all $1 \leq i \leq 5$ where p is the blowup map. Let L be a generic line in \mathbb{P}^2 and define $E_0 = p^{-1}(L)$.

Then define $R_0 = E_0 - E_1 - E_2 - E_3$ and $R_i = E_i - E_{i+1}$ for all $1 \le i \le 4$. Note then that $R_i \cdot R_i = -2$ and $R_i \cdot K_5 = 0$ (where K_5 is the canonical divisor $-3E_0 + E_1 + E_2 + E_3 + E_4 + E_5$ on S_5) for all i.

Then define $s_i : \operatorname{Pic}S_5 \to \operatorname{Pic}S_5$ by $s_i(x) = x + (x.R_i)R_i$. These s_i generate the Weyl group W_5 . The orbits of all the R_i form a root system $\Phi_5 = \bigcup_{i=0}^4 W_5 \cdot R_i \subseteq \operatorname{Pic}S_5 \otimes_{\mathbb{Z}} \mathbb{R}$. The R_i are the simple roots of Φ_5 .

We can then form a Dynkin diagram of the root system, where each vertex represents a simple root R_i and two vertices are connected if their respective simple roots are not orthogonal (their intersection product is not 0). The Dynkin diagram for Φ_5 is known as D_5 :

A Coxeter element of W_5 is a product of s_0, \ldots, s_4 taken one at a time in any order. Since all Coxeter elements are conjugate, they have the same eigenvalues. For example, let us look at the Coxeter element $s = s_0 s_1 s_2 s_3 s_4$. Then we can construct the following table:

$$\begin{array}{c|cc} x & s(x) \\ \hline R_0 & R_1 + R_2 + R_3 \\ R_1 & R_2 \\ R_2 & R_0 + R_3 \\ R_3 & R_4 \\ R_4 & -R_0 - R_1 - R_2 - R_3 - R_4 \\ \end{array}$$

thereby giving us the following matrix:

$$s = \begin{pmatrix} 0 & 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}.$$

Then $\det(s) = -1$ and the five eigenvalues of s are $-1, \pm \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$. These all have a magnitude of 1, and so the spectral radius of s- defined to be the largest magnitude of the eigenvalues of s- is 1. Thus s has an entropy- defined as the logarithm of its spectral radius-of 0.

Next let us blow up \mathbb{P}^2 at 10 points to get the surface S_{10} , with R_i and s_i defined similarly as before. Then we can contruct the following Dynkin diagram known as E_{10} on Φ_{10} :

$$R_0$$
 $R_1 \longrightarrow R_2 \longrightarrow R_3 \longrightarrow R_4 \longrightarrow R_5 \longrightarrow R_6 \longrightarrow R_7 \longrightarrow R_8 \longrightarrow R_9$

Note that $R_i.R_j = 1$ if $i \neq j$ and R_i and R_j are connected, $R_i.R_i = -2$ and $R_i.R_j = 0$ if $i \neq j$ and R_i and R_j are not connected. This gives us a piecewise formula for each s_i :

$$s_i(R_j) = \begin{cases} R_j + R_i & i \neq j \text{ and } R_i \text{ and } R_j \text{ are connected} \\ -R_i & i = j \\ R_j & i \neq j \text{ and } R_i \text{ and } R_j \text{ are not connected} \end{cases}.$$

This helps in looking at the Coxeter element $r = s_0 s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 s_9 \in W_{10}$. We have the following table:

x	r(x)
R_0	$R_1 + R_2 + R_3$
R_1	R_2
R_2	$R_0 + R_3$
R_3	R_4
R_4	R_5
R_5	R_6
R_6	R_7
R_7	R_8
R_8	R_9
R_9	$-R_0 - R_1 - R_2 - R_3 - R_4 - R_5 - R_6 - R_7 - R_8 - R_9$

which gives us the following matrix representation:

$$r = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix}.$$

We have det(r) = 1 and the characteristic polynomial of r is

$$\chi(r) = x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1,$$

known as Lehmer's polynomial. The maximum magnitude of a root of Lehmer's polynomial is known as Lehmer's number $\lambda_L \approx 1.17628081$. Therefore r has spectral radius $\lambda_L > 1$, and so r has positive entropy.

Compare this with the Coxeter element $t = s_0 s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 \in W_9$. We have the matrix representation

$$t = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix}.$$

The characteristic polynomial of t is

$$\chi(t) = -x^9 - x^8 + x^6 + x^5 + x^4 + x^3 - x - 1 = -(x - 1)^2 (x^7 + 3x^6 + 5x^5 + 6x^4 + 6x^3 + 5x^2 + 3x + 1).$$

We have the 8 eigenvalues of t are 1 (this one occurs with multiplicity 2, hence why there are 8 eigenvalues and not 9), -1, $\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$, $-\frac{2\sqrt{5}+2}{8} \pm i \frac{\sqrt{2\sqrt{5}+2}\sqrt[4]{5}-\sqrt{2\sqrt{5}+2}\sqrt[4]{125}}{8}$, and $\frac{\sqrt{5}-1}{4} \pm i \frac{\sqrt{2\sqrt{5}+2}\sqrt[4]{5}}{4}$. All of these numbers have a magnitude of 1 (I checked), and so t has a spectral radius of 1, and so the entropy of t is 0.

Let us now return to

$$r = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

for a moment. Let us add a 1 in the corner to denote the preservation of k. We get

Our change of basis matrix from the R_i 's to the E_i 's is

and

So

From this we can see that the map corresponds to a degree-2 birational map on \mathbb{P}^2 .

In the case of blowing up 9 points, we get the change of basis matrix

converting between the bases $\{\ell, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9\}$ and $\{r_0, r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8, r_9, \ell\}$. Thus we can write

$$\ell = \ell$$

$$e_{1} = -\frac{1}{3}r_{0} + \frac{2}{3}r_{1} + \frac{1}{3}r_{2} + \frac{1}{3}\ell$$

$$e_{2} = -\frac{1}{3}r_{0} - \frac{1}{3}r_{1} + \frac{1}{3}r_{2} + \frac{1}{3}\ell$$

$$e_{3} = -\frac{1}{3}r_{0} - \frac{1}{3}r_{1} - \frac{2}{3}r_{2} + \frac{1}{3}\ell$$

$$e_{4} = -\frac{1}{3}r_{0} - \frac{1}{3}r_{1} - \frac{2}{3}r_{2} - r_{3} + \frac{1}{3}\ell$$

$$e_{5} = -\frac{1}{3}r_{0} - \frac{1}{3}r_{1} - \frac{2}{3}r_{2} - r_{3} - r_{4} + \frac{1}{3}\ell$$

$$e_{6} = -\frac{1}{3}r_{0} - \frac{1}{3}r_{1} - \frac{2}{3}r_{2} - r_{3} - r_{4} - r_{5} + \frac{1}{3}\ell$$

$$e_{7} = -\frac{1}{3}r_{0} - \frac{1}{3}r_{1} - \frac{2}{3}r_{2} - r_{3} - r_{4} - r_{5} - r_{6} + \frac{1}{3}\ell$$

$$e_{8} = -\frac{1}{3}r_{0} - \frac{1}{3}r_{1} - \frac{2}{3}r_{2} - r_{3} - r_{4} - r_{5} - r_{6} - r_{7} + \frac{1}{3}\ell$$

$$e_{9} = -\frac{1}{3}r_{0} - \frac{1}{3}r_{1} - \frac{2}{3}r_{2} - r_{3} - r_{4} - r_{5} - r_{6} - r_{7} - r_{8} + \frac{1}{3}\ell$$

But perhaps a more useful basis to use is $\langle r_0, r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8, e_7 \rangle = K^{\perp} \oplus \langle e_7 \rangle$. I will single out e_7 because in the quasielliptic fibration I'm thinking of, p_7 is the only point that is blown up once instead of twice. We get

which makes use of only integers.

Thus we can rewrite

$$\ell = r_0 + r_1 + 2r_2 + 3r_3 + 3r_4 + 3r_5 + 3r_6 + 3e_7$$

$$e_1 = r_1 + r_2 + r_3 + r_4 + r_5 + r_6 + e_7$$

$$e_2 = r_2 + r_3 + r_4 + r_5 + r_6 + e_7$$

$$e_3 = r_3 + r_4 + r_5 + r_6 + e_7$$

$$e_4 = r_4 + r_5 + r_6 + e_7$$

$$e_5 = r_5 + r_6 + e_7$$

$$e_6 = r_6 + e_7$$

$$e_7 = e_7$$

$$e_8 = -r_7 + e_7$$

$$e_9 = -r_7 - r_8 + e_7$$

The sixteen (-2)-curves we get are as follows:

$$\ell - e_1 - e_2 - e_7$$

$$2\ell - e_3 - e_4 - e_5 - e_6 - e_8 - e_9$$

$$\ell - e_3 - e_4 - e_7$$

$$2\ell - e_1 - e_2 - e_5 - e_6 - e_8 - e_9$$

$$\ell - e_5 - e_6 - e_7$$

$$2\ell - e_1 - e_2 - e_3 - e_4 - e_8 - e_9$$

$$\ell - e_7 - e_8 - e_9$$

$$2\ell - e_1 - e_2 - e_3 - e_4 - e_5 - e_6$$

$$e_1 - e_2$$

$$3\ell - 2e_1 - e_3 - e_4 - e_5 - e_6 - e_7 - e_8 - e_9$$

$$e_3 - e_4$$

$$3\ell - e_1 - e_2 - 2e_3 - e_5 - e_6 - e_7 - e_8 - e_9$$

$$e_5 - e_6$$

$$3\ell - e_1 - e_2 - e_3 - e_4 - 2e_5 - e_7 - e_8 - e_9$$

$$e_8 - e_9$$

$$3\ell - e_1 - e_2 - e_3 - e_4 - e_5 - e_6 - e_7 - 2e_8.$$

Writing these in our new basis $\langle r_0, r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8, e_7 \rangle$ yields

$$r_0 + r_3 + r_4 + r_5 + r_6 \tag{1}$$

$$2r_0 + 2r_1 + 4r_2 + 5r_3 + 4r_4 + 3r_5 + 2r_6 + 2r_7 + r_8 \tag{2}$$

$$r_0 + r_1 + 2r_2 + 2r_3 + r_4 + r_5 + r_6 \tag{3}$$

$$2r_0 + r_1 + 2r_2 + 4r_3 + 4r_4 + 3r_5 + 2r_6 + 2r_7 + r_8 \tag{4}$$

$$r_0 + r_1 + 2r_2 + 3r_3 + 3r_4 + 2r_5 + r_6 (5)$$

$$2r_0 + r_1 + 2r_2 + 3r_3 + 2r_4 + 2r_5 + 2r_6 + 2r_7 + r_8 (6)$$

$$r_0 + r_1 + 2r_2 + 3r_3 + 3r_4 + 3r_5 + 3r_6 + 2r_7 + r_8 (7)$$

$$2r_0 + r_1 + 2r_2 + 3r_3 + 2r_4 + r_5 \tag{8}$$

$$r_1$$
 (9)

$$3r_0 + r_1 + 4r_2 + 6r_3 + 5r_4 + 4r_5 + 3r_6 + 2r_7 + r_8 (10)$$

$$r_3$$
 (11)

$$3r_0 + 2r_1 + 4r_2 + 5r_3 + 5r_4 + 4r_5 + 3r_6 + 2r_7 + r_8 (12)$$

$$r_5$$
 (13)

$$3r_0 + 2r_1 + 4r_2 + 6r_3 + 5r_4 + 3r_5 + 3r_6 + 2r_7 + r_8 (14)$$

$$r_8$$
 (15)

$$3r_0 + 2r_1 + 4r_2 + 6r_3 + 5r_4 + 4r_5 + 3r_6 + 2r_7 \tag{16}$$

Notice that there is no e_7 vector present because all of these elements are in K^{\perp} . Now we want to take the free \mathbb{Z} -module $K^{\perp} = \langle r_0, r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8 \rangle$ and mod out by the space

generated by these sixteen (-2)-curves. Modding out by $\langle r_1, r_3, r_5, r_8 \rangle$ yields $\langle r_0, r_2, r_4, r_6, r_7 \rangle$. We then get from (1) and (3): $r_0 + r_4 + r_6 = r_0 + 2r_2 + r_4 + r_6 = 0$, and so $2r_2 = 0$ in the quotient.

From line (5) we also get $r_0 + 3r_4 + r_6 = 0$, and since we know $r_0 + r_4 + r_6 = 0$ from before, we get $2r_4 = 0$.

From line (4) we know that $2r_0+2r_6+2r_7=0$. From line (7) we get $r_0+r_4+3r_6+2r_7=0$, but since $r_0+r_4+r_6=0$, we get $2r_6+2r_7=0$. Since $2r_0+2r_6+2r_7=2r_6+2r_7=0$, we know $2r_0=0$.

From line (2), we know $2r_0 + 4r_4 + 2r_6 + 2r_7 = 0 = 2(r_0 + r_4 + r_6) + 2r_4 + 2r_7 = 0 + 0 + 2r_7$. Thus $2r_7 = 0$ and since $2r_7 + 2r_6 = 0$, we know $2r_6 = 0$.

Thus our group is $\langle r_0, r_2, r_4, r_6, r_7 | 2r_{0 \le i \le 7}, r_0 + r_4 + r_6 \rangle \cong (\mathbb{Z}/2\mathbb{Z})^{\oplus 4}$. We can choose representative elements:

The sixteen (-1)-curves I found are:

$$\begin{array}{c} e_2 \\ e_4 \\ e_6 \\ e_7 \\ e_9 \\ \ell - e_1 - e_3 \\ \ell - e_1 - e_5 \\ \ell - e_3 - e_5 \\ \ell - e_1 - e_8 \\ \ell - e_3 - e_8 \\ \ell - e_5 - e_8 \\ 2\ell - e_1 - e_3 - e_5 - e_7 - e_8 \\ 2\ell - e_1 - e_3 - e_5 - e_8 - e_9 \\ 2\ell - e_1 - e_2 - e_3 - e_5 - e_8 \\ 2\ell - e_1 - e_3 - e_5 - e_8 \end{array}$$

The other potential candidates for (-1)-curves are imposters because they meet some (-2)-curves negatively. For example, $(2\ell - e_1 - e_2 - e_5 - e_6 - e_8).(2\ell - e_1 - e_2 - e_5 - e_6 - e_8 - e_9) = -1$.