# Data Mining W4240 Section 001

Giovanni Motta

Columbia University, Department of Statistics

October 14, 2015

#### Outline

Classification

Logistic Functions

Logistic Regression

Optimization for Logistic Regression

Variants of Logistic Regression

Examples

#### Outline

#### Classification

Logistic Functions

Logistic Regression

Optimization for Logistic Regression

Variants of Logistic Regression

Examples

How do we answer the following questions?

- ▶ A 30 year old female arrives at the ER with chest pain and difficulty breathing. From a list of possible conditions, which one is she most likely to have?
- ► A bank has a usage history for a credit card, including transaction dates, amounts, locations, and merchant classification. Which transactions are fraudulent?
- Given a set of gene expression data for a specific tissue sample, can we tell whether that sample is normal or cancerous?

#### Setup:

- ▶ have a data set  $(x_1, y_1), \ldots, (x_n, y_n)$
- ▶ the values for  $y_1, \ldots, y_n$  are categorical
- want to fit a model to  $(x_1, y_1), \ldots, (x_n, y_n)$  so that we can predict  $y_{new}$  from  $x_{new}$

Errors are not really additive in this case:

$$Y_i = \begin{cases} g_1 & \text{with probability } p(g_1 \mid X_i = x_i) \\ \vdots & \vdots \\ g_d & \text{with probability } p(g_d \mid X_i = x_i) \end{cases}$$

We want to find a function  $\hat{f}(X)$  that solves

$$\min_{f} \mathbb{E}\left[\mathbf{1}_{\{Y \neq f(X)\}}\right] = \min_{f} \text{ prob. } f \text{ predicts wrong label}$$

Here is some credit card data from the Default dataset in ISLR. We would like to predict whether a holder will default based on balance, income, and student status.<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>Some images included from *An Introduction to Statistical Learning* by James, Witten, Hastie and Tibshirani.

So how do we solve a classification problem?

- $\triangleright$  kNN: find k nearest neighbors, pick a majority label
- ▶ I want something less flexible... what about linear models?

Idea: make categorical response numeric!

- set default equal to 1
- set not default equal to 0
- ... and then fit a linear regression model

#### Let's do this with the Default data:

```
> library(ISLR)
> names(Default)
> Default[1:5,]
> default.dummy <- rep(0,length(Default$default))</pre>
> default.dummy[Default$default=="Yes"] <- 1</pre>
> df.default <- data.frame(default = default.dummy, student = Default$student,
 + balance= Default$balance, income = Default$income )
> fit.lm.default <- lm(default~.,data=df.default)</pre>
> fit.lm.default
Call:
lm(formula = default ~ ., data = df.default)
Coefficients:
(Intercept) studentYes
 -8.118e-02 -1.033e-02
    balance
                  income
  1.327e-04 1.992e-07
```

#### Categorical Responses

Now let's make some data in R with a single covariate.

Use the function rbern() in package Rlab to get Bernoulli random variables (can also use rmultinom()):

```
> x <- rnorm(100)
> y <- rbern(100,exp(2*x)/(1+exp(2*x)))
> plot(x,y)
```



### Categorical Responses

Fit a linear model to this data...



What issues exist here?

#### Outline

Classification

Logistic Functions

Logistic Regression

Optimization for Logistic Regression

Variants of Logistic Regression

Examples

#### Categorical Responses

Idea: fit a probability of seeing  $y_i = 1$  given  $x_i = x$ 

- all output values should be between 0 and 1
- gives some notion of uncertainty



Why is this a sensible thing to do (vs linear regression)?

### Notation: Classification and Logistic Regression

There is some notational complexity here:

- ▶ We are fitting categorial data
- Our goal is classification
- lacktriangle We will fit a probability curve  $\pi(x):\mathbb{R} o [0,1]$
- ▶ So this is often called a *regression*.
- ▶ (we will shortly introduce a *logistic* curve).





#### Categorical Responses

We can do this with Default as well:



#### Model:

We get observations:

$$Y|\pi(x) \sim Bernoulli(\pi(x))$$

- ▶ Want to model  $\pi(x): \mathbb{R} \to [0,1]$
- lacksquare  $\{0,1\}$  observations are noise atop this function (like  $\epsilon_i$ )
- ▶ Log likelihood of  $\pi(x)$ :

$$\ell(\pi(x)) = y \log \pi(x) + (1 - y) \log(1 - \pi(x))$$

▶ What functions can we choose for  $\pi(x)$ ?

Idea: use linear regression!

However,

- lacktriangle outputs for linear regression are in  $(-\infty,\infty)$
- ightharpoonup outputs for this are in (0,1)

What if we map (0,1) to  $(-\infty,\infty)$ ? Enter the *logit* function.

Logit function:

$$g(x) = \log \frac{\pi(x)}{1 - \pi(x)} = \log(\pi(x)) - \log(1 - \pi(x))$$

This is a log-odds function.  $g(x):[0,1]\to\mathbb{R}$ 



#### Note:

- ightharpoonup g(x) maps probabilities to real numbers
- $ightharpoonup \pi(x)$  maps real numbers to probabilities
- Write  $\pi(x)$  as a function of g(x)
- ▶ Introducing the *logistic* function:



Where do we stand:

Logit function:

$$g(x) = \log \frac{\pi(x)}{1 - \pi(x)} = \log(\pi(x)) - \log(1 - \pi(x))$$

- ▶ We can pick a function with  $(-\infty, \infty)$  range for g(x)...
- lacktriangle ...and there is a corresponding  $\pi(x)$  that behaves as we wish.
- ▶ Hence we call the logit function a *link* function.
- ► Ideas?
- ► We will model the log odds as **linear** in the covariates:

$$\log \frac{\pi(x)}{1 - \pi(x)} = g(x) = \beta_0 + \sum_{j=1}^{p} \beta_j x_j$$

#### Outline

Classification

Logistic Functions

Logistic Regression

Optimization for Logistic Regression

Variants of Logistic Regression

Examples

We will model the log odds as **linear** in the covariates:

$$\log \frac{\pi(x)}{1 - \pi(x)} = g(x) = \beta_0 + \sum_{j=1}^{p} \beta_j x_j$$

What does this mean?

- ▶ the *odds* is the ratio between heads and tails:  $\frac{\pi(x)}{1-\pi(x)}$
- ▶ linear assumption: a one unit increase in  $x_j$  produces a  $\beta_j$  unit increase in  $\log \frac{\pi(x)}{1-\pi(x)}$
- linear assumption: (equivalent) a one unit increase in  $x_j$  multiplies the odds by  $\underline{e}^{\beta_j}$
- ▶ note: rate of change in  $\pi(x)$  per unit of X depends on X!

 $\pi(x)$  is sometimes easier to think about than  $\log \frac{\pi(x)}{1-\pi(x)} = g(x)$ 

To get from  $\log \frac{\pi(x)}{1-\pi(x)}$  to  $\pi(x)$ , we use the *logistic function*,

$$\pi(x) = \frac{e^{g(x)}}{1 + e^{g(x)}}$$

$$= \frac{1}{e^{-g(x)} + 1}$$

$$= \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}$$

$$= \frac{1}{e^{-\beta_0 - \beta_1 x_1 - \dots - \beta_p x_p} + 1}$$



Logit (left) and logistic (right) functions

Let's return to this credit card data from the Default dataset in ISLR. We would like to predict whether a holder will default based on balance, income, and student status.



$$\hat{g}(x) = \hat{\beta}_0 + \hat{\beta}_1 X$$

$$\hat{\pi}(x) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}}$$

$$\begin{split} \hat{\pi}(\underbrace{\texttt{default} = \texttt{Yes}|\texttt{student} = \texttt{Yes}}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431 \\ \hat{\pi}(\texttt{default} = \texttt{Yes}|\texttt{student} = \texttt{No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292 \end{split}$$

Let's try to understand what these coefficients mean.

|              | Coefficient | Std. error | Z-statistic | P-value  |
|--------------|-------------|------------|-------------|----------|
| Intercept    | -3.5041     | 0.0707     | -49.55      | < 0.0001 |
| student[Yes] | 0.4049      | 0.1150     | 3.52        | 0.0004   |

How does student status affect default probability?

- > mean(df.default\$default[df.default\$student=="Yes"])
  [1] 0.04313859
- > mean(df.default\$default[df.default\$student=="No"])
  [1] 0.02919501

What does the logistic regression say?

Let's try to understand what these coefficients mean.

|              | Coefficient | Std. error | Z-statistic | P-value  |
|--------------|-------------|------------|-------------|----------|
| Intercept    | -10.8690    | 0.4923     | -22.08      | < 0.0001 |
| balance      | 0.0057      | 0.0002     | 24.74       | < 0.0001 |
| income       | 0.0030      | 0.0082     | 0.37        | 0.7115   |
| student[Yes] | -0.6468     | 0.2362     | -2.74       | 0.0062   |





#### Outline

Classification

Logistic Functions

Logistic Regression

Optimization for Logistic Regression

Variants of Logistic Regression

Examples

Model:

$$\pi(x_i) \mid x_i = \frac{e^{\beta_0 + \sum_{j=1}^{p} \beta_j x_{i,j}}}{1 + e^{\beta_0 + \sum_{j=1}^{p} \beta_j x_{i,j}}}$$
$$y_i \mid \pi(x_i) \sim Bernoulli(\pi(x_i))$$

#### So how do we find $\hat{\beta}$ ?

Use maximum likelihood

$$\begin{split} \ell(\beta) &= \sum_{i=1}^{n} y_{i} \log \left( \frac{e^{\beta_{0} + \sum_{j=1}^{p} \beta_{j} x_{i,j}}}{1 + e^{\beta_{0} + \sum_{j=1}^{p} \beta_{j} x_{i,j}}} \right) + (1 - y_{i}) \log \left( \frac{1}{1 + e^{\beta_{0} + \sum_{j=1}^{p} \beta_{j} x_{i,j}}} \right) \\ \hat{\beta} &= \arg \max_{\beta} \sum_{i=1}^{n} y_{i} \log \left( \frac{e^{\beta_{0} + \sum_{j=1}^{p} \beta_{j} x_{i,j}}}{1 + e^{\beta_{0} + \sum_{j=1}^{p} \beta_{j} x_{i,j}}} \right) + (1 - y_{i}) \log \left( \frac{1}{1 + e^{\beta_{0} + \sum_{j=1}^{p} \beta_{j} x_{i,j}}} \right) \end{split}$$

Set

$$p(x_i; \beta) = \frac{e^{\beta_0 + \sum_{j=1}^p \beta_j x_{i,j}}}{1 + e^{\beta_0 + \sum_{j=1}^p \beta_j x_{i,j}}}$$

Then, simplify

$$\ell(\beta) = \sum_{i=1}^{n} \{ y_i \log p(x_i; \beta) + (1 - y_i) \log(1 - p(x_i; \beta)) \}$$
$$= \sum_{i=1}^{n} \{ y_i \beta^T x_i - \log(1 + e^{\beta^T x_i}) \}$$

As usual, take the derivate and set equal to 0

$$\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i=1}^{n} x_i (y_i - p(x_i; \beta)) = 0$$

 $(p+1 \text{ equations that are } non-linear \text{ in } \beta)$ 

How do we find a solution?

- problem is still convex...
- use Newton-Raphson method

#### General idea:

- want to find x such that f(x) = 0
- ightharpoonup start at point  $x_0$
- ▶ approximate root by  $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$
- repeat approximation

### Newton-Raphson Method



### Newton-Raphson Method



Want to find roots for the p+1 equations

$$\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i=1}^{n} x_i (y_i - p(x_i; \beta)) = 0$$

We need to take the second derivative! (Find the Hessian)

$$\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T} = -\sum_{i=1}^n x_i x_i^T p(x_i; \beta) (1 - p(x_i; \beta))$$

Update:

$$\beta^{new} = \beta^{old} - \left(\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T}\right)^{-1} \frac{\partial \ell(\beta)}{\partial \beta}$$

with derivatives evaluated at  $\beta^{old}$ 

Let's look at

$$\frac{\partial \ell(\beta)}{\partial \beta} = \left[\frac{\partial \ell(\beta)}{\partial \beta_0}, \frac{\partial \ell(\beta)}{\partial \beta_1}\right]^T$$



Newton-Raphson:  $x^{new} = x^{old} - f''(x^{old})^{-1}f'(x^{old})$ . Some of those slopes for f' look close to 0...

What could go wrong?

- log likelihood is <u>concave</u>, so we cannot get stuck in local optimum
- matrix inversion can get problematic when some eigenvalues are close to 0
- algorithm might not terminate (overshooting)
- anything else?

Consider data x=(-5,-4,-3,-2,-1,1,2,3,4,5) and y=(0,0,0,0,1,1,1,1,1)



It can be shown that the ML estimate for  $\beta_0$  is 0. The log likelihood for  $\beta_1$  is...



#### Outline

Classification

Logistic Functions

Logistic Regression

Optimization for Logistic Regression

Variants of Logistic Regression

Examples

### Probit Regression

Problem: no easy solution to

$$\hat{\beta} = \arg\max_{\beta} \sum_{i=1}^{n} y_{i} \log \left( \frac{e^{\beta_{0} + \sum_{j=1}^{p} \beta_{j} x_{i,j}}}{1 + e^{\beta_{0} + \sum_{j=1}^{p} \beta_{j} x_{i,j}}} \right) + (1 - y_{i}) \log \left( \frac{1}{1 + e^{\beta_{0} + \sum_{j=1}^{p} \beta_{j} x_{i,j}}} \right)$$

## We can also choose a link function where there is an easier solution!

Use a *probit* function:

$$\pi(x) = \Phi(x\beta) = \int_{-\infty}^{x\beta} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dt$$

Note:  $\Phi(x)$  is the cumulative density function for a <u>Gaussian</u> distribution, so if  $X \sim N(0,1)$ ,

$$\Phi(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dt$$

### Probit Regression

Model:

$$\pi(x_i) \mid x_i = \Phi(x\beta)$$
  
 $y_i \mid \pi(x_i) \sim Bernoulli(\pi(x_i))$ 

Model fitting: use maximum likelihood

$$\ell(\beta) = \sum_{i=1}^{n} y_i \log (\Phi(x\beta)) + (1 - y_i) \log (1 - \Phi(x\beta))$$

$$\hat{\beta} = \arg \max_{\beta} \sum_{i=1}^{n} y_i \log (\Phi(x\beta)) + (1 - y_i) \log (1 - \Phi(x\beta))$$

Not a closed form solution, but finding optimal value is sometimes easier

### Logit vs Probit Link Functions



### Logistic vs Probit Regression

| Logistic Regression                                                                                          | <b>Probit Regression</b>            |  |  |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|
| $\pi(x) = \frac{e^{\beta_0 + \sum_{j=1}^p \beta_j x_{i,j}}}{1 + e^{\beta_0 + \sum_{j=1}^p \beta_j x_{i,j}}}$ | $\pi(x) = \Phi(\underline{x}\beta)$ |  |  |
| Heavier tails for $\pi(x)$                                                                                   | Lighter tails for $\pi(x)$          |  |  |
| Harder inference for $\hat{eta}$                                                                             | Easier inference for $\hat{\beta}$  |  |  |

- logistic regression is more robust to outliers
- inference with probit regression is easier when there is collinearity, etc

### Multinomial Logistic Regression

Say we have K categories instead of 2; use category K as the base variable

The new link function is defined by

$$P(Y_i = 1 \mid x) = \frac{e^{x\beta_{(1)}}}{1 + \sum_{k=1}^{K-1} e^{x\beta_{(k)}}}$$
.....
$$P(Y_i = K - 1 \mid x) = \frac{e^{x\beta_{(K-1)}}}{1 + \sum_{k=1}^{K-1} e^{x\beta_{(k)}}}$$

$$P(Y_i = K \mid x) = \frac{1}{1 + \sum_{k=1}^{K-1} e^{x\beta_{(k)}}}$$

Solution method for  $\hat{\beta}$  is similar to that for logistic regression

#### Outline

Classification

Logistic Functions

Logistic Regression

Optimization for Logistic Regression

Variants of Logistic Regression

Examples

#### Logistic Regression in R

Load South African Heart Disease data from *Elements of Statistical Learning* website

- predict whether patient has coronary heart disease from 9 predictors
- predictors: systolic blood pressure (sbp), cumulative tobacco use in kg (tobacco), LDL cholesterol (ldl), adiposity index (adiposity), family history of heart disease (present or absent, famhist), type-A behavior (typea), obesity given by BMI (obesity), current alcohol consumption (alcohol), age or age at onset (age)

```
> heart.df <- read.csv("heart.csv", header = TRUE)
> names(heart.df)
[1] "sbp"     "tobacco" "ldl"     "adiposity"
[5] "famhist" "typea"     "obesity" "alcohol"
[9] "age"     "chd"
```

#### Logistic Regression in R

To do logistic regression, we use the glm() function:

```
> attach(heart.df)
> fit.logit <- glm(chd ~ sbp + tobacco + ldl + adiposity + famhist</pre>
+ typea + obesity + alcohol + age, family="binomial")
> fit.logit$coefficients
   (Intercept)
                         sbp
                                    tobacco
-6.1507208650 0.0065040171 0.0793764457
          1d1
                   adiposity famhistPresent
  0.1739238981 0.0185865682 0.9253704194
                     obesity
                                    alcohol
        typea
  0.0395950250 -0.0629098693 0.0001216624
          age
  0.0452253496
```

#### Logistic Regression in R

We can also use the glm( ) function to do probit regression:

```
> fit.probit <- glm(chd ~ sbp + tobacco + ldl + adiposity</pre>
+ famhist + typea + obesity + alcohol + age,
family=binomial(link = "probit"))
> fit.probit$coefficients
   (Intercept)
                         sbp
                                    tobacco
  -3.570182373 0.003789357
                                0.048219814
          1d1
                   adiposity famhistPresent
  0.102828873 0.012395619 0.538979697
                     obesity
                                    alcohol
        typea
  0.023555723
                -0.040162007
                                0.000019549
          age
  0.026269371
```