Лабораторная работа №1

Установка и конфигурация операционной системы на виртуальную машину

Ишанова А.И. группа НФИ-02-19

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы 4.1 Установка ОС	7 7 17
5	Вывод	21
6	Библиография	22

List of Figures

4.1	Создание новой виртуальной машины	7
4.2	Выбор объема памяти	8
4.3		8
4.4	Выбор типа виртуального жесткого диска	9
4.5	Выбор формата виртуального жесткого диска	0
4.6	Выбор имени виртуального жесткого диска	1
4.7	Подклбчение дистрибутива к виртуальной машине	2
4.8	Настройка языка	3
4.9	Настройка пути установки	4
4.10	Настройка корневого пароля	4
4.11	Настройка пользователя	5
4.12	Настройка интернета	5
	Настройка установки программ	6
4.14	Отключение КDUMP	6
4.15	Процесс устанвоки	7
	Использование команды dmesg	8
	Использование команды dmesg less	8
	Использование команды grep -i "ключевое слово"	9
4.19	Использование команды grep -i "ключевое слово" (2)	9
4.20	Использование команд df -Th и findmnt	0

1 Цель работы

Установка ОС на Virtual Вох для дальнейшего использования в ходе прохождения курса.

2 Задание

- 1. Установить ОС на Virtual Box.
- 2. Получите следующую информацию.
 - 1. Версия ядра Linux (Linux version).
 - 2. Частота процессора (Detected Mhz processor).
 - 3. Модель процессора (CPU0).
 - 4. Объем доступной оперативной памяти (Memory available).
 - 5. Тип обнаруженного гипервизора (Hypervisor detected).
 - 6. Тип файловой системы корневого раздела.
 - 7. Последовательность монтирования файловых систем. [1]

3 Теоретическое введение

Виртуальная машина (VM, от англ. virtual machine) — программная и/или аппаратная система, эмулирующая аппаратное обеспечение некоторой платформы (guest — гостевая платформа) и исполняющая программы для guest-платформы на host-платформе (host — хост-платформа, платформа-хозяин) или виртуализирующая некоторую платформу и создающая на ней среды, изолирующие друг от друга программы и даже операционные системы; также спецификация некоторой вычислительной среды. [2]

VirtualBox (Oracle VM VirtualBox) — программный продукт виртуализации для операционных систем Windows, Linux, FreeBSD, macOS, Solaris/OpenSolaris, ReactOS, DOS и других. [3]

4 Выполнение лабораторной работы

4.1 Установка ОС

Предварительно были скачаны Virtual Box (и установлена) и дистрибутив Rocky.

1. Создаем новую виртуальную машину. (fig. 4.1)

Figure 4.1: Создание новой виртуальной машины

2. Настариваем. (fig. 4.2 - fig. 4.6)

Figure 4.2: Выбор объема памяти

Figure 4.3: Выбор подключения виртуального жесткого диска

Figure 4.4: Выбор типа виртуального жесткого диска

Создать виртуальный жёсткий диск

Укажите формат хранения

Пожалуйста уточните, должен ли новый виртуальный жёсткий диск подстраивать свой размер под размер своего содержимого или быть точно заданного размера.

Файл **динамического** жёсткого диска будет занимать необходимое место на Вашем физическом носителе информации лишь по мере заполнения, однако не сможет уменьшиться в размере если место, занятое его содержимым, освободится.

Файл **фиксированного** жёсткого диска может потребовать больше времени при создании на некоторых файловых системах, однако, обычно, быстрее в использовании.

Figure 4.5: Выбор формата виртуального жесткого диска

Figure 4.6: Выбор имени виртуального жесткого диска

3. В настройках виртуальной машины в носители ставим дистрибутив Linux. (fig. 4.7)

Figure 4.7: Подклбчение дистрибутива к виртуальной машине

4. Запускаем вируальную машину. Ставим параметры установки и устанавливаем ОС. (fig. 4.8 - fig. 4.15)

Figure 4.8: Настройка языка

Figure 4.9: Настройка пути установки

Figure 4.10: Настройка корневого пароля

Figure 4.11: Настройка пользователя

Figure 4.12: Настройка интернета

Figure 4.13: Настройка установки программ

Figure 4.14: Отключение KDUMP

Figure 4.15: Процесс устанвоки

4.2 Поиск информации через терминал

1. Перезагружаем виртуальную машину после установки. Открывваем терминал. Применяем команды dmesg и dmesg | less. (fig. 4.16 - fig. 4.17)

```
\odot
                               aiishanova@aiishanova:~
                                                                    Q
                                                                         ×
[aiishanova@aiishanova ~]$ dmesg
    0.000000] Linux version 5.14.0-70.13.1.el9 0.x86 64 (mockbuild@dal1-prod-bu
ilder001.bld.equ.rockylinux.org) (gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9),
GNU ld version 2.35.2-17.el9) #1 SMP PREEMPT Wed May 25 21:01:57 UTC 2022
    0.0000000] The list of certified hardware and cloud instances for Red Hat En
terprise Linux 9 can be viewed at the Red Hat Ecosystem Catalog, https://catalog
.redhat.com.
    0.0000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-70.13.1.el9_
0.x86 64 root=/dev/mapper/rl-root ro resume=/dev/mapper/rl-swap rd.lvm.lv=rl/roo
t rd.lvm.lv=rl/swap rhgb quiet
    0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point regi
sters'
     0.0000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
     0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
     0.000000] x86/fpu: xstate offset[2]: 576, xstate sizes[2]: 256
    0.0000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes,
using 'standard' format.
     0.000000] signal: max sigframe size: 1776
    0.000000] BIOS-provided physical RAM map:
    0.000000] BIOS-e820: [mem 0x00000000000000-0x0000000009fbff] usable
    0.000000] BIOS-e820: [mem 0x0000000009fc00-0x0000000009ffff] reserved
     0.000000] BIOS-e820: [mem 0x000000000100000-0x000000007ffeffff] usable
     0.000000] BIOS-e820: [mem 0x000000007fff0000-0x00000007ffffffff] ACPI data
```

Figure 4.16: Использование команды dmesg

Figure 4.17: Использование команды dmesg | less

2. Начинаем поиск информации с помощью команд grep | -і "ключевое слово".

```
[aiishanova@aiishanova ~]$ dmesg
                                                                  less
[aiishanova@aiishanova ~]$ dmesg
                                                             | grep -i "Linux version"
[ 0.000000] Linux version 5.14.0-70.13.1.el9_0.x86_64 (mockbuild@dal1-prod-builder001.bld.equ.rockylinux.org) (gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9),
GNU ld version 2.35.2-17.el9) #1 SMP PREEMPT Wed May 25 21:01:57 UTC 2022
[aiishanova@aiishanova ~]$ dmesg | grep -i "Detected Mhz processor"
[aiishanova@aiishanova ~]$ dmesg | grep -i "Detected"
        shanova@allsnamore
0.000000] Hypervisor detected: KVM
0.000000] tsc: Detected 2419.198 MHz processor
         0.282944] hub 1-0:1.0: 12 ports
        0.337918] hub 2-0:1.0: 12 ports detected
1.064168] systemd[1]: Detected virtualization oracle
1.064177] systemd[1]: Detected architecture x86-64.
                                                                 virtualization oracle.
         1.600814] Warning: Unmaintained hardware is d
                                                                                                           : e1000:100E:8086 @ 06
00:00:03.0
         3.105218] systemd[1]: Detected virtualization oracle.
3.105225] systemd[1]: Detected architecture x86-64.
         4.259775] intel_rapl_msr: PL4 support
[aiishanova@aiishanova ~]$ dmesg | grep -i "CPUO"
[ 0.155349] smpboot: CPU0: 11th Gen Intel(R) Core(Tmily: 0x6, model: 0x8c, stepping: 0x1)
[aiishanova@aiishanova ~]$ dmesg | grep -i "available"
[ 0.001345] On node 0, zone DMA: 1 pages in unavail
[ 0.001407] On node 0, zone DMA: 97 pages in unavail
[ 0.002406] On node 0, zone DMA32: 16 pages in unavail
                                                  <mark>UO</mark>: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz (fa
                                                                                                            e ranges
[ 0.002874] [mem 0x800000000-0xfebfffff] available for PCI devices
[ 0.028744] Memory: 260860K/2096696K available (14345K kernel code, 5945K rwd
ata, 9052K rodata, 2548K init, 5460K bss, 144312K reserved, 0K cma-reserved)
[ 1.828528] [TTM] Zone kernel: Available graphics memory: 1007150 KiB
 [aiishanova@aiishanova ~]$ S
```

Figure 4.18: Использование команды grep | -i "ключевое слово"

```
[aiishanova@aiishanova ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] <mark>Hypervisor detected:</mark> KVM
```

Figure 4.19: Использование команды grep | -i "ключевое слово" (2)

3. Для поиска информации о файловых системах используем команды df -Th и findmnt. (fig. 4.20)

```
[aiishanova@aiishanova ~]$ df
.
Filesystem
                                     Used Avail Use% Mounted on
                               Size
                     Type
                                           954M
devtmpfs
                     devtmpfs
                               954M
                                        0
                                                   0% /dev
tmpfs
                     tmpfs
                               984M
                                        0
                                            984M
                                                   0% /dev/shm
tmpfs
                     tmpfs
                               394M
                                     6.1M
                                            388M
                                                   2% /run
/dev/mapper/rl-root xfs
                                                  14% /
                                37G
                                     5.1G
                                            32G
/dev/sda1
                     xfs
                              1014M
                                     235M
                                            780M
                                                  24% /boot
                     tmpfs
                               197M
                                            197M
                                                   1% /run/user/1000
tmpfs
                                       96K
[aiishanova@aiishanova ~]$
                            findmnt
TARGET
                              SOURCE
                                          FSTYPE
                                                  OPTIONS
                              /dev/mapper/rl-root
                                          xfs
                                                  rw, relatime, seclabel, attr2, inode
                                                  rw,nosuid,nodev,noexec,relatime
                              proc
  /proc
                                          proc
  __/proc/sys/fs/binfmt_misc systemd-1
                                          autofs
                                                  rw,relatime,fd=31,pgrp=1,timeout
                              sysfs
                                          sysfs
                                                  rw,nosuid,nodev,noexec,relatime,
   -/sys/kernel/security
                              securityfs securit rw,nosuid,nodev,noexec,relatime
    /sys/fs/cgroup
                                          cgroup2 rw,nosuid,nodev,noexec,relatime,
                              cgroup2
   -/sys/fs/pstore
                              pstore
                                          pstore rw, nosuid, nodev, noexec, relatime,
   /sys/fs/bpf
                                                  rw,nosuid,nodev,noexec,relatime,
                              none
                                          bpf
                              selinuxfs
   -/sys/fs/selinux
                                          selinux rw,nosuid,noexec,relatime
   -/sys/kernel/debug
                              debugfs
                                          debugfs rw,nosuid,nodev,noexec,relatime,
    /sys/kernel/tracing
                              tracefs
                                          tracefs rw, nosuid, nodev, noexec, relatime,
    -/sys/fs/fuse/connections
                              fusectl
                                          fusectl rw, nosuid, nodev, noexec, relatime
   -/sys/kernel/config
                              configfs
                                          configf rw,nosuid,nodev,noexec,relatime
                              devtmpfs
  /dev
                                          devtmpf rw,nosuid,seclabel,size=976208k,
                                                  rw, nosuid, nodev, seclabel, inode64
   -/dev/shm
                              tmpfs
                                          tmpfs
    -/dev/pts
                              devpts
                                          devpts
                                                  rw,nosuid,noexec,relatime,seclab
   -/dev/mqueue
                              mqueue
                                          mqueue
                                                  rw, nosuid, nodev, noexec, relatime,
                                          hugetlb rw,relatime,seclabel,pagesize=2M
   -/dev/hugepages
                              hugetlbfs
                              tmpfs
                                          tmpfs
                                                  rw, nosuid, nodev, seclabel, size=40
  /run
                                                  rw,nosuid,nodev,relatime,seclabe
   /run/user/1000
                                          tmpfs
                              tmpfs
    └/run/user/1000/gvfs
                              gvfsd-fuse fuse.gv rw,nosuid,nodev,relatime,user_id
  /boot
                              /dev/sda1
                                         xfs
                                                  rw,relatime,seclabel,attr2,inode
[aiishanova@aiishanova ~]$ S
```

Figure 4.20: Использование команд df -Th и findmnt

5 Вывод

В ходе выполнения лабораторной работы была установлена новая ОС на новую виртуальную машину. Так была найдена следующая информация:

- версия ядра Linux 5.14.0-70.13.1.el0_0.x86_64
- частота процессора 2419.198 МГц
- модель процессора 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40Ghz
- обьем доступной оперативной памяти 260860К/20966969К
- тип обнаруженного гипервизора KVM
- тип файловой системы корневого раздела xfs
- последовательность монтирования файловых систем

6 Библиография

- 1. Методические материалы курса.
- 2. Wikipedia: Виртуальная машина. (https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D1%80%D
- 3. Wikipedia: Virtual Box. (https://ru.wikipedia.org/wiki/VirtualBox)