WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/57, 9/54, C07K 3/08 // (C12N 9/54, C12R 1:07)

(11) International Publication Number:

WO 92/21760

A1

US

(43) International Publication Date:

10 December 1992 (10.12.92)

(21) International Application Number:

PCT/US92/04306

(22) International Filing Date:

21 May 1992 (21.05.92)

(30) Priority data:

706,691

29 May 1991 (29.05.91)

•

(71) Applicant: COGNIS, INC. [US/US]; 2330 Circadian Way, Santa Rosa, CA 95407 (US).

(72) Inventors: CHRISTIANSON, Teresa; 208 Eucalyptus Avenue, Cotati, CA 94931 (US). GODDETTE, Dean; 806 Carlita Circle, Rohnert Park, CA 94928 (US). LAD-IN, Beth, Frances; 4836 Fernglen Drive, Santa Rosa, CA 95405 (US). LAU, Maria, R.; 3177 Serra Court, Fairfield, CA 94533 (US). PAECH, Christian; 2803 Audubon Court, Santa Rosa, CA 95403 (US). REYNOLDS, Robert, B.; 412 Corlano Avenue, Santa Rosa, CA 95404 (US). WILSON, Charles, R.; 2323 Pacheco Place, Santa Rosa, CA 95401 (US). YANG, Shiow-Shong; 1108 Navarro Street, Santa Rosa, CA 95401 (US).

(74) Agent: DRACH, John, E.; Henkel Corporation, 140 Germantown Pike, Suite 150, Plymouth Meeting, PA 19002 (US).

(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent), SE (European patent).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: MUTANT PROTEOLYTIC ENZYMES FROM BACILLUS

(57) Abstract

Mutant B. lentus DSM 5483 proteases are derived by the replacement of at least one amino acid residue of the mature form of the B. lentus DSM 5483 alkaline protease. The mutant proteases are expressed by genes which are mutated by site-specific mutagenesis. The amino acid sites selected for replacement are identified by means of a computer based method which compares the three dimensional structure of the wild-type protease and a reference protease.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT.	Austria	FI	Finland	MI	Mali
AU	Amtralia	FR	France	MN	Mongolia
RB	Barbados	GA	Ciabon	MR	Mauritanja
		GB	United Kingdom	MW	Malawi
BE	Belgrom	GN	Guinea	NI.	Netherlands
. BF	Burkina Faso	GR	Greece	NO	Norway
BG	Bulgaria			PL	Poland
BJ	Benin	HU	Hungary	RO	Romania
BR	Brazil	IE	Ireland	· RU	Russian Federation
CA	Canada .	ıT	Italy		
CF	Central African Republic	JP	Japan	SD	Sudan
CC.	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland	•	of korea	SN	Senegal
Ci	Côte d'Ivoire	KR	Republic of Korea	· SU	Soviet Union
CM	Cameroon	u	Liechtenstein	TD	Chad .
-	Czerhoslovakia	LK	Sri Lanka	TG	Togo
CS.	•	LU	Luxembourg	US	United States of America
ÐE	Cierniany		Монасо		
DK	Denmark	MC		•	
ES	Spain	MG	Madagascar		

MUTANT PROTEOLYTIC ENZYMES FROM BACILLUS

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to mutant proteolytic enzymes having improved properties relative to the wild-type enzyme, to genetic constructs which code for the mutant proteolytic enzymes, to methods of predicting mutations which enhance the stability of the enzyme, and to methods of producing the mutant proteolytic enzymes.

2. Description of the Related Art

Subtilisins are a family of extracellular proteins having molecular weights in the range of 25,000-35,000 daltons and are produced by various Bacillus species. These proteins function as peptide hydrolases in that they catalyze the hydrolysis of peptide linkages in protein substrates at neutral and alkaline pH values. Subtilisins are termed serine proteases because they contain a specific serine residue which participates in the catalytic hydrolysis of peptide substrates. A subtilisin enzyme isolated from soil samples and produced by Bacillus lentus for use in detergent formulations having increased protease and oxidative stability over commercially available enzymes under conditions of pH 7 to 10 and at temperature of 10 to 60°C in aqueous solutions has been disclosed in copending patent application serial number 07/398,854, filed on

20

5

10

15

10

15

20

25

30

35

8/25/89. This B. lentus alkaline protease enzyme (BLAP, vide infra) is obtained in commercial quantities by cultivating a Bacillus licheniformis ATCC 53926 strain which had been transformed by an expression plasmid which contained the wild type BLAP gene and the B. licheniformis ATCC 53926 alkaline protease gene promoter.

Industrial processes generally are performed under physical conditions which require highly stable enzymes. Enzymes may be inactivated by high temperatures, pH extremes, oxidation, and surfactants. Even though Bacillus subtilisin proteases are currently used in many industrial applications, including detergent formulations, stability improvements are still needed. Market trends are toward more concentrated detergent powders, and an increase in Increased shelf stability liquid formulations. oxidative stability, with retention of catalytic efficiency It is therefore desirable to isolate novel are needed. enzymes with increased stability, or to improve the including subtilisin stability of existing enzymes, proteases such as BLAP.

The stability of a protein is a function of its three dimensional structure. A protein folds into a three dimensional conformation based upon the primary amino acid sequence, and upon its surrounding environment. The function and stability of a protein are a direct result of its three dimensional structure.

A large body of information has been published which describes changes in enzyme properties as a result of alterations in the primary amino acid sequence of the enzyme. These alterations can result from random or site specific alterations of the gene which expresses the enzyme using genetic engineering techniques. Random approaches mutagenize total cellular DNA, followed by selection for the synthesis of an enzyme with improved properties. This approach requires neither knowledge of the three dimensional structure of the enzyme, nor any predictive capability on the part of the researcher. Site directed

10

15

20

25

30

35

mutagenesis, on the other hand, requires a rational approach for the introduction of amino acid changes. this approach one or more amino acids may be replaced by other residues by altering the DNA sequence which encodes accomplished be This can. protein. the oligonucleotide directed in vitro mutagenesis. teach site-directed mutagenesis references following amino acid specific generate to procedures used substitution(s): Hines, J.C., and Ray, D.S. (1980) Gene 11:207-218; Zoller, M.J., and Smith, M. (1982) Nucleic Acids Res. 10:6487-6500; Norrander, J., et al. (1983) Gene 26:101-106; Morinaga, Y., et al. (1984) Bio/Technology 2:636-639; Kramer, W., et al. (1984) Nucleic Acids Res. 12:9441-9456; Carter, P., et al. (1985) Nucleic Acids Res. 13:4431-4443; Kunkel, T.A. (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Bryan, P., et al. (1986) Proc. Natl. Acad. Sci. USA 83:3743-3745.

A rational approach may or may not require knowledge of a protein's structure. For example, patent application WO 89/06279 describes the comparison of the primary amino acid sequence of different subtilisins while contrasting differences in physical and chemical properties. The primary amino acid sequences of the different subtilisins are aligned for the greatest homology, while taking into account amino acid insertions, deletions, and total number of amino acids.

Currently, the amino acid sequences of at least 10 subtilisin proteases have been published. Eight of these subtilisins were isolated from species of Bacilli, and include subtilisin 168 (Stahl, M.L., and Ferrari, E. (1984) J. Bacteriol. 158:411-418), subtilisin BPN'(Vasantha, N., et al., (1984) J. Bacteriol. 159:811-819), subtilisin Carlsberg (Jacobs, M., et al. (1985) Nucleic Acids Res. 13:8913-8926), subtilisin DY (Nedkov, P., et al. (1985) Biol. Chem. Hoppe-Seyler 366:421-430), subtilisin amylosacchariticus (Kurihara, M., et al. (1972) J.Biol. Chem. 247:5619-5631), subtilisin mesenticopeptidase

10

15

20

25

30

(Svendsen, I., et al. (1986) FEBS Lett. 196:228-232), subtilisin 147 and subtilisin 309 (Hastrup et al. (1989) WO 89/06279), subtilisin PB92 (Van Eekelen et al. (1989) EP 0328229), and subtilisin BLAP (Ladin, B., et al. (1990). Society for Industrial Microbiology Annual Meeting, Abstract P60). The remaining two subtilisin sequences are thermitase from the fungus Thermoactinomyces vulgaris (Meloun, B., et al. (1985) FEBS Lett. 183:195-200), and proteinase K from the fungus Tritirachium album limber (Jany, K.-D., and Mayer, B. (1985) Biol. Chem. Hoppe-Seyler 366:485-492).

Methods for obtaining optimum alignment of homologous proteins are described in Atlas of Protein Sequence and Structure, Vol. 5, Supplement 2 (1976) (Dayhoff, M.O., ed., Natl. Biomed. Res. Found., Silver Springs, MD). This comparison is then used to identify specific amino acid alterations which might produce desirable improvements in the target enzyme. Wells, J.A., et al. (1987) Proc. Natl. USA 84:1219-1223, used primary sequence Sci. alignment to predict site directed mutations which affect the substrate specificity of a subtilisin. alignment approach WO 89/06279 teaches the construction of mutant subtilisins having improved properties including an increased resistance to oxidation, increased proteolytic activity, and improved washing performance for laundry Patent applications WO 89/09819, detergent applications. and WO 89/09830 teach improvement in the thermal stability of subtilisin BPN' by the introduction of one or more amino acid changes based on the alignment of the primary amino acid sequences of subtilisin BPN' with the more thermal stable subtilisin Carlsberg. From hereon, amino acids will . be referred to by the one or three letter code as defined in Table 1.

TABLE 1

One and Three Letter Code for Amino Acids

A = Ala = Alanine

C = Cys = Cysteine

5 D = Asp = Aspartic acid or aspartate

E = Glu = Glutamic acid or glutamate

F = Phe = Phenylalanine

G = Gly = Glycine

H = His = Histidine

10 I = Ile = Isoleucine

K = Lys = Lysine

L = Leu = Leucine

M = Met = Methionine

N = Asn = Asparagine

15 P = Pro = Proline

o = Gln = Glutamine

R = Arg = Arginine

s = Ser = Serine

T = Thr = Threonine

20 V = Val = Valine

25

30

35

W = Trp = Tryptophan

Y = Tyr = Tyrosine

Rational mutational approaches may also predict mutations which improve an enzyme property based upon the three dimensional structure of an enzyme, in addition to the alignment of primary amino acid sequences described above. One method for determining the three dimensional structure of a protein involves the growing of crystals of the protein, followed by X-ray crystallographic analysis. This technique has been successfully used to determine several high resolution subtilisin structures such as thermitase (Teplyakov, A.V., et al. (1990) 214:261-279), subtilisin BPN' (Bott, R., et al. (1988) J. Biol. Chem. 263:7895-7906) and subtilisin Carlsberg (Bode, W., et al. (1986) EMBO J. 5:813-818), for example.

EP 0251446 teaches the construction of mutant carbonyl hydrolases (proteases) which have at least one property

10

15

20

25

30

35

5

different from the parental carbonyl hydrolase. ·It describes mutations which effect (either improve decrease) oxidative stability, substrate specificity, catalytic activity, thermal stability, alkaline stability, pH activity profile, and resistance to autoproteolysis. These mutations were selected for introduction Bacillus amyloliquefaciens subtilisin BPN' after alignment of the primary sequences of BPN' and proteases from B. subtilis, B. licheniformis, and thermitase. Such alignment can then be used to select amino acids in these other proteases which differ, as substitutes for the equivalent amino acid in the B. amyloliquefaciens carbonyl This application also describes alignment on the basis of a 1.8 Å X-ray crystal structure of the B. amyloliquefaciens protease. Amino acids in the carbonyl hydrolase of B. amyloliquefaciens which when altered can affect stability, substrate specificity, or catalytic and Met222 for Met50, Met124, efficiency include: oxidative stability; Tyr104, Ala152, Glu156, Gly169, Phe189, and Tyr217 for substrate specificity; N155 alterations were found to decrease turnover, and lower Km; Asp36, Ile107, Lys170, Asp197, Ser204, Lys213, and Met222 for alkaline stability; and Met199, and Tyr21 for thermal stability. Alteration of other amino acids was found to affect multiple properties of the protease. this category are Ser24, Met50, Asp156, Gly166, Gly169, and Substitution at residues Ser24, Met50, Ile107, Glu156, Gly166, Gly169, Ser204, Lys213, Gly215, and Tyr217 was predicted to increase thermal and alkaline stability. An important point about this patent application is that with the exception of those mutations effecting substrate specificity, no rational mutational approach for improving the alkaline or temperature stability of a protease based upon computer simulations of an X-ray crystal structure is described.

WO 88/08028 teaches a method for redesigning proteins to increase stability by altering amino acid residues that

10

15

20

25

30

35

are in close proximity to the protein's metal ion binding This application describes the alteration of a site. calcium ion binding site present within subtilisin BPN' through the substitution, insertion, or deletion of amino acid residue(s) in close proximity to that site so that the electrostatic attraction between the amino acids and the The characterization of the calcium ion is increased. calcium ion binding site is accomplished through the analysis of a 1.3 Å three dimensional structure of subtilisin BPN' using a high resolution computer graphics This approach allows the selection of amino acids acceptable for replacing the native amino acids in the protease by first simulating the change using the computer model. This allows for the identification of any problems including steric hindrance prior to the actual construction and testing of the mutant proteases.

US patents 4908773 and 4853871 teach a computer based method for evaluating the three dimensional structure of a protein to select amino acid residues where the introduction of a novel disulfide bond will potentially stabilize the protein. Potentially acceptable amino acid residues can then be ranked, and replaced using computer simulation, prior to the actual construction of the mutant protein using site directed mutagenesis protocols.

Several patent applications combine published data on biochemical stability with computer analysis of three dimensional protease structures in order to predict mutations which stabilize the enzyme. US 4,914,031 and WO 88/08033 and WO 87/04461 teach a method for improving the pH and thermal stability of subtilisin aprA by replacing asparagine residues present in asparagine/glycine pairs. Asparagine/glycine pairs in proteins have been shown to cyclization to form cyclic imide undergo anhydroaspartylglycine (Bornstein, P., and Balian, G. (1977) Methods Enzymol. 47:132-145). This cyclic imide is susceptible to base hydrolyzed cleavage leading to inactivation of the enzyme. Computer analysis of the three

10 ...

15

20

25

30

35

dimensional structure of the aprA protease also predicted that formation of the cyclic imide could lead to protease inactivation resulting from a shift of the side chain of the active site serine. The decision to replace the asparagine residue and not the glycine residue was based upon alignment of the aprA sequence with other subtilisinlike enzymes, cucumisin and proteinase K.

Sensitivity to oxidation is an important deficiency of serine proteases used in detergent applications (Stauffer, C.E., and Etson, D. (1969) J. Biol. Chem. 244:5333-5338). EP 0130756, EP 0247647, and US 4,760,025 teach a saturation mutation method where one or multiple mutations are introduced into the subtilisin BPN' at amino acid residues Asp32, Asn155, Tyr104, Met222, Gly166, His64, Ser221, Gly169, Glu156, Ser33, Phe189, Tyr217, and/or Ala152. Using this approach mutant proteases exhibiting improved oxidative stability, altered substrate specificity, and/or altered pH activity profiles are obtained. A method is taught in which improved oxidative stability is achieved by substitution of methionine, cysteine, tryptophan, and These publications also teach that lysine residues. mutations within the active site region of the protease are also most likely to influence activity. Random or selected mutations can be introduced into a target gene using the experimental approach but neither EP 0130756, EP 0247647, nor US 4,760,025 teach a method for predicting amino acid alterations which will improve the thermal or surfactant stability of the protease.

WO 8705050 teaches a random mutagenesis approach for construction of subtilisin mutants exhibiting enhanced thermal stability. One or more random mutations are introduced into single stranded target DNA using the chemical mutagens sodium bisulfite, nitrous acid, and formic acid. Subsequently, the mutated DNA is transformed into a Bacillus host and at least 50,000 colonies are screened by a filter assay to identify proteases with improved properties. Site directed mutagenesis can then be

10

15

20

25

30

35

used to introduce all possible mutations into a site identified through the random mutagenesis screen. No method for pre selection of amino acids to be altered is taught.

EP 0328229 teaches the isolation and characterization of PB92 subtilisin mutants with improved properties for laundry detergent applications based upon wash test results. It teaches that biochemical properties are not reliable parameters for predicting enzyme performance in the wash. Methods for selection of mutations involve the substitution of amino acids by other amino acids in the (polar, nonpolar, aromatic, category. aliphatic, and neutral), the substitution of polar amino acids asparagine and glutamine by charged amino acids, and increasing the anionic character of the protease at sites not involved with the active site. No method for identifying which specific amino acids should be altered is taught, and no rational mutational approach is taught which is based on alignment of X-ray structures of homologous proteases with different properties.

mutants with altered transesterification rate/hydrolysis rate ratios and nucleophile specificities by changing specific amino acid residues within 15 Å of the catalytic triad. Russell, A.J., and Fersht, A.R. (1987) Nature 328:496-500, and Russell, A.J., et al. (1987) J. Mol. Biol. 193:803-813, teach the isolation of a subtilisin BPN' mutant (D099S) that had a change in the surface charge 14-15 Å from the active site. This substitution causes an effect on the pH dependence of the subtilisin's catalytic reaction.

There are a number of different strategies for increasing protein stability. Many of these methods suggest types of substitutions to improve the stability of a protein but do not teach a method for identifying amino acid residues within a protein which should be substituted. From entropic arguments, many types of substitutions have

10

15

20

25

30

35

been suggested such as Gly to Ala and any amino acid to Pro (Matthews, B.W., et al. (1987) Proc. Natl. Acad. Sci. 84:6663-6667). Likewise, while it is clear that increasing the apolar size of an amino acid in the core will add to stability, adverse packing effects may more than compensate for the hydrophobic effect, resulting in a decrease in protein stability (Sandberg, W.S., and Terwilliger, T.C. (1989) Science 245:54-57). Menéndez-Arias, L., and Argos, Mol. Biol. 206:397-406, performed a J. statistical evaluation of amino acid substitutions of thermophilic and mesophilic molecules and proposed that decreased flexibility and increased hydrophobicity in the α -helical regions contributes most towards increasing protein stability. From their data, they formulated a set of empirical rules to improve stability.

Increasing the hydrophobicity of certain side chains has long been suggested as a means to improve protein The hydrophobic exclusion of nonpolar amino acids is the largest force driving protein folding. This has been studied by examining the partitioning of amino acids or amino acid analogs from water to a hydrophobic While the numbers vary depending on the work, medium. these studies generally agree that burying a hydrophobic side chain increases protein stability. For example, Kellis, J.T., Jr., et al. (1988) Nature 333:784-786, estimated that the removal of a methyl group destabilizes the enzyme by 1.1 kcal/mole assuming no other structural perturbations occur. Conversely, this predicts that the addition of a methylene group should add 1.1 kcal/mol if no unfavorable contacts occur. Similarly, Sandberg, W.S., and Terwilliger, T.C. (1989) Science 245:54-57, showed that the effect of removing or adding methylene groups is the sum of the hydrophobic effect and structural distortions. Simply adding buried hydrophobic groups may not increase protein stability because the total effect of adding or deleting a methyl group on the local packing structure must be considered. As the protein interior has a para-crystalline

10

15

20

25

30

35

structure (Chothia, C. (1975) Nature 254:304-308), small distortions in the remainder of the structure resulting from the addition methyl group may exact a high cost and reduce rather than increase stability.

Along the same lines, the core of λ repressor has been shown to be amazingly tolerant to apolar amino acid substitutions in a functional assay (Bowie, J.U., et al. (1990) Science 247:1306-1310). It is not clear that this is true for larger proteins. The constraints on the hydrophobic core of a small protein may be less stringent than a larger protein simply due to the volume of the core relative to the number of amino acids which need to pack into the region. As the volume of the hydrophobic core increases, the number of amino acids which must pack together correctly increases, requiring more specific nonlocal interactions.

It has been recognized that increasing the interior hydrophobicity of a protein as a means of increasing the stability is hampered by the difficulty of determining which positions in the protein will lead to stabilization when substituted (Sandberg, W.S., and Terwilliger, T.C. (1991) Trends Biotechnol. 9:59-63). The methods discussed above provide a means of determining what substitutions to make to improve stability but do not identify which sites in the protein are most important. The present invention provides a method of determining which positions in the protein will lead to stabilization when substituted.

SUMMARY OF THE INVENTION

Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein are to be understood as modified in all instances by the term "about".

The native or wild-type protease from which the mutant proteases according to the invention are derived is a B. lentus alkaline protease (BLAP) obtained from B. lentus DSM 5483 having 269 amino acid residues, a molecular mass

15

20

25

30

35

of 26,823 daltons, and a calculated isoelectric point of 9.7 based on standard pK values. The BLAP gene is obtained by isolating the chromosomal DNA from the B. lentus strain DSM 5483, constructing DNA probes having homology to putative DNA sequences encoding regions of the B. lentus protease, preparing genomic libraries from the isolated chromosomal DNA, and screening the libraries for the gene of interest by hybridization to the probes.

Mutant B. lentus DSM 5483 proteases have been made which are derived by the replacement of at least one amino acid residue of the mature form of the B. lentus DSM 5483 alkaline protease. The sites for replacement are selected from the group consisting of Ser3, Val4, Ser36, Asn42, Ala47, Thr56, Thr69, Glu87, Ala96, Ala101, Ile102, Ser104, Asn114, His118, Ala120, Ser130, Ser139, Thr141, Ser142, Ser157, Ala188, Val193, Val199, Gly205, Ala224, Lys229, Ser236, Asn237, Asn242, His243, Asn255, Thr268. The replacement amino acid residues are listed in Table 2. The numbering of the mutant proteases is based on the B. lentus DSM 5483 wild-type protease as given in the SEQ ID NO:52.

Genes which express the mutant B. lentus DSM 5483 proteases according to the invention are made by altering one or more codons of the wild-type B. lentus DSM 5483 alkaline protease gene which encode for a protease derived by accomplishing at least one of the amino acid substitutions listed in Table 2.

The protease sites listed in Table 2 are sites predicted to affect thermal and surfactant stability relative to the wild-type protease. These sites are identified by means of a computer based method which compares the three dimensional structure of the wild-type protease (henceforth, the target protein) and a homologous protease (henceforth, the reference protein). The three dimensional coordinates of the wild-type protease are probed with an uncharged probe molecule to produce a probe-accessible surface which has an external surface the

10

15

20

25

30

35

interior of which contains one or more probe-accessible internal cavities. The amino acids of the reference protein having side chains lying outside the solvent-accessible surface or inside the internal cavities of the target protein are identified by aligning the three dimensional coordinates of the target protein and the reference protein.

Proteins having greater thermal and surfactant stability are produced by replacing the amino acid in the target protein if the amino acid in the target protein can be changed without creating unacceptable steric effects. The amino acid in the target protein is altered by site directed mutagenesis of the gene which expresses the target protein.

Genetic constructs are made which contain in the direction of transcription a promoter, ribosomal binding site, initiation codon and the major portion of the pre region of the Bacillus licheniformis ATCC 53926 alkaline protease gene operably linked to a portion of the pre region and all of the pro and mature regions of the Bacillus lentus DSM 5483 alkaline protease gene followed by bp DNA fragment containing the transcription terminator from the ATCC 53926 alkaline protease gene. The Bacillus lentus DSM 5483 alkaline protease gene is altered to produce a mutant gene which encodes for a protease derived by accomplishing at least one of the amino acid substitutions listed in Table 2. Mutant protease is made by fermenting a Bacillus strain transformed with a genetic construct containing a mutated Bacillus lentus DSM 5483 alkaline protease gene.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows the atomic coordinates for Bacillus lentus alkaline protease (BLAP) to 1.4 Å resolution.

Figure 2 shows the restriction map for plasmid pCB13C which contains a hybrid gene fusion between the Bacillus licheniformis ATCC 53926 protease gene and the Bacillus lentus DSM 5483 BLAP gene. The promoter, ribosomal binding

15

20

25

30

site and presequence (P-53926) from ATCC 53926 were fused to the pro- and mature sequence of the BLAP gene. The transcription terminator of ATCC 53926 (T-53926) was appended to the BLAP coding region.

Figure 3 shows the restriction map for plasmid pMc13C which is derived from pMac5-8 and contains the BLAP gene and carries an amber mutation in the Ap^R gene which renders it inactive.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

One aspect of the invention relates to mutant proteolytic enzymes which have superior thermal stability and surfactant stability relative to the wild-type protease as determined by laboratory tests. The mutant proteases according to the invention are those derived by the replacement of at least one amino acid residue of the mature Bacillus lentus DSM 5483 alkaline protease wherein said one amino acid residue which is selected from the group consisting of Ser3, Val4, Ser36, Asn42, Ala47, Thr56, Thr69, Glu87, Ala96, Ala101, Ile102, Ser104, Asn114, His118, Ala120, Ser130, Ser139, Thr141, Ser142, Ser157, Ala188, Val193, Val199, Gly205, Ala224, Lys229, Ser236, Asn237, Asn242, His243, Asn255, Thr268 is replaced with the amino acid residues listed in Table 2. Table 2 shows the identity and position of the wild-type amino acid and the amino acid residue(s) which replace it in the mutant protein. For example, the first entry in Table 2 shows Ser3, a serine residue at position 3 which can be replaced by threonine (abbreviated as T using the one letter code for amino acids) or any small amino acid. A small amino acid is defined as glycine, alanine, valine, serine, threonine or cysteine. A small hydrophobic amino acid is defined as glycine, alanine, threonine, valine or isoleucine. A charged amino acid is defined as lysine,

arginine, histidine, glutamate or aspartate. abbreviation a.a. stands for "amino acid" residue.

••••

TABLE 2

*	Residue	Replacement Amino Acid
5	Ser3	T or any small, hydrophobic a.a.
	Val4	I, S or any small a.a.
	Ser36	A, T or any small a.a.
	Ser42	F, A, T, V, I, Y
	Ala47	W or any small a.a. except A
10	Thr56	v, s or any small, hydrophobic a.a.
	Thr69	R, A or any charged a.a.
	Glu87	R, M or any charged a.a.
	Ala96	I, N, S or any small, hydrophobic a.a.
	Ala101	T, S or any small, hydrophobic a.a.
15	Ile102	W or any small a.a. except P
	Ser104	T or any small, hydrophobic a.a.
	Asn114	s, Q or any small, hydrophobic a.a.
	His118	F or any a.a. except P and W
	Ala120	V or any small, hydrophobic a.a.
20	Ser130	A, T or any small, hydrophobic a.a.
•	Ser139	A, T, Y or any a.a. except P and W
	Thr141	W or any a.a. except P
	Ser142	A, T or any small, hydrophobic a.a.
	Ser157	T or any small, hydrophobic a.a.
25	Ala188	P or any small, hydrophobic a.a.
	Val193	M or any small, hydrophobic a.a.
	Val199	I or any small, hydrophobic a.a.
•	Gly205	V or any small, hydrophobic a.a.
	Ala224	V or any small, hydrophobic a.a.
30	Lys229	W or any a.a. except P
	Ser236	A, T or any small, hydrophobic a.a.
	Asn237	A, N, Q, M or any small, hydrophobic a.a.
	Asn242	A, N, Q, M or any small, hydrophobic a.a.
	His243	A, N, Q, M or any small, hydrophobic a.a.
35	Asn255	P or any small, hydrophobic a.a.
	Thr268	V or any small, hydrophobic a.a.

10

The amino acid sequences of the preferred proteolytic enzymes are given in SEQ ID NO:1 to SEQ ID NO:51. The preferred mutated B. lentus DSM 5483 proteases which are encoded for by genes according to the invention as disclosed above are given in SEQ ID NO: 53 to 105. These proteases are produced by bacterial strains which have been transformed with plasmids containing a native or hybrid gene, mutated at one or more nucleotide base pairs by known mutagenesis methods. These mutant genes encode for proteases in which selected amino acid residues have been substituted for by other amino acids.

The mutant proteases according to the invention are listed in Table 3.

	IISted In Instant				
	Tab	le 3	a L ! !	: CDC	cashille.
15	Mutation		re Stabil		Stability
	•	· ·	60°C,	pH 10.5,	•
		pH 11.0	pH 10.0	50°C	50°C
		th (min)	th (min)	th (min)	th(min)
20					
	S3T, V4I, A188P, V193H, V199I	120	67	3.2	12
	S3T, A188P, V193M, V199I	95	60	3.75	18.5
	V4I, A188P, V193M, V199I	72	39	1.75	3.75
	5139Y, A188P, V193H, V199I	69	· 33	1.4	4.6
25	S130T, S139Y, A188P, V193M, V199I	64	22	2	6.3
	A188P, V193H, V199I	55	23.5	3.0	12.5
	S3T, A188P, V193H	54	21	1.5	3.4
	S157T	52	17.5	1.2	0.95
	A188P, V193M	50	27	2.5	7.25
30	A188P	48	19	1.4	2.8
30		43	21	1.4	3.7
	S3T, V4I, A188P, V193M	42	16.6	1.2	3.0
	V193M	42	8	1.0	1.8
	S104T	41	12.3	0.8	1.8
	T69V	40	19	1.25	2.7
35	V4I, A188P, V193M	39	15	0.9	1.1
	A224V	38.5	11.6	1.0	2.0
	V199I	32.5	10	0.75	1.0
	V4I		6.6	1.2	2.8
	S3T	32		1.0	2.0
40	S139Y	26	8.8	0.9	1.9
	N242A	26	7.4	_	
	S236T	25.5	8.4	1.0	2.0
	S36A	23.8	8.6	0.9	1.8

35

TABLE 4 (cont.)

Muh ih kon					Temperature Stability SDS Stabil				
	Mutation			50°C, 60°C,		pH 10.5, pH 8.6,			
						pH 11.0	pH 10.0	50°C	50°C
	•			•		th (min)	-	th (min)	th (min)
							(/		
			•				•		
	H243A					23	5.9	0.8	1.7
	A101T					·· 23	4.7	0.5	2.75
	S236A					23	5.1	0.8	1.3
	E87R				. *	22.5	9.0	0.4	1.2
5	N114S		•		٠.	22	7.9	1.1	1.3
	A47W	*				21	7.2	0.9	1.05
	A1205		•			20.5	8.4	0.9	1.4
	T56V			·		20	8.5	0.8	0.7
	A120V			•		20	11.8	0.65	1.9
10	G205V					20	6.8	1.1	2.8
	S130A					20	8.8	0.4	1.0
	S130T					20	7.2	0.4	1.1
	A96I		•			19	12	1.0	1.4
	S104T,	5139Y.	A224V			18	9.5	1.0	1.8
15	S139A					18.5	7.8	0.5	0.8
	S142T					17.5	11.5	0.9	1.7
	S139T					16.5	4.3	0.5	0.8
	1102W	•				16.5	7.2	0.7	1.6
	A96N	٠			•	16	6	0.9	0.95
20	N42F		• . •			16	5.9	1.0	1.4
20	S142A					16	9	1.0	1.7
	H118F					15.8	5.1	1.0	1.3
	N237A		:			15	7.8	0.67	1.3
	N255P				•	15.0	5.3	1.2	1.25
25	T141W,	W2372				14	5.4	0.33	1.1
25	T268V				÷	14	3.8	0.75	1.1
	1208V K229W					13.4	4.6	1.0	1.4
	T141W				•	12	6.5	0.6	1.4
					•	12.0	3.0	0.8	1.6
	wildtyp	- C				,	- · ·		

Any of the proteases listed in Table 3 will exhibit greater stability in some manner than the wild-type protease BLAP. The entries under the "Mutation" heading of Table 3 shows the identity of the wild-type amino acid (using the one letter code), its position, and the amino acid which

10

15

20

25

30

35

replaces it in the mutant protease. For example, S3T signifies that the serine at position 3 of the mature protease is replaced with a threonine. Some of the preferred mutant proteases are single replacements at specific locations such as a protease wherein valine at position 4 is replaced by isoleucine to specific combinations of replacements such as a protease wherein threonine at position 141 is replaced by tryptophan and asparagine at position 237 is replaced by alanine. The latter protease containing two replacements is one of only a number of possibilities.

The preferred mutant proteases according to the invention are identified as: (S3T, V4I, A188P, V193M, V199I); E87R; (S3T, A188P, V193M, V199I); N114S; (V4I, A188P, V193M, V199I); A47W; (S139Y, A188P, V193M, V199I); A188P, V193M, V199I); S139Y, (S130T, A120S; A120V; (A188P, V193M, V199I); G205V; (S3T, A188P, V193M); S130T; S157T; A96I; (S104T, S139Y, A224V); S139A; S142T; S139T; I102W; V193M; A96N; N42F; S142A; H118F; N237A; N255P; (T141W, N237A); T268V; K229W; T141W; (A188P, V193M); V4I; S3T; S139Y; N242A; S236T; S36A; H243A; A101T; S236A; A188P; (S3T, V4I, A188P, V193M); V193M; S104T; T69V; (V4I, A188P, V193M); A224V; V199I. The system used to designate the above preferred proteases first lists the amino acid residue in the mature form of the B. lentus DSM 5483 alkaline protease at the numbered position followed by the replacement amino acid residue using the one letter codes for amino acids. For example, V193M is a protease in which valine has been replaced by methionine at position 193 of the mature B. lentus DSM 5483 alkaline protease. A protease identified by more than designation is a mutant protease which contains all of the indicated substitutions. For example, (A188P, V193M) is a protease in which valine has been replaced by methionine at position 193 of the mature B. lentus DSM 5483 protease and alanine at position 188 has been replaced by proline.

15

20

25

30

35

Mutant forms of the B. lentus DSM 5483 alkaline protease are prepared by site-specific mutagenesis of DNA encoding the mature form of either wild-type BLAP, or a The DNA fragment encoding the mature form of wild type BLAP was prepared using plasmid pCB13C. Plasmid hybrid fusion between contains a B. licheniformis ATCC 53926 protease gene and the B. lentus DSM 5483 BLAP gene, shown in Figure 2. Specifically, this hybrid fusion contains DNA encoding the promoter, ribosomal binding site, and 21 residues of the pre sequence from the ATCC 53926 protease gene fused to a DNA sequence encoding the last five residues of the BLAP pre sequence and all of the pro and mature residues of BLAP. This fusion is referred to as the ClaI fusion because this restriction site is located at the juncture between the ATCC 53926 and DSM 5483 DNA's. A new ClaI restriction site had to be introduced into the ATCC 53926 alkaline protease gene near to the junction of the pre and pro sequences. site was introduced into the ATCC 53926 alkaline protease gene by using a polymerase chain reaction (PCR) to amplify a DNA fragment containing sequence information from the Nterminal part of the ATCC 53926 alkaline protease gene. The amplified fragment included the ATCC 53926 alkaline ribosomal binding site, initiation protease promoter, codon, and most of the pre sequence. This 292 bp DNA fragment was flanked by AvaI and ClaI restriction sites at its 5' and 3' ends, respectively. The BLAP gene already contained a naturally occurring ClaI site Analysis of the DNA sequence corresponding position. across the fusion of the ATCC 53926 and BLAP genes confirmed the expected DNA and amino acid sequences.

Before any mutagenesis can be carried out, the gene is subcloned into the mutagenesis vector pMa5-8. This is accomplished by synthesizing a DNA fragment containing the ClaI fusion gene and the ATCC 53926 transcription terminator as a SalI cassette using the PCR. The PCR was carried out using conditions as described by the

10

15

20

25

30

35

manufacturer (Perkin Elmer Cetus, Norwalk, CT.). PCR, two synthetic oligonucleotides bearing SalI sites are used as primers and Escherichia coli vector pCB13C DNA as a template. After cutting the PCR product with Sall, this fragment is cloned into the mutagenic plasmid pMc5-8 which has previously been cut with Sall and dephosphorylated with bacterial alkaline phosphatase. Plasmids pMc5-8, and pMa5-8 described below were obtained from H.-J. Fritz and are described by Stanssens, P., et al. (1989) Nucleic Acids Res. 17:4441-4454. SalI sites are chosen to allow the PCR fragment to be cloned into pMc5-8 in both orientations. The E. coli is transformed into mix Chloramphenicol resistant (CmR) transformants are screened for the presence of an insert and a correct plasmid construct pMc13C is identified as shown in Figure 3. Once the gene is cloned into the pMc vector and desirable sites for mutation are identified, the mutation(s) is introduced synthetic DNA oligonucleotides according to a modification of a published protocol (Stanssens, P., et al. Res. 17:4441-4454). Acids Nucleic (1989) oligonucleotide containing the mutation(s) to be introduced is annealed to a gapped duplex (gd) structure which carries the BLAP gene on a segment of single stranded (ss) DNA. The gapped duplex can be formed by annealing linear ss DNA from pMc13C with denatured and restricted pMa5-8 DNA. Plasmid pMa5-8 contains an active ampicillin resistance gene but has an inactivating point mutation in the chloramphenicol resistance gene, whereas plasmid pMc13C contains, in addition to an intact BLAP gene, an active chloramphenicol resistance gene, but has an inactivating point mutation in the ampicillin resistance gene. annealed product is the gd DNA which is a double stranded heteroduplex with a ss DNA gap spanning the entire cloned BLAP gene. The mutant oligonucleotide is able to anneal to homologous ss BLAP DNA within the gap and the remaining gap is filled in by DNA polymerase I (Klenow fragment) and ligated using T4 DNA ligase, purchased from New England

15

20

25 .

30

35

Biolabs Inc., Beverly, Ma. The mutagenic efficiency of such a system can be improved by the use of Exonuclease III (Exo III) purchased from New England Biolabs Inc., Beverly, Exo III is an exodeoxyribonuclease that digests double stranded DNA from the 3' end. As a free 3' end is required, closed circular as DNA or ds DNA is unaffected by this enzyme. A subsequent treatment of the product of the fill-in reaction with Exo III removes any species with only partially filled gaps. This significantly improves the mutagenic efficiency and is the preferred mutagenesis method. The product of the fill-in reaction is then transformed into a repair deficient E. coli strain such as WK6mutS and ampicillin resistant transformants (ApR) are Replication of the transformed heteroduplex selected. phasmid results in two different progenies. One progeny contains the wild type BLAP gene and chloramphenicol resistance gene, but an inactive ampicillin resistance gene. The other progeny contains a BLAP gene carrying the mutation of interest and is resistant to ampicillin but not to chloramphenicol.

Selection of ApR, CmS mutant transformants with ampicillin is not sufficient to stop some background growth of the ApS, CmR progeny carrying the wild type BLAP gene. Therefore. it is necessary to perform transformation into E. coli using plasmid DNA prepared from the ApR transformants of the WK6mutS strain. This second transformation uses a low plasmid concentration with a large number of recipient cells of a suppressor deficient strain of E. coli such as WK6. This approach decreases the likelihood of a recipient cell receiving plasmid DNA from both progeny. ApR transformants are selected and plasmid DNA from several transformants is isolated and screened for the presence of the mutation. The pMa mutant derivative of the first mutagenesis round can be used for a second round of mutagenesis by preparing as DNA of that species and annealing it to Xbal/HindIII restricted and denatured DNA of pMc5-8. Plasmid pMc5-8 is identical to pMa5-8 except

15

20

25

30

35

that it contains an active chloramphenical resistance gene and an inactive ampicillin resistance gene. The general procedure is the same as that described above.

The mutant BLAP proteases can be produced transferring the mutant BLAP genes from their particular E. coli pMa13C derivative vector into a plasmid vector which can replicate in Bacillus. To accomplish this, the mutant BLAP genes are separated from their pMa13C plasmids by digestion with the restriction endonucleases AvaI and SstI, followed by ligation to the larger AvaI/SstI fragment from These AvaI/SstI fragments either plasmid pH70 or pC51. from pH70 and pC51 include the DNA sequences necessary for replication in Bacillus and encode either kanamycin or tetracycline resistance (Km^R) resistance respectively. Plasmid pH70 is constructed by cloning the ATCC 53926 alkaline protease gene carried on a EcoRI/BamHI DNA fragment into the KmR plasmid pUB110 between the BcoRI and BamHI sites. Plasmid pC51 is constructed by cloning the ATCC 53926 protease gene carried on a EcoRI-BamHI fragment into the TcR plasmid pBC16 between the EcoRI and The larger AvaI-SstI fragment from either pH70 or pC51 used for cloning the mutant BLAP genes is first purified from other DNA fragments by high pressure liquid chromatography (HPLC) on a Gen-Pak FAX column (Waters, Milford, MA). The column is 4.6 mm by 100 mm in size and contains a polymer-based high performance anionexchange resin. Conditions for elution of the DNA are a flow rate of 0.75 ml/min with a gradient of Buffer A (25 mM tris(hydroxymethyl)aminomethane (Tris) pH 8.0 containing 1 mM disodium ethylenediamine tetraacetic acid (EDTA)) and Buffer B (25 mM Tris pH 8.0, 1 mM EDTA, 1 M NaCl) starting at 50% each and reaching a final concentration of 30% Buffer A and 70% Buffer B.

After ligation the mutant BLAP plasmids are transformed into B. subtilis DB104. The genes encoding the major alkaline and neutral proteases present in this strain have been inactivated (Kawamura, P., and Doi, R.A.

15

20

25

30

35

(1984) J. Bacteriol. 160:442-444). Cells of B. subtilis DB104 transformed by these plasmids grow on a nutrient-skim milk agar in the presence of either kanamycin or tetracycline. Transformants of DB104 that manufacture mutant protease are identified by the formation of clear zones of hydrolysis in the skim milk. Confirmation that the protease-producing transformants carry a plasmid-borne BLAP gene with the desired mutation(s) is accomplished by purifying plasmid DNA from a culture of each transformant. The plasmid DNA is purified away from cell protein and chromosomal DNA by SDS-salt precipitation followed by chromatography over a Qiagen ion-exchange column (Qiagen Corporation, Studio City, CA). AvaI-SstI digested plasmid DNAs from different transformants are compared with AvaI/SstI-digested derivatives of plasmid pH70 or pC51 known to carry an intact BLAP gene. Restriction digests of these plasmids are compared by agarose gel electrophoresis to identify plasmids that have the proper-sized AvaI/SstI DNA fragments. Selected plasmid DNAs are then sequenced across the region of the expected BLAP mutation(s) to confirm that the desired mutation(s) are present. more clones of each BLAP mutation are stored frozen in 15% glycerol at -70°C and also cultivated in shake flasks (Example 4, Production of Proteases) to produce mutant protease for characterization.

Another aspect of the invention provides a computer based method for identifying the sites which affect the storage, thermal, SDS and pH stability of a protein. This method is based on the hypothesis that protein stability may be enhanced by decreasing the volume of internal cavities and improving surface packing of amino acid side chains. The interior of a protein contains many apolar amino acids which are tightly packed into a nearly crystalline state. One way in which these interior amino acids affect protein stability is through packing effects. These include van der Waal interactions, distortion of the remainder of the protein and electrostatic effects.

10

15

20

25

30

35

Packing effects have been studied by measuring the contribution of methyl groups in the interior of a protein to the overall stability of the protein. It has been estimated that the removal of a methyl group from the interior of a protein destabilizes it by about 1.1 kcal/mol assuming no other perturbations occur (Kellis, J.T., Jr., et al. (1988) Nature 333:784-786). However, the inverse may not be true. Simply adding buried hydrophobic groups may not increase protein stability because the total effect of adding or deleting a methyl group on the local packing structure must be considered. As the protein interior has a para-crystalline structure (Chothia, C. (1975) Nature 254:304-308), small distortions in the remainder of the structure resulting from the addition methyl group may exact a high cost and reduce rather than increase stability.

While it is known in the art to make certain substitutions which may affect protein stability, there is no known way of identifying which sites in the protein will lead to stabilization when substituted. For example, it has been suggested that protein stability would be increased if alanine were substituted for glycine or serine; or if threonine were substituted for serine (Matthews, B.W., et al. (1987) Proc. Natl. Acad. Sci. 84:6663-6667); or if proline were substituted for glycine. However, the sites in which one or more of these substitutions should be made has been so far unpredictable. Other methods depend on comparisons of the amino acid sequences of different but related proteins. However, this does not show which sites are important to stability, only which positions are different.

There are two computer based methods for identifying the sites which affect the stability of a protein according to the invention.

In the first method for identifying sites which affect the stability of protein, the first step comprises generating a probe-accessible surface by analyzing the

15

20

25

30

35 -

target protein coordinates with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å. It is important that no water molecules be included in the protein structure during this analysis. The second step of this method is the identification of the amino acids which form the boundaries of the internal cavities. These amino acids comprise a set of positions which, if mutated, may increase the stability of the protein. An increase in stability can be achieved by amino acid substitutions which decrease the volume of the internal cavities.

The molecular modeling program QUANTA (trademark of Polygen Corporation, 200 Fifth Ave., Waltham, MA 02254) was used to calculate probe-accessible surfaces as well as perform the alignment of the three dimensional coordinates of the proteins. These functions can be carried out equally well by other molecular modeling programs which are also commercially available. The following is a list of commercially available programs which can also be used to calculate probe-accessible surfaces: Insight or InsightII (trademark of Biosym Technologies, Inc., 10065 Barnes Canyon Road - Suite A, San Diego, CA 92121), BIOGRAF (trademark of Biodesign, Inc., 199 S. Los Robles Ave., \$270, Pasadena, CA 91101) or Sybyl (trademark of Tripos Associates, 1699 S. Hanley Road, St. Louis, MO 63144)

The probe-accessible surface referred to in step 1 of the first method can be generated in several ways (Richards, F.M. (1977) Annu. Rev. Biophys. Bioeng. 6:151-176): A spherical probe of radius R (0.9 to 2.0 Å) is allowed to roll on the outside of a molecule while maintaining contact with the van der Waal surface. The surface defined by the center of the probe is defined as the probe-accessible surface. Alternatively, a similar surface can be generated by increasing the van der Waal radii of all the atoms in a protein by the radius of the probe. Overlapping surfaces are eliminated and the remaining surface represents the probe-accessible surface. In the preferred embodiment, a three-dimensional box of

10

15

20

25

30

dimensions 50x50x50 Å with a 1 Å grid size in all three dimensions (x, y, and z) is centered on the center of mass of the target protein coordinates. Most preferrably, the dimensions of the probe map are adjusted such that all of the protein atoms fall within the probe map's bounds. The grid size of 1 Å provides a sufficiently high resolution to clearly define the probe-accessible surface although another grid size could be used, ranging from 0.5 to 3.0 Å. An uncharged probe molecule is positioned at each grid point and the energy of interaction between the probe and the target protein atoms is determined. The energy of nonbonded interaction $(E_{\rm nb})$ contains only the van der Waal component such that

EQUATION (1)

$$E_{nb} = \sum_{\text{nonbonded}} 4 \varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r} \right)^{12} - \left(\frac{\sigma_{ij}}{r} \right)^{6} \right]$$
i, jpairs

where r is the nonbonded distance, ϵ_{ij} is the dispersion well depth and σ_{ij} is the Lennard-Jones diameter. The result is a map consisting of a box with energy values at each grid point. This map can be contoured at a particular energy value to generate surfaces which correspond to the solvent accessible surface and internal cavities (Goodford, P.J. (1985) J. Med. Chem. 28: 49-857). The value at which to contour the maps can var depending on the particular radius used and the parameters used to define the probe molecule and the particular method used to generate the probe. The preferred embodiment is to used a probe radius of 0.9 Å and contour the surface at 10 kcal/mol.

The external surface of the probe-accessible surface is also known as the solvent-accessible surface. Probe-accessible surfaces inside of the solvent accessible surface are defined as internal cavities and represent cavities large enough to accommodate a molecule with a

15

20

25

30

35

radius equal to the probe radius. The presence of such a cavity on the inside of a protein does not imply that the cavity will in fact be filled by one or more solvent molecules.

The second step of the method for identifying sites which affect the stability of a protein is the identification of the amino acids which form the internal cavities. The internal cavities are defined by the amino acids which make up its boundaries. These amino acids comprise a set of positions which, if mutated, may increase the stability of the protein.

In a second method for identifying sites which affect the stability of a protein, the first step comprises generating a probe-accessible surface by analyzing the target protein coordinates with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å. It is important that no water molecules be included in the protein structure during this analysis. This step is the same as the first step of the method set forth above.

the three step involves aligning second dimensional structure of the target protein and a reference protein by moving the three dimensional coordinates of the reference protein into the coordinate frame of the target protein. The reference protein is usually chosen so that a high degree of similarity exists between it and the target protein so that packing differences between the target and reference protein which potentially affect the stability of the target protein can be identified. The reference protein can be any protein for which a three dimensional structure is available which is homologous to the target protein. Examples of such proetins include but are not limited to subtilisin Carlsberg, subtilisin BPN', proteinase K, and When the target protein is BLAP, one Thermitase. preferred reference protein is Thermitase. Thermitase is an extra-cellular subtilisin-like serine protease isolated from Thermoactinomyces vulgaris (Frömmel, C., et al. (1978) Acta Biol. Med. Ger. 37:1193-1204). The protein amino acid

5 -

10

15

20

25

30

35

sequence of thermitase is 42% identical to BLAP. The high degree of similarity between these two proteins provides an ideal system with which to examine packing differences that affect BLAP stability. In this second step the three dimensional structures of Thermitase and BLAP are aligned using the computer program QUANTATH. The three dimensional alignment is carried out by first aligning the primary sequences of the two proteins to determine which amino acids are equivalent. This is accomplished using FASTA (Myers, E.W., and Miller, W. (1988) Comput. Applic. Biosci. 4:11-17; Pearson, W.R., and Lipman, D.J. (1988) Proc. Natl. Acad. Sci. USA 85:2444-2448). Based on this alignment of the primary sequence, residues are matched for subsequent alignment of the three dimensional structures using MULTLSQ (Sutcliffe, M.J., et al. (1987) Protein Eng. 1:377-384; Kabsch, W. (1976) Acta Cryst. A32:922-923). uses one structure as fixed coordinates (the target protein coordinates) and then rotates and translates a second structure (the reference protein coordinates) so as to give the smallest root mean squared (r.m.s.) deviation between the two sets of three dimensional coordinates. example, the alignment of the BLAP and thermitase three dimensional coordinates results in an r.m.s. deviation between equivalent a-carbons of 0.8 Å. This demonstrates that the amino acid sequences of BLAP and thermitase fold into three dimensional structures which are extremely similar.

In the third step, the alignment of the three dimensional structures is used to identify sites which affect the stability of the target protein. This can be accomplished by a variety of methods. Using a computer program designed to display protein structures and surfaces such as QUANTATH, the structure of the reference protein can be displayed with the probe-accessible surface. The combined display of the reference protein and probe-accessible surface can then be visually examined to determine which amino acids in the reference protein fall

15

20

25

30

35

outside of the solvent-accessible surface or inside internal cavities. An alternative method which can be used comprises coloring the atoms of the reference protein by determining whether amino acids in the reference protein fall outside of the solvent-accessible surface or inside internal cavities. The probe-accessible surface map (probe map) was used to color the atoms in the transformed subtilisin BPN' structure. In order to color each atom, an energy value needs to be interpolated from the probe map at each atomic coordinate.

The probe map consists of three dimensional grid with an energy value (E) at each grid point. In the preferred embodiment, the probe map is a 50x50x50 Å box centered on the center of mass of the protein with a 1 Å grid unit in all three dimensions (x, y, and z). In its optimal conception, the size of the probe map is adjusted such that all of the protein atoms fall within the probe map's bounds. The energy value at each protein atom position was approximated by interpolating from the energy values from the surrounded eight grid points in the probe map. Given the energy value at each point from the probe map, the grid spacing, and the atomic coordinate, it is a simple matter for any one skilled in the art to interpolate an energy value at each atomic coordinate.

In one such method, an energy value of zero is assigned arbitrarily if an atom falls outside the bounds of the map. From a given atomic coordinate (x,y,z), the eight closest grid points from the probe map which surround identified such that $(\mathbf{x}_1 < \mathbf{x} < \mathbf{x}_2),$ are (x,y,z) $(y_1 < y < y_2)$, and $(z_1 < z < z_2)$. The eight grid points are then $A(x_1, y_1, z_1)$, $B(x_1, y_1, z_2)$, $C(x_1, y_2, z_2)$, $D(x_1, y_2, z_1), E(x_2, y_1, z_1), F(x_2, y_1, z_2),$ G (x_2, y_2, z_2) , and H (x_2, y_2, z_1) . The energy value (E) at a given grid point such as (x_1, y_1, z_1) is then $E(x_1, y_1, z_1)$ or equivalently $E_{\mathbf{A}}$. The energy at a specific atomic coordinate $E_{(x,y,z)}$ can be interpolated from the probe map given the eight nearest surrounding grid points (A through H, as

10

15

20

described above) and the value at each grid point (E_A through E_B). The equation which was used for calculating the energy at specific atomic coordinates, $E_{(x,y,z)}$, is shown in Equation (2). The energy value at each coordinate can then be stored and used to display the molecule.

EQUATION (2)

$$E_{(x,y,z)} = \left(\frac{X-X_1}{X_2-X_1}\right)(E_o-E_k)+E_k$$

where

$$E_o = \left(\frac{y - y_1}{y_2 - y_1}\right) (E_B - E_1) + E_1; \text{ and } E_k = \left(\frac{y - y_1}{y_2 - y_1}\right) (E_j - E_i) + E_i;$$

and where

$$E_{i} = \left(\frac{z - z_{1}}{z_{2} - z_{1}}\right) (E_{F} - E_{E}) + E_{E}; \quad E_{j} = \left(\frac{z - z_{1}}{z_{2} - z_{1}}\right) (E_{G} - E_{H}) + E_{H};$$

$$E_1 = \left(\frac{z-z_1}{z_2-z_1}\right)(E_B-E_A) + E_A; \quad E_B = \left(\frac{z-z_1}{z_2-z_1}\right)(E_C-E_D) + E_D;$$

The protein atoms were colored on the basis of this interpolated energy value. The protein was displayed using QUANTATH and atoms with interpolated energies below 10 kcal/mol were colored as red. Atoms with interpolated energies above 10 kcal/mol were colored green. Visual inspection allowed identification of side chains which penetrated the solvent accessible surface or penetrated internal cavities.

There are also two computer based methods for increasing the stability of a protein. The first method comprises the steps of: (1) generating a probe-accessible surface of said target protein by probing the coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probe-accessible surface has an external surface the interior of which contains one or more probe-accessible internal

15

20

25.

30

35

cavities; (2) identifying the amino acids which make up the boundaries of the internal cavities, wherein said amino acids comprise a set of sites which when mutated increase the stability of the protein; (3) identifying an amino acid mutation which would decrease the volume of said internal cavities; (4) determining if said amino acid in said target protein can be changed without creating unacceptable steric interactions; (5) replacing the amino acid in said target protein by site-directed mutagenesis of the gene which expresses said target protein.

The first two steps of the above first method for improving the stability of a protein are the same as those disclosed above for the first computer based method for identifying the sites which affect the stability of a protein.

In step (3) an amino acid identified in step (2) is examined with the goal of identifying a mutation which would decrease the volume of said internal cavity. The size, shape and position of said internal cavity often defines and limits what mutations are acceptable and allowable given the distinct shape and size of each individual amino acid side chain. However, as a particular site in the protein has been identified for mutation, appropriate mutations can be also be determined by applying any of the various heuristics which define generally acceptable mutations (Matthews, B.W., et al. (1987) Proc. Natl. Acad. Sci. 84:6663-6667; Menéndez-Arias, L., and Argos, P. (1990) J. Mol. Biol. 206:397-406; Sandberg, W.S., and Terwilliger, T.C. (1991) Trends Biotechnol. 9:59-63; Bordo, D., and Argos, P. (1991) J. Mol. Biol. 217:721-729).

In step (4) a determination is then made if the amino acid identified for change in the target protein can be mutated or changed without creating a conformation of the target protein having unacceptable steric interactions. The separation distance between two atoms considered unacceptably short is some percentage of the sum of the van der Waal radii of the two atoms in question. Values of 90-

15

20

25

30

35

95% of the sum of the van der Waal radii are common though others could be used. Common atoms between the original and replacement amino acid side chain are located and fixed The new amino acid is rotated to in the same position. find the position with the least number of close contacts or unacceptable steric interactions (distances shorter than physically reasonable). The separation distance at which two atoms are considered unreasonably short is some percentage of the sum of the van der Waal radii of the two atoms in question. Values of 90-95% of the sum of the van der Waal radii are common though others could be used. If all conformations of the new amino acid have close contacts, the amino acid substitution is rejected. conformation with no close contacts which can be matched to a preferred amino acid conformation as defined by Ponder, J.W., and Richards, F.M. (1987) J. Mol. Biol. 193:775-791, is most highly desirable. In step (6) the amino acid identified for change to the corresponding amino acid in the same position in the reference protein is changed by site-directed mutagenesis of the gene which expresses the target protein by the methods disclosed above.

the steps comprises method second (1) generating a probe-accessible surface of said target protein by probing the three dimensional coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probeaccessible surface has an external surface the interior of which contains one or more probe-accessible internal cavities; (2) aligning said three dimensional coordinates of said target protein and a reference protein by moving the three dimensional coordinates of said reference protein into the coordinate frame of said target protein; (3) identifying an amino acid in said reference protein whose side chain lies outside said solvent-accessible surface of said protein or inside said internal cavities of said target protein; (4) identifying the amino acid in said target protein which occupies the equivalent position as

10

15

20

said amino acid in said reference protein; (5) determining if said amino acid in said target protein can be changed without creating unacceptable steric effects; (6) replacing the amino acid in said target protein with the corresponding amino acid in the equivalent position in said reference protein by site-directed mutagenesis of the gene which expresses said target protein.

The first three steps of this method are the same as steps (1), (2), and (3) of the second method for the second computer based method for identifying the sites which affect the stability of a protein.

In step (4) the amino acid in the target protein which occupies the equivalent position as the amino acid in the reference protein is identified. Equivalency is determined from the primary sequence alignment and three dimensional structure alignment described above. Given two protein structures, a target and a reference structure, which have been aligned, equivalent amino acids are defined as pairs of amino acids, one from the target and one from the reference protein, which may differ in identity but occupy close to the same position in the secondary and tertiary structure of the two proteins.

The following examples are meant to illustrate but not to limit the invention.

15

20

25

30

35

Example 1

Identification of Sites in BLAP for mutagenesis

structure of BLAP was obtained by X-ray crystallography and solved to 1.4 Å. The atomic coordinates are shown in Figure 1. Water molecules were removed from the structure and the protein coordinates were used to generate a probe-accessible surface using a computer program QUANTATH (version 3.0). This program can be used to calculate a probe-interaction map. The coordinates of BLAP were read into the computer and the following parameters were set in order to perform the probe interaction grid calculation. A Van der Waal calculation was requested with a "proton" probe (radius of 0.9 Å) with a charge of 0.0. The box dimensions were set to 50 Å with a grid size of 1 Å centered on the α -carbon of residue 219. The maximum energy was set to 500 and the minimum to -100. This means that energy values which exceed 500 will be set to 500. An energy value will exceed 500 when the probe is very close to an atom in the protein. The calculations were performed on a Silicon Graphics Inc. (2105 Landings Drive, Suite CA 94043) 4D/220 PowerIrisTH View. Mountain QUANTATH was used to visualize the probeworkstation. accessible surface. The map was contoured at 50 kcal/mol but this value depends on the particular constants in use and the method used to generate the probe accessible The map was displayed simultaneously with the surface. structure of BLAP and amino acid side chains which defined the boundaries of the internal cavities were identified visually.

One such amino acid was threonine-69. This side chain is completely buried with only 2% of its surface being solvent accessible. The hydroxyl group of the side chain defined part of the border of two internal cavities. These particular cavities are occupied by water molecules 278 on one side, and 280 on the other. Mutating this amino acid to valine represents a conservative change which increases the hydrophobicity of the side chain while having little

10

15

20

25

30

35

effect on size and shape. Using computer modeling, it was determined that mutating threonine-69 to valine would not create any close contacts with other protein atoms or significantly perturb the structure if the valine occupies the same position as the hydroxyl of threonine-69 in the An oligonucleotide was synthesized wild type protein. which carried a mutation of the codon for threonine-69 to valine (T69V). This oligonucleotide was used to create a site directed mutation in the BLAP gene which was subcloned into a Bacillus vector and expressed in B. subtilis DB104 (See Examples 4 and 5). Strains were identified which were expressing the mutant protease and several shake flasks were prepared to produce the mutant protein (See Example 5). The mutant protease was purified from the shake flask media and characterized for surfactant and temperature stability (See Examples 7, 10, and 11).

The mutation T69V resulted in a 340% increase in the half-life of the protease at 50°C, from 12 minutes to 41 minutes (See Table 3).

Example 2

Identification of Sites in BLAP for mutagenesis based on other proteases.

(A) Comparison to subtilisin Carlsberg.

The three dimensional coordinates of subtilisin Carlsberg (1CSE) were obtained from the Brookhaven Protein Database (Bernstein, F.C., et al. (1977) J. Mol. Biol. 112:535-542). The protease structures were aligned using the molecular modeling program QUANTATM. The BLAP coordinates were held fixed. The α-carbons of residues 1 to 32 of BLAP were matched to residues 1 to 32 of 1CSE, respectively; residues 40 to 60 of BLAP to residues 41 to 61 of 1CSE; residues 80 to 155 of BLAP to residues 82 to 157 of 1CSE; residues 170 to 269 of BLAP to residues 176 to 275 of 1CSE. The BLAP structure was held fixed, and the 1CSE structure was rotated and translated such that the r.m.s. deviation between the α-carbons of matched residues was minimized. The translation vector

15

20

25

30

(-10.68738, 31.28904, -5.32134) and the rotation matrix (0.17406 -0.65535 0.73500 -0.42119 -0.72422 -0.54599 0.89011 -0.21454 -0.40209)

were applied to the coordinates of 1CSE and the transformed coordinates were saved (henceforth, the transformed 1CSE structure). The final r.m.s. deviation between the matched 229 α -carbon pairs was 0.872 Å.

The probe-accessible surface map calculated in Example 1 was used to color the atoms in the transformed The entire map, which consists of three 1CSE structure. dimensional grid of (x, y, z) coordinates in space and an energy value at each position, was read into computer memory along with the protein coordinates (the transformed The energy value at each atom position 1CSE structure) . was approximated by interpolating from the energy values of the surrounding eight nearest grid points in the probe map. The protein atoms were colored on the basis of this interpolated energy value. The protein was displayed using QUANTATH and atoms were displayed in different colors depending on their interpolated energy value. For example, if the energy were greater than 400 the atoms were dark blue; between 300 and 400, light blue; 200 and 300, green; 200 to 100 yellow; and between -100 and 100, red. inspection of such a display allowed identification of side chains which penetrated the solvent accessible surface or internal cavities.

One such amino acid was methionine-199 (1CSE numbering) in subtilisin Carlsberg. The amino acid was identified by visual inspection of the transformed 1CSE structure (as described above). Below, the coordinates of residue 199 from the transformed 1CSE structure are shown in the Brookhaven Protein Data Bank file format along with the interpolated energy values.

20

25

30

35

40

Coordinates of Methionine-199 from the 1.2 Å structure of subtilisin Carlsberg.

•	ATOM	1364	N	MET	199	22.392	40.705	32.311	1.0 500.00
5	ATOM	1365	CA	MET	199	21.675	40.581	31.054	1.0 500.00
•	ATOH		C	HET	199				1.0 500.00
	ATOH	1367	-	MET	199	23.689	39.601	30.254	1.0 500.00
	ATOM	1368	CB	MET	199	21.621	41.991	30.511	1.0 500.00
	ATOR	1369		MET	199			31.426	1.0 500.00
10	ATOM	1370	SD	MET	199	19.150	42.631	31.891	1.0 211.58
, 10	ATOM	1371			199	18.273	43.395	30.493	1.0 41.68
	NIOW	49/4	CE	un i	4//		•••		

Column 1 is the record type; column 2 is the atom number; column 3 is the atom name; column 4 is the residue name; column 5 is the residue number; columns 6, 7 & 8 are the x, y, z coordinates of the atom, respectively; column 9 is the occupancy; column 10 is normally the temperature factor but this has been replaced with the interpolated energy value. Note that a value of 500 in this column means that the atom in nearly completely within the van der Waal surface of the BLAP molecule. When the probe map was calculated (see Example 1), energy values greater than 500 were set to 500. As can be seen, atoms 1370 and 1371 have significantly lower energy values (column 10). The end of this methionine residue extends into an internal cavity in the BLAP molecule.

This residue is equivalent in secondary and tertiary structure to valine-193 in BLAP. Using computer modeling, valine-193 in BLAP was changed to methionine. The χ values for the new methionine side chain in BLAP were taken from the subtilisin BPN' structure. In this conformation, the new side chain had no close contacts except for the ϵ -carbon of the methionine which contacted a crystallographic water in the BLAP structure.

An oligonucleotide was synthesized which mutated the codon for valine-193 to methionine (V193M) in the BLAP gene. This oligonucleotide was used to create a site directed mutation in the BLAP gene which was subcloned into a Bacillus vector and expressed in B. subtilis DB104 (See Examples 3, 4, and 5). Strains were identified which were expressing the mutant protease and several shake flasks were prepared to produce the mutant protein (See Example

10

20

25

30

35

5). The mutant protease was purified from the shake flask media and characterized for temperature and surfactant stability (See Examples 6, 7, 10, and 11).

The mutation V193M resulted in a 350% increase in the half-life of the protease at 50°C, from 12 minutes to 42 minutes (See Table 3).

(B) Comparison to Thermitase.

The three-dimensional coordinates of thermitase (1TEC) were obtained from the Brookhaven Protein Database (Bernstein, F.C., et al. (1977) J. Mol. Biol. 112:535-542). The structures of BLAP and 1TEC were aligned using the molecular modeling program QUANTATH by matching equivalent q-carbons as listed below.

Matched a-carbons between

BLAP and Thermitase (1TBC)

BLAP	1TEC
5-20	12-27
23-34	29-41
43-72	52-81
75-227	85-237
232-256	240-264

The BLAP structure was held fixed and the 1TEC structure was rotated and translated such that the r.m.s. deviation between the α -carbons of matched residues was minimized. The translation vector (14.92521, 33.43270, 40.92134) and the rotation matrix

were applied to the coordinates of 1TEC and the transformed coordinates were saved (henceforth, the transformed 1TEC structure). The final r.m.s. deviation between the matched 236 α -carbon pairs was 1.384 Å.

The probe-accessible surface map was used to color the atoms in the transformed 1TEC structure. The entire probe map was read into computer memory along with the coordinates of the transformed 1TEC structure. The energy value at each atomic position was interpolated from the

SUBSTITUTE SHEET

35

40

energy values of the eight surrounding grid points in the probe map. The protein was displayed using QUANTATH and atoms were displayed in different colors as a function of their interpolated energy value. For example, if the energy were greater than 400 the atoms were dark blue; between 300 and 400, light blue; 200 and 300, green; 200 to 100 yellow; and between -100 and 100, red. Visual inspection of such a display allowed identification of side chains which penetrated the solvent accessible surface or internal cavities.

One such amino acid was tyrosine-149 (ITEC numbering) in thermitase. The amino acid was identified by visual inspection of the transformed ITEC structure. Below, the coordinates of residue 149 from the transformed ITEC structure are shown in the Brookhaven Protein Data Bank file format along with the interpolated energy values.

Coordinates of Tyrosine-149

from the 2.0 Å structure of Thermitase.

	ATOH	1052	N	TYR	149	19.783	23.026	47.326	1.0 500.00
20	HOTA	1053	CA	TYR	149	20.372	21.668	47.275	1.0 500.00
	YLOH	1054	С	TYR	149	21.456	21.557	46.165	1.0 500.00
	ATOM	1055	0	TYR	149	22.619	21.330		
	ATOH	1056	CB	TYR	149	19.282	20.595	46.486	1.0 500.00
	ATOM	1057	œ	TYR	149	19.859		47.169	1.0 500.00
25	ATOM	1058	CD1		149		19.183	46.935	1.0 227.30
	ATOH	1059		TYR		20.262	18.427	48.038	1.0 79.13
	ATOM	1060			149	20.014	18.722	45.608	1.0 275.01
				TYR	149	20.762	17.146	47.807	1.0 10.99
	ATOH	1061	–	TYR	149	20.531	17.425	45.371	1.0 500.00
20	ATOM	1062	CZ	TYR	149	20.860	16.649	46.488	1.0 131.28
30	MOTA	1063	OH	TYR	149	21.165	15.337	46.282	1.0 147.29

Column 10 is normally the temperature factor but this has been replaced with the interpolated energy value. As can be seen, the phenyl ring of the tyrosine side chain has significantly lower energy values (column 10 of atoms CG, CD1, CD2, CE1, CE2 and CZ).

This residue is equivalent in secondary and tertiary structure to serine-139 in BLAP. Using computer modeling, serine-139 in BLAP was changed to tyrosine. The χ values for the new tyrosine side chain in BLAP were taken from the thermitase structure. In this conformation, the new side chain had no close contacts that could not be alleviated by small changes (less than 5°) of the χ values. The modeled

10

15

20

25

30

35

tyrosine side chain in BLAP fits neatly into a crevice on the surface of the BLAP protein between two surface helices.

An oligonucleotide was synthesized which mutated the codon for serine-139 to tyrosine (S139Y) in the BLAP gene. This oligonucleotide was used to create a site directed mutation in the BLAP gene which was subcloned into a Bacillus vector and expressed in B. subtilis DB104 (See Examples 3, 4, and 5). Strains were identified which expressed the mutant protease and several shake flasks were prepared to produce the mutant protein (See Example 5). The mutant protease was purified from the shake flask culture and characterized for temperature and surfactant stability (See Examples 6, 7, 10, and 11).

The mutation S139Y resulted in a 216% increase in the half-life of the protease at 50°C, from 12 minutes to 26 minutes (See Table 3).

Example 3

Site Directed Mutagenesis of the BLAP gene

This mutagenesis procedure was first described by Stanssens, P., et al. (1989) Nucleic Acids Res. 17:4441-4454. While this is the preferred method, many other methods could be used to introduce oligonucleotide site-directed mutations, particularly those which use single stranded DNA. For example, the method of Kunkel (Kunkel, T.A. (1985) Proc. Natl. Acad. Sci. USA 82:488-492) has also been used.

A synthetic oligonucleotide was synthesized which mutates the codon of threonine-69 to the codon for valine. The mutagenic oligonucleotide was annealed to a gapped duplex DNA which carries the BLAP gene on a segment of single stranded (ss) DNA. The gapped duplex (gd) was formed by denaturing linear DNA's from pMc13C and pMa5-8 followed by re-annealing. The mutagenic oligonucleotide annealed to homologous ss BLAP DNA within the gap and the remaining gap was filled in by a DNA polymerase and ligated using T4 DNA ligase. Subsequent treatment of the product

10

15

20

25

30

35

of the fill-in reaction with ExoIII removed any species with only partially filled gaps.

The product of the fill-in reaction was then transformed into a repair deficient E. coli strain such as WK6muts. Plasmid DNA from the recombinant E. coli WK6muts was prepared and transformed in a low plasmid/recipient ratio into a suppressor deficient strain of E. coli such as WK6. Ampicillin resistant transformants were selected and plasmid DNA of several candidates was purified and checked for the presence of the mutation.

The mutant BLAP protease was expressed by transferring the mutant BLAP genes from their particular E. coli pMa13C derivative vector into a plasmid vector which can replicate in Bacillus such as pH70 or pC51. In the following the plasmids pC51 and pH70 can be used example, interchangeably with the exception that plasmid pH70 encodes resistance to kanamycin while plasmid pC51 encodes resistance to tetracycline. The mutant BLAP gene was separated from the pMa13C plasmids by digestion with the restriction endonucleases AvaI and SstI and then ligated with an AvaI-SstI cut fragment of plasmid pH70 that includes the regions necessary for kanamycin resistance and for replication in Bacillus. The pH70 AvaI-SstI fragment was purified by high pressure liquid chromatography (HPLC). After ligation the mutant BLAP plasmids were transformed into B. subtilis DB104, a strain that has been engineered to inactivate its own genes encoding the major alkaline and neutral proteases. B. subtilis DB104 transformed by these plasmids were grown on a nutrient-skim milk agar in the antibiotic kanamycin. Clones that the of presence manufactured mutant protease were identified by the formation of clear zones of hydrolysis in the skim milk. Plasmid DNA was purified from these clones to verify that the protease-producing clones carried the a plasmid-borne BLAP gene with the desired mutation. The plasmid DNA was purified away from cell protein and chromosomal DNA by SDSsalt precipitation followed by chromatography over a Qiagen

15

20

25

30

35

ion-exchange column (Qiagen Corporation). AvaI-SstI digested plasmid DNAs from different clones were compared with AvaI/SstI-digested derivatives of plasmid pH70 known to carry an intact BLAP gene. Plasmid digests were compared by agarose gel electrophoresis to identify plasmids that have the proper-sized AvaI/SstI DNA fragments. Selected plasmid DNAs were then sequenced across the region of the particular BLAP mutation to confirm that the mutation was present. One or more clones of each BLAP mutation were stored frozen in 15% glycerol at -70°C and also cultivated in shake flasks (Examples 4 and 5) to manufacture mutant protease for characterization.

Example 4

Production of Proteases

B. subtilis DB104 that carried a Each strain of plasmid with one of the mutant BLAP genes was cultivated in shake flasks to make the mutant protease. Strains were grown in 50 ml precultures of (Difco) Luria Broth (LB) with the antibiotic kanamycin for pH70 derived clones or tetracycline for pC51 derived clones at 37°C and 280 rpm in a New Brunswick Series 25 Incubator Shaker. After 7 to 8 hours of incubation 2.5 or 5.0 ml of the preculture was transferred to 50 or 100 ml of MLBSP medium (Table 5), respectively, with either 20 μ g/ml of kanamycin, 15 μ g/ml of tetracycline in 500 ml (Bellco) baffled shake flasks for growth and eventual production of the protease. These main shake flask cultures were incubated at 240 rpm and 37°C for 64 hours before the culture broths were treated to remove intact cells and cellular debris, and to reduce the pH to 5.8 before they were concentrated. The protease production of each culture was monitored by electrophoresis of culture supernatants with reverse polarity on 12.5% homogenous polyacrylamide gels with the Pharmacia PhastSystem.

Example 5

Production of Mutant Proteases in Shake Flasks

15

20

25

A hot loop was used to streak each mutant strain from a frozen cryovial culture onto an LB-skim milk agar containing either 20 μ g/ml of kanamycin or 15 μ g/ml of The plates were incubated at 37°C for 20 to tetracycline. 24 hours. A single, isolated colony producing a good zone of hydrolysis of the skim milk was picked into a 250 ml Erlenmeyer flask containing about 50 ml Luria Broth (LB) which contained either 20 μ g/ml kanamycin or 15 μ g/ml of tetracycline. The broth was incubated in a New Brunswick Series 25 Incubator Shaker at 37°C with shaking at 280 rpm for 7 to 8 hours. Either 2.5 ml of the turbid preculture was transferred into 50 ml of MLBSP containing either 20 μ g/ml kanamycin or 15 μ g/ml of tetracycline in each of four baffled 500 ml flasks, or 5 ml of preculture was used as an inoculum for 100 ml of MLBSP broth with antibiotic contained in each of two 500 ml baffled flasks (a 5% v/v transfer). All flasks were incubated at 240 rpm and 37°C for 64 hours. After 64 hours of incubation the set of flasks for each culture was consolidated, transferred to 50 ml centrifuge tubes, and centrifuged at 20,000 gar for 15 minutes at 4°C. The broth was filtered through Miracloth (Calbiochem Corp. #475855) into 400 ml beakers chilled on ice. The broth was slowly stirred on ice for 30 minutes before the broth pH was reduced to 5.8 by the slow addition of glacial acetic acid. More fine debris were removed by centrifugation again at 20,000 gav and the broth was filtered through Miracloth into graduated cylinders to measure the volume. Two sets of 1 ml samples were made for PhastSystem gels and activity assays. The broth was stored on ice until the protease could be purified. The MLBSP media used for the production of BLAP in shake flask cultures is described in Table 5.

35

30

TABLE 5
COMPOSITION OF MLBSP MEDIUM

Component	Quantity (for 1 liter of media)
deionized water	750 ml
Difco Casitone	10 gm
Difco Tryptone	20 gm
Difco Yeast Ex	tract 10 gm
NaCl	5 gm
Sodium Succina	te 27 gm
the volume adj	usted to 815 ml with waste was cooled before
minutes at 121 adding the ste while stirring	visted to \$15 ml with adding was cooled before the stock solutions described in Appendix 1
the volume addinutes at 121 adding the stewhile stirring	

Piperazine-N,N'-bis(2-ethane sulfonic acid).
A sufficient amount of 1.5 M dibasic phosphate (K-HPO4) was added to 200 ml of 1.5 M monobasic phosphate (KH-PO4) to adjust the pH to 6.0 using a Beckman pHI44 pH meter equipped with a Beckman combination electrode (#3952c). The final pH was adjusted to 7.0 with 4 M KOH. Either kanamycin or tetracycline antibiotic stock solutions were added to the media just before use to a final concentration of 20 μg/ml and 15 μg/ml respectively.

15

20

25

30

35

Example 6

Purification of BLAP

Permentation broth of transformed B. subtilis DB104, while still in the fermenter, was adjusted to pH 5.8 with 4 N H2SO4. The broth was collected and cooled to 4°C. If mentioned otherwise, all subsequent steps were An aliquot of the broth performed on ice or at 4°C. material was clarified by centrifugation at 15,000 x g. ... Floating lipid material was removed by for 60 min. aspiration, and the supernatant filtered through Miracloth. The dark brown solution was placed in dialysis tubing (Spectrapor; #1, 6 to 8 kilodalton (kDa) molecular-weightcut-off, 1.7 ml/cm) and dialyzed for 16 hours in 20 mM 2-(N-morpholino) ethanesulfonic acid (MES) containing 1 mM CaCl2, adjusted with NaOH to pH 5.8 ('MES buffer'). dialysate was clarified by centrifugation (20,000 x gav. for 10 min) and the pH of the solution was adjusted to 7.8 with 2 N NaOH. The enzyme solution containing approximately 0.9 g of protein in 1.2 liter was loaded at a flow rate of 150 ml/hour onto a column of S-Sepharose Fast Flow (SSFF, 25 mm diameter, 260 mm long) previously Pharmacia; equilibrated with 20 mM N-(2-hydroxyethyl)piperazine-N'-(2ethanesulfonic acid) [HEPES], containing 1 mM CaCl, adjusted with NaOH to pH 7.8 ('HEPES buffer'). After the application of the enzyme solution the column was washed with 2 column volumes (250 ml) of HEPES buffer and then developed at a flow rate of 140 ml/hour with a gradient of 0 to 0.25 M NaCl in 600 ml of HEPES buffer. The gradient eluate was fractionated into 5.2-ml aliquots which were collected into tubes containing 2 ml of 100 mM MES/Na+, pH 5.8. The enzyme eluted between 0.12 and 0.15 M NaCl. Fractions containing the enzyme were pooled and protein was precipitated with ammonium sulfate at 52% of saturation. solid salt (0.33 g per ml of solution) was added slowly with stirring over a period of 15 min, and stirring was continued for another 15 min. The precipitate was collected by centrifugation, the pellet was dissolved in

15

20

25

30

35

MES buffer and the protein concentration in the solution was adjusted to 5 to 7 mg/ml. Following dialysis for 16 hours in MES buffer the solution was clarified by centrifugation and the pH of the supernatant was adjusted to 7.2. The protease was purified further by a second All steps of this cation exchange separation on SSFF. procedure were the same as above except that the pH of the HEPES buffer was 7.2 and that the NaCl gradient was from 0 to 0.25 M in 600 ml of HEPES buffer. Protein in pooled fractions was precipitated as above with ammonium sulfate and the enzyme was stored as ammonium sulfate precipitate at -70°C. Prior to use the ammonium sulfate precipitate of the enzyme was dissolved in an appropriate buffer, typically MES buffer, at the desired protein concentration, and dialyzed overnight in the buffer of choice.

Example 7 Purification of BLAP Mutants

Permentation broth from shake flasks, on average 180 ml, was collected and clarified by centrifugation at 20,000 x gav. for 15 min. The supernatant was placed, with stirring, on ice and after 30 min the pH of the solution was adjusted to 5.8 with glacial acetic acid. mentioned otherwise, all subsequent steps were performed on ice or at 4°C. The solution was clarified again by 15 min) and for centrifugation (20,000 x gav. by ultrafiltration concentrated approximately 4-fold The dark brown solution was (Amicon; YM30 membrane). placed in dialysis tubing (Spectrapor; #1, 6 to 8 KDa molecular-weight-cut-off, 1.7 ml/cm) and dialyzed for 16 hours in 20 mM HEPES/Na+, pH 7.8, containing 1 mM CaCl2 The dialysate was clarified by ('HEPES buffer'). centrifugation (20,000 x gav. for 10 min) and the pH of the solution, if necessary, was adjusted to 7.8 with 2 N NaOH. The enzyme solution was loaded at a flow rate of 60 ml/hour onto a column of SSFF (15 mm diameter, 75 mm long), previously equilibrated with HEPES buffer. colored by-products were eluted, the column was washed with

15

20

25

30

35

50 ml of HEPES buffer. Then, the enzyme was eluted with 0.25 M NaCl in HEPES buffer. Fractions of 1.2 ml were collected into tubes containing 0.5 ml of 100 mM MES/Na+, pH 5.8. Protein content in fractions was monitored either by a UV detector set at 280 nm or by protein assay as described below. Pooled fractions containing protease protein were placed on ice and protein was precipitated with a 5 to 8-fold volume excess of acetone at -20°C. The protein was allowed to precipitate for 6 min, the mixture was centrifuged for 4 min at 6,600 x g_{av} , the supernatant was discarded, the pellet was briefly exposed to vacuum (water aspirator) to remove most of the acetone, and the pellet was dissolved in 20 mM MES/Na⁺, pH 5.8, to give an approximate protein concentration of 30 mg/ml. any assays, the solution was centrifuged in an Eppendorf centrifuge for 3 min at full speed (13,000 \times $g_{max.}$).

Example 8

Protein Determination

Protein was determined by a modified biuret method (Gornall, A.G., et al. (1948) J. Biol. Chem. 177:751-766). The protein in a total volume of 500 μ l was mixed with 500 μ l of biuret reagent and incubated for 10 min at 50°C. The solution was briefly chilled and its absorbance was measured at 540 nm. Typically, a reagent blank and three different protein aliquots in duplicates were measured and recorded optical densities analyzed by regression. Bovine serum albumin (BSA, crystalline; Calbiochem) was used as protein standard. With purified BLAP protein the usefulness of BSA as protein standard in the biuret assay was confirmed. A BLAP sample was exhaustively dialyzed in 1 mM sodium phosphate, pH 5.8, and subsequently lyophilized. A sample of the solid material was weighed, dissolved in 1 mM sodium phosphate, pH 5.8, and used to generate a standard curve for the biuret assay. From the actual difference in phosphate content (Black, M.J., and Jones, M.E. (1983) Anal. Biochem. 135:233-238) of the final protein solution and the nominally 1 mm sodium

10

15

20

25

30

35

phosphate solution used to dissolve the protein, the contribution of phosphate to the weight of solid BLAP was estimated and used to correct the standard curve.

Example 9

Protease Assays

Two different protease assays were used. With the HPE method protease activity was established at a single concentration of casein (prepared according to Hammarsten; Merck, #2242) as substrate. In the AAPF-pNA assay initial rates of succinyl-1-alanyl-1-alanyl-1-prolyl-1-phenylalanyl-p-nitroanilide (AAPF-pNA; Bachem) supported catalysis were used to determine the kinetic parameters K_m , k_{cat} , and k_{cat}/K_m .

A. HPE Method.

solutions of purified supernatants or Culture proteases were diluted with chilled buffer (10 mM MES/Na*, pH 5.8) to give three different solutions with a protein concentration ratio of 1:3:5. The substrate solution contained 9.6 mg/ml casein, 24 mM Tris, and 0.4% (w/v) sodium tripolyphosphate, dissolved in synthetic tap water (STW; 0.029% (w/v) CaCl, • 2H,0, 0.014% (w/v) MgCl, • 6H,0, and 0.021% (w/v) NaHCO3 in deionized water) adjusted to pH 8.5 at 50°C, prepared as follows. With stirring for 10 min, 6 g of casein was dissolved in 350 ml of STW. 50 ml of 0.3 M Tris in STW was added and stirring was continued for another 10 min. This solution was heated to 70°C, then allowed to cool slowly. At 50°C, the pH was adjusted to 8.5 with 0.1 N NaOH. When the solution reached room temperature, the volume was adjusted to 500 ml with STW, followed by the addition of 125 ml of 2% (W/V) pentasodium tripolyphosphate in STW, pH 8.5 (adjusted with 3 N HCl). The protease assay was started by adding 50 μ l of protease solution to 750 μ l of substrate solution placed in a 2.2 ml Eppendorf container preincubated for 10 min at 50°C. After 15 min, the reaction was terminated by the addition of 600 μ l of trichloroacetic reagent (0.44 M trichloroacetic acid, 0.22 M sodium acetate in 3% (v/v)

'5

. 10

15

20

25

30

35

glacial acetic acid). The mixture was placed on ice for 15 min, the precipitated protein removed by centrifugation for 8 min (at 13,000 x g_{max}) and a 900 μ l aliquot of the supernatant was mixed with 600 μ l of 2 N NaOH. The absorbance at 290 nm of this solution was recorded. Each dilution was assayed in duplicates and the data points for three different dilutions from one enzyme sample was analyzed by linear regression. A slope of 1 in this assay corresponds to 80 HPE units in the least diluted sample. In case of strongly colored culture supernatants with measurable quantities of UV absorbing material carried over by the diluted protease aliquot into the assay cuvette a control curve was constructed whose slope was subtracted from the slope of the protease assay before final HPE units were calculated.

B. AAPF-pNA Assay

diluted with samples were 50% (V/V) Protease 1,2-propanediol in 100 mM Tris, adjusted with 2 N HCl to pH 8.6 at 25°C ('Tris-propanediol buffer'), in which they were stable for at least 6 h at room temperature. A stock solution of 160 mM AAPF-pNA Was prepared dimethylsulfoxide dried with a molecular sieve (Aldrich; 4 Å, 4-8 mesh) for at least 24 h prior to use. Fixed point assays were performed at 25°C with 1.6 mm AAPF-pNA in 100 mM Tris, adjusted with 2 N HCl to pH 8.6 at 25°C, in a total volume of 1.020 ml. The substrate was added to the assay buffer 1 min prior to the assay initiation and the reaction was started by addition of enzyme at a final concentration of 20 ng to 1.3 μ g of protein per ml (0.75 to 48.5 nM enzyme) depending on specific activity. Release of p-nitroanilide was monitored at 410 nm, and a molar extinction coefficient of 8,480 M-1cm-1 was used calculate amount and concentration of product formed (DelMar, E.G., et al. (1979) Anal. Biochem. 99:316-320). Kinetic parameters were calculated from a velocity vs. substrate concentration plot constructed from initial rates measured once each at 12 different AAPF-pNA concentrations

10

15

20

25

30

35

ranging from 0.16 to 3.2 mM. Data were fitted to a hyperbolic curve and proportionally weighted using the program ENZFITTER (Leatherbarrow, R.J. (1987) ENZFITTER, Biosoft, Cambridge, UK). A nominal molecular weight of 26.8 kDa was used in all calculations that required the interconversion of protein concentration and molarity of protease enzyme.

Example 10

Temperature Stability of Purified Proteases

Stability of protease proteins was evaluated under two different conditions: (a) 100 mM glycine/Na $^+$, pH 10 at 60°C, and (b) 100 mM glycine/Na $^+$, pH 11 at 50°C. At t = 0 min, the protein was diluted to approximately 0.25 mg/ml into incubation buffer maintained at the desired temperature. Periodically, an aliquot was removed from this incubation mixture and diluted into Tris-propanediol buffer chilled on ice. Residual protease activity was determined by the AAPF-pNA assay at a fixed AAPF-pNA concentration (1.6 mM). Stability is expressed as half-life ($t_{1/2}$) of activity determined from semi-logarithmic plots of residual activity as function of time. Each plot consisted of 6 data points with $t_{1/2}$ approximately in the center between experimental points.

Example 11

Resistance of Proteases to Sodium Dodecylsulfate (SDS)

SDS was selected as representative of surfactants in general. Resistance of proteases to SDS was evaluated under two different conditions: (a) 100 mM Tris adjusted with 2 N HCl to pH 8.6 at 50°C, containing 1% (w/v) SDS, and (b) 50 mM sodium carbonate, pH 10.5 at 50°C, containing 1% (w/v) SDS. Protease proteins were incubated at a final protein concentration of 0.25 mg/ml. Data were collected and evaluated as described above under Example 10.

Example 12

Polyacrylamide Gel Electrophoresis

Purity of protease samples was evaluated on 20% nondenaturing PhastSystem gels (Pharmacia) run with reversed

15

20

. 25

30

35

polarity. The same system was used to monitor the protease content of crude shake flask and fermentation broths. Buffer strips were prepared as described in Application File No. 300 (Pharmacia).

Molecular weight determinations were performed on 20% SDS PhastSystem gels, using the following markers: bovine serum albumin, 66 kDa; egg albumin, 45 kDa; glyceraldehydephosphate dehydrogenase, 36 kDa; carbonic anhydrase. 29 kDa; trypsinogen, 24 kDa; trypsin inhibitor, 20.1 kDa; α-lactalbumin, 14.2 kDa (all from Sigma). Prior to SDS-PAGE, a protease sample was denatured with formic acid at a final concentration of 30 to 50% (v/v). Upon dilution of formic acid to 15% (v/v) protein was precipitated with trichloroacetic acid at a final concentration of 10% (v/v). The collected pellet was washed once with water, then dissolved in 2% (w/v) SDS and heated for 2 min in a boiling waterbath. Gels were stained with Coomassie Brilliant Blue R-250 (Kodak).

DEPOSIT OF MICROORGANISMS

Living cultures of the following have been accepted for deposit under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the purposes of patent procedure by the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852 on May 8, 1991 (the accession number preceeds each deposit description): ATCC 68614 - Bacillus licheniformis ATCC 53926 strain which contains a tetracycline-resistance plasmid originally derived from Bacillus plasmid pBC16 which carries the ATCC 53926 alkaline protease-BLAP ClaI fusion gene, whose structural gene has the mutations S3T. V4I, A188P, V193M, V199I; ATCC 68615 - E. coli WK6 which carries phasmid pMc13C, a chloramphenicol-resistant derivative of phasmid pMc5-8, that contains the ATCC 53926 alkaline protease- BLAP ClaI fusion gene and a 164 bp KpnI fragment carrying the ATCC 53926 alkaline protease gene's transcriptional terminator. The genotype of strain WK6 are Alac-proab, gale, stra, muts::Tn10/F'lacIq, ZAM15,

10

15

proA+B+ (Zell, R., and Fritz, H. -J. (1987) EMBO J. 6:1809-1815); ATCC 68616 - E. coli GM33 which carries plasmid pCB13C, an ampicillin-resistant derivative of Pharmacia plasmid vector pTZ19R (Pharmacia) that contains the ATCC 53926 alkaline protease-ClaI fusion gene. The GM33 strain's genotype is dam3 (dam-methylase minus (Marinus, M.G. and Morris, N.R. (1974) J. Mol. Biol. 85:309-322)); ATCC 68617 - E. coli WK6 which carries phasmid pMa5-8, an ampicillin-resistant mutagenesis vector described in Nucleic Acids Research Stanssens, P. et al. (1989) The genotype of strain WK6 mutations are 17:4441-4454. Alac-proAB, gale, strA, mutS::Tn10/F'lacIq, ZAM15, proA+B+ (Zell, R., and Fritz, H. -J. (1987) EMBO J. 6:1809-1815); ATCC 68618 - an E. coli WK6 which carries phasmid pMc5-8, a chloramphenicol-resistant mutagenesis vector described in Stanssens, P., et al. (1989) Nucleic Acids Res. 17:4441-4454. The genotype of strain WK6 are Alac-proAB, galE, strA, mutS::Tn10/F'lacIq, ZAM15, proA+B+ (Zell, R., and Fritz, H. -J. (1987) EMBO J. 6:1809-1815).

5

10

15

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Christiansen, Teresa
 Goddette, Dean W.
 Ladin, Beth F.
 Lau, Maria R.
 Paech, Christian
 Reynolds, Robert B.
 Wilson, Charles R.
 Yang, Shiow-Shong
- (ii) TITLE OF INVENTION: Third Generation Protease Mutants
- (iii) NUMBER OF SEQUENCES: 105
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Henkel Corporation
 - (B) STREET: 140 Germantown Pike, Suite 150
 - (C) CITY: Plymouth Meeting
 - (D) STATE: Pennsylvania
 - (E) COUNTRY: USA
 - (F) ZIP: 19462
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Drach, John E.
 - (B) REGISTRATION NUMBER: 32891
 - (C) REFERENCE/DOCKET NUMBER: M4922
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 215-832-2215
 - (B) TELEFAX: 215-941-6067
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown

- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S3T, V4I, A188P, V193M, V199I
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
- Ala Gln Thr Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15
- His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
- Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser
- Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55
- His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
- Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
- Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
- Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
- Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
 130 135 140
- Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S3T, A188P, V193M, V199I
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Ala Gln Thr Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240 Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: V4I, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Ala Gln Ser Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly	Ala	Ile	Ser	Ser	Ile 105	Ala	Gln	Gly	Leu	Glu 110	Trp	YTS	
								٠.					

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 150 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S139Y, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Tyr Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg
260 265

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: S130T, S139Y, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

						•	V.				. •					
Thr	Gly	Ile 35	Ser	Thr	His	Pro	Asp 40	Leu	Asn	Ile	Arg	Gly 45	Gly	Ala	Ser	
Phe	Val 50	Pro	Gly	Glu	Pro	Ser 55	Thr	Gln	Asp	Gly	Asn 60	Gly	His	Gly	Thr	
His 65	Val	Ala	Gly	Thr	Ile 70	Ala	Ala	Leu	Asn	Asn 75	Ser	Ile	Gly	Val	Leu 80	
Gly	Val	Ala	Pro	Ser 85	Ala	Glu	Leu	Tyr	Ala 90	Val	Lys	Val	Leu	Gly 95	Ala	
Asp	Gly	Arg	Gl <u>y</u> 100	Ala	Ile	Ser	Ser	Ile 105	Ala	Gln	Gly	Leu	Glu 110	Trp	Ala	
Gly	Asn	Asn 115	Gly	Met	His	Val	Ala 120	Asn	Leu	Ser	Leu	Gly 125	Ser	Pro	Ser	
Pro	Thr 130	Ala	Thr	Leu	Glu	Gln 135	Ala	·Val	Asn	Tyr	Ala 140	Thr	Ser	Arg	Gly	
Val 145	Leu	Val	Val	Ala	Ala 150	Ser	Gly	Asn	Ser	Gly 155	Ala	Ser	Ser	Ile	Ser 160	
Tyr	Pro	Ala	Arg	Tyr 165	Ala	Asn	Ala	Met	Ala 170	Val	Gly	Ala	Thr	Asp 175	Gln	
Asn	Asn	Asn	Arg 180	Ala	Ser	Phe	Ser	Gln 185	Tyr	Gly	Pro	Gly	Leu 190	Asp	Ile	
Met	Ala	Pro 195	Gly	Val	Asn	Ile	Gln 200	Ser	Thr	Tyr	Pro	Gly 205	Ser	Thr	Tyr	
Ala	Ser	Leu	Asn	Gly	Thr	Ser	Met	Ala	Thr	Pro	His	Val	Ala	Gly	Ala	

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile

215

230

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (Vii) IMMEDIATE SOURCE:
 (B) CLONE: A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: S3T, A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ala Gln Thr Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

SUBSTITUTE SHEET

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S157T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser Ala Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 65 His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu Gly Ala Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala Ser Ala Glu Leu Tyr Ala Gln Gly Leu Gly Ala Ser Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 110 Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 135 Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Thr Ser Ile Ser 150 Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 170 Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 190 Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala Ala Gly Ala Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225									66							٠.		
His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu Gly Val Leu Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala Ser Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 110 Ile Ser Ala Thr Leu Glu Gln Ala Asn Leu Ser Leu Gly Ser Pro Ser Ile Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 135 Ile Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Thr Ser Ile Ser 160 Ile Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 170 Ile 180 Ile Ile Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 205 Ile Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala Cly Ala Gly Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 235	Thr	Gly	I1 35	e	Ser	Thr	His	Pro	Asp 40	Leu	Asn	Ile	Arg	Gly 45	Gly	Ala	Ser	
Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala Ser Leu Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 105 Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 105 Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 125 Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Thr Ser Ile Ser 150 Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 170 Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 185 Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala Gly Ala Ala Gly Ala 215 Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 235	Phe	Val	Pr	0	Gly	Glu	Pro	ser 55	Thr	Gln	Asp	Gly	Asn 60	Gly	His	Gly	Thr	
Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 110 Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 125 Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Thr Ser Ile Ser 145 Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 175 Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 185 Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 235		Val	A.	La	Gly	Thr	Ile 70	Ala	Ala	Leu	Asn	Asn 75	Ser	Ile	Gly	Val	Leu 80	
Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 125 Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 135 Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Thr Ser Ile Ser 160 Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 170 Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 240	Gly	Val	A	la	Pro	Ser 85	Ala	Glu	Leu	Tyr	Ala 90	Val	Lys	Val	Leu	Gly 95	Ala	
Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Thr Ser Ile Ser 145 Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 170 Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 205 Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 240	Asp	Gly	A :	rg	Gly 100	Ala	Ile	Ser	Ser	Ile 105	Ala	Gln	Gly	Leu	Glu 110	Trp	Ala	
Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Thr Ser Ile Ser 145 Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 175 Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 185 Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 240	Gly	Asr	1 1	sn 15	Gly	Met	His	Val	Ala 120	Asn	Leu	Ser	Leu	Gly 125	Ser	Pro	Ser	
Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 170 Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 240	Pro	Se1	- A	la	Thr	Leu	Glu	Gln 135	Ala	Val	Asn	Ser	Ala 140	Thr	Ser	Arg	Gly	:
Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 200 Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 230	Val 145	Let	ı V	al	Val	Ala	Ala 150	Ser	Gly	Asn	Ser	Gly 155	Ala	Thr	Ser	Ile	Ser 160	
Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 235	Tyr	Pr	o <i>P</i>	la	Arg	Tyr 165	Ala	Asn	n Ala	Met	: Ala 170	val	. Gly	Ala	Thr	Asp 175	Gln	
Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 235	Asr	n As	n 1	Asn	180	, Ala	Ser	Phe	e Ser	Glr 185	ı Tyr	Gly	/ Ala	Gly	Leu 190	Asp	Ile	:
Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 240	Va]	L Al	a !	Pro 195	o Gly	y Val			i Glr 200	n Sei	r Thi	с Туі	r Pro	Gly 205	y Ser	Thr	туг	
Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 230 235 240	Ala	a Se 21	r .0	Lei	a Asi	n Gly	y Thi	Se:	r Met 5	Ala	a Thi	r Pro	0 His	s Val	l Ala	Gly	7 Ala	
	Al:	a A] 5	a	Lei	ų Va	l Ly	s Gl: 23	n Ly O	s Asi	n Pr	o Se	r Tr	p Se:	r Asi	n Val	l Gl	lle 240	

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr

195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230

240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Serine Protease

(B) STRAIN: Bacillus lentus DSM 5843

(vii) IMMEDIATE SOURCE: (B) CLONE: A188P

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 243

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S3T, V4I, A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Ala Gln Thr Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240 Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 255

72

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S104T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 55 50

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 70 65

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85

Asp Gly Arg Gly Ala Ile Ser Thr Ile Ala Gln Gly Leu Glu Trp Ala 100

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 120

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 135

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: T69V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

		•					70								••
Thr G		Ile 35	Ser	Thr	His	Pro	Asp 40	Leu	Asn	Ile	Arg	Gly 45	Gly	Ala	Ser
Phe V	/al 50	Pro	Gly	Glu	Pro	Ser 55	Thr	Gln	Asp	Gly	Asn 60	Gly	His	Gly	Thr
His V	7al i	Ala	Gly'	Val	Ile 70	Ala	Ala	Leu	Asn	Asn 75	Ser	Ile	Gly	Val	Leu 80
Gly V	/al /	Ala	Pro	Ser 85	Ala	Glu	Leu	Tyr	Ala 90	Val	Lys	Val	Leu	Gly 95	Ala
Asp G	Sly i	Arg	Gly 100	Ala	Ile	Ser	Ser	Ile 105	Ala	Gln	Gly	Leu	Glu 110	Trp	Ala
Gly A		Asn 115	Gly	Met	His	Val	Ala 120	Asn	Leu	Ser	Leu	Gly 125	Ser	Pro	Ser
Pro S	Ser A	Ala	Thr	Leu	Glu	Gln 135	Ala	Val	Asn	Ser	Ala 140	Thr	Ser	Arg	Gly
Val I 145	Leu '	Val	Val	Ala	Ala 150	Ser	Gly	Asn	Ser	Gly 155	λla	Ser	Ser	Ile	Ser 160
Tyr F	Pro A	Ala	Arg	Tyr 165	Ala	Asn	Ala	Met	Ala 170	Val	Gly	Ala	Thr	Asp 175	Gln
Asn A	Asn A	Asn	Arg 180	Ala	Ser	Phe	Ser	Gln 185	Tyr	Gly	λla	Gly	Leu 190	Asp	Ile
Val A		Pro 195		Val	Asn	Val	Gln 200	Ser	Thr	Tyr	Pro	Gly 205	Ser	Thr	Tyr
Ala S	Ser 1 210	Leu	Asn	Gly	Thr	Ser 215	Met	Ala	Thr	Pro	His 220	Val	Ala	Gly	Ala
Ala #	Ala :	Leu	Vạl	Lys	Gln 230	Lys	Asn	Pro	Ser	Trp 235	Ser	Asn	Val	Gln	Ile 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (Vii) IMMEDIATE SOURCE:
 - (B) CLONE: V4I, A188P, V193M
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Ala Gln Ser Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala
1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: A224V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

PCT/US92/04306 Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 185 180

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 200 195

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Val 220 215 210

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 235 230 225

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 255 245

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 265 260

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 5

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 25

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (Vii) IMMEDIATE SOURCE: (B) CLONE: V4I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
 - Ala Gln Ser Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S3T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Ala Gln Thr Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

'ly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg. 260 265

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S139Y
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu . 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Tyr Ala Thr Ser Arg Gly
130 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 150 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245

SUBSTITUTE SHEET

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: N242A
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly	Asn	Asn 115	Gly	Met	His	Val	Ala 120	Asn	Leu	Ser	Leu	Gly 125	Ser	Pro	Ser	
Pro	Ser 130	Ala	Thr	Leu	Glu	Gln 135	Ala	Val	Asn	Ser	Ala 140	Thr	Ser	Arg	Gly	
Val 145	Leu	Val	Val	Ala	Ala 150	Ser	Gly	Asn	Ser	Gly 155	Ala	Ser	Ser	Ile	Ser 160	
Tyr	Pro	Ala	Arg	Tyr 165	Ala	Asn	Ala	Met	Ala 170	Val	Gly	Ala	Thr	Asp 175	GÌn	•
Asn	Asn	Asn	Arg 180	Ala	Ser	Phe	Ser	Gln 185	Tyr	Gly	Ala	Gly	Leu 190	Asp	Ile	
Val	Ala	Pro 195	Gly	Val	Asn	Val	Gln 200	Ser	Thr	Tyr	Pro	Gly 205	Ser	Thr	Tyr	
Ala	Ser 210		Asn	Gly	Thr	Ser 215	Met	Ala	Thr	Pro	His 220	Val	Ala	Gly	Ala	
Ala 225		Leu	Val	Lys	Gln 230	Lys	Asn	Pro	Ser	Trp 235	Ser	Asn	Val	Gln	Ile 240	
Arg	Ala	His	Leu	Lys 245	.Asn	Thr	Ala	Thr	Ser 250	Leu	Gly	Ser	Thr	Asn 255	Leu	

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S236T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

35
40
45.

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile
180
185

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala
210
220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Thr Asn Val Gln Ile 225 230 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S36A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ala Thr His Pro	Asp Leu Asn Ile Ar 40	g Gly Gly Ala Ser 45
-----------------------------	--------------------------	-------------------------

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: H243A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr
 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala . 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala

- Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
- Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 135 140
- Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160
- Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
 165 170 175
- Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190
- Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205
- Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220
- Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240
- Arg Asn Ala Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: A101T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

30 25 20

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 40

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala

Asp Gly Arg Gly Thr Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 120 115

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 135 130

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 155 150 · 145

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 170 165

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S236A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ala Asn Val Gln Ile 225 230 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: E87R
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
- Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
- His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
- Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
- Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
- His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
- Gly Val Ala Pro Ser Ala Arg Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
- Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: N114S
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110
 - Gly Ser Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
 - Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
 130 135 140
 - Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160
 - Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala
210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: A47W
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Trp Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

102

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (Vii) IMMEDIATE SOURCE:
 - (B) CLONE: A120S
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ser Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: T56V
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Val Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: A120V
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 1 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr
50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala

Gly Asn Asn Gly Met His Val Val Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: G205V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110 Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Val Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: S130A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser. 35 40 45
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110
 - Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
 - Pro Ala Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
 130 135 140
 - Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160
 - Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile
180
180

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195
200
205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S130T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile S	er Thr H	is Pro Asp	Leu Asn Ile	Arg Gly	Gly Ala Ser
• •					

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Thr Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: A96I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ile 85 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids.
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: S104T, S139Y, A224V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Thr Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Tyr Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp ITe 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Val 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S139A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala 3er 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ala Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

- (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S142T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Thr Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp'Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S139T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Thr Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 185 180

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 200

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 215

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 235 230 225

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 265

- (2) INFORMATION FOR SEQ ID NO:41:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: I102W
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Trp Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

SUBSTITUTE SHEET

- (2) INFORMATION FOR SEQ ID NO: 42:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A96N
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Asn 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Serine Protease
- (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: N42F
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Phe Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg
260 265

- (2) INFORMATION FOR SEQ ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S142A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ala Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile. 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: H118F
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

- Gly Asn Asn Gly Met Phe Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
- Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
 130 135 140
- Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 160.
- Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
 165 170 175
- Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190
- Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205
- Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220
- Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240
- Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

- (2) INFORMATION FOR SEQ ID NO:46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: N237A
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:
- Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
- His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
- Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
- Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
- His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
- Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
- Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110
- Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
- Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
 130 135 140
- Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160
- Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr.
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Ala Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

- (2) INFORMATION FOR SEQ ID NO:47:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: N255P
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30 Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95 k

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Pro Leu 245 250 255

- (2) INFORMATION FOR SEQ ID NO:48:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: T141W, N237A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Trp Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Ala Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg
260 265

(2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Serine Protease
- (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: T268V
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

SUBSTITUTE SHEET

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Val Arg 260 265

(2) INFORMATION FOR SEQ ID NO:50:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: K229W
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

	/2176				-		136				,		CIVUS			
	Thr	Gly	Ile 35	Ser	Thr	His	Pro	Asp 40	Leu	Asn	Ile	Arg	Gly 45	Gly	Ala	Sèr
	Phe	Val 50	Pro	Gly	Glu	Pro	Ser 55	Thr	Gln	Asp	Gly	Asn 60	Gly	His	Gly	Thr
	His 65	Val	Ala	Gly	Thr	Ile 70	Ala	Ala	Leu	Asn	Asn 75	Ser	Ile	Gly	Val	Leu 80
	Gĺy	Val	Ala	Pro	Ser 85	Ala	Glu	Leu	Tyr	Ala 90	Val	Lys	Val	Leu	Gly 95	Ala
	Asp	Gly	Arg	Gly 100	Ala	Ile	Ser	Ser	Ile 105	Ala	Gln	Gly	Leu	Glu 110	Trp	Ala
	Gly	Asn	Asn	Gly	Met	His	Val			Leu	Ser	Leu	Gly	Ser	Pro	Ser
			115			•	120				125			5		
	Pro	Ser 130	Ala	Thr	Leu	Glu	Gln 135	Ala	Val	Asn	Ser	Ala 140	Thr	Ser	Arg	Gly
	Val 145	Leu	Val	Val	Ala	Ala 150	Ser	Gly	Asn	Ser	Gly 155	Ala	Ser	Ser	Ile	Ser 160
	Tyr	Pro	Ala	Arg	Tyr 165	Ala	Asn	Ala	Met	Ala 170	Val	Gly	Ala	Thr	Asp 175	Gln
	Asn	Asn	Asn _.	Arg 180	Ala	Ser	Phe	Ser	Gln 185	Tyr	Gly	Ala	Gly	Leu 190	Asp	Ile
	Val	Ala	Pro	Gly	Val	Asn	Val	Gln 200	Ser	Thr	Tyr	Pro	Gly 205	Ser	Thr	Tyr

200

215

230

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala

Ala Ala Leu Val Trp Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile

195

225

205

220

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

- (2) INFORMATION FOR SEQ ID NO:51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: T141W
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 105 100

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 120 125 115

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Trp Ser Arg Gly 135 130

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr . 195

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: wildtype
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

140

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln'Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S3T, V4I, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:
- GCGCAAACAA TCCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120

- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:54:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:

(B) CLONE: S3T, A188P, V193M, V199I

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:
- GCGCAAACAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTICTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:55:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (Vii) IMMEDIATE SOURCE:
 (B) CLONE: V4I, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:
- GCGCAATCAA TCCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780

CTTGTCAATG CAGAAGCGGC AACACGC

- (2) INFORMATION FOR SEQ ID NO:56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S139Y, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATTATGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG 600

- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:57:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYF THETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: S130T, S139Y, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360

- PCT/US92/04306
- AATTTGAGTT TAGGAAGCCC TTCGCCAACA GCCACACTTG AGCAAGCTGT TAATTATGCG
 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:58:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (Vii) IMMEDIATE SOURCE:
 (B) CLONE: A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT

- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:59:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S3T, A188P, V193M

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:
- GCGCAAACAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:60:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S157T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAC ATCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC

SUBSTITUTE SHEET

- (2) INFORMATION FOR SEQ ID NO:62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660

- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (Vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A188P
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420

- PCT/US92/04306
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:64:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE: (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S3T, V4I, A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:
- GCGCAAACAA TCCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA 60
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240

- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:65:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTATGG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:66:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S104T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCA CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: T69V
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGGTTATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660

- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAL G CAGAAGCGGC AACACGC 807

.

- (2) INFORMATION FOR SEQ ID NO:68:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE: (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: V4I, A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:
- GCGCAATCAA TCCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC

- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:69:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

 - (vii) IMMEDIATE SOURCE: (B) CLONE: A224V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT

WO 92/21760

- PCT/US92/04306
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG TTGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:70:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA 60

- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:71:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: V4I
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:
- GCGCAATCAA TCCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:72:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 807 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S3T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:
- GCGCAAACAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720

CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA

CTTGTCAATG CAGAAGCGGC AACACGC

- (2) INFORMATION FOR SEQ ID NO:73:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: S139Y
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATTATGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480

- PCT/US92/04306
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGCL
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:74:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE: (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: N242A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300

120

- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCGCACATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:75:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: S236T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:
- GCGCAATCAG TGCCATGGGG AATTAGCCGI GTGCAAGCCC CGGCTGCCCA TAACCGTGGA

- PCT/US92/04306
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGACAAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:76:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:

- (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S36A
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTGCAAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:77:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 807 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: H243A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720

PCT/US92/04306

CGCAACGCAC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA

CTTGTCAATG CAGAAGCGGC AACACGC

- (2) INFORMATION FOR SEQ ID NO:78:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A101T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- ACAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360 ·
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540

- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:79:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S236A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT

- PCT/US92/04306
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGGCAAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:80:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: E87R
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120

- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGCG TCTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:81:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483

(vii) IMMEDIATE SOURCE: (B) CLONE: N114S

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA GCAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:82:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A47W
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCTG GAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780

CTTGTCAATG CAGAAGCGGC AACACGC 807

(2) INFORMATION FOR SEQ ID NO:83:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: A120S
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTAGC 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540

- PCT/US92/04306
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:84:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: T56V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCGTTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360

SUBSTITUTE SHEET

- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:85:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: A120V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120

- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGTT
 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:86:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:

(B) CLONE: G205V

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGTTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:87:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S130A
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAGCA GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780

WO 92/21760 CTTGTCAATG CAGAAGCGGC AACACGC 807

- (2) INFORMATION FOR SEQ ID NO:88:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S130T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAACA GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600

- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:89:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A96I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAATTGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360

- PCT/US92/04306 AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTICIAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:90:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE: (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S104T, S139Y, A224V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180

- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCA CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATTATGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG TTGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:91:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: \$139A

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA. TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATGCAGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:92:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S142T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTACAAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE OURCE: (B) CLONE: S139T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATACAGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT

- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:94:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: I102W
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCATGGAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420

- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG .CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:95:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A96N
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240

- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAAACGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE: (B) CLONE: N42F
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

- WO 92/21760
- PCT/US92/04306 GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA 60
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTATTTATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:97:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S142A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
 - GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTGCAAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:99:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: H118F
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GTTTGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660

- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:100:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: N237A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480

- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCGC TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:101:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: N255P
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA 60
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240

GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT

PCT/US92/04306

- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGCCATTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:102:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: T141W, N237A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA

- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- TGGTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCGC TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:103:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: T268V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AGTTCGC 807
- (2) INFORMATION FOR SEQ ID NO: 104:
 - (i) SEQUENCE CHARACTERISTICS:

SUBSTITUTE SHEET

- (A) LENGTH: 807 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MCLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: K229W
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TÄGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTTGGCAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720

CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA

CTTGTCAATG CAGAAGCGGC AACACGC 807

- (2) INFORMATION FOR SEQ ID NO:105:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: T141W
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA 60
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- TGGTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480

- WO 92/21760 PCT/US92/04306
 TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCCC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807

- (2) INFORMATION FOR SEQ ID NO:106:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Bacillus lentus
 - (B) STRAIN: DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: wild type
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240

SUBSTITUTE SHEET

- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGCT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807

25

30

35

What is claimed is:

- 1. A mutant Bacillus lentus DSM 5483 protease derived by the replacement of at least one amino acid residue of the mature form of the Bacillus lentus DSM 5483 alkaline protease shown in SEQ ID NO:52 wherein said one amino acid residue which is selected from the group consisting of Ser3, Val4, Ser36, Asn42, Ala47, Thr56, Thr69, Glu87, Ala96, Ala101, Ile102, Ser104, Asn114, His118, Ala120, Ser130, Ser139, Thr141, Ser142, Ser157, Ala188, Val193, Val199, Gly205, Ala224, Lys229, Ser236, Asn237, Asn242, His243, Asn255, Thr268 is replaced with the amino acid residues listed in Table 2.
- 2. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the valine residue at position 199 is substituted
 by isoleucine, the valine residue at position 193 is
 substituted by methionine, the alanine residue at position
 188 is substituted by proline, the valine residue at
 position 4 is substituted by isoleucine, and the serine
 residue at position 3 is substituted by threonine.
 - 3. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.
 - 4. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.
 - 5. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 199 is substituted

by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 139 is substituted by tyrosine.

5

10

- 6. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the serine residue at position 139 is substituted by tyrosine and the serine residue at position 130 is substituted by threonine.
- 7. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the valine residue at position 199 is substituted
 by isoleucine, the valine residue at position 193 is
 substituted by methionine, the alanine residue at position
 188 is substituted by proline.
- 8. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.

- 9. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 157 is substituted by threonine.
- 30 10. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 193 is substituted by methionine, and the alanine residue at position 188 is substituted by proline.
- 35 11. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 188 is substituted by proline.

15

- 12. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the valine residue at position 4 is substituted by isoleucine and the serine residue at position 3 is substituted by threonine.
- 13. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 193 is substituted by methionine.
- 14. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 104 is substituted by threonine.
- 15. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the threonine residue at position 69 is substituted by valine.
- 20 16. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 193 is substituted by methionine, and the alanine residue at position 188 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.
 - 17. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 224 is substituted by valine.
- 18. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 199 is substituted by isoleucine.
- 19. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the valine residue at position 4 is substituted by isoleucine.

- 20. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 3 is substituted by threonine.
- 5 21. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 139 is substituted by tyrosine.
- 22. A mutant Bacillus lentus DSM 5483 protease of claim 1

 wherein the asparagine residue at position 242 is substituted by alanine.
 - 23. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 236 is substituted by threonine.
 - 24. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 36 is substituted by alanine.
 - 25. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the histidine residue at position 243 is substituted by alanine.
- 26. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 101 is substituted by threonine.
- 27. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the serine residue at position 236 is substituted by alanine.
- 28. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the glutamic acid residue at position 87 is substituted by arginine.

20

- 29. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the asparagine residue at position 114 is substituted by serine.
- 30. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 47 is substituted by tryptophan.
- 31. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the alanine residue at position 120 is substituted by serine.
 - 32. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the threonine residue at position 56 is substituted by valine.
 - 33. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 120 is substituted by valine.
 - 34. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the glycine residue at position 205 is substituted by valine.
- 25 35. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 130 is substituted by alanine.
- 36. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the serine residue at position 130 is substituted by threonine.
 - 37. A mutant Bacillus lentus DSM 5483 protease of claim i wherein the alanine residue at position 96 is substituted by isoleucine.

- 38. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 224 is substituted by valine, the serine residue at position 104 is substituted by threonine, and the serine residue at position 139 is substituted by tyrosine.
- 39. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 139 is substituted by alanine.

5

- 40. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 142 is substituted by threonine.
- 41. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 139 is substituted by threonine.
- 42. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the isoleucine residue at position 102 is substituted by tryptophan.
 - 43. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 96 is substituted by asparagine.
 - 44. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the asparagine residue at position 42 is substituted by phenylalanine.

30

- 45. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 142 is substituted by alanine.
- 35 46. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the histidine residue at position 118 is substituted by phenylalanine.

- 47. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the asparagine residue at position 237 is substituted by alanine.
- 5 48. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the asparagine residue at position 255 is substituted by proline.
- 49. A mutant Bacillus lentus DSM 5483 protease of claim 1

 wherein the asparagine residue at position 237 is substituted by alanine and the threonine residue at position 141 is substituted by tryptophan.
- 50. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the threonine residue at position 268 is substituted by valine.
 - 51. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the lysine residue at position 229 is substituted by tryptophan.
 - 52. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the threonine residue at position 141 is substituted by tryptophan.

30

35

20

53. A mutant gene which encodes for a mutant Bacillus lentus DSM 5483 protease comprising in the direction of transcription a promoter, ribosomal binding site, initiation codon and the major portion of the pre region of the Bacillus licheniformis ATCC 53926 alkaline protease gene operably linked to a portion of the pre region and all of the pro and mature regions of the Bacillus lentus DSM 5483 alkaline protease gene wherein one or more codons of said Bacillus lentus DSM 5483 alkaline protease gene are altered to produce a mutant gene which encodes for a protease derived by the replacement of at least one amino acid residue of the mature form of the Bacillus lentus DSM

30

5483 alkaline protease wherein said one amino acid residue which is selected from the group consisting of Ser3, Val4, Ser36, Asn42, Ala47, Thr56, Thr69, Glu87, Ala96, Ala101, Ile102, Ser104, Asn114, His118, Ala120, Ser130, Ser139, Thr141, Ser142, Ser157, Ala188, Val193, Val199, Gly205, Ala224, Lys229, Ser236, Asn237, Asn242, His243, Asn255, Thr268 is replaced with the amino acid residues listed in Table 2.

- 10 54. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the valine residue at position 4 is substituted by isoleucine, and the serine residue at position 3 is substituted by threonine.
 - 55. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.
 - 56. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.
 - 57. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine

SUBSTITUTE SHEET

15

residue at position 188 is substituted by proline, and the serine residue at position 139 is substituted by tyrosine.

- 58. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the serine residue at position 139 is substituted by tyrosine and the serine residue at position 130 is substituted by threonine.
 - 59. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline.
- 60. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.
- 25 61. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 157 is substituted by threonine.
- 62. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, and the alanine residue at position 188 is substituted by proline.
- 63. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 188 is substituted by proline.

15

- 64. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the valine residue at position 4 is substituted by isoleucine and the serine residue at position 3 is substituted by threonine.
- 65. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine.
- 66. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 104 is substituted by threonine.
- 67. The mutant gene of claim 53 which encodes for said mutant protease wherein the threonine residue at position 69 is substituted by valine.
- 20 68. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, and the alanine residue at position 188 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.
 - 69. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 224 is substituted by valine.
- 70. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine.
- 71. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 4 is substituted by isoleucine.

- 72. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 3 is substituted by threonine.
- 73. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 139 is substituted by tyrosine.
- 74. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 242 is substituted by alanine.
 - 75. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 236 is substituted by threonine.
 - 76. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 36 is substituted by alanine.
 - 77. The mutant gene of claim 53 which encodes for said mutant protease wherein the histidine residue at position 243 is substituted by alanine.
- 78. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 101 is substituted by threonine.
- 79. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 236 is substituted by alanine.
 - 80. The mutant gene of claim 53 which encodes for said mutant protease wherein the glutamic acid residue at position 87 is substituted by arginine.

- 81. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 114 is substituted by serine.
- 5 82. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 47 is substituted by tryptophan.
- 83. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 120 is substituted by serine.
- 84. The mutant gene of claim 53 which encodes for said mutant protease wherein the threonine residue at position 56 is substituted by valine.
 - 85. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 120 is substituted by valine.
 - 86. The mutant gene of claim 53 which encodes for said mutant protease wherein the glycine residue at position 205 is substituted by valine.
- 25 87. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 130 is substituted by alanine.
- 88. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 130 is substituted by threonine.
- 89. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 96 is substituted by isoleucine.

10

.30

- 90. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 224 is substituted by valine, the serine residue at position 139 is substituted by tyrosine and the serine residue at position 104 is substituted by threonine.
- 91. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 139 is substituted by alanine.
- 92. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 142 is substituted by threonine.
- 93. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 139 is substituted by threonine.
- 94. The mutant gene of claim 53 which encodes for said mutant protease wherein the isoleucine residue at position 102 is substituted by tryptophan.
- 95. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 96 is substituted by asparagine.
 - 96. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 42 is substituted by phenylalanine.
 - 97. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 142 is substituted by alanine.

BUSCOSITUS ESSENTING

98. The mutant gene of claim 53 which encodes for said mutant protease wherein the histidine residue at position 118 is substituted by phenylalanine.

- 99. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 237 is substituted by alanine.
- 5 100. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 255 is substituted by proline.
- 101. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 237 is substituted by alanine and the threonine residue at position 141 is substituted by tryptophan.
- 102. The mutant gene of claim 53 which encodes for said mutant protease wherein the threonine residue at position 268 is substituted by valine.
 - 103. The mutant gene of claim 53 which encodes for said mutant protease wherein the lysine residue at position 229 is substituted by tryptophan.
 - 104. The mutant gene of claim 53 which encodes for said mutant protease wherein the threonine residue at position 141 is substituted by tryptophan.

25 105. A hybrid plasmid capable of replication in Bacillus comprised of a gene which encodes for a mutant Bacillus lentus DSM 5483 protease comprising in the direction of transcription a promoter, ribosomal binding site, initiation codon and the major portion of the pre region of 30 . the Bacillus licheniformis ATCC 53926 alkaline protease gene operably linked to a portion of the pre region and all of the pro and mature regions of the Bacillus lentus DSM 5483 alkaline protease gene followed by a 164 bp DNA fragment containing the transcription terminator from the 35 ATCC 53926 alkaline protease gene wherein one or more codons of said Bacillus lentus DSM 5483 alkaline protease

10

15

20

25

gene are altered to produce a mutant gene which encodes for a protease derived by the replacement of at least one amino acid residue of the mature form of the Bacillus lentus DSM 5483 alkaline protease wherein said one amino acid residue which is selected from the group consisting of Ser3, Val4, Ser36, Asn42, Ala47, Thr56, Thr69, Glu87, Ala96, Ala101, Ile102, Ser104, Asn114, His118, Ala120, Ser130, Ser139, Thr141, Ser142, Ser157, Ala188, Val193, Val199, Gly205, Ala224, Lys229, Ser236, Asn237, Asn242, His243, Asn255, Thr268 is replaced with the amino acid residues listed in Table 2.

106. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the valine residue at position 4 is substituted by isoleucine, and the serine residue at position 3 is substituted by threonine.

107. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.

108. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.

10

15

20

25

30

35

109. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 139 is substituted by tyrosine.

110. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the serine residue at position 139 is substituted by tyrosine and the serine residue at position 130 is substituted by threonine.

111. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline.

112. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.

113. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 157 is substituted by threonine.

114. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine

residue at position 193 is substituted by methionine, and the alanine residue at position 188 is substituted by proline.

- 115. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 188 is substituted by proline.
- 116. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the valine residue at position 4 is substituted by isoleucine and the serine residue at position 3 is substituted by threonine.
 - 117. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine.
 - 118. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 104 is substituted by threonine.
- 25 119. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the threonine residue at position 69 is substituted by valine.
- gene encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, and the alanine residue at position 198 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.

20

25

- 121. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 224 is substituted by valine.
- 5 122. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine.
- 123. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 4 is substituted by isoleucine.
- 124. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 3 is substituted by threonine.
 - 125. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 139 is substituted by tyrosine.
 - 126. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 242 is substituted by alanine.
 - 127. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 236 is substituted by threonine.
- 128. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 36 is substituted by alanine.
- 129. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the histidine residue at position 243 is substituted by alanine.

SUBSTITUTE SHEET

- 130. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 101 is substituted by threonine.
- 131. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 236 is substituted by alanine.
- 132. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the glutamic acid residue at position 87 is substituted by arginine.
- 133. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 114 is substituted by serine.
- 134. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 47 is substituted by tryptophan.
 - 135. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 120 is substituted by serine.
 - 136. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the threonine residue at position 56 is substituted by valine.
- 137. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 120 is substituted by valine.
- 138. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the glycine residue at position 205 is substituted by valine.

- 139. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 130 is substituted by alanine.
- 140. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 130 is substituted by threonine.
- 141. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 96 is substituted by isoleucine.
- 142. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 224 is substituted by valine, the serine residue at position 139 is substituted by tyrosine and the serine residue at position 104 is substituted by threonine.
- 20 143. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 139 is substituted by alanine.
- 144. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 142 is substituted by threonine.
- 145. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 139 is substituted by threonine.
 - 146. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the isoleucine residue at position 102 is substituted by tryptophan.

- 147. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 96 is substituted by asparagine.
- 5 148. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 42 is substituted by phenylalanine.
- 10 149. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 142 is substituted by alanine.
- 150. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the histidine residue at position 118 is substituted by phenylalanine.
- 151. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 237 is substituted by alanine.
- 152. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 255 is substituted by proline.
- 153. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 237 is substituted by alanine and the threonine residue at position 141 is substituted by tryptophan.
- 154. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the threonine residue at position 268 is substituted by valine.

155. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the lysine residue at position 229 is substituted by tryptophan.

156. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the threonine residue at position 141 is substituted by tryptophan.

which affect the stability of a target protein comprising the steps of: (1) generating a probe-accessible surface of said target protein by probing the three dimensional coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probe-accessible surface has an external surface the interior of which contains one or more probe-accessible internal cavities; (2) identifying the amino acids which make up the boundaries of the internal cavities, wherein said amino acids comprise a set of sites which when mutated increase the stability of the protein.

158. The computer based method of claim 157 wherein said target protein is Bacillus lentus DSM 5483 alkaline protease.

25

30

35

159. A computer based method for identifying the sites which affect the stability of a target protein comprising the steps of: (1) generating a probe-accessible surface of said target protein by probing the three dimensional coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probe-accessible surface has an external surface the interior of which contains one or more probe-accessible internal cavities; (2) aligning said three dimensional coordinates of said target protein and a reference protein by moving the three dimensional coordinates of said reference protein into the coordinate

frame of said target protein; (3) identifying an amino acid in said reference protein whose side chain lies outside said solvent-accessible surface of said protein or inside said internal cavities of said target protein.

5

160. The computer based method of claim 159 wherein said target protein is Bacillus lentus DSM 5483 alkaline protease.

10

161. The computer based method of claim 159 wherein said reference protein is any protein for which a three dimensional structure is available which is homologous to the target protein.

15

162. The computer based method of claim 159 wherein said reference protein is thermitase.

20

163. The computer based method of claim 159 wherein said reference protein is subtilisin Carlsberg.

164. The computer based method of claim 159 wherein said reference protein is subtilisin BPN'.

25

165. The computer based method of claim 159 wherein said reference protein is proteinase K.

30

35

166. A. computer based method for increasing the stability of a protein comprising the steps of: (1) generating a probe-accessible surface of said target protein by probing the coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probe-accessible surface has an external surface the interior of which contains one or more probe-accessible internal cavities; (2) identifying the amino acids which make up the boundaries of the internal cavities, wherein said amino acids comprise a set of sites which when mutated increase the stability of the protein;

20

- (3) identifying an amino acid mutation which decreases the volume of said internal cavities; (4) determining if said amino acid in said target protein can be changed without creating unacceptable steric interactions; (5) replacing the amino acid in said target protein by site directed mutagenesis of the gene which expresses said target protein.
- 167. The computer based method of claim 166 wherein said target protein is Bacillus lentus DSM 5483 alkaline protease.
- 168. The computer based method of claim 166 wherein said reference protein is any protein for which a three dimensional structure is available which is homologous to the target protein.
 - 169. The computer based method of claim 166 wherein said reference protein is thermitase.
 - 170. The computer based method of claim 166 wherein said reference protein is subtilisin Carlsberg.
- 171. The computer based method of claim 166 wherein said reference protein is subtilisin BPN'.
 - 172. The computer based method of claim 166 wherein said reference protein is proteinase K.
- 173. A computer based method for increasing the stability of a protein comprising the steps of: (1) generating a probe-accessible surface of said target protein by probing the coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probe-accessible surface has an external surface the interior of which contains one or more probe-accessible internal cavities; (2) aligning said three

15

20

25

35

dimensional coordinates of said target protein and a reference protein by moving the three dimensional coordinates of said reference protein into the coordinate frame of said target protein; (3) identifying an amino acid in said reference protein whose side chain lies outside said solvent-accessible surface of said protein or inside said internal cavities of said target (4) identifying the amino acid in said target protein which occupies the equivalent position as said amino acid in said reference protein; (5) determining if said amino acid in said target protein can be changed without creating unacceptable steric effects; (6) replacing the amino acid in said target protein with the corresponding amino acid in the equivalent position in said reference protein by sitedirected mutagenesis of the gene which expresses said target protein.

174. The computer based method of claim 173 wherein said target protein is Bacillus lentus DSM 5483 alkaline protease.

175. The computer based method of claim 173 wherein said reference protein is any protein for which a three dimensional structure is available which is homologous to the target protein.

176. The computer based method of claim 173 wherein said reference protein is thermitase.

- 30 177. The computer based method of claim 173 wherein said reference protein is subtilisin Carlsberg.
 - 178. The computer based method of claim 173 wherein said reference protein is subtilisin BPN'.
 - 179. The computer based method of claim 173 wherein said reference protein is proteinase K.

1 GLY C 27.985	27.065 7.578	8 ILE O	29.238	35.790	21.181
	26.692 7.822	9 SBR N	28.225		19.284
1 GLY O 26.834	- 444	9 SER CA	29.270		19.075
1 GLY N 27.785		9 SER CB	29.158	38.161	17.652
1 GLY CA 28.517		9 SER OG	29.411	37.107	16.718
2 GLN N 28.745	27.585 8.522	9 SER C	29.191		20.145
2 GLN CA 28.205	27.868 9.851		30.236	39.113	20.660
	27.265 10.835	9 SER 0'			20.540
20 005	27.589 12.287	10 ARG N	27.977	37.003	
40.021	26.805 13.151	10 ARG CA	27.775		21.537
2 GLN CD 29.834	25.685 13.540	10 ARG CB	26.288		21.686
2 GLN OE1 29.476		10 ARG CG	25.946		22.562
2 GLN NE2 31.008		10 ARG CD	26.666	42.953	22.101
2 GLM C 28.045		10 ARG NE	26.378		20.705
2 GLN 0 28.927	30.159 9.642	10 ARG CE	25.394	44.138	20.338
3 SER N 26.940	29.781 10.693	10 ARG HH1	25.226	44.365	19.048
	31.160 10.999			44.767	21.215
3 0000	31.390 10.712	10 ARG NH2	24.604	74.707	22.893
	30.913 9.455	10 ARG C	28.351	39.782	
- 44 615	31.424 12.488	10 ARG O	28.942	40.673	23.476
3 SER C 26.815	30.580 13.314	11 VAL N	28.222	38.532	23.377
3 SER O 26.464		11 VAL CA	28.862	38.186	24.642
4 VAL N 27.371		11 VAL CB	28.127	37.003	25.339
4 VAL CA 27.534	32.913 14.309	11 VAL CG1	26.664	37.416	25.538
4 VAL CB 28.860	33.625 14.552	11 VAL CG2	28.227	35.723	24.530
4 VAL CG1 29.008	33.965 16.045	11 VAL C	30.343	37.832	24.471
4 VAL CG2 30.006	32.739 14.035		31.021	37.393	25.404
	33.869 14.655	11 VAL 0			23.261
T 11-	34.990 14.097	12 GLN N	30.868	37.944	
- AF 304	33.471 15.449	12 GLN CA	32.288	37.745	22.957
	32.114 15.924	12 GLN CB	33.129	38.763	23.772
5 PRO CD 25.140	34.393 15.856	12 GLN ∝	32.773	40.196	23.319
5 PRO CA 24.313		12 GLN CD	33.643	41.252	23.997
5 PRO CB 23.404		12 GLN OE1	34.842	41.403	23.753
5 PRO CG 23.629	30100	12 GLN NE2	33.145	42.035	24.926
5 PRO C 24.823	35.677 16.538	12 GLN C	32.806	36.330	23.186
5 PRO 0 25.816	35.601 17.282	12 GLN 0	33.978	36.104	23.557
6 TRP N 24.126	36.804 16.302	13 ALA N	31.938	35.350	22.940
6 TRP CA 24.597	38.070 16.867	13 VTV 14	32.333	33.978	23.095
23 500	39.231 16.567	13 ALA CA		33.004	22.890
22 212	39.360 17.414	13 ALA CB	31.189	33.589	22.084
0	40.080 18.588	13 ALA C	33.418		22.477
20 006	AND AN AFE	13 ALA 0	34.293	. 32.789	
-		14 PRO N	33.507	34.053	20.808
U		14 PRO CD	32.522	34.799	20.020
6 TRP CD1 21.120	10 047	14 PRO CA	34.622	33.646	19.943
6 TRP NE1 20.274		14 PRO CB	34.311	34.283	18.601
6 TRP CE2 20.485	ACC 20 E76	14 PRO CG	32.806	34.270	18.606
6 TRP CZ3 22.638		14 PRO C	35.977	34.034	20.525
6 TRP CH2 21.339		14 PRO O	36.900	33.216	20.393
6 TRP C 24.859		15 ALA N	36.096	35.170	21.257
6 TRP 0 25.812	38.610 18.854	15 ALA CA	37.383	35.545	21.881
7 GLY N 24.056	37.299 19.142		37.253	36.887	22.612
7 GLY CA 24.171	37.250 20.597	15 ALA CB		34.470	22.892
		15 ALA C	37.837		22.980
		15 ALA 0	39.024	34.129	
/ 000		16 ALA R	36.899	33.826	23.591
8 ILE N 25.911		16 ALA CA	37.248	32.758	24.508
8 ILE CA 27.125	TO PER	16 ALA CB	36.057	32.436	25.368
8 ILE CB 27.250	10 000	16 ALA C	37.632	31.505	23.705
8 ILE CG2 28.525	10 654	16 ALA O	38.587	30.787	24.026
8 ILE CG1 26.016		17 HIS N	36.927	31.180	22.610
8 TLR CD 25.683		17 HIS CA	37.206	29.941	21.872
8 ILE C 28.303	35.772 20.363	1, 1110 m			_
					

	17 HI		36.28	3 29.66	7 20.715		27	LYS		29.79	9 19.8	15 32.58
1	17 RI	5 α	34.81	0 29.66	9 21.066			LYS	_			
		8 CD;						LYS				
		B ND					27 -	LYS				
		S CE					27	LYS	CI			
		8 NE2	32.694	1 29.88	20.807	•	1.27					
	7 HI		38.577	7 30.109	21.246			LYS				
	7 HI		39,290	29.114	21.115		27	LYS				
	8 AS		1 38.978	31.354	20.903			LYS	Ŏ			
1	8 AS	N CA	40.320	31.583	20.379		28		X			
1	8 AS	N CE	40.420	32.976	19.792		28		CA			1 31.738
	8 As			33.007	18.426		28		CB			4 30.583
1	8 AS	N OD1	39.324	34.072	17.991		28	VAL	œ1			0 30.598
1	8 AS	N ND2	39.604				28 1	VAL	Œ2	26.98		
-	B ASI		41.377	31.382	21.454		28		C	24.12		
	B ASI		42.545	31.105	21.147	: .	28 1		0			
19	9 ARG	3 N	41.007	31.481	22.726		29 1	ALA	X	23.203	20.93	
19	9 ARC	; CY			23.756		29 1		CA	21.900	20.31	
) ARC		41.579	31.808	25.055		: 29 1		CB	21.478		
19			41.755	33.269	24.901		29 1	LA	· C			
19			41.327		26.212		29)	LA	0	20.919		
	ARC		41.469		26.008		30 V		×	20.038		30.938
19			40.620	36.280			30 V	/AL	CA	19.069		
		HH1	40.880	37.535	26.211		30 V		CB	19.123	22.097	
19		NH2	39.567	35.963	27.217		30 V	AL	CG1	18.017		
	ARG	_	41.924	29.600	23.992		30. V	'λL	Œ2	20.480		
19			42.655	29.144	24.864		_ 30 V	AL	C	17.731		
	GLY	-	41.166		23.312		30 V	'AL	0	17.275	20.467	
-	GLY		41.105	27.344	23.620		.31 L		. N	17.155	22.192	
	GLY		40.056	26.959	24.682		31 L		CA	15.899	21.751	
	GLY		40.026	25.824	25.187		31 L	eu	CB	15.878	22.118	33.997
	LEU		39.130	27.872	25.003		31 L		∞	16.523	21.135	34.997
	LEU		38.098	27.626	26.023		31 L	EU (CD1	18.034	21.230	34.828
	LEU		38.012	28.796	26.984		31 L			16.177	21.487	36.457
	LEU		39.321	29.049	27.732		31 L		C.	14.832	. 22.501	31.724
21	-		39.370	30.463	28.219		31 L		0	14.647	23.705	31.887
21 21			39.469	28.017	28.815		32 A		N	14.163		30.801
	LEU	C	36.767 36.254	27.463	25.284		32 A		CY	13.254	22.474	29.860
22	THR	0	36.294	28.371 26.227	24.622		-32 A		CB	14.173	23.197	28.850
22	THR	CÅ	35.094	25.767	25.368		32 A		∞ .	13.567	24.470	28.221
22	THR	CB	35.488	24.785	24.713			SP C		14.128	25.565	28.394
22		OG1	36.139	23.695	23.658 24.331		32 A		-	12.549	24.352	27.538
22	THR		36.341	25.467	22.585		32 AS		Ç	12.331	21.405	29.226
22	THR	Ċ	34.069	25.126			33 T		0	12.057	20.382	29.870
22	THR	ŏ	33.010	24.745	25.146		33 TH		CY	11.874	21.602	27.972
	GLY	N	34.304	24.953	26.918		33 TH		œ.	10.956	20.709	27.245
	GLY	CA	33.327	24.232	27.761		33 TH			10.237	21.562	26.131
	GLY	c	33.680	22.769	27.973		33 TE	ER C	G2	9.394	22.099	25.255
	GLY	Ö	32.931	22.033	28.642		33 TH		Č	11.600	19.465	26.737
	SER	N	34.808	22.329	27.403		33 TH		ŏ	10.948	10 966	26.594
	SER	CA	35.218	20.939	27.546		34 GL			12.919	19.306	
	SER	CB	36.565	20.776	26.874		34 GL			13.720	18.216	26.830 26.294
	SER	OG	36.819	19.378	26.828		34 GL			14.758	18.794	
	SER	C	35.310	20.485	29.016		34 GL			14.875	20.030	25.334
	SER	0	35.830	21.218	29.880		35 IL			15.492	17.921	25.242
25	GLY	ĸ	34.786	19.290	29.245		35 IL			16.417	18.299	24.630 23.557
25	GLY	CA	34.688	18.702	30.571		35 IL			17.881	18.366	24.013
25	GLY	C	33.657	19.387	31.517		35 IL			18.614	19.017	22.822
	GLY	0	33.562	19.018	32.697		35 IL			18.149	19.249	25.273
26	VAL	N	32.861	20.356	31.079		35 IL			19.589	19.096	25.859
	VAL	CA	31.862	20.949	31.956		35 IL			16.257	17.256	22.439
	VAL	CB	31.863		31.794		35 IL			16.348	16.042	22.687
	VAL		30.812		32.729		36 SE	R		15.873	17.729	21.243
	V.YL		35.281		33.071		36 SE	R (15.797	18.036-	20.099
	VXL	C	30.488		31.604		36 SE	R C	78 3	14.885	17.400	19.036
26	VAL	0	30.089	20.375	30.446		36 SE			13.589	17.293	19.580
										•		

3/18

											•	
	5 8 R	_					44	ARO	s c	24.39	12.08	8 27.123
	8 E	_				•	44	ARO				0 27.534
37								GLY				
37 37			18.541 18.300	14.930				CLY				
37		001	18.169	12.722				CLY				
37		$\widetilde{\alpha}$	19.401	13.039				GLY	_			
37			18.675	15.912				GLY				
37			17.670	16.153				GLY				
	BIS		19.880	16.435				GLY				
38			20.021	17.474				ALA				31.558
38	HIS		19.786	18.868				ALA	CX		12.120	
	HIS		19.722	20.046	15.486			ALA	CB	16.461		
		CD2	20.803	20.545	14.801		47	ALA	C	14.953		
38		MD1	18.655	20.775			47	λLλ	0	15.007		
38		G 1	19.051	21.670				SER	H	13.817		
		ME2	20.348	21.530	14.048			SER	CY	12.537		
38	HIS	_	21.432 22.341	17.344 17.174	15.305			SER	CB	11.680		
39			21.740	17.555	16.118 14.025			ser Ser	OG C	10.390 11.760		
	PRO		20.795	17.752	12.918			SER	C	11.740	12.680 11.558	
39	PRO		23.135	17.467	13.571		_	PHE	×	11.224	13.808	
39	PRO		23.084	17.619	12.070			PHE	cλ	10.358	13.821	
39	PRO	œ	21.744	18.261	11.799			PHE	CB	10.967	14.782	35.924
39	PRO	C	24.112	18.457	14.195			PHE	œ	12.302	14.253	36.403
_	PRO		25.318	18.260	14.162		49	PHE	CD1	13.454	14.844	35.923
	ASP	H	23.645	19.520	14.832			PHE		12.383	13.128	37.204
	ASP	CY	24.583	20.488	15.375		49			14.676	14.300	36.225
40	ASP ASP	æ æ	24.218	21.897	14.900		49		CZ2	13.616	12.590	37.509
	ASP		25.453 26.526	22.801 22.264	14.740		49 1		CZ	14.760	13.176	37.008
	ASP		25.389	24.037	14.551 14.740		49 1		CO	8.915 8.115	14.206 14.601	34.546
	ASP	c	24.561	20.439	16.874		50 1		N	8.571	14.104	35.418 33.248
	ASP	ŏ	24.918	21.450	17.480			'nΤ	CA	7.230	14.424	32.796
41	LEU	n	24.080	19.327	17.430		50 1		CB	7.264	15.245	31.450
	LEU	CY	24.102	19.142	18.883		50 1	AL	∞ 1	5.869	15.427	30.821
	LEU	СВ	22.713	19.260	19.513		50 1	/AL	∝ 2	7.766	16.635	31.755
	LEU	œ	21.938	20.541	19.465		50 1		C	6.512	13.085	32.594
	TEA TEA		20.485 22.642	20.249	19.882		50 \		õ	6.894	12.336	31.695
	LEU	ć	24.635	21.595	20.331 19.265		51 E		K	5.443 4.826	12.724	33.315
	LEU	_	24.417	16.802	18.530		51 F		CA CA	4.805	13.553	34.344 33.232
	ASN	N	25.298	17.707	20.415		51 F		CB	3.632	11.476	34.218
42	ASN	CX	25.792	16.443	20.953		51 F		œ ·	4.118	12.525	35.235
	ash	CB	27.341	16.452	21.066		51 F	RO	C	4.358	10.971	31.854
	ASH	œ	27.960	15.195	21.667		51 P		0	4.621	9.848	31.454
	ASN		29.168	15.169	21.967		52 G		N	3.693	11.820	31.082
	asn Asn		27.260 25.176	14.090	21.803		52 G		CY	3.269	11.377	29.746
	ASN	C	25.590	16.272 16.890	22.354 23.332		52 G		C	4.368	11.323	28.690
	ILE	N	24.152	15.442	22.457		52 G 53 G		o N	4.117 5.606	10.848	27.575
	ILE	CÀ	23.458	15.252	23.736		53 G		cλ	6.645	11.757 11.848	28.996 28.005
	ILB	CB	21.958	15.077	23.423		53 G		CB	6.909	13.311	27.676
43	ILE	œ2	21.208	14.865	24.766		53 G		œ	5.740	13.985	27.008
	ILE		21.451	16.284	22.605		53 G		æ	5.991	15.433	26.597
43		යා	20.150	16.044	21.857		53 G			7.145	15.826	26.393
	ILE	C	24.075	14.023	24.422		53 G			5.012	16.167	26.462
43		0	24.160	12.963	23.781		53 G		C	7.901	11.202	28.519
44 . 44 .		CY CY	24.520 25.246	14.131 13.030	25.675 26.309		53 G		0	8.803	11.919	28.919
44		CB CB	26.332	13.557	27.250		54 P: 54 P:		א CD	8.059 7.103	9.880	28.483
44			27.060	14.753	26.730		54 P		CX	9.245	8.945 9.200	27.908 29.004
44		8	27.731	14.330	25.467		54 P		CB	8.817	7.745	28.993
44	ARG	KE	29.007	13.812	25.844		54 P		œ	7.964	7.702	27.752
44	~	CI	30.106	14.554	25.653		54 P			10.548	9.487	28.240
	ARG		31.2/4	14.034	'∡6°. 023		54 P			11.625	9.112	28.750
44	ARG	NH2	30.099	15.758	25.065	5	is s	BR	N	10.497	10.048	27.015

	•		
55 BER CA		65 HIS CA 16.7	49 26.168 20.98
55 SER CB	11.310 10.444 24.730	65 HIS CB 15.5	
55 BER OG	12.390 10.759 23.870	65 HIS CG 15.8	
55 SER C	12.250 11.702 26.559	65 HIS CD2 15.6	
55 SER 0	11.469 12.540 27.001	65 HIS ND1 16.3	
56 THR N	13.533 11.968 26.265	65 HIS CE1 16.4	
56 THR CA	14.084 13.315 26.487	65 HIS NE2 16.0	56 30.048 18.887
56 THR CB	15.596 13.250 26.945	65 HIS C 17.6	
56 THR OG1	16.283 12.433 25.998	65 HIS 0 18.83	
56 THR CG2	15.743 12.741 28.390	66 VAL N 17.2	
56 THR C	13.978 14.192 25.225	66 VAL CA 18.08	
56 THR O	14.370 15.358 25.250	66 VAL CB 17.35	1 26.378 25.832
57 GLN N	13.331 13.623 24.170	66 VAL CG1 18.19	
57 GLN CA 57 GLN CB	13.252 14.317 22.886	66 VAL CG2 16.26	4 27.335 25.994
	12.743 13.375 21.797	66 VAL C 19.42	7 26.062 24.466
57 GLN CG	13.825 12.370 21.360	66 VAL 0 20.49	
57 GLN CD 57 GLN OB1	15.108 13.013 20.762	67 ALA N 19.34	7 24.730 24.292
57 GLN NE2	15.091 13.752 19.766	67 ALA CA 20.53	4 23.878 24.204
	16.267 12.793 21.390	67 ALA CB 20.08	1 22.462 23.828
57 GLN C 57 GLN O	12.314 15.495 23.027	67 ALA C 21.52	6 24.393 23.140
	11.395 15.425 23.858	67 ALA 0 22.73	2 24.464 23.385
	12.508 16.545 22.256	68 GLY N 21.02	8 24.843 21.978
	11.724 17.738 22.451	68 GLY CA 21.89	0 25.373 20.923
	12.619 18.910 22.214 12.036 20.302 22.427	68 GLY C 22.60	
		68 GLY 0 23.73	0 26.888 20.726
		69 THR N 22.009	
	12.737 21.245 22.032 10.499 17.854 21.573	69 THR CA 22.72	
	10.627 18.076 20.358	69 THR CB 21.703	
59 GLY N	9.311 17.809 22.191	69 THR OG1 20.690	
59 GLY CA	8.021 17.992 21.500	69 THR CG2 22.339	
59 GLY C	7.601 19.445 21.318	69 THR C 23.902 69 THR O 24.986	
59 GLY O	6.527 19.731 20.754		
60 ASN N	8.431 20.374 21.802		
60 ASN CA	8.085 21.787 21.793		
60 ASN CB	8.166 22.340 23.222	70 ILE CB 24.305 70 ILE CG2 25.501	
60 ASN CG	7.768 23.804 23.268	70 ILE CG1 23.197	
60 ASN OD1	8.585 24.702 23.090	70 ILE CD 22.458	
60 ASN ND2	6.503 24.085 23.545	70 ILE C 25.820	
60 ash c	8.971 22.642 20.883	70 ILE 0 27.014	26.222 24.285 26.530 24.398
60 ASN O	8.525 23.378 20.022	71 ALA N 25.447	25.251 23.451
	10.269 22.585 21.093	71 ALA CA 26.467	24.349 22.986
	1.202 23.372 20.337	71 ALA CB 26.523	23.129 23.948
	2.035 24.187 21.318	71 ALA C 26.352	23.895 21.578
	3.231 24.429 21.115	71 ALA O 26.869	22.805 21.295
	1.417 24.583 22.439	72 ALA N 25.785	24.709 20.671
	2.068 25.515 23.336	72 ALA CA 25.772	24.252 19.280
	1.034 25.886 24.385	72 ALA CB 25.105	25.252 18.367
	1.450 27.020 25.268	72 ALA C 27.223	24.056 18.832
	1.218 28.363 25.048	72 ALA 0 28.112	24.803 19.205
	1.969 26.858 26.498	73 LEU N 27.412	22.934 18.090.
	2.011 28.039 27.067	73 LEU CA 28.744	22.458 17.726
	1.572 28.932 26.189 3.371 24.957 23.944	73 LEU CB 28.630	21.030 17.087
		73 LEU CG 27.913	19.969 17.918
	4.409 25.642 23.918 3.351 23.723 24.453	73 LBU CD1 27.805	18.638 17.193
	3.351 23.723 24.453 . 4.577 23.186 25.039	73 LEU CD2 28.650	19.898 19.221
	5.709 23.028 24.021	73 LEU C 29.465	23.384 16.782
	5.870 23.232 24.356	73 LEU 0 28.857	23.968 15.858
	5.375 22.712 22.746	74 ASN N 30.768	23.410 17.002
	5.392 22.485 21.700	74 ASN CA 31.650 74 ASN CB 32.829	24.268 16.196
	5.729 21.894 20.395		24.736 17.002
	3.057 20.682 20.709	0.4 0.010	25.786 16.240
	.823 21.570 19.338		26.358 15.207
	.078 23.790 21.373		26.098 16.774
•	.287 23.840 21.102		23.435 15.022
	.252 24.838 21.308		22.039 15.197
<i>3.</i> 30		75 ASN N 31.602	23.663 13.836

5/18

7	5 AS	M C	A 31.83		12.665	85	SER	C 31.71	8 21.14	2 25 142
	5 A8							0 32.11		
	5 A8					86	ALA 1	N 30.80		
	5 ASI					86			1 21.45	
	5 A81	_				86			3 22.48	
	5 ASI				11.415	86 .		29.40	8 20.12	
	6 SE				11.490		ala (
	6 8EF				10.298		ard i			7 27.882
	6 SEF				9.055		ora Ci		7 18.102	27.917
	6 8 B F			22.956	7.920 8.023	87 (
	6 SER				8.771	87 (87 (
7	6 SER	t o			7.628		ELU OE1			
	7 ILE		28.486		9.815	87 6				
7				23.710	9.658	87 6				
	7 ILE		26.315	22.283	9.597	87 0			18.788	28.237 29.353
73		CG2	26.735	21.594	8.269	88 I	BU N		18.241	
	ILE		26.604	21.393		88 I	BU CA	24.949	18.654	
	! ILE		25.657	20.178	10.887	88 L			. 19.080	
	ILE		26.407 26.960	24.494	10.799	88 L		23.561	20.137	
	GLY	×	25.199	24.925	11.891		EU CD1	23.929	21.475	26.321
	GLY	CÀ	24.338	25.534	10.501 11.486		EU CD2	23.521		24.093
	GLY	C	24.874	26.773	12.159	88 L 88 L		24.042		27.876
	GLY	ō	25.345	27.713	11.542	89 T		24.093	16.491	27.282
	VAL	H	24.781	26.721	13.475		YR CA	23.223 22.249	17.777	28.919
79		CA	25.226	27.840	14.293		TR CB	22.538	16.807 16.474	29.449 30.942
	VAL	CB	23.977	28.470	15.058		TR CG	23.828	15.673	31.047
79		CG1	23.105	29.130	14.034	89 T	TR CD1	25.048	16.317	30.920
79 79	VAL		23.172	27.468	15.841	89 T	TR CE1	26,230	15.627	30.860
	VAL	C	26.342 27.035	27.460 26.445	15.258	89 17	TR CD2		14.292	31.142
	LEU	ĸ	26.574	28.266	15.015 16.310		R CE2	24.979	13.578	31.070
	LEU	CÀ	27.681	28.023	17.216	89 T		26.175	14.250	30.937
	LEU	CB	28.856	28.882	16.777	89 T) 89 T)		27.340	13.513	30.872
	LEU	œ	30.090	28.886	17.612	89 77		20.847 20.561	17.347	29.318
	LEU		30.630	27.510	17.592	90 AI		20.000	18.513 16.511	29.646
	LEU		31.076	29.900	17.113	90 AI		18.613	16.880	28.733 28.538
	LEU	Ç	27.210	28.436	18.614	90 AI	A CB	17.991	16.206	27.306
	CLY	0	26.667	29.536	18.725	90 AL		17.794	16.453	29.749
	GLY	CY CY	27.333 26.928	27.597	19.625	90 AL		17.565	15.260	29.984
	GLY	. C	28.076	28.085 28.805	20.924	91 VA	_	17.307	17.405	30.542
	GLY	ŏ	29.253	28.863	21.248	91 VA 91 VA		16.489	17.070	31.706
	VAL	×	27.794	29.222	22.883	91 VA		17.050 16.278	17.737	32.979
	VAL	CA	28.824	29.876	23.663	91 VA		18.529	17.172 17.434	34.186
	VAL	CB	28.207	30.550	24.929	91 VA		15.086	17.576	33.152 31.413
82	VAL	CG1	29.266	31.108	25.913	91 VX	LO	14.803		31.545
	VAL (27.250		24.395	92 LY	s n	14.186	16.716	30.935
82		C	29.915 31.102		24.085	92 LY	S CA	12.860	17.211	30.608
83	AT.A	N	29.504		24.118 24.494	92 LY:		12.271	16.257	29.604
83		CÀ	30.437		24.434	92 LY	_	10.802	16.621	29.273
83		CB	30.194		26.456	92 LY: 92 LY:		10.070	15.579	28.398
83 .	ALA	C	30.270		24.181	. 92 LYS		10.580 9.873		26.970
83 .		0	29.605		24.615	92 LYS		12.009	14.730 17.347	26.095 31.892
84		K			22.956	92 LYS		11.719		32.624
84		æ			22.334	93 VAI	N	11.659		32.162
84 :		CY			21.985	93 VAI	. CA	10.834		33.299
84 1 84 1					20.658	93 VAI		11.520		34.315
B4 1					20.928 22.328	93 VAI		12.719	19.267	34.948
B4 1					21.673	93 VAI	CG 2	11.808	21.301	33.634
B5 .					23.311	93 VAL 93 VAL		9.545		32.844
B5 5	SER				3.810	94 LEU				33.627
35 \$	SER				3.944	94 LBU				31.564
35 5	SER	OG	34.358		2.630	94 LEU				1.523
								3.070	-2.023	30.524

FIGURE 1

	4 LE			1 22.98	3 31.432	1	05 I	LE C	A 11.30	8 20.99	2 38.05
	14 LE			2 24.18	8 30.604		05 11				
9	4 LE	U CD	8.380	0 23.37	4 32.555			LE 00			
9	4 LE	0 (7.78	3 19.78				LE CG			
9	4 LE	0 (8.60				05 11				
9	5 GL	Y P	6.479	19.75			05 11		C 12.18		
. 9	5 GL	Y CJ	5.913	18.98			05 TI		0 13.40		
9	5 GL	r c	5.987	19.71			06 AL		N 11.58		
9	5 GL	Y 0	6.394	20.88)6 AL		12.32		
9	6 ALI	N .					6 AL				
9	6 ALI	\ CA					6 AL				
9	6 ALI	CB					6 AL				
	6 AL						7 GL				
. 9	6 ALA	٥ ١					7 GL				
9	7 ASE	N					7 GL				
9	7 ASF	CA	2.957				7 GL				
9	7 ASP	CB					7 GL				
9	7 ASP	03						N OE1			
9	7 ASP	OD1	2.704					N NE2			
91	7 ASP	OD2	0.596				7 GL			16.625	39.702
91	7 ASP	C	3.645				7 GL				
91	7 ASP	0	3.058			7 7	8 GL				
98	GLY	N	4.885	23.232			8 GL				
98	GLY	CA	5.597				B GL		16.281		
98	GLY	C	5.223	24.311	29.038	10	B GL				
98	GLY	0	5.866	24.997	29.828		9 LEI		16.086		
99) ARG	N	4.228	23.548	29.442	10	LET	CA	17.203		
99	ARG	CY	3.746	23.492	30.813	109	LEC		16.703		40.941
99	ARG	CB	2.274	23.049	30.885	109	LEC		16.358		40.103
	ARG	œ	1.275	23.728	29.965	109	LEC	CD1	15.553		40.958
99	ARG	CD	1.373	25.198	30.169	109	LEU	CD2	17.613		39.579
99	ARG	NB	0.065	25.771	29.978	109	LEU	1. C	17.899	18.952	41.088
	ARG	CZ	-0.085	27.070	29.703	109	LEU	0	19.137	18.923	41.163
	ARG		-1.339	27.516	29.555	110	GLU	N	17.146	18.078	41.739
	ARG	NH2	0.956	27.923	29.560	110	GLO	CA	17.767	16.997	42.502
	ARG	C	4.518	22.498	31.672	110	GLU	CB	16.706	16.208	43.295
	ARG	0	4.851	21.418	31.175	110	GLU	œ	16.044	17.043	44.443
`	GLY	N	4.746	22.767	32.962		GLU		16.869	17.518	45.693
	GLY	CY	5.370	21.790	33.846		GLU		16.284	18.250	46.507
	GLY	C	5.043	22.002	35.327		GLU		18.058	17.205	45.884
	GLY	0	4.933	23.136	35.803		GLU		18.562	16.049	41.616
	YTY	N	4.881	20.881	36.029		GLU	_	19.674	15.702	42.025
	λŢΥ	CX	4.592	20.897	37.462		TRP		18.111	15.691	40.389
	ALA	CB	4.090	19.544	37.966		TRP		18.867	14.850	39.469
	YTY	C	5.844	21.210	38.278		TRP	CB	18.049	14.586	38.169
101	ALA	0	6.945	20.745	37.930		TRP	œ	18.743	13.709	37.091
		N	5.672	21.920	39.412	111			19.617	14.121	36.111
	ILE	CA	6.812	22.262	40.268 41.461		TRP		19.919	12.914	35.467
	ILE		7.414						20.195	15.302	35.658
	ILE		5.672	23.536 24.383	42.429 40.856		TRP		18.535	12.343	37.029
	ILE	œ	6.675	25.257					19.264	11.895	36.042
	ILE	င်	7.555	21.016	40.045 40.763		TRP		20.803	12.903	34.389
	ILE	ŏ	8.790	21.014	40.763		TRP		21.073	15.292	34.585
	SER	N	6.839	19.922	41.067		TRP		21.370	14.099	33.959
	SER	CA	7.477	18.691	41.459	111		C	20.160	15.563	39.124
	SER	CB	6.399	17.659	41.711	112		0	21.198	14.910	39.072
	SER	OG	5.570	17.479	40.562	112		N	20.134	16.881	38.876
	SER	Č	8.451	18.211	40.361	112		CA	21.331	17.620	38.528
	SER	Ö	9.575	17.820	40.551	112		CB C	21.029 · 22.411	19.102	38.310
	SER	N	8.068	18.299	39.085	112		0		17.530	39.612
	SER	Cλ	8.950	17.948	37.972	113		N	23.578 22.019	17.183	39.356
	SER	CB	8.185	18.077	36.660	113			22.019	17.742	40.859
	SER	œ	7.214	17.048	36.535	113			23.404		41.947
	SER	č	10.230	18.802	37.897	113			24.567	16.258	42.205
	SER	ŏ	11.330	18.272	37.756	114			24.56/	16.052	42.565
	ILE	N	10.136	20.124	38 041	114			22.524	15.285	42.009
		••		~~~		 7	· wort	∽ n	-4.701	13 872	12 000

SUBSTITUTE SHEET

11	4 A8	N CB	21.735	12.858	42.176		12	3 BE	R OC	16.514	29.408	29.479
11	4 AS	N CO	20.764	12.994	43.318		12	3 8E				
		N 001	21.095	13.531	44.373			3 8E				
		N ND2	19.511	12.575	43.163			4 LE				
	ABI		23.820		41.111			L				
	I ASI	_	24.532	12.346	41.311			LE				
•		-			39.923			LE				
	S ASI		23.767	13.953								34.115
	S AS!		24.558	13.494	38.817				u col			35.610
	5 ASI		23.678	13.382	37.576				U CD2		25.356	33.606
	ABN 3		22.871	12.090	37.637			LE				34.347
11:	S ABN	OD1	23.296	11.044	37.144			L				35.045
115	ASN	ND2	21.716	12.088	38.291			GL		9.951	30.177	34.709
115	ASK	C	25.761	14.354	38.510		125	GL	Y CA	9.733	31.019	35.884
	ASN		26.352	14.277	37.428			GL			31.204	36.140
	GLY		26.126	15.225	39.431		125	GL			31.003	35.252
	CLY		27.354	15.971	39.331			SEI			31.643	37.370
	GLY		27.372	16.991	38.204			SEI		6.640	31.772	
	GLY		28.450	17.247	37.614	•		SE		6.331	30.503	37.888
	KET		26.235	17.614	37.909			SEI		5.242		38.752
	MET		26.210	18.667	36.878			SEF			30.673	39.682
										6.623	33.055	38.707
	KET		24.807	19.105	36.509			SEF		7.650	33.353	39.302
	Ket		23.929	18.029	35.895			PRO		5.544	33.844	38.839
	KET		24.529	17.426	34.290			PRC		4.300	33.663	38.088
117	KET	CE	24.874	15.741	34.705		127			5.458	35.005	39.740
117	KET	C	26.888	19.893	37.466		127	PRC	CB	4.310	35.813	39.157
117	HET	0	26.805	20.170	38.688		127	PRO	CG	3.377	34.706	38.715
118	HIS	N	27.549	20.672	36.615		127	PRO) C	5.258	34.663	41.234
118	HIS	CA	28.186	21.879	37.094		127	PRO	0	5.342	35.518	42.119
	HIS		29.481	22.174	36.318			SER		4.904	33.408	41.511
	HIS		30.504	21.026	36.418			SER		4.673	32.939	42.860
	HIS		30.795	20.176	35.397			SER		3.340	32.142	42.821
	HIS		31.283	20.653	37.437			SER		2.292	33.013	42.389
	HIS		32.020	19.622	37.044			SER		5.845	32.100	43.399
	HIS		31.715	19.339	35.797			SER		6.430	31.293	
	HIS		27.256	23.067	36.967			PRO		6.223	32.275	42.646
	HIS		27.293	23.989	37.781			PRO		5.713		44.678
											33.322	45.595
	VAL		26.349	23.070	35.989			PRO		7.185	31.419	45.363
	AYT		25.540	24.246	35.723			PRO		7.492	32.187	46.641
	VAL	CB	26.124	25.082	34.533			PRO		6.138	32.757	46.937
	VAL		25.194	26.267	34.244			PRO		6.639	29.999	45.605
	VAL		27.537	25.612	34.864		129			5.416	29.779	45.693
	VAL	С	24.194	23.670	35.344		130		'N	7.567	29.069	45.789
	VXL	0	24.123	22.627	34.674		130		CA	7.242	27.724	46.139
120	ALA	N	23.150	24.305	35.817		130		CB	7.197	26.894	44.888
	λLλ	CX	21.801	23.917	35.457		130		⊙ G	7.387		45.215
120	λLλ	CB	21.074	23.434	36.689		130		C	8.260	27.146	47.092
	XLX	C	21.128	25.170	34.893		130		0	9.462	27.127	46.751
120	λLλ	0	21.156	26.255	35.503		131	ALA	N	7.759	26.596	48.220
	ASN	N	20.621	25.061	33.673		131		CA	8.619	25.896	49.154
121	ASN	CA	19.917	26.133	32.994		131		CB	7.818	25.334	50.312
121		CB	20.330	26.144	31.516		131	ALA	C	9.445	24.755	48.557
121		CG	19.771	27.348	30.778		131	ALA	0	10.670	24.654	48.755
	ASN		20.464	28.304	30.514		132		×	8.761	23.973	47.716
	ASN		18.511	27.315	30.418		132		CA	9.373	22.810	47.044
121		C	18.399	25.942	33.133		132		CB	8.274	22.155	46.232
121		ŏ	17.793	24.936	32.715		132			7.351	21.804	
		N	17.740	26.917	33.768		132			8.667		47.256
122											20.937	45.371
122		CA	16.277	26.942	33.962		132		C	10.547	23.223	46.156
122		CB ~	15.895	27.041	35.454		132		0	11.674	22.711	46.213
122	₩ĞÜ	œ	16.010	25.856	36.340		133		N	10.257	24.266	45.394
	LEU		15.879	26.350	37.770		133		CA	11.185	24.742	44.396
	LEU			24.875	36.068		133		CB	10.467		43.511
122		С	15.706	28.182	33.264		133		œ	11.231		42.326
122		0	15.618	29.298	33.808		133			11.504	25.174	41.324
123	SER	N	15.297	28.013	32.012		133		CL3	10.395		41.663
123	SER	CA	14.756	29.116	31.232		133		C	12.393	25.365	45.081
123		CB	15.184	28.969	29.748		133	LEU	0	13.539	25.053	44.693

					•	
	134 (N 12.1	64 26.19	5 46.111	143 ARG ME 22.030 17.901 45 500
	134 (OLU .	CA 13.2			141 100
	134 (CB 12.7			142 has been as a second
	134 (3LU	∞ 13.79			144 480 480
	134 (CD 13.24	19 29.330		143 100
		LU O	E1 14.03			143 300
		LU O	E2 12.04			144 017 4 07 00
1	134 0	ILU	C 14.18			144 000
1	34 0	ILU	0 15.39			144 000
	35 Q		N 13.59			144 019
1	35 a	LN C	A 14.37			14E UNT
1	35 G		B 13.35		49.331	145 171
	35 G		X 13.89			145 441 00 04 100
1	35 G	LN C	D 12.82		- 50.764	140 400 70.072
		LN OF				148 191 003 04 004
		LN NE				148 1990
1.	35 G	LN	C 15.24		47.620	145 VAL C 25.262 24.680 40.827
	35 G		0 16.43		47.868	145 VAL 0 24.836 25.282 41.840 146 LEU N 25.677 25.350 39.742
	36 N		N 14.69		46.420	146
	36 AI		A 15.40		45.337	146 LEU CA 25.317 26.759 39.578 146 LEU CB 26.351 27.518 38.740
	36 AI				44.225	146 199 00 00 00 00 00 00
	36 AI		C 16.55		44.802	30.3/4
13	16 AI	A (0 17.67		44.513	146
13	7 V7	L 1	N 16:31		44.677	146 LEU CD2 27.114 29.556 37.506 146 LEU C 23.979 26.800 28.875
13	7 VA	T C			44.305	144
	7 VX				44.238	142 1110
13	7 VA	LC	1 17.998		44.134	148 182 43
13	7 VA	LCG	2 15.876		43.047	149
- 13	7 VA	L	18.531		45.317	147 931 001 10 150
13	7 VA	L				147 107 003 00 640
13	8 AS	n P	18.136		46.588	149 114
13	8 AS	N CA	19.136		47.616	149 119
	8 AS		18.498			140 thy
13	8 AS	N CG	18.125		49.063	140 171
13	8 AS	N OD1			48.320	140 171 00 01 000
		N ND2	17.258		49.985	148 171 001 21 016
	B ASI		19.869		47.685	140 531 663 63 400
	B ASI		21.103	23.849	47.846	140 100
	SEI		19.209	22.709	47.506	140.040 33.781
	SEE		19.937	21.466	47.610	140 313
139	SEF	R CB	19.001	20.303	47.649	140 110
139	SEF	₹ oc	18.203	20.407	46.479	140 373 00 16 610
139	SEF	t ∙C	20.860	21.316	46.403	140 313
139	SZR	1 0	22.027	20.902	46.586	140 111
) YIY		20.431	21.663	45.160	150 373
) YIY		21.392	21.545	44.053	150 373 63: 15 656
	ALA		20.755	21.895	42.723	120 131 347
140	ALA	C	22.593	22.460	44.264	150 ALA CB 14.427 33.109 32.448 150 ALA C 14.588 34.558 34.469
140	· ALA	. 0	23.740	22.070	44.057	150 ALA O 13.789 34.092 35.290
141	THR	N	22.377		44.756	151 SER N 14.717 35.878 34.313
	THR		23.473		45.081	151 SER CA 13.991 36.841 35 145
	THR		22.851	25.918	45.587	151 SER CB 14.526 38.284 34.979
141	THR	OG1	22.034		44.549	151 SER OG 14.430 38.730 33.630
141	THR	_	23.908		45.924	151 SER C 12.485 36.873 34.867
	THR	C	24.419		46.121	151 SER 0 11.692 37.218 35 761
	THR	0	25.644	24.054	45.907	152 GLY N 12.062 36.534 33 633
142	SER	N	23.975		47.202	152 GLY CA 10.646 36.425 33.269
	SER	. CX	24.937		48.134	152 GLY C 10.382 37.457 32.193
	SER	CB	24.216		49.442	152 GLY O 11.117 38.447 32 024
	SER	OG	23.086		49.207	153 ASN N 9.271 37.263 31 400
	SER	C	25.620		47.583	153 ASN CA 8.969 38.082 30.352
	SER	0	26.616		68.150	153 ASN CB 8.689 37.237 20 116
	ARG	N	25.155		46.447	153 ASN CG 9.865 36.443 29.650
	ARG	CA	25.865		15.761	153 ASN 001 11.041 36.707 28 880
	- 50		24.848		15.261	153 ASN RD2 9.501 35.336 27.94
	λRG	œ	24.269		16.467	163 364 0 0 0 0 0
43	ARG	CD	23.132	17.127	16.152	153 100
						153 ASK 0 7.190 39.421 29.524

154 SER N 7.390 39.398 31.739	164 180 00 10 000 00 00
154 SER CA 6.193 40.206 31.915	164 ARG CB 12.939 36.127 43.071
164 070 00	104 ARG CG 12.741 37.084 44.237
	164 ARG CD 13.377 38.408 43.906
164 000	164 ARG NE 13.251 39.367 44.988
154 SER C 6.534 41.682 31.798	164 100
154 SER O 5.599 42.468 31.793	73.901
155 GLY N 7.805 42.092 31.773	164 ARG NH1 14.020 40.475 46.838
155 004	164 ARG NH2 15.289 38.737 45.965
	164 100
155 GLY C 8.028 44.150 33.143	164 300 0 15 500
155 GLY O 8.292 45.349 33.278	166 500
100	165 TYR N 15.147 33.808 44.046
156 373 63	165 TYR CA 15.787 33.157 45.176
	166 MVD CD 15 CCC
156 ALA CB 6.649 43.170 36.405	166 840
156 ALA C 8.814 44.359 36 187	165 510
	4.5
	165 TYR CE1 12.084 31.484 45 ARE
	16E MUD ADD 10 DOG
157 SER CA 9.857 45.747 37.932	
157 SER CB 9.592 47.150 38.402	441732
163 033	165 TYR CZ 11.444 30.587 46.078
157 077	165 TYR OH 10.133 30.227 46.357
	IEE TVD A 17 DAG AG AG
157 SER O 10.623 45.251 40.147	166 800
158 SER N 9.695 43.568 39.049	444
150 000	166 ALA N 17.829 33.600 46.368
150 000	100 ALA CA 19.222 33.986 46.544
41.130	166 373 00 10 000
158 SER OG 7.823 41.997 40.640	166 373
158 SER C 10.335 41.293 39.275	166 313
158 SER O 9.682 41.091 38.225	166 ALA O 21.192 33.553 45.278
150 ***	167 ASN N 19.920 31.767 45.871
100	167 ASN CA 20.860 30.806 45.280
30.034	169 300
159 ILE CB 13.164 39.024 38.847	1,5
159 ILB CG2 13.801 40.300 38.272	160 300 071
160	167 ASN OD1 22.592 30.238 47.502
150 7.5	167 ASN ND2 21.130 28.931 48 461
	1/2 1/41
159 ILE C 10.906 37.978 39.381	167 164 0: 0: 11
159 ILE O 10.454 37.888 40.528	160 373
160 SER N 10.806 36.974 38.510	
160 000	168 ALA CA 19.673 31.167 41.683
160 000	168 ALA CB 18.206 31.007 41.284
160 SER CB 9.658 35.097 37.513	
160 SER OG 10.700 34.817 36.581	22.401 41.121
160 SER C 10.947 34.777 39.691	160 177
160 000	169 HET N 21.005 32.366 40.015
161 mun	109 MET CA 21.563 33.497 39:301
161 mun	169 MET CB 22.854 33.069 38.636
161 TYR CA 10.867 32.645 40.876	160 100
161 TYR CB 9.887 32.231 41.988	160 WPM CD 05 050
161 TYR CG 9.698 33.315 43.030	160 100
161 myp mt	169 HET CB 25.641 35.532 37.199
161 myn cms	169 MET C 20.493 33.939 38.305
34.308 43.037	169 MBT O 19.998 33.150 37.484
161 TYR CD2 8.619 34.189 42.939	170 111
161 TYR CE2 8.459 35.175 43.906	170 373 03
161 TYR CZ 9.384 35.241 44.953	170
161 500	10.391
161 myn	1/U ALA C 19.430 36.504 36.432
161 600	170 ALA O 20.278 37.405 36.596
161 TYR 0 10.257 31.307 38.975	171 171 7 10 000
102 PRO N 12.153 30.681 30 054	171 1/27 63 10 222
162 000	13
163 220	1/1 VAL CB 19.862 35.590 33.075
160	171 VAL CG1 20.380 36.267 31 766
160	171 1111 000
162 PRO CG 13.726 28.915 39.470	171 101
162 PRO C 14.243 31.756 40.879	171 111
162 PRO O 15.044 31.845 41.789	
163	172 GLY N 18.474 38.712 32.887
163	172 GLY CA 17.594 39.568 32 122
	172 Ctv G 10 000
163 ALA CB 15.165 34.416 38.441	
103 ALA C 15.538 34.529 40 025	177 373 # 10 000
163 ALA O 16.640 34.874 41.399	193 37. 781
16: 300	173 ALA CA 17.461 40.220 28.347
164 300	AIN NIA CB 16.278 39.626 27.617
164 ARG CA 14.385 35.740 42.745	177 171
	1/3 ALA C 17.667 41.631 27.812

												•
_	173 1		0	16.98	7 42.59	9 28.169	. 1	82 8	ER C	B 9.7	35 46.3	38 25.967
	74 1		H	18.63				82 51				
	74 2		CA	18.99				82 81		C 10.00		
		HR	CB	20.50				82 81		0 9.59		57 28.879
		HR		21.32				83 PI		N 10.05		
	74 2			20.73			_	83 PI				31 28.191
	74 1		C	18.71			_	83 PE				9 27.282
	74 1		0	18.623				83 PE				
	75 A		N	18.674					E CD			
	75 A		CA	18.516				93 PB				
	75 A		CB	17.386 17.584					E CE			
	75 A			18.675				33 PH	E CE			
ī.	75 Å	57 (201	16.579		_		3 PH				
ī.	75 Å	SP (Ĉ	19.794				3 PH				
ī	75 A	SP	ō	20.844				4 SE				
	76 G		N	19.724				4 SZ				
	76 G		CA	20.938				4 SE				
17	76 G	LN	CB	20.702	44.722	18.237		4 SE				
17	76 G	LN	Œ	20.123	43.400	17.797		4 SE				
	76 G		CD	18.592	43.272	17.887		4 SE				32.137
	76 GI			17.837	44.022	18.543	18	5 GL	N N			
	76 GI		E2	18.083	42.254			5 GLI		11.652		
	16 G1		C	21.534	46.084	20.056	18	S GL	N CB	11.034	40.489	34.904
	6 G1		0	22.690	46.302			5 ಆಗ		9.595		34.482
	7 AS		N	20.836	46.989	20.719		5 GL		8.912		
	7 AS		CX	21.382	48.288	21.098	18	5 GLA	OE1	8.817		
	7 AS		CB CG	20.321 19.832	49.300 49.550	20.975 19.587	18	5 GLN 5 GLN	NE2	8.397		
	7 AS			20.577	49.605	18.631		5 GLN	_	12.960		
	7 AS			18.526	49.678	19.484		5 TYR	-	14.066		
	7 AS		c	21.895	48.299	22.521		5 TYR		12.871 14.048	43.046 43.618	
	7 AS		ō	22.380	49.322	23.026		TYR		14.488	44.924	
17	8 AS	N	N	21.875	47.139	23.202		TYR		13.385	45.992	
	8 AS		CA	22.256	47.033	24.623		TYR		12.362	45.872	
	8 as		CB	23.735	47.479	24.896		TYR		11.347	46.805	34.553
	8 As		∞	24.734	46.515	24.314	186	TYR	CD2	13.385	47.049	36.468
17		N OI		24.433	45.324	24.210		TYR		12.386	47.988	36.396
	B AS			25.920	46.928	23.917		TYR		11.376	47.855	35.450
	B AS		C	21.345	47.835	25.547		TYR		10.418	48.846	35.328
	B AS		0	21.747 20.081	48.392	26.576		TYR	C	13.735	43.925	37.819
	AS		n La	19.000	47.806 48.319	25.174 26.009		TYR	0	12.616	43.620	38.262
179			B	18.044	49.165	25.243		GLY	N CA	14.620	44.547	38.575
179			S	18.566	50.593	25.088		GLY	C.	15.232	44.849	39.958
	ASI			19.289	51.155	25.949		GLY	ŏ	16.318	43.548	40.892
179) ASI	ND	2	18.250	51.181	23.925		ALA	N	14.782	43.915	40.541 42.140
) ASI		C	18.230	47.101	26.490	188	ALA	CA	15.616	43.340	43.172
) Asi			18.246	46.016	25.872	188	λLA	CB	14.891	43.435	44.515
	AR			17.579	47.276	27.645		ALA	C	15.973	41.884	42.894
	ARC			16.734	46.241	28.230		YLY	0	15.134	41.065	42.549
	ARC			16.050	46.746	29.525		GLY	N	17.263	41.594	42.986
	ARC			15.269	45.653	30.233		GLY	CX	17.747	40.223	42.778
	ARG			14.562 13.537	46.201 47.146	31.492		GLY	Ç	18.299	39.938	41.358
	ARG			12.271	46.850	31.076 30.720		CLY LEU	0	18.911	38.873	41.139
	ARG			11.476	47.846	30.339	190		X	18.128	40.857	40.397
	ARG			11.709	45.650	30.752	190		CA CB	18.646 18.023	40.601	39.064
	ARG			15.639	45.909	27.213	190		œ	18.302	41.621 41.454	38.094
	ARG		o :	14.991	46.855	26.715	190			17.688	40.163	36.607 36.140
181	λLλ			15.377	44.644	26.848		LEU		17.844	42.716	35.848
	λLλ			14.225	44.338	26.002	190	LEU		20.169	40.671	39.079
	YTY			14.266	42.883	25.663	190			20.776	41.624	39.589
	λLλ			12.942	44.677	26.771	191			20.847	39.677	38.505
	ALA			12.873	44.495	28.009	191			22.285	39.597	38.558
82		N C		1.894	45.172	26.133	101			22.732	38.163	26.777
82	SER	CA		0.757	45.650	26.927	191	ASP	œ	22.428	37.668	40.182

		P OD		3 38.25	41.148		20	1 35	R C	A 19.47	6 28.58	4 17.356
19	1 AS	P OD	21.689	36.71	7 40.309			1 51				
19	1 AS	P (37.355			1 51				
19	1 AS	PC	24.122	40.674				1 SE		18.87		
19	2 IL	E N	22.464					1 SE		18.06		
	2 IL							2 TH				
19	_							2 TH				
19		E CG2						2 TH				
19		E CG1							R OG			
19									R CG			
	2 IL							2 TH				
19								2 TH				
	3 VA							3 TY				
	3 VAI											
	3 VAI							TY				
		cG1										
		CG2	22.326					TY				
	VAL								R CD1			
	VAI			39.799					R CE1			
	AL			39.376					R CD2			
	ALA								R CE2	10.770		
	ALA		22.453 22.770	38.810				TYP				
	ALA		21.446	37.303	28.253 26.837			TYP		9.560		
	ALA			38.965				TYF		14.941	22.322	
		-	20.264	39.273	27.044			TYP		15.658	21.779	15.040
	PRO		21:872	38.794	25.576			PRC		13.905	21.662	
	PRO		23.294 21.018	38.583 38.880	25.188 24.377			PRO		13.057	22.111	17.596
	PRO			38.465				PRO		13.468	20.319	15.980
	PRO		21.899 23.321	38.854	23.180			PRO		12.178	20.026	16.797
	PRO		19.802	38.002	23.643 24.479			PRO		.12.414	20.819	18.098
	PRO		19.931	36.816	24.761			PRO		13.249	20.306	14.463
	GLY	_	18.648	38.574	24.192			PRO		12.965	21.337	13.825
	GLY		17.403	37.833				GLY		13.473	19.119	13.895
	GLY		16.401	38.217	23.175			GLY		13.358	18.927	12.435
	GLY		15.214	37.925	23.175			GLY		14.643	19.310	11.724
	VAL	_	16.829	38.890	22.088			GLY		14.632	19.630	10.535
	VAL		15.888	39.285				SER		15.770	19.252	12.442
	VAL		15.690	40.877	21.035 21.010			SER		17.067	19.586	11.924
	VAL		14.919	41.323	19.738			SER	-	17.523	18.417	11.036
	VAL		15.038	41.327	22.327			SER	œ	17.461	17.216	11.797
	VAL	C	16.483	38.785	19.727			SER	C	17.098	20.931	11.175
	VAL	ŏ	17.672	38.897	19.432			THR	- N	17.591	21.045	10.047
	ASN	N	15.627	38.173	18.937		207		CA	16.566 16.518	21.968	11.842
	ASN	CÀ	15.957	37.626	17.630		207		CB	15.070	23.294	11.258
	ASN	CB	16.220	38.703	16.520			TER		15.190	23.518	10.667
	ASN	œ	15.814	38.095	15.160			THR		13.924	24.695 23.606	9.866
	ASN		15.010	37.149	15.093		207		c	16.928	24.275	11.700 12.354
	ASN		16.255	38.621	14.013		207		ŏ	17.600	23.908	13.342
	ASN	C	17.160	36.718	17.695		208		N	16.632	25.546	12.113
198	ASN	. 0	18.147	36.910	16.978		208		CX	17.071	26.693	12.914
199	VAL	N	17.039	35.746	18.605		208		CB	18.333	27.321	12.307
199	VAL	CA	18.096	34.791	18.849		208		œ	19.364	26.245	12.061
199		CB	18.135	34.490	20.377		208			19.428	25.565	10.842
	VAL		19.303	33.623	20.702		208			20.274		10.648
199	VAL	CG2	18.493	35.732	21.205		208			20.152	25.869	13.110
199		C	17.872	33.522	18.017		208	TYR	CE2	20.978	24.825	12.917
199		0	16.912	32.776	18.194		208	TYR	CZ	21.039	24.151	11.713
200		N	18.706	33.324	17.005		208		OH	21.935	23.103	11.601
200	GLN	CA	18.771	32.144	16.138		208		č	15.936	27.689	12.911
200		CB	19.584	32.515	14.908		208		ŏ	15.224	27.863	11.906
200		œ	19.819	31.348	13.964		209		N	15.728	28.316	14.076
200		CD	20.240	31.677	12.544		209		CA	14.653	29.234	14.266
	GLN		21.324	32.176	12.338		209		CB	13.489	28.384	14.707
	GLN	NB2	19.502	31.494	11.476	3	209	ALA	C	15.041	30.312	15.266
200		C	19.433	30.946	16.796		209		ŏ	16.021	30.178	16.019
200		- 0	20.567	31.114	17.277		210		N	14.378	31.450	15.089
201	SER	ĸ	18.810	29.760	16.799		210		CA	14.567	32.642	15.914
											- 4 + - 4 - 4 - 5	

21	O SER	СВ	14.614	33.893	15.065	22	OHI	s co	23.30	7 34.34	5 25.237
	O SER	_	15.788			22	O HI	S CD2	24.01		
	O SER	_	13.456	32.819	16.920			S ND1			
	o _, ser		12.255					S CE1			
-	1 LEU		13.895					S NE2			
	1 LEU		12.990				O HI				
	1 LEU		12.963				O HI				
	1 LEU		12.368				1 VX				
	1 LEU		12.346		20.657		1 VA				
	l LBU			31.056	19.033		1 VA	_			
	1 LEU	C	13.372		20.110			L CG1	24.746		
	l Leu 2 asn		14.547		20.110 20.912		1 VA	L CG2 L C			
	2 ASN	CA CA	12.439 12.734		21.741		1 VA				
	2 ASN	CB	11.883	37.403	21.413		בוג 2		24.617		
	2 ASN	œ	11.961	37.853	19.972		2 ALI		24.981		
	2 ASN		12.979	38.246	19.415		2 ALI		23.871		
	2 ASN		10.841	37.797	19.283		עג י		26.229		
	ASN	C	12.354	35.787	23.156		2 AL		27.129		
	ASN	ŏ	11.336	35.119	23.350		GLY		26.258		
	GLY	N	13.070	36.197	24.217		GLY		27.463		
	GLY	CA	12.648	35.928	25.599		GLY		28.715		29.070
	GLY	C	13.834	35.974	26.520		GLY		29.806		29.098
	GLY	.0	14.990	35.843	26.099	224	ALA		28.557	30.955	29.357
214	THR	N	13.583	36.141	27.832	224	ALA	CA	29.708	31.677	29.842
	THR	Cy	14.658	36.016	28.829		ALA		29.313	33.106	30.058
	THR	CB	14.204	36.523	30.242		ALA		30.261	31.051	31.147
	THR		12.998	35.812	30.594		YLY		31.463	30.894	31.314
	THR		14.014	38.055	30.271		λLλ		29.387	30.580	32.016
	THR	· C	15.128	34.527	28.894		ALA		29.771	29.836	33.221
	THR	0	16.253	34.214	29.302		ALA		28.560	29.321	34.020
	SER	N	14.304	33.607	28.380 28.217		ALA		30.593 31.630	28.603	32.864
	SER	CA CB	13.425	31.449	27.696		ALA		30.248	28.374 27.816	33.487 31.843
	SER	OG	12.324	31.235	28.564		ALA		31.033	26.664	31.490
	SER	Č.	15.860	31.981	27.237		ALA			25.958	30.380
	SER	ŏ	16.588	30.993	27.305		ALA	C	32.446	27.078	31.054
	MET	N	16.039	32.907	26.272		ALA	0	33.421	26.381	31.370
216	MET	CA	17.165	32.901	25.324	227	LEU		32.587	28.209	30.328
216	MET	CB	16.776	33.575	24.055	227	LEU	CA	33.888	28.734	29.901
	HET	œ	15.843	32.791	23.121		LEU	CB	33.691	29.983	28.955
	MET	SD	14.133	32.519	23.660		LEU	œ	32.901	29.762	27.666
	MET	CE	14.311	30.783	23.925		LEU		32.816	31.015	26.813
	MET	C	18.372	33.638	25.885		LEU	_	33.598	28.704	26.902
	MET	0	19.506	33.386	25.460		LEU	C	34.782	29.060	31.088
	YTY	N	18.136 19.249	34.558 35.257	26.845 27.465		VAL	o N	35.954 34.176	28.623	31.131
	YTY	CA CB	18.739	36.485	28.240		VAL	CY	34.951	29.711 30.076	32.105
	YTY	C	19.991	34.343	28.432		VAL	CB	34.114	31.094	33.286 34.168
	ALA	ŏ	21.223	34.249	28.386		VAL	CG1	34.822	31.451	35.502
	THR	N	19.211	33.574	29.199		VAL	CG2		32.402	33.362
	THR	CX	19.756	32.657	30.231		VAL	C	35.340	28.814	34.074
218	THR	CB	18.587	31.860	30.888	228	VAL	0	36.468	28.777	34.573
	THR		17.719	32.837	31.429		LYS	Ħ	34.502	27.781	34.115
	THR	CG2	19.040	30.887	31.979		LYS	CA	34.817	26.566	34.865
218		C	20.824	31.704	29.700		LYS	CB	33.575	25.679	34.978
218		0	21.912	31.648	30.275		LYS	œ	33.758	24.324	35.713
219		Ä	20.683	31.008	28.586		LYS	8	34.180	24.479	37.170
219		CD	19.479	30.843	27.793 28.089	229	LYS	CE	34.230	23.097	37.844
219		CX	21.708 21.074	30.099 29.384	26.909	229	LYS	NZ C	34.394 35.919	23.211	39.298
219 219	PRO	CB CG	19.943	30.268	26.471	229		0	36.804	25.792	34.170
	PRO	č	23.027	30.765	27.704	230		×	35.915	25.233 25.679	34.841
219		Ö	24.060	30.108	27.745	230		CÀ	37.001	24.957	32.835 32.188
220		ĸ	22.994	32.051	27.345	230		СВ	36.692	24.852	30.683
220		CÀ	24.239	32.770	27.094	230		œ	37.819	24.181	29.916
220		CB	23.997	34.219	26.600	230		æ	37.806	24.343	28.410

220	GLN	OFI	36.941	24.907	27.731	. 23	8 VAI	C	30.741	31.770	43.322
				23.779	27.864	_	8 VA		30.584	32.955	42.971
	GLN		38.866				9 GLI		31.903	31.146	43.181
	GLN	C	38.324	25.710	32.453			-			
230	GLN	0	39.365	25.106	32.722		9 GLI		33.058	31.865	42.654
231	LYS	N	38.320	27.043	32.369	23	9 GLN	(CB	34.348	31.007	42.712
	LYS	CÀ	39.482	27.877	32.678	23	9 GLI	₹ CG	34.787	30.771	44.165
							9 GLI		36.001	29.847	44.293
231	LYS	CB	39.085	29.347	32.389						
231	LYS	CC	40.041	30.518	32.637			OE1	35.946	28.629	44.354
231	LYS	CD	41.380	30.478	31.945	23	9 GLA	NE2	37.174	30.441	44.326
	LYS	CE	42.078	31.872	31.997	23	9 GLA	C	32.811	32.264	41.203
		_	42.070		33.343		9 GLA		33.124	33.398	40.784
	LYS	NZ	42.377	32.352							
231	LYS	C	39.970	27.715	34.142	_	0 ILI		32.261	31.291	40.463
231	LYS	0	41.173	27.658	34.409		O ILE		31,950	31.500	39.047
232	ASN	N	39.023	27.635	35.097	24	O ILE	CB	31.410	30.186	38.368
			39.292	27.588	36.520			CG2	31.025	30.399	36.876
	ASN	CY						CG1	32.503	29.161	38.463
	ASN	CB	38.801	28.848	37.227						
232	ASN	CG	39.339	30.115	36.617		0 ILE		32.041	27.775	37.973
232	ASN	OD1	40.486	30.464	36.859	24	O ILE	C	30.902	32.584	38.896
	ASN		38.537	30.834	35.845	24	O ILE	0	31.087	33.511	38.104
				26.402	37.158	24	1 ARG		29.819	32.484	39.667
_	ASN	C	38.595				1 ARG		28.769		
232	asn	0	37.635	26.555	37.907					33.495	39.638
233	PRO	N	39.057	25.173	36.945		1 ARG		27.701	33.092	40.655
	PRO	CD	40.245	24.847	36.150	24	1 ARG	œ	26.634	34.192	40.895
	PRO	CX	38.320	23.978	37.376	24	1 ARG	CD	25.462	33.692	41.771
				22.819	36.729		ARG		24.364	34.639	41.945
	PRO	CB	39.053			-	1 ARG	_	23.323	34.340	42.749
233	PRO	œ	40.441	23.367	36.519						
233	PRO	C	38.155	23.820	38.863		1 ARG		22.325	35.215	42.920
233	PRO	0	37.266	23.094	39.274	24	l Arg	NH2	23.252	33.149	43.371
	SER	N	38.962	24.489	39.675	24	l ARG	C	29.313	34.923	39.937
				24.374	41.124		ARG		29.037	35.874	39.200
	SER	CX	38.725							35.073	
234	SER	CB	40.005	24.643	41.961) ASN		30.153		40.959
234	SER	OG	40.378	26.007	41.847		2 ASN		30.649	36.413	41.277
234	SER	C	37.635	25.309	41.680	24:	2 asn	CB	31.391	36.455	42.609
	SER	Ō	37.203	25.124	42.824	24.	2 ASN	œ	30.386	36.371	43.746
	TRP	N	37.151	26.270	40.878	24	2 ASN	OD1	29.177	36.652	43.659
					41.393		ASN		30.877	35.881	44.877
235		CA	36.213	27.246							
235	TRP	CB	36.022	28.366	40.435) ASN	_	31.591	36.931	40.225
235	TRP	CG	37.165	29.323	40.391		2 asn	0	31.631	38.152	39.938
235	TRP	CD2	37.103	30.539	39.761	24.	HIS	N	32.330	36.012	39.584
	TRP		38.384	31.011	39.929	24.	HIS	CA	33.284	36.451	38.593
	TRP		36.167	31.261	39.083	243	HIS	CB	34.183	35.327	38.178
					40.930		HIS	ČĞ	35.409	35.790	37.413
	TRP		38.405	29.059					36.367		
	TRP		39.136	30.109	40.623		HIS			36.638	37.902
235	TRP	CZ2	38.726	32.237	39.404		HIS		35.770	35.447	36.181
235	TRP	CZ3	36.502	32.474	38.559		BIS		36.908	36.044	35.892
235			37.775	32.956	38.720	24:	HIS	NE2	37.250	36.757	36.945
	TRP	C	34.862	26.643	41.637		HIS	C	32.559	36.966	37.370
		_			40.941		HIS	ŏ	32.988	37.984	36.820
	TRP	0	34.427	25.726						36.265	
	SER	N	34.206	27.137	42.669		LEU	N	31.473		36.963
236	SER	CX	32.884	26.712	43.011		LEU	CX	30.709	36.649	35.801
236	SER	CB	32.771	26.915	44.541	244	LEU	CB	29.576	35.636	35.501
236		OG	32.691	28.301	44.902	244	LEU	œ	29.971	34.234	34.958
236		č	31.891	27.549	42.200		LEU	CD1	28.719	33.367	34.841
				28.606	41.637		LEU		30.649	34.360	33.602
	SER	0	32.195								
237		N	30.645	27.084	42.278		LEU	C	30.147	38.007	36.104
237	ASN	CA	29.495	27.743	41.705		LEU	0	30.189	38.853	35.217
237		CB	28.255	26.923	42.112		LYS	n	29.690	38.289	37.328
237		œ	27.966	26.679	43.605	249	LYS	CX	29.178	39.632	37.654
	ASN		28.706	27.112	44.495		LYS	CB	28.452	39.593	38.993
					43.928		LYS	œ	27.193	38.687	38.928
	ASN		26.851	26.017							
237		C	29.388	29.219	42.117		LYS	CD	26.536	38.412	40.289
237	ASN	0	29.255	30.109	41.266		LYS	CE	25.811	39.677	40.573
238	VAL	N	29.592	29.555	43.414	249	LYS	NZ	25.221	39.607	41.886
238		CA	29.576	30.945	43.876	24!	LYS	C	30.300	40.665	37.714
238		CB	29.553	30.919	45.442		LYS	Ö	30.125	41.805	37.257
				32.294	46.097		ACII	N	31.462	:0.279	30.199
236	٧À٢	4	29.767								
238	VAL	CG 2	28.199	30.344	45.805	240	ASK	CA	32.579	41.194	38.352

24	6 AS	N CE	33.697	7 40.568	39.196		25	6 LE	U α	16.56	5 49.63	4 34.134
24	6 AS	N CC	33.286	40.502	40.651		_	6 LE				
24	6 AS	N OD1						6 LE				
	6 AS							6 LE		-	_	
	6 AS											
		_						6 LE	_			
	6 AS						25					
	7 TH							7 TY		20.59		
	7 TH						251	7 TY	R CB	21.60	46.22	5 33.447
24	7 TH	R CB	34.386	39.916	34.179		25	7 TY	R CG	20.95		
24	7 TH	R OG1	33.492	38.818	34.055		257	TY	R CD1			
24	7 TH	R CG2	35.608	39.565	35.059		257		R CEI			
24	7 TH	R C							R CD2			
	7 TH								R CE2			
	B AL		31.252		34.123			TY				
24					33.162			TY				
	BAL											
			28.829	41.914	33.800	·		TYI				
	BAL	_	30.385	43.558	32.731			TYI	-			
	3 ALI		30.961	44.395	33.440		258		-	21.305		36.542
249			29.950	43.949	31.551		258	GLY	CA	22.222	44.130	37.496
249	THE	S CY	30.001	45.323	31.096		258	GLY	C	23.630	44.552	37.201
249	THE	R CB	29.955	45.301	29.552		258	GLY	. 0	23.896		
249	THE	R OG1	31.151	44.706	29.080			SER		24.511	43.586	
249		CG2	29.830	46.690	28.965			SER		25.897	43.856	
249			28.830		31.676			SER	_			
249			27.664	45.760							42.633	_
	SEF	_			31.425			SER		26.779	42.518	
			29.067	47.214	32.412			SER	_	26.153	44.278	
	SER		27.941	47.994	32.947			SER		27.225	44.856	
	SER		28.405	49.102	33.875			GLY		25.225	44.013	34.600
250			27.267	49.862	34.279		260	GLY	CA	25.413	44.431	33.222
	SER		27.136	48.631	31.822		260	GLY	C	25.476	43.210	32.331
250	SER	. 0	27.687	49.164	30.857		260	GLY	0	24.999	42.106	32.672
251	LEU	N	25.824	48.523	31.929			LEU	'n	26.036	43.461	31.151
251	LEU		24.949	49.115	30.934			LEU	CA	26.105	42.461	30.087
	LEU		24.067	48.019	30.342			LEU	CB	26.274	43.195	
	LEU		24.737	46.908	29.627			LEU	CG	26.349		
	LEU		23.663	46.020							42.381	27.424
	LEU				29.043			LEU		25.064	41.598	27.191
			25.595	47.430	28.481				CD2	26.675	43.372	26.282
	LEU		24.069	50.231	31.462		261		C	27.234	41.470	30.309
	LEU		23.214	50.787	30.769		261		. 0	28.410	41.842	30.426
	GLY	N	24.239	50.606	32.703		262		N	26.851	40.192	30.263
252		CY	23.317	51.538	33.279		262	VXL	CX	27.872	39.161	30.432
252		C	22.880	50.976	34.613		262	VAL	CB	27.227	37.754	30.407
252	GLY	0	23.651	50.372	35.376		262	VAL	CG1	26.633	37.448	29.036
253	SER	N	21.614	51.241	34.872		262	VAL	CG2	28.305	36.734	30.824
253	SER	CA	20.958	50.918	36.106		262	VAL	C	28.935	39.300	29.331
253	SER	CB	19.470	51.165	35.891			VAL	Ŏ.	28.661	39.699	28.193
253		OG	18.813	51.273	37.150		263		Ñ	30.181	39.070	29.700
	SER	Č	21.195	49.492	36.567		263		CÀ	31.271	39.216	
	SER	ŏ	20.900	48.587	35.786		263		CB	31.866	33.210	28.755
	THR		21.694	49.321	37.796						40.599	28.993
	THR	N					263		∝	33.072	40.880	28.136
		CY	21.773	48.021	38.431	٠.	263			33.666	40.009	27.502
	THR	CB	22.417	48.071	39.869		263			33.498	42.124	28.143
254			23.694	48.691	39.803		263		C	32.250	38.068	28.945
	THR		22.671	46.670	40.414		263		0	33.119	37.994	29.826
	THR	C	20.311	47.594	38.557		264		H	32.136	37.126	28.030
	THR	0	20.041	46.419	38.445		264		CA	32.947	35.931	28.088
255		N	19.316	48.480	38.694		264	ALA	CB	32.528	34.857	27.080
255	asn	CX	17.930	48.038	38.783		264		C	34.404	36.250	27.801
255	ASN	CB	17.061	49.253	39.031		264		ō	35.259	35.517	28.331
255		œ	15.600	48.927	39.271		265		Ň	34.752	37.304	27.054
	ASN		15.191	48.158	40.157		265		CÄ	36.169	37.625	
	ASN		14.771	49.580	38.459		265			36.346	38.768	26.884
255	ASN	Č	17.441	47.296	37.526		265		œ	37.790		25.842
255 255	NO K										39.302	25.597
222	WOLL	0	16.752	46.279	37.550		265			38.470	40.138	26.723
236	انطبد	N	17.889	47.805	36.309		265 0		•	39.623	39.854	27.100
256		CX	17.437	47.297	35.108		265 0			37.835	41.060	27.255
256	LEU	CB	17.435	48.386	34.041		265 (ilu	С	36.745	38.057	28.227

						. •		•	
265	GLU	0	37.766	37.524	28.689	307 H2O O	26.06	37.253	43.741
266	S ALA	N	36.098	39.020	28.897	308 H2O OF	12 11.945	45.684	23.380
266	5 ALA	CX	36.698	39.536	30.109	309 H2O OF	12 19.643		
266	5 ALA	CB	35.959	40.800	30.534				36.077
266	5 ALA	C	36.677	38.485	31.228	311 H2O OF			
	S ALA		37.562	38.418	32.099	312 H2O OF			
	, YTY		35,677	37.593	31.161	313 H2O OF			
) ALA		35.566	36.560	32.179	314 H2O OF			
	ALA	_	34.165	35.963	32.078	315 H2O OF			
	ALA		36.616	35.454	32.087	316 H2O OF			
	ALA		36.811	34.737	33.081	317 H20 OF			,
	THR		37.257	35.279	30.927	318 H2O OF			
	THR		38.227	34.187	30.751	319 H2O OB			
	THR		37.888	33.276	29.515 28.362	320 H2O OH 321 H2O OH			
	THR		37.799	34.092	29.710	322 H2O OH		31.502	10.242
	THR		36.575	32.530 34.741	30.576	323 H2O OH		36.663	26.207
	THR		39.617 40.534	33.996	30.378	324 H2O OH		19.922	14.105 21.851
	ARG		39.728	36.045	30.801	325 H2O OH			
	ARG		41.008	36.690	30.810	326 H2O OH		17.883	24.882
	ARG		40.656	38.156	30.839	327 H2O OB		21.783	19.092
	ARG		41.824	39.000	30.472	328 H2O OH		20.038	14.623
	ARG		41.544	40.401	29.949	329 H2O OR		17.370	24.830
	ARG	NE	42.811		29.432	330 H2O OH		14.094	24.149
	ARG	CZ	43.324	42.136	29.787	331 H2O OH	16.527	18.554	15.250
269	ARG	NH1	44.518	42.533	29.265	332 H2O OH	15.380	14.546	15.873
	ARG	NH2	42.681	42.951	30.667	333 H2O OR		16.040	17.903
	ARG	C		36.161	32.014	334 H2O OH		16.685	15.209
	ARG		41.328	35.597	32.990	335 H2O OH		- 18.751	34.243
	ARG		43.070	36.206	31.952	336 H2O OR	4.411	16.951	35.536
270	CH	CM	27.629	24.423	14.043	337 H2O OH:		15.046	39.508
271	CH	CH	18.482	35.001 16.277	42.551	338 H2O OH:		15.102	37.754
272	H20 H20		19.773	36.339	42.049	340 H2O OE		13.144	37.517 35.676
	H20		28.438	25.352	47.303	341 H2O OH		11.210	38.524
	H20		25.023	30.639	43.381	342 H2O OH2		9.745	35.358
	H20		23.352	28.163	42.310.	343 H2O OH		44.524	42.622
	H20		21.594	35.893	18.729	344 H2O OH		41.120	45.663
	H20		22.058	31.111	19.688	345 H2O OE2		39.693	42.722
279	H20	OH2	18.752	45.063	40.645	346 H2O OH2	12.059	47.753	40.959
	H20		18.039	30.216	23.124	347 H2O OH2		48.300	42.769
	H20		14.078	9.380	32.356	348 H2O OH2		43.338	44.851
	H20		15.449	19.938	28.355	349 H2O OH2	•		44.371
	H20		15.927	25.605	30.476	350 H2O OH2		44.533	41.923
	H20		12.858		37.185	351 H2O OH2		36.291	34.865
	H20		11.544	33.624	27.713	352 H2O OH2 353 H2O OH2		39.764 29.304	36.611
	H20 H20		11.580 42.076	8.103 35.854	31.642 14.697	401 H2O OH2		29.300	32.467 19.050
	H20		8.591	11.660	25.062	402 H2O OH2		42.988	23.949
	H20		34.301	29.140	15.200	403 H20 OH2		47.653	34.651
	H20		30.440	24.492	43.369	404 H20 OH2		15.174	18.497
	H20		35.793	42.916	26.272	405 H2O OH2	22.394	50.724	27.973
	H20		30.881	38.720	32.534	406 H2O OE2	25.205	15.404	16.200
	H20		29.323	24.894	39.464	407 H20 OH2	16.769	30.931	11.057
	H20		30.053	41.242	26.124	408 R20 OB2	6.421	46.954	36.986
	H20		26.029	30.946	34.554	409 H2O OH2	39.155	36.951	34.253
	H20		23.950	42.830	40.424	410 H20 OH2	30.425	43.985	26.477
	H20		22.857	33.906	20.288	411 R20 OB2	15.991	34.160	48.706
	H20 H20		29.750	12.657	20.465 32.920	412 H2O OH2 413 H2O OH2	33.843 16.995	20.940	9.231
	H20		16.182 20.509	42.867 35.549	16.195	415 H2O OH2	38.899	50.196 33.531	28.127 34.689
	H20		20.509	41.688	15.225	416 H2O OH2	17.892		44.040
	H20		12.353	41.495	42.254	417 H2O OH2	34.568		17.440
	H20		11.733	34.741	14.055	419 H2O OH2	35.622		42.959
	B20		7.156	35.456	31.880	420 H20 OH2	0.206		34.387
	ñ≥0		7.914	47:871	34.970	421 H20 362	38.633	23.281	44.721
306	H20	OH2	5.154	42.915	39.674	422 H2O OH2	27.524		14.941

496. H2O OH2

49.504

21.926

16/18

FIGURE 1

						• *
42	1 H2C	он2	33.375	39.759	31.397	498 H2O OH2
425		OH2		51.211	37.076	499 H2O OH2
	5 H2C	OH2	28.400	26.227	22.233	500 H2O OH2 501 H2O OH2
		OH2		31.271	18.172 42.892	501 H2O OH2
		OH2 OH2		35.423	17.549	503 H2O OH2
		OH2		37.589	20.470	504 H2O OH2
431	H20	OH2	33.293	43.729	30.636	505 H2O OH2
		OH2		12.276 38.642	22.731 39.753	506 H2O OH2 507 H2O OH2
		OH2 OH2		44.367	36.634	508 H20 OH2
		OH2		14.502	42.412	509 H2O OH2
436	H20	OH2	23.735	32.721	13.204	510 H2O OH2
		OH2		39.336 37.376	42.632 38.041	511 H2O OH2 512 H2O OH2
	H20		6.916 31.535		24.294	513 H2O OH2
	H20		21.133	38.497	43.405	514 H2O OH2
	H20		26.156	30.548	26.735	515 H2O OH2
	H20		20.961	9.353	36.136 42.909	516 H2O OH2 517 H2O OH2
443	H20	OH2	15.664	13.252	41.086	518 H2O OH2
	H20		15.488	35.603	22.544	519 H2O OH2
	H20		8.523	29.548	42.831	520 H2O OH2 521 H2O OH2
	H20	_	6.347 20.408	42.537 28.429	28.354 14.479	521 H20 OH2
	H20		9.986	37.579	24.768	
452	H20	OH2	34.820	21.034	34.828	
453		OH2	17.186	30.632 19.964	13.537 46.613	
454	H20 H20		12.491 31.523	29.927	11.890	·
	H20	_	12.628	27.138	21.026	•
	H20		33.466		34.479	
	H2O H2O		19.599 16.152	43.860 29.460	38.560 52.727	
	H20		12.458	29.430	17.126	
461		_	37.639	14.784	37.217	
	H20		9.851 33.545	34.465 17.795	20.032 26.313	e e
463 464	H20 H20		9.256	16.911	34.260	
465			35.476	39.839	21.547	
	H20		23.365	24.048 35.837	13.490 17.577	
468	H2O H2O		11.732 30.073	50.380	31.035	•
471	H20		16.204	22.887	7.809	,
472	H20	OH2	27.601			
	H20 H20		2.443 33.485	27.966	32.338 24.079	•
475	B20		16.400	18.715	49.507	
476	H20	OH2	34.584	26:355	28.896	•
477 478	H2O H2O		18.844 17.595	26.392 33.022	36.213 12.700	
479	H20		19.970	49.821	15.851	
480	H20		29.931	22.624	47.074	
481		OH2	28.764	29.952 29.997	13.997 46.055	•
482 483	H2O H2O		24.923 4.494	34.569	48.325	
484	H20		25.927	28.389	42.632	
485	H20	OH2	19.179	31.050	19.865 34.951	
486 489	H20 H20		33.544 7.275	35.859 28.059	36.209	
490	H20		18.187	52.286	20.471	
491	H20	OH2	14.703	47.608	24.076	
492	H20	OH2 OH2	14.414 20.741	29.083 38.573	26.931 12.784	•
493 494	H20		32.484	22.352	42.540	
495	H2O	OH2	11.669	32.823	30.485	CHSSTAL
406	H20	OH2	25.506	21.376	19.908	SUBSTITU

21.376

25.506

H2 20.574 46.516 27.909 H2 41.254 36.175 23.589 H2 18.615 42.251 H2 23.238 48.249 18.498 H2 11.027 27.025 H2 6.051 28.870 H2 20.329 51.097 40.041 H2 33.740 34.042 46.991 18.800 H2 H2 H2 H2 H2 14.484 12.899 23.984 14.515 28.480 14.955 20.395 31.742 13.971 22.917 13.014 49.698 46.176 3.857 17.317 43.260 8.348 35.692 9.871 28.970 18.301 41.737 20.959 10.419 21.355 11.150 32.989 33.268 43.085 38.642 27.705 20.416 57.764 27.758 40.300 29.469 52.597

14.394

39.498

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 92/04306

L CLASSIFICATION OF	SUBJECT MATTER (If several classification sym	bols apply, indicate all) ⁶	ħ ₁
Int.C1. 5 C12N	d Patent Classification (IPC) or to both National Clas 15/57; C12N9/54; 1:07)	sification and IPC C07K3/08;	//(C12N9/54,
II. FIELDS SEARCHED			
	. Minimum Document	ation Searched	
Classification System	a	assification Symbols	
Int.Cl. 5	C12N		
	Documentation Searched other the to the Extent that such Documents are	an Minimum Documentation e Included in the Fields Searched ⁸	
			i,
III. DOCUMENTS CON	SIDERED TO BE RELEVANT 9		
Category D Citat	ion of Document, 11 with indication, where appropriate	e, of the relevant passages 12	Relevant to Claim No. 13
30 cit	A,8 704 461 (AMGEN) July 1987 Led in the application Le abstract		1,29,53, 81,105, 133
COF 7 N	A,9 102 792 (HENKEL RESEARCH RPORATION) March 1991 e figure 1	I	1-156
13 cit	A,8 906 279 (NOVO INDUSTRI) July 1989 ted in the application page 9 - page 17		1-179
19 ci	A,8 909 830 (GENEX CORPORATI October 1989 ted in the application e page 9, paragraph 2 - page		1-179
"A" document definiconsidered to be earlier document filing date "L" document which which is cited to citation or other "O" document refers other means "P" document publis later than the p	of cited documents: 10 Ing the general state of the art which is not of particular relevance to but published on or after the international may throw doubts on priority claim(s) or establish the publication date of another special reason (as specified) ing to an oral disclosure, use, exhibition or the prior to the international filing date but riority date claimed	"T" later document published after the or priority date and not in conflict cited to understand the principle or invention "X" document of particular relevance; to cannot be considered novel or cannot be considered novel or cannot be considered to involve an document of particular relevance; to cannot be considered to involve an document is combined with one or ments, such combination being obtain the art. "A" document member of the same pater. Date of Mailing of this Internations	with the application but theory underlying the he claimed invention ot be considered to he claimed invention inventive step when the more other such docu- ious to a person skilled ent family
	OCTOBER 1992	26. 10, 92	
International Searching	Authority UROPEAN PATENT OFFICE	Signature of Authorized Officer VAN DER SCHAAL	C.A.

Form PCT/ISA/210 (second sheet) (January 1925)

	ENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
ategory o	Citation of Document, with institution, where appropriate, of the forester purpose.	
	WO,A,8 808 028 (GENEX CORPORATION) 20 October 1988 cited in the application see page 14 - page 19	1-179
	SCIENCE vol. 245, 1989, LANCASTER, PA US pages 54 - 57 W.S. SANDBERG AND T.C. TERWILLIGER 'Influence of interior packing and	157-197
	hydrophobicity on the stability of a protein'	
ŀ		
Ì		
.	·	
	·	•
.		
·		*

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

9204306 61679

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 07/10/92

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-8704461	30-07-87	AU-B- 604476 AU-A- 6939887 EP-A,B 0254735 JP-T- 63502396	20-12-90 14-08-87 03-02-88 14-09-88
WO-A-9102792	07-03-91	EP-A- 0493398	08-07-92
WO-A-8906279	13-07-89	EP-A- 0396608 JP-T- 3503477	14-11 - 90 08-08-91
WO-A-8909830	19-10-89	US-A- 5013657 EP-A- 0409878 JP-T- 3503602 US-A- 4990452	07-05-91 30-01-91 15-08-91 05-02-91
WO-A-8808028	20-10-88	EP-A- 0353250 JP-T- 2502874 US-A- 4990452	07-02-90 13-09-90 05-02-91