

EN MAYÚSCULAS) Apellidos, Nombre	GRUPO

1. (1 pto.) Un router tiene la tabla de reenvío (forwarding) adjunta, ¿por dónde reenviará los datagramas con la dirección de destino ...

Destino	Enviar	Rango
	por	
192.72.80.0 /20	A	192.72.80.0 – 192.72.95-255
192.72.84.0 /22	В	192.72.84.0 - 192.72.87.255
192.72.0.0 /13	С	192.72.0.0 - 192.79.255.255
192.72.140.0 /22	D	192.72.140.0 - 192.72.143.255
192.64.0.0 /12	E	192.64.0.0 - 192.79.255.255
0.0.0.0 /0	F	0.0.0.0 255.255.255.255

IP destino	Enviar por
192.72.87.1	В
192.72.88.2	Α
192.73.84.3	С
192.80.86.4	F
192.72.143.5	D

									▼ LSB								
		0:0000	1:0001	2:0010	3:0011	4:0100	5:0101	6:0110	7:0111	8:1000	9:1001	A:1010	8:1011	C:1100	D:1101	E:1110	F:1111
	0:0000	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1:0001	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	2:0010	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
	3:0011	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
	4:0100	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
	5:0101	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
	6:0110	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
MSB	7:0111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Σ	8:1000	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
_	9:1001	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
	A:1010	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
	B:1011	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
	C:1100	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
	D:1101	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
	E:1110	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
	F:1111	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

Ejemplo de uso: Binario → Decimal: 10010111 → 151

2. (1,5 ptos.) Responda <u>brevemente</u> las siguientes preguntas **sobre IP**

	Con relación al protocolo IP	Respuesta
1	¿Cuántos bits tiene una dirección IPv4?	32
2	¿Y cuántos tiene una dirección IPv6?	128
3	Si TCP proporciona un servicio orientado a conexión, ¿qué tipo de servicio proporciona IPv4?	Sin conexión, send&pray
4	¿Qué hace un <i>router</i> cuando recibe un datagrama cuyo TTL = 1?	Decrementa el TTL en uno y descarta el datagrama
5	¿Cuál es la utilidad del campo "Identificación" de la cabecera IPv4?	Identificar fragmentos de un mismo datagrama IP
6	En IPv4. ¿Qué significa el flag DF?	Do not fragment
7	¿Cuál es el tamaño típico de la cabecera de IPv4? (sin campos opcionales)	20 bytes
8	¿Por qué un fragmento IP que NO es el último no puede tener 247 bytes en total? (se supone una cabecera IPv4 de longitud típica).	Porque el campo de datos (227) debe ser múltiplo de 8
9	En la cabecera IPv4, ¿qué caracteriza el "último fragmento" de un datagrama?	MF (More Fragment) =0
10	Suponiendo que la dirección IP = 88.88.88.0 identifica una red IP, ¿cuál es el menor prefijo de red (p.ej. /16 < /24) que puede aplicársele?	/21

- 3. (1 pto.) Una empresa necesita contratar con un proveedor un bloque de direcciones IPv4 públicas para su red. La empresa no prevé un crecimiento significativo en los próximos tres años.
 - a. Justifique el prefijo o la máscara de red para el bloque de direcciones <u>mínimo</u> que permita a la empresa disponer de 90 direcciones IP públicas en su red.

Sol: potencia de 2 mínima que permite incluir 90 direcciones = 2^7 . Se necesitan 7 bits para el identificador de host y 32 – 7 = 25 para el identificador de red -> **prefijo /25**

b. El proveedor asigna a la empresa el prefijo anterior y la dirección IP 155.5.64.0. Complete la tabla siguiente para que la empresa pueda crear 3 subredes con las capacidades indicadas:

Número de hosts	Dirección de red	Prefijo de red
20	155.5.64.64	/27
20	155.5.64.96	/27
50	155.5.64.0	/26

4. (1 pto.) La figura muestra 4 *routers* que funcionan con un protocolo basado en vector de distancias con inversa envenenada. Observe que todos los enlaces tienen coste 1 salvo el R2-R4 con coste 3.

La tabla siguiente muestra los vectores de distancias de los *routers* R1-R3 en relación al **destino R4**, tras la convergencia del algoritmo. En un instante posterior, el enlace R3-R4 deja de estar disponible.

Describa la evolución del protocolo, indicando la información en cada *router* para alcanzar el destino R4, hasta que ésta vuelva a converger.

5. (0.5 ptos.) Dibuje el circuito que se emplearía para el cálculo y comprobación del CRC en un sistema de comunicaciones, suponiendo que el polinomio generador es $G(x) = x^6 + x^4 + x + 1$

6. (2 ptos.) Una organización presenta la topología que se observa en la siguiente figura. Se supone que las cachés ARP están vacías en todos los sistemas y que el router está correctamente configurado, pero el switch acaba de reiniciarse y no dispone de información sobre la red. Las estaciones A y B están asociadas al punto de acceso (PA). En las siguientes preguntas SOLO nos interesa las tramas que ENVÍA el PA.

a) C manda un ARP.request buscando la MAC de R. ¿Provoca esto que PA mande alguna trama? ¿Cuál(es)?. Indíquelo en la tabla, rellenado los valores de los campos indicados

Tipo	Dir 1 (dest)	Dir 2 (orig)	Dir 3 (aux)	Significado
wifi	broad	PA	С	Arp.req por la celda wifi

b) B manda una solicitud DHCP DISCOVER. ¿Provoca esto que PA mande alguna trama? ¿Cuál(es)?. Indíquelo en la tabla rellenado los valores de los campos indicados

Tipo	Dir 1	Dir 2	Dir 3	Significado
Eth	broad	В		
wifi	Difusión	PA	В	

c) El servidor DHCP manda la respuesta DHCP OFFER. ¿Provoca esto que PA mande alguna trama? ¿Cuál(es)?. Indíquelo en la tabla rellenado los valores de los campos indicados

Tipo	Dir 1	Dir 2	Dir 3	Significado
WiFi	В	PA	R_2	

d) ¿Llegará a PA una trama del router dirigida a C? Tenga en cuenta los pasos anteriores. Justifique la respuesta.

NO. En el apartado a) el host-C transmite y el SW1 aprende en qué puerto está.

7. (1 pto.) Responda a las siguientes preguntas sobre el estándar IEEE 802.11 (WiFi) con respuestas cortas

	WiFi	Respuesta
1	¿Cuántas direcciones MAC hay en la cabecera de una trama?	4
2	¿Qué tipo de detección de errores incluye una trama?	CRC
3	Una red Wifi sin PA's se denomina AdHoc. ¿Cómo se denominan las WiFi que usan PAs?	Infraestructura
4	¿Por qué es necesario el campo "Número de secuencia" en una trama?	Para detectar tramas retransmitidas.
5	El intervalo de tiempo que debe esperar una estación antes de enviar un ACK se denomina	SIFS
6	¿Qué estándar presenta mayor tasa de errores, Ethernet o WiFi?	WiFi
7	¿Qué mecanismo introduce WiFi para garantizar la entrega de las tramas?	Uso de ACKs
8	¿En qué campos de la trama podrá aparecer la dirección MAC del punto de acceso? Y si el	Dir,1 o Dir,2
	PA es el origen o destino de los datos?	
9	¿Qué protocolo MAC emplea WiFi?	CSMA/CA
10	Indique un motivo por el que no se puede usar CSMA/CD en WiFi	Nodos ocultos,
		interferencias otras fuentes

8. (1 pto.) Indica la afirmación correcta en cada uno de los casos. Respuesta correcta: +0,20 puntos; Respuesta errónea = -0,05 puntos

	ETHERNET	RESP.
1	Empleando CSMA/CD, la primera vez que una estación intenta transmitir un paquete:	b
	a) Lo hace inmediatamente independientemente de la ocupación del canal.	
	b) Lo hace inmediatamente si el canal está libre.	
	c) Espera un tiempo de <i>backoff</i> y después transmite inmediatamente.	
	d) Espera un tiempo de backoff y después transmite si el canal está libre	
2	En Ethernet, si una estación colisiona por segunda vez al transmitir una trama, antes de volver a intentarlo	b
	espera un tiempo:	
	a) Siempre mayor que tras la primera colisión.	
	b) Probablemente mayor, pero podría ser igual o menor, a lo que esperó tras la primera colisión.	
	c) Espera el mismo tiempo que esperó tras detectar la primera colisión.	
	d) Espera el doble de tiempo que esperó tras detectar la primera colisión.	
3	Dos dominios de difusión podrán estar separados por:	С
	a) Un hub o repetidor.	
	b) Un switch, pero nunca por un router.	
	c) Un router. pero nunca por un switch.	
	d) Un switch o un router. Ambos son correctos	
4	¿Qué ocurre cuando un adaptador Ethernet recibe una trama con el CRC erróneo?	а
	a) Se descarta la trama y nada más.	
	b) Se descarta la trama y se genera una excepción que afecta a todas las estaciones de la red.	
	c) Se descarta la trama y se informa a IP del error.	
	d) Se descarta la trama y se envía al origen un reconocimiento negativo (NACK negative-ACK).	
5	En Ethernet, la prioridad de las estaciones en el acceso al canal (para transmitir)	d
	a) Se puede configurar por el administrador en cada ordenador.	
	b) Depende del tipo de protocolo (IP, ARP, ICMP) transportado en la trama.	
	c) Depende del número de colisiones que ha sufrido la trama.	
	d) No existe ningún mecanismo de prioridades.	

9. 1 pto.) Un sistema de transmisión envía de forma periódica la secuencia 011 (3 bits) codificado en NRZ (banda base) a 3 Gbps. Se pide: a) Calcule el **ancho de banda mínimo necesario** para recibir 8 armónicos y b)¿Cuántos armónicos pasarán si disminuimos la velocidad de transmisión a 300 Mbps?

