Hamiltonian Cycles

Hamiltonian cycle (path) in G: spanning cycle (path) in G.

G is $\operatorname{Hamiltonian}$ if G has a Hamiltonian cycle

Hamiltonian Cycles

Hamiltonian cycle (path) in G: spanning cycle (path) in G.

has a transitionin path Conjecture: Every printex housiture graph is it anultonien exapt for Petersa, Kz, K1, + one a troomore G 15 vertex hausitrie if for any vertices in and it There is an isomorphomf: G -> G flm= v vertex hausibue Cayley graph of Courtey graphs of groups 12x amples S3 with generally

Ves: Torsten Mutze Middle Levels Problem Partially ordered Set Boolean Lattice 11110 11100 01 011 110601 Oio 001 1000 0.00 Q_3 00000 >) Necent of the yes Sup groph of Verley housitive Of Induced by modle à levels 15 it Hambtonian When he is 088

Circumference of *G*: length of a longest cycle.

Example: Petersen graph

Hamiltonian cycle?

Hamiltonian path?

Circumference?

At this time,

no polynomial-time algorithms are Known for Hamiltonian cycle, path, or for circumference.

(NP hand)

No useful necessary + sufficient conditions.

But ...

Necessary condition

If G is Hamiltonian then for any $S \subseteq V$, G-S has at most |S| components.

Sufficient condition

(Dirac) If G is simple and $n(G) \geq 3$ and $\delta(G) \geq n(G)/2$, then G is Hamiltonian.

Necessary and sufficient but ...

(Bondy-Chvátal) G is Hamiltonian if and only if the closure of G is Hamiltonian.

Sufficient condition

(Chvátal) Suppose G has degree sequence (d_1,\ldots,d_n) where $d_1\leq d_2\leq \ldots \leq d_n$. If i< n/2 implies that either $d_i>i$ or $d_{n-i}\geq n-i$, then G is Hamiltonian.

Cycle C
$$S \subseteq V(C)$$

How many components in $C-S$? (components to $|S|$)

How many components in G-S? (componed to 151)

Cycle C
$$S \subseteq V(C)$$

How many components in $G-S$? (components to $|S|$)

Proof.

Examples

Proof.

Suppose C is a Hamiltonian cycle in G.

Proof.

Suppose C is a Hamiltonian cycle in G.

For any SEV, C-S has at most 151 components.

Proof.

Suppose C is a Hamiltonian cycle in G.

For any SEV, C-S has at most 151 components.

Proof.

Suppose C is a Hamiltonian cycle in G.

For any SEV, C-S has at most ISI components.

SO, G-8 has at most 151 components,

(since C-S is a spanning subgraph of G-S)

Proof.

Proof. Suppose Dirac's Thm is false.

then then must be a countrexample.

Let G be a maximal counterexample, i.e.

G is a contrexample, but

Gtur 15 not for any nonadj. u, v in Va)

Proof. Suppose Dirac's Thm is false.

Then there must be a countrexample.

Let G be a maximal countrexample, i.e.

G is a confuexample, but

Gtur is not for any nonadj. u, v in VB)

Then: n(6) >3 , 8(6) > 1/2, G not Hamilt.

G not kn, Gtur 13 Hamilt for un & E(G)

Thun: n(G) >3 , 8(G) > n/2, G not Hamilt.

G not kn, G+WF 13 Hamilt for MF & E(G) Let u, is be non adj in G. G+ ur is Hamit .. G has a u, i Hamilt. path

Thu: n(G) >3 , S(G) > 1/2, G not Hamilt.

G not kn, G+UF 13 Hamilt for UF & E(G)

Let u, is be non adj in G.

G+ ur is Hamit .. G has a u, r Hamilt. path

M. J. V3 M. M. M.

Let S= {]-1 | MM = E(6)}

Thu: n(G) >3 , S(G) > 1/2, G not Hamilt.

G not kn, G+UF 13 Hamilt for UF & E(G)

Let u, is be non adj in G.

G+ ur is Hamit .. G has a u, r Hamilt. path

M. J. V3 M. M. M.

Let S= {]-1 | MM = E(6)}

Note: n&S (why) n&T (why?) so 150T1 ≤ n-1 (x) Also, 151 > 1/2 |T1 > 1/2 (uny?) Puting together with (*) means there must be some LESAT But LESAT means MITH E E (1 ES) MIFE (LET)

So, we have the picture in G:

Mattheway and Marian Ma

giveng a Hamiltonian ayclein 6, a contradiction

Dirac's condition is sufficient,

Dirac's condition is sufficient,

But not necessary

Re-examine proof of Dirac.

Can also be used to show that if

use it as nonadj & d(w) + d(w) > n

Then if G+ Mr Hamilt., so is G

Proof of Dirac's Theorem also gives:

Lemma 7.2.9 (Ore): If G is simple and u and v are nonadjacent vertices with

$$d(u) + d(v) \ge n(G),$$

then G is Hamiltonian iff G+uv is Hamiltonian.

Define the **closure** of G to be the graph obtained from G as follows: until no longer possible, join non-adjacent vertices whose degrees sum to at least n(G).

Then it follows from Ore's lemma:

Theorem 7.2.11 (Bondy-Chvátal): G is Hamiltonian iff the closure of G is Hamiltonian.

Proof of Dirac's Theorem also gives:

Lemma 7.2.9 (Ore): If G is simple and u and v are nonadjacent vertices with

$$d(u) + d(v) \ge n(G),$$

then G is Hamiltonian iff G+uv is Hamiltonian.

Define the **closure** of G to be the graph obtained from G as follows: until no longer possible, join non-adjacent vertices whose degrees sum to at least n(G).

Then it follows from Ore's lemma:

Theorem 7.2.11 (Bondy-Chvátal): G is Hamiltonian iff the closure of G is Hamiltonian.

Define the **closure** of G to be the graph obtained from G as follows: until no longer possible, join non-adjacent vertices whose degrees sum to at least n(G).

Lemma 7.2.12 Well-defined

Closur?

Proof of Dirac's Theorem also gives:

Lemma 7.2.9 (Ore): If G is simple and u and v are nonadjacent vertices with

$$d(u) + d(v) \ge n(G),$$

then G is Hamiltonian iff G+uv is Hamiltonian.

Define the **closure** of G to be the graph obtained from G as follows: until no longer possible, join non-adjacent vertices whose degrees sum to at least n(G).

Then it follows from Ore's lemma:

Theorem 7.2.11 (Bondy-Chvátal): G is Hamil-tonian iff the closure of G is Hamiltonian.

It follows that if $n(G) \geq 3$ and the closure of G is complete, then G is Hamiltonian.

Example:

It follows that if $n(G) \geq 3$ and the closure of G is complete, then G is Hamiltonian.

Example: However, ...

If G satisfies Dirac, what can you say about closure?

If G does not satisfy Dirac, could closure still be complete?

Sufficient condition (Chvátal): Suppose G has degree sequence (d_1, d_2, \ldots, d_n) where $d_1 \leq d_2 \leq \ldots \leq d_n$. If i < n/2 implies that either

$$d_i > i$$
 or $d_{n-i} \ge n-i$,

then G is Hamiltonian.

Proof. (next time)

Traveling Salesman Problem

Given weighted K_n (non-negative weights), find minimum weight Hamiltonian cycle.

(No polynomial-time solution known.)

Special case:

If the <u>triangle inequality</u> holds for all vertices $x,y,z\in V$:

$$w(xy) + w(yz) \ge w(xz)$$

then it is possible to find a "good approximation" to the TSP.

TSP with Triangle Inequalty

Finding a Spanning Cycle Whose Weight is at most Twice Optimal

- 1. Let C^* be the minimum weight Hamiltonian cycle and let T be a minimum spanning tree.
- 2. Duplicate every edge of T to get T', which is Eulerian.
- 3. Find an Eulerian tour W in T'.
- 4. Iteratively, until only a spanning cycle remains, eliminate first repeated vertex remaining on W.
- 5. Show: Resulting cycle C is a Hamiltonian cycle of weight at most $2w(C^*)$.

$$\omega(T) \leq \omega(C^*)$$

$$\omega(T') \leq 2 \omega(T)$$

$$\omega(W) = \omega(T')$$

$$\omega(C) \leq \omega(W)$$

$$(+rrangle meq.)$$

w(c) = 2 w(c*)