Since
$$\left[\frac{1}{2}\left(\frac{1}{2}\right)\right]^{-1} = \frac{1}{2}\left(\frac{1}{2}\right)$$

We apply a similarity transformation on Neyl basis to find the standard pasis:

$$= \frac{1}{2} \left(\begin{array}{c} I & J \\ I - I \end{array} \right) r m \left(\begin{array}{c} I & J \\ I & -I \end{array} \right).$$

$$Y \rightarrow \frac{1}{2} \begin{pmatrix} II \\ I-J \end{pmatrix} \begin{pmatrix} 0I \\ J \end{pmatrix} \begin{pmatrix} III \\ I-I \end{pmatrix} = \frac{1}{2} \begin{pmatrix} II \\ I-J \end{pmatrix} \begin{pmatrix} I-J \\ I \end{bmatrix}$$

$$\overrightarrow{f} \rightarrow \overrightarrow{2} \left(\overrightarrow{I} \overrightarrow{I} \right) \left(\overrightarrow{0} - \overrightarrow{6} \right) \left(\overrightarrow{I} \overrightarrow{I} \right) = \frac{1}{2} \left(\overrightarrow{I} \overrightarrow{I} \right) \left(-\overrightarrow{6} \overrightarrow{6} \overrightarrow{6} \right)$$

$$> \frac{1}{2} \begin{pmatrix} 0 & 2 & \overline{6} \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} \overline{6} \\ \overline{8} \end{pmatrix} .$$