1 Lineární závislost a nezávislost, báze, dimenze. Lineární zobrazení, jádro a obor hodnot, skalární a vektorový součin. (A0B01LAG)

1.1 Lineární prostor

Neprázdná množina \mathcal{L} se nazývá lineární vektorový prostor nad tělesem \mathbb{R} , jestliže je splněno následujících deset podmínek.

- 1. Pro každé dva prvky $u,v\in\mathcal{L}$ je jednoznačně určen prvek $u+v\in\mathcal{L}$ nazývaný součet prvků u a v.
- 2. Pro každý prvek $u \in \mathcal{L}$ a pro každý prvek $\lambda \in \mathbb{R}$ je jednoznačně určen prvek $\lambda u \in \mathcal{L}$ nazývaný násobek prvku u prvkem λ
- 3. u + v = v + u pro každé dva prvky $u, v \in \mathcal{L}$ (komutativita)
- 4. (u+v)+w=u+(v+w) pro každé tři prvky $u,v,w\in\mathcal{L}$ (asociativita)
- 5. Existuje prvek $0 \in \mathcal{L}$. takový, že pro každý prvek $u \in \mathcal{L}$ platí u + 0 = 0 + u = u
- 6. Pro každý prvek $u \in \mathcal{L}$ existuje prvek $-u \in \mathcal{L}$ takový, že u + (-u) = (-u) + u = 0
- 7. $\lambda(u+v) = \lambda u + \lambda v$ pro každé dva prvky $u, v \in \mathcal{L}$ a pro každý prvek $\lambda \in \mathbb{R}$.
- 8. $(\lambda + \alpha)u = \lambda u + \alpha u$ pro každý prvek $u \in \mathcal{L}$ a pro každé dva prvky $\alpha, \lambda \in \mathbb{R}$
- 9. $(\lambda \alpha)u = \lambda(\alpha u)$ pro každý prvek $u \in \mathcal{L}$ a pro každé dva prvky $\alpha, \lambda \in \mathbb{R}$
- 10. 1u = u pro každý prvek $u \in \mathcal{L}$

1.2 Lineární podprostor

Neprázdná podmnožina W vektorového prostoru V nad tělesem T se nazývá podprostorem V, pokud pro libovolné vektory $u,v\in W$ a libovolný skalár $\lambda\in T$ platí:

- $a+b \in W$
- $\lambda a \in W$

Množina W je tedy uzavřená vzhledem k operacím sčítání vektorů a násobení vektoru skalárem.

1.3 Lineární kombinace

Nechť \mathcal{L} je lineární prostor, $v_1, v_2, ..., v_n \in \mathcal{L}$ a $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}$. Prvek $\lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_n v_n \in \mathcal{L}$ se nazývá lineární kombinace prvků $v_1, v_2, ..., v_n$ s koeficienty $\lambda_1, \lambda_2, ..., \lambda_n$.

- Lineární kombinace $\lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_n v_n$ se nazývá **netriviální**, pokud existuje $i \in \{1, 2, ..., n\}$ takové, že $\lambda_i \neq 0$
- Lineární kombinace $\lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_n v_n$ se nazývá **triviální**, jestliže $\lambda_i = 0$ pro každé i = 1, 2, ..., n

1.4 Lineární závislost a nezávislost

Prvky $v_1, v_2, ..., v_n$ množiny M se nazývají **lineárně závislé**, pokud existuje taková **netriviální lineární kombinace** těchto prvků, která vyhovuje vztahu

$$\sum_{i=1}^{n} a_i v_i = 0$$

kde a_i je skalár. V opačném případě jsou lineárně nezávislé.

- Pro lineárně nezávislé prvky je jediným řešením výše uvedeného vzorce triviální řešení, tedy $a_i=0$
- Jsou-li prvky lineárně závislé, je možné nějaký z nich vyjádřit jako lineární kombinaci ostatních prvků

1.4.1 Příklad

Lineárně zavislá množinaM a koeficienty netriviální lineární kombinace a

$$M = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 3 & 6 & 1 \end{bmatrix}, a = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

$$M \bullet a = 0$$

1.5 Báze

Lineární obal Mějme množinu M, která je podmnožinou vektorového prostoru V. Průnik všech podprostorů prostoru V, které obsahují množinu M se nazývá lineárním obalem množiny M.

Zjednodušeně - lineární obal množiny M je podprostor prostoru V. Co obsahuje? Všechny ty prvky, ke kterým se mohu dostat libovolnou lineární kombinací vektorů z množiny M.

$$\langle M \rangle = \left\{ \sum_{i=1}^{n} a_i u_i \mid u_i \in M, a_i \in \mathbb{R}, i = 1, 2, 3, ..., n \right\}$$

Báze vektorového prostoru V je nejmenší množina **lineárně nezávislých vektorů** taková, že její lineární obal je roven celému prostoru V. V konečně dimenzionálním prostoru dimenze n je bází každá množina obsahující n lineárně nezávislých vektorů.

- \bullet Obal báze prostoru V tvoří celý prostor V
- Vektory báze jsou lineárně nezávislé.
- Prostor může mít více bází. Všechny ale mají stejný počet prvků.

1.5.1 Příklad

$$B_1 = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right], B_2 = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

Matice B_1 i B_2 tvoří bázi prostoru \mathbb{R}^2 .

1.6 Lineární zobrazení

Pojmem lineární zobrazení (lineární transformace) se v matematice označuje takové zobrazení mezi vektorovými prostory U a V, které zachovává vektorové operace sčítání a násobení skalárem. Název lineární je odvozen z faktu, že grafem obecného lineárního zobrazení z reálných čísel do reálných čísel je přímka.

$$L(u+v) = L(u) + L(v) \ u \in U, v \in V$$

$$L(\alpha u) = \alpha L(u) \ u \in U$$

1.6.1 Matice linárního zobrazení

Nechť U a V jsou lineární vektorové prostory konečné dimenze nad tělesem $R, L: U \to V$ je lineární zobrazení. Mějme $u_1, u_2, ..., u_k$ bázi prostoru U, dimU = k a $v_1, v_2, ..., v_n$ bázi prostoru V, dimV = n. Pro libovolný prvek $x \in U$ lze psát $x = \lambda_1 u_1 + \lambda_2 u_2 + ... + \lambda_k u_k$, tedy $\hat{x} = [\lambda_1, \lambda_2, ..., \lambda_k]^T$ je vektor koeficientů prvku x v bázi $u_1, u_2, ..., u_k$ prostoru

U. Zobrazením prvku x získáme prvek y=L(x), který lze opět vyjádřit jako lineární kombinaci bázových vektorů $y=\eta_1v_1+\eta_2v_2+...+\eta_kv_n$, tedy $\hat{y}=\left[\eta_1,\eta_2,...,\eta_n\right]^T$. Zobrazení L je lineární, proto platí

$$L(x) = L(\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_k u_k) = \lambda_1 L(u_1) + \lambda_2 L(u_2) + \dots + \lambda_k L(u_k)$$

$$L(x) = y = [v_1, v_2, ..., v_n] \cdot \hat{y}$$

$$L(u_i) = [v_1, v_2, ..., v_n] \cdot [\alpha_{1i}, \alpha_{2i}, ..., \alpha_{ni}]^T$$

 $[v_1, v_2, ..., v_n] \cdot \hat{y} = \lambda_1 [v_1, v_2, ..., v_n] \cdot [\alpha_{11}, \alpha_{21}, ..., \alpha_{n1}]^T + ... + \lambda_k [v_{1k}, v_{2k}, ..., v_{nk}] \cdot [\alpha_{1k}, \alpha_{2k}, ..., \alpha_{nk}]^T$ po zkrácení

$$\hat{y} = \lambda_1 \cdot [\alpha_{11}, \alpha_{21}, ..., \alpha_{n1}]^T + ... + \lambda_k \cdot [\alpha_{1k}, \alpha_{2k}, ..., \alpha_{nk}]^T$$

$$\hat{y} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1k} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{k1} & \alpha_{k2} & \cdots & \alpha_{nk} \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_k \end{bmatrix} = \mathbf{A}\hat{x}$$

$$\mathbf{A} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1k} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{k1} & \alpha_{k2} & \cdots & \alpha_{nk} \end{bmatrix}$$

kde **A** je matice lineárního zobrazení L v bázích $u_1, u_2, ..., u_k$ prostoru U a $v_1, v_2, ..., v_n$ prostoru V.

Vyjádřeno méně formálně: každý vektor z U si můžeme vyjádřit jako kombinaci bázových vektorů U. Pak se podíváme na koeficienty, kterými násobíme tyto bázové vektory, a chceme z nich dostat koeficienty bázových vektorů v prostoru V. Pokud těmito koeficienty vynásobíme bázové vektory V, dostaneme lineární zobrazení původního vektoru do prostoru V. Díky matici lineárního zobrazení můžeme tyto koeficienty získat.

1.7 Jádro a obor hodnot

Mějme lineárního zobrazení $L: U \to V$, které je vyjádřeno jako $\{A \bullet x = y \mid x \in U, y \in V, A \in \mathbb{R}^{\mathsf{m} \times \mathsf{n}}\}$. Množinu tvořenou všemi řešeními $A \bullet x = 0$ nazýváme **jádro** lineárního zobrazení L, nebo-li **nulový prostor** matice A.

$$Ker(L) = null(A) = \{x \in U \mid A \bullet x = 0\}$$

Obor hodnot zobrazení L (obraz matice A) je podprostor, který obsahuje zobrazení všech prvků z prostoru U.

$$Im(L) = rng(A) = \{A \bullet x \mid x \in U\}$$

Figure 1.1: Vztah jádra a obrazu prostoru

- \bullet Jádro zobrazení L je podmnožinou prostoru U,ale obor hodnot zobrazení L je podmnožinou V
- Platí vztah dim(Ker(L))+dim(Im(L))=dim(U) jinak dim(null(A))+dim(rng(A))=n kde n je šířka matice A.

1.8 Skalární a vektorový součin

Skalární součin definujeme mezi dvěma vektory. Výsledkem skalárního součinu je reálné číslo, není to vektor. Máme-li dva vektory $u=\left[\begin{array}{c}u_1\\u_2\end{array}\right]$ a $v=\left[\begin{array}{c}v_1\\v_2\end{array}\right]$, pak jejich skalární součin je roven:

$$u^T \bullet v = \mid u \mid \mid v \mid \cos \alpha$$

kde α je velikost úhlu mezi vektory u a v.

Vektorový součin je binární operace vektorů v trojrozměrném vektorovém prostoru. Výsledkem této operace je vektor, který je kolmý k oběma původním vektorům. Velikost tohoto vektoru je rovna obsahu rovnoběžníku tvořeného původními vektory. Spočítá se

$$u \times v = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} = w$$

a platí

$$u^T \bullet w = 0, \ v^T \bullet w = 0$$