

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 06-065080

(43)Date of publication of application : 08.03.1994

(51)Int.Cl.

A61K 31/70
A61K 31/70
A23L 1/307
// C07H 3/02
C07H 3/04

(21)Application number : 04-355368

(71)Applicant : GODO SHIYUSEI KK

(22)Date of filing : 21.12.1992

(72)Inventor : SERI KENJI
SANAI KAZUKO
NEGISHI KEISOKU
AKINO TOSHIRO

(30)Priority

Priority number : 04 86196 Priority date : 10.03.1992 Priority country : JP

(54) AGENT FOR PREVENTION AND TREATMENT OF HYPERGLYCEMIA-RELATING DISEASE CONTAINING ALPHA-GLUCOSIDASE INHIBITOR AND HEALTH FOOD

(57)Abstract:

PURPOSE: To provide the subject agent containing a specific sugar having strong sucrase-inhibiting action and maltase-inhibiting action as an active component, having excellent action to suppress an increase in blood sugar after the loading of sugar and continuously applicable over a long period without causing the safety problem.

CONSTITUTION: The objective agent contains a sugar selected from Larabinose, L-fucose, 2-deoxy-D-galactose, D-xylose, L-xylose, D-ribose, D-tagatose, D-ribulose, D-lyxose and D-xylulose as an active component. The sugar is preferably administered at a daily dose of 0.5-3g in divided doses before meal or together with the meal.

LEGAL STATUS

[Date of request for examination] 29.11.1994

[Date of sending the examiner's decision of] 11.03.1997

[rejection]

[Kind of final disposal of application other than
the examiner's decision of rejection or
application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's 09-05242
decision of rejection]

[Date of requesting appeal against examiner's 09.04.1997
decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-65080

(43)公開日 平成6年(1994)3月8日

(51)Int.Cl.
A 61 K 31/70

A 23 L 1/307
J C 07 H 3/02
3/04

識別記号
ADP
ACN

府内整理番号
8314-4C

F I

技術表示箇所

(21)出願番号 特願平4-355368
(22)出願日 平成4年(1992)12月21日
(31)優先権主張番号 特願平4-88196
(32)優先日 平4(1992)3月10日
(33)優先権主張国 日本 (JP)

(71)出願人 000170473
合同酒精株式会社
東京都中央区銀座6丁目2番10号
(72)発明者 世利 錠二
埼玉県八潮市八条1587-5-502
(72)発明者 調井 和子
神奈川県座間市相模が丘5-14-10-607
(72)発明者 森岸 恵則
埼玉県草加市水川町470番地 合同酒精草
加店3-204号
(72)発明者 秋野 利郎
埼玉県草加市水川町470番地 合同酒精社
宅2-402号

(54)【発明の名称】 α-グルコシダーゼ阻害剤を含有する、過血糖付随疾患の予防・治療剤、および保健食。

【構成】 L-アラビノース、L-フコース、2-デオキシ-D-ガラクトース、D-キシロース、L-キシロース、D-リボース、D-タガトース、D-リブロース、D-リキソース、およびD-キシリロースよりなる群より選ばれた、1ないし2以上の糖類を有効成分として含有する、過血糖付隨疾患の予防および治療剤、並びに保健食。

【効果】 前記糖類の、スクロースおよびスターチ食荷時における、血糖上昇抑制作用が確認され、これを配合することにより、長期間維持投与においても、安全性に

概念のない、過血糖付隨疾患の予防および治療剤、並びに保健食が、提供可能となった。

【特許請求の範囲】

【請求項 1】 L-アラビノース、L-フコース、2-デオキシ-D-ガラクトース、D-キシロース、L-キシロース、D-リボース、D-タガトース、D-リブロース、D-リキソース、およびD-キシリロースよりなる群より選ばれた、1ないし2以上の成分を有効成分とする、過血糖付随疾患の予防および治療剤。

【請求項 2】 L-アラビノース、L-フコース、2-デオキシ-D-ガラクトース、D-キシロース、L-キシロース、D-リボース、D-タガトース、D-リブロース、D-リキソース、およびD-キシリロースよりなる群より選ばれた、1ないし2以上の成分を、これら以外の糖質に対し2、0%以上含有することを持つ、肥満防止用保健食。

【発明の詳細な説明】

【産業上の利用分野】 本発明は、食後の過血糖症状に付随する疾患、例えば糖尿病、前糖尿病、肥満症、高脂血症、動脈硬化症などの予防および治療を目的とした、医薬品並びに保健食に関するものである。

【0002】

【従来の技術および発明が解決しようとする問題点】これまでに報告されているα-グルコシダーゼ阻害剤、特にスクラーゼ阻害作用およびマルターゼ阻害作用を持つとする阻害剤のほとんどは、微生物が產生する二次代謝物であり、ヒトが通常摂取する食物中には含まれない物質であった。これらの物質は、そのスクラーゼ阻害作用およびマルターゼ阻害作用を利用して、食後の血糖上昇抑制剤としての応用が考えられている(米国特許第4,062,950号、特開平1-156945)。しかしながら、これらの物質は、生体に対しては異物であって、消化管から吸収されて血液中に入り、全身の臓器に到達した場合の安全性については、懸念が残されている。特に、肝臓、心臓、あるいは骨格筋等、糖質分解代謝が活発な主要臓器においては、長期的安全性に対する懸念が、強く指摘されている。このため、通常摂取する食物中に含まれる物質であって、消化管からは吸収され難く、また、吸収されても速やかに排泄されて、体内に貯留しない、生体にとって安全性の高い、α-グルコシダーゼ阻害剤の出現が望まれていた。本発明は、以上の如き従来技術の問題点を解決し、優れた物性と生理機能を有する天然物由來のα-グルコシダーゼ阻害剤を有効成分とする、前記諸症状の予防及び治療剤を提供することにある。

【0003】

【問題点を解決するための手段】 本発明者らは、天然に存在する種々のペントース、ヘキソースおよび、オリゴ糖について、スクラーゼ阻害作用およびマルターゼ阻害作用を中心とする、α-グルコシダーゼ阻害作用を調査研究するとともに、糖質負荷後の血糖上昇抑制作用を、実験動物を用いて、詳細に検討した。その結果、L-アラビノースを始めとする前記ペントースおよびヘキソースに、強いスクラーゼ阻害作用およびマルターゼ阻害作用のあることを見いたし、糖質負荷後の血糖上昇抑制に、著しく有効であること知り、本発明を完成するに至った。L-アラビノース、L-フコース、2-デオキシ-D-ガラクトース、D-キシロース、L-キシロース、D-リボース、D-タガトース、D-リブロース、D-リキソースあるいはD-キシリロースを有効成分とする、前記諸症状の予防剤または治療剤は、これらのみで用いるほか、一般的賦形剤、安定剤、保存剤、結合剤、崩壊剤等の適当な添加剤を配合し、液剤、カプセル剤、顆粒剤、丸剤、散剤、錠剤等の適宜な剤型を選んで製剤し、経口的あるいは経腸的に投与することができる。また、これらを適宜な食品に添加して、前記諸症状の治療を目的とした病人食とすることも、何等妨げるものでない。L-アラビノース、L-フコース、2-デオキシ-D-ガラクトース、D-キシロース、L-キシロース、D-リボース、D-タガトース、D-リブロース、D-リキソースあるいはD-キシリロースは、チュインガム、キャラメル、クッキー、パン、ビスケット、チョコレート、ゼリー、ジュースその他の飲料へ、有効成分として添加することは、容易であり、実効性のある保健食の提供が可能となる。L-アラビノースを始めとする前記ペントースおよびヘキソースは、天然に存在する単糖であって、ヒトおよび動物に対する毒性についての報告はなく、実質的に無害の物質である。特にL-アラビノースは、消化管からは極めて吸収され難いことが知られており、長期間の摂取によっても、全身的な影響はないものとされている。なお、L-アラビノースを始めとする、これらのペントースおよびヘキソースのヒトへの投与は、個々の年齢、体重および症状によって用法用量が決定されるべきであるが、多くの場合有効な用量は1日当たり0.5-3gで、分割して食前あるいは食事とともに投与されるのが適当である。

【0004】

【作用】スクロースまたはマルトースを基質とし、ウサギ小腸粘膜ホモジネートによる分解活性に対する阻害作用を調べた実験の結果、本発明で使用するL-アラビノース、L-フコース、2-デオキシ-D-ガラクトース、D-キシロース、L-キシロース、D-リボース、D-タガトース、D-リブロース、D-リキソースあるいはD-キシリロースが、スクロースおよびマルトースの加水分解を、強く抑制することが確認された。またこれらの物質は、マウスを用いた給餌実験において、スクロースまたはスターチを経口負荷した場合に起こる血糖上昇を、顕著に抑制することも確認できた。

【0005】

【実施例】 本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。

【0006】実施例1

(ウサギ小腸粘膜ホモジネートによる糖質分解活性阻害作用) 白色在来種ウサギ(体重 3.0-3.5kg)を脱血屠殺し、小腸を摘出した。摘出した小腸を、凍結融解後、5mM EDTA緩衝液(pH 7.0)中でホモジナイズし、60,000×gで60分間透心分離した。生じた沈殿物を回収し、10mMリソチカリウム緩衝液(pH 7.0)で再懸濁したものを粗酵素液とした。基質としては、スクロース(20mM)またはマル

トース(20mM)を使用した。反応液の組成は、100mMマレイン酸緩衝液(pH 6.8)350μl、基質液100μl、粗酵素液50μl、および披膜液50μlとし、被検物質はマレイン酸緩衝液(pH 6.8)に溶解して用いた。反応は、37°C、15分間とし、生成したグルコース量を、グルコースオキシダーゼ法で測定して、表1に示した。

【0007】

【表1】

表1： 单糖(ペントース)による糖質分解酵素阻害作用

被検物質	濃度 mg/dl	ウサギ小腸粘膜糖質分解酵素阻害作用(%)	
		Burrose 阻害率	Maltose 阻害率
D-アラビノース	50	4.0	
	100	8.8	
	200	11.7	7.8
L-アラビノース	25	25.3	28.5
	50	37.8	36.8
	100	52.0	46.7
	200	66.3	47.4
D-キシロース	25	28.5	29.2
	50	35.6	36.4
	100	49.6	44.3
	200	59.8	53.1
L-キシロース	50	8.0	
	100	11.9	
	200	24.6	19.4
D-リボース	25	18.7	13.5
	50	17.8	18.4
	100	34.0	33.3
	200	33.4	46.5
D-キシルロース	200	19.9	11.9
L-キシルロース	200	10.8	6.4
D-リブロース	200	21.7	20.1
D-リキソース	200	23.4	22.3
L-リキソース	200	-6.2	10.0

【0008】表1に示したとおり、阻害作用を検討したペントースのうち、L-アラビノース、D-キシロース、D-リボースが強いスクラーゼ阻害作用およびマルターゼ阻害作用を有し、L-キシロース、D-キシルロース、D-リブロース、D-リキソースが、これに次ぐ阻害作用を示した。また、D-アラビノース、L-リキソース、L-キシルロースには、阻害作用は認められなかった。ヘキソースについては、2-デオキシ-D-ガ

ラクトース、D-タガトース、L-フコースに、強いスクラーゼ阻害作用およびマルターゼ阻害作用が、認められたが、L-ソルボース、D-フコース、D-タロース、D-マンノース、D-ガラクトース、D-ガラクトサミンは、阻害作用を有しなかった(表2)。

【0009】

【表2】

表2： 单糖(ヘキサ- α)による糖質分解酵素阻害作用

被検物質	濃度 mg/dl	ウサギ小腸粘膜糖質分解酵素阻害作用 (%)	
		Sucrase阻害率	Maltase阻害率
L-Deoxy-D-galactose	25	1.8. 7	1.1. 2
	50	1.6. 5	1.3. 4
	100	2.1. 8	1.9. 9
	200	3.4. 8	3.2. 8
D-タガトース	25	8. 9	1.2. 5
	50	1.6. 7	1.7. 7
	100	3.0. 0	3.0. 3
	200	3.6. 6	3.3. 9
D-フコース	200	8. 7	4. 1
L-フコース	25	1.1. 6	1.6. 4
	50	1.6. 2	1.8. 4
	100	3.2. 8	2.4. 8
	200	3.0. 7	3.1. 0
D-タロース	200	5. 4	5. 3
L-ソルボース	200	5. 1	7. 5
D-マンノース	50	-0. 7	3. 2
	100	1.2. 9	1.0. 6
	200	1.9. 3	2.5. 1
	400	2.7. 8	3.0. 4
D-ガラクトース	50	-0. 6	-0. 8
	100	-0. 9	1.3. 9
	200	6. 4	1.5. 3
	400	2.0. 2	1.1. 8
D-Galactosamine	200	-6. 6	-4. 5

【0010】オリゴ糖については、検討した物質の中には、これらの阻害作用を有するものは見出されなかった
(表3)。

【0011】

【表3】

表3：オリゴ糖による糖質分解酵素阻害作用

被検物質	濃度 mg/ml	99% 小鼠粘膜糖質分解酵素阻害作用 (%)	
		Saccharase阻害率	Maltase阻害率
ゲンチオビオース	200	-2.4	1.9
セロビオース	200	-0.4	2.8
キシロオリゴ糖 $\beta-1,4-(xylose)_n$			
n = 2	200	10.7	5.5
n = 3	200	2.7	3.6
n = 4	200	9.5	2.0
n = 5	200	-0.6	1.6
n = 6	200	-7.9	-6.1
マンノオリゴ糖 $\beta-1,4-(mannose)_n$			
n = 2	200	0.9	0.6
n = 3	200	2.0	1.3
n = 4	200	-0.3	0.7
n = 5	200	4.0	3.5

(糖質負荷後の血糖上昇抑制作用) 実験には、ICR系雄マウス(体重30-35g)を、1群5匹として使用した。終夜絶食させた後、各群のマウスにスクロース1g/kgまたはスター1g/kgを、経口投与し、同時に被検物質を経口投与した。糖質負荷前および負荷後、30分、60分、120分に、眼底静脈炎より採血し、血漿グルコース濃度を、グルコースオキシダーゼ法で測定した。表4に示したように、スクロース負荷による血糖上昇は、L-アラビノース、D-キシロース(投与量はいずれも25, 50, 100m

g/kg, 経口投与)によって、用量依存的に抑制されるとともに、D-タガトース、2-デオキシ-D-ガラクトース、L-フコース、L-キシロース、D-リボース、D-リブロース、D-リキソース、D-キシリロース(投与量はいずれも100mg/kg, 経口投与)によって有意に抑制されることが確認された。また、L-アラビノースは、スター負荷による、血糖上昇に対しても、用量依存的抑制作用を示した。

【0013】

【表4】

表4：マウスにおける摂質負荷後の血糖上昇抑制作用

負荷量	被検物質	個数♂	投与量 mg/kg	血 糖 上 昇 (Δ mg/dl)		
				30分	60分	120分
スクロース (1g/kg)	摂糞(水)	5	水	14.2 ± 6.95	80.4 ± 7.10	28.3 ± 3.69
	L-アラビノース	5	25	71.7 ± 6.37*	49.4 ± 5.73	25.4 ± 3.76
		5	50	62.9 ± 6.18**	37.3 ± 6.09*	21.5 ± 3.90
		5	100	41.8 ± 4.15***	30.4 ± 4.25**	20.3 ± 3.76
	D-キシロース	5	25	76.9 ± 8.97	55.4 ± 4.75	27.3 ± 3.93
		5	50	62.5 ± 6.38**	47.3 ± 4.05	24.0 ± 2.60
		5	100	38.2 ± 8.38***	45.2 ± 7.11	28.4 ± 4.42
	D-ガラクトース 2-D-ペクタ-D-galactose	5	100	86.7 ± 7.28*	44.4 ± 3.83	26.3 ± 3.38
	L-フコース	5	100	61.1 ± 7.21*	50.8 ± 5.93	26.2 ± 3.10
ヌード (1g/kg)	L-キドース	5	100	81.0 ± 8.88*	44.4 ± 3.63	28.3 ± 3.38
	D-ガラクトース	5	100	88.3 ± 4.88*	53.2 ± 4.91	27.3 ± 2.75
	D-フuctose	5	100	81.2 ± 7.91*	48.5 ± 4.08	26.2 ± 3.08
ヌード (1g/kg)	D-リブロース	5	100	65.8 ± 5.04*	58.3 ± 9.85	28.1 ± 3.43
	D-リブロース	5	100	62.7 ± 6.73*	57.0 ± 5.15	28.3 ± 3.19
	D-キシロース	5	100	67.3 ± 4.32*	59.7 ± 6.70	27.5 ± 3.80
ヌード (1g/kg)	溶媒(水)	5	水	98.5 ± 6.58	71.9 ± 6.54	31.2 ± 3.52
	L-アラビノース	5	25	81.1 ± 6.87	68.5 ± 5.48	29.8 ± 2.41
		5	50	71.4 ± 5.39*	54.6 ± 5.74	26.5 ± 2.31
		5	100	59.5 ± 4.51**	48.3 ± 4.32*	24.6 ± 1.95

血糖上昇の數値：平均値±標準偏差：

*: 有意水準 $p < 0.1$ [対 対照]
 **: 有意水準 $p < 0.01$ [対 対照]
 ***: 有意水準 $p < 0.001$ [対 対照]

(マウスの体重増加抑制効果実験には、生後5週令のI CR系雄マウスを、1群10匹として使用した。市販の通常飼料(オリエンタル酵母工業製:「マウス・ラット飼育用-MF」)で、1週間子備飼育した後、L-アラビノースをそれぞれ0.5% (A1群)、1.0% (A2群)、および2.0% (A3群)添加した。実験的に不足する成分がない飼料(同上製:「マウス・ラット用オリエンタル配合飼料」の摂質の30%を、ク"ラニユ-糖で置換した飼料をヘ"ースにした、ヘ"レット状特注品)を自由に摂取させた。対照群のマウスには、L-アラビノースが無添加である以外は実験群と同一の飼料を、自由に摂取させた。投与

開始から10日、20日、30日、および60日目に体重を測定し、初期体重からの増加量を求め、群毎に平均値を算出した。また、摂餌量と摂水量も同時に測定した。実験期間中、実験動物の一般的健康状態および行動に、異状はみられず、死亡例も皆無であった。表5に示したように、L-アラビノース添加飼料群では、対照群に比較して、体重増加量が少なく、この効果は用量依存的であった。また、摂餌量および摂水量には、有意な差異は認められなかった。

【参考文献】
 【表5】

表6：マウスの体重増加抑制作用

実験群	観察項目	10日	20日	30日	50日
A 1	体重増加 (g)	5.9	9.2	12.4	15.0
	摂餌量 (g/日)	2.9	3.1	3.4	3.3
	摂水量 (g/日)	2.1	2.7	2.8	3.1
A 2	体重増加 (g)	5.3	8.0	11.7	13.8
	摂餌量 (g/日)	2.8	3.1	3.4	3.3
	摂水量 (g/日)	2.3	2.8	3.0	3.2
A 3	体重増加 (g)	4.1	7.2	10.2	12.1
	摂餌量 (g/日)	2.1	3.1	3.3	3.7
	摂水量 (g/日)	2.3	2.9	3.1	3.3
対照	体重増加 (g)	6.1	10.3	14.5	18.1
	摂餌量 (g/日)	2.3	3.1	3.6	3.9
	摂水量 (g/日)	2.1	2.7	2.8	3.2

【発明の効果】本発明によると、L-アラビノース、L-フコース、2-デオキシ-D-ガラクトース、D-キシリース、L-キシリース、D-リボース、D-タガトース、D-リブロース、D-リキソース、D-キシリロースに、グルコースあるいはスター-チ負荷に対して、有効

な血糖上昇抑制作用があることが確認された。これらを有効成分として使用することにより、過血糖付随疾患の予防および治療剤として、長期間維持投与しても、生体、特に糖質代謝の活発な臓器に対し、安全上の懸念のない、予防および治療剤の提供が可能となり、同時に保健食の提供も可能となった。