Biostat 602 Winter 2017

Lecture Set 15

Asymptotic Evaluation of Estimators

Reading: CB 10.1

Consistency

Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

Definition - Consistency: Let $W_n = W_n(X_1, \dots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \xrightarrow{P} \tau(\theta)$ under P_{θ} for every $\theta \in \Omega$.

 $W_n \xrightarrow{P} \tau(\theta)$ (converges in probability to $\tau(\theta)$) means that, given any $\epsilon > 0$.

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| \ge \epsilon) = 0$$

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| < \epsilon) = 1$$

Consistency implies that the probability of W_n being close to $\tau(\theta)$ approaches to 1 as n goes to ∞ .

Tools for proving consistency

- Use definition (complicated)
- Chebychev's Inequality

$$\Pr(|W_n - \tau(\theta)| \ge \epsilon) = \Pr((W_n - \tau(\theta))^2 \ge \epsilon^2)$$

$$\le \frac{\mathrm{E}[W_n - \tau(\theta)]^2}{\epsilon^2}$$

$$= \frac{\mathrm{MSE}(W_n)}{\epsilon^2} = \frac{\mathrm{Bias}^2(W_n) + \mathrm{Var}(W_n)}{\epsilon^2}$$

Need to show that both $Bias(W_n)$ and $Var(W_n)$ converge to zero

Theorem 10.1.3: If W_n is a sequence of estimators of $\tau(\theta)$ satisfying

- $\lim_{n\to\infty} \operatorname{Bias}(W_n) = 0.$
- $\lim_{n\to\infty} \operatorname{Var}(W_n) = 0.$

for all θ , then W_n is consistent for $\tau(\theta)$

Consistency of \overline{X}

Theorem 5.5.2 - Weak Law of Large Numbers: Let X_1, \dots, X_n be iid random variables with $E(X) = \mu$ and $Var(X) = \sigma^2 < \infty$. Then \overline{X} converges in probability to μ , i.e. $\overline{X} \stackrel{P}{\longrightarrow} \mu$.

Consistent sequence of estimators

Theorem 10.1.5: Let W_n is a consistent sequence of estimators of $\tau(\theta)$. Let a_n , b_n be sequences of constants satisfying

- 1. $\lim_{n\to\infty} a_n = 1$
- $2. \lim_{n\to\infty} b_n = 0.$

Then $U_n = a_n W_n + b_n$ is also a consistent sequence of estimators of $\tau(\theta)$.

Continuous Mapping Theorem - Theorem 5.5.4: If W_n is consistent for θ ($W_n \xrightarrow{P} \theta$) and g is a continuous function, then $g(W_n)$ is consistent for $g(\theta)$ ($g(W_n) \xrightarrow{P} g(\theta)$).

Example 1: X_1, \dots, X_n are iid samples from a distribution with mean μ and variance $\sigma^2 < \infty$.

- 1. Show that \overline{X} is consistent for μ .
- 2. Show that $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$ is consistent for σ^2 .
- 3. Show that $\frac{1}{n-1}\sum_{i=1}^n (X_i \overline{X})^2$ is consistent for σ^2 .

Proof: By law of large numbers, \overline{X} is consistent for μ .

Also

- $\operatorname{Bias}(\overline{X}) = \operatorname{E}(\overline{X}) \mu = \mu \mu = 0.$
- $\operatorname{Var}(\overline{X}) = \operatorname{Var}\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var}(X_i) = \sigma^2/n.$
- $\lim_{n\to\infty} \operatorname{Var}(\overline{X}) = \lim_{n\to\infty} \frac{\sigma^2}{n} = 0.$

By Theorem 10.1.3. \overline{X} is consistent for μ .

Solution - consistency for σ^2

$$\frac{\sum (X_i - \overline{X})^2}{n} = \frac{\sum (X_i^2 + \overline{X}^2 - 2X_i \overline{X})}{n}$$

$$= \frac{\sum X_i^2 + n\overline{X}^2 - 2\overline{X}\sum_{i=1}^n X_i}{n} = \frac{\sum X_i^2}{n} - \overline{X}^2$$

By law of large numbers,

$$\frac{1}{n} \sum X_i^2 \stackrel{P}{\longrightarrow} EX^2 = \mu^2 + \sigma^2$$

Note that \overline{X}^2 is a function of \overline{X} . Define $g(x)=x^2$, which is a continuous function. Then $\overline{X}^2=g(\overline{X})$ is consistent for μ^2 . Therefore,

$$\frac{\sum (X_i - \overline{X})^2}{n} = \frac{\sum X_i^2}{n} - \overline{X}^2 \xrightarrow{P} (\mu^2 + \sigma^2) - \mu^2 = \sigma^2$$

So, $\sum (X_i - \overline{X})^2/n$ is consistent for σ^2 .

Define
$$S_n^2 = \frac{1}{n-1} \sum (X_i - \overline{X})^2$$
, and $(S_n^*)^2 = \frac{1}{n} \sum (X_i - \overline{X})^2$.

$$S_n^2 = \frac{1}{n-1} \sum (X_i - \overline{X})^2 = (S_n^*)^2 \cdot \frac{n}{n-1}$$

Because $(S_n^*)^2$ was shown to be consistent for σ^2 previously, and $a_n = \frac{n}{n-1} \to 1$ as $n \to \infty$, by Theorem 10.1.5, S_n^2 is also consistent for σ^2 .

Example 2 - Exponential Suppose X_1, \dots, X_n *iid* Exponential(β).

- 1. Propose a consistent estimator of the population median.
- 2. Propose a consistent estimator of $Pr(X \leq c)$ where c is constant.

Consistent estimator for the median

First, we need to express the median in terms of the parameter β .

$$\int_0^m \frac{1}{\beta} e^{-x/\beta} dx = \frac{1}{2}$$

$$-e^{-x/\beta} \Big|_0^m = \frac{1}{2}$$

$$1 - e^{-m/\beta} = \frac{1}{2}$$

$$\text{median} = m = \beta \log 2$$

By law of large numbers, \overline{X} is consistent for $E(X) = \beta$. Applying continuous mapping Theorem to $g(x) = x \log 2$, $g(\overline{X}) = \overline{X} \log 2$ is consistent for $g(\beta) = \beta \log 2$ (median).

Consistent estimator of $Pr(X \le c)$

$$\Pr(X \le c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} dx$$
$$= 1 - e^{-c/\beta}$$

As \overline{X} is consistent for β , $1 - e^{-c/\beta}$ is continuous function of β . By continuous mapping Theorem, $g(\overline{X}) = 1 - e^{-c/\overline{X}}$ is consistent for $\Pr(X \leq c) = 1 - e^{-c/\beta} = g(\beta)$

Consistent estimator of $Pr(X \leq c)$ - Alternative Method

Define $Y_i = I(X_i \le c)$. Then Y_i iid Bernoulli(p) where $p = \Pr(X \le c)$.

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le c)$$

is consistent for p by the Weak Law of Large Numbers.

Theorem 10.1.6 - Consistency of MLEs

Suppose X_i iid $f(x|\theta)$. Let $\hat{\theta}$ be the MLE of θ , and $\tau(\theta)$ be a continuous function of θ . Then under "regularity conditions" on $f(x|\theta)$, the MLE of $\tau(\theta)$ (i.e. $\tau(\hat{\theta})$) is consistent for $\tau(\theta)$. The regularity conditions, described in 10.6.2, include iid, identifiability, differentiability, parameter space containing open set.

Asymptotic Normality

Definition: Asymptotic Normality A statistic (or an estimator) $W_n(\mathbf{X})$ is asymptotically normal if

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}(0, \nu(\theta))$$

for all θ where $\stackrel{d}{\longrightarrow}$ stands for "converge in distribution"

- $\tau(\theta)$: "asymptotic mean"
- $\nu(\theta)$: "asymptotic variance"

We denote $W_n \sim \mathcal{AN}\left(\tau(\theta), \frac{\nu(\theta)}{n}\right)$.

A general definition of asymptotic normality is defined as $k_n(T_n - \tau(\theta)) \xrightarrow{d} N(0, \nu(\theta))$. The definition above is when $k_n = \sqrt{n}$.

Given a statistic $W_n(\mathbf{X})$, for example \overline{X} , $s_{\mathbf{X}}^2$, $e^{-\overline{X}}$

$$\sqrt{n}(W_n - \tau(\theta)) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \nu(\theta))$$
 for all θ

$$\iff W_n \sim \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{\nu(\theta)}{n}\right)$$

Tools to show asymptotic normality

- 1. Central Limit Theorem
- 2. Slutsky Theorem
- 3. Delta Method (Theorem 5.5.24)

Central Limit Theorem 5.5.14

Assume X_i iid $f(x|\theta)$ with finite mean $\mu(\theta)$ and variance $\sigma^2(\theta)$. Then

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

$$\Leftrightarrow \sqrt{n}\left(\overline{X} - \mu(\theta)\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2(\theta))$$

Theorem 5.5.17 - Slutsky's Theorem If $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{P} a$, where a is a constant,

1.
$$Y_n \cdot X_n \stackrel{d}{\longrightarrow} aX$$

$$2. X_n + Y_n \stackrel{d}{\longrightarrow} X + a$$

Theorem 5.5.24 - Delta Method Assume $W_n \sim \mathcal{AN}\left(\theta, \frac{\nu(\theta)}{n}\right)$. If a function g satisfies $g'(\theta) \neq 0$, then

$$g(W_n) \sim \mathcal{AN}\left(g(\theta), [g'(\theta)]^2 \frac{\nu(\theta)}{n}\right)$$

Example 3 - Estimator of $\Pr(X \leq c)$ Define $Y_i = I(X_i \leq c)$. Then Y_i iid Bernoulli(p) where $p = \Pr(X \leq c)$.

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le c)$$

is consistent for p. Therefore,

$$\frac{1}{n} \sum_{i=1}^{n} I(X_i \le c) \sim \mathcal{AN}\left(E(Y), \frac{Var(Y)}{n}\right)$$
$$= \mathcal{AN}\left(p, \frac{p(1-p)}{n}\right)$$

Example 4: Let X_1, \dots, X_n be iid samples with finite mean μ and variance σ^2 . Define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

By Central Limit Theorem,

$$\overline{X} \sim \mathcal{A}\mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\Leftrightarrow \sqrt{n}(\overline{X} - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$$

$$\Leftrightarrow \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \xrightarrow{d} \mathcal{N}(0, 1)$$

$$\frac{\sqrt{n}(\overline{X} - \mu)}{S_{rr}} = \frac{\sigma}{S_{rr}} \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma}$$

We showed previously $S_n^2 \xrightarrow{P} \sigma^2 \Rightarrow S_n \xrightarrow{P} \sigma \Rightarrow \sigma/S_n \xrightarrow{P} 1$. Therefore, By Slutsky's Theorem $\frac{\sqrt{n}(\overline{X}-\mu)}{S_n} \xrightarrow{d} \mathcal{N}(0,1)$.

Example 5: Delta Method X_1, \dots, X_n *iid* Bernoulli(p) where $p \neq \frac{1}{2}$, we want to know the asymptotic distribution of $\overline{X}(1-\overline{X})$. By central limit Theorem,

$$\frac{\sqrt{n}(\overline{X} - p)}{\sqrt{p(1-p)}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

$$\Leftrightarrow \overline{X} \sim \mathcal{A}\mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

Define g(y) = y(1 - y), then $\overline{X}(1 - \overline{X}) = g(\overline{X})$.

$$g'(y) = (y - y^2)' = 1 - 2y$$

By Delta Method,

$$g(\overline{X}) = \overline{X}(1 - \overline{X}) \sim \mathcal{AN}\left(g(p), [g'(p)]^2 \frac{p(1-p)}{n}\right)$$
$$= \mathcal{AN}\left(p(1-p), (1-2p)^2 \frac{p(1-p)}{n}\right)$$

Example 6 - Normal MLE Let X_1, \dots, X_n iid $\mathcal{N}(\mu, \sigma^2)$ $\mu \neq 0$. Find the asymptotic distribution of MLE of μ^2 .

Solution:

- 1. It can be easily shown that MLE of μ is \overline{X} .
- 2. By the invariance property of MLE, MLE of μ^2 is \overline{X}^2 .
- 3. By central limit theorem, we know that

$$\overline{X} \sim \mathcal{AN}\left(\mu, \frac{\sigma^2}{n}\right)$$

4. Define $g(y) = y^2$, and apply Delta Method.

$$g'(y) = 2y$$

$$\overline{X}^2 \sim \mathcal{AN}\left(g(\mu), [g'(\mu)]^2 \frac{\sigma^2}{n}\right)$$

$$\sim \mathcal{AN}\left(\mu^2, (2\mu)^2 \frac{\sigma^2}{n}\right)$$

Asymptotic Efficiency

If both estimators are consistent and asymptotic normal, we can compare their asymptotic variance.

Definition 10.1.16 : Asymptotic Relative Efficiency If two estimators W_n and V_n satisfy

$$\sqrt{n}[W_n - \tau(\theta)] \xrightarrow{d} \mathcal{N}(0, \sigma_W^2)$$

$$\sqrt{n}[V_n - \tau(\theta)] \xrightarrow{d} \mathcal{N}(0, \sigma_V^2)$$

The asymptotic relative efficiency (ARE) of V_n with respect to W_n is

$$ARE(V_n, W_n) = \frac{\sigma_W^2}{\sigma_V^2}$$

If $ARE(V_n, W_n) \ge 1$ for every $\theta \in \Omega$, then V_n is asymptotically more efficient than W_n .

Example 7: Let X_i iid $Poisson(\lambda)$. Consider estimating

$$\Pr(X=0) = e^{-\lambda}$$

Our estimators are

$$W_n = \frac{1}{n} \sum_{i=1}^n I(X_i = 0)$$

$$V_n = e^{-\overline{X}}$$

Determine which one is more asymptotically efficient estimator.

Solution: Asymptotic Distribution of V_n

$$V_n(\mathbf{X}) = e^{-\overline{X}}$$
. By CLT

$$\overline{X} \sim \mathcal{AN}(EX, VarX/n) \sim \mathcal{AN}(\lambda, \lambda/n)$$

Define $g(y) = e^{-y}$, then $V_n = g(\overline{X})$ and $g'(y) = -e^{-y}$. By Delta Method

$$V_n = e^{-\overline{X}} \sim \mathcal{AN}\left(g(\lambda), [g'(\lambda)]^2 \frac{\lambda}{n}\right)$$

 $\sim \mathcal{AN}\left(e^{-\lambda}, e^{-2\lambda} \frac{\lambda}{n}\right)$

Asymptotic Distribution of W_n

Define $Z_i = I(X_i = 0)$

$$W_n = \frac{1}{n} \sum_{i=1}^n I(X_i = 0) = \overline{Z}$$

$$Z_i \sim Bernoulli(E(Z))$$

$$E(Z) = Pr(X = 0) = e^{-\lambda}$$

$$Var(Z) = e^{-\lambda}(1 - e^{-\lambda})$$

By CLT,

$$W_n = \overline{Z} \sim \mathcal{AN}\left(\mathrm{E}(Z), \mathrm{Var}(Z)/n\right)$$

 $\sim \mathcal{AN}\left(e^{-\lambda}, \frac{e^{-\lambda}(1 - e^{-\lambda})}{n}\right)$

Calculating ARE

$$ARE(W_n, V_n) = \frac{e^{-2\lambda}\lambda/n}{e^{-\lambda}(1 - e^{-\lambda})/n}$$

$$= \frac{\lambda}{e^{\lambda}(1 - e^{-\lambda})}$$

$$= \frac{\lambda}{e^{\lambda} - 1}$$

$$= \frac{\lambda}{(1 + \lambda + \frac{\lambda^2}{2} + \frac{\lambda^3}{3!} + \cdots) - 1}$$

$$\leq 1 \quad (\forall \lambda \geq 0)$$

Therefore $W_n = \frac{1}{n} \sum I(X_i = 0)$ is less efficient than V_n (MLE), and ARE attains maximum at $\lambda = 0$.

Asymptotic Efficiency

Asymptotic Efficiency for iid samples

A sequence of estimators W_n is asymptotically efficient for $\tau(\theta)$ if for all $\theta \in \Omega$,

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}\left(0, \frac{[\tau'(\theta)]^2}{I(\theta)}\right)$$

$$\iff W_n \sim \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)}\right)$$

$$I(\theta) = \operatorname{E}\left[\left\{\frac{\partial}{\partial \theta} \log f(X|\theta)\right\}^2\right]$$

$$= -\operatorname{E}\left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)\right] \text{ (with Lemma 7.3.11)}$$

Note: $\frac{[\tau'(\theta)]^2}{nI(\theta)}$ is the C-R bound for unbiased estimators of $\tau(\theta)$.

Theorem 10.1.12 Let X_1, \dots, X_n be iid samples from $f(x|\theta)$. Let $\hat{\theta}$ denote the MLE of θ . Under regularity conditions, $\hat{\theta}$ is consistent and asymptotically normal for θ , i.e.

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \frac{1}{I(\theta)}\right)$$
 for every $\theta \in \Omega$

And if $\tau(\theta)$ is continuous and differentiable in θ , then

$$\sqrt{n}(\tau(\hat{\theta}) - \tau(\theta)) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \frac{[\tau'(\theta)]^2}{I(\theta)}\right)$$

- The regularity condition includes the ones in 10.1.6, plus finite three-times differentiability log-likelihood functions (See 10.6.2)
- Note that the asymptotic variance of $\tau(\hat{\theta})$ is Cramer-Rao lower bound for unbiased estimators of $\tau(\theta)$.

Example 8: Suppose X_1, \dots, X_n iid Exponential(β) and let $\tau(\beta) = \Pr(X \leq c)$ for a known constant c. Consider the two consistent estimators

- 1. Is $W(\mathbf{X}) = 1 e^{-\frac{c}{\overline{X}}}$ asymptotically efficient for $\tau(\beta)$?
- 2. Is $U(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq c)$ asymptotically efficient for $\tau(\beta)$?

Solution 1: By invariance property, $W(\mathbf{X}) = \tau(\hat{\beta})$ is MLE. So it is asymptotically efficient.

Solution 2: Let $Y_i = I(X_i \le c) \sim Bernoulli(1 - e^{-\frac{c}{\beta}})$.

$$\begin{aligned}
\mathbf{E}Y_i &= 1 - e^{-\frac{c}{\beta}} \\
\mathbf{Var}Y_i &= e^{-\frac{c}{\beta}} (1 - e^{-\frac{c}{\beta}}) \\
U(\mathbf{X}) &= \frac{1}{n} \sum_{i=1}^n I(X_i \le c) = \overline{Y} \sim \mathcal{AN}\left(1 - e^{-\frac{c}{\beta}}, \frac{e^{-\frac{c}{\beta}} (1 - e^{-\frac{c}{\beta}})}{n}\right) \\
I(\beta) &= \frac{1}{\beta^2} \\
\frac{[\tau'(\beta)]^2}{nI(\beta)} &= \frac{c^2 e^{-\frac{2c}{\beta}}}{n\beta^2} \le \frac{e^{-\frac{c}{\beta}} (1 - e^{-\frac{c}{\beta}})}{n}
\end{aligned}$$

So $U(\mathbf{X})$ is not asymptotically efficient.

Summary - Consistency and Efficiency

Consistency

- $W_n(\mathbf{X}) \longrightarrow \mathrm{P}\tau(\theta)$.
- Use W.L.L.N., Theorem 10.1.3, Continuous Mapping Theorem.

Asymptotic Normality and Efficiency

- Asymptotic behavior of mean (consistency) and variance (efficiency).
- Useful tools are C.L.T, Slutsky's Theorem, and Delta Method.
- Asymptotic Relative Efficiency (ARE) allows to compare the efficiency between two consistent and asymptotically normal estimators.
- Asymptotically efficient : asymptotic variance approaches CR-bound.
- MLE is always asymptotically efficient (under mild condition).

Example 9: Let $X_1, X_2, ..., X_n$ be a i.i.d. random sample from Negative Binomial (r, p). The following R code shows how close the MLEs resemble their large-sample properties. For this example, we take r = 5, p = 0.2. We generate a random sample of size n from this random sample and calculate the MLE of p. We repeat this process k times.

```
n=5
r=5
p = 0.2
k=1000
mle=NULL
for(i in 1:k){
  x=rnbinom(n,size=r,p)
  mle[i] = (n*r)/((n*r) + sum(x))
}
mean(mle) # mle is consistent for p = 0.2
[1] 0.2072064
n*(var(mle)) # CRLB = (1-p)*p^2/r = 0.0064
[1] 0.007368217
qqnorm(mle)
qqline(mle)
We then repeat the process with n = 100. mean(MLE) = .2006, asymptotic
variance = .00731.
```

Normal Q-Q Plot

Normal Q-Q Plot

Central Limit Theorem for Sample Median

Result: Let $X_1, X_2, ..., X_n$ be a i.i.d. random sample from a pdf/pmf f that is differentiable. Define μ to be the *median* of the population, i.e. $P(X_i \leq \mu) = 1/2$. Let M_n be the sample median. Then, as $n \longrightarrow \infty$,

$$\sqrt{n}(M_n - \mu) \xrightarrow{d} \mathcal{N}(0, 1/\left[2f(\mu)\right]^2).$$

Example 10: Suppose f denotes the pdf of Cauchy with median θ , i.e.

$$f(x) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}, \quad -\infty < x < \infty.$$

Thus, $f(\theta) = 1/\pi$. With M_n denoting the sample median based on a random sample from Cauchy,

$$\sqrt{n}(M_n - \mu) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \pi^2/4).$$

Example 11: Let X_1, X_2, \ldots, X_n be a i.i.d. random sample from $\mathcal{N}(\mu, \sigma^2)$. Consider the sample mean \overline{X} and the sample median M_n to be competing estimators for μ which is both the mean and the median. Note that $f(\mu) = 1/(\sqrt{2\pi}\sigma)$ and so

$$\sqrt{n}(M_n - \mu) \xrightarrow{d} \mathcal{N}(0, \pi\sigma^2/2).$$

Since $\sqrt{n}(\overline{X} - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$, hence

$$ARE(\overline{X}, M_n) = 2/\pi = 0.64.$$

Example 12: Let X_1, X_2, \ldots, X_n be a i.i.d. random sample from $Gamma(3, \beta)$. Consider

$$T_1(\mathbf{X}) = \overline{X}$$
, and $T_2(\mathbf{X}) = \frac{n}{\sum_{i=1}^n \frac{1}{X_i}}$

to be the sample arithmetic mean and sample harmonic mean respectively.

- (a) Show that $W = T_1/3$ and $V = T_2/2$ are both consistent estimators of β .
- (b) Prove the asymptotic normality results for both W and V.
- (c) Find the ARE of V with respect to W.

Note: If $X \sim Gamma(\alpha, \beta)$ then $Y = 1/X \sim Inverse\ Gamma(\alpha, \beta^{-1})$ with

$$E(Y) = \frac{1}{\beta(\alpha - 1)}, \quad \alpha > 1, \quad Var(Y) = \frac{1}{\beta^2(\alpha - 1)^2(\alpha - 2)}, \quad \alpha > 2.$$