#1 Space Complexity

Definition 1. let M be a deterministic, deciding TM. The <u>space complexity</u> of M is the function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that M scans on any input of length n. For nondeterministic N, f(n) is the same but for any branch of computation for any length of input n.

#2 Example

We will show that SAT runs in linear space. Recall that SAT can be decided by the machine M_1 on input $\langle \phi \rangle$, where ϕ is a Boolean formula:

- 1. Enumerate all 0-1 strings of length m, for variables $x_1, x_2, ..., x_m$ in ϕ . Treat each of these strings as a "truth assignment."
- 2. Evaluate ϕ on each truth assignment. For evaluation:
 - (a) write a copy of ϕ on some segment of the tape;
 - (b) replace each variable with its truth assignment;
 - (c) evaluate the formula ϕ to 0 or 1.
- 3. if ϕ ever evaluates to 1, accept; otherwise, reject;

Think: how much space do we really need to run this? If |w| = n, then we may assume that $m \le n$ (we have less variables than the length of the formula ϕ , due to overhead). So the space cost of M_1 is m + |w|, where |w| is our copy of ϕ used for evaluation. This is $\mathcal{O}(n)$.

#3 And so...

$$SPACE(f(n)) = \{L \mid L \text{ decided by } \mathcal{O}(f(n)) \text{ space DTM } \}$$

$$NSPACE(f(n)) = \{L \mid L \text{ decided by } \mathcal{O}(f(n)) \text{ space NTM } \}$$

and, of course,

$$\begin{aligned} \mathsf{PSPACE} &= \bigcup_k \mathrm{SPACE}(n^k) \\ \mathsf{NPSPACE} &= \bigcup_k \mathrm{NSPACE}(n^k) \end{aligned}$$

And so we just have already proved this claim above:

Claim 1. $SAT \in PSPACE$

because SAT runs in linear-space.

#4 Savitch's Theorem

Here is an interesting result.

Theorem 1 (Savitch's Theorem). For any function $f : \mathbb{N} \to \mathbb{N}$, where $f(n) \geq n$,

$$NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

In other words, any NTM that uses f(n) of space can be converted to a DTM that uses only $f^2(n)$ space.

Questions:

- 1. The language $ALL_{NFA} = \{\langle N \rangle \mid N \text{ is an NFA and } L(A) = \Sigma^* \}$ runs in $\mathcal{O}(n)$ nondeterministic space. What space does it run in deterministically?
- 2. What about if A has nondeterministic space complexity $\mathcal{O}(n^3)$? $\mathcal{O}(2^n)$?

#5 Implications

Is the following claim true?	
Claim 2. PSPACE = NPSPACE?	
<i>Proof.</i> (Let the class give an answer.) The gist is simple:	
1. $PSPACE \subseteq NPSPACE$ trivially.	
2. $NPSPACE \subseteq PSPACE$ because of Savitch's theorem.	
And this one:	
Claim 3. P ⊆ PSPACE?	
Proof. Time bounds space.	
similarly: $NP \subseteq NPSPACE$. How about this one?	
Claim 4. NP ⊆ PSPACE?	
Proof. see your lab.	
In summary, what we know now is that:	
$P\subseteqNP\subseteqPSPACE=NPSPACE\subseteqEXPTIME$	