HiC Data Analysis

Amal Agarwal, Alex Chen, Lingzhou Xue, and Yu Zhang

Outline

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Summary and Future Work

HiC is a chromosome conformation capture technique

- Used to analyze interactions within a chromosome (Lieberman-Aiden et al.,
 2009)
- Quantifies the interactions between all possible pairs of fragments
- ~3 billion base pairs(b.p.) in the human genome
- Gene locations(fragments) consists of ~10K b.p. (Berkum et al., 2010)
- Expensive chromosome capture technique

Data Structure

HiC

- Two Human Cell types: "Gm12878" (Normal) and "K562" (Cancer)
- For each cell, 22 normal and an 'X' chromosome
- An intensity matrix for each chromosome could have different granularities. For e.g. 10K, 40K
- ~600M. Elements in the HiC matrix per chromosome

Epigenetic data set

36 covariates

Goals

- Using HiC data to fit a model to uncover important gene locations
- Building models over epigenetic data to predict important gene locations

Visual representation of the intensity matrix from the Gm12878 cell chromosome 1 from fragment numbers: 601 to 1100

Challenges

- Methodological
 - Capturing true
 Topologically Associating
 Domains (TADs; Dixon et al., 2012, Nora et al., 2012)
- Computing
 - Processing large amounts of data in an adequate amount of time
 - Unable to model the entire chromosome in one go

A visual showing how the attraction between two gene locations in figure A causes the box shapes in figure B (Fudenberg et al. 2016).

Data Preprocessing

- 1. Summed each index and removed indices with less than 100 signal
- Used a bandwidth parameter to define which gene locations to use as predictors
 - a. A bandwidth of 200 for index 1, would use gene locations up to gene location 200
- 3. Design matrix created indicating 1 if gene location is within bandwidth, 0 otherwise.
- 4. HiC matrix transformed to a dataframe of intensities and design matrix

Penalized Lasso Regression Model

- Shrinkage estimations are popular for high dimensional data (Tibshirani 1996)
- Important genes after shrinkage should reveal all the TAD boundaries
- Distance from the main diagonal, | i j |, could explain intensity variation

Intensity_{ij} =
$$\alpha + \beta \times |i - j| + \sum_{k=1}^{N} \gamma_k \mathcal{I}(i \le k \le j) + \epsilon$$

subject to $\beta \le 0, \gamma_k \le 0, \ \forall k \ \text{and} \ \sum_{k=1}^{N} \gamma_k \ge t$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Where N is the number of fragments in the chromosome, (i, j) are row and col. Indices in HiC matrix

Penalized Lasso estimation procedure

- 1. Fit the model over the data only penalizing fragment parameters
- 2. 10-fold Cross-validation to choose tuning parameter λ
- 3. Select λ_{1se} to impose higher penalty and more shrinkage

Current Method

(Left) original chromosome intensity matrix of cell Gm12878 chromosome 1 and (Right) the predicted matrix using our penalized Lasso model

A plot of the gamma coefficients in cell Gm12878 chromosome 1 where large spikes correspond to TAD boundaries found in the previous slide. Coefficients were translated to positive for readability.

(Left) Graph of optimal λ values vs mean squared error. Blue line indicates λ_{min} . Red line indicates λ_{lse} . (Right) Regularization path

Pearson Correlation varying with distance from main diagonal over predicted vs. original matrix in the Gm12878 cell for chromosome 1

Correlation vs Distance(Linear Model)

Overall Correlation: -0.02

Summary and Future Work

So far

- Pre-processed data
- Penalized Lasso Model captures TAD boundaries

Upcoming

- Create a baseline linear regression model without shrinkage for HiC data
- Experiment with window sizes, overlap parameter and different sub-sampling procedures
- Mixture Models taking into account orientation and fragments
- Checking consistency over replicates
- Comparing normal and cancer cells