ФГБОУ ВО

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИЗАЦИИ ЭНЕРГОСИСТЕМ

Теория автоматического управления и системы автоматического управления Лабораторная работа №2 на тему:

Устойчивость стационарных систем автоматического управления.

Выполнил:	Гулов М.С.			
Группа:	Э-13м-23			
Проверил:	Дегтярев Д.А.			

ИСПОЛНИТЕЛЬНЫЙ ОТЧЕТ

Ссылка на репозиторий:

https://github.com/G00D80T/TaySay/blob/lab1_dev/Lab2/Labcode2.py

1. Исходные данные:

Рис. 1.1 – Исходная схема

Табл. 1.1 – Таблица данных варианта

№ Варианта	$\boldsymbol{k}_{\mathrm{y}}$	<i>T</i> _y , c	T_{Γ} , c	Турбина	<i>Т</i> _{гт} , с	$T_{\Pi T}$, c	k_{IIT}	Обратная связь	$k_{\rm oc}$	<i>T</i> _{oc} , c
4	23	8.0	10.0	Паро-	-	4.0	2.0	АΓ	6	1.0

Табл. 1.2 – Таблица звеньев с учетом данных варианта

Наимено	вание элемента	Условное обозначение	Передаточная функция	
обратная связь	Апериодическая, гибкая	$W_{ m oc}$	$\frac{6p}{p+1}$	
генератор		W_{Γ}	$\frac{1}{10p+1}$	
турбина	паровая	$W_{\scriptscriptstyle m T}$	$\frac{2}{4p+1}$	
исполните	ельное устройство	$W_{ m y}$	$\frac{23}{8p+1}$	

2. Эквивалентные передаточные функции:

$$\begin{split} W_{\text{pa3}} &= W_{\text{y}} \cdot W_{\text{T}} \cdot W_{\text{r}} \cdot W_{\text{oc}} = \frac{6p}{p+1} \cdot \frac{1}{10p+1} \cdot \frac{2}{4p+1} \cdot \frac{23}{8p+1} \\ &= \frac{276p}{320p^4 + 472p^3 + 174p^2 + 23p+1} \\ W_{\text{BHYT}} &= W_{\text{y}} \cdot W_{\text{T}} \cdot W_{\text{r}} = \frac{1}{10p+1} \cdot \frac{2}{4p+1} \cdot \frac{23}{8p+1} = \frac{46}{320p^3 + 152p^2 + 22p+1} \end{split}$$

$$W_{\text{\tiny 3AM}} = \frac{W_{\text{\tiny BHYT}}}{1 + W_{\text{\tiny BHYT}} \cdot W_{\text{\tiny OC}}} = \frac{\frac{46}{320p^3 + 152p^2 + 22p + 1}}{1 + \frac{46}{320p^3 + 152p^2 + 22p + 1} \cdot \frac{6p}{p + 1}}$$
$$= \frac{46 \cdot (p + 1)}{320p^4 + 472p^3 + 174p^2 + 299p + 1}$$

3. Снятие переходной характеристики:

Рис. 3.1 – Переходная характеристика

4. Полюса передаточной функции:

Рис. 4.1 – Нули и полюсы передаточной функции

5. Расчет устойчивости САУ по различным критериям:

Критерий Гурвица:

Система не устойчива!

Рис. 5.1 – Результат проверки устойчивости по Гурвицу

Критерий Рауса:

Система не устойчива!

Рис. 5.2 – Результат проверки устойчивости по Раусу

Критерий Михайлова:

Рис. 5.3 – Результат проверки устойчивости по Михайлову

Рис. 5.4 – Результат проверки устойчивости по Михайлову

Рис. 5.5 – Результат проверки устойчивости по Михайлову

Рис. 5.6 – Результат проверки устойчивости по Михайлову

Рис. 5.7 – Результат проверки устойчивости по Михайлову

Критерий Найквиста:

Рис. 5.8 – Результат проверки устойчивости по Найквисту

6. Определение запаса устойчивости:

Рис. 6.1 – Графики ЛАЧХ и ЛФЧХ разомкнутой САУ с определением запаса устойчивости

```
Запас по амплитуде 0.21
Запас по амплитуде -13.75 , дБ
Частота wcp 0.50 , рад/с
Запас по фазе -37.71 , град.
Частота wcg 0.26 , рад/с
```

Рис. 6.2 – Вывод результатов по запасу устойчивости в консоль

7. Определение диапазона устойчивости по одному параметру:

Рис. 7.1 – График D-разбиения по одному параметру

8. Проверка САУ на границе устойчивости:

Коэффициент, при котором система находится на границе устойчивости, найденный с использованием python:

$$k_{\rm oc} = 5,0196$$

Переходная характеристика:

Рис. 8.1 – Переходная характеристика разомкнутой САУ на границе устойчивости

Полученный коэффициент, при котором САУ находится на границы устойчивости, соответствует коэффициенту, рассчитанному в предварительном отчете. При подстановке данного коэффициента в уравнение, можно наблюдать периодический график переходной характеристики, который подтверждает то, что САУ находится на границе устойчивости.

9. Вывод:

Результаты полученные в ходе выполнения работы сходятся с теми, что были получены в предварительной подготовке. Проверка системы при, подстановке в нее коэффициента, при котором САУ должна находиться на границе устойчивости показала, что это на самом деле так, так как был получен график переходной характеристики, изменяющийся по периодическому закону.