Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

Table of Contents

This document contains the following resources:

Network Topology & Critical Vulnerabilities

Network Topology

Network

Address Range: 192.168.1.1/225 Netmask: 255.255.240.0 Gateway: 10.0.0.1

Machines

IPv4:192.168.1.1 OS: Windows Hostname: ELK

IPv4:192.168.90

OS: Linux

Hostname: Kali

IPv4:192.168.110

OS: Linux

Hostname: Target 1

IPv4:192.168.115

OS: Linux

Hostname: Target 2

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
SSH	22/tcp	OpenSSH
HTTP	80/tcp	Apache httpd 2.4.10
rpcbind	111/tcp	2-4
netbios-ssn	139/tcp	Samba smbd 3.X - 4.X

Critical Vulnerabilities: Target 2

Our assessment uncovered the following critical vulnerabilities in Target 2.

Vulnerability	Description	Impact
SSH	22/tcp	OpenSSH
HTTP	80/tcp	Apache httpd 2.4.10
rpcbind	111/tcp	2-4
netbios-ssn	139/tcp	Samba smbd 3.X - 4.X

Exploits Used

Exploitation: SSH

Summarize the following:

- How did you exploit the vulnerability?
 SSH method to log in with user1 account we found
- What did the exploit achieve?
 Gaining a user shell
- Include a screenshot or command output illustrating the exploit. ssh michael@192.168.1.110

Exploitation: HTTP

Summarize the following:

- How did you exploit the vulnerability?
 Nmap and wpscan
- What did the exploit achieve?
 Enumerating users and vulnerable plugins from wordpress website
- Include a screenshot or command output illustrating the exploit. wpscan --url http://192.168.1.110/wordpress --wp-content-dir -eu

Exploitation: MySQL 5.5

Summarize the following:

- How did you exploit the vulnerability?
 Hosting the file with Python's SimpleHTTPServer module
- What did the exploit achieve?
 Log in to the MySQL database mysql
- Include a screenshot or command output illustrating the exploit.
 python -m SimpleHTTPServer 80

Avoiding Detection

Stealth Exploitation of HTTP Errors

Monitoring Overview

- Which alerts detect this exploit? Excessive HTTP Errors
- Which metrics do they measure? http.response.status_code
- Which thresholds do they fire at? 400

Mitigating Detection

- How can you execute the same exploit without triggering the alert?
- Are there alternative exploits that may perform better?
- If possible, include a screenshot of your stealth technique.

Stealth Exploitation of HTTP Request Size

Monitoring Overview

- Which alerts detect this exploit?
- Which metrics do they measure? http.request.bytes
- Which thresholds do they fire at? 3500

Mitigating Detection

- How can you execute the same exploit without triggering the alert?
- Are there alternative exploits that may perform better?
- If possible, include a screenshot of your stealth technique.

Stealth Exploitation of CPU Usage Monitor

Monitoring Overview

- Which alerts detect this exploit? system.process.cpu.total.pct
- Which metrics do they measure? Cpu Total %
- Which thresholds do they fire at? 0.5

Mitigating Detection

- How can you execute the same exploit without triggering the alert?
- Are there alternative exploits that may perform better?
- If possible, include a screenshot of your stealth technique.

Maintaining Access

Backdooring the Target

Backdoor Overview

- What kind of backdoor did you install reverse shell/backdoor.php with netcat listener
- How did you drop it (via Metasploit, phishing, etc.)?
 - command injection attacks
 - using curl as the main driver
 - http://192.168.1.115/contact.php
- How do you connect to it?
 - http://192.168.1.115/contact.php?cmd=id

Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

Table of Contents

This document contains the following resources:

Network Topology & Critical Vulnerabilities

Network Topology

Network

Address Range: 192.168.1.1/255

Netmask: 255.255.240.0

Gateway: 10.0.0.1

Machines

IPv4: 192.168.1.110
OS: Debian GNU/Linux
Hostname: Target 1

IPv4: 192.168.1.115 OS: Debian GNU/Linux Hostname: Target 2

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
SSH	22/TCP OpenSSH	Medium
HTTP	80/TCP Apache httpd 2.4.10	High
rpcbind	111/TCP 2-4	Medium
netbios-ssn	139/TCP Samba smbd 3.X - 4.X	Medium

Critical Vulnerabilities: Target 2

Our assessment uncovered the following critical vulnerabilities in Target 2.

Vulnerability	Description	Impact
SSH	22/TCP OpenSSH	Medium
HTTP	80/TCP Apache httpd 2.4.10	High
rpcbind	111/TCP 2-4	Medium
netbios-ssn	139/TCP Samba smbd 3.X - 4.X	Medium
Contact.php	Backdoor Access	High

Excessive HTTP Errors

- Metric: packetbeat-*, HTTP Errors
- Threshold: Above 400 for the last 5 minutes.

HTTP Request Size Monitor

- Metric: packetbeat-*http.request.bytes
- Threshold: Above 3500 for the last minute.

CPU Usage Monitor

- Metric: metricbeat-*, system.process.cpu.total.pct
- Threshold: Above 0.5 for the last 5 minutes

Hardening Against Brute Force Attacks on Target 1,2

Patch: Invalid credentials lock out.

Why the patch works: Prevents excessive login attempts

How to install it: Implementing an account lockout/timeout system.

Hardening Against DOS Attacks on Target 1,2

Patch: Whitelisting IP addresses, Load Balancer

Why the patch works: Only accepts connections from trusted IP address ranges. Installing a load balancer will help lighten the traffic burden placed on each server and optimize network traffic and processing.

How to install:

Through Network/Firewall settings, set Whitelisting list.

Load Balancer can be hardware or software.

Hardware: Install the device alongside the network.

Software: Through the application.

Hardening Against Excessive CPU Usage on Target 1,2

Patch: Creating several different alerts at different threshold of CPU Usage. Limit max CPU usage for each core.

Why the patch works: Alerts us to how much activity is going on in the machine. Sets a limit to how much CPU can be actually used.

How to install:

Create an alert at 75%, 100% CPU Usage.

Install software/program that limits CPU usage.

Can also use Task Manager to limit what cores a process is allowed to use.

Hardening Against Remote Access on Target 2

1. Patch: Update Kernel

Why the patch works: This is the standard way to make sure everything is up to date.

How to install:sudo apt-get upgrade kernel

sudo reboot

2. Patch: Canonical Livepatch

Why the patch works: Livepatch that updates software as soon as it comes out.

How to install: sudo snap install canonical-livepatch

sudo canonical-livepatch enable

3. Patch: KernelCare

Why the patch works: KernelCare is an 'install and forget' solution. Once installed, KernelCare automatically downloads and applies new kernel security patches, without rebooting the server.

How to install: wget -qq -O -- https://kernelcare.com/installer | bashsudo /usr/bin/kcarectl --register | <your key>

Implementing Patches with Ansible

Playbook Overview

Ansible is a popular open-source tool that provides automation, configuration management, and orchestration all in one. The patching is customizable via role's variables definition.

Run:

ansible-playbook orapatch.yml -k

The "-k" option will prompt you to enter the SSH password.

If you're using SSH keys then "-k" option can be omitted.

Final Engagement Attack, Defense & Analysis of a Vulnerable Network

Table of Contents

This document contains the following resources:

Network Topology & Critical Vulnerabilities

Network Topology

Network

Address Range: 192.168.1.1/225 Netmask: 255.255.240.0 Gateway: 10.0.0.1

Machines

IPv4:192.168.1.1 OS: Windows Hostname: ELK

IPv4:192.168.90

OS: Linux

Hostname: Kali

IPv4:192.168.110

OS: Linux

Hostname: Target 1

IPv4:192.168.115

OS: Linux

Hostname: Target 2

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
SSH	22/tcp	OpenSSH
HTTP	80/tcp	Apache httpd 2.4.10
rpcbind	111/tcp	2-4
netbios-ssn	139/tcp	Samba smbd 3.X - 4.X

Critical Vulnerabilities: Target 2

Our assessment uncovered the following critical vulnerabilities in Target 2.

Vulnerability	Description	Impact
SSH	22/tcp	OpenSSH
HTTP	80/tcp	Apache httpd 2.4.10
rpcbind	111/tcp	2-4
netbios-ssn	139/tcp	Samba smbd 3.X - 4.X

Traffic Profile

Our analysis identified the following characteristics of the traffic on the network:

Feature	Value	Description
Top Talkers (IP Addresses)	172.16.4.205 (26m Bytes) 166.62.111.64 (16M) Bytes	Machines that sent the most traffic.
Most Common Protocols	UDP TCP TLSv1.2 and 1.3	Three most common protocols on the network.
# of Unique IP Addresses	808	Count of observed IP addresses.
Subnets	255.255.255.0 is the only range observed in the private ip's	Observed subnet ranges.
# of Malware Species	68	Number of malware binaries identified in traffic.

Behavioral Analysis

Purpose of Traffic on the Network

Users were observed engaging in the following kinds of activity.

"Normal" Activity

- Watching YouTube and surfing the internet
- Downloading and installing desktop backgrounds

Suspicious Activity

- Set up AD network and domain controller
- Downloading malware

Normal Activity

Watching YouTube

- They had a lot of traffic to YouTube IP addresses using protocols like TCP and HTTP
- The users were steaming packets from specific youtube IP addresses like 216.52.193.200 & 202
- References to http://mysocalledchaos.com/

Installing desktop backgrounds

- The user was observed downloading and installing an img file (empty.gif?ss&ss1img).
- The file came from a site named green.mattingsolutions.co.
- The image was used has a desktop background.

Malicious Activity

Set up AD network and domain controller

- We observer the client and server passing DNS,DHCP and LDAP protocols.
- The client machine DESKTOP-86J4BX authenticated to the Frank-n-ted.com domain.
- This was a domain setup inside the corporate domain.

Downloading malware

- We observed some HTTP traffic download sum suspect traffic.
- The user Matthijs.devries downloaded some malware form the address 182.243.115.84 containing a file june11.dll
- The file contain 68 malware binaries, including multiple trojans.

