

CLAIMS

What is claimed is:

1. A method for performing an analysis of a network composed of at least one path, said method comprising:

5 generating a composite graph comprising $K + 1$ copies of an original graph, said original graph represents said network with zero defects and K is a predetermined maximum number of defects on any of said at least one path; and performing an analysis of said network using said composite graph.

2. A method for performing fault tolerant static timing analysis for an electronic network composed of at least one path, said method comprising:

generating a composite timing graph comprising $K + 1$ copies of an original timing graph, wherein said original timing graph represents a timing graph of said network with zero defects and K is a predetermined maximum number of defects present on any of said at least one path; and

15 performing a static timing analysis on said composite timing graph.

3. The method of claim 2, wherein

said network is composed of a plurality of nodes and each of said at least one path interconnects at least two of said plurality of nodes and

BUR920000137US1

said performing static analysis further comprises calculating, for each said node in each said path, at least one of the following:

- at least one arrival time (AT) of an input signal,
- at least one required arrival time (RAT) for said input signal, and

5 at least one slack value for said input signal, wherein each said slack value is a difference between said at least one RAT and said at least one AT.

4. The method of claim 2, wherein said defects are due to one or more of the following:

- manufacturing abnormalities insufficiently serious to cause a hard failure;
- conductor coupling; and
- voltage changes in floating components.

5. The method of claim 2, wherein $K = 1$, thereby resulting in a single-fault analysis.

6. The method of claim 2, wherein for each said i , where $0 \leq i \leq K$, a probability is associated with said condition of i defects in said path.

7. The method of claim 2, wherein said copies j , where $1 \leq j \leq K$, of said original timing graph include only a preselected portion of said network preselected as being susceptible to defects.

5 8. The method of claim 7, wherein said original timing graph includes only a preselected portion of said network preselected as being susceptible to defects.

9. A method for performing K -fault tolerant static timing analysis for an electronic network composed of at least two nodes and at least one path interconnecting said nodes, said method comprising:

generating an original timing graph for said network, said original timing graph having at least one delay edge E , each said delay edge E having a source node and a sink node;

generating a composite timing graph including $K + 1$ copies of said original timing graph, where K is a predetermined maximum number of defects of a first type on any of said at least one path;

15 adding a first type of defect edge for at least K of said delay edge E in said original timing graph, such that each said first type of defect edge has a delay that reflects a timing behavior of the circuit in a presence of a first type of defect from said source node of E in copy $_i$ of said timing graph to said sink node of E in copy $_i + 1$ of the said composite timing graph, for all values of i such that $0 \leq i < K$; and
BUR920000137US1

for each said node, calculating at least one parameter.

10. The method of claim 9, wherein said at least one parameter comprises at least one of the following:

at least one arrival time (AT) of an input signal,

at least one required arrival time (RAT) for said input signal, and

an at least one slack value for said input signal, wherein each said slack

value is a difference between said at least one RAT and said at least one AT.

11. A method for performing K-fault tolerant static timing analysis for an electronic network composed of at least one path, said method comprising:

creating an original empty array representing a timing graph of said network with zero defects;

augmenting said original empty array to create an array representing K+1 copies of said timing graph, wherein K is a predetermined maximum number of

defects present on any of said at least one path; and

performing a static timing analysis to fill in

array.

12. The method of claim 11, wherein said network is composed of a plurality of nodes and each of said at least one path interconnects at least two of said plurality of nodes and wherein said performing static timing analysis further comprises:

5 calculating, for each said node in each said path, at least one of the following:

at least one arrival time (AT) of said signal,

at least one required arrival time (RAT) for said signal, and

an at least one slack value for said signal, wherein each said slack value is a difference between said at least one RAT and said at least one AT.

13. A method within a data processing system for performing K-fault tolerant static timing analysis for a network composed of at least one path, each said path including at least two nodes, said method comprising:

15 generating a composite timing graph representing $K + 1$ copies of an original timing graph, wherein said original timing graph represents a timing graph of said network with zero defects and K is a predetermined maximum number of defects present on any of said at least one path; and

performing a static timing analysis on said composite timing graph by calculating, for each said node in each said path, at least one of the following:

20 at least one arrival time (AT) of an input signal,

BUR920000137US1

at least one required arrival time (RAT) for said input signal, and
an at least one slack value for said input signal, wherein each said
slack value is a difference between said at least one RAT and said at least one AT.

14. A computer-readable medium containing a set of instructions for
5 performing K-fault tolerant static timing analysis for a network composed of at
least one path, each said path including at least two nodes, said instructions
comprising:

generating a composite timing graph representing $K + 1$ copies of an
original timing graph, wherein said original timing graph represents a timing
graph of said network with zero defects and K is a predetermined maximum
number of defects present on any of said at least one path; and

performing a static timing analysis on said composite timing graph by
calculating, for each said node in each said path, at least one of the following:

15 at least one arrival time (AT) of an input signal,
at least one required arrival time (RAT) for said input signal,
an at least one slack value for said input signal, wherein each said slack
value is a difference between said at least one RAT and said at least one AT.

0
10
20
30
40
50
60
70
80
90
100

15. A system containing a set of instructions for performing K-fault tolerant static timing analysis for a network composed of at least one path, each said path including at least two nodes, said instructions comprising:

generating a composite timing graph representing $K + 1$ copies of an original timing graph, wherein said original timing graph represents a timing graph of said network with zero defects and K is a predetermined maximum number of defects present on any of said at least one path; and

5 performing a static timing analysis on said composite timing graph by calculating, for each said node in each said path, at least one of the following:

at least one arrival time (AT) of an input signal,

at least one required arrival time (RAT) for said input signal,

an at least one slack value for said input signal, wherein each said slack value is a difference between said at least one RAT and said at least one AT.

16. A system for performing K-fault tolerant static timing analysis for a

15 network composed of at least one path, each said path including at least two nodes, said system comprising:

means for generating a composite timing graph representing $K + 1$ copies of an original timing graph, wherein said original timing graph represents a timing graph of said network with zero defects and K is a predetermined maximum number of defects present on any of said at least one path; and

20 BUR920000137US1

means for performing a static timing analysis on said composite timing graph by calculating, for each said node in each said path, at least one of the following:

- at least one arrival time (AT) of an input signal,
- 5 at least one required arrival time (RAT) for said input signal,
- an at least one slack value for said input signal, wherein each said slack value is a difference between said at least one RAT and said at least one AT.

17. An apparatus for performing K-fault tolerant static timing analysis for a network composed of at least one path, each said path including at least two nodes, said apparatus comprising:

- a control unit; and
- a memory unit, wherein

said control unit generates in said memory unit a composite timing graph representing $K + 1$ copies of an original timing graph, said original timing graph represents a timing graph of said network with zero defects and K is a predetermined maximum number of defects present on any of said at least one path; and said control unit further performs a static timing analysis on said composite timing graph by calculating, for each said node in each said path, at least one of the following:

- 20 at least one arrival time (AT) of an input signal,
- BUR920000137US1

at least one required arrival time (RAT) for said input signal, and
an at least one slack value for said input signal, wherein each said
slack value is a difference between said at least one RAT and said at least one AT.

18. A method for performing a delay tolerance static timing analysis for
infrequently occurring coupling delays between adjacent
simultaneously-transitioning conductors in an electronic network composed of at
least one path, said method comprising:

generating a composite timing graph comprising $K + 1$ copies of an
original timing graph, wherein said original timing graph represents a timing
graph of said network with zero coupling delays and K is a predetermined
maximum number of coupling delays present on any of said at least one path; and
performing a static timing analysis on said composite timing graph.

19. A method for performing a delay tolerance static timing analysis for circuit
element delay variations having a bimodal distribution in an electronic network
composed of at least one path, said method comprising:

5

generating a composite timing graph comprising $K + 1$ copies of an original timing graph, wherein said original timing graph represents a timing graph of said network with delays from a first mode of said bimodal delay distribution and K is a predetermined maximum number of delays from a second mode of said bimodal delay distribution present on any of said at least one path; and .
performing a static timing analysis on said composite timing graph.

performing a static timing analysis on said composite timing graph.

0
卷之三

20. The method of claim 9 where said original timing graph includes at least one test edge between a pair of nodes, and where a copy of said test edge is inserted between said endpoints of the said test edge in all pairs copy_i and copy_j of said original timing graph such that $i + j = K$.
21. The method of claim 20 where a defect test edge representing the behavior of the circuit in the presence of a first type of defect on said test edge, is inserted between said endpoints of the said test edge in all pairs copy_r and copy_s of said original timing graph such that $r + s + 1 = K$.

22. The method of claim 9 where a second type of defect edge is inserted
between said source node of E in copy_i of said timing graph to said sink node of E
in copy_{i+v} of the said composite timing graph, for all values of i such that 0 <= i
5 <= K - v and v > 1, said second type of defect edge representing the behavior of
the circuit in the presence of a second type of defect on edge E, said second type
of defect being of lower probability than said first type of defect, and
for each said node, calculating at least one parameter.

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BUR920000137US1