Listing of Claims

This listing of claims replaces all prior versions and listings of claims in the application:

 (Previously Presented) A method comprising: sending a data packet along a path from a first network point to a second network point;

along the path, generating fragment packets from the data packet; $% \left\{ \frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right)$

analyzing the size of at least one of the fragment packets relative to a maximum packet size; and

depending on a result of the analysis, re-setting the maximum packet size based on the size of the at least one of the fragment packets.

- (Previously Presented) The method of claim 1 also including re-setting the maximum packet size to equal the size of one of the fragment packets.
- 3. (Previously Presented) The method of claim 1 also including communicating the reset maximum packet size to the first network point.

Attorney's Docket No.:10559-502001/P11794 Intel Corporation

- 4. (Previously Presented) The method of claim 1 also including communicating the reset maximum packet size from the second network point.
- 5. (Previously Presented) The method of claim 3 also including refraining from communicating the reset maximum packet size unless the maximum packet size of the path has changed.
- 6. (Original) The method of claim 1 also including storing the maximum packet size.
- 7. (Original) The method of claim 1 also including refraining from changing the maximum packet size if the fragment analyzed comprises the final fragment of the data packet.
- 8. (Original) The method of claim 1 in which the data packet that is sent along the path is of the largest size allowed by the network technology at the first point.
- 9. (Original) The method of claim 8 also including periodically repeating the sending, generating, analyzing, and resetting.

3

10. (Previously Presented) A method comprising:

determining, at a receiving point, a size of a data packet transmitted over a network path from a sending point to the receiving point; and

resetting a maximum data packet size of the network path from the sending point to the receiving point based on a the determined size of the data packet transmitted over the network path.

- 11. (Original) The method of claim 10 also including communicating the maximum data packet size to the sending point.
- 12. (Original) The method of claim 11 also including sending a message of the size of the maximum data packet size from the sending point to the receiving point.
- 13. (Original) The method of claim 10, in which the determining of the maximum packet size includes:

storing a predetermined maximum packet size;
sending a data packet from the sending point to the receiving point; and

comparing the size of the data packet to the predetermined maximum packet size.

- 14. (Original) The method of claim 13 also including, depending on the result of the comparison, re-setting the maximum packet size depending on the size of the data packet.
- 15. (Original) The method of claim 14 also including, depending on the result of the comparison, re-setting the maximum packet size equal to the size of the data packet.
- 16. (Original) The method of claim 10 also including reporting the maximum packet size to a sending point.
- 17. (Previously Presented) A method comprising:
 sending a data message along a network path from a
 sending point to a receiving point;

determining the size of at least a fragment of the data message at the receiving point; and

based on the determination, adjusting a maximum packet size between sending and receiving points.

18. (Original) The method of claim 17 also including: fragmenting the data message if its size exceeds a maximum packet size;

determining the size of the largest fragment; and optimizing communication based on the determination.

- 19. (Original) The method of claim 18, also including periodically sending a test data message.
- 20. (Original) The method of claim 19, in which the test message is larger than the maximum packet size.
- 21. (Previously Presented) A method for determining a maximum packet size of a network path, the method comprising: sending a data packet along the network path to a

receiving node;

receiving a response from the receiving node, the response including information determined based on a size of a fragment of the data packet, the fragment formed along the network path; and

setting the maximum packet size of the network path based on the response.

22. (Canceled)

- 23. (Original) The method of claim 21, also including fragmenting the packet into fragments.
- 24. (Original) The method of claim 21, also including comparing the size of a fragment to a predetermined maximum packet size.
- 25. (Original) The method of claim 21, also including sending the maximum packet size to a sending point on the network path.
- 26. (Original) The method of claim 25, also including generating packets at the sending point, the packets at least as small as the maximum packet size.
- 27. (Previously Presented) A method comprising: sending a data packet on a path from a first network point to a second network point;

along the path, generating fragment packets from the data packet; and

Attorney's Docket No.:10559-502001/P11794
Intel Corporation

analyzing a size of at least one of the fragment packets to determine a path maximum packet size.

- 28. (Original) The method of claim 27 also including comparing the size of the fragment to a predetermined maximum packet size.
- 29. (Original) The method of claim 28 also including resetting the predetermined maximum packet size to equal the size of the fragment.
- 30. (Original) The method of claim 27 also including, based on the comparison, choosing an optimal packet size for packets sending packets from the first to the second network points.
 - 31. (Canceled)
- 32. (Previously Presented) A method comprising: sending a data packet along a network path, the data packet being larger than the maximum packet size of the network path; fragmenting the packet into fragments; and

analyzing the size of one or more of the fragments to determine the maximum packet size of the path.

33. (Previously Presented) A method comprising:

sending a message along a network path, the path including sections, each of the sections having a maximum message size to limit the size of messages passing through it, the message being larger than the smallest maximum message size of the sections;

fragmenting the message into fragments, the fragments being at least as small as the smallest maximum message size;

at a receiving point, measuring the size of the largest fragment; and

communicating the size of the largest fragment to a sending point.

34. (Canceled)

35. (Previously Presented) The method of claim 33 also including comparing the size of the largest fragment to a predetermined maximum message size.

36. (Previously Presented) A computer program embodied in a computer readable medium, the program capable of configuring a computer to:

send a data packet along a path from a first network point
to a second network point;

along the path, generate fragment packets from the data packet;

analyze the size of at least one of the fragment packets; and

depending on a result of the analysis, re-set a maximum packet size based on the size of the one of the fragment packets.

- 37. (Original) The program of claim 36, also capable of configuring a computer to communicate the new maximum packet size to the first network point.
- 38. (Currently Amended) A computer program Machine logic tangibly embodied in a carrier wave hardware, the program capable of configuring a computer to performing operations, the operations comprising:

send sending a data packet along a path from a first
network point to a second network point;

Attorney's Docket No.:10559-502001/P11794 Intel Corporation

along the path, generate generating fragment packets from the data packet;

 $\frac{\text{analyze}}{\text{analyzing}}$ the size of at least one of the fragment packets; and

depending on a result of the analysis, reset resetting a maximum packet size based on the size of the one of the fragment packets.

- 39. (Currently Amended) The program machine logic of claim 38, also eapable of wherein the operations further comprise configuring a computer to communicate the new maximum packet size to the first network point.
 - 40. (Canceled)