Problem Shrinkage

A point raised by Ledoit and Wolf (2003, 2004) is that the covariance matrix \sum is poorly estimated by its sample counterpart and can be greatly improved by their shrinkage estimators when p (number of assets) is not small in comparison with n (number of observations), which is often the case in portfolio management.

Question

A shrinkage method can be applied to covariance matrix estimation as well. Let X_1, \ldots, X_n be i.i.d. p-vector observations with unknown mean and covariance matrix Σ . Let's denote $X = [X_1, \ldots, X_n] \in \mathbb{R}^{p \times n}$. The sample covariance matrix reads as

$$S = \frac{1}{n} X \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}} \right) X^{\mathsf{T}},$$

where 1 is the *n*-vector of all ones. We will assume that the systematic movement of X_i can be explained by a *q*-factor model:

$$X_i = \beta f_i + \varepsilon_i$$

where $\beta \in \mathbb{R}^{p \times q}$ are constant loadings, $\{f_i\}$ are q-factors and $\{\varepsilon_i\}$ are idiosyncratic errors with mean 0 and variance σ^2 . Furthermore, we assume the factors are uncorrelated to each other with

variance 1. The factors and idiosyncratic errors are also uncorrelated. The covariance matrix can also be written as

$$\Sigma = \beta \beta^{\top} + \sigma^2 I$$

We can perform PCA on S and select the q principle components with largest eigenvalues as $\hat{\beta}$ (scaled by the square root of eigenvalues), with the corresponding factor estimators $X^{\top}\hat{\beta}$. σ^2 can be estimated by the sample variance of the residuals after projecting X to the space orthonormal to $\hat{\beta}$. Let's define

$$F = \hat{\beta}\hat{\beta}^{\top} + \hat{\sigma}^2 I$$

We define the shrinkage estimator of Σ as

$$R(\alpha) = \alpha F + (1 - \alpha)S$$

and choose the optimal α^* by minimizing the Frobenius norm $||R(\alpha)||_F$.

Simulate by sampling X_i from $\mathcal{N}(0, I)$, with p = 200 and n = 400. The number of factors q = 3. Plot the eigenvalue distribution of S and $R(\alpha^*)$. What can you tell from the plots? Why is the shrinkage a better estimator of the covariance matrix than the sample covariance matrix?

My solution

```
import cvxpy as cp
In [2]:
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        from sklearn.decomposition import PCA
        # simulate X from normal dist. with size 200*400
        X = np.random.normal(0,1,(200,400))
        # number of factors is 3
        pca X 3 = PCA(3)
        # reference for PCA: https://towardsdatascience.com/pca-using-python-s
        cikit-learn-e653f8989e60
        princomp X 3 = pca X 3.fit transform(X)
        principalDf = pd.DataFrame(data = princomp X 3,
                     columns = ['PrincipalComp 1', 'PrincipalComp 2', 'Princip
        alComp 3'])
        # reference for projection: https://stackoverflow.com/questions/178368
        80/orthogonal-projection-with-numpy
        Proj = np.dot(np.linalg.inv(X.T.dot(X)), X.T)
        Proj = np.dot(X, Proj)
        # Generate estimator with the sample variance of the residuals
        # after projecting X to the space orthonormal to PCA loadings
        sigma square = np.var(X - Proj @ X)
        # S
        inner term = np.eye(400) - (1/400) * np.dot(np.ones(400), np.ones(400))
        S = (1/400) * np.dot(X, np.dot(inner term, X.T))
        # F
        beta hat = principalDf.to numpy()
        F = np.dot(beta hat, beta hat.T) + sigma square * np.eye(200)
        # Solve optimization problem
        alpha = cp.Variable()
        obj fn = cp.Minimize(cp.norm(alpha * F + (1 - alpha) * S, "fro"))
        problem = cp.Problem(obj fn)
        problem.solve()
        S eval = np.linalg.eigvals(S)
        R eval = np.linalg.eigvals(alpha.value * F + (1 - alpha.value) * S)
        plt.plot(R eval, label="$\lambda$'s of R", color='green', linewidth=2.0
        plt.plot(S eval, label="$\lambda$'s of S", color='red',linewidth=3.0)
        plt.axis([0,200,0,3])
        plt.legend()
        plt.show()
```


In []: