Projecte de Recerca

Ciències

L'aprenentatge de tres disciplines científiques fonamentals: física, matemàtiques i tecnologia. Mitjançant eines digitals i continguts dinàmics, es pretén oferir als usuaris un entorn didàctic i accessible que promogui la comprensió i l'interès per aquests àmbits.

Aquest document constitueix el marc teòric del projecte, recollint els fonaments conceptuals, les metodologies i els recursos que s'utilitzaran en el desenvolupament dels materials educatius. S'hi inclouran tant les bases teòriques com les aplicacions pràctiques, amb la finalitat de garantir un enfocament integral i rigorós.

Autors:

- Guillem Carreres Juanhuix
- Joan Alexandre Sanchez Segura
- Marc Giménez Vidal

- Índex:

Projecte de Recerca	1
física:	3
Cinemàtica:	3
Unitats (SI):	3
Moviment rectilini uniforme (MRU):	4
Moviment rectilini uniformement accelerat (MRUA):	5
Caiguda Iliure:	
Llançament vertical:	6
Moviment circular uniforme (MCU):	7
Dinàmica:	
Unitats (SI)	8
Lleis de Newton	
1a llei: llei d'inèrcia:	8
2a llei: llei de la força:	9
3a llei: llei d'acció reacció:	9

Física:

Cinemàtica:

La cinemàtica és la branca de la física que estudia el moviment dels cossos sense considerar les causes que el produeixen. Centrant-se en magnituds com la posició, la velocitat i l'acceleració, descriu trajectòries mitjançant models matemàtics.

Unitats (SI):

```
- Posició (x ):
```

- Metres (m)
- Desplaçament ($\Delta x = x_1 x_0$)
 - Temps (t):
- Segons (s)
- Temps transcorregut ($\Delta t = t_1 t_0$)
 - Velocitat (v):
- Metres pes segon $(\frac{m}{s})$
- Canvi de velocitat ($\Delta v = v_1 v_0$)
 - Acceleració (a):
 - Metres per segon al quadrat $(\frac{m}{s^2})$
 - Gravetat ($g = 9.8 \frac{m}{s^2}$)
 - Canvi d'acceleració ($\Delta a = a_1 a_0$)
 - Angle recorregut pel mòbil (θ):
 - Angle (X°)
 - Angle recorregut ($\Delta \theta = X_1^{\circ} X_0^{\circ}$)
 - Velocitat Angular (ω):
 - Angles per segon $(\frac{X^2}{s})$

Moviment rectilini uniforme (MRU):

- Velocitat:

$$v = \frac{\Delta x}{\Delta t}$$

- Posició:

$$x = x_0 + v \cdot \Delta t$$

Moviment rectilini uniformement accelerat (MRUA):

- Acceleració:

- Posició:

$$x = x_0 + v_0 \cdot \Delta t + \frac{1}{2} \cdot a \cdot \Delta t^2$$

Caiguda Iliure:

- Gravetat (*g*) = $9.8 \frac{m}{s^2}$
- Velocitat:

$$v = v_0 + g \cdot \Delta t$$

- Posició vertical (y):

$$y = y_0 + \frac{1}{2} \cdot (-g) \cdot \Delta t^2$$

Llançament vertical:

- Velocitat de llançament ($v_0 = X \frac{m}{s}$)

- Velocitat, temps i posició:
 - Quan y és el màxim (y. max):

$$y_0 = 0m$$

$$v_0 = 2\frac{m}{s}$$

$$v = 0$$

$$g = \frac{\Delta v}{\Delta t} \to -9.8 = \frac{0 \frac{m}{s} - 2 \frac{m}{s}}{\Delta t} \to -9.8 \cdot \Delta t = -2 \frac{m}{s} \to \Delta t$$

$$= \frac{-2 \frac{m}{s}}{-9.8 \frac{m}{s^2}} \cong 0.2s$$

$$y = y_0 + v_0 \cdot \Delta t + \frac{1}{2} \cdot (-g) \cdot \Delta t^2$$

$$y = 0m + 2 \frac{m}{s} \cdot 0.2s + \frac{1}{2} \cdot (-9.8 \frac{m}{s^2}) \cdot (0.2s)^2 \to y$$

$$= 0.4 - 0.2 = 0.2m \cong 0.204081m$$

- Quan y és 0 (y_1) :

$$y = y_0 + v_0 \cdot \Delta t + \frac{1}{2} \cdot (-g) \cdot \Delta t^2$$

$$0 = 0 + 2 \cdot \Delta t + \frac{1}{2} \cdot (-9.8) \cdot \Delta t^2 \rightarrow 0 = -4.9\Delta t^2 + 2\Delta t$$

$$0 = a \cdot \Delta t^2 + b \cdot \Delta t + c \rightarrow \Delta t = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

Moviment circular uniforme (MCU):

- Velocitat angular:

$$\omega = \frac{\Delta \theta}{\Delta t}$$

- Angle recorregut:

$$\theta = \theta_0 + \omega \cdot \Delta t$$

Dinàmica:

Unitats (SI)

Magnitud	Unitat
Força (F)	Newtons (N)
Força de fregament (F_f)	Newtons (N)
Coeficient de fricció (µ)	-
Pes (p)	Newtons (N)
Normal (N)	Newtons (N)
Força elàstica (F_x)	Newtons per metre $\left(\frac{N}{m}\right)$
Pressió (P)	Pascals (Pa)
Pressió hidroestàtica (P_h)	Pascals (Pa)
Vecor bidimensional (V)	(x, y)
Mòdul del vector ($ V $)	-

Lleis de Newton

1a llei: llei d'inèrcia:

Un cos roman en repòs o moviment uniforme excepte si s'aplica una força sobre ell.

$$F_1 + F_2 + F_3 + \dots = 0$$

2a llei: llei de la força:

Un cos accelera (canvia el seu estat del moviment) si sobre s'hi aplica una o més forces

$$\sum F = m \cdot a$$

3a llei: llei d'acció reacció:

Per cada acció hi ha una reacció igual i de signe contrari.

$$F_{LT} = -F_{TL}$$

