Übungstest Analysis 1 18. 12. 2009

1 (5P): Untersuchen Sie die Reihe

$$\sum_{n=2}^{\infty} \frac{2^n}{\sqrt{n!} - \sqrt{(n-1)!}}$$

auf Konvergenz.

2 (5P): Bestimmen Sei die Häufungspunkte der Folge

$$a_n = i^n \left(1 + \frac{1}{2^n} \right)$$

in C. (Begründung!)

Lsg: 1: Quotientenkriterium:

$$\frac{a_{n+1}}{a_n} = \frac{\frac{2^{n+1}}{\sqrt{(n+1)!} - \sqrt{n!}}}{\frac{2^n}{\sqrt{n!} - \sqrt{(n-1)!}}} = 2\frac{\sqrt{n}\sqrt{(n-1)!} - \sqrt{(n-1)!}}{\sqrt{n+1}\sqrt{n!} - \sqrt{n!}}$$
$$= 2\frac{\sqrt{(n-1)!}(\sqrt{n}-1)}{\sqrt{(n-1)!}\sqrt{n}(\sqrt{n+1}-1)} = \frac{2}{\sqrt{n}}\frac{\sqrt{n-1}}{\sqrt{n+1}-1}$$

Wegen der monotonie der Wurzelfunktion gilt $\sqrt{n} - 1 < \sqrt{n+1} - 1$, also $\frac{\sqrt{n}-1}{\sqrt{n+1}-1} < 1$ und damit $0 \le \frac{a_{n+1}}{a_n} \le \frac{2}{\sqrt{n}}$ und $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 0$. Mit dem Quotientenkriterium (3.8.2) folgt dass die Reihe absolut konvergiert und damit konvergiert.

2: Wegen $i^4 = 1$ gilt $a_{4k+l} = i^l \left(1 + \frac{1}{2^{4k+l}}\right)$. Wegen $2^{4k} \to_{k \to \infty} \infty$ folgt $\lim_{k \to \infty} a_{4k+l} = i^l$. Also gibt es Teilfolgen von (a_n) die gegen $i^l, l \in \{0, 1, 2, 3\}$ konvergieren. 1, i, -1, -i sind also Häufungspunkte der Folge.

Ist $(a_{n(i)})_{i\in\mathbb{N}}$ eine beliebige konvergente Teilfolge von (a_n) , so sind für mindestens ein $l \in \{0,1,2,3\}$ unendlich viele Folgenglieder von $(a_{n(i)})$ in der Teilfolge $(a_{4k+l})_{k\in\mathbb{N}}$ enthalten. Diese konvergiert aber gegen i^l , $(a_{n(i)})$ enthält also eine Teilfolge die gegen i^l konvergiert. Jede Teilfolge einer konvergenten Folge konvergiert aber gegen denselben Grenzwert wie die Folge, also konvergiert auch $(a_{n(i)})$ gegen i^l , für ein $l \in \{0,1,2,3\}$. Es gibt also keine weiteren Häufungspunkte.