## Space-efficient perfect hash

Consider the two-level perfect hash tables presented in [CLRS] and discussed in class. As already discussed, for a given set of n keys from the universe U, a random universal hash function  $h:U\to[m]$  is employed where m=n, thus creating n buckets of size  $n_j\geq 0$ , where  $\sum_{j=0}^{n-1}nj=n$ . Each bucket j uses a random universal hash function  $h_j:U\to[m]$  with  $m=n_j^2$ . Key x is thus stored in position  $h_j(x)$  of the table for bucket j, where j=h(x). This problem asks to replace each such table by a bitvector of length  $n=n_j^2$ , initialized to all 0s, where key x is discarded and, in its place, a bit 1 is set in position  $h_j(x)$  (a similar thing was proposed in Problem 4 and thus we can have a one-side error). Design a space-efficient implementation of this variation of perfect hash, using a couple of tips. First, it can be convenient to represent the value of the table size in unary (i.e., x zeroes followed by one for size x, so 000001 represents x=5 and 1 represents x=0). Second, it can be useful to employ a rank-select data structure that, given any bit vector B of b bits, uses additional o(b) bits to support in O(1) time the following operations on B:

- $rank_1(i)$ : return the number of 1s appearing in the first i bits of B.
- $select_1(j)$ : return the position i of the jth 1, if any, appearing in B (i.e. B[i] = 1 and  $rank_1(i) = j$ ).

Operations  $rank_0(i)$  and  $select_0(j)$  can be defined in the same way as above. Also, note that o(b) stands for any asymptotic cost that is smaller than  $\Theta(b)$  for  $b \to \inf$ .

## **SOLUTION**