Subspace Frank-Wolfe Optimization

Akanksha Makkar 160062 Mohammad Areeb 160403

Mentor- Prof. Ketan Rajawat

Optimization for Big Data (EE698U)

Contents

1	Abst	Abstract		
2	Motivation			
	2.1	Intuition	3	
3	Introduction			
	3.1	Related Work	4	
		3.1.1 Subspace Descent Schemes	4	
		3.1.2 Sketched Gradient Descent	4	
		3.1.3 Co-ordinate Descent Schemes	4	
4	Problem Formulation:			
	4.1	Assumptions:	5	
5	Prop	oosed Algorithm:	5	
	5.1	Original Frank-Wolfe Algorithm in d-dimensional space	5	
	5.2	Subspace Frank-Wolfe	5	
6	Proc	of of Convergence for subspace Frank-Wolfe:	6	
7	Exp	erimental Results	7	
	7.1	Haar Matrix (\mathbf{P}_t) Construction:	7	
	7.2	.2 Comparison of Subspace Frank-Wolfe and Subspace Gradient Descent for box constraints		
		7.2.1 Implementation	7 7	
		7.2.2 Result	8	
	7.3	Comparison of Subspace Frank-Wolfe and Subspace Gradient Descent for L-1 norm	U	
	7.5	ball constraint	8	
		7.3.1 Implementation	8	
		7.3.2 Result	8	
	7.4	Comparison of Subspace Frank-Wolfe and SEGA for L-1 norm ball constraint	11	
		7.4.1 Implementation	11	
		7.4.2 Result	12	
	7.5	Comparison of Subspace Frank-Wolfe and Co-ordinate Descent for L-1 norm ball constraint	13	
		7.5.1 Implementation	13	
		7.5.2 Result	13	
8	Con	clusion	14	

1 Abstract

We present a stochastic descent algorithm that applies to constrained optimization and is particularly efficient when the objective function is slow to evaluate and gradients are not easily obtained, as in some PDE-constrained optimization and machine learning problems. The basic algorithm projects the gradient onto a random subspace at each iteration, similar to coordinate descent but without restricting directional derivatives to be along the axes and apply Frank-Wolfe using that gradient direction. We provide proofs of convergence under convexity assumption and show favorable results when compared to subspace gradient descent on different constraints.

2 Motivation

In some cases of optimizing a strongly convex function on a constrained set χ , Frank-Wolfe works faster than corresponding Projected Gradient Descent, e.g. when Projection involves a "Bisection" step, etc. In these cases, if we are given $\mathbf{P}^{\top}\nabla f(\mathbf{x})$ instead of $\nabla f(\mathbf{x})$ as the oracle, we can use below provided Subspace version of Frank-Wolfe to reach the optimum.

In such cases, if \mathbf{P} is a $d \times 2$ matrix, then the subspace is 2 dimensional, and we have to do Frank-Wolfe in 2-D, which can be quite easy.

2.1 Intuition

In Frank-Wolfe Algorithm, we have $\mathbf{y}_t = \arg\min_{\mathbf{y} \in \chi} \langle \nabla f(\mathbf{x}_t), \mathbf{y} \rangle$ Here, we are trying to do the same operation in a projected sub-space, i.e.

$$\mathbf{u}_t = \arg\min_{\mathbf{u} \in \mathbf{P}_t^{\top} Y} \langle \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t), \mathbf{u} \rangle$$

where $\mathbf{u}_t = \mathbf{P}_t^{\top} \mathbf{v}_t$ for some $\mathbf{v}_t \in \chi$

$$\begin{aligned} \mathbf{u}_t &= \underset{\mathbf{v} \in \mathbf{P}_t^{\top} \chi}{\min} \langle \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t), \mathbf{u} \rangle \\ &= \mathbf{P}_t^{\top} \left(\underset{\mathbf{v} \in \chi}{\arg\min} \langle \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t), \mathbf{P}_t^{\top} \mathbf{v} \rangle \right) \\ &= \mathbf{P}_t^{\top} \left(\underset{\mathbf{v} \in \chi}{\arg\min} \left(\nabla f(\mathbf{x}_t)^{\top} \mathbf{P}_t \mathbf{P}_t^{\top} \mathbf{v} \right) \right) \\ &= \mathbf{P}_t^{\top} \left(\underset{\mathbf{v} \in \chi}{\arg\min} \langle \mathbf{P}_t \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t), \mathbf{v} \rangle \right) \end{aligned}$$

$$\Rightarrow \mathbf{v}_t = \operatorname{arg\,min}_{\mathbf{v} \in \chi} \langle \mathbf{P}_t \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t), \mathbf{v} \rangle$$

 \therefore \mathbf{v}_t is the direction that minimizes inner product with $\mathbf{P}_t \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t)$ and $\mathbb{E}\left[\mathbf{P}_t \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t)\right] = \nabla f(\mathbf{x}_t)$

Hence, \mathbf{u}_t is the descent direction in the sub-space, and \mathbf{y}_t is a good estimator of descent direction in original space.

This gives our update equation as $\mathbf{y}_t = \mathbf{P}_t \mathbf{u}_t$, and we use this \mathbf{y}_t for the Frank-Wolfe update in original space i.e. $\mathbf{x}_{t+1} = (1 - \alpha_t)\mathbf{x}_t + \alpha_t\mathbf{y}_t$

3 Introduction

We consider optimization problems of the form

$$\min_{\mathbf{x} \in \chi} f(\mathbf{x}) \quad \text{or} \quad \underset{\mathbf{x} \in \chi}{\operatorname{arg} \min} f(\mathbf{x}) \tag{1}$$

where $f:\mathbb{R}^d\to\mathbb{R}$ has a \mathcal{L} -Lipschitz derivative. We also consider additional restriction of convexity of f and compactness of set χ . In the most basic form discussed in Section 2.1, we project the gradient onto a random ℓ -dimensional subspace (χ_2) and descend along that subspace as in Frank-Wolfe. We use the following iteration scheme.

- 1. Find a vector v_t in χ_2 that minimizes its inner product with g_t (gradient in the subspace)
- 2. Project that vector into original d-dimensional space
- 3. Use the projected vector for Frank-Wolfe iteration in original d-dimensional space

3.1 Related Work

3.1.1 Subspace Descent Schemes

The simplest subspace algorithm uses the following scheme:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{P}_k \mathbf{P}_k^{\top} \nabla f(\mathbf{x}_k)$$

where matrix P_k has properties defined in section 4.1

This algorithm has convergence properties consistent with gradient descent.

Here, we note that $\mathbb{E}[\mathbf{P}_k \mathbf{P}_k^{\top} \nabla f(\mathbf{x}_k)] = \nabla f(\mathbf{x}_k)$, hence the iterate uses an unbiased estimator of the gradient.

3.1.2 Sketched Gradient Descent

SEGA is a randomized first order optimization method which, in each iteration, updates the current estimate of the gradient through a sketch-and-project operation using the information provided by the latest sketch, and subsequently uses it to compute an unbiased estimate of the true gradient through a random relaxation procedure. the gradient.

$$\mathbf{h}_{k+1} = \arg\min \|\mathbf{h} - \mathbf{h}_k\|_2^2$$
 subject to $\mathbf{P}_k^{\top} \mathbf{h}_{k+1} = \mathbf{P}_k^{\top} \nabla f(\mathbf{x}_k)$

3.1.3 Co-ordinate Descent Schemes

The simplest variant of subspace descent is a deterministic method that cycles over the co-ordinates.

This method is popular because many problems have structure that makes a co-ordinate update very cheap. Choosing the co-ordinates in an appropriate manner can lead to results on par with gradient descent.

They have the following iterate:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha e_i e_i^{\top} \nabla f(\mathbf{x}_k)$$

where e_i are standard basis vectors of \mathbb{R}^d and i is chosen randomly at each iterate.

4 Problem Formulation:

To minimize $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^d$ over the compact set χ , when given Oracle is $\mathbf{P}^\top \nabla f(\mathbf{x})$

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \chi} f(\mathbf{x})$$

4.1 Assumptions:

- (A1) The function $f(\mathbf{x})$ is \mathcal{L} -Smooth.
- (A2) The set χ is closed, convex.

Like subspace descent, given oracle is $\mathbf{P}^{\top} \nabla f(\mathbf{x})$.

 $\mathbf{P} \in \mathbb{R}^{d \times l}$ for some $\ell \ll d$ is a random matrix which maps the gradient to an ℓ -dimensional subspace.

It has the following properties:-

- (A3) $\mathbb{E}\left[\mathbf{P}\mathbf{P}^{\top}\right] = \mathbf{I}_d$
- $(A4) \quad \mathbf{P}^{\top}\mathbf{P} = \left(\frac{d}{l}\right)\mathbf{I}_{l}$

5 Proposed Algorithm:

5.1 Original Frank-Wolfe Algorithm in d-dimensional space

1.
$$\mathbf{y}_t = \arg\min_{\mathbf{y} \in \chi} \langle \nabla f(\mathbf{x}_t), \mathbf{y} \rangle$$

2.
$$\mathbf{x}_{t+1} = (1 - \alpha_t)\mathbf{x}_t + \alpha_t\mathbf{y}_t$$

5.2 Subspace Frank-Wolfe

Now, we have a constrained subset $\chi_2 = \{ \mathbf{v} | \mathbf{v} = \mathbf{P}^\top \mathbf{x}; \mathbf{x} \in \chi \}$

1.
$$\mathbf{u}_t = \arg\min_{\mathbf{u} \in \chi_2} \langle \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t), \mathbf{u} \rangle$$

2.
$$\mathbf{y}_t = \mathbf{P}_t \mathbf{u}_t$$

3.
$$\mathbf{x}_{t+1} = (1 - \alpha_t)\mathbf{x}_t + \alpha_t\mathbf{y}_t$$

Step 1:

Find a vector $\mathbf{u}_t \in \chi_2$ which minimizes value of inner product with $\mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t)$.

This is analogous to finding a y_t from Step 1 of original Frank-Wolfe, which minimizes inner product with entire d-dimensional gradient $\nabla f(\mathbf{x})$, only in a ℓ -dimensional subspace.

Step 2:

Project the above found \mathbf{u}_t into the original space to get \mathbf{y}_t

Step 3:

Perform the known Frank-Wolfe update in the original space using above found y_t .

6 Proof of Convergence for subspace Frank-Wolfe:

Define the diameter of convex set χ as \mathcal{D} i.e.

$$\|\mathbf{x} - \mathbf{y}\| \le \mathcal{D}, \quad \forall \quad \mathbf{x}, \mathbf{y} \in \chi$$

Also, Frank-Wolfe update gives $\mathbf{x}_{t+1} - \mathbf{x}_t = \eta_t(\mathbf{y}_t - \mathbf{x}_t)$

We begin by using the Q.U.B property to obtain

$$\begin{split} f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) &\leq \langle \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \frac{L}{2} \| \mathbf{x}_{t+1} - \mathbf{x}_t \|^2 \\ &\leq \langle \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \frac{L}{2} \eta_t^2 \mathcal{D}^2 \\ &= \eta_t \langle \nabla f(\mathbf{x}_t), \mathbf{y}_t - \mathbf{x}_t \rangle + \frac{L}{2} \eta_t^2 \mathcal{D}^2 \\ &= \eta_t \langle \nabla f(\mathbf{x}_t), \mathbf{P}_t \mathbf{u}_t - \mathbf{x}_t \rangle + \frac{L}{2} \eta_t^2 \mathcal{D}^2 \quad \text{(same } \mathbf{u}_t \text{ as mentioned in Intuition)} \end{split}$$

Here,
$$\mathbf{u}_t = \underset{\mathbf{u} \in \chi_2}{\operatorname{arg\,min}} \langle \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t), \mathbf{u} \rangle = \underset{\mathbf{u} \in \chi_2}{\operatorname{arg\,min}} \langle \nabla f(\mathbf{x}_t), \mathbf{P}_t \mathbf{u} \rangle$$

$$\therefore \langle \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t), \mathbf{u}_t \rangle \leq \langle \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t), \mathbf{P}_t^{\top} \mathbf{x}^* \rangle \Rightarrow \langle \nabla f(\mathbf{x}_t), \mathbf{P}_t \mathbf{u}_t \rangle \leq \langle \nabla f(\mathbf{x}_t), \mathbf{P}_t \mathbf{P}_t^{\top} \mathbf{x}^* \rangle$$

$$\therefore f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) \le \eta_t \langle \nabla f(\mathbf{x}_t), \mathbf{P}_t \mathbf{P}_t^\top \mathbf{x}^* - \mathbf{x}_t \rangle + \frac{L}{2} \eta_t^2 \mathcal{D}^2$$

$$\begin{split} \therefore \mathbb{E}\left[f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t)\right] &\leq \eta_t \mathbb{E}\left[\langle \nabla f(\mathbf{x}_t), \mathbf{P}_t \mathbf{P}_t^\top \mathbf{x}^* - \mathbf{x}_t \rangle\right] + \frac{L}{2} \eta_t^2 \mathcal{D}^2 \\ &= \eta_t \langle \nabla f(\mathbf{x}_t), \mathbb{E}\left[\mathbf{P}_t \mathbf{P}_t^\top\right] \mathbf{x}^* - \mathbf{x}_t \rangle + \frac{L}{2} \eta_t^2 \mathcal{D}^2 \\ &= \eta_t \langle \nabla f(\mathbf{x}_t), \mathbf{x}^* - \mathbf{x}_t \rangle + \frac{L}{2} \eta_t^2 \mathcal{D}^2 \\ &\leq \eta_t (f(\mathbf{x}^*) - f(\mathbf{x}_t)) + \frac{L}{2} \eta_t^2 \mathcal{D}^2 \quad \text{(using convexity of } f(\mathbf{x})) \end{split}$$

$$\therefore \mathbb{E}\left[f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*)\right] \le (1 - \eta_t) \left[f(\mathbf{x}_t) - f(\mathbf{x}^*)\right] + \frac{L}{2} \eta_t^2 \mathcal{D}^2$$

Define $\delta_t = \mathbb{E}\left[f(\mathbf{x}_t) - f(\mathbf{x}^*)\right]$

 \therefore We have the recursive relation $\delta_{t+1} \leq (1 - \eta_t)\delta_t + \frac{L}{2}\eta_t^2\mathcal{D}^2$

Rest of the proof is same as for original Frank-Wolfe algorithm. Using Induction, we prove:

$$\delta_t = \mathbb{E}\left[f(\mathbf{x}_t) - f(\mathbf{x}^*)\right] \le \frac{2L\mathcal{D}^2}{t+2}$$

$$\therefore \delta_T = \mathbb{E}\left[f(\mathbf{x}_T) - f(\mathbf{x}^*)\right] \le \frac{2L\mathcal{D}^2}{T+2}$$

Hence, the algorithm converges in $\mathcal{T} = \mathcal{O}\left(\frac{1}{\epsilon}\right)$ iterations.

7 Experimental Results

7.1 Haar Matrix (P_t) Construction:

We use the pseudo-code provided in following algorithm to draw from a scaled Haar-distributed Matrix

Algorithm 1: Generate a scaled, Haar distributed matrix as in 3.1.1

```
Input: \ell, d
Output: P matrix satisfying A3 and A4 of 4.1 Initialize X \in \mathbb{R}^{d \times l}
Set X_{i,j} \sim \mathcal{N}(0,1)
Calculate thin QR decomposition of X = QR
\mathbf{Let} \ \Lambda = \begin{bmatrix} \frac{R_{1,1}}{|R_{1,1}|} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \frac{R_{\ell,\ell}}{|R_{\ell,\ell}|} \end{bmatrix}
\mathbf{P} = \sqrt{\frac{d}{\ell}} \mathbf{Q} \mathbf{A}
```

7.2 Comparison of Subspace Frank-Wolfe and Subspace Gradient Descent for box constraints

We compared Convergence Rates of Subspace Gradient Descent and Subspace Frank-Wolfe in cases of very high dimensional data.

We tried to optimize the function $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$ over the set $\chi = \text{Box}(l_1, l_2), l_1, l_2 \in \mathbb{R}^d$, and compare the convergence of Sub-space Gradient descent and Sub-space Frank-Wolfe Descent. We solved for $\chi = \text{Box}[-3, 3], \epsilon = 10^{-3}, \quad \text{d=}10000, \text{l=}10.$

7.2.1 Implementation

The Frank-Wolfe version is applied as follows:

Algorithm 2: Subspace Frank-Wolfe with box constraints

```
 \begin{aligned} &\textbf{while} \ \|\mathbf{x}_{t+1} - \mathbf{x}_t\| \geq \epsilon \\ &\textbf{do} \\ &\textbf{1}. \text{generate scaled Haar distributed matrix } \mathbf{P}_t \text{ using algorithm given in Paper 7.1} \\ &2. \text{get } \mathbf{P}_t^\top \nabla f(\mathbf{x}_t) \\ &3. \text{for each } i \in [d] \\ &\textbf{if } sign \big[ \mathbf{P}_t^\top \nabla f(\mathbf{x}_t) \big]_i = 1 \textbf{ then} \\ & | \mathbf{u}_i^t = l_1 \\ &\textbf{else} \\ & | \mathbf{u}_i^t = l_2 \\ &\textbf{end} \\ &3. \mathbf{y}_t = \mathbf{P}_t \mathbf{u}_t \\ &4. \mathbf{x}_{t+1} = (1 - \eta_t) \mathbf{x}_t + \eta_t \mathbf{y}_t \end{aligned}
```

7.2.2 Result

Even for constraints involving simple projections like this one, Subspace Frank-Wolfe performs equivalent (maybe even better for some cases) to Subspace Gradient Descent.

7.3 Comparison of Subspace Frank-Wolfe and Subspace Gradient Descent for L-1 norm ball constraint

We compared Convergence Rates of Subspace Gradient Descent and Subspace Frank-Wolfe in cases of very high dimensional data.

We tried to optimize the function $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$ over the set $\chi = \{\mathbf{x} \mid \|\mathbf{x}\|_1 \le \alpha, \mathbf{x} \in \mathbb{R}^d \}$, and compare the convergence of Sub-space Gradient descent and Sub-space Frank-Wolfe Descent. We solved for $\alpha = 1$, $\epsilon = 10^{-5}$, d=10000, l=10.

7.3.1 Implementation

The Frank-Wolfe version is applied as follows:

- 1. Generate scaled Haar distributed matrix P_t at each iteration using the algorithm mentioned in Section 7.1
- 2. Get $\mathbf{g}_t = \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t)$
- 3. Find the coordinate $i \in [d]$ for which $|[g_t]_i|$ is maximum
- 4. Get unit vector $\mathbf{u}_t = -sign\{[\mathbf{g}_t]_i\}\mathbf{e}_i$, where \mathbf{e}_i is a standard basis vector of \mathbb{R}^l
- 5. Get $\mathbf{y}_t = \mathbf{P}_t \mathbf{u}_t$
- 6. $\mathbf{x}_{t+1} = (1 \eta_t)\mathbf{x}_t + \eta_t\mathbf{y}_t$
- 7. Repeat till convergence

Algorithm 3: Subspace Frank-Wolfe with L-1 norm constraint

```
while \|\mathbf{x}_{t+1} - \mathbf{x}_t\| \ge \epsilon

do

1. generate scaled Haar distributed matrix \mathbf{P}_t using algorithm given in Paper 7.1

2. get \mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t)
3. \mathbf{i}_t = \arg\max|[\mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t)]_i|
4. \mathbf{u}_t = -sign\{[\mathbf{P}_t^{\top} \nabla f(\mathbf{x}_t)]_{i_t}\}\mathbf{e}_{i_t}
5. \mathbf{y}_t = \mathbf{P}_t\mathbf{u}_t
6. \mathbf{x}_{t+1} = (1 - \eta_t)\mathbf{x}_t + \eta_t\mathbf{y}_t
end
```

7.3.2 Result

In this case, the Subspace Gradient Descent Algorithm involves projection onto L-1 norm ball, which involves a Bisection Step, rendering it slow as compared to Subspace Frank-Wolfe which has a simple projection free step for the update.

Figure 1: Subspace Gradient Descent v/s Subspace Frank-Wolfe with Box Constraints(Linear Scale)

Figure 2: Subspace Gradient Descent v/s Subspace Frank-Wolfe with Box Constraints(Semilog Scale)

 $\label{thm:constraints} \begin{tabular}{ll} Figure 3: Subspace Gradient Descent v/s Subspace Frank-Wolfe with L-1 Norm Ball Constraints(Linear Scale) \\ \end{tabular}$

Figure 4: Subspace Gradient Descent v/s Subspace Frank-Wolfe with L-1 Norm Ball Constraints(Semilog Scale)

7.4 Comparison of Subspace Frank-Wolfe and SEGA for L-1 norm ball constraint

We compared Convergence Rates of Subspace Franjk-Wolfe and SEGA (Sketched Gradient) for optimization under L-1 norm ball constraint.

We tried to optimize the function $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$ over the set $\chi = \{\mathbf{x} \mid \|\mathbf{x}\|_1 \le \alpha, \mathbf{x} \in \mathbb{R}^d \}$, We solved for $\alpha = 1$, $\epsilon = 10^{-4}$, d = 100, l = 3

7.4.1 Implementation

Subspace Frank-Wolfe updates are same as defined in Algorithm 3

SEGA tries to find $\mathbf{h}_{t+1} = \arg\min \|\mathbf{h} - \mathbf{h}_t\|_2^2$ subject to $\mathbf{P}^{\top}\mathbf{h}_{t+1} = \mathbf{P}^{\top}\nabla f(\mathbf{x})$ SEGA uses the following closed form update:

Algorithm 4: SEGA with L-1 norm constraint

Initialize
$$\mathbf{x}_0, h_0$$
 while $\|\mathbf{x}_{t+1} - \mathbf{x}_t\| \ge \epsilon$ do
$$\begin{vmatrix} 1. \ \mathbf{x}_{t+1} = \mathbb{P}_{\chi} \{\mathbf{x}_t - \alpha \mathbf{h}_t\} \\ 2. \ \mathbf{h}_{t+1} = (\mathbf{I} - \mathbb{Z}_t) \mathbf{h}_{\mathbf{t}} + \mathbb{Z}_t \nabla f(\mathbf{x}_t), \text{ where } \mathbb{Z}_t = \left(\frac{l}{d}\right) \mathbf{P}_t \mathbf{P}_t^\top$$
 end

7.4.2 ResultSEGA and Subspace Frank-Wolfe have similar convergence rate.

Figure 5: Subspace Frank-Wolfe v/s SEGA for L-1 norm Ball Constraint(Linear Scale)

Figure 6: Subspace Frank-Wolfe v/s SEGA for L-1 norm Ball Constraint(Semilog Scale)

7.5 Comparison of Subspace Frank-Wolfe and Co-ordinate Descent for L-1 norm ball constraint

We compared Convergence Rates of Subspace Frank-Wolfe and Co-ordinate Descent for optimization under L-1 norm ball constraint.

We tried to optimize the function $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$ over the set $\chi = \{\mathbf{x} \mid \|\mathbf{x}\|_1 \le \alpha, \mathbf{x} \in \mathbb{R}^d \}$, We solved for $\alpha = 10$, $\epsilon = 10^{-4}$, d=100, l=1 (to compare with co-ordinate descent)

7.5.1 Implementation

Subspace Frank-Wolfe updates are same as defined in Algorithm 3

Co-ordinate Descent chooses a random $i \in [d]$ and maximizes along that co-ordinate using the following algorithm

Algorithm 5: Co-ordinate Descent with L-1 norm constraint

```
Initialize \mathbf{y}_0 = \mathbf{x}_0 while \|\mathbf{x}_{t+1} - \mathbf{x}_t\| \ge \epsilon do  \begin{vmatrix} 1. \ \mathbf{y}_{t+1}^i = \mathbf{x}_t^i - \eta_t [\nabla f(\mathbf{x}_t]_i \\ 2. \ \mathbf{x}_{t+1} = \mathbb{P}_{\chi} \{\mathbf{y}_{t+1}\} \end{vmatrix} end
```

7.5.2 Result

Subspace Frank-Wolfe performs poorly as compared to Co-ordinate Descent.

Figure 7: Subspace Frank-Wolfe v/s Co-ordinate Descent with L-1 Norm Ball Constraint (linear scale)

8 Conclusion

We have proposed a randomized optimization algorithm that offers advantage in terms of time when given oracle is $\mathbf{P}^{\top}\nabla f(\mathbf{x})$. This algorithm has same iteration complexity as Subspace Gradient Descent.

Table 1: Iteration Complexities of Used Algorithms

Algorithm	Iteration Complexity
Sub-space Frank-Wolfe	$\mathcal{O}\left(\frac{1}{\epsilon}\right)$
Sub-space Gradient Descent	$\mathcal{O}\left(\frac{1}{\epsilon}\right)$
Sketched Gradient(SEGA)	$\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$
Co-ordinate Gradient Descent	$\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$

However, proposed algorithm works faster in terms of time as compared to Subspace Gradient Descent and SEGA, but is slower than Co-ordinate Gradient Descent.

Following plot shows the comparison of convergence in time of the above used algorithms on semilog scale.

Figure 8: Comparison of all used algorithms

References

- [1] David Kozak, Stephen Becker, Alizera Doostan, Luis Tenorio. Stochatic Subspace Descent
- [2] Filip Hanzely, Konstantin Mishchenko, Peter Richtarik. SEGA: Variance Reduction via Gradient Sketching*
- [3] Lijun Ding, Madeleine Udell. Frank-Wolfe Style Algorithms for Large Scale Optimization