DNA/RNA DYNAMICS REPORT

Becchi Tommaso

University of Bologna, Master Degree Course in Bioinformatics

1) Load raw data with minfi and create an object called RGset storing the RGChannelSet object

- suppressMessages(library(minfi))
- SampleSheet <- read.table("Samplesheet_report_2020.csv",sep=",",header=T)
- targets <- read.metharray.sheet(getwd())

Read.metharray.sheet reads an Illumina methylation sample sheet, containing pheno-data information for the samples in an experiment.

RGset <- read.metharray.exp(targets = targets)

Read.metharray.exp reads an entire methylation array experiment using a sample sheet or a target like data.frame.

save(RGset,file="RGset.RData")

```
class: RGChannelSet
dim: 622399 8
metadata(0):
assays(2): Green Red
```

rownames(622399): 10600313 10600322 ... 74810490 74810492

rowData names(0): colnames(8): 5775278051_R01C01 5775278051_R04C02 ... 5930514035_R04C02

5930514035_R06c02 colData names(7): Sample_Name Group ... Basename filenames

Annotation

> RGset

array: IlluminaHumanMethylation450k

annotation: ilmn12.hg19

2) Create the dataframes Red and Green to store the red and green fluorescences respectively

Red <- data.frame(getRed(RGset))</pre>

Gets the Red channel as a matrix.

Green <- data.frame(getGreen(RGset))

Gets the Green channel as a matrix.

These functions belong to RGChannelSet-Class which allows to represent raw data from a two colors micro array

> head(Red)

		X5775278051_R01C01	X5775278051_R04C02	X5775278078_R02C01	X5775278078_R05C01
	10600313	816	1055	603	647
	10600322	2269	2965	1840	2103
	10600328	1673	2500	1420	1588
	10600336	18318	21740	16924	17981
	10600345	4141	4575	3198	3123
	10600353	1433	1680	1228	1211
		X5775278078_R05C02	X5930514034_R01C02	X5930514035_R04C02	X5930514035_R06C02
	10600313	X5775278078_R05C02 583	X5930514034_R01C02 441	X5930514035_R04C02 463	X5930514035_R06C02 606
	10600313 10600322	_	_	_	_
-		583	441	463	606
	10600322	583 2228	441 1383	463 1823	606 2315
	10600322 10600328	583 2228 1600	441 1383 3456	463 1823 2773	606 2315 2540
	10600322 10600328 10600336	583 2228 1600 16158	441 1383 3456 16169	463 1823 2773 18221	606 2315 2540 19048

> head(Green)

	X5775278051_R01C01	X5775278051_R04C02	X5775278078_R02C01	X5775278078_R05C01
10600313	373	494	278	360
10600322	7413	10620	6667	8362
10600328	2369	2375	1995	2179
10600336	1734	2060	1456	1775
10600345	3400	4416	3590	3665
10600353	4233	4873	3790	3406
	X5775278078_R05C02	X5930514034_R01C02	X5930514035_R04C02	X5930514035_R06c02
10600313	X5775278078_R05C02 321	X5930514034_R01C02 210	X5930514035_R04C02 198	X5930514035_R06C02 350
10600313 10600322	_	_	_	_
	321	210	198	350
10600322	321 7963	210 6896	198 8344	350 9709
10600322 10600328	321 7963 2401	210 6896 2954	198 8344 3222	350 9709 2806
10600322 10600328 10600336	321 7963 2401 1757	210 6896 2954 1152	198 8344 3222 1702	350 9709 2806 1617

3) What are the Red and Green fluorescences for the address 71773431?

- Red['71773431',]
- Green['71773431',]

For each sample it is possible to extract the fluorescences emitted by the probe with a specific address.

- load("Illumina450Manifest.RData")
- Illumina450Manifest[Illumina450Manifest\$AddressA ID=="71773431",]

The address corresponds to a Type II probe

```
> Illumina450Manifest[Illumina450Manifest$AddressA_ID=="71773431",]
IlmnID Name AddressA_ID
31 cg01073572 cg01073572 71773421
                                                                         AlleleA_ProbeSeq
                            71773431 CCCCTTAATTATCTAAAACCACAAATATACAACRAATAACCTCCTTCATC
  AddressB_ID AlleleB_ProbeSet Infinium_Design_Type Wext_Base Color_Channel
                  Forward_Sequence
31 ACTTAAAAGCCAAAATTTCATCAGCTAACAGGCTTAGAGTATGGAGCCTAAAGGACCTGT[CG]ATGAAGGAGGTTATTCGTTGCATATC
TGTGGTTTTAGACAATCAAGGGGGTTGTTTTTT
  Genome_Build CHR MAPINFO
            37
                 Y 16924422 CCCTTGATTGTCTAAAACCACAGATATGCAACGAATAACCTCCTTCATCG
  Chromosome_36 Coordinate_36 Strand Probe_SNPs Probe_SNPs_10 Random_Loci Methyl27_Loci
31
                     15433816
                                                                       TRUE
                               UCSC_RefGene_Accession UCSC_RefGene_Group
     UCSC RefGene Name
31 NLGN4Y; NLGN4Y; NLGN4Y NR_028318; NM_014893; NR_028319
                                                           Body:Body:Body
  UCSC_CPG_Islands_Name Relation_to_UCSC_CPG_Island Phantom DMR Enhancer HMM_Island
  Regulatory_Feature_Name Regulatory_Feature_Group DHS
```

Sample	Red fluorescence	Green fluorescence	Туре	Color
X5775278051_R01C01	1052	3822	II	
X5775278051_R04C02	1400	4204	II	
X5775278078_R02C01	614	3070	II	
X5775278078_R05C01	918	3535	II	
X5775278078_R05C02	668	3639	II	
X5930514034_R01C02	579	3456	II	
X5930514035_R04C02	630	3644	II	
X5930514035_R06C02	751	4459	II	

4) Create the object MSet.raw

- MSet.raw <- preprocessRaw(RGset)

Preprocessing takes as input a RGChannelSet and returns a MethylSet. preprocessRaw converts the Red/Green channel for an Illumina methylation array into methylation signal, without using any normalization.

```
> MSet.raw
class: MethylSet
dim: 485512 8
metadata(0):
assavs(2): Meth Unmeth
rownames(485512): cg00050873 cg00212031 ... ch.22.47579720R ch.22.48274842R
rowData names(0):
colnames(8): 5775278051_R01c01 5775278051_R04c02 ... 5930514035_R04c02
  5930514035 R06C02
colData names(7): Sample_Name Group ... Basename filenames
Annotation
  array: IlluminaHumanMethylation450k
  annotation: ilmn12.hg19
Preprocessing
  Method: Raw (no normalization or bg correction)
  minfi version: 1.34.0
  Manifest version: 0.4.0
```

5) Perform the following quality checks:

QC Plot

- qc <- getQC(MSet.raw)</pre>

#Estimate sample-specific quality control for methylation data.

ac

```
DataFrame with 8 rows and 2 columns
                       mMed
                                  uMed
                  <numeric> <numeric>
5775278051_R01C01
                    11.7616
                               11.8222
5775278051_R04C02
                    12.0427
                               12.0668
5775278078_R02C01
                    11.5774
                               11.7444
5775278078_R05C01
                    11.7645
5775278078_R05C02
                    11.7288
                               11.7241
                               11.6416
5930514034_R01c02
                    11.5038
5930514035_R04C02
                    11.7211
                               11.7661
5930514035_R06c02
                    11.9436
                               11.9035
```

plotQC(qc)

It is possible to observe that all the data have good quality. The relationship between methylated intensity and unmethylated intensity is similar for different samples.

Intensity of negative controls

- getProbeInfo(RGset, type = "Control")
- df_TypeControl <- data.frame(getProbeInfo(RGset, type = "Control"))

> table(df_TypeControl\$Type)

BISULFITE CONVERSION I	BISULFITE CONVERSION II	EXTENSION
12	4	4
HYBRIDIZATION	NEGATIVE	NON-POLYMORPHIC
3	613	4
NORM_A	NORM_C	NORM_G
32	61	32
NORM_T	RESTORATION	SPECIFICITY I
61	1	12
SPECIFICITY II	STAINING	TARGET REMOVAL
. 3	4	2

Analysing the control probes, it is possible to observe that there are many different control types. Now we focus our attention on the negative control probes

controlStripPlot(RGset, controls="NEGATIVE")

This function produces the control probe signal plot component of the QC report. "NEGATIVE" is selected as control type.

Control: NEGATIVE

In this plot the colors are inverted because in the last version of R there is a problem with this package.

For each sample, the Negative Control signal is below 2^10=1024. This is positive because under normal experimental conditions, the signal intensities from negative controls can vary from approximately 100 to 1000 units.

Calculate detection pValues: for each sample, how many probes have a detection p-value higher than 0.05?

detP <- detectionP(RGset)

A detection p-value is returned for every genomic position in every sample. Small p-values indicate a good position. Positions with non-significant p-values (typically >0.01) should not be trusted.

- save(detP,file="detP.RData")
- load("detP.RData")
- failed <- detP>0.05

For each sample it is possible to obtain the number of positions with a p-value higher than the threshold

- summary(failed)

Sample	Failed positions
X5775278051_R01C01	247
X5775278051_R04C02	210
X5775278078_R02C01	264
X5775278078_R05C01	413
X5775278078_R05C02	385
X5930514034_R01C02	91
X5930514035_R04C02	46
X5930514035_R06C02	115

6) Calculate raw β and M values and plot the densities of mean methylation values, dividing the samples in DS and WT

- WT<-SampleSheet[SampleSheet\$Group=="WT","Basename"]
- DS<-SampleSheet[SampleSheet\$Group=="DS","Basename"]

β= Meth / (Meth + Unmeth + offset) M = log(Beta) = log(Meth / Unmeth) beta <- getBeta(MSet.raw) M <- getM(MSet.raw) beta WT<- beta[,colnames(beta)%in%WT] M WT<- M[,colnames(M)%in%WT] beta DS<- beta[,colnames(beta)%in%DS] M DS<- M[,colnames(M)%in%DS] mean of beta WT <- apply(beta WT,1,mean,na.rm=T) mean of M WT <- apply(M WT,1,mean,na.rm=T) d mean of beta WT <- density(mean of beta WT) d mean of M WT <- density(mean of M WT) mean_of_beta_DS <- apply(beta_DS,1,mean,na.rm=T)</pre> mean_of_M_DS <- apply(M_DS,1,mean,na.rm=T) d_mean_of_beta_DS <- density(mean_of_beta_DS)</pre> d_mean_of_M_DS <- density(mean_of_M_DS)</pre>

- par(mfrow=c(2,2))
- plot(d_mean_of_beta_WT,main="Density of Beta Values for WT samples",col="orange",ylim=c(0,4))
- plot(d_mean_of_beta_DS,main="Density of Beta Values for DS samples",col="blue",ylim=c(0,4))
- plot(d_mean_of_M_WT,main="Density of M Values for WT samples",col="orange")
- plot(d_mean_of_M_DS,main="Density of M Values for DS samples",col="blue")

ß values: WT samples

ß values: DS samples

N = 485512 Bandwidth = 0.02276

N = 485512 Bandwidth = 0.02276

M values: WT samples

M values: DS samples

N = 485512 Bandwidth = 0.1898

N = 485512 Bandwidth = 0.1914

- par(mfrow=c(2,1))
- plot(d_mean_of_beta_WT,main="β values",col="red",ylim=c(0,4))
- lines(d_mean_of_beta_DS, col="blue")
- plot(d_mean_of_M_WT,main="M values",col="red")
- lines(d_mean_of_M_DS, col="blue")

ß values

N = 485512 Bandwidth = 0.02276

M values

N = 485512 Bandwidth = 0.1898

Observing the separate graphs and then superimposing the distributions for DS and WT it is observed that the results from the 2 different groups are very similar.

7) Normalize the data using SWAN normalization, compare raw data and normalized data.

- dfl <- Illumina450Manifest_clean[Illumina450Manifest_clean\$Infinium_Design_Type=="I",]
- dfl <- droplevels(dfl)
- dfII <- Illumina450Manifest_clean[Illumina450Manifest_clean\$Infinium_Design_Type=="II",]
- dfII <- droplevels(dfII)

RAW DATA

- beta I <- beta[rownames(beta) %in% dfl\$IlmnID,]
- beta II <- beta[rownames(beta) %in% dfII\$IImnID,]
- mean of beta I <- apply(beta I,1,mean)
- mean of beta II <- apply(beta II,1,mean)
- d mean of beta I <- density(mean of beta I,na.rm=T)
- d_mean_of_beta_II <- density(mean_of_beta_II,na.rm=T)
- sd_of_beta_I <- apply(beta_I,1,sd,na.rm=T)
- sd_of_beta_II <- apply(beta_II,1,sd,na.rm=T)
- d sd of beta I <- density(sd of beta I,)
- d_sd_of_beta_II <- density(sd_of_beta_II)

SWAN NORMALIZED DATA

preprocessSwan results <- preprocessSWAN(RGset)

Subset-quantile Within Array Normalisation (SWAN) is a within array normalisation method for the Illumina Infinium HumanMethylation450 platform. With this function it is possible to obtain normalized data.

- beta preprocessSWAN <- getBeta(preprocessSwan results)
- beta_preprocessSWAN_I <- beta_preprocessSWAN[rownames(beta_preprocessSWAN) %in% dfl\$IlmnID,]
- beta preprocessSWAN II <- beta preprocessSWAN[rownames(beta preprocessSWAN) %in% dfII\$IImnID,]
- mean of beta preprocessSWAN I <- apply(beta preprocessSWAN I,1,mean)
- mean_of_beta_preprocessSWAN_II <- apply(beta_preprocessSWAN_II,1,mean)
- d_mean_of_beta_preprocessSWAN_I <- density(mean_of_beta_preprocessSWAN_I,na.rm=T)
- d_mean_of_beta_preprocessSWAN_II <- density(mean_of_beta_preprocessSWAN_II,na.rm=T)
- sd of beta preprocessSWAN I <- apply(beta preprocessSWAN I,1,sd)
- sd_of_beta_preprocessSWAN_II <- apply(beta_preprocessSWAN_II,1,sd)
- d sd of beta preprocessSWAN I <- density(sd of beta preprocessSWAN I,na.rm=T)
- d sd of beta preprocessSWAN II <- density(sd of beta preprocessSWAN II,na.rm=T)

PLOT THE DISTRIBUTION

- par(mfrow=c(2,3))
- plot(d mean of beta I,col="blue",main="raw beta",xlim=c(0,1),ylim=c(0,6))
- lines(d_mean_of_beta_II,col="red")
- plot(d_sd_of_beta_I,col="blue",main="raw sd",xlim=c(0,0.6),ylim=c(0,90))
- lines(d sd of beta II,col="red")
- boxplot(beta,ylim=c(0,1))
- plot(d_mean_of_beta_preprocessSWAN_I,col="blue",main="preprocessSWAN beta",xlim=c(0,1),ylim=c(0,6))
- lines(d mean of beta preprocessSWAN II,col="red")
- plot(d sd of beta preprocessSWAN I,col="blue",main="preprocessSWAN sd",xlim=c(0,0.6),ylim=c(0,90))
- lines(d_sd_of_beta_preprocessSWAN_II,col="red")
- boxplot(beta_preprocessSWAN,ylim=c(0,1))

It is possible to observe that normalized data have θ -values with mean distribution and sd distribution which are similar to those obtained from raw data.

8) Perform a PCA on the beta matrix.

- pca_results <- prcomp(t(beta_preprocessSwan),scale=T)

The objective of PCA is to project points in multidimensional space onto a space of fewer dimension. It is possible to use this analysis to check if there are large differences in DNA methylation profiles in our samples.

> print(summary(pca_results))

Importance of components:

	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Standard deviation	460.7490	270.1431	232.9555	203.94037	189.56530	186.09762	183.89622
Proportion of Variance	0.4373	0.1503	0.1118	0.08567	0.07401	0.07133	0.06965
Cumulative Proportion	0.4373	0.5876	0.6993	0.78500	0.85901	0.93035	1.00000
	PC8	3					
Standard deviation	6.053e-12	2					
Proportion of Variance	0.000e+00)					
Cumulative Proportion	1.000e+00)					

plot(pca_results)

Plot the variance accounted for each component

- pheno <- read.csv("Samplesheet report 2020.csv",header=T, stringsAsFactors=T)
- palette(c("blue","red"))
- plot(pca_results\$x[,1], pca_results\$x[,2],cex=2,pch=17,col=pheno\$Group,xlab="PC1",ylab="PC2",xlim=c(-700,700),ylim=c(-700,700))
- text(pca_results\$x[,1], pca_results\$x[,2],labels=rownames(pca_results\$x),cex=0.5,pos=1)
- legend("bottomright",legend=levels(pheno\$Group),col=c(1:nlevels(pheno\$Group)),pch=17)

Dots in the plot are colored according to the group to which they belong. It is possible to identify a line (the yellow one in the graph above) which separate DS and WT dots.

9) Identify differentially methylated probes between group DS and group WT using the function Mann-Whitney test

pheno <- read.csv("Samplesheet report 2020.csv",header=T, stringsAsFactors=T)

```
> str(pheno)
'data.frame':
                  8 obs. of 6 variables:
 $ Sample_Name: int 1020 1036 3038 3042 3052 1016 1029 3029
                : Factor w/ 2 levels "DS", "WT": 1 1 2 2 2 1 1 2
$ Group
                : int 29 34 46 32 31 43 32 35
$ Age
$ slide
                : num 5.78e+09 5.78e+09 5.78e+09 5.78e+09 5.78e+09 ...
                : Factor w/ 7 levels "R01c01", "R01c02",..: 1 4 3 5 6 2 4 7 : Factor w/ 8 levels "5775278051_R01c01",..: 1 2 3 4 5 6 7 8
 $ Array
 $ Basename
       My_mannwhitney_function <- function(x) {
         wilcox <- wilcox.test(x~ pheno$Group)
         return(wilcox$p.value)
```

Wilcox.test is a non-parametric test: if the data are paired it performs a Wilcoxon signed rank test, if the data are unpaired it performs a Mann-Whitney test. It is necessary to create a specific function because wilcox.test() function does not return a value but a list

- pValues_wilcox <- apply(beta_preprocessSwan,1, My_mannwhitney_function)
- final_wilcox <- data.frame(beta_preprocessSwan, pValues_wilcox)
- final wilcox <- final wilcox[order(final wilcox\$pValues wilcox),]
- final wilcox 0.05 <- final wilcox[final wilcox\$pValues wilcox<=0.05,]
- dim(final_wilcox_0.05)

#22381

- 10) Apply multiple test correction and set a significant threshold of 0.05. How many probes do you identify as differentially methylated considering nominal pValues? How many after Bonferroni correction? How many after BH correction?
 - raw_pValues <- final_wilcox[,9]
 - corrected_pValues_BH <- p.adjust(raw_pValues,"BH")
 - corrected pValues Bonf <- p.adjust(raw pValues, "bonferroni")

- final_wilcox_corrected <- data.frame(final_wilcox, corrected_pValues_BH, corrected_pValues_Bonf)
- dim(final wilcox[final wilcox\$pValues wilcox<=0.05,])

22381 differentially methylated probes considering nominal p-Values

- dim(final_wilcox[final_wilcox\$corrected_pValues_BH<=0.05,])

0 differentially methylated probes considering p-Values after Bonferroni correction

- dim(final_wilcox[final_wilcox\$corrected_pValues_Bonf<=0.05,])
- # 0 differentially methylated probes considering p-Values after BH correction
 - boxplot(final_wilcox_corrected[,9:11])

11) Produce an heatmap of the top 100 differentially mehtylated probes

- install.packages("gplots")
- library(gplots)
- input_heatmap=as.matrix(final_wilcox_corrected[1:100,1:8])

> pheno\$Group

[1] DS DS WT WT WT DS DS WT

Levels: DS WT

- colorbar <- c("green", "green", "orange", "orange", "green", "green", "green", "orange")
- heatmap.2(input_heatmap,col=terrain.colors(100),Rowv=T,Colv=T,dendrogram="both",key=T,ColSideColors=colorbar,density.info="none",trace="none",scale="none",symm=F)

12) Produce a volcano plot and a Manhattan plot of the results of differential methylation analysis

VOLCANO PLOT

- beta <- final_wilcox_corrected[,1:8]
- beta_groupA <- beta[,pheno\$Group=="DS"]
- mean beta groupA <- apply(beta groupA,1,mean)
- beta groupB <- beta[,pheno\$Group=="WT"]
- mean beta groupB <- apply(beta groupB,1,mean)

These steps are necessary to calculate the difference between the average of group DS and group WT values.

- delta <- mean_beta_groupB-mean_beta_groupA
- toVolcPlot <- data.frame(delta, -log10(final wilcox corrected\$pValues wilcox))

This dataframe has two columns, one contains the delta values and other contains the -10log of p-values.

plot(toVolcPlot[,1], toVolcPlot[,2],pch=16,cex=0.5)

MANHATTAN PLOT

- install.packages("gap")
- library(gap
- final_wilcox_corrected<- data.frame(rownames(final_wilcox_corrected),final_wilcox_corrected)

This step is necessary because in final_wilcox_corrected the CpG probes are stored in the row names, not in the columns.

```
> colnames(final_wilcox_corrected)
```

```
[1] "rownames.final_wilcox_corrected." "X5775278051_R01C01"
[3] "X5775278051_R04C02" "X5775278078_R02C01"
[5] "X5775278078_R05C01" "X5775278078_R05C02"
[7] "X5930514034_R01C02" "X5930514035_R04C02"
[9] "X5930514035_R06C02" "pvalues_wilcox"
[11] "corrected_pvalues_BH" "corrected_pvalues_Bonf"
```

- colnames(final_wilcox_corrected)[1] <- "IlmnID"
- final_wilcox_corrected_annotated <- merge(final_wilcox_corrected, Illumina450Manifest_clean,by="IlmnID")
- input_Manhattan <- data.frame(final_wilcox_corrected_annotated\$CHR, final_wilcox_corrected_annotated\$MAPINFO, final_wilcox_corrected_annotated\$pValues_wilcox)
- input_Manhattan\$final_wilcox_corrected_annotated.CHR <factor(input_Manhattan\$final_wilcox_corrected_annotated.CHR,levels=c("1","2","3","4","5","6","7","8","9","
 10","11","12","13","14","15","16","17","18","19","20","21","22","X","Y"))
- palette <-c
 ("red","blue","green","cyan","yellow","gray","magenta","red","blue","green","cyan","yellow","gray",
- "magenta", "red", "blue", "green", "cyan", "yellow", "gray", "brown", "red", "blue", "green")
- mhtplot(input Manhattan,control=mht.control(colors=palette))
- axis(2,cex=0.5)

OPTIONAL: As DS is caused by the trisomy of chromosome 21, try also to plot the density of the methylation values of the probes mapping on chromosome 21. Do you see a very clear difference between the samples? How many differentially methylated probes do you find on chromosome 21?

- ID_CHR<-data.frame(Illumina450Manifest_clean\$IlmnID, Illumina450Manifest_clean\$CHR)
- cpg21=ID CHR[ID CHR\$Illumina450Manifest clean.CHR==21,]
- WT<-SampleSheet[SampleSheet\$Group=="WT","Basename"]
- DS<-SampleSheet[SampleSheet\$Group=="DS","Basename"]

BETA VALUES

- beta <- getBeta(MSet.raw)
- beta_WT_21<- beta[rownames(beta)%in%cpg21\$Illumina450Manifest_clean.IlmnID,colnames(beta)%in%WT]
- beta DS 21<- beta[rownames(beta)%in%cpg21\$Illumina450Manifest clean.IlmnID,colnames(beta)%in%DS]
- mean_of_beta_WT_21<- apply(beta_WT_21,1,mean,na.rm=T)
- d_mean_of_beta_WT_21 <- density(mean_of_beta_WT_21)
- mean_of_beta_DS_21 <- apply(beta_DS_21,1,mean,na.rm=T)
- d_mean_of_beta_DS_21 <- density(mean_of_beta_DS_21)

M VALUES

- M <- getM(MSet.raw)
- M_WT_21<- M[rownames(M)%in%cpg21\$Illumina450Manifest_clean.IlmnID,colnames(M)%in%WT]
- M DS 21<- M[rownames(M)%in%cpg21\$Illumina450Manifest clean.llmnID,colnames(M)%in%DS]
- mean_of_M_WT_21 <- apply(M_WT_21,1,mean,na.rm=T)
- d_mean_of_M_WT_21 <- density(mean_of_M_WT_21)
- mean_of_M_DS_21 <- apply(M_DS_21,1,mean,na.rm=T)
- d_mean_of_M_DS_21 <- density(mean_of_M_DS_21)

- par(mfrow=c(1,2))
- plot(d_mean_of_beta_WT_21,main="β values on CHR 21",col="orange",ylim=c(0,2.2))
- lines(d_mean_of_beta_DS_21, col="blue")
- plot(d_mean_of_M_WT_21,main="M values on CHR 21",col="orange",ylim=c(0,0.25))
- lines(d_mean_of_M_DS_21, col="blue")

ß values on CHR 21

M values on CHR 21

N = 4243 Bandwidth = 0.4934

Focusing on chromosome 21, there are no significant differences between the distributions.

- final_wilcox_0.05_21 <- final_wilcox[final_wilcox\$pValues_wilcox<=0.05 & rownames(final_wilcox)%in%cpg21\$Illumina450Manifest_clean.IlmnID,]
- dim(final_wilcox_0.05_21)

#301