

What is claimed:

1. A method of preparing a vancomycin-polymer conjugate, comprising: reacting a vancomycin compound of the formula:

5 wherein

R₁₁ and R₁₂ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls,

10 C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxyalkyl, phenoxyalkyl and C₁₋₆ heteroalkoxys;

R₁₃ is OH, NH-aryl, NH-aralkyl, or NH-C₁₋₁₂ alkyl; and

w is 1 or 2;

15 with a polymer residue containing at least one leaving group capable of reacting with the sugar amino group of said vancomycin compound in the presence of at least about a ten-fold molar excess of triethylamine and a sufficient amount of dimethylformamide.

2. The method of claim 1, wherein said activated polymer residue is selected 20 from the group consisting of:

and

wherein:

5 R₁ and R₂ are independently selected polymer residues;

5 Y₁₋₆ are independently selected from the group consisting of O, S or NR₉;

5 R₃₋₁₀ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxyalkyl, phenoxyalkyl and C₁₋₆ heteroalkoxys;

Ar is a moiety which forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

L₁ and L₂ are independently selected bifunctional linkers;

B₁ and B₂ are independently selected leaving groups;

5 p and t are independently selected positive integers;

n, q and s are independently either zero or a positive integer; and

o and r are independently zero or one.

3. The method of claim 2, wherein said activated polymer residue is selected
10 from the group consisting of

4. The method of claim 1, wherein said activated polymer residue is selected
from the group consisting of:

15

wherein B₁ is selected from the group consisting of:

5. 5. The method of claim 1, wherein said vancomycin compound is:

6. The method of claim 2, wherein said vancomycin polymer conjugate is selected from the group consisting of

wherein V_a is

5

7. The method of claim 1, wherein said polymer containing said leaving group is selected from the group consisting of

8. The method of claim 2, wherein R_1 and R_2 are independently selected polyalkylene oxide residues and R'_1 and R'_2 are independently selected branched polyalkylene oxide residues.

5 9. The method of claim 2, wherein R_1 and R_2 are independently selected polyethylene glycol residues and R'_1 and R'_2 are independently selected branched polyethylene glycol residues.

10. The method of claim 1, wherein said vancomycin-polymer conjugate is selected from the group consisting of

5 and

wherein

PEG is $-\text{O}(\text{CH}_2\text{CH}_2\text{O})_x-$;

mPEG is $\text{H}_3\text{CO}(\text{CH}_2\text{CH}_2\text{O})_x-$;

x is a positive integer selected from about 10 to about 2300,

5 and

U-PEG is selected from the group consisting of

and

V_a is

11. The method of claim 3, wherein R₁ and R₂ further comprise a capping group and said method further comprises reacting the vancomycin-polymer conjugate with a polymer residue containing at least one leaving group capable of reacting with the N-methyl amino group of said vancomycin compound in the presence of about a five-fold molar molar excess of dimethylaminopyridine (DMAP) and a sufficient amount of a solvent mixture comprising dichloromethane (DCM) and dimethyl formamide (DMF), whereby a vancomycin-polymer conjugate is formed in which a polymer residue is attached on both the sugar amino and the N-methyl amino of said vancomycin compound.

12. The method of claim 10, wherein said vancomycin-polymer conjugate containing said polymer residue attached on both of said sugar amino group and said N-methyl amino group is selected from the group consisting of:

and

wherein

V_c is:

wherein:

J is H or a polymer residue containing a capping group;

R_1' and R_2' are independently selected polymeric residues;

10 Y_{1-6}' are independently selected from the group consisting of O, S or NR_9' ;
 R_{3-10}' are the same or different and are each independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

15 Ar' is a moiety which forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

L_1' and L_2' are independently selected bifunctional linkers;

p' and *t'* are independently selected positive integers;
n', *q'* and *s'* are independently either zero or a positive integer;
o' and *r'* are independently zero or one; and
all other variables are as previously defined.

5

13. The method of claim 10, wherein said solvent mixture comprises about equal parts dichloromethane and dichloroformamide.

14. The product prepared by the method of claim 1.

10

15. The product prepared by the method of claim 10.

16. The method of claim 1, wherein said molar excess of triethylamine is at least about 30-fold.

15

17. A method of preparing a vancomycin-polymer conjugate wherein said conjugate has a polymer residue attached on both the sugar amino and the N-methyl amino of said vancomycin compound, comprising: reacting a vancomycin compound of the formula:

20

wherein

R₁₁ and R₁₂ are each independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxyalkyl, phenoxyalkyl, and

5 C₁₋₆ heteroalkoxys;

R₁₃ is OH, NH-aryl, NH-aralkyls, NH-alkyl-aryl or NH-C₁₋₁₂ alkyl; and w is 1 or 2;

with at least about 2 equivalents of a polymer residue containing at least one leaving group capable of reacting with the sugar amino group and the N-

10 methyl amino group of said vancomycin compound in the presence of at least about a five-fold molar excess of dimethylaminopyridine (DMAP) and a sufficient amount of a solvent mixture comprising dichloromethane (DCM) and dimethyl formamide (DMF).

15 18. The method of claim 17, wherein said solvent mixture comprises about equal parts dichloromethane and dichloroformamide.

19. The product prepared by the method of claim 17.

20 20. The method of claim 19, wherein said vancomycin-polymer conjugate comprises the formula:

wherein:

R₁₁ and R₁₂ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxyalkyl, phenoxyalkyl and C₁₋₆ heteroalkoxys;

R₁₃ is OH, NH-aryl, NH-aralkyls, or NH-C₁₋₁₂ alkyl; and

w is 1 or 2;

10 Z₁ and Z₂ are

wherein

R₁ and R₂ are independently selected polymeric residues;

Y₁₋₆ are independently selected from the group consisting of O, S or NR₉;

15 R₃₋₁₀ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls,

C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

5 L_1 and L_2 are independently selected bifunctional linkers;
p and t are independently selected positive integers;
n, q and s are independently either zero or a positive integer; and
o and r are independently zero or one.

10 21. A vancomycin polymer conjugate comprising the formula:

wherein:

R_{11} and R_{12} are each independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxyalkyl, phenoxyalkyl, and C_{1-6} heteroalkoxys;

R_{13} is OH, NH-aryl, NH-aralkyls, or NH- C_{1-12} alkyl;

w is 1 or 2; and

20 Z_1 is

wherein

R₁ and R₂ are independently selected polymeric residues;

Y₁₋₆ are independently selected from the group consisting of O, S or NR₉;

5 R₃₋₁₀ are the same or different and are each independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy;

10 Ar is a moiety which forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

L₁ and L₂ are independently selected bifunctional linkers;

p and t are independently selected positive integers;

n, q and s are independently either zero or a positive integer; and

15 o and r are independently zero or one; and

Z₃ is

wherein

R_{1'} and R_{2'} are independently selected polymeric residues;

20 Y_{1-6'} are independently selected from the group consisting of O, S or NR_{9'};

R_{3-10}' are the same or different and are each independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls,

5 C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar' is a moiety which forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

L_1' and L_2' are independently selected bifunctional linkers;

p' and t' are independently selected positive integers;

10 n', q' and s' are independently either zero or a positive integer; and

o' and r' are independently zero or one.

22. A vancomycin polymer conjugate of claim 21, comprising the formula

15

23. The vancomycin polymer conjugate of claim 22, wherein Z_1 is

Z₃ is:

24. A vancomycin polymer conjugate of claim 21, selected from the group consisting of:

and

10

25. The polymer conjugate of claim 21, wherein Y₁₄ and Y_{14'} are each O.

26. The polymer conjugate of claim 21, wherein R_{3,8} and R_{3,8'} are independently selected from the group consisting of hydrogen, methyl and ethyl; 15 and p, p', t and t' are each one.

27. The polymer conjugate of claim 21, wherein R₁, R_{1'}, R₂ and R_{2'} are independently selected polyalkylene oxide residues.

20 28. The polymer conjugate of claim 21, wherein R₁, R_{1'}, R₂ and R_{2'} are independently selected polyethylene glycol residues.

29. The polymer conjugate of claim 27, wherein said polyalkylene oxide has a weight average molecular weight of from about 2,000 Da to about 100,000 Da.

5 30. A vancomycin-polymer conjugate comprising the formula:

wherein

R₁₁ and R₁₂ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, 10 C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxyalkyl, phenoxyalkyl, and C₁₋₆ heteroalkoxys;

R₁₃ is OH, NH-aryl, NH-aralkyl, or NH-C₁₋₁₂ alkyl; and

w is 1 or 2;

15 Z₃ is

wherein

R₁' and R₂' are independently selected polymeric residues;

Y₁₋₆' are independently selected from the group consisting of O, S or NR₉');

5 R₃₋₁₀' are the same or different and are each independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy;

10 Ar' is a moiety which forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

L₁' and L₂' are independently selected bifunctional linkers;

p' and t' are independently selected positive integers;

n', q' and s' are independently either zero or a positive integer; and

15 o' and r' are independently zero or one.

31. A method of treatment, comprising administering an effective amount of a compound of claim 21.

20 32. A method of treating a vancomycin susceptible disease in a mammal comprising administering an effective amount of a compound of claim 1, to a mammal in need of such treatment, whereby, the compound of claim 1 undergoes degradation and releases vancomycin or a vancomycin derivative *in vivo*.

25 33. A method of treating a vancomycin susceptible disease in a mammal comprising administering an effective amount of a compound of claim 21, to a

mammal in need of such treatment, whereby, the compound of claim 21 undergoes degradation and releases vancomycin or a vancomycin derivative *in vivo*.

34. A method of treating a vancomycin susceptible disease in a mammal
5 comprising administering to a mammal in need of such treatment, an effective amount of a combination of vancomycin or a pharmaceutically acceptable salt, solvate or hydrate thereof, and a compound of claim 1, wherein said vancomycin and said compound of claim 1 are administered either substantially concurrently in separate dosage forms or combined in a unit dosage form.

10

35. A kit comprising in separate containers in a single package, pharmaceutical compositions for use in combination to treat a vancomycin susceptible disease which comprises in one container a therapeutically effective amount of vancomycin or a pharmaceutically acceptable salt, solvate or hydrate thereof in a
15 pharmaceutically acceptable carrier and in a second container a therapeutically effective amount of a compound of claim 1 or a pharmaceutically acceptable salt, solvate or hydrate thereof in a pharmaceutically acceptable carrier.