Chapter 3 Sampling Properties of LS Estimator

남준우·허인(2021), 제4장

Gujarati/Porter(2018), 제 3장

- (1) Assumptions
- (2) Discussions
- (3) Mean and Variance of LS Estimators
- (4) Gauss-Markov Theorem
- (5) Coefficient of Determination

(1) Assumptions

- ① (Linear model) $y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$
- (2) (Nonstochastic Independent variables) X is nonstochastic.
- ④ (Zero mean of error term) $E(\varepsilon_i) = 0$.
- (5) (Equal variance of error term) $V(\varepsilon_i) = \sigma^2$ for all i.
- **(a)** (No autocorrelation) $Cov(\varepsilon_i, \varepsilon_j) = 0$ for $i \neq j$.

(2) <u>Discussions</u>

- ① (Linear model) $y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$
- ► CEF is linear.

- (Nonstochastic Independent variables) X is nonstochastic.
- ► Stratified sampling(층화표본)
- ► NOT a strong assumption. Can be relaxed.
- ► In general, actually, we require $Cov(X_i, \varepsilon_i) = 0$ for unbiasedness of LS estimator.

Assumption ② automatically fulfills this condition.

- $\ \ \, (\underline{\text{Identification Condition}}) \ \text{Support of} \ \ X \ \ \text{is rich.}$
- ► *X* has at least two different values.

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 \neq 0$$

► Excludes the case of $X_i = c$ for all i.

- ④ (Zero mean of error term) $E(\varepsilon_i) = 0$.
- ► With ②, $E(y_i) = \beta_1 + \beta_2 X_i$.
- ► What if $E(\varepsilon_i) \neq 0$?

- (5) (Equal variance of error term) $V(\varepsilon_i) = \sigma^2$.
- Homoscedasticity assumption.
- ► With ass. ②, $V(y_i) = \sigma^2$ for all i.
- ► Will be relaxed.

- **(b)** (No autocorrelation) $Cov(\varepsilon_i, \varepsilon_j) = 0$ for $i \neq j$.
- No systematic change across error terms.
- ► No serial correlation.
- ► With ass. ②, $Cov(y_i, y_j) = 0$ for all $i \neq j$.
- ► Too strong assumption for time series data. Will be relaxed.

(2) Mean and Variance of LS Estimator

► We only focus on slope coefficient estimator b_2 , since the same manipulation can be easily applied to b_1 .

① Note that (b_1, b_2) are random variables.

② b_2 is linear in y_i .

- ③ $E(b_2) = \beta_2$; unbiasedness.
- Is $b_2 = \beta_2$?
- ► In repeated sampling, center of distribution is β_2 .

$$(4) V(b_2) = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}, \qquad V(b_1) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right].$$

- ► The meaning of variance? Precision.
- ightharpoonup As $\sum_{i=1}^{n} (X_i \overline{X})^2 \uparrow$, $V(b_2) \downarrow$.
- ightharpoonup As $n \uparrow$, $V(b_2) \downarrow$.

⑤
$$Cov(b_1, b_2) = \frac{-\overline{X}\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$
.

(3) Gauss-Markov Theorem

LS estimator is BLUE(MVLUE).

(4) The Coefficient of Determination

- How explain the variation in y_i with variation in X_i in estimated regression.
- ► How good is the fit?

•
$$y_i = \hat{y}_i + e_i$$

 $\overline{y} = \overline{\hat{y}}$

$$\Rightarrow (y_i - \overline{y}) = (\hat{y}_i - \overline{\hat{y}}) + e_i$$

$$\Rightarrow \sum_{i=1}^n (y_i - \overline{y})^2 = \sum_{i=1}^n (\hat{y}_i - \overline{\hat{y}})^2 + \sum_{i=1}^n e_i^2, \quad \text{why?}$$

$$TSS = ESS + RSS$$

•
$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

$$\Rightarrow R^2 = 1 - \frac{\sum_{i=1}^{n} e_i^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$$

; proportion of variation in y explained by X.

- $0 \le R^2 \le 1$.
- ► What makes $0 \le R^2 \le 1$?

 $ightharpoonup R^2 = 1$ in which case?

(Example) In consumption example,

(Example)

• y:소비, X: 소득.

	','	. —	-							
obs	Y_{i}	X_{i}	$(X_i - \overline{X})^2$	$(X_i - \overline{X})(Y_i - \overline{Y})$	$\hat{Y_i}$	e_{i}	e_i^2	$(Y_i - \overline{Y})^2$	$(X_i - \overline{X})X_i$	$(X_i - \overline{X})Y_i$
1	70	80	8100	3690	65.28	4.82	23.21	1681		
2	65	100	4900	3220	75.36	-10.36	107.41	2116		
3	90	120	2500	1050	85.55	4.45	19.84	441		
4	95	140	900	480	95.73	-0.73	0.53	256		
5	110	160	100	10	105.91	4.09	16.74	1		
6	115	180	100	40	116.09	-1.09	1.19	16		
7	120	200	900	270	126.27	-6.27	39.35	81		
8	155	240	4900	3080	146.64	8.36	69.95	1936		
9	150	260	8100	3510	156.82	-6.82	46.49	1521		
10	140	220	2500	1450	136.45	3.55	12.57	841		
합	1110	1700	33000	16800		0	337.27	8890		

$$R^2 = 1 - \frac{337.27}{8890} = 0.96.$$