Отчёт по лабораторной работе №4.5.2. Интерференция лазерного излучения.

Плюскова Н.А. Б04-004

17 января 2024 г.

1. Аннотация

В работе требовалось настроить систему, изучить характер поляризации, исследовать зависимость видности интерференционной картины от разности хода интерферирующих лучей и их поляризации.

2. Теоретические сведения

Гелий-неоновый лазер

Лазер представляет собой интерферометр Фабри-Перо — газовую трубку с двумя параллельными зеркалами по обе стороны. В лазере длиной L для излучения вдоль оси для резонансных частот выполняется

$$f_m = \frac{c}{\lambda_m} = \frac{mc}{2L}. (1)$$

Условие генерации может выполняться для сразу нескольких колебаний с частотами f_m , расположенными в диапазоне генерации $2\Delta F$. В этом случае генерируется несколько волн – mod, межмодовое расстояние для которых

$$\Delta \nu = f_{m+1} - f_m = \frac{c}{2L}.\tag{2}$$

Число мод можно оценить как:

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu}.\tag{3}$$

Видность

Видность интерференционной картины – параметр, определяемый формулой:

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{4}$$

где I_{max} , I_{min} – максимальная и минимальная интенсивности света интерференционной картины вблизи выбранной точки. Разобьём его на произведение функций параметров установки

$$\gamma = \gamma_1 \gamma_2 \gamma_3$$
.

Здесь γ_1 отвечает за соотношение интенсивности интерферирующих волн:

$$\gamma_1 = \frac{2\sqrt{\delta}}{1+\delta},\tag{5}$$

где $\delta = \frac{B_m^2}{A_m^2}, \, A_m$ и B_m – амплитуды волн. Параметр δ определяется устройством разделения волн.

Рис. 1: Зависимость $\gamma_2 = \gamma_2(l)$

Функция γ_2 отвечает за влияние разности хода и спектрального состава волн,

$$\gamma_2 = \frac{\sum_n A_n^2 \cos \frac{2\pi\Delta\nu nl}{c}}{\sum_n A_n^2},$$

где l — разность хода, $\Delta \nu$ — спектральный состав излучения, A_n^2 — интенсивности мод. В непрерывном пределе получим:

 $\gamma_2 = e^{-\left(\frac{\pi\Delta Fl}{c}\right)^2}$

– для гауссовой линии излучения с полушириной ΔF получили гауссову зависимость $\gamma_2=\gamma_2(l)$ с полушириной

$$l_{1/2} = \frac{c}{\pi \Delta F} \sqrt{\ln 2} \approx \frac{0.26c}{\Delta F}.$$
 (6)

Последняя функция γ_3 отвечает за разность в поляризации. Если α – угол между плоскостями поляризаций волн, то

$$\gamma_3 = |\cos \alpha|. \tag{7}$$

3. Экспериментальная установка

В работе используется интерферометр Майкельсона (Рис. 2а). Луч лазера, отражённый от зеркала 3 и прошедший через параллелепипед Френеля (ПФ), делится делительной призмой ДП на два луча. Первый проходит блок B_1 с поляроидом Π_1 и зеркалом 3_1 , приклеенным к пьезокерамике, которая может совершать малые колебания вдоль луча, с возможность изменения угла наклона зеркала. Второй проходит блок B_2 с линзой Л, поляроидом Π_2 и зеркалом 3_2 в фокальной плоскости линзы, чтобы выходящий луч, в отличие от первого, был параллелен входящему. Оба луча, проходя ДП, попадают на сферическое зеркало 3_3 и интерферируют на экране. Интенсивность света считывается фотодиодом на осциллограф через щель, параллельную интерференционным полосам, в центре экрана. На экране осциллографа наблюдаются колебания с изменяющимся периодом, так как на пьезокерамику подаются напряжение, из-за чего её длина колеблется.

По картине на экране осциллографа можно определить параметры видимости по следующим формулам:

$$\delta = \frac{h_1}{h_2},\tag{8}$$

Рис. 2: а) Схема установки; б) Осциллограмма сигналов фотодиода

$$\gamma = \frac{h_4 - h_3}{h_4 + h_3},\tag{9}$$

Здесь 0 — уровень при отсутствии лучей, 1 и 2 — при закрытии одного из них. Используя δ , можно рассчитать γ_1 по формуле (5).

При условии одинаковой поляризации лучей ($\alpha = 0$):

$$\gamma_2 = \frac{\gamma}{\gamma_1}.\tag{10}$$

Если же разность хода отсутствует (l = 0), то

$$\gamma_3 = \frac{\gamma}{\gamma_1}.\tag{11}$$

4. Ход работы

4.1 Изучение характера поляризации

Измерим h1 - h4 для исследования зависимости видности от поляризации (при этом считаем, что разность хода равна 0):

α	h1,	h2,	h3,	h4,	σ_h , дел	γ	σ_{γ}	δ	σ_{δ}	γ_1	$\sigma_{\gamma 1}$	γ_3	σ_{γ_3}
	дел	дел	дел	дел									
0°	12	6,8	2	35	0,05	0,89	0,01	1,76	0,02	0,96	0,01	0,93	0,02
10°	12	6,8	2,1	35		0,89	0,01	1,76	0,02	0,96	0,01	0,92	0,02
20°	11	6,9	2	33		0,89	0,01	1,59	0,02	0,97	0,01	0,91	0,02
30°	9,2	6,5	2	30		0,88	0,01	1,42	0,02	0,99	0,01	0,89	0,02
40°	7,5	6,5	2,8	26		0,81	0,01	1,15	0,02	1,00	0,01	0,81	0,02
50°	5,8	6,6	3,2	21,8		0,74	0,01	0,88	0,01	1,00	0,02	0,75	0,02
60°	5	6,5	4,5	19		0,62	0,01	0,77	0,01	0,99	0,02	0,62	0,02
70°	3	6,5	5,3	19		0,56	0,01	0,46	0,01	0,93	0,02	0,61	0,02
80°	2,1	6,6	6,5	12		0,30	0,01	0,32	0,01	0,86	0,03	0,35	0,02
90°	2	6,5	8	10,1		0,12	0,01	0,31	0,01	0,85	0,03	0,14	0,01

Таблица 1: Зависимость видности от угла поворота поляроида при нулевой разности хода

Рассчитаем коэффициент γ_3 , и построим графики $\gamma_3(\alpha)$, $\gamma_3(\cos \alpha)$ и $\gamma_3(\cos^2 \alpha)$:

Рис. 3: Зависимости а) $\gamma_3(\alpha)$; б) $\gamma_3(\cos\alpha)$

Рис. 4: Зависимость $\gamma_3(\cos^2\alpha)$

4.2 Измерение коэффициента видности

Снова измерим h1-h4, но при одинаковой поляризации лучей ($\alpha=0$), чтобы исследовать зависимость видности от разности хода между лучами:

х,см	h1,	h2,	h3,	h4,	σ_h , дел	γ	σ_{γ}	δ	σ_{δ}	γ_1	$\sigma_{\gamma 1}$	γ_2	σ_{γ_2}
	дел	дел	дел	дел									
10	8	10,5	6	30		0,67	-	0,76	0,01	0,99	0,01	0,67	0,01
11	8	9	5	29		0,71	0,01	0,89	0,01	1,00	0,01	0,71	0,01
12	8	8	3,5	28		0,78	0,01	1,00	0,01	1,00	0,01	0,78	0,02
13	8	9	4	30		0,76	0,01	0,89	0,01	1,00	0,01	0,77	0,01
14	8	7	2,8	27		0,81	0,01	1,14	0,02	1,00	0,01	0,81	0,02
15	8	5	2	23		0,84	0,01	1,60	0,03	0,97	0,02	0,86	0,02
16	8	7,5	2,1	27,5		0,86	0,01	1,07	0,01	1,00	0,01	0,86	0,02
17	8	2	3,5	16		0,64	0,01	4,00	0,13	0,80	0,03	0,80	0,04
18	15	3	7	30		0,62	-	5,00	0,10	0,75	0,02	0,83	0,02
20	9	6	4	25		0,72	0,01	1,50	0,02	0,98	0,01	0,74	0,02
21	9,5	9,5	6	31		0,68	-	1,00	0,01	1,00	0,01	0,68	0,01
22	9	9	7	30		0,62	-	1,00	0,01	1,00	0,01	0,62	0,01
23	9	8	7	27		0,59	-	1,13	0,01	1,00	0,01	0,59	0,01
24	9	7	8	24		0,50	-	1,29	0,02	0,99	0,01	0,50	0,01
25	9	5	8	21		0,45	-	1,80	0,03	0,96	0,02	0,47	0,01
26	18	6,2	16	33	0,05	0,35	-	2,90	0,03	0,87	0,01	0,40	0,01
27	18	8	15,5	33	0,05	0,36	-	2,25	0,02	0,92	0,01	0,39	0,01
28	18	1,3	16	22		0,16	-	13,85	0,57	0,50	0,02	0,31	0,02
35	16,2	15	28	34		0,10	-	1,08	0,01	1,00	0,01	0,10	0,00
40	8,5	9	14	20,5		0,19	-	0,94	0,01	1,00	0,01	0,19	0,01
45	16,5	18,5	27	33		0,10	-	0,89	0,01	1,00	0,01	0,10	0,00
50	16,5	17	29,5	36		0,10	-	0,97	0,01	1,00	0,01	0,10	0,00
60	16,5	4	19	22		0,07	_	4,13	0,06	0,79	0,01	0,09	0,00
65	15,5	9	24	26		0,04	-	1,72	0,02	0,96	0,01	0,04	0,00
71	15,5	4,2	15	26		0,27	-	3,69	0,06	0,82	0,01	0,33	0,01
72	15,5	5	14	28		0,33	-	3,10	0,04	0,86	0,01	0,39	0,01
73	15,5	5	13,5	29		0,36	-	3,10	0,04	0,86	0,01	0,42	0,01
74	15,5	3,5	12	27,3		0,39	-	4,43	0,08	0,78	0,01	0,50	0,01
75	15,5	1	13	22		0,26	-	15,50	0,83	0,48	0,03	0,54	0,04
77	15,5	1,1	12,2	22		0,29	-	14,09	0,69	0,50	0,03	0,58	0,04
78	15,5	1,2	12	21,5		0,28	-	12,92	0,58	0,52	0,02	0,55	0,03
79	15,5	1,1	12	23		0,31	-	14,09	0,69	0,50	0,03	0,63	0,04

Таблица 2: Зависимость видности от разности хода между лучами при одинаковой поляризации лучей

Рассчитаем коэффициент γ_2 и построим график зависимости видности $\gamma_2(x)$ от координаты блока Б2:

Рис. 5: Зависимость $\gamma_2(x)$

По полученному графику, определив расстояние между максимумами, оценим расстояние L между зеркалами оптического резонатора лазера и межмодовое расстояние $\Delta \nu$ по формуле (2):

$$L = \frac{2x}{2} = 62, L = (62 \pm 3) \text{ cm}.$$

$$\Delta \nu = \frac{c}{2L} = (2.41 \pm 0.06) \cdot 10^8 \text{ Гц.}$$

Определим полуширину $l_{1/2}$ отдельного максимума на половине высоты и рассчитаем диапазон частот $2\Delta F$, в котором происходит генерация продольных мод:

$$l_{1/2} \approx 11 \text{ см}, \ 2\Delta F = \frac{2c\sqrt{\ln 2}}{\pi l_{1/2}} \approx 1.45 \cdot 10^9 \text{ Гц.}$$
 (12)

Оценим число генерируемых лазером продольных мод:

$$N = 1 + \frac{2\Delta F}{\Delta \nu} \approx 7. \tag{13}$$

5. Выводы

Точки графика рис.4 намного лучше ложатся на прямую, чем точки графика рис.36. Это связано с хаотически меняющимся направлением линейной поляризации источника. Действительное значение расстояния между зеркалами составляет 65 см, что в пределах σ сходится с полученными нами данными. По рис.5 можно предположить, что число мод равно 7.