$$v1 = 1$$
 to 2 $v2 = -1$ to 1
1 2 1 -1

matrix of T wrt std basis (e1, e2) of F^2?

1) matrix wrt (v1, v2):
$$M = 2$$
 0 0 -1

2)
$$v1 = e1 + e2$$
 $B = 1 -1$ $v2 = -e1 + e2$ 1 1

3)
$$det(B) = 2$$
 $[B^{-1}] = 1/2 = 1/2$ $adj(B) = 1 = 1 = 1/2 = 1/2$ $-1/2 = 1/2$

BMB^(-1) =
$$(1/2)$$
 B M adj(B)
= $(1/2)^2$ 1 1 1 1
2 -1 -1 1
= $(1/2)^1$ 3
3 1
= $1/2$ 3/2 [works]
3/2 1/2

(Axler §5A) given a linear op T : V to V:

<u>Ex</u> for any linear op T : V to V,

{0} and V are are [trivially] T-stable

Ex suppose T : F^3 to F^3 has the matrix

* * *

0 0 *

nontrivial T-stable subspace? $W = \{(x, y, 0) \mid x, y\}$

if instead we have * * 0

* * 0

0 0 *

then $U = \{(0, 0, z) \mid z\}$ also T-stable

here, V = W + U; in general:

a block-diag matrix for T with k blocks corresponds to

a T-stable direct sum V = W_1 + ... + W_k

best situation: each W_i is a line

[what means?]

in this case: T has a <u>diagonal</u> matrix

<u>Df</u> for any linear op T : V to V

an <u>eigenline</u> of T is a T-stable line [dim-1 sub.] an <u>eigenvector</u> of T is v in V s.t. Fv is an eigenline (which forces v ≠ **0**)

if $Tv = \lambda v$, then we call λ the <u>eigenvalue</u> of the line

[does P have any eigenvectors?]

$$\lambda x = 0 \quad 0 \quad x = 0 \\ \lambda y \quad 3 \quad 1 \quad y \quad 3x + y$$

[take $\lambda \neq 0$:] {(0, y)} eigenline with eigenvalue 1 [take $\lambda = 0$:] {(x, -3x)} eigenline with eigenvalue 0

[regardless of λ :] x = 0 {(0, y)} is the only eigenline with eigenvalue 0 [same regardless of whether F = R or F = C]

$$\lambda x = 1$$
 -1 $x = x - y$
 $\lambda y = 1$ 1 $y = x + y$

messy to solve...

notice:
$$(1/\sqrt{2}) \, H = 1/\sqrt{2} \, -1/\sqrt{2} \, (1+i)x = x-y \, \text{imply ix} = -y \, \text{and iy} = x \, (1+i)y = x+y \, = \cos(\pi/4) \, -\sin(\pi/4) \, \sin(\pi/4) \, \cos(\pi/4) \, \text{so} \, \{(x \, \text{eigenline with eigenvalue 1} + i \, ix)\} \,$$
 so H is the composition of: rotate by $\pi/4$ scale by $\sqrt{2}$ $(x \, \text{eigenline with eigenvalue 1} - i \, -ix)\}$ no H-stable lines through $\mathbf{0}$ $\mathbf{0}$

Moral choice of R vs C affects eigenstuff

Thm suppose F = CV is fin. dim. and not $\{0\}$ then <u>any</u> linear op on V has an eigenline

key idea: plug linear op T into polynomials

p(z) = sum_k a_k z^k gives p(T) = sum_k a_k T^k where T^k = kth iterate of T

note: constant term a_0 treated as a_0 id_V

<u>Lem</u> for <u>any</u> F and v in V: some <u>nonconst</u> p(z) gives p(T) v = 0 Pf of Thm pick $v \neq 0$

using lemma, pick f(z) of minimal deg s.t. f is nonconst and f(T) v = 0

by the fund. thm of algebra, f has a root λ : i.e.,

$$f(z) = (z - \lambda) g(z)$$
 for (nonzero) $g(z)$ in $C[z]$

now $(T - \lambda \text{ id}_V) (g(T) \text{ v}) = \mathbf{0}$ notice $T(g(T)\text{v}) = \lambda(g(T)\text{v})$ so just need $g(T) \text{ v} \neq \mathbf{0}$ if g nonconst, then done bc deg(g) < deg(f) if g const, then done bc g nonzero and $\text{v} \neq \mathbf{0}$

[where did we use F = C? fund. thm of algebra]

Summary

if W sub V is stable under T : V to V then T restricts to a lin op T|_W, easier to study

nicer when W is a line

nicest when V is a sum of eigenlines

i.e., T is a <u>diagonalizable</u> operator

over R T may have no eigenlines

over C T will have some eigenline,

but V need not be sum(eigenlines)

Rem the sum of eigenlines with eigenval λ is called the λ-eigenspace of T