ORIE 3310/5310: Optimization II

1. Linear and Integer Programming

Prof. Oktay Günlük Cornell University, School of ORIE

Spring 2024

Linear Programming Review (22/1/2024)

• A vector $x \in \mathbb{R}^n$ is an array of real numbers:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 or $x^T = [x_1, x_2, \dots, x_n].$

• The inner (or, "dot") product of two vectors $x, y \in \mathbb{R}^n$ is:

$$x^T y = \sum_{i=1}^n x_i y_i. \qquad \leftarrow \text{this is a number}$$

• A $m \times n$ matrix A is an array of real numbers a_{ij} :

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

We say $A \in \mathbb{R}^{m \times n}$ (number of rows first, columns second)

• Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

• The matrix-vector product of A and x is:

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n a_{1i} x_i \\ \sum_{i=1}^n a_{2i} x_i \\ \vdots \\ \sum_{i=1}^n a_{mi} x_i \end{bmatrix}$$

- The number of columns of A must equal the number of rows of x.
- ullet The number of rows of Ax equals the number of rows of A

• Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

• The matrix-vector product of A and x is:

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n a_{1i} x_i \\ \sum_{i=1}^n a_{2i} x_i \\ \vdots \\ \sum_{i=1}^n a_{mi} x_i \end{bmatrix}$$

- The number of columns of A must equal the number of rows of x.
- The number of rows of Ax equals the number of rows of A.

Given two matrices A and B, you can multiply them

only if the number of columns of A is same as the number of rows of B:

$$A \in \mathbb{R}^{m \times k}$$
 and $B \in \mathbb{R}^{k \times n}$.

The resulting matrix D = AB has m rows and n columns: $D \in \mathbb{R}^{m \times n}$

$$D = \underbrace{\left[\begin{array}{cccc} a_{11} & \dots & a_{1k} \\ \dots & \vdots & \vdots \\ a_{m1} & \dots & a_{mk} \end{array}\right]}_{A} \underbrace{\left[\begin{array}{cccc} b_{11} & \dots & b_{1n} \\ b_{21} & \dots & b_{2n} \\ \dots & \vdots & \vdots \\ b_{k1} & \dots & b_{kn} \end{array}\right]}_{B} = \begin{bmatrix} \dots & d_{1j} = \sum_{i=1}^{k} a_{1i}b_{ij} & \dots \\ \dots & d_{2j} = \sum_{i=1}^{k} a_{2i}b_{ij} & \dots \\ \dots & \vdots & \dots \\ \dots & \vdots & \dots \\ \dots & d_{mj} = \sum_{i=1}^{k} a_{mi}b_{ij} & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}}_{j \text{th column of } D}$$

Remember matrix multiplication is not commutative:

AB is not same as BA

A linear programming problem

minimize
$$2x_1-x_2+4x_3 \qquad \text{objective function}$$
 subject to
$$x_1+x_2-x_3+x_4\leq 2\\ 3x_2-x_3+x_3=5\\ x_3+x_4\geq 3 \qquad \text{constraints}$$

$$x_1,x_2,x_3,x_4\geq 0 \qquad \text{non-negativity}$$

- $x^T = [x_1, x_2, x_3, x_4]$ are the decision variables.
- ullet The objective function is linear and it can be written as c^Tx , where

$$c^T = [2, -1, 4, 0]$$

- The constraints are linear equations and inequalities

 They have the form $a^Tx = b$, or $a^Tx \le b$, or $a^Tx \ge b$.
 - Example: The first constraint is of the form $a^T x \leq b$, with

$$a^T = [1, 1, 0, 1]$$
 and $b = 2$

A linear programming problem

minimize
$$2x_1-x_2+4x_3$$
 objective function subject to
$$x_1+x_2+x_3+x_4\le 2 \\ 3x_2-x_3+x_3=5 \\ x_3+x_4\ge 3$$
 constraints
$$x_1,x_2,x_3,x_4\ge 0$$
 non-negativity

- $x^T = [x_1, x_2, x_3, x_4]$ are the decision variables.
- The objective function is linear and it can be written as $c^T x$, where

$$c^T = [2, -1, 4, 0]$$

- The constraints are linear equations and inequalities
 They have the form a^Tx = b, or a^Tx < b, or a^Tx > b.
 - Example: The first constraint is of the form $a^Tx \leq b$, with

$$a^T = [1, 1, 0, 1] \qquad \text{and} \qquad b = 2$$

Writing LPs in " \geq " form

minimize
$$2x_1-x_2+4x_3$$
 objective function subject to
$$x_1+x_2+x_3+x_4\leq 2\\3x_2-x_3+x_3=5\\x_3+x_4\geq 3$$
 constraints
$$x_1,x_2,x_3,x_4\geq 0$$
 non-negativity

Notice that:

• The first constraint can also be rewritten as

$$-x_1 - x_2 - x_4 \ge -2$$

The second constraint is equivalent to the two constraints:

$$3x_2 - x_3 \ge 5$$
 and $3x_2 - x_3 \le 5$ (i.e., $-3x_2 + x_3 \ge -5$)

Writing LPs in " \geq " form

minimize
$$2x_1-x_2+4x_3$$
 objective function subject to
$$x_1+x_2-x_3+x_4\leq 2\\3x_2-x_3+x_3=5\\x_3+x_4\geq 3$$
 constraints
$$x_1,x_2,x_3,x_4\geq 0$$
 non-negativity

Notice that:

• The first constraint can also be rewritten as

$$-x_1 - x_2 - x_4 \ge -2$$

The second constraint is equivalent to the two constraints:

$$3x_2 - x_3 \ge 5$$
 and $3x_2 - x_3 \le 5$ (i.e., $-3x_2 + x_3 \ge -5$).

Writing LPs in " \geq " form

minimize
$$2x_1-x_2+4x_3$$
 objective function subject to
$$x_1+x_2+x_3+x_4\leq 2 \\ 3x_2-x_3+x_4 \leq 3 \\ x_3+x_4\geq 3$$
 constraints
$$x_1,x_2,x_3,x_4\geq 0$$
 non-negativity

Notice that:

• The first constraint can also be rewritten as

$$-x_1 - x_2 - x_4 \ge -2$$

• The second constraint is equivalent to the two constraints:

$$3x_2 - x_3 \ge 5$$
 and $3x_2 - x_3 \le 5$ (i.e., $-3x_2 + x_3 \ge -5$).

Therefore any linear programming problem can then be written as:

minimize
$$c^T x$$
 subject to $Ax \ge b$, $x \ge 0$.

• We can write any linear programming problem in " \geq " form.

• We can write any linear programming problem in " \geq " form.

 A vector x is feasible to the first LP if and only if it is feasible to the second LP.

• We can write any linear programming problem in " \geq " form.

$$\begin{aligned} & \min \quad c^T x \\ & \text{s. t.} \quad Ax \geq b, \ x \geq 0 \end{aligned}$$
 where
$$c^T = (2, \ -1, \ 4, \ 0),$$

$$A = \begin{bmatrix} -1 & -1 & 0 & -1 \\ 0 & 3 & -1 & 0 \\ 0 & -3 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix},$$

and,
$$b^T = (-2, 5, -5, 3)$$
.

min
$$2x_1 - x_2 + 4x_3$$

s. t. $-x_1 - x_2 - x_4 \ge -2$
 $3x_2 - x_3 \ge 5$
 $-3x_2 + x_3 \ge -5$
 $x_3 + x_4 \ge 3$
 $x_1, x_2, x_3, x_4 \ge 0$

• We can write any linear programming problem in " \geq " form.

where

$$c^T = (2, -1, 4, 0),$$

$$A = \begin{bmatrix} -1 & -1 & 0 & -1 \\ 0 & 3 & -1 & 0 \\ 0 & -3 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \qquad \begin{array}{c} \text{Data for this LP:} \\ \bullet \ n \ \text{variables,} \ c \in \mathbb{R}^n \\ \bullet \ m \ \text{constraints,} \ b \in \mathbb{R}^n \\ \end{array}$$

and,
$$b^T = (-2, 5, -5, 3)$$
.

$$\begin{array}{lllll} \min & 2x_1 - x_2 + 4x_3 \\ \text{s. t.} & -x_1 - x_2 - x_4 & \geq & -2 \\ & & 3x_2 - x_3 & \geq & 5 \\ & & -3x_2 + x_3 & \geq & -5 \\ & & x_3 + x_4 & \geq & 3 \\ & & x_1, x_2, x_3, x_4 & \geq & 0 \end{array}$$

- m constraints, $b \in \mathbb{R}^m$
- $A \in \mathbb{R}^{m \times n}$

Sometimes it is more natural to write LPs in "≤" form.

$$\begin{array}{llll} \min & 2x_1 - x_2 + 4x_3 \\ \text{s. t.} & x_1 + x_2 + x_4 & \leq & 2 \\ & -3x_2 + x_3 & \leq & -5 \\ & 3x_2 - x_3 & \leq & 5 \\ & -x_3 - x_4 & \leq & -3 \\ & x_1, x_2, x_3, x_4 & \geq & 0 \end{array}$$

Sometimes it is more natural to write LPs in "≤" form.

min
$$2x_1 - x_2 + 4x_3$$
 min $2x_1 - x_2 + 4x_3$
s.t. $-x_1 - x_2 - x_4 \ge -2$ s.t. $x_1 + x_2 + x_4 \le 2$
 $3x_2 - x_3 \ge 5$ $-3x_2 + x_3 \le -5$
 $-3x_2 + x_3 \ge -5$ $3x_2 - x_3 \le 5$
 $x_3 + x_4 \ge 3$ $-x_3 - x_4 \le -3$
 $x_1, x_2, x_3, x_4 \ge 0$ $x_1, x_2, x_3, x_4 \ge 0$

Example LP in matrix notation cont. again

• We can also write LPs in (standard) "=" form.

$$\begin{array}{llll} \min & 2x_1 - x_2 + 4x_3 \\ \text{s.t.} & x_1 + x_2 + x_4 & \leq & 2 \\ & & 3x_2 - x_3 & = & 5 \\ & & & x_3 + x_4 & \geq & 3 \\ & & & x_1, x_2, x_3, x_4 & \geq & 0 \end{array}$$

min
$$c^T x$$

s.t. $Ax + Is = b$
 $x \ge 0, s \ge 0$

$$\longrightarrow$$

min
$$c^{2}x$$

s.t. $Ax - Is = b$
 $x \ge 0, s \ge 0$

Example LP in matrix notation cont. again

• We can also write LPs in (standard) "=" form.

min
$$2x_1 - x_2 + 4x_3$$
 min $2x_1 - x_2 + 4x_3$
s.t. $x_1 + x_2 + x_4 \le 2$ s.t. $x_1 + x_2 + x_4 + s_1 = 2$
 $3x_2 - x_3 = 5$ $3x_2 - x_3 = 5$
 $x_3 + x_4 \ge 3$ $x_3 + x_4 - s_3 = 3$
 $x_1, x_2, x_3, x_4 \ge 0$ $x_1, x_2, x_3, x_4 \ge 0$
 $s_1, s_3 \ge 0$

Halfspaces

• A hyperplane in \mathbb{R}^n is the set points $x \in \mathbb{R}^n$ that satisfy the equation

$$a^T x = b \iff a_1 x_1 + a_2 x_2 + \ldots + a_n x_n = b$$

This set of points divide the space \mathbb{R}^n into two halfspaces.

Example: Consider the line $2x_1 + 3x_2 = 6$ in \mathbb{R}^2

Halfspaces

All points in one of the halfspaces satisfy the inequality

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \ge b$$

• Points in the other satisfy

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \leq b.$$

• The vector $a = (a_1, a_2, \dots, a_n)^T$ points in the direction where the points satisfying $a_1x_1 + a_2x_2 + \dots + a_nx_n \ge b$ are.

Geometrically an LP looks like

Intersecting all constraints (halfspaces) gives the feasible set ${\cal P}$ (polyhedron)

Solving the LP \equiv find a point $x \in P$ with minimum c^Tx .

min
$$||x_1 + ||x_2||$$

 $2x_1 + 3x_2 \ge 6$
 $-x_1 + 2x_2 \le 2$
 $5x_1 + ||x_2| \ge 10$

If there is an opt. solution, then there is an extreme point opt. solution

$$\underbrace{2x_1 + 3x_2 = 6, \ 5x_1 + x_2 = 10}_{\text{both constraints satisfied at equality (tight)}} \implies x = \left(\frac{24}{13}, \frac{10}{13}\right)$$

Optimal solutions of LPs

• Given a generic LP with *n* variables:

$$min c^T x
s. t. Ax \ge b
 x \ge 0$$

- There are four possible (mutually exclusive) outcomes:
 - (a) The feasible set P might be empty (problem is infeasible)

$$P = \left\{ x \in \mathbb{R}^n : Ax \ge b, \ x \ge 0 \right\} = \emptyset$$

- (b) There might be a unique optimal solution (one and only one).
- (c) There might be multiple optimal solutions. (all with the same objective value)
- (d) The objective value might be unbounded $(-\infty)$: No feasible solution is optimal.

Example: Infeasible problem

min
$$x_1 + x_2$$

 $x_1 - x_2 \ge 0$
 $x_1 + x_2 \le 2$
 $x_1 + x_2 \ge 2$

$$P = \{x \in \mathbb{R}^2 : x_1 - x_2 \ge 0, \ x_1 + x_2 \le 2, \ x_2 \ge 2\} = \emptyset$$

Example: Unbounded problem

$$\max \quad 2x_1 + 2x_2$$

$$2x_1 - 2x_2 \ge -1$$

$$2x_1 - 2x_2 \le 1$$

$$2x_1 + 2x_2 \ge 3/2$$

- 1. $P = \{x \in \mathbb{R}^2 : 2x_1 2x_2 \ge -1, x_1 x_2 \le 1, x_2 \ge 3/2\} \ne \emptyset$
- 2. For any $x \in P$, there exists a $x' \in P$ such that $c^T x' \ge c^T x + 1$

Note: If an LP is unbounded, its feasible region must be unbounded.

. But, an LP can be bounded while its feasible region is unbounded.

Example: Multiple optima

min
$$3x_1 + 3x_2$$

 $2x_1 - 2x_2 \ge -1$
 $2x_1 - 2x_2 \le 1$
 $2x_1 + 3x_2 \ge 6$

$$P = \{x \in \mathbb{R}^2 : 2x_1 - 2x_2 \ge -1, \ x_1 - x_2 \le 1, \ x_1 + 3x_2 = 6\} \ne \emptyset$$

In conclusion an LP is either

- Feasible or infeasible.
- If feasible, the optimal value is either bounded or unbounded.
- If feasible and bounded, optimial solution may not be unique.

Example: Multiple optima

$$P = \{x \in \mathbb{R}^2 : 2x_1 - 2x_2 \ge -1, x_1 - x_2 \le 1, x_1 + 3x_2 = 6\} \ne \emptyset$$

In conclusion an LP is either

- Feasible or infeasible.
- If feasible, the optimal value is either bounded or unbounded.
- If feasible and bounded, optimial solution may not be unique.

Upper/lower bounds and LP duality

Upper and lower bounds for minimization problems

• Consider an optimization problem:

the optimal value
$$\longrightarrow \ z^* = \min_{x \in X} \ f(x)$$
 where $\ X \subseteq \mathbb{R}^n$

- U is an upper bound for z^* , (so are U' and U'')
- L is a lower bound for z^* (L' is a lower bound as well)

Upper bounds for minimization problems

• Given an optimization problem:

$$z^* = \min_{x \in X} f(x)$$
 where $X \subseteq \mathbb{R}^n$

 \bullet An upper bound $U \in \mathbb{R}$ is a number that can be certified to be greater than or equal to z^*

In other words:
$$\min_{x \in X} f(x) \le U$$

This does not mean

$$f(x) \le U$$
 for all $x \in X$

It is perfectly OK if there are solutions $x' \in X$ such that

ullet We only need the condition to hold for the optimal solution $x^*\in X$

$$f(x^*) \le U$$

- We can obtain upper bounds without solving the problem to optimality.
 - For example, any feasible point $\bar{x} \in X$ gives an upper bound

$$U = f(\bar{x})$$

Upper bounds for minimization problems

• Given an optimization problem:

$$z^* = \min_{x \in X} f(x)$$
 where $X \subseteq \mathbb{R}^n$

 \bullet An upper bound $U \in \mathbb{R}$ is a number that can be certified to be greater than or equal to z^*

In other words:
$$\min_{x \in X} f(x) \leq U$$

This does not mean

$$f(x) \le U$$
 for all $x \in X$

It is perfectly OK if there are solutions $x' \in X$ such that

ullet We only need the condition to hold for the optimal solution $x^*\in X$

$$f(x^*) \le U$$

• We can obtain upper bounds without solving the problem to optimality.

$$U = f(\bar{x})$$

Upper bounds for minimization problems

• Given an optimization problem:

$$z^* = \min_{x \in X} f(x)$$
 where $X \subseteq \mathbb{R}^n$

 \bullet An upper bound $U \in \mathbb{R}$ is a number that can be certified to be greater than or equal to z^*

In other words:
$$\min_{x \in X} f(x) \leq U$$

• This does not mean

$$f(x) \le U$$
 for all $x \in X$

It is perfectly OK if there are solutions $x' \in X$ such that

• We only need the condition to hold for the optimal solution $x^* \in X$

$$f(x^*) < U$$

- We can obtain upper bounds without solving the problem to optimality.
 - For example, **any** feasible point $\bar{x} \in X$ gives an upper bound

$$U = f(\bar{x})$$

Upper bounds for minimization problems: LP example

• Consider the LP with 4 variables:

$$z^* = \min 2x_1 - x_2 + 4x_3$$
s.t.
$$x_1 + x_2 + x_4 \leq 6$$

$$3x_2 - x_3 = 5$$

$$x_3 + x_4 \geq 2$$

$$x_1, x_2, x_3, x_4 \geq 0$$

• And consider the point (or, solution):

$$\bar{x} = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 2 \end{bmatrix} \quad \begin{array}{l} \leftarrow \bar{x}_1 \\ \leftarrow \bar{x}_2 \\ \leftarrow \bar{x}_3 \\ \leftarrow \bar{x}_4 \end{array}$$

- The point \bar{x} is feasible as it satisfies all constraints.
- It has an objective function value of : 2(0) 1(2) + 4(1) + 0(2) = 2
- Since we are minimizing, we conclude that z^* cannot be larger than 2.
- Therefore, U=2 is **an** upper bound for this LP. $\longleftarrow z^* \leq 2$

A slight detour

The LP:

$$z^* = \min 2x_1 - x_2 + 4x_3$$
s. t.
$$x_1 + x_2 + x_4 \le 6$$

$$3x_2 - x_3 = 5$$

$$x_3 + x_4 \ge 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

A feasible solution:

$$\bar{x} \ = \left[\begin{array}{c} 0 \\ 2 \\ 1 \\ 2 \end{array} \right] \quad \begin{array}{c} \leftarrow \bar{x}_1 \\ \leftarrow \bar{x}_2 \\ \leftarrow \bar{x}_3 \\ \leftarrow \bar{x}_4 \end{array}$$

with

$$c^T\bar{x} = 2 \ \longleftarrow \ \text{an UB on} \ z^*$$

Question: Is this solution optimal? \rightarrow Not sure: maybe, maybe not.

Question: Is this an extreme point solution? \rightarrow NO

- The feasible set lives in \mathbb{R}^4 .
- An ext. pt. must satisfy 4 linearly indep. constraints as equality
- \bar{x} only satisfies two: $3x_2 x_3 = 5$ and $x_1 \ge 0$ constraint

Here is an ex. pt: $\hat{x}^T = [0, 5/3, 0, 2]$ with $c^T \hat{x} = -5/3 \leftarrow$ a better UB

A slight detour

The LP:

$$z^* = \min 2x_1 - x_2 + 4x_3$$
s. t.
$$x_1 + x_2 + x_4 \le 6$$

$$3x_2 - x_3 = 5$$

$$x_3 + x_4 \ge 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

A feasible solution:

$$\bar{x} \ = \left[\begin{array}{c} 0 \\ 2 \\ 1 \\ 2 \end{array} \right] \quad \begin{array}{c} \leftarrow \bar{x}_1 \\ \leftarrow \bar{x}_2 \\ \leftarrow \bar{x}_3 \\ \leftarrow \bar{x}_4 \end{array}$$

with

$$c^T \bar{x} = 2 \longleftarrow \text{ an UB on } z^*$$

Question: Is this solution optimal? \rightarrow Not sure: maybe, maybe not.

Question: Is this an extreme point solution? \rightarrow NO!

- The feasible set lives in \mathbb{R}^4 .
- An ext. pt. must satisfy 4 linearly indep. constraints as equality
- \bar{x} only satisfies two: $3x_2 x_3 = 5$ and $x_1 \ge 0$ constraint

Here is an ex. pt: $\hat{x}^T = [0, 5/3, 0, 2]$ with $c^T \hat{x} = -5/3 \leftarrow$ a better UB

A slight detour

The LP:

$$z^* = \min 2x_1 - x_2 + 4x_3$$
s. t.
$$x_1 + x_2 + x_4 \le 6$$

$$3x_2 - x_3 = 5$$

$$x_3 + x_4 \ge 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

A feasible solution:

$$\bar{x} \ = \left[\begin{array}{c} 0 \\ 2 \\ 1 \\ 2 \end{array} \right] \quad \begin{array}{c} \leftarrow \bar{x}_1 \\ \leftarrow \bar{x}_2 \\ \leftarrow \bar{x}_3 \\ \leftarrow \bar{x}_4 \end{array}$$

with

$$c^T \bar{x} = 2 \longleftrightarrow \text{ an UB on } z^*$$

Question: Is this solution optimal? \rightarrow Not sure: maybe, maybe not.

Question: Is this an extreme point solution? \rightarrow NO!

- The feasible set lives in \mathbb{R}^4 .
- An ext. pt. must satisfy 4 linearly indep. constraints as equality
- \bar{x} only satisfies two: $3x_2 x_3 = 5$ and $x_1 \ge 0$ constraint

Here is an ex. pt: $\hat{x}^T = [0, 5/3, 0, 2]$ with $c^T \hat{x} = -5/3 \leftarrow$ a better UB

A slight detour

The LP:

$$z^* = \min 2x_1 - x_2 + 4x_3$$
s. t.
$$x_1 + x_2 + x_4 \le 6$$

$$3x_2 - x_3 = 5$$

$$x_3 + x_4 \ge 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

A feasible solution:

$$\bar{x} = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 2 \end{bmatrix} \quad \begin{array}{l} \leftarrow \bar{x}_1 \\ \leftarrow \bar{x}_2 \\ \leftarrow \bar{x}_3 \\ \leftarrow \bar{x}_4 \end{array}$$

with

$$c^T\bar{x} = 2 \ \longleftarrow \ \text{an UB on} \ z^*$$

Question: Is this solution optimal? \rightarrow Not sure: maybe, maybe not.

Question: Is this an extreme point solution? \rightarrow NO!

- The feasible set lives in \mathbb{R}^4 .
- An ext. pt. must satisfy 4 linearly indep. constraints as equality
- \bar{x} only satisfies two: $3x_2 x_3 = 5$ and $x_1 \ge 0$ constraint

Here is an ex. pt: $\hat{x}^T = [0, 5/3, 0, 2]$ with $c^T \hat{x} = -5/3 \leftarrow$ a better UB

A slight detour

The LP:

$$z^* = \min 2x_1 - x_2 + 4x_3$$
s. t.
$$x_1 + x_2 + x_4 \le 6$$

$$3x_2 - x_3 = 5$$

$$x_3 + x_4 \ge 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

A feasible solution:

$$\bar{x} \ = \left[\begin{array}{c} 0 \\ 2 \\ 1 \\ 2 \end{array} \right] \quad \begin{array}{c} \leftarrow \bar{x}_1 \\ \leftarrow \bar{x}_2 \\ \leftarrow \bar{x}_3 \\ \leftarrow \bar{x}_4 \end{array}$$

with

$$c^T\bar{x} = 2 \ \longleftarrow \ \text{an UB on} \ z^*$$

Question: Is this solution optimal? \rightarrow Not sure: maybe, maybe not.

Question: Is this an extreme point solution? \rightarrow NO!

- The feasible set lives in \mathbb{R}^4 .
- An ext. pt. must satisfy 4 linearly indep. constraints as equality
- \bar{x} only satisfies two: $3x_2 x_3 = 5$ and $x_1 \ge 0$ constraint

Here is an ex. pt: $\hat{x}^T = [0, 5/3, 0, 2]$ with $c^T \hat{x} = -5/3 \leftarrow$ a better UB

Lower bounds for minimization problems

Again consider the optimization problem:

$$z^* = \min_{x \in X} f(x)$$
 where $X \subseteq \mathbb{R}^n$

• A lower bound $L \in \mathbb{R}$ is a number that can be certified to be less than or equal to z^* .

In other words:
$$\min_{x \in X} f(x) \ge L$$

- We have to make sure that the best solution has to have an objective value larger than or equal to L.
- Which means that

$$f(x) \ge L$$
 for all $x \in X$

- Finding lower bounds is usually complicated.
 - For LP problems, remember the weak duality theorem:
 (Feasible solutions to the dual give lower bounds for the primal LP.)

Lower bounds for minimization problems: LP Example

• Consider the following simple (feasible) LP with 2 variables:

$$z^* = \min 2x_1 + 6x_2$$

s. t. $x_1 + 3x_2 \ge 2$.

- We would like to find a lower bound L for z^* .
- ullet L must be less than the objective value of **all** feasible solutions.
- Consider an arbitrary feasible point $\bar{x} = [\bar{x}_1, \bar{x}_2]$
- As \bar{x} is feasible, we know that $\bar{x}_1 + 3\bar{x}_2 \geq 2$ and therefore

$$2\bar{x}_1 + 6\bar{x}_2 \ge 4$$

• As this holds for all feasible points, we have:

$$z^* \geq 4 \quad \leftarrow \quad L = 4$$
 is a lower bound on z^*

Lower bounds for minimization problems: LP Example

• Consider the following simple (feasible) LP with 2 variables:

$$z^* = \min 2x_1 + 6x_2$$

s. t. $x_1 + 3x_2 \ge 2$.

- We would like to find a lower bound L for z^* .
- L must be less than the objective value of **all** feasible solutions.
- Consider an arbitrary feasible point $\bar{x} = [\bar{x}_1, \bar{x}_2]$
- As \bar{x} is feasible, we know that $\bar{x}_1 + 3\bar{x}_2 \geq 2$ and therefore

$$2\bar{x}_1 + 6\bar{x}_2 \ge 4$$

As this holds for all feasible points, we have:

$$z^* \geq 4 \quad \leftarrow \quad L = 4 \text{ is a lower bound on } z^*$$

Lower bounds for minimization: Another LP example

• Let's try a different example:

$$z^* = \min x_1 + 3x_2$$

s.t. $x_1 + x_2 \ge 4$
 $x_2 \ge 1$.

- How can we express the objective function in terms of the constraints?
- We can do it by summing the constraints as follows:

$$x_1 + x_2 \ge 4$$

$$+ 2 \cdot (x_2 \ge 1)$$

$$= x_1 + 3x_2 \ge 6$$

• As this holds for all feasible points, we have:

$$z^* \geq 6 \quad \leftarrow \quad L = 6 \text{ is a lower bound on } z^*$$

Lower bounds for minimization: Another LP example

• Let's try a different example:

$$z^* = \min x_1 + 3x_2$$

s.t. $x_1 + x_2 \ge 4$
 $x_2 \ge 1$.

- How can we express the objective function in terms of the constraints?
- We can do it by summing the constraints as follows:

$$x_1 + x_2 \ge 4$$
+ 2 \cdot (x_2 \ge 1)
= x_1 + 3x_2 \ge 6

• As this holds for all feasible points, we have:

$$z^* \ge 6 \quad \leftarrow \quad L = 6 \text{ is a lower bound on } z^*$$

Lower bounds for minimization: One last LP example

• Here is a more interesting example:

$$z^* = \min x_1 + 3x_2$$

s. t. $x_1 + x_2 \ge 2$
 $x_2 \ge 1$
 $x_1 - x_2 \ge 3$.

- How can we express the objective function in terms of the constraints?
- For any choice of $p_1, p_2, p_3 \ge 0$ we can write

$$p_1 \cdot (x_1 + x_2 \ge 2) + p_2 \cdot (x_2 \ge 1) + p_3 \cdot (x_1 - x_2 \ge 3)$$

$$\Rightarrow \underbrace{(p_1+p_3)}_{\text{if }=1} x_1 + \underbrace{(p_1+p_2-p_3)}_{\text{and if }=3} x_2 \ \geq \underbrace{2p_1+p_2+3p_3}_{\text{then you obtain } L}$$

- The lower bound L we obtain depends on the choice of p:
 - $-p_1 = 1, p_2 = 2, p_3 = 0$ gives us the lower bound L = 4.
 - $-v_1 = 0$, $v_2 = 4$, $v_3 = 1$ gives us the lower bound L = 7.

Lower bounds for minimization: One last LP example

• Here is a more interesting example:

$$z^* = \min x_1 + 3x_2$$

s. t. $x_1 + x_2 \ge 2$
 $x_2 \ge 1$
 $x_1 - x_2 \ge 3$.

- How can we express the objective function in terms of the constraints?
- For any choice of $p_1, p_2, p_3 \ge 0$ we can write

$$p_1 \cdot (x_1 + x_2 \ge 2) + p_2 \cdot (x_2 \ge 1) + p_3 \cdot (x_1 - x_2 \ge 3)$$

$$\Rightarrow \underbrace{(p_1+p_3)}_{\text{if }=1} x_1 + \underbrace{(p_1+p_2-p_3)}_{\text{and if }=3} x_2 \ \geq \underbrace{2p_1+p_2+3p_3}_{\text{then you obtain } L}$$

- The lower bound L we obtain depends on the choice of p:
 - $-p_1=1$, $p_2=2$, $p_3=0$ gives us the lower bound L=4.
 - $-p_1 = 0, p_2 = 4, p_3 = 1$ gives us the lower bound L = 7.

LP Duality

• A natural question is: how can we obtain the **best** lower bound on z^* ?

$$z^* = \min x_1 + 3x_2$$

s. t. $x_1 + x_2 \ge 2$
 $x_2 \ge 1$
 $x_1 - x_2 \ge 3$.

• Maximize $2p_1 + p_2 + 3p_3$ over the constraints that p should satisfy:

$$w^* = \max 2p_1 + p_2 + 3p_3$$

s. t. $p_1 + p_3 = 1$
 $p_1 + p_2 - p_3 = 3$
 $p_1, p_2, p_3 \ge 0$.

ullet This is the dual LP and w^* gives the best lower bound on z^*

LP Duality

• A natural question is: how can we obtain the best lower bound on z^* ?

$$z^* = \min x_1 + 3x_2$$

s.t. $x_1 + x_2 \ge 2$
 $x_2 \ge 1$
 $x_1 - x_2 \ge 3$.

• Maximize $2p_1 + p_2 + 3p_3$ over the constraints that p should satisfy:

$$w^* = \max 2p_1 + p_2 + 3p_3$$
 s. t.
$$p_1 + p_3 = 1$$

$$p_1 + p_2 - p_3 = 3$$

$$p_1, p_2, p_3 \ge 0.$$

Dual

ullet This is the dual LP and w^* gives the best lower bound on z^*

Б	Derive of		Duai
r	Primal		1.T
minimize c	T_{-}	maximize	o p
mınımıze c	x	1. :	AT
subject to A	1x > b	subject to	A p = c
subject to A	$1.t \ge 0$		p > 0.
			$p \geq 0$.

Non-negativity constraints

• Example:

$$z^* = \min \quad x_1 + 3x_2$$

s. t. $x_1 + x_2 \ge 2$
 $x_2 \ge 1$
 $x_1 - x_2 \ge 3$
 $x_1 \ge 0$
 $x_2 \ge 0$.

• For any choice of $p_1, p_2, p_3, p_4, p_5 \ge 0$ we can write

$$p_1 \cdot (x_1 + x_2 \ge 2) + p_2 \cdot (x_2 \ge 1) + p_3 \cdot (x_1 - x_2 \ge 3) + p_4 \cdot (x_1 \ge 0) + p_5 \cdot (x_2 \ge 0)$$

$$\Rightarrow \underbrace{(p_1+p_3+p_4)}_{\text{if }=1} x_1 + \underbrace{(p_1+p_2-p_3+p_5)}_{\text{and if }=3} x_2 \ \geq \underbrace{2p_1+p_2+3p_3}_{\text{then you obtain } L}$$

- The lower bound L we obtain depends on the choice of p:
- Find the best p using linear programming

• To find the best lower bound on z^* :

$$z^* = \min x_1 + 3x_2$$

s.t. $x_1 + x_2 \ge 2$
 $x_2 \ge 1$
 $x_1 - x_2 \ge 3$
 $x_1 \ge 0$
 $x_2 \ge 0$.

• Maximize $2p_1 + p_2 + 3p_3$ over the constraints that p should satisfy:

$$\max 2p_1 + p_2 + 3p_3$$
s. t. $p_1 + p_3 + p_4 = 1$

$$p_1 + p_2 - p_3 + p_5 = 3$$

$$p_1, p_2, p_3, p_4, p_5 \ge 0.$$

$$\begin{array}{ll} \max & 2p_1 + p_2 + 3p_3 \\ \text{s. t.} & p_1 + p_3 \leq 1 \\ & p_1 + p_2 - p_3 \leq 3 \\ & p_1, p_2, p_3 \geq 0. \end{array}$$

Prima

 $\min c^T x \quad \text{s. t. } Ax \ge b, \ x \ge 0$

Dual

 $\max b^T p \quad \text{s. t. } A^T p \le c, \ p \ge 0.$

• To find the best lower bound on z^* :

$$z^* = \min x_1 + 3x_2$$

s. t. $x_1 + x_2 \ge 2$
 $x_2 \ge 1$
 $x_1 - x_2 \ge 3$
 $x_1 \ge 0$
 $x_2 \ge 0$.

• Maximize $2p_1 + p_2 + 3p_3$ over the constraints that p should satisfy:

$$\max 2p_1 + p_2 + 3p_3$$

s. t.
$$p_1 + p_3 + p_4 = 1$$

$$p_1 + p_2 - p_3 + p_5 = 3$$

$$p_1, p_2, p_3, p_4, p_5 \ge 0.$$

$$\iff$$

$$\begin{aligned} \max & & 2p_1 + p_2 + 3p_3 \\ \text{s. t.} & & p_1 + p_3 \leq 1 \\ & & p_1 + p_2 - p_3 \leq 3 \\ & & p_1, p_2, p_3 \geq 0. \end{aligned}$$

Primal

 $\min c^T x \quad \text{s. t. } Ax \ge b, \ x \ge 0$

Dual

 $\max b^T p \quad \text{s. t. } A^T p \le c, \ p \ge 0.$

Lower bounds via duality

• For any LP, there is a corresponding dual LP.

	Primal LP		Its Dual LP
minimize	$4x_1 + 3x_2$	maximize	$2p_1 + 1p_2 + 3p_3$
subject to	$1x_1 + 1x_2 \ge 2$	subject to	$1p_1 + 0p_2 + 1p_3 \le 4$
	$0x_1 + 1x_2 \ge 1$		$1p_1 + 1p_2 - 1p_3 \le 3$
	$1x_1 - 1x_2 \ge 3,$		$p_1, p_2, p_3 \ge 0.$
	$x_1, x_2 > 0$.		

More generally:

$Ax \ge b$	

Lower bounds via duality

• For any LP, there is a corresponding dual LP.

	Primal LP		Its Dual LP
minimize	$4x_1 + 3x_2$	maximize	$2p_1 + 1p_2 + 3p_3$
subject to	$1x_1 + 1x_2 \ge 2$	subject to	$1p_1 + 0p_2 + 1p_3 \le 4$
	$0x_1 + 1x_2 \ge 1$		$1p_1 + 1p_2 - 1p_3 \le 3$
	$1x_1 - 1x_2 \ge 3,$		$p_1, p_2, p_3 \ge 0.$
	$x_1, x_2 > 0$		

More generally:

	Primal		Dual
minimize	$c^T x$	maximize	$b^T p$
subject to	$Ax \ge b$	subject to	$A^T p \le c$
	$x \ge 0$		$p \ge 0$.

Weak Duality Thm: If \bar{x} is primal feasible and \bar{p} is dual feasible

(min. objective)
$$c^T \bar{x} \ge b^T \bar{p}$$
 (max. objective)

Lower bounds via duality

• For any LP, there is a corresponding dual LP.

	Primal LP		Its Dual LP
minimize	$4x_1 + 3x_2$	maximize	$2p_1 + 1p_2 + 3p_3$
subject to	$1x_1 + 1x_2 \ge 2$	subject to	$1p_1 + 0p_2 + 1p_3 \le 4$
	$0x_1 + 1x_2 \ge 1$		$1p_1 + 1p_2 - 1p_3 \le 3$
	$1x_1 - 1x_2 \ge 3,$		$p_1, p_2, p_3 \ge 0.$
	$x_1, x_2 \ge 0.$		

More generally:

Strong Duality Thm: If x^* is primal optimal and p^* is dual optimal:

(min. objective) $c^T x^* = b^T p^*$ (max. objective)