Minho Jang

About Me _____

Passionate about missile defense, I specialize in guidance, navigation, and control (GNC) systems grounded in optimal control theory.

My expertise lies in designing guidance and control systems for missiles. I specialize in model predictive control (MPC) for optimizing online trajectory decisions, and Kalman filter (KF) techniques for accurate state estimation under uncertainty. I have also developed interacting multiple model (IMM) algorithms to robustly track maneuvering targets. Recently, I have been exploring the integration of reinforcement learning and deep neural networks to enhance adaptability and decision-making capabilities in complex environments.

With a solid foundation in modeling & simulation for missile defense systems and a strong research background, I'm committed to advancing next-generation missile GNC technologies and addressing complex aerospace challenges.

Areas of Expertise _____

- Missile Guidance, Navigation, and Control
- Guidance Law Design: Nonlinear Model Predictive Control, Optimal Trajectory Generation
- Navigation Filtering: Extended Kalman Filter Design, Interacting Multiple Model Algorithms
- Autopilot Design (Three-Loop Architecture) and Trajectory Optimization
- 6-DOF Missile Modeling and Simulation
- Data-Driven and Learning-Based Control: Reinforcement Learning, Deep Neural Networks

Education _____

M.S. Sejong University

Seoul, Republic of Korea

Aerospace Engineering

Sep. 2021 – Aug. 2025

- Advisor: Prof. Sungsu Park &
- Lab: Flight Dynamics and Control Laboratory
- Thesis Nonlinear Model Predictive Control for Guidance Law with Target Input Estimation
- Coursework: Flight Dynamics and Control; Guidance, Navigation, and Control (GNC); Optimal/Nonlinear Control; Orbital Mechanics; Classical Mechanics

B.S. Chonnam National University

Gwangju, Republic of Korea

Electronics and Computer Engineering

Mar. 2015 - Aug. 2021

• Advisor: Prof. Jinyoung Kim 🔊

• Lab: Intelligent Electronics Laboratory

• GPA: 3.91/4.5

 Coursework: Control Theory; Digital Signal Process (DSP); Electrical/Electronic Circuit Theory; Microprocessor; Dynamics

Experiences _____

Sejong University Seoul, Republic of Korea

Graduate Research Assistant & Teaching Assistant

Sep. 2021 – Aug. 2025

- Research Assistant:
 - Member of Flight Dynamics and Control (FDCL) Lab.
 - Development of Localization Technology for Wind Power Control Systems
 - Fundamental Research on Electromagnetic Modeling for Electronic Warfare Systems [EW42: Modeling of Radar-Guided Systems for Electronic Warfare]
- Teaching Assistant:
 - AE006885 Flight Mechanics
 - AE002390 Aerospace Software Applications I
 - AE004642 Dynamics
 - Assisted with grading, programming assignments, and practical instruction across multiple key aerospace engineering courses

Seoul National University

Seoul, Republic of Korea

Exchange Student Program, Department of Mechanical and Aerospace Engineering

Sep. 2020 – Dec. 2020

- Completed advanced coursework in model predictive control as part of a control systems curriculum (ECE430.456)
- Bridged academic backgrounds in electronics engineering with aerospace applications through coursework in Aerospace Traffic and Navigation Systems (MAE2795.004600)
- Gained interdisciplinary exposure to modern control theory and aerospace engineering, deepening understanding of autonomous systems and guidance technologies

Chonnam National University

Gwangju, Republic of Korea

Glocal Specialization Exploration Program

CA, USA

- Selected for a university-sponsored overseas program aimed at exploring global research environments and cutting-edge industrial technologies
- Visited the Robotics & Mechanisms Laboratory (<u>RoMeLa</u> •) at UCLA, led by Prof. Dennis Hong, to observe research on robotics and AI-based autonomous systems
- Explored the Stanford University campus to gain insight into Silicon Valley's innovation ecosystem and global academic culture in electronics and computer engineering
- Visited Google headquarters to discuss industrial applications and future directions of artificial intelligence and deep learning with an engineering expert
- At Tesla headquarters, engaged with a Korean engineer working on autonomous driving systems and deepened understanding of computer vision and image processing technologies applied in real-world automotive systems

Jul. 2017 - Aug. 2017

Publications.

Journal

• [J.3] **Minho Jang**, M. Kim, and S. Park

A Look Angle-based Nonlinear Model Predictive Control Guidance with Target Input Estimation

Under review

IEEE Transactions on Aerospace and Electronic Systems (TAES)

• [J.2] **Minho Jang**, M. Kim, D. Jang, and S. Park Capturability Analysis of the Composite Pursuit Guidance Law *IEEE Transactions on Aerospace and Electronic Systems (TAES)*

Accepted

[J.1] M. Kim, Minho Jang, and S. Park
 A Data-Driven Model Predictive Control for Wind Farm Power Maximization

Jul. 2024 🔗

Conference

• [C.5] **Minho Jang**, M. Kim, H. Lim, D. Lee, and S. Park
Study on Missile Evasion for Unmanned Aircraft using Artificial Potential Field

Conference of the Korean Society for Aeronautical and Space Sciences (KSAS)

• [C.4] H. Lim, M. Kim, **Minho Jang**, D. Lee, and S. Park
Research on Halo Phasing Orbit Design based on Optimal Control

Conference of the Korean Society for Aeronautical and Space Sciences (KSAS)

• [C.3] D. Lee, M. Kim, **Minho Jang**, H. Lim, and S. Park
Lambert's Problem Solver Using Physics-Informed Neural Network

Conference of the Korean Society for Aeronautical and Space Sciences (KSAS)

• [C.2] M. Kim, H. Lim, **Minho Jang**, D. Lee, and S. Park
Wind Speed and Wind Direction Prediction Using LSTM Model

Conference of the Korean Society for Aeronautical and Space Sciences (KSAS)

• [C.1] M. Kim, **Minho Jang**, H. Lim, and S. Park
A Study on Deep Neural Network-Based Wake Modeling for Wind Farms
2022
Conference of the Korean Wind Energy Association (KWEA)

Project Experiences

Development of Localization Technology for Wind Power Control Systems

Sep. 2021 – Feb. 2025

Funded by: Ministry of Trade, Industry and Energy (MOTIE)

Managing Institution: Korea Institute of Energy Technology Evaluation and Planning (KETEP)

- Designed and deployed the FAST.Farm mid-fidelity simulator for wind farm dynamics, enabling online environmental modeling and data collection
- Applied dynamic mode decomposition (DMD) to reduce the dimensionality of highfidelity wind flow field data from FAST.Farm, improving computational efficiency

for control algorithms

- Implemented Kalman Filter-based state estimation to enhance predictive accuracy of reduced-order wind field models
- Developed a model predictive control framework to maximize total wind farm power output using the estimated flow field states
- Engineered real-time socket communication (ZeroMQ) between the central control server and distributed wind turbine controllers
- Published the research as a journal paper in collaboration with graduate researchers at Sejong University [J.1]
- Tools & Software Used: MATLAB, Fortran, Python, OpenFAST, FAST.Farm, ZeroMQ

$Fundamental\ Research\ on\ Electromagnetic\ Modeling\ for\ Electronic\ Warfare\ Systems$

[EW42: Modeling of Radar-Guided Systems for Electronic Warfare]

Funded by: Defense Acquisition Program Administration (DAPA)

Managing Institution: Agency for Defense Development (ADD)

- Assisted in the design and evaluation of guidance algorithms for anti-ship missiles, supporting analysis through simulation and system modeling
- Supported the development and implementation of missile engagement modeling and visualization using the Unity engine, enabling online scenario simulation
- Tools & Software Used: MATLAB/Simulink

Independent Research

Design of Nonlinear Model Predictive Control-Based Guidance Law

- Designed a look angle-based nonlinear model predictive control guidance framework tailored for strapdown seekers
- Developed an adaptive extended Kalman filter (AEKF) using look angle measurements from the strapdown seeker, and implemented an interacting multiple model (IMM) algorithm to estimate target inputs
- Submitted the research as a journal paper in collaboration with graduate researchers at Sejong University [J.3]
- Tools & Software Used: Julia, JuMP.jl, Ipopt.jl

Missile Aerodynamic Prediction Based on a Semi-Empirical Method

- Measured the geometric features (e.g., length, diameter) of the PAC-3 MSE missile using a 3D CAD tool to generate accurate input data
- Generated aerodynamic coefficients of the missile using Missile DATCOM based on the extracted geometry
- Constructed a look-up table (LUT) for aerodynamic coefficients, including control derivatives, and developed a neural network surrogate model to approximate and replace the LUT
- Tools & Software Used: Julia, Missile DATCOM, Autodesk Fusion, Pytorch

Development of a 6-DOF Missile Defense System Simulation Framework

• Developed a 6-DOF missile defense simulation framework under an the WGS-84

Sep. 2021 – Dec. 2021

Mar. 2025 – Present

Dec. 2024 - Mar. 2025

Jun. 2024 – Apr. 2025

Earth model, incorporating centrifugal and Coriolis accelerations as well as a zonal gravity model

- Implemented the equations of motion for a ballistic missile using aerodynamic data extracted from the PRODAS missile analysis software
- Designed an LQR-based autopilot for the interceptor missile to achieve stable trajectory control
- Integrated Google Earth terrain data to visualize and analyze missile trajectories and attitudes
- Tools & Software Used: Julia, PRODAS, Google Earth

Capturability Analysis of Composite Pursuit Guidance

- Analyzed the capturability of pure proportional navigation to identify its limitations, and designed a hybrid guidance law combining pursuit guidance to ensure a full-range capture region
- Submitted the research as a journal paper in collaboration with graduate researchers at Sejong University [J.2]
- Tools & Software Used: Matlab/Simulink, Python

A Study on Missile Evasion Strategies for Unmanned Aircraft

- Implemented and applied an artificial potential field (APF) algorithm, a classical collision avoidance technique, to enable missile evasion maneuvers
- Published the research as a conference paper in collaboration with graduate researchers at Sejong University [C.5]
- Explored missile evasion strategies using reinforcement learning approaches to enhance autonomous response capabilities
- Tools & Software Used: Python, Tensorflow, Pytorch

Technical Skills _____

Programming Languages: • MATLAB/Simulink • Julia • OpenFAST ♥ • Python • FAST.Farm ♥ • ZeroMQ ♥ • Languages: • Pytorch ♥ • JuMP.jl ♥ • Ipopt.jl ♥

Feb. 2023 - Nov. 2023