Анализ и прогнозирование гидрологических данных

Павлов Александр Сергеевич

Научный руководитель: Цеховая Татьяна Вячеславовна Рецензент: Рафеенко Екатерина Дмитриевна

Кафедра Теории Вероятностей и Математической Статистики Факультет Прикладной Математики и Информатики Белорусский Государственный Университет

Минск, 2015

Содержание

1 Обзор реализованного программного обеспечения

Модуль предварительного анализа Модуль анализа остатков Модуль вариограммного анализа

2 Детерминированный подход

Проверка на нормальность Корреляционный анализ Регрессионный анализ Регрессионная модель Качество регрессионной модели

Анализ остатков

3 Геостатистический подход

Введение Вариограммный анализ Автоматический подбор

Особенности

- Доступно с любого устройства, имеющего доступ в интернет, по адресу apaulau.shinyapps.io/batorino
- Реализовано на языке программирования R
- Логически разделёно на три модуля
- Имеет простой, быстро расширяемый гибкий интерфейс
- Широкие графические возможности
- Проверка тестов и критериев
- Мгновенный отклик на изменение параметров
- Быстрая проверка различных моделей

Модуль предварительного анализа

Рис. 1: Первичный анализ и описательные статистики

Модуль предварительного анализа

Модуль предварительного анализа

Рис. 3: Регрессионный анализ

Модуль анализа остатков

Рис. 4: Автокорреляционная функция

Модуль вариограммного анализа

Рис. 5: Возможности по подбору модели вариограммы

Модуль вариограммного анализа

Модуль вариограммного анализа

Рис. 7: Сравнение прогнозных значений

Исседуемые данные получены от учебно-научного центра «Нарочанская биологическая станция им. Г.Г.Винберга».

Исходные данные представляют собой выборку X(t), состоящую из значений средней температуры воды в июле месяце каждый год в период с 1975 по 2012 годы.

Рис. 8: Исходные данные

Проверка на нормальность

Визуально и проверкой критериев Шапиро-Уилка, χ^2 -Пирсона и Колмогороваа-Смирнова была показана близость выборочного распределения к нормальному с параметрами $\mathcal{N}(19.77, 5.12)$.

При этом выборочное распредлеение характеризуется небольшой скошенностью вправо (коэффициент асимметрии 0.30) и пологостью пика кривой распределения (-0.746) относительного нормального.

Рис. 9: График квантилей

Корреляционный анализ

С помощью критерия Граббса показано отсутствие выбросов в исходных данных.

Вычислен выборочный коэффициент корреляции: $r_{xt} = 0.454$.

При уровне значимости lpha=0.05 доказана его значимость.

Рис. 10: Диаграмма рассеяния

Выявлено, что исследуемый временной ряд является аддитивным:

$$X(t) = y(t) + \varepsilon(t), \qquad (1)$$

где y(t) — тренд, $\varepsilon(t)$ — нерегулярная составляющая.

Найдена модель тренда: y(t) = at + b = 0.1014t + 18.0521

Рис. 11: Ряд остатков $\varepsilon(t)$

Качество регрессионной модели

- С помощью критерия Стьюдента, при уровне значимости $\alpha=0.05$, доказана значимость коэффициентов регрессионной модели
- F-критерий Фишера при уровне значимости lpha = 0.05 показал адекватность модели
- Точность модели невысока, поскольку коэффициент детерминации $\eta_{x(t)}^2 = 0.275$

	X(t)	y(t)	X(t) - y(t)
2007	19.400	18.071	1.329
2008	21.800	18.181	3.619
2009	21.900	18.290	3.610
2010	24.300	18.400	5.900
2011	22.800	18.509	4.291
2012	20.200	18.619	1.581

Таблица 1: Сравнение прогнозных значений (модель y(t))

Визуально и проверкой тестов показана близость выборочного распределения к нормальному $\mathcal{N}(0.00, 4.07)$.

По графику было сделано предположение об отсутствии значимых автокорреляций. Проведённый тест Льюнга-Бокса подтвердил данное замечание.

Также было отмечено, что значения имеют небольшую амплитуду и имеют тенденцию к затуханию. Это говорит о стационарности в широком смысле, что показал расширенный тест Дики-Фуллера.

Рис. 12: Автокорреляционная функция

Рассматривается стационарный в широком смысле гауссовский случайный процесс с дискретным временем $X(t),\ t\in\mathbb{Z}$, нулевым математическим ожиданием, постоянной дисперсией и неизвестной вариограммой $2\gamma(h),\ h\in\mathbb{Z}$.

Определение 1

Вариограммой случайного процесса $X(t), t \in \mathbb{Z}$, называется функция вида

$$2\gamma(h) = V\{X(t+h) - X(t)\}, \ t, h \in \mathbb{Z}.$$

При этом функция $\gamma(h), h \in \mathbb{Z}$, называется семивариограммой.

В качестве оценки вариограммы рассматривается статистика, предложенная Матероном:

$$2\tilde{\gamma}(h) = \frac{1}{n-h} \sum_{t=1}^{n-h} (X(t+h) - X(t))^2, \quad h = \overline{0, n-1},$$
 (3)

Первые два момента оценки вариограммы

Теорема 1

Для оценки $2\tilde{\gamma}(h)$ имеют место следующие соотношения:

$$E\{2\tilde{\gamma}(h)\} = 2\gamma(h),$$

$$cov(2\tilde{\gamma}(h_1), 2\tilde{\gamma}(h_2)) =$$

$$= \frac{2}{(n-h_1)(n-h_2)} \sum_{t=1}^{n-h_1} \sum_{s=1}^{n-h_2} (\gamma(t-h_2-s) + \gamma(t+h_1-s) - \gamma(t-s) - \gamma(t+h_1-s-h_2))^2,$$

$$V\{2\tilde{\gamma}(h)\} = \frac{2}{(n-h)^2} \sum_{t,s=1}^{n-h} (\gamma(t-h-s) + \gamma(t+h-s) - 2\gamma(t-s))^2,$$

где $\gamma(h), h \in \mathbb{Z}$, — семивариограмма процесса $X(t), t \in \mathbb{Z}$, $h, h_1, h_2 = \overline{0, n-1}$.

Асимптотическое поведение оценки вариограммы

Теорема 2

Если имеет место соотношение

$$\sum_{h=-\infty}^{+\infty} |\gamma(h)| < +\infty, ag{7}$$

$$\lim_{n \to \infty} (n - \min\{h_1, h_2\}) cov\{2\tilde{\gamma}(h_1), 2\tilde{\gamma}(h_2)\} = 2 \sum_{m = -\infty}^{+\infty} \gamma(m - h_2) + \gamma(m + h_1) - \gamma(m) - \gamma(m + h_1 - h_2))^2,$$

$$\lim_{n\to\infty} (n-h)V\{2\tilde{\gamma}(h)\} = 2\sum_{m=-\infty}^{+\infty} \gamma(m-h) + \gamma(m+h) - 2\gamma(m))^2.$$

где $\gamma(h), h \in \mathbb{Z}$, — семивариограмма процесса $X(t), t \in \mathbb{Z}$, $h, h_1, h_2 = \overline{0, n-1}$.

График экспериментальной вариограммы

Линейная модель

$$\widehat{\gamma}(h) = c_0 + Lin(h) = \begin{cases} c_0 + b \cdot h, & h > 0, \\ c_0, & h \le 0, \end{cases}$$
(4)

где b — параметр, отвечающий за угол наклона, c_0 — эффект самородков.

Подобранная модель:

$$\widehat{\gamma}_1(h) = Lin(h), \quad b = 4,$$
 (5)

$$r_{\varepsilon\varepsilon^*} = -0.09129, \quad MSE = 6.324$$

Рис. 13: Модель семивариограммы $\widehat{\gamma}_{\mathbf{1}}(h)$

Рис. 14: Прогноз по модели $\widehat{\gamma}_1(h)$

Чистый эффект самородков

$$\widehat{\gamma}(h) = c \cdot Nug(h) = \begin{cases} 0, & h = 0, \\ c, & h \neq 0, \end{cases}$$
 (6)

где b — параметр, отвечающий за угол наклона, c_0 — эффект самородков.

Подобранная модель:

$$\widehat{\gamma}_2(h) = 4.04 \cdot Nug(h). \tag{7}$$

$$r_{\varepsilon\varepsilon^*}=-1, \quad \mathit{MSE}=4.199$$

Рис. 15: Модель семивариограммы $\widehat{\gamma}_1(h)$

Рис. 16: Прогноз по модели $\widehat{\gamma}_1(h)$

Линейная модель с порогом

$$\widehat{\gamma}(h) = c_0 + c \cdot Lin(h, a) =$$

$$= \begin{cases} c_0 + c \cdot \frac{h}{a}, & 0 \le h \le a, \\ c_0 + c, & h > a, \end{cases}$$
(8)

где c_0 – эффект самородков, c – порог, a – ранг.

Подобранная модель:

$$\widehat{\gamma}_4(h) = 4 \cdot Lin(h, 2). \tag{9}$$

$$r_{\varepsilon\varepsilon^*} = 0.152, \quad MSE = 18.69$$

Рис. 17: Модель семивариограммы $\widehat{\gamma}_4(h)$

Рис. 18: Прогноз по модели $\widehat{\gamma}_4(h)$

Сферическая модель

$$\widehat{\gamma}(h) = c_0 + c \cdot Sph(h, a) =$$

$$= \begin{cases} c_0 + c \cdot \left(\frac{3}{2} \frac{h}{a} - \frac{1}{2} \left(\frac{h}{a}\right)^3\right), & h \leq a, \\ c_0 + c, & h \geq a, \end{cases}$$
(10)

где c_0 — эффект самородков, c — порог, a — ранг.

Подобранная модель:

$$\hat{\gamma}_5(h) = 0.9 + 4Sph(h, 6.9),$$
 (11)

$$r_{\varepsilon\varepsilon^*} = -0.009, \quad MSE = 5.396$$

Рис. 19: Модель семивариограммы $\widehat{\gamma}_{5}(h)$

Рис. 20: Прогноз по модели $\widehat{\gamma}_5(h)$

Периодическая модель

$$\widehat{\gamma}(h) = c_0 + c \cdot Per(h, a) = 1 - cos(\frac{2\pi h}{a}), \quad (12)$$

где c_0 — эффект самородков, c — порог, a — ранг. Подобранная модель:

$$\widehat{\gamma}_{6}(h) = 4 \cdot Per(h, 0.898),$$
 (13)

$$r_{\varepsilon\varepsilon^*} = 0.404, \quad MSE = 4.369$$

Рис. 21: Модель семивариограммы $\widehat{\gamma}_6(h)$

Рис. 22: Прогноз по модели $\widehat{\gamma}_6(h)$

Периодическая модель

Подобранная модель: $3.8 + 0.32 \cdot Per(h, 1.3)$

Прогнозирование методом ординарного кригинга

Волновая модель

Подобранная модель: $4.11 + 1.65 \cdot Wav(h, 3.59)$

Прогнозирование методом ординарного кригинга

Заключение

Спасибо за внимание!