

The Inverse Trigonometric Functions

by Sophia

WHAT'S COVERED

In this lesson, you will learn about the inverse trigonometric functions and how they are evaluated.

- 1. The Inverse Trigonometric Functions
- 2. Evaluating the Inverse Sine, Cosine, and Tangent Functions for Known Ratios
- 3. Evaluating the Inverse Cosecant, Secant, and Cotangent Functions for Known Ratios

1. The Inverse Trigonometric Functions

Recall the six basic trigonometric functions: sinx, cosx, tanx, secx, cscx, and cotx.

For each of them, the input is some angle and the output is a real number.

The **inverse trigonometric functions** do just the reverse. The input is the real number, while the output is the angle that produces the ratio.

For example, we define the inverse sine function as $y = \sin^{-1} x$, which means $x = \sin y$. Looking at the equation $x = \sin y$, it's clear that x must be between -1 and 1 (inclusive) since the sine function only returns ratios between -1 and 1.

The six inverse trigonometric functions, with their domains and ranges, are summarized in the table below.

Function	Domain	Range
$y = \sin^{-1}x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$y = \cos^{-1} x$	[-1, 1]	[0, π]
$y = \tan^{-1}x$	All real numbers	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

$y = \sec^{-1} x$	(-∞, -1]U[1, ∞)	$\left[0,\frac{\pi}{2}\right)\cup\left(\frac{\pi}{2},\pi\right]$
$y = \csc^{-1}x$	(-∞, -1]U[1, ∞)	$\left[-\frac{\pi}{2},0\right)\cup\left(0,\frac{\pi}{2}\right]$
$y = \cot^{-1}x$	All real numbers	(0, π)

Note: when you use your calculator to evaluate an inverse trigonometric function, it will return the correct value.

The inverse trigonometric functions often go by other names. For example, $\sin^{-1}x$ can also be written as $\arcsin x$. This is sometimes more convenient since the "-1" in $\sin^{-1}x$ is often mistaken for an exponent of -1. Naturally, the other trigonometric functions follow suit. For example, $\tan^{-1}x$ is also known as $\arctan x$, etc.

Inverse Trigonometric Functions

A function that receives a real number as its input and returns an angle as its output.

2. Evaluating the Inverse Sine, Cosine, and Tangent Functions for Known Ratios

Recall that
$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$
. Then, we can say $\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$ or $\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6}$.

When evaluating inverse trigonometric functions, we need to keep the range in mind.

$$\Leftrightarrow$$
 EXAMPLE $\sin^{-1}(1) = \frac{\pi}{2}$ since $\frac{\pi}{2}$ is inside the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\sin\left(\frac{\pi}{2}\right) = 1$.

$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$
 since $\frac{2\pi}{3}$ is inside the interval [0, π] and $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$.

$$\tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$$
 since $\frac{\pi}{3}$ is inside the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan\frac{\pi}{3} = \sqrt{3}$.

3. Evaluating the Inverse Cosecant, Secant, and Cotangent Functions for Known Ratios

Most calculators do not have dedicated buttons for $\csc^{-1}x$, $\sec^{-1}x$, or $\cot^{-1}x$; as you might suspect, these are related to their corresponding reciprocal functions.

For example, let's say we wish to find $\csc^{-1}(2)$.

This means that we want to find y so that $^{CSC}y = 2$.

Since CSCY and Siny are reciprocals, this is equivalent to writing $\sin y = \frac{1}{2}$, which means $y = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$.

Through all this, something to notice is that $\csc^{-1}(2) = \sin^{-1}\left(\frac{1}{2}\right)$. This leads to some important identities.

FORMULA TO KNOW

Evaluating Inverse Cosecant

$$\csc^{-1}x = \sin^{-1}\left(\frac{1}{x}\right)$$

Evaluating Inverse Secant

$$\sec^{-1} x = \cos^{-1} \left(\frac{1}{x}\right)$$

Evaluating Inverse Cotangent

$$\cot^{-1} x = \tan^{-1} \left(\frac{1}{x} \right)$$

 \Leftrightarrow EXAMPLE Find Sec $^{-1}\left(\frac{2\sqrt{3}}{3}\right)$.

$$\sec^{-1}\left(\frac{2\sqrt{3}}{3}\right) = \cos^{-1}\left(\frac{3}{2\sqrt{3}}\right) = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$$

Note:
$$\frac{3}{2\sqrt{3}} = \frac{3\sqrt{3}}{2 \cdot 3} = \frac{\sqrt{3}}{2}$$

⇔ EXAMPLE Find cot⁻¹(-1).

$$\cot^{-1}(-1) = \tan^{-1}\left(\frac{1}{-1}\right) = \tan^{-1}(-1) = -\frac{\pi}{4}$$

 \Leftrightarrow EXAMPLE Find $\csc^{-1}\left(\frac{1}{2}\right)$.

$$\csc^{-1}\left(\frac{1}{2}\right) = \sin^{-1}(2)$$

Since $\sin^{-1}(2)$ is undefined, $\csc^{-1}\left(\frac{1}{2}\right)$ is undefined as well.

Consider the following inverse trigonometric function:

Inverse Trigonometric Function	Exact Value
$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$?
$\sec^{-1}(\sqrt{2})$?
$\tan^{-1}(-\sqrt{3})$?

Find the exact value of each inverse trigonometric function.

+

Inverse Trigonometric Function	Exact Value
$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$	$\frac{\pi}{4}$
sec ⁻¹ (√2)	$\frac{\pi}{4}$
$\tan^{-1}(-\sqrt{3})$	$-\frac{\pi}{3}$

SUMMARY

In this lesson, you learned that **the inverse trigonometric functions** provide a way to express the angle as a function of the trigonometric ratio. You also learned how to **evaluate the inverse trigonometric functions for known ratios**, noting that while not all of these inverse functions are available on most calculators, there are identities that can be used to relate to other more common functions.

SOURCE: THIS WORK IS ADAPTED FROM CHAPTER 7 OF CONTEMPORARY CALCULUS BY DALE HOFFMAN.

TERMS TO KNOW

Inverse Trigonometric Functions

 $\ensuremath{\mathsf{A}}$ function that receives a real number as its input and returns an angle as its output.

Д

FORMULAS TO KNOW

Evaluating Inverse Cosecant

$$\csc^{-1} x = \sin^{-1} \left(\frac{1}{x} \right)$$

Evaluating Inverse Cotangent

$$\cot^{-1} x = \tan^{-1} \left(\frac{1}{x} \right)$$

Evaluating Inverse Secant

$$\sec^{-1} x = \cos^{-1} \left(\frac{1}{x} \right)$$