Example: Evaluate the surface integral $\iint \vec{F} \cdot d\vec{5}$		
S Oriented		
where = F(x,y, 2) = <y, -x,="" d2=""> and S is the hemisphere</y,>		
S={x²+y²+z²=4, Z≥0} and oriented DOWNWARD		
	220	The opposite of arr
(1) Parametrize the surface S: We notice S is the GRAPH of a fraction		
~ Use parametrization r(u,v)= < u, v, \(4-u^2-v^2 \) where $u^2 + v^2 \le 4$		
Associated to a given parametrization is a preferred orientation of S T(u,v) ~ N = Tu x Tv Q: Does the orientation of S coming from parametrization agree w/ Tru x Tv the given orientation?		
		les: Keep sign way it is.
Calculation:	II i k	lo: Change sign
Tu x Ty =	l J K	$\left[\begin{array}{c} u \\ \overline{\sqrt{4-u^2-v^2}} \end{array}\right]$
	1 0 -u	
	$\int 4 - u^2 - v^2$	= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	0 1 - V	J4-u²-v²
	V 4-u ² -v ²	
Check if orientations match:		
Because (ru x rv) (u=0, v=0) = 0		
Orientations do NOT agree!		

3 Compute surface integral:

Plug-in the parametrization Tlunk) into the vector field F:

$$F(r(u,v)) = y \qquad y = y(u,v) = v$$

$$-x \qquad -u \qquad x = x(u,v) = u$$

$$2 = 2(u,v) = \sqrt{4-u^2-v^2}$$

$$2 = 2(u,v) = \sqrt{4-u^2-v^2}$$

We're left to enterlate the following integral:

FLUX =
$$-\iint_{\overline{F}} \cdot d\vec{s} = -\iint_{\overline{A}} \left[\frac{v}{-u} \right] \cdot \left[\frac{v}{\sqrt{4-u^2-v^2}} \right] dA$$
orientation
$$u^2 + v^2 \leq 4$$

$$= - \iint 2\sqrt{4-u^2-v^2} dA$$

$$= u^2 + v^2 \le 4$$

$$= -3.7 \text{ T}$$