24 秋- 泛函分析期末(回忆版)

何家兴

hejiaxing202411@163.com

December 31, 2024

- 1. (a) 在度量空间中求证:紧集上的连续函数必有界,且达到上、下确界
 - (b) 在度量空间中求证: 完全有界的集合是有界的,并通过考虑 l^2 的子集 $E = \{e_k\}_{k=1}^{\infty}$ 来 说明一个集合可以是有界但不完全有界的
 - (c) 在 C[a,b] 中, 令

$$||f||_1 = \left(\int_0^1 |f(x)|^2 dx\right)^{\frac{1}{2}}, \quad ||f||_2 = \left(\int_0^1 (1+x)|f(x)|^2 dx\right)^{\frac{1}{2}}$$

证明 || · || 1 和 || · || 2 是两个等价范数

- 2. (a) 证明赋范线性空间上的凸函数的局部极小值是全局最小值。
 - (b) 设 C 是 B 空间 $\mathscr X$ 的一个有界闭凸集,映射 $T_i:C\to\mathscr X(i=1,2)$ 满足 $(1)\forall x,y\in C\Rightarrow T_1x+T_2y\in C$ (2) T_1 是一个压缩映射, T_2 是一个紧映射 求证 T_1+T_2 在 C 上至少有一个不动点
 - (c) M 是 Hilbert 空间 \mathcal{X} 的子集, 求证

$$(M^{\perp})^{\perp} = \overline{\operatorname{span} M}$$

- (d) 设 \mathcal{X} 是内积空间, $\forall x_0 \in \mathcal{X}, \forall r > 0$, 令 $C = \{x \in \mathcal{X} | ||x x_0|| \leq r\}$,
 - i. C 是 \mathcal{X} 中的凸闭集
 - ii. $\forall x \in \mathcal{X}$,

$$y = \begin{cases} x_0 + r(x - x_0) / ||x - x_0||, & x \notin C \\ x, & x \in C \end{cases}$$

求证 $y \in x$ 在 C 中的最佳逼近元

- (e) 设 l 是 Hilbert 空间 H 上实值有界线性泛函,C 是 H 中的一个闭凸子集,设 $f(v) = \frac{1}{5}||v||^2 l(v), \forall v \in C$,
 - i. 求证 $\exists u^* \in H$ 使得 $f(v) = \frac{1}{2} ||u^* v||^2 \frac{1}{2} ||u^*||^2$
 - ii. 求证存在唯一 $u_0 \in C$ 使得 $f(u_0) = \inf_{v \in C} f(v)$

(f) 设 1 , 且 <math>1/p + 1/q = 1。若 $\{\alpha_k\}$ 使得 $\forall x = \{\xi_k\} \in l^p$ 保证 $\sum_{k=1}^{\infty} \alpha_k \xi_k$ 收敛, 求证 $\{\alpha_k\} \in l^q$,又若 $f: x \mapsto \sum_{k=1}^{\infty} \alpha_k \xi_k$,求证 f 作为 l^p 上的线性泛函,有

$$||f|| = \left(\sum_{k=1}^{\infty} |\alpha_k|^q\right)^{\frac{1}{q}}$$

3. (a) i. 若 $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 求证 N(T) 是 \mathcal{X} 的闭线性子空间 ii. 若 f 是线性泛函, 求证

$$f \in \mathcal{X}^* \iff N(f)$$
是闭线性子空间

- (b) 设 \mathcal{X}_0 是 B^* 空间的闭子空间,求证 $\rho(x, \mathcal{X}_0) = \sup\{|f(x)|| f \in \mathcal{X}^*, ||f|| = 1, f(\mathcal{X}_0) = 0\}$
- (c) 给定 B^* 空间 \mathcal{X} 中 n 个线性无关的元素 x_1, x_2, \dots, x_n ,求证 $\exists f_1, f_2, \dots, f_n \in \mathcal{X}^*$,使得 $\langle f_i, x_j \rangle = \delta_{i,j}$
- (d) i. 设 C_0 是以 0 为极限的数列全体,赋范数

$$\|\cdot\|:\{\xi_k\}\in C\mapsto \sup_{k\geqslant 1}|\xi_k|$$

求证 $C_0^* = l^1$

ii. 已知在 B^* 空间中 $x_n \to x_0$,求证

$$\underline{\lim}_{n\to\infty} \|x_n\| \to \|x_0\|$$

- iii. 设 H 是 Hilbert 空间,在 H 中 $x_n \to x$ 的充要条件是 $(1)||x_n|| \to ||x||$ (2) $x_n \to x$
- 4. (a) 设 \mathscr{X} 是自反的 B 空间,M 是 \mathscr{X} 中的非空闭凸集,求证: $\exists x_0 \in M$,使得 $||x_0|| = \inf\{||x|||x \in M\}$
 - (b) 证明 A 是 $m \times n$ 的实矩阵, Ax = b 要么有至少 1 个解, 要么 $\exists y$ 满足 $A^Ty = 0$ 且 $b^Ty = 0$

(来自 3.2 节 Fredholm 理论)