Data Preprocessing

Essential Steps for Preparing Data Before Modeling

Introduction

- ▶ **Data preprocessing** is a crucial step in the machine learning and statistical analysis pipeline.
- It involves transforming raw data into a clean and usable format, ensuring that the data is consistent, accurate, and relevant for the analysis.
- Here are the key reasons why data preprocessing is essential:
 - Improving Data Quality
 - Enhancing Model Performance
 - Improving Interpretability
 - Ensuring Consistency

Basic Steps in Data Preprocessing

- Step 1 :Import important libraries
- Step 2: Import dataset
- Step 3: Preprocessing:
 - Find duplicates
 - Missing value treatment
 - Encoding
 - Handling data types
 - Outlier treatment
 - Feature scaling
 - Data balancing

Import Important Libraries

Load essential libraries like Pandas, NumPy, Matplotlib, Scikit-Learn.

Import Data Set

Load dataset into a DataFrame.

Preprocessing

Prepare data for modeling

Missing Value Treatment

Handling Data Types

Outlier reatment

Handle missing values via imputation or removal.

Convert data types as necessary.

Identify and manage outliers.

Encoding

Feature Scaling

Convert categorical variables to numerical format.

Normalize or standardize features.

Data Balancing

Address class imbalances in the dataset.

Splitting Data

Divide data into training and testing sets.

Modeling

Train a machine learning model using training data.

Evaluation

Assess the model's performance on test data.

Import Important Libraries

```
import os, sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
import warnings
warnings.filterwarnings('ignore')
pd.set_option('display.max_rows',500)
pd.set_option('display.max_columns',50)
pd.set_option('display.width',1000)
```

Purpose of Libraries

- **os:** Functions to interact with the operating system.
 - **Example Usage: os.listdir()** lists files and directories in the specified path.
- numpy: Support for arrays, matrices, and mathematical functions.
- pandas: Data manipulation and analysis.
- matplotlib & seaborn: Data visualization.
- warnings: Manage warning messages in code.
- sns.set(): Automatically sets the seaborn plot aesthetics to a default theme.
- %matplotlib inline: A magic command used in Jupyter notebooks to display matplotlib plots inline within the notebook.

Importing Data

- Data = pd.read_csv(r"C:\Desktop\DataScience\data.csv")
- Data = pd.read_csv(r"C://Desktop//DataScience//data.csv")
- Data.head()
- Data.tail()

Finding and Handling Duplicate

▶ If there is any kind of repetition of data in dataset than it is required to remove them for healthy analysis and prediction.

```
[86]: titanic = pd.read_csv('titanic_dataset.csv')
    titanic.duplicated().sum()

[39]: titanic.shape
[39]: (915, 11)

[88]: titanic.drop_duplicates(keep='first',inplace=True)

[90]: titanic.shape
[90]: (891, 11)
```

Handling Duplicates

```
[125]: df.duplicated().sum()
[125]: 483
[128]: df[df.duplicated()]
```

```
[131]: df.drop_duplicates(ignore_index=True,inplace=True)

[132]: df.shape

[132]: (10357, 13)

[134]: df.duplicated().sum()

[134]: 0
```

Handling Missing Values

- Identifying missing values using `df.isnull().sum()`.
- In percentage form: df.isnull().sum()/len((df)*100
- Techniques to handle missing values:
- If any variable have missing value > 25%, drop it.
 - data = data.drop(['name of column'], axis = 1)
- Else Imputing missing values

Imputation Method

- Various imputation Approaches are:
- Simple Statistical Imputation:
 - Mean: If no outliers.
 - Median:If data have outliers.
 - Mode: If variables are categorical type.
- **KNN imputation:** Replaces missing values based on the mean or median of the nearest neighbors' values.

```
[17]: dataset['Age'].plot(kind='box')
[17]: <AxesSubplot:>
       80
                                            0
       70
       60
       50
       40
       30
       20 -
       10
        0 -
                                           Age
```

```
[19]: dataset['Age'] = dataset['Age'].fillna(dataset['Age'].median())
```

```
[111]:
# Embarked : object
titanic['Embarked'].value_counts()
[111]:
Embarked
5
  644
C 168
   77
Name: count, dtype: int64
[113]:
# Filling missing data by "S"
titanic['Embarked'] = titanic['Embarked'].fillna('S')
```

```
[154]: df.Rating.fillna(df.Rating.mode()[0],inplace=True)
```

[155]: df.Rating.mode()[0]

[155]: **4.4**

Encoding Categorical Variables

- Encoding categorical variables is a critical step in data preprocessing for machine learning models, as most models require numerical input.
- There are two approach:
- Label encoding and one-hot encoding.

Label Encoding

- It converts each category in a categorical variable to a unique integer.
- ▶ When to Use: When the categorical variable has an ordinal relationship (e.g., low, medium, high).
- When there are a limited number of categories.

```
[42]:
dataset2['Sex'] = dataset2['Sex'].astype('category')
dataset2['Sex'] = dataset2['Sex'].cat.codes

[46]:
dataset2.head(10)
```

	Sex	Embarked
0	1	S
1	0	С
2	0	S
3	0	S
4	1	S

```
[48]:
```

```
dataset2['Embarked'] = dataset2['Embarked'].astype('category')
dataset2['Embarked'] = dataset2['Embarked'].cat.codes
```

[52]:

dataset2.head(10)

[52]:

	Sex	Embarked
0	1	2
1	0	0
2	0	2
3	0	2
4	1	2

```
from sklearn.preprocessing import LabelEncoder
import pandas as pd

# Sample data
data = {'color': ['red', 'green', 'blue', 'green', 'blue', 'red']}
df = pd.DataFrame(data)

# Initialize and apply LabelEncoder
label_encoder = LabelEncoder()
df['color_encoded'] = label_encoder.fit_transform(df['color'])
print(df)
```

```
color color_encoded

red 2

green 1

blue 0

green 1

blue 0

red 2
```

One-Hot Encoding

- One-hot encoding converts categorical variables into a series of binary columns, each representing a unique category.
- ▶ When to Use
- ▶ When the categorical variable is nominal (no intrinsic order).
- ▶ When you want to avoid introducing ordinal relationships.

```
[84]:
```

```
dataset1 = pd.get_dummies(dataset1, columns=['Sex', 'Embarked'])
```

```
# Dummi variable concept - (n-1)
dataset1 = dataset1.drop(['Sex_male','Embarked_C'], axis=1)
```

- pd.get_dummies() is a function in the pandas library in Python used for one-hot encoding categorical variables.
- In one hot encoding usually drop one column.

[86]:

	Sex_female	Sex_male	Embarked_C	Embarked_Q	Embarked_S
0	False	True	False	False	True
1	True	False	True	False	False
2	True	False	False	False	True
3	True	False	False	False	True
4	False	True	False	False	True

```
from sklearn.preprocessing import OneHotEncoder
import pandas as pd

# Sample data
data = {'color': ['red', 'green', 'blue', 'green', 'blue', 'red']}
df = pd.DataFrame(data)

# Initialize and apply OneHotEncoder
one_hot_encoder = OneHotEncoder(sparse=False)
one_hot_encoded = one_hot_encoder.fit_transform(df[['color']])

# Convert to DataFrame for better readability
df_one_hot = pd.DataFrame(one_hot_encoded, columns=one_hot_encoder.categories_[0])
print(df_one_hot)
```

	blue	green	red
0	0.0	0.0	1.0
1	0.0	1.0	0.0
2	1.0	0.0	0.0
3	0.0	1.0	0.0
4	1.0	0.0	0.0
5	0.0	0.0	1.0

Handling Outlier

- Identifying outliers:
- Visualization-Based Detection:
 - Box plots
 - ► Histograms with normal distribution curve
- > Statistical Methods:
 - Z-Score (standard deviation approach)
 - ➤ IQR (Interquartile Range):
 - ➤ Values below Q1-1.5×IQR
 - Values above Q3+1.5×IQR.

Approaches to Handle Outliers

- Capping method:
 - ▶ Using IQR or Z score
- Transformation Approach:
 - Log Transformation
 - Square root Transformation
 - ▶ Box- Cox Transformation
 - Winsorization Method

Finding Outliers Using IQR method

```
# Finding the IQR
[23]:
      percentile25 = df['placement_exam_marks'].quantile(0.25)
      percentile75 = df['placement exam marks'].quantile(0.75)
      print(percentile25)
      print(percentile75)
      17.0
      44.0
      iqr = percentile75 - percentile25
[24]:
      igr
[24]: 27.0
[25]:
      upper limit = percentile75 + 1.5*iqr
      lower_limit = percentile25 - 1.5*iqr
      print(upper limit)
      print(lower limit)
      84.5
      -23.5
```

[26]: # finding outliers

df[df['placement_exam_marks'] > upper_limit]

[26]: cgpa placement_exam_marks placed cgpa_zscore 7.75 94.0 1.280667 40 6.60 86.0 1 -0.586526 61 0 7.51 86.0 0.890992 93.0 0 -1.024910 134 6.33 162 7.80 90.0 0 1.361849 7.09 0 0.209061 283 87.0 290 8.38 87.0 0 2.303564

[27]: df[df['placement_exam_marks'] < lower_limit]</pre>

[27]: cgpa placement_exam_marks placed cgpa_zscore

```
[13]: Q1 = np.percentile(df['cgpa'], 25)
   Q3 = np.percentile(df['cgpa'], 75)
   IQR = Q3 - Q1

[220]: pos_outlier = Q3 + 1.5 * IQR
```

neg_outlier = Q1 - 1.5 * IQR

Handling outlier using capping by IQR

```
new df cap = df.copy()
[30]:
[31]:
      new_df_cap.shape
[31]:
      (1000, 4)
      new_df_cap['placement_exam_marks'] = np.where(new_df_cap['placement_exam_marks'] > upper_limit,
[32]:
                                                    upper_limit,
                                                    np.where(new_df_cap['placement_exam_marks'] <lower_limit,
                                                            lower limit,
                                                           new df cap['placement exam marks'] ))
      new_df_cap.shape
[33]:
       (1000, 4)
      new_df_cap[new_df_cap['placement_exam_marks'] > upper_limit]
[34]:
[34]:
        cgpa placement_exam_marks placed cgpa_zscore
```

Distribution and box plot

```
[36]: plt.figure(figsize=(16,8))
   plt.subplot(1,2,1)
   sns.distplot(new_df_cap['placement_exam_marks'])

plt.subplot(1,2,2)
   sns.boxplot(new_df_cap['placement_exam_marks'])

plt.show()
```


Handling outlier using capping by Z score:

Step1: find mean and standard deviation

```
print("mean value of cgpa", df['cgpa'].mean())
print()
print("std value of cgpa", df['cgpa'].std())
print()
print("min value of cgpa", df['cgpa'].min())
print()
print("max value of cgpa", df['cgpa'].max())
mean value of cgpa 6.9612400000001
std value of cgpa 0.6158978751323894
min value of cgpa 4.89
max value of cgpa 9.12
```

Step 2: Find minimum and maximum based on normal distribution parameters to identify an outlier

```
[17]: upper_limit = df['cgpa'].mean() + 3*df['cgpa'].std()
    lower_limit = df['cgpa'].mean() - 3*df['cgpa'].std()

[18]: print(upper_limit)
    print(lower_limit)

    8.808933625397168
    5.113546374602832
```

Step 3: Capping

```
[19]: df['cgpa'] = np.where(df['cgpa']>upper_limit, upper_limit,
                         np.where(df['cgpa']<lower_limit, lower_limit, df['cgpa']))</pre>
     df['cgpa'].describe()
[20]:
[20]: count
            1000.000000
     mean
           6.961499
     std
            0.612688
     min
           5.113546
     25% 6.550000
     50% 6.960000
     75% 7.370000
            8.808934
     max
     Name: cgpa, dtype: float64
```

> To view the outliers based on mini or max

df[(df[(df['cgpa'] > 8.80) (df['cgpa'] <			
	cgpa	placement_exam_marks	placed	
485	4.92	44.0	1	
995	8.87	44.0	1	
996	9.12	65.0	1	
997	4.89	34.0	0	
999	4.90	10.0	1	

► To Calculate Z-score

f[cgpa_z	score'] = (df['cgpa']	- df['c	gpa'].mean()
f				
	cgpa	placement_exam_marks	placed	cgpa_zscore
0	7.19	26.0	1	0.371425
1	7.46	38.0	1	0.809810
2	7.54	40.0	1	0.939701
3	6.42	8.0	1	-0.878782
4	7.23	17.0	0	0.436371

► To view the outliers based on Z-score:

<pre>df[(df['cgpa_zscore'] > 3)</pre>	<pre>(df['cgpa_zscore'] < -3)]</pre>
--	---

	cgpa	placement_exam_marks	placed	cgpa_zscore
485	4.92	44.0	1	-3.314251
995	8.87	44.0	1	3.099150
996	9.12	65.0	1	3.505062
997	4.89	34.0	0	-3.362960
999	4.90	10.0	1	-3.346724

To visualize the outliers by distribution plot and boxplot:

```
35]: # comparing
plt.figure(figsize=(16,8))
plt.subplot(1,2,1)
sns.distplot(df['placement_exam_marks'])

plt.subplot(1,2,2)
sns.boxplot(df['placement_exam_marks'])
```


Log Transformation

- Logarithmic transformation is often used to reduce the effect of large outliers by compressing the range of data values.
- Formula:
- \rightarrow y=log(x)
- Works best when all values are positive (since log of zero or negative values is undefined).
- Helps stabilize variance and normalize skewed distributions.

```
[10]: df_log_transformation = df.applymap(lambda x: np.log(x) if x > 0 else x)
print(df_log_transformation.describe())
```

	Variable1	Variable2		
count	103.000000	103.000000		
mean	3.897492	3.450651		
std	0.291443	0.262252		
min	3.245329	2.988442		
25%	3.727106	3.325204		
50%	3.887418	3.405378		
75%	4.027562	3.523882		
max	5.135798	4.787492		

Square Root Transform

- Square root transformation reduces the magnitude of large values but less aggressively than logarithmic transformation.
- It works with zero values but not negatives.
- ► Formula:
- y=sqrt{x}

```
df_{q} = d
[19]:
                                               print(df_sqrt_transformation.describe())
                                                                                                        Variable1
                                                                                                                                                                                            Variable2
                                                                                                 103.000000
                                                count
                                                                                                                                                                                     103.000000
                                                                                                               7.100766
                                                                                                                                                                                                    5.669671
                                               mean
                                                std
                                                                                                               1.196587
                                                                                                                                                                                                   0.931304
                                               min
                                                                                                               5.066573
                                                                                                                                                                                           4.455864
                                                25%
                                                                                                               6.446677
                                                                                                                                                                                                   5.273014
                                                50%
                                                                                                               6.984609
                                                                                                                                                                                                    5.488687
                                                75%
                                                                                                               7.491591
                                                                                                                                                                                                   5.823731
                                                                                                        13.038405
                                                                                                                                                                                             10.954451
                                                max
```

Box-Cox Transformation

- ► The Box-Cox transformation is a family of power transformations that stabilize variance, make the data more normal-like, and reduce the impact of outliers.
- Unlike logarithmic or square root transformations, the Box-Cox method includes an adjustable parameter (λ that determines the transformation applied.
- When to Use
- When data is not normally distributed and transformations like log or square root are insufficient.
- ▶ To stabilize variance across different scales of data.

Mathematical Formula

The Box-Cox transformation is defined as:

$$y(\lambda) = egin{cases} rac{y^{\lambda}-1}{\lambda}, & ext{if } \lambda
eq 0 \ \ln(y), & ext{if } \lambda = 0 \end{cases}$$

- $oldsymbol{\lambda}$: Determines the type of transformation. Common values include:
 - $\lambda = 1$: No transformation (identity).
 - $\lambda = 0$: Logarithmic transformation.
 - $\lambda = 0.5$: Square root transformation.
- Box-Cox requires all data values to be positive.

```
df_box_cox_transformation = df.copy()

for col in df.columns:
    df_box_cox_transformation[col], _ = boxcox(df[col] + 1e-6)
    # adding small constant to handle zeros
print(df_box_cox_transformation.describe())
```

	Variable1	Variable2	
count	103.000000	103.000000	
mean	1.040327	0.595645	
std	0.006870	0.000609	
min	1.017788	0.593607	
25%	1.036425	0.595341	
50%	1.040986	0.595629	
75%	1.044448	0.595989	
max	1.060401	0.597434	

Winsorization:

- Winsorization replaces extreme values with specified percentiles to limit the influence of outliers while retaining the dataset's size.
- Steps:
- Define lower and upper limits (e.g., 5th and 95th percentiles).
- Replace values below the lower limit with the 5th percentile and above the upper limit with the 95th percentile.

```
df_winsorized = df.apply(lambda x: winsorize(x, limits=[0.05, 0.05]))
[59]:
      print(df_winsorized)
           Variable1 Variable2
           64.458713 28.999760
           56.530266 24.094480
           33.324787 31.311350
           33.324787 29.009641
           60.190868 37.719077
           57.291343 27.761510
      98
           58.190403 32.080371
      99
          69.629120 39.635437
      100
      101 69.629120 39.635437
      102 69.629120 39.635437
```

Feature Scaling

- Importance of scaling features.
- Methods: Standard Scaler, Min-Max Scaler, Normalizer.
- We do not do feature scaling with dependent variables.
- So Ist separate the data into independent and dependent variable.

```
x = dataset.iloc[:,1:]
y = dataset[['Survived']]
```

Standardization:

Scaling features to have zero mean and unit variance. This is particularly important for algorithms that rely on distance measures, such as SVM and k-NN.

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x = sc.fit_transform(x)
pd.DataFrame(x)
```

When to Use Standard Scaler

- ► The **Standard Scaler** standardizes features by removing the **mean and** scaling to unit variance.
- Where "Remove the mean" means that for each feature in your dataset, you subtract the mean (average) value of that feature from all the values of that feature.
- ► This process centers the feature around zero, ensuring that the transformed feature has a mean of zero.
- ► This means each feature will have a mean of '0' and a standard deviation of 1.
- This ensures that each feature contributes equally to the model.

- When your dataset contains features with different units (e.g., age in years, income in dollars, and height in centimeters), StandardScaler helps to bring all features to the same scale.
- You are using algorithms that assume normal distribution of features.
 - 1. Original feature: `[1, 4, 7]`
 - 2. Mean: $\mu = \frac{1+4+7}{3} = 4$
 - 3. Subtract the mean: `[-3, 0, 3]`

When to Use Standard Scaler:

- Algorithms that Assume Normal Distribution:
 - 1. Linear Regression: Assumes that the relationship between the input and output is linear.
 - 2. Logistic Regression: Assumes a linear relationship between the input features and the logodds of the target.
 - 3. Linear Discriminant Analysis (LDA): Assumes data is normally distributed within each class.
 - Support Vector Machines (SVM): Assumes features have similar scales for optimal performance.
 - Principal Component Analysis (PCA): Assumes the data is centered around the origin for variance maximization.
 - 6. **K-Means Clustering:** Assumes features are on similar scales for effective distance calculation.

Normalizer:

- Normalizer is suitable when the goal is to scale individual samples to have unit norm(length).
- ► This technique is useful when the direction of the data points is more important than the magnitude of their distance from the origin.
- Normalizing the data to unit norm ensures that the focus is on the direction of each sample.
 - ► Sample data X = [[3, 4], [1, 2], [4, 5]]
 - Normalized data: means sum of data point(3,4 = 1).

X = [[0.6 0.8] [0.4472136 0.89442719] [0.62469505 0.78086881]]

Each row vector in `X_normalized` has a length of 1. For example:

$$\sqrt{0.6^2 + 0.8^2} = \sqrt{0.36 + 0.64} = \sqrt{1} = 1$$

When to Use Normalizer:

1. Feature Comparison:

- Cosine Similarity: When you want to measure the cosine similarity between samples. By normalizing, you ensure that the angle between vectors becomes the metric rather than their magnitude.
- Clustering: When using clustering algorithms like K-Means, normalized data can improve the convergence speed and cluster quality, especially if the data has different scales.
- Nearest Neighbor: When you want to perform k-nearest neighbors (KNN) classification or regression, normalizing ensures that all features contribute equally to the distance calculations.

4 Sparse Data:

When working with sparse data (data with a lot of zeros), normalizing can make algorithms like Support Vector Machines (SVM) and Principal Component Analysis (PCA) perform better by ensuring that features with more nonzero values don't dominate.

5 Text Data:

> **TF-IDF**: In Natural Language Processing (NLP), TF-IDF vectors are often normalized to have unit norm to account for the difference in document lengths and to focus on the relative importance of terms.

```
from sklearn.preprocessing import Normalizer
nor = Normalizer()
x1 = nor.fit_transform(x1)
pd.DataFrame(x1)
```

Concept of fit_transform and transform:

- ▶ **fit_transform**: Use this on your training data to compute the necessary parameters(mean, standard deviation) and apply the transformation in one step.
- ▶ fit the preprocessing transformers on the training data to learn the necessary parameters.
- transform the training data using the fitted transformers.
- ▶ transform: Use this on your test data (or any new data) to apply the transformation using the parameters computed from the training data.
- For test data we do not use 'fit' and we are using the same parameters as calculated for training.

Converting data types using `pd.to_numeric`.

Common Data Types and Their Handling

- Numerical Data:
 - Integers: Whole numbers.
 - ▶ Floats: Decimal numbers.
 - Handling: Ensure numerical columns are in the correct format and handle missing values appropriately.

Numerical Data:

```
[11]: import pandas as pd
      df = pd.DataFrame({'integers': [1, 2, 3], 'floats': [1.1, 2.2, 3.3]})
      df['integers'] = df['integers'].astype(int)
      df['floats'] = df['floats'].astype(float)
[12]: df
[12]:
         integers floats
      0
                    1.1
                    2.2
      1
      2
               3
                    3.3
[13]: df.dtypes
[13]: integers
                    int32
      floats
                float64
      dtype: object
```

Categorical Data:

- Nominal: Categories without a specific order (e.g., color: red, green, blue).
- ▶ Ordinal: Categories with a specific order (e.g., rating: low, medium, high).
- ► Handling: Encode categorical variables using techniques such as label encoding or one-hot encoding.

- ► Label encoding:
- ► Label encoding is a technique used to convert ordinal type of categorical data into numerical format.
- ► It assigns a unique integer to each category in the categorical variable.
- This is particularly useful for machine learning algorithms that require numeric input.
- dataset['Col_Name'] = dataset['Col_Name'].astype('category')
- dataset['Col_Name'] = dataset['Col_Name'].cat.codes
- convert the ['Col_Name'] to categorical type using astype('category').
- then use cat.codes to assign numeric labels to each category in the ['Col_Name'] and create a new column with the encoded values.

- One-hot encoding:
- One-hot encoding is a technique used to convert Nominal type categorical data into a binary format, where each category is represented as a binary vector.
- It creates new binary columns (also known as dummy variables) for each category, with a value of 1 indicating the presence of that category and 0 indicating absence.
- After OHE drop one variable. Here is python code:
- dataset = pd.get_dummies(dataset, columns = ['Col_Name'])
 Where:

"pd.get_dummies()" is a pandas function used for one-hot encoding categorical variables.

"columns=['Col_Name']" specifies the column(s) in the Data Frame that you want to encode.

Categorical Data:

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder

df = pd.DataFrame({'category': ['red', 'green', 'blue']})
label_encoder = LabelEncoder()

df['category_encoded'] = label_encoder.fit_transform(df['category'])

one_hot_encoder = OneHotEncoder(sparse=False)

df_one_hot = pd.DataFrame(one_hot_encoder.fit_transform(df[['category']]), columns=one_hot_encoder.categories_)
```

```
df_one_hot
[15]:
[15]:
         blue green red
           0.0
                  0.0
                       1.0
                  1.0 0.0
           0.0
           1.0
                  0.0
       df_one_hot.dtypes
[16]:
                float64
       blue
                float64
       green
                float64
       dtype: object
         dtype: object
```

Datetime Data:

```
df = pd.DataFrame({'date': ['2020-01-01', '2021-01-01']})
df['date'] = pd.to_datetime(df['date'])
df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['day'] = df['date'].dt.day
```

```
[22]: df['date']

[22]: 0     2020-01-01
     1     2021-01-01
     Name: date, dtype: datetime64[ns]

[23]: df['year']

[23]: 0     2020
     1     2021
     Name: year, dtype: int32
```

```
[24]: df['month']

[24]: 0    1
        1    1
        Name: month, dtype: int32

[25]: df['day']

[25]: 0    1
        1    1
        Name: day, dtype: int32
```

Convert Data Types:

```
df['integer'] = df['integer'].astype(int)
df['float'] = df['float'].astype(float)
df['category'] = df['category'].astype('category')
df['date'] = pd.to_datetime(df['date'])
```

Example

```
[59]: df['num_numerical'] = pd.to_numeric(df['number'], errors='coerce', downcast='integer')
[60]: df.head()
```

[60]:	Cabin		Ticket	number	Survived	num_numerical
	0	NaN	A/5 21171	5	0	5.0
	1	C85	PC 17599	3	1	3.0
	2	NaN	STON/O2. 3101282	6	1	6.0
	3	C123	113803	3	1	3.0
	4	NaN	373450	А	0	NaN

pd.to_numeric(df['number'], errors='coerce', downcast='integer')

- pd.to_numeric: This function is used to convert argument to a numeric type.
- df['number']: This specifies the column number from the DataFrame df that we want to convert.
- errors='coerce': This argument tells the function how to handle errors during the conversion process. Specifically:'coerce': This means that any values that cannot be converted to a numeric type will be set to NaN (Not a Number).
 - downcast='integer': This argument attempts to downcast the numeric type to the smallest possible integer subtype, which helps in saving memory.
 - For example, if all values can be represented by a smaller integer type (like int8), it will use that type instead of a larger one (like int64).

```
df['num_categorical'] = np.where(df['num_numerical'].isnull(), df['number'], np.nan)
[61]:
      df.head(20)
[63]:
[63]:
          Cabin
                           Ticket number Survived num_numerical num_categorical
                                        5
                                                 0
                                                               5.0
           NaN
                        A/5 21171
                                                                              NaN
       0
            C85
                         PC 17599
                                        3
                                                               3.0
       1
                                                 1
                                                                              NaN
       2
           NaN STON/O2. 3101282
                                        6
                                                               6.0
                                                                              NaN
                                                 1
           C123
       3
                          113803
                                        3
                                                 1
                                                               3.0
                                                                              NaN
                                        Α
       4
           NaN
                          373450
                                                 0
                                                              NaN
                                                                                Α
       5
           NaN
                          330877
                                        2
                                                 0
                                                               2.0
                                                                              NaN
```

2

0

2.0

NaN

6

E46

17463

np.where(df['num_numerical'].isnull(), df['number'], np.n

1. np.where(condition, x, y):

- •This function from the NumPy library is used for element-wise selection from two arrays (x and y) based on a condition. It returns elements chosen from x or y depending on the condition.
- •condition: This specifies the condition to be checked.
- •x: The values to select where the condition is True.
- •y: The values to select where the condition is False.

2. df['num_numerical'].isnull():

•This checks for NaN values in the num_numerical column of the DataFrame df. It returns a boolean Series where True indicates the presence of a NaN value and False indicates the absence of a NaN value.

3. df['number']:

•This specifies the original number column from the DataFrame df, which contains the original values before any numeric conversion.

4. np.nan:

•This specifies that NaN should be used where the condition is False.

Data Balancing

- Importance of balanced datasets.
- ▶ Data is said to be imbalance if twice of minority class is less than the majority class.
- ▶ To find it, check the count in dependent variables.
- Two popular approach to solve the problem:
 - Oversampling
 - SMOTE

RandomOverSampler

- Simply duplicates random instances of the minority class to increase its representation in the dataset.
- This can be effective but may lead to overfitting as the same instances are repeated multiple times.

```
[ ]: #!pip install imblearn
      import imblearn
      # split the data into feature variable and label/result/output variable
      x = dataset.iloc[:,:-1]
      y = dataset.iloc[:,-1]
     from imblearn.over sampling import RandomOverSampler
[14]:
      over = RandomOverSampler()
      x_over, y_over = over.fit_resample(x,y)
      y_over.value_counts()
[15]:
[15]:
            284315
            284315
      Name: Class, dtype: int64
      y_over.shape
[16]:
[16]: (568630,)
```

SMOTE (Synthetic minority oversampling technique)

- Generates synthetic samples by interpolating between existing minority class instances.
- > This technique creates more diverse samples compared to simple duplication, potentially reducing overfitting.

Cross Tabs for Feature Relationships

A cross tabulation presents the frequency distribution of variables in a matrix format. Each cell in the table represents the count or frequency of the occurrences of the specific combination of categories from the variables.

Why Use Cross Tabulation?

- 1. Identify Relationships: It helps in identifying relationships between categorical variables.
- 2. Detect Patterns: It can detect patterns and trends in the data.
- 3. Summarize Data: It provides a compact summary of data.
- Inform Decision-Making: It aids in making informed decisions based on the observed relationships.

Example: Using Cross Tabulation in Python

Let's consider a dataset where we want to examine the relationship between two categorical variables: `Gender` and `Purchased`.

Sample Data:

Creating a Cross Tabulation:

1. Load the Data:

```
import pandas as pd

data = {
    'Gender': ['Male', 'Female', 'Male', 'Female', 'Male'],
    'Purchased': ['Yes', 'No', 'Yes', 'No', 'Yes']
}

df = pd.DataFrame(data)
```

2. Create Cross Tab:

```
python

cross_tab = pd.crosstab(df['Gender'], df['Purchased'])
print(cross_tab)
```

Output:

3. Add Margins (to get totals):

```
python

cross_tab_with_totals = pd.crosstab(df['Gender'], df['Purchased'], margins=True)
print(cross_tab_with_totals)
```

Output:

```
| Purchased | No | Yes | All | | Gender | | Female | 1 | 2 | 3 | | All | 2 | 4 | 6 | | 6 | |
```

Interpretation:

- The table shows that there are 3 females and 3 males in the dataset.
- Among the females, 2 have made a purchase, and 1 has not.
- Among the males, 2 have made a purchase, and 1 has not.
- The total number of purchases is 4, and the total number of non-purchases is 2.

Visualization:

To make the relationship more visually intuitive, you can plot the cross-tabulated data.

1. Bar Plot:

```
cross_tab.plot(kind='bar', stacked=True)
import matplotlib.pyplot as plt
plt.title('Purchase Frequency by Gender')
plt.xlabel('Gender')
plt.ylabel('Frequency')
plt.show()
```

2. Heatmap:

```
import seaborn as sns

sns.heatmap(cross_tab, annot=True, cmap="YlGnBu", cbar=False)
plt.title('Heatmap of Purchase Frequency by Gender')
plt.show()
```

Exploratory Data Analysis (EDA):

- **Definition:** Exploratory Data Analysis (EDA) is a critical step in the data analysis process. It involves examining and summarizing the main characteristics of a dataset, often using visual methods.
- Here are some key steps and techniques you can use during EDA
- Techniques:
 - ▶ Data visualization: Histograms, scatter plots, box plots.
 - ▶ Summary statistics: Mean, median, standard deviation.
 - Outlier detection: Identifying data points that deviate significantly from the rest of the dataset

What we can do in EDA

1. Understand the Data Structure

• Load the Data: Import the dataset and understand its structure.

```
import pandas as pd
df = pd.read_csv('your_dataset.csv')
df.head()
df.info()
df.describe()
```

2. Handling Missing Values

· Identify Missing Values: Check for missing values.

```
python

df.isnull().sum()
```

Handle Missing Values: Depending on the context, you can drop or fill missing values.

```
df.dropna() # Drop missing values
df.fillna(df.mean(), inplace=True) # Fill missing values with mean
```

3. Data Cleaning

Remove Duplicates: Identify and remove duplicate rows.

```
python

df.drop_duplicates(inplace=True)
```

Handle Outliers: Detect and treat outliers.

```
python

df.boxplot(column='column_name')
```

4. Data Transformation

Feature Engineering: Create new features from existing ones.

```
python

df['new_feature'] = df['existing_feature1'] / df['existing_feature2']
```

Encoding Categorical Variables: Convert categorical variables to numerical ones.

```
python

df = pd.get_dummies(df, columns=['categorical_column'])
```

5. Univariate Analysis

Summary Statistics: Get descriptive statistics for individual features.

```
python

df['column_name'].describe()
```

- Visualization:
 - Histograms:

```
python

df['column_name'].hist()
```

Box Plots:

```
python

df.boxplot(column='column_name')
```

6. Bivariate Analysis

• Correlation: Check correlations between numerical features.

- Visualization:
 - Scatter Plots:

```
python

df.plot.scatter(x='feature1', y='feature2')
```

Pair Plots:

```
python

import seaborn as sns
sns.pairplot(df)
```

7. Multivariate Analysis

Heatmaps: Visualize correlation matrices.

```
python

Copy code

sns.heatmap(df.corr(), annot=True)
```

Group By: Group data and perform aggregations.

```
python

df.groupby('categorical_column').mean()
```

8. Distribution Analysis

Density Plots: Examine the distribution of numerical features.

```
python

df['column_name'].plot(kind='density')
```

QQ Plots: Assess if data follows a certain distribution.

```
import statsmodels.api as sm
import matplotlib.pyplot as plt
sm.qqplot(df['column_name'], line ='45')
plt.show()
```

9. Feature Relationships

Cross Tabs: Examine relationships between categorical features.

```
python

pd.crosstab(df['categorical_feature1'], df['categorical_feature2'])
```

10. Dimensionality Reduction

• PCA: Apply Principal Component Analysis for high-dimensional data.

```
python

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

principalComponents = pca.fit_transform(df)
```

Visualization Libraries

Matplotlib: Basic plotting.

```
python

import matplotlib.pyplot as plt
plt.plot(df['column_name'])
```

Seaborn: Advanced visualizations.

```
python

Sns.boxplot(x='categorical_feature', y='numerical_feature', data=df)
```

Plotly: Interactive plots.

```
python

import plotly.express as px
fig = px.scatter(df, x='feature1', y='feature2')
fig.show()
```

Visualization

Using plots for making inferences in machine learning involves visualizing data to understand its structure, relationships, and patterns, which can guide feature selection, model choice, and evaluation.

Visualization Techniques for EDA

- Histograms
- Box plots
- Scatter plots
- Pair plots
- Correlation matrix and heatmaps
- Bar plots
- Count plots
- Violin plots

Histograms

- Purpose: Understand the distribution of individual variables.
- ► Inference: Identify skewness, outliers, and the presence of multiple modes in the data.

```
dataset['Age'].plot(kind='hist', bins=20)
```


Box Plots

- Purpose: Summarize the distribution of a dataset.
- Inference: Detect outliers, understand the spread and symmetry of the data.

```
dataset['Age'].plot(kind='box')
```


Scatter Plots

- Purpose: Visualize the relationship between two continuous variables.
- ► Inference: Identify correlations, clusters, and potential outliers

```
[142]: sns.set_theme(style='whitegrid',palette='bright',font='cursive',font_scale=1.8)
[148]: sns.scatterplot(y=df.Reviews,x=df.Reviews.index)
    plt.show()
```


Pair Plots (Scatterplot Matrix)

- ► Purpose: Visualize pairwise relationships between multiple variables.
- ▶ Inference: Detect relationships between pairs of features, spot trends, clusters, and outliers.

Correlation Matrix and Heatmaps

- Purpose: Show the correlation coefficients between variables.
- Inference: Identify highly correlated features that might be redundant.

```
plt.figure(figsize=(8, 6))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```

Bar Plots

- ► Purpose: Compare categorical data.
- Inference: Understand the frequency distribution of categorical features.

```
fig = df['number'].value_counts().plot.bar()
fig.set_title("Passengers traelling")
```


Density plots

Density plots display the probability density function of a continuous variable. They are useful for visualizing the overall shape of the distribution and comparing multiple distributions.

```
dataset['Age'].plot(kind='kde')
```


Distribution plot

- A distribution plot is a visualization that combines aspects of a histogram and a kernel density plot to show the distribution of a continuous variable.
- It is useful for understanding the distribution of data points in a dataset and identifying patterns such as skewness, kurtosis, and the presence of outliers.
- sns.histplot is used instead of sns.distplot.
- The parameter kde=True adds the KDE line to the histogram

- In recent versions of Seaborn (0.11.0 and later), sns.distplot has been deprecated.
- Instead, you should use sns.histplot or sns.kdeplot for similar functionality.

 Here's how to create a similar plot using sns.histplot

```
import seaborn as sns
import matplotlib.pyplot as plt

# Example data
import numpy as np
data = np.random.randn(1000) # Generating random data

# Creating a histogram with KDE
sns.histplot(data, kde=True, bins=30)

# Adding labels and title
plt.xlabel('Value')
plt.ylabel('Density')
```


Count Plots

- ▶ Purpose: Show the counts of observations in each categorical bin.
- ▶ Inference: Detect the distribution of categorical features.


```
import seaborn as sns
import matplotlib.pyplot as plt
# Sample data
import pandas as pd
data = pd.DataFrame({
    'Category': ['A', 'B', 'A', 'C', 'B', 'A', 'C', 'C', 'B', 'A']
})
# Create the count plot
plt.figure(figsize=(8, 6)) # Optional: Set figure size
sns.countplot(data=data, x='Category', palette='viridis')
# Add title and labels
plt.title('Count Plot Example')
plt.xlabel('Category')
plt.ylabel('Count')
# Show plot
plt.show()
```

Explanation:

- `data`: The DataFrame containing the data.
- `x`: The column name containing the categorical data you want to plot.
- `palette`: Specifies the color palette for the bars. You can use predefined palettes like 'viridis',
 'coolwarm', etc., or define your own colors.

Pie Plot

A pie plot (or pie chart) is a circular statistical graphic that is divided into slices to illustrate numerical proportions. Each slice represents a category's proportion to the whole dataset. Pie charts are useful for showing the relative sizes of parts to a whole, making it easy to compare the parts of a single categorical variable.


```
import matplotlib.pyplot as plt
# Sample data
labels = ['Category A', 'Category B', 'Category C', 'Category D']
sizes = [30, 20, 25, 25] # Corresponding sizes of each category
colors = ['#ff9999','#66b3ff','#99ff99','#ffcc99'] # Optional: colors for each slice
explode = (0.1, 0, 0, 0) # Optional: explode the first slice for emphasis
# Create the pie chart
plt.figure(figsize=(8, 8)) # Optional: Set figure size
plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=140)
# Add title
plt.title('Pie Chart Example')
# Show plot
plt.show()
```

Explanation:

- `labels`: The names of the categories to be shown in the pie chart.
- `sizes`: The values corresponding to each category.
- `colors`: The colors for each slice of the pie chart. This is optional.
- `explode`: A tuple to indicate which slice to "explode" (or pull out) for emphasis. The first value
 `0.1` means the first slice will be slightly pulled out.
- `autopct`: A string format for the percentage labels on each slice.
- `shadow`: Adds a shadow effect to the pie chart.
- `startangle`: Rotates the pie chart to start from a specified angle.

Feature Elimination Method

- If number of features are too large to handle than it is wise approach to remove insignificant features.
- ► There two popular approach.
- PCA: Principal Component Analysis
- ▶ RFE: Recursive Feature Elimination

Recursive Feature Elimination (RFE)

- Purpose:
- RFE is a feature selection method that iteratively removes less important features based on the model's performance, identifying the most influential features for predicting the target variable.
- Mathematical Basis:
- 1. Feature Importance:
 - ➤ RFE uses an estimator (e.g., Logistic Regression, Random Forest, etc.) that provides feature importance, such as weights or coefficients.

Steps:

- Train the model on the dataset.
- Rank features based on their importance scores.
- Remove the least important feature(s).
- Repeat until the desired number of features remains.
- > Advantages:
- > Identifies the most critical features for the model.
- Helps improve model performance by eliminating redundant or irrelevant features.
- Works well with small to medium datasets.
- Disadvantages:
- Computationally expensive for large datasets.
- Performance depends on the chosen estimator.

Code Example:

```
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# Load dataset
data = load_iris()
X, y = data.data, data.target
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random state=42)
# Logistic Regression as estimator
logitR = LogisticRegression()
# Apply RFE to select top 2 features
selector = RFE(estimator=logitR, n_features_to_select=2, step=1)
selector.fit(X_train, y_train)
```

Selected features
print("Selected Features:", selector.support_)

```
from sklearn.feature_selection import RFE
from sklearn.linear model import LogisticRegression
from sklearn.datasets import load iris
from sklearn.model_selection import train_test_split
# Load dataset
data = load_iris()
X, y = data.data, data.target
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Logistic Regression as estimator
logitR = LogisticRegression()
# Apply RFE to select top 2 features
selector = RFE(estimator=logitR, n_features_to_select=2, step=1)
selector.fit(X_train, y_train)
# Selected features
print("Selected Features:", selector.support_)
print("Feature Ranking:", selector.ranking_)
```

Principal Component Analysis (PCA)

- Purpose:
- ► PCA is a dimensionality reduction technique that transforms the dataset into a lower-dimensional space while preserving as much variance as possible.

Mathematical Basis:

- 1. Covariance Matrix:
 - Compute the covariance matrix of the dataset.

Covariance Matrix:
$$\Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu)(X_i - \mu)^T$$

2. Eigenvalues and Eigenvectors:

- Calculate eigenvalues and eigenvectors of the covariance matrix.
- Eigenvalues represent the variance captured by each principal component.
- Eigenvectors represent the directions of maximum variance.

3. Principal Components:

 Transform the original dataset X into a new coordinate system using the eigenvectors.

$$Z = X \cdot W$$

Where W is the matrix of eigenvectors.

Advantages:

- Reduces dimensionality while retaining variance.
- Removes multicollinearity by creating uncorrelated components.
- Improves computational efficiency for large datasets.

Disadvantages:

- Components are linear combinations of original features, losing interpretability.
- Sensitive to scaling; features must be normalized.

Key Differences

Aspect	RFE	PCA
Purpose	Feature Selection	Dimensionality Reduction
Method	Eliminates less important features iteratively	Transforms data into new components
Model Dependence	Model-dependent	Model-independent
Interpretability	Retains original feature meaning	Loses interpretability
Computational Cost	Higher (iterative process)	Lower for fewer components