Măsurarea sensibilității unei punții C.C. și calibrarea rezistențelor în decade

Scop laborator: Înțelegerea modalității de măsurare și a însemnătății sensibilității unei punți C.C. și a calibrării unei rezistențe cu abateri ale valorii citite (eroarea de decalaj + eroarea de înmulțire)

Din punct de vedere practic (HW) se dorește: manipularea instrumentelor de măsură și a elementelor de circuit (rezistoare, cabluri) în vederea măsurării sensibilității unei punți.

Din punct de vedere SW: Se dorește obținerea în simulare a datelor obținute experimental pentru puntea testată (Wheatstone).

Fig.1 Orice variație a unei rezistențe (dRx) conduce la o diferență a tensiunii de ieșire (dV la ieșire).

Sensibilitatea este raportul dintre IEŞIRE (valoarea măsurată= tensiunea de ieșire $\Delta \alpha$) și INTRARE (variația rezistenței unui rezistor Rx= $\Delta R_{\scriptscriptstyle X}$).

Pentru punți, acesta se calculează astfel:

$$S = \lim_{\Delta R_X \to 0} \frac{\Delta \alpha}{\frac{\Delta R_X}{R}} = R_X \frac{d \alpha}{d R_X}$$

$$S = R_4 \frac{\alpha' + \alpha''}{R_4'' - R_4'}$$

Fig.2 Măsurarea sensibilității cu metoda segmentelor (sau a pantei)

Sarcini de lucru:

1) Se calibrează rezistoarele în decade conform abaterilor (+/- X) determinate în tabel:

Tip	Decada 1	Decada 2	Decada 3	Decada 4	Decada 5	Decada 6	Decada 7
rezistor	(abatere)						
Rezistor							
punte							
Rezistor							
masurat							

2) Se va adapta următorul tabel, conform specificațiilor date în cadrul laboratorului:

	a/b	R sau R'	α ₁ / div /	R ₁ / Ω/	α ₂ / div /	R ₂ / Ω/	R _X /Ω/	S / div /	ε _χ /%/	R _{xc} / Ω/
--	-----	----------	---------------------------	------------------------	---------------------------	------------------------	-----------------------	--------------	-----------------------	-------------------------

Rxc se obține la echilibru (Uies \approx 0)

$$\varepsilon = 100 \frac{|Rx - Rxc|}{R_x}$$

3) Se trasează următoarele grafice:

Ex(Rx) & S(Rx)

Exemple de calcul:

Care este formula pentru calibrarea rezistențelor în decade? Ycomp=A*X+B

Pentru ce valori ale rezistenței (ordin de mărime: Ω , k Ω , M Ω) se recomandă folosirea punții Wheatstone?
Pentru ce valori ale rezistenței puntea va răspunde cel mai mult?
Concluzii: