International IOR Rectifier

IRLML2502GPbF

HEXFET® Power MOSFET

- N-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- Lead-Free
- Halogen-Free

$$V_{DSS} = 20V$$
 $R_{DS(on)} = 0.045\Omega$

Description

These N-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3™, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain- Source Voltage	20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	4.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	3.4	Α
I _{DM}	Pulsed Drain Current ①	33	
P _D @T _A = 25°C	Power Dissipation	1.25	W
P _D @T _A = 70°C	Power Dissipation	0.8	l vv
	Linear Derating Factor	0.01	W/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	75	100	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	<u>U</u>	(
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	l	0.01		V/°C	Reference to 25°C, I _D = 1mA
Book)	Static Drain-to-Source On-Resistance		0.035	0.045	0	V _{GS} = 4.5V, I _D = 4.2A ②
R _{DS(on)}	Static Brain to Source Off resistance		0.050	0.080	Ω	V _{GS} = 2.5V, I _D = 3.6A ②
V _{GS(th)}	Gate Threshold Voltage	0.60		1.2	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
9fs	Forward Transconductance	5.8			S	$V_{DS} = 10V, I_D = 4.0A$
1	Drain-to-Source Leakage Current			1.0		V _{DS} = 16V, V _{GS} = 0V
I _{DSS}	Diali-to-Source Leakage Current			25	μA	V _{DS} = 16V, V _{GS} = 0V, T _J = 70°C
1	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
I _{GSS}	Gate-to-Source Reverse Leakage			100	11/	V _{GS} = 12V
Qg	Total Gate Charge		8.0	12		$I_D = 4.0A$
Q _{gs}	Gate-to-Source Charge		1.8	2.7	nC	$V_{DS} = 10V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		1.7	2.6		V _{GS} = 5.0V ②
t _{d(on)}	Turn-On Delay Time		7.5			$V_{DD} = 10V$
t _r	Rise Time		10		no	$I_D = 1.0A$
t _{d(off)}	Turn-Off Delay Time		54		ns	$R_G = 6\Omega$
t _f	Fall Time		26			$R_D = 10\Omega$ ②
C _{iss}	Input Capacitance		740			V _{GS} = 0V
Coss	Output Capacitance		90		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		66			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			1.0		MOSFET symbol
	(Body Diode)			1.3	A	showing the
I _{SM}	Pulsed Source Current			33	1 ^	integral reverse
	(Body Diode) ①			33		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 1.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		16	24	ns	$T_J = 25^{\circ}C, I_F = 1.3A$
Q _{rr}	Reverse Recovery Charge		8.6	13	nC	di/dt = 100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Pulse width \leq 300 μ s; duty cycle \leq 2%.

International TOR Rectifier

IRLML2502GPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International

TOR Rectifier

Fig 11. On-Resistance Vs. Gate Voltage

Fig 12. On-Resistance Vs. Drain Current

International IOR Rectifier

IRLML2502GPbF

Micro3 (SOT-23) (Lead-Free) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS						
SYMBOL	MILLIMI	ETERS	INCHES			
STIVIBOL	MIN	MAX	MIN	MAX		
Α	0.89	1.12	0.035	0.044		
A1	0.01	0.10	0.0004	0.004		
A2	0.88	1.02	0.035	0.040		
b	0.30	0.50	0.012	0.020		
С	0.08	0.20	0.003	0.008		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E1	1.20	1.40	0.047	0.055		
е	0.95	BSC	0.037	BSC		
e1	1.90	BSC	0.075	BSC		
L	0.40	0.60	0.016	0.024		
L1	0.54	REF	0.021	REF		
L2	0.25	BSC	0.010	BSC		
0	0	8	0	8		

Recommended Footprint

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
 3. CONTROLLING DIMENSION: MILLIMETERS [INCHES].

 \$\(\frac{1}{2}\) DATUM FLANDE HIS LOCATED AT THE MOLD PARTING LINE.

 \$\(\frac{1}{2}\) DATUM A AND B TO BE DETERMINED AT DATUM PLANE H.

 \$\(\frac{1}{2}\) DIMENSIONS D AND E 1 ARE MEASURED AT DATUM PLANE H. DIMENSIONS DANDE 1 ARE MEASURED AT DATUM PLANE H. DIMENSIONS OR INTERLEAD FLASH. MOLD PROTRUSIONS OR INTERLEAD FLASH SHALL NOT EXCED 0.25 MM [ID.010 INCH] PER SIDE.

 \$\(\frac{1}{2}\) DIMENSION IL 1STHE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.
 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

Micro3 (SOT-23 / TO-236AB) Part Marking Information

Micro3 / SOT-23 Package Marking

W = (1-28) IF PRECEDED BY LAST DIGIT OF CALEND AR YEAR

YE AR	Υ	WORK WEEK	W
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010	1 2 3 4 5 6 7 8 9	01 02 03 04 V 24 25 26	A B C D

PART NUMBER CODE REFERENCE:

A = IRLML2402 B =IRLML2803 C = IRLML2402 D = IRLML5103 E = IRLML6402 F = IRLML6401 G = IRLML2502H = IRLML5203

Note: A line above the work week (as shown here) indicates Lead-free

Note: For the most current drawing please refer to IR website at http://www.irf.com/package www.irf.com

International

Rectifier

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 07/2008

visit us at www.iii.com for sales contact information. 07/2006