Zastosowanie głębokich sieci neuronowych do klasyfikacji sygnałów elektrokardiograficznych

Bionika

Kamieniorz Martyna Klimanek Paulina Kowol Karolina liAM1

Bionika zajmuje się tworzeniem użytecznych technicznie modeli systemów biologicznych. Jest interdyscyplinarną specjalnością nauki, łączącą zagadnienia dotyczące biologii oraz techniki.

Cel projektu

- → Zapoznanie się z tematem sieci neuronowych w inżynierii biomedycznej,
- → Zaprojektowanie i implementacja w programie Matlab, głębokiej konwolucyjnej sieć neuronową, która posłużyła jako klasyfikator sygnałów elektrokardiograficznych. Sygnały przedstawiają dwa rodzaje zaburzeń arytmię bądź zastoinową niewydolność serca, a także poprawny sygnał EKG. Sygnały zostały zaczerpnięte z bazy PhysioNet, a następnie poddane transformacji falkowej w celu uzyskania skalogramów, które zostały zbiorem uczącym sieci.

EKG jest jednym ze sygnałów biologicznych powstających w organizmie każdego człowieka. Na przestrzeni lat nauka umożliwiła pobór tego impulsu elektrycznego oraz jego wizualizację. Badanie wykonane elektrokardiografem pozwala na ocenę stanu zdrowia człowieka, a dzięki temu pomaga w leczeniu wielu chorób.

Nieprawidłowa praca serca

Zaburzenia rytmu serca

Zaburzenia rytmu serca (tzw. arytmia) jest stanem powodującym nierównomierne skurcze mięśnia sercowego oraz często nieprawidłową jego częstotliwość. Początkowe rozpoznanie tej choroby następuje w trakcie osłuchiwania stetoskopem tonów serca. W celu dokładnej diagnostyki stosuje się monitorowanie ciągłe, tzw. holterowskie, ponieważ często zaburzenia pojawiają się spontanicznie w ciągu dnia.

Zastoinowa niewydolność serca

Ta przewlekła choroba jest najczęstszą przyczyną zgonów wśród chorych cierpiących na zaburzenia sercowo-naczyniowe. Powstanie tej przypadłości jest wynikiem uszkodzenia mięśnia sercowego i nieprawidłowego wypełniania się komór serca, które prowadzą do niewydolności całego organu.

Uczenie maszynowe i głębokie

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Uczenie maszynowe

Według definicji podanej przez Arthura Samuela w 1959 roku uczenie maszynowe to "dziedzina nauki, która pozwala komputerom uczyć się bez wcześniejszego jawnego zaprogramowania". Inna definicja, bardziej aktualna, bo pochodząca z 1998 roku jest formuła przedstawiona przez Toma Mitchella, który opisuje w niej program komputerowy uczący się na podstawie doświadczeń oraz oczekiwanych wyników

Uczenie głębokie

Głębokie uczenie jest dziedziną uczenia maszynowego, sposobem uczenia się reprezentacji na podstawie danych. Głębia polega uczenia tworzeniu wielowarstwowej reprezentacji danych. Współczesne uczenie głębokie polega na tworzeniu dziesiątek a nawet setek warstw reprezentacji trenowanych za pomocą danych treningowych.

Sieć Konwolucyjna jako przykład głębokiego uczenia

Convolution Neural Network (CNN), czyli splotowa sieć neuronowa, często nazywana ma głęboką architekturę ConvNet, sprzężenia zwrotnego i zadziwiające zdolność do generalizacji w lepszy sposób niż sieci z całkowicie połączonymi warstwami. Możemy opisać ją koncepcję hierarchicznych detektorów cech w biologicznie inspirowany sposób.

Architektura sieci GoogleNet

Głównym celem GoogLeNet było opracowanie modelu o niższym koszcie obliczeniowym, który mógłby zmniejszyć liczbę używanych parametrów szkoleniowych i zużycie pamięci. Model gwałtownie zmniejszył liczbę możliwych do wyuczenia parametrów używanych w sieci. Sieć zasadniczo wykorzystuje 12 milionów mniej parametrów inne architektury konwolucyjnych sieci.

Transformata falkowa jako narzędzie do przygotowania zbioru uczącego

W celu analizy sygnałów jednowymiarowych, takich jak sygnał EKG, częstą praktyką jest utworzenie skalogramów, czyli wizualizacji transformaty falkowej poprzez estymatę gęstości energii w przestrzeni czas-skala. Do ich tworzenia wykorzystywana jest transformata falkowa. 7miana koloru na otrzymanym obrazie pozwala na łatwą interpretację wartości na poszczególnych osiach.

Przykładowe obrazy wejściowe

Prawidłowe EKG

Zastoinowa niewydolność serca

Arytmia

Stworzona Aplikacja

Podsumowanie i wnioski

Cele projektu zostały spełnione. Stworzony klasyfikator poprawnie rozpoznaje skalogram sygnału EKG. Architektura konwolucyjnej sieci neuronowej decyduje o dokładności jej działania. Sieć typu GoogLeNet daje dużo lepszą dokładność niż sieć SqueezeNet. Poszerzenie projektu o dane dotyczące innych chorób serca pozwoliłby na wprowadzenie do użytku lekarza, aby wspomóc diagnostykę.