

Listing of Claims:

1. (Currently Amended) An image processing system comprising:

an image capturing unit; and

an image processing unit,

5 the image capturing unit comprising:

an illuminating light source including a plurality of light-emitting devices which respectively emit illumination lights having a plurality of different characteristics of spectroscopic distributions;

10 an image pick-up optical system which picks up forms an image of a subject illuminated by the illuminating light source;

an image pick-up device unit which picks up the subject image formed by the image pick-up optical system and obtains a subject signal from the subject; and

15 a control unit which controls light emission by the plurality of light-emitting devices and image pick-up by the image pick-up device and which switches the image capturing unit between a spectroscopic image capturing mode in which it obtains a still image of a subject spectroscopic image and a moving image capturing mode in which it obtains a moving image thereof;

wherein, in the spectroscopic image capturing mode, the control unit controls the plurality of light-emitting devices to

sequentially emit light according to the characteristics of
spectroscopic distributions by a plurality of times interlocking
25 the light emission with an exposure timing of the image pick-up
device thereby causing the image pick-up device to obtain a
plurality of subject spectroscopic images; and

wherein, in the moving image capturing mode, the
control unit is arranged to (i) cause light emission of a light-
30 emitting device for a single specific primary color or cause
light emission of light-emitting devices for a plurality of
specific primary colors selected from the plurality of light-
emitting devices, (ii) cause simultaneous light emission of all
of the plurality of light-emitting devices, or (iii) cause
35 sequential light emission of a group of R devices, a group of G
devices, and a group of B devices selected from the plurality of
light-emitting devices, group by group, and to cause the image
pick-up device to obtain a moving image; and

a plurality of illuminating light sources with different
40 characteristics of spectroscopic distributions; and a
photographing operating unit which performs an image
photographing operation, the image capturing unit interlocking
the plurality of illuminating light sources with an exposure
timing of the image pick-up device unit, selectively lighting on
45 the plurality of illuminating light sources, and thus obtaining a
plurality of subject spectroscopic images, and

the image processing unit comprising:
~~an image memory unit which stores the subject spectroscopic images photographed by the image pick-up unit, wherein the image processing unit calculates a desired image based on the image signal stored in the image memory unit, and wherein the image processing unit further comprises~~
50

~~an image identification calculating unit which calculates grade data to be used to determine a grade of a color of the subject based on one or more of the subject spectroscopic images stored in the image memory unit captured by the image capturing unit when operating in the spectroscopic image capturing mode.~~
55

Claims 2-16 (Canceled).

17. (Previously Presented) The image processing system according to claim 1, wherein the grade data indicates a grade of a shading guide for comparing the color of a tooth as the subject.

18. (Previously Presented) The image processing system according to claim 1, wherein the image processing unit calculates a ceramic compounding ratio of a false tooth based on

the grade data to obtain false tooth ceramic compounding ratio data.

19. (Previously Presented) The image processing system according to claim 18, further comprising a computer connected to the image processing unit through a network, wherein the image processing unit transfers the grade data and the false tooth 5 ceramic compounding ratio data to the computer.

20. (Previously Presented) The image processing system according to claim 19, further comprising a ceramic compounding ratio calculation database connected to the computer, wherein the computer searches for a ceramic compounding ratio from the 5 ceramic compounding ratio calculation database based on the grade data and the false tooth ceramic compounding ratio data.

21. (Currently Amended) The image processing system according to claim 1, further comprising a monitor display unit connected to the image processing unit, wherein the image identification calculating unit calculates the grade data before 5 and after treatment of the subject, and the display unit displays the grade data is displayed on the monitor calculated before and after the treatment of the subject.

22. (Previously Presented) The image processing system according to claim 1, wherein the image capturing unit further comprises an abutting portion formed in a cylindrical shape which abuts the subject.

23. (Previously Presented) The image processing system according to claim 22, wherein the abutting portion is configured to be detachably attached to the image capturing unit.

24. (Previously Presented) The image processing system according to claim 1, wherein the image capturing unit further comprises reflected light rejecting means for preventing the illuminating light source from being photographed to the subject.

25. (Previously Presented) The image processing system according to claim 1, wherein the image capturing unit further comprises an optical member which reduces the illuminating unhomogeneity between the illuminating light source and the subject.

26. (Previously Presented) The image processing system according to claim 1, wherein the plurality of illuminating light sources include at least one of: (i) a light source with a center

wavelength of 780 to 900 nm, and (ii) a light source with a center wavelength of 300 to 380 nm.

27. (Previously Presented) The image processing system according to claim 1, wherein the image capturing unit and the image processing unit are integrally formed.

28. (Previously Presented) The image processing system according to claim 1, wherein the image capturing unit includes a color chip for calibration in the image processing unit.

29. (Previously Presented) The image processing system according to claim 1, wherein the image capturing unit comprises a portable terminal device having a photographing function, and wherein an illuminating light source unit having the plurality of 5 illuminating light sources as one unit is attachable to the portable terminal device.

30. (Previously Presented) The image processing system according to claim 1, wherein the image processing unit comprises image filing software, and image data photographed upon operating the photographing operating unit is recorded in accordance with the image filing software.

31. (Previously Presented) The image processing system according to claim 1, wherein the image capturing unit further comprises subject portion sensing means for obtaining positional information of the subject.

32. (Previously Presented) The image processing system according to claim 1, wherein the image capturing unit further comprises distance measuring means for managing a size of the subject in the photographed image.

33. (Previously Presented) The image processing system according to claim 32, wherein the image capturing unit further comprises a monitor which displays the image of the subject, and wherein the image capturing unit controls the monitor to display 5 a difference between a photographing distance measured by the distance measuring means and a target photographing distance.

34. (Previously Presented) The image processing system according to claim 32, wherein the image capturing unit further comprises a monitor which displays the image of the subject, and wherein the image capturing unit controls the monitor to display 5 an indication that the photographing distance measured by the distance measuring means matches a target photographing distance.

35. (Previously Presented) The image processing system according to claim 32, wherein the image capturing unit further comprises a monitor which displays the image of the subject, and wherein the image capturing unit obtains information of a desired 5 photographing distance from images previously picked up, calculates a magnification correcting coefficient based on information of an actual photographing distance measured by the distance measuring means and the desired photographing distance information, and controls the monitor to display the image of the 10 subject with a magnification corrected based on the magnification correcting coefficient.