Classification Report

This week

- Confusion matrix
- Precision, Recall, F1-score
- Visualization
- Filter and Activation map
- Frequency response
- Spectrogram

Fine Tuning

- Change activation function

Next week

- Change filter size
- Try other reference
- Visualization
 - Each label
- The other model
- CAM(Class Activation Map)

Interesting and new finding

- Fine Tuning
- Visualization

The aim of this month / Discussion

The aim of this month: To study the brain and GLM, To investigate about CNN.

Audio Classification - Previous Work

- Data is low-waveform.
 - sec: 1, sampling rate: 16000, type: float32, channel: mono
- 16 class data.
 - 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'bed', 'bird', 'tree', 'cat', 'house', 'dog'
- Train: 40851(≒80%), Validation: 4796(≒10%), Test: 5297(≒10%)

Audio Classification - Previous Work

- For example, '5Conv, 2FC' baseline model's detail.
- It just flatten 2D model. (5X5 filter->1X25 filter, 2X2 stride->1X4 stride)
- Input: 16000X1 low waveform.
- Output:1x16 labeled one hot vector. ('zero', ..., 'eight', ..., 'house', 'dog')
- Loss: cross entropy loss
- Obtimizer: Adam

Audio Classification - Previous Work

Fine tuning task in 1D-CNN

• This is SOTA(State Of The Art) in current research.

	Architecture (i = 0,1,2)	1D DO(0.5)	1D BN	1D DO+BN	Params	
		eline				
base model	5 Conv(25, 8*2 ⁱ), 5 Pool(4), 2 FC	0.9090	0.9072	0.9240	1,855,056	
	Accuracy and Number of parameters					
Custom channel 32 DO(0.75) Custom channel 64 DO(0.75) Custom VGG style DO(0.75) Custom channel 128 DO(0.25)+BN	8 CONV(5, 64)	0.9533	0.9285	0.9391	94,768	
	8 CONV(5, 128)	0.9589	X	0.9497	363,600	
	16 CONV(3, 128), 8 Pool	0.9620	0.9423	0.9136	470,736	
	Only Accuracy					
	9 CONV(5, 512)	0.9535	X	0.9701	2,071,184	

- Confusion matrix
- Compare two best model.
- Not much different, but the right model is a little better.

Actual class

Actual class

Zero [[369 0 5 1 3 0 1 4 0 1 0 0 1 0 0 0]	
One [1 347 0 0 4 1 1 0 0 7 2 0 0 1 0 0]	
Two [8 0 369 2 0 0 0 0 1 0 0 0 2 2 0 0]	
Three [1 0 2 356 0 1 1 2 6 0 0 0 0 0 8]	
Fore [2 2 1 1359 2 0 0 0 0 0 1 0 0 0]	
Five [0 6 0 3 4386 0 2 1 3 0 1 2 0 0 0]	
Six [0 0 0 3 1 0 366 1 2 0 1 0 0 0 0 0]	
Seven [3 0 0 0 1 0 2367 0 0 3 0 0 0 0 0]	
Eight [1 0 1 2 1 0 0 0367 0 2 0 1 0 0 1]	
Nine [0 6 0 0 0 3 0 0 0364 3 1 0 0 0 0]	
Bed [1 0 2 0 0 0 0 0 6 0,166, 5 2 1 0 0]	
Bird [0 1 1 1 0 0 2 0 0 2 7 1 3 7 0 2 0 0]	
Cat [0 0 0 0 0 0 0 1 0 1 0 161 4 1 0]	
Dog [0 1 5 0 0 0 0 0 1 1 0 2182 0 0]	
House [0 0 2 0 0 1 1 0 0 1 0 0 5 1156 0]	
Tree [2 0 2 15 0 0 1 0 4 1 0 0 0 0 138]]

[[375 0 3 0 2 0 0 3 0 1 0 0 0 0 0 1]
[0 348 0 0 4 1 0 1 1 6 1 0 0 0 1 1]
[1 0 375 2 1 0 0 0 0 0 0 0 0 0 2 1 2]
[1 0 5 356 0 0 2 3 1 0 1 0 0 0 0 8]
[0 0 0 0 364 1 0 0 0 0 0 1 1 0 0 0 1]
[0 0 0 0 5 399 0 0 1 2 0 0 1 0 0 0 0]
[0 0 0 1 0 0 371 1 0 0 1 0 0 0 0 0]
[1 0 0 0 0 1 373 1 0 0 0 0 0 0 0]
[1 0 0 4 2 0 0 0 0 362 4 0 2 1 0 0 1]
[0 0 4 2 0 0 0 362 4 0 2 1 0 0 1]
[0 0 0 1 0 0 0 1 0 1 0 178 1 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 1 3 147 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 1 1 0 186 0 2]
[0 0 1 10 0 0 0 0 0 0 0 1 3 0 161 0]
[0 0 1 10 0 0 0 0 0 0 0 1 3 0 161 0]

Custom channel 32 (Acc: 0.9533) DO(0.75)

Custom channel 128 (Acc: 0.9701) DO(0.25)+BN

- I think this try is very meaningful.
- Because this model focus on the feature compression than previous model.
- Like autoencoder. (16000 → 64(=2*32channel))
- This model is better when use other classifiers after extract the feature from CNN.

- In summary, This is SOTA(State Of The Art) in this research.
- Though the performance is lower than the previous model, I think it is meaningful.
- The original data size, 16000, was compressed to 32 and the performance was 0.9327.
- And the other model compress to 128 and the performance was 0.9628.
- What if we use a feature from CNN as input to another model, this model will be very useful.

	Architecture (i = 0,1,2)	1D DO(0.5)	1D BN	1D DO+BN	Params
Feature extraction ch 64	16000(Input data size) → 2(Length) * 16(Channel) = 32 (Feature size)				
	9 CONV(5, 16)	0.9238	0.9074	0.9327	91,712
F 1	16000(Input data size) → 2(Length) * 64(Channel) = 128 (Feature Size)				
Feature extraction ch 256	9 CONV(5, 64)	0.9603	0.9572	0.9628	1,438,544

- In previous time, I shown only accuracy and confusion matrix.
- But there is a lot of way that I show the model's performance more efficiently
- First, Visualize the number.

Actual class

 Zero [[369 0 5 1 3 0 1 4 0 1 0 0 1 0 0 0]

 One [1 347 0 0 4 1 1 0 0 7 2 0 0 1 0 0]

 Two [8 0 369 2 0 0 0 0 1 0 0 0 2 2 0 0]

 Three [1 0 2 356 0 1 1 2 6 0 0 0 0 0 0 0 0 0 8]

 Fore [2 2 1 1 359 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0

 Five [0 6 0 3 4 386 0 2 1 3 0 1 2 0 0 0]

 Six [0 0 0 3 1 0 366 1 2 0 1 0 0 0 0 0 0 0 0 0

 Seven [3 0 0 0 1 0 2 367 0 0 3 0 0 0 0 0 0

 Bed [1 0 2 0 0 0 3 0 0 364 3 1 0 0 0 364 3 1 0 0 0 0

 Bird [0 1 1 1 1 0 0 2 0 0 0 0 1 0 1 0 161 4 1 0

 Cat [0 0 0 0 0 0 0 0 0 1 1 0 2 182 0 0

 House [0 0 2 15 0 0 1 1 0 4 1 0 0 0 0 0 0 0 0 0 138]

Custom channel 32

DO(0.75)

0 0 0 0 0 138]] (Acc: 0.9533)

- To validate the model, We can use measure such as precision, recall, f1-score.
- We find out that It does not confuse between 'three' and 'tree'.
- It just confuses 'tree' as 'three'.
- And It also confuse between 'Bed' and 'Bird'.

	Actual class	Precision	Recall	F1-score	Suppor t
Predict Class	Zero [[369 0 5 1 3 0 1 4 0 1 0 0 1 0 0 0] One [1347 0 0 4 1 1 0 0 7 2 0 0 1 0 0] Two [8 0 369 2 0 0 0 0 1 0 0 0 2 2 0 0] Three [1 0 2 356 0 1 1 2 6 0 0 0 0 0 0 0 8] Fore [2 2 1 1 359 2 0 0 0 0 0 0 1 0 0 0] Five [0 6 0 3 4 386 0 2 1 3 0 1 2 0 0 0] Six [0 0 0 3 1 0 366 1 2 0 1 0 0 0 0 0 0] Seven [3 0 0 0 1 0 2 367 0 0 3 0 0 0 0 0 0] Eight [1 0 1 2 1 0 0 0 367 0 2 0 1 0 0 1] Nine [0 6 0 0 0 3 0 0 0 364 3 1 0 0 0 0 0] Bed [1 0 2 0 0 0 0 0 0 6 0 166 5 2 1 0 0] Bird [0 1 1 1 1 0 0 2 0 0 0 2 7 137 0 2 0 0] Cat [0 0 0 0 0 0 0 1 0 0 1 0 161 4 1 0] Dog [0 1 5 0 0 0 0 0 0 1 0 0 1 0 161 4 1 0] Dog [0 1 5 0 0 0 0 0 0 0 1 0 0 5 1 156 0] Tree [2 0 2 15 0 0 1 0 4 1 0 0 0 0 0 138]] Custom Custom	0.95 0.96 0.95 0.93 0.96 0.98 0.97 0.95 0.96 0.89 0.95 0.91 0.94 0.99	0.96 0.95 0.96 0.94 0.98 0.95 0.98 0.98 0.97 0.91 0.90 0.96 0.95 0.95	0.95 0.95 0.95 0.94 0.97 0.96 0.98 0.97 0.96 0.99 0.99 0.92 0.93 0.95 0.96 0.89	385 364 384 377 368 408 374 376 377 183 153 168 192 167 163
	channel 32 (Acc: 0.9533) weighted avg DO(0.75)	0.95	0.95	0.95	4815

- Visualize the filter map. (Custom channel 32 DO(0.75) Model)
- Less than zero of the waveform is removed because of 'Relu'
- · Because of this problem, it is difficult to analysis from the point of view of Signal Processing.
- So, I consider to use 'tanh' function.

- Visualize the filter map. (Custom channel 32 DO(0.75) Model)
- Going through the filter, the information is disappearing more and more.

Original input

- About half is gone away...
- I don't know whether each label has a place for feature extraction or it is originally empty

8th Layer - Filter

Original input

- The most of Signal Processing analysis assume that Linear Time Invariant(LTI) System.
- Because of 'Relu' function is non-linear function, So, CNN is also non-linear system.
- But, how about before the first Relu?
- I think we can apply the Signal Processing technique before the first Relu layer.

Layer (type)	Output Shape	Param #
conv1d_67 (Conv1D)	(None, 16000, 32)	192
activation_67 (Activation)	(None, 16000, 32)	0
conv1d_68 (Conv1D)	(None, 16000, 32)	5152
activation_68 (Activation)	(None, 16000, 32)	0
max_pooling1d_55 (MaxPooling	(None, 5333, 32)	0
conv1d_69 (Conv1D)	(None, 5333, 32)	5152
activation_69 (Activation)	(None, 5333, 32)	0
max_pooling1d_56 (MaxPooling	(None, 1777, 32)	0
conv1d_70 (Conv1D)	(None, 1777, 32)	5152
activation_70 (Activation)	(None, 1777, 32)	0
max_pooling1d_57 (MaxPooling	(None, 592, 32)	0
conv1d_71 (Conv1D)	(None, 592, 64)	10304
activation_71 (Activation)	(None, 592, 64)	0
max_pooling1d_58 (MaxPooling	(None, 197, 64)	0

conv1d_72 (Conv1D)	(None,	197, 64)	20544
activation_72 (Activation)	(None,	197, 64)	0
max_pooling1d_59 (MaxPooling	(None,	65, 64)	0
conv1d_73 (Conv1D)	(None,	65, 64)	20544
activation_73 (Activation)	(None,	65, 64)	0
max_pooling1d_60 (MaxPooling	(None,	21, 64)	0
conv1d_74 (Conv1D)	(None,	21, 64)	20544
activation_74 (Activation)	(None,	21, 64)	0
max_pooling1d_61 (MaxPooling	(None,	7, 64)	0
flatten_12 (Flatten)	(None,	448)	0
dropout_12 (Dropout)	(None,	448)	0
dense_12 (Dense)	(None,	16)	7184

- I want to know what does each filter to do.
- So I tried to analysis in frequency area.
- But, Fast Fourior Transform (FFT) is not good to analysis speech signal......

- So I created spectrogram by Short Time Fourier Transform (STFT).
- Window Size: 512, Stride: 128
- We can see that it is applied to the shape of frequency response.

Any Question?

Thank you

