B3 - Linear Regression

Jan_philipp Kolb

16 Oktober 2018

Gute Literatur für lineare Regression in R

Nützliches PDF-Dokument:

J H Maindonald - Using R for Data Analysis and Graphics Introduction, Code and Commentary

- Introduction to R
- Data analysis
- Statistical models
- Inference concepts
- Regression with one predictor
- Multiple linear regression
- Extending the linear model
- . . .

Variablen im mtcars Datensatz

Hilfe File für den roller Datensatz:

?mtcars

- mpg Meilen/(US) Gallone
- cyl Anzahl der Zylinder

Datensatz mtcars

	mpg	cyl	disp	hp	drat	wt	qsec	vs a
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0
Cadillac Fleetwood Jan_philipp Kolb	10 4	Я В3 -	472 ∩ Linear Regre	205 ession	2 03	5 250 16 Ok	17 QR tober 2018	∩ 4 / 33

Distributions of two variables of mtcars

```
par(mfrow=c(1,2))
plot(density(mtcars$wt)); plot(density(mtcars$mpg))
```


density.default(x = mtcars\$mpg)

Ein einfaches Regressionsmodell

Abhängige Variable - Meilen pro Gallone (mpg)

Unabhängige Variable - Gewicht (wt)

```
m1 <- lm(mpg ~ wt,data=mtcars)
m1
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344</pre>
```

Die Modell Zusammenfassung:

```
summary(m1)
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
     -5.3445 0.5591 -9.559 1.29e-10 ***
## wt
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
```

Die Modellformel

Modell ohne Achsenabschnitt

```
m2 <- lm(mpg ~ - 1 + wt,data=mtcars)
summary(m2)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## wt 5.291624 0.5931801 8.920771 4.55314e-10
```

Weitere Variablen hinzufügen

```
m3 <- lm(mpg ~ wt + cyl,data=mtcars)
summary(m3)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.686261 1.7149840 23.140893 3.043182e-20
## wt -3.190972 0.7569065 -4.215808 2.220200e-04
## cyl -1.507795 0.4146883 -3.635972 1.064282e-03
```

Weitere Möglichkeiten, die Formel zu spezifizieren

Interaktionseffekt

```
# effect of cyl and interaction effect:
m3a<-lm(mpg~wt*cyl,data=mtcars)

# only interaction effect:
m3b<-lm(mpg~wt:cyl,data=mtcars)</pre>
```

Den Logarithmus nehmen

```
m3d<-lm(mpg~log(wt),data=mtcars)</pre>
```

Ein Modell mit Interaktionseffekt

Variable disp - Hubraum

```
m3d<-lm(mpg~wt*disp,data=mtcars)
m3dsum <- summary(m3d)
m3dsum$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 44.08199770 3.123062627 14.114990 2.955567e-14
## wt -6.49567966 1.313382622 -4.945763 3.216705e-05
## disp -0.05635816 0.013238696 -4.257078 2.101721e-04
## wt:disp 0.01170542 0.003255102 3.596022 1.226988e-03
```

Interaktionen untersuchen

```
install.packages("jtools")
library(jtools)
interact_plot(m3d, pred = "wt", modx = "disp")
```

 Mit einem kontinuierlichen Moderator (in unserem Fall disp) erhält man drei Linien - Standardabweichung über und unter dem Mittelwert und dem Mittelwert selbst.

Das R-Paket interplot

Plot the Effects of Variables in Interaction Terms

library(interplot)

• Eine detailliertere Erklärung findet man in der Interplot Vignette

Das R-Paket interplot

• Der Effekt wird auf der y Achse abgetragen - wt auf der x-Achse

interplot(m = m3a, var1 = "wt", var2 = "cyl", hist = TRUE)

Beispiel: Objekt Orientierung

- m3 ist nun ein spezielles Regressionsobjekt
- Verschiedene Funktionen können auf dieses Objekt angewendet werden.

```
predict(m3) # Prediction
resid(m3) # Residuals
```

## ##	Mazda RX4 22.27914	Mazda RX4 Wag 21.46545	Datsun 710 26.25203	Но
##	Hornet Sportabout	Valiant		
##	16.64696	19.59873		
##	Mazda RX4	Mazda RX4 Wag	Datsun 710	Но
##	-1.2791447	-0.4654468	-3.4520262	
##	Hornet Sportabout	Valiant		
##	2.0530424	-1.4987281		

Eine Modellvorhersage machen

```
pre <- predict(m1)</pre>
head(mtcars$mpg)
  [1] 21.0 21.0 22.8 21.4 18.7 18.1
head(pre)
##
           Mazda RX4
                           Mazda RX4 Wag
                                                  Datsun 710
                                                                 Н
##
             23.28261
                                21.91977
                                                    24.88595
  Hornet Sportabout
                                 Valiant
             18.90014
                                18.79325
##
```

Residuenplot - Modellannahmen verletzt?

• Gibt es ein Muster in der Abweichung von der Linie

plot(m3,1)

Residuenplot

plot(m3,2)

• Wenn die Residuen normalverteilt sind, dann sollten sie auf der gleichen Linie liegen.

Regressionsdiagnostik mit Basis-R

```
plot(mtcars$wt,mtcars$mpg)
abline(m1)
segments(mtcars$wt, mtcars$mpg, mtcars$wt, pre, col="red")
```


Das visreg-Paket

install.packages("visreg")

library(visreg)

Das visreg-Paket

- Das Default-Argument für type ist conditional.
- Scatterplot von mpg und wt mit Regressionslinie und Konfidenzbändern

```
visreg(m1, "wt", type = "conditional")
```


Visualisierung mit visreg

- Zweites Argument Spezifikation der Kovariaten in der Graphik
- Das Diagramm zeigt die Auswirkung auf den erwarteten Wert des Regressors, wenn die Variable x von einem Referenzpunkt auf der x-Achse wegbewegt wird (bei numerischen Variablen der Mittelwert).

```
visreg(m1, "wt", type = "contrast")
```


Regression mit Faktoren

Die Effekte von Faktoren können auch mit visreg visualisiert werden:

```
mtcars$cyl <- as.factor(mtcars$cyl)
m4 <- lm(mpg ~ cyl + wt, data = mtcars)
# summary(m4)</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.990794 1.8877934 18.005569 6.257246e-17
## cyl6 -4.255582 1.3860728 -3.070244 4.717834e-03
## cyl8 -6.070860 1.6522878 -3.674214 9.991893e-04
## wt -3.205613 0.7538957 -4.252065 2.130435e-04
```

Effekte von Faktoren

```
par(mfrow=c(1,2))
visreg(m4, "cyl", type = "contrast")
visreg(m4, "cyl", type = "conditional")
```


Das Paket visreg - Interaktionen

```
m5 <- lm(mpg ~ cyl*wt, data = mtcars)
# summary(m5)
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 39.571196
                         3.193940 12.3894599 2.058359e-12
       -11.162351
                         9.355346 -1.1931522 2.435843e-01
## cyl6
## cyl8 -15.703167 4.839464 -3.2448150 3.223216e-03
       -5.647025 1.359498 -4.1537586 3.127578e-04
## wt.
## cyl6:wt 2.866919
                         3.117330 0.9196716 3.661987e-01
               3.454587 1.627261 2.1229458 4.344037e-02
## cyl8:wt
```

Den Graphikoutput mit layout kontrollieren

visreg(m5, "wt", by = "cyl",layout=c(3,1))

Das Paket visreg - Interaktionseffekte übereinander legen

```
m6 <- lm(mpg ~ hp + wt * cyl, data = mtcars)
visreg(m6, "wt", by="cyl", overlay=TRUE, partial=FALSE)</pre>
```


Das Paket visreg - visreg2d

Das Paket visreg - surface

visreg2d(m6, "wt", "hp", plot.type = "persp")

B3A Aufgabe lineare Regression

Der Datensatz toycars beschreibt die Route von drei Spielzeugautos, die Rampen in verschiedenen Winkeln absteigen.

- angle: Rampenwinkel
- distance: Entfernung die von dem Spielzeugauto zurück gelegt wird.
- car: Autotyp (1, 2 or 3)
- a) Lese den Datensatz toycars ein und konvertiere die Variable car des Datensatzes in einen Faktor (as.factor).
- (b) Erstelle drei Box-Plots, in denen die von den Autotypen zurückgelegte Strecke visualisiert wird.

B3A Aufgabe lineare Regression II

(c) Schätze für jeden Autotyp getrennt die Parameter des folgenden linearen Modell; nutze dafür die Funktion lm()

$$distance_i = \beta_0 + \beta_1 \cdot angle_i + \epsilon_i$$

(d) Überprüfe die Anpassung des Modells indem Du die drei Regressionslinien in den Scatterplot einzeichnest (distance gegen angle). Spricht das

$$R^2$$

für eine gute Modellanpassung?

Einen schönen Output mit dem Paket stargazer

erzeugen

```
library(stargazer)
stargazer(m3, type="html")
```

Beispiel HTML Outputs:

	Dependent variable:		
	mpg		
wt	-3.125***		
	(0.911)		
cyl	-1.510***		
	(0.422)		
am	0.176		
	(1.304)		
Constant	39.418***		
	(2.641)		

Shiny App - Diagnostiken für die einfache lineare Regression

https://gallery.shinyapps.io/slr_diag/

Diagnostics for simple linear regression

Select a trend:

- Linear upLinear down
- Curved up
- Curved down
- Fan-shaped

Show residuals

This applet uses ordinary least squares (OLS) to fit a regression line to the data with the selected trend. The applet is designed to help you practice evaluating whether or not the linear model is an appropriate for to the data. The three diagnostic plots on the lower half of the page are provided to help you identify undesirable patterns in the residuals that may arise from non-linear trends in the data.

Rate this appl

View code

Check out other apps

Want to learn more for free?

Links - lineare Regression

- Regression r-bloggers
- Das komplette Buch von Faraway- sehr intuitiv geschriebenes Buch
- Gute Einführung auf Quick-R
- Multiple Regression
- 15 Arten von Regressionen die man kennen sollte
- ggeffects Erzeuge saubere Datensätze mit marginellen Effekten für 'ggplot' aus Modell Outputs