Steganalytic Methods for the Detection of Histogram Shifting Data Hiding Schemes

Daniel Lerch Hostalot

Davíd Megías Giménez

XII Reunión Española sobre Criptología y Seguridad de la Información (RECSI 2012) Donostia, 7 de Septiembre del 2012

Sumario

- Introducción
- Estegoanálisis de Ni et Al 2003
- Estegoanálisi de Mohsenzadeh et al 2009
- Estegoanálisis de HSPE
- Estegoanálisis genérico
- Conclusiones

- Introducción
- Estegoanálisis de Ni et Al 2003
- Estegoanálisi de Mohsenzadeh et al 2009
- Estegoanálisis de HSPE
- Estegoanálisis genérico
- Conclusiones

La intensidad de los píxeles de una imagen puede ser representada en un histograma.

• Existen métodos de esteganografía que permiten ocultar datos en una imagen desplazando su histograma.

- Introducción
- Estegoanálisis de Ni et Al 2003
- Estegoanálisi de Mohsenzadeh et al 2009
- Estegoanálisis de HSPE
- Estegoanálisis genérico
- Conclusiones

Algoritmo:

- 1) Encontrar el pico máximo P.
- 2) Desplazar el histograma hacia la derecha, sumando 1 a todos los píxeles con un valor mayor que *P*.
- 3) Insertar información en todos los píxeles con valor P.
 - → Para insertar 0 no se modifica el valor de *P*.
 - → Para insertar 1 se suma 1 a P.

Sistema de Ni et al 2003: Ejemplo

Estegoanálisis de Ni et al 2003

La forma anormal del histograma puede ser detectada teniendo en cuenta las siguientes observaciones:

- 1) $H_{i+1} + H_{i+2}$ es la barra más alta del histograma.
- 2) H_{i+1} y H_{i+2} son aproximadamente iguales.
- 3) H_i o H_{i+3} no son muy inferiores a $H_{i+1} + H_{i+2}$.

Results NRCS				
Successful	85,19%			
Positive	40,29%			
Negative	44,89%			
False Positive	05.10%			
False Negative	09,70%			

- Introducción
- Estegoanálisis de Ni et Al 2003
- Estegoanálisi de Mohsenzadeh et al 2009
- Estegoanálisis de HSPE
- Estegoanálisis genérico
- Conclusiones

Sistema de Mohsenzadeh et al 2009

Algoritmo:

- 1) Encontrar el pico máximo P.
- 2) Desplazar el histograma hacia la derecha (sumando 1 a todos los píxeles con un valor mayor que *P*) y hacia la izquierda (restándoles 1).
- 3) Insertar información a derecha e izquierda del píxeles P+2 (o P-2).
 - \rightarrow Para insertar 0, poner P+1 (o P-1) en el píxel de la derecha.
 - \rightarrow Para insertar 1, poner P+1 (o P-1) en el píxel de la izquierda.

Sistema de Mohsenzadeh et al 2009: Ejemplo

Imagen original

Imagen Moh2009

Histograma sin marcas

Estegoanálisis de Mohzenzadeh et al 2009 l

La forma de insertar datos crea una anomalía estadística en la distribución de píxeles:

 \rightarrow Siempre hay un P+1 (o P-1) al lado de un P+2 (o P-2).

Podemos explotar esta vulnerabilidad contando el número de píxeles que satisfacen la anomalía.

Imagen original

Imagen Mohsenzadeh 2009

Siempre hay un P+1 (o P-1) al lado de un P+2 (o P-2).

Todas las parejas con una diferencia de 1 son candidatas.

Results NRCS				
Successful	90,99%			
Positive	42,19%			
Negative	48,79%			
False Positive	01.23%			
False Negative	07,66%			

- Introducción
- Estegoanálisis de Ni et Al 2003
- Estegoanálisi de Mohsenzadeh et al 2009
- Estegoanálisis de HSPE
- Estegoanálisis genérico
- Conclusiones

Algoritmo:

1) Escoger una función de predicción del valor de los píxeles vecinos.

a	b
С	d

$$p = c$$

$$p=b$$

$$p=a$$

$$p=c$$
 $p=b$ $p=a$ $p=\frac{a+b+c}{3}$

- 2) Dibujar un histograma con la matriz de errores de predicción: E=p-d
- 3) Insertar información con el método de Ni et al 2003.

Sistema HSPE: Ejemplo

Imagen original

Imagen marcada

Estegoanálisis HSPE I

$$\tilde{h}_{i} = (h_{i-1} + h_{i} + h_{i+1})/3$$

$$V = \sum_{i=1}^{255} \frac{max(\tilde{h}_{i}, h_{i}) - min(\tilde{h}_{i}, h_{i})}{max(\tilde{h}_{i}, h_{i})}$$

Consecuencias de la inserción de ruido en la imagen

Resultados aplicados a HSPE con diferentes fórmulas de predicción de errores.

	Horizontal	Vertical	Diagonal	Causal	MED
Successful	86,94%	88,84%	87,52%	61,19%	63,78%
Positive	43,47%	45,36%	44,05%	17,72%	20,31%
Negative	43,47%	43,47%	43,47%	43,47%	43,47%
False Positive	06.52%	06,52%	06,52%	06,52%	06,52%
False Negative	06,52%	04,63%	05,94%	32,27%	29,68%

Resultados en imágenes de la NRCS

- Introducción
- Estegoanálisis de Ni et Al 2003
- Estegoanálisi de Mohsenzadeh et al 2009
- Estegoanálisis de HSPE
- Estegoanálisis genérico
- Conclusiones

Estegoanálisis: Uso del histograma de errores 🔄 🛂 UOC

Tanto las modificaciones locales de sistemas como Ni2003 o Moh2009, como las modificaciones globales de los sistemas HSPE, afectan al histograma de errores.

El histograma de errores permite realizar un análisis genérico (para todos los métodos expuestos) de la volatilidad.

$$p = \frac{a+b+c}{3}$$

Predicción utilizada

El histograma de errores tiene poca volatilidad. La inserción de nuevos datos hace que esta aumente.

Estegoanálisis: Uso del histograma de errores II 🖸 UOC

Resultados aplicados a los diferentes sistemas de desplazamiento de histograma.

	Horiz.	Vertic.	Diag.	Causal	MED	Ni2003	Moh2009
Successful	87,16%	87,19%	88,65%	86,10%	85,88%	85,22%	81,65%
Positive	46,86%	46,90%	48,35%	45,80%	45,58%	44,93%	41,35%
Negative	40,29%	40,29%	40,29%	40,29%	40,29%	40,29%	40,29%
False Positive	09.70%	09,70%	09,70%	09,70%	09,70%	09,70%	09,70%
False Negative	03,13%	03,09%	01,64%	04,19%	04,19%	05,06%	08,64%

Resultados en imágenes de la NRCS

- Introducción
- Estegoanálisis de Ni et Al 2003
- Estegoanálisi de Mohsenzadeh et al 2009
- Estegoanálisis de HSPE
- Estegoanálisis genérico
- Conclusiones

Conclusiones

- Los sistemas de desplazamiento de histograma alteran significativamente las propiedades estadísticas de la imagen.
- Estos sistemas pueden ser detectados usando métodos específicos que exploten estas propiedades.
- Al incrustar información con los métodos presentados, el histograma de errores sufre alteraciones que pueden ser detectadas.
- El estegoanálisis mediante la volatilidad puede ser exportado a otros sistemas de esteganografía que produzcan alteraciones similares.

Steganalytic Methods for the Detection of Histogram Shifting Data Hiding Schemes.

Gracias por su atención

