Practical Constructions of Pseudorandom Permutations (Block Ciphers)

Yu Zhang

HIT/CST/NIS

Cryptography, Spring, 2012

Outline

- 1 Substitution-Permutation Networks
- 2 Feistel Networks
- 3 DES The Data Encryption Standard
- 4 Increasing the Key Length of a Block Cipher
- 5 AES The Advanced Encryption Standard
- 6 Differential and Linear Cryptanalysis A Brief Look

Content

- 1 Substitution-Permutation Networks
- **2** Feistel Networks
- 3 DES The Data Encryption Standard
- 4 Increasing the Key Length of a Block Cipher
- 5 AES The Advanced Encryption Standard
- 6 Differential and Linear Cryptanalysis A Brief Look

Block Ciphers

- Block Cipher $F: \{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^\ell$. $F_k: \{0,1\}^\ell \to \{0,1\}^\ell$, $F_k(x) \stackrel{\text{def}}{=} F(k,x)$. n is key length, ℓ is block length.
- Constructions are heuristic, not proofed.
- Considered as PRP in practice.
 - In the call for proposals for AES: The extent to which the algorithm output is indistinguishable from a random permutation on the input block.
- Is "good" if the best known attack has time complexity roughly equivalent to a brute-force search for the key.
 - A cipher with n=112 which can be broken in time 2^{56} is insecure.
 - In a non-asymptotic setting, $2^{n/2}$ may be insecure.

The Confusion-Diffusion Paradigm

- **Goal**: Construct *concise* ¹ random-looking permutations.
- Confusion: making the relationship between the key and the ciphertext as complex and involved as possible. Construct a large random-looking permutation F from smaller random permutations f_i . $F_k(x) = f_1(x_1)f_2(x_2)\cdots f_i(x_i)$
- **Diffusion**: the redundancy in the statistics of the plaintext is dissipated in the statistics of the ciphertext.
- **Product cipher** combines multiple transformations.

 $^{^1\}text{A}$ block length of n bits would require $\log(2^n!)\approx n\cdot 2^n$ bits for its representation.

A Substitution-Permutation Network

Design Principle 1 – Invertibility of The *S***-boxes**

S-boxes must be invertible, otherwise the block cipher will not be a permutation.

Proposition 1

Let F be a keyed function defined by a SPN in which the S-boxes are all one-to-one and onto. The regardless of the key schedule and the number of rounds, F_k is a permutation for any choice of k.

Design Principle 2 – The Avalanche Effect

- Avalanche effect: changing a single bit of the input affects every bit of the output.
- Strict avalanche criterion: a single input bit is complemented, each of the output bits changes with a 50% probability.
- Bit independence criterion: output bits j and k should change independently when any single input bit i is inverted, for all i, j and k.
- S-box: changing a single bit of the input changes at least two bits in the output.
- P-box: the output bits of any given S-box are spread into different S-boxes in the next round.

For 4-bit S-boxes, changing 1 bit of the input affects 2^R bits of the output after R rounds of SPN.

A Framework for KPA against Block Ciphers

KPA: know some plaintext/ciphertext pairs under the same key.

- $lue{1}$ Observe relationship between PT/CT and k bits of the key.
- **2** Design a test on t bits based on the above relationship.
- **3** Search in k-bit space; a guess passes test with pr. 2^{-t} .
- **4** Use p PT/CT pairs to determine the key with exp. $2^{k-(p)t}$.

KPA against 1-Round SPN with 16-bit key

Relationship $PT \oplus Key \oplus Input-of$ -S-boxes = 0.

Test on t = 16 bits: Input-of-S-boxes = PT \oplus Key.

Search in k=16 bit space; passing test with pr. $1/2^{16}$.

Determine the key with p = 1 PT/CT pair and exp. 1.

Attacks on Reduced-Round SPNs

Attack on a 2-round SPN: 64-bit block, 128-bit key (2 \times 64-bit sub-keys), 16 \times 4-bit S-boxes, and mixing with XOR.

- Guessing 20 bits: 16 bits of the 1st sub-key, 4 bits of the 2nd.
- Guess passes the 4-bit test with pr. $1/2^4$ ($1/2^n$ for n-bit test).
- Use 8 I/O pairs to determine the key (with exp. $2^{20-4\times8}$).
- Break with complexity $8 \cdot 2^{20} \cdot 16 = 2^{27} \ll 2^{128}$ (16 *S*-boxes).

Content

- 1 Substitution-Permutation Networks
- **2** Feistel Networks
- 3 DES The Data Encryption Standard
- 4 Increasing the Key Length of a Block Cipher
- 5 AES The Advanced Encryption Standard
- 6 Differential and Linear Cryptanalysis A Brief Look

Feistel Networks

Properties of Feistel Networks

- Idea: Construct an invertible function from non-invertible components.
- **Round function** $f_i(R) \stackrel{def}{=} \hat{f}_i(k_i, R)$ (\hat{f}_i mangler function).
- Output: $L_i := R_{i-1}$ and $R_i := L_{i-1} \oplus f_i(R_{i-1})$.
- Inverting: $L_{i-1} := R_i \oplus f_i(R_{i-1}) = R_i \oplus f_i(L_i)$.
- **Decryption**: Operate with sub-keys in reverse order.

Proposition 2

Luby-Rackoff Theorem: Let F be a keyed function defined by a Feistel network. Then regardless of the mangler functions $\{\hat{f}_i\}$ and the number of rounds, F_k is a permutation for any choice of k.

Content

- 1 Substitution-Permutation Networks
- **2** Feistel Networks
- 3 DES The Data Encryption Standard
- 4 Increasing the Key Length of a Block Cipher
- 5 AES The Advanced Encryption Standard
- 6 Differential and Linear Cryptanalysis A Brief Look

The Design of DES

- 16-round Feistel network.
- 64-bit block
- 56-bit key, 48-bit sub-key. (64bit key with 8 check bits)
- Key schedule: 56 bits $\xrightarrow{\text{divided into two halves}}$ 48 bits.
- Begin with Initial Permutation (IP) and end with IP^{-1} .
- Round function f is non-invertible with 32-bit I/O.
- f_i is determined by mangler function \hat{f}_i and sub-key k_i .
- *S*-box is a 4-to-1 function, mapping 6-bit to 4-bit.

The DES Mangler Function

An S-box in DES

```
An S-box
Input: b_{0,1,...,5} = 011001
Output: S[b_{0.5}][b_{1.2.3.4}] = S[01][1100] = S[1][12] = 9 = 1001
      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
      4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 |
2 | 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 |
   15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 |
```

Key Schedule

Bits of shift is 1 or 2 in different rounds.

Weak Keys of DES

■ Weak keys: makes the cipher behave in some undesirable way—producing *identical* sub-keys.

Weak keys (Key with check bits: key w/o check bits)

```
01010101 01010101 : 0000000 0000000

FEFEFEFE FEFEFEFE : FFFFFFF FFFFFFF

E0E0E0E0 F1F1F1F1 : FFFFFFF 0000000

1F1F1F1F 0E0E0E0E : 0000000 FFFFFFF
```

■ **Semi-weak keys**: producing only two different sub-keys. A pair of semi-weak keys k_1, k_2 : $F_{k_1}(F_{k_2}(M)) = M$.

Semi-weak key pairs (2 of total 6 pairs)

```
011F011F 010E010E & 1F011F01 0E010E01
01E001E0 01F101F1 & E001E001 F101F101
```

Attacks on Reduced-Round Variants of DES

1-round (48-bit key):

S-box is 4-to-1, so 4 possible values for each 6-bit key.

of possible keys: $4^{48/6} = 2^{16}$.

So a guess passes test with pr. $2^{-(48-16)}$.

Use another I/O pair to determine the key (with exp. 2^{-16}).

2-round: $L_0 || R_0, L_2 || R_2$ are known I/O pair.

$$L_1 = R_0$$

$$R_1 = L_0 \oplus f_1(R_0)$$

$$L_2 = R_1 = L_0 \oplus f_1(R_0)$$

$$R_2 = L_1 \oplus f_2(R_1).$$

$$f_1(R_0) = L_0 \oplus L_2$$

$$f_2(L_2) = R_2 \oplus R_0$$

So we know I/O pairs of both f_1 and f_2 .

Break in time $2 \cdot 2^{16}$ as two 1-round with two I/O pairs.

Attacks on Reduced-Round Variants of DES (Cont.)

3-round:

Without I/O pairs of any f, we know the inputs of f_1 and f_3 and the XOR of their outputs

$$(L_0 \oplus L_2) \oplus (L_2 \oplus R_3) = L_0 \oplus R_3.$$

Idea: The left/right half of the key affects the inputs only to the first/last four S-boxes. Brute-force needs $2 \cdot 2^{28}$.

- Check 16-bit XOR of outputs of four S-boxes on one half.
- $\mathbf{Z}^{28}/2^{16}=2^{12}$ guesses on half-key pass check (with pr. 2^{-16}).
- Use another I/O pair to test 2^{12+12} keys (with exp. $2^{24-16\times 2}$).
- \blacksquare Totally, $2\cdot 2^{28}+2^{24}<2^{30}$ time and $2\cdot 2^{12}$ space.

Chronology of DES

- 1973 NBS (NIST) publishes a call for a standard.
- 1974 DES is published in the Federal Register.
- 1977 DES is published as FIPS PUB 46.
- **1990** Differential cryptanalysis with CPA of 2^{47} plaintexts.
- **1997** DESCHALL Project breaks DES in public.
- 1998 EFF's Deep Crack breaks DES in 56hr at \$250,000.
- 1999 Triple DES.
- **2001** AES is published in FIPS PUB 197.
- **2004** FIPS PUB 46-3 is withdrawn.
- **2006** COPACOBANA breaks DES in 9 days at \$10,000.
- **2008** RIVYERA breaks DES within one day.

Content

- 1 Substitution-Permutation Networks
- **2** Feistel Networks
- 3 DES The Data Encryption Standard
- 4 Increasing the Key Length of a Block Cipher
- 5 AES The Advanced Encryption Standard
- 6 Differential and Linear Cryptanalysis A Brief Look

Double Encryption

- Internal tampering vs. Black-box constructions: by modifying DES in even the smallest way we lose the confidence we have gained in DES.
- Double encryption: $y = F'_{k_1,k_2}(x) \stackrel{\mathsf{def}}{=} F_{k_2}(F_{k_1}(x)).$

The Meet-In-the-Middle Attack

- $z_0 = F_{k_1}(x) = F_{k_2}^{-1}(y) \iff y = F'_{k_1,k_2}(x).$
- Key pair (k_1, k_2) satisfies the equation with probability 2^{-n} .
- The number of such key pairs is $2^{2n}/2^n = 2^n$.
- With another two I/O pairs, the expected number of key pairs is $2^n/2^{2n} = 2^{-n}$. So that is it!
- lacksquare $\mathcal{O}(2^n)$ time and $\mathcal{O}(2^n)$ space.

DESX

Whitening: XORing Input/Output with partial keys.

DESX:

$$k = (k_1, k_2, k_3), |k_1| = |k_3| = 64, |k_2| = 56$$

 $y = k_3 \oplus F_{k_2}(x \oplus k_1)$
 $x = k_1 \oplus F_{k_2}^{-1}(y \oplus k_3)$

Security: |k| = 184, but break in time 2^{64+56} .

Triple Encryption

- $k_1 = k_2 = k_3$: a single F with backward compatibility.
- $k_1 \neq k_2 \neq k_3$: time 2^{2n} under the meet-in-the-middle attack.
- $k_1 = k_3 \neq k_2$: time 2^{2n} with 1 I/O pair; time 2^n with 2^n pair.
- **Triple-DES** (3DES): strong, but small block length and slow.

Content

- 1 Substitution-Permutation Networks
- **2** Feistel Networks
- 3 DES The Data Encryption Standard
- 4 Increasing the Key Length of a Block Cipher
- 5 AES The Advanced Encryption Standard
- 6 Differential and Linear Cryptanalysis A Brief Look

AES – The Advanced Encryption Standard

- In 1997, NIST calls for AES.
- In 2001, Rijndael [J. Daemen & V. Rijmen] becomes AES.
- The first publicly accessible cipher for top secret information.
- Not only security, also efficiency and flexibility, etc.
- 128-bit block length and 128-, 192-, or 256-bit keys.
- Not a Feistel structure, but a SPN.
- Only non-trivial attacks are for reduced-round variants.
 - $ightharpoonup 2^{27}$ on 6-round of 10-round for 128-bit keys.
 - $ightharpoonup 2^{188}$ on 8-round of 12-round for 192-bit keys.
 - $ightharpoonup 2^{204}$ on 8-round of 14-round for 256-bit keys.

The AES Construction

State: 4-by-4 array of bytes. The initial state is the plaintext.

- **1 AddRoundKey**: state XORed with the 128-bit sub-key.
- **2 SubBytes**: each byte replaced according to a single S-box.
- **3 ShiftRows**: each row cyclically shifted.
- 4 MixColumns: each column multiplied by a matrix.

See an animation of Rijndael!.

Content

- 1 Substitution-Permutation Networks
- **2** Feistel Networks
- 3 DES The Data Encryption Standard
- 4 Increasing the Key Length of a Block Cipher
- 5 AES The Advanced Encryption Standard
- 6 Differential and Linear Cryptanalysis A Brief Look

Linear Cryptanalysis

■ Linear relationships between the input and output: the bit positions $i_1, ..., i_\ell$ and $i'_1, ..., i'_\ell$ have **bias** p if for randomly-chosen input x and key k, it holds that $y = F_k(x)$,

$$\Pr[x_{i_1} \oplus \cdots \oplus x_{i_\ell} \oplus y_{i'_1} \oplus \cdots \oplus y_{i'_\ell} = 0] = p + \frac{1}{2}.$$

- Not require CPA, KPA are sufficient.
- Attack steps:
 - 1 Construct the linear approximation table of S-boxes.
 - **2** Construct a linear approximation of the first r-1 rounds with a big bias.
 - 3 Extracting sub-key bits of last round that satisfies the linear approximation well.

An Example of Linear Analysis of S-box

X_1	X_2	X_3	X_4	Y_1	Y_2	Y_3	Y_4	X_2 $\oplus X_3$	Y_1 $\oplus Y_3$	X_1 $\oplus X_4$	Y_2	X_3 $\oplus X_4$	Y_1 $\oplus Y_4$
								UA3	$\oplus Y_4$	UA4		$\cup A_4$	U 14
0	0	0	0	1	1	1	0	0	0	0	1	0	1
0	0	0	1	0	1	0	0	0	0	1	1	1	0
0	0	1	0	1	1	0	1	1	0	0	1	1	0
0	0	1	1	0	0	0	1	1	1	1	0	0	1
0	1	0	0	0	0	1	0	1	1	0	0	0	0
0	1	0	1	1	1	1	1	1	1	1	1	1	0
0	1	1	0	1	0	1	1	0	1	0	0	1	0
0	1	1	1	1	0	0	0	0	1	1	0	0	1
1	0	0	0	0	0	1	1	0	0	1	0	0	1
1	0	0	1	1	0	1	0	0	0	0	0	1	1
1	0	1	0	0	1	1	0	1	1	1	1	1	0
1	0	1	1	1	1	0	0	1	1	0	1	0	1
1	1	0	0	0	1	0	1	1	1	1	1	0	1
1	1	0	1	1	0	0	1	1	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1	0	1	0
1	1	1	1	0	1	1	1	0	0	0	1	0	1

An Example of Linear Distribution Table

		Output Sum															
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
	0	+8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	-2	-2	0	0	-2	+6	+2	+2	0	0	+2	+2	0	0
١,	2	0	0	-2	-2	0	0	-2	-2	0	0	+2	+2	0	0	-6	+2
I	3	0	0	0	0	0	0	0	0	+2	-6	-2	-2	+2	+2	-2	-2
n n	4	0	+2	0	-2	-2	-4	-2	0	0	-2	0	+2	+2	-4	+2	0
p u	5	0	-2	-2	0	-2	0	+4	+2	-2	0	-4	+2	0	-2	-2	0
t	6	0	+2	-2	+4	+2	0	0	+2	0	-2	+2	+4	-2	0	0	-2
	7	0	-2	0	+2	+2	-4	+2	0	-2	0	+2	0	+4	+2	0	+2
S	8	0	0	0	0	0	0	0	0	-2	+2	+2	-2	+2	-2	-2	-6
u	9	0	0	-2	-2	0	0	-2	-2	-4	0	-2	+2	0	+4	+2	-2
m	A	0	+4	-2	+2	-4	0	+2	-2	+2	+2	0	0	+2	+2	0	0
	В	0	+4	0	-4	+4	0	+4	0	0	0	0	0	0	0	0	0
	C	0	-2	+4	-2	-2	0	+2	0	+2	0	+2	+4	0	+2	0	-2
	D	0	+2	+2	0	-2	+4	0	+2	-4	-2	+2	0	+2	0	0	+2
	E	0	+2	+2	0	-2	-4	0	+2	-2	0	0	-2	-4	+2	-2	0
	F	0	-2	-4	-2	-2	0	+2	0	0	-2	+4	-2	-2	0	+2	0

An Example of Linear Cryptanalysis

Differential Cryptanalysis

- Specific differences Δ_x in the input that lead to specific differences Δ_y in the output with probability $p \gg 2^{-n}$.
- $\blacksquare x_1 \oplus x_2 = \Delta_x$, $F_k(x_1) \oplus F_k(x_2) = \Delta_y$ with probability p.
- This can be exploited by CPA.
- Attack steps:
 - 1 Construct the difference distribution table of S-boxes.
 - 2 Construct a differential characteristics of the first r-1 rounds with a big bias.
 - Extracting sub-key bits of last round that satisfies the differential characteristics well.

An Example of Differential Analysis of S-box

X	Y		ΔY								
Α	1	$\Delta X = 1011$	$\Delta X = 1000$	$\Delta X = 0100$							
0000	1110	0010	1101	1100							
0001	0100	0010	1110	1011							
0010	1101	0111	0101	0110							
0011	0001	0010	1011	1001							
0100	0010	0101	0111	1100							
0101	1111	1111	0110	1011							
0110	1011	0010	1011	0110							
0111	1000	1101	1111	1001							
1000	0011	0010	1101	0110							
1001	1010	0111	1110	0011							
1010	0110	0010	0101	0110							
1011	1100	0010	1011	1011							
1100	0101	1101	0111	0110							
1101	1001	0010	0110	0011							
1110	0000	1111	1011	0110							
1111	0111	0101	1111	1011							

An Example of Differential Distribution Table

		Output Difference															
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I	1	0	0	0	2	0	0	0	2	0	2	4	0	4	2	0	0
n	2	0	0	0	2	0	6	2	2	0	2	0	0	0	0	2	0
p	3	0	0	2	0	2	0	0	0	0	4	2	0	2	0	0	4
u t	4	0	0	0	2	0	0	6	0	0	2	0	4	2	0	0	0
	5	0	4	0	0	0	2	2	0	0	0	4	0	2	0	0	2
D	6	0	0	0	4	0	4	0	0	0	0	0	0	2	2	2	2
i	7	0	0	2	2	2	0	2	0	0	2	2	0	0	0	0	4
f	8	0	0	0	0	0	0	2	2	0	0	0	4	0	4	2	2
f	9	0	2	0	0	2	0	0	4	2	0	2	2	2	0	0	0
е	Α	0	2	2	0	0	0	0	0	6	0	0	2	0	0	4	0
r e	В	0	0	8	0	0	2	0	2	0	0	0	0	0	2	0	2
n	C	0	2	0	0	2	2	2	0	0	0	0	2	0	6	0	0
c	D	0	4	0	0	0	0	0	4	2	0	2	0	2	0	2	0
e	E	0	0	2	4	2	0	0	0	6	0	0	0	0	0	2	0
	F	0	2	0	0	6	0	0	0	0	4	0	2	0	0	2	0

An Example of Differential Cryptanalysis

Summary

- Block cipher is PRP.
- confusion & diffusion, SPN, Feistel network, avalanche effect.
- DES, 3DES, AES.
- reduced round, meet-in-the-middle, differential and linear cryptanalysis.