Classification algorithms

Isai Ambrocio - A01625101

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
from sklearn.metrics import confusion matrix, accuracy score,
ConfusionMatrixDisplay
from sklearn.naive bayes import GaussianNB
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
df = pd.read csv("./Iris.csv")
df.head()
   Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
Species
    1
                 5.1
                                3.5
                                               1.4
                                                             0.2 Iris-
setosa
                 4.9
                                3.0
                                               1.4
                                                             0.2 Iris-
setosa
                 4.7
                                3.2
                                               1.3
                                                             0.2 Iris-
    3
setosa
                 4.6
                                3.1
                                               1.5
                                                             0.2 Iris-
    4
setosa
                 5.0
                                3.6
                                               1.4
                                                             0.2 Iris-
    5
setosa
df.drop(["Id"], axis = 1, inplace=True)
categories = dict(zip(set(df.Species), range(3)))
categories
{'Iris-versicolor': 0, 'Iris-setosa': 1, 'Iris-virginica': 2}
species num = df.Species.map(lambda x: categories[x])
species_num.head()
0
     1
1
     1
2
     1
3
     1
Name: Species, dtype: int64
```

Regresión Logística

setosa = df[df.Species == "Iris-setosa"] versicolor = df[df.Species == "Iris-versicolor"] virginica = df[df.Species == "Iris-virginica"] setosa SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species 5.1 3.5 1.4 0.2 Irissetosa 4.9 3.0 1.4 0.2 Iris-1 setosa 4.7 0.2 Iris-3.2 1.3 setosa 4.6 3.1 1.5 0.2 Irissetosa 5.0 3.6 1.4 0.2 Irissetosa 0.4 Iris-5.4 3.9 1.7 setosa 4.6 3.4 1.4 0.3 Irissetosa 5.0 0.2 Iris-3.4 1.5 setosa 4.4 2.9 1.4 0.2 Iris-8 setosa 4.9 3.1 1.5 0.1 Irissetosa 5.4 3.7 1.5 0.2 Iris-10 setosa 4.8 3.4 1.6 0.2 Iris-11 setosa 12 4.8 3.0 1.4 0.1 Irissetosa 4.3 3.0 0.1 Iris-13 1.1 setosa 5.8 0.2 Iris-4.0 1.2 14 setosa 5.7 4.4 1.5 0.4 Iris-15 setosa 5.4 3.9 1.3 0.4 Iris-16 setosa 5.1 1.4 0.3 Iris-17 3.5 setosa 5.7 18 3.8 1.7 0.3 Irissetosa 5.1 3.8 1.5 0.3 Iris-19 setosa

20 setosa	5.4	3.4	1.7	0.2 Iris-
21	5.1	3.7	1.5	0.4 Iris-
setosa 22	4.6	3.6	1.0	0.2 Iris-
setosa 23	5.1	3.3	1.7	0.5 Iris-
setosa 24	4.8	3.4	1.9	0.2 Iris-
setosa				
25 setosa	5.0	3.0	1.6	0.2 Iris-
26	5.0	3.4	1.6	0.4 Iris-
setosa 27	5.2	3.5	1.5	0.2 Iris-
setosa	5.2	3.3	1.5	0.2 1/15-
28	5.2	3.4	1.4	0.2 Iris-
setosa 29	4.7	3.2	1.6	0.2 Iris-
setosa 30	4.8	3.1	1.6	0.2 Iris-
setosa	Г 4	2. 4	1 5	0 4 Tui
31 setosa	5.4	3.4	1.5	0.4 Iris-
32	5.2	4.1	1.5	0.1 Iris-
setosa 33	5.5	4.2	1.4	0.2 Iris-
setosa 34	4.9	3.1	1.5	0.1 Iris-
setosa				
35 setosa	5.0	3.2	1.2	0.2 Iris-
36	5.5	3.5	1.3	0.2 Iris-
setosa 37	4.9	3.1	1.5	0.1 Iris-
setosa 38	4.4	3.0	1.3	0.2 Iris-
setosa				
39 setosa	5.1	3.4	1.5	0.2 Iris-
40	5.0	3.5	1.3	0.3 Iris-
setosa 41	4.5	2.3	1.3	0.3 Iris-
setosa 42	4.4	3.2	1.3	0.2 Iris-
setosa				
43	5.0	3.5	1.6	0.6 Iris-
setosa 44	5.1	3.8	1.9	0.4 Iris-

setosa					
45	4.8	3.0	1.4	0.3	Iris-
setosa 46	5.1	3.8	1.6	0.2	Iris-
setosa	5.1	3.0	1.0	0.2	1113
47	4.6	3.2	1.4	0.2	Iris-
setosa					
48	5.3	3.7	1.5	0.2	Iris-
setosa	г о	2.2	1 4	0.2	Toda
49 setosa	5.0	3.3	1.4	0.2	Iris-
Setusa					
versicolor					
SepalLen	gthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	
Species	_				_
50	7.0	3.2	4.7	1.4	Iris-
versicolor 51	6.4	3.2	4.5	1.5	Iris-
versicolor	0.4	3.2	4.3	1.5	1112-
52	6.9	3.1	4.9	1.5	Iris-
versicolor		_		_	
53	5.5	2.3	4.0	1.3	Iris-
versicolor	6 5	2.0	4.6		- ·
54 versicolor	6.5	2.8	4.6	1.5	Iris-
55	5.7	2.8	4.5	1.3	Iris-
versicolor	3.7	210	713	1.5	1113
56	6.3	3.3	4.7	1.6	Iris-
versicolor					
57	4.9	2.4	3.3	1.0	Iris-
versicolor 58	6.6	2.9	4.6	1.3	Iris-
versicolor	0.0	2.9	4.0	1.3	1115-
59	5.2	2.7	3.9	1.4	Iris-
versicolor					
60	5.0	2.0	3.5	1.0	Iris-
versicolor	F 0	2.0	4.2	1 -	Train
61 versicolor	5.9	3.0	4.2	1.5	Iris-
62	6.0	2.2	4.0	1.0	Iris-
versicolor	0.0	2.12	110	1.0	
63	6.1	2.9	4.7	1.4	Iris-
versicolor	_				
64	5.6	2.9	3.6	1.3	Iris-
versicolor	6 7	2 1	1 1	1 4	Tric
65 versicolor	6.7	3.1	4.4	1.4	Iris-
66	5.6	3.0	4.5	1.5	Iris-
versicolor	5.0	3.0		1.3	3

67 versicolor	5.8	2.7	4.1	1.0 Iris-
68	6.2	2.2	4.5	1.5 Iris-
versicolor 69	5.6	2.5	3.9	1.1 Iris-
versicolor 70	5.9	3.2	4.8	1.8 Iris-
versicolor 71	6.1	2.8	4.0	1.3 Iris-
versicolor				
72 versicolor	6.3	2.5	4.9	1.5 Iris-
73	6.1	2.8	4.7	1.2 Iris-
versicolor 74	6.4	2.9	4.3	1.3 Iris-
versicolor 75	6.6	3.0	4.4	1.4 Iris-
versicolor	0.0		717	114 1115
76 versicolor	6.8	2.8	4.8	1.4 Iris-
77	6.7	3.0	5.0	1.7 Iris-
versicolor 78	6.0	2.9	4.5	1.5 Iris-
versicolor			2.5	
79 versicolor	5.7	2.6	3.5	1.0 Iris-
80	5.5	2.4	3.8	1.1 Iris-
versicolor 81	5.5	2.4	3.7	1.0 Iris-
versicolor 82	5.8	2.7	3.9	1.2 Iris-
versicolor				
83 versicolor	6.0	2.7	5.1	1.6 Iris-
84	5.4	3.0	4.5	1.5 Iris-
versicolor 85	6.0	3.4	4.5	1.6 Iris-
versicolor				
86 versicolor	6.7	3.1	4.7	1.5 Iris-
87	6.3	2.3	4.4	1.3 Iris-
versicolor 88	5.6	3.0	4.1	1.3 Iris-
versicolor 89	5.5	2.5	4.0	1.3 Iris-
versicolor				
90 versicolor	5.5	2.6	4.4	1.2 Iris-
91	6.1	3.0	4.6	1.4 Iris-

```
versicolor
              5.8
                             2.6
                                            4.0
                                                          1.2 Iris-
92
versicolor
              5.0
                             2.3
                                            3.3
                                                           1.0 Iris-
93
versicolor
              5.6
                             2.7
                                            4.2
                                                          1.3 Iris-
versicolor
95
              5.7
                             3.0
                                            4.2
                                                          1.2 Iris-
versicolor
96
              5.7
                             2.9
                                            4.2
                                                          1.3 Iris-
versicolor
              6.2
                                            4.3
97
                             2.9
                                                           1.3 Iris-
versicolor
              5.1
                             2.5
                                            3.0
98
                                                           1.1 Iris-
versicolor
              5.7
                             2.8
                                            4.1
                                                           1.3 Iris-
versicolor
virginica.head()
     SepalLengthCm SepalWidthCm PetalLengthCm
                                                  PetalWidthCm
Species
               6.3
                              3.3
                                             6.0
                                                            2.5 Iris-
100
virginica
               5.8
                              2.7
                                             5.1
                                                            1.9
101
                                                                 Iris-
virginica
               7.1
102
                              3.0
                                             5.9
                                                            2.1 Iris-
virginica
103
               6.3
                              2.9
                                             5.6
                                                            1.8
                                                                Iris-
virginica
               6.5
                              3.0
                                             5.8
                                                            2.2 Iris-
104
virginica
fig, axes = plt.subplots(\frac{3}{2}, figsize=(\frac{12}{8}))
fig.tight layout(h pad=4)
fig.suptitle("")
for i, iris in enumerate([setosa, versicolor, virginica]):
    axes[i][0].set_title(f"{iris.iloc[0, -1].capitalize()}")
    axes[i][0].scatter(iris.SepalLengthCm, iris.SepalWidthCm)
    axes[i][0].set_ylabel("Sepal Width")
    axes[i][0].set xlabel("Sepal Length")
    axes[i][1].set_title(f"{iris.iloc[0, -1].capitalize()}")
    axes[i][1].scatter(iris.PetalLengthCm, iris.PetalWidthCm)
    axes[i][1].set_ylabel("Petal Width")
    axes[i][1].set xlabel("Petal Length")
```



```
plt.title("Setosa, Versicolor & Virginica")
plt.xlabel("Sepal Length")
plt.ylabel("Sepal Width")
plt.scatter(setosa.SepalLengthCm, setosa.SepalWidthCm,
color='red',label = "Setosa", alpha = 0.5)
plt.scatter(versicolor.SepalLengthCm, versicolor.SepalWidthCm, color =
"blue",label = "Versicolor", alpha = 0.5)
plt.scatter(virginica.SepalLengthCm, virginica.SepalWidthCm, color =
"orange",label = "Virginica", alpha = 0.5)
plt.legend()
plt.show()
```



```
X = df.iloc[:, :-1].values
y = df.iloc[:, -1]
X_train, X_test, y_train,
y_test=train_test_split(X,y,test_size=0.2,random_state=42)
logistic model = LogisticRegression()
logistic model.fit(X train, y train)
y hat logistic train = logistic model.predict(X train)
y hat logistic test = logistic model.predict(X test)
logistic train acc = accuracy score(y train, y hat logistic train)
logistic test acc = accuracy score(y test, y hat logistic test)
print(f"Training accurancy: {logistic train acc:.4f}\nTest accurancy:
{logistic test acc:.4f}")
Training accurancy: 0.9750
Test accurancy: 1.0000
test conf matrix = confusion_matrix(y_test, y_hat_logistic_test)
test cm disp = ConfusionMatrixDisplay(test conf matrix)
test cm disp.plot()
plt.show()
```


Bayes

```
nb_model = GaussianNB()
nb_model.fit(X_train, y_train)

y_hat_nb_train = nb_model.predict(X_train)
y_hat_nb_test = nb_model.predict(X_test)

nb_train_acc = accuracy_score(y_train, y_hat_nb_train)
nb_test_acc = accuracy_score(y_test, y_hat_nb_test)
print(f"Training accurancy: {nb_train_acc:.4f}\nTest accurancy:
{nb_test_acc:.4f}")

Training accurancy: 0.9500
Test accurancy: 1.0000

test_conf_matrix = confusion_matrix(y_test, y_hat_nb_test)
test_cm_disp = ConfusionMatrixDisplay(test_conf_matrix)
test_cm_disp.plot()
plt.show()
```


Análisis de discriminate

```
disc_model = LinearDiscriminantAnalysis()
disc_model.fit(X_train, y_train)

y_hat_disc_train = disc_model.predict(X_train)
y_hat_disc_test = disc_model.predict(X_test)

disc_train_acc = accuracy_score(y_train, y_hat_disc_train)
disc_test_acc = accuracy_score(y_test, y_hat_disc_test)
print(f"Training accurancy: {disc_train_acc:.4f}\nTest accurancy: {disc_test_acc:.4f}")

Training accurancy: 0.9750
Test accurancy: 1.0000

test_conf_matrix = confusion_matrix(y_test, y_hat_disc_test)
test_cm_disp = ConfusionMatrixDisplay(test_conf_matrix)
test_cm_disp.plot()
plt.show()
```


¿Qué modelo fue el méjor? ¿Por qué crees que se suceda esto?

Logistica por que al tener los mismos resultados que el discriminante es más facil de interpretar los resultados.

Isai Ambrocio - A01625101