Linear Algebra and Geometry 1

Systems of equations, matrices, vectors, and geometry

Vectors

Hania Uscka-Wehlou, Ph.D. (2009, Uppsala University: Mathematics)
University teacher in mathematics (Associate Professor / Senior Lecturer) at Mälardalen University, Sweden

measure of displacement: Δx , Δy in the plane; Δx , Δy , Δz in the 3-space

measure of displacement: Δx , Δy in the plane; Δx , Δy , Δz in the 3-space

measure of displacement: Δx , Δy in the plane; Δx , Δy , Δz in the 3-space

a list of numbers: (v_1, v_2) or (v_1, v_2, v_3) or (v_1, v_2, \dots, v_n)

Cartesian coordinate system

Vectors

Change in x and change in y

coordinates components

$$\overrightarrow{AB} = (5,1) - (1,-1) = (5-1,1-(-1)) = (4,2)$$

$$\overrightarrow{GH} = (-6,0)$$

$$\overrightarrow{EF} = (0, -2)$$

$$\overrightarrow{BA} = (-4, -2) = -\overrightarrow{AB}$$

Identification of vectors with the same coordinates

$$\overrightarrow{CD} = (1,3) - (-3,1) = (1 - (-3), 3 - 1) = (4,2)$$

Notation

$$\overrightarrow{v} = (v_1, v_2) \qquad \mathbf{v} = (v_1, v_2)$$

Notation

$$\overrightarrow{v} = (v_1, v_2)$$

$$\mathbf{v} = (v_1, v_2)$$

$$\overrightarrow{v} = (v_1, v_2, v_3)$$

$$\mathbf{v} = (v_1, v_2, v_3)$$

Identification of points and position vectors

Identification of points and position vectors

Notation

$$\overrightarrow{v} = (v_1, v_2)$$
 $\overrightarrow{v} = (v_1, v_2)$
 $\overrightarrow{x} = (x_1, x_2)$ $\overrightarrow{x} = (x, y)$
 $\overrightarrow{v} = (v_1, v_2, v_3)$ $\overrightarrow{v} = (v_1, v_2, v_3)$
 $\overrightarrow{x} = (x_1, x_2, x_3)$ $\overrightarrow{x} = (x, y, z)$

$$\mathbb{R}^n$$

$$\overrightarrow{v} = (v_1, v_2, \dots, v_n)$$

$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$