

Epreuve d'optique géométrique Durée : 1h 30min

Exercice

On considère un dioptre sphérique Σ de sommet S de centre C et de rayon de courbure $R = -\overline{SC}$, qui sépare deux milieux transparents d'indices de réfraction n_I et n_2 . Soit un rayon incident quelconque AI issu d'un point objet A, le rayon réfracté IR lui correspondant coupe l'axe optique en A' image du point A. On pose l'angle $ICA = \omega$ et on note par i_I et i_2 , les angles d'incidence et de réfraction au point I, tels que $i_1 < i_2$.

- **1-** Quelle est la concavité de ce dioptre, convexe ou concave ? Justifier votre réponse.
- **2-** Ecrire au point d'incidence I, la relation de Shell Descartes ou de la 2^{ème} loi de la réfraction. Comparer alors n_I et n_2 .

- 3- Quelle est alors la nature de ce dioptre, convergent ou divergent ? Justifier votre réponse.
- **4-** En appliquant la relation des sinus aux angles des triangles *CAI et CA'I*, montrer que l'on peut avoir la relation suivante : $n_1 \frac{\overline{CA}}{\overline{IA}} = n_2 \frac{\overline{CA'}}{\overline{IA'}}$.
- 5- Le dioptre est éclairé maintenant dans les conditions de l'approximation de Gauss.
 - **a-** Qu'appelle-t-on d'abord les conditions de l'approximation de Gauss.
 - **b-** Ecrire la relation précédente dans ces conditions.
 - **c-** En déduire la formule de conjugaison du dioptre sphérique origine au sommet *S*.
 - **d-** On désigne par F et F' les foyers objet et image de ce dioptre sphérique Σ , déterminer alors en fonction de n_1 , n_2 et R ses distances focales objet f et image f'.
- **6-** On fait maintenant tendre le rayon de courbure R du dioptre Σ vers l'infini.
 - a- Quel est le système optique simple ainsi obtenu et que peut-t-on dire de son stigmatisme.
 - **b-** Quelles sont alors les nouvelles positions des foyers F et F'. Qu'appelle-t-on alors ce type de système optique.
 - c- Ecrire dans les conditions de l'approximation de Gauss la relation de conjugaison de ce nouveau système optique.

Problème

Une baguette de verre d'indice n=1,5 est limitée par deux calottes sphériques de centres C_1 et C_2 , de sommets S_1 et S_2 et de même rayon de courbure $R = \overline{S_1}\overline{C_1} = -\overline{S_2}\overline{C_2}$. Cette baguette est placée dans l'air d'indice 1. La longueur de la baguette est donnée par $e=\overline{S_1}\overline{S_2}$. On note par F_1 et F'_1 les foyers objet et image du dioptre sphérique Σ_1 et par F_2 et F'_2 ceux du dioptre sphérique Σ_2 . On se place dans les conditions de l'approximation de Gauss.

1- a) Quelle est la concavité du dioptre Σ_1 ? Justifier votre réponse.

- **b**) Quelle est la nature du dioptre Σ_1 ? Justifier votre réponse.
- c) Donner la relation de conjugaison origine au sommet du dioptre Σ_1 pour un couple de points conjugués (A, A₁).
- **d**) Déterminer en fonction de R, les distances focales objet f_1 et image f'_1 du dioptre Σ_1
- e) Calculer alors en fonction de R sa vergence V_1 .
- **2-** a) Quelle est la concavité du dioptre Σ_2 ? Justifier votre réponse.
 - **b**) Quelle est la nature du dioptre Σ_2 ? Justifier votre réponse.
 - c) Donner la relation de conjugaison origine au sommet du dioptre Σ_2 pour le couple de points conjugués (A_1, A_2) .
 - **d**) Déterminer en fonction de R, les distances focales objet f_2 et image f'_2 du dioptre Σ_2 .
 - e) Calculer alors en fonction de R sa vergence V_2 .

3- Chacun des deux dioptres sphériques Σ_1 et Σ_2 est en fait équivalent à un système centré dont les points principaux objet et image sont confondus avec son sommet. On note alors par H_1 et H'_1 les points principaux objet et image du système centré équivalent au dioptre Σ_1 tels que $H_1 \equiv H'_1 \equiv S_1$ et par H_2 et H'_2 ceux du système centré équivalent au dioptre Σ_2 tels que $H_2 \equiv H'_2 \equiv S_2$. On peut donc ainsi considérer la baguette comme étant l'association de deux systèmes centrés, séparés par un milieu d'indice n et d'interstice $\overline{H'_1H_2} = \overline{S_1S_2} = e$. On se propose donc de trouver les positions des foyers principaux objet F et image F' du système centré équivalent ou formé par cette baguette.

On désignera par $\Delta = F'_1 F_2$ l'intervalle optique.

- **a-** Exprimer l'intervalle optique Δ en fonction de e, f'_1 et f_2 puis en fonction de e et R.
- **b-** En appliquant la formule de Gullstrand, déterminer en fonction de V_1, V_2, e et n puis en fonction de e et R, la vergence V du système centré ainsi formé par la baguette.
- **c-** Déterminer alors en fonction de e et R, la distance focale principale image f 'du système centré ainsi formé par la baguette. En déduire sa distance focale principale objet f en fonction de e et R.
- **d-** Déterminer en fonction de Δ , f_1 et f'_1 puis en fonction de e et R, la position $\overline{F_1F}$ du foyer principal objet F du système centré ainsi formé par la baguette par rapport à F_1 .
- e- Déterminer en fonction de Δ , f_2 et f'_2 puis en fonction de e et R, la position $\overline{F'_2 F'}$ du foyer principal image F' du système centré ainsi formé par la baguette, par rapport à F'_2 .
- **f-** Exprimer en fonction de R la longueur e de la baguette pour que cette dernière constitue un système centré afocal.
- **g-** Sur une figure et à l'échelle unité, placer les points F_1 , F_1 , F_2 et F_2 pour R=1cm et tracer ensuite de par et d'autres de l'axe optique, la marche à travers le système de deux rayons incidents qui lui sont parallèles .

2 Pr L. BOUIRDEN

Corrigé de l'épreuve de l'optique géométrique

Exercice

Exercice

- 1- Dioptre est concave $\lceil car SC < 0 \rceil$
- $n_1 \sin i_1 = n_2 \sin i_2$. On a $i_1 < i_2$. $\Rightarrow n_1 > n_2$.
- car \overline{SC} et $(n_2 n_1)$ sont de même signe ou le centre du 3- le dioptre est convergent dioptre est dans le milieu le plus réfringent
- En appliquant la relation des sinus aux deux triangles CAI et CA'I.

$$\frac{\overline{CA}}{\sin i_1} = \frac{\overline{IA}}{\sin \omega} \qquad \text{et } \frac{\overline{CA'}}{\sin i_2} = \frac{\overline{IA'}}{\sin \omega} \qquad \Rightarrow \frac{\overline{CA}}{\overline{IA} \sin i_1} = \frac{\overline{CA'}}{\overline{IA'} \sin i_2}$$

En tenant compte de $n_1 \sin i_1 = n_2 \sin i_2$ $\Rightarrow n_1 \frac{CA}{TA} = n_2 \frac{CA'}{TA'}$

5-

- Rayons faiblement inclinées à l'axe optique ou rayons paraxiaux
- Les points d'incidence I sont très proches ou très voisins du sommet S

$$\Rightarrow n_1 \frac{\overline{CA}}{\overline{SA}} = n_2 \frac{\overline{CA'}}{\overline{SA'}}$$

$$\mathbf{c} - n_1 \frac{\overline{CA}}{\overline{SA}} = n_2 \frac{\overline{CA'}}{\overline{SA'}} \Rightarrow n_1 \frac{\overline{CS} + \overline{SA}}{\overline{SA}} = n_2 \frac{\overline{CS} + \overline{SA'}}{\overline{SA'}} \mathbf{d'où} \qquad n_1 \left(1 + \frac{\overline{CS}}{\overline{SA}}\right) = n_2 \left(1 + \frac{\overline{CS}}{\overline{SA'}}\right)$$

ce qui implique $\frac{n_1}{\overline{SA}} - \frac{n_2}{\overline{SA'}} = \frac{n_1 - n_2}{\overline{SC}}$

d-
$$f = \overline{SF} = \frac{n_1 R}{n_2 - n_1}$$
 et $f' = \overline{SF'} = \frac{-n_2 R}{n_2 - n_1}$.

6-.

- Dioptre plan qui n'est pas rigoureusement stigmatique
- les foyers sont rejetés à l'infini le système optique ainsi obtenu (dioptre plan) est afocal.

$$\frac{n_1}{\overline{SA}} - \frac{n_2}{\overline{SA'}} = 0$$

Problème

$$\operatorname{car} \overline{S_1 C_1} > 0$$

- a- Le Dioptre Σ_1 est **convexe** car $\overline{S_1C_1} > 0$ b- Le Dioptre Σ_1 est **convergent** car son centre
 - car son centre est placé dans le milieu le plus réfringent ou

$$\overline{S_1C_1}$$
 et $(n-1)$ sont de même signe

c-
$$\frac{1}{\overline{S_1 A}} - \frac{n}{\overline{S_1 A_1}} = \frac{1-n}{\overline{S_1 C_1}}$$
 ou $\frac{1}{\overline{S_1 A}} - \frac{n}{\overline{S_1 A_1}} = \frac{1-n}{R}$

d-
$$f_1 = \overline{S_1 F_1} = \frac{-R}{n-1} = -2R$$
 et $f_2 = \overline{S_1 F_1} = \frac{nR}{n-1} = 3R$

et
$$f_1 = \overline{S_1 F'_1} = \frac{nR}{n-1} = 3R$$

e-
$$V_1 = \frac{n}{f'_1} = \frac{-1}{f_1}$$
 $\Rightarrow V_1 = \frac{1}{2R}$

$$\Rightarrow V_1 = \frac{1}{2R}$$

2- a-. Le Dioptre Σ_2 est **concave**

$$car \overline{S_2 C_2} < 0$$

b-. Le Dioptre Σ_2 est **convergent**

car son centre est placé dans le milieu le plus réfringent

ou $\overline{S_2C_2}$ et (1-n) sont de même signe

$$\mathbf{c-} \cdot \frac{n}{\overline{S_2 A_1}} - \frac{1}{\overline{S_2 A_2}} = \frac{n-1}{\overline{S_2 C_2}} \quad \text{ou} \quad \frac{n}{\overline{S_2 A_1}} - \frac{1}{\overline{S_2 A_2}} = \frac{n-1}{\overline{-R}}$$

$$\frac{n}{S_2 A_1} - \frac{1}{S_2 A_2} = \frac{n-1}{-R}$$

d-.
$$f_2 = \overline{S_2 F_2} = \frac{-nR}{n-1} = -3R$$
 et $f_{2} = \overline{S_2 F_2} = \frac{R}{n-1} = 2R$

$$f_{2} = \overline{S_{2}F'_{2}} = \frac{R}{n-1} = 2R$$

$$\mathbf{e} \cdot V_2 = \frac{1}{f'_2} = \frac{-n}{f_2} \qquad \Rightarrow V_2 = \frac{1}{2R}$$

$$\Rightarrow V_2 = \frac{1}{2R}$$

3- a-.
$$\Delta = -f'_1 + e + f_2$$

$$\Rightarrow \Delta = e - 6R$$

b-.
$$V = V_1 + V_2 - \frac{e}{n}V_1.V_2$$
 $\Rightarrow V = \frac{6R - e}{6R^2}$

$$\Rightarrow V = \frac{6R - \epsilon}{6R^2}$$

$$\mathbf{c} \cdot \mathbf{c} = \frac{1}{f'}$$

c.
$$V = \frac{1}{f'}$$
 $\Rightarrow f' = \frac{1}{V} = \frac{-6R^2}{e - 6R}$ Or $f = -f' = \frac{6R^2}{e - 6R}$

Or
$$f = -f' =$$

d-. Soi le schéma synoptique suivant :

$$F \xrightarrow{\Sigma_1} F_2 \xrightarrow{\Sigma_2} \infty$$

$$\overline{F_1F} \times \overline{F_1'F_2} = f_1f_1'$$

$$\overline{F_1F} \times \overline{F'_1F_2} = f_1f'_1$$
 $\Rightarrow \overline{F_1F} = \frac{f_1 \times f'_1}{\overline{\Lambda}} = \frac{-6R^2}{e-6R}$

e-. Soit le schéma synoptique suivant :
$$\infty \xrightarrow{\sum 1} F'_1 \xrightarrow{\sum 2} F'$$

$$\overline{F_2F'_1} \times \overline{F'_2F'} = f_2 \times f'_2$$

$$\Rightarrow \overline{F'_2 F'} = -\frac{f_2 \times f'_2}{\Delta} = \frac{6R^2}{e - 6R}$$

f-. Pour avoir un système afocal il faut que $F'_1 \equiv F_2 \implies \Delta = 0 \implies$

f-

4

Pr L. BOUIRDEN