教学单元10.1

本节内容提要

- > 平面图应用示例
- > 平面图、平面表示、球面表示
- 面、面的边界、面的次数
- > 极小非平面图
- > 极大平面图

四色问题

四色问题

电路板设计

在电路板设计时,需要考虑的问题之一是连接电路元件间的导线间不能交叉。否则,当绝缘层破损时,会出现短路故障

显然,电路板可以模型为一个图,"要求电路元件间连接导线互不交叉",对应于"要求图中的边不能相互交叉"

空调管道设计

某娱乐中心有6个景点, 位置分布如下图

分析认为: (1) A1与A4, (2) A2与A5, (3) A3与A6间人流较少, 其它景点之间人流量大, 必须投资铺设空调管道, 但要求空调管道间不能交叉。如何设计?

如果把每个景点分别模型为一个点,景点间连线,当且仅当两 骨点间要铺设空调管道。那么, 上面问题直接对应的图为:

于是问题转化为:能否把上图画在平面上,使得边不会相互交叉?

3间房子和3种设施

问题:要求把3种公用设施(煤气,水和电)分别用煤气管道、水管和电线连接到3间房子里,要求任何一根线或管道不与另外的线或管道相交,能否办到?

上面的例子都涉及同一个图论问题:

能否把一个图画在平面上, 使得边与边之间没有交叉?

平面图

在平面上边与边不在非顶点处相交的图

非平面图

图面平可

可以画在平面上, 使得边与边

不在非顶点处相交的图

平面嵌入

画在平面上使得边与边不在非顶点处相交

平面嵌入

球面嵌入 曲面嵌入

球面嵌入: 画在球面上使得边与边不在非顶点处相交

曲面嵌入: 画在曲面上使得边与边不在非顶点处相交, 如环面嵌入

环面嵌入

K₅的环面嵌入

K_{3,3}的环面嵌入

球极投影

将一球 S 置于平面 P 上, 球与平面的接触点称为球的南极, 通过南极的直径的另一端称为北极 n , 将平面 P 的任意点与 n 相连, 连线与球面有且仅一个交点

定义映射 $\pi: S\setminus\{n\}\to P$ $\pi(s)=p$ 当且仅当 s,n,p 是共线的 该映射称为投影中心为 n 的球权投影

定理11.1: 可平面嵌入 ⇔ 可球面嵌入

证明 连续球极投影

Jordan定理

Jordan曲线把平面分为2部分,连接内部与 外部点的任意曲线必然与Jordan曲线相交

Jordan曲线: 自身不相交的封闭曲线

定理: K_5 是非可平面图

- ・若G是与 K_5 对应的平面图, v_1,v_2,v_3,v_4,v_5 是G的顶点。回路 $C=v_1v_2v_3v_1$ 是一个Jordan曲线,则 $v_4\in intC$ 或 $v_4\in extC$
- ・ 若 $v_4 \in intC$, (v_4, v_1) , (v_4, v_2) , (v_4, v_3) 把 C 分成三部分
- v_5 属于 $intC_1$, $intC_2$, $intC_3$, extC 之一

面

- ◆ 面:由 G 的平面嵌入的边将平面划分成的区域
- ◆ 无限面或外部面: 面积无限的面, R₀
- ◆有限面或内部面:面积有限的面, $R_1,R_2,...$
- ◆ 面 R_i 的边界: 包围 R_i 的回路组
- ◆面 R_i 的次数: R_i 边界的长度,用 $deg(R_i)$ 表示

面

 f_1 : 边界: ABCDFDA $deg(f_1)=6$

f₂: 边界: ABCA deg(f2)=3

 f_3 : 边界: ACDA $deg(f_3)=3$

f₄: 边界: ADA deg(f4)=2

$$\deg(R_1)=1$$

$$\deg(R_2) = 3$$

$$\deg(R_3)=2$$

$$\deg(R_0) = 8$$

定理11.2

$$\sum_{i=1}^{r} deg(R_i) = 2m$$

一条边作为两个面的公共边界或者只出现在一个面的边界上

树
$$T$$
, $|T| = n$, $deg(T_0) = ?$

树T, |T| = n,添加一条边构成回路 $C, max(deg(C_0)) = ?$

定理11.3:任何平面嵌入的内部面都可以在 另一种平面嵌入下成为外部面

极大平面图

是平面图,但是在任意两个不相邻项点之间加边就是非平面图

例如, K_5 删除任意一边

- ◎ 极大平面图是连通的

定理11.4: $n(\geq 3)$ 阶简单连通平面图是极大平面图 $\Leftrightarrow \forall R, deg(R) = 3$

(⇒)

简单图

 $\Rightarrow deg(R) \geq 3$

极大平面图

 \Rightarrow $deg(R) \leq 3$

(⇐)

 $\forall R, deg(R) = 3$

⇒ 不能加边而不交叉

定理11.4必要性证明

假设G中某个面f的次数大于等于4记f的边界是 $V_1V_2V_3V_4\cdots V_k$

如果 V_1 与 V_3 不邻接,则连接 V_1V_3 ,没有破坏 G 的平面性,这与 G 是 极大平面图矛盾。所以 V_1V_3 必须邻接,但必须在f 外连线;同理 V_2 与 V_4 也必须在f 外连线。但边 V_1V_3 与边 V_2V_4 在f 外交叉,与 G 是平面图矛盾!

定理11.4充分性证明

若所有顶点都相邻, 得证

若顶点 u,v 不相邻,则它们不可能都在外部面 R_0 的边界上 $(deg(R_0)=3)$

设V不在R₀上,和V相邻的顶点构成 一个圈,和V不相邻的顶点在圈外

极小非平面图

是非平面图, 但是删除任意1边就是平面图

例如, $K_5, K_{3,3}$

小结

☞ 平面图、平面表示、球面表示

☞ 面、面的边界、面的次数

☞ 极小非平面图

☞ 极大平面图