FMDV in African Buffalo Influence of immunity in the spread of wildlife diseases

Ricardo Noé Gerardo Reyes Grimaldo

Oregon State University

June 12, 2019

Foot and Mouth Disease (FMD)

 Antibody level dynamics behave like a random walk given by a Markov Process

$$P(t \mid \boldsymbol{\theta}) = \begin{pmatrix} P_1(t \mid t_0 = 0) & P_h(t \mid t_0 = 0) \\ P_1(t \mid t_0 = 1) & P_h(t \mid t_0 = 1) \end{pmatrix}$$

The transition probabilities can be described through

$$rac{\mathrm{d}}{\mathrm{d}t}P_{\mathrm{h}}(t) = \lambda_{\mathrm{l}}(t) - (\lambda_{\mathrm{l}}(t) + \lambda_{\mathrm{h}}(t))P_{\mathrm{h}}(t) = \eta(t) - \gamma(t)P_{\mathrm{h}}(t)$$

• Whenever $\lambda_{\rm l}(t)$ and $\lambda_{\rm h}(t)$ are determined integrable functions, the solution is given by

$$P_{ ext{h}}(t) = \left(\int_{t_0}^t \exp\left\{\int_{t_0}^s \gamma(au) d au
ight\} \eta(s) ds - P_{ ext{h}}(t_0)
ight) \exp\left\{-\int_{t_0}^t \gamma(s) ds
ight\}$$

Maximum Likelihood Estimators and two proposed models

We compare the following two models:

$$\begin{tabular}{|c|c|c|c|c|}\hline Model & $\lambda_l(t)$ & $\lambda_h(t)$\\\hline Model 1 & a & b\\\hline Model 2 & $\left(\frac{\alpha-\beta}{t_{end}-t_{start}}\right)t+\left(\frac{\alpha-\beta}{t_{end}-t_{start}}t_{start}+\alpha\right)=ct+d$ & e\\\hline \end{tabular}$$

Whenever $\alpha=\beta$ in Model 2, it reduces to Model 1; by using the Maximum Likelihood Estimator (MLE) and design the following hypothesis test

$$H_0: \quad \alpha = \beta \quad \text{v.s.} \quad H_1: \alpha \neq \beta$$

we can decide which model fits better our experimental data

Proposed Workflow and final workflow

For further information see github.com/ricardoreyesgrimaldo/FMDV-immunity

Frequentist and Bayesian results for SAT1

