Docs do sucesso

Questão 3.1

• Dado $y=SPN(x,\pi_S,\pi_P,(K^1,...,K^{Nr+1}))$, ache $\pi_{S'},\pi_{P'}$ tal que $x=SPN(x,\pi_{S'},\pi_{P'},(L^{Nr+1},...,L^1))$, onde L^i é uma permutação de K^i

Temos que $y = Enc_K(x)$. O processo inverso $Dec_K(y)$ é simplesmente a inversão das funções π_S e π_P e as round keys $L^(Nr - i) = K^i$. \diamond

Questão 3.2

• Prove que a decriptação em uma cifra de Feistel pode ser feita aplicando o algorítimo à cifra com o key schedule invertido.

Uma rede de Feitel é um caso especial de uma cifra iterada onde $g: M \times K \to C$ possui a forma $g(L^{i-1}, R^{i-1}, K^i)$, onde

$$L^{i} = R^{i-1}, R^{i} = L^{i-1} \oplus f(R^{i-1}, K^{i})$$

Nesse processo, o estado w^i se quebra em duas metades, L^i, R^i , do mesmo tamanho.

Seja w^{i-1} e w^i estados do processo de decriptação. Temos que:

$$w^{i} = L^{i}||R^{i} = R^{i-1}||L^{i-1} \oplus f(R^{i-1}, K^{i})|$$

Portanto, para realizar a decriptação do i-ésimo estado, devemos fazer

$$L^{i} = R^{i-1}, R^{i} = L^{i-1} \oplus f(R^{i-1}, K^{i})$$

que é o inverso do key schedule. \diamond

Questão 3.3

• Seja DES(x,K) a encritapção do text x com a chave K usando o criptosistema DES. Suponha que y = DES(x,K) e y' = DES(c(x),c(K)), onde $c(\cdot)$ denota o complemento bitwise de seu argumento. Prove que y' = c(y), isto é, que se complementarmos o texto puro e a chave, a cifra também será complementada. Note que isso pode ser provado usando somente a descrição $high\ level$ do DES, ou seja, a estrutura das S-boxes e outros componentes são irrelevantes.

Temos que o DES é basicamente uma rede Feistel com 16 rounds. Portanto, a cada round o estado w^i de 64 bits é quebrado em dois blocos, L^i, R^i , de 32 bits.

Seja x a entrada do algorítimo, ou seja, $w^0 = x = L^0 || R^0$. Se complementarmos x, cada uma de suas metadas está sendo igualmente complementada, ou seja $c(x) = c(L^0 || R^0) = c(L^0)|| c(R^0)$. Isso é verdade devido ao fato de que o complemente de um binário é obtido simplesmente trocando os 0s por 1s e vice-versa.

Seja agora K a chave do algorítimo que possui 56 bits. Cada chave K^i do key schedule é gerada a partir de rotações nos bits da chave K, que nada mais são que shifts binários. Portanto, ao usarmos c(K) em vez de K, cada round key $K^{\prime i}$ pode ser escrito como $K^{\prime i}=(c(K^i).$

Por fim, seja a $R'^1 = L'^0 \oplus f(c(R^0), c(K^0))$. Nós já sabemos que $L'^0 = c(L^0)$. No entanto, como o primeiro passo da função f involve um ou-exclusivo entre as entradas, a propriedade de complemento é eliminada. Logo, $f(c(R^0), c(K^0)) = f(R^0, K^0)$. Pelo mesmo motivo, no entanto, temos que $c(L^0) \oplus f(R^0, K^0) = c(L^0 \oplus f(R^0, K^0))$. Logo, $R'^1 = c(L^0 \oplus f(R^0, K^0)) = c(R^1)$. Portanto, c(DES(x, K)) = DES(c(x), c(K)). \diamond

Questão 3.7

• Suponha que uma sequência de texto puro $x_1, ..., x_n$ dê uma sequência de cifra $y_1, ..., y_n$. Suponha agora que um bloco de cifra, y_i , é transmitido incorrentamente, ou seja, algum 1 foi trocado por um 0 ou vice-versa. Mostre que o número de blocos de texto puro que serão decriptados incorretamente é igual a um se os modos ECB ou OFB forem usados na encriptação, e igual a 2 se os modos CBC ou CFB forem usados.

Primeira parte - ECB e OCB

O modo ECB funciona de acordo com a função $y_i = Enc_K(x_i)$, ou seja, é a encriptação direta de x usando a chave K. Neste caso, seja x_{ij} o bit j pertencente ao bloco i da entrada. Como cada bloco é independente do outro, somente o bloco i que possui o bit trocado será afetado na desencriptação. Do mesmo modo, no modo OFB o bloco i não é propagado para outros blocos, dado que ele é xor'd com o $keystream\ z_i$ somente após a propagação de z_i para a próxima iteração.

Segunda parte - CBC e CFB

O modo CFB é caracterizado por $y_i = e_K(y_{i-1} \oplus x_i)$. Assumindo que o erro ocorre no bloco x_i , temos que ?????