Chapter 7: Diffusion in Solids

ISSUES TO ADDRESS...

- How does diffusion occur?
- Why is it an important part of **processing**?
- How can the **rate of diffusion** be predicted for some simple cases?
- How does diffusion depend on **structure** and **temperature**?

Case Hardening 表面硬化

Diffusion

Diffusion - Mass transport by atomic motion

Mechanisms

- Gases & Liquids random (Brownian) motion
- Solids vacancy diffusion or interstitial diffusion

Diffusion - Introduction

Why do we care about diffusion?

- Impurities can diffuse into a material
- Diffusion is important during the solidification process
- Diffusion can be purposely used to introduce impurities that affect the mechanical properties

A copper-nickel diffusion couple after a high-temperature heat treatment.

Concentrations of copper and nickel as a function of position across the couple

Diffusion process I

• Interdiffusion: In an alloy, atoms tend to migrate from regions of high conc. to regions of low conc.

Diffusion process II

• Self-diffusion: Diffusion also occurs for pure metal

All atoms exchanging positions are of the same type.

→ not subject to observation by noting compositional changes

Diffusion Mechanisms

The atoms in the **solid** materials:

- There must be an empty adjacent site
- The atom must have sufficient energy
 - \rightarrow break bonds with its neighbor atoms.
 - → some distortion during displacement.
- Rising Temperature
 - \rightarrow the fraction of the atoms having sufficient energy increase.

Diffusion Mechanisms

Vacancy Diffusion:

- atoms exchange with vacancies
- applies to substitutional impurities atoms
- rate depends on:
 - --number of vacancies
 - --activation energy to exchange.
 - --both are related to temperature (T).

Diffusion Mechanisms

- Interstitial diffusion smaller atoms can diffuse between atoms.
- This mechanism is found for the atoms such as **hydrogen** (**H**), **carbon** (**C**), **nitrogen** (**N**) and **oxygen** (**O**), which are small enough to fit into interstitial position.

Adapted from Fig. 5.3 (b), Callister 7e.

More rapid than vacancy diffusion!

Diffusion Flux

- Diffusion is a time-dependent process.
- How do we quantify the amount or rate of diffusion?

$$J = \frac{M}{At} = \frac{1}{A} \frac{dM}{dt} \quad (\frac{\text{atoms}}{\text{m}^2 \text{s}} \text{or} \frac{\text{kg}}{\text{m}^2 \text{s}})$$

- Mass or the number of atoms diffusing through and perpendicular to a unit crosssectional area of solid per unit of time.
- If the diffusion flux (J is fixed) does not change with time → steady-state diffusion

Unit area A

through

which

atoms

move.

x-direction

• One common example of steady state diffusion is the diffusion of atoms of a gas through a plate of metal for which concentrations (or pressure) of the diffusion species on both surface of the plate are held constant.

Steady-State Diffusion

- Rate of diffusion independent of time
- Flux proportional to concentration gradient = $\frac{dc}{dx}$

 $D \equiv \text{diffusion coefficient}$

(Diffusion coefficient: physical constant depends on molecule size and other properties of the diffusing substance)

Fick's first law of diffusion

$$J = -D\frac{dC}{dx}$$

(Driving force : concentration gradient)

if linear
$$\frac{dC}{dx} \cong \frac{\Delta C}{\Delta x} = \frac{C_2 - C_1}{x_2 - x_1}$$

 $(kg/m^3 or g/cm^3)$

Example: Chemical Protective Clothing (CPC)

- Methylene chloride is a common ingredient of paint removers. Besides being an irritant, it also may be absorbed through skin. When using this paint remover, protective gloves should be worn.
- If butyl rubber gloves (0.04 cm thick) are used, what is the diffusive flux of methylene chloride through the glove?
- Data:
 - diffusion coefficient in butyl rubber:

$$D = 110 \times 10^{-8} \text{ cm}^2/\text{s}$$

- surface concentrations: $C_1 = 0$.

$$\frac{C_2}{C_2} = 0.02 \text{ g/cm}^3$$

Example (cont).

• Solution – assuming linear conc. gradient

$$J = -D \frac{dC}{dx} \cong -D \frac{C_2 - C_1}{x_2 - x_1}$$

Data:
$$D = 110 \times 10^{-8} \text{ cm}^2/\text{s}$$

 $C_1 = 0.44 \text{ g/cm}^3$
 $C_2 = 0.02 \text{ g/cm}^3$
 $x_2 - x_1 = 0.04 \text{ cm}$

$$J = -(110 \times 10^{-8} \text{ cm}^2/\text{s}) \frac{(0.02 \text{ g/cm}^3 - 0.44 \text{ g/cm}^3)}{(0.04 \text{ cm})} = 1.16 \times 10^{-5} \frac{\text{g}}{\text{cm}^2 \text{s}}$$

Non-steady State Diffusion

• The diffusion flux and concentration gradient vary with time.

• In this case Fick's Second Law is used

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} (D \frac{\partial C}{\partial x})$$

If the diffusion coeff. is independent of composition

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

Non-steady State Diffusion

• Copper diffuses into a bar of aluminum.

Surface conc., C_S of Cu atoms

Adapted from Fig. 5.5, Callister 7e.

Boundary conditions:

1) at
$$t = 0$$
, $C = C_0$ for $0 \le x \le \infty$

2) at
$$t > 0$$
, $C = C_S$ for $x = 0$ (const. surf. conc.)
$$C = C_O \text{ for } x = \infty$$

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

Solution:

$$\frac{C(\mathbf{x},\mathbf{t}) - C_o}{C_s - C_o} = 1 - \operatorname{erf}\left(\frac{\mathbf{x}}{2\sqrt{D\mathbf{t}}}\right)$$

C(x,t) = Conc. at point x at time t

 $\operatorname{erf}(z) = \operatorname{error} \operatorname{function}$

$$=\frac{2}{\sqrt{\pi}}\int_0^z e^{-y^2}dy$$

erf(z) values are given in Table 5.1

Table 5.1 Tabulation of Error Function Values

z	erf(z)	z	erf(z)	z	erf(z)
0	0	0.55	0.5633	1.3	0.9340
0.025	0.0282	0.60	0.6039	1.4	0.9523
0.05	0.0564	0.65	0.6420	1.5	0.9661
0.10	0.1125	0.70	0.6778	1.6	0.9763
0.15	0.1680	0.75	0.7112	1.7	0.9838
0.20	0.2227	0.80	0.7421	1.8	0.9891
0.25	0.2763	0.85	0.7707	1.9	0.9928
0.30	0.3286	0.90	0.7970	2.0	0.9953
0.35	0.3794	0.95	0.8209	2.2	0.9981
0.40	0.4284	1.0	0.8427	2.4	0.9993
0.45	0.4755	1.1	0.8802	2.6	0.9998
0.50	0.5205	1.2	0.9103	2.8	0.9999

$$\frac{C(\mathbf{x},\mathbf{t}) - C_o}{C_s - C_o} = 1 - \operatorname{erf}\left(\frac{\mathbf{x}}{2\sqrt{D\mathbf{t}}}\right)$$

例題5.2

EXAMPLE PROBLEM 5.2

Nonsteady-State Diffusion Time Computation I

For some applications, it is necessary to harden the surface of a steel (or iron-carbon alloy) above that of its interior. One way this may be accomplished is by increasing the surface concentration of carbon in a process termed carburizing; the steel piece is exposed, at an elevated temperature, to an atmosphere rich in a hydrocarbon gas, such as methane (CH₄).

Consider one such alloy that initially has a uniform carbon concentration of 0.25 wt% and is to be treated at 950°C (1223 K). If the concentration of carbon at the surface is suddenly brought to and maintained at 1.20 wt%, how long will it take to achieve a carbon content of 0.80 wt% at a position 0.5 mm below the surface? The diffusion coefficient for carbon in iron at this temperature is 1.6×10^{-11} m²/s; assume that the steel piece is semi-infinite.

Solution:

Solution

Because this is a nonsteady-state diffusion problem in which the surface composition is held constant, Equation 5.5 is used. Values for all the parameters in this expression except time t are specified in the problem as follows:

$$C_0 = 0.25 \text{ wt}\% \text{ C}$$

 $C_s = 1.20 \text{ wt}\% \text{ C}$
 $C_x = 0.80 \text{ wt}\% \text{ C}$
 $x = 0.50 \text{ mm} = 5 \times 10^{-4} \text{ m}$
 $D = 1.6 \times 10^{-11} \text{ m}^2/\text{s}$

Thus,

$$\frac{C_x - C_0}{C_s - C_0} = \frac{0.80 - 0.25}{1.20 - 0.25} = 1 - \text{erf} \left[\frac{(5 \times 10^{-4} \,\text{m})}{2\sqrt{(1.6 \times 10^{-11} \,\text{m}^2/\text{s})(t)}} \right]$$

$$0.4210 = \operatorname{erf}\left(\frac{62.5 \, \mathrm{s}^{1/2}}{\sqrt{t}}\right)$$

Solution:

We must now determine from Table 5.1 the value of z for which the error function is 0.4210. An interpolation is necessary, as

z	$\operatorname{erf}(z)$		
0.35	0.3794		
z	0.4210		
0.40	0.4284		

$$\frac{z - 0.35}{0.40 - 0.35} = \frac{0.4210 - 0.3794}{0.4284 - 0.3794}$$

Or

$$z = 0.392$$

Therefore,

$$\frac{62.5 \text{ s}^{1/2}}{\sqrt{t}} = 0.392$$

and solving for t,

$$t = \left(\frac{62.5 \text{ s}^{1/2}}{0.392}\right)^2 = 25,400 \text{ s} = 7.1 \text{ h}$$

Diffusion and Temperature

Diffusing Species	Host Metal	$D_0(m^2/s)$	Activation Energy Q_d		Calculated Values	
			kJ/mol	eV/atom	$T(^{\circ}C)$	$D(m^2/s)$
Fe	α-Fe (BCC)	2.8×10^{-4}	251	2.60	500 900	3.0×10^{-2} 1.8×10^{-15}
Fe	γ-Fe (FCC)	5.0×10^{-5}	284	2.94	900 1100	1.1×10^{-17} 7.8×10^{-16}
C	α-Fe	6.2×10^{-7}	80	0.83	500 900	$\begin{array}{c} 2.4 \times 10^{-13} \\ 1.7 \times 10^{-16} \end{array}$
C	γ-Fe	2.3×10^{-5}	148	1.53	900 1100	5.9×10^{-1} 5.3×10^{-1}
Cu	Cu	7.8×10^{-5}	211	2.19	500	4.2×10^{-1}
Zn	Cu	2.4×10^{-5}	189	1.96	500	4.0×10^{-13}
Al	Al	2.3×10^{-4}	144	1.49	500	4.2×10^{-14}
Cu	Al	6.5×10^{-5}	136	1.41	500	4.1×10^{-14}
Mg	Al	1.2×10^{-4}	131	1.35	500	1.9×10^{-13}
Cu	Ni	2.7×10^{-5}	256	2.65	500	1.3×10^{-22}

Source: E. A. Brandes and G. B. Brook (Editors), *Smithells Metals Reference Book*, 7th edition, Butterworth-Heinemann, Oxford, 1992.

t02_05_pg119

Diffusion and Temperature

• Diffusion coefficient increases with increasing T.

$$D = D_o \exp\left(-\frac{Q_d}{RT}\right)$$

 $D = \text{diffusion coefficient } [\text{m}^2/\text{s}]$

 D_o = pre-exponential [m²/s]

 Q_d = activation energy [J/mol or eV/atom]

R = gas constant [8.314 J/mol-K]

T = absolute temperature [K]

Example: At 300°C the diffusion coefficient and activation energy for Cu in Si are

$$D(300^{\circ}\text{C}) = 7.8 \text{ x } 10^{-11} \text{ m}^2/\text{s}$$

 $Q_d = 41.5 \text{ kJ/mol}$

What is the diffusion coefficient at 350°C?

$$D = D_o \exp\left(-\frac{Q_d}{RT}\right) \longrightarrow 2 邊取自然對數 \ln$$

$$\ln \frac{D_2}{D_2} = \ln D_0 - \frac{Q_d}{R} \left(\frac{1}{T_2} \right) \quad \text{and} \quad \ln \frac{D_1}{D_1} = \ln D_0 - \frac{Q_d}{R} \left(\frac{1}{T_1} \right)$$

$$\therefore \quad \ln \frac{D_2}{D_1} - \ln D_1 = \ln \frac{D_2}{D_1} = -\frac{Q_d}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\therefore \ln \frac{D_2}{D_1} - \ln \frac{D_1}{D_1} = \ln \frac{\frac{D_2}{D_2}}{D_1} = -\frac{Q_d}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

Example (cont.)

$$\therefore \ln \frac{D_2}{D_1} - \ln \frac{D_2}{D_1} = -\frac{Q_d}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$T_1 = 273 + 300 = 573 K$$

$$T_2 = 273 + 350 = 623 K$$

$$D_2 = (7.8 \times 10^{-11} \,\text{m}^2/\text{s}) \exp \left[\frac{-41,500 \,\text{J/mol}}{8.314 \,\text{J/mol} \cdot \text{K}} \left(\frac{1}{623 \,\text{K}} - \frac{1}{573 \,\text{K}} \right) \right]$$

$$D_2 = 15.7 \times 10^{-11} \,\mathrm{m}^2/\mathrm{s}$$

Non-steady State Diffusion

• Sample Problem: An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature and in an atmosphere that gives a surface carbon concentration constant at 1.0 wt%. If after 49.5 h the concentration of carbon is 0.35 wt% at a position 4.0 mm below the surface, determine the temperature at which the treatment was carried out.

• Solution:

Summary

Diffusion FASTER for...

• open crystal structures

materials w/secondary bonding

• smaller diffusing atoms

• lower density materials

Diffusion **SLOWER** for...

close-packed structures

materials w/covalent bonding

• larger diffusing atoms

higher density materials