الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (04 نقاط)

، B(5;-3;2) ، A(3;-2;-1) نعبَر النقط $\left(O;\vec{i},\vec{j},\vec{k}\right)$. نعبَر النقط المتعامد المتعامد المتجانس D(1;-5;-2) و C(2;3;2)

- (P) بيّن أنّ النقط A و B و B تعين مستويا؛ نرمز له بالرمز (1
- (P) بين أنّ الشعاع $\vec{n}(2;1;-1)$ ناظمي للمستوي (P)، ثمّ جد معادلة ديكارتية للمستوي (2).
 - . (P) الذي يشمل النقطة D و يعامد (Δ) الذي يشمل النقطة D و يعامد (Δ)
 - . (P) عين إحداثيات النقطة E المسقط العمودي للنقطة D على المستوي
- . $\overrightarrow{AH} = \lambda \overrightarrow{AB}$: المسقط العمودي للنقطة Dعلى المستقيم (AB)، و AB العدد الحقيقي حيث H (4

$$.\lambda = \frac{\overrightarrow{AD}.\overrightarrow{AB}}{\left\|\overrightarrow{AB}\right\|^2} :$$
 (أ

ب) استنتج العدد الحقيقي λ و إحداثيات النقطة H، ثمّ المسافة بين النقطة D والمستقيم (AB).

التمرين الثاني: (05 نقاط)

- . $2z^2 + 6z + 17 = 0$: z المعادلة ذات المجهول z المعادلة المركبة (1
- ك في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(O;\vec{u},\vec{v}\right)$ ، النقط A و B و C لاحقاتها على (2

.
$$z_C = -\frac{3}{2} - \frac{5}{2}i$$
 و $z_B = -\frac{3}{2} + \frac{5}{2}i$ و $z_A = -4$

. ABC مثم استنتج طبيعة المثلث - احسب الطويلة وعمدة للعدد المركب $\frac{Z_B-Z_A}{Z_C-Z_A}$ ، ثم استنتج طبيعة المثلث

. A مربعا مركزه BCDE عين z_{E} و B على الترتيب حتّى يكون الرباعي عربعا مركزه (3

$$\|\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{ME}\| = 10\sqrt{2}$$
 عيّن (Γ_1) مجموعة النقط M من المستوي حيث:

$$\operatorname{arg}(z+4) = \frac{\pi}{4}$$
: حيث z حيث مجموعة النقط M من المستوي، ذات اللاحقة z

. (Γ_2) ، ثمّ عيّن المجموعة B تنتمي إلى (Γ_2) ، ثمّ عيّن المجموعة B

التمرين الثالث: (04 نقاط)

المتتالية العددية المعرفة كما يلي: (u_n)

$$u_n = \sqrt{rac{u_{n-1}}{e}} : n$$
 ومن أجل كل عدد طبيعي غير معدوم $u_0 = e^2$

.
$$v_n = \frac{1}{2} \ln u_n + \frac{1}{2}$$
 يلي: \mathbb{N} كما يلي: المتتالية العددية المعرفة على المتتالية المعرفة المعرفة على المتتالية المعرفة المعرفة على المتتالية المعرفة المعرفة المعرفة على المتتالية المعرفة المعر

) بيّن أن
$$\binom{v_n}{n}$$
 متتالية هندسية أساسها $\frac{1}{2}$ ، ثمّ احسب حدها الأول.

n بدلاله u_n ، ثمّ استنتج عباره v_n بدلاله (2

$$\lim_{n \to +\infty} S_n$$
 احسب بدلالة n المجموع S_n ؛ حيث: $S_n = V_0 + V_1 + \dots + V_n$ احسب بدلالة n

$$\lim_{n\to +\infty} p_n$$
 الجداء $p_n=u_0\times u_1\times ...\times u_n$ ؛ حيث: $p_n=u_0\times u_1\times ...\times u_n$ الجداء (4

التمرين الرابع: (07 نقاط)

.
$$g(x) = (x+1)^2 - 2 + \ln(x+1)$$
 : بالعبارة: $g(x) = (x+1)^2 - 2 + \ln(x+1)$ الدّالة g معرفة على المجال $g(x) = (x+1)^2 - 2 + \ln(x+1)$

.] $-1;+\infty$ ادرس اتجاه تغير الدالة g على المجال (1

وأن:
$$\alpha < 0.32 < \alpha < 0.32$$
 وأن: α عيث أنّ المعادلة $\alpha < 0.31 < \alpha < 0.32$ وأن: α

$$\ln(\alpha+1)=2-(\alpha+1)^2$$

g(x) استنتج حسب قیم x اشاره (3

.
$$f(x) = (x+1)^2 + (2-\ln(x+1))^2$$
 . الدّالة f معرفة على المجال $[-1;+\infty[$ بالعبارة: $[-1;+\infty[$

.
$$\left(O;\overrightarrow{1},\overrightarrow{f}\right)$$
 منحنى f في المستوي المنسوب إلى المعلم المتعامد المتجانس f

.
$$\lim_{x \to +\infty} f(x)$$
 e $\lim_{x \to +\infty} f(x)$ Lim $\lim_{x \to +\infty} f(x)$ Lim (1)

.
$$f'(x) = \frac{2g(x)}{x+1}$$
 : $]-1;+\infty[$ من أجل كل كل $[x]$ من أبّت أنّه، من أجل كل $[x]$

درس اتجاه تغیّر الدالة f، ثمّ شكّل جدول تغیر اتها .

.
$$f(\alpha)$$
 بيّن أنّ: $f(\alpha) = (\alpha+1)^2(1+(\alpha+1)^2)$. ثمّ استنتج حصر اللعدد (4

.]-1;2] على المجال (C_f) مثلً المنحنى (5

.
$$h(x) = \ln(x+1)$$
 المنحنى الممثل للدالة h المعرفة على المجال $-1;+\infty$ المعرفة المعرفة على المجال Γ

. X النقطة ذات الإحداثيتين (-1;2) و M نقطة من (Γ) فاصلتها A

.
$$AM = \sqrt{f(x)}$$
 أثبت أنّ المسافة AM تعطى بالعبارة (1

.
$$k\left(X\right)=\sqrt{f\left(X\right)}$$
 : الدّالة k معرفة على المجال $-1;+\infty[$ بالعبارة على المجال (2

.] $-1;+\infty$ [المجال على المجال k و k نفس اتجاه التغير على المجال

. بكن إحداثيتي النقطة B من (Γ) ، بحيث تكون المسافة AM أصغر ما يمكن

.
$$AB = (\alpha + 1)\sqrt{(\alpha + 1)^2 + 1}$$
 : جــ) بين أنّ :

الموضوع الثاني

التمرين الأول: (04.5 نقطة)

$$B\left(3;-4;6
ight)$$
 و $A\left(2;-5;4
ight)$ ، نعتبر النقطتين $A\left(2;-5;4
ight)$ و $A\left(2;-5;4
ight)$ و الفضاء المنسوب إلى المعلم المتعامد المتجانس $A\left(2;-5;4
ight)$ ، نعتبر النقطتين $A\left(2;-5;4
ight)$ و $A\left(2;-5;4
ight)$. $X=1+t$ و المستقيم $A\left(2;-5;4
ight)$. المعرف بالتمثيل الوسيطي التالي: $A\left(2;-5;4
ight)$ ، نعتبر النقطيم $A\left(2;-5;4
ight)$ و المستقيم $A\left(2;-5;4
ight)$. $A\left(2;-5;4
ight)$ ، $A\left(2;-5;4
ight)$

- B و A المار من النقطتين A و B المار من النقطتين A
 - (D) و (Δ) ب) ادر س الوضع النسبي للمستقيمين
 - . (Δ) المستوي الذي يشمل (D) و يوازي (P) -2
- برهن أنّ $\vec{n}(3;1;-2)$ شعاع ناظمي للمستوي (P)، ثمّ عيّن معادلة ديكارتية للمستوي -
 - . (D) نقطة كيفية من (Δ) و (Δ) نقطة كيفية من (Δ)
- . (D) عيّن إحداثيات النقطتين M و N بحيث يكون المستقيم (MN) عموديا على كل من (Δ) و
 - (P) والمستوي (Δ) بالمسافة بين نقطة كيفية من

التمرين الثاني: (04.5 نقطة)

- . $(z+5-i\sqrt{3})(z^2+2z+4)=0: z$ المعادلة ذات المجهول \mathbb{C} المعادلة ذات المجهول المجهول المجهول المحادلة ذات المجهول المحادلة ذات المجهول المحادلة ذات المجهول المحادلة ذات المحادلة ذات
- لمستوي منسوب إلى المعلم المتعامد المتجانس A . $O;\vec{u},\vec{v}$ و B و C النقط التي لاحقاتها على الترتيب (2 $z_B=-1+i\sqrt{3}$ و $z_A=-1-i\sqrt{3}$
 - . B ويحول O ويحول C إلى C ويحول C التشابه المباشر الذي يحول C
 - جد الكتابة المركبة للتشابه المباشر S ، ثمّ عيّن العناصر المميزة له .
 - . $\{(A;2),(B;-1),(C;1)\}$ مرجح الجملة D مرجح النقطة D عيّن عيّن (3 عيّن عيّن عيّن عين النقطة عدم النقطة النقطة عدم النقطة عدم النقطة النقطة عدم النقطة النقطة عدم النقطة النقطة عدم النقطة النقطة
 - . ABD على الشكل الأسي، ثمّ استتج طبيعة المثلث $\frac{Z_B-Z_A}{Z_D-Z_A}$ على الشكل الأسي، ثمّ استتج طبيعة المثلث
 - $\|2\overline{MA} \overline{MB} + \overline{MC}\| = \|\overline{MA} \overline{MB}\|$ عيّن المجموعة (Γ) للنقط M من المستوي حيث: M عيّن المجموعة (\overline{MB}) عيّن المجموعة (\overline{MB}) عيّن المجموعة (\overline{MB})
 - Xو Y عددان صحیحان و (E) المعادلة ذات المجهول (X;y) التالیة:
 - $x_0+y_0=-1$: الذي يحقق (E) الذي يحقق ($X_0;y_0$)؛ حل المعادلة (E) المعادلة (E).
 - S=11a+1 . S=7b+2 . (2 العدد الذي يحقق: S=7b+2
 - (E) على المعادلة (a;-b) المعادلة أ
 - ب) ما هو باقي القسمة الإقليدية للعدد S على γ ?

. 2 مدد طبیعی باقی قسمته علی 11هو 1 وباقی قسمته علی 7هو n (3

n < 2013 عيّن أكبر قيمة للعدد n حتى يكون

التمرين الرابع: (07.5 نقطة)

. $g(x) = (x-1)e^x$ الدالة g معرفة على \mathbb{R} كما يلي: -I

g ادرس تغیر ات g .

. $1 + (x-1)e^x \ge 0 : x$ بيّن أنّه، من أجل كل عدد حقيقي (2

.
$$\begin{cases} f\left(x\right) = \frac{e^{x}-1}{X} \; ; \; x > 0 \\ f\left(0\right) = 1 \end{cases}$$
 كما يلي:
$$\begin{cases} 0; +\infty [\; \text{os a dist} \; f \;] = 1 \end{cases}$$
 II

. $[0;+\infty]$ على $[0;+\infty]$ مستمرة على المتاب $[0;+\infty]$

. $f'(x) = \frac{1 + (x - 1)e^x}{x^2} :]0; +\infty[$ من أجل كل عدد حقيقي x من أجل كل عدد حقيقي أنه، من أجل كل عدد حقيقي أنه،

ب) استنتج اتجاه تغيّر الدالة f، ثمّ شكّل جدول تغيّر اتها.

. $f_n(x) = \frac{e^x - 1}{X} + n \ln x$: بي $]0;+\infty[$ بي الدالة المعرفة على $f_n: n \ge 1$ عدد طبيعي حيث n – III

. $\left(O; \overrightarrow{l}, \overrightarrow{j} \right)$ منحناها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس و $\left(C_n \right)$

.]0;+∞[على f_n على -1

 $\lim_{x \to +\infty} f_n(x)$ و $\lim_{x \to +\infty} f_n(x)$ احسب -2

. (C_{n+1}) و (C_n) المنحنيين النسبي ا

4- بيّن أنّ جميع المنحنيات تمر من نقطة ثابتة B يطلب تعيين إحداثيتيها.

. $f_1(\alpha_1) = 0$ بيّن أنّه، يوجد عدد حقيقي وحيد α_1 من α_1 من α_2 عدد عدد حقيقي وحيد (5 – 5

بيّن أنّه، من أجل كل عدد طبيعي n حيث $n \geq 1$ فإنّ: $f_n(\alpha_1) < 0$ ، ثمّ برهن أنّه يوجد عدد حقيقي $f_n(\alpha_1) < 0$. $f_n(\alpha_n) = 0$ بيّن أنّه، من $a_n = 0$ بين أنّه، من $a_n = 0$ بين أنّه، من أجل كل عدد طبيعي $a_n = 0$.

. $\frac{e^x-1}{X} \le e-1$:]0;1] من أجل كل x من أجل إلى إلى إلى الجزء x الجزء الجزء ألى الجزء ألى الجزء ألى الجزء الجزء ألى الجزء ألى الجزء الجزء ألى الجزء الحراء الحرا

 (α_n) جد نهاية المتتالية (ج

اختبار مادة: الرياضيات الشعبة: تقني رياضي

دورة: جوان 2013 المدة: 04 سا و 30 د

الإجابة النموذجية

العلامة		عناصر الإجابة الموضوع الأول
مجموع	مجزأة	35, 53-3-, 4-4, 2
	0.5	التمرين الأول: (04 نقاط) \overline{AC} و \overline{AC} \overline{AC} الشعاعان \overline{AB} و \overline{AB} و \overline{AB} عير مرتبطين خطيا \overline{AC} الثنا: \overline{AC} ه و \overline{AC} تعين مستويا \overline{AC} .
	0.5	\overrightarrow{AC} و $\overrightarrow{nAC}=0$ و منه \overrightarrow{n} عمودي على الشعاعين $\overrightarrow{RB}=0$
04	+ 0.5	. $2x+y-z-5=0$: هي (P) هي –
	0.5	$x=1+2t$. $\begin{cases} x=1+2t \\ y=-5+t \end{cases}$; $(t\in\mathbb{R})$. هو (Δ) هو (Δ) هو (Δ) معنقيم (Δ) عن (Δ) معنقيم (Δ)
	0.5	. $(3;-4;-3)$ هي E هي النقطة E النقطة E
	0.75	$AH = \lambda \overrightarrow{AB}$ ومنه $\overline{AH} = \lambda \overrightarrow{AB}. \overline{AB} = \lambda \overrightarrow{AB}. \overline{AB}$ وبما أنّ $\overline{AH} = \lambda \overrightarrow{AB}$ عمودي $\lambda = \frac{\overrightarrow{AD}. \overrightarrow{AB}}{\ \overrightarrow{AB}\ ^2}$ ومنه $\overline{AD}. \overrightarrow{AB} = \lambda \overrightarrow{AB}. \overrightarrow{AB}$ فإنّ: $\overline{AD}. \overrightarrow{AB} = \lambda \overrightarrow{AB}. \overrightarrow{AB}$ ومنه \overline{AB}
	0.25	$\lambda=rac{-4}{14}=-rac{2}{7}$: ومنه $\overrightarrow{AD}(-2;-3;-1)$: استنتاج العدد الحقيقي λ : لدينا
	0.25 + 0.25	$d(D;(AB)) = DH = \frac{3\sqrt{70}}{7}$ و $\left(\frac{17}{7}; -\frac{12}{7}; -\frac{13}{7}\right)$ و لاحداثیات H هي:
		التمرين الثاني: (05 نقاط)
05	0.75	$S = \left\{ -rac{3}{2} - rac{5}{2}i \; ; -rac{3}{2} + rac{5}{2}i ight\}$ ومنه $\Delta = -100 = \left(10i ight)^2$ للمعادلة: لدينا $\Delta = -100 = \left(10i ight)^2$
	0.5	$\frac{Z_B - Z_A}{Z_B} = i \cdot i\rangle $
	+ 0.5	$rac{Z_B-Z_A}{Z_C-Z_A}=i$: وعمدة له : لدينا $rac{Z_B-Z_A}{Z_C-Z_A}$
	0.5 + 0.5	. $\left(\overrightarrow{AC}; \overrightarrow{AB}\right) = \frac{\pi}{2}$ ويعني: $\frac{\pi}{2} = \frac{\pi}{2}$ و $\frac{\pi}{2} = \frac{\pi}{2}$ و $\frac{AB}{AC} = 1$ ومنه: $\frac{z_B - z_A}{z_C - z_A} = 1$
	0.5	. A متساوي الساقين وقائم في ABC المثلث ABC متساوي الساقين وقائم في

العلامة		
مجموع	مجزأة	عناصر الإجابة الموضوع الأول
	0.5 + 0.5	$\begin{bmatrix} CE \end{bmatrix}$ و $\begin{bmatrix} BD \end{bmatrix}$ و $A:z_E$ منتصف القطعتين $A:z_E=2z_A-z_C=-rac{13}{2}+rac{5}{2}$ و منه: $z_E=2z_A-z_B=-rac{13}{2}-rac{5}{2}$
	0.5	$ \overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}+\overrightarrow{ME} =4MA:$ برت بعيين مجموعة النقط $ (\Gamma_1):$ لدينا $ (\Gamma_1):$ لدينا $ (\Gamma_1):$ لدينا $ (\Gamma_1):$ بدين مجموعة النقط $ (\Gamma_1):$ الدائرة التي مركزها $ (\Gamma_1):$ ومنه $ (\Gamma_1):$ في الدائرة التي مركزها $ (\Gamma_1):$
	0.25 + 0.5	$\operatorname{arg}(z_B+4)=rac{\pi}{4}$ يعني $B\in (\Gamma_2): (\Gamma_2): (B_2): B\in (\Gamma_2): B$ مي نصف المستقيم $\operatorname{arg}(z-z_A)=rac{\pi}{4}: B\in (\Gamma_2): B\in (\Gamma_2): B$ الذي يشمل النقطة $\operatorname{arg}(z-z_A)=rac{\pi}{4}: B\in (\Gamma_2): B\in ($
04	+ 0.5 +0.25 0.25 +0.5 0.5 + 0.5 0.5	$v_0=rac{3}{2}$ و $rac{1}{2}$ التمرين الثالث: $v_0=rac{3}{2}$ و $rac{1}{2}$ مثالية هندسية أساسها $v_0=rac{1}{2}$ و $v_n=rac{1}{2}$ و $v_n=rac{1}{2}$ و $v_n=3 imes rac{1}{2}$ و $v_n=3 imes rac{1}{2}$ و $v_n=3 imes S_n=3$ و $v_n=3(1-2^{-n-1})$ و $v_n=3$ و

العلامة		1 50 - 1 1 1 50 - 1 -
مجموع	مجزأة	عناصر الإجابة الموضوع الأول
		التمرين الرابع: (07 نقاط)
	0.5	. $]-1;+\infty[$ على المجال g على المجال $]-1;+\infty[$
	+ 0.5	$]-1;+\infty[$ من أجل كل x من $g'(x)>0$ ومنه $g'(x)=\frac{2(x+1)^2+1}{x+1}$
		$[-1;+\infty]$ متز ايدة تماما على المجال $]\infty+;1-[$.
	0.75	. $\ln(\alpha+1)=2-(\alpha+1)^2$ و $g(\alpha)=0$ و المتوسطة: نجد $g(\alpha)=0$
	0.25	$g(0,31)\times g(0,32)<0$
	0.25	. $x\in [\alpha;+\infty[$ لمّا $g(x)\geq 0$ و $x\in]-1;\alpha]$ لمّا $g(x)\leq 0:g(x)$ لمّا $g(x)\leq 0$
	0.5	$\lim_{x \to +\infty} f\left(x\right) = +\infty$ و $\lim_{x \to +\infty} f\left(x\right) = +\infty$: f نهایتا الدالهٔ -1 -II
07	0.5	$f'(x) = \frac{2g(x)}{x+1}$ التحقق أنّ: -2
	0.5	g(x) كإشارة $f'(x)$ كإشارة $g(x)$ كإشارة $f'(x)$
		ومنه الدّالة f متناقصة تماما على المجال $[lpha;+\infty[$ ومتزايدة تماما على المجال $lpha;+\infty[$
	0.5	- جدول تغیّر ات الدالهٔ f .
	0.25	. $f(\alpha) = (\alpha+1)^2(1+(\alpha+1)^2)$: نبیان أن
	0.25	. $4,66 < f\left(lpha ight) < 4,77 : f\left(lpha ight)$ صدر لعدد – استناح حصر
	0.5	.] $-1,2$] على الجمال (C_f) على الجمال -5
		-III
	0. 5	$AM=\sqrt{f\left(x ight) }$ عطى بالعبارة $AM=\sqrt{f\left(x ight) }$: -1
		$AM = \sqrt{(x+1)^2 + (\ln(x+1) - 2)^2} = \sqrt{f(x)}$ دينا:
	0.5	.] -1 ; $+\infty$ [التنين k و f نفس نفس إتحاه التغيّر على المحال -1
		ب- تعبين إحداثيتي النقطة B من (Γ) بحيث تكون المسافة AM أصغر ما يمكن.
	0.5	$B\left(lpha;\ln(lpha+1) ight)$ أو $B\left(lpha;2-(lpha+1)^2 ight)$
	0.25	$AB = (\alpha + 1)\sqrt{(\alpha + 1)^2 + 1}$ جــ تبیان أنّ:

تابع الإجابة النموذجية لامتحان: البكالــوريــا مادة: الرياضيات الشعبة: تقني رياضي دورة: جوان 2013

العلامة		
مجزأة مجموع		عناصر الإجابة الموضوع الثاني:
	0.75	(x=2+k) $(x=2+k)$ التمرين الأول $(x=2+k)$ $(x=2+k)$ هو $(x=2+k)$
	0.75	$-$ الوضع النسبي للمستقيمين (Δ) و (D) : ليسا من نفس المستوي .
04.5	0.5	$\vec{n}\perp \overrightarrow{AB}$ و $\vec{n}\perp \overrightarrow{AB}$. $\vec{n}\perp \overrightarrow{u_{(\Delta)}}$ لأنّ (P) لأنّ (P) شعاع ناظمي للمستوي \vec{n}
04.5	0.5	3x+y-2z+7=0 هي: P معادلة المستوي P
	+0.5 0.5	. $N\left(\frac{31}{7};\frac{-18}{7};\frac{62}{7}\right)$ ، $M\left(\frac{37}{7};\frac{-16}{7};\frac{58}{7}\right)$: N و M احداثیات M و M
	0.5	. $MN=rac{2\sqrt{14}}{7}$: MN الطول –
	0.5	$d(M;(P)) = rac{2\sqrt{14}}{7}$ ب $-$ حساب المسافة بين نقطة كيفية من Δ و Δ و Δ
	01	التمرين الثاني: (04.5 نقطة) التمرين الثاني: $S = \left\{-5+i\sqrt{3}\;;\; -1-i\sqrt{3}\;;\; -1+i\sqrt{3}\right\}$. $S = \left\{-5+i\sqrt{3}\;;\; -1-i\sqrt{3}\;;\; -1+i\sqrt{3}\right\}$
	0.5	$z' = \left(1 - i\sqrt{3}\right)z - 1 + i\sqrt{3}$ هي: S الصيغة المركبة للتشابه المباشر S
	0.75	. $z_{\omega}=1+i\frac{\sqrt{3}}{3}$: الزاوية: $\theta=-\frac{\pi}{3}$ ، الزاوية: $k=2$
04.5	0.5	$z_D = \frac{1}{2}(2z_A - z_B + z_C) = -3 - i\sqrt{3} : z_D$ تعیین -1-3
	0.25+ 0.5	$z_B-z_A=-i\sqrt{3}=\sqrt{3}~e^{-irac{\pi}{2}}:rac{Z_B-Z_A}{Z_D-Z_A}$ ب ب الشكل الأسي للعدد المركب $z_D-z_A=-i\sqrt{3}=0$ فائم في $z_D-z_A=-i\sqrt{3}=0$ فائم في $z_D-z_A=-i\sqrt{3}=0$ فائم في $z_D-z_A=-i\sqrt{3}=0$
	0.25	. A قائم في ABD طبيعة المثلث ABD المثلث ABD قائم في
	0.75	جــ- تعيين $D: \Gamma = \frac{AB}{2} = \sqrt{3}$ ،أي Γ هي دائرة مركزها D ونصف قطرها $\sqrt{3}$.
03.5	0.5 0.5×2	التمرين الثالث: (03.5 نقطة)
		(y = -11K - 3)

تابع الإجابة النموذجية لامتحان: البكالــوريــا مادة: الرياضيات الشعبة: تقني رياضي دورة: جوان 2013

العلامة		21.50
مجموع	مجزأة	عناصر الإجابة الموضوع الثاني
	0.75	$S = 11a + 1 \ S = 7b + 2$ ومنه $S = 11a + 1 \ S = 7b + 2$ (أ. (E) على للمعادلة (E)
	0.5	بال $S = 77k + 23$ حيث: $S = N$ ومنه باقي قسمة S على 77هو 23
	0.25	n=11a+1 نحقق: $n=7b+2$ (3)
	0.5	n = n + 2 ومنه أكبر قيمة هي: $n = 1948$
	0.5	$\frac{x}{g(x)} \xrightarrow{-\infty} 0 \xrightarrow{+\infty} g'(x) = xe^x$ قاط) $g'(x) = xe^x$. g نقاط) نقاط نقاط نقاط نقاط نقاط نقاط نقاط نقاط
	0.5	$1+g(x) \ge 0$ ومنه $g(x) > -1$ (2
	0. 5	$\lim_{x \to 0} f(x) = f(0)$ و $0;+\infty$ و $0;+\infty$ مستمرة على $0;+\infty$
	0.25	$\lim_{X\to +\infty} f(X) = +\infty .$
07.5	0.5	$f'(x) = \frac{e^x(x-1)+1}{x^2} :]0;+\infty[$ من أجل كل x من أجل كل x من أجل كا -2
	0.25	. $]0;+\infty[$ ب- اتجاه تغير الدالة $f:f$ متز ايدة تماما على المجال
	0.25	. f جدول تغيرات الدالة -
	0.5 + 0.25	: f_n نغير الدالة $f_n'(x)=f'(x)+\frac{n}{x}$: $]0;+\infty[$ من أجل كل X من $]0;+\infty[$. $]0;+\infty[$. $]0;+\infty[$ ومنه $f_n'(x)>0$ وبالتالي الدالة f_n منز ايدة تماما على المجال $[0;+\infty[$. $\lim_{x\to +\infty}f_n(x)=+\infty]$ و $\lim_{x\to +\infty}f_n(x)=-\infty$: f_n
	+ 0.25	$X \longrightarrow 0$

العلامة		****** _ * ** ** ** _ **_
مجموع	مجزأة	عناصر الإجابة الموضوع الثاني
	0.5	$f_{n+1}(x) - f_n(x) = \ln x : (C_{n+1})$ و (C_n) ولم النسبي للمنحنيين (C_n) يقع فوق (C_n) ، ولما (C_n) فإنّ (C_n) يقع فوق (C_n) ، ولما (C_n) عند النقطة (C_n)
	0.25	4- من السؤال (3) نجد أن جميع المنحنيات تمر من النقطة $B(1;e-1)$. (وتقبل أيّة طريقة صحيحة)
	0.5	$f_1(lpha_1)=0$ ببیان أنّه یوجد عدد حقیقی وحید $lpha_1$ من $a_1=0$ بحیث $a_1=0$ بیان أنّه یوجد عدد حقیقی وحید $a_1=0$ بحیث $a_1=0$ بخیث $a_1=0$ بخیث $a_1=0$ بردید و
		$: n>1$ من أجل كل $f_n(lpha_1)<0$ ب $-$ تبيان أنّ
	0.5	$f_{n}(x) < f_{1}(x)$ ، $n > 1$ من السؤال (3):من أجل $f_{n+1}(x) < f_{n}(x)$ ، $x \in]0;1[$ من السؤال (3)
	+ 0.5	. $f_n(lpha_1) < 0$: ومنه $f_n(lpha_1) < f_1(lpha_1)$. أي $lpha_1 < 1$ أي $lpha_1 < 1$ ومنه $lpha_1 \in]0,3;0,4[$
		$f_n\left(lpha_n ight)=0$:البرهنة على أنّه يوجد عدد حقيقي وحيد $lpha_n$ من $lpha_1$;1 بحيث $-$
	0. 5	$\frac{e^x-1}{X} \le e-1$ ، $]0;1]$ ، x من أجل كل x من f من أجل كل x من e^x-1 . $e^x-1 \le e-1$ ومنه f ومنه f منز ايدة تماما على $[0;1]$ فإنّ f ومنه f ومنه f
	0.25 + 0.25	$\cdot \ln(\alpha_n) \geq \frac{1-e}{n}$: $n \geq 1$ حيث $n \leq n$ عدد طبيعي $n \in n$ عدد $n \in n$ استنتاج أنّ $n \in n$ عدد $n \in n$ عدد $n \in n$ عدد $n \in n$ استنتاج أنّ $n \in n$ عدد $n \in n$ عدد $n \in n$ عدد $n \in n$ استنتاج أنّ $n \in n$ عدد $n $
	0.25	\cdot $(lpha_n)$. $(lpha_n)$. (a_n) . $($