

TensorFlow Ops

CS 20: TensorFlow for Deep Learning Research Lecture 2 1/17/2017

Agenda

Basic operations

Tensor types

Importing data

Lazy loading

Fun with TensorBoard!!!

Your first TensorFlow program

```
import tensorflow as tf

a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)

with tf.Session() as sess:
    print(sess.run(x))
```

Your first TensorFlow program

```
import tensorflow as tf

a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)

with tf.Session() as sess:
    print(sess.run(x))
```

Warning?

The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.

Your first TensorFlow program

```
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf

a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)

with tf.Session() as sess:
    print(sess.run(x))
```

No more warning

Visualize it with TensorBoard

'graphs' or any location where you want to keep your event files

Run it

Go to terminal, run:

```
$ python3 [yourprogram].py
$ tensorboard --logdir="./graphs" --port 6006 6006 or any port you want
```

Then open your browser and go to: http://localhost:6006/

Visualize it with TensorBoard

```
import tensorflow as tf

a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
writer = tf.summary.FileWriter('./graphs', tf.get_default_graph())
writer.close()
```


Visualize it with TensorBoard

```
import tensorflow as tf

a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
writer = tf.summary.FileWriter('./graphs', tf.get_default_graph())
writer.close()
```


Question:

How to change Const, Const_1 to the names we give the variables?

Explicitly name them

```
import tensorflow as tf

a = tf.constant(2, name='a')
b = tf.constant(3, name='b')
x = tf.add(a, b, name='add')

writer = tf.summary.FileWriter('./graphs', tf.get_default_graph())
with tf.Session() as sess:
    print(sess.run(x)) # >> 5
```

Explicitly name them

```
import tensorflow as tf

a = tf.constant(2, name='a')
b = tf.constant(3, name='b')
x = tf.add(a, b, name='add')

writer = tf.summary.FileWriter('./graphs', tf.get_default_graph())
with tf.Session() as sess:
    print(sess.run(x)) # >> 5
```

TensorBoard can do much more than just visualizing your graphs. Learn to use TensorBoard well and often!

Constants, Sequences, Variables, Ops

Constants

Constants

```
import tensorflow as tf

a = tf.constant([2, 2], name='a')
b = tf.constant([[0, 1], [2, 3]], name='b')
x = tf.multiply(a, b, name='mul')

Broadcasting similar to NumPy
with tf.Session() as sess:
    print(sess.run(x))

# >> [[0 2]
# [4 6]]
```

Randomly Generated Constants

```
tf.random_normal
tf.truncated_normal
tf.random_uniform
tf.random_shuffle
tf.random_crop
tf.multinomial
tf.random_gamma
```

Randomly Generated Constants

tf.set_random_seed(seed)

Operations

Category	Examples
Element-wise mathematical operations	Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal,
Array operations	Concat, Slice, Split, Constant, Rank, Shape, Shuffle,
Matrix operations	MatMul, MatrixInverse, MatrixDeterminant,
Stateful operations	Variable, Assign, AssignAdd,
Neural network building blocks	SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool,
Checkpointing operations	Save, Restore
Queue and synchronization operations	Enqueue, Dequeue, MutexAcquire, MutexRelease,
Control flow operations	Merge, Switch, Enter, Leave, NextIteration
	stime

Arithmetic Ops

- tf.abs
- tf.negative
- tf.sign
- tf.reciprocal
- tf.square
- tf.round
- tf.sqrt
- tf.rsqrt
- tf.pow
- tf.exp

Pretty standard, quite similar to numpy.

TF vs NP Data Types

TensorFlow integrates seamlessly with NumPy

```
tf.int32 == np.int32 \# \Rightarrow True
Can pass numpy types to TensorFlow ops
tf.ones([2, 2], np.float32) # \Rightarrow [[1.0 1.0], [1.0 1.0]]
For tf.Session.run(fetches): if the requested fetch is a Tensor, output will be a NumPy ndarray.
sess = tf.Session()
a = tf.zeros([2, 3], np.int32)
print(type(a))
                               # ⇒ <class 'tensorflow.python.framework.ops.Tensor'>
a = sess.run(a)
print(type(a))
                               |# ⇒ <class 'numpy.ndarray'>
```

TF vs NP Data Types

TensorFlow integrates seamlessly with NumPy

```
tf.int32 == np.int32
                   # ⇒ True
Can pass numpy types to TensorFlow ops
tf.ones([2, 2], np.float32) # \Rightarrow [[1.0 1.0], [1.0 1.0]]
For tf.Session.run(fetches): if the requested fetch is a Tensor, output will be a NumPy ndarray.
sess = tf.Session()
a = tf.zeros([2, 3], np.int32)
print(type(a))
a = sess.run(a)
                               <<<< Avoid doing this. Use a out = sess.run(a)</pre>
print(type(a))
```

Use TF DType when possible

• Python native types: TensorFlow has to infer Python type

Use TF DType when possible

- Python native types: TensorFlow has to infer Python type
- NumPy arrays: NumPy is not GPU compatible

What's wrong with constants ...

... other than being constant?

What's wrong with constants?

Constants are stored in the graph definition

What's wrong with constants?

This makes loading graphs expensive when constants are big

What's wrong with constants?

This makes loading graphs expensive when constants are big

Only use constants for primitive types.

Use variables or readers for more data that requires more memory

```
# create variables with tf.Variable
s = tf.Variable(2, name="scalar")
m = tf.Variable([[0, 1], [2, 3]], name="matrix")
W = tf.Variable(tf.zeros([784,10]))
```

```
# create variables with tf.Variable
s = tf.Variable(2, name="scalar")
m = tf.Variable([[0, 1], [2, 3]], name="matrix")
W = tf.Variable(tf.zeros([784,10]))

# create variables with tf.get_variable
s = tf.get_variable("scalar", initializer=tf.constant(2))
m = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))
W = tf.get_variable("big_matrix", shape=(784, 10), initializer=tf.zeros_initializer())
```

```
# create variables with tf.Variable
s = tf.Variable(2, name="scalar")
m = tf.Variable([[0, 1], [2, 3]], name="matrix")
W = tf.Variable(tf.zeros([784,10]))

# create variables with tf.get_variable
s = tf.get_variable("scalar", initializer=tf.constant(2))
m = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))
W = tf.get_variable("big_matrix", shape=(784, 10), initializer=tf.zeros_initializer())
```

```
# create variables with tf.Variable
s = tf.Variable(2, name="scalar")

m = tf.Variable([[0, 1], [2, 3]], name="matrix")

Why tf.constant but tf.Variable?

# create variable(tf.zeros([784,10]))

# create variables with tf.get_variable
s = tf.get_variable("scalar", initializer=tf.constant(2))
m = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))
W = tf.get_variable("big_matrix", shape=(784, 10), initializer=tf.zeros_initializer())
```

```
# create variables with tf.Variable
s = tf.Variable(2, name="scalar")
m = tf.Variable([[0, 1], [2, 3]], name="matrix")
W = tf.Variable(tf.zeros([784,10]))

# create variables with tf.get_variable
s = tf.get_variable("scalar", initializer=tf.constant(2))
m = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))
W = tf.get_variable("big_matrix", shape=(784, 10), initializer=tf.zeros_initializer())
```

tf.Variable class

```
# create variables with tf.get_variable
s = tf.get_variable("scalar", initializer=tf.constant(2))
m = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))
W = tf.get_variable("big_matrix", shape=(784, 10), initializer=tf.zeros_initializer())
```

tf. Variable holds several ops:

```
x = tf.Variable(...)
x.initializer # init op
x.value() # read op
x.assign(...) # write op
x.assign_add(...) # and more
```

tf.Variable class

```
# create variables with tf.get_variable
s = tf.get_variable("scalar", initializer=tf.constant(2))
m = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))
W = tf.get_variable("big_matrix", shape=(784, 10), initializer=tf.zeros_initializer())
with tf.Session() as sess:
    print(sess.run(W)) >> FailedPreconditionError: Attempting to use uninitialized value Variable
```

You have to <u>initialize</u> your variables

```
The easiest way is initializing all variables at once: with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
```

Initializer is an op. You need to execute it within the context of a session

You have to <u>initialize</u> your variables

```
The easiest way is initializing all variables at once:
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

Initialize only a subset of variables:
with tf.Session() as sess:
    sess.run(tf.variables_initializer([a, b]))
```

You have to <u>initialize</u> your variables

```
The easiest way is initializing all variables at once:
with tf.Session() as sess:
     sess.run(tf.global variables initializer())
Initialize only a subset of variables:
with tf.Session() as sess:
     sess.run(tf.variables initializer([a, b]))
Initialize a single variable
W = tf.Variable(tf.zeros([784,10]))
with tf.Session() as sess:
     sess.run(W.initializer)
```


A quick reminder

A TF program often has 2 phases:

- 1. Assemble a graph
- 2. Use a session to execute operations in the graph.

A TF program often has 2 phases:

- 1. Assemble a graph
- 2. Use a session to execute operations in the graph.
- ⇒ Assemble the graph first without knowing the values needed for computation

A TF program often has 2 phases:

- 1. Assemble a graph
- 2. Use a session to execute operations in the graph.
- ⇒ Assemble the graph first without knowing the values needed for computation

Analogy:

Define the function f(x, y) = 2 * x + y without knowing value of x or y. x, y are placeholders for the actual values.

Why placeholders?

We, or our clients, can later supply their own data when they need to execute the computation.

```
# create a placeholder for a vector of 3 elements, type tf.float32
a = tf.placeholder(tf.float32, shape=[3])

b = tf.constant([5, 5, 5], tf.float32)

# use the placeholder as you would a constant or a variable
c = a + b # short for tf.add(a, b)

with tf.Session() as sess:
    print(sess.run(c)) # >> ???
```

```
# create a placeholder for a vector of 3 elements, type tf.float32
a = tf.placeholder(tf.float32, shape=[3])

b = tf.constant([5, 5, 5], tf.float32)

# use the placeholder as you would a constant or a variable
c = a + b # short for tf.add(a, b)

with tf.Session() as sess:
    print(sess.run(c)) # >> InvalidArgumentError: a doesn't an actual value
```

Supplement the values to placeholders using a dictionary

```
# create a placeholder for a vector of 3 elements, type tf.float32
a = tf.placeholder(tf.float32, shape=[3])

b = tf.constant([5, 5, 5], tf.float32)

# use the placeholder as you would a constant or a variable
c = a + b  # short for tf.add(a, b)

with tf.Session() as sess:
    print(sess.run(c, feed_dict={a: [1, 2, 3]}))  # the tensor a is the key, not the string 'a'

# >> [6, 7, 8]
```

tf.placeholder(dtype, shape=None, name=None)

```
# create a placeholder for a vector of 3 elements, type tf.float32
a = tf.placeholder(tf.float32, shape=[3])

b = tf.constant([5, 5, 5], tf.float32)

# use the placeholder as you would a constant or a variable
c = a + b # short for tf.add(a, b)

with tf.Session() as sess:
    print(sess.run(c, feed_dict={a: [1, 2, 3]}))

# >> [6, 7, 8]
```

Quirk:

shape=None means that tensor of any shape will be accepted as value for placeholder.

shape=None is easy to construct graphs, but nightmarish for debugging

tf.placeholder(dtype, shape=None, name=None)

```
# create a placeholder of type float 32-bit, shape is a vector of 3 elements
a = tf.placeholder(tf.float32, shape=[3])
# create a constant of type float 32-bit, shape is a vector of 3 elements
b = tf.constant([5, 5, 5], tf.float32)
# use the placeholder as you would a constant or a variable
c = a + b \# Short for tf.add(a, b)
with tf.Session() as sess:
      print(sess.run(c, {a: [1, 2, 3]}))
# >> [6, 7, 8]
```

Quirk:

shape=None also breaks all following shape inference, which makes many ops not work because they expect certain rank

Placeholders are valid ops

```
# create a placeholder of type float 32-bit, shape is a vector of 3 elements
a = tf.placeholder(tf.float32, shape=[3])
# create a constant of type float 32-bit, shape is a vector of 3 elements
b = tf.constant([5, 5, 5], tf.float32)
# use the placeholder as you would a constant or a variable
c = a + b \# Short for tf.add(a, b)
with tf.Session() as sess:
      print(sess.run(c, {a: [1, 2, 3]}))
# >> [6, 7, 8]
```


What if want to feed multiple data points in?

You have to do it one at a time

```
with tf.Session() as sess:
    for a_value in list_of_values_for_a:
        print(sess.run(c, {a: a_value}))
```

You can feed_dict any feedable tensor. Placeholder is just a way to indicate that something must be fed

tf.Graph.is_feedable(tensor)

True if and only if tensor is feedable.

Feeding values to TF ops

```
# create operations, tensors, etc (using the default graph)
a = tf.add(2, 5)
b = tf.multiply(a, 3)
with tf.Session() as sess:
    # compute the value of b given a is 15
    sess.run(b, feed_dict={a: 15}) # >> 45
```