

Unsupervised sequence labeling (EM)

CS-585

Natural Language Processing

Derrick Higgins

Recall Our Tagging Questions

Compute the probability of a text:

$$P_m(W_{1,N})$$

Compute maximum probability tag sequence:

$$\operatorname*{argmax}_{T_{1,N}} P_m(T_{1,N}|W_{1,N})$$

Compute maximum likelihood model

$$\underset{m}{\operatorname{arg}max}\,P_{m}(W_{1,N})$$

Notation

- N = length of the corpus
- N_t = number of distinct tags
- λ_{ij} = Estimate of $P(t^i \rightarrow t^j)$ (transition probabilities)
- ϕ_{jk} = Estimate of $P(w^k \mid t^j)$ (emission probabilities)
- $a_k(i) = P(w_{1,k-1}, t_k = t^i)$ (from Forward algorithm)
- $b_k(i) = P(w_{k+1,N}|t_k = t^i)$ (from Backwards algorithm)

Recall: Forward Algorithm

Define
$$a_k(i) = P(w_{1,k}, t_k = t^i)$$

for i in $[1, ..., N_t]$:
 $a(i) \leftarrow P_m(t_0 \to t^i) P_m(w_1 | t^i)$
for k in $[2, ..., N]$
for j in $[1, ..., N_t]$:
 $a_k(j) \leftarrow \left(\sum_i a_{k-1}(i) P_m(t^i \to t^j)\right) P_m(w_k | t^j)$
 $P_m(W_{1,N}) = \sum_i a_N(i)$

Complexity = $O(N_t^2 N)$

Recall: Backward Algorithm

Define
$$b_k(i) = P(w_{k+1,N}|t_k = t^i)$$

for i in $[1, ..., N_t]$:
 $b_N(i) \leftarrow 1$
for k in $[N-1, ..., 1]$
for j in $[1, ..., N_t]$:
 $b_k(j) \leftarrow \sum_i P_m(t^j \to t^i) \ P_m(w_{k+1}|t^i) \ b_{k+1}(i)$
 $P_m(W_{1,N}) = \sum_i P_m(t_0 \to t^i) \ P_m(w_1|t^i) \ b_1(i)$

Complexity = $O(N_t^2 N)$

EM for POS Tagging

- 1. Start with some initial model (HMM)
- 2. Compute the probability of each state (tag) for each output symbol, using the current model
- 3. Use this tagging to revise the model, increasing the probability of the most likely transitions and outputs
- 4. Repeat until convergence

Note: No labeled training required!

Estimating transition probabilities

Define $p_k(i,j)$ as prob. of traversing arc $t^i \rightarrow t^j$ at position k given the observations:

$$p_{k}(i,j) = P(t_k = t^i, t_{k+1} = t^j | W, m)$$

$$= \frac{P(t_k = t^i, t_{k+1} = t^j, W | m)}{P(W | m)}$$
Probability of traversing from state i to state j at index k+1
$$= \frac{a_k(i) \lambda_{ij} \phi_{jW_{k+1}} b_{k+1}(j)}{\sum_{r=1}^{N_t} \sum_{s=1}^{N_t} a_k(r) \lambda_{rs} \phi_{sW_{k+1}} b_{k+1}(s)}$$
Probability of traversing from state j at index k+1 to the end of the sequence

Estimating transition probabilities

Define $p_k(i,j)$ as prob. of traversing arc $t^i \rightarrow t^j$ at position k given the observations:

$$p_{k}(i,j) = P(t_k = t^i, t_{k+1} = t^j | W, m)$$

$$= \frac{P(t_k = t^i, t_{k+1} = t^j, W | m)}{P(W | m)}$$

$$= \frac{a_k(i)\lambda_{ij}\phi_{jW_{k+1}}b_{k+1}(j)}{\sum_{r=1}^{N_t}\sum_{s=1}^{N_t}a_k(r)\lambda_{rs}\phi_{sW_{k+1}}b_{k+1}(s)}$$
HELINOIS INSTITUTE

OF TECHNOL

Derivation

$$P(t_{k} = t^{i}, t_{k+1} = t^{j}, W | m)$$

$$= P(W_{1..k}, t_{k} = t^{i}) P(t^{i} \to t^{j}) P(w_{k+1} | t^{j}) P(W_{(k+2)..N} | t_{k+1} = t^{j})$$

$$= a_{i}(k) \lambda_{ij} \phi_{jW_{k+1}} b_{j}(k+1)$$

$$=\sum_{r=1}^{N_t}\sum_{s=1}^{N_t}P(t_k=t^r,t_{k+1}=t^s,W|m)$$

$$= \sum_{r=1}^{N_t} \sum_{s=1}^{N_t} a_r(k) \lambda_{rs} \phi_{sW_{k+1}} b_s(k+1)$$

Expected transitions

• Define $g_k(i) = P(t_k = t^i | W, m)$, then:

$$g_k(i) = \sum_{j=1}^{N_t} p_k(i,j)$$

- Now note that:
 - Expected number of transitions from tag i =

$$\sum_{k=1}^{N} g_k(i)$$

Expected transitions from tag i to tag j =

$$\sum_{k=1}^{N} p_k(i,j)$$

Reestimation

$$\lambda'_{ij} = \frac{\text{expected } \# \text{ of transitions from tag } i \text{ to tag } j}{\text{expected } \# \text{ of transitions from tag } i}$$

$$= \frac{\sum_{r=1}^{N} p_r(i,j)}{\sum_{r=1}^{N} g_r(i)}$$

$$\phi'_{ik} = \frac{\text{expected } \# \text{ of observations of } k \text{ for tag } i}{\text{expected } \# \text{ of transitions from tag } i}$$

$$=\frac{\sum_{w:W_r=w^k}g_r(i)}{\sum_{r=1}^Ng_r(i)}$$

EM Algorithm for HMM POS

- 1. Choose initial model = $\langle \lambda, \phi \rangle$
- 2. Repeat until results don't improve much:
 - a. Compute p_t using current model and Forward & Backwards algorithms to compute α and b (Expectation)
 - b. Compute new model $\langle \lambda', \phi' \rangle$ (Maximization)

Note: Only guarantees a local maximum!

Extensions for HMM POS tagging

Higher-order models:

$$P(t^{i_1}, \dots, t^{i_n} \rightarrow t^j)$$

- Incorporating text features:
 - Output prob = $P(w^i, \mathbf{f}^j | t^k)$ where \mathbf{f} is a vector of features

(e.g., capitalization, ends in -d, etc.)

 Combining labeled and unlabeled training (initialize with labeled training, then do EM)

Chicago streets

[Notebook]