Çevrimiçi Eğitimde/Sınavda Kullanılacak Yüz Tanıma Sistemi

- Yüz tespit ve tanıma işlemlerinin hızlı olması gerekmekte.
- Az sayıda yüz görseli ile tanıma yapabilmesi lazım.

Yüz Tespiti

- Viola-Jones benzeri bir gerçekleme yapıldı.
- Haar-Benzeri öznitelikler kullanıldı.
- Özellikleri seçme işlemi için AdaBoost yerine Random Forest kullanıldı.
- Sci-kit learn, LFW yüz veri seti.

Random Forest

- Çok sayıda karar ağacından (decision tree) oluşur.
- Her karar ağacı modelin yaptığı tahmine katkıda bulunur.
- Ağaçların tekil olarak yaptığı tahminde/hatada diğer ağaçlar olarak korelasyonun az olması beklenir.

Karar ağacı

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Karar ağacının oluşturulması

- Veri setindeki tüm özelliklerinin veri setini ne kadar iyi ayırdığı ölçülür. En iyi ayıran öznitelik kök düğüm(root node) olur.
 - Gini safsızlığı, entropi (Gini impurity)
- Dalların seçimi için ise veri setinin ilgili düğümün ifade ettiği alt küme için bir önceki adımda anlatılan işlem tekrarlanır.
- Oluşturulacak diğer tüm düğümler için bu işlem devam eder.
- Over-fitting

Random Forest – Karar Ağacı Oluşturulması

- Bootstrap aggregating (Bagging)
 - Verisetindeki M adet veriden N adedi rastgele şekilde seçilir
 - -M < N
 - Tekrarlar olabilir.

Bootstrap aggregating (Bagging)

Rastgele Özellik Altuzayı

 Karar ağacı oluşma aşamasında bir sonraki tüğümün seçilebileceği öznitelikler mevcut tüm özniteliklerden, daha önce belirlenmiş bir oranda kısıtlanır.

Scikit – Learn Random Forest

- sklearn.ensemble.RandomForestClassifier
 - n_estimators,int, default=100 ağaç sayısı
 - criterion{"gini", "entropy"}, öznitelik seçim kriteri
 - max_depth, default=None ağacın derinliği
 - min_samples_split default = 2 minimum dallanma sayısı

Modelin Eğitilmesi

- LFW dataseti ve yüz dışı rastgele görünütlerden oluşan bir veri seti ile eğitildi.
- 6000 Negatif, 2300 Pozitif
- Görseller 24x24x1 çöznürlüğüne dönüştürüldü.
- 24x24x1 boyutundaki NxM görselde bulunabilecek tüm 161864 adet Haar-Benzeri öznitelikler tüm görseller için hesaplandı.

Modelin Eğitilmesi

- (N+M)*161864 boyutlu öznitelik dizisi ve (N+1)*1 sonuç dizisi ile RFC oluşturuldu.
- Eğitilen modeldeki en önemli 2289 adet öznitelik alındı.
- Sadece 2289 öznitelik ile aynı şekilde yeni bir model eğitildi.
- Eğitilen yeni model kaydedildi.
- Model test setinde %97 başarıma ulaştı.

Önemli Haar-Benzeri Öznitelikler

The most important features

 800 adet negatif 800 adet pozitif görsel ile eğitilmiş rastgele sınıflandırıcısındaki ağaçlarda en çok kullanılmış 4 öznitelik.

Oluşturulan Modelin Uygulanması

- 24x24x1 Boyutundaki görseller için eğitildi.
- Haar-Benzeri öznitelikler ölçeklenebilir.
- Herhangi bir görselin tüm noktalarına farklı ölçeklerde uygulanarak, uygulandığı pencerenin içerinde yüz varlığı test edilebilir.
- Makalede önerilen ölçek faktörü 1.25 ve pencerinin hareket miktarı ise 1 pikseldir.

Sonuçların Filtrelenmesi

 Yüzün bulunduğu her çerçeveye yakın çerçeveler arasında en kuvvetlisi seçildi.

Uygulamada ortaya çıkan sorunlar ve olası çözümler

- Yavaş.
 - Özniteliklerin hesaplanması çok vakit almakta
 - Düşük boyutlu ölçekler yüz tanıma elverişsiz. Dolayısıyla hesaplanmayabilir.
 - 24x24 96x96
 - Memoization, farklı ölçeklerde ve konumlarda aynı Haar öznitelikleri hesaplanmakta.
 - Kaskat oluşturulabilir.
 - Haar kaskatının hesaplanması tek thread ile CPU'da çalışmakta. Kolaylıkla çok thread ile çalışacak hale getirilebilir.

• ...

Uygulamada ortaya çıkan sorunlar ve olası çözümler

- Hatalı pozitif sonuçlar üretebiliyor.
 - Daha fazla negatif görsel ile eğitilebilir.
- Çerçeve kare olduğu için dar görsellerde hatalı sonuçlar elde edilebilmekte.
 - Görsel kare hale getirilebilir.

Yüz Tanıma

- SIFT ile iyi sonuçlar alınamadı.
- Siyam ağları ve VGG16 kullanılarak gerçekleme yapıldı.
- LFW, CASIA WebFace, Color FERET veritabani

Neden SIFT Değil

• Pozdan, mimiklerden çok ciddi etkilenmekte

Neden SIFT Değil

- Benzer bölgelerde çıkan yerel özellikler hatalı sonuç üretebilmekte.
- Ancak oldukça kısıtlanmış açı, poz ve ölçekte elde edilmiş görüntüler ile iyi sonuçlar elde edilebilir.

Sıradan Sinir Ağları

- Girişi olan bir vektörü aradaki gizli katmanlardan geçirerek çıkış olan vektörü elde eder.
- Giriş ve çıkış dahil her katman nöronlardan oluşmuştur.
- Her katmandaki nöron birbirinden bağımsızdır ve bir önceki ve bir sonraki katmandaki tüm nöronlara bağlıdır.

Sıradan Sinir Ağları

- Görseller ile kullanmak için pek uygun değillerdir.
- Örnek olarak 244x244x3 boyutunda bir görsel için giriş katmanında 178608 nöron bir sonraki gizli katmandaki tam bağlı her bir nöron için ise 178608 ağırlığa ihtiyaç vardır.
- 100 Nörondan oluşan sadece tek bir katmanda optimize edilmesi gereken 178608000 parametre var.
- Bu çok fazla sayıdaki parametre over-fitting'e dolayısıyla daha fazla kaliteli eğitim verisine ihtiyaca sebep olabilir.

Konvolüsyonel Sinir Ağları

- CONV
- FC
- RELU
- POOL

Konvolüsyon Katmanı

Bir dizi öğrenebilir filtre içerir.

Padding, Stride

- (N f + 2p)/s + 1
- Padding
 - Shrinking
 - Edges not covered by may passes

Pooling

- Öğrenme yok.
- f filtre büyüklüğü
- s stride
- f:2x2 s:2
- (n-f)/s + 1

12	20	30	0
8	12	2	0
35	70	37	6
99	80	25	12

ReLU

$$ReLU(x) = (x)^{+} = \max(0, x)$$

- Rectified Linear Unit Function
- Conv + ReLU + Polling

Fully Connected (FC)

Siamese Networks

- İki yada daha fazla ağı alt ağ olarak içerir.
- Ağ üzerindeki tüm ağırlılklar paylaşılır.
- İsimlendirilmiş görüntüler arasındaki benzerliği öğrenilir.

Siamese network used in Signet

Üçlü Görüntüler

Anchor Positive Negative

Triplet Loss Function

$$L(a, p, n) = \max\{d(a_i, p_i) - d(a_i, n_i) + \text{margin}, 0\}$$

$$d(x_i, y_i) = \|\mathbf{x}_i - \mathbf{y}_i\|_p$$

- A- anchor N-negatif P-pozitif.
- Margin

Triplet'lerin Seçimi A,P,N

Anchor ve negatif görsel mümkün olduğunca yakın, anchor ve pozitif görsel birbirine uzak olmalıdır.

Transfer Öğrenme

- Bir problemi çözerken öğrenilmiş bilgiyi başka benzer bir problemin çözümünde bir kısmını yada tamamını kullanmaktır.
- Araba görsellerini tanımak için eğitilmiş bir ağın bir kısmı yada tamamı kamyon görsellerini tanımak için kullanılabilir.

CNN için Transfer Öğrenme

- Önceden eğitilmiş modelin ağırlıkları yüklenir.
- İlk katmanların ağırlıkları dondurulur.
- Yeni katmanlar eklenir.
- Yeni katmanlar eklenerek oluşturulmuş ağ eğitilir.
- Sonuca göre hiper-parametrelere ince ayar yapılabilir, yeni katmanlar eklenebilir.

Kullanılan Ağ

 M. Heidari and K. Fouladi-Ghaleh, "Using Siamese Networks with Transfer Learning for Face Recognition on Small-Samples Datasets," 2020 International Conference on Machine Vision and Image Processing (MVIP), 2020, pp. 1-4, doi: 10.1109/MVIP49855.2020.9116915.

VGG-16

Eğitilen Ortam

- PyTorch ile geliştirildi.
- Google Colab kullanılarak eğitildi.
- Casia Web Faces
- Labeled Faces in the Wild (LFW)
- FERET Colored

Ağın Eğitilmesi

- Casia Web Faces
- 494414 Yüz içeren içinden rastgele seçilmiş 268080 görüntü kullanıldı.
- 89360 Adet ikisi aynı kişiye ait biri ise farklı triplet'ler oluşturuldu ve eğiltildi.
- Batch size 40 olarak seçildi. Oluşan 2234 Batch %20 -% 80 olarak eğitim ve doğrulama seti olarak bölündü

Eğitim Süresine Göre Sonuçlar

- Casia Web Faces vertabanından rastgelen seçilmiş görseller ile 1 – 11 epoch arası eğitildi.
- Her epoch sonunda eğitilen model kaydedildi.
- Kaydedilen her model LFW veritabanıdaki 13233 görselden oluşturulan üçlü setler ile test edildi.

Eşik değeri - doğruluk - tp, tn, fn, fp 11.94092807769773 0.7525 (776, 729, 224, 271)

Eşik değeri - doğruluk - tp, tn, fn, fp 17.076625919342007 0.7885 (788, 789, 212, 211)

Eşik değeri - doğruluk - tp, tn, fn, fp 18.928353595733604 0.792 (804, 780, 196, 220)

23.98485965728755 0.792 (758, 826, 242, 174)

29.83460254669184 0.7875 (743, 832, 257, 168)

33.38655490875238 0.7905 (780, 801, 220, 199)

Feret Color Faces Database

- Büyük bir kısmı kontrollü ortamda çekilmiş görüntülerden oluşmakta.
- Sadece ön yüz görselleri ile test edildi.
- 725 kişiye ait 1695 adet yüz görselinden rastgele 1130 çift oluşturuldu.
- %89 doğruluğa ulaşıldı.

Daha iyi üçlü görsellerin oluşturulması.

- İyi seçilmemiş üçlü görsellerden ağ için çok öğrenecek bir şey yok.
- Veri setinin bir kısmı ayrıldı. Ayrılan kısım ile eğitim sırasında ağın güncel haliyle "zor" olarak sınıflandırılan üçlü görseller seçildi ve eğitim setine dahil edildi.
- Vakit alan bir süreç.

Daha iyi üçlü görsellerle eğitilen modelin değelendirilmesi.

- Casia verisetinden rastgele seçilerek oluşuturulan üçlülerle eğitilen modelin ağırlıkları kullanıldı.
- LFW setiyle anlatılan metot kullanıldı.
- Daha iyi sonuç alındı. Aynı görseller ile tüm üçlüler için %92.6 doğruluğa erişildi.

Daha iyi üçlü görsellerle eğitilen modelin değelendirilmesi.

- Daha "zor" üçlü görseller ile eğitildiğinde daha iyi sonuçlar elde edildi.
- Daha kaliteli veriyle ve farklı metotlarla üçlü görseller elde edilerek daha iyi sonuçlar elde edilebilir.

Demo

- Eğtilen yüz tanıma, tespiti sınıflarının etrafına yeni sınıflar yazıldı.
- QT kullanılarak basit bir arayüz oluşturuldu.

Kaynakça

- M. Heidari and K. Fouladi-Ghaleh, "Using Siamese Networks with Transfer Learning for Face Recognition on Small-Samples
 Datasets," 2020 International Conference on Machine Vision and Image Processing (MVIP), 2020, pp. 1-4, doi:
 10.1109/MVIP49855.2020.9116915.
- F. Schroff, D. Kalenichenko and J. Philbin, "FaceNet: A unified embedding for face recognition and clustering," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815-823, doi: 10.1109/CVPR.2015.7298682.
- K. Vikram and S. Padmavathi, "Facial parts detection using Viola Jones algorithm," 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), 2017, pp. 1-4, doi: 10.1109/ICACCS.2017.8014636.
- Hastie, T.; Tibshirani, R. & Friedman, J. (2001), The Elements of Statistical Learning, Springer New York Inc., New York, NY, USA.
- https://www.deeplearning.ai/
- StatQuest with Josh Starmer

Dinlediğiniz İçin Teşekkürler.