A Deep Neural Network Approach to Splice Site Prediction

Tilman Hinnerichs

Knowledge Mining Lab - KAUST

October 3, 2019

Outline

- 1. Problem Description
- 2. Dataset description
- DiProDB database Application of NN Application of CNN
- 4. Improvements on simple approach
- 5. repDNA Funnel
- 6. Next Steps

Figure: RNA splicing reaction (en.wikipedia.org)

- Acceptor site:
 - ... CGTATCTAGATGAGCA...
- Donor site:
 - ... ATGATTTGTGCAGTCA...

- Acceptor site:
 - ...CGTATCT AG ATGAGCA...
- Donor site:
 - ...ATGATTT GT GCAGTCA...

- ► Acceptor site:
 - ... CGTATCT <mark>AG</mark> ATG <mark>AG</mark> CA...
- Donor site:
 - ...ATGATTT<mark>GT</mark>GCA<mark>GT</mark>CA...

Dataset description

Example file, e.g., acceptor site

Application of NN

- Adapt convolution techniques from other papers with same goal
- Vary pre and post marker nt sequence length
- Use DiProDB[Friedel et al., NAR, 2009] for input
- ▶ Utilize electron io interaction potential (EIIP) for prediction

Application of NN

Application of NN to the DiProDB data

- DiProDB is database for the physicochemical properties of dinucleotides (127 entries)
- ► Applied PCA yielding 15 dimensions

Application of NN to the DiProDB data

- DiProDB is database for the physicochemical properties of dinucleotides (127 entries)
- ► Applied PCA yielding 15 dimensions

Approach	Samples	Depth	A	Acceptor		Donor			
			Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
DiProDB	40,000	7	92.38	92.1	93.5	93.6	92.9	93.6	
DiProDB	40,000	9	92.28	90.4	94.2	93.4	92.0	93.9	

Application of NN

DiProDB BINARY CLASSIFICATION APPROACH Data shape: (40000, 601, 15)

Layer (type)	Output Shape	Param #
input_10 (InputLayer)	(None, 601, 15)	0
flatten_10 (Flatten)	(None, 9015)	0
dense_46 (Dense)	(None, 150)	1352400
dropout_37 (Dropout)	(None, 150)	0
dense_47 (Dense)	(None, 80)	12080
dropout_38 (Dropout)	(None, 80)	0
dense_48 (Dense)	(None, 30)	2430
dropout_39 (Dropout)	(None, 30)	0
dense_49 (Dense)	(None, 10)	310
dropout_40 (Dropout)	(None, 10)	0
dense_50 (Dense)	(None, 1)	11

Application of CNN

► Convolutional NN to adapt ideas from other papers

Application of CNN

Application of CNN to the DiProDB data

► Convolutional NN to adapt ideas from other papers

Approach	Layers			Acceptor		Donor			
	Conv.	Others	Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
CNN DPDB	4	5	94.4	95.4	94.6	94.9	94.4	94.7	
CNN DPDB	4	7	93.5	93.3	94.5	94.0	94.0	93.3	
CNN DPDB	6	5	94.0	93.9	94.9	94.2	95.4	91.6	
CNN DPDB	6	5	94.4	97.0	93.8	95.2	96.5	93.7	
SpliceRover	4	2	96.1	93.9	97.4	95.4	95.6	96.7	
CNN DPDB(*)	2	4	94.3	95.6	94.3	95.3	96.9	94.4	

SpliceRover[Zuallaert et al., 2018]

9/24

└─ DiProDB database

DiProDB: BINARY CLASSIFICATION APPROACH

Data shape: (40000, 601, 15, 1)

Epochs: 5, Batch size: 500 Model: "model_10"

Layer (type)	Output Shape	Param #
input_10 (InputLayer)	(None, 601, 15, 1)	0
conv2d_28 (Conv2D)	(None, 599, 1, 32)	1472
max_pooling2d_28 (MaxPooling	(None, 299, 1, 32)	0
conv2d_29 (Conv2D)	(None, 297, 1, 64)	6208
max_pooling2d_29 (MaxPooling	(None, 148, 1, 64)	0
conv2d_30 (Conv2D)	(None, 146, 1, 128)	24704
max_pooling2d_30 (MaxPooling	(None, 48, 1, 128)	0
flatten_10 (Flatten)	(None, 6144)	0
dense_28 (Dense)	(None, 64)	393280
dropout_19 (Dropout)	(None, 64)	0
dense_29 (Dense)	(None, 64)	4160
dropout_20 (Dropout)	(None, 64)	0
dense_30 (Dense)	(None, 1)	65

DiProDB database
Application of CNN

Improvements on simple approach

Applying convolutional models to one hot encoding of

single nucleotides

Approach	Samples		Acceptor		Donor			
		Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
Simple	200000	94.5	95.6	93.3	95.3	96.7	94.5	

trinucleotides

Approach	Samples		Acceptor		Donor			
		Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
Simple	200000	94.6	93.3	96.7	95.0	92.5	96.3	

Single nucleotides model

Figure: Convolutional model with filter sizes (2x4), ..., (7x4)

Trinucleotides model

Figure: Convolutional model with filter sizes $(2 \times 64), \ldots, (8 \times 64)$

repDNA (Liu, 2014)

A "Python package to generate various modes of feature vectors for DNA sequences":

repDNA content

- ► Nucleic acid composition
 - kmer
 - Increment of diversity (ID)
- Autocorrelation
 - Dinucleotide-based auto covariance (DAC)
 - Dinucleotide-based cross covariance (DCC)
 - Dinucleotide-based auto-cross covariance (DACC)
 - Trinucleotide-based auto covariance (TAC)
 - Trinucleotide-based cross covariance (TCC)
 - Trinucleotide-based auto-cross covariance (TACC)

repDNA (Liu, 2014)

repDNA content

- Pseudo nucleotide composition
 - Pseudo dinucleotide composition (PseDNC)
 - Pseudo k-tupler nucleotide composition (PseKNC)
 - Parallel correlation pseudo dinucleotide composition (PC-PseDNC)
 - Parallel correlation pseudo trinucleotide composition (PC-PseTNC)
 - Series correlation pseudo dinucleotide composition (SC-PseDNC)
 - Series correlation pseudo trinucleotide composition (SC-PseTNC)

repDNA (Liu, 2014)

repDNA content

- Pseudo nucleotide composition
 - Pseudo dinucleotide composition (PseDNC)
 - Pseudo k-tupler nucleotide composition (PseKNC)
 - Parallel correlation pseudo dinucleotide composition (PC-PseDNC)
 - Parallel correlation pseudo trinucleotide composition (PC-PseTNC)
 - Series correlation pseudo dinucleotide composition (SC-PseDNC)
 - Series correlation pseudo trinucleotide composition (SC-PseTNC)
- ▶ Build model for each encoding and reuse filters for overall model

Classifier model on repDNA features: Results

Approach	Samples		Acceptor	•	Donor			
		Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
IDkmer	40000	75.4	71.4	78.5	73.2	69.6	76.5	
DAC	40000	74.1	74.2	74.3	72.9	72.2	73.2	
DCC	40000	75.1	80.0	77.7	74.5	75.2	80.0	
PC-PseDNC	40000	78.0	76.5	80.1	76.4	75.1	77.9	
PC-PseTNC	40000	80.5	76.1	84.2	78.8	76.9	81.6	
SC-PseDNC	40000	79.2	74.5	82.4	77.5	77.0	78.8	
SC-PseTNC	40000	80.6	76.3	84.8	78.7	77.3	81.5	

Classifier model on repDNA features: IDkmer

Classifier model on repDNA features: DAC/DCC

Classifier model on repDNA features: PseNAC

Funneling method: Model

Sampl.	S	Di	IK	Pse	D	Tr	Acceptor			Donor			
							Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
40000	Х	Х					97.7	98.1	96.7	_	_	_	
40000	Х	Х	Х				97.7	98.1	96.7	_	_	_	
40000	Х	Х	Х	Х			97.6	98.2	96.2	_	_	_	
40000	Х	Х	Х	Х	Х		97.5	98.2	96.5	97.4	97.3	96.3	
40000	Х	Х				Х	98.0	98.4	97.7	98.7	1.27	(*)	

Funnel

Next steps

- ► Follow improvements of SpliceRover
- ▶ repDNA (Liu et al., 2015) for different embeddings of the sequences
- Train CNN on all embeddings
- Freeze convolutional layers and funnel them into DNN

23 / 24

Citations

- Liu B, Liu F, Fang L, Wang X, Chou K-C.repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics 2015;31(8):1307-1309.
- Jasper Zuallaert, Fréderic Godin, Mijung Kim, Arne Soete, Yvan Saeys, Wesley De Neve, SpliceRover: interpretable convolutional neural networks for improved splice site prediction, Bioinformatics, Volume 34, Issue 24, 15 December 2018, Pages 4180–4188, https://doi.org/10.1093/bioinformatics/bty497

24 / 24