

Instituto Tecnológico de Aeronáutica - ITA CSC-64 - Programação Paralela

Aluno: Ulisses Lopes da Silva

Relatório do Laboratório 01 - Jogo da Vida

1 Complexidade do programa

Observando atentamente cada um dos módulos que compõem o programa, verificamos a existência de 3 arquivos principais, que são: ModVida.c, Tempo.c e wall_time.c. Não obstante, cada módulo possui funções com diferentes tempos de execução, os quais serão detalhadas abaixo. Para efeito de cálculo, sempre consideraremos o pior caso.

1.1 ModVida.c

- Função UmaVida():
 - 3 atribuições;
 - repete tam vezes [repete tam vezes (9 atribuições + 4 comparações)];

Assim, temos: $3 + n(n.13) = 13n^2 + 3 \Rightarrow O(n^2)$.

- Função DumpTabul():
 - 5 atribuições;
 - 1 print;
 - (last first) prints (k prints);
 - repete n vezes [repete n (1 print) + 1 print];
 - repete n vezes 1 print;

Assim, temos: $5 + 1 + k + n(n(1) + 1) + n(1) = n^2 + 2n + k + 6 \Rightarrow O(n^2)$.

- Função InitTabul():
 - 3 atribuições;
 - 1 operação aritmética;
 - repete n vezes (2 atribuições);
 - 5 atribuições;

Assim, temos: $3 + 1 + n(2) + 5 = 2n + 9 \Rightarrow O(n)$

- Função Correto():
 - 2 atribuições;
 - 2 atribuições;
 - repete n vezes (1 atribuição);
 - 6 retornos;

Assim, temos: $4 + n(1) + 6 = n + 10 \Rightarrow O(n)$

1.2 wall.c:

Neste arquivo, há apenas a definição de uma struct, que podemos considerar como tempo constante.

1.3 Tempo.c:

- Função main:
 - repete (POWMAX POWMIN) (k) vezes (1 atribuição + n vezes ($n^2 + n^2$);
 - 1 atribuição;
 - 1 print;

Assim, temos: $k(1 + n(n^2 + n^2)) + 1 + 1 = k + 2k(n^3) + 2 \Rightarrow O(n^3)$.

Portanto, a complexidade de tempo total do programa é da ordem de n^3 , ou $O(n^3)$.

2 Análise da complexidade e Gráfico comparativo

Após a execução do código, foi retornado o arquivo $\mathtt{OutTempo}$, que continha os tempos de compilação para entradas múltiplas de 2^n , com n variando de 3 a 9. Os tempos foram:

Tabela 1: Tamanho da entrada (n) vs. tempo de execução (s)

n	Tempo (s)
8	0.000020
16	0.000178
32	0.001576
64	0.012339
128	0.100733
256	0.815215
512	6.553873

Note que:

$$T(n) \approx C.n^3 \Rightarrow T(2n) \approx 2^3.C.n^3$$

Logo, se n dobra, podemos obter uma razão aproximada de 2^3 . Percerba que:

$$T(16)/T(8) = 0.000178/0.000020 \approx 8.9$$

 $T(32)/T(16) = 0.001576/0.000178 \approx 8.85$
 $T(64)/T(32) = 0.012339/0.001576 \approx 7,83$
 $T(128)/T(64) = 0.100733/0.012339 \approx 8.16$
 $T(256)/T(128) = 0.815215/0.100733 \approx 8.09$
 $T(512)/T(256) = 6.553873/0.815215 \approx 8.04$

O que confirma a teoria.

Além do exemplificado, potando o gráfico com os tempos, podemos verificar, conforme previsto na estimativa de complexidade da seção anterior, que o tempo gasto varia segundo $O(n^3)$.

Fig. 1: Gráfico dos pontos obtidos e da curva ajustada a eles.