Amendments to the claims:

This listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims:

What is claimed is:

1. (**Currently Amended**). A compound of formula (I) or a pharmaceutically acceptable derivative thereof:

(l)

wherein:

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, one is CR^{1a} , and the remainder are CH, or one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} , and the remainder are CH;

R¹ and R¹a are independently hydrogen; hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6}) alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, CONH2, hydroxy, thiol, (C_{1-6}) alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acyloxy or (C_{1-6}) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkyl; (C_{1-6}) alkylthio; nitro; azido; acyl; acyloxy; acylthio; (C_{1-6}) alkylsulphonyl; (C_{1-6}) alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups; and additionally when Z^5 is CR^{1a} , R^{1a} may be (C_{1-4}) alkyl- CO_2H or (C_{1-4}) alkyl- CO_1H_2 in which the C_{1-4} alkyl is substituted by R^{12} ; (C_{1-4}) alkyl-substituted by amino, cyano or guanidino; aminocarbonyl optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{2-6}) alkenylsulphonyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{2-6}) alkenylsulphonyl, (C_{1-6}) alkylsulphonyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{2-6}) alkenylsulphonyl, (C_{1-6}) alkylsulphonyl, (C_{1-6}) alkylsulph

6)alkexycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenylexycarbonyl, (C₂₋₆)alkenylcarbonyl, or CH(R¹³)CO₂H or CH(R¹³)CONH₂ optionally further substituted by (C₁₋₆)alkyl, hydrexy(C₁₋₆)alkyl, aminocarbonyl(C₁₋₆)alkyl or (C₂₋₆)alkenyl; hydrexy(C₁₋₆)alkyl; carboxy; cyano or (C₁₋₆)alkexycarbonyl; wherein R¹³ is a natural □-amino acid side chain, or its enantiomer;

provided that when one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} and the remainder are CH, then R^1 is not hydrogen;

R² is hydrogen;

 ${\sf R}^3$ is hydrogen; or

 ${\sf R}^3$ is in the 2-, 3- or 4-position and is:

carboxy; (C_{1-6}) alkoxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{2-6}) alkenylsulphonyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; 1,2,4-triazol-5-yl optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; 1,2,4-triazol-5-yl optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; 1,2,4-triazol-5-yl optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; 1,2,4-triazol-5-yl optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl or (C_{2-6}) alk

 (C_{1-4}) alkyl or ethenyl optionally substituted with any of the substituents listed above for R^3 and/or up to 3 groups R^{12} independently selected from:

thiol; halogen; (C₁₋₆)alkylthio; trifluoromethyl; azido; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆)alkenylcarbonyl; hydroxy optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylcarbonyl or (C₂₋₆)alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆)alkenylcarbonyl, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, (C₂₋₆)alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl, (C₂₋₆)alkenyl, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkyl, (C₁₋₆)alkyl, hydroxyl, aminocarbonyl, (C₁₋₆)alkyl, (C₁₋₆)alkyl, (C₁₋₆)alkyl, hydroxyl, (C₁₋₆)alkyl, aminocarbonyl, (C₁₋₆)alkyl, (C₁₋₆)a

 (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or (C_{1-6}) aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; in addition when R^3 is disubstituted with a hydroxy or amino containing substituent and a carboxy containing substituent these may together form a cyclic ester or amide linkage, respectively; or

when R^3 is in the 3-position R^2 and R^3 may together form a divalent residue = $CR^{5^1}R^{6^1}$ where R^{5^1} and R^{6^1} are independently selected from hydrogen, (C_{1-6})alkyl, (C_{2-6})alkenyl, aryl(C_{1-6})alkyl and aryl(C_{2-6})alkenyl, any alkyl or alkenyl moiety being optionally substituted by up to three R^{12} groups;

R^4 is (C_{5-12}) alkyl, optionally substituted phenyl (C_{2-3}) alkyl or optionally substituted phenyl (C_{3-4}) alkenyl;

R4 is a group -CH2-R5 in which R5 is selected from:

 $\begin{array}{c} (C_{1-12})alkyl; \ hydroxy(C_{1-12})alkyl; \ (C_{1-12})alkyl; \ (C_{1-12})alkoxy(C_{3-6})cycloalkyl; \ (C_{1-12})alkanoyloxy(C_{3-6})cycloalkyl; \ (C_{3-6})cycloalkyl; \ (C_{1-12})alkyl; \ hydroxy-, \ (C_{1-12})alkoxy- or \ (C_{1-12})alkanoyloxy- \ (C_{3-6})cycloalkyl(C_{1-12})alkyl; \ hydroxy-, \ (C_{1-12})alkoxy- or \ (C_{1-12})alkanoyloxy- \ (C_{3-6})cycloalkyl(C_{1-12})alkyl; \ hydroxy-, \ (C_{1-12})alkyl; \ (C_{2-12})alkyl; \ hydroxyl(C_{1-12})alkyl; \ hydroxyl(C_{1-12})alkyl; \ hydroxyl(C_{1-12})alkyl; \ hydroxyl(C_{1-12})alkyl; \ hydroxyl(C_{2-12})alkyl; \ hydrox$

A is CR^6R^7 and B is $SO_{2,}$ CO or CH_2 wherein: each of R^6 and R^7 is independently selected from: hydrogen; (C_{1-6}) alkoxy; thiol; (C_{1-6}) alkylthio; halo; trifluoromethyl; azido; (C_{1-6}) alkyl; (C_{2-6}) alkenylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; hydroxy, amino

or aminocarbonyl optionally substituted as for corresponding substituents in R^3 ; (C_{1-6})alkylsulphonyl; (C_{2-6})alkenylsulphonyl; or (C_{1-6})aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6})alkyl or (C_{2-6})alkenyl;

R¹⁰ is selected from (C₁₋₄)alkyl; (C₂₋₄)alkenyl and aryl any of which may be optionally substituted by a group R¹² as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₂₋₆)alkenylsulphonyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl or (C₂₋₆)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; (C₁₋₆)alkylsulphonyl; trifluoromethylsulphonyl; (C₂₋₆)alkenylsulphonyl; (C₁₋₆)alkylcarbonyl; (C₁₋₆)alkylcarbonyl; and (C₂₋₆)alkenylcarbonyl;

and R^{11} is hydrogen; or (C_{1-4}) alkyl or (C_{2-4}) alkenyl optionally substituted with 1 to 3 groups selected from:

carboxy; (C_{1-4}) alkoxycarbonyl; (C_{1-4}) alkylcarbonyl; (C_{2-4}) alkenyloxycarbonyl; (C_{2-4}) alkenylcarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-4}) alkyl, hydroxy (C_{1-4}) alkyl, aminocarbonyl (C_{1-4}) alkyl, (C_{2-4}) alkenyl, (C_{1-4}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{2-4}) alkenylsulphonyl, (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl or (C_{2-4}) alkenylcarbonyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R¹⁰; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R¹⁰; 5-oxo-1,2,4-oxadiazol-3-yl; thiol; halogen; (C_{1-4}) alkylthio; trifluoromethyl; azido; hydroxy optionally substituted by (C_{1-4}) alkyl, (C_{2-4}) alkenyl, (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl, (C_{2-4}) alkenylcarbonyl; oxo; (C_{1-4}) alkylsulphonyl; (C_{2-4}) alkenylsulphonyl; or (C_{1-4}) alkenyl.

- 2. (Currently Amended) A compound according to claim 1 wherein:
 - (a) Z^1 is N, Z^3 is CH or CF, and Z^2 , Z^4 , and Z^5 are CH,
 - (b) \mathbb{Z}^{1} - \mathbb{Z}^{5} are each CH, \mathbb{Z}^{3} is CH or CF and \mathbb{Z}^{1} , \mathbb{Z}^{2} , \mathbb{Z}^{4} , and \mathbb{Z}^{5} are CH, or
- (c) Z^5 is N, Z^3 is CH or CF, and Z^1 , Z^2 , and Z^4 - Z^4 are CH, and Z^3 may instead be CF.

- 3. (**Previously Presented**). A compound according to claim 1 wherein R^1 and R^{1a} are independently methoxy, amino(C_{3-5})alkyloxy, guanidino(C_{3-5})alkyloxy, piperidyl(C_{3-5})alkyloxy, nitro or fluoro.
- 4. (**Previously Presented**). A compound according to claim 1 wherein R^3 is hydrogen; (C_{1-4}) alkyl; ethenyl; optionally substituted 1-hydroxy(C_{1-4})alkyl; carboxy; (C_{1-6}) alkoxycarbonyl; optionally substituted aminocarbonyl; carboxy(C_{1-4})alkyl; optionally substituted 2-oxo-oxazolidinyl or optionally substituted 2-oxo-oxazolidinyl(C_{1-4} alkyl).
- 5. (**Previously Presented**). A compound according to claim 1 wherein R³ is in the 3-position and the substitutents at the 3- and 4-position of the piperidine ring are *cis*.
- 6. (**Previously Presented**). A compound according to claim 1 wherein A is CHOH or CH₂, and B is CH₂.
- 7. (**Previously Presented**). A compound according to claim 1 wherein R¹¹ is hydrogen.
- 8. (Cancelled).
- 9. (**Original**). A compound according to claim 1 selected from: 1-Heptyl-4-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethylaminopiperidine; cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethylaminopiperidine;
- $\label{lem:cis-3-(R/S)-Aminocarbonyl-1-heptyl-4-(S/R)-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]} \\ ethylaminopiperidine;$
- cis-1-Heptyl-3-(R/S)-hydroxymethyl-4-(S/R)-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethylaminopiperidine;
- $\label{eq:cis-3-(R/S)-carboxy-1-heptyl-4-(S/R)-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]} \\ ethylaminopiperidine;$
- 1-Heptyl-4-[2-(S)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethylaminopiperidine; or 1-Heptyl-4-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethyl(N-methyl)aminopiperidine; or a pharmaceutically acceptable derivative thereof.

- 10. (**Original**). A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.
- 11. (**Original**). A method of treatment of bacterial infections in mammals which method comprises the administration to a mammal in need of such treatment an effective amount of a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable derivative thereof.
- 12. (Cancelled).
- 13. (**Original**). A process for preparing a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable derivative thereof, which process comprises: reacting a compound of formula (IV) with a compound of formula (V):

$$R^{1} \xrightarrow{Z^{2}} X$$

$$Z^{5} \xrightarrow{I} X$$

$$IV)$$

$$HNR^{11} \xrightarrow{3} X$$

$$R^{2} \xrightarrow{3} X$$

$$R^{3} \xrightarrow{I} X$$

$$IV)$$

$$(V)$$

wherein Z¹', Z²', Z³', Z⁴', Z⁵', R¹¹', R¹', R²', R³' and R⁴' are Z¹, Z², Z³, Z⁴, Z⁵, R¹¹, R¹, R², R³ and R⁴ as defined in formula (I) or groups convertible thereto; and:

- (i) X is $CR^6R^7SO_2W$
- (ii) X is A'-COW
- (iii) X is $CR^6=CH_2$
- (iv) X is oxirane and

in which W is a leaving group e.g. halogen, A' is A as defined in formula (I), or a group convertible thereto, and oxirane is:

wherein R^6 and R^7 are as defined in formula (I); and thereafter optionally or as necessary converting $Z^{1'}$, $Z^{2'}$, $Z^{3'}$, $Z^{4'}$, $Z^{5'}$, A', $R^{11'}$, $R^{1'}$, $R^{2'}$, $R^{3'}$ and $R^{4'}$ to Z^{1} , Z^{2} , Z^{3} , Z^{4} , Z^{5} , A, R^{11} , R^{1} , R^{2} , R^{3} and R^{4} , converting A-B to other A-B, interconverting R^{11} , R^{1} , R^{2} , R^{3} and/or R^{4} , and/or forming a pharmaceutically acceptable derivative thereof.