

25th August 2015

DIAMOND RINGS

ACKNOWLEDGED EVENT PROPAGATION IN MANY-CORE PROCESSORS

Stefan Nürnberger, Randolf Rotta, Gabor Drescher, Daniel Danner, Jörg Nolte

ACKNOWLEDGED EVENT PROPAGATION

What does it do?

- Make events observable in a networked system
- Make sure events are globally observable
- Enforce ordering of events

What is it good for?

- Memory Consistency
- Coherence Protocols
- Atomic Operations

How to implement it?

"Just use broadcast with acknowledgement..."

\$Dir

OUTLINE

1. Throughput & Latency of Broadcast

2. The Diamond Ring Topology

3. Evaluation

THROUGHPUT & LATENCY

Latency

- time from sending out message to reception of acknowledgement
- determined by "longest path" (#hops + processing at each node)
- "lower is better"

Throughput

- number of messages processed within fixed time span
- determined by node with maximum overhead (i.e. bottleneck)
- requires pipelining of messages (latency hiding)
- "higher is better"

Throughput

 $\star\star\star$

Latency

Throughput

 $\star\!\star\!\star$

Latency

Throughput

 $\star\!\star\!\star$

Latency

Throughput

 $\star\!\star\!\star$

Latency

Throughput

 $\star\!\star\!\star$

Latency

Throughput

 $\star\star\star$

Latency

Throughput

 $\star\!\star\!\star$

Latency

Throughput

 $\star\star\star$

Latency

Throughput

 $\star\!\star\!\star$

Latency

Throughput

 $\star\star\star$

Latency

ACKNOWLEDGED BROADCAST USING RINGS

Throughput

Latency

 $\star\star\star$

ACKNOWLEDGED BROADCAST USING RINGS

Throughput

Latency

 $\star\star\star$

Throughput

Latency

Throughput

Latency

FORWARD - PROCESS - ACK

Message Forwarding as Acknowledgement

- possible in ring structures
- halve number of sent messages (network contention)
- may increase latency (processing time at node)

Ring Structure

- 1. Receive Message
- 2. Process Message
- 3. Forward Message (Ack)

Tree Structure

- 1. Receive Message
- 2. Forward Message (except leaves)
- 3. Process Message
- 4. Receive Ack (except leaves)
- 5. Forward Ack

Not an issue if only message reception needs acknowledgement.

OUTLINE

1. Throughput & Latency of Broadcast

2. The Diamond Ring Topology

3. Evaluation

3-The Diamond Ring Topology

THE DIAMOND RING TOPOLOGY

Combine Ring and Balanced Tree

- · Logarithmic path length for low latency
- · Forwarding is acknowledgement
- Parallel message propagation
- Computable topology

Diamond Ring: Directed Graph D_k^l

- k Arity of tree nodes
- l Levels of tree scattering
- Based on a balanced tree B_k^l
- Mirrored at the leaves
- Closed to ring at the root

$$|D_k^l| = \frac{(k+1)k^l - (k+1)}{k-1}$$

$$|D_k^{l+1}|\ = |D_k^l| + k^l + k^{l+1}$$

THE DIAMOND RING TOPOLOGY

Combine Ring and Balanced Tree

- · Logarithmic path length for low latency
- · Forwarding is acknowledgement
- Parallel message propagation
- Computable topology

Diamond Ring: Directed Graph D_k^l

k Arity of tree nodes

l Levels of tree scattering

- Based on a balanced tree B_k^l
- · Mirrored at the leaves
- · Closed to ring at the root

$$|D_k^l| = \frac{(k+1)k^l - (k+1)}{k-1}$$

$$|D_k^{l+1}|\ = |D_k^l| + k^l + k^{l+1}$$

D_2^2 - diamond ring with 9 nodes

3-The Diamond Ring Topology 0 0 0 0 0 12

D_2^2 - diamond ring with 9 nodes

 D_2^2 - diamond ring with 9 nodes +1 (no bottleneck version)

 D_2^2 - diamond ring with 9 nodes +1 (no bottleneck version)

SOME MORE EXAMPLES

D_1^3 - diamond ring with 6 nodes

SOME MORE EXAMPLES

D_2^4 - diamond ring with 45 nodes

SOME MORE EXAMPLES

D_3^4 - diamond ring with 160 nodes

3-The Diamond Ring Topology

Throughput

 $\star\star\star$

Latency

Throughput

Latency

Throughput

Latency

Throughput

 $\star\star\star$

Latency

Throughput

 $\star\star\star$

Latency

DEALING WITH ODD NODE COUNTS

 D_2^2 - diamond ring with 7 nodes (-2 nodes)

DEALING WITH ODD NODE COUNTS

 D_2^2 - diamond ring with 7 nodes (-2 nodes)

DEALING WITH ODD NODE COUNTS (2)

D_2^2 - diamond ring with 11 nodes (+2 nodes)

DEALING WITH ODD NODE COUNTS (2)

D_2^2 - diamond ring with 11 nodes (+2 nodes)

COMPARISON TO BALANCED TREES

Latency and Throughput

Latency is reduced due to shorter longest path

Throughput is increased since nodes have less communication partners **Contention** on the network is reduced due to less messages sent

	Balanced Tree	Diamond Ring	Ring
Longest Path	$2log_k(n)$	$2log_k(n)-2$	n
Max. Overhead	2(k+1)	2k	2
Messages sent	2(n-1)	$\frac{2k}{k+1}n$	n

COMPARISON TO BALANCED TREES

Latency and Throughput

Latency is reduced due to shorter longest path

Throughput is increased since nodes have less communication partners **Contention** on the network is reduced due to less messages sent

	Balanced Tree	Diamond Ring	Ring
Longest Path	$2log_k(n)$	$2log_k(n)-1$	n
Max. Overhead	2(k+1)	k+1	2
Messages sent	2(n-1)	$\frac{2k}{k+1}n+1$	n

OUTLINE

1. Throughput & Latency of Broadcast

2. The Diamond Ring Topology

3. Evaluation

4-Evaluation 18

EVALUATION OF DIAMOND RINGS

Hypothesis

Acknowledged broadcasts using diamond rings should have...

- 1. lower latency,
- 2. higher throughput
- ... than balanced trees.

Benchmark Setup

- · Custom active message framework
- · Messages in shared memory
- Topologies: Balanced Tree (BT), Diamond Ring (DR), Sequenced Diamond Ring (SDR)
- Three different evaluation platforms

EVALUATION PLATFORMS

EZ-Chip Tilera TILE-Gx72

- 72 Cores @1Ghz (in-order)
- Low-Latency Mesh Network (UDN)

Intel Xeon E5 4640v2

- 4 Sockets, 40 Cores, 80 HW-Threads @2.2Ghz (out-of-order)
- Slotted Rings, QPI between Sockets

Intel Xeon Phi 5110P

- 60 Cores, 240 HW-Threads @1GHz (in-order)
- · Slotted Ring Network

EZ-CHIP TILERA TILE-GX72

4-Evaluation 21

INTEL XEON 4640V2

4 · Evaluation 22

INTEL XEON PHI 5110P

4- Evaluation 23

RESULTS OVERVIEW

4 · Evaluation 24

RESULTS OVERVIEW

4-Evaluation 24

SUMMARY

Acknowledged Event Propagation

• is very important in consistency management.

Throughput and Latency

· require a trade-off.

Diamond Rings

- offer a better trade-off than balanced trees.
- are acknowledged broadcast's best friend.

Thank you for your attention!

· Questions?

This work was supported by the German Research Foundation (DFG) under grant no. NO 625/7-1 and SCHR 603/10-1