

Select between candidates for next state using prob' method
IDEA: like "proportional fitness" in selecting breeding pairs in genetic alg's —
geneticaly? —
f, fz for elements of M = neighbors of stati
Select randomly-
Note: Scaling may be help Ful here
106+ 2: (Simulated Annealing) Define a Temperature value T that grides the amount of tolerance we have for
Define a Temperature value T that guides the amount
= of tolerance we have for
lower T gradually — fluctuations between good + load solins
1.e, keep dividing by 2: T, T/2, T/4,
Keep dividing by rol:

T,
$$T/r$$
, T/r^2 , ...

T, $2T_3$, $4T_9$, ...

or logarithmic/exponentials

T

T

Given state V_c (current state) $f(V_c)$ current obj in value

neighbor V_n (neighboring state) $f(V_n)$

maximize $f(V_n)$ (in general, want $f(V_n) > f(V_n)$)

Compute $p(V_n) = \frac{1}{[f(V_c) - f(V_n)]}$

T=

Temperature

Suppose
$$f(v_c) = f(v_n)$$
? Then $P(v_n) = \frac{1}{1+e^o} = \frac{1}{2}$

$$f(v_c) < f(v_n)$$
? Then $P(v_n) = \frac{1}{1+e^{-\alpha}}$ for some $e^{-\alpha} < 1$? e

Simulated Annading:	T = Tmays V= = random starting point
,	Vc = random starting point M = successors (Vc)
run Phis MAX	> PICK Vn E EMZ
fimed	$If(f(v_n) > f(v_e))$ $V_c \leftarrow V_n$
	else if (f(vn) < f(vo))
	$r \leftarrow Random(0,1)$ $1f\left(r < \frac{1}{1 + exp((f(v_0) - f(v_n))/T)}\right)$
1008	\(\(\frac{1}{2}\text{exp((\frac{1}{2}\text{Vin}))/\)\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
choosins new ve)	decrease T
or new ver	