# Topic Models & Recurrent Neural Networks

Kuan-Yu Chen (陳冠宇)

2018/04/12 @ TR-409, NTUST

# Semantic?

- In the context of NLP, long-span information is important!
  - Especially for language modeling
    - 一枝 美麗 的 玫瑰 在 花盆
    - 一隻可愛的小貓在花園
    - 一支高貴的鋼筆在拍賣

- N-gram models are not an efficient strategy to capture the long-span information
  - From literal matching to semantic mapping

# **Probabilistic Latent Semantic Analysis**

- Probabilistic Latent Semantic Analysis also called
  - Probabilistic Latent Semantic Indexing (PLSI)
  - Aspect Model
- PLSA is a probabilistic counterpart of LSA
  - $P(d_i)$ : the probability of selecting document  $d_i$
  - $P(w_i|T_k)$ : the probability of word  $w_i$  condition on a latent factor/topic  $T_k$ 
    - Aspect!
  - $P(T_k|d_j)$ : the probability of a latent factor/topic  $T_k$  generated by document  $d_j$

• The PLSA model is a latent variable model for co-occurrence data (i.e., each pair of word  $w_i$  and document  $d_j$ ) which associates an unobserved class variable (i.e., latent factor  $T_k$ )

$$P(w_i, d_j) = P(d_j)P(w_i|d_j) = P(d_j)\sum_{k=1}^{K} P(w_i|T_k)P(T_k|d_j)$$

$$P(w_{i}|d_{j}) = \sum_{k=1}^{K} P(w_{i}, T_{k}|d_{j}) = \sum_{k=1}^{K} \frac{P(w_{i}, T_{k}, d_{j})}{P(d_{j})}$$

$$= \sum_{k=1}^{K} \frac{P(w_{i}, d_{j}|T_{k})P(T_{k})}{P(d_{j})}$$

$$= \sum_{k=1}^{K} \frac{P(w_{i}|T_{k})P(d_{j}|T_{k})P(T_{k})}{P(d_{j})}$$
Conditional document and word are independent conditioned on the state of the associated latent variable
$$= \sum_{k=1}^{K} \frac{P(w_{i}|T_{k})P(d_{j}, T_{k})}{P(d_{j})} = \sum_{k=1}^{K} P(w_{i}|T_{k})P(T_{k}|d_{j})$$

• Thus, the modeling goal is to identify conditional probability mass functions  $P(w_i|T_k)$  such that the document-specific word distributions  $P(w_i|d_j)$  are as faithfully as possible approximated by convex combinations of these aspects



- The training objective is defined to maximize the total loglikelihood of a given training collection
  - The model parameters are  $P(d_j)$ ,  $P(w_i|T_k)$ , and  $P(T_k|d_j)$

$$\mathcal{L} = \sum_{w_i \in V} \sum_{d_j \in \mathbf{D}} c(w_i, d_j) log P(w_i, d_j)$$

$$= \sum_{w_i \in V} \sum_{d_j \in \mathbf{D}} c(w_i, d_j) log \left( P(d_j) \sum_{k=1}^K P(w_i | T_k) P(T_k | d_j) \right)$$

- By using the Expectation-Maximization algorithm
  - E-step

$$P(T_k|w_i,d_j) = \frac{P(w_i|T_k)P(T_k|d_j)}{\sum_{k=1}^K P(w_i|T_k)P(T_k|d_j)}$$

- M-step

$$P(w_i|T_k) = \frac{\sum_{d_j \in \mathbf{D}} c(w_i, d_j) P(T_k | w_i, d_j)}{\sum_{i'=1}^{|V|} \sum_{d_j \in \mathbf{D}} c(w_{i'}, d_j) P(T_k | w_{i'}, d_j)}$$

$$P(T_k|d_j) = \frac{\sum_{i=1}^{|V|} c(w_i, d_j) P(T_k|w_i, d_j)}{\sum_{i'=1}^{|V|} c(w_{i'}, d_j)}$$

• Consequently, for a given word sequence,  $w_1, w_2, ..., w_T$ , the joint probability in a language can be calculated by using PLSA

$$P(w_1, w_2, ..., w_T) = P(w_1) \prod_{t=2}^{T} P(w_t | w_1, w_2, ..., w_{t-1})$$

$$= P(w_1) \prod_{t=2}^{T} \left( \sum_{k=1}^{K} P(w_t | T_k) P(T_k | w_1, w_2, ..., w_{t-1}) \right)$$

- Usually, we can combine the PLSA with the traditional n-gram models
  - Semantic matching and literal term matching

$$\begin{split} P(w_t|w_1,w_2,\dots,w_{t-1}) &= \alpha \cdot P(w_t|w_{t-n+1},\dots,w_{t-1}) + \\ &\qquad (1-\alpha) \cdot \sum_{k=1}^K P(w_t|T_k) P(T_k|w_1,w_2,\dots,w_{t-1}) \end{split}$$

- For a new history of words,  $w_1, w_2, ..., w_{t-1} = H_1^{t-1}$ , the **fold-in** strategy can be perform to obtain the topic distribution
  - The word distribution for each topic  $P(w_i|T_k)$  is fixed
  - E-step

$$P(T_k | w_i, H_1^{t-1}) = \frac{P(w_i | T_k) P(T_k | H_1^{t-1})}{\sum_{k=1}^K P(w_i | T_k) P(T_k | H_1^{t-1})}$$

M-step

$$P(T_k|H_1^{t-1}) = \frac{\sum_{i=1}^{|V|} c(w_i, H_1^{t-1}) P(T_k|w_i, H_1^{t-1})}{\sum_{i'=1}^{|V|} c(w_{i'}, H_1^{t-1})}$$

# **Revisiting NNLM – 1**

 The Neural Network Language Mode (NNLM) estimated a statistical (*n*-gram) language model for **predicting future** words



# Revisiting NNLM – 2.

*P*(there are books on the table)

 $\approx P(there)P(are|there)P(books|there|are)P(on|are|books)$ P(the|books|on)P(table|on|the)



# Revisiting NNLM – 2...

*P*(there are books on the table)

 $\approx P(there)P(are|there)P(books|there|are)P(on|are|books)$ P(the|books|on)P(table|on|the)



# Revisiting NNLM – 2...

 $P(there \ are \ books \ on \ the \ table)$   $\approx P(there)P(are|there)P(books|there \ are)P(on|are \ books)$   $P(the|books \ on)P(table|on \ the)$ 



# Revisiting NNLM – 2....

*P*(there are books on the table)

 $\approx P(there)P(are|there)P(books|there|are)P(on|are|books)$ P(the|books|on)P(table|on|the)



# Revisiting NNLM – 2.....

*P*(there are books on the table)

 $\approx P(there)P(are|there)P(books|there|are)P(on|are|books)$ P(the|books|on)P(table|on|the)



# Revisiting NNLM – 2.....

*P*(there are books on the table)

 $\approx P(there)P(are|there)P(books|there|are)P(on|are|books)$ P(the|books|on)P(table|on|the)



### From NNLM to RNNLM

- The hidden state can encapsulate the information of word usage (ordering)
  - Leverage the information!!



#### RNNLM.

*P*(there are books on the table)

 $\approx P(there)P(are|there)P(books|there are)P(on|there are books)$ P(the|there are books on)P(table|there are books on the)



#### RNNLM..

*P*(there are books on the table)

 $\approx P(there)P(are|there)P(books|there are)P(on|there are books)$ P(the|there are books on)P(table|there are books on the)



#### RNNLM...

*P*(there are books on the table)

 $\approx P(there)P(are|there)P(books|there are)P(on|there are books)$ P(the|there are books on)P(table|there are books on the)



#### RNNLM....

*P*(there are books on the table)

 $\approx P(there)P(are|there)P(books|there\ are)P(on|there\ are\ books)$  $P(the|there\ are\ books\ on)P(table|there\ are\ books\ on\ the)$ 



### RNNLM....

*P*(there are books on the table)

 $\approx P(there)P(are|there)P(books|there|are)P(on|there|are|books)$ P(the|there|are|books|on)P(table|there|are|books|on|the)



#### RNNLM.....

*P*(there are books on the table)

 $\approx P(there)P(are|there)P(books|there|are)P(on|there|are|books)$ P(the|there|are|books|on)P(table|there|are|books|on|the)



# **Recurrent Neural Network LM**

- RNNLM has recently emerged as a promising modeling framework for several tasks
  - Both word usage cues and long-span structural information of word co-occurrence relationships can be take into account naturally
- The limitations of the feed-forward NNLM
  - Need to specify the context length
  - RNN can efficiently represent more complex patterns than shallow NNs



# **Compared with Topic Modeling**

|                                                                | RNNLM                                 | Topic Models      |
|----------------------------------------------------------------|---------------------------------------|-------------------|
| Local and/or Long-<br>span Information                         | Both bigram and long-span information | Long-span         |
| Capture the Long-<br>span Information                          | By the Hidden State                   | By EM Algorithm   |
| The Combination Weight between Local and Long-span Information | Automatic<br>Adaptation               | Empirical Setting |
| The Importance of Each Word in the History                     | Automatic Learned                     | Equal Weight      |
| Interpretability                                               | No                                    | Yes               |

# **Elman & Jordan Types**



# **RNN for LM**



# **RNN for Tagging**



Forward RNN





#### Backward RNN



• Bi-directional RNN!!



Multi-Layers RNN



# Long Short-Term Memory (LSTM)

- Learning to Forget!
  - RNN
    - The classic model



- LSTM
  - Learning to forget
  - Capture longer information
  - Very slow in practice



### Vanilla RNN

• RNN is hard to capture long-term dependencies

$$h_t = \tanh(W[h_{t-1}, x_t] + b)$$



### LSTM.

- The key to LSTMs is the **cell state** 
  - The horizontal line running through the top of the diagram
  - It's very easy for information to just flow along it unchanged





### LSTM..

- The **forget gate** is to decide what information we're going to throw away from the cell state
  - $f_t = 1$ : completely keep the information
  - $f_t = 0$ : completely get rid of the information



$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$



### LSTM...

- The **input gate** is to decide which value we will update
  - A candidate vector, which contains the new information, will also be create



$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$
  
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$



# LSTM....

Update the cell state!



$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$



### LSTM.....

• The **output gate** is a filter to select what information the model is going to output



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$



# **Gated Recurrent Unit (GRU)**

- RNN
  - The classic model

- LSTM
  - Learning to forget
  - Capture longer information
  - Very slow in practice
- GRU
  - A balanced choice







#### GRU

- GRU combines the forget and input gates into a **update gate**
- It also merges the cell state and hidden state, and a **reset gate** is used to control the previous information





# **Questions?**



kychen@mail.ntust.edu.tw