PMATH 333

Ben Passer

Fall 2019

	Contents
Preface	2
1 Informal Intro	3

			Preface

The notes are taken down by Iris Jiang and transcribed by Sibelius Peng.

CHAPTER 1

Informal Intro

Derivative

instantaneous rate of change.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 if it exists.

Example:

If $f: \mathbb{R} \to \mathbb{R}$ has f'(x) = 0 for all $x \in \mathbb{R}$. Then f is constant.

First goal of course

Defining \mathbb{R} and proving it has no gaps.

Dedekind Cut

A dedekind cut is a subset $A \subset \mathbb{Q}$ such that

- 1. $\emptyset \neq A \neq \mathbb{Q}$
- 2. If $x \in A$ and $q \in \mathbb{Q}$ with $q \leq x$, then $q \in A$
- 3. A has no largest element. That is if $x \in A$, then there exists $y \in A$ with x < y.

Lemma 1.1

Let q be a rational number with 0 < q and $q^2 < 2$. Then there exists some $r \in \mathbb{Q}$ with q < r and $r^2 < 2$.

Exercise.

Theorem 1.2: Density of $\mathbb Q$ in $\mathbb R$

If $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$, then there exists $q \in \mathbb{R}$ with $\alpha < q < \beta$.

Proof:

Exercise.

	Index
	Derivative
Dedekind Cut 3	