

RECONHECIMENTO INTELIGENTE DE LOCUTORES NA MODALIDADE INDEPENDENTE DO DISCURSO

MATHEUS YOSHIMITSU TAMASHIRO PIRES LANZO, IBILCE, São José do Rio Preto, yoshimitsu.lanzo@unesp.br

Apresentado no XXXV Congresso de Iniciação Científica da Unesp – CIC 2023 "Desafios na produção do conhecimento: democratização e diversidade"

INTRODUÇÃO: As técnicas de identificação de indivíduos por voz têm se tornado cada vez mais frequentes, principalmente em aplicações de controle de acesso, substituindo tradicionais sistemas baseados em senhas. O potencial exponencialmente crescente dos computadores constitui um forte fator motivador para que os sistemas de reconhecimento de padrões, inclusive aqueles baseados em voz, estejam presentes em aplicações diversas. O objetivo desta pesquisa é de em meio a discursos variados, identificar diferentes locutores utilizando de algoritmos de análise de sinais, de forma a possibilitar a comparação de características temporais e espectrais e de classificadores diversos, analisando os resultados por meio de validações cruzadas e matrizes de confusão.

MATERIAL E MÉTODOS: 10 sinais de voz cedidos por diferentes locutores.

São extraídas as características, ou seja, valores numéricos representativos dos sinais-modelo de voz, visando caracterizar os locutores-alvo independentemente do discurso. Para tal, são delimitadas regiões que estejam na fronteira entre segmentos vozeados e não-vozeados, das quais serão computadas a frequência fundamental (F_0) e as frequências formantes $(F_1, F_2, F_3 \in F_4)$ utilizando de algoritmos que implementem Análise Cepstral, Taxa de Cruzamento por Zeros e Energia. Uma vez que as melhores características sejam escolhidas, são definidas e testadas configurações distintas de classificadores *knowledge-based* do tipo *deep neural network* (DNN). Método *Support Vector Machine* (SVM): é um modelo mais elaborado, sendo do tipo *knowledge-based*. É um algoritmo de aprendizado de máquina.

Método da Distância Euclidiana: é um critério modesto do tipo *pattern matching*, sem maiores possibilidades de incorporar aprendizado estatístico.

Figura 1. Resumo da Metodologia

RESULTADOS E DISCUSSÃO: Tendo sido consideradas 10 sinais de vozes totais, de diferentes locutores e discursos, foram analisadas as acurácias dos dois métodos em identificar os diferentes locutores.

Tabela 1. Resultados do Método Distância Euclidiana

Tubela 1. Resultatos do Metodo Distancia Edendian	
Distância Euclidiana	Precisão (Acurácia)
(Treino vs Teste)	
10 vs 1	70,0%
9 vs 2	65,0%
8 vs 3	63,3%
7 vs 4	55,0%

Tabela 2. Resultados do Método SVM

SVM (Treino vs Teste)	Precisão (Acurácia)
10 vs 1	85,0%
9 vs 2	80,3%
8 vs 3	73,3%
7 vs 4	65,0%

Ao comparar os dois métodos, é possível perceber também as divergências de resultados, fazendo com que hajam também diferentes aplicações para ambos, como por exemplo, um cenário industrial, menos preciso, para o primeiro método e um cenário acadêmico, mais preciso, para o segundo. Embora a precisão mais alta não esteja próxima de 100%, pode-se considerar que melhorias nos algoritmos de escolhas de características, mas principalmente um maior número de amostras impactaria positivamente a performance dos métodos, sendo o *Support Vector Machine*, aquele mais beneficiado.

CONCLUSÕES: O estudo realizado evidencia a importância do reconhecimento inteligente de locutores, na modalidade *text-independent*, ao comprovar que mesmo sem um alto número de sinais de voz disponíveis para obter um resultado ótimo em *machine learning*, é possível extrair altas porcentagens de precisão na identificação de locutores, mostrando então uma área de pesquisa em expansão e que demonstra grande utilidade em diversos cenários, percorrendo desde o uso em assistentes de voz, até mesmo em níveis de segurança como senhas.

AGRADECIMENTOS: Agradeço ao Conselho Nacional de Pesquisa e Desenvolvimento (CNPq) pelo incentivo, à Unesp pela oportunidade e ao meu orientador, Rodrigo Capobianco Guido, por guiar o projeto e se mostrar sempre disposto a sanar, com sabedoria, as dúvidas advindas durante o percurso.

REFERÊNCIAS:

DENG, L.; O'SHAUGHNESSY, D. Speech processing: a dynamic and optimization-oriented approach. [s.l.] New York Marcel Dekker, 2003.

GUIDO, R.C. ZCR-aided neurocomputing: a study with applications. Knowledge-based Systems, v. 105, pp.248-269, 2016.

RABINER, L. R.; SCHAFER, R. W. Theory and applications of digital speech processing. Upper Saddle River: Pearson, 2011.