

数据科学与工程算法基础

Algorithm Foundations of Data Science and Engineering

第四章 哈希算法

$$(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots$$

课 Content 程 提

1 算法引入

2 布隆过滤器

3 局部位置敏感哈希

课程提 纲

1 算法引入

2 布隆过滤器

3 局部位置敏感哈希

如何快速判断用户名是否被注册

判断用户名是否被注册相当于判断 一个元素是否出现在一个集合中

- 如何能做到瞬间反馈结果?
 - 用链表表示集合, 查找效率会很低
 - 对用户名建立B+树索引,可以提高查询效率,复杂度为 $O(\log n)$,其中n为集合大小
 - 能否找到 O(1) 复杂度的方法呢?

文本冗余检测

·搜索引擎定期爬取网页内容

- 爬取太多冗余文本会浪费存储空间
- 但海量文本需要爬取,逐篇对比过 于低效
- 如何快速判断网页内容是否冗余?

哈希函数

- •哈希函数 $h(\cdot)$ 是一个数学函数,满足 $h: \text{key} \to \text{value}$,即 $h(\text{key}) = \text{value} \in \mathbb{Z}^+$
- •哈希函数的作用
 - 压缩存储: 哈希值所需的存储空间远小于输入关键词占用的空间
 - ✔ 网页URL哈希到某个位置,可以表示为一个整数
 - ✓邮件地址哈希成一个整数
 - 无冲突: 理想状态下, 输入不同的关键词会得到不同的哈希值
 - ✔ 即使是两个差异很小的关键词也会得到两个完全不同的哈希值
 - ✓相同关键词被相同哈希函数哈希后不可能得到两个不同的哈希值
 - **不可逆**: 在不知道哈希函数的情形下,仅知道哈希值,不可能轻易地 猜到此哈希值对应的关键词
 - ✓ 唯一找到关键词的方法是蛮力法(Brute-Force)
 - ✔ 正是因为这一点,哈希函数成为最重要的密码学工具之一

哈希表

数据结构的操作效率

操作	未排序数组	排序数组	链表	二叉排序树
插入	O(1)	O(n)	O(1) 或 O(n)	O(log n)
查找	O(n)	O(log n)	O(n)	O(log n)
删除	O(n)	O(n)	O(1)	O(log n)

- 通常,对哈希表的插入、查找和删除操作复杂度均为 O(1),但并不总是这样
- 影响哈希表操作性能的因素
 - 哈希函数:将冲突最小化,使key和value均匀地分布在整个表中
 - **冲突解决策略**: 将key/value存储在不同的位置,或将多个key/value用 链表串起来
 - **哈希表大小**:表过大会降低碰撞的可能,但会造成内存空间的浪费;过 小的哈希表会增加碰撞的可能性

课程提 继 细

1 算法引入

2 布隆过滤器

3 局部位置敏感哈希

布隆过滤器

- 回答一个元素是否出现在一个集合中时,仅仅使用一个 哈希函数,碰撞可能是一个大的问题
- 布隆过滤器(Bloom Filter)是为了应对碰撞而提出的
 - 它是一种高空间效率的概率数据结构
 - 用于判断一个元素是否属于一个集合的成员
- 布隆过滤器具有广泛的应用
 - 垃圾邮件地址过滤器: 可以有效过滤垃圾邮件地址
 - 拼写检查: 能很快发现文字编辑软件中输入的错
 - 重复检查:用于网络爬虫判断某个URL是否已经被爬取过了,或用户名是否被注册过

布隆过滤器示例

假定集合中有n个元素,给定一组k个哈希函数 $h_1, ..., h_k$,其中 h_i 的范围为 $\{0, ..., m-1\}$,初始状态长度为m的位数组每个位置被置为0

- 如图为布隆过滤器示例
 - 示例中m = 18, k = 3
 - 每个元素被哈希到位数组中的三个位置
 - 图示为插入元素 $\{x,y,z\}$ 后的情形

元素插入

给定 3 个哈希函数 h_1, h_2, h_3 ,其中 h_i 的范围为 $\{0,1,...,9\}$,初始状态长度为 10 的位数组每个位置被置为 0

0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0

0	1	2	თ	4	5	6	7	8	9
0	1	0	0	1	0	0	0	0	1

插入
$$x_1$$

$$H(x_1) = \{1,4,9\}$$

0	1	2	3	4	5	6	7	8	9
0	1	0	0	1	1	0	0	1	1

插入
$$x_2$$
 $H(x_2) = \{4,5,8\}$

元素查询

0	1	2	3	4	5	6	7	8	9
0	1	0	0	1	1	0	0	1	1

$$H(x_1) = \{1,4,9\}$$

 $H(x_2) = \{4,5,8\}$

- 元素查询
 - 查询 y_1 , $H(y_1) = \{1,4,9\}$ → Yes
 - 查询 y_2 , $H(y_2) = \{0,4,8\} \rightarrow \text{No}$
 - 查询 y_3 , $H(y_3) = \{1,5,8\} \rightarrow \text{Yes}$ (假阳性)
- 布隆过滤器可能会误判
 - 不会出现拒真的情形(假阴性不会出现)
 - 但是可能出现纳伪的情形(假阳性)
- 如何降低误判率?

误判率分析

- 当插入一个元素到布隆过滤器,一个哈希函数未将某个 $\frac{1}{m}$ 特定位置置为1的概率为 $1-\frac{1}{m}$
- 当一个元素插入布隆过滤器后,k个哈希函数未将特定位置置为1的概率为 $\left(1-\frac{1}{m}\right)^k$
- 将n个元素插入布隆滤波器后,特定位置未被置为 1 的概率为 $\left(1-\frac{1}{m}\right)^{kn}$
- 因此,某个特定位置为1的概率为 $1-\left(1-\frac{1}{m}\right)^{kn}$

误判率分析 (续)

- 查询某个元素时,当k个哈希函数对应的位置均为1,则过滤器声称该元素属于该集合
- 当该元素不属于该集合时,会发生误判,其概率为 $\frac{1}{(1-\epsilon)^k}$

$$f = \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \approx \left(1 - e^{-\frac{kn}{m}}\right)^k$$

x	$\left(1-\frac{1}{x}\right)^{-x}$
4	3.160494
16	2.808404
64	2.739827
256	2.723610
1024	2.719610
4096	2.718614
16384	2.718365
65536	2.718303
262144	2.718287
1048576	2.718283
4194304	2.718282

- 误判概率随布隆过滤器 m的增大而减小
- 随着更多元素的加入,误判概率随n的增加而增加
- 如何降低误判概率
 - 集合中元素个数相对固定,空间大小可能受限
 - 可以通过适当选择哈希函数的个数即k值,最小化概率 $\left(1-e^{-\frac{kn}{m}}\right)^k$

误判率

Number of inserted elements(n)

最小化误判率

- 给定m 和 n, 选择一个合适的k使得误判率最小
- $\Rightarrow \rho = e^{-\frac{kn}{m}}, \quad \text{III} \ f \approx (1 \rho)^k = e^{k \ln(1 \rho)}$
- 注意到 $\ln \rho = -\frac{nk}{m}$, 即 $k = -\frac{m \ln \rho}{n}$, 令 $g = k \ln(1 \rho) = -\frac{m}{n} \ln \rho \ln(1 \rho)$
- 因此,对固定的 m 和 n, 当 $\rho = 1/2$ 时,误判概率最小

k 值的选择

- 将其值代入,得 $f = (\frac{1}{2})^k \approx 0.6185^{\frac{m}{n}}$
- 因此,最优布隆过滤器结构为 $\rho = 1/2$ 时,即布隆过滤器有一半位置为空
- 此时, $k = \ln 2 \cdot \frac{m}{n}$

误判概率表

- 给定 m/n, 不同 k 值对应的误判率
 - 当 *k* 值太小时,两个元素被哈希到相同位置的概率增加,误判 概率也会增加
 - 当 k 值太大时,更多位置被置为 1,因此误判概率增加

m/n	k	k=1	k=2	k=3	k=4	k=5
2	1.39	0.393	0.400			
3	2.08	0.283	0.237	0.253		
4	2.77	0.221	0.155	0.147	0.160	
5	3.46	0.181	0.109	0.092	0.092	0.101
6	4.16	0.154	0.0804	0.0609	0.0561	0.0578
7	4.85	0.133	0.0618	0.0423	0.0359	0.0347
8	5.55	0.118	0.0489	0.0306	0.024	0.0217

习题: 布隆过滤器

假设一个布隆过滤器的容量为10000位,集合中有 2000个元素。

- 计算使用2个哈希函数时的误判率(表示为自然常数e的表达式);
- 计算使用8个哈希函数时的误判率(表示为自然常数e的表达式);
- 计算使用几个哈希函数可以使得误判率最低。

Content 织 织

1 算法引入

2 布隆过滤器

3 局部位置敏感哈希

冗余文本检测

- 给定海量文档(百万或数十亿计)查找其中的冗余文本
 - 文档太多,逐一比较费时费力
 - 文档太大或太多,以致无法放入主存
 - 分块或者索引是常用的方法

 $A \times B$

- 镜像网站发现
- 抄袭检测
- 对象分块

(近似) 最近邻查找

- 给定海量高维数据,找到与查询对象最相似的对象
 - 应用: 分类,聚类,文本检索,图像和音频检索
 - 最近邻查找 (NN): 树型索引结构, 如二叉搜索树, B+ 树等
 - "维度诅咒": 当数据维度很高时,树型索引结构的查找效率会接近线性查找
- ●近似最近邻查找(ANN): 局部敏感哈希(LSH)

文本相似度

- 集合相似度和距离
 - 给定集合 A 和 B, Jaccard 相似度定义为

$$\checkmark \operatorname{Jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

- ✓用于衡量文本、图中顶点间的相似度
- 给定集合 A 和 B, Jaccard 距离定义为

$$\checkmark d(A,B) = 1 - \frac{|A \cap B|}{|A \cup B|}$$

• 示例

✓ Jaccard(A, B) =
$$\frac{3}{8}$$

✓ $d(A, B) = 1 - \frac{3}{8} = \frac{5}{8}$

冗余文本检测的步骤

- Shingling: 将文档转换为集合
- Min-Hashing: 将大的集合转换为短的签名,同时保留相似性
- 局部敏感哈希: 筛选或寻找相似文档候选对

Shingling: 文档的集合表示

- 文本建模
 - Document = 文档中出现的单词集合
 - Document = 一组"重要"单词的集合
 - 简单分词会损失上下文信息
 - 为关注单词的顺序,定义 Shingles
- 文本中的 k-Shingles (k-gram) 是文本中连续 k 个 token 组成的序列
 - Token 可能是字符、单词等
 - 给定字符串 D = abcab, 令 k = 2, 字符串的 2-Shlingles 为

$$S(D) = \{ab, bc, ca\}$$

• 如果 k-Shingles 看作是 multi-set, 表示为 $S(D) = \{ab, bc, ca, ab\}$

位向量编码

Documents

	1	1	1	0
	1	1	0	1
S	0	1	0	1
Shingles	0	0	0	1
S	1	0	0	1
	1	1	1	0
	1	0	1	0

- 所有 k-Shingles 构成全集
- 文本的位向量
 - 行 = *k*-Shingles,列 = 单个文本
 - 第 *i* 行第 *j* 列的数值表明第 *i* 个 *k* -Shingles 出现在第 j 个文本中
 - 文本的 Jaccard 相似度也可以运用位向 量进行计算
- 对文本 *C*₁ 和 *C*₂
 - 交集大小为 3, 并集大小为 6
 - Jaccard $(C_1, C_2) = \frac{1}{2}$ 距离 $d(C_1, C_2) = \frac{1}{2}$

Min-Hashing

- 目标:找到哈希函数 $h(\cdot)$,使得集合 C_1 和 C_2
 - 当 Jaccard(C_1, C_2) 较高时,则 $P(h(C_1) = h(C_2))$ 较高
 - 当 Jaccard(C_1, C_2) 较低时,则 $P(h(C_1) \neq h(C_2))$ 较高
- 一旦目标达成
 - 相似文档大概率会被哈希到同一个桶中
 - 不相似文档大概率会被哈希到不同的桶中
- 如何选择哈希函数?
 - 显然,哈希函数的选择依赖于相似度度量
 - 并非所有相似度度量都能找到合适的哈希函数
 - 幸运的是,对 Jaccard 相似度,**最小哈希**(Min–Hashing)可以实现 这一目标

随机排列

- 随机排列是 n 个不同元素的随机排序
 - 洗一副扑克是随机排列最好的例子
 - 因此,随机排列的数量为 n!
 - 如图为数字 1-7 的三个随机排列
 - 以第一列为例,新的排列
 - ✔第一行是原来的第5个位置
 - ✔ 第二行是原来的第1个位置
 - ✔ 第三行是原来的第 2 个位置
 - ✔ 第四行是原来的第7个位置
 - ✔ 第五行是原来的第6个位置
 - ✔ 第六行是原来的第 4 个位置
 - ✔ 第七行是原来的第 3 个位置

最小哈希

• 令 π 为一个随机排列和布尔向量 C,定义一个"哈希"函数 $h_{\pi}(C) =$ 随机排列后第一个不为 0 的行号索引,即 $h_{\pi}(C) = \min_{\pi} \pi(C)$

最小哈希的性质

- 给定一个随机排列 π , 我们有 $P(h_{\pi}(C_1) = h_{\pi}(C_2)) = \operatorname{Jaccard}(C_1, C_2)$
- 证明:

集合 C_1 和 C_2 的特征矩阵每行只有三类情况: (1) 均为 1; (2) 有且只有一个为 1; (3) 均为 0。

假设第一类有 a 行,第二类有 b 行,第三类有 c 行,则 $Jaccard(C_1, C_2) = a/(a + b)$ 。

随机重排之后 $h_{\pi}(C_1) = h_{\pi}(C_2)$ 则意味着在遇到第一类情况之前没有遇到第二类情况。由于重排是随机的,根据古典概型,可以知道 $P(h_{\pi}(C_1) = h_{\pi}(C_2)) = \frac{a}{a+b} = \operatorname{Jaccard}(C_1, C_2)$

基于最小哈希的相似度

- 对任意的 π , $h_{\pi}(C_1) = h_{\pi}(C_2)$ 是一个伯努利随机变量,可 以通过成功频数估计概率
- 因此,可以基于最小哈希估计集合间的相似度

Permutation π Input matrix (Shingles x Documents)

10200201		
		10000000
1888) 881	4	3
BELLEN.	4	
10000000		1888888
	$\overline{}$	4
	2	/1
1989 989	1 2 2 2 2 2 2	MAR ARE
1000000		
		1000000
	1	
		7
18888881	8888881	1000000
107 2000		2
	3	_
(문문문문문문문)		
1000000		1888888
(MONENCE)	6	
10000001	X X X 00 X 20 X 3	6
	\circ	
	R 50 50 60 50 50 50 5 R 50 50 60 50 50 50 5	
10000000		1000000
1020020		
CHO ARGINI		1
(REEL EE	/	18
10000001		
	1222221	
(22222)	1888888	
	K K F K K K K K	5
	5	
	KEEGES	100000000

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

Col/Col
Sig/Sig

	1-3			3-4
l/Col	0.75	0.75	0	0
/Sig	0.67	1.00	0	0

最小哈希签名

- 假定有 100 个随机排列,每一个文本 C 对应 100 个最小哈希值
- 把这 100 个哈希值看作是一个列向量,记为 sig(C),其中 $sig(C)[i] = min(h_{\pi_i}(C))$
 - 将高维布尔向量"压缩"为低维向
 - 低维向量记作一个文本的签名向量

• 重要观察

- 100 维签名向量相同的两个集合大概率是相同的
- 即使很相似,稍有不同的集合可能签名向量也不同
- 为了能够找到相似文本,对签名向量进行分组

习题: 最小哈希签名

- 计算下表中三个集合 S_1, S_2, S_3 两两间的Jaccard相似度
- 使用一下三个哈希函数计算 S_1, S_2, S_3 的最小哈希签名:
 - $h_1(x) = (3x + 3) \mod 4$
 - $h_2(x) = (7x + 2) \mod 4$
 - $h_1(x) = (2x + 1) \mod 4$

集合	S1	S2	S3
0	1	0	1
1	0	1	0
2	0	1	0
3	1	1	0

签名矩阵分组

- 将签名矩阵 M 划分为 r 行, 每行由 b 个最小哈希值构成
 - 每 b 个最小哈希值构成一个签名,每个集合由 r 个签名构成
 - 在每行条中,如果两个集合的签名相同,它们将被哈希到同一个桶中
 - 在 r 个行条中,两个集合至少一次被哈希到同一个桶中被认为是相似的

• 重要观察

- 固定相似度(小于 1),两个集合被哈希到同一桶的概率随着 b 值的增加而减少
- 随着行条数 r 的增加,两个集合被哈希到同一桶的概率会增加

Locality Sensitive Hashing (LSH)

Jaccard 相似度为 0.8

- 令集合 C_1 和 C_2 的相似度为 0.8, b = 20, r = 5
 - C_1, C_2 的签名相同概率为 $0.8^5 = 0.328$
 - C_1, C_2 的 20 个行条都不相同的概率为 $(1 0.328)^{20} \approx 0.00035$
- C_1 , C_2 为候选相似集合,即两个集合被哈希到至少一个公共 bucket 中,因此发生概率为 $1-(1-0.328)^{20}\approx 99.965\%$
- 计算结果表明
 - 相似集合以大概率被哈希到同一个桶中
 - 相似度越高越可能被哈希到同一个桶中

Jaccard 相似度为 0.3

- 令集合 C_1 和 C_2 的相似度为 0.3, b = 20, r = 5
 - C_1, C_2 的签名相同,其概率为 $0.3^5 = 0.00243$
 - C_1, C_2 的 20 个行条都不相同的概率为 $(1 0.00243)^{20} \approx 0.9526$
- C_1 , C_2 为候选相似集合,即两个集合被哈希到至少一个公共 bucket 中,因此发生概率为 $1 (1 0.00243)^{20} \approx 4.74\%$
- 计算结果表明
 - 不相似集合以小概率被哈希到同一个桶中
 - 相似度越低越不可能被哈希到同一个桶中

LSH 分析

- 设两个集合相似度为 t
 - 某个签名相同的概率为 t^r
 - 没有一次被哈希到同一个桶中的概率为 $(1-t^r)^b$
 - 至少一次被哈希到同一个桶中的概率为 $1 (1 t^r)^b$

LSH 分析(续)

s	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

50 hash-functions (r=5, b=10)

- 通过适当选择 b 和 r 得到最好的 s 曲线
- 因此,LSH 能够实现文本分块
 - 落在同一桶中的文本大概率是相同的
 - 不在同一桶中的文本大概率是不相同的

本章小结

- 哈希算法
 - 哈希函数
 - 布隆过滤器
 - 局部敏感哈希(LSH)
 - ✔ Shingling,最小哈希,局部敏感哈希
- 针对如下相似度或者距离,可以利用局部敏感哈希解决 冗余检测和最近邻搜索的问题
 - Jaccard 相似度
 - Hamming 距离
 - Cosine 距离
 - 欧几里得距离

课后作业

- 课本第66-67页习题4
 - 第2, 3, 5, 7, 8, 9, 11题
 - ●第6题难度较大,供大家扩展思考