Performance of MGCFA and (M)ANOVA in small samples under full and partial measurement invariance

Constructs

1. Substantive → define and conceptualize construct

2. Structural → investigate psychometric properties

3. External → check convergence, divergence, prediction

Constructs

1. Substantive → define and conceptualize construct

2. Structural → investigate psychometric properties

3. External → check convergence, divergence, prediction

(M)ANOVA

ANOVA 1 ANOVA 2 ANOVA 3

SUM ANOVA

$$S_1 + P_1 + O_1$$

VS

$$S_2 + P_2 + O_2$$

MANOVA

VS

(M)ANOVA

Absence of measurement error

Multiple comparison problem → Type I errors

No measurement model

- → Used for constructs
- → Often many different constructs
- → Psychometric properties constructs not checked

SUM ANOVA

$$S_1 + P_1 + O_1$$

VS

$$S_2 + P_2 + O_2$$

MANOVA

VS

 $E(Y|\eta,control) = E(Y|\eta,exp) = E(Y|\eta)$

- 1. Configural
- 2. Metric (loadings; weak)
- 3. Scalar (intercepts; strong)

 $E(Y|\eta,control) = E(Y|\eta,exp) = E(Y|\eta)$

- 1. Configural

 ✓
- 2. Metric (loadings; weak)
- 3. Scalar (intercepts; strong)

$$E(Y|\eta,control) = E(Y|\eta,exp) = E(Y|\eta)$$

- 1. Configural

 ✓
- 2. Metric (loadings; weak)
- 3. Scalar (intercepts; strong)

$$E(Y|\eta,control) = E(Y|\eta,exp) = E(Y|\eta)$$

- 1. Configural
- 2. Metric (loadings; weak) ✓
- 3. Scalar (intercepts; strong)

 $E(Y|\eta,control) = E(Y|\eta,exp) = E(Y|\eta)$

- 1. Configural

 ✓
- 2. Metric (loadings; weak) ✓
- 3. Scalar (intercepts; strong) ✓

 $E(Y|\eta,control) = E(Y|\eta,exp) = E(Y|\eta)$

Levels of invariance:

- 1. Configural

 ✓
- 2. Metric (loadings; weak) ✓
- 3. Scalar (intercepts; strong) ✓

Partial invariance

Study 1: Full Invariance

Study 1: conditions

$$Y_{1gj} = \nu_{y1g} + \lambda_{y1g}\eta_{gj} + \epsilon_{y1gj} \qquad \eta \sim N(\kappa_g, \phi_g) \qquad \epsilon \sim MVN(0, \Theta_g)$$

$$Measurement \ equation$$

$$Prosocial \ Behavior$$

$$Prosocial \ Behavior$$

$$O \ P \ S$$

$$O \ P$$

Study 2: Partial invariance

Statistical power to detect intercept invariance?

Accuracy of estimated group mean differences vis-à-vis ANOVA?

M1: 1 intercept biased, 1 free to vary

M2: 1 intercept biased, 2 free to vary

M1: 1 intercept biased, 1 free to vary

M2: 1 intercept biased, 2 free to vary

M2: v_2 biased, $v_2 \& v_3$ free

M2: v_3 biased, $v_2 \& v_3$ free

$$\lambda = [0.8, 0.7, 0.6]$$

$$M_r = 0.49$$

$$d = 0.6$$

Power 6

M1: 1 intercept biased, 1 free to vary

$$\mu_g = \nu_g + \lambda_g \kappa_g$$

$$\mu = 0.8 + 0.6 \times 0.4 = 1.04$$

M1: ν_3 biased, ν_3 free

M3: $v_2 \& v_3$ biased, $v_2 \& v_3$ free

M2: v_2 biased, $v_2 \& v_3$ free

M2: v_3 biased, $v_2 \& v_3$ free

$$\lambda = [0.8, 0.7, 0.6]$$

$$M_r = 0.49$$

$$d = 0.4$$

$$N_g = 50$$

Conclusions

MGCFA w/ one factor, three indicators:

> (M)ANOVA, even with small N, small κ , small λ

Under uniform bias:

- Don't use ANOVA!
- MGCFA accurately estimates latent mean difference

Next?

$$N_g = 25$$

Violated assumptions

indicators, # of biased items, # groups

Two-way interactions (incl./excl. uniform bias)

Thank you for your attention!

