entonces

$$A_{T}\mathbf{e}_{i} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mi} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{pmatrix} = \mathbf{w}_{i}$$

i-ésima

De esta forma, $A_T \mathbf{e}_i = \mathbf{w}_i$ para i = 1, 2, ..., n. De acuerdo al teorema 7.2.2, T y la transformación A_T son la misma porque coinciden en los vectores básicos.

Ahora se puede demostrar que A_T es única. Suponga que $T\mathbf{x} = A_T\mathbf{x}$ y que $T\mathbf{x} = B_T\mathbf{x}$ para todo $\mathbf{x} \in \mathbb{R}^n$. Entonces $A_T\mathbf{x} = B_T\mathbf{x}$, o estableciendo $C_T = A_T - B_T$, se tiene que $C_T\mathbf{x} = \mathbf{0}$ para todo $\mathbf{x} \in \mathbb{R}^n$. En particular, $C_T\mathbf{e}_i = \mathbf{0}$ para $i = 1, 2, \ldots, n$. Pero como se deduce de la demostración de la primera parte del teorema, $C_T\mathbf{e}_i$ es la columna i de C_T . Así, cada una de las n columnas de C_T es el vector 0 de dimensión m, la matriz cero de $m \times n$. Esto muestra que $A_T = B_T y$ el teorema queda demostrado.

Nota

La matriz de transformación A_7 está definida usando las bases estándar tanto en \mathbb{R}^n como en \mathbb{R}^m . Si se utilizan otras bases, se obtendrá una matriz de transformación diferente. Vea el teorema 7.3.3.

Observación 1. En este teorema se supone que todo vector en \mathbb{R}^n y \mathbb{R}^m está expresado en términos de los vectores de la base estándar en esos espacios. Si se eligen otras bases para \mathbb{R}^n y \mathbb{R}^m , por supuesto que se obtendrá una matriz A_T diferente. Para ilustrar este caso, vea el ejemplo 5.6.1 o más adelante, el ejemplo 7.3.8.

Observación 2. La demostración del teorema muestra que es sencillo obtener A_T como la matriz cuyas columnas son los vectores $T\mathbf{e}_i$.

Definición 7.3.1

Matriz de transformación

La matriz A_T en el teorema 7.3.1 se denomina matriz de transformación correspondiente a T o representación matricial de T.

En la sección 7.2 se definieron la imagen, el rango, el núcleo y la nulidad de una transformación lineal. En la sección 5.7 se definieron la imagen, el rango, el espacio nulo y la nulidad de una matriz. La prueba del siguiente teorema es consecuencia del teorema 7.3.1 y se deja como ejercicio (vea el problema 44 de esta sección).

Teorema 7.3.2

Sea A_T la matriz de transformación correspondiente a la transformación lineal T. Entonces

- i) im $T = \operatorname{im} A = C_{A_T}$
- ii) $\rho(T) = \rho(A_T)$
- iii) nu $T = N_{A_T}$
- iv) $\nu(T) = \nu(A_T)$