2. Linear Algebra 1. Injective iff f(x1) = f(x2) implies that x1 = x2.

2. Surjective iff for all $y \in Y$ there exists $x \in X$ such that y = f(x).

3. Bijective' iff it is both injective and surjective, i.e. for all $y \in Y$ there exists a unique $x \in X$ such that y = f(x).

1. f has a left inverse iff it is injective.

2. f has a right inverse iff it is surjective.

3. f is invertible iff it is bijective.

4. If f is invertible then any two inverses (left-, right- or both) coincide.

Group (G, *):

1. Associative $\forall a, b, c \in G, a * (b * c) = (a * b) * c$.

2. $Identity: \exists e \in G, \forall a \in G, a * e = e * a = a.$

3. Inverse: $\forall a \in G, \exists a^{-1} \in G, a * a^{-1} = a^{-1} * a = e.$ (G, *) is commutative (or Abelian) iff in addition to 1-3: 4. Commutative: $\forall a, b \in G, a * b = b * a.$

Ring $(R, +, \cdot)$:

 $+: associative, identity, inverse, communitative \\ \cdot: associative, identity$

 $distributive: a \cdot (b+c) = a \cdot b + a \cdot cand(b+c) \cdot a = b \cdot a + c \cdot a$ **Field** is a *communitative Ring* that in addition satisfies $Multiplication\ inverse$.

Linear Space (V, F, \oplus, \odot) :

Distributive: $\forall a, b \in F, \forall x, y \in V, (a+b) \odot x = (a \odot x) \oplus (b \odot x) and (a \odot (x \oplus y) = (a \odot x) \oplus (a \odot y)$

Product Space $If(V, F, \oplus V, \odot V)$ and $(W, F, \oplus W, \odot W)$ are linear spaces over the same field, the product space $(V \times W, F, \oplus, \odot)$ is the linear space comprising all pairs $(v, w) \in V \times W$ with \oplus defined by $(v1, w1) \oplus (v2, w2) = (v1 \oplus v2, w1 \oplus w2)$, and \odot defined by $(v1, w1) \oplus (v2, w2) = (a \odot Vv, a \odot Ww)$.

Subspace Let (V, F) be a linear space and $W \subseteq V$. (W, F) is a linear subspace of V iff it's a L.S. i.e. $\forall w_1, w_2 \in W$, $a_1, a_2 \in F$, we have $a_1w_1 + a_2w_2 \in W$. *In \mathbb{R}^3 , all subspaces are \mathbb{R}^3 , 2D planes through the origin, 1D lines through the origin, $\{0\}$.

SPAN(S) = $\{\sum_{i=1}^{n} a_i v_i | a_i \in F, v_i \in S, i = 1...n\}$ Let (V, F) a L.S.. A set of vectors $S \subseteq V$ is a **basis** of (V, F) iff linearly independent and Span(S) = V . If a basis of (V, F) with a finite number of elements exists, the number of elements of this basis is dimension of (V, F) and (V, F) is finite dimensional. Otherwise, infinite dimensional.

Linear Map: Given (U,F) and (V,F), the function $\mathcal{A}:U\to V$ is a linear map iff $\forall u_1,u_2\in U,a_1,a_2\in F,$ we have $\mathcal{A}(a_1u_1+a_2u_2)=a_1\mathcal{A}(u_1)+a_2\mathcal{A}(u_2).$ Let $\mathcal{A}:U\to V$ linear.

 $\mathbf{NULL}(\mathcal{A}) = \{u \in U | \mathcal{A}(u) = \theta_V\} \subseteq U \text{ (Nullity)}$ $\mathbf{RANGE}(\mathcal{A}) = \{v \in V | \exists u \in U : v = \mathcal{A}(u)\} \subseteq V \text{ (rank)}$

*1. A vector $u \in U$ s.t. $\mathcal{A}(u) = b$ exists iff

 $b \in RANGE(\mathcal{A}).\mathcal{A}$ is surjective iff $RANGE(\mathcal{A}) = V$. *2. If $b \in RANGE(\mathcal{A})$ and for some $u_0 \in U$ we have that $\mathcal{A}(u_0) = b$ then for all $u \in U : \mathcal{A}(u) = b \Leftrightarrow u = u_0 + z$ with $z \in NULL(\mathcal{A})$

*3. \mathcal{A} is injective iff $NULL(\mathcal{A}) = \{\theta_U\}$

Rank and **Nullity**: Let $A \in F^{n \times m}$ and $B \in F^{m \times p}$.

1. RANK(A) + NULLITY(A) = m.

2. $0 \le RANK(\mathcal{A}) \le min\{m, n\}$. 3. $RANK(\mathcal{A}) + RANK(\mathcal{B}) - m \le RANK(\mathcal{AB}) \le min\{RANK(\mathcal{A}), RANK(\mathcal{B})\}$.

4. If $P \in F^{m \times m, Q \in F^{n \times n}}$ are invertible, RANK(A) = RANK(AP) = RANK(QA) = RANK(QAP) (also Nullity)

5. If $\mathcal{A}(x) = Ax$, $A \in F^{n \times n}$, we have \mathcal{A} invertible \Leftrightarrow bijective \Leftrightarrow injective \Leftrightarrow surjective $\Leftrightarrow RANK(A) = n$.

Eigenvector: 1. There exists $v \in \mathbb{C}^n$ s.t. $v \neq 0$ and $Av = \lambda v$. v is called **right eigenvector**.

2. There exists $\eta \in \mathbb{C}^n$ s.t. $\eta \neq 0$ and $\eta^T A = \lambda \eta^T$. η is called **left eigenvector**.

 $\mathbf{SPEC}[A] = \{\lambda_1,, \lambda_n\}.$

$$\begin{array}{ccccc} (U,F) & \xrightarrow{1\upsilon} & (U,F) & \xrightarrow{A} & (V,F) & \xrightarrow{1\upsilon} & (V,F) \\ \{\tilde{u}_j\}_{j=1}^n & \xrightarrow{Q\in F^{n\times n}} & \{u_j\}_{j=1}^n & \xrightarrow{A\in F^{m\times n}} & \{v_i\}_{i=1}^m & \xrightarrow{P\in F^{m\times m}} & \{\tilde{v}_i\}_{i=1}^m \end{array}$$

Change of basis: $A* = P \cdot A \cdot Q$

3. Analysis

Norm:1. $\forall v_1, v_2 \in V, \parallel v_1 + v_2 \parallel \leq \parallel v_1 \parallel + \parallel v_2 \parallel$

 $2. \forall v \in V, \forall a \in F, \parallel av \parallel = |a| \cdot \parallel v \parallel$ $3. \parallel v \parallel = 0 \Leftrightarrow v = 0$

Normed Linear Space: $(V, F, \|\cdot\|)$

 $||x||_1 = \sum_{i=1}^n |x_i|,$ $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$

 $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}},$

 $||x||_{\infty} = \overline{max}|x_i|.$

Ball: Given $(V, F, \|\cdot\|)$, the ball of radius $r \in \mathbb{R}_+$ centered at $v \in V$ is $B(v, r) = \{v' \in V | \|v - v'\| \le r\}$. B(0, 1) is unit ball.

Bound: $S\subseteq V$ is **bounded** if $S\subseteq B(0,r)$ for some r. **Convergence:** Let $(V,F,\|\cdot\|)$ be a normed space. A function $v:N\to V$ is called a sequence in V. The sequence converges to a point $\overline{v}\in V$ iff

 $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall m \geq N, \parallel v(m) - \overline{v} \parallel < \epsilon$

In this case, \overline{v} is the **limit** of the sequence.

Close: iff all a set contains all its limit points.

 $\mathbf{Open} \colon \mathrm{iff} \ V \ \mathrm{K} \ \mathrm{is} \ \mathrm{closed}.$

 ${\bf Compact} \colon \operatorname{Closed} \, + \, \operatorname{Bounded}.$