

Tratamiento de Señales

Version 2022-I

Restauración con regularización 2D

[Capítulo 6]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

6.1		

Average: [(4+6+9)+(9+6+4)+(9+6+2)]/9 = 6.1

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

6.1	5.6		

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

	6.1	5.6	6.0	

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

6.1	5.6	6.0	6.2	

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

	6.1	5.6	6.0	6.2	
	7.3				

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

	6.1	5.6	6.0	6.2	
	7.3	6.6			

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

6.1	5.6	6.0	6.2	
7.3	6.6	7.2		

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

6.1	5.6	6.0	6.2	
7.3	6.6	7.2	7.8	

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

6.1	5.6	6.0	6.2	
7.3	6.6	7.2	7.8	

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

6.1	5.6	6.0	6.2
7.3	6.6	7.2	7.8

f ₁	f ₅	f ₉	f ₁₃	f ₁₇	f ₂₁
f ₂	f_6	f ₁₀	f ₁₄	f ₁₈	f ₂₂
f ₃	f ₇	f ₁₁	f ₁₅	f ₁₉	f ₂₃
f ₄	f ₈	f ₁₂	f ₁₆	f ₂₀	f ₂₄

6.1	5.6	6.0	6.2
7.3	6.6	7.2	7.8

Average: $[f_1+f_2+f_3+f_5+f_6+f_7+f_9+f_{10}+f_{11}]/9=6.1$

f ₁	f ₅	f ₉	f ₁₃	f ₁₇	f ₂₁
f ₂	f ₆	f ₁₀	f ₁₄	f ₁₈	f ₂₂
f ₃	f ₇	f ₁₁	f ₁₅	f ₁₉	f ₂₃
f ₄	f ₈	f ₁₂	f ₁₆	f ₂₀	f ₂₄

Average: $[f_1+f_2+f_3+f_5+f_6+f_7+f_9+f_{10}+f_{11}]/9 = g_1$

f ₁	f ₅	f ₉	f ₁₃	f ₁₇	f ₂₁
f ₂	f ₆	f ₁₀	f ₁₄	f ₁₈	f ₂₂
f ₃	f ₇	f ₁₁	f ₁₅	f ₁₉	f ₂₃
f ₄	f ₈	f ₁₂	f ₁₆	f ₂₀	f ₂₄

g_1	g ₃	g ₅	g ₇
g_2	g ₄	g_6	g ₈

Average: $[f_2+f_3+f_4+f_6+f_7+f_8+f_{10}+f_{11}+f_{12}]/9 = g_2$

Hf = g

Para imagen **F** cuadrada de MxM pixeles, y máscara **h** de nxn pixeles, entonces:

- la imagen G tiene NxN pixeles, donde N = M-n+1,
- el vector f tiene M² elementos,
- el vector g tiene N² elementos, y
- <u>le matriz **H** tiene N² x M² elementos</u>.

Como hay más ecuaciones que incógnitas, existen infinitas soluciones, para encontrar la solución es necesario emplear un criterio adicional.

Como hay más ecuaciones que incógnitas ($N^2 > M^2$), existen infinitas soluciones para

$$\mathbf{Hf} = \mathbf{g}$$

Es necesario contar con un criterio adicional como $||\mathbf{W}\mathbf{f}|| o \min$

Entonces la solución $\hat{\mathbf{f}}$ debe satisfacer:

1)
$$\mathbf{H}\mathbf{\hat{f}} = \mathbf{g}$$
 2) $||\mathbf{W}\mathbf{\hat{f}}|| o \min$

Solución del Problema:

$$||\mathbf{W}\mathbf{\hat{f}}|| o \min$$
 sujeto a $\mathbf{H}\mathbf{\hat{f}} = \mathbf{g}$

•

Ejemplo: $(\mathbf{W} = \mathbf{I})$

$$\hat{\mathbf{f}} = \lambda \left[\lambda \mathbf{H}^\mathsf{T} \mathbf{H} + \mathbf{W}^\mathsf{T} \mathbf{W} \right]^{-1} \mathbf{H}^\mathsf{T} \mathbf{g}$$

Una vez que se tiene la solución en forma de columna es necesario reordenar los elementos en una matriz de MxM elementos.

$$\mathbf{\hat{F}} = \operatorname{reordenar}(\mathbf{\hat{f}})$$

Cálculo del Error Promedio

$$\mathsf{ERR} = \frac{1}{Q} \sum_{i} \sum_{j} |F(i,j) - \hat{F}(i,j)| \times \frac{100}{255}$$

donde Q es el número de pixels de ${f F}$

ORIGINAL 64x64

Ejemplo

RESTAURADA 64x64

ERR = 0.76%

ERR=2.63%

ERR=3.20%

DEGRADADA

3x3

5x5

7x7

9x9

Tamaño de máscara promedio

H tiene 464² x 480² elementos!

es decir:

215296 x 230400 elementos!

es decir:

49604 millones de elementos!!!

Solución del Problema:

$$||\mathbf{W}\mathbf{\hat{f}}|| o \min$$
 sujeto a $\mathbf{H}\mathbf{\hat{f}} = \mathbf{g}$: Ejemplo: $(\mathbf{W} = \mathbf{I})$

Se puede usar esta solución para ventanas más pequeñas de la imagen, por ejemplo para ventanas de 64x64. La matriz A es la misma para cada ventana.

(*) Foto de https://thispersondoesnotexist.com