Olimpiada Națională de Matematică 2007 Etapa județeană și a Municipiului București 3 martie 2007

CLASA A X-A, SOLUTII SI BAREMURI

Subiectul 1. Fie numerele reale a,b,c astfel încât $a,b,c \in (1,\infty)$ sau $a,b,c \in (0,1)$. Arătați că

 $\log_a bc + \log_b ca + \log_c ab \ge 4(\log_{ab} c + \log_{bc} a + \log_{ca} b)$. Soluţie şi barem. Alegem o bază d amplasată în acelaşi interval ca şi a, b, c; logaritmând în baza d inegalitatea se reduce la

$$\frac{y+z}{x} + \frac{z+x}{y} + \frac{x+y}{z} \ge \frac{4x}{y+z} + \frac{4y}{z+x} + \frac{4z}{x+y}, \forall x, y, z > 0 \dots 2 \mathbf{p}$$

Pentru aceasta, este suficient să arătăm că $\frac{z}{x} + \frac{z}{y} \ge 4 \frac{z}{x+y}$ 3 p

Subiectul 2. Cele 2n pătrățele ale unui dreptunghi de dimensiuni $2 \times n$ se colorează cu trei culori. Spunem că o anumită colorare are o *tăietură* dacă pe una din cele n coloane avem două pătrate de aceeași culoare. Să se determine:

- a) numărul colorărilor fără tăieturi;
- b) numărul colorărilor cu o singură tăietură.

Soluție și barem. a) Culorile de pe prima linie pot fi alese în 3^n moduri $\mathbf 2$ p

b) O colorare cu o singură tăietură corespunde alegerii culorilor de pe prima linie, a coloanei pe care avem tăietura și a culorilor de pe celelalte coloane. Aceasta se poate face în $3^n \cdot n \cdot 2^{n-1} = 3n \cdot 6^{n-1}$ moduri 3 p

Subiectul 3. Fie ABC un triunghi fixat, de laturi $BC=a,\ CA=b,\ AB=c.$ Pentru fiecare dreaptă Δ din planul triunghiului notăm cu

 d_A, d_B, d_C distanțele de la A, B, C la Δ și considerăm expresia

$$E(\Delta) = ad_A^2 + bd_B^2 + cd_C^2.$$

Demonstrați că dacă valoarea lui $E(\Delta)$ este minimă atunci Δ trece prin centrul cercului înscris în triunghi.

Soluţie şi barem. Arătăm că dacă Δ nu trece prin centrul I al cercului înscris, Δ' trece prin I şi $\Delta' \parallel \Delta$ atunci $E(\Delta') < E(\Delta) \ldots 2$ p Notăm A_1, B_1, C_1, I_1 proiecţiile punctelor A, B, C, I pe Δ şi A', B', C' proiecţiile lui A, B, C pe Δ' . Avem

$$(d_A)^2 - (d'_A)^2 = AA_1^2 - AA'^2 = (AI_1^2 - A_1I_1^2) - (AI^2 - A'I^2) = AI_1^2 - AI^2$$

și analoagele. Dacă definim $f(M) = aMA^2 + bMB^2 + cMC^2$ pentru un punct oarecare M din plan, obținem $E(\Delta) - E(\Delta') = f(I_1) - f(I) \dots 1$ **p** Apoi, pentru un punct O oarecare,

Subiectul 4. Fie u, v, w trei numere complexe de modul 1. Arătați că există o alegere a semnelor + și - astfel încât

$$|\pm u \pm v \pm w| < 1.$$