Network Applications: DNS

Y. Richard Yang

http://zoo.cs.yale.edu/classes/cs433/

2/1/2016

Outline

- > Admin and recap
- DNS

Admin

□ 72 discretionary late hours for assignments across the semester

Recap: The Big Picture of the Internet

- Hosts and routers:
 - ~ 1 bill. hosts (2015)
 - organized into ~50K networks
 - o backbone links 100 Gbps
- □ Software:
 - datagram switching with virtual circuit support
 - layered network architecture
 - use end-to-end arguments to determine the services provided by each layer
 - the hourglass architecture
 of the Internet

Multiplexing/Demultiplexing

Recap: Client-Server Paradigm

■ The basic paradigm of network applications is the client-server (C-S) paradigm

- extensibility
- scalability
- o robustness
- security

Recap: Email App

Some nice protocol extensibility design features

- separate protocols for different functions
- simple/basic (smtp) requests to implement basic control; finegrain control through ASCII header and message body
- status code in response makes message easy to parse

Email: Challenge

□ A large percentage of spam/phish

Global spam volume as percentage of total e-mail traffic from 2007 to 2014

Recap: Spam Detection Methods by GMail

- □ Known phishing scams
- Message from unconfirmed sender identity
- Message you sent to Spam/similarity to suspicious messages
- Administrator-set policies
- □ Empty message content

https://support.google.com/mail/answer/1366858?hl=en

Current Email Authentication Approaches

Sender Policy Frame (SPF)

DomainKeys Identified Mail (DKIM)

Sender Policy Framework (SPF RFC7208)

SPF Exercise

- □ Test 1
 - Send real email by gmail
 - OPOP retr
- □ Test 2
 - Send using telnet
 - O POP retr

Key Remaining Question for SPF?

How does SPF know if its neighbor MTA is a permitted sender of the domain?

<u>DomainKeys Identified Mail (DKIM;</u> RFC 5585)

- A domain-level digital signature authentication framework for email, using public key crypto
 - E.g., gmail.com signs that the message is sent by gmail server
- □ Basic idea of public key signature
 - Owner has both public and private keys
 - Owner uses private key to sign a message to generate a signature
 - Others with public key can verify signature

Example: RSA

- 1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
- 2. Compute n = pq, z = (p-1)(q-1)
- 3. Choose e (with e < n) that has no common factors with z. (e, z are "relatively prime").
- 4. Choose d such that ed-1 is exactly divisible by z. (in other words: $ed \mod z = 1$).
- 5. Public key is (n,e). Private key is (n,d).

RSA: Signing/Verification

- O. Given (n,e) and (n,d) as computed above
- 1. To sign message, m, compute h = hash(m), then sign with private key

 $s = h^d \mod n$ (i.e., remainder when h^d is divided by n)

2. To verify signature s, compute

 $h' = s^e \mod n$ (i.e., remainder when s^e is divided by n)

Magic happens!
$$h = (h^d \mod n)^e \mod n$$

The magic is a simple application of Euler's generalization of Fermat's little theorem

DomainKeys Identified Mail (DKIM)

Key Remaining Question about DKIM?

How does DKIM retrieve the public key of the author domain?

Summary: Client-Server Paradigm

■ The basic paradigm of network applications is the client-server (C-S) paradigm

- extensibility
- scalability
- o robustness
- ✓ security

Scalability/Robustness

High scalability and robustness fundamentally require that multiple email servers serve the same email address
need an email

client server's IP address

Mapping Functions Design Alternatives

Map from an email address server name to IP address of email server

Mapping Functions Design Alternatives

Summary: Some Key Remaining Issues about Email

Basic: How to find the email server of a domain?

Scalability/robustness: how to find multiple servers for the email domain?

- Security
 - SPF: How does SPF know if its neighbor MTA is a permitted sender of the domain?
 - O DKIM: How does DKIM retrieve the public key of the author domain?

Outline

- □ Recap
- □ Email security (authentication)
- > DNS

DNS: Domain Name System

Function

- map between (domain name, service) to value, e.g.,
 - (www.cs.yale.edu, Addr)
 - -> 128.36.229.30
 - (cs.yale.edu, Email)
 - -> netra.cs.yale.edu

DNS Records

DNS: stores resource records (RR)

RR format: (name, type, value, ttl)

- \Box Type=A
 - o name is hostname
 - value is IP address
- □ Type=NS
 - name is domain (e.g. yale.edu)
 - value is the name of the authoritative name server for this domain
- □ Type=TXT
 - o general txt

- Type=CNAME
 - name is an alias name for some "canonical" (the real) name
 - value is canonical name
- □ Type=MX
 - value is hostname of mail server associated with name
- □ Type=SRV
 - general extension for services

Try DNS: Examples

- □ dig <type> <domain>
 - type=MX
 - gmail.com
 - → type=A
 - type=TXT
 - · gmail.com
 - · 20120113._domainkey.gmail.com

DNS Design: Dummy Design

- DNS itself can be considered as a client-server system as well
- How about a dummy design: introducing one super Internet DNS server?

THE DNS server of the Internet

Problems of a Single DNS Server

- Scalability and robustness bottleneck
- Administrative bottleneck

DNS: Distributed Management of the Domain Name Space

- □ A distributed database managed by authoritative name servers
 - o divided into zones, where each zone is a sub-tree of the global tree
 - o each zone has its own authoritative name servers
 - o an authoritative name server of a zone may delegate a subset (i.e. a sub-tree) of its zone to another name server

Email Architecture + DNS

Root Zone and Root Servers

- ☐ The root zone is managed by the root name servers
 - 13 root name servers worldwide
 - a. Verisign, Dulles, VA
 - c. Cogent, Herndon, VA (also Los Angeles)
 - d. U Maryland College Park, MD
 - g. US DoD Vienna, VA
 - h. ARL Aberdeen, MD
 - j. Verisign, (11 locations)

- e. NASA Mt View, CA
- f. Internet Software C.Palo Alto, CA(and 17 other locations)

- b. USC-ISI Marina del Rey, CA
- I. ICANN Los Angeles, CA

- i. Autonomica, Stockholm (plus 3 other locations)
- k. RIPE London (also Amsterdam, Frankfurt)

m. WIDE Tokyo

Linking the Name Servers

- Each name server knows the addresses of the root servers
- □ Each name server knows the addresses of its immediate children (i.e., those it delegates)

Q: how to query a hierarchy?

DNS Message Flow: Two Types of Queries

Recursive query:

 The contacted name server resolves the name completely

Iterated query:

- Contacted server replies with name of server to contact
 - "I don't know this name, but ask this server"

Two Extreme DNS Message Flows

Issues of the two approaches?

root name server client TLD name server authoritative name server

Typical DNS Message Flow: The Hybrid Case

- Host knows only local name server
- Local name server is learned from DHCP, or configured, e.g. /etc/resolv.conf
- Local DNS server helps clients resolve DNS names

Typical DNS Message Flow: The Hybrid Case

- Host knows only local name server
- Local name server is learned from DHCP, or configured, e.g. /etc/resolv.conf
- Local DNS server helps clients resolve DNS names
- Benefits of local name servers
 - simplifies client
 - Caches/reuses results

Outline

- □ Recap
- Email security (authentication)
- > DNS
 - > High-level design
 - > Details

DNS Message Format?

