1. Naj bo *A* matrika

$$A = \begin{bmatrix} 4 & 1 & 3 & 1 \\ 1 & 4 & 1 & 3 \\ 3 & 1 & 4 & 1 \\ 1 & 3 & 1 & 4 \end{bmatrix}.$$

- (a) Poišči ortonormirano bazo \mathbb{R}^4 sestavljeno iz lastnih vektorjev matrike A.
- (b) Zapiši spektralni razcep matrike *A* izrazi *A* kot linearno kombinacijo matrik pravokotnih projekcij.

$$= \begin{vmatrix} 7-\lambda & 2 & 3 & 1 \\ 2 & 7-\lambda & 1 & 3 \\ 0 & 0 & 1-\lambda & 0 \\ 0 & 0 & 0 & 1-\lambda \end{vmatrix} = (1-\lambda)^{2} \begin{vmatrix} 7-\lambda & 2 \\ 2 & 7-\lambda \end{vmatrix} =$$

$$= (1-\lambda)^2 ((7-\lambda)^2 - 2^2) = (1-\lambda)^2 (5-\lambda) (9-\lambda) = 0$$

lastne vrednosti
$$A \rightarrow \lambda_{1,2} = 1, \lambda_3 = 5, \lambda_4 = 9$$

Se lastui veletorji:

$$\begin{array}{c} \cdot \lambda_{3} = 5: \\ A - 5I = \begin{bmatrix} -1 & 1 & 3 & 1 \\ 1 & -1 & 1 & 3 \\ 3 & 1 & -1 & 1 \\ 1 & 3 & 1 & -1 \end{bmatrix} \xrightarrow{\text{G.e.}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{array}{c} \begin{bmatrix} 1 \\ -1 \\ 0 \\ -1 \end{bmatrix} \end{array}$$

•
$$\lambda_4 = 9$$
: Uporabimo dejstvo, da je A simetricha in $\begin{cases} 1\\1 \end{cases}$ dim $(A-9I)=1$; \vec{v}_4 je pravohoten na $\vec{v}_1, \vec{v}_2, \vec{v}_3$, torej $\vec{v}_4 = \begin{bmatrix} 1\\1 \end{bmatrix}$

Lastni velitorji so že pravoliotni (Hst.) za razlicne lastne vrednosti avtomaticno, saj je A simetricha), za ortonormimuo bazo R4 jih le še normiramo:

$$B_{R^4} = \left\{ \begin{array}{c} 1 \\ \sqrt{2} \\ -1 \\ 0 \end{array} \right\}, \begin{array}{c} 1 \\ \sqrt{2} \\ 0 \\ -1 \end{array} \right\}, \begin{array}{c} 1 \\ \sqrt{2} \\ 0 \\ -1 \end{array} \right\}, \begin{array}{c} 1 \\ 2 \\ -1 \\ 1 \end{array} \right\}, \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right\}.$$

(b)
$$A = \sum_{i=1}^{N} \lambda_{i} \vec{g}_{i} \vec{g}_{i}^{T} = \vec{g}_{1} \vec{g}_{1}^{T} + \vec{g}_{2} \vec{g}_{2}^{T} + 5 \vec{g}_{3} \vec{g}_{3}^{T} + 9 \vec{g}_{4} \vec{g}_{4}^{T}$$

2. Poišči (ekonomični) singularni razcep matrike

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 1 & 2 & 0 \end{bmatrix},$$

tj. poišči ortogonalni matriki U in V ter (kvadratno) diagonalno matriko S, da bo $A = USV^{\mathsf{T}}$. Lahko slediš tem korakom:

- (a) Diagonaliziraj AA^{T} v ortonormirani bazi \mathbb{R}^2 . Prepričaj se, da je prehodna matrika ravno U, diagonalna matrika pa točno S^2 .
- (b) S pomočjo S in U iz prejšnje točke ter zapisa $A = USV^{\mathsf{T}}$ določi še V.

(a)
$$AA^{T} = \begin{bmatrix} 0 & -2 & 1 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -2 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}.$$

Poleg tega, da je $\overrightarrow{AA^{T}}$ simetricua, opazimo se, da je vsota elementov v vsaku vrstici enaha 1. Vehtor $\overrightarrow{x}_{n} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ je torej lastni vehtor $\overrightarrow{AA^{T}}$ z lastno vrednost jo: $\overrightarrow{AA^{T}}$ $\overrightarrow{x}_{n} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \cdot \overrightarrow{x}_{n} \dots \overrightarrow{x}_{n} = 1$

Ker lastni velitorji simetriche maturile tvorijo ortonormirano bazo (m nam v \mathbb{R}^2 manjha le se en bazul velitor), lahko drugi lastni velitor kar nganemo: $\tilde{\mathbf{x}}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Pripadajoca lastna vrednost je:
$$AA^{7} = \begin{bmatrix} 9 \\ -9 \end{bmatrix} = 9 = 0 = 0.$$

$$\vec{x}_1, \vec{x}_2$$
 sta pravoletua, nista pa se norminana: $\vec{u}_1 = \frac{\vec{x}_1}{\|\vec{x}_1\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \vec{u}_2 = \frac{\vec{x}_2}{\|\vec{x}_2\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$

$$AA^{T} = USV^{T}(USV^{T}) = USV^{T}VS^{T}U^{T} = US^{2}U^{T}$$

Za "nas" A tovej velja:

$$U = \begin{bmatrix} \vec{u}_1, \vec{u}_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} , \quad S^2 = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & g \end{bmatrix} ... \quad S = \begin{bmatrix} \sqrt{\lambda_1} & \sqrt{\lambda_2} \\ 0 & 3 \end{bmatrix}.$$

(b) Dologimo se V:

$$U^{T} / A = U S V^{T} ... U^{T} A = S V^{T} ... S^{-1} U^{T} A = V^{T}$$

$$\sqrt{1} = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} \cdot \sqrt{\frac{1}{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & -2 & 1 \\ 1 & 2 & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 \\ -\frac{1}{3} - \frac{4}{3} & \frac{1}{3} \end{bmatrix} \dots \sqrt{1} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 3 & -1 \\ 0 & -\frac{4}{3} & \frac{1}{3} \end{bmatrix}.$$

- 3. Naj bo $A\mathbf{x} = \mathbf{b}$ predoločen sistem linearnih enačb, tj. matrika $A \in \mathbb{R}^{m \times n}$ je pokončna; $m \ge n$. Denimo, da poznamo singularni razcep A; $A = USV^{\mathsf{T}}$. Naj bo S^+ matrika, ki jo dobimo iz S, tako da vse neničelne singularne vrednosti $\sigma_i > 0$ zamenjamo z $\frac{1}{\sigma_i}$ in transponiramo. Označimo $A^+ = VS^+U^{\mathsf{T}}$. Preveri naslednje:
 - (a) Če je A kvadratna in polnega ranga, potem je $A^+ = A^{-1}$.
 - (b) Vektor $\mathbf{x} = A^{+}\mathbf{b}$ je rešitev sistema $A\mathbf{x} = \mathbf{b}$ v smislu linearne metode najmanjših kvadratov (tj. $A^{+}\mathbf{b}$ je ena od rešitev sistema $A^{T}A\mathbf{x} = A^{T}\mathbf{b}$).

Pripravimo oznahe:

(a) Ker je rang (A) = rang (S) = n, so use singularne vreduosti strogo pozitivne; $\sigma_i > 0$. To pomeni $S^{\dagger} = S^{-1}$ in zato

$$A^{\dagger}A = VS^{\dagger}U^{T}USV^{T} = VS^{-1}SV^{T} = VV^{T} = I$$
, J_{i} . $A^{\dagger} = A^{-1}$.

V je kvadratna in ortogonalna

leti stolpec

(b) Ĉe z= Atb, podem

ATAZ = ATA Atb = VSUTUSUTUSUTUSUTUSUTUS = ATb,

ATA A At Athan Sistema.