

All 7 Simulations Ordered by Cell Updates per Second

		MPI			
Grid Size	Iterations	Ranks	Execution Time	Cell Updates / sec	Cell Updates / sec / rank
16384	128	1	0.649696	52885870265	52885870265
16384	128	2	0.373271	92050382612	46025191306
16384	128	3	0.251789	1.36462E+11	45487476112
16384	128	4	0.198079	1.73465E+11	43366205363
16384	128	5	0.162736	2.11138E+11	42227581319
16384	128	6	0.140133	2.45194E+11	40865628091
16384	128	12	0.099794	3.44307E+11	28692221283

The table above lists all 7 simulations ordered by the total cell updates per second. The fastest simulation was the one with the most GPUs used, as the computation was split among more processors. Also, in the table is the number of cell updates per second per GPU. This data shows how the overhead of the MPI messaging slows down each individual processor. Because of this overhead, the simulation with 12 GPUs ran about 6.5 times faster than the one with only 1 GPU, rather than the theoretical max of 12 times if the was no additional overhead.