

PREDICTIONS OF OBSERVATIONS OF SHUTTLE ENGINE FIRINGS

AMOS 2005 TECHNICAL CONFERENCE

5-9 September, 2005 Maui, Hawaii

M. Braunstein, L. Bernstein Spectral Sciences, Inc., Burlington, MA

M. Venner AFRL, Edwards AFB, CA

R. Dressler AFRL, Hanscom AFB, MA

maintaining the data needed, and of including suggestions for reducing	Ilection of information is estimated completing and reviewing the collet this burden, to Washington Headquld be aware that notwithstanding a OMB control number.	ction of information. Send commen uarters Services, Directorate for In	ts regarding this burden estimation Operations and Repo	te or any other aspect of orts, 1215 Jefferson Dav	f this collection of information, is Highway, Suite 1204, Arlington	
1. REPORT DATE 22 AUG 2005		2. REPORT TYPE		3. DATES COVE	ERED	
4. TITLE AND SUBTITLE Predictions of AM	OS Observations of	5a. CONTRACT NUMBER F04611-03-C-0015				
				5b. GRANT NUM	MBER	
			5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S) Matthew Braunstein; Larry Bernstein; Rainer Dressler; Marty Venner				5d. PROJECT NUMBER BMSB		
			5e. TASK NUMBER R2FT			
			5f. WORK UNIT NUMBER			
	IZATION NAME(S) AND A h Laboratory (AFM B,CA,93524-7680	` '	0 E. Saturn	8. PERFORMING NUMBER	G ORGANIZATION REPORT	
9. SPONSORING/MONITO	PRING AGENCY NAME(S)	AND ADDRESS(ES)		10. SPONSOR/M	IONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAI Approved for publ	LABILITY STATEMENT lic release; distribut	tion unlimited				
13. SUPPLEMENTARY NO	OTES					
14. ABSTRACT N/A						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	CATION OF:	17. LIMITATION	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT	OF PAGES 18	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Introduction
- Chemical Mechanisms
- Source and Apparent Signals
- Instrumentation
- Conclusions and Future Work

Acknowledgements

 M.B. and L. S. acknowledge support through a Small Business Innovative Research (SBIR) award from the Missile Defense Agency (MDA) Contract No. F04611-03-C-0015, M. Venner, AFRL contract manager, and support from the DoD through contract F19628-00-C-0006.

Shuttle engine firing observation scenario. Engine exhaust, consisting mostly of H_2O , interacts with O-atom in the atmosphere to produce internally excited species, OH(v) and H_2O^* . The radiative decay of these excited species is attenuated by the atmosphere and observed from AMOS in the 2-5 μ m region.

zenith

angle

AMOS

Distribution A: Approved for public release; distribution unlimited

Chemical Mechanisms

Signal is due to two major chemical mechanisms

$$O(^{3}P) + H_{2}O(X,^{1}A_{1}) \rightarrow OH(X,^{2}\Pi) + OH(X,^{2}\Pi), \Delta H = +16.9 \text{ kcal mol}^{-1},$$
 (1)

$$O(^{3}P) + H_{2}O(X, ^{1}A_{1}, (v_{1}v_{2}v_{3}, JK)) \rightarrow O(^{3}P) + H_{2}O(X, ^{1}A_{1}(v_{1}'v_{2}'v_{3}', J'K')).$$
(2)

Single collision models for total signal

$$I_{\Delta\lambda}^{space} \approx \left[\frac{\sigma^*}{\sigma_{tot}}\right] N_{H_2O} T_{\Delta\lambda} = \text{(Photon efficiency) * (H}_2O \text{ engine flux) * (atmospheric transmittance)} = \# \text{ photons per second}$$

$$\left[\frac{\sigma^*}{\sigma_{tot}}\right] = \frac{1}{\sigma_{tot}} \sum_{species} \sum_{v=1} v \sigma_v^{species}$$

Distribution A: Approved for public release; distribution unlimited

Cross sections for the reaction, O + $H_2O \rightarrow OH(v)$ + OH(v), as a function of collision velocity

Distribution A: Approved for public release; distribution unlimited

Cross sections for the reaction, O + $H_2O \rightarrow O + H_2O^*$ as a function of collision velocity

Distribution A: Approved for public release; distribution unlimited

Photon production efficiency per collision and total source signal in photons s⁻¹ as a function of velocity for PRCS engine firings.

The H_2O^* contribution has been split into H_2O 2.7 μm and H_2O 6.3 μm contributions. The OH(v) contribution is here called 'OH 2.8 μm '. The OH 2.8 μm and H_2O 2.7 μm curves contribute to the 2-5 μm pass-band.

Normalized spectral radiance from OH(v) (black curve) and H₂O* (blue curve) at 8 km s⁻¹ relative collision velocity.

Source and Apparent Signals

The OH(v) and H₂O* curves have been separately normalized to 1.0 and the H₂O* curve displaced for clarity. The atmospheric transmittance for a 60 degree zenith look angle from AMOS is shown in red. Spectral resolution is 5 cm⁻¹.

Distribution A: Approved for public release; distribution unlimited

Source and apparent (atmospherically attenuated) OH(v) + H_2O^* relative spectral radiance at 8 km s⁻¹ relative collision velocity

Distribution A: Approved for public release; distribution unlimited

Normalized spectral radiance from OH(v) (black curve) and H₂O* (blue curve) at 11 km s⁻¹ relative collision velocity.

[×	microns				
	5.0	3.33	2.5	2.0		
	0.0	0.00	2.0	ŭ n		
	11 km	o-1		1.0		
	I I KIII	S '	H_2O^*			
			20			

The OH(v) and H_2O^* curves have been separately normalized to 1.0 and the H₂O* curve displaced for clarity. The atmospheric transmittance for a 60 degree zenith look angle from AMOS is shown in red. Spectral resolution is 5 cm⁻¹.

OH(v)

0.0

Fransmittance

Source and apparent (atmospherically attenuated) $OH(v) + H_2O^*$ relative spectral radiance at 11 km s⁻¹ relative collision velocity

Space Shuttle Plume Measurement Analysis

- Utilize Total Signal Calculation to Estimate a Signal-to-Noise for Two Available Spectrometers – 3.76e04 W (11 km/s Case)
- Assume Both Integrable onto AMOS Telescope (Most Likely B37)
- 5 km Diameter Plume at 390 km Altitude and 60 Degree View From Zenith
- Expect Plume Radiance to Fill the FOV (B37 is Only 3 mrad Total)
- Calculate Average Radiance by Dividing by 4π Steradians and Estimated Plume Area

ABB (Bomem) FTIR Spectrometer Spec's

- Two Simultaneous Non-Imaging Detectors
 - 1- 6 μm InSb, 1.37e-09 RMS NESR at 1 cm⁻¹ Resolution
 - 2 15 μm MCT, 1.4e-08 NESR at 1 cm⁻¹
 - Currently Use LN2 for Detector Cooling
- 5, 28, 75 mrad Telescopes Available as Attachments
- LN2 Cooled Cold Source
- Weight 45 kg Nominal
- Scan Rate and Spectral Resolution Specifications:

Resolution (cm ⁻¹)	16	8	4	2	1
Frame Rate (scans/sec)	64.6	47.8	31.4	18.6	10.3
Maximum Acq Time (sec)	242	163	125	104	95

ABB FTIR InSb Detector S/N Calculations

Broadband Array Spectrograph System (BASS)

- Aerospace Corporation Sensor (Dave Lynch)
- Wavelength Dispersive System 2 Prisms
- 116 Total Detectors
- 3 13.5 μm Waveband
- Approximately 0.1 μm Resolution (Much Lower Than Desired)
- Noise Equivalent Power: 4.0e-14 W/Sqrt(Hz) (1 Sec Integration)
- Frame Rate: 0.1 200 Hz
- Estimate S/N = 1448 Over the 3 4.2 μm Region
 - Calculation Not Reviewed by Aerospace Corp. Personnel

Conclusions and Future Work

Total Signal (Watts) =

(Efficiency in photons per H₂O) (# H₂O from engine s⁻¹) (3.33e3 cm⁻¹ / photon) (1.9863e-23 Joules / cm⁻¹) (atmospheric attenuation factor)

8 km s⁻¹ \rightarrow 1.26e4 Watts

11 km s⁻¹ \rightarrow 3.76e4 Watts

- Results compare well with previous observations at 11 km s⁻¹
- OH(v) is the major contributor
- More source signal (and a little more attenuation) at higher velocities
- Need high angle of attack firing to see signal
- ABB FTIR spectrometer not sensitive enough with present configuration
- BASS sensor appears to have required sensitivity but at the expense of low spectral resolution
- Future Work
 - Better O + H_2O → O + H_2O^* cross sections
 - Analyze spatial distribution of radiation
 - Additional instrument analysis required