

FHEW Hardware Accelerator

FHEW Algorithm From A Hardware Perspective

- ACC: made up of 2 vectors of size N=1024
- Secret Key: an array of 512*1024*2*23*2*2*4 values
- **a:** vector of *512* values

25 end

• Result: ACC, updated with $a_i * s_i$ for i=0...512-1

```
1 begin
      for i = 0, 1, \dots 512 - 1 do
          for j = 0, 2 - 1 do
             c_j = \lfloor a_i/B_r^j \rfloor \mod B;
             if c_j > 0 then
                for k = 0, 2 - 1 do
                    CoefACC[k] = INTT(ACC[k]);
                    // 512*2*2=2048 INTTs
                    dcmp[k][3:0] = SignedDigitDecompose(CoefACC[k]);
                    for l = 0, 1, ...4 - 1 do
                       evalACC[k][l] = NTT(dcmp[k][l]);
10
                        // 512*2*2*4=8192 NTTs
                    end
11
                 end
12
                 for k = 0, 2 - 1 do
                    \mathbf{ACC}[k] = 0;
14
                    for l = 0, 1, ...4 - 1 do
15
                       for m = 0, 2 - 1 do
                           ACC[k] += evalACC[m][l] * SK[k][l][m];
17
                           // 512*2*2*4*2=16384 pointwise mult.
                       \mathbf{end}
18
                    end
19
                 end
             end
         \mathbf{end}
      end
23
      Return ACC;
```

Bitreversal modification of Mert et al.'s design

Significant Modification required for FHEW/External Product

RESEARCH TEAM

Jonas Bertels, Michiel Van Beirendonck, Furkan Turan Ingrid Verbauwhede

Our FHEW Hardware Design

Secret Key Multiplication integrated with CT NTT

Results

Task	Input	Add $a_i * s_i$ to ACC	Output	1/16th Bootstrap
μs	20.52	36.16	20.49	1143.27

Table 4.1: Simulation run time

Frequency	WNS	LUT	FF	BRAM	DSP
$100 \mathrm{MHz}$	1.595 ns	133971	56565	146	768

Table 4.2: Implementation results for 1 INTT and 2 NTT run

European Commission Horizon 2020 European Union funding for Research & Innovation

