Chapitre 6

Nombres réels

Objectifs

- Connaître la structure de corps sur \mathbb{Q} et \mathbb{R} .
- Connaître les propriétés de la relation d'ordre et celles de la valeur absolue.
- Connaître la notion de borne supérieure, de borne inférieure, ainsi que la propriété fondamentale de ℝ et quelques conséquences.
- Connaître la droite numérique achevée.

Sommaire

I)	L'ensemble des réels	
	1) Rappels sur les rationnels	
	2) Opérations et ordre sur les réels	
II)	Borne inférieure, borne supérieure	
	1) Propriété fondamentale de l'ensemble des réels	
	2) Intervalles	
	3) La droite numérique achevée	
	4) Voisinages	
III)	Approximation d'un réel 6	
	1) Valeur absolue	
	2) Partie entière	
	3) Approximations décimales 8	
IV)	Annexe 9	
	1) Relation	
	2) Relation d'ordre	
	3) Parties denses dans l'ensemble des réels	
V)	Exercices	

L'existence des ensembles $\mathbb Q$ et $\mathbb R$ est admise.

I) L'ensemble des réels

1) Rappels sur les rationnels

Un rationnel est un réel de la forme pq^{-1} (ou $\frac{p}{q}$) où p et q sont deux entiers avec $q \neq 0$. L'ensemble des rationnels est noté \mathbb{Q} . Tout rationnel peut s'écrire de différentes manières sous forme de fractions, par exemple : $\frac{p}{q} = \frac{2p}{2q} = \frac{-p}{-q}$. Mais tout nombre rationnel s'écrit de manière **unique** sous forme de fraction **irréductible**, c'est à dire sous la forme $\frac{p}{q}$ avec $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ et avec p et q **premiers entre eux** (*i.e.* sans autres diviseurs communs que 1 et -1).

Opérations sur les rationnels : On rappelle que : $\frac{p}{q} + \frac{a}{b} = \frac{aq+bp}{bq}$ et $\frac{p}{q} \times \frac{a}{b} = \frac{ap}{bq}$. L'addition et la multiplication sont donc des lois de composition internes dans \mathbb{Q} , on vérifie que $(\mathbb{Q}, +, \times)$ est un **corps commutatif**. On vérifie également que $(\mathbb{Q}, +)$, (\mathbb{Q}^*, \times) et $(\mathbb{Q}^{*+}, \times)$ sont des groupes commutatifs.

L'ensemble des rationnels est insuffisant :

En termes d'approximations numériques, $\mathbb Q$ peut paraître suffisant en sciences appliquées. Le problème se pose lorsqu'on a besoin de connaître la **valeur exacte** de certaines grandeurs. Par exemple, peut - on mesurer dans $\mathbb Q$ la longueur de la diagonale d'un carré de côté 1 ? D'après le théorème de *Pythagore* 1 , cela revient à se demander s'il existe un rationnel dont le carré est égal à 2, or nous avons déjà établi que la réponse est négative ($\sqrt{2} \notin \mathbb Q$).

Cette lacune de $\mathbb Q$ avait été remarquée par les Pythagoriciens, ce qui a conduit les mathématiciens à introduire de nouveaux nombres, les **irrationnels**, en concevant un ensemble plus vaste que $\mathbb Q$, l'ensemble des nombres réels noté $\mathbb R$.

2) Opérations et ordre sur les réels

L'ensemble $\mathbb R$ contient $\mathbb Q$ et possède une addition et une multiplication (qui prolongent celles de $\mathbb Q$) qui font que $(\mathbb R,+,\times)$ est un corps commutatif. On admettra également qu'il existe deux parties de $\mathbb R$ que l'on note A et B et qui vérifient :

- − *A* et *B* sont stables pour l'addition.
- $-\mathbb{Q}^+ \subset A \text{ et } \mathbb{Q}^- \subset B.$
- $-\mathbb{R} = A \cup B$.
- $-A \cap B = \{0\}.$
- Si $x, y \in A$ alors $xy \in A$, si $x, y \in B$ alors $xy \in A$ et si $x \in A$ et $y \in B$, alors $xy \in B$ (règle des signes). On définit alors une relation \mathcal{R} dans \mathbb{R} en posant : $\forall x, y \in \mathbb{R}$, $x\mathcal{R}y \iff x y \in B$. Cette relation est :
- Réflexive : $\forall x \in \mathbb{R}, x \mathcal{R} x$.
- Antisymétrique : si $x\Re y$ et $y\Re x$ alors x = y.
- Transitive : si $x\Re y$ et $y\Re z$, alors $x\Re z$.

Le relation \mathcal{R} est donc une relation **d'ordre** sur \mathbb{R} . On la notera désormais \leq , c'est à dire que $x\mathcal{R}y$ sera noté $x \leq y$ (*i.e.* $x - y \in B$).

On remarquera que $x \le 0$ signifie que $x \in B$, et que $0 \le x$ signifie que $-x \in B$ et donc $x \in A$ car x = (-1)(-x): produit de deux éléments de B. D'autre part, si $x \in A$ et $y \in B$, alors $x \le y$ car y - x = y + (-x): somme de deux éléments de B.

Si x et y sont deux réels quelconques, on a $x-y \in A$ ou $x-y \in B$, c'est à dire $x-y \in B$ ou $y-x \in B$, c'est à dire encore $x \le y$ ou $y \le x$. Deux réels sont donc toujours comparables, l'ordre est **total**.

Notation : On pose $A = \mathbb{R}^+$ et $B = \mathbb{R}^-$.

<mark>√</mark>-THÉORÈME 6.1

La relation d'ordre \leq *est :*

- Compatible avec l'addition, c'est à dire :

$$\forall x, y, z \in \mathbb{R}, \text{ si } x \leq y \text{ alors } x + z \leq y + z.$$

- Compatible avec la multiplication par un réel positif :

$$\forall x, y, z \in \mathbb{R}, si \ 0 \le z \ et \ x \le y \ alors \ xz \le yz.$$

Preuve: Si $x \le y$, alors $x - y \in \mathbb{R}^-$, mais (x + z) - (y + z) = x - y, donc $(x + z) - (y + z) \in \mathbb{R}^-$ *i.e.* $x + z \le y + z$. Si $0 \le z$ et $x \le y$, alors $x - y \in \mathbb{R}^-$ donc $z(x - y) \in \mathbb{R}^+$, *i.e.* $zx \le zy$. On remarquera que si $z \le 0$ alors $z(x - y) \in \mathbb{R}^+$ donc $zy \le zx$, l'inégalité change de sens.

Conséquences:

- Si $x \le y$ et $a \le b$, alors $x + a \le y + b$.
- Si $0 \le x \le y$ et $0 \le a \le b$ alors $0 \le ax \le by$.

^{1.} *PYTHAGORE De Samos* (569 av J.-C. – 500 av J.-C. (environ)) : mathématicien et philosophe grec dont la vie et l'œuvre restent entourées de mystères.

Borne inférieure, borne supérieure II)

1) Propriété fondamentale de l'ensemble des réels

Soit I une partie non vide de \mathbb{R} et soit a un réel, on dit que :

- I est majorée par a (ou a est un majorant de I), lorsque tout élément de I est inférieur ou égal à a : $\forall x \in I, x \leq a.$
- -I est minorée par a (ou a est un minorant de I), lorsque tout élément de I est supérieur ou égal à a: $\forall x \in I, x \geqslant a.$
- -I est bornée, lorsque I est à la fois minorée et majorée : $\exists m, M \in \mathbb{R}, \forall x \in I, m \leq x \leq M$.

Exemples:

- L'ensemble $I=\{\frac{x^2}{1+x^2} \ / \ x \in \mathbb{R}\}$ est borné (minoré par 0 et majoré par 1). L'ensemble $I=\{\frac{x^2}{1+|x|} \ / \ x \in \mathbb{R}\}$ est minoré par 0, mais non majoré.

- I est non majoré équivaut à : \forall $M ∈ \mathbb{R}, \exists$ x ∈ I, x > M.
- I est non minoré équivaut à : \forall $m \in \mathbb{R}$, \exists $x \in I$, x < m. I est borné équivaut à : \exists $M \in \mathbb{R}$, \forall $x \in I$, $|x| \leq M$.

DÉFINITION 6.1

Soit I une partie non vide de \mathbb{R} . Si l'ensemble des majorants de I n'est pas vide et s'il admet un plus petit élément, alors celui-ci est appelé borne supérieure de I et noté sup(I). La borne supérieure (lorsqu'elle existe) est donc le plus petit des majorants.

Si l'ensemble des minorants de I n'est pas vide et s'il admet un plus grand élément, alors celui-ci est appelé **borne inférieure** de I et noté inf(I). La borne inférieure (lorsqu'elle existe) est donc **le** plus grand des minorants.

Exemples:

- -I=]0;1], l'ensemble des majorants est $[1;+\infty[$, celui-ci admet un plus petit élément qui est 1, donc sup(I)=1. L'ensemble des minorants de I est $]-\infty;0]$ qui admet un plus grand élément :0, donc $\inf(I)=0$.
- $-I=]1;+\infty[$, l'ensemble des majorants est vide donc I n'a pas de borne supérieure. L'ensemble des minorants est $]-\infty;1]$, celui-ci admet un plus grand élément : 1, donc $\inf(I)=1$.

On remarquera qu'une borne inférieure (ou supérieure) d'un ensemble I n'a aucune raison d'appartenir à

Voici le lien entre minimum et borne inférieure (ou maximum et borne supérieure) :

-\(\frac{1}{9}\)-THÉORÈME 6.2

Soit I une partie non vide de \mathbb{R} et soit a un réel :

- $-a = \min(I)$ ssi $a \in I$ et $a = \inf(I)$.
- $-a = \max(I)$ ssi $a \in I$ et $a = \sup(I)$.

Preuve: Celle-ci est simple et laissée en exercice.

Il découle de la définition:

THÉORÈME 6.3

Soit I une partie non vide de \mathbb{R} et soit m un réel, alors :

$$m = \sup(I) \Longleftrightarrow \begin{cases} m \text{ majore } I \\ \forall m' < m, m' \text{ ne majore pas } I \text{ [i.e. } \exists x \in I, m' < x] \end{cases}$$

$$m = \inf(I) \Longleftrightarrow \begin{cases} m \text{ minore } I \\ \forall m' > m, m' \text{ ne minore pas } I \text{ [i.e. } \exists x \in I, x < m'] \end{cases}$$

- Orange de Repriété fondamentale de Re (admise))

Toute partie de \mathbb{R} non vide et majorée admet une borne supérieure.

Conséquence: il en découle que toute partie de \mathbb{R} non vide et minorée admet une borne inférieure.

Preuve: Soit *A* une partie de \mathbb{R} non vide et minorée par un réel *m*, alors l'ensemble $-A = \{-a \mid a \in A\}$ est une partie de \mathbb{R} non vide et majorée par le réel -m. D'après le théorème précédent, -A admet une borne supérieure M et donc l'ensemble des majorants de -A est $[M, +\infty[$, on en déduit que l'ensemble des minorants de A est $]-\infty; -M]$ et donc A admet une borne inférieure qui est -M, c'est à dire inf $(A) = -\sup(-A)$.

Exemples:

- Soit a un réel positif, on pose $A = \{x \in \mathbb{R} \mid x^2 \le a\}$. A est une partie non vide de \mathbb{R} car $0 \in A$, d'autre part A est majoré par a+1 car $x>a+1 \Longrightarrow x^2>a^2+2a+1>a$. L'ensemble A admet donc une borne supérieure M. En raisonnant par l'absurde on peut montrer que $M^2 = a$, par conséquent $M = \sqrt{a}$, c'est une définition possible de la fonction racine carrée.
- Soient A et B deux parties de \mathbb{R} non vides et bornées telles que A ⊂ B. Montrer que inf(B) ≤ inf(A) et $\sup(A) \leq \sup(B)$.

Réponse: $\inf(B)$ est un minorant de B donc un minorant de A, par conséquent $\inf(B) \leq \inf(A)$ car $\inf(A)$ est le plus grand des minorants de A. De même, $\sup(B)$ majore B, donc majore A également, d'où $\sup(A) \leq \sup(B)$ car $\sup(A)$ est le plus petit des majorants de A.

- Soient *A* et *B* deux parties de \mathbb{R} non vides et majorées, on pose *A* + *B* = {*a* + *b* / *a* ∈ *A*, *b* ∈ *B*}. Montrer que $\sup(A+B) = \sup(A) + \sup(B).$

Réponse: $\sup(A) + \sup(B)$ majore A + B, donc A + B admet une borne $\sup(A + B) \leq \sup(A) + \sup(B)$. Soient $a \in A$ et $b \in B$, $a + b \le \sup(A + B)$, donc $a \le \sup(A + B) - b$, ce qui signifie que A est majoré par $\sup(A+B)-b$, d'où $\sup(A) \leq \sup(A+B)-b$, mais alors $b \leq \sup(A+B)-\sup(A)$, donc B est majoré par $\sup(A+B) - \sup(A)$, d'où $\sup(B) \leq \sup(A+B) - \sup(A)$ et finalement $\sup(A) + \sup(B) \leq \sup(A+B)$ ce qui prouve bien l'égalité.

2) Intervalles

DÉFINITION 6.2

Soit I une partie non vide de \mathbb{R} , on dit que I est un intervalle lorsque : tout réel compris entre deux éléments de I est lui-même élément de I, c'est à dire :

$$\forall x, y \in I, \forall z \in \mathbb{R}, x \leq z \leq y \Longrightarrow z \in I.$$

Par convention, \emptyset est un intervalle de \mathbb{R} .

[™]THÉORÈME 6.5

Si I est un intervalle non vide de \mathbb{R} alors on a :

- *soit* $I = \mathbb{R}$,
- soit $I = [a; +\infty[$ ou $I =]a, +\infty[$,
- soit $I =]-\infty; b]$ ou $I =]-\infty; b[$,
- soit I =]a; b[ou I =]a; b] ou I = [a; b[ou I = [a; b].

Preuve: Le premier correspond à I non borné, le deuxième à I minoré et non majoré, le troisième à I non minoré et majoré, le quatrième à *I* borné.

Exemple: \mathbb{Z} n'est pas un intervalle de \mathbb{R} car $1,2 \in \mathbb{Z}$ mais pas $\frac{3}{2}$. \mathbb{Q} n'est pas un intervalle de \mathbb{R} .

THÉORÈME 6.6

On a les propriétés suivantes :

- L'intersection de deux intervalles de \mathbb{R} est un intervalle de \mathbb{R} .
- La réunion de deux intervalles de \mathbb{R} non disjoints est un intervalle de \mathbb{R} .

Preuve: Soient I et J deux intervalles de \mathbb{R} , posons $K = I \cap J$. Si K est vide, alors c'est un intervalle. Si K n'est pas vide, alors soit $x, y \in K$ et soit z un réel tel que $x \le z \le y$. Comme I est un intervalle contenant x et y, I contient z, de même J contient z, finalement $z \in K$ et donc K est un intervalle de \mathbb{R} .

Supposons I et J non disjoints et soit $K = I \cup J$. K est non vide, soit X, $Y \in K$ et soit Z un réel tel que $X \le Z \le Y$. Si x et y sont dans I, alors z est dans I et donc dans K, de même si x et y sont dans J. Si x est dans I et y dans J, soit $t \in I \cap J$, si $z \le t$, alors z est compris entre x et t qui sont éléments de I, donc $z \in I$. Si $t \le z$, alors z est compris entre t et y qui sont éléments de J, donc z est élément de J. Dans les deux cas on a bien $z \in K$ et donc K est un intervalle de \mathbb{R} .

La droite numérique achevée

On ajoute à l'ensemble \mathbb{R} deux éléments non réels (par exemple i et -i), l'un de ces deux éléments est noté $-\infty$ et l'autre $+\infty$.

DÉFINITION 6.3

L'ensemble $\mathbb{R} \cup \{-\infty, +\infty\}$ *est noté* $\overline{\mathbb{R}}$ *et appelé* **droite numérique achevée**.

On prolonge la relation d'ordre de \mathbb{R} à $\overline{\mathbb{R}}$ en posant pour tout réel $x:-\infty < x < +\infty$. L'ensemble $\overline{\mathbb{R}}$ devient ainsi un ensemble totalement ordonné, de plus il possède un maximum $(+\infty)$ et un minimum $(-\infty)$.

Pour tout réel *x* on pose :

- $-(+\infty) + x = x + (+\infty) = +\infty.$
- $-(-\infty) + x = x + (-\infty) = -\infty.$
- $-(+\infty)+(+\infty)=+\infty.$
- $-(-\infty)+(-\infty)=-\infty.$
- Si x > 0: $x(+\infty) = (+\infty)x = +\infty$ et $(-\infty)x = x(-\infty) = -\infty$.
- $-\sin x < 0: x(+\infty) = (+\infty) = -\infty \text{ et } (-\infty)x = x(-\infty) = +\infty.$
- $-(+\infty)(+\infty) = +\infty$, $(-\infty)(-\infty) = +\infty$ et $(-\infty)(+\infty) = (+\infty)(-\infty) = -\infty$.

On prendra garde au fait que nous n'avons pas défini de loi de composition interne dans $\overline{\mathbb{R}}$ puisque nous n'avons pas défini $0 \times (\pm \infty)$ ni $(-\infty) + (+\infty)$. Les règles de calculs définies ci-dessus auront leur utilité dans le chapitre sur les limites.

['] √THÉORÈME 6.7

Soit A une partie non vide de \mathbb{R} , alors A admet une borne supérieure et une borne inférieure dans $\overline{\mathbb{R}}$.

Preuve: Soit A une partie non vide de \mathbb{R} . Si A est majorée dans \mathbb{R} alors admet une borne supérieure réelle (propriété fondamentale de \mathbb{R}). Si A n'est pas majorée dans \mathbb{R} , alors dans \mathbb{R} l'ensemble des majorants est $\{+\infty\}$, donc il y a une borne supérieure dans $\overline{\mathbb{R}}$ qui est $+\infty$ (le plus petit majorant). Le raisonnement est le même pour la borne inférieure.

Voisinages

Définition 6.4

Soit $x \in \mathbb{R}$, toute partie de \mathbb{R} contenant un intervalle de la forme $]x - \varepsilon; x + \varepsilon[$ où $\varepsilon > 0$ est appelé voisinage de x .

Toute partie de \mathbb{R} contenant un intervalle ouvert de la forme $]a; +\infty[$ $(a \in \mathbb{R})$ est appelé voisinage

Toute partie de \mathbb{R} contenant un intervalle ouvert de la forme $]-\infty;a[$ ($a \in \mathbb{R}$) est appelé voisinage $de - \infty$.

[™]THÉORÈME 6.8

Soit V_1, V_2 deux voisinages de $x \in \overline{\mathbb{R}}$, alors $V_1 \cap V_2$ est un voisinage de x. Soit $a, b \in \overline{\mathbb{R}}$, si a < b alors il existe un voisinage V de a et un voisinage V' de b tels que $\forall x \in V$ et $\forall y \in V'$, x < y.

Preuve: Celle - ci est simple et laissée en exercice.

ØDéfinition 6.5

Soit P(x) une proposition dépendante de $x \in \mathbb{R}$, et soit $a \in \overline{\mathbb{R}}$, on dit que la propriété P est **vraie au** voisinage de a lorsqu'il existe au moins un voisinage V de a tel que :

$$\forall x \in V, P(x) \text{ est vraie.}$$

Exemple: Soit $f(x) = x^2 + x - 1$, alors au voisinage de 0 on a f(x) < 0, et au voisinage de $+\infty$, f(x) > 0. En effet, le trinôme $x^2 + x - 1$ admet deux racines réelles : $x_1 < 0$ et $x_2 > 0$, posons $\varepsilon = \min(|x_1|, |x_2|)$, si $x \in]0 - \varepsilon; 0 + \varepsilon[$ alors $x \in]x_1; x_2[$ et donc $x^2 + x - 1 < 0, V =]x_1; x_2[$ est donc un voisinage de 0 et sur ce voisinage on a bien f(x) < 0. Posons $W =]x_2; +\infty[$, alors W est un voisinage de $+\infty$ et sur ce voisinage on a bien f(x) > 0.

III) Approximation d'un réel

1) Valeur absolue

Soit x un réel, les deux nombres x et -x sont comparables puisque l'ordre est total, ce qui donne un sens à la définition suivante :

DÉFINITION 6.6

Soit $x \in \mathbb{R}$, on appelle valeur absolue de x le réel noté |x| et défini par : $|x| = \max(x, -x)$. On a $donc |x| = x \ lorsque \ 0 \le x, \ et |x| = -x \ lorsque \ x \le 0.$

L'ensemble \mathbb{R} peut être assimilé à une droite graduée (i.e. munie d'un repère (O, \overrightarrow{u})), les réels sont alors les abscisses des points de cette droite. Si A(a) et B(b) sont deux points de cette droite, alors le réel positif |b-a| représente la **distance** de A à B, en particulier |x| représente la distance de l'origine au point d'abscisse x.

THÉORÈME 6.9

Soient x, y des réels :

- $-|x| \in \mathbb{R}^+, |x| = |-x|, x \le |x| \text{ et } -x \le |x|.$
- $-|x|=0 \iff x=0.$
- $-|xy| = |x||y| \text{ et si } x \neq 0 \text{ alors } |\frac{1}{x}| = \frac{1}{|x|}.$
- $-||x|-|y|| \le |x-y| \le |x|+|y|$ (inégalité triangulaire).

Preuve: Celle-ci est simple et laissée en exercice.

Valeur absolue et inégalités : soient a, b, x trois réels avec b positif :

- $-|a| \le b \iff a \le b \text{ et } -a \le b \iff -b \le a \le b.$
- $-|a| \ge b \iff a \ge b \text{ ou } -a \ge b.$
- $-|a-x| \le b \iff -b \le a-x \le b \iff a-b \le x \le a+b.$
- $-|a-x| \ge b \iff x \ge a+b \text{ ou } x \le a-b.$

Ces inégalités sont importantes, et peuvent se retrouver en raisonnant en termes de distance.

DÉFINITION 6.7

Soit a un réel et $\varepsilon > 0$, on appelle intervalle **ouvert** de **centre a** et de **rayon** ε , l'intervalle $]a - \varepsilon$; $a + \varepsilon[$. C'est l'ensemble des réels x tels que $|x-a| < \varepsilon$. On définit de la même façon l'intervalle fermé de centre a et de rayon ε .

On rappelle qu'un intervalle ouvert est un intervalle de la forme : $a; b \in \mathbb{R}$ ou $a; +\infty \in \mathbb{R}$ L'ensemble vide et \mathbb{R} sont des intervalles ouverts.

-`**⊙**-THÉORÈME 6.10

Soit I un intervalle ouvert non vide, pour tout élément a de I il existe au moins un voisinage de a inclus dans $I : \forall a \in I, \exists \varepsilon > 0, \exists a - \varepsilon; a + \varepsilon \subseteq I$.

Preuve: Il suffit de passer en revue les différents cas pour I. Par exemple, si $I = \exists \alpha : \beta [$ avec $\alpha < \beta ($ (sinon I est vide), on peut prendre $\varepsilon = \min(a - \alpha, \beta - a)$. On remarquera que l'on peut remplacer intervalle ouvert de centre a par intervalle fermé de centre a.

Partie entière

THÉORÈME 6.11

L'ensemble \mathbb{R} *est* **archimédien**, *c'est* à dire : $\forall x, y \in \mathbb{R}^{*+}, \exists n \in \mathbb{N}, x \leq ny$.

Preuve: Par l'absurde, supposons que $\forall n \in \mathbb{N}, x > ny$. Soit $A = \{ny \mid n \in \mathbb{N}\}$, A est non vide (contient y) et majoré par x, donc A admet une borne supérieure. Soit $b = \sup(A)$, on a b - y < b donc il existe un entier $n_0 \in \mathbb{N}$ tel que $b - y < n_0 y$, d'où $b < (n_0 + 1)y$ ce qui est absurde car $(n_0 + 1)y \in A$.

THÉORÈME 6.12 (et définition)

Soit $x \in \mathbb{R}$, il existe un **unique** entier $n \in \mathbb{Z}$ tel que $n \le x < n+1$, celui-ci est appelé **partie entière** de x, noté E(x) (ou [x]).

Preuve: Montrons l'existence : si x = 0 il suffit de prendre n = 0. Si x > 0, soit $A = \{n \in \mathbb{N} \mid x < n + 1\}$, A est une partie de $\mathbb N$ non vide ($\mathbb R$ est archimédien), donc A admet un plus petit élément n_0 (propriété fondamentale de \mathbb{N}); on a $x < n_0 + 1$, si $n_0 > x$, alors $n_0 > 0$ et $n_0 - 1 \in A$ ce qui est absurde, donc $n_0 \le x$. Si x < 0, on pose $B = \{n \in \mathbb{N} \ / \ -x \le n\}$, alors B est une partie non vide de \mathbb{N} , donc B admet un plus petit élément n_1 ; on a $-n_1 \le x$ et $n_1 > 0$, le prédécesseur de n_1 n'étant pas dans B, on a $-x > n_1 - 1$ et donc $-n_1 \le x < -n_1 + 1$.

Montrons l'unicité : soient $n, n' \in \mathbb{N}$ tels que $n \le x < n+1$ et $n' \le x < n'+1$, alors |n-n'| = |(x-n)-(x-n')| < 1car x - n et x - n' sont dans l'intervalle [0; 1], comme n et n' sont entiers, on en déduit que |n - n'| = 0 i.e. n = n'. \square

Propriétés :

a) La fonction partie entière est une fonction croissante sur \mathbb{R} et elle constante sur tout intervalle de la forme [n; n+1[lorsque $n \in \mathbb{Z}$.

- b) La fonction partie entière est continue sur $\mathbb{R} \setminus \mathbb{Z}$. Pour $n \in \mathbb{Z}$, elle est continue à droite mais pas à
- c) Pour tout réel x et tout entier n, on a E(x+n) = E(x) + n.
- d) La fonction $x \mapsto x E(x)$ est une fonction 1-périodique.
- e) La partie entière de x est entièrement caractérisée par : $\begin{cases} E(x) \in \mathbb{Z} \\ E(x) \le x < E(x) + 1 \end{cases} .$

THÉORÈME 6.13

Tout intervalle de la forme a; b où a < b contient au moins un rationnel, et donc a est **dense** dans

Preuve: Soit x le milieu de l'intervalle a; b[et ϵ sa demi - longueur. $\mathbb R$ étant archimédien, il existe un entier a tel que $1 \le q\varepsilon$. Posons p = E(qx), on a alors $p \le qx < p+1$, d'où en posant $r = \frac{p}{q}$, r est un rationnel et $r \le x < r + \frac{1}{q} \le r + \varepsilon$, par conséquent, $|x - r| < \varepsilon$ et donc $r \in]a; b[$.

Ce théorème traduit que aussi près que l'on veut de n'importe quel réel, on peut trouver des rationnels. De plus la démonstration fournit une méthode de construction de $\frac{p}{q}$.

Par exemple, avec $x=\sqrt{2}$ et $\varepsilon=10^{-3}$, on peut prendre q=1000 et $p=\mathrm{E}(1000\sqrt{2})=1414$ (car $1414^2 \leqslant 2.10^6 < 1415^2$), d'où $\frac{p}{q}=1,414$ et $|\sqrt{2}-1,414|<10^{-3}$.

-`<mark>@</mark>-THÉORÈME 6.14

Tout intervalle]a; b[où a < b contient au moins un irrationnel, donc l'ensemble des irrationnels, $\mathbb{R} \setminus \mathbb{Q}$, est dense dans \mathbb{R} .

Preuve: Comme précédemment on appelle x le milieu de l'intervalle a; b[et a la demi - longueur. Si a a a alors il n'y a rien à faire. Si $x \in \mathbb{Q}$, alors il existe un entier n tel que $\sqrt{2} < n\varepsilon$, on pose $y = x + \frac{\sqrt{2}}{n}$, le réel y est irrationnel et $|x - y| = \frac{\sqrt{2}}{n} < \varepsilon$ donc $y \in]a; b[$.

Approximations décimales

DÉFINITION 6.8

Soient a, x, ε trois réels avec $\varepsilon > 0$, on dit que a est une valeur approchée de x à ε près lorsque la distance entre a et x et inférieure ou égale à ε : $|a-x| \le \varepsilon$. On dit que a est une valeur approchée de x par défaut (respectivement par excès) à ε près lorsque $a \le x \le a + \varepsilon$ (respectivement $a - \varepsilon \leq x \leq a$).

Propriétés :

- a) Si a est une valeur approchée de x par défaut et b une valeur approchée de x par excès, alors $\frac{a+b}{2}$ est une valeur approchée de x à $\frac{b-a}{2}$ près.
- b) Si a est une valeur approchée de x par défaut à ε près et b une valeur approchée de x par excès à ε près, alors $\frac{a+b}{2}$ est une valeur approchée de x à $\frac{\varepsilon}{2}$ près.

Soit $x \in \mathbb{R}$ et soit $n \in \mathbb{N}$, on a $E(x10^n) \le x10^n < 1 + E(x10^n)$, en multipliant par 10^{-n} on obtient :

$$\frac{E(x10^n)}{10^n} \leqslant x < \frac{E(x10^n)}{10^n} + 10^{-n}.$$

Ce qui signifie que $\frac{\mathbb{E}(x10^n)}{10^n}$ est une valeur approchée de x par défaut à 10^{-n} près, et que $\frac{\mathbb{E}(x10^n)}{10^n} + 10^{-n}$ est une valeur approchée de x par excès à 10^{-n} près. Il faut remarquer que ces deux approximations de x sont des **nombres décimaux** (i.e. un entier sur une puissance de dix).

DÉFINITION 6.9

On appelle approximation décimale de x par défaut à 10^{-n} près, le nombre : $\frac{E(x10^n)}{10^n}$.

Exemples:

- Prenons $x = \sqrt{2}$ et posons $a_n = \frac{E(x10^n)}{10^n}$ $-1 \le x^2 < 2^2$, donc $1 \le x < 2$ et $a_0 = E(x) = 1$ (partie entière de x). $-(10x)^2 = 200$ et $14^2 = 196 \le (10x)^2 < 15^2 = 225$, donc $14 \le 10x < 15$ et $a_1 = E(10x)/10 = 14/10 = 1,4$. $-(100x)^2 = 20000$ et $141^2 \le (100x)^2 < 142^2$, donc $141 \le 100x < 142$ et $a_2 = E(100x)/100 = 141/100 = 141/100$

Si on continue le processus, on construit la suite (a_n) des approximations décimales de $\sqrt{2}$ à 10^{-n} près par défaut.

Si on pose pour $n \in \mathbb{N}$, $a_n = \frac{\mathbb{E}(x 10^n)}{10^n}$, alors on a l'inégalité $|x - a_n| \le 10^{-n}$, ce qui prouve que la suite (a_n) converge vers x. On a donc une suite de rationnels qui converge vers x, ce qui est une autre façon de prouver la densité de \mathbb{Q} dans \mathbb{R} . On remarquera que la suite $(a_n + 10^{-n})$ (valeurs approchées décimales par excès) converge également vers x.

[™]THÉORÈME 6.15

Soit $x \in \mathbb{R}$ et $a_n = \frac{\mathbb{E}(x \cdot 10^n)}{10^n}$, pour $n \in \mathbb{N}^*$ on pose $d_n = 10^n (a_n - a_{n-1})$, alors d_n est un entier compris

Preuve: $10^n a_n = \text{E}(10^n x) \leqslant 10^n x < 1 + \text{E}(10^n x)$, d'autre part $10^n a_{n-1} = 10 \text{E}(10^{n-1} x) \leqslant 10^n x < 10 + 10 \text{E}(10^{n-1} x)$, d'où $-10 - \text{E}(10^{n-1} x) < -10^n x \leqslant -10^n a_{n-1}$, on en déduit que $d_n - 10 < 0 < d_n + 1$, par conséquent $0 \leqslant d_n < 10$, or d_n est un entier, donc $d_n \leq 9$.

ØDéfinition 6.10

Pour $n \ge 1$, l'entier $d_n = 10^n (a_n - a_{n-1}) = \mathbb{E}(10^n x) - 10\mathbb{E}(10^{n-1} x)$ est appelé **n-ième décimale** de

Remarquons que $d_n 10^{-n} = a_n - a_{n-1}$, ce qui entraîne que $a_0 + \sum_{k=1}^n d_k 10^{-k} = a_n$, or la suite (a_n) converge vers x, on écrit alors :

$$x = a_0 + \sum_{k=1}^{+\infty} d_k 10^{-k}$$
 (développement décimal de x)

IV) Annexe

1) Relation

Une relation \mathcal{R} est la donnée de :

- Un ensemble de départ : *E*.
- Un ensemble d'arrivée : F.
- D'un graphe G, c'est à dire une partie de $E \times F$ ($G \subset E \times F$).

Soient $x \in E$ et $y \in F$, on dira que x est relation avec y (noté $x \mathcal{R} y$) lorsque $(x, y) \in G$. Si c'est le cas, on dira que y est une image de x par \Re et que x est un antécédent de y par \Re .

Lorsque tout élément de E a **au plus une** image par \mathcal{R} , on dit que \mathcal{R} est une **fonction**. Lorsque tout élément de E a une et une seule image par \mathcal{R} , on dit que \mathcal{R} est une **application**.

Vocabulaire: Soit \mathcal{R} une relation d'un ensemble E vers lui - même, on dit que \mathcal{R} est :

- a) **réflexive** lorsque tout élément est en relation avec lui même : $\forall x \in E, x \mathcal{R} x$.
- b) **symétrique** lorsque : $\forall x, y \in E$, si $x \mathcal{R} y$ alors $y \mathcal{R} x$ (le graphe de \mathcal{R} est symétrique).
- c) antisymétrique lorsque : $\forall x, y \in E$, si $x \mathcal{R} y$ et $y \mathcal{R} x$ alors x = y. On remarquera qu'il ne s'agit pas de la négation de symétrique.
- d) **transitive** lorsque : $\forall x, y, z \in E$, si $x \mathcal{R} y$ et $y \mathcal{R} z$ alors $x \mathcal{R} z$.

Exemples:

- Dans \mathbb{R} , la relation \mathscr{R} définie par : $\forall x, y \in \mathbb{R}$, $x \mathscr{R} y \iff x \leq y$, est une relation réflexive, antisymétrique et
- Dans \mathbb{Z} , la relation \mathcal{S} définie par : $\forall x, y \in \mathbb{Z}$, $x \mathcal{S} y \iff x y \in 2\mathbb{Z}$, est une relation réflexive, symétrique et transitive.
- Soit E un ensemble, on note $\mathscr{P}(E)$ l'ensemble des parties de E. On définit dans $\mathscr{P}(E)$ la relation \mathscr{T} en posant : $\forall A, B \in \mathscr{P}(E), A\mathscr{T}B \iff A \subset B$. Cette relation \mathscr{T} est réflexive antisymétrique et transitive.

2) Relation d'ordre

Soit $\mathcal R$ une relation dans un ensemble E, on dit que $\mathcal R$ est une relation d'ordre lorsque cette relation est :

réflexive, antisymétrique et transitive.

Lorsque c'est le cas, on dit que (E, \mathcal{R}) est un ensemble ordonné. Deux éléments x et y de E sont dits **comparables** pour l'ordre \mathcal{R} lorsque l'on a $x\mathcal{R}y$ ou bien $y\mathcal{R}x$. Lorsque tous les éléments de E sont comparables deux à deux, on dit que l'ordre \mathcal{R} est **total** et que (E, \mathcal{R}) est un ensemble totalement ordonné, sinon on dit que l'ordre est partiel et que (E, \mathcal{R}) est partiellement ordonné. Une relation d'ordre est en général notée \leq , c'est à dire que $x\mathcal{R}y$ est plutôt noté $x \leq y$.

Exemples:

- L'ordre naturel sur les réels est une relation d'ordre total.
- Soit *E* un ensemble, ($\mathscr{P}(E)$, ⊂) est un ensemble partiellement ordonné (dès que card(*E*) ≥ 2).
- Soit *I* un ensemble non vide, on pose $E = \mathscr{F}(I,\mathbb{R})$ l'ensemble des fonctions définies sur *I* et à valeurs réelles. On définit dans *E* la relation \mathscr{R} : pour $f,g \in E, f\mathscr{R}g \iff \forall x \in I, f(x) \leq g(x)$. On vérifie que \mathscr{R} est une relation d'ordre **partiel** (dès que card(*I*) > 1), cette relation est appelée ordre fonctionnel et notée ≤.
- Pour (x, y) et (x', y') ∈ \mathbb{R}^2 , on pose :

$$(x,y)\mathcal{R}(x',y') \Longleftrightarrow \begin{cases} x < x' \\ \text{ou} \\ x = x' \text{ et } y \le y' \end{cases}$$

On vérifie que \mathcal{R} est une relation d'ordre total sur \mathbb{R}^2 (appelée ordre lexicographique et notée \leq).

On prendra garde au fait que lorsque l'ordre est partiel, la négation de $x \le y$ est :

$$\begin{cases} x \text{ et } y \text{ ne sont pas comparables} \\ ou \\ x \text{ et } y \text{ sont comparables et } x > y \end{cases}$$

3) Parties denses dans l'ensemble des réels

Soit A une partie non vide de \mathbb{R} , on dit que A est dense dans \mathbb{R} lorsque tout intervalle ouvert non vide de \mathbb{R} contient au moins un élément de A, ce qui équivaut à :

$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists a \in A, |x - a| < \varepsilon.$$

Ce qui signifie qu'aussi près que l'on veut de tout réel x, on peut trouver des éléments de A. Voici une autre définition équivalente (et très utile) :

A est dense dans $\mathbb R$ ssi pour tout réel x il existe une suite (a_n) d'éléments de A qui converge vers x. **Exemples**:

- $-\mathbb{Q}$ et $\mathbb{R}\setminus\mathbb{Q}$ sont denses dans \mathbb{R} .
- $-\mathbb{Z}$ n'est pas dense dans \mathbb{R} puisque l'intervalle]0;1[ne contient aucun entier.

V) Exercices

★Exercice 6.1

Soient u et k deux réels tels que $|u| \le k < 1$, montrer que $0 < 1 - k \le |1 + u| \le 1 + k$.

★Exercice 6.2

- a) Soit $x \in \mathbb{R}$ tel que $\forall \varepsilon > 0, |x| \le \varepsilon$, montrer que x est nul.
- b) Soient $a, b \in \mathbb{R}^+$, montrer que $|\sqrt{a} \sqrt{b}| \le \sqrt{|a b|}$.
- c) Soient $a, b \in \mathbb{R}$, montrer que $|\sqrt{|a|} \sqrt{|b|}| \le \sqrt{|a b|}$.
- d) Soient $x, y \in \mathbb{R}$, montrer que $|x| + |y| \le |x y| + |x + y|$.
- e) Soient $x, y \in \mathbb{R}$, montrer que $1 + |xy 1| \le (1 + |x 1|)(1 + |y 1|)$.

★Exercice 6.3

Résoudre dans \mathbb{R} : a) $\sqrt{\frac{1+x}{1-x}} \le 1-x$; b) $|1-x| \ge 2|x|-1$; c) $|x+2| \ge \frac{1-x}{1+x}$.

★Exercice 6.4

Démontrer les assertions suivantes :

- a) $\forall x, y \in \mathbb{R}, E(x + y) = E(x) + E(y) + \varepsilon \text{ avec } \varepsilon = 0 \text{ ou } 1.$
- b) $\forall x, y \in \mathbb{R}, E(x y) = E(x) E(y) \varepsilon \text{ avec } \varepsilon = 0 \text{ ou } 1.$
- c) $\forall x \in \mathbb{R}^*, \forall n \in \mathbb{N}^*, E(\frac{E(nx)}{n}) = E(x).$
- d) $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*, 0 \leq E(nx) nE(x) \leq n 1.$
- e) $\forall n, m \in \mathbb{Z}^*, E(\frac{n+m}{2}) + E(\frac{n-m+1}{2}) = n.$

★Exercice 6.5

- a) Soit $f: \mathbb{R} \to \mathbb{R}$ telle que f est nulle sur [0; 1[et $\forall n \in \mathbb{Z}, \forall x \in \mathbb{R}, f(x+n) = f(x) + n$. Montrer que f est la partie entière.
- b) Montrer que pour tout réel x, $\sum_{k=0}^{n} E(\frac{x+k}{n}) = E(x)$.

★Exercice 6.6

Soient A et B deux parties non vides et bornées de \mathbb{R}^+ , on pose $AB = \{ab \mid a \in A, b \in B\}$. Montrer que l'ensemble AB admet une borne supérieure et que $\sup(AB) = \sup(A) \sup(B)$.

★Exercice 6.7

a) Soit A une partie non vide et bornée de \mathbb{R} , montrer que :

$$\sup(\{|x - y| / x, y \in A\}) = \sup(A) - \inf(A)$$

b) Soit *A* une partie non vide de \mathbb{R} avec $A \subset [a; b]$ où 0 < a < b. Calculer les bornes inférieure et supérieure de l'ensemble $B = \{\frac{x}{y} \mid x, y \in A\}$.

★Exercice 6.8

Déterminer les bornes inférieure et supérieure (si elles existent) des ensembles suivants :

$$\left\{\frac{1}{n} + (-1)^n / n \in \mathbb{N}^*\right\} \; ; \; \left\{\frac{x^2}{1 + x^2} / x \in \mathbb{R}\right\} \; ; \; \left\{\frac{xy}{x^2 + y^2} / x, y \in \mathbb{R}^{*+}\right\}.$$

★Exercice 6.9

Soient x_0 un réel strictement positif, et p un entier strictement supérieur à 1, **fixés**. On établit dans cet exercice, l'existence de la fonction racine p-ième. On pourra utiliser que si (u_n) est une suite convergente de limite ℓ et si pour tout n on a $u_n > \alpha$, où α désigne un réel, alors on a $\ell \geqslant \alpha$. On note $\mathscr{A}_0 = \{y \in \mathbb{R} \mid y^p \leqslant x_0\}$.

- a) Montrer que \mathcal{A}_0 est non vide.
- b) Montrer que $(1+x_0)^p \ge 1+px_0$. En déduire que \mathcal{A}_0 est majoré par $1+x_0$. Que peut-on en conclure ?

On note
$$c = \sup(\mathcal{A}_0)$$
, $u_n = c(1 - \frac{1}{n})$ et $v_n = c(1 + \frac{1}{n})$ (pour $n > 0$).

- c) i) Montrer qu'on a toujours $x_0 \in \mathcal{A}_0$ ou bien $\frac{1}{x_0} \in \mathcal{A}_0$ (on distinguera $x_0 \le 1$ et $x_0 > 1$). En déduire que 0 < c.
 - ii) Justifier l'existence d'un réel $a \in \mathcal{A}_0$ tel que $u_n < a \le c$. En déduire que $u_n \in \mathcal{A}_0$ puis que $c^p \le x_0$.
- d) Justifier que $v_n^p > x_0$. En déduire que $c^p = x_0$. Par définition, le réel c est appelé racine p-ième de x_0 .
- e) Montrer que la fonction racine *p*-ième est strictement croissante sur $]0; +\infty[$.

★Exercice 6.10

Soient $a < b \in \mathbb{R}$, $f : [a; b] \rightarrow [a; b]$ une fonction croissante, et $A = \{x \in [a; b] / x \le f(x)\}$.

- a) Montrer que A admet une borne supérieure, celle ci sera notée c.
- b) Montrer que $c \in A$.
- c) En déduire que f(c) = c (on dit que c est un point fixe de f).
- d) Si on suppose que f est décroissante, f admet elle nécessairement un point fixe?

★Exercice 6.11

Soient a_1, \ldots, a_n et b_1, \ldots, b_n des réels strictement positifs, montrer que :

$$\inf(\frac{a_1}{b_1}, \cdots, \frac{a_n}{b_n}) \leqslant \frac{a_1 + \cdots + a_n}{b_1 + \cdots + b_n} \leqslant \sup(\frac{a_1}{b_1}, \cdots, \frac{a_n}{b_n}).$$

On raisonnera par récurrence en commençant par le cas n = 2.

★Exercice 6.12

- a) L'ensemble des irrationnels est il : stable pour l'addition ? stable pour la multiplication ?
- b) Montrer que $\sqrt{3}$, $\sqrt{6}$ et $\sqrt{6} \sqrt{2} \sqrt{3}$ sont irrationnels.

★Exercice 6.13

- a) Soit $E = \{ \frac{p}{2^n} / p \in \mathbb{Z}, n \in \mathbb{N} \}$, montrer que E est dense dans \mathbb{R} .
- b) Soit $A = \{r^3 \mid r \in \mathbb{Q}\}$, montrer que $A \neq \mathbb{Q}$ et que A est dense dans \mathbb{R} .
- c) Même question avec $A = \{ \frac{r^9}{1+r^6} / r \in \mathbb{Q} \}.$

★Exercice 6.14

Démontrer les inégalités suivantes :

a)
$$\forall x \in \mathbb{R} \setminus \{\pm 1\} : \left| \frac{1 - x^{n+1}}{1 - x} \right| \le \frac{1 - |x|^{n+1}}{1 - |x|}$$
; $\left| \frac{1 - x^{n+1}}{1 - x} \right| \le \frac{1 + |x|^{n+1}}{|1 - |x||}$.

b)
$$\forall x, y \in \mathbb{R} : x + y \le \frac{1}{2} + x^2 + y^2$$
; $x + y \le (1 + x^2)(1 + y^2)$; $|xy| \le \frac{x^2 + y^2}{2}$.

c) Soient
$$x_1, \dots, x_n \in [0; 1]: 1 - \sum_{i=1}^n x_i \leqslant \prod_{i=1}^n (1 - x_i)$$
; $\prod_{i=1}^n x_i \leqslant 2^{-n}$ ou $\prod_{i=1}^n (1 - x_i) \leqslant 2^{-n}$.

d)
$$\forall n \in \mathbb{N}^* : \frac{2n}{3} \sqrt{n} \le \sum_{k=1}^n \sqrt{k} \le \frac{4n+3}{6} \sqrt{n}$$
.

★Exercice 6.15

a) Soient *E* et *F* deux ensembles, soit $f: E \times F \to \mathbb{R}$ une application minorée, montrer que :

$$\inf_{(x,y) \in F \times F} f(x,y) = \inf_{x \in F} (\inf_{y \in F} f(x,y)) = \inf_{y \in F} (\inf_{x \in E} f(x,y))$$

b) Application : à quelle condition un parallélogramme de surface *S* donnée a - t'il un périmètre minimal ?