Name:

Darian Irani		

Netid:

irani2

CS 441 - HW2: PCA and Linear Models

Complete the sections below. You do not need to fill out the checklist.

Total Points A	vailable	[]/160
1. PCA on	MNIST	
a.	Display 10 principal component vectors	[]/5
b.	Display scatterplot	[]/5
C.	Plot cumulative explained variance	[]/5
d.	Compression and 1-NN experiment	[]/15
2. MNIST	Classification with Linear Models	
a.	LLR / SVM error vs training size	[]/20
b.	Error visualization	[]/10
C.	Parameter selection experiments	[]/15
Temper	rature Regression	
a.	Linear regression test	[]/10
b.	Feature selection results	[]/15
4. Stretch	Goals	
a.	PR and ROC curves	[]/10
b.	Visualize weights	[]/10
C.	Other embeddings	[]/15
d.	One city is all you need	[]/15
e.	SVM with RBF kernel	[]/10

1. PCA on MNIST

a. Display 10 principal component vectors

b. Display scatterplot

Scatterplot $x_{train[:500]}$ for the first two PCA dimensions. Show a different color for each label.

c. Plot cumulative explained variance

d. Compression and 1-NN experiment

Number of components selected:

	Total Time (s)	Test Error (%)	Dimensions
Brute Force (PCA)	0.38	2.7	87
Brute Force	0.82	3.1	784

2. MNIST Classification with Linear Models

a. LLR / SVM error vs training size

Test error (%)

# training samples	LLR	SVM
100	32.5%	32.4%
1,000	13.8%	16.1%
10,000	9.5%	11.1%
60,000	7.4%	8.2%

b. Error visualization

LLR

Most confidently correct: top images

Most confidently incorrect images: bottom images

SVM

Most confidently correct: top images

Most confidently incorrect images: bottom images

c. Parameter selection experiments

	SVM
Best C value	0.025
Validation error (%)	12.35
Test error (%)	14.65

Plot C value vs validation error for values tested

3. Temperature Regression

a. Linear regression test

Test RMSE

	Linear regression
Original features	1.7744
Normalized features	1.7726

Why might normalizing features in this way not be as helpful as it is for KNN?

As seen above, the RMSE for the normalized and original features of L2-regularized linear regression is very similar. Since KNN is a distance based algorithm, large numeric ranges can skew results and hence normalizing prevents any skewed results from affecting the dataset. Ridge regression uses a linear model with a regularization term, feature scaling is less effective than KNN. Ridge regression relies on a linear relationship where coefficients are adjusted to minimize the regularized loss function, rather than relying on distance metrics between points.

b. Feature selection results

Feature Rank	Feature number	City	Day
1	405	Grand Rapids	-1
2	347	Minneapolis	-1
3	345	Detroit	-1
4	334	Chicago	-1
5	345	Detroit	-1
6	350	Brooklyn	-1
7	412	New Haven	-1
8	348	Tampa	-1
9	361	Cleveland	-1
10	314	Fresno	-2

Test error using only the 10 most important features for regression

	Linear Regression
RMS Error	2.353

4. Stretch Goals

c. Other embeddings

Display 2+ plots for TSNE, MDA, and/or LDA, and copy PCA plot from 1b here.

PCA

t-SNE

MDS

d. One city is all you need

City

St. Louis

Test error using features only from that city

2.8659

Explain your process (in words):

Once the dataset is loaded and a model is selected. The aim is to use that model and validation data to obtain a RMSE value for each city. Once that city is identified I run the model on the test data to obtain a temperature prediction and a test error % for that city.

e. Compare linear SVM and SVM with RBF kernel

Test accuracy (%)

# training samples	SVM-Linear	SVM-RBF
100	32.4%	34.4%
1,000	16.1%	9.2%
10,000	11.1%	4.1%
60,000	8.2%	2.1%

Acknowledgments / Attribution

List any outside sources for code or ideas or "None".

https://stackoverflow.com/questions/46241578/feature-selection-scikit-learn

 $\frac{https://stackoverflow.com/questions/59851961/how-to-calculate-confidence-score-of-a-neural-network-prediction}{network-prediction}$

CS441: Applied ML - HW 2

Parts 1-2: MNIST

Include all the code for generating MNIST results below

```
In [83]: # initialization code
         import numpy as np
          from keras.datasets import mnist
          %matplotlib inline
          from matplotlib import pyplot as plt
          from scipy import stats
          from sklearn.linear model import LogisticRegression
         def load mnist():
           Loads, reshapes, and normalizes the data
            (x train, y train), (x test, y test) = mnist.load data() # loads
         MNIST data
           x train = np.reshape(x train, (len(x train), 28*28)) # reformat
          to 768-d vectors
           x \text{ test} = \text{np.reshape}(x \text{ test}, (\text{len}(x \text{ test}), 28*28))
           maxval = x train.max()
           x train = x train/maxval # normalize values to range from 0 to 1
           x test = x test/maxval
           return (x_train, y_train), (x_test, y_test)
          def display mnist(x, subplot rows=1, subplot cols=1):
            Displays one or more examples in a row or a grid
            if subplot rows>1 or subplot cols>1:
              fig, ax = plt.subplots(subplot_rows, subplot_cols, figsize=(15,
          15))
              for i in np.arange(len(x)):
                ax[i].imshow(np.reshape(x[i], (28,28)), cmap='gray')
                ax[i].axis('off')
            else:
                plt.imshow(np.reshape(x, (28,28)), cmap='gray')
                plt.axis('off')
            plt.show()
```

Part 1: PCA and Data Compression

```
In [84]: from sklearn.decomposition import PCA
         import matplotlib.pyplot as plt
         (x train, y train), (x test, y test) = load mnist()
         # Modified display mnist func
         def display mnist(x, subplot rows=1, subplot cols=1):
             Displays one or more examples in a row or a grid
             if subplot rows > 1 or subplot cols > 1 or len(x) > 1:
                 fig, ax = plt.subplots(subplot rows, subplot cols, figsize=
         (15, 15)
                 for i in range(len(x)):
                     if subplot rows > 1 or subplot cols > 1:
                         ax.ravel()[i].imshow(x[i], cmap='gray')
                         ax.ravel()[i].axis('off')
                     else:
                         plt.imshow(x[i], cmap='gray')
                         plt.axis('off')
             else:
                 plt.imshow(x[0], cmap='gray')
                 plt.axis('off')
             plt.show()
         # Compute the first 10 principal components using x train
         # TO DO
         # Display First 10 Components
         pca = PCA(n components=10)
         pca.fit(x train)
         # Retrieve the principal components and transform them back to 28x2
         8 format for visualization
         components = pca.components
         images = np.reshape(components, (10, 28, 28)) # Reshape components
         to 28x28 images
         # Display the first 10 components in a 2x5 grid
         display mnist(images, subplot rows=2, subplot cols=5)
```


In []:

```
In [85]: # Scatter plot of first two PCA dimensions
import seaborn as sns

(x_train, y_train), (x_test, y_test) = load_mnist()

pca = PCA(n_components=10)
    x_pca = pca.fit_transform(x_train[:500])

# use pca.transform
# TO DO
    ind = np.arange(500)
    sns.scatterplot(x=x_pca[ind,0],y=x_pca[ind,1], hue=y_train[ind], pa lette="colorblind")
```

Out[85]: <Axes: >


```
In [34]: # Plot cumulative explained variance ratio
         # cumsum and pca.explained variance ratio will be useful
         import matplotlib.pyplot as plt
         from sklearn.decomposition import PCA
         import numpy as np
         # TO DO
         (x_train, y_train), (x_test, y_test) = load_mnist()
         pca = PCA()
         pca.fit(x train)
         cum_var = np.cumsum(pca.explained_variance_ratio_)
         # Plotting
         plt.figure(figsize=(10, 6))
         plt.plot(cum var, marker='o')
         plt.xlabel('Number of Components')
         plt.ylabel('Cumulative Explained Variance')
         plt.title('Cumulative Explained Variance by PCA Components')
         plt.grid(True)
         plt.axhline(y=0.9, color='r', linestyle='--', label='90% Explained
         Variance')
         plt.legend(loc='best')
         plt.show()
```



```
In [51]: # Select number of dimensions that explains 90% of variance, accord
         ing to your plot above
         from sklearn.decomposition import PCA
         import numpy as np
         import faiss
         import time
         from sklearn.metrics import accuracy score
         pca 87 = PCA(n components=87)
         pca 87.fit(x train)
         x train pca = pca 87.transform(x train)
         x \text{ test pca} = pca 87.transform(x test)
         # Convert data type for Faiss compatibility
         x train faiss = x train.astype('float32')
         x test faiss = x test.astype('float32')
         x train pca faiss = x train pca.astype('float32')
         x test pca faiss = x test pca.astype('float32')
         # Create a Faiss index (L2 distance) for original features
         index_original = faiss.IndexFlatL2(x_train_faiss.shape[1])
         index_original.add(x_train_faiss) # add the vectors to the index
         # Create a Faiss index for compressed features
         index_compressed = faiss.IndexFlatL2(x_train pca faiss.shape[1])
         index compressed.add(x train pca faiss)
         # Function to perform 1-NN search and calculate accuracy
         def perform_search(index, x_query, y_true):
             start time = time.time()
             , I = index.search(x query, k=1) # Perform 1-NN search
             end time = time.time()
             y_pred = y_train[I.flatten()] # Retrieve predictions
             accuracy = accuracy score(y true, y pred)
             total time = end time - start time
             error = 1 - accuracy
             return total time, error
         # Compute time and error for 1-NN with original features
         time original, error original = perform search(index original, x te
         st faiss, y test)
         # Compute time and error for 1-NN with compressed features
         time compressed, error compressed = perform search(index compressed
         , x test pca faiss, y test)
         print(f"Original Features Time: {time original:.2f} s, Error: {erro
         r original:.4f}")
         print(f"Compressed Features Time: {time_compressed:.2f} s, Error: {
         error compressed:.4f}")
```

Original Features Time: 0.82 s, Error: 0.0309 Compressed Features Time: 0.38 s, Error: 0.0270

Part 2: MNIST Classification with Linear Models

```
In [37]: from sklearn.linear_model import LogisticRegression
from sklearn import svm
```

LLR/SVM vs training size

```
In [40]: from sklearn.linear model import LogisticRegression
         from sklearn.svm import LinearSVC
         from sklearn.metrics import accuracy score
         import numpy as np
         nsample = [100, 1000, 10000, 60000]
         results = []
         for N in nsample:
             x train N = x train[:N]
             y_train_N = y_train[:N]
             # Train Logistic Regression
             lr = LogisticRegression(max iter=10000)
             lr.fit(x train N, y train N)
             y pred lr = lr.predict(x test)
             error lr = 1 - accuracy score(y test, y pred lr)
             # Train Linear SVM
             svm = LinearSVC(max_iter=10000)
             svm.fit(x train N, y train N)
             y pred svm = svm.predict(x test)
             error_svm = 1 - accuracy_score(y_test, y_pred_svm)
             # Store the results
             results.append({
                  'Training Size': N,
                 'LR Error': error lr,
                  'SVM Error': error svm
             })
         # Display the results
         for result in results:
             print(f"Training Size: {result['Training Size']}, LR Error: {re
         sult['LR Error']:.4f}, SVM Error: {result['SVM Error']:.4f}")
```

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

Training Size: 100, LR Error: 0.3250, SVM Error: 0.3236 Training Size: 1000, LR Error: 0.1378, SVM Error: 0.1611 Training Size: 10000, LR Error: 0.0950, SVM Error: 0.1112 Training Size: 60000, LR Error: 0.0744, SVM Error: 0.0817

Error visualization

```
In [50]: # to get scores for logistic regression use: scores = model lr.pred
         ict proba(x test)
         # TO DO
         # to get scores for SVM use: scores = model svm.decision function(x
          test)
         # TO DO
         from sklearn.linear model import LogisticRegression
         from sklearn.svm import LinearSVC
         from sklearn.metrics import accuracy score
         import numpy as np
         from sklearn.preprocessing import label binarize
         # Train Logistic Regression
         llr = LogisticRegression(max iter=10000)
         llr.fit(x_train, y_train)
         y_pred_llr = lr.predict(x_test)
         llr score = llr.predict proba(x test)
         # Train Linear SVM
         svm = LinearSVC(max iter=10000, C=1.5)
         svm.fit(x train, y train)
         y pred svm = svm.predict(x test)
         svm score = svm.decision function(x test)
```

```
# For Logistic Regression
scores lr = llr.predict proba(x test)
predictions lr = np.argmax(scores lr, axis=1)
correctness lr = predictions lr == y test
# For Linear SVM
scores svm = svm.decision function(x test)
predictions svm = np.argmax(scores svm, axis=1)
correctness svm = predictions svm == y test
def display mnist(x, subplot rows=1, subplot cols=1, img size = (2,
2)):
  Displays one or more examples in a row or a grid. Adjust figsize
for smaller images.
  1 1 1
 # Calculate figure size dynamically based on the number of column
s; adjust width per image and height
 figure_width = subplot_cols * 2
  figure height = subplot rows * 2
  fig, ax = plt.subplots(subplot rows, subplot cols, figsize=(figur
e width, figure height))
  if subplot rows > 1 or subplot cols > 1:
    for i in range(len(x)):
      ax.ravel()[i].imshow(x[i].reshape(28, 28), cmap='gray')
      ax.ravel()[i].axis('off')
      plt.imshow(x[0].reshape(28, 28), cmap='gray')
      plt.axis('off')
  plt.show()
for label in range(10):
    # Logistic Regression
    label scores lr = scores lr[:, label]
    correct indices lr = np.where((predictions lr == label) & corre
ctness lr)[0]
    incorrect indices lr = np.where((predictions lr != label) & ~co
rrectness lr)[0]
    if len(correct indices lr) > 0:
        most confident correct lr = correct indices lr[np.argmax(la
bel scores lr[correct indices lr])]
        print(f"LR: Most confidently correct for label {label}:")
        display mnist(x test[most confident correct lr].reshape(1,
28, 28), img size=(1, 1)
    if len(incorrect indices lr) > 0:
        most confident incorrect lr = incorrect indices lr[np.argmi
n(label scores lr[incorrect indices lr])]
        print(f"LR: Most confidently incorrect for label {label}:")
        display mnist(x test[most confident incorrect lr].reshape(1
, 28, 28), img size=(1, 1)
```

```
# SVM
    label scores svm = scores svm[:, label]
    correct indices svm = np.where((predictions svm == label) & cor
rectness svm)[0]
    incorrect indices svm = np.where((predictions svm != label) & ~
correctness svm)[0]
    if len(correct indices svm) > 0:
        most confident correct svm = correct indices svm[np.argmax(
label scores svm[correct indices svm])]
        print(f"SVM: Most confidently correct for label {label}:")
        display mnist(x test[most confident correct svm].reshape(1,
28, 28), img size=(1, 1)
    if len(incorrect indices svm) > 0:
        most confident incorrect sym = incorrect indices sym[np.arg
min(label scores svm[incorrect indices svm])]
        print(f"SVM: Most confidently incorrect for label {label}:"
)
        display mnist(x test[most confident incorrect svm].reshape(
1, 28, 28), img size=(1, 1)
```

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

LR: Most confidently correct for label 0:

LR: Most confidently incorrect for label 0:

SVM: Most confidently correct for label 0:

SVM: Most confidently incorrect for label 0:

LR: Most confidently correct for label 1:

LR: Most confidently incorrect for label 1:

SVM: Most confidently correct for label 1:

SVM: Most confidently incorrect for label 1:

LR: Most confidently correct for label 2:

LR: Most confidently incorrect for label 2:

SVM: Most confidently correct for label 2:

SVM: Most confidently incorrect for label 2:

LR: Most confidently correct for label 3:

LR: Most confidently incorrect for label 3:

SVM: Most confidently correct for label 3:

SVM: Most confidently incorrect for label 3:

LR: Most confidently correct for label 4:

LR: Most confidently incorrect for label 4:

SVM: Most confidently correct for label 4:

SVM: Most confidently incorrect for label 4:

LR: Most confidently correct for label 5:

LR: Most confidently incorrect for label 5:

SVM: Most confidently correct for label 5:

SVM: Most confidently incorrect for label 5:

LR: Most confidently correct for label 6:

LR: Most confidently incorrect for label 6:

SVM: Most confidently correct for label 6:

SVM: Most confidently incorrect for label 6:

LR: Most confidently correct for label 7:

LR: Most confidently incorrect for label 7:

SVM: Most confidently correct for label 7:

SVM: Most confidently incorrect for label 7:

LR: Most confidently correct for label 8:

LR: Most confidently incorrect for label 8:

SVM: Most confidently correct for label 8:

SVM: Most confidently incorrect for label 8:

LR: Most confidently correct for label 9:

LR: Most confidently incorrect for label 9:

SVM: Most confidently correct for label 9:

SVM: Most confidently incorrect for label 9:

Parameter selection

```
In [90]: from sklearn.svm import LinearSVC
         from sklearn.metrics import accuracy score
         import matplotlib.pyplot as plt
         import numpy as np
         # Assuming x train, y train, and x test, y test are already loaded
         # Split the data for this experiment
         x train small = x train[:1000]
         y train small = y train[:1000]
         x val = x train[50000:]
         y_val = y_train[50000:]
         # Range of C values to test
         C \text{ values} = [0.0078125, 0.015625, 0.0195325, 0.025, 0.03125, 0.0625, 0.125]
         ,0.25,0.5,1.0,2.0]
         val errors = []
         # Iterate over the range of C values
         for C in C values:
             # Train Linear SVM
             svm = LinearSVC(C=C, max iter=10000)
             svm.fit(x train small, y train small)
             # Evaluate on the validation set
             y pred val = svm.predict(x val)
             val accuracy = accuracy score(y val, y pred val)
             val error = 1 - val accuracy
             val errors.append(val error)
             print(f"C={C}, Validation Error: {val error:.4f}")
         # Find the best C value and its corresponding validation error
         best index = np.argmin(val errors)
         best C = C values[best index]
         best error = val errors[best index]
         # Plotting the validation error for each C value
         plt.figure(figsize=(8, 6))
         plt.semilogx(C_values, val_errors, marker='o', linestyle='-', color
         = 'b')
         plt.xlabel('C value')
         plt.ylabel('Validation Error')
         plt.title('Validation Error for Different C values in Linear SVM')
         plt.grid(True)
         plt.show()
```

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

C=0.0078125, Validation Error: 0.1302 C=0.015625, Validation Error: 0.1245

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

C=0.0195325, Validation Error: 0.1235

C=0.025, Validation Error: 0.1253

C=0.03125, Validation Error: 0.1257

C=0.0625, Validation Error: 0.1287

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

C=0.125, Validation Error: 0.1344

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

C=0.25, Validation Error: 0.1398

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

C=0.5, Validation Error: 0.1453

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

C=1.0, Validation Error: 0.1498

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

C=2.0, Validation Error: 0.1530


```
In [89]: # Get test result for selected parameter
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import accuracy score
         # TO DO
         x train compressed = x train[:1000]
         y train compressed = y train[:1000]
         x val = x train[50000:]
         y val = y train[50000:]
         best C = 0.025
         # Train a new model with the best C value on the larger initial tra
         ining set
         lr best = LogisticRegression(C=best C, max iter=10000)
         lr best.fit(x train compressed, y train compressed)
         # Evaluate on the test set
         y_pred_test = lr_best.predict(x test)
         test_accuracy = accuracy_score(y_test, y_pred_test)
         test error = 1 - test accuracy
         print(f"Best C: {best_C}, Validation Error: {best_error:.4f}, Test
         Error: {test_error:.4f}")
```

Best C: 0.025, Validation Error: 0.1235, Test Error: 0.1465

Part 3: Temperature Regression

```
In [156]: import numpy as np
          from matplotlib import pyplot as plt
          from sklearn.linear model import Ridge
          from sklearn.linear model import Lasso
          # load data (modify to match your data directory or comment)
          def load temp data():
            datadir = "/Users/darian/Desktop/UIUC/Applied ML/HW2/Code/tempera
          ture data.npz"
            T = np.load(datadir)
            x_train, y_train, x_val, y_val, x_test, y_test, dates_train, date
          s_val, dates_test, feature_to_city, feature_to_day = \
            T['x_train'], T['y_train'], T['x_val'], T['y_val'], T['x_test'],
          T['y test'], T['dates train'], T['dates val'], T['dates test'], T['
          feature_to_city'], T['feature to day']
            return (x train, y train, x val, y val, x test, y test, dates tra
          in, dates val, dates test, feature to city, feature to day)
          # plot one data point for listed cities and target date
          def plot_temps(x, y, cities, feature_to_city, feature_to_day, targe
          t date):
            nc = len(cities)
            ndays = 5
            xplot = np.array([-5, -4, -3, -2, -1])
            yplot = np.zeros((nc,ndays))
            for f in np.arange(len(x)):
              for c in np.arange(nc):
                if cities[c]==feature_to_city[f]:
                  yplot[feature to day[f]+ndays,c] = x[f]
            plt.plot(xplot,yplot)
            plt.legend(cities)
            plt.plot(0, y, 'b*', markersize=10)
            plt.title('Predict Temp for Cleveland on ' + target date)
            plt.xlabel('Day')
            plt.ylabel('Avg Temp (C)')
            plt.show()
```

```
In [210]: # load data
          (x train, y train, x val, y val, x test, y test, dates train, dates
          val, dates test, feature to city, feature to day) = load temp data
          ()
          ''' Data format:
                x train, y train: features and target value for each training
          sample (used to fit model)
                x val, y val: features and target value for each validation s
          ample (used to select hyperparameters, such as regularization and K
                x test, y test: features and target value for each test sampl
          e (used to evaluate final performance)
                dates xxx: date of the target value for the corresponding sam
          ple
                feature to city: maps from a feature number to the city
                feature to day: maps from a feature number to a day relative
          to the target value, e.g. -2 means two days before
                Note: 361 is the temperature of Cleveland on the previous day
          . . .
          f = 361
          print('Feature {}: city = {}, day= {}'.format(f,feature to city[f],
          feature to day[f]))
          baseline rmse = np.sqrt(np.mean((y val[1:]-y val[:-1])**2)) # root
          mean squared error
          print('Baseline - prediction using previous day: RMSE={}'.format(ba
          seline rmse))
          # plot first two x/y for val
          plot temps(x val[0], y val[0], ['Cleveland', 'New York', 'Chicago',
          'Denver', 'St. Louis'], feature_to_city, feature_to_day, dates_val[
          01)
          plot temps(x val[1], y val[1], ['Cleveland', 'New York', 'Chicago',
          'Denver', 'St. Louis'], feature_to_city, feature_to_day, dates_val[
          1])
```

Feature 361: city = Cleveland, day= -1
Baseline - prediction using previous day: RMSE=3.460601246750482

Predict Temp for Cleveland on 2018-09-27

Predict Temp for Cleveland on 2018-09-28


```
In [173]: # linear regression (use Ridge)
          from sklearn.linear_model import Ridge
          import numpy as np
          # original features
          # TO DO
          lin regression original = Ridge(alpha=1)
          lin regression original.fit(x train, y train)
          y pred = lin regression original.predict(x test)
          # normalized features
          # TO DO
          def normalize features(x, y, fnum):
            ''' Normalize the features in x and y.
                For each data sample i:
                  x2[i] = x[i]-x[i,fnum]
                  y2[i] = y[i]-x[i,fnum]
            . . .
            x2 = x.copy()
            y2 = y.copy()
            for i in np.arange(len(x)):
              x2[i] = x[i] - x[i, fnum]
              y2[i] = y[i] - x[i,fnum]
            return x2, y2
          fnum = 361
          x train norm, y train norm = normalize features(x train, y train, f
          num)
          x test norm, y test norm = normalize features(x test, y test, fnum)
          lin regression normalized = Ridge(alpha=1)
          lin regression normalized.fit(x train norm, y train norm)
          y pred norm = lin regression normalized.predict(x test norm)
          # Define RMSE calculation function
          def calculate rmse(y pred, y true):
              return np.sqrt(np.mean((y pred-y true)**2))
          rmse original = calculate rmse(y pred, y test)
          rmse normalized = calculate rmse(y pred norm, y test norm)
          print(f"RMSE orginal: ", rmse_original)
          print(f"RMSE normalized: ", rmse normalized)
```

RMSE orginal: 1.7743829555451878 RMSE normalized: 1.7725575696489029

```
In [160]: from sklearn import linear model
          from sklearn.linear model import Ridge
          def load temp data():
            datadir = "/Users/darian/Desktop/UIUC/Applied ML/HW2/Code/tempera
          ture data.npz"
            T = np.load(datadir)
            x train, y train, x val, y val, x test, y test, dates train, date
          s val, dates test, feature to city, feature to day = \
            T['x train'], T['y_train'], T['x_val'], T['y_val'], T['x_test'],
          T['y_test'], T['dates_train'], T['dates_val'], T['dates_test'], T['
          feature_to_city'], T['feature_to_day']
            return (x train, y train, x val, y val, x test, y test, dates tra
          in, dates val, dates test, feature to city, feature to day)
          # feature analysis (select important features using Lasso)
          # TO DO
          lasso = linear model.Lasso(alpha = 0.01).fit(x train, y train)
          optimal features = []
          imp features = lasso.coef
          for i in range(len(imp features)):
              if abs(imp features[i]) > 0.001:
                  optimal features.append((abs(imp features[i]),i))
          features 10 = sorted(optimal features, reverse=True)[:10]
          features_10_idx = []
          for i in features 10:
              features 10 idx.append(i[1])
              print("Feature: {} City: {} Day: {}".format(i[1], feature to ci
          ty[i[1]], feature to day[i[1]])
          # predict using best features
          # TO DO
          x_train_10 = x_train[:, features_10_idx]
          x test 10 = x test[:, features 10 idx]
          ridge = linear model.Ridge(alpha = 0.01).fit(x train 10, y train)
          y pred 10 = ridge.predict(x test 10)
          rmse features = np.sqrt(np.mean((y pred 10-y test)**2))
          print("RMSE: {}".format(rmse_features))
```

```
Feature: 332 City: New York Day: -1
Feature: 361 City: Cleveland Day: -1
Feature: 348 City: Tampa Day: -1
Feature: 412 City: New Haven Day: -1
Feature: 350 City: Brooklyn Day: -1
Feature: 334 City: Chicago Day: -1
Feature: 345 City: Detroit Day: -1
Feature: 405 City: Grand Rapids Day: -1
Feature: 347 City: Minneapolis Day: -1
Feature: 314 City: Fresno Day: -2
RMSE: 2.3531757895767713

/opt/homebrew/lib/python3.8/site-packages/sklearn/linear_model/_co
ordinate_descent.py:628: ConvergenceWarning: Objective did not con
verge. You might want to increase the number of iterations, check
```

ordinate_descent.py:628: ConvergenceWarning: Objective did not con verge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. D uality gap: 2.727e+03, tolerance: 2.049e+01 model = cd_fast.enet_coordinate_descent(

Part 4: Stretch Goals

Include all your code used for any stretch goals in this section. Add headings where appropriate.

4a: PR and ROC curves:

4c: Other embeddings

```
In [167]: from sklearn.manifold import TSNE, MDS
          from sklearn.discriminant analysis import LinearDiscriminantAnalysi
          s as LDA
          from sklearn.decomposition import PCA
          import matplotlib.pyplot as plt
          import seaborn as sns
          import numpy as np
          (x train, y train), (x test, y test) = load mnist()
          x compressed = x train[:500]
          y_compressed = y_train[:500]
          # PCA transformation
          pca = PCA(n components=2)
          x pca = pca.fit transform(x compressed)
          # t-SNE transformation
          tsne = TSNE(n components=2, random state=42)
          x tsne = tsne.fit transform(x compressed)
          # MDS transformation
          mds = MDS(n components=2, random state=42)
          x mds = mds.fit transform(x compressed)
          # LDA transformation
          lda = LDA(n components=2)
          x lda = lda.fit transform(x compressed, y compressed)
          # Plotting
          fig, axes = plt.subplots(1, 4, figsize=(24, 6))
          plot labels = ['PCA', 't-SNE', 'MDS', 'LDA']
          for i, (x_transformed, title) in enumerate(zip([x_pca, x_tsne, x_md
          s, x_lda], plot labels)):
              sns.scatterplot(ax=axes[i], x=x transformed[:,0], y=x transform
          ed[:,1], hue=y_compressed, palette="colorblind", legend="full")
              axes[i].set title(title)
              axes[i].legend(title='Digit', bbox to anchor=(1.05, 1), loc='up
          per left')
          plt.tight_layout()
          plt.show()
```

/opt/homebrew/lib/python3.8/site-packages/sklearn/manifold/_mds.p
y:298: FutureWarning: The default value of `normalized_stress` wil
l change to `'auto'` in version 1.4. To suppress this warning, man
ually set the value of `normalized_stress`.
 warnings.warn(

4d. Best city for temp prediction

```
In [212]: import numpy as np
          from sklearn.linear model import LinearRegression
          from sklearn.metrics import mean squared error
          def load temp data():
            datadir = "/Users/darian/Desktop/UIUC/Applied ML/HW2/Code/tempera
          ture data.npz"
            T = np.load(datadir)
            x train, y train, x val, y val, x test, y test, dates train, date
          s val, dates test, feature to city, feature to day = \
            T['x_train'], T['y_train'], T['x_val'], T['y_val'], T['x_test'],
          T['y_test'], T['dates_train'], T['dates_val'], T['dates_test'], T['
          feature_to_city'], T['feature_to_day']
            return (x train, y train, x val, y val, x test, y test, dates tra
          in, dates val, dates test, feature to city, feature to day)
          # Load the data
          x train, y train, x val, y val, x test, y test, dates train, dates
          val, dates test, feature to city, feature to day = load temp data()
          def evaluate city(city index):
              # Select data for the specified city
              x_train_city = x_train[:, city_index].reshape(-1, 1)
              x val city = x val[:, city index].reshape(-1, 1)
              # Train a linear regression model
              model = LinearRegression()
              model.fit(x train city, y train)
              # Predict on the validation set
              y val pred = model.predict(x val city)
              # Calculate RMSE
              rmse = np.sqrt(mean squared error(y_val, y_val_pred))
              return rmse
          # Dictionary to hold city names and their corresponding RMSE values
          city rmse = {}
          # Iterate over all cities (assuming one feature per city)
          for city index in range(x train.shape[1]):
              rmse = evaluate city(city index)
              city_name = feature_to_city[city_index] # Assuming feature_to_
          city is a list mapping feature indices to city names
              city rmse[city name] = rmse
          # Sort cities by RMSE and print the results
          sorted_cities_by_rmse = sorted(city_rmse.items(), key=lambda item:
          item[1])
          print("Cities and their RMSE on validation data:")
          for city, rmse in sorted cities by rmse:
              print(f"{city}: {rmse:.4f}")
```

Chicago: 2.8442 St. Louis: 2.8659

Indianapolis: 2.9853

Grand Rapids: 3.1193

Milwaukee: 3.1711

Detroit: 3.3436

Kansas City: 3.4068

Cleveland: 3.4079

Dayton: 3.4296

Cincinnati: 3.4822

Louisville: 3.5352

Tulsa: 3.6153

Akron: 3.6754

Minneapolis: 3.6967

Columbus: 3.7233

Memphis: 3.7251

Nashville: 3.8208

Oklahoma City: 3.8307

Omaha: 3.9372

Buffalo: 3.9613

Dallas: 4.1461

Pittsburgh: 4.1886

Fort Worth: 4.2271

Rochester: 4.3033

Knoxville: 4.3504

Austin: 4.4012

San Antonio: 4.4939

Birmingham: 4.5117

Manhattan: 4.5320

New York: 4.5342

Brooklyn: 4.5348

Bronx: 4.5359

Queens: 4.5470

Baltimore: 4.5659

Bridgeport: 4.5908

New Orleans: 4.5965

New Haven: 4.6441

Albany: 4.6873

Allentown: 4.6877

Houston: 4.6955

Philadelphia: 4.7579

Washington: 4.7773

Springfield: 4.7908

Atlanta: 4.8338

Hartford: 4.8475

Baton Rouge: 4.9067

Boston: 4.9734

Providence: 4.9836

Virginia Beach: 5.0083

Colorado Springs: 5.0569

Charlotte: 5.1007

El Paso: 5.2057

Albuquerque: 5.2148

Richmond: 5.2229

Denver: 5.2366

Raleigh: 5.3124

Ogden: 5.4174

```
Portland: 5.6385
          Sacramento: 5.6967
          Fresno: 5.7408
          Tucson: 5.8491
          Jacksonville: 5.9406
          Bakersfield: 5.9406
          Sarasota: 6.0134
          Cape Coral: 6.2157
          Concord: 6.2443
          Tampa: 6.3157
          Honolulu: 6.4835
          Orlando: 6.5291
          Miami: 6.5451
          Riverside: 6.6221
          San Jose: 6.7731
          Los Angeles: 6.9142
          San Francisco: 6.9842
          Mission Viejo: 7.1521
          San Diego: 7.3052
In [207]: import numpy as np
          from sklearn.linear model import LinearRegression
          from sklearn.metrics import mean squared error
          def load temp data():
              # Placeholder for the actual load temp data function
              pass
          def train and evaluate city(x train, y train, x test, y test, featu
          re to city, city name):
              Trains a Linear Regression model for a specific city's temperat
          ure data and evaluates it on the test set.
              Parameters:
              - x train: Training feature data
              - y_train: Training target data
              - x test: Test feature data
              - y test: Test target data
              - feature to city: List mapping feature indices to city names
              - city name: The name of the city to evaluate
              Returns:
              - rmse test: The RMSE of the model on the test set for the spec
          ified city
              # Load the data
              x_train, y_train, x_val, y_val, x_test, y_test, dates_train, da
          tes_val, dates_test, feature_to_city, feature_to_day = load_temp_da
          ta()
```

Columbia: 5.4431 McAllen: 5.4881

Salt Lake City: 5.4916 Charleston: 5.5216 Seattle: 5.5735 Las Vegas: 5.5946 Phoenix: 5.6157

```
# Find the index for the specified city
    try:
        index = feature to city.index(city name)
    except ValueError:
        print(f"{city name} not found in the feature to city mappin
g.")
        return
    # Select the temperature data for the specified city
    x train city = x train[:, index].reshape(-1, 1)
    x test city = x test[:, index].reshape(-1, 1)
    # Train a Linear Regression model on the training data for the
city
    model = LinearRegression()
    model.fit(x train city, y train)
    # Predict the temperature on the test set
    y test pred = model.predict(x test city)
    # Calculate the RMSE on the test set
    rmse test = np.sqrt(mean squared error(y test, y test pred))
    print(f"Test RMSE for {city_name}: {rmse_test:.4f}")
    return rmse test
# Example usage
# Assuming the load temp data function is defined elsewhere and loa
ds your dataset correctly
# rmse test st louis = train and evaluate city(x train, y train, x
test, y test, feature to city, 'St. Louis')
```

4e. SVM with RBF Kernel

```
In [190]: from sklearn.linear model import LogisticRegression
          from sklearn.svm import LinearSVC, SVC
          from sklearn.metrics import accuracy score
          import numpy as np
          (x train, y train), (x test, y test) = load mnist()
          nsample = [100, 1000, 10000, 60000]
          results lin = []
          results rbf = []
          for N in nsample:
              x_train_N = x_train[:N]
              y train N = y train[:N]
              # Train Linear SVM
              svm = LinearSVC(max iter=10000)
              svm.fit(x train N, y train N)
              y pred svm = svm.predict(x test)
              error svm = 1 - accuracy score(y test, y pred svm)
              # Train RBF SVM
              svm rbf = SVC(max iter=10000, kernel="rbf")
              svm rbf.fit(x train N, y train N)
              y pred svm rbf = svm rbf.predict(x test)
              error svm rbf = 1 - accuracy score(y test, y pred svm rbf)
              # Store the results
              results lin.append({
                   'Training Size': N,
                   'Linear SVM Error': error svm
              })
              results rbf.append({
                   'Training Size': N,
                  'RBF SVM Error': error svm rbf
              })
          # Display the results
          for result in results lin:
              print(f"Training Size: {result['Training Size']}, Linear SVM Er
          ror: {result['Linear SVM Error']:.4f}")
          for result in results rbf:
              print(f"Training Size: {result['Training Size']}, RBF SVM Error
          : {result['RBF SVM Error']:.4f}")
```

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

/opt/homebrew/lib/python3.8/site-packages/sklearn/svm/_classes.py: 32: FutureWarning: The default value of `dual` will change from `T rue` to `'auto'` in 1.5. Set the value of `dual` explicitly to sup press the warning.

warnings.warn(

Training Size: 100, Linear SVM Error: 0.3235
Training Size: 1000, Linear SVM Error: 0.1611
Training Size: 10000, Linear SVM Error: 0.1112
Training Size: 60000, Linear SVM Error: 0.0817
Training Size: 100, RBF SVM Error: 0.3441
Training Size: 1000, RBF SVM Error: 0.0917
Training Size: 10000, RBF SVM Error: 0.0406
Training Size: 60000, RBF SVM Error: 0.0208

```
In [122]: # from https://gist.github.com/jonathanagustin/b67b97ef12c53a8dec27
          b343dca4abba
          # install can take a minute
          import os
          # @title Convert Notebook to PDF. Save Notebook to given directory
          NOTEBOOKS DIR = "/content/drive/My Drive/CS441/24SP/hw2" # @param {
          type: "string"}
          NOTEBOOK NAME = "CS441 SP24 HW2 Solution.ipynb" # @param {type: "str
          ing"}
          #----
          ----#
          from google.colab import drive
          drive.mount("/content/drive/", force_remount=True)
          NOTEBOOK PATH = f"{NOTEBOOKS DIR}/{NOTEBOOK NAME}"
          assert os.path.exists(NOTEBOOK PATH), f"NOTEBOOK NOT FOUND: {NOTEBO
          OK PATH}"
          | apt install -y texlive-xetex texlive-fonts-recommended texlive-pla
          in-generic > /dev/null 2>&1
          | jupyter nbconvert "$NOTEBOOK PATH" --to pdf > /dev/null 2>&1
          NOTEBOOK_PDF = NOTEBOOK_PATH.rsplit('.', 1)[0] + '.pdf'
          assert os.path.exists(NOTEBOOK PDF), f"ERROR MAKING PDF: {NOTEBOOK
          PDF}"
          print(f"PDF CREATED: {NOTEBOOK PDF}")
          ModuleNotFoundError
                                                    Traceback (most recent c
          all last)
          Cell In[122], line 9
                7 NOTEBOOK NAME = "CS441 SP24 HW2 Solution.ipynb" # @param {
          type:"string"}
                8 #----
          ---> 9 from google.colab import drive
               10 drive.mount("/content/drive/", force remount=True)
               11 NOTEBOOK PATH = f"{NOTEBOOKS DIR}/{NOTEBOOK NAME}"
          ModuleNotFoundError: No module named 'google.colab'
 In [ ]:
```