relative boundary of C is defined as

all C \ relint C.

Tax.
$$C = \left\{ x \in \mathbb{R}^3 : -1 \le x_1 \le 1, -1 \le x_2 \le 1, x_3 = 0 \right\}$$

$$aff(C) = \left\{ x \in \mathbb{R}^3 : x_3 = 0 \right\}.$$

$$int(C) = \left\{ y \in \mathbb{R}^3 : E B(y, r) \in C \right\}$$

$$= \emptyset \text{ empty set.}$$

$$relint(C) = \left\{ x \in \mathbb{R}^3 : -1 < x_1 < 1, -1 < x_2 < 1, x_3 < 1 < x_4 < 1 < x_5 <$$

relative boundary of C 15

$$\{x \in \mathbb{R}^3 : \max\{|x|, |x_2|\} = 1, x_3 = 0\}.$$

cl(C)= C since The complement
$$\mathbb{R}^3$$
 C \mathbb{R}^3 C \mathbb{R}^3

Convex	sets

A set C is convex f $X_1, Y_2 \in C$, $0 \le 0 \le 1$, we have $0 \times 1 + (1-0) \times 2 \in C$.

 $D_1 \times 1 + B_2 \times_2 + \dots + B_K \times_K$, $J_0 = 1$, $B_1 > 0$, is a convex combination of X_1, \dots, X_K

not convex

this part does not belong to the set.

That convex.

convex hull of C

= { Dixit DzXz+...+ Dxxx: Xi \in C, Di \in D, \square Di=13

Ex.
C

Cones

A set C is a cone if $\forall x \in C$, $\partial \geqslant O$ we have $\partial x \in C$.

C is a convex cone if $\forall x_1, x_2 \in C$.

C is a convex cone if $\forall x_1, x_2 \in C$. and $\partial_1 \ge 0$, $\partial_2 \ge 0$, we have $\partial_1 x_1 + \partial_2 x_2 \in C$

 $\theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_K x_K$, $\theta_1 > 0$, is a conic combination of x_1, x_2, \dots, x_K .

Hyperplane $H = \{x \in \mathbb{R}^n : a^T x = b\}$ for $a \in \mathbb{R}$ and $a \in \mathbb{R}$ and Juppose xoeH. + aTxo=b Then $H = \{x: a^T(x-x_0)=0\}$ $= \int x_0 + V = a^T v = 0.7$ $v \in \mathbb{R}^n$ for x = x x plane (closed) Half space $\begin{cases} x \in \mathbb{R}^n : a \neq b \end{cases}$ (open)

Euclidean ball $B(X_c, r) = \int x : ||x - x_c||_2 \le r$ $= \int x : (x - x_c)^T (x - x_c) \le r^2$ $= \int x_c + ru^2 ||u||_2 \le 1$

This norm ball is convex.

Proof. If $||x_1-x_c||_{\leq r}$, $||x_2-x_c||_{\leq r}$ The $0 \leq \theta \leq 1$, $||(\delta x_i + (i-\theta)x_2) - x_c||_{2}$ $= ||(\delta x_i + (i-\theta)x_2) + (i-\theta)(x_2-x_c)||$ $\leq \text{triangle inequality} ||(\delta x_i-x_c)|| + ||(i-\theta)(x_2-x_c)||$ $\leq homogenish$ $\leq r$.