Particle spectrograph

Wave operator and propagator

					+t ₁)		2 2
$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}\!$	$-\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	$\frac{12ik}{(3+2k^2)^2t_1}$	$\frac{12k^2}{(3+2k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{12}{(3+2k^2)^2t_1}$	$-\frac{12ik}{(3+2k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+2k^2)^2t_1}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	0	0	0	0
	$_{1}^{#1}+^{\alpha\beta}$	$_{1}^{#2}+^{\alpha\beta}$	$_{1}^{#1}+^{\alpha\beta}$	$\sigma_{1}^{\#1} + \alpha$	$\sigma_{1}^{\#2} + \alpha$	$\tau_1^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

	$\sigma_0^{\sharp 1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2}$

i							
$f_{1^-}^{\#2}$	0	0	0	ikt_1	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{\imath}kt_1$
$f_{1}^{\#1}$ $\alpha\beta$	$-\frac{ikt_1}{3\sqrt{2}}$	<u>ikt1</u> 3	$\frac{k^2 t_1}{3}$	0	0	0	0
$\omega_1^{\#_2^2}$	$-\frac{t_1}{3\sqrt{2}}$	[1] 3	$-rac{1}{3}\bar{l}kt_1$	0	0	0	0
$\omega_{1}^{\#1}{}_{\!$	6 6	\frac{t_1}{3\sqrt{2}}	$\frac{i k t_1}{3 \sqrt{2}}$	0	0	0	0
3	$+^{\alpha\beta}$	ı	$+^{\alpha\beta}$		$+_{\alpha}$		

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2^{-} \alpha \beta \chi}^{\# 1}$
$\sigma_{2}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-} \alpha \beta \chi}^{\# 1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2^{+}}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

_	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{\#1}$ †	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-\bar{l}\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2$

Joan de compensions/gaage gemenard	משב שבוובו מנטוש
SO(3) irreps	Multiplicities
$\tau_{0+}^{#2} == 0$	1
$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	1
$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1}\alpha\beta - 2ik \sigma_{1+}^{\#1}\alpha\beta == 0$	3
$2 \ \sigma_{1}^{\#1}{}^{\alpha\beta} + \ \sigma_{1}^{\#2}{}^{\alpha\beta} = 0$	3
$\tau_{2+}^{\#1}\alpha\beta$ - 2 ik $\sigma_{2+}^{\#1}\alpha\beta$ == 0	2
Total constraints:	19

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$