第二次作业

提交 DDL: 2021 年 11 月 4 日 0 时 徐薪 519021910726

作业完成形式有三种:

- (1) 你可以手写自己的解答并拍照,再将照片整理成一份 word/pdf 文件并提交。
- (2) 你可以使用 word 文档进行编辑,最后提交 word/pdf 文件。
- (3) 你可以使用 latex 进行编辑,最后提交 pdf 文件。

如果你没有在 DDL 之前提交作业,请及时在微信群里联系助教进行补交。如果对作业有任何问题,你可以在从微信里询问助教谢瑜璋,或者发邮件到 constantjxyz@sjtu.edu.cn。

1 本次作业可能用到的知识点

本次作业可能会用到以下知识点:

- (1) 局部搜索算法(例如爬山法)与系统搜索算法(例如我们之前讲过的 BFS、A* 算法)的定义、特点、复杂性、适用范围。
 - (2) 爬山法的定义、限制性,代替爬山法的其他局部搜索算法。
 - (3) 多元函数的求偏导方法,最优化问题的最速下降法。
 - (4) minimax 搜索树的定义、计算, $\alpha \beta$ 剪枝法的计算过程。
- (5) CSP 问题的定义,求解过程中选择变量的顺序,弧相容性(arc consistency)的定义,使用回溯法与 AC3 算法求解 CSP 问题的过程。

2 第一题

尝试比较局部搜索算法(例如爬山法)与系统搜索算法(例如宽度优先搜索、A*算法)。

Solution. 局部搜索算法:

- 1. 不保存访问路径, 只关心当前节点的状态, 所以并不知道到达该节点的路径。
- 2. 每次向当前节点中表现最好的邻居节点移动。
- 3. 不一定能找到全局最优解,可能找到局部最优解。

系统搜索算法:

- 1. 探索整个搜索空间:记录哪些节点已经被访问、哪些节点将要被访问。
- 2. 记录探索节点的路径,当目标节点被访问时,可以得到从原点到目标的路径。
- 3. 一般情况下能找到全局最优解。

3 第二题

我们希望使用爬山法解决一些最优化问题。

- (1) 假设我们需要找 $f(x,y,z) = e^x(xy+2z)$ 的最小值,且当前状态下我们有 (x,y,z) = (0,1,-1),那么我们需要将当前状态向怎样的方向进行移动、能够在理论上最快靠近极值?(仅说明移动方向即可,方向用三维元组表示即可,计算过程可以参考多元函数的偏导数求解、最速下降法)。
 - (2) 使用爬山法搜索可能会遇到哪些问题? 我们可以使用哪些更好的方法来代替?

Solution. 1. $\frac{df}{dx} = e^x(xy + 2z) + e^x y = -1$, $\frac{df}{dy} = e^x x = 0$, $\frac{df}{dz} = 2e^x = 2$. 所以,应该朝着相反的方向移动,即 (1,0,-2).

2. 可能会得到局部最优解。解决方法: 重新设定初始值, 重新用爬山法再计算一次。或者是采取模拟退火算法, 每次都有一定的概率转移到表现更差的邻居节点(概率与表现正相关), 并且转移到较差邻居节点的概率随着迭代次数的增加而减少。

4 第三题

我们的 minimax 搜索树如图1所示。

- (1) 假如我们的 a 节点是 max 节点,请问最后 a 节点会得到怎样的值?
- (2) 假如我们使用 $\alpha-\beta$ 剪枝法进行 minimax 树的搜索,搜索过程中会从左至右访问相关节点,且 \mathbf{a} 节点是 \mathbf{max} 节点。算法运行过程中会访问多少个节点(包括字母标号的节点与数字标号的叶节点、忽略重复访问)?同时,请写下各节点的访问顺序(例如顺序:" \mathbf{a} \mathbf{c} \mathbf{f} $\mathbf{43}$ ")

图 1: 第三题的对抗搜索树

Solution. 1. 32

2. 算法运行的过程中会访问 12 个节点。访问顺序为: $a \to c \to f \to 43 \to f \to 12 \to f \to c \to g \to 32 \to g \to 31 \to g \to c \to a \to b \to d \to 20 \to d \to 23 \to d \to b \to a$. 节点 e 及其子节点被剪枝了。

5 第四题

考虑一个这样的 CSP 问题: 我们需要给变量 X_1, X_2, X_3, X_4 赋值,需要满足以下约束: $(a)X_1 \ge X_2, (b)X_2 > X_3$ or $X_3 - X_2 = 2, (c)X_3 \ne X_4, (d)X_1 \ne X_3$ 。

(1) 根据 CSP 问题赋值求解的 Most constraining variable 规则,我们应该最先尝试给哪个

图 2: 第四题的 csp 问题

变量赋值?

(2)假如我们规定变量变量 X_1, X_2, X_3, X_4 的值域分别为 $D_1 = \{1, 2, 3, 4\}, D_2 = \{3, 4, 5, 8, 9\}, D_3 = \{2, 3, 5, 6, 7, 9\}, D_4 = \{3, 5, 7, 8, 9\}$ 。请问变量 X_1, X_2, X_3, X_4 的哪些弧满足弧相容性(arc consistency)?

(3) 我们对该 CSP 问题在当前状态下运行 AC3 算法,请完成下方表格的步骤 1-7。

初始的搜索列: $\{X_2 \to X_1, X_1 \to X_2, X_3 \to X_2, X_2 \to X_3, X_4 \to X_3, X_3 \to X_4, X_3 \to X_1, X_1 \to X_3\}$ 。

步骤	需要检查的弧 $X_i \to X_j$	X_i 值域的变化	添加进入搜索列的弧
0	$X_2 \to X_1$	$\{3,4,5,8,9\} \to \{3,4\}$	$\{X_1 \to X_2\}, \{X_3 \to X_2\}$
1	$X_1 o X_2$	$\{1,2,3,4\} \to \{3,4\}$	$\{X_2 \to X_1\}, \{X_3 \to X_1\}$
2	$X_3 \to X_2$	${3,4,5,6,7,9} \rightarrow {2,3,5,6}$	$\{X_1 \to X_3\}, \{X_2 \to X_3\}, \{X_4 \to X_3\}$
3	$X_2 \to X_3$	无	无
4	$X_4 \to X_3$	无	无
5	$X_3 \to X_4$	无	无
6	$X_3 \to X_1$	无	无
7	$X_1 \to X_3$	无	无

Solution. 1. X_3 .

- 2. $X_1 \to X_3, X_3 \to X_1, X_2 \to X_3, X_3 \to X_4, X_4 \to X_3$.
- 3. 如题所示。

6 作业反馈

点击访问链接https://www.wjx.cn/vj/Pp2H0j3.aspx或者扫描下方的二维码就可以反馈意见啦~

图 3: 作业调查问卷