浙江大学实验报告

专业:信息工程姓名:李昕学号:3230103034日期:2024 年 11 月 5 日

地点: 东 4-216

一、实验目的

(1) 实验研究戴维南定理。

(2) 掌握有源二端口网络等效电路参数的测量方法。

二、 实验任务和要求

- (1) 测量戴维南定理的相关等效参数。(开路电压、短路电流)
- (2) 利用测得的参数构建等效电路,并且对于戴维南定理进行验证。

三、实验原理

任何一个线性网络,如果只研究其中一条支路的电压与电流,则可将电路的其余部分视为一个含源的单端口网络。该网络可以等效于一个电压源或者是一个电流源。

如果将该网络等效于一个电压源,则电压源的输出电压等于该网络的开路电压,等效内阻等于该网络中各电源均为零时的无源网络的入端电阻,这就是戴维南定理。如图 1 所示,其电压源的电动势 Us 等于这个有源二端口网络的开路电压 UOC, 其等效电阻 Ro 等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

图 1: 戴维南等效电路图

四、 实验方案设计与参数计算

1. 实验电路和方案总体设计

实验电路如下图所示

图 2: 实验电路

本实验的大致思路如下:

- (1) 用开路电压、短路电流法测定戴维南等效电路的 U_{OC} 、 R_{O} 。
- (2) 负载实验。按图 5 接入负载 R_L , 改变 R_L 阻值, 测量有源二端口网络的外特性, 并记录实验数据
- (3) 验证戴维南定理: 验证戴维南定理: 用一只 $1k\Omega$ 的电位器作为 R_O ,将其阻值调整到等于步骤 (1) 所得的等效电阻 R_O 的值,然后令其与直流稳压电源 U_{OC} 相串联,按下图实验电路 2 进行实验,记录实验数据,作图对戴维南定理进行验证。

2

2. 理论值计算

2.1 开路电压:

如图,画出 A 和 B 开路时的等效电路: $\Rightarrow U_{AB} = 6 + (510 \cdot I_s) = 10.08V$

2.2 短路电流

利用网孔电流法:

$$\begin{cases}
840i_1 + 510i_2 - 510i_3 = 0 \\
i_1 - i_2 = I_S \\
510(i_3 - i_1) = 6
\end{cases}$$
(1)

解得:

$$\begin{cases} i_1 = 12.4mA \\ i_2 = 4.44mA \\ i_3 = 24.209mA \end{cases}$$
 (2)

短路电流即 AB 间的电流, $I_S=i_3-i_2=19.77mA$

五、 实验仪器设备

• 万用表

- 电流表
- 电路板

六、 实验步骤、实验数据记录

(1) 用开路电压、短路电流法测定戴维南等效电路的 U_{OC} 、 R_O 和诺顿等效电路的 I_{SC} 、 R_O 。按图 5 接入稳压电源 $U_s=6V$ 和恒流源 $I_s=8mA$,接入负载 R_L 。测出 U_{OC} 和 I_{SC} ,并计算出 R_O 。

表 1: 实验数据

U_{oc} (V)	$I_{sc} (\mathrm{mA})$	$R_O = U_{oc}/I_{sc}(\Omega)$			
10.24	19.57	523.25			

(2) 负载实验。按图 5 接入负载 R_L , 改变 R_L 阻值,测量有源二端口网络的外特性,实验数据如下:

	1	2	3	4	5	6	7	8	9
$R_L(\Omega)$	69.1	213	373	595	1017	1597	2290	3520	5180
$U_{AB}(V)$	0.77	1.165	1.56	2.22	2.91	3.61	3.96	4.42	4.74
I_{mA}	6.34	5.09	4.41	3.72	2.94	2.18	1.79	1.30	0.95

作出 U-I 图像:

图 4: U-I 图像

(3) 验证戴维南定理: 用一只 1kΩ 的电位器作为 Ro,将其阻值调整到等于步骤 (1) 所得的等效电阻 Ro 的值,然后令其与直流稳压电源 U_{OC} (即之前测得的开路电压值) 相串联,测得相应数据如下表:

	1	2	3	4	5	6	7	8	9
$R_L(\Omega)$	705	791	840	883	924	930	950	1010	1049
$U_{AB}(V)$	6.02	5.85	6.29	6.14	6.40	6.43	6.40	6.74	6.70
I_{mA}	8.38	8.58	7.84	8.03	7.71	7.58	7.33	7.00	6.80

再次作出 U-I 图像:

图 5: U-I 图像

七、 数据分析与讨论

作出的两条 U-I 曲线虽然存在误差,但基本一致,验证了电路满足戴维南定理。

在实际测量中,由于第二个电路中外电阻的可调范围较小,因此误差较大,下次应选择调节范围更大的电阻进行调节;此外,电压和电流值选的过于接近,也不利于直现进行拟合。

八、 结论

可以使用戴维南定理绘制有源二端口网络等效电路。

九、 心得与体会

本实验中,我深刻体会到耐心和细心的重要性,也感受到了测试点的选择对结果的影响,应该必须细致分析误差,以提高实验准确性。同时,本次使用了 Python 拟合,为数据处理提供了有力工具。

十、 思考题

- 1. 在求戴维南或诺顿等效电路时,做短路实验,则测 Isc 的条件是什么?
- (1) 必须断开负载,使其与电路分离
- (2) 要求 AB 端的等效电阻应该足够大,而不至于短路的电流超过额定值,损坏电源

2. 在本实验中可否直接做负载短路实验?

答:不能。如果没有对开路电压一定的估计, R_L 的选取过小,会导致烧坏电源

学号: 3230103034

- 3. 简述测量有源二端口网络开路电压及等效内阻的几种方法,并比较其优缺点。
- (1) 开路电压、短路电流法:
 - 优点: 测量方法简单, 容易操作。
 - 缺点: 当二端网络的内阻很小时,容易损坏其内部元件。
- (2) 伏安法:
 - 优点: 利用伏安特性曲线可以直观地看出其电压与电流的关系。
 - 缺点:
 - 需作图, 比较繁琐。
 - 电表的内阻较大时, 误差可能较大。

(3) 半电压法:

- 优点:
 - 方法比较简单,精准度更高,误差较小。
 - 不受电压波动的影响。
- 缺点: 需要使用精度较高的电源; 测量次数较多, 较复杂。