

PHOTOTRANSISTOR

Part Number: L-53P3C

Features

- Mechanically and spectrally matched to the infrared emitting LED lamp .
- RoHS compliant.

Description

Made with NPN silicon phototansistor chips.

Package Dimensions

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is $\pm 0.25(0.01")$ unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.4. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice.

SPEC NO: DSAA4158 APPROVED: WYNEC

REV NO: V.12 CHECKED: Allen Liu

DATE: MAR/09/2012 DRAWN: D.M.Su

PAGE: 1 OF 5

Electrical / Optical Characteristics at TA=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
VBR CEO	Collector-to-Emitter Breakdown Voltage	30			V	Ic=100uA Ee=0mW/c m³
VBR ECO	Emitter-to-Collector Breakdown Voltage	5			V	IE=100uA Ee=0mW/c m³
VCE (SAT)	Collector-to-Emitter Saturation Voltage			0.8	V	Ic=2mA Ee=20mW/c m ²
I CEO	Collector Dark Current			100	nA	VcE=10V Ee=0mW/c m²
TR	Rise Time (10% to 90%)		15		us	VcE = 5V Ic=1mA RL=1000Ω
TF	Fall Time (90% to 10%)		15		us	
I (ON)	On State Collector Current	0.7	3		mA	VcE = 5V Ee=1mW/c m ³ λ=940nm

Absolute Maximum Ratings at TA=25°C

Parameter	Max.Ratings		
Collector-to-Emitter Voltage	30V		
Emitter-to-Collector Voltage	5V		
Power Dissipation at (or below) 25°C Free Air Temperature	100mW		
Operating Temperature	-40°C To +85°C		
Storage Temperature	-40°C To +85°C		
Lead Soldering Temperature (>5mm for 5sec)	260°C		

REV NO: V.12 DATE: MAR/09/2012 SPEC NO: DSAA4158 PAGE: 2 OF 5 DRAWN: D.M.Su

APPROVED: WYNEC **CHECKED: Allen Liu**

SPEC NO: DSAA4158 APPROVED: WYNEC REV NO: V.12 CHECKED: Allen Liu DATE: MAR/09/2012 DRAWN: D.M.Su PAGE: 3 OF 5

PRECAUTIONS

1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead—forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. (Fig. 1)

- "() " Correct mounting method "imes" Incorrect mounting method
- 2. When soldering wire to the LED, use individual heat—shrink tubing to insulate the exposed leads to prevent accidental contact short—circuit. (Fig.2)
- 3. Use stand—offs (Fig.3) or spacers (Fig.4) to securely position the LED above the PCB.

- 4. Maintain a minimum of 2mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6)
- 5. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7)

SPEC NO: DSAA4158 APPROVED: WYNEC REV NO: V.12 CHECKED: Allen Liu DATE: MAR/09/2012 DRAWN: D.M.Su PAGE: 4 OF 5

6. Do not bend the leads more than twice. (Fig. 8)

7. During soldering, component covers and holders should leave clearance to avoid placing damaging stress on the LED during soldering.

- 8. The tip of the soldering iron should never touch the lens epoxy.
- 9. Through—hole LEDs are incompatible with reflow soldering.
- 10. If the LED will undergo multiple soldering passes or face other processes where the part may be subjected to intense heat, please check with Kingbright for compatibility.
- 11. Recommended Wave Soldering Profiles:

Notes:

- 1.Recommend pre—heat temperature of 105°C or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of 260°C
- 2.Peak wave soldering temperature between 245°C ~ 255°C for 3 sec (5 sec max).
- $3.\mathrm{Do}$ not apply stress to the epoxy resin while the temperature is above $85^{\circ}\mathrm{C}.$
- 4.Fixtures should not incur stress on the component when mounting and during soldering process. 5.SAC 305 solder alloy is recommended.
- 6.No more than one wave soldering pass.

SPEC NO: DSAA4158 REV NO: V.12 DATE: MAR/09/2012 PAGE: 5 OF 5
APPROVED: WYNEC CHECKED: Allen Liu DRAWN: D.M.Su