Plant Dr

Plant Identification and diagnosis machine learning model

Overview

Goal: Develop a machine learning model capable of:

- identifying different plant species based on common names (Tomato, Mango, Petunia, etc.)
- diagnosing various plant ailments such as:
 - Blight
 - Rust
 - Powdery Mildew

Idea behind it:

- It is difficult not only to distinguish between plant species due to similarity in characteristics, but also plant ailments due to the similar nature of their symptoms.
- This model aims to learn and utilize relevant plant images and information to act as a trained "doctor" to take care of plant identification and diagnosis for you.

Industry Relevance

Agricultural industry

Farmers

Home gardening

Nurseries

Retail Stores

Researchers

Hobbyists

Data Transformation

- Original 8 different datasets:
 - 102 Oxford Flowers
 - Collection of Different Category of Leaf Images
 - Corn Leaf Diseases
 - Banana Leaf Nutrient Deficiencies
 - Major Crop Leaf Diseases
 - Open Leaf Image Dataset (OLID) of Bangladesh's Major Crops
 - Common plant image dataset
 - Dataset for Crop Pest and Disease Detection
- All were formatted differently in their folder structure

Data Transformation

- Re-labeling of images
- Merging of 4 datasets into one master dataset
- Creation of a csv file for image labeling
- Image augmentation
 - rotation_range=20: Rotates images randomly 20 degrees.
 - width_shift_range=0.2: Shifts images horizontally by 20% of the width.
 - height_shift_range=0.2: Shifts images vertically by 20% of the height.
 - shear_range=0.2: Applies a shear transformation to the images.
 - zoom_range=0.2: Zooms into images randomly by up to 20%.
 - horizontal_flip=True: Randomly flips images horizontally.
 - fill_mode='nearest': Uses the nearest pixel value to fill in newly created pixels after transformation.

Master Dataset

102 Oxford Flowers

- Compiled at the University of Oxford
- 102 species of flowers found in the UK
- 6,553 images

Corn diseases

- Combination of two other datasets ("PlantVillage" and "PlantDoc")
- 4 states of health
- 4,189 images

Leaf images

- Compiled at Shri Mata Vaishno Devi University
- 11 plant species in healthy and diseased states.
- 4,503 images

Major Crop Diseases

- First published in the "Computers & Electrical Engineering" journal on ScienceDirect
- 14 plant species
- 18 different states of health
- 61,487 images

Total number of images:

76,731 (531.5 MB)

ML Models

- <u>VGG16</u>

- pre-trained convolutional neural network (CNN) architecture
- widely used for image classification tasks.
- Pros:
 - effective for image classification tasks when you have a large, labeled dataset
- Cons:
 - slower to train and deploy

- Accuracy Score: 72.37%

- <u>EfficientNetB0</u>

- EfficientNet is a family of models that scale efficiently in terms of depth, width, and resolution, with EfficientNetB0 being the smallest model in the family.
- Pros:
 - better performance with fewer parameters and computations
- Cons:
 - architecture is more complex, making it harder to understand and implement from scratch.
- Accuracy Score: 8%

Model Tuning

- Unfreeze last few layers
 - When using the pre-trained VGG16 model, all layers are *frozen*, meaning their weights are not updated during training.
 - By unfreezing the last few layers the model is allowed to weights during training.
 - This process helps the model adapt more specifically to the dataset.
- Lower learning rate for fine-tuning
 - This helps to make very small adjustments to the weights of the pre-trained layers.
 - the adjustments to the weights are more subtle, allowing the model to fine-tune its knowledge without forgetting what it has already learned.
- Optimizer: Adam
 - efficient
 - yields good results in a variety of scenarios.

Misclassifications

True: Common_Rust Pred: corn_common_rust

True: Healthy Pred: Corn__healthy

True: Gray_Leaf_Spot Pred: corn_gray_leaf_spot

Results

Plant Dr: VGG16 Plant Identification and diagnosis model

Unseen Plant Image	Predicted Plant ID and Diagnosis
tomato_late_blight	StrawberryLeaf_scorch
corn_rust	corn_gray_leaf_spot
apple_scab	AppleBlack_rot

67% Correct Identification and Diagnosis

Future Plans

- Add more image data
 - Use of an API
 - Image data from more universities/ extension programs
 - Nutrient deficiencies image data
- Try different models
 - Inception (GoogLeNet)
 - MobileNetV2
 - NASNet (Neural Architecture Search Network)
- Creation of an phone app

References:

- Slide Images:

"Slide 1; Agricultural industry; Farmers":

https://www.kdhi-agriculture.com/single-post/agriculture-and-agribusiness-to-drive-industrialization-in-africa

"Slide 1; Agricultural industry; Nurseries":

https://en.wikipedia.org/wiki/Plant nursery

"Slide 1; Agricultural industry; Research":

https://www.seedquest.com/news.php?type=news&id_article=120617

"Slide 1: Home Gardening; Retail Stores": https://www.facebook.com/FifthSeasonCarrboro/

"Slide 1: Home Gardening; Hobbyists":

https://www.goodhousekeeping.com/home/gardening/g40742429/best-indoor-plants-for-health/