Bhabha Tracking Efficiencies

Martin Sobotzik

12.04.2019

Johannes Gutenberg Universität Mainz

Motivation

- I would like to estimate the tracking efficiency
- I use Bhabha events because if one track is reconstructed then the other particle should also produce a track

$$\epsilon = \frac{\text{Number of Bhabha events with exactly 2 tracks}}{\text{Number of Bhabha events with one or more tracks}}$$

 This idea comes from some plots presented by Sam in previous tracking and ECL meetings.

Getting Started

- Cuts Sam used:
 - gamma:probe '(E > 0.1)'
 - gamma:tag '(clusterE > 3.0)'
 - vpho:cand 'reconstructed from gamma:probe and gamma:tag'
 - $0.296706 < \theta < 2.61799 \rightarrow$ It has to hit the ECL
 - nCleanedTracks[abs(dz) < 2.0 and abs(dr) < 0.5 and nCDCHits > 0 and pt > 0.15] < 1 \rightarrow bad quality hits
 - $M(vpho) > 8.0 \, GeV \rightarrow To$ cut away background (not from his email but surely he is using something like that)
- Cuts I use:
 - $M(vpho) > 8.0\,{\rm GeV} \to {\sf For}$ the vpho to have a mass of at least $8\,{\rm GeV}$, gamma:tag and gamma:probe must have at least an energy of more than $3\,{\rm GeV}$

Reproducing Plots

- The plots in the following slides are produced using prod6 (this is because as a starting point I tried to reproduce Sam's plots)
- Sam used all Prod6 data. I am only using the following: /hsm/belle2/bdata/Data/release-02-01-00/DB00000438 /prod00000006/e0003/4S/r02*/all/mdst.sub00/*.root
- Sam's plot is on the left.

Running on MC

- \bullet At first I ran over MC11 $ee \to ee$ samples with the same steering file but I almost had no events in the gamma list
- 1st problem: ECL hits are written in the gamma list only if they have no track associated. Not every ECL hit is written in the gamma list
- 2nd problem: I also have to look at events with only one charge particle tracked \rightarrow I have to *reconstruct*: vpho $\rightarrow \gamma e$ and vpho $\rightarrow ee$

More problems

• Double peak structure has to be understood

More problems

- Double peak structure has to be understood
- Sometimes more than one vpho per event is reconstructed

Next steps

- Select best vpho
- \bullet Cut on $\Delta\Phi_{\rm b2bpred\ -reco}$ peak and calculate a first efficiency