2.14 We first create the frequency table.

Class		Class	
limits	Frequency	limits	Frequency
20 - 29	4	60 - 69	20
30 - 39	13	70 - 79	14
40 - 49	18	80 - 89	6
50 - 59	25		

The histogram is

2.15 The "less than" distribution of the data in the preceeding exercise is:

Class	Number	Class	Number
boundary	less than	boundary	less than
20.0	0	60.0	60
30.0	4	70.0	80
40.0	17	80.0	94
50.0	35	90.0	100

The ogive is

2.34 (a) A computer calculation gives

You may verify the mean by first showing that $\sum x_i = 4265$.

(b) You may confirm the calculation of s by showing that $\sum x_i^2 = 2041.54$ so

$$s^2 = \frac{29(2041.54) - (4265)^2}{29 \cdot 28} = .2740$$
 or $s = \sqrt{.2740} = .5235$

2.39 (a) The mean is 8.

(b) The sorted data are:

The median is the eighth smallest which is 9.

(c) The boxplot is

2.40 (a) The table of data, deviation, and deviation squared is:

$$s^2 = 328/14 = 23.43$$
 and $s = 4.84$.

(b) The sum of the observations is 120. The sum of the observations squared is 1288. Thus,

$$s^2 = (15 \cdot 1288 - 120^2)/(15 \cdot 14) = 23.43$$
 and $s = 4.84$.

2.50

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \bar{x} = \sum_{i=1}^{n} x_i - n\bar{x}.$$

But $\bar{x} = \sum_{i=1}^{n} x_i/n$, so,

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i = 0.$$

2.52 Let $x_i = cu_i + a$. Then

$$\bar{x} = \sum_{i=1}^{n} x_i / n = \left(\sum_{i=1}^{n} (cu_i + a)\right) / n = c \sum_{i=1}^{n} u_i / n + na / n = c\bar{u} + a.$$

Now,

$$s_x^2 = \sum_{i=1}^n (x_i - \bar{x})^2 / (n-1) = \sum_{i=1}^n (cu_i + a - c\bar{u} - a)^2 / (n-1)$$

$$= \sum_{i=1}^{n} (cu_i - c\bar{u})^2 / (n-1) = c^2 \sum_{i=1}^{n} (u_i - \bar{u})^2 / (n-1) = c^2 s_u^2.$$

Thus, $s_x = cs_u$.

2.56 Suppose the data in set 1 is $\{x_1,...,x_{n_1}\}$, set 2 $\{x_{n_1+1},...,x_{n_2}\}$, ..., set k $\{x_{n_{k-1}+1},...,x_{n_k}\}$. The total size of the data is

$$n = n_1 + ... + n_k$$
.

Since $x_1 + \ldots + x_{n_1} = n_1 \bar{x}_1, \ x_{n_1+1} + \ldots + x_{n_2} = n_2 \bar{x}_2, \ \ldots \ x_{n_{k-1}+1} + \ldots + x_{n_k} = n_k \bar{x}_k$, we have

$$\begin{array}{ll} \bar{x} & = & \frac{x_1 + \ldots + x_{n_1} + x_{n_1 + 1} + \ldots + x_{n_2} + \ldots + x_{n_{k-1} + 1} + \ldots + x_{n_k}}{n} \\ & = & \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2 + \ldots + n_k \bar{x}_k}{n_1 + n_2 + \ldots + n_k} \end{array}$$

2.68 (a) The dot diagram for the suspended solids data is

Suspended Solids

- (b) The median = 28.0 and the mean = 32.182.
- (c) The variance and standard deviation are

$$s^2 = 363.76$$
 and $s = 19.073$.

- 2.69 (a) The ordered data are: 12 14 19 20 21 28 29 30 55 63 63 The quartiles for the suspended solids data are $Q_1 = 19, Q_2 = 28$, and $Q_3 = 55$.
 - (b) The minimum, maximum, range and the interquartile range are Minimum = 12, maximum = 63, range = 63 12 = 51 and interquartile range = $Q_3 Q_1 = 55 19 = 36$.
 - (c) The boxplot is given in Figure 2.3.
- 2.75 (a) The ordered observations are

```
\begin{array}{c} 389.1 \ 390.8 \ 392.4 \ 400.1 \ 425.9 \ 429.1 \ 448.4 \ 461.6 \\ 479.1 \ 480.8 \ 482.9 \ 497.2 \ 505.8 \ 516.5 \ 517.5 \ 547.5 \\ 550.9 \ 563.7 \ 567.7 \ 572.2 \ 572.5 \ 575.6 \ 595.5 \ 602.0 \\ 606.7 \ 611.9 \ 618.9 \ 626.9 \ 634.9 \ 644.0 \ 657.6 \ 679.3 \\ 698.6 \ 718.5 \ 738.0 \ 743.3 \ 752.6 \ 760.6 \ 794.8 \ 817.2 \\ 833.9 \ 889.0 \ 895.8 \ 904.7 \ 986.4 \ 1146.0 \ 1156.0 \end{array}
```

The first quartile is the 12th observation, 497.2, the median is the 24th observation, 602.0, and the third quartile is the 36th observation, 743.3.

Figure 2.4: Boxplot for Exercise 2.74

- (b) Since 47(.90) = 42.3, the 90th percentile is the 43rd observation, 895.8.
- (c) The histogram is

2.21

Calculate the cumulative frequencies

Value x_i 12, 14, 21, 28, 30, 55, 63 Cumulative frequency ($\leq x_i$) 1, 2, 4, 5, 8, 9, 10 Relative Cumulative frequency 0.1, 0.2, 0.4, 0.5, 0.8 0.9, 1.0

