

Neurodegenerative Brain Network Classification via Adaptive Diffusion with Temporal Regularization

Hyuna Cho¹ Jaeyoon Sim¹ Guorong Wu²

Won Hwa Kim¹

¹Pohang University of Science and Technology (POSTECH) ²University of North Carolina at Chapel Hill

MOTIVATION

Task. Classification of degenerative (i.e., progressive) brain networks (i.e., graphs).

▶ Given C chronological labels y_c (c = 1, ..., C), neurodegeneration progresses from a healthy group (y_1) to the most deteriorated state (y_C) .

Brain network as a graph.

- Brain regions are nodes (i.e., regions of interest).
- (Structural/functional) Connections between ROIs become edges.

Motivation.

- How to adaptively analyze graphs with homophily and heterophily characteristics?
- ► How to capture sequential variations in progressive neurodegeneration?
- ► How to identify neuroscientifically significant regions to classify degenerative brain disease stages?

SPECTRAL GRAPH WAVELET TRANSFORM

(Definition 1) Let $\mathbf{X} \in \mathbb{R}^{N \times F}$ be a node feature matrix with F features for N nodes, and $\mathbf{A} \in \mathbb{R}^{N \times N}$ be a connectivity matrix.

(Definition 2) A graph Laplacian $\mathbf{L} = \mathbf{U} \Lambda \mathbf{U}^T$ is decomposed with non-negative eigenvalues $\Lambda = diag(\lambda_1, ..., \lambda_N)$ and orthonormal eigenvectors $\mathbf{U} = [u_1, ..., u_N]$.

(Definition 3) A wavelet basis $\psi_s = \mathbf{U}k(s\Lambda)\mathbf{U}^T$ is defined with a kernel function $k(\cdot)$ and a scaling parameter s.

- \bullet Typically, a low-pass kernel is used for graph data, and the s is a hyperparameter.
- (Key Idea) In this work, we used a diffusion kernel $k(s\lambda) = e^{-s\lambda}$ with **trainable** scaling parameters $\mathbf{s} = \{s_i\}_{i=1}^N$ paired with nodes $\{n_i\}_{i=1}^N$.

(a) Low-pass global filter ($s_2 > s_1 > 0$)

(b) High-pass global filter ($s_2 < s_1 < 0$)

(c) Adaptive local filter

Figure: (a) A low-pass filter smooths out features among neighboring nodes, (b) while a high-pass filter accentuates the difference between nodes. (c) Unlike these filters, the adaptive local filter captures optimal bandwidths for each node with trainable node-wise scaling parameters.

SGWT projects graph signals X onto the spectral domain as

$$W_{\mathbf{X}}(s) = \langle \psi_s, \mathbf{X} \rangle = \psi_s \mathbf{X}, \tag{1}$$

which yields a wavelet coefficient $W_{\mathbf{X}}(s)$.

Inverse transform (IGWT) completely reconstructs the signal X by projecting $W_{\mathbf{X}}(s)$ back to the graph domain as follows:

$$\mathbf{X} = \frac{1}{C_k} \int_0^\infty \psi_s \cdot W_{\mathbf{X}}(s) \frac{ds}{s}$$
 (2)

with an admissibility constant $C_k = \int_0^\infty \frac{k(\tau)^2}{\tau} d\tau < \infty$.

 \triangleright The Eq. (2) is a superposition of *multi-resolution* representation of **X** over scales $s \in [0,\infty)$. Therefore, a signal \mathbf{X}_s in the graph space filtered at the scale s is defined as

$$\mathbf{X}_s = \langle \psi_s, W_{\mathbf{X}}(s) \rangle = \mathbf{U}k^2(s\Lambda)\mathbf{U}^T\mathbf{X}. \tag{3}$$

While the raw graph data X may contain unnecessary resolutions for solving a given task, Eq. (3) allows us to extract task-relevant graph information at specific resolution(s) in the spatial domain.

MODEL ARCHITECTURE

Figure: Overview of Adaptive Graph diffusion network with Temporal regularization (AGT).

(1) Node-level Scale Adaptation

- \mathbf{s}^c \mathbf{s}^c : C number of trainable scale sets, where each set is a set of ROI-wise scales $\mathbf{s}^c = \{s_i^c\}_{i=1}^N$
- ▶ The class- and node-wise adaptive wavelet basis $\psi_{\mathbf{s}^{c_i}}$ localized at n_i on n_j is defined as

$$\psi_{\mathbf{s}_{i,i}^c}(j) = \sum_{l=1}^N e^{-\mathbf{s}_i^c \lambda_l} u_l^*(i) u_l(j).$$

(2) Group-level Temporal Regularization

- ▶ Given $\tilde{\mathbf{X}} = [\mathbf{X}, \mathbf{X_s}] \in \mathbb{R}^{N \times 2F}$, a graph embedding is $e = \sigma(\mathbf{A} \ \sigma(\mathbf{A}\tilde{\mathbf{X}}W^{(1)}) \ W^{(2)})$.
- $ightharpoonup \bar{e}_c$: The average graph representation for class c.
- $ightharpoonup d_{c,c+1} = ||\bar{e}_c \bar{e}_{c+1}||_{l^2}$: Distance between adjacent classes (i.e., c-th and (c+1)-th class).
- ▶ To enforce the sequential relations between classes, distances between three adjacent classes are aligned in the latent space as $d_{c,c+1} + d_{c+1,c+2} = d_{c,c+2}$.

$$R_{\text{temp}} = \frac{1}{C-2} \sum_{c=1}^{C-2} \left(d_{c,c+1} + d_{c+1,c+2} - d_{c,c+2} \right) \tag{5}$$

(3) Training Objective: $\mathcal{L} = L_{ce} + \alpha R_{temp}$, where L_{ce} is a standard cross-entropy loss.

DATASET

(a) Alzheimer's Disease Neuroimaging Initiative (ADNI)							((b) Parkinson's Progression Markers Initiative (PPMI)				
Node feature	Edge feature	CN	SMC	EMCI	LMCI	AD	,	Node feature	Edge feature	CN	Prodromal	PD
Cortical Thickness	# of white matter tracts			437		166		BOLD	Correlation of BOLD	15	67	113
FDG		345	186	461	231	162						
Table: Number o	of subjects fo	r AD	NI an	d PPN	/II data	asets.	. Th	ne diseases p	orogress fron	n CN	I to AD/PD) clas

QUANTITATIVE RESULT

Table: Classification performance on the ADNI and PPMI datasets with 5-fold cross-validation. Model Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Specificity SVM (Linear) 82.2% 85.2% 85.3% 85.7% 86.9% 60.5% 30.2% 28.0% 67.5% MLP (2-layers) 59.8% 62.6% 68.8% 67.7% 69.7% 78.8% GCN 62.7% 66.8% 69.2% 67.0% 73.6% <u>81.2%</u> 51.4% 77.2% 87.0% 76.9% 78.5% 86.2% 86.7% 87.0% 73.0% 36.5% 61.8% 79.1% 70.3% 71.8% 77.0% 77.5% 77.3% 79.1% 48.4% 84.5% 68.8% 77.6% 72.8% 88.6% 70.8% 75.3% 78.8% 50.7% 66.9% 80.5% 86.6% 86.7% 90.2% 90.7% 90.7% 79.5% Exact LSAP <u>90.9%</u> <u>91.4%</u> 79.1% 47.5% 83.2% 72.9% **BrainGNN** 20.1% 23.4% 68.9% 20.3% 31.9% 69.6% 38.5% 70.5% 39.9% BrainNetTF 65.9% 70.6% 87.1% 66.5% 66.3% 71.3% 42.6% 76.1% 53.3% 91.3% 89.9% 94.8% 94.3% 95.3% 83.6% 62.4% 87.6% 92.3% AGT (Ours) (+4.5) (+1.4) (+4.4) (+3.4) (+3.9) (+2.4) (+11.0) (+3.1) (+5.0)

QUALITATIVE RESULTS

(1) Analysis on Trained Scales. High-frequency components focus on more node-specific details and thus potentially highlight the importance of individual nodes.

Figure: On the ADNI-FDG experiment, scales of the precuneus gyrus and the medial occipitotemporal gyrus decrease at later stages, accentuating high-frequency features on these ROIs. They are known to be regions where early-onset AD symptoms appear (Karas et al., 2007; Convit et al., 2000).

(2) Temporal Analysis.

(5) Figure: Comparison of distributions of the graph embedding \bar{e}_c between diagnostic classes. Temporal variations between the groups appear along with the disease progression.

(3) Effect of Node-wise Wavelet Basis.

Figure: (a) and (c) are from a brain network (i.e., X and A) of a subject with PD. Edges in (b) and (d) are the adaptive wavelet basis ψ_{s^c} derived from a trained model. By using ψ_{s^c} , the node features in (b) become more discriminative from (a), while those in (d) become more similar compared to the nodes in (c).