Search MathWorld

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry
New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

Wolfram Web Resources »

13,692 entries Last updated: Thu Jan 2 2020

Created, developed, and nurtured by Eric Weisstein at Wolfram Research Number Theory > Prime Numbers > Primality Testing > Number Theory > Prime Numbers > Prime Factorization > Number Theory > Prime Numbers > Prime Number Properties >

Fermat's Little Theorem

If p is a prime number and a is a natural number, then

$$a^p \equiv a \pmod{p}. \tag{1}$$

Furthermore, if $p \nmid a$ (p does not divide a), then there exists some smallest exponent d such that

$$a^d - 1 \equiv 0 \pmod{p} \tag{2}$$

and d divides p-1. Hence,

$$a^{p-1} - 1 \equiv 0 \pmod{p}. \tag{3}$$

The theorem is sometimes also simply known as "Fermat's theorem" (Hardy and Wright 1979, p. 63).

This is a generalization of the Chinese hypothesis and a special case of Euler's totient theorem. It is sometimes called Fermat's primality test and is a necessary but not sufficient test for primality. Although it was presumably proved (but suppressed) by Fermat, the first proof was published by Euler in 1749. It is unclear when the term "Fermat's little theorem" was first used to describe the theorem, but it was used in a German textbook by Hensel (1913) and appears in Mac Lane (1940) and Kaplansky (1945).

The theorem is easily proved using mathematical induction on a. Suppose $p \mid a^p - a$ (i.e., p divides $a^p - a$). Then examine

$$(a+1)^p - (a+1).$$
 (4)

From the binomial theorem,

$$(a+1)^p = a^p + {p \choose 1} a^{p-1} + {p \choose 2} a^{p-2} + \dots + {p \choose p-1} a + 1.$$
 (5)

Rewriting,

$$(a+1)^p - a^p - 1 = \binom{p}{1} a^{p-1} + \binom{p}{2} a^{p-2} + \dots + \binom{p}{p-1} a. \tag{6}$$

But p divides the right side, so it also divides the left side. Combining with the induction hypothesis gives that p divides the sum

$$[(a+1)^p - a^p - 1] + (a^p - a) = (a+1)^p - (a+1), \tag{7}$$

as assumed, so the hypothesis is true for any a. The theorem is sometimes called Fermat's simple theorem. Wilson's theorem follows as a corollary of Fermat's little theorem.

Fermat's little theorem shows that, if p is prime, there does not exist a base a < p with $(a, p) \equiv 1$ such that $a^{p-1} - 1$ possesses a nonzero residue modulo p. If such base a exists, p is therefore guaranteed to be composite. However, the lack of a nonzero residue in Fermat's little theorem does n of guarantee that p is prime. The property of unambiguously certifying composite numbers while passing some primes make Fermat's little theorem compositeness test which is sometimes called the Fermat compositeness test. A number satisfying Fermat's little theorem for some nontrivial base and which is not known to be composite is called a probable prime.

Composite numbers known as Fermat pseudoprimes (or sometimes simply "pseudoprimes") have zero residue for some as and so are not identified as composite. Worse still, there exist numbers known as Carmichael numbers (the smallest of which is 561) which give zero residue for any choice of the base a relatively prime to p. However, Fermat's little theorem converse provides a criterion for certifying the primality of a number. A table of the smallest pseudoprimes P for the first 100 bases a follows (OEIS A007535; Beiler 1966, p. 42 with typos corrected).

a	P	a	P	a	P	a	P	a	P
2	341	22	69	42	205	62	63	82	91
3	91	23	33	43	77	63	341	83	105
4	15	24	25	44	45	64	65	84	85
5	124	25	28	45	76	65	112	85	129
6	35	26	27	46	133	66	91	86	87
7	25	27	65	47	65	67	85	87	91
8	9	28	45	48	49	68	69	88	91
9	28	29	35	49	66	69	85	89	99
10	33	30	49	50	51	70	169	90	91
11	15	31	49	51	65	71	105	91	115
12	65	32	33	52	85	72	85	92	93
13	21	33	85	53	65	73	111	93	301
14	15	34	35	54	55	74	75	94	95
15	341	35	51	55	63	75	91	95	141
16	51	36	91	56	57	76	77	96	133
17	45	37	45	57	65	77	247	97	105
18	25	38	39	58	133	78	341	98	99
19	45	39	95	59	87	79	91	99	145
20	21	40	91	60	341	80	81	100	153
21	55	41	105	61	91	81	85		

fermat's little theorem

THINGS TO TRY:

= fermat's little theorem

= area of an equilateral trian

with side length a
= continued fraction 12/67

Interactive knowledge apps fro

Powers in Mod Arithmetic

Fractional Grap Flowers

Fermat's Little Theorem

Step-by-Ste Math, Algebra Calculus Soli

and $du = \frac{1}{2\sqrt{t}} dt$: = $2 \int u \sec^{-1}(u) du$

STEP 3

Notified integrand u sec⁻¹(u), integrate $\int f dg = f g - \int g df$, where f = sc $df = \frac{1}{u\sqrt{u^2 - 1}} du$ $g = \frac{u^2}{2}$ $= u^2 \sec^{-1}(u) - \int \frac{u}{\sqrt{u}} du$

Next step Show all step

Get your answe one step at a tir

Student pricin

SEE ALSO:

Binomial Theorem, Carmichael Number, Chinese Hypothesis, Composite Number, Compositeness Test, Euler's Theorem, Fermat's Little Theorem Converse, Fermat Pseudoprime, Modulo Multiplication Group, Pratt Certificate, Primality Test, Prime Number, Pseudoprime, Relatively Prime, Totient Function, Wieferich Prime, Wilson's Theorem,

REFERENCES:

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 61, 1987.

Beiler, A. H. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 141-142, 1996.

Courant, R. and Robbins, H. "Fermat's Theorem." §2.2 in Supplement to Ch. 1 in What Is Mathematic Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 37-38, 1996.

Flannery, S. and Flannery, D. In Code: A Mathematical Journey. London: Profile Books, pp. 118-125, 2000.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Hensel, K. Zahlentheorie. Berlin: G. J. Göschen, 1913.

Kaplansky, I. "Lucas's Tests for Mersenne Numbers." Amer. Math. Monthly 52, 188-190, 1945.

Mac Lane, S. "Modular Fields." Amer. Math. Monthly 47, 259-274, 1940.

Nagell, T. "Fermat's Theorem and Its Generalization by Euler." §21 in *Introduction to Number Theory.* New York: Wiley, pp. 71-73, 1951.

Séroul, R. "The Theorems of Fermat and Euler." §2.8 in Programming for Mathematicians. Berlin: Springer-Verlag, p. 15, 2000. Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 20, 1993.

Sloane, N. J. A. Sequence A007535/M5440 in "The On-Line Encyclopedia of Integer Sequences."

CITE THIS AS:

Weisstein, Eric W. "Fermat's Little Theorem." From *MathWorld-*-A Wolfram Web Resource. http://mathworld.wolfram.com/FermatsLittleTheorem.html

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Computerbasedmath.org »
Join the initiative for modernizing math education.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-bystep solutions. Practice online or make a printable study sheet.

WolframiAlpha »

Explore anything with the first computational knowledge engine.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics engineering, technology, business, art, finance, social sciences, and more

Step-by-step Solutions »

Walk through homework problems stepby-step from beginning to end. Hints help you try the next step on your own.

Wolfram Language »

Knowledge-based programming for everyone.

Contact the MathWorld Team

© 1999-2020 Wolfram Research, Inc. | Terms of Use