Aluno:	Data:	Nr. Matricula:	

Laboratório - 2

Polarização de um par diferencial CMOS e limites de linearidade e saturação

Procedimento experimental:

a) Implementar o circuito do esquemático ao lado (par Diferencial CMOS) na ferramenta Cadence/Virtuoso. Considere para os transistores M1 e M2 um W/L=10

Tecnologia: 180nm;

Alimentação: $V_{DD}=1.8V$, $V_{ss}=0V$; Referência de corrente: $I_{Ref}=1$ uA.

b) Projete o conjunto M_3 e M_4 para fornecer a corrente necessária ao par diferencial M_1 e M_2 conforme as correntes especificadas para o ponto de operação. Obs. Considere para M1 e M2 num ponto de operação (em saturação) típico conforme parâmetros obtidos nas curvas características deste transistor.

Ex: Projeto alvo de polarização:

- \checkmark $I_{Ref}=1uA;$
- $I_{DM1}=I_{DM2}=$
- $V_{in,CM}=0.9V$;
- $V_{out1}=V_{out2}=0.9V$;
- $V_{GS1} = V_{GS2} = 0.6V$; $V_{DS1} = V_{DS2} = 0.6V$; $V_{DS3} = V_P = 0.3V$;
- $\mu_N C_{ox} =$ V^{-1} :

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

- c) Projete os resistores R_{D1} e R_{D2} em função das especificações alvo.
- d) Realize ajustes ao conjunto para atingir o ponto de operação especificado (simulação DC-OP).
- e) Plotar por simulação DC as curvas de corrente (I_{D1}, I_{D2}) versus $V_{in,CM}$, (V_P) versus $V_{in,CM}$ e $(V_{out1}, V_{out1}, V_{out1}, V_{out2}, V_{out1}, V_{out2}, V_{out$ V_{out2} versus $V_{in,CM}$;

Resultados esperados:

(Razavi, B. AIC, Cap. 4)

f) Plotar por simulação DC as curvas de corrente (I_{D1} , I_{D2} versus $V_{in,Dif}$), e (V_{out1} , V_{out2} versus $V_{in,Dif}$); (Fixar uma das fontes de V_{in}). Resultados esperados:

 $|V_{in1} - V_{in2}|_{\text{max}} = \sqrt{2}(V_{GS} - V_{TH})_{equil}$

(Razavi, B. AIC, Cap. 4)

Resultados e Conclusões:

Analisar e interpretar os resultados (esperados e encontrados por simulação) determinando os limites de linearidade e saturação do amplificador diferencial implementado;

- ✓ ponto de operação DC (OP_DC);
- ✓ limites de operação DC para V_{in,CM} e V_{in,Dif}.
- Elaborar relatório dos itens desenvolvidos acima para entrega até: