AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

2

1	1. (Currently Amended) A system for regulating communications			
2	between a plurality of transmitters and a receiver, comprising:			
3	a plurality of cells, wherein each cell controls communications from a			
4	transmitter in the plurality of transmitters to the receiver;			
5	wherein the plurality of cells are arranged in a token ring that regulates			
6	communications from the plurality of transmitters to the receiver;			
7	wherein the presence of a token within a token ring cell indicates that the			
8	corresponding transmitter may communicate with the receiver; and			
9	wherein each cell is configured to receive a request signal from a			
10	corresponding transmitter, and in response to the request signal, is configured to			
11	issue an acknowledgement signal to the corresponding transmitter which allows			
12	the corresponding transmitter to begin transmitting if the cell has the token; and			
13	a flow control mechanism in each cell that receives a flow-control signal			
14	from the receiver, wherein the receiver asserts the flow-control signal when the			
15	receiver is ready to receive communications, and wherein the flow control			
16	mechanism comprises logic for generating the acknowledgement signal by			
17	logically combining a previous acknowledge signal from the cell and an			
18	acknowledgement signal from a neighboring cell with the flow-control signal.			
1	2. (Original) The system of claim 1, further comprising:			

a plurality of receivers; and

- a plurality of token rings, wherein each token ring passes a corresponding token among token ring cells that control communications from the plurality of transmitters to a receiver corresponding to the token ring.
- 1 3. (Previously presented) The system of claim 2, wherein the plurality of cells are arranged in a grid wherein a row corresponds to a transmitter and a column corresponds to a receiver.
- 1 4. (Original) The system of claim 1, wherein the communications can include one of:
- 3 an electrical signal;
- 4 a mechanical signal; and
- 5 an optical signal.
- 1 5. (Cancelled)
- 6. (Previously presented) The system of claim 1, wherein each transmitter further comprises a reset mechanism that is configured to release the clearance to communicate with the receiver by resetting the request signal.
- 7. (Original) The system of claim 6, wherein the system further comprises an acknowledgement mechanism configured to confirm the release of the clearance by resetting the acknowledgement signal.
- 8. (Original) The system of claim 1, further comprising an initialization mechanism configured to initialize the single token in the token ring.
- 9. (Original) The system of claim 1, wherein the system operates asynchronously.

10. (Cancelled)

1	11. (Currently Amended) A method for regulating communications
2	between a plurality of transmitters and a receiver, comprising:
3	receiving a request signal from a transmitter at a cell in a plurality of cells
4	requesting to communicate with the receiver;
5	wherein the plurality of cells are arranged in a token ring that regulates
6	communications from the plurality of transmitters to the receiver; and
7	in response to the request signal, issuing an acknowledgement signal to
8	the transmitter which allows the transmitter to begin transmitting if the presence
9	of a token is detected within the cell, wherein the acknowledgement signal is not
10	issued unless the receiver has asserted an enabling signal to the cell that indicates
11	that the receiver is ready to receive data and a flow-control signal has been
12	asserted by the receiver receiver, wherein the acknowledgement signal is
13	generated by logically combining a previous acknowledge signal generated from
14	the cell and an acknowledgement signal from a neighboring cell with the flow-
15	control signal.

- 12. (Original) The method of claim 11, wherein the plurality of cells include a plurality of token rings, wherein each token ring passes a corresponding token among token ring cells that control communications from the plurality of transmitters to a receiver corresponding to the token ring.
- 13. (Original) The method of claim 11, wherein a plurality of cells that regulate communications between the transmitters and receivers are arranged in a grid wherein a row corresponds to a transmitter and a column corresponds to a receiver.

1	14.	(Original) The method of claim 11, wherein the communications			
2	can include one of:				
3	an electrical signal;				
4	a mechanical signal; and				
5	an optical signal.				
1	15.	(Original) The method of claim 11, further comprising revoking			
2	the permission for the transmitter to communicate with the receiver when the				
3 transmitter resets the request signal.					
1	16.	(Original) The method of claim 15, further comprising resetting			
2	the acknowledgement signal to confirm the revocation of the permission for the				
3	transmitter to communicate with the receiver.				
1	17.	(Original) The method of claim 11, further comprising initializing			
2	the token in the	ne token ring.			
1	18.	(Original) The method of claim 11, wherein the system operates			
2	asynchronous	ly.			
4	10				
1	19.	(Cancelled)			
1	20.	(Currently Amended) A multi-processor system, comprising:			
2	a plura	ality of processors;			
3	a plurality of transmitters associated with the processors;				
4	a plurality of receivers associated with the plurality of processors;				
5	a plurality of cells, wherein each cell controls communications from a				
6	transmitter in the plurality of transmitters to a receiver;				

7	wherein the plurality of cells are arranged in a token ring that regulates
8	communications from the plurality of transmitters to a receiver;
9	wherein the presence of a token within a token ring cell indicates that the
10	corresponding transmitter may communicate with the receiver; and
11	wherein each cell is configured to receive a request signal from a
12	corresponding transmitter, and in response to the request signal, is configured to
13	issue an acknowledgement signal to the corresponding transmitter which allows
14	the corresponding transmitter to begin transmitting if the cell has the token; and
15	a flow control mechanism in each cell that receives a flow-control signal
16	from the receiver, wherein the receiver asserts the flow-control signal when the
17	receiver is ready to receive communications, and wherein the flow control
18	mechanism comprises logic for generating the acknowledgement signal by
19	logically combining a previous acknowledge signal from the cell and an
20	acknowledgement signal from a neighboring cell with the flow-control signal.

21. (New) The system of claim 3, wherein the acknowledgement signal from the neighboring cell is generated by combining a previous acknowledge signal from the neighboring cell and an acknowledgement signal from a cell neighboring the neighboring cell with a flow-control signal received by the neighboring cell from a receiver for the neighboring cell.