III ABAQUS ME 498CM Fall 2015

Introduction & Workflow

Outline of Module

- FEA Workflow (Redux), Postprocessing
- 2. Meshing
- 3. Loading & Analysis
- 4. Coupling Physics
- 5. Materials & Modeling
- 6. Fracture & Contact FEA
- 7. Dynamic FEA (Standard v. Explicit)
- 8. Batch Jobs & Scripting

ABAQUS Ecosystem

Comparison of Implicit and Explicit

Quantity	ABAQUS/Standard	ABAQUS/Explicit	
Element library	Extensive	Subset	
Analysis procedures	General & linear perturbation	General	
Material models	Wide range of material models	Wide range + failure material models	
Contact formulation	contact problems	complex contact problems	
Solution technique	unconditionally stable stiffness- based solution technique	conditionally stable explicit integration solution technique	
Disk space & memory	large with many iterations	small	
ldeal Problem	smooth nonlinear problems etc.	brief transient dynamic events	

Comparison of Implicit and Explicit

Cost of Degrees of Freedom Refinement

Implicit: computational cost
proportional to square of degrees
of freedom (actually f(connectivity))

Explicit: computational cost proportional to number of elements, inversely proportional to smallest element dimension

ABAQUS Workflow

Preprocessing

ABAQUS/CAE

Modules:

Part, Property, Assemble, Step, Interaction, Load, Mesh

inp file

Simulation

ABAQUS/Standard **ABAQUS**/Explicit

Module:

Job

odb, fil, dat, res files

Postprocessing

ABAQUS/CAE

Module:

Visualization

png, txt, csv files, etc.

ABAQUS Workflow

- 1. Draw 2D **sketch** and create 3D **part**s.
- 2. Assign **Material** and **Section** property.
- 3. **Assemble** the model; give **interaction**s in form.
- 4. **Mesh** the frame.
- 5. Apply **Load** and boundary conditions.
- 6. Create **job** and configure output requests.
- 7. Submit it for analysis (Standard/Explicit).
- 8. **Visualize** the results of analysis.

ABAQUS Preprocessing

ABAQUS Solvers

ABAQUS/Standard

Solves system of equations **implicitly** at each solution "increment".

ABAQUS/Explicit

Marches solution forward through time **explicitly** in small time increments *without* solving coupled system of equations at each increment.

ABAQUS Solvers—Standard

ABAQUS/CAE

- Modeling
 Geometry
 Material Property
 Mesh
 Load & BC
 Job manage
- Result Viewing

ABAQUS Units

- ABAQUS has no built-in units
- Specify all input data in consistent units

m	1	t	F	σ	E
kg	m	S	N	Pa	J
kg	cm	S	$10^{-2} N$		
kg	cm	ms	$10^4 \mathrm{N}$		
kg	cm	μs	$10^{10} N$		
kg	mm	ms	kN	GPa	$kN\cdot mm$
g	cm	S	dyne	dyne∙cm ⁻²	erg
g	cm	μs	$10^7 \mathrm{N}$	Mbar	10 ⁷ N⋅cm
g	mm	S	$10^{-6} N$	Pa	
g	mm	ms	N	MPa	N·mm
ton	mm	S	N	MPa	N·mm
$\mathrm{lb}_f \cdot \mathrm{s}^2 \cdot \mathrm{in}^{-1}$	in	S	lb_f	psi	$lb_{\dot{f}}$ in
slug	ft	S	lb_f	psf	lb_{f} :ft
$kg_f \cdot s^2 \cdot mm^{-1}$	mm	S	\ker_f	$kg_f mm^{-2}$	kg;mm
kg	mm	S	mN	kPa	J
g	cm	ms	$10^1 \mathrm{N}$	10 ⁵ Pa	

Suggested FEM Courses

ME 471—Introduction to Finite Element Analysis

ME 570—Nonlinear Solid Mechanical Design

CEE 470—Structural Analysis

CEE 570—Finite Element Methods

CEE 576—Nonlinear Finite Elements

CS 555—Numerical Methods for PDES

TAM 574—Advanced Finite Element Methods

Beam Exercise #1

Steel beam with continuous loading of $\mathbf{F} = 200 \, \text{Pa}$

$$E = 2 \times 10^{11} \text{ Pa}$$

v = 0.26

$$L \times W \times H = (200 \text{ cm}) \times (20 \text{ cm}) \times (20 \text{ cm})$$
 Dimensions

Young's modulus

Poisson's ratio

Beam Exercise #2

Steel beam with end load of 20,000 Pa at $x_i = 200$ cm

$$E = 2 \times 10^{11} \text{ Pa}$$
 Young's modulus

$$\mathbf{v} = 0.26$$
 Poisson ratio

$$\rho = 7.8 \times 10^3$$
 Density

$$L = 200 \text{ cm}$$
 Length

Ø 20 cm

y axis

