Which **types** of introspection techniques can you distinguish?

- Find at least one categorization scheme! (more are possible)
- Give as many <u>examples</u> as you can per category!

Feature Visualization

Types of Introspection

e.g. layer-wise relevance propagation (LRP)

data

ML blackbox

decision

shark

local

(depending on input)

feature visualization by optimization (find the input that optimizes a particular part of the network)

Feature Visualization

Feature Visualization

https://distill.pub/2017/feature-visualization/

- ① → in the beginning the receptive field is small
- ② → we are looking at one Filter convolving, so we can see so many things repeated.
- 3 \rightarrow we are trying to see an abstract of the entire channels depth (for e.g filters = 64. Then we can see some repeated info but not everything.
- 4 It doesn't consider an other neurons before softmax.
- ⑤ It considers other Neurons after softmax.

Feature Visualization: DeepDream

Which layers were used as optimization target to generate these images?

Feature Visualization: DeepDream

Feature Visualization

What's the main problem with the (vanilla) optimization approach?

VS

How do we solve this problem?

Feature Visualization

What's the main problem with the (vanilla) optimization approach?

unregularized optimization is unnatural

VS

How do we solve this problem?

by regularizing the optimization

frequency penalization

transformation robustness

learned prior

gradient-based Saliency Maps

easiest method: using backpropagation values (i.e. the gradients) directly

Propagating back to the input gives a saliency map. Each position tells how sensitive the value of interest is to changes in this position. Hence the name **sensitivity analysis**.

[Springenberg et al. (2014). Striving for Simplicity: The All Convolutional Net]

Deep Taylor Decomposition and LRP

What's the difference?

deep Taylor decomposition

layer-wise relevance propagation

$$R_d^{(1)} = (x - x_0)_{(d)} \cdot \frac{\partial f}{\partial x_{(d)}}(x_0)$$

$$R_{i \leftarrow j}^{(l,l+1)} = rac{z_{ij}}{z_j} \cdot R_j^{(l+1)}$$

- root point x_0 must be determined
- computationally efficient (backprop)
- no root point needed
- computationally expensive

GradCAM: Gradient-weighted Class Activation Mapping

[Selvaraju et al. (2016). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization.]

GradCAM: Model Comparison

gradient-based Saliency Maps

[Springenberg et al. (2014). Striving for Simplicity: The All Convolutional Net]

GradCAM: Gradient-weighted Class Activation Mapping

 $\alpha_k^c = \underbrace{\frac{1}{Z} \sum_{i} \sum_{j}}_{\text{gradients via backprop}} \underbrace{\frac{\partial y^c}{\partial A_{ij}^k}}_{\text{gradients via backprop}}$

 $L_{\mathrm{Grad-CAM}}^{c} = ReLU\underbrace{\left(\sum_{k}\alpha_{k}^{c}A^{k}\right)}_{\text{linear combination}}$

gradient (sensitivity) of class c to changes in feature map A^k averaged over all positions

combine all feature maps A^k in one layer as weighted sum using α_k^c as weight

GradCAM: Examples

Problems

- · these methods
 - sometimes require particular architectures (e.g. only 2D-convolution with max-pooling)
 - mostly use ReLUs and a positive input space (which pixels positively influence an output class)
 - are mostly evaluated only for images (visually interpretable)
- · not well applicable for
 - other activation functions (allowing negative activation)
 - real-valued input space (negative values)
 - visually hardly interpretable data (e.g. waveforms)