МГТУ им. Баумана

ЛАБОРАТОРНАЯ РАБОТА №2

По курсу: "Анализ алгоритмов"

Алгоритмы умножения матриц

Работу выполнил: Мокеев Даниил, ИУ7-54

Преподаватели: Волкова Л.Л., Строганов Ю.В.

Оглавление

В	веден	ие	3					
1	Ана	Аналитическая часть						
	1.1	Алгоритм Винограда	4					
	1.2	Вывод	5					
2	Кон	Конструкторская часть						
	2.1	Схемы алгоритмов	6					
	2.2	Трудоемкость алгоритмов	10					
		2.2.1 Классический алгоритм	10					
		2.2.2 Алгоритм Винограда	10					
		2.2.3 Оптимизированный алгоритм Винограда	11					
	2.3	Вывод	11					
3	Tex	ехнологическая часть 12						
	3.1	Выбор ЯП	12					
	3.2	Описание структуры ПО	12					
	3.3	Сведения о модулях программы	13					
	3.4	Листинг кода алгоритмов	13					
		3.4.1 Оптимизация алгоритма Винограда	15					
	3.5	Вывод	16					
4	Исс	ледовательская часть	17					
	4.1	Примеры работы	17					
	4.2	Постановка эксперемента	17					
		4.2.1 Лучший случай	18					
		4.2.2 Худший случай	18					
		4.2.3 Выводы экспериментальной части	20					

Заключение	21
Список литературы	21

Введение

Цель работы: изучение алгоритмов умножения матриц. В данной лабораторной работе рассматривается стандартный алгоритм умножения матриц, алгоритм Винограда и модифицированный алгоритм Винограда. Также требуется изучить рассчет сложности алгоритмов, получить навыки в улучшении алгоритмов.

В ходе лабораторной работы предстоит:

- изучить алгоритмы умножения матриц: стандартный и алгоритм Винограда;
- оптимизировать алгоритм Винограда;
- дать теоретическую оценку базового алгоритма умножения матриц, алгоритма Винограда и улучшенного алгоритма Винограда;
- реализовать три алгоритма умножения матриц на одном из языков программирования;
- сравнить алгоритмы умножения матриц.

1 Аналитическая часть

Матрицей А размера [m*n] называется прямоугольная таблица чисел, функций или алгебраических выражений, содержащая m строк и n столбцов. Числа m и n определяют размер матрицы. [1] Если число столбцов в первой матрице совпадает с числом строк во второй, то эти две матрицы можно перемножить. У произведения будет столько же строк, сколько в первой матрице, и столько же столбцов, сколько во второй.

Пусть даны две прямоугольные матрицы A и B размеров [m*n] и [n*k] соответственно. В результате произведение матриц A и B получим матрицу C размера [m*k].

$$c_{i,j} = \sum_{r=1}^{n} a_{i,r} \cdot b_{r,j}$$
 называется произведением матриц A и B [1].

1.1 Алгоритм Винограда

Подход Алгоритма Винограда является иллюстрацией общей методологии, начатой в 1979-х годах на основе билинейных и трилинейных форм, благодаря которым большинство усовершенствований для умножения матриц были получены [2].

Рассмотрим два вектора V=(v1,v2,v3,v4) и W=(w1,w2,w3,w4). Их скалярное произведение равно (1.1)

$$V \cdot W = v_1 \cdot w_1 + v_2 \cdot w_2 + v_3 \cdot w_3 + v_4 \cdot w_4 \tag{1.1}$$

Равенство (1.1) можно переписать в виде (1.2)

$$V \cdot W = (v_1 + w_2) \cdot (v_2 + w_1) + (v_3 + w_4) \cdot (v_4 + w_3) - v_1 \cdot v_2 - v_3 \cdot v_4 - w_1 \cdot w_2 - w_3 \cdot w_4$$

$$\tag{1.2}$$

Менее очевидно, что выражение в правой части последнего равенства допускает предварительную обработку: его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй. Это означает, что над предварительно обработанными элементами нам придется выполнять лишь первые два умножения и последующие пять сложений, а также дополнительно два сложения.

1.2 Вывод

Были рассмотрены алгоритмы классического умножения матриц и алгоритм Винограда, основное отличие которых — наличие предварительной обработки, а также количество операций умножения.

2 Конструкторская часть

Требования к вводу: На вход подаются две матрицы **Требования к программе:**

- корректное умножение двух матриц;
- при матрицах неправилыных размеров программа не должна аварийно завершаться.

2.1 Схемы алгоритмов

В данной части будут рассмотрены схемы алгоритмов.

Рис. 2.1: Схема классического алгоритма умножения матриц

Рис. 2.2: Схема алгоритма Винограда

Рис. 2.3: Схема оптимизированного алгоритма Винограда

2.2 Трудоемкость алгоритмов

Введем модель трудоемкости для оценки алгоритмов:

- базовые операции стоимостью 1-+,-,*,/,=,==,<=,>=,!=,+=,[], получение полей класса
- оценка трудоемкости цикла: $F\mu = init + N*(a + F\pi a + post) + a$, где a условие цикла, init предусловие цикла, post постусловие цикла
- стоимость условного перехода применим за 0, стоимость вычисления условия остаётся

Оценим трудоемкость алгоритмов по коду программы.

2.2.1 Классический алгоритм

Рассмотрим трудоемкость классического алгоритма:

Инициализация матрицы результата: $1+1+n_1(1+2+1)+1=4n_1+3$ Подсчет:

$$1 + n_1(1 + (1 + m_2(1 + (1 + m_1(1 + (8) + 1) + 1) + 1) + 1) + 1) + 1) + 1 = n_1(m_2(10m_1 + 4) + 4) + 2 = 10n_1m_2m_1 + 4n_1m_2 + 4n_1 + 2$$

2.2.2 Алгоритм Винограда

Аналогично рассмотрим трудоемкость алгоритма Винограда.

```
Первый цикл: \frac{15}{2}n_1m_1 + 5n_1 + 2
Второй цикл: \frac{15}{2}m_2n_2 + 5m_2 + 2
```

Третий цикл: $\tilde{13}n_1m_2m_1 + 12n_1m_2 + 4n_1 + 2$

Условный переход (в m2 нечетное количество строк):

$$\begin{bmatrix} 2 & ,$$
 невыполнение условия $15n_1m_2 + 4n_1 + 2 & ,$ выполнение условия $\end{bmatrix}$

Итого:
$$13n_1m_2m_1+\frac{15}{2}n_1m_1+\frac{15}{2}m_2n_2+12n_1m_2+5n_1+5m_2+4n_1+6+$$
 $\begin{bmatrix} 2 & \text{, невы полнение условия} \\ 15n_1m_2+4n_1+2 & \text{, выполнение условия} \end{bmatrix}$

2.2.3 Оптимизированный алгоритм Винограда

Аналогично Рассмотрим трудоемкость оптимизированого алгоритма Винограда:

```
Первый цикл: \frac{11}{2}n_1m_1 + 4n_1 + 2
Второй цикл: \frac{11}{2}m_2n_2 + 4m_2 + 2
Третий цикл: \frac{17}{2}n_1m_2m_1 + 9n_1m_2 + 4n_1 + 2
Условный переход (в m2 нечетное количество строк): \begin{bmatrix} 1 & \text{, невыполнение условия} \\ 10n_1m_2 + 4n_1 + 2 & \text{, выполнение условия} \end{bmatrix} Итого: \frac{17}{2}n_1m_2m_1 + \frac{11}{2}n_1m_1 + \frac{11}{2}m_2n_2 + 9n_1m_2 + 8n_1 + 4m_2 + 6 + 1 \begin{bmatrix} 1 & \text{, невыполнение условия} \\ 10n_1m_2 + 4n_1 + 2 & \text{, выполнение условия} \end{bmatrix}
```

2.3 Вывод

В данном разделе были рассмотрены схемы алгоритмов умножения матриц, введена модель оценки трудоемкости алгоритма, были расчитаны трудоемкости алгоритмов в соответсвии с этой моделью.

3 Технологическая часть

3.1 Выбор ЯП

Я выбрал в качестве Python языком программирования, потому как он достаточно удобен и гибок.

Время работы алгоритмов было замерено с помощью функции time() из библиотеки time.

3.2 Описание структуры ПО

В данном разделе будет представленна функциональная схема программы (Рис. 3.1.)

Рис. 3.1: Функциональная схема умножения матриц (IDEF0 диаграмма 1 уровня)

3.3 Сведения о модулях программы

Программа состоит из:

• lab02.py - главный файл программы, в котором располагается точка входа в программу и функция замера времени.

3.4 Листинг кода алгоритмов

В данном разделе будет представлен листинги кода стандартного умножения матриц (3.1), алгоритма Винограда (3.2), оптимизированный алгоритм Винограда

```
Листинг 3.1: Стандартный алгоритм умножения матриц
```

```
1 def std(mtr1, mtr2):
    if len(mtr2) != len(mtr1[0]) :
      print("Wrong size of matrix")
      return
    row1 = len(mtr1); col1 = len(mtr1[0])
    col2 = len(mtr2[0])
    res = [[0 for i in range(col2)] for j in range(row1)]
    for i in range(row1):
10
      for j in range(col1):
11
        for k in range(col2):
12
          res[i][k] += mtr1[i][j] * mtr2[j][k]
13
    return res
14
```

Листинг 3.2: Алгоритм Винограда

```
def winograd(mtr1, mtr2):
    row1 = len(mtr1)
    row2 = len(mtr2)
    col2 = len(mtr2[0])

if row2 != len(mtr1[0]):
    print("Different dimension of the matrics")
    return
    d = row2 // 2
```

```
row factor = [0 for i in range(row1)]
10
      col_factor = [0 for i in range(col2)]
11
12
    for i in range(row1):
13
      for i in range(d):
14
         row_factor[i] += mtr1[i][2 * j] * mtr1[i][2 * j + 1]
15
16
    for i in range(col2):
17
      for j in range(d):
18
         col factor[i] += mtr2[2 * j][i] * mtr2[2 * j + 1][i]
19
20
    answer = [[0 \text{ for } i \text{ in } range(col2)] \text{ for } i \text{ in } range(row1)]
^{21}
    for i in range(row1):
22
      for j in range(col2):
23
         answer[i][j] = - row factor[i] - col factor[j]
24
         for k in range(d):
25
           answer[i][j] += ((mtr1[i][2 * k] + mtr2[2 * k + 1][
26
              j]) *\
           (mtr1[i][2 * k + 1] + mtr2[2 * k][j]))
^{27}
28
    if row2 % 2:
29
      for i in range(row1):
30
         for j in range(col2):
31
           answer[i][j] += mtr1[i][b-1] * mtr2[b-1][j]
32
33
    return answer
34
          Листинг 3.3: Оптимизированный алгоритм Винограда
1 def imp winograd(mtr1, mtr2):
    row1 = len(mtr1)
    row2 = len(mtr2)
    col2 = len(mtr2[0])
    if row2 != len(mtr1[0]):
      print("Different dimension of the matrics")
      return
    d = row2 // 2
10
11
    row factor = [0 for i in range(row1)]
12
```

```
col_factor = [0 for i in range(col2)]
13
14
    for i in range(row1):
15
      row factor[i] = sum(mtr1[i][2 * j] * mtr1[i][2 * j + 1]
16
          for j in range(d))
17
    for i in range(col2):
18
      col factor[i] = sum(mtr2[2 * j][i] * mtr2[2 * j + 1][i]
19
          for j in range(d))
20
    answer = [[0 for i in range(col2)] for i in range(row1)]
21
    for i in range(row1):
22
      for j in range(col2):
23
        answer[i][j] = sum((mtr1[i][2 * k] + mtr2[2 * k + 1][
24
           j]) * (mtr1[i][2 * k + 1] + mtr2[2 * k][j]) for k
           in range(d))\
        - row factor[i] - col factor[j]
25
26
    if row2 % 2:
27
      for i in range(row1):
28
        answer[i][j] = sum(mtr1[i][row2 - 1] * mtr2[row2 -
            1][j] for j in range(col2))
30
    return answer
31
```

3.4.1 Оптимизация алгоритма Винограда

В рамках данной лабораторной работы было предложено 3 оптимизации:

1. Избавление от деления в условии цикла;

```
Листинг 3.4: Оптимизации алгоритма Винограда №1 и №2

for i in range(row1):

row_factor[i] = sum(mtr1[i][2 * j] * mtr1[i][2 * j

+ 1] for j in range(d))

for i in range(col2):

col_factor[i] = sum(mtr2[2 * j][i] * mtr2[2 * j +

1][i] for j in range(d))
```

2. Накопление результата в буфер, чтобы не обращаться каждый раз к одной и той же ячейке памяти.

```
Листинг 3.5: Оптимизации алгоритма Винограда №3
```

3.5 Вывод

В данном разделе была рассмотрена структура ΠO и листинги кода программы.

4 Исследовательская часть

Был проведен замер времени работы каждого алгоритма.

4.1 Примеры работы

В данном разделе будет представлен результат работы программы (Рис.4.1)

```
=== RESTART: C:\Users\qanil\Desktop\analysis_or_algorithms\laduz\laduz\py ===
A = [[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]],
B = [[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7], [4, 5, 6, 7, 8]]

Стандартный алгоритм умножения A*B [[30, 40, 50, 60, 70], [40, 54, 68, 82, 96], [50, 68, 86, 104, 122]]

Алгоритм Винограда A*B [[30, 40, 50, 60, 70], [40, 54, 68, 82, 96], [50, 68, 86, 104, 122]]

Отпимизированный алгоритм Винограда A*B [[30, 40, 50, 60, 70], [40, 54, 68, 82, 96], [50, 68, 86, 104, 122]]
```

Рис. 4.1: Пример работы программы

4.2 Постановка эксперемента

Проведем сравнение для каждого из алгоритмов. Для замера времени будем использовать функцию time.

4.2.1 Лучший случай

Временные замеры для квадратных матриц с нечетным размером матриц размером size * size (Puc. 4.2)

size	Стандартный	Виноград	Оптимизированный Виноград
100	0.5494	0.69569	0.56495
200	4.15013	4.66497	4.54574
1 300	14.72735	16.41758	14.99365
400	34.76485	40.25307	36.63559
500	0.08998	0.10028	0.16667

Рис. 4.2: Временные замеры для лучшего случая

4.2.2 Худший случай

Временные замеры для квадратных матриц c нечетным размером матриц размером size * size (Puc. 4.3)

size	Стандартный	Виноград	Оптимизированный Виноград
101	0.59867	0.68139	0.61839
201	4.61544	5.01175	4.46456
301	14.79835	16.28355	14.74381
401	35.3947	40.06329	37.95568
501	72.95269	83.25553	72.76217

Рис. 4.3: Временные замеры для худшего случая

Рис. 4.4: Сравнение алгоритмов на матрицах четных размеров

Рис. 4.5: Сравнение алгоритмов на матрицах четных размеров

4.2.3 Выводы экспериментальной части

Были протестированы различные алгоритмы умножения матриц. По результатам эксперимента алгоритм Винограда показывает худшие временные показатели. Стандартный и оптимизированный алгоритм Винограда сравнимы по скорости на небольших размерах матриц.

Заключение

В ходе выполнения данной лабораторной работы были реализованы три алгоритма умножения матриц: стандартный, алгоритм Винограда, оптимизированный алгоритм Винограда. Был проведён анализ каждого алгоритма и измерено время работы алгоритмов для матриц разных размеров. Была оценена трудоёмкость алгоритмов.

Лучшее время работы все сортировки показывают стандартный алгоритм умножения и оптимизированный алгоритм Винограда. Это объясняется тем, что замеры времени были проведены на относительно небольших размерах матриц. При умножении матриц больших размеров, алгоритм Винограда будет эффективнее обычного алгоритма умножения.

Литература

- [1] И. В. Белоусов(2006), Матрицы и определители, учебное пособие по линейной алгебре, с. 1 16
- [2] Le Gall, F. (2012), "Faster algorithms for rectangular matrix multiplication Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012), pp. 514–523
- [3] Руководство по языку С#[Электронный ресурс], режим доступа: https://docs.microsoft.com/ru-ru/dotnet/csharp/