to Predict dependent variable (4) based on values of independent variable (x). it Can be used for the Cases where we Want to Predict some Continuous quantity. fer Example Suppose you have to find out annual Soile of your Company. So factors that affect the Armual Sale known as dependent variables.

ke: Employee like. * Emplayee

* Product Sale

* loss

* Pocifit

Dependent

Yariables * Annual Seile - Independent variable Regression analysis is used for Establishing the relationship between the dependent & indépendent variables When dependent variable or output it we were in numeric or Number then we will use regression.

linear Means — When x increase y is also increase this is linear nature. -X Simple linear Regression-s if we have only one dependant Variable and one independ variable then we can bey that it is simple linear J=20+2, X, independent variable variable regression. * Multiple linear Regression > if we have one dépendent variable and Mone than one independent variable then we Con Lay Hat it is Multiple linear Kegression

J= 40+4, x, + 5x2 -- - Lynn L_= Regression Coefficient X, = independent. variable 7 = dépendent variable J=0.9+1.2x,+2x2+4x3+1,x4 The value of Coefficient Shows that. the features related to the Coefficient How Much important it is important for output it Shows the importance of the features In the above Equation the Mast important feature is Ly decourse ils
value is Equal to 4 that is Maximum.

For Example

Student

Roll NO[I] if me have Percentage than me com decide that Situdent is fail or Pass. So Percentage feature is Mone important to determine the result. So it is Mone Effective feature.

Whole data set to training phase then dearning Process Starts then Madel automatically decide which feature is pulting Mone impact on the output. and How Much it is important for the critique. according to this it decides & values. It we have only students ID and roll No then we can not Predict the

result of the Student. So these features

core real important for cent-pul-

Given Dotasel

X | Y | XY | X | Attributes

A | XY | XY | X | Attributes

Variables

1 | 3 | 5 | 15 | 9

4 | 7 | 28 | 16

10 | 19 | 54 | 30

$$Q = (\underline{\xi}Y)(\underline{\xi}X^2) - (\underline{\xi}X)(\underline{\xi}XY)$$

The of observation

No of cases

No of values

No of Points

You can surface

You for surface

Y = b x + 9

$$Q = (\underline{19})(30) - (\underline{10})(54)$$

$$(4)(30) - (10)(34)$$

$$(4)(30) - (100)$$

$$= 570 - 540$$

$$\overline{120 - 100}$$

$$= 30/20$$

$$= 3/2 \Rightarrow 1.5$$

$$b = (4)(54) - (10)(15)$$

$$(4)(30) - (100)$$

$$= 26$$

$$= 26$$

$$= 13$$

$$= 1.3$$

$$10 \Rightarrow 1.3$$

$$V = 13 \times + 15$$
Alternative formula of (a)
$$0 \Rightarrow \underbrace{\times Y - h(\times)}_{Y}$$

$$19 - (1.3)(10 \Rightarrow \underbrace{6}_{4} = \underbrace{3}_{2} = 15)$$

$$19 - (1.3)(10 \Rightarrow \underbrace{6}_{4} = \underbrace{3}_{2} = 15)$$

$$0 \Rightarrow \underbrace{\times Y - h(\times)}_{Y}$$

$$19 - (1.3)(10 \Rightarrow \underbrace{6}_{4} = \underbrace{3}_{2} = 15)$$

$$19 - (1.3)(10 \Rightarrow \underbrace{6}_{4} = \underbrace{3}_{2} = 15)$$

$$19 - (1.3)(10 \Rightarrow \underbrace{6}_{4} = \underbrace{3}_{2} = 15)$$

$$10 \Rightarrow \underbrace{10}_{Y} = \underbrace$$

fine instances given so using these I fine instances we need to Madel and then use that Particular Madel atro read to Per Value of y.

$$\begin{aligned}
Q &= \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2 \\
b_1 &= \left(\underline{\mathcal{E}} \, \underline{X}_2^2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_1 Y \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2 Y \right) \\
&= \left(\underline{\mathcal{E}} \, \underline{X}_1^2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2^2 \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2 Y \right) \\
&= \left(\underline{\mathcal{E}} \, \underline{X}_1^2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2 Y \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2 Y \right) \\
&= \left(\underline{\mathcal{E}} \, \underline{X}_1^2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2^2 \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2 Y \right) \\
&= \left(\underline{\mathcal{E}} \, \underline{X}_1^2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2^2 \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2 Y \right) \\
&= \left(\underline{\mathcal{E}} \, \underline{X}_1^2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2^2 \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2 Y \right) \\
&= \left(\underline{\mathcal{E}} \, \underline{X}_1^2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2^2 \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2 Y \right) \\
&= \left(\underline{\mathcal{E}} \, \underline{X}_1^2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2 Y \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2 Y \right) \\
&= \left(\underline{\mathcal{E}} \, \underline{X}_1^2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_1^2 \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_2 Y \right) \\
&= \left(\underline{\mathcal{E}} \, \underline{X}_1^2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_1^2 \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_1 Y \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_1 Y \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_1 Y \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_1 Y \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_1 Y \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 \underline{X}_2 \right) \left(\underline{\mathcal{E}} \, \underline{X}_1 Y \right) - \left(\underline{\mathcal{E}} \, \underline{X}_1 Y \right) -$$

Subject	4	XI P	X2 '	K1 X1 .	X2 X2	X1 X2	and the second second second second second second	124
1-	-3.7	3	8	9	64	24	-11.1	-29.6
2	3.5	4	5	16	25	20	14	17.5
3	2.5	5	7	25	49	35	12.5	17-3
4	11.5	6	3	36	9	18	69	34.5
,	5-		1	4	1	2	11.4	5.7
5	and particle states agree a	5 2.	0 20	4 90	148	95	35.8	45.6
5	19-	5			per designation of the second	and the same of th	design 1 mans	para di la para di para pada di la para pada di

X2 is Not a simple X2 it is the variance & with respect to x2. $\xi x_i^2 = \xi x_i^2 - (\xi x_i)^2$ $\leq x_1^2 = \leq x_1 x_1 - \frac{(24)(2x_1)^N}{N} \Rightarrow 10$ l=1 1=2 $\leq x_{2}^{2} = \leq x_{2}x_{2} - (\leq x_{2})(\leq x_{2}) = 32.8$ 2xy = 2xy - (2x)(2y) = 17.8 $\xi_{2}y = \xi_{2}y - (\xi_{2})\cdot(\xi_{4}) = -48$ b1= 32.8 × 17.8 - 3 × (-48) = 2.28 10 * 32.8 - 3 * 3 $b_2 = 10 \times (-48) - 3 \times 17.8 = -1.67$ 10 + 32.8 - 3 + 3 $G = Y - b_1 X_1 - b_2 X_2$ = 19.5 - 2.28 × 20 - 1.67 × 24 => 2-796