Notations booléennes

Demi-additionneur

dditionneur

# Additionneur

Christophe Viroulaud

Première - NSI

Archi 06

Notations booléennes

Jenn-additionneur

Additionnei

À partir des *briques élémentaires* il est possible de construire des circuits plus complexes et ainsi permettre d'effectuer différentes opérations.

Notations booléennes

vemi-additionneur

Additionneur

Comment construire un circuit permettant d'effectuer des additions?

# Sommaire

Notations booléennes

Jemi-additionneur

- 1. Notations booléennes
- 2. Demi-additionneur
- 3. Additionneu

# Notations booléennes

Notations booléennes

Demi-additionneur

- ▶ ¬ pour NOT
- ► ∧ pour AND
- ► ∨ pour OR
- ightharpoonup  $\oplus$  pour XOR

Notations booléennes

Demi-additionneur

| Х | $\neg x$ |
|---|----------|
| 1 | 0        |
| 0 | 1        |

Tableau 1 – Table de vérité de  $\neg x$ 

Demi-additionneur

| Х | у | $x \lor y$ |
|---|---|------------|
| 0 | 0 | 0          |
| 0 | 1 | 1          |
| 1 | 0 | 1          |
| 1 | 1 | 1          |

Tableau 2 – Table de vérité de  $x \lor y$ 

Demi-additionneur

Additionneur

**Activité 1 :** Écrire les tables de vérités de  $x \wedge y$  et  $x \oplus y$ .

#### Notations booléennes

Demi-additionneur

| х | У | $x \wedge y$ |
|---|---|--------------|
| 0 | 0 | 0            |
| 0 | 1 | 0            |
| 1 | 0 | 0            |
| 1 | 1 | 1            |

#### Notations booléennes

Demi-additionneur

| Х | у | $x \oplus y$ |
|---|---|--------------|
| 0 | 0 | 0            |
| 0 | 1 | 1            |
| 1 | 0 | 1            |
| 1 | 1 | 0            |

Demi-additionneu

Additionne

### Activité 2:

- 1. On définit 3 paramètres : x, y, z. Combien de combinaisons peut-on réaliser?
- 2. Écrire la table de vérité de  $x \wedge y \wedge z$ .

Demi-additionneur

| Х | у | Z | $x \wedge y \wedge z$ |
|---|---|---|-----------------------|
| 0 | 0 | 0 | 0                     |
| 0 | 0 | 1 | 0                     |
| 0 | 1 | 0 | 0                     |
| 0 | 1 | 1 | 0                     |
| 1 | 0 | 0 | 0                     |
| 1 | 0 | 1 | 0                     |
| 1 | 1 | 0 | 0                     |
| 1 | 1 | 1 | 1                     |
|   |   |   |                       |

Notations booléennes

Demi-additionneur

dditionneur

**Activité 3 :** Écrire la table de vérité de  $x \land (y \lor z)$ .

#### Notations booléennes

Demi-additionneur

| х | У | z | $y \lor z$ |
|---|---|---|------------|
| 0 | 0 | 0 | 0          |
| 0 | 0 | 1 | 1          |
| 0 | 1 | 0 | 1          |
| 0 | 1 | 1 | 1          |
| 1 | 0 | 0 | 0          |
| 1 | 0 | 1 | 1          |
| 1 | 1 | 0 | 1          |
| 1 | 1 | 1 | 1          |
|   |   |   | •          |

Demi-additionneur

| Х | у | Z | $y \lor z$ | $x \wedge (y \vee z)$ |
|---|---|---|------------|-----------------------|
| 0 | 0 | 0 | 0          | 0                     |
| 0 | 0 | 1 | 1          | 0                     |
| 0 | 1 | 0 | 1          | 0                     |
| 0 | 1 | 1 | 1          | 0                     |
| 1 | 0 | 0 | 0          | 0                     |
| 1 | 0 | 1 | 1          | 1                     |
| 1 | 1 | 0 | 1          | 1                     |
| 1 | 1 | 1 | 1          | 1                     |
|   |   |   |            |                       |

Demi-additionneur

dditionneur

**Activité 4 :** Écrire la table de vérité de  $(x \land y) \oplus (\neg y \lor z)$ 

Demi-additionneur

|   | Z                     | $(x \wedge y)$                         | $\neg y$                                               | $(\neg y \lor z)$                                         |
|---|-----------------------|----------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|
| 0 | 0                     | 0                                      | 1                                                      | 1                                                         |
| 0 | 1                     | 0                                      | 1                                                      | 1                                                         |
| 1 | 0                     | 0                                      | 0                                                      | 0                                                         |
| 1 | 1                     | 0                                      | 0                                                      | 1                                                         |
| 0 | 0                     | 0                                      | 1                                                      | 1                                                         |
| 0 | 1                     | 0                                      | 1                                                      | 1                                                         |
| 1 | 0                     | 1                                      | 0                                                      | 0                                                         |
| 1 | 1                     | 1                                      | 0                                                      | 1                                                         |
|   | 0<br>1<br>1<br>0<br>0 | 0 1<br>1 0<br>1 1<br>0 0<br>0 1<br>1 0 | 0 1 0<br>1 0 0<br>1 1 0 0<br>0 0 0 0<br>0 1 0<br>1 0 1 | 0 1 0 1   1 0 0 0   1 1 0 0   0 0 0 1   0 1 0 1   1 0 1 0 |

Demi-additionneur

| Х | у | Z | $(x \wedge y)$ | $\neg y$ | $(\neg y \lor z)$ | $(x \wedge y) \oplus (\neg y \vee z)$ |
|---|---|---|----------------|----------|-------------------|---------------------------------------|
| 0 | 0 | 0 | 0              | 1        | 1                 | 1                                     |
| 0 | 0 | 1 | 0              | 1        | 1                 | 1                                     |
| 0 | 1 | 0 | 0              | 0        | 0                 | 0                                     |
| 0 | 1 | 1 | 0              | 0        | 1                 | 1                                     |
| 1 | 0 | 0 | 0              | 1        | 1                 | 1                                     |
| 1 | 0 | 1 | 0              | 1        | 1                 | 1                                     |
| 1 | 1 | 0 | 1              | 0        | 0                 | 0                                     |
| 1 | 1 | 1 | 1              | 0        | 1                 | 0                                     |

## Sommaire

Notations booléennes

Demi-additionneur

- 1. Notations booléennes
- 2. Demi-additionneur
- 3. Additionneu

## Demi-additionneur

Notations booléennes

Demi-additionneur

Additionne

Un demi-additionneur prend deux bits en entrée  $e_0$  et  $e_1$  et renvoie la somme  $e_0+e_1$  en sortie s. Il faut prendre en compte une éventuelle retenue c.

Demi-additionneur

| <b>e</b> <sub>0</sub> | $e_1$ | S | С |
|-----------------------|-------|---|---|
| 0                     | 0     | 0 | 0 |
| 0                     | 1     | 1 | 0 |
| 1                     | 0     | 1 | 0 |
| 1                     | 1     | 0 | 1 |

Tableau 3 – Table de vérité du demi-additionneur

### Demi-additionneur

Additionne

| <b>e</b> <sub>0</sub> | $e_1$ | S | С |
|-----------------------|-------|---|---|
| 0                     | 0     | 0 | 0 |
| 0                     | 1     | 1 | 0 |
| 1                     | 0     | 1 | 0 |
| 1                     | 1     | 0 | 1 |

### Activité 5:

- 1. Quelles fonctions logiques reconnaît-on en s et c?
- 2. En déduire le schéma du demi-additionneur.

booléennes

Demi-additionneur

$$\begin{array}{c|cccc} e_0 & e_1 & s & c \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 \\ \hline 1 & 1 & 0 & 1 \\ \hline \end{array}$$

$$s = e_0 \oplus e_1$$
$$c = e_0 \wedge e_1$$



FIGURE 1 – Demi-additionneur

Notations

Demi-additionneur

Demi-additionneur

- 1. Notations booléennes
- 2. Demi-additionneur
- 3. Additionneur

pooléennes

Demi-additionneur

Additionneur

Dans une addition bit à bit il faut prendre en compte l'éventuelle retenue de l'addition précédente. Ainsi un additionneur prend trois entrées  $e_0$ ,  $e_1$  et la retenue précédente  $c_0$ . Il renvoie une sortie  $s=e_0+e_1+c_0$  et une retenue éventuelle c.

**Activité 6 :** Compléter la table de vérité de l'additionneur.

| <i>e</i> <sub>0</sub> | $e_1$ | <b>c</b> 0 | S | С |
|-----------------------|-------|------------|---|---|
| 0                     | 0     | 0          |   |   |
| 0                     | 0     | 1          |   |   |
| 0                     | 1     | 0          |   |   |
| 0                     | 1     | 1          |   |   |
| 1                     | 0     | 0          |   |   |
| 1                     | 0     | 1          |   |   |
| 1                     | 1     | 0          |   |   |
| 1                     | 1     | 1          |   |   |

booléennes

Demi-additionned

booléennes

Demi-additionneur

| <b>e</b> 0 | $e_1$ | <b>c</b> 0 | S | С |
|------------|-------|------------|---|---|
| 0          | 0     | 0          | 0 | 0 |
| 0          | 0     | 1          | 1 | 0 |
| 0          | 1     | 0          | 1 | 0 |
| 0          | 1     | 1          | 0 | 1 |
| 1          | 0     | 0          | 1 | 0 |
| 1          | 0     | 1          | 0 | 1 |
| 1          | 1     | 0          | 0 | 1 |
| 1          | 1     | 1          | 1 | 1 |
|            |       |            |   |   |

votations pooléennes

Demi-additionneur

Additionneur

### On peut remarquer :

$$egin{aligned} s &= e_0 \oplus e_1 \oplus c_0 \ & \ (e_0 \wedge e_1) ee (e_0 \wedge c_0) ee (e_1 \wedge c_0) \end{aligned}$$



FIGURE 2 - Additionneur

**Activité 7 :** Placer les entrées  $e_0$ ,  $e_1c_0$  et les sorties s, c sur le schéma.

Notations nooléennes

Demi-additionneur