

Express Mail No.: EL197650401US

Docket No.: 21327-701CON2
F3

In The United States Patent and Trademark Office

Applicant: Gill et al.,
Serial No.: 09/805,761
Filing Date: March 13, 2001
Title: Methods and Compositions for Antisense VEGF Oligonucleotides

Examiner: To Be Assigned
Group Art Unit: 1635

Box Missing Parts
Commissioner for Patents
Washington, D.C. 20231

PETITION TO ACCEPT COLOR PHOTOGRAPHS
(37 C.F.R. §1.84(b)(2))

Sir:

This petition is for the acceptance of color photographs (37 C.F.R. §1.84(b)(2)).

Attached hereto are three sets of color photographs for Figures 23A-23O of the above referenced application. The reason for the need for color photographs in this application are that color photographs are the practicable media for illustrating fluorescent labeling. Granting of this petition is respectfully requested. An Preliminary Amendment requesting amendment of the specification to refer to the Color Photographs is also filed concurrently herewith.

Please charge Deposit Account No. 50-1189, Docket No.:21327-701CON2, in the amount of \$130.00 to cover the petition fee as set forth in 37 C.F.R. §1.17(h). The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 50-1189, Docket No.:21327-701CON2. *A duplicate of this sheet is enclosed.*

Date: November 16, 2001

11/27/2001 BARBARA M. GRUPPI 50-1189 09805761

02 FD:122 130.00 04

Respectfully submitted,

By:
Carol M. Gruppi
Registration No. 37,341

McCutchen, Doyle, Brown & Enersen, LLP
Three Embarcadero Center, Suite 1800
San Francisco, California 94111
Telephone: (650) 849-4902
Telefax: (650) 849-4800

1 / 29

FIG._1A

FIG._1B

2 / 29

FIG. 2

3 / 29

	KSY1	HUVE	SKIN	KS lesion	T1	23-1	HUT-78
M	flt KDR	flt KDR	flt KDR	flt KDR	flt KDR	flt KDR	flt KDR

FIG._3A

FIG._3B

FIG._4

4 / 29

FIG._5A

FIG._5B

5 / 29

FIG._6A

FIG._6B

6 / 29

FIG._6C

FIG._6D

7 / 29

FIG._6E

FIG._6F

8 / 29

NT	1 μ M AS-1				5 μ M AS-1				10 μ M AS-1						
M	25	29	33	37	41	25	29	33	37	41	25	29	33	37	41

FIG._7A

NT	1 μ M AS-3				5 μ M AS-3				10 μ M AS-3						
M	25	29	33	37	41	25	29	33	37	41	25	29	33	37	41

FIG._7B

NT	1 μ M S				5 μ M S				10 μ M S						
M	25	29	33	37	41	25	29	33	37	41	25	29	33	37	41

FIG._7C

9 / 29

NT	1 μ MAS1	5 μ MAS1	10 μ MAS1
M 18 22 26 30 33	18 22 26 30 33	18 22 26 30 33	18 22 26 30 33

FIG._7D

NT	1 μ MAS3	5 μ MAS3	10 μ MAS3
M 18 22 26 30 33	18 22 26 30 33	18 22 26 30 33	18 22 26 30 33

FIG._7E

NT	1 μ M S	5 μ M S	10 μ M S
M 18 22 26 30 33	18 22 26 30 33	18 22 26 30 33	18 22 26 30 33

FIG._7F

10 / 29

FIG._7G

FIG._7H

FIG._7I

11 / 29

FIG._7J

FIG._7K

FIG._8

12 / 29

Effect of Liposomal VEGF Scrambled ODNs
on the Cell Growth of KSY-1

FIG._9A

Effect of Liposomal VEGF AS-3 Antisense ODNs
on the Growth of KSY-1

FIG._9B

13 / 29

FIG._ 10A

FIG._ 10B

FIG._ 11A

14 / 29

FIG._ 11B

FIG._ 11C

FIG._ 11D

FIG._ 11E

FIG._ 11F

15 / 29

FIG._12

FIG._13

* SEQ ID NO: 9 _____ 269-289
 * SEQ ID NO: 10 _____ 268-288
 * SEQ ID NO: 11 _____ 267-287
 * SEQ ID NO: 12 _____ 266-286
 ** SEQ ID NO: 13 _____ 265-285
 ** SEQ ID NO: 14 _____ 264-284
 * SEQ ID NO: 15 _____ 263-283
 * SEQ ID NO: 16 _____ 262-282
 SEQ ID NO: 30 VEGF-A AGATCGAGTACATCTCAAGGCCATCCTGTGTGCCCCCTG
 SEQ ID NO: 31 VEGF-C CGACAAACACCTCTTTAACCTCATGTGTTCCGTC
 SEQ ID NO: 32 VEGF-D GTACCAACACATCTTCAGCCCCCTGTGTGAACGTG
 * SEQ ID NO: 29 _____ 271-
 ** SEQ ID NO: 2 _____ 261-281
 * SEQ ID NO: 17 _____ 260-280
 * SEQ ID NO: 18 _____ 259-279
 * SEQ ID NO: 20 _____ 265-284
 * SEQ ID NO: 21 _____ 266-284

FIG.-14

FIG.- 15G

Control

FIG.- 15H

VEGFR-1

FIG.- 15I

VEGFR-2

FIG.- 15J

Hoc-7
A375

FIG.- 15K

VEGFR-1

FIG.- 15L

VEGFR-2

19 / 29

FIG._ 16A

FIG._ 16B

FIG._ 16C

20 / 29

FIG._ 16D

FIG._ 16E

FIG._ 16F

FIG._ 16G

21 / 29

FIG._ 17A

VEGFA	ATCGAGTACATCTTCAAGCCA
VEGFB	GTGGCCAAACAGCTGGTGCCC
VEGFC	ACAAACACCTTCTTTAACCT
P1GF	GTGGAGCACATGTTCAAGCCCC
VEGFD	ACCAAACACATTCTTCAAGCCCC

FIG._ 17B

Human	ATCGAGTACATCTTCAAGCCA
Mouse	ATAGAGTACATCTTCAAGCCG

FIG._ 17C

22 / 29

FIG.- 18A

FIG.- 18C

FIG.- 18E

FIG.- 18G

FIG.- 18I

FIG.- 18B

FIG.- 18D

FIG.- 18F

FIG.- 18H

23 / 29

FIG._18J

FIG._18K

24 / 29

FIG._ 19A

FIG._ 19C Concentration of AS-3 (μM)

FIG._ 19D Concentration of AS-3 (μM)

25 / 29

FIG._20B

FIG._20C

FIG._20D

26 / 29

FIG._21A FIG._21B

FIG._21C FIG._21D

FIG._21E FIG._21F FIG._21G

FIG._21H FIG._21I FIG._21J

27 / 29

FIG._21K

VEGF AS-3m

FIG._21L

VEGF AS-3m

FIG._21M

VEGF AS-3m

FIG._21N

VEGF AS-3m

FIG._21O

VEGF AS-3m

FIG._21P

FIG._22

FIG._23A

FIG._23B

FIG._23C

FIG._23D

FIG._23E

FIG._23F

FIG._23G

FIG._23H

FIG._23I

FIG._23J

FIG._23K

FIG._23L

FIG._23A

FIG._23B

FIG._23C

FIG._23D

FIG._23E

FIG._23F

FIG._23G

FIG._23H

FIG._23I

FIG._23J

FIG._23K

FIG._23L

FIG._23M

FIG._23N

FIG._23O

FIG._23A

FIG._23B

FIG._23C

FIG._23D

FIG._23E

FIG._23F

FIG._23G

FIG._23H

FIG._23I

FIG._23J

FIG._23K

FIG._23L

FIG._23M

FIG._23N

FIG._23O

FIG._24A

FIG._24B