2018 学年第二学期八年级数学期中检测试卷

(满分: 100分 考试时间: 90分钟)

一、单选题(每小题3分,共30分)

CBCAD CABBC

- 二、填空题(每小题 3 分,共 24 分)
- 11. 7 . 12. ______
- 13. <u>16</u> . 14. $k \ge -2$.
- 15. _ 10 _ . 16. _ 12 _ .
- 17. _ 5 _ . 18. _ 4.5
- 三. 解答题(共6题,共46分)
- 19. (本题 6 分) 计算:

(1)
$$\sqrt{27} - \sqrt{12} + \sqrt{45}$$

(2)
$$\sqrt{27} \times \sqrt{\frac{1}{3}} - (\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})$$

$$= \sqrt{27 \times \frac{1}{3}} - (5 - 3)(2\%)$$

$$= 1(1\%)$$

20. (本题 6 分)解方程:

(1)
$$x^2 - 6x + 5 = 0$$

(2)
$$3(x-2) = x(x-2)$$

$$(x-1)(x-5) = 0(2\%)$$

$$(x-2)(3-x) = 0(2/3)$$

$$x_1 = 1$$

$$x_1 = 2$$

$$x_2 = 5$$

$$x_2 = 3$$

21. (本题 8 分)

(1) 根据上图填写下表:

	平均数	中位数	众数	方差
甲班	8. 5	8. 5	8. 5	0. 7
乙班	8. 5	8	10	1.6

- (2) 根据上表数据,分别从平均数、中位数、众数、方差的角度对甲乙两班进行分析.
 - 答:从平均数看,两班平均数相同,则甲乙两班的成绩一样好,

从中位数看,甲班的中位数大,所以甲班的成绩较好,

从众数看, 乙班的众数大, 所以乙班的成绩较好,

从方差看,甲班的方差小,所以甲班的成绩更稳定。

22. (本题 8 分) (1) 设每件童装降价x元时, 每天可销售(20+2x)件, 每件盈利

(40-x)元 (用x的代数式表示) (3分)

(2) 每件童装降价多少元时,平均每天赢利 1200 元.

解: 由题意得:

$$(40-x)(20+2x) = 1200(2\%)$$

解得:
$$x_1 = 10$$
(舍去), $x_2 = 20$ (2分)

(1分)

23. (本题 8 分)

- (1)证明: \Box ABCD 中,AD // BC, AD = BC
 - : F 是 AD 的中点

$$\therefore DF = \frac{1}{2}AD$$

$$\therefore$$
 CE = $\frac{1}{2}$ BC

- .. DF=CF
- : DF // CE
- · 四边形 CEDF 是平行四边形。

(2) 解: 作*DG* 上 *BE* 于 G,

$$\therefore$$
 ABCD \Rightarrow , AB=6, $\angle B = 60^{\circ}$

$$\therefore AB // CD, AB = CD = 6$$

$$\therefore \angle DCE = \angle B = 60^{\circ}$$

$$\therefore \angle DCG = 30^{\circ}$$

$$\therefore CG = \frac{1}{2}CD = 3$$

$$\therefore DG = \sqrt{27}$$

∴ AD=BC=8

由勾股定理得: DE= $2\sqrt{7}$

24. (本题 10 分)

$$0C = 8_{3}; \angle AOC = 60^{0}$$

(2) (5分)

由题意得, $P(3,3\sqrt{3})$,AC,OB的交点为 $H(4,2\sqrt{3})$

设直线 PH 的函数表达式为 y = kx + b,

(3) (3分)

存在,分三种情况:

当 AP 为对角线时, $D(0,4\sqrt{3})$

当 AD 为对角线时, $D(0,8\sqrt{3})$

当 AE 为对角线时, $D(0,4\sqrt{3})$

综上,D 的坐标为 $D_1(0,4\sqrt{3})$, $D_2(0,8\sqrt{3})$