פתרון תרגיל מספר 8־ חישוביות וסיבוכיות

שם: מיכאל גרינבאום, ת.ז: 211747639

2020 ביוני

שאלה 1

סעיף 1

 $L = \left\{ \left\langle \left\langle M_1 \right\rangle, \left\langle M_2 \right\rangle \right
angle \mid L\left(M_1\right) \subseteq L\left(M_2\right)
ight\} \in \overline{ ext{RE} \cup ext{coRE}}$ צ"ל:

הוכחה:

תהי שתקבל כל מילה כשלב ראשון) עם 2 מצבים שתקבל כל מילה כשלב ראשון) תהי הרי $L\left(M_{all}\right)=\Sigma^*$ הבאה: $f\left(\langle M \rangle\right)=\langle\langle M_{all} \rangle,\langle M \rangle$ הבאה: $f:\Sigma^* \to \Sigma^*$ על על שים לב שי $f:\Sigma^* \to \Omega$ ומקבלת.

$$\langle M \rangle \in ALL_{TM} \iff L\left(M\right) = \Sigma^* \iff L\left(M\right) \subseteq \Sigma^* \land \Sigma^* \subseteq L\left(M\right)$$

$$\stackrel{L\left(M\right) \subseteq \Sigma^* \text{ always true}}{\iff} \Sigma^* \subseteq L\left(M\right) \stackrel{L\left(M_{all}\right) = \Sigma^*}{\iff} L\left(M_{all}\right) \subseteq L\left(M\right)$$

$$\iff \langle\langle M_{all} \rangle, \langle M \rangle\rangle \in L \iff f\left(\langle M \rangle\right) \in L$$

כלומר קיבלנו שקיימת $f:\Sigma^* o \Sigma^*$ חשיבה כך ש־ $f:\Sigma^* o \Sigma^*$ חשיבה לו שקיימת כלומר קיבלנו שקיימת $ALL_{TM}\in\overline{ ext{RE}\cup ext{coRE}}$ וגם $ALL_{TM}\in\overline{ ext{RE}\cup ext{coRE}}$ (ראינו בתרגול) ולכן ממשפט הרדוקציה, כנדרש.

מ.ש.ל.א.©

2 סעיף

 $L=\left\{ \left\langle \left\langle M_{1}
ight
angle ,\left\langle M_{2}
ight
angle
ight. \mid L\left(M_{1}
ight)=L\left(M_{2}
ight)
ight\} \in\overline{ ext{RE}\cup\operatorname{coRE}}$ צ"ל:

הוכחה:

נעשה בדיוק אותה בנייה כמו בסעיף הקודם ונקבל אובר ונסיק ונסיק ונסיק בדיוק אותה בנייה כמו בסעיף הקודם ונקבל $ALL_{TM} \leq_m L$ ממשפט הרדוקציה מ.ש.ל.ב. \odot

3 סעיף

 $L=\left\{ \left\langle \left\langle M_{1}\right\rangle ,\left\langle M_{2}\right\rangle ,w
ight
angle \ |\ M_{1},M_{2}\ \mathrm{agree\ on}\ w
ight\} \in\overline{\mathrm{RE}\cup\mathrm{coRE}}\$ צ"ל:

הוכחה:

תחילה נסמן ב־ $M_{not\ halt}$ מכונה שלא עוצרת על אף קלט. נסתכל על $f:\Sigma^*\to \Sigma^*$ הבאה: $f:\Sigma^*\to \Sigma^*$ הבאה לכי היא רק כותבת את הקידוד של $M_{not\ halt}$ לפני M ומקבלת. ונס נשים לב כי היא רק כותבת את הקידוד של הבער לבי כי היא רק ווא רק כותבת את הקידוד של הבער לבי כי

 $\langle \langle M \rangle, w \rangle \in \overline{HALT_{TM}} \iff M \text{ doesn't halt on } w \iff$ $\stackrel{M_{not \ halt} \text{ never halts}}{\iff} M \text{ doesn't halt on } w \wedge M_{not \ halt} \text{ doesn't halt on } w$ $\stackrel{M_{not \ halt} \text{ never halts}}{\iff} M, M_{not \ halt} \text{ agree on } w$ $\iff \langle \langle M_{not \ halt} \rangle, \langle M \rangle, w \rangle \in L \iff f\left(\langle \langle M \rangle, w \rangle\right) \in L$

כלומר קיבלנו שקיימת $X \in \overline{HALT_{TM}} \iff f\left(\left\langle\left\langle M\right\rangle,w\right\rangle\right) \in L$ שייבה כך שי $f:\Sigma^* \to \Sigma^*$ חשיבה לומר קיבלנו שקיימת $X \in \overline{HALT_{TM}} \notin RE$ וגם $X \in \overline{HALT_{TM}} \notin RE$ וגם $X \in \overline{HALT_{TM}} \in RE$ ואנכן וגם $X \in \overline{HALT_{TM}} \in RE$ ממשפט הרדוקציה. עתה נסמן $X \in RE$ מכונה שמקבלת כל קלט. $X \in \overline{HALT_{TM}} \in A$ מכונה שמקבלת כל קלט. $X \in \overline{HALT_{TM}} \in A$ מכונה שמקבלת כל קלט. $X \in A$ נטתכל על $X \in A$ הבאה: $X \in A$ הבאה: $X \in A$ הפידוד של $X \in A$ ומקבלת. ומקבלת. ומקבלת. ואם נשים לב כי

$$\langle \langle M \rangle \,, w \rangle \in A_{TM} \iff M \text{ accepts } w \iff \\ \frac{M_{not \ halt} \text{ always accepts }}{\text{always accepts }} M \text{ accepts } w \wedge M_{accepts} \text{ accepts } w \\ \frac{M_{not \ halt} \text{ always accepts }}{\text{advays accepts }} M, M_{accepts} \text{ agree on } w \\ \iff \langle \langle M_{accepts} \rangle \,, \langle M \rangle \,, w \rangle \in L \iff f \left(\langle \langle M \rangle \,, w \rangle \right) \in L$$

כלומר קיבלנו שקיימת $f:\Sigma^*\to\Sigma^*$ חשיבה כך ש־ $f:\Sigma^*\to L^*$ חשיבה לומר קיבלנו שקיימת $A_{TM}\notin\mathrm{coRE}$ וגם $A_{TM}\notin\mathrm{coRE}$ (ראינו בהרצאה) ולכן $L\notin\mathrm{coRE}$ ממשפט הרדוקציה. $L\notin\mathrm{coRE}$ כלומר קיבלנו ש־ $L\in\overline{\mathrm{RE}\cup\mathrm{coRE}}$

מ.ש.ל.ג.ⓒ

4 סעיף

 $L = \{ \langle \langle M \rangle, w \rangle \mid M \text{ never modifies the portain that w is written on} \} \in \text{coRE} \setminus R$ צ"ל:

. הבאה: \mathcal{M} המכונה את ונבנה ער $L \in \mathrm{coRE}$

- $\left\langle \left\langle M\right\rangle ,w\right\rangle$ נקבל קלט.1
- $i \in \{1, 2, \dots\}$ לכל.
- אם כן נקבל w על את M על אל i צעדים ונבדוק האם M שינה את הסרט שכתבנו עליו w, אם כן נקבל

 $L(\mathcal{M}) = \overline{L}$ נוכיח ש־

- 1. אם M אף פעם לא דוחה ואיטרציה M משנה את החלק שלב בו w, נשים לב ש־ M אף פעם לא דוחה ואיטרציה ($\langle M \rangle, w \rangle \in \overline{L}$ אז קיים שלב i בו המכונה w שינה את הסרט שכתבנו עליו w ולכן נקבל, כלומר i נראה ש־ i שינה את הסרט שכתבנו עליו

 $L\left(\mathcal{M}\right)=\overline{L}$ ולכן $\left\langle \left\langle M\right\rangle ,w\right\rangle \in\overline{L}\iff\left\langle \left\langle M\right\rangle ,w\right\rangle \in L\left(\mathcal{M}\right)$ ולכן כלומר קיבלנו כי $L\left(\mathrm{CoRE}\right)$ כלומר הראנו שקיים מ"ט \mathcal{M} כך שד $L\left(\mathcal{M}\right)=\overline{L}$, ולכן $L\left(\mathrm{CoRE}\right)$ באופן הבא: $\mathcal{M}_{\left\langle \left\langle M\right\rangle ,w\right\rangle }$

- x נקבל קלט.1
- 2. נזיז את הראש |x| צעדים ימינה
 - w על M על 3.
 - :w אם M קיבל את
- x נשנה את התו הראשון של (א)

, $f\left(\left\langle\left\langle M\right
angle,w
ight
angle
ight)=\left\langle\mathcal{M}_{\left\langle\left\langle M\right
angle,w
ight
angle},0
ight
angle$ הבאה: $f:\Sigma^* o\Sigma^*$ נסתכל על

נשים לב ש־ f חשיבה כי היא רק כותבת את הקידוד של $\mathcal{M}_{\langle\langle M\rangle,w\rangle},0$ שניתן לחישוב על ידי מכונה אוניברסלית.

נשים לב שכאשר $\mathcal{M}_{\langle\langle M\rangle,w\rangle}$ מסמלצת את M על w היא לא תזיז את הראש אחורה מהנקודה שבו הוא התחיל (כי M חושבת שההתחלה של הסרט היא הנקודה שבו היה הראש כשהתחלנו להריץ את M),

ולכן בזמן ש־ לפני הסמלוץ את w, הערך של x על הסרט א מסמלצת את מסמלצת ש־ ולכן אולכן אולכן אישתנה.

ולכן w שלא יחזור אחורה מהמקום ההתחלתי את אל M מריצה את את אחרת אחורה מהמקום ההתחלתי משנה את אם ורק אם חליבל את אחרת אחורה מהמקום ההתחלתי שבו שמנו את הראש כאשר

w אם את קיבל אם אם ורק אם אם אלכן הראשון את משנה את משנה את משנה את לכן מעלכו את אחור את התו $M_{\langle\langle M\rangle,w\rangle}$

 $\langle\langle M\rangle, w\rangle \in A_{TM} \iff M \text{ accepts } w \iff \mathcal{M}_{\langle\langle M\rangle, w\rangle} \text{ changes the first bit of input } 0$ $\iff \langle \mathcal{M}_{\langle\langle M\rangle, w\rangle}, 0\rangle \notin L \iff f(\langle\langle M\rangle, w\rangle) \notin L$

 $(\langle M \rangle, w \rangle \in A_{TM} \iff f(\langle \langle M \rangle, w \rangle) \notin L$ כלומר קיבלנו שקיימת $f: \Sigma^* \to \Sigma^*$ חשיבה כך שר $A_{TM} \iff C$ כלומר $\overline{L} \iff A_{TM} \le m$ וגם $\overline{L} \notin RE$ ואם $\overline{L} \notin RE$ ולכן $\overline{L} \notin CORE$ בלומר קיבלנו כי $\overline{L} \notin RE$ וגם $\overline{L} \notin RE$ ולכן $\overline{L} \notin RE$ כלומר קיבלנו כי

מ.ש.ל.ד.☺

5 סעיף

 $L = \{ \langle \langle M \rangle, w_1, w_2 \rangle \mid M \text{ accepts } w_1 \text{ and rejects } w_2 \} \in \text{RE} \setminus R$ צ"ל:

:הכחה:

m RE תחילה פשוט נריץ את M ונקבל אם קיבל את w_1 ודחה את m_2 ולכן M

עתה ניצור \mathcal{M} שמקבל את w_i אם M קיבל את הודוחה את המילה הראשונה וזה רדוקציה מ־ w_i אם M אם w_i אם ככפRE ב־

מ.ש.ל.ה.☺