the contest of exhaustrate or CBCS-243

B. Sc. (Hon's) (Third Semester) Examination, Dec. 2023

(CBCS Course)

COMPUTER SCIENCE

Paper: 302

(Mechanics)

Time Allowed: Three hours

Maximum Marks: 60

Minimum Pass Marks: 21

addressed to exist a manage costs of the first president year.

Note: Attempt the questions of both sections—'A' and 'B' as directed. Distribution of marks is given with sections.

Section-'A'

(Short Answer Type Questions) 5×6=30

Note: Attempt all five questions. One question from each unit is compulsory. Each question carries 6 marks.

The contribution of the second of the second

121

Unit-I

1. Discuss Galilean transformations.

Or

Prove that Newtonian fundamental equations are invariant under Galilean transformations.

Unit-II

Define conservative and non-conservative forces with examples. Find formula for work done by nonconservative forces.

Or

Explain stable, unstable and neutral equilibrium. Write the condition under which the system is stable or unstable.

Unit-III

3. State and prove theorem of parallel axes.

Or

Find the moment of inertia of a rod about an axis passing through centre of the rod and perpendicular to the rod.

131

Unit-IV

 Define centres of oscillation and suspension show that the centre of oscillation and suspension are convertible.

Or

Differentiate between damped and forced oscillations.

Unit-V

State fundamental postulates of special theory of relativity and deduce the Lorentz transformation equations.

Or

Discuss time dilation.

CBCS-243 PT

CBCS-243

Section-'B'

(Long Answer Type Questions) 3×10=30

Note: Attempt any three questions. Each question carries 10 marks.

- 6. State and prove principle of conservation of momentum.
- 7. State and prove law of conservation of energy.

radiova or megagiere bak addicible or re

- 8. Find moment of inertia of a solid sphere about one of its diameters.
- 9. State and explain Kepler's laws of planetary motion.

 Discuss motion of satellite in circular orbit.

10. Prove that:

$$E = mc^2$$