Virtual Memory

Consider a Scenario

Main Memory

- Size of Main Memory = 64 Bytes
- Frame Size = 4 Bytes
- Number of Frames = 64/4 = 16

Process

- Size of Process = 16 Bytes
- Page Size = 4 Bytes
- Number of Pages = 16/4 = 4

Paging

How does the MMU get the Physical address of B14 in Main Memory?!!

Main Memory

Process

	Process P1									
Page 0	В0	B1	B2	B3						
Page 1	B4	B5	B 6	В7						
Page 2	B8	B9	B10	B11						
Page 3	B12	B13	B14	B15						

CPU	VA of B6 = 0110	MMU	PA of B14
-----	-------------------------------	-----	------------------

Frame 0	В0	B1	B2	В3				
Frame 1	B4	B5	B6	B7				
Frame 2	B8	B9	B10	B11				
Frame 3	B12	B13	B14	B15				
Frame 4	B16	B17	B18	B19				
Frame 5	B20	B21	B22	B23				
Frame 14	B56	B57	B58	B59				
Frame 15	B60	B61	B62	B63				

Some Important Byte Conversions

- $1 KB = 2^{10}B$
- $1 MB = 2^{20}B$
- 1 $GB = 2^{30}B$
- $1 TB = 2^{40}B$

Example:

- $2^{34} B$
 - $2^{30} * 2^4 B = 2^4 GB = 16 GB$

- Physical Address Space (PAS)
 - Size of Main Memory

- Virtual Address Space (VAS)
 - Size of the process

- PAS = 128 KB
- VAS = 128 KB
- How many bits for PA?
 - 17
- How many bits for VA?
 - 17

- Physical Address Space (PAS)
 - Size of Main Memory

- Virtual Address Space (VAS)
 - Size of the process

- PAS = 128 KB
- VAS = 128 KB
- Page Size = 4 KB
- How many bits for the page offset?
 - 12 bits

- Physical Address Space (PAS)
 - Size of Main Memory

- Virtual Address Space (VAS)
 - Size of the process

- PAS = 128 KB
- VAS = 128 KB
- Page Size = 4 KB
- How many bits for the page number?
 - (17 12) bits = 5 bits
- How many Pages?
 - $2^5 = 32$

- Physical Address Space (PAS)
 - Size of Main Memory

- Virtual Address Space (VAS)
 - Size of the process

- PAS = 128 KB
- VAS = 128 KB
- Page Size = 4 KB
- How many bits for the Frame number?
 - (17 12) bits = 5 bits
- How many Frames?
 - $2^5 = 32$

- Physical Address Space (PAS)
 - Size of Main Memory

- Virtual Address Space (VAS)
 - Size of the process

- PAS = 128 KB
- VAS = 128 KB
- Page Size = 4 KB
- How many bits for a Page Table Entry (PTE)?
 - 5 bits

- Physical Address Space (PAS)
 - Size of Main Memory

- Virtual Address Space (VAS)
 - Size of the process

- PAS = 128 KB
- VAS = 128 KB
- Page Size = 4 KB
- What is the Size of the Page Table?
 - (Number of Pages * Size of a Page Table Entry) = $2^5 * 5$ bits

VAS	PAS	VA	PA	Page Size	Page Offset	# of Virtual Pages	# of Physical Pages(or frames)	PTE ^{\$}	Size of Page Table
1 MB					10		256		

VAS	PAS	VA	PA	Page Size	Page Offset	# of virtual Pages	# of Physical Pages (or Frames)	PTE\$	Size of Page Table
1 MB				2 ¹⁰	10		256		

VAS	PAS	VA	PA	Page Size	Page Offset	# of Virtual Pages	# of Frames	PTE ^{\$}	Size of Page Table
1 MB	# of Frames * Frame Size = 256 KB			2 ¹⁰	10		256		

VAS	PAS	VA	PA	Page Size	Page Offset	# of Virtual Pages	# of Frames	PTE ^{\$}	Size of Page Table
1 MB = 2^20 Bytes	# of Frames * Frame Size = 256 KB = 2^18 Bytes	20 bits	18 bits	2 ¹⁰	10		256		

VAS	PAS	VA	PA	Page Size	Page Offset	# of Virtual Pages	# of Frames	PTE ^{\$}	Size of Page Table
1 MB = 2^20 Bytes	# of Frames * Frame Size = 256 KB = 2^18 Bytes	20 bits	18 bits	2 ¹⁰	10	$2^{(20-10)} = 2^{10}$	256		

VAS	PAS	VA	PA	Page Size	Page Offset	# of Virtual Pages	# of Frames	PTE ^{\$}	Size of Page Table
1 MB = 2^20 Bytes	# of Frames * Frame Size = 256 KB = 2^18 Bytes	20 bits	18 bits	2 ¹⁰	10	$2^{(20-10)} = 2^{10}$	256 = 2^8	8 bits	

VAS	PAS	VA	PA	Page Size	Page Offset	# of Virtual Pages	# of Frames	PTE ^{\$}	Size of Page Table
1 MB = 2^20 Bytes	# of Frames * Frame Size = 256 KB =2^18 Bytes	20 bits	18 bits	2 ¹⁰	10	$2^{(20-10)} = 2^{10}$	256 = 2^8	8 bits	2 ¹⁰ * 8 bits