The pollination trade-off

Supplementary information

Fernando Cagua, Hugo Marrero, Jason Tylianakis, Daniel Stouffer

Table S1: Summary of the model used to analyse the relationship between heterospecific and conspecific pollen

predictor	estimate	S.E.	z-value			
fixed component						
(Intercept)	4.976	0.279	17.862			
heterospecific	0.008	0.017	0.474			
random component (species:community)						
S.D. random intercept	1.964	-	-			
S.D. random slope	0.120	-	-			

Figure S1: Correlation between the explanatory variables included in the statistical models.

Table S2: The slope of the relationship between heterospecific and conspecific pollen for each species in their community (fixed effect + conditional effect). Community names are constructed by location - agricultural/restored - fragment number.

		alama	C E
species name	community	slope	S.E.
Aloysia gratissima	Anquilóo - reserve - 2	0.0746	0.0144
Baccharis pingraea	San Claudio - reserve - 1	-0.0012	0.0359
$Carduus\ a can thoides$	Anquilóo - agricultural - 2	0.0116	0.0147
$Carduus\ a can thoides$	San Claudio - agricultural - 1	-0.0106	0.0040
$Carduus\ a can thoides$	San Claudio - agricultural - 2	0.0518	0.0044
$Carduus\ a can thoides$	San Claudio - reserve - 1	0.0781	0.0710
$Carduus\ a can thoides$	San Claudio - reserve - 2	-0.0008	0.0359
$Cirsium\ vulgare$	Anquilóo - agricultural - 2	-0.0401	0.0025
$Cirsium\ vulgare$	Las Chilcas - reserve - 1	0.0007	0.0012
$Cirsium\ vulgare$	San Claudio - agricultural - 2	0.0197	0.0158
$Cirsium\ vulgare$	San Claudio - reserve - 1	-0.0149	0.0076
$Condalia\ microphylla$	Anquilóo - reserve - 1	0.0487	0.0200
$Cypella\ herbertii$	Las Chilcas - agricultural - 2	0.0037	0.0002
$Cypella\ herbertii$	Las Chilcas - reserve - 1	-0.0052	0.0001
$Descurania\ argentina$	Anquilóo - agricultural - 2	0.0429	0.0048
$Diplotaxis\ tenuifolia$	Anquilóo - reserve - 1	0.0008	0.0004
Diplotaxis tenuifolia	Anquilóo - reserve - 2	0.5173	0.0270
$Diplotaxis\ tenuifolia$	San Claudio - reserve - 2	-0.0045	0.0001
$Dipsacus\ sp.$	San Claudio - reserve - 2	-0.0368	0.0648
$Gaillardia\ megapotamica$	Anquilóo - reserve - 2	0.0016	0.0004
$Glandularia\ hookeriana$	Anquilóo - reserve - 2	-0.0942	0.0244
$Hirschfeldia\ incana$	Anquilóo - agricultural - 1	-0.0045	0.0013
Hirschfeldia incana	Anquilóo - agricultural - 2	-0.0148	0.0057
Hirschfeldia incana	San Claudio - agricultural - 1	0.0110	0.0020
Hirschfeldia incana	San Claudio - agricultural - 2	0.0031	0.0023
Hirschfeldia incana	San Claudio - reserve - 1	0.0022	0.0002
Hirschfeldia incana	San Claudio - reserve - 2	0.0432	0.0020
Lycium chilense	Anquilóo - reserve - 2	-0.3355	0.0087
Mentha pulegium	Las Chilcas - agricultural - 2	0.0136	0.0866
$Mentha\ pulegium$	Las Chilcas - reserve - 1	0.3973	0.0388
Nierembergia aristata	Anquilóo - agricultural - 1	0.0197	0.0217
Nierembergia aristata	Anquilóo - reserve - 1	-0.0065	0.0016
$Nierembergia\ aristata$	Anquilóo - reserve - 2	-0.0048	0.0011
$Nothoscordum\ euosimum$	Las Chilcas - agricultural - 1	0.0405	0.0034
$Nothoscordum\ euosimum$	Las Chilcas - agricultural - 2	-0.0045	0.1162
Physalis viscosa	Anquilóo - agricultural - 1	0.0041	0.0005
$Prosopidastrum\ globosum$	Anquilóo - reserve - 2	-0.0012	0.0194
Senecio pulcher	Las Chilcas - agricultural - 1	-0.0104	0.0007
Sisyrinchium platense	Las Chilcas - agricultural - 1	-0.2850	0.0203
Sisyrinchium platense	Las Chilcas - agricultural - 2	-0.0487	0.0324
Sisyrinchium platense	Las Chilcas - reserve - 1	0.0206	0.1143
$Solanum\ sisymbrii folium$	San Claudio - agricultural - 1	0.0002	0.0004
Sphaeralcea crispa	Anquilóo - reserve - 1	-0.0601	0.0133
$\hat{Stemodia}\ lance olata$	Las Chilcas - agricultural - 1	-0.0044	0.0001
$The lesperma\ megapotamicum$	Anquilóo - agricultural - 1	-0.0022	0.0025
$Turnera\ sidioides$	Anquilóo - agricultural - 1	-0.0002	0.0001
$Turnera\ sidioides$	Anquilóo - agricultural - 2	-0.0140	0.0170
$Turnera\ sidioides$	Anquilóo - reserve - 2	-0.0014	0.0002
$Verbena\ intermedia$	Anquilóo - reserve - 2	-0.0643	0.0327
$Verbena\ intermedia$	San Claudio - agricultural - 2	0.0932	0.0071
$Verbena\ intermedia$	San Claudio - reserve - 2	-0.0073	0.0101

Table S3: Summary of the model used to analyse the relationship between conspecific pollen deposited in bagged and unbagged flowers (open to animal pollination).

predictor	estimate	S.E.	z-value			
fixed component						
(Intercept)	4.215	0.318	13.235			
treatment (unbagged flower)	0.845	0.205	4.128			
random component (species:community)						
S.D. random intercept	2.240	-	-			
S.D. random slope	1.377	-	-			

Figure S2: Distribution of effect estimates for models of conspecific and heterospecific pollen density gain. Model formulas have been abbreviated: a for abundance, k for the number of shared pollinators, p for the visit effectiveness, and t for trait originality. Only candidate formulas with a $\Delta AICc < 4$ for either conspecific or heterospecific pollen are shown. Models candidates are arranged in decreasing order of support.

Table S4: Amount of conspecific pollen deposited in bagged and unbagged flowers (open to animal pollination) for each species in their community. Community names are constructed by location - agricultural/restored - fragment number.

	bagged		unbagged		
species name	community	mean	C.I.	mean	C.I.
Aloysia gratissima	Anquilóo - reserve - 2	1	[0, 1]	39	[26, 59]
Baccharis pingraea	San Claudio - reserve - 1	0	[0, 0]	4	[2, 8]
Carduus acanthoides	Anquilóo - agricultural - 2	25	[23, 27]	56	[52, 61]
$Carduus\ a can thoides$	San Claudio - agricultural - 1	34	[32, 35]	42	[40, 44]
Carduus acanthoides	San Claudio - agricultural - 2	41	[39, 43]	16	[16, 17]
Carduus acanthoides	San Claudio - reserve - 1	12	[11, 14]	10	[9, 11]
Carduus acanthoides	San Claudio - reserve - 2	10	[9, 11]	15	[14, 17]
Cirsium vulgare	Anquilóo - agricultural - 2	211	[205, 217]	222	[215, 228]
Cirsium vulgare	Las Chilcas - reserve - 1	284	[277, 291]	320	[313, 328]
Cirsium vulgare	San Claudio - agricultural - 2	33	[8, 132]	76	[19, 302]
Cirsium vulgare	San Claudio - reserve - 1	218	[210, 226]	81	[78, 84]
Condalia microphylla	Anquilóo - reserve - 1	38	[36, 41]	35	[33, 37]
Cypella herbertii	Las Chilcas - agricultural - 2	1095	[276, 4336]	2738	691, 10844
Cypella herbertii	Las Chilcas - reserve - 1	478	[462, 494]	2743	[2652, 2836
Descurania argentina	Anquilóo - agricultural - 2	90	[86, 93]	117	[113, 121]
Diplotaxis tenuifolia	Anquilóo - reserve - 1	362	[92, 1435]	881	[222, 3489]
Diplotaxis tenuifolia	Anquilóo - reserve - 2	177	[45, 700]	422	[107, 1671]
Diplotaxis tenuifolia	San Claudio - reserve - 2	769	[762, 776]	1153	[1143, 116]
Dipsacus sp.	San Claudio - reserve - 2	4	[3, 5]	14	[12, 17]
$Gaillardia\ megapotamica$	Anquilóo - reserve - 2	590	[580, 601]	179	[175, 182]
Glandularia hookeriana	Anquilóo - reserve - 2	185	[178, 192]	131	[127, 136]
Hirschfeldia incana	Anquilóo - agricultural - 1	432	[427, 437]	412	[408, 417]
Hirschfeldia incana	Anquilóo - agricultural - 2	246	[240, 252]	758	[740, 778]
Hirschfeldia incana	San Claudio - agricultural - 1	407	[403, 412]	271	[268, 274]
Hirschfeldia incana	San Claudio - agricultural - 2	291	[288, 294]	305	[302, 308]
Hirschfeldia incana	San Claudio - reserve - 1	384	[380, 389]	355	[351, 359]
Hirschfeldia incana	San Claudio - reserve - 2	340	[337, 344]	465	[460, 470]
Lycium chilense	Anquilóo - reserve - 2	998	[987, 1009]	1339	[1325, 135
Mentha pulegium	Las Chilcas - agricultural - 2	1	[1, 2]	3	[2, 4]
Mentha pulegium	Las Chilcas - reserve - 1	7	[6, 8]	15	[12, 18]
Nierembergia aristata	Anquilóo - agricultural - 1	116	[105, 128]	835	[756, 922]
Nierembergia aristata	Anquilóo - reserve - 1	179	[171, 187]	1072	[1024, 112
Nierembergia aristata	Anquilóo - reserve - 2	71	[67, 76]	1054	[984, 1129]
$Nothoscordum\ euosimum$	Las Chilcas - agricultural - 1	92	[88, 97]	408	[388, 428]
$Nothoscordum\ euosimum$	Las Chilcas - agricultural - 2	324	[315, 334]	352	[343, 362]
Oxalis violeta	San Claudio - reserve - 2	371	[122, 1131]	467	[153, 1423]
Physalis viscosa	Anquilóo - agricultural - 1	1227	[1211, 1244]	2732	[2696, 276]
Prosopidastrum globosum	Anquilóo - reserve - 2	10	[8, 11]	13	[12, 15]
Senecio pulcher	Las Chilcas - agricultural - 1	358	[348, 367]	406	[395, 417]
Sisyrinchium platense	Las Chilcas - agricultural - 1	91	[88, 95]	159	[152, 165]
Sisyrinchium platense	Las Chilcas - agricultural - 2	35	[9, 139]	81	[20, 319]
Sisyrinchium platense	Las Chilcas - reserve - 1	193	[179, 208]	73	[67, 79]
Solanum sisymbriifolium	San Claudio - agricultural - 1	57	[50, 66]	2194	[1923, 250]
Sphaeralcea crispa	Anquilóo - reserve - 1	2	[2, 2]	9	[8, 10]
$Stemodia\ lanceolata$	Las Chilcas - agricultural - 1	387	[380, 394]	1919	[1884, 195
$The lesperma\ megapotamicum$	Anquilóo - agricultural - 1	314	[306, 322]	327	[319, 336]
$Turnera\ sidioides$	Anquilóo - agricultural - 1	53	[51, 55]	198	[189, 206]
$Turnera\ sidioides$	Anquilóo - agricultural - 2	1	[0, 1]	4	[2, 8]
Turnera sidioides	Anquilóo - reserve - 2	1	[1, 2]	189	[113, 315]
Verbena intermedia	Anquilóo - reserve - 2	67	[64, 70]	125	[119, 131]
Verbena intermedia	San Claudio - agricultural - 2	34	[32, 36]	66	[63, 70]
Verbena intermedia	San Claudio - reserve - 2	136	[133, 139]	356	[348, 365]

Table S5: The coefficient of determination \mathbb{R}^2 of the most parsimonious pollen deposition models (those with the lowest AICc). The marginal coefficient of determination describes the proportion of variance explained by just the fixed effects.

condi	conditional $R_{(c)}^2$		onal $R_{(c)}^2$ marginal $R_{(m)}^2$		2 (m)
mean	min	max	mean	min	max
conspe	conspecific pollen				
0.91	0.87	0.93	0.09	0.06	0.14
heterospecific pollen					
0.80	0.76	0.87	0.27	0.21	0.35

Table S6: Comparison of the two random structures we considered for the models of conspecific and heterospecific pollen deposition. The table shows median ΔAIC values of 99 bootstrap resamples of the data. The 5th and 95th percentile are shown inside square brackets. Communities are defined by individual fragments but ignore the hierarchical arrangement of sampling sites.

	$\Delta { m AIC}$	
random structure	median	C.I.
conspecific pollen 1 plant sp. * community 1 plant sp.	0.0 30.7	[0, 0] [8.2, 58.1]
heterospecific pollen 1 plant sp. * community 1 plant sp.	0.0 44.6	[0, 0] [19.3, 88.4]

Table S7: Comparison of the different fixed structures we considered for the models of conspecific and heterospecific pollen deposition. The table shows median ΔAIC values of 99 bootstrap resamples of the data. The 5th and 95th percentile are shown inside square brackets.

	$\Delta { m AIC}$	
fixed structure	median	C.I.
conspecific pollen		
~ abundance + share pollen	0.0	[0, 0]
~ abundance + share pollen + func. originality	0.9	[0.4, 1.3]
~ abundance + share pollen + degree	1.9	[1.6, 2.1]
~ abundance + share pollen + degree + func. originality	2.2	[1.6, 2.8]
~ share pollen + func. originality	2.8	[2.1, 3.8]
\sim share pollen + degree + func. originality	3.6	[2.3, 4.6]
~ share pollen	118.3	[75.3, 178.7]
\sim share pollen + degree	119.0	[76,179.9]
~ abundance	189.7	[150.1,239.7]
~ abundance + func. originality	191.6	[151.7, 241.6]
~ abundance + degree	191.7	[151.9,241.7]
~ func. originality	192.5	[152.9,242.2]
\sim abundance + degree + func. originality	193.7	[153.6, 243.6]
~ degree + func. originality	193.7	[154.6,243.7]
\sim degree	351.8	[293.5,419.9]
heterospecific pollen		
~ abundance + share pollen	0.0	[0, 0]
~ abundance + share pollen + func. originality	1.1	[0.5, 1.5]
~ abundance + share pollen + degree	2.1	[1.9, 2.1]
~ abundance + share pollen + degree + func. originality	3.1	[2.6, 3.5]
~ share pollen + func. originality	11.9	[10,13.9]
~ share pollen + degree + func. originality	13.2	[11.2, 15.2]
~ share pollen	67.5	[53.4,87.5]
~ share pollen + degree	68.4	[54.2,88.7]
~ abundance + degree	206.9	[160.6,251.5]
~ abundance	207.6	[162.8 ,251.7]
~ abundance + func. originality	208.6	[163.2 ,252.6]
~ abundance + degree + func. originality	208.6	[162.2 ,253.2]
~ func. originality	214.3	[168.3 ,258.7]
~ degree + func. originality	216.3	[170.3 ,260.6]
$\sim \text{degree}$	336.0	[282.6 ,391.5]