机械设计基础课程设计

指导老师:周英

13617498111

机电楼 A402

2019年

完成总体设计和传动零件 设计之后,

开始轴系的设计

第三章 轴的设计计算

• 高速轴

- (1) 选择轴的材料和热处理方法(45钢,调质处理或者正火处理)
- (2) 按抗扭强度估算轴的最小直径
- (3) 轴的结构设计(*参考课程设计指导书,须认真学习减速器构造之后方可正确理解各部位构造的装配关系)
- (4) 轴的强度校核
- 低速轴(过程同上)

先了解——减速器的构造

减速器装配图之俯视图草图绘制

减速器装配草图设计

- 1)减速器七大附件及作用
- 2) 轴的设计计算
- 3) 轴承的选择计算
- 4) 联轴器的选择计算
- 5) 键的选择计算

1) 减速器附件

七大附件的结构设计

窥视孔 视孔盖 Md4 00 Md· 螺栓孔

视孔盖

通气器

放油螺塞

2) **轴的设计**(1,2部分算例参 _{質量小轴径}, 见本讲义74-75页)

- 1. 计算最小轴径;
- 2. 根据轴上零件的拆装方向确定轴的结构(确定各段轴径、再画装配草图根据配合关系确定各轴段长度;包括轴承型号的选择);
- 3. 作轴的弯扭强度校核; (参见教材《机械设计基础》中轴的章节里强度计算的步骤, 注意本设计中的轴系受力条件与教材中不同, 应理解掌握后自行计算并画出弯矩扭矩及弯扭合成图, 不得抄袭书中算例)

3) 初选轴承、键

轴承内径:由前述轴的设计中可以得到,轴承型号建议从中等负载的型号选取,比如深沟球轴承可以初选**6300**系列,强度比**6100**和**6200**要高,但低于**6400**,以此类推。好处是居中的型号强度中等,便于调整。

如果强度不够,则选取宽一些或者外径更大一些的轴承型号。相应的轴上与轴承配合部位的宽度需要调整,因此轴承寿命校核以后,如果型号有修改,则需要返回修改轴系结构图上对应部位的尺寸。

键:根据安装键对应的轴段轴径来选取键宽型号,键长直接参考轴段长度而定

键长 = 轴段长度-轴肩圆角倒角-适当余量(余量可选5mm左右)

4) 绘制前的准备:

(请参照本pdf的第八章 减速器的润滑)

① 轴承润滑方式:

浸油齿轮V≤2 m/s时,可采用<u>脂润滑</u>, 否则为油润滑。或者参照dn值选取。

② 齿轮润滑方法:

V≤12 m/s时可采用浸油润滑。

5)绘制草图的要求

(1)线条要细、轻、易擦除,用H或HB铅笔;

(2) 在全部装配图画完之前,不要急于加深、 画剖面线、标尺寸等。 6) 减速器装配图设计

a) 初步绘制装配图

<u>主视图与俯视图上先</u> 画一对大小齿轮:

主视图:体现两齿轮 的分度圆直径及中心 距;

俯视图:体现分度圆直径以及齿宽(注意小齿轮齿宽应大于大齿轮齿宽)

减速器草图绘制前期工作

- •齿轮参数确定(d1、d2、B1、B2、da1、da2等)
- 高、低速轴最小轴径及各段轴径确定
- 完成 铸铁减速器箱体结构尺寸、减速器零件的位置尺寸的表格(类似蓝本书的表3-1、表4-1),准备开始绘制草图

初算轴的最小轴径

已知轴的输入功率和转速,根据扭矩初步估计轴的最小直径为:如下举例,已知材料选取45钢

- 如果是既承受弯矩又承受扭矩,那么**C**值可以再取大一些。
- 轴的最小直径显然是最外端轴伸的直径。轴伸部位为了 传递扭矩,需开键槽,故将上式算出的最小轴径需要增加5%,变为42.525mm。
- 凡是轴上有配合其他零件的轴段直径都需要查《机械设计手册》,此题应取标准直径45mm。如果配合的是带轮或者链轮,应查取大于等于计算值的标准直径。如果配合的是联轴器,则查取联轴器的标准来选取轴径。

各轴段直径确定(低速轴)

- D1: 最小轴径(参照联轴器对应尺寸,最小轴径如果是接的带或链轮,则要查取对应的轴伸标准)
- D2=D1+6~10, 有定位要求(参考查取密封圈匹配尺寸)
- D3=D2+1~5, 且必须为5的倍数(匹配轴承的需要)
- D4=D3+1~5, 与大齿轮匹配, 查表选用标准直径
- D5=D4+6~10,有定位要求
- D6=D3,同轴两轴承的内外径一样大。注意D6与D5之间如果结构是轴承直接紧靠轴肩,就有轴承安装高度的要求,如果轴承安装高度与D5有矛盾,可以把D5设计成两段阶梯的轴肩。

(但各段的长度应该怎么确定? 这就需要画出轴上零件的对应位置后,

表3-1 铸铁减速器箱体结构尺寸

表 3-1 铸铁减速器箱体结构尺寸(图 3-1、图 3-2、图 3-3)

衣	3-1 1012/04/2018				4	
名 称	符号	齿轮减速器	尺 寸 	关 域連器	系 蜗柱	F减速器
箱座壁厚	8	δ=0.025 δ ₁ =0.02 式中: Δ=1 (单级	$a+\Delta \geqslant 8$	级 ^①);	0.0	4 <i>a</i> +3≥8
箱盖壁厚	δ_1	a 为低速级中心距, x $a^{Q} = \frac{d_{n}}{a}$	讨于圆锥齿轮	减速器,	上川八	$: \delta_1 = \delta$ $: \delta_1 = 0.85\delta \geqslant$
箱体凸缘厚度	b, b_1, b_2	箱座 b=1.	.5δ; 箱盖 b ₁	$=1.5\delta_1;$	箱底座 b2=	= 2. 5δ
加强肋厚	m, m_1	箱	座 $m=0.85\delta$; 箱盖 n	$n_1 = 0.85 \delta_1$	
地脚螺钉直径	di	0.036a+12	0.018 (d	$m_1+d_{m_2}$	+1≥12	0.036a+12
地脚螺钉数目	n	$a \le 250, n=4$ $a > 250 \sim 500, n=6$ a > 500, n=8		n= <mark>箱底</mark>	座凸缘周长; 200~300	≥≚ ≥4

表3-1铸铁减速器箱体结构尺寸(续)

轴承旁联接螺栓直径	d_1				0.75df	**	7			
箱盖、箱座联接螺栓直径	d ₂	(0.5~0.	6) d ₁ ;	螺栓间]距 <i>L</i> ≤	£150~2	200		
轴承盖螺钉直径和数目	d_3 , n	见表 9-9								
轴承盖 (轴承座端面) 外径	D_2	见表 9-9、	表 9-10	; s≈D	2, 5 为	由承两	则联接!	漂栓间	的距离	
观察孔盖螺钉直径	d4		= =1	(0	3~0.	4) d ₁		3		
		螺栓直径	M8	M10	M12	M16	M20	M24	M27	M30
d_1 、 d_1 、 d_2 至箱外壁距离; d_1 、 d_2 至凸缘边缘的距离	C_1 , C_2	$C_{1 \min}$	13	16	18	22	26	34	34	40
all as The way with the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$C_{2\min}$	11	14	16	20	24	28	32	34
轴承旁凸台高度和半径	h , R_1			h由结	构确定	$R_1 =$: C ₂			
箱体外壁至轴承座端面距离	<i>l</i> ₁			C_1	-C ₂ +	(5~10)			

注:① 对圆锥-圆柱齿轮减速器,按双级考虑;a按低速级圆柱齿轮传动中心距取值。

② d_{m1} 、 d_{m2} 为两圆锥齿轮的平均直径。

名 称	符号			减	速器	即式及	尺寸き	关系				
£1 *7)	া ব'ড	齿	轮减速	器				<u> </u>	科杆减	速器		
箱座(体)壁厚	δ	$0.025 a + \Delta \geqslant 8$ $0.04 a + 3 \geqslant 8$										
Art the sale tree		_	05.00	_				蜗	杆上置	1:≈	}	
箱盖壁厚	δ_1	0.	85 ∂ ≥	8*				蜗杆	下置:0	. 85 δ	≥8	
箱座、箱盖、箱座底凸缘厚度	b, b_1, b_2	$b = 1.5\delta, b_1 = 1.5\delta_1, b_2 = 2.5\delta$										
地脚網丛古久五粉 口	<i>d</i>	α ≤ 100 ~	- 200	>	200	T		底座(20	1缘周	长之当	¥	
地脚螺栓直径及数目	d_{f} , n	d_f 12 0.0	4α + 8	0.04	7a +	8	n =	(2	00~	300)	- 24	
轴承旁联接螺栓直径	d_1					0.75a	f					
箱盖、箱座联接螺栓直径	d ₂	(0.5~0.6)df;螺栓的间距:150~200										
		轴承座孔(外	圖)直	ΔD	45 ^	~ 65	70 ~	100	110 -	~ 140	150	~ 230
轴承端盖螺钉直径	d_3	d_3				3	1	0	1	2	1	6
		螺钉数	目			1	-	4		6		6
检查孔盖螺钉直径	d,		单级	减速器	:d4 =	= 6, 🕏	级减	速器:	$d_4 = 8$	3		
		螺栓直径	M8	M10	M12	M14	M16	M18	M20	M22	M24	M30
d_f 、 d_1 、 d_2 至箱外壁距离	c ₁	C _{3min}	14	16	18	20	22	24	26	30	34	40
d_f 、 d_2 至凸缘边缘距离	c ₂	Czmin	12	14	16	18	20	22	24	26	28	35
	D_0	D_0	20	24	28	32	34	38	42	44	50	62
	R _o	Romex		5				8			10	
	r	r _{mex}		3				5			8	

表4-1 减速器零件的位置尺寸

代号	名 称	荐 用 值	代号	名 称	荐 用 值 ———————————————————————————————————
Δ_1	齿轮顶圆至箱体内 壁的距离	≥1.2δ,δ为箱座壁 厚	Δ_7	箱底至箱底内壁的 距离	≈20 (1)
Δ_2	齿轮端面至箱体内 壁的距离	>δ (一般取≥10)	· PHICE	减速器中心高	$\geqslant R_a + \Delta_6 + \Delta_7$
Δ_3	轴承端面至箱体内 壁的距离 轴承用脂润滑时 轴承用油润滑时	$\Delta_3 = 10 \sim 12$ $\Delta_3 = 3 \sim 5$	(情要必针) L ₁	箱体内壁至轴承座 孔端面的距离	$=\delta+C_1+C_2+(5\sim 10)$, C_1 , C_2 见表 3-1
Δ_4	旋转零件间的轴向 距离	10~15	e Alaman and	轴承端盖凸缘厚度	见表 9-9
$\it \Delta_{5}$	齿轮顶圆至轴表面 的距离	≥10	L_2	箱体内壁轴向距离	近轮的分度图性大
Δ_6	大齿轮齿顶圆至箱 底内壁的距离	>30~50 (表 3-3)	L_3	箱体轴承座孔端面 间的距离	(4) 电动机

表 4-5 减速器轴承盖与轴承套环结构尺寸

螺钉联接外装式轴承盖

$$d_0 = d_3 + 1 \,\mathrm{mm}$$

$$D_0 = D + 2.5d_3$$

$$D_2 = D_0 + 2.5d_3$$

$$e = 1.2d_3$$

$$e_1 \geqslant e$$

m由结构确定

 d_1 、 b_1 由密封尺寸确定

$$b = 5 \sim 10$$
, $h = (0.8 \sim 1)$ b

 d_3 ——端盖联接螺钉直径,尺寸如下:

轴承外径 D	螺钉直径 d ₃	端盖上螺钉 数目
45 ~ 65	6	4
70 ~ 100	8	6
110 ~ 140	10	6
150 ~ 230	12 ~ 16	6

油润滑轴承的轴承盖结构

绘图比例的选取建议:

- 比例选取:
- 如果传动比<4,则俯视图上用2倍中心距,约2a≈ 297mm(A4纸长边)的最接近比例选取。俯视图图幅是A3加长。
- 如果传动比>4则以主视 图总高度小于约等于A3 的宽度来确定比例
- 稳妥起见,需要将主俯 视图尺寸均进行比照之 后再确定。

绘制草图1 • 首先按照选定的比例,在横放的A4纸的正中画出两个 齿轮的分度圆(啮合部位可以先不详细画,右侧大齿 轮需要画出齿顶圆)

绘制

在齿轮上下分别画上4条平行线: 1箱体内壁线、 2轴承定位线、3轴承座孔凸起界线、4轴承盖 草图2 凸缘。下半4线对称分布

3摆上轴承(注:轴承内径在之前的分析中已经得到)

如图:上半是**轴承**<u>脂润滑</u>的画法,下半是**轴承<u>油润滑</u>**的画法。d3、d6所在轴段的长度可以由轴承确定;d2的长度需要依据图示螺钉长度来确定左边与d1交界的位置。d1及d4所在轴段的长度都是由:所匹配的轮毂长度-(1~2mm)确定。由此,d1、d4,d3、d6以及d5的长度可以确定。仅剩d2未定

放了齿轮和轴承以后,由于端盖凸缘是在线**3**和线**4**之间,所以其实端盖的位置已经确定

从端盖向外,即线4向外的方向延伸

一个端盖螺钉的总长度+适度余量5~8mm,

就是轴段2的外伸方向的界限

我们的L段要长一些,是和螺钉平齐的

轴上两个支点的轴承。应尽量采用相同的型号,便于轴承蓬孔的加工。

草图设计所用螺钉如图所示

此螺钉位于轴 承盖上,是 减速器结构 图中的Md3 螺钉。

轴承盖上螺钉长度的确定

- •螺钉总长=螺帽长K+L
- =螺帽长K+轴承盖凸缘厚度+ 拧入深度H

倒角端

座端拧人深度 H, 当螺孔材料为;
 樹蔵青桐 H~d;
 梼軼 H=(1.25~1.5)d;
 紹合金 H=(1.5~2.5)d;
 螺纹孔深度 H₁=H+(2~2.5)P;
 钻孔深度 H₂=H₁+(0.5~1)d;
 l₁, a,e 值周图 10~9

图 10-10 螺钉连接和双头螺柱连接

为了说明轴系结构设计,我们用左边小齿轮轴系设计轴承<u>脂润滑</u>;右边大齿轮轴系的轴承用<u>油润滑</u>。(实际大小齿轮应当采用同一种轴承润滑,即要么都是脂润滑,要么都是油润滑!!! 请参看本讲义的99和100页

左边示例是<u>脂润滑</u>:每个轴承靠近箱体内壁的部位都需要加装甩油盘(封油圈),作用是隔开箱体内的润滑油与轴承内的润滑脂;

右边示例是油润滑:需要在箱体上开油沟和油槽,引导溅到箱体内壁上半部分的润滑油流入轴

承。

此图中的尺寸 要求仅供参考, 以前面的设计 为准!

一个基本设计好的俯视图轴系草图(包含高低速轴的主要轴系结构)。不可照抄!(因为左边是脂润滑,右边油润滑,实际中不可能)这是为了说明草图画到这个程度就可以了。高速轴边上箱体内壁在讲义后面有说明。

6) 减速器装配图设计 将A4图纸上绘制的俯视图 草图依样画在A1号图纸上

c) 支承结构设计

轴承,端盖,还有 轴两端倒角,端盖 螺钉的位置等细节

减速器装配图设计——关于轴上圆角倒角

圆柱齿轮 轴系部件设计中,注意除了轴两端的大倒角需要画出以外,其他部位的圆角在装配图上都不必画出! (轴的零件图上才要求画出圆角)一根轴上的圆角及倒角尺寸,应尽量一致,以便于加工。

关于轴承的简化画法

▶ 机械设计课程设计手册第三版.pdf - Adobe Acrobat Reader DC

轴承规定画法是每个轴承只需要画出一半的详细画法,另一 半用简略表示,新旧标准有差别,新的是画的十字,旧的是 ×。同一张装配图上注意统一标准。

(76 / 315) A 24.6%

一、常用滚动轴承

表 6-1 深沟球轴承(GB/T 276-1994 摘录)

减速箱小齿轮侧的内壁确定

• 先把草图摆上大图的俯视图位置,然后画主视图,确定小齿轮边上的箱体内壁距离。根据轴承旁螺栓的c1的位置需要来确定外壁位置。这个部分参见指导书上有关减速器结构的说明部分。

指导书第三版pdf中:由下图16-48左图可以看出,凸台需要的宽度C1和高度决定了箱盖左侧曲面的位置,以此来确定小齿轮一侧箱盖(箱体)的内壁位置。

对于剖分式箱体,轴承座孔两侧的连接螺栓还应尽量靠近(但不能和端盖螺钉孔及箱内输油沟发生干涉,如图 16-46 所示)。为此,在轴承座孔附近应做出凸台(图 16-47、表 11-1、表 11-2)。凸台要有一定高度,以保证其上有足够的扳手空间,但高度不应超过轴承座孔外圆尺寸。凸台的投影关系如图 16-48 所示。

图 16-46 连接螺栓相距过近、造成干涉

图 16-47 箱体轴承座孔连接螺栓位置

图 16-48 凸台投影关系

正式装配图上齿轮啮合的画法

- 啮合部位正确的画法应该有4条线:
- 1.分度圆: 点划线表示
- 2.齿轮的齿顶圆,与分度圆距离为 ha*m=1倍模数
- 3.齿轮的齿根圆,与分度圆距离为 (ha*+c*) m=1.25倍模数
- 因此在图上就从左到右分别是:
- 左齿轮的齿根圆、右齿轮齿顶圆、分度圆、做齿轮的齿顶圆、右齿轮的齿根圆
- 注意:如果小齿轮的轮齿画在大齿轮上方,则大齿轮的齿顶圆及其边缘部分不可见(或画为虚线);如果大齿轮轮齿在小齿轮上方,则小齿轮的齿顶圆被大齿轮覆盖的部位不可见如图例左(或画为虚线,如图例右)。我们统一把虚线部位都不画。

画减速器上的螺栓组、螺钉

- 除了地脚螺钉不画以外,从Md1、Md2、Md3、每样螺钉(螺栓)都要画一个(其余的用表示螺栓位置的点划线表示即可),注意在三个视图上螺钉和螺栓的位置要对应好。在俯视图上,画出螺栓的孔内必须画出螺栓的截面,没有画螺栓的孔,就仅仅画出孔,不必再画螺栓(视图对应)
- 起盖螺钉和定位销也要画出,其型号按指导书或者手册上提供的 选取。其位置与同侧螺栓孔应在一条直线上,以便于加工,并且 不能与其他零件发生装配上的干涉。

轴承采用油润滑的装配图示例

轴承采用脂润滑的装配图示例

