Pregunta 1 (2,5 puntos)

Se define en \mathbb{N}^* la relación \ll dada por:

$$x \ll y$$
 si y sólo si existe $k \in \mathbb{N}^*$ tal que $y = x^k$

- a) Demuestre que \ll es una relación de orden parcial en \mathbb{N}^* .
- b) Si $A = \{2, 8\}$ y $B = \{3, 5\}$ estudie la existencia, y en su caso explicítelos, de cotas superiores e inferiores, supremo e ínfimo, máximo y mínimo, maximales y minimales de los conjuntos A y B.

Pregunta 2 (2,5 puntos)

Sea
$$A = \left\{ x \in \mathbb{Q} \colon \exists (m, n) \in \mathbb{Z} \times \mathbb{N}^*, \text{ tal que } n \text{ impar y } x = \frac{m}{n} \right\}.$$

- a) Demuestre que A, con las operaciones de \mathbb{Q} restringidas a A, es un anillo unitario.
- b) Determine en el anillo A los elementos que son inversibles.

Pregunta 3 (2,5 puntos)

Demuestre por inducción que para todo $n \in \mathbb{N} \setminus \{3\}$ se cumple que $2^n \ge n^2$.

Pregunta 4 (2,5 puntos)

Utilice la fórmula de Moivre para expresar $\cos 5\alpha$ y sen 5α en función de $\cos \alpha$ y sen α .