Predictive Analytics and Classification:

Auction risk of "kicks" – Vehicles unable to be resold to customers

Carvana

Roadmap

Cleaning and EDA

Model and Pipeline Building

Model Fit

Test Output

- Cull columns
- Determine significant features
- Dimensionality Reduction
- Build transformers and preprocessor
- Choose logistic regression classifier
- Split into train and test

- Fit model to training
- Apply model to test
- Evaluate performance

- Retrain model with full training dataset
- Apply model to holdout test data
- Submit to Kaggle

EDA – Target Variable: IsBadBuy

- Quite unbalanced
- Dumb model (which predicts 0 for all) will perform quite well
- 87.70% accuracy => should be our minimum accuracy for our model

Is Bad Buy	
0	64,007
1	8,976

Cleaning – Column Culling

We want to drop for the following reasons:

- Unique IDs
 - These columns do not impact target variable
- Redundancy
 - Keeping in redundant variables will introduce collinearity
- High Cardinality / Many NULLs
 - Categorical features which have many different values or NULLs will negatively impact performance

Cleaning – Column Culling

```
dropUID = ['RefId', 'BYRNO', 'VNZIP1', 'VNST', 'WheelTypeID']
dropRedundancy = ['PurchDate', 'VehYear', 'Nationality']
dropHighCardinality = ['Model', 'Trim', 'SubModel']
dropInsignificant = ['Transmission']

dropList = dropHighCardinality + dropUID + dropInsignificant + dropRedundancy + ['IsBadBuy']
```

Drop UID:

- Unique IDs are not needed **Redundancy**:
- Purchase Date and Vehicle Year are captured by Vehicle Age
- Nationality is captured by Make
 High Cardinality:
- Many options and nulls are contained in Model, Trim, and Submodel

Transmission by IsBadBuy

Cleaning – Column Culling

- Performed Chi squared test against transmission feature
- P-Value = 0.5195
- Fail to reject the null hypothesis, transmission does not have a significant effect on target
 - Removing this feature resulted in slightly better model performance

EDA – Feature: VehicleAge

- Distributions clearly have different shapes
 - This will likely be a strong feature for predicting target

EDA – Feature: VehOdo

 It also appears that the odometer feature will also be an important numerical feature for the model

	lsBadBuy0_VehOdo	lsBadBuy1_VehOdo
count	64007.00	8976.00
mean	71049.26	74714.15
std	14581.50	14150.97
min	5368.00	4825.00
25%	61302.50	65978.00
50%	72880.00	76545.50
75%	82010.50	84942.00
max	113617.00	115717.00

EDA – Feature: WarrantyCost

WarrantyCost contains different distribution when spliced by IsBadBuy, therefore this will also be a relevant feature for the target

EDA – Plan for Categorical Features

We will profile categorical variables by doing the following:

- Splicing the variables by `IsBadBuy`
 - Generating visuals of the above
- Getting all dummies and running chi squared tests using scipy.stats => chi2_contingency

EDA – Feature: Make

- Chevy, Dodge, Ford, Chrysler, Pontaic have high amounts of bad buys
- Next are Kia, Saturn, Nissan, Hyundai, Jeep

EDA – Feature: Make (Percentages)

 When looking at the percentages of IsBadBuy within each Make, we can see that many makes have percentages around 15%

EDA – Feature: Make

Chi squared test results

	Feature	Chi-Square	p-value
3	Make_CHEVROLET	136.137303	1.861993e-31
6	Make_FORD	119.640842	7.581665e-28
5	Make_DODGE	56.509807	5.591879e-14
21	Make_NISSAN	26.488213	2.651510e-07
16	Make_LINCOLN	26.278156	2.956133e-07
18	Make_MERCURY	18.323525	1.863912e-05
11	Make_INFINITI	15.342471	8.967757e-05
13	Make_JEEP	15.188127	9.731336e-05
15	Make_LEXUS	13.380388	2.542691e-04
22	Make_OLDSMOBILE	13.263432	2.706338e-04
17	Make_MAZDA	13.208417	2.786946e-04
19	Make_MINI	7.993973	4.693330e-03
1	Make_BUICK	7.458988	6.312047e-03
28	Make_SUZUKI	6.909627	8.573285e-03
25	Make_SATURN	6.884166	8.696263e-03
29	Make_TOYOTA	5.650626	1.744914e-02
0	Make_ACURA	5.544438	1.853951e-02
32	Make_VOLVO	4.113176	4.255039e-02
12	Make_ISUZU	3.377369	6.609751e-02
4	Make_CHRYSLER	2.840473	9.191716e-02
27	Make_SUBARU	1.400668	2.366117e-01
26	Make_SCION	1.372014	2.414662e-01
8	Make_HONDA	0.824311	3.639227e-01
14	Make_KIA	0.653097	4.190075e-01
24	Make_PONTIAC	0.605401	4.365246e-01
10	Make_HYUNDAI	0.501045	4.790413e-01
23	Make_PLYMOUTH	0.299135	5.844250e-01
31	Make_VOLKSWAGEN	0.282740	5.949111e-01
7	Make_GMC	0.268854	6.041012e-01
20	Make_MITSUBISHI	0.092162	7.614469e-01
2	Make_CADILLAC	0.054765	8.149703e-01
9	Make_HUMMER	0.000000	1.000000e+00
30	Make_TOYOTA SCION	0.000000	1.000000e+00

EDA – Feature: Color

• The color feature has some good variance amongst the groups; will be good to keep

EDA – Feature: Size

Size will also be kept as many p-values are below 0.05

Bad Buy by Size

EDA – Feature: Wheel Type

• Wheel type will also be a strong variable, based on the chi squared test results

	Feature	Chi-Square	p-value
1	WheelType_Covers	1010.255525	1.059487e-221
0	WheelType_Alloy	102.089389	5.307208e-24
2	WheelType_Special	0.395311	5.295211e-01

Model Building

We will go through each part (column transformer) of the pipeline design

Model Building – Numerical Processor

- KNN to fill null values
 - Should give more accurate values to fill rather than mean imputation
- Standardization: removing the mean and scaling to unit variance.
 - Important for regularization and coefficient interpretability

Model Building – **Dimensionality Reduction**

- All MMR numerical features are highly correlated
- To avoid collinearity and still capture variability by these features, we use PCA

pca1, pca2, pca3

A large percent of the variance is captured by using 3 components.

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

- −0.50

- -0.75

Model Building – **Dimensionality Reduction**

A large percent of the variance is captured by using 3 components.

Model Building – One Hot Encoder (Categorical)

- Handle null values by filling with string: `missing`
 - Logit model requires data filled in all cells; `null` will be interpreted as `NaN` so we do this for readability
- Apply encoding of categorical values

```
SimpleImputer

SimpleImputer (fill_value='missing', strategy='constant')

OneHotEncoder

OneHotEncoder (handle_unknown='ignore')
```

Model Building - Classifier

- Finally, choose the logistic regression classifier
- Building a 'pipeline' allows us to easily configure:
 - Testing of different features; less refactoring required
 - Application of different imputation and dimensionality reduction methods

Model Fit – **Train Test Split**

```
# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.2, random state=42)
# Define the model
model = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('classifier', LogisticRegression(solver='liblinear',
random state=42))
])
# Fit the model
model.fit(X_train, y_train)
```


Reserve 0.2 (20%) of training data for model evaluation

Create model

Fit model using training data

Model Prediction – **Training Data**

```
# Predict on the test set

y_pred = model.predict(X_test)

# Evaluate the model

conf_matrix = confusion_matrix(y_test, y_pred)

classification_report_str =
 classification_report(y_test, y_pred)

print(classification_report_str, '\nConfusion
Matrix:\n', conf_matrix)
```

Metric Report Output

	precision	recall	f1-score	support
9 1	0.91 0.70	0.99 0.24	0.94 0.36	12850 1747
accuracy macro avg weighted avg	0.80 0.88	0.61 0.90	0.90 0.65 0.87	14597 14597 14597
Confusion Mate [[12669 18: [1327 420]	1]			

Model Prediction – **Evaluation**

- Model performs well in terms of TP and FP
- Model performs somewhat inadequately for TN and FN
- Recall that we stated the following at the beginning:
 87.70% accuracy => should be our minimum for the model
- We obtained 90% accuracy, so our model performs better than the dumb model

Metric Report Output

	precision	recall	f1-score	support
0 1	0.91 0.70	0.99 0.24	0.94 0.36	12850 1747
accuracy macro avg	0.80	0.61	0.90 0.65	14597 14597
weighted avg Confusion Matr	0.88 ix:	0.90	0.87	14597
[[12669 181 [1327 420]	- _			

Model Evaluation – Pseudo R^2 (McFadden)

The McFadden pseudo R^2 compares the log likelihood of the full model (L) to the log likelihood of the model with just the intercept (L_0 , the null model).

$$R^2 = 1.0 - rac{\ln(L)}{\ln(L_0)}.$$

Sci-Kit Learn doesn't have a function for this, so we shall use the above definition to evaluate it manually

Model Evaluation – Pseudo R^2 (McFadden)

```
# Preprocess the test set
                                                                                                    Create instance of transformed X test
X test preprocessed = model['preprocessor'].transform(X test)
# Fit the null model
                                                                                                         Create instance of null model
null model = LogisticRegression(solver='liblinear', random state=42)
                                                                                                          (simply predicts majority
null model.fit(np.ones((X train.shape[0], 1)), y train)
                                                                                                          class)
# Get the log likelihood for the null model
null prob = null model.predict proba(np.ones((X test.shape[0], 1)))[:, 1]
                                                                                                                 Definition of likelihood
log likelihood null model = np.sum(y test * np.log(null prob) + (1 - y test) * np.log(1
- \overline{nu}11 prob))
                                                                                                       \ell = \sum_{i=1}^n \left[ y_i \cdot \log(p_i) + (1-y_i) \cdot \log(1-p_i) 
ight]
# Get the log likelihood for the full model
full prob = model.predict proba(X test)[:, 1]
log_likelihood_full_model = np.sum(y_test * np.log(full_prob) + (1 - y_test) * np.log(1
- full_prob))
# Calculate McFadden's pseudo R-squared
pseudo r squared = 1 - (log likelihood full model / log likelihood null model)
                                                                                                                   Definition of
print(f"McFadden's pseudo R-squared: {pseudo r squared}")
                                                                                                                   McFadden
```

Model Evaluation – Pseudo R^2 (McFadden)

```
# Preprocess the test set
X test preprocessed = model['preprocessor'].transform(X test)
# Fit the null model
null model = LogisticRegression(solver='liblinear', random state=42)
null model.fit(np.ones((X train.shape[0], 1)), y train)
# Get the log likelihood for the null model
null_prob = null_model.predict_proba(np.ones((X_test.shape[0], 1)))[:,
log_likelihood_null_model = np.sum(y_test * np.log(null_prob) + (1 -
y_test) * np.log(1 - null_prob))
# Get the log likelihood for the full model
full prob = model.predict proba(X test)[:, 1]
log_likelihood_full_model = np.sum(y_test * np.log(full_prob) + (1 -
y_test) * np.log(1 - full_prob))
# Calculate McFadden's pseudo R-squared
pseudo r squared = 1 - (log_likelihood_full_model /
log_likelihood_null_model)
print(f"McFadden's pseudo R-squared: {pseudo r squared}")
```

```
>>>
McFadden's pseudo-R-squared:
<mark>0.16447019885777303</mark>
```

Model Evaluation -Coefficients

Top 20 coefficients by absolute value

- Categorical variables are the most important features, specifically
 - Missing WheelType, Color Missing, and various manufacturers
- VehicleAge was the most important numerical feature

Model Evaluation - Coefficients

- Positive => increase log odds
 - (pulls towards predicting 1)
- Negative => decrease log odds
 - (pulls towards predicting 0)

△ Feature		# Coefficient		# abs_coeffici	ent
Missing: Distinct:	0 (0%) 20 (100%)	Missing: Distinct:	0 (0%) 19 (95%)	Missing: Distinct:	0 (0%) 19 (95%)
20 Distinct value	s		h.	h	_
		Min -1.643187402	Max 3.2018261745	Min 0.4453449119	Max 3.201826174
catWheelType_missing	3		3.2018261746		3.2018261746
cat_Color_missing			-1.6431874029		1.6431874029
catMake_LEXUS			1.3235120591		1.3235120591
cat_Color_OTHER			-1.2702212596		1.2702212596
catPRIMEUNIT_YES			1.2306793437		1.2306793437
catMake_VOLVO			-1.0194766177		1.0194766177
catMake_MINI			0.8391517538		0.8391517538
catMake_INFINITI			0.7632711626		0.7632711626
cat_TopThreeAmerican	Name_GM		-0.7540623822		0.7540623822
cat_AUCGUART_missing	g		0.6999365859		0.6999365859
catPRIMEUNIT_missing	g		0.6999365859		0.6999365859
catMake_DODGE			-0.6997347633		0.6997347633
catMake_HONDA			-0.5758981396		0.5758981396
catMake_MITSUBISHI			-0.5461449453		0.5461449453
catMake_SUBARU			0.5288889602		0.5288889602
catMake_ISUZU			-0.4899470639		0.4899470639
catMake_SCION			-0.4839919915		0.4839919915
cat_TopThreeAmerican	Name_OTHE		-0.4740121248		0.4740121248
catMake_CHRYSLER			-0.4595486878		0.4595486878
num_VehicleAge			0.4453449119		0.4453449119

Model Evaluation – All Coefficients (Page 1)

There are a lot of features; we will review this decision in the discussion section

(Predictive Power vs. Statistical Significance)

	∆ Feature		# Coefficient		# Std Err		# p-value	
	Missing:		Missing:		Missing:		Missing:	5 (6%)
	Distinct:	82 (100%)	Distinct:	82 (100%)	Distinct:	76 (93%)	Distinct:	76 (93%)
	82			The second	1			_
	Distinct value							
	Distinct value	25			I			_===_=
			Min -5.07816099	Max 3.219374640	Min 0.0118130176	Max 58430542452	Min 0	Max 1
const	const			-2.6421053971		21.6420554358		0.9028340777
х1	num_VehicleAge			0.4444057316		0.0250252196		1.486299929e-70
x2	num_VehOdo			0.1142236079		0.0175785149		1e-10
х3	num_VehBCost			-0.2805326975		0.032486373		5.852391797e-18
x4	num_lsOnlineSale			-0.0264683074		0.0149203388		0.0760672931
x5	num_WarrantyCost			0.058189485		0.0206645148		0.004863877
х6	pca_pca0			0.0532743747		0.0118130177		0.0000064888
х7	pca_pca1			-0.087530012		0.0322085611		0.0065757118
x8	pca_pca2			0.0202401885		0.0317203913		0.5234207592
x9	cat_Auction_MANHEIN	И		0.0144927814		0.0359804277		0.6870981191
x10	cat_Auction_OTHER			-0.1317028136		0.0434303719		0.002425332
x11	catMake_BUICK			-0.2775832843		17.357626631		0.9872407685
x12	catMake_CADILLAC			-0.7869752214		17.3982552811		0.9639215937
x13	catMake_CHEVROLET			-0.2643472172		17.3448441985		0.9878401676
x14	catMake_CHRYSLER			-0.7403642013		Missing value		Missing value
x15	cat_Make_DODGE			-0.9803704014		21.741009192		0.9640330682
x16	cat_Make_FORD			-0.5063053462		Missing value		Missing value
x17	cat_Make_GMC			-0.2554694214		18.1240864997		0.9887537307
x18	catMake_HONDA			-0.2595414412		0.602284918		0.6665207162
x19	cat_Make_HUMMER			-0.4317773378		17.9785879015		0.9808396878
x20	cat_Make_HYUNDAI			0.0305171946		0.5825408306		0.9582208411
x21	cat_Make_INFINITI			1.2229368858		0.6852247937		0.074306155
x22	cat_Make_ISUZU			-0.2158681942		0.6836200679		0.7521754411
x23	cat_Make_JEEP			-0.681230378		21.7662127285		0.9750321986
x24	cat_Make_KIA			0.2771006125		0.7376125862		0.7071605376
x25	cat_Make_LEXUS			1.9313705876		0.7368403393		0.008763316
x26	cat_Make_LINCOLN			0.1828237607		Missing value		Missing value
x27	cat_Make_MAZDA			0.3978391237		0.8669559698		0.646311753
x28	cat_Make_MERCURY			-0.3516185369		Missing value		Missing value
x29	cat_Make_MINI			1.4194871566		0.7389805675		0.0547478336
x30	cat_Make_MITSUBISHI			-0.2238062425		0.5858435171		0.7024436152
x31	cat Make NISSAN			0.3854081856		0.5777518711		0.5047194121
x32	cat_Make_OLDSMOBIL	F		0.0595854707		17.2944885883		0.9972510183
x33	cat_Make_PLYMOUTH			2.7949193499		22.2566257099		0.9000668035
x34	cat_Make_PONTIAC			-0.0586163071		17.2913409194		0.9972952383
x35	cat_Make_SATURN			-0.0392602799		17.2266793344		0.9981815913
x36	cat_Make_SCION			-0.2309724475		0.6884289182		0.7372429649
x37	catMake_SUBARU			1.0990002697		0.8205654456		0.1804662996
x38	catMake_SUZUKI			0.6160887404		0.5798683913		0.1804662996
x39				-0.0076781598		0.5798683913		0.2880255232
X33	cat_Make_TOYOTA			-0.0076761598		0.7599425544		0.9917207419

Model Evaluation – All Coefficients (Page 2)

There are a lot of features; we will review this decision in the discussion section (Predictive Power vs. Statistical Significance)

index	A Feature	# Coefficient		# Std Err		# p-value	
lildex		# Coefficient Missing:	0 (0%)	# Std LII Missing:	5 (6%)	# p-value Missing:	5 (6%
	Distinct: 82 (100%)		82 (100%)		76 (93%)		76 (93%
	82		tion of	100			_
	Distinct values						
	District values		Max 3.219374640	M: 0.0110120176	NA 50420542452		_====
κ41	catMake_VOLKSWAGEN	Min -5.07816099	0.1454523819	Min 0.0118130176	Max 58430542452 0.6322250938	Min 0	Max 0.8180418567
(42	catMake_VOLVO		-5.0781609955		8.7548410848		0.5618874147
κ 43	cat_Color_BLACK		0.0802082965		0.1046104754		0.4432403194
(44	catColor_BLUE		0.0107248314		0.1029135014		0.9170010372
κ45	cat_Color_BROWN		0.2754065457		0.1927802268		0.1531181695
κ46	cat_Color_GOLD		0.1088988739		0.1069164377		0.3084204887
κ 4 7	catColor_GREEN		-0.0631414311		0.1155192986		0.5846620014
ĸ48	cat_Color_GREY		0.0497144735		0.1050274457		0.6359653151
x49	cat_Color_MAROON		0.0937805254		0.124194698		0.4501836261
x50	cat_Color_NOT AVAIL		-0.1383593743		0.3650158065		0.7046504644
x51	cat_Color_ORANGE		-0.049217326		0.2385198643		0.8365216112
x52	cat_Color_OTHER		-1.3583383135		0.2779770219		0.0000010264
x53	catColor_PURPLE		0.1105685433		0.214664178		0.6064993363
¢54	catColor_RED		0.1433957506		0.1054320803		0.173805549
x55	catColor_SILVER		0.0773943079		0.0990922538		0.4347831593
x56	cat_Color_WHITE		0.0675890716		0.1008127774		0.5025763749
κ57	cat_Color_YELLOW		-0.2681208053		0.2469680007		0.277633878
c58	cat_Color_missing		-3.0897521984		1.1161351352		0.0056356484
c59	catWheelType_Covers		-0.081772727		0.0346331867		0.0182203769
x60	catWheelType_Special		0.162819824		0.1246714103		0.1915553886
x61	catWheelType_missing		3.2193746402		0.052936991		(
x62	cat_Size_CROSSOVER		-0.3563172059		0.1218725947		0.0034591343
c 63	cat_Size_LARGE		-0.314728469		0.0719470227		0.000012174
64	cat_Size_LARGE SUV		0.0686049195		0.1315129319		0.6019076968
c 65	cat_Size_LARGE TRUCK		-0.2161667917		0.1011572625		0.03260304
66	cat_Size_MEDIUM		-0.205939678		0.0461100092		0.0000079596
κ67	cat_Size_MEDIUM SUV		0.0237915578		0.0860099178		0.782076421
:68	cat_Size_SMALL SUV		-0.3592296765		0.1046645727		0.0005987073
c69	cat_Size_SMALL TRUCK		-0.2842970692		0.1287905702		0.0272835442
c70	cat_Size_SPECIALTY		-0.0972946437		0.131670835		0.4599535922
c71	cat_Size_SPORTS		0.1901513431		0.1280422105		0.1375259077
c72	cat_Size_VAN		-0.3443073272		0.0772414073		0.0000082902
k73	cat_Size_missing		-1.6572649119	58430	54245000000000		
c74	cat_TopThreeAmericanName_FORD		-0.3836271801		Missing value		Missing value
c75	catTopThreeAmericanName_GM		-0.9601326885		18.8742173876		0.9594290583
c76	catTopThreeAmericanName_OTHE		-1.0855909414		21.6971966546		0.9600955364
c77	catTopThreeAmericanName_missir		-1.6572649119	58430	54245000000000		1
c78	catPRIMEUNIT_YES		1.6156038086		0.4908342692		0.0009963815
c79	catPRIMEUNIT_missing		0.7300437671	258	35027.175395142		0.9999997747
c80	cat_AUCGUART_RED		0.5030982919		0.4214414302		0.2325733758
κ81	cat_AUCGUART_missing		0.7300437671	259	2061.269607757		0.9999997753

Retrain Model and Create Kaggle Submission

```
# Train model against full training set and apply model to test holdout (Kaggle)
testFile = r'C:\Users\joshu\OneDrive\Desktop Files\Textbooks and Syllabi\CSUN Semester
6\MRKT 656\Case2\case2\test.csv'
testdf = pd.read csv(testFile)
X1 = testdf.drop(columns=['RefId',
                                                                          Drop same columns as
                     'PurchDate', 'VehYear',
                     'BYRNO', 'VNST',
                                                                          performed in training
                     'VNZIP1', 'WheelTypeID',
                     'Nationality', 'Transmission'])
model.fit(X,y)
                                                        Retrain model using fill training
y1Pred = model.predict(X1)
                                                        dataset
y1Preddf = pd.DataFrame(y1Pred)
testOutputdf = pd.concat([testdf['RefId'], y1Preddf], axis=1)
folder = r'C:\Users\joshu\OneDrive\Desktop Files\Textbooks and Syllabi\CSUN Semester 6\MRKT
656\Case2\case2\entryn.csv'
testOutputdf.to csv(folder)
```

Kaggle Results

Discussion – Agenda

- Previous Model Iterations
- Predictive Power vs. Statistical Significance
- Important Features we did not expect

Discussion – **Previous Model Iterations**

- The different entries are the different models that had been tested during building
- The lower scoring models occurred when grouping insignificant categorical values into a base case (will be discussed in next slide)
- Entry3 is when we realized we should have trained the model against the entire dataset. We had originally left the 80/20 train test split and did not retrain the data
- The slight improvement from .1004 to .10054 was after implementing PCA

D 0 11 C	OCC RIO	KCU.								Edito odisiii	33.0
Overvi	ew Data	Code	Models	Discussion	Leaderboard	Rules	Team	Submissions			
Submiss	sion and Descript	ion							Private Score (i)	Public Score (i)	Selected
©	entry11.csv Complete (after		· 2d ago						0.1117	0.10054	
©	entry10.cs Complete (after		· 5d ago						0.1117	0.10054	
©	entry9.csv Complete (afte		· 5d ago						0.11149	0.09929	
©	entry8.csv Complete (afte		· 5d ago						0.10906	0.09688	
©	entry7.csv Complete (afte	r deadline)	· 6d ago						0.10906	0.09688	
©	entry6.csv Complete (after		· 6d ago						0.1117	0.10054	
©	entry5.csv Complete (after		· 6d ago						0.11278	0.09971	
©	entry4.csv Complete (after		· 6d ago						0.1117	0.10054	
©	entry3.csv Complete (afte		· 6d ago						0.11162	0.1004	
©	entry2.csv Complete (afte		· 6d ago						0.11276	0.09971	
₽ ®	entry2.csv Error (after dea		ago								
©	example_e Complete (afte								-0.01126	-0.0208	
©	entry1.csv	r deadline)	· 14d ago						0.1132	0.10023	

Don't Get Kicked!

Discussion – Predictive Power vs. Statistical Significance

- Grouping insignificant categorical features (determined by Chi squared test and by looking at the p-values of the coefficients) led to worse model performance and lower Kaggle score against holdout testing data
 - Make, Color, VNST (State), were the features attempted to be grouped.
- Because of this, we decided to keep the original cardinality of the categorical variables
- We believe that this may be because significant variance is captured by the different categorical values, and this is lost when grouping into base case
- Balancing predictive power and avoiding overfitting is quite difficult, in this case

Discussion – Importance and Remarks

- We initially thought the numerical features would have higher coefficients in our model, but this was not the case
- The manufacturer columns made up 10 of the top 20 features by absolute value
 - We determined that many manufacturers tend to be strongly associated with good/bad buys