

MAGNEX Focal Plane Detector per l'esperimento NUMEN @ INFN-LNS

Mattia Ivaldi

Corso di Laurea Magistrale in Fisica Nucleare, Subnucleare e Biomedica

Laboratorio di Fisica Nucleare e Subnucleare II

Outline

- 1. Introduzione
 - A. NUMEN e $0\nu\beta\beta$
 - B. MAGNEX
- 2. Focal Plane Detector FPD
 - C. design
 - D. misure
 - E. PID
- 3. SiC update
- 4. Outlook

NUMEN e $0\nu\beta\beta$

L'esperimento **NUclear Matrix Elements for Neutrinoless double beta decay** (INFN-LNS) ha l'obiettivo di determinare gli elementi di matrice nucleare del decadimento $0\nu\beta\beta$ attraverso misure di sezione d'urto $d_{\Omega}\sigma(q,E_x)=f(NME)$ di processi Double Charge Exchange [1].

Sotto l'ipotesi $\nu \equiv \bar{\nu}$ è possibile osservare un doppio decadimento β senza l'emissione di neutrini, con rate:

$$\Gamma = G_{0\nu} |M_{0\nu}|^2 |f(m_i, U_{ei}, \xi_i)|^2$$

$$|M_{0\nu}| = |\langle \varphi_f | \hat{O}^{0\nu\beta\beta} | \varphi_i \rangle| \quad (NME)$$

Se NME è determinato con sufficiente precisione, è possibile estrarre informazioni su $f(m_i, U_{ei}, \xi_i)$ da misure di Γ .

Una reazione di tipo Double Charge Exchange (DCE) è un processo del tipo:

$$_{z}^{a}a_{n} + _{Z}^{A}A_{N} \rightarrow _{z=2}^{a}b_{n\pm 2} + _{Z\pm 2}^{A}B_{N\mp 2}$$

$T_{\pi N}$ $T_{\pi N}$ $T_{\pi N}$ $T_{\pi N}$ $T_{\pi N}$

 $A \rightarrow B$

Analogie con $0\nu\beta\beta$:

- ightharpoonup gli stati (φ_i, φ_f) per $0\nu\beta\beta$ sono gli stessi per il sistema DCE
- → in entrambi i processi è presente un grande momento lineare in un canale virtuale intermedio
- → due vertici sono localizzati in una coppia di nucleoni di valenza
- → i processi avvengono nello stesso mezzo nucleare
- → et al.

MAGNEX

MAGNEX è uno spettrometro magnetico costruito per l'identificazione di ioni pesanti $(\delta A/A \sim 1/160)$, con grande risoluzione angolare $(\delta \theta \sim 0.3^{\circ})$ ed energetica $(\delta E/E \sim 1/10^{3})$, entro un angolo solido $\Omega \sim 50\,$ msr e momento $\delta p/p \in (-14\,\%\,,10\%)\,$ [2].

Dipole

Max B 1.15 T

Bending angle 55°

Bending radius 1.6 m

Face rotation 18°

Quadrupole

Max B Strength 5 T m⁻¹

Aperture radius 20 cm

Effective Length 58 cm

MAGNEX

Accepted B ρ (0.2, 1.8) T m

Accepted E (0.2, 40) A MeV

FP length 92 cm

FP height 20 cm

FPD - design

FPD - misure

L'utilizzo di rivelatori al Si per la misura di E_r garantisce un'alta risoluzione della misura della massa ed evita l'utilizzo di uno START addizionale per misure TOF, ma presenta performance insufficienti per l'upgrade di NUMEN.

- PID
- Trajectory-reconstruction

FDP Si detectors

FDP - PID

Gli ioni sono prodotti con $A \in [18,22]$ e $Z \in [8,10]$. Dopo il superamento del bersaglio lo stripping elettronico non è completo e diversi stati di carica q sono presenti per lo stesso isotopo [1].

Numero atomico

Poiché $\theta_f \in (40,72)^\circ$ si ha $l_M/l_m \sim 2.5$ ed è necessario correggere ΔE come [4]:

SiC update

Current FPD performances			New PID requirements		Si
H-V position resolution (FWHM) 0.6 mm			1 T-	-ions cm ⁻² yr ⁻¹	
H-V angular resolution (FWHM) 0.3°		Incide	ent ion rate	500 kHz	
$\delta A/A$	0.6%	δΕ/Ε		0.2%	Si
$\delta Z/Z$	2%	σ_{t}		2-3 ns	Si
δΕ/Ε	0.1%	Doubl	e-hit probability	< 3%	Si
Max incident ion rate	5 kHz	Low-p	ressure tracker coupling	10-50 mbar	31
				Si	C
Property Eg [eV]	Si SiC 1.12 3.28		rumore termico ridotto 3x portatori di carica wri minore ampiezza del seg	t/Si +	alta conduttività termica bassa espansione termica chimicamente inerte
$\mu_e \left[cm^2 \ V^{\text{-}1} \ s^{\text{-}1} \right]$	1450 800		$I_{gen}^{(SiC)} \sim 10^{-5} I_{gen}^{(Si)}$	+	stabile fino a 2 k°C
μ_h [cm ² V ⁻¹ s ⁻¹]	450 115				
Displacement [eV]	13-20 25		energia alla quale la P di dislocazione è 50% resistenza ai danni da radiazione		
E _{e-h} [eV]	7.6-8.4 3.6		alta velocità di saturazio	one	
E _{bd} [MeV]	2.2 0.3	▶	$E = 10^5 \ V \ cm^{-1}$ $\sigma_t \sim 10^2 \ ps$		

SiC update

ΔE-E SiC telescope

Lo spessore della *PID wall* dev'essere tale da consentire la rivelazione di ioni di energia $E_p \in (10,70)$ MeV/u. Considerando che $R^{(SiC)} \in (150,2700)$ µm si ha [1]:

Stage ΔE	: ω [μm]	ΔE [MeV]	
20 O	100	25 (40 MeV/u)	
^{18}Ne	100	180 (10 MeV/u)	
Stage E	500-1000		

Conclusioni e outlook

- ♦ NUMEN (INFN-LNS) ha l'obiettivo di determinare NME di 0νββ attraverso lo studio di processi DCE utilizza lo spettrometro magnetico MAGNEX.
- ♦ FPD è costituito da un tracciatore a gas (DC + PC + IP) e da una PID wall al Si (δA/A = 0.6%, δZ/Z = 2%).
- ◆ L'update dell'esperimento richiede l'utilizzo di rivelatori più performanti ed è in fase di R&D un detector ΔΕ-Ε al SiC.
 - rumore termico e corrente di leakage ridotti
 - migliore resistenza ai danni da radiazione (5 \blacktriangleright 500 kHz, $10^9 \blacktriangleright 10^{12}$ ioni cm⁻² yr⁻¹)
 - ▶ tempo di risposta 10² ps, rapporto S/N ridotto
- ♦ Il rivelatore prevede una geometria 1 cm 2 x 600-1100 µm e una configurazione p $^+$ n $^-$ n $^+$.

Bibliografia

- [1] F. Cappuzzello et al. Eur. Phys. J. A (2018) 54, 72.
- [2] F. Cappuzzello et al. Eur. Phys. J. A (2016) 52, 167.
- [3] F. Cappuzzello et al. J. Phys. Conf. Ser. A (2018) 996 012008.
- [4] M. Cavallaro et al. Eur. Phys. J. A (2012) 48, 59.

Backup

FPD - principi di funzionamento

