Training report for U-Net (2D) model (model_training1)

Date: 2022-11-22

Training time: 2.0hour(s) 36.0min(s) 7sec(s) Information for your materials and method:

The U-Net (2D) model was trained from scratch for 200 epochs on 263 paired image patches (image dimensions: (768, 768), patch size: (512,512)) with a batch size of 4 and a weighted_binary_crossentropy loss function, using the U-Net (2D) ZeroCostDL4Mic notebook (v 1) (von Chamier & Laine et al., 2020). Key python packages used include tensorflow (v 2.9.2), Keras (v reprocessing==1.1.2), numpy (v 1.21.6), cuda (v 11.2.152 Build cuda_11.2.r11.2/compiler.29618528_0). The training was accelerated using a Tesla T4 GPU.

Augmentation:

The dataset was augmented by

- rotation
- flipping
- random zoom magnification
- shifting
- image shearing

Parameters

Default Advanced Parameters were enabled

Parameter	Value
number_of_epochs	200
patch_size	512x512
batch_size	4
number_of_steps	60
percentage_validation	10
initial_learning_rate	0.0003
pooling_steps	2
min_fraction	0.02

Training Dataset

Training_source:/content/gdrive/MyDrive/Project LQ/ProjectDocs/Training_cropped **Training_target:** /content/gdrive/MyDrive/Project LQ/ProjectDocs/Target_cropped

Model Path: /content/gdrive/MyDrive/Project LQ/ProjectDocs/model_training1

Example Training pair

References:

- ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. "Democratising deep learning for microscopy with ZeroCostDL4Mic." Nature Communications (2021).
- Unet: Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.

Important:

Remember to perform the quality control step on all newly trained models Please consider depositing your training dataset on Zenodo