

Arquitetura Computacional

Lógica Computacional

Celia Taniwaki

celia.taniwaki@sptech.school

Matheus Matos

matheus.matos@sptech.school

TÓPICOS

1. Portas Lógicas

2. Tabela Verdade

3. Expressão Booleana

Portas lógicas (Gates)

- As operações de um computador resumem-se na combinação de operações aritméticas básicas: somar, complementar, comparar e mover bits.
- "Quem" realiza estas complicadíssimas operações são circuitos eletrônicos conhecidos como circuitos lógicos ou Gates.
- Os sistemas lógicos estão calcados na álgebra dos chaveamentos ou álgebra de Boole, instituída pelo matemático inglês George Boole (1815 – 1864) e que admite apenas duas grandezas: falso ou verdadeiro, representados por 0 e 1 respectivamente.

Portas Lógicas

- Os operadores lógicos ou funções lógicas básicas são as seguintes:
 - E ou AND uma função é verdadeira se, e somente se, todos os termos forem verdadeiros.
 - OU ou OR uma função é verdadeira se, qualquer um dos termos for verdadeiro
 - NÃO ou NOT o termo é invertido
 - NÃO E ou NAND equivale a uma porta AND seguida de uma porta NÃO.
 O resultado é o inverso da saída de uma porta AND.
 - NÃO OU ou NOR equivale a uma porta OR seguida de uma porta NÃO.
 O resultado é o inverso da saída de uma porta OR.
 - OU EXCLUSIVO ou XOR a função é verdadeira se, e somente se, um dos termos for verdadeiro.

TOTALIZANDO EM 6 PORTAS LÓGICAS

Tabela Verdade

A	В	S
0	0	0
0	1	0
1	0	0
1	1	1

E(AND)

Executa a **"multiplicação"** booleana de duas ou mais variáveis binárias.

Para representar a expressão:

$$S = A e B$$

Adotaremos a representação:

$$S = A \cdot B$$
, onde se lê: $S = A \cdot B$

Tabela Verdade

A	В	S
0	0	0
0	1	1
1	0	1
1	1	1

OU (OR)

Executa a **"soma"** booleana de duas ou mais variáveis binárias

Para representar a expressão:

$$S = A ou B$$

Adotaremos a representação:

$$S = A + B$$
, onde se lê: $S = A \circ u B$

Tabela Verdade

Α	S(!A)
0	1
1	0

NÃO (NOT)

Executa a "negação" de uma variável binária

- Se a variável <u>estiver em 0</u>, o resultado da função é 1
- Se a variável <u>estiver em 1</u>, o resultado da função é 0

Para representar a expressão

$$S = n\tilde{a}o A$$

Adotaremos a representação

$$S = !A$$
, onde se lê $S = n\tilde{a}o$ A

$$S = \overline{A}$$
, onde se lê $S = n\overline{ao} A$

Tabela Verdade

A	В	S1	S
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

NÃO E (NAND)

Composição da função **E** com a função **NÃO**, ou seja, a saída da função **E** é invertida (**NEGADA**).

Adotaremos a representação:

$$S = \overline{(A . B)}$$

OU

$$S = !(A . B)$$

Tabela Verdade

A	В	S 1	S
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

NÃO OU (NOR)

Composição da função **OU** com a função **NÃO**, ou seja, a saída da função **OU** é invertida (**NEGADA**).

Adotaremos a representação:

$$S = \overline{(A + B)}$$

OU

$$S = !(A + B)$$

Tabela Verdade

A	В	S
0	0	0
0	1	1
1	0	1
1	1	0

OU EXCLUSIVO (XOR)

A função **OU Exclusivo** fornece:

- 1 na saída quando as entradas forem diferentes entre si e
- 0 caso contrário

Adotaremos a representação:

$$S = (A \oplus B)$$

Agradeço a sua atenção!

Celia Taniwaki Matheus Matos

Material elaborado por: Marise Miranda | 2017.2

Atualizado e adaptado por: Matheus Matos | 2024.1

SÃO PAULO TECH SCHOOL