3 基本群

3.1 引例

对于 $\frac{y}{x^2+y^2}$ 以及 $\frac{x}{x^2+y^2}$ 在 $\mathbb{R}^2\setminus\{0\}$ 上连续, 考虑曲线积分

$$\int_{\gamma} -\frac{y}{x^2 + y^2} \mathrm{d}x + \frac{x}{x^2 + y^2} \mathrm{d}y$$

令
$$P(x,y) = -\frac{y}{x^2+y^2}, Q(x,y) = \frac{x}{x^2+y^2}.$$
 由于

$$\frac{\partial P}{\partial y} = -\frac{y^2 - x^2}{(x^2 + y^2)^2} \frac{\partial Q}{\partial x} = -\frac{y^2 - x^2}{(x^2 + y^2)^2}$$

因而曲线积分 $\int_{\gamma} -\frac{y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy$ 与路径无关.

但是由于两者在原点 (0,0) 处均无定义.

考虑从 (x_1, y_1) 到 (x_2, y_2) 的三条曲线 $\gamma_1, \gamma_2, \gamma_3$, 如下图所示

首先考虑 γ_1 与 γ_2 的情况, 由于 γ_1 与 γ_2 所围区域不包含原点, 因此.

$$\int_{\gamma_1} -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy = \int_{\gamma_2} -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

这是因为 γ_1 与 γ_2 所围成的闭区域 D 不包含原点, 使用 Green 公式得到

$$\oint_{\gamma_1 \cup \gamma_2} (P(x, y) dx + Q(x, y) dy) = \iint_D (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = 0$$

接下来考虑 γ_2 与 γ_3 所围成的封闭区域,这个封闭区域包含原点,因此

$$\int_{\gamma_2} -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy \neq \int_{\gamma_3} -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

这是为什么呢?

由前文知该积分与路径无关, 并且 γ_2 与 γ_3 所围的闭曲线只绕原点转了一圈, 因此

它等价于一个绕原点一圈的圆.

接下来取 $\mathbb{R}^2 \setminus \{(0,0)\}$ 的一条曲线 γ

$$\gamma = \begin{cases} x = \cos \theta \\ y = \sin \theta \end{cases}, 0 \le \theta \le 2\pi$$

得到

$$\oint_{\gamma} -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy = \int_{0}^{2\pi} -\frac{\sin \theta}{1} (-\sin \theta) d\theta + \frac{\cos \theta}{1} (\cos \theta) d\theta$$

$$= \int_{0}^{2\pi} d\theta = 2\pi$$

而 $\int_{\gamma_3\cup\gamma_2}=\int_{\gamma}$ 因此得到二者不相等. 此外, 还可以进行推广, 对于任何 $\mathbb{R}^2\setminus\{(0,0)\}$ 中的闭曲线 γ 有

$$\oint_{\gamma} -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy = 2k\pi (k \in \mathbb{Z})$$

其中 k 表示闭曲线绕原点正向 (逆时针) 旋转的周数.

由于 k 与具体的形状无关, 因此 k 也是一个拓扑性质, \mathbb{Z} 就是 $\mathbb{R}^2\setminus\{(0,0)\}$ 的一个基本群.