

SECOND SEMESTER 2020-2021 COURSE HANDOUT (Part II)

Date: 18 January, 2021

In addition to Part I (General Handout for all courses appended to the time table) portion:

Course Number : MATH F432

Course Title : Applied Statistical Methods

Instructor-In charge : SUMANTA PASARI : Sumanta Pasari

1. Course Description:

Applied Statistics is an exciting sub-area of Statistics. It has application in almost all science disciplines which deal with data and uncertainty. This course builds up fundamental concepts of various key statistical methods necessary to analyze/interpret a variety of practical business/engineering problems. This course emphasizes the role of statistics in one's own field of study by making sense of data, developing self-ability to apply appropriate statistical methods, performing experimental designs and above all, realizing the limitations/inherent assumptions in a statistical test to avoid over interpretation or misinterpretation. The thrust areas covered in this course include probability distributions, statistical inference, analysis of variance (ANOVA), regression and correlation, discriminant analysis, factor and cluster analysis, time series analysis and forecasting, nonparametric methods and statistical quality control. The theoretical learning will be complemented with various case studies and hands-on training in excel.

2. Scope and objective of the course:

This 4th level course is designed with a two-fold purpose. First, it will provide an exposure to various theoretical univariate/multivariate methods and their practical applications. Second, this course will improve methodological/analytical maturity to attempt a variety of problems using MS-excel and R.

3. Text Book:

T1: David R Anderson, Dennis J Sweeney, Thomas A Williams, Jeffrey D. Camm and James J. Cochran, Statistics for Business and Economics, 12th Edition, Cengage Learning, 2014

4. Reference Books:

- 1. Deepak Chawla and Neena Sondhi, Research Methodology, Vikas, 2012
- 2. Richard Johnson and Dean W Wichern, Applied Multivariate Statistical Analysis, Pearson, 2007

5. Lecture Plan:

Lecture	Learning	Topics to be covered	Chapter in the Text Book
	Objectives		
1-2	It helps students	Revision of basic	Chapter 4 to Chapter 6 (T1)
	to recapitulate	probability concepts,	
	the introductory	random variables,	
	probability	probability	
	concepts.	distributions, moments	
3-4	It enhances the	Introduction, Review of	7,7.2,7.3,7.4,7.5,7.7,7.8 (T1)
	understanding of	sampling, Selecting a	
	different	sample, Sampling from	
	sampling	a finite and infinite	
	procedures,	population, Point	
	sampling	Estimation, Sampling	

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI Pilani Campus AUGS/ AGSR Division

गान प्रम ब			
	distribution and inferential	L	
		mean and properties of	
	procedures.	point estimators, Other	
7	T. 1 1	sampling methods	0.0.1.0.2.0.2 (TP1)
5-6	It helps in	Interval estimation,	8,8.1,8.2,8.3 (T1)
	understanding	Population mean when	9,9.1,9.2,9.3 (T1)
	the concepts of	σ is known, Population	
	hypotheses, and	mean σ is unknown,	
	its errors	Determining the sample	
	followed by	size,	
	decision	Introduction to	
	scenarios.	hypothesis testing,	
		Types of errors,	
		Inferences about single	
		population mean.	
7-8	To gain	Inferences about	10,10.1,10.2,10.3,11,11.1.11.2 (T1)
	knowledge on	difference of two	
	importance of	means, Inferences about	
	variance, chi-	population variances,	
	square	Interval estimation.	
	distributions and		
	its types.		
9-11	It helps us to	Testing the equality of	12,12.1,12.2,12.3 (T1)
	gain knowledge	population proportions,	13,13.1,13.2,13.3,13.4 (T1)
	to obtain	Test of independence,	13,13.1,13.2,13.3,13.1 (11)
	accurate and	Goodness of fit test,	
	replicable	Introduction to	
	findings at	experimental design and	
	reasonable	Analysis of Variance	
	allocations of	(ANOVA)	
	resources. We	(Completely	
	review some	randomized design,	
	general	Multiple comparison	
	principles of	procedures,	
	designs and its	Randomized block	
	types.	design)	
12-14	To gain	Simple linear regression	14,14.1,14.2,14.3,14.4,14.5,14.6,14.8.14.9
14-14	knowledge on	model, Least squares	(T1)
	basic regression	method, Coefficient of	(11)
	model.	determination, Model	
	moder.	· ·	
		assumptions, Test for	
		significance, Using the	
		estimated regression	
		equation for estimation	
		and prediction, Residual	
		analysis: Validating	
		model assumptions,	
		outliers and influential	
4 = 4 =	.	observations.	17171170170170170
15-17	It helps in	Multiple regression	15,15.1,15.2,15.3,15.4,15.5,15.6,15.8 (T1)

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI Pilani Campus AUGS/ AGSR Division

गान प्रम ल	understanding	model, Least squares	
	more than two variables in	method, Multiple coefficient of	
	regression	determination, Model	
	analysis and also gives insight on	assumptions, Testing for significance,	
	the concept of	Multicollinearity.	
	multicollinearity.	Regression equation for	
		estimation and prediction, residual	
		analysis, Discuss case	
		studies.	
18-20	It gives exposure to distinguish	Categorical independent variable, Logistic	15.7,15.9 (T1)
	between	regression.	
	Categorial		
	Independent and Categorical		
	Dependent		
	Regression		
21-23	Analysis. It helps in	Hoteling T ² and	17 (R1), Class Notes
21-23	It helps in assessing the	Mahalanobis D ²	17 (K1), Class Notes
	classification	discriminant analysis,	
	accuracy of	Objectives and its uses,	
	model.	Illustration of discriminant analysis,	
		Assessing classification	
		accuracy.	
24-27	It helps in	Cluster analysis- a	18 (R1), Class Notes
	understanding hierarchical,	classification technique, Statistics associated	
	non-hierarchical	with cluster analysis,	
	cluster analysis.	An illustration of the	
		technique, Key concepts in cluster	
		analysis, Process of	
		clustering, Establishing	
		cluster algorithms, Discuss case studies	
28-31	It helps in	Factor analysis and its	16 (R1), Class Notes
	understanding	uses, Conditions for a	
	data reduction	factor analysis,	
	methods.	Illustration of factor analysis, Applications	
		of factor analysis in	
		other multivariate	
32-35	It gives basic	•	17.1 – 17.6 (T1), Class Notes
20.25	It gives besie	technique.	17.1 17.6 (T1) Class Notes

	idea on forecasting methods.	Components of a time series, Smoothing methods, Trend projections, Trend and seasonal components, Regression analysis, Qualitative approaches.	
36-37	It helps in understanding distribution free methods in parallel to parametric procedures.	Kruskal walls test, Mann Whitney Wilcoxon test, K-S two sample test	18.1-18.4 (T1), Class Notes
38-40	Statistical Quality Control	Introduction, Control charts for variables, Control charts attributes, Modified control charts.	19.1, 19.2 (T1), Class Notes

6. Evaluation Scheme:

Component	Durations	Weightage	Date	Nature
Mid-Semester Test	90 min	30%	Will be announced later	Open/Close Book
Assignments (two)	NA	20%	Will be announced later	Open Book
Quizzes (two)	15-20 min	10%	Will be announced later	Open/Close Book
Comprehensive	120 min	40%	03 May, 2021	Open/Close Book

- **7. Consultation hours:** To be announced in class.
- **8. Notices:** All notices in relation to the above course will be displayed on NALANDA.
- **9. Make up policy:** Make up for mid-sem/comprehensive examination will be granted only in genuine cases. There is no make-up for quiz components. Students should follow proper guideline for applying make ups.

Instructor in Charge MATH F432