Concordia University Comp 232 Sample Review Questions

Instructor: Robert Mearns 06/04/2016

1.	State truth value	of: If $1 + 1 = 2$ or 1	1+1=3 then $2+2=3$ and $2+2=4$.
	True	☐ False	Justify
2.		propositions logica	ally equivalent ? $p \to (\neg q \land r), \neg p \lor \neg (r \to q)$ Justify
3.	Determine wheth \Box Tautology	er the following pro \square Not Taut	position is a tautology: $((p \rightarrow \neg q) \land q) \rightarrow \neg q$ tology
4. P	P(x) represents $x + 2a) \exists y \forall x P(x, y)$	2y = xy. What is th	e truth value of each of the following?
	True	☐ False	Justify
	b) $\neg \forall x \exists y \neg P(x, y)$ True	False	Justify
	,		n of discourse for m and n is the set of the value of the following statements?
	True	☐ False	Justify
	b) $\forall m \exists n P(m, n)$ True	False	Justify
6. A	are the following st	atements valid ? $y)] \equiv \forall x P(x) \land \neg \exists y Q$	O(n)
	Ualid Valid		\Box Justify
	Valid		Justify
x	ourse, $F(x)$ rep. x i	s a freshman, $B(x)$	esents courses. $M(y)$ rep. y is a math rep. x is a full-time student, $T(x,y)$ rep. cood English without using variables in
	b) $\exists x \forall y T(x,y)$		
	c) $\forall x \exists y [(B(x) \land F(x))]$	$(x) \rightarrow (M(y) \land T(x,y))$)]

8. Suppose the variables x and y represent real numbers, and $L(x,y): x < y$, $Q(x,y): x = y$, $E(x): x$ is even, $I(x): x$ is an integer. Write the statement using these predicates and any needed quantifiers. a) Every integer is even.					
b) If $x < y$, then x is not equal to y .					
c) There is no largest real number.					
9. Determine whether the following argument is valid or not valid: She is a Math Major or a Computer Science Major. If she does not know discrete math, she is not a Math Major. If she knows discrete math, she is smart. She is not a Computer Science Major. Therefore, she is smart. Valid Not Valid Justify					
10. Place the correct symbol from the list \subseteq , $=$, \supseteq between each pair of sets below a) $A \cup B$, $A \cup (B - A)$ b) $A \cup (B \cap C)$, $(A \cup B) \cap C$ c) $(A - B) \cup (A - C)$, $A - (B \cap C)$ d) $(A - C) - (B - C)$, $A - B$					
11. Suppose $f: R \to Z$ where $f(x) = \lceil 2x - 1 \rceil$. a) Is f one to one? Yes No Justify b) Is f onto Z ? Yes No Justify					
12. Suppose $g: R \to R$ where $g(x) = \lfloor \frac{x-1}{2} \rfloor$. List the answer for each. a) If $S = \{x 1 \le x \le 6\}$, find $g(S)$					
b) If $T = \{2\}$, find $g^{-1}(T)$					
13. For each of the following statements below state whether it is True or False: a) For all integers a, b, c , if $a c$ and $b c$, then $(a+b) c$. True False Justify b) For all integers a, b, c, d , if $a b$ and $c d$ then $(ac) (b+d)$. True False Justify c) If a and b are rational numbers (not equal to zero), then a^b is rational. True False Justify d) If $f(n) = n^2 - n + 17$, then $f(n)$ is prime for all positive integers n . True False Justify e) If $a \equiv b \pmod{m^2}$ then $a \equiv b \pmod{m}$.					
☐ True ☐ False ☐ Justify					

14. List the answer(s) for each. a) Find the smallest integer $a > 1$ such that $(a + 1) \equiv 2a \mod 11$.							
b) Find	b) Find integers a and b such that $(a + b) \equiv (a - b) \mod 5$.						
c) Solve	c) Solve for a if $a = (5^4 \mod 7)^3 \mod 13$.						
 15. List a complete proof for each proposition showing all steps with references. a) Consider the statement: If 7n+4 is an even Integer then n is an even Integer. Prove this statement two ways: by Contraposition and by Direct methods. 							
b) Prove that given a non negative Integer n , there is a unique non negative Integer n such that: $m^2 \le n < (m+1)^2$							
c) Use t	c) Use the Principle of Mathematical Induction to prove that $5 (7^n-2^n)$ for all $n \ge 0$.						
	d) Let $a_1 = 2, a_2 = 9$ and $a_n = 2a_{n-1} + 3a_{n-2}$ for $n \ge 3$. Prove that $a_n \le 3^n$ for all positive integers n . Use Strong Induction.						
16. If Rela	ation R is on set $\{a,b,c,d\}$	$\{ \}$ represented by $M_R=egin{array}{cccccccccccccccccccccccccccccccccccc$					
-) D.d.	•	1 1 0 1					
a) Refle		\Box Justify					
b) Sym		□ Justiny					
True	e False	\square Justify					
c) Antis	symmetric						
∟ Tru∈ d) Tran		$igsqcup \operatorname{Justify}$					
True		\Box Justify					
17. If Relation R is on the set of all integers and xRy iff $x \equiv y \mod 7$ determine if R is:							
a) Refle							
Tru€ b) Symi		Justify					
True		\Box Justify					
	symmetric						
True		Justify					
d) Tran							
∐ Tru€	False	$igsqcup \operatorname{Justify}$					

18.	If Relation R is R is: a) Reflexive	on the set of all int	tegers and $(x,y) \in R$ iff $x \ge y^2$ determine if			
	True b) Symmetric	☐ False	Justify			
	True c) Antisymmetric	False	Justify			
	True d) Transitive	False	Justify			
	True	False	Justify			
19. Consider R and S are relations on $\{a,b,c,d\}$, where $R=\{(a,b),(a,d),(b,c),(c,c),(d,a)\}$ and $S=\{(a,c),(b,d),(d,a)\}$ Find value of each: a) R^2						
	b) <i>R</i> ³					
	c) $S \circ R$					
	d) The transitive of	d) The transitive closure of R				
20. Suppose A is the set composed of all ordered pairs of positive integers. Let R be the relation defined on A where $(a,b)R(c,d)$ means that $a+d=b+c$. Is R an equivalence relation?						
	True	L False	☐ Justify			
21. Find the value of each: a) The smallest equivalence relation on $\{1,2,3\}$ that contains $(1,2)$ and $(2,3)$.						
b) The smallest partial order relation on $\{1,2,3\}$ that contains $(1,1),(3,2)$						
	Let R be the relationly if $a \ge b$. Is R a \square True		at of integers defined by $(a,b) \in R$ if and \square Justify			

```
1. False 2.Yes 3. Tautology 4 a) False 4 b) False 5 a) False 5 b) True 6 a) Valid 6 b) Valid 7 a)
Every student is taking a course 7b) Some student is taking every course 7 c) Every full-time
freshman is taking a math course 8 a) \forall x(I(x) \to E(x)) 8 b) \forall x \forall y(L(x,y) \to \neg Q(x,y)) 8 c)
\forall x \exists y L(x,y) \ 9. \ \text{Valid } 10 \ \text{a}) = 10 \ \text{b}) \supseteq 10 \ \text{c}) = 10 \ \text{d}) \subseteq 11 \ \text{a}) \ \text{No} \ 11 \ \text{b}) \ \text{Yes} \ 12 \ \text{a}) \ \{0,1,2\} \ 12 \ \text{b})
5 \le x < 7 13 a) False: a = b = c = 1 13 b) False: a = b = 2, c = d = 1 13 c) False (\frac{1}{2})^{\frac{1}{2}} = \frac{\sqrt{2}}{2} which is
not a Rational 13 d) False, f(17) is divisible by 17 13 e) True 14 a) 12 14 b)
b = 0, \pm 5, \pm 10, \pm 15, \dots; a any integer 14 c) 8 15 a) 15 b) proofs see below 16 a) True 16 b) False
16 c) False 16 d) False 17 a) True 17 b) True 17 c) False 17 d) True 18 a) False 18 b) False 18 c)
True 18 d) True 19 a) \{(a,a),(a,c),(b,c),(c,c),(d,b),(d,d)\} 19 b)
\{(a,b),(a,c),(a,d),(b,c),(c,c),(d,a),(d,c)\} 19 c) \{(a,a),(a,d),(d,c)\} 19 d)
\{(a,a),(a,b),(a,c),(a,d),(b,c),(c,c),(d,a),(d,b),(d,c),(d,d)\} 20 Yes: Reflexive: a+b=b+a;
Symmetric: if a + d = b + c, then c + b = d + a; Transitive: if a + d = b + c and c + f = d + e, then
a + d - (d + e) = (b + c) - (c + f), therefore a - e = b - f, or a + f = b + e. 21 a)
\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\} 21 b) \{(1,1),(2,2),(3,3),(3,2),(1,3),(1,2)\} 22 T
15a) Hint: For the Direct proof use Backward reasoning to decide on the initial form of 7n + 4
15b) There are two parts to the proof. Hint: Use Backward reasoning to decide on the
          relationship between m and n in the Existence part of the proof.
          Use a proof by Contradiction in the Uniqueness part of the proof
15c) Prove P(n): 5 | (7^n - 2^n) \forall n \ge 0
       Step1 (Base case) Prove P(1): 5 | (7^1 - 2^1)
          Proof 5 \mid 5 \to 5 \mid (7-2) \to 5 \mid (7^1-2^1) \to P(1)
       Step2 (Inductive hypothesis) Assume P(k): 5 \mid (7^k - 2^k)
       Step3 (What must be proved in the inductive Step4)
                Prove P(k) \to P(k+1): 5 \mid (7^k - 2^k) \to 5 \mid (7^{k+1} - 2^{k+1})
       Step4 (Proof of the inductive step) Prove P(k+1): 5 \mid (7^{k+1}-2^{k+1})
          Proof
          P(k) \to 5 \mid (7^k - 2^k) \to 5 \mid 7(7^k - 2^k)
                                                           Assumption, then Def. of Division
          P(1) \to 5 \mid (7-2) \to 5 \mid 2^{k}(7-2)
                                                           P(1), then Def. of Division
          \rightarrow 5 \mid [7(7^k - 2^k) + 2^k(7 - 2)]
                                                           Addition, Def. of Division
          \rightarrow 5 | [7^{k+1} - 7 \times 2^k + 7 \times 2^k - 2^{k+1}]
                                                           Multiplication
          \rightarrow 5 \mid [7^{k+1} - 2^{k+1}]
                                                           Cancel
          \rightarrow P(k+1)
          \rightarrow P(n): 5 \mid (7^n - 2^n) \ \forall n \ge 0
                                                           By Mathematical Induction
15 c) Prove P(n): a_n \leq 3^n \ \forall n \ \epsilon \ Z^+ \ \text{Using Strong Induction}
       Step1 (Base cases) Prove P(1) : a_1 \le 3^1 and P(2) : a_2 \le 3^2
          Proof LHS = a_1 = 2, RHS = 3^1 \to a_1 \le 3^1 \to P(1)
                 LHS = a_2 = 9, RHS = 3^2 \rightarrow a_2 \le 3^2 \rightarrow P(2)
       Step2 (Inductive hypothesis) Assume P(k): a_k \leq 3^k for 1 \leq k < n where n \geq 3, n \in \mathbb{Z}^+
       Step3 (What must be proved in the inductive Step 4)
                Prove P(k) \to P(k+1): a_k \le 3^k \text{ for } 1 \le k < n \to a_{k+1} \le 3^{k+1}
       Step4 (Proof of the inductive step) Prove P(k+1): a_{k+1} \leq 3^{k+1}
          Proof
                 =2a_k+3a_{k-1}
                                                 Since k+1 \ge 3 use recursive definition of a_n
          a_{k+1}
                  \leq 2 \times 3^k + 3 \times 3^{k-1}
                                                 By Assumption replace a_k and a_{k-1}
                  = 2 \times 3^k + 3^k
                                                 Multiplication
                  = 3 \times 3^k
                                                 Addition
                 = 3^{k+1}
                                                 Multiplication
          \to a_{k+1} \le 3^{k+1}
          \rightarrow P(k+1)
          \rightarrow P(n): a_n \leq 3^n \ \forall n \ \epsilon \ Z^+
                                                 Using Strong Induction
```