# Лабораторная работа 1.3.3 Измерение вязкости воздуха по течению в тонких трубках

Кагарманов Радмир Б01-106  $6\ {\rm Mas}\ 2022\ {\rm r}.$ 

**Цель работы:** экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используется: В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

#### Теоретические сведения

Работа посвящена изучению течения воздуха по прямой трубе круглого сечения. Движение жидкости или газа вызывается перепадом внешнего давления на концах  $\Delta P$  трубы, чему в свою очередь препятствуют силы вязкого (внутреннего) трения, действующие между соседними слоями жидкости, а также со стороны стенок трубы.

Сила вязкого трения как в жидкостях, так и в газах описывается законом Ньютона: касательное напряжение между слоями пропорционально перепаду скорости течения в направлении, поперечном к потоку. В частности, если жидкость течёт вдоль оси х, а скорость течения  $v_x(y)$  зависит от координаты y в каждом слое возникает направленное по x касательное напряжение.

Величину  $\eta$  называют коэффициентом динамической вязкости (или просто вязкостью) среды.

Объёмным расходом (или просто расходом) Q называют объём жидкости, протекающий через сечение трубы в единицу времени. Величина Q зависит от перепада давления  $\Delta P$ , а также от свойств газа (плотности  $\rho$  и вязкости  $\eta$ ) и от геометрических размеров (радиуса трубы R и её длины L). Основная задача данной работы — исследовать эту зависимость экспериментально.

Характер течения в трубе может быть ламинарным либо турбулентным.

Характер течения определяется безразмерным параметром задачи— числом Рейнольдса

$$Re = \frac{\rho \bar{u}a}{\eta},\tag{1}$$

где  $\rho$  - плотность жидкости,  $\bar{u}=\frac{Q}{\pi R^2}=\frac{U_{max}}{2}$  - средняя скорость движения потока, a - характерный размер потока.

Объёмный расход жидкости Q можно найти по формуле:

$$Q = \frac{\pi R^4 \Delta P}{8\eta l} \tag{2}$$

Длина установления  $l_{\text{уст}}$ :

$$l_{\text{VCT}} = 0, 2R \cdot Re \tag{3}$$

#### Экспериментальная установка

Схема экспериментальной установки изображена на Рис. 1. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя.



Рис. 1: Экспериментальная установка

### Ход работы

## **1.** $\Delta P$ будем считать по формуле:

$$\Delta P = 0, 2 * 9,8067 * 0,9932 * n,$$

где n - количество делений на микроманометре. Домножаем на 0,9932, так как температура была  $24^{\circ}C$ .

На Рис. 2 и Рис. 3 изображены графики  $Q(\Delta P)$  для трубок с диаметрами  $d_1=3,90\pm0,05$  мм и  $d_2=5,25\pm0,05$  мм.



Рис. 2: Зависимость  $Q(\Delta P)$  для трубки с диаметром  $d_1 = 3,90 \pm 0,05$  мм



Рис. 3: Зависимость  $Q(\Delta P)$  для трубки с диаметром  $d_2=5,25\pm0,05$  мм

На графиках видно, что для первых 7 измерений зависимость линейная. Из первого графика по формуле (1)  $\eta=1,99\cdot 10^{-5}\pm 0,06\cdot 10^{-5}$  Па $\cdot$ с. Для второго:  $\eta=1,90\cdot 10^{-5}\pm 0,07\cdot 10^{-5}$  Па $\cdot$ с. Погрешность  $\eta$  находится по формуле:

$$\varepsilon_{\eta} = \sqrt{\varepsilon_k^2 + 4 \cdot \varepsilon_R^2},$$

где относительная погрешность для  $\varepsilon_{k_1}=1\%$  и  $\varepsilon_{k_2}=2,9\%$ . Как мы видим,  $\eta$  совпадает в пределах погрешности для разных трубок.

**2.** На Рис. 4 и Рис.5 изображены графики зависимости P(x). Посчитав по формуле длины установления получились  $l_{\text{уст1}}\approx 0,32$  м и  $l_{\text{уст2}}\approx 0,39$  м. И это видно на графиках.



Рис. 4: Зависимость P(x) для трубки с диаметром  $d_2 = 5, 25 \pm 0, 05$  мм



Рис. 5: Зависимость P(x) для трубки с диаметром  $d_2 = 5, 25 \pm 0, 05$  мм

3. Рассмотрим зависимость lnQ от lnR. Она изображена на Рис. 6. С её помощью мы можем найти  $\beta$  в  $Q \propto R^{\beta}$ . Получилось, что  $\beta=4,05\pm0,13$ . Так как расход был в ламинарном режиме, то результат близок к теории.



Рис. 6: Зависимость lnQ от lnR

**Вывод:** в данной лабораторной работе мы нашли коэффициент вязкости воздуха  $\eta=1,99\cdot 10^{-5}\pm 0,06\cdot 10^{-5}$  Па · с и  $\beta=4,05\pm 0,13$ . Также мы рассмотрели зависимость P(x).