Exercices, généralités sur les ondes

1. Vitesse de propagation

Vérifier que dans l'expression de l'onde $s = f\left(t - x/c\right)$, c est bien la vitesse de propagation de l'onde, même si celle-ci n'est pas sinusoïdale. solution

2. Solutions de l'équation de d'Alembert en coordonnées cartésiennes

Résoudre l'équation de d'Alembert en coordonnées cartésiennes à une dimension en utilisant le changement de variable :

$$u = t - x/c$$

$$v = t + x/c$$

On peut commencer par établir les expressions de $\partial/\partial u$ et $\partial/\partial v$ en fonction de $\partial/\partial x$ et $\partial/\partial t$. solution

3. Solutions de l'équation de d'Alembert en coordonnées sphériques

Résoudre l'équation de d'Alembert en coordonnées sphériques sachant que le laplacien s'écrit

$$\Delta s = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r s).$$

solution

4. Double périodicité

Représenter graphiquement, une onde plane progressive harmonique de période T et de longueur d'onde λ se propageant dans une direction arbitraire \mathbf{u} ;

- A un instant t fixé.
- En différents points dans un même plan d'onde, en fonction du temps. solution

5. Effet Doppler

Une source S se déplace à la vitesse v en direction d'un observateur O, en émettant des signaux périodiques de période T_0 . La célérité de l'onde est c. Quelle est la période apparente des signaux reçu par l'observateur ? solution

6. Paquet d'ondes

Montrer que n'importe quel signal limité dans le temps, de faible largeur spectrale, peut être représenté par le paquet d'ondes :

$$s\big(x,t\big) = A\Big(t - \big(dk/d\omega\big)_{\omega_0} \, x\Big) e^{i\left(\omega_0 t - k_0 x\right)}\,,$$

où ω_0 est la pulsation centrale du spectre de fréquence. Donner l'expression de l'amplitude A. solution

7. Solution stationnaire de l'équation de d'Alembert

- 7.1. Chercher des solutions de l'équation de d'Alembert à une dimension, sous la forme s(x,t) = f(x)g(t).
- 7.2. Donner la position des nœuds et des ventres de vibration de l'onde stationnaire. solution

8. Onde incidente et onde réfléchie sur un obstacle fixe

8.1. Montrer que l'onde réfléchie par un obstacle fixe, est déphasée de π par rapport à l'onde incidente (plane progressive harmonique) et possède la même amplitude réelle, lorsque l'onde résultante s'annule sur l'obstacle.

8.2. Donner l'expression de l'onde résultante.

solution

Solutions

S 1

La déformation se propage sur l'axe Ox, de l'origine d'abscisse x=0 à l'instant t=0, jusqu'au point M d'abscisse x à l'instant t. Si l'onde ne s'atténue pas, s à la même valeur en O et M, s(0)=s(t-x/c) à condition que 0=t-x/c. On déduit c=x/t qui est bien la vitesse de propagation ou célérité de l'onde.

retour énoncé

S 2

En utilisant le changement de variable proposé, on détermine :

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial}{\partial v} \frac{\partial v}{\partial x} = \frac{1}{c} \left(\frac{\partial}{\partial v} - \frac{\partial}{\partial u} \right)$$

et:

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial}{\partial v} \frac{\partial v}{\partial t} = \frac{\partial}{\partial u} + \frac{\partial}{\partial v} \; .$$

Or l'équation de d'Alembert à une dimension peut s'écrire

$$\left(\frac{\partial}{\partial x} - \frac{1}{c}\frac{\partial}{\partial t}\right) \left(\frac{\partial}{\partial x} + \frac{1}{c}\frac{\partial}{\partial t}\right) s = 0.$$

D'après ce qui précède on calcule :

$$\frac{\partial}{\partial x} - \frac{1}{c} \frac{\partial}{\partial t} = -\frac{2}{c} \frac{\partial}{\partial u} \qquad \text{et} \qquad \frac{\partial}{\partial x} + \frac{1}{c} \frac{\partial}{\partial t} = \frac{2}{c} \frac{\partial}{\partial v} \; .$$

Dans les nouvelles variables u et v l'équation de propagation s'écrit alors :

$$\frac{\partial^2}{\partial u \partial v} s = 0 .$$

Et après deux intégrations successives :

$$\frac{\partial}{\partial u}s = h(u)$$
 et $s = \int h(u)du + g(v) = f(u) + g(v)$,

la solution est:

$$s(x,t) = f\left(t - \frac{x}{c}\right) + g\left(t + \frac{x}{c}\right)$$

S 3

L'équation de d'Alembert s'écrit :

$$\frac{1}{r}\frac{\partial^2}{\partial r^2}(rs) - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}s = 0.$$

Ou encore puisque r et t sont deux variables indépendantes :

$$\frac{\partial^2}{\partial r^2}(rs) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}(rs) = 0.$$

D'après l'exercice 1.2 , $\,r\,s=f\left(t-r/c\right)+g\left(t+r/c\right)\,$ et donc :

$$s(r,t) = \frac{1}{r}f\left(t - \frac{r}{c}\right) + \frac{1}{r}g\left(t + \frac{r}{c}\right)$$

retour énoncé

S4

Dans tous les points du plan d'onde d'abscisse x, s vibre de la même façon. retour énoncé

S 5

A l'instant t=0, S émet de l'abscisse x un signal qui sera reçu par l'observateur à l'instant :

$$t_0 = \frac{x}{c}$$
.

Aux instants $t=nT_0$, $n\in\mathbb{N}$, S émet des signaux des abscisses $x-vnT_0$ qui seront reçus par l'observateur aux instants :

$$t_n = nT_0 + \frac{x - v nT_0}{c} .$$

L'observateur reçoit donc des signaux périodiques de période ;

$$T = t_{n+1} - t_n = T_0 \left(1 - \frac{v}{c} \right)$$

retour énoncé

S 6

Au point source d'un milieu de propagation, un signal quelconque, limité dans le temps, peut toujours être représenté par la transformée de Fourier de son spectre de fréquences $G(\omega)$:

$$s(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} G(\omega) e^{i\omega t} d\omega.$$

Chaque composante harmonique de pulsation ω va se déplacer le long d'un axe Ox à la vitesse de phase $v_{\omega} = \omega/k(\omega)$. Au point d'abscisse x la vibration s'écrit :

$$s(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} G(\omega) e^{i(\omega t - k(\omega)x)} d\omega.$$

Si le spectre de fréquence à une faible largeur, l'intégrale se limite à deux valeurs extrêmes du spectre ω_1 et ω_2 , et on peut développer la relation de dispersion $k=h(\omega)$ au premier ordre en ω autour de ω_0 :

$$k\left(\omega\right)=k\left(\omega_{0}\right)+\left(\omega-\omega_{0}\right)\!\!\left(\frac{dk}{d\omega}\right)_{\omega_{0}}.$$

On reporte $k(\omega)$ dans l'expression de s(x,t) et il vient en notant $k_0 = k(\omega_0)$:

$$s \! \left(x, t \right) = \frac{1}{\sqrt{2\pi}} \int\limits_{\omega_1}^{\omega_2} \! G \! \left(\omega \right) \! e^{i \! \left(\omega t - \omega_0 t + \omega_0 t - k_0 x - \left(\omega - \omega_0 \right) \! \left(dk/d\omega \right)_{\omega_0} x \right)} d\omega \ , \label{eq:spectrum}$$

puis:

$$s\left(x,t\right)=e^{i\left(\omega_{0}t-k_{0}x\right)}\frac{1}{\sqrt{2\pi}}\int\limits_{\omega_{1}}^{\omega_{2}}G\left(\omega\right)e^{i\left(\omega-\omega_{0}\right)\left(t-\left(dk/d\omega\right)_{\omega_{0}}x\right)}d\omega.$$

L'amplitude de cette onde harmonique se propageant à la vitesse de phase $\, v_\phi = \omega_0/k_0 \,$ est :

$$A\left(t-\left(dk/d\omega\right)_{\omega_0}x\right)=\frac{1}{\sqrt{2\pi}}\int\limits_{\omega_1}^{\omega_2}G\left(\omega\right)e^{i\left(\omega-\omega_0\right)\left(t-\left(dk/d\omega\right)_{\omega_0}x\right)}d\omega\,.$$

Si l'on pose $\Omega = \omega - \omega_0$ et $F(\Omega) = G(\omega)$, on voit que A est la transformée de Fourier de $F(\Omega)$. retour énoncé

S7

7.1. La méthode consiste à chercher des solutions par séparation des variables x et t. L' équation de d'Alembert s'écrit :

$$g(t)\frac{d^2f(x)}{dx^2} - \frac{1}{c^2}f(x)\frac{d^2g(t)}{dt^2} = 0$$
,

ou encore:

$$\frac{c^2}{f(x)}\frac{d^2f(x)}{dx^2} = \frac{1}{g(t)}\frac{d^2g(t)}{dt^2}.$$

Le premier membre de cette égalité ne dépend que de x et le deuxième que de t. On en déduit que chaque terme est constant égal à C.

• Si C < 0, on note C = $-\omega^2$. On obtient alors, deux équations :

$$\frac{d^2g}{dt^2} + \omega^2 g = 0 \quad \text{et} \quad \frac{d^2f}{dt^2} + \frac{\omega^2}{c^2} f = 0.$$

Les solutions g(t) et f(x) sont sinusoïdales. Avec $k = \omega/c$, les déphasages ϕ et ψ , et A une constante, on obtient :

$$s(x,t) = A \sin(\omega t - \phi) \sin(kx - \psi).$$

C'est une onde stationnaire.

• Si C > 0, on note $C = \omega^2$. Les équations différentielles sont :

$$\frac{d^2g}{dt^2} - \omega^2 g = 0 \qquad \text{et} \qquad \frac{d^2f}{dt^2} - \frac{\omega^2}{c^2} f = 0 \ .$$

Et les solutions la somme de deux fonctions exponentielles. L'une croissante (en x ou t) forcément d'amplitude nulle car la grandeur s est bornée, et l'autre décroissante, correspondante au régime transitoire amorti.

 Si la constante est nulle, toujours parce que s est bornée, g et f se réduisent à des solutions triviales constantes.

7.2. Les nœuds de vibration de l'onde stationnaire sont les points d'abscisses $\, {\bf x}_{\rm n} \,$ tels que :

$$sin(kx_n - \psi) = 0$$
 donc $kx_n - \psi = n\pi$, $n \in \mathbb{N}$,

ou encore:

$$x_n = n\frac{\lambda}{2} + \psi \frac{\lambda}{2\pi}.$$

Les ventres de vibration de l'onde stationnaire sont les points d'abscisses x_p tels que :

$$sin \Big(kx_p - \psi \Big) = 1 \qquad \qquad donc \qquad kx_p - \psi = \Bigg(p + \frac{1}{2} \Bigg) \pi \,, \ p \in \, \mathbb{N} \,,$$

ou encore:

$$x_{p} = (2p+1)\frac{\lambda}{4} + \psi \frac{\lambda}{2\pi}$$

retour énoncé

S8

8.1. Une onde incidente:

$$\underline{s}_{i} = \underline{s}_{0} \, e^{i \left(\omega t - kx\right)} \ \, \text{avec} \qquad \underline{s}_{0} = s_{0} \, e^{-i\phi} \, ,$$

arrive sur un obstacle placé à l'abscisse x = 0 et donne naissance à une onde réfléchie :

$$\underline{s}_r = \underline{s}_{0r} \, e^{i\left(\omega_r t + k_r x\right)} \qquad \quad \text{avec} \quad \ \underline{s}_{0r} = s_{0r} \, e^{-i\phi_r} \; .$$

En x = 0, la condition limite sur l'onde résultante s'écrit :

$$\underline{s} \big(x = 0, t \big) = \underline{s}_i \, \big(x = 0, t \big) + \underline{s}_r \, \big(x = 0, t \big) = 0 \; .$$

Ou encore:

$$\underline{s}_0 \; e^{i\omega t} + \underline{s}_{0r} \; e^{i\omega_r t} = 0 \; . \label{eq:solution}$$

Ceci étant vrai à chaque instant :

$$\omega_r = \omega$$
 et $\underline{s}_{0r} = -\underline{s}_0$.

La deuxième égalité (complexe), fournit deux relations :

$$s_{0r} = s_0$$
 et $\phi_r = \phi + \pi$.

8.2. L'onde résultante s'écrit :

$$\underline{s} = \underline{s}_0 \; e^{i\left(\omega t - kx\right)} + \underline{s}_{0r} \; e^{i\left(\omega_r t + k_r x\right)} \, , \label{eq:second_second}$$

et d'après les résultats de la question précédente :

$$\underline{s} = s_0 \left(e^{i \left(\omega t - kx - \phi \right)} + e^{i \left(\omega t + kx - \phi - \pi \right)} \right) = s_0 \; e^{i \left(\omega t - \phi \right)} \left(e^{-ikx} - e^{ikx} \right).$$

Ou encore:

$$\underline{s} = 2 \, s_0 \, e^{i \left(\omega t - \phi - \pi/2\right)} \, sin \left(kx\right) \; . \label{eq:sigma}$$

En prenant la partie réelle de \underline{s} , on obtient la solution réelle :

$$s = 2s_0 \sin(\omega t - \phi)\sin(kx)$$

C'est une onde stationnaire.

retour énoncé