

SEQUENCE LISTING

<110> Bayer AG, BHC

<120> Diagnostics and Therapeutics for Diseases Associated with Endothelial Differentiation, Sphingolipid G-Protein-Coupled Receptor 6 (EDG6)

<130> Le A 36 643

<160> 33

<170> PatentIn version 3.1

<210> 1

<211> 1566

<212> DNA

1881-1

<400>	1	60				
gagtcaaaaa	ccggggggagg	ccatgaacgc	cacggggacc	ccggggccc	ccgagtcctg	120
ccaacactg	ggccccggcg	ggcacaggcg	gtcattgtt	ctgcaactaca	accactcggg	180
ccggctggcc	gggcgggggg	ggccggagga	tggccctgtg	ggggccctgc	ggggctgtc	240
ggtgccccc	agctgcctgg	tgtgtctgg	gaacttgcgt	gtgtggccgg	ccatcaccag	300
ccacatgcgg	tcgcgacgct	gggtctacta	ttgcctggtg	aacatcacgc	tgagtgacct	360
gctcacggc	gccccctacc	tggccaacgt	gtgtgtcg	ggggcccgca	ccttcgtct	420
ggcgcggcc	cagtggttcc	tacgggaggg	cctgtcttc	accggccctgg	ccgcctccac	480
cttcagctg	ctttcaactg	caggggagcg	ctttgccacc	atggtgtcggc	cggtggccga	540
gagcggggcc	accaagacca	gcccgcgtc	cgggttcate	ggcctctgt	ggctgtcggc	600
cgcgctgtc	gggatgtcgc	cttgcgtgg	ctggaaactgc	ctgtgcgcct	ttgaccgtgc	660
ctccagcctt	ctggccctct	actccaagcg	stacatcctc	ttctgcctgg	tgatcttcgc	720
ccggctctg	gccccccatca	tgggcctcta	tggggccatc	ttccgcctgg	tgcaaggccag	780
ccggcagaag	gccccacgcc	cagcggcccg	ccgcgaggcc	cgccgcctgc	tgaagacgggt	840
gctgtatgatc	ctgtgtggct	tcctgggtgt	ctggggccca	ctttcgggc	tgctgtcggc	900
cgacgtcttt	ggctccaacc	tctgggcca	ggagttacctg	cggggcattgg	actgatcct	960
ggccctgccc	gtccctcaact	cggcggtaaa	ccccatcatc	tactccttcc	gcagcaggga	1020
ggtgtgcaga	gccccgtctca	gcttcctctg	ctgggggtgt	ctccggctgg	gcatgcgagg	1080
gccccgggac	tggctggccc	ggggcgtctg	ggtcaactcc	ggagcttca	ccacccacag	1140
ctctctgtagg	ccaaagggaca	gctttcgcgg	ctcccgctcg	ctcagctttc	ggatgcggga	1200
gccccctgtcc	aggatctcca	cgctgcggag	catctgttgg	tgcaagtctt	cgtgtggatg	1260
gtgcagccac	cggtgtcggt	ccaggcaggg	cctccctgggg	tacaggaagc	tgtgtgcacg	1320
cagcctcgcc	tgtatggga	gcagggaaacg	ggacaggcccc	ccatggtttt	cccggggccc	1380
tctcggggct	tctgacgcca	aatgggcttc	ccatggtcac	cctggacaag	gaggttaacca	1440
ccccacccccc	ccgttaggac	agagagcacc	ctgggtgtgg	ggcgagtgtt	tccccacaac	1500
cccgcttcgt	tgtgattctg	gggaagtccc	ggccctctc	tgggcctctag	tagggctccc	1560
aggctgtcaag	gggtggactg	tgggatgtcat	gccctggcaa	cattgaagtt	cgatcatggt	1566

<210> ?

<211> 384

<212> PRT

<213> Homo sapiens

<400> 2

```

Met Asn Ala Thr Gly Thr Pro Val Ala Pro Glu Ser Cys Gln Gln Leu
1 5 10 15
Ala Ala Gly Gly His Ser Arg Leu Ile Val Leu His Tyr Asn His Ser
20 25 30
Gly Arg Leu Ala Gly Arg Gly Pro Glu Asp Gly Gly Leu Gly Ala
35 40 45
Leu Arg Gly Leu Ser Val Ala Ala Ser Cys Leu Val Val Leu Glu Asn
50 55 60
Leu Leu Val Leu Ala Ala Ile Thr Ser His Met Arg Ser Arg Arg Trp
65 70 75 80
Val Tyr Tyr Cys Leu Val Asn Ile Thr Leu Ser Asp Leu Leu Thr Gly
85 90 95
Ala Ala Tyr Leu Ala Asn Val Leu Leu Ser Gly Ala Arg Thr Phe Arg
100 105 110

```

Leu Ala Pro Ala Gln Trp Phe Leu Arg Glu Gly Leu Leu Phe Thr Ala
 115 120 125
 Leu Ala Ala Ser Thr Phe Ser Leu Leu Phe Thr Ala Gly Glu Arg Phe
 130 135 140
 Ala Thr Met Val Arg Pro Val Ala Glu Ser Gly Ala Thr Lys Thr Ser
 145 150 155 160
 Arg Val Tyr Gly Phe Ile Gly Leu Cys Trp Leu Leu Ala Ala Leu Leu
 165 170 175
 Gly Met Leu Pro Leu Leu Gly Trp Asn Cys Leu Cys Ala Phe Asp Arg
 180 185 190
 Cys Ser Ser Leu Leu Pro Leu Tyr Ser Lys Arg Tyr Ile Leu Phe Cys
 195 200 205
 Leu Val Ile Phe Ala Gly Val Leu Ala Thr Ile Met Gly Leu Tyr Gly
 210 215 220
 Ala Ile Phe Arg Leu Val Gln Ala Ser Gly Gln Lys Ala Pro Arg Pro
 225 230 235 240
 Ala Ala Arg Arg Lys Ala Arg Arg Leu Leu Lys Thr Val Leu Met Ile
 245 250 255
 Leu Leu Ala Phe Leu Val Cys Trp Gly Pro Leu Phe Gly Leu Leu Leu
 260 265 270
 Ala Asp Val Phe Gly Ser Asn Leu Trp Ala Gln Glu Tyr Leu Arg Gly
 275 280 285
 Met Asp Trp Ile Leu Ala Leu Ala Val Leu Asn Ser Ala Val Asn Pro
 290 295 300
 Ile Ile Tyr Ser Phe Arg Ser Arg Glu Val Cys Arg Ala Val Leu Ser
 305 310 315 320
 Phe Leu Cys Cys Gly Cys Leu Arg Leu Gly Met Arg Gly Pro Gly Asp
 325 330 335
 Cys Leu Ala Arg Ala Val Glu Ala His Ser Gly Ala Ser Thr Thr Asp
 340 345 350
 Ser Ser Leu Arg Pro Arg Asp Ser Phe Arg Gly Ser Arg Ser Leu Ser
 355 360 365
 Phe Arg Met Arg Glu Pro Leu Ser Ser Ile Ser Ser Val Arg Ser Ile
 370 375 380

<210> 3
 <211> 20
 <212> DNA
 <213> artificial sequence

 <220>
 <223> forward primer

<400> 3
 gtctttggct ccaacctctg

20

<210> 4
 <211> 18
 <212> DNA
 <213> artificial sequence

 <220>
 <223> reverse primer

<400> 4
 ggccaggatc cagtccat

18

<210> 5
 <211> 20
 <212> DNA
 <213> artificial sequence

 <220>
 <223> probe

<400> 5
 cccagggatc cctgcggggc

20

<210> 6
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> S1P1 sense primer

<400> 6
gtgggctgca aggtgaagac ctgt 24

<210> 7
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> S1P1 antisense primer

<400> 7
tttctggggg tgggaggaat tgtc 24

<210> 8
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> S1P2 sense primer

<400> 8
gtcatcctct gttgcgccat tgtg 24

<210> 9
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> S1P2 antisense primer

<400> 9
aggctgaaga cagaggccga gagc 24

<210> 10
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> S1P3 sense primer

<400> 10
gccccatcct cttcaaggct cagt 24

<210> 11
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> S1P3 antisense primer

<400> 11
gtggggcagg tcttcattga cctt 24

<210> 12
<211> 24

<212> DNA
<213> artificial sequence .

<220>
<223> S1P4 sense primer

<400> 12
tccagccttc tgcccctcta ctcc 24

<210> 13
<211> 24
<212> DNA
<213> artificial sequence .

<220>
<223> S1P4 antisense primer

<400> 13
caggaaggcc agcaggatca tcag 24

<210> 14
<211> 20
<212> DNA
<213> artificial sequence .

<220>
<223> S1P5 sense primer

<400> 14
aggacttcgc ttttgctctg 20

<210> 15
<211> 20
<212> DNA
<213> artificial sequence .

<220>
<223> S1P5 antisense primer

<400> 15
tctagaatcc acggggtctg 20

<210> 16
<211> 20
<212> DNA
<213> artificial sequence .

<220>
<223> GATA-1 sense primer

<400> 16
cacctggtgt agcttgtagt 20

<210> 17
<211> 20
<212> DNA
<213> artificial sequence .

<220>
<223> GATA-1 antisense primer

<400> 17
cccaagcttc gtggaactct 20

<210> 18
<211> 21
<212> DNA

<213> artificial sequence
<220>
<223> GATA-2 sense primer
<400> 18
tgggtgc aa attgtcagac g 21
<210> 19
<211> 21
<212> DNA
<213> artificial sequence
<220>
<223> GATA-2 antisense primer
<400> 19
catagggcc atgtgtccag c 21
<210> 20
<211> 25
<212> DNA
<213> artificial sequence
<220>
<223> Fli-1 sense primer
<400> 20
cgcccaccacc ctctacaaca cggaa 25
<210> 21
<211> 25
<212> DNA
<213> artificial sequence
<220>
<223> Fli-1 antisense primer
<400> 21
cgggccccagg atctgatacg gatct 25
<210> 22
<211> 22
<212> DNA
<213> artificial sequence
<220>
<223> NF-E2 sense primer
<400> 22
atcatgtcca tcaccgagct gc 22
<210> 23
<211> 22
<212> DNA
<213> artificial sequence
<220>
<223> NF-E2 antisense primer
<400> 23
tgggtttct tggggcttag gt 22
<210> 24
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> FOG-2 sense primer

<400> 24
gcttaagatgt ctgaactgg 20

<210> 25
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> FOG-2 antisense primer

<400> 25
ggaccatgtta tgtttctgtc 20

<210> 26
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> cMPL sense primer

<400> 26
tggagatgca gtggcacttg 20

<210> 27
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> cMPL antisense primer

<400> 27
agaactgtgg ggtctgttgt 20

<210> 28
<211> 27
<212> DNA
<213> artificial sequence

<220>
<223> RGS18 sense primer

<400> 28
tgactgagaa taagatccac atttgaa 27

<210> 29
<211> 27
<212> DNA
<213> artificial sequence

<220>
<223> RGS18 antisense primer

<400> 29
catgtttctg tgacccaacag aagtact 27

<210> 30
<211> 22
<212> DNA
<213> artificial sequence

<220>
<223> beta-2 microglobulin sense primer

<400> 30
agattcagg ttaactcacgt ca 22

<210> 31
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> beta-2 microglobulin antisense primer

<400> 31
tatcttgggc tgtgacaaag t 21

<210> 32
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> G3PDH sense primer

<400> 32
accacagtcc atgccatcac 20

<210> 33
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> G3PDH antisense primer

<400> 33
tccaccaccc tgttgctgta 20