Appendices

A Pseudocode

A.1 Pseudocode for policy switching online

```
Algorithm 1 Policy switching during fine-tuning
  1: Compute \sigma_D using data-set
  2: s_0 = \text{env.reset}()
  3: for environment step t = 0, 1 \dots do
          Sample RL action: a_{RL} \sim \pi_{\phi}^{RL}(\cdot|s_t)
Sample BC action: a_{BC} \sim \pi_{\theta}^{BC}(\cdot|s_t)
  4:
          \begin{split} Q_{RL} &= Q_{\psi}^{\text{med}}(s, a_{RL}) - f(\sigma_D) * \sigma_Q(s, a_{RL}) \\ Q_{BC} &= Q_{\psi}^{\text{med}}(s, a_{BC}) \end{split}
  6:
  7:
          if Q_{RL} \geq Q_{BC} then
  8:
  9:
               a_t = a_{RL}
          else
 10:
11:
               a_t = a_{BC}
12:
          end if
                                       \epsilon \sim \text{clip}(\mathcal{N}(0, \sigma_{\epsilon}), -c, c)
           a_t \leftarrow a_t + \epsilon,
13:
           Act in environment: r_t, s_{t+1} \leftarrow \text{env.step}(a_t)
14:
           Store transition (s_t, a_t, r_t, s_{t+1}) in \mathcal{D}
15:
           Sample N transitions \{(s, a, r, s')\} \sim \mathcal{D}
16:
           Use procedure defined by lines 4-12 to select a' \in \{a'_{RL}, a'_{BC}\}
 17:
           a' \leftarrow a' + \epsilon, \quad \epsilon \sim \text{clip}(\mathcal{N}(0, \sigma_{\epsilon}), -c, c)
18:
           Sample a set \mathcal{B} of two distinct indices from \{1,2,\ldots,N\}
19:
           y \leftarrow r_i + \gamma \min_{j \in \mathcal{B}} Q_{\psi'_i}(s', a')
20:
           Update critics
21:
                                          \psi_j \leftarrow \arg\min_{\psi_j} N^{-1} \sum (y - Q_{\psi_j}(s, a))^2
22:
           if t \mod d then
               \nabla_{\phi} J(\phi) = \frac{1}{N} \sum \nabla_{a} Q_{\psi}^{\min}(s, a)|_{a = \pi_{\phi}(s)} \nabla_{\phi} \pi_{\phi}(s)
23:
               where Q_{\psi}^{\min}(s, a) = \min_{j} Q_{\psi_{j}}(s, a)
24:
25:
           end if
26: end for
```

A.2 Pseudocode for policy switching offline

Algorithm 2 Policy switching

- 1: Compute σ_D using dataset 2: Train RL policy π_{RL} and BC policy π_{BC} independently using dataset 3: $s_0 = \text{env.reset}()$ 4: **for** environment step $t = 0, 1 \dots$ **do**
- 5: Sample RL action: $a_{RL} \sim \pi_{RL}(\cdot|s_t)$
- 6: Sample BC action: $a_{BC} \sim \pi_{BC}(\cdot|s_t)$
- 7: Compute uncertainty adjusted critic value for reinforcement learning action:

$$Q_{RL} = Q_{\text{med}}(s, a_{RL}) - f(\sigma_D) * \sigma_Q(s, a_{RL})$$

8: Compute average value estimate for BC action

$$Q_{BC} = Q_{\rm med}(s, a_{BC})$$

```
9: if Q_{RL} \ge Q_{BC} then
10: a = a_{RL}
11: else
12: a = a_{BC}
13: end if
14: Act in environment: r_t, s_{t+1} \leftarrow \text{env.step}(a)
15: end for
```

B Experimental details

B.1 Hardware and software specifications

Hardware We run all tests on a single GeForce RTX3080 and provide the details of computational cost for training each of the algorithms of our method on hopper medium in Table 1. We also provide the computational cost of TD3-BC-N, IQL and Cal-QL as a comparison.

Software We use the following software versions

- Python 3.10.0
- Pytorch 2.3.0+cu121
- Gym 0.26.2
- mujoco-py 2.1.2.14

B.2 Baselines

Cal-QL We use the JAX implementation of Cal-QL¹ provided by the original authors in recreating the results the offline online results used for the AntMaze datasets. We

¹https://github.com/nakamotoo/Cal-QL

	Runtime (s/epoch*)	GPU Mem. (MiB)
TD3-N (N=10)	77	334
BC	38.2	294
TD3-BC-N (N=10)	78.2	334
IQL	138.9	530
Cal-QL	420.6	806

^{*1} epoch = 10,000 gradient steps

Table 1: Computational cost of each method

use the same hyper-parameters suggested by the authors for generating results for the umaze and umaze-diverse tasks. For the MuJoCo tasks the authors do not specify hyper-parameters, in this case we opt to use the CQL hyper-parameters specified in the original paper for the MuJoCo tasks and kept any additional hyper-parameters introduced by Cal-QL hyper-parameters fixed. For the MuJoco tasks we use the implementations provided in Clean Offline Reinforcement Learning² (CORL) repository. We take the offline CQL scores for MuJoCo and AntMaze datasets directly from CORL. IQL We use the JAX implementation for IQL³ provided by the original author to generate the offline score and fine tuning curves for both AntMaze and MuJoCo tasks. O3F We directly use O3F ontop of our implementation of TD3-N to generate fine-tuning curves. AWAC We use the implementation provided in CORL alongside the hyperparameters recommended by the original authors to generate fine-tuning curves. TD3-BC-N We use our own implementation and use the hyper-parameters recommended by the authors for all datasets both offline and during online fine-tuning.

B.3 Policy switching hyperparameters

We list all hyperparameters used for our policy switching technique that include those required for training the base RL and BC algorithm as well as the policy switching hyperparameters in Table 2. For AntMaze, we specify the hyperparameter m=[1,0.5] for policy switching as we use a value of m=1 for all datasets bar AntMaze large-play where we use a value of 0.5.

²https://github.com/tinkoff-ai/CORL

³https://github.com/ikostrikov/implicit_q_learning

	Hyperparameter	Value
	Optimiser	Adam
	Critic learning rate	5e-3
	Actor learning rate	5e-3
	Mini-batch size	256
TD2 N Hyperparemeters	Target update rate	1e-3
TD3-N Hyperparameters	Policy noise	0.2
	Policy noise clipping	(-0.5,0.5)
	Policy update frequency	2
	Ensemble size	10
	Critic hidden dim	256
	Critic hidden layers	2
TD3-N Architecture	Critic activation function	ReLU
1D3-N Alchitecture	Actor hidden dim	256
	Actor hidden layers	2
	Actor activation function	ReLU
DCI.	Optimiser	Adam
BC hyperparameters	BC learning rate	5e-4
	Hidden dim	256
BC Architecture	Hidden layers	2
	Activation function	ReLU
Policy switching hyper-parameters		m = [1, 0.5]
	AntMaze	$\alpha = 3300$
		$\gamma = 0.999$
		m = 1
	MuJoCo	$\alpha = 0.075$
		$\gamma = 0.99$

Table 2: List of hyperparameters used.

C Additional Experiments

C.1 Hyperparameter tuning

We investigate the effects of adjusting hyper-parameters. Our main aim throughout tuning was to keep the value of m=1 and adjusting the value of α We provide the results of adjusting the hyper-parameters on the MuJoCo dataset in Table 3.

From the results we see that lower values of α have a slight preference to using more RL than higher values of α and as a result do better on med-rep datasets and worse on exp datasets.

C.2 Gaussian BC vs Vanilla BC

We observe slightly better performance when using a gaussian BC (BC) agent over vanilla BC (VBC) agent. In theory both should converge to the same solution we look

	0.025	0.075	0.15
hopper-med-rep	99.9	99.7	99.8
hopper-med	104.1	101.8	101.2
hopper med exp	72.4	88.6	100.5
hopper exp	25	37.7	53.2
halfcheetah-med-rep	62.1	61.4	60.8
halfcheetah-med	64.1	63	62.3
halfcheetah-med-exp	97.6	93.6	98.5
halfcheetah-exp	82	94.1	88.2
walker2d-med-rep	87.3	86.9	86.5
walker2d-med	99.4	98.2	97
walker2d-med-exp	116.4	116	115.3
walker2d-exp	96.5	105.4	100.3

Table 3: MuJoCo scores for different values of α . Scores are averaged over 5 seeds.

at a comparison of the results

	VBC	BC	TD3-N+VBC(PS)	TD3-N+BC(PS)
hopper-med-rep	29.2	26.6	99.7	99.7
hopper-med	53.9	51.5	102.6	101.8
hopper-med-exp	60	51.3	82.4	88.6
halfcheetah-med-rep	109.9	110.6	20.7	37.8
halfcheetah-med	41.8	41.9	63	63
halfcheetah-med-exp	64.4	60.1	100.6	93.6
halfcheetah-exp	92.6	92.9	81.1	94.1
walker2d-med-rep	21.5	23.5	86.7	86.9
walker2d-med	67.8	71.8	95.3	98.2
walker2d-med-exp	95.5	107.7	116	115.9
walker2d-exp	108.1	108.1	99.5	105.44
antmaze-umaze	72	86	87.7	93.7
antmaze-umaze-diverse	73	87.3	91.7	94
antmaze-medium-play	0	0	63.3	63.3
antmaze-medium-diverse	0	0	68.3	71
antmaze-large-play	0	0	47.3	41
antmaze-large-diverse	0	0	48.3	49.7

Table 4: Comparison of results when using Vanilla BC (VBC) and Gaussian BC (BC) directly with the dataset and within our policy switching method. Scores are averaged over 5 seeds for MuJoCo datasets and 3 seeds for AntMaze datasets.

The results in Table 4 indicate that there is a similar level of improvement when using a Gaussian BC or vanilla BC agent within our policy switching method. For results in the main paper we opted to report the results from integrating the Gaussian BC agent.

C.3 All datasets for offline to online fine-tuning

We provide the full results for offline to online fine-tuning across all datasets here. Figure 1 presents the fine-tuning curves for all MuJoCo datasets and Figure 2 shows how the proportion of BC and standard deviation evolves during fine-tuning for the same MuJoCo datasets. Figure 3 and 4 are the equivalent plots for the AntMaze datasets.

Figure 1: Fine tuning curves for all datasets available for the MuJoCo environment in the D4RL suite. All algorithms use 250k training steps evaluated every 10k steps across 5 seeds and 10 episodes per seed

Figure 2: Corresponding evolution of critic ensemble variance and amount of behavioural cloning used for the duration of online fine-tuning for all MuJoCo datasets

Figure 3: Fine tuning curves for all datasets available for the AntMaze environment in the D4RL suite. All algorithms use 250k training steps evaluated every 10k steps across 3 seeds and 100 episodes per seed

Figure 4: Corresponding evolution of critic ensemble variance and amount of behavioural cloning used for the duration of online fine-tuning for all AntMaze datasets