Exercises 3B

Due No due date Points 100 Questions 10 Time Limit 60 Minutes
Allowed Attempts 3

Instructions

We use the conventions in Bronze-Qiskit.

The default programming language for coding is python.

You may write pieces of code during the exam.

Take the Quiz Again

Attempt History

	Attempt	Time	Score	
KEPT	Attempt 2	4 minutes	100 out of 100	
LATEST	Attempt 2	4 minutes	100 out of 100	
	Attempt 1	41 minutes	90 out of 100	

(!) Correct answers are hidden.

Score for this attempt: 100 out of 100

Submitted Sep 25 at 11:55am This attempt took 4 minutes.

Question 1 10 / 10 pts

The rotation on the unit circle with angle θ is denoted $R(\theta)$.

What is the matrix form of $R(-\theta)$?

(Hint: Apply each candidate matrix to states $|0\rangle$ and $|1\rangle$ to verify whether the result is the rotated state.)

$$\begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix}$$

$$\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$\begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}$$

Question 2 10 / 10 pts If $R(\theta)$ is applied to a qubit initially in state $|1\rangle$ twice, what is the final state? $\bigcirc \left(\begin{array}{c} -\sin(2\theta) \\ \cos(2\theta) \end{array} \right)$ $\bigcirc \left(\frac{\sin(2\theta)}{-\cos(2\theta)} \right)$ $\bigcirc \left(\frac{\sin(2\theta)}{\cos(2\theta)}\right)$ $\bigcirc \left(\frac{\cos(2\theta)}{-\sin(2\theta)} \right)$

Typesetting math: 100% on 3

10 / 10 pts

We have a qubit in state $|0\rangle$.

The rotations $R\left(\frac{\pi}{3}\right)$ and $R\left(-\frac{\pi}{6}\right)$ are applied m and n times, respectively.

If the final state is $-|1\rangle$, what can be the values of (m,n)?

- (20,7)
- (20,5)
- (20,11)
- (20,3)
- (20,9)

Question 4 10 / 10 pts

What is $Ref(heta_1) \cdot \left(rac{\cos heta_2}{\sin heta_2}
ight)$?

- $\bigcirc \ \left(rac{\cos(heta_1 + heta_2)}{\sin(heta_1 + heta_2)}
 ight)$
- $\bigcirc \left(\frac{\cos(\theta_1 \theta_2)}{\sin(\theta_1 \theta_2)}\right)$
- $\bigcirc \left(\frac{\cos(2\theta_2-\theta_1)}{\sin(2\theta_2-\theta_1)}\right)$
- $ullet \left(rac{\cos(2 heta_1- heta_2)}{\sin(2 heta_1- heta_2)}
 ight)$
- $\bigcirc \left(\frac{\cos(\theta_2 \theta_1)}{\sin(\theta_2 \theta_1)}\right)$

Question 5

10 / 10 pts

We start in state $|0\rangle$.

Then, we apply $Ref(\theta)$ and then $Ref(-\theta)$.

What is the angle of the final state?

- -4θ
- 0
- 2θ
- -2θ
- \bigcirc -4θ

Question 6

10 / 10 pts

Let $|u\rangle$ be a quantum state on the unit circle with angle heta .

We apply $Ref(heta_1)$ and then $Ref(heta_2)$.

What is the angle of the final state?

$$\theta_1 + \theta_2 - \theta_1$$

$$0$$
 $-2\theta_1 - 2\theta_2 + \theta$

$$@ \ -2\theta_1 + 2\theta_2 + \theta \\$$

$$\bigcirc \ 2 heta_1 + 2 heta_2 + heta_3$$

$$0$$
 $2\theta_1 + 2\theta_2 - \theta$

Question 7

10 / 10 pts

Which one of the following pairs of quantum states cannot be distinguishable?

- $|+\rangle$ and $|-\rangle$
- $\bigcirc -|+\rangle$ and $|-\rangle$
- \bigcirc $|1\rangle$ and $-|1\rangle$
- $|0\rangle$ and $|1\rangle$
- $\bigcirc |0\rangle$ and $-|1\rangle$

Question 8

10 / 10 pts

Which one of the following pairs of quantum states is perfectly distinguishable?

$$\bigcirc \left(\sqrt{\frac{5}{7}}|0\rangle + \sqrt{\frac{2}{7}}|1\rangle, -\sqrt{\frac{2}{7}}|0\rangle - \sqrt{\frac{5}{7}}|1\rangle\right)$$

$$\bigcirc \left(\sqrt{\frac{5}{7}}|0\rangle + \sqrt{\frac{2}{7}}|1\rangle, -\sqrt{\frac{5}{7}}|0\rangle - \sqrt{\frac{2}{7}}|1\rangle\right)$$

$$\bigcirc \left(\sqrt{\frac{5}{7}}|0\rangle + \sqrt{\frac{2}{7}}|1\rangle, \sqrt{\frac{5}{7}}|0\rangle - \sqrt{\frac{2}{7}}|1\rangle\right)$$

$$\bigcirc \left(\sqrt{\frac{5}{7}}|0\rangle - \sqrt{\frac{2}{7}}|1\rangle, -\sqrt{\frac{5}{7}}|0\rangle - \sqrt{\frac{2}{7}}|1\rangle\right)$$

$$\bigcirc \left(\sqrt{\frac{5}{7}}|0\rangle - \sqrt{\frac{2}{7}}|1\rangle, -\sqrt{\frac{2}{7}}|0\rangle - \sqrt{\frac{5}{7}}|1\rangle \right)$$

Question 9

10 / 10 pts

We have 1000 copies of the identical qubit in state $\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$,

where
$$heta \in \left(-rac{\pi}{2}, rac{\pi}{2}
ight)$$
 .

After measuring 1000 copies, we observe $|0\rangle$ 201 times and state $|1\rangle$ 799 times.

Which one of the followings can be more likely a value of θ in degree?

- 15
- 30
- -45
- -80
- **-63**

Question 10

10 / 10 pts

We have 2000 copies of the identical qubit in state $\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$,

where $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

After measuring 1000 copies, we observe $|0\rangle$ 671 times and state $|1\rangle$ 329 times.

Then, we apply Hadamard to each of the remaining 1000 copies.

After that, we measure these remaining copies and observe $|0\rangle 955$ times and $|1\rangle$ 45 times.

Which one of the followings is the value of θ in degree more likely?

- 55
- 35
- 70
- -35
- -55

Quiz Score: 100 out of 100