Linear Methods

Lesson Objectives

- After completing this lesson, you should be able to:
 - –Understand the Pipelines API for Logistic Regression and Linear Least Squares
 - -Perform classification with Logistic Regression
 - -Perform regression with Linear Least Squares
 - –Use regularization with Logistic Regression and Linear Least Squares

Linear Methods

- Logistic Regression
- Linear Least Squares

Logistic Regression

- Widely used to predict binary responses (classification)
- Can be generalized into multinomial logistic regression (multiclass)
 - -for K possible outcomes, choose one outcome as "pivot"
 - —the other K-1 outcomes can be separately regressed against the pivot outcome

Logistic regression advantages

- Has no tuning parameters
- Its prediction equation is simple and easy to implement

MLlib's implementation

- •MLlib chooses first class (0) as the "pivot" class
- •For multiclass classification problem, outputs a multinomial logistic regression model, containing K-1 binary logistic regression models regressed against the "pivot" class
- •For a new data point, K-1 models are run and the class with largest probability is chosen as the predicted class
- Supported algorithms:
 - -mini-batch gradient descent
 - –L-BFGS (recommended for faster convergence)

Regularization

- –L2 regularization: Ridge Regression (penalizes beta parameters by the square of their magnitude)
- L1 regularization: Lasso (penalizes beta parameters by their absolute value)
- -Elastic net regularization combines L1 and L2, with a weight for each
 - equivalent to ridge regression (L2) if alfa set to 0
 - equivalent to Lasso (L1) if alfa set to 1

Elastic net regularization: parameters

- elasticNetParam corresponds to alfa
- regParam corresponds to lambda

	regularizer $R(\mathbf{w})$	gradient or sub-gradient
zero (unregularized)	0	0
L2	$rac{1}{2} \ \mathbf{w}\ _2^2$	w
L1	$ \mathbf{w} _1$	$\operatorname{sign}(\mathbf{w})$
elastic net	$\alpha \ \mathbf{w}\ _1 + (1-\alpha)\frac{1}{2}\ \mathbf{w}\ _2^2$	$\alpha \operatorname{sign}(\mathbf{w}) + (1 - \alpha)\mathbf{w}$

Example of Logistic Regression (1)

from pyspark.mllib.classification import LogisticRegressionWithLBFGS, LogisticRegressionModel

Example of Logistic Regression (2)

```
def parsePoint(line):
    values = [float(x) for x in line.split(' ')]
    return LabeledPoint(values[0], values[1:])

data = sc.textFile("sample_svm_data.txt")

parsedData = data.map(parsePoint)
```

```
parsedData.take(1)

[LabeledPoint(1.0, [0.0,2.52078447202,0.0,0.0,0.0,2.00468443649,2.00034729927,0.0,2.22838704274,2.22838704274,0.0,0.0,0.0,0.0,0.0])]
```

Example of Logistic Regression (3)

```
model = LogisticRegressionWithLBFGS.train(parsedData)
labelsAndPreds = parsedData.map(lambda p: (p.label, model.predict(p.features)))
trainErr = labelsAndPreds.filter(lambda (v, p): v != p).count() / float(parsedData.count())
print("Training Error = " + str(trainErr))
```

Training Error = 0.366459627329

Linear Least Squares

- Most common formulation for regression problems
- •As in logistic regression, different types of regularization are possible:
 - -no regularization: Ordinary Least Squares
 - –L2 regularization: Ridge Regression
 - -L1 regularization: Lasso
 - -Elastic net
- Average loss = Mean Squared Error

Example of Linear Regression (1)

from pyspark.mllib.regression import LinearRegressionWithSGD, LinearRegressionModel

Example of Linear Regression (2)

```
def parsePoint(line):
    values = [float(x) for x in line.replace(',', ' ').split(' ')]
    return LabeledPoint(values[0], values[1:])

data = sc.textFile("lpsa.data")
parsedData = data.map(parsePoint)
```

```
parsedData.take(1)
[LabeledPoint(-0.4307829, [-1.63735562648,-2.00621178481,-1.86242597251,-1.02470580167,-0.522940888712,-0.863171185426,-1.04215728919,-0.864466507337])]
```

Example of Linear Regression (3)

```
model = LinearRegressionWithSGD.train(parsedData, iterations=100, step=0.000000001)
valuesAndPreds = parsedData.map(lambda p: (p.label, model.predict(p.features)))
MSE = valuesAndPreds.map(lambda (v, p): (v - p)**2).reduce(lambda x, y: x + y) / valuesAndPreds.count()
print("Mean Squared Error = " + str(MSE))
```

Mean Squared Error = 7.4510328101

Lesson Summary

- Having completed this lesson, you should be able to:
 - –Understand the Pipelines API for Logistic Regression and Linear Least Squares
 - Perform classification with Logistic Regression
 - -Perform regression with Linear Least Squares
 - –Use regularization with Logistic Regression and Linear Least Squares