

Abstract of the Disclosure

A method of producing a heating element made from molybdenum silicide and alloys thereof, and which includes aluminum oxide on its surface. A material is produced that contains substantially Mo(Si_{1-x} Al_x)₂ and Al₂O₃ by mixing a mixture of a silicon and molybdenum compound with m aluminum compound. Either of the silicon and molybdenum compounds include Mo(Si_{1-y} Al_y)₂ and are mixed with one or both of an aluminum compound in the form of Al₂O₃ or Al(OH)₃ and optionally the compounds SiO₂, Si, and MoO₃, or by virtue of the mixture of the silicon and molybdenum compound containing MoO₃ and Al and Si and/or SiO₂. The input components together have a degree of purity corresponding to at least 98%. The mixture reacts exothermically and/or by being sintered, so that exchange reactions take place to form the compounds Mo(Si_{1-x} Al_x)₂ and Al₂O₃, where x lies in the range of 0.4 - 0.6.