AuW Recap

Axel Montini amontini@student.ethz.ch

July 29, 2021

Cannot be used during the exam, but it's a nice short recap of everything done in the second semester.

1 Last semester

Go read again about MST algorithms and so on.

2 Graphentheorie

2.1 Zusammenhang

Definition 2.1. A graph G = (V, E) is k-zusammenhängend if $|V| \ge k + 1$ and for all $X \subseteq V$, |X| < k the following is true:

The graph $G[V \setminus X]$ is zusammengehängend

Definition 2.2. A graph G = (V, E) is k-kanten-zusammenhängend if for all $X \subseteq E$, |X| < k the following is true:

The graph $G(V, E \setminus X)$ is zusammengehängend

Note 2.3. A graph can be both 2-kanten-zusammengehängend and be only 1-zusammengehängend at the same time. Example:

Definition 2.4. In a zusammengehängend Graph, *Artikulationsknoten* disconnect the graph when removed. Only 1-zusammengehängend graphs can have Artikulationsknoten

Theorem 2.5. In zusammenhängende Graphs it's possible to find Artikulationsknoten in $\mathcal{O}(|E|)$ if an adjacency list is used.

Definition 2.6. A zusammenhängend Graph may contain *Brücke*. In this case, it's **not 2-kanten-zusammenhängend**.

An edge is a bridge if it disconnects the graph when removed.

Theorem 2.7. Brücke can also be computed in $\mathcal{O}(|E|)$ using an adjacency list.

Definition 2.8. G = (V, E) is zusammenhängend. For $e, f \in E$ we define the relation

 $e \sim f \Leftrightarrow e = f$ or there is a Kreis containing both edges

This is an equivalence relation. Each equivalence class is called a Block (plural Blöcke).

2.2 Kreise

Definition 2.9. An *Eulertour* in a graph G is a closed path (Zyklus) that contains every edge $\in E$ exactly once.

A graph containing an Eulertour is called *eulersch*.

Definition 2.10.

Theorem 2.11.

A graph is eulersch \Leftrightarrow deg(v) is even for all vertices

Theorem 2.12. In a connected and eulersch Graph it's possible to find an Eulertour in $\mathcal{O}(|E|)$.

Definition 2.13. A Hamintonkreis in G is a cycle that goes through every vertex exactly once. A graph containing an Hamintonkreis is called hamintonsch.

Theorem 2.14. The algorithm seen in class can find an Hamintonkreis in time $\mathcal{O}(n^2 \cdot 2^n)$ and memory $\mathcal{O}(n \cdot 2^n)$, where n = |V|.

Theorem 2.15. A bipartite graph $G = (A \uplus B, E)$ cannot contain an Hamintonkreis.

Theorem 2.16 (Dirac). A graph G with $V \ge 3$ in which every vertex has at least |V|/2 neighbors is hamintonsch.

Definition 2.17. In a complete graph K_n (all vertices are connected together), the metric Traveling Salesman Problem consists in finding an Hamintonkreis C with minimal cost (distance).

Definition 2.18. An α -Approximations algorithm of this problem finds an H.kreis C so that

$$\sum_{e \in C} l(e) \le \alpha \cdot opt(K_n, l)$$

Meaning that it finds a solution worse by the optimal solution by a factor α .

Theorem 2.19. If there's an α -Approximations algorithm with $\alpha > 1$ for the TSP with running time $\mathcal{O}(f(n))$ then there's also an algorithm that decides whether a graph with n vertices is hamintonsch in $\mathcal{O}(f(n))$.

Theorem 2.20. For the metric TSP there's a 2-Approximationsalgorithmus with running time $\mathcal{O}(n^2)$. It find the MST in $\mathcal{O}(n^2)$ and then uses it to find the H.k.

2.3 Matching

Definition 2.21. A set of edges $M \subseteq E$ is called *Matching* in a graph G if

$$\forall e, f \in M \ (e \cap f = \emptyset)$$

• A vertex v is said to be $\ddot{u}berdeckt$ by a matching M if the matching contains an edge containing v.

• A matching M is called *perfektes Matching* if every vertex is überdeckt (equivalent: |M| = |V|/2).

Definition 2.22. A matching M is said to be:

- inklusions maximal if $M \cup \{e\}$ is not a matching for all $e \in E \setminus M$.
- $kardinalit \ddot{a}ts maximal$ if $|M| \geq |M'|$ for all matchings M' in G.

Note that $kardinalit \ddot{a}tsmaximal \Rightarrow inklusionsmaximal$ (the opposite might not be true).

Algorithm 1: Greedy-Matching

Result: The inklusions maximales matching M

while $E \neq \emptyset$ do

choose an edge $e \in E$;

 $M \leftarrow M \cup \{e\};$

remove e and all incident edges from G;

Theorem 2.23. The greedy-matching algorithm finds an inklusions maximal Matching in time $\mathcal{O}(|E|)$ for which the following holds: $|M_{Greedy}| \geq \frac{1}{2} |M_{max}|$, where M_{max} is a kardinalitäts maximales Matching.

Theorem 2.24 (Berge). Let M be a matching in G that is not k-maximal, then there is an augmenting path to M.

Theorem 2.25. Is n even K_n a complete graph, then it's possible to find a minimal perkeftes Matching in time $\mathcal{O}(n^3)$

Theorem 2.26. There's a 3/2-Approximationsalgorithmus for the TSP that runs in $\mathcal{O}(n^3)$.

Definition 2.27. Nachbarnschaft einer Knotenmenge $X \subseteq V$:

$$N(X) := \bigcup_{v \in X} N(v)$$

Theorem 2.28 (Hall, Heiratssatz). For a bipartite graph $G = (A \uplus B, E)$ theres a matching M with |M| = |A| if and only if $|N(X)| \ge |X|$ for all $X \subseteq A$.

Algos at page 65 and 67 **Definition 2.29.** A bipartite graph is called k-regulär if every vertex has degree k.

Theorem 2.30. Let G be a k-regular bipartite graph. Then there's $M_1, ..., M_k$ so that $E = M_1 \uplus M_2 \uplus ... \uplus M_k$ and all $M_i, 1 \le i \le k$ are perfect matchings.

Theorem 2.31. Is G = (V, E) a 2^k -regular bipartite Graph, then it's possible to find a perfect matching in $\mathcal{O}(|E|)$.

2.4 Färbungen

Definition 2.32. A (Knoten)-Färbung (vertex coloring) of a graph G with k colors is $c: V \to [k]$, so that

$$c(u) \neq c(v) \ \forall \{u, v\} \in E$$

The chromatische Zahl (chromatic number) X(G) of a graph is the minimal amount of colors that can be used to color G.

Theorem 2.33. A graph is bipartite if and only if doesn't contain any Kreis of odd length.

Theorem 2.34 (Vierfarbensatz). Every map can be colored with 4 colors.

Algorithm 2: Greedy-Färbung

Data: G

Result: array c mapping each vertex to a color

 $c(v_1) \leftarrow 1$;

for $i = 2, \ldots, n$ do

 $c(v_i) \leftarrow \min \{ k \in \mathbb{N} \mid k \neq c(u) \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\} \}$

Theorem 2.35. Let G be a connected graph and C(G) the amount of colors used by the Greedy-Färbung algorithm. Then

$$\mathcal{X}(G) \le C(G) \le \Delta(G) + 1$$

Where $\Delta(G) := \max_{v \in V} deg(v)$ is the max degree in the graph. The running time is $\mathcal{O}(|E|)$ if an adjacency list is used. **Theorem 2.36** (Brooks). Let G be a connected graph that is neither complete nor an odd Kreis $(G \neq K_n \text{ and } G \neq C_{2n+1})$. Then

$$\mathcal{X}(G) \leq \Delta(G)$$

And there's an algorithm that can color the vertices of G in time $\mathcal{O}(|E|)$ and with $\Delta(G)$ colors.

Theorem 2.37 (Mycielski-Konstruktion). For all $k \geq 2$ there's a triangle-free graph G_k with $\mathcal{X}(G) \geq k$.

Theorem 2.38. Every 3-färbbaren graph can be colored in time $\mathcal{O}(|E|)$ with $\mathcal{O}(\sqrt{|V|})$ colors.

3 Randomized algorithms

3.1 Grundbegriffe und Notationen

Definition 3.1. A diskreter Wahrscheinlichkeitsraum is defined through a Ergebnismenge $\Omega = \{\omega_1, \omega_2, ...\}$ of Elementarereignissen.

A probability $Pr[\omega_i]$ corresponds to each ω_i .

$$0 \le \Pr[w_i] \le 1, \quad \sum_{\omega \in \Omega} \Pr[\omega] = 1$$

A set $E \subseteq \Omega$ is called *Ereignis*. The probability is defined as

$$\Pr[E] := \sum_{\omega \in E} \Pr[\omega]$$

The Komplementärereignis zu E is defined as $\overline{E}:=\Omega\setminus E$

Lemma 3.2. For Ereignisse A, B:

- 1. $\Pr[\emptyset] = 0, \Pr[\Omega] = 1$
- 2. $0 \le \Pr[A] \le 1$
- 3. $\Pr[\overline{A}] = 1 \Pr[A]$
- 4. If $A \subseteq B$ then $Pr[A] \le Pr[B]$

Theorem 3.3 (Additionssatz). When the Ereignisse are pairwise disjoint then

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] = \sum_{i=1}^{n} \Pr[A_i]$$

For infinite sets of disjoint Ereignissen $A_1, A_2, ...$ then

$$\Pr\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} \Pr[A_i]$$

Theorem 3.4 (Siebformel, Prinzip der Inklusion/Exklusion). For Ereignisse $A_1, ..., A_n \ (n \ge 2)$:

$$\Pr\left[\bigcup_{i=1}^{n} A_{i}\right] = \sum_{l=1}^{n} (-1)^{l+1} \sum_{1 \le i_{1} < \dots < i_{l} \le n} \Pr[A_{i_{1}} \cap \dots \cap A_{i_{l}}]$$

Lemma 3.5 (A special case of the Siebformel). Let $\Omega = A_1 \cup ... \cup A_n$ with $\Pr[\omega] = 1/|\Omega|$, where A_i are finite sets. Then

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{l=1}^{n} (-1)^{l+1} \sum_{1 \le i_1 < \dots < i_l \le n} \left| A_{i_1} \cap \dots \cap A_{i_l} \right|$$

Corollary 3.6 (Boolsche Ungleichung, Union Bound). For some Ereignisse $A_1, ..., A_n$:

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] \le \sum_{i=1}^{n} \Pr[A_i]$$

For an infinite set of Ereignisse, replace n with ∞ .

3.2 Bedingte Wahrscheinlichkeiten

Definition 3.7. Let A and B be Ereignisse with Pr[B] > 0. The bedingte Wahrscheinlichkeit Pr[A|B] of A given B is defined through

$$\Pr[A|B] := \frac{\Pr[A \cap B]}{\Pr[B]}$$

Theorem 3.8 (Multiplikationssatz). The Ereignisse $A_1, ..., A_n$ are given. If $Pr[A_1 \cap ... \cap A_n] > 0$, then:

$$\Pr[A_1 \cap \ldots \cap A_n] = \Pr[A_1] \cdot \Pr[A_2 | A_1] \cdot \Pr[A_3 | A_1 \cap A_2] \cdot \ldots \cdot \Pr[A_n | A_1 \cap \ldots \cap A_{n-1}]$$

Theorem 3.9 (Satz von der totalen Wahrscheinlichkeit). $A_1, ..., A_n$ are pairwise disjoint and $B \subseteq A_1 \cup ... \cup A_n$. Then

$$\Pr[B] = \sum_{i=1}^{n} \Pr[B|A_i] \cdot \Pr[A_i]$$

Analogous for an infinite set of A_i s.

Theorem 3.10 (Satz von Bayes). $A_1, ..., A_n$ pairwise disjoint. Let $B \subseteq A_1 \cup ... \cup A_n$ with $\Pr[B] > 0$. Then for any i = 1, ..., n:

$$\Pr[A_i|B] = \frac{\Pr[A_i \cap B]}{\Pr[B]} = \frac{\Pr[B|A_i] \cdot \Pr[A_i]}{\sum_{j=1}^n \Pr[B|A_j] \cdot \Pr[A_j]}$$

Analogous for ∞ instead of n.

3.3 Unabhängigkeit

Definition 3.11. Die Ereignisse A, B are unabhängig when

$$\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$$

Definition 3.12. Die Ereignisse $A_1, ..., A_n$ are unabhängig when for all $I \subseteq \{1, ..., n\}$ with $I = i_1, ..., i_k$:

$$\Pr\left[A_{i_1} \cap \dots \cap A_{i_k}\right] = \Pr\left[A_{i_1}\right] \cdot \dots \cdot \Pr\left[A_{i_k}\right]$$

Lemma 3.13. Die Ereignisse $A_1, ..., A_n$ are unabängig if and only if

$$\forall (s_1, ..., s_n) \in \{0, 1\}^n \ (\Pr[A_1^{s_1} \cap ... \cap A_n^{s_n}] = \Pr[A_1^{s_1}] \cdot \Pr[A_n^{s_n}])$$

where $A_i^0 = \overline{A_i}$ and $A_i^1 = A_i$

Lemma 3.14. A, B, C unabängige Ereignisse. Then $A \cap B$ and C and $A \cup B$ and C are also independent.

3.4 Zufallsvariablen

Definition 3.15. A Zufallsvariable is $X : \Omega \to \mathbb{R}$, where Ω is the Ergebnismenge of a Wahrscheinlichkeitsraum.

The Wertebereich of a Zufallsvariable is

$$W_X := X(\Omega) = \{ x \in \mathbb{R} \mid \exists \omega \in \Omega \text{ with } X(\omega) = x \}$$

Definition 3.16. The *Erwartungswert* of X is $\mathbb{E}[X]$, defined as

$$\mathbb{E}[X] := \sum_{x \in W_r} x \cdot \Pr[X = x]$$

when the sum absolut konvergiert. Otherwise the Erwartungswert is un-definiert / undefined.

Lemma 3.17. Is X a Zufallsvariable, then:

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr[\omega]$$

Theorem 3.18. X Zufallsvariable wit $W_X \subseteq \mathbb{N}_0$. Then

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \operatorname{Pr}[X \ge i]$$

Theorem 3.19. X a Zufallsvariable. For pairwise disjoint Ereignisse $A_1, ..., A_n$ with $A_1 \cup ... \cup A_n = \Omega$ and $\Pr[A_1], ..., \Pr[A_n] > 0$ then

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|A_i] \cdot \Pr[A_i]$$

Analogous for ∞ instead of n.

Theorem 3.20 (Linearität des Erwartungswert). For $X_1, ..., X_n$ and $X := a_1X_1 + ... + a_nX_n + b$ with $a_1, ..., a_n, b \in \mathbb{R}$:

$$\mathbb{E}[X] = a_1 \mathbb{E}[X_1] + \dots + a_n \mathbb{E}[X_n] + b$$

Note 3.21. For an Ereignis $A \subseteq \Omega$ the Indikatorvariable X_A is defined as

$$X_A(\omega) := \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{otherwise} \end{cases}$$

Also $\mathbb{E}[X_A] = \Pr[A]$

Definition 3.22. For a Zufallsvariable X mit $\mu = \mathbb{E}[X]$ the $Varianz\ Var[X]$ is defined through

$$Var[X] := \mathbb{E}[(X - \mu)^2] = \sum_{x \in W_X} (x - \mu)^2 \Pr[X = x]$$

The Standardabweichung of X is $\sigma := \sqrt{Var[X]}$.

Theorem 3.23. For any Zufallsvariable X and $a, b \in \mathbb{R}$:

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$Var[a \cdot X + b] = a^2 \cdot Var[X]$$

Definition 3.24. For a Zufallsvariable X, $\mathbb{E}[X^k]$ is called k-te Moment and $\mathbb{E}[(X - \mathbb{E}[X])^k]$ is called k-te zentrale Moment.

3.5 Wichtige diskrete Verteilungen

Bernoulli, Binomial, Geometrische, Poisson

3.6 Mehrere Zufallsvariablen

Definition 3.25. Zufallsvariablen $X_1, ..., X_n$ are $unabh\ddot{a}ngig$ if and only if for all $(x_1, ..., x_n) \in W_{X_1} \times ... \times W_{X_n}$ the following holds:

$$\Pr[X_1 = x_1, ..., X_n = x_n] = \Pr[X_1 = x_1] \cdot ... \cdot \Pr[X_n = x_n]$$

Theorem 3.26 (Linearität des Erwartungswerts). For $X_1, ..., X_n$ and $X := a_1X_1 + ... + a_nX_n$ with $a_i \in \mathbb{R}$:

$$\mathbb{E}[X] = a_1 \mathbb{E}[X_1] + \dots + a_n \mathbb{E}[X_n]$$

Theorem 3.27 (Multiplikativität des Erwartungswerts). For $X_1, ..., X_n$:

$$\mathbb{E}[X_1 \cdot \ldots \cdot X_n] = \mathbb{E}[X_1] \cdot \ldots \cdot \mathbb{E}[X_n]$$

Theorem 3.28. For independent $X_1,...,X_n$ and $X:=X_1+...+X_n$ then

$$Var[X] = Var[X_1] + \dots + Var[X_n]$$

3.7 Abschätzen von Wahrscheinlichkeiten

Theorem 3.29 (Ungleichung von Markov). $X \geq 0$ Zufallsvariable. Then, for all $t > 0 \in \mathbb{R}$:

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t} \text{ und } \Pr[X \ge t \cdot \mathbb{E}[X]] \le \frac{1}{t}$$

Maybe write, or use the Formel-samm-lung

Theorem 3.30 (Ungleichung von Chebyshev). X Zufallsvariable and $t > 0 \in \mathbb{R}$. Then

$$\Pr[|X - \mathbb{E}[X]| \ge t] \le \frac{Var[X]}{t^2}$$

Theorem 3.31 (Ungleichung von Chernoff). $X_1, ..., X_n$ independent Beroulliverteilte Zufallsvariablen with $\Pr[X_i = 1] = p_i$ and $\Pr[X_i = 0] = 1 - p_i$.

Then for $X := \sum_{i=1}^{n} X_i$:

$$\Pr[X \ge (1+\delta)\mathbb{E}[X]] \le e^{-\frac{1}{3}\delta^2 \mathbb{E}[X]} \text{ for all } 0 < \delta \le 1$$
 (1)

$$\Pr[X \le (1 - \delta)\mathbb{E}[X]] \le e^{-\frac{1}{2}\delta^2 \mathbb{E}[X]} \text{for all } 0 < \delta \le 1$$
 (2)

$$\Pr[X \ge t] \le 2^{-t} \qquad \qquad for \ t \ge 2e\mathbb{E}[X] \tag{3}$$

3.8 Randomized algorithms

Theorem 3.32. Let A be a randomized algorithm that always never gives a wrong answer, but outputs "???" when

$$\Pr[\mathcal{A}(I) \ correct] \ge \epsilon$$

Then for all $\delta > 0$: let \mathcal{A}_{δ} be the algorithm that calls \mathcal{A} until either an answer different from "????" is returned (\mathcal{A}_{δ} gives this answer) or until "????" is returned $N = \epsilon^{-1} \ln \delta^{-1}$ times (\mathcal{A}_{δ} returns "???").

Then the following is true:

$$\Pr[\mathcal{A}_{\delta} \ correct] \ge 1 - \delta$$

Theorem 3.33. Let A be a randomized algorithm that always gives "Yes" or "No" as answers, where

$$\Pr[\mathcal{A}(I) = Yes] = 1$$
 if the correct answer is Yes (4)

$$\Pr[\mathcal{A}(I) = No] \ge \epsilon$$
 if the correct answer is No (5)

Then for all $\delta > 0$: let \mathcal{A}_{δ} be the algorithm that calls \mathcal{A} either until "No" is returned (then it returns "No") or until "Yes" is returned $N = \epsilon^{-1} \ln \delta^{-1}$ times (then it returns "Yes").

Then for all instances I:

$$\Pr[\mathcal{A}_{\delta}(I) \ correct] \ge 1 - \delta$$

Theorem 3.34. Let $\epsilon > 0$ and \mathcal{A} be a randomized algorithm that always returns either "Yes" or "No", Where

$$\Pr[\mathcal{A}_{\delta}(I) \ correct] \ge \frac{1}{2} + \epsilon$$

Then for all $\delta > 0$: let \mathcal{A}_{δ} be the algorithm that calls \mathcal{A} a total of $N = 4\epsilon^{-2} \ln \delta^{-1}$ times and returns the answer that was encountered the most. Then

$$\Pr[\mathcal{A}_{\delta}(I) \ correct] > 1 - \delta$$

Theorem 3.35. Let $\epsilon > 0$ and A be a randomized algorithm for a Maximierungsproblem, where

$$\Pr[\mathcal{A}(I) \geq f(I)] \geq \epsilon$$

Then for all $\delta > 0$: let \mathcal{A}_{δ} be the algo that calls \mathcal{A} a total of $N = \epsilon^{-1} \ln \delta^{-1}$ times and returns the best answer. Then

$$\Pr[\mathcal{A}_{\delta}(I) \ge f(I)] \ge 1 - \delta$$

Analogous for Minimierungsprobleme, replace $\geq f(I)$ with $\leq f(I)$.

Note 3.36. Stuff about random pivot selection for QuickSort and so on

Theorem 3.37 (Kleiner fermatscher satz). If $n \in \mathbb{N}$ is prime, then for all 0 < a < n

$$a^{n-1} \equiv 1 \mod n$$

Target shooting:

Theorem 3.38. Let $\delta, \epsilon > 0$. If $N \geq 3\frac{|U|}{|S|} \cdot \epsilon^{-2} \cdot \ln(2/\delta)$, then the output of the algorithm Target-Shooting is in the interval $\left[(1-\epsilon)\frac{|S|}{|U|}, (1+\epsilon)\frac{|S|}{|U|} \right]$ with probability $1-\delta$.

4 Algorithmen

4.1 Graphenalgorithmen

4.1.1 Lange Pfade

Given a graph G, determine whether it contains a path of length $B \in N_0$. Call this $Long-Path\ Problem$.

Theorem 4.1. If Long-Path can be computed in t(n), then it can be determined whether a graph contains a Hamiltonkreis in time $t(2n-2) + \mathcal{O}(n^2)$.

4.1.2 Bunte Pfade

A variation. In a colored graph G, a path is *bunt* when all vertices in the path have different colors.

Random Bunte Pfade:

Theorem 4.2. Let G be a graph with a path of length k-1.

- 1. A random coloring with k colors creates a bunten Pfad of length k-1 with probability $p_s \geq e^{-k}$.
- 2. On repeated random colorings with k colors the Erwartungswert of the amount of trials needed to find a bunten Pfad of length k-1 is $\frac{1}{p_s} \leq e^k$

Theorem 4.3. A Monte Carlo algorithm for this problem: Choose a $\lambda > 1$ and repeat the test at most $\lceil \lambda e^k \rceil$ times until it reports that a bunte path of length k-1 exists. In this case, the anwser is "Yes", otherwise "No".

- 1. Running time of the algo is $\mathcal{O}(\lambda(2e)^k km)$
- 2. If the algorithm answers "Yes", then the graph has a colorful Path of length k-1.
- 3. If the graph has a colorful Path, the probability of a "No" answer is $\leq e^{-\lambda}$

4.2 Flows and Networks

4.2.1 Definition, Max flow, Min cut

Definition 4.4 (Network). A *Network* is a tuple N = (V, A, c, s, t), where

- \bullet (V, A) is a directed graph
- $s \in V$ is the source (Quelle)
- $t \in V$ is the target/sink (Senke)
- $C: A \to \mathbb{R}_0^+$ is the capacity function.

Definition 4.5 (Flow). Given a network N = (V, A, c, s, t), a *flow* in N is a function $f: A \to \mathbb{R}$ with the properties:

- $0 \le f(e) \le c(e)$ for all $e \in A$, die Zulässigkeit.
- For all $v \in V \setminus \{s, t\}$ the following is true (Flusserhaltung):

$$\sum_{u \in V: (u,v) \in A} f(u,v) = \sum_{u \in V: (v,u) \in A} f(v,u)$$

• The Wert/value of a flow f is defined as

•

$$val(f) := netoutflow(s) := \sum_{u \in V: (s,u) \in A} f(s,u) - \sum_{u \in V: (u,s) \in A} f(u,s)$$

Lemma 4.6. The netinflow of the target/sink is equal to the flow value

$$netinflow(t) := val(f)$$

Definition 4.7 (S-T Schnitt). An s-t-Schnitt (s-t-cut) for a network N = (V, A, c, s, t) is a partition (S, T) of V (meaning that $S \cup T = V$ and $S \cap T = \emptyset$) with $s \in S$ and $t \in T$.

The *capacity* of the s-t-cut is defined as

$$cap(S,T) := \sum_{(u,w) \in (S \times T) \cap A} c(u,w)$$

Lemma 4.8. Let f be a flow and (S,T) an s-t-cut in the network N=(V,A,c,s,t). Then

$$val(f) \le cap(S, T)$$

Theorem 4.9 (Maxflow-Mincut).

$$\max_{f \text{ flow in } N} val(f) = \min_{(S,T)} \min_{s\text{-}t\text{-}cut \text{ in } N} cap(S,T)$$

Definition 4.10 (Restnetzwerk). Let N = (V, A, c, s, t) be a network without reversed edges.

The Restnetzwerk $N_f := (V, A_f, r_f, s, t)$ is defined as follows:

- 1. $e \in A$ and f(e) < c(e), then $e \in A_f$ and $r_f(e) = c(e) f(e)$.
- 2. $e \in A$ and f(e) > 0, then $e^{opp} \in A_f$ and $r_f(e^{opp}) = f(e)$

3. Edges not satisfying any of the two above contitions are not in the Restnetzwerk.

 $r_f(e), e \in A_f$ is called the Restkapazität of the edge e.

Theorem 4.11. A flow f in a network N is a max flow **if and only if** there is no directed path from s to t in the Restnetzwerk N_f .

For every max flow there's a min s-t-cut.

Theorem 4.12. The following algorithm computes the max flow.

```
Algorithm 3: Ford-Fulkerson

Data: (V, A, c, s, t)

Result: A max flow
f \leftarrow 0;

while \exists s\text{-}t\text{-}path \ P \ in \ (V, A_f) \ do \ // \ \text{Augmenting path}
\land \epsilon \text{ smallest Restkapazität on the path } P;
foreach e \in A \ do \ // \ \text{Increase flow along the path}
\land f'(e) = f(e) + \epsilon;
else if e^{opp} on P then
\land f'(e) = f(e) - \epsilon;
else
\land f'(e) = f(e);
return f
```

If the network has no reversed edges and all capacities are integers $\leq U$, then there's an integer maxflow that can be computed in time $\mathcal{O}(mnU)$ (m amount of edges, n amount of vertices).

Proposition 4.13 (Capacity-Scaling, Dinitz-GAbow, 1973). If all capacities in a network are integers and at most U, then there's an integer maxflow that can be computed in time $\mathcal{O}(mn(1 + \log U))$

Proposition 4.14 (Dynamic Trees, Sleaton-Tarjan, 1983). The maxflow of a network N can be computed in time $\mathcal{O}(mn \log n)$

4.2.2 Bipartite matching as flow problem

Theorem 4.15. Let G = (V, E) be a bipartite graph, so there's a partition (U, W) of V so that $E \subseteq \{\{u, w\} \mid u \in U, w \in W\}$

We're looking for the biggest matching in G.

Define a network $N = (V \cup \{s, t\}, A, c, s, t)$, so that

- 1. The vertices are the same as in the graph, plus s and t.
- 2. The capacity function c is constant 1.
- 3. Define the edges as:

$$A := (\{s\} \times U) \cup \{(u, w) \in U \times W \mid \{u, w\} \in E\} \cup (W \times \{t\})$$

The size of the biggest matching in the bipartite graph G is maxflow(N).