ALGORITHMEN & DATENSTRUKTUREN WOCHE 1

Julian Steinmann 27. September 2021

ETH Zürich

KONTAKT

- · In Übungsstunde
- · Mail: jsteinmann@student.ethz.ch
- Discord: @Julian/xyquadrat[A&D]

Ausserdem: Alle Slides und andere Materialien auf https://xyquadrat.ch/and verfügbar.

Bonusaufgaben

- Wöchentlich Sheet mit Bonusaufgaben und optionalen Challenge-Aufgaben (markiert mit *)
- · In zufälligen Zweiergruppen lösen (wechseln alle 3 Wochen)
- · Verteilung der Bonuspunkte
 - · 3 für Bonusaufgaben
 - · 1 für Peer Grading
 - 4 für Programmieraufgaben (erst später)
- 80% aller Bonuspunkte → +0.25 in Prüfung
- · Abgabe bis zu Beginn der Stunde, am Besten auf Papier und digital

PEER GRADING

Grundsätzlich: von 11:15 - 12:00. Meist früher fertig. Aber: Abgabefrist ist Montag, 23:59 falls nötig.

SCHWIERIGKEIT VON A&D

	HS19	HS20
Diskrete Mathematik	3.88	3.72
Einführung in die Programmierung	4.31	4.24
Lineare Algebra	4.27	4.09
Algorithmen und Datenstrukturen	4.16	4.19

Induktion

WAS IST INDUKTION?

Induktion ist eine Art, Aussagen zu beweisen, beispielsweise

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Wir benötigen zwei Dinge, um Induktion anzuwenden:

- 1. Die Aussage muss für einen Basisfall stimmen. (Oft n = 0 oder n = 1)
- 2. Wenn die Aussage für einen Fall n stimmt, dann muss sie auch für den nächsten Fall stimmen (Oft n+1 oder $2 \times n$)

ASYMPTOTISCHES WACHSTUM

KLEINE EINGABEN

GROSSE EINGABEN

Beispiel für Asymptotisches Wachstum