

Curso Bacharelado em Ciência da Computação Algoritmos e Programação de Computadores Notas de Aula

Lista 3 de Atividades Práticas (25/04)

Problema 1

Leia um inteiro N. Este N será o número de números inteiros X que serão lidos.

Imprima quantos números X estão no intervalo [10,20] e quantos valores estão fora deste intervalo.

Entrada

A primeira linha de entrada é um inteiro N (N < 10000), que indica o número total de casos de teste. Cada caso é um número inteiro X (- $10^7 < X < 10^7$).

Saída

Para cada caso de teste, imprima quantos números dentro e quantos valores estão fora do intervalo.

Amostra de entrada	Amostra de saída
4	2 dentro
14	2 fora
123	
10	
-25	

Problema 2

Leia uma matriz X[10]. Depois, substitua cada número nulo ou negativo de X por 1. Imprima todos os números armazenados na matriz X.

Entrada

A entrada contém 10 números inteiros. Esses números podem ser positivos ou negativos.

Saída

Para cada posição da matriz, imprima "X [i] = x", onde ij é a posição da matriz e x é o número armazenado nessa posição.

Amostra de entrada	Amostra de saída
0	x[0] = 1
-5	X[0] = 1 X[1] = 1
63	x[2] = 63 x[3] = 1
0	x[3] = 1

Curso Bacharelado em Ciência da Computação Algoritmos e Programação de Computadores Notas de Aula

Problema 3

Escreva um programa que leia uma matriz N [20]. Depois, mude o primeiro elemento pelo último, o segundo elemento pelo último, mas um, etc., Até mudar o 10° para o 11°. imprimir a matriz modificada.

Entrada

A entrada contém 20 números inteiros, positivos ou negativos.

Saída

Para cada posição da matriz \mathbf{N} imprimir " $\mathbb{N}[i] = \mathbb{Y}$ ", onde i é a posição de matriz e \mathbf{Y} é o número armazenado nessa posição.

Amostra de entrada	Amostra de saída
	N[0] = 230
5	N[0] = 230 N[1] = 63
3	N[18] = -5
30	N[18] = -5 N[19] = 0

Problema 4

Escreva um programa que leia um número \mathbf{T} e preencha um vetor $\mathbf{N}[1000]$ com os números de 0 a $\mathbf{T-1}$ repetidas vezes, como o exemplo abaixo.

Entrada

A entrada contém um número inteiro T (2 $\leq T \leq$ 50).

Saída

Para cada posição da matriz N, imprima "N[/] = x", onde i é a posição do array e x é o número armazenado nessa posição.

Amostra de e	trada Amostra de saída	
3	N[0] = 0	
	N[1] = 1	
	N[2] = 2	
	N[3] = 0	
	N[4] = 1	
	N[5] = 2	
	N[6] = 0	
	N[7] = 1	
	N[8] = 2	

Curso Bacharelado em Ciência da Computação Algoritmos e Programação de Computadores Notas de Aula

Problema 5

Leia um número X. Coloque este X na primeira posição de uma matriz N [100]. Em cada posição subsequente (1 até 99) coloque metade do número inserido na posição anterior, de acordo com o exemplo abaixo. Imprima todo o vetor N.

Entrada

A entrada contém um número de dupla precisão com quatro casas decimais.

Saída

Para cada posição da matriz N imprimir "N[j] = Y", onde j é a posição de matriz e Y é o número armazenado nessa posição. Cada número de N[...] deve ser impresso com 4 dígitos após o ponto decimal.

Amostra de entrada	Amostra de saída
200.0000	N[0] = 200,0000
	N[1] = 100,0000
	N[2] = 50,0000
	N[3] = 25.0000
	N[4] = 12,5000

Problema 6

Neste problema você precisa ler 15 números e deve colocá-los em duas matrizes diferentes: **par** se o número for par ou **impar** se esse número for impar. Mas o tamanho de cada um dos dois arrrays é de apenas 5 posições. Assim, toda vez que você preencher uma das duas matrizes, você deve imprimir toda a matriz para poder usá-la novamente para os próximos números que são lidos. No final, todos os números restantes de cada uma dessas duas matrizes devem ser impressos a partir da matriz impar. Cada matriz pode ser preenchida quantas vezes são necessárias.

Entrada

A entrada contém 15 números inteiros.

Saída

Imprima a saída como o exemplo a seguir.

Amostra de entrada	Amostra de saída
1	par[0] = 4
3	par[1] = -4
4	par[2] = 2
-4	par[3] = 8
2	par[4] = 2
3	impar[0] = 1
8	impar[1] = 3
2	impar[2] = 3
5	impar[3] = 5
-7	impar[4] = -7
54	impar[0] = 789
76	impar[1] = 23
789	par[0] = 54
23	par[1] = 76
98	par[2] = 98