Complexes - des exercices supplémentaires

1. Exercices fondamentaux

Exercice 1 Mettre sous forme algébrique $(\sqrt{3}-i)^8$ et $(-1+i)^{10}$.

Exercice 2 Comment choisir l'entier naturel n pour que $(\sqrt{3}+i)^n$ soit un réel ? un imaginaire pur ?

Exercice 3

1) Déterminer, sous forme trigonométrique, les solutions complexes de l'équation

$$z^3 = 4\sqrt{2}(-1+i).$$

2) En utilisant les racines cubiques de l'unité, écrire les solutions de cette équation sous forme algébrique.

3) En déduire les valeurs de $\cos\left(\frac{11\pi}{12}\right)$ et $\sin\left(\frac{11\pi}{12}\right)$, puis celles de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

2. Exercices standards

Exercice 4 Déterminer les racines quatrièmes de -7 - 24i.

Exercice 5 Soit α une racine 7-ième de l'unité, différente de 1. Montrer que :

$$\frac{\alpha}{1+\alpha^2} + \frac{\alpha^2}{1+\alpha^4} + \frac{\alpha^3}{1+\alpha^6} = -2.$$

Exercice 6 Résoudre les équations suivantes :

$$z^6 = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}$$
 ; $z^4 = \frac{1 - i}{1 + i\sqrt{3}}$.

Exercice 7

- 1) Soient z_1 , z_2 , z_3 trois nombres complexes distincts ayant le même cube. Exprimer z_2 et z_3 en fonction de z_1 .
- 2) Donner, sous forme trigonométrique, les solutions dans \mathbb{C} de :

$$z^6 + (7 - i)z^3 - 8 - 8i = 0.$$

Exercice 8 Déterminer le lieu géométrique des complexes z vérifiant :

- 1) z^2 , 1-z et \bar{z} ont même module.
- **2)** $\operatorname{Re}(z^3) = \operatorname{Im}(z^3)$.
- 3) Les points d'affixe 1, z et $1 + z^2$ sont alignés.

3. Exercice plus difficile

Exercice 9 (Sur une horloge à aiguilles, combien y a-t-il de configurations possibles telles que, lorsque l'on échange les aiguilles des heures et des minutes, cela donne aussi une heure valide ?