CS 511 Formal Methods for High-Assurance Software Engineering Homework Assignment 02

Selected Solution

(by Jiawen Liu)

Problem 1.

(a)
$$\phi_1 = (\neg p \lor \neg q) \land (p \lor \neg q) \land (\neg q \lor q)$$

 $\phi_1 = \neg p \land \neg q$

(b)
$$\phi_2 = (\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor r)$$

 $\phi_2 = r \land (\neg p \lor q)$

(c)
$$\phi_3 = (\neg r \lor \neg s \lor \neg q) \land (\neg r \lor s \lor \neg q) \land (r \lor \neg s \lor \neg q) \land (r \lor \neg s \lor q) \land (r \lor s \lor \neg q)$$

 $\phi_3 = \neg q \land (r \lor \neg s)$

Problem 2.

Part 1. Write a natural-deduction proof of the following WFF:

$$\phi_1 = \neg(p \land (q \land r)) \to (\neg p \lor (\neg q \lor \neg r))$$

	r))	assume
$2 \neg (\neg p \lor (\neg q))$	$(q \vee \neg r)$	assume
$3 \neg p$		assume
$\parallel \qquad _4 \neg p \lor (\neg q \lor $	$/\neg r)$	$\vee i_1 3$
5 L		¬e 2, 4
6 ¬¬p		$\neg i \ 2-5$
p		¬¬е 6
8 ¬q		assume
$\parallel \qquad \qquad$		∨i ₁ 8
$\parallel \mid 10 \neg p \lor (\neg q \lor $	$/\neg r)$	∨i ₂ 9
11		¬e 2, 10
12 ¬¬q		¬i 2 − 11
13 q		¬¬e 12
r		assume
$\parallel \mid _{15} \neg q \lor \neg r$		$\vee i_2$ 14
$\parallel \qquad 16 \neg p \lor (\neg q \lor $	$/\neg r)$	∨i ₂ 15
17 ⊥		¬e 2, 16
18 ¬¬ <i>r</i>		¬i 2 − 17
19 r		¬¬e 18
$q \wedge r$		\wedge i 7, 13
$p \wedge (q \wedge r)$		∧i 20, 19
22 ⊥		¬e 1, 21
$_{23}$ $(\neg p \lor (\neg q)$	$\lor \lnot r))$	$\neg e2 - 22$
$_{24}$ $\neg(p \land (q \land$	$r)) \to (\neg p \vee (\neg q \vee \neg r))$	\rightarrow i 1 -23

Part 2. Use the tableaux method to show the validity of following de Morgan's Law:

$$\phi_1 = \neg(\neg(p \land (q \land r)) \to (\neg p \lor \neg q \lor \neg r))$$

Proving by showing its negation is a contradiction.

Problem 3.

(a)
$$\phi_n^{row} = \bigwedge_{i=1}^n \bigvee_{k=1}^n \left\{ q_{i,k} \land \bigwedge \{ \neg q_{i,j} | j=1, \cdots, n \land j \neq k \} \right\}$$

(b)
$$\phi_n^{col} = \bigwedge_{j=1}^n \bigvee_{k=1}^n \left\{ q_{k,j} \land \bigwedge \{ \neg q_{i,j} | i = 1, \cdots, n \land i \neq k \} \right\}$$

(c)
$$\phi_n^{diag1} = \bigwedge \left\{ \neg q_{i_1,j_1} \lor \neg q_{i_2,j_2} \mid i_1, j_1, i_2, j_2 \in \{1, \dots, n\} \ s.t., i_1 \neq i_2 \land j_1 \neq j_2 \land i_1 - j_1 = i_2 - j_2 \right\}$$

(d)
$$\phi_n^{diag1} = \bigwedge \left\{ \neg q_{i_1,j_1} \lor \neg q_{i_2,j_2} \mid i_1,j_1,i_2,j_2 \in \{1,\cdots,n\} \ s.t., i_1 \neq i_2 \land j_1 \neq j_2 \land i_1 + j_1 = i_2 + j_2 \right\}$$

Problem 4. Γ is not even finitely satisfiable. Consider the case of n=4, i.e., ϕ_4 . It has exactly 2 possible solutions. Each of the 2 solution can be extended in a unique way to simultaneously satisfy ϕ_4 and ϕ_5 . However, no matter how a solution for $\{\phi_4,\phi_5\}$ is extended, it will never satisfy the ϕ_6 . We can conclude from this that, using the same set Q of propositional variables, with the same interpretation of indices $\{i,j\}$, the set $\{\phi_4,\phi_5,\phi_6\}$ is not satisfiable. Even though we can still write each wff in $\{\phi_4,\phi_5,\phi_6\}$ and every other wff for $n\geq 7$ over a distinct private set of variables, the resulting infinite model will not correspond

to a solution for Infinite Queens Problem.

In other words, the solution for n-1 doesn't guarantee a solution for n. We cannot induct from ϕ_{n-1} that ϕ_n has a solution.

 $\textbf{Problem 5.} \quad \texttt{https://piazza.com/class_profile/get_resource/ke1gp4ep1z513t/kfafm2ksek7a6}$

Problem 6. https://piazza.com/class_profile/get_resource/ke1gp4ep1z513t/kfafmcsgp5mor