C2: Réseaux Locaux Méthodes d'accès INI2— Fondement de l'Internet

Sondes Kallel Khemiri
PRISM/HPC-NETS
sondes.kallel@prism.uvsq.fr

Organisation générale

- □ 11 séances de cours (10 cours + 1 CC)
- □ 10 séances de travaux dirigés (9 TDs + 1 CC)
- □ 2 CCs
 - Théorique
 - Pratique

Organisation cours

- □ 11 séances de cours (10 cours + 1 CC)
 - 11 séances de 1h30 heures
 - Partie I : Commutation
 - □ C1: Introduction : Réseaux Locaux (CSMA/CD)
 - □ C2 : Réseaux Locaux Méthodes d'accès
 - □ C3: Les VLANs
 - □ C4: VTP/STP
 - □ C5: Interconnexion des LANs
 - CC pratique
 - Partie II : Routage
 - □ C1 : Introduction
 - □ C2 : Algorithmes de routage et protocoles de routage
 - □ C3: RIP
 - □ C4: OSPF
 - □ C5 : EIGRP / BGP

Organisation TD

- □ 10 séances de travaux dirigés (9 TDs + 1 CC)
 - 9 séances de TDs/TPs de 3 heures
 - □ Salles réseaux : découverte et configuration de matériels Cisco
 - Partie I : commutation
 - TD1 : Packet Tracer: configuration de base d'un commutateur sur Packet Tracer
 - TD2 : les LAN et les méthodes d'accès
 - TD3 : Packet Tracer: configuration avancée de réseaux locaux virtuels
 - TD4 : Packet Tracer: configuration et gestion des réseaux locaux VTP, STP
 - TD5 : configuration de base d'un périphérique Cisco (routeur + commutateur)
 - Partie II : Routage
 - TD6 : Interconnexion de réseaux : Routage Statique sur Matériel CISCO
 - TD7 : DHCP/NAT
 - TD8 : Protocole de routage : Routage Dynamique RIP sur CISCO
 - TD9 : Routage Dynamique OSPF sur CISCO

Objectifs pédagogiques

- □ Acquérir une culture générale sur l'architecture des réseaux et une bonne connaissance des réseaux LAN
 - Architectures et topologies des réseaux
 - Les réseaux locaux LAN: techniques d'accès CSMA/CD, Token ring, Ethernet, VLAN
 - Interconnexion des réseaux Locaux
- □ Consolidation avec des travaux pratiques
 - Packet tracer : un simulateur de matériel réseau Cisco (routeurs, commutateurs)
 - □ Cartable numérique
 - Salles réseaux : découverte et configuration de matériels Cisco
 - □ <u>http://e-campus2.uvsq.fr</u>: vérifier votre accès (login + mdp)

Références

- Analyse structurée des réseaux, 2^{ème} édition, James Kurose et Keith Ross, Traduction par Stéphane Pauquet, Pearson Education France 2003
- □ Andrew Tanenbaum, «Réseaux » Dunod 2002
- □ Guy Pujolle, « Les Réseaux », Eyrolles, ed. 2005
- □ Khaldoun Alagha & Guy Pujolle & Guillaume Vivier, « *Réseaux sans fil et mobiles* », octobre 2001
- □ Claude Servin, « *Réseaux et télécoms* », Dunod 2003
- □ L. Toutain « Réseaux Locaux et Internet »
- □ Le web
- □ ...

Partie 1 – C1 Introduction: Réseaux Locaux

Sondes Kallel Khemiri PRISM/ASR Sondes.Kallel@prism.fr

Plan

- Les réseaux locaux
 - □ Définition
 - □ Techniques d'accès
 - □ Les normes 802
 - 802.2
 - **802.3** / Ethernet

Les réseaux locaux

- Définition
- □ Techniques d'accès
- □ Les normes 802
 - **802.2**
 - **802.3** / Ethernet

Qu'est-ce qu'un réseau local

- Un réseau local (ou en anglais LAN, **local area network**), est un réseau permettant d'interconnecter les ordinateurs d'une entreprise ou d'une organisation. Grâce à ce concept, on a un système permettant :
 - D'échanger des informations
 - De communiquer
 - D'avoir accès à des services divers
- Un réseau local relie généralement des ordinateurs (ou des ressources telles que des imprimantes) à l'aide de supports de transmission filaires
 - Paires torasadées
 - Ou câbles coaxiaux la plupart du temps sur une circonférence d'une centaine de mètres
- □ Exemple de types de technologies utilisées dans les LANs :
 - Token ring
 - IEEE 802 LANs, Ethernet et Fast-Ethernet
 - FDDI (anneau en fibre optique), ATM, 802.11(a,b,g,...)

Objectifs des LANs

Interconnecter

- à bon marché
- à haut débit
- tout le monde

 Clients, serveurs, imprimantes, téléphones, passerelles, ... ,

Partager

- Imprimantes
- Disques
- Fichiers
- Passerelles
- les traitements
- Répartir les systèmes et les traitements

Exemple de réseau local

Les constituants matériels d'un réseau local

- Un réseau local est constitué d'ordinateurs reliés par un ensemble d'éléments matériels et logiciels. Les éléments matériels permettant d'interconnecter les ordinateurs sont les suivants :
 - La carte réseau (parfois appelé *coupleur*): il s'agit d'une carte connectée
 - Le transceiver (appelé aussi *adapteur*): il permet d'assurer la transformation des signaux
 - La prise: il s'agit de l'élément permettant de réaliser la jonction mécanique
 - Le support physique d'interconnexion: c'est le support généralement filaire
 - □ Le cable coaxial
 - □ La paire torsadée
 - □ La fibre optique

Les constituants matériels d'un réseau local

Les constituants matériels d'un réseau local

Prise et câble

Ou Coupleur Ethernet

Les constituants matériels d'un réseau local

Méthodes de partage du support

- Support de communication = ressource inhérente à un système de communication
- Mécanismes utilisés pour contrôler l'accès à la transmission sur le support physique
- Régler les conflits parmi les entités qui souhaitent obtenir son «tour de parole» pour parler sur le support de communication

Principales techniques d'accès

Techniques d'accès Accès statique Accès dynamique Environnement des RLs L'allocation de la bande passante est fixée de ☐ Meilleure utilisation de la façon définitive BP Temporellement Aléatoire Fréquentiellement Déterministe

Principales techniques d'accès

Techniques d'accès Accès statique Accès dynamique **Aléatoire** Déterministe L'allocation de la bande L' intégralité de la bande passante est disponible pour toutes les stations passante est fixée de Permission d'accès : Libre accès à la Une seule station façon définitive transmission sur le transmet à la fois => support Temporellement Complexité de gestion de la permission Conflits d'accès Fréquentiellement d'accès Collisions Polling • Accès par jeton (J): J non adressé sur anneau ou J adressé sur bus - 43-

Principales techniques d'accès

Normes et Instituts de normalisation

- □ Document de référence sur un sujet donné.
- ☐ Il indique l'état de la science, de la technologie et des savoir-faire au moment de la rédaction.
- □ Pour être considéré comme une norme, le document doit remplir deux conditions :
 - les moyens et méthodes décrits doivent être reproductibles en utilisant et respectant les conditions qui sont indiquées,
 - avoir reçu la reconnaissance de tous.
- □ Mondes des télécommunications
 - UIT-T = Union Internationale des Télécommunications (ou ITU-T)
 - □ Organisation régionale (ETSI)
 - □ Opérateurs privés
- □ Monde des normes internationales
 - ISO = International Standardization Organization
- □ VOIR LE RAPPEL (modèle des 7 couches OSI)

Standard et Institut de standardisation

- □ Référentiel publié par une autre entité.
- On ne parle de standard qu'à partir du moment où le référentiel a une diffusion large.
- □ Exemples en informatique : les formats pdf ou Microsoft.
- □ IEEE (Institute of Electrical and Electronic Engineer)
 - Domaine électrique et informatique
- ☐ Monde des standards de l'Internet
 - IETF (Internet Engineering Task Force)
 - □ Forum où on définit les standards de l'Internet
 - □ Groupes de travail

Normes IEEE 802

Modèles et Normes IEEE

- □ Standardisation des réseaux locaux
- □ Comité 802 de l'organisme de normalisation IEEE
 - Supports ou médium
 - Liaison et méthode de partage du canal
 - Interface avec les couches supérieures
- □ Applications supportées
 - Transfert de fichier
 - Applications bureautiques
 - Processus de contrôle et de commande
 - Transmission de voix et d'images

Modèles et Normes IEEE Contraintes fonctionnelles

- □ Contraintes :
 - Au moins 200 unités connectées le long d'un segment
 - □ Etendue du réseau : de 2 km à 50 km
 - □ Débit : de 1 Mbit/s à 100 Mbit/s (voire 1 Gbit/s)
 - □ Taux d'erreur : négligeable
 - Broadcast et Multicast
- Conforme au modèle OSI

Modèle de référence d'implantation

Standardisation des LANs

Autres types de réseau

802.6 ⇒ DQDB (Distributed Queue Data Bus)

802.3u ⇒ Fast Ethernet

Standardisation des LANs

- □ IEEE 802.1 : Gestion des réseaux locaux, VLAN, authentification, etc.
- ☐ IEEE 802.2 : Couche Logical Link Control (LLC) et Media Access Control (MAC)
- □ IEEE 802.3 : CSMA/CD Ethernet
- ☐ IEEE 802.4 : CSMA/CA Token Bus
- □ IEEE 802.5 : Token Ring
- ☐ IEEE 802.6 : les réseaux à grande distance (MAN)
- ☐ IEEE 802.11 : Réseaux sans fil : infrarouge, ASFI...
- □ IEEE 802.12 : Réseaux locaux utilisant le mécanisme de demande de priorité
- ☐ IEEE 802.16 : Réseaux sans fil à large bande par exemple le WiMAX

52

Normes à voir

- □ 802.2 couche LLC
- \square 802.3 / Ethernet => CSMA/CD
- □ 802.4 Token bus
- □ 802.5 Token ring
- □ Fast Ethernet ou FDDI

802.2 / LLC

contrôle de la liaison logique / Logical Link Control

- □ La sous-couche de contrôle de la liaison logique (Logical Link Control en anglais, ou LLC)
 - La moitié haute de la couche de liaison de données du modèle OSI
 - Elle permet de fiabiliser le protocole MAC par
 - □ un contrôle d'erreur et
 - □ un contrôle de flux
- Sous-couche commune des souscouches MAC de tous les protocoles MAC 802.x
- ☐ Aiguillage des données vers les protocoles de couche 3

- □ 3 types de LLC
 - LLC type 1 : aucun contrôle supplémentaire ; simple aiguillage des données vers les protocoles de couche 3. Mode non connecté, datagramme sans acquittement.
 - LLC type 2 : type 1 + contrôle de séquence + contrôle de flux ; Mode connecté avec acquittement. Utilisé par token ring.
 - LLC type 3 : type 1 + acquittement de trame. Mode rajouté à la norme initiale pour les besoins des réseaux industriels. Mode non connecté avec acquittement. Ce mode est utilisé seulement pour les communications point à point.

- □ Pour réaliser un service, les paquets à transporter doivent être mis dans des trames LLC.
 - Il faut pour cela que la carte coupleur puisse demander au niveau du dessus les données à transporter ainsi que lui transmettre les contrôles nécessaires à la bonne marche du réseau.
 - Pour effectuer cette demande, il faut des primitives de service.

- □ Pour réaliser un service, les paquets à transporter doivent être mis dans des trames LLC.
 - Il faut pour cela que la carte coupleur puisse demander au niveau du dessus les données à transporter ainsi que lui transmettre les contrôles nécessaires à la bonne marche du réseau.
 - Pour effectuer cette demande, il faut des primitives de service.
- □ Offre l'interface d'accès à la couche Liaison

Primitives sans connexion	Primitives avec connexion	
L_DATA.request L_DATA.indication	L_CONNECT (request, indication, response, confirm) L_DATA_CONNECT(request, indication, response, confirm) L_DISCONNECT(request, indication) L_RESET(request, indication, response et confirm) L_CONNECT_FLOW_CONTROL(request, indication)	

Trame LLC

- DSAP (1 octet) : Destination Service Access Point, désigne le protocole supérieur destinataire des données.
- □ SSAP (1 octet) : Source Service Access Point, désigne le protocole qui a émis la trame LLC.
- □ Contrôle (1 octet).
- □ Données utiles : de 43 à 1497 octets.

SAP	SAP	Cont rôle	Données
Destination	Source	0×03	
1 Ø	1 Ø	1 Ø	NØ

Adressage physique

- Adresse physique du coupleur ou adresse MAC
- En général, elle est unique, universelle et attribuée à un seul équipement
- Deux longueurs possibles
 - ☐ Courte: 2 octets
 - Longue: 6 octets
- Deux type de définition
 - ☐ Locale (attribuée localement par l'admin)
 - □ Universelle (attribuée par le constructeur) 00:00:0C:12:23:34

Adressage physique (MAC)

- □ Deux modes d'utilisation
 - Groupe (broadcast)
 - Individuelle (unicast)

□ Chaque coupleur connecté à un réseau Ethernet dispose d'une adresse unique au monde codée sur 48 bits (@MAC/@Ethernet)

802.3 / Ethernet CSMA/CD

Plan

- □ Introduction
- □ Topologie
- □ Format de trame
- □ CSMA/CD
- □ Interconnexion de LANs

Spécification des grandeurs physiques IEEE 802.3

Paramètres

Tranche canal
Silence inter messages
Nombre d'essais
Limite BEB
Taille mini. du brouillage
Taille maxi. des trames
Taille mini. des trames
Taille des adresses

Valeurs

 \rightarrow 512 bits

 \rightarrow 9.6 μ s

 \rightarrow 16

 $\rightarrow 10$

 \rightarrow 32 bits

→ 1518 octets

 \rightarrow 64 octets

 \rightarrow 6 octets

La longueur maximale d'un réseau **Ethernet** est fonction de la **tranche canal**, et de la longueur minimale d'une trame

Modèle OSI (Rappel)

- □ 802.3 => niveau 2 => Liaison de données
- □ Liaison de données
 - Fragmentation des données transmises par la couche supérieure en trame de données
 - Responsable de la transmission fiable de trames sur une connexion physique
 - □ Contrôle d'accès au medium
 - Ne pas excéder le buffer du récepteur
 - Régulation de trafic
 - □ Détection et correction d'erreur
 - Erreurs dues à l'atténuation du signal
 - Détection des collisions
 - Gestion des acquittements
 - Exemples de protocoles de niveau 2: PPP, Ethernet, WiFi, Token-Ring, HDLC, ...

Modèle OSI (Rappel)

- □ Liaison de données
 - Fragmentation des données transmises par la couche supérieure en trame de données
 - Responsable de la transmission fiable de trames sur une connexion physique
 - Contrôle d'accès au medium
 - Ne pas excéder le buffer du récepteur
 - Régulation de trafic
 - □ Détection et correction d'erreur
 - Erreurs dues à l'atténuation du signal
 - Détection des collisions
 - Gestion des acquittements
 - Exemples de protocoles de niveau 2: PPP, Ethernet, WiFi, Token-Ring, HDLC, ...

Introduction

- □ Ethernet partagé est inventé en 1970s
- Utilisé largement dans les réseaux locaux
- □ Ethernet commuté est introduit en 1990s
- □ De plus en plus utilisé dans les réseaux métropolitains, réseaux étendus et les accès xDSL
- □ Débits à 10 Mbit/s, 100 Mbit/s, 1 Gbit/s, 10 Gbit/s

Objectifs de conception d'Ethernet

- □ débits allant de 1 à 10 Gbit/s
 □ distances géographiques d'au plus 1 km
- □ plusieurs centaines de nœuds
- □ simplicité
- □ fiabilité
- □ dépendance minimale vis-à-vis d'un composant central
- utilisation efficace des ressources partagées, en particulier du réseau lui-même
- □ stabilité sous forte charge
- □ accès équitable pour tous les nœuds
- facilité d'installation pour un petit réseau et évolution sans remise en cause de l'existant
- □ facilité de reconfiguration et de maintenance
- □ coût peu élevé

Topologie – Ethernet partagé

A chaque support physique => type de réseau (topologie/longueur de réseau etc)

Spécification des supports physiques IEEE 802.3

Norme 10 BASE 5

« Câble jaune » câble coaxial épais

RG11

Topologie en bus

Débit

Impédance

Diamètre

Longueur maxi. segment

Distance mini. entre 2 stations

Nombre maxi. de stations/segment

Nombre maxi. de répéteurs

Longueur maxi. d'un chemin

Valeurs

- \rightarrow 10 Mbit/s
- \rightarrow 50 Ω
- \rightarrow 10 mm
- \rightarrow 500 m
- \rightarrow 2.5 m
- $\rightarrow 100$
- $\rightarrow 4$
- \rightarrow 2.5 km

- □ codage en bande de base (Manchester)
- raccordement des stations au câble coaxial par :
 - câble de liaison (50 m max.)
 - transceiver (émetteur-récepteur)

Spécification des supports physiques IEEE 802.3

Norme 10 BASE 2

Topologie en étoile « Câble noir » câble coaxial fin RG 58 débit

Impédance

Diamètre

Longueur maxi. segment

Distance mini. entre 2 stations

Nombre maxi. de stations/segment

Nombre maxi. de répéteurs

Longueur maxi. d'un chemin

Valeurs

- \rightarrow 10 Mbit/s
- \rightarrow 50 Ω
- \rightarrow 5 mm
- \rightarrow 200 m
- $\rightarrow 0.5 \text{ m}$
- \rightarrow 30
- $\rightarrow 4$
- \rightarrow 1 km

Ethernet 10BaseT

- □ débit : 10 Mbit/s
- □ topologie physique en étoile
- □ topologie logique en bus grâce aux hubs
- paires Torsadées
 - une paire en émission
 - une paire en réception
- □ connecteur RJ45
- En tenant le connecteur face à soi avec le clip de fixation vers le haut, les broches sont numérotées de 1 à 8 de la gauche vers la droite

Norme 10 BASE T

« Paires torsadées » Topologie en étoile

Nombre de stations

Distance maxi. Hub/station

- \rightarrow Hub
- → Nombre de ports sur un hub
- \rightarrow 100 m

Format de trame 802.3 (1)

8 6 2 46-1500 4 (octets)

ource Type Données CRC	Adresse Source	Adresse Destination	Préambule
------------------------	----------------	---------------------	-----------

- □ Préambule (8 octets)
 - 10101010 10101010 10101010 10101010 10101010 10101010 10101010 10101010 101010101
 - Permettre au récepteur de synchroniser avec le signal et d'en reconnaître le début de la trame

Structure de la trame IEEE 802.3

- La séquence LEN (length) correspond à la longueur des 2 champs suivants (DATAS et PAD) (taille minimum = 64 Octets) à partir de l'adresse de destination, soit 46 pour les champs DATAS et PAD
- si la quantité des données (DATAS) n'atteint pas 46 octets alors le champ PAD va la compléter afin d'atteindre ce minimum.
- Enfin, la trame se termine par un champ de vérification de trame : le FCS qui se calcule sur l'ensemble des bits qui suivent le préambule de synchronisation.

Format de trame (2)

- □ Adresse destination (6 octets)
 - Adresse du coupleur destinataire
 - Exemple: 88-B2-2F-54-1A-0F
- □ Adresse source (6 octets)
 - Adresse du coupleur source
- □ Type
 - Indiquer le protocole au niveau supérieur
 - 0x0800: IPv4
 - 0x86DD: IPv6
 - 0x0806: ARP
 - 0x8035: RARP

Format de trame (2)

- □ Données (46 à 1500 octets)
 - Transporter le paquet IP
 - MTU (Maximum Transmission Unit) = 1500 octets
- □ Cyclic Redundancy Check (CRC) (4 octets)
 - Permettre au récepteur de détecter les erreurs binaires dans la trame sauf le préambule
 - Emetteur et récepteur utilisent le même polynôme générateur <math>G(x)
 - $G(x) = X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$

Protocole d'accès

- □ Les nœuds dans Ethernet partagé sont interconnectés par un support partagé
- □ Quand un coupleur émet une trame, tous les autres coupleurs reçoivent la trame
- □ Un coupleur recevant une trame avec une adresse destination qui n'est pas la sienne ignore la trame
- □ Quand deux nœuds envoient leurs trames sur le supports en même temps => COLLISIONS
 - Pour éviter les collisions Ethernet utilise
 l'algorithme CSMA/CD

CSMA/CD (1)

- □ Carrier Sense Multiple Access with Collision Detection
- □ Un coupleur ayant un paquet IP à envoyer prépare une trame Ethernet et la met dans une file d'attente
- □ Le coupleur écoute le support
 - Si le support est libre, il émet la trame
 - Si le support est occupé, il attend que le support soit libre
- Pendant l'émission de la trame, le coupleur continue à écouter le support pour détecter s'il y a des signaux venant d'autres coupleurs (i.e. pour détecter des collisions)
 - Si aucune collision n'est détectée jusqu'à la fin de l'émission de la trame, la trame est envoyé avec succès
 - Si une collision est détectée, le coupleur arrête la transmission de la trame, envoie le signal de « jam », et entrer dans la phase de Back-off pour la retransmission de la trame

CSMA/CD (2)

- □ Phase de Back-off
 - Après n collisions consécutives pour une trame donnée, le coupleur choisit une valeur aléatoire K entre {0, 1, 2, ... 2^m-1} et attente {K * 512 bittimes} pour la prochaine tentative d'émettre la trame
 - $m = \min(n, 10)$
 - \square Bit-time = 0.1 µs pour un Ethernet à 10 Mbit/s

CSMA/CD (3)

☐ Algorithme BEB (binary exponential backoff (beb))

```
Procédure backoff(tentative: entier,
VAR W MAX: entier)
Const slot-time=51.2
(microsecondes);
limite tentative=10;
Var delai: entier;
BEGIN
   Si (tentative =1) Alors
            W MAX=2
   Sinon
     Si (tentative < limite tentative)
Alors
            W MAX=WMAX*2;
     fsi
   fsi
   delai := int(random*W MAX)
   attendre(delai*slot_time)
END
```


CSMA/CD (4)

T1 C2 et C3 veulent émettre => collision

Calcul de nouveau temps d'émission => T2 mais canal occupé attendre fin de transmission T3

T3 C2 émet

C3 attend fin de transmission de C2 T4 C3 peut émettre

Algorithme de **BEB**: Exemple dans wifi (CSMA/CA)

CSMA/CD (5)

- avantages
 - approche complètement décentralisée
 - © simplicité
 - © équitabilité
 - très efficace sous faible charge
 - utilisation d'un bus passif
 - facilité d'installation pour un petit réseau et évolution sans remise en cause de l'existant
 - coût peu élevé

- □ inconvénients
 - délais imprévisibles
 - pertes de trames possibles

Influence du temps de propagation

- □ Pourquoi peut-il y avoir encore des collisions ?
 - deux stations A et B, situées aux extrémités d'un bus
 - d la distance les séparant et v_p la vitesse de propagation sur le bus
 - t_p le temps de propagation entre A et B : $t_p = d / v_p$

Taille de réseau

- □ Soit un réseau Ethernet partagé au débit D et avec une longueur minimale de la trame M
 - $M/D \ge 2 * L/V$
 - L: la taille maximale du réseau
 - V: la vitesse de propagation du signal
- □ Exemple
 - M = 64 octets, D = 10 Mbit/s, V = 200 000 km/s
 - $L \le 5,12 \text{ km}$

FIN