Devoir surveillé n° 6 : corrigé

Problème 1 — Résolution d'une équation diophantienne

Partie I -

- 1. Clairement $\mathbb{Z}[\sqrt{2}] \subset \mathbb{R}$.
 - $1 = 1 + 0\sqrt{2} \in \mathbb{Z}[\sqrt{2}].$

Soit $(x,y) \in \mathbb{Z}[\sqrt{2}]^2$. Il existe donc $(a,b,c,d) \in \mathbb{Z}^4$ tel que $x = a + b\sqrt{2}$ et $y = c + d\sqrt{2}$.

Alors $x - y = (a - c) + (b - d)\sqrt{2}$ et $(a - c, b - d) \in \mathbb{Z}^2$ donc $x - y \in \mathbb{Z}[\sqrt{2}]$.

Egalement, $xy = (ac + 2bd) + (ad + bc)\sqrt{2}$ et $(ac + 2bd, ad + bc) \in \mathbb{Z}^2$ donc $xy \in \mathbb{Z}[\sqrt{2}]$.

Ainsi $\mathbb{Z}[\sqrt{2}]$ est donc un sous-anneau de $(\mathbb{R}, +, \times)$.

2. a. Soit $x \in \mathbb{Z}[\sqrt{2}]$. L'existence d'un couple $(a,b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$ découle simplement de la définition de $\mathbb{Z}[\sqrt{2}]$. Soit maintenant $(c,d) \in \mathbb{Z}^2$ tel que

$$x = a + b\sqrt{2} = c + d\sqrt{2}$$

On a donc $(a-c)=(d-b)\sqrt{2}$. Si $d\neq b, \sqrt{2}$ serait rationnel. Ainsi b=d et par suite a=c. D'où l'unicité du couple (a,b).

b. On vérifie aisément que $\phi(x+y) = \phi(x) + \phi(y)$ et que $\phi(xy) = \phi(x)\phi(y)$ pour tout $(x,y) \in \mathbb{Z}[\sqrt{2}]^2$ donc ϕ est un endomorphisme de l'anneau $\mathbb{Z}[\sqrt{2}]$.

Par ailleurs, $\phi \circ \phi = \mathrm{Id}_{\mathbb{Z}[\sqrt{2}]}$ donc ϕ est involutif donc bijectif. ϕ est donc un automorphisme de l'anneau $\mathbb{Z}[\sqrt{2}]$.

- **3.** a. Soient $x \in \mathbb{Z}[\sqrt{2}]$ et $(a,b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$. Alors $N(x) = a^2 2b^2 \in \mathbb{Z}$.
 - **b.** Soit $(x,y) \in \mathbb{Z}[\sqrt{2}]^2$. Alors, en utilisant que φ est un endomorphisme d'anneau

$$N(xy) = xy\overline{xy} = xy\overline{xy} = x\overline{x}y\overline{y} = N(x)N(y)$$

c. Soit $x \in \mathbb{Z}[\sqrt{2}]$.

Supposons x inversible. Il existe donc $y \in \mathbb{Z}[\sqrt{2}]$ tel que xy = 1. Ainsi N(xy) = N(1) = 1. D'après la question précédente, N(xy) = N(x)N(y) d'où N(x)N(y) = 1. Puisque N(x) et N(y) sont entiers, on a donc $N(x) = \pm 1$ i.e. |N(x)| = 1.

Réciproquement soit $x \in \mathbb{Z}[\sqrt{2}]$ tel que |N(x)| = 1. Si N(x) = 1, alors $x\overline{x} = 1$ donc x est inversible (d'inverse \overline{x}). Si N(x) = -1, alors $x(-\overline{x}) = 1$ donc x est inversible (d'inverse $-\overline{x}$).

Partie II -

1. 0 n'est pas inversible donc $0 \notin H$. Ainsi $H \subset \mathbb{R}^*$. 1 est inversible en tant qu'élément neutre pour la loi \times donc $1 \in H$. Un produit d'éléments inversibles est inversible (d'inverse le produit des inverses).

Enfin, l'inverse d'un élément inversible est inversible (d'inverse l'élément initial).

On en déduit que H est un sous-groupe de (\mathbb{R}^*, \times) .

Remarque. On peut également utiliser le résultat au programme disant que l'ensemble des éléments inversibles d'un anneau est un groupe pour la loi multiplicative. Ainsi (H, \times) est un groupe. Puisque $H \subset \mathbb{R}^*$, H est un sous-groupe de (\mathbb{R}^*, \times) .

- **2.** a. Supposons $a \ge 0$ et $b \ge 0$. On ne peut avoir (a, b) = (0, 0) car $0 \notin H$. Un des deux entiers naturels a et b est donc non nul. Ainsi $a \ge 1$ ou $b \ge 1$ et, dans les deux cas, $x \ge 1$.
 - **b.** Supposons $a \le 0$ et $b \le 0$. On ne peut avoir (a,b) = (0,0) car $0 \notin H$. Un des deux entiers a et b est donc non nul. Ainsi $a \le -1$ ou $b \le -1$ et, dans les deux cas, $x \le -1$.

- c. Supposons $ab \le 0$. Alors $a(-b) \ge 0$. Les deux questions précédentes montrent que $|\overline{x}| \ge 1$. Puisque $|N(x)| = |x||\overline{x}| = 1$, $|x| \le 1$.
- 3. a. Puisque x > 1, la question précédente montre qu'on ne peut avoir $a \le 0$ et $b \le 0$ ni $ab \le 0$. C'est donc que nécessairement a > 0 et b > 0.
 - **b.** $u \in H^+$ car u > 1 et N(u) = -1. Soient $x \in H^+$ et $(a, b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$. D'après la question précédente, $a \ge 1$ et $b \ge 1$ donc $x \ge u$. u est donc le plus petit élément de H^+ .
- **4.** a. Il suffit de poser $n = \left| \frac{\ln x}{\ln x} \right|$. On a alors

$$n \leqslant \frac{\ln x}{\ln u} < n + 1$$

ou encore

$$n \ln(u) \leq \ln(x) < (n+1) \ln u$$

car $\ln u > 0$. Puis par stricte croissance de l'exponentielle

$$u^n \le x < u^{n+1}$$

b. Supposons $x \neq u^n$. Alors

$$u^{n} < x < u^{n+1}$$

puis

$$1 < \frac{x}{u^n} < u$$

car $\mathfrak u>0$. Or H est un sous-groupe de $\mathbb R^*$ et $\mathfrak u\in H$ donc $\mathfrak u^n\in H$. On sait également que $x\in H$ donc $\frac x{\mathfrak u^n}\in H$ car H est un sous-groupe de $\mathbb R^*$. Or $\frac x{\mathfrak u^n}>1$ donc $\frac x{\mathfrak u^n}\in H^+$. Or $\frac x{\mathfrak u^n}<\mathfrak u$, ce qui contredit la minimalité de $\mathfrak u$. On a donc prouvé que $x=\mathfrak u^n$.

5. On sait que $u \in H$ donc $u^n \in H$ pour tout $n \in \mathbb{Z}$ car H est un sous-groupe de \mathbb{R}^* . Puisque $-1 \in H$, on a également $-u^n \in H$ pour tout $n \in \mathbb{Z}$. Ainsi

$$\{\mathfrak{u}^{\mathfrak{n}},\mathfrak{n}\in\mathbb{Z}\}\cup\{-\mathfrak{u}^{\mathfrak{n}},\mathfrak{n}\in\mathbb{Z}\}\subset\mathsf{H}$$

Soit maintenant $x \in H$. On sait que $0 \notin H$ donc $x \neq 0$.

- ▶ Si x > 1, alors $x \in H^+$ et il existe donc $n \in \mathbb{Z}$ tel que $x = u^n$ d'après la question précédente.
- ightharpoonup Si x = 1, alors $x = u^0$.
- ▶ Si 0 < x < 1, alors $\frac{1}{x} \in H^+$ donc il existe $n \in \mathbb{Z}$ tel que $\frac{1}{x} = u^n$ i.e. $x = u^{-n}$.
- ▶ Si x < 0, alors $-x \in H$ et -x > 0, et les cas précédents montrent l'existence d'un $n \in \mathbb{Z}$ tel que $-x = u^n$ i.e. $x = -u^n$.

On a donc prouvé que

$$H \subset \{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\}$$

Par double inclusion

$$H = \{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\}$$

SOLUTION 1.

1. Puisque toutes les solutions de (\mathcal{E}) sont de classe \mathcal{C}^{∞} , $E \subset \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. La fonction nulle est clairement solution de (\mathcal{E}) donc appartient à E. Soient $(y_1, y_2) \in E^2$ et $(\lambda_1, \lambda_2) \in \mathbb{R}^2$. Alors

$$(\lambda_1 y_1 + \lambda_2 y_2)''' - (\lambda_1 y_1 + \lambda_2 y_2) = \lambda_1 (y_1''' - y_1) + \lambda_2 (y_2''' - y_2) = 0$$

donc $\lambda_1 y_1 + \lambda_2 y_2 \in E$.

E est donc bien un sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$.

2. Soit $y \in F$. Alors y'' + y' + y = 0. Puisque y est de classe C^{∞} , on obtient en dérivant la relation précédente, y''' + y'' + y' = 0. En soustrayant ces deux relations, on obtient y''' - y = 0 de sorte que $y \in E$. Ainsi $F \subset E$. Soit $y \in G$. Alors y' = y. En dérivant, on obtient y'' = y' = y. En dérivant à nouveau, on obtient y''' = y' = y. Ainsi $y \in E$. Finalement, $G \subset E$.

3. Le polynôme caractéristique associé à (\mathcal{F}) est $X^2 + X + 1$ dont les racines sont $-\frac{1}{2} + i\frac{\sqrt{3}}{2}$ et $-\frac{1}{2} - i\frac{\sqrt{3}}{2}$. Les solutions de (\mathcal{F}) sont donc les fontions

$$t \mapsto \left(\lambda \cos \frac{t\sqrt{3}}{2} + \mu \sin \frac{t\sqrt{3}}{2}\right) e^{-\frac{t}{2}} \ \mathrm{avec} \ (\lambda, \mu) \in \mathbb{R}^2$$

En posant $f_1: t\mapsto e^{-\frac{t}{2}}\cos\frac{t\sqrt{3}}{2}$ et $f_2: t\mapsto e^{-\frac{t}{2}}\cos\frac{t\sqrt{3}}{2}$, on a donc $F=\mathrm{vect}(f_1,f_2)$ de sorte que (f_1,f_2) est une famille génératrice de F.

Les solutions de (\mathcal{G}) sont les fonctions $t \mapsto \nu e^t$ avec $\nu \in \mathbb{R}$. Ainsi $G = \text{vect}(f_3)$ en posant $f_3 : t \mapsto e^t$. Ainsi (f_3) est une famille génératrice de G.

4. a. Puisque $y \in E$, y''' = y et donc $y^{(4)} = y'$. Ainsi

$$y_1'' + y_1' + y_1 = (2y - y' - y'')'' + (2y - y' - y'')' + (2y - y' - y'')$$

$$= (2y'' - y''' - y^{(4)}) + (2y' - y'' - y''') + (2y - y' - y'')$$

$$= (2y'' - y - y') + (2y' - y'' - y) + (2y - y' - y'') = 0$$

donc $y_1 \in F$. De plus

$$y_2' = (y + y' + y'')' = y' + y'' + y''' = y' + y'' + y = y_2$$

 $\mathrm{donc}\ y_2\in G.$

b. Soit $y \in F \cap G$. Puisque $y \in G$, y' = y donc y'' = y' = y. Or y'' + y' + y = 0 car $y \in F$ donc 3y = 0 puis y = 0. Finalement $F \cap G = \{0\}$.

Puisque $F \subset E$ et $G \subset E$, $F + G \subset E$. Soit maintenant $y \in E$. Posons $y_1 = 2y - y' - y''$ et $y_2 = y + y' + y''$. On a vu que $y_1 \in F$ et $y_2 \in G$. Puisque F et G sont des sous-espaces vectoriels, $\frac{1}{3}y_1 \in F$ et $\frac{1}{3}y_2 \in G$. Puisque $y = \frac{1}{3}y_1 + \frac{1}{3}y_2$, $y \in F + G$. Ainsi $E \subset F + G$. Par double inclusion, E = F + G.

Mais puisque $F \cap G = \{0\}$, $E = F \oplus G$. Ainsi F et G sont supplémentaires dans E.

5. On déduit de la question précédente que

$$E=F\oplus G=\mathrm{vect}(f_1,f_2)+\mathrm{vect}(f_3)=\mathrm{vect}(f_1,f_2,f_3)$$

Autrement dit, les solutions de (\mathcal{E}) sont les combinaisons linéaires de f_1 , f_2 et f_3 , c'est-à-dire les fonctions

$$t \mapsto \left(\lambda \cos \frac{t\sqrt{3}}{2} + \mu \sin \frac{t\sqrt{3}}{2}\right) e^{-\frac{t}{2}} + \nu e^t \ \operatorname{avec} \ (\lambda, \mu, \nu) \in \mathbb{R}^3$$

SOLUTION 2.

- 1. a. Puisque a > 1 et n > 0, $a^n + 1 > 2$. Puisque $a^n + 1$ est premier et distinct de 2, il est impair. Ainsi a^n est pair et donc a est pair.
 - **b.** On a $a^k \equiv -1$ $[a^k + 1]$, puis $(a^k)^m \equiv -1$ $[a^k + 1]$. Puisque m est impair, $a^{km} \equiv -1$ $[a^k + 1]$ i.e. $a^n + 1 \equiv 0$ $[a^k + 1]$. Ainsi $a^k + 1$ divise $a^n + 1$. Puisque $a^n + 1$ est premier, on en déduit que $a^k + 1 = 1$, ce qui est exclu, ou $a^k + 1 = a^n + 1$. Puisque a > 1, on obtient k = n et donc m = 1, ce qui est impossible car $m \geqslant 3$.
 - c. On déduit de la question précédente que n n'admet pas de diviseur premier impair. Le seul diviseur premier de n est donc 2. Le théorème de décomposition en facteurs premiers assure alors que n est une puissance de 2.
- **2.** a. Soit $n \in \mathbb{N}$.

$$F_{n+1} - 1 = 2^{2^{n+1}} = (2^{2^n})^2 = (F_n - 1)^2$$

b. On raisonne par récurrence. On a bien $F_1-2=3=F_0$. Supposons qu'il existe $n\in\mathbb{N}^*$ tel que $F_{n+1}=(F_n-1)^2+1$. Alors, d'après la question précédente

$$F_{n+1} - 2 = (F_n - 1)^2 - 1 = F_n(F_n - 2) = F_n \prod_{k=0}^{n-1} F_k = \prod_{k=0}^n F_k$$

Par récurrence, $F_n - 2 = \prod_{k=0}^{n-1} F_k$ pour tout $n \in \mathbb{N}^*$.

- c. On a $n \in \mathbb{N}^*$ et on peut appliquer la question précédente. Ainsi $F_n 2 = \prod_{k=0}^{n-1} F_k$ ou encore $F_n \prod_{k=0}^{n-1} F_k = 2$. D'une part, $F_m \wedge F_n$ divise F_n et, d'autre part, $F_m \wedge F_n$ divise F_m donc $\prod_{k=0}^{n-1} F_k$ puisque m < n. Ainsi $F_m \wedge F_n$ divise 2. Par ailleurs, F_n est impair donc $F_m \wedge F_n = 1$.
- **3.** a. Puisque p divise F_n , $2^{2^n} \equiv -1[p]$. En élevant au carré, $2^{2^{n+1}} \equiv 1[p]$ donc $2^{n+1} \in A$.
 - b. A est une partie non vide (d'après la question précédente) de \mathbb{N}^* : elle admet donc un minimum.
 - c. Notons q et r le quotient et le reste de la division euclidienne de 2^{n+1} par m. On a donc $2^{n+1} = qm + r$ avec $0 \le r < m$. De plus, $q \in \mathbb{N}$ puisque 2^{n+1} et m sont positifs. Ainsi $2^{2^{n+1}} = (2^m)^q \cdot 2^r$. Or $m \in A$ donc $2^m \equiv 1[p]$ puis $(2^m)^q \equiv 1[p]$. Finalement $2^{2^{n+1}} \equiv 2^r[p]$. Or $2^{n+1} \in A$ donc $2^r \equiv 1[p]$. Si on avait r > 0, on aurait $r \in A$ et r < m, ce qui est impossible car $m = \min A$. Ainsi r = 0 de sorte que m divise 2^{n+1} .
 - d. Il s'ensuit que m est une puissance de 2. Il existe donc un entier naturel $q \le n+1$ tel que $m=2^q$. Supposons $q \le n$. Puisque $2^{2^q} \equiv 1[p]$, on obtient en élevant à la puissance 2^{n-q} , $2^{2^n} \equiv 1[p]$. Or p divise F_n donc $2^{2^n} \equiv -1[p]$. Ainsi $2 \equiv 0[p]$ i.e. p divise 2. Puisque p est premier, on aurait p=2, ce qui est impossible car F_n est impair.
 - e. Puisque F_n est impair, $p \neq 2$ et donc p est impair. En particulier, 2 est premier avec p. D'après le petit théorème de Fermat, $2^{p-1} \equiv 1[p]$ et $p-1 \in A$.
 - f. En écrivant à nouveau la division euclidienne de p-1 par m=, la minimalité de m montre que m divise p-1 i.e. $p\equiv 1[m]$. Puisque $m=2^{n+1}$, $p\equiv 1\left[2^{n+1}\right]$.