Project Documentation: LoRa-Based Smart Lighting System

1. Introduction

This project explores the capabilities of the LoRa RA-02 module for wireless communication and develops a smart lighting system that automatically controls room lighting based on object detection. The system uses an Arduino (transmitter) with an ultrasonic sensor and an ESP32 (receiver) with an LED setup.

2. Objectives

- Understand the LoRa communication module and its basic functionalities.
- Establish **one-way communication** between an Arduino (transmitter) and an ESP32 (receiver).
- Integrate an ultrasonic sensor to detect object presence.
- Automate a **lighting system** to turn on when an object is detected and off after a delay when removed.
- Gain insights into LoRa communication parameters such as SPI setup, bandwidth, frequency settings, RSSI values, and SNR analysis.

3. Components Used

Hardware

- 1. **Arduino UNO** (Transmitter)
- 2. **ESP32** (Receiver)
- 3. LoRa RA-02 Module (x2)

- 4. Ultrasonic Sensor (HC-SR04)
- 5. LED Strip or Light Setup
- 6. Connecting Wires & Breadboard
- 7. Power Supply (Battery or Adapter)

Software

- Arduino IDE (for coding and uploading firmware)
- LoRa Library for communication

4. Understanding LoRa Communication

4.1 How LoRa Works

LoRa (Long Range) is a wireless communication protocol that allows for **long-distance**, **low-power** data transmission. Unlike Wi-Fi or Bluetooth, LoRa operates using **spread spectrum modulation** to ensure high **interference resistance** and **low data rates**.

4.2 SPI Communication Setup

LoRa RA-02 modules communicate with microcontrollers using **SPI (Serial Peripheral Interface)**. The SPI pins are as follows:

- MOSI (Master Out Slave In): Data sent from the microcontroller to the LoRa module.
- MISO (Master In Slave Out): Data received from the LoRa module.
- SCK (Serial Clock): Synchronizes data transmission.
- **NSS (Chip Select)**: Enables communication between the microcontroller and the LoRa module.

For **Arduino UNO**:

• MOSI: Pin 11

• MISO: Pin 12

• SCK: Pin 13

• NSS: Any digital pin (customizable)

For ESP32:

MOSI: GPIO 23

MISO: GPIO 19

SCK: GPIO 18

NSS: Any digital pin (customizable)

```
Recover_Main to ...

Social_print("Message: ");

so
```

4.3 Frequency and Bandwidth

LoRa operates in different frequency bands depending on the region:

- **868 MHz** (Europe)
- 915 MHz (North America)
- 433 MHz (Asia & Custom Use Cases)

For this project, we set the **frequency to 433 MHz** (or adjust based on regional requirements). Bandwidth and spreading factors impact **range and power consumption**:

- **Higher bandwidth (e.g., 500 kHz)** allows for faster data rates but reduces range.
- Lower bandwidth (e.g., 125 kHz) increases range but limits data speed.

4.4 RSSI and SNR Values

- RSSI (Received Signal Strength Indicator): Measures signal strength received by the ESP32.
 - Values range from -30 dBm (strong signal) to -120 dBm (weak signal).
- SNR (Signal-to-Noise Ratio): Evaluates signal clarity.
 - Positive SNR means a strong signal, while negative SNR indicates high noise interference.

5. System Architecture

5.1 Transmitter (Arduino UNO):

- Measures distance using an ultrasonic sensor.
- If an object is placed within a defined threshold (e.g., <10cm), it sends a signal via LoRa.
- Sends default messages at intervals if no object is detected.

5.2 Receiver (ESP32):

- Continuously listens for LoRa signals.
- If a valid signal is received, it turns on the LED lighting system.
- If no object is detected for a certain duration, it turns off the lights after a delay.

Logs RSSI and SNR values for debugging and range testing.

6. Implementation Details

6.1 Transmitter (Arduino) Code Overview

- Initializes LoRa module and ultrasonic sensor.
- Measures distance at regular intervals.
- Sends a **LoRa packet** when an object is detected.
- Allows manual messages via the serial monitor.

6.2 Receiver (ESP32) Code Overview

- Initializes LoRa module.
- **Listens** for incoming packets.
- If an object detection signal is received, it activates the LED.
- If the object is removed, it **deactivates the LED** after a set delay.
- Reads RSSI and SNR values for analysis.

7. Working Mechanism

- 1. User places an object (bag) on a rack.
- 2. **Ultrasonic sensor detects the object** and measures distance.
- 3. LoRa transmitter sends data to the receiver (ESP32).
- 4. ESP32 turns ON the LED lighting system.
- 5. When the object is removed, ESP32 turns OFF the lights after a delay.

8. Challenges and Learnings

- **Simultaneous transmission issue:** LoRa is a simplex communication protocol, meaning both devices **cannot send data at the same time**.
- Message acknowledgment (ACK) not implemented: Future upgrades could include bidirectional communication for confirmation messages.
- **Power consumption considerations:** Optimizations such as **low-power mode** can be explored.
- **Signal strength and range testing:** LoRa's **RSSI and SNR** were analyzed to ensure reliable transmission.

9. Future Enhancements

- Implement **ACK messages** for reliable transmission.
- Use low-power modes to extend battery life.
- Add multiple sensors for enhanced automation.
- Develop a **mobile app interface** to monitor and control the lighting system remotely.

10. Conclusion

This project successfully demonstrates **long-range**, **low-power wireless communication** using LoRa for **automated lighting control**. The setup is efficient, scalable, and can be further enhanced with advanced features such as **two-way communication**, **cloud integration**, **and remote control**.