FB DCSM Prof. Dr. Steffen Reith

Probeklausur zur Vorlesung

Diskrete Strukturen

25. Januar 2013

Name:	Vorname:	
Matrikelnummer:	Unterschrift:	

Die folgende Tabelle ist nicht für Sie bestimmt, sondern für die Punkteverwaltung!

Aufgabe	1	2	3	4	5	6	\sum
Erreichbare Punkte	8	7	10	8	12	14	45 (+14)
Erreichte Punkte							

- Die Dauer der Klausur beträgt 90 Minuten. Zum Bestehen benötigen Sie 50% der Punkte.
- Es sind **keine** Hilfsmittel zugelassen. Entfernen Sie insbesondere Mobiltelefone, Vorlesungsmitschriften, lose Blätter und Bücher von Ihrem Tisch!
- Sollte es Unklarheiten mit den Aufgabenstellungen geben (z.B. aufgrund sprachlicher Probleme), dann können Sie, zur Klärung **dieser** Fragen, während der Klausur **kurze** Fragen stellen. Lesen Sie die Aufgabenstellungen **vollständig**!
- Die Bindung der Blätter dieser Klausur darf nicht entfernt werden!
- Aufgabe 6 ist eine **optionale** Zusatzaufgabe.
- Bitte legen Sie Ihren Studentenausweis und einen Lichtbildausweis auf den Tisch!
- Täuschungsversuche aller Art werden mit der **Note 5** geahndet! Beachten Sie, dass auch **elektronische Geräte** (z.B. Mobiltelefone) **unerlaubte Hilfsmittel** darstellen!
- Bitte schreiben Sie deutlich. Unleserliche Lösungen werden nicht gewertet!
- Jeder Lösungsweg muss klar ersichtlich sein. Algorithmen jeder Art sind zu kommentieren!
- Von der Vorlesung abweichende Notationen sind zu definieren!
- Am Ende finden Sie drei leere Seiten zur freien Verfügung. Sie können zusätzlich auch die Rückseite der Blätter benutzen, um Lösungen der Aufgaben darauf zu schreiben! Andere Papierbögen sind nicht zulässig!
- Nach der Korrektur Ihrer Klausur können Sie im Rahmen meiner **Sprechstunde** (oder nach Vereinbarung) in die Korrektur **Einsicht nehmen**.

	U	Frundlagen			(8 Punkte
Markieren Sie die fol Kreuze als Markierun	•	nit R für <i>ric</i>	chtig und mit F für	falsch. Beacht	en Sie, das
Zwei Mengen A	und B sind gleich,	wenn A Tei	lmenge von ${\cal B}$ und	B Teilmenge	von A .
Die Menge der g	anzen Zahlen ist nic	cht abzählba	ar.		
Seien H_1 und H_2	aussagenlogische I	Formeln, da	nn gilt $H_1 \vee (H_1 \wedge$	$H_2)\equiv H_1.$	
Eine binäre Relat	ion R zwischen A u	und B ist ei	ne Teilmenge von A	$4 \times B$.	
Die Potenzmenge	e von $\{Q, W, E, R, R\}$	T,Z enthä	ilt 63 Elemente.		
	neißt <i>injektiv</i> , wenn $\neq f(b)$.	für alle Ele	mente a und b aus c	lem Definition	sbereich au
Eine aussagenlog	ische Formel heißt	Kontradikti	on, wenn Sie von je	eder Belegung	erfüllt wird
Die Zahlen 7 und	31 sind teilerfremo	1.			
ufgabe 2	Logiso	che Grund	agen		(7 Punkte
 Gegeben sei die belle korrekt aus 	Formel $H = \neg((x_1$ s. Verwenden Sie di				ıeitswerteta
	$x_1 \mid x_2 \mid x_3 \mid$	$x_1 \leftrightarrow x_2$	$((x_1 \leftrightarrow x_2) \lor x_3)$	H	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			
	0 1				
	0 1 1				
	$\begin{array}{c cc} & 0 & 0 \\ \hline 1 & 0 & 1 \end{array}$				
	1 1 0				
	1 1	1			
					1 77 0 11
2. Sei $p(x)$: " x ist folgende Aussag	Primzahl". Formuli ge über dem Univer			en eine Forme	el H_P für dı

Matrikelnı	ummer:
3.	Seien $p(x)$ und $q(x)$ beliebige Aussageformen über einem beliebigen Universum. Schreiben Sie die Formel $H = \neg(\forall x \ p(x) \lor \exists y \ q(y))$ so um, dass (die) Negation(en) <i>nur direkt</i> vor den Aussageformen p und q auftritt (auftreten).
	$H\equiv$

Aufgabe 3

Mengen und Mengenoperationen

(10 Punkte)

1. Gegeben sei die Menge $Z=\{M,A,D\}$. Geben Sie alle Elemente der Potenzmenge an:

$$\mathcal{P}(Z) =$$

2. Seien $A=\{1,2,3,4\}$, $B=\{3,4,7,9\}$ und $C=\{3,8,9\}$ Mengen, wobei $A,B,C\subseteq\mathbb{N}$, d.h. \mathbb{N} ist das Universum. Bestimmen sie die folgenden Mengen:

$i) \ \overline{(\overline{A} \cap \overline{B})} \cup C =$	
$(A \cup \overline{B}) \cap A = 0$	

3. Sei $A=\{a,b,c\}$ und $B'=\{1,2\}$ und $B=B'\cup\{3\}$. Geben Sie die Mengen

$i) A \times B' =$	und
$ii) A \times B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	

vollständig an.

Matrikelnummer:	
-----------------	--

4. Verwenden Sie die vollständige Induktion um die Richtigkeit der folgenden Aussage zu zeigen. Sind A und B Mengen mit #A=n und #B=m, dann gilt $\#(A\times B)=n\cdot m$. (IA) m=0:

- (IV) Wenn #A=n und #B=m, dann gilt $\#(A\times B)=n\cdot m$
- **(IS)** $m \to m + 1$:

Hinweis: Lassen A fest und zerlegen Sie die Menge B, so dass die (IV) verwendet werden kann. Evtl. ist Teilaufgabe 3 für Ihre Überlegungen hilfreich.

Aufgabe 4

Relationen und Funktionen

(8 Punkte)

Seien n>1, A' eine beliebige Menge mit n-1 Elementen und $A=A'\cup\{x\}$, wobei x nicht in A' vorkommt.

(a) Wieviele Elemente sind in $\mathcal{P}(A')$ bzw. $\mathcal{P}(A)$ enthalten?

$$\#\mathcal{P}(A') =$$

$$\#\mathcal{P}(A) =$$

(b) Gibt es eine bijektive Funktion f der Form $f \colon \mathcal{P}(A) \to \mathcal{P}(A')$? Begründen Sie Ihre Antwort kurz aber fundiert!

(c) Gibt es eine bijektive Funktion g der Form $g \colon \mathcal{P}(A') \to \mathcal{P}(A)$? Begründen Sie Ihre Antwort kurz aber fundiert!

5. Welche drei Eigenschaften hat eine

Äquivalenzrelation:

und	
-----	--

Halbordnung:

und

Matrikelnummer:	
ivian ikemammer.	

Aufgabe 5

Graphentheorie und Induktion

(12 Punkte)

- 1. Gegeben sei der ungerichtete Graph $G_4 = (\{a, b, c, d\}, \{(a, b), (b, c), (c, d), (d, a), (a, c), (b, d)\}).$
 - i) Geben Sie eine graphische Repräsentation von G_4 an:

- ii) Ist G_4 planar? Begründen Sie Ihre Aussage!
- 2. Die ersten fünf Schlangengraphen haben die folgende graphische Repräsentation:

i) Finden Sie eine induktive Definition für alle Schlangengraphen $S_n = (V_n, E_n)$, wobei der n-te Schlangengraph die Knotenmenge $\{1, 2, \ldots, n\}$ verwendet.

$$V_n =$$

(IA)
$$E_1 =$$

(IS)
$$E_{n+1} =$$

Matrikelnummer:	
-----------------	--

- ii) Beweisen Sie mit Hilfe der vollständigen Induktion und geeignet kommentierter Bilder bzw. graphischer Repräsentationen, dass S_n für $n \geq 1$ planar ist. (IA)
 - (IV) S_n ist planar.
 - (IS) $n \to n+1$:

Aufgabe 6 Bonusaufgabe (14 Punkte)

1. Sei $f: \mathbb{Z} \to \mathbb{Z}$ die durch $f(x) = x^2$ definierte Funktion. Belegen Sie durch geeignete Zahlenbeispiele, dass f weder injektiv noch surjektiv ist.

2. Sei $B =_{\operatorname{def}} \{x \mid x \in \mathbb{Q} \text{ und } x \neq 1\}, g \colon B \to B \text{ und }$

$$g(x) = \frac{x}{x - 1}$$

Matrikelnummer:	

Zeigen Sie, dass g bijektiv ist.

3. Sei $R\subseteq \mathbb{Z}\times \mathbb{Z}$, wobei $R=\{(x,y)\mid 4x-4y \text{ ist gerade}\}$. Zeigen Sie, dass R eine Äquivalenzrelation ist.

4. Geben Sie bei dieser Aufgabe immer möglichst kleine, aber positive, natürliche Zahlen für \boldsymbol{x} an, sodass die angegebene Kongruenz korrekt wird:

i)
$$3*21 \equiv x \mod 3, x =$$

ii)
$$41*7 \equiv x \mod 10, x =$$

iii)
$$17^2 \equiv x \mod 11, x = \boxed{}$$

iv)
$$7 + 14 \equiv x \mod 2, x = \boxed{}$$

5. Sei A die Menge aller zu 28 teilerfremden Zahlen aus dem Interval (1,28). Geben Sie alle Elemente von A explizit an:

A =	
-----	--

Notizen 1

Notizen 2

Notizen 3