projectmaths Real Functions of a Real Variable and Their Geometrical Representation

16 4 Which diagram best shows the graph of an odd function?

16 11 Sketch the graph of $(x - 3)^2 + (y + 2)^2 = 4$.

2 Solution

- 15 13 b
- (i) Find the domain and range for the function $f(x) = \sqrt{9 x^2}$.

2 Solution

2

- (ii) On a number plane, shade the region where the points (x, y) satisfy both of the inequalities $y \le \sqrt{9 x^2}$ and $y \ge x$.
- **14 2** Which graph best represents $y = (x 1)^2$?

Which inequality defines the domain of the function $f(x) = \frac{1}{\sqrt{x+3}}$?

1 Solution

- (A) x > -3
- (B) $x \ge -3$
- (C) x < -3
- (D) $x \le -3$
- **13 11** Sketch the region defined by $(x 2)^2 + (y 3)^2 \ge 4$.

3 Solution

11 4e The diagram shows the graphs of y = |x| - 2 and $y = 4 - x^2$.

2 Solution

Write down the inequalities that together describe the shaded region.

Not to scale

10 1c Write down the equation of the circle with centre (-1, 2) and radius 5.

1 Solution

10 1g Let $f(x) = \sqrt{x-8}$. What is the domain of f(x)?

1 Solution

09 3c Shade the region in the plane defined by $y \ge 0$ and $y \le 4 - x^2$.

2 Solution

06 1c Sketch the graph of y = |x + 4|.

2 Solution