Model-Free Reinforcement Learning

Mathias Winther Madsen

March 1, 2017

Policy Gradient Methods

Policy Gradient Methods

The REINFORCE algorithm: Williams, "Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning" (Machine Learning, 1992)

Task	Random	REINFORCE	TNPG	RWR	REPS	TRPO	CEM	CMA-ES	DDPG
Cart-Pole Balancing Inverted Pendulum* Mountain Car Acrobot Double Inverted Pendulum*	77.1 ± 0.0 -153.4 ± 0.2 -415.4 ± 0.0 -1904.5 ± 1.0 149.7 ± 0.1	4693.7 ± 14.0 13.4 ± 18.0 -67.1 ± 1.0 -508.1 ± 91.0 4116.5 ± 65.2	3986.4 ± 748.9 209.7 ± 55.5 -66.5 ± 4.5 -395.8 ± 121.2 4455.4 ± 37.6	4861.5 ± 12.3 84.7 ± 13.8 -79.4 ± 1.1 -352.7 ± 35.9 3614.8 ± 368.1	565.6 ± 137.6 -113.3 ± 4.6 -275.6 ± 166.3 -1001.5 ± 10.8 446.7 ± 114.8	4869.8 ± 37.6 247.2 ± 76.1 -61.7 ± 0.9 -326.0 ± 24.4 4412.4 ± 50.4	$\begin{array}{cccc} 4815.4 \pm & 4.8 \\ 38.2 \pm & 25.7 \\ -66.0 \pm & 2.4 \\ -436.8 \pm & 14.7 \\ 2566.2 \pm & 178.9 \end{array}$	$\begin{array}{c} 2440.4 \pm 568.3 \\ -40.1 \pm & 5.7 \\ -85.0 \pm & 7.7 \\ -785.6 \pm & 13.1 \\ 1576.1 \pm & 51.3 \end{array}$	4634.4 ± 87.8 40.0 ± 244.6 -288.4 ± 170.3 -223.6 ± 5.8 2863.4 ± 154.0
Swimmer* Hopper 2D Walker Half-Cheetah Ant-Simple Humanoid Full Humanoid	-1.7 ± 0.1 8.4 ± 0.0 -1.7 ± 0.0 -90.8 ± 0.3 13.4 ± 0.7 41.5 ± 0.2 13.2 ± 0.1	92.3 ± 0.1 714.0 ± 29.3 506.5 ± 78.8 1183.1 ± 69.2 548.3 ± 55.5 128.1 ± 34.0 262.2 ± 10.5	96.0 ± 0.2 1155.1 ± 57.9 1382.6 ± 108.2 1729.5 ± 184.6 706.0 ± 127.7 255.0 ± 24.5 288.4 ± 25.2	60.7± 5.5 553.2± 71.0 136.0± 15.9 376.1± 28.2 37.6± 3.1 93.3± 17.4 46.7± 5.6	3.8 ± 3.3 86.7 ± 17.6 -37.0 ± 38.1 34.5 ± 38.0 39.0 ± 9.8 28.3 ± 4.7 41.7 ± 6.1	96.0 ± 0.2 1183.3 ± 150.0 1353.8 ± 85.0 1914.0 ± 120.1 730.2 ± 61.3 269.7 ± 40.3 287.0 ± 23.4	68.8 ± 2.4 63.1 ± 7.8 84.5 ± 19.2 330.4 ± 274.8 49.2 ± 5.9 60.6 ± 12.9 36.9 ± 2.9	64.9 ± 1.4 20.3 ± 14.3 77.1 ± 24.3 441.3 ± 107.6 17.8 ± 15.5 28.7 ± 3.9 N/A ± N/A	85.8 ± 1.8 267.1 ± 43.5 318.4 ± 181.6 2148.6 ± 702.7 326.2 ± 20.8 99.4 ± 28.1 119.0 ± 31.2
Cart-Pole Balancing (LS)* Inverted Pendulum (LS) Mountain Car (LS) Acrobot (LS)*	77.1 ± 0.0 -122.1 ± 0.1 -83.0 ± 0.0 -393.2 ± 0.0	420.9 ± 265.5 -13.4 ± 3.2 -81.2 ± 0.6 -128.9 ± 11.6	945.1 ± 27.8 9.7 ± 6.1 -65.7 ± 9.0 -84.6 ± 2.9	68.9 ± 1.5 -107.4 ± 0.2 -81.7 ± 0.1 -235.9 ± 5.3	898.1 ± 22.1 -87.2 ± 8.0 -82.6 ± 0.4 -379.5 ± 1.4	960.2 ± 46.0 4.5 ± 4.1 -64.2 ± 9.5 -83.3 ± 9.9	227.0 ± 223.0 -81.2 ± 33.2 -68.9 ± 1.3 -149.5 ± 15.3	68.0 ± 1.6 -62.4 ± 3.4 -73.2 ± 0.6 -159.9 ± 7.5	
Cart-Pole Balancing (NO)* Inverted Pendulum (NO) Mountain Car (NO) Acrobot (NO)*	$\begin{array}{c} 101.4 \pm 0.1 \\ -122.2 \pm 0.1 \\ -83.0 \pm 0.0 \\ -393.5 \pm 0.0 \end{array}$	616.0 ± 210.8 6.5 ± 1.1 -74.7 ± 7.8 -186.7 ± 31.3	916.3 ± 23.0 11.5 ± 0.5 -64.5 ± 8.6 -164.5 ± 13.4	93.8± 1.2 -110.0± 1.4 -81.7± 0.1 -233.1± 0.4	$\begin{array}{ccc} 99.6 \pm & 7.2 \\ -119.3 \pm & 4.2 \\ -82.9 \pm & 0.1 \\ -258.5 \pm & 14.0 \end{array}$	606.2 ± 122.2 10.4 ± 2.2 -60.2 ± 2.0 -149.6 ± 8.6	$\begin{array}{c} 181.4 \pm & 32.1 \\ -55.6 \pm & 16.7 \\ -67.4 \pm & 1.4 \\ -213.4 \pm & 6.3 \end{array}$	$\begin{array}{ccc} 104.4 \pm & 16.0 \\ -80.3 \pm & 2.8 \\ -73.5 \pm & 0.5 \\ -236.6 \pm & 6.2 \end{array}$	
Cart-Pole Balancing (SI)* Inverted Pendulum (SI) Mountain Car (SI) Acrobot (SI)*	76.3 ± 0.1 -121.8 ± 0.2 -82.7 ± 0.0 -387.8 ± 1.0	431.7 ± 274.1 -5.3 ± 5.6 -63.9 ± 0.2 -169.1 ± 32.3	980.5 ± 7.3 14.8 ± 1.7 -61.8 ± 0.4 -156.6 ± 38.9	69.0 ± 2.8 -108.7 ± 4.7 -81.4 ± 0.1 -233.2 ± 2.6	$\begin{array}{c} 702.4 \pm 196.4 \\ -92.8 \pm & 23.9 \\ -80.7 \pm & 2.3 \\ -216.1 \pm & 7.7 \end{array}$	980.3 ± 5.1 14.1 ± 0.9 -61.6 ± 0.4 -170.9 ± 40.3	746.6 ± 93.2 -51.8 ± 10.6 -63.9 ± 1.0 -250.2 ± 13.7	$\begin{array}{ccc} 71.6 \pm & 2.9 \\ -63.1 \pm & 4.8 \\ -66.9 \pm & 0.6 \\ -245.0 \pm & 5.5 \end{array}$	
Swimmer + Gathering Ant + Gathering Swimmer + Maze Ant + Maze	0.0 ± 0.0 -5.8 ± 5.0 0.0 ± 0.0 0.0 ± 0.0	0.0 ± 0.0 -0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0	$\begin{array}{ccc} 0.0 \pm & 0.0 \\ -0.4 \pm & 0.1 \\ 0.0 \pm & 0.0 \\ 0.0 \pm & 0.0 \\ \end{array}$	$\begin{array}{ccc} 0.0 \pm & 0.0 \\ -5.5 \pm & 0.5 \\ 0.0 \pm & 0.0 \\ 0.0 \pm & 0.0 \end{array}$	$\begin{array}{ccc} 0.0 \pm & 0.0 \\ -6.7 \pm & 0.7 \\ 0.0 \pm & 0.0 \\ 0.0 \pm & 0.0 \\ \end{array}$	$\begin{array}{ccc} 0.0 \pm & 0.0 \\ -0.4 \pm & 0.0 \\ 0.0 \pm & 0.0 \\ 0.0 \pm & 0.0 \end{array}$	$\begin{array}{ccc} 0.0 \pm & 0.0 \\ -4.7 \pm & 0.7 \\ 0.0 \pm & 0.0 \\ 0.0 \pm & 0.0 \end{array}$	0.0 ± 0.0 N/A ± N/A 0.0 ± 0.0 N/A ± N/A	$\begin{array}{ccc} 0.0 \pm & 0.0 \\ -0.3 \pm & 0.3 \\ 0.0 \pm & 0.0 \\ 0.0 \pm & 0.0 \end{array}$

Table: Duan, Chen, Houthooft, Schulman and Abbeel, "Benchmarking Deep Reinforcement Learning for Continuous Control," *Proceedings of the ICML*, 2016.

Reinforcement Learning = Game Theory

$$J(W) = E[r(S_0, U_0) + r(S_1, U_1) + \cdots + r(S_{T-1}, U_{T-1}) | W]$$

Reinforcement Learning = Game Theory

Action ~ Distribution(History, Weights)

The Policy Gradient Method

The Policy Gradient Method

For *I* epochs:

Collect N episodes, using your stochastic policy;

Rate your actions according to their (empirical) consequences.

Change W so that the good actions become more probable.

Importance Weighting

$$E_{new}[X] = E_{old}\left[X \cdot \frac{p_{new}}{p_{old}}\right]$$

The Policy Gradient

$$\nabla_{W} E_{W} [Reward] = E_{W_{0}} \left[Reward \cdot \frac{\nabla_{W} p_{W}}{p_{W_{0}}} \right]$$

The Fisher Score

$$F(\theta \,|\, x) \quad = \quad \frac{\nabla_\theta \, p(x \,|\, \theta)}{p(x \,|\, \theta)} \quad = \quad \nabla_\theta \, \log p(x \,|\, \theta)$$

The Fisher Score

$$\nabla_{(\mu,\tau)} \, \log \left(\sqrt{\frac{\tau}{\pi}} \, \exp \left\{ -\tau (x-\mu)^2 \right\} \right) \ = \ \left(\begin{array}{c} 2\tau (x-\mu) \\ (2\tau)^{-1} - (x-\mu)^2 \end{array} \right)$$

The Policy Gradient

Dart-Throwing Game: $R(u) = -\|u - u^*\|^2$

Scores Given Rollouts

Scores Given Rollouts

$$\frac{\nabla \left(q_0 \, p_1 \, q_1 \, p_1 \, q_2 \, p_2 \, \cdots \, q_{T-1} \, p_{T-1}\right)}{\left(q_0 \, p_1 \, q_1 \, p_1 \, q_2 \, p_2 \, \cdots \, q_{T-1} \, p_{T-1}\right)} \quad = \quad \frac{\nabla \left(p_1 \, p_1 \, p_2 \, \cdots \, p_{T-1}\right)}{\left(p_1 \, p_1 \, p_2 \, \cdots \, p_{T-1}\right)}$$

Hence:

$$F = \nabla \log p_0 + \nabla \log p_1 + \nabla \log p_2 + \dots + \nabla \log p_{T-1}$$

Repeat-After-Me Game: $R(s, u) = -\|s - u\|^2$

$$s \sim \mathcal{N}(1/2, 1)$$

$$F\left(\begin{array}{c|c} a \\ b \end{array}\middle| s, u\right) = \left(\begin{array}{c|c} (as + b - u)s \\ (as + b - u)\end{array}\right)$$
 $u \sim \mathcal{N}(as + b, 1)$

Repeat-After-Me Game: $R(s, u) = -\|s - u\|^2$

Apportioning Blame

$$R = R_0 + R_1 + R_2 + \cdots + R_{T-1}$$

 $F = \nabla \log p_0 + \nabla \log p_1 + \nabla \log p_2 + \cdots + \nabla \log p_{T-1}$

Apportioning Blame

```
E \left[ \begin{array}{ccccc} F_0R_0 & F_0R_1 & F_0R_2 & \cdots & F_0R_{T-1} \\ F_1R_0 & F_1R_1 & F_1R_2 & \cdots & F_1R_{T-1} \\ F_2R_0 & F_2R_1 & F_2R_2 & \cdots & F_2R_{T-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ F_{T-1}R_0 & F_{T-1}R_1 & F_{T-1}R_2 & \cdots & F_{T-1}R_{T-1} \end{array} \right] =
                                        E \left[ \begin{array}{ccccc} F_0 R_0 & F_0 R_1 & F_0 R_2 & \cdots & F_0 R_{T-1} \\ 0 & F_1 R_1 & F_1 R_2 & \cdots & F_1 R_{T-1} \\ 0 & 0 & F_2 R_2 & \cdots & F_2 R_{T-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & F_{T-1} R_{T-1} \end{array} \right]
```

Apportioning Blame

Keeping or dropping the zero-mean terms.

The Policy Gradient Method

```
For I epochs:
    For N episodes:
        Perform a rollout of length T;
        For each action u_t in the rollout:
          Compute the score F(W | u_t);
          Compute the tailsum \sum_{v=t}^{T-1} R_v;
        g_n = \text{sum}(\text{the reward-weighted scores});
    g = average(the samples g_n);
    Move W in the direction of g.
```