This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

REMARKS

The Notice of Non-Compliant Amendment states that the claims filed on April 16, 2004 do not comply with the requirements of 37 C.F.R. § 1.121(c) because claims 28 and 29 are listed as "previously presented" but in fact are "currently amended." In response, Applicants are submitting an Amendment which is substantially similar to the Amendment filed on April 16, 2004, but which has been amended to correct this inadvertent error.

After entry of this Amendment, claims 14, 16-20, 23-29, 31-32 and 35-37 will be pending and under consideration in this application.

Claims 14, 16, 19-20, 23-29 and 31-32 have been amended. Claims 35-41 have been added. Support for the claim amendments and for the new claims can be found throughout the specification. (The specific support for the claim amendments and new claims will be discussed below.) Applicants respectfully submit that none of the claim amendments add new matter to the application.

Claims 1, 3-4, 7-9 and 12-13 have been cancelled without prejudice. Applicants reserve the right to file an application which claims priority to the instant application and contains the subject matter of the cancelled claims.

Indefiniteness Rejections under 35 U.S.C. §112, ¶2

The Examiner has rejected claims 1, 3, 4, 7-9, 12-14, 16-20, 23-29, 31 and 32 under 35 U.S.C. §112, ¶2, as being indefinite due to their recitation of M64347_at. The Examiner states that M64347_at is a GenBank Accession No. and therefore an object which is variable.

Claims 1, 3-4, 7-9 12 and 13 have been cancelled and, therefore, the rejection with respect to these claims has been obviated.

Applicants respectfully traverse the rejection with respect to claims 14, 16-20, 23-29, 31 and 32, which have been amended to refer to an informative gene comprising certain nucleotides of GenBank Accession No. M64347. Support for this amendment can be found at in the specification which discloses that the Affymetrix "HuGeneFL array" was used, and that M64347_at marker was upregulated. See Amendments to the Specification submitted in July 30, 2003, under the heading "Microarray hybridization" and Table 1. As indicated in the Affymetrix

website (Exhibit A), M64347_at refers to a set of probes which detect nucleotides 3336-3720 of GenBank Accession No. M64347.

Applicants submit that reference to a GenBank Accession No. does not render the claims indefinite. A person of ordinary skill in the art would be able to determine the nucleotide sequence of a gene by reference to its GenBank Accession No. Further, while a GenBank Accession No. can be revised, a person of ordinary skill in the art would be to identify any revisions made to a sequence over time. Attached as Exhibit B is print-out from the National Center for Biotechnology Information ("NCBI") website which summarizes their policy with respect to sequences revisions (see page 1 of the Exhibit), and states that a person reviewing the records for a particular GenBank Accession No. would be able to determine whether a particular sequence has been revised and would be able to access previous versions of the sequence (see page 3 of the Exhibit).

Furthermore, a search of the United States Patent and Trademarks Office ("USPTO") granted patents database reveals that the USPTO has granted patents containing claims which recite sequences by references to their GenBank Accession Nos.¹ Thus, Applicants respectfully request that the Examiner withdraw this rejection.

The Examiner has also rejected claims 12-13, 24-25, 28 and 29 for referring to Table 1 and Tables 2-6. Further, the Examiner states that the reference to the genes in Tables 1-6 by reference to their GenBank Accession Nos. renders the claims indefinite.

Claims 12 and 13 have been cancelled and, therefore, the rejection with respect to these claims has been obviated.

Claims 24-25, 28 and 29 have been amended to replace the reference to the Tables with reference to the GenBank Accession Nos. for the genes disclosed in the Table. Support for this amendment can be found at Tables 1 and 6. Table 1 lists the genes by reference to the probes used to detect the genes disclosed in Table 1, which correlate to the GenBank Accession Nos. for the genes disclosed in the Table 1. Exhibit C provides information obtained from the Affymetrix website which shows such correlation. Note that Exhibit C does not provide the information for all of the probes disclosed in Table 1 since the purpose of the exhibit is to

¹ The query used was: "GenBank Accession Number" or "GenBank Accession No." in claims. This search resulted in 18 hits. Among the relevant hits were: U.S. Patent Nos. 6,667,065, 6,627,193, 6,468,773, and others.

demonstrate that the reference to the probes in Table 1 correlates with the GenBank Accession Nos. of the genes disclosed in Table 1.

Applicants traverse the Examiner's statement that references to GenBank Accession Nos. render the claims indefinite for the reasons discussed above. Accordingly, Applicants respectfully submit that the scope of claims 24-25, 28 and 29 is definite, and request the Examiner to withdraw this rejection.

Applicants note that claims 40 and 41 have been added. Support for the claims can be found throughout the specification, particularly at Tables 1 and 6. Applicants respectfully submit that claims 40 and 41 are definite.

The Examiner has rejected claim 1 as indefinite "for failing to [show the] how the expression profile is correlated with a specific brain tumor type." Further, the Examiner states that "the metes and bounds of two or more informative genes beyond the M64347" is unclear. Claim 1 has been cancelled and, therefore, this rejection has been obviated.

The Examiner has rejected claims 8, 9, 19 and 20 as indefinite because they "lack active method steps, as the recitation of 'utilizing' does not constitute a specific method step."

Claims 8 and 9 have been cancelled and, therefore, the rejection with respect to these claims has been obviated. Applicants respectfully traverse this rejection with respect to claims 19 and 20. Applicants submit that the recitation of "utilizing" in claims 19 and 20 is not intended to be a further method step. Instead the recitation of utilizing provides a further definition of how to determine a gene expression profile. Applicants have amended the claims to improve their form and clarify this point. Accordingly, Applicants respectfully request that the Examiner withdraw this rejection.

The Examiner has rejected claim 14 as indefinite because the use of the term "the sample" lacks antecedent basis. Claim 14 as amended refers to "the brain tumor" rather than "the sample." This amendment renders the rejection moot.

The Examiner has rejected claim 23 as indefinite for its recitation of "survival after treatment" as the predicted treatment outcome. Applicants have amended claim 23 to require the predicted treatment outcome to be a good prognosis of survival after treatment or treatment failure. Support for amended claim 23 can be found at page 9, lines 23-26 of the Substitute Specification. This amendment renders the rejection moot.

The Examiner has rejected claims 26 and 27 as indefinite because of their recitation of: "informative genes", "magnitude", "class distinction", "winning", and "summing the votes", "the sample to be tested", "first class" and "second class". (See Office Action, pages 3-4.) More specifically, with respect to claim 26, the Examiner states that "it is unclear how the 'magnitude' of the vote is to be determined because 'depending on the expression level of the gene' does not accurately define the mathematical relationship between the gene expression and the magnitude of the vote" (Office Action, page 3).

In response to the Examiner's rejections of claims 26 and 27, Applicants traverse in part and amend in part. Applicants have amended these claims to improve their form and to more clearly define the claimed invention. Applicants respectfully submit that the amended claims would be considered definite by a person having ordinary skill in the art.

The claims as amended require calculating the weighted vote of each informative gene. According to the specification, "informative genes" refers to "genes whose expression correlates with a particular phenotype." (See Substitute Specification, page 8, lines 23-25 and page 9, lines 13-16.) Thus, with respect to claims 26 and 27, an informative gene is one which correlates with treatment outcome.

Further, the claims have been amended to clarify "class distinction", "first class" and "second class". Applicants respectfully submit that based on the information disclosed in the specification and the knowledge in the art, a person of skill in the art at the time the application was filed would be able to calculate the weighted vote for an informative gene, and to sum up the votes to determine a winning class as required by claims 21 and 22. The weighted voting algorithm was well known in the art at the time the application was filed as evidenced by the fact that the specification cites to three references which use this method. *See* Substitute Specification, page 32, lines 27-28 and Amendments to the Specification submitted in July 30, 2003, under the heading "Weighted Voting", citing to: U.S. Application No. 09/544,627 (now issued as U.S. Patent No. 6,647,341), Golub 1999, and Slonim 2000.

Finally, the Examiner states that claims 26 and 27 are vague and indefinite because it is unclear if the level of gene expression used in the computation is a normalized or non-normalized level. Applicants respectfully traverse. Applicants submit that it is irrelevant to the claimed methods, and that a person of skill in the art would know whether the gene expression

level should be normalized or non-normalized in a particular instance. Accordingly, Applicants respectfully request that the Examiner withdraw this rejection.

Enablement Rejections under 35 U.S.C. §112, ¶1

The Examiner has rejected claims 1, 3, 4, 7-9, 12-14, 16-20 and 23-29 for lack of enablement.

Applicants have cancelled claims 1, 3, 4, 7-9, 12 and 13, directed to methods of classifying a brain tumor. Therefore, the Examiner's rejections with respect to these claims have been obviated.

Applicants traverse the Examiner's enablement rejection with respect to claims 14, 16-20 and 23-29, directed to methods of predicting the efficacy of treating a brain tumor, methods for predicting a treatment outcome of a patient with a brain tumor, methods for evaluating drug candidates for their effectiveness in treating a brain tumor or methods for monitoring the efficacy of a brain tumor.

According to the Examiner, "[t]here are no teachings in the specification to correlate a value which is several standard deviations from the mean with a method of predicting the efficacy of a brain tumor. More specifically, the Examiner states that: (1) the specification does not teach whether the expression of M64347 as shown in Figure 3C was obtained from the brain tumor before treatment or after treatment, (2) it is unclear if the lowered expression of M64347 is indicative or predictive of treatment failure or a treatment success as the title of Figure 3C is "Markers of Treatment Failure" but the heading of Table 1 is "Markers Downregulated with Low Risk" and (3) the specification does not define how the C1 or C0 groups were differentiated and does not teach what constitutes a treatment failure or success in terms of disease free survival or length of survival.

As mentioned above, Applicants traverse. First, the specification teaches that expression of M64347 as shown in Figure 3C was obtained from the brain tumor before treatment. See

Substitute Specification, page 40, line 28 to page 41, line 2.

Second, the specification (Table 1, Table 6 and Figure 3C) shows that the upregulation of M64347 is correlated with a "high risk class" of individuals (e.g., a class of individuals with

poor prognosis for survival after treatment). See Substitute Specification, page 9, lines 13-16 stating that "a sample can be classified as belonging to a high risk class (e.g., a class with poor prognosis for survival after treatment) or a low risk class (e.g., a class with good prognosis for survival after treatment)." Thus, the heading of Table 1 – "Markers Upregulated in High Risk, Downregulated in low Risk" – is not inconsistent with the heading of Figure 3C – "Markers of Treatment Failure" – as it appears to be suggested by the Examiner.

Third, the specification describes that in Figure 3 C0 and C1 correspond to two unsupervised SOM-derived clusters, and that Class C1 tumors are notable for their high ribosomal content. *See* Substitute Specification, page 7, lines 2-4. The specification further states that the C0 and C1 groups were not correlated with patient survival. *See* Substitute Specification, page 41, lines 13-17.

Finally, the specification teaches what constitutes treatment failure or success in terms of disease free survival or length of survival. The specification states that they differentiated "patients who are alive following treatment ('survivors') compared to those [patients] who succumbed to their disease ('failures'; minimum follow-up 24 months for surviving patients; overall median 41.5 months)." See Substitute Specification page 41, lines 17-21.

The Examiner also states that "[t]here is no guidance for a specific polynucleotide probe and hybridization conditions to be used in the determination of an expression profile for . . . the method of predicting the efficacy of treatment." The Examiner noted there are different isoforms of FGFR3, the gene encoded by M64347, and stated that a probe to this gene could hybridize to any number of the polymorphic gene products or alleles. The Examiner concluded that the "specification provides no teachings as to the exact nature of the probe used for the expression profile, thus it cannot be construed from the specification which polymorphic variants, splice variants or alleles are integral to the claimed invention."

Applicants note that not all of the claims recite the use of a probe and/or require the use of hybridization condition to determine an expression profile. In any case, Applicants respectfully traverse the Examiner's rejection to the extent that certain claims require the use of a specific polynucleotide probe and hybridization conditions.

Contrary to the Examiner's assertion, the specification teaches the exact nature of the probes used to determine the expression profiles for the classification of a brain tumor, or the

method of predicting the efficacy of treatment. The specification states that they used Affymetrix's HuGeneFL array. (See Amendments to the Specification submitted in July 30, 2003, under the heading "Microarray hybridization.") Based on this disclosure, a person of skill in the art would have been able to identify the probes present in the array and used in the specification to determine the expression profiles for the method of predicting the efficacy of treating a brain tumor.

More specifically, based on the disclosure, a person skilled in the art would have been able to determine the specific probe used to determine the expression profile of M64347, and the other informative genes disclosed in the specification. The claims have been amended to recite an informative gene comprising nucleotides 3336-3720 of GenBank Accession No. M64347, which are the nucleotide sequences in Affymetrix's HuGeneFL array. See Exhibit A (obtained from Affymetrix's website). Thus, Applicants submit that the claims, as amended, are enabled with respect to the probes which can be used to practice the methods of the claimed invention.

Applicants respectfully submit that, in view of the specification, which teaches that the expression profile of an informative gene which hybridizes to nucleotides 3336 to 3720 of GenBank Accession No. M64347 correlates with efficacy of treating a brain tumor, the fact that there are different allelic variants or isoforms of the gene encoded by GenBank Accession No. M64347 is irrelevant.

Applicants respectfully submit that a person of ordinary skill in the art would know what hybridization conditions should be employed to determine the expression profile of the informative genes of the claims. Moreover, the specification teaches the hybridization conditions used in the experiments disclosed in the specification. (See Amendments to the Specification submitted in July 30, 2003, under the heading "Microarray hybridization.") Thus, Applicants submit that the claims are enabled with respect to the hybridization conditions useful in practicing the methods of the claimed invention.

With respect to claims 26-29, the Examiner states that "the specification does not define the parameters needed to calculated weighted vote for M64347." Applicants respectfully traverse. As discussed above, based on the information disclosed in the specification, a person of skill in the art would know how to determine weighted vote as recited in the claims without undue experimentation as evidenced by the fact that the specification refers to a patent

application (U.S. Application No. 09/544,627, now issued as U.S. Patent No. 6,647,341) and two papers (Golub 1999 and Slonim 2000) that disclose the use of this weighted voting algorithm before the instant application was filed. (See Substitute Specification, page 32, lines 27-28 and Amendments to the Specification submitted in July 30, 2003, under the heading "Weighted Voting.")

The Examiner states that "Applicants arguments regarding the teachings of Golub et al. for methods of determining class and subclass as set forth in U.S. application No. 09/544,627 are unpersuasive" because the instant application could issue before the referenced application. (See Office Action, page 7.) Applicants note that the referenced application has now issued as U.S. Patent No. 6,647,341. Applicants have amended the application accordingly.

In view of the arguments presented above, Applicants respectfully request that the Examiner withdraw the enablement rejections.

Obviousness Rejections

The Examiner has rejected claims 31 and 32 under 35 U.S.C. §103(a) as being unpatentable over U.S. Patent No. 6,500,938 ("Au-Young") in view of Abbass et al., 1997, J. Clin. Endocrinol. Metab., 82:1160-1166) ("Abbass"), or over U.S. Patent No. 6,218,122 ("Friend") in view of Abbass.

The Examiner alleges that Au-Young teaches methods of monitoring the progression of a disease or the efficacy of a treatment comprising detecting an expression profile by means of a micro array. The Examiner alleges that Friend teaches methods for detecting changes in a biological state of a subject which are correlated to one or more disease states and methods for monitoring the efficacies of a therapy comprising the determination of an expression profile from said cells in a patient. However, as admitted by the Examiner, neither Au-Young nor Friend teaches the expression profile of M64347 or the FGFR3 encoded thereby.

The Examiner alleges that *Abbass* teaches "that the expression of the mRNA encoding the secreted form of FGFR3, which would be expressed from the M64347_at gene, is correlated with pituitary adenomas." Further, as admitted by the Examiner, *Abbass* does not teach a correlation between the expression profile of FGFR3 and tumor type, size or aggressiveness. (See 12/31/03 Office Action, page 5.)

It is respectfully pointed out to the Examiner that a proper rejection based on 35 U.S.C. §103 that relies on a combination of prior art references requires a teaching, suggestion, or motivation to combine the teachings of the references; a reasonable expectation of success founded in the cited art of producing the claimed invention; and that such proper combination teaches or suggests all elements of the claimed invention. Applicants respectfully traverse the obviousness rejections for failing to meet all of these requirements for the reasons provided below.

Claims 31 and 32, as amended, recite methods for evaluating drug candidates for their effectiveness in treating brain tumors or methods for monitoring the efficacy of a brain tumor treatment, wherein the brain tumor is selected form the group consisting of mellanoblastomas, glioblastomas, rhabdoid tumors, primitive neuroectodermal tumors, and pineoblastomas. Support for this amendment, and for newly added claims 35-39, can be found throughout the specification. *See, e.g.,* Substitute Specification, page 3, lines 1-2.

Applicants respectfully submit that there is no motivation to combine the references cited by the Examiner to reach the invention of amended claims 31 and 32. The Examiner states that "one of ordinary skill in the art would have been motivated to [combine the references] with a reasonable expectation of success by the teachings of Abbass et al. on the unique expression of the secretable form of FGFR3 mRNA in pituitary adenomas versus the lack of expression of the secretable form of this receptor in normal pituitary." However, none of the references teach the correlation between the gene expression profile of M64347 and effectiveness in treating a brain tumor selected from the group consisting of mellanoblastomas, glioblastomas, rhabdoid tumors, primitive neuroectodermal tumors, and pineoblastomas, or monitoring the efficacy of a treatment for any of the mentioned brain tumors. Therefore, there would be no motivation to combine the references as argued by the Examiner.

Further, even if the references were to be combined as suggested by the Examiner, the combination of references would not teach or suggest the inventions of claims 31 and 32. Rather, the combination of the references would <u>at best</u> teach the use of M64347 to evaluate drug candidates for their effectiveness in treating a pituitary adenoma, or to monitor the efficacy of a pituitary adenoma treatment. Nothing in the cited references suggests or discloses the use of M64347 to evaluate drug or monitor the efficacy of a drug to treat the brain tumors of the claims. Moreover, even if the references were combined, there would be no reasonable

expectation of success. Accordingly, Applicants respectfully request that the Examiner withdraw the obviousness rejections.

Conclusion

In view of the above, each of the presently pending claims in this application is believed to be in immediate condition for allowance. Accordingly, the Examiner is respectfully requested to pass this application to issue.

Applicant believes no fee is due with this response. However, if a fee is due, please charge our Deposit Account No. 18-1945, under Order No. WIBL-P01-561 from which the undersigned is authorized to draw.

Dated: July 15, 2004

Respectfully submitted,

Gloria Fuentes

Registration No.: 47,580 ROPES & GRAY LLP 45 Rockefeller Plaza New York, New York 10111-0087 (212) 497-3624 (212) 497-3650 (Fax)

Attorneys/Agents For Applicant

search site

PRODUCTS ANALYSIS SUPPORT | TECHNOLOGY | RESEARCH COMMUNITY | CORPORATE

-> START)

GETTING

STARTED

-> Wizard

QUERY Expression

- -> Quick Query
- -> Standard Query
- -> Batch Query
- -> BLAST
- -> Probe Match -> UCSC Query

Genotyping

- -> Quick Query
- -> Standard Query
- -> Batch Query
- -> UCSC Query
- -> SNP Finder

QUERY HISTORY

Annotation Views

- -> Expression
- -> Genotyping
- -> BLAST Status

-> New Folder

- -> Expression
- Queries
- (1)All Descriptions (m64347)
- ⇒ all probe sets

(7129)

Full Record

Details for HUGENEFL:M64347_AT

Full Screen

NetAffx Links

Cluster Members Consensus/Exemplar

GeneChip Array Information

M64347_at Probe Set ID

GeneChip

HumanGeneFL Array Array

Organism

Common Human

Name

Probe Design Information

Transcript ID M64347

Sequence

Exemplar sequence Type

Representative

Public ID

M64347, class A, 20 probes, 20 in M64347 3336-3720, Human novel growth facto

Target Description receptor mRNA, 3' cds

M64347 NCBI

Genomic Alignment of Target Sequence

April 2003 (NCBI 33) **Assembly**

Position

% Identity Cytoband

Alignment(s) chr4: 1771773-1772182 (+) UCSC

p16.3

	Representative Transcript	UniGene Description	Position
Overlapping Transcripts	NM_000142 <u>NCBI</u>	fibroblast growth factor receptor 3 (achondroplasia, thanatophoric dwarfism)	chr4:1757261- 1772237 (+) <u>UCSC</u>
	NM_022965 NCBI	fibroblast growth factor receptor 3 (achondroplasia, thanatophoric dwarfism)	chr4:1757261- 1772237 (+) <u>UCSC</u>

Public Domain and Genome References

Gene Title fibroblast growth factor receptor 3 (achondroplasia, thanatophoric dwarfism)

FGFR3 HGNC Gene Symbol

Chromosomal

4p16.3

Location

Hs.1420 NCBI (FULL LENGTH) UniGene ID

ENSG00000068078 Ensembl **Ensembl**

LocusLink 2261 NCBI

P22607 EMBL-EBI

 SwissProt
 Q96T34 EMBL-EBI Q96T35 EMBL-EBI Q96T36 EMBL-EBI Q9NRB6 EMBL-EBI Q9NRB6 EMBL-EBI

 EC
 2.7.1.112

 OMIM
 134934 NCBI

 RefSeq Protein NP_000133 NCBI

RefSeq Transcript ID

NP_075254 NCBI

RefSeq Title

RefSeq

NM_000142 NCBI fibroblast growth factor receptor 3 isoform 1 precursor NM_022965 NCBI fibroblast growth factor receptor 3 isoform 2 precursor

Functional Annotations

	ID	Title	Organisn	n Type
	DROSGENOME1:143549 AT	breathless	Drosophil	a Putative Ortholog
	RAE230A:1369373_AT	fibroblast growth facto receptor 3	r Rat	Putative Ortholog
	RAE230B:1384056_AT	fibroblast growth facto receptor 3	r Rat	Putative Ortholog
	RAE230B:1384829_AT	fibroblast growth facto receptor 3	r Rat	Putative Ortholog
	RG-U34B:RC_AA899336_AT	fibroblast growth facto receptor 3	r Rat	Putative Ortholog
	RG-U34C:RC Al136304 AT	fibroblast growth factoreceptor 3	r Rat	Putative Ortholog
	RG-U34C:RC_Al145424_AT	fibroblast growth factor receptor 3	r Rat	Putative Ortholog
Ortholog	MG-U74AV2:160919 R AT	fibroblast growth factor receptor 3	r Mouse	Curated Ortholog
	MG-U74AV2:162253 AT	fibroblast growth factor receptor 3	r Mouse	Curated Ortholog
	MOE430A:1421841_AT	fibroblast growth factor receptor 3	r Mouse	Curated Ortholog
	MOE430A:1425796 A AT	fibroblast growth factor receptor 3	r Mouse	Curated Ortholog
	MU11KSUBA:M81342_S_AT	fibroblast growth factor receptor 3	Mouse	Curated Ortholog
	MOUSE430 2:1421841 AT	fibroblast growth factor receptor 3	Mouse	Curated Ortholog
	MOUSE430 2:1425796 A AT	fibroblast growth factor receptor 3	Mouse	Curated Ortholog
	MOUSE430A 2:1421841 AT	fibroblast growth factor receptor 3	Mouse	Curated Ortholog
	MOUSE430A 2:1425796 A AT	fibroblast growth factor receptor 3	Mouse	Curated Ortholog
	GO Biological Process (view grap	oh)		
	ID Description	Eviden	ce _	Links
	165 MAPKKK cascade	experimental evidence		uickGO miGO
	1501 skeletal development	predicted/con		uickGO miGO
v	7048 oncogenesis	experimental evidence		uickGO miGO
	7259 JAK-STAT cascade	experimental	<u>C</u>	uickGO

					evidence		AmiG(2
	8543 FG	F receptor sign	naling pa	athway	experiment evidence		Quick(AmiG(<u>30</u>
	GO Cellu	lar Component	t (view g	raph)				
	ID	Desc	ription		Evide	ence	L	inks
Gene Ontology	5887 inte	egral to plasma	membr	ane	experiment evidence		Quick(AmiG(
	GO Mole	cular Function	(view gr	aph)				
	ID	Desci	ription		Evide	ence	L	inks
		oblast growth l ivity	factor re	ceptor	experiment evidence		Quick(AmiG(
	Metho	od ID			Description		E	-Value
	blast	1311204	is pr	oform 2 pre	owth factor recursor; hyd se; tyrosine l ins]	roxyaryl-	0.0	
Protein Similarities	blast	1318625	iso gr pr re	oform 3 pre owth factor otein; prote ceptor like	owth factor recursor; kera r receptor; Kein tyrosine 14; FGF rec	atinocyte (-sam kinase, ceptor;	0.0	
			gr tyi pr	owth factor rosylproteir otein kinas	ressed kinas r receptor Bl n kinase; hyd e [Homo sa	EK; droxyaryl- piens]		
	blast	4503711	iso pr	oform 1 pre	owth factor recursor; hyd ec; tyrosine k ns]	roxyaryl-		
	blast	2045238	0				0.0	
	Method	ID			Description	1		E-Value
	Hanks	FGFR-3	PTK G tyrosin factor	iroup B me e kinases.l receptor fa	FGFR-3) KII mbrane spa PTK XV Fibi mily .FGFR-	nning prote roblast grow 3	in th	1.0E- 166
Protein Families	ec	ZA70 HUMAN	PROTI KDA Z RELAT	EIN KINAS ETA-ASSO IED TYRO	SE ZAP-70 (I OCIATED PI SINE KINAS	EC 2.7.1.11 ROTEIN) (S SE).	2) (70 YK-	7.38E- 99
	Hanks	FGFR-3	PTK G tyrosin	roup B me e kinases.I	FGFR-3) KII mbrane spa PTK XV Fibr mily .FGFR-	nning protei oblast grow	n	1.0E- 167
	ec	ZA70 HUMAN	PROTI KDA Z	EIN KINAS ETA-ASSC	C:2.7.1.112: E ZAP-70 (E CIATED PF SINE KINAS	EC 2.7.1.11 ROTEIN) (S	2) (70	7.38E- 99
	Database) ID			Description			E-Value
	scop	d1gjoa_		SCOP.d.1	144.1.2: Fib	roblast grov	/th	3.81E- 81
	scop			1 SCOP:b. eceptor, FC	1.1.4: Fibro FR	blast growth)	4.95E- 21
	scop	d1gjoa_		SCOP:d.1 eceptor 2	44.1.2: Fib	roblast grov	/th	3.81E- 81

	scop	d1ev2e1	d1ev2e1 SCOP:b.1.1.4: Fibroblast growth factor receptor, FGFR	4.25E- 21
	pfam	<u>ig</u>	Immunoglobulin domain	1.6E-5
	pfam	<u>ig</u>	Immunoglobulin domain	3.2E-8
	pfam	<u>pkinase</u>	Protein kinase domain	2.3E-92
	pfam	ig	Immunoglobulin domain	1.6E-5
	pfam	<u>ig</u>	Immunoglobulin domain	3.2E-8
	pfam	<u>pkinase</u>	Protein kinase domain	2.3E-92
	pfam	<u>ig</u>	Immunoglobulin domain	7.3E-8
	InterPro	IPR000719 EMBL-EBI	Protein kinase	
Protein Domains	InterPro	IPR007110 EMBL-EBI	Immunoglobulin-like	
	InterPro	IPR001245 EMBL-EBI	Tyrosine protein kinase	
	InterPro	IPR008266 EMBL-EBI	Tyrosine protein kinase, active site	
	InterPro	IPR003598 EMBL-EBI	Immunoglobulin C-2 type	

Trans Membrane

ID Number Of Probability of Interior N-Terminus
NP_000133 2 0.11005

Sequence

Target Sequence >HUGENEFL:M64347_AT
gacttcaaagcaagctggtattttcatacaaattcttctaattgctgtgtgtcccaggca
gggagacggtttccagggaggggccggcctgtgtgcaggttccgatgttattagatgtt
acaagtttatatatatatatatatttattgggtttttacaagatgtatttgtg
agacttaacacttcttacgcaatgcttctagagttttatagcctggactgctacctttca
aagcttggagggaagccgtgaattcagttggttcgttctgtactgttactgggccctgag
tctgggcagctgtcccttgcttgcctgcagggccatggctcagggtggtctcttctggg
gcccagtgcatggtggccagaggtgtcacccaaaccggcaggtgcgatt

	Probe Sequence(5'-3')	Probe X	Probe Y	Probe Interrogation Position	Strandedness
	GACTTCAAAGCAAGCTGGTATTTTC	359	161	3348	Antisense
	CATACAAATTCTTCTAATTGCTGTG	360	161	3372	Antisense
	AATTCTTCTAATTGCTGTGTCCC	361	161	3378	Antisense
	TGCTGTGTCCCAGGCAGGGAGAC	362	161	3390	Antisense
	TGTGTGCAGGTTCCGATGTTATTAG	363	161	3438	Antisense
	TCTTACGCAATGCTTCTAGAGTTTT	364	161	3540	Antisense
Ducha Info	GCAATGCTTCTAGAGTTTTATAGCC	365	161	3546	Antisense
Probe Info	GAGTTTTATAGCCTGGACTGCTACC	366	161	3558	Antisense
	TGCTACCTTTCAAAGCTTGGAGGGA	367	161	3576	Antisense
	AAGCTTGGAGGGAAGCCGTGAATTC	368	161	3588	Antisense
	TGAATTCAGTTGGTTCGTTCTGTAC	369	161	3606	Antisense
	GTTCGTTCTGTACTGTTACTGGGCC	370	161	3618	Antisense
	CTGGGCCCTGAGTCTGGGCAGCTGT	371	161	3636	Antisense
	CCTGAGTCTGGGCAGCTGTCCCTTG	372	161	3642	Antisense
	TCTGGGCAGCTGTCCCTTGCTTGCC	373	161	3648	Antisense
	TCCCTTGCTTGCCTGCAGGGCCATG	374	161	3660	Antisense

GCTTGCCTGCAGGGCCATGGCTCAG	375	161	3666	Antisense
CTTGGGGCCCAGTGCATGGTGGCCA	376	161	3702	Antisense
GTGGCCAGAGGTGTCACCCAAACCG	377	161	3720	Antisense
GTCACCCAAACCGGCAGGTGCGATT	378	161	3732	Antisense

Sequence Revision History

PubMed

Entrez

BLAST

OMIM

Taxonomy

Structure

NCBI Home

Site Map brief and complete versions

About NCBI general and contact information

GenBank submit your sequence, general information

Molecular
Databases
nucleotides,
proteins, structures
and taxonomy

Literature
Databases
PubMed, PubRef,
OMIM, Citation
Matcher

Genomes and Maps maps, the human genome and model organisms

Tools for data mining and analysis

Research at NCBI people and projects

Software Engineering Tools, R&D and databases

Education teaching resources and on-line tutorials

FTP site

The <u>Sequence Revision History</u> tool allows you to see the various gi numbers, version numbers, and update dates for sequences that appeared in a specific GenBank record.

E.g., search for U46667 in the tool to see the old and current identifiers of the nucleotide sequence in that record.

Note that the original gi number for the nucleotide sequence, 2734632, does not have a corresponding version number. This is true because it was removed from the database (and replaced by 3172140) before the new accession verion system was implemented in Feb. 1999. At that time, each sequence in the GenBank/EMBL/DDBJ database received a version number of 1 even if they had been updated in the past.

In addition, if a GenBank record contains an updated sequence, the Comment field will contain a cross-reference to the gi number of the earlier sequence. (E.g., see <u>U46667</u> in Entrez.) If you follow the link for that earlier gi number, Entrez will display that version of the GenBank record. Similarly, the Comment field of the older version will have a warning that the sequence has been updated, and will contain a cross-reference to the newer version.

More details about <u>sequence identification numbers</u> (GI and accession.version).

Back to sample record.

download data and software

Help Desk

NCBI

NLM

NIH

Credits

Revised October 1, 2003

Questions about NCBI resources to info@ncbi.nlm.nih.gov

Comments about site map to Renata Geer renata@ncbi.nlm.nih.gov

Sequence Revision History

Find (Accessions, GI numbers or Fasta style Seqlds) U46667

Taxonomy MIMO

About Entrez

Protein

difference between I and II as GenBank/GenPept

Genome

Entrez

Search for Genes LocusLink provides curated information for human, fruit fly, mouse, rat, and zebrafish

Help FAQ

Batch Entrez: Upload a file of GI or accession numbers to retrieve protein Or nucleotide sequences

Check sequence revision history

How to create WWW links to Entrez

LinkOut

Cubby

Related resources

BLAST.

Reference sequence project

LocusLink

Clusters of orthologous groups

Protein reviews on the web

Revision history for <u>U46667</u>

GI	Version	Update Date	Status		
3172140	1.	Aug 7 1998 9:28 AM	Live	•	Ç.
3172140	1	Jun 2 1998 4:31 PM	Dead	ିଠ	•
2734632	n/a	Jan 3 1998 12:12 AM	Dead	0	O.
2734632	n/a	Jan 1 1998 12:30 AM	Dead	္	C

Structure

Accession U46667 was first seen at NCBI on Jan 1 1998 12:30 AM

Disclaimer | Write to the Help Desk NCBI | NLM|NIH

search site

The new GeneChip' One-Cycle and Two-Cycle cDNA Synthesis Kits.

PRODUCTS ANALYSIS SUPPORT TECHNOLOGY RESEARCH COMMUNITY CORPORATE

-> START 1

GETTING STARTED

-> Wizard

QUERY Expression

-> Quick Query

-> Standard Query

-> Batch Query

-> BLAST

-> Probe Match -> UCSC Query

Genotyping

-> Quick Query

Standard Query

-> Batch Query

-> UCSC Query -> SNP Finder

CURRENT QUERY 1 probe sets

-> Annotations

-> Show Orthologs

-> GO Browser

-> Export

QUERY HISTORY

Annotation Views Expression

Genotyping

-> BLAST Status

-> New Folder

-> Expression

Queries (1)All Descriptions

-> (0)All Descriptions

(L17131_rnal_at) (0)All Descriptions

(L17131_mal_at)

(1)All Descriptions (m64347)

- all probe sets (7129)

Genotyping Queries

Full Record

Details for HUGENEFL:L17131_RNA1_AT

Full Screen

NetAffx Links

Cluster Members Consensus/Exemplar

GeneChip Array Information

Probe Set ID L17131_ma1_at

GeneChip

Array

HumanGeneFL Array

Organism Common

Name

Human

Probe Design Information

L17131_ma1 Transcript ID

Sequence

Type

Exemplar sequence

Representative

Public ID

L17131 NCBI

Target Description L17131, class A, 20 probes, 20 in L17131mRNA#1 1646-2198, Human high mobility group protein (HMG-I(Y)) gene exons 1-8, complete cds

Sequence

>HUGENEFL:L17131_RNA1_AT

ttgtccaggtgaggcccaagagccctgtggccgccacctgaggtgggctggggctgctcc cctaaccctactttcgttccgccactcagccatttccccctcctcagatgggcaccaat aacaaggageteaceetgeeegeteeeaaceeeeeteetgeteeteeetgeeeeeaagg tretggttccatttttcctctgttcacaaactacctctggacagttgtgttttttgt

Target Sequence

tcaatgttccattcttcgacatccgtcattgctgctgctaccagcgccaaatgttcatcc tcattgcctcctgttctgcccacgatcccctcccccaagatactctttgtggggaagagg ggctggggcatggcaggctgggtgaccgactaccccagtcccagggaaggtggggccctg cccctaggatgctgcagcagagtgagcaagggggcccgaatcgaccataaagggtgtagg ggccacctcctccccctgttctgttggggaggggtagccatgatttgtcccagcctgggg ctccctctctggtttcctatttgcagttacttgaata

Probe Sequence(5'-3')	Probe X	Probe Y	Probe Interrogation Position	Strandedness
TTGTCCAGGTGAGGCCCAAGAGCCC	294	101	1658	Antisense
AGGTGAGGCCCAAGAGCCCTGTGGC		101	1664	Antisense
ACCAATAACAAGGAGCTCACCCTGC		101	1772	Antisense
TTTTCCTCTGTTCACAAACTACCTC	297	101	1850	Antisense
CTACCTCTGGACAGTTGTGTTGTTT	298	101	1868	Antisense
TTCCATTCTTCGACATCCGTCATTG	299	101	1904	Antisense
TCTTCGACATCCGTCATTGCTGCTG	300	101	1910	Antisense

	GCTACCAGCGCCAAATGTTCATCCT	301	101	1934	Antisense
	TCATCCTCATTGCCTCCTGTTCTGC	302	101	1952	Antisense
	TCATTGCCTCCTGTTCTGCCCACGA	303	101	1958	Antisense
	AAGATACTCTTTGTGGGGAAGAGGG	304	101	1994	Antisense
	GCAGGCTGGGTGACCGACTACCCCA	305	101	2030	Antisense
	CCCCTAGGATGCTGCAGCAGAGTGA	306	101	2078	Antisense
Probe Info	AGCAAGGGGCCCGAATCGACCATA	307	101	2102	Antisense
	CGAATCGACCATAAAGGGTGTAGGG	308	101	2114	Antisense
	GCCATGATTTGTCCCAGCCTGGGGC	309	101	2174	Antisense
	CTGGGGCTCCCTCTCTGGTTTCCTA	310	101	2192	Antisense
	CTCCCTCTCTGGTTTCCTATTTGCA	311	101	2198	Antisense
	CTCTGGTTTCCTATTTGCAGTTACT	312	101	2204	Antisense
	TTTCCTATTTGCAGTTACTTGAATA	313	101	2210	Antisense

search site

PRODUCTS ANALYSIS SUPPORT TECHNOLOGY RESEARCH COMMUNITY CORPORATE

-> START

GETTING

STARTED -> Wizard

= QUERY Expression

-> Quick Query

-> Standard Query -> Batch Query

-> BLAST

-> Probe Match

-> UCSC Query

Genotyping

Quick Query

-> Standard Query

-> Batch Query

-> UCSC Query -> SNP Finder

CURRENT QUERY 1 probe sets

Annotations

-> Show Orthologs

-> GO Browser

-> Export

QUERY HISTORY

Annotation Views

-> Expression

-> Genotyping

-> BLAST Status

-> New Folder

-> Expression Queries

> (1)All Descriptions X74801)

 (1)All Descriptions L17131)

-> (0)All Descriptions (L17131_rnal_at)

(0)All Descriptions L17131_rnal_at)

(1)All Descriptions (m64347)

Genotyping Queries

Full Record

Details for HUGENEFL:X74801_AT

Full Screen

NetAffx Links

Cluster Members Consensus/Exemplar

GeneChip Array Information

X74801_at Probe Set ID

GeneChip Array

HumanGeneFL Array

Organism

Common

Name

Probe Design Information

X74801 Transcript ID

Sequence

Exemplar sequence Type

Human

Representative X74801 NCBI

Public ID Target

X74801, class B, 20 probes, 12 in X74801cds 1282-1552: 8 in reverseSequence,

1636-1837, H.sapiens Cctg mRNA for chaperonin Description

Genomic Alignment of Target Sequence

April 2003 (NCBI 33) Assembly

Position

% Identity Cytoband Alignment(s)

chr1: 153495555-153497649 (-) UCSC

Representative **UniGene Description Transcript** Overlapping

chr1:153495551-153524840 NM 005998 chaperonin containing TCP1

subunit 3 (gamma)

Position

(-) UCSC

Public Domain and Genome References

chaperonin containing TCP1, subunit 3 (gamma) **Gene Title**

CCT3 HGNC Gene Symbol

Chromosomal Location

RefSeq Protein

Transcripts.

1a23

UniGene ID Hs.1708 NCBI (FULL LENGTH)

ENSG00000163468 Ensembl

Ensembl LocusLink

7203 NCBI

AAH06501 EMBL-EBI **SwissProt**

P49368 EMBL-EBI

600114 NCBI OMIM-

NP_005989 NCBI ID

RefSeq Title RefSeq Transcript ID NM_005998 NCBI chaperonin containing TCP1, subunit 3 (gamma)

Functional Annotations

		Title	Organism	Time
	ATH1-121501:246830 AT	Title chaperonin, putative	Organism Arabidopsis	Type Putative Ortholog
	ATGENOME1:18906_AT	chaperonin, putative	Arabidopsis	
	DROSGENOME1:153982 AT		Drosophila	Putative Ortholog
	MG-U74AV2:161238 F AT	chaperonin subunit 3 (gamma)	Mouse	Curated Ortholog
	MG-U74AV2:98153 AT	chaperonin subunit 3 (gamma)	Mouse	Curated Ortholog
	MG-U74CV2:171548 AT	chaperonin subunit 3 (gamma)	Mouse	Curated Ortholog
	MOE430A:1416024_X_AT	chaperonin subunit 3 (gamma)	Mouse	Curated Ortholog
	MOE430A:1426067 X_AT	chaperonin subunit 3 (gamma)	Mouse	Curated Ortholog
	MOE430A:1448178 A AT	chaperonin subunit 3 (gamma)		Curated Ortholog
	MOE430A:1449645 S AT	chaperonin subunit 3 (gamma)		Curated Ortholog
V.	MOE430A:1451915_AT	chaperonin subunit 3 (gamma)		Curated Ortholog
	MOE430A:1459987 S AT	chaperonin subunit 3 (gamma)		Curated Ortholog
nolog	MU11KSUBA:C79428 RC F AT	(gamma)		Curated Ortholog
	MU11KSUBA:L20509 F AT	chaperonin subunit 3 (gamma)		Ortholog
	MOUSE430_2:1416024_X_AT	chaperonin subunit 3 (gamma)		Curated Ortholog
	MOUSE430 2:1426067 X AT	chaperonin subunit 3 (gamma)		Curated Ortholog
	MOUSE430 2:1448178 A AT	chaperonin subunit 3 (gamma)		Curated Ortholog
	MOUSE430 2:1449645 S AT	chaperonin subunit 3 (gamma)		Ortholog
	MOUSE430_2:1451915_AT	chaperonin subunit 3 (gamma)		Ortholog
	MOUSE430 2:1459987 S AT	chaperonin subunit 3 (gamma)		Curated Ortholog
	MOUSE430A 2:1416024 X AT	chaperonin subunit 3 (gamma)		Curated Ortholog
	MOUSE430A 2:1426067 X AT	chaperonin subunit 3 (gamma)		Curated Ortholog
	MOUSE430A 2:1448178 A AT	chaperonin subunit 3 (gamma)		Curated Ortholog
	MOUSE430A 2:1449645 S AT	chaperonin subunit 3 (gamma)		Curated Ortholog
	MOUSE430A 2:1451915 AT	chaperonin subunit 3 (gamma)	Mouse	Curated Ortholog
			1.4	٠

	MOUSE43	30A_2:145998	7 S AT	chaperonin su	bunit 3 Mous		rated
				(gamma)		Orti	holog
	GO Biolog	ical Process (view grapi	٦)			
	ID D	escription		Evidence		Links	
	6457 prote		traceable	author statem	ent Q	uickGO An	niGO
		r Component					
	•	escription		Evidence		Links	
Gene Ontology			not recor		0	uickGO An	niGO
Gene Untology	5856 cytos			author statem	· · ·	uickGO An	
		skeielon Jar Function (internal factor of the contract of the contrac	ont. <u>«</u>	ulcicoo zui	<u></u>
		escription	Alem Alah	Evidence		Links	
		· · · · · · · · · · · · · · · · · · ·			oot Ö	uickGO An	eiGO
		the transfer of the same of		author statem	- · · · · · - 		
	5524 ATP	binding	interrea ti	rom electronic	annotation <u>Q</u>	uickgo An	<u>ligo</u>
	Method	ID		Descri	otion		E-Value
	blast	33873532					0.0
Protein Similarities			naperonin	containing TC	P1, subunit 3	(gamma);	0.0
		T		mplex-1) ring c	omplex, poly	peptide 5	
		[}	lomo sapi	ens]			
	Database	ID		Desci	iption		E-Value
	scop	d1a6da3	d1a6da3	SCOP:d.56.1		ome	4.08E-
	ОООР	4,0000					25
	scop	d1gmla_	d1gmla_	SCOP:c.8.5.2	: Thermoson	ne	1.01E-
							57
	scop	<u>d1a6da1</u>	d1a6da1	SCOP:a.129.	1.2: Thermos	ome	4.81E-
					• - 611		83
Protein	pfam	cpn60_TCP1	TCP-1/c	pn60 chaperon	in ramily		5.7E- 210
Domains	InterPro	IPR002423	Chanem	nin Cpn60/TCI	P-1		
	inten 10	EMBL-EBI	Chapolo	Op			
	InterPro	IPR001844	Chapero	nin Cpn60			
		EMBL-EBI					
	InterPro	IPR002194	Chapero	nin TCP-1			
		EMBL-EBI			4.TD	Tarak Tarak	
	InterPro	IPR008950 EMBL-EBI	GroEL-III	ke chaperone,	AlPase		
		CIVIDL-CDI					
		- 25.001 31	Seque	ence			
	>HUGENEF	L:X74801_A	r gaccata	cagggctgttg	rcccaqqccc	tagaggtc	attcct
	cqtaccct	gatccagaaci	gtgggg	cagcaccatco	gtctactta	cctccctt	cgggcc
v	aaqcacac	ccaqqagaact	gtgagac	ctggggtgtaa	atggtgaga	cgggtact	ttggtg
	gacatgaa	ggaactgggc	itatggga rtactact	gccattggctg gcgaattgatg	jtgaagetge Jacateottt	caggettat	aagaca aaaaaa
Sequence	aaaqqcqa	tgaccagage	ggcaagg	gegggeteetg	gatgctggcc	aggagtga	gtgcta
	ggcaaggc	tacttcaatgo	cacagaac	cagcagagtct	ccccttttc	ctgagcca	gagtgc
	caggaaca	ctgtggacgt	ctttgttc	agaagggatca	iggttggggg	gcagcccc ttctctat	cagtcc
	ctttctgte atttccat	cccagctcag(htagtftgcf1	cccaatca	laagacactgad lttaaatctaag	.acgcaacce itca	ccccac	cacaaa
	- CCCCAL						
					Prol)e	
	D	robe Sequenc	e(5'-3')	Probe P	rope Interrog	lation Strai	ndedness
			-1	X	T Don't	ion	

Probe Info

			•	the second secon
ATGACTGGTGTGGAACAATGGCCAT	60	345	1294	Antisense
GAACAATGGCCATACAGGGCTGTTG	61	345	1306	Antisense
CTGATCCAGAACTGTGGGGCCAGCA	62	345	1360	Antisense
CAGAACTGTGGGGCCAGCACCATCC	63.	345	1366	Antisense
TGTGGGCCAGCACCATCCGTCTAC	64	345	1372	Antisense
CTGGGCATATGGGAGCCATTGGCTG	65	345	1486	Antisense
ATATGGGAGCCATTGGCTGTGAAGC	66	345	1492	Antisense
GAGCCATTGGCTGTGAAGCTGCAGA	67	345	1498	Antisense
TTGGCTGTGAAGCTGCAGACTTATA	68	345	1504	Antisense
GAGACGCAGTTCTGCTACTGCGAA	69	345	1540	Antisense
GCAGTTCTGCTACTGCGAATTGATG	70	345	1546	Antisense
ATTGATGACATCGTTTCAGGCCACA	71	345	1564	Antisense
GTGCTAGGCAAGGCTACTTCAATGC	72	345	1648	Antisense
GGCAAGGCTACTTCAATGCACAGAA	73	345	1654	Antisense
GCTACTTCAATGCACAGAACCAGCA	74	345	1660	Antisense
CACAGAACCAGCAGAGTCTCCCCTT	75	345	1672	Antisense
GAGCCAGAGTGCCAGGAACACTGTG	76	345	1702	Antisense
CACTGACATGTAATTCTTCTCTATT	.77	345	1804	Antisense
TAGTTTGCTTCCGATGATTAAATCT	78	345	1843	Antisense
GCTTCCGATGATTAAATCTAAGTCA	79	345	1849	Antisense

search site

Announcing the New GeneChip* Rat Genome 230 2.0 Array

PRODUCTS ANALYSIS SUPPORT TECHNOLOGY RESEARCH COMMUNITY CORPORATE

-> START 1

GETTING

STARTED -> Wizard

QUERY Expression

-> Quick Query

-> Standard Query

-> Batch Query -> BLAST

-> Probe Match -> UCSC Query

Genotyping

-> Quick Query

-> Standard Query -> Batch Query

-> UCSC Query

-> SNP Finder

CURRENT QUERY 1 probe sets

-> Annotations

-> Show Orthologs

-> GO Browser -> Export

QUERY HISTORY

Annotation Views

-> Expression

-> Genotyping

-> BLAST Status

-> New Folder -> Expression

Queries (1)All Descriptions

(U15008 at) -) (1) All Descriptions (HG3523)

-) all probe sets

→ (1)All Descriptions (X74801)

 (1)All Descriptions (L17131)

-> Genotyping Queries

Full Record

Details for HUGENEFL:U15008_AT

Full Screen

NetAffx Links

Cluster Members Consensus/Exemplar

GeneChip Array Information

U15008_at Probe Set ID

GeneChip

HumanGeneFL Array Array

Organism

Common Human

Name

Probe Design Information

Transcript ID U15008

Sequence

Exemplar sequence Type

Representative

Public ID Target

U15008 NCBI

Description

U15008, class A, 20 probes, 20 in U15008 25-433, Human SnRNP core protein

Sm D2 mRNA, complete cds

Genomic Alignment of Target Sequence

April 2003 (NCBI 33) **Assembly**

Representative

Position % Identity Cytoband Alignment(s)

98

chr19: 50882580-50883664 (-) UCSC q13.32

Position UniGene Description Transcript NM 004597 small nuclear ribonucleoprotein D2 chr19:50882558-Overlapping 50887282 (-) UCSC **NCBI** polypeptide 16.5kDa **Transcripts** NM 177542 small nuclear ribonucleoprotein D2 chr19:50882558-50887282 (-) UCSC **NCBI** polypeptide 16.5kDa

Public Domain and Genome References

small nuclear ribonucleoprotein D2 polypeptide 16.5kDa **Gene Title**

SNRPD2 HGNC Gene Symbol

Chromosomal

19q13.2 Location

UniGene ID Hs.424327 NCBI (FULL LENGTH) ENSG00000125743 Ensembl Ensembl

LocusLink 6633 NCBI

SwissProt P43330 <u>EMBL-EBI</u> 601061 NCBI OMIM

RefSeq Protein		04588 <u>NC</u> 08210 <u>NC</u>		*						
RefSeq	RefS NM_	eq Transcri 004597 <u>NC</u> 177542 <u>NC</u>	ipt ID	, v	lear ribo	RefSeq Title nucleoprote nucleoprote	ein poly	- ,		
			·		er er in der	tations				
		II	D	TOTION	LIMILIO	Title		Organis	m	Type
	ATH	1-121501:2	66482	_AT		uclear ribo D2 -relate		Arabidor		Putative Ortholog
	C. El	_EGANS:1	72931	X AT	small n ribonud like	iuclear cleoprotein	D2	Celegan		Putative Ortholog
	DRO	SGENOME	<u> 1:153</u>	483_AT				Drosoph		Putative Ortholog
Ortholog	MG-L	<u>J74AV2:95</u>	049_A	Ī	small n	uclear deoprotein	D2	Mouse		Curated Ortholog
		430A:1452				leoprotein	D2	Mouse), (Ourated Ortholog
	MU1	1KSUBA:A	A2710	24 S AT		uclear deoprotein	D2	Mouse	(Curated Ortholog
	MOU	SE430_2:1	45268	<u> </u>	small n	uclear deoprotein	D2	Mouse	(Curated Ortholog
	MOU	SE430A_2	:14526	80_AT	small n	uclear leoprotein	D2	Mouse		Curated Ortholog
	GO B	iological P	rocess	(view gra	aph)					
	ID		Desc	ription		E	vidence	•		Links
	245	spliceoso	me as	sembly		traceable statement			<u>Ami</u>	
		mRNA sp				traceable statement			Quic Ami	<u>kGO</u> GO
	2.4	ellular Com			raph)					
	ID			ription			vidence	•		Links
Gene Ontology	5681	spliceoso			1 % 1	traceable statement			<u>Ami</u>	
		complex	: .		•	inferred fr annotation	1		<u>Ami</u>	
		complex	·			traceable statement			Ami	<u>kGO</u> GO
	٠	olecular Fu			apn)		vidence			Limin
	ID	are mDN		ription	r activity	inferred from			1111	Links kGO
	0240	pre-mixiv	A Spiic	ing racioi	activity	annotation		Strorito	Ami	
	Meth	od IC)			Descripti	on	· · · ·	٠	E-Value
Protein	blast	47591				nucleoprotein D2 [Hon			02;	1.0E-62
Similarities	blast	26337								3.0E-62
	blast	47591				nucleoprote in D2 [Hon			D2;	1.0E-62
	blast	26337	731	:						3.0E-62
	Datal	oase	ID		• •	Descript	ion			E-Value
	scop			d1b34b	SCOP	:b.38.1.1:		SNRNP		1.85E-
		<u> </u>			- ·				: .	

		protein	28
	scop <u>d1b34b</u>	d1b34b_SCOP:b.38.1.1: D2 core SNRNP protein	1.85E- 28
Protein	pfam <u>LSM</u>	LSM domain	1.1E-16
Domains	pfam <u>LSM</u>	LSM domain	1.1E-16
	InterPro IPR00116 EMBL-EBI	3 Small nuclear ribonucleoprotein (Sm protein)	

Sequence

>HUGENEFL: U15008_AT

accatcatgagcctcctcaacaagcccaagagtgagatgaccccagaggagctgcagaag ${\tt aataccca} agtgctcatca actgccgcaaca ataagaaactcctgggccgcgtgaaggcc$ $\verb|tcgataggcactgcaacatggtgctggagaacgtgaaggagatgtggactgaggtaccc|$ aagagtggcaagggcaagaagtccaagccagtcaacaaagaccgctacatctccaag atgttcctgcgcggggactcagtcatcgtggtcctgcggaacccgctcatcgccggcaag taggggccgcctgtctgttgacagaactcactcctctgtcctatgaagaccgctgccatt ggtgttgagaata

Target Sequence

	Probe Sequence(5'-3')	Probe X	Probe Y	Probe Interrogation Position	Strandedness
	ACCATCATGAGCCTCCTCAACAAGC	99	211	37	Antisense
	AGTGAGATGACCCCAGAGGAGCTGC	100	211	67	Antisense
	AACACCGGTCCACTCTCTGTGCTCA	101	211	115	Antisense
	GGTCCACTCTCTGTGCTCACACAGT	102	211	121	Antisense
	CTCTCTGTGCTCACACAGTCAGTCA	103	211	127	Antisense
	GTGCTCACACAGTCAGTCAAGAACA	104	211	133	Antisense
	TCAGTCAAGAACAATACCCAAGTGC	105	211	145	Antisense
	AATACCCAAGTGCTCATCAACTGCC	106	211	157	Antisense
Probe Info	CAAGTGCTCATCAACTGCCGCAACA	107	211	163	Antisense
	CGCGTGAAGGCCTTCGATAGGCACT	108	211	205	Antisense
	AAGGCCTTCGATAGGCACTGCAACA	109	211	211	Antisense
	TTCGATAGGCACTGCAACATGGTGC	110	211	217	Antisense
	GTACCCAAGAGTGGCAAGGCAAGA	111	211	271	Antisense
	TACATCTCCAAGATGTTCCTGCGCG	112	211	325	Antisense
	TCAGTCATCGTGGTCCTGCGGAACC	113	211	355	Antisense
	TAGGGCCGCCTGTCTGTTGACAGA	114	211	397	Antisense
	TGACAGAACTCACTCCTCTGTCCTA	115	211	415	Antisense
	CTCCTCTGTCCTATGAAGACCGCTG	116	211	427	Antisense
	TGTCCTATGAAGACCGCTGCCATTG	117	211	433	Antisense
	ACCGCTGCCATTGGTGTTGAGAATA	118	211	445	Antisense

search site

Announcing the New GeneChip* Rat Genome 230 2.0 Array

PRODUCTS ANALYSIS SUPPORT TECHNOLOGY RESEARCH COMMUNITY CORPORATE

-> START 1.

GETTING STARTED

-> Wizard

QUERY Expression

-> Quick Query

-> Standard Query

-> Batch Query

-> BLAST

-> Probe Match

-> UCSC Query

Genotyping

-> Quick Query -> Standard Query

-> Batch Query

-> UCSC Query

-> SNP Finder

= CURRENT QUERY 1 probe sets

-> Annotations

-> Show Orthologs

-> GO Browser

-> Export

QUERY HISTORY

Annotation Views

-> Expression

-> Genotyping -> BLAST Status

-> New Folder -> Expression

Queries

(1)All Descriptions AFFX-BioB-M_st)

(1)All Descriptions (HG613)

- (2)All Descriptions (AFFX-BioDn-5)

(2)All Descriptions

AFFX-BioB-M)

(1)All Descriptions (M12625 at)

Genotyping

Queries

Full Record

Details for HUGENEFL: AFFX-BIOB-M_ST

Full Screen

NetAffx Links

Cluster Members

Consensus/Exemplar

HumanGeneFL Array

GeneChip Array Information

Probe Set ID AFFX-BioB-M_st

GeneChip

Array

Organism Common Human

Name

Probe Design Information

AFFX-BioB-M Transcript ID

Sequence

Control sequence Type

Representative

Public ID

J04423 NCBI

Target Description

Target

Sequence

J04423 E coli bioB gene biotin synthetase (-5, -M, -3 represent transcript regions

5 prime, Middle, and 3 prime respectively)

Sequence

>HUGENEFL: AFFX-BIOB-M_ST

geeggagttttaeggeaatateateaceacacgeaettateaggaaegeetegataeget ggaaaaagtgcgcgatgccgggatcaaagtctgttctggcggcattgtgggcttaggcga aacggtaaaagatcgcgccggattattgctgcaactggcaaacctgccgacgccggca aagcgtgccaatcaacatgctggtgaaggtgaaaggcacgccgcttgccgataacgatga

tgtcgatgcctttgattt

	Probe Sequence(5'-3')	Probe X	Probe Y	Probe Interrogation Position	Strandedness
	GATGATATTGCCGTAAAACTCCGGC	201	11	483	Sense
	TGTGGTGATGATATTGCCGTAAAAC	202	11	489	Sense
	TAAGTGCGTGTGGTGATGATATTGC	203	11	497	Sense
	GTTCCTGATAAGTGCGTGTGGTGAT	204	11	505	Sense
Probe Info	ATCGAGGCGTTCCTGATAAGTGCGT	205	11	513	Sense
	GCATCGCGCACTTTTTCCAGCGTAT	206	11	536	Sense
	GATCCCGGCATCGCGCACTTTTTCC	207	11	543	Sense
	GACTTTGATCCCGGCATCGCGCACT	208	. 11	549	Sense
	CGCCAGAACAGACTTTGATCCCGGC	209	11	559	Sense
	CCCACAATGCCGCCAGAACAGACTT	210	. 11,	569	Sense

Page 2 of 2 Affymetrix - Results

TGCAGCAATAATCCGGCGCGATCTT 211 11 611	Sense
TTGCCAGTTGCAGCAATAATCCGGC 212 11 619	Sense
CGGCAGGTTTGCCAGTTGCAGCAAT 213 11 627	Sense
ATGTTGATTGGCACGCTTTCCGGCG 214 11 656	Sense
CACCAGCATGTTGATTGGCACGCTT 215 11 663	Sense
TTCACCTTCACCAGCATGTTGATTG 216 11 671	Sense
AGCGGCGTGCCTTCACCTTCACCA 217 11 683	Sense
CATCATCGTTATCGGCAAGCGGCGT 218 11 700	Sense
GCATCGACATCGTTATCGGCAA 219 11 707	Sense
AAATCAAAGGCATCGACATCATCGT 220 11 716	Sense

feedback | e-mail support | terms of use | privacy policy 888-DNA-CHIP (888-362-2447) | +44 (0) 1628 552550

search site

The new GeneChip* One-Cycle and Two-Cycle cDNA Synthesis Kits.

PRODUCTS ANALYSIS SUPPORT TECHNOLOGY RESEARCH COMMUNITY CORPORATE

-> START)

GETTING STARTED

-> Wizard

" QUERY Expression

Quick Query

-> Standard Query

-> Batch Query

-> BLAST

-> Probe Match

-> UCSC Query

Genotyping:

-> Quick Query -> Standard Query

-> Batch Query

-> UCSC Query

-> SNP Finder

CURRENT QUERY 1 probe sets

-> Annotations

-> Show Orthologs

-> GO Browser

-> Export

QUERY HISTORY

Annotation Views

-> Expression

-> Genotyping

-> BLAST Status

-> New Folder

-> Expression

Queries -> (1)All Descriptions

AFFX-BioDn-

->(1)All Descriptions

(AFFX-BioB-M_st) (1)All Descriptions HG613)

(2)All Descriptions AFFX-BioDn-5)

-)(2)All Descriptions (AFFX-BioB-M)

Genotyping Queries

Full Record

Details for HUGENEFL: AFFX-BIODN-5_ST

Full Screen

NetAffx Links

Cluster Members Consensus/Exemplar

GeneChip Array Information

AFFX-BioDn-5_st Probe Set ID

GeneChip

Array

HumanGeneFL Array

Organism

Common Human

Name

Probe Design Information

Transcript ID AFFX-BioDn-5

Sequence

Type

Control sequence

Representative

Public ID

J04423 NCBI

Target Description

Target

Sequence

J04423 E coli bioD gene dethiobiotin synthetase (-5 and -3 represent transcript

regions 5 prime and 3 prime respectively)

Sequence

>HUGENEFL:AFFX-BIODN-5 ST

gggaaaactgtcgccagttgtgcacttttacaagccgcaaaggcagcaggctaccggacg gcaggttataaaccggtcgcctctggcagcgaaaagaccccggaaggtttacgcaatagc gacgcgctggcgttacagcgcaacagcagcctgcagctggattacgcaacagtaaatcct tacaccttcgcagaacccacttcgccgcacatcatcagcgcgcaagagggcagaccgata

gaatcattggtaatgagcgccggattacgcgcgcttg

	Probe Sequence(5'-3')	Probe X	Probe Y	Probe Interrogation Position	Strandedness
	GTGCACAACTGGCGACAGTTTTCCC	281	11	49	Sense
	GGCTTGTAAAAGTGCACAACTGGCG	282	11	60	Sense
	GCTGCCTTTGCGGCTTGTAAAAGTG	283	11	71	Sense
	GGTAGCCTGCCTTTGCGGCTTG	284	11	79	Sense
Probe Info	CCGTCCGGTAGCCTGCCTTTGC	285	11	85	Sense
	CAGCGCGTCGCTATTGCGTAAACCT	286	. 11	153	Sense
	GTAACGCCAGCGCGTCGCTATTGCG	287	11	160	Sense
	TTGCGCTGTAACGCCAGCGCGTCGC	288	11	167	Sense
	TGCTGTTGCGCTGTAACGCCAGCGC	289	11	172	Sense
	TGCAGGCTGCTGTTGCGCTGTAACG	290	11	179	Sense

TCCAGCTGCAGGCTGCTGTTGCGCT	291	11	185	Sense
TGCGTAATCCAGCTGCAGGCTGCTG	292	- 11	192	Sense
TTACTGTTGCGTAATCCAGCTGCAG	293	11	199	Sense
CGGTCTGCCCTCTTGCGCGCTGATG	294	11.	261	Sense
GATTCTATCGGTCTGCCCTCTTGCG	295	11	269	Sense
TACCAATGATTCTATCGGTCTGCCC	296	11	276	Sense
CTCATTACCAATGATTCTATCGGTC	297	11	281	Sense
TCCGGCGCTCATTACCAATGATTCT	298	11	288	Sense
CGCGTAATCCGGCGCTCATTACCAA	299	11	295	Sense
CAAGCGCGCGTAATCCGGCGCTCAT	300	11	301	Sense

search site

The new GeneChip® One-Cycle and Two-Cycle cDNA Synthesis Kits.

PRODUCTS ANALYSIS SUPPORT | TECHNOLOGY | RESEARCH COMMUNITY | CORPORATE

-> START)

GETTING STARTED

-> Wizard

= QUERY Expression

- -> Quick Query
- -> Standard Query
- -> Batch Query
- -> BLAST
- -> Probe Match
- -> UCSC Query

Genotyping

- -> Quick Query
- -> Standard Query
- -> Batch Query
- -> UCSC Query
- -> SNP Finder

CURRENT QUERY 1 probe sets

- -> Annotations
- -> Show Orthologs
- -> GO Browser
- -> Export

QUERY HISTORY

Annotation Views

- -> Expression
- -> Genotyping
- -> BLAST Status

-> New Folder.

- -> Expression Queries
 - (1)All Descriptions
 - X15880_at) (1)All Descriptions
- HG4011-
- HT4804_s_at) (1)All Descriptions (AFFX-BioDn-
- st) → (1)All Descriptions
- (AFFX-BioB-M st)
- (1)All Descriptions (HG613)
- Genotyping Queries

Full Record

Details for HUGENEFL:X15880_AT

Full Screen

NetAffx Links

Cluster Members Consensus/Exemplar

GeneChip Array Information

X15880_at Probe Set ID

GeneChip

HumanGeneFL Array Array

Organism

Common Human

Name

Probe Design Information

Transcript ID X15880

Sequence Exemplar sequence

Type

Representative X15880 NCBI

Public ID

X15880, class C, 20 probes, 20 in all_X15880 1690-2273, Human mRNA for

Target collagen VI alpha-1 C-terminal globular domain Description

Genomic Alignment of Target Sequence

April 2003 (NCBI 33) **Assembly**

> % Identity Cytoband **Position**

Alignment(s) q22.3 chr21: 46280561-46281145 (+) UCSC

Representative **UniGene Description**

Transcript Overlapping chr21:46257869-46281164 (+) **Transcripts** NM 001848 collagen, type VI, alpha

UCSC NCBI

Public Domain and Genome References

collagen, type VI, alpha 1 **Gene Title**

COL6A1 HGNC Gene Symbol

Chromosomal

OMIM.

21022.3 Location

Hs.415997 NCBI (FULL LENGTH) UniGene ID

ENSG00000142156 Ensembl Ensembl

1291 NCBI LocusLink

P12109 <u>EMBL-EBI</u>

Q7Z645 EMBL-EBI **SwissProt**

Q8TBN2 EMBL-EBI Q9BSA8 EMBL-EBI

120220 NCBI

Position

	RefSeq Transcript ID	RefSeq Title		
RefSeq		n, type VI, alpha 1 precurs	or	
	Function	al Annotations		
	ID	Title	Organism	Type
	MG-U74AV2:162459 F. AT	procollagen, type VI, alpha 1	Mouse	Curated Ortholog
	MG-U74AV2:95493_AT	procollagen, type VI, alpha 1	Mouse	Curated Ortholog
Ortholog	MOE430A:1448590_AT	procollagen, type VI, alpha 1	Mouse	Curated Ortholog
	MU11KSUBB:X66405 S AT	procollagen, type VI, alpha 1		Curated Ortholog
	MOUSE430 2:1448590 AT	procollagen, type VI, alpha 1		Curated Ortholog
	MOUSE430A 2:1448590 AT	procollagen, type VI, alpha 1	17 1	Curated Ortholog
	GO Biological Process (view s	graph)		
	ID Description	Eviden	СӨ	Links
	7155 cell adhesion	non-traceable au		QuickGO AmiGO
	GO Cellular Component (view	graph)		
	ID Description	Eviden	ce	Links
	5578 extracellular matrix	inferred from ele	ctronic	QuickGO AmiGO
ene Ontology	5589 collagen type VI	non-traceable au statement	uthor	QuickGO AmiGO
	GO Molecular Function (view	graph)		
	ID Description	Eviden	ce	Links
	5194 cell adhesion molecule	activity inferred from ele annotation	ctronic	QuickGO AmiGO
	5201 extracellular matrix structure constituent	ctural inferred from ele annotation	ctronic	QuickGO AmiGO
	Method ID	Description		E-Val
Protein Similarities	blast 15011913			0.0
Jillila ities	blast 13878903			0.0
in the second	Database ID	Description		E-Vai
	scop <u>d1atza</u> d1atz	ra_SCOP:c.62.1.1: von V omain	Villebrand fa	actor 3.63E 37
		Villebrand factor type A do	main	9.6E-2
	——	Villebrand factor type A do		4.7E-3
		Villebrand factor type A do		2.7E-3
Protein		gen triple helix repeat (20		2.4E-
Domains		gen triple helix repeat (20		3.8E-
	· . ——— .	gen triple helix repeat (20		3.3E-
		gen triple helix repeat (20		2.6E-
		gen helix repeat		
	InterPro IPR002035 von V EMBL-EBI	Villebrand factor, type A		

InterPro IPR008160 Collagen triple helix repeat EMBL-EBI

Sequence

>HUGENEFL:X15880_AT

Target Sequence

Probe Info

· .	Probe Sequence(5'-3')	Probe X	Probe Y	Probe Interrogation Position	Strandedness
A	SCAAGACGCCTCTCGGGGCCTGTG	76	317	1702	Antisense
. A	AACTCAAAGCAAGCTCTTCTCCTC	.77	317	1804	Antisense
Á	AAGCAAGCTCTTCTCCTCAGCTTG	78	317	1810	Antisense
Ţ	CTCCTCAGCTTGGGGCAGCCATTG	79	317	1822	Antisense
G	CCATTGGCCTCTGTCTCGTTTTGG	80	317	1840	Antisense
G	CAGACATAAATCTCGGCGACTCGG	81	317	1888	Antisense
G	CCCGTCTCCTGAGGGTCCTGCTG	82	317	1912	Antisense
TC	GCCCTACAGCCCTGGAGGCCGCT	83	317	1954	Antisense
TC	CAGAGAGTACTCGCAGGGGCGCTG	84	317	2002	Antisense
AC	STACTCGCAGGGGCGCTGGCTGCA	85	317	2008	Antisense
G	GCGCTGGCTGCACTCAAGACCCTC	86	317	2020	Antisense
G	GACATGAGAGCCCCTTGGTGCCAC	87	317	2104	Antisense
G/	AGAGCCCCTTGGTGCCACAGAGGG	88	317	2110	Antisense
· C	CCTTGGTGCCACAGAGGGCTGTGT	89	317	2116	Antisense
G	TGCCACAGAGGGCTGTGTCTTACT	90	317	2122	Antisense
C	AGAGGGCTGTGTCTTACTAGAAAC	91	317	2128	Antisense
C	TCCTTCCTCAGAATAGTGATGTGT	92	317	2164	Antisense
T	TTTTCTGAACCATATCCATGTTGC	93	317	2248	Antisense
т	GAACCATATCCATGTTGCTGACTT	94	317	2254	Antisense
P	ATATCCATGTTGCTGACTTTTCCAA	95	317	2260	Antisense
		4.0		•	

search site

002 Affirmation lucar Group Meeting

PRODUCTS ANALYSIS SUPPORT | TECHNOLOGY | RESEARCH COMMUNITY | CORPORATE

-> START!)

GETTING

STARTED -> Wizard

= QUERY

Expression

- -> Quick Query
- -> Standard Query
- Batch Query
- -> BLAST
- -> Probe Match
- UCSC Query

Genotyping

- -> Quick Query
- -> Standard Query
- -> Batch Query
- -> UCSC Query
- -> SNP Finder

= CURRENT QUERY 1 probe sets

- Annotations
- -> Show Orthologs
- -> GO Browser
- -> Export

QUERY HISTORY

Annotation Views

- -> Expression
- -> Genotyping

-> BLAST Status

-> New Folder

-> Expression Queries

- 1)All Descriptions
- U23752_at) 1)All Descriptions (HG1800-
- HT1823 at)
- -> (1)All Descriptions (U15008_at)
- 1)All Descriptions
- (HG3523) all probe sets
- (7129)

-> Genotyping Queries

Full Record

Details for HUGENEFL: U23752_AT

Full Screen

NetAffx Links

Cluster Members

Consensus/Exemplar

GeneChip Array Information

U23752_at Probe Set ID

GeneChip

HumanGeneFL Array Array

Organism

Common Human

Name

Probe Design Information

Transcript ID U23752

Sequence Exemplar sequence

Type

Representative U23752 NCBI

Public ID

U23752, class A, 20 probes, 20 in U23752 1679-1919, Human SOX-11 mRNA, **Target**

Description complete cds

Genomic Alignment of Target Sequence

April 2003 (NCBI 33) **Assembly**

> % Identity Cytoband **Position**

Alignment(s) chr2: 5856192-5856457 (+) UCSC

p25.2

Representative **Position UniGene Description Transcript** Overlapping SRY (sex determining region Y)- chr2:5854537-5863255 (+) NM 003108 Transcripts **UCSC** NCBI

Public Domain and Genome References

SRY (sex determining region Y)-box 11 **Gene Title**

SOX11 HGNC Gene Symbol

Chromosomal

2p25 Location

Hs.432638 NCBI (FULL LENGTH) UniGene ID

ENSG00000176887 Ensembl Ensembl

6664 NCBI LocusLink

P35716 EMBL-EBI **SwissProt**

600898 NCBI OMIM

RefSeq Protein NP 003099 NCBI

RefSeq	RefSeq Tran NM_003108		rSeq Title RY-box 11				
		Func	tional An	notations			
	1	D		Title	Organism	Туј	pe
	RAE230A:1	387275 <u>AT</u>	SRY-box co	ontaining gen	e Rat	Putative Ortholog	
Ortholog	RG- U34A:AJ004	1858_AT	SRY-box co	ontaining gen	e Rat	Putative Ortholog	
	GO Biologic	al Process (view graph)				
	ID	Descrip	tion	E	vidence	Li	nks
	6355 regula depen		cription, DNA	- inferred fro annotation	om electronic	Quick(AmiGC	
	7399 neurog	jenesis		traceable a	author	Quick(AmiGC	
	GO Cellular	Component	(view graph)				
Gene Ontology	ID	Descrip	tion	E	vidence	Lii	nks
	5634 nucleu	s		inferred fro	m electronic	Quick@ AmiGC	
	GO Molecula	r Function (view graph)				
	D	Descrip	tion	Ε\	vidence	Liı	nks
	3677 DNA b	inding		inferred fro	m electronic	Quick@ AmiGC	
	Method	ID		Descrip	tion	E-V	/alue
Protein Similarities	blast	4507161	region ` HMG-b	ox 11; SRY (s Y)-box 11; SF ox gene 11; t SOX-11 [Hom	ranscription	g 0.0	
	blast	23831472	<u>2</u>			0.0	
	Database	ID		Descrip	lion		E-Value
	scop <u>d</u>	<u> 1111a</u>	d1i11a_SC0	OP:a.21.1.1:	Sox-5		.36E- 9
Protein Domains	pfam <u>F</u>	IMG_box	HMG (high n	nobility group) box	1	.1E-33
		PR000910 MBL-EBI	HMG1/2 (hig	h mobility gro	up) box		
			Sequenc	:e			
	>HUGENEFL:	U23752_A	r				
Target	aaaaaatgtg cagaggggg	tttttgta: ggcgcggc	attactattt ggaggggagg	ctttttcctg	ctggagttgt gaaattcgtga ctccggaaggc	ttgcaac gctgttt	aaagg gaagc
	ttgtcggtct actctaggga	ttgaagtci gttggtgga	ggaagacgt agatatt	ctgcagagga	eccttttggc	agcacaa	ctgtt
					Park -		
	Pro	be Sequenc	e(5'-3')	Probe Pro	be Probe Interrogati Position	on Strand	ledness
					FUSILION		

Probe Sequence(5'-3')	Z.,	Probe X	Probe Y	Probe Interrogation Position	Strandedness
CTTCCTTTATCGTGTCTCAAGGTA	٩G	503	219	1691	Antisense
TTATCGTGTCTCAAGGTAGTTGCA	ΔT	504	219	1697	Antisense
TCGTGTCTCAAGGTAGTTGCATAC	CC	505	219	1700	Antisense
AAGGTAGTTGCATACCTAGTCTG	GΑ	506	219	1709	Antisense
GTAGTTGCATACCTAGTCTGGAG	ΙĪ,	507	219	1712	Antisense

Page 3 of 3 Affymetrix - Results

	GTTGCATACCTAGTCTGGAGTTGTG	508	219	1715	Antisense
	TACCTAGTCTGGAGTTGTGATTATT	509	219	1721	Antisense
	CTAGTCTGGAGTTGTGATTATTTTC	510	219	1724	Antisense
	TGTGATTATTTTCCCAAAAAATGTG	511	219	1736	Antisense
	TTTTCCTGAAATTCGTGATTGCAAC	512	219	1781	Antisense
	GCTCCGGAAGGCGCTGTTTGAAGCT	513	219	1847	Antisense
	GCTGTTTGAAGCTTGTCGGTCTTTG	514	219	1859	Antisense
Probe Info	TGAAGCTTGTCGGTCTTTGAAGTCT	515	219	1865	Antisense
	TTGTCGGTCTTTGAAGTCTGGAAGA	516	219	1871	Antisense
	TGGAAGACGTCTGCAGAGGACCCTT	517	219	1889	Antisense
	AAGACGTCTGCAGAGGACCCTTTTG	518	219	1892	Antisense
	GCAGAGGACCCTTTTGGCAGCACAA	519	219	1901	Antisense
	AGCACAACTGTTACTCTAGGGAGTT	520	219	1919	Antisense
	ACTGTTACTCTAGGGAGTTGGTGGA	521	219	1925	Antisense
	ACTCTAGGGAGTTGGTGGAGATATT	522	219	1931	Antisense

search site

2004. Affirmetrix User Group IVEQUE

PRODUCTS ANALYSIS SUPPORT TECHNOLOGY RESEARCH COMMUNITY CORPORATE

-> START)

GETTING STARTED

-> Wizard

- Expression
 - -> Quick Query -> Standard Query
 - -> Batch Query
 - -> BLAST
- -> Probe Match
- -> UCSC Query

Genotyping

- -> Quick Query
- -> Standard Query
- -> Batch Query
- -> UCSC Query
- -> SNP Finder

:: CURRENT QUERY 1 probe sets

- -> Annotations
- -> Show Orthologs
- -> GO Browser
- -> Export

QUERY HISTORY

Annotation Views

- -> Expression
- Genotyping

-> BLAST Status

-> New Folder

-> Expression Queries

- -> (1)All Descriptions
- (M12625 at) (1)All Descriptions
- U23752_at
- 1)All Descriptions (HG1800-
- HT1823_at)
- (1)All Descriptions
- U15008_at)
- (1)All Descriptions (HG3523)
- -> Genotyping Queries

Full Record

Details for HUGENEFL:M12625_AT

Full Screen

NetAffx Links

Cluster Members Consensus/Exemplar

GeneChip Array Information

Probe Set ID M12625_at

GeneChip

HumanGeneFL Array Array

Organism

Common Name

Human

Probe Design Information

Transcript ID M12625

Sequence

Exemplar sequence Type

Representative M12625 NCBI

Public ID

M12625, class B, 20 probes, 13 in M12625mRNA 893-1259: 7 in

Target Description

reverseSequence, 1599-1683, Human lecithin-cholesterol acyltransferase mRNA

complete cds, with 5' and 3' flanking DNA sequences

Genomic Alignment of Target Sequence

Assembly

April 2003 (NCBI 33)

Position

% Identity Cytoband

chr16: 67749925-67750484 (-) UCSC

100 q22.1

Representative **Transcript**

UniGene Description

Position

Overlapping **Transcripts**

Alignment(s)

lecithin-cholesterol M12625 NCBI

chr16:67749888-67754507 (-)

<u>UCSC</u> acyltransferase

Public Domain and Genome References

lecithin-cholesterol acyltransferase Gene Title

Gene Symbol LCAT HGNC

Chromosomal Location

SwissProt

16q22.1

Hs.387239 NCBI (FULL LENGTH) UniGene ID ENSG00000103080 Ensembl Ensembl

3931 NCBI LocusLink

AAP88750 EMBL-EBI

P04180 EMBL-EBI

EC 2.3.1.43 606967 NCBI **OMIM**

ID	NP_000220 <u>NCBI</u>					
5-50	RefSeq Transcript ID		RefSeq Ti			
RefSeq	NM_000229 NCBI	lecithin-ch	nolesterol acyltra	nsferase pi	ecursor	
	Fu	nctiona	l Annotation	S		
	ID		Title	(Organism	Туре
	MG-U74AV2:103023		ecithin cholester acyltransferase	ol ľ	Mouse	Curated Ortholog
	MG-U74AV2:161759		ecithin cholester acyltransferase	ol l	Mouse	Curated Ortholog
	MOE430A:1417043		ecithin cholester acyltransferase	ol l	Mouse	Curated Ortholog
Ortholog	MU11KSUBA:J05154		ecithin cholester acyltransferase	ol l	Mouse	Curated Ortholog
	RAE230A:1367887 A	_	ecithin cholester acyltransferase	ol .F	₹at	Curated Ortholog
	RG-U34A:X54096_A7	-	ecithin cholester acyltransferase	ol F	Rat	Curated Ortholog
	MOUSE430 2:14170		ecithin cholester acyltransferase	ol lo	Mouse	Curated Ortholog
	MOUSE430A_2:1417	<u>043_AT</u> اه د	ecithin cholester acyltransferase	ol lo	Mouse	Curated Ortholog
	GO Biological Process	(view gr	aph)			
	ID De	escription		Eviden	ce	Links
	6629 lipid metabolism	And the second	infe	erred from ctronic ann	otation	QuickGC AmiGO
	GO Cellular Compone	nt (view g	raph)			
	ID De	scription		Eviden	ce	Links
o Ontologu	5576 extracellular		not	recorded		QuickGC AmiGO
e Ontology	GO Molecular Function	n (view gr	aph)			
	ID De	scription		Eviden	ce	Links
	4607 phosphatidylch acyltransferase			erred from ctronic ann	otation	QuickGC AmiGO
	8415 acyltransferase		inferred from electronic annotation			
	16740 transferase act	ivity		erred from ctronic ann	otation	QuickGO AmiGO
	Method ID		Descr	iption		E-V
Protein	blast 32879837					0.0
milarities			holesterol acyltra	ansferase p	recursor	0.0
		[Homo sa	apiens]		· · ·	
						. 1
	Method ID		Des	cription		Va
n	ec <u>LCAT_HUMA</u>	N LCAT	HUMAN	TIDY OLI	SUNIT	1.8
Protein Families		STER	3.1.43:PHOSPHA OL ACYLTRANS 3.1.43) (LECITH	FERASE P	RECURS	17 SOR
		ACYL	TRANSFERASE ESTEROL ACYL	(PHOSPH	OLIPID-	
	Database ID			ription		E-V

	scop	d1tca_	d1tca SCOP:c.69.1.17: Triacylglycerol lipase	5.3E-8	
: . · · · · · ·	pfam	LACT	Lecithin:cholesterol acyltransferase	1.7E-	
				182	
	InterPro	IPR003386	Lecithin:cholesterol acyltransferase		
		EMBL-EBI			
Protein	InterPro	IPR008262	Lipase, active site		
Domains	4 J	EMBL-EBI			

Trans Membrane

ID Number Of Domains Probability of Interior N-Terminus NP_000220 2 0.05945

Sequence

>HUGENEFL:M12625_AT

Target Sequence

Probe Info

Probe Sequence(5'-3')	Probe X	Probe Y	Probe Interrogation Position	Strandedness
CTTCAACTACACAGGCCGTGACTTC	152	127	1161	Antisense
CTACACAGGCCGTGACTTCCAACGC	153	127	1167	Antisense
CCAACGCTTCTTTGCAGACCTGCAC	154	127	1185	Antisense
CCTGCACTTTGAGGAAGGCTGGTAC	155	127	1203	Antisense
CATGTGGCTGCAGTCACGTGACCTC	156	127	1227	Antisense
GCTGCAGTCACGTGACCTCCTGGCA	157	127	1233	Antisense
CCTGGCAGGACTCCCAGCACCTGGT	158	127	1251	Antisense
GGACCCTGTGGGTGTGCTCTATGAG	159	127	1353	Antisense
TGTGCTCTATGAGGATGGTGATGAC	160	127	1365	Antisense
GGCGACCGCAGCACCGAGCTCTGT	161	127	1395	Antisense
CCTGACCCTGGAGCACATCAATGCC	162	127	1503	Antisense
GCACATCAATGCCATCCTGCTGGGT	163	127	1515	Antisense
CATCCTGCTGGGTGCCTACCGCCAG	164	127	1527	Antisense
CTTTGCTACCGTAAGCCCTGATGGC	165	127	1611	Antisense
TACCGTAAGCCCTGATGGCTATGTT	. 166	127	1617	Antisense
AAGCCCTGATGGCTATGTTTCAGGT	167	127	1623	Antisense
CTATGTTTCAGGTTGAAGGGAGGCA	168	127	1635	Antisense
GGAGGCACTAGAGTCCCACACTAGG	169	127	1653	Antisense
GTCCCACACTAGGTTTCACTCCTCA	170	127	1665	Antisense
CACAGGCTCAGTGCTGTGCAGTG	- 171	127	1695	Antisense