Laser Beam Interactions with Solids

• In absorbing materials photons deposit energy

$$E = hv = \frac{hc}{\lambda}$$

where $h = Plank's constant = 6.63 \times 10^{-34} J s$ c = speed of light

• Also photons also transfer momentum p

$$p = \frac{h}{\lambda}$$

- Note: when light reflects from a mirror momentum transfer is doubled
- eg momentum transferred from Nd:YAG laser photon hitting a mirror (λ = 1.06 microns)

$$p = \frac{h}{\lambda} = \frac{2(6.6 \times 10^{-34})}{1.06 \times 10^{-6}} = 1.25 \times 10^{-27} \, \text{kg m/s}$$

- Not very much but Sunlight 1 KW/m² for 1 sec has 5x10²¹ photons: force of 6.25x10⁻⁶ N/m²
- Proposed for Solar Light Sails in space (get that force/sq m of sail) small acceleration but very large velocity over time.
- Russian Cosmos 1 solar sail Failed to reach 500 km orbit June 2005

Absorbing in Solids

- Many materials are absorbing rather than transparent
- Beam absorbed exponentially as it enters the material
- For uniform material follows Beer Lambert law

$$I(z) = I_0 \exp(-\alpha z)$$

where $\alpha = \beta = \mu_a = absorption$ coefficient (cm⁻¹) z = depth into material

- Absorption coefficient dependent on wavelength, material & intensity
- High powers can get multiphoton effects

Fig. 2.1. The phase and amplitude of an electromagnetic ray striking an air/solid interface and undergoing reflection and transmission.

Single Crystal Silicon

- Absorption Coefficient very wavelength dependent
- Argon laser light 514 nm $\alpha = 11200$ /cm
- Nd: Yag laser light 1060 nm $\alpha = 280$ /cm
- Hence Green light absorbed within a micron 1.06 micron penetrates many microns
- Very temperature dependent

0.8

• Note: polycrystalline silicon much higher absorption : at 1.06 microns $\alpha = 20,000/\text{cm}$

Fig. 2.8. (a) Optical reflectivity, and (b) absorption coefficient of single crystal silicon [2.89,90],

Absorption Index

• Absorbing materials have a complex index of refraction

$$n_c = n - ik$$
 $v = \frac{c}{n_c}$

where n = real index of refraction

k = absorption index or extinction coefficient

• The Electric field then becomes

$$\vec{E}(t,z) = \hat{i}E_0 \exp\left[j\left(-\omega t + \frac{\omega n_c z}{c}\right)\right]$$

$$\vec{E}(t,z) = E_0 \exp\left[i\left[\omega t - \frac{\omega nz}{c}\right]\right] \exp\left(-\frac{\omega kz}{c}\right]$$

$$E(t,z) = E_0 \exp\left(i\left[\omega t - \frac{\omega nz}{c}\right]\right) \exp\left(-\frac{\omega kz}{\lambda}\right)$$

• The k can be related to the absorption coefficient by

$$\alpha = \frac{4\pi k}{\lambda}$$

where wavelength is the vacuum value

<u>Table 2.2</u>. The optical functions of c-Si (n and R, ϵ_1 and ϵ_2) together with the optical absorption coefficient α , and the calculated normal-incidence reflectivity R at several wavelengths. Also shown are the parameters relevant to the empirical fit to $\alpha(T)$ [2.10,11]

	Laser	n	k	ε ₁	^ε 2	α [1/cm]	R
double	Ruby HeNe (633nm) Nd:YAG (530nm) Argon (514nm) Argon (488nm) N2-pumped dye	3.763 3.866 4.153 4.241 4.356 4.375	0.013 0.018 0.038 0.046 0.064 0.066	14.16 14.95 17.24 17.98 18.97 19.14	0.10 0.14 0.32 0.39 0.56 0.58	2.4x10 ³ 3.6x10 ³ 9.0x10 ³ 1.12x10 ⁴ 1.56x10 ⁴ 1.71x10 ⁴	0.336 0.347 0.374 0.382 0.392 0.394
triple	(485nm) Argon (458nm) N ₂ -pumped dye (405nm) Nd:YAG (355nm) N ₂ XeCl	4.633 5.493 5.683 5.185 4.945	0.096 0.290 3.027 3.039 3.616	21.45 30.08 23.13 17.65 11.37	0.89 3.19 34.41 31.51 35.76	2.64x10 ⁴ 9.01x10 ⁴ 1.07x10 ⁶ 1.12x10 ⁶ 1.48x10 ⁶	0.416 0.479 0.575 0.560 0.587

Absorption Index & Electrical Parameters

• k and n are related to the dielectric constant ϵ and the conductivity σ of the material

$$n^2 - k^2 = \varepsilon$$
$$nk = \frac{\sigma}{\nu}$$

where v= the frequency

- High conductivity Metals have high k relative to n: hence high R
- Note n can be <1 for absorbing materials but $|n_c|>1$
- Insulators: k=0 when transparent

Table 2.2.								
Complex refractive index and reflection coefficient for some materials to 1.06µm radiation (8).								
Material	k	n	R					
Al	8.50	1.75	0.91					
Cu	6.93	0.15	0.99					
Fe	4.44	3.81	0.64					
Мо	3.55	3.83	0.57					
Ni	5.26	2.62	0.74					
Pb	5.40	1.41	0.84					
Sn	1.60	4.70	0.46					
Ti	4.0	3.8	0.63					
w	3.52	3.04	0.58					
Zn	3.48	2.88	0.58					
Glass	0	1.5	0.04					

Opaque Materials

- Materials like metals have large numbers of free electrons
- High conductivity, reflectivity and absorption
- Reflectivity given by (for normal incidence of light)

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$

• For opaque materials light absorbed A is

$$A = 1 - R$$

- R and k are very wavelength dependent
- Also these are very dependent on the absence of other materials from the surface.

Fig. 5.1 Reflectance versus wavelength for various polished metal surfaces.

Temperature Dependence

- Absorption and reflectivity are very temperature dependent
- Often undergo significant changes when material melts
- eg Silicon, steel becomes highly reflective on melting

Fig. 5.2 Schematic variation of absorption with temperature for a typical metal surface for both the YAG and CO₂ laser wavelengths.

Scattering

- Within a medium light can be absorbed or scattered
- Ideally scattering does not absorb light but only changes direction
- But may remove energy from light (change wavelength)
- Generally occurs with non-homogeneous mediums
- Highly material specific
- Dominant effect in air. fog and turbid media e.g. tissue
- As object moves into fog it becomes blurred
- Reason scatted light contains little information about object
- Scattered light hides the object with distance
- E.g. objects in fog disappear when scattering gets high enough

Effects

- Non-deterministic wave propagation
- Focusing of light not really possible
- Bolus or large ball of light created

References

- Oregon Medical Laser Center: http://omlc.ogi.edu/
- Prof. Jacques online notes
- used images from it in much of this presentation

What is Scattering?

- Scattering occurs when light interacts with a particle
- Particle has different index of refraction than medium
- Dominant effect in fog and turbid media e.g. tissue
- In solids like tissue constituent cell and sub-cellular creates
- Depends on particles in the medium
- e.g. Clouds, fog in air (particles are water)
- Depends on particle size, and index of refraction change
- Wavelength dependent

Classical description

- EM wave interacts with the electron cloud
- Electric charges are set into oscillatory motion
- Energy re-radiated in all directions
- Absorption & scattering are thus related
- Similar mathematical expressions

Classical Scattering

- Scattered particles assumed to be dielectric spheres with index n
- e.g. water droplet in fog
- Light entering sphere is bent
- \bullet Follows Snell's law: distance b from center set angle α & n sets β
- Bent again on exit
- Due to dispersion (change in n with λ) different directions with λ
- example the rainbow: light from behind droplets
- Rainbow red on top (least deviated) violet bottom (most)
- If light bright enough in front then two rainbows
- Changes in angle is within Total Internal Reflection
- Beam bounces 2nd time and exits near original direction
- Creates a second rainbow, but revered (red bottom, violet top)
- Full scattering: higher density particles so many scatterings
- The objects begin to disappear into scattered light

Types of Scattering

• Two types of scattering

Elastic scattering

- No change in energy
- $\lambda_{in} = \lambda_{out}$
- Classical example: collision of two billiard balls
- Two types of elastic scattering depending on particle size
- Rayleigh scattering: particles with size $<< \lambda$
- Mie Scattering particle is spherical with size $\sim>\lambda$

Inelastic scattering

- Energy from the light is absorbed by the scatterer
- $\lambda_{in} > \lambda_{out}$
- Classical example: silly-putty thrown against the wall energy absorbed in shape deformation
- Brillouin scattering, Raman scattering: light interacts with phonons or excitons (energy packets in material)
- E.g. also occurs when electron ejection by incident photon
- Associated with short wavelengths (UV and X-ray)
- These are ionizing radiation (breaks atomic bonds)
- Will not consider this here (only elastic)

Scattering With Depth

- When light in absorbing medium follows Beer Lambert Law
- With μ_a = absorption coefficient (cm⁻¹)

$$I(z) = I_0 \exp(-\mu_a z)$$

- Scattering also follows Beer's Law but with scattering portion
- Now add scattering coefficient μ_s (cm⁻¹)
- Combined effect of absorption+ scattering is

$$I(z) = I_0 \exp(-[\mu_a + \mu_s]z)$$

- Here we measure not how much light leaves material,
- But rather how much light continuous along original path
- Called Ballistic Photons
- In tissue, μ_a and μ_s are very different
- Both are wavelength dependent
- Both exhibit molecular specificity
- Typical values in breast tissue
 - @ $\lambda \sim 635$ nm: $\mu_a = 0.2$ cm⁻¹, $\mu_s = 400$ cm⁻¹
 - @ $\lambda \sim 1000$ nm: $\mu_a = 0.2$ cm⁻¹, $\mu_s = 50$ cm⁻¹
- Also use Mean Free Path (MFP) = $1/\mu$

Scattering Coefficient

- Assume particle with index n is causing scattering
- Then scattering coefficient is related to size of particle
- Define Scattering Cross Section = σ_s (cm²)

$$\sigma_s = QA_s$$

Where A_s = actual cross section of particle Q = fractional scattering efficiency

• Scattering coefficient is related to particle density and cross section

$$\mu_{s} = \rho_{s}\sigma_{s}$$

- Where ρ_s is the density of scattering particles per volume (cm⁻³)
- Thus more particles, more scattering

Rayleigh Scattering

- Rayleigh scattering occurs when particle is $<< \lambda$
- E.g. scattering from molecules or atoms
- Scattering cross section is now strongly related to wavelength

$$\sigma_s \propto \frac{1}{\lambda^4}$$
 thus $I \propto \frac{1}{\lambda^4}$

- Has to do with EM wave interaction with electron cloud of atom
- Thus blue light is highly scattered
- Red light is almost unscattered
- Thus sky appears blue
- Setting sun red because all blue scattered away
- Blue is removed from sunlight traveling in air & scattered to us
- Rayleigh results in different polarization in different direction
- Thus use polarizering filters to darken blue of sky in photography

Mie Scattering

- Mie Scattering particle is spherical with size $\sim>\lambda$
- Comes from general solution for scattering from a dielectric sphere
- Series solution to wave equation
- Weakly wavelength dependent
- Hence white appearance of clouds and fog
- Mie scattering is not same in all directions: anisotropic
- Get more forward scattering
- Anisotropy increases with particle size
- Angular intensity scattering dependence related to Dielectric constant of sphere Dielectric constant of medium Size of sphere

Anisotropy in Scattering

- Many materials are Mie like scattering
- Have distribution in direction of scattered light
- Consider a single photon scattering event
- After scattering get deflection angle θ relative to initial path
- Scattering function (Phase function) $p(\theta)$ (in sr⁻¹) is probability of scattering into angle θ where

$$\int_{0}^{\pi} p(\theta) 2\pi \sin(\theta) d\theta = 1$$

- Shape of phase function varies with different material
- Isotropic scattering would have $p(\theta)$ a constant of

Anisotropy Factor

• Many phase functions define an Anisotropy Factor g

$$g = \langle \cos(\theta) \rangle = \int_{0}^{\pi} p(\theta) \cos(\theta) 2\pi \sin(\theta) d\theta$$

- g is average scattered photons into $cos(\theta)$ over all directions
- g = 0 means isotropic scattering
- g = 1 is total forward scattering
- g = -1 total reverse scattering (ie reflection)
- In most materials 0 < g < 1
- Many materials, eg tissue, follow the Henyey-Greenstein function

$$p(\theta) = \frac{1}{4\pi} \frac{1 - g^2}{\left[1 + g^2 - 2g\cos(\theta)\right]^{3/2}}$$

- HG function comes from scattering in interstellar clouds
- Tissue approximately follows HG function with g ~0.8-0.98

Anisotropy and Reduced Scatter Factor

- Effect of anisotropy is to alter scattering
- With g near 1 effectively reduces effect of scattering significantly
- \bullet Get an effective scattering coefficient μ_{eff} (or μ ') where

$$\mu_{eff} = \mu_s (1 - g)$$

- \bullet μ_{eff} adds up the effect of a random walk of scatters
- Mean Free Path becomes

$$MFP = \frac{1}{\mu_{eff}}$$

- With g=0.9, then $\mu_{eff} = \mu_s/10$
- Note if g = 1 (full forward scattering) $\mu_{eff} = 0$
- Reason: fully forward scattering photon continues in original path
- Scattering has nill effect

Mie Scattering and g factor

- Can calculate μ_s and g factors directly for Mie scattering
- e.g. Consider sphere n=1.572 in medium n=1.332 (~water)
- Look at spheres of 0.1, 0.3 and 1.0 microns with 0.1% of solution
- 0.1 micron has strong decline of scattering and g with λ
- 1.0 micron only modest scattering and g change with λ
- Tissue covers these ranges

Diffusion of Photons in Scattering Media

- Light entering scattering medium breaks into different types
- 1 Photons may be absorbed
- 2 Photons may be highly scattered (many paths) until nearly uniform Scattered photons lose almost all information of internal structure
- 3 Photons may travel without scattering: called Ballistic photon If photon scattered: but nearly ballistic path called quasi-ballistic
- 4 Photons may be reflected back from the medium
- What is seen depends on ratio of each
- Thin fog some scattered but ballistic dominates: contrast reduced
- Thicker fog scattered total overwhelms ballistic Objects disappear

Light Injected into Scattering Medium

- What happens when light injected into scattering medium
- Penetrates until mostly scattered
- Forms a "Glow Ball" nearly spherical scattering sphere
- More light, larger ball, deeper depth of penetration
- Only small amount of ballistic light continues

