

Глубокое обучение в науках о Земле

Михаил Криницкий

к.т.н., с.н.с. Институт океанологии РАН им. П.П. Ширшова

Лаборатория взаимодействия океана и атмосферы и мониторинга климатических изменений (ЛВОАМКИ)

ПЛАН ЛЕКЦИИ

• Oбобщенные линейные модели (generalized linear models, GLM)

• Обобщенные аддитивные модели (generalized additive models, GAM)

previously on ML4ES
• Искусственная нейронная сеть

Линейная регрессия

$$y_i \sim \mathcal{N}(\mu(\theta, x_i), \sigma^2)$$
$$\eta_i = \theta \cdot x_i$$
$$\mu(\theta, x_i) = \eta_i$$

Линейная регрессия

$$y_i \sim \mathcal{N}(\mu(\theta, x_i), \sigma^2)$$
$$\eta_i = \theta \cdot x_i$$
$$\mu(\theta, x_i) = \eta_i$$

$$y_i \sim \mathcal{B}(p(\theta, x_i))$$
$$p(\theta, x_i) \propto \exp(\theta_1 \cdot x_i)$$
$$\eta_i^1 = \theta_1 \cdot x_i$$

$$p(\theta_1, x_i) = \operatorname{sigmoid}(\eta_i^1) = \frac{1}{1 + \exp(-\eta_i^1)}$$

Линейная регрессия

$$y_i \sim \mathcal{N}(\mu(\theta, x_i), \sigma^2)$$
$$\eta_i = \theta \cdot x_i$$
$$\mu(\theta, x_i) = \eta_i$$

$$y_i \sim \mathcal{B}(p(\theta, x_i))$$

$$p(\theta, x_i) \propto \exp(\theta_1 \cdot x_i)$$

$$\eta_i^1 = \theta_1 \cdot x_i = \ln \frac{p_i}{1 - p_i}$$

$$p(\theta_1, x_i) = \operatorname{sigmoid}(\eta_i^1) = \frac{1}{1 + \exp(-\eta_i^1)}$$

Линейная регрессия

$$y_i \sim \mathcal{N}(\mu(\theta, x_i), \sigma^2)$$
$$\eta_i = \theta \cdot x_i$$
$$\mu(\theta, x_i) = \eta_i$$

Мультиномиальная логистическая регрессия

$$y_{ik} \sim \mathcal{B}(p_k(\theta, x))$$
$$p_k(\theta, x_i) \propto \exp(\theta_k \cdot x_i)$$
$$\eta_i^k = \theta_k \cdot x_i = \ln p_{ik} + C$$

$$p_k(\theta_1, x_i) = \operatorname{softmax}(\eta_i^k, \{\eta_i^k\}) = \frac{\exp \eta_i^k}{C^*}$$

$$y_i \sim \mathcal{B}(p(\theta, x_i))$$

$$p(\theta, x_i) \propto \exp(\theta_1 \cdot x_i)$$

$$\eta_i^1 = \theta_1 \cdot x_i = \ln \frac{p_i}{1 - p_i}$$

$$p(\theta_1, x_i) = \operatorname{sigmoid}(\eta_i^1) = \frac{1}{1 + \exp(-\eta_i^1)}$$

Линейная регрессия

$$y_i \sim \mathcal{N}(\mu(\theta, x_i), \sigma^2)$$
$$\eta_i = \theta \cdot x_i$$
$$\mu(\theta, x_i) = \eta_i$$

Мультиномиальная логистическая регрессия

$$y_{ik} \sim \mathcal{B}(p_k(\theta, x))$$

$$p_k(\theta, x_i) \propto \exp(\theta_k \cdot x_i)$$

$$\eta_i^k = \theta_k \cdot x_i = \ln p_{ik} + C$$

$$p_k(\theta_1, x_i) = \operatorname{softmax}(\eta_i^k, \{\eta_i^k\}) = \frac{\exp \eta_i^k}{C^*}$$

Логистическая регрессия

$$y_i \sim \mathcal{B}(p(\theta, x_i))$$

$$p(\theta, x_i) \propto \exp(\theta_1 \cdot x_i)$$

$$\eta_i^1 = \theta_1 \cdot x_i = \ln \frac{p_i}{1 - p_i}$$

$$p(\theta_1, x_i) = \operatorname{sigmoid}(\eta_i^1) = \frac{1}{1 + \exp(-\eta_i^1)}$$

Обобщенные линейные модели: модели, в которых некоторая функция $g(\cdot)$ мат.ожидания параметра распределения целевой переменной вычисляется как **линейная** функция признакового описания объектов (событий)

 $g(\cdot)$ – т.н. функция связи (link function)

Линейная регрессия

$$y_i \sim \mathcal{N}(\mu(\theta, x_i), \sigma^2)$$
$$\eta_i = \theta \cdot x_i$$
$$\mu(\theta, x_i) = \eta_i$$

Мультиномиальная логистическая регрессия

$$y_{ik} \sim \mathcal{B}(p_k(\theta, x))$$

$$p_k(\theta, x_i) \propto \exp(\theta_k \cdot x_i)$$

$$\eta_i^k = \theta_k \cdot x_i = \ln p_{ik} + C$$

$$p_k(\theta_1, x_i) = \operatorname{softmax}(\eta_i^k, \{\eta_i^k\}) = \frac{\exp \eta_i^k}{C^*}$$

Логистическая регрессия

$$y_i \sim \mathcal{B}(p(\theta, x_i))$$

$$p(\theta, x_i) \propto \exp(\theta_1 \cdot x_i)$$

$$\eta_i^1 = \theta_1 \cdot x_i = \ln \frac{p_i}{1 - p_i}$$

$$p(\theta_1, x_i) = \operatorname{sigmoid}(\eta_i^1) = \frac{1}{1 + \exp(-\eta_i^1)}$$

Обобщенные линейные модели: модели, в которых некоторая функция $g(\cdot)$ мат.ожидания параметра распределения целевой переменной вычисляется как линейная функция признакового описания объектов (событий)

 $g(\cdot)$ – т.н. функция связи (link function)

Линейная регрессия

$$y_i \sim \mathcal{N}(\mu(\theta, x_i), \sigma^2)$$
$$\eta_i = \theta \cdot x_i$$
$$\mu(\theta, x_i) = \eta_i$$

Мультиномиальная логистическая регрессия

$$y_{ik} \sim \mathcal{B}(p_k(\theta, x))$$

$$p_k(\theta, x_i) \propto \exp(\theta_k \cdot x_i)$$

$$\eta_i^k = \theta_k \cdot x_i = \ln p_{ik} + C$$

$$p_k(\theta_1, x_i) = \mathbf{softmax}(\eta_i^k, \{\eta_i^k\}) = \frac{\exp \eta_i^k}{C^*}$$

Логистическая регрессия

$$y_i \sim \mathcal{B}(p(\theta, x_i))$$

$$p(\theta, x_i) \propto \exp(\theta_1 \cdot x_i)$$

$$\eta_i^1 = \theta_1 \cdot x_i = \ln \frac{p_i}{1 - p_i}$$

$$p(\theta_1, x_i) = \text{sigmoid}(\eta_i^1) = \frac{1}{1 + \exp(-\eta_i^1)}$$

Альтернативно (некорректно, но легче понять):

Обобщенные линейные модели: модели, в которых мат.ожидание параметра распределения целевой переменной вычисляется как некоторая функция $g^{-1}(\cdot)$ от линейной функции η признакового описания объектов (событий) x_i

 $g(\cdot)$ – т.н. функция связи (link function)

Как зависит вид функции потерь от вида функции связи?

Линейная регрессия

$$y_i \sim \mathcal{N}(\mu(\theta, x_i), \sigma^2)$$
$$\eta_i = \theta \cdot x_i$$
$$\mu(\theta, x_i) = \eta_i$$

$$p(y_i, x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \mu_i)^2}{2\sigma^2}\right)$$

$$L(\mathcal{T},\theta) = \prod_{\mathcal{T}} p(y_i,\mu_i)$$

$$\ell(\mathcal{T}, \theta) = \ln L(\mathcal{T}, \theta) = \sum_{\mathcal{T}} \ln p(y_i, \mu_i) = \ln \frac{1}{\sqrt{2\pi\sigma^2}} \sum_{\mathcal{T}} \left(-\frac{(y_i - \mu_i)^2}{2\sigma^2} \right)$$

$$\theta = \underset{\Theta}{\operatorname{argmax}} \, \ell(\mathcal{T}, \theta) = \underset{\Theta}{\operatorname{argmin}} \left(\ln \frac{1}{2\sigma^2 \sqrt{2\pi\sigma^2}} * \sum_{\mathcal{T}} (y_i - \mu_i)^2 \right)$$

$$\mathcal{L}(\mathcal{T},\theta) = C \sum_{T} (y_i - \mu_i)^2$$

Как зависит вид функции потерь от вида функции связи?

$$y_i \sim \mathcal{B}(p(\theta, x_i))$$

$$p(\theta, x_i) \propto \exp(\theta_1 \cdot x_i)$$

$$\eta_i^1 = \theta_1 \cdot x_i = \ln \frac{p_i}{1 - p_i}$$

$$p(\theta_1, x_i) = \mathbf{sigmoid}(\eta_i^1) = \frac{1}{1 + \exp(-\eta_i^1)}$$

$$L(\mathcal{T}, \theta) = \prod_{\mathcal{T}} p(y_i, p_i) = \prod_{i=1}^{N} \left(p_i^{y_i} * (1 - p_i)^{(1 - y_i)} \right)$$

$$\ell(\mathcal{T}, \theta) = \ln(L(\mathcal{T}, \theta)) = \sum_{i} \log \left(p_i^{y_i} \right) + \sum_{i} \log \left((1 - p_i)^{(1 - y_i)} \right) =$$

$$= \sum_{\mathcal{T}} (y_i * \log p_i + (1 - y_i) * \log(1 - p_i))$$

$$\theta = \underset{\Theta}{\operatorname{argmax}} \ell(\mathcal{T}, \theta) = \underset{\Theta}{\operatorname{argmin}} \left(-\sum_{\mathcal{T}} (y_i * \log p_i + (1 - y_i) * \log(1 - p_i)) \right)$$

$$\mathcal{L}(\mathcal{T}, \theta) = -\sum_{\mathcal{T}} (y_i * \log p_i + (1 - y_i) * \log(1 - p_i))$$

Как зависит вид функции потерь от вида функции связи?

НИКАК

вид функции потерь $\mathcal{L}(\mathcal{T},\theta)$ зависит от вида распределения целевой переменной y_i , но не от вида функции связи $g(\cdot)$

- обратная функция связи $g^{-1}(\cdot)$ должна отображать R^1 (множество значений произвольной линейной функции $heta \cdot x_i$) на множество параметров распределения переменной y_i
- вычисление параметра (параметров) распределения переменной y_i в модели производится согласно принципу GLM
- при таких условиях вычисление правдоподобия выборки ${\mathcal T}$ производится независимо от вида функции связи $g(\cdot)=>$ вычисление функции потерь в подходе максимизации правдоподобия также производится независимо от вида функции связи $g(\cdot)$

Диаграммы GLM

Линейная регрессия

$$y \sim \mathcal{N}(\mu, \sigma^{2})$$

$$\eta_{i} = \theta \cdot x_{i}$$

$$\mu(\theta, x_{i}) = \eta_{i}$$

$$\mathcal{L}(\mathcal{T}, \theta) = C \sum_{\mathcal{T}} (y_{i} - \mu_{i})^{2}$$

$$\theta = \underset{\Theta}{\operatorname{argmin}} (\mathcal{L}(\mathcal{T}, \theta))$$

$$\frac{\partial \mathcal{L}(\mathcal{T}, \theta)}{\partial \theta} = -2X^{T}Y + 2X^{T}X\theta$$

Диаграммы GLM

Логистическая регрессия

$$y_{i} \sim \mathcal{B}(p(\theta, x_{i}))$$

$$\eta_{i}^{1} = \theta_{1} \cdot x_{i}$$

$$p(\theta_{1}, x_{i}) = \sigma(\eta_{i}^{1})$$

$$\mathcal{L}(\mathcal{T}, \theta) = -\sum_{\mathcal{T}} (y_{i} * \log p_{i} + (1 - y_{i}) * \log(1 - p_{i}))$$

$$\theta = \underset{\Theta}{\operatorname{argmin}} (\mathcal{L}(\mathcal{T}, \theta))$$

$$\frac{\partial \mathcal{L}(\mathcal{T}, \theta)}{\partial \theta} = -\sum_{i} (y_{i} - p(\theta, x_{i}))x_{i}$$

Диаграммы GLM

Мультиномиальная логистическая регрессия

$$y_{ik} \sim \mathcal{B}(p_k(\theta, x))$$
$$\eta_i^k = \theta_k \cdot x_i = \ln p_{ik} + C$$

$$p_k(\theta_1, x_i) = \mathbf{softmax}(\eta_i^k, \{\eta_i^k\}) = \frac{\exp \eta_i^k}{C^*}$$

$$\mathcal{L}(\mathcal{T}, \theta) = -\sum_{\mathcal{T}} \sum_{k=1}^{K} ([y_i == k] * \log p_{ik})$$

$$\theta = \operatorname{argmin}(\mathcal{L}(\mathcal{T}, \theta))$$

$$\nabla_{\theta_k} \mathcal{L}(\mathcal{T}, \theta) = -\sum_{\mathcal{T}} ([y_i == k] - p_{ik}) x_i$$

Регрессия

$$y_i \sim \mathcal{N}(\mu(\theta, x_i), \sigma^2)$$

$$\eta_i = \theta \cdot \left[f_1\left(x_i^{(1)}\right), f_2\left(x_i^{(2)}\right), f_3\left(x_i^{(3)}\right) \dots f_f(x_i^{(f)}) \right]$$

$$\mu(\theta, x_i) = \eta_i$$

Мультиномиальная классификация

$$y_{ik} \sim \mathcal{B}(p_k(\theta, x))$$

$$p_k(\theta, x_i) \propto \exp(\theta_k \cdot x_i)$$

$$\eta_i^k = \theta \cdot \left[f_1\left(x_i^{(1)}\right), f_2\left(x_i^{(2)}\right), f_3\left(x_i^{(3)}\right) \dots f_f(x_i^{(f)}) \right] = \ln p_{ik} + C$$

$$p(\theta_1, x_i) = \operatorname{softmax}(\eta_i^k, \{\eta_i^k\}) = \frac{\exp \eta_i^k}{C^*}$$

Бинарная классификация

$$y_i \sim \mathcal{B}(p(\theta, x_i))$$

$$p(\theta, x_i) \propto \exp(\theta_1 \cdot x_i)$$

$$\eta_i^1 = \theta \cdot \left[f_1\left(x_i^{(1)}\right), f_2\left(x_i^{(2)}\right), f_3\left(x_i^{(3)}\right) \dots f_f(x_i^{(f)}) \right] = \ln \frac{p_i}{1 - p_i}$$

$$p(\theta_1, x_i) = \operatorname{sigmoid}(\eta_i^1) = \frac{1}{1 + \exp(-\eta_i^1)}$$

Обобщенные аддитивные модели — это обобщенные линейные модели, в которых некоторая функция $g(\cdot)$ мат.ожидания параметра распределения целевой переменной вычисляется как линейная функция некоторых других гладких функций (часто нелинейных, но необязательно) признакового описания объектов (событий)

Регрессия

$$y_i \sim \mathcal{N}(\mu(\theta, x_i), \sigma^2)$$

$$\eta_i = \theta \cdot \left[f_1\left(x_i^{(1)}\right), f_2\left(x_i^{(2)}\right), f_3\left(x_i^{(3)}\right) \dots f_f(x_i^{(f)}) \right]$$

$$\mu(\theta, x_i) = \eta_i$$

Мультиномиальная классификация

$$y_{ik} \sim \mathcal{B}(p_k(\theta, x))$$

$$p_k(\theta, x_i) \propto \exp(\theta_k \cdot x_i)$$

$$\eta_i^k = \theta \cdot \left[f_1\left(x_i^{(1)}\right), f_2\left(x_i^{(2)}\right), f_3\left(x_i^{(3)}\right) \dots f_f(x_i^{(f)}) \right] = \ln p_{ik} + C$$

$$p(\theta_1, x_i) = \mathbf{softmax}(\eta_i^k, \{\eta_i^k\}) = \frac{\exp \eta_i^k}{C^*}$$

Бинарная классификация

$$y_i \sim \mathcal{B}(p(\theta, x_i))$$

$$p(\theta, x_i) \propto \exp(\theta_1 \cdot x_i)$$

$$\eta_i^1 = \theta \cdot \left[f_1\left(x_i^{(1)}\right), f_2\left(x_i^{(2)}\right), f_3\left(x_i^{(3)}\right) \dots f_f(x_i^{(f)}) \right] = \ln \frac{p_i}{1 - p_i}$$

$$p(\theta_1, x_i) = \mathbf{sigmoid}(\boldsymbol{\eta}_i^1) = \frac{1}{1 + \exp(-\eta_i^1)}$$

Альтернативно (некорректно, но легче понять):

Обобщенные аддитивные модели — это обобщенные линейные модели, в которых в качестве признаков объектов x_i выступают некоторые гладкие (часто нелинейные) функции этих признаков

Диаграммы GAM

Регрессия

$$\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\sigma}^{2})$$

$$\eta_{i} = \theta \cdot \left[f_{1}\left(x_{i}^{(1)}\right), f_{2}\left(x_{i}^{(2)}\right), f_{3}\left(x_{i}^{(3)}\right) \dots f_{f}(x_{i}^{(f)}) \right]$$

$$\mu(\theta, x_{i}) = \boldsymbol{\eta}_{i}$$

$$\mathcal{L}(\mathcal{T}, \theta) = C \sum_{\mathcal{T}} (y_{i} - \mu_{i})^{2}$$

$$\theta = \underset{\Theta}{\operatorname{argmin}} \left(\mathcal{L}(\mathcal{T}, \theta)\right)$$

$$\frac{\partial \mathcal{L}(\mathcal{T}, \theta)}{\partial \theta} = ?$$

Диаграммы GAM

Бинарная классификация

$$y_{i} \sim \mathcal{B}(p(\theta, x_{i}))$$

$$\eta_{i}^{1} = \theta \cdot \left[f_{1}\left(x_{i}^{(1)}\right), f_{2}\left(x_{i}^{(2)}\right), f_{3}\left(x_{i}^{(3)}\right) ... f_{f}\left(x_{i}^{(f)}\right) \right]$$

$$p(\theta_{1}, x_{i}) = \sigma(\eta_{i}^{1})$$

$$\mathcal{L}(\mathcal{T}, \theta) = -\sum_{\mathcal{T}} (y_{i} * \log p_{i} + (1 - y_{i}) * \log(1 - p_{i}))$$

$$\theta = \underset{\Theta}{\operatorname{argmin}} (\mathcal{L}(\mathcal{T}, \theta))$$

$$\frac{\partial \mathcal{L}(\mathcal{T}, \theta)}{\partial \theta} = ?$$

Диаграммы GAM

Мультиномиальная классификация

$$y_{ik} \sim \mathcal{B}(p_k(\theta, x))$$

$$\eta_i^k = \theta \cdot \left[f_1\left(x_i^{(1)}\right), f_2\left(x_i^{(2)}\right), f_3\left(x_i^{(3)}\right) \dots f_f(x_i^{(f)}) \right]$$

$$\ln p_{ik} + C = \eta_i^k$$

$$p_k(\theta_1, x_i) = \mathbf{softmax}(\eta_i^k, \{\eta_i^k\}) = \frac{\exp \eta_i^k}{C^*}$$

$$\mathcal{L}(\mathcal{T}, \theta) = -\sum_{\mathcal{T}} \sum_{k=1}^K ([y_i == k] * \log p_{ik})$$

$$\theta = \underset{\Theta}{\operatorname{argmin}}(\mathcal{L}(\mathcal{T}, \theta))$$

$$\nabla_{\theta_k} \mathcal{L}(\mathcal{T}, \theta) = ?$$

Обобщенные аддитивные модели: за и против

3A

- Довольно простые, но при этом предоставляют достаточно свободы в выборе нелинейных преобразований $f_j\left(x_i^{(j)}\right)$ исходных признаков объектов (событий);
- Подбирать функции f_j иногда проще, чем подбирать степени полинома;
- Позволяют применять несколько разных нелинейных функций $f_j\left(x_i^{(j)}\right)$ к разным признакам;
- Модели аддитивные т.е. можно изучать чувствительность ответа к отдельным входным признакам, просто зафиксировав все остальные.

ПРОТИВ

- Это аддитивные модели: учет взаимодействия между признаками ведется только на уровне вычисления линейной функции $g^{-1}(\cdot)$;
- Можно предоставить новые признаки, учитывающие взаимодействие имеющихся, но это не делает сама модель GAM => такие признаки не «обучаемые».

Есть ли способ еще увеличить выразительную способность функциональных параметрических моделей, оставаясь в рамках подхода моделей, обучаемых градиентными методами?

ргеviou \mathbf{S} учани \mathbf{M} се \mathbf{E} а в случае задачи регрессии: $\mathbf{y} \sim \mathcal{N}(\mu, \ \sigma^2)$

ЛР:

$$\mu_{y_i} = \theta \cdot x_i + \theta_0$$

ргеviou \mathfrak{I} учти \mathfrak{M} се \mathfrak{F} а в случае задачи регрессии: $y \sim \mathcal{N}(\mu, \ \sigma^2)$

ЛР:

 $\mu_{y_i} = \theta \cdot x_i + \theta_0$ $\mu_{y_i} = \sigma(\theta \cdot x_i + \theta_0)$ GLM:

$$x_i$$
 θ_0 θ_y

previously-сти Мсе Еда в случае задачи регрессии: $y \sim \mathcal{N}(\mu, \sigma^2)$

 $\mu_{y_i} = \theta \cdot x_i + \theta_0$

GLM: $\mu_{y_i} = \sigma(\theta \cdot x_i + \theta_0)$

GAM: $\mu_{y_i} = \sigma\left(\theta \cdot \left[f_1\left(x_i^{(1)}\right), f_2\left(x_i^{(2)}\right), f_3\left(x_i^{(3)}\right) ... f_f\left(x_i^{(f)}\right)\right] + \theta_0\right)$

previously-сти МСФЕБа в случае задачи регрессии: $y \sim \mathcal{N}(\mu, \sigma^2)$

 $\mu_{\gamma_i} = \theta \cdot x_i + \theta_0$

GLM: $\mu_{y_i} = \phi(\theta \cdot x_i + \theta_0)$

GAM: $\mu_{y_i} = \sigma\left(\theta \cdot \left[f_1\left(x_i^{(1)}\right), f_2\left(x_i^{(2)}\right), f_3\left(x_i^{(3)}\right) ... f_f\left(x_i^{(f)}\right)\right] + \theta_0\right)$

UHC: $\mu_{y_i} = \phi \left(\theta_0^{(2)} + \theta^{(2)} \cdot \phi \left(\theta_0^{(1)} + \theta^{(1)} \cdot x_i \right) \right)$

previous by сти м се в случае задачи регрессии: $y \sim \mathcal{N}(\mu, \sigma^2)$

ЛР:

$$\mu_{y_i} = \theta \cdot x_i + \theta_0$$

GLM:

$$\mu_{y_i} = \phi(\theta \cdot x_i + \theta_0)$$

GAM:

$$\mu_{y_i} = \sigma\left(\theta \cdot \left[f_1\left(x_i^{(1)}\right), f_2\left(x_i^{(2)}\right), f_3\left(x_i^{(3)}\right) \dots f_f\left(x_i^{(f)}\right)\right] + \theta_0\right)$$

инс:

$$\mu_{y_i} = \phi \left(\theta_0^{(3)} + \theta^{(3)} \cdot \phi \left(\theta_0^{(2)} + \theta^{(2)} \cdot \phi \left(\theta_0^{(1)} + \theta^{(1)} \cdot x_i \right) \right) \right)$$

Искусственные нейронные сети

Вид ИНС:

многослойный перцептрон (multilayer perceptron, MLP) Feedforward NN (FNN, сеть прямого распространения) полносвязная ИНС (Fully-connected NN, FCNN)

Обучение MLP

$$\xi_{i} = \sigma \left(\theta_{0}^{(3)} + \theta^{(3)} \cdot \phi \left(\theta_{0}^{(2)} + \theta^{(2)} \cdot \phi \left(\theta_{0}^{(1)} + \theta^{(1)} \cdot x_{i} \right) \right) \right)$$

Регрессия

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu(\theta, x_i) = \xi_i$$

$$\mathcal{L}(\mathcal{T},\theta) = \sum_{x} (y_i - \xi_i)^2$$

$$\theta = \underset{\Theta}{\operatorname{argmin}} \big(\mathcal{L}(\mathcal{T}, \theta) \big)$$

$$\frac{\partial \mathcal{L}(\mathcal{T}, \theta)}{\partial \theta} = \cdots$$

Бинарная классификация

$$y_i \sim \mathcal{B}(p(\theta, x_i))$$

$$p(\theta_1, x_i) = \xi_i$$

$$\mathcal{L}(\mathcal{T}, \theta) = -\sum_{\mathcal{T}} (y_i * \log \xi_i + (1 - y_i) * \log(1 - \xi_i))$$

$$\theta = \underset{\Theta}{\operatorname{argmin}} (\mathcal{L}(\mathcal{T}, \theta))$$

$$\frac{\partial \mathcal{L}(\mathcal{T}, \theta)}{\partial \theta} = \cdots$$

Мультиномиальная классификация

$$y_{ik} \sim \mathcal{B}\big(p_k(\theta, x)\big)$$

$$p_k(\theta_1, x_i) = \xi_{ik}$$

$$\mathcal{L}(\mathcal{T}, \theta) = -\sum_{\mathcal{T}} \sum_{k=1}^{K} ([y_i == k] * \log \xi_{ik})$$

$$\theta = \underset{\Theta}{\operatorname{argmin}} (\mathcal{L}(\mathcal{T}, \theta))$$

$$\nabla_{\theta} \mathcal{L}(T, \theta) = \dots$$

=> градиентная оптимизация

=> градиентная оптимизация