基于Actel FPGA的4位ALU设计方案

FPGA、ARM、DSP成为电子工程技术的市场的核心的控制器。尤其是FPGA,由于它具有处理速度高、可并行执行和高灵活性的特点,因此常被用于通信、工业控制等领域。基于Actel FPGA的4位ALU的设计方案,为学习FPGA的设计和CPU的设计提供了基础。它给大学老师和同学们提供了一个很好了解和设计CPU的机会。你想设计自己的CPU吗?只要使用我们的方案,你就可以!

本文主要介绍采用高可靠性、低成本的Actel FPGA—A3P010 来实现一个4位的算术逻辑单元ALU的系统,为大家提供一种学习和设计CPU的实现方案。本方案是为了满足FPGA的教育教学需求而设计的,结合了Actel FPGA单芯片、上电即行、低成本、低功耗、高安全性和高可靠性的优点,使得该ALU的系统在教育教学中很容易实现。如果采用I/O资源数较多的A3P015,该方案可以很容易地扩展为8位总线的ALU,为设计更高性能的CPU提供了基础。想学习FPGA,就从学习基于Actel FPGA的4位ALU方案开始!

图1 硬件系统框图

1.概述

(1)功能概述

- ●支持16种4位数据长度的逻辑运算操作,包括与、或、 非、异或、同或等逻辑运算功能;
- ●支持16种4位数据长度的算术运算操作,包括加法、减法的算术运算功能;
- ●算术运算操作支持进位输入和进位输出的功能,并支持进位生成输出和进位传送输出的功能;
 - ●支持逻辑运算与算术运算混合的运算操作;
 - 支持两操作数比较大小的功能;
 - ●兼容74HC181的功能;
- ●支持扩展功能,可以很容易地实现由4位总线扩展到8、16 位总线的ALU;
- ●资源占用率低。可用Actel的A3P010实现4位总线的ALU,如果扩展为8位总线功能可用A3P015及以上器件实现,具体占用

表1 系统接口说明

信号类型	信号名称	属性	信号说明
控制接口	mode_control	1	功能选择输入端,mode_
			conrol = 0时选择算术运算,
			mode_conrol = 1时选择逻辑
			运算
	select_input[3:0]	1	选择输入端,可以选择16种运
			算中的一种
数据接口	operand_a[3:0]		4位操作数输入端口
	operand_b[3:0]		4位操作数输入端口
	carry_input	ı	进位端输入端口
	function_	0	功能輸出端口,运算后的结果
	output[3:0]		在这里输出
	generate_output	0	进位生成输出端口
	propagate_	0	进位传送输出端口
	output		
	carry_output	0	进位端 输 出端口
	cmp_output	0	两操作数比较大小输出端,与
			carry_output共同确定比较后
			的结果

资源情况与实际的功能有关;

- FPGA的可编程性使得功能设计非常灵活,可以根据用户需求定制特殊功能;
 - ●真正完美的单芯片、低成本、低功耗解决方案;
 - Actel FPGA的FlashLock加密、保护您的设计;
- ◆ Actel FPGA的固件错误免疫使得系统可以工作于较恶劣的环境中,可靠性极高。

(2)系统框图

如图1所示,这是ALU的硬件系统框图。该ALU由六个功能模块组成,分别为逻辑运算模块、算术运算模块、进位模块、比较模块、16选1的多路选择器模块和2选1的多路选择器模块。信号端口的功能说明见表1所示。

ALU按照接口类别划分,可以把整个系统的接口分为:控制接口、数据接口。详细的接口信息,如表1所示。

(3)ALU的逻辑功能表

ALU的逻辑功能表,如表2所示。ALU在模式控制输入端mode_control的控制下,可以选择逻辑运算功能或算术运算功能。当mode_control为高电平1时,ALU执行4位逻辑运算操作;当mode_control为低电平0时,它执行4位算术运算操作,具体执行的操作可由功能选择输入端select_input[3:0]控制。例如,当mode_control = 1,select_input[3:0] = "0000"时执行的是逻辑运算function_output = 的操作。

2.各功能模块介绍

(1)逻辑运算功能模块

ALU的第一大功能就是可以进行逻辑运算。当ALU执行逻

辑运算操作时,模式控制输入端mode control = 1,输入输出端 carry input, generate output, propagate output, carry output, cmp output不影响逻辑运算结果, operand_a[3:0], operand_b[3:0] 是两个4位输入的操作数, select input[3:0]是选择输入控制端, function output[3:0]是4位逻辑运算结果的输出端、具体的逻辑运 算时序如图2所示。

(2)算术运算功能模块

ALU的第二大功能就是可以执行算术运算。当ALU执行算 术运算时,模式控制输入端mode_control = 0,进位输入端carry_ input对算术运算的结果有影响, generate_output、propagate_ output、carry_output、 cmp_output根据运算的结果而变化, operand_a[3:0], operand_b[3:0]是两个4位输入的操作数, select_ input[3:0]是4位选择输入控制端, function_output[3:0]是4位算术 运算结果的输出端,具体的时序如图3所示。

(3)比较功能模块

ALU的第三大功能就是可以执行比较大小运算功能。当 ALU执行两操作数比较大小时,模式控制输入端mode_control = 0, 进位输入端carry_input = 1, 选择输入端select_input[3:0] = "0110", operand a[3:0]、operand b[3:0]是两个4位将要比较 大小的操作数。比较大小输出端cmp_output与进位输出端carry_ output共同确定两操作数比较大小的结果。

图2 逻辑运算时序图

模式选择输入	輸入和輸出				
select_ input[3:0]	逻辑运算 (mode_ control = 1)	算术运算 (mode_control = 0; carry_input = 1)	算术运算 (mode_control = 0; carry_input = 0)		
0000	Α	A	A加 1		
0001	A+B	A+B	(A+B)加 1		
0010	AB	A+B	(A+B)加 1		
0011	逻辑0	减1	0		
0100	ĀB	A加AB	A加AB加1		
0101	В	(A+B)加AB	(A+B)加AB加1		
0110	A⊕B	A减B减1	A减B		
0111	AB	AB减1	AB		
1000	A+B	A加AB	A加AB加1		
1001	$\overline{A \oplus B}$	A加B	A加B加1		
1010	В	(A+B)加AB	(A+B)加AB加1		
1011	AB	AB减 l	AB		
1100	逻辑1	A加A	A加A加1		
1101	A+B	A+B加A	(A+B)加A加1		
1110	A+B	(A+B)加A	(A+B)加A加1		
1111	Α	A减 1	A		

4.小结

表2 ALU功能表

图3 算术运算时序图

用。敬请关注周立 功公司的网站www. zlgmcu.com以获得 更多的信息。我们 有着一个接近30人 的FPGA团队提供 强有力的售后服务 和技术支持,解决 用户在产品使用和 研发过程中遇到的 困难。若有更多的

需求可以与我们联系,我们将会竭诚为您服务、并请关注下期的 FPGA专题技术讲座。FFW

3.市场应用

基于Actel FPGA实现4位ALU的解决方案、主要是为了满足 FPGA的教育教学需求而设计的。本公司为了提高大学生对FPGA 的学习兴趣,并改善FPGA传统教学方式,特意设计了此方案。 由FPGA设计的ALU扩展的灵活性大,可以很容易地扩展为8位总 线的ALU、为设计高性能的CPU提供了基础。

州周立功单片机发展有限公司

地址:广州市天河北路689号光大银行大厦12楼F4 电话: (020) 38730619 38731905 技术支持: (020) 28872345 22644375 E-mail: ACTEL.support@zlgmcu.com

◎FPGA系列开发板

EasyFPGA030

ProASIC3 StartKit

Fusion StartKit

CortexM1 StartKit

IGLOO StartKit

Flash Byte/FlashPro3 USB