MATHS I SOLUTION

RESTRICTED 內部文件

1985 PARER I		
SOLUTIONS	MARKS	REMARKS
$f'(x) = \sqrt{1 - x^2} + x \cdot \frac{1}{2\sqrt{1 - x^2}} (-2x) \dots $ $= \frac{(1 - 2x^2)}{\sqrt{1 - x^2}}$	1+1+1A	1 for product rule, 1 for - chain rule
$\therefore \underline{\epsilon}^{ \prime} (\underline{t}_{\overline{2}}) = \frac{1 - \frac{2}{4}}{\sqrt{1 - \frac{1}{4}}} \qquad \cdots$	LM.	
$=\frac{1}{\sqrt{3}}$ (0.577)	1A 5	.
$1 - i = \sqrt{2}(\cos -\frac{\pi}{4} + i \sin -\frac{\pi}{4}) \qquad$	1A+1A	l for mod., l for argument
$(\text{or } \sqrt{2}\text{cis } \frac{7\pi}{4}, \sqrt{2}\text{cis } 315^{\circ}, \text{ etc.})$ $(1-i)^{\frac{1}{3}} = \sqrt[6]{2}(\cos\frac{\frac{\pi}{4} + 2k\pi}{3} + i \sin\frac{-\frac{\pi}{4} + 2k\pi}{3}) \dots$ $= \sqrt[6]{2}(\cos\frac{(8k-1)\pi}{12} + i \sin\frac{(8k-1)\pi}{12},$	- 1M+1M	lM for general form lM for De Moivre's Theorem .
k = 0, 1, 2	21	-
$= \sqrt[5]{2}(\cos -\frac{\pi}{12} + i \sin -\frac{\pi}{12}) \text{ or}$ $\sqrt[5]{2}(\cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12}) \text{ or}$ $\sqrt[5]{2}(\cos -\frac{3\pi}{4} + i \sin -\frac{3\pi}{4})$ [Note other variants in arguments, $e.g. \theta = 105^{\circ}, 225^{\circ}, 345^{\circ}; \theta = \frac{7\pi}{12}, \frac{5\pi}{4}, \frac{23\pi}{12}]$	6	
$x^{2} - ax - 4 \le 0$ $(=) (x - \frac{a + \sqrt{a^{2} + 16}}{2})(x - \frac{a - \sqrt{a^{2} + 16}}{2}) \le 0$		
$\frac{a - \sqrt{a^2 + 16}}{2} \le x \le \frac{a + \sqrt{a^2 + 16}}{2} \qquad \dots$	1	for $\forall x \in \beta$
$\frac{a + \sqrt{a^2 + 16}}{2} = 4$ $\Rightarrow \sqrt{a^2 + 16} = 3 - a$ $\Rightarrow a^2 + 16 = 64 - 16a + a^2$	7	Alt. Solution: Let $x^2-ax-4 = (x-\alpha)(x-\beta)$ ≤ 0 , where $\alpha \leq \beta$ $\alpha \leq x \leq \beta$ Since $\alpha \leq \beta = -1$ Sub. $\beta = 4$ $\alpha \leq x \leq \beta = -1$ $\beta = 4$ $\beta = -1$ $\beta = 4$ $\beta = -1$ $\beta = 4$
$\Rightarrow a = 3 \dots $ the least possible value of x is $\frac{3 - \sqrt{9 + 16}}{2} = -1$	1A 1M+1A 6	

SOLUTIONS	MARKS	REMARKS
(a) $\overrightarrow{OC} = \frac{1}{1+r} (\overrightarrow{OA} + r\overrightarrow{OB})$.1A	y A
$= \frac{1}{1+r}[(1+4r)\frac{1}{2}+(3-3r)\frac{1}{3}] \dots$	1A	$\int_{-\infty}^{\infty} c$
(b) $\overrightarrow{AB} = (4\vec{i} - 3\vec{j}) - (\vec{1} + 3\vec{j})$ = $3\vec{i} - 6\vec{j}$	1A	
$OC \perp AB \Rightarrow \overrightarrow{AB} \cdot \overrightarrow{OC} = 0$ $\Rightarrow \frac{1}{1+r} [(1+4r)3 - (3-3r)6] = 0$	1M	
$\Rightarrow \frac{1}{1+r} (30r - 15) = 0$ $\Rightarrow r = \frac{1}{2} \dots$	1A	B. Additional State of the Stat
$\overrightarrow{OC} = \frac{2}{3} \left[(1 + 2) \overrightarrow{1} + (3 - \frac{3}{2}) \overrightarrow{j} \right] = 2\overrightarrow{1} + \overrightarrow{j}$ i.e. $C = (2, 1)$	1A 5	,
Let the radius of the water surface be r centimetres.		
By similar triangles	1M	Attempt to use similar triangles
$r = \frac{1}{3} (12 - h)$ Volume of water $V = \frac{1}{3} (\pi) (4^2) (12) - \frac{1}{3} \pi r^2 (12 - h)$	1A 1M	
$= \frac{\pi}{3}(192 - \frac{(12 - h)^3}{9}) \dots$ $= \frac{\pi}{27}(432h - 36h^2 + h^3)$	1A	12
$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$ $= \frac{\pi}{9} (12 - h)^2 \cdot \frac{dh}{dt}$	1 1A	
$\frac{\pi}{9}(12 - h)^2 \cdot \frac{dh}{dt} = \pi$	1M	4
$\frac{dh}{dt} = \frac{9}{(12 - 6)^2}$ $= \frac{1}{4}$, dh i ,
the water level is rising at $\frac{1}{4}$ cm/s	1A 3	Accept $\frac{dh}{dt} = \frac{1}{4} \text{ cm/s}$

RESTRICTED 內部文件

SOLUTIONS	MARKS	REMARKS
6. $\log_{10} x^2 + 2px = 0$ iff $ x^2 + 2px = 1$	2A	"iff" optional
iff $x^2 + 2px = 1$ or $x^2 + 2px = -1$	IA+1A	-1A for 'and', accept ','
(i) Let $x^2 + 2px - 1 = 0$		
Discriminant = $4p^2 + 4$		
> 0 for all real p	1 A	
the given equation has no double root.	1A	
(ii) Let $x^2 + 2px + 1 = 0$		
Discriminant = $4p^2 - 4 = 0$	1A	t .
iff p = ±1	1A 8	
The given equation has a double root if $p = \pm 1$		

		MARKS	REMARKS
	SOLUTIONS	FIRANCE	
7. (a) (i) a	$ax^2 + bx + c$,
·	$= a(x^2 + \frac{b}{2}x + \frac{c}{2})$	1A	
	$-a[(x+\frac{b}{2})^2-\frac{b^2-4ac}{(-\frac{a^2}{2})}]$	1M+1A	1.VI completing square
,	$= a(x + \frac{5 - \sqrt{5^2 - 4ac}}{2a})(x + \frac{5 + \sqrt{5^2 - 4ac}}{2a})$	lA	
(ii)	The roots of the given equation are		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1A	
	Since a, b are real, if $b^2 - 4ac < 0$, the roots are imaginary	1A	Must mention a, b real.
(iii)	If $a = 3i$, $b = -2$, $c = 5i$,		
	$b^2 - 4ac = 4 - 4 \times 3 \times 5i^2$		
	= 64	1 A	•
	But the roots = $\frac{2 \pm \sqrt{64}}{6i}$	(A+1A	
	$=\frac{5}{31} \text{ or } \frac{-1}{1} \text{ (or } \frac{-5i}{3}, i),$		
	which are imaginary.	9	
	2.	1.4	
(b) The	discriminant = $4\lambda^2 - 4(2\lambda^2 - 2\lambda\mu + \mu^2)$	1A	
_	$= -4(\lambda^2 - 2\lambda\mu + \mu^2)$		
	$= -4(\lambda - \mu)^2 \dots$	l A	
Sine	ce the roots are real,		
-4($\lambda - \mu$) ² $\geqslant 0$	1M	
	$\lambda = \mu$ (Since λ and μ are real)	$\frac{1A}{4}$	
	ce (1) and (2) have imaginary roots		
	$a^2 < 4b$)	. 1A	
	$(a) (b) = (a + b)^2 - 3(b + d)$	1A	2
2110	$< (a + c)^2 - 2(a^2 + c^2)$	[:Mt]	A I'm wring a 2 < 4 b or c2 <
	$= -(a - c)^2 \cdots$. 1A	
	€ 0	. IA	
Δα	the discriminant < 0 the coefficients of (3) are real, it has aginary roots	· 1M	- Must mention coeff. rea

DESTRICTED 内部文件rovided by dse.life

MATHS I SOLUTION

RESTRICTED 內部文件

	SOLUTIONS	MARKS	REMARKS
. (a)	(i) $\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{CD}$		
	$=2\vec{b}+k\vec{a}$	1A	
	$\overrightarrow{DA} = \overrightarrow{OA} - \overrightarrow{OD}$		
	$= \vec{a} - (2\vec{b} + k\vec{a}) \qquad$	1M	Sub, in correct expression
	$= (1 - k)\vec{a} - 2\vec{b} \qquad \cdots$	1A	
	(ii) $\overrightarrow{BA} = \overrightarrow{a} - \overrightarrow{b}$	1A	
_	$\overrightarrow{CP} = \overrightarrow{CD} + \overrightarrow{DP}$		
	$= k\vec{a} + \lambda [(1 - k)\vec{a} - 2\vec{b}] \qquad \dots$	1M	Same as above
	$= (k + \lambda(1 - k))\vec{a} - 2\lambda \vec{b} \qquad$	1A	
	Since CP // BA, $\frac{k + \lambda (1 - k)}{1} = \frac{-2\lambda}{-1}$	2M }	Alt. Solution:
	$k = \lambda (1+k)$		$t \overrightarrow{BA} = \overrightarrow{CP} \dots 1M$ $t(\overrightarrow{a}-\overrightarrow{b}) = (k+)(1-k)\overrightarrow{a}-2 \xrightarrow{b}$
	$\lambda = \frac{\lambda}{\lambda + 1}$	$\frac{1A}{9}$	$k + \lambda (1-k) = b$ $-2 \lambda = -b \dots $
(b)	(i) $\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos AOB$	1A	•
	= OB X OAcos AOB)	1A	Should not be omitted
	$= OB^2 $		
_	(ii) $\overrightarrow{OD} \cdot \overrightarrow{DA} = (2\overrightarrow{b} + \overrightarrow{ka}) \cdot ((1 - \cancel{k})\overrightarrow{a} - 2\overrightarrow{b})$		C
	$= k(1-k)\vec{a} \cdot \vec{a} - 4\vec{b} \cdot \vec{b} + [2(1-k) - 2k]\vec{a} \cdot \vec{b}$	1A	
	$= k(1-k)\vec{a} \cdot \vec{a} - 4\vec{b} \cdot \vec{b} + (2-4k)OB^{2}$	1M	
	$= 16k(1-k)0B^2 - 40B^2 + (2-4k)0B^2$	1M+1M	B
	$= (-16k^2 + 12k - 2)0B^2 \dots$	1A	b/
	If $OD \perp AD$, $-16k^2 + 12k - 2 = 0$	1M	0
	(4k-1)(2k-1)=0		The state of the s
	$\lambda = \frac{k}{1+k}$ $k = \frac{1}{4} \text{ or } \frac{1}{2}$	1A	
	$=\frac{1}{5} \text{ or } \frac{1}{3} \dots$	1A+1A 11	
		11	
		ı	1

The state of the s	SOLUTIONS	MARKS	REMARKS
	301011040		
9. (a)	(i) $RP = a \sec\theta (= \frac{a}{\cos\theta})$ $PQ = b \csc\theta (= \frac{b}{\sin\theta})$ $\therefore s = RP + PQ$ $= a \sec\theta + b \csc\theta (0 < \theta < \frac{\pi}{2})$ $(= \frac{a}{\cos\theta} + \frac{b}{\sin\theta})$ or $\sqrt{(\frac{a \tan\theta + b}{\tan\theta})^2 + (a \tan\theta + b)^2}$	1A 1A R 1A	$\begin{array}{c c} & P(a, b) \\ \hline a & S \\ \hline & Q \\ \end{array}$
	(ii) $\frac{ds}{d\theta} = a \sec\theta \tan\theta - b \csc\theta \cot\theta$	1A+1A 1M	3
	$\frac{d^2s}{d\theta^2} = a(\sec\theta\tan^2\theta + \sec^3\theta) - b(-\csc\theta\cot^2\theta - \csc^3\theta)$ $= a\sec\theta(\tan^2\theta + \sec^2\theta) + b\csc\theta(\cot^2\theta + \csc^2\theta)$ If $\tan\theta = \sqrt[3]{\frac{b}{a}}$, $0^\circ < \theta < 90^\circ$, $\sec\theta$, $\csc\theta > 0$, $\frac{d^2s}{d\theta^2} > 0$ $s will be least when \tan\theta = \sqrt[3]{\frac{b}{a}}.$		Alt. Solution: $\frac{ds}{d\theta} = \frac{a\sin\theta}{\cos^2\theta} - \frac{b\cos\theta}{\sin^2\theta}$ $= \frac{a\sin^3\theta - b\cos^3\theta}{\sin^2\theta\cos^2\theta}$ $= \frac{\cos^3\theta(a\tan^3\theta - b)}{\sin^2\theta\cos^2\theta}$ If $\theta < \tan^{-1}\sqrt[3]{\frac{b}{a}}$ slightly, $\frac{ds}{d\theta} < 0.$ If $\theta > \tan^{-1}\sqrt[3]{\frac{b}{a}}$ slightly,
			$\frac{ds}{d\theta} > 0$ $(Knmlulge : test)$ $s is least when$ $tan\theta = \sqrt[3]{\frac{b}{a}}$

Provided by dse.life

vi .					D TOLL DIZO
			SOLUTIONS	MARKS	REMARKS
9.	(b)	(i)	When being moved horizontally, the longest pipe will just touch the outside walls of both corridors while it is negotiating the corner P. The length of the pipe must not be longer than the shortest distance between Q and R. From (a), this occurs when $\tan\theta = \sqrt[3]{\frac{2.7}{0.8}}$ $= \frac{3}{2} \ (\theta = 56.3^{\circ})$ \therefore the length of the longest pipe that can be carried round the corner horizontally is	lM+lA lA	lM for attempting to use (a)
		(11)	0.8 $\sec\theta + 2.7 \csc\theta$ ($\theta = 56.3^{\circ}$) = 0.8 $\times \frac{\sqrt{13}}{2} + 2.7 \times \frac{\sqrt{13}}{3}$ = 4.69 m (4.687) If the height of the seiling is 3 m, the length of the longest pipe that can be carried round the corner is	1M+1M	lM for sub. a, b, lM for sub. θ.
			$\sqrt{3^2 + 4.687^2}$ = 5.57 m	2M 1A 9	9 2.7 m

Provided by dse.life

RESTRICTED 内部文件

	SOLUTIONS	MARKS	REMARKS
.0. (a)	$\frac{1}{2}(w + \overline{w}) = \frac{1}{2}[(p + qi) + (p - qi)]$		
	= p	1A	
	$\frac{1}{2!}(w - \overline{w}) = \frac{1}{2!}[(p + q1) - (p - q1)]$		
	= q ,	1 A	
	$p = \frac{1}{2}(w + \overline{w})$		
	$= \frac{1}{2} \left[\frac{z-1}{z+1} + \left(\frac{\overline{z-1}}{z+1} \right) \right]$	1M	
,	$=\frac{(z-1)(\overline{z}+1)+(\overline{z}-1)(z+1)}{2(z+1)(\overline{z}+1)}$	1A	
	$=\frac{z\overline{z}-\overline{z}+z-1+\overline{z}z-z+\overline{z}-1}{2(z\overline{z}+z+\overline{z}+1)}$		Show working
	$=\frac{z\overline{z}-1}{z\overline{z}+z+\overline{z}+1} \cdot \cdot$	1A	
	$q = \frac{1}{24}(w - \overline{w})$		
	$= \frac{1}{24} \left(\frac{z - 1}{z + 1} - \left(\frac{\overline{z - 1}}{z + 1} \right) \right) \dots$	LM	
	$= \frac{\frac{21}{2}z + 1}{\frac{2}{21}} \frac{(z + 1)(\overline{z} + 1) - (\overline{z} - 1)(z + 1)}{(z + 1)(\overline{z} + 1)}$		
	$= \frac{2i}{2i} \frac{(z+1)(\overline{z}+1)}{z\overline{z}+z-\overline{z}-1-\overline{z}z+z-\overline{z}+1}$ $= \frac{1}{2i} \frac{z\overline{z}+z-\overline{z}-1-\overline{z}z+z-\overline{z}+1}{z\overline{z}+z+\overline{z}+1}$		Show working
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 <u>A</u>	3+2 marks for p, q
			Optional
(b)	(i) w is real \Leftrightarrow q = 0.	1	Optional
_	$z - \overline{z} = 0 \dots$	1 A	
	The locus of z is the real axis, excluding $z = -1$	1A+1A	
	(ii) w is purely imaginary \Leftrightarrow p = 0, q \neq 0	1	c ptimal
	$z\bar{z} - 1 = 0$ i.e. $x^2 + y^2 = 1$	1 A	
	The locus of z is the circle, centre 0, radius 1, excluding the points $z=\pm 1$.	1A+1A	
	$(iii) w ^2 = w\overline{w}$		
	$= \frac{z-1}{z+1} \times (\frac{\overline{z-1}}{z+1})$ $= \frac{(z-1)(\overline{z}-1)}{(z+1)(\overline{z}+1)} \dots$	1A	
	w = 1		
	$\Rightarrow 1 = \frac{z\overline{z} - z - \overline{z} + 1}{z\overline{z} + z + \overline{z} + 1} \dots$	1M	
	$z\overline{z} + z + \overline{z} + 1 = z\overline{z} - z - \overline{z} + 1$		
	$z + \overline{z} = 0 \qquad \dots$	1A	
	The locus of z is the imaginary axis.	2A 13	D. 11.11 1 1
	the second to the second secon	17	Provided by dse.l

RESTRICTED 內部文件

	SOLUTIONS	MARKS	REMARKS
10. (a)	Alt. Solution:		
	Let $z = x + iy$,
	$w = \frac{(x - 1) + iy}{(x + 1) + iy}$	lM	
	$= \frac{x^2 + y^2 - 1}{(x + 1)^2 + y^2} + \frac{2y1}{(x + 1)^2 + y^2}$	1A	
	$\overline{w} = \frac{x^2 + y^2 - 1}{(x + 1)^2 + y^2} - \frac{2yi}{(x + 1)^2 + y^2}$		
	$\frac{1}{2} (w + \overline{w}) = \frac{x^2 + y^2 - 1}{(x + 1)^2 + y^2}$		
and.	= p	1A	
	$\frac{1}{2i} (w - \overline{w}) = \frac{1}{2i} (\frac{4yi}{(x+1)^2 + y^2})$		
	= q	1A	
	$\frac{z\overline{z} - 1}{z\overline{z} + z + \overline{z} + 1} = \frac{x^2 + y^2 - 1}{x^2 + y^2 + (x + iy) + (x - iy) + 1}$	1A	
	$= \frac{x^2 + y^2 - 1}{x^2 + y^2 + 2x + 1}$		
	= p ,	lA	
	$\frac{\mathbf{i}(\overline{z}-z)}{z\overline{z}+z+\overline{z}+1}=\frac{\mathbf{i}(-2\mathbf{i}y)}{x^2+y^2+2x+1}$		
	= q	1 <u>A</u> 7	
(b)	(i) w is real ⇔ q = 0	1	10 ptional
ĺ	/, y = 0	1A	
	The locus of z is the real axis, excluding		
	z = -1	1A+1A	
	(ii) w is purely imaginary $\langle \Rightarrow p = 0, q \neq 0$	1	optional
	$\therefore x^2 + y^2 = 1$	l A	
	The locus of z is the circle, centre 0, radius 1, excluding $z = \pm 1$.	1A+1A	
	(iii) wf = ww		
	$= \frac{1}{\left[(x+1)^2 + y^2 \right]^2} \left[(x^2 + y^2 - 1)^2 + 4y^2 \right]$	1A	
	$ w = 1 \Leftrightarrow [(x+1)^2 + y^2]^2 = (x^2+y^2-1)^2 + 4y^2$	1M	
	$[(x+1)^2+y^2+x^2+y^2-1][2x+2]=4y^2$		
	$x[(x + 1)^2 + y^2] = 0$		
	$x = 0$ (as $z = x + iy \neq -1$)	1A	
	The locus is the imaginary axis.	2A 13	D 11 11 1 10
			Provided by dse.life

MATHS I SOLUTION

RESTRICTED 內部文件

P.10

		SOLUTIONS	MARKS	REMARKS
11.	(a)	tanθ = tan(BAC - DAC) _ tanBAC - tanDAC	1	
		$= \frac{\tan BAC - \tan DAC}{1 + \tan BAC \ \tan DAC}$ $= \frac{\frac{30}{x} - \frac{10}{x}}{1 + \frac{30}{x} \cdot \frac{10}{x}}$ 20x	1M	Show working
-	(b)	$= \frac{20x}{x^2 + 300}$ Differentiating both sides w.r.t. x,	1 <u>A</u> 3	
		$\frac{d}{dx}(\tan\theta) = \frac{d}{dx}(\frac{20x}{x^2 + 300}),$ $\sec^2\theta \frac{d\theta}{dx} = \frac{20(x^2 + 300) - 20x(2x)}{(x^2 + 300)^2}$	1A+1A	
		3ut $\sec^2\theta = 1 + \tan^2\theta$ = $\frac{(x^2 + 300)^2 + (20x)^2}{(x^2 + 300)^2}$	1A	
		$\frac{d\theta}{dx} = \frac{(x^2 + 300)^2}{(x^2 + 300)^2 + (20x)^2} \cdot \frac{20(x^2 + 300) - 20x(2x)}{(x^2 + 300)^2}$ $= \frac{20(300 - x^2)}{x^4 + 1000x^2 + 900000}$	1A	
	•	$x^{4} + 1000x^{2} + 90 000$ $\frac{d\theta}{dx} = 0 \iff x = \sqrt{300} (= 17.3) (\text{-ve root rejected})$ When $x < \sqrt{300}$ slightly, $\frac{d\theta}{dx} > 0$.		Accept $x = \pm \sqrt{300}$
		When $x > \sqrt{300}$ slightly, $\frac{d\theta}{dx} < 0$. $\therefore \theta$ is maximum when $x = \sqrt{300}$	1A 6	

Provided by dse.life

	SOLUTIONS	MARKS	REMARKS
11. (c)	If $x = 50$, $\frac{d\theta}{dx} = \frac{20(300 - 50^2)}{50^4 + 1000(50)^2 + 90000}$	1M	
	$= \frac{-44\ 000}{3\ 840\ 000}$ $= -0.0050 (correct to 4 d.p.)$ $1^{\circ} = 0.0175 \text{ radians}$	1A	Follow through for -0.005
	Since $\Delta x = \Delta \theta \frac{1}{\frac{d\theta}{dx}}$ (or $\Delta \theta = \frac{d\theta}{dx} \Delta x$),	IM	
خمبر د	at x = 50, $\triangle x = \frac{-0.0175}{-0.005}$ = 3.5 (correct to the nearest $\frac{1}{10}$ m)	1M+1A 1A 6	20 m
	A)	D 10 m

