Semana 10

- Se sugiere antes de resolver los ejercicios ver los videos de YouTube de los temas correspondientes así como también leer la bibliografía recomendada y el material teórico subido en el campus del curso.
- A continuación se presentan algunos ejercicios resueltos y algunas observaciones para resolver los ejercicios 9 a 16 de la Guía 3. Los ejercicios propuestos que no están en la guía (pero que se relacionan con los mismos) no tienen numeración.

Subespacio ortogonal

Antes de comenzar con los ejercicios de la semana 10, recordemos la definición de subespacio ortogonal.

Sea $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ un \mathbb{K} -espacio euclídeo y sea $A \subseteq \mathbb{V}$ un conjunto no vacío de \mathbb{V} , el *subespacio ortogonal a A*, denotado por A^{\perp} , se define por

$$A^{\perp} := \{x \in \mathbb{V} : \langle \, x, a \, \rangle = 0 \text{ para todo } a \in A\}.$$

Las siguientes propiedades del subespacio ortogonal la usaremos a lo largo de lo que queda de la materia.

Proposición 1. Sea $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ un \mathbb{K} -espacio euclídeo y sea $A \subseteq \mathbb{V}$ un conjunto no vacío de \mathbb{V} . Entonces:

- 1. A^{\perp} es un subespacio de \mathbb{V} .
- 2. $A \cap A^{\perp} = \{0_V\}.$
- 3. Si $B \subseteq \mathbb{V}$ es un conjunto no vacío tal que $B \subseteq A$ entonces $A^{\perp} \subseteq B^{\perp}$.

Dem. 1.: Por un lado, es claro que $0_{\mathbb{V}} \in A^{\perp}$, pues para todo $a \in A$,

$$\langle 0_{\mathbb{V}}, a \rangle = \langle 0 \cdot 0_{\mathbb{V}}, a \rangle = 0 \langle 0_{\mathbb{V}}, a \rangle = 0.$$

Por otra parte, sean $x, y \in A^{\perp}$ y $\alpha \in \mathbb{K}$, entonces vale que $\langle x, a \rangle = \langle y, a \rangle = 0$, para todo $a \in A$. Por lo tanto,

$$\langle \alpha x + y, a \rangle = \alpha \langle x, a \rangle + \langle y, a \rangle = 0,$$

para todo $a \in A$. Entonces $\alpha x + y \in A^{\perp}$ y con eso concluimos que A^{\perp} es un subespacio (observar que juntamos en una misma demostración la prueba de que si $x, y \in A^{\perp}$ y $\alpha \in \mathbb{K}$ entonces $x + y \in A^{\perp}$ y $\alpha \in A^{\perp}$).

2. : Sea $x \in A \cap A^{\perp}$ entonces $x \in A$ y $x \in A^{\perp}$, como $x \in A^{\perp}$ vale que $\langle x, a \rangle = 0$ para todo $a \in A$. En particular, como $x \in A$, vale que $\langle x, x \rangle = 0$, entonces por definición de producto interno $x = 0_{\mathbb{V}}$. Y concluimos que $A \cap A^{\perp} = \{0_{\mathbb{V}}\}$.

3. : Sea $x \in A^{\perp}$, entonces $\langle x, a \rangle = 0$, para todo $a \in A$. Sea $b \in B$ entonces vale que $\langle x, b \rangle = 0$, pues como $B \subseteq A$, tenemos que $b \in A$. Por lo tanto $x \in B^{\perp}$ y concluimos que $A^{\perp} \subseteq B^{\perp}$.

La siguiente es una simple observación que vamos a usar mucho en lo que resta de la guía.

Sea $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ un \mathbb{K} -espacio euclídeo, $w \in \mathbb{V}$ y sea $S \subseteq \mathbb{V}$ un subespacio de \mathbb{V} tal que $S = gen\{v_1, v_2, \cdots, v_r\}$. Entonces,

$$w \in \mathcal{S}^{\perp}$$
 si y sólo si $\langle w, v_1 \rangle = \langle w, v_2 \rangle = \dots = \langle w, v_r \rangle = 0.$ (1)

Es decir, para ver que $w \in \mathcal{S}^{\perp}$ basta ver que w es ortogonal a cada generador de \mathcal{S} .

De hecho, si $w \in \mathcal{S}^{\perp}$ entonces $\langle w, s \rangle = 0$ para todo $s \in \mathcal{S}$. Entonces, como $v_1, v_2, \dots, v_r \in \mathcal{S}$ es claro que se cumple que $\langle w, v_1 \rangle = \langle w, v_2 \rangle = \dots = \langle w, v_r \rangle = 0$.

Recíprocamente, supongamos que $\langle w, v_1 \rangle = \langle w, v_2 \rangle = \cdots = \langle w, v_r \rangle = 0$ y sea $s \in \mathcal{S}$. Entonces $s = a_1v_1 + a_2v_2 + \cdots + a_rv_r$ con $a_1, a_2, \cdots, a_r \in \mathbb{K}$. Entonces

$$\langle w, s \rangle = \langle w, a_1 v_1 + a_2 v_2 + \dots + a_r v_r \rangle = \overline{a_1} \langle w, v_1 \rangle + \overline{a_2} \langle w, v_2 \rangle + \dots + \overline{a_r} \langle w, v_r \rangle = 0,$$

como s era cualquier vector de \mathcal{S} , concluimos que $w \in \mathcal{S}^{\perp}$ y probamos lo que queríamos.

Sea $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ un \mathbb{K} -espacio euclídeo. Un conjunto de vectores no nulos $\{u_1, u_2, \cdots, u_n\} \subseteq \mathbb{V}$ se llama:

• Sistema ortogonal cuando

$$\langle u_i, u_j \rangle = 0$$
 para todo $i \neq j$.

• Sistema ortonormal cuando

$$\langle u_i, u_j \rangle = 0$$
 para todo $i \neq j$ y $||u_i|| = 1$ para todo $i \in \{1, \dots, n\}$.

Finalmente, llamaremos base ortogonal (ortonormal) de \mathbb{V} a los sistemas ortogonales (ortonormales) que generan \mathbb{V} .

Ejercicio 10 : Para cada uno de los siguientes productos internos definidos en $\mathbb{R}_2[x]$ hallar una base ortogonal de $\mathcal{S} = gen\{x^2\}^{\perp}$ y descomponer cada polinimio $p \in \mathbb{R}_2[x]$ en la forma $p = p_{\mathcal{S}} + p_{\mathcal{S}^{\perp}}$, con $p_{\mathcal{S}} \in \mathcal{S}$ y $p_{\mathcal{S}^{\perp}} \in \mathcal{S}^{\perp}$.

- c) $\langle p, q \rangle := \int_{-1}^{1} \frac{1}{2} p(x) q(x) dx$.
- d) $\langle p, q \rangle : \int_0^\infty p(x)q(x)e^{-x}dx$.

Dem. c): Por definición $S = gen\{x^2\}^{\perp} = \{p \in \mathbb{R}_2[x] : \langle p, x^2 \rangle = 0\}$ (observar que usamos (1)). Entonces, $p \in S$ si $p(x) = ax^2 + bx + c$, con $a, b, c \in \mathbb{R}$ y

$$0 = \langle p, x^2 \rangle = \langle ax^2 + bx + c, x^2 \rangle = \frac{1}{2} \left[\int_{-1}^{1} ax^4 + bx^3 + cx^2 dx \right] =$$

$$=\frac{1}{2}[a\frac{x^5}{5}+b\frac{x^4}{4}+c\frac{x^3}{3}]|_{-1}^1=\frac{1}{2}[a\frac{2}{5}+b\cdot 0+c\frac{2}{3}]=a\frac{1}{5}+c\frac{1}{3}.$$

Entonces, despejando nos queda $a = -\frac{5}{3}c$. Entonces, volviendo a la expresión de p tenemos que,

$$p(x) = ax^{2} + bx + c = -\frac{5}{3}cx^{2} + bx + c = c(-\frac{5}{3}x^{2} + 1) + bx,$$

con $b, c \in \mathbb{R}$. Entonces, $S = gen\{-\frac{5}{3}x^2 + 1, x\}$. Observar que afortunadamente

$$\left\langle -\frac{5}{3}x^2 + 1, x \right\rangle = 0,$$

entonces $\mathcal{B}_{\mathcal{S}} = \{-\frac{5}{3}x^2 + 1, x\}$, es una base ortogonal de \mathcal{S} . Por otra parte, como $\mathcal{S} = gen\{x^2\}^{\perp}$ entonces, $\mathcal{S}^{\perp} = (gen\{x^2\}^{\perp})^{\perp} = (gen\{-\frac{5}{3}x^2 + 1, x\})^{\perp} = (gen\{-\frac{5}{3}x^2 + 1, x\})^{\perp}$ $gen\{x^2\}.$

Por último si $p(x) = ax^2 + bx + c$, es cualquier vector de $\mathbb{R}_2[x]$ y $\alpha, \beta, \gamma \in \mathbb{R}$, son tales que

$$p(x) = \alpha x^2 + \beta(-\frac{5}{3}x^2 + 1) + \gamma x.$$

Es fácil ver que $\gamma = b, \beta = c$ y $\alpha = a + \frac{5}{3}c$, entonces,

$$p(x) = (a + \frac{5}{3}c)x^2 + c(-\frac{5}{3}x^2 + 1) + bx.$$

Si llamamos $p_{\mathcal{S}} := c(-\frac{5}{3}x^2 + 1) + bx \in \mathcal{S}$ y $p_{\mathcal{S}^{\perp}} := (a + \frac{5}{3}c)x^2 \in \mathcal{S}^{\perp}$. Tenemos que $p = p_{\mathcal{S}} + p_{\mathcal{S}^{\perp}}$. Como $\mathcal{S} \cap \mathcal{S}^{\perp} = \{0\}$ la descomposición que acabamos de encontrar es única.

d): Por definición

$$\int_0^\infty p(x)q(x)e^{-x}dx := \lim_{R \to \infty} \int_0^R p(x)q(x)e^{-x}dx.$$

Como el integrando es un polinomio (de grado como mucho 4) multiplicado por la función e^{-x} la integral en cuestión siempre converge, esto va a quedar más claro con las cuentas que vamos a hacer a continuación.

Procediendo como en el item anterior, se sigue que $p \in \mathcal{S}$ si $p(x) = ax^2 + bx + c$, con $a, b, c \in \mathbb{R}$ y

$$0 = \langle p, x^2 \rangle = \langle ax^2 + bx + c, x^2 \rangle = \lim_{R \to \infty} \int_0^R (ax^4 + bx^3 + cx^2) e^{-x} dx.$$

Por un lado,

$$\begin{split} &\int_0^R (ax^4 + bx^3 + cx^2)e^{-x}dx \\ &= -ae^{-x}(24 + 24x + 12x^2 + 4x^3 + x^4) - be^{-x}(6 + 6x + 3x^2 + x^3) - ce^{-x}(2 + 2x + x^2)|_0^R \\ &= -e^{-R}[a(24 + 24R + 12R^2 + 4R^3 + R^4) + b(6 + 6R + 3R^2 + R^3) + c(2 + 2R + R^2)] \\ &+ e^0(a24 + b6 + c2). \end{split}$$

Y, como

$$\lim_{R \to \infty} e^{-R} [a(24 + 24R + 12R^2 + 4R^3 + R^4) + b(6 + 6R + 3R^2 + R^3) + c(2 + 2R + R^2)] = 0,$$

tenemos que

$$0 = \langle p, x^2 \rangle = \int_0^\infty p(x)x^2 e^{-x} dx = \lim_{R \to \infty} \int_0^R (ax^4 + bx^3 + cx^2)e^{-x} dx = 24a + 6b + 2c.$$

Despejando, nos queda c = -12a - 3b, y volviendo a la expresión de p, nos queda

$$p(x) = ax^2 + bx + c = ax^2 + bx + (-12a - 3b) = a(x^2 - 12) + b(x - 3),$$

con $a, b \in \mathbb{R}$ entonces $S = gen\{x^2 - 12, x - 3\}$.

Observar que

$$\langle x^2 - 12, x - 3 \rangle = \int_0^\infty (x^2 - 12)(x - 3)e^{-x} dx = \lim_{R \to \infty} \int_0^R (x^2 - 12)(x - 3)e^{-x} dx = \lim_{R \to \infty} [-e^{-x}(x^3 - 12x + 24)]|_0^R = \lim_{R \to \infty} [-e^{-R}(R^3 - 12R^2 + 24) + 24] = 24.$$

Para encontrar una base ortogonal de S, buscamos vectores $p, q \in S$ tales que p y q sean generadores de S y cumplan que $\langle p, q \rangle = 0$.

Podemos tomar $p(x) = x^2 - 12 \in \mathcal{S}$ y $q(x) = (x^2 - 12) + b(x - 3) \in \mathcal{S}$, con $b \in \mathbb{R}$ a determinar, tal que

$$0 = \langle p, q \rangle = \langle x^2 - 12, (x^2 - 12) + b(x - 3) \rangle =$$

$$= \langle x^2 - 12, x^2 - 12 \rangle + b \langle x^2 - 12, x - 3 \rangle = \langle x^2 - 12, x^2 - 12 \rangle + b(24),$$

donde usamos que $\langle x^2 - 12, x - 3 \rangle = 24$. Por otra parte,

$$\langle x^2 - 12, x^2 - 12 \rangle = \int_0^\infty p(x)q(x)e^{-x}dx = \lim_{R \to \infty} \int_0^R (x^2 - 12)^2 e^{-x}dx =$$

$$= \lim_{R \to \infty} \left[-e^{-x}(x^4 + 4x^3 - 12x^2 - 24x + 120) \right] \Big|_0^R = \lim_{R \to \infty} \left[-e^{-R}(R^3 - 12R^2 + 24) + 120 \right] = 120.$$

Entonces, 0 = 120 + 24b, despejando nos queda b = -5. Por lo tanto,

$$q(x) = x^2 - 12 - 5(x - 3) = x^2 - 5x + 3 \in \mathcal{S}$$

y claramente $\langle p,q \rangle = \langle x^2 - 5x + 3, x^2 - 3 \rangle = 0$. Entonces, una base ortogonal de $\mathcal S$ puede ser

$$\mathcal{B}_{\mathcal{S}} = \{x^2 - 5x + 3, x^2 - 12\}.$$

El método que usamos para obtener la base ortogonal de S es esencialmente el Método de Gram-Schmidt y lo veremos con mayor profundidad en dos semanas.

Por último si $p(x) = ax^2 + bx + c$, es cualquier vector de $\mathbb{R}_2[x]$ y $\alpha, \beta, \gamma \in \mathbb{R}$, son tales que

$$p(x) = \alpha x^2 + \beta(x^2 - 5x + 3) + \gamma(x^2 - 12).$$

Es fácil ver que $\gamma = -\frac{1}{12}c - \frac{1}{20}b$, $\beta = -\frac{1}{5}$ y $\alpha = a + \frac{1}{4}b + \frac{1}{12}c$, entonces,

$$p(x) = \left(a + \frac{1}{4}b + \frac{1}{12}c\right)x^2 + \left(-\frac{1}{5}b\right)(x^2 - 5x + 3) + \left(-\frac{1}{12}c - \frac{1}{20}b\right)(x^2 - 12).$$

Si llamamos $p_{\mathcal{S}} := -\frac{1}{5}b(x^2 - 5x + 3) + (-\frac{1}{12}c - \frac{1}{20}b)(x^2 - 12) \in \mathcal{S} \text{ y } p_{\mathcal{S}^{\perp}} := (a + \frac{1}{4}b + \frac{1}{12}c)x^2 \in \mathcal{S}^{\perp}$. Tenemos que $p = p_{\mathcal{S}} + p_{\mathcal{S}^{\perp}}$.

Como $S \cap S^{\perp} = \{0\}$ la descomposición que acabamos de encontrar es única.

Ejercicio de examen: En el \mathbb{R} -espacio vectorial $\mathbb{R}_2[x]$ se define la función $\Phi: \mathbb{R}_2[x] \times \mathbb{R}_2[x] \to \mathbb{R}$ como

$$\Phi(p,q) := \int_0^2 (1-x)f(x)g(x)dx.$$

Sea $S = gen\{(1-x)^2\}$. Entonces:

- a) Hallar una base de $\mathcal{T} := \{ p \in \mathbb{R}_2[x] : \Phi(p,q) = 0 \text{ para todo } q \in \mathcal{S} \}.$
- b) Probar que $S \subseteq \mathcal{T}$.
- c) Decidir si Φ define un producto interno en $\mathbb{R}_2[x]$.

Dem. a): Busquemos una base de \mathcal{T} . Tenemos que $p \in \mathcal{T}$ si $p \in \mathbb{R}_2[x]$, es decir $p(x) = ax^2 + bx + c$ con $a, b, c \in \mathbb{R}$ y $\Phi(p, q) = 0$ para todo $q \in \mathcal{S}$. Si $q \in \mathcal{S}$, entonces $q(x) = \alpha(1 - x)^2$, con $\alpha \in \mathbb{R}$. Entonces, $\Phi(p, \alpha(1 - x)^2) = 0$, para todo $\alpha \in \mathbb{R}$. En particular, lo anterior vale para $\alpha = 1$. Entonces

$$0 = \Phi(ax^{2} + bx + c, (1 - x)^{2}) = \int_{0}^{2} (1 - x)(ax^{2} + bx + c)(1 - x)^{2} dx$$

$$= \int_{0}^{2} (1 - x)^{3} (ax^{2} + bx + c) dx$$

$$= a[-\frac{x}{6} + \frac{3x^{5}}{5} - \frac{3x^{4}}{4} + \frac{x^{3}}{3}] + b[-\frac{x}{5} + \frac{3x^{4}}{4} - x^{3} + \frac{x^{2}}{2}] + c[-\frac{(1 - x)^{4}}{4}]|_{0}^{2}$$

$$= \frac{-4a}{5} + \frac{-2b}{5} + c \cdot 0 = -\frac{4a}{5} - \frac{2b}{5}.$$

Despejando, nos queda $b=-\frac{4a}{5}\frac{5}{2}=-2a$. Por lo tanto $p(x)=ax^2-2ax+c=a(x^2-2x)+c\cdot 1$, con $a,c\in\mathbb{R}$. Por lo tanto,

$$\mathcal{T} = gen\{x^2 - 2x, 1\}$$

y una base de \mathcal{T} puede ser $\mathcal{B}_{\mathcal{T}} = \{x^2 - 2x, 1\}$.

b): Veamos que $S \subseteq \mathcal{T}$. Si $q \in S$ entonces $q(x) = \alpha(x-1)^2$, con $\alpha \in \mathbb{R}$. Observar que

$$q(x) = \alpha(x-1)^2 = \alpha(x^2 - 2x + 1) = \alpha(x^2 - 2x) + \alpha 1 \in \mathcal{T}$$

y se sigue que $S \subseteq \mathcal{T}$.

c): Φ NO define un producto interno. Por ejemplo, si p(x) = 1, entonces

$$\Phi(p,p) = \int_0^2 (1-x)p(x)^2 dx = \int_0^2 (1-x)1 dx = x - \frac{x^2}{2}|_0^2 = 0.$$

Sin embargo p(x) = 1 es decir $p \neq 0$ (el polinomio nulo). Por lo tanto Φ no define un producto interno en $\mathbb{R}_2[x]$.

Ejercicio 11 : En \mathbb{R}^n con el producto interno canónico consideramos \mathcal{S} , el subespacio definido por $\mathcal{S} := \{x \in \mathbb{R}^n : Ax = 0\}$, donde A es una matriz de $\mathbb{R}^{m \times n}$. Observar que $\mathcal{S}^{\perp} = fil(A)$ y expresar las dimensiones de \mathcal{S} y \mathcal{S}^{\perp} en función del rango de A. Probar que vale que $\mathbb{R}^n = \mathcal{S} \oplus \mathcal{S}^{\perp}$. Qué forma tomaría el problema si en lugar de \mathbb{R} apareciese \mathbb{C} .

Dem. Observar que S = nul(A). Veamos que $S^{\perp} = nul(A)^{\perp} = fil(A) = col(A^{T})$.

Supongamos que $y \in fil(A) = col(A^T)$ entonces existe $x \in \mathbb{R}^m$ tal que $y = A^T x$ (estamos usando que como $A \in \mathbb{R}^{m \times n}$, $A^T \in \mathbb{R}^{n \times m}$). Recordemos que el producto interno canónico se define como $\langle u, v \rangle = v^T u = u^T v$, para $u, v \in \mathbb{R}^n$. Ahora, sea $z \in nul(A)$, entonces Az = 0 y tenemos que

$$\langle y, z \rangle = \langle A^T x, z \rangle = (A^T x)^T z = x^T (A^T)^T z = x^T (Az) = 0.$$

Es decir, $\langle y, z \rangle = 0$ para todo $z \in nul(A)$. Por lo tanto $y \in nul(A)^{\perp}$ y se sigue que

$$fil(A) = col(A^T) \subseteq nul(A)^{\perp}$$
.

Entonces, recordando que $rg(A) = rg(A^T)$, tenemos que

$$\dim(nul(A)^{\perp}) \ge \dim(col(A^T)) = rg(A^T) = rg(A).$$

Por otra parte, por el teorema de la dimensión, tenemos que

$$n - rg(A) = \dim(nul(A)).$$

Entonces

$$\dim(nul(A)) + \dim(nul(A)^{\perp}) \ge rg(A) + n - rg(A) = n.$$

Como $nul(A) + nul(A)^{\perp} \subseteq \mathbb{R}^n$, es claro que tenemos la otra desigualdad, es decir

$$n \le \dim(nul(A)) + \dim(nul(A)^{\perp}) \le n.$$

Por lo tanto $\dim(nul(A)) + \dim(nul(A)^{\perp}) = n$.

Entonces, usando nuevamente el teorema de la dimensión, se sigue que

$$\dim(nul(A)^{\perp}) = n - \dim(nul(A)) = rg(A) = rg(A^{T}) = \dim(col(A^{T})).$$

Como ya probamos que $col(A^T) \subseteq nul(A)^{\perp}$ y los subespacios tienen la misma dimensión, concluimos que $fil(A) = col(A^T) = nul(A)^{\perp}$.

Finalmente, es claro que $nul(A) \cap nul(A)^{\perp} = \{0\}$. Entonces, usando el teorema de la dimensión para la suma de subespacios, tenemos que

$$dim(nul(A) \oplus nul(A)^{\perp}) = \dim(nul(A)) + \dim(nul(A)^{\perp}) = n.$$

Por lo tanto, como $nul(A) \oplus nul(A)^{\perp} \subseteq \mathbb{R}^n$ y $\dim(nul(A) \oplus nul(A)^{\perp}) = n$ se sigue que

$$\mathcal{S} \oplus \mathcal{S}^{\perp} = nul(A) \oplus nul(A)^{\perp} = \mathbb{R}^{n}.$$

Si ahora consideramos \mathbb{C}^n como \mathbb{C} -espacio euclídeo, en este caso el producto interno canónico se define como $\langle u, v \rangle = v^*u$, para $u, v \in \mathbb{C}^n$. Entonces, operando de la misma manera que en \mathbb{R}^n , nos quedaría que

$$nul(A)^{\perp} = col(A^*).$$

Usando que $rg(A) = rg(A^*)$ (meditar por qué vale esto), de la misma m
ama manera que en \mathbb{R}^n , nos quedaría que

$$\dim(nul(A)) = n - rg(A)$$
 y $\dim(nul(A)^{\perp}) = rg(A)$.

Por último, de la misma misma manera que en \mathbb{R}^n , vale que

$$\mathcal{S} \oplus \mathcal{S}^{\perp} = nul(A) \oplus nul(A)^{\perp} = \mathbb{C}^n.$$

Ejercicio 15 : Comprobar que los siguientes sistemas de vectores son ortonormales en su correspondiente espacio euclídeo:

d) El sistema $\{e^{ikt}:k\in\mathbb{Z}\}$ en el espacio $C([-\pi,\pi])$ con el producto interno definido por

$$\langle f, g \rangle := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt.$$

Antes de resolver este ejercicio, recordar que si $z = a + ib \in \mathbb{C}$, con $a, b \in \mathbb{R}$, entonces

$$e^z = e^{ax}(\cos(b) + i\sin(b)).$$

Es fácil ver que valen las siguientes propiedades (verificarlas):

- Si $w, z \in \mathbb{C}$ entonces $e^z e^w = e^{z+w}$.
- Si $z \in \mathbb{C}$ entonces $\overline{e^z} = e^{\overline{z}}$.
- Si $t \in \mathbb{R}$ y $z = a + ib \in \mathbb{C}$ con $a, b \in \mathbb{R}$, entonces

$$(e^{zt})' = (e^{(a+ib)t})' = (e^{at+ibt})' = (e^{at}(\cos(bt) + i\sin(bt)))'$$

$$= ae^{at}(\cos(bt) + i\sin(bt))) + e^{at}(-b\sin(bt) + ib\cos(bt))$$

$$= (a+ib)e^{at}(\cos(bt) + i\sin(bt))) = ze^{zt}.$$

- Si $t \in \mathbb{R}$ y $z = a + ib \in \mathbb{C}$ (no nulo) con $a, b \in \mathbb{R}$, usando el item anterior, se sigue que $\int e^{zt} dt = \frac{e^{zt}}{z}$.
- Si $k \in \mathbb{Z}$, entonces $e^{ik\pi} = (-1)^k$.

Ahora sí, resolvamos el ejercicio.

Dem. Observar que $\{e^{ikt}: k \in \mathbb{Z}\} = \{\cdots, e^{-3it}, e^{-2it}, e^{-it}, 1, e^{it}, e^{2it}, e^{3it}, \cdots\}$. Veamos que ese conjunto es ortonormal. Para cada $k \in \mathbb{Z}$ llamemos $f_k(t) := e^{ikt}$. Entonces, si $k \neq l$, tenemos que

$$\langle f_k, f_l \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_k(t) \overline{f_l(t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ikt} \overline{e^{ilt}} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ikt} e^{-ilt} dt =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-l)t} dt = \frac{1}{2\pi} \frac{1}{i(k-l)} e^{i(k-l)t} \Big|_{-\pi}^{\pi} = \frac{1}{2\pi} \frac{1}{i(k-l)} (e^{i(k-l)\pi} - e^{-i(k-l)\pi}) = 0.$$

Por otra parte,

$$\langle f_k, f_k \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_k(t) \overline{f_k(t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ikt} e^{-ikt} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^0 dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} dt = \frac{1}{2\pi} 2\pi = 1.$$

Por lo tanto, el sistema $\{e^{ikt}: k \in \mathbb{Z}\}$ es ortonormal.

Distancia mínima

El siguiente ejercicio nos permite demostrar que si \mathbb{V} es un espacio euclídeo, para cada punto $v \in \mathbb{V}$, siempre existe un único vector de un subespacio (de dimensión finita) que es "más cercano" (en el sentido que minimiza la distancia) a v. Lo que probemos en el siguiente ejercicio lo usaremos la semana que viene para definir la proyección ortogonal de un punto a un subespacio (de dimensión finita).

Ejercicio 16 : Sea $\{u_i : i \in \mathbb{N}\}$ un sistema ortonormal de vectores en un \mathbb{R} -espacio euclídeo $(\mathbb{V}, \langle \cdot, \cdot \rangle)$. Dados $v \in \mathbb{V}$ y $n \in \mathbb{N}$, se considera el problema de hallar el vector $\hat{v}_n \in gen\{u_i : i \in \{1, 2, \dots, n\}\} =: \mathcal{U}_n$ más cercano a v.

a) Mostrar que para todo $[a_1 \ a_2 \ \cdots \ a_n]^T \in \mathbb{R}^n$ vale que

$$||v - \sum_{i=1}^{n} a_i v_i||^2 = ||v||^2 - \sum_{i=1}^{n} \langle v, u_i \rangle^2 + \sum_{i=1}^{n} (a_i - \langle v, v_i \rangle)^2,$$

y deducir de allí que $\min_{w \in \mathcal{U}_n} \|v - w\|$ se realiza en

$$\hat{v}_n = \sum_{i=1}^n \langle v, u_i \rangle u_i,$$

y que su valor es

$$\min_{w \in \mathcal{U}_n} \|v - w\| = \|v - \hat{v}_n\| = \sqrt{\|v\|^2 - \sum_{i=1}^n \langle v, u_i \rangle^2}.$$

b) Observar que para todo $v \in \mathbb{V}$ y todo $n \in \mathbb{N}$, el vector $v - \hat{v}_n \in \mathcal{U}_n^{\perp}$ y deducir de allí que $\mathbb{V} = \mathcal{U}_n \oplus \mathcal{U}_n^{\perp}$ para todo $n \in \mathbb{N}$.

Antes de resolver el ejercicio, entendamos qué es lo queremos probar. En primer lugar, con elemento de \mathcal{U}_n "más cercano" a v, nos referimos a aquel elemento de \mathcal{U}_n (si existe) que minimiza la distancia a v. En este caso, como estamos en un \mathbb{K} -espacio euclídeo vamos a tomar como distancia la inducida por el producto interno. Es decir, si $x, y \in \mathbb{V}$ la distancia de x a y está definida por

$$d(x,y) := \langle x - y, x - y \rangle^{1/2} = ||x - y||.$$

Por otra parte, sea $v \in \mathbb{V}$ y fijemos un valor de $n \in \mathbb{N}$, entonces, $\mathcal{U}_n = gen\{u_1, \dots, u_n\}$. Consideremos el siguiente conjunto de números reales

$$A := \{ \|v - w\| : w \in \mathcal{U}_n \} \subseteq \mathbb{R}.$$

Claramente el conjunto A es no vacío y además como $||v-w|| \ge 0$ para todo $w \in \mathcal{U}_n$, el conjunto A está acotado inferiormente por 0. Entonces, existe el ínfimo de dicho conjunto, y además vale que ínf $\{||v-w|| : w \in \mathcal{U}_n\} \ge 0$. Lo que nos está pidiendo el ejercicio es probar que ese ínfimo (que siempre existe) se realiza y entonces tenemos un mínimo.

Recordemos que $m \in \mathbb{R}$ es un mínimo del conjunto de números reales de A si pasan dos cosas:

- $||v-w|| \ge m$, para todo $w \in \mathcal{U}_n$. Es decir m es una cota inferior de A.
- Existe $\hat{w} \in \mathcal{U}_n$ tal que $||v \hat{w}|| = m$, es decir hay un elemento del conjunto A que realiza el mínimo.

En conclusión, el ejercicio nos pide probar que si $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ es un \mathbb{K} -espacio euclídeo, existe un (único) vector de \mathcal{U}_n que minimiza A. De hecho, el ejercicio no sólo nos pide probar que tal mínimo existe y que es único sino que ese mínimo tiene nombre y apellido y es $\hat{w} := \hat{v}_n = \sum_{i=1}^n \langle v, u_i \rangle u_i \in \mathcal{U}_n$. Es decir, vamos a probar que

$$||v - w|| \ge ||v - \hat{v}_n||$$

para todo $w \in \mathcal{U}_n$ y que el vector que realiza el mínimo es único. Entendido esto, resolvamos el ejercicio.

Dem. a): La semana pasada, vimos que si $v, w \in \mathbb{V}$ con \mathbb{V} un \mathbb{R} -espacio euclídeo, entonces

$$||v - w||^2 = ||v||^2 - 2\langle v, w \rangle + ||w||^2.$$

Entonces, para el vector $w = \sum_{i=1}^{n} a_i u_i \in \mathcal{U}_n$ tenemos que

$$\|v - \sum_{i=1}^{n} a_i u_i\|^2 = \|v\|^2 - 2\sum_{i=1}^{n} a_i \langle v, u_i \rangle + \|\sum_{i=1}^{n} a_i u_i\|^2$$

Por otra parte, como $\{u_1, u_2, \cdots, u_n\}$ es un conjunto ortonormal, tenemos que

$$\|\sum_{i=1}^{n} a_i v_i\|^2 = \left\langle \sum_{i=1}^{n} a_i v_i, \sum_{i=j}^{n} a_j v_j \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \left\langle u_i, u_j \right\rangle = \sum_{i=1}^{n} a_i^2,$$

donde usamos que $\langle u_i, u_j \rangle = 0$ si $i \neq j$ y $\langle u_i, u_i \rangle = 1$.

Entonces, asociando y sumando y restando el término $\sum_{i=1}^{n} \langle v, u_i \rangle^2$ se sigue que

$$||v - \sum_{i=1}^{n} a_{i}u_{i}||^{2} = ||v||^{2} - \sum_{i=1}^{n} 2a_{i} \langle v, u_{i} \rangle + \sum_{i=1}^{n} a_{i}^{2} = ||v||^{2} + \sum_{i=1}^{n} (a_{i}^{2} - 2a_{i} \langle v, u_{i} \rangle)$$

$$= ||v||^{2} + \sum_{i=1}^{n} (a_{i}^{2} - 2a_{i} \langle v, u_{i} \rangle) + \sum_{i=1}^{n} \langle v, u_{i} \rangle^{2} - \sum_{i=1}^{n} \langle v, u_{i} \rangle^{2}$$

$$= ||v||^{2} + \sum_{i=1}^{n} (a_{i}^{2} - 2a_{i} \langle v, u_{i} \rangle + \langle v, u_{i} \rangle^{2}) - \sum_{i=1}^{n} \langle v, u_{i} \rangle^{2}$$

$$= ||v||^{2} + \sum_{i=1}^{n} (a_{i} - \langle v, u_{i} \rangle)^{2} - \sum_{i=1}^{n} \langle v, u_{i} \rangle^{2}$$

y probamos lo que queríamos.

Por otra parte, observar que $\hat{v}_n := \sum_{i=1}^n \langle v, u_i \rangle u_i \in \mathcal{U}_n$ (porque es una CL de elementos de \mathcal{U}_n), además, operando de manera similar que arriba y usando que $\{u_1, \dots, u_n\}$ es un conjunto ortonormal, tenemos que

$$||v - \hat{v}_n||^2 = ||v||^2 - 2 \langle v, \hat{v}_n \rangle + ||\hat{v}_n||^2$$

$$= ||v||^2 - 2 \sum_{i=1}^n \langle v, \langle v, u_i \rangle u_i \rangle + ||\sum_{i=1}^n \langle v, u_i \rangle u_i||^2$$

$$= ||v||^2 - 2 \sum_{i=1}^n \langle v, u_i \rangle^2 + \sum_{i=1}^n \langle v, u_i \rangle^2$$

$$= ||v||^2 - \sum_{i=1}^n \langle v, u_i \rangle^2.$$

Entonces, usando que $\sum_{i=1}^{n} (a_i - \langle v, u_i \rangle)^2 > 0$, tenemos que para todo $[a_1 \ a_2 \ \cdots \ a_n]^T \in \mathbb{R}^n$,

$$\|v - \sum_{i=1}^{n} a_i u_i\|^2 = \|v\|^2 + \sum_{i=1}^{n} (a_i - \langle v, u_i \rangle)^2 - \sum_{i=1}^{n} \langle v, u_i \rangle^2 \ge \|v\|^2 - \sum_{i=1}^{n} \langle v, u_i \rangle^2 = \|v - \hat{v}_n\|^2.$$

Entonces, tomando raíz cuadrada (que es una función creciente) se sigue que, para todo $[a_1 \ a_2 \ \cdots \ a_n]^T \in \mathbb{R}^n$,

$$||v - \sum_{i=1}^{n} a_i u_i|| \ge ||v - \hat{v}_n||.$$

Entonces como cualquier elemento $w \in \mathcal{U}_n$ se escribe como $w = \sum_{i=1}^n a_i u_i$ para ciertos $[a_1 \ a_2 \ \cdots \ a_n]^T \in \mathbb{R}^n$, la ecuación anterior nos asegura que \hat{v}_n realiza el mínimo que buscamos, es decir

$$\min\{\|v - w\|^2 : w \in \mathcal{U}_n\} = \min\{\|v - \sum_{i=1}^n a_i u_i\| : [a_1 \ a_2 \ \cdots \ a_n]^T \in \mathbb{R}^n\} = \|v - \hat{v}_n\|.$$

Finalmente, como $||v - \hat{v}_n|| = \sqrt{||v||^2 - \sum_{i=1}^n \langle v, u_i \rangle^2}$, concluimos que

$$\min\{\|v - w\|^2 : w \in \mathcal{U}_n\} = \|v - \hat{v}_n\| = \sqrt{\|v\|^2 - \sum_{i=1}^n \langle v, u_i \rangle^2}.$$

Por último, veamos que el vector de \mathcal{U}_n que es "más cercano" a v (en el sentido que minimiza la distancia a v) es único. De hecho, supongamos que existe otro elemento $\hat{w} \in \mathcal{U}_n$ que es "más cercano" a v. Entonces, claramente

$$||v - \hat{w}|| = ||v - \hat{v}_n||,$$

esto es así porque como \hat{v}_n realiza el mínimo y $\hat{w} \in \mathcal{U}_n$ entonces $||v - \hat{v}_n|| \le ||v - \hat{w}||$. De la misma manera, como estamos suponiendo que \hat{w} realiza el mínimo y $\hat{v}_n \in \mathcal{U}_n$ entonces $||v - \hat{w}|| \le ||v - \hat{v}_n||$ y tenemos la igualdad.

Por otra parte, con cuentas que hicimos la semana pasada, es fácil ver que si $x, y \in \mathbb{V}$, entonces (verificarlo) vale que

$$||x - y||^2 + ||x + y||^2 = 2||x||^2 + 2||y||^2.$$

Observar que (obviamente) $\hat{w} - \hat{v}_n = \hat{w} - v - (\hat{v}_n - v)$. Entonces, aplicando la igualdad anterior a $x = (\hat{w} - v)$ e $y = (\hat{v}_n - v)$, nos queda

$$\begin{split} \|\hat{w} - \hat{v}_n\|^2 &= \|(\hat{w} - v) - (\hat{v}_n - v)\|^2 = 2\|\hat{w} - v\|^2 + 2\|\hat{v}_n - v\|^2 - \|(\hat{w} - v) + (\hat{v}_n - v)\|^2 \\ &= 2\|\hat{w} - v\|^2 + 2\|\hat{v}_n - v\|^2 - \|\hat{w} + \hat{v}_n - 2v\|^2 = 4\|\hat{w} - v\|^2 - 4\|\frac{\hat{w} + \hat{v}_n}{2} - v\|^2 \\ &= 4(\|\hat{w} - v\|^2 - \|\frac{\hat{w} + \hat{v}_n}{2} - v\|^2) \le 0, \end{split}$$

donde usamos que como \hat{w} realiza el mínimo, vale que $\|\hat{w}-v\|^2 \leq \|\frac{\hat{w}+\hat{v}_n}{2}-v\|^2$, pues como $\hat{v}_n, \hat{w} \in \mathcal{U}_n$ y \mathcal{U}_n es un subespacio entonces $\frac{\hat{w}+\hat{v}_n}{2} \in \mathcal{U}_n$. Entonces, nos quedó que $0 \leq \|\hat{w}-\hat{v}_n\|^2 \leq 0$, por lo tanto $\|\hat{w}-\hat{v}_n\| = 0$, entonces $\hat{w}-\hat{v}_n = 0$ y y

Entonces, nos quedó que $0 \le \|\hat{w} - \hat{v}_n\|^2 \le 0$, por lo tanto $\|\hat{w} - \hat{v}_n\| = 0$, entonces $\hat{w} - \hat{v}_n = 0_{\mathbb{V}}$ y se sigue que $\hat{w} = \hat{v}_n$. Conclusión : el vector que minimiza la distancia es único y es \hat{v}_n .

b) : Ya vimos que para todo $v \in \mathbb{V}$ y todo $n \in \mathbb{N}$ el vector $\hat{v}_n \in \mathcal{U}_n$ (es el único que) realiza el mínimo del conjunto $\{\|v-w\|^2 : w \in \mathcal{U}_n\}$. Por otra parte, para cada $j \in \{1, 2, \dots, n\}$, tenemos que

$$\langle v - \hat{v}_n, u_j \rangle = \left\langle v - \sum_{i=1}^n \langle v, u_i \rangle u_i, u_j \right\rangle =$$

$$= \langle v, u_j \rangle - \sum_{i=1}^n \langle v, u_i \rangle \langle u_i, u_j \rangle = \langle v, u_j \rangle - \langle v, u_j \rangle = 0,$$

donde usamos que $\langle u_i, u_j \rangle = 0$ si $i \neq j$ y $\langle u_i, u_i \rangle = 1$. Por lo tanto $v - \hat{v}_n \perp u_j$ para cada $j = \{1, 2, \dots, n\}$. Por lo tanto, si $u \in \mathcal{U}$, tenemos que $u = a_1u_1 + \dots + a_nu_n$, para ciertos $a_1, \dots, a_n \in \mathbb{R}$. Entonces, usando que $v - \hat{v}_n \perp u_j$ para cada $j = \{1, 2, \dots, n\}$, tenemos que

$$\langle v - \hat{v}_n, u \rangle = \langle v - \hat{v}_n, a_1 u_1 + \dots + a_n u_n \rangle = a_1 \langle v - \hat{v}_n, u_1 \rangle + \dots + a_n \langle v - \hat{v}_n, u_n \rangle = 0,$$

entonces $v - \hat{v}_n \in \mathcal{U}_n^{\perp}$.

Finalmente, es claro que $\mathcal{U}_n \cap \mathcal{U}_n^{\perp} = \{0\}$ y que $\mathcal{U}_n \oplus \mathcal{U}_n^{\perp} \subseteq \mathbb{V}$. Entonces, sea $v \in \mathbb{V}$, acabamos de probar que existe $\hat{v}_n \in \mathcal{U}_n$ tal que $v - \hat{v}_n \in \mathcal{U}_n^{\perp}$ y como

$$v = \hat{v}_n + (v - \hat{v}_n)$$

se sigue que $v \in \mathcal{U}_n \oplus \mathcal{U}_n^{\perp}$ con lo que concluimos que $\mathcal{U}_n \oplus \mathcal{U}_n^{\perp} = \mathbb{V}$.

Las conclusiones del ejercicio anterior las vamos a usar la semana que viene para definir la proyección ortogonal de un vector sobre un subespacio.

De hecho, sea $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ un \mathbb{K} -espacio vectorial, y $\mathcal{U}_n \subseteq \mathbb{V}$ un subespacio de dimensión finita n contenido en \mathbb{V} . Supongamos que $\mathcal{B}_{\mathcal{U}_n} = \{u_1, u_2, \cdots, u_n\}$ es una base ortonormal de \mathcal{U}_n (más adelante veremos cómo obtener una base ortonormal a partir de una base de \mathcal{U}_n). Dado $v \in \mathbb{V}$ llamaremos la proyección ortogonal de v sobre \mathcal{U}_n al único vector de \mathcal{U}_n que minimiza la distancia a v. Es decir

$$P_{\mathcal{U}_n}(v) := \hat{v}_n = \sum_{i=1}^n \langle v, u_i \rangle u_i.$$

Ya podemos observar que la función $P_{\mathcal{U}_n}: \mathbb{V} \to \mathbb{V}$ está bien definida (porque a cada elemento $v \in \mathbb{V}$ le corresponde un único elemento de \mathbb{V}) y que es lineal, pues si $v, w \in \mathbb{V}$ y $\alpha, \beta \in \mathbb{K}$ entonces

$$P_{\mathcal{U}_n}(\alpha v + \beta w) = \sum_{i=1}^n \langle \alpha v + \beta w, u_i \rangle u_i = \alpha \sum_{i=1}^n \langle v, u_i \rangle u_i + \beta \sum_{i=1}^n \langle w, u_i \rangle u_i$$
$$= \alpha P_{\mathcal{U}_n}(v) + \beta P_{\mathcal{U}_n}(w).$$

Entonces $P_{\mathcal{U}_n}$ es una transformación lineal.

Finalmente, observar que como $P_{\mathcal{U}_n}(v) = \sum_{i=1}^n \langle v, u_i \rangle u_i \in \mathcal{U}_n$, entonces

$$P_{\mathcal{U}_n}(P_{\mathcal{U}_n}(v)) = P_{\mathcal{U}_n}(\sum_{i=1}^n \langle v, u_i \rangle u_i) = \sum_{j=1}^n \sum_{i=1}^n \langle \langle v, u_i \rangle u_i, u_j \rangle u_j$$
$$= \sum_{j=1}^n \sum_{i=1}^n \langle v, u_i \rangle \langle u_i, u_j \rangle u_j = \sum_{i=1}^n \langle v, u_i \rangle u_i = P_{\mathcal{U}_n}(v),$$

donde usamos que $\langle u_i, u_j \rangle = 0$ si $i \neq j$ y $\langle u_i, u_i \rangle = 1$. Por lo tanto $P_{\mathcal{U}_n}^2 = P_{\mathcal{U}_n} \circ P_{\mathcal{U}_n} = P_{\mathcal{U}_n}$, entonces $P_{\mathcal{U}_n}$ es un proyector.

Terminamos la semana con un ejercicio de examen donde vamos a aplicar lo visto en el ejercicio anterior.

Ejercicio de examen: Sea $C([0,1],\mathbb{R})=\{f:[0,1]\to\mathbb{R}:f\text{ es continua}\}$ con el producto interno

 $\langle f, g \rangle = \int_0^1 f(t)g(t)dt.$

Dada $h(t) = t^4 + 1 \in C([0,1], \mathbb{R})$, hallar la función cuadrática de expresión $g(t) = a + bt^2$, que minimiza la distancia a h.

Dem. Si llamamos $\mathcal{U}_2 = gen\{1, t^2\} \subseteq C([0, 1], \mathbb{R})$, el ejercicio nos pide el elemento de \mathcal{U}_2 más cercano a h. Es decir, si $g \in \mathcal{U}_2$, entonces $g(t) = a + bt^2$ con $a, b \in \mathbb{R}$ y buscamos los valores de $a, b \in \mathbb{R}$ tales que la g que resulte minimiza la distancia a h. Pero eso es justamente lo que hicimos en el ejercicio anterior, si $\mathcal{B}_{\mathcal{U}_2} = \{u_1, u_2\}$ es una base ortonormal de \mathcal{U}_2 , entonces (como vimos en el ejercicio anterior) la función g que buscamos es

$$g := \hat{h}_2 = \langle h, u_1 \rangle u_1 + \langle h, u_2 \rangle u_2.$$

Entonces, primero obtengamos una base ortonormal de \mathcal{U}_2 . Buscamos $u_1, u_2 \in \mathcal{U}_2$ ortonormales tales que $gen\{u_1, u_2\} = \mathcal{U}_2$. Podemos tomar $u_1(t) := 1$, y busquemos $\alpha \in \mathbb{R}$ tal que $u_2(t) := 1 + \alpha t^2$ sea ortogonal a u_1 . Entonces

$$0 = \langle u_2, u_1 \rangle = \langle 1 + \alpha t^2, 1 \rangle = \langle 1, 1 \rangle + \alpha \langle t^2, 1 \rangle.$$

Haciendo, cuentas tenemos que

$$\langle 1, 1 \rangle = \int_0^1 1 dt = t |_0^1 = 1,$$

 $\langle t^2, 1 \rangle = \int_0^1 t^2 dt = \frac{t^3}{3} |_0^1 = \frac{1}{3}.$

Entonces $\alpha = -\frac{1}{\frac{1}{3}} = -3$ y $u_2(t) = 1 - 3t^2$. Sólo nos falta normalizar los vectores, para eso calculemos las normas de u_1 y u_2 entonces

$$||u_1||^2 = \langle 1, 1 \rangle = 1,$$

$$||u_2||^2 = \langle 1 - 3t^2, 1 - 3t^2 \rangle = \int_0^1 (1 - 3t^2)^2 dt = \frac{9t^5}{5} - 2t^3 + t|_0^1 = \frac{4}{5}.$$

Entonces, $u_1(t)=1$ (ya normalizado) y $u_2(t)=\frac{1-3t^2}{\sqrt{\frac{4}{5}}}=\frac{\sqrt{5}}{2}(1-3t^2)$. Por lo tanto

$$g(t) = \langle h, u_1 \rangle u_1 + \langle h, u_2 \rangle u_2 = \langle t^4 + 1, 1 \rangle 1 + \langle t^4 + 1, \frac{\sqrt{5}}{2} (1 - 3t^2) \rangle \frac{\sqrt{5}}{2} (1 - 3t^2)$$
$$= \langle t^4 + 1, 1 \rangle 1 + \langle t^4 + 1, 1 - 3t^2 \rangle \frac{5}{4} (1 - 3t^2)$$

Haciendo, cuentas tenemos que

$$\langle t^4 + 1, 1 \rangle = \int_0^1 (t^4 + 1) dt = \frac{t^5}{5} + t|_0^1 = \frac{6}{5},$$
$$\langle t^4 + 1, 1 - 3t^2 \rangle = \int_{-1}^1 (t^4 + 1)(1 - 3t^2) dt = -\frac{3t^7}{7} + \frac{t^5}{5} - t^3 + t|_0^1 = \frac{-8}{35}.$$

Por lo tanto,

$$g(t) = \frac{6}{5} \cdot 1 + \frac{-8}{35} \cdot \frac{5}{4} (1 - 3t^2) = \frac{6}{5} \cdot 1 + \frac{-2}{7} (1 - 3t^2) = \frac{32}{35} \cdot 1 + \frac{6}{7} t^2.$$