VÝPOČTOVÁ ZLOŽITOSŤ ALGORITMOV

OBSAH PREDMETU

- o Čo je výpočtová zložitosť algoritmu, problému.
- Určovanie výpočtovej zložitosti.
- Deterministické metódy riešenia problémov.
- Triedy zložitosti problémov.
- Nedeterministické metódy riešenia problémov.

Potreba efektívnych algoritmov

Potrebujeme vôbec efektívne algoritmy, keď máme stále výkonnejšie počítače?

Potreba efektívnych algoritmov

Efektívne algoritmy potrebujeme, lebo spolu s rastom výpočtovej sily bežných počítačov **rastie aj objem dát**, ktoré potrebujeme spracovať.

kapacita pamätí

- 1995 cca 1GB pevné disky, 1,4 MB diskety
- dnes pevné disky s kapacitou TB, USB kľúče niekoľko GB

webové stránky

- 1998 26 miliónov stránok indexovaných Googlom
- · 2000 miliarda stránok
- dnes bilióny stránok

ČASOVÁ VÝPOČTOVÁ ZLOŽITOSŤ

Ako porovnať dva algoritmy?

- Experimentálne spustiť výpočet a zistiť, ktorý skončí skôr (len pre konkrétne vstupy)
- Spočítať počet krokov výpočtu vyjadriť ako funkciu závislú od veľkosti vstupu

Počítanie počtu krokov

Problém

Koľko hviezdičiek sa vypíše podľa nasledujúceho algoritmu, ak premenná n = 20?

```
for (int i = 0; i < n; i++) {
   for (int j = i + 1; j < n; j++) {
      print('*');
   }
   println();
}</pre>
```

Koľko hviezdičiek sa vypíše, ak n je zadaný vstup?

Počítanie počtu krokov

```
for (int i = 0; i < n; i++) {
   for (int j = i + 1; j < n; j++) {
      print('*');
   }
   println();
}</pre>
```

počet hviezdičiek pre zadané n

$$(n-1)+(n-2)+\cdots+2+1=\frac{n\cdot(n-1)}{2}$$

Počítanie počtu krokov

Problém

Usporiadajme *n* čísiel od najmenšieho po najväčšie. Koľko porovnaní sa vykoná? Koľko výmen sa vykoná?

Jedno riešenie

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n - 1; j++) {
        if (a[j] > a[j+1]) {
            p = a[j];
            a[j] = a[j+1];
            a[j+1] = p;
        }
    }
}
```

ČASOVÁ VÝPOČTOVÁ ZLOŽITOSŤ

Nech k(v) je počet krokov výpočtu, ktoré vykoná algoritmus pri spracovaní vstupu v.

Časová výpočtová zložitosť algoritmu je funkcia T taká, že hodnota T(n) je najväčší počet krokov výpočtu, ktoré algoritmus vykoná pri spracovaní ľubovoľného vstupu veľkosti n.

 $T(n) = \max \{ k(v); v \text{ je vstup veľkosti } n \}$

ČASOVÁ VÝPOČTOVÁ ZLOŽITOSŤ

Nech W_n je množina všetkých vstupov veľkosti n. Nech k(v) je počet krokov, ktoré vykoná algoritmus pri spracovaní vstupu v veľkosti n.

o Priemerná časová výpočtová zložitosť algoritmu je funkcia \overline{T} taká, že hodnota $\overline{T}(n)$ je priemerný počet krokov, ktoré algoritmus vykoná pri spracovaní ľubovoľného vstupu veľkosti n.

$$\overline{T}(n) = \frac{\sum_{v \in W_n} k(v)}{|W_n|}$$

RÁDY ZLOŽITOSTI

Predpokladajme, že za 1 s sa vykoná cca 1 miliarda inštrukcií. Aký najväčší vstup vie spracovať algoritmus s danou zložitosťou za daný čas?

	n	n^2	n^3	2^n	n!
milisekunda	1 000 000	1 000	100	20	10
sekunda	1 000 000 000	30 000	1 000	30	12
minúta	veľa	250 000	4 000	35	14
hodina	veľa	2 000 000	15 000	41	15
deň	veľa	9 000 000	44 000	46	16
mesiac	veľa	51 000 000	130 000	51	17
rok	veľa	170 000 000	310 000	54	18
tisícročie	veľa	veľa	3 100 000	64	21

POROVNÁVANIE VÝPOČTOVEJ ZLOŽITOSTI

$$f(n) = n^3 + n^2 + 1$$

$$g(n) = 100 n^2 + 100 n$$

Porovnajme
$$\frac{f(n)}{g(n)}$$

ASYMPTOTICKÁ VÝPOČTOVÁ ZLOŽITOSŤ

Nech f a g sú rastúce funkcie na prirodzených číslach.

- Potom funkcia g je **asymptotickou hornou hranicou** funkcie f, ak existujú kladné konštanty c, m také, že pre všetky $n \ge m$ platí $f(n) \le c.g(n)$. Píšeme f(n) = O(g(n)).
- Potom funkcia g je **asymptotickou dolnou hranicou** funkcie f, ak existujú kladné konštanty c, m také, že pre všetky $n \ge m$ platí $f(n) \ge c.g(n)$. Píšeme $f(n) = \Omega(g(n))$.

ASYMPTOTICKÁ VÝPOČTOVÁ ZLOŽITOSŤ

Nech f a g sú rastúce funkcie na prirodzených číslach.

Ak $f(n) = O(g(n)) = \Omega(g(n))$, tak g je rád rýchlosti stúpania funkcie f.

$$f(n) = \Theta(g(n))$$
 (čítaj theta)

URČOVANIE ČASOVEJ VÝPOČTOVEJ ZLOŽITOSTI

Sekvencia príkazov

$$P_1$$
; P_2 ; ... P_k
$$T(n) = T_{P_1}(n) + T_{P_2}(n) + ... + T_{P_k}(n)$$

Vetvenie

```
if (podmienka) then P_1; else P_2; T(n) = T_{\rm podmienka}(n) + \max{\{T_{\rm P_1}(n),\ T_{\rm P_2}(n)\}}
```

Cyklus

```
while (podmienka) do P_i; for (i od d po h) P_i; T(n) = \sum (T_{\rm podmienka}(n) + T_{P_i}(n))
```

PRÍKLADY

Vypočítajme mocninu m^n . Koľko násobení sa vykoná?

Riešenie 1

```
p = 1;
for (int i = 0; i < n; i++) {
    p = p * m;
}</pre>
```

$$T(n) = \sum_{i=0}^{n-1} 1 = n$$

PRÍKLADY

Vypočítajme mocninu m^n . Koľko násobení sa vykoná?

Riešenie 2

```
p = 1; b = m; e = n;
while (e > 0) {
   if nepárne(e) {
      p = p * b; e = e - 1;
   } else {
      b = b * b; e = e / 2;
   }
```

	m	n	р	b	е
0	2	10	1	2	10
1	2	10	1	4	5
2	2	10	4	4	4
3	2	10	4	16	2
4	2	10	4	256	1
5	2	10	1024	256	0

```
T(0) = 0
T(1) = 1
T(2) = 1 + T(1) = 2
T(3) = 1 + T(2) = 3
T(4) = 1 + T(2) = 3
T(5) = 1 + T(4) = 4
T(6) = 1 + T(3) = 4
T(7) = 1 + T(6) = 5
T(8) = 1 + T(4) = 4
T(9) = 1 + T(8) = 5
T(10) = 1 + T(5) = 5
T(11) = 1 + T(10) = 6
T(12) = 1 + T(6) = 5
```

```
p = 1; b = m; e = n;
while (e > 0) {
   if nepárne(e) {
      p = p * b; e = e - 1;
   } else {
      b = b * b; e = e / 2;
   }
}
```


Najhorší prípad:

```
n = 2^k - 1k = \log_2(n+1)
```

```
p = 1; b = m; e = n;
while (e > 0) {
   if nepárne(e) {
      p = p * b; e = e - 1;
   } else {
      b = b * b; e = e / 2;
   }
}
```

$$T(2^{k} - 1) = 1 + T(2^{k} - 2) = 2 + T(2^{k-1} - 1) =$$

$$= 2 + 1 + T(2^{k-1} - 2) = 2 + 2 + T(2^{k-2} - 1) =$$

$$= 2 + 2 + 1 + T(2^{k-2} - 2) = 2 + 2 + 2 + T(2^{k-3} - 1) =$$

$$= \cdots = (k - 1) \cdot 2 + T(2^{k-(k-1)} - 1) = (k - 1) \cdot 2 + 1$$

$$= 2 \cdot \log_{2}(n + 1) - 1 = O(\log n)$$

Príklady

Usporiadajme *n* čísiel od najmenšieho po najväčšie. Koľko porovnaní sa vykoná?

Riešenie 1

```
for (int i = 0; i < n - 1; i++) {
    for (int j = 0; j < n - 1; j++) {
        if (a[j] > a[j+1]) {
            p = a[j];
            a[j] = a[j+1];
            a[j+1] = p;
        }
    }
}
```

```
for (int i = 0; i < n - 1; i++) {
    for (int j = 0; j < n - 1; j++) {
        if (a[j] > a[j+1]) {
            p = a[j];
            a[j] = a[j+1];
            a[j+1] = p;
        }
    }
}
```

$$T(n) = \sum_{i=0}^{n-2} \left(\sum_{j=0}^{n-2} (1) \right) = \sum_{i=0}^{n-2} (n-1) = (n-1)^2 = O(n^2) = \Omega(n^2)$$

$$T(n) = (n-1)^2 = O(n^2)$$

 $(n-1)^2 \le n^2$ platí pre všetky n

$$T(n) = (n-1)^2 = \Omega(n^2)$$

$$(n-1)^2 \ge c \cdot n^2$$
 $c = \frac{1}{2}$

$$(n-1)^2 \ge 1/2 \cdot n^2$$

$$2(n^2-2n+1) \ge n^2$$

$$2n^2 - 4n + 2 - n^2 \ge 0$$

$$n^2 - 4n + 2 \ge 0$$

$$(n-3,4)(n-0,6) \ge 0$$

$$n \ge 3,4 \land n \ge 0,6$$

platí pre všetky $n \ge 4$

$$n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$n_{1,2} = \frac{4 \pm \sqrt{16 - 8}}{2} = \frac{4 \pm 2\sqrt{2}}{2}$$
$$= 2 \pm \sqrt{2} \approx \begin{cases} 3.4\\ 0.6 \end{cases}$$

Príklady

Usporiadajme *n* čísiel od najmenšieho po najväčšie. Koľko porovnaní sa vykoná?

Riešenie 2

```
for (int i = n - 1; i > 0; i--) {
   for (int j = 0; j < i; j++) {
      if (a[j] > a[j+1]) {
        p = a[j];
      a[j] = a[j+1];
      a[j+1] = p;
    }
}
```

```
for (int i = n - 1; i > 0; i--) {
    for (int j = 0; j < i; j++) {
        if (a[j] > a[j+1]) {
            p = a[j];
            a[j] = a[j+1];
            a[j+1] = p;
        }
    }
}
```

$$T(n) = \sum_{i=1}^{n-1} \left(\sum_{j=0}^{i-1} (1) \right) =$$

$$= \sum_{i=1}^{n-1} (i) = 1 + 2 + \dots + n - 1 = \frac{n(n-1)}{2} = O(n^2)$$

Príklady

Nájdime najväčšie z *n* čísiel. Koľko porovnaní sa vykoná?

Riešenie 1

```
max = a[0];
for (int i = 1; i < n; i++) {
   if (a[i] > max) {
      max = a[i];
   }
}
T(n) = n - 1 = O(n)
```

Príklady

Nájdime najväčšie z *n* čísiel. Koľko porovnaní sa vykoná?

Riešenie 2 – rozdeľuj a panuj

```
function max(z, k) {
  int m1, m2, s;
  if (k == z) {
     return a[k];
  } else {
     s = (z + k) / 2;
     m1 = max(z, s);
    m2 = max(s + 1, k);
     if (m1 > m2) {
        return m1;
     } else {
        return m2;
```

```
function max(z, k) {
  int m1, m2, s;
  if (k == z) {
     return a[k];
  } else {
     s = (z + k) / 2;
    m1 = max(z, s);
    m2 = max(s + 1, k);
     if (m1 > m2) {
        return m1;
     } else {
        return m2;
```

$$T(1) = 0$$

$$T(n) = T\left(\frac{n}{2}\right) + T\left(n - \frac{n}{2}\right) + 1$$

$$T(2) = T(1) + T(1) + 1 = 1$$

$$T(3) = T(1) + T(2) + 1 = 2$$

$$T(4) = T(2) + T(2) + 1 = 3$$

$$T(5) = T(2) + T(3) + 1 = 4$$

$$T(6) = T(3) + T(3) + 1 = 5$$

$$T(7) = T(3) + T(4) + 1 = 6$$

$$T(8) = T(4) + T(4) + 1 = 7$$

$$T(1) = 0$$

$$T(n) = T\left(\frac{n}{2}\right) + T\left(n - \frac{n}{2}\right) + 1$$

$$T(2^{k}) = 2 \cdot T(2^{k-1}) + 1$$

$$T(2^{k-1}) = 2 \cdot T(2^{k-2}) + 1$$

$$T(2^{k-2}) = 2 \cdot T(2^{k-3}) + 1$$

Pre
$$n = 2^k$$

$$T(2^{k}) = 2 \cdot (2 \cdot T(2^{k-2}) + 1) + 1 = 2^{2}T(2^{k-2}) + 2 + 1 =$$

$$= 2^{2}(2 \cdot T(2^{k-3}) + 1) + 2 + 1 = 2^{3}T(2^{k-3}) + 2^{2} + 2 + 1 = \dots =$$

$$= 2^{k}T(2^{k-k}) + 2^{k-1} + 2^{k-2} + \dots + 2^{1} + 2^{0} =$$

$$= 2^{k-1} + 2^{k-2} + \dots + 2^{1} + 2^{0} =$$

$$= 2^{0} \cdot \frac{2^{k} - 1}{2 - 1} = 2^{k} - 1 = n - 1 = O(n)$$

PAMÄŤOVÁ VÝPOČTOVÁ ZLOŽITOSŤ

Nech p(v) je veľkosť pamäte, ktorá sa obsadí vykonávaním algoritmu pri spracovaní vstupu v.

• Pamäťová (priestorová) výpočtová zložitosť algoritmu je funkcia S taká, že hodnota S(n) je najväčšia veľkosť pamäte, ktorá sa obsadí vykonávaním algoritmu pri spracovaní ľubovoľného vstupu veľkosti n.

 $S(n) = \max \{ p(v); v \text{ je vstup veľkosti } n \}$