Lösungen zu Übungsaufgaben 06 $_{\rm Gruppe:\ Mi\ 08-10\ SR\ 2,\ Barbara\ Rieß}$

Linus Keiser

7. Dezember 2023

Aufgaben 22 und 24 habe ich nicht bearbeitet.

Aufgabe 21

Zu zeigen: Die durch $a_n := \sum_{k=1}^n \frac{1}{k}$ definierte Folge $(a_n)_{n \in \mathbb{N}}$ ist keine Cauchyfolge.

Beweis. Gemäß der Definition 5.8 einer Cauchyfolge muss für jedes $\varepsilon > 0$ ein $N(\varepsilon) \in \mathbb{N}$ existieren, sodass für alle $n, m \geq N(\varepsilon)$ die Bedingung $|a_n - a_m| < \varepsilon$ erfüllt ist.

Wir wählen $\varepsilon = \frac{1}{2}$ und betrachten $n, m \in \mathbb{N}$ mit m > n. Es muss gezeigt werden, dass die Differenz $a_m - a_n$ für unendlich viele Werte von m und n größer oder gleich ε ist.

Sei n beliebig und m=2n. Dann gilt für die Differenz:

$$a_m - a_n = \left(\sum_{k=1}^{2n} \frac{1}{k}\right) - \left(\sum_{k=1}^n \frac{1}{k}\right)$$
$$= \sum_{k=n+1}^{2n} \frac{1}{k}$$
$$\ge \sum_{k=n+1}^{2n} \frac{1}{2n} \quad (\operatorname{da} k \le 2n)$$
$$= n \cdot \frac{1}{2n}$$
$$= \frac{1}{2}.$$

Da $\frac{1}{2} \geq \varepsilon$, existieren also für jedes n Werte von m, speziell m=2n, sodass $|a_n-a_m|\geq \varepsilon$. Damit ist die Bedingung der Cauchyfolge für unser gewähltes ε verletzt.

Da die Wahl von ε beliebig war und n nicht beschränkt ist, kann die Folge $(a_n)_{n\in\mathbb{N}}$ keine Cauchyfolge sein.

Aufgabe 23

a)

Zuzeigen: Wenn Mund Nabzählbare Mengen sind, dann ist auch $M\cup N$ abzählbar.

Beweis. Gemäß Definition 6.9 ist eine Menge abzählbar, wenn es eine bijektive Abbildung von dieser Menge nach $\mathbb N$ gibt. Gegeben sind zwei abzählbare Mengen M und N, somit existieren bijektive Abbildungen $f: M \to \mathbb N$ und $g: N \to \mathbb N$.

Um zu zeigen, dass $M \cup N$ abzählbar ist, konstruieren wir eine bijektive Abbildung $h: M \cup N \to \mathbb{N}$. Hierzu betrachten wir M und $N \setminus M$, um durch Disjunktheit von M und N um die Eindeutigkeit von h zu gewährleisten.

Die Abbildung h definieren wir durch:

$$h(x) = \begin{cases} 2f(x) & \text{für } x \in M, \\ 2g(x) + 1 & \text{für } x \in N \setminus M. \end{cases}$$

Diese Konstruktion stellt sicher, dass h(x) bijektiv ist. Jedes Element in M wird auf eine gerade Zahl und jedes Element in $N \setminus M$ auf eine ungerade Zahl abgebildet. Da sowohl f als auch g bijektive Abbildungen sind, ist h ebenfalls bijektiv.

Daher ist $M \cup N$, als Vereinigung zweier abzählbarer Mengen, ebenfalls abzählbar.

b)

 $Zu\ zeigen: \mathbb{R} \setminus \mathbb{Q}$ ist nicht abzählbar.

Beweis. Aus Satz 6.10 wissen wir, dass die Menge der rationalen Zahlen $\mathbb Q$ abzählbar und die Menge der reellen Zahlen $\mathbb R$ nicht abzählbar ist.

Die Menge $\mathbb{R} \setminus \mathbb{Q}$ repräsentiert die Menge aller irrationalen Zahlen. Wir nehmen an, $\mathbb{R} \setminus \mathbb{Q}$ wäre abzählbar. Dann gäbe es eine bijektive Abbildung zwischen $\mathbb{R} \setminus \mathbb{Q}$ und \mathbb{N} . Da \mathbb{Q} ebenfalls abzählbar ist, könnten wir \mathbb{R} als die Vereinigung der beiden abzählbaren Mengen \mathbb{Q} und $\mathbb{R} \setminus \mathbb{Q}$ betrachten.

Jedoch steht dies im Widerspruch zur bekannten Tatsache, dass \mathbb{R} nicht abzählbar ist. Daher muss unsere Annahme, dass $\mathbb{R} \setminus \mathbb{Q}$ abzählbar ist, falsch sein. Somit ist $\mathbb{R} \setminus \mathbb{Q}$, die Menge aller irrationalen Zahlen, nicht abzählbar.