深度学习与自然语言处理第四次作业

(基于 Word2Vec 的词向量聚类问题)

姓名: 刘千歌

学号: BY2139121

一、 实验目标

利用给定语料库(或者自选语料库),利用神经语言模型(如: Word2Vec, GloVe等模型)来训练词向量,通过对词向量的聚类或者其他方法来验证词向量的有效性。

二、背景介绍

2.1 词向量简介

自然语言技术通常需要将语言数学化,而向量是人类把自然界的东西抽象出来交给机器处理的典型形式。词向量把一个词表示成一个向量。 我们都知道词在送到神经网络训练之前需要将其编码成数值变量,常见的编码方式有两种: One-Hot Representation 和 Distributed Representation。

2.2 Word2Vec 模型介绍

传统的自然语言处理(NLP)方式往往将单词看作为离散的符号(discrete symbols),就像一个词典一样,一个词对应一个编号——比如独热 (One-Hot) 编码形式,通过把符号就转换为数值进行运算。然而,这样的处理方式对于系统处理不同的词语没有提供有用的信息。词映射 (word embedding)实现了将一个不可量化的单词映射到一个实数向量。Word embedding 能够表示出文档中单词的语义和与其他单词的相似性等关系。它已经被广泛应用在了推荐系统和文本分类中。

2.3 词的独热表示-One-hot 与分布式表示

最简单的也最容易想到的词表示方法是 One-hot Representation, 这种方法把每个词表示为一个很长的向量。这个向量的维度是词表大小, 其中绝大多数元素为 0, 只有一个维度的值为 1, 这个向量就代表了当前的词。例如:

每个词都是茫茫 0 海中的一个 1。这种 One-hot Representation 如果采用稀疏方式存储,会是非常的简洁:也就是给每个词分配一个数字 ID。比如刚才的例子中,可爱

记为 3. 面包记为 8 (假设从 0 开始记)。这样的表示带来两点问题:

- 向量的维度会随着句子的词的数量类型增大而增大,容易导致维度灾难;
- 任意两个词之间都是孤立的,无法表示语义层面上词汇之间的相关信息。

针对上述问题,Harris 在 1954 年提出的"分布假说"为这一设想提供了理论基础:上下文相似的词,其语义也相似。Firth 在 1957 年对分布假说进行了进一步阐述和明确:词的语义由其上下文决定。Word Embedding 正是这样的分布式表示模型,而 Word2Vec则是其中的一个典型,Word2Vec包含两种模型,即 CBOW 模型和 Skip-gram 模型。以CBOW模型为例,如果有一个句子"the cat sits one the mat",在训练的时候,将"the cat sits one the"作为输入,预测出最后一个词是"mat"。

三、实验流程

3.1 语料处理

实验的首要步骤已是老生常谈,首先读取语料库重的文本,去掉 txt 文件中一些无意义的广告和标点符号等内容,具体代码如下所示:

进一步,利用 jieba 工具对语料分词。

```
def read novel(path in, path out): # 读取语料内容
   content = []
   names = os.listdir(path in)
   for name in names:
      novel name = path in + '/' + name
      fenci_name = path out + '/' + name
      for line in open(novel_name, 'r'):
          line.strip('\n')
          line = re.sub("[A-Za-z0-9\: \\-\, \. \"\\n\\langle \\rangle\! \? \\ \\...]",
"", line)
         line = content_deal(line)
          con = jieba.cut(line, cut all=False) # 结巴分词
          content.append(" ".join(con))
      with open (fenci name, "w", encoding='utf-8') as f:
          f.writelines(content)
   return names
```

3.2 模型训练

gensim是一个 Python 的自然语言处理库,能够将文档根据 TF-IDF, LDA, LSI 等模型转换成向量模式。在本次实验中,我将利用 gensim 实现 word2vec,实现将单词转换为词向量的过程。引入的工具库语调用代码如下所示:

```
import multiprocessing
from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence

model = Word2Vec(sentences=LineSentence(name), hs=1, vector_size=200,
window=5, min_count=10, sg=0 ,epochs=200)
```

- sentence 是一个语料文本的列表,LineSentence 函数读入文件路径,将文本处理成"一行一文本"的格式。
- hs:参数若为 1,则该模型的训练采用 hierarchica softmax,如果设置为 0 (default)则使用 negative sampling的方式。
- vector size 为词向量的维度,这里设置为 400;
- window 是一个句子中当前单词和被预测单词的最大距离。滑动窗口的大小;
- min_count 参数可以调整文本处理时可忽略的词频树。在不同大小的语料集中,我们对于基准词频需求也是不一样的,譬如在较大的语料集中,我们希望忽略那些只出现一两次的单词,这里设置为 5。
- sq 参数取值为{0, 1}, 其决定了模型的训练算法: 1: skip-gram; 0: CBOW.
- epochs: 调用 Word2Vec (sentences, epoches=1) 会调用句子迭代器运行两次 (一般来说, 会运行 iter+1次, 默认情况下 iter=5)。第一次运行收集单词和它们的出现频率, 从而构造一个内部字典树; 第二次运行负责训练神经模型。这里设置为 200。

四、实验结果与分析

本次实验选用《倚天屠龙记》、《天龙八部》、《射雕英雄传》、《神雕侠侣》、《鹿鼎记》作为样本,对其中的人物姓名与武功/道具关键词进行聚类分析。具体的方法即使用gensim工具中自带的model.wv.similar by word找出与给定关键词向量最相近的词集合。实验结果表明,关联度高的词语与小说的实际情节与背景相吻合。

4.1 实验样例 1: 射雕英雄传

人名关联度聚类分析, 郭靖和黄蓉关联性最大, 其他出现的人名也和主人公在故事情节中紧密相关。然而, 由于预处理时没有除去代词, 使分析结果出现了没有意义的代词。

人物名称 (对比实验: <mark>黄蓉</mark>)	关联度
郭靖	0.5589439272880554
她	0.44932934641838074
洪七公	0.4401666224002838
欧阳锋	0.42560017108917236
欧阳克	0.4125075936317444
陆冠英	0.37949222326278687
他	0.37014296650886536
完颜洪烈	0.3696635663509369
完颜康	0.3375110924243927
韩小莹	0.33431166410446167

武功关联度分析,关联词汇大多是武功名称。

武功名称(对比实验: <mark>降龙十八掌</mark>)	关联度
掌法	0.3234564960002899
殊	0.25227251648902893
所传	0.24950313568115234
阴毒	0.24859504401683807
落英	0.24640336632728577
逍遥游	0.37949222326278687
诀窍	0.24446988105773926
一阳指	0.23377646505832672
十五.	0.2331300526857376
使	0.23217162489891052

4.2 实验样例 2: 鹿鼎记

人名关联度分析, 韦小宝和康熙关联最大。同样由于预处理的失误出现了"我"。

人物名称(对比实验: <mark>韦小宝</mark>)	关联度
康熙	0.6614575982093811
海老公	0.5741968750953674
了韦小宝	0.5640528798103333
郑克爽	0.558604896068573
太后	0.5575572848320007
双儿	0.5459750294685364
茅十八	0.4994068145751953
皇上	0.49672624468803406
小桂子	0.4869828522205353
我	0.48102328181266785

九阴真经的关联词出现了很多人名,即和《九阴真经》有关系的关键角色。

道具名称(对比实验: <mark>九阴真经</mark>)	关联度
真经	0.6614575982093811
经文	0.5741968750953674
上卷	0.5640528798103333
周伯通	0.558604896068573
欧阳锋	0.5575572848320007
经书	0.5459750294685364
洪七公	0.4994068145751953
法门	0.49672624468803406
郭靖	0.4869828522205353
黄药师	0.48102328181266785

4.3 实验样例 3:神雕侠侣

原理与上述实验保持一致。

人物名称(对比实验: <mark>小龙女</mark>)	关联度
杨过	0.7213680744171143
李莫愁	0.6130053997039795
陆无双	0.5894923210144043
郭靖	0.5886887907981873
黄蓉	0.5644753575325012
法王	0.5406153798103333
她	0.5286277532577515
赵志敬	0.526600182056427
周伯通	0.5286277532577515
绿萼	0.5230267643928528

武功名称(对比实验: <mark>一阳指</mark>)	关联度
弹指	0.6614575982093811
杨家枪	0.2907264530658722
打狗棒法	0.2797088027000427
真经	0.272583544254303
降龙十八掌	0.25541597604751587
而言	0.25286877155303955
一灯大师	0.25102031230926514
树林	0.24870480597019196
金轮法王	0.24725763499736786
藏僧	0.24485351145267487

4.4 天龙八部

对人名进行聚类与相似度的分析, 从结果可以看, 萧峰即是乔峰, 段誉和虚竹为他的两

个兄弟, 其他人物即和主人公发生事件与情感纠葛的关键人物。

人物名称(对比实验: <mark>乔峰</mark>)	关联度
萧峰	0.7213680744171143
段誉	0.6130053997039795
游坦之	0.5894923210144043
虚竹	0.5886887907981873
全冠清	0.5644753575325012
王语嫣	0.5406153798103333
段正淳	0.5286277532577515
慕容复	0.526600182056427
木婉清	0.5286277532577515
包不同	0.5230267643928528

人物名称(对比实验: <mark>降龙十八掌</mark>)	关联度
打狗棒法	0.39572709798812866
九阴真经	0.3353138267993927
掌	0.32246583700180054
南山	0.3158573508262634
蛤蟆功	0.30072158575057983
掌法	0.29732754826545715
空明拳	0.29624149203300476
招数	0.2768039107322693
一招	0.27557870745658875
老毒物	0.2714084982872009

4.4 倚天屠龙记

人物名称(对比实验: <mark>赵敏</mark>)	关联度
张无忌	0.6435161828994751
周芷若	0.6142603754997253
谢逊	0.5267996788024902
黄蓉	0.4897893965244293
张翠山	0.4804368019104004
鹿杖客	0.47520989179611206
胡青牛	0.47445693612098694
金花婆婆	0.46533268690109253
韦一笑	0.46436747908592224
殷离	0.46068739891052246

武功名称(对比实验: <mark>亢龙有悔</mark>)	关联度
落英	0.28696587681770325
经文	0.2826395630836487
竹棒	0.2751367688179016
火焰刀	0.2745816707611084
兵	0.2737678587436676
左掌	0.2669064998626709
商阳剑	0.2663888931274414
取水	0.2660776972770691
硬生生	0.2585292160511017
哪知	0.2503337264060974

本次实验利用 Word2Vec 模型进行了 Word Embedding 模型的训练,进一步根据训练得到的模型对五本小说的一些人名和武功绝学/道具进行了聚类,最终聚类得到的结果基本与小说内容相符。另外需要反思的是,在进行聚类分析的时候频频出现"她"、"他"等代词,这些词是没有意义的,以后在进行相关的分析任务时会将其去除,使训练效果更好。