Review of Random Variables, Vectors, and Matrices

Subrata Paul 6/4/2020

Probability Basics

The **sample space** Ω is the set of possible outcomes of an experiment.

Points ω in Ω are called **sample outcomes**, **realizations**, or **elements**.

Subsets of Ω are **events**.

A function P that assigns a real number P(A) to every event A is a probability distribution if it satisfies three properties:

- $P(A) \ge 0$ for all $A \in \Omega$
- $P(\Omega) = 1$
- If \$A_1, A_2, ... \$ are disjoint, then $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$.

Independence

A set of events $\{A_i : i \in I\}$ is independent if

$$P\left(\cap_{i\in J}A_i\right) = \prod_{i\in J}P(A_i)$$

for every finite subset J of I.

Random Variables

A **random variable** *Y* is a mapping

$$Y:\Omega\to\mathbb{R}$$

that assigns a real number $Y(\omega)$ to each outcome ω .

The **cumulative distribution function (CDF)** of Y is a function $F_Y : \mathbb{R} \to [0, 1]$ defined by $F_Y(y) = P(Y \le y)$.

Y is a **discrete** random variable if it takes countably many values $\{x_1, x_2, ...\}$.

The probability mass function (pmf) for Y is $f_Y(y) = P(Y = y)$.

Random Variables

Y is a continuous random variable if there exists a function $f_Y(y)$ such that: $f_Y(y) \ge 0$ for all y, $-\int_{-\infty}^{\infty} f_Y(y) dy = 1$, - and for $a \le b$, $P(a < Y < b) = \int_a^b f_Y(y) dy$.

The function f_Y is called the **probability density function (pdf)**.

Additionally, $F_Y(y) = \int_{-\infty}^y f_Y(y) dy$ and $f_Y(y) = F_Y'(y)$ at any point y at which F_Y is differentiable.

Expected value and Variance

The expected value, mean, or first moment of Y is defined as

$$E(Y) = \begin{cases} \sum_{y} yf(y) & \text{if } Y \text{ is discrete} \\ y & \text{if } Y \text{ is continuous} \end{cases}$$

assuming the sum and integral are well-defined.

The **variance** of *Y* is defined by

$$var(Y) = E(Y - E(Y))^{2}$$

and the **standard deviation** of Y is

$$SD(Y) = \sqrt{var(Y)}$$

•

Bivariate distributions

Consider two random variables X and Y. Let S be the joint **support** of X and Y (all the possible combinations of X and Y).

The joint CDF of the random variables is

$$F(x, y) = P(X \le x, Y \le y)$$

•

If X and Y are jointly discrete, the joint pmf f(x, y) specifies P(X = x, Y = y) and satisfies the following properties:

- $0 \le f(x, y) \le 1$
- $\cdot \sum_{(x,y)\in S} f(x,y) = 1$
- $P((X, Y) \in A) = \sum \sum_{(x,y) \in A} f(x,y).$

Marginal Density of Discrete RV

If X and Y are jointly discrete with joint pmf f(x, y), then the marginal pmf of X, $f_X(x)$ is obtained via the formula

$$f_X(x) = \sum_{\text{all } y} f(x, y)$$

and

$$E(XY) = \sum_{\text{all } x} \sum_{\text{all } y} xyf(x, y).$$

Joint of continuous RV

If X and Y are jointly continuous, f(x, y) is the joint pdf if:

- $f(x, y) \ge 0$ for all $(x, y) \in S$
- $\int_{-\infty}^{\infty} \int_{-infty}^{\infty} f(x, y) dx dy = 1$
- $P((X, Y) \in A) = \int \int_{x,y \in A} f(x, y) dx dy.$

If X and Y are jointly continuous with joint pdf f(x, y), then the marginal density of X, $f_X(x)$ is obtained via the formula

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y)dydx.$$

Covariance

The covariance between random variables Y and Z is

$$cov(Y, Z) = E[(Y - E(Y))(Z - E(Z))] = E(YZ) - E(Y)E(Z).$$

Properties of Variance and Covariance

Let *a* and *b* be scalar constants. Then:

$$\cdot E(aY) = aE(Y)$$

$$\cdot E(a+Y) = a + E(Y)$$

$$E(aY + bZ) = aE(Y) + bE(Z)$$

$$var(aY) = a^2 var(Y)$$

$$var(a + Y) = var(Y)$$

$$cov(aY, bZ) = abcov(Y, Z).$$

$$var(Y + Z) = var(Y) + var(Z) + 2cov(Y, Z).$$

Independence

Y and *Z* are independent if $F(y, z) = F_Y(y)F_Z(z)$.

If Y and Z are independent, then:

- E(YZ)=E(Y)E(Z)
- · cov(Y,Z)=0.

Properties of random vectors

Let $\mathbf{y} = (Y_1, Y_2, \dots, Y_n)^T$ be an $n \times 1$ vector of random variables. \mathbf{y} is a random vector.

• A vector is always defined to be a column vector, even if the notation is ambiguous.

$$E(\mathbf{y}) = \begin{pmatrix} E(Y_1) \\ E(Y_2) \\ \vdots \\ E(Y_n) \end{pmatrix}$$

Properties of random vectors

Let $\mathbf{y} = (Y_1, Y_2, \dots, Y_n)^T$ be an $n \times 1$ vector of random variables. \mathbf{y} is a random vector.

$$var(\mathbf{y}) = E(\mathbf{y}\mathbf{y}^{T}) - E(\mathbf{y})E(\mathbf{y})^{T}$$

$$= \begin{pmatrix} var(Y_{1}) & cov(Y_{1}, Y_{2}) & \dots & cov(Y_{1}, Y_{n}) \\ cov(Y_{2}, Y_{1}) & var(Y_{2}) & \dots & cov(Y_{2}, Y_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ cov(Y_{n}, Y_{1}) & cov(Y_{n}, Y_{2}) & \dots & var(Y_{n}) \end{pmatrix}.$$

Important Properties

Define:

- · A to be an m×n matrix of constants
- $\mathbf{x} = (X_1, X_2, \dots, X_n)^T$ and $\mathbf{z} = (Z_1, Z_2, \dots, Z_n)^T$ to be $n \times 1$ random vectors.

Formally,

$$cov(\mathbf{x}, \mathbf{y}) = E(\mathbf{x}\mathbf{y}^T) - E(\mathbf{x})E(\mathbf{y})^T.$$

Important Properties

Additionally:

- $E(A\mathbf{y}) = AE(\mathbf{y}), E(\mathbf{y}A^T) = E(\mathbf{y})A^T.$
- $E(\mathbf{x} + \mathbf{y}) = E(\mathbf{x}) + E(\mathbf{y})$
- $var(A\mathbf{y}) = A var(\mathbf{y})A^T$
- $cov(\mathbf{x} + \mathbf{y}, \mathbf{z}) = cov(\mathbf{x}, \mathbf{z}) + cov(\mathbf{y}, \mathbf{z})$
- $cov(\mathbf{x}, \mathbf{y} + \mathbf{z}) = cov(\mathbf{x}, \mathbf{y}) + cov(\mathbf{x}, \mathbf{z})$
- $cov(A\mathbf{x}, \mathbf{y}) = A cov(\mathbf{x}, \mathbf{y}) \text{ and } cov(\mathbf{x}, A\mathbf{y}) = cov(\mathbf{x}, \mathbf{y})A^{T}.$

Important Properties

Let **a** is an $n \times 1$ vector of constants and $\mathbf{0}_{n \times n}$ be an $n \times n$ matrix of zeros, then

$$var(a) = 0_{n \times n},$$

$$cov(\mathbf{a},\mathbf{y})=0_{n\times n},$$

and

$$var(\mathbf{a} + \mathbf{y}) = var(\mathbf{y}).$$

Multivariate normal (Gaussian) distribution

 $\mathbf{y} = (Y_1, \dots, Y_n)^T$ has a multivariate normal distribution with mean μ (an $n \times 1$ vector) and covariance Σ (an $n \times n$ matrix) if the joint pdf is

$$f(\mathbf{y}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{y} - \mu)^T \Sigma^{-1} (\mathbf{y} - \mu)\right).$$

Note that Σ must be symmetric and positive definite.

We would denote this as $\mathbf{y} \sim N(\mu, \Sigma)$.

Properties

Important fact: A linear function of a multivariate normal random vector (i.e., a + Ay) is also multivariate normal (though it could collapse to a single random variable).

Application: Suppose that $\mathbf{y} \sim N(\mu, \Sigma)$. For an $m \times n$ matrix of constants A, $A\mathbf{y} \sim N(A\mu, A\Sigma A^T)$.

Example

Gasoline is to be stocked in a bulk tank once at the beginning of each week and then sold to individual customers. Let Y_1 denote the proportion of the capacity of the bulk tank that is available after the tank is stocked at the beginning of the week. Because of the limited supplies, Y_1 varies from week to week. Let Y_2 denote the proportion of the capacity of the bulk tank that is sold during the week. Because Y_1 and Y_2 are both proportions, both variables are between 0 and 1. Further, the amount sold, y_2 , cannot exceed the amount available, y_1 . Suppose the joint density function for Y_1 and Y_2 is given by

$$f(y_1, y_2) = 3y_1; \ 0 \le y_2 \le y_1 \le 1.$$

Determine $P(0 \le Y_1 \le 0.5; 0.25 \le Y_2)$

Determine f_{Y_1} and f_{Y_2}

Determine $E(Y_1)$ and $E(Y_2)$

Determine $var(Y_1)$ and $var(Y_2)$

Determine $E(Y_1Y_2)$

Determine $cov(Y_1, Y_2)$

Determine the mean and variance of a^Ty , where $a=(1,-1)^T$ and $y=(Y_1,Y_2)^T$. This is the expectation and variance of the different between the amount of gas available and the amount of gas sold:

Matrix Differentiation

Matrix Differentiation 1

Let

$$y = Ax$$

where **y** is $m \times 1$, **x** is $n \times 1$, **A** is $m \times n$, and **A** does not depend on **x**, then

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = A$$

Matrix Differentiation 1 (Proof)

Since ith element of y is given by

$$y_i = \sum_{k=1}^n a_{ik} x_k,$$

it follows that

$$\frac{\partial y_i}{\partial x_j} = a_{ij}$$

for all $i = 1, \dots, m$, $j = 1, \dots, n$. Hence

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = A$$

Matrix Differentiation 2

Let the scalar α be defined by

$$\alpha = \mathbf{y}^T \mathbf{A} \mathbf{x},$$

where y is $m \times 1$, x is $n \times 1$, A is $m \times n$, and A does not depend on x and y, then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{y}^T \mathbf{A}$$

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{y}^T \mathbf{A}$$
$$\frac{\partial \alpha}{\partial \mathbf{y}} = \mathbf{x}^T \mathbf{A}^T$$

Matrix Differentiation 2 (Proof)

Define $\mathbf{w}^T = \mathbf{y}^T \mathbf{A}$ and note that $\alpha = \mathbf{w}^T \mathbf{x}$

Hence,

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{w}^T = \mathbf{y}^T \mathbf{A}.$$

Since α is a scalar we can write

$$\alpha = \alpha^T = \mathbf{x}^T \mathbf{A}^T \mathbf{y}$$

hence,

$$\frac{\partial \alpha}{\partial \mathbf{y}} = \mathbf{x}^T \mathbf{A}^T$$

Matrix Differentiation 3

For the special case in which the scalar lpha is given by the quadratic form

$$\alpha = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

where **x** is $n \times 1$, **A** is $n \times n$, and **A** does not depend on **x**, then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T)$$

Matrix Differentiation 3 (Proof)

By definition,

$$\alpha = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_i x_j$$

Differentiating with respect to the kth element of x we have

$$\frac{\partial \alpha}{\partial x_k} = \sum_{j=1}^n a_{kj} x_j + \sum_{i=1}^n a_{ik} x_i$$

for all k = 1, ..., n, and consequently,

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{x}^T \mathbf{A}^T + \mathbf{x}^T \mathbf{A} = \mathbf{x}^T (A^T + A)$$

Matrix Differentiation 3.5

For the special case where \mathbb{A} is a symmetric matrix and

$$\alpha = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

where **x** is $n \times 1$, **A** is $n \times n$, and **A** does not depend on **x**, then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = 2\mathbf{x}^T \mathbb{A}.$$

Matrix Differentiation 4

Let the scalar α be defined by

$$\alpha = \mathbf{y}^T \mathbf{x}$$

where **y** is $n \times 1$, **x** is $n \times 1$, and both **y** and **x** are functions of the vector **z**. Then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^T \frac{\partial \mathbf{y}}{\partial \mathbf{z}} + \mathbf{y}^T \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$$

Matrix Differentiation 4.5

Let the scalar α be defined by

$$\alpha = \mathbf{x}^T \mathbf{x}$$

where **x** is $n \times 1$, and **x** is a function of the vector **z**. Then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = 2\mathbf{x}^T \frac{\partial \mathbf{x}}{\partial \mathbf{z}}.$$