

Choice functions

The axiom of choice asserts:

"For every collection of inhabited sets, there is a **choice function** picking representatives from each set."

Examples for functions:

- **1** sine function: $x \mapsto \sin(x)$
- 2 squaring function: $x \mapsto x^2$, so $1 \mapsto 1$, $2 \mapsto 4$, $3 \mapsto 9$, ...
- **3** computeAreaOfCircle: $r \mapsto \pi r^2$, so $1 \mapsto \pi$, $2 \mapsto 4\pi$, ...
- document.getElementById

Choice functions

The axiom of choice asserts:

"For every collection of inhabited sets, there is a **choice function** picking representatives from each set."

Examples for functions:

- **1** sine function: $x \mapsto \sin(x)$
- 2 squaring function: $x \mapsto x^2$, so $1 \mapsto 1, 2 \mapsto 4, 3 \mapsto 9, \dots$
- **3** computeAreaOfCircle: $r \mapsto \pi r^2$, so $1 \mapsto \pi$, $2 \mapsto 4\pi$, ...
- document.getElementById
- 5 lookupMayorOfCity
- getYoungestStudentOfClass

"choice functions"

Note. The axiom of choice is **superfluous** for ...

A finite collections

B collections of inhabited decidable sets of natural numbers

What a choice function can do for us in the riddle

For the collection of sets of almost-identical scenarios, a choice function could look like this:

If the players use a **common choice function** to make their guesses, **only finitely many** will be incorrect.

Consequences of the axiom of choice

"Weird":

Vitali fractal

Banach–Tarski paradox

Prophecy

"Good/procrastinatory":

Every field has an algebraic closure.

Every vector space has a basis.

statement	in Std	in Eff
Every number is prime or not prime.	✓ (trivially)	✓
2 After every number there is a prime.	✓	✓
${\color{red} 3}$ Every map $\mathbb{N} o \mathbb{N}$ has a zero or not.	✓ (trivially)	X
$lacksquare$ Every map $\mathbb{N} o \mathbb{N}$ is computable.	X	?
5 Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	×	?
6 Every map $\mathbb{N} \to \mathbb{N}$ which does <i>not not</i> have a zero has a zero.	✓ (trivially)	?

statement	in Std	in Eff
Every number is prime or not prime.	✓ (trivially)	✓
2 After every number there is a prime.	✓	✓
${\color{red} {f 3}}$ Every map $\mathbb{N} o \mathbb{N}$ has a zero or not.	✓ (trivially)	X
$lacksquare$ Every map $\mathbb{N} o \mathbb{N}$ is computable.	X	?
5 Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	×	?
6 Every map $\mathbb{N} \to \mathbb{N}$ which does <i>not not</i> have a zero has a zero.	✓ (trivially)	?

"1" in the effective topos amounts to: There is a machine which determines of any given number whether it is prime or not.

statement	in Std	in Eff
Every number is prime or not prime.	✓ (trivially)	✓
2 After every number there is a prime.	✓	✓
${f 3}$ Every map ${\Bbb N} o{\Bbb N}$ has a zero or not.	✓ (trivially)	X
$lack4$ Every map $\mathbb{N} o \mathbb{N}$ is computable.	×	?
${ t 5}$ Every map ${\mathbb R} o {\mathbb R}$ is continuous.	×	?
6 Every map $\mathbb{N} \to \mathbb{N}$ which does <i>not not</i> have a zero has a zero.	✓ (trivially)	?

[&]quot;2" in the effective topos amounts to: There is a machine which, given a number n, computes a prime larger than n.

statement	in Std	in Eff
■ Every number is prime or not prime.	✓ (trivially)	✓
2 After every number there is a prime.	✓	✓
${\color{red} 3}$ Every map $\mathbb{N} o \mathbb{N}$ has a zero or not.	✓ (trivially)	X
$lacksquare$ Every map $\mathbb{N} o \mathbb{N}$ is computable.	X	?
5 Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	?
6 Every map $\mathbb{N} \to \mathbb{N}$ which does <i>not not</i> have a zero has a zero.	✓ (trivially)	?

"3" in the effective topos amounts to: There is a machine which, given a machine computing a map $f: \mathbb{N} \to \mathbb{N}$, determines whether f has a zero or not.

statement	in Std	in Eff
Every number is prime or not prime.	✓ (trivially)	✓
2 After every number there is a prime.	✓	✓
${f 3}$ Every map ${\Bbb N} o{\Bbb N}$ has a zero or not.	✓ (trivially)	X
$lacksquare$ Every map $\mathbb{N} o \mathbb{N}$ is computable.	X	✓ (trivially)
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	X	?
6 Every map $\mathbb{N} \to \mathbb{N}$ which does <i>not not</i> have a zero has a zero.	✓ (trivially)	?

"1" in the effective topos amounts to: There is a machine which, given a machine computing a map $f: \mathbb{N} \to \mathbb{N}$, outputs a machine computing f.

statement	in Std	in Eff
Every number is prime or not prime.	✓ (trivially)	✓
2 After every number there is a prime.	✓	✓
${f 3}$ Every map ${\Bbb N} o{\Bbb N}$ has a zero or not.	✓ (trivially)	X
$lack4$ Every map $\mathbb{N} o \mathbb{N}$ is computable.	X	✓ (trivially)
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	X	✓ (if MP)
6 Every map $\mathbb{N} \to \mathbb{N}$ which does <i>not not</i> have a zero has a zero.	√ (trivially)	?

statement	in Std	in Eff
Every number is prime or not prime.	✓ (trivially)	✓
2 After every number there is a prime.	✓	✓
${f 3}$ Every map ${\Bbb N} o{\Bbb N}$ has a zero or not.	✓ (trivially)	X
$lack4$ Every map $\mathbb{N} o \mathbb{N}$ is computable.	X	✓ (trivially)
${ t 5}$ Every map ${\mathbb R} o {\mathbb R}$ is continuous.	X	✓ (if MP)
6 Every map $\mathbb{N} \to \mathbb{N}$ which does <i>not not</i> have a zero has a zero.	✓ (trivially)	√ (if MP)

In Eff, there is **no choice function** for the collection of **sets of behaviourally identical programs**.

A counterexample to the axiom of choice

A choice function for the collection of sets of behaviourally identical programs would look like this:

$$\left\{ \begin{array}{l} \text{while True: pass} \\ \text{while } 2 == 1 + 1 \text{: pass} \\ \text{s = "a"; while len(s) > 0 : s = s + "a"} \end{array} \right\} \quad \longmapsto \quad \text{while True: pass} \\ \vdots \\ \left\{ \begin{array}{l} \text{print(2+2)} \\ \text{print(4)} \\ \text{print(len("37c3"))} \end{array} \right\} \qquad \longmapsto \quad \text{print(4)} \\ \vdots \\ \vdots \\ \vdots \\ \end{array}$$

With such a choice function c, a **halting oracle** can be built:

A program p loops if and only if c(p) = c ("while True: pass").

■ There is an alternate opposing axiom, the axiom of determinacy: "Every instance of the sequence game is determined."

- There is an alternate opposing axiom, the axiom of determinacy: "Every instance of the sequence game is determined."
- Introducing the axiom of choice does **not** yield **new** inconsistencies. (If zFC is inconsistent, then zF is as well—provably so.)

- There is an alternate opposing axiom, the axiom of determinacy: "Every instance of the sequence game is determined."
- Introducing the axiom of choice does **not** yield **new** inconsistencies. (If zFC is inconsistent, then zF is as well—provably so.)
- Even if the axiom of choice fails, it always holds in *L*, Gödel's sandbox.

- There is an alternate opposing axiom, the axiom of determinacy: "Every instance of the sequence game is determined."
- Introducing the axiom of choice does **not** yield **new** inconsistencies. (If zFC is inconsistent, then zF is as well—provably so.)
- Even if the axiom of choice fails, it always holds in L, Gödel's sandbox. Since Std's and L's \mathbb{N} coincide, Std and L share the same arithmetic truths. From every proof of such a truth using the axiom of choice, the axiom of choice can be mechanically eliminated.

- There is an alternate opposing axiom, the axiom of determinacy: "Every instance of the sequence game is determined."
- Introducing the axiom of choice does **not** yield **new** inconsistencies. (If zfc is inconsistent, then zf is as well—provably so.)
- Even if the axiom of choice fails, it always holds in L, Gödel's sandbox. Since Std's and L's \mathbb{N} coincide, Std and L share the same arithmetic truths. From every proof of such a truth using the axiom of choice, the axiom of choice can be mechanically eliminated.
- Much more severe than the axiom of choice is the **powerset axiom**.