Model checking avec PRISM

Alexis Pernet

1 Degradation

$\mathbf{Q} \mathbf{1}$ R1=? [I=T]

Espérance de #A(t)

Q 2

Q 3 P>=1 [G A₋>=0]

 $\mathbf{Q} \mathbf{4} \quad P>=1 [G A_*kdeg;=0]$

 $\mathbf{Q} \ \mathbf{5} \quad P{>}{=}1 \ [\ F \ A_*kdeg{=}0.2 \]$

 $\mathbf{Q} \ \mathbf{6} \quad P{>}{=}1 \ [\ F \ G \ A_{-}*kdeg{=}0 \]$

 $\mathbf{Q} \ \mathbf{9} \ \mathrm{P=?} \ [\ \mathrm{F=T} \ \mathrm{A_{-i}=ainit/10} \]$

Probabilité de #A(T) < #A(0)/10 en fonction du temps, avec plusieurs valeurs de A(0)

Si #A(0) tend vers l'infini, on peut supposer que la courbe se rapproche de plus en plus d'une fonction logistique.

Probibilités pour chaque état d'être dans celui ci après différents temps T

Q 11 A l'instant t=25, d'après le graphique, on pourrait prendre l'ensemble des états où #A <= 10, et on aurait plus de 75% de chance d'être dans un de ces états.

2 Cycle de réactions

Espérance de #A(t)

$\mathbf{Q} \ \mathbf{14} \ \ P=? \ [\ F=T \ A_{-}=M/3 \]$

Probabilité que #A(t) = #M/3

On peut voir que la probabilité que A reste à son niveau initial descend très vite, alors que l'espérence de A reste identique. Cela est dû au fait qu'au fur et à mesure des réactions le nombre de molécules à de fortes chances de s'éloigner de son état initial et d'entrer dans un état terminal, mais avec les même probabilités de baisser que d'augmenter, ainsi l'espérence reste identique.

Espérance de #A(t)

 $\mathbf{Q} \ \mathbf{16} \ \ P{>}{=}1 \ [A_{>}0 \ W \ (G \ A_{=}0)]$

Probabilité que #A(t) = #B(t) = #C(t)

 ${f Q}$ 17 P>=1 [G M=A_+B_+C__]

 $\mathbf{Q} \ \mathbf{18} \ \ P>=1 \ [A_{-}>0 \ W \ (G \ A_{-}=0)]$

Q 19 P=? [F=T A_=M]