Class 4(BIG-M Method)

Make a menu driven program with the following options using BIG-M method

- (a) List of all BFS
- (b) Number of Iterations to solve the problem
- (c) List of all Non-basic variables along with net evaluations in ith (user input) iteration
- (d) List of Basic variables along with min ratios in *i*th iteration (e) simplex table of *i*th (user input) iteration (f) optimal solution (if exists otherwise generate report for infeasibility, unboundedness, alternative optimum etc.)
- 1. Maximize $Z = 7x_1 + 3x_2$, Subject to $x_1 + 2x_2 \ge 3$, $3x_1 + x_2 \le 4$, $x_1 \le \frac{5}{2}$, $x_2 \le \frac{3}{2}$, x_1 , $x_2 \ge 0$
- 2. Minimize $Z = 4x_1 + 8x_2 + 3x_3$, Subject to $x_1 + x_2 \ge 2$, $2x_1 + x_3 \le 5$, $x_1, x_2, x_3 \ge 0$.
- 3. Maximize $Z=5x_1-2x_2+3x_3$, Subject to $2x_1+2x_2-x_3\geq 2$, $3x_1-4x_2\leq 3$, $x_2+3x_3\leq 3$, x_1 , x_2 , $x_3\geq 0$.
- 4. Maximize $Z=3x_1+2x_2+2x_3$, Subject to $5x_1+7x_2+4x_3\leq 7$, $4x_1-7x_2-5x_3\leq 2\ , 3x_1+4x_2-6x_3\geq 3, x_1,\ x_2,x_3\geq 0.$

5. Maximize $Z=x_1+2x_2+3x_3$, Subject to $x_1-x_2+x_3\geq 4$, $x_1+x_2+2x_3\leq 8\;, x_1+x_3\geq 2, x_1,\; x_2,x_3\geq 0.$