19日本国特許庁

印特許出顧公告

許 公 報 昭53-22319

1 Int.C1.2 B 23 P 1/12

審

識別記号 図日本分類 74 N 62

庁内整理番号 ₩公告 昭和53年(1978) 7 月 7 日

発明の数 1

(全 7 頁)

函放電加工用電極

判 昭50-2531

②特 昭44-28871

顧 昭44(1969)4月15日 22 出

⑫発 明 者 土田定男

横浜市鶴見区末広町2の4東京芝 浦電気株式会社鶴見工場内

同 板野雲平

同所

回 荒川靖

同所

①出 願 人 東京芝浦電気株式会社

:川崎市幸区堀川町72

砂代 理 人 弁理士 富岡章 外1名

図面の簡単な説明

第1図は本発明に係る電極材試料及び被加工物 試料の一例を示す断面図、第2図乃至第5図は夫 夫本発明放電加工用電極の各種放電加工性能特性 20 の例を示す特性曲線図、第6図は本発明放電加工 用電極の加工速度及び重量消耗比の例を従来の放 電加工用電極と比較して示す図である。 発明の詳細な説明

本発明は火花放電を行なわせることにより被加 25 工体に所定形状の孔や窪みを加工する放電加工用 電極に係り、特にその形成材料の改良に関する。

従来、放電加工装置は加工用電極を被加工体に 対向させて配置し、加工用電極と被加工体との間 で火花放電を行なわせることにより、被加工体に 30 加工用電極と同一の所定形状の孔や窪みを加工す るもので、各種金型治具の製作に用いられている。

このような放電加工装置において、H)加工速度、 (中)電極消耗、ドリ加工間隙、日加工部に発生するテ ーパ、肉仕上面租さが問題となり、これに対して 35 (c) 放電状態の安定性が長いこと。すなわち、加 電極材の材質が非常に大きな影響をおよぼしてい ることは周知の通りである。

而して、通常電極材料としては黄銅その他の銅 系金属および粉末治金法によるAg -W、Cu -W材が使用されている。然し乍ら、銅系金属の電 極材料は安価、機械加工の容易である利点はある 5 が、消耗比が多く、精度を要するものに対しては 不向きである。また、Ag -W、Cu -Wの電極 材料は消耗量が少ない利点があるが、加工速度が 遅いという欠点があつた。

2

そこで、放電加工技術としては次のようなこと 10 が要望されている。

(a) 加工精度が速いこと。すなわち、加工速度は 次のように定義される。

加工速度(9/10点)=

加工速度について、放電加工と通常の機械加 工と比較してみると、加工機構の性格上、研摩 加工と同程度の著しく低い能率であり、製作工 程中統制工程となり、能率の向上への努力が期 待されている。特に、近時は加工量の増大に伴 い加工速度の向上が強く要望されている。

(b) 電極消耗比の小さいこと。すなわち、電極消 耗比は次のように定義される。

電極消耗比(%)——電腦(行性量(%)×100

電極消耗比が小さいことは所定加工を行なう のに電極材が少なくて済むこと以外に、放電加 工進行に伴なう電極材消耗変形による被加工形 状の誤差すなわち孔部にテーパの形成、角のだ れが小さく、特に加工深さ、加工量の大きなも のの場合は加工精度の点で非常に重要である。 工中の放電状態が乱れると、加工速度が低下す

るのみならず、被加工面の仕上り状態が悪くな

り、面粗さが低下する等好ましくない。従つて、 放電状態が常に安定していることが必要であるが、 放電機構を考慮した材質的改良が必 要 と され る。

工速度を速くし得且つ電極消耗比を小さくし得し かも放電状態の安定性を良好にし得る放電加工用 電極を得ることを目的とする。

以下図面を参照して本発明の一実施例を詳細に 特性の向上に着目して、難融点金属であるW(タ ングステン)、良導電材としての Cu (銅)、 Ag (銀)を主体としたものに、電子放射促進材 として希土類金属酸化物とりわけThO,(酸化ト リウム)を添加複合化した材料を用いて放電加工 15 する。 用電極を成形する。すなわち、放電加工の機構を 詳細に検討したところ、放電パルス巾が余り大き くない条件範囲で、加工速度、面粗さが向上する ことから、微小パルス放電が円滑に安定した状態 仕事関数を低下させ放電を容易にさせることを検 討した。その結果、酸化トリウムの添加により、 上記目的を達成できた。

而して、放電加工用電極材料の良導電材成分は 合は重量比 2.5~5%である。すなわち、良導電 材成分が重量比50%をこえると、難融点材成分 が電極消耗に耐え得るに元分な量に対し不足をき たして消耗比が増加し、また、20%以下では硬 なう上で不適当である。また、別の実験によれば 良導電材成分は全量に対し容量比で50%近傍が 良好な結果を得たが、上記理由から20~50% 範囲が好適である。また、酸化トリウムは従来電 多く含有させると放電加工用電極として非常に有 用な効果が得られる。すなわち、熱電子放射材料 のうち単原子層被膜陰極としてThO2を1~2% 含有するトリエーテッドタングステンが知られて おり、また溶接用タングステン電極棒にもこのト 40 - ThO23.6%のものが得られた。 リエーテットタングステン棒が用いられている。 そして、密接用タンクステン電極棒においては ThO。量を少くして起動特性の向上を図ることが できることが知られている。

本発明における酸化トリウム量は放電加工用電 極としてタングステンと 銅との存在を前提にして 検討されたもので、2.5~5%が最も好ましい値 である。酸化トリウムが 2.5%~5%であると加 本発明は上記の点に鑑みてなされたもので、加 5 工速度及び電極消耗特性の点で非常に好ましい結 果が得られる。また、良導電成分の均質溶浸を阻 害することもなく、機械加工性も実用上支障なく 所望の電極形状が得られる。

酸化トリウムがあまり多いと良導電成分の均質 説明する。すなわち、放電加工用電極材料の放電 10 溶浸の阻害や機械加工性の点であまり好ましい結 果が得られず、また電極消耗特性がかえつて劣化 の傾向を生ずる。一方酸化トリウムがあまり少な いと加工速度の向上の程度が少ない。したがつて 本発明においては酸化トリウム量を 2.5 ~ 5%と

次に、本発明の放電加工用電極材料の具体例に ついて説明すると、(I) Cu (銅) - W (タングス テン)-ThO2(酸化トリウム)系電極材料を得 るために次の処理を行なつた。すなわち、タング・・ で行なわれることが有効であると考え、電子放射 20 ステン粉末に酸化トリウム粉末を重量比で 5%添 加したものに、一325メツシュの電解銅粉を適 量配合し、ステンレス製ポットを用い適量の鋼球 およびアセトンと共に充分に混合し、アセトンを 蒸発分離後、成形時間滑材としてパラフインをベ 重量比20~50%、酸化トリウム成分の添加割 25 ンシン溶液の形で添加、乾燥し、100メツシユ で 節別けた後、この原料混合粉末を 金型内で1 ton /cniの圧力で圧縮成形した。次に、この成形 体を連続水索炉(露点-40℃)にて1150℃ で約1時間処理し、多孔質体形成のタングステン 質難触点材成分が多く。電極の精密形状加工を行 30 粒表面を澄元清浄化し、その後の溶侵処理の完全 性を期した。その後、直ちに別に用意された黒鉛 製ポードにアルミナ粉末、アルミナ板をしき、そ の上に脱酸銅板の適量を載せ、次いで、上記の多 孔質体を重ね載せ、このポートを均一容浸、ヒケ 子放射材料の分野において考えられていたよりも 35 巣(低融点金属の冷却時の体積変化による)の発 生防止を考慮して、特別に設定された温度分布を もつ連続水素炉(露点ー40℃)に送入し、銅の 触点以上の温度範囲を適当時間をかけて通過させ 銅を溶浸させた。これにより、Cu 30%-W残

> (瓜) Ag (銀) -W(タングステン) - ThO2 (酸化トリウム)系電極材料を得るために次の処 理を行なつた。すなわち、タングステン粉末に敵 化トリウムを 5%添加したものに一 3 2 5 メツシ

ユの還元銀粉を適量配合し、ステンレス**製**ポット を用いアセトン湿式混合を行ない。 アセトン分離 後、パラフィンペンヂン密液の形で添加後

-100メツシユに篩別けした。このようにして得 で圧縮成形した。この成形体を連続焼結炉を用い 1 1 0 0 ℃ で約 1 時間処理し、還元清浄化後、モ リプデン製ポートにアルミナ板を敷き、適量の脱 酸銀板と重ね合せ、特別に設定された温度分布を 以上の温度範囲で適当時間を要して通過させ銀の 俗侵を行なつた。これにより、Ag 30%-W (残)-ThO23.6%のものが得られた。

次に、本発明に係る放電加工用電極の放電加工 性能試験について述べるに、第1図に示す如く、通常 15 しく向上され、電極消耗比が減少した。特に、 の放電加工装置を用い、放電加工用電極1と被加工 物2とを対向して配設し、前記電極1側を負極性 にし、印加電圧80V、印加電流5A、加工液は 白灯油で液流は噴流 0.05~0.1 kg/cmの条件で て SKH₀をH_RC₆₂~₆₅ に焼入調質したものを用

而して、前記放電加工用電極1としてCu 30 %を含む Cu 30%-W-ThO₂を用いた場合の ThO_2 添加量に対する加工速度(9/m)の関係 25 Ag、Cu の添加配合法については各々の塩類を原 を第2回に示す。また、前記放電加工用電極1と してCu 30%を含むCu 30%-W-ThO2を 用いた場合のThO2添加量に対する重量消耗比 (%)の関係を第3図に示す。一方、前記放電加 工用電極 1 として Ag 30%を含む Ag 30% - 30 W-ThO2を用いた場合のThO2添加量に対する 加工速度(タ/㎜)の関係を第4図に示す。また、 前記放電加工用電極1としてAg 30%を含む Ag 3 0%-W-ThO2を用いた場合のThO2添 示す。すなわち、第2図~第5図より明らかな如 く、酸化トリウムの添加により加工速度及び電極 消耗比の改善が図られる。第2図によれば酸化ト リウムを含有しない場合に比べ2.5%~5%の酸 化トリウムを含有する場合は約2倍の加工速度が 40 切特許請求の範囲 得られ、第3図によれば酸化トリウムを含有した い場合に比べ 2.5% ~5%の酸化トリウムを含有 する場合は約分の重量消耗比となることが理解さ れる。また、第4図によれば酸化トリウムを含有

しない場合に比べ2.5%~5%の酸化トリウムを 含有する場合は約1.5倍の加工速度が得られ、第 5図によれば酸化トリウムを含有しない場合に比 べ 2.5%~5%の酸化トリウムを含有 する場合は られた原料混合粉末を金型内で 1 ton /cmlの圧力 5 約10%の重量消耗比の改善がなされることが理

また、第6図に示す如く、本発明に係るCu ー W-ThO2或いはAg -W-ThO2よりなる放電 加工用電極は従来のCu - W或いはAg - W或い もつ連続水素炉(露点-40℃)を用い銀の融点 10 は BsBM 或いはPureWよりなる放電加工用電極 より加工速度及び重量消耗比を比較しても優秀性 が明らかである。

従つて、本発明に係る放電加工用電極は次のよ うな利点がある。すなわち、放電加工速度が著る Cu -W-ThO,よりなる電極はAg -W-ThOoよりなる電極より顕著であつた。また、放 電が安定し、放電状況が加工面の仕上粗さを向上 させた。更に特筆されることは従来の焼結電極は、 貫通加工を行なつた。また、前記被加工物 2 とし 20 Ag -W材の方が加工速度、消耗特性共に Cu -W材より優れていたが、本発明はそれらを上廻る 性能をもち、しかも Cu -W-ThO2 はAg -W 材より安価に得られる等である。

> 尚、本発明に係る放電加工用電極のThO₂、 料とし、その後の焼結処理を含む処理工程にて各 成分混合体とすることもできる。例えば、ThOz ... ThNO3, ThCl4, Ag ... AgNO3, AgCl2, Cu ··· Cu (NO₃)₂, CuCl₂ である。

> また、本発明に係る放電加工用電極の補助条件 として、材質は組織的に稠密でなければならず、 そのため特別に考慮された溶浸処理を施こしても よい。

本発明放電加工科電極は、以上説明したように 加量に対する重量消耗比(%)の関係を第5図に 35 重量比にて銅あるいは銀からなる良導電材を20 ~50%と、酸化トリウムを 2.5~5 %とをそれ それ添加含有させたタングステン材料を用いて形 成したものであり、加工速度が速く、電極消耗比 が小さく、放電状態の安定性が良好なものである。

> 1 重量比にて、銅あるいは銀からなる良導電材 を20~50%と、酸化トリウムを2.5~5%と をそれぞれ添加含有させたタングステン材料を用 いて形成したことを特徴とする放電加工用電極。

7

69引用文献

特 公昭35-8046

特 公 昭39-16599

特 公 昭41-2768

٤

改訂放電加工 與缺三郎 外1名署 昭36.4. 15 第111~112頁 コロナ社発行 電気材料 新版 與缺三郎著 昭37.4.1 第211~216頁 共立出版発行

才 1 团

才 5 図

岁6図

