

Modelli Generativi di Deep Learning per la Cybersecurity

Prof. Donato Impedovo Dott. Vincenzo Dentamaro Dott. Stefano Galantucci

Introduzione

Problemi

Malware zero-day

Data Augmentation tradizionale

Proposta

Data Augmentation con dati sintetici

Dataset MaleVis

Il dataset MaleVis (*Malware evaluation with Vision*) è formato da immagini RGB rappresentanti file PE (*Portable Executable*) malevoli del sistema operativo Microsoft Windows.

Gli esempi di questo dataset sono stati scelti da malware emersi nel 2017-2018.

Generative Adversarial Network (GAN)

Il framework GAN è costituito da due reti:

- Generatore
- Discriminatore

Generatore e Discriminatore fanno un gioco a somma zero, in cui il progresso di uno porta all'indebolimento dell'altro.

L'obiettivo è raggiungere un equilibrio tra le due reti.

Problemi comuni nelle GAN

→ Vanishing Gradient

→ Mode Collapse

→ Non convergenza

Wasserstein Conditional GAN with Gradient Penalty (WCGAN-GP)

Vantaggi della WCGAN-GP:

Distanza di Wasserstein

- Gradient Penalty
- Modulo condizionale

Fase di addestramento e valutazione

Risultati finali:

- Perdita del discriminatore (d_loss) = −6.7783
- Perdita del generatore (g_loss) = −6.6646
- KID (Kernel Inception Distance) = 0.008

epoch

Fase di generazione

Classificazione multiclasse

È stata utilizzata una ResNet152 (Residual Network con 152 livelli) come classificatore di malware per valutare l'efficacia della Data Augmentation con dati sintetici.

Esperimenti con ResNet152

Esperimento 2 Esperimento 3 Esperimento 4 Esperimento 1 Addestramento e Addestramento con Addestramento con Addestramento e valutazione con dataset dataset originale e dataset aumentato e valutazione con dataset originale valutazione con dataset valutazione con dataset aumentato sintetico sintetico

Metriche di valutazione e risultati

1º esperimento

Loss	Accuracy	Precision	Recall	F1-Score
0.0009	1	1	1	1

2° esperimento

Loss	Accuracy	Precision	Recall	F1-Score
1.04	0.76	0.80	0.74	0.77

3° esperimento

Loss	Accuracy	Precision	Recall	F1-Score
0.08	0.97	0.98	0.97	0.97

4° esperimento

Loss	Accuracy	Precision	Recall	F1-Score
0.01	0.99	0.99	0.99	0.99

Conclusioni

Sviluppi futuri

- WCGAN-GP più complessa e immagini di malware di dimensioni maggiori
- Varianti di GAN o altri modelli generativi
- Utilizzo di altri tipi di dataset di malware
- Conversione delle immagini generate in codice

Grazie per l'attenzione