Comunicação pela Luz: Li-Fi em Ação para Conversação e Transferência de Ficheiros

Catarina Pereira (PG53733), Catarina Amorim (A93094), Inês Neves (PG53864) e Leonardo Martins (PG53996)

Universidade do Minho Mestrado em Engenharia de Telecomunicações e Informática Unidade Curricular Projeto Integrador de Telecomunicações e Informática Grupo 3

27 de maio de 2024

Introdução

- O Li-Fi utiliza luz visível para transmissão de dados, oferecendo maior capacidade, largura de banda e segurança em comparação com o Wi-Fi.
- Este projeto visa desenvolver um sistema Li-Fi, abordando a arquitetura, o projeto dos circuitos, a implementação de protocolos e os testes.
- Superar desafios como a necessidade de linha de visão, a interferência de luz ambiente e a padronização é crucial para a ampla adoção do Li-Fi.

Arquitetura do Sistema

Figura 1: Arquitetura do Sistema.

Requisitos Funcionais do Sistema

- Implementação um protocolo da Camada 7 (Camada de Aplicação).
- Comunicação Half-Duplex.
- Criação um programa de conversa e transferência de arquivos.
- Projeção de uma interface gráfica de utilizador (GUI).

Requisitos Não Funcionais do Sistema

- Desempenho.
- Independência de Camadas.
- Confiabilidade.
- Segurança

Pinout do Emissor

Figura 2: Pinout Emissor.

Pinout do Recetor

Figura 3: Pinout do Recetor.

Data Links Layer

Preâmbulo (8 bytes)	Número de Sequência (1 byte)	Endereço de origem (1 byte)	Endereço de destino (1 byte)	Tamanho real de dados (1 byte)	Dados (128 bytes)	CRC (4 bytes)	
------------------------	------------------------------------	-----------------------------------	------------------------------------	--------------------------------------	----------------------	------------------	--

Figura 4: Enquadramento do Protocolo.

- Preâmbulo: Marca o início da transmissão
- Número de Sequência: Identifica o pacote atual.
- Endereço de origem/destino: Identifica emissor e recetor
- Tamanho real de dados: Indica o tamanho do payload.
- Dados: Dados a serem transmitidos.
- CRC: Bits para deteção de erros através da Verificação Cíclica de Redundância.

Controlo de Erros e Fluxo

Figura 5: Mecanismo Stop-and-Wait.

- Controlo de erros utiliza-se a técnica Cyclic Redundancy Check (CRC)
- Controlo de erros e fluxo utiliza-se o mecanismo Stop-and-Wait.
- A comunicação entre PCs é feita através do mecanismo Stop-and-Wait.

Camada de Aplicação

Figura 6: Tramas da Camada de Aplicação.

Interface Gráfica

Figura 7: Interface Gráfica do Emissor.

Figura 8: Interface Gráfica do Recetor.

Testes e Análise de Resultados

```
2024-05-27 17:44:43 > Mensagem a ser transmitida
2024-05-27 17:44:43 > Mensagem recebida: teassattsatsatastsa --> tempo total: 0.081
```

Figura 9: Tempo de transmissão de uma mensagem de texto.

```
2024-05-27 17:45:04 > Ficheiro a ser transmitido
2024-05-27 17:45:14 > Ficheiro recebido: SampleJPGImage_50kbmb.jpg --> tempo total: 10.152
```

Figura 10: Tempo de transmissão de uma imagem.

Figura 11: Saída do circuito frontend a 20 cm de distância.

Figura 12: Saída do circuito frontend a 80 cm de distância.

Figura 13: Saída do circuito frontend a 1,20 m de distância.

Conclusão

Resultados:

- Modulação de LED infravermelho e reconstrução de sinal;
- Protocolo de comunicação eficaz;
- Desenvolvimento da Aplicação para mensagens e ficheiros;
- Viabilidade e eficiência da comunicação Li-Fi demonstradas.

Desafios:

- Necessidade de linha de visão e interferência de luz ambiente;
- Limitações nas taxas de transmissão e comunicação unidirecional.

Competências:

- Aplicação de conceitos teóricos;
- Evolução e aquisição de novas competências.

Limitações:

- Necessidade de Linha de Visão;
- Interferência de Luz Ambiente;
- Padronização de Protocolos;
- Alcance Limitado.