

## EFFECTS OF VOLCANIC FORCING ON SURFACE TEMPERATURE IN OD-EBM WITH ADJUSTMENT FROM ONE CLOUD LAYER

Kaiyan Yao, Xihui Jing, Mohammad Basir Uddin

Universität Hamburg Center for Earth System Research and Sustainability, Institute of Oceanography

# Motivation

Previous group showed effects of volcanic forcing on surface temperature without considering cloud effects. The temperature change is much smaller compared to the findings in literatures.

$$c_e \frac{dT_s}{dt} = \frac{S_0(t)(1-\alpha)}{4} - \varepsilon \sigma T_s^4$$

Being motivated from here we want to see the adjustment from cloud layer in 0D-EBM and compare it with historical simulation from MPI-ESM.



# Methods

model: Effects of volcanic forcing are modeled in 0D-EBM through changes in solar constant with respect to time.

$$c_e \frac{dT_s}{dt} = \frac{S_0(t)(1-\alpha)}{4} - \varepsilon \sigma T_s^4 + c \sigma T_c^4$$

## assumptions:

- $\Box$  planetary albedo:  $\alpha = 0.3$
- ☐ mixed layer depth: H = 70 m
- $\Box$  emissivity:  $\varepsilon = [0.41, 0.51, 0.61]$
- ☐ cloud layer interacts with longwave radiation:
  - c = 0.2 at 10 km; lapse rate = -6 K/km



<u>ම</u> -0.04

-0.06

Eruptions in 1850-2000, with clouds at 10 km: c = 0.2

eps = 0.41 — eps = 0.51 — eps = 0.61

Fig. 1. Surface temperature anomaly due to 11 modelled eruptions in

1850-2000. OD-EBM starts from equilibrium, with cloud term.

\*2. with clouds vs. no clouds

 $\sim O(10^{-3})$ 

 $\Rightarrow$  a slightly more severe  $T_s$  decrease

loop over different value of emissivity

consider two cases: with clouds VS without clouds

# Results

## 4 1. decreasing ε

- <u>more severe decrease</u> of temperature
- stage



## Annual Mean Surface Temperature anomaly (detrended) eruption start temporal minimum **⊢** -0.4 <sup>1</sup>

Fig. 3. Annual mean surface temperature anomaly (detrended)

- > same amount of time for a fully recovery
- ➤ a slower recover rate at the beginning

## Fig. 2. Difference of surface temperature anomaly between with cloud term and without cloud term.

## ❖ 3. historical simulation from MPI-ESM model

 $>T_S$  decreases and reaches a trough after the eruptions except in 1907 and in 1974

# Conclusions

Volcanic forcing has a cooling effect on surface temperature. The strength of this effect can be modified about 2% by adding cloud term in the model.

## Discussion

### Limitation

- ☐ Only consider one cloud layer at a certain altitude with fixed cloud fraction. Changes of atmospheric composition (especially the volcanic ashes and aerosols) are not taken into account.
- ☐ Neglect the atmospheric response and seasonal variability
- ☐ Emissivity change is not considered as a result from cooling at the surface.



Fig. 4. Decrease of temperature after eruptions in 1850-2000, comparison between historical simulation in MPI-ESM and 0D-EBM (cloud term included).

### E-mail address:

kaiyan.yao@studium.uni-hamburg.de xihui.jing@studium.uni-hamburg.de

mohammad.basir.uddin@studium.uni-hamburg.de