

CS145 Discussion: Week 2 Linear Regression & Logistic Regression

Junheng Hao Friday, 10/16/2020

Roadmap

- Announcements
- Linear Regression
- Logistic Regression
- Project Tips & Programming Resource
- Q & A (Office hour)

Announcements

- Register the team by the end of Week 2 (Fri 16 Oct, 2020), including Name,
 UID, email and the group leader.
 - Team ID will be assigned later (early Week 3)
 - Signup Sheet: <u>[Link]</u>
- Homework 1 due on Oct 19, 2020 11:59 PT
 - Submit through GradeScope of 1 PDF (2 python file and 1 jupyter notebook into 1 PDF file)
- Homework 2 will be expected to release on Wednesday, Oct 21 (Week 3)
 - Tasks: Decision tree and SVM

Time Zone Accomodation of Exams

- Requires Respondus LockDown Browser + Webcam
 - No external internet access, no exit to other browser window, no screenshot during the exam
 - No reviews and scores immediately after the exam
 - Once you begin the exam you must complete it. The exam will NOT be reset.
 - Submissions that fails to use LockDown Browser will not be credits
- Practice quiz is available for browser setup
- Two exam time slots for midterm and final exam: Enter either one of them within the entry time window

Midterm Exam

Linear Regression: Model

Linear model to predict value of a variable y using features x

$$y = \mathbf{x}^T \boldsymbol{\beta} = x_1 \beta_1 + x_2 \beta_2 + \dots + x_p \beta_p$$

Least Square Estimation

$$J(\boldsymbol{\beta}) = \frac{1}{2n} (X\boldsymbol{\beta} - y)^T (X\boldsymbol{\beta} - y)$$

Closed form solution

$$\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T y$$

- A ball is rolled down a hallway and its position is recorded at five different times. Use the table shown below to calculate
 - Weights
 - Predicted position at each given time and at time 12 seconds

Time (s)	Position (m)
1	9
2	12
4	17
6	21
8	26

Step 1: Question

What are X and Y variables?

What are the parameters for our problem?

Calculating parameters

Time (s)	Position (m)
1	9
2	12
4	17
6	21
8	26

Step 1: Calculate Weights

- What are X and Y variables?
 - Time (X) and Position(Y)
- What are the parameters for our problem?
 - \circ $\hat{\beta}_1$:Time $\hat{\beta}_0$:Intercept
- Calculating parameters

$$\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T y$$

Time (s)	Position (m)
1	9
2	12
4	17
6	21
8	26

Let's calculate on BOARD!

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \\ 1 & 6 \\ 1 & 8 \end{bmatrix} \qquad y = \begin{bmatrix} 9 \\ 12 \\ 17 \\ 21 \\ 26 \end{bmatrix}$$

$$y = \begin{bmatrix} 9 \\ 12 \\ 17 \\ 21 \\ 26 \end{bmatrix}$$

$$X^{T}X = ?$$
 $(X^{T}X)^{-1} = ?$
 $X^{T}y = ?$ $\hat{\beta} = (X^{T}X)^{-1}X^{T}y = ?$

Time (s)	Position (m)
1	9
2	12
4	17
6	21
8	26

Step 2: Apply your model and predict

Plug time values into linear regression equation

$$\hat{y} = 2.378x + 7.012$$

Predicted value at time = 12 secs

$$\hat{y}(x=12) = 2.378 \times 12 + 7.012 = 35.548$$

Matrix form to predict all other positions

$$\hat{y} = X\hat{\beta}$$

Time (s)	Position (m)
1	9
2	12
4	17
6	21
8	26
12	35.55

Plot: Check your model

$$\hat{y} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \\ 1 & 6 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} 7.012 \\ 2.378 \end{bmatrix} = \begin{bmatrix} 9.390 \\ 11.768 \\ 16.524 \\ 21.280 \\ 26.036 \end{bmatrix}$$

Time (s)	Position (m)
1	9
2	12
4	17
6	21
8	26

Plot: Check your model

Time (s)	Position (m)
1	9
2	12
4	17
6	21
8	26

Linear Regression + Regularization

- Why do we need regularization?
 - Constraint the parameter values → Avoid overfitting phenomenon

Bias vs Variance: Review

True predictor
$$f(x): x^T \beta$$

- Bias: $E(\hat{f}(x)) f(x)$ Estimated predictor $\hat{f}(x)$: $x^T \hat{\beta}$
 - How far away is the expectation of the estimator to the true value? The smaller the better.
- Variance: $Var(\hat{f}(x)) = E[(\hat{f}(x) E(\hat{f}(x)))^2]$
 - How variant is the estimator? The smaller the better.
- Reconsider mean square error

•
$$J(\widehat{\beta})/n = \sum_{i} (x_{i}^{T} \widehat{\beta} - y_{i})^{2}/n$$

Can be considered as

•
$$E[(\hat{f}(x) - f(x) - \varepsilon)^2] = bias^2 + variance + noise$$

Note $E(\varepsilon) = 0, Var(\varepsilon) = \sigma^2$

Bias vs Variance: Example

1.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

 \vdots

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

High bias (underfit)

"Just right"

High variance (overfit)

Bias vs Variance: Example

$$1. \quad h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$
:

10. $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$

High bias (underfit)

"Just right"

High variance (overfit)

Closed form: LR + Regularization

Model

$$\hat{y} = \boldsymbol{x}^T \boldsymbol{\beta} = x_1 \beta_1 + x_2 \beta_2 + \dots + x_p \beta_p$$

Original Objective

$$\min_{\boldsymbol{\beta}} J(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{x}^{T} \boldsymbol{\beta} - y)^{2}$$

L2-Regularized Objective

$$\min_{\boldsymbol{\beta}} J(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{x}^{T} \boldsymbol{\beta} - y)^{2} + \frac{\lambda}{2} ||\boldsymbol{\beta}||^{2}$$

Closed form: LR + Regularization

$$\min_{\boldsymbol{\beta}} J(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{x}^{T} \boldsymbol{\beta} - y)^{2} + \frac{\lambda}{2} ||\boldsymbol{\beta}||^{2} \\
\frac{\partial J(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \sum_{i=1}^{N} \boldsymbol{x} (\boldsymbol{x}^{T} \boldsymbol{\beta} - y) + \frac{\partial \lambda ||\boldsymbol{\beta}||^{2}}{\partial \boldsymbol{\beta}} \\
\frac{\partial J(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \sum_{i=1}^{N} \boldsymbol{x} (\boldsymbol{x}^{T} \boldsymbol{\beta} - y) + \lambda \boldsymbol{\beta}$$

Closed form: LR + Regularization

$$\min_{\beta} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) + \lambda \operatorname{pen}(\beta) = \min_{\beta} J(\beta) + \lambda \operatorname{pen}(\beta)$$

Ridge Regression:

Regularization

Regularization methods

• L2 normalization (Ridge)

$$\min_{\beta} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

L1 normalization (Lasso)

$$\min_{\beta} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

- Dropout (we will learn this in neural networks)
- Early Stopping

Z-Score Normalization

Why normalize features?

- Different feature ranges such as [-1, 1] and [-100, 100] may negatively affect algorithm performance.
- Thus, small change in bigger range can affect more than huge change in smaller range.

Calculate Z-Score (Standard Score)

$$z_{ij} = \frac{x_{ij} - \mu_j}{\sigma_j}$$

- $> z_{ij} \rightarrow$ the standard score for feature j of data point i
- $ightharpoonup \mathcal{X}_{ij}
 ightharpoonup$ the value of feature j of data point i
- $\succ \mu_j, \sigma_j \rightarrow$ the mean and standard deviation of feature j

Galaxy	Distance (Mpc)	Velocity (km/sec)
Virgo	15	1,600
Ursa Minor	200	15,000
Corona Borealis	290	24,000
Bootes	520	40,000

How to Normalize feature "Distance"?

Galaxy	Distance (Mpc)	Velocity (km/sec)
Virgo	15	1,600
Ursa Minor	200	15,000
Corona Borealis	290	24,000
Bootes	520	40,000

- How to Normalize feature "Distance"?
 - Computer mean and deviation first

$$\mu_{\rm dist} = ? \sigma_{\rm dist} = ?$$

Galaxy	Distance (Mpc)	Velocity (km/sec)
Virgo	15	1,600
Ursa Minor	200	15,000
Corona Borealis	290	24,000
Bootes	520	40,000

- How to Normalize feature "Distance"?
 - \circ Computer mean and deviation $\mu_{
 m dist} = 256.25, \sigma_{
 m dist} = 181.71$
 - Computer Z-Score for each sample

$$z_{ij} = \frac{x_{ij} - \mu_j}{\sigma_j}$$

Galaxy	Distance (Mpc)	Velocity (km/sec)
Virgo	15	1,600
Ursa Minor	200	15,000
Corona Borealis	290	24,000
Bootes	520	40,000

- How to Normalize feature "Distance"?
 - \circ Computer mean and deviation $\mu_{
 m dist} = 256.25, \sigma_{
 m dist} = 181.71$
 - Computer Z-Score for each sample (for example "Virgo")

$$z_{\text{virgo,dist}} = \frac{x_{\text{virgo,dist}} - \mu_{\text{dist}}}{\sigma_{\text{dist}}} = \frac{15 - 256.25}{181.71} = -1.328$$

Newton's Method

From lectures:

$$\beta^{\text{new}} = \beta^{\text{old}} - \left(\frac{\partial^2 L(\beta)}{\partial \beta \partial \beta^T}\right)^{-1} \frac{\partial L(\beta)}{\partial \beta}$$

Apply Newton's methods on single variable to find minima:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

From single variable to Multivariate Newton-Raphson Method

Newton's Method: Steps

- 1. Initialize $x^{(0)}$
- 2. Calculate $\nabla f(x)$
- 3. Calculate F(x)
- 4. Initialize step n=0 and start loops
 - a. Calculate $\nabla f(x^{(n)})$
 - b. Calculate $F(x^{(n)})$
 - c. Calculate $[F(x^{(n)})]^{-1}$
 - d. Update: $x^{(n+1)} = x^{(n)} [F(x^{(n)})]^{-1} \cdot \nabla f(x^{(n)})$
 - e. Update: n = n + 1
- 5. Exit Loop

Newton's Method: Example

$$x^{(0)} = [3, -1, 0]$$

$$f(x_1, x_2, x_3) = (x_1 + 10x_2)^2 + 5(x_1 - x_3)^2 + (x_2 - 2x_3)^4$$

Again, let's calculate on BOARD!

Newton's Method: Solution

$$x^{(0)} = [3, -1, 0]$$

$$f(x_1, x_2, x_3) = (x_1 + 10x_2)^2 + 5(x_1 - x_3)^2 + (x_2 - 2x_3)^4$$

Newton's Method Example in one step:

- Calculate $\nabla f(x^{(n)})$
- Calculate $F(x^{(n)})$
- Calculate $[F(x^{(n)})]^{-1}$
- Update: $x^{(n+1)}$ Update: n=n+1

$$\nabla f(x^{(0)}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3} \end{bmatrix} = [16, -144, 22]$$

$$F(x^{(0)}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_1 \partial x_3} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \frac{\partial^2 f}{\partial x_2 \partial x_3} \\ \frac{\partial^2 f}{\partial x_3 \partial x_1} & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \frac{\partial^2 f}{\partial x_3^2} \end{bmatrix} = \begin{bmatrix} 12 & 20 & -10 \\ 20 & 22 & -24 \\ -10 & -24 & 48 \end{bmatrix}$$

$$[F(x^{(0)})]^{-1} = \begin{bmatrix} -0.079 & 0.119 & 0.043 \\ 0.119 & -0.079 & -0.015 \\ 0.043 & -0.015 & 0.023 \end{bmatrix}$$

$$x^{(1)} = x^{(0)} - [F(x^{(0)})]^{-1} \cdot \nabla f(x^{(0)})$$

$$n = 1$$

Gradient Descent

Gradient Descent: Batch vs Stochastic

Why do we need Stochastic GD besides the efficiency/scalability reason?

Think about saddle points and local minima.

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

Géron, Aurélien. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. " O'Reilly Media, Inc.", 2017.

Comparison

Batch vs Stochastic vs Mini-batch

Gradient Descent or Newton's Method?

https://stats.stackexchange.com/questions/253632/why-is-newtons-method-not-widely-used-in-machine-learning https://math.stackexchange.com/questions/609680/newtons-method-intuition

https://thelaziestprogrammer.com/sharrington/math-of-machine-learning/solving-logreg-newtons-method

https://web.archive.org/web/20151122203025/http://www.cs.colostate.edu/~anderson/cs545/Lectures/week6day2/week6day2.pdf

Gradient Descent or Newton's Method?

https://stats.stackexchange.com/questions/253632/why-is-newtons-method-not-widely-used-in-machine-learning https://math.stackexchange.com/questions/609680/newtons-method-intuition https://thelaziestprogrammer.com/sharrington/math-of-machine-learning/solving-logreg-newtons-method

https://web.archive.org/web/20151122203025/http://www.cs.colostate.edu/~anderson/cs545/Lectures/week6day2/week6day2.pdf

Logistic Regression: Example Question

We are given a data set consisting of the following experiment. Well, the dataset is a little bit small. (O o)

The height and weight of 3 people were recorded at the beginning of each person's 65th birthday. At exactly one year after each person's 65th birthday the vital status was recorded to be either alive or deceased.

Our end goal is to use logistic regression to predict the
probability that a person's life expectancy is at least 66
years given their age of 65, initial vital status of alive,
height, and weight (but we won't go that far here).

Height (inches)	Weight (lbs)	Vital Status
60	155	Deceased
64	135	Alive
73	170	Alive

The data is given in the following table on the right.

Logistic Regression: Example Question

Step 1: State the log-likelihood function.

Height (inches)	Weight (lbs)	Vital Status
60	155	Deceased
64	135	Alive
73	170	Alive

Step 1: State the log-likelihood function.

Answer:

$$\alpha_1 = -b - 155w_1 - 60w_2$$

$$\alpha_2 = -b - 135w_1 - 64w_2$$

$$\alpha_3 = -b - 170w_1 - 73w_2$$

Height (inches)	Weight (lbs)	Vital Status
60	155	Deceased
64	135	Alive
73	170	Alive

$$L = log\left(1 - \frac{1}{1 + e^{\alpha_1}}\right) + log\left(\frac{1}{1 + e^{\alpha_2}}\right) + log\left(\frac{1}{1 + e^{\alpha_3}}\right)$$

Step 2: State the gradients for each parameter.

Height (inches)	Weight (lbs)	Vital Status
60	155	Deceased
64	135	Alive
73	170	Alive

Step 2: State the gradients for each parameter.

Answer:

$$L = log\left(1 - \frac{1}{1 + e^{\alpha_1}}\right) + log\left(\frac{1}{1 + e^{\alpha_2}}\right) + log\left(\frac{1}{1 + e^{\alpha_3}}\right)$$

$$\nabla_b = -1.0 \cdot \frac{1}{1 + e^{\alpha_1}} + -1.0 \cdot -\frac{e^{\alpha_2}}{1 + e^{\alpha_2}} + -1.0 \cdot -\frac{e^{\alpha_3}}{1 + e^{\alpha_3}}$$

$$\nabla_{w_1} = -155.0 \cdot \frac{1}{1 + e^{\alpha_1}} + -135.0 \cdot -\frac{e^{\alpha_2}}{1 + e^{\alpha_2}} + -170.0 \cdot -\frac{e^{\alpha_3}}{1 + e^{\alpha_3}}$$

$$\nabla_{w_2} = -60 \cdot \frac{1}{1 + e^{\alpha_1}} + -64.0 \cdot -\frac{e^{\alpha_2}}{1 + e^{\alpha_2}} + -73.0 \cdot -\frac{e^{\alpha_3}}{1 + e^{\alpha_3}}$$

Height (inches)	Weight (lbs)	Vital Status
60	155	Deceased
64	135	Alive
73	170	Alive

$$\alpha_1 = -b - 155w_1 - 60w_2$$

$$\alpha_2 = -b - 135w_1 - 64w_2$$

$$\alpha_3 = -b - 170w_1 - 73w_2$$

Step 3: Give the Hessian Matrix

Height (inches)	Weight (lbs)	Vital Status
60	155	Deceased
64	135	Alive
73	170	Alive

Step 3: Give the Hessian Matrix

$$H_b^T = \begin{bmatrix} -1.0 \cdot -1.0 \cdot -\frac{\mathrm{e}^{\alpha_1}}{\left(1 + \mathrm{e}^{\alpha_1}\right)^2} + -1.0 \cdot -1.0 \cdot -\frac{\mathrm{e}^{\alpha_2}}{\left(1 + \mathrm{e}^{\alpha_2}\right)^2} + -1.0 \cdot -1.0 \cdot -\frac{\mathrm{e}^{\alpha_3}}{\left(1 + \mathrm{e}^{\alpha_3}\right)^2} \\ -155.0 \cdot -1.0 \cdot -\frac{\mathrm{e}^{\alpha_1}}{\left(1 + \mathrm{e}^{\alpha_1}\right)^2} + -135.0 \cdot -1.0 \cdot -\frac{\mathrm{e}^{\alpha_2}}{\left(1 + \mathrm{e}^{\alpha_2}\right)^2} + -170.0 \cdot -1.0 \cdot -\frac{\mathrm{e}^{\alpha_3}}{\left(1 + \mathrm{e}^{\alpha_3}\right)^2} \\ -60 \cdot -1.0 \cdot -\frac{\mathrm{e}^{\alpha_1}}{\left(1 + \mathrm{e}^{\alpha_1}\right)^2} + -64.0 \cdot -1.0 \cdot -\frac{\mathrm{e}^{\alpha_2}}{\left(1 + \mathrm{e}^{\alpha_2}\right)^2} + -73.0 \cdot -1.0 \cdot -\frac{\mathrm{e}^{\alpha_3}}{\left(1 + \mathrm{e}^{\alpha_3}\right)^2} \end{bmatrix}$$

$$\nabla_{b} = -1.0 \cdot \frac{1}{1 + e^{\alpha_{1}}} + -1.0 \cdot -\frac{e^{\alpha_{2}}}{1 + e^{\alpha_{2}}} + -1.0 \cdot -\frac{e^{\alpha_{3}}}{1 + e^{\alpha_{3}}}$$

$$\nabla_{w_{1}} = -155.0 \cdot \frac{1}{1 + e^{\alpha_{1}}} + -135.0 \cdot -\frac{e^{\alpha_{2}}}{1 + e^{\alpha_{2}}} + -170.0 \cdot -\frac{e^{\alpha_{3}}}{1 + e^{\alpha_{3}}}$$

$$\nabla_{w_{2}} = -60 \cdot \frac{1}{1 + e^{\alpha_{1}}} + -64.0 \cdot -\frac{e^{\alpha_{2}}}{1 + e^{\alpha_{2}}} + -73.0 \cdot -\frac{e^{\alpha_{3}}}{1 + e^{\alpha_{3}}}$$

$$H_{w_2}^T = \begin{bmatrix} -1.0 \cdot -60 \cdot -\frac{e^{\alpha_1}}{(1 + e^{\alpha_1})^2} + -1.0 \cdot -64.0 \cdot -\frac{e^{\alpha_2}}{(1 + e^{\alpha_2})^2} + -1.0 \cdot -73.0 \cdot -\frac{e^{\alpha_3}}{(1 + e^{\alpha_3})^2} \\ -155.0 \cdot -60 \cdot -\frac{e^{\alpha_1}}{(1 + e^{\alpha_1})^2} + -135.0 \cdot -64.0 \cdot -\frac{e^{\alpha_2}}{(1 + e^{\alpha_2})^2} + -170.0 \cdot -73.0 \cdot -\frac{e^{\alpha_3}}{(1 + e^{\alpha_3})^2} \\ -60 \cdot -60 \cdot -\frac{e^{\alpha_1}}{(1 + e^{\alpha_1})^2} + -64.0 \cdot -64.0 \cdot -\frac{e^{\alpha_2}}{(1 + e^{\alpha_2})^2} + -73.0 \cdot -73.0 \cdot -\frac{e^{\alpha_3}}{(1 + e^{\alpha_3})^2} \end{bmatrix}$$

Step 4: Assuming an initial guess of 0.25 for each parameter, write python code for finding the values of the parameters after 2 iterations using the Newton Raphson method.

b = 1.1346728128592689

 $w_1 = -2.4878423877892759$

 $w_2 = 3.8192554544178936$

Height (inches)	Weight (lbs)		
60	155	Deceased	
64	135	Alive	
73	170	Alive	

Closed form: LR + Regularization

Model

$$y = \sigma(X) = \frac{1}{1 + e^{-X^T \beta}}$$

Original Objective

$$J(\beta) = -\frac{1}{n} \sum_{i} \left(y_i x_i^T \beta - \log \left(1 + \exp\{x_i^T \beta\} \right) \right)$$

L2-Regularized Objective

$$J(\beta) = -\frac{1}{n} \sum_{i} \left(y_i x_i^T \beta - \log \left(1 + \exp\{x_i^T \beta\} \right) \right) + \lambda \sum_{j} \beta_j^2$$

Logistic Regression: Multiclass Case

Decision Tree for Classification

	Outlook	Temperature	Humidity	Windy	Play?
	sunny	hot	high	false	No
	sunny	hot	high	true	No
	overcast	hot	high	false	Yes
	rain	mild	high	false	Yes
	rain	cool	normal	false	Yes
	rain	cool	normal	true	No
	overcast	cool	normal	true	Yes
	sunny	mild	high	false	No
	sunny	cool	normal	false	Yes
	rain	mild	normal	false	Yes
	sunny	mild	normal	true	Yes
	overcast	mild	high	true	Yes
	overcast	hot	normal	false	Yes
9	rain	mild	high	true	No

Decision Boundary

Comparison: Logistic Regression vs Decision Tree

Project: Important Dates

- Oct.18: Group formation due (<u>link</u>)
- Nov. 9: Midterm project report due
- Dec.10: Kaggle Submission Due (release new data for Output2 around a week before)
- Dec.18: Final project report due (together with all codes)

Note that the deadlines are subject to change according to the class schedule (avoid other deadlines of homework and exams).

Tips about COVID-19 project

Start early

- Data: Understand your input data and output objectives
 - Confirm train/test set (avoid information leak), data sources, feature type and properties, input dimensions, output dimensions.
 - Relatedness between input data sources and goal → More data do not guarantee better performance.
- Modeling: From simple to comprehensive, from intuitive to experiment support.
 - Summarize your assumptions that are used in the modeling and discuss whether they are reasonable or need to be further revised.
 - More complex models do not guarantee better performance.

Feature Engineering

- What is feature engineering?
 - Wikipedia: The process of using domain knowledge of the data to create features that make machine learning algorithms work.
- Reason for feature engineering
 - Simpler models / Better results
- When to apply feature engineering
 - \circ Data collection \to Data cleaning \to **Feature Engineering** \to Model Training \to Evaluation
- Examples
 - Speech recognition: Use Fourier transform to analyze spectrum instead of time series
 - Many other applications ...
- Methods: Selection / Construction / Representation
 - Example: Indicator variables
 - More feature engineering methods
- Advanced topic: Automated feature engineering

Example of Feature Engineering

OF THE PARTY OF TH

Speech Recognition

Programming Tips

Numpy/Pandas

- Numpy: A fundamental package for scientific computing with Python. It has following functions
 - Operations of N-dimensional array object (matrix, tensor)
 - Useful linear algebra, mathematical transform, and random number capabilities
- Pandas: Provide high-performance, easy-to-use data structures and data analysis toolkit for the Python language
- Installation Guide:
 <u>→ Install numpy</u> → Install pandas
- Tutorials: → numpy quickstart → pandas tutorial
- Cheatsheet: → numpy cheatsheet → pandas cheatsheet

Programming Tips

Numpy/Pandas

What do you need from numpy and pandas in homework assignments or projects?

Numpy:

- (1) How to create/initialize a numpy array/matrix object
- (2) Dimensions of numpy array
- (3) Basic operations of numpy array (add, subtract, product, etc)
- (4) Indexing, slicing and stacking different arrays
- (5) Broadcasting rule

Pandas:

- (1) How to load data from file
- (2) How data is stored in DataFrame?
- (3) How to read and write data by index in DataFrame?
- (4) Iterating over a pandas DataFrame

Programming Tips: scikit-learn

Warning: Generally you cannot use scikit-learn in homework assignments!

Getting Started:

https://scikit-learn.org/stable/ind ex.html

scikit-learn

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Release Highlights for 0.23 **Getting Started** Classification Regression Identifying which category an object belongs to. Predicting a continuous-valued attribute associated with an object. Applications: Spam detection, image recogni-Applications: Drug response, Stock prices. Algorithms: SVM, nearest neighbors, random Algorithms: SVR, nearest neighbors, random forest, and more... forest, and more... Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, meanshift, and more...

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency Algorithms: k-Means, feature selection, nonnegative matrix factorization, and more...

Model selection

Comparing, validating and choosing parameters and models.

Examples

Applications: Improved accuracy via parameter

Algorithms: grid search, cross validation, metrics, and more...

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms. Algorithms: preprocessing, feature extraction, and more...

Programming Tips

Tensorflow/PyTorch

Good to use for neural network based models

Getting Started:

https://www.tensorflow.org/tutorials

Getting Started:

https://pytorch.org/get-started

Thank you!

Q & A