Wydawnictwo Galileusz

2019

poziom podstawowy

MATEMATYKA

TESTY MATURALNE

Galileusz

www.galileusz.com.pl

Zespół redakcyjny:

Leszek Lewandowski Maja Kołtońska

Monika Jesionowska

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

Zbiór testów maturalnych - pewniaki z matematyki na poziomie podstawowym

$$y = \frac{x^3 \cdot (0,78 - 0,23461)}{\sqrt{x} - 4}$$

Projekt okładki oraz skład:

Marika Zajączkowska www.noboart.pl

$$\beta = \sum_{t=1}^{n} \frac{(r_{it} - \bar{r_i})(r_{mt} - \bar{r_m})}{\sum_{t=1}^{n} (r_{mt} - \bar{r_m})^2}$$

www.galileusz.com.pl

KURS MATURALNY

na poziomie podstawowym i rozszerzonym

KURS GIMNAZJALNY

część matematyczno-przyrodnicza, humanistyczna, j. angielski

KOREPETYCJE

na poziomie szkoły podstawowej, średniej i wyższej

WARSZTATY NAUKOWE DLA DZIECI

zajęcia doświadczalne z chemii i fizyki

zajęcia z informatyki (tworzenie gier)

zajęcia z j. angielskiego

zajęcia z matematyki

Spis treści:

Zestawy próbnych arkuszy maturalnych

Arkusz I	5
Arkusz II	
Arkusz III	36
Arkusz IV	51
Arkusz V.	
Arkusz VI	
Arkusz VII	97
Arkusz VIII	
Arkusz IX	
Arkusz X	144
Arkusz XI	
Arkusz XII	
Odpowiedzi	

WZUPEŁNIA ZDAJĄCY KOD PESEL dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ I

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań 1.-21. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1 pkt)

Iloczyn $27^{-3} \cdot 3^3$ jest równy

A)
$$3^{-6}$$
 B) 3 C) 3^2 D) -1

C)
$$3^{2}$$

D)
$$-1$$

Zadanie 2. (0-1 pkt)

Liczba $(3-2\sqrt{2})^2+4(1-\sqrt{2})$ jest równa

A)
$$5(3-2\sqrt{2})$$
 B) $21-16\sqrt{2}$ C) $15-\sqrt{2}$ D) $5(3-4\sqrt{2})$

B)
$$21 - 16\sqrt{2}$$

C)
$$15 - \sqrt{2}$$

D)
$$5(3-4\sqrt{2})$$

Zadanie 3. (0-1 pkt)

Liczba a stanowi 40% liczby b, wówczas

A)
$$a = \frac{2}{5}b$$

$$B) b = \frac{2}{5}a$$

C)
$$a = b$$

B)
$$b = \frac{2}{5}a$$
 C) $a = b$ D) $a = b - \frac{2}{5}a$

Zadanie 4. (0-1 pkt)

Rozwiązaniem równości |2x - 3| = 6 jest

C)
$$-4,5$$
 i $1,5$

Zadanie 5. (0-1 pkt)

Wiadomo, że $\log_{2.5} a = 0.5$. Wtedy liczba a jest

- A) ujemna B) równa 5
- C) większa od 5 D) mniejsza od 1

Zadanie 6. (0-1 pkt)

 $\log_2 4 + \log_2 8$ wynosi:

A) 5

B) 6

C) 2 D) $\frac{1}{5}$

Zadanie 7. (0-1 pkt)

Jeżeli 2 < x < 5, to liczba x należy do przedziału

A) $(-\infty, 2)$ B) $(5, +\infty)$

C) (2, 5) D) $(2, +\infty)$

Zadanie 8. (0-1 pkt)

Funkcja y = -2x + 5 ma właściwości

A) Jest rosnąca i przechodzi przez punkt (0, 5)

B) Jest rosnąca i przechodzi przez punkt (0, -5)

C) Jest malejąca i przechodzi przez punkt (0, -5)

D) Jest malejąca i przechodzi przez punkt (0,5)

Zadanie 9. (0-1 pkt)

Wiedząc, że f(2) = 4, oblicz a dla y = ax + 6

A) a = 1 B) a = -1 C) $a = \frac{1}{2}$ D) $a = -\frac{1}{2}$

Zadanie 10. (0-1 pkt)

Miejsce zerowe funkcji y = $\frac{1}{2}$ x + 5 wynosi:

A) -1

B) 0 C) 1 D) -10

Zadanie 11. (0-1 pkt)

Parabola, która jest wykresem funkcji $y = 4x^2 + 4x$ ma z prostą o równaniu y = 2

- A) dwa punkty wspólne
- B) zero punktów wspólnych
- C) jeden punkt wspólny
- D) trzy punkty wspólne

Zadanie 12. (0-1 pkt)

Liczba –1 jest miejscem zerowym funkcji f $(x) = mx^3 + x^2 + x + 1$. Zatem

- A) m = 1
- B) m = -1
- C) m = 0
- D) m = 2

Zadanie 13. (0-1 pkt)

Zbiór A jest zbiorem wszystkich argumentów, dla których funkcja f(x) = 2(x+1)(x-3) przyjmuje wartości niedodatnie. Zatem

- A) A = <-1, 3>
- B) $A = (-\infty, -1) \cup (3, +\infty)$
- C) $A = (-\infty, -1)$
- D) A = $(-\infty, -3 > \cup <1, +\infty)$

Zadanie 14. (0-1 pkt)

Funkcja f (x) = $(x + 3)(x^2 + 1)$

- A) nie ma miejsc zerowych
- B) ma 1 miejsce zerowe
- C) ma 3 miejsca zerowe
- D) ma 2 miejsca zerowe

Zadanie 15. (0-1 pkt)

Wiedząc, że $a_2 = 6$, $a_3 = 18$, i że ciąg jest geometryczny, a_1 wynosi:

A)
$$\frac{1}{2}$$

B)
$$-2$$
 C) 2 D) 4

Zadanie 16. (0-1 pkt)

Kwotę 3200 zł wpłacono na lokatę oprocentowaną na 6% w skali roku.

Po roku stan oszczędności będzie wynosił

Zadanie 17. (0-1 pkt)

Dane są długości boków |BC| = 3 i |AC| = 4 trójkąta prostokątnego ABC o kącie ostrym β (zobacz rysunek). Wtedy:

A)
$$\sin \beta = \frac{5}{4}$$

B)
$$\sin \beta = \frac{3}{5}$$

B)
$$\sin \beta = \frac{3}{5}$$
 C) $\sin \beta = \frac{5}{3}$ D) $\sin \beta = 0.8$

D)
$$\sin \beta = 0.8$$

Zadanie 18. (0-1 pkt)

Wysokość trójkąta równoramiennego jest równa 4, a ramię ma długość 5. Podstawa AB tego trójkata ma długość

A) 3

B) 6

C) $\sqrt{5}$ D) $2\sqrt{5}$

Zadanie 19. (0-1 pkt)

Przekrój osiowy stożka jest trójkątem równobocznym o boku długości 10.

Pole powierzchni bocznej tego stożka jest równe

A) 50π

B) 64π

C) 58π

D) 72π

Zadanie 20. (0-1 pkt)

Pole powierzchni całkowitej sześcianu jest równe 36 cm². Objętość tego sześcianu jest równa

A) $6\sqrt{6} \text{ cm}^3$ B) $10\sqrt{6} \text{ cm}^3$ C) 10 cm^3

D) 12 cm^3

Zadanie 21. (0-1 pkt)

O zdarzeniach losowych A, B wiadomo, że: P(A) = 0, 3, P(B) = 0, 6 i $P(A \cup B) = 0$, 5. Prawdopodobieństwo iloczynu zdarzeń A i B spełnia warunek

A) $P(A \cap B) = 1,4$

B) $P(A \cap B) > 1,4$

C) $P(A \cap B) = 0.4$

D) $P(A \cap B) < 0.4$

Rozwiązania zadań 22.-31. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 22. (0-2 pkt)

Kat
$$\alpha$$
 jest ostry, $\cos \alpha = \frac{1}{2}$. Oblicz $\sqrt{tg^2 \alpha - 1}$

Zadanie 23. (0-2 pkt)

Oblicz cosinus kąta między przekątną sześcianu a jego płaszczyzną podstawy.

Zadanie 24. (0-2 pkt)

W ciągu arytmetycznym (a_n) dane są wyrazy: $a_2 = 10$, $a_8 = 52$.

Dla jakich n wyrazy ciągu a_n są mniejsze od 140?

Zadanie 25. (0-2 pkt)

Klasy pierwsze zbierały makulaturę. Razem zebrali 120 kg. Z tego klasa

Ia zebrała 45%, klasa Ib o 5 kg mniej niż klasa Ia, a resztę zebrała klasa Ic. Ile kg makulatury zebrała klasa Ic?

Zadanie 26. (0-2 pkt)

Rozwiąż równanie
$$\frac{7+2x}{x+1} = -3$$

Zadanie 27. (0-2 pkt)

Oblicz najmniejszą i największą wartość funkcji kwadratowej

$$f(x) = -(x + 1)(x - 2)$$
 w przedziale <-1, 2>.

Zadanie 28. (0-4 pkt)

Wyznacz równanie środkowej CD trójkąta ABC, którego wierzchołkiem są punkty A(-2,-3), B(4,1), C(-1,3).

Zadanie 29. (0-4 pkt)

W trapezie jedno z ramion ma długość $2\sqrt{3}$ i 6cm, a kąty między podstawą, a ramionami mają 60° i 30° . Krótsza podstawa ma 5cm. Oblicz pole i obwód trapezu.

Zadanie 30. (0-4 pkt)

Miasto Włocławek i Wrocław łączy linia kolejowa długości 210 km. Średnia prędkość pociągu pospiesznego na tej trasie jest o 24 km większa niż średnia prędkość pociągu osobowego. Pociąg pospieszny pokonuje tę trasę w czasie o 1 godz. krótszym niż osobowy. Oblicz prędkość pociągu osobowego.

\sim 1	• 1/	
l lan	1047.	
Vub	iedź:	

Zadanie 31. (0-5 pkt)

Miejscami zerowymi funkcji kwadratowej $y = 3x^2 + ax + c$ są liczby -4 i 2. Wyznacz współrzędne wierzchołka paraboli tej funkcji.

WZUPEŁNIA ZDAJĄCY miejsce na naklejkę KOD PESEL dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ II

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1 pkt)

Liczba 30 to p% liczby 80, zatem

A)
$$p = 44,(4)\%$$
 B) $p > 44,(4)\%$ C) $p = 43,(4)\%$ D) $p < 43,(4)\%$

B)
$$p > 44,(4)\%$$

C)
$$p = 43,(4)\%$$

D)
$$p < 43,(4)\%$$

Zadanie 2. (0-1 pkt)

Wyrażenie $2 \log_7 49 - 3 \log_2 8$ jest równe

A)
$$-5$$

B) 2
$$C) 2$$
 $D) -1$

Zadanie 3. (0-1 pkt)

Liczba $5^{\frac{4}{3}} \cdot \sqrt[3]{5^5}$ jest równa

A)
$$5^{3}$$

B)
$$5^{\frac{4}{3}}$$

A)5³ B)
$$5^{\frac{4}{3}}$$
 C) $5^{\frac{20}{3}}$ D) $5^{\frac{20}{9}}$

D)
$$5^{\frac{20}{9}}$$

Zadanie 4. (0-1 pkt)

Funkcją rosnącą nie jest funkcja

$$A) y = 2x + 4$$

$$B) y = 2x - 4$$

C)
$$y = \frac{1}{4}x - 10$$

A)
$$y = 2x + 4$$
 B) $y = 2x - 4$ C) $y = \frac{1}{4}x - 10$ D) $y = -\frac{1}{4}x + 10$

Zadanie 5. (0-1 pkt)

Wyniki sprawdzianu z matematyki są przedstawione na diagramie

Średnia arytmetyczna ocen uzyskanych przez uczniów jest równa

- A) 3,87
- B) 4
- C) 4,17
- D) 4,05

Zadanie 6. (0-1 pkt)

Wskaż przedział, który jest zbiorem rozwiązań nierówności $\frac{x}{4} + \frac{7}{16} > \frac{x}{8}$

A)
$$(-3\frac{1}{2}, +\infty)$$

B)
$$(-\infty, 3\frac{1}{2})$$

C)
$$(3\frac{1}{2}, +\infty)$$

A)
$$(-3\frac{1}{2}, +\infty)$$
 B) $(-\infty, 3\frac{1}{2})$ C) $(3\frac{1}{2}, +\infty)$ D) $(-\infty, -3\frac{1}{2})$

Zadanie 7. (0-1 pkt)

Prosta o równaniu $y = \sqrt{3}x - 2$ jest nachylona do osi OX pod kątem a. Zatem

A)
$$a = 90^{\circ}$$

B)
$$a = 135^{\circ}$$
 C) $a = 60^{\circ}$

C)
$$a = 60$$

D)
$$a = 45^{\circ}$$

Zadanie 8. (0-1 pkt)

Ile rozwiązań ma równanie $(x - 3)^2 = 5^2$?

- A) jedno rozwiązanie
 - B) dwa rozwiązania
- C) nie ma rozwiązań
- D) cztery rozwiązania

Zadanie 9. (0-1 pkt)

Funkcje f (x) = $x^5 - 5x^2 + 3x - 1$ i $g(x) = x^5 - 5x^2 - 8x + 21$ przyjmują tę samą wartość dla argumentu

- A) x = 1
- B) x = 2
- C) x = 3 D) x = 4

Zadanie 10. (0-1 pkt)

Wskaż zbiór rozwiązań nierówności |2x + 10| > 4.

- A) $x \in (-\infty, -7) \cup (-3, +\infty)$
- B) $x \in (-\infty, 3) \cup (7, +\infty)$
- C) $x \in (-7, -3)$
- D) $x \in (3, 7)$

Zadanie 11. (0-1 pkt)

Do rozwiązania równania |2x - 4| = 6 należy liczba

- A) 10
- B) 5
- C) 1
- D) 2

Zadanie 12. (0-1 pkt)

Ciąg (a_n) jest określony wzorem $a_n = (-2)^n - 5$ dla n > 1. Wynika stąd, że

A)
$$a_2 = -2$$

B)
$$a_3 = -14$$

B)
$$a_3 = -14$$
 C) $a_5 = -40$

D)
$$a_7 = -133$$

Zadanie 13. (0-1 pkt)

Trójkąt można zbudować z odcinków o długościach

A)
$$6, 3, 3$$

Zadanie 14. (0-1 pkt)

Kat środkowy i kat wpisany sa oparte na tym samym łuku. Suma ich miar jest równa 150°. Jaka jest miara kata środkowego?

Zadanie 15. (0-1 pkt)

W trójkącie równoramiennym kat przy podstawie ma 35°. Trzeci kat wynosi

Zadanie 16. (0-1 pkt)

Promień okręgu opisanego na trójkącie prostokątnym o przyprostokątnych 4cm i 10cm wynosi:

B)
$$\sqrt{29}$$

C) 30 D)
$$\sqrt{25}$$

Zadanie 17. (0-1 pkt)

Suma odległości wierzchołka paraboli o równaniu $y = (x + 4)^2 - 6$ od osi układu współrzędnych jest równa

A) 10

B) 2

C) 4

D) 6

Zadanie 18. (0-1 pkt)

 $3 + 2tg^2\alpha$ dla sin $\alpha = \frac{1}{4}$ wynosi:

A) $3\frac{2}{15}$ B) $\frac{31}{15}$ C) $\frac{-15}{31}$ D) $\frac{15}{47}$

Zadanie 19. (0-1 pkt)

Dziedziną funkcji f (x) = $\sqrt{10-2x}$ jest zbiór

A) $(-\infty, 5>$ B) $(-\infty, 5)$ C) $<5, +\infty$) D) $(5, +\infty)$

Zadanie 20. (0-1 pkt)

Punkt B = (3, -6) jest wierzchołkiem trapezu ABCD. Prosta o równaniu

y = 3x - 2 zawiera podstawę CD. Podstawa AB zawiera się w prostej o równaniu

A) y = 3x - 15 B) $y = -\frac{1}{3}x + 1$ C) y = -3x + 2 D) y = 3x - 5

Zadanie 21. (0-1 pkt)

Pręt o długości 81 cm pocięto na trzy części, których stosunek długości jest równy 2:3:4. Jaką długość ma najdłuższa z tych części?

A) 18 cm

B) 27 cm C) 36 cm

D) 72 cm

Zadanie 22. (0-1 pkt)

Pole powierzchni całkowitej sześcianu jest równe 384 cm². Objętość tego sześcianu wynosi

A) 512 cm^3

B) 256 cm³ C) 128 cm³ D) 1024 cm³

Zadanie 23. (0-1 pkt)

Jeżeli wiadomo, że kwadrat o boku długości 4cm ma takie samo pole jak trójkąt równoboczny, to bok trójkąta równobocznego wynosi:

A) $\sqrt{\frac{64}{\sqrt{3}}}$ B) $\frac{64}{\sqrt{3}}$ C) $\frac{64}{3}$ D) 64

Zadanie 24. (0-1 pkt)

Dany jest okrąg o równaniu $(x - 2)^2 + (y + 6)^2 = 16$. Długość tego okręgu wynosi

A) 16π

B) 8π

C) 4π

D) 2π

Rozwiązania zadań 25.-32. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 25. (0-2 pkt)

Przed wejściem do banku są schody, które mają 12 stopni, każdy po 14 cm wysokości. Obok nich znajduje się podjazd dla osób niepełnosprawnych o nachyleniu 9° . Jaką długość ma ten podjazd? Wynik zaokrąglij do rzędu jedności (sin $9^{\circ} \approx 0$, 1564).

Zadanie 26. (0-2 pkt)

Przedstaw

$$\frac{\left(\frac{1}{5}\right)^{-2} - 2^{3} \cdot \left(\frac{1}{3}\right)^{0} - 128^{\frac{1}{7}} \cdot \left(\frac{1}{4}\right)^{-\frac{1}{2}}}{7^{3} \cdot \left(\frac{7}{8}\right)^{-2} - \left(\frac{1}{21}\right)^{-2} + 27^{\frac{2}{3}} + \left(\frac{12}{13}\right)^{-1} \cdot 12} \quad \text{w postaci nieskracalnego ułamka zwykłego.}$$

Zadanie 27. (0-2 pkt)

Dany jest okrąg o środku S=(-6,4) przechodzący przez początek układu współrzędnych. Wyznacz równanie tego okręgu.

Zadanie 28. (0-4 pkt)

Pan Marcin przetopił stalową kulę o promieniu 90 cm na walce o wysokości i średnicy podstawy równych 16 cm. Ile walców otrzymał Pan Marcin?

Zadanie 29. (0-4 pkt)

Rozwiąż równanie $8x^3 - 14x = 0$.

Zadanie 30. (0-4 pkt)

Oblicz sumę wszystkich liczb trzycyfrowych zapisanych wyłącznie za pomocą cyfr wybranych ze zbioru $\{0,1,2,3\}$.

Zadanie 31. (0-4 pkt)

Ile punktów wspólnych z prostą o równaniu 6x - 2y - 4 = 0 ma okrąg

o równaniu $(x-2)^2 + (y+4)^2 = 3$?

Zadanie 32. (0-4 pkt)

Trójkąt prostokątny o przyprostokątnych 2cm i 4cm jest podstawą ostrosłupa. Z wierzchołka kąta prostego tego trójkąta wychodzi pod kątem prostym krawędź boczna ostrosłupa o długości 6cm. Oblicz pole powierzchni i objętość ostrosłupa.

WZUPEŁNIA ZDAJĄCY miejsce na naklejkę KOD PESEL dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ III

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań 1.-25. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1 pkt)

Liczba 3¹⁰ · 9²⁰ jest równa

A)
$$9^{25}$$

C)
$$3^{40}$$

Zadanie 2. (0-1 pkt)

Wskaż medianę danych cyfr: 2, 1, 6, 5, 4, 6, 4, 3, 2, 2.

Zadanie 3. (0-1 pkt)

Który z zaznaczonych przedziałów jest zbiorem rozwiązań nierówności |2x - 4| < 6.

Zadanie 4. (0-1 pkt)

8% liczby x wynosi 24. Wtedy

A)
$$x = 300$$

B)
$$x = 240$$

C)
$$x = 80$$

B)
$$x = 240$$
 C) $x = 80$ D) $x = 1,92$

Zadanie 5. (0-1 pkt)

Liczba $\log_2 50 - \log_2 2$ jest równa

B)
$$\log^2 \frac{25}{4}$$

B)
$$\log^2 \frac{25}{4}$$
 C) $\log^2 21$ D) $2 \log \frac{25}{4}$

Zadanie 6. (0-1 pkt)

Równanie
$$\frac{4x+2}{3x} = x+1$$

- A) ma dwa rozwiązania dodatnie
- B) ma dwa rozwiązania ujemne
- C) ma jedno rozwiązanie dodatnie i jedno ujemne
- D) ma tylko jedno rozwiązanie

Zadanie 7. (0-1 pkt)

Wskaż nierówność, której zbiorem rozwiązań jest przedział

$$x \in (-\infty; 1) \cup (4; +\infty).$$

A)
$$x^2 - 5x + 4 < 0$$

B)
$$x^2 - 5x - 4 > 0$$

A)
$$x^2 - 5x + 4 < 0$$

B) $x^2 - 5x - 4 > 0$
C) $x^2 - 5x - 4 < 0$
D) $x^2 - 5x + 4 > 0$

D)
$$x^2 - 5x + 4 > 0$$

Zadanie 8. (0-1 pkt)

Zbiorem rozwiązań nierówności x² < 4 jest

A)
$$(-\infty, -2) \cup (2, +\infty)$$
 B) $(-2, 2)$ C) $(-\infty, -2)$ D) $(2, +\infty)$

C)
$$(-\infty, -2)$$

D)
$$(2, +\infty)$$

Zadanie 9. (0-1 pkt)

Wzorem ogólnym ciągu geometrycznego w którym $b_2 = 5$ i $b_3 = 25$ jest:

A)
$$b_n = 5^{-n+1}$$

B)
$$b_n = 5^{n+1}$$
 C) $b_n = 5^{n-1}$ D) $b_n = 5^n$

C)
$$b_n = 5^{n-1}$$

D)
$$b_n = 5^1$$

Zadanie 10. (0-1 pkt)

Czwarty wyraz ciągu geometrycznego jest równy 1728, a iloraz

wynosi 6. Pierwszy wyraz tego ciągu jest równy

Zadanie 11. (0-1 pkt)

Ciąg (a_n) jest określony wzorem $a_n = (-3)^n (n^2 - 6n)$ dla $n \ge 1$. Wtedy

A)
$$a_1 = 14$$

B)
$$a_2 = -70$$

C)
$$a_3 = 243$$

A)
$$a_1 = 14$$
 B) $a_2 = -70$ C) $a_3 = 243$ D) $a_4 = -3888$

Zadanie 12. (0-1 pkt)

Prosta I ma równanie y = 2x + 8. Równanie prostej równoległej do prostej I i przechodzącej przez punkt A = (-1, 4) ma postać

A)
$$y = 2x + 6$$

$$B) y = -2x - 8$$

$$C) y = \frac{1}{2}x + 2$$

A)
$$y = 2x + 6$$
 B) $y = -2x - 8$ C) $y = \frac{1}{2}x + 2$ D) $y = -\frac{1}{2}x - 2$

Zadanie 13. (0-1 pkt)

Funkcja f (x) = 3 - (2a - 8)x nie ma miejsc zerowych. Wobec tego liczba a jest równa

- A) 4
- B) -4
- C) 3
- D) -3

Zadanie 14. (0-1 pkt)

Ile rozwiązań rzeczywistych ma równanie $17 - 5x^2 = 0$?

- A) 4
- B) 3
- C) 2
- D) 1

Zadanie 15. (0-1 pkt)

Wskaż zbiór wartości funkcji $f(x) = -\frac{5}{x}$

- A) $R \setminus \{0\}$
- B) R
- C) R \ $\{5\}$ D) $(0,+\infty)$

Zadanie 16. (0-1 pkt)

Kąt przy podstawie w trójkącie równoramiennym ma miarę 70°. Miara kąta między ramionami trójkąta wynosi

- A) 40°
- B) 55°
- C) 70°
- D) 110°

Zadanie 17. (0-1 pkt)

Pole na mapach geodezyjnych ma długość 22 m. Rolnik chcąc oszacować długość pola zmierzył je za pomocą kroków i wyszło mu 20m. Błąd względny wynosi:

- A) 9,1%
- B) 9,2%
- C) 9%
- D) 10%

Zadanie 18. (0-1 pkt)

Średnia cena 1 lizaka i 3 oranżad to 2,1zł. Gdyby kupić o jednego lizaka więcej średnia cena spadłaby do 1,98zł. Średnia cena lizaka wynosi więc

A) 1,6zł B) 1,5zł C) 2 D) 2,1

Zadanie 19. (0-1 pkt)

Gdy $\alpha = \cos^2 \alpha - 1$, $b = \sin^2 \alpha - 1$ (dla $\alpha = 30^\circ$), wtedy a-b jest równe:

A) 3 B) $\frac{1}{3}$ C) 9 D) $\frac{1}{2}$

Zadanie 20. (0-1 pkt)

Graniastosłup, który ma 22 ściany posiada

A) 38 wierzchołków B) 57 wierzchołków C) 40 wierzchołków D) 95 wierzchołków

Zadanie 21. (0-1 pkt)

Okrąg wpisany w trójkąt równoboczny ma promień równy 9. Wysokość tego trójkąta jest równa

A) 9

B) 27 C) 18

D) 36

Zadanie 22. (0-1 pkt)

Liczba punktów wspólnych okręgu o równaniu $(x + 2)^2 + (y - 5)^2 = 25$ z osiami układu współrzędnych jest równa

A) 1

B) 2

C) 3

D) 4

Zadanie 23. (0-1 pkt)

Basia rzuciła trzy razy monetą symetryczną. Prawdopodobieństwo otrzymania trzy razy orła lub trzy razy reszki wynosi:

- A) $\frac{1}{8}$ B) $\frac{1}{4}$ C) $\frac{3}{8}$ D) $\frac{1}{54}$

Zadanie 24. (0-1 pkt)

Zdarzenia A i B należą do Ω . Jeżeli B \subset A, $P(A) = \frac{6}{10}$, $P(B) = \frac{2}{10}$ to $P(A \cup B)$ wynosi:

- A) $\frac{6}{10}$ B) $\frac{4}{10}$ C) 1 D) $\frac{1}{5}$

D)
$$\frac{1}{5}$$

Zadanie 25. (0-1 pkt)

Obwód rombu jest równy $8\sqrt{2}$, a jeden z jego kątów ma miarę 135° . Pole rombu jest równe

- A) $2\sqrt{2}$ B) 4 C) $4\sqrt{2}$ D) 8

Rozwiązania zadań 26.-33. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (0-2 pkt)

Wyznacz niewiadomą x z równania: $(x + 1)(4 - 3\sqrt{2}) = 3\sqrt{2} - 4$.

Zadanie 27. (0-2 pkt)

Są dwa koszyki: wiklinowy i plastikowy. W każdym z nich znajduje się 10 kul ponumerowanych od 1 do 10. Z każdego koszyka losujemy jedną kulę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że numer kuli wylosowanej z wiklinowego koszyka jest mniejszy do numeru kuli wylosowanej z plastikowego koszyka.

Zadanie 28. (0-2 pkt)

Rozwiąż równanie
$$\frac{x(x+1)}{x-1} = 5x - 4$$
, dla $x \neq 1$

Zadanie 29. (0-3 pkt)

Długość promienia stożka zmniejszono sześciokrotnie. Ile razy trzeba zwiększyć wysokość tej bryły by objętość nadal była taka sama.

Zadanie 30. (0-4 pkt)

Zapisz w prostszej postaci $3\log_3 2 + \log_3 5$

Zadanie 31. (0-4 pkt)

W ciągu arytmetycznym (a_n) dane są wyrazy $a_3=4$, $a_6=19$. Wyznacz wszystkie wartości n, dla których wyrazy ciągu są mniejsze od 200.

Zadanie 32. (0-4 pkt)

Wysokość trapezu równoramiennego ma długość $\sqrt{6}$, a jedna z podstaw jest trzy razy dłuższa od drugiej. Oblicz pole trapezu wiedząc, że sinus jego kąta ostrego jest równy 0,2.

Zadanie 33. (0-4 pkt)

Wykaż, że jeżeli a>0 i b>0 oraz $\sqrt{a^2+b}=\sqrt{a+b^2}$ to a=b lub a+b=1

WZUPEŁNIA ZDAJĄCY KOD PESEL dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ IV

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1 pkt)

Liczba 7¹⁵ · 49³⁰jest równa

A)
$$7^{65}$$

B)
$$49^{36}$$

Zadanie 2. (0-1 pkt)

Liczba log 64 jest równa

C)
$$\log 70 - \log 6$$

Zadanie 3. (0-1 pkt)

Wskaż przedział/y w których funkcja jest malejąca.

A)
$$<-3, -1> \cup <1, 2>$$
 B) $<-5, -3> \cup <2, 4>$ C) $<-5, 2>$ D) $<1, 4>$

B)
$$<-5, -3> U <2, 4>$$

D)
$$<1, 4>$$

Zadanie 4. (0-1 pkt)

Prosta l ma postać 2x - 6y + 4 = 0. Wyznacz równanie prostej prostopadłej do l i przechodzącej przez punkt M = (-1, 5).

A)
$$y = -3x + 2$$
 B) $y = \frac{1}{2}x + 2$ C) $y = -\frac{1}{3}x - \frac{2}{3}$ D) $y = 2x - 4$

B)
$$y = \frac{1}{2}x + 2$$

C)
$$y = -\frac{1}{3}x - \frac{2}{3}$$

D)
$$y = 2x - 4$$

Zadanie 5. (0-1 pkt)

Do zbioru rozwiązań nierówności $x^2 - 12 < 0$ nie należy liczba

B)
$$-3$$

Zadanie 6. (0-1 pkt)

Liczba m = $\frac{\sqrt{13}-1}{3}$ jest pierwiastkiem równania $-3x^2 - 2x + 4 = 0$. Zatem

A)
$$-3m^2 - 2m < 0$$

A)
$$-3m^2 - 2m < 0$$
 B) $-3m^2 - 2m + 4 > 0$

C)
$$-3m^2 - 2m + 4 < 0$$
 D) $3m^2 + 2m = 4$

D)
$$3m^2 + 2m = 4$$

Zadanie 7. (0-1 pkt)

Liczba rozwiązań równania $\frac{x^2 - 3x - 18}{x + 3}$ jest równa

Zadanie 8. (0-1 pkt)

Funkcja f (x) = 256^x dla argumentu x = $\frac{3}{4}$ przyjmuje wartość

B)
$$\sqrt[3]{4^{16}}$$

B)
$$\sqrt[3]{4^{16}}$$
 C) $\frac{1}{4^3}$

Zadanie 9. (0-1 pkt)

Funkcja f(x) = ax + b dla ujemnych argumentów przyjmuje wartości dodatnie, a dla dodatnich argumentów wartości ujemne. Wynika stąd, że

A)
$$a > 0$$

B)
$$a = 0$$

B)
$$a = 0$$
 C) $a = 0$ i $b > 0$ D) $a < 0$

D)
$$a < 0$$

Zadanie 10. (0-1 pkt)

Zbiorem wartości funkcji $y = 3x^2 - 2x + 1$ jest A) $(1\frac{1}{3}; +\infty)$ B) $< 1\frac{1}{3}; -\infty)$ C) $< -1\frac{1}{3}; +\infty)$ D) $(-\infty; 1\frac{1}{3})$

A)
$$(1\frac{1}{3}; +\infty)$$

B)
$$< 1\frac{1}{2}; -\infty$$

C)
$$<-1\frac{1}{3}; +\infty$$

D)
$$(-\infty; 1\frac{1}{2})$$

Zadanie 11. (0-1 pkt)

Dziedziną funkcji f (x) = $\frac{3x-1}{x^2-3x-4}$ jest zbiór

B) R \
$$\left\{\frac{1}{3}\right\}$$

C)
$$R \setminus \{-1, 4\}$$

A) R B) R \
$$\left\{\frac{1}{3}\right\}$$
 C) R \ $\{-1, 4\}$ D) R \ $\left\{-1, \frac{1}{3}, 4\right\}$

Zadanie 12. (0-1 pkt)

25% liczby x jest równe 10, zatem

A)
$$x = 40$$

B)
$$x = 2.5$$

B)
$$x = 2.5$$
 C) $x = 13.(3)$ D) $x = 12.5$

D)
$$x = 12,5$$

Zadanie 13. (0-1 pkt)

W ciągu geometrycznym drugi wyraz jest równy 21, a szósty wyraz 1701. Iloraz tego ciągu jest równy

Zadanie 14. (0-1 pkt)

Dany jest ciąg arytmetyczny $a_n = 2n - 1$. Piąty wyraz ciągu wynosi:

Zadanie 15. (0-1 pkt)

Równanie $y = x^2 - 4x + 4$

A) ma dwa rozwiązania B) nie ma rozwiązań

C) ma jedno rozwiązanie ujemne D) ma jedno rozwiązanie dodatnie

Zadanie 16. (0-1 pkt)

Wskaż równanie prostej, która zawiera średnicę okręgu o równaniu

$$(x-7)^2 + (y+2)^2 = 9.$$

A)
$$y = -x + 5$$

B)
$$y = x - 2$$

A)
$$y = -x + 5$$
 B) $y = x - 2$ C) $y = 3x - 12$ D) $y = -2x - 9$

D)
$$y = -2x - 9$$

Zadanie 17. (0-1 pkt)

Odcinek |AB| o końcach (4, -8) i (-2, 2) jest zawarty w prostej

A)
$$y = \frac{5}{3}x + \frac{4}{3}$$

B)
$$y = 10x + 8$$

C)
$$y = -10x - 8$$

A)
$$y = \frac{5}{3}x + \frac{4}{3}$$
 B) $y = 10x + 8$ C) $y = -10x - 8$ D) $y = -\frac{5}{3}x - \frac{4}{3}$

Zadanie 18. (0-1 pkt)

Pole trójkąta równoramiennego o kącie przy wierzchołku 120° i ramieniu 6cm wynosi:

A)
$$3\sqrt{9}cm^2$$
 B) $9\sqrt{3}cm^2$ C) $4\sqrt{2}cm^2$ D) $9cm^2$

B)
$$9\sqrt{3}cm^2$$

C)
$$4\sqrt{2}cm^2$$

Zadanie 19. (0-1 pkt)

Wskaż ile krawędzi posiada ostrosłup o 25 wierzchołkach.

Zadanie 20. (0-1 pkt)

Bok rombu tworzy z dłuższą przekątną kąt o mierze 25°. Kąt rozwarty tego rombu ma miarę

Zadanie 21. (0-1 pkt)

Promień okręgu o równaniu $(x-1)^2 + y^2 = 16$ jest równy

A) 1 B) 2 C) 3 D) 4

Zadanie 22. (0-1 pkt)

Punkty B = (-4, -2) i D = (8, 12) są wierzchołkami rombu ABCD. Środkiem okręgu wpisanego w romb jest punkt

A) (2, 5)

B) (-6, -7) C) (4, 10) D) (-12, -14)

Zadanie 23. (0-1 pkt)

Tomek rzucił dwukrotnie sześcienną kostką do gry. Jakie jest prawdopodobieństwo, że suma oczek będzie wynosiła nie więcej niż 5?

A) $\frac{5}{18}$ B) $\frac{1}{6}$ C) $\frac{1}{9}$ D) $\frac{13}{18}$

Zadanie 24. (0-1 pkt)

Ze zbioru liczb {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} wybieramy losowo jedna liczbę. Liczba p oznacza prawdopodobieństwo otrzymania liczby podzielnej przez 4. Wtedy

A) p = 0, 1 B) p = 0, 2 C) $p = \frac{1}{4}$ D) $p = \frac{4}{5}$

Rozwiązania zadań 25.-32. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 25. (0-2 pkt)

Rozwiąż układ równań

$$\begin{cases} 4y - x = 2 \\ \frac{x}{2} + (y+1)^2 = (y+2)(y-2) + 12 \end{cases}$$

Zadanie 26. (0-2 pkt)

Wyznacz wartość funkcji f (x) = $x^2 - 8x + 12$ dla argumentu $x = \sqrt{2} - 4$.

Zadanie 27. (0-2 pkt)

Dany jest trójkąt ABC, którego wierzchołkami są punkty A = (6, -2),

B=(-4,0), C=(2,9). Wyznacz równanie prostej zawierającej środkową |CD| tego trójkąta.

Zadanie 28. (0-2 pkt)

Punkty A(-1,-5), B(3,-1), C(2,4) są wierzchołkami równoległoboku ABCD. Oblicz pole równoległoboku.

Zadanie 29. (0-2 pkt)

Oblicz największą wartość funkcji kwadratowej $f(x) = x^2 - 4x + 5$

w przedziale <1, 4>.

Zadanie 30. (0-4 pkt)

Oblicz pole trójkąta równoramiennego o kącie przy wierzchołku 120° i ramieniu 6cm.

.

Zadanie 31. (0-6 pkt)

Wiedząc, że trzy ściany prostopadłościanu mają pola $6cm^2$, $15cm^2$, $10cm^2$, oblicz jego objętość.

Zadanie 32. (0-6 pkt)

Ze zbioru cyfr {0, 1, 2, 3} ułożono liczby trzycyfrowe, w których cyfry mogą się powtarzać. Oblicz sumę wszystkich tych liczb.

WZUPEŁNIA ZDAJĄCY KOD PESEL dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ V

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Zadanie 1. (0-1 pkt)

Jeżeli $14 < \sqrt{215} < 15$, to liczba $\frac{2 - \sqrt{215}}{10}$ należy do przedziału

- A) (1, 1; 1, 2) B) (-1, 2; -1, 1) C) (-1, 3; -1, 2) D) (1, 2; 1, 3)

Zadanie 2. (0-1 pkt)

Liczbą odwrotną do $2 - \sqrt{6}$ jest

- A) $\frac{2-\sqrt{6}}{2}$ B) $\sqrt{6}-2$ C) $\sqrt{6}+2$ D) $\frac{-\sqrt{6}-2}{2}$

Zadanie 3. (0-1 pkt)

Uczeń otrzymał z matematyki następujące oceny: 1, 1, 1, 2, 3, 3, 5. Średnia tych ocen wynosi

- A) 2,49
- B) 2,79
- C) 2,29
- D) 2

Zadanie 4. (0-1 pkt)

W głosowaniu dotyczącym zorganizowania studniówki wzięło udział 245 maturzystów. Za zorganizowaniem było 87,6% uczniów. Ile osób było przeciwne zorganizowaniu studniówki?

- A) 36
- B) 30
- C) 28
- D) 31

Zadanie 5. (0-1 pkt)

Zbiór A jest zbiorem wszystkich argumentów, dla których funkcja

f(x) = -2(x + 4)(x - 7) przyjmuje wartości nieujemne. Zatem

A)
$$A = < -4, 7 >$$

B) A =
$$(-\infty, -4> \cup <7, +\infty)$$

C)
$$A = (-\infty, -4)$$

D) A =
$$<7, +\infty$$
)

Zadanie 6. (0-1 pkt)

Równanie $x^2 + 16 = (x - 4)^2 + 8x$

- A) jest sprzeczne
- B) ma tylko jedno rozwiązanie
- C) jest nieoznaczone D) ma dokładnie dwa rozwiązania

Zadanie 7. (0-1 pkt)

Wskaż liczbę rozwiązań równania $\frac{x-21}{21-x^2} = 0$

- A) 0
- B) 1
- C) 2
- D) 3

Zadanie 8. (0-1 pkt)

Liczba $\frac{\log_3 4}{\log_3 16}$ jest liczbą

A) niewymierną

B) ujemną

C) należącą do przedziału (0, 1)

D) większą od 1

Zadanie 9. (0-1 pkt)

Postać ogólna funkcji wyrażona jest wzorem $y = x^2 + 10x + 16$. Przedstaw tę funkcję w postaci kanonicznej.

A)
$$y = (x + 5)^2 - 9$$

B)
$$y = (x - 5)^2 + 9$$

C)
$$y = (x + 2)^2 - 8$$

D)
$$y = (x-2)^2 + 8$$

Zadanie 10. (0-1 pkt)

Dziedziną funkcji $f(x) = \frac{10x}{x^2 + 2x - 8}$ jest

A)
$$R \setminus \{2\}$$
 B) R C) $R \setminus \{2, -4\}$ D) $R \setminus \{-4\}$

Zadanie 11. (0-1 pkt)

Osią symetrii wykresu funkcji f (x) = $-6x^2 - 24x - 7$ jest prosta o równaniu

A)
$$y = 2$$

A)
$$y = 2$$
 B) $x = -2$ C) $x = 2$ D) $y = -2$

C)
$$x = 2$$

D)
$$y = -2$$

Zadanie 12. (0-1 pkt)

Liczba dodatnich pierwiastków równania $(x + 12)(x^2 - 5)(2x^3 + 1)(3x + 1) = 0$ jest równa

Zadanie 13. (0-1 pkt)

Ciąg (a_n) określony jest wzorem $a_n = 2n^2 - 72$. Liczba ujemnych wyrazów tego ciągu jest równa

- A) 4
- B) 5
- C) 6
- D) 7

Zadanie 14. (0-1 pkt)

Ciąg (log₂8, k, log₂128) jest arytmetyczny. Zatem

- A) k = 9
- B) k = 2
- C) k = 1
- D) k = 5

Zadanie 15. (0-1 pkt)

Pole kwadratu wpisanego w okrąg wynosi 16. Oblicz promień koła ograniczonego okręgiem.

- A) $4\sqrt{2}$
- B) 4
- C) 2
- D) $2\sqrt{2}$

Zadanie 16. (0-1 pkt)

W trójkącie stosunek miar jego kątów wynosi 3:2:4. Najmniejszy jego kąt wynosi

- A) 60°
- B) 40°
- C) 80°
- D) 20°

Zadanie 17. (0-1 pkt)

Dany jest trapez prostokątny ABCD. Jego ramiona pozostają w stosunku 2:1 więc miara kąta ostrego wynosi

- A) 15°
- B) 30°

C) 45°

D) 60°

Zadanie 18. (0-1 pkt)

Punkt A = (4, 2) jest początkiem odcinka AB, gdzie S = (5, -7) jest jego środkiem. Punkt B, który jest końcem tego odcinka posiada współrzędne

A)
$$(6,-16)$$
 B) $(1,-9)$ C) $(\frac{1}{2},-\frac{9}{2})$ D) $(3,-8)$

Zadanie 19. (0-1 pkt)

Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego ma długość 10 i dzieli przeciwprostokatną na dwa odcinki,

z których jeden ma długość 4. Przeciwprostokątna tego trójkąta ma długość

Zadanie 20. (0-1 pkt)

Kąt rozwarcia stożka wynosi 60°, natomiast wysokość 12 cm. Oblicz pole podstawy wskazanej bryły.

B)
$$24\pi$$
 C) 12π

C)
$$12\pi$$

Zadanie 21. (0-1 pkt)

Środek S okręgu o równaniu $(x-1)^2(y+4)^2=25$ ma współrzędne

D) 30π

A)
$$S = (1, -4)$$

B)
$$S = (-1, 4)$$

B)
$$S = (-1, 4)$$
 C) $S = (2, -8)$ D) $S = (-2, 8)$

D)
$$S = (-2, 8)$$

Zadanie 22. (0-1 pkt)

Pole powierzchni bocznej walca, którego średnica ma długość 6cm, a wysokość 11cm wynosi

A)
$$66\pi$$
 B) 33π C) 45π

B)
$$33\pi$$

C)
$$45\pi$$

Zadanie 23. (0-1 pkt)

Pole powierzchni ostrosłupa prawidłowego czworokątnego, którego krawędź boczna ma długość 8cm i tworzy z powierzchnią podstawy kąt 60° wynosi

A)
$$32 + 32\sqrt{7}cm^2$$
 B) $32cm^2$ C) $32\sqrt{7}cm^2$ D) $\sqrt{7}cm^2$

B)
$$32cm^{2}$$

C)
$$32\sqrt{7}cm^2$$

D)
$$\sqrt{7}cm^2$$

W pudełku znajdują się kule koloru białego i czerwonego. Stosunek liczby kul białych do czerwonych wynosi 6:9. Z pudełka losujemy jedną kulę. Prawdopodobieństwo wylosowania kuli czerwonej jest równe

A)
$$\frac{3}{5}$$

B)
$$\frac{2}{5}$$

C)
$$\frac{2}{3}$$

C)
$$\frac{2}{3}$$
 D) $\frac{3}{2}$

Rozwiązania zadań 25.-32. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 25. (0-2 pkt)

$$\begin{aligned} & \frac{36^{0.5} - \left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-1} \cdot 32^{0.2}}{\left(\frac{3}{5}\right)^{-2} \cdot 3^2 + 2^2 \cdot \left(\frac{2}{3}\right)^{-2}} & \text{w postaci nieskracalnego ułamka zwykłego.} \end{aligned}$$

Zadanie 26. (0-2 pkt)

Oblicz długość boków prostokąta, których różnica wynosi 3cm i wiedząc, że jeżeli dłuższy bok zmniejszymy o 4cm, to jego pole zmniejszymy dwukrotnie .

Zadanie 27. (0-2 pkt)

Udowodnij, że skoro k, $n \in N$ oraz $n \ge k \ge 2$, to $k(n - k + 2) \ge 2n$.

Zadanie 28. (0-4 pkt)

Rozwiąż równanie $-x^{3} + 5x^{2} + 3x - 15 = 0$.

.

Zadanie 29. (0-4 pkt)

Dany jest ostrosłup trójkąt prawidłowy, jego wysokość ma taką samą długość jak bok podstawy. Jaką miarę ma kąt nachylenia krawędzi bocznej do podstawy?

Zadanie 30. (0-4 pkt)

Oblicz
$$P(A \cup B)$$
, jeżeli $P(A) = \frac{3}{10}$, $P(B') = \frac{4}{10}$, $A \cap B = \emptyset$

Zadanie 31. (0-4 pkt)

Przekątna prostopadłościanu o podstawie kwadratu ma długość 4cm i jest nachylona do podstawy pod kątem 60°. Oblicz jego pole powierzchni i objętość.

Zadanie 32. (0-4 pkt)

Dany jest ciąg geometryczny (a_n). Iloczyn pięciu kolejnych początkowych wyrazów to 32. Jaki jest trzeci wyraz tego ciągu?

WZUPEŁNIA ZDAJĄCY miejsce na naklejkę KOD PESEL dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ VI

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań 1.-20. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1 pkt)

Liczba $\sqrt{8^3} \cdot 64^2 \cdot 2^{\frac{3}{2}} \cdot \left(\frac{1}{128}\right)^{\frac{4}{21}}$ jest równa

A)
$$2^{\frac{85}{6}}$$

B)
$$2^{\frac{167}{9}}$$

C)
$$2^{\frac{50}{3}}$$

A)
$$2^{\frac{85}{6}}$$
 B) $2^{\frac{167}{9}}$ C) $2^{\frac{50}{3}}$ D) $2^{\frac{223}{18}}$

Zadanie 2. (0-1 pkt)

Wiedząc, że prosta ma równanie y = 3x - 8 wskaż, które punkty do niej należą

A)
$$A = (3,1)$$
, $B = (-4,-20)$ B) $A = (5,7)$, $B = (-11,-40)$

B)
$$A = (5,7)$$
, $B = (-11,-40)$

C)
$$A = (8,16)$$
, $B = (-2,-12)$ D) $A = (21,55)$, $B = (14,33)$

D)
$$A = (21,55)$$
, $B = (14,33)$

Zadanie 3. (0-1 pkt)

Mediana liczb 1, 2, 7, 8, 10 wynosi

Zadanie 4. (0-1 pkt)

Liczba $\log_3 \frac{243}{2} + \log_3 6$ jest równa

C)
$$\log_3 \frac{81}{4}$$

A) 6 B) 27 C)
$$\log_3 \frac{81}{4}$$
 D) $\log_3 \frac{255}{2}$

Zadanie 5. (0-1 pkt)

Równanie okręgu stycznego do osi OX, którego środkiem jest punkt S = (3,7) to

A)
$$(x+3)^2 + (y+7)^2 = 9$$
 B) $(x-3)^2 + (y-7)^2 = 9$ C) $(x+3)^2 + (y+7)^2 = 49$ D) $(x-3)^2 + (y-7)^2 = 49$

B)
$$(x-3)^2 + (y-7)^2 = 9$$

C)
$$(x+3)^2 + (y+7)^2 = 49$$

D)
$$(x-3)^2 + (y-7)^2 = 49$$

Zadanie 6. (0-1 pkt)

Najmniejsza wartość funkcji $f(x) = x^2 - 6x + 8$ dla $x \in <-2,3>$ to

A)
$$-2$$
 B) $-\frac{1}{2}$ C) 2 D) 3

Zadanie 7. (0-1 pkt)

Ile wyrazów ciągu $a_n = n^2 - 3n - 1$ jest mniejszych od 3?

A) 2

B) 5

C) 6

D) nieskończenie wiele

Zadanie 8. (0-1 pkt)

Jeżeli wpłacisz 6000zł na konto oprocentowane 5% w skali roku, to po 7 latach na kącie bedzie

A) 8442,6zł B) 8442,7zł C) 8442,5zł D) 8442zł

Zadanie 9. (0-1 pkt)

Funkcja $x^2 + 4x - 3$ w postaci kanonicznej ma postać

A)
$$(x+2)^2 - 7$$
 B) $(x-2)^2 - 7$ C) $(x+2)^2 + 7$ D) $(x+2)^2 + 7$

C)
$$(x + 2)^2 + 7$$
 D) $(x + 2)^2 + 7$

Zadanie 10. (0-1 pkt)

Różnica ciągu arytmetycznego $a_n = 3n + 2$ jest równa

- A) 2
- B) 3
- C) 4 D) 5

Zadanie 11. (0-1 pkt)

Ile rozwiązań równania $(x^4 - 1)(4x + 8)(x - 3)(x^2 - 9) = 0$ jest mniejszych od 0?

- A) 1
- B) 2
- C) 3
- D) 4

Zadanie 12. (0-1 pkt)

Prostą prostopadłą do 6x - 2y - 4 = 0 jest

A)
$$y = -\frac{1}{3}x + 4$$
 B) $y = 3x - 2$ C) $y = \frac{1}{3}x + 4$ D) $y = -3x + 2$

$$B) y = 3x - 2$$

C)
$$y = \frac{1}{3}x + 4$$

$$D) y = -3x + 2$$

Zadanie 13. (0-1 pkt)

Ściana ma wysokość 2,5 m. Pan Mariusz zmierzył ją metrówką i wyszło mu 2,44 m. Błąd względny tego pomiaru wynosi

- A) 0,4%
- B) 1,4%
- C) 2,4%
- D) 3,4%

Zadanie 14. (0-1 pkt)

Bok rombu jest równy 4 cm, kąt ostry tej figury ma miarę 60°. Pole rombu wynosi

- A) $16\sqrt{3}cm^2$ B) $8\sqrt{3}cm^2$ C) $16cm^2$
- D) 8*cm*²

Zadanie 15. (0-1 pkt)

Suma miar kątów wewnętrznych ośmiokąta wynosi

- A) 360°
- B) 720°
- C) 1080°
- D) 1440°

Zadanie 16. (0-1 pkt)

Ile różnych liczb czterocyfrowych, gdzie cyfry się nie powtarzają można utworzyć z cyfr należących do zbioru < 0,3 > ?

- A) 18
- B) 24
- C) 2
- D) 8

Zadanie 17. (0-1 pkt)

Na ile sposobów Ala i Maciek mogą usiąść na dwóch spośród czterech wolnych miejsc w autobusie?

- A) 4
- B) 8
- C) 12
- D) 16

Zadanie 18. (0-1 pkt)

Środki boków czworokąta ABCD, w którym |AC| = 8 i |BD| = 12, połączono odcinkami i otrzymano czworokąt EFGH. Obwód czworokąta EFGH jest równy

- A) 10
- B) 20
- C) 40
- D) trudno określić

Zadanie 19. (0-1 pkt)

Przekątna prostokąta ma długość 4cm i tworzy z krótszym bokiem kąt 60°. Pole wynosi

- A) $6,93cm^2$
- B) 5cm² C) 5,11cm² D) 5,2cm²

Zadanie 20. (0-1 pkt)

Kąt α jest równy

- A) 110° B) 100°
- C) 140°
- D) 120°

Rozwiązania zadań 21.-30. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 21. (0-2 pkt)

Udowodnij, że romb może mieć cztery osie symetrii.

Zadanie 22. (0-2 pkt)

Oblicz $\cos \alpha$ jeżeli $\sin \alpha = \frac{1}{6}$

Zadanie 23. (0-2 pkt)

Oblicz długość boków trójkąta ABC i wartość wyrażenia $\sin \alpha \cdot t g \beta$.

Zadanie 24. (0-2 pkt)

Dany jest czworościan foremny o krawędzi równej 4 cm. Oblicz, jaką długość ma wysokość tej bryły.

Zadanie 25. (0-2 pkt)

Oblicz wartość wyrażenia $sin^2\alpha - 3cos^2\alpha$, gdy $sin\alpha = \frac{\sqrt{3}}{2}$.

Zadanie 26. (0-2 pkt)

Rozwiąż nierówność:

ROZWIĄZ INETOWNOŚC:

$$(x+2)^2 - (x-1)(x+5) + x(x-2) + (x-4)(x+4) \le 0$$

Zadanie 27. (0-2 pkt)

Wiedząc, że A = (2,3) i B = (-4,1), napisz równanie symetralnej odcinka |AB|.

.

Zadanie 28. (0-4 pkt)

Rzucasz dwa razy sześcienną kostką do gry. Oblicz prawdopodobieństwo, że:

- a) iloczyn oczek będzie równy 12
- b) w pierwszym rzucie wypadnie nieparzysta, a drugim parzysta liczba oczek c) iloraz oczek otrzymanych w rzucie drugim przez otrzymane w rzucie pierwszym będzie mniejszy od 1
- d) liczba oczek otrzymanych w dwóch rzutach będzie się różniła o 1.

Odpowiedź:	

Zadanie 29. (0-6 pkt)

Dany jest trójkąt prostokątny o przyprostokątnych równych 8 i 6. Obrócono go wokół jego przeciwprostokątnej. Oblicz pole powstałej bryły. Ile mililitrów wody się w niej zmieści?

Zadanie 30. (0-6 pkt)

W układzie współrzędnych umieszczono romb ABCD. Oblicz jego pole i obwód, wiedząc, że A=(-1,5), D=(-3,-3), środek symetrii rombu, czyli S=(2,2). Wykonaj rysunek pomocniczy, wyznacz współrzędne punktów B i C.

KOD PESEL dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ VII

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Zadanie 1. (0-1 pkt)

Jeśli $5^3 \cdot \left(\frac{1}{125}\right)^4 \cdot 25^2 = \left(\frac{1}{5}\right)^x$ to x jest równy

- A) 5
- B) -5 C) 9 D) -1

Zadanie 2. (0-1 pkt)

Wskaż medianę danych cyfr 2, 8, 6, 1, 2, 9, 9, 3, 5, 8, 2

- A) 5
- B) 9
- C) 2
- D) 8

Zadanie 3. (0-1 pkt)

Która liczba zwiększona o 45% daje 435?

- A) 300
- B) 390
- C) 480
- D) 791

Zadanie 4. (0-1 pkt)

Liczba log16 jest równa

A) log 10 + log 6

B) $\frac{1}{2}\log 2 + \log 8$

C) $\log 20 - \log 4$

D) 2log4

Zadanie 5. (0-1 pkt)

A' przedziału A = < -4.7) to

- A) (-4.7 >
- B) $(-\infty, -4 > \cup (7, +\infty)$
- C) $(-\infty, -4) \cup < 7, +\infty$)
- D) $\{-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6\}$

Zadanie 6. (0-1 pkt)

Wskaż rozwiązanie równania $\frac{x^2 - 4}{x + 2} = 0$

- A) 2

- B) -2 C) 2 i -2 D) nie ma rozwiązań

Zadanie 7. (0-1 pkt)

Odcinek |AB| ma koniec A = (4,6). Wskaż współrzędne końca B, tak by środek S = (1,3)

- A) B = (-2,0) B) B = (2,0) C) B = (3,3) D) B = (-4,-6)

Zadanie 8. (0-1 pkt)

Znajdź miejsce zerowe funkcji

$$f(x) = \begin{cases} \frac{2}{3}x + 2 & dla \ x \in (-\infty; 3 > 4) \\ 4 & dla \ x \in (3; 4 > 6) \\ -2x + 12 & dla \ x \in (4; +\infty) \end{cases}$$

- A)-3;6

- B) 3; -6 C) 3; 6 D) -3; -6

Zadanie 9. (0-1 pkt)

Prosta $y = -\frac{\sqrt{3}}{3}x + 4$ jest nachylona do osi OX pod kątem

- A) 30°
- B) 120°
- C) 60°
- D) 150°

Zadanie 10. (0-1 pkt)

Współczynnik kierunkowy prostej 4x + 3y - 6 = 0 to

- A) 4
- B) -4 C) $-\frac{4}{3}$ D) $\frac{4}{3}$

Zadanie 11. (0-1 pkt)

Jeżeli a_n jest ciągiem geometrycznym, w którym $a_2 = 20$ i $a_4 = 500$ to

- A) $a_1 = 2$
- B) $a_6 = 12500$ C) $a_8 = 300000$ D) $a_3 = 250$

Zadanie 12. (0-1 pkt)

Suma kwadratów trzech początkowych wyrazów ciągu geometrycznego wynosi

- A) $a_1^2(1+2q+3q^2+2q^3+q^4)$ B) $3a_1^2+6a_1q+5q^2$ C) $a_1^2(1+q^2+q^4)$ D) $3a_1^2+q^2(1+q^2)$

Zadanie 13. (0-1 pkt)

W kwadrat o przekątnej równej $3\sqrt{6}$ cm wpisano okrąg. Długość tego okręgu wynosi

- A) $3\sqrt{6} \pi$
- B) $6\sqrt{6} \pi$ C) $3\sqrt{3} \pi$ D) $6\sqrt{3} \pi$

Zadanie 14. (0-1 pkt)

Dany jest kat 45° wpisany w okrąg oparty na łuku długości 3π. Promień tego okręgu jest równy

- A) 3
- B) 6
- C) 12 D) 24

Zadanie 15. (0-1 pkt)

Współrzędne środka okręgu o równaniu $x^2 + y^2 + 8x - 4y + 11 = 0$ to

- A) S = (-4,2) B) S = (4,-2) C) S = (-8,4) D) S = (8,-4)

Zadanie 16. (0-1 pkt)

Średnica podstawy stożka ma długość 6 cm, a wysokość tej bryły 4 cm. Ile wynosi pole powierzchni bocznej?

- A) 12π
- B) 15π
- C) 24π D) 30π

Zadanie 17. (0-1 pkt)

Kąt α jest równy

- A) 55° B) 110°
 - C) 125°
- D) 140°

Zadanie 18. (0-1 pkt)

Proste k, l, m są równoległe. Jaką długość ma x?

- A) 9
- B) 18
- C) 14
- D) 5

Zadanie 19. (0-1 pkt)

Wskaż wartość $ctg\alpha$, wiedząc, że $\cos \alpha = \frac{2}{9}$, $\alpha \in (0^{\circ}, 90^{\circ})$

- A) $\frac{\sqrt{77}}{9}$ B) $\frac{9\sqrt{77}}{77}$ C) $\frac{\sqrt{77}}{2}$ D) $\frac{2\sqrt{77}}{77}$

Zadanie 20. (0-1 pkt)

Graniastosłup ma 102 wierzchołki. Ile ma krawędzi?

- A) 153
- B) 104
- C) 306
- D) 357

Zadanie 21. (0-1 pkt)

Zdarzenia A i B należą do Ω , $B \subseteq A$, $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{9}$. $P(A \cap B)$ jest równe

- A) $\frac{1}{3}$ B) $\frac{4}{9}$ C) $\frac{2}{9}$ D) $\frac{1}{9}$

Rozwiązania zadań 22.-30. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 22. (0-2 pkt)

Rozwiąż równanie

$$2(x-3)^2 + (x-1)(x+1) + x(x+2) - 23 = 0$$

Zadanie 23. (0-2 pkt)

Ile jest liczb naturalnych dwucyfrowych podzielnych przez 3, a niepodzielnych przez 5?

Zadanie 24. (0-2 pkt)

Dany jest trapez równoramienny ABCD. Odcinek |EF| to jego środkowa. Udowodnij, że trójkąty CDF i BFG są przystające.

Zadanie 25. (0-2 pkt)

Wpłacasz 6000zł na trzymiesięczną lokatą o stałym oprocentowaniu równym 4% w skali roku. Jaką sumę pieniędzy będziesz miał po upływie 3 miesięcy?

Zadanie 26. (0-2 pkt)

W tabeli zestawiono oceny z matematyki uczniów klasy 3A na koniec semestru. Wiedząc, że średnia ocen wynosi 3,6 oblicz ile osób miało ocenę bardzo dobrą?

Ocena	1	2	3	4	5	6
Liczba uczniów	0	4	9	13	X	1

Zadanie 27. (0-4 pkt)

Podaj dziedzinę, zbiór wartości, miejsca zerowe funkcji $f(x) = x^2 + 5x + 4$.

.

Zadanie 28. (0-4 pkt)

Trzy liczby tworzą ciąg arytmetyczny, ich różnica jest równa 5. Jeśli do pierwszej liczby dodamy 1, a do trzeciej 3 to otrzymamy ciąg geometryczny. Podaj liczby:

- A) tworzące ciąg arytmetyczny
- B) tworzące ciąg geometryczny.

Do każdego ciągu dopisz trzy kolejne liczby.

Zadanie 29. (0-5 pkt)

Dany jest graniastosłup prawidłowy trójkątny. Podstawa wpisana jest w okrąg o promieniu równym 6 cm. Kąt nachylenia przekątnej ściany bocznej do krawędzi podstawy ma miarę 30°. Oblicz pole i objętość tej bryły.

Zadanie 30. (0- 6 pkt)

Pani Agata chce wpłacić do banku kwotę 40000 zł na 3 lata. Ma do wyboru następujące oferty:

- a) bank, w którym oprocentowanie półroczne wynosi 8%, odsetki dopisuje się co pół roku
- b) bank, w którym oprocentowanie kwartalne wynosi 3,9%, odsetki dopisuje się co kwartał
- c) bank, w którym oprocentowanie roczne wynosi 16,6%.

Która z ofert jest najkorzystniejsza dla pani Agaty?

WZUPEŁNIA ZDAJĄCY KOD PESEL dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ VIII

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1 pkt)

Iloczyn liczb $\sqrt{2+\sqrt{3}}$ i odwrotności liczby $\sqrt{2-\sqrt{3}}$ jest równy

- A) $2\sqrt{3}$ B) 1 C) $2 \sqrt{3}$ D) $2 + \sqrt{3}$

Zadanie 2. (0-1 pkt)

Wskaż medianę danych cyfr: 7, 2, 3, 1, 5, 2, 9, 8

- A) 2
- B) 3
- C) 4
- D) 5

Zadanie 3. (0-1 pkt)

Która z liczb jest największa?

- A) $log_2 8$

- B) $5\log_9 1$ C) $\log 10$ D) $16^{\log_4 2}$

Zadanie 4. (0-1 pkt)

Wartość $|3 - \sqrt{5}| - |\sqrt{5} - 3|$ wynosi

- A) 4 B) 6 C) 7 D) 0

Zadanie 5. (0-1 pkt)

Liczba $\sqrt{9^3} \cdot 27^{\frac{4}{9}} \cdot \left(\frac{1}{3}\right)^{\frac{5}{2}}$ jest równa

- A) $3^{\frac{1}{6}}$ B) $3^{\frac{11}{6}}$ C) $3^{-\frac{5}{18}}$ D) $3^{\frac{76}{9}}$

Zadanie 6. (0-1 pkt)

Wskaż zbiór argumentów funkcji.

- A) (1, 12> B) <1, 4)
- C) (1, 4> D) <1, 12)

Zadanie 7. (0-1 pkt)

Równanie $m + 6 = m^2x - 36x$ nie ma rozwiązań, gdy

- A) m = 36
- B) m = -6
- C) m = 6
- D) m = 0

Zadanie 8. (0-1 pkt)

Wyznacz dziedzinę następującej funkcji $f(x) = \frac{x+1}{x^3+3x^2-2x-6}$

A) D: $x \in R$

B) D: $x \in R \setminus \{-3; -\sqrt{2}; \sqrt{2}\}$

C) D: $x \in R \setminus \{-3; -\sqrt{2}; -1; \sqrt{2}\}$ D) D: $x \in R \setminus \{-1\}$

Zadanie 9. (0-1 pkt)

Rozwiązaniem nierówności $y = x^2 - 4x + 2$ jest:

A)
$$x_1 = 2 - \sqrt{2}$$
, $x_2 = 2 + \sqrt{2}$ B) $x_1 = \sqrt{2}$, $x_2 = -\sqrt{2}$

B)
$$x_1 = \sqrt{2}$$
, $x_2 = -\sqrt{2}$

C)
$$x_1 = 2$$
, $x_2 = 4$

D)
$$x_1 = 4 + \sqrt{2}$$
, $x_2 = 4 - \sqrt{2}$

Zadanie 10. (0-1 pkt)

Jaką wartość ma kąt β ?

A) 50°

B) 40°

C) 80°

D) 130°

Zadanie 11. (0-1 pkt)

Wskaż wartość tg α , wiedząc, że $sin\alpha = \frac{2}{3}$, $\alpha \in (0^0; 90^0)$.

A)
$$\frac{2\sqrt{5}}{5}$$

B)
$$\frac{\sqrt{5}}{3}$$

C)
$$\frac{\sqrt{5}}{2}$$

B)
$$\frac{\sqrt{5}}{3}$$
 C) $\frac{\sqrt{5}}{2}$ D) $\frac{2\sqrt{5}}{9}$

Zadanie 12. (0-1 pkt)

Suma liczby krawędzi, ścian i wierzchołków graniastosłupa wynosi 548. Jaki to graniastosłup?

D) nie istnieje taki graniastosłup

Zadanie 13. (0-1 pkt)

Wiedząc, że stosunek objętości dwóch sześcianów wynosi 1:27, wskaż, ile jest równy stosunek pól tych brył.

Zadanie 14. (0-1 pkt)

Trapezy prostokątne ABCD i EFGH są podobne. Pole trapezu EFGH jest równe :

- A) 6
- B) 12
- D) 48

Zadanie 15. (0-1 pkt)

Pole powierzchni bocznej walca, którego podstawa ma średnicę 4 jest równe 8π. Wysokość tego walca jest równa

- A) 2
- B) 4 C) 8
- D) 6

Zadanie 16. (0-1 pkt)

Prostopadłościan ma wymiary 2 x 5 x 11. Jaką długość ma jego przekątna?

- A) $\sqrt{29}$
- B) $5\sqrt{6}$
- C) $3\sqrt{2}$
- D) $\sqrt{7}$

Zadanie 17. (0-1 pkt)

Prawdopodobieństwo otrzymania co najmniej 7 oczek w wyniku dwóch rzutów sześcienną kostką do gry wynosi

A)
$$\frac{1}{2}$$

B)
$$\frac{1}{6}$$

C)
$$\frac{5}{12}$$

B)
$$\frac{1}{6}$$
 C) $\frac{5}{12}$ D) $\frac{7}{12}$

Zadanie 18. (0-1 pkt)

Wskaż elementy zbioru (-3; 0>∩ *N*

A)
$$\{-3; -2; -1; 0\}$$

B)
$$\{-2; -1; 0\}$$

C)
$$\{0\}$$

Zadanie 19. (0-1 pkt)

Ile wyrazów ciągu $a_n = \frac{3n^3 + n^2 - 3n - 1}{n+1}$ jest równy zero?

Zadanie 20. (0-1 pkt)

Wskaż wzór funkcji odwrotnej do f (x) = $-\frac{1}{4}x + 3$

A)
$$y = \frac{1}{4}x - 3$$

A)
$$y = \frac{1}{4}x - 3$$
 B) $y = -4x + 12$ C) $y = 4x - 12$ D) $y = \frac{1}{4}x + 3$

C)
$$y = 4x - 12$$

D)
$$y = \frac{1}{4}x + 3$$

Zadanie 21. (0-1 pkt)

Reszta z dzielenia liczby 55 przez 8 wynosi

A) 4 B) 5 C) 6 D) 7

Zadanie 22. (0-1 pkt)

Dany jest odcinek o końcach A = (3, 5) i B = (-7, 1). Odciętą środka tego odcinka jest

A) -2

B) 3

C) 5

D) 2

Zadanie 23. (0-1 pkt)

Liczby x + 1, 4x + 8, 44x - 32 są kolejnymi wyrazami ciągu geometrycznego. Oblicz x i sume tych trzech wyrazów.

A)
$$x = 3, x = -\frac{8}{7}$$

B) $x = -3$
C) $x = -\frac{8}{7}$
D) $x = 1, x = -1$

B)
$$x = -3$$

C)
$$x = -\frac{8}{7}$$

D)
$$x = 1, x = -1$$

Zadanie 24. (0-1 pkt)

Określ wzajemne położenie prostych 5y + 10x = 25 i 2y = 10 + x

A) przecinające się

B) równoległe (pokrywające się)

C) równoległe (nie pokrywające się)

D) prostopadłe

Rozwiązania zadań 25.-30. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 25. (0-2 pkt)

Wykaż, że jeśli liczby a,b,c spełniają warunek $a^2+b^2+c^2=ab+ac+bc$, to a=b=c

.

Zadanie 26. (0-4 pkt)

prostokąt ma tylko 4 wierzchołki, ponadto ze współrzędnych wynika, że to nie jest prostokąt boki mają różne długości. proponuję inne zadanie:

Punkty A= (-3,-5), B= (4,-1), C= (-2,3) są wierzchołkami trójkąta równoramiennego. Oblicz długość ramienia.

Zadanie 27. (0-4 pkt)

W okrąg wpisany jest kwadrat o polu równym 32 cm². Oblicz pole i obwód koła ograniczonego okręgiem.

Zadanie 28. (0-4 pkt)

W punkcie ksero wprowadzono nową promocję. Pierwsza skserowana strona kosztuje 1 grosz, druga 1,5 grosza, trzecia 2,25 groszy i tak dalej. Pewien klient ma do wyboru tą opcję lub może zapłacić za każdą stronę 5 złotych. Wiedząc, że ma do skserowania 28 stron wskaż, która opcja będzie bardziej opłacalna.

Odpowiedź:

Zadanie 29. (0-6 pkt)

Dany jest ostrosłup trójkątny prawidłowy, gdzie bok podstawy ma długość 6. Ściana boczna tworzy z płaszczyzną podstawy kąt równy 60^{0} . Oblicz pole boczne tego ostrosłupa.

Zadanie 30. (0-6 pkt)

Rzucasz cztery razy monetą. Oblicz prawdopodobieństwo otrzymania:

- a) w pierwszych dwóch rzutach orła
- b) co najmniej trzech reszek
- c) we wszystkich rzutach tego samego wyniku
- d) tej samej liczby orłów co reszek.

WZUPEŁNIA ZDAJĄCY KOD PESEL dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ IX

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań 1.-21. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1 pkt)

Mediana danych: 0, 1, 2, 0, 3, 4, 0, 2, 1, 4, 4, 3, 4 jest równa

- A) 0
- B) 1
 - C) 2
- D) 4

Zadanie 2. (0-1 pkt)

Liczba $(3^{10})^2 \cdot 9^3 \cdot 27^{10}$ jest równa

- A) 49^{15}
- B) 3^{56}
- C) 9²⁰ D) 27¹⁵

Zadanie 3. (0-1 pkt)

Z testu z matematyki Michał uzyskał 30 punktów, a Ania 36. Liczba punktów uzyskanych przez Anie jest większa od ilości punktów zdobytych przez Michała o

- A) 6%
- B) 20%
- C) 10%
- D) 15%

Zadanie 4. (0-1 pkt)

Liczba 5² jest większa od liczby log₂ 32 o

- A) 80%
- B) 20%
- C) 40%
- D) 50%

Zadanie 5. (0-1 pkt)

Zbiorem rozwiązań nierówności $4x \ge 16x^2$ jest przedział

A)
$$(0, \frac{1}{4})$$

B)
$$\left\langle 0, \frac{1}{4} \right\rangle$$

C)
$$(-\infty, \frac{1}{4})$$

A)
$$(0, \frac{1}{4})$$
 B) $\left\langle 0, \frac{1}{4} \right\rangle$ C) $(-\infty, \frac{1}{4})$ D) $\left\langle \frac{1}{4}, +\infty \right\rangle$

Zadanie 6. (0-1 pkt)

Rozwiązaniem nierówności |2x - 4| < 2 jest przedział

A)
$$(-\infty, 2)$$

B)
$$(1, 3)$$
 C) $(2, 4)$ D) $(4, +\infty)$

Zadanie 7. (0-1 pkt)

Miejscem zerowym funkcji f(x) = 4x - (5 + 2x) jest liczba

A)
$$x = 2\frac{1}{2}$$

A)
$$x = 2\frac{1}{2}$$
 B) $x = -2\frac{1}{2}$ C) $x = 0$ D) $x = 1$

$$\mathbf{C}) \mathbf{x} = 0$$

$$D) x = 1$$

Zadanie 8. (0-1 pkt)

Do prostej o równaniu y = -2x + 4 należą punkty

Zadanie 9. (0-1 pkt)

Jednym z rozwiązań równania $\frac{x^2-4}{(x+1)(x-3)} = 0$ jest liczba

A)
$$x = -3$$

$$B) x = 1$$

B)
$$x = 1$$
 C) $x = -1$ D) $x = 2$

D)
$$x = 2$$

Zadanie 10. (0-1 pkt)

Liczba $(\frac{3+\sqrt{3}}{\sqrt{3}})^2$ jest równa

C)
$$\frac{3+\sqrt{3}}{3}$$

A) 4 B) 9 C)
$$\frac{3+\sqrt{3}}{3}$$
 D) $4+2\sqrt{3}$

Zadanie 11. (0-1 pkt)

Równanie $(x-2)^2 - 4 = x^2 - 2x - 3$

- A) ma 2 rozwiązania B) ma jedno rozwiązanie
- C) nie ma rozwiązań D) ma nieskończenie wiele rozwiązań

Zadanie 12. (0-1 pkt)

Na rysunku przedstawiony jest wykres funkcji, który powstał przez przesunięcie wykresu funkcji $f(x)=x^2$

- A) 2 jednostki w lewo, 3 w dół
- B) 3 jednostki w prawo, 2 w dół
- C) 4 jednostki w prawo, 2 w górę
- D) 2 jednostki w prawo, 3 w górę

Zadanie 13. (0-1 pkt)

Piąty wyraz ciągu geometrycznego jest równy 8, a wyraz go poprzedzający 16. Iloraz tego ciagu jest równy

A) 24

B) 2

C) 8

D) $\frac{1}{2}$

Zadanie 14. (0-1 pkt)

Dane są dwa trójkąty równoboczne o boku 3 cm i 4 cm. Stosunek pól tych trójkątów jest równy

A) $\frac{3}{4}$ B) $\frac{9}{16}$ C) $\frac{\sqrt{3}}{4}$ D) $\frac{3\sqrt{3}}{2}$

Zadanie 15. (0-1 pkt)

Wskaż współrzędne punktu, który jest wierzchołkiem kwadratu wpisanego w okrąg o równaniu $x^2 + y^2 = 4$

A) (-4, 0) B) (-2, 1) C) (3, 0) D) (0, 2)

Zadanie 16. (0-1 pkt)

Suma wszystkich krawędzi sześcianu jest równa 84 cm. Obwód jednej ściany jest równy

A) 28 cm

B) 21 cm

C) 42 cm

D) 10,5 cm

Zadanie 17. (0-1 pkt)

Zbiór rozwiązań nierówności $\frac{x+1}{2} < \frac{1}{4}$ to:

A)
$$(-\infty, -\frac{1}{2})$$
 B) $(-\infty, -\frac{1}{2} > C) (-\infty, 2)$ D) $(-\infty, -2)$

Zadanie 18. (0-1 pkt)

Punkt S=(-2, 3) jest środkiem okręgu o równaniu

A)
$$(x-2)^2 + (y+3)^2 = 8$$

A)
$$(x-2)^2 + (y+3)^2 = 8$$
 B) $(x-3)^2 + (y+2)^2 = 10$

C)
$$(x + 2)^2 + (y - 3)^2 = 4$$
 D) $(x + 3)^2 + (y - 2)^2 = 6$

D)
$$(x + 3)^2 + (y - 2)^2 = 6$$

Zadanie 19. (0-1 pkt)

Przekątna prostopadłościanu o długości 6 cm tworzy z płaszczyzną podstawy kąt o mierze 60°. Wysokość tego prostopadłościanu jest równa

A)
$$\frac{\sqrt{3}}{2}$$

B)
$$2\sqrt{3}$$
 C) $3\sqrt{3}$ D) 3

C)
$$3\sqrt{3}$$

Zadanie 20. (0-1 pkt)

Wierzchołki A i B trójkata ABC leżą na okręgu o promieniu 10, a punkt C jest jego środkiem. Długość odcinka |AB| = 16. Wysokość tego trójkąta jest równa

Zadanie 21. (0-1 pkt)

Tworząca stożka ma długość l, a promień jego podstawy jest równy r. Powierzchnia boczna stożka jest 2 razy większa od pola jego podstawy. Wówczas

A)
$$r = \frac{1}{6}l$$

$$B) r = \frac{1}{4}l$$

$$C) r = \frac{1}{3}$$

A)
$$r = \frac{1}{6}l$$
 B) $r = \frac{1}{4}l$ C) $r = \frac{1}{3}l$ D) $r = \frac{1}{2}l$

Rozwiązania zadań 22.-31. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 22. (0-2 pkt)

Kąt α jest ostry i $\sin \alpha = \frac{4}{7}$. Oblicz wartość wyrażenia $x = \sqrt{ctg^2\alpha - 1}$.

Zadanie 23. (0-2 pkt)

Rozwiąż układ równań $\begin{cases} 2x + y = 12 \\ x - 5y = -5 \end{cases}$.

Zadanie 24. (0-2 pkt)

Napisz równanie prostej równoległej do prostej -3x + y + 2 = 0 i przechodzącej przez punkt (1, 2).

Zadanie 25. (0-2 pkt)

Oblicz miary kątów w trójkącie równoramiennym o ramieniu długości $$\,^{\circ}\!\! .$ 8 cm i podstawie $8\sqrt{3}\,.$

Zadanie 26. (0-2 pkt)

Rozwiąż nierówność $x^2 + 10x + 5 \le 0$.

Zadanie 27. (0-2 pkt)

Średnica podstawy stożka ma długość 8, a wysokość 3. Oblicz pole powierzchni bocznej tego stożka.

Zadanie 28. (0-4 pkt)

Znajdź najmniejszą i największą wartość funkcji $f(x) = -2x^2 + 9x - 11$ w przedziale $\langle -1, 2 \rangle$.

Zadanie 29. (0-4 pkt)

Wykaż, że jeżeli dwie różnice liczby x, y spełniają warunek $x^2 + x = y^2$, to x + y + 1 = 0

Zadanie 30. (0-4 pkt)

W kwadracie połączono środki boków i otrzymano mniejszy kwadrat o boku 2 cm. Oblicz pole wyjściowego kwadratu.

Zadanie 31. (0-5 pkt)

W rosnącym ciągu arytmetycznym suma trzech kolejnych wyrazów jest równa 21, a ich iloczyn 280. Wyznacz ten ciąg.

KOD PESEL miejsce na naklejkę | dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ X

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1 pkt)

Liczba $\sqrt[3]{\sqrt{2}}$ jest równa

A)
$$\sqrt[5]{2}$$
 B) $\sqrt[6]{2}$ C) 2^6 D) 2

B)
$$\sqrt[6]{2}$$

C)
$$2^{6}$$

Zadanie 2. (0-1 pkt)

Kurtka zimowa kosztowała x zł. W sezonie letnim obniżono jej cenę o 20% i kosztowała y zł. Cenę kurtki po obniżce można policzyć ze wzoru

A)
$$x - y = 0.2x$$

B) $x = y - 0.2x$
C) $y = x + 0.2x$
D) $x + y = 0.2$

$$B) x = y - 0.2x$$

C)
$$y = x + 0.2x$$

D)
$$x + y = 0.2$$

Zadanie 3. (0-1 pkt)

Wiadomo, że liczba $\sqrt{3} \in (1,2)$. Liczba $\frac{\sqrt{3}+1}{2}$ należy do przedziału

A)
$$\left(1,\frac{1}{2}\right)$$

A)
$$\left(1, \frac{1}{2}\right)$$
 B) $\left(1, 1\frac{1}{2}\right)$ C) $(1, 2)$ D) $(2, 3)$

Zadanie 4. (0-1 pkt)

Liczba 3log₂2 + log₂3 jest równa

B)
$$log_224$$

D)
$$log_29$$

Zadanie 5. (0-1 pkt)

Dziedziną funkcji $f(x) = \frac{2x-4}{x^2-9}$ jest zbiór:

A) $x \in R$

B) zbiór liczb całkowitych

C) $R/\{3, -3\}$

D) $x \in (2, +\infty)$

Zadanie 6. (0-1 pkt)

Rysunek przedstawia wykres pewnej funkcji kwadratowej.

Prawdziwe jest zdanie:

A) Miejscami zerowymi tej funkcji są liczby: -8 i 3.

B) Funkcja jest malejąca w przedziale $(-\infty,1)$.

C) Funkcja przyjmuje wartości nieujemne dla x > -1.

D) Zbiorem wartości funkcji jest przedział $(-\infty, -8)$.

Zadanie 7. (0-1 pkt)

Liczba 3 jest miejscem zerowym funkcji liniowej f(x) = 3x + m - 6. Wtedy

- A) m = -3
- B) m = 3
- C) m = 2
- D) m = -2

Zadanie 8. (0-1 pkt)

Suma początkowych wyrazów ciągu (a_n) określona jest wzorem $S_n = n^2 + 3n$. Trzeci wyraz ciągu (a_n) jest równy

- A) 4
- B) 10
- C) 3
- D) 8

Zadanie 9. (0-1 pkt)

Ciąg $a_n = 2n - 1$ jest ciągiem

A) malejącym

- B) arytmetycznym
- C) geometrycznym
- D) stałym

Zadanie 10. (0-1 pkt)

Dany jest ciąg arytmetyczny: 2, 5, 8, Szósty wyraz tego ciągu jest równy

- A) 12
- B) 15
- C) 17
- D) 28

Zadanie 11. (0-1 pkt)

Rozwiązaniem równania $\frac{3-x}{4+x} = \frac{1}{3}$ jest liczba

A)
$$\frac{1}{3}$$

A)
$$\frac{1}{3}$$
 B) $-\frac{1}{3}$ C) $1\frac{1}{4}$ D) $\frac{3}{4}$

C)
$$1\frac{1}{4}$$

D)
$$\frac{3}{4}$$

Zadanie 12. (0-1 pkt)

Wykresem funkcji $f(x)=2(x-4)^2+3$ jest

- A) parabola o wierzchołku w punkcie (4, -3)
- B) parabola leżąca pod osią OX
- C) parabola powstała przez przesunięcie paraboli $f(x) = x^2$ o 3 jednostki
- w prawo i dwie w dół
- D) parabola leżąca nad osią OX

Zadanie 13. (0-1 pkt)

Rozwiązanie nierówności |2x - 4| < 2 jest przedział

A)
$$(-\infty,1)$$

B)
$$(2, 4)$$
 C) $(3, +\infty)$ D) $(1, 3)$

D)
$$(1, 3)$$

Zadanie 14. (0-1 pkt)

Miejscami zerowymi funkcji $f(x) = 3x^2 - 9x + 6$ są liczby

A)
$$x = 1 i x = 2$$

B)
$$x = 1 i x = 6$$

C)
$$x = -1$$
 i $x = 3$

D)
$$x = 2 i x = 4$$

Zadanie 15. (0-1 pkt)

W trójkącie prostokątnym przeciwprostokątna jest równa 10, a jeden z kątów ostrych $\alpha = 30^{\circ}$. Przyprostokatne tego trójkata mają długości

A)
$$a=6 i b=4$$

A)
$$a=6 i b=4$$
 B) $a=5 i b=5\sqrt{3}$ C) $a=\sqrt{3} i b=4$ D) $a=2\sqrt{2} i b=3$

C)
$$a = \sqrt{3} \text{ i b} = 4$$

D)
$$a = 2\sqrt{2}$$
 i $b = 3$

Zadanie 16. (0-1 pkt)

Trójkata nie można zbudować z odcinków o długościach

Zadanie 17. (0-1 pkt)

Na trójkącie równobocznym o boku długości 12 cm opisano okrąg. Jego promień jest równy

B)
$$4\sqrt{3}$$
 C) 24

D)
$$\frac{\sqrt{3}}{2}$$

Zadanie 18. (0-1 pkt)

Wyrażenie $\frac{\sin 45^\circ - 2(\sin^2 60^\circ + \sin^2 30^\circ)}{\cos 45^\circ - 2}$ ma wartość A) $\frac{\sqrt{2}}{2}$ B) 1 C) $\frac{1}{2}$ D) $\frac{\sqrt{3}}{2}$

A)
$$\frac{\sqrt{2}}{2}$$

C)
$$\frac{1}{2}$$

D)
$$\frac{\sqrt{3}}{2}$$

Zadanie 19. (0-1 pkt)

Drzewo rzuca cień o długości 13,5 m, a o tej samej godzinie cień kwiatka mierzącego 85 cm ma długość 148 cm. Oblicz wysokość drzewa.

- A) 7,75 m
- B) 6,9 m
- C) 23,5 m
- D) 8,5 m

Zadanie 20. (0-1 pkt)

Dany jest okrąg o równaniu $(x - 3)^2 + (y + 4)^2 = 9$. Prosta y = 2 ma z okręgiem

- A) jeden punkt wspólny
- B) nie ma punktów wspólnych
- C) dwa punkty wspólne
- D) trzy punkty wspólne

Zadanie 21. (0-1 pkt)

Równanie $\frac{x^2+a}{x} = 8$ ma dwa różne pierwiastki dla dowolnej liczby a ze zbioru

A)
$$(-\infty, 0) \cup (0, 16)$$

B)
$$(-\infty, 16)$$

$$\text{A) } (-\infty,0) \cup (0,16) \quad \text{B) } (-\infty,16) \quad \text{C) } (-\infty,0) \cup (0,16> \quad \text{D) } (16,+\infty)$$

D)
$$(16, +\infty)$$

Zadanie 22. (0-1 pkt)

Liczba sposobów, na jakie można wybrać dwuosobową delegację spośród 5 osób, jest równa

- A) 15
- B) 5
- C) 10
- D) 7

Zadanie 23. (0-1 pkt)

Kamil zapomniał ostatniej cyfry dziewięciocyfrowego numeru telefonu do kolegi i wybiera ja losowo. Jakie jest prawdopodobieństwo, że za pierwszym razem odezwie się kolega?

- A) $\frac{1}{9}$ B) $\frac{1}{10}$ C) $\frac{1}{2}$ D) 1

Zadanie 24. (0-1 pkt)

W urnie są cztery kule białe i sześć czarnych. Losujemy dwie kule bez zwracania. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe

- A) $\frac{4}{10}$

Rozwiązania zadań 25.-31. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 25. (0-2 pkt)

Podaj liczbę rozwiązań układu równań

$$\begin{cases} x + y = 5 \\ -2x - 2y = 6 \end{cases}$$

Zadanie 26. (0-2 pkt)

Obwód koła o promieniu r = 5 cm jest trzy razy większy od obwodu kwadratu. Oblicz długość boku kwadratu, wynik zaokrąglij do miejsc dziesiętnych.

Zadanie 27. (0-4 pkt)

Prosta AB przechodzi przez punkty A = (-3, 2) i B = (4, 3). Napisz równanie tej prostej w postaci ogólnej i kierunkowej.

Zadanie 28. (0-4 pkt)

Oblicz cosinus kąt nachylenia krawędzi bocznej ostrosłupa prawidłowego czworokątnego do płaszczyzny podstawy wiedząc, że długość wysokości ostrosłupa jest dwa razy krótsza od długości krawędzi podstawy.

()dnowinday	
Oubowieuz.	

Zadanie 29. (0-4 pkt)

Dany jest ciąg (a_n) o wyrazie ogólnym $a_n = 1 + \frac{20}{n}$.

- a) Oblicz, ile wyrazów ciągu (a_n) jest większych od 6.
- b) Wyznacz wszystkie te wyrazy ciągu (a_n) , które są liczbami nieparzystymi.

Zadanie 30. (0-4 pkt)

Wysokość trójkąta o długości 6 cm dzieli podstawę na dwa odcinki o długości 4 cm i 9 cm. Wykaz, że ten trójkąt jest trójkątem prostokątnym oraz oblicz pole okręgu opisanego na tym trójkącie.

Zadanie 31. (0-6 pkt)

Prostokąt ma obwód 36 cm.

a) Wyznacz wymiary tego prostokąta tak, aby miał on największe pole.

b) Oblicz objętość prostopadłościanu, którego podstawą jest prostokąt o największym polu.

KOD PESEL dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ XI

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań 1.-20. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1 pkt)

Pewnego dnia, z powodu silnych mrozów, nieobecnych było w klasie 6 uczniów co stanowiło 25% ogółu klasy. Ilość wszystkich uczniów tej klasy to

- A) 20
- B) 25
- C) 24
- D) 30

Zadanie 2. (0-1 pkt)

Liczba $(2\frac{1}{2} + 0, 2\sqrt{3})^0 - 2\sqrt{3} \cdot 3\sqrt{27}$ jest równa

- A) $3\sqrt{33}$

- B) 2,7 C) -53 D) $4\sqrt{3}$

Zadanie 3. (0-1 pkt)

Do zbioru rozwiązań nierówności |x-2| < 3 należy liczba

- A) x = 2
- B) x = -3
- C) x = 6
- D) x = -7

Zadanie 4. (0-1 pkt)

Komputer z 22% podatkiem VAT kosztuje 1520,12zł. Jego cena bez podatku jest równa

- A) 1246 zł
- B) 1400 zł
- C) 1300 zł
- D) 1456,2 zł

Zadanie 5. (0-1 pkt)

Tomek przeczytał książkę w ciągu 5 dni. Pierwszego dnia przeczytał 30 stron, a każdego następnego o 2 strony więcej. Liczb stron książki wynosi

- A) 80
- B) 120
- C) 150
- D) 170

Zadanie 6. (0-1 pkt)

Prosta o równaniu $\sqrt{3}x - 3y + 12 = 0$ jest nachylona do osi OX pod kątem

Zadanie 7. (0-1 pkt)

Wyrażenie $18x^2 - 8$ jest równe

A)
$$2(3x-2)(3x+2)$$

B)
$$9(x-4)(x+4)$$

C)
$$(9x - 4)(9x + 4)$$

D)
$$10x^{2}$$

Zadanie 8. (0-1 pkt)

Rozwiązaniem równania $(x-2)^2 - 2 = 2x + (x+4)^2$ jest liczba

A)
$$x = -1$$

B)
$$x = 0$$
 C) $x = 2$ D) $x = 3$

C)
$$x = 2$$

D)
$$x = 3$$

Zadanie 9. (0-1 pkt)

Rozwiązaniem równania $\frac{1}{2}x + \log_2 8 = 3x - 2$ jest liczba

A)
$$x = 8$$

$$\mathbf{B}) \mathbf{x} = 0$$

B)
$$x = 0$$
 C) $x = -2$ D) $x = 2$

D)
$$x = 2$$

Zadanie 10. (0-1 pkt)

Wykresem funkcji $f(x) = x^2 - 6x + 11$ jest parabola o wierzchołku

A)
$$(3, 2)$$

D)
$$(-3, 2)$$

Zadanie 11. (0-1 pkt)

Proste y = 2x + 3i ax + y + 4 = 0 są prostopadłe dla

A)
$$a = -3$$

$$B) a = 2$$

B)
$$a = 2$$
 C) $a = \frac{1}{2}$ D) $a = 2$

D)
$$a = 2$$

Zadanie 12. (0-1 pkt)

Kạt α ma miarę 60°. Kạt β ma miarę

Zadanie 13. (0-1 pkt)

Odcinek o końcach A = (-2, 1) i B = (1, 5) ma długość

Zadanie 14. (0-1 pkt)

Przekątna prostokąta ma długość $3\sqrt{5}$, a jeden z boków 3. Pole tego prostokąta jest równe

A) 45

B) $24\sqrt{5}$ C) $6\sqrt{5}$

D) 18

Zadanie 15. (0-1 pkt)

Średnia arytmetyczna danych przedstawionych w tabeli jest równa

liczba	1	3	4	7
Ilość liczb	5	4	2	5

A) 3,75

B) 4 C) 3,5 D) 2,45

Zadanie 16. (0-1 pkt)

W okrąg o promieniu r = 2 cm wpisano trójkąt równoboczny. Pole tego trójkąta jest równe

A) $3\sqrt{2} \text{ cm}^2$

B) $3\sqrt{3} \text{ cm}^2$ C) 8 cm^2 D) $6\sqrt{3} \text{ cm}^2$

Zadanie 17. (0-1 pkt)

Przekątna przekroju osiowego walca ma długość 10 cm, a promień podstawy 3 cm. Oblicz pole powierzchni bocznej tego walca.

A) $48\pi cm^2$ B) $30\pi cm^2$ C) $54\pi cm^2$ D) $60\pi cm^2$

Zadanie 18. (0-1 pkt)

Punkty A = (-2, 2) i B = (3, 2) są wierzchołkami trójkąta równobocznego. Pole tego trójkąta jest równe

- A) $\frac{4\sqrt{2}}{3}$ B) $\frac{5\sqrt{3}}{2}$ C) $\frac{25\sqrt{3}}{4}$ D) 12

Zadanie 19. (0-1 pkt)

Ania ma 2 pary butów, 3 spódnice i 5 bluzek. Może więc ubrać się na liczbę sposobów równą

- A) 14
- B) 11
- C) 10
- D) 30

Zadanie 20. (0-1 pkt)

Rzucamy dwa razy kostką do gry. Prawdopodobieństwo wyrzucenia za pierwszym razem parzystej liczby oczek jest równe

- A) $\frac{1}{2}$ B) $\frac{1}{4}$ C) $\frac{3}{4}$
- D) 1

Rozwiązania zadań 21.-28. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 21. (0-2 pkt)

Większy pierwiastek równania $x^2 - 2x - 3 = 0$ jest pierwszą współrzędną środka okręgu, a mniejszy drugą. Znajdź promień tego okręgu wiedząc, że przechodzi on przez punkt (-1, 2). Napisz równanie tego okręgu.

Zadanie 22. (0-2 pkt)

W trapezie prostokątnym krótsza podstawa o długości 8 tworzy

z ramieniem mierzącym $4\sqrt{2}\,$ kąt o mierze 135°. Oblicz długość dłuższej przekątnej tego trapezu oraz jego pole i obwód.

Zadanie 23. (0-4 pkt)

Oblicz pole rombu ABCD wiedząc, że A=(-3,4) , B=(1,2) , C=(5,8).

.

Zadanie 24. (0-4 pkt)

Wykaż, że jeżeli a, b, c są liczbami dodatnimi oraz a < b to $\frac{a+c}{b+c} > \frac{a}{b}$.

.

Zadanie 25. (0-6 pkt)

Oblicz pole powierzchni sześcianu wiedząc, że przekątna ściany jest równa 4cm.

Zadanie 26. (0-6 pkt)

Drugi wyraz ciągu arytmetycznego jest równy 3, a szósty 15. Oblicz sumę dziesięciu początkowych wyrazów tego ciągu.

Zadanie 27. (0-6 pkt)

Wyznacz wszystkie liczby całkowite k, dla których liczba $a = \frac{k^2 + 1}{k + 1}$ jest liczbą całkowitą.

Zadanie 28. (0-6 pkt)

Udowodnij, że trójkąty prostokątne ABC i DEF są podobne. Oblicz pole trójkąta DEF, wiedząc, że przyprostokątne w trójkącie ABC wynoszą 3 i 4, natomiast przeciwprostokątna w trójkącie DEF jest równa 10.

WZUPEŁNIA ZDAJĄCY miejsce na naklejkę KOD PESEL dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

CZAS PRACY: 170 minut

ARKUSZ XII

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź czy arkusz egzaminacyjny zawiera wszystkie strony. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym,
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra z czarnym</u> tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań 1.-20. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1 pkt)

Przy dziesięciokrotnym rzucie kostką do gry otrzymano wyniki: 1, 3, 5, 4, 6, 3, 3, 1, 2, 6. Średnia arytmetyczna tych wyników jest równa

- A) 4,1
- B) 3,2
- C) 5,4
- D) 3,4

Zadanie 2. (0-1 pkt)

Trzecia część liczby 9¹⁵ jest równa

- A) 3^{29}
- B) 3^{15}
- C) 3^{31} D) 3^{10}

Zadanie 3. (0-1 pkt)

W klasie trzeciej 18 uczniów uczy się języka angielskiego, 20 języka niemieckiego, a 4 uczniów obydwu tych języków. Liczba uczniów w tej klasie wynosi

- A) 42
- B) 34
- C) 38
- D) 30

Zadanie 4. (0-1 pkt)

W jednym litrze napoju owocowego jest 0,25 l soku i 0,75 l wody. Zawartość soku w tym napoju to

- A) 40%
- B) 25%
- C) 50%
- D) 10%

Zadanie 5. (0-1 pkt)

Różnica liczb a = $2\log_2 6$ i b = $\log_2 9$ jest równa

A) -4

B) 2

C) 9

D) 11

Zadanie 6. (0-1 pkt)

Drugi wyraz rosnącego ciągu geometrycznego jest równy 6, a piąty 48. Iloraz tego ciągu jest równy

A) 6

B) 54

C) 8

D) 2

Zadanie 7. (0-1 pkt)

Rozwiązaniem nierówności -2(x + 4)(x - 3) < 0 jest przedział

A) (-4, 3)

B) $(-\infty, -4)$

C) $(3, +\infty)$

D) $(-\infty, -4) \cup (3, +\infty)$

Zadanie 8. (0-1 pkt)

Wartość wyrażenia |x - 4| < 8 ma postać

A) (-4, 12)

B) $(-\infty, -4)$ C) $(12, +\infty)$ D) $(-\infty, -4) \cup (12, +\infty)$

Zadanie 9. (0-1 pkt)

Proste y = 3x + 5i - 4x + y + 2 = 0

- A) przecinają się w punkcie (7, 26)
- B) są równoległe
- C) są prostopadłe
- D) pokrywają się

Zadanie 10. (0-1 pkt)

Prosta o równaniu y = 3x + b jest prostopadła do prostej

A)
$$y = -\frac{1}{3}x + 2$$

B)
$$y = -3x + 4$$

C)
$$y = \frac{1}{3}x - \frac{1}{2}$$

D)
$$y = 3x - 2$$

Zadanie 11. (0-1 pkt)

Suma ciągu (a_n) określona jest wzorem $S_n = 5n^2 + 4$. Trzeci wyraz tego ciągu jest równy

- A) 30
- B) 9
- C) 25
- D) 14

Zadanie 12. (0-1 pkt)

Różnica ciągu arytmetycznego, w którym $a_2 = 5$ i $a_5 = 11$ jest równa

- A) 2
- B)-2
- C) 6
- D) -6

Zadanie 13. (0-1 pkt)

W trapezie równoramiennym krótsza podstawa i wysokość mają długość 3, a długość przekatnej jest równa 5. Oblicz pole tego trapezu.

A)
$$12j^2$$

B)
$$15j^2$$
 C) $25j^2$ D) $30j^2$

C)
$$25j^2$$

D)
$$30i^{2}$$

Zadanie 14. (0-1 pkt)

Wykresem funkcji $f(x) = ax^2 + 4x + c$ jest parabola o ramionach skierowanych do góry. Wynika stąd, że

A)
$$a > 0$$
, $c > 0$

B)
$$a > 0, c \in R$$

C)
$$a < 0, c < 0$$

D)
$$a < 0, c > 0$$

Zadanie 15. (0-1 pkt)

Kat przy podstawie trójkata równoramiennego jest równy 30°. Ramię tego trójkata jest

- A) równe podstawie
- B) dwa razy dłuższe od wysokości opuszczonej na podstawę
- C) równe podstawie
- D) dwa razy krótsze od podstawy

Zadanie 16. (0-1 pkt)

Podstawa trójkąta równoramiennego ABC jest równa 12 cm, a ramię 9 cm. Odcinek |ED| ma długość 4 cm. Długość ramienia trójkąta DEC jest równa

- A) 2 cm
- B) 3 cm
- C) 4 cm
- D) 10 cm

Zadanie 17. (0-1 pkt)

Jeżeli $\sin \alpha = \frac{3}{5}$, to $\cos \alpha$ wynosi

- A) $\frac{4}{5}$ B) $\frac{3}{5}$ C) $\frac{2}{5}$ D) $\frac{1}{5}$

Zadanie 18. (0-1 pkt)

Akwarium mające kształt prostopadłościanu o wymiarach

20 cm x 50 cm x 60 cm napełniamy wodą. Ilość wody wynosi

- A) 60 litrów
- B) 13 litrów
- C) 130 litrów
- D) 31 litrów

Zadanie 19. (0-1 pkt)

Kąt wewnętrzny pięciokąta foremnego ma miarę

A) 60°

B) 45°

C) 108°

D) 80°

Zadanie 20. (0-1 pkt)

Przekrojem osiowym stożka jest trójkąt równoramienny o podstawie 4 i ramieniu 5. Pole powierzchni bocznej tego stożka jest równe

A) 40π

B) 4π

C) 20π

D) 10π

Rozwiązania zadań 21.-30. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 21. (0-2 pkt)

Cena pewnego towaru najpierw zmalała o 20%, a następnie wzrosła o 20%. Oblicz, o ile procent obecna cena jest niższa od początkowej.

Zadanie 22. (0-2 pkt)

Marcin wyjeżdżając na trzydniową wycieczkę dostał od rodziców pewna kwotę pieniędzy. Z tej kwoty $\frac{1}{6}$ wydał na napoje i słodycze, $\frac{1}{10}$ na wstępy do muzeów, za $\frac{1}{4}$ kupił pamiątki dla siebie, a na prezenty dla rodziców i rodzeństwa przeznaczył $\frac{1}{3}$ kwoty. Zostało mu jeszcze 18 zł. Ile pieniędzy dostał od rodziców?

Zadanie 23. (0-2 pkt)

Liczba $x_1 = \log_3 9$ jest miejscem zerowym funkcji $f(x) = 2x^2 + bx - 12$. Znajdź drugie miejsce zerowe tej funkcji.

Zadanie 24. (0-2 pkt)

Do wykresu funkcji liniowej należy punkt $A=(-1\frac{1}{2},-16)$, a jej miejscem zerowym jest liczba

 $\frac{1}{2}$. Wyznacz wzór tej funkcji.

Zadanie 25. (0-2 pkt)

Dany jest trójkąt ABC o następujących danych: |AC| = 5 cm, |CD| = 4 cm, |BD| = 4 cm oraz kąt BAC równy α i kąt ABC równy β . Punkt D jest miejscem przecięcia wysokości trójkąta z podstawą AB. Wyznacz wartość wyrażenia $\sin \alpha + \cos \beta$.

Zadanie 26. (0-2 pkt)

Wykaż, że ciąg $a_n = \frac{1}{2}n + 3\frac{1}{2}$ jest arytmetyczny.

Zadanie 27. (0-4 pkt)

Po układzie współrzędnych chodzi mrówka. Przesunęła się z punktu

A=(-1,5) do punktu B=(5,13). Oblicz jaką drogę pokonała mrówka oraz znajdź równanie prostej AB.

Zadanie 28. (0-4 pkt)

Sprawdź, czy rozwiązanie równania $\frac{1}{2}x-2=\frac{x}{4}$ należy do zbioru rozwiązań nierówności $\frac{2x+4}{x-3}<5$.

Odpowiedź:

Zadanie 29. (0-4 pkt)

Wymiary prostopadłościanu o polu powierzchni całkowitej 88 cm² tworzą ciąg arytmetyczny o różnicy 2. Wyznacz długości krawędzi tego prostopadłościanu.

Zadanie 30. (0-6 pkt)

Dany jest trapez równoramienny ABCD opisany na okręgu. Kąt rozwarty tego trapezu wynosi 120°, natomiast odcinek łączący środki ramion jest równy 8. Oblicz promień okręgu wpisanego w trapez.

Odpowiedzi Arkusz I

1. A

2. B

3. A

4. A

5. B

6. A

7. C

8. D

9. B

10. D

11. A

12. A

13. B

14. B

15. C

16. B

17. D

18. B

19. A

20. A

21. C

22. $\sqrt{2}$

23. $\frac{\sqrt{6}}{3}$

24. n < 20

25. 17 kg

26. x = -2

27. $y_{min} = \text{brak}, y_{max} = 2\frac{1}{4}$

28. y = -2x + 1

29. $P = 15 + 6\sqrt{3}$; $Ob = 16 + 6\sqrt{3}$

30. $60 \frac{km}{h}$

31. (-1, -27)

Odpowiedzi Arkusz II

1. D

2. A

3. A

4. D

5. A

6. A

7.C

8. B

9. B

10. A

11. B

12. D

13. D

14. D

15. C

16. B

17. A

18. A

19. A

20. A

21. C

22. A

23. A

24. B

25. 11m

26. $\frac{13}{29}$

27. $(x + 6)^2 + (y - 4)^2 = 52$

28. 949

29. x = 0 lub $x = \frac{\sqrt{7}}{2}$ lub $x = -\frac{\sqrt{7}}{2}$

30. 10392

31. Brak punktów wspólnych

32. $P=36 \text{ cm}^2$, $V=8 \text{ cm}^3$

Odpowiedzi Arkusz III

1. A

2. B

3. C

4. A

5. A

6. C

7. D

8. B

9. C

10. B

11. C

12. A

13. A

14. C

15. A

16. A

17. A

18. B

19. D

20. C

21. B

22. C

23. B

24. A

25. C

26. x = -2

27. $P(A) = \frac{9}{20}$

 $28. \ x_1 = \frac{1}{2}, \ x_2 = 2$

29. 36 razy

30. log₃ 40

31. $33\sqrt{21} \ cm^2 \ n \in \mathbb{N} < 1,42 >$

32. $24\sqrt{6}$

33. (a-b)(a+b) = a-b

Odpowiedzi Arkusz IV

1. A

2. A

3. B

4. A

5. A

6. D

7.B

8. D

9. D

10. C

11. C

12. A

13. A

14. A

15. D

16. A

17. D

18. B

19. C

20. D

21. D

22.A

23.A

24. B

25. x = 6, y = 2

 $26. \ y = 62 - 16\sqrt{2}$

27. y = 10x - 11

28. $24cm^2$

29. $y_{max} = 5 \text{ dla } x = 4$

30. $9\sqrt{3}cm^2$

 $31.\ 30cm^3$

32. 10392

Odpowiedzi Arkusz V

1. C

2. D

3. C

4. D

5. A

6. C

7.B

8. C

9. A

10. C

11. B

12. A

13. B

14. D

15. D

16. B

17. B

18. A

19. B

20. A

21. A

22. A

23. A

24. A

25. $\frac{4}{17}$

26. 5 i 8cm

27. $(n-k)(k-2) \ge 0$

28. x = 5, $x = \sqrt{3}$, $x = -\sqrt{3}$

29. 60°

 $30. \ P(A \cup B) = \frac{9}{10}$

31. $P = 4 + 8\sqrt{6}cm^2$, $V = 4\sqrt{3}cm^3$

32. $a_3 = 2$

Odpowiedzi Arkusz VI

- 1. C
- 2. A
- 3. A
- 4. A
- 5. B
- 6. B
- 7.A
- 8. A
- 9. A
- 10.B
- 11. B
- 12. A
- 13. C
- 14. B
- 15. A
- 16. A
- 17. C
- 18. B
- 19. C
- 20. C

- 21. Tak, ponieważ prowadząc 4 linie pokryje się
- 22. $\frac{\sqrt{35}}{6}$
- 23. $\sin \alpha \cdot tg\beta = \frac{12}{13}$, boki: 12, 13, 5cm
- 24. $\frac{4\sqrt{6}}{3}$
- 25.0
- $26. < \frac{1-\sqrt{15}}{2}, \frac{1+\sqrt{15}}{2} >$
- 27. y = -3x 1
- 28. A) $\frac{1}{9}$
 - B) $\frac{1}{4}$
 - C) $\frac{5}{12}$
 - D) $\frac{5}{18}$
- 29. V = 241,15ml, $P = 67,2 \pi$
- 30. B(7,7), C(5,-1)
- Ob.= $8\sqrt{17}$, P= 60

Odpowiedzi Arkusz VII

1. A

2. A

3. A

4. A

5. C

6. A

7. A

8. A

9. A

10. C

11. B

12. D

13. C

14. B

15. A

16. B

17. C

18. D

19. D

20. A

21. D

22. $x_1 = -\frac{1}{2}$, $x_2 = 3$

23. 24

24. Trójkąty przystające, gdyż spełnia sie cechę kąt bok kąt

25. 6060zł

26. 3

27. $D: x \in R$

$$y\epsilon < -2\frac{1}{4}$$
; $+\infty$)

$$m_0$$
: $x = -4$; -1

28. A) 3, 8, 13, 18, 23, 28

29.
$$V = 162\sqrt{3}cm^3$$
, $P = 162\sqrt{3}cm^2$

30. Najkorzystniejsza jest oferta C

Odpowiedzi Arkusz VIII

1. D

2. C

3. D

4. D

5. B

6. A

7. C

8. A

9. A

10. A

11. A

12. A

13. B

14. B

15. A

16. B

17. D

18. C

19. A

20. B

21. D

22. A

23. A

24. D

26. $\sqrt{65}$

27. $P = 8\pi cm^2$, $Ob = 16\pi cm$

28. Korzystniejsza jest opcja ksera za 5zł

29. $Pb = 18\sqrt{3}j^2$

30. A) $\frac{1}{4}$

B) $\frac{15}{16}$

C) $\frac{1}{8}$

D) $\frac{3}{8}$

Odpowiedzi Arkusz IX

1. C

2. B

3. B

4. A

5. B

6. B

7. A

8. A

9. D

10. D

11. B

12. A

13. D

14. B

15. D

16. A

17. A

18. C

19. C

20. D

21. D

22. $\frac{\sqrt{17}}{4}$

23. x = 5, y = 2

24. y = 3x - 1

25. 30°, 30°, 120°

26. $x \in (-5 - 2\sqrt{5}; -5 + 2\sqrt{5})$

27. $20\pi j^2$

28. $y_{min} = -22$, $y_{max} = -1$

 $30. P = 8cm^2$

31. 4, 7, 10

Odpowiedzi Arkusz X

1. B

2. A

3. B

4. B

5. C

6. B

7. A

8. D

9. B

10. C

11. C

12. D

13. D

14. A

15. B

16. A

17. B

18. B

19. A

20. B

21. A

22. C

23. B

24. C

25. Brak rozwiązań

26. 2,6

27. Postać kierunkowa $y = \frac{1}{7}x + 2\frac{3}{7}$

Postać ogólna – x + 7y - 17 = 0

28. $\frac{\sqrt{6}}{3}$

29. a) 3 wyrazy

b)
$$a_1 = 21$$
, $a_2 = 11$, $a_5 = 5$, $a_{10} = 3$

$$30. \ P = \frac{164}{4} \pi cm^2$$

31. a) kwadrat o boku 9

b)
$$V = 729cm^3$$

Odpowiedzi Arkusz XI

1. C

2. C

3. A

4. A

5. D

6. B

7. A

8. A

9. D

10. A

11. C

12. B

13. B

14. D

15. A

16. B

17. A

18. C

19. D

20. A

21. $(x-3)^2 + (y+1)^2 = 25$, r = 5

22. $d = 4\sqrt{5}j$, $Ob = 4(6 + \sqrt{2})j$,

 $P = 40j^2$

 $23. P = 16\sqrt{5}j^2$

25. $P = 48cm^2$

26. 135

27. 1, -3,0, 2

28. $P = 24j^2$

Odpowiedzi Arkusz XII

1. D

2. A

3. A

4. B

5. B

6. D

7. D

8. A

9. A

10. A

11. C

12. A

13. A

14. B

15. B

16. B

17. A

18. A

19. C

20. D

21.4%

22. 120zł

23. -3

24. y = 8, x = -4

 $25.\,\frac{5\sqrt{2}+8}{10}$

 $27. \ y = \frac{4}{3}x + \frac{19}{3}$

28. nie należy

29. 2, 4, 6 cm

30. $r = 2\sqrt{3}$