1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»
ДИСЦИПЛИНА	«Анализ алгоритмов»

Лабораторная работа № 2

Тема Алгоритмы умножения матриц

Студент Воякин А. Я.

Группа ИУ7-54Б

Преподаватели Волкова Л. Л., Строганов Ю. В.

Оглавление

Введение			4
1	Аналитическая часть		
	1.1	Классический алгоритм умножения матриц	5
	1.2	Алгоритм Винограда	6
	1.3	Вывод	6
2	Кон	іструкторская часть	7
	2.1	Техническое задание	7
	2.2	Схемы алгоритмов	7
	2.3	Трудоемкость алгоритмов	11
		2.3.1 Классический алгоритм	11
		2.3.2 Алгоритм Винограда	11
		2.3.3 Оптимизированный алгоритм Винограда	12
	2.4	Вывод	12
3	Технологическая часть		
	3.1	Выбор ЯП	13
	3.2	Реализации алгоритмов	13
		3.2.1 Оптимизация алгоритма Винограда	15
	3.3	Вывод	16
4	Исследовательская часть		
	4.1	Сравнительный анализ на основе замеров времени работы	
		алгоритмов	17
	4.2	Вывод	18
За	Заключение		

Введение

Цель работы - изучение алгоритмов умножения матриц. В данной лабораторной работе рассматривается стандартный алгоритм умножения матриц, алгоритм Винограда и модифицированный алгоритм Винограда. Также требуется провести рассчет сложности алгоритмов, получить навыки в оптимизации алгоритмов. Использованные алгоритмы активно применяются во всех областях, применяющих линейную алгебру, таких как:

- компьютерная графика;
- физика;
- экономика;
- прочее.

В ходе лабораторной работы предстоит:

- изучить алгоритмы умножения матриц: стандартный и алгоритм Винограда;
- улучшить алгоритм Винограда;
- дать теоретическую оценку базового алгоритма умножения матриц, алгоритма Винограда и улучшенного алгоритма Винограда;
- реализовать три алгоритма умножения матриц на одном из языков программирования;
- сравнить алгоритмы умножения матриц.

1 Аналитическая часть

Матрица - математический объект, эквивалентный двумерному массиву. Числа располагаются в матрице по строкам и столбцам. Если число столбцов в первой матрице совпадает с числом строк во второй, то эти две матрицы можно перемножить. У произведения будет столько же строк, сколько в первой матрице, и столько же столбцов, сколько во второй. Постановка задачи перемножения матриц описана в [1].

1.1 Классический алгоритм умножения матриц

Пусть даны две прямоугольные матрицы A и B размерности m на n и n на l соответсвенно:

$$\begin{bmatrix} a_{1,1} & \dots & a_{1,n} \\ \dots & \dots & \dots \\ a_{m,1} & \dots & a_{m,n} \end{bmatrix}$$

$$\begin{bmatrix} b_{1,1} & \dots & b_{1,l} \\ \dots & \dots & \dots \\ b_{n,1} & \dots & b_{n,l} \end{bmatrix}$$

В результате получим матрицу С размерности m на l:

$$\begin{bmatrix} c_{1,1} & \dots & c_{1,l} \\ \dots & \dots & \dots \\ c_{m,1} & \dots & c_{m,l} \end{bmatrix}$$

$$c_{i,j} = \sum_{r=1}^{n} a_{i,r} \cdot b_{r,j}$$
 называется произведением матриц A и B.

1.2 Алгоритм Винограда

Рассмотрим два вектора V=(v1,v2,v3,v4) и W=(w1,w2,w3,w4). Их скалярное произведение равно (1.1)

$$V \cdot W = v_1 \cdot w_1 + v_2 \cdot w_2 + v_3 \cdot w_3 + v_4 \cdot w_4 \tag{1.1}$$

Равенство (1.1) можно переписать в виде (1.2)

$$V \cdot W = (v_1 + w_2) \cdot (v_2 + w_1) + (v_3 + w_4) \cdot (v_4 + w_3) - v_1 \cdot v_2 - v_3 \cdot v_4 - w_1 \cdot w_2 - w_3 \cdot w_4$$

$$\tag{1.2}$$

Менее очевидно, что выражение в правой части последнего равенства допускает предварительную обработку: его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй.

Это означает, что над предварительно обработанными элементами нам придется выполнять лишь первые два умножения и последующие пять сложений, а также дополнительно два сложения. Подробое описание алгоритма Винограда можно найти в [2].

В четвёртой части алгоритма, при нечётных длинах перемножаемых векторов необходимо выполнять корректирование матриц.

1.3 Вывод

Были рассмотрены алгоритмы классического умножения матриц и алгоритм Винограда, основная отличительная черта которого — наличие предварительной обработки, а также уменьшение количества операций умножения.

2 Конструкторская часть

2.1 Техническое задание

Требования к вводу:

• На вход подаются размерности матриц и сами матрицы.

Требования к выводу:

 Корректное произведение введённых матриц или сообщение об ошибке в случае неккоректного ввода.

2.2 Схемы алгоритмов

В данной части будут рассмотрены схемы алгоритмов. Схема классического алгоритма умножения матриц показана на рисунке 2.1, схема алгоритма Винограда - на рисунке 2.2, схема оптимизированного алгоритма Винограда - на рисунке 2.3.

Рис. 2.1: Схема классического алгоритма умножения матриц

Рис. 2.2: Схема алгоритма Винограда

Рис. 2.3: Схема оптимизированного алгоритма Винограда

2.3 Трудоемкость алгоритмов

Введем модель трудоемкости для оценки алгоритмов:

- базовые операции стоимостью 1 +, -, *, /, =, ==, <=, >=, !=, +=, [];
- оценка трудоемкости цикла for от 0 до N с шагом 1 $F_{for}=2+N\cdot(2+F_{body})$, где F_{body} тело цикла;
- стоимость условного перехода применим за 0, стоимость вычисления условия остаётся.

Оценим трудоемкость алгоритмов по коду программы.

2.3.1 Классический алгоритм

Рассмотрим трудоемкость классического алгоритма:

$$10MNQ + 4MQ + 4M + 2$$

2.3.2 Алгоритм Винограда

Рассмотрим трудоемкость алгоритма Винограда:

Трудоемкость алгоритма Винограда:

Первый цикл: $15/2 \cdot MN + 5 \cdot M + 2$

Второй цикл: $15/2 \cdot MN + 5 \cdot M + 2$

Третий цикл: $13 \cdot MNQ + 12 \cdot MQ + 4 \cdot M + 2$

Условный переход: $\begin{bmatrix} 2 & , \text{в случае невыполнения условия} \\ 15 \cdot QM + 4 \cdot M + 2 & , \text{в случае выполнения условия} \end{bmatrix}$

Итого: $15/2 \cdot MN + 5 \cdot M + 2 + 15/2 \cdot MN + 5 \cdot M + 2 + 13 \cdot MNQ + 12 \cdot MQ + 4 \cdot M + 2 + \begin{bmatrix} 2 & \text{, в случае невыполнения условия} \\ 15 \cdot QM + 4 \cdot M + 2 & \text{, в случае выполнения условия} \end{bmatrix}$

2.3.3 Оптимизированный алгоритм Винограда

Рассмотрим трудоемкость алгоритма Винограда:

Трудоемкость алгоритма Винограда:

Первый цикл: $11/2 \cdot MN + 4 \cdot M + 2$

Второй цикл: $11/2 \cdot MN + 4 \cdot M + 2$

Третий цикл: $17/2 \cdot MNQ + 9 \cdot MQ + 4 \cdot M + 2$

Условный переход: $\begin{bmatrix} 1 & , \text{в случае невыполнения условия} \\ 10 \cdot QM + 4 \cdot M + 2 & , \text{в случае выполнения условия} \end{bmatrix}$

Итого:
$$11/2 \cdot MN + 4 \cdot M + 2 + 11/2 \cdot MN + 4 \cdot M + 2 + 15/2 \cdot MNQ + 9 \cdot MQ + 4 \cdot M + 2 + \begin{bmatrix} 1 & ,$$
 в случае невыполнения условия $10 \cdot QM + 4 \cdot M + 2 & ,$ в случае выполнения условия $10 \cdot QM + 4 \cdot M + 2 & ,$ в случае выполнения условия

2.4 Вывод

В данном разделе были рассмотрены схемы алгоритмов умножения матриц, введена модель оценки трудоёмкости алгоритма, были рассчитаны трудоёмкости реализованных алгоримов в соответсвии с этой моделью.

3 Технологическая часть

3.1 Выбор ЯП

Для реализации программ был выбран язык программирования Python, ввиду наличия опыта разработки на нём. Среда разработки - PyCharm.

Для замера процессорного времени используется функция, возвращающая количество наносекунд.

Листинг 3.1: Функция получения процессорного времени

```
def cpu_time(func, mt_1, mt_2):
    start = process_time_ns()
    func(mt_1, mt_2)
    end = process_time_ns()
    return end - start
```

3.2 Реализации алгоритмов

Листинг 3.2: Функция классического умножения матриц

```
def standard_alg(mt_1, mt_2):
    if len(mt_2) != len(mt_1[0]):
        print("Incorrect matrix sizes.")
    return

res = [[0 for _ in range(len(mt_2[0]))] for _ in range(len(mt_1))]
    for i in range(len(mt_1)):
```

```
for j in range(len(mt_2[0])):
    for k in range(len(mt_1[0])):
        res[i][j] += mt_1[i][k] * mt_2[k][j]
    return res
```

Листинг 3.3: Алгоритм Винограда

```
def Winograd alg(mt 1, mt 2):
    n1 = len(mt_1)
    n2 = len(mt 2)
    m2 = len(mt 2[0])
    if n2 != len(mt 1[0]) :
      print("Incorrect matrix sizes.")
      return
    mulH = [0 for _ in range(n1)]
    mulV = [0 for _ in range(m2)]
11
    for i in range(n1):
13
      for j in range(n2 // 2):
14
        mulH[i] += mt_1[i][2 * j] * mt_1[i][2 * j + 1]
15
16
    for i in range(m2):
17
      for j in range (n2 // 2):
18
        mulV[i] += mt 2[2 * j][i] * mt 2[2 * j + 1][i]
19
20
    res = [[0 \text{ for } in range(m2)] \text{ for } in range(n1)]
21
    for i in range(n1):
22
      for j in range(m2):
23
         res[i][j] = - mulH[i] - mulV[j]
24
        for k in range (n2 // 2):
25
           res[i][j] += ((mt_1[i][2 * k] + mt_2[2 * k + 1][j])
26
               * (mt \ 1[i][2 * k + 1] + mt \ 2[2 * k][j]))
27
    if n2 % 2:
28
      for i in range(n1):
29
        for j in range(m2):
30
           res[i][j] += mt_1[i][n2 - 1] * mt_2[n2 - 1][j]
31
32
    return res
33
```

3.2.1 Оптимизация алгоритма Винограда

В качестве оптимизации алгоритма Винограда можно выделить следующие пункты:

- 1. избавиться от деления в цикле;
- 2. замена $mulH[i] = mulH[i] + \dots$ на $mulH[i] + = \dots$ (аналогично для mulV[i]);
- 3. накопление результата в буфер, а вне цикла сброс буфера в ячейку матрицы;

Листинг 3.4: Оптимизированный алгоритм Винограда

```
def Winograd_alg_improved(mt_1, mt_2):
    n1 = len(mt 1)
    n2 = len(mt 2)
    m2 = len(mt 2[0])
    if n2 != len(mt 1[0]) :
      print("Incorrect matrix sizes.")
      return
    d = n2 // 2
10
11
    mulH = [0 for _ in range(n1)]
12
    mulV = [0 \text{ for } in range(m2)]
13
14
    for i in range(n1):
15
      mulH[i] = sum(mt 1[i][2 * j] * mt 1[i][2 * j + 1] for j
16
          in range(d))
17
    for i in range(m2):
18
      mulV[i] = sum(mt_2[2 * j][i] * mt_2[2 * j + 1][i] for j
19
          in range(d))
20
    res = [[0 for _ in range(m2)] for _ in range(n1)]
```

3.3 Вывод

В данном разделе были приведены сведения о выборе языка программирования и приведены листинги кода реализованных алгоритмов.

4 Исследовательская часть

4.1 Сравнительный анализ на основе замеров времени работы алгоритмов

Был проведен замер времени работы каждого из алгоритмов. Каждый замер времени производился 10 раз и результат усреднялся. Первый эксперимент производится для лучшего случая на матрицах с размерами от 100×100 до 500×500 с шагом 100.

Рисунок 4.1. График времени работы алгоритмов на матрицах четной размерности

Второй эксперимент производится для худшего случая, когда поданы

матрицы с нечетными размерами от 101×101 до 501×501 с шагом 100.

Рисунок 4.2. График времени работы алгоритмов на матрицах нечетной размерности

По результатам тестирования все рассматриваемые алгоритмы реализованы правильно. Самым медленным алгоритмом оказался алгоритм классического умножения матриц, а самым быстрым — оптимизированный алгоритм Винограда.

4.2 Вывод

В данном разделе были протестированы алгоритмы умножения матриц. Классический алгоритм показал худшие результаты, как и ожидалось. Оптимизированный алгоритм проявил себя лучше остальных.

Заключение

В ходе лабораторной работы были изучены алгоритмы умножения матриц: стандартный и алгоритм Винограда, оптимизирован алгоритм Винограда, дана теоретическая оценка базового алгоритма умножения матриц, алгоритма Винограда и улучшенного алгоритма Винограда, реализованы три алгоритма умножения матриц.

Список использованных источни-ков

- 1. Алгоритм Копперсмита Винограда [Электронный ресурс]. Режим доступа: https://math.wikia.org/ru/wiki/Алгоритм-Копперсмита-Винограда. Дата доступа: 16.10.2020.
- 2. Алгоритм Штрассена Винограда [Электронный ресурс]. Режим доступа: http://wikiredia.ru/wiki/Алгоритм-Винограда-Штрассена. Дата доступа: 16.10.2020.
- 3. Умножение матриц. Эффективная реализация шаг за шагом [Электронный ресурс]. Режим доступа: https://habr.com/ru/post/359272/. Дата доступа: 16.10.2020.