Beautiful Pairs

You are given two arrays, A and B, both containing N integers.

A pair of indices (i,j) is *beautiful* if the i^{th} element of array A is equal to the j^{th} element of array B. In other words, pair (i,j) is *beautiful* if and only if $A_i=B_j$.

Given A and B, there are k pairs of beautiful indices $(i_0,j_0),\ldots,(i_{k-1},j_{k-1})$. A pair of indices in this set is *pairwise disjoint* if and only if for each $0 \le x < y \le k-1$ it holds that $i_x \ne i_y$ and $j_x \ne j_y$.

Change exactly ${\bf 1}$ element in ${\bf B}$ so that the resulting number of *pairwise disjoint beautiful* pairs is maximal, and print this maximal number to stdout.

Input Format

The first line contains a single integer, N (the number of elements in A and B).

The second line contains N space-separated integers describing array A.

The third line contains N space-separated integers describing array B.

Constraints

- $1 < N < 10^3$
- $1 < A_i < 10^3$
- $1 < B_i < 10^3$

Output Format

Determine and print the maximum possible number of pairwise disjoint beautiful pairs.

Note: You must first change 1 element in B, and your choice of element must be optimal.

Sample Input

3 122 123

Sample Output

3

Explanation

You can transform B_2 from 3 to 2 and array B becomes [1,2,2].

We now have: A=[1,2,2] and B=[1,2,2].

Of the 5 beautiful pairs, our pairwise disjoint beautiful pairs of indices are (0,0),(1,2),(2,1).

An alternative choice would be (0,0), (1,1), and (2,2).

Either solution yields 3 pairwise disjoint beautiful pairs, so we print 3.