

Modelling and Mapping of Sea Surface Temperature for the Data to be Received by ThaparSat

Problem Statement

To create a software model that calculates sea surface temperature and mapping of reflectance(α) and optical depth (τ)

Need Analysis

Climate Modelling

Fisheries Management

Weather Forecasting

Future Prospect

- Modelling of Sea Surface Temperature from the reflectance values.
- Using higher order numerical methods for better efficiency

Stage 1

Using the newton-raphson method to find α and τ

Stage 2

Validating our algorithm

Stage 3

```
import plotly.express as px
import pandas as pd

# df = pd.read_excel ('newton_raphson_values.xlsx')
df0 = pd.read_excel('value_for_map.xlsx')
df0['alpha, tao'] = df0['alpha_d'].astype(str) + ', ' + df0['t_avg_d'].astype(str)
fig = px.scatter_mapbox (df0,

lon = df0['lng'],
lat = df0['lat'],

zoom = 3,
text = df0['alpha, tao'],
width= 500,
height= 500,
title = 'Reflectance(alpha) and Optical depth(tao) map'
)

fig.update_layout (mapbox_style="open-street-map")
fig.update_layout (margin={"r":0,"t":50,"l":0,"b":10})
fig.show()
```

Mapping of α and τ at various latitudes and longitudes

Results

Exact Values of : $\alpha = 0.45$ $\tau = 0.3117$

 α = 0.4598685418122806 τ = 0.3129858458148566

Numerically Calculated values for α and τ

Map of Selected Coordinates in Punjab area for testing.

Mapping of fractional error in the calculated values of α and τ

Our Mentors-

Dr. Mamta Gulati Dr. Vineet Srivastava

Our Team-

Kashika Purohit Radhika Rani Muskan

Tanisha Jain

