

Project Outline

Purpose

- Earn real network protocol design and implementation experiences
- Understand Low Power Wide Area (LPWA) protocol called LoRaWAN

Team

- 2-people teams

Submission

- To network_ta@popeye.snu.ac.kr
- Mail subject : CN Term Project Team number

Question

- Via E-mail

2

Project Milestones

- 11/1 (Wed): Make teams and notify team members to TA (e-mail)
- 11/13 (Mon): Progress Report 1 (Report)
 - Study LoRaWAN Specification and Source Code
 - Class A, Transmission parameters, OTAA join procedure
 - Project plan & LoRaWAN specification
- 11/22 (Wed): Progress Report 2 (Presentation)
 - Install and run LoRa end node, gateway, network server
 - Design beacon based bi-directional communications
- 12/06 (Wed): Progress Report 3 (Report)
 - Project status & source code
- 12/18 (Mon): Final Report & Demo
 - Demo

Background

LoRa

- Wireless technology for LPWA by Semtech
- Defines physical layer

LoRaWAN

- Network protocol based on LoRa by LoRa Alliance
- Defines MAC layer

LoRaWAN Class A Device

- LoRaWAN defines Class A/B/C devices
- Class A end node only supports limited half duplex communications
 - End nodes turn off communication unit to save energy
 - End nodes can initiate upstream frames as needed but gateway cannot trigger downstream communications
 - · Downstream as a response to upstream

f

Goal

- Design and implement bi-directional communications
 - End-nodes can initiate upstream communication as needed
 - Enables downstream communications based on duty-cycles
 - → Similar to WiFi PSM mechanism

Beacon

- Gateway and end-nodes agree on beacon intervals
- An end-node seeks beacon and wakes up every beacon interval
- A gateway transmits beacons periodically to alert end-nodes with pending downstream frames
- An end node with pending frames listens the medium until it receives frames or to the next beacon
 - Other nodes enter into sleep mode until the next beacon

6

Overview

Specification

- End Node should
 - Use OTAA join procedure at first to join to a network server
 - Transmit data as needed
 - Wakeup & sleep periodically to listen beacons (duty-cycling)
 - Be ready to receive downstream data if it knows the network server has pending downstream frames
- Network Server should
 - Schedule periodic beacons
 - Transmit downstream data
 - Manage joined devices

Beacon

- Basic: Design beacon packet structure and a handshaking mechanism
 - Number of channels, which channel to use, ...
- Extra: Any performance enhancement schemes

۱

Specification

- 1. End Node implementation
 - Modification of Class A source code
- 2. Network Server implementation
 - Devices for Network Server and gateway will be deployed in 302 bldg. 310-1
 - Use remote access (SSH, Web)
 - IP and port number will be announced
- 3. Gateway implementation
 - Packet Forwarder & Driver/HAL

Environment

End node	Gateway	Network server
I-CUBE-LRWAN by semtech, ST	Packet forwarder by semtech	Open source LoRaWAN Network server
	HAL for gateway by semtech	

_1

Deliverables

- Each Progress report according to the milestones
- Source codes of both end-node and network server implementation
- Final Report
 - Detailed Instruction of implementation
 - Performance evaluation
- DEMO
 - Will be announced later

Information

- Software will be uploaded on server
 - cn.snucse.org (147.46.242.74)
 - /home/FILES
 - I-CUBE-LRWAN
 - en.i-cube_lrwan.zip
 - DFP for STM32L0 Keil.STM32L0xx_DFP.1.6.1.pack
 - Gateway configuration file (KR channel support) global conf.json
 - LoRaWAN spec 1.0.2 & LoRaWAN Regional Parameter 1.0.2 LoRaWAN102-20161012_1398_1.pdf LoRaWANRegionalParametersv1.0.2_final_1944_1.pdf
 - Gateway reset source (using wiringPi for GPIO control)
 - ST Utility STM32 ST-LINK Utility,zip

End Node Implementation

- Platform
 - STM32L073RZ + SX1272mb2das
- Open software
 - I-CUBE-LRWAN by ST, Semtech
 - LoRaWAN endpoint stack implementation and example projects supporting STM32L073RZ
- Development toolchains
 - ARM Keil
- Virtual COM port
 - Tera Term

Development tool chain

- ARM KEIL
 - C compiler for micro controller
 - Only support Windows OS
 - Free license for our device STM32L073RZ

Development tool chain

You can download software and get license

Environment Setup

- After getting license, you can use KEIL IDE for developing end node's firmware
- KEIL will try to download devices DFP automatically when it starts
 - If pack installer has no STMicroelectronics option, you have to install DFP directly
 - Install file is on the server
 - Keil.STM32L0xx_DFP.1.6.1.pack

Source compile & Flashing

- KEIL project file for a LoRaWAN class A application is available on directory below
 - en.icube_lrwan\STM32CubeExpansion_LRWAN_V1.1.2\Projects \Multi\Applications\LoRa\End_Node\MDK-ARM\STM32L073RZ-Nucleo
 - en.icube_lrwan is on the server
 - en.i-cube_lrwan.zip
- Manual about source codes is available by ST
 - http://www.st.com/content/ccc/resource/technical/do

Source compile & Flashing

Source compile & Flashing

- Install STM32 ST-LINK Utility.zip for device recognition
 - STM32 ST-LINK Utility.zip is uploaded on server
- Connect your device through cable and click FLASH button to flash your hex file
 - Board's LED will be blinking indicating it is downloading the firmware
 - You can restart your device using reset button

Virtual Comport

- Tera Term
 - Tool to see what's going on in your device
 - Select COM# for ST device
 - Setup Baudrate
 - Setup -> Serial port

/* debug swicthes in debug.h */ //#define DEBUG //#define TRACE

You can activate debug mode in hw_conf.h file

Gateway & Network Server Implementation

- Raspberry Pi 3 model B + RAK831(SX1301)
 - 1.2GHz 64-bit quad-core ARM Cortex-A53 CPU (BCM2837)
 - Raspbian Jessie OS which is based on Linux will be used
- Install wiringPi

apt-get install wiringpi

- Compile reset.c with -lwiringPi option
- For resetting RAK831

21

Gateway implementation

Install git

sudo apt-get update
apt-get install git

- To make RPI to act as a LoRaWAN gateway, two stacks are needed
 - Packet forwarder
 - HAL (Hardware Abstraction Layer) for SX1301
- You can download each source form github
 - Use git clone command
 - LoRaWAN gateway HAL

tps://github.com/Lora-net/lora gateway

LoRaWAN packet forwarder

https://github.com/Lora-net/packet forwarder

22

Configuration of Channel Frequency

- Gateway configuration file
 - You should change configuration file for KR channel and your own network server ip address
 - packet_forwarder/lora_pkt_fwd/global_conf.json
 - global_conf.json for KR channel is already uploaded on the server
- Gateway address for network server
 - Use ifconfig command to get eth0 mac address
 - Transform your own mac address to EUI-64 form
 - · You can find such calculator on internet

Configuration of Channel Frequency

 Change your gateway_ID in global_conf.json file to your own EUI-64 form mac address

```
"gateway_conf": {
    "gateway_lD": "AA555A0000000000",
    "serv_part_down": 1680,
    "serv_port_down": 1680,
    "serv_port_down": 1680,
    "keepalive_interval": 10,
    "stat_interval": 10,
    "push_timeout_ms": 100,
    "forward_crc_walid": true,
    "forward_crc_walid": true,
    "forward_crc_valid": false,
    "forward_crc_disabled": false,
}
```

Network Server implementation

- LoRaWAN Network Server
 - Opensource LoRaWAN Network Server can be downloaded on below github repo
 - Server is based on Erlang language

Opensource LoRaWAN network server

Erlang OTP installation

add deb http://ftp.debian.org/debian jessie-backports main to /etc/apt/sources.list

pl@napbmpk
abb http://fitescellisector.esgphian.org/asghian/ pessie main contrib non-free spi

the http://gedian.org/debian jessie-backports main

l Document line below inen fept-opt update* to enable 'apt-opt source'

stdb-set bitp://erchive.rasphian.org/asghian/ jessie main contrib non-free spi

sudo apt-get update

sudo apt-get t-jessie-backports install erlang

• For compiling & developing, npm is required

sudo wget http://node-arm.herokuapp.com/node_latest_armhf.deb sudo dpkg -i node latest armhf.deb

25

Network Server implementation

Already compiled Network Server Debian package

wget https://github.com/gotthardp/lorawan-server/releases/download/v0.4.12/lorawan-server_0.4.12_all.deb

sudo dpkg -i lorawan-server_0.4.12_all.deb

- For compiling & making new Debian package, see Build Instructions guide
 - https://github.com/gotthardp/lorawanserver/blob/master/doc/Installation.md

26

Network Server Admin Web UI

- You can start the server
 systemctl start lorawan-server
- Network server provides admin page for registering & managing devices and monitoring packets
- Gateway information and node information should be registered in server before deploying network

Appendix

Korea Frequency Channel Plan

KR920-923

Uplink: 1. 922.1 - SF78W125 to SF12BW125 2. 922.3 - SF78W125 to SF12BW125 3. 922.5 - SF78W125 to SF12BW125 4. 922.7 - SF78W125 to SF12BW125 5. 922.9 - SF78W125 to SF12BW125 6. 923.1 - SF78W125 to SF12BW125 7. 923.3 - SF78W125 to SF12BW125 8. none Downlink: • Uplink channels 1-7 • 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) Cited from TheThingsNetwork

Appendix

LoRaWAN architecture

Appendix

• Gateway registration on server admin web UI

Appendix

• Node registration on server admin web UI

Reference

- LoRaWAN gateway HAL
 - https://github.com/Lora-net/lora_gateway
- LoRaWAN packet forwarder
 - https://github.com/Lora-net/packet_forwarder
- Opensource LoRaWAN network server
 - https://github.com/gotthardp/lorawan-server
- I-CUBE-LRWAN
 - http://www.st.com/en/embedded-software/i-cubelrwan.html