Cvičení 4

Příklad 1: Jestliže platí $p \leftrightarrow q$, co lze říci o pravdivostní hodnotě formule $p \lor \neg q$?

 $\check{R}e\check{s}en\acute{i}$: Pokud platí $\mathfrak{p}\leftrightarrow\mathfrak{q}$, musí platit i $\mathfrak{p}\vee\neg\mathfrak{q}$. (Pokud platí $\mathfrak{p}\leftrightarrow\mathfrak{q}$, tak jsou buď oba výroky \mathfrak{p} a \mathfrak{q} pravdivé, a $\mathfrak{p}\vee\neg\mathfrak{q}$ je pravda, protože je pravda \mathfrak{p} , nebo jsou oba výroky \mathfrak{p} a \mathfrak{q} nepravdivé, a $\mathfrak{p}\vee\neg\mathfrak{q}$ je pravda, protože je pravda $\neg\mathfrak{q}$.)

Příklad 2: Předpokládejme, že platí $\neg p \lor q$. Které z následujících formulí budou za tohoto předpokladu platit (tj. které z následujících formulí logicky vyplývají z tohoto předpokladu)? Vaše odpovědi zdůvodněte (např. pomocí tabulkové metody, nalezením sémentického sporu nebo nalezením pravdivostního ohodnocení, při kterém platí předpoklad $\neg p \lor q$, ale neplatí závěr).

- a) p
- b) $q \rightarrow p$
- c) $p \rightarrow q$

- $\mathrm{d}) \ \neg \mathsf{q} \to \neg \mathsf{p}$
- $e)\ \neg p \wedge q$

Řešení:

- a) Nevyplývá: v(p) = 0, v(q) = 0
- d) Vyplývá.
- b) Nevyplývá: v(p) = 0, v(q) = 1
- e) Nevyplývá: v(p) = 0, v(q) = 0

c) Vyplývá.

Příklad 3: Předpokládejme, že platí $p \land q$. Které z následujících formulí budou za tohoto předpokladu platit (tj. které z následujících formulí logicky vyplývají z tohoto předpokladu)? Vaše odpovědi zdůvodněte.

a) p

e) $\neg p \lor q$

b) q

f) $\neg q \rightarrow p$

c) $p \vee q$

g) $p \leftrightarrow q$

d) $p \wedge \neg q$

Řešení:

a) Vyplývá.

e) Vyplývá.

b) Vyplývá.

f) Vyplývá.

c) Vyplývá.

- g) Vyplývá.
- d) Nevyplývá: v(p) = 1, v(q) = 1

Příklad 4: Vezměme si následující formule:

b) ¬q

c) $\neg p \lor \neg q$

d) $\neg p \wedge \neg q$

e) $p \leftrightarrow \neg q$

f)
$$\neg(p \leftrightarrow q)$$

g) $\mathfrak{p} \wedge \neg \mathfrak{q}$

h) $\neg p \wedge q$

i) $\neg(p \rightarrow q) \land \neg(q \rightarrow p)$

• Pro které z těchto formulí platí, že z dané formule logicky vyplývá závěr $\neg(p \land q)$? Řešení:

- a) Vyplývá.
- b) Vyplývá.
- c) Vyplývá.
- d) Vyplývá.
- e) Vyplývá.

- f) Vyplývá.
- g) Vyplývá.
- h) Vyplývá.
- i) Vyplývá.

• Pro které z těchto formulí platí, že z dané formule logicky vyplývá závěr $\neg(p \lor q)$? Řešení:

- a) Nevyplývá: $\nu(p) = 0, \nu(q) = 1$
- b) Nevyplývá: v(p) = 1, v(q) = 0
- c) Nevyplývá: v(p) = 1, v(q) = 0
- d) Vyplývá.
- e) Nevyplývá: v(p) = 1, v(q) = 0
- f) Nevyplývá: v(p) = 1, v(q) = 0
- g) Nevyplývá: v(p) = 1, v(q) = 0
- h) Nevyplývá: v(p) = 0, v(q) = 1
- i) Vyplývá.

• Pro které z těchto formulí platí, že z dané formule logicky vyplývá závěr $\neg(p \to q)$? Řešení:

- a) Nevyplývá: v(p) = 0, v(q) = 0
- b) Nevyplývá: v(p) = 0, v(q) = 0
- c) Nevyplývá: $\nu(p) = 0, \nu(q) = 0$
- d) Nevyplývá: v(p) = 0, v(q) = 0
- e) Nevyplývá: v(p) = 0, v(q) = 1
- f) Nevyplývá: v(p) = 0, v(q) = 1
- g) Vyplývá.
- h) Nevyplývá: v(p) = 0, v(q) = 1
- i) Vyplývá.

Vaše odpovědi zdůvodněte.

Příklad 5: Určete, zda daný závěr logicky vyplývá z uvedených předpokladů. (Vaše odpovědi zdůvodněte).

- a) Z předpokladů q a $p \rightarrow q$ vyplývá p.
- b) Z předpokladů $\neg p$ a $p \rightarrow q$ vyplývá $\neg q$.
- c) Z předpokladů \mathfrak{p} a \mathfrak{q} vyplývá $\mathfrak{p} \wedge \mathfrak{q}$.
- d) Z předpokladů p a p \vee q vyplývá q.
- e) Z předpokladů $\neg q$ a $p \lor q$ vyplývá p.
- f) Z předpokladů $\neg p$ a $p \lor q$ vyplývá $\neg q$.

- g) Z předpokladu $\neg p \lor (q \to p)$ vyplývá $\neg p \land q$.
- h) Z předpokladu p vyplývá q $\vee \neg q$.

Řešení:

a) Nevyplývá: v(p) = 0, v(q) = 1

b) Nevyplývá: v(p) = 0, v(q) = 1

c) Vyplývá.

d) Nevyplývá: $\nu(p) = 1, \, \nu(q) = 0$

e) Vyplývá.

f) Nevyplývá: v(p) = 0, v(q) = 1

g) Nevyplývá: $\nu(p) = 0, \nu(q) = 0$

h) Vyplývá.

Příklad 6: Uvedené věty nejprve zformalizujte pomocí formulí výrokové logiky. Poté pomocí nalezení sémantického sporu dokažte, že daný závěr vyplývá z uvedených předpokladů, nebo dokažte, že tento závěr z daných předpokladů nevyplývá, tím, že ukážete pravdivostní ohodnocení, kdy předpoklady platí a závěr ne.

a) Logika je složitá nebo ji studenti nemají rádi. Jestliže je matematika jednoduchá, tak logika není složitá.

Jestliže studenti mají rádi logiku, tak matematika není jednoduchá.

$$\begin{array}{ccc} \check{R} e \check{s} e n \acute{i} \colon & \ell \vee \neg s \\ & \underbrace{m \to \neg \ell}_{s \to \neg m} \end{array}$$

• s — studenti mají rádi logiku

 $\bullet\,$ m — matematika je jednoduchá

Závěr z předpokladů vyplývá.

b) Pokud je nedostatek odborníků v IT, tak mají vysoké platy.

Je nedostatek odborníků v IT nebo je o IT velký zájem.

Jestliže je o IT velký zájem, není pro absolventy dostatek pracovních míst.

Pro absolventy je dostatek pracovních míst.

Odborníci v IT mají vysoké platy.

$$\check{R}e\check{s}en\acute{s}: \qquad \begin{split} \mathfrak{n} & \to \mathfrak{p} \\ \mathfrak{n} & \lor z \\ z & \to \neg \mathfrak{m} \\ \hline \mathfrak{m} \end{split}$$

• n — je nedostatek odborníků v IT

- p odborníci v IT mají vysoké platy
- $\bullet \ z$ o IT je velký zájem
- m pro absolventy je dostatek pracovních míst

Závěr z předpokladů vyplývá.

c) Pokud firma A neuzavřela smlouvu s firmou B nebo dodržela smluvní podmínky, tak žaloba podaná firmou B nebude úspěšná.

Jestliže firma A nedodala zboží včas, tak nedodržela smluvní podmínky.

Firma A uzavřela smlouvu s firmou B a nedodala zboží včas.

Žaloba podaná firmou B bude úspěšná.

$$\check{R}e\check{s}en\acute{s}: \qquad \begin{array}{c} \neg s \lor p \to \neg z \\ \neg d \to \neg p \\ \hline s \land \neg d \end{array}$$

- s firma A uzavřela smlouvu s firmou B
- p firma A dodržela smluvní podmínky
- z žaloba podaná firmou B bude úspěšná
- d firma A dodala zboží včas

Závěr z předpokladů nevyplývá: v(s) = 1, v(p) = 0, v(z) = 0, v(d) = 0.

Příklad 7: Zjistěte, jestli následující předpoklady jsou konzistentní nebo nekonzistentní. Vaše odpovědi zdůvodněte (v případě, že jsou předpoklady nekonzistentní, zdůvodněte to pomocí nalezení sémantického sporu, a v případě, kdy jsou konzistentní, uveď te příklad pravdivostního ohodnocení, při kterém všechny předpoklady platí).

a) Jestliže byl vrahem Jones, tak byl v bytě oběti a neodešel před jedenáctou.
 Jones byl v bytě oběti.

Pokud by odešel před jedenáctou, tak by ho viděl vrátný.

Není pravda, že ho viděl vrátný nebo že by byl Jones vrahem.

$$\check{R}$$
ešení: $j \rightarrow b \land \neg e$
 b
 $e \rightarrow g$
 $\neg (g \lor j)$

- j vrahem byl Jones
- b Jones byl v bytě oběti
- e Jones odešel před jedenáctou
- g Jonese viděl vrátný

Předpoklady jsou konzistentní: $\nu(j) = 0$, $\nu(b) = 1$, $\nu(e) = 0$, $\nu(g) = 0$.

b) Podmínky smlouvy budou dodrženy právě tehdy, když stavba bude dokončena ke 30. listopadu.

Stavba bude dokončena ke 30. listopadu právě tehdy, když subdodavatel dokončí práce k 10. listopadu.

Investor příjde o peníze právě tehdy, když nebudou dodrženy podmínky smlouvy. Subdodavatel dokončí práce k 10. listopadu právě tehdy, když investor příjde o peníze.

$$\check{R}\check{e}\check{s}en\acute{i}$$
: $s \leftrightarrow d$
 $d \leftrightarrow p$
 $i \leftrightarrow \neg s$
 $p \leftrightarrow i$

- s podmínky smlouvy budou dodrženy
- d stavba bude dokončena ke 30. listopadu
- p subdodavatel dokončí práce k 10. listopadu
- i investor příjde o peníze

Předpoklady jsou nekonzistentní.

Příklad 8: Pro zadání z Příkladu 6 pomocí rezoluční metody určete, zda daný závěr logicky vyplývá z uvedených předpokladů.

Příklad 9: Pro zadání z Příkladu 7 pomocí rezoluční metody určete, zda jsou dané předpoklady konzistentní nebo nekonzistentní.