Estatística Inferencial

Prof. Wagner Hugo Bonat

Departamento de Estatística Universidade Federal do Paraná

Inferência estatística

- População → distribuição de probabilidade.
- Intuição → Como que a v.a. deve se comportar na população.
- ► Variável → variável aleatória.
- ► Parâmetros da distribuição de probabilidade → parâmetros populacionais.
- Como a partir da amostra estimar os parâmetros populacionais?

Figura 1. Processo de inferência estatística.

Inferência estatística

- Problema prático: Qual a proporção da população que desenvolveu anticorpos contra uma doença?
- ► Formalizando o problema:
 - Qual é a variável aleatória e quais valores ela pode assumir?
 - ► Y: desenvolveu anticorpos. Opções SIM ou NÃO.
- Qual a distribuição de probabilidade adequada para esta v.a.?
 - Bernoulli com função de probabilidade

$$P(Y = y) = p^{y}(1 - p)^{1-y}$$
.

- Qual o parâmetro de interesse e o que ele significa?
 - ▶ p: proporção de pessoas que desenvolveram anticorpos.

Pensamento Estatístico

- ► Como determinar o valor de *p*?
 - ► Examinar todos os membros da população e verificar a proporção que desenvolveu anticorpos.
 - ► Examinar apenas alguns membros da população (amostra) e calcular a proporção que desenvolveu anticorpos.
- ▶ Problema: A proporção obtida na amostra não é a mesma obtida na população.
 - ▶ Incerteza associada ao valor da proporção devido a termos apenas uma amostra.
 - Como quantificar essa incerteza?
 - Como tomar uma decisão baseada apenas na amostra?
- ► Descrição probabilística da estatística de interesse → **Distribuição amostral.**

Especificação do problema de Inferência

- ► Y: desenvolveu anticorpos (v.a.).
- ► Especificação do modelo *Y* ~ Ber(*p*).
- ▶ Parâmetro p.
- ▶ Informação sobre p através de uma amostra da população.
- Denotamos as amostras por y_1, \ldots, y_n .
- Objetivos da inferência estatística:
 - Estimar p baseado apenas na amostra (valor pontual)! Quanto é p na população?
 - ▶ Informar o quanto preciso ou creditável é o valor estimado (intervalo de confiança).
 - Decidir sobre possíveis valores de p baseado apenas na amostra.
 - ► A proporção da população com anticorpos atingiu um patamar desejável?

Especificação do problema de Inferência

- ▶ Suponha que coletamos uma amostra (aleatória) de tamanho n=10 e que y=7 pessoas apresentaram anticorpos.
- ▶ Qual valor você acha que o parâmetro p assume na população?
- Assumindo observações independentes, sabemos que a soma de v.a. Bernoulli é binomial com n = 10 e um parâmetro p desconhecido.
- Podemos calcular a probabilidade de observar y=7 para um valor de p, por exemplo, p=0.8

$$P(Y = 7 | n = 10, p = 0.80) = {10 \choose 7} 0.80^7 (1 - 0.80)^{10-7} = 0.2013.$$

Especificação do problema de Inferência

▶ Para qualquer outro valor de *p*

$$P(Y = 7 | n = 10, p) = {10 \choose 7} p^7 (1 - p)^{10-7},$$

variando p temos a função de verossimilhança

$$L(p) \equiv P(Y = 7|n = 10, p) = {10 \choose 7} p^7 (1-p)^{10-7}.$$

▶ **Ideia**: Se *p* for um determinado valor, **qual a probabilidade** de observar o que eu realmente observei na amostra.

Pensamento frequentista

- ► Se o experimento for repetido um número grande de vezes e a cada realização p for obtido, o que aconteceria?
- p̂ é uma variável aleatória.
- ► Se é variável aleatória, então tem distribuição de probabilidade que descreve o seu comportamento.
 - Qual é a sua distribuição?
 - Qual o seu valor esperado?
 - Qual a sua variância?
- Bom momento para revisar cálculo diferencial integral

Figura 2. Ilustração da distribuição amostral.

Distribuição amostral

- Objeto de inferência (frequentista).
- A estimativa pontual é um resumo desta distribuição.
- ► Intervalos entre quantis representam a incerteza sobre o valor estimado.
- Compara-se estimadores concorrentes pelas características de suas distribuições amostrais.
- E para tudo isto:é preciso saber como estimar.

Figura 3. Distribuição amostral de diferentes estimadores de um parâmetro.

Componentes da modelagem estatística

- ► Modelo → comportamento da natureza.
- ► Parâmetros do modelo → parâmetros populacionais de interesse.
- Qual modelo melhor descreve os dados?
- ► Assumimos um modelo → parâmetros são desconhecidos
- ▶ Baseado na amostra → encontrar os parâmetros compatíveis com a amostra.
- Descrever a incerteza → distribuição amostral.

Figura 4. Processo de inferência estatística.

Notação e definições (relembrando)

- $\mathbf{Y} = (Y_1, \dots, Y_n)^{\mathsf{T}}$: v.a.'s independentes e idênticamente distribuídas.
- $ightharpoonup Y_i \sim f(\theta)$ onde f denota a função densidade de probabilidade ou função de probabilidade e $\theta = (\theta_1, \dots, \theta_p)^{\mathsf{T}}$ é um vetor de p parâmetros populacionais.
- $\mathbf{v} = (y_1, \dots, y_n)^{\mathsf{T}}$ denota o vetor de valores observados da v.a. Y.
- ► Estatística Uma estatística é uma variável aleatória T = t(Y), onde a função t(·) não depende de θ .
- **Estimador** Uma estatística T é um estimador para θ se o valor realizado t = t(u) é usado como uma estimativa para o valor de θ .
- ▶ **Distribuição amostral** A distribuição de probabilidade de T é chamada de distribuição amostral do estimador t(Y).
 - **Description:** O que caracteriza **bons** estimadores? → Propriedades dos estimadores.

Questões

- O que torna um estimador "bom" em termos práticos?
- Existe "erro" na estimação? Como medir?
- Quais as propriedades desejáveis de um estimador?
- Como comparar dois (ou mais) estimadores?

Figura 5. Foto de cottonbro no Pexels.

Vício de um estimador

- ► Um estimador deve fornecer valores próximos do valor verdadeiro do parâmetro que está sendo estimado.
- \blacktriangleright Um estimador é **não viciado** para θ se o valor esperado de $\hat{\theta}$ for igual a θ .
- ► Isso quer dizer que a **média da** distribuição amostral de $\hat{\theta}$ é θ .
- ► Em certos casos, é possivel determinar o vício de um estimador de forma analítica
- ► Em situações mais complexas, pode-se determinar de forma computacional.

Figura 6. Foto de icono.com no Pexels.

Vício de um estimador

► **Viés** - O viés de um estimador T é a quantidade

$$B(T) = E(T - \theta).$$

- ▶ O estimador T é dito não viciado para θ se B(T) = 0, tal que E(T) = θ .
- ▶ O estimador T é assintóticamente não viciado para θ se E(T) $\rightarrow \theta$ quando $n \rightarrow \infty$.

Figura 7. Exemplo de estimador viciado e não viciado.

Exemplo: Distribuição Normal

- ▶ Sejam $Y_i \sim N(\mu, \sigma^2)$, para i = 1, ..., n.
 - a) Mostre que o estimador $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ é não viciado para μ .
 - b) Mostre que o estimador $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i \hat{\mu})^2$ é viciado para σ^2 e determine o seu viés.
 - c) Mostre que o estimador $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i \hat{\mu})^2$ é não viciado para σ^2 .
 - d) Compare os estimadores para σ^2 em b) e c) em termos assintóticos. O que você pode concluir?

Variância de um estimador

- Sejam $\hat{\theta}_1$ e $\hat{\theta}_2$ estimadores não viciados de θ .
- ▶ Então, $E(\hat{\theta}_1) = E(\hat{\theta}_2) = \theta$.
- No entanto, as variâncias destas distribuições amostrais podem ser diferentes.
- É razoável escolher o estimador que apresente a menor variância.

Figura 8. Distribuição amostral de dois estimadores não viciados.

Erro quadrático médio

- Nem sempre se dispõe de estimadores não viciados.
- ► Há situações em que estimadores viciados tem distribuição amostral com menor variância.
- Como escolher o estimador neste caso conciliando ambos aspectos, vício e variância?

Figura 9. Distribuição amostral de dois estimadores.

Decomposição em vício e variância

- ▶ O **erro quadrático médio** (EQM) é uma medida que concilia vício e variância.
- ightharpoonup O EQM de um estimador T do parâmetro heta é definido como

$$EQM(T) = E(T - \theta)^{2}.$$

▶ Ele pode ser reescrito como função da variância e vício

$$EQM(T) = E[T - E(T)]^2 + [E(T) - \theta]^2$$

= $V(T) + B^2(T)$.

▶ Portanto, o EQM de um estimador não viciado é a própria variância.

Analogia do tiro ao alvo

Figura 10. Analogia do tiro ao alvo para o erro quadrático médio e sua decomposição.

Eficiência relativa de um estimador

- ▶ O **erro quadrático médio** é uma métrica importante para comparar estimadores.
- ▶ Ele é usado para definir a **eficiência relativa** de um estimador comparado a outro,

$$\mathsf{Efr}(\hat{\theta}_1, \hat{\theta}_2) = \frac{\mathsf{EQM}(\hat{\theta}_1)}{\mathsf{EQM}(\hat{\theta}_2)}.$$

▶ Se a $\mathrm{Efr}(\hat{\theta}_1,\hat{\theta}_2) < 1$, conclui-se que $\hat{\theta}_1$ é um estimador superior à $\hat{\theta}_2$ e vice-versa.

Consistência de um estimador

- Não viés é uma propriedade desejável.
- Pode ser restrita em situações mais gerais.
- O viés de um estimador pode "sumir" quando a amostra aumenta de tamanho.
- Consistência é uma propriedade mais geral.
- Verifica o que acontece com o estimador quando a amostra aumenta de tamanho.

Figura 11. Consistência para dois estimadores.

Consistência de um estimador

- Verificar a consistência de um estimador não é trivial.
- Precisamos da idéia de convergência de v.a.
- ▶ Um estimador T é **médio quadrático consistente** para θ se o EQM(T) \rightarrow 0 quando $n \rightarrow \infty$.
- ▶ O estimador T é **consistente em probabilidade** se $\forall \epsilon > 0$, $P(|T \theta| > \epsilon) \rightarrow 0$, quando $n \rightarrow \infty$.

 Para consistência em probabilidade, a Desigualdade de Chebyshev permite dizer que

$$V(\hat{\theta}) \to 0$$
, para $n \to \infty$,

então $\hat{\theta}$ é consistente em probabilidade para θ .

Existem outras formas de consistência
→ Fisher consistency.

Consistência do estimador $\hat{\sigma}^2$ da variância

Figura 12. Ilustração por simulação computacional da consistência para o estimador $\hat{\sigma}^2$ da variância.

Inconsistência do estimador $\tilde{\sigma}$ do desvio-padrão

Estimador da variância usando $\mathfrak{F} = (y_{(n)} - y_{(1)})/4$ com Y ~ Normal(0, 1)

Figura 13. Ilustração por simulação computacional da inconsistência do estimador $\tilde{\sigma}$ do desvio-padrão baseado na regra empírica da amplitude.

Discussão

- O estimador ideal é aquele que captura a informação da amostra da forma mais eficiente.
- Deseja-se que seja não viciado, com a menor variância possível e consistente.
- A maioria dos estimadores vistos aqui apresentam tais características.
- Estimadores "empíricos" podem não apresentá-las.
- Há situações em que estimadores "óbvios" são superados por outros devidamente formulados.

Figura 14. Distribuição amostral de diferentes estimadores de um parâmetro.

Exemplo: Distribuição de Poisson

- ▶ Seja $Y_i \sim P(\lambda)$ para i = 1, ..., n iid. Considere o estimador $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ para λ .
 - a) Mostre que $\hat{\lambda}$ é não-viciado para λ .
 - b) Encontre a variância de $\hat{\lambda}$.
 - c) Encontre o erro quadrático médio de $\hat{\lambda}$.
 - d) Mostre que $\hat{\lambda}$ é médio quadrático consistente.
 - e) Mostre que $\hat{\lambda}$ é consistente em probabilidade.

- **Função de verossimilhança** Seja y um vetor $n \times 1$ representando uma realização de um vetor aleatório Y com função de probabilidade ou densidade probabilidade $f(Y,\theta)$, onde θ denota um vetor $p \times 1$ de parâmetros, com $\theta \in \Theta$, sendo Θ o respectivo espaço paramétrico. A função de verossimilhança ou simplesmente verossimilhança para θ dado os valores observados y é a função $L(\theta|y) \equiv f(Y,\theta)$.
- ► Caso discreto:

$$L(\theta|y) \equiv P_{\theta}(Y = y).$$

► Intuição: Probabilidade de ver a amostra realizado dado que o parâmetro é um determinado valor.

- ► Caso contínuo: Probabilidade de um particular conjunto de valores ser observado é nula.
- Na prática medidas contínuas são tomadas com algum grau de precisão, digamos $y_{il} \le y_i \le y_{iS}$. Assim,

$$L(\theta|y) = P_{\theta}(y_{1l} \le y_1 \le y_{1S}, y_{2l} \le y_2 \le y_{2S}, \dots, y_{nl} \le y_n \le y_{nS}).$$

► Esse é o caso mais geral e precisa da distribuição conjunta! Dificl de obter de forma geral.

Supor que as observações são independentes, facilita

$$L(\theta|y) = P_{\theta}(y_{1l} \le y_1 \le y_{1S}) \cdot P_{\theta}(y_{2l} \le y_2 \le y_{2S}), \dots, P_{\theta}(y_{nl} \le y_n \le y_{nS}).$$

 Supondo ainda que todos os dados são medidos a um grau de precisão comum, digamos $(y_i - \delta/2 < Y_i < y_i + \delta/2)$. Assim, a verossimilhança fica

$$L(\theta|\mathbf{y}) = \prod_{i=1}^{n} P_{\theta}(y_i - \delta/2 \le Y_i \le y_i + \delta/2)$$
$$= \prod_{i=1}^{n} \int_{y_i - \delta/2}^{y_i + \delta/2} f(y_i, \theta) dy_i.$$

lacktriangle Por fim, se o grau de precisão é alto e δ não depende dos valores dos parâmetros

$$L(\theta|\mathbf{y}) \approx \prod_{i=1}^n f(y_i, \theta).$$

- Resumindo, produto das distribuições marginais vista como uma função dos parâmetros.
- Caso geral, ainda precisamos de uma distribuição multivariada

$$L(\theta|y) \approx f(y, \theta).$$

Estimativas e estimadores

- ▶ **Estimativa de máxima verossimilhança** Seja L(θ |y) a função de verossimilhança. O valor $\hat{\theta} = \hat{\theta}(y)$ é a estimativa de máxima verossimilhança para θ se L($\hat{\theta}$) \geq L(θ), $\forall \theta \in \Theta$.
- ▶ Estimador de máxima verossimilhança Se $\hat{\theta}(y)$ é a estimativa de máxima verossimilhança, então $\hat{\theta}(Y)$ é o estimador de máxima verossimilhança. Em geral vamos usar a abreviação EMV para nos referirmos ao estimador de máxima verossimilhança.

Verossimilhança: representações alternativas

- ▶ **Log-verossimilhança** Se $L(\theta|y)$ é a função de verossimilhança, então $L(\theta|y) = \log L(\theta|y)$ é a função de log-verossimilhança.
- Segue do fato da função logaritmo ser monótona crescente que maximizar $L(\theta|\mathbf{y})$ e $l(\theta|\mathbf{y})$ levam ao mesmo ponto de máximo.
- Verossimilhança relativa Sendo L(θ) a função de verossimilhança e sendo θ a estimativa de máxima verossimilhança. A verossimilhança relativa é definida por L(θ) L(θ).
- ▶ **Função deviance** Sendo $l(\theta)$ a função de log-verossimilha, a *deviance* é dada por $D(\theta) = -2[l(\theta) l(\hat{\theta})]$.

Verossimilhança: representações alternativas

Figura 15. Diferentes formas de visualizar a função de verossimilhança.

Exemplo: Distribuição de Poisson

- ► Seja $Y_i \sim P(\lambda)$ para i = 1, ..., n iid.
 - a) Escreva a função de verossimilhança.
 - b) Escreva a função de log-verossimilhança.
 - c) Encontre o estimador de máxima verossimilhança.
 - d) Escreva a função de verossimilhança relativa.
 - e) Escreva a função deviance.
 - f) Simule um conjunto de valores baseado neste problema e desenhe o gráfico das funções envolvidas (computacional).