Обработка изображений с помощью сверточных нейронных сетей для задач по сортировке мусорных отходов

К. Р. Ахметзянов¹, А. Н. Кокоулин², А. А. Южаков³ Пермский национальный исследовательский политехнический университет ¹kirill94a@mail.ru, ²a.n.kokoulin@ieee.org, ³uz@at.pstu.ru

Аннотация. В статье произведен обзор методов сортировки мусорных отходов: сортировка с помощью NIRдатчиков, электростатическая сортировка, сортировка с использованием рентгеновских датчиков и сортировка с использованием датчика В видимом диапазоне. Предлагается использование видеокамеры в качестве датчика в видимом диапазоне из-за низкой стоимости и высокой доступности. Сигнал с видеокамеры передается в компьютер, на котором запущена сверточная нейронная сеть MobileNet. Эта сеть производит классификацию того изображения, которое ей было передано: либо пластиковая бутылка, либо неизвестный предмет. В статье приводятся результаты эксперимента по классификации пластиковых бутылок на тестовой выборке, состоящей из 100 фотографий пластиковых бутылок и 2000 фотографий прочих предметов и в режиме онлайн с помощью видеокамеры. Эксперимент производится на персональном компьютере микрокомпьютере RaspberryPi. В результате проведения эксперимента был достигнут процент правильной классификации 99,5%, время классификации на компьютере 116 мс и время классификации на RaspberryPi 734 мс. Также были обнаружены недостатки работы сверточной сети MobileNet: предметы, которые по форме похожи на бутылки, нейронная сеть классифицирует как пластиковая бутылка, и пластиковые бутылки, у которых сильно изменена исходная форма, нейронная сеть классифицирует как неизвестный предмет.

Ключевые слова: классификация объектов; нейронные сети; сверточные нейронные сети; глубокое обучение; компьютерное зрение; сортировка отходов

I. Введение

В нашей стране проблема экологии и переработки пластиковых материалов является актуальной. Ежегодно в среднем накапливается 6,3 млрд т пластиковых отходов, из них 1,5 тыс. т пластиковых бутылок [1] и это количество с годами увеличивается, а время, за которое разлагается пластиковая бутылка, составляет более 100 лет [2]. Количество перерабатываемого пластика составляет менее 7% [3]. Существующие заводы по переработке пластика не справляются с огромным потоком мусора. Для переработки пластика необходимо отсортировать его по видам пластиковых отходов, например, пластиковые бутылки, так как у каждого пластика своя температура

Д. М. Филатов

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

плавления. Поэтому важно в режиме реального времени как можно точнее определять предметы среди прочего мусора, которые состоят из пластика.

Для сортировки мусорных отходов применяются различные методы: сортировка с помощью NIR-датчиков [4, 5], электростатическая сортировка [6, 7], сортировка с использованием рентгеновских датчиков [8] и сортировка с использованием датчиков в видимом диапазоне [9].

Коротко опишем принцип работы, преимущества и недостатки каждого из описанного выше метода сортировки.

II. ОБЗОР МЕТОДОВ СОРТИРОВКИ

А. Сортировка с помощью NIR-датчиков

ИК-спектрограф пропускает через образец волны разной частоты, при пропускании происходит возбуждение колебательных движений молекул, при этом происходит поглощение света и для разных молекул максимальное поглощение достигается на разных частотах света. Зная, на какой частоте происходит максимальное поглощение, можно определить состав вещества [10].

Достоинства NIR-датчиков:

- Существуют базы ИК-спектров веществ [11, 12], что позволяет правильно идентифицировать большое количество веществ.
- Фурье-ИК-спектрографы позволяют получать спектры за короткий промежуток времени (50 спектров в секунду).

Недостатки NIR-датчиков:

- Если частота света, при которой происходит максимальное поглощение, находится вне диапазона чувствительности спектрографа, то определить вещество не удастся, так как не удастся зафиксировать частоту света максимального поглощения.
- Наличие помех в спектре из-за воздуха и различных вкраплений других веществ в образце.

В. Электростатическая сортировка

Метод основан на электростатических свойствах веществ. Частицы веществ материала отдают свои заряды быстрее или медленнее в зависимости от проводящих свойств поверхности частиц [13].

Преимущества электростатической сортировки:

- Возможность сортировать материалы одинаковые по плотности.
- Низкое энергопотребление при высокой производительности.

Недостатки электростатической сортировки:

- Метод пригоден для сухих и относительно чистых материалов [14].
- Пригоден для пластмасс, состоящих двух и меньше компонентов.

С. Сортировка с использованием рентгеновских датчиков

Метод основан на свойствах вещества поглощать рентгеновское излучение.

Преимущества рентгеновских датчиков:

- Позволяет точно идентифицировать ПВХ и ПЭТФ [15].
- Правильно идентифицирует даже при наличии этикеток и загрязнении на бутылке.

Недостатки рентгеновских датчиков:

- Не отличает ПЭТ от ПЭ.
- Рентгеновское излучение вредно для здоровья, изза чего необходимо персоналу, работающему с этим датчиком, применять средства защиты.

D. Сортировка с использованием датчиков в видимом диапазоне

Метод основан на улавливании света в видимом диапазоне, то есть того света, который видит человеческий глаз.

Преимущества датчиков в видимом диапазоне:

- Низкая стоимость и высокая доступность.
- Простота настройки (необходимо установить камеру и настроить только фокусное расстояние до объекта сортировки).

Недостатки датчиков в видимом диапазоне:

- Предметы, которые внешне неотличимы, но имеющие разную структуры, будут неправильно сортированы.
- Предметы, которые полностью утратили исходную форму (например, при дроблении), будут неправильно сортированы.

III. СОРТИРОВКА МУСОРНЫХ ОТХОДОВ

Из-за низкой стоимости и высокой доступности предлагается использовать в качестве датчика видеокамеру. Сортировка мусорных отходов делится на два вида:

- Статическая сортировка.
- Динамическая сортировка.

Статическая сортировка — это сортировка, при которой предмет, который необходимо сортировать, находится неподвижно перед датчиком. Например, сортировка в фандомате — устройстве, предназначенному для сортировки мусорных отходов на этапе сбора мусора.

Динамическая сортировка — это сортировка, при которой предмет, который необходимо сортировать, движется перед датчиком. Например, конвейерная лента.

У статической и динамической сортировки разные требования ко времени сортировки. У статической времени сортировки больше на сортировку. динамической сортировки время ограничивается скоростью движением конвейерной ленты. Также у динамической сортировки больше требование к камере. Важными показателя камеры являются частота кадров. Частота кадров должна быть такой, чтобы предмет «успел» полностью поместиться в кадр. Также важным показателем камеры является время срабатывания затвора. Чем больше это время, тем более смазанной будет картинка.

IV. Эксперимент

проведен Был эксперимент ДЛЯ статической сортировки, которая включает в себя проверку на тестовой выборки и в режиме онлайн с помощью видеокамеры. Была обучена сверточная нейронная сеть MobileNet [16], который был выбран из-за высокой скорости работы на устройствах ограниченным количеством вычислительных ресурсов малом количеством И необходимых для обучения вычислительных ресурсов. Для обучения этой нейронной сети была применена технология Transfer Learning [17]. Суть этой технологии заключается в том, что используется предобученная нейронная сеть, которая переобучается для той задачи классификации которую необходимо решить. объектов. To инициализация весов нейронной сети осуществляется не случайным образом, а с теми весами, при которых нейронная сеть уже умеет отличать различные объекты. Таким образом, отпадает необходимость нейронную сеть с нуля. Так как обучение с нуля требует большего объема обучающей выборки (например, фотографии из ImageNet) и больших вычислительных ресурсов. А обучить нейронную сеть с помощью Transfer Learning можно на обычном персональном компьютере (ПК). С этой целью была взята уже обученная нейронная сеть MobileNet [18], которая была переобучена для сортировки пластиковых бутылок и прочих предметов. Обучение проводилось на компьютере с графической картой Nvidia GeForce GT 740M, состоящей из 384 ядер с тактовой частотой 993 МГц и графической памятью 2048 МБ. Обучающая выборка состоит из 500 пластиковых бутылок и 10000 фотографий прочих предметов.

Проверка обученной нейронной сети производилось на ПК компьютере и микрокомпьютере RaspberryPi 3. ПК, на котором производилась проверка, состоит из центрального процессора Intel Core i7-3610QM с 8 ядрами, базовой тактовой частотой 2,3 ГГц и оперативной памятью 8 ГБ. RaspberryPi 3 состоит из центрального процессора Broadcom BCM2837 с 4 ядрами, частотой 1,2 ГГц и 1 ГБ оперативной памяти. Эта проверка осуществлялась на тестовой выборке, состоящей из 100 фотографий пластиковых бутылок и 2000 фотографий прочих предметов. Фотографии пластиковых бутылок и прочих предметов тестовой выборки - этой фотографии, которые отсутствуют в обучающей выборке, то есть это другие фотографии. Обучение и проверка нейронной сети производились с использованием фреймворка Caffe [19], так как это популярный фреймворк с большим сообществом [20]. Для проверки нейронной сети на RaspberryPi использовался модуль dnn из OpenCV, который с целью увеличения скорости работы нейронной сети скомпилирован с использованием NEON и VFPV3.

Результаты эксперимента на тестовой выборке представлены в таблице.

ТАБЛИЦА I РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА НА ТЕСТОВОЙ ВЫБОРКЕ

Процент правильной классификации	99,5%
Время/изображение на ПК (мс)	116
Время/изображение на RaspberryPi (мс)	734

Также был проведен эксперимент в режиме онлайн, то есть с использованием видеокамеры. В ходе проведения эксперимента в режиме онлайн были выявлены недостатки работы сверточной нейронной сети MobileNet:

- Предметы, похожие на пластиковые бутылки, но не являющиеся таковыми, нейронная сеть классифицирует как «пластиковая бутылка» (ошибка второго рода).
- Пластиковую бутылку с сильно измененными формами нейронная сеть классифицирует как «неизвестный предмет» (ошибка первого рода).

На рис. 1 изображен предмет, который нейронная сеть классифицирует как «пластиковая бутылка».

Рис. 1. Пример неправильной классификации предмета, похожего на пластиковую бутылку

На рис. 2 изображена мятая бутылка, которую нейронная сеть классифицирует как «неизвестный предмет».

Рис. 2. Пример неправильной классификации мятой бутылки

V. ЗАКЛЮЧЕНИЕ

Проведен обзор методов сортировки мусорных отходов. Осуществлен эксперимент для сортировки пластиковых бутылок на тестовой выборке и с использованием видеокамеры. Было показано, что при использовании видеокамеры с последующей обработкой сигналов с этой камеры сверточной нейронной сетью для сортировки достигается высокий процент (99,5%) правильной классификации со временем обработки изображения 116 мс.

Определены дальнейшие направления исследования:

- Разработка нейрона, который устранял бы недостатки, описанные выше.
- Проведение экспериментов для динамической сортировки.

Список литературы

- [1] Подсчитано общее количество произведенного человеком пластика. URL: https://chrdk.ru/news/podschitano-obshchee-kolichestvo-plastika (дата обращения: 15.03.2018).
- [2] Сроки разложения отходов: сколько поколений переживет Ваша мусорная корзина?. URL: http://eco-boom.com/sroki-razlozheniya-othodov-skolko-pokolenij-perezhivet-vasha-musornaya-korzina/ (дата обращения: 15.03.2018).
- [3] Мусорные богатства России. URL: https://www.rbc.ru/newspaper/ 2013/03/22/56c1b6129a7947406ea09ec6/ (дата обращения: 15.03.2018).
- [4] Scott D. M. A two-colour near-infrared sensor for sorting recycled plastic waste // Measurement Science and Technology. 1995. Т. 6, вып. 2. doi: 10.1088/0957-0233/6/2/004
- [5] Dalma Marinus, Buxtona Michael W. N., van Ruitenbeekb Frank J.A., Vonckena Jack H.L. Application of near-infrared spectroscopy to sensor based sorting of a porphyry copper ore // Minerals Engineering. 2014. T. 58. C. 7-16. doi: 10.1016/j.mineng.2013.12.016
- [6] Iuga A., Morar R., Samuila A., Dascalescu L. Electrostatic separation of metals and plastics from granular industrial wastes // IEE Proceedings Science, Measurement and Technology. 2001. Т. 148, вып. 2. С. 47-54. doi: 10.1049/ip-smt:20010356
- [7] Veita H.M., Diehla T.R., Salamia A.P., Rodriguesa J.S., Bernardesa A.M., Tenóriob J.A.S. Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap // Waste Management. 2005. T. 25, вып. 1. С. 67-74. doi: 10.1016/j.wasman.2004.09.009

- [8] Mesina M.B., de Jong T.P.R., Dalmijn W.L. Automatic sorting of scrap metals with a combined electromagnetic and dual energy X-ray transmission sensor // International Journal of Mineral Processing. 2007. Т. 82, вып. 4. С. 222-232. doi: 10.1016/j.minpro.2006.10.006
- [9] Intelligent solid waste processing using optical sensor based sorting technology / Jiu Huang, Thomas Pretz, Zhengfu Bian // Image and Signal Processing (CISP), 2010 3rd International Congress on. Yantai, 16-18 okt., 2010. T. 4. C. 1657-1661. doi: 10.1109/CISP.2010.5647729
- [10] Bernath Peter F. Infrared fourier transform emission spectroscopy // Chemical Society Reviews. 1996. Т. 25, вып. 2. С. 111-115. doi: 10.1039/CS9962500111
- [11] Spectral Database for Organic Compounds SDBS. URL: http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi (дата обращения: 15.03.2018).
- [12] NIST Chemistry WebBook. URL: https://webbook.nist.gov/chemistry/ (дата обращения: 15.03.2018).
- [13] Сортировка измельченного сырья. URL: http://hssco.ru/sortirovkaizmelchennogo-syrya/ (дата обращения: 15.03.2018).
- [14] Сортировка измельченного сырья. URL: http://msd.com.ua/vtorichnaya-pererabotka-plastmass/sortirovka-izmelchennogo-syrya/ (дата обращения: 15.03.2018).

- [15] Сортировка с помощью рентген-лучей. URL: http://coach.refepic.ru/sortirovka-s-pomoshyu-rentgen-luchej.html (дата обращения: 15.03.2018).
- [16] Howard Andrew G., Zhu Menglong, Chen Bo, Kalenichenko Dmitry, Wang Weijun, Weyand Tobias, Andreetto Marco, Adam Hartwig. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv препринт arXiv:1704.04861, 2017.
- [17] Transfer Learning. URL: http://cs231n.github.io/transfer-learning/ (дата обращения: 15.03.2018).
- [18] MobileNet-Caffe. URL: https://github.com/shicai/MobileNet-Caffe (дата обращения: 15.03.2018).
- [19] Jia Yangqing, Shelhamer Evan, Donahue Jeff, Karayev Sergey, Long Jonathan, Girshick Ross, Guadarrama Sergio, Darrell Trevor. Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv препринт arXiv:1408.5093, 2014.
- [20] DL4J, Torch7, Theano and Caffe. URL: https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch обращения: 15.03.2018).