Практическая работа: "Бинарная логистическая регрессия"

Задача бинарной классификации

Некая фирма провела анализ зависимости расхода денежных средств на рекламу и эффекта от нее. Если эффект присутствовал, то в датасете ставилась 1, в противном случае - 0. Результаты были представоены в виде двух DataFrame x и y.

Произыести бинарную классификацию с использованием логистической регрессии.

```
Ввод [31]: plt.scatter(x,Y)
```

Out[31]: <matplotlib.collections.PathCollection at 0x1aaf8dd2250>

Попробуем разделить эти точки прямой линией, отделяющей один класс от другого. Модель начинает плохо работать в случае добавления новых точек на больших значениях х:

```
Ввод [32]: a1 = ((x-x.mean())*(Y-Y.mean())).mean()/((x-x.mean())**2).mean()
a0 = Y.mean() - a1*x.mean()
print("Y = ", a0, " + ", a1, " * x")
x_space = np.linspace(6,70,20)
Y_pred = a0.item() + a1.item()*x_space

Y = 0 0.266493
```

dtype: float64 + 0 0.006333 dtype: float64 * x

Out[33]: <matplotlib.collections.PathCollection at 0x1aa800a43d0>

Функция логистической регрессии

Сигмоида

Возможное решение упомянутых выше сложностей — пропустить значение линейной регрессии через сигмоиду (sigmoid function), которая при любом значении х не выйдет из необходимого нам диапазона от 0 до 1.

$$g(x) = \frac{1}{1 + e^{-x}}$$

Logistic loss или функция кросс-энтропии

В модели логистической регрессии мы не можем использовать MSE. Дело в том, что если мы поместим результат сигмоиды (представляющей собою нелинейную функцию) в MSE, то на выходе получим невыпуклую функцию (non-convex), глобальный минимум которой довольно сложно найти.

Вместо MSE мы будем использовать функцию логистической ошибки, которую еще называют функцией бинарной кросс-энтропии (log loss, binary cross-entropy loss).

График и формула функции логистической ошибки

$$J(\theta) = -\frac{1}{n} \sum y * log(h_{\theta}(x)) + (1 - y) * log(1 - h_{\theta}(x))$$

Оценка качества модели

Матрица ошибок (confusion matrix)

	Прогноз: отрицательный (predicted negative)	Прогноз: положительный (predicted positive)
Факт: отрицательный (actual negative)	Истинно отрицательный (true negative, TN)	Ложноположительный (false positive, FP)
Факт: положительный (actual positive)	Ложноотрицательный (false negative, FN)	Истинно положительный (true positive, TP)

Доля правильно предсказанных значений называется ассuracy. Чтобы ее посчитать, мы берем те значения, которые предсказаны верно (TP + TN) и делим на общее количество прогнозов.

Конкретизация задачи:

Реализовать класс модели логистической регрессии с использованием:

- а) максимизации логарифмического правдоподобия методом градиентного подъема
- б) минимизации функции потерь (кросс-энтропии) методом градиентного спуска

Сравнить результаты (время исполнения и достигнутые значения ассuracy и f1) в случаях а и б при одном и том же числе шагов и скорости обучения.

```
Ввод [34]:
           #Реализуем цикл градиентного спуска
           class LogisticRegressionGD(object):
               def __init__(self):
                    self.a = np.zeros(2).reshape(1, 2)
               def sigmoid(self, x):
                    return 1/(1 + np.exp(-x @ self.a))
               def predict(self, x):
                    return self.sigmoid(x)
               def coefs(self):
                    return self.a
               def LogLikelihood(self, x, Y):
                    return (Y * np.log(self.predict(x)) + (1 - Y) * np.log(1 - self.pred
               def CrossEntropy(self, x, Y):
                    return (-Y * np.log(self.predict(x)) - (1 - Y) * np.log(1 - self.pre
               def accuracy(self, x, Y):
                    return ((self.predict(x) > 0.5)==Y).mean()
               def fit(self, x, Y, alpha = 0.01, epsylon = 0.01, max_steps = 10000, Rty
                    self.a = np.zeros (x.shape[1]).reshape(x.shape[1],1)
                   steps, errors = [], []
                    step = 0
                   for _ in range(max_steps):
                        if Rtype == "LL":
                            new_error = self.LogLikelihood(x, Y)
                            dT_a = x.T @(Y - self.predict(x)) / x.shape[0]
                            self.a += alpha*dT_a
                        elif Rtype == "CE":
                            new error = self.CrossEntropy(x, Y)
                            #display(new error)
                            dT_a = -x.T @(Y - self.predict(x)) / x.shape[0]
                            self.a -= alpha*dT_a
                            print(self.a)
                        step += 1
                        print(step)
                        steps.append(step)
                        errors.append(new error)
                        #if new_error < epsylon:</pre>
                            break
                    return steps, errors
```

```
Ввод [35]: x_ = x.copy()

import time

intercept = np.ones((x.shape[0], 1))
x_ = pd.DataFrame(np.concatenate((intercept, x), axis = 1))
```

```
Ввод [36]:
           start_time_CE = time.time()
           regr_CE = LogisticRegressionGD()
           steps_CE, errors_CE = regr_CE.fit(x_, Y, alpha = 0.01, epsylon = 0.01, max_
           display(f"Время обучения: {time.time() - start_time_CE} сек.")
           start_time_LL = time.time()
           regr_LL = LogisticRegressionGD()
           steps_LL, errors_LL = regr_LL.fit(x_, Y, alpha = 0.01, epsylon = 0.01, max_
           display(f"Время обучения: {time.time() - start_time_LL} сек.")
           ZZ
           0 -0.042427
           1 0.075153
           23
           0 -0.045805
           1 0.000218
           24
                    0
           0 -0.04526
           1 0.12672
           25
                     0
           0 -0.049222
           1 0.037887
           26
           0 -0.051500
           1 -0.000345
```

```
BBOД [37]: Y_Pred = regr_CE.predict(x_)
plt.scatter(x, Y)
plt.scatter(x, Y_Pred)
```

Out[37]: <matplotlib.collections.PathCollection at 0x1aa83cb1850>

Ввод [38]: display(regr_CE.coefs()) #display(x_)

0

0 -3.598810

1 0.112152

```
BBOД [39]: Y_Pred = regr_LL.predict(x_)
plt.scatter(x, Y)
plt.scatter(x, Y_Pred)
```

Out[39]: <matplotlib.collections.PathCollection at 0x1aa8432d990>

Ввод [40]: display(regr_LL.coefs()) #display(x_)

0

0 -3.598810

1 0.112152

```
BBOД [41]: plt.plot(steps_CE, errors_CE) plt.plot(steps_LL, errors_LL)
```

Out[41]: [<matplotlib.lines.Line2D at 0x1aa8479af10>]

Ввод [42]: print(regr_CE.accuracy(x_, Y)) print(regr_LL.accuracy(x_, Y))

0 0.818182
dtype: float64
0 0.818182
dtype: float64

Реализовать расчеты способами а и б для набора данных из файла insclass_train.csv/ Для 151 406 договоров страхования транспортных средств известны значения ряда признаков, в том числе пол, возраст, стаж вождения и коэффициент бонус-малус водителя, тип, марка, модель, год выпуска, страна – производитель, мощность и объем двигателя, а также признак target, равный 1, если заключение договора с клиентом является рисковым, и 0 в противном случае (файл insclass train.csv).

Требуется построить модель, предсказывающую значение признака target для 22 624 договоров из тестового набора данных (файл insclass_test.csv).

В обучающем наборе данных для каждого договора известны следующие поля:

variable_1 - агрегированный коэффициент бонус-малус (повышающий или понижающий стоимость полиса в зависимости от аварийности в предыдущие периоды); variable_2 - индикатор расторжения договора по инициативе страхователя (клиента); variable_3 - индикатор расторжения договора по инициативе страховщика (страховой компании); variable_4 - идентификатор года выпуска транспортного средства; variable_5 - идентификатор страны - производителя транспортного средства; variable_6 - мощность двигателя в лошадиных силах; variable_7 - объем двигателя в

куб. см; variable 8 - идентификатор стороны расположения руля (левый или правый); variable 9 - пробег транспортного средства, покрываемый гарантией производителя; variable 10 - индикатор действия гарантии на транспортное средство; variable 11 -"мультидрайв" - индикатор допуска к управлению транспортным средством более одного водителя; variable 12 - возраст транспортного средства (в мес.); variable 13 возраст водителя с максимальным стажем; variable 14 - коэффициент возраст-стаж; variable 15 - коэффициент краткосрочности; variable 16 - коэффициент мощности; variable_17 - коэффициент "мультидрайв"; variable_18 - территориальный коэффициент; variable 19 - коэффициент "КНДР"; variable 20 - идентификатор канала продаж; variable 21 - марка транспортного средства; variable 22 - модель транспортного средства; variable 23 - индикатор отечественных транспортных средств; variable 24 - пол водителя с максимальным коэффициентом "возраст-стаж"; variable 25 - индикатор пролонгации; variable 26 - индикатор совпадения собственника транспортного средства и водителя; variable 27 - стаж водителя с максимальным коэффициентом "возраст-стаж"; variable 28 - тип транспортного средства; target - класс риска, равный 1, если заключение договора с клиентом является рисковым, и 0 в противном случае.

```
Ввод [ ]:
Ввод [43]:
           #Читаем файл, проверяем на пустые строки
           df = pd.read_csv('insclass_train.csv',
                   header=0,
                   usecols=[ "variable_4","variable_6","variable_12","variable_13","var
           #Проверить наличие пустых ячеек
           df.isna().sum()
  Out[43]: variable_4
                              0
           variable 6
                            111
           variable 12
                           1528
           variable_13
                           1657
           variable 14
                           2927
           variable 16
                             12
           variable 17
                             12
                             12
           variable 18
           variable 19
                              0
                           2067
           variable 27
           target
           dtype: int64
Ввод [44]:
           #убрать пустые ячейки
           df_cleaned = df.dropna()
           df_cleaned.isna().sum()
  Out[44]: variable_4
                           0
           variable 6
                           0
           variable 12
                           0
                           0
           variable 13
           variable 14
                           0
           variable 16
                           0
           variable 17
                           0
                           0
           variable 18
                           0
           variable 19
           variable_27
                           0
           target
            dtype: int64
```

Ввод [45]: df_cleaned.head()

Out[45]:

	variable_4	variable_6	variable_12	variable_13	variable_14	variable_16	variable_17	varial
0	14	98.0	166.266987	49.041674	80.985224	98.648082	80.985224	90.9
1	7	106.0	80.338555	82.756867	80.985224	118.116608	80.985224	38.7
2	4	123.0	38.519899	35.842308	80.985224	162.514016	80.985224	273.4
3	9	102.0	109.845800	70.549602	80.985224	118.116608	80.985224	9.08
4	18	117.0	224.168209	42.499789	80.985224	118.116608	80.985224	118.1
								_

Ввод [46]: #данные по датасету df_cleaned.describe()

Out[46]:

	variable_4	variable_6	variable_12	variable_13	variable_14	variab
count	146529.000000	146529.000000	146529.000000	146529.000000	146529.000000	146529.00
mean	11.389220	117.574273	133.202504	49.988979	87.348600	132.11
std	6.912729	49.803903	87.917177	15.489248	31.932087	42.37
min	2.000000	1.000000	0.000000	20.731525	80.985224	28.13
25%	6.000000	86.000000	66.827923	38.519899	80.985224	98.64
50%	10.000000	107.000000	122.392869	46.438089	80.985224	118.11
75%	14.000000	136.000000	175.818287	59.293870	80.985224	162.51
max	80.000000	1975.000000	842.774591	115.578552	273.413449	214.25
<						>

Ввод [47]: #Типы столбцов df_cleaned.dtypes

Out[47]: variable_4 int64 variable 6 float64 variable_12 float64 float64 variable 13 variable_14 float64 variable 16 float64 float64 variable_17 variable_18 float64 variable_19 float64 variable_27 float64 int64 target dtype: object

Ввод [48]: #разбиение на тренировочную, валидационную и тестовую выборки train, validate, test = np.split(df_cleaned, [int(.7*len(df)), int(.85*len(df)))

Ввод []:

```
Ввод [143]: train
```

Out[143]:

	variable_4	variable_6	variable_12	variable_13	variable_14	variable_16	variable_17
0	14	98.0	166.266987	49.041674	80.985224	98.648082	80.985224
1	7	106.0	80.338555	82.756867	80.985224	118.116608	80.985224
2	4	123.0	38.519899	35.842308	80.985224	162.514016	80.985224
3	9	102.0	109.845800	70.549602	80.985224	118.116608	80.985224
4	18	117.0	224.168209	42.499789	80.985224	118.116608	80.985224
109489	6	123.0	65.580824	45.129796	80.985224	162.514016	80.985224
109490	6	102.0	55.478435	30.425246	80.985224	118.116608	80.985224
109491	3	125.0	19.323463	37.183600	80.985224	162.514016	80.985224
109492	21	71.0	257.798740	100.563999	80.985224	98.648082	80.985224
109493	13	140.0	164.130010	43.817058	80.985224	162.514016	80.985224

105984 rows × 11 columns

<

```
Ввод [144]: X_t = train.iloc[:, train.columns != 'target'].values
y_t = train.iloc[:, train.columns == 'target'].values.reshape(-1)
#y_t = train.iloc[:, train.columns == 'target'].values
X_t = np.array(X_t, dtype=np.float64)
y_t = np.array(y_t, dtype=np.int64)
```

Ввод []:

```
Ввод [145]: X_t1000 = X_t[:1000,3]
y_t1000 = y_t[:1000]
x = pd.DataFrame(X_t1000)
Y = pd.DataFrame(y_t1000)
#plt.scatter(x,Y)
```

```
BBOД [146]: x_ = x.copy()
import time
intercept = np.ones((x.shape[0], 1))
x_ = pd.DataFrame(np.concatenate((intercept, x), axis = 1))
```

>

```
Ввод [147]:
            start_time_CE = time.time()
            regr_CE = LogisticRegressionGD()
            steps_CE, errors_CE = regr_CE.fit(x_, Y, alpha = 0.01, epsylon = 0.01, max_
            display(f"Время обучения: {time.time() - start_time_CE} сек.")
            start_time_LL = time.time()
            regr_LL = LogisticRegressionGD()
            steps_LL, errors_LL = regr_LL.fit(x_, Y, alpha = 0.01, epsylon = 0.01, max_
            display(f"Время обучения: {time.time() - start_time_LL} сек.")
            0 -0.00425
            1 -0.21435
            0 -0.003503
            1 -0.181219
                      0
            0 -0.002761
            1 -0.148286
                      0
            0 -0.002038
            1 -0.115989
            0 -0.001371
            1 -0.085778
```

```
Bвод [148]: Y_Pred = regr_CE.predict(x_)
plt.scatter(x, Y)
plt.scatter(x, Y_Pred)
```

Out[148]: <matplotlib.collections.PathCollection at 0x1aa90f6f350>


```
Ввод [149]:
             errors_CE
              dtype: float64,
                   264.520064
              dtype: float64,
                   264.519751
              dtype: float64,
                   264.519439
              dtype: float64,
                   264.519127
              dtype: float64,
                   264.518815
              dtype: float64,
                   264.518503
              dtype: float64,
                   264.518191
              dtype: float64,
                   264.517878
              dtype: float64,
```

0 264.517566
dtype: float64,
0 264.517254

Ввод [150]: display(regr_CE.coefs())

0

0 -0.458247

1 -0.043767

Ввод [138]: plt.plot(steps_CE, errors_CE)

Out[138]: [<matplotlib.lines.Line2D at 0x1aa8353fa10>]

Ввод []: