STAT 578 - Advanced Bayesian Modeling - Fall 2019 Assignment 6

Xiaoming Ji

Solution for Problem 1

```
perf_data = read.csv("illinimensbb.csv", header=TRUE)
plot(Ht ~ Pos, data= perf_data)
```


By checking the plot, we do see height and position are highly correlated. *center* has highest mean of height, forward has shortest mean of height and forward has in between these two. Their value ranges also don't seem to cross each other significantly.

Solution for Problem 2

(a)

```
model {
   for (i in 1:length(FGM)) {
     FGM[i] ~ dbin(prob[i], FGA[i])
```

```
logit(prob[i]) <- beta_pos[Pos[i]] + beta_ht * Ht_Scaled[i]</pre>
        FGM_rep[i] ~ dbin(prob[i], FGA[i])
    }
    for (j in 1:max(Pos)) {
        beta_pos[j] ~ dt(0, 0.01, 1)
    beta ht \sim dt(0, 0.16, 1)
}
library(rjags)
df_jags_1 <- list( FGM = perf_data$FGM, FGA = perf_data$FGA,</pre>
                   Pos = unclass(perf_data$Pos),
                   Ht_Scaled = as.vector(scale(perf_data$Ht, scale=2*sd(perf_data$Ht))))
initial_vals_1 <- list(list(beta_pos = c(10,10,10), beta_ht=10),</pre>
                        list(beta pos = c(10, 10, -10), beta ht=-10),
                        list(beta_pos = c(10, -10, 10), beta_ht=-10),
                        list(beta pos = c(10,-10,-10), beta ht=10))
model_1 <- jags.model("perf_1.bug", df_jags_1, initial_vals_1, n.chains = 4,</pre>
                       n.adapt = 1000)
update(model_1, 1000)
#Need only check top-level parameters (in the DAG) for convergence.
x1 <- coda.samples(model_1, c("beta_pos", "beta_ht"), n.iter = 2000)</pre>
gelman.diag(x1, autoburnin=FALSE)
## Potential scale reduction factors:
##
##
               Point est. Upper C.I.
## beta ht
                        1
                                 1.00
## beta_pos[1]
                        1
                                 1.01
## beta_pos[2]
                        1
                                 1.01
                                 1.00
## beta_pos[3]
                        1
## Multivariate psrf
##
## 1
coef_sample_1 <- coda.samples(model_1, c("beta_pos","beta_ht","prob","FGM_rep"),</pre>
                               n.iter = 10000, thin = 5)
effectiveSize(coef_sample_1[,c("beta_pos[1]", "beta_pos[2]", "beta_pos[3]", "beta_ht")])
## beta_pos[1] beta_pos[2] beta_pos[3]
                                             beta_ht
##
      6477.117
                  5828.870
                               5433.513
                                           5000.387
(b)
summary(coef_sample_1[, c("beta_pos[1]", "beta_pos[2]", "beta_pos[3]", "beta_ht")])
##
```

```
## Iterations = 4005:14000
## Thinning interval = 5
## Number of chains = 4
## Sample size per chain = 2000
## 1. Empirical mean and standard deviation for each variable,
     plus standard error of the mean:
##
##
                  Mean
                           SD Naive SE Time-series SE
## beta_pos[1] -0.4524 0.2906 0.0032489
                                             0.0036267
## beta_pos[2] -0.0606 0.1112 0.0012436
                                             0.0014579
## beta_pos[3] -0.3346 0.0710 0.0007938
                                             0.0009682
## beta ht
               0.1377 0.1789 0.0019998
                                             0.0025543
##
## 2. Quantiles for each variable:
##
##
                  2.5%
                                     50%
                                              75%
                                                    97.5%
                            25%
## beta_pos[1] -1.0287 -0.64280 -0.44865 -0.25358 0.1061
## beta_pos[2] -0.2777 -0.13604 -0.05938 0.01606 0.1515
## beta_pos[3] -0.4733 -0.38276 -0.33470 -0.28653 -0.1964
## beta ht
              -0.2152 0.01372 0.13798 0.25776 0.4848
(c)
par(mfrow=c(2, 2))
plot(as.matrix(coef_sample_1)[,"beta_pos[1]"] ~ as.matrix(coef_sample_1)[,"beta_ht"],
     xlab = expression(paste(beta[H[t]])), ylab = expression(paste(beta[C])), pch='.')
plot(as.matrix(coef_sample_1)[,"beta_pos[2]"] ~ as.matrix(coef_sample_1)[,"beta_ht"],
     xlab = expression(paste(beta[H[t]])), ylab = expression(paste(beta[F])), pch='.')
plot(as.matrix(coef_sample_1)[,"beta_pos[3]"] ~ as.matrix(coef_sample_1)[,"beta_ht"],
     xlab = expression(paste(beta[H[t]])), ylab = expression(paste(beta[G])), pch='.')
```


According to the plots, β_C , β_F , β_G are correlated with β_{H_t} .

(d)

Density of Probability for Ayo Dosunmu

(e)

Probability of $\beta_F > \beta_G$,

```
beta_F = as.matrix(coef_sample_1)[, "beta_pos[2]"]
beta_G = as.matrix(coef_sample_1)[, "beta_pos[3]"]
mean(beta_F > beta_G)
```

[1] 0.9635

Bayes factor favoring $\beta_F > \beta_G$ versus $\beta_F < \beta_G$,

```
mean(beta_F > beta_G) / mean(beta_F < beta_G)</pre>
```

[1] 26.39726

Given the Bayes factor is between 20 to 150, we can say that the data has **Strong** evidence that $\beta_F > \beta_G$.

(f)

```
probs <- as.matrix(coef_sample_1)[, paste("prob[",1:nrow(perf_data),"]", sep="")]
FGM_rep <- as.matrix(coef_sample_1)[, paste("FGM_rep[",1:nrow(perf_data),"]", sep="")]
Tchi <- numeric(nrow(FGM_rep))
Tchirep <- numeric(nrow(FGM_rep))</pre>
```

```
for(s in 1:nrow(FGM_rep)){
  Tchi[s] <- sum((perf_data$FGM - perf_data$FGA * probs[s,])^2 /</pre>
                   (perf_data$FGA * probs[s,] * (1 - probs[s,])))
  Tchirep[s] <- sum((FGM rep[s,] - perf data$FGA * probs[s,])^2 /
                      (perf_data$FGA * probs[s,] * (1 - probs[s,])))
}
mean(Tchirep >= Tchi)
```

[1] 0.049375

The posterior predictive p-value is small, although not exceedingly so. Given we don't find any outliers, we conclude that there is a problem of overdispersion.

(g)

##

beta ht ## beta_pos[1]

```
(i)
model {
    for (i in 1:length(FGM)) {
        FGM[i] ~ dbin(prob[i], FGA[i])
        logit(prob[i]) <- beta_pos[Pos[i]] + beta_ht * Ht_Scaled[i] + epsilon[i]</pre>
        epsilon[i] ~ dnorm(0, 1 / sigma_epsilon^2)
        FGM_rep[i] ~ dbin(prob[i], FGA[i])
    }
    for (j in 1:max(Pos)) {
        beta_pos[j] ~ dt(0, 0.01, 1)
    }
    beta_ht ~ dt(0, 0.16, 1)
    sigma_epsilon ~ dunif(0,10)
}
df_jags_2 <- list( FGM = perf_data$FGM, FGA = perf_data$FGA,</pre>
                   Pos = unclass(perf_data$Pos),
                   Ht_Scaled = as.vector(scale(perf_data$Ht, scale=2*sd(perf_data$Ht))))
initial vals 2 \leftarrow list(list(beta pos = c(10,10,10), beta ht=10, sigma epsilon = 0.01),
                        list(beta_pos = c(10,10,-10), beta_ht=-10, sigma_epsilon = 9),
                        list(beta_pos = c(10,-10,10), beta_ht=-10, sigma_epsilon = 0.01),
                       list(beta_pos = c(10,-10,-10), beta_ht=10, sigma_epsilon = 9))
model_2 <- jags.model("perf_2.bug", df_jags_2, initial_vals_2, n.chains = 4,</pre>
                      n.adapt = 1000)
update(model_2, 1000)
x2 <- coda.samples(model_2, c("beta_pos", "beta_ht", "sigma_epsilon"), n.iter = 20000)
gelman.diag(x2, autoburnin=FALSE)
## Potential scale reduction factors:
```

Point est. Upper C.I. 1.00

1.00

1.01

1.01

```
## beta_pos[2]
                                   1.00
                        1.00
## beta_pos[3]
                        1.01
                                   1.01
## sigma_epsilon
                        1.00
                                   1.01
## Multivariate psrf
##
## 1.01
coef_sample_2 <- coda.samples(model_2, c("beta_pos", "beta_ht", "prob", "FGM_rep",</pre>
                                          "sigma_epsilon"), n.iter = 60000)
effectiveSize(coef_sample_2[,c("beta_pos[1]", "beta_pos[2]", "beta_pos[3]", "beta_ht",
                                "sigma_epsilon")])
##
     beta_pos[1]
                                  beta_pos[3]
                   beta_pos[2]
                                                     beta_ht sigma_epsilon
        6303.863
                      5247.294
                                     6967.143
                                                    4261.217
                                                                  4139.574
##
(ii)
densplot(coef_sample_2[, "sigma_epsilon"],
         main = expression(paste("Desity of ", sigma[epsilon])))
```

Desity of σ_{ϵ}


```
(iii)
beta_F = as.matrix(coef_sample_2)[, "beta_pos[2]"]
beta_G = as.matrix(coef_sample_2)[, "beta_pos[3]"]
mean(beta_F > beta_G)
```

```
## [1] 0.7888375
```

This posterior probability is smaller than previous model.

```
mean(beta_F > beta_G) / mean(beta_F < beta_G)</pre>
```

```
## [1] 3.735689
```

This Bayes factor favoring $\beta_F > \beta_G$ versus $\beta_F < \beta_G$ is much smaller than previous model, and we can only say the data has **Positive** (between 3 to 30) evidence that $\beta_F > \beta_G$.

Also Chi-square discrepancy,

```
## [1] 0.3781875
```

Thus we says no overdispersion problems for this model.

Solution for Problem 3

(a)

```
model {
    for (i in 1:length(BLK)) {
        BLK[i] ~ dpois(lambda[i])
        log(lambda[i]) <- log_MIN[i] + beta_pos[Pos[i]] + beta_ht * Ht_Scaled[i]</pre>
        BLK_rep[i] ~ dpois(lambda[i])
    }
    for (j in 1:max(Pos)) {
        beta_pos[j] ~ dnorm(0, 0.0001)
    beta_ht ~ dnorm(0, 0.0001)
}
df_jags_3 <- list( BLK = perf_data$BLK,</pre>
                   Pos = unclass(perf data$Pos),
                   log_MIN = log(perf_data$MIN),
                   Ht_Scaled = as.vector(scale(perf_data$Ht, scale=sd(perf_data$Ht))))
initial_vals_3 \leftarrow list(list(beta_pos = c(100,100,100), beta_ht=100),
                       list(beta_pos = c(100, 100, -100), beta_ht=-100),
                        list(beta_pos = c(100, -100, 100), beta_ht=-100),
                       list(beta_pos = c(100,-100,-100), beta_ht=100))
model_3 <- jags.model("perf_3.bug", df_jags_3, initial_vals_3, n.chains = 4,</pre>
                      n.adapt = 1000)
update(model_3, 1000)
x3 <- coda.samples(model_3, c("beta_pos","beta_ht"), n.iter = 2000)
gelman.diag(x3, autoburnin=FALSE)
## Potential scale reduction factors:
##
##
               Point est. Upper C.I.
## beta_ht
                     1.00
                            1.01
                     1.01
                                1.01
## beta_pos[1]
```

```
## beta_pos[2]
                     1.00
                                1.01
## beta_pos[3]
                     1.00
                                 1.00
##
## Multivariate psrf
##
## 1
coef_sample_3 <- coda.samples(model_3, c("beta_pos", "beta_ht", "lambda", "BLK_rep"),</pre>
                              n.iter = 20000, thin = 5)
effectiveSize(coef_sample_3[,c("beta_pos[1]", "beta_pos[2]", "beta_pos[3]", "beta_ht")])
## beta_pos[1] beta_pos[2] beta_pos[3]
                                            beta_ht
##
      4978.518
                  5321.187
                             10306.882
                                           4715.428
(b)
summary(coef_sample_3[, c("beta_pos[1]", "beta_pos[2]", "beta_pos[3]", "beta_ht")])
##
## Iterations = 4005:24000
## Thinning interval = 5
## Number of chains = 4
## Sample size per chain = 4000
## 1. Empirical mean and standard deviation for each variable,
##
      plus standard error of the mean:
##
##
                 Mean
                          SD Naive SE Time-series SE
## beta_pos[1] -5.304 0.6010 0.004751
                                             0.008587
## beta_pos[2] -4.515 0.2838 0.002243
                                             0.003930
## beta_pos[3] -4.449 0.1785 0.001411
                                             0.001761
## beta ht
                1.011 0.2722 0.002152
                                             0.003998
##
## 2. Quantiles for each variable:
##
                                         75% 97.5%
##
                  2.5%
                          25%
                                  50%
## beta_pos[1] -6.5089 -5.704 -5.290 -4.887 -4.153
## beta pos[2] -5.0990 -4.703 -4.506 -4.323 -3.977
## beta_pos[3] -4.8113 -4.566 -4.445 -4.326 -4.113
## beta_ht
                0.4937 0.827 1.005 1.192 1.559
(c)
beta_ht = as.matrix(coef_sample_3)[, "beta_ht"]
quantile(exp(beta_ht), c(0.025, 0.975))
##
       2.5%
               97.5%
## 1.638419 4.751957
```

The values within 95% central posterior credible interval are all greater than 1 and thus we can conclude that greater height is associated with a higher rate of blocking shots.

(d)

##

name

p_value

```
lambdas <- as.matrix(coef_sample_3)[, paste("lambda[",1:nrow(perf_data),"]", sep="")]</pre>
BLK_rep <- as.matrix(coef_sample_3)[, paste("BLK_rep[",1:nrow(perf_data),"]", sep="")]
Tchi <- numeric(nrow(BLK_rep))</pre>
Tchirep <- numeric(nrow(BLK_rep))</pre>
for(s in 1:nrow(BLK_rep)){
  Tchi[s] <- sum((perf_data$BLK - lambdas[s,])^2 / lambdas[s,])</pre>
  Tchirep[s] <- sum((BLK_rep[s,] - lambdas[s,])^2 / lambdas[s,])</pre>
 }
mean(Tchirep >= Tchi)
## [1] 0.0074375
The posterior predictive p-value is extremely small. Thus this could indicate a problem of overdispersion.
(e)
(i)
p_sample <- matrix(FALSE, nrow = nrow(BLK_rep), ncol = nrow(perf_data))</pre>
for(s in 1:nrow(BLK_rep)){
  p_sample[s,] <- BLK_rep[s,] >= perf_data$BLK
}
p = apply(p_sample, 2, mean)
p_df = data.frame(name=perf_data$Player, p_value=p)
p_df
##
                        name
                                p_value
## 1
      Bezhanishvili, Giorgi 0.5950625
## 2
                 Cayce, Drew 1.0000000
## 3
         De La Rosa, Adonis 0.9982500
## 4
               Dosunmu, Ayo 0.7986250
## 5
               Feliz, Andres 0.9553750
## 6
             Frazier, Trent 0.9503125
               Griffin, Alan 0.0218125
## 7
## 8
             Griffith, Zach 1.0000000
## 9
               Jones, Tevian 0.9768750
## 10
               Jordan, Aaron 0.1902500
                 Kane, Samba 0.0043125
## 11
            Nichols, Kipper 0.3206250
## 12
## 13
          Oladimeji, Samson 1.0000000
## 14
           Underwood, Tyler 1.0000000
## 15
         Williams, Da'Monte 0.0885625
(ii)
p_df[p_df^p_value < 0.05,]
```

10

```
## 7 Griffin, Alan 0.0218125
## 11 Kane, Samba 0.0043125
```

(iii)

```
p_df[p_df$p_value == 1,]
```

By looking at the data, these players all got 0 shot blocks, since the y_i^{rep} can't be lower than 0, thus it must be greater or equal to y_i .