

WHAT IS CLAIMED IS:

1. A method of increasing speed of a silver halide color photosensitive material by at least one type of a compound represented by the following general formula (M) or general formula (C):

5

10

in the general formula (M), R_{101} represents a hydrogen atom or substituent; Z represents a group of non-metallic atoms required to form a 5-membered azole ring containing 2 to 4 nitrogen atoms, wherein the azole ring may have a substituent, including a fused ring; and X represents a hydrogen atom or substituent; and

20

in the general formula (C), Za represents $-NH-$ or $-CH(R_3)-$; Zb and Zc independently represent $-C(R_4)=$ or $-N=$; R_1 , R_2 and R_3 independently represent an electron attractive group having a Hammett constant σ_p value of 0.2 to 1.0; R_4 represents a hydrogen atom or substituent wherein when there are two R_4 s in the formula, they may be the same or different; and X represents a hydrogen atom or substituent.

25

2. The method of increasing speed of a silver halide color photosensitive material according to claim 1, wherein, in the formula (M), the total number of carbon atoms of the substituents on the azole ring,

including R₁₀₁, X and Z, is from 13 to 60.

3. The method of increasing speed of a silver halide color photosensitive material according to claim 1, wherein the method comprises adding, to the silver halide color photosensitive material, the compound represented by the general formula (M):

wherein R₁₀₁ represents a hydrogen atom or substituent; Z represents a group of non-metallic atoms required to form a 5-membered azole ring containing 2 to 4 nitrogen atoms, wherein the azole ring may have a substituent, including a fused ring; and X represents a hydrogen atom or substituent.

4. The method of increasing speed of a silver halide color photosensitive material according to claim 3, wherein the general formula (M) is represented by general formula (M-1):

wherein R₁₁ and R₁₂ independently represent a substituent; and X represents a hydrogen atom or substituent.

5. The method of increasing speed of a silver halide color photosensitive material according to

claim 3, wherein the general formula (M) is represented by general formula (M-3):

wherein R₁₁ and R₁₃ independently represent a substituent; and X represents a hydrogen atom or substituent.

6. The method of increasing speed of a silver halide color photosensitive material according to claim 1, wherein the addition of the compound represented by the general formula (M) or (C) changes a film pAg (ΔpAg_f) of the silver halide color photosensitive material by 0 to 0.3.

7. The method of increasing speed of a silver halide color photosensitive material according to claim 1, wherein the compound represented by the general formula (M) or (C) has a pKa value of 6.0 to 8.4.

8. The method of increasing speed of a silver halide color photosensitive material according to claim 1, wherein the compound represented by the general formula (M) or (C) has a reactivity (CRV) with an oxidized color developing agent of 0.01 to 0.1.

9. The method of increasing speed of a silver halide color photosensitive material according to

claim 1, wherein the method comprises adding, to
a red-sensitive silver halide emulsion layer of the
silver halide color photosensitive material, the
compound represented by the general formula (M) or (C),
5 wherein R₁₀₁, Z, X, R₁, R₂, Za, Zb and Zc have the same
meanings as those in claim 1, respectively.

10 10. The method of increasing speed of a silver
halide color photosensitive material according to
claim 1, wherein the method comprises adding, to a
blue-sensitive silver halide emulsion layer of the
silver halide color photosensitive material, the
compound represented by the general formula (M) or (C),
wherein R₁₀₁, Z, X, R₁, R₂, Za, Zb and Zc have the same
meanings as those in claim 1, respectively;

15 11. The method of increasing speed of a silver
halide color photosensitive material according to
claim 4, wherein, in the general formula (M-1), X
represents an alkyl group, alkoxy carbonyl group,
carbamoyl group or a group that leaves by a reaction
20 with an oxidized developing agent.

25 12. The method of increasing speed of a silver
halide color photosensitive material according to
claim 4, wherein the compound represented by the
general formula (M-1) has a reactivity (CRV) with an
oxidized color developing agent of 0.01 to 0.1.

13. The method of increasing speed of a silver
halide color photosensitive material according to

claim 5, wherein the compound represented by the general formula (M-3) has a reactivity (CRV) with an oxidized color developing agent of 0.01 to 0.1.

14. The method of increasing speed of a silver
5 halide color photosensitive material according to
claim 11, wherein the compound represented by the
general formula (M-1) has a reactivity (CRV) with an
oxidized color developing agent of 0.01 to 0.1.

15. The method of increasing speed of a silver
10 halide color photosensitive material according to
claim 3, wherein the addition of the compound
represented by the general formula (M) changes a film
pAg (ΔpAg_F) of the silver halide color photosensitive
material by 0 to 0.3.

15 16. The method of increasing speed of a silver
halide color photosensitive material according to
claim 3, wherein the compound represented by the
general formula (M) has a pKa value of 6.0 to 8.4.

17. The method of increasing speed of a silver
20 halide color photosensitive material according to
claim 3, wherein the compound represented by the
general formula (M) has a reactivity (CRV) with an
oxidized color developing agent of 0.01 to 0.1.

25 18. The method of increasing speed of a silver
halide color photosensitive material according to
claim 3, wherein the compound represented by the
general formula (M) is added to a red-sensitive silver

halide emulsion layer of the silver halide color photosensitive material.

19. The method of increasing speed of a silver halide color photosensitive material according to
5 claim 3, wherein the compound represented by the general formula (M) is added to a blue-sensitive silver halide emulsion layer of the silver halide color photosensitive material.

20. The method of increasing speed of a silver halide color photosensitive material according to claim
10 1, wherein a layer of the photosensitive material containing tabular grains having an average aspect ratio of 8 or more, contains at least one compound represented by the general formula (M) or genera
15 formula (C) described in claim 1.