Integrating the Solar System

Applied Math 205 Group Activity

29-Oct-2021

Presented by:

Michael S. Emanuel

Physics of Gravitational Attraction

Newton's Law of Universal Gravitation

Newton's Law of Universal Gravitation

$$F = G \frac{m_1 m_2}{r^2}$$

$$G = 6.674 \times 10^{-11} \text{m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$$

- ullet Newton's Second Law of Motion F=ma
- Calculate the acceleration of body 2 due to body 1
 - The mass m₂ cancels out

$$a = -G \frac{m_1}{\|\mathbf{r}\|^2} \hat{\mathbf{r}}$$

N-Body Problem Formulation

- Consider n point masses of mass m_i , i = 1, 2, ... n
- Write the vector q_i for the position of body i
- Get a coupled second order ODE for the positions

$$\frac{d^2\mathbf{q}_i}{dt^2} = G \cdot \sum_{\substack{i=1\\j\neq i}}^n \frac{m_i m_j (\mathbf{q}_j - \mathbf{q}_i)}{\|\mathbf{q}_j - \mathbf{q}_i\|^3}$$

- This can be solved analytically only in the case that n=2
- A solution also exists for n=3 when one of the particles has zero mass

Conserved Quantities: **p**, **L**, H

- The gravitational equation describes a conservative system
- Important conserved quantities include momentum, angular momentum, and energy

Momentum:
$$\mathbf{p} = \sum_{i=1}^{n} m_i \mathbf{v}_i$$

Angular Momentum:
$$\mathbf{L} = \sum_{i=1}^{n} m_i \mathbf{q}_i \times \mathbf{v}_i$$

Momentum:
$$\mathbf{p} = \sum_{i=1}^{n} m_i \mathbf{v}_i$$

$$T = \frac{1}{2} \sum_{i=1}^{n} m_i \|\mathbf{v}_i\|^2$$

$$U = -G \cdot \sum_{i=1}^{n} \frac{m_i m_j}{\|\mathbf{q}_i - \mathbf{q}_j\|}$$

$$H = T + U \quad \text{(total energy)}$$

Choosing an Inertial Frame and Units

Choosing an Inertial Frame

- Momentum conservation makes it convenient to work in a frame of reference where the total momentum is zero
- This is the frame of the center of mass, or "barycenter"
- The Solar System Barycenter is physically defined, but how do we orient the coordinate axes?
- BME: Barycentric Mean Ecliptic use Earth's orbit; intuitive
- ICRF: International Celestial Reference Frame modern, precise

International Celestial Reference Frame (ICRF)

The Celestial Reference Frame Observed by Radio Waves at 24 GHz

Barycentric Mean Ecliptic Frame

Convert between ICRF and BME using astropy library:
 obs_icrs = astropy.SkyCoord(ra=ra, dec=dec, obstime=obstime, frame=ICRS)
 obs_ecl = obs_icrs.transform_to(BarycentricMeanEcliptic)

Right Ascension and Declination

- Fundamental plane is aligned with Earth's equator
- Intuitive, dates to ancient astronomers
- Two problems: precession (drift) and nutation (wobbles) in direction of North Pole

Recommend Units for Solar System Dynamics

- For dynamical calculations in the Solar System, units must be chosen for mass, length, and time
- SI units are great for physics... most of the time
- But for Solar System problems, the scales are not convenient
- A convenient set of units is based on our Solar System
- Mass: a conventional figure for the mass of the sun M_{\odot}
- Length: the astronomical unit; the average distance Sun to Earth
- Time: one **day** (86,400 seconds)

Astronomical Units and Solar Masses

- The astronomical unit (au) was historically defined as the mean distance from Sun to Earth
- Modern definition: 1 au = 149 597 870 700 meters
- The solar mass M_{\odot} is approximately $1.988~48\pm0.000~07\times10^{30}{
 m kg}$
- ullet The solar mass parameter GM_{\odot} is easier to measure

$$GM_{\odot} = 1.323 \ 124 \ 400 \ \times 10^{20} \text{m}^3 \text{s}^{-2}$$

- One day is conventionally defined as $24 \times 60 \times 60 = 86,400$ seconds
- The gravitational constant G (per JPL) in units $(M_{\odot}, {
 m au}, {
 m day})$ is

$$G \cdot M_{\odot} = 2.959 \ 122 \ 082 \ 855 \ 910 \ 95 \times 10^{-4} \ \mathrm{au^3 day^{-2}}$$

Modified Julian Dates (MJDs)

- Astronomy has its own unique conventions for times and dates
 - Need a simple linear scale allowing for easy subtraction of datetimes that are far apart
- A Julian period is the product of three cycles:
 - 28 (solar cycle) x 19 (lunar cycle) x 15 (indiction cycle) = 7980 years (!)
 - This made it possible to correctly assign the year to ancient historical events
- The Julian day: # days since Julian period that began at 12:00 January 1, 4713 BC
- Since this is cumbersomely large, the Modified Julian Date (MJD) is defined as
 MJD = JD 2400000.5
- The **epoch** of the MJD is 0:00 November 17, 1858
- To convert between a JD and a Unix time use UnixTime = (JD – 2440587.5) x 86400
- Better idea... NEVER write these formulas yourself! Understand them once, then use a library for actual calculations.
- The MJD of today's date (29-Oct-2021) is 59516

Two Body Problem: Analytic Solution

Kepler's Laws of Planetary Motion

- 1. The orbit of a planet is an ellipse with the Sun at one focus
- 2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time
- 3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit

Reference Text: Solar System Dynamics

Aside: Definitive Books > Wikipedia

- Here is a random aside I wanted to share with you
- This is something I learned in graduate school in my forties
 - So it's not entirely obvious
- Wikipedia is amazing-free, convenient, high quality
- But... it is not the most definitive source of knowledge in the world
- If you are doing serious work in a field, spend some time trying to determine whether there are any "classical" or definitive text
- In the case of integrating the solar system, Solar System Dynamics (C.D. Murray and S.F. Dermott) is the acknowledged classic
- You will also see it cited in the rebound software documentation

Relative Motion is Elliptical

Two Body ODE- Cartesian Coordinates

- Let \mathbf{r}_1 and \mathbf{r}_2 be positions of two bodies with masses \mathbf{m}_1 and \mathbf{m}_2
- Let $r = r_2 r_1$ be their relative displacement
- Let $r = \|\mathbf{r}\|$ be scalar distance between them

$$\begin{vmatrix} \ddot{\mathbf{r}}_1 = +\frac{Gm_2\mathbf{r}}{r^2} \\ \ddot{\mathbf{r}}_2 = -\frac{Gm_1\mathbf{r}}{r^2} \end{vmatrix}$$

$$\mu \equiv G(m_1 + m_2)$$

$$\frac{d^2\mathbf{r}}{dt^2} + \frac{\mu\mathbf{r}}{r^3} = 0 \quad (SSD \ 2.5)$$

• Specific angular momentum is conserved:

$$\mathbf{h} = \mathbf{r} \times \dot{\mathbf{r}} = \text{const} \quad (SSD 2.6)$$

Two Body ODE — Polar Coordinates

Switch from Cartesian to polar coordinates (SSD 2.7)

$$\mathbf{\dot{r}} = r\mathbf{\hat{r}}$$

$$\mathbf{\dot{r}} = \dot{r}\mathbf{\hat{r}} + r\dot{\theta}\hat{\theta}$$

$$\mathbf{\ddot{r}} = (\ddot{r} - r\dot{\theta}^2)\mathbf{\hat{r}} + \left(\frac{1}{r}\frac{d}{dt}(r^2\dot{\theta})\right)\hat{\theta}$$

• Specific angular momentum conservation: $h=r^2\dot{\theta}$

$$h = r^2 \dot{\theta}$$

Kepler's Second Law true for any central force:

$$\frac{dA}{dt} = \frac{1}{2}r^2\frac{d\theta}{dt} = \frac{1}{2}h$$

Two Body ODE – Reciprocal Distance

Match radial components in SSD 2.5

$$\ddot{r} - r\dot{\theta}^2 = -\frac{\mu}{r^2} \quad (SSD 2.11)$$

- Introduce substitution |u=1/r| and use constant
- Differentiate r with respect to time twice to get SSD $^h2.\overline{1}2^{r^2\theta}$

$$r = -\frac{1}{u^2} \frac{du}{d\theta} \dot{\theta} = -h \frac{du}{d\theta}$$

$$\ddot{r} = -h \frac{d^2u}{d\theta^2} \dot{\theta} = -h^2 u^2 \frac{d^2u}{d\theta^2}$$

• Transformed version of SSD 2.11 in terms of u

$$\frac{d^2u}{d\theta^2} + u = \frac{\mu}{h^2}$$
 (SSD 2.13)

Two Body ODE — Solution

Equation SSD 2.13 has an analytical solution!

$$u = \frac{\mu}{h^2} [1 + e \cos(\theta - \varpi)]$$
 (SSD 2.14)

Express solution in terms of radial distance r

$$r = \frac{p}{1 + e\cos(\theta - \varpi)}$$
 (SSD 2.15) $p = \frac{h^2}{\mu}$ (SSD 2.12)

$$p = \frac{h^2}{\mu} \quad (SSD \ 2.12)$$

- p is called the **semi-latus rectum**
- e is called the eccentricity
- ϖ is called the **longitude of pericenter**

Elliptical Orbits for Two Body Solution

- a is the **semi-major axis**
- b is the semi-minor axis

$$b^2 = a^2(1 - e^2)$$
 (SSD 2.18)

Polar equation of ellipse

$$r = \frac{a \cdot (1 - e^2)}{1 + e \cos(f)} \quad (SSD 2.20)$$

- f is called the true anomaly
- Transformation to Cartesian coordinates

$$x = r \cos f \text{ (SSD 2.21)}$$
$$y = r \sin f$$

Fig. 2.5. The geometry of the ellipse of semi-major axis a, semi-minor axis b, eccentricity e, and longitude of pericentre ϖ .

- When f=0, r=a(1-e); called **pericenter**
- When $f=\pi$, r = 1(1+e); called **apocenter**
- Fastest at pericenter, slowest at apocenter
- Semi-major axis a sets size of ellipse
- Eccentricity e sets how elongated it is
- f controls position along the orbit

Keplerian Orbital Elements

Mean Motion nand Mean Anomaly M

- The orbital period T is $T^2 = \left(4\pi^2/\mu\right)a^3$ (SSD 2.22)
- Consistent with Kepler's Third Law!
- Angle θ sweeps out 2π radians per orbital period T
- Define the mean motion n as average angular velocity

$$n = 2\pi/T \quad (SSD \ 2.25)$$

• n also relates to μ and specific angular momentum h via

$$\mu = n^2 a^3$$
 $h = na^2 \sqrt{1 - e^2} = \sqrt{\mu a(1 - e^2)}$ (SSD 2.26)

• Define the mean anomaly M as a fictitious angle that's linear in time

$$M = n(t - \tau) \quad (SSD 2.39)$$

• τ is called the time of pericenter passage and a constant

Eccentric and True Anomaly

Fig. 2.7. (a) The circumscribed, concentric circle has a radius a equal to the semi-major axis of the ellipse. (b) The relationship between the true anomaly f and the eccentricanomaly E.

Eccentric Anomaly Equations

Centered ellipse equation

$$\left(\frac{\bar{x}}{a}\right)^2 + \left(\frac{\bar{y}}{b}\right)^2 = 1 \quad (SSD 2.40)$$

• Cartesian coordinates from a and E

$$x = a(\cos E - e)$$
 $y = a\sqrt{1 - e^2}\sin E$ (SSD 2.41)

• Distance r from a, e and E (Do $x^2 + y^2$)

$$r = a(1 - e\cos E) \quad (SSD 2.42)$$

Relationship between E and f – useful!

$$\tan\left(\frac{f}{2}\right) = \sqrt{\frac{1+e}{1-e}} \tan\left(\frac{E}{2}\right) \quad (SSD 2.46)$$

Fig. 2.7. (a) The circumscribed, concentric circle has a radius a equal to the semi-major axis of the ellipse. (b) The relationship between the true anomaly f and the eccentric anomaly E.

Kepler's Equation: Relating M and E

- Calculate \dot{x} and \dot{y} from SSD 2.41, then compute $\mathbf{r} \times \mathbf{\dot{r}}$
- The magnitude of this is equal to h; use SSD 2.26 and

$$\frac{dE}{dt} = \frac{n}{1 - e\cos E} \quad (SSD \ 2.50)$$

• Integrate this and match the boundary condition E=0 at $t=\tau$ and

$$M = E - e \sin E \quad (SSD 2.52)$$

- This is the famous **Kepler's Equation**
 - Kepler's Equation cannot be solved analytically for E as a function of M
 - But it can be solved numerically efficiently using Newton-Raphson
- This method allows us to compute two orbits as a function of time!

Orienting the Orbit in Space

- We've perfectly solved the two body problem in its orbital plane
- The orbit is described by 3 elements: a, e, f
- If you only wanted the orbit of one body around the Sun, you could choose the frame so the ecliptic was the XY plane
- But there are many bodies of interest in the Solar System all orbiting in different planes
- We would like a formalism to permit us to orient our planar 2D orbits into 3D space with one preferred frame (e.g. BME)
- This is what the remaining orbital elements i, Ω , ω do

Keplerian Orbital Elements

Image Credits: WikiPedia, Cool Cosmos

- Semi-major axis a and eccentricity e describe the size and shape of the orbital ellipse
- Inclination i, ascending node Ω , perihelion ω are angles orienting orbit in the ecliptic plane
- True anomaly f is location of the body on its orbital ellipse

Mapping Elements to Cartesian Coordinates

- The three angles define rotation matrices
- The equation mapping from orbital elements to Cartesian coordinates

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = r \begin{bmatrix} \cos \Omega \cos(\omega + f) - \sin \Omega \sin(\omega + f) \cos I \\ \sin \Omega \cos(\omega + f) + \cos \Omega \sin(\omega + f) \cos I \\ \sin(\omega + f) \sin I \end{bmatrix}$$
(SSD 2.122)

- This can be inverted, but it's a bit messy, and sometimes the answer is not unique (e.g. if e=0)
- The most common scenario is to convert from (a, e, I, Ω , ω , f) to (q_x, q_y, q_z, v_x, v_y, v_z)
- It's also possible to fit Kepler elements from Cartesian vectors

Three Body Solution: Analytic Solution

Just Kidding

- Just kidding! There is no known complete analytical solution to the full Three Body Problem
- There is a beautiful solution to the Restricted Three Body Problem
- That has two massive bodies (think Sun and Jupiter) and solves for the motion of a massless "test particle" (think Earth, approximately)

The Three-Body Problem: Sci Fi

N-Body Problem: Numerical Solution with Rebound

Reality Check: Numerical Integrators!

- The analytical solution to the two body solution is elegant
- It's historically important and gives useful, fast approximations for the Solar System, but...
- Reality check: if you want Solar System orbits "for real" and not on a school homework problem...
- You are going to do it numerically on a computer!
- While Python odeint is a good general purpose tool...
- Gravitational N-body integrators are a well studied problem with highly optimized packages available

REBOUND Integrator for N-Body Problem

- REBOUND is a modern, open source integrator
 - It numerically solves the gravitational N-body problem
 - IAS15 adaptive integrator uses Gauss-Radau quadrature and a "predictor-corrector" scheme
 - github.com/hannorein/rebound and PyPI
- Horizons: API provided by NASA JPL to obtain state vectors (position and velocity) of objects in the Solar System
 - Considered "gold standard" for initial conditions of an integration

First Simulation with Rebound

- See 01-GetStarted.ipynb
- Key statements:

```
import rebound
sim = rebound.Simulation()
sim.units = ('day', 'AU', 'Msun'
sim.add(m=1.0)
sim.add(m=3.003E-6, a=1.0, e=0.0167)
sim.integrate(t, exact_finish_time=1)
sim.serialize_particle_data(xyz=q[i])
```


Getting the Initial Conditions from Horizons

- See 02-Planets.ipynb
- Key statements:

```
body_names = ['Sun', 'Earth',
    'Moon', 'Jupiter Barycenter'...]
date = 'JD240059000.5'
sim.t = 59000.0
sim.add(body, date=date)
sim.save('planets_59000.bin')
sim = rebound.Simulation(
    'planets_59000.bin')
```


Appendix

Some uses I made of REBOUND in my own research

Validating Integration vs. Horizons

- Integrate three massive body collections and asteroids
- Error metrics: position in (AU) and instantaneous angle from asteroid to Earth (arc seconds)
- Accuracy is excellent!
 - RMS error on planets is 5.4E-6 AU
 - Angle error from asteroids to planets 0.8 arc seconds

Bulk Integration of 733,489 Asteroids

```
# Load all the asteroid elements
ast elt = load ast elt()
ast_elt
                    Name
                           epoch
                                                                                                        Ref
            Num
                                                               Omega
                                                                         omega
   Num
                          58600.0 2.769165 0.076009 0.184901 1.401596 1.284522 1.350398
                                                                                          3.34 0.12
                                                                                                             1.501306
      2
                          58600.0 2.772466 0.230337 0.608007 3.020817 5.411373 1.041946
                                                                                          4.13 0.11
                          58600.0 2.669150 0.256942 0.226699 2.964490 4.330836 0.609557
                                                                                          5.33 0.32 JPL 108
                                                                                                             0.996719
                          58600.0 2.361418 0.088721 0.124647 1.811840 2.630709 1.673106
                                                                                          3.20 0.32
      4
                          58600.0 2.574249 0.191095 0.093672 2.470978 6.260280 4.928221
                  2019 OG
                          58600.0
                                  0.822197 0.237862 0.220677
                                                             5.066979
                                                                      3.770460
                                                                                0.503214
                                                                                                             0.807024
                  2019 QL 58600.0 2.722045 0.530676 0.113833 4.741919 2.351059 5.297173 19.21 0.15
                                                                                                       JPL 1 -2.082964
                                                                                                            -3.081905
                 2019 QQ 58600.0 1.053137 0.389091 0.172121 5.648270
                                                                       2.028352
                                                                                3.266522 25.31 0.15
                                                                                                             2.827595
                                   2.334803
                                           0.282830
                                                    0.141058
                                                              6.200287
                                                                       0.091869
1255514 1255514 6344 P-L 58600.0 2.812944 0.664688 0.081955 3.199363 4.094863 2.738525 20.40 0.15
```

733489 rows × 19 columns 42

Validate Asteroid Integration vs. Horizons

- Test bulk asteroid integration on first 25 IAU asteroids
- Excellent results! RMS 2.49E-6 AU and 0.45 arc seconds

