Error Exponents in Asynchronous Communication

Da Wang, with Venkat Chandar, Sae-Young Chung, Greg Wornell

Signals, Information and Algorithms Laboratory

ISIT 2011, St. Petersburg
August 2, 2011

Overview of Synchronization

Multiple levels of synchronization

- Carrier synchronization
 - PLL, maybe pilot assisted
- Symbol synchronization/timing recovery
 - Match filter, DLL
- Frame synchronization
 - Initial/One-shot frame synchronization
 - Continuous frame synchronization

Scope of this talk

- Point-to-point communication
- Timing uncertainy in initial frame synchronization

Two communication scenarios

Traditional

Cost of synchronization: low, due to amortization

Emerging

- Examples: sensor networks, etc.
- Cost of synchronization: high, as amortization is insignificant

Separate vs.joint synchronization and coding

Joint synchronization and coding

symbols for both synchronization and information

Question

What is the performance loss of separate synchronization and coding, comparing to optimal joint synchronization and coding?

Asynchronous channel model

Asynchronous DMC $(\mathcal{X}, \star, \mathcal{Y}, W)$

- First proposed in [1]
- DMC with a special symbol *
 - input symbol when nothing is sent.
 - models the effect of noise at channel output

Channel

■ Tx sends codewords at time $t_1, t_2, ...$

Asynchronous channel model Examples

Asynchronous BSC

- lacksquare crossover probability arepsilon
- $\blacksquare W(\cdot | \star) = \mathsf{Bernoulli}(u).$

Asynchronous AWGN Channel

$$Y^n = \begin{cases} X^n + Z^n & \text{TX transmits} \\ Z^n & \text{TX silent} \end{cases}$$

- $\blacksquare X^n$: average signal power P
- \blacksquare Z^n : average noise power 1

Asynchronous channel model Slotted channel assumption

Each slot has length n, and contains

- either a noise sequence \star^n ,
- or a codeword sequence
- example:

Receiver in asynchronous communication

In each time slot, received channel output y^n

 H_0 : induced by noise sequence

vs. H_1 : induced by some codeword $x^n(m)$

A binary (composite) hypothesis testing problem

Channel code
$$C = \{x^n(m)| m = 1, 2, \cdots, M = e^{nR}\},\$$

$$\begin{cases} H_0: & Y_i \stackrel{i.i.d.}{\sim} W\left(\cdot \mid \star\right) \\ H_1: & Y^n \sim W^n\left(\cdot \mid x^n(m)\right) \quad m \in \{1, 2, \cdots, M\} \end{cases}$$

Error events

- Miss: detect codeword as noise
- False alarm: detect noise as codeword
- **Decoding error**: decode into the wrong codeword

Performance metrics in asynchronous communication

Performance metrics

- Rate R
- Miss probability: $P_{
 m m}$
- False alarm probability: Pf
- Decoding error probability: P_d
- Error exponents: $E_{\rm m}$, $E_{\rm f}$, $E_{\rm d}$

$$P \approx \exp\left(-nE\right)$$

 $n \approx -\frac{1}{E} \log P$

Central questions

For an asynchronous DMC $(\mathcal{X}, \star, \mathcal{Y}, W)$,

- What are the fundamental tradeoffs between E_m and E_f , given $P_{
 m m}, P_{
 m f}, P_{
 m d} o 0$?
 - Part I of the talk
- How do these tradeoffs compared with those obtained from the separate synchronization and coding approach?
 - Part II of the talk

Part I:

Fundamental Tradeoffs

Regimes of interest

General scenario

Given rate R, $P_{\rm m}$, $P_{\rm f}$, $P_{\rm d} \to 0$ as $n \to \infty$,

- Find the trade-off between $E_{
 m m}$ and $E_{
 m f}$
- Similar to the Neyman-Pearson setup, but the objects of interest are error exponents.
- Results:
 - achievability schemes for DMC and AWGN channels: constant composition code
 - (multi-letter) outer bound for DMC

Special case

Given $P_{\rm m} \to 0$ ($E_{\rm m}=0$), what is the optimal $E_{\rm f}$?

- Motivation: communication really sparse
- ✓ Complete characterization $E_{\rm f}(R)$
- focus of this talk

Optimal $E_{\rm f}$ with $P_{\rm m} \to 0$ Main theorem

Define

$$P_{Y}(\cdot) \triangleq \sum_{x} W(\cdot | x) P_{X}(x)$$
$$W_{\star} \triangleq W(\cdot | \star),$$

then

$$\begin{split} E_{\mathrm{f}}(R) &= \max_{P_X: I(P_X, W) \geq R} D\left(P_Y \parallel W_\star\right) + I(P_X, W) - R \\ &= \max_{P_X: I(P_X, W) = R} D\left(P_Y \parallel W_\star\right) \end{split}$$

- lacksquare Optimal $E_{
 m f}$ is the KL-divergence between
 - output distribution of the codebook P_Y
 - output distribution of the \star symbol W_{\star}
- The two expressions correspond to two achievability schemes

Optimal $E_{\rm f}$ with $P_{\rm m} \to 0$ Two achievability schemes

Joint detection & decoding

- i.i.d.codebook P_X with $I(P_X, W) \ge R$
- Detect & decode simultaneously based on joint typicality
- Geometric view:

$$I(P_X, W) = R$$
 $I(P_X, W) > R$

More flexible codebook choice

Optimal $E_{\rm f}$ with $P_{\rm m} \to 0$ Two achievability schemes

Joint detection & decoding

- i.i.d.codebook P_X with $I(P_X, W) > R$
- Detect & decode simultaneously based on joint typicality
- Geometric view:

$$I(P_X, W) = R$$
 $I(P_X, W) > R$

More flexible codebook choice

Simpler detection

- i.i.d.codebook P_X with $I(P_X, W) = R$
- Detect based on output distribution
- Geometric view:

- Simpler detection rule
- Regular decoding afterwards

Optimal $E_{\rm f}$ with $P_{\rm m} \to 0$ Example: Asynchronous BSC

Optimal $E_{\rm f}(R)$

$$E_{\mathbf{f}}(R) = D\left(s \parallel u\right)$$

where $s \ge 0.5$ satisfies

$$H_b(s) - H_b(\varepsilon) = R.$$

BSC with $\varepsilon = 0.01$

Optimal $E_{\rm f}$ with $P_{\rm m} \to 0$ Example: Asynchronous AWGN

Optimal $E_{\rm f}(R)$

$$E_{\rm f}(R) = {\sf SNR}/2 - R$$

AWGN with SNR = 10 = 20 dB

Part II:

Suboptimality of Separate Synchronization and Coding

Separate synchronization and coding (training)

Training-based scheme (separate synchronization and coding)

- ullet detection algorithm operates on the k synchronization symbols only
- [2] shows training-based schemes achieve vanishing false alarm error exponent at capacity except for degenerate cases.
- With the slotted model, we quantify the performance loss due to training at any rate $R \in [0, C)$.

[2] Chandar et al., "Training-based schemes are suboptimal for high rate asynchronous communication",

2009

Optimal $E_{\rm f}$ with $P_{\rm m} \to 0$ Performance of separate synchronization–coding

Training: best performance

$$E_{\rm t}(R) = (1 - R/C) D(W(\cdot | s^*) || W_{\star})$$

where
$$s^* = \arg \max_{s \in \mathcal{X}} D\left(W\left(\cdot \mid s\right) \| W_{\star}\right)$$
.

standard large deviation argument

Optimal $E_{\rm f}$ with $P_{\rm m} \to 0$

Training-based scheme is suboptimal almost everywhere

Training-based scheme is suboptimal almost everywhere

For an asynchronous DMC $(\mathcal{X},\star,\mathcal{Y},W)$ and $0 < R \le C$,

$$E_{\mathrm{t}}(0) = E_{\mathrm{f}}(0)$$
 and $E_{\mathrm{t}}(R) \leq E_{\mathrm{f}}(R)$.

Furthermore, if the capacity achieving output distribution P_Y^* satisfies $D\left(P_Y^* \parallel W_\star\right) > 0$, then for all R>0,

$$E_{\rm t}(R) < E_{\rm f}(R)$$
.

Proof: based on the concavity of $E_{\rm f}(R)$.

Training-based scheme is suboptimal almost everywhere Example: BSC & AWGN

BSC with
$$\varepsilon = 0.01, u = 0.1$$

AWGN with SNR=20dB

- Larger gap at higher rate
- Smaller difference at lower rate

Trade-off between $E_{\rm m}$ and $E_{\rm f}$

Special case: BSC with $u=0.5\,$

achievable performance: joint sync–codingoptimal detection: separate sync–coding

Trade-off between $E_{\rm m}$ and $E_{\rm f}$ Special case: AWGN with SNR= $20{\rm dB}$

achievable performance: joint sync-codingoptimal detection: separate sync-coding

Concluding Remarks

Insights

- We quantify the suboptimality of training-based schemes
 - The performance loss is significant in the high rate regime.
 - Advanced the insights from [3].
- Coding schemes for joint synchronization and coding
 - ▶ To maximize $E_{\rm f}(R)$, i.i.d.codebook is sufficient
 - Typicality decoding, or
 - Detection based on empirical distribution
 - For tradeoff between $E_{\rm f}$ and $E_{\rm m}$, constant composition codebook is better than the i.i.d.codebook.

Backup slides

Discussions

Discussion: slotted vs.unslotted model

$$synchronize = \underbrace{\frac{\text{detect the presence}}{\text{detect the presence}} + \text{locate the position}}_{\text{unslotted model}}$$

Optimal $E_{\rm f}$ with $P_{\rm m} \to 0$

- [4] shows that, in the unslotted model, after detection, using a prefix with sub-linear length is sufficient to locate the codeword with $P_{\rm m} \rightarrow 0$
 - sub-linear length: does not affect the error exponents $E_{
 m f}$
 - prefix design: maximum length shift register sequence
- Results of slotted model also hold for the unslotted model!

Positive $E_{\rm m}$ requirement

- Stronger requirement for "position location"
- Results for slotted model do not hold for the unslotted model.
 - Only serve as "upper bounds"

Connection to the Single Message Unequal Error Protection

Similarities

Single message UEP	Asynchronous Communication
Special codeword	Noise sequence \star^n
Regular codewords	Codewords
Miss (special codeword)	False alarm (of noise sequence)
False alarm (of regular codeword)	Miss (a codeword)

Differences

- In UEP, one can design the special codeword
- In asynchronous communication, it is constrained to be repetition (of \star).

Asynchronous communication

can be viewed as UEP with constraint on special message design can be extended to obtain results on single message UEP that is more general than [5]

Future directions

- More complete characterization of the error exponents
- Sequential detection
- Unslotted model

More details

Detailed analysis

Acceptance region for codewords: A_n

- If $y^n \in \mathcal{A}_n$, we consider the channel input to be a certain codeword $x^n(m)$
- otherwise we consider the channel input as \star^n .
- \blacksquare \mathcal{A}_n : the acceptance region for codewords
- lacksquare $\mathcal{B}_n riangleq \mathcal{A}_n^c$ to be the rejection region for codewords

Error probabilities analysis

$$\begin{split} P_{\mathbf{m}}\left(\mathcal{C}^{(n)}\right) &\triangleq \max_{m} P_{\mathbf{m}}(m) &\triangleq \max_{m} W^{n}\left(\mathcal{A}_{n}^{c} \mid x^{n}(m)\right) \\ P_{\mathbf{f}}\left(\mathcal{C}^{(n)}\right) &\triangleq W^{n}\left(\mathcal{A}_{n} \mid \star^{n}\right) &\triangleq W_{\star}^{n}(\mathcal{A}_{n}) \\ P_{\mathbf{d}}\left(\mathcal{C}^{(n)}\right) &\triangleq \max_{m} P_{\mathbf{d}}(m) &\triangleq \max_{m} \sum_{\hat{m} \neq m} W^{n}\left(g_{n}^{-1}(\hat{m}) \mid f_{n}(m)\right) \end{split}$$

Scenario 1

Optimal $E_{\rm f}$ with $P_{\rm m} \to 0$

Optimal $E_{\rm f}$ with $P_{\rm m} \to 0$

Main idea

- $lacksquare P_{
 m m}
 ightarrow 0$ and $P_{
 m d}
 ightarrow 0$
 - ▶ The acceptance region A_n for codewords cannot be too small
 - Essentially no smaller than the union of each codeword's typical shell
- P_f cannot be too small
 - \triangleright as the chance that \star^n falls into the acceptance region cannot be too small

Technique

- First prove it for constant composition code
- Then extends to general code
- Every code has a constant composition subcode with essentially the same rate

Scenario 2

Optimal $E_{\rm m}$ with $P_{\rm f} \to 0$

Optimal $E_{\rm m}$ with $P_{\rm f} \to 0$ Main results

$$\underline{E_{\mathrm{m}}}(R) \le E_{\mathrm{m}}(R) \le \overline{E_{\mathrm{m}}}(R)$$

Lower bound

Let
$$\mathcal{V}_{\star} = \{V: \sum_{x} P_{X}(x)V\left(\cdot \mid x\right) = W_{\star}\},$$

$$\underline{E_{\mathbf{m}}}(R) = \max_{P_{X}: I(P_{X}, W) \geq R} \ \min_{V \in \mathcal{V}_{\star}} D\left(V \parallel W | P_{X}\right)$$

where $D(V \parallel W \mid P_X) \triangleq \mathbb{E}_{P_X} [D(V(\cdot \mid X) \parallel W(\cdot \mid X))].$

Upper bound

$$\overline{E_{\mathbf{m}}}(R) = \max_{P_X: I(P_X, W) \geq R} \mathbb{E}_{P_X} \left[D\left(W_\star \parallel W\left(\cdot \mid X\right)\right) \right],$$

Optimal $E_{\rm m}$ with $P_{\rm f} \to 0$

Achievability scheme

- $lue{}$ Constant composition codebook with type P_X
- **Rejection** region for codewords: typical shell of the noise sequence \star^n
- $V \in \mathcal{V}_{\star}$: "confusing" channel realizations
 - Makes the output type of a codeword same as **

Upper bound proof idea

- Rate R: a constraint on the codebook type P_X
- Consider a single codeword x^n with type P_X and \star^n
- Swap the role of the two sequences
 - xⁿ: "noise sequence"
 - ⋆ⁿ: "codeword sequence"
- Apply the result on $E_f(R)$, and average over the type P_X

Scenario 3

Trade-off between $E_{
m m}$ and $E_{
m f}$

Trade-off between $E_{\rm m}$ and $E_{\rm f}$ Achievability result for DMC

For an asynchronous DMC $(\mathcal{X},\star,\mathcal{Y},W)$, given a rate R and a miss error exponent constraint e_{m} ,

$$\frac{E_{\mathrm{f}}(R, e_{\mathrm{m}}) = \max_{P_X: I(P_X, W) \geq R} \min_{V: D(V \parallel W \mid P_X) \leq e_{\mathrm{m}}}}{\left[D\left(Q_V \parallel W_{\star}\right) + \left|I\left(P_X, V\right) - R\right|^{+}\right]}$$

where $Q_V(\cdot) = \sum_x P_X(x) V(\cdot \mid x)$.

Achievability

- $lue{\hspace{0.1cm}}$ a code achieves miss error exponent $e_{
 m m}$
 - \Rightarrow it also achieves $P_{\mathrm{m}} \to 0$ for any V s.t. $D\left(V \parallel W | P_X\right) \leq e_{\mathrm{m}}$
 - use the typical shell of all these Vs for the detection region of the noise sequence \star^n
- $\blacksquare \text{ Check: } e_{\mathrm{m}} = 0 \quad \Leftrightarrow \quad V = W \quad \Rightarrow \quad \underline{E_{\mathrm{f}}}(R, e_{\mathrm{m}} = 0) = E_{\mathrm{f}}(R)$

$$E_{\rm m}(R,e_{\rm f})$$

Similarly, given a rate R and a false alarm error exponent constraint $e_{\rm f}$, the following lower bound for the miss reliability function is achievable via a sequence of constant composition codebooks

$$\underline{E_{\mathbf{m}}}(R,e_{\mathbf{f}}) = \max_{P_X:I(P_X,W) \geq R} \min_{V:D(Q_V \parallel Q_Y) \leq e_{\mathbf{f}}} D\left(V \parallel W | P_X\right).$$

Trade-off between $E_{\rm m}$ and $E_{\rm f}$ Special case: BSC with u=0.5

Joint Synchronization & Coding

$$e_{\mathrm{f}}(\delta) \leq D(\delta \| u)$$

$$e_{\mathbf{m}}(\delta) \leq \min_{\kappa \in [\delta - \bar{p}\varepsilon, \kappa^*]} \left[\bar{p}D\left(\frac{\delta - \kappa}{\bar{p}} \left\| \varepsilon \right) + pD\left(\frac{\kappa}{p} \right\| \bar{\varepsilon} \right) \right]$$

where $\bar{x} \triangleq 1 - x$ and $\kappa^* = \min \{\delta, p(1 - \varepsilon)\}.$

Training

$$e_{\mathrm{m}}(\lambda) \le \left(1 - \frac{R}{C}\right) D\left(q_{\lambda} \| \varepsilon\right)$$
$$e_{\mathrm{f}}(\lambda) \le \left(1 - \frac{R}{C}\right) D\left(q_{\lambda} \| u\right)$$

where $q_{\lambda} \propto \varepsilon^{\lambda} u^{1-\lambda}$, $\lambda \in [0,1]$.

Trade-off between $E_{\rm m}$ and $E_{\rm f}$ Achievability result for AWGN

Code design

Find P_c and P_s satisfy

$$R = \log (1 + P_c)/2$$

$$P_s = P - P_c$$

$$X^n = (\sqrt{nP_s}, \hat{X}_1, \cdots, \hat{X}_{n-1})$$

Decision rule

$$\begin{cases} H_0: & \text{noise} \\ H_1: & \text{some codeword} \end{cases} \implies ay_1 + b\|y_2^n\| \overset{\hat{H}=H_1}{\underset{\hat{H}=H_0}{\geq}} \sqrt{n}\eta$$

Trade-off between $E_{\rm m}$ and $E_{\rm f}$ Special case: AWGN with SNR= $20{\rm dB}$

Joint Synchronization & Coding

$$\begin{split} e_{\mathrm{f}}(\eta) & \leq \max_{(a,b) \in [0,1]^2} \min_{0 \leq r \leq \eta - b} \left[\frac{r^2}{2a^2} + I_{\chi_1^2} \left(\frac{(\eta - r)^2}{b^2} \right) \right] \\ e_{\mathrm{m}}(\eta) & \leq \max_{(a,b) \in [0,1]^2} \min_{\eta - b\sqrt{P_c + 1} \leq r \leq \eta} \\ & \left[\frac{(r - a\sqrt{P_s})^2}{2a^2} + I_{\mathrm{SG}} \left(P_c, \frac{(\eta - r)^2}{b^2} \right) \right] \end{split}$$

Training

$$e_{\rm m}(\eta) \le (\sqrt{P_s} - \eta)^2 / 2$$

 $e_{\rm f}(\eta) \le \eta^2 / 2$

where

$$\begin{split} I_{\chi_1^2}(x) &\triangleq \frac{1}{2}(x - \ln x - 1) \\ I_{\text{SG}}(P, \eta) &\triangleq \frac{1}{2} \left(P + \eta - \sqrt{1 + 4P\eta} - \log \left[\frac{\sqrt{1 + 4P\eta} - 1}{2P} \right] \right). \end{split}$$

More AWGN results

achievable performance: joint sync–codingoptimal detection: separate sync–coding

