

数字图像处理

教师: 吴贺丰 博士

邮箱: <u>hefeng.wu@foxmail.com</u>

图像增强

- 空间域方法
- 频率域方法

第四讲 Image Enhancement in the Spatial Domain (1)

- 1. 灰度变换
- 2. 直方图
- 3. 用算术/逻辑操作增强

• 空间域处理:

$$g(x,y) = T[f(x,y)]$$

T: 对以(x,y)为中心的邻域进行操作;

当T只是针对点(x,y)的单像素操作时,变换T称为

Origin (x, y)Image f(x, y)

灰度变换

图像增强方法一:

提高灰度对比度,即如亮的愈亮,

暗的愈暗(区域对比)

1灰度变换

1.1 灰度线性变换

假定原图像f(x, y)的灰度范围为 [a, b] ,变换后图像g(x, y)的灰度范围扩展至 [c, d] ,

线性变换表示为:

$$g(x,y) = \frac{d-c}{b-a}[f(x,y)-a]+c$$

例:若图像灰度在 $0\sim M_f$ 范围内,其中大部分像素的灰度级分布在区间 [a, b],很小部分的灰度级超出了此区间,为改善增强的效果,可令:

$$g(x,y) = \begin{cases} c & 0 \le f(x,y) < a \\ \frac{d-c}{b-a} [f(x,y)-a] + c & a \le f(x,y) < b \\ d & b \le f(x,y) < M_f \end{cases}$$

其中[c, d]比[a,b]大; 为保持f(x, y)灰度低端和高端值不变,也可以采用

$$g(x,y) = \begin{cases} \frac{d-c}{b-a} [f(x,y)-a] + c & a \le f(x,y) \le b \\ f(x,y) \end{cases}$$

式中的a、b、c、d这些分割点可根据用户的不同需要来确定。

线性灰度变换

(a) 原始图像; (b) 灰度变换后的图像

1.2 分段线性变换

为突出感兴趣的目标或灰度区间,相对抑制不感兴趣的灰度区域,可采用分段线性变换。常用的三段线性变换:

$$g(x,y) = \begin{cases} \frac{c}{a} f(x,y) & 0 \le f(x,y) < a \\ \frac{d-c}{d-a} [f(x,y)-a] + c & 0 \le f(x,y) < b \\ \frac{M_g-d}{M_f-b} [f(x,y)-b] + d & b \le f(x,y) < M_f \end{cases}$$

(3-16)

1.3 非线性变换

常见的几种非线性变换函数

2 直方图

2.1 直方图的基本概念

如果将图像中像素亮度(灰度级别)看成是一个随机变量,则其分布情况就反映了图像的统计特性,可用Probability Density Function (PDF)来刻画和描述,称为<mark>灰度直方图</mark>(Histogram)。

灰度直方图:

- 灰度级的函数;
- 表示图像中具有某种灰度级的像素的个数;
- 反映了图像中每种灰度出现的频率;
- 灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频度。

						1	2	3	4	5	6	
1	2	3	4	5	6	5	4	5	6	2	14	
6	4	3	2	2	1		•		Ü		1.	
1	6	6	4	6	6							
3	4	5	6	6	6							
1	4	6	6	2	3	_	_			7		
1	3	6	4	6	6							

图像灰度直方图

设r: 代表图像中像素灰度级,图像作归一化处理后, $r \in [0,1]$ 。

给定一幅的图像,每个像素取得[0,1]区间内的灰度级是随机的,即 r 是一个随机变量。图像可以看成是符合该随机变量分布实例的一个样本集;

假定对每一瞬间,它们是连续的随机变量,可以用概率密度函数 $p_r(r)$ 来表示原始图像的灰度分布。

直角坐标系的横轴代表灰度级r,纵轴代表灰度级r的概率密度函数 $p_r(r)$,可以针对一幅图像在这个坐标系中作出一条曲线来---概率密度曲线。

从<mark>图像灰度级的分布</mark>可以看出一幅图像的 灰度分布特性。

- (a) 的大多数像素灰度值取在较暗的区域,所以 这幅图像肯定较暗,一般在摄影过程中曝 光过强就会造成这种结果;
- (b) 图像的像素灰度值集中在亮区,因此,图像 (b)将偏亮,一般在摄影中曝光太弱将导致 这种结果。

从两幅图像的灰度分布来看图像的质量均不理想。

2.2 直方图的性质

- (1) 直方图是一幅图像中各像素灰度值出现次数(或频数)的统计结果,只反映该图像中不同灰度值出现的次数(或频数),而未反映某一灰度值像 素所在位置。即,它只包含了该图像中某一灰度值的像素出现的概率,丢失 了其所在位置的信息。
- (2)任一幅图像,都能惟一地确定出一幅与它对应的直方图,但不同的图像,可能有相同的直方图。即,图像与直方图之间是多对一的映射关系。

一个不同图像具 有相同直方图的

(3) 一幅图像各子区的直方图之和就等于该图像全图的直方图;

原因: 直方图是对具有相同灰度值的像素统计得到的。

图3-4 直方图的分解

2.3 直方图的计算

灰度直方图的计算非常简单,依据定义,在离散形式下, 用 r_k 代表离散灰度级,用 $p_r(r_k)$ 代表 $p_r(r)$,并且有下式成立:

$$p_r(r_k) = \frac{n_k}{n}$$
 $0 \le r_k \le 1$ $k = 0, 1, 2, \dots, l-1$

 n_k : 为图像中出现 r_k 级灰度的像素数;

n: 是图像像素总数;

*n*_k/n:频数。

若图像具有L级灰度(通常L=256,即8位灰度级),则大小为 $M \times N$ 的灰度图像f(x, y)的灰度直方图pBuffer [0...L-1]可用如下算法得到:

- (1) 初始化: pBuffer [k] =0; k=0, ..., L-1。
- (2) 统计: pBuffer [f(x, y)] ++; x, y =0, ..., M-1, 0, ..., N-1。
- (3) 归一化: pBuffer [f(x, y)] /=M*N。

其中,直方图的归一化是一个可选项, 若不需要特殊处理可以不进行此项操作。

Lena图像及直方图
(a) Lena图像; (b) Lena图像的直方图

2.4 直方图的拉伸

一幅给定图像的灰度级分布在0≤/≤1范围内。对图像进行灰度变换:

$$s=T(r)$$

若变换*T(r)*满足下列条件:

- (1) 在0≤*r*≤1区间内,*T*(*r*)值单调增加;
- (2) 对于0≤*r*≤1,有 0≤*T*(*r*)≤1。

直方图的拉伸

图像增强方法二:

提高灰度对比度,

直方图均衡化

条件(1)保证图像的灰度级从<u>白到黑的次序不变</u>,条件(2)保证映射变换后的像素灰度值在容许的范围内。

从s到r的反变换:

$$r = T^{-1}(s)$$

由概率论理论可知,如果已知随机变量 ξ 的概率密度函数为 $p_r(r)$,而随机变量 η 是 ξ 的函数,即 $\eta=T(\xi)$, η 的概率密度为 $p_s(s)$,所以可由 $p_r(r)$ 求出 $p_s(s)$ 。

因为s=T(r)是单调增加的,由数学分析可知,它的反函数 $r=T^{-1}(s)$ 也

$$F_{\eta}(s) = p(\eta < s) = p[\xi < r] = \int_{-\infty}^{r} p_r(x) dx$$

对式上式两边求导,即可得到随机变量 η 的分布密度函数 $p_s(s)$ 为

$$p_s(s) = p_r(r) \cdot \frac{d}{ds} \left[T^{-1}(s) \right] = \left[p_r(r) \cdot \frac{dr}{ds} \right]_{r=T^{-1}(s)}$$

通过变换函数 *T(r)*可以**控制图像灰度级的概率密度函数**,从而改变图像的灰度层次-----直方图修改技术的理论基础。

图像增强方法二:

提高灰度对比度。

体现在直方图上,就是希望图像在每个亮度值上取值概率相等-----**均衡化**

2.5 直方图均衡

直方图均衡化处理是以累积分布函数变换法为基础的直方图修正法。假 定**灰度变换函数**为

$$s = T(r) = \int_0^r p_r(\omega) d\omega$$
 就是 r 的累积分布函数。

累积分布函数是r的函数,并且单调地从0增加到1, 所以这个变换函数满足关于T(r)在 $0 \le r \le 1$ 内单值单调增加。在 $0 \le r \le 1$ 内有 $0 \le T(r) \le 1$ 的两个条件。

对式中的r求导,则

再把结果代入
$$p_s(s) = p_r(r) \cdot \frac{d}{ds} \left[T^{-1}(s) \right] = \left[p_r(r) \cdot \frac{dr}{ds} \right]_{r=T^{-1}(s)}$$

$$p_s(s) = \left[p_r(r) \cdot \frac{dr}{ds} \right]_{r=T^{-1}(s)} = \left[p_r(r) \cdot \frac{1}{ds/dr} \right]_{r=T^{-1}(s)}$$

$$= \left[p_r(r) \cdot \frac{1}{p_r(r)} \right] = 1$$

说明:变换后的随机变量**s**的定义域内的概率密度是均匀分布的。因此,理论上用**r**的累积分布函数作为变换函数,可产生一幅<u>灰度级分布具有均匀概率密度的图像</u>。 扩展了像素取值的动态范围。 例:右图是原始图像的概率密度函数。

从图中可知,该图像的灰度集中在较暗的 区域,是一幅曝光过强的照片。由图可知, 原始图像的概率密度函数为

$$p_r(r) = \begin{cases} -2r + 2 & 0 \le r \le 1 \\ 0 & \text{ 其他} \end{cases}$$

用累积分布函数原理求变换函数

$$s = T(r) = \int_0^r p_r(\omega)d\omega = \int_0^r (-2\omega + 2)d\omega = -r^2 + 2r$$

变换后的s值与r值的关系为

$$s = -r^2 + 2r = T(r)$$

按该关系变换,可以得到一幅改善质量的新图像。左图是灰度变换,右图是

变换后密度函数

上述方法是以连续随机变量为基础进行讨论的。**当灰度级是离散值** 时,可用频数近似代替概率值,即

$$p_r(r_k) = \frac{n_k}{n}$$
 $0 \le r_k \le 1$ $k = 0, 1, \dots, l-1$ (3-9)

式中:I是灰度级的总数目, $p_r(r_k)$ 是取第k级灰度值的概率, n_k 是图像中出现第k级灰度的次数,n是图像中像素总数。

式(3-6)的离散形式可由式(3-10)表示:

$$S_k = T(r_k) = \sum_{j=0}^k \frac{n_j}{n} = \sum_{j=0}^k p_r(r_j) \quad 0 \le r_j \le 1 \quad k = 0, 1, \dots, l-1$$

其反变换式为

$$r_{k} = T^{-1}(s_{k}) \tag{3-11}$$

(3-10)

例: 64×64大小的图像灰度分布表

r_k	n_k	$p_r(r_k) = \frac{n_k}{n}$
$r_0 = 0$	790	0, 19
$r_1 = 1/7$	1023	0. 25
$r_2 = 2/7$	850	0.21
$r_3 = 3/7$	656	0.16
$r_4 = 4/7$	329	0.08
$r_5 = 5/7$	245	0.06
$r_6 = 6/7$	122	0.03
$r_7 = 1$	81	0.02

处理过程如下:

由式(3-10)可得到变换函数

$$s_0 = T(r_0) = \sum_{j=0}^{0} P_r(r_j) = P_r(r_0) = 0.19$$

$$s_1 = T(r_1) = \sum_{j=0}^{1} P_r(r_j) = P_r(r_0) + P_r(r_1) = 0.44$$

$$s_2 = T(r_2) = \sum_{i=0}^{2} P_r(r_i) = P_r(r_0) + P_r(r_1) + P_r(r_2) = 0.65$$

$$s_3 = T(r_3) = \sum_{i=0}^{3} P_r(r_i) = P_r(r_0) + P_r(r_1) + P_r(r_2) + P_r(r_3) = 0.81$$

变换函数

依此类推: s_4 =0.89, s_5 =0.95, s_6 =0.98, s_7 =1.0。

若只对图像取**8**个等间隔的灰度级, 变换后的值也只能选择最靠近的一个灰度级的值。因此,对上述计算值加以修正:

$$s_0 \approx \frac{1}{7},$$
 $s_1 \approx \frac{3}{7},$ $s_2 \approx \frac{5}{7},$ $s_3 \approx \frac{6}{7}$ $s_4 \approx \frac{6}{7},$ $s_5 \approx 1,$ $s_6 \approx 1,$ $s_7 \approx 1$

由上述数值可见,新图像将只有5个不同的灰度级别,可以重新定义 如下一组符号

$$s_0' = \frac{1}{7}, s_1' = \frac{3}{7}, s_2' = \frac{5}{7}, s_3' = \frac{6}{7}, s_4' = \frac{6}{7}$$

因为 r_0 =0,经变换得 s_0 =1/7,有790个像素取 s_0 这个灰度值。

 r_1 映射到 s_1 =3 / 7, 有1023个像素取 s_1 =3/7这一灰度值。

依次类推,有850个像素取 s_2 =5/7这个灰度值。但是,因为 r_3 和 r_4 均映射到 s_3 =6/7这一灰度级,所以有656+329=985个像素取这个值。

同样, 有245+122+81=448个像素取 s_4 =1这个新灰度值。用n=4096来除上述这些 n_k 值,便可得到新的直方图,

直方图均衡化处理

说明:

由上例可见,利用累积分布函数作为灰度变换函数,经变换后得到的新 直方图虽然不很平坦,但毕竟比原始图像的直方图平坦的多,而且其动态 范围也大大地扩展了。

因为直方图是近似的概率密度函数,所以用离散灰度级作变换一般得不到完全平坦的结果。另外,从上例可以看出,**变换后的灰度级减少了**,这种现象叫做"简并"现象。

由于简并现象的存在,**处理后的灰度级总是要减少**的,这是像素灰度有限的必然结果。由于上述原因,数字图像的直方图均衡只是近似的。

图3-11 经直方图均衡化后的Lena图像及直方图

(a) 经直方图均衡化后的Lena图像; (b) 均衡化后的Lena图像的直方图

2.6 直方图匹配(规定化)

直方图匹配(规定化): 使处理后的图像具备指定的直方图形状。

假定随机变量 \mathbf{r} 和 \mathbf{z} , $p_r(r)$, $p_z(z)$ 是对应的密度函数, \mathbf{r} : 原始图像所对应的变量,设计变换 \mathbf{T} : $\mathbf{z} = \mathbf{T}$ (\mathbf{r}),希望 \mathbf{z} 的密度函数是 $p_z(z)$ 。方法: 定义中间变换 \mathbf{s} ,

$$S = T_0(r) = \int_0^r p_r(\omega) d\omega$$
$$G(z) = \int_0^z p_z(\omega) d\omega = s$$

$$G(z) = T_0(r)$$

得变换:
$$z = G^{-1}(s) = G^{-1}(T_0(r))$$

在离散状态,关键是确定变换 r → z

离散情形:

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j) = \sum_{j=0}^k \frac{n_j}{n}$$
 $0 \le r_j \le 1$ $k = 0, 1, \dots, l-1$

$$v_k = G(z_k) = \sum_{j=0}^k p_z(z_j) = s_k \qquad 0 \le r_j \le 1 \qquad k = 0, 1, \dots, l-1$$

$$z_k = G^{-1}(s_k) = G^{-1}(T_0(r_k)) \qquad 0 \le r_i \le 1 \qquad k = 0, 1, \dots, l-1$$

直方图匹配算法:

1. 计算 $\mathbf{r} \to \mathbf{s}$ $s_k = T(r_k) = \sum_{j=0}^k p_r(r_j) = \sum_{j=0}^k \frac{n_j}{n} \qquad 0 \le r_j \le 1 \qquad k = 0, 1, \dots, l-1$

2. 计算 z → v

$$v_k = G(z_k) = \sum_{j=0}^k p_z(z_j) = s_k \qquad 0 \le r_j \le 1 \qquad k = 0, 1, \dots, l-1$$

3. 根据 v = s, 计算 r → z
n = 0;
for (k=0; k<=L-1; k++)
{
 for (m = k; m<=L-1; m++)
 if (s[k]<v[m])
 {
 rz[n++] = z[m]; break; // rz保存实际的r → z映射
 }
}</pre>

a b

FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA's *Mars Global Surveyor*. (b) Histogram. (Original image courtesy of NASA.)

a b c

FIGURE 3.21

- (a) Transformation function for histogram equalization.
- (b) Histogramequalized image (note the washedout appearance). (c) Histogram
- of (b).

a c b d

FIGURE 3.22

(a) Specified histogram. (b) Curve (1) is from Eq. (3.3-14), using the histogram in (a); curve (2) was obtained using the iterative procedure in Eq. (3.3-17). (c) Enhanced image using mappings from curve (2). (d) Histogram of (c).

2.7 局部增强(一些技巧方法)

方法: 采用局部直方图均衡化;

即遍历处理:对以图像中每个像素为中心的邻域,进行直方图均衡化处理。

a b c

FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization using a 7×7 neighborhood about each pixel.

2.8 在图像增强中使用直方图统计法

假定随机变量 \mathbf{r} , $p_r(r)$ 是对应的密度函数,

N阶中心矩:

$$\mu_n(r) = \sum_{i=0}^{L-1} (r_i - m)^n p(r_i)$$

m是r 的均值,

$$m = \sum_{i=0}^{L-1} r_i p(r_i)$$

(一些技巧方法)

FIGURE 3.24 SEM

image of a tungsten filament and support, magnified approximately 130×. (Original image courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene).

局部均值化处理

局部标准差处理

对局部标准差低于 一定域值的像素亮 度放大若干倍

a b c

FIGURE 3.25 (a) Image formed from all local means obtained from Fig. 3.24 using Eq. (3.3-21). (b) Image formed from all local standard deviations obtained from Fig. 3.24 using Eq. (3.3-22). (c) Image formed from all multiplication constants used to produce the enhanced image shown in Fig. 3.26.

FIGURE 3.26

Enhanced SEM image. Compare with Fig. 3.24. Note in particular the enhanced area on the right side of the image.

3用算术/逻辑操作增强

算术减: (比较差异)

$$g(x, y) = f(x, y) - h(x, y)$$

平均: (光滑,去噪)

逻辑与、逻辑或

a b c d

FIGURE 3.28

(a) Original fractal image.
(b) Result of setting the four lower-order bit planes to zero.
(c) Difference between (a) and (b).
(d) Histogram-equalized difference image.
(Original image courtesy of Ms. Melissa D. Binde, Swarthmore College, Swarthmore, PA).

a b

FIGURE 3.29

Enhancement by image subtraction.
(a) Mask image.

- (b) An image (taken after injection of a contrast medium into the bloodstream) with mask subtracted out.

a b c d e f

FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gaussian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of averaging K=8,16,64, and 128 noisy images. (Original image courtesy of NASA.)