to comprise an additional related pair (1253 and 1001) of around 40 kDa and a single spot (1119) of around 28 kDa. Because these two presumed proteins are present at substantially lower abundances than 413, and because the cytosolic HMG-CoA synthase is reported to consist of only one type of polypeptide, they are likely to represent other, very tightly coregulated enzymes. A second group of six spots was selected based on a regulatory pattern close to the inverse of that for spot 413 (MSN's 34, 79, 178, 182, 204, 347; data not shown). For these proteins, the lowest level of expression occurs with exposure to lovastatin plus cholestyramine and the highest level upon exposure to the high-cholesterol diet. Spots 182 and 79 are highly correlated and lie about one charge apart at the same molecular weight; they may thus be isoforms of a single protein. The other four spots probably represent additional enzymes or subunits.

3.3.2 MSN 235 and coregulated spots

A third group of five spots, mainly comprised of mitochondrial proteins including putative mitochondrial HMG-CoA synthase spots, showed a modest induction by lovastatin alone, but little or no effect with any of the other treatments (including the combination of lovastatin and cholestyramine; Fig. 12). This result is intriguing because lovastatin was expected to affect only the regulation of enzymes of cholesterol synthesis, which is entirely extra-mitochondrial. Three of the spots (235, 134, 144) form a closelypacked triad at approximately 30 kDa, and are likely to represent isoforms of one protein. All three spots are stained by an antibody to the mitochondrial form of HMG-CoA synthase obtained from Dr. Greenspan. Subcellular fractionation indicates a mitochondrial location. The other two spots (633 at about 38 kDa and 724 at about 69 kDa) are each present at lower abundance than the members of the triad.

3.3.3 An example of an anti-synergistic effect

A sixth spot (367) shows strong induction by lovastatin (two- to threefold), and about half as much induction with lovastatin plus cholestyramine, but without sharing the animal-animal heterogeneity pattern of the 235-set (Fig. 13). This protein is also mitochondrial, and represents the clearest example of an anti-synergistic effect of lovastatin and cholestyramine. The existence of such an effect demonstrates that lovastatin and cholestyramine do not act exclusively through the same regulatory pathway.

3.3.4 Complexity of the cholesterol synthesis pathway

Taken together, these results suggest that treatment with lovastatin alone can affect both cytosolic and mitochondrial pathways using HMG-CoA, while cholestyramine, on the other hand, either alone or in combination with lovastatin, produces a strong effect on the putative cytosolic pathway, but little or no effect on the putative mitochondrial pathway. An explanation for this difference may lie in lovastatin's effect on levels of HMG-CoA and related precursor compounds that are exchanged between the cytosol and the mitochondrion, whereas cholestyramine should affect only the cytosolic pathways directly controlled by cholesterol and bile acid levels. It remains to be explained why some

proteins of the putative mitochondrial pathway are so much more variable in their expression in all groups. An examination of all the coregulated groups suggests that quan. titative statistical techniques can extract a wealth of interesting information from large sets of reproducible gels. The abundance of spots in the 413 coregulation group, for example, shows an amazing level of concordance in their relative expression among the five individuals of the lovastatin and cholestyramine treatment group. This effect is not due to differences in total protein loading, since they have already been removed by scaling, and since proteins with quite different regulation patterns can be demonstrated (e.g., Fig. 13). Such effects raise the possibility that many gene coregulation sets may be revealed through the study of a sufficiently large population of control animals (i.e., without any experimental manipulation). This approach, exploiting natural biological variation in protein expression instead of drug effects, offers an important incentive for the construction of a large library of control animal patterns.

4 Conclusions

Because of the widespread use of rat liver in both basic biochemistry and in toxicology, there is a long-term need for a comprehensive database of liver proteins. The rat liver master pattern presented here has proven to be an accurate representation of this system, having been matched to more than 700 gels to date. As the number of proteins identified and the number of compounds tested for gene expression effects grows, we expect this database to contribute valuable insights into gene regulation. Its practical utility in several areas of mechanistic toxicology is already being demonstrated.

Received September 11, 1991

5 References

- [1] O'Farrell, P., J. Biol. Chem. 1975, 250, 4007-4021.
- [2] Klose, J., Humangenetik 1975, 26, 231-243.
- [3] Scheele, G. A., J. Biol. Chem. 1975, 250, 5375-5385.
- [4] Iborra, G. and Buhler, J. M., Anal. Biochem. 1976, 74, 503-511.
- [5] Anderson, N. G. and Anderson, N. L., Behring. Inst. Mitt. 1979, 63, 169-210.
- [6] Anderson, N. G. and Anderson, N. L., Clin. Chem. 1982, 28, 739-748.
- [7] Heydom, W. E., Creed, G. J. and Jacobowitz, D. M., J. Pharmacol. Exp. Therap. 1984, 229, 622-628.
- [8] Anderson, N. L., Nance, S. L., Tollaksen, S. L., Giere, F. A. and Anderson, N. G., Electrophoresis 1985, 6, 592-599.
- [9] Racine, R. R. and Langley, C. H., Biochem. Genet. 1980, 18, 185-197.
- [10] Klose, J., Mol. Evol. 1982, 18, 315-328.
- [11] Neel, J. V., Baier, L., Hanash, S. and Erickson, R. P., J. Hered. 1985, 76, 314-320.
- [12] Marshall, R. R., Raj, A. S., Grant, F. J. and Heddle, J. A., Can. J. Genet. Cyrol. 1983, 25, 457-446.
- [13] Taylor, J., Anderson, N. L., Anderson, N. G., Gemmell, A., Giometti. C. S., Nance, S. L. and Tollaksen, S. L., in: Dunn, M. J. (Ed.), Electrophoresis '86, Verlag Chemie, Weinheim 1986, pp. 583-587.
- [14] Giometti, C. S., Gemmell, M. A., Nance, S. L., Tollaksen, S. L. and Taylor, J., J. Biol. Chem. 1987, 262, 12764—12767.
- [15] Anderson, N. L., Giere, F. A., Nance, S. L., Gemmell, M. A., Tollatsen, S. L. and Anderson, N. G., in: Galteau, M.-M. and Siest, G. (Eds.), Progrès Récents en Electrophorèse Bidimensionelle, Presses Universitaires de Nancy, Nancy 1986, pp. 253-260.
- [16] Anderson, N. L., Swanson, M., Giere, F. A., Tollaksen, S., Gemmell A., Nance, S. L. and Anderson, N. G., Electrophoresis 1986, 7, 44—48.

Inderson.

In S. L. ar
Inderson.

1991. in pri
Intoine. B

M. M., Cei.
Elliott. B

Oum. Biopr

Huber. B. E

nn, S. S., i

With. P. J.

Witzmann.

Lampersau

G., Jr., Arch

Plasuk, G. I

Anderson.

340.

Anderson.

Anderson.

Electrophor. 297. Anderson. ISO-DALT^e 1988, ISBN Neuhoff, V.

500. N. G.. 1

913

Control of the state of the sta

Anderson, N. L., Giere, F. A., Nance, S. L., Gemmell, M. A., Tollakzen, S. L. and Anderson, N. G., Fundam, Appl. Toxicol. 1987, 8, 39—50. Anderson, N. L., in: New Hormons in Toxicology, Eli Lilly Symposium, 1991, in press.

Antoine, B., Rahimi-Pour, A., Sies, G., Magdalou, J. and Galteau, M. M., Cell. Biochem. Funct. 1987, 5, 217-231.

Elliott, B. M., Ramasamy, R., Stonard, M. D. and Spragg, S. P. Biochim. Biophys. Acta 1986, 876, 135-140.

Huber, B. E., Heilman, C. A., Wirth, P. J., Milier, M. J. and Thorgeirsson, S. S., Hepatolog, 1986, 4, 204-219.

Wirth, P. J. and Vesterberg. O., Electrophoresis 1988. 5, 47-53.

Witzmann, F. A. and Parker, D. N., Toxicol. Lett. 1991, 57, 29-36. Rampersaud, A., Waxman, D. J., Ryan, D. E., Levin, W. and Walz, F. G., Jr., Arch. Biochem. Biophys. 1985, 243, 174-183.

Vlasuk, G. P. and Walz, F. G., Jr., Anal. Biochem. 1980, 105, 112-120. Anderson, N. G. and Anderson, N. L., Anal. Biochem. 1978, 85, 331-340.

Anderson, N. L. and Anderson, N. G., Anal. Biochem. 1978, 85, 341-

Anderson, L., Hofmann, J.-P., Anderson, E., Walker, B. and Anderson, N. G., in: Endler, A. T. and Hanash, S. (Eds.), Two-Dimensional Electrophoresis, VCH Verlagsgesellschaft, Weinheim 1989, pp. 288–297.

Anderson, L., Two-Dimensional Electrophoresis: Operation of the ISO-DALT⁶ System, Large Scale Biology Press, Washington, DC 1988, ISBN 0-945532-00-8, 170pp.

Neuhoff, V., Stamm, R. and Eibl, H., Electrophoresis 1985, 6, 427-448.

- [31] Neuhoff, V., Arold, N., Taube, D. and Ehrhardt, W., Electrophoresis 1988, 9, 255-262.
- [32] Anderson, N. L. and Hickman, B. J., Anal. Biochem. 1979, 93, 312-320.
- [33] Sidman, K. E., George, D. E., Barker, W. C. and Hunt, L. T., Nucl. Acids Res. 1988, 16, 1869-1871.
- [34] Taylor, J., Anderson, N. L., Coulter, B. P., Scandora, A. E. and Anderson, N. G., in: Radola, B. J. (Ed.), Electrophoresis '79, de Gruyter, Berlin 1980, pp. 329–339.
- [35] Taylor, J., Anderson, N. L. and Anderson, N. G., in: Allen, R. C. and Amaud, P. (Eds.). Electrophoresis '81, de Gruyter, Berlin 1981, pp. 383—400.
- [36] Anderson, N. L., Taylor, J., Scancora, A. E., Coulter, B. P. and Anderson, N. G., Clin. Chem. 1981, 27, 1807-1820.
- [37] Taylor, J., Anderson, N. L., Scandora, A. E., Jr., Willard, K. E. and Anderson, N. G., Clin. Chem. 1982. 28, 861-866.
- [38] Taylor, J., Anderson, N. L. and Anderson, N. G., Electrophoresis 1983, 4, 338-345.
- [39] Anderson, N. L. and Taylor, J., in: Proceedings of the Fourth Annual Conference and Exposition of the National Computer Graphics Association. Chicago, June 26–30, 1983, pp. 69–76.
- [40] Anderson, N. L., Hofmann, J.-P., Gemmell, A. and Taylor, J., Clin. Chem. 1984, 30, 2031-2036.
- [41] Anderson, L., in: Schafer-Nielsen, C. (Ed.), Electrophoresis '88, VCH Verlagsgesellschaft, Weinheim 1988, pp. 313-321.
- [42] Neidhardt, F. C., Appleby, D. A., Sankar, P., Hutton, M. E. and Phillips, T. A., Electrophoresis 1989, 10, 116-121.
- [43] Gil, G., Goldstein, J. L., Slaughter, C. A. and Brown, M. S., J. Biol. Chem. 1986, 261, 3710-3716.

6 Addendum 1: Figures 1-13

Figure 1. Synthetic representation of the standard rat liver 2-D master pattern, rendered as a greyscale image using a videoprinter.

2. Schem

re 2. Schematic representation of the master pattern (the same as Fig. 1), useful as an aid in relating specific areas of Fig. 1 and the following detailed frants.

Figure 3. Upper lest (high molecular weight, acidic) quadrant (#1) of the rat liver map, showing spot numbers.

tre 4. Upper right (high molecular weight, basic) quadrant (42) of the rat liver map, showing spot numbers.

3

Figure 5. Lower left (low molecular weight, acidic) quadrant (#3) of the rat liver map, showing spot numbers.

6. Lower r

we 6. Lower right (low molecular weight, basic) quadrant (#4) of the rat liver map, showing spot numbers.

-35

-30

Figure 7. (a) Plot of computed isoelectric point versus gel X-position for two sets of carbamylated standard proteins (rabbit muscle CPK [+] and human hemoglobin β chain, filled diamonds) and several other proteins (shaded squares). (b) The identities of the various proteins represented by the squares are indicated by the numbers in corresponding positions on (a); these refer to Table 4.

CPK position

Figure 9. Montage showing effects in the region of MSN:413. The montage shows a small window into one portion of the 2-D pattern, one row of windows for each experimental group, and one panel for each gel in the experiment. The left-most pattern in each row is a group-specific copy of the master pattern followed by the patterns for the five individual rats in the group. The highlighted protein spots (filled circ les) are spot 413 (on the right of each pasel; identified as cytosolic HMG-CoA thase) and two modified forms of it (1250 and 933). From the top, the rows (experi mental groups) are: high cholesterol. trols, cholestyramine, lovastatin, and lova statin plus cholestyramine.

Regulation of Rat Liver 413

(Putative Cytosolic HMG-CoA Synthase, 53kd)
Test Compounds in Diet

Figure 10. Bargraph showing the quantitative effects of various treatments on the abundance of MSN:413 (cytosolic HMG-CoA synthase) in the gels of Fig. 9.

Figure 11. Bargraphs of a series of six coregulated spots including MSN:413. In the bargraphs, the abundances of the appropriate spot (master spot number shown at the top of the panel) in each animal are shown. The five five-animal groups are in the order (left to right): high cholesterol, controls, cholestyramine, lovastatin, and lovastatin plus cholestyramine. Each bar within a group represents one experimental animal liver (one 2-D gel). Note the correlated expression of the 6 spots, especially in the two far right (most strongly induced) groups.

Charles and the control of the contr

Figure 12. Data on a second coregulated group of spots, presented as in Fig. 11.Tm, fourth experimental group (lovastatin shows a modest induction, while the lifting group (lovastatin plus cholestyramine) does not.

Figure 13. Data on spot MSN:367, presented as in Fig. 11. This protein shows unambiguously the anti-synergistic effect of lovastatin and choice tyramine (fifth group) as compared to lovastatin (fourth group). This reponse contrasts strongly with the regulation pattern seen in Fig. 11.

adendum P

Mastr

45: 1415 78: 1773 80: 1338 74: 1708

effer table of ;

i)

De 1. Master table of proteins in the rat liver database 11

<u> </u>				In the rat live		<u> </u>								
	X		CPKd	SOSMM	MSM	×	Y	CPKol	SDSMW	MSN	x	Y	СРКЫ	SDSMW
3 % 8	311 568	434	<-35.0	63,800	95		536	-9.9	53,800	174	1364	183	-6.7	162,900
~ 2	812	263 426	-24.3 -16.0	102,900 64,800	96 97		756		40,700	175	825	393	-15.7	69,300
्री 8 11	549	268	-25.2	101,000	96		566 565	-11.4 -6.1	51,600	177	1582	553	-3.6	52,600
15	845	520	-15.3	55,200	<u>~</u>		1149	-23.8	51,700 25,000	178 179	1321 1089	710 615	-7.2	43,000
17	629	589	-21.6	50,000	100		538	>0.0	53,700	180	1866	567	-10.4 -0.5	48,300 51,600
18	906	414	-14.0	66,300	101	1106	623	-10.1	47,900	181	411	295	-32.1	91,200
19	755 649	298 403	-17.5	90,200	102		455	-28.5	61,300	182	804	730	-16.2	42,000
. 20 . 21	1204	448	-20.9 -8.7	67,900 62,100	103 104	665 773	830	-20.2	37,300	184	1860	896	-0.6	34,500
22	332	434	<-35.0	63,800	105	312	1182 1117	-17.0 <-35.0	23,800 26,100	185	1997	1017	>0.0	29,800
23	787	424	-16.6	65,000	106	1769	509	-1.5	26,100 56,100	186 187	279 773	1113 296	<-35.0	26,300
24	313	417	<-35.0	66,000	107	1585	720	-3.6	42,500	188	1538	807	-17.0 -4.2	90,800 38,400
25	807	516	-16.1	55,500	108	1692	807	-24	38,300	191	1560	674	-3.9	44,900
27	1184 1263	524 446	-9 .0 -8 .0	54,900	109	1482	593	4.8	49,700	192	1818	687	-0.9	44,200
28	743	605	-17.8	62,400 49,000	110 111	778 1728	516	-16. 9	55,500	193	1469	555	-5.0	52,400
30	768	112	-17.2	348,600	113	1191	700 680	-2.0 -8.9	43,500 44,500	194	1380	266	-6.4	101,600
32	1216	417	-8.6	66,000	114	1298	185	-7.5	160,800	195 196	784 1227	632	-16.7	47,300
33	1145	445	-9.5	62,500	115	682	907	-19.6	34,100	197	667	1185 553	-8.4 -20.1	23,700 52,600
34	1037	555	-11.3	52,400	116	1146	610	-9.5	48,700	198	2006	681	>0.0	44,500
35	863	412	-14.9	66,600	117	1548	849	-4.1	36,500	199	1711	674	-2.2	44,900
36 38	712 763	606 694	-18.7 -17.3	48,900	118	1050	577	-11.1	50,80C	200	872	424	14.7	65,000
39	304	470	<-35.0	43,800 59,800	120 121	1530 838	828 423	4.3	37,400	201	292	435	<-35.0	63,700
41	1165	569	-9.2	51,400	122	1572	712	-15.4 -3.8	65,200 42,900	202 203	736 786	253	-18.0	107,800
42	684	607	-19.6	48,800	123	23	1433	<·35.0	15,300	204	1224	829 589	-16.7 -8.5	37,400 50,000
43	1318	589	-7.3	50,000	124	621	1474	-21.9	13,900	205	439	983	-30.9	31,100
44	1924	362	-01	74,600	125	1298	862	-7.5	36,000	206	1994	571	>0.0	51,300
46 47	1203 1391	586 447	-8.7	50,200	126	. 872	921	-14.7	33,500	207	1895	687	-0.3	44,200
48	309	454	-6.3 <-35.0	62,300 61,500	127	1000	717	-12.0	42,600	208	240	1418	<-35.0	15,800
49	605	587	-22.5	50,100	128 129	1229 1422	311 832	-8.4	86,100	210	1700	499	-2.3	57,000
.50	621	535	-21.8	53,900	130	1776	499	-5.8 -1.4	37,300 57,000	211 213	902 1087	517	-14.1	55,400
51	1113	522	-10.0	55,000	131	1930	757	-0.1	40,70C	214	1340	684 668	-10.4 -7.0	44,400 45,200
.52	1820	499	-0.9	57,000	132	660	537	-20.4	53,80C	215	1591	495	-3.5	57,300
53	725	177	-18.3	170,800	133	666	1019	-20.2	29,700	216	1585	755	-3.6	40,700
54 55	2001 722	500 830	>0.0 -18.4	56,900 37,300	134	1271	862	-7.9	36,000	217	1159	393	-9.3	69,300
56	678	533	-19.8	54,100	135 136	1161 453	1389 1063	-9.3 ~~ ~	16,80C	218	931	572	-13.5	51,200
57	1682	302	-2.5	89,000	137	1858	823	-29.7 -0.6	28,100 37,700	219 220	713 1479	177	-18.7	170,500
58	1091	580	-10.3	50,600	138	1504	697	-4.6	43,70C	221	965	911 927	-4.9 -12.8	33,900 33,300 -
59	1171	585	-9 .2	50,300	139	1488	707	-4.8	43,200	223	934	716	-13.5	42,700
60 61	1400	624	-6.2	47,800	140	1689	756	-2.4	40,700	225	1812	1045	-1.0	28,800
62	1853 1888	508 567	-0.6 -0.4	56,200	141	311	1417	<-35.0	15,800	226	821	411	-15.8	66,800
65	735	297	-18.1	51,500 90,500	142 143	1366	915	-6.7	33,800	227	1586	1483	-3.6	13,600
66	1263	312	-8.0	85,900	144	1429 615	346 1017	-5.7 -22.1	77,900	228	1065	567	-10.8	51,600
67	1252	407	-8.1	67,300	145	2006	566	-22.1 >0.0	29,800 51,600	229 230	1577 1458	890 496	-3.7	34,800
68	779	692	-16.8	43,900	146	2006	518	>0.0	55,300	232	1440	849	-5.2 -5.5	57,300 36,500
89	1064	296	-10.8	90,800	147	1070	1108	-10.7	26,500	234	1692	489	-2.4	57,900
71 72	656 638	589	-20.6	50,000	148	1347	578	-6.9	50,800	235	618	1004	-22.0	30,300
73	638 1582	545 583	-21.2 -3.6	53,100 50,400	149	541	1481	·25.7	13,700	236	920	1138	-13.7	25,400
74	1570	556	-3.8 -3.8	50,400 52,300	150 151	1645 1269	760 236	·2.8	40,500	237	952	1008	-13.1	30,200
75	1264	621	-8.0	48.000	152	1507	236 911	-7.9 -4.5	117,000 33,900	238	1611	541	-3.2	53,500
76	1338	564	-7.0	51,800	153	1722	448	-2.1	33,900 62,100	239 240	1489 501	720 448	-4.8 -27.7	42,500 62,100
77	1833	363	-0.8	74,400	154	932	503	-13.5	56,600	. 241	1820	569	-27.7 -0.9	51,400
78 79	1767	565	-1.5	51,700	155	1031	294	-11,4	91,400	242	1357	658	-6.B	45,800
79 80	925 534	738 698	-13.6	41,600	156	1970	684	>0.0	44,400	243	711	1182	-18.7	23,800
31	1811	363	-26.1 -1.0	43,600 74,500	157	1258	183	-8.1	162,400	244	1855	621	-0.6	48,000
82	1412	681	-6.0	74,500 44,500	158 159	1275 1663	417 820	-7.8 2.6	65,900	245	1189	474	-8.9	59,300
IJ	1471	347	·5.0	77,500	160	1034	527	-2.6 -11.4	37,800 54,600	245 247	551 1348	45 9 604	-25.1	61,000
34	1662	563	-2.7	51,800	161	1953	771	>0.0	40,000	248	460	448	-6.9 -29.3	49,100 62,100
35 ×	1596	479	-3.4	58,900	162	1020	1482	-11.6	13,700	249	1733	451	-1.9	61,800
96 37	1817	301	-0.9	89,100	164	1566	806	-3.8	38,400	250	1974	788	>0.0	39,200
	516 1589	1371 698	-27.0 -3.5	17,400	166	1905	565	-0.2	51,700	251	808	392	-16.1	69,500
	1706	719	-3.5 -2.2	43,600 42,500	167	1340	181	-7.0	164,900	252	874	553	-14.6	52,500
20	651	329	-20.8	42,500 81,700	168 169	1506 1338	583 670	-4.6	50,400	253	753	848	-17.6	36,500
	1415	710	-6.0	43,000	170	1969	678 541	-7.0 >0.0	44,700 53,500	254	995	450	-12.1	61,900
	1773	545	-1.4	53,200	171	800	378	-16.3	53,500 71, 80 0	255 256	1690 994	679 1006	-2.4 -12.1	44,600 30,200
					- · ·				/ I.OO	430	77746	1440	•1/1	SU AT
3	1338 1708	446 696	∙7.0 •2.2	62,300 43,700	172	476	958	-28.7	32,100	257	508	464	-27.4	60,400

daster table of proteins in the rat liver database, showing spot master number, gel position (x and y), isoelectric point relative to CPK standards, and predicted molecular mass (from the standard curve of Fig. 8).

507. 1728 21. 507 35. 870 36. 1347 36. 1513 30. 308 31. 1851 31. 909 31. 625

														A AG
WSN	X	Y	CPKal	SDSMW	MSN	×	Y	CPKol	SDSMW	MSN	x	Y	CPKpi	-202
250			-1.1	31,900	345	1006	578	-11.9	50,800	426	1296	704		SOSLAW
260			-20.4	17,700	346	1095	640	-10.3	46,800	427	810	843	•7.6	43.200
261 262			-2.0 -28.0	44,600	347	625	728	-21.7	42,000	428	1565	303	-16.0 -3.9	36.800
263			-25.0 -10.9	25,800 177,400	348	361	963	-35.3	31,100	429	1250	847	-8.0	88.70
265			-6.3	45,000	349 350	110 521	1343 1130	<-35.0 ~~ 7	18,300	430	1253	562	-8.1	36.600 51,900
266			-27.3	63,400	351	912	619	-26.7 -13.9	25,700 48,100	431 432	734 483	1426	-18.1	15.5cc
267			-20.4	29,000	352	1574	530	-3.7	54,300	434	518	433 1041	-28.5	63,907
268 269			-31.0	31,900	353	961	912	-12.9	33,900	435	1020	1170	-26.9 -11.6	28,900
270			-11.2 >0.0	48,900 36,300	354	706	762	-18.9	40,400	436	1122	196	-9.8	24,300
271			-15.0	65,200	355 356	1450 1374	830	-5.3	37,300	437	1870	673	-0.5	147.ecc 45.ccc
272			-14.2	31,700	357	474	1152 997	-6.5 -28.7	24,900 30,600	438	435	1102	-31.0	26.7cm
274			-7.6	42,900	358	798	346	-16.3	77, 80 0	439 440	86 1740	847 544	<-35.0	36.6CE
275			-6.9	49,900	350	764	338	-17.3	79,400	441	509	1571	-1.8 -22.8	\$3,200
276 277	1670 688	1089 538	-2.6 -19.4	27,100	360	1384	1068	-6.4	27,900	443	743	335	-17.8	10,800
278	961	718	-13.0	53,700 42,600	361	1713	769	-21	40,100	445	801	668	-16.2	80,100 45,200
279	879	570	-14.5	51,300	362 363	1161 914	850	-9.3	36,100	447	1050	926	-11.1	33.30g
281	1848	1084	-0.7	27,300	364	412	1156 435	·13.8 ·32.0	24,800 63,700	448 449	1245	1298	-8.2	19.800
282	1505	525	-4.6	54,800	365	741	486	-17.9	58,200	450	1576 1818	1516 1021	-3.7	12.60C
283	1313	1147	-7.3	25,100	366	878	1503	-14.6	13,000	451	1094	440	-0.9 -10,3	29.600
284 285	1314 1332	829 408	-7. 3 -7.1	37,400	367	1560	935	-3.9	33,000	452	1945	802	>0.0	63,100 38,600
286	1277	652	-7.1 -7.8	67,200 46,100	368 369	983 434	520	-12.4	55,200	453	1652	894	-2.8	34,600
288	1391	824	-6.3	37,600	370	639	441 610	-31.0 -21.2	63,000	454	1403	500	-6.1	56,900
289	1147	579	-9.5	50,700	371	1587	860	-3.6	48,700 36,100	456 457	1394 905	718 436	-6.3	42.600
290	925	511	-13.6	55,900	372	1875	762	-0.5	40,400	450	1038	581	-14.0 -11.3	63.50c
291 292	787 1462	1476 818	-16.6	13,900	373	1351	1050	-6.8	28,300	460	1598	294	-3.4	50,500 91,400
293	531	449	-5.1 -26.3	37,800 62,000	374	1506	715	4.6	42,700	461	1528	863	-4.3	35.90c
294	860	696	-14.9	43,600	375 376	1823 254	532	-0.9	54,200	452	1098	1137	-10.2	25.43
295	1162	609	-9.3	48,700	377	1409	417 583	<-35.0 -6.1	65,900 50,400	463	849	1125	-15.2	25.80C
296	218	814	<-35.0	38,000	378	621	494	-21.8	57,500	464 465	1814 1388	1072 481	-0.9	27.80C
297	1377	979	-6.5	31,300	379	1017	595	-11.7	49,600	466	1194	1084	-6.3 -8.9	58,700 27,300
299 300	913 2012	1523	-13.9	12,400	381	953	598	-13.1	49,400	468	577	467	-23.9	60,100
301	702	667 178	>0.0 -19.0	45,300	382	856	674	-15.0	44,900	469	1140	888	-9.6	34,900
302	494	1280	-28.1	169,200 20,400	383 384	1252 1699	258 1518	-8.1	105,300	470	1797	524	-1.1	54,800
303	403	1008	-32.6	30,100	385	1042	493	-2.3 -11.2	12,500 57,500	471 472	1293 618	1133	-7.6	25,500
304	1843	1585	-0.7	10,300	386	1490	583	4.7	50,400	473	2009	655 299	-21.9 >0.0	46,000 89,900
305	1049	593	-11.1	49,800	387	1554	603	-4.0	49,100	474	1205	215	-8.7	131,300
306 307	1608 1219	989 916	-3.3	30,900	388	1193	404	-8.9	67,700	475	1035	788	-11:4	39.200
308	1627	755	-8.5 -3.0	33,700 40,700	389	1374	902	-6.5	34,300	476	160	155	<-35.0	207,600
309	1524	892	4.4	34,700	390 391	1456 718	969 690	-5.2	31,700	477	469	1370	-28.9	17,400
310	1769	1028	-1.5	29,400	392	1799	732	-18.5 -1.1	44,000 41,900	478 479	599 1009	662 540	-22.8	45,600 53,500
311	1609	1451	-3.3	14,700	393	1482	758	-4.8	40,600	480	1216	235	-11.8 -8.6	117,400
312	266	1408	<-35.0	16,100	394	1227	1461	-8.4	14,400	482	816	346	-15.9	77,800
313 314	1902 1316	1365	-0.3	17,600	395	1530	577	4.3	50,800	483	693	673	-19.3	44,900
315	1341	1395 523	-7.3 -7.0	16,600 54,900	396	1410	755	-6.0	40,800	485	1608	1013	-3.3	30,000
318	1104	1053	-10.1	28,500	397 399	912 1465	256 1063	-13.9	106,400	486	478	599	-28.6	49,300 48,600
320	1480	1459	-4.9	14,400	400	1473	450	-5.0 -4.9	28,100 61,900	487 488	1025 1045	607 11 8 6	-11.5 -11.2	23,700
321	850	603	-15.1	49,100	401	1029	1140	-11.5	25,300	489	1609	301	-11.2	89.200
322	1454	1494	-5.3	13,300	403	1516	754	-4.4	40,800	490	775	1289	-17.0	20,100
323 324	670 655	626	-20.0	47,700	404	1495	554	4.7	52,500	491	692	178	-19.3	169,300
325	1521	101 675	-20.6 -4.4	420,500	405	1525	1092	-4.3	27,100	492	1100	964	-10.2	31,800
326	1587	677	-3.6	44,800 44,700	406 409	723	252	-18.4	108,000	493	1760	776	-1.6	39,700 110,700
327	1388	409	-6.3	67,000	410	650 1501	663 478	-20.8 -4.6	45,500 59,000	494	882	247	-14.5	21,200
328	448	1291	-30.0	20,100	411	936	1057	-13.4	28,300	495 496	470 494	1258 1436	-28.9 -28.1	15,200
330	1608	751	-3.3	40,900	412	350	1120	-35.9	26,000	497	980	852	-12.5	36,400
331 332	1566 531	697 471	·3.8	43.700	413	1033	538	-11.4	53,700	499	1414	546	-6.0	53,100
333	784	471 1156	-26.3 -16.7	59,600 34,700	415	737	425	-18.0	64,900	500	1234	1072	-8.3	27, 800 45,700
334	1059	407	-10.7	24,700 67,300	416 417	1578	606	-3.7	48,900	501	1246	659	-8.2	39,000
335	1593	303	-3.5	88,500	417 418	646 1695	496 482	-21.0 -2.3	57,300 58.500	502	824	792	-15.7	23,500
336	1616	596	-3.2	49,400	419	725	770	-2.3 -18.3	58,600 40,000	503 504	1246	1134	-8.2 -9.9	16,200
338	1854	1004	-0.6	30,300	420	1289	1041	·-7.7	28,900	505	1115 11 89	1407 391	-9.9 -8.9	GQ,700
339	1265	888	-8.0	34,900	421	1171	912	-9.1	33,900	506	1578	402	-3.7	62,000
340 341	581 1407	585	-23.6	50,300	422	599	162	-22.8	193,700	507	787	250	-16.6	100.000
343	1497 1351	1047 265	-4.7 -5.8	28,700	423	929	856	-13.6	36,200	508	979	552	-12.5	52,600 48,100
344	1813	549	-6.8 -0.9	102,200 52.800	424	739	625	-17.9	47,700	509	1153	619	-9.4	30.200
•			₹.₹	JE. 000	425	1490	965	-4.7	31.800	510	1730	1006	-2.0	,,

医自己 医阴道性病 经存款 医多种性 医原

2	. X	Y	CPKal	SDSWW	MEN	×	Y	CPKol	SDSMW	MSN	X	Y	СРКы	SDSM
511	809	484	-16.0	58,400	596	619	269	-21.9	100,500	674	1661	448	-2.7	62,10
512	1099	533	-10.2	54,100	507	1176	461	-9.1	60,700	675	1523	562	4.4	51,90
513	1696	1034	-2.3	29,200	598	1465	1044	·5.0	28,800	676	708	642	-18.8	45,70
514	948 481	636 543	-13.2 -28.5	47,100 53,400	500 600	741 907	1188 402	-17.9 -14.0	23,600 68,000	677 678	919 1085	615 551	-13.7 -10.5	48.30
515 516	1334	1044	-7.1	28,800	601	687	658	-19.5	45.800	679	600	923	-10.5	52,70 33,40
517	868	1021	-14.8	29,700	602	712	1138	-18.7	25,400	680	1237	1004	-8.3	30,30
518	796	779	-16.3	39,600	603	898	181	-14.1	165,200	681	1103	283	-10.1	95,10
519	822	670	-15.7	45,100	604	783	1461	-16.7	14,400	682	1406	477	-6.1	59,10
520	632	165	-21.5	189,000	605	736	223	-18.0	125,300	683	1596	249	-3.4	109,80
521	1332	830	-7.1	37,300	606	629	273	-21.6	98,700	684	555	699	-24.8	43,50
522	603 1190	1104 309	-22.6 -8.9	26,600 86,800	607 608	1064 883	286 503	-10.8 -14.5	94,000 56,700	685 686	1167 1932	1313	-9.2 0.0	19,30
254 252	479	1226	-28.6	22,300	609	2012	610	>0.0	48,700	687	1545	790 619	-4.1	39,10 48,10
525	768	1066	-17.2	28,000	610	1255	903	48.1	34,200	688	1456	764	-5.2	40.30
525	747	1016	-17.7	29,800	612	1103	391	-10.1	69,600	689	1011	953	-11.8	32,30
527	1170	231	-9.2	119,600	613	778	265	-16.9	102,000	690	1995	270	>0.0	100,20
528	1502	542	4.6	53,400	614	.824	518	-15.7	55,400	691	812	868	-16.0	34,90
530	1728	620	-2.0	48.000	615	1095	195	-10.3	149,100	692	1154	1461	-9 4	14,40
532	507	1011	-27.4	30,000	616	1759	478	-1.6	59,000	693	1993	819	>0.0	37,80
233	870 1347	489 1085	-14.7 -6.9	57, 90 0 27, 30 0	617 618	994 751	372 374	-12.1 -17.6	72,900	694	1628	656	-3.0	45.90
534 535	1513	346	-4.5	27, 300 77, 80 0	619	1429	518	-17.6 -5.7	72,400 55,300	695 696	928 1854	254 715	-13.6 -0.6	107,00 42,70
536	306	654	<-35.0	46,000	620	1050	520	-11.1	55,200	697	1997	345	>0.0	78,00
538	1851	689	-0.7	44,100	621	923	1105	-13.7	26,600	698	957	563	-13.0	51,80
539	1463	982	-5.1	31,100	622	1462	622	-5.1	47,900	699	1540	730	4.2	42,00
540	909	561	-13.9	52,000	623	75 9	225	-17.4	124,000	702	577	900	-23.6	34,40
541	625	289	-21.7	93,100	624	758	1038	-17.4	29,000	703	1610	562	-3.2	51,90
542	1164	198	-9 .2	146,200	625	1438	606	·5.5	48,900	705	1278	571	-7.8	51,20
543 544	803 1259	655 1143	-16.2 -8.0	45, 90 0 25, 20 0	626 627	1096 942	1089 548	-10.2 -13.3	27, 20 0 53,000	706 707	1841 1018	704 1386	-0.7 -11.7	43,30
545	856	1526	-15.0	12,200	628	809	621	-16.0	48.000	707	1074	1145	-10.7	16,90 25,10
546	803	1071	-16.2	27,800	629	899	979	-14.1	31,300	710	293	889	<-35.0	34.80
547	1162	274	-9.3	98,400	630	1135	1321	-9.6	19,100	712	720	412	-18.5	66,60
548	128	1321	<-35.0	19,000	631	979	615	-12.5	48,300	713	1386	841	-6.4	36,80
549	1355	1122	-6.8	25,900	632	1542	1076	-4.1	27,600	714	1328	263	-7.1	103,10
550	595	866	-23.0	35,800	633	1345	814	-6.9	38,000	715	698	433	-19.1	63.90
223 225	1369 992	494 405	-6.6 -12.2	57, 50 0 67, 600	ಟ 835	409 1165	950 704	-32.2	32,400	716	701 1875	481	-19.0	58,70
 555	1125	410	-9.6	66,900	636	774	604	-9.2 -17.0	43,300 49,000	717 718	575	699 702	-0.5 -23.9	43,60 43,40
566	705	975	-18.9	31,400	<u>ස</u> 7	1263	524	-8.0	54,800	719	1216	204	-8.6	140,40
557	1477	1030	4.9	29,300	638	952	411	-13.1	66,700	721	1069	464	-10.8	60,40
558	980	583	-12.5	50,400	639	1717	575	-2.1	51,000	722	1272	506	-7.9	56.40
559	700	1109	-19.1	26,400	640	994	292	-12.1	92,000	723	958	822	-13.0	37,70
560	1028	621	-11.5	48,000	641	165	1224	<-35.0	22,400	724	763	395	-17.3	69,10
562 564	898	794	-14.1	38,900	642	803	251	-16.2	108,900	725	720	916	-18.5	33,70
585	789 777	1446 766	-16.6 -16.9	14,900 40,200	643 644	719 1100	296 294	-18.5	90,700	726	1476 1846	415 473	-4.9 -0.7	66,20
566	980	328	-12.5	81,900	645	534	1263	-10.2 -26.1	91,400 21,000	727 728	510	783	-27.3	59,40 39,40
567	1519	611	4.4	48,600	646	1153	1038	-9.4	29,000	729	1217	1126	-8.6	25,80
560	1212	661	-8.6	45,600	648	1246	204	-8.2	140,000	730	1858	724	-0.6	42,30
570	760	594	-17.4	49,700	649	14	1406	<-35.0	16,200	731	665	765	-20.2	40,30
271	618	956	-21.9	32,100	650	1713	1049	-2.1	28,600	733	1321	312	-7.2	85,90
573 574	1142	771	-9.6	40,000	651	1986	1183	>0.0	23,800	734	719	427	-18.5	64,60
75	532 771	787 250	-26.2	39,300	652	1378	816	-6.5	38,000	735	1101	473	-10.2	59,50
76	1068	534	-17.1 -10.8	109,200 54,100	653 654	1442 650	1165 806	-5.5 -20.8	24,400 38,400	736 738	1359 696	569 220	-6.7 -19.2	51,40 127,60
777	822	734	-15.7	41,800	655	1111	551	-20.8 -10.0	52,700	739	687	409	-19.2 -19.5	67,00
78	914	754	-13.8	40,800	656	1095	86 1	-10.0	36,000	. 740	1205	256	-8.7	106,20
70	1064	794	-10.8	38,900	657	1524	540	4.4	53,600	741	995	563	-12.1	51,90
80	1524	714	-4.4	42,800	658	1777	860	-1.4	36,000	742	898	596	-14.1	49,5
8 1	1392	783	-6.3	39,400	65 9	391	584	-33.4	50,400	743	881	181	-14.5	165,90
84 85	982	686	-12.4	44,200	660	977	565	-12.5	51,700	744	1951	686	>0.0	44,2
85	1487 758	672	-4.8 -17.4	45,000	661	658	166	-20.5	187,500	745	726	168	-18.3	183,6
≈	758 687	731 1152	-17.4 -19.5	41,900 24,900	662 663	732	312	-18.1	86,100	746	999	643	-12.0 <-35.0	46,6
87	930	523	-19.5 -13.5	24,900 55,000	664	1787 888	567 268	-1.2 -14.4	51,500 100,900	748 749	182 2005	1503 649	<-35.0 >0.0	13,0 46,3
88	1888	774	-0.4	39,900	665	889	775	-14.3	39,800	750	1448	575	-5.4	51,0
89	642	485	-21.1	58,300	666	715	221	18.6	126,300	751	792	266	-16.5	101,9
90	1317	519	-7.3	55,300	667	781	227	-16.8	122,400	752	469	296	-28.9	90,6
501 500	65	1548	<-35.0	11,500	668	646	165	-21.0	189,100	754	664	254	-20.3	107,0
902 903	1014	614	-11.7	48,400	669	1116	353	•9.9	76,300	755	1195	184	-8.8	161,0
	732	176 478	-18.1	172,300	670	1382	643	-6.4	46,600	756	1821	1113	-0.9	26,30
-		478	-3.0	59,000	671	547	789	-2E 2	70 200	757	909	246	-13.9	111,00
54 595	1627 1009	1426	-11.8	15.500	673	984	746	-25.3 -12.4	39,200 41.200	757 760	790	133	-16.5	264.90

というない はいいい はんかん

MSN	x	Y	CPKol	SDSMW	MSN	x	Y	СРКы	SDSMW	MSN	x	Y	CPKol	SDSAW
761	1390	733	-6.2	41,800	848	1863	271	-0.6	99,500	939	1197	827		
763	1416			27,300	849		523	-9.2	54,900	941	1765	885	-8.8 -1.5	37.500
764	2020			51,400	850	1535	1024	4.2	29,600	942	602	472	-22.7	35.00c
765 766	651 1052	475 1149	-20.8 -11.1	59.300 ~ ~~	851	1035	826	-11.4	37,500	943	312	498	<-35.0	59.600 57.100
767	1968	468	-11.1 >0.0	25,000 59,900	852 855	834 499	542 220	-15.5	53,400	944	993	491	-12.1	57.70c
768	1330		-7.1	44,300	856	1063	194	-27.8 -10.9	127,100 150,500	945 946	1300 630	269	-7.5	100,300
769	1970	613	>0.0	48,500	857	887	890	-14.4	34,800	947	187	423 736	-21.6 <-35.0	65.10C
770	857	617	-15.0	48,200	858	1448	639	-5.4	46,900	948	1380	344	-6.5	41.600
771	1337	974	-7.0	31,500	859	706	311	-18.9	86,200	949	1766	665	-1.5	78.200 45.400
773 775	1576 969	502 824	-3.7 -12.8	56,700 37,600	860	1070	1066	-10.7	28,000	950	1038	193	-11.3	151,000
776	1438	708	·5.5	43,100	861 862	472 674	347 480	-28.8 -19.9	77,600 58,800	951 952	860	152	-14.9	213,000
777	1539	458	4.2	61,000	864	1307	499	-7.4	57,000	954	957 503	701 547	-13.0 -27.6	43,400
778	850	434	-15.1	63,800	865	645	887	-21.0	34,900	955	1938	712	>0.0	\$3.000
779	700	411	-19.1	66,800	866	827	1004	-15.6	30,300	957	1010	816	-11.8	42.900 37.900
780 784	1052 1413	1136 529	-11.1	25,500	868	685	494	-19.5	57,400	950	768	174	-17.2	174,900
785	1364	885	-6.0 -6.7	54,400 35,000	869 870	1807 1323	402 783	-1.0	68,000	960	596	419	-23.0	65.70C
786	1822	835	-0.9	37,100	871	1228	1031	-7.2 -8.4	39,400 29,300	961 962	557 887	409 320	-24.8	67,100
787	893	392	-14.3	69,500	872	1904	346	-0.3	77,700	963	564	334	-14 4 -24.5	83.900
790	616	882	-22.0	35,100	873	556	647	-24.8	46,400	964	969	1155	-12.8	80.500 24,800
791	451	1429	-29.8	15,400	874	1540	756	-4.2	40,700	965	671	255	-20.0	106,600
792 793	777 1536	377 1543	-16.9 -4.2	72,000 11,700	875 876	1566	777	-3.8	39,700	966	1204	798	-8.7	38,700
794	1461	807	·5.1	38,300	877	11 98 1076	351 720	-8.8 -10.6	76,800 42,500	967 968	910	154	-13.9	210,300
796	388	546	-33.6	53,100	878	1161	1111	-9.3	26,400	969	609 1285	1048 206	-22.3 -7.7	28,700
797	1126	212	-9.8	133,700	879	647	757	-20.9	40,700	970	822	232	-15.8	138,900 119,300
798	933	437	-13.5	63,400	880	1756	594	-1.6	49,700	971	976	437	-12.6	63,400
799 800	1420 17 50	593	-5.9	49,800	881	1543	278	-4.1	97,100	972	403	567	-32.6	51,600
801	624	279 865	-1.6 -21.7	96,500 35,800	883 884	1432 922	890	-5.7	34,800	974	279	495	<-35.0	57,40C
802	898	547	-14.2	53,000	885	1103	689 414	-13.7 -10.1	44,100 66,400	975 976	844 1124	981	-15.3	31,200
803	1775	1468	-1.4	14,200	886	1501	607	-4.6	48,900	977	994	295 664	-9.8 -12.1	91,100 45,400
804	573	196	-24.0	148,400	887	798	1103	-16.3	26,600	978	1612	642	-3.2	46,700
805	203	494	<-35.0	57,400	888	636	634	-21.3	47,200	979	749	1141	-17.7	25,300
806 807	980 902	1039 308	-12.5	29,000	889	951	75 9	-13.1	40,600	980	1064	642	-10.8	46,700
808	625	827	-14.1 -21.7	87,200 37,500	890 891	717 1123	548 229	-18.6 -9.8	52,900	961 983	1197	911	-8.8	33,900
809	1851	1015	-0.7	29,900	892	891	413	-14.3	121,200 66,400	984	1762 1344	1508 317	-1.6 -6.9	12,800 84,700
810	440	573	-30.9	51,100	894	1245	234	-8.2	117,800	985	1024	1105	-11.5	26,600
811	1358	249	-6.8	109,700	895	1962	346	>0.0	77,700	987	739	1159	-17.9	24,600
812	851	393	-15.1	69,400	896	1322	626	-7.2	47,700	988	816	555	-15.9	52,400
813 814	745 2028	1246 810	-17.8 >0.0	21,600	897	420	570	-31.4	51,300	990	785	361	-16.7	74,900
815	1086	645	-10.4	38,200 46,500	898 899	662 845	428 243	·20.3	64,500	991	1159	317	-9.3	84,500
816	629	313	-21.6	85,700	900	624	703	-15.3 -21.7	113,000 43,400	992 993	1090 1030	928 701	-10.4 -11.5	33,300 43,400
817	1376	1177	-6.5	24,000	901	931	1094	-13.5	27,000	994	847	701 811	-11.5 -15.2	38.200
818	1771	790	-1.4	39,100	903	799	229	-16.3	121,000	995	902	461	-14.1	60,700
819	1045	263	-11.2	103,100	904	765	520	-17.2	55,200	996	888	847	-14.4	36,600
820 821	984 1712	362 279	-12.4 -2.2	74,600 96,700	905	775	889	-17.0	34,800	997	1815	579	-0.9	50,700
822	1256	205	-2.2 -8.1	139,200	907 908	888 828	824 1303	-14.4 -15.6	37,600 19,700	998 999	1205	504	-8.7 -22.0	56,500 93,100
823	1517	654	-44	46,000	910	681	1544	-15. 0 -19.7	19,700	1000	617 968	289 290	-22.0 -12.8	92,700
824	1442	449	-5.5	62,000	911	1544	301	-4.1	89,100	1001	970	771	-12.7	40,000
825	1240	513	-8.3	55,800	913	1606	387	-3.3	70,400	1002	1736	478	-1.9	58,900
826 827	1309	1014	-7.4	29,900	914	1237	688	-8.3	44,100	1003	643	1184	-21.1	23,700
827 828	2012 937	708 1405	>0.0 -13.4	43,100 16 200	916	1442	749	-5.5	41,100	1006	822	487	-15.8	58,100 96,400
830	1342	756	-13.4 -7.0	16,200 40,700	917 919	1260 764	367	-8.0	73,700	1007	875	279	-14.6	45,600
831	562	826	-24.5	37,500	920	1133	1541 1123	-17.3 - 9 .7	11,700 25,900	1009 1010	291 1386	644 745	<-35.0 -6.4	41,200
832	1073	1039	-10.7	29,000	921	1123	380	-9.8	71, 500	1010	459	745 541	-0.4 -29.4	53,500
833	481	820	-28.5	37,800	923	829	242	-15.6	113,200	1012	679	661	-19.7	45,600
834	501	581	-27.8	50,500	924	1131	318	-9.7	84,300	1013	1816	1128	-0.9	25,800
837 838	751	748	-17.6	41,100	925	1441	874	-5.5	35,400	1014	1032	634	-11.4	47,200
839	635 1494	833 459	-21.3 -4.7	37,200 60,900	926	679	219	-19.7	128,200	1015	1629	994	-3.0	30,700 25,500
840	1952	301	>0.0	89,300	927 928	1487 1082	1191 775	-4.8 -10.6	23,500	1016	1311	1134	-7.4	65,000
841	1585	1080	-3.6	27,500	929	1231	775 816	-10.5 -8.4	39,800 38,000	1017 1018	1722 1015	424	-2.0 -11.7	41,300
842	571	1312	-24.1	19,400	931	1609	670	·3.3	45,100	1020	1574	743 1219	-11.7 -3.7	22 500
843	1325	649	-7.2	46,300	932	810	900	-16.0	34,400	1021	781	484	-3.7 -16.8	EB 400
844	1727	301	-2.0	89,200	933	965	520	-12.8	55,100	1022	1129	83	-9.7	EA1 300
845	630	679	-21.5	44,600	934	947	462	-13.2	60,600	1023	812	317	-15.9	84,600 62,400
846 847	2016 673	905 1200	>0.0 -19.9	34,200	936	865	843	·-14.8	36,800	1024	785	446	-16.7	41.500
О	0/3	.200	.18.8	23,200	937	1421	1056	-5.9	28,400	1025	1290	739	-7.7	41,00

1975 1986 405 552 423 53,500 1153 621 1158 43,77 24,700 1000 1284 226 7.77 121,200 1162 623 397 -21,8 68,400 1001 1284 226 7.77 121,200 1162 623 397 -21,8 68,400 1001 1284 226 7.77 121,200 1162 623 397 -21,8 68,800 1001 1284 226 7.77 121,200 1162 625 397 -20,2 66,700 1001 1284 226 7.77 121,200 1162 625 397 -20,2 66,700 1001 1284 536 4.44 53,700 1175 536 526 -25.9 54,500 1003 1284 546 4.4 3.77.00 1175 536 524 -25.9 54,500 1003 1285 646 4.3 57,200 1177 536 524 -25.9 54,500 1005 1286 546 4.5 68,300 1174 1096 522 -10.2 55,700 1005 1286 546 4.5 68,300 1176 1396 532 -10.2 55,700 1006 541 889 -5.5 73,600 1176 1396 536 -7.5 50,200 1001 541 889 -5.5 73,600 1176 1396 536 -7.5 50,200 1001 541 889 -5.5 73,600 1176 1396 536 -7.5 50,200 1001 1391 1394 -5.2 24,900 1394 1394 -5.2 24,900 1394 1394 -5.2 24,900 1394 1394 -5.2 24,900 1394 1394 -5.2 24,900 1394 1394 -5.2 24,900 1394 1394 -5.2 24,900 1394 1394 -5.2 24,900 1394 -1.0 46,700 1186 1347 222 -5.1 125,200 1394 1394 -5.2 24,900 1394 -1.0 46,700 1186 1347 222 -5.1 125,200 1394 1395 -5.8 125,200 1394 -1.0 46,700 -1.0 46,700 -1.0 46,700 -1.0 46,700 -1.0 46,700 -1.0 46,700 -1.0 46,700 -1.0 46,700 -1.0			_							
1975 1298 848 -7.5 35.500 1153 921 1156 -13.7 24.700 1298 848 -7.5 35.500 1154 1594 864 -3.5 35.900 1394 226 -7.7 121.200 1161 657 400 -21.3 58.800 1031 1294 226 -7.7 121.200 1162 652 397 -21.8 68.800 1031 1986 622 -12.3 17.700 1163 655 397 -20.2 68.700 1031 1531 -6.4 52.700 1170 552 529 -24.4 55.00 1031 1525 496 -4.3 57.200 1171 538 524 -25.9 54.800 1031 1325 496 -4.3 57.200 1171 538 524 -25.9 54.800 1035 1226 274 -8.5 69.300 1174 1099 522 -10.2 55.000 1060 751 389 -25.7 36.800 1177 1366 539 -6.6 53.700 1040 531 839 -25.7 83.800 1177 1366 539 -6.6 53.700 1041 1036 485 -11.3 55.300 1179 1485 224 -4.8 124.800 1041 1036 485 -11.3 55.300 1179 1485 224 -4.8 124.800 1047 1540 250 -4.2 109.200 1181 1431 223 -5.7 53.200 1047 1540 250 -4.2 109.200 1181 1431 223 -5.7 125.100 1048 1576 635 -3.7 47.100 1182 1407 223 -6.1 125.200 1067 1426 635 -3.7 47.100 1182 1407 223 -6.1 125.200 1068 1676 635 -3.7 47.100 1182 1407 223 -6.1 125.200 1050 1498 1407 -5.5 67.200 1180 1459 124 -4.2 124.700 1050 426 635 -3.7 47.100 1182 1407 223 -6.1 125.200 1050 1390 577 -6.5 72.000 1180 1459 122 -5.7 125.100 1050 1498 1407 -5.5 73.000 1180 1459 122 -5.7 125.100 1050 1390 577 -6.5 72.000 1180 1459 122 -5.5 124.800 1050 1390 1577 1586 1390 377 -6.5 72.000 1180 1459 122 -5.5 124.800 1050 1390 1577 296 -5.5 144.800 1050 1390 1577 296 -5.5 144.800 1190 1457 -5.5 -5.5 144.800 1050 1390 1577 296 -5.5 144.800 1190 1577 296 -5.5 144.800 1190 1577 296 -5.2 144.800 1190 1577 296 -5.2 144.800 1190 1577		X	Y	CPKd	SDSMW	MSN	×	Y	CPKN	SDSMW
1007 1208 848 -7.5 35.500 1154 1504 864 -3.5 35.500 1161 167 400 -21.3 468,400 1001 1204 226 -7.7 12.200 1161 665 307 -21.8 68,400 1001 1204 226 -7.7 12.200 1162 665 307 -21.8 68,400 1001 1006 622 -12.3 37.700 1162 665 307 -21.8 68,400 1001 1305 525 450 -4.1 52.5 52.5 -20.2 68,700 1001 1315 551 -6.4 52.700 1170 526 529 -24.4 54.500 1001 1325 496 -4.3 57.200 1177 528 524 -25.5 55.500 1001 1525 496 -4.3 57.200 1174 1009 522 -10.2 55.5 50.000 1001 1261 262 -1.6 100,600 1176 1004 566 -7.5 50.200 1009 1761 262 -1.6 100,600 1176 1004 566 -7.5 50.200 1001 541 839 -25.7 65,000 1176 1608 702 -3.3 44.00 1004 1036 485 -11.3 55,000 1176 1465 224 -4.8 124,000 1041 1818 1010 -15.8 34,000 1176 1465 224 -4.8 124,000 1041 1818 515 -5.5 67,200 1180 1459 224 -5.2 124,000 1041 1818 515 -5.5 67,200 1180 1459 224 -5.2 124,000 1041 1606 635 -7.7 7.5 56,000 1176 1459 224 -5.2 124,000 1064 1576 6355 -3.7 47,100 1182 1407 223 -5.7 125,100 1041 1609 411 -10.4 65,700 1180 1459 224 -6.4 125,700 1180 1459 224 -6.4 125,700 1180 1459 224 -6.4 125,700 1180 1457 226 -5.3 164,400 1650 494 1040 -13.2 28,900 1184 1451 223 -5.7 125,100 1650 1465 1365 -3.5 -3.5 03.0 1180 1457 -2.5 -3.5 03.6 03.0 03	-	405	552	-323	52,600	1153	921	1158	-13 7	24 700
1200 1284 226 -7.7 121,200 1162 622 330 -21.8 68,800 1001 1966 622 -12.3 317,000 1168 655 397 -20.2 69,700 1001 1961 551 -4.1 67,900 1168 564 528 -25.9 -25.0 54,500 1003 1381 551 -4.4 52,700 1170 552 5529 -25.0 54,500 1003 1286 645 -4.7 -4.5 60,000 1174 1099 552 -10.2 55,000 1005 1286 645 -4.7 -4.5 60,000 1174 1099 552 -10.2 55,000 1006 1261 262 -1.6 101,600 1177 1099 552 -10.2 55,000 1006 518 539 -25.7 36,900 1176 1304 566 -7.5 50,200 1001 1818 1910 -15.8 34,000 1176 1304 566 -7.5 50,200 1004 1818 910 -15.8 34,000 1178 1608 7702 -3.3 43,400 1041 1036 445 -11.3 58,300 1179 1485 224 -5.2 124,900 1041 1036 445 -11.3 58,300 1176 1485 224 -5.2 124,900 1041 1036 445 -11.3 58,300 1176 1485 224 -5.2 124,900 1044 1036 445 -11.3 58,300 1180 1459 224 -5.2 124,900 1040 1039 4011 -10.4 65,700 1180 1485 224 -5.2 124,900 1040 1039 411 -10.4 65,700 1180 1383 224 -6.4 125,200 1060 949 1040 -13.2 28,900 1184 1454 182 -5.3 164,600 1650 949 1040 -13.2 28,900 1186 1394 182 -6.3 164,500 1165 1366 136 50 -3.2 34,000 1196 1380 225 -5.2 94,200 1196 1530 426 -5.2 94,200 1196 1530 426 -5.2 94,200 1196 1530 426 -5.2 94,200 1196 1530 426 -5.2 94,200 1196 1530 426 -5.2 94,200 1196 1530 426 -5.2 94,200 1196 1530 426 -5.2 94,200 1196 1530 426 -5.2 94,200 1196 1530 426 -5.2 94,200 1196 1530 426 -5.2 94,200 1196 505 5	1027	1298				1154	1594			
1031 986 822 -12.3 37,700 1185 685 397 -20.2 68,700 1031 1381 551 -54 45,700 1185 685 529 -24.4 54,500 1031 1381 551 -54 45,700 1176 552 529 -24.5 54,500 1031 1381 551 -54 45,700 1177 345 518 -22.5 54,500 1031 1286 645 -9.7 46,500 1177 345 518 -22.5 55,700 1031 1286 645 -9.7 46,500 1177 345 519 -25.5 55,700 1031 1381 551 -22.5 55,700 1031 1381 551 -22.5 55,700 1031 1381 532 -25.7 55,000 1177 1345 539 -25.7 55,000 1177 1345 539 -25.7 55,000 1177 1345 539 -26.5 53,700 1041 188 910 -15.8 34,000 1177 1346 539 -25.7 55,000 1180 1494 1034 485 -11.3 58,000 1177 1345 224 -4.8 124,900 1041 1034 485 -11.3 58,000 1180 1459 224 -4.8 124,900 1041 1034 497 -15.5 67,300 1180 1459 224 -4.8 124,900 1041 1034 638 -11.3 47,100 1182 1407 223 -5.7 125,100 1041 1035 485 -11.3 47,100 1182 1407 223 -5.7 125,100 1041 1036 68 188 -31.1 37,800 1185 1422 183 -5.8 182,600 1050 1380 3183 -3.6 16,900 1186 1394 182 -5.8 182,600 1050 1380 377 -6.5 70,000 1180 1171 244 -9.2 131,800 1055 1380 377 -6.5 70,000 1180 1371 244 -9.2 131,800 1056 2380 377 -6.5 70,000 1196 507 1233 -24,100 1060 1381 734 482 483 -3.5 48,000 1180 1371 244 -9.2 131,800 1056 238 65 -3.3 49,000 1180 1371 244 -9.2 131,800 1056 238 65 -3.3 49,000 1180 1371 244 -2.2 13,000 1056 238 746 -8.2 41,200 1180 1371 244 -9.2 131,800 1056 238 746 -8.2 41,200 1180 1394 132 -7.5 135,000 1396 637 435,000 1396 637 435,000 436,000 436,000 436,000 436,000 436,000 436,000 436,000 436,000 436,000 436,000 436,000 436,000 436,000 436,000 436,000 436,000 43										-
1002 1547 400 4.1 67,900 1168 554 528 -24.4 54,500 1004 1525 496 -4.3 57,200 1170 538 524 -25.5 55,700 1005 1526 274 -8.5 68,300 1177 538 524 -25.5 55,700 1006 1266 274 -8.5 68,300 1177 1368 539 -6.5 55,700 1009 1761 262 -1.5 50,000 1176 1304 556 -7.5 50,000 1009 1761 262 -1.5 50,000 1176 1304 556 -7.5 50,000 1009 1761 1009 1761 1004 565 -7.5 50,000 1009 1006 485 -11.3 56,300 1170 1485 224 -3.8 41,400 1004 1006 485 -11.3 56,300 1170 1485 224 -3.8 41,400 1004 1006 485 -11.3 56,300 1170 1485 224 -5.2 124,100 1004 1006 485 -11.3 56,300 1180 1459 223 -5.7 125,100 1004 1006 485 -11.3 56,300 1180 1459 223 -5.7 125,100 1004 1006 485 -1.1 -1.2 100,200 1181 1451 223 -5.7 125,100 1004 1006 441 -1.0 465,700 1180 1308 224 -5.2 -6.1 125,200 1004 1006 441 -1.0 465,700 1180 1308 224 -5.2 -6.1 125,200 1004 1006 441 -1.0 465,700 1180 1308 224 -5.3 164,400 1006 442 -1.0 -1.2 40,000 1180 1308 224 -5.8 162,600 1005 1583 1305 -3.6 16,900 1180 1304 182 -5.3 164,400 1005 1583 1305 -3.6 16,900 1190 1457 226 -5.2 94,200 1005 1583 1305 -3.5 -5.200 1190 1457 226 -5.2 94,200 1005 1583 1305 -3.5										
1907 1381 551 64 52,700 1170 552 529 25.0 54,500 1004 1525 486 4.3 57,200 1171 538 524 25.5 55,700 1005 1128 645 6.7 46,500 1172 545 514 25.5 55,700 1009 1761 262 1.6 101,600 1176 1009 522 1.0 2.0 1009 1009 522 1.0 100,600 1176 1009 522 1.0 52,700 1009 1761 262 1.6 101,600 1176 1009 522 1.0 2.0 1170 1006 519 6.6 53,700 1001 1818 910 15.8 34,000 1177 1465 539 6.6 53,700 1004 1036 485 11.3 55,300 1176 1485 224 -5.2 124,000 1005 1439 407 -5.5 67,300 1180 1449 224 -5.2 124,000 1005 1439 407 -5.5 67,300 1181 1441 222 -5.7 125,100 1006 1009 1009 1009 1009 1009 1181 1441 222 -5.7 125,100 1009 1009 1009 1009 1181 1454 182 -5.8 182,600 1009 1009 1009 132 22,900 1180 1454 182 -5.8 182,600 1001 1009 1009 1009 1381 1383 4182 -5.8 182,600 1001 1383 1385 -3.6 16,900 1186 1394 182 -5.3 164,400 1002 1583 1385 -3.5 16,900 1180 1394 182 -5.3 164,400 1005 1666 284 633 -3.5 45,000 1190 1377 224 -5.2 131,800 1005 1380 377 -5.5 72,000 1190 1371 224 -5.2 131,800 1005 1380 377 -5.5 72,000 1191 696 1114 -19.5 52,200 1006 1261 1381 1382 1385 -3.3 49,000 1190 1371 234 -2.2 -3.3 0,000 1190 1371 234 -2.2 131,800 1005 1381 734 -9.0 41,000 1190 1371 234 -2.2 131,800 1005 1261 1381 1383 1385 -3.3 49,000 1190 5071 1394 122 -3.5 0,000 1006 1817 645 -0.9 44,600 1190 1377 1394 127.6 19,400 1005 1381	1032	1547								
1128									-25.0	54,500
1006 1226 274 4.5 98,300 1174 1009 522 -1.02 55,000	1034									•
1009 1761 262 -1.6 103,600 1176 1304 586 -7.5 59,200 1041 1045 485 -11.3 589,300 1177 1366 539 -6.6 53,700 1041 1045 485 -11.3 589,300 1178 1608 702 -1.3 41,400 1045 1439 407 -5.5 67,300 1180 1459 224 -4.8 124,900 1046 1576 635 -3.7 47,100 1182 1407 223 -5.7 125,100 1048 1576 635 -3.7 47,100 1182 1407 223 -6.1 125,200 1049 1069 411 -10.4 66,700 1183 1363 224 -6.4 124,700 1050 491 1040 -13.2 28,900 1184 1454 182 -5.3 164,400 1051 426 818 -31.1 37,800 1185 1422 183 -5.8 182,600 1052 1583 1385 -3.5 15,000 1186 1394 182 -5.8 182,600 1054 1613 520 -3.2 48,000 1196 1394 182 -6.3 184,300 1056 245 31365 -3.5 5.7 2000 1190 1457 226 -5.2 48,200 1056 245 337 -6.5 72,000 1191 666 1114 -19.5 26,200 1056 245 653 <35.0 45,500 1192 226 893 <35.0 20,000 1050 338 565 -33.3 49,000 1194 506 1311 -27.6 19,400 1051 1817 645 -0.9 46,600 1196 572 1233 -24.1 20,000 1051 1817 645 -0.9 46,600 1196 572 1233 -24.1 20,000 1051 1817 645 -0.9 46,600 1196 572 1233 -24.1 20,000 1051 1817 645 -0.9 46,600 1196 572 1233 -24.1 20,000 1051 1817 645 -0.9 46,600 1196 572 1233 -24.1 20,000 1051 1817 645 -0.9 46,600 1196 572 1233 -24.1 20,000 1051 1817 645 -0.9 46,600 1196 572 1233 -24.1 20,000 1051 1817 645 -0.9 46,600 1196 572 1233 -24.1 20,000 1051 1817 645 -0.9 46,600 1196 572 1233 -24.1 20,000 1051 1817 645 -0.9 46,600 1196 572 1233 -24.1 20,000 1052 1525 746 -8.2 34,200 1196 572 1233 -24.1 20,000 1052 1525 746 -8.2 34,200 1196 572 1233 -24.1 20,000 1052 1525										
1946 1936 485 -11.3 58,000 1178 1508 702 -3.3 43,400 1045 1439 407 -5.5 67,300 1178 1485 224 4.8 124,900 1164 1349 407 -5.5 67,300 1178 1445 224 5.2 214,900 1164 1576 635 -3.7 47,100 1182 1407 223 -6.1 125,200 1049 1069 411 -10.4 66,700 1183 1383 224 6.4 124,700 1185 1439 124 63,000 1186 1459 124 64,000 1186 1349 125 63,000 1186 1459 124 64,000 1186 1394 182 -5.3 184,400 1661 486 818 -31.1 37,800 1186 1394 182 -5.3 184,400 1664 1613 620 -3.2 48,000 1196 1457 286 -5.2 84,200 1666 246 653 <35.0 45,500 1196 1457 286 -5.2 84,200 1666 246 653 <35.0 45,500 1196 265 693 <35.0 45,000 1666 1616 63,000 1666 1616 646 65,000 186 1608 1		_							-7.5	
1045 1435 445 -11.3 58.300 1179 1485 224 -4.8 124.900 1047 1540 259 -4.2 108.200 1181 1431 223 -5.7 125.100 1048 1576 635 -3.7 47.100 1182 1407 223 -5.7 125.100 1049 1049 -13.2 28.900 1184 1454 182 -5.3 164.400 1051 468 818 -31.1 37.800 1185 1422 183 -5.8 162.500 1052 1563 1385 -3.5 16.800 1186 1344 182 -5.3 164.400 1053 779 1092 -16.8 27.000 1189 1171 214 -9.2 131.800 1053 779 1092 -16.8 27.000 1189 1171 214 -9.2 31.800 1056 1363 377 -6.5 72.000 1190 1457 266 -5.3 164.300 1056 1363 377 -6.5 72.000 1190 1457 266 -5.2 94.200 1056 1363 377 -6.5 72.000 1190 1457 266 -5.2 94.200 1056 1363 377 -6.5 72.000 1190 1457 266 -5.2 94.200 1056 1363 377 -6.5 72.000 1190 4431 4127 -9.2 31.800 1058 1261 746 -8.0 41.200 1192 265 893 <35.0 34.700 1058 1261 746 -8.0 41.200 1193 434 1275 <35.0 20.600 1051 1817 645 5.09 45.600 1194 430 1275 <35.0 20.600 1052 1255 746 -8.2 41.200 1196 505 1311 -27.6 19.400 1056 1258 792 -8.1 39.000 1197 539 502 -21.2 13.000 1056 1811 734 -9.0 41.800 1197 539 502 -21.2 13.000 1056 505 534 -18.9 33.000 1196 637 1402 -21.3 16.200 1057 539 559 -559										
1945 1439 407 -5.5 67.300 1180 1459 224 -5.2 124.900 1948 1576 63.5 -3.7 47.100 1182 1407 223 -5.7 125.100 1948 1576 63.5 -3.7 47.100 1182 1407 223 -5.8 122.700 1949 1040 -13.2 28.900 1184 1454 182 -5.3 164.400 1051 426 818 -31.1 37.800 1185 1422 183 -5.8 162.600 1052 1583 1385 -3.6 16.900 1186 1394 182 -5.3 164.400 1051 457 1052 16.8 27.000 1189 1171 214 -9.2 131.800 1053 779 1092 -16.8 27.000 1189 1171 214 -9.2 131.800 1054 1513 620 -3.2 48.000 1190 1457 226 -5.2 94.200 1056 1340 377 -6.5 72.000 1191 1457 226 -5.2 94.200 1056 1380 377 -6.5 72.000 1191 1457 226 -5.2 94.200 1056 1380 377 -6.5 72.000 1191 403 1292 -3.26 20.000 1050 333 605 -3.3 49.000 1192 255 833 -3.5 -3.5 0.600 1050 333 605 -3.3 49.000 1194 403 1292 -3.26 20.000 1050 1381 746 -4.2 41.200 1195 505 1311 -27.6 19.400 1054 1258 792 -4.1 39.000 1197 539 520 -21.2 13.000 1054 1258 792 -4.1 39.000 1197 539 520 -21.2 13.000 1056 1267 734 -4.0 44.800 1196 537 1402 -21.3 15.600 1058 506 656 -27.4 43.700 1201 1057 1341 -21.3 15.600 1058 506 656 -27.4 43.700 1201 1057 1341 -21.3 15.600 1058 506 656 -27.4 43.700 1201 1201 1057 1345 -1.03 14.600 1073 836 673 -4.5 50.000 1206 30.000 1207 313 195 -3.5 14.800 14.00										
1986 1576 635 -3.7 47,100 1182 1407 222 -6.1 125,200 1185 1089 411 -10.4 65,700 1183 1383 224 -6.4 124,700 1061 426 818 -31.1 37,800 1185 1422 183 -5.8 164,400 1051 426 818 -31.1 37,800 1185 1422 183 -5.8 164,400 1051 458 818 -31.3 37,800 1185 1422 183 -5.8 164,400 1051 637 79 1092 -16.8 27,000 1189 1171 214 -9.2 131,800 1053 779 1092 -16.8 27,000 1189 1171 214 -9.2 131,800 1054 1613 620 -3.2 48,000 1190 1457 226 -5.2 94,200 1056 1380 377 -6.5 72,000 1191 1457 226 -5.2 94,200 1056 1380 377 -6.5 72,000 1191 403 1292 -32.6 20,000 1058 1261 746 -8.0 41,200 1192 255 683 -33.5 24,000 1050 339 605 -33.3 49,000 1194 403 1292 -32.6 20,000 1051 1817 645 -0.9 46,600 1195 505 1311 -27.5 19,400 1054 1258 746 -8.2 41,200 1196 572 1293 -24.1 20,000 1054 1258 746 -8.2 41,200 1196 572 1293 -24.1 20,000 1054 1258 746 -8.2 41,200 1196 572 1293 -24.1 20,000 1055 705 934 -18.9 33,000 1197 539 1502 -21.2 16,200 1056 1281 734 -9.0 41,800 1199 614 4107 -22.1 16,200 1056 1281 734 -9.0 41,800 1199 614 4107 -22.1 16,200 1058 506 696 -27.4 43,700 1201 1075 1394 -10.3 15,600 1073 1896 604 -0.3 44,100 1201 1075 1394 -10.3 15,600 1073 836 673 -14.7 45,700 1201 1075 1394 -10.3 15,600 1075 836 673 -14.7 45,700 1201 300 971 635 -16.5 45,200 1075 836 673 -14.7 45,700 1201 300 977 -35.0 148,700 1075 836 673 -14.7 45,700 1201 300 977 -35.0 148,700 1075 836 673 -41.5 -5.500 1209 300 974 -33.2 91,400 1075 836 673 -41.5 -5.500 1209 300 977 -35.0 148,600 1076 836 675 -41.5 -5.500 1209 300 977 -35.0					-				.∙5.2	
1089 1089 411 -10.4 65,700 1183 1383 224 -6.4 124,700 1081 426 818 -31.1 37,800 1185 1454 182 -5.3 164,400 1065 1583 1385 -3.6 16,900 1185 1452 183 -5.8 162,600 1062 1583 1385 -3.6 16,900 1186 1394 182 -6.3 164,300 1063 779 1092 -16.8 27,000 1189 1171 214 -9.2 131,800 1064 1613 620 -3.2 48,000 1190 1457 266 -5.2 28,200 1065 1380 377 -6.5 72,000 1191 1457 266 -5.2 28,200 1065 1380 377 -6.5 72,000 1191 1457 266 -5.2 28,200 1066 294 663 <-35.0 45,500 1192 265 893 <-35.0 34,700 1060 393 605 -33.3 48,000 1194 344 1275 <-35.0 20,000 1061 1817 645 -0.9 46,800 1194 344 1275 <-35.0 20,000 1061 1817 645 -0.9 46,800 1196 572 1233 -24.1 20,000 1064 1258 792 -4.1 39,000 1197 639 1502 -21.2 13,000 1064 1258 792 -4.1 39,000 1197 639 1502 -21.2 13,000 1064 1258 792 -4.1 39,000 1198 637 1402 -21.3 16,300 1065 705 934 -11.8 33,000 1198 637 1402 -21.3 16,300 1066 1181 734 -9.0 41,800 1199 614 1407 -22.1 16,200 1067 529 658 -26.3 45,800 1208 637 1431 -21.3 15,400 1067 529 658 -27.4 43,700 1201 1065 1394 -10.3 15,600 1068 1068 604 -0.3 49,100 1202 1719 1545 -2.1 11,600 1071 873 609 -14.7 48,700 1200 791 668 -16.5 45,200 1071 873 609 -14.7 48,700 1200 791 668 -16.5 45,200 1071 873 609 -14.7 48,700 1200 791 668 -16.5 45,200 1071 873 609 -14.7 48,700 1200 791 435 -21.1 11,600 1078 1865 566 -15.7 51,600 1208 306 194 <-35.0 149,800 1208 306 194 <-35.0 149,800 1208 577 -35.0 149,800 1208 577 -35.0 149,800 1208 577 -35.0 149,800 1208 577 -35.0 149,800 1208 577 -35.0 149,800 1208 577 -35.0 14										-
1950 949 1040 -13,2 28,900 1184 1454 182 -5.3 164,400 1051 4266 818 -31,11 31,700 1185 1422 183 -5.8 162,500 1052 1583 1385 -3.6 16,900 1186 1394 182 -6.3 164,300 1654 1613 620 -3.2 48,000 1190 1457 226 -5.2 94,200 1666 234 663 -3.5,50 45,500 1191 1457 226 -5.2 94,200 1666 234 663 -3.5,50 45,500 1192 265 683 -3.5,60 34,700 1068 1261 746 -8.0 41,200 1193 340 1222 -32.6 20,000 1068 1261 746 -8.0 41,200 1193 505 1311 -27.6 19,400 1068 1261 746 -8.2 41,200 1195 505 1311 -27.6 19,400 1064 1258 792 -8.1 33,000 1196 572 1293 -24.1 20,000 1054 1258 792 -8.1 33,000 1197 539 1502 -21.2 13,000 1055 705 934 -18.9 33,000 1198 637 1402 -21.3 16,200 1065 1381 734 -9.0 41,800 1199 614 1407 -22.1 16,200 1067 529 656 -27.4 43,700 1201 791 654 1-0.3 15,600 1068 508 696 -27.4 43,700 1200 637 1431 -21.3 15,400 1073 873 609 -14.7 48,700 1200 791 635 126 -16.5 45,200 1073 836 773 -15.4 39,900 1205 3131 195 -35.0 148,700 1073 826 566 -15.7 51,600 1200 300 197 -35.0 148,700 1073 826 566 -15.7 51,600 1200 300 197 -35.0 148,700 1073 826 566 -15.7 51,600 1200 300 197 -35.0 148,700 1081 157 794 -9.4 33,900 1212 306 320 197 -35.0 148,700 1081 157 794 -9.4 33,900 1212 366 329 -11.6 320 31,900 320 319 -35.0 34,600 320 319 -35.0 34,600 320 319 -35.0 34,600 320 319 -35.0 34,600 320 319 -35.0 34,600 320 319 -35.0 34,600 320 319 -35.0 34,600 320 319 -35.0 34,600 320 319 -35.0 34,600 320 319 -35.0 34,600 320 3					•	_				
1052 1583 1385 -3.6 16,900 1186 1394 182 -4.3 164,300 1064 1613 520 -3.2 44,000 1180 1457 286 -5.2 94,200 1065 1396 377 -5.5 72,000 1181 182 265.8 833 -3.5.0 34,700 1068 1261 746 -6.0 41,200 1180 403 1292 -32.6 20,000 1061 1817 746 -6.0 41,200 1180 403 1292 -32.6 20,000 1061 1817 645 -0.9 46,600 1185 506 1311 -27.6 19,400 1062 1245 746 -8.2 41,200 1185 505 1311 -27.6 19,400 1062 1245 746 -8.2 41,200 1186 572 1293 -24.1 20,000 1064 1258 792 -8.1 39,000 1197 639 1502 -21.2 13,000 1065 705 934 -18.9 33,000 1198 637 1402 -21.3 16,300 1065 705 934 -18.9 33,000 1198 637 1402 -21.3 16,300 1065 705 934 -8.9 41,800 1200 637 1431 -21.3 15,400 1065 1388 604 -0.3 49,100 1200 637 1431 -21.3 15,400 1068 508 696 -27.4 43,700 1201 1095 1394 -10.3 16,600 1071 873 609 -14.7 44,700 1201 1095 1394 -10.3 16,600 1071 873 609 -14.7 44,700 1201 1095 1394 -10.3 16,600 1071 873 609 -14.7 44,700 1203 791 668 -16.5 45,200 1073 1768 1128 -1.5 -25,800 1204 964 1021 -12.9 29,700 1075 836 773 -15.4 39,800 1205 313 195 <35.0 144,700 1078 826 566 -15.7 51,600 1208 306 194 <35.0 144,700 1081 971 435 -0.6 36,000 1208 306 194 <35.0 144,700 1081 971 435 -0.6 36,000 1208 306 194 <35.0 144,700 1081 971 435 -0.6 36,000 1208 306 194 <35.0 144,600 1081 971 435 -0.6 36,000 1208 306 194 <35.0 144,600 1081 197 <35.0 144,600 1201 306 197 <35.0 144,600 1201 306 197 <35.0 144,700 1201 306 197 <35.0 144,600 1201 306 197 <35.0 144,600 1201 306 197 <35.0 144,600 1201 306 197 <35.0 144,600 1201 306 197 <35.0 144,6								182		
1053 779 1062 -16.8 27,000 1189 1171 214 -9.2 131,800 1054 1613 620 -3.2 48,000 1190 1457 296 -5.2 94,200 1055 1380 377 -6.5 72,000 1191 686 1114 -19.5 26,200 1056 284 663 <35.0 45,500 1192 265 883 <35.0 34,700 1068 1261 746 -8.0 41,200 1193 403 1292 -32.6 20,000 1060 393 605 -33.3 48,000 1194 344 1275 <35.0 20,600 1061 1817 645 -0.9 46,600 1196 572 1293 -24.1 20,000 1062 1245 746 -8.2 41,200 1196 572 1293 -24.1 20,000 1064 1258 792 -8.1 39,000 1197 639 1502 -21.2 13,000 1065 705 934 -18.9 33.000 1197 639 1502 -21.2 13,000 1066 1181 734 -9.0 41,800 1199 614 1407 -22.1 16,200 1067 529 658 -26.3 45,800 1200 6317 4311 -21.3 15,600 1068 508 696 -27.4 43,700 1201 1095 1394 -10.3 15,600 1071 873 609 -14.7 44,700 1202 7719 1545 -2.1 11,600 1071 873 609 -14.7 44,700 1202 7719 568 -16.5 45,200 1073 1768 1128 -1.5 25,800 1204 964 1021 -12.9 29,700 1076 1863 661 -0.6 35,000 1208 306 194 <35.0 144,800 1078 826 566 -15.7 51,600 1208 306 197 <35.0 144,800 1078 826 566 -15.7 59,500 1210 326 197 <35.0 144,800 1083 1697 -202 -2.3 142,300 1211 394 294 -33.2 91,400 1083 1697 202 -2.3 142,300 1216 660 329 -20.4 81,600 1208 1697 202 -2.3 142,300 1216 660 329 -20.4 81,600 1208 61 335 -14.7 12,000 1090 620 910 -21.9 34,000 1216 660 329 -20.4 81,600 1096 61 935 <35.0 33,600 1216 660 329 -20.4 81,600 1096 61 935 <35.0 33,000 1219 970 372 -12.7 72,900 1090 620 910 -21.9 34,600 1216 660 329 -20.4 81,600 1216 660 329 -20.4 81,600 1216 660 329 -20.4 81,600 1216 660 329 -20.4 81,600 1216							_			
1056 1360 377 -6.5 72,000 1191 565 830 -35.0 34,700 1056 1380 377 -6.5 72,000 1192 265 833 -35.0 34,700 1058 1261 746 -8.0 41,200 1182 265 833 -35.0 34,700 1058 1261 746 -8.0 41,200 1184 403 1292 -32.6 20,000 1051 1817 645 -0.9 46,600 1195 505 1311 -27.6 19,400 1052 1245 746 -8.2 41,200 1196 572 1293 -24.1 20,000 1054 1258 702 -8.1 39,000 1196 572 1293 -24.1 20,000 1054 1258 702 -8.1 39,000 1197 639 1502 -21.2 13,000 1055 705 534 -8.9 33,000 1198 637 1402 -21.3 16,300 1056 1381 734 -8.0 41,800 1199 614 407 -22.1 16,300 1067 529 656 -27.4 43,700 1201 1095 1394 -10.3 15,600 1068 508 656 -27.4 43,700 1201 1095 1394 -10.3 15,600 1069 1898 604 -0.3 49,100 1202 1719 1545 -2.1 11,600 1071 873 609 -14.7 48,700 1203 791 668 -16.5 45,200 1073 836 773 -15.4 39,900 1204 964 1021 -12.9 29,700 1075 836 773 -15.4 39,900 1204 964 1021 -12.9 29,700 1076 826 566 -15.7 51,600 1209 320 197 <35.0 148,700 1081 1971 483 -12.7 59,500 1201 326 197 <35.0 148,700 1083 1697 202 -2.3 142,300 1211 394 224 -33.2 91,400 1083 1697 202 -2.3 142,300 1215 641 329 -21.2 81,600 1083 1697 202 -2.3 142,300 1215 641 329 -21.2 81,600 1083 1697 202 -2.3 142,300 1215 641 329 -21.2 81,600 1093 1545 477 -4.1 59,100 1216 873 245 -14.7 112,000 1095 1545 477 -4.1 59,100 1216 873 245 -14.7 112,000 1095 1545 477 -4.1 59,100 1216 873 245 -14.7 112,000 1095 1545 477 -4.1 59,100 1216 873 245 -14.7 112,000 1095 1545 477 -4.1 59,100 1216 873 245 -14.7 112,000 1095 1545 477 -4.1 59,100 1216 873 245 -14.7 112,000 109										
1056	1054		620	-3.2	48,000	1190	1457	296	-5.2	
1058 1261 746						-				26,200
1050 393 605 -33.3 49.000 1194 344 1275 <-35.0 20.600 1061 1817 645 -0.9 46.600 1195 505 1311 -27.6 19.400 1062 1245 746 -8.2 41.200 1196 572 1293 -24.1 20.000 1064 1258 792 -8.1 39.000 1197 639 1502 -21.2 13.000 1065 705 934 -18.9 33.000 1198 637 1402 -21.3 16.300 1066 1181 734 -9.0 41.800 1199 614 1407 -22.1 16.200 1067 529 658 -26.3 45.800 1200 637 1431 -21.3 15.400 1068 508 696 -27.4 43.700 1201 1095 1394 -10.3 15.600 1069 1898 604 -0.3 49.100 1202 1719 1545 -2.1 11.600 1071 873 609 -14.7 48.700 1203 791 668 -16.5 45.200 1073 1768 1128 -1.5 25.800 1204 964 1021 -12.9 27.700 1075 836 773 -15.4 39.900 1205 313 195 <-35.0 144.700 1078 826 566 -15.7 51.600 1208 306 194 <-35.0 144.700 1078 826 566 -15.7 51.600 1209 300 197 <-35.0 144.600 1081 1697 202 -2.3 142.300 1211 394 294 -33.2 91.400 1083 1697 202 -2.3 142.300 1211 394 294 -33.7 91.400 1083 1697 202 -2.3 142.300 1214 386 294 -33.7 91.400 1092 1867 597 -0.5 49.500 1215 641 329 -20.4 81.600 1094 1546 538 -4.1 53.700 1216 366 650 329 -20.4 81.600 1094 1546 538 -4.1 53.700 1217 914 266 -13.8 10180 1095 1545 477 -4.1 59.100 1228 873 245 -14.7 112.000 1095 1545 477 -4.1 59.100 1228 873 245 -14.7 112.000 1096 1546 538 -4.1 53.700 1217 914 266 -13.8 10180 1095 1545 477 -4.1 59.100 1228 873 245 -14.7 112.000 1096 1546 538 -4.1 53.700 1216 660 329 -20.4 81.600 1095 1545 477 -4.1 59.100 1226 603 539 -20.6 53.600 1096 1546 538 -4.1 53.700 1226 603 539 -20.6 53.600 1096 616 -3.5 53.000 1229 707 628 -14.7 72.900 1005										
1052 1245 746 -8.2 41,200 1196 572 1293 -24.1 20,000 1064 1258 792 -8.1 39,000 1197 639 1502 -21.2 13,000 1065 705 934 -18.9 33,000 1198 637 1402 -21.3 16,300 1066 1181 734 -9.0 41,800 1199 614 1407 -22.1 16,200 1066 1181 734 -9.0 41,800 1200 637 1402 -21.3 15,400 1068 508 696 -27.4 43,700 1201 1095 1394 -10.3 15,600 1069 1898 604 -0.3 49,100 1202 1719 1545 -2.1 11,600 1071 873 609 -14.7 48,700 1203 791 668 -16.5 45,200 1073 1768 1128 -1.5 25,800 1204 964 1021 -12.9 27,700 1075 836 773 -15.4 39,900 1205 313 195 -35.0 148,700 1076 1863 861 -0.6 36,000 1208 306 194 -35.0 149,800 1076 1863 861 -0.6 36,000 1208 306 194 -35.0 149,800 1078 826 566 -15.7 51,600 1209 320 197 -35.0 145,600 1081 971 483 -12.7 59,500 1210 326 197 -35.0 145,600 1083 1697 202 -2.3 142,300 1211 394 294 -33.2 91,400 1085 1157 794 -94 38,900 1212 402 294 -33.2 91,400 1090 620 910 -21.9 34,000 1214 386 294 -33.7 91,400 1090 620 910 -21.9 34,000 1216 660 329 -20.4 81,600 1094 1546 538 -4.1 53,700 1216 660 329 -20.4 81,600 1094 1546 538 -4.1 53,700 1216 660 329 -20.4 81,600 1094 1546 538 -4.1 53,700 1216 673 540 -19.9 53,600 1096 1545 377 -4.1 59,100 1218 873 245 -14.7 112,000 1009 1564 277 -0.0 116,000 1220 1021 396 -1.1.6 90,100 1009 1544 532 -2.3 28,600 1221 1392 205 -6.3 139,500 1009 1545 377 -4.1 59,100 1218 873 245 -14.7 112,000 1009 1564 277 -4.1 59,100 1226 603 539 -20.4 81,600 1009 1564 277 -2.1 45,300 1225 614 542 -22.1 53,400 1009 1566 -3.3 28,600 1221 1392 205 -6.8 141,800 1009 1009				-33.3	49,000					
1055 705 705 48.1 39.000 1197 539 1502 -21.2 13.000 1055 705 705 705 705 704 707										
1085 705 934 -18.9 33.000 1198 637 1402 -21.3 16,300 1666 1181 734 -9.0 41,800 1199 614 1407 -22.1 16,200 1666 1181 734 -9.0 41,800 1200 637 1431 -21.3 15,400 1668 508 696 -27.4 43,700 1201 1095 1394 -10.3 15,600 1669 1898 604 -0.3 49,100 1202 1719 1545 -2.1 11,600 1071 873 609 -14.7 48,700 1203 791 666 -16.5 45,200 1073 1768 1128 -1.5 25,800 1204 964 1021 -12.9 29,700 1076 1863 661 -0.6 36,000 1208 306 194 -35.0 149,800 1078 826 566 -15.7 51,600 1209 320 197 -35.0 149,800 1078 826 566 -15.7 51,600 1209 320 197 -35.0 147,600 1081 1971 483 -12.7 59,500 1210 326 197 -35.0 147,600 1081 1971 483 -12.7 59,500 1210 326 197 -35.0 147,600 1083 1697 202 -2.3 142,300 1211 394 294 -33.2 91,400 1085 1157 794 -94 38,900 1212 402 294 -32.7 91,200 1093 620 910 -21.9 34,600 1214 336 294 -33.7 91,400 1092 1867 597 -0.5 49,500 1215 641 329 -21.2 81,600 1094 1546 538 -4.1 53,700 1217 914 266 329 -20.4 81,600 1094 1546 538 -4.1 53,700 1217 914 266 -338 101,800 1095 1545 477 -4.1 59,100 1218 873 245 -14.7 112,000 1096 1545 437 -4.1 59,100 1218 873 245 -14.7 112,000 1096 61 935 <-35.0 33,000 1219 970 372 -12.7 72,900 1006 676 -11.1 45,200 1221 1392 205 -6.3 139,500 1006 1546 538 -4.1 53,700 1217 914 266 -6.3 139,500 1006 1714 649 -2.1 46,300 1221 1392 205 -6.3 141,800 1006 1714 649 -2.1 45,200 1221 1392 205 -6.8 141,800 1006 1714 649 -2.1 45,200 1221 1392 205 -6.3 141,800 1006 1714 649 -2.1 45,200 1226 603 539 -22.6 53,600 1006 1776 546 -2.3 28,000 1226 603 539 -22.6 53,600 1006										
1056 1181 734 -9.0 41,800 1199 614 1407 -22.1 16,200 1057 529 658 -26.3 45,800 1200 637 1431 -21.3 15,400 1068 508 696 -27.4 43,700 1201 1095 1394 -10.3 16,600 1071 873 609 -14.7 48,700 1202 1719 1545 -2.1 11,600 1071 873 609 -14.7 48,700 1202 1719 1545 -2.1 11,600 1073 1768 1128 -1.5 25,800 1204 964 1021 -12.9 27,700 1075 836 773 -15.4 39,900 1205 313 195 -35.0 148,700 1076 1863 861 -0.6 36,000 1208 306 194 -35.0 148,700 1076 1863 861 -0.6 36,000 1208 306 194 -35.0 148,700 1076 1863 861 -0.5 -0.5 51,600 1209 320 197 -35.0 147,400 1081 971 483 -12.7 58,500 1210 326 197 -35.0 145,600 1083 1897 202 -2.3 142,300 1211 394 294 -33.2 91,400 1085 1157 794 -94 38,900 1212 402 294 -32.7 91,200 1090 620 910 -21.9 34,000 1214 336 294 -33.7 91,400 1092 1867 597 -0.5 49,500 1215 641 329 -21.2 81,600 1092 1867 597 -0.5 49,500 1216 660 329 -20.4 81,600 1094 1546 538 -4.1 53,700 1217 914 266 -13.8 101,800 1094 1546 538 -4.1 53,700 1217 914 266 -13.8 101,800 1095 1545 477 -4.1 59,100 1218 873 245 -14.7 112,000 1096 1545 477 -4.1 59,100 1218 873 245 -14.7 112,000 1096 1545 477 -4.1 59,100 1216 660 329 -20.4 81,600 1094 1546 538 -4.1 53,700 1217 914 266 -13.8 101,800 1095 1545 477 -4.1 59,100 1216 660 329 -20.4 81,600 1096 1545 477 -4.1 59,100 1216 660 329 -20.4 81,600 1210 1005 667 -11.1 45,200 1227 1362 205 -6.3 139,500 100 1050 667 -11.1 45,200 1227 1362 205 -6.3 139,500 100 1050 667 -11.1 45,200 1227 1362 205 -6.7 139,500 100 1050 667 -11.1 45,200 1228 707 628 18.9 47,500										
1088 508 696 -27.4 43,700 1201 1095 1394 -10.3 15,600 1099 1898 604 -0.3 49,100 1202 1719 1545 -2.1 11,600 1071 873 609 -14.7 48,700 1203 791 668 -16.5 45,200 1073 1768 1128 -1.5 25,800 1204 964 1021 -12.9 29,700 1075 836 773 -15.4 39,900 1205 313 195 -35.0 148,700 1078 826 566 -15.7 51,600 1209 306 197 -35.0 147,400 1081 971 483 -12.7 58,500 1210 326 197 -35.0 147,400 1081 971 483 -12.7 58,500 1210 326 197 -35.0 147,400 1083 1697 202 -2.3 142,300 1211 394 294 -33.7 91,200 1095 1157 794 -9.4 38,900 1212 402 294 -32.7 91,200 1095 1507 59.5 50.0 1215 641 329 -21.2 81,600 1093 2019 894 >0.0 34,600 1216 660 329 -20.4 81,600 1094 1546 538 -4.1 53,700 1217 914 266 -13.8 101,800 1095 1545 477 -4.1 59,100 1218 873 245 -14.7 112,000 1096 1545 477 -4.1 59,100 1220 1021 1392 205 -6.3 139,500 100 1050 667 -11.1 45,200 1222 1354 203 -6.8 141,800 100 1588 1048 -23.3 28,600 1221 1392 205 -6.3 139,500 100 1596 667 -11.1 45,200 1222 1354 203 -6.8 141,800 105 1666 -25.3 28,600 1221 1392 205 -6.7 139,500 105 1674 649 -2.1 46,300 1225 614 542 -22.1 53,600 1215 600 539 -22.6 53,600 100 1276 600 539 -22.6 53,600 100 1276 600 539 -22.6 53,600 1271 1385 762 -6.4 40,400 1220 475 447 -28.7 62,300 1215 1306 -4.5 -4.7 -4.1 64,900 1225 614 542 -22.1 53,400 1225 614 542 -22.1 53,400 1225 614 542 -22.1 53,400 1225 614 542 -22.1 53,400 1225 614 542 -22.1 53,400 1225 614 542 -22.1 53,400 1225 614 547 -28.7 62,300 1231 1385 762 -6.4 40,400 1230 466 1280 -6.3 30,300 1231 759 4461 -17.4 44.00								1407		
1089										
1073										
1075 836 773 -15.4 39.800 1205 313 195 <35.0 148,700 1078 1863 861 -0.6 36,000 1208 306 194 <35.0 149,800 1081 971 483 -12.7 56.500 1210 326 197 <35.0 147,400 1081 971 483 -12.7 56.500 1210 326 197 <35.0 146,600 1083 1697 202 -2.3 142,300 1211 394 294 -33.2 91,400 1085 1157 794 -9.4 38,800 1212 402 294 -32.7 91,200 1080 620 910 -21.9 34,000 1214 386 294 -33.7 91,400 1082 1867 597 -0.5 49,500 1215 641 329 -21.2 81,600 1094 1546 538 -4.1 59,100 1218 873 245 -14.7 112,000 1098 61 935 <35.0 33,000 1219 970 372 -12.7 72,900 1098 61 935 <35.0 33,000 1219 970 372 -12.7 72,900 1099 1954 237 >0.0 116,000 1220 1021 298 -11.6 90,100 1101 588 1048 -23.3 28,600 1221 1392 205 -6.3 139,500 1102 1050 667 -11.1 45,200 1222 1354 203 -6.8 141,800 1051 1744 649 -2.1 46,300 1225 643 539 -22.6 53,600 1051 1884 532 -0.4 54,200 1225 643 539 -22.6 53,600 1051 1744 649 -2.1 46,300 1225 647 547 -22.1 53,400 1074 1747 546 -2.1 53,100 1226 603 539 -22.6 53,600 1105 1386 1976 722 >0.0 42,400 1227 666 623 -19.2 47,500 115 1385 762 -6.4 40,400 1220 465 1282 -29.0 20,400 116 1078 816 -10.6 39,000 1231 759 1461 -17.4 14,400 1231 1348 621 -6.9 48,000 1229 475 447 -28.7 62,300 1231 1591 1002 1076 -11.6 -1.6 39,300 1231 759 1461 -17.4 14,400 1231 1348 621 -6.9 48,000 1229 475 447 -28.7 62,300 1231 1759 1461 -17.4 14,400 1231 1348 621 -6.9 48,000 1230 465 1282 -29.0 20,400 1210 1050 616 -0.3 48,300 1231 1583 1005 -3.6 30,300 1231 1595 1686 -3.3 44,500 1241 1512 1301 -4.5 19,700 1236 1411 703 -6.					•	1203	791	668		
1078										
1078 826 556 -15.7 51.600 1209 320 197 <35.0										
1083 1697 202 -2.3 142,300 1211 394 294 -33.2 91,400 1085 1157 794 -94 38,900 1212 402 294 -32.7 91,200 1080 620 910 -21.9 34,000 1215 641 386 294 -33.7 91,400 1082 1867 597 -0.5 49,500 1215 641 329 -21.2 81,600 1083 2019 894 >0.0 34,600 1216 660 329 -21.2 81,600 1084 1546 538 -4.1 53,700 1217 914 266 -13.8 101,800 1095 1545 477 -4.1 59,100 1218 873 245 -14.7 112,000 1096 61 935 <35.0 33,000 1219 970 372 -12.7 72,900 1099 1954 237 >0.0 116,000 1220 1021 298 -11.6 90,100 1101 588 1048 -23.3 28,600 1221 1392 205 -6.3 139,500 1102 1050 667 -11.1 45,200 1222 1354 203 -6.8 141,800 103 457 797 -29.5 38,800 1222 1354 203 -6.8 141,800 106 1714 649 -2.1 45,300 1225 614 542 -22.1 53,400 107 1717 546 -2.1 45,300 1225 614 542 -22.1 53,400 108 1976 722 >0.0 42,400 1227 696 623 -19.2 47,800 111 547 1066 -25.3 29,000 1228 707 628 -18.9 47,500 112 1348 621 -6.9 48,000 1229 475 447 -28.7 62,300 115 1385 762 -6.4 40,400 1230 466 1262 -29.0 20,400 116 1078 816 -10.6 38,000 1231 759 1461 -17.4 14,400 117 975 787 -12.6 39,300 1232 1324 1170 -7.2 24,200 121 1512 1301 -4.5 19,700 1236 1411 703 -6.0 43,400 122 1076 -11.6 27,600 1234 1865 809 -0.6 30,300 123 1464 452 -5.1 61,700 1236 1411 703 -6.0 43,400 123 1464 452 -5.1 61,700 1236 1411 703 -6.0 43,400 122 1076 -11.6 27,600 1234 1865 809 -0.6 30,300 123 1464 452 -5.1 61,700 1236 1411 703 -6.0 43,400 125 1048 857 -11.1 36,200 1239 769 407 -17.1 67,300 126 1122 802 -9.8 38,600 1240 740 406						1209	320			
1085 1157 794 -9 4 38,900 1212 402 294 -32.7 91,200 1090 620 910 -21.9 34,000 1214 386 294 -33.7 91,400 1092 1867 597 -0.5 49,500 1215 641 329 -21.2 81,600 1093 2019 894 >0.0 34,600 1216 660 329 -20.4 81,600 1094 1546 538 -4.1 53,700 1217 914 266 -13.8 101,800 1095 1545 477 -4.1 59,100 1218 873 245 -14.7 112,000 1098 61 935 <-35.0 33,000 1219 970 372 -12.7 72,900 1099 1954 237 >0.0 116,000 1220 1021 298 -11.6 90,100 1010 588 1048 -23.3 28,600 1221 1392 205 -6.3 139,500 102 1050 667 -11.1 45,200 1222 1354 203 -6.8 141,800 103 457 797 -29.5 38,800 1223 1362 205 -6.7 139,500 106 1714 649 -2.1 45,300 1225 614 542 -22.1 53,400 107 1717 546 -2.1 53,100 1226 603 539 -22.6 53,600 108 1976 722 >0.0 42,400 1227 696 623 -19.2 47,800 111 547 1066 -25.3 28,000 1229 475 447 -28.7 62,300 115 1385 762 -6.4 40,400 1220 466 1282 -29.0 20,400 116 1078 816 -10.6 38,000 1231 759 1461 -17.4 14,400 117 975 787 -12.6 39,300 1231 759 1461 -17.4 14,400 118 1202 933 -8.7 33,100 1235 1812 817 -1.0 37,900 121 1512 1301 -4.5 19,700 1236 1411 703 -6.0 43,400 122 1046 452 -5.1 61,700 1236 1411 703 -6.0 43,400 123 1464 452 -5.1 61,700 1238 794 410 -16.4 66,900 123 1464 452 -5.1 61,700 1241 743 511 -17.8 55,000 123 1464 452 -5.1 61,700 1241 743 511 -17.8 55,000 123 1464 452 -5.1 61,700 1241 743 511 -17.8 55,000 124 176 764 1182 -17.3 23,800 1244 663 504 -20.3 56,500 148 1968 724 -0.0 44,700 1244 663 504 -20.3 56,500 148 1968 724 -0.0 44,700 1244										
1092 1867 597 -0.5 49.500 1214 386 294 -33.7 91.400 1092 1867 597 -0.5 49.500 1215 641 329 -21.2 81.600 1094 1546 538 -4.1 53.700 1216 660 329 -20.4 81.600 1094 1545 538 -4.1 53.700 1217 914 266 -13.8 101.800 1095 1545 477 -4.1 59.100 1218 873 245 -14.7 112.000 1098 61 935 -35.0 33.000 1219 970 372 -12.7 72.900 1098 61 935 -35.0 33.000 1219 970 372 -12.7 72.900 1091 1094 237 >0.0 116.000 1220 1021 298 -11.6 90.100 1101 588 1048 -23.3 28.600 1221 1392 205 -6.3 139.500 1102 1050 667 -11.1 45.200 1222 1354 203 -6.8 141.800 103 457 797 -29.5 38.800 1223 1362 205 -6.7 139.500 105 1884 532 -0.4 54.200 1224 673 540 -19.9 53.600 106 1714 649 -2.1 45.300 1225 614 542 -22.1 53.400 107 1717 546 -2.1 53.100 1226 603 539 -22.6 53.600 108 1976 722 >0.0 42.400 1227 696 623 -19.2 47.800 111 547 1066 -25.3 28.000 1229 475 447 -28.7 62.300 115 1385 762 -6.4 40.400 1220 466 1282 -29.0 20.400 116 1078 816 -10.6 38.000 1231 759 1461 -17.4 14.400 118 1202 933 -8.7 33.100 1233 1583 1005 -3.6 30.300 119 1022 1076 -11.6 27.600 1234 1865 809 -0.6 38.200 1231 1512 1301 -4.5 19.700 1236 1411 703 -6.0 43.400 1231 1512 1301 -4.5 19.700 1236 1411 703 -6.0 43.400 1231 1512 1301 -4.5 19.700 1236 1411 703 -6.0 43.400 1231 1512 1301 -4.5 19.700 1236 1411 703 -6.0 43.400 1231 1512 1301 -4.5 19.700 1236 1411 703 -6.0 43.400 1231 1512 1301 -4.5 19.700 1236 1411 703 -6.0 43.400 1231 1512 1301 -4.5 19.700 1236 1411 703 -6.0 43.400 1231 1512 1301 -4.5 19.700 1236 1411 703 -6.0 43.400 1231 1512 15										
1083 2019 894 >0.0 34,600 1216 660 329 -20.4 81,600 1094 1546 538 -4.1 53,700 1217 914 266 -13.8 101,800 1095 1545 477 -4.1 59,100 1218 873 245 -14.7 112,000 1098 61 935 <35.0 33,000 1219 970 372 -12.7 72,900 1098 1954 237 >0.0 116,000 1220 1021 298 -11.6 90,100 1101 588 1048 -23.3 28,600 1221 1392 205 -6.3 139,500 1102 1050 667 -11.1 45,200 1222 1354 203 -6.8 141,800 103 457 797 -29.5 38,800 1223 1362 205 -6.7 139,500 105 1884 532 -0.4 54,200 1224 673 540 -19.9 53,600 106 1714 649 -2.1 46,300 1225 614 542 -22.1 53,400 107 1717 546 -2.1 53,100 1226 603 539 -22.6 53,600 108 1976 722 >0.0 42,400 1227 696 623 -19.2 47,800 111 547 1066 -25.3 28,000 1228 707 628 -18.9 47,500 112 1348 621 -6.9 48,000 1229 475 447 -28.7 62,300 115 1385 762 -6.4 40,400 1230 466 1282 -29.0 20,400 117 975 787 -12.6 39,300 1231 759 1461 -27.4 14,400 117 975 787 -12.6 39,300 1231 1583 1005 -3.6 30,300 121 1512 1301 -4.5 19,700 1236 1411 703 -6.0 43,400 1221 1512 1301 -4.5 19,700 1236 1411 703 -6.0 43,400 1221 1512 1301 -4.5 19,700 1238 794 410 -16.4 66,900 1251 1512 1048 857 -11.1 36,200 1237 1392 682 -6.3 44,500 126 1122 802 -9.8 38,600 1240 740 406 -17.9 67,500 128 1722 802 -2.1 34,700 1241 743 511 -17.8 55,900 128 1722 802 -2.1 34,700 1241 743 511 -17.8 55,900 1348 1868 1868 10.2 37,500 1242 713 510 -18.7 56,000 148 1968 724 800 400 406 -17.9 67,500 1241 743 511 -17.8 55,900 139 1830 569 -0.8 51,400 1243 682 509 -19.6 56,100 148 1968 724 800 400 400 400 400 400 400 400 400						1214	386	294	-33.7	
1546 538 4.1 53,700 1217 914 266 -13.8 101,800 1095 1545 477 4.1 59,100 1218 873 245 -14.7 112,000 1098 61 935 <-35.0 33,000 1219 970 372 -12.7 72,900 1099 1954 237 >0.0 116,000 1220 1021 238 -11.6 90,100 1101 588 1048 -23.3 28,600 1221 1392 205 -6.3 139,500 1102 1050 667 -11.1 45,200 1222 1354 203 -6.8 141,800 103 457 797 -29.5 38,800 1223 1362 205 -6.7 139,500 105 1884 532 -0.4 54,200 1224 673 540 -19.9 53,600 106 1714 649 -2.1 46,300 1225 614 542 -22.1 53,400 107 1717 546 -2.1 53,100 1225 614 542 -22.1 53,600 108 1976 722 >0.0 42,400 1227 666 623 -19.2 47,800 111 547 1066 -25.3 28,000 1228 707 628 -18.9 47,500 112 1348 621 -6.9 48,000 1229 475 447 -28.7 62,300 115 1385 762 -6.4 40,400 1230 466 1282 -29.0 20,400 116 1078 816 -10.6 38,000 1231 759 1461 -17.4 14,400 117 975 787 -12.6 38,000 1231 759 1461 -17.4 14,400 117 975 787 -12.6 38,000 1231 759 1461 -17.4 14,400 116 1078 816 -10.6 38,000 1231 759 1461 -17.4 14,400 117 975 787 -12.6 38,000 1231 759 1461 77.4 14,400 117 975 787 -12.6 38,000 1231 759 1461 77.4 14,400 117 975 787 -12.6 38,000 1231 759 1461 77.4 14,400 117 975 787 -12.6 38,000 1231 759 1461 77.4 14,400 117 975 787 -12.6 38,000 1231 759 1461 77.4 14,400 1181 1512 1301 -4.5 19,700 1236 1411 703 -6.0 38,200 1231 1512 1301 -4.5 19,700 1236 1411 703 -6.0 38,200 1231 1512 1301 -4.5 19,700 1236 1411 703 -6.0 38,200 1231 1464 452 -5.1 61,700 1238 794 410 -16.4 66,900 1251 1048 857 -11.1 36,200 1240 740 406 -17.9 67,500 128 1722 892 -2.1 34,700										
1095 1545 477 4.1 59,100 1218 873 245 -14.7 112,000 1098 61 935 <-35.0 33,000 1219 970 372 -12.7 72,900 1099 1954 237 >-0.0 116,000 1220 1021 298 -11.6 90,100 1101 588 1048 -23.3 28,600 1221 1392 205 -6.3 139,500 1102 1050 667 -11.1 45,200 1222 1354 203 -6.8 141,800 133 457 797 -29.5 38,800 1223 1362 205 -6.7 139,500 105 1884 532 -0.4 54,200 1224 673 540 -19.9 53,600 106 1714 649 -2.1 46,300 1225 614 542 -22.1 53,400 107 1717 546 -2.1 53,100 1226 603 539 -22.6 53,600 108 1976 722 >-0.0 42,400 1227 696 623 -19.2 47,800 111 547 1066 -25.3 28,000 1228 707 628 -18.9 47,500 112 1348 621 -6.9 48,000 1229 475 447 -28.7 62,300 115 1385 762 -6.4 40,400 1230 466 1282 -29.0 20,400 116 1078 816 -10.6 38,000 1231 759 1461 -7.2 24,200 118 1202 933 -8.7 33,100 1233 1583 1005 -3.6 30,300 121 1512 1301 -4.5 19,700 1236 1411 703 -6.0 43,400 1221 1314 677 -9.9 44,700 1237 1392 682 -6.3 44,500 123 1464 452 -5.1 61,700 1238 794 410 -16.4 66,900 125 1048 857 -11.1 36,200 1238 794 410 -16.4 66,900 125 1048 857 -11.1 36,200 1238 794 410 -16.4 66,900 125 1048 857 -11.1 36,200 1238 794 410 -16.4 66,900 125 1048 857 -11.1 36,200 1238 794 410 -16.4 66,900 125 1048 857 -11.1 36,200 1240 740 406 -17.9 67,500 126 1722 802 -9.8 38,600 1240 740 406 -17.9 67,500 126 1722 802 -9.8 38,600 1240 740 406 -17.9 67,500 126 1722 802 -9.8 38,600 1242 713 510 -16.7 55,000 126 176 176 176 176 177					•					
1099				-4.1	59,100					
101 588 1048 -23.3 28.600 1221 1392 205 -6.3 139.500 102 1050 667 -11.1 45.200 1222 1354 203 -6.8 141.800 103 457 797 -29.5 38.800 1223 1362 205 -6.7 139.500 105 1884 532 -0.4 54.200 1224 673 540 -19.9 53.600 106 1714 649 -2.1 46.300 1225 614 542 -22.1 53.400 106 1717 546 -2.1 53.100 1225 603 539 -22.6 53.600 108 1976 722 >0.0 42.400 1227 696 623 -19.2 47.800 111 547 1066 -25.3 28.000 1228 707 628 -18.9 47.500 112 1348 621 -6.9 48.000 1229 475 447 -28.7 62.300 115 1385 762 -6.4 40.400 1230 466 1282 -29.0 20.400 116 1078 816 -10.6 38.000 1231 759 1461 -17.4 14.400 117 975 787 -12.6 39.300 1232 1324 1170 -7.2 24.200 118 1202 933 -8.7 33.100 1233 1583 1005 -3.6 30.300 120 1905 616 -0.3 48.300 1231 1583 1005 -3.6 30.300 120 1905 616 -0.3 48.300 1235 1812 817 -1.0 37.900 1221 1512 1301 -4.5 19.700 1236 1411 703 -6.0 43.400 1223 1464 452 -5.1 61.700 1238 794 410 -16.4 66.900 1236 1422 802 -9.8 38.600 1240 740 406 -17.9 67.500 128 1722 802 -2.1 34.700 1241 743 511 -17.8 55.900 128 1722 802 -2.1 34.700 1241 743 511 -17.8 55.900 139 1830 569 -0.8 51.400 1241 663 504 20.3 56.500 148 1968 724 700 1244 663 504 20.3 56.500 148 1968 724 700 1244 663 504 20.3 56.500 148 1968 724 700 1244 663 504 20.3 56.500 148 1968 724 700 1244 663 504 20.3 56.500 148 1968 724					•					
1102 1050 667 -11.1 45,200 1222 1354 203 -6.8 141,800 103 457 797 -29.5 38,800 1223 1362 205 -6.7 139,500 105 1884 532 -0.4 54,200 1224 673 540 -19.9 53,600 106 1714 649 -2.1 45,300 1225 614 542 -22.1 53,400 107 1717 546 -2.1 53,100 1226 603 539 -22.6 53,600 108 1976 722 >0.0 42,400 1227 666 623 -19.2 47,800 111 547 1066 -25.3 28,000 1228 707 628 -18.9 47,500 112 1348 621 -6.9 48,000 1230 466 1282 -29.0 20,400 115 1385 762 -6.4 40,400										
105 457 797 -29.5 38,800 1223 1362 205 -6.7 139,500 105 1884 532 -0.4 54,200 1224 673 540 -19.9 53,600 106 1714 649 -2.1 46,300 1225 614 542 -22.1 53,400 107 1717 546 -2.1 53,100 1226 660 539 -22.6 53,600 108 1976 722 >0.0 42,400 1227 696 623 -19.2 47,800 111 547 1066 -25.3 28,000 1228 707 628 -18.9 47,500 112 1348 621 -6.9 48,000 1223 475 447 -28.7 62,300 115 1385 762 -6.4 40,400 1230 466 1282 -29.0 20,400 117 975 787 -12.6 39,300		1050	667	-11.1	45,200	1222		203		
106									-6.7	139,500
107 1717 546 -2.1 53,100 1226 603 539 -22.6 53,600 108 1976 722 >0.0 42,400 1227 696 623 -19.2 47,800 1111 547 1066 -25.3 28,000 1228 707 628 -18.9 47,500 112 1348 621 -6.9 48,000 1229 475 447 -28.7 62,300 115 1385 762 -6.4 40,400 1230 466 1282 -29.0 20,400 116 1078 816 -10.6 38,000 1231 759 1461 -17.4 14,400 117 975 787 -12.6 39,300 1232 1324 1170 -7.2 24,200 118 1202 933 -8.7 33,100 1233 1583 1005 -3.6 30,300 119 1022 1076 -11.6 27,600 </td <td>106</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	106									
1108 1976 722 >0.0 42.400 1227 696 623 -19.2 47.800 1111 547 1066 -25.3 28.000 1228 707 628 -18.9 47.500 112 1348 621 -6.9 48.000 1229 475 447 -28.7 62.300 115 1385 762 -6.4 40.400 1230 466 1282 -29.0 20.400 116 1078 816 -10.6 38.000 1231 759 1461 -17.4 14.400 117 975 787 -12.6 39.300 1231 759 1461 -17.4 14.400 118 1202 933 -8.7 33.100 1232 1324 1170 -7.2 24.200 118 1202 933 -8.7 33.100 1233 1583 1005 -3.6 30.300 120 1905 616 -0.3 48.300 1235 1812 817 -1.0 37.900 120 1905 616 -0.3 48.300 1235 1812 817 -1.0 37.900 121 1512 1301 -4.5 19.700 1236 1411 703 -6.0 43.400 122 1114 677 -9.9 44.700 1237 1392 682 -6.3 44.500 123 1464 452 -5.1 61.700 1238 794 410 -16.4 66.900 125 1048 857 -11.1 36.200 1239 769 407 -17.1 67.300 126 1122 802 -9.8 38.600 1240 740 406 -17.9 67.500 128 1722 802 -2.1 34.700 1241 743 511 -17.8 55.900 139 1830 569 -0.8 51.400 1243 682 509 -19.6 56.100 148 1968 724 800 400 404 405 504 20.3 56.500 148 1968 724 800 400 404 663 504 20.3 56.500 148 1968 724 800 400		1717	546	-2.1	53,100	1226				
112 1348 621 -6.9 48,000 1229 475 447 -28.7 62,300 115 1385 762 -6.4 40,400 1230 466 1282 -29.0 20,400 116 1078 816 -10.6 38,000 1231 759 1461 -17.4 14,400 117 975 787 -12.6 39,300 1232 1324 1170 -7.2 24,200 318 1202 933 -8.7 33,100 1233 1563 1005 -3.6 30,300 119 1022 1076 -11.6 27,600 1234 1865 809 -0.6 38,200 120 1905 616 -0.3 48,300 1235 1812 817 -1.0 37,900 121 1512 1301 -4.5 19,700 1236 1411 703 -6.0 43,400 122 1114 677 -9.9 44,700 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-19.2</td> <td>47,800</td>									-19.2	47,800
1115 1385 762 -6.4 40,400 1230 466 1282 -29.0 20,400 116 1078 816 -10.6 38,000 1231 759 1461 -17.4 14,400 117 975 787 -12.6 39,300 1232 1324 1170 -7.2 24,200 118 1202 933 -8.7 33,100 1233 1563 1005 -3.6 30,300 119 1022 1076 -11.6 27,600 1234 1865 809 -0.6 38,200 120 1905 616 -0.3 48,300 1235 1812 817 -1.0 37,900 121 1512 1301 -4.5 19,700 1236 1411 703 -6.0 43,400 122 1114 677 -9.9 44,700 1237 1392 682 -6.3 44,500 123 1464 452 -5.1 61,700 </td <td></td>										
116 1078 816 -10.6 38,000 1231 759 1461 -17.4 14,400 117 975 787 -12.6 39,300 1232 1324 1170 -7.2 24,200 118 1202 933 -8.7 33,100 1233 1563 1005 -3.6 30,300 119 1022 1076 -11.6 27,600 1234 1865 809 -0.6 38,200 120 1905 616 -0.3 48,300 1235 1812 817 -1.0 37,900 121 1512 1301 -4.5 19,700 1236 1411 703 -6.0 43,400 122 1114 677 -9.9 44,700 1237 1392 682 -6.3 44,500 123 1464 452 -5.1 61,700 1238 794 410 -16.4 66,900 125 1048 857 -11.1 36,200 <td></td> <td>1385</td> <td>762</td> <td>-6.4</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>		1385	762	-6.4	•					
118 1202 933 -8.7 33,100 1233 1583 1005 -3.6 30,300 119 1022 1076 -11.6 27,600 1234 1865 809 -0.6 38,200 120 1905 616 -0.3 48,300 1235 1812 817 -1.0 37,900 121 1512 1301 -4.5 19,700 1236 1411 703 -6.0 43,400 122 1114 677 -9.9 44,700 1237 1392 682 -6.3 44,500 123 1464 452 -5.1 61,700 1238 794 410 -16.4 66,900 125 1048 857 -11.1 36,200 1239 769 407 -17.1 67,300 126 1122 802 -9.8 38,600 1240 740 406 -17.9 67,500 128 1722 892 -2.1 34,700							759	1461	-17.4	14,400
119										
120 1905 616 -0.3 48,300 1235 1812 817 -1.0 37,900 121 1512 1301 -4.5 19,700 1236 1411 703 -6.0 43,400 122 1114 677 -9.9 44,700 1237 1392 682 -6.3 44,500 123 1464 452 -5.1 61,700 1238 794 410 -16.4 66,900 125 1048 857 -11.1 36,200 1239 769 407 -17.1 67,300 126 1122 802 -9.8 38,600 1240 740 406 -17.9 67,500 128 1722 892 -2.1 34,700 1241 743 511 -17.8 55,900 139 1830 569 -0.8 51,400 1242 713 510 -18.7 56,000 148 1968 724 -0.0 42300	1119	1022	1076	-11.6						
122 1114 677 -9.9 44,700 1237 1392 682 -6.3 44,500 123 1464 452 -5.1 61,700 1238 794 410 -16.4 66,900 125 1048 857 -11.1 36,200 1239 769 407 -17.1 67,300 126 1122 802 -9.8 38,600 1240 740 406 -17.9 67,500 128 1722 892 -2.1 34,700 1241 743 511 -17.8 55,900 133 1098 825 -10.2 37,500 1242 713 510 -18.7 56,000 139 1830 569 -0.8 51,400 1243 682 509 -19.6 56,100 148 1968 724 -0.0 4300 1244 663 504 -20.3 56,500				-0.3	48,300	1235	1812	817	-1.0	
123 1464 452 -5.1 61,700 1238 794 410 -16.4 66,900 125 1048 857 -11.1 36,200 1239 769 407 -17.1 67,300 126 1122 802 -9.8 38,600 1240 740 406 -17.9 67,500 128 1722 892 -2.1 34,700 1241 743 511 -17.8 55,900 133 1098 825 -10.2 37,500 1242 713 510 -18.7 56,000 139 1830 559 -0.8 51,400 1243 682 509 -19.6 56,100 147 764 1182 -17.3 23,800 1244 663 504 -20.3 56,500 148 1968 724 -0.0 42,900 42,900 42,900 42,900 42,900	122									•
125 1048 857 -11.1 36,200 1239 769 407 -17.1 67,300 126 1122 802 -9.8 38,600 1240 740 406 -17.9 67,500 128 1722 892 -2.1 34,700 1241 743 511 -17.8 55,900 133 1098 825 -10.2 37,500 1242 713 510 -18.7 56,000 139 1830 569 -0.8 51,400 1243 682 509 -19.6 56,100 147 764 1182 -17.3 23,800 1244 663 504 -20.3 56,500 148 1968 724 -0.0 4430 1245	123				-					
128 1722 802 -9.8 38,600 1240 740 406 -17.9 67,500 128 1722 892 -2.1 34,700 1241 743 511 -17.8 55,900 133 1098 825 -10.2 37,500 1242 713 510 -18.7 56,000 139 1830 569 -0.8 51,400 1243 682 509 -19.6 55,100 147 764 1182 -17.3 23,800 1244 663 504 -20.3 56,500 148 1968 724 -0.0 4300 -10.0 <td></td> <td></td> <td>857</td> <td>-11.1</td> <td>36,200</td> <td></td> <td></td> <td></td> <td></td> <td></td>			857	-11.1	36,200					
133 1098 825 -10.2 37,500 1242 713 510 -18.7 56,000 139 1830 569 -0.8 51,400 1243 682 509 -19.6 56,100 147 764 1182 -17.3 23,800 1244 663 504 -20.3 56,500								406	-17.9	67,500
139 1830 569 -0.8 51,400 1243 682 509 -19.6 56,100 147 764 1182 -17.3 23,800 1244 663 504 -20.3 56,500 148 1968 724 -0.0 42,300 1244 663 504 -20.3 56,500	133									•
147 764 1182 -17.3 23,800 1244 663 504 -20.3 56,500		1830	569	-0.8	51,400					
						1244	663	504	-20.3	56,500
	12	1900	144	>∪.∪	42,300	1245	565	582	-24.4	50,500

MSN	×	Y	CPKoi	SOSMW
1246	547	577	-25.3	50,800
1247	530	576	-26.3	50,900
1249	516	572	·27.0	51,200
1250	973	536	·12.7	53,900
1251	607	532	-22.4	54,200
1252	665	529	-20.2	54,400
1253	899	766	-14.1	40,200
1254	1311	745	-7.4	41,200
1255	1300	761	-7.5	40,400
1257	1938	712	0.0	42,900
1258	1806	718	-1.0	42,600
1259 1260	1727	715	-2.0	42,700
1261	1629 1555	713	-3.0	42,800
1262	1468	717	4.0	42,600
1263	1413	717	-5.0	42,600
1264	1340	722 717	-6.0	42,400
1265	1263	717	-7.0	42,600
1265	1182	720	-8.0 - 9 .0	42,600
1267	1110	717	-10.0	42,500 42,600
1268	1055	717	-10.0	42,600
1269	999	717	-11.0	42,600
1270	959	715	-12.0	42,700
1271	905	712	-14.0	42,900
1272	857	714	-15.0	42,800
1273	810	705	-16.0	43,300
1274	774	711	-17.0	42,900
1277	737	708	-18.0	43,100
1278	702	711	-19.0	42,900
1279	671	710	-20.0	43,000
1280	645	710	-21.0	43,000
1281	617	707	-22.0	43,100
1282	595	704	-23.0	43,300
1283	573	700	-24.0	43,500
1264	552	695	-25.0	43,700
1285	536	694	-26.0	43,800
1286	515	687	-27.0	44,200
1287	496	683	-28.0	44,400
1288	467	669	-29.0	45,200
1289	447	667	-30.9	45,300
1290	427	655	-31.0	45,900
1291	412	655	-32.0	45,900
1292	397	652	-33.0	46,100
1293	381	654	-34.0	46,000
1294	365	653	-35.0	46,100
1295	348	653	<-35.0	46.100
				

Table 2. Table of some identified proteins

Penning, Department of Pharmacology, School fomologous position with respect to other mammallan Homologous position with respect to other mammallan Computed : Homologous position with respect to other mammattan Presence in puritied peroxisames, similarity in position Rahway, NJ Homologous position with respect to other mammallan Homologous position with respect to other mammallan Homologous position with respect to other mammalian Homologous position with respect to other mammallan 114, 157, 167, 174, 1184, 1185, 1186, 1222 Pure protein provided by Dr. Margeret Mershall, Department of Pharmacology, Medical School, University of Wisconsin - Madison.
Pure protein provided by Dr. Andrew Parkinson,
Department of Phermacology, Toxicology and
Therapeutics, University of Kansas Medical Relative position to mature albumin, presence in micro-Pure profein provided by Dr. Andrew Parkinson, Department of Phermacology, Toxicology and Therapeutics, University of Kenses Medical Pure protein provided by Dr. Nathan Bass, Departmen of Medicine, University of California School of Medicine, San Francisco hemoglob: Homologous position with respect to other mammalian Antibody provided by Dr. Michael Greenspan, Merck Sharp & Dohme Research Laboratories, Homologicus position with respect to other mammallan Sequence information obtained by R.M. Van Frank, Pavlica, R.J., et al., 8BA (1990) 1022 115-125. Sequence Information obtained by R.M. Van Frank, Lilly Research Laboratories, Indianapolis Presence in rat plasma, regulation by some lipid of Medicine, University of Pennsylvania. Lilly Research Laboratories, Indianapolis Plasma coelectrophoresis studies Protein systems, presence in mitochondria systems, presence in mitochondria ٥ systems, presence in mitochondria Raborin Pure protein and antibody provided by Basis for identification Predominance in rat plasma to mouse catalase lowering drugs eysteme evelems evelems Systems Center Conte 21, 28, 33, 44, 72, 102, 115, 197, 236, 246, 248, 257, 293, 332, 347, 364, 369, 419, 432, 463, 468, 518, 562, 605, 623, 666, 667, 725, 738, 790, 865, 903, 926 17, 49, 71, 340, 1245, 1246, 1247, 1249 15, 25, 110, 1241, 1242, 1243, 1244 18, 35, 226, 600, 1238, 1239, 1240 179, 1180, 1181, 1182, 1183 135 68, 1170, 1171, 1172 50, 1225, 1226, 1251 56, 132, 1224, 1252 133, 144, 235, 413 175, 251, 812 1257 - 1295 54, 61, 106 21, 28, 33 MSN.s 137, 159 236, 463 123, 649 87, 477 227 protein, likely analog of NADPH cytochrome P-450 reductase, frequently co-Induced with P-450's Hb-beta, Apo A-I plasma lipoprotein, mature form Spots contributed by the CPK charge standards (not rat liver proteins) Calmodulin, an acidic cytosolic calcium dehydrogenese, an enzyme of steroid metabolism Mitcon: 2, a mitochondrial matrix stress Milcon:3, a mitochondrial matrix stress B cellular actin, a cytoskeletal protein mitochondrial Inner membrane y cellular actin, a cytoskeletal protein Rat plasma proteins observed in liver Mitcon:1 (F1 ATPase B subunit), a Carbamoyl phosphate synthase 3-a-hydroxysteroid-dihydrodiota tubulin, a cytoskeletal protein protein equivalent to E. ß tubulin, a cytoskeletal protein Liver fatty-acid blnding protein Cytosolic HMG-CoA Synthase Serum albumin, mature form. Protein disulphide isomerase Lamin B, a nuclear protein Serum albumin precursor Catalase (peroxisomal) binding protein Superoxide dismutase Pyruvate carboxylase Protein name **Inntative** Cytochrome b5 IDS:HMG-COA_SYNTHASE IDS:PLASMA_PROTEINS **IDS:CYTOCHROME B5** IDS:NADPH P450 RED IDS:TUBULIN_ALPHA IDS:3_ALPHA_HODH IDS:ACTIN_GAMMA IDB:TUBULIN_BETA DS:CALMODULIN **IDS:PRO-ALBUMIN** IDS:ACTIN_BETA IDS:PYRCARBOX IDS:SOD DS:CPKSPOTS **DS:CATALASE** POP name **DS:ALBUMIN** IDS:MITCON:2 IDS:MITCON:3 DS:MITCON:1 DS:APO_A-I DS:LAMIN_B

DS:FABP-L

IOS:PDI

DS:CPS

en de la propieta del la propieta de la propieta del la propieta de la propieta del la propieta de la propieta de la propieta del la propieta de la propieta de la propieta del la

e 3. Computed pl's of two sets of carbamylated protein standards: Rabbit muscle CPK and human hemoglobin (Hb)

Rabbit muscle CPK KIRBCM 28 27 17 33 18 1 6.84 0 28 27 17 33 18 1 6.54 28 27 17 30 18 1 6.54 28 27 17 30 18 1 6.54 28 27 17 30 18 1 6.31 28 27 17 29 18 1 6.21 28 27 17 29 18 1 6.21 28 27 17 27 18 1 6.03 28 27 17 26 18 1 5.94 28 27 17 26 18 1 5.94 28 27 17 22 18 1 5.56 -1 28 27 17 22 18 1 5.56 -1 28 27 17 22 18 1 5.56 -1 28 27 17 22 18 1 5.56 -1 28 27 17 22 18 1 5.58 -1 28 27 17 22 18 1 5.58 -1 28 27 17 22 18 1 5.59 -1 28 27 17 29 18 1 5.59 -1 28 27 17 29 18 1 5.59 -1 28 27 17 29 18 1 5.59 -1 28 27 17 29 18 1 5.59 -1 28 27 17 29 18 1 5.59 -1 28 27 17 29 18 1 5.59 -1 28 27 17 29 18 1 5.59 -1 28 27 17 29 18 1 5.59 -1 28 27 17 29 18 1 5.59 -1 28 27 17 29 18 1 5.59 -1 28 27 17 19 18 1 5.20 -1 28 27 17 19 18 1 5.20 -1 28 27 17 19 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 1 5.04 -1 28 27 17 18 1 4.83 -2 28 27 17 18 18 1 4.96 -1 28 27 17 18 18 1 4.96 -1 28 27 17 18 18 1 4.66 -2 28 27 17 18 18 1 4.66 -2 28 27 17 18 18 1 4.66 -2 28 27 17 18 18 1 4.66 -2 28 27 17 18 18 1 4.66 -2 28 27 17 18 18 1 4.66 -2 28 27 17 18 18 1 4.61 -2 28 27 17 18 18 1 4.66 -2 28 27 17 18 18 1 4.66 -2 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 0 18 1 4.40 -3 28 27 17 0 18 1 4.40 -3 28 27 17 0 18 1 4.25 -3 28 27 17 18 18 1 4.40 -3 28 27 17 0 18 1 4.25 -3 28 27 17 18 18 1 4.40 -3 28 27 17 0 18 1 4.25 -3 28 27 17 18 18 1 4.40 -3 28 27 17 0 18 1 5.57 -1 20 3 3 1 5.57 -1 20	Protein Name	PIR Name	#ASP 3.9	#GLU 4.1	#HIS 6.0	FLYS 10.8	#ARG 12.5			
28 27 17 33 18 1 6.54 28 27 17 33 18 1 6.54 28 27 17 30 18 1 6.54 28 27 17 30 18 1 6.31 28 27 17 29 18 1 6.21 28 27 17 28 18 1 6.21 28 27 17 28 18 1 6.03 28 27 17 27 18 1 6.03 28 27 17 26 18 1 5.94 28 27 17 22 18 1 5.58 26 27 17 22 18 1 5.67 -1 28 27 17 22 18 1 5.67 -1 28 27 17 22 18 1 5.67 -1 28 27 17 22 18 1 5.67 -1 28 27 17 22 18 1 5.67 -1 28 27 17 20 18 1 5.58 -1 28 27 17 20 18 1 5.29 -1 28 27 17 17 18 1 5.29 -1 28 27 17 19 18 1 5.29 -1 28 27 17 19 18 1 5.29 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.04 -1 28 27 17 18 18 1 4.89 -1 28 27 17 18 18 1 4.89 -2 28 27 17 18 18 1 4.89 -2 28 27 17 18 18 1 4.89 -2 28 27 17 18 18 1 4.40 -3 28 27 17 10 18 1 4.56 -2 28 27 17 1 18 1 4.44 -2 28 27 17 2 18 1 4.44 -2 28 27 17 3 18 1 4.45 -2 28 27 17 1 18 1 4.40 -3 28 27 17 0 18 1 4.42 -3 28 27 17 0 18 1 4.25 -3 28 27 17 0 18 1 4.29 -3 28 27 17 0 18 1 4.29 -3 28 27 17 0 18 1 5.96 -3 28 27 17 0 18 1 5.96 -3 28 27 17 0 18 1 4.29 -3 28 27 17 0 18 1 5.96 -3 28 27 17 0 18 1 5.95 -3 28 27 17 0 18 1 5.95 -3 28 27 17 18 18 1 5.57 -3 28 27 17 18 18 1 5.58 -10.0 28 27 17 0 18 1 5.96 -3 28 27 17 18 18 1 5.59 -12.3 28 27 17 0 18 1 5.96 -3 28 27 17 0 18 1 5.96 -3 28 27 17 0 18 1 5.96 -3 28 27 17 18 18 1 5.59 -12.3 3 1 5.31 -5.31 -5.32 3 1 5.31 -5.31 -5.33 3 1 5.37 -5.53 3 1 5.37 -5.59 -12.3 3 1 5.31 -5.31 -5.31 3 1 5.31 -5.32 -1.8 3 1 5.33 -1.8 3 1 5.33 -1.8 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3 1 6.32 -3.2 3 1 5.34 -1.8 3	Rabbit muscle CPK							7.0	p)	CPK
28 27 17 32 18 1 6.54 28 27 17 30 18 1 6.31 28 27 17 29 18 1 6.21 28 27 17 29 18 1 6.21 28 27 17 29 18 1 6.22 28 27 17 29 18 1 6.22 28 27 17 28 18 1 6.03 28 27 17 26 18 1 5.94 28 27 17 26 18 1 5.94 28 27 17 26 18 1 5.95 28 27 17 23 18 1 5.85 26 27 17 24 18 1 5.56 27 17 22 18 1 5.58 28 27 17 23 18 1 5.58 28 27 17 22 18 1 5.58 28 27 17 21 18 1 5.58 28 27 17 21 18 1 5.58 28 27 17 20 18 1 5.59 28 27 17 12 18 1 5.59 28 27 17 19 18 1 5.29 29 27 17 18 18 1 5.29 21 22 27 17 18 18 1 5.04 21 22 27 17 18 18 1 5.04 22 27 17 18 18 1 5.04 22 27 17 18 18 1 5.04 23 27 17 15 18 1 4.96 24 27 17 13 18 1 4.89 25 27 17 13 18 1 4.89 26 27 17 10 18 1 4.61 28 27 17 10 18 1 4.66 28 27 17 10 18 1 4.66 29 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 18 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.66 20 28 27 17 10 18 1 4.29 20 27 17 10 18 1 4.29 20 27 17 10 18 1 4.29 20 27 17 10 18 1 4.56 20 27 17 20 18 1 5.59 20 27 17 18 18 1 5.20 20 27 17 18 18 1 5.59 20 27 17 28 18 1 5.59 20 27 17 28 18 1 5.59 20 27 17 28 18 1 5.59 20 27 17 28 18 1 5.59 20 27 17 28 18 1 5.59 20 27 17 28 18 1 5.59 20 27 17 28 18 1 5.59 20 27 17 28 18 1 5.59 20 27 17 28 18 1 5.59 20 27 17 28 18 1 5.59 20 27 17 28 18 1 5.59 20 20 20 20 20 20 20 20 20 20 20 20 20 2	THE SECOND	NINDOM								
28 27 17 31 18 1 6.42 28 27 17 30 18 1 6.42 28 27 17 29 18 1 6.21 28 27 17 29 18 1 6.12 28 27 17 28 18 1 6.12 28 27 17 27 18 1 6.03 28 27 17 26 18 1 5.94 28 27 17 26 18 1 5.94 28 27 17 24 18 1 5.76 -1 28 27 17 23 18 1 5.67 -1 28 27 17 24 18 1 5.76 -1 28 27 17 23 18 1 5.67 -1 28 27 17 20 18 1 5.68 -1 28 27 17 20 18 1 5.58 -1 28 27 17 20 18 1 5.59 -1 28 27 17 19 18 1 5.29 -1 28 27 17 19 18 1 5.29 -1 28 27 17 19 18 1 5.29 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.04 -1 28 27 17 16 18 1 5.04 -1 28 27 17 16 18 1 5.04 -1 28 27 17 15 18 1 4.96 -1 28 27 17 15 18 1 4.96 -1 28 27 17 15 18 1 4.96 -1 28 27 17 10 18 1 4.83 -2 28 27 17 11 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 18 18 1 4.47 -2 28 27 17 10 18 1 4.66 -2 28 27 17 18 18 1 4.55 -2 28 27 17 10 18 1 4.66 -2 28 27 17 18 18 1 4.55 -2 28 27 17 18 18 1 4.48 -2 28 27 17 18 18 1 4.55 -2 28 27 17 18 18 1 4.55 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.55 -2 28 27 17 0 18 1 4.55 -2 28 27 17 18 18 1 4.55 -3 28 27 17 0 18 1 4.55 -3 28 27 17 0 18 1 4.55 -3 28 27 17 0 18 1 5.57 -3 28 27 17 0 18 1 5.57 -3 28 27 17 0 18 1 5.57 -3 28 27 17 0 18 1 5.57 -10 28 28 27 17 0 18 1 5.57 -10 28 28 27 17 0 18 1 5.57 -10 28 29 20 3 1 5.514 -18 29 20 3 1 5.514 -18 20										
28 27 17 30 18 1 6.31 28 27 17 29 18 1 6.21 28 27 17 29 18 1 6.21 28 27 17 27 18 1 6.03 28 27 17 26 18 1 5.94 28 27 17 25 18 1 5.85 26 27 17 24 18 1 5.85 26 27 17 23 18 1 5.67 -1 28 27 17 23 18 1 5.67 -1 28 27 17 21 18 1 5.58 -1 28 27 17 22 18 1 5.58 -1 28 27 17 20 18 1 5.59 -1 28 27 17 19 18 1 5.29 -1 28 27 17 19 18 1 5.29 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 16 18 1 5.20 -1 28 27 17 16 18 1 5.10 -1 28 27 17 18 18 1 5.20 -1 28 27 17 10 18 1 5.10 -1 28 27 17 10 18 1 4.96 -1 28 27 17 15 18 1 4.96 -1 28 27 17 10 18 1 4.89 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.61 -2 28 27 17 10 18 1 4.61 -2 28 27 17 10 18 1 4.61 -2 28 27 17 10 18 1 4.61 -2 28 27 17 10 18 1 4.61 -2 28 27 17 10 18 1 4.61 -2 28 27 17 10 18 1 4.61 -2 28 27 17 10 18 1 4.61 -2 28 27 17 10 18 1 4.62 -2 28 27 17 10 18 1 4.61 -2 28 27 17 10 18 1 4.61 -2 28 27 17 10 18 1 4.52 -2 38 27 17 10 18 1 4.52 -2 38 27 17 10 18 1 4.52 -2 38 27 17 10 18 1 4.52 -2 38 27 17 10 18 1 4.52 -2 38 27 17 10 18 1 4.52 -2 38 27 17 10 18 1 5.53 -1 38 27 17 0 18 1 4.32 -33 38 27 17 0 18 1 5.59 -3 38 28 27 17 0 18 1 5.59 -3 38 28 27 17 0 18 1 5.59 -7 38 9 8 3 1 6.32 -32 37 8 9 9 3 3 1 6.53 -18 37 8 9 9 3 3 1 5.57 -10.5 37 8 9 9 3 3 1 6.53 -1.8 37 8 9 9 3 3 1 6.53 -1.8 37 8 9 9 3 3 1 6.53 -1.8 37 8 9 9 3 3 1 6.53 -1.8 37 8 9 9 3 3 1 6.53 -1.8 37 8 9 9 3 3 1 6.53 -1.8 37 8 9 9 3 3 1 6.53 -1.8							_			_
28 27 17 29 18 1 6.21 28 27 17 28 18 1 6.12 28 27 17 26 18 1 5.94 28 27 17 26 18 1 5.94 28 27 17 25 18 1 5.85 26 27 17 24 18 1 5.85 26 27 17 23 18 1 5.67 -1 28 27 17 22 18 1 5.67 -1 28 27 17 20 18 1 5.58 -1 28 27 17 21 18 1 5.39 -1 28 27 17 20 18 1 5.39 -1 28 27 17 10 18 1 5.29 -1 28 27 17 15 18 1 5.04 -1 28 27 17 15 18 1 5.04 -1 28 27 17 15 18 1 4.96 -1 28 27 17 16 18 1 5.04 -1 28 27 17 16 18 1 4.96 -1 28 27 17 15 18 1 4.96 -1 28 27 17 18 18 1 4.96 -2 28 27 17 19 18 1 4.83 -2 28 27 17 18 18 1 4.83 -2 28 27 17 18 18 1 4.48 -2 28 27 17 18 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.60 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 10 18 1 4.50 -2 28 27 17 0 18 1 4.51 -2 28 27 17 0 18 1 3 1 7.78 28 27 17 0 18 1 3.53 -3 28 27 17 1 1 18 1 3.53 -3 28 27 17 0 18 1 3.53 -3 28 27 17 0 18 1 3.53 -3 28 27 17 0 18 1 3.53 -3 3 1 5.57 -15.5 3 8 9 8 3 1 6.53 -18 3 7 8 9 9 3 3 1 6.53 -18 3 7 8 9 9 3 3 1 6.53 -18 3 7 8 9 9 3 3 1 5.57 -15.5 3 8 9 1 3 1 4.91 -21.0 3 7 8 9 9 3 3 1 5.57 -15.5 3 8 9 1 3 1 4.91 -21.0 3 7 8 9 1 3 1 4.91 -21.0 3 7 8 9 1 3 1 4.91 -21.0 3 7 8 9 1 3 1 4.91 -21.0 3 7 8 9 1 3 1 4.91 -21.0 3 7 8 9 1 3 1 4.91 -21.0 3 7 8 9 1 3 1 4.91 -21.0										•
28 27 17 28 18 1 6.12 28 27 17 27 18 1 6.03 28 27 17 26 18 1 5.94 28 27 17 25 18 1 5.85 26 27 17 24 18 1 5.76 -1 28 27 17 23 18 1 5.67 -1 28 27 17 23 18 1 5.67 -1 28 27 17 21 18 1 5.67 -1 28 27 17 20 18 1 5.48 -1 28 27 17 20 18 1 5.39 -1 28 27 17 20 18 1 5.39 -1 28 27 17 19 18 1 5.29 -1 28 27 17 19 18 1 5.29 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.04 -1 28 27 17 16 18 1 5.04 -1 28 27 17 15 18 1 4.89 -2 28 27 17 15 18 1 4.89 -2 28 27 17 15 18 1 4.89 -2 28 27 17 15 18 1 4.89 -2 28 27 17 10 18 1 4.83 -2 28 27 17 10 18 1 4.66 -1 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.52 -2 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 18 18 1 4.40 -3 28 27 17 1 18 1 4.52 -2 28 27 17 1 18 1 4.52 -2 28 27 17 1 18 1 4.52 -3 28 27 17 0 18 0 4.22 -3 Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 9 3 1 6.53 -1.8 7 8 9 9 3 1 6.53 -1.8 7 8 9 9 3 3 1 6.53 -1.5 7 8 9 9 3 3 1 5.57 -10.5 7 8 9 9 3 3 1 5.57 -10.5 7 8 9 9 3 3 1 5.57 -10.5 7 8 9 2 3 1 5.514 -18.0 7 8 9 1 3 1 4.71 -21.5			28							
28 27 17 26 18 1 6.03 28 27 17 26 18 1 5.94 28 27 17 25 18 1 5.94 28 27 17 24 18 1 5.85 28 27 17 23 18 1 5.67 -1 28 27 17 23 18 1 5.67 -1 28 27 17 23 18 1 5.58 -1 28 27 17 21 18 1 5.58 -1 28 27 17 21 18 1 5.48 -1 28 27 17 10 18 1 5.29 -1 28 27 17 16 18 1 5.20 -1 28 27 17 16 18 1 5.12 -1 28 27 17 16 18 1 5.12 -1 28 27 17 16 18 1 5.12 -1 28 27 17 16 18 1 4.96 -1 28 27 17 18 18 1 4.83 -2 28 27 17 13 18 1 4.83 -2 28 27 17 13 18 1 4.83 -2 28 27 17 13 18 1 4.83 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 7 18 18 1 4.56 -2 28 27 17 5 18 1 4.56 -2 28 27 17 6 18 1 4.56 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -3 28 27 17 10 18 1 4.52 -3 35 28 27 17 3 18 1 4.32 -3 36 28 27 17 5 18 1 4.44 -2 38 27 17 6 18 1 4.40 -3 36 28 27 17 18 18 1 4.55 -3 37 8 9 9 3 1 6.53 -1.8 38 9 7 3 1 6.53 -3 38 9 7 3 1 6.53 -3 38 9 7 3 1 6.53 -3 38 9 7 3 1 6.53 -3 38 9 9 3 3 1 5.78 -10.0 37 8 9 9 3 3 1 5.78 -10.5 37 8 9 9 3 3 1 5.78 -10.0 37 8 9 9 3 3 1 5.57 -15.5 38 9 1 3 1 5.74 -18.0 38 9 1 3 1 5.74 -18.0 38 9 1 3 1 5.74 -18.0 38 9 1 3 1 5.74 -18.0 38 9 1 3 1 5.74 -18.0 38 9 1 3 1 5.74 -18.0 38 9 1 3 1 5.74 -18.0				27	17					
28 27 17 26 18 1 5.94 28 27 17 25 18 1 5.85 28 27 17 24 18 1 5.67 -1 28 27 17 22 18 1 5.67 -1 28 27 17 22 18 1 5.58 -1 28 27 17 22 18 1 5.58 -1 28 27 17 20 18 1 5.39 -1 28 27 17 19 18 1 5.29 -1 28 27 17 19 18 1 5.29 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.04 -1 28 27 17 18 18 1 5.04 -1 28 27 17 18 18 1 5.04 -1 28 27 17 18 18 1 4.96 -1 28 27 17 15 18 1 4.96 -1 28 27 17 13 18 1 4.83 -2 28 27 17 13 18 1 4.83 -2 28 27 17 11 18 1 4.83 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 18 18 1 4.66 -2 28 27 17 18 18 1 4.66 -2 28 27 17 18 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 18 18 1 4.69 -3 28 27 17 18 18 1 4.52 -2 28 27 17 18 18 1 4.52 -2 28 27 17 18 1 4.52 -2 28 27 17 18 18 1 4.40 -30 28 27 17 18 18 1 4.40 -30 28 27 17 18 1 4.40 -30 28 27 17 0 18 0 4.22 -35 Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 9 3 1 6.53 -1.8 7 8 9 9 3 3 1 6.53 -1.8 7 8 9 9 3 3 1 5.57 -10.0 7 8 9 9 3 3 1 5.57 -10.0 7 8 9 9 3 1 5.57 -10.0 7 8 9 9 3 3 1 5.57 -10.5 7 8 9 1 3 1 5.57 -10.0 7 8 9 1 3 1 5.57 -10.0 7 8 9 1 3 1 5.57 -10.0 7 8 9 1 3 1 5.57 -10.5 7 8 9 1 3 1 5.57 -10.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 5.54 -18.0						27				
26 27 17 24 18 1 5.85 -1 28 27 17 23 18 1 5.56 -1 28 27 17 23 18 1 5.56 -1 28 27 17 22 18 1 5.58 -1 28 27 17 20 18 1 5.59 -1 28 27 17 19 18 1 5.29 -1 28 27 17 19 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.04 -1 28 27 17 16 18 1 5.04 -1 28 27 17 16 18 1 5.04 -1 28 27 17 16 18 1 4.96 -1 28 27 17 14 18 1 4.96 -1 28 27 17 13 18 1 4.96 -1 28 27 17 13 18 1 4.83 -2 28 27 17 11 18 1 4.71 -2 28 27 17 10 18 1 4.71 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.56 -2 28 27 17 8 18 1 4.56 -2 28 27 17 8 18 1 4.56 -2 28 27 17 8 18 1 4.56 -2 28 27 17 18 18 1 4.56 -2 28 27 17 18 18 1 4.56 -2 28 27 17 10 18 1 4.56 -2 28 27 17 10 18 1 4.56 -2 28 27 17 10 18 1 4.56 -2 28 27 17 10 18 1 4.56 -3 28 27 17 10 18 1 4.56 -3 28 27 17 10 18 1 4.56 -3 28 27 17 10 18 1 4.56 -3 28 27 17 10 18 1 4.56 -3 28 27 17 10 18 1 4.56 -3 28 27 17 10 18 1 4.52 -3 30 28 27 17 1 18 1 4.52 -3 31 1 4.40 -3 32 28 27 17 1 18 1 4.42 -3 32 28 27 17 3 18 1 4.36 -3 31 28 27 17 0 18 1 5.36 -3 31 5.37 -35.5 31 8 9 8 3 1 6.53 -1.8 31 6.53 -1.8 31 7 8 9 9 3 3 1 5.57 -15.5 31 8 9 4 3 1 5.59 -12.3 32 8 9 6 3 1 5.59 -12.3 32 8 9 1 3 1 5.57 -15.5 31 8 9 1 3 1 5.59 -12.3 32 9 9 1 3 1 5.57 -15.5 31 8 9 1 3 1 5.59 -12.3 32 9 9 1 3 1 5.51 -18.5 33 1 5.57 -15.5 34 8 9 1 3 1 5.59 -12.3 35 1 5.59 -12.3 37 8 9 1 3 1 5.51 -18.5 37 8 9 1 3 1 5.51 -18.5							18	1		
28 27 17 23 18 1 5.76 -1 28 27 17 23 18 1 5.56 -1 28 27 17 20 18 1 5.58 -1 28 27 17 20 18 1 5.39 -1 28 27 17 19 18 1 5.29 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.04 -1 28 27 17 16 18 1 5.04 -1 28 27 17 16 18 1 4.89 -2 28 27 17 15 18 1 4.89 -2 28 27 17 13 18 1 4.89 -2 28 27 17 13 18 1 4.83 -2 28 27 17 10 18 1 4.77 -2 28 27 17 10 18 1 4.77 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 8 18 1 4.66 -2 28 27 17 6 18 1 4.66 -2 28 27 17 6 18 1 4.44 -25 28 27 17 6 18 1 4.44 -25 28 27 17 5 18 1 4.40 -33 28 27 17 17 18 1 4.40 -33 28 27 17 1 18 1 4.29 -33 28 27 17 1 18 1 4.29 -33 28 27 17 1 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 1 4.25 -34 28 27 17 18 18 1 4.25 -34 28 27 17 0 18 1 6.53 -1.8 28 27 17 0 18 1 5.59 -12.3 28 9 9 3 1 6.53 -1.8 28 9 9 3 3 1 6.53 -7.2 28 9 7 8 9 9 3 3 1 5.37 -15.5 7 8 9 9 3 3 1 5.57 -10.0 7 8 9 9 3 3 1 5.57 -10.5 7 8 9 9 3 3 1 5.57 -10.0 7 8 9 9 3 3 1 5.57 -10.5 7 8 9 9 3 3 1 5.57 -10.5 7 8 9 9 3 3 1 5.57 -10.5 7 8 9 9 3 3 1 5.57 -10.5 7 8 9 9 3 3 1 5.57 -10.5 7 8 9 9 1 3 1 4.71 -25.5								1		-
28 27 17 22 18 1 5.58 -1 28 27 17 20 18 1 5.48 -1 28 27 17 20 18 1 5.39 -1 28 27 17 19 18 1 5.29 -1 28 27 17 19 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 16 18 1 5.04 -1 28 27 17 16 18 1 5.04 -1 28 27 17 16 18 1 4.96 -1 28 27 17 15 18 1 4.96 -1 28 27 17 13 18 1 4.89 -2 28 27 17 13 18 1 4.83 -2 28 27 17 12 18 1 4.71 -2 28 27 17 11 18 1 4.71 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 18 18 1 4.51 -2 28 27 17 18 18 1 4.52 -2 28 27 17 18 18 1 4.52 -2 28 27 17 6 18 1 4.46 -2 28 27 17 7 18 1 4.44 -2 28 27 17 6 18 1 4.46 -3 28 27 17 6 18 1 4.46 -3 28 27 17 5 18 1 4.40 -3 28 27 17 1 18 1 4.40 -3 28 27 17 1 18 1 4.20 -3 38 27 17 1 18 1 4.20 -3 38 27 17 1 18 1 4.20 -3 38 27 17 0 18 1 4.25 -3 48 27 17 0 18 1 6.53 -1 38 27 17 0 18 1 6.53 -1 38 9 9 3 1 6.32 -3 39 9 9 3 1 6.53 -1 30 1 5.56 -7 30 9 9 3 1 6.53 -1 30 1 5.59 -1 30 1 5.78 -10 30 7 8 9 6 3 1 5.78 -10 30 7 8 9 1 3 1 5.78 -10 30 7 8 9 1 3 1 5.78 -10 30 7 8 9 1 3 1 5.78 -10 30 7 8 9 1 3 1 5.78 -10 30 7 8 9 1 3 1 4.71 -25.5									5.76	-10
28 27 17 21 18 1 5.48 -1 28 27 17 20 18 1 5.39 -1 28 27 17 19 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.20 -1 28 27 17 16 18 1 5.12 -1 28 27 17 16 18 1 5.12 -1 28 27 17 15 18 1 4.96 -1 28 27 17 15 18 1 4.96 -1 28 27 17 13 18 1 4.83 -2 28 27 17 12 18 1 4.83 -2 28 27 17 12 18 1 4.71 -2 28 27 17 11 18 1 4.71 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 9 18 1 4.61 -2 28 27 17 8 18 1 4.52 -2 28 27 17 6 18 1 4.52 -2 28 27 17 6 18 1 4.44 -2 28 27 17 6 18 1 4.46 -3 28 27 17 6 18 1 4.46 -3 28 27 17 7 18 18 1 4.52 -2 28 27 17 6 18 1 4.46 -3 28 27 17 6 18 1 4.48 -2 28 27 17 7 18 1 4.32 -3 28 27 17 1 18 1 4.20 -3 28 27 17 1 18 1 4.20 -3 28 27 17 1 18 1 4.20 -3 28 27 17 1 18 1 4.20 -3 28 27 17 1 18 1 4.20 -3 28 27 17 1 18 1 6.53 -1 28 27 17 0 18 1 6.53 -1 28 27 17 0 18 1 5.59 -1 28 27 17 0 18 5 5.96 -7 2 28 9 9 3 1 6.53 -1.8 7 8 9 6 3 1 5.96 -7 2 7 8 9 9 3 3 1 5.57 -15.5 7 8 9 9 3 3 1 5.57 -15.5 7 8 9 9 2 3 1 5.74 -18.0 7 8 9 1 3 1 5.78 -10.0 7 8 9 1 3 1 4.71 -25.5										-11
28 27 17 20 18 1 5.39 -1 28 27 17 19 18 1 5.29 -1 28 27 17 18 18 1 5.20 -1 28 27 17 18 18 1 5.12 -1 28 27 17 16 18 1 5.04 -1 28 27 17 16 18 1 5.04 -1 28 27 17 15 18 1 4.96 -1 28 27 17 13 18 1 4.89 -2 28 27 17 13 18 1 4.83 -2 28 27 17 13 18 1 4.77 -2 28 27 17 10 18 1 4.77 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 9 18 1 4.61 -2 28 27 17 8 18 1 4.52 -2 28 27 17 7 18 1 4.52 -2 28 27 17 7 18 1 4.52 -2 28 27 17 7 18 1 4.52 -2 28 27 17 7 18 1 4.52 -2 28 27 17 7 18 1 4.52 -2 28 27 17 7 18 1 4.52 -2 28 27 17 7 18 1 4.52 -2 28 27 17 7 18 1 4.52 -2 28 27 17 18 1 4.52 -3 28 27 17 18 1 4.40 -3 28 27 17 18 1 4.42 -3 28 27 17 18 1 4.52 -3 28 27 17 1 18 1 4.29 -3 38 27 17 0 18 1 4.25 -3 4.26 27 17 0 18 1 4.25 -3 4.27 17 0 18 1 4.25 -3 4.28 27 17 0 18 1 5.96 -7 28 27 17 0 18 1 5.96 -7 28 9 7 3 1 6.32 -3 28 27 17 0 18 5 5.96 -7 28 9 7 3 1 6.53 -1 28 7 8 9 8 3 1 6.32 -3 28 7 8 9 9 3 1 5.78 -10 28 9 1 3 1 5.78 -10 28 9 1 3 1 5.78 -10 28 9 1 3 1 4.91 -21 28 9 1 3 1 4.91 -										-12
28 27 17 19 18 1 5.29 -1 28 27 17 18 18 1 5.29 -1 28 27 17 17 18 1 5.04 -1 28 27 17 16 18 1 5.04 -1 28 27 17 15 18 1 4.96 -1 28 27 17 15 18 1 4.89 -2 28 27 17 13 18 1 4.83 -2 28 27 17 12 18 1 4.71 -2 28 27 17 10 18 1 4.71 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 8 18 1 4.56 -2 28 27 17 8 18 1 4.52 -2 28 27 17 18 1 4.44 -2 28 27 17 5 18 1 4.44 -2 28 27 17 5 18 1 4.44 -2 28 27 17 5 18 1 4.46 -3 28 27 17 5 18 1 4.40 -3 28 27 17 3 18 1 4.40 -3 28 27 17 1 18 1 4.42 -3 28 27 17 1 18 1 4.42 -3 28 27 17 1 18 1 4.20 -3 38 27 17 2 18 1 4.32 -3 38 27 17 2 18 1 4.32 -3 38 27 17 0 18 1 4.25 -3 48 27 17 0 18 1 4.25 -3 48 27 17 0 18 1 5.59 -1 3 1 6.53 -1.8 7 8 9 8 3 1 6.52 -3.2 7 8 9 9 3 1 6.53 -1.8 7 8 9 9 3 3 1 5.78 -10.0 7 8 9 6 3 1 5.96 -7.2 7 8 9 6 3 1 5.96 -7.2 7 8 9 3 3 1 5.78 -10.0 7 8 9 3 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 2 3 1 5.78 -10.0 7 8 9 3 3 1 5.77 -15.5										-13
28 27 17 18 18 1 5.20 -1 28 27 17 16 18 1 5.12 -1 28 27 17 16 18 1 5.04 -1 28 27 17 15 18 1 4.96 -1 28 27 17 15 18 1 4.89 -2 28 27 17 13 18 1 4.89 -2 28 27 17 12 18 1 4.77 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 9 18 1 4.61 -2 28 27 17 8 18 1 4.52 -2 28 27 17 6 18 1 4.44 -2 28 27 17 6 18 1 4.42 -2 28 27 17 6 18 1 4.42 -2 28 27 17 1 18 1 4.52 -2 28 27 17 1 1 1 1 4 1 4.52 -2 28 27 17 0 18 1 4.52 -2 28 27 17 1 1 1 1 4 1 4.52 -2 28 27 17 0 18 1 4.52 -2 28 27 17 1 1 1 1 4 1 4.52 -2 28 27 17 0 18 1 4.42 -3 28 27 17 1 1 18 1 4.29 -3 3 18 1 4.32 -3 3 18 1 4.32 -3 3 18 1 4.29 -3 3 1 6.53 -1.8 3 9 9 3 1 6.53 -1.8 3 9 9 3 1 6.53 -1.8 3 9 9 3 1 6.53 -1.8 3 9 9 3 1 5.78 -10.0 3 1 5.78 -10.0 3 1 8 9 4 3 1 5.59 -7.2 3 8 9 6 3 1 5.78 -10.0 3 8 9 3 3 1 5.77 -15.5 3 8 9 2 3 1 5.78 -10.0 3 8 9 3 3 1 5.57 -15.5 3 8 9 2 3 1 5.78 -10.0 3 8 9 1 3 1 4.91 -21.0 3 8 9 1 3 1 4.91 -21.0 3 8 9 1 3 1 4.91 -21.0 3 8 9 1 3 1 4.91 -21.0 3 8 9 1 3 1 4.91 -21.0 3 8 9 1 3 1 4.91 -21.0 3 8 9 1 3 1 4.91 -21.0 3 8 9 1 3 1 4.91 -21.0 3 8 9 1 3 1 4.91 -21.0							_			-14
28 27 17 17 18 1 5.12 -1 28 27 17 16 18 1 5.04 -1 28 27 17 15 18 1 4.96 -1 28 27 17 13 18 1 4.89 -2 28 27 17 13 18 1 4.83 -2 28 27 17 13 18 1 4.77 -2 28 27 17 10 18 1 4.77 -2 28 27 17 10 18 1 4.66 -2 28 27 17 9 18 1 4.66 -2 28 27 17 9 18 1 4.66 -2 28 27 17 8 18 1 4.56 -2 28 27 17 8 18 1 4.56 -2 28 27 17 8 18 1 4.56 -2 28 27 17 8 18 1 4.56 -2 28 27 17 8 18 1 4.56 -2 28 27 17 5 18 1 4.44 -2 28 27 17 5 18 1 4.44 -2 28 27 17 5 18 1 4.43 -3 28 27 17 3 18 1 4.36 -31 28 27 17 3 18 1 4.36 -31 28 27 17 1 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 1 5.59 -12 3 7 8 9 8 3 1 6.53 -1.8 7 8 9 9 3 1 6.53 -1.8 7 8 9 6 3 1 5.96 -7.2 7 8 9 6 3 1 5.59 -12.3 7 8 9 4 3 1 5.57 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 5.78 -10.0 7 8 9 1 3 1 5.78 -10.0 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0						_				-15
28 27 17 16 18 1 5.04 -1 28 27 17 15 18 1 4.96 -1 28 27 17 14 18 1 4.89 -2 28 27 17 13 18 1 4.83 -2 28 27 17 12 18 1 4.77 -2 28 27 17 11 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 9 18 1 4.61 -2 28 27 17 8 18 1 4.56 -2 28 27 17 7 18 1 4.56 -2 28 27 17 8 18 1 4.56 -2 28 27 17 5 18 1 4.42 -2 28 27 17 5 18 1 4.44 -2 28 27 17 5 18 1 4.44 -2 28 27 17 5 18 1 4.42 -3 28 27 17 3 18 1 4.40 -3 28 27 17 3 18 1 4.36 -31 28 27 17 1 18 1 4.25 -34 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 1 5.59 -12.3 28 27 17 0 18 5 5.37 -15.5 7 8 9 6 3 1 5.59 -7.2 7 8 9 10 3 1 5.59 -12.3 7 8 9 2 3 1 5.14 -18.0 7 8 9 3 3 1 5.57 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0			28							-16
28 27 17 15 18 1 4.96 -1 28 27 17 14 18 1 4.89 -2 28 27 17 13 18 1 4.83 -2 28 27 17 12 18 1 4.77 -2 28 27 17 10 18 1 4.61 -2 28 27 17 9 18 1 4.61 -2 28 27 17 9 18 1 4.56 -2 28 27 17 7 18 18 1 4.56 -2 28 27 17 7 18 1 4.52 -2 28 27 17 6 18 1 4.42 -2 28 27 17 5 18 1 4.44 -2 28 27 17 5 18 1 4.44 -2 28 27 17 5 18 1 4.44 -2 28 27 17 3 18 1 4.40 -3 28 27 17 4 18 1 4.40 -3 28 27 17 3 18 1 4.36 -31 28 27 17 0 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 0 4.22 -35 Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 10 3 1 6.53 -1.8 7 8 9 6 3 1 5.96 -7.2 7 8 9 6 3 1 5.96 -7.2 7 8 9 4 3 1 5.59 -10.0 7 8 9 3 3 1 5.57 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.5			28	27						
28 27 17 14 18 1 4.89 -2 28 27 17 13 18 1 4.83 -2 28 27 17 12 18 1 4.77 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 8 18 1 4.56 -2 28 27 17 7 18 1 4.52 -2 28 27 17 7 18 1 4.52 -2 28 27 17 6 18 1 4.52 -2 28 27 17 5 18 1 4.44 -2 28 27 17 5 18 1 4.44 -2 28 27 17 5 18 1 4.40 -3 28 27 17 3 18 1 4.40 -3 28 27 17 3 18 1 4.36 -31 28 27 17 1 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 1 5.25 -34 28 27 17 0 18 1 5.59 -10.0 7 8 9 8 3 1 6.32 -3.2 7 8 9 6 3 1 5.96 -7.2 7 8 9 4 3 1 5.59 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0				27	17	15				-19
28 27 17 13 18 1 4.83 -2 28 27 17 12 18 1 4.77 -2 28 27 17 10 18 1 4.66 -2 28 27 17 10 18 1 4.66 -2 28 27 17 9 18 1 4.51 -2 28 27 17 8 18 1 4.52 -2 28 27 17 7 18 1 4.52 -2 28 27 17 7 18 1 4.52 -2 28 27 17 6 18 1 4.44 -2 28 27 17 5 18 1 4.44 -2 28 27 17 5 18 1 4.44 -2 28 27 17 4 18 1 4.46 -3 28 27 17 3 18 1 4.36 -31 28 27 17 3 18 1 4.36 -31 28 27 17 1 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 0 4.22 -35 Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 9 3 1 6.53 -1.8 7 8 9 9 3 1 6.53 -1.8 7 8 9 9 3 1 6.53 -3.2 7 8 9 6 3 1 5.96 -7.2 7 8 9 5 3 1 5.78 -10.0 7 8 9 1 3 1 5.37 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0						14				-20
28 27 17 12 18 1 4.77 -22 28 27 17 11 18 1 4.71 -22 28 27 17 10 18 1 4.66 -24 28 27 17 9 18 1 4.61 -24 28 27 17 7 18 18 1 4.56 -24 28 27 17 7 18 18 1 4.52 -27 28 27 17 6 18 1 4.44 -25 28 27 17 5 18 1 4.44 -25 28 27 17 5 18 1 4.40 -30 28 27 17 3 18 1 4.36 -31 28 27 17 3 18 1 4.32 -32 28 27 17 1 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 0 4.22 -35 Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 9 3 1 6.53 -1.8 7 8 9 9 3 1 6.53 -3.2 7 8 9 6 3 1 5.96 -7.2 7 8 9 4 3 1 5.578 -10.0 7 8 9 4 3 1 5.578 -10.0 7 8 9 3 3 3 1 5.578 -10.0 7 8 9 4 3 1 5.578 -10.0 7 8 9 4 3 1 5.578 -10.0 7 8 9 3 3 3 1 5.578 -10.0 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5				_			18	1		-21
28 27 17 10 18 1 4.66 -24 28 27 17 9 18 1 4.61 -24 28 27 17 8 18 1 4.56 -24 28 27 17 7 18 18 1 4.52 -27 28 27 17 6 18 1 4.48 -28 28 27 17 5 18 1 4.44 -28 28 27 17 5 18 1 4.40 -30 28 27 17 3 18 1 4.36 -31 28 27 17 3 18 1 4.32 -32 28 27 17 1 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 1 4.25 -34 Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 9 3 1 6.53 -1.8 7 8 9 9 3 1 6.32 -3.2 7 8 9 7 3 1 6.13 -5.3 7 8 9 6 3 1 5.96 -7.2 7 8 9 9 3 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.59 -12.3 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5								1		-22
28 27 17 9 18 1 4.66 -20 28 27 17 8 18 1 4.56 -20 28 27 17 7 18 1 4.52 -20 28 27 17 6 18 1 4.48 -20 28 27 17 5 18 1 4.44 -20 28 27 17 5 18 1 4.40 -30 28 27 17 4 18 1 4.36 -31 28 27 17 3 18 1 4.36 -31 28 27 17 2 18 1 4.32 -32 28 27 17 1 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 0 4.22 -35 Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 9 3 1 6.53 -1.8 7 8 9 9 3 1 6.32 -3.2 7 8 9 7 3 1 6.13 -5.3 7 8 9 6 3 1 5.96 -7.2 7 8 9 9 3 3 1 5.78 -10.0 7 8 9 9 3 3 1 5.79 -12.3 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.57 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5									4.71	-23
28 27 17 8 18 1 4.56 -26 28 27 17 7 18 1 4.56 -26 28 27 17 6 18 1 4.56 -26 28 27 17 6 18 1 4.48 -26 28 27 17 5 18 1 4.40 -30 28 27 17 3 18 1 4.36 -31 28 27 17 3 18 1 4.36 -31 28 27 17 2 18 1 4.32 -32 28 27 17 1 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 0 4.22 -35 Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 10 3 1 6.53 -1.8 7 8 9 8 3 1 6.32 -3.2 7 8 9 7 3 1 6.13 -5.3 7 8 9 6 3 1 5.96 -7.2 7 8 9 6 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.57 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5										-24
28 27 17 7 18 1 4.58 -22 28 27 17 6 18 1 4.48 -22 28 27 17 5 18 1 4.44 -22 28 27 17 4 18 1 4.40 -30 28 27 17 3 18 1 4.36 -31 28 27 17 2 18 1 4.32 -32 28 27 17 1 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 0 4.22 -35 Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 10 3 1 6.53 -1.8 7 8 9 8 3 1 6.32 -3.2 7 8 9 7 3 1 6.13 -5.3 7 8 9 6 3 1 5.96 -7.2 7 8 9 6 3 1 5.78 -10.0 7 8 9 9 3 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.57 -15.5 7 8 9 3 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5										-25
Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 8 3 1 6.32 -32 7 8 9 8 3 1 6.32 -32 7 8 9 6 3 1 5.96 -72 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.37 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5										-26
Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 9 3 1 6.53 -1.8 7 8 9 6 3 1 6.32 -3.2 7 8 9 6 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.78 -10.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5										
Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 10 3 1 6.53 -1.8 7 8 9 8 3 1 6.32 -3.2 7 8 9 6 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 9 3 3 1 6.43 -5.3 7 8 9 6 3 1 5.78 -10.0 7 8 9 9 3 3 1 6.79 7 8 9 9 3 3 1 5.78 -10.0 7 8 9 9 3 3 1 5.78 -10.0 7 8 9 9 3 3 1 5.78 -10.0 7 8 9 9 3 3 1 5.78 -10.0 7 8 9 9 3 3 1 5.78 -10.0 7 8 9 9 3 3 1 5.74 -18.0 7 8 9 9 3 3 1 5.74 -18.0 7 8 9 9 3 3 1 5.14 -18.0 7 8 9 0 3 1 4.91 -21.0 7 8 9 0 3 1 4.91 -21.0										
28 27 17 3 18 1 4.36 -31 28 27 17 2 18 1 4.32 -32 28 27 17 1 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 0 4.22 -35 Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 10 3 1 6.79 7 8 9 8 3 1 6.53 -1.8 7 8 9 8 3 1 6.32 -3.2 7 8 9 8 3 1 6.32 -3.2 7 8 9 6 3 1 5.96 -7.2 7 8 9 5 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.57 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5			28	27	17					
28 27 17 2 18 1 4.32 -32 28 27 17 1 18 1 4.29 -33 28 27 17 0 18 1 4.25 -34 28 27 17 0 18 0 4.22 -35 28 27 17 0 18 0 4.22 -35 28 27 17 0 18 0 4.22 -35 28 27 17 0 18 0 4.22 -35 28 27 17 0 18 0 4.22 -35 28 27 17 0 18 0 4.22 -35 28 27 17 0 18 0 4.22 -35 28 27 17 0 18 0 4.22 -35 28 27 17 0 18 0 4.22 -35 28 27 17 0 18 0 4.22 -35 28 27 17 0 18 0 18 0 4.22 -35 28 28 27 17 0 18 0 18 0 4.22 -35 28 28 27 17 0 18 0 18 0 4.22 -35 28 27 17 0 18 0 18 0 4.22 -35 28 28 27 17 0 18 0 18 0 4.22 -35 28 27 17 0 18 0 18 0 4.22 -35 28 28 27 17 0 18 0 18 0 4.25 2 -35 28 28 27 17 0 18 0 18 0 4.25 2 -35 28 28 27 17 0 18 0 18 0 4.25 2 -35 28 28 28 27 17 0 18 0 18 0 4.25 2 -35 28 28 28 28 28 28 28 28 28 28 28 28 28				27	17	3				
Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 10 3 1 6.53 -1.8 7 8 9 8 3 1 6.53 -1.8 7 8 9 8 3 1 6.53 -3.2 7 8 9 6 3 1 5.96 -7.2 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.59 -12.3 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5						2				
28 27 17 0 18 1 4.25 -34 28 27 17 0 18 0 4.22 -35 Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 10 3 1 6.79 7 8 9 8 3 1 6.53 -1.8 7 8 9 8 3 1 6.32 -3.2 7 8 9 7 3 1 6.13 -5.3 7 8 9 6 3 1 5.96 -7.2 7 8 9 5 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.37 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5						1	18	1		
Hb-beta, human HBHU 7 8 9 11 3 1 7.18 7 8 9 10 3 1 6.79 7 8 9 9 3 1 6.53 -1.8 7 8 9 8 3 1 6.53 -1.8 7 8 9 8 3 1 6.32 -3.2 7 8 9 6 3 1 5.96 -7.2 7 8 9 5 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.37 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 0 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5							18	1		-34
7 8 9 10 3 1 6.79 7 8 9 9 3 1 6.53 -1.8 7 8 9 8 3 1 6.32 -3.2 7 8 9 7 3 1 6.13 -5.3 7 8 9 6 3 1 5.96 -7.2 7 8 9 5 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.37 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5			28	27	17	0	18	0	4.22	-35
7 8 9 9 3 1 6.53 -1.8 7 8 9 8 3 1 6.32 -3.2 7 8 9 7 3 1 6.13 -5.3 7 8 9 6 3 1 5.96 -7.2 7 8 9 5 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.37 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5	Hb-beta, human	HBHU						1	7.18	
7 8 9 8 3 1 6.32 -3.2 7 8 9 7 3 1 6.13 -5.3 7 8 9 6 3 1 5.96 -7.2 7 8 9 5 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.37 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5			<u>'</u>					1	6.79	
7 8 9 7 3 1 6.13 -5.3 7 8 9 6 3 1 5.96 -7.2 7 8 9 5 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.37 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5			7							-1.8
7 8 9 6 3 1 5.96 -7.2 7 8 9 5 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.37 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5	•		7							-3.2
7 8 9 5 3 1 5.78 -10.0 7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.37 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5			7		9		3			
7 8 9 4 3 1 5.59 -12.3 7 8 9 3 3 1 5.59 -12.3 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5					q					
7 8 9 3 3 1 5.37 -15.5 7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5					9					
7 8 9 2 3 1 5.14 -18.0 7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5							3			
7 8 9 1 3 1 4.91 -21.0 7 8 9 0 3 1 4.71 -25.5			7							
7 8 9 0 3 1 4.71 -25.5			7							
7 6 0 4.71 23.3			7							
			7	8		Ŏ	3	ò	4.54	-25.5 -27.2
1107 616										

Table 4. Computed pls of some known proteins related to measured CPK pls

	Protein Name	PIR Name	#ASP 3.9	#GLU 4.1	#HIS 6.0	#LYS 10.8	#ARG 12.5	Calc pl	Real CPK
0	Creatine phospho kinase (CPK), rabbit muscle	KIRBCM	28	27	17	34	18	6.84	_
1	Fatty acid-binding protein, rat hepatic	FZRTL	5	13	2	16	2	7.83	.3.c
2	b2-microglobulin, human	MGHUB2	7	8	4	8	5	6.09	
3	Carbamoyl-phosphate synthase, rat	SYRTCA	72	96	28	95	56	5.97	•5.(•5.
4	Proalbumin (serum albumin precursor), rat	ABRTS	32	57	15	53	27	5.98	-6.
5	Serum albumin, rat	ABRTS	32	57	15	53	24	5.71	•9.0 •9.1
6	Superoxid dismutase (Cu-Zn, SOD), rat	A26810	8	11	10	9	4	5.91	-9.
7	Phospholipase C. phophoinositide-specific (?), rat	A28807	34	42	9	49	21	5.92	-9
8	Albumin, human	ABHUS	36	61	16	60	24	5.70	-11.
9	Apo A-I lipoprotein, rat	A24700	18	24	6	23	12	5.32	-13
10	proApo A-I lipoprotein, human	LPHUA1	16	30	6	21	17	5.35	-14.
11	NADPH cytochrome P-450 reductase, rat	RDRTO4	41	60	21	38	36	5.07	-15.
12	Retinol binding protein, human	VAHU	18	10	2	10	14	5.04	-16.
13	Actin beta, rat	ATRTC	23	26	9	19	18	5.06	-17
14	Actin gamma, ra:	ATRTC	20	29	9	19	18	5.07	-16
15	Apo A-I lipoprotein, human	LPHUA1	16	30	5	21	16	5.10	-17.
16	Apo A-IV lipoprotein, human	LPHUA4	20	49	8	28	24	4.88	-19
17	Tubulin alpha, rat	UBRTA	27	37	13	19	21	4.66	-19
18	F1ATPase beta, bovine	PWBOB	25	36	9	22	22	4.80	
19	Tubulin beta, pig	UBPGB	26	36	10	15	22	4.49	
20	Protein disulphide isomerase (PDI), rat hepatic	ISRTSS	43	51	11	51	9	4.07	-25
21	Cytochrome b5, rat	CBRT5	10	15	6	10	4	4.59	-26
22	Apo C-II Ipoprotein, human	LPHUC2	4	7	0	6	1	4.44	-30.
	Amino and pliassumed in calulation:		3.9	4.1	6.0	10.8	12.5		

NWirth
Luo
on Fujimoto
C. Bisgaard
D. Olson
story of Expusorenesis.
and Cancer Ir
mal Institutes

には、彼のは、は、なんとして

mroduction atterials and Materials and Cells Metabolic nine and Sample p: Subcellul: 2-D PAG Computer retograms sults Computer retograms [3*S]Methic 1 Whole ce 1 2 Subcellul [3*P]Orthous cussion Merences Mendum 1:

National Car 292, USA

dendum 2:

dons: 2-D PA HLE, hum: Weight; NE Nonidet Pde; RLE, rat

erlagegesellsch:

1977 V

SHOWN OND WIRE AND ES

N. Leigh Anderson'
Ricardo Esquer-Blasco'
Jean-Paul Hofmann'
Lydie Meheus'
Jos Raymackers'
Sandra Steiner'
Frank Witzmann'
Norman G. Anderson'

Large Scale Biology Corporation, Rockville, MD

Innogenetics NV, Ghent
Sandoz Pharma Ltd, Drug Safety Assessment, Toxicology, Basel
Molecular Anatomy Laboratory, Indiana University Purdue University Columbus, Columbus, IN

An updated two-dimensional gel database of rat liver proteins useful in gene regulation and drug effect studies

We have improved upon the reference two-dimensional (2-D) electrophoretic map of rat liver proteins originally published in 1991 (N. L. Anderson et al., Electrophoresis 1991, 12, 907-930). A total of 53 proteins (102 spots) are now identified, many by microsequencing. In most cases, spots cut from wet, Coomassie Blue stained 2-D gels were submitted to internal tryptic digestion [2], and individual peptides, separated by high-performance liquid chromatography (HPLC), were sequenced using a Perkin-Elmer 477A sequenator. Additional spots were identified using specific antibodies.

Figure 1 shows the current annotated 2-D map of F344 rat liver, analyzed using the Iso-DALT system (20 imes 25 cm gels) and BDH 4-8 carrier ampholytes. Both the map itself and the master spot number system remain the same as shown in the original publication. Table 1 lists the important features of each identification shown, including the gel position, pI, and M, for the most abundant or most basic form of each protein. Using this extended base of identified spots, a series of four improved calibration functions has been derived for the pl and SDS-M, axes (the first two of which are shown in Fig. 2A and B). Both forward and reverse functions are derived, so that one can compute the physical properties of a spot with a given gel location, or inversely compute the gel position expected for a protein having given physical properties:

$$Y_{\text{RATLIVER}} = f_{\text{M-RATLIVER}} (M_{\text{SEQUENCE-DERIVED}})$$
 (1)

$$X_{\text{RATLIVER}} = f_{\text{pi-RATLIVER} X} (p I_{\text{SEQUENCE-DERIVED}})$$
 (2)

$$M_{\text{rGEL-DERIVED}} = f_{\text{RATLIVER Y-M}_{\text{r}}}(Y_{\text{RATLIVER}})$$
 (3)

$$p/_{GEL-DERIVED} = f_{RATLIVER X \rightarrow I} (X_{RATLIVER})$$
 (4)

A spreadsheet program (in Microsoft Excel) was developed to facilitate flexible computation of $p\Gamma$ s from amino acid sequence data, and the results were entered into a relational database (Microsoft Access). A table of spot positions and sequence-derived $p\Gamma$ s and M_r s was fitted with a large series of analytic equations using Tablecurve (Jandel Scientific), and the four conversion Eqs. (1)—(4), relating computed $p\Gamma$ and $p\Gamma$ coordinate, or computed molecular weight and $p\Gamma$ coordinate, were selected, based on criteria of simplicity, goodness of fit and favorable asymptotic behavior. Table 2 lists the equations and coefficients. Application of Eqs. (3) and (4) to a spot's Γ and Γ coordinates, given in [1], produce improved Γ estimates, and allow computation of Γ

Correspondence: Dr. Leigh Anderson, Large Scale Biology Corporation, 9620 Medical Center Drive, Rockville, MD 20850-3338 USA (Tel: +301-424-5989; Fax: +301-762-4892; email: leigh@lsbc.com)

Keywords: Two-dimensional polyacrylamide gel electrophoresis / Liver / Map / Identification / Calibration

directly in pH units, instead of in terms of positions relative to creatine phosphokinase (CPK) charge standards. The inverse Eqs. (1) and (2) were used to compute the gel positions of a series of pI and M, tick marks. These tick marks were plotted with SigmaPlot (Jandel), together with fiducial marks locating several prominent spots, and the resulting graphic was aligned over the synthetic gel image (computed by Kepler from the master gel pattern) using Freelance (Lotus Development). Maps were printed as Postscript output from Freelance, either in black and white (as shown here) or in color, where label color indicates subcellular location (available from the first author upon request). We have also used the rat liver 2-D pattern as presented here to calibrate the patterns of other samples. Using mixtures of rat liver and mouse liver samples, for example, we made composite 2-D patterns that allow use of the rat pattern to standardize both axes of the mouse pattern. This was accomplished by deriving transformations relating the rat and mouse X, and separately the rat and mouse Y, axes (Table 2, lower half; Fig. 2C and D) based on a series of spots that coelectrophorese in these closely related species. These functions were then applied to derive equations relating the mouse liver X and Y to pI and SDS-M, (Eqs. 5 and 6 below). The resulting standardized 2-D pattern for B6C3F1 mouse liver is shown in Fig. 3.

$$M_{\text{MOUSELIVER}} = f_{\text{RATLIVER Y-M}}, (f_{\text{MOUSELIVER Y-RATLIVER Y}} (Y_{\text{MOUSELIVER}}))$$
 (5)

$$pI_{\text{MOUSELIVER}} = f_{\text{RATLIVER } x-pi} \left(f_{\text{MOUSELIVER } x-\text{RATLIVER } x} \right)$$

$$\left(f_{\text{MOUSE LIVER}} \right)$$
(6)

A slightly more complex approach can be used to standardize samples that have few or no spots co-electrophoresing with rat liver proteins. In this case, a 2-D gel is prepared with a mixture of the two samples, and four functions (forward and backward, each for X and Y) are derived relating each sample's own master pattern to the composite. The required functions are then applied in a nested fashion to yield the desired result (using rat plasma as an example):

M, RATPLASMA = fratliver y-m, (Fratplasma-Liver y-ratliver y (Fratplasma)))

(TRATPLASMA Y-RATPLASMA-LIVER Y (YRATPLASMA)))

A STATE OF THE PARTY OF THE PAR

THIS PAGE BLANK (USPTO)

BETWEEN THOUGH WITH A RUES

MSN*1	Protein IDb)	Protein name	Identification comments	Gel X ^{e)}	Experimental p I ^{e1}	Gel Yei	Experimental $\mathcal{M}_{t}^{(d)}$
1184, 1186, 114, 174, 118 5, 167, 157	CPSM_RAT	Carbamyl phosphate synthase	2-D of pure protein; comfirmed by N-terminal sequence and AAA	1453_56	6.05	181.64	160 640
54, 61	CATA_RAT	Catalase	Internal sequence	2000.81	6.73	499.64	58 968
136	COX2_RAT	COX-II	Ab (J. W. Taanman), confirmed by internal sequence	452.57		1062.67	25 504
87	CYB5_RAT	Cytochrome B5	2-D of pure protein; Ab; confirmed by AAA	515.68	4.73	1370.55	18 493
41	CK-RAT*	Cytokeratin	Location in cytoskeletal fraction	1165.12	5.75	569.09	51 448
29	CK-RAT"	Cytokeratio	Location in cytoskeletal fraction	743.11	5.15	605.23	48 187
5, 11	ENPL-RAT	Endoplasmin	Ab (F. Witzmann)	567.73	4.83	263.37	112 194
60	ENOA_RAT	Enolase A	Internal sequence and AAA	1399.78	6.00	623.54	46 674
27	ER60_RAT	ER-60	N-Terminal sequence (R. M. Van Frank)	1184.20	5.77	523.51	56.169
17	ATPB_RAT	F1 ATPase B	N-Terminal sequence and AAA	629.06	4.95	588.83	49 620
196	ATP7_RAT	F1 ATPase o	Internal sequence	1227.24	5.82	1184.65	22 310
79	F16P_RAT	Fructose-1.6-bis-phosphatase	Uncertain; by comparison with ID in Garrison and Wager (JBC 257:13135-13143)	924.54		737.77	38 858
62, 78	DHE3_RAT	Glutamate debydrogenase	N-Terminal sequence and internal sequence	1887.39	6.55	566.92	51 655
125	HAST-RAT	HAST-I: N-bydroxyaryl- amine sulfotransferase	Internal sequence	1297.94		861.55	32 638
307	HO1_RAT	Heme oxygenase 1	Uncertain; available data from internal sequence	1219.39	5.81	915.71	30 423
413, 1250, 933	HMCS_RAT	HMG CoA synthase, cytosolic	Ab (J. Germersbausen)	1033.48	5.59	538.13	54 571
133, 144, 235	HMCS_RAT	HMG CoA synthase, mitochondrial (frag)	Ab (J. Germershausen), N-terminal sequence (Steiner/Lottspeich)	666.40	5.02	1019.42	26 811
8. 23. 1307	HS7C_RAT	HSC-70	Positional homology (with human, etc.) through coelectrophoresis	811.87	5.27	425.76	69 521
15, 2 5, 110	P60_RAT	HSP-60	Ab (F. Witzman); confirmed by N-terminal sequence and AAA	845.09	5.32	\$20.03	56 561
971	HS70-RAT	HSP-70	•	976.11	6.61	437.14	67 674
1216, 1215, 90		HSP-90	Ab (F. Witzman)	659.86		329	90 107
256	INGI-HUMAN	Interferon-y induced	Ab (F. Witzman) Internal sequence	993.85		1006.04	27 237
415, 734	LAMB-RAT	protein Lamin B	Positional homology with human through coelectrophoresis, nuclear location	737.10	5.14	425.19	69 615
80	LAMR-RAT*)	"Laminin receptor"	Internal sequence	534.02	4.77	697.62	41 327
227	FABL_RAT	L-FABP (liver fatty acid binding protein)	Ab (N. M. Bass)	1586.09	6.18	1483.43	16 622
134	MDHC_MOUS	Malate dehydrogenase	Internal sequence	1270.85	5.86	861.96	32 620
18, 35, 226	GR75-RAT*)	Mitcon:3; grp75	Positional homology with human through coelectrophoresis	905.67	5.41	413.67	71 589
175, 251	NCPR_RAT	NADPH P450 reductase	2-D of pure protein	824.69	5.29	393.21	75 366
1168, 1170, 1171	PDI_RAT	PDI: Protein disulfide isomerase	N-Terminal sequence (R. M. van Frank), Ab			528.47	55 618
47, 93	ALBU_RAT	Pro-Albumin	Microsomal lumen location, pI , M_r relative to albumin	1391.03	5.99	446.68	66 195
236	APA1_RAT	Pro-APO A-1 lipoprotein	Coelectrophoresis with plasma protein	920.41	5.43	1137.51	23 467
320	IPKI_BOVIN		Internal sequence; homology with bovine protein	1480.01		1458.81	17 007
152	PNPH_MOUSE	Purine nucleoside phosphorylase	Internal sequence	1507.19	6.10	911.16	30 599
1179, 1180, 1181, 1182, 1183	PYVC-RAT*)	Pyruvate carboxylase	Tentative; 2-D of pure protein (J. G. Henslee, JBC, 1979); reported in Biochim.	1485.10	6.08	223.52	131 589
55, 103	SM30_RAT	SMP-30: Senescence	Biophys. Acta 1022, 115-125. Internal sequence	721.71	5.11	830.10	34 051
135	SODC_RAT	marker protein-30 Superoxide dismutase	AAA; comfirmed by internal sequence	1161.24	5.74	1388.68	18 173
172	TPM-RAT*	Tm: tropomyosin	(R. M. Van Frank) Location in cytoskeleton, 2-D position	476.24	4.66	957.86	28 865
277, 56	TBA1_RAT	Tubulin a	relative to human, Ab Positional homology with human through	688.22	5.06	537.67	54 620
50, 1225	TBB1_RAT	Tubulin B	coelectrophoresis, cytoskeletal location Positional homology with human through	621.29	4.93	535.48	54 855
1224	VIME_RAT	Vimentin	Positional homology with human through coelectrophoresis, cytoskeletal location	673.00	5.03	539.50	54 426

THIS PAGE BLANK (USPTO)

WETANKON P. LIBRARIES

Figure 3. Master 2-D gel pattern for B6C3F1 mouse liver, standardized using the F344 rat liver pattern identifications, according to the method described in the text. Twenty-nine proteins are identified.

 $pI_{RATPLASMA} = f_{RATLIVER X-pi} (f_{RATPLASMA+LIVER X-RATLIVER X} (X_{RATPLASMA X-RATPLASMA+LIVER X} (X_{RATPLASMA})))$ (8)

This unified approach, in which one well-populated 2-D pattern is used to standardize a family of other patterns, has the additional advantage that the resulting pI and M, scales are directly compatible. Hence one can compare the relative $p\Gamma$ s of mouse and rat versions of a sequenced protein in a consistent pl measurement system, and select likely inter-species analogs based on positional relationships on common scales. Adoption of immobilized pH gradient (IPG) technology [4-7] will result in substantial improvements in pl positional reproducibility for standard 2-D maps such as those presented here; however, we believe that our approach will continue to be useful in establishing the empirical pH gradient actually achieved by such gels under given experimental conditions (temperature, urea concentration, etc.), in relating patterns run on different IPG ranges and using different lots of IPG gels (between which some variation will persist). Development of rodent organ maps is a continuing effort in our laboratories [8-10], and results in regular additions of identified proteins. Those who wish to receive current rodent liver maps, with color annotations, should send a stamped self-addressed envelope to the first author.

We would like to thank the individuals who provided antibodies mentioned in Table 1, and R. M. van Frank for unpublished sequenced data.

Received May 31, 1995

References

- [1] Anderson, N. L., Esquer-Biasco, R., Hofmann, J.-P., Anderson, N. G., Electrophoresis 1991, 12, 907-930.
- [2] Rosenfeld, J., Capdevielle, J., Guillemot, J. C., Ferrara, P., Anal. Biochem. 1992, 203, 173-179.
- [3] Witzmann, F., Clack, J., Fultz, C., Jarnot, B., Electrophoresis 1995, 16, 451-459.
- [4] Rosengren, A. E., Bjellqvist, B., Gasparic, V., US Patent 4130470, December 1978.
- [5] Gianazza, E., Artoni, G., Righetti, P. G., Electrophoresis 1983, 4, 321-326.
- [6] Görg, A., Postel, W., Günther, S., Weser, J., Electrophoresis 1985, 6, 599-604.
- [7] Gianazza, E., Astrua-Testori, S., Giacon, P., Righetti, P. G., Electrophoresis 1985, 6, 332-339.
- [8] Myers, T. G., Dietz, E. C., Anderson, N. L., Khairallah, E. A., Cohen, S. D., Nelson, S. D., Chem. Res. Toxicol. 1995, 8, 403-413.
- [9] Cunningham, M. L., Pippin, L. L., Anderson, N. L., Wenk, M. L., Toxicol. Appl. Pharmacol. 1995, 131, 216-223.
- [10] Anderson, N. L., Copple, D. C., Bendele, R. A., Probst, G. S., Richardson, F. C., Fundam. Appl. Toxicol. 1992, 18, 570-580.

Education of the second confident agreem

THIS PAGE BLANK (USPTO)

Progress with Proteome Projects: Why all Proteins Expressed by a Genome Should be Identified and How To Do It

MARC R. WILKINS!, JEAN-CHARLES SANCHEZ!, ANDREW, A. GOOLEY!, RON D. APPEL!, IAN HUMPHERY-SMITH!, DENIS F. HOCHSTRASSER! AND KEITH L. WILLIAMS!!*

Macquarie University Centre for Analytical Biotechnology, Macquarie University, Sydney, NSW 2109, Australia; Department of Microbiology, University of Sydney, NSW, 2006, Australia and Central Clinical Chemistry Laboratory and Medical Computing Centre of the University of Geneva, CH 1211 Geneva 14, Switzerland

Introduction

The advent of large genome sequencing projects has changed the scale of biology. Over a relatively short period of time, we have witnessed the elucidation of the complete nucleotide sequence for bacteriophage \(\) (Sanger et al., 1982), the nucleotide sequence of an eukaryotic chromosome (Oliver et al., 1992), and in the near future will see the definition of all open reading frames of some simple organisms, including Mycoplasma pneumoniae. Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans and Arabidopsis thaliana. Nevertheless, genome sequencing projects are not an end in themsleves. In fact, they only represent a starting point to understanding the function of an organism. A great challenge that biologists now face is how the co-expression of thousands of genes can best be examined under physiological and pathophysiological conditions, and how these patterns of expression define an organism.

There are two approaches that can be used to examine gene expression on a large scale. One uses nucleic acid-based technology, the other protein-based technology. The most promising nucleic-acid based technology is differential display of mRNA (Liang and Pardee, 1992; Bauer et al., 1993), which uses polymerase chain reaction with arbitrary primers to generate thousands of cDNA species, each which correspond to an expressed gene or part of a gene. However, it is currently unclear if this technique can be developed to reliably assay the expression of thousands of genes or

^{*} Corresponding Author

identify all cDNA species, and the approach does not easily allow a systematic screening. Analysis of gene expression by the study of proteins present in a cell or tissue presents a favorable alternative. This can be achieved by use of two-dimensional (2-D) gel electrophoresis, quantitative computer image analysis, and protein identification techniques to create 'reference maps' of all detectable proteins. Such reference maps establish patterns of normal and abnormal gene expression in the organism, and allow the examination of some post-translational protein modifications which are functionally important for many proteins. It is possible to screen proteins systematically from reference maps to establish their identities.

To define protein-based gene expression analysis, the concept of the 'proteome' was recently proposed (Wilkins et al., 1995; Wasinger et al., 1995). A proteome is the entire PROTein complement expressed by a genOME, or by a cell or tissue type. The concept of the proteome has some differences from that of the genome, as while there is only one definitive genome of an organism, the proteome is an entity which can change under different conditions, and can be dissimilar in different tissues of a single organism. A proteome nevertheless remains a direct product of a genome. Interestingly, the number of proteins in a proteome can exceed the number of genes present, as protein products expressed by alternative gene splicing or with different post-translational modifications are observed as separate molecules on a 2-D gel. As an extrapolation of the concept of the 'genome project', a 'proteome project' is research which seeks to identify and characterise the proteins present in a cell or tissue and define their patterns of expression.

Proteome projects present challenges of a similar magnitude to that of genome projects. Technically, the 2-D gel electrophoresis must be reproducible and of high resolution, allowing the separation and detection of the thousands of proteins in a cell. Low copy number proteins should be detectable. There should be computer gel image analysis systems that can qualitatively and quantitatively catalog the electrophoretically separated proteins, to form reference maps. A range of rapid and reliable techniques must be available for the identification and characterisation of proteins. As a consequence of a proteome project, protein databases must be assembled that contain reference information about proteins; such databases must be linked to genomic databases and protein reference maps. Databases should be widely accessible and easy to use.

Recently, there have been many changes in the techniques and resources available for the analysis of proteomes. It is the aim of this chapter to discuss the status of the areas outlined above, and to review briefly the progress of some current proteome projects.

Two-dimensional electrophoresis of proteomes

Two dimensional (2-D) gel electrophoresis involves the separation of proteins by their isoelectric point in the first dimension, then separation according to molecular weight by sodium dodecyl sulfate electrophoresis in the second dimension. Since first described (Klose, 1975; O'Farrell, 1975; Scheele, 1975), it has become the method of choice for the separation of complex mixtures of proteins, albeit with many modifications to the original techniques. 2-D electrophoresis forms the basis of proteome projects through separating proteins by their size and charge (Hochstrasser et al.,

Figuilluwas ttop the

> brc 18

sin

2-1

A; ph

HEPG2 2D-PAGE MAP

Figure 1. Two-dimensional gel electrophoresis map of a human hepatoblastoma-derived cell line, illustrating the very high resolution of the technique. The first dimensional separation (right to left of figure) was achieved using immobilised pH gradient electrophoresis of 4.0 to 10.0 units. The second dimension (top to bottom of figure) was SDS-PAGE using a 11%-14% acrylamide gradient, allowing separation in the molecular weight range 10-250 kDa. Proteins were visualised by silver staining. Arrows show proteins of known identity.

1992; Celis et al., 1993; Garrels and Franza, 1989; VanBogelen et al., 1992). Current protocols can resolve two to three thousand proteins from a complex sample on a single gel (Figure 1).

2-D GEL RESOLUTION AND REPRODUCIBILITY

A primary challenge of separating complex mixtures of proteins by 2-D gel electrophoresis has been to achieve high resolution and reproducibility. High resolution ensures that a maximum of protein species are separated, and high reproducibility is vital to allow comparison of gels from day to day and between research sites. These factors can be difficult to achieve.

Carrier ampholytes are a common means of isoelectric focusing for the first dimension of 2-D electrophoresis. Gels are usually focused to equilibrium to separate proteins in the pl range 4 to 8, and run in a non-equilibrium mode (NEPHGE) to separate proteins of higher pl (7 to 11.5) (O'Farrell, 1975; O'Farrell, Goodman and O'Farrell, 1977). Unfortunately, the use of carrier ampholytes in the isoelectric focusing procedure is susceptible to 'cathode drift', whereby pH gradients established by prefocusing of ampholytes slowly change with time (Righetti and Drysdale, 1973). Carr.er ampholyte pH gradients are also distorted by high sait concentration of samples (Bjellqvist et al., 1982), and by high protein load (O'Farrell, 1975). A further limitation is that iso electric focusing gels, which are cast and subject to electrophoresis in narrow glass tubes, need to be extruded by mechanical means before application to the second dimension - a procedure that potentially distorts the gel. Nevertheless. many of the above shortcomings can be avoided by loading small amounts of 14C or 15S radiolabelled samples (Garrels, 1989; Neidhardt et al., 1989; Vandekerkhove et al., 1990). High sensitivity detection is then achieved through use of fluorography or phosphorimaging plates (Bonner and Laskey, 1974; Johnston, Pickett and Barker, 1990: Patterson and Latter, 1993). However, this approach is only practicable for organisms or tissues that can be radiolabelled.

An alternative technique, which is becoming the method of choice for the first dimension separation of proteins, involves isoelectric focusing in immobilized pH gradient (IPG) gels (Bjellqvist et al., 1982; Görg, Postel and Gunther, 1988; Righetti, 1990). Immobilized pH gradients are formed by the covalent coupling of the pH gradient into an acrylamide matrix, creating a gradient that is completely stable with time. IPG gels are usually poured onto a stiff backing film, which is mechanically strong and provides easy gel handling (Ostergren, Eriksson and Bjellqvist, 1988). The major advantages of IPG separations are that they do not suffer from cathodic drift. they allow focusing of basic and very acidic proteins to equilibrium, pH gradients can be precisely tailored (linear, stepwise, sigmoidal), and that separations over a very narrow pH range are possible (0.05 pH units per cm) (Righetti, 1990; Bjellqvist et al., 1982, 1993a; Sinha et al., 1990; Görg et al., 1988; Gelfi et al., 1987; Gunther et al., 1988). However, it is not currently possible to use IPG gels to separate very basic proteins of isoelectric point greater than 10, although this is under development. Narrow pH range separations are useful to address problems of protein co-migration in complex samples, allowing 'zooming in' on regions of a gel (Figure 2). IPG gel strips are now commercially available, which begin to address the problems of intraand inter-lab isoelectric focusing reproducibility.

There are two means of electrophoresis for the second dimension separation of proteins; vertical slab gels and horizontal ultrathin gels (Görg, Postel, and Gunther, 1988). Both are usually SDS-containing gradient gels of approximately 11% to 15% acrylamide, which separate proteins in the molecular mass range of 10 – 150kD. A stacking gel is not usually used with slab gels, but is necessary when using horizontal gel setups (Görg, Postel and Gunther, 1988). Comparisons have shown that there is little or no difference in the reproducibility of electrophoresis using either approach (Corbett et al., 1994a), but commercially available vertical or horizontal precast gels will provide greater reproducibility for occasional users. For slab gel electrophoresis.

cu

dε

ľ

Figure 2.—Two-dimensional gel electrophoresis allows 'zooming in' on areas of interest. Rings highlight 2 proteins common to each gel. (A) Wide pl range two dimensional electrophoresis map of human plasma proteins. First dimension separation was acheived using an immobilised pH gradient of 3.5 to 10.0 units. The second dimension was SDS-PAGE. Actual gel size was 16cm × 20cm, and proteins were visualised with silver staining. (B) Narrow pl range electrophoresis was used to 'zoom in' on a small region of the plasma map. The first dimension used a narrow range immobilised pH gradient of 4.2 to 5.2 units, and second dimension was SDS-PAGE. Micropreparative loading was used, and the gel blotted to PVDF. Proteins were visualised with amido black. Actual blot size was 16cm × 20cm.

the use of piperazine diacrylyl as a gel crosslinker and the addition of thiosulfate in the catalyst system has been shown to give better resolution and higher sensitivity detection (Hochstrasser and Merril, 1988; Hochstrasser, Patchornik and Merril, 1988).

Notwithstanding the advances described above, there is an increasing demand to improve the reproducibility of 2-D electrophoresis to facilitate database construction and proteome studies. Harrington et al. (1993) explain that if a gel resolves 4000 protein spots, and there is 99.5% spot matching from gel to gel, this will produce 20 spot errors per gel. This amount of error, which might accumulate with each gel to gel comparison used in database construction, could produce an unacceptable degree of uncertainty in gel databases. To address these issues, partial automation of large 2-D gel separations has been undertaken (Nokihara, Morita and Kuriki, 1992; Harrington et al., 1993). Although results are preliminary, spot to spot positional reproducibility in one study was found to be threefold improved over manual methods (Harrington et al., 1993). It should be noted that small 2-D gel formats (50 × 43 mm) have been almost completely automated (Brewer et al., 1986), although these are not generally used for database studies.

MICROPREPARATIVE 2-D GEL ELECTROPHORESIS

With the advent of affordable protein microcharacterisation techniques, including Nterminal microsequencing, amino acid analysis, peptide mass fingerprinting, phosphate analysis and monosaccharide compositional analysis, a new challenge for 2-D electrophoresis has been to maintain high resolution and reproducibility but to provide protein in sufficient quantities for chemical analysis (high nanogram to low microgram quantities of proteins per spot). This becomes difficult to achieve with very complex samples such as whole bacterial cells, as the initial protein load is divided among 2000 to 4000 protein species. Two approaches are used for producing amounts of material that can be chemically characterised. The first method is to run multiple gels, collect and pool the spots of interest, and subject them to concentration (Ji et al., 1994; Walsh et al., 1995; Rasmussen et al., 1992). In this approach, the concentration process must also act as a purification step to remove accumulated electrophoretic contaminants such as glycine. A more elegant approach has been to exploit the high loading capacity of IPG isoelectric focusing. The high loading capacity of immobilised pH gradients was described early (Ek. Bjellqvist and Righetti, 1983), but has only recently been applied to 2-D electrophoresis (Hanash et al., 1991; Bjellqvist et al., 1993b). Up to 15 mg of protein can been applied to a single gel, yielding microgram quantities of hundreds of protein species. A further benefit of this approach is that proteins present in low abundance, which may not be visualised by lower protein loads, are more likely to be detected. The use of electrophoretic or chromatographic prefractionation techniques (Hochstrasser et al., 1991a; Harrington et al., 1992), followed by high loading of narrow-range IPG separations (Bjellqvistet al., 1993b) provides a likely solution to studies on proteins present in low abundance.

Methods of protein detection

There are many means for detecting proteins from 2-D gels. The method used will be dictated by factors including protein load on gel (analytical or preparative), the purpose of the gel (for protein quantitation or for blotting and chemical characterisation), and the sensitivity required. The most common means of protein detection and their applications are shown in *Table 1*. Most detection methods have drawbacks, for

10

);.);.

Luc.

:...

Silv

Coc R-2

Coli

Zinc

Pon.

Indi

Stai

PVI of fl

ex:

are (St

.

pro

Table 1: Common status for 2-D gels or blots and their applications.

Detection Method	Main applications	Unsuitable applications	Sensitivity	Reterences
["S] Met or "C radiolabelling and fluorography or phosphorimaging	Cell lines. cultured organisms	Samples that cannot be labelled	20 ppm of radiolabel in a spot	Garrels and Franza, 1989. Lathum, Garrels and Solier, 1993
["S]thiourea silver	Extremely high sensitivity gel staining	Preparative 2-D: PVDF or NC membranes	0.4 ng protein on spot or band of gel	Wallace and Saluz. 1992a.h
Silver	Very high sensi- tivity gel staining, can be mono or polychromatic	Preparative 2-D: PVDF or NC membranes	4 ng protein on spot or band of gel	Rabilloud, 1992. Hochstrasser and Merril, 1988
Coomassic blue R-250	Staining of gels: staining of PVDF meinbranes before protein sequencing	Staining prior to direct mass deter- mination from PVDF: amino acid analysis on PVDF: detection of some glycoproteins	40 ng protein on hand or spot of gel	Strupat <i>et al.</i> , 1994; Gharahdaghi <i>et al.</i> , 1992; Goldberg <i>et al.</i> , 1988; Sanchez <i>et al.</i> , 1992
Colloidal gold	Staining NC membranes, staining PVDF before direct MALDI-TOF	Gels	60 × higher than coomassie	Yamaguchi and Asakawa, 1988; Eckerskorn <i>et al.</i> , 1992; Strupat <i>et al.</i> , 1994
Zinc imidazole	Reverse staining of gels or mem- branes: may be beneficial in MALDI-TOF of peptides	Where positive image is required	Higher than coomassie	Ortiz et al., 1992; James et al., 1993
Ponceau S and amido black	Staining higher protein loads on PVDF, for protein sequencing or amino acid analysis	Staining prior to direct mass determination from PVDF	100 ng protein on hand or spot of gel	Sanchez et al., 1992; Strupat et al., 1994; Wilkins et al., 1995.
India ink	Staining of membrane-bound proteins: staining PVDF before direct MALDI-TOF	Gel staining; not quantitative from protein to protein	1-1() ng	Li cr al., 1989; Hughes, Mack and Hamparian, 1988; Strupat cr al., 1994
Stains-all	Staining to detect glycoproteins or Call binding proteins	General gel staining	100 ng protein on band or spot of gel	Campbell, MacLennan and Jorgensen, 1983; Goldberg et al., 1988

PVDF = polyvinylidene diffuoride, NC = nitrocellulose, MALDI-TOF = matrix assisted faser desorption ionisation time or flight mass spectrometry.

example, some glycoproteins are not stained by coomassie blue (Goldberg et al., 1988), and many organic dyes are unsuitable for protein detection on PVDF if samples are to be used for direct matrix-assited laser desorption ionisation mass spectrometry. (Strupat et al., 1994).

Although most means of protein detection give some indication of the quantities of protein present, in general they cannot be used for global quantitation. This is because

no proteit, stain is able contistently to detect proteins over a wide range of concentrations, isoelectric points and amino acid compositions, and with a variety of post-translational modifications (Goldberg et al., 1988; Li et al., 1989). Furthermore, there are large differences in staining pattern when identical gels or bloss are subjected to different stains, including amido black, imidazole zinc, india ink, ponceau S, colloidal gold, or coomassie blue (Tovey, Ford and Baldo, 1987; Ortiz et al., 1992). The most common means of quantitating large numbers of proteins in a 2-D gel involves the radiolabelling of protein samples prior to electrophoresis, and protein quantitation based on fluorography and image analysis or liquid scintillation counting (Garrels, 1989; Celis and Olsen, 1994). However, proteins which do not contain methionine cannot be detected if only ["S] methionine is used for labelling. Amino acid analysis of protein spots visualised by other techniques presents a likely means of protein quantitation for the future.

BLOTTING OF PROTEINS TO MEMBRANES

Electrophoretic blotting of proteins from two-dimensional polyacrylamide gels to membranes presents many options for protein identification and microcharacterisation which are not possible when proteins remain in gels. For example, when proteins are blotted to polyvinylidene difluoride (PVDF) membranes, they can be identified by Nterminal sequencing, amino acid analysis, or immunoblotting, or they may be subjected to endoproteinase digestion, monosaccharide analysis, phosphate analysis, or direct matrix-assisted laser desorption ionisation mass spectrometry (Matsudaira, 1987; Wilkins et al., 1995; Jungblut et al., 1994; Sutton et al., 1995; Rasmussen et al., 1994; Weizthandler et al., 1993; Murthy and Iqbal, 1991; Eckerskorn et al., 1992). It is possible to combine of some of these procedures on a single protein spot on a PVDF membrane (Packer et al., 1995; Wilkins et al., submitted; Weizthandler et al., 1993). -This is useful when minimal amounts of protein are available for analysis. These techniques will be explored in detail later in this review. Notwithstanding the above, there are some disadvantages associated with blotting of proteins to membranes. There is always loss of sample during blotting procedures (Eckerskorn and Lottspeich, 1993), and common protein detection methods are less sensitive or not applicable to membranes (Table 1), presenting difficulties for the analysis of low abundance proteins. Detailed discussion of the merits of available membranes and common blotting techniques can be found elsewhere (Eckerskorn and Lottspeich, 1993; Strupat et al., 1994; Patterson, 1994).

2-D gel analysis, documentation, and proteome databases

Following protein electrophoresis and detection, detailed analysis of gel images is undertaken with computer systems. For proteome projects, the aim of this analysis is to catalogue all spots from the 2-D gel in a qualitative and if possible quantitative manner, so as to define the number of proteins present and their levels of expression. Reference gel images, constructed from one or more gels, form the basis of two-dimensional gel databases. These databases also contain protein spot identities and

det.

Ni. Lini.

Dig as g Dat

GE:

Ait.

pho sea:

Cel:

resi

or r

pul.

spo

spo

assi list-

Tab.

Gel ELS

GEI

ME: QUI

TYC

- Ti

sy si

ity. (G: 20(

im

ma

to ! usi

Clo

alti