1 Sedimentation Optimization

We have N=40 and n=30 for each shape. We choose the ODE tolerance to be 10^{-7} and the optimization tolerance is 10^{-3} . I fixed the problems with the implementation of the sedimentation optimization code. First, I tested whether setting $\hat{\rho} = \rho_{FW}$ would converge within one iteration. This happened. Then I set up a test problem which sets $\hat{\rho}$ to be the forward solution for $V_{ext}=ay$, where a=0.1, as in Archer's paper. Then I set up the optimization forward problem to be such that a=0.01 and $\mathbf{w}=\mathbf{0}$. We expect the control to act downward, since the strength of gravity a is decreased. We also expect that the cost \mathcal{J} is decreasing from the baseline J_{FW} when optimizing. For $\beta=10^{-3}$ and $\beta=10^{-1}$ this works well. When $\beta=10^{-3}$ we get $J_{FW}=0.4955$ and $J_{Opt}=0.0556$. The results can be seen in Figures 1, 2 and 3.

Figure 1: Forward ρ for a = 0.01

1.1 Multishape

Just to test whether the multishape OCP works now (since there have been issues in the past which have been fixed when fixing another bug). We have N=20 and n=30 for each shape. We choose the ODE tolerance to be 10^{-7} and the optimization tolerance is 10^{-3} . We choose the target with a=0.1 and the forward problem with 0.099, so that we get quick convergence, since we just want to see whether the method is working. We get $J_{FW}=4.4833\times 10^{-5}$ and $J_{Opt}=2.6884\times 10^{-6}$. The results can be seen in Figures 4 and 5.

Figure 2: Optimal ρ for a = 0.01

2 Time-independent control

We now use the example with the same configurations as in the first section. The difference will be that the gradient equation is:

$$\mathbf{w} = -\frac{1}{\beta} \int_0^T \rho \nabla q dt.$$

This means, we get a **w** which is averaged over the time horizon and therefore time independent. This seems to work well. $J_{FW} = 0.4855$ and $J_{Opt} = 0.0733$. The results can be seen in Figures 6, 7 and 8.

Figure 3: Optimal Control for a=0.01

Figure 4: Optimal ρ for a=0.099

Figure 5: Optimal Control for a = 0.099

Figure 6: Time-independent; Forward ρ for a=0.01

Figure 7: Time-independent; Optimal ρ for a=0.01

Figure 8: Time-independent; Optimal Control for a=0.01