Nur die Aufgaben mit einem \star werden korrigiert.

- 2.1. MC Fragen: Folgenkonvergenz. Wählen Sie die einzige richtige Antwort.
- (a) Welche der folgenden Aussagen ist richtig?
 - O Eine Folge kann höchstens einen Grenzwert haben.
 - O Jede monotone und nach oben beschränkte Folge ist konvergent.
 - () Es gibt konvergente Folgen, die nicht beschränkt sind.
 - O Eine divergente Folge ist nicht beschränkt.
- (b) Seien $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ und $(c_n)_{n\geq 1}$ Folgen in \mathbb{R} mit $c_n=a_n+b_n$.
- \bigcirc Falls $\lim_{n\to\infty} c_n$ existiert, dann existieren $\lim_{n\to\infty} a_n$ und $\lim_{n\to\infty} b_n$ und es gilt:

$$\lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n = \lim_{n\to\infty} c_n.$$

 \bigcirc Falls $\lim_{n\to\infty} c_n$ und $\lim_{n\to\infty} b_n$ existieren, dann existiert $\lim_{n\to\infty} a_n$ und es gilt:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n - \lim_{n \to \infty} b_n.$$

- \bigcirc Falls $(c_n)_{n\geq 1}$ beschränkt ist, dann muss mindestens eine der Folgen $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ beschränkt sein.
- \bigcirc Falls $(c_n)_{n\geq 1}$ konvergiert, dann konvergiert mindestens eine der Folgen $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$.
- (c) Sei $(a_n)_{n\geq 1}$ eine Folge in \mathbb{R} . Welche der folgenden Aussagen impliziert, dass $\lim_{n\to\infty} a_n = \infty$?
 - \bigcirc Es gibt $N \in \mathbb{N}$, so dass $a_n \ge 12n$ für alle $n \ge N$.
 - $\bigcirc a_n = 1/b_n$ für eine Folge $(b_n)_{n\geq 1}$ mit $b_n \to 0$ für $n \to \infty$.
 - \bigcirc Für jedes $N \in \mathbb{N}$ existiert $n \geq N$, so dass $a_n > 2^n$.
 - $\bigcirc \{a_{n+1} a_n \mid n \ge 1\}$ ist unbeschränkt.
- (d) Sei $(a_n)_{n\geq 1}$ eine Folge in \mathbb{R} .
 - \bigcirc Falls $\varepsilon > 0$ und $a \in \mathbb{R}$ existieren, so dass

$$|a_n - a| < \varepsilon \quad \forall n \ge 1$$

gilt, dann konvergiert $(a_n)_{n\geq 1}$.

1. März 2024

- \bigcirc Falls $(a_n)_{n\geq 1}$ konvergiert, dann ist die Folge $b_n=a_{n+1}+a_n$ konvergent.
- \bigcirc Falls die Folge $b_n=a_{n+1}-a_n$ gegen 0 konvergiert, dann ist $(a_n)_{n\geq 1}$ konvergent.
- \bigcirc Falls $a_{n+1} \geq a_n$ für alle $n \geq 1$, dann ist $(a_n)_{n \geq 1}$ unbeschränkt.
- (e) Welche der folgenden Aussagen ist äquivalent zu $\lim_{n\to\infty} a_n = 2$?
 - $\bigcirc \forall N \ge 1 \,\exists n \ge N \colon |a_n 2| < \frac{1}{N}.$
 - $\bigcirc \forall \varepsilon > 0 \,\exists n \ge 1 \colon a_n \le 2 + \varepsilon.$
 - $\bigcirc \forall \varepsilon > 0 \exists N \ge 1 \forall n \ge N \colon |a_n 2| < \varepsilon.$
 - $\bigcirc \exists \varepsilon > 0 \exists N \ge 1 \forall n \ge N \colon |a_n 2| \le \varepsilon.$
- **2.2. Grenzwert I.** Sei $a \in \mathbb{R}$, a > 0. Beweisen Sie, dass $\lim_{n \to \infty} \sqrt[n]{a} = 1$.
- **2.3. Grenzwert II.** Man untersuche die untenstehenden Zahlenfolgen. Sind sie beschränkt? Konvergieren sie? Wenn ja: Was ist ihr Grenzwert?

$$\star(\mathbf{a}) \ a_n = \frac{3n^5 + 2n^3 + 5n}{10 + 2n^5};$$

*(b)
$$b_n = \sqrt{n^2 + 3n} - n;$$

(c)
$$c_n = \frac{3^n + (-2)^n}{3^n - 2^n};$$

(d)
$$d_n = \left(\frac{n}{n^2} + \frac{n+1}{n^2} + \dots + \frac{3n}{n^2}\right);$$

$$\star$$
(e) $e_n = \sqrt[n]{5^n + 11^n + 17^n}$.

2.4. * Rekursive Folge. Es sei $(x_n)_{n\geq 1}$ rekursiv gegeben durch $x_1:=1$ und

$$x_{n+1} := 1 + \frac{1}{x_n}, \quad n \ge 1.$$

- (i) Nehmen Sie an, dass $(x_n)_{n\geq 1}$ gegen $g\in\mathbb{R}$ konvergiert. Bestimmen Sie den einzigen möglichen Wert von g, indem Sie auf beiden Seiten der Rekursionsgleichung den Grenzwert nehmen und dann nach g auflösen.
- (ii) Zeigen Sie, dass $|x_{n+1} g| \le g^{-1}|x_n g|$ für alle $n \ge 1$. Folgern Sie, dass $(x_n)_{n \ge 1}$ gegen g konvergiert.

2.5. Eulersche Zahl. Wir definieren die Folgen $(e_n)_{n\geq 1}$ und $(x_n)_{n\geq 1}$ durch

$$e_n := \left(1 + \frac{1}{n}\right)^n, \quad x_n := \left(1 + \frac{1}{n}\right)^{n+1},$$

für $n \geq 1$. In der Vorlesung wurde bewiesen, dass $(x_n)_{n\geq 1}$ monoton fallend ist und dass

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} e_n = e.$$

- (i) Zeigen Sie, dass die Folge $(e_n)_{n\geq 1}$ monoton wachsend ist. Folgern Sie, dass $e_n\leq e\leq x_n$ für alle $n\geq 1$.
- (ii) Sei $k \in \mathbb{N}$. Bestimmen Sie ein $n \ge 1$, so dass $|e e_n| < 10^{-k}$.

2.6. Divergente Folgen. Finden Sie Beispiele für reelle Folgen $(x_n)_{n\geq 1}$ und $(y_n)_{n\geq 1}$, so dass $x_n\to\infty$ und $y_n\to-\infty$ für $n\to\infty$ und...

- (a) $x_n + y_n \to \infty$ für $n \to \infty$;
- **(b)** $x_n + y_n \to -\infty$ für $n \to \infty$;
- (c) $(x_n + y_n)_{n \ge 1}$ konvergiert;
- (d) $(x_n + y_n)_{n \ge 1}$ beschränkt ist und divergiert.