Topomodels

An implementation of topological semantics for modal logic in Haskell

David Álvarez Lombardi Paulius Sakaisgiris

Institute for Logic, Language, and Computation
University of Amsterdam

Functional Programming Friday, 2 June 2023

1 Motivation

- 1 Motivation
- 2 Modal logics

- 1 Motivation
- 2 Modal logics
- 3 Kripke models

- 1 Motivation
- 2 Modal logics
- 3 Kripke models
- 4 Topology

- 1 Motivation
- 2 Modal logics
- 3 Kripke models
- 4 Topology
- **5** Topomodels

- 1 Motivation
- 2 Modal logics
- 3 Kripke models
- 4 Topology
- **5** Topomodels
- **6** Model conversion

- Motivation
- 2 Modal logics
- 3 Kripke models
- 4 Topology
- **5** Topomodels
- **6** Model conversion
- Future work

Motivation

Normal modal logics

Syntax:

$$\varphi := \top \mid \bot \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \varphi \rightarrow \varphi \mid \neg \varphi \mid \Diamond \varphi \mid \Box \varphi$$

A normal modal logic is a set of formulas of the above form containing K and Dual and closed under modus ponens, uniform substitution, and necessitation.

(K)
$$\Box(p \to q) \to (\Box p \to \Box q)$$

(Dual) $\Box p \leftrightarrow \neg \Diamond \neg p$

The smallest such logic is denoted by **K**.

The logic **S4** is defined as $\mathbf{K} \cup \{\Box p \rightarrow \Box \Box p, \Box p \rightarrow p\}$

Relational semantics for modal logic

A Kripke frame is a tuple (X, R) where X is a set and $R \subseteq X \times X$.

A Kripke model is a triple (X, R, V) where (X, R) is a Kripke frame and $V : \mathbf{Prop} \to \wp(X)$.

A pointed Kripke model is a 4-tuple (X, R, V, x) where (X, R, V) is a Kripke model and $x \in X$.

Key semantic definition:

$$(X, R, V, x) \models \Box \varphi \Leftrightarrow (\forall x' \in X)(xRx' \Rightarrow (X, R, V, x') \models \varphi)$$

The class Pre

A pre-order is a tuple (X, R) such that the following hold for all $x, y, z \in X$.

- xRx
- xRy and yRz implies xRz

The class of pre-orders is denoted by **Pre**.

Fact: The logic **S4** is sound and complete with respect to the class of frames **Pre**

$$\varphi \in \mathbf{S4} \Leftrightarrow \mathsf{Pre} \models \varphi$$

$$\Leftrightarrow (\forall (X, R) \in \mathsf{Pre})(\forall V \in \wp(X)^{\mathsf{Prop}})(\forall x \in X) \Big((X, R, V, x) \models \varphi \Big)$$

Basic topology

A topological space is a tuple (X, τ) where X is a set and $\tau \subseteq \wp(X)$ where τ satisfies the following.

- $\varnothing, X \in \tau$
- $S \subseteq \tau$ and $|S| < \omega$ implies $\bigcap S \in \tau$
- $S \subseteq \tau$ implies $\bigcup S \in \tau$

A set *S* is open if $S \in \tau$, closed if $X - S \in \tau$, and clopen if it is both open and closed.

Basic topology cont.

Given a subset $S \subseteq X$, the *interior of S*, denoted by int(S), is the largest open subset of S, or, equivalently,

$$\bigcup \{ U \in \tau \mid U \subseteq S \}$$

The closure of S, denoted by cl(S), is the smallest closed superset of S, or, equivalently,

$$\bigcap \{ C \subseteq X \mid X - C \in \tau \text{ and } S \subseteq C \}$$

The class Alx

Recall that a topospace (X, τ) satisfies the following.

- $\varnothing, X \in \tau$
- $S \subseteq \tau$ and $|S| < \omega$ implies $\bigcap S \in \tau$
- $S \subseteq \tau$ implies $\bigcup S \in \tau$

A topospace is called *Alexandrov* if it also satisfies the following *strengthening* of the second requirement above.

• $S \subseteq \tau$ and $S \subset \omega$ implies $\bigcap S \in \tau$

The class of Alexandrov topospaces is denoted by **Alx**.

Topological semantics for modal logic

A topomodel is a triple (X, τ, V) where (X, τ) is a topospace and $V : \mathbf{Prop} \to \wp(X)$.

A pointed topomodel is a 4-tuple (X, τ, V, x) where (X, τ, V) is a topomodel and $x \in x$.

Key semantic definition:

$$(X, \tau, V, x) \models \Box \varphi \Leftrightarrow (\exists U \in \tau) \Big(x \in U \text{ and } (\forall y \in U) \Big((X, \tau, V, y) \models \varphi \Big) \Big)$$

This implies that

$$\llbracket \Box \varphi \rrbracket = \mathrm{int} \Big(\llbracket \varphi \rrbracket \Big)$$

$$\llbracket \Diamond \varphi \rrbracket = \mathsf{cl} \Big(\llbracket \varphi \rrbracket \Big)$$

The upset topology

The specialisation order

Future work

The End

Questions? Comments?