CONTENTS

	Pre	face to the First Edition xi
		To the student xi
		To the educator xii
		The first edition xiii
		Feedback to the author xiii
		Acknowledgments xiv
	Pre	face to the Second Edition xvii
0	Intr	oduction 1
	0.1	Automata, Computability, and Complexity
		Complexity theory
		Computability theory
		Automata theory
	0.2	Mathematical Notions and Terminology
		Sets
		Sequences and tuples 6
		Functions and relations
		Graphs
		Strings and languages
		Boolean logic
		Summary of mathematical terms
	0.3	Definitions, Theorems, and Proofs
		Finding proofs
	0.4	Types of Proof
		Proof by construction
		Proof by contradiction
		Proof by induction
		Exercises, Problems, and Solutions

٧

Pa	ırt C	One: Automata and Languages	29
1	Reg	ular Languages	31
	1.1	Finite Automata	. 31
		Formal definition of a finite automaton	. 35
		Examples of finite automata	
		Formal definition of computation	
		Designing finite automata	
		The regular operations	
	1.2	Nondeterminism	
		Formal definition of a nondeterministic finite automaton	
		Equivalence of NFAs and DFAs	
		Closure under the regular operations	
	1.3	Regular Expressions	
		Formal definition of a regular expression	
		Equivalence with finite automata	
	1.4	Nonregular Languages	
		The pumping lemma for regular languages	
		Exercises, Problems, and Solutions	
		Lacresses, 1700renss, and Sommons	. 02
2	Con	text-Free Languages	99
	2.1	Context-free Grammars	. 100
		Formal definition of a context-free grammar	. 102
		Examples of context-free grammars	. 103
		Designing context-free grammars	. 104
		Ambiguity	. 105
		Chomsky normal form	. 106
	2.2	Pushdown Automata	. 109
		Formal definition of a pushdown automaton	. 111
		Examples of pushdown automata	. 112
		Equivalence with context-free grammars	. 115
	2.3	Non-context-free Languages	. 123
		The pumping lemma for context-free languages	. 123
		Exercises, Problems, and Solutions	
D.	T	Swar Camputability Theory	135
Г	ul I	Two: Computability Theory	133
3	The	Church-Turing Thesis	137
	3.1	Turing Machines	. 137
		Formal definition of a Turing machine	
		Examples of Turing machines	
	3.2	Variants of Turing Machines	
		Multitape Turing machines	
		Nondeterministic Turing machines	
		Enumerators	

		CONTENTS	vii
		Equivalence with other models	153
	3.3	The Definition of Algorithm	
	3.3	Hilbert's problems	
		Terminology for describing Turing machines	156
		Exercises, Problems, and Solutions	
		Latituses, 1700tinus, una Ostations	. 13/
4	Dec	cidability	165
	4.1	Decidable Languages	. 166
		Decidable problems concerning regular languages	
		Decidable problems concerning context-free languages	. 170
	4.2	The Halting Problem	. 173
		The diagonalization method	. 174
		The halting problem is undecidable	. 179
		A Turing-unrecognizable language	
		Exercises, Problems, and Solutions	. 182
5	Dad	lucibility	187
3	5.1		
	3.1	Undecidable Problems from Language Theory	
	5.2	Reductions via computation histories	
	5.3	A Simple Undecidable Problem	
	3.3	Mapping Reducibility	
		Computable functions	
		Formal definition of mapping reducibility	
		Exercises, Problems, and Solutions	. 211
6	Adv	anced Topics in Computability Theory	217
	6.1	The Recursion Theorem	. 217
		Self-reference	. 218
		Terminology for the recursion theorem	. 221
		Applications	. 222
	6.2	Decidability of logical theories	. 224
		A decidable theory	
		An undecidable theory	
	6.3	Turing Reducibility	
	6.4	A Definition of Information	. 233
		Minimal length descriptions	. 234
		Optimality of the definition	
		Incompressible strings and randomness	. 239
		Exercises, Problems, and Solutions	. 242
p.	a rt 7	Three: Complexity Theory	245
1.0	alt 1	inco. Complexity Theory	4 13
7	Tin	ne Complexity	247
	7.1	Measuring Complexity	. 247
		Big-O and small-o notation	

viii contents

		Analyzing algorithms	
		Complexity relationships among models	
	7.2	The Class P	256
		Polynomial time	256
		Examples of problems in P	
	7.3	The Class NP	
		Examples of problems in NP	
		The P versus NP question	
	7.4	NP-completeness	
		Polynomial time reducibility	
		Definition of NP-completeness	
		The Cook–Levin Theorem	
	7.5	Additional NP-complete Problems	
		The vertex cover problem	
		The Hamiltonian path problem	
		The subset sum problem	
		Exercises, Problems, and Solutions	
			• ′ •
8	Spac	ee Complexity 3	03
	8.1	Savitch's Theorem	305
	8.2	The Class PSPACE	308
	8.3	PSPACE-completeness	309
		The TQBF problem	310
		Winning strategies for games	313
		Generalized geography	315
	8.4	The Classes L and NL	320
	8.5	NL-completeness	323
		Searching in graphs	325
	8.6	NL equals coNL	326
		Exercises, Problems, and Solutions	328
9	Intra		35
	9.1	Hierarchy Theorems	
		Exponential space completeness	
	9.2	Relativization	
		Limits of the diagonalization method	
	9.3	Circuit Complexity	
		Exercises, Problems, and Solutions	360
10	A 1		=
10			65
		Approximation Algorithms	
	10.2	Probabilistic Algorithms	
		The class BPP	
		Primality	
		Read-once branching programs	
	10.3	Alternation	380

	CONTENTS	ix
Alternating time and space		381
The Polynomial time hierarchy		
10.4 Interactive Proof Systems		
Graph nonisomorphism		
Definition of the model		
$IP = PSPACE \dots \dots \dots \dots \dots$		
10.5 Parallel Computation		399
Uniform Boolean circuits		
The class NC		402
P-completeness		
10.6 Cryptography		
Secret keys		
Public-key cryptosystems		
One-way functions		
Trapdoor functions		
Exercises, Problems, and Solutions		
Selected Bibliography		415
Index		421