29 gennaio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 60 minuti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- Occorre rispondere in maniera corretta ad almeno 4 domande per ogni sezione (Analisi e Algebra Lineare).
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2009

CODICE = 327985 A B C D E 1 2 3 4 $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$ 5 $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$ 6		(Cognome)	(Nome)	(Numero di matricola)
1				
1				
1				
1				
1				
1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	ODICE = 327985		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A B C D E		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A B C B E		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0000		
6	4			
	5			
	6			
	7			

8

9 10

PARTE A

1. Calcolare il limite

$$\lim_{x \to \infty} \frac{e^x + \sin x}{e^{x^2} + 1}$$

A: $-\infty$ B: 2π C: $+\infty$ D: N.A. E: 1

- 2. Determinare inf, sup, min, max dell'immagine di e^x , $x \in \mathbb{R}$ A: $0, +\infty$, N.E., N.E. B: $-\infty$, 0,N.E.,0 C: N.A. D: 0, 1, 0, 1 E: $0, +\infty$, 0, N.E.
- 3. Per quali valori di λ e μ la funzione:

$$f(x) = \begin{cases} \lambda x + \mu & x \le 0 \\ x^x & x > 0 \end{cases}$$

1) è continua su \mathbb{R} ; 2) è derivabile su \mathbb{R} .

A: 0,1 B: 1,1 C: 1,N.E. D: 0,0 E: N.A.

4. Calcolare $\int_0^1 \arctan x \, dx$

A: 1 B: $\lg 2 - \pi$ C: $\frac{\pi}{4} - \frac{1}{2} \lg 2$ D: N.A. E: $\frac{\pi}{2}$

5. Il polinomio di Taylor di grado 2 della funzione $\sin(x^2)$ in $x_0 = \sqrt{\pi}$ vale

A: $\pi - x^2$ B: 1 - x C: $(x - \pi)^2$ D: N.A. E: $1 + x^2$

6. Determinare tutte le soluzioni di $\ddot{u}(t) - \dot{u}(t) = t$ è

A: N.A. B: $\alpha \sin t + \beta \cos t + t^2$ C: $\alpha t + \beta e^t$ D: $\sin t + e^{2t}$ E: $\alpha + \beta e^t - \frac{1}{2}t^2 - t$

7. Studiare l'immagine di $\sqrt{x+1} - \sqrt{x}$ sul suo campo di esistenza.

A: $]1, +\infty[$ B:]0, 1[C: $]-\infty, +\infty[$ D: [0, 1] E: N.A.

PARTE B

8. Calcolare il coseno dell'angolo formato dai vettori u = (1, 1, 0, 2) v = (0, 2, 1, 1) e la proiezione di u nella direzione di v.

A: $1/\sqrt{2}$, (0,2,2,2) B: 2/3, $\frac{1}{3}(0,4,2,2)$ C: N.A. D: 1, (0,6,3,3) E: 2, $\frac{1}{2}(0,2,1,1)$

9. I due vettori u=1+t e v=1 dello spazio vettoriale X dei polinomi su \mathbb{R} :

A: N.A B: Sono multipli l'uno dell'altro C: Generano X D: Generano un sottospazio di dimensione 3 E: Generano un sottospazio di dimensione 0

10. Date $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ e $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$, calcolare AB, BA, A^TB .

A: N.E., N.E., N.E. B: $\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$, N.E. C: $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$,

N.E. D: N.A. E: N.E., $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, N.E.

11. Calcolare
$$Det \begin{pmatrix} 1 & 0 & 2 & 2 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

A: 2 B: N.A. C: -1 D: -12 E: 0

12. Per quali valori di λ il sistema lineare $\begin{cases} 2x+y+z=1\\ x-y+2z=1\\ x+2y-z=\lambda \end{cases}$
 1) ha soluzione unica; 2) ha soluzioni.

A: Mai, Mai B: Mai, 0 C: N.A. D: 0, -1 E: 1, 2

- 13. Calcolare modulo, argomento ed inverso del numero complesso $-2\sqrt{3}-2i$ A: 2, $\frac{7}{6}\pi$, 1+i B: 1, $\frac{\pi}{6}$, $\sqrt{2}-3i$ C: 4, $-\frac{5}{6}\pi$, $-\frac{\sqrt{3}}{8}+\frac{i}{8}$ D: 3, π , -i E: N.A.
- 14. Calcolare il nucleo dell'applicazione lineare $A(x,y,z)=\left(\begin{array}{c} 3x+2y-z\\ x+y+z\\ x-3z \end{array}\right)$.

A: N.A. B: $\alpha(3,-4,1), \alpha \in \mathbb{R}$ C: \mathbb{R}^3 D: $\{(x,y,z): x+y+z=0\}$ E: $\{0\}$

29 gennaio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 60 minuti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- Occorre rispondere in maniera corretta ad almeno 4 domande per ogni sezione (Analisi e Algebra Lineare).
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2009

(Cognome)															(Nome	e)			(N	ume	ro d	li ma	trico	la)		
		CC)DI	CE	$\Sigma = 0$	103	56	6																			
			יוטוי	O1	_	400	50	.0																			
						A	В	3 (<u> </u>	D	Ε																
						_					_	_															
1						\mathcal{L}	<u> </u>	<u>) (</u>	<u>) (</u>	\bigcirc (<u>_</u>																
2						$\bigg)$	$\overline{}$)() ($\bigcup ($																	
3)()($\overline{)}$																	
4							()() ($\overline{)}$																	
5						$\frac{1}{2}$	$\overline{}$	7	7		\preceq																
6						$\frac{1}{2}$			$\frac{2}{\sqrt{2}}$	$\frac{1}{2}$	\leq	$\overline{\Box}$															
						$\frac{\mathcal{L}}{\mathbf{L}}$		<u> </u>	<u>ノ (</u>	$\frac{\mathcal{L}}{\mathcal{L}}$	$\frac{\mathcal{L}}{\mathcal{L}}$	_															
7						\mathcal{L}	<u> </u>) (<u>) (</u>	\bigcirc (<u>_</u>)															
0						_					_																
8						$\frac{\mathcal{L}}{\mathcal{L}}$		\mathcal{L}	<u>) (</u>		<u>_</u>)															
9					1 ()	() () () ()															

10

PARTE A

1. Calcolare $\int_0^1 \arctan x \, dx$

A: $\frac{\pi}{4} - \frac{1}{2} \lg 2$ B: $\lg 2 - \pi$ C: 1 D: N.A. E: $\frac{\pi}{2}$

2. Per quali valori di λ e μ la funzione:

 $f(x) = \left\{ \begin{array}{cc} \lambda \ x + \mu & x \le 0 \\ x^x & x > 0 \end{array} \right.$

1) è continua su \mathbb{R} ; 2) è derivabile su \mathbb{R} .

A: 1,1 B: 1,N.E. C: 0,1 D: N.A. E: 0,0

3. Calcolare il limite

 $\lim_{x \to \infty} \frac{e^x + \sin x}{e^{x^2} + 1}$

A: 2π B: $+\infty$ C: 1 D: $-\infty$ E: N.A

4. Determinare tutte le soluzioni di $\ddot{u}(t) - \dot{u}(t) = t$ è

A: $\alpha + \beta e^t - \frac{1}{2}t^2 - t$ B: $\alpha \sin t + \beta \cos t + t^2$ C: $\sin t + e^{2t}$ D: $\alpha t + \beta e^t$ E: N.A.

5. Determinare inf, sup, min, max dell'immagine di e^x , $x \in \mathbb{R}$

A: $0, +\infty$, N.E., N.E. B: N.A. C: $0, +\infty$, 0, N.E. D: 0, 1, 0, 1 E: $-\infty$, 0, N.E., 0

6. Il polinomio di Taylor di grado 2 della funzione $\sin(x^2)$ in $x_0 = \sqrt{\pi}$ vale

A: $1 + x^2$ B: $\pi - x^2$ C: N.A. D: $(x - \pi)^2$ E: 1 - x

7. Studiare l'immagine di $\sqrt{x+1} - \sqrt{x}$ sul suo campo di esistenza.

A: N.A. B: [0,1] C: $]1,+\infty]$ D:]0,1] E: $]-\infty,+\infty[$

PARTE B

8. Per quali valori di λ il sistema lineare $\begin{cases} 2x+y+z=1\\ x-y+2z=1\\ x+2y-z=\lambda \end{cases}$ soluzioni.

A: 0, -1 B: Mai, Mai C: N.A. D: 1, 2 E: Mai, 0

9. I due vettoriu=1+te v=1 dello spazio vettoriale X dei polinomi su $\mathbb{R}\colon$

A: Sono multipli l'uno dell'altro B: Generano X C: Generano un sottospazio di dimensione 0 D: N.A E: Generano un sottospazio di dimensione 3

10. Calcolare modulo, argomento ed inverso del numero complesso $-2\sqrt{3}-2i$

A: 2, $\frac{7}{6}\pi$, 1 + i B: N.A. C: 1, $\frac{\pi}{6}$, $\sqrt{2} - 3i$ D: 3, π , -i E: 4, $-\frac{5}{6}\pi$, $-\frac{\sqrt{3}}{8} + \frac{i}{8}$

11. Calcolare il coseno dell'angolo formato dai vettori u = (1, 1, 0, 2) v = (0, 2, 1, 1) e la proiezione di u nella direzione di v.

A: 2/3, $\frac{1}{3}(0,4,2,2)$ B: 2, $\frac{1}{2}(0,2,1,1)$ C: $1/\sqrt{2}$, (0,2,2,2) D: N.A. E: 1, (0,6,3,3)

12. Calcolare $\text{Det} \left(\begin{array}{cccc} 1 & 0 & 2 & 2 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{array} \right)$

A: 2 B: 0 C: -12 D: -1 E: N.A.

13. Date
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 e $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$, calcolare AB, BA, A^TB .

A: N.A. B: $\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$, N.E. C: N.E., $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, N.E. D: $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, N.E. E: N.E., N.E., N.E.

14. Calcolare il nucleo dell'applicazione lineare
$$A(x,y,z) = \begin{pmatrix} 3x + 2y - z \\ x + y + z \\ x - 3z \end{pmatrix}$$
.

A:
$$\mathbb{R}^3$$
 B: $\{(x, y, z) : x + y + z = 0\}$ C: N.A. D: $\{0\}$ E: $\alpha(3, -4, 1), \alpha \in \mathbb{R}$

29 gennaio 2009

	(Cognome)	(Nome)	(Numero di matricola)
$^{\mathrm{C}}$	ODICE = 327985		
	A B C D E		
1			
2 3			
4			
5			
6			
7			
8			

9 10

11 12

29 gennaio 2009

						(Co.	gno	me))										(Non	ıe)				(1)	Vun	ner	o di	ma	trice	ola
	,	СО	DIC	Œ :	= 4	193	566	3																							
						4	B		<u> </u>	T	<u> </u>	F	`	7																	
				L		1	_																								
1) (())																		
2)($\overset{\simeq}{f C}$		\int	$\overline{)}$	\int	$\overline{\bigcirc}$)																		
3)()($\overline{)}$	(5	Ĭ)																		
4							Ĭ)($\overline{)}$		5	\overline{C}	$\overline{)}$																		
5)($\overline{)}$	($\overline{)}$	\overline{C}	$\overline{)}$	1																	
6						$\overline{)}$)($\overline{)}$	($\overline{)}$		$\overline{)}$																		
7) ()(\bigcup			$\overline{}$)																		
8) () ($\overline{}$	($\overline{)}$)																		
9						<u> </u>	$\overline{}$) (\int		É)	1																	
10)				$\overline{}$)($\widetilde{}$)(\int		5	Ĭ	_	1																	
11							$\widetilde{}$)(\int	$\overline{)}$	\int)																		
12						<u> </u>	$\stackrel{\sim}{-}$)(\int	Ì		$\overline{\bigcirc}$)	1																	

13