ΘΕΜΑ 4

Σωματίδιο $Σ_1$ μάζας $m=10^{-3}$ kg και φορτίου $q=10^{-5}$ C αφήνεται ακίνητο σε σημείο ομογενούς ηλεκτρικού πεδίου έντασης μέτρου $E=10^3$ N/C. Το σωματίδιο μπορεί να κινείται σε οριζόντιο δάπεδο μεγάλης έκτασης, κατασκευασμένο από κάποιο μονωτικό υλικό, χωρίς τριβές. Στο σχήμα βλέπουμε την κάτοψη του ηλεκτρικού πεδίου.

4.1. Να υπολογίσετε την επιτάχυνση και την ταχύτητα του σωματιδίου όταν αυτό έχει διανύσει απόσταση $d=20~\mathrm{m}.$

Μονάδες 8

4.2. Να υπολογίσετε την απόλυτη τιμή της διαφοράς δυναμικού μεταξύ της θέσης από την οποία αφέθηκε το σωματίδιο και της τελικής του θέσης (μετά από d=20 m).

Μονάδες 4

Όταν το σωματίδιο Σ_1 διανύσει την απόσταση d=20 m, συναντά δεύτερο σωματίδιο Σ_2 , το οποίο έχει μηδενικό ηλεκτρικό φορτίο και αρχικά ήταν ακίνητο. Τα δύο σωματίδια συγκρούονται πλαστικά.

4.3. Να υπολογίσετε τη μάζα του δεύτερου σωματιδίου δεδομένου ότι κατά τη σύγκρουση η απώλεια μηχανικής ενέργειας είναι ίση με το 75% της αρχικής ενέργειας του σωματιδίου Σ_1 .

Μονάδες 6

4.4. Να υπολογίσετε την ταχύτητα που θα έπρεπε να είχε το δεύτερο σωματίδιο, κατά μέτρο και κατεύθυνση, ώστε όταν συγκρουστεί πλαστικά με το Σ_1 (όταν το σωματίδιο Σ_1 έχει διανύσει και πάλι την απόσταση d=20 m), το συσσωμάτωμα να επιστρέψει με μηδενική ταχύτητα στην αρχική θέση από την οποία αφέθηκε το Σ_1 .

Μονάδες 7

Η αντίσταση του αέρα θεωρείται αμελητέα.