Summa	Lokað snið	Jafngildisregla	Nafn reglu		Jafngildisregla
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}$, $r \neq 1$	$ \begin{array}{l} p \wedge \mathbf{T} \equiv p \\ p \vee \mathbf{F} \equiv p \end{array} $	Samsemdarreglur	(e. Identity laws)	$p \to q \equiv \neg p \lor q$
$\sum_{k=1}^{n} k$ $\sum_{k=1}^{n} k^{2}$ $\sum_{k=1}^{n} k^{3}$ $\sum_{k=0}^{n} x^{k}, x < 1$ $\sum_{k=1}^{n} kx^{k-1}, x < 1$	$\frac{n(n+1)}{2}$ $n(n+1)(2n+1)$	$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Yfirgnæfðarreglur	(e. domination laws)	$p \to q \equiv \neg q \to \neg p$
$\sum_{k=1}^{n} k^2$		$ \begin{array}{l} p \lor p \equiv p \\ p \land p \equiv p \end{array} $	Sjálfvalsreglur (e.	idempotent laws)	$p \lor q \equiv \neg p \to q$
$\sum_{k=1}^{n} k^{s}$ $\sum_{k=1}^{n} x^{k} x < 1$	$\frac{n^2(n+1)^2}{4}$	$\neg(\neg p) \equiv p$	Regla um tvöfalda	neitun (e. double negation law)	$p \wedge q \equiv \neg(p \rightarrow \neg q)$ $\neg(p \rightarrow q) \equiv p \wedge \neg q$
$\sum_{k=1}^{n} kx^{k-1}, x < 1$	$\frac{\frac{1}{1-x}}{\frac{1}{(1-x)^2}}$	$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Víxlregla (e. comm	nutative laws)	$(p \to q) \land (p \to r) \equiv p \to (q \land r)$
b_{11} b_{12}	b_{13}	$ (p \lor q) \lor r \equiv p \lor (q \lor r) (p \land q) \land r \equiv p \land (q \land r) $	Tengireglur (e. ass	ociative laws)	$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
b ₂₁ b ₂₂	b ₂₃	$\begin{array}{c} p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \\ p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r) \end{array}$		tributive laws)	$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$ $(p \to r) \lor (q \to r) \equiv (p \land q) \to r$
1	$a_{11}b_{12} + a_{12}b_{22}$	$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	Reglur De Morgan	·	
a ₁₁ a ₁₂	$a_{31}b_{13} + a_{32}b_{23}$	$ \begin{array}{c} p \lor (p \land q) \equiv p \\ p \land (p \lor q) \equiv p \end{array} $	Gleypireglur (e. al	bsorption laws)	Jafngildisregla
a ₂₁ a ₂₂		$ \begin{array}{c} p \lor \neg p \equiv \mathbf{T} \\ p \land \neg p \equiv \mathbf{F} \end{array} $	Neitunarreglur (e.	negation laws)	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
a ₃₁ a ₃₂ a ₄₁ a ₄₂	Ályktu	narregla Sísanna	Nafn reglu		$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$ $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
Γ1 0 47		$\rightarrow q$ $(p \land (p \rightarrow q)) \rightarrow q$	Skilyrðiseyð	ing (e. Modus ponens)	$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$
2 1 1 3 1 0 0 2 2	$\begin{bmatrix} 2 & 4 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 14 & 4 \\ 8 & 9 \\ 7 & 13 \\ 8 & 2 \end{bmatrix}$	$\rightarrow q$ $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus tolle	ens	-
Hér er t.d. efsta stakið til vinstri 1 $\begin{bmatrix} 0 \lor 1 & 1 \lor 0 \end{bmatrix}$	2+0-1+4-3=14.		(p o r) Skilyrðissam	nsetning (e. Hypothetical syllogism)	
$\mathbf{A} \vee \mathbf{B} = \begin{bmatrix} 0 \vee 1 & 1 \vee 0 \\ 1 \vee 1 & 0 \vee 0 \end{bmatrix} = \begin{bmatrix} 0 \wedge 1 & 1 \wedge 0 \end{bmatrix}$		$((p \lor q) \land \neg p) \to q$	Eða-samleið	uregla (e. Disjunctive syllogism)	-
$\mathbf{A} \wedge \mathbf{B} = \begin{bmatrix} 0 \wedge 1 & 1 \wedge 0 \\ 1 \wedge 1 & 0 \wedge 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$	[1 0]		Eða-innleiðir	ng (e. Addition)	-
$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in$	$ \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} $	$p \land q \rightarrow p$	Og-eyðing (e. Simplification)	-
[0 0 1] Hér er t.d. efsta stakið til hægri (1 ∧ 1	r	$(p \wedge q) \to (p \wedge q)$	Og-innleiðin	ng (e. Conjunction)	
	p \		(q∨r) Úrlausnarre	gla (e. Resolution)	-
			Nafn reglu		
	$rac{\forall x, \\ \therefore P(c)}{P(c)}$	$\frac{P(x)}{x}$	Almagnaraeyðing (e. Un	iversal instantiation)	-
	$P(c)$ $\therefore \forall x,$) fyrir hvaða c sem er $P(x)$	Almagnarainnleiðing (e.	Universal generalization)	
	$\therefore \overline{P(c)}$	fyrir eitthvao stak c	ilvistarmagnaraeyðing ((e. Existential instantiation)	
	$P(c)$ $\exists x$,	$\frac{f \text{yrir eitthvað } c}{P(x)}$	ilvistarmagnarainnleiði	ng (e. Existential generalization)	-
			JMP regla (e. Universal	modus ponens)	
	$\neg \hat{Q}$		JMT regla (e. Universal	Modus tollens)	
Jafngildisregla	∴¬P(<i>u</i>)			
$ \begin{array}{c} A \cap \mathbf{U} = A \\ A \cup \varnothing = A \end{array} $		glur (e. Identity laws)			
A U U = U A O Ø = Ø	Yfirgnæfðarre	glur (e. domination laws)			
$A \cup A = A$ $A \cap A = A$	Sjálfvalsreglu	ır (e. idempotent laws)			
$\overline{(A)} = A$	Regla um tvít	ekna fyllimengisaðgerð (e. con	nplementation law)		
$ \begin{array}{l} A \cup B = B \cup A \\ A \cap B = B \cap A \end{array} $	Víxiregla (e. c	ommutative laws)		Tímaflækja fylkiamaroföldur	nar A:3×9 B:9×4 C:4×2
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$ Tengireglur (c		. associative laws)			236 í bókinni. Skoðum tvö tilfelli
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Dreifireglur (e.		. distributive laws)		(AB)C: Fyrir margföldun A og B þarf $3 \cdot 9 \cdot 4 = 108$ margfaldanir og $3 \cdot (9 - 1) \cdot 4 = 96$ samlagningar. Til að margfalda saman AB og C þarf $3 \cdot 4 \cdot 2 = 24$	
$ \overline{A \cap B} = \overline{A} \cup \overline{B} \overline{A \cup B} = \overline{A} \cap \overline{B} $ Reglur De Mo		rgan		margfaldanir og $3 \cdot (4-1) \cdot 2 =$	= 18. Í heildina þarf því 108 + 24 = 132 margfaldanir r. Samtals eru það 132 + 114 = 246 aðgerðir.
$\begin{array}{c} A \cup (A \cap B) = A \\ A \cap (A \cup B) = A \end{array}$	Gleypireglur	(e. absorption laws)		samlagningar. Til að margfald	C þarf $9 \cdot 4 \cdot 2 = 72$ margfaldanir og $9 \cdot (4 - 1) \cdot 2 = 54$ a saman A og BC þarf $3 \cdot 9 \cdot 2 = 54$ margfaldanir og
$ \begin{array}{c} A \cup \overline{A} = \mathbf{U} \\ A \cap \overline{A} = \emptyset \end{array} $	Fyllimengisre	glur (e. complement laws)		54 + 48 = 102 samlagningar. S	ar. Í heildina þarf því $72 + 54 = 126$ margfaldanir og amtals eru það $126 + 102 = 228$ aðgerðir.
				Við ályktum að seinni kosturir	nn er betri.

Látum m vera jákvæða heiltölu. Heiltölurnar a og b eru samleifa mátað við m ef og aðeins ef til er heiltala k þannig að a = b + km.

Ef A og B eru teljanleg mengi þá er $A \cup B$ einnig teljanlegt.

Látum m vera jákvæða heiltölu. Ef $a\equiv b\ (\operatorname{mod} m)\ og\ c\equiv d\ (\operatorname{mod} m)\ gildir að$

 $1 a+c \equiv b+d \pmod{m}, og$

2 $ac \equiv bd \pmod{m}$.

Látum m vera jákvæða heiltölu og látum a og b vera heiltölur. Þá gildir að

 $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$, og $ab \mod m = ((a \mod m)(b \mod m)) \mod m$.

Vensl eru sjálfhverf þá og því aðeins að netaframsetning þeirra hafi lykkju á hverjum hnút.

Vensl eru samhverf þá og því aðeins að fyrir hvern stefndan legg (a, b) sé líka til leggur (b, a).

Milli sömu hnúta, en í gagnstæðar áttir.

Vensl eru andsamhverf þá og því aðeins að á milli hverra tveggja hnúta sé aldrei leggur í báðar áttir.

Vensl eru gegnvirk þá og því aðeins að hvenær sem stefndir leggir (a,b) og (b,c) séu til sé líka til stefndur leggur (a,c).

Leggirnir mynda þá "þríhyrning".

Látum $A = \{1, 2, 3\}$ og $B = \{1, 2\}$ og R vera vensl frá A til B þar sem a > b, $a \in A$ og $b \in B$. Hvert er tvíundarfylkið fyrir R? Fáum að $R = \{(2,1), (3,1), (3,2)\}$. Setjum 1-bita á viðeigandi staði í M, fáum

$$M_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Hver eru samsettu venslin $S \circ R$ þegar R er frá $\{1,2,3\}$ til $\{1,2,3,4\}$ með

$$R = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}$$

og S er frá $\{1, 2, 3, 4\}$ til $\{0, 1, 2\}$ með

$$S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\}?$$

Finnum öll röðuð pör þar sem seinna stakið í pari úr R passar við fyrra stakið úr S.

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}.$$

Hversu mörg vensl eru til á mengi *A* með *n* stökum?

- $A \times A$ hefur þá n^2 stök (margfeldisregla).
- Mengi með m stökum hefur 2^m hlutmengi.
- Til eru 2^{n²} vensl á n staka mengi.

Hver er stuðullinn við $x^{12}y^{13}$ í margliðunni $(2x - 3y)^{25}$? Tvíliðusetningin gefur

$$\binom{25}{13} 2^{12} (-3)^{13} = 2^{12} (-3)^{13} \frac{25!}{12!13!}$$

Hver er margföldunarandhverfa 101 m.t.t. mátunar við 4620? Notum reiknirit Evklíðs og fáum að

$$4620 = 45 \cdot 101 + 75$$
 $75 = 2 \cdot 26 + 23$ $3 = 7 \cdot 3 + 2$ $3 = 1 \cdot 2 + 1$ $26 = 1 \cdot 23 + 3$ $2 = 2 \cdot 1$.

Þ.e. stærsti samdeilir 101 og 4620 er 1 og því er margföldunarandhverfa til. Ef við rekjum okkur til baka (eins og áður) til að finna Bézout stuðlana þá fáum við að

$$-35 \cdot 4620 + 1601 \cdot 101 = 1.$$

Við vitum að seinni liðurinn er $0 \, (-35 \cdot 4620 \equiv 0 \, (\text{mod} \, 4620))$ og því gildir að

$$1601 \cdot 101 \equiv 1 \pmod{4620}$$
.

P.e.a.s. 1601 er margföldunarandhverfa tölunnar 101 þegar mátað er við 4620.

Hver er lausnin á $101x \equiv 302 \pmod{4620}$? Við vitum að margföldunarandhverfa tölunnar 101 er 1601. Ef við margföldum báðar hliðar frá vinstri fæst því að

$$x \equiv \overbrace{1601 \cdot 101}^{\equiv 1 \pmod{4620}} \cdot x \equiv 1601 \cdot 302 \equiv 483.502 \equiv 3022 \pmod{4620}.$$

Leysið eftirfarandi leifajöfnuhneppi

$$x \equiv 2 \pmod{3}$$
, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{7}$.

Við notum kínversku leifasetninguna, setjum $m = 3 \cdot 5 \cdot 7 = 105$ og $M_1 = m/3 = 35$, $M_2 = m/5 = 21$ og $M_3 = m/7 = 15$. Með því að prófa nokkra möguleika (í stað þess að nota Evklíð) finnum við að $y_1 = 2$ er margföldunarandhverfa M_1 mátað við 3, $y_2 = 1$ er margföldunarandhverfa M_2 mátað við 5 og $y_3 = 1$ er einnig margföldunarandhverfa M_3 mátað við 7.

Skv. kínversku leifasetningunni er lausnin því

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3$$

$$= 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1$$

$$= 233 \quad 233 \text{ mad } 105 = 23$$

$$\equiv 23 \pmod{105}.$$

Við getum því ályktað að 23 er minnsta jákvæða heiltalan sem er lausn á leifajöfnuhneppinu.

Búið til fimm gervislembitölur með hinni línulegu leifaaðferð þar sem m = 9, a = 7, $c = 4 \text{ og } x_0 = 3$. Við höfum að

$$x_1 = 7x_0 + 4 \mod 9 = 25 \mod 9 = 7,$$

 $x_2 = 7x_1 + 4 \mod 9 = 53 \mod 9 = 8,$
 $x_3 = 7x_2 + 4 \mod 9 = 60 \mod 9 = 6,$
 $x_4 = 7x_3 + 4 \mod 9 = 46 \mod 9 = 1,$
 $x_5 = 7x_4 + 4 \mod 9 = 11 \mod 9 = 2.$

Notum þrepun til að sýna að sé n jákvæð heiltala, þá sé

$$1+2+\ldots+n=\frac{n(n+1)}{2}.$$

Grunnskref: Sjáum fyrst að fyrir n = 1 gildir að $\frac{1 \cdot (1+1)}{2} = 1$ þ.a. formúlan er sönn fyrir n = 1.

Prepunarskref: Gefum okkur nú þrepunarforsenduna, þ.e. að formúlan sé sönn fyrir n = k þar sem k er einhver heiltala. Við höfum þá að

$$1 + 2 + \dots + k + (k+1) \stackrel{\text{P.E.}}{=} \frac{k(k+1)}{2} + (k+1) = (k+1) \left(\frac{k}{2} + 1\right)$$
$$= (k+1) \cdot \frac{k+2}{2} = \frac{(k+1)(k+2)}{2}.$$

Við höfum sýnt að ef formúlan gildir fyrir n=k þá gildir hún einnig fyrir n=k+1. Við höfum því sannað þrepunarskrefið og getum ályktað að formúlan er sönn fyrir öll n sem eru jákvæðar heiltölur. Látum P(n) vera yrðinguna $3 \mid (n^3 - n)$. Sönnum að P(n) sé sönn fyrir allar jákvæðar heiltölur með

Grunnskref: Vitum að P(1) er sönn því $1^3 - 1 = 0$ er deilanleg með 3. **Prepunarskref:** Gerum ráð fyrir þrepunarforsendunni, þ.e. að P(k) sé sönn fyrir einhverja heiltölu

 $k \ge 1$. Sýnum að þá sé P(k+1) líka sönn. Höfum að

$$(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)$$
$$= (k^3 - k) + 3(k^2 + k).$$

Við vitum út frá þrepunarforsendunni að liðurinn (k^3-k) er deilanlegur með þremur. Liðurinn $3(k^2 + k)$ er það líka. Við höfum því sýnt að ef P(k) er sönn þá er P(k+1) það líka.

Af grunnskrefinu og þrepunarskrefinu getum við nú ályktað út frá lögmálinu um þrepun að P(n) er sönn fyrir allar jákvæðar heiltölur.

> Á hversu marga vegu getum við valið vinningshafa sem fá gull, silfur og brons í 100 einstaklinga keppni?

> Erum að velja þrjá einstaklinga úr 100 staka mengi. Röð einstaklinga skiptir máli Fáum með formúlunni:

$$P(100,3) = 100 \cdot 99 \cdot 98 = 970.200.$$

Hversu margar mismunandi 5 spila hendur er hægt að mynda úr 52 spila spilastokk?

Röð spilanna í hverri hönd skiptir ekki máli, svo fjöldinn er

$$C(52,5) = \frac{52!}{5!47!} = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5!} = 2.598.960.$$