Dependability – Concepts*, State-of-the-Art, Challenges

Jean-Claude Laprie

* Based on

A. Avizienis (UCLA), J.C. Laprie, B. Randell (Univ. Of Newcastle upon Tyne): Fundamental Concepts of Dependability

Critical Systems Conference — Birmingham, October 23-24, 2001

Dependability: ability to avoid failures that are more frequent or more severe, and outage durations that are longer, than is acceptable to the user(s)

		Faults		Faults Failures		Failures		<u> </u>		ity
	Physical	Design	Interaction	Localized	Distributed	Availability/ Reliability	Safety	Confidentiality		
June 1980: False alerts at NORAD	~			V		1				
April 1981: First launch of the Space Shuttle postponed		V		1		1				
June 1985 - January 1987: Excessive radiotherapy doses (Therac-25)		~	~	~	~	~	~			
August 1986 - 1987: the "wily hacker"		~	V	~				V		
15 January 1990: 9 hours outage of the long-distance phone in the USA		~			~	~				
February 1991: Scud missed by a Patriot (Gulf War)		~	V	~		1	1			
November 1992: Communication crash of the London ambulance service		~	~		~	~	~			
26 and 27 June 1993: Denial of credit card operations in France	~	~			~	~				
4 June 1996: Flight 501 failure of Ariane 5		1		1		V				
17 July 1997: Internet .com domain mixed up			V		V	~				
13 April 1998: Crash of AT&T data network		1	~		~	1				
February 2000: Distributed denials of service on large Web sites		~	~		~	~				
May 2000: virus "lloveyou"		1	V		V	1				

Number of failures [consequences and outage durations highly-application dependent]	Computer systems (e.g. Transactions, Electronic switching)		onsequences and outage rations highly-application (e.g. Transac			er, controlled, systems nmercial airplanes hone network)
	Rank	Proportion	Rank	Proportion		
Physical internal	3	~ 10%	2	15-20%		
Physical external	3	~ 10%	2	15-20%		
Human-machine interaction *	2	~ 20%	1	40-50%		
Design	1	~ 60%	2	15-20%		

^{*} Forensics evidence that interaction faults can often be traced back to design faults

Persistence	Solid	Intermittent		
Physical and design	~ 10%	~ 90%		

Deliberately malicious faults

[Ernst & Young, 1998; 1200 companies in 32 countries]

Companies having experienced frauds during the last 12 months

one at least: 66 % more than 5: 17 %

+ 85 % of frauds by employees

	Malicious-Fa	ult Tolerance	
Fault classes	Malicious logics	Intrusions	Non-intrusive Attacks (wire-tapping, inference, covert channels, Tempest)
	Access control	Access control	
Detection	Execution flow control	User behavior analysis	
Detection-	Design Diversity	Encryption	Encryption
Recovery or		Fragmentation- scattering	Fragmentation scattering
Masking		Deception	Jamming

Dependability

Subsumes concerns in reliability, availability, safety, confidentiality, integrity, maintenability — the attributes of dependability — within a unified conceptual framework; enables the appropriate balance between the attributes to be addressed

Means for dependability — fault prevention, fault tolerance, fault removal, fault forecasting — provide an orthogonal classification of development activities; essential for abstract and discrete systems (nonexistent or vanishing safety factor)

Causal chain of threats to dependability — fault - error - failure

Central to understanding and mastering various threats likely to affect a system

Provides for a unified presentation of those threats, though preserving their specificities via the various classes

Rigorous terminology — not just definitions: a model

abstraction structuration recursion

Avoiding intellectual confusion(s)

Focusing on scientific problems and technical choices

*Cost of computer failu		Franc [Insurers' as: private busi	sociation,	USA [Find/SVP, large businesses]	UK [Insurers' association]		
Accidental (and non-malicious intentional) faults		BFF 5 /	Yr	B\$ 4 / Yr			
Deliberately maliciou	s faults	BFF 6	Yr		B£ 1,25 / Yr		
Average cost per hour of downtime (lost revenue in banking, retail, manufacturing, health insurances, securities, reservations, etc.): \$78,000 Estimate of total yearly cost (USA): B\$ 80							
* Maintenance costs							
On-board Space Shuttle software: M\$ 100 / year							
* Undeployed software cost (development process failure)							
Som Cotalidish		ccessful Challenged		nged Ca	Cancelled		
Group — 8380 projets]	136	0 - 16%	16% 4416 - 53%		2604 - 31%		
~ B\$ 81 lost yearly due to cancellations							
FAA AAS	1983 estimate	1988 (contra awarde estima	ct es	timate sl	chedule ippage (1994 stimate)		
	B\$ 1	B\$ 4		B\$ 7 6 -	8 years		