ROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

PUBLICATION DATE

28-09-01

APPLICATION DATE APPLICATION NUMBER 21-03-00 2000083242

APPLICANT: SONY CORP;

INVENTOR: TOYAMA KATSUMI;

INT.CL.

G11B 17/04 G11B 33/02

TITLE

DISK DRIVE

ABSTRACT:

PROBLEM TO BE SOLVED: To achieve a 1/2 inch form factoring of an optical disk drive assembly using an 8-cm optical disk.

SOLUTION: A pair of right and left tray guide mechanisms 56 for guiding a disk tray 3 of the optical disk drive assembly 1 which places the 8-cm optical disk on the disk tray 3 and loads the disk into a disk drive body 51 are composed of guide grooves 57 which are formed on both right and left outer flanks 3c of the disk tray 3 made of a synthetic resin and guide projections 58, etc., formed by pressing, etc., at both right and left inner flanks 51c of the disk drive body 51 made of a sheet metal. The disk drive body 51 is formed to a width of 90 mm and a height of 12.7 mm.

COPYRIGHT: (C)2001, JPO

(19)日本国等前广(JP) (12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-266442 (P2001-266442A)

(43)公開日 平成13年9月28日(2001.9.28)

(51) Int.CL	餞別配号		ΡΙ		Ť	テーマコード(参考)	
G11B	17/04	315	C11B	17/04	315F	5D046	
•	-	•		•	3 1 5 U		
		•			315Y	•	
	33/02	503		33/02	503K	•	

審査請求 未請求 請求項の数7 OL (全 13 頁)

特顏2000-83242(P2000-83242) (21)出資番号

平成12年3月21日(2000.3.21)

(71)出顧人 000002185

ソニー株式会社

東京都品川区北品川6 「目7番35号

(72)発明者 大森 清

東京都品川区北品川6「目7番35号 ソニ

一株式会社内

(72)発明者 外山 勝望

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 100086841

弁理士 脇 篤夫

Fターム(参考) 5D046 AA16 AA18 CB11 CD05 FA01

(54) 【発明の名称】 ディスクドライブ装置

【課題】 8cm光ディスクを用いる光ディスクドライ ブ装置の1/2インチフォームファクター化を達成でき るようにすること。

【解決手段】 8cm光ディスクをディスクトレー3上 に載置してディスクドライブ本体51内にローディング する光ディスクドライブ装置1において、ディスクトレ - 3を案内する左右一対のトレーガイド機構56を合成 樹脂製のディスクトレー3の左右両外側面3cに形成し たガイド溝57と、板金製のディスクドライブ本体51 の左右両内側面51 cにプレス加工等にて形成したガイ ド突起58等によって構成して、ディスクドライブ本体 51の幅を90mmに構成し、高さを12.7mmに構

【特許請求の範囲】

【請求項1】前端にフロントパネルが形成され、上面にディスク載置用凹所が形成されたディスクトレーと、前端に形成されたトレー出入口から上記ディスクトレーが出し入れされる扁平な箱型に形成されたディスクドライブ本体と、

上記ディスクトレーの左右両外側面と上記ディスクドライブ本体の左右両内側面とのうちの一方に設けられたガイド溝と、他方に設けられたガイド突起とによって構成されて、上記ディスクトレーを案内する左右一対のトレーガイド機構とを備えたことを特徴とするディスクドライブ装置。

【請求項2】上記ディスクトレーに上記ディスクのセルフチャッキング機構を有するスピンドルモータと、データピックアップ手段とが搭載されていることを特徴とする請求項1に記載のディスクドライブ装置。

【請求項3】上記ディスクトレーが合成樹脂で構成されて、そのディスクトレーの左右両外側面に左右一対のガイト溝が形成され、

上記ディスクドライブ本体が板金でプレス加工されて、そのディスクドライブ本体の左右両内側面に上記ディスクトレーの左右一対のガイド溝を案内する複数のガイド 突起がプレス加工又は加締め加工にて形成されていることを特徴とする請求項1に記載のディスクドライブ装置。

【請求項4】上記ディスクドライブ本体の福が105mm以下で、高さが12.7mm以下に構成されたことを特徴とする請求項1又は請求項2又は請求項3に記載のディスクドライブ装置。

【請求項5】上記ディスクトレーの後端側の下面にそのディスクトレーの出し入れ方向に対して直角状に形成されたばね当接部と、

上記ディスクドライブ本体内の後端側に取り付けられて、上記ばね当接部を作用端で押圧することによって上記ディスクトレーを上記ディスクドライブ本体外へ押し出す捩りコイルばねと、

上記ディスクトレーに取り付けられたロックレバーと、 上記ディスクドライブ本体内に設けられて上記ロックレバーが係合、離脱自在に係合されるロックピンとを備った。

【請求項6】前端にフロントバネルが形成され、上面にディスク載置用凹所が形成されたディスクトレーと、前端に形成されたトレー出入口から上記ディスクトレーが出し入れされる扁平な箱型に形成されたディスクドライブ本体と、

上記ディスクトレーのフロントパネルに設けられたプレ イ操作、イジェクト操作、ボリューム操作等を行うため の複数の操作部と、

上記ディスクドライブ本体の後端に設けられ、コンピュータ装置へ接続される外部インターフェースと、

上記ディスクドライブ本体に脱着可能に取り付けられる 携帯用電源パックとを備えたことを特徴とするディスク ドライブ装置。

【請求項7】上記携帯用電源バックが上記外部インターフェースの閉塞用カバー部材に兼用されていることを特徴とする請求項6に記載のディスクドライブ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば、CD、CD-R/W、DVD-RAM等の直径が8cmの光ディスク(以下、単に8cm光ディスクと記載する)を記録及び/又は再生するのに最適な小型、薄型のディスクドライブ装置の技術分野に属するものである。

[0002]

【従来の技術】現在、ノート型パーソナルコンピュータ (以下、単にノート型パソコンと記載する) 用等として 市販されている3.5インチフロッピー(登録商標)ディスクドライブ装置の1/2インチフォームファクター 化されたものは、幅が105mm、厚さが12.7mm にまで小型化及び薄型化が進んでいて、このサイズの3.5インチフロッピーディスクドライブ装置は洋服の 胸ボケット内等にも挿入して携帯することが可能である。しかし、3.5インチフロッピーディスクドライブ装置の容量は1.44MB程度と非常に低いことから、この3.5インチフロッピーディスクドライブ装置と同 サイズ又はこれよりも小さいサイズで高容量のディスクドライブ装置の開発が望まれている。

【0003】そこで、本発明の出願人は、図9~図11に示し、特開平9~237454号公報によって公開されたノート型パソコン用等として1/2フォーマットファクター化された光ディスクドライブ装置81を既に開発している。この光ディスクドライブ装置81はCD-ROM等の8cm光ディスク82をディスクトレー83上に装着して、ディスクドライブ本体91内に矢印ab方向に出し入れ(ローディング及びアンローディングすること)するように構成されたものである。

【0004】そして、ディスクトレー83は合成樹脂等によって構成されていて、その前端には垂直状で細長いフロントパネル84が一体に形成され、上面83aにはディスク載置用のほぼ円形状の凹所85が形成されている。そして、その凹所85の中央部にはセルフチャッキング機構86を有するスピンドルモータ87が搭載されていて、そのスピンドルモータ87の一側部にはディスクトレー83の出し入れ方向である矢印a、b方向に対して所定の角度に傾斜された方向である矢印c、d方向

にシークされる光学ピックアップ88が搭載されている。そして、フロントパネル84には7イジェクト釦8 9やボリューム、ヘッドホンジャック (何れも図示せず) 等が取り付けられている。

【0005】そして、ディスクドライブ本体91は板金 のプレス加工によって構成されたボトムケース92とト ップケース93とを上下から嵌合してビス止めして、扁 平で方形状の箱型に構成されている。そして、そのディ スクドライブ本体91の前端に形成されたトレー出入口 94がその前端の全域に亘って開放されている。そし て、ディスクトレー83をトレー出入口94からディス クドライブ本体91内に矢印a、b方向に出し入れする ための左右一対のトレーガイド機構95がディスクトレ -83の左右両外側面83bに一体成形されたトレー側 ガイドレール96と、ディスクドライブ本体91の左右 両内側面91aに取り付けられた本体側ガイドレール9° 7と、これらトレー側ガイドレール96と本体側ガイド レール97との間に配置されて、そのトレー側ガイドレ ール96と本体側ガイドレール97の双方にスライド自 在に係合された中間ガイドレール98とによって伸縮自 在のガイドレール構造に構成されている。但し、左右一 対のトレー側ガイドレール96はディスクトレー83の 下部に取り付けられる下部カバー99に一体成形されて いる。

【0006】そして、この光ディスクドライブ装置81は、1/2インチフォーマットに対応するように、ディスクドライブ本体91の厚さ(高さ)H11が12.7mmに構成されている。そして、この光ディスクドライブ装置81はノート型パソコン等の内部に組み込まれ、ディスクドライブ本体91の内部の後端部に取り付けられている外部インターフェースをノート型パソコン内のコネクター(何れも図示せず)に接続して使用する、いわゆる内蔵タイプの光ディスクドライブ装置81に構成されている。そして、この光ディスクドライブ装置81によれば、8cm光ディスク52の記録容量として200MB以上等の高容量(高密度記録)を達成することができる。

..[0007]:

【発明が解決しようとする課題】しかし、この従来の光 ディスクドライブ装置81は左右一対のトレーガイド機 構95として、3本のガイドレール96、97、98を 伸縮自在に係合させた伸縮構造に構成していたために、 部品点数及び組立構造が多く、生産性に問題がある上 に、著しくコスト高についている。

【0008】しかも、その3本のガイドレール96、97、98を伸縮自在に係合された伸縮構造の左右一対のトレーガイド機構95はディスクドライブ本体91の幅Winを縮小する上での大きな障害となっていて、このディスクドライブ本体91の幅Winは128mm以下に縮小することが非常に困難である。従って、前述した幅が

105mmの3.5インチフロッピーディスクドライブ 装置のように、この光ディスクドライブ装置81を洋服 の胸ボケット内に等に挿入して携帯することには不向き である。

【0009】更に、この従来の光ディスクドライブ装置 81は、もともとノート型パソコン等のコンピュータ装置への内蔵タイプ専用機として開発されたものであって、この光ディスクドライブ装置81をノート型パソコン等から取り外して、洋服の胸ボケット内等に挿入して携帯し、屋外等にてプレイするようなことは全くできないものであった。

【0010】本発明は、上記の問題を解決するためになされたものであって、3.5インチフロッピーディスクドライブ装置の1/2インチフォームファクターに対応できる小型、薄型を達成できる高容量のディスクドライブ装置と、ノート型パソコン等のコンピュータ装置から取り外して携帯し、屋外等でプレイすることが可能なディスクドライブ装置を提供することを目的としている。【0011】

【課題を解決するための手段】上記の目的を達成するた めの本発明の第1の発明は、前端にフロントパネルが形 成され、上面にディスク載置用凹所が形成されたディス クトレーと、前端に形成されたトレー出入口からディス クトレーが出し入れされる扁平な箱型に形成されたディ スクドライブ本体とを備え、ディスクトレーの左右両外 側面とディスクドライブ本体の左右両内側面とのうちの 一方に設けたガイド溝と他方に設けたガイド突起とによ って左右一対のトレーガイド機構を構成したものであ る。また、本発明の第2の発明は、前端にフロントパネ ルが形成され、上面にディスク裁置用凹所が形成された ディスクトレーと、前端に形成されたトレー出入口から ディスクトレーが出し入れされる扁平な箱型に形成され たディスクドライブ本体とを備え、ディスクトレーのフ ロントパネルにプレイ操作、イジェクト操作、ボリュー ム操作等を行うための複数の操作部を設け、ディスクド ライブ本体の後端にコンピュータ装置への接続用の外部 インターフェースを設けると共に、そのディスクドライ ブ本体に携帯用電源パックを脱着可能に取り付けられる ように構成したものである。

【0012】上記のように構成された本発明の第1の発明のディスクドライブ装置は、左右一対のトレーガイド機構をガイド溝とガイド突起のみで構成したので、ディスクドライブ本体の幅を大幅に縮小することができる。また、本発明の第2の発明は、ディスクトレーのフロントパネルに、プレイ操作、イジェクト操作、ボリューム操作等を行うための複数の操作部を設ける一方、ディスクドライブ本体のコンピュータ装置への接続用の外部インターフェースと、脱着可能な携帯用電源パックとを設けたので、コンピュータ装置への内鼓使用と、屋外等への携帯使用との2通りの使用が可能になる。

[0013]

【発明の実施の形態】以下、本発明を適用したディスクドライブ装置の実施の形態を図1~図8を参照して説明する。

【0014】まず、ディスクドライブ装置である光ディスクドライブ装置1はノート型パソコン用等として開発された1/2フォーマットファクター化されたものであり、CD、CD-R/RW、DVD-RAM等の高容量(高密度)の8cm光ディスク2をディスクトレー3上に装着して、ディスクドライブ本体51内に矢印a、b方向に出し入れ(ローディング及びアンローディング)するようにして、その光ディスク2の記録及び/又は再生を行うものである。

【0015】そして、ディスクトレー3は合成樹脂等によって構成されていて、トレー本体4Aの前端には垂直状で細長いフロントパネル4Bが一体に形成され、トレー本体4Aの上面3aにはディスク載置用のほぼ円形状の凹所5が形成されている。そして、この凹所5の底部には多角形状に形成された開口部6が形成されていて、板金等でプレス加工されたユニットベース7がその開口部6内にクリアランスを有する状態で水平状に挿入されている。そして、そのユニットベース7の下部で、外周の複数箇所に形成された取付片7aがゴム等の弾性部材で構成された複数のインシュレータ8を介して複数のビス9によってディスクトレー3の下面3bにビス止めされている。

【0016】そして、そのユニットベース7の下部にスピンドルモータ11がその下端のモータ基板12によって垂直状にピス止めされていて、そのスピンドルモータ11のロータの上端に一体に形成された円形穴14を挿通してユニットベース7の上方に突出され、そのディスクテーブル13が凹所5の中央位置に配置されている。そして、このディスクテーブル13の中央上部に一体に形成されたセンターリングガイド13aの外周の3箇所にセルフチャッキング機構13bが取り付けられている。

【0017】そして、ユニットペース7の下部にデータビックアップ手段である光学ビックアップ15が取り付けられていて、この光学ビックアップ15はスレッド16と、そのスレッド16の上部に上向きの垂直状に取り付けられた対物レンズ17にレーザビームを照射し、かつ、そのレーザビームの反射光を受光するデータの記録及び/又は再生用の光学ブロック(図示せず)とを備えている。そして、対物レンズ16がユニットベース7に形成された長穴18を挿通してユニットベース7の上方に突出されていて、この長穴18はスピンドルモータ11に対して所定の角度に傾斜されている。そして、ユニットベース7の下部にスレッド移動機構21が取り付け

られていて、このスレッド移動機構21は外周に形成されたラセン溝でスレッド16を駆動する送りネジ兼用の主ガイド軸22と副ガイド軸23との間でスレッド16の両端を支持し、スレッド駆動モータ24によって減速用ギアトレイン25を介して主ガイド軸22を回転駆動することによって、スレッド16と一体に対物レンズ17を主ガイド軸22と副ガイド軸23との間で長穴18に沿って矢印c、d方向に移送するように構成されたものである。

【0018】そして、このディスクトレー3のフロントパネル4Bには、プレイ操作、イジェクト操作、ボリューム操作等を行うための操作部であるプレイ釦26、イジェクト釦27、ボリュームダイアル28等や動作表示用インジケータであるLED29、ヘッドホンジャック30やイマージェンシーイジェクト操作用のニードル挿入穴31等が設けられている。そして、フロントパネル4Bの背面にはプレイ釦26、イジェクト釦27及びボリュームダイアル28にそれぞれ対向されたプレイスイッチ26a、イジェクトスイッチ27a及びボリューム28aが取り付けられている。

【0019】また、フロントパネル4Bの背面で、ニードル挿入穴31の後方部にロックレバー32がディスクトレー3の下面3bに固着された支点軸33を中心に矢印e、 f 方向に回転自在に取り付けられていて、イジェクトスイッチ27aやホストコンピュータからのイジェクト指令信号によってロックレバー32を矢印f方向にロック解除する自動ロック解除機構34がディスクトレー3の下面3bでロックレバー32の近傍位置に取り付けられている。そして、この自動ロック解除機構34はイジェクトモータ35によって減速用のギアトレイン36を介してロックレバー32を矢印e方向への回転付勢用ばね(図示せず)に抗して矢印f方向に回転駆動することができるように構成されている。

【0020】次に、ディスクドライブ本体51は板金によってプレス加工されたボトムケース52とトップケース53を上下から嵌合して複数のビス54によってビス止めして、扁平で方形状の箱型に構成したものである。そして、このディスクドライブ本体51の前端51aに形成されたトレー出入口55がその前端51bの全域に亘って開放されていて、後端51bは閉塞端に構成されている。

【0021】そして、ディスクトレー3をトレー出入口55からディスクドライブ本体51内に矢印a、b方向に出し入れするための左右一対のトレーガイド機構56が、ディスクトレー3の下端側に形成された左右両外側面3cに沿って水平状に形成されたガイド溝57と、ディスクドライブ本体51の左右両内側面51cの下端側に沿って適当な間隔を隔てて形成された複数のガイド突起58とによって構成されている。

【0022】この際、図7の(A)に示すように、複数

のガイド突起58はボトムケース53の左右両側板52 aの内側に形成されることになり、図7の(B)に示す ように、その左右両側板52aの一部をプレス加工の絞 り加工によって内側へ絞り出すように加工すれば、ボト ムケース52全体のプレス加工時にこれらの複数のガイ ド突起58を同時に加工してしまうことができて、加工 工程の削減による低コスト化を実現できる。但し、図7 (C) に示すように、ボトムケース53の左右両側板5 3 aの内側に複数のピン形状のガイド突起58を加締め 止め59することも可能であり、この加締め止め方法を 採用すれば、ピン形状のガイド突起58によってガイド 溝57のスライド特性及びスライド精度の向上を図るこ とができる、なお、複数のガイド突起58を相互に連結 したレール形状のガイド突起58を採用することも可能 である。また、左右一対のトレーガイド機構56を構成 しているガイド溝57をディスクドライブ本体51の左。 右両内側面51c側に形成し、複数のガイド突起58 (又はレール形状のガイド突起58)をディスクトレー 3の左右両外側面3c側に形成しても良い。

【0023】そして、ディスクドライブ本体51の前端 51aの近傍位置で、ボトムケース52上には、ディス クトレー3のロックレバー32が矢印e、f方向に係 合、離脱自在に係合されるロックピン61が垂直状に取 り付けられている。また、図1、図4及び図6に示すよ うに、ディスクトレー3をディスクドライブ本体51外 へ矢印b方向へアンローディングした時に、ディスクト レー3をそのイジェクト位置で停止するための左右一対 のストッパー用突起37がディスクトレー3側に設けら れ、左右一対のストッパー62がディスクドライブ本体 51 側に設けられている。そして、左右一対のストッパー ー用突起37はディスクトレー3の後端3cの左右両端 の下面に一体成形された小突起で構成され、左右一対の ストッパー62はディスクドライブ本体51の前端51 aで、ボトムケース52の左右両端から上方に切り起さ れた切り起し片で構成されている。

【0024】そして、ディスクドライブ本体51内の後端51bで、一側方に偏位された位置にインターフェース基板63が複数のピス64によって水平状に取り付けられていて、そのインターフェース基板63の上面に実装されたマルチコネクターである外部インターフェース65がそのディスクドライブ本体51の後端51bの一側方へ偏位された位置に形成された長方形状の開口部66の内側に対向されて配置されている。そして、インターフェース基板63の下面に実装された接続用コネクター67と、ディスクトレー3の下面3bに取り付けられた接続用コネクター38との間が長さ的に余裕のあるフレキシブルプリント基板68によって接続されている。なお、このフレキシブルプリント基板68はほぼU宇状に形成されていて、その前端側を前方側である矢印b方向に反転させて接続用コネクター38に接続されてい

る。そして、その接続用コネクター38と、スピンドル モータ11、スレッド16、スレッド移動機構21、プレイスイッチ26a、イジェクトスイッチ27a、ボリューム28b、LED29、ヘッドホンジャック30及び自動ロック除去機構34等との間が図示省略した配線手段によって電気的に接続されている。

【0025】そして、ディスクトレー3の下面3bで、 後端の近傍位置におけるロックレバー32とは反対側の 位置にばね当接部39が一体成形されている。このばね 当接部39は矢印a、b方向に対して直角状で、かつ、 垂直状の板形状に構成されている。そして、ディスクド ライブ本体51内で、後端51bの近傍位置におけるば ね当接部39と同一位相位置であって、インターフェー ス基板63の近傍位置に、イジェクト用ばねを構成して いる捩りコイルばね70が取り付けられている。この捩 りコイルばね70は、図8に示すように、コイル部70 aと、そのコイル部70aからほぼV型に引き出された 固定端70b及び作用端70cによって構成されてい て、そのコイル部70a内に挿入された段付きネジ71 等によってボトムケース52上に取り付けられている。 そして、この捩りコイルばね70の固定端70レがイン ターフェース基板63をボトムケース52上にビス止め するためにそのボトムケース52上に絞り加工された複 数のビス止め用ボス72の1つの側面に圧着されて固定 されていて、コイル部70aを中心に矢印g、h方向に **撓むように構成された作用端70cにディスクトレー3** のばね当接部39が矢印a方向から当接されるように構 成されている。

【0026】そして、図8に示すように、この捩りコイルばね70の作用端70cは、ディスクトレー3のばね当接部39に矢印b方向に常にほぼ一定トルクのイジェクトカFを付与することを目的としてほぼS型に屈曲されている。この際、その作用端70cのばね当接部39に矢印b方向から当接される先端部70dはばね当接部39に対する凸形状のほぼ半円弧状に形成され、その作用端70cの付根部側に形成されたばね当接部39に対する逃げ部70eはばね当接部39に対する逃げ部70eはばね当接部39に対する過形状のほぼ半円弧状に形成されていることによって、作用端70c全体がほぼS型に形成されている。

【0027】そして、図2、図3及び図5に1点鎮線で示すように、ディスクドライブ本体51の後端51bの外側に携帯用電源バック74が脱着可能に取り付けられるように構成されていて、その携帯用電源パック75がディスクドライブ本体51の外部インターフェース65の開口部66の勝塞用カバー部材に兼用されている。即ち、ディスクドライブ本体51の後端51bの開口部66の機位置に携帯用電源パック74が接続される+、一の携帯用電源端子75が取り付けられ、その携帯用電源

端子75の横に携帯用電源パック74の施錠機構76が取り付けられている。そして、携帯用電源パック74を施錠機構76に矢印i方向から差し込むことによってその携帯用電源パック74がディスクドライブ本体51の後端51bの外側に取り付けられて施錠されると共に、その携帯用電源パック74が携帯用電源端子75に接続されるように構成されている。そして、この携帯用電源パック74を施錠機構76から矢印j方向に抜き取れば、外部インターフェース65の開口部66が開放されるように構成されている。

【0028】本発明の8cm光ディスク2を使用する光ディスクドライブ装置1は、以上のように構成されていて、まず、図1、図2、図4、図5及び図7に示すように、左右一対のトレーガイド機構56をディスクトレー3のトレー本体4Aの左右両外側面3cに一体成形したガイド溝57と、ディスクドライブ本体51の左右両内側面51cにプレス加工等にて形成した複数のガイド突起58のみの極めてシンプルで、小スペース構造に有大ので、これら左右一対のトレーガイド機構56を図5に示すディスクトレー3のトレー本体4Aのほぼ全編W2内に容易に収容させてしまうことができる。しかも、この左右一対のトレーガイド機構56はガイドで表したができる。しかも、この左右一対のトレーガイド機構56はガイドで表したができる。とガイド突起58のみの最少部品で構成されているので、構造が簡単であり、部品点数及び組立工数が少なくて、生産性が高く、低コストである。

【0029】この結果、図5に示すように、ディスクドライブ本体51の幅 W_1 をトレー本体4Aの幅 W_1 +2 T (但し、T=ボトムケース52の左右両側板52aの板厚)の最小寸法に構成することができて、図2及び図3に示すように、この光ディスクドライブ装置1のディスクドライブ本体51の幅 W_1 = 90 mm、高さ(厚さ) H_1 = 12. 7 mm、與行き D_1 = 105 mmの最小寸法に構成することができた。

【0030】そして、この光ディスクドライブ装置10福 $W_1=90$ mm、高さ $H_1=12$.7 mm、與行き $D_1=105$ mmは従来03.54ンチフロッピーディスクドライブ装置01/24ンチフォームファクターである福105mm、高さ12.7 mm内に十分な余裕を持って収められる(特に、福 $W_1=90$ mmは15mmも小さくなっている)寸法であり、この光ディスクドライブ装置1を洋服の胸ボケット内等に容易に挿入して屋外等へ容易に携帯することができる。

【0031】それでいて、この光ディスクドライブ装置 1は、直径8cmの記録媒体として、8cmCD、8cmCD-R/RW、8cmDVD-RAM等の高容量 (高密度)の8cm光ディスク2にデータを記録及び/ 又は再生することができるものであり、記録容量の高容 量(高密度)化も十分に満足することができる。つまり、3.5インチフロッピーディスクの記録容量は1.44MB程度であったが、8cmDVD-RAMならば 1.46GB、8cmCD-R/RWの2倍密で400 MB、現行のCD-R/RWで200MBのそれぞれ高容量を持つことができる。

【0032】次に、この光ディスクドライブ装置1の使用方法について説明すると、まず、通常使用状態では、この光ディスクドライブ装置1はノート型パソコン等のコンピュータ装置内に組み込まれて、外部インターフェース65が開口部66を通してコンピュータ装置内のコネクターに接続され、内蔵タイプとして使用される。【0033】そして、図2、図3及び図5に示すよう

【0033】そして、図2、図3及び図5に示すように、ディスクトレー3をトレー出入口55からディスクドライブ本体51内に矢印a方向に完全に押し込んだ状態(ローディング状態)では、図4及び図6に1点鎖線で示すように、ロックレバー32がロックピン61に矢印e方向から係合されて、ディスクトレー3がディスクドライブ本体51内にロックされている。そして、このディスクトレー3のロック時には、図8に実線で示すように、ディスクトレー3のばね当接部39が捩りコイルばね70の作用端70cの先端部70dに矢印a方向からに当接して、その先端部70dをばね力に抗して矢印 g方向へ撓ませて、ディスクトレー3の矢印b方向へのイジェクトカFがチャージされる。

【0034】但し、この際、ばね当接部39が図8に示す1点鎖線の位置から点線の位置を経て実線で示す位置まで矢印a方向に挿入される間に、作用端70cの先端部70dはばね当接部39に対する接触点P1からP2を経てP3に至るまでそのばね当接部39に沿ってストロークS1だけ摺動する。しかし、その間、作用端70cのコイル部70aへの付根部側は逃げ部70eによってばね当接部39に対して終始逃げていて、その作用端70cの付根部側がばね当接部39に接触したために、先端部40dがばね当接部39から矢印a方向に浮き上ってしまい、その作用端70cがばね当接部39を矢印b方向へ押圧するイジェクトカ下が途中で変化(この場合にはそのイジェクトカ下が途中から異常に大きくなってしまう)してしまうことを未然に防止することができる。

【0035】従って、図2、図3及び図5に示すように、ディスクトレー3のフロントパネル4BBを手で押すようにして、そのディスクトレー3をディスクドライブ本体51内に矢印a方向に押し込む際に、途中で、振りコイルばね70のイジェクトカFが急上昇してしまうような違和感が全く発生せず、ディスクトレー3をディスクドライブ本体51内に矢印a方向から常にほぼ一定トルクでスムーズに押し込むことができる。

【0036】次に、ディスクトレー3のアンローディング時には、図2及び図5のイジェクト釦27を押すと、図6に示された自動ロック解除機構34のイジェクトモータ35が駆動されて、図4及び図6に1点鎖線で示されているロックレバー32がギアトレイン36を介して

矢印 f 方向に回転駆動されてロックピン 6 1 から離脱され、ディスクトレー3のロックが解除される。

【0037】すると、図8に示された捩りコイルばね7 0の作用端70cが実線の位置から点線の位置を経て1 点鎖線の位置まで矢印h方向にばね力によって回転され て、その作用端70cの先端部70dがディスクトレー 3のばね当接部39を実線の位置から点線の位置を経て 1点鎖線の位置まで矢印b方向にストロークS₂相当分 だけ自動的に押し出すことができる。

【0038】そして、このディスクトレー3の矢印b方向への自動押し出し時にも、ばね当接部39が図8に示す実線の位置から点線の位置を経て1点鎖線の位置まで矢印b方向に押し出される間に、作用端70cの先端70dはばね当接部39に対する接触点P3からP2を経てP1に至るまでそのばね当接部39に沿ってストロークS1だけ摺動する。しかし、その間、作用端70cのコイル部70aへの付根部側は逃げ部70eによってばね当接部39に対して終始逃げていて、その作用端70cの付根部側がばね当接部39に接触して、ディスクトレー3の矢印b方向へのイジェクトカFが途中で変化してしまうことが全くない。

【0039】従って、ディスクトレー3をディスクドライブ本体51内のトレー出入口55から矢印b方向に振りコイルばね70によるほぼ一定トルクのイジェクトカドによってストロークS2相当分だけ安全、かつ、スムーズにボップアップ方式で押し出すことができて、操作上のフィーリングを向上させることができる。そして、この後、図1、図4及び図6に示すように、ディスクトレー3のフロントパネル4BBに手をかけて、そのディスクトレー3をディスクドライブ本体51外のアンローディング位置まで矢印b方向に引き出し、ディスクトレー3の下部の左右一対のストッパー用突起37をディスクドライブ本体51のボトムケース52の左右一対のストッパー62に当接させて、ディスクトレー3をそのアンローディング位置で停止させる。

【0040】ところで、図8に示したように、捩りコイルばね70の作用端70cを先端部70dと逃げ部70eとによってほぼS型に屈曲させた構造を採用すると、ディスクトレー3のばね当接部39と、捩りコイルばね70のコイル部70aとの間のスパンを著しく小さくすることができて、ディスクドライブ本体51の幅W1及び與行きD1の縮小化に寄与する度合が大きくなる。

【0041】次に、8cm光ディスク2のローディング時には、図1及び図2に示すように、8cm光ディスク2をディスクトレー3をその中心穴2aによってディスクトレー3の凹所5内のほぼ中央に位置するディスクテーブル13のセンターリングガイド13aの外周に上方から挿入して、ディスクテーブル13上に水平に装着し、複数のセルフチャッキング機構13bによってチャッキングする。

【0042】そして、この8cm光ディスク2のチャッ キング後に、ディスクトレー3のフロントパネル4BB を手で押して、図2、図3及び図5に示すように、ディ スクトレー3をディスクドライブ本体51内へトレー出 入口55から矢印 a 方向に押し込むようにローディング すると、前述したように、ディスクトレー3がロックレ バー32によってロックピン61にロックされる。そし て、ホストコンピュータからのプレイ指令信号によっ て、スピンドルモータ11が高速度で回転駆動されて! そのディスクテーブル13と一体に8cm光ディスク2 が高速度で回転駆動される。そして、図6に示すスレッ ド移動機構21のスレッド駆動モータ24によってギア トレイン25を介して主ガイド軸22が正回転又は逆回 転されることによる送りねじ作用によってスレッド16 が主ガイド軸22と副ガイド軸23とによって案内され ながら矢印c、d方向にシーク駆動され、対物レンズ1 7から8cm光ディスク2の下面に照射されるレーザビ ームによってデータの高容量(高密度)の記録及び/又 は再生が行われることになる。

【0043】そして、この8cm光ディスク2のデータの記録及び/又は再生後に、ディスクトレー3のフロントパネル4BBのイジェクト知27を押してイジェクトスイッチ27aをONするか、又はホストコンピュータからイジェクト指令信号が入力されると、前述したように、自動ロック解除機構34によってロックレバー32がロックピン61から自動的に外されて、振りコイルばね70によってディスクトレー3がディスクドライブ本体51から矢印b方向にストロークS。相当分だけ自動的にポップアップ方式で押し出されることになる。従って、この後は、前述したように、ディスクトレー3を手でアンローディング位置まで矢印b方向に引き出し、8cm光ディスク2をディスクテーブル13からセルフチャッキング機構13bのチャッキング力に抗して容易に取り外すことができる。

【0044】なお、図2、図3及び図5に示すように、ディスクトレー3をディスクドライブ本体51内に矢印 a方向にローディングして、図4及び図6に1点鎖線で示すように、ロックレバー32をロックピン61にロックした状態で、イジェクト釦27を押してもディスクトレー3をディスクドライブ本体51内から矢印b方向に押し出すことができなくなったようなイマージェンシー時には、図2に示すイマージェンシー用のニードル挿入穴31内にニードル(図示せず)を矢印a方向に挿入すれば、図4及び図6に1点鎖線で示したロックレバー32を回転付勢用ばね(図示せず)に抗して矢印f方向に機械的に回転操作してロックピン61から外し、ディスクトレー3を振りコイルばね70によって矢印b方向に安全に押し出すことができる。

【0045】次に、本発明の光ディスクドライブ装置1 は、ノート型パソコン等のコンピュータ装置から取り外 し、図2、図3及び図5に1点鎖線で示すように、ディスクドライブ本体51の後端51bの施錠機構76に携帯用電源パック74を装着して、その携帯用電源パック74を一対の携帯用電源端子75に接続し、外部インターフェース65の開口部66をその携帯用電源パック74で閉塞することにより、この光ディスクドライブ装置1の高い防寒性が得られる。そして、この光ディスクドライブ装置1をコンピュータ装置への内蔵タイプから携帯用タイプに進化させて、この光ディスクドライブ装置1を8cm光ディスク2によってデータを高容量に記録及び/又は再生することができる携帯用の小型コンピュータ装置として使用することができる。

【0046】即ち、この光ディスクドライブ装置1の携帯時には、携帯用電源パック74によって電源を供給することができるので、8cm光ディスク2のローディング及びアンローディングも前述同様に行え、ディスクトレー3のフロントバネル4BBに設けたプレイ釦26によるプレイスイッチ26aの操作やボリュームダイヤル28によるボリューム28aの操作等によって、前述同様に、スピンドルモータ11によって8cm光ディスク2を高速度で回転駆動しながら、光学ピックアップ15のスレッド移動機構21によってスレッド16と一体に対物レンズ17をシークして、8cm光ディスク2に、屋外等にてオーディオ、ビデオ、文字情報等の各種のデータの記録及び/又は再生を行うことができる。

【0047】以上、本発明の実施の形態について説明したが、本発明は上記した実施の形態に限定されることなく、本発明の技術的思想に基づいて各種の変更が可能である。例えば、本発明の記録媒体であるディスクとしては、光ディスク、磁気ディスク、光磁気ディスクの各種のディスクを適用することができる。

[0048]

【発明の効果】以上のように構成された本発明のディス クドライブ装置は、次のような効果を奏する。

【0049】第1の発明のディスクドライブ装置は、左右一対のトレーガイド機構をガイド溝とガイド突起のみで構成して、ディスクドライブ本体の幅を大幅に縮小することができるようにしたので、構造の簡素化、部品点数及び組立工数の削減による生産性の向上と、スコストダウンを図ることができて、小型、薄型の高容量ディスクドライブ装置を実現することができる。

【0050】第1の発明のディスクドライブ装置は、ディスクトレーにセルフチャッキング機構を有するスピンドルモータとデータピックアップ手段とを搭載したので、ディスクドライブ装置をより一層小型、薄型に構成することができる。

【0051】第1の発明のディスクドライブ装置は、ディスクトレーを案内する左右一対のトレーガイド機構のガイド溝を合成関脂製のディスクトレーの左右両外側面に一体成形し、ガイド突起を板金製のディスクドライブ

本体の左右両内側面にプレス加工や加締め加工にて形成したので、生産性が高く、コストダウンを達成することができる。

【0052】第1の発明のディスクドライブ装置は、ディスクドライブ本体の幅を105mm以下に構成し、高さを12.7mm以下に構成したので、高容量ディスクドライブ装置でありながら、1/2インチフォームファクター化を達成することができ、高容量ディスクドライブ装置を洋服の胸ボケット内等に容易に挿入して、屋外等へ自由に携帯することができる。

【0053】第1の発明のディスクドライブ装置は、デ ィスクトレーをディスクドライブ本体内にローディング。 した時に、ディスクトレーに設けたばね当接部で振りコー イルばねの作用端をばね力に抗して撓ませてディスクト レーのイジェクト力をチャージした状態で、そのディス クトレーをディスクドライブ本体内にロックレバーとロ.. ックピントによってロックするようにし、ディスクトレ ーをディスクドライブ本体から捩りコイルばねの作用端 のばね力によって一定ストロークだけ自動的に押し出す ようにしたものにおいて、その捩りコイルばねの作用端 をほぼS型に屈曲して、その作用端のばね当接部に当接 される先端部と、その作用端の付根部側に形成されたば ね当接部に対する逃げ部とを互いに逆向きに屈曲させた ので、ディスクトレーのローディング時及びアンローデ ィング時に捩りコイルばねの作用端の付根部側を逃げ部 によってばね当接部に対して常に確実に逃がすようにし て、その作用端の先端部のみをばね当接部に安定して接 触させることができ、そのディスクトレーのローディン グ途中等において作用端の付根部側がばね当接部に不用 意に接触してイジェクト力が変化してしまうことを未然。 に防止することができる。従って、ディスクトレーのロ ーディング及びポップアップ方式のアンローディングを 常に一定トルクで安定良く行え、操作上のフィーリング を向上させることができる。また、ばね当接部と捩りコ イルばねのコイル部との間のスパンを小さくすることが できて、ディスクドライブ装置の小型化を促進できる。 【0054】第2の発明のディスクドライブ装置は、デ ィスクトレーのフロントパネルにプレイ操作、イジェク ト操作、ボリューム操作等を行うための複数の操作部を 設け、ディスクドライブ木休にコンピュータ装置への接 続用外部インターフェースを設けると共に、携帯用電源 パックを脱着可能に設けたので、このディスクドライブ 装置をコンピュータ装置への内蔵使用と、屋外等への携 帯使用との2通りに使い分けることができて、屋外等へ 簡単に携帯できる新しい小型、軽量のコンピュータ装置 として使用することが可能である。

【0055】第2の発明のディスクドライブ装置は、ディスクドライブ本体に脱着可能に取り付けた携帯用電源 バックで外部インターフェースの閉塞用カバー部材を兼 用したので、部品の共通化によるコストダウンを図るこ とができる上に、屋外等への携帯時の防塵性を向上させることができる。

【図面の簡単な説明】

【図1】本発明を適用した光ディスクドライブ装置の実施の形態を説明するアンローディング状態の斜視図である。

【図2】同上の光ディスクドライブ装置のローディング 状態をフロントパネル側から見た斜視図である。

【図3】図2の光ディスクドライブ装置の後端側から見た斜視図である。

【図4】図1の光ディスクドライブ装置のトップケース を外した状態の上面図である。

【図5】図2の光ディスクドライブ装置のトップケースを外した状態の平面図である。

【図6】図1の光ディスクドライブ装置の下面図である...

【図7】図5の光ディスクドライブ装置のA-A矢視での拡大断面図と、要部の一部拡大断面図である。

【図8】同上の光ディスクドライブ装置のディスクトレー押し出し用の捩りコイルばねの動作を説明する拡大平面図である。

【図9】従来の光ディスクドライブ装置の斜視図である。

【図10】図10の光ディスクドライブ装置全体の分解

斜視図である.

【図11】図10の光ディスクドライブ装置の一部の分解斜視図である。

【符号の説明】

1はディスクドライブ装置である光ディスクドライブ装 置、2は8cm光ディスク、3はディスクトレー、4A はディスクトレーの本体、4Bはディスクトレーのフロ ントパネル、5は凹所、11はスピンドルモータ、13 はディスクテーブル、13aはディスクテーブルのセン ターリングガイド、13bはセルフチャッキング機構、 15はデータピックアップ手段である光学ピックアッ ア、26はアレイ操作部であるアレイ釦、27はイジェ クト操作部であるイジェクト釦、28はボリューム操作 部であるボリュームダイアル、32はロックレバー、3 9はばね当接部、51はディスクドライブ本体、52は ボトムケース、53はトップケース、55はトレー出入 ロ、56はトレーガイド機構、57はトレーガイド機構 のガイド溝、58はトレーガイド機構のガイド突起、6 1はロックピン、65は外部インターフェース、70は 振りコイルばね、70aは振りコイルばねのコイル部、 70 bは振りコイルばねの固定端、70 cは振りコイル ばねの作用端、70 dは作用端の先端部、70 eは作用 端の付根部側の逃げ部、74は携帯用電源パック、76 は施錠機構である。

【図1】

【図2】

【図3】:

【図4】

【図5】

【図6

(12))01-266442(P2001-266442A)

【図7】

[図8]

【図9】.....

[図10]

【図11】

