miniEP1

March 24, 2020

1 MiniEP1 - Aproximação de Integrais usando Médias e Amostragem Uniforme

1.1 Entrega do miniEP1

Preencha o nome dos 5 membros do seu grupo na tabela abaixo:

Nome	NUSP
Membro1	12345789
Membro2	12345789
Membro3	12345789
Membro4	12345789
Membro5	12345789

Apenas um dos membros deverá entregar este arquivo .ipynb, com as soluções do miniEP1 feitas pelo grupo.

1.2 Configuração do Ambiente

A primeira tarefa do miniEP1 é instalar e configurar o ambiente.

1.2.1 Julia, Jupyter, IJulia

Para fazer o miniEP1, você vai precisar:

- Instalar o Jupyter Notebook
- Instalar Julia 1.3:
 - Baixando o binário
 - **ou** usando seu gerenciador de pacotes
- Instalar o pacote *IJulia*:
 - Inicie o interpretador Julia
 - Digite] add IJulia e pressione <ENTER>

Depois disso, você vai conseguir iniciar o arquivo .ipynb do miniEP1.

1.2.2 Pacotes Julia para o miniEP1

Os pacotes necessários para o miniEP1 estão listados no arquivo Project.toml, mas você pode instalar e atualizar os pacotes rodando a célula abaixo:

[]:] up

Verifique o status dos pacotes, e se há algum problema, com o comando:

[]:|] st

1.3 Integração por Método de Monte Carlo

O objetivo deste miniEP é relembrar e aplicar alguns conceitos de estatística, independentes de linguagens de programação. Escolhemos usar a linguagem Julia para os experimentos, análises e geração de gráficos, mas a metodologia desenvolvida pode ser usada com qualquer ferramenta.

Você deve ler o texto neste arquivo e ir executando as células de código que encontrar. Assim vai definindo as funções progressivamente e vai gerar gráficos no final. Julia é uma linguagem compilada *Just-in-Time*, e a primeira vez que você executa uma célula pode levar algum tempo. Isso é por que os pacotes estão sendo compilados. A segunda execução da mesma função será mais rápida, verifique!

Vamos estimar o valor de algumas integrais usando o método de integração de Monte Carlo. A intuição por trás do método é que a integral de uma função f pode ser estimada pela média do valor de f num conjunto suficientemente grande de pontos obtidos a partir de uma distribuição uniforme.

Mais formalmente, para um conjunto de pontos x_1, \ldots, x_N uniformemente amostrados num intervalo [a, b], a integral de f no intervalo [a, b] pode ser aproximada por:

$$\int_{a}^{b} f(x)dx \approx \mathbb{E}\left[(b-a) \frac{1}{N} \sum_{i=1}^{N} f(x_i) \right]$$

Para uma representação gráfica da intuição, e para a prova dessa aproximação, veja esta página.

O código abaixo define a função monte_carlo_integrate, que estima a integral de uma função f num intervalo interval, usando o método de Monte Carlo com amostras dadas pelo valor de samples. O código usa aplicação vetorizada de funções, através da sintaxe função.(vetor), mas os comentários contêm código equivalente de uma versão usando loops. Usamos o pacote Distributions para gerar números pseudoaleatórios no intervalo [a, b]. Execute a célula abaixo:

```
[]: using StatsPlots, Distributions, DataFrames, Query

function monte_carlo_integrate(f, interval, samples = 100)
    xs = rand(Uniform(interval[1], interval[2]), samples)

# Using for loops:
# accumulator = 0
#
# for x in xs
# accumulator += f(x)
# end
#
```

```
# return accumulator / samples

# Using vectorized function application:
   return sum(f.(xs)) / samples
end
```

1.3.1 Primeiro Exemplo

Usamos a função make_f1 abaixo para encapsular o parâmetro a de uma função definida por:

$$f_1(x) = \frac{2}{\sqrt{a^2 - x^2}}$$

Se quiser saber mais, leia sobre funções anônimas em Julia.

Usando a = 1, definimos a função f1. A integral da função f_1 , definida acima, é dada por:

$$\int_0^a f_1(x)dx = \int_0^a \frac{2}{\sqrt{a^2 - x^2}} dx = \pi$$

Vamos estimar a integral da função f_1 usando o método de Monte Carlo. Execute a célula abaixo:

```
[]: function make_f1(a)
    return x -> 2 / (sqrt((a ^ 2) - (x ^ 2)))
end

a = 1
f1 = make_f1(a)
```

1.3.2 Executando Experimentos e Gerando Resultados

A função run_experiments recebe uma função alvo target_f, um intervalo interval, um número de amostras samples, e a quantidade de repetições da estimação repetitions que devem ser feitas. A função devolve uma estrutura do tipo DataFrame, que é essencialmente uma matriz com colunas nomeadas e de tipo fixo.

Abstrações como os DataFrames são extremamente úteis para representar dados tabelados, e são muito usadas em computação científica e em experimentos computacionais em geral. As linguagens Python e R também têm abstrações equivalentes.

Nossa função "cresce" um DataFrame linha a linha, à medida que executa os experimentos. É prática comum repetir parâmetros para os experimentos, como a coluna func do nosso DataFrame, pois assim podemos misturar experimentos diferentes numa mesma estrutura.

```
[]: function run_experiments(target_f, interval, samples, repetitions)
    results = DataFrame(func = String[], samples = Int[], integral = Float64[])
    for s in samples
```

1.3.3 Estimando a Integral e Manipulando os Resultados

Ao repetir a estimativa de uma integral para um número fixo de amostras, esperamos observar propriedades interessantes da variação do valor estimado. Neste miniEP, vamos nos preocupar com a média e o desvio padrão das amostras, e vamos calcular um intervalo de confiança de 95%.

A função parse_results recebe um DataFrame gerado pela função run_experiments, e gera um novo DataFrame com os valores da média e intervalo de confiança 95% das estimativas repetidas.

Utilizamos o operador pipe |> e pacote Query para fazer os cálculos. O operador |> é binário, e seu significado é "passe o argumento da esquerda como primeiro parâmetro da função à direita":

```
[]:[?|>
```

A macro @groupby agrupa as linhas de um DataFrame pela variável passada como parâmetro. O caractere _ faz referência ao DataFrame passado pelo operador |>.

A macro @map recebe um dicionário de funções, onde a chave será uma coluna do novo DataFrame, e o valor é uma função envolvendo ou não as colunas originais.

A função de chave mean_integral, por exemplo, calcula a média dos valores da coluna integral original, agrupada por samples. A coluna ci_estimate, por sua vez, conterá uma estimativa do intervalo de confiança 95%.

O operador |> e o pacote Query permitem escrever código muito similar ao produzido pela biblioteca dplyr da linguagem R. Execute a célula abaixo:

```
parsed_results = parse_results(results, pi)
```

1.3.4 Análise Visual: Gerando Gráficos

A função plot_raw_results gera um gráfico com cada uma das repetições da estimativa do valor da integral, no eixo y, para cada uma das quantidades de repetições, no eixo x. Usamos o pacote Plots para gerar os gráficos.

Para o miniEP1, você não precisa escrever seus próprios gráficos, mas recomendamos fortemente que você aprenda alguma biblioteca de plotagem, pois vai precisar delas nos EPs seguintes.

Sugerimos aprender uma das seguintes bibliotecas:

- ggplot2 (R)matplotlib (Python)
- Plots (Julia)

Todas essas bibliotecas podem ser usadas em Notebooks Jupyter. Execute a célula abaixo:

```
function plot_raw_results(parsed_results, target_label)
    plot(parsed_results.samples,
        parsed_results.target,
        labels = target_label,
        line = :dash,
        width = 2.0)
    scatter!(results.samples,
            results.integral,
            xscale = :log10,
            alpha = 0.4,
            labels = "integral estimate")
end

plot_raw_results(parsed_results, "pi")
```

1.3.5 Exercícios

Os exercícios procuram revisitar conceitos de estatística básica, dando a oportunidade de analisar qualitativa e quantitativamente resultados de experimentos computacionais. A metodologia exercitada aqui será útil nos EPs subsequentes, e em casos futuros onde a análise de experimentos seja necessária.

Exercício 1 a) Execute a célula acima para gerar o gráfico. Observando o gráfico gerado, descreva qualitativamente o comportamento das estimativas da integral, em relação ao seu valor esperado, à medida que aumentamos o número de pontos amostrados. Use a célula abaixo para escrever sua resposta.

b) Leia o verbete sobre valor esperado na Wikipedia, e escreva um parágrafo definindo a média de uma amostra. Como podemos interpretar a média? Escreva uma fórmula em LATEX para a média.

c) Leia o verbete sobre intervalo de confiança na Wikipedia, e escreva um parágrafo com uma descrição da intuição por trás da definição de intervalo de confiança. Explique também a relação entre a variância estimada de uma amostra, o desvio padrão, e o intervalo de confiança a 95%.

Escreva fórmulas em IATEX para a variância e o desvio padrão, mas não se preocupe com a formalização da definição do intervalo de confiança, estamos interessados na intuição por trás da ideia.

d) A função plot_results gera um gráfico sumarizando os dados da figura anterior. O gráfico gerado mostra a média das estimativas e o intervalo de confiança 95%, calculados anteriormente.

Execute a célula abaixo e gere o gráfico. Interprete os resultados *quantitativamente*, em termos da média e do intervalo de confiança. Responda também:

- 1. Esse é o comportamento que você esperava para a estimativa pelo método de Monte Carlo? Por que?
- 2. Que engano poderíamos cometer, se não calculássemos o intervalo de confiança?

Exercício 2 a) Implemente em Julia a função descrita abaixo:

$$f_2(x) = 2xe^{x^2}$$

A integral de f_2 é dada por:

$$\int_0^1 f_2(x)dx = \int_0^1 2xe^{x^2}dx = e - 1$$

Vamos estimar essa integral usando método de Monte Carlo. Use a célula abaixo, e apenas complete a definição de f2. Execute a célula.

```
[]: function f2(x) end
```

```
results = run_experiments(f2, [0.0, 1.0], [10 ^ x for x in 0:5], 30)
parsed_results = parse_results(results, Base.MathConstants.e - 1)
```

b) Gere as duas figuras, executando as células abaixo. Interprete os resultados quantitativamente, como fez no exercício 1d. Escreva sua resposta na célula abaixo.

```
[]: plot_raw_results(parsed_results, "e - 1")
```

c) Implemente em Julia a função abaixo:

$$f_3(x) = \frac{1}{\ln x} + \frac{1}{1 - x}$$

A integral de f_3 é dada por:

$$\int_0^1 f_3(x) dx = \int_0^1 \left(\frac{1}{\ln x} + \frac{1}{1 - x} \right) dx = \gamma$$

Use a célula abaixo, e apenas complete a definição de f3. Execute a célula.

```
[]: function f3(x)
end

results = run_experiments(f3, [0.0, 1.0], [10 ^ x for x in 0:5], 20)
parsed_results = parse_results(results, Base.MathConstants.eulergamma)
```

d) Gere as duas figuras, executando as células abaixo. Interprete os resultados quantitativamente, como fez no exercício 1d. Escreva sua resposta na célula abaixo.

```
[]: plot_raw_results(parsed_results, "eulergamma")
```