Partial Derivatives of a Two Variable Function

In case of one variable function y = f(x), we have

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

But it does not apply to the case of two variable function z = f(x, y) since there are two independent variables.

To find the derivatives of f(x, y), we need to calculate the derivatives with respect to each independent variable separately. We call it "partial derivative".

Partial Derivatives

How to calculate the partial derivative?

To find a partial derivative of f(x, y) with respect to one variable, we consider another input variable as a constant. For example, to find the partial derivative of f(x, y) with respect to x, we considers y as a constant. Then, we take an ordinary derivative of f(x, y) with respect to x as in the case of one variable function.

Notations for Partial Derivatives

Let
$$z = f(x, y)$$
.

The partial derivative of f(x, y) with respect to x is denoted by

$$\frac{\partial z}{\partial x}$$
 or $\frac{\partial f}{\partial x}$ or f_x .

If we want to evaluate the partial derivative at (x_0, y_0) , we use the notations:

$$\frac{\partial z}{\partial x}\Big|_{(x_0,y_0)}$$
 or $\frac{\partial f}{\partial x}(x_0,y_0)$ or $f_x(x_0,y_0)$.

Similarly, the partial derivative of f(x, y) with respect to y is denoted by $\frac{\partial z}{\partial y}$ or $\frac{\partial f}{\partial y}$ or f_y .

Partial Derivative with Respect to x

Definition The partial derivative of f(x, y) with respect to x at (x_0, y_0) is defined as

$$\left. \frac{\partial f}{\partial x} \right|_{(x_0, y_0)} = \frac{d}{dx} f(x, y_0) \bigg|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}.$$

Example Let $f(x, y) = x^3 - 3x^2y + 3xy^2 - y^3$. Find $f_x(1, 0)$.

Geometrical Interpretation of f_x

Let y_0 be a constant. The curve $(x, y_0, f(x, y_0))$ is the intersection between the surface z = f(x, y) and the plane $y = y_0$. Note that curve $(x, y_0, f(x, y_0))$ is a function of only one variable x on the plane $y = y_0$.

Geometrical Interpretation of f_x

 $f_x(x_0, y_0)$ means the slope of the tangent line to the curve $(x, y_0, f(x, y_0))$ at (x_0, y_0) .

6

(From Thomas' Calculus)

Partial Derivative with Respect to *y*

Definition The partial derivative of f(x, y) with respect to y at (x_0, y_0) is defined as

$$\left. \frac{\partial f}{\partial y} \right|_{(x_0, y_0)} = \frac{d}{dy} f(x_0, y) \bigg|_{y=y_0} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}.$$

Example Let $f(x, y) = x^3 - 3x^2y + 3xy^2 - y^3$. Find $f_y(1, 0)$.

Geometrical Interpretation of f_y

 $f_y(x_0, y_0)$ means the slope of the tangent line to the curve $(x, y_0, f(x, y_0))$ at (x_0, y_0) .

The curve $(x, y_0, f(x, y_0))$ is the intersection between the surface z = f(x, y) and the plane $x = x_0$.

Note that the curve $(x, y_0, f(x, y_0))$ is a function of one variable y.

Partial Derivatives

There are many tangent lines to the surface z = f(x, y) at $(x_0, y_0, f(x_0, y_0))$ depending on the directions.

Example: Partial Derivatives

Let
$$f(x, y) = \frac{x}{x^2 + y^2}$$
. Then

$$\frac{\partial f}{\partial x} =$$

$$\frac{\partial f}{\partial y} =$$

Example: Partial Derivatives

Let
$$f(x, y) = \cos(3x - y^2)$$
. Then

$$\frac{\partial f}{\partial x} =$$

$$\frac{\partial f}{\partial y} =$$

Implicit Partial Differentiation

In some case, for example $z^2 + 2z + 1 = x^2 + 2xy + y^2$, it's not easy to write z = f(x, y) before calculating the derivatives. In this situation, we can find the partial derivative by taking partial derivative operator ∂ on both sides of the equation:

$$\frac{\partial}{\partial x}(z^2+2z+1) = \frac{\partial}{\partial x}(x^2+2xy+y^2).$$

$$\frac{\partial}{\partial x}(z^{2}) = \frac{\partial(z^{2})}{\partial z}\frac{\partial z}{\partial x} = 2z\frac{\partial z}{\partial x}$$

$$\frac{\partial}{\partial x}(2z) = 2\frac{\partial z}{\partial x}$$

$$(2z+2)\frac{\partial z}{\partial x} = 2x+2y$$

$$\frac{\partial}{\partial x}(x^{2}+2xy+y^{2}) = 2x+2y$$
Thus, $\frac{\partial z}{\partial x} = \frac{x+y}{z+1}$.

$$(2z+2)\frac{\partial z}{\partial x} = 2x + 2y$$

Thus,
$$\frac{\partial z}{\partial x} = \frac{x+y}{z+1}$$

Example: Implicit Partial Differentiation

Let
$$xz^2 + e^z = \sin(x^2 + y^2)$$
. Find $\frac{\partial z}{\partial x}$.

Functions of More Than 2 Variables

To find partial derivatives of multivariable functions, we use the same method as in the case of two-variable functions. For example, the case of the partial derivative of f(x, y, z) with respect to x, we consider y and z as constants. Then, we take a usual derivative of f(x, y, z) with respect to x as in the case of one variable function.

Example Let $f(x, y, z) = x\cos(3y - z^2)$. Then

$$\frac{\partial f}{\partial z} =$$

Second Order Partial Derivatives

We just take partial derivative twice which consists of four possibilities.

$$\frac{\partial^2 f}{\partial x^2}$$
 or f_{xx} $\frac{\partial^2 f}{\partial y^2}$ or f_{yy}

$$\frac{\partial^2 f}{\partial x \partial y} \quad \text{or} \quad f_{yx} \qquad \qquad \frac{\partial^2 f}{\partial y \partial x} \quad \text{or} \quad f_{xy}$$

Second Order Partial Derivatives

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

Example Let $f(x, y) = x^3 - 3x^2y + 3xy^2 - y^3$. Then

$$\frac{\partial^2 f}{\partial x^2} =$$

$$\frac{\partial^2 f}{\partial y^2} =$$

$$\frac{\partial^2 f}{\partial x \partial y} =$$

$$\frac{\partial^2 f}{\partial y \partial x} =$$

Example: Second Order Partial Derivatives

Let
$$f(x, y) = \frac{x}{x^2 + y^2}$$
. Then

$$\frac{\partial f}{\partial x} = \frac{y^2 - x^2}{\left(x^2 + y^2\right)^2},$$

$$\frac{\partial f}{\partial y} = \frac{-2xy}{\left(x^2 + y^2\right)^2},$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{-2x(x^2 + y^2)^2 - 2(x^2 + y^2)(2x)(y^2 - x^2)}{(x^2 + y^2)^4}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{-2x(x^2 + y^2)^2 - 2(x^2 + y^2)(2y)(-2xy)}{(x^2 + y^2)^4}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{-2y(x^2 + y^2)^2 - 2(x^2 + y^2)(2x)(-2xy)}{(x^2 + y^2)^4} \quad \text{and}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{2y(x^2 + y^2)^2 - 2(x^2 + y^2)(2y)(y^2 - x^2)}{(x^2 + y^2)^4}$$

The Mixed Derivative Theorem

The 2nd partial derivatives $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ contain $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$.

They are called "Mixed partial derivatives".

Theorem:

If f and its partial derivatives f_x , f_y , f_{xy} and f_{yx} are defined in open region containing (a,b) and all are continuous at (a,b), then

$$f_{xy}(a,b) = f_{yx}(a,b).$$

This theorem implies that if f, f_x, f_y, f_{xy} and f_{yx} are all continuous, then the order of $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ in mixed partial derivative does not matter.

Example: The Mixed Derivative Theorem

Let
$$f(x, y) = \cos(3x - y^2)$$
. Then

$$\frac{\partial f}{\partial x} = -3\sin(3x - y^2),$$

$$\frac{\partial^2 f}{\partial y \partial x} = -3\cos(3x - y^2)(-2y) = 6y\cos(3x - y^2),$$

$$\frac{\partial f}{\partial y} = 2y\sin(3x - y^2)$$
 and

$$\frac{\partial^2 f}{\partial x \partial y} = 2y \cos(3x - y^2)(3) = 6y \cos(3x - y^2).$$

In this case,
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}.$$

Partial Derivatives of Higher Order

Partial derivative operators $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ may be applied several times such as

$$\frac{\partial^3 f}{\partial y \partial x^2}$$
 or f_{xxy} , $\frac{\partial^4 f}{\partial y^2 \partial x^2}$ or f_{xxyy} .

Example Let $f(x, y) = \cos(3x - y^2)$. Then

$$\frac{\partial f}{\partial x} = -3\sin(3x - y^2),$$

$$\frac{\partial^2 f}{\partial x^2} = -9\cos(3x - y^2) \text{ and}$$

$$\frac{\partial^3 f}{\partial y \partial x^2} = 9\sin(3x - y^2)(-2y) = -18y\sin(3x - y^2).$$

Differentiability of a Functions of Two Variables

Definition A function f is said to be *differentiable* at (x_0, y_0) if $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist and it is called a *differentiable function* if it is differentiable everywhere.

Continuity of Partial Derivatives

If f_x and f_y are both continuous in open region R, then f is differentiable everywhere in R.

Differentiability Implies Continuity

If f is differentiable at (x_0, y_0) , then f is continuous at (x_0, y_0) .

Composite Functions in Higher Dimensions

Let w = f(x, y), y = h(t) and x = g(t). Thus,

$$w = f(g(t), h(t))$$

We say that w is a composite function in terms of t, x and y are called "intermediate variables", w is called a "dependent variable", and t is called an "independent variable".

Chain Rule for Functions of Two Independent Variables

Derivative of a composite function can be calculated by applying the chain rule. In case of one-variable functions y = f(x) and x = g(t), we have

$$\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}.$$

In case of two-variable functions, let w = f(x, y) and y = h(t) and x = g(t) where f, g and h are differentiable. We have

$$\frac{dw}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}.$$

Tree Diagram

This diagram shows how to find the derivatives of a composite function.

- 1. Each node represents each variable.
- 2. Arrow is the derivative of beginning node with respect to the ending node.
- 3. Start with the dependent variable *w* and then walk along all branches to *t*.
- 4. Add them all up.

Example: Chain Rule for Functions of 2 Variables

Let
$$w = x^2 + 2xy + y^2$$
, $x = \cos(t)$ and $y = \sin(t)$. Find $\frac{dw}{dt}$.

Chain Rule for Functions of 3 Independent Variables

In case of three-variable functions

$$w = f(x, y, z), x = g(t), y = h(t)$$
 and $z = k(t)$

where f, g, h and k are differentiable. We have

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}.$$

$$w = f(x, y, z)$$

Example: Chain Rule for Functions of 3 Variables

Let w = xy + yz + zx, $x = \cos(t)$, $y = \sin(t)$ and $z = t^2$. Then

$$\frac{\partial w}{\partial x} = y + z,$$

$$\frac{\partial w}{\partial y} = x + z,$$

$$\frac{\partial w}{\partial z} = y + x,$$

$$\frac{dx}{dt} = -\sin(t), \qquad \frac{dy}{dt} = \cos(t),$$

$$\frac{dy}{dt} = \cos(t),$$

$$\frac{dz}{dt} = 2t,$$

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}$$

$$= (y+z)(-\sin(t)) + (x+z)(\cos(t)) + (y+x)(2t)$$

$$= (\sin t + t^2)(-\sin t) + (\cos t + t^2)(\cos t) + (\sin t + \cos t)(2t).$$

Functions Defined on Surfaces

Suppose that we have several two-variable functions as intermediate variables

$$w = f(x, y, z), x = g(r, s), y = h(r, s), z = k(r, s).$$

All x, y, z are considered as surfaces while w is a function of all three surfaces. Its partial derivatives are

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$

and
$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}.$$

Tree Diagram for f(g(r,s),h(r,s),k(r,s))

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}.$$

Example

Let
$$w = xz + y^2$$
, $x = \frac{r}{s}$, $y = r^2 + \ln(s)$ and $z = r^2$. Then

$$\frac{\partial w}{\partial x} = z, \qquad \frac{\partial w}{\partial y} = 2y, \qquad \frac{\partial w}{\partial z} = x,$$

$$\frac{\partial x}{\partial r} = \frac{1}{s}, \qquad \frac{\partial y}{\partial r} = 2r, \qquad \frac{\partial z}{\partial r} = 2r,$$

$$\frac{\partial x}{\partial s} = \frac{-r}{s^2}, \qquad \qquad \frac{\partial y}{\partial s} = \frac{1}{s}, \qquad \qquad \frac{\partial z}{\partial s} = 0,$$

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r} = \frac{z}{r} + 2y(2r) + x(2r)$$
$$= r + 4r(r^2 + \ln s) + 2\frac{r^2}{s},$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s} = \frac{-zr}{s^2} + 2\frac{y}{s} + x(0) = \frac{-r^3}{s^2} + 2\frac{r^2 + \ln s}{s}.$$

Functions in a Form of w = f(t, x(t))

Suppose that w is a function of one independent and one intermediate variables: w = f(t, x)

Example

Let
$$w = xt + x^2$$
 where $x = (t-2)^2$. Find $\frac{dw}{dt}$.

$$\frac{\partial f}{\partial x} = t + 2x, \quad \frac{\partial f}{\partial t} = 2(t - 2)$$
 and

$$\frac{dw}{dt} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial t} = (t + 2x)2(t - 2) = 2(t + 2(t - 2)^2)(t - 2).$$

Implicit Functions

Explicit function is a function in a form y = h(x). Then

 $\frac{dy}{dx}$ can be calculated easily. **Implicit function** is a function

in a form F(x, y) = 0. We may compute $\frac{dy}{dx}$ by 2 methods:

Method 1

Rewrite F(x, y) = 0 into y = h(x) before computing $\frac{dy}{dx}$.

This is sometimes difficult.

Method 2

Use the chain rule for multivariable functions.

Implicit Differentiation

Let y be a function defined implicitly in term of x.

We can find $\frac{dy}{dx}$ by following this procedure.

1. Set up

$$dx F(x,y) = 0.$$

2. Differentiate F(x, y) = 0 with respect to x on both sides:

$$\frac{d}{dx}F(x,y) = \frac{d}{dx}0.$$

Then, we get

$$0 = F_x \frac{dx}{dx} + F_y \frac{dy}{dx} = F_x + F_y \frac{dy}{dx}.$$

Therefore,

$$\frac{dy}{dx} = -\frac{F_x}{F_y}.$$

Example: Implicit Differentiation

Suppose that
$$x^2 + 2xy + y^2 = \sin(xy)$$
. Find $\frac{dy}{dx}$.

Implicit differentiations of a system of equations

• **Example** Let u and v be functions x and y such that

$$uv = x + y$$
 and $u - v^2 = x - y$.

Find
$$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$
.

Definition Let F and G be functions of u, v. We call

$$\frac{\partial(F,G)}{\partial(u,v)} = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix} = F_u G_v - F_v G_u$$

as a Jacobian determinant of F(u, v) and G(u, v).

Jacobian formulas:

Now, we have F(u, v, x, y) = 0 and G(u, v, x, y) = 0.

By Cramer's rule: If $F_uG_v - F_vG_u \neq 0$, then

$$u_{x} = -\frac{\begin{vmatrix} F_{x} & F_{y} \\ G_{x} & G_{y} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}} = -\frac{\frac{\partial(F,G)}{\partial(x,v)}}{\frac{\partial(F,G)}{\partial(u,v)}}, \qquad u_{y} = -\frac{\begin{vmatrix} F_{y} & F_{y} \\ G_{y} & G_{y} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}} = -\frac{\frac{\partial(F,G)}{\partial(y,v)}}{\frac{\partial(F,G)}{\partial(u,v)}},$$

$$v_{x} = -\frac{\begin{vmatrix} F_{u} & F_{x} \\ G_{u} & G_{y} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}} = -\frac{\frac{\partial(F,G)}{\partial(u,v)}}{\frac{\partial(F,G)}{\partial(u,v)}} \quad \text{and} \quad v_{y} = -\frac{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}} = -\frac{\frac{\partial(F,G)}{\partial(u,y)}}{\frac{\partial(F,G)}{\partial(u,v)}}.$$

Example Let u and v be functions x and y such that

$$uv^2 + xy = x^2 + y$$
 and $u^2 - 3v = x^2 + y^2$.

Find
$$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$
.