REGION SEGMENTATION

Duangpen jetpipattanapong

REGION

Region

- Region should be uniform and homogenous with respect to some characteristics, such as color, texture
- Region interiors should be simple and without many small holes
- Adjacent regions of a segmentation should have significantly different values with respect to the characteristic on which they are uniform
- Boundaries of each segment should be smooth, not ragged, and should be especially accurate

Image segmentation

- refers to partitioning image into a set of regions that cover it.
- The goal in many tasks is for the regions to represent meaningful areas of the image
- The <u>regions</u> might be sets of border pixels grouped in to such structures as line segments and circular arc segments
- Two approaches to partitioning an image into regions

Region-base segmentation

Assign pixels to regions using some similarity criterion.

Value similarity

> Ex. Intensity

Spatial proximity

Close to the other

Edge-based segmentation

Use boundaries of region to segment image

Base on edge detection

AUTOMATIC THRESHOLDING

Automatic Thresholding

- Thresholding should be selected by the system
- The knowledge about the objects, applications, and environment should be used in segmentation rather than a fixed threshold value
 - Intensity characteristic of objects
 - Size of object
 - Fraction of an image occupied by the objects
 - Number of different types of objects

P-TILE METHOD

- Use knowledge about the area or size of the desired object to threshold an image
- Suppose that object occupies about p% of the image area then threshold the p% of pixels to object
- This method is very limited in use

MODE METHOD

- The object has a different intensity value to the background
- The intensity values are drawn from two normal distributions
- If the standard deviations are zero, there will be two spikes in histogram, and the threshold can be placed between them
- Detect peaks and valleys in the histogram, the threshold set to the valley intensity

Ideal image, SD = 0

Peakiness Detection

- Find the two HIGHEST LOCAL MAXIMA at a MINIMUM DISTANCE APART: g_i and g_i
- Find the lowest point between them: g_k
- Measure "peakiness":

$$peakiness = \frac{\min(H(g_i), H(g_j))}{H(g_k)}$$

• Use a combination (g_i, g_j, g_k) with the highest peakiness to threshold the image

 Ex: find threshold value of mode method for the following histogram. Let minimum distance = 3

• For each combination of (g_i, g_i)

$$peakiness = \frac{\min(H(g_i), H(g_j))}{H(g_k)}$$

peakiness

distance

<i>c</i>			
tind		mavima	position
HIII	lucal	IIIaxIIIIa	position

Maximum peakiness =

Threshold =

 The mode method can be applied to the image containing many objects with different gray values

ITERATIVE THRESHOLD SELECTION

 Start with approximating the threshold, then refine this threshold later

1000

R1

R2

- Step1:Select initial threshold T -> average intensity of the image
- Step2:Partition image into R1 and R2 using threshold T
- Step3:Calculate the mean gray value μ_1 and μ_2 of R1 and R2
- Step4:Compute new threshold

$$T = \frac{1}{2}(\mu_1 + \mu_2)$$

• Step5:Repeat step 2-4 until mean value μ_1 and μ_2 do not change

• Ex

$$\mu_1 =$$

$$\mu_2 =$$

Iteration 1
$$T_{new} = \frac{1}{2}(\mu_1 + \mu_2) =$$

$$\mu_2 =$$

$$T_{new} = \frac{1}{2}(\mu_1 + \mu_2) =$$

$$\mu_1 =$$

$$\mu_2 =$$

$$T_{new} = \frac{1}{2}(\mu_1 + \mu_2) =$$

$$\mu_1 =$$

$$\mu_2 =$$

ADAPTIVE THRESHOLDING

- When the Illumination in a scene is uneven, the single threshold can't segment objects from the background correctly
- Due to shadow or due to the direction of illumination
- Partition the image into small regions and then analyse each subimage separately to threshold it.

Uneven illumination

- Segment image to m x n subimage
- Select threshold T_{ij} for subimage (i,j)
- Union region of subimages together

VARIABLE THRESHOLDING

- For uneven illumination, do approximate intensity value by simple function such as plane, biquadratic from gray value of the background
- Normalize the image with approximate illuminate function by subtraction

DOUBLE THRESHOLDING

- This approach is to accept pixels if they have neighbor that is a core pixel of the object
- Algorithm
 - Step 1 : Select threshold T1 and T2 and partition image into 3 regions
 - R1 all pixels with gray values below T1
 - R2 all pixels with gray values between T1 and T2
 - R3 all pixels with gray values above T2

- Step 2: Visit each pixel in R2, if the pixel has neighbor in R1 then reassign pixel to R1
- Step 3: Repeat step2 until no pixels are reassigned
- Step 4: Reassign any pixels left in region R2 to R3

REGION REPRESENTATION

LABELING

- Use an array of the same size as the original image to indicate the region to which the pixel belong
- If element i, j has value r, then the corresponding pixel in image belong to region r

1		1	1	1		
1	1	1				
						2
3	3	3	3			
	3					2
3	3	3				2
				2	2	2

Labeling

MASK / BITMAP

- Each region is associate with a binary image that indicate which pixels belong to the region
 - Allow pixel can be member of more than one region

Mask/ bitmap

PYRAMID

- Represent n x n image and k reduce version of image where n is power of 2
- Whole image represent in a single pixel at level 0
- The bottom level is the original image
- The list of image are $n/2 \times n/2$, $n/4 \times n/4$,, 1×1
 - Ex lv 6 = 64 x 64, lv5 = 32 x 32, lv4 = 16 x 16, lv3 = 8 x 8, lv2 = 4 x 4, lv1 = 2 x 2, lv0 = 1 x 1

QUAD TREE

- The extension of pyramids for binary image
- Obtained by recursive splitting of an image into for subregion of identical size
- Each node represented a square region in the image
- Each node have one of three labels Full, Empty, mixed

- Full: every pixels of square region it represents is a pixel of the region of interest
- Empty: there is no intersection between the square region it represents and the region of interest
- Mixed: some pixels of square region are pixels of region of interesting and some are not: split into for sub-region

BOUNDARY CODING

- Regions can also be represented by their boundary in a data structure in stead of an image
- The freeman chain code encodes information from list of edge point along contour
- Direction quantize to 8 directions

Encoding: 5 6 5

Chain code can rotate by nx45 degree by adding n mod 8 to original code

Original region encoding = 5 6 5 ...

Rotation 45 degree encoding =

Rotation 135 degree encoding =

45 degree rotation

135 degree rotation

PROPERTY TABLE

- Property table represent region by its properties rather than its pixels
- It's a table which has a row for each region in the image and a column for each property such as size, shape, intensity, color, texture.
- Property tables can be augmented to include or point to the chain code encoding or quad tree representation of region

region	area	width	height	hole	Chain code
Α	26	8	5	1	1302435324
В	32	15	5	0	3543002352

Some common property

- Centroid
- Moment
- Euler number
- Mean intensity
- Variance intensity
- Width
- Height
- Chain code
- Quadtree

REGION ADJACENCY GRAPH (RAG)

- A region adjacency graph is used to represent regions and relationship among them in an image
- The emphasis is on the partitions of an image in the form of regions and the characteristics of each partition
- The nodes are used to represent region, and arcs between nodes represent a common boundary between regions
- Properties of regions may be stored in the node data structure

RAG

PICTURE TREE

- The picture tree emphasizes the inclusion of a region with in another region as nesting region
- produced by recursively splitting an image into component parts
- Splitting stops when a region with constant characteristic has been reached

SUPER GRID

- The representation of boundary in an image array should be located between pixels of two adjacent regions
- This dilemma is solved by introducing a super grid on the image grid
- If the original image is NxN, then super grid is (2N+1)x(2N+1)
- Each pixel is surrounded by eight nonpixel points
- Nonpixel points are used to indicate whether or not there is a boundary between two pixels, and in what direction the boundary runs

Original image

Traditional boundary representation

Super grid representation the boundary is now between the two regions

SPLIT AND MERGE

- Intensity-based segmentation usually results in too many regions
- The regions may need to refined or reform
- Automatic refinement is done by a combination of split and merge operation

Merge

 Eliminate false boundary from adjacent region that belong to the same object

Split

 Add missing boundary to the region that contain parts of difference objects Some approach for refinement may be compose of image intensity and other domain independent characteristic of region

example

- Merge adjacent regions with similar characteristic
- Remove questionable edges
- Use topological properties of the regions
- Use shape information about object in the scene
- Use semantic information about the scene

REGION MERGING

- Combine the regions that are considered similar
- The high level of merge algorithm as follow
 - Step1: Form initial regions using thresholding and labeling
 - Step 2 : Prepare a region adjacency graph (RAG)
 - Step 3 : For each region
 - Consider the similarity of its adjacent region
 - If the regions are similar then merge region and update RAG
 - Step 4 : Repeat step 3 consider region until no regions are merged

SIMILARITY OF REGION

Two approach to just the similarity

Base on intensity

- Compare mean intensity
- Compare the probability

Base on the weakness of boundary

 Combine two region if the boundary between them is weak

Region similarity base on mean intensity

• If mean intensity of two region do not differ more than the predetermined value, the region are similar

Find mean intensity of each region

If
$$|\mu_1 - \mu_1| > T$$
 then merge region

Region similarity base on probability

- Merging region will have same statistic distribution of intensity
- Use hypothesis testing

H₀

 The regions belong to the same object

H1

 the regions belong to different object

m1+ m2 piexels

 (μ_0, σ_0)

m1 piexels m2 piexels

R1

 (μ_1, σ_1)

 (μ_2, σ_2)

R2

 Likelihood ratio (L) - the ratio of the probability densities under two hypothesis

$$L = \frac{\sigma_0^{m1+m2}}{\sigma_1^{m1} \cdot \sigma_2^{m2}}$$

If L < threshold then merge region

$$\mu = \frac{1}{n} \sum_{i=1}^{n} g_i$$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (g_i - \mu)^2$$

$$g_i = \text{intensity of pixel } i \text{th}$$

Boundary weakness

- Combine two regions when boundary between them is weak
- Weak boundary
 - o Intensities in either side differ by less than an amount T
 - Determine the strength of the edgeness value of an edge point that is on the boundary separate two region
 - Length of the weak boundary

Merge region when weak edgeness value

Intensity difference < threshold

Weak boundary

 Approach 1: remove weak boundary when ratio of the weak boundary to the minimum region perimeter > T

Merge adjacent region if
$$\frac{W}{\varsigma} > T$$

Usually T = 0.5

W- length of weak part of the common boundary S = min(S1,S2)

Not merge - weak boundary is very short when compare to the perimeter of smaller region

Merge - weak boundary is significant fraction of the perimeter of smaller region

Weak boundary

 Approach 2: remove weak boundary when ratio of the weak boundary to the total common boundary > T

Merge adjacent region if
$$\frac{W}{S} > T$$
 Usually T = 0.75

W- length of weak part of the common boundary S =total common boundary

Not merge - weak boundary is very short when compare to the perimeter of common boundary

Merge - weak boundary is significant fraction of the perimeter of common boundary