

Introduction to graphics and LCD technologies

NXP Product Line Microcontrollers
Business Line Standard ICs

Agenda

- Passive and active LCD technologies
 - How LCDs work, STN and TFT differences
 - How data is converted to colors on the LCD
- LCD signal interface and timing parameters
 - LCD signals and timing
 - Controlling the backlight
- Introduction to frame buffers with the LPC32x0 MCU
 - How graphics data is stored in memory
 - Color depth and lookup tables
- System considerations for LCD based systems
 - Mapping LCD data signals to the LCD controller signals
 - LCD data bandwidth
- Examples

Passive and active LCD technologies

How an LCD works

- An array of Liquid Crystal segments
 - When not in an electrical field, crystals are organized in a random pattern
 - When an electric field is applied, the crystals align to the field
 - The crystals themselves do not emit light, but 'gate' the amount of light that can pass through them
 - Crystals aligned perpendicular to a light source will prevent light from passing through them
- Each LCD segment is aligned with an electric field
- A light source (backlight) is needed to drive light through the aligned crystal field

Courtesy of Sharp

Passive displays

- Passive LCD panels
 - Consists of a grid of row and columns electrical signals
 - Columns and rows connect perpendicularly to every segment in the LCD
 - Columns and rows are multiplexed to many different segments
 - An IC controls which column and row are selected to enable or disable the segment at the row/column intersection
 - A small bias is applied to the row and column to generate a field at the intersection
 - No charge is stored at the segment
 - It may take multiple passes to correctly align the field to the desired value
- STN LCDs are passive displays

Active displays

- Active LCD panels
 - Consists of a grid of row and columns electrical signals
 - Columns and rows connect perpendicularly to a active device (transistor) for every segment in the LCD
 - Columns and rows are multiplexed to many different segments
 - An IC controls which column and row are selected to enable or disable the segment at the row/column intersection
 - The selected row and column enable the transistor
 - Charge is stored at the transistor
 - One pass will set the aligned state of the transistor (although it may still take a little time for all the crystals to align)
 - A stronger backlight is needed than a passive display
- TFT displays are active displays

LCD panel Technologies – making colors

- Each LCD segment only gates reflected or generated light
 - Color filters allow generation of specific colors (RGB) at a segment
 - To generate a real world color, 3 segments are needed these 3 segments individually pass light through a red, green, and blue filter to make a group of segments, or a RGB pixel
 - For a 320x240 RGB LCD display, there are actually 320*3=960 segments (columns) and 240 rows

Generating color on an TFT display

- TFT displays can drive 3 segments (1 pixel) per clock with variable electric field strength
 - Supports many colors
 - Always 1 pixel per clock (3 segments of Red, green, and blue)
 - Color levels depend on the number of data lines on the LCD panel and number of LCD controller data output signals
 - May be 24 lines 24bits per pixel (bpp)
 - 18bpp, 16bpp, 15bpp, 8bpp
 - Parallel data interface
 - 320 clocks require to place 320 pixels

Generating color on an STN display

- STN displays drive 1 or more segments per clock (full field strength on or off)
 - Can drive fractional pixels per clock
 - Serial interface
 - 120 clocks required to drive 320 pixels @ 2-2/3 pixels per clock (8 bit data bus)
 - 240 clocks required to drive 320 pixels @ 1-1/2 pixel per clock (4 bit data bus)
- Segments are alternated between on and off states to generate color depth
 - May take multiple refresh cycles to get the LCD color to a desired value (slow to respond due to a maximum of 1 digital state change per refresh cycle)
 - For example, a 50% duty cycle on a segment will give about 50% brightness

LCD signal interface and timing parameters