CSCB63 – Design and Analysis of Data Structures

Anya Tafliovich¹

¹based on notes by Anna Bretscher and Albert Lai

introduction

An (edge-)weighted graph

Applications?

weighted graph

A weighted (edge-weighted) graph consists of:

- a set of vertices V
- a set of edges E
- weights: a map $w: E \to \mathbb{R}$ (usually ≥ 0)
 - if undirected graph: (u, v) and (v, u) have the same weight
 - if directed graph: (u, v) and (v, u) may have different weights

storing a weighted graph

Adjacency matrix:

	Α	В	С	D	Ε
Α	0	4	2	∞	∞
В	4	0	1	5	∞
C	2	1	0	∞	∞
D	∞	5	∞	0	∞
E	∞	∞	∞	∞	0

Adjacency lists:

	adjacency list
Α	(B,4), (C,2)
В	(A,4), (C,1), (D,5)
С	(A,2), (B,1)
D	(B,5)
Ε	,

minimum spanning tree

- common task #1 on weighted graphs
- find a spanning tree
 - a tree that covers all vertices
 - a tree T such that every vertex $v \in V$ is an endpoint of at least one edge in T
- minimise the sum of the weights of the edges used
 - $weight(T) = \sum_{(u,v) \in T} weight(u,v)$
 - want tree T with minimum weight(T)

Usually just for undirected, connected graphs.

.

Kruskal's algorithm: idea

Kruskal's algorithm finds a MST by successive mergers.

- 1. At first, each vertex is its own small cluster/tree/set.
- Find an edge of minimum weight, use it to merge two clusters/trees/sets into one.
 - Do not create cycles!
- 3. Do it again...
- 4. In general, find an edge of minimum weight that crosses two clusters; merge them into one.

Correctness idea: at each iteration find the cheapest way to merge two trees.


```
L: [(g,h,1), (c,i,2), (f,g,2), (c,f,4), (a,b,4), (g,i,6), (c,d,7), (h,i,7), (a,h,8), (b,c,8), (d,e,9), (e,f,10), (b,h,11), (d,f,14)]

Clusters: {a}, {b}, {c}, {d}, {e}, {f}, {g,h}, {i}

MST: { (g,h), }
```



```
L: [(g,h,1), (c,i,2), (f,g,2), (c,f,4), (a,b,4), (g,i,6), (c,d,7), (h,i,7), (a,h,8), (b,c,8), (d,e,9), (e,f,10), (b,h,11), (d,f,14)]

Clusters: {a}, {b}, {c,i}, {d}, {e}, {f}, {g,h}

MST: { (g,h), (c,i), }
```



```
L: [(g,h,1), (c,i,2), (f,g,2), (c,f,4), (a,b,4), (g,i,6), (c,d,7), (h,i,7), (a,h,8), (b,c,8), (d,e,9), (e,f,10), (b,h,11), (d,f,14)]

Clusters: {a}, {b}, {c,i}, {d}, {e}, {f,g,h}

MST: { (g,h), (c,i), (f,g), }
```



```
L: [(g,h,1), (c,i,2), (f,g,2), (c,f,4), (a,b,4), (g,i,6), (c,d,7), (h,i,7), (a,h,8), (b,c,8), (d,e,9), (e,f,10), (b,h,11), (d,f,14)]
```

Clusters: $\{a\}, \{b\}, \{d\}, \{e\}, \{c,i,f,g,h\}$ MST: $\{(g,h), (c,i), (f,g), (c,f), \}$


```
L: [(g,h,1), (c,i,2), (f,g,2), (c,f,4), (a,b,4), (g,i,6), (c,d,7), (h,i,7), (a,h,8), (b,c,8), (d,e,9), (e,f,10), (b,h,11), (d,f,14)]

Clusters: {a,b}, {d}, {e}, {c,i,f,g,h}

MST: { (g,h), (c,i), (f,g), (c,f), (a,b), }
```



```
L: [(g,h,1), (c,i,2), (f,g,2), (c,f,4), (a,b,4), (g,i,6), (c,d,7), (h,i,7), (a,h,8), (b,c,8), (d,e,9), (e,f,10), (b,h,11), (d,f,14)]

Clusters: {a,b}, {d}, {e}, {c,i,f,g,h}

MST: { (g,h), (c,i), (f,g), (c,f), (a,b), }
```



```
L: [(g,h,1), (c,i,2), (f,g,2), (c,f,4), (a,b,4), (g,i,6), (c,d,7), (h,i,7), (a,h,8), (b,c,8), (d,e,9), (e,f,10), (b,h,11), (d,f,14)]
```

Clusters:
$$\{a,b\}$$
, $\{e\}$, $\{d,c,i,f,g,h\}$
MST: $\{(g,h), (c,i), (f,g), (c,f), (a,b), (c,d), \}$


```
L: [(g,h,1), (c,i,2), (f,g,2), (c,f,4), (a,b,4), (g,i,6), (c,d,7), (h,i,7), (a,h,8), (b,c,8), (d,e,9), (e,f,10), (b,h,11), (d,f,14)]
```

Clusters:
$$\{a,b\}$$
, $\{e\}$, $\{d,c,i,f,g,h\}$
MST: $\{(g,h), (c,i), (f,g), (c,f), (a,b), (c,d), \}$


```
L: [(g,h,1), (c,i,2), (f,g,2), (c,f,4), (a,b,4), (g,i,6), (c,d,7), (h,i,7), (a,h,8), (b,c,8), (d,e,9), (e,f,10), (b,h,11), (d,f,14)]
```

Clusters:
$$\{e\}$$
, $\{a,b,d,c,i,f,g,h\}$
MST: $\{(g,h), (c,i), (f,g), (c,f), (a,b), (c,d), (a,h), \}$


```
L: [(g,h,1), (c,i,2), (f,g,2), (c,f,4), (a,b,4), (g,i,6), (c,d,7), (h,i,7), (a,h,8), (b,c,8), (d,e,9), (e,f,10), (b,h,11), (d,f,14)]
```

Clusters:
$$\{e\}$$
, $\{a,b,d,c,i,f,g,h\}$
MST: $\{(g,h), (c,i), (f,g), (c,f), (a,b), (c,d), (a,h), \}$

Clusters: $\{e,a,b,d,c,i,f,g,h\}$ MST: $\{(g,h),(c,i),(f,g),(c,f),(a,b),(c,d),(a,h),(d,e)\}$

Clusters:
$$\{e,a,b,d,c,i,f,g,h\}$$

MST: $\{(g,h),(c,i),(f,g),(c,f),(a,b),(c,d),(a,h),(d,e)\}$

 $\label{eq:clusters: clusters: } \begin{aligned} & \{ e,a,b,d,c,i,f,g,h \} \\ & \mathsf{MST:} \; \; \{ \; (g,h), \; (c,i), \; (f,g), \; (c,f), \; (a,b), \; (c,d), \; (a,h), \; (d,e) \; \} \end{aligned}$

Clusters:
$$\{e,a,b,d,c,i,f,g,h\}$$

MST: $\{(g,h),(c,i),(f,g),(c,f),(a,b),(c,d),(a,h),(d,e)\}$

Clusters: $\{e,a,b,d,c,i,f,g,h\}$ MST: $\{(g,h),(c,i),(f,g),(c,f),(a,b),(c,d),(a,h),(d,e)\}$

Kruskal's algorithm

```
0. T := new container for edges
1. L := edges sorted in non-decreasing order by weight
2. for each vertex v:
3.    v.cluster := make-cluster(v)
4. for each (u, v) in L:
5.    if u.cluster != v.cluster:
6.        T.add((u,v))
7.    merge u.cluster and v.cluster
8. return T
```

storing clusters

An easy way for now:

- each cluster is a linked list
- v.cluster is pointer to v's owning linked list
- u.cluster $\neq v$.cluster is: pointer equality, $\Theta(1)$ time
- merging two clusters is merging two linked lists:
 - a lot of vertices may need their v.cluster's updated!

storing clusters

An easy way for now, continued...

Choose to always move the smaller list to the larger one:

- in the best case: smaller list has one node: 1 update
- in the worst case: smaller list has (almost) as many nodes as larger list
- in the worst case: the size of cluster roughly doubles as a result
- then how many such merges can we do?
- each v.cluster is updated at most: $\log |V|$ times

A much better way will appear later in this course.

Kruskal's algorithm: time

Let n = |V| and m = |E|. Then:

- Collecting and sorting edges: $\Theta(m \log m)$.
- v.cluster updates: $\mathcal{O}(\log n)$ per vertex, so $\mathcal{O}(n \log n)$ total
- the rest is $\Theta(1)$ per vertex or edge

Total: $\mathcal{O}(n \log n + m \log m)$ time.

But lets look at n and m:

- maximum number of edges in a graph with n vertices: n(n-1)/2
- then

$$m \le n(n-1)/2 \le n^2$$

 $\therefore \log m \le \log(n^2) = 2 \log n$
 $\therefore \log m \in \mathcal{O}(\log n)$

Then total time is $\mathcal{O}((n+m)\log n)$.

Prim's algorithm: idea

Prim's algorithm finds a MST by a BFS with a twist:

- the queue is replaced with a minimum priority queue
- with an additional operation decrease-priority(vertex, new-priority)
 - Exercise: show that decrease-priority is $\mathcal{O}(\log n)$ where n is the size of the priority queue

Keep unvisited vertices in the priority queue:

```
priority(v) = minimum weight of any edge between v and tree priority(v) = \infty if no such edge
```

The algorithm grows a tree by one edge at a time.

Correctness idea: every time we extract-min, we get the cheapest edge to add to the tree.

Priority queue contains vertices not in tree:

vertex							g	h	i
priority	0	∞							
pred									

MST: { }

Priority queue contains vertices not in tree:

vertex	b		С	d	е	f	g	i
priority	4	8	∞	∞	∞	∞	∞	∞
pred	а	а						

MST: { }

Priority queue contains vertices not in tree:

vertex	h	С	d	е	f	g	i
priority	8	8	∞	∞	∞	∞	∞
pred	а	b					

 $MST: \{ (a,b), \}$

Priority queue contains vertices not in tree:

vertex	g	i	С	d	е	f
priority	1	7	8	∞	∞	∞
pred	h	h	b			

MST: $\{ (a,b), (a,h), \}$

Priority queue contains vertices not in tree:

vertex	f	i	С	d	е
priority	2	6	8	∞	∞
pred	g	g	b		

MST: $\{ (a,b), (a,h), (h,g), \}$

Priority queue contains vertices not in tree:

vertex	С	i	е	d
priority	4	6	10	14
pred	f	g	f	f

MST: $\{ (a,b), (a,h), (h,g), (g,f), \}$

Priority queue contains vertices not in tree:

vertex	i	d	е
priority	2	7	10
pred	С	С	f

MST: $\{(a,b), (a,h), (h,g), (g,f), (c,f), \}$

Priority queue contains vertices not in tree:

vertex	d	е
priority	7	10
pred	С	f

 $\mathsf{MST:} \ \left\{ \ (\mathsf{a},\mathsf{b}), \ (\mathsf{a},\mathsf{h}), \ (\mathsf{h},\mathsf{g}), \ (\mathsf{g},\mathsf{f}), \ (\mathsf{c},\mathsf{f}), \ (\mathsf{c},\mathsf{i}), \quad \right\}$

Priority queue contains vertices not in tree:

vertex	е
priority	9
pred	d

MST: $\{(a,b), (a,h), (h,g), (g,f), (c,f), (c,i), (c,d), \}$

Priority queue contains vertices not in tree:

MST: $\{(a,b), (a,h), (h,g), (g,f), (c,f), (c,i), (c,d), (d,e)\}$

Prim's algorithm

```
0. T := new container for edges
1. PQ := new min-heap()
2. start := pick a vertex
3. PQ.insert(0, start)
4. for each vertex v != start: PQ.insert(inf, v)
5. while not PQ.is-empty():
6. u := PQ.extract-min()
7. T.add((u.pred, u))
8. for each v in u's adjacency list:
9.
      if v in PQ and w(u, v) < priority(v):
10.
        PQ.decrease-priority(v, w(u,v))
11.
        v.pred := u
12. return T
```

Prim's algorithm: time

Let n = |V| and m = |E|. Then:

- every vertex enters and leaves min-heap once
 - enters in the beginning only; continue until heap is empty
 - $\mathcal{O}(\log n)$ each, for a total of $\mathcal{O}(n \log n)$
- with every edge may call decrease-priority
 - $\mathcal{O}(\log n)$ each, for a total of $\mathcal{O}(m \log n)$
- the rest can be done in $\Theta(1)$ per vertex or per edge

Total time worst case: $O((n+m)\log n)$

Kruskal's algorithm

```
0. T := new container for edges
1. L := edges sorted in non-decreasing order by weight
2. for each vertex v:
3.    v.cluster := make-cluster(v)
4. for each (u, v) in L:
5.    if u.cluster != v.cluster:
6.        T.add((u,v))
7.    merge u.cluster and v.cluster
8. return T
```

Kruskal's algorithm: correctness

Kruskal's algorithm maintains the loop invariants:

- 1. each cluster is a tree
- 2. $T \subseteq T_{min}$ for some MST T_{min}

Initially T is empty and clusters are single vertices, so trivially true.

Suppose (1) and (2) are true before line 4.

- on line 5, if $u.cluster \neq v.cluster$, then
- since u's cluster is a tree and v's cluster is a different tree,
- then the merged cluster (line 7) is a tree

Kruskal's algorithm: correctness

Suppose (1) and (2) are true before line 4.

- if $(u, v) \in T_{min}$, then choose $T'_{min} = T_{min}$ and done
- if $(u, v) \notin T_{min}$, then partition V into S and V S such that u's cluster $\subseteq S$, v's cluster $\subseteq V S$, and no T edge between S and V S
- in T_{min} there is a unique simple path connecting u and v
- in T_{min} there is some edge (u', v') connecting S and V S
- without (u', v'), T_{min} disconnected; (u, v) would reconnect
- (u, v) is the minimum-weight edge in L connecting two clusters
- $\therefore weight(u, v) \leq weight(u', v')$
- then choose $T'_{min} = T_{min} \{(u',v')\} + \{(u,v)\}$ is an MST

Prim's algorithm

```
0. T := new container for edges
1. PQ := new min-heap()
2. start := pick a vertex
3. PQ.insert(0, start)
4. for each vertex v != start: PQ.insert(inf, v)
5. while not PQ.is-empty():
6. u := PQ.extract-min()
7. T.add((u.pred, u))
8. for each v in u's adjacency list:
9.
      if v in PQ and w(u, v) < priority(v):
10.
        PQ.decrease-priority(v, w(u,v))
11.
        v.pred := u
12. return T
```

Prim's algorithm: correctness

Prim's algorithm maintains the loop invariants:

- 1. T contains vertices in V PQ
- 2. for each v in PQ, priority(v) = minimum weight of any edge between v and T
- 3. $T \subseteq T_{min}$ for some MST T_{min}

Initially T is empty, PQ contains all of V, and all priorities are ∞ , so trivially true.

Suppose (1), (2), and (3) are true before line 5.

- line 6 extracts u from PQ, line 7 adds edge (u.pred, u) to T, so (1)
- lines 8-11 update priorities of vertices adjacent to u, so (2)

Prim's algorithm: correctness

Suppose (1), (2), and (3) are true before line 5. Let p = u.pred.

- if $(p, u) \in T_{min}$, then choose $T'_{min} = T_{min}$ and done
- if $(p, u) \notin T_{min}$, then in T_{min} there is a unique simple path connecting p and u
- in T_{min} there is some edge (x, y) where x no longer in PQ and y in PQ on a path from p to u
- without (x, y), T_{min} disconnected; (p, u) would reconnect
- u was just extracted from PQ, so $weight(p, u) = priority(u) \le priority(y) = weight(x, y)$
- then choose $T'_{min} = T_{min} \{(x,y)\} + \{(p,u)\}$ is an MST

General Theorem

Suppose

- T ⊆ T_{min}
- can partition V into S and V S (cut), such that
 - no T edge between V and V S
 - (u, v) is the cheapest edge (<u>light edge</u>) connecting V and V S (crosses the cut)

Then
$$T + \{(u, v)\} \subseteq T'_{min}$$

- if $(u, v) \notin T_{min}$
- T_{min} has a unique simple path from u to v, via some edge (u',v') with $u'\in S$ and $v'\in V-S$
- T_{min} without (u', v') disconnected; (u, v) would would reconnect
- $weight(u, v) \le weight(u', v')$
- Choose $T'_{min} = T_{min} \{(u', v')\} + \{(u, v)\}$