

Aerial Robotics Path Planning IV

Prof. Arthur Richards

Optimal Control

- Construct a mathematical model of my problem
- Need functions that define:
 - How drone responds to controls (dynamics)
 - Limits on drone flight envelope
 - Limits on flight regions (inc. obstacles)
 - Quality of a chosen path
- Hand all of these to an optimizer to find an answer
- Transcription problem: how to encode the control?

Optimal Control

Construct a mathematical model of my problem

$$\dot{x} = f(x, u)$$

- Need functions that define:
 - How drone responds to controls (dynamics)
 - Limits on drone flight envelope
 - Limits on flight regions (inc. obstacles)
 - Quality of a chosen path
- Hand all of these to an optimizer to find an answer
- Transcription problem: how to encode the control?

Optimal Control

Construct a mathematical model of my problem

$$\dot{x} = f(x, u)$$

- Need functions that define:
 - How drone responds to controls (dynamics)
 - Limits on drone flight envelope
 - Limits on flight regions (inc. obstacles)
 - Quality of a chosen path
- Hand all of these to an optimizer to find an answer
- Transcription problem: how to encode the control?

Typical Dynamics

$$\dot{y} = V\cos\theta$$

$$\dot{y} = V\sin\theta$$

$$\dot{\theta} = Vk^{\mu} \frac{curvature}{\sqrt{2}}$$

$$\chi = \begin{pmatrix} \chi \\ \theta \end{pmatrix} \quad \chi = \begin{pmatrix} \chi \\ k \end{pmatrix}$$

Typical Cost

Shooting Method Results

Disappointing at first...

Shooting Method Results

Disappointing at first...

...but better with a bit of tuning

Multiple Shooting

PRIORITIES: (1) CLOSE 2-2 GAPS
(2) REACH GOAL

3) MINIMIZE PLIGHT TIME

Multiple Shooting Results

• Much better!

- Weird! More decision variables yet better outcome
 - Structure in the problem helps

Multiple Shooting with Avoidance

Cost =
$$27i$$
 ← minimize time
 $+ W_f || \hat{\chi}_3 - \chi_6 ||$ ← reach goal
 $+ W_m || \hat{\chi}_1 - \chi_2 || + W_m || \hat{\chi}_1 - \chi_1 ||$ ← no gaps
 $+ W_a \sum_{i} \max \{R_i - || \chi_i - C_o ||, 0\} \leftarrow \sup_{away from C_o}$
Call the little points from RK output

Multiple Shooting with Avoidance

• Works OK. Notice that optimization is only *local*.

- Good results, fast
- Quite robust
- Not quite as flexible as shooting

