

Global United Technology Services Co., Ltd.

Report No.: GTSE13040048101

FCC REPORT

ACME TECH.(SHENZHEN) CO., LTD. Applicant:

3/F, KELINLUN BLDG, JINGNAN DISTRICT, BUJI, SHZHEN, **Address of Applicant:**

CHINA

Equipment Under Test (EUT)

2.4GHz Radio Product Name:

B1160 Model No.:

FCC ID: U8Z-B1160

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249:2012

May 02, 2013 Date of sample receipt:

May 02-08, 2013 **Date of Test:**

Date of report issued: May 09, 2013

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

2 Version

Version No.	Date	Description
00	May 09, 2013	Original

Prepared By:	hank yan.	Date:	May 09, 2013
	Project Engineer		
Check By:	Hams. Hu	Date:	May 09, 2013
	Reviewer	_	

3 Contents

		Page
1	1 COVER PAGE	
2	2 VERSION	2
3		3
4		4
5		5
	5.1 CLIENT INFORMATION	5
		「5
		rs
		ED BY THE CUSTOMER
6	6 TEST INSTRUMENTS LIST	7
7	7 TEST RESULTS AND MEASURE	MENT DATA 8
		8
		9
		amental Signal11
	7.3 20DB OCCUPY BANDWIDTH	
8	8 TEST SETUP PHOTO	19
9	9 EUT CONSTRUCTIONAL DETAIL	S20

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	N/A
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: not applicable.

General Information 5

5.1 **Client Information**

Applicant:	ACME TECH.(SHENZHEN) CO., LTD.
Address of Applicant:	3/F, KELINLUN BLDG, JINGNAN DISTRICT, BUJI, SHZHEN, CHINA
Manufacturer:	ACME TECH.(SHENZHEN) CO., LTD.
Address of Manufacturer	3/F, KELINLUN BLDG, JINGNAN DISTRICT, BUJI, SHZHEN, CHINA

5.2 General Description of EUT

Product Name:	2.4GHz Radio
Model No.:	B1160
Operation Frequency:	2410MHz-2474MHz
Modulation technology:	GFSK
Antenna Specification:	Integral
Antenna Gain:	0.5dBi
Power supply:	DC 6.0V (4*1.5V "AA" SIZE battery)

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

•			
Axis	Χ	Υ	Z
Field Strength(dBuV/m)	101.41	103.63	102.52

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup":

Y axis (see the test setup photo)

5.4 Description of Support Units

None.

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, July 20, 2010.

• Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China

Tel: 0755-27798480 Fax: 0755-27798960

5.7 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 29 2013	Mar. 28 2014					
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A					
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 6, 2012	Dec. 5 2013					
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 03 2012	Jul. 02 2013					
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 25 2013	Feb. 24 2014					
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 29 2012	June 28 2013					
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 29 2013	Mar. 28 2014					
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 30 2013	Mar. 29 2014					
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 30 2013	Mar. 29 2014					
11	Coaxial cable	GTS	N/A	GTS210	Mar. 30 2013	Mar. 29 2014					
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 30 2013	Mar. 29 2014					
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 03 2012	Jul. 02 2013					
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 03 2012	Jul. 02 2013					
15	Amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	June 29 2012	June 28 2013					
16	Band filter	Amindeon	82346	GTS219	Mar. 30 2013	Mar. 29 2014					

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is Integral antenna, the best case gain of the antenna is 0.5dBi

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2 Radiated Emission Method

letiloa					
FCC Part15 C Section 15.209					
ANSI C63.4:200	03				
30MHz to 25GH	łz				
Measurement D	Distance: 3m				
Frequency	Detector	RBW	VBW	Remark	
30MHz- 1GHz	Quasi-peal	k 120KHz	300KHz	Quasi-peak Value	
Above 1CHz	Peak	1MHz	3MHz	Peak Value	
Above 1G112	AV	1MHz	10Hz	Average Value	
Freque	ency			Remark	
2400MHz-24	183.5MHz			Average Value	
				Peak Value	
	_	`		Remark Quasi-peak Value	
	Quasi-peak Value Quasi-peak Value				
Above 1	Above 1GHz 54.00				
				Peak Value	
harmonics, sha fundamental or	II be attenuate to the genera	ed by at least al radiated emi	50 dB belov	w the level of the	
Below 1GHz					
EUT	4m		Anten Sea Ante RF Test Receiver		
	ANSI C63.4:200 30MHz to 25GH Measurement E Frequency 30MHz- 1GHz Above 1GHz Freque 2400MHz-24 Freque 30MHz-9 960MHz- 4bove 1 Emissions radia harmonics, sha fundamental or whichever is the Below 1GHz EUT Turn Table Toround Plane	FCC Part15 C Section 15.20 ANSI C63.4:2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector 30MHz- 1GHz Peak AV Frequency 2400MHz-2483.5MHz Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Emissions radiated outside of harmonics, shall be attenuate fundamental or to the general whichever is the lesser attental manual fundamental or to the general whichever is the lesser attental manual fundamental or to the general fundamental fundamental or to the general fundamental fundamental or to the general fundamental fund	FCC Part15 C Section 15.209 ANSI C63.4:2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 30MHz-1GHz Quasi-peak 120KHz 1GHz Peak 1MHz AV 1MHz Frequency Limit (dBuV) 2400MHz-2483.5MHz 114.0 Frequency Limit (dBuV) 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 54.0 T4.0 Emissions radiated outside of the specified harmonics, shall be attenuated by at least fundamental or to the general radiated emistichever is the lesser attenuation. Below 1GHz	FCC Part15 C Section 15.209 ANSI C63.4:2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 30MHz- Quasi-peak 120KHz 300KHz 1GHz Above 1GHz Peak 1MHz 3MHz AV 1MHz 10Hz Frequency Limit (dBuV/m @3m) 2400MHz-2483.5MHz 40.00 114.00 Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.00 88MHz-216MHz 43.50 216MHz-960MHz 46.00 960MHz-1GHz 54.00 Above 1GHz 54.00 Above 1GHz 74.00 Emissions radiated outside of the specified frequency harmonics, shall be attenuated by at least 50 dB belof fundamental or to the general radiated emission limits whichever is the lesser attenuation. Below 1GHz	

	Report No.: GTSE13040048101
	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement data:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 10 of 24

7.2.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2410.00	97.06	31.29	5.40	30.12	103.63	114.00	-10.37	Horizontal
2410.00	94.93	31.29	5.40	30.12	101.50	114.00	-12.50	Vertical
2444.80	96.14	27.48	5.43	30.06	98.99	114.00	-15.01	Horizontal
2444.80	92.85	27.48	5.43	30.06	95.70	114.00	-18.30	Vertical
2474.00	96.23	27.52	5.47	29.99	99.23	114.00	-14.77	Horizontal
2474.00	92.86	27.52	5.47	29.99	95.86	114.00	-18.14	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2410.00	86.39	31.29	5.40	30.12	92.96	94.00	-1.04	Horizontal
2410.00	83.37	31.29	5.40	30.12	89.94	94.00	-4.06	Vertical
2444.80	84.87	27.48	5.43	30.06	87.72	94.00	-6.28	Horizontal
2444.80	81.53	27.48	5.43	30.06	84.38	94.00	-9.62	Vertical
2474.00	85.04	27.52	5.47	29.99	88.04	94.00	-5.96	Horizontal
2474.00	81.38	27.52	5.47	29.99	84.38	94.00	-9.62	Vertical

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2.2 Spurious emissions

■ Below 1GHz

- DCIOW I	O							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
48.84	38.67	16.43	0.76	31.97	23.89	40.00	-16.11	Vertical
95.76	39.08	15.99	1.16	31.74	24.49	43.50	-19.01	Vertical
246.82	39.52	15.08	2.11	32.16	24.55	46.00	-21.45	Vertical
410.38	39.16	17.27	2.91	31.86	27.48	46.00	-18.52	Vertical
593.05	38.54	20.35	3.70	31.07	31.52	46.00	-14.48	Vertical
912.86	37.53	24.04	4.90	31.19	35.28	46.00	-10.72	Vertical
46.67	38.80	16.55	0.74	31.99	24.10	40.00	-15.90	Horizontal
100.58	38.21	16.08	1.19	31.76	23.72	43.50	-19.78	Horizontal
321.06	39.07	16.32	2.47	32.11	25.75	46.00	-20.25	Horizontal
393.47	39.80	16.97	2.82	31.91	27.68	46.00	-18.32	Horizontal
857.03	38.75	23.64	4.68	31.24	35.83	46.00	-10.17	Horizontal
958.79	38.45	23.87	5.08	31.22	36.18	46.00	-9.82	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Above 1GHz

Test channel:	Lowest channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4820.00	32.75	31.78	8.60	24.17	48.96	74.00	-25.04	Vertical
7230.00	31.42	36.15	11.65	26.39	52.83	74.00	-21.17	Vertical
9640.00	30.35	38.01	14.14	25.45	57.05	74.00	-16.95	Vertical
12050.00	*					74.00		Vertical
14460.00	*					74.00		Vertical
4820.00	28.85	31.78	8.60	24.17	45.06	74.00	-28.94	Horizontal
7230.00	29.31	36.15	11.65	26.39	50.72	74.00	-23.28	Horizontal
9640.00	27.05	38.01	14.14	25.45	53.75	74.00	-20.25	Horizontal
12050.00	*					74.00		Horizontal
14460.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4820.00	21.26	31.78	8.60	24.17	37.47	54.00	-16.53	Vertical
7230.00	20.62	36.15	11.65	26.39	42.03	54.00	-11.97	Vertical
9640.00	20.78	38.01	14.14	25.45	47.48	54.00	-6.52	Vertical
12050.00	*					54.00		Vertical
14460.00	*					54.00		Vertical
4820.00	17.18	31.78	8.60	24.17	33.39	54.00	-20.61	Horizontal
7230.00	17.61	36.15	11.65	26.39	39.02	54.00	-14.98	Horizontal
9640.00	17.80	38.01	14.14	25.45	44.50	54.00	-9.50	Horizontal
12050.00	*					54.00		Horizontal
14460.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Middle channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4889.60	33.20	31.85	8.66	24.10	49.61	74.00	-24.39	Vertical
7334.40	32.60	36.37	11.72	26.71	53.98	74.00	-20.02	Vertical
9779.20	29.77	38.35	14.25	25.36	57.01	74.00	-16.99	Vertical
12224.00	*					74.00		Vertical
14668.80	*					74.00		Vertical
4889.60	29.49	31.85	8.66	24.10	45.90	74.00	-28.10	Horizontal
7334.40	28.41	36.37	11.72	26.71	49.79	74.00	-24.21	Horizontal
9779.20	26.07	38.35	14.25	25.36	53.31	74.00	-20.69	Horizontal
12224.00	*					74.00		Horizontal
14668.80	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4889.60	21.71	31.85	8.66	24.10	38.12	54.00	-15.88	Vertical
7334.40	20.69	36.37	11.72	26.71	42.07	54.00	-11.93	Vertical
9779.20	19.66	38.35	14.25	25.36	46.90	54.00	-7.10	Vertical
12224.00	*					54.00		Vertical
14668.80	*					54.00		Vertical
4889.60	17.82	31.85	8.66	24.10	34.23	54.00	-19.77	Horizontal
7334.40	17.68	36.37	11.72	26.71	39.06	54.00	-14.94	Horizontal
9779.20	17.10	38.35	14.25	25.36	44.34	54.00	-9.66	Horizontal
12224.00	*					54.00		Horizontal
14668.80	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel:	Highest channel
---------------	-----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4948.00	32.01	31.93	8.73	24.03	48.64	74.00	-25.36	Vertical
7422.00	31.62	36.59	11.79	27.03	52.97	74.00	-21.03	Vertical
9896.00	27.30	38.81	14.38	25.26	55.23	74.00	-18.77	Vertical
12370.00	*					74.00		Vertical
14844.00	*					74.00		Vertical
4948.00	29.09	31.93	8.73	24.03	45.72	74.00	-28.28	Horizontal
7422.00	28.62	36.59	11.79	27.03	49.97	74.00	-24.03	Horizontal
9896.00	24.61	38.81	14.38	25.26	52.54	74.00	-21.46	Horizontal
12370.00	*					74.00		Horizontal
14844.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4948.00	20.52	31.93	8.73	24.03	37.15	54.00	-16.85	Vertical
7422.00	21.24	36.59	11.79	27.03	42.59	54.00	-11.41	Vertical
9896.00	16.88	38.81	14.38	25.26	44.81	54.00	-9.19	Vertical
12370.00	*					54.00		Vertical
14844.00	*					54.00		Vertical
4948.00	17.42	31.93	8.73	24.03	34.05	54.00	-19.95	Horizontal
7422.00	18.29	36.59	11.79	27.03	39.64	54.00	-14.36	Horizontal
9896.00	15.49	38.81	14.38	25.26	43.42	54.00	-10.58	Horizontal
12370.00	*					54.00		Horizontal
14844.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

7.2.3 Bandedge emissions

All of the restriction bands were tested, and only the data of worst case was exhibited.

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	58.07	31.25	5.38	30.18	64.52	74.00	-9.48	Horizontal
2400.00	63.01	31.25	5.39	30.18	69.47	74.00	-4.53	Horizontal
2390.00	56.30	31.25	5.38	30.18	62.75	74.00	-11.25	Vertical
2400.00	62.26	31.25	5.39	30.18	68.72	74.00	-5.28	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
2390.00	34.67	31.25	5.38	30.18	41.12	54.00	-12.88	Horizontal		
2400.00	35.38	31.25	5.39	30.18	41.84	54.00	-12.16	Horizontal		
2390.00	34.51	31.25	5.38	30.18	40.96	54.00	-13.04	Vertical		
2400.00	35.08	31.25	5.39	30.18	41.54	54.00	-12.46	Vertical		

Ī	Test channel:	Highest channel
	1 oot onarrior.	i ligitoot onariitoi

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	61.80	27.53	5.47	29.93	64.87	74.00	-9.13	Horizontal
2500.00	55.93	27.55	5.49	29.93	59.04	74.00	-14.96	Horizontal
2483.50	60.92	27.53	5.47	29.93	63.99	74.00	-10.01	Vertical
2500.00	54.02	27.55	5.49	29.93	57.13	74.00	-16.87	Vertical

Average value:

		_						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	35.10	27.53	5.47	29.93	38.17	54.00	-15.83	Horizontal
2500.00	34.35	27.55	5.49	29.93	37.46	54.00	-16.54	Horizontal
2483.50	34.77	27.53	5.47	29.93	37.84	54.00	-16.16	Vertical
2500.00	34.15	27.55	5.49	29.93	37.26	54.00	-16.74	Vertical

Remark:

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.3 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.249/15.215		
Test Method:	ANSI C63.4:2003		
Limit:	Operation Frequency range 2400MHz~2483.5MHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test channel	20dB bandwidth(MHz)	Result
Lowest	0.613	Pass
Middle	0.618	Pass
Highest	0.604	Pass

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE130400481RF

Page 17 of 24

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

8 Test Setup Photo

Radiated Emission

9 EUT Constructional Details

-----end-----