

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Álgebra II Examen VI

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2025

Asignatura Álgebra II.

Curso Académico 2022-23.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Manuel Bullejos Lorenzo.

Descripción Convocatoria Extraordinaria.

Ejercicio 1. Da la descomposición en ciclos disjuntos y en transposiciones de la permutación $\sigma = (1\ 2\ 3\ 4)(2\ 3\ 5)(1\ 2)$. Calcula su orden.

Ejercicio 2. Sea G un grupo no abeliano de orden 27. Razona que su centro Z(G) es un grupo cíclico.

Ejercicio 3. Prueba que todo grupo de orden 18 es un producto semidirecto.

Ejercicio 4. Da las descomposiciones cíclica y cíclica primaria del grupo $\mathbb{Z}_{20} \oplus \mathbb{Z}_6$.

Ejercicio 5. Sea G un grupo de orden 18. ¿Puedes asegurar que G tiene un elemento de orden 3? ¿Y de orden 9? Razona las respuestas.

Ejercicio 6. Sea G un grupo de orden 18 no abeliano y $g \in G$ un elemento de orden 9. Razona que G es isomorfo a D_9 .

Ejercicio 7. ¿Es el grupo $D_8/Z(D_8)$ abeliano?

Ejercicio 8. Demuestra si se tiene que $S_3 \cong \operatorname{Aut}(C_9)$ o $C_6 \cong \operatorname{Aut}(C_9)$. Da el isomorfismo.

Ejercicio 9. Considera los grupos $C_3 = \langle a \mid a^3 = 1 \rangle$, $K = \langle b, c \mid b^2 = c^2 = (bc)^2 = 1 \rangle$ y la acción de C_3 sobre K determinada por $^ab = bc$ y $^ac = b$. En el producto semidirecto $G = K \times C_3$ calcula el producto $(b, a)^{-1}(bc, a^2)(c, a)^{-1}$.

Ejercicio 10. Para el grupo $G = K \rtimes C_3$ del ejercicio anterior, calcula el conmutador [G, G].

Ejercicio 1. Da la descomposición en ciclos disjuntos y en transposiciones de la permutación $\sigma = (1\ 2\ 3\ 4)(2\ 3\ 5)(1\ 2)$. Calcula su orden.

$$\sigma = (1 \ 4)(3 \ 5) \Longrightarrow O(\sigma) = \operatorname{mcm}(2, 2) = 2.$$

Ejercicio 2. Sea G un grupo no abeliano de orden 27. Razona que su centro Z(G) es un grupo cíclico.

Sea Z(G) el centro de G. Como $|G|=27=3^3$, G es un 3-grupo. Como Z(G)< G, sabemos que |Z(G)| | 27, luego $|Z(G)| \in \{1,3,9,27\}$.

- Si |Z(G)| = 1, entonces $Z(G) = \{1\}$, pero G es un 3-grupo, luego llegamos a una contradicción con el Teorema de Burnside.
- Como G es no abeliano, $Z(G) \neq G$, luego $|Z(G)| \neq 27$.
- Supongamos que |Z(G)| = 9. Entonces, como $Z(G) \triangleleft G$, tenemos que:

$$|G/Z(G)| = \frac{|G|}{|Z(G)|} = \frac{27}{9} = 3$$

Luego G/Z(G) es cíclico, y por tanto G es abeliano, lo cual contradice la hipótesis.

Por tanto, |Z(G)| = 3, luego $Z(G) \cong C_3$ cíclico.

Ejercicio 3. Prueba que todo grupo de orden 18 es un producto semidirecto.

Sea G un grupo de orden $18 = 2 \cdot 3^2$. Sea n_p el número de p-subgrupos de Sylow de G. Por el Segundo Teorema de Sylow, tenemos que:

$$\left. \begin{array}{ll}
n_3 \equiv 1 & \text{mod } 3 \\
n_3 \mid 2 & \end{array} \right\} \Longrightarrow n_3 = 1$$

Por tanto, hay un único 3-subgrupo de Sylow, que llamaremos P_3 . Como $n_3=1$, P_3 es normal en G. Por el Primer Teorema de Sylow, tenemos $n_2 \ge 1$, luego sea P_2 un 2-subgrupo de Sylow de G.

- $P_3 \triangleleft G \vee P_2 < G$.
- Como $|P_3| = 9$ y $|P_2| = 2$, razonando por órdenes tenemos que $P_3 \cap P_2\{1\}$.
- Por el Segundo Teorema de Isomorfía, tenemos que:

$$\frac{P_2}{P_2 \cap P_3} \cong \frac{P_2 P_3}{P_3} \Longrightarrow |P_2 P_3| = |P_2| \cdot |P_3| = 2 \cdot 9 = 18$$

Por tanto, $P_2P_3 = G$.

Concluimos por tanto que $G \cong P_3 \rtimes P_2$.

Ejercicio 4. Da las descomposiciones cíclica y cíclica primaria del grupo $\mathbb{Z}_{20} \oplus \mathbb{Z}_6$. La descomposición cíclica primaria de $\mathbb{Z}_{20} \oplus \mathbb{Z}_6$ es:

$$\mathbb{Z}_{20} \oplus \mathbb{Z}_6 \cong C_4 \oplus C_5 \oplus C_2 \oplus C_3$$

La descomposición cíclica de $\mathbb{Z}_{20} \oplus \mathbb{Z}_6$ es:

$$\mathbb{Z}_{20} \oplus \mathbb{Z}_6 \cong C_{60} \oplus C_2$$

Ejercicio 5. Sea G un grupo de orden 18. ¿Puedes asegurar que G tiene un elemento de orden 3? ¿Y de orden 9? Razona las respuestas.

Por el Teorema de Cauchy, como 3 es primo y 3 | 18, tenemos que $\exists g \in G$ tal que O(g) = 3. Por tanto, G tiene un elemento de orden 3.

Por otro lado, sea $G = \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_2$. Supongamos que $\exists (a, b, c) \in G$ tal que O((a, b, c)) = 9. Entonces:

$$9 = mcd(O(a), O(b), O(c))$$

No obstante, tenemos que $O(a), O(b) \in \{1,3\}$ y $O(c) \in \{1,2\}$. Por tanto, no puede ser que mcd(O(a), O(b), O(c)) = 9. Por tanto, para este grupo G no hay elementos de orden 9.

Ejercicio 6. Sea G un grupo de orden 18 no abeliano y $g \in G$ un elemento de orden 9. Razona que G es isomorfo a D_9 .

Por el Ejercicio 3, sabemos que G tiene un único 3-subgrupo de Sylow. Como O(g)=9, entonces $|\langle G\rangle|=9$, luego $\langle g\rangle$ es el único 3-subgrupo de Sylow de G. Por tanto:

$$G \cong \langle q \rangle \rtimes P_2$$

Buscamos ahora los homomorfismos $\theta: P_2 \to \operatorname{Aut}(\langle g \rangle)$. Para ello, veamos en primer lugar los generadores de $\langle g \rangle$.

$$|\langle g \rangle| = 9 \Longrightarrow \varphi(9) = 2 \cdot 3 = 6$$

Por tanto, $\langle g \rangle$ tiene 6 generadores. Estos son:

$$\langle g \rangle = \langle g^2 \rangle = \langle g^4 \rangle = \langle g^5 \rangle = \langle g^7 \rangle = \langle g^8 \rangle$$

Por tanto, para cada $i \in \{1, 2, 4, 5, 7, 8\}$, tenemos el automorfismo:

$$\varphi_i: \langle g \rangle \longrightarrow \langle g \rangle$$
$$q \longmapsto q^i$$

Ahora, hemos de ver qué automorfismos son válidos. Como P_2 es cíclico de orden 2, sea $P_2 = \langle b \mid b^2 = 1 \rangle$. Como O(b) = 2, entonces $O(\theta(b)) \mid 2$, luego $O(\theta(b)) \in \{1, 2\}$.

• Si $O(\theta(b)) = 1$, entonces $\theta(b) = Id$, luego $G \cong \langle g \rangle \times P_2$ es abeliano, lo cual contradice la hipótesis de que G es no abeliano.

Por tanto, $O(\theta(b)) = 2$. Veamos ahora qué automorfismos son de orden 2:

$$(\varphi_i \circ \varphi_i)(g) = \varphi_i(\varphi_i(g)) = \varphi_i(g^i) = g^{i^2} = g \iff i^2 \equiv 1 \mod 9$$

Por tanto, tenemos que $i \in \{1, 8\}$. Pero como $O(\theta(b)) \neq 1$, tenemos que $i \neq 1$. Por tanto, i = 8. Por tanto, el único automorfismo válido es φ_8 , luego:

$$bgb^{-1} = \varphi_8(g) = g^8 = g^{-1} \Longrightarrow bg = g^{-1}b$$

Por el Teorema de Dyck, como $b^2=1,\ g^9=1$ y $bg=g^{-1}b,$ tenenemos que $f:D_9\to G$ dada por:

$$f(s) = b \qquad f(r) = g$$

es un homomorfismo. Como b, g son generadores de P_2 y $\langle g \rangle$ respectivamente, tenemos que $G = \langle g, b \rangle$, por lo que es sobreyectivo. Además, como $|G| = 18 = |D_9|$, tenemos que f es un isomorfismo. Por tanto, $G \cong D_9$.

Ejercicio 7. ¿Es el grupo $D_8/Z(D_8)$ abeliano?

Por un ejercicio de las Relaciones, sabemos que $Z(D_8) = \{1, r^4\}$. Veamos que $D_8/Z(D_8)$ no es abeliano. Para ello, vemos que:

$$srZ(D_8) = \{sr, sr^5\}$$

 $rsZ(D_8) = \{rs, rsr^4\} = \{sr^7, sr^7r^4\} = \{sr^7, sr^3\}$

Como $srZ(D_8) \neq rsZ(D_8)$, tenemos que $D_8/Z(D_8)$ no es abeliano.

Ejercicio 8. Demuestra si se tiene que $S_3 \cong \operatorname{Aut}(C_9)$ o $C_6 \cong \operatorname{Aut}(C_9)$. Da el isomorfismo.

Sea $C_9 = \langle g \mid g^9 = 1 \rangle$. En el Ejercicio 6 vimos los 6 elementos de Aut (C_9) . Consideramos $\varphi_2 \in \text{Aut}(C_9)$, que es el automorfismo dado por:

$$\varphi_2: C_9 \longrightarrow C_9$$
$$q \longmapsto q^2$$

Aplicando φ_2 , tenemos que:

$$g\mapsto g^2\mapsto g^4\mapsto g^8\mapsto g^7\mapsto g^5\mapsto g$$

Por tanto, $O(\varphi_2) = 6$, y como el orden se mantiene por isomorfismos y S_3 no tiene elementos de orden 6, tenemos que $\operatorname{Aut}(C_9) \ncong S_3$. Por tanto, hemos de ver si $\operatorname{Aut}(C_9) \cong C_6$. El isomorfismo es:

$$\varphi: C_6 \longrightarrow \operatorname{Aut}(C_9)$$
$$g \longmapsto \varphi_2$$

Como $\varphi_2^2 = Id$, por el Teorema de Dyck tenemos que φ es un homomorfismo. Además, como φ_2 es un generador de $\operatorname{Aut}(C_9)$, tenemos que φ es sobreyectivo. Finalmente, como $|C_6| = 6 = |\operatorname{Aut}(C_9)|$, tenemos que φ es un isomorfismo. Por tanto, $\operatorname{Aut}(C_9) \cong C_6$.

Ejercicio 9. Considera los grupos $C_3 = \langle a \mid a^3 = 1 \rangle$, $K = \langle b, c \mid b^2 = c^2 = (bc)^2 = 1 \rangle$ y la acción de C_3 sobre K determinada por ${}^ab = bc$ y ${}^ac = b$. En el producto semi-directo $G = K \times C_3$ calcula el producto $(b, a)^{-1}(bc, a^2)(c, a)^{-1}$.

Calculamos cada parte por separado:

$$(b,a)^{-1} = {\binom{a^{-1}}{b^{-1}}, a^{-1}} = {\binom{a^{2}}{b}, a^{2}} = {\binom{a}{b}{c}, a^{2}} = {\binom{a}{b}{a}{c}, a^{2}} =$$

$$= (bcb, a^{2}) = (c^{-1}, a^{2}) = (c, a^{2})$$

$$(c,a)^{-1} = {\binom{a^{-1}}{c^{-1}}, a^{-1}} = {\binom{a^{2}}{c}, a^{2}} = {\binom{a}{b}, a^{2}} = (bc, a^{2})$$

$$(bc, a^{2})(bc, a^{2}) = {\binom{bc}{a^{2}}{bc}, a^{2} \cdot a^{2}} = {\binom{bc}{a^{2}}{b^{2}}{c}, a} = {\binom{bcc}{a^{2}}{b}, a} = {\binom{bbc}{a}, a} = {\binom{bc}{a}, a} = {$$

Ejercicio 10. Para el grupo $G = K \rtimes C_3$ del ejercicio anterior, calcula el conmutador [G, G].

Sabemos que G' = [G, G] es el menor subgrupo normal de G tal que G/G' es abeliano. Por definición de producto semidirecto, sabemos que $K \triangleleft G$ y |G/K| = 3, luego G/K es abeliano. Por tanto, sabemos que:

$$[G,G] \leqslant K$$

Calculemos [(b, a), (b, 1)]:

$$(b, a)(b, 1)(b, a)^{-1}(b, 1)^{-1} = (c, a)(c, a^2)(b, 1)$$

= $(bc, 1)(b, 1) = (c, 1)$

Por lo que concluimos que, en primer lugar, G no es abeliano (es decir, $[G,G] \neq 1$) y en segundo lugar que $\langle c \rangle \leq [G,G]$. Comprobamos que $\langle c \rangle$ no es normal en G:

$$(1,a)(c,1)(1,a)^{-1} = (b,a)(1,a^2) = (b,1) \not\in \langle c \rangle$$

Por tanto, $[G, G] \neq \langle c \rangle$, y como $\langle c \rangle \leqslant [G, G] \leqslant K$ y $|K/\langle c \rangle| = 2$ que es primo (es decir, no existe ningún otro grupo normal distinto que contenga a $\langle c \rangle$ y esté contenido en K), se tiene que [G, G] = K.