AIE111:

Artificial Intelligence

Lecture 1:

Al Agents & Environment Properties

Understanding Al Environments

- In Artificial Intelligence, the environment refers to the external factors that an agent interacts with while trying to accomplish a specific goal.
- The **environment** is everything the AI agent interacts with.
- Depending on its properties, it can affect how the Al agent behaves.

☐ Fully Observable vs. Partially Observable

1. Fully Observable: The agent has complete access to the state of the environment at all times.

Example: Chess (AI can see the entire board).

2. Partially Observable: The agent has limited access to the state of the environment due to missing or noisy data.

Example: Self-driving car (Cannot see other drivers' intentions).

4

☐ Deterministic vs. Stochastic (Random)

1.Deterministic: The same action always produces the same result.

Example: Solving a math problem (2 + 2 always equals 4).

2.Stochastic (Non-Deterministic): The result of an action is uncertain or random.

Example: Traffic navigation (AI cannot predict sudden accidents).

- ☐ Episodic vs. Sequential
- 1. Episodic: Each action is independent of previous actions.

Example: Spam filter (Each email is classified separately).

2. Sequential: Current actions affect future outcomes.

Example: Chess (Each move impacts the next move).

- ☐ Static vs. Dynamic
- 1. Static: The environment does not change while the agent is deciding.

Example: Crossword puzzle (It remains the same).

2. Dynamic: The environment keeps changing as the agent decides.

Example: Self-driving car (Traffic conditions change constantly).

- **□** Discrete vs. Continuous
- 1. Discrete: The AI has a fixed number of choices.

Example: Chess (Finite number of moves).

2. Continuous: The AI has infinite possibilities.

Example: Self-driving cars (Speed, steering angle, etc.).

- ☐ Single-Agent vs. Multi-Agent
- 1. Single-Agent: AI operates alone without interaction.

Example: Medical diagnosis AI (It analyzes patient data independently).

2. Multi-Agent: AI interacts with other AI agents or humans.

Example: Poker AI (Competes against other players).

2. Environment Properties (Summary)

Property	Description	Example
Fully Observable vs. Partially Observable	Al can either see everything in the environment or only part of it.	Chess (Full), Self-driving car (Partial)
Deterministic vs. Stochastic (Random)	Al actions have predictable or uncertain outcomes.	Solving a math problem (Deterministic), Stock market prediction (Stochastic)
Episodic vs. Sequential	Al decisions are either independent or affect future outcomes.	Spam filter (Episodic), Chess (Sequential)
Static vs. Dynamic	Environment stays the same or changes over time.	Crossword puzzle (Static), Self-driving car (Dynamic)
Discrete vs. Continuous	Al choices are either limited or infinite.	Chess moves (Discrete), Car steering (Continuous)
Single-Agent vs. Multi- Agent	Al works alone or interacts with others.	Medical diagnosis AI (Single), Poker AI (Multi)

3. Examples of Al Environments

Environment	Observable?	Deterministic?	Episodic?	Static?	Discrete?	Agents?
Chess (With Clock)	V Fully	© Strategic	Sequential	Semi	11 Discrete	22 Multi
Poker	× Partial	© Strategic	Sequential	Static	Biscrete	22 Multi
Self-Driving Car	× Partial	Stochastic	Sequential	O Dynamic	Continuous	22 Multi
Medical Diagnosis Al	X Partial	Stochastic	© Episodic	✓ Static	Continuous	Single
Web Crawler	V Fully	☑ Deterministic	Sequential	✓ Static	11 Discrete	Single

- 1. Simple reflex agents
- 2. Model-based reflex agents
- 3. Goal-based agents
- 4. Utility-based agents
- 5. Learning agent

1. Simple Reflex Agents

- Works based on simple IF-THEN rules.
- Does NOT use memory
 (reacts only to the current situation).
- Example: Vacuum Cleaner Al
 - IF floor is dirty → THEN clean.
 - IF floor is clean → THEN move left or right.
 - Limitation: Cannot handle complex environments (e.g., cannot remember where it has already cleaned).

2. Model-Based Reflex Agents

•Uses memory (internal state) to store past experiences.

Example: Self-Driving Car 🚜

- Uses a camera to detect road signs and traffic lights.
- Remembers previous signals for better decision-making.

3. Goal-Based Agents @

Chooses actions based on a goal (not just reacting).

- Example: Navigation AI (Google Maps)
 - Instead of just moving randomly, it calculates the shortest route to the destination.

4. Utility-Based Agents

- Optimizes performance using a "utility function."
- Example: Uber AI (Ride-Hailing Service)
 - Chooses the fastest, safest, and most profitable
 route instead of just any valid route.

5. Learning Agents 🗐

- •Improves performance over time using experience.
- •Example: Al Chess Player
 - Learns from **past games** and improves its strategy over time.

5. Real-World Al Examples

Application	Environment Type	Key Feature
Self-Driving Car 🚜	Partially Observable, Stochastic, Sequential, Dynamic	Uses cameras and sensors for navigation.
Medical Diagnosis Al	Partially Observable, Stochastic, Episodic, Static	Analyzes patient symptoms and predicts diseases.
Al Chess Player 1	Fully Observable, Strategic, Sequential, Static	Uses game algorithms to calculate best moves.
Stock Market Al	Partially Observable, Stochastic, Sequential, Dynamic	Predicts trends and automates investments.
Al Chatbot (Siri, Alexa)	Partially Observable, Stochastic, Sequential, Dynamic	Understands speech and responds intelligently.
Al Web Crawler	Fully Observable, Deterministic, Sequential, Static	Searches and indexes web content automatically.

THANK YOU!

nelsayad@horus.edu.eg

