

2. Very Basic of Information Geometry for TRPO

# number	2
Select Se	appendix

Introduction

In Trust-Region Policy Optimization(TRPO), some concepts of information geometry are used to update the parameters efficiently. This post is written to introduce those algorithms briefly to **help** understand TRPO. If you are already familiar with

KL Divergence, Metric Tensor, Fisher Information Matrix, Natural (Policy) Gradient, you may skip this post.

1. KL Divergence

Bregman Divergence and KL Divergence

Bregman Divergence

Consider a convex function ψ and its hyperplane touching it at ξ_0 . We evaluate how much higher $\psi(\xi)$ relative to this tangent hyperplane. The difference is written as:

$$D_{\psi}[\xi:\xi_0]=\psi(\xi)-\psi(\xi_0)-
abla\psi(\xi_0)\cdot(\xi-\xi_0)$$

This is called the *Bregman divergence* derived from a convex function ψ .

Now consider a specific convex function

$$\psi(\xi) = -\sum_{i=1}^n \xi_i \log \xi_i,$$

which is essentially an entropy-like function.

The corresponding Bregman divergence is

$$D_{\psi}[\xi:\xi'] = \sum_{i=1}^n \left(\xi_i \log rac{\xi_i}{\xi_i'} - \xi_i + \xi_i'
ight).$$

When $\sum {\xi_i} = \sum {\xi_i}' = 1$, it reduces to the Kullback-Leibler Divergence (KL Divergence):

$$D_{KL}(p:q) = \sum_i p(i) \log rac{p(i)}{q(i)}$$

where p(i) and q(i) are the discrete probability distributions.

Properties of KL Divergence

- 1. $D_{KL}(P:Q) \geq 0$, equality holds if and only if P=Q
- 2. In general, $D_{KL}(P:Q)
 eq D_{KL}(Q:P)$
- 3. KL divergence is coordinate independent (invariant under reparameterization).
- 4. KL divergence is jointly convex.

From property 1 with uniform distribution Q, it can be shown that entropy of the arbitrary probability distribution P with dimension N is equal or less than $\log N$.

2. Metric Tensor

2.1 Definition of Metric Tensor

A metric tensor on an n-dimensional manifold is a symmetric (0,2)-tensor that defines the inner product (and hence "distances") between tangent vectors. Concretely, in local coordinates, it can be represented by an $n \times n$ positive-definite (PSD) matrix M. Given two vectors p and q in that coordinate system,

$$p \cdot q = p^T M q$$

For the basis vector e_i and e_j ,

$$e_i \cdot e_j = g_{ij}$$

where g_{ij} is (i,j) component of the metric tensor M. In two-dimension Cartesian coordinates, metrix tensor is simply the identity matrix $I=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$.

2.2 Metric Tensor in Polar Coordinates

The transformation between Cartesian (x,y) and polar (r,θ) is given by:

$$egin{cases} x = r\cos heta \ y = r\sin heta \end{cases}$$

The transformation of the basis vectors is expressed with Jacobian:

$$\left(egin{array}{c} e_r \ e_ heta \end{array}
ight) = \left(egin{array}{cc} rac{\partial x}{\partial r} & rac{\partial y}{\partial r} \ rac{\partial x}{\partial heta} & rac{\partial y}{\partial heta} \end{array}
ight) \left(egin{array}{c} e_x \ e_y \end{array}
ight) = \left(egin{array}{ccc} \cos heta & \sin heta \ -r \sin heta & r \cos heta \end{array}
ight) \left(egin{array}{c} e_x \ e_y \end{array}
ight)$$

With the transformation above, we can construct the metric tensor as $\left(egin{array}{cc} 1 & 0 \ 0 & r^2 \end{array}
ight)$

2.3 Distance and Volume

*Einstein Summation Convention

We will use Einstein summation convention. When the same index appears twice in one term, summation is automatically taken over this index even without the summation symbol.

 $A=A^ie_i$ means $A=\sum A^ie_i$ unless specified otherwise.

Length and Volumes

Using Einstein summation convention, an infinitesimal line element ds is given as:

$$ds^2=g_{ij}dx^idx^j$$

Let g be the **determinant** of the metric tensor, then the volume element is:

$$dV = \sqrt{g} dx^1 dx^2 \cdots$$

For example, the length element in the polar coordinates is given as $ds^2=dr^2+r^2d\theta^2$, and the volume(area) element is $dA=rdrd\theta$

3 Statistical Manifold and FIM as Metric Tensor

3.1 Statistical Manifold

A statistical manifold is a differentiable manifold whose each point corresponds to a probability distribution. For example, consider the family of univariate Gaussian distributions: $\mathcal{N}(\mu, \sigma^2)$, indexed by coordinates $\xi = (\mu, \sigma^2)$, $\sigma > 0$.

Rather than measuring the distance between two points (μ_1,σ_1) and (μ_2,σ_2) simply by Euclidean norm $\sqrt{(\mu_1-\mu_2)^2+(\sigma_1^2-\sigma_2^2)^2}$, one typically wants a measure that reflects how different the corresponding distributions are. This naturally motivates using *KL divergence* (or a symmetrized version).

3.2 KL Divergence and Fisher Information Metric

Line Element of Statistic Manifold

Let us define the manifold M whose point denotes probability distribution $p(x,\theta)$ with the parameter $\theta=(\theta^1,\theta^2,...,\theta^n)$. The distance of two points on M is defined as KL divergence.

Strictly, KL divergence is a 'divergence', not a 'distance' since it is not commutable:

$$D(p:q) \neq D(q:p)$$
.

Instead, we can define the 'distance' as $D(p:q)=\frac{1}{2}\left(D_{KL}(p:q)+D_{KL}(q:p)\right)$. However, it gives same result as what we discuss in this chapter. So, we will use the term distance freely.

For convenience, we denote $p(x, \theta)$ by θ and D_{KL} as D.

The distance of the two sufficiently close point can be approximated by Taylor series:

$$D(heta: heta')pprox D(heta': heta') +
abla_ heta D(heta: heta')^T|_{ heta= heta'}(heta- heta') + rac{1}{2}(heta- heta')^T
abla_ heta^2 D(heta: heta')|_{ heta= heta'}(heta- heta')$$

From simple calculation, it can be easily shown that first two terms equal to zero - that is:

$$D(heta: heta') = rac{1}{2}(heta- heta')^T
abla^2_ heta D(heta: heta')|_{ heta'= heta}(heta- heta') + O(\|\Delta heta\|^3)$$

For a matrix $F = \nabla^2_{\theta} D(\theta:\theta')|_{\theta'=\theta}$, the infinitesimal line element ds can be written as:

$$ds = D(heta: heta + d heta) = rac{1}{2} F_{ij} d heta^i d heta^j$$

To express in metric form, we can simply modify the distance to square root of KL divergence and multiply an appropriate scalar. Then, the length element is:

$$ds^2 = F_{ij}d\theta_i d\theta_j.$$

Now, we can define the matrix F as the metric tensor of manifold M.

Fisher Information Matrix

The matrix F defined above is called **Fisher Information Matrix(FIM)**.

FIM is defined in three ways and they both have the same results.

FIM is defined as:

- 1. Covariant of the Score Function
- 2. Expected Hessian of Negative Log-likelihood (NLL)
- 3. Hessian of KL Divergence

By the definition, FIM is calculated as:

$$F = \mathrm{E}_{x \sim p_{ heta}}[\partial_i \log p(x, heta) \partial_j \log p(x, heta)] = \mathrm{E}_{x \sim p_{ heta}}[-
abla^2 \log p(x, heta)]$$

FIM of an Univariate Gaussian Distribution

Let us calculate the FIM of an univariate Gaussian distribution:

$$f(x:\mu,v)=rac{1}{\sqrt{2\pi v}}e^{-rac{(x-\mu)^2}{2v}}.$$

NLL is:

$$L:=-\log f=rac{(x-\mu)^2}{2v}+rac{\log v}{2}+\log\sqrt{2\pi}$$

To find Hessian of NLL:

$$egin{aligned}
abla_{\mu}^2 L &= rac{1}{v} \
abla_{\mu v}^2 L &=
abla_{v \mu}^2 L &= -rac{x-\mu}{v^2} \
abla_v^2 L &= rac{(x-\mu)^2}{v^3} - rac{1}{2v^2} \end{aligned}$$

By calculating the expectation, we can get FIM of f:

$$F=\left(egin{array}{cc} rac{1}{\sigma^2} & 0 \ 0 & rac{1}{2\sigma^4} \end{array}
ight)$$

If we construct a manifold M with this metric, the line element becomes

$$ds^2 = rac{1}{\sigma^2} d\mu^2 + rac{1}{2\sigma^4} d(\sigma^2)^2$$

or

$$ds^2 = rac{1}{v} d\mu^2 + rac{1}{2v^2} dv^2$$

The length of a curve $C=(\mu(\lambda),v(\lambda))$ on a manifold M is:

$$egin{split} l &= \int \sqrt{(ds^2)} \ &= \int \sqrt{\left(rac{1}{v}d\mu
ight)^2 + \left(rac{1}{2v^2}dv
ight)^2} \ &= \int_{\lambda_0}^{\lambda_1} \sqrt{\left(rac{\mu'(\lambda)}{v(\lambda)}
ight)^2 + \left(rac{v'(\lambda)}{2\{v(\lambda)\}^2}
ight)^2} \, d\lambda \end{split}$$

4. Natural Gradient

4.1 Steepest Descent in Statistic Manifold

Given a function $L(\xi)$ in a manifold M with metric tensor F, let us change the current point ξ to $\xi+d\xi$, and see how the value of $L(\xi)$ changes, depending on the direction $d\xi$. We search for the direction in which L changes most rapidly with the step-size $\|d\xi\|^2=g_{ij}d\xi^id\xi^j$ being fixed to ϵ^2 .

We put $d\xi = \epsilon a$ and require that $||a||^2 = g_{ij}a^ia^j = 1$.

Then, the steepest direction of L is the maximizer of

$$L(\xi + d\xi) - L(\xi) = \epsilon \nabla L(\xi) \cdot a$$

under the constraint of $\|a\|=1$.

By Lagrange multiplier, this problem equivalents to maximizing $\epsilon \nabla L(\xi) \cdot a - \lambda g_{ij} a^i a^j$ with a

Therefore, the steepest direction is obtained as

$$a \propto F^{-1} \nabla L(\xi)$$

We call

$$\tilde{\nabla}L(\xi) = F^{-1}(\xi)\nabla L(\xi)$$

the natural gradient of L , where $ilde{
abla}=F^{-1}
abla$ is the natural gradient operator.

In the univariate Gaussian manifold, the natural gradient operator is

$$ilde{
abla}_{\mu}=\sigma^2
abla_{\mu}$$

$$ilde{
abla}_{\sigma^2} = 2\sigma^4
abla_{\sigma^2}.$$

In general, computing ${\cal F}^{-1}$ is computational heavy especially when the dimension of ${\cal F}$ is large.

In this case, one can leverage conjugate gradient methods to calculate the inverse of ${\cal F}$ efficiently.

4.2 Natural Policy Gradient

Let us consider a system having state space $X = \{x\}$ and action space $U = \{u\}$. the FIM at the current state x is defined by:

$$\mathbf{F}(heta|x) = \int \pi(u|x)
abla_{ heta} \log \pi(u|x) \{
abla_{ heta} \log \pi(u|x) \}^T du$$

where x and u are size n vectors.

The entire FIM is its expectation along all the trajectories,

$$\mathbf{G}(heta) = \int d^\pi(x) \mathbf{F}(heta|x) dx.$$

The natural gradient method, called the *natural policy gradient* or *natural actor-critic*, is given by

$$heta_{t+1} = heta_t + \eta G^{-1}(heta_t)
abla_ heta J(heta_t).$$

It is known that natural gradient is saturation free: it is safe from the gradient vanishing problem.

Manifold Optimization

Finally, once a Riemannian structure (metric) is identified—be it via the Fisher Information Matrix or otherwise—one can generalize many standard Euclidean optimization algorithms (e.g., gradient descent, Newton's method) to *manifold optimization* methods, by replacing gradients and Hessians with their "natural" (i.e., covariant) versions on the manifold.