MATH 173 PROBLEM SET 4

Stepan (Styopa) Zharkov

April 27, 2022

Problem 1. TODO

Solution.

(a) This problem is a simple computation. We see that, with a change of variables z = x - a, we have

$$\hat{f}_a(y) = \mathcal{F}(f(x-a))(y)$$

$$= \int e^{-ixy} f(x-a) dx$$

$$= \int e^{-i(z+a)y} f(z) dx$$

$$= e^{iay} \int e^{-izy} f(z) dx$$

$$= e^{iay} \hat{f}(y),$$

as we wanted. \Box

(b) This problem is even simpler computation. We see that

$$\hat{g_a}(y) = \mathcal{F}(e^{ixa}f(x))$$

$$= \int e^{-ixy}e^{ixa}f(x)dx$$

$$= \int e^{-ix(y-a)}f(x)dx$$

$$= \hat{f}(y-a),$$

as we wanted. \Box

Problem 2. TODO

Solution.

(a) This problem is also computation.

$$(\mathcal{F}\chi_{(-a,a)}(y)) = \int_{-\infty}^{\infty} e^{-ixy} \chi_{(-a,a)}(x) dx$$

$$= \int_{-a}^{a} e^{-ixy} dx$$

$$= \begin{cases} -\frac{i}{y} \left(e^{-iay} - e^{iay} \right) & \text{if } y \neq 0 \\ 2a & \text{if } y = 0 \end{cases}$$

◁

(b) Note that since $y \in \mathbb{R}$ and a > 0, we know $iy - a \neq 0$ and $iy + a \neq 0$ so we can divide by them. So,

$$\begin{split} (\mathcal{F}(e^{-a|x|})(y) &= \int_{-\infty}^{\infty} e^{-ixy} e^{a|x|} dx \\ &= \int_{0}^{\infty} e^{-x(iy+a)} dx + \int_{-\infty}^{0} e^{-x(iy-a)} dx \\ &= \left[-\frac{1}{iy+a} e^{-x(iy+a)} \right]_{0}^{\infty} + \left[-\frac{1}{iy-a} e^{-x(iy-a)} \right]_{-\infty}^{0} \\ &= \frac{1}{iy+a} - \frac{1}{iy-a} \end{split}$$

because a > 0.

(c) In this problem, we will use repeated integration by parts. We see that executing integration by parts, we have

$$\begin{split} \mathcal{F}(|x|^n e^{-a|x|})(y) &= \int_{-\infty}^{\infty} |x|^n e^{-ixy-a|x|} dx \\ &= \int_{-\infty}^{0} (-x)^n e^{-ixy+ax} dx + \int_{0}^{\infty} x^n e^{-ixy-ax} dx \\ &= \int_{-\infty}^{0} (-x)^n e^{-ix(y-a)} dx + \int_{0}^{\infty} x^n e^{-ix(y+a)} dx \\ &= \frac{-n}{yi-a} \int_{-\infty}^{0} (-x)^{n-1} e^{-ix(y-a)} dx + \frac{n}{yi+a} \int_{0}^{\infty} x^{n-1} e^{-ix(y+a)} dx. \end{split}$$

Note that the boundary terms vanish in the integration by parts. Repeating integration by parts n times, we see that

$$\mathcal{F}(|x|^n e^{-a|x|})(y) = (-1)^n \frac{n!}{(yi-a)^n} \int_{-\infty}^0 e^{-ix(y-a)} dx + \frac{n!}{(yi+a)^n} \int_0^\infty e^{-ix(y+a)} dx$$
$$= (-1)^{n+1} \frac{n!}{(yi-a)^{n+1}} + \frac{n!}{(yi+a)^{n+1}},$$

and $yi \pm a$ does not vanish because a > 0.

Problem 3. TODO

Solution.

1. The solution to this is straightforward. As Tadashi Tokieda would say, "follow your nose". First, let f(x) = f(-x). Then, letting z = -x power a change of variables, we see that

$$\hat{f}(y) = \int_{-\infty}^{\infty} e^{-ixy} f(x) dx$$

$$= \int_{-\infty}^{\infty} -e^{izy} f(-z) dz$$

$$= \int_{-\infty}^{\infty} e^{izy} f(-z) dz$$

$$= \int_{-\infty}^{\infty} e^{-iz(-y)} f(z) dz$$

$$= \hat{f}(-y).$$

Similarly, now let f(x) = -f(-x). Then,

$$\hat{f}(y) = \int_{-\infty}^{\infty} e^{-ixy} f(x) dx$$

$$= \int_{-\infty}^{\infty} -e^{izy} f(-z) dz$$

$$= \int_{-\infty}^{\infty} e^{izy} f(-z) dz$$

$$= \int_{-\infty}^{\infty} -e^{-iz(-y)} f(z) dz$$

$$= -\hat{f}(-y).$$

So, the fourier transform preserves evenness and oddness.

Problem 4. TODO

Problem 5. TODO

Problem 6. TODO

Problem 7. TODO