

4 - Visits

tgoel/logout

Contests

Problems

Settings

EGOI Selection Contest

Problems

Submissions

Clarifications

Authoring

Probgate

Visits

Time Limit: 3.0s Memory Limit: 256MB Input: stdin Output: stdout

When submitting, please check that the problem listed (on the Submission page where you upload your solution) matches the problem you intend to submit.

Each of Bessie's N $(2 \leq N \leq 10^5)$ bovine buddies (conveniently labeled $1 \dots N$) owns her own farm. For each $1 \leq i \leq N$, buddy i wants to visit buddy a_i $(1 \leq a_i \leq N, a_i \neq i)$.

The collective pleasure value is initially defined to be zero. Given a permutation (p_1,p_2,\ldots,p_N) of $1\ldots N$, the visits occur as follows.

For each i from 1 up to N:

- If buddy a_{p_i} has already departed her farm, then buddy p_i remains at her own farm.
- Otherwise, buddy p_i departs her farm to visit buddy a_{p_i} 's farm. This visit causes the collective pleasure value to change by v_{p_i} ($-10^9 \le v_{p_i} \le 10^9$).

Compute the maximum possible collective pleasure value after all visits over all permutations p. Note that this value may be negative.

INPUT FORMAT (pipe stdin):

The first line contains N.

For each $1 \leq i \leq N$, the i+1-st line contains two space-separated integers a_i and v_i .

OUTPUT FORMAT (pipe stdout):

A single integer denoting the answer.

Note that the large size of integers involved in this problem may require the use of 64-bit integer data types (e.g., a "long long" in C/C++).

	input	Output
	4 2 10 3 20 4 30 1 40	90
- 1		

If p=(1,4,3,2) then

- Buddy 1 visits buddy 2's farm, increasing the collective pleasure value by 10.
- Buddy 4 sees that buddy 1 has already departed, so nothing happens.
- Buddy 3 visits buddy 4's farm, increasing the collective pleasure value by 30.
- ullet Buddy 2 sees that buddy 3 has already departed, so nothing happens.

This gives a collective pleasure value of 10 + 30 = 40.

On the other hand, if p=(2,3,4,1) then

- Buddy 2 visits buddy 3's farm, increasing the collective pleasure value by 20.
- Buddy 3 visits buddy 4's farm, increasing the collective pleasure value by 30.
- Buddy 4 visits buddy 1's farm, increasing the collective pleasure value by 40.
- ullet Buddy 1 sees that buddy 4 has already departed, so nothing happens.

This gives a collective pleasure value of 20+30+40=90. It can be shown that this is the maximum possible collective pleasure value after all visits over all permutations p.

Input	Output	
7 2 -1 3 -1 1 -1 5 10 6 10 7 10 4 10	28	

Input	Output
	- aupar

-3000000000

7

2 -1000000000

1 -1000000000

1 -1000000000

3 -1000000000

4 -1000000000

5 -1000000000

6 -1000000000

An example where the answer is (very) negative.

SCORING:

- For 10% of points, $N \leq 1000$ and $\left\lceil rac{i}{7}
 ight
 ceil = \left\lceil rac{a_i}{7}
 ight
 ceil$ for all i.
- For 10% of points, $a_i
 eq a_j$ for all i
 eq j and $v_i \ge 0$ for all i.
- For 15% of points, $v_i \geq 0$ for all i.
- For 15% of points, $a_i
 eq a_j$ for all i
 eq j.
- For 50% of points, no additional constraints.

May 2, 2021, 4:20 pm EDT