3. 3.

I. Ordre et opérations

1. L'ordre

Activité:

Comparer les Nombres A et B dans les cas suivants :

$$A = \frac{7}{15}$$
 et $B = \frac{6}{17}$.

$$A = 3\sqrt{5}$$
 et $B = \sqrt{37}$.

PP Définition :

Soient a et b deux réels.

On dit que a est inférieur ou égal b et on écrit : $a \le b$ si $a-b \le 0$.

Application:

•Comparer les nombres A et B dans les cas suivants :

$$A = \frac{2n-1}{2n}$$
 et $B = \frac{2n}{2n+1}$ avec $n \in \mathbb{N}^*$.

$$ightharpoonup A = \sqrt{a+b}$$
 et $B = \sqrt{a} + \sqrt{b}$ avec $a \in \mathbb{R}^+$ et $b \in \mathbb{R}^+$.

Propriété :(ordre et addition)

Soient a, b, c et d des nombres réels.

$$\circ$$
 Si $a \le b$, alors $a + c \le b + c$.

$$\circ$$
 Si $a \le b$ et $c \le d$, alors $a + c \le b + d$.

O Exemple:

Soient $a \le \frac{5}{7}$ et $b \le \frac{16}{7}$. On a : $a + b \le \frac{5}{7} + \frac{16}{7}$ c'est-à-dire $a + b \le \frac{21}{7}$, donc $a + b \le 3$.

Propriété :(ordre et multiplication)

Soient a, b, c, d et k des nombres réels.

o Si
$$k \ge 0$$
, alors : $a \le b$ équivalent à $ka \le kb$.

O Si
$$k \le 0$$
, alors : $a \le b$ équivalent à $ka \ge kb$.

o Si
$$0 \le a \le b$$
 et $0 \le c \le d$, alors : $ac \le bd$.

O Exemples:

• Si
$$a \le \frac{2}{\sqrt{3}}$$
 ,alors $-\sqrt{3}a \ge -2$ car $-\sqrt{3} \le 0$

• Si
$$0 \le x \le \frac{3}{2}$$
 et $0 \le y \le 2$, alors $xy \le 2 \cdot \frac{3}{2}$ c'est-à-dire $xy \le 3$.

1

// Propriété :(ordre et inverse)

Soient a et b deux nombres réels.

$$\circ \quad \text{Si } 0 \prec a \leq b \text{, alors } 0 \prec \frac{1}{b} \leq \frac{1}{a}.$$

$$\circ \quad \text{Si } a \le b < 0, \text{ alors } \frac{1}{b} \le \frac{1}{a} < 0.$$

O Exemples:

• Si $0 \prec x \leq 3$, alors : $0 \prec \frac{1}{3} \leq \frac{1}{x}$.

• Si $-\frac{5}{6} \le x < 0$, alors $\frac{1}{x} \le -\frac{6}{5} < 0$.

Propriété :(ordre et racine carrée- ordre et carré)

Soient a et b deux nombres réels.

- o Si $0 \le a \le b$, alors $\sqrt{a} \le \sqrt{b}$.
- o Si $0 \le a \le b$, alors $a^2 \le b^2$.
- o Si $a \le b \le 0$, alors $a^2 \ge b^2$.

O Exemples:

- On a $2 \le \sqrt{5}$ donc $2^2 \le \sqrt{5}^2$ c'est à dire $4 \le 5$.
- On $a-3 \le -2$ donc $(-3)^2 \ge (-2)^2$ c'est à dire $9 \ge 4$.

Application: Exercice 3 de la série.

Exercice: Exercice 4 de la série.

2. L'encadrement

Activité:

Soient x et y deux nombres réels tels que: $3 \le x \le 7$ et $2 \le y \le 5$.

Encadrer les expressions suivantes : x + y, x - y, xy et $\frac{x}{y}$.

PP Définition :

Soient a et b deux réels tels que : $a \prec b$.

Chaque inégalité parmi les doubles inégalités suivantes : $a \le x \le b$, $a \le x \le b$, $a \le x \le b$ et $a \prec x \prec b$ est appelée **encadrement** de x d'amplitude b-a.

O Exemple:

L'écriture $3,14 \prec \pi \leq 3,15$ est un encadrement de π d'amplitude 3,15-3,14=0,01.

//Propriétés :

Soient a, b, c et d des nombres réels.

- \circ Si $a \le x \le b$ et $c \le y \le d$, alors $a + c \le x + y \le b + d$ et $a d \le x y \le b c$.
- $\circ \quad \text{Si } 0 \le a \le x \le b \text{ ,alors } a^2 \le x^2 \le b^2.$
- $\circ \quad \operatorname{Si} a \le x \le b \le 0 \text{ ,alors } b^2 \le x^2 \le a^2.$
- O Si $a \le x \le b$ tels que a et b ont le même signe, alors $\frac{1}{b} \le \frac{1}{x} \le \frac{1}{a}$.

Application:

Soient x et y deux nombres réels tels que: $-4 \le x \le -1$ et $2 \le y \le 5$.

Encadrer les expressions suivantes : x + y, x - y, xy, $\frac{x}{y}$ et $\frac{2xy}{x^2 - y^2}$.

Exercices: Exercice 12 et 13 de la série.

II. Intervalles:

1. Droite numérique - Intervalles de R

Activité:

Soit (D) une droite rapportée au repère (O,I) tel que OI=1cm.

- 1) Placer sur l'axe D(O,I) les points A(2) et B(-3) et C($-\frac{\sqrt{8}}{\sqrt{2}}$).
- **2)** Représenter sur l'axe D(O,I) l'ensemble des points d'abscisses x dans les cas suivants:
 - 2≤*x*≤5
- $1 \le x < 4$
- $x \ge 2$
- x < 5

Les nombres x qui vérifient : $2 \le x \le 5$ représentent un intervalle noté [2,5].

Application:

Déterminer, dans chacun des cas suivants, l'intervalles auquel appartient le nombre a.

1) -3≤a≤9	2) $0 < a < \sqrt{5}$	3) 1< <i>a</i> ≤4	4) $-7 \le a < 3$
5) $a \le \sqrt{2}$	6) $a \ge 3\sqrt{7}$	7) $a < \frac{3}{7}$	a $a < \frac{3}{7}$

2. Réunion-Intersection d'intervalles :

Activité:

On considère les intervalles $I = \begin{bmatrix} -3.5 \end{bmatrix}$, $J = \begin{bmatrix} 2.7 \end{bmatrix}$ et $K = \begin{bmatrix} 6.4 \end{bmatrix}$

- 1) Représenter les intervalles I et J et K sur la droite numérique à l'aide de couleurs différentes.
- **2)** Déterminer : $I \cap J$; $J \cap K$ et $I \cap K$.

Le symbole "\cap" se lit « intersection » ou « inter ».

3) Déterminer : $I \cup J$; $J \cup K$ et $I \cup K$.

Le symbole "U" se lit « union.

O Remarques:

Soient I et J deux intervalles de IR.

- $x \in I \cap J$ signifie que $x \in I$ et $x \in J$.
- $x \in I \cup J$ signifie que $x \in I$ ou $x \in J$.

O Exemples:

$[1;5] \cap]2,6] =]2;5]$	$]-\infty;1]\cap[1,4[=\{1\}]$	$]-1;2[\cap[3,4[=\varnothing$	
$[-3;2[\cup]1;4[=[-3;4[$]-∞;3]∪[3;-	$]-\infty;3]\cup[3;-\infty[=]-\infty;-\infty[=IR$	

O Remarques:

$$IR^+ = \begin{bmatrix} 0, +\infty \end{bmatrix}$$
 $IR^{*+} = \begin{bmatrix} 0, +\infty \end{bmatrix}$ $IR^- = \begin{bmatrix} -\infty, 0 \end{bmatrix}$ $IR^{*-} = \begin{bmatrix} -\infty, 0 \end{bmatrix}$ $IR = \begin{bmatrix} -\infty; -\infty \end{bmatrix}$

II Définition :

Soit I = [a;b] un intervalle de IR tel que : $a \prec b$.

- On appelle **longueur** de I le nombre : b-a
- On appelle **centre** de I le nombre : $\frac{b+a}{2}$
- On appelle **rayon** de *I* le nombre : $\frac{b-a}{2}$

O Remarque:

La définition précédente est valable pour les intervalles: [a;b[,]a;b]et]a;b[.

O Exemple:

On considère l'intervalle : I =]-6;4[.

- **La longueur** de *I* est: l = 4 (-6) = 10
- Le centre de I est: $c = \frac{4 + (-6)}{2} = -1$
- Le **rayon** de *I* est: $r = \frac{4 (-6)}{2} = 5$

III. Valeur absolue

Activité:

Soit (D) une droite rapportée au repère (O,I) tel que OI=1cm.

- 1) Placer sur l'axe D(O,I) les points A(2) et B(4) et C(-5) et E(-2)
- 21 Donner deux abscisses ont la même distance de 0.
- **3** Calculer les distances AB; AE; AC et EB.

II Définition :

Soit $x \in IR$.

On appelle la **valeur absolue** du nombre x le nombre réel positif noté |x| tel que :

- Si $x \ge 0$, alors |x| = x.
- $\operatorname{Si} x \leq 0$, alors |x| = -x.

O Exemple:

$$|\sqrt{3}-2| = -(\sqrt{3}-2) = 2-\sqrt{3}$$
.

PP Définition :

SoientA(a) et B(b) deux points sur un axe normé. On a : AB = |b-a|.

O Exemple:

Cherchons la distance entre les points $A(\sqrt{7}-2)$ et $B(\sqrt{5}-2)$:

$$AB = \left| \left(\sqrt{5} - 2 \right) - \left(\sqrt{7} - 2 \right) \right| = \left| \sqrt{5} - \sqrt{7} \right| = -(\sqrt{5} - \sqrt{7}) = \sqrt{7} - \sqrt{5}$$

//Propriétés :

Soient $x \in IR$ et $y \in IR$. On a:

- \otimes |x| = |-x|
- $\otimes |xy| = |x||y|$
- $\otimes \left| \frac{x}{y} \right| = \frac{|x|}{|y|} \quad (y \neq 0) \qquad \otimes \left| x + y \right| \leq |x| + |y|$
- $\otimes |x-y| \ge |x|-|y|$

- $\otimes \sqrt{x^2} = |x|$
- \otimes |x| = |y| signifie x = y ou x = -y

O Exemple:

|x| = 2 signifie x = 2 ou x = -2.

Application O: Exercice 15 de la série.

Application 2:

Résoudre les équations (E_1) : |2x-5|=7 et (E_1) : |3x+6|=-2.

Exercice: Exercice 18 de la série.

//Propriétés :

Soient $x \in IR$ et $r \in IR_+^*$. On a :

- $\circ \qquad |x| \le r \text{ signifie que} : -r \le x \le r$
- $\circ \qquad \big| x \big| \ge r \text{ signifie que} : x \ge r \text{ ou } -x \ge r \text{ c'est-\`a-dire } x \in \big] \infty, -r \big] \cup \big[r, + \infty \big[\ .$

Application: Exercice 20 de la série.

- IV. Approximations-Approximations décimales
 - 1. Approximation par défaut et par excès:

// Définition :

Soit: $a \le x \le b$ ou $a \le x \prec b$ ou $a \prec x \le b$ ou $a \prec x \prec b$.

Le nombre a est appelé **approximation par défaut** de x à b-a prés.

Le nombre b est appelé **approximation par excès** de x à b-a prés.

O Exemple:

On a: $2,645 < \sqrt{7} < 2,646$.

- Le nombre 2,645 est une approximation par défaut de $\sqrt{7}$ à 2,646 2,645 = 10^{-3} prés.
- Le nombre 2,646 est une approximation **par excès** de $\sqrt{7}$ à 10^{-3} prés.

2. Valeur approchée

م. م. م.

PP Définition:

Soient $x \in IR$ et $r \in IR^{*+}$.

 $\operatorname{Si} |x - a| \le r$, on dit que a est une valeur approchée de x à r prés.

O Exemple:

On a : $|\sqrt{5} - 2,23| \le 0,01$. 2,23 est une valeur approchée de 2,23 à 0,01 prés.

Application:

Déterminer toutes les valeurs approchées de $\frac{3}{7}$ à 0,1 prés.

O Remarque:

Si $a \le x \le b$, alors $\frac{b+a}{2}$ est une valeur approchée de x à $\frac{b-a}{2}$ prés.

O Exemple:

Cherchons une valeur approchée de $\sqrt{5} + \sqrt{7}$.

On a: $2,236 \le \sqrt{5} \le 2,237$ et $2,645 \le \sqrt{7} \le 2,646$.

Alors: $4,881 \le \sqrt{5} + \sqrt{7} \le 4,883$.

Par conséquent : $(\sqrt{5} + \sqrt{7}) \in I = [4,881;4,883]$

Le centre de I est $c = \frac{4,881 + 4,883}{2} = 4,882$ et de rayon $c = \frac{4,883 - 4,881}{2} = 0,001 = 10^{-3}$

Donc 4,882 une valeur approchée de $\sqrt{5} + \sqrt{7}$ à 10^{-3} prés.

3. Approximations décimales

// Définition :

Soit x un nombre réel tel que $N \times 10^{-p} \le x \le (N+1) \times 10^{-p}$ avec $p \in IN$ et $N \in \mathbb{Z}$.

Le nombre $N \times 10^{-p}$ est appelé l'approximation décimale par défaut de x à 10^{-p} prés.

Le nombre $(N+1)\times 10^{-p}$ est appelé l'**approximation décimale par excès** de x à 10^{-p} prés.

O Exemple:

On a: $0.62 \le \frac{5}{8} \le 0.63$, C'est-à-dire $62 \times 10^{-2} \le \frac{5}{8} \le 63 \times 10^{-2}$.

Le nombre 62×10^{-2} est l'approximation décimale par défaut de $\frac{5}{8}$ à 10^{-2} prés.

Le nombre 63×10^{-2} est l'approximation décimale par excès de $\frac{5}{8}$ à 10^{-2} prés.

Application:

On pose : $x = \frac{\sqrt{7} - \sqrt{3}}{2}$.

Sachant que $1,73 < \sqrt{3} < 1,74$ et $2,64 < \sqrt{7} < 2,65$, donner l'approximation décimale par défaut et par excès de x à 10^{-2} prés.

Exercice: Exercice N° 23 de la série.

