What is Logistic Regression?

Probabilistic model that aims to explain and/or predict a binary variable from a set of explanatory variables of any type, given a set of observations. (Berkson, 1944; Cox, 1960's)

Examples:

- to study the effect of alcohol consumption on the existence (yes/no) of active pulmonary tuberculosis (TB)
- to evaluate the association between the existence (yes/no) of defects in a part and the material and temperature used in its production
- to evaluate the germination of a seed (yes/no) as a function of several experimental conditions
- to predict an individuals's voting behaviour (against or in favor of a political candidate) as a function of his/her's education level, ideologies, race and gender.

How should the response variable be described as a function of the explanatory variables?

Example: effect of the total alcohol consumption on the existence (yes/no) of active pulmonary TB

 Y_i : success occurence (1:yes/0:no) on individual i (random variable)

Logistic Regression

Rita Gaio (FCUP)

7 de Janeiro de 2019

6 / 40

とくら

Response as a function of the explanatory variable?

Linear regression...

To model the conditional probability of the occurence of the success:

$$\pi(x) = P(Y = 1 | X = x)$$

7 de Janeiro de 2019

\$ 6 G

- takes values between 0 and 1
- graph with an S-shape (epidemiological interpretation...)

Response as a function of the explanatory variable Logistic model for populacional growth (Verhulst, 1838)

$$f(x) = \frac{1}{1 + be^{-rx}}$$

Response as a function of the explanatory variable

かるの 9 / 40

Response as a function of the explanatory variable

つるの

10 / 40

Simple (univariate...) logistic regression model

$$\pi(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}} \Leftrightarrow \left| \log \left(\frac{\pi(x)}{1 - \pi(x)} \right) = \beta_0 + \beta_1 x \right|$$

かるの

11 / 40

Multiple (multivariate...) logistic regression model

- $X_1, X_2, \ldots, X_{\rho}$ explanatory variables
- $ullet x = (x_1, x_2, \dots, x_p)$ vector of observations from an individual
- $\beta = (\beta_1, \beta_2, \dots, \beta_p)$ vector of parameters

$$\log\left(\frac{\pi(x)}{1-\pi(x)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$\pi(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)}}$$

 $=\frac{P(event)}{P(non event)}$ Definition: The *odds* of an event is $\frac{P(event)}{1-P(event)}$

Let E be an exposure variable (1: exposed; 0: nonexposed)

 $)=eta_{0}+eta_{1}oldsymbol{E}\,ig|$ it can be shown that $(1-\pi(E))$ $\pi(E)$ For the model log

$$e^{eta_1} = rac{\operatorname{odds}(Y=1|E)}{\operatorname{odds}(Y=1|\overline{E})} = OR(Y=1|E \ vs \ \overline{E}) \qquad \mathsf{Odds} \ \mathsf{Ratio}$$

Suppose Y=1 denotes the presence of a disease and $\mathit{OR}(Y=1|E\ \mathit{vs}\ E)=$ 0.2. Then:

the odds for the disease among the exposed individuals is 20% of the

- odds for the disease among the nonexposed individuals
- the odds for the disease among the nonexposed individuals is 5 times the the odds for the disease among the exposed individuals
- individuals is 5 times the odds for the non-existence of the disease the odds for the non-existence of the disease among the exposed among the nonexposed individuals

Odds-ratio is invariant under study design (cohort or case-control) Fact: $OR(Y = 1|E \text{ vs }\overline{E}) = OR(E = 1|Y \text{ vs }\overline{Y})$

Remark: Odds-Ratio and Relative Risk

The relative risk of the exposure variable E on the response Y is

$$P(Y = 1|\overline{E})$$
 $P(Y = 1|\overline{E})$

Rmk: If Y is binary, then P(Y=1|E)=E(Y|E)

It follows from the definitions of OR and RR that

$$rac{OR}{RR} = rac{1-P(Y=1|\overline{E})}{1-P(Y=1|E)}.$$

In particular, if Y=1 denotes the presence of a disease, OR and RR are close whenever the disease is rare

Remark: Odds-Ratio and Relative Risk

Relationship between OR and RR depending on the incidence of the outcome among the nonexposed(JAMA- Journal of the American Medical Association, 1998).

The 3 most used models

$$logit(\pi(x)) = log\left(\frac{\pi(x)}{1 - \pi(x)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$probit(\pi(x)) = \Phi^{-1}(\pi(x)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$\log(-\log(1 - \pi(x))) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Logistic Distribution

Normal (Gaussian) Distribution

μ=0, σ²=10,— μ=0, σ²=5.0,— μ=-2, σ²=0.5, μ=0, σ2=0.2,--

0.8

9.0

0.2

0.1

0.2

7 de Janeiro de 2019

Logistic Regression

000

The logistic model is the most popular

- all models can be applied to prospective data
- Breslow & Day, 1981; Prentice & Pike, 1979: the logistic model can be applied to either retrospective or cross-sectional data
- Prospective studies (cohort):

$$X_1, X_2, \ldots, X_{\rho} \longrightarrow Y$$

Ex: select a sample of newborns and register their sex, age, breastfeed or formula feed, ... Follow the sample for a year and register the occurence (or not) of respiratory infections

Retrospective Studies (case-control):

$$X_1, X_2, \ldots, X_{\rho} \leftarrow Y$$

Ex: several newborns go to a hospital with respiratory infections; their sex, age and method of feeding is registered.

The logistic model is the most popular

- easy (epidemiological) interpretation of the results:
- direct modelling of the logarithm of the odds for success
- \triangleright exp(β_i): odds-ratio
- $\pi(x)$: risk for the disease under conditions x (only for prospective
- the logit is the canonical link function for the binomial distribution hence there exists a sufficient and minimal statistics for eta
- is implemented in the most common softwares of statistical analyses (SPSS, R, STATA, SAS, ...)

How are categorical explanatory variables included?

- categorical variables (gender, age group, severity of a disease, ...) are represented by a set of auxiliary variables, denoted by dummy variables, or simply dummies.
- a categorical variable X with k+1 categories, $\{1,2,...,k,k+1\}$ requires k binary dummies $Z_1, Z_2, ..., Z_k$
- ullet for $i \in \{1,2,...,k\}$ each dummy Z_i is the indicator variable for category i.

$$Z_i(x) = 1$$
 if $x = i$
 $Z_i(x) = 0$ if $x \neq i$

How are categorical explanatory variables included?

- ullet there is no dummy for the last category, k+1; this is sad to be the reference category.
- ullet the reference category can be any category of X; without loss of generality, it was chosen to be the last one, above.
- one that is the healthiest and usually not associated with the outcome. • in Epidemiology, it is common to choose the reference category as the

How are categorical explanatory variables included? example

Let X denote the age class of an individual, with the following possible values

$$1:<40 \text{ anos}, 2:40 \le \text{anos} \le 65, 3:>65 \text{ anos}.$$

For example, let hte first class be the reference class. The variable X will be represented by **two dummies**, Z_2 and Z_3 , associated with classes 2 and 3, respectively.

- a 44 years-old individual is represented by $(z_2, z_3) = (1, 0)$
- a 32 years-old individual is represented by $(z_2, z_3) = (0, 0)$
- a 68 years-old individual is represented by $(z_2, z_3) = (0, 1)$

Remark: Due to the use of dummies, it is recommended to code all binary variables using 0's and 1's. The reference category will be that associated with 0.

Model 1:

$$\log\left(rac{\pi(E)}{1-\pi(E)}
ight)=eta_0+eta_1E,$$

E exposure variable

It was already seen that

$$e^{eta_1} = OR(Y = 1 | E \text{ vs } \overline{E}).$$

• Model 2:

$$\log\left(rac{\pi(X)}{1-\pi(X)}
ight)=eta_0+eta_1X,$$

X continuous variable

It can be seen that (maths...)

$$e^{\beta_1} = OR(Y = 1|X + 1 \text{ vs } X).$$

Question: what happens to OR when X increases 3 units?

Logistic Regression

Rita Gaio (FCUP)

Model 3:

$$\log\left(rac{\pi(X)}{1-\pi(X)}
ight)=eta_0+eta_1X, \qquad X$$
 categ

X categorical with k categories

The model has to include the k-1 dummies of X, say X_1 , ..., X_{k-1} :

$$\log\left(\frac{\pi(X)}{1-\pi(X)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_{k-1} X_{k-1}$$

Assuming that the k^{th} category is the reference category, it can be shown that (maths...)

$$eta_1 = OR(Y = 1 | X_1 \text{ vs } X_k)$$
 $eta_2 = OR(Y = 1 | X_2 \text{ vs } X_k)$

$$e^{\beta_{k-1}} = OR(Y = 1|X_{k-1} \text{ vs } X_k)$$

Interpretation of the parameters eta

Model 4: (generic model)

$$\log\left(rac{\pi(X)}{1-\pi(X)}
ight)=eta_0+eta_1X_1+eta_2X_2+...+eta_pX_p,\quad X_1,...,X_p ext{ of any type}$$

Each parameter β_i can only be interpreted whenever all the remaining variables $X_1, ..., X_{i-1}, X_{i+1}, ..., X_{\rho}$ are fixed

Interpretation of the parameters - example

year-old and its goal was to relate the incidence of pulmonary infections with A study conducted by Payne, $1987,^1$ comprised 2074 children less than 1the type of milk being administered and the sex of the child.

	Only Formula	Breast Feeding	Only Breast
	Milk	with Supplement	Feeding
Boys	77/458	19/147	47/494
Girls	48/384	16/127	31/464

We say we have 6 covariate patterns.²

- binary response: each studied children either has or not a pulmonary infection
- explanatory variables: sex (2 categories) and type of milk (3 categories
 - 2 dummies)

² padrões de covariáveis

Rita Gaio (FCUP)

7 de Janeiro de 2019

¹Payne, C. (Ed.), The GLIM System Release 3.77 Manual. Oxford: Numerical Algorithms Group

Results from the fitting of the logistic regression model:

	Estimate	Std. Error	z value	<i>p</i> -value
Intercept	-1.613	0.112	-14.35	<0.001
sexGirl	-0.313	0.141	-2.22	0.027
foodBreast	699'0-	0.153	-4.37	< 0.001
foodSuppl	-0.173	0.206	-0.84	0.401

Start by noting the reference categories:

- the reference category for sex is 'being a boy'
- the reference category for type of feeding is 'only formula milk'

Interpretation:

only adapted milk is $e^{-1.613} = 0.20$. The probability $\frac{64}{64}$ not having an infection is 5 times greater than the probability for having an infection. ullet $eta_0 = -1.613
ightarrow ext{the odds for a pulmonary infection in boys receiving}$

Interpretation of the parameters - example

	Estimate	Std. Error	z value	<i>p</i> -value
Intercept	-1.613	0.112	-14.35	<0.001
sexGirl	-0.313	0.141	-2.22	0.027
foodBreast	699'0-	0.153	-4.37	< 0.001
foodSuppl	-0.173	0.206	-0.84	0.401

Interpretation (cont'n):

• $\beta_{sexGirl} = -0.313 \rightarrow OR(infection | Girl \ vs \ Boy) = exp(-0.313) = 0.73$ Equivalently, the odds for the infection among girls is 100% - 73%The odds ratio for the infection among girls is 0.73 times the odds ratio among boys, for the same type of feeding. 27% lower than the odds among boys.

Or else, the odds for the infection among boys is 1/0.73=1.37 times the odds among girls (therefore 37% higher).

Being a boy is positively associated with the infection (while being girl is negatively associated)

Interpretation of the parameters - example

	Estimate	Std. Error	z value	<i>p</i> -value
Intercept	-1.613	0.112	-14.35	<0.001
sexGirl	-0.313	0.141	-2.22	0.027
foodBreast	-0.669	0.153	-4.37	< 0.001
foodSuppl	-0.173	0.206	-0.84	0.401

Interpretation (cont'n):

being breastfed is exp(-0.669) = 0.51 times the odds for an infection Equivalently, in comparison with formula milk, breast-feeding reduces ullet $eta_{foodBreast} = -0.669
ightarrow ext{the odds for an infection among children}$ among children being fed only with formula milk. the odds for an infection by approximately half.

Estimation of the parameters eta: maximum likelihood

•
$$\log\left(\frac{\pi(x_i)}{1-\pi(x_i)}\right) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi}$$

 $(Y_i) \sim B(1, \pi(x_i)); \quad P(Y_i = y_i) = \pi(x_i)^{y_i} (1 - \pi(x_i))^{1-y_i}$ • Y_1, \ldots, Y_n random sample (r.s.)

ullet $y=(y_1,\ldots,y_n)$ realization of the random sample

likelihood function
$$L(eta \,|\, y) = \prod_{i=1}^n \pi(x_i)^{y_i} (1-\pi(x_i))^{1-y_i}$$

Problem 1: To find β maximizing L.

$$\ell(\beta \, | \, y) = \log(L)(\beta | y)$$

$$= \sum_{i=1}^{n} (y_i \ln(\pi(x_i)) + (1-y_i) \ln(1-\pi(x_i)))$$

$$= \sum_{i=1}^{n} (y_i x_i^t \beta - \log(1+e^{x_i^t \beta})) \qquad x_i^t = (1, x_{1i}, \dots, x_{pi})$$

Problem 2: To find β maximizing ℓ .

In several models, $\ell(\beta)$ is strictly concave and upper bounded hence it has a unique (global) maximum.

Maximum Likelihood Estimator MLE:

$$\widehat{eta}$$
 such that $\dfrac{\partial \ell}{\partial eta_j}(\widehat{eta}) = 0, \quad j = 0, 1, \ldots, p$ likelihood equations $(p+1)$

 \Rightarrow estimation of β requires iterative numerical algorithms The likelihood equations are $\overline{ ext{nonlinear}}$ on eta

Estimation of β : properties of the MLE

 $\widehat{\theta}_{MV}^{(n)}$ MLE of θ associated with a r.s. Y_1, Y_2, \ldots, Y_n $\theta^{\#}$ real value of θ

- (a) assymptotic existence and uniqueness
- (b) $\widehat{\theta}_{MV}^{(n)}$ assimptotically unbiased

$$E(\widehat{ heta}_{MV}^{(n)}) \stackrel{n \to +\infty}{\longrightarrow} \theta^{\#}$$

- (c) $\widehat{\theta}_{MV}^{(n)} \stackrel{?}{\sim} N(\theta^{\#}, I^{(-1)}(\theta^{\#})$
- (d)(consistency, efficiency, sufficiency, invariance)
- ★ One can use hypothesis tests (and confidence intervals) to test $H_0:eta=eta_0$ and to evaluate the goodness of fit of the model

- ★ MLE with infinite values
- ★ finite LME values but with large standard deviations
- compromised assymptotic convergence (invalid inferences)

Logistic Regression

Rita Gaio(FCUP)

Separability

(assymptotic properties of the MLE are not applicable; inference from the success has a very low (or high) prevalence hypothesis tests is not valid)

Eg: Identification of factors associated with low-weight newborns. In 320 newborns, 14 (4.4%) were low-weighted.

for a particular (combination of) explanatory variables, almost all observations correspond to successes (or failures)

Eg: next file

 there exists a continuous explanatory variable that essencially predicts the success

Eg: next file

Separability

- 26 adult men (Margolese, 1970)
- classified as straight/gay) only from the androgen and estrogen values? Question: Is it possible to predict the sexual orientation (only


```
data = hormone, family = binomial)
≽mod1 <- glm(orientation ~ estrogen +androgen,
```

```
Warning messages:
```

```
1: glm.fit: algorithm did not converge
```

2: glm.fit: fitted probabilities numerically 0 or 1 occurred

➤ summary(mod1)

Coefficients:	Estimate	Std. Error	z value	Pr(> z)
<pre>(Intercept)</pre>	-84,49	136095.03	-0.001	1.000
estrogen	-90.22	75910.98	-0.001	666 0
androgen	100.91	92755.62	0.001	666 0

Residual deviance: 2.3229e-09 on 23 degrees of freedom Null deviance: 3.5426e+01 on 25 degrees of freedom

A very good fitting but no significant explanatory variables!

- (generalization of the Fisher's test) exact logistic regression (1970's)
- Firth logistic regression (1993)
- ullet logistic regression with bias correction (King & Zheng, 2001)
- conditional logistic regression (small number of cases)
- Bayesian methods

Referências bibliográficas

- Hosmer, Lemeshow; Applied Logistic Regression, 2nd edition, Wiley Series in Probability and Statistics, 2000
- Kleinbaum, Klein; Logistic Regression, Springer Verlag
- Faraway; Extending the Linear Model with R, Chapman and Hall/CRC, 2006. (available online).
- Chatterjee, Hadi; Regression Analysis by Example
- McCullag, Nelder; Generalized Linear Models
- Fahrmeir; Multivariate Statistical Modelling Based on Generalized Linear Models, Springer Verlag
- German Rodriguez; Princeton University, online lecture notes, http://data.princeton.edu/wws509/
- Agresti; An introduction to categorical data analysis, 2nd edition, Wiley Series in Probability and Statistics, 1996.