

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ № 1, 2007 Электронный журнал, рег. № Π 2375 от 07.03.97

ISSN 1817-2172
http://www.neva.ru/journal

e-mail: jodiff@mail.ru

Оптимальное управление

ЗАДАЧА МНОГОКРАТНОЙ КОРРЕКЦИИ ПРИ ГЕОМЕТРИЧЕСКИХ ОГРАНИЧЕНИЯХ НА ВОЗМУЩЕНИЯ¹

Б.И. Ананьев

Россия, 620219, Екатеринбург, ул. Ковалевской, д. 16, Институт математики и механики УрО РАН, e-mail: abi@imm.uran.ru

Н.В. Гредасова

Россия, 620219, Екатеринбург, ул. Ковалевской, д. 16, Институт математики и механики УрО РАН, e-mail: gnv@imm.uran.ru

Аннотация.

Рассмотрена задача многократной коррекции для линейных управляемых систем с дискретным множеством наблюдений. Предложены некоторые алгоритмы коррекции управления и изучены их свойства. В качестве приложения исследован простой случай задачи выставки.

¹Статья выполнена при финансовой поддержке РФФИ, грант № 04-01-00148

1 Введение

Задача многократной коррекции служит естественным обобщением задач однократной коррекции движения, рассмотренных в работах [1-4]. Для случаев, когда возмущения стеснены интегральными ограничениями многократная коррекция изучалась в [5,6]. В работе [6] рассмотрена общая нелинейная постановка для многошаговых систем. В настоящей работе задача изучается для линейной непрерывной системы с дискретным множеством наблюдений и с геометрическими ограничениями на возмущения. Система в первом приближении описывает отклонение движения управляемого объекта от номинальной траектории. В дискретные моменты производится измерение фазового вектора с возмущением, ограниченным компактным множеством. Начальное состояние системы также содержится в компакте. В начале процесса коррекции определяется оптимальное программное управление, решающее задачу минимаксного управления по неполным данным [7]. Затем с использованием понятия информационного множества [7] в результате сравнения минимакса целевого функционала с прогнозом отыскиваются моменты коррекции программного управления. В качестве приложения полученных результатов рассмотрен простой случай задачи выставки инерциальной системы самолёта, стартующего с движущегося корабля.

2 Оценивание состояния управляемой системы

Пусть отклонение управляемого объекта от заданного движения $x^0(t) \equiv 0$ описывается в линейном приближении дифференциальным уравнением

$$\dot{x} = A(t)x + B(t)u + v(t), \quad t \in [0, T],$$
 (1)

где $x \in \mathbb{R}^n$ – фазовый вектор; $u \in \mathbb{R}^r$ – вектор управления, стесненный ограничением

$$u(t) \in U \tag{2}$$

с выпуклым компактом U; v(t) – неизвестная детерминированная функция, удовлетворяющая априорному ограничению

$$v(t) \in V \tag{3}$$

с выпуклым компактным ограничивающим множеством V; A(t), B(t) – непрерывные матрицы соответствующих размерностей. Начальное состояние

системы (1) стеснено включением

$$x_0 \in X_0, \tag{4}$$

где X_0 – выпуклый компакт. Поскольку движение системы (1) происходит вблизи начала координат, обычно считается, что компакты ограничений (2) – (4) содержат нулевые векторы.

Предположим, что фазовый вектор системы (1) недоступен для измерения. Наблюдается величина

$$y_k = C_k x(t_k) + w_k, \quad k = 1, \dots, N,$$
 (5)

в заданные моменты времени $0 \leqslant t_1 < t_2 < \ldots < t_N \leqslant T, y_k \in R^m$, rank $C_k = m$. Помеха w_k стеснена ограничением

$$w_k \in W \tag{6}$$

с выпуклым компактом W, содержащим нуль.

Введём в рассмотрение информационное множество X(t, y, u) в соответствии с определением, данным в [7], и примем его за оценку фазового вектора системы (1) в текущий момент t.

Теорема 1 Информационное множество X(t, y, u) системы (1) с измерениями (5) и ограничениями (3), (4), (6) является выпуклым компактом и определяется рекуррентно по формулам

$$X(t, y, u) = S(t, t_k)X(t_k, y, u) + \int_{t_k}^{t} S(t, \tau)B(\tau)u(\tau)d\tau + \int_{t_k}^{t} S(t, \tau)Vd\tau, \ t_k \leq t < t_{k+1}, \ k = 0, \dots, N; \ t_0 = 0, \ t_{N+1} = T;$$

$$X(t_k, y, u) = X(t_k - 0, y, u) \cap Y_k,$$

$$Y_k = \{x : C_k x \in y_k - W\}, \quad X(0, y, u) = X_0.$$
(7)

Многозначное отображение $X(\cdot,y,u)$ непрерывно по Хаусдорфу на отрезке $[t_k,t_{k+1}]$ и предел слева $X(t_k-0,y,u)$ существует для всех $k=1,\ldots,N+1$. Здесь $S(t,\tau)$ – фундаментальная матрица однородной системы (1).

Теорема устанавливается стандартными рассуждениями, аналогичными приведенным в [7]. Поскольку выпуклый компакт K однозначно определяется своей опорной функцией [8], $\rho(l\mid K)=\max_{x\in K}l'x$, из теоремы 1 получаем

Следствие 1 Опорная функция множества X(t, y, u) определяется формулами

$$\rho(l \mid X(t, y, u)) = \rho(S'(t, t_k)l \mid X(t_k, y, u)) + \int_{t_k}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau + \int_{t_k}^{t} \rho(S'(t, \tau)l \mid V)d\tau, \ t_k \leqslant t < t_{k+1}, \ k = 0, \dots, N; \ t_0 = 0,$$

$$t_{N+1} = T; \quad \rho(l \mid X(t_k, y, u)) = \inf_{p \in R^m} \{\rho(l - C'_k p \mid X(t_k - 0, y, u)) + + \rho(p \mid y_k - W)\}, \quad k = 1, \dots, N, \quad X(0, y, u) = X_0.$$
(8)

Здесь и далее символ ' означает транспонирование. В обосновании нуждается лишь вторая формула в (8). В силу предположений о матрице C_k имеем

$$Y_k = \ker C_k \oplus C'_k (C_k C'_k)^{-1} (y_k - W).$$
 (9)

Известно [8], что опорная функция пересечения выпуклого компакта и выпуклого замкнутого множества определяется операцией инфимальной конволюции. Ввиду (9) получаем $\rho(q \mid Y_k) = +\infty$, если $q \notin \text{im} C_k'$. Значит, $q = C_k' p$ и мы приходим к формуле из (8). Отметим ещё, что множество $X(t_k - 0, y, u)$ получается по формулам (7), (8), если t_k заменить на t_{k-1} , а t на t_k .

3 Задача программного управления по неполным данным

Пусть величина отклонения траектории системы (1) от нуля в конечный момент оценивается величиной $\Phi(x(T))$, где Φ – неотрицательная выпуклая и конечная функция, заданная на R^n . Введём ряд обозначений. Символом f^s далее обозначается функция $f(\cdot)$, рассматриваемая на отрезке [0,s]. Та же функция, рассматриваемая на отрезке [s,T], будет обозначаться f_s , а на отрезке $[s,\tau]$ – как f_s^{τ} , где $\tau < T$. Для сокращения записей полагаем $f^k = f^{t_k}$, $f_k = f_{t_k}$, $f_k^m = f_{t_k}^{t_m}$. Аналогично, для сигнала g и помехи g0 обозначаем g1 чаем g2 обозначаем g3.

Определим минимакс отклонения системы от нуля в конечный момент как

$$r_t(y, u) = \min_{u_t} \max_{x \in X(t, y, u)} \max_{v_t} \Phi(x(T)).$$
 (10)

Величина (10) является гарантированным результатом управления в позиции X(t,y,u), где под позицией будем понимать информационное множество в

данный момент $t \in [0,T]$. Любое управление \overline{u}_t , реализующее минимум в (10), назовём оптимальным в данной позиции.

Получим необходимое условие оптимальности. Имеем

$$r_t(y, u) = \min_{u_t} \max_{l} \{ \rho(S'(T, t)l \mid X(t, y, u)) + \int_t^T l'S(T, \tau)B(\tau) \times u(\tau)d\tau + \int_t^T \rho(S'(T, \tau)l \mid V)d\tau - \Phi^*(l) \},$$

где $\Phi^*(\cdot)$ – функция, сопряжённая к $\Phi(\cdot)$. Переходя к вогнутой оболочке и переставляя тах и тах и

$$r_{t}(y, u) = \max_{l} \{(\text{conc})[\rho(S'(T, t)l \mid X(t, y, u)) + \int_{t}^{T} \rho(S'(T, \tau) \times X(t) \mid V) d\tau - \Phi^{*}(l)] - \int_{t}^{T} \rho(-B'(\tau)S'(T, \tau)l \mid U) d\tau \}.$$
(11)

Таким образом, справедлива

Теорема 2 Пусть \bar{l} – вектор, доставляющий максимум в (11). Тогда необ-ходимо имеем

$$\bar{l}'S(T,\tau)B(\tau)\bar{u}_t(\tau) = \min_{u \in U} \bar{l}'S(T,\tau)B(\tau)u.$$

Отметим случай, когда формула (11) принимает относительно простой вид. Обозначим сумму $\rho(lS'(T,t)q\mid X(t,y,u))+\int\limits_t^T \rho(lS'(T,\tau)q\mid V)d\tau$ через $F(l;q,t,y,u),\mid l\mid \leqslant 1,\ q\in R^n.$ Ввиду выпуклости и положительной однородности функции $F(\cdot;q,t,y,u)$ получаем

Утверждение 1 Пусть $\Phi(x) = |q'x|$, где $q \in R^n$. Тогда $\Phi(x) = \max_{|l| \le 1} lq'x$ и, следовательно,

$$r_{t}(y, u) = \max\{(F(1; q, t, y, u) + F(-1; q, t, y, u))/2, F(1; q, t, y, u) - \int_{t}^{T} \rho(-B'(\tau)S'(T, \tau)q \mid U)d\tau, F(-1; q, t, y, u) - \int_{t}^{T} \rho(B'(\tau) \times S'(T, \tau)q \mid U)d\tau\}.$$
(12)

Действительно, при условиях утверждения

$$r_t(y, u) = \max_{|l| \le 1} \{(\text{conc})F(l; q, t, y, u) - \int_t^T \rho(-lB'(\tau)S'(T, \tau)q \mid U)d\tau\}.$$

Поскольку $(\text{conc})F(l;\cdot)=F(-1;\cdot)+((F(1;\cdot)-F(-1;\cdot))/2)(l+1)$, максимум по отрезку [-1,1] достигается в одной из трёх точек -1, 0 или 1. Следовательно, получаем (12).

4 Алгоритмы многократной коррекции

Введём множество допустимых продолжений сигнала

$$Y(t, \tau, y, u) = \{ y_{k+1}^j : k = m(t), j = m(\tau), x \in X(t, y, u), \\ v(\alpha) \in V, w_i \in W \}.$$
 (13)

Здесь $m(t) = \max\{i \geqslant 1: t_i \leqslant t\}$. Если $\tau \geqslant t_{k+1} > t$, то множество (13) непусто, компактно и выпукло.

Теперь можем определить прогноз гарантированного результата (10), (11) по формуле

$$r_t(\tau, y, u) = \max_{y \in Y(t, \tau, y, u)} r_\tau(y, u). \tag{14}$$

Величина (14) характеризует наихудший прогноз гарантированного результата управления, если система находится в позиции X(t,y,u) и вплоть до момента τ применяется допустимое управление u_t^{τ} . Условимся считать, что

$$r_t(\tau, y, u) = r_\tau(y, u), \quad t_k \leqslant t \leqslant \tau < t_{k+1}, \tag{15}$$

для всякого полуинтервала $[t_k, t_{k+1}), k = 0, \ldots, N$. В данной позиции с назначенным управлением $u_t(\tau), t \leqslant \tau \leqslant T$ определим минимум наихудшего прогноза по формуле

$$\underline{r}_t(y, u) = \min_{t \leqslant \tau \leqslant T} r_t(\tau, y, u). \tag{16}$$

Прежде чем формулировать алгоритмы, отметим следующее. Пусть $t_k \le t < t_{k+1}$. Тогда по формулам (8), (11) находим

$$r_{t}(y, u) = \max_{l} \{(\operatorname{conc})[\rho(S'(T, t_{k})l \mid X(t_{k}, y, u)) + \int_{t_{k}}^{T} \rho(S'(T, \tau) \times X(t \mid V)) d\tau - \Phi^{*}(l)] + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{T} \rho(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{T} \rho(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{T} \rho(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{T} \rho(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{T} \rho(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{T} \rho(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{T} \rho(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{T} \rho(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{T} l'D(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{T} l'D(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{T} l'D(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau - \int_{t}^{t} l'D(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'S(t, \tau)B(\tau)u(\tau)d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau) d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau) d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau) d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau) d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau) d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau)) d\tau + \int_{t_{k}}^{t} l'D(-B'(\tau)S'(T, \tau) d\tau + \int_{t$$

причём неравенство (17) верно для любого допустимого управления $u_{t_k}^t$. Следовательно, с учётом (15) лишь последующие за t_k измерения в моменты t_{k+1}, t_{k+2}, \ldots могут обеспечить уменьшение прогноза гарантированного результата (14).

А. Алгоритм пошаговой многократной коррекции. Будем изменять будущее управление $u_k=u_{t_k}$ лишь в некоторые моменты t_k поступления информации по формуле (5). Далее будем полагать, что $r_k(y,u)=r_{t_k}(y,u)$, $\underline{r}_k(y,u)=\underline{r}_{t_k}(y,u)$. Если в позиции $X(t_k,y,u)$ имеем неравенство

$$r_k(y, u) > \underline{r}_k(y, u), \tag{18}$$

то управление u_k , найденное на предыдущих шагах, не корректируется. В противном случае, если управление u_k к тому же не оптимально, переходим к оптимальному управлению \overline{u}_k в задаче (10). В конце процесса получаем величину $r_T(y,u)$ как максимум целевой функции $\Phi(\cdot)$, вычисленный на конечной позиции X(T,y,u), а также управление $u=u(\cdot,y)$. Это управление зависит от реализации сигнала y^N . Моменты коррекции обозначим $\{\tau_1,\tau_2,\ldots,\tau_K\}$, где $\tau_i=t_{i_l}, 1\leqslant i_1< i_2<\ldots< i_K\leqslant N$. В частности, совокупность моментов коррекции может быть пустой, что означает удачный выбор начального управления $\overline{u}_0(\cdot)$ и пошаговое уменьшение наихудшего терминального критерия независимо от реализующегося сигнала. Другой крайний случай состоит в совпадении моментов коррекции со всем множеством $\{t_1,\ldots,t_N\}$. В силу неравенства (17) минимум в равенстве (16) при $t=t_k$ можно подсчитывать по конечному множеству $\{t_{k+1},\ldots,t_N\}$.

Б. Алгоритм коррекции с уменьшенным количеством проверок. С целью уменьшения проверок неравенства (18) в позиции $X(t_k, y, u)$, где выполняется неравенство (18) и не надо корректировать будущее управление u_k , сохраняем это управление вплоть до момента

$$\vartheta_{k+1} = \underset{\tau \in \{t_{k+1}, \dots, t_N\}}{\operatorname{argmin}} r_k(\tau, y, u). \tag{19}$$

Если же в момент t_k неравенство (18) не выполняется, то полагаем $\vartheta_{k+1} = t_{k+1}$. В момент ϑ_{k+1} повторяем процедуру.

В. Алгоритм коррекции с прогнозом на один шаг. Алгоритм аналогичен А, но вместо неравенства (18) проверяется более простое неравенство

$$r_k(y, u) > r_k(t_{k+1}, y, u).$$
 (20)

В принципе, количество коррекций управления в этом алгоритме может оказаться больше, чем в алгоритме А.

Все отмеченные алгоритмы предваряются подсчётом числа r_0 и определением начального оптимального управления \overline{u}_0 . Отметим, что построение множеств X(t,y,u) с помощью опорных функций (8) — достаточно сложная задача. Поэтому часто прибегают к аппроксимации сверху указанных множеств эллипсоидами или прямоугольниками [9,10]. Аппроксимация приводит к оценкам сверху для величин (11), (14).

5 Основные результаты

Обозначим сигнал, реализующийся в системе (1) – (6) при u=0, через \widetilde{y} . Наблюдаемый сигнал представим как $y_k=\widetilde{y}_k+C_kz_k$, где $z_k=z(t_k)$ – решение системы (1) при $x_0=0,\,v\equiv0,\,u\neq0$. Тогда в силу линейности уравнений получим, что

$$X(t, y, u) = X(t, \widetilde{y}, u) + z(t). \tag{21}$$

Утверждение 2 Если в момент t_k назначается управление \overline{u}_k , оптимальное в задаче (10), то для всякого прогноза справедливы неравенства $r_k(\tau, y, u) \le r_k(y, u)$, $\tau \in \{t_{k+1}, \ldots, t_N\}$. Если в дополнение к сказанному момент t_k является моментом коррекции в алгоритме A, то указанные неравенства превращаются в равенства для всякого $\tau \in \{t_{k+1}, \ldots, t_N\}$.

Действительно, если бы $r_k(\tau,y,u) > r_k(y,u)$, то нашлось бы такое продолжение $y_{k+1}^l \in Y(t_k,\tau,y,u)$, $l=m(\tau)$, сигнала y^k , что $r_{\tau}(y,u) > r_k(y,u)$. Значит, существует вектор $x \in X(\tau,y,u)$ и помеха v_{τ} , порождающие вместе с управлением \overline{u}_k значение x(T), для которого $\Phi(x(T)) > r_k(y,u)$. Но это невозможно в силу выбора управления \overline{u}_k . Второе утверждение леммы вытекает из определения момента коррекции в алгоритме A.

С учётом утверждения 2 получаем теорему.

Теорема 3 Пусть в системе (1) – (6) при u=0 реализуется некоторый сигнал \widetilde{y}^N , и зафиксировано начальное оптимальное управление \overline{u}_0 . Тогда алгоритм A однозначно определяет последовательность $\{\tau_1, \tau_2, \ldots, \tau_K\}$, $\tau_i = t_{i_k}, \ 1 \leqslant i_1 < \ldots < i_K \leqslant N$, моментов изменения управления. При этом управление u^T , формируемое алгоритмом на отрезке $[\tau_i, \tau_{i+1}]$, совпадает с оптимальным управлением \overline{u}_{τ_i} в задаче (10), $i=1,\ldots,K-1$. Гарантированные значения $r_i = r_{\tau_i}(y,u)$ критерия качества образуют невозрастающую последовательность:

$$r_0 \geqslant r_1 \geqslant \ldots \geqslant r_K.$$
 (22)

Здесь имеют место строгие неравенства $r_i > r_{i+1}$ тогда и только тогда, когда реализуется не самый худший сигнал из множества $Y(\tau_i, \tau_{i+1}, y, u)$.

Аналогичные теоремы можно сформулировать и для алгоритмов Б и В.

6 Примеры

1) Вначале рассмотрим иллюстративный пример. Дана скалярная система $\dot{x}=u, \mid u \mid \leqslant \mu, \mid x_0 \mid \leqslant \mu,$ на отрезке [0,4]. В моменты $t_1=1, t_2=2, t_3=3$ производятся наблюдения $y_k=x(t_k)+w_k, \mid w_k \mid \leqslant \nu, 2\mu>\nu.$ Пусть $\Phi(x)=\mid x\mid$. Используем равенства

$$\min_{|u| \leqslant \mu} \max_{a \leqslant x \leqslant b} |u + x| = \min_{|u| \leqslant \mu} \{ (b - a)/2 + |u - (a + b)/2| \} =$$

$$= \begin{cases} (b - a)/2, & |a + b| \leqslant 2\mu; \\ b - \mu, & a + b > 2\mu; \\ -a - \mu, & a + b < -2\mu. \end{cases}$$

для определения оптимального управления. В указанной минимаксной задаче имеем

$$\overline{u} = \begin{cases} (a+b)/2, & |a+b| \leq 2\mu; \\ -\mu, & a+b > 2\mu; \\ \mu, & a+b < -2\mu. \end{cases}$$

Используя выписанные равенства, получаем $r_0=\mu$. Это значение получается, например, при $u\equiv 0$. Именно это управление и выберем в качестве начального. Пусть сигнал \widetilde{y} реализуется при $x_0=\mu, w_1=w_2=0, w_3=\nu$. С учётом того, что $X(t_k,y,u)=\int_0^{t_k}u(t)dt+[(\widetilde{y}_k-\nu)\vee a,(\widetilde{y}_k+\nu)\wedge b],$ где $X(t_{k-1},\widetilde{y},0)=[a,b],\ c\vee d=\max\{c,d\},\ c\wedge d=\min\{c,d\},\ \text{находим}$ $X(1,y,u)=[\mu-\nu,\mu],\ r_1(y,u)=\nu/2<\mu$ при управлении $\overline{u}_1^2\equiv\nu/2-\mu,\ \overline{u}_2\equiv 0$. Поскольку наихудший прогноз даёт результат $\underline{r}_1=\nu/2$, момент 1 есть момент коррекции. Мы переходим в позицию $X(2,y,u)=[-\nu/2,\nu/2],\$ где $r_2(y,u)$ также равно $\nu/2$. Управление $u_2\equiv 0$ не меняем, поскольку оно оптимально. Третье измерение приводит к тому, что $X(3,y,u)=\{\nu/2\},\$ т.е. множество состоит из одной точки. Значит, в момент 3 следует изменить управление на $\overline{u}_3\equiv -\nu/2$. В результате получаем нулевое значение критерия $r_4=0$. Отметим, что здесь алгоритмы A, Б, В приводят к одинаковому результату.

2) Рассмотрим простой случай задачи согласования (выставки) систем координат корабля и стартующего с него самолёта. Пусть корабль движется

по экватору. Тогда [11,12] отклонение систем можно характеризовать одним углом θ , для которого

$$\dot{\theta} = u + \varepsilon, \quad \dot{\varepsilon} = v.$$

Здесь ε — дрейф, w — разность абсолютных угловых скоростей систем координат, используемая как управление, v — неопределённая помеха. Для измерения используется разность выходов акселерометров: $y=g\theta+w$, где g — ускорение свободного падения, w — непредсказуемые уходы нулей акселерометров. Измерения проводятся с шагом $\Delta=1$ сек., время выставки T=300 сек. В отличие от [11–13] рассматриваемая модель чисто детерминированная. Были выбраны следующие числовые данные: $|\theta_0|\leqslant 3^\circ, |\varepsilon_0|\leqslant 0.01$ град./сек., $|v|\leqslant 0.01/36$ град./сек²., $|u|\leqslant 0.05$ град./сек., $|w|\leqslant 0.002$ м/сек². Сигнал формируется при начальных условиях: $\theta_0=3^\circ, \varepsilon_0=-0.01$ град./сек., $v\equiv 0.01/36$ град./сек²., $w\equiv -0.002$ м/сек². Использовался алгоритм В с прогнозом на 1 шаг. При этом информационные множества аппроксимировались прямоугольниками. Алгоритм приводит к одному моменту коррекции на 207-ом шаге.

Результаты моделирования простого случая представлены на Рис. 1, Рис. 2.

Список литературы

[1] Ананьев Б.И., Курэканский А.Б., Шелементьев Г.С. Минимаксный синтез в задачах импульсного наведения и коррекции движения. // Прикладная математика и механика, 1976, Т.40, вып.1, С. 3-13.

- [2] Ананьев Б.И. Минимаксная квадратичная задача коррекции движении. // Прикладная математика и механика, 1977, Т.41, вып.3, С. 436-445.
- [3] *Красовский Н.Н.* Игровая задача о коррекции движения. // Прикладная математика и механика, 1969, Т.33, вып.3, С. 386-396.
- [4] *Черноусько Ф.Л.* Минимаксная задача одноразовой коррекции при погрешностях измерений. // Прикладная математика и механика, 1968, Т.32, вып.4, С.584-595.
- [5] *Ананьев Б.И., Гредасова Н.В.* Многократная коррекция движения линейно квадратичной управляемой системы. // Вестник УГТУ-УПИ, № 4(56). 2005. С. 280-288.
- [6] Ананьев Б.И., Гредасова Н.В. Коррекция решения многошаговой системы в условиях неопределенности. // Информационно-математические технологии в экономике, технике и образовании: сб. материалов областной научно-практической конференции. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2006. Ч. 1. С. 3-11.
- [7] Курэканский А.Б. Управление и наблюдение в условиях неопределенности. М.: Наука, 1977.
- [8] Рокафеллар Р. Выпуклый анализ. М.: Мир, 1973.
- [9] Kurzhanski A.B., Vályi I. Ellipsoidal Calculus for Estimation and Control. Boston: Birkhäuser, 1996.
- [10] *Костоусова Е.К.* О полиэдральном оценивании областей достижимости линейных многошаговых систем. // Автоматика и телемеханика, 1977, № 3. С. 57-68.
- [11] Богуславский И.А. Прикладные задачи фильтрации и управления. М.: Наука, 1983.
- [12] Климов Д.М. Инерциальная навигация на море. М.: Наука, 1984.
- [13] *Парусников Н.А., Морозов В.М., Борзов В.И.* Задача коррекции в инерциальной навигации. М.: Изд-во МГУ, 1982.