

Spreadsheet Final Presentation

Lin Shuyan Kenneth Low Yan Wei Peace Tay Jiunn Ching Widya Tantiya Yutika Yap Pin Yaw

Singapore's water needs

By 2061, imported water is no more

Desalination

Process of converting sea water into fresh water

Local catchment

Collect rainwater and process into fresh water

Imported water

Purchase raw water from Malaysia, Johore

Newater

Recycle waste water into fresh water

Potable water

- Also known as drinking water
- Supplied to households ("Domestic")
- And offices/shopping malls etc ("Non-domestic")

Non-potable water

- Used for industry, factories, construction
- Supplied to factories for washing, irrigation etc.
- Can be mixed with raw water and processed to become drinkable

Government 2060 Target

^{^30%} of Singapore's total water needs in 2060 *Government's projections based on economic growth

Assumptions

Infrastructure

- Capacity of future and new water plants is the average of 3 newest existing plants
- Singapore will always have 2 months worth of potable water reserve stored

Environmental

- 70 percent water loss via surface evaporation
- 10 percent water loss via seepage underground

People

- Government's water conservation target of daily 130 liter per capita by 2030 is met
- Population, and economy continues to grow until 2060

Analysis Approach

Low water demands	Expected water demand	High water demands			
 Low population projection	Expected population projection	High population projection			
High rainfall	Expected rainfall	Low rainfall			
High Conservation Effort	Expected Conservation Effort	Low Conservation Effort			
High water price	Expected water price	Low water price			
S	1	1			
What is the water supply needed?					

Demonstration of model

Excel demo

Scenario 1 - Expected water demands

Medium population projection

Medium rainfall

Expected Conservation Efforts

Medium water price hike

Agreement ends in 2040

# New Build Desalination Plant	3	
# Plants	Required by	
1	Year 2040	
2	Year 2051	
3	Year 2062	

	Non-Potable Water
1000 -	
900 -	
800 -	
700 -	
600 -	
500 -	
400 -	
300 -	
200 -	
100 -	
0 -	
202	, to, to, to, to, to, to, to, to, to, to
	Non-Potable Water Demand Total Non-Potable Water Supply Total

# New Build NEWater Plant	6	
# Plants	Required by	
1	Year 2038	
2	Year 2044	
3	Year 2049	
4	Year 2053	
5	Year 2056	
6	Year 2059	

Scenario 2 - Low water demands

# New Build NEWater Plant	3 Required by	
# Plants		
1	Build by Year 2042	
2	Build by Year 2051	
3	Build by Year 2060	

Potable water demand decreases due to low population (~6m in 2060) and aggressive water conservation

Scenario 3 - High water demands

High population projection

Low rainfall

Low Conservation Effort

No water price hike

Agreement ends in 2022

	# New Build Desalination Plant	9	# New Build NEWater Plant	9
	# Plants	Required by	# Plants	Required by
	1, 2	Year 2022	1	Year 2036
	3	Year 2036	2	Year 2041
	4	Year 2042	3	Year 2045
	5	Year 2047	4	Year 2049
	6	Year 2052	5	Year 2052
10	7	Year 2057	6	Year 2054
M	8	Year 2061	7	Year 2057
Vie	9	Year 2065	8	Year 2059
			9	Year 2062

Land constraint estimation

URA Master Planning Map 2022

- Average size of NEWater and Desalination plant is ~265,000 m²
- 19 plants = 5 million m^2
- Based on URA MP2019, there is *14 million m² set aside for Utilities (including water plants)

Conclusion

Sensitivity and Trade-Off

Sensitivity Analysis [1]

Based on sensitivity analysis, conservation efforts has the highest impact on demand

Trade-Off Analysis [2]

Price Hike

A +- 3% price hike will not change the demand much because water is price inelastic

If we all play our part in saving water, only g new plants are estimated to be needed

- Water conservation efforts is key in reducing <u>demand</u>
- Increasing local rainwater catchment is key in increasing <u>supply</u> and achieving self-sustainability

Thank you

Questions and answers

