NOME	No	
NOME.	T.4	

05/02/2018

Duração: 2h30

- RESPONDA A UM MÁXIMO DE 10 ALÍNEAS TENDO EM CONTA QUE SE RESPONDER PARA 16 VALORES OU MAIS, TEM DE RESPONDER OBRIGATORIAMENTE A DUAS ALÍNEAS DE CADA PERGUNTA.
- EM CADA ALÍNEA, APENAS UMA DAS OPÇÕES ESTÁ CORRECTA.
- ASSINALE NESTA FOLHA A RESPOSTA CORRECTA COM UMA CRUZ.
- CADA RESPOSTA CORRECTA É COTADA COM 2,00 VALORES.
- CADA RESPOSTA ERRADA É COTADA COM -0,50 VALORES.
- RESPOSTAS EM BRANCO OU COM MAIS DO QUE UMA OPÇÃO ASSINALADA SÃO COTADAS COM 0 VALORES.
- Considere a aceleração da gravidade igual a $9.8~\text{m}\,\text{s}^{-2}$.

FOLHA DE RESPOSTAS

D	A 16]	Respost	a		¥7
Pergunta	Alínea	A	В	С	D	E	Versão
1)	a)				X		
	b)					X	1
	c)					X	
2)	a)				X		
	b)		X				1
	c)	X					
	a)					X	
3)	b)		X				1
	c)			X			
	a)		X				
4)	b)	X					1
	c)				X		

NOME: ______ N°: _____

[6] 1. A figura representa uma peça de um dispositivo que está sujeito às cargas representadas (forças \vec{F}_1 , \vec{F}_2 e \vec{F}_3 , e binários \vec{M}_1 e \vec{M}_2), com $|\vec{F}_1|=130\,\mathrm{N}$, $|\vec{F}_2|=|\vec{F}_3|=100\,\mathrm{N}$, $|\vec{M}_1|=100\,\mathrm{N}\mathrm{cm}$, $|\vec{M}_2|=200\,\mathrm{N}\mathrm{cm}$, $\theta=30^\circ$, e $a=30\,\mathrm{cm}$. (Nota: Os binários \vec{M}_1 e \vec{M}_2 têm componente apenas segundo o eixo dos ZZ.)

[2] a) Qual o momento resultante do sistema de forças e binários em relação ao ponto B?

A)	-5500 k [Ncm]	B)	-5950 k [N cm]	C)	-5800 k [N cm]	D)	-5650 k [N cm]
E)	Nenhuma	nteriores					

[2] b) Qual dos seguintes vectores momento é necessário adicionar ao vector momento resultante em relação ao ponto *B* para se obter o momento resultante em relação ao ponto *A*?

A)	-2604 k [Ncm]	B)	-3204 k [N cm]	C)	-1404 k [N cm]	D)	-2004 k [Ncm]
E)	Nenhuma	nteriores					

[2] c) Tomando o ponto A como origem do sistema de eixos, qual das seguintes rectas no plano XY (com z = 0 cm) define o conjunto de pontos possíveis para a posição do parafuso de fixação de modo a que o carregamento dado não cause rotação da peça?

т.	3	1 3	
A)	y = -2.8 x + 43.0 [cm]	B)	y = -6.4 x + 194.3 [cm]
C)	y = -3.5 x + 70.2 [cm]	D)	y = -4.5 x + 113.7 [cm]
E)	Nenhuma das anteriores		

[6] 2. Considere que o sistema representado na figura está em equilíbrio. A barra, de comprimento \overline{AB} , tem a extremidade A apoiada numa superfície vertical com atrito e a extremidade B está apoiada através de um cabo horizontal com comprimento L=4 m que se encontra preso à superfície vertical a uma altura B=2 m do ponto A. Na extremidade B da barra encontra-se suspenso um corpo C de massa $M_C=10$ kg.

[2] a) Se a barra for homogénea e tiver uma massa $m_b = 50 \text{ kg}$, qual a força exercida pelo cabo horizontal?

A)	882 N	B)	980 N	C)	784 N	D)	686 N	
E)	E) Nenhuma das anteriores							

[2] b) Se a barra for homogénea, tiver uma massa $m_b = 40 \,\mathrm{kg}$ e a força exercida pelo cabo horizontal for $T = 588 \,\mathrm{N}$, qual o coeficiente de atrito estático mínimo entre a superfície vertical e a barra de modo a que o equilíbrio seja possível?

A)	0,75	B)	0,83	C)	0,58	D)	0,67	
E)	Nenhuma	riores						

[2] c) Se a massa da barra for $m_b = 50 \text{ kg}$ e a força exercida pelo cabo horizontal for T = 588 N, a que distância do ponto A, medida sobre a barra, se encontra o centro de massa da barra?

A)	$0,4\times\overline{AB}$	B)	$0,1\times\overline{AB}$	C)	$0,2\times\overline{AB}$	D)	$0.3 \times \overline{AB}$	
E)	H) Nenhuma dae anterioree							

05/02/2018

Duração: 2h30

[6] 3. A figura ilustra uma barra paralelepipédica com área de secção recta igual a 10 cm² submetida a uma carga de tracção com intensidade igual 100 kN, bem como um diagrama do estado de tensão para um elemento de área com faces paralelas às faces do paralelepípedo.

[2] a) Qual o estado de tensão da barra para uma orientação do plano de análise que faz um ângulo $\theta = 30^{\circ}$ com a direcção da força aplicada, medido no sentido contrário ao dos ponteiros do relógio?

A)	$\begin{bmatrix} 90,00 & 51,96 & 0 \\ 51,96 & 30,00 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$	B) $\begin{bmatrix} 97,50 & 56,29 & 0 \\ 56,29 & 32,50 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$
C)	$\begin{bmatrix} 75,00 & 43,30 & 0 \\ 43,30 & 25,00 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$	D) $\begin{bmatrix} 82,50 & 47,63 & 0 \\ 47,63 & 27,50 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$
E)	Nenhuma das anteriores	

[2] b) Qual a tensão de corte máxima a que a barra fica sujeita?

A)	55 MPa	B)	50 MPa	C)	65 MPa	D)	60 MPa	
E) Nenhuma das anteriores								

[2] c) Sabendo que a barra é feita de um material isotrópico e linearmente elástico com módulo de elasticidade $E = 200 \,\text{GPa}$ e razão de Poisson v = 0, 3, qual o tensor de deformações para o plano de análise xy cuja orientação coincide com a orientação representada na figura?

A)	$\begin{bmatrix} 5,50 & 0,00 & 0,00 \\ 0,00 & -1,65 & 0,00 \\ 0,00 & 0,00 & -1,65 \end{bmatrix} \times 10^{-4}$	B) $\begin{bmatrix} 6,50 & 0,00 & 0,00 \\ 0,00 & -1,95 & 0,00 \\ 0,00 & 0,00 & -1,95 \end{bmatrix} \times 10^{-4}$
C)	$\begin{bmatrix} 5,00 & 0,00 & 0,00 \\ 0,00 & -1,50 & 0,00 \\ 0,00 & 0,00 & -1,50 \end{bmatrix} \times 10^{-4}$	D) $\begin{bmatrix} 6,00 & 0,00 & 0,00 \\ 0,00 & -1,80 & 0,00 \\ 0,00 & 0,00 & -1,80 \end{bmatrix} \times 10^{-4}$
E)	Nenhuma das anteriores	

05/02/2018

Duração: 2h30

05/02/2018

Duração: 2h30

NOME: ______ N°: _____

[6] **4.** Considere uma barra horizontal de massa desprezável, com comprimento L=1,2 m. A barra encontra-se suportada por um encastramento em A. Sobre a barra encontram-se aplicadas as cargas distribuídas representadas na figura, com $p_1(x)=114\left[\mathrm{N\,m^{-1}}\right]$ e $p_2(x)=-285\,x+342\left[\mathrm{N\,m^{-1}}\right]$. Para ambas as distribuições de carga, a variável x é a distância ao ponto A.

[2] a) Qual a intensidade do momento \vec{M}_A ?

A)	43,52 N m	B)	48,64 N m	C)	46,08 N m	D)	51,20 N m	
E)	E) Nenhuma das anteriores							

NOME: ______ N°: _____

[2] b) Qual dos gráficos representa a força de corte em função de x?

[2] c) Qual dos gráficos representa o momento flector em função de x?

