Лабораторная работа №1

Кендысь Алексей, 3 курс, 7а группа

Условие задачи

Вариант 67

Диетолог разрабатывает новую диету, состоящую из сливочного масла, натуральных бифштексов (мяса), хлеба и яблочного сока. Содержание калорий, белков, жиров, углеводов и холестерина (в 100 г продукта), а также максимальные и минимальные нормы их потребления (в день) приведены в таблице. Здесь же указана цена в рублях 100 г соответствующего продукта.

Содержание калорий, белков, жиров, углеводов и холестерина в продуктах

Элемент питания	Содержание в 100 г продукта				Норма потребления	
	масло	МЯСО	хлеб	СОК	miu	max
Калории	800	280	245	80	2 400	2 800
Белок	0.6 г	15 г	8г	0 г	60 г	60г
Жир	20 г	5 г	0 г	0 г	0 г	30 г
Углеводы	Ог	От	5 г	Юг	Юг	40 г
Холестерин	0.15 г	0.08 г	0 г	0 г	0 г	0.5 г
Цена	60	350	25	50		

Определите дневной рацион, обеспечивающий получение необходимого количества питательных веществ при минимальных денежных затратах.

Математическая модель

В задаче дано:

n — число продуктов;

m – число элементов питания (питательных веществ);

 c_j – цена j-го продукта (в руб., за 100 г продукта);

 a_{ij} — содержание i-го питательного вещества в j-ом продукте (в 100 г продукта);

 $b_{-}min_{i}$ — минимальная норма потребления i-го питательного вещества;

 b_max_i — максимальная норма потребления i-го питательного вещества.

В нашем случае имеем n=4 продукта: масло, мясо, хлеб и сок. А также имеем m=5 питательных веществ: калории, белок, жир, углеводы и холестерин.

Введём переменные модели:

 x_i – количество i-го продукта (1 = 100 г).

Необходимо минимизировать общее количество денежных затрат на продукты, при этом учитывая ограничения на нормы потребления основных питательных веществ. В итоге имеет модель следующего вида:

$$\min\left(\sum_{j=1}^{n} x_{j} c_{j}\right)$$

$$b_\min_{i} \leq \sum_{j=1}^{n} a_{ij} x_{j} \leq b_\max_{i}, \quad i = \overline{1, m};$$

$$x_{j} \geq 0, \quad j = \overline{1, n}.$$

Листинг программы

Файл lab1.dat:

```
param n := 4;
param m := 5;
param c :=
1 60
2 350
3 25
4 50
param a :=
1 1 800
1 2 280
1 3 245
1 4 80
2 1 0.6
2 2 15
2 3 8
2 4 0
3 1 20
3 2 5
3 3 0
3 4 0
4 1 0
4 2 0
4 3 5
4 4 10
5 1 0.15
5 2 0.08
5 3 0
5 4 0
param b_min :=
1 2400
2 60
3 0
4 10
5 0
param b_max :=
1 2800
2 60
3 30
4 40
5 0.5
Файл lab1.mod:
param n, integer, > 0;
param m, integer, > 0;
set foods := 1..n;
set nutrients := 1..m;
param c {foods}, > 0;
param a {nutrients, foods};
param b max {nutrients};
param b min {nutrients};
```

```
var x {foods}, >= 0;
minimize totalcost: sum{i in foods} c[i] * x[i];
subject to nutrition min {i in nutrients}: b min[i] <= sum{j in foods} (a[i, j]</pre>
* x[j]) <= b max[i];
Файл lab1.run:
reset;
model lab1.mod;
data lab1.dat;
option solver cplex;
solve;
display totalcost;
display x;
      Результат
CPLEX 22.1.1.0: optimal solution; objective 229.3299216
2 dual simplex iterations (0 in phase I)
totalcost = 229.33
x [*] :=
1 0.719655
2 0
3 7.44603
```

Получили минимальную стоимость в размере 229 руб., а также оптимальный ежедневный рацион — 71.9 г масла и 744.6 г хлеба.