Hackathon Project Phases Template

Project Title:

DataQueryAl: Intelligent Data Analysis with Google TAPAS

Team Name:

QueryCrafters

Team Members:

- Pendli Akshaya
- Mandula Likhita Sree
- Kokkula Sadhvika

Phase-1: Brainstorming & Ideation

Objective:

Develop an Al-powered data analysis tool using Google TAPAS to help users analyze and extract insights from CSV data through natural language queries.

Key Points:

1. Problem Statement:

- Users struggle to analyze large datasets manually, requiring technical expertise in tools like Excel, SQL, or Python.
- Businesses need faster, more accurate data analysis to make data-driven decisions.
- Non-technical users find it challenging to derive insights from raw data without coding knowledge.

2. Proposed Solution:

- An Al-powered application using Google TAPAS to process natural language queries over tabular data (CSV files).
- The app offers **maintenance tips** and **eco-friendly vehicle insights** based on user preferences.

3. Target Users:

- Business Analysts who need quick insights from data.
- Non-technical users who want to analyze data without coding.
- Educators and Students learning data analysis concepts.

4. Expected Outcome:

 A functional AI-powered data analysis tool that provides accurate, real-time insights from uploaded CSV files.

Phase-2: Requirement Analysis

Objective:

Define the technical and functional requirements for the DataQueryAI. Define the technical and functional requirements for DataQueryAI.

Key Points:

1. Technical Requirements:

Programming Language: Python

Backend: Google TAPAS Model

Frontend: Streamlit Web Framework

2. Functional Requirements:

- Ability to upload CSV files and process natural language queries.
- Display query results in tables, charts, or text format.
- Provide accurate, context-aware answers using Google TAPAS.

3. Constraints & Challenges:

- Handling large CSV files efficiently.
- Ensuring real time query processing with minimum latency.
- Optimizing Google TAPAS for diverse datasets and query types.

Phase-3: Project Design

Objective:

Develop the architecture and user flow of DataQueryAI.

Key Points:

1. System Architecture:

- User uploads a CSV file and enters query via the streamline UI.
- The backend processes the query using Google TAPAS.
- The model analyzes the data and returns the result to the frontend.

2. User Flow:

- Step 1: User uploads a CSV file.
- Step 2: User enters a query (e.g., "What is the total revenue for Q2?")
- Step 3: The app processes the query and displays the results.

3. UI/UX Considerations:

- Simple, intuitive interface for uploading files and entering queries.
- o Interactive display of results (tables, charts, or text).
- Dark & light mode for better user experience.

Phase-4: Project Planning (Agile Methodologies)

Objective:

Break down development tasks for efficient completion.

Sprin	t Task	Priority	Duration	Deadline	Assigned To	Dependencies	Expected Outcome
Sprint 0	Environment Setup & Planning	High	2 hours	2 hours	Member 1	Python, Streamlit, Google Colab	Ready-to-code environment.
Sprint	Integrate t Google TAPAS & Set Up Streamlit	High	6 hours	8 hours	Member 1 & 2	TAPAS API, Streamlit	TAPAS integrated, basic app running.
Sprint 2	Build File Uploader & Query Input	High	4 hours	12 hours	Member 2 & 3	Streamlit UI setup	File uploader and query input functional.
Sprint	Connect t Frontend to Backend & Display Results	High	6 hours	18 hours	Member 1 & 2	TAPAS integration, UI ready	Query processing and results displayed.
Sprint 4	tTest, Debug & Optimize	High	6 hours	24 hours	Member 1 & 3	Test logs, API responses	Stable app with minimal bugs.
Sprint 5	Add Visualizations & Deploy App	Medium	15 hours	29 hours	Member 2 & 4	Query results ready	Visualizations added, app deployed.
Sprint	Prepare Demo & Final Submission	High	1 hour	30 hours	Entire Team	All tasks completed	Demo video, report, and GitHub link submitted.

Sprint Planning with Priorities

Sprint 0 – Environment Setup & Planning (2 Hours)

- (High Priority) Set up the environment (Python, Streamlit, Google Colab).
- (High Priority) Finalize the project plan and assign roles.

Sprint 1 – Integration & Basic Setup (6 Hours)

- (High Priority) Integrate Google TAPAS for query processing.
- (High Priority) Set up a basic Streamlit app skeleton.

Sprint 2 – Core UI Development (4 Hours)

- (High Priority) Build a file uploader for CSV files.
- (High Priority) Add a query input field for natural language queries.

Sprint 3 – Query Processing & Results Display (6 Hours)

- (High Priority) Connect the frontend to the backend (Google TAPAS).
- (High Priority) Display query results in tables or text format.

Sprint 4 – Testing & Debugging (6 Hours)

- (High Priority) Test the app with diverse datasets and queries.
- (High Priority) Debug and optimize performance (e.g., API response times).

Sprint 5 – Enhancements & Deployment (5 Hours)

- (Medium Priority) Add visualizations (e.g., charts, graphs) for query results.
- (High Priority) Deploy the app on Streamlit Sharing.

Sprint 6 – Final Submission (1 Hour)

- (High Priority) Prepare a 3-5 minute demo video.
- (High Priority) Finalize documentation and submit the project (report, GitHub link).

Phase-5: Project Development

Objective:

Implement core features of the DataQueryAl App.

Key Points:

1. Technology Stack Used:

• Frontend: Streamlit

Backend: Google TAPAS

Programming Language: Python

2. Development Process:

- Integrate Google TAPAS for query processing.
- Develop the Streamlit UI for file uploads and query input.
- Optimize query handling for performance and accuracy...

3. Challenges & Fixes:

- **Challenge:** Delayed response times for large datasets.
- Fix: Implement data preprocessing and caching.
- Challenge: Difficulty in comparing the columns.

Phase-6: Functional & Performance Testing

Objective:

Ensure that the DataQueryAI works as expected.

1	OC+
ı	ESL

Case ID	Category	Test Scenario	Expected Outcome	Status	Tester
TC-001	Functional Testing	Query "What is the highest value in units sold?"	Highest value should be displayed	√ Passed	Tester 1
TC-002	Functional Testing	Query "Compare units sold by region?"	Visualization of comparison should be displayed	√ Passed	Tester 2
TC-003	Bug Fixes & Improvements	Fixed incorrect API responses.	Data accuracy should be improved.	Fixed	Tester 3
TC-004	Final Validation	Ensure UI is responsive across devices.	UI should work on desktop.	Passed	Tester 2
TC-005	Deployment Testing	Host the app using Streamlit Sharing.	App should be accessible online.	Deployed	l DevOps

Final Submission

- 1. Project Report Based on the templates
- 2. Demo Video (3-5 Minutes)
- 3. GitHub/Code Repository Link
- 4. Presentation