# Segurança e Privacidade - Projeto 2

 $\begin{array}{c} {\rm Miguel~Marques} \\ 2017266263 \end{array}$ 

 $\begin{array}{c} {\rm Tiago\ Fernandes} \\ 2017242428 \end{array}$ 

2020/2021

# 1 Preparação e Análise dos dados

Relativamente à construção do Dataset, utilizamos o site mockaroo.com para gerar os dados gerais como nomes, mail, género, endereço de IP, número de telemóvel, número da Segurança Social e número do cartão de crédito. Depois decidimos ser nós a criar as colunas aleatoriamente com as informações de trabalho, salário bruto anual, idade, número de filhos, cidade e signos. Deste modo, o nosso dataset original é constituido por 13 colunas e 1000 linhas.

Nas tabelas seguintes, agrupamos os dados para uma análise mais simples, sendo que os resultados apresentados são as médias.

|     | sis by age      |             |
|-----|-----------------|-------------|
|     | income_per_year | number_kids |
| age |                 |             |
| 23  | 50560.900000    | 1.850000    |
| 24  | 47311.242424    | 1.909091    |
| 25  | 51602.483871    | 1.677419    |
| 26  | 54566.285714    | 2.238095    |
| 27  | 39126.045455    | 1.863636    |
| 28  | 41129.684211    | 2.052632    |
| 29  | 47792.968750    | 2.000000    |
| 30  | 42328.960000    | 2.440000    |
| 31  | 36774.961538    | 1.615385    |
| 32  | 50397.382353    | 1.882353    |
| 33  | 47980.000000    | 2.235294    |
| 34  | 56580.277778    | 1.555556    |
| 35  | 46414.680000    | 2.080000    |
| 36  | 41603.200000    | 1.680000    |
| 37  | 50578.333333    | 2.000000    |
| 38  | 48759.714286    | 2.357143    |
| 39  | 39590.578947    | 2.000000    |
| 40  | 55183.111111    | 1.388889    |
| 41  | 49715.333333    | 2.233333    |
| 42  | 46109.742857    | 2.114286    |
| 43  | 47043.000000    | 1.931034    |
| 44  | 43582.954545    | 2.227273    |
| 45  | 47463.421053    | 2.473684    |
| 46  | 46249.833333    | 1.933333    |
| 47  | 49076.400000    | 1.866667    |
| 48  | 45500.000000    | 1.433333    |
| 49  | 49735.880000    | 1.840000    |
| 50  | 45680.444444    | 2.037037    |
| 51  | 43346.448276    | 1.689655    |
| 52  | 43579.454545    | 2.136364    |
| 53  | 45500.038462    | 1.730769    |
| 54  | 51984.969697    | 1.787879    |
| 55  | 44640.920000    | 2.120000    |
| 56  | 40173.035714    | 2.107143    |
| 57  | 42264.935484    | 1.774194    |
| 58  | 47649.861111    | 1.805556    |
| 59  | 47712.346154    | 1.692308    |
| 60  | 46152.840000    | 2.600000    |

Figure 1: Análise do dataset original

### Analysis by gender

 gender
 46230.110220
 2.02004

 Male
 46998.105788
 1.89022

### Analysis by city

|                | income_per_year | number_kids |
|----------------|-----------------|-------------|
| city           |                 |             |
| Aveiro         | 50495.992593    | 2.103704    |
| Braga          | 45636.715517    | 1.965517    |
| Castelo Branco | 47734.728682    | 1.984496    |
| Coimbra        | 48377.017241    | 1.965517    |
| Faro           | 47572.396396    | 1.891892    |
| Lisboa         | 46197.371901    | 1.983471    |
| Porto          | 43783.720000    | 1.768000    |
| Viseu          | 43477.285714    | 1.959184    |

Figure 2: Análise do dataset original

### Analysis by job

income\_per\_year number\_kids job Accountant 50019.400000 1.776923 Doctor 80684.625000 1.947368 Engineer 50370.781250 1.968750 53983.263889 2.131944 Lawyer Manager 49782.144828 2.027586 1.885906 Teacher 27477.147651 15228.519737 1.934211 Waiter

## Analysis by signs

income\_per\_year number\_kids signs Aquarius 48025.326087 1.793478 Aries 47358.603960 1.881188 Cancer 47310.526316 2.039474 Capricorn 45997.771429 2.014286 Gemini 46777.067568 2.162162 Leo 46765.565789 2.289474 Libra 43984.583333 1.802083 Pisces 45042.026667 2.013333 48642.576471 1.941176 Sagittarius 46077.930233 Scorpio 1.837209 Taurus 46456.712329 1.821918 46800.666667 1.979167 Virgo

Figure 3: Análise do dataset original

# 2 Syntactic Models

# 2.1 Tipos de atributos

| Atributos       | Tipo de Atributos |
|-----------------|-------------------|
| Name            | Identifying       |
| email           | Identifying       |
| gender          | Quasi-identifier  |
| ip_address      | Identifying       |
| city            | Quasi-identifier  |
| phone           | Identifying       |
| job             | Quasi-identifier  |
| ssn             | Identifying       |
| credit_card     | Identifying       |
| income_per_year | Sensitive         |
| age             | Quasi-identifier  |
| number_kids     | Sensitive         |
| signs           | Quasi-identifier  |

Figure 4: Análise dos atributos do dataset

### 2.2 Hierarquia usada para os Quasi-Identifiers

### 2.2.1 Género

Aqui utilizamos sets com apenas 2 níveis, ou seja, ou mostra o género, ou não mostra.

### 2.2.2 Cidade

 $\operatorname{Aqui}$ utilizamos sets com4níveis como podemos observar na tabela em baixo.

| Level-0          | Level-1     | Level-2             | Level-3 |
|------------------|-------------|---------------------|---------|
| {Aveiro}         | {Av, Br}    | {Av, Br, CasB, Cbr} | *       |
| {Braga}          | {Av, Br}    | {Av, Br, CasB, Cbr} | *       |
| {Castelo Branco} | {CasB, Cbr} | {Av, Br, CasB, Cbr} | *       |
| {Coimbra}        | {CasB, Cbr} | {Av, Br, CasB, Cbr} | *       |
| {Faro}           | {Fr, Lx}    | {Fr, Lx, Pt, Vs}    | *       |
| {Lisboa}         | {Fr, Lx}    | {Fr, Lx, Pt, Vs}    | *       |
| {Porto}          | {Pt, Vs}    | {Fr, Lx, Pt, Vs}    | *       |
| {Viseu}          | {Pt, Vs}    | {Fr, Lx, Pt, Vs}    | *       |

Table 1: Níveis de hierarquia na coluna das cidades

### 2.2.3 Trabalho

Da mesma maneira que fizemos com a coluna das cidades, aqui também utilizamos uma hierarquia de sets como podemos ver na seguinte tabela.

| Level-0      | Level-1   | Level-2           | Level-3 |
|--------------|-----------|-------------------|---------|
| {Accountant} | {Acc,Doc} | {Acc,Doc,Eng,Law} | *       |
| {Doctor}     | {Acc,Doc} | {Acc,Doc,Eng,Law} | *       |
| {Engineer}   | {Eng,Law} | {Acc,Doc,Eng,Law} | *       |
| {Lawyer}     | {Eng,Law} | {Acc,Doc,Eng,Law} | *       |
| {Manager}    | {Man,Tch} | {Man,Tch,Waiter}  | *       |
| {Teacher}    | {Man,Tch} | {Man,Tch,Waiter}  | *       |
| {Waiter}     | {Waiter}  | {Man,Tch,Waiter}  | *       |
| {Viseu}      | {Pt, Vs}  | {Fr, Lx, Pt, Vs}  | *       |

Table 2: Níveis de hierarquia na coluna dos trabalhos

### 2.2.4 Idade

Na idade decidimos utilizar intervalos, como a gama de idades varia entre 23 e 60 anos, decidimos utilizar 4 níveis em que o primeiro começa com 3 intervalos, convergindo num único intervalo no último nível, como podemos observar abaixo. É de notar que o nível 0 são os valores contínuos, ou seja, sem estar em intervalos.

| Level-0 | Level-1 | Level-2 | Level-3 |
|---------|---------|---------|---------|
|         | [23,38[ | [23,53[ | [23,61[ |
|         | [38,53[ | [23,53[ | [23,61[ |
|         | [53,61[ | [53,61[ | [23,61[ |

Table 3: Níveis de hierarquia na coluna das idades

### 2.2.5 Signos

No que toca aos signos decidimos aplicar sets como fizemos com os Trabalhos e as Cidades. Com um total de 4 níveis como podemos observar em baixo.

| T 10        | T 14      | T 10            | T 10    |
|-------------|-----------|-----------------|---------|
| Level-0     | Level-1   | Level-2         | Level-3 |
| Aquarius    | {Aq,Ar}   | {Aq,Ar,Can,Cap} | *       |
| Aries       | {Aq,Ar}   | {Aq,Ar,Can,Cap} | *       |
| Cancer      | {Can,Cap} | {Aq,Ar,Can,Cap} | *       |
| Capricorn   | {Can,Cap} | {Aq,Ar,Can,Cap} | *       |
| Gemini      | {Ge,Le}   | {Li,Pi,Ge.Le}   | *       |
| Leo         | {Ge,Le}   | {Li,Pi,Ge.Le}   | *       |
| Libra       | {Li,Pi}   | {Li,Pi,Ge.Le}   | *       |
| Pisces      | {Li,Pi}   | {Li,Pi,Ge.Le}   | *       |
| Sagittarius | {Sa,Sco}  | {Ta,Vi,Sa,Sco}  | *       |
| Scorpio     | {Sa,Sco}  | {Ta,Vi,Sa,Sco}  | *       |
| Taurus      | {Ta,Vi}   | {Ta,Vi,Sa,Sco}  | *       |
| Virgo       | {Ta,Vi}   | {Ta,Vi,Sa,Sco}  | *       |

Table 4: Níveis de hierarquia na coluna dos signos

**Nota:** Os pesos dos atributos género, nascimento, cidade, emprego e signos estão todos a 0.5 e limitamos a supression a 10%.

# 2.2.6 Distinction and Separation

| Quasi-identifier              | Distinction | Separation |
|-------------------------------|-------------|------------|
| gender                        | 0.2%        | 50.04985%  |
| job                           | 0.7%        | 85.74034%  |
| city                          | 0.8%        | 87.49009%  |
| signs                         | 1.2%        | 91.63163%  |
| age                           | 3.8%        | 97.35816%  |
| gender, job                   | 1.4%        | 92.86927%  |
| gender, city                  | 1.6%        | 93.75716%  |
| gender, signs                 | 2.4%        | 95.84184%  |
| job, city                     | 5.6%        | 98.1952%   |
| gender, age                   | 7.6%        | 98.68529%  |
| job, signs                    | 8.4%        | 98.81642%  |
| city, signs                   | 9.6%        | 98.93734%  |
| job, age                      | 26,00%      | 99.62763%  |
| age, city                     | 29.3%       | 99.65926%  |
| age, signs                    | 41.3%       | 99.79139%  |
| gender, job, city             | 11.2%       | 99.1017%   |
| gender, job, signs            | 16.8%       | 99.40961%  |
| gender, city, signs           | 19.2%       | 99.47287%  |
| gender, job, age              | 45.1%       | 99.81602%  |
| gender, age, city             | 48,00%      | 99.82823%  |
| job, city, signs              | 51.4%       | 99.84104%  |
| gender, age, signs            | 62.1%       | 99.9005%   |
| job, age, city                | 79.3%       | 99.94955%  |
| age, city, signs              | 86.4%       | 99.97077%  |
| job, age, signs               | 87.5%       | 99.97337%  |
| gender, job, city, signs      | 69.5%       | 99.92192%  |
| gender, job, age, city        | 88.8%       | 99.97598%  |
| gender, age, city, signs      | 92.5%       | 99.98478%  |
| gender, job, age, signs       | 95,00%      | 99.98999%  |
| job, age, city, signs         | 97.8%       | 99.9954%   |
| gender, job, age, city, signs | 99.4%       | 99.9988%   |

Figure 5: Distiction and Separation

# 2.2.7 Privacy Risks

| Measure                          | Value [%]                     |
|----------------------------------|-------------------------------|
| Lowest prosecutor risk           | 50,00%                        |
| Records affected by lowest risk  | 1.2%                          |
| Average prosecutor risk          | 99.4%                         |
| Highest prosecutor risk          | 100,00%                       |
| Records affected by highest risk | 98.8%                         |
| Estimated prosecutor risk        | 100,00%                       |
| Estimated journalist risk        | 100,00%                       |
| Estimated marketer risk          | 99.4%                         |
| Sample uniques                   | 98.8%                         |
| Population uniques               | 97.6144%                      |
| Population model                 | ZAYATZ                        |
| Quasi-identifiers                | age, city, gender, job, signs |

Figure 6: Risks Table



Figure 7: Risk Charts

# 2.3 [One] Usando o modelo de Privacidade L-Diversity, L=4 em todos os Sensitive

### 2.3.1 Distinction and Separation

| Quasi-identifier         | Distinction | Separation |
|--------------------------|-------------|------------|
| job                      | 0.20661%    | 49.49597%  |
| city                     | 0.20661%    | 49.96624%  |
| gender                   | 0.20661%    | 50.04636%  |
| age                      | 0.30992%    | 64.93735%  |
| signs                    | 0.30992%    | 66.70178%  |
| job, city                | 0.41322%    | 74.70985%  |
| gender, job              | 0.41322%    | 74.78634%  |
| gender, city             | 0.41322%    | 75.00128%  |
| job, age                 | 0.61983%    | 82.1876%   |
| gender, age              | 0.61983%    | 82.30362%  |
| age, city                | 0.61983%    | 82.49058%  |
| job, signs               | 0.61983%    | 83.14011%  |
| gender, signs            | 0.61983%    | 83.36082%  |
| city, signs              | 0.61983%    | 83.36852%  |
| age, signs               | 0.92975%    | 88.22207%  |
| gender, job, city        | 0.82645%    | 87.38366%  |
| gender, job, age         | 1.23967%    | 91.03002%  |
| job, age, city           | 1.23967%    | 91.07254%  |
| gender, age, city        | 1.23967%    | 91.17083%  |
| job, city, signs         | 1.23967%    | 91.57679%  |
| gender, job, signs       | 1.23967%    | 91.58683%  |
| gender, city, signs      | 1.23967%    | 91.6458%   |
| job, age, signs          | 1.8595%     | 93.98305%  |
| gender, age, signs       | 1.8595%     | 94.03732%  |
| age, city, signs         | 1.8595%     | 94.11616%  |
| gender, job, age, city   | 2.47934%    | 95.50753%  |
| gender, job, city, signs | 2.47934%    | 95.76713%  |
| gender, job, age, signs  | 3.71901%    | 96.95189%  |
| job, age, city, signs    | 3.71901%    | 96.96407%  |
| gender, age, city, signs | 3.71901%    | 97.02112%  |
|                          |             |            |

Figure 8: Distiction and Separation

# 2.3.2 Privacy Risks

| Measure                          | Value [%]                     |
|----------------------------------|-------------------------------|
| Lowest prosecutor risk           | 3.84615%                      |
| Records affected by lowest risk  | 2.68595%                      |
| Average prosecutor risk          | 7.02479%                      |
| Highest prosecutor risk          | 20,00%                        |
| Records affected by highest risk | 0.51653%                      |
| Estimated prosecutor risk        | 20,00%                        |
| Estimated journalist risk        | 20,00%                        |
| Estimated marketer risk          | 7.02479%                      |
| Sample uniques                   | 0,00%                         |
| Population uniques               | 0,00%                         |
| Population model                 | DANKAR                        |
| Quasi-identifiers                | age, city, gender, job, signs |

Figure 9: Risk Table



Figure 10: Risk Charts

### 2.3.3 Análises sob os dados transformados

### Analysis by gender

|        | income_per_year | number_kids |
|--------|-----------------|-------------|
| gender |                 |             |
| *      | 51511.437500    | 2.093750    |
| Female | 45922.613497    | 1.997955    |
| Male   | 46994.471816    | 1.901879    |

### Analysis by city

|                                          | income_per_year | number_kids |
|------------------------------------------|-----------------|-------------|
| city                                     |                 |             |
| *                                        | 51511.437500    | 2.093750    |
| {Aveiro, Braga, Castelo Branco, Coimbra} | 47913.719828    | 2.002155    |
| {Faro, Lisboa, Porto, Viseu}             | 45108.222222    | 1.902778    |

### Analysis by age

income\_per\_year number\_kids

| age      |              |          |
|----------|--------------|----------|
| *        | 51511.437500 | 2.093750 |
| [23, 38[ | 46651.083770 | 1.913613 |
| [38, 53[ | 46998.856369 | 1.983740 |
| [53, 61[ | 45176.119816 | 1.958525 |

### Analysis by job

|                                        | income_per_year | number_kids |
|----------------------------------------|-----------------|-------------|
| job                                    |                 |             |
| *                                      | 51511.437500    | 2.093750    |
| {Accountant, Doctor, Engineer, Lawyer} | 59358.379439    | 1.940187    |
| {Manager, Teacher, Waiter}             | 30507.568129    | 1.963048    |

### Analysis by signs

|                                      | income_per_year | number_kids |
|--------------------------------------|-----------------|-------------|
| signs                                |                 |             |
| *                                    | 51511.437500    | 2.093750    |
| {Aquarius, Aries, Cancer, Capricorn} | 47100.199377    | 1.925234    |
| {Gemini, Leo, Libra, Pisces}         | 45027.945338    | 2.016077    |
| /Sanittarius Scornio Taurus Virgo)   | A7153 735110    | 1 013600    |

Figure 11: Análises

Nota: Foram suprimidos 32 dos 1000 dados.

# 2.4 [Two] Usando o modelo de Privacidade K-Anonimity com K=10 e L-Diversity com L=8 no income-per-year e L=2 no number-kids

### 2.4.1 Distinction and Separation

| Quasi-identifier              | Distinction | Separation |
|-------------------------------|-------------|------------|
| city                          | 0.1%        | 0,00%      |
| job                           | 0.2%        | 49.46627%  |
| gender                        | 0.2%        | 50.04985%  |
| age                           | 0.3%        | 65.12032%  |
| signs                         | 0.3%        | 66.71051%  |
| job, city                     | 0.2%        | 49.46627%  |
| gender, city                  | 0.2%        | 50.04985%  |
| age, city                     | 0.3%        | 65.12032%  |
| city, signs                   | 0.3%        | 66.71051%  |
| gender, job                   | 0.4%        | 74.78218%  |
| job, age                      | 0.6%        | 82.31471%  |
| gender, age                   | 0.6%        | 82.5039%   |
| job, signs                    | 0.6%        | 83.14454%  |
| gender, signs                 | 0.6%        | 83.3958%   |
| age, signs                    | 0.9%        | 88.36476%  |
| gender, job, city             | 0.4%        | 74.78218%  |
| job, age, city                | 0.6%        | 82.31471%  |
| gender, age, city             | 0.6%        | 82.5039%   |
| job, city, signs              | 0.6%        | 83.14454%  |
| gender, city, signs           | 0.6%        | 83.3958%   |
| age, city, signs              | 0.9%        | 88.36476%  |
| gender, job, age              | 1.2%        | 91.15015%  |
| gender, job, signs            | 1.2%        | 91.61321%  |
| job, age, signs               | 1.8%        | 94.07628%  |
| gender, age, signs            | 1.8%        | 94.15716%  |
| gender, job, age, city        | 1.2%        | 91.15015%  |
| gender, job, city, signs      | 1.2%        | 91.61321%  |
| job, age, city, signs         | 1.8%        | 94.07628%  |
| gender, age, city, signs      | 1.8%        | 94.15716%  |
| gender, job, age, signs       | 3.6%        | 97.03904%  |
| gender, job, age, city, signs | 3.6%        | 97.03904%  |

Figure 12: Distiction and Separation

### 2.4.2 Privacy Risks

| Measure                          | Value [%]                     |
|----------------------------------|-------------------------------|
| Lowest prosecutor risk           | 2,00%                         |
| Records affected by lowest risk  | 5,00%                         |
| Average prosecutor risk          | 3.6%                          |
| Highest prosecutor risk          | 6.25%                         |
| Records affected by highest risk | 1.6%                          |
| Estimated prosecutor risk        | 6.25%                         |
| Estimated journalist risk        | 6.25%                         |
| Estimated marketer risk          | 3.6%                          |
| Sample uniques                   | 0,00%                         |
| Population uniques               | 0,00%                         |
| Population model                 | DANKAR                        |
| Quasi-identifiers                | age, city, gender, job, signs |

Figure 13: Risk Table



Figure 14: Risk Charts

# ${\bf 2.4.3}\quad {\bf An\'alises~sob~os~dados~transformados}$

### Analysis by gender

income\_per\_year number\_kids

| gender |              |         |
|--------|--------------|---------|
| Female | 46230.110220 | 2.02004 |
| Male   | 46998.105788 | 1.89022 |

# Analysis by city

income\_per\_year number\_kids

| city                                                                 |           |       |
|----------------------------------------------------------------------|-----------|-------|
| {Aveiro, Braga, Castelo Branco, Coimbra, Faro, Lisboa, Porto, Viseu} | 46614.876 | 1.955 |

# Analysis by age

income\_per\_year number\_kids

| age      |              |          |
|----------|--------------|----------|
| [23, 38[ | 47023.931122 | 1.943878 |
| [38, 53[ | 46619.502646 | 1.978836 |
| [53, 61[ | 45910.100000 | 1.934783 |

# Analysis by job

income\_per\_year number\_kids

| job                                    |              |          |
|----------------------------------------|--------------|----------|
| {Accountant, Doctor, Engineer, Lawyer} | 59544.467509 | 1.960289 |
| {Manager, Teacher, Waiter}             | 30554.352018 | 1.948430 |

# **Analysis by signs**

income\_per\_year number\_kids

| signs                                 |              |          |
|---------------------------------------|--------------|----------|
| {Aquarius, Aries, Cancer, Capricorn}  | 47247.766962 | 1.920354 |
| {Gemini, Leo, Libra, Pisces}          | 45533.825545 | 2.049844 |
| {Sagittarius, Scorpio, Taurus, Virgo} | 47004.485294 | 1.900000 |

Figure 15: Análises

# 2.5 Comparação da Distinction da Separation entre o Dataset original e os 2 datasets resultantes das transformações



Figure 16: Comparação da distinction dos dados dos 3 datasets



Figure 17: Comparação da Separation dos dados dos 3 datasets

### 2.6 Análise da Utilidade



Figure 18: Comparação da Utilidade entre o dataset original e os 2 resultantes

Assim, a priori, vendo apenas pelo gráfico 18, podemos ver que o dataset resultante One tem maior utilidade que o Two, mas não nos podemos esquecer que esse mesmo dataset suprimiu 32 valores dos 1000 enquanto que o Two não suprimiu nenhum, por isso decidimos calcular a métrica Precision de ambos os dataset de modo a retirar conclusões finais.

 $\begin{aligned} &\operatorname{Prec}(\operatorname{One}) = 0.51570 \\ &\operatorname{Prec}(\operatorname{Two}) = 0.46667 \end{aligned}$ 

#### 2.7 Conclusão

Durante a realização deste exercício, conseguimos compreender a teoria dos Modelos Sintáticos, ou seja, à medida que vamos aumentando a privacidade dos dados, vamos ao mesmo tempo diminuindo a sua utilidade. No dataset resultante One, aplicamos modelos sintáticos bastantes simples (4-Diversity em todos os atributos sensíveis) e concluimos que conseguimos aumentar bastante a segurança, mesmo que perdendo alguma utilidade. No dataset resultante Two, aumentamos a complexidade dos modelos Sintáticos, aplicando um 10-Anonymity juntamente com modelos de L-Diversity o que resultou numa excelente segurança, contudo, fez com que a utilidade dos dados diminuisse em relação ao dataset anterior. Deste modo, conseguimos perceber o payoff da privacidade dos dados.

## 3 Differential Privacy

#### 3.1 Exercício 2.1

Para calcular a sensibilidade dos dados originais, recorremos à média e desvio padrão. Para tal, calculamos a média e o desvio padrão de todos os dados de cada uma das colunas com dados sensíveis. De seguida, retiramos um elemento e voltamos a calcular a média e os desvios padrões dos dados. No fim, verificamos qual era o maior valor absoluto, sendo que depois esses resultados são apresentados na tabela 5.

|                                      | Dataset Original |
|--------------------------------------|------------------|
| Income per year (average)            | 53.4306          |
| Income per year (standard deviation) | 55.7455          |
| Age (average)                        | 0.0188078        |
| Age (standard deviation)             | 0.0104017        |
| Number of kids (average)             | 0.00204705       |
| Number of kids (standard deviation)  | 0.000812522      |

Table 5: Tabela com os valores de sensibilidade para o dataset original

#### 3.2 Exercício 2.2

Para cada coluna e estatística (média e desvio padrão) dos dados originais, geramos 1000 valores aleatórios de uma distribuição de Laplace centrada em zero e escala (valor respetivo da tabela acima / epsilon). Os valores de epsilon usados foram os seguintes: 0.01, 0.2,  $\ln(2)$  e  $\ln(3)$ . No fim, esses valores são adicionado a uma cópia da tabela com os dados originais, tendo assim aplicado o algoritmo.

### 3.3 Exercício 2.3

Aplicou-se o algoritmo explicado na secção acima às cópias dos dados. Na tabela 6 analisamos os dados da mesma forma no exercício 2.1. Podemos ver as diferenças para as várias colunas, aplicando os diferentes valores de epsilon. Nas figuras 19, 20 e 21 apresentamos graficamente os valores da tabela 6.

|                        | Ipy Avg | Ipy Std | Age Avg   | Age Std   | Nk Avg     | Nk Std     |
|------------------------|---------|---------|-----------|-----------|------------|------------|
| Ipy 0.01               | 67.4052 | 85.0813 |           |           | _          |            |
| Ipy 0.2                | 53.9457 | 58.1244 |           |           | _          |            |
| Ipy ln(2)              | 53.4563 | 55.8581 |           |           | _          |            |
| Ipy ln(3)              | 53.409  | 55.7415 |           |           | _          |            |
| Age 0.01               |         | _       | 0.0275956 | 0.0186707 | _          |            |
| $\mathbf{Age} \ 0.2$   | _       |         | 0.0193263 | 0.0112802 | _          | _          |
| $\mathbf{Age}\ \ln(2)$ |         | _       | 0.0192863 | 0.0112562 | _          |            |
| Age $ln(3)$            |         | _       | 0.0192863 | 0.0111734 | _          | _          |
| Nk 0.01                |         | _       | _         | _         | 0.00345045 | 0.00161498 |
| Nk 0.2                 |         | _       |           | _         | 0.00247147 | 0.00153305 |
| Nk ln(2)               |         | _       |           |           | 0.00245546 | 0.0016191  |
| Nk ln(3)               |         | _       |           |           | 0.00246847 | 0.00163075 |

Table 6: Tabela com os valores de sensibilidade após aplicar o algoritmo



Figure 19: Análise da sensibilidade do salário anual bruto



Figure 20: Análise da sensibilidade da idade



Figure 21: Análise da sensibilidade do número de filhos

### 3.4 Exercício 2.4

• Nos gráficos 22 e 23, não existe grande diferença dos valores originais para os alterados, o padrão que estes seguem é muito semelhante ao original (quando epsilon = 0.01, essa diferença é maior, enquanto que quando epsilon =  $\ln(3)$ , a diferença é mínima).



Figure 22: Comparação entre os valores médios de salário bruto anual agrupados por idade



Figure 23: Comparação entre os valores médios de salário bruto anual agrupados por idades, separados por gráficos de diferentes valores de epsilon

 $\bullet\,$  Nos gráficos 24 e 25, em essa diferença para os valores originais é notória, por norma, todos os dados são aleatórios.



Figure 24: Comparação entre os valores de desvio padrão de número de filhos agrupados por idade



Figure 25: Comparação entre os valores de desvio padrão de número de filhos agrupados por idades, separados por gráficos de diferentes valores de epsilon

• Nos gráficos 26, foi repetida uma mesma query várias vezes, sempre aplicando a função explicada no exercício 2.2. Com isto, conseguimos compreender a importância da Differencial Privacy para fazer pesquisas nos dados e a diferença que faz os valores de epsilon aos dados.



Figure 26: Comparação entre os valores de desvio padrão de número de filhos agrupados por idade separados por gráficos de diferentes valores de epsilon

**NOTA:** Neste ponto, fizemos uma grande análise com gráficos, pelo que apenas colocamos aqui alguns para exemplificar. Para ter acesso a todos, ver código-fonte.

### 3.5 Exercício 2.5

### Vantagens:

- Ajusta os resultados das várias queries de modo a ser o mais preciso possível, garantindo a privacidade dos dados dos utilizadores
- $\bullet$  É possível definir o nível de noise adicionado aos atributos sensíveis (valor de epsilon), aumentando ou diminuindo assim a privacidade dos dados

• Se quisermos fornecer o dataset a duas pessoas diferentes, fazendo variar entre eles o valor de epsilon, mesmo que estas tentem juntar-se para tentar recuperar os dados originais, torna-se impossível

### Desvantagens:

- Funciona melhor para dados de baixa sensibilidade (por exemplo, se estivermos a procurar pela pessoa mais velha de uma equipa, este pode fornecer dado completamente errados)
- Custo computacional elevado (pois necessita de calcular a sensividade dos dados e de seguida aplicar o algoritmo)

### Queries:

- Se estivermos a falar de queries de contadores, estas funcionam bem uma vez que a presença de mais ou menos um elemento apenas vai alterar o resultado ligeiramente.
- Somas, máximos, mínimos, médias podem ser um problema pois na presença de um elemento com um valor extremamente elevado vai implicar com que o resultado final se altere bastante uma vez que sejá necessário adicionar bastante *noise*.