Homework 6

Sean Eva

April 2022

- 1. (a) $\mu(12) = \mu(2 * 2 * 3) = 0$
 - (b) $\mu(15) = \mu(3*5) = (-1)^2 = 1$
 - (c) $\mu(30) = \mu(2*3*5) = (-1)^3 = -1$
 - (d) $\mu(50) = \mu(2 * 5 * 5) = 0$
 - (e) $\mu(1001) = \mu(7 * 11 * 13) = (-1)^3 = -1$
 - (f) $\mu(2*3*5*7*11*13) = (-1)^6 = 1$
 - (g) $\mu(10!) = \mu(10*9*8*7*6*5*4*3*2) = \mu(2*5*9*8*7*6*5*4*3*2) = 0$
- 11. Proof. Consider two nonnegative integers n = 36k + 8 and n + 1 = 36k + 9. n is divisible by 4 which implies that it has a square of 2 in the set of its factors and the second number, n + 1 is divisible by 9 which implies that it has a square of 3 in its factors. Since both of these numbers contain squares in their prime factorizations, then their Mobius Function evaluations are 0. This $\mu(n) + \mu(n+1) = \mu(36k+8) + \mu(36k+9) = 0 + 0 = 0$. Therefore, there are infinitely many consecutive positive integers such that their summation of their Mobius Function evaluations are 0.
- 15. Proof. Consider an identity function h(n) = n. Then if n is a positive integer, then $n = \sum \phi(d)$. Therefore, $h(n) = n = \sum \phi(d)$. Now using Mobius inversion formula we get $\phi(n) = \sum \mu(d)h(n/d) = \sum \mu(d)d$. Therefore, if n is a positive integer, then $\phi(n) = n \sum \mu(d)/d$.
- 17. Proof. Consider a multiplicative function f with f(1)=1. If F is multiplicative, then f is also multiplicative. Thus, both f and μ are also multiplicative. Now. as f and μ are multiplicative, then their product μf is also multiplicative. Similarly, the summation $\sum \mu(d)f(d)$ is also multiplicative. Therefore, $\sum \mu(d)f(d) = \mu(p^a)f(p^a) + \mu(p^{a-1})f(p^{a-1}) + ... + \mu(p)f(p) + \mu(1)f(1)$. According to the definition, for exponents greater than 1, the value of $\mu(p^i)=0$. Therefore, we can simplify this to be $\sum \mu(d)f(d) = \mu(p)f(p) + \mu(1)f(1) = 1 f(p)$. Now, as $n = p_1^{a_1}p_2^{a_2}...p_k^{a_k}$ we get that $\sum \mu(d)f(d) = (1-f(p_1))(1-f(p_2))...(1-f(p_k))$.
- 23. Proof. Consider the identity given by $\sum \mu(d) f(d) = (1 f(p_1))(1 f(p_2))...(1 f(p_k))$ where f is a multiplicative function with f(1) = 1. And $n = p_1^{a_1} p_2^{a_2}...p_k^{a_k}$ as a prime factorization. We are able to write $\sum \mu^2(d)$ in the form of the identity stated above because it can be considered $f(d) = \mu(d)$ and also $\mu(1) = 1$. Therefore, $\sum \mu^2(d) = (1 \mu(p_1))(1 \mu(p_2))...(1 \mu(p_k))$ for primes p_i . Since $\mu(p) = -1$ for prime p we know that $\sum \mu^2(d) = (1 (-1))(1 (-1))...(1 (-1)) = 2 * 2 * ... * 2 = 2^k$. Therefore, we know that $\sum \mu^2(d) = 2^k$ where k is the number of distinct prime factors of d.
- 4. NPWJE APNSP QESW
- 38. If we let $p_1p_2...p_m$ and $q_1q_2...q_m$ be two different plain text streams. If $k_1k_2...k_m$ be the keystream used to encrypt the two plain texts $E_{k_i}(p_i) = k_i + p_i \pmod{2}$ and $E_{k_i}(q_i) = k_i + q_i \pmod{2}$ and the corresponding ciphertext streams are $E_{k_i}(p_i) + E_{k_i}(q_i) = k_i + p_i + k_i + q_i \pmod{2} = 2k_i + p_i + q_i \pmod{2}$ and $E_{k_i}(p_i) + E_{k_i}(q_i) = k_i + p_i + k_i + q_i \pmod{2} = 2k_i + p_i + q_i \pmod{2}$ and have access to the resulting cipher string, the key string can be found. If we have a key of 0 then the cipher text would be the same as the plain text and we would know that the key is 0. Similarly, if the key is 1 then we would know this because the cipher text would be different from the plain text.

- 1. p = 97, q = 151
- 3. It is known that $P \leq n$. If $(P, n) \neq 1$, then there must be greatest common divisors of P and n must be one of factors of n that is p or q. (P, n) = p or (P, n) = q. Now, using the Euclidean algorithm to find the greatest common factors of (P, n), the Euclidean Algorithm will give us one of the factors of n and divide n by this calculated factor to get another factor. Therefore, if plaintext P is not relatively prime to the enciphering modulus, then the cryptanalyst can factor n.
- 4. For any integer n, there are n integers up to and including n. Now consider the given n=pq. Therefore, the following are the integers that are no relatively prime to n:p,2p,3p,...,qp;q,2q,3q,...,(p-1)q. Therefore, there are q+p-1 integers up to n that are not relatively prime to n. This is also the number of ways the interested event is expected to occur. Therefore, the required probability is $\frac{q+p-1}{n}=\frac{q}{n}+\frac{p}{n}-\frac{1}{n}=\frac{q}{pq}+\frac{p}{pq}-\frac{1}{pq}=\frac{1}{p}+\frac{1}{q}-\frac{1}{pq}.$
- 12. Fermat's Factorization method hints that an odd number can be written as a difference of two squares that when factored as $a^2 b^2 = (a + b)(a b)$. If the primes are close together, then b will be a small number that will be easily found even under guess and check and even faster using a computer based algorithm.
- 13. Consider a plaintext P. Now consider two exponents e_1, e_2 . If we have $(e_1, e_2) = a$ then there are some x, y such that $a = xe_1 + ye_2$. The encryption of the first part is given as $C_1 = p^{e_1} \pmod{n}$ and the second part is $C_2 = P^{e_2} \pmod{n}$ where C_1, C_2 are the cipher texts. Now, since we now know C_1, C_2, e_1, e_2 we are able to easily compute x, y as $C_1^x, C_2^y = P^{e_1x}P^{e_2y} = P^{e_1x+e_2y} = P^a \pmod{n}$. If a is relatively small, then it may not be difficult to computer the a^th root of P^a and thereby to recover P.
- 14. Let us say the three modules are pairwise, relatively prime. We can use the Chinese remainder theorem to solve the system of congruences and give us a least non-negative integer $x = p^3$ (mod (n_1, n_2, n_3)). By construction $p < x_i$ for i = 1, 2, 3, we will have $p^3 < x_1, x_2, x_3$. It is guaranteed by the theorem that x must be a perfect cube whose cube root is easily computable. And this will be a plaintext = p.
- 12. The objective is to show that if the integers 'a' and 'b' are relatively prime and $(\operatorname{ord}_n a, \operatorname{ord}_n b) = 1$ then $\operatorname{ord}_n ab = \operatorname{ord}_n a\operatorname{ord}_n b$. As the integers a and b are prime integers, therefore (a, n) = 1, (b, n) = 1 which implies that $(\operatorname{ord}_n a, \operatorname{ord}_n) = 1$. Now consider that $\operatorname{ord}_n a = k_1$ and $\operatorname{ord}_n b = k_2$. Therefore, $a^{k_1} \equiv 1 \pmod{n}$ and $a^{k_2} \equiv 1 \pmod{n}$ implies that $a^{k_1 k_2} \equiv 1 \pmod{n}$, $b^{k_1 k_2} \equiv 1 \pmod{n}$. Now, if we multiply both of these equations we get that $(ab)^{k_1 k_2} \equiv 1 \pmod{n}$ which means that $\operatorname{ord}_n ab = k_1 k_2$. Therefore, it is clear that from the above that $\operatorname{ord}_n ab = \operatorname{ord}_n ab$ as desired.
- 16. From Euler's Theorem we have that for a positive integer a relatively prime to another integer n, $a^{\phi(n)} \equiv 1 \pmod{n}$. Therefore, for a positive integer m a prime number we can write that, $a^{m-1} \equiv 1 \pmod{m}$. We also know that $\operatorname{ord}_m a | \phi(m)$. Therefore, if $\operatorname{ord}_m a = m-1$ then it must divide $\phi(m)$. We also know that $\phi(m) \leq m-1$. Therefore, $\phi(m) = m-1$, which implies finally that the positive integer m must be a prime.
- 12. Let p be a prime and let r be a primitive root of p. Then the inverse $r^{-1} = r^{p-2}$ is a primitive root as well. Thus, we can group the primitive roots in pairs of mutually inverse roots whenever r and r^{-1} are different from each other. If we investigate when r and r^{-1} can coincide we get that $r \equiv r^{-1} \pmod{p}$ and $r^2 \equiv 1 \pmod{p}$ implies that $r \equiv \pm 1 \pmod{p}$ which are not primitive roots if p > 3. So for p > 3, the primitive roots group in pairs of mutually inverse primitive roots and their total product is congruent to $1 \pmod{p}$. If p = 2 there is only one primitive root, 1. So the least positive residue of the product of all primitive roots is again $1 \pmod{p}$. If p = 3 the only primitive root is $-1 \equiv 2$. In this case, the least positive residue of the product of all primitive roots equal 2.
- 16. $\mathbb{F}_p^x = mn 3$ are elements in the field of p elements $-\mathbb{Z}/(p-1)\mathbb{Z} = \mathbb{Z}/2q\mathbb{Z}$. The mapping $x \to 2x$ is a homomorphism which implies that $\mathbb{Z}/2q\mathbb{Z} \to \mathbb{Z}/q\mathbb{Z}$ is also a homomorphism. The kernel is $q^{\mathbb{Z}}/2q\mathbb{Z} = \mathbb{Z}/2\mathbb{Z}$ which has order 2. So, the image is a subgroup of index 2, and so has order q, and so s generated by any non-zero element. In multiplicative language, squares in \mathbb{F}_p^x form a subgroup of order

q generated by any element whose square is not 1. Each a, 1 < a < p-1 is such an element. For such $a, \operatorname{ord}_p a^2 = q$. As $\operatorname{ord}_p (p-1) = 2, p-1$ is not a square. So, $(p-1)a^2 \notin (\#_p^x)^2$ for some 1 < a < p-1. But its square is a^4 which also generates a^2 . So $< (p-1)a^2 > \max$ be all of $\#_p^x$, so $(p-1)a^2 = p-a^2$ is primitive.