```
lim f(x)=l = ) fentine
   Tenena Fie ACIRM, X ATIRM a EA' REIRM AUASE
    1) lim f(x) = C
   2) 4870 76270 a7 4xeA on 0 < d(x, a) < 6 => d( flx), flask &
  3) + (x, ) (A X, - A

Y, + a + min =) f(x,) + C
               Simmi de function
   XEIR lim x2+ze xx
      \lim_{M \to \infty} m \times = \begin{cases} 0 \times 70 \\ 0 \times = 0 \end{cases} \lim_{M \to \infty} e^{M} \times = \begin{cases} 1 = e^{0} \times 70 \\ 1 = e^{0} \times = 0 \end{cases}
(1 \times 70) \lim_{M \to \infty} \frac{x^{2} + 2e^{M}x}{1 + e^{M}x} = \lim_{M \to \infty} \frac{e^{M}(\frac{x^{2}}{e^{M}x + 1})}{(\frac{x^{2}}{e^{M}x + 1})} = 1
(2 \times 20) \lim_{M \to \infty} \frac{2}{1 + e^{M}x} = 1
(3 \times 20) \lim_{M \to \infty} \frac{x^{2} + 2e^{M}x}{1 + e^{M}x} = x^{2}
              fm, f: IR → IR

fm (x) = x + 2e mx

1+ e nx fx = ...

x2x < 0
              fn ⇒ f.

ent dist.
      Dof Fie A a multime (X, A) wife, f: A > X
       Spunes 10 for of dois + xen lim for(x)=f(x) (for(x) =, y(x))
       +xEA YERO 3 ME, x ON + MEME, X => d (fm(x), /H)) < E
       1n mst
        4820 3 mz at + mz mz => d (fn(4), 1/4)) < E + xeA
                                                         an = my d(fult), fix) < E
       In it anso
065 fm 4 => fm => f
 In EO, 17 -1R Intx=xm
    lim fo(x) = 20 x < 1 = f(x) f: [90-1R
        X=1 | \frac{1}{n_0}(1) - \frac{1}{1}(1) / = \omega
        g. [0,1] -IR
         gn (x)= xm(1-x)3
          Lim gn (x) = 0 gn = g=0
         an = mg + E(0,1]
```

```
lim f(*)=l &) fential
       Tenani Fie ACIR", & AFIR" AEA'; leir" AUASE
       1) lin f(x) = C
     2) 4870 7670 as treA on O < d(x,1) < de => d( flx), flaske
     3) + (x, ) CA X, + A
                                   Yn = a + may =) flx) + C
                             Simmi de function
       X+12 lim x2+zexx
                  lim mx = \begin{cases} 0 \times 70 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 0 = e^{a} \times 80 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{ax} \\ 1 = e^{a} \times 90 & lim e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\ 1 = e^{a} \times 90 & lim e^{a} \\
               12x=0 lim 2 = 1
            () x < 0 lim x+20=x2
                           fort: IR +IR
                           1 x = x + 2 enx fx = 1 x = 0

1 x = 1 + enx fx = 1 x = 0
                             fu st
                         ent dist
            Dof Fie A a multime (X, 1) info, f: A -X
              Spenen 10 for of dori + xxx lim full often ( full) = (41)
              + * EA + E > 0 3 ME, * an + mame, x => d (/n(x), /k)) < E
              fn #f
               HERO FMEAT +MEME => d /PM(N, /FE)) SE + REA
                                                                                                      an = my difficultion) < E
               1 4 5 m +0
06 / 4 4 => fust
   In EO, 17 -IR Intx=x*
         lim fo(x)= { 0 x = 1 = f(x) } f : [90-1]e
              X=1 | for(1) - f(1) / = 0
               9. [9,17 -IR
                gm (x 1= x M (1-x)3
                  lim ga/x)=0 gn=g=0
                a_{n} = \sup_{k \in [0,1]} |q_{n}(k) - q_{n}(k)|
= \sup_{k \in [0,1]} |q_{n}(k)|
                  9 (x) = MX 1/1 (1-x)3- x 3(1-x12
                             = x 1-1 (1-x1 ( M-Mx-31) = 0
                            X = 0 \quad X = 1 \qquad X = \frac{R}{w+3}
0 \qquad \qquad \frac{M}{A+t} \qquad \qquad 1
                  340++0-0
                  24 0 July >0
                           a_{n} = \left(\frac{n+3}{m+3}\right)^{n} \left(1 - \frac{n}{m+3}\right)^{3} \le \left(\frac{3}{m+3}\right)^{3} \to 0
                             Dara funt or function + M31 => + contina
                      of for (0,5) -12 for x
                           c = (a, b)
                         + Ezc 3 ME as + M > ME => | fm(x)-f(x) < € + x ∈ (a,b)
                       Fixam ming
                    front in c
                         4 E >0 7 8 E >0 a9
```

Profesor Blaga Mirela-Gabriela

Tabel de integrale nedefinite

1.	$\int dx = x + C$	21.	$\int \frac{dx}{\sin^2 x} = -\cot g x + C$
2.	$\int x^n dx = \frac{x^{n+1}}{n+1} + C$		$\int \frac{dx}{\cos^2 x} = tg x + C$
3.	$\int x dx = \frac{x^2}{2} + C$	23.	$\int (1+tg^2x)dx = tgx+C$
4.	$\int \sqrt{x} dx = \frac{2}{3} x \sqrt{x} + C$	24.	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$
5.	$\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C$	25.	$\int \frac{dx}{x^2 - 1} = \frac{1}{2} \ln \left \frac{x - 1}{x + 1} \right + C$
6.	$\int \frac{dx}{x} = \ln x + C$	26.	$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arct} g \frac{x}{a} + C$
7.	$\int \frac{dx}{ax+b} = \frac{1}{a} \ln ax+b + C$	27.	$\int \frac{dx}{x^2 + 1} = \arctan x + C$
8.	$\int \frac{dx}{x^2} = -\frac{1}{x} + C$	28.	$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + C$
9.	$\int lnxdx = xlnx - x + C$	29.	$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left x + \sqrt{x^2 - a^2}\right + C$
10.	$\int e^x dx = e^x + C$	30.	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$
11.	$\int e^{-x} dx = -e^{-x} + C$	31.	$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$
12.	$\int a^x dx = \frac{a^x}{\ln a} + C$	32.	$\int \frac{x}{\sqrt{x^2 \pm a^2}} dx = \sqrt{x^2 \pm a^2} + C$
13.	$\int \sin x dx = -\cos x + C$	33.	$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} + C$
14.	$\int \cos x dx = \sin x + C$	34.	$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} ln(x + \sqrt{x^2 + a^2}) + C$
15.	$\int tg x dx = -\ln \cos x + C$	35.	$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln \left x + \sqrt{x^2 - a^2} \right + C$
16.	$\int ctg x dx = \ln \sin x + C$	36.	$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$
17.	$\int f'(x) dx = f(x) + C$	37.	$\int f(x) dx = F(x) + C$
18.	$\int f(x)f'(x) dx = \frac{f^2(x)}{2} + C$	38.	$\int f(x)F(x) dx = \frac{F^2(x)}{2} + C$
19.	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C$	39.	$\int \frac{f(x)}{F(x)} dx = \ln F(x) + C$
20.	$\int f^{n}(x)f'(x) dx = \frac{f^{n+1}(x)}{n+1} + C$	40.	$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$

149.
$$\sum_{n=1}^{\infty} \left(\frac{n!}{n^n}\right)^n$$
 150. $\sum_{n=1}^{\infty} \left(\frac{3n+2}{5n-1}\right)^{2n^3+1}$

155.
$$\sum_{n=1}^{\infty} \frac{1}{|a| \log n}, a > 0$$

152.
$$\sum_{n=1}^{\infty} \left(\frac{6n^2 + 7n + 5}{2n^2 + 5n + 9} \right)^n$$

153.
$$\sum_{n=1}^{\infty} \frac{1}{3^{\ln n}}$$

154.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \sin \frac{1}{n} \right)$$

154.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \sin \frac{1}{n} \right)$$
 155. $\sum_{n=2}^{\infty} \frac{1}{(\ln a)^{\ln n}}, a > 0$

156.
$$\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n(n+1)}(n+2)^n}$$

157.
$$\sum_{n=1}^{\infty} \frac{1}{3^n - n}$$

158.
$$\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!} \cdot \frac{1}{n}$$

157.
$$\sum_{n=1}^{\infty} \frac{1}{3^n - n}$$
 158. $\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!} \cdot \frac{1}{n}$ 159. $\sum_{n=1}^{\infty} \frac{n^n + 1}{n^n + 1}$; $a, b \in R$

160.
$$\sum_{n=1}^{\infty} \arcsin \frac{2n-1}{5n^3+7n+4}$$

161.
$$\sum_{n=1}^{\infty} \frac{3^n + 2^n}{n!}$$

162.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n+5}}$$

161.
$$\sum_{n=1}^{\infty} \frac{3^n + 2^n}{n!}$$
 162. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n+5}}$ 163. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n \cdot 3^n}$

164.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \ln \frac{3n^2 + 2}{n^2 + 1}$$

165.
$$\sum_{n=1}^{\infty} \frac{n^{2n}}{(2n)!}$$

166.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{2n+1}}$$

165.
$$\sum_{n=1}^{\infty} \frac{n^{2n}}{(2n)!}$$
 166. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{2n+1}}$ 167. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{e^{-n^2}}{n+1}$

168.
$$\sum_{n=0}^{\infty} a^n \cdot tg \frac{a}{2^n}, \ a > 0$$

169.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

169.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
 170.
$$\sum_{n=1}^{\infty} \frac{3n-7}{n(n+1)(n+2)}$$
 171.
$$\sum_{n=1}^{\infty} \frac{n^2+n-1}{(n+1)!}$$

171.
$$\sum_{n=1}^{\infty} \frac{n^2 + n - 1}{(n+1)!}$$

172.
$$\sum_{n=1}^{\infty} \frac{n! \cdot a^n}{n^n \cdot 2^n}, a > 0$$

$$173. \sum_{n=2}^{\infty} \frac{1}{n^2 \ln n}$$

173.
$$\sum_{n=2}^{\infty} \frac{1}{n^2 \ln n}$$
 174. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2 + (-1)^n}{n^2}$ 175. $\sum_{n=1}^{\infty} \frac{2^n + 5^n}{2^{n+1} + 5^{n+1}}$ 176. $\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{1}{\sqrt{2}}\right)^n$

176.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{1}{\sqrt{2}} \right)^n$$

177.
$$\sum_{n=1}^{\infty} \frac{3^n \cdot n!}{n^n}$$

178.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2n+1)}{3^n}$$

177.
$$\sum_{n=1}^{\infty} \frac{3^n \cdot n!}{n^n}$$
 178.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2n+1)}{3^n}$$
 179.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^4 + 1} + \sqrt{n^2 + 1}}$$
 180.
$$\sum_{n=1}^{\infty} \frac{3n + 5}{2n + 3} \cdot a^n, a > 0$$

180.
$$\sum_{n=1}^{\infty} \frac{3n+5}{2n+3} \cdot a^n, a > 0$$

181.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2^n}}$$

182.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+a^n}}, a > -1$$

183.
$$\sum_{n=1}^{\infty} \frac{a^n \cdot n^n}{n!}$$
, $a > 0$

181.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + 2^n}$$
 182. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + a^n}, a > -1$ 183. $\sum_{n=1}^{\infty} \frac{a^n \cdot n^n}{n!}, a > 0$ 184. $\sum_{n=1}^{\infty} \frac{2 \cdot 7 \cdot 12 \cdot \dots \cdot (5n-3)}{5 \cdot 9 \cdot 13 \cdot \dots \cdot (4n+1)}$

$$185. \sum_{n=1}^{\infty} \ln \left(\frac{n^4 + 1}{n^4} \right)$$

186.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n+1}{(n+1)\sqrt{n+1}-1}$$

185.
$$\sum_{n=1}^{\infty} \ln \left(\frac{n^4 + 1}{n^4} \right) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n+1}{(n+1)\sqrt{n+1} - 1} = 187. \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}(\sqrt{n} + \sqrt{n+1})} = 188. \sum_{n=1}^{\infty} \frac{4^{n+3} - (-1)^{n+1} 3^{n+1}}{5^{n+2}} = 188.$$

1.88.
$$\sum_{n=1}^{\infty} \frac{4^{n+3} - (-1)^{n+1} 3^{n+1}}{5^{n+2}}$$

189.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left[\frac{(2n-1)!!}{(2n)!!} \right]^{3}$$

190.
$$\sum_{n=1}^{\infty} \left(a \frac{n^2 + n + 1}{3n^2} \right)^n, a > 0$$

189.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left[\frac{(2n-1)!!}{(2n)!!} \right]^{3}$$
190.
$$\sum_{n=1}^{\infty} \left(a \frac{n^{2}+n+1}{3n^{2}} \right)^{n}, a > 0$$
191.
$$\sum_{n=1}^{\infty} \left(\sqrt{(n+1)(n+a)} - n \right)^{n}, a > 0$$

$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 3n}{n^2 + 3} \right)^{n^2} \cdot a^n, \ a > 0$$

193.
$$\sum_{n=1}^{\infty} e^{-(a \ln n + \ln n^2)}$$
. $0 < a < 1$

$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 3n}{n^2 + 3} \right)^{n^2} \cdot a^n, \ a > 0$$

$$193. \sum_{n=1}^{\infty} e^{-(a \ln n + \ln n^2)} \cdot 0 < a < 1$$

$$194. \sum_{n=1}^{\infty} \frac{n!}{\alpha(\alpha + 1)(\alpha + 2)...(\alpha + n - 1)}, \alpha > 0$$

195.
$$\sum_{n=1}^{\infty} \left(\frac{3^{n} + 4^{n}}{3^{n+1} + 4^{n+1}} \right)^{n} \cdot a^{n}, \ a > 0$$

196.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

197.
$$\sum_{n=1}^{\infty} \frac{a(a+1)(a+2)...(a+n)}{b(b+1)(b+2)...(b+n)}; 0 < a < b$$

198.
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + n + 1}{n^2 + 1} \right)^{n^2 + 1} .$$

",
$$a > 0$$
 $\sum_{n=1}^{\infty} \left(\frac{3^n + 4^n}{3^{n+1} + 4^{n+1}} \right)^n \cdot a^n$, $a > 0$

$$\frac{195. \sum_{n=1}^{\infty} \left(\frac{3^{n}+4^{n}}{3^{n+1}+4^{n+1}}\right)^{n} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n-1)} \cdot \frac{197. \sum_{n=1}^{\infty} \frac{a(a+1)(a+2) \dots (a+n)}{b(b+1)(b+2) \dots (b+n)}; \ 0 < a < b}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} \cdot \frac{197. \sum_{n=1}^{\infty} \frac{a(a+1)(a+2) \dots (a+n)}{b(b+1)(b+2) \dots (b+n)}; \ 0 < a < b}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} \cdot \frac{197. \sum_{n=1}^{\infty} \frac{a(a+1)(a+2) \dots (a+n)}{b(b+1)(b+2) \dots (b+n)}; \ 0 < a < b}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} \cdot \frac{197. \sum_{n=1}^{\infty} \frac{a(a+1)(a+2) \dots (a+n)}{b(b+1)(b+2) \dots (b+n)}; \ 0 < a < b}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} \cdot \frac{197. \sum_{n=1}^{\infty} \frac{a(a+1)(a+2) \dots (a+n)}{b(b+1)(b+2) \dots (b+n)}; \ 0 < a < b}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n^{2}+1} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$\frac{198. \sum_{n=1}^{\infty} \left(\frac{n^{2}+n+1}{n^{2}+1}\right)^{n} \cdot a^{n}, \ a > 0}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

REVIAR TI

ie seria de p unctele în c

Feorema 1

2) seria

3) pen

Teorema

Dacă no

Obser

Teor

Să se studieze natura următoarelor serii

Sã se studieze natura urmâtoarelor serii:

19.
$$\sum_{n=1}^{\infty} \left[\frac{1 \cdot 5 \cdot 9 \cdot \dots \cdot (4n-3)}{5 \cdot 9 \cdot 13 \cdot \dots \cdot (4n+1)} \right]^{2} 20. \sum_{n=1}^{\infty} \left(\frac{n+1}{n} \right)^{n}$$
21.
$$\sum_{n=1}^{\infty} n \sin \frac{1}{n}$$
22.
$$\sum_{n=1}^{\infty} (-1)^{n} \frac{5n-3}{3n+5} 23. \sum_{n=1}^{\infty} \frac{(-2)^{n}}{3n+5} \frac{3n}{2} = \frac{2n}{2^{n}}$$
82.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{2^{n}} R; 9$$
83.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{2^{n}} R; 9$$
83.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{2^{n}} R; 9$$
84.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{6n^{2} - 2n + 1} R; 9$$
85.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
86.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{6n^{2} - 2n + 1} R; 9$$
87.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{6n^{2} - 2n + 1} R; 9$$
88.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
89.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
80.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
81.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
82.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
83.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{6n^{2} - 2n + 1} R; 9$$
84.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{6n^{2} - 2n + 1} R; 9$$
85.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
86.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
87.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
88.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
89.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
80.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
81.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
82.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
83.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
84.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
85.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
86.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
87.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
88.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
89.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
89.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
89.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
89.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
89.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
89.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
89.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
89.
$$\sum_{n=1}^{\infty} \frac{n^{2} + n + 1}{5^{n}} R; 9$$
89.
$$\sum_{n=1}^$$

R: convergente: 26, 28, 30, 32, 34, 36, 38 (dacă a > 1), 40, 41 (dacă a > 1), 42, 43, 45, 46, 47, 50, 51 (dacă a < 1/e)

Să se determine natura următoarelor seri

52.
$$\sum_{n=1}^{\infty} \frac{n!}{2^{n} \cdot n^{n}} a^{n}, \ a > 0$$
53.
$$\sum_{n=1}^{\infty} \left(\frac{n^{2} + 3n + 5}{n^{2} + 2n + 3} \right)^{n^{2}} \cdot a^{n}, \ a > 0$$
54.
$$\sum_{n=1}^{\infty} \frac{2^{n} + 3^{n}}{n!}$$
55.
$$\sum_{n=1}^{\infty} \frac{(n+1)!(n+3)!}{2^{n} \cdot (2n-1)!} a^{n}, \ a > 0$$
56.
$$\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2n)!}$$
57.
$$\sum_{n=1}^{\infty} \left(\sqrt{n^{2} + 3n + 2} - \sqrt{n^{2} - 2n + 3} \right)^{n}$$

Studiați convergența și absolut convergența seriilor:

$$58. \sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1} \qquad 59. \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \qquad 60. \sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n^2} \qquad 61. \sum_{n=1}^{\infty} (-1)^n \frac{1}{n \cdot 2^n}$$

$$62. \sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n^3} \qquad 63. \sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n+1}} \qquad 64. \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n}} \qquad 65. \sum_{n=1}^{\infty} (-1)^n \left(\frac{2n+3}{2n-1}\right)^n$$

$$66. \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \qquad 67. \sum_{n=1}^{\infty} \frac{n!}{(-3)^n} \qquad 68. \sum_{n=1}^{\infty} (-1)^n \frac{1}{n-\ln n} \qquad 69. \sum_{n=1}^{\infty} (-1)^{n-1} \sin \frac{1}{n}$$

Atunci când este posibil, calculați suma următoarelor serii:

70.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 R:1 71. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)(n+3)}$ R:1/18 72. $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)(2n+3)}$ R:1/12

73. $\sum_{n=1}^{\infty} \frac{4n}{4n^{4}+1}$ R:1 74. $\sum_{n=0}^{\infty} \frac{1}{n^{2}+5n+6}$ 75. $\sum_{n=0}^{\infty} \frac{an^{2}+bn+c}{n!}$; $a,b,c \in R$ R: $e(2a+b+c)$ 76. $\sum_{n=1}^{\infty} \frac{n^{2}+n-1}{(n+2)!}$ R:1/2 77. $\sum_{n=1}^{\infty} \frac{4^{n+3}-(-1)^{n}3^{n+1}}{5^{n+2}}$ R: $\frac{2057}{200}$ 78. $\sum_{n=1}^{\infty} \frac{5n-1}{n^{3}+4n^{2}+3n}$ R:17/9

79. $\sum_{n=1}^{\infty} \frac{(-1)^{n}+n}{(-4)^{n}}$ R:13/75 80. $\sum_{n=1}^{\infty} \frac{n+2}{n!+(n+1)!+(n+2)!}$ R:1/2 81. $\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}$ R:1

82.
$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{2^n}$$
 R: 9

83. $\sum_{n=1}^{\infty} \frac{n}{5^n}$

85. $\sum_{n=1}^{\infty} \frac{2n^2 + 3n + 4}{5^n}$ R:23/8

86. $\sum_{n=1}^{\infty} \frac{n}{5^n}$, $|a| > 1$ R: $\frac{a}{(a-1)^2}$

89. $\sum_{n=1}^{\infty} \frac{(-2)^{n+3} + 3^{2n+1}}{10^{n+2}}$

92. $\sum_{n=1}^{\infty} \frac{1}{3^n} \sin \frac{n\pi}{3}$

98. $\sum_{n=1}^{\infty} \frac{(-1)^n (2n+1)}{3^n}$

100. $\frac{1}{2^1} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^4} + \dots + \frac{1}{3^4}$

Stabiliți natura seriilor:

105. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^n}{(n+1)^n}$ 10

102

101. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$

109.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \cos(n+1)$$

113.
$$\sum_{n=1}^{\infty} \frac{7^n}{n!}$$

$$117. \sum_{n=1}^{\infty} \left(\frac{4n-3}{7n+1} \right)^n$$

121.
$$\sum_{n=1}^{\infty} n \ln \left(1 - \frac{1}{n} \right)$$

125.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n!(1+2^n)}$$

129.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n^3 + n - 1}}$$

$$\underbrace{133.}_{n=1}^{\infty} \left(\frac{n+a}{n+b} \right)^{n}, a,$$

137.
$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{6}{5} \right)^n$$

$$141.\sum_{n=1}^{\infty}n^{2}e^{-\sqrt{n}}$$

145.
$$\sum_{n=1}^{\infty} \left(\frac{n}{3n-1} \right)^2$$

```
- DEE na Undera
- (x, b) on gotten topologi
- For lindrin drin X FET
- Va= 5 V/ 7 DEZOT AFDEV
 Xnna + VEVa=) 3 muastaga, =) Ynev
        B= P(4)
     (X, 3=P(x))
   1) $, X E AX1
   2) DIPZ EPY) => DATIPZEPX)
   3) (01/1/EI UD1 EPX)
   J= P(x)
   Va = {V | 7 PEPIXT aPAEDEV }
      = 4 u 1 a + v 5
    Xm - n a + V EVa - 7 7 m a) tazmy => Xm EV
                 V= 3 as 3 ma alt man = 1xm E (x) xn=0
      In (+, 8) un vis contract de la un rous atresan
(+,d) d(+, y)={0 x = 0
           Td = P(X)
     B = 4$, × 9
 1) $,406
  2) n 101x
 3) (P(), E } 1, x1
        OI 71 APPS=X=> UPI=X
      (7) Di= + tieI=)UP,=#
     F= (x, p) X=X 1 p indin
    Ma= { V / 7 DEZ a ED C / = 4 x 9
                     0 = p (0 = x)
        XN-1 =) XNEX YN
        limite on its conce
      (X,d) Xn-1 a (=) d(/4, a)->0
                Xn + b (=> d Hm b) + 0
            0= d(a,b) = d(4,a)+d(4,4)-10
          =1/0=6)
               6= ((a, a) a = TD)
       1) d = (4,4) 10=(-4,4) EB
      2) (q, a) n(b, a) = (mada, b), a)
       3) U (a, =)= (inda, =)68
       7 = { p, 10} v { (.u, a) }
      V = 3 v / 7 (b, w) a ra = (b, w) est
       = N | 7 870 01 (a-50) CV }
       XMTA # 820 3 ME ar thank = 1/m +laza
                                   YMTTO-E MAME
              HVEVa=17av
                                    lim / a = a
               V= (a-f, +)
                                    VA Ja
                   (X3) A < X
                     6A = { AND | DE & ) - typelage indus.
                   1) p-Any A=Anx =64
                   Z) G, G, E GA = 1 G, = AND, = 1 G, NG2 = AND, Q & GA
                   Va= { ANV | V & Va }

(Xn) CA aca | Yn = n ace > Yn = n a
```