Usuarios, privilegios y roles de Oracle

Álvaro González Sotillo

18 de octubre de 2024

Índice

1. Introducción	J
2. Tablespaces	1
3. Usuarios	\$
4. Privilegios	4
5. Roles	Ę
6. Perfiles	6
7. Referencias	7

1. Introducción

- Oracle puede utilizarse simultáneamente por varios procesos y clientes
- Cada uno puede tener distintos permisos y capacidades
 - Espacio de disco disponible
 - Gasto en CPU, red
 - Acceso a diferentes tablas de datos

2. Tablespaces

- Oracle almacena datos en los *tablespaces*
 - Conjuntos de ficheros
 - Normas para su tamaño: inicial, máximo, crecimiento
- Cada tablespace puede usarse para diferentes funciones
 - Datos de usuario o del sistema: permanent tablespace
 - Datos de recuperación: undo tablespace
 - Datos temporales: temporary tablespace

2.1. Recordatorio: Tipos de fichero según su uso

- Permanentes (permanent)
 - Datos que deben ser guardados
 - Ejemplo: Empleados contratados, nóminas pagadas, declaraciones de impuestos,...
- De movimiento (undo)

- Cambios que deben ser incluidos en archivos permanentes
- Ejemplo: un puesto de peaje debe guardar todos los pagos con tarjeta, y enviarlos juntos
- De maniobra (temporary)
 - Se utilizan como extensión a la RAM de un ordenador, se borran cuando el proceso termina
 - Ejemplo: caché de disco de los navegadores

2.2. ¿Por qué tantas normas?

- Disponibilidad
 - ¿Es mejor garantizar el espacio para las tablas?
 - ¿Es mejor ahorrar espacio mientras se pueda?
- Velocidad
 - Hacer crecer un fichero es lento
 - Un fichero que ha crecido poco a poco está disperso en el disco (y es más lento)
- Capacidad
 - Cada sistema de ficheros tiene un tamaño de fichero máximo

2.3. Tablespaces por defecto

- Por defecto, **Oracle** crea en una nueva base de datos
 - users: Tablespace asignado por defecto para los datos de todos los usuarios
 - system: Datos acerca de la instancia y del diccionario de datos
 - sysaux: Operaciones temporales del administrador que no caben en memoria
 - undo (undotbs1): Datos para deshacer las transacciones (rollback)
 - temp: Operaciones temporales de usuarios que no caben en memoria

```
select tablespace_name, contents from dba_tablespaces;
```

Mas información en:

- https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7003.htm
- https://docs.oracle.com/cd/B19306_01/server.102/b14220/physical.htm

2.4. Crear un tablespace

```
CREATE TABLESPACE ejemplo_tablespace

DATAFILE

'/tablespaces/ejemplo_1.dbf' SIZE 10M

AUTOEXTEND ON NEXT 200k MAXSIZE 14M,

'/tablespaces/ejemplo_2.dbf' SIZE 10M

AUTOEXTEND ON NEXT 200k MAXSIZE 14M;
```

Más en docs.oracle.com

2.5. ¿Por qué es tan complicado?

- Esta flexibilidad permite:
 - Que cada usuario tenga sus tablespaces
 - Que cada tablespace esté en discos distintos (rapidez)
 - Que un tablespace se localice en varios discos (rapidez, tamaño)
 - Mover tablespaces una vez creados

2.6. Ejercicio: Llena un tablespace

- Crea un tablespace con un tamaño inicial de 10MB, y un tamaño máximo de 14MB
- Crea una tabla sobre el tablespace
- Inserta datos en la tabla hasta conseguir el error ORA-01653

2.7. Ejercicio: tablespace por defecto

- Consulta el tablespace por defecto de los usuarios (dba_users)
- Cambia el tablespace por defecto de un usuario (alter user)
- Consulta el tablespace por defecto por (DATABASE_PROPERTIES)
- Cambia el tablespace por defecto por defecto (alter database)
 - Nota: esto cambia el tablespace por defecto de todos los usuarios existentes
- Cambiar una tabla de tablespace: ALTER TABLE ... MOVE TABLESPACE

2.8. Ejercicio: más tablespaces

- 1. Crea un tablespace PRUEBA1
 - inicialmente 10M, máximo 20M
- 2. Crea un usuario
 - ullet no le digas tablespace por defecto
 - ullet pero que al crearlo su tablespace por defecto sea PRUEBA1
- 3. Crea una tabla
 - MISDATOS (DATOS VARCHAR (255))
- 4. Llena la tabla hasta que no quede espacio en PRUEBA1
- 5. Crea un tablespace PRUEBA2
 - tamaño inicial igual al máximo, 30M
- 6. mueve MISDATOS a PRUEBA2
- 7. Vuelve a llenar la tabla hasta que se llene PRUEBA2

2.9. Conceptos de almacenamiento

Más información en Oracle.com

3. Usuarios

¿Qué usuario hemos utilizado con sqlplus hasta ahora?

- Oracle tiene dos modos de autentificar usuarios
 - Autentificación de sistema operativo (parámetro os_authent_prefix)
 - Autentificación con seguridad nativa de oracle
- Al instalarlo, elegimos que el grupo wheel era administrador

3.1. Creación de usuarios

```
CREATE USER usuario IDENTIFIED BY contrasena
DEFAULT TABLESPACE tablespace
TEMPORARY TABLESPACE tablespace
QUOTA UNLIMITED ON tablespace
QUOTA tamano ON tablespace
ACCOUNT LOCK
ACCOUNT UNLOCK
```

3.2. Modificación de usuario

■ Modificación de un usuario ya creado

```
ALTER USER usuario cualquier opcion valida al crear usuario
```

Borrado de usuario

```
DROP USER usuario
```

4. Privilegios

- Cada usuario puede tener unos permisos distintos
- Ya hemos visto dos permisos
 - En qué tablespaces se puede escribir
 - Cuántos datos se pueden escribir en esos tablespaces
 - Si una cuenta está bloqueada
- Pero hay más permisos
 - ullet Veremos los privilegios de ${f Oracle}$

4.1. Privilegios de Oracle

Privilegio				Objeto sobre el que se aplica							
	Create,	alter,	drop		Table,	sequence,	view,	user,	synonym,	session,	procedure
	select,	update,	delete,	insert	Sobre campos de tablas y filas						

4.2. Sintaxis de Grant

```
grant PRIVILEGIO1, PRIVILEGIO2, ..., PRIVILEGION
on OBJETO
to USUARIO
with grant option;
```

```
create table alumnos(...);
create user profesor ...;
grant select on alumnos to profesor;
```

Fuente: docs.oracle.com

4.3. Ejercicio

- Crea un usuario CONPERMISOS
 - Que tenga privilegios de connect y resource
 - Utilizalo para crear una tabla DATOS (TEXTO varchar2 (255), numero integer)
 - Inserta datos (puede que necesite cuota)
- Crea un usuario LIMITADO
- Haz que CONPERMISOS de privilegios a LIMITADO para que:
 - Pueda leer todos los campos de la tabla DATOS
 - Pueda actualizar el campo NUMERO de tabla DATOS
 - Pero no pueda modificar el campo TEXTO, ni borrar filas, ni insertar filas

4.4. Ejercicio

- Haz que el usuario CONPERMISOS tenga una cuota de 100k en el tablespace USERS
- Llena toda su cuota insertando filas en la tabla DATOS
- ¿Qué ocurre?

4.5. Quitar privilegios

- Los privilegios se quitan con revoke
- Cuando un usuario pierde un privilegio, los pierden también todos los que recibieron el mismo privilegio a través de él
 - Por la cláusula with grant option

```
connect sys/******
grant select on unatabla to unusuario with grant option;
connect unusuario/******
grant select on unatabla to otrousuario;
connect sys/******
revoke select on unatabla from unusuario;
--- AQUI NI unusuario NI otrousuario TIENEN PRIVILEGIO SOBRE unatabla
```

4.6. Privilegios de sistema

- No se aplican sobre tablas/objetos concretos
 - CREATE ANY TABLE, CREATE ANY VIEW,...
 - CREATE SESSION, CREATE SYNONYM,...
 - UNLIMITED TABLESPACE, SYSDBA,...

5. Roles

- Asignar todos los privilegios a un usuario es trabajoso, pero factible
- ¿Qué ocurre si tenemos que manejar a muchos usuario?
- Los roles permiten dar nombre a un grupo de privilegios
 - Se pueden asignar privilegios a un rol
 - Y después asignar ese rol a varios usuarios

5.1. Sintaxis de roles

```
create role NOMBREROL;
grant PRIVILEGIOS on OBJETOS to NOMBREROL;
grant NOMBREROL to USUARIO;
```

Fuente: docs.oracle.com

5.2. Ejercicio

Se pueden asignar privilegios a PUBLIC, para que todos los usuarios tengan dicho privilegio. Decide si PUBLIC es un usuario o un rol, y compruébalo en las tablas de diccionario.

5.3. Ejercicio

- Imagina que
 - 1. Creas un rol con sus permisos
 - 2. Le asignas privilegios
 - 3. Lo asignas al usuario USUARIOANTES
 - 4. Quitas algún privilegio del rol
 - 5. Asignas el rol al usuario USUARIODESPUES
- El usuario USUARIODESPUES, ¿tiene más, menos o los mismos privilegios que USUARIOANTES?
 - O lo que es lo mismo, ¿los permisos del rol se copian al usuario o se enlazan?

5.4. ¿Qué privilegios tengo?

- Un usuario puede tener muchos permisos otorgados directamente y a través de un rol
- Además, algunos roles son por defecto, pero otros hay que activarlos con SET ROLE

```
select * from session_roles;
select * from session_privs;
```

5.5. Consulta recursivas

```
select * from dba_role_privs connect by prior granted_role = grantee start with grantee = '&USER' order by 1,2,3;
select * from dba_sys_privs where grantee = '&USER' or grantee in (
    select granted_role from dba_role_privs connect by prior granted_role = grantee start with grantee = '&USER'
) order by 1,2,3;
select * from dba_tab_privs where grantee = '&USER' or grantee in (
    select granted_role from dba_role_privs connect by prior granted_role = grantee start with grantee = '&USER'
) order by 1,2,3,4;
```

6. Perfiles

- Un profile es un conjunto de limitaciones sobre el sistema Oracle
- No limita acceso a datos, sino al propio SGBD y sistema operativo

6.1. Creación de perfiles

```
CREATE PROFILE nombreperfil LIMIT
   SESSIONS_PER_USER
                               UNLIMITED
   CPU_PER_SESSION
                               UNLIMITED
   CPU_PER_CALL
                               3000
   CONNECT TIME
                               4.5
   IDLE_TIME
   LOGICAL_READS_PER_SESSION
                               DEFAULT
                               1000
   LOGICAL_READS_PER_CALL
   PRIVATE SGA
                               15K
                               5000000:
  COMPOSITE_LIMIT
ALTER SYSTEM SET resource_limit = TRUE scope = BOTH
```

- Nota: Según la fuente, los tiempos se miden en días. Se pueden especificar fracciones de día.
 - Pero a mí me funcionan como minutos

Fuente: docs.oracle.com

6.2. Asignación de perfil a un usuario

■ En la creación (create user), o posteriormente

```
alter user USUARIO profile NOMBREDEPERFIL
```

6.3. Ejercicio

- Haz que el usuario LIMITADO
 - se quede sin sesión tras 1 minuto de inactividad
 - se quede sin sesión a los 2 minutos de conectarse, aunque no haya estado inactivo

6.4. Ejercicio

• Utiliza las vistas de Oracle para conocer los límites del profile por defecto.

6.5. Ejercicio

■ Usa la opción PASSWORD_VERIFY_FUNCTION para evitar que las contraseñas sean más largas de tres caracteres

7. Referencias

- Formatos:
 - Transparencias
 - PDF
 - Página web
 - EPUB
- \blacksquare Creado con:
 - Emacs
 - org-re-reveal
 - Latex
- Alojado en Github