Progetto #3

Tempo e crittografia

- Apporre una marca temporale su di un documento D per rispondere alla domanda:
 "Quando è stato creato D?"
 - Digital timestamping
- Inviare informazioni nel futuro
 - Timed-relase crypto
 - Capsula del tempo digitale
- Il progetto verterà su Digital Timestamping

Marca Temporale

- La *marca temporale* di un documento è qualcosa che viene aggiunta/associata al documento
 - Per un documento digitale è una stringa di bit ...

• La marca temporale prova che il documento esiste nel momento in cui è stata apposta la marca

Digital Timestamping

- Servizio che permette di associare data e ora certe e legalmente valide ad un documento informatico
- Consente di associare al documento una validazione temporale opponibile a terzi
 - Art. 20, comma 3 Codice dell'Amministrazione Digitale Dlgs 82/2005
- Le marche temporali emesse devono essere conservate in appositi archivi per un periodo non inferiore a 20 anni
 - Art. 49 del Dpcm del 30/03/2009

Servizi a pagamento

- Ad esempio, con Aruba
 - Pacchetti da 50, 100, 250, 500 marche temporali
 - Pacchetto da 500: 0,18€ + iva per marca
 - Pacchetto da 50: 0,25€ + iva per marca

Marcatura temporale

- La *marca temporale* viene apposta da un notaio depositando il documento presso il notaio stesso
- Inviare il documento a se stesso tramite un servizio postale (e.g., raccomandata, corriere), ma non aprire la busta
- Nel caso di una marcatura temporale di un'invenzione si può depositare un brevetto
- Si potrebbe pubblicare il documento su di un giornale
- Uso di un registro di protocollo

Due situazioni differenti

- Si appone una marca temporale su
 - -un documento che è stato appena prodotto con il tempo e data attuale
 - un documento che è stato prodotto nel passato con il tempo e la data in cui è stato prodotto

Scenario di lavoro

- Consideriamo solo la prima situazione
 - Marcatura con data attuale
- È facile provare che un documento è stato prodotto dopo di una data fissata
- È difficile provare che un documento è stato prodotto prima di una data fissata

Standard RFC 3161

https://datatracker.ietf.org/doc/rfc3161/

- Una marca temporale fidata è un timestamp emesso da un terza parte fidata (TTP) che agisce in qualità di Autorità di TimeStamp (TSA)
- È usata per provare l'esistenza di un determinato dato prima di un determinato punto nel tempo senza la possibilità per il possessore di retrodatare la marca temporale
- Può essere essere usato un insieme di TSA per incrementare l'affidabilità e ridurre la vulnerabilità
- ANSI ASC X9.95-2016 evoluzione RFC 3161

ANSI ASC X9.95-2016

- Evoluzione RFC 3161
- RFC 3161
 - Basata solo su PKI (firma digitale)
- **ANSI ASC X9.95**
 - I timestamp generati sono collegati ad altri timestamp
 - Si una una chiave di firma differente per ogni timeframe, alla scadenza del timeframe la chiave segreta è cancellata

Possibili Soluzioni

TTP: Trusted Third Party

- Due famiglie di protocolli
 - Protocolli distribuiti (senza TSA)
 - Protocolli centralizzati con collegamenti (con TSA)
- In entrambi i casi si marca il valore hash del documento in esame per preservare la confidenzialità senza perdere in sicurezza
 - La confidenzialità dovrebbe essere garantita in maniera differente

Soluzione ingenua

H: funzione hash

- Si invia il valore hash ad un documento D ad un'autorità fidata (TTP)
 - È chiamata TSA (TimeStamping Authority)
- L'autorità aggiunge un timestamp T a H(D)
 - Ad esempio: T = YYYY-MM-DD HH:MM:SS
- L'autorità firma T || D ed invia il messaggio firmato al richiedente

Grande fiducia nella TSA

Trusted timestamping

Protocollo Distribuito

- Generalizzazione della soluzione precedente
- Vogliamo datare un documento D
- Si calcola y = H(D) e si usa y come seme di un PRNG generando k valori $V_1, V_2, ..., V_k$
- Si considera V_i come *l'identità* di una persona (TSA) a cui inviare y
 - Se abbiamo 2^b TSA, ogni blocco di b bit di PRNG(y) identifica un TSA
- Ogni V_i aggiunge tempo e data ad y, firma il tutto e restituisce il risultato
- H(D) e le k firme ricevute sono conservate come marcatura temporale del documento D

Chiarimenti sul protocollo

- Il valore k deve essere grande a sufficienza in modo che risulti difficile corrompere tante TSA
- La scelta delle TSA da contattare deve essere effettuata a caso per ogni documento, ecco perché si usa un PRNG avente come seme il valore hash del documento

Problemi del Protocollo Distribuito

- Ci vogliono molte TSA in grado di rispondere immediatamente alla richiesta di timestamp
- Durata (vita) delle firme digitali:
 - Una firma potrebbe non essere più valida al momento della verifica della marca temporale:
 - La chiave privata è stata compromessa
 - Lo schema di firme è stato rotto
 - Il certificato associato alla chiave di firma è scaduto

Estendere validità firme digitali

- Una marca temporale può essere associata anche a un documento su cui è stata una firma digitale
- Marcando temporalmente la firma del documento garantiamo che essa sia sempre valida anche nel caso in cui il relativo certificato risulti scaduto, sospeso o revocato
 - La marca deve essere apposta precedentemente alla scadenza, revoca o sospensione del certificato di firma

Fonte: wikipedia

Una singola TSA

- Problemi
 - Dobbiamo fidarci della TSA
 - In un qualsiasi momento, una TSA corrotta potrebbe apporre una marca temporale relativa ad una qualsiasi data precedente a quella attuale
- Soluzione
 - Collegare in qualche modo tutti i documenti marcati dalla TSA

Catena di Marche Temporali

Soluzione proposta nel 1991 da Haber e Stornetta

S. Haber e W.S. Stornetta

How to time-stamp a digital document

Journal of Cryptology, Vol. 3 (2), 99–111, 1991

- Notazione:
 - Sig funzione di firma della TSA
 - h, H funzioni hash
 - D, documento da marcare
 - $-y_n = h(D)$, n-esimo documento che la TSA deve marcare
 - ID_n identità del richiedente

Il protocollo graficamente

17 luglio 2009

Protocollo

- Si invia $y_n = h(D) e ID_n$ alla TSA
- La TSA risponde con s=Sig(n, t_n, ID_n, y_n; L_n)
 - t_n è il timestamp
 - $\left(L_{n-1}, ID_{n-1}, y_{n-1}; H(L_{n-1}) \right)$ linking information
- Quando arriverà una nuova richiesta di marcatura da ID_{n+1} , allora ID_{n+1} sarà inviato a ID_n e (s, ID_{n+1}) è la marca temporale di y_n

È necessario il valore iniziale L_0 , potremmo settare L_0 =(0, 0, 0; 0)

Marca Temporale n-esima

$$<$$
Sig(n, t_n, ID_n, y_n; (t_{n-1}, ID_{n-1}, y_{n-1}; H(L_{n-1})), ID_{n+1} $>$

• Perché è sufficiente inserire solo l'hash di L_{n-1}?

È sufficiente notare che L_{n-1} include L_{n-2} che a sua volta deve includere L_{n-3}

Verifica Marca Temporale

- ID_n verifica la firma Sig(n, t_n, ID_n, y_n; L_n)
- Chiede a ID_{n+1} la sua marca temporale
- Verifica che tutto coincide
- Chiede a ID_{n-1} la sua marca temporale
- Verifica che tutto coincide
- Può continuare il procedimento con ID_{n+2} , ID_{n-2} e così via

Sicurezza del sistema

 Non è possibile inserire una nuova marca nella catena perché i messaggi sono numerati

- Per cambiare un messaggio marcato un utente
 - Deve colludere con la TSA, con l'utente che lo precede e con quello che lo segue nella catena
 - Deve anche trovare una collisione in H

<Sig(n, t_n, ID_n, y_n; (t_{n-1}, ID_{n-1}, y_{n-1}; H(L_{n-1})), ID_{n+1}>

Sicurezza del Sistema

Vogliamo sostituire (n, t_n, ID_n, y_n; L_n) con (n, t_n, ZZ_n, z_n; L_n)

- Bisogna colludere con ID_{n-1} per sostituire (s, ID_n) con (s, ZZ_n)
- Bisogna colludere con ID_{n+1} per sostituire $L_{n+1}=(t_n, ID_n, y_n; H(L_n))$ con $L'_{n+1}=(t_n, ZZ_n, z_n; H(L'_n))$ e deve risultare $H(L_{n+1}) = H(L'_{n+1})$

Sicurezza del Sistema

• Si potrebbe rompere lo schema colludendo solo con la TSA e creando una falsa catena lunga a sufficienza

- Si risolve il problema pubblicando H(L_m) ad intervalli regolari.
 - Una volta al giorno su Internet o su di un giornale

Migliorare la sicurezza

 Collegare ogni richiesta alle precedenti k ed alle successive k

$$L_{n} = ((t_{n-k}, ID_{n-k}, y_{n-k}; H(L_{n-1}), ..., (t_{n-k}, ID_{n-1}, y_{n-1}; H(L_{n-1})))$$

• Una volta che le successive k richieste sono state elaborate la TSA invia a ID_{n+1} le identità ID_{n+1} , ..., ID_{n+k}

Albero di Marche Temporali

• La struttura utilizzata è un albero binario (Merkle Tree) che sostituisce la lista doppiamente concatenata

• Il TSS produce una marca temporale dopo che, in un'unità di tempo (timeframe), ha esaminato un numero fissato di richieste

Merkle Tree Albero di valori hash

Utilizzato anche in Bitcoin

Struttura dell'albero

$$HV_i = h_{18}$$

indica la concatenazione

$$h_{18} = H(h_{14} || h_{58})$$

$$h_{14} = H(h_{12} || h_{34})$$

$$h_{58}=H(h_{56} || h_{78})$$

$$h_{12} = H(h_1 || h_2)$$

$$h_{34} = H(h_3 || h_4)$$

$$h_{56}=H(h_5 || h_6) h_{78}=H(h_7 || h_8)$$

 h_1

 h_2

 h_3

 h_4

 h_5

 h_6

 h_7

h₈

$$h_i = h(D_i)$$

Il protocollo

- La TSA riceve n richieste nello stesso intervallo di tempo (timeframe) t_i
- La TSA calcola il valore HV_i (*root hash*) e lo rende pubblico
- La marca temporale di un utente (e.g., ID₄) contiene informazioni per poter ricostruire il valore HV_i, ad esempio
 - $-h_4$, (h_3, sx) , (h_{12}, sx) , (h_{58}, dx)
 - sx/dx indicano se il valore è nel nodo sinistro o destro

Collegamento tra timeframe

- Si calcola e pubblica un Super Hash Value
 - $-SHV_i = H(SHV_{i-1} | | HV_i)$, è necessario un SHV_0
 - SHV_{i-1} e SHV_i possono essere inserite nel timestamp
- Verifica
 - Non sono necessari i timestamp di altri utenti, tutto è codificato nel timestamp ricevuto
 - Si può controllare l'HashValue (HV) pubblicato corrispondente al proprio timestamp
 - Si può controllare la correttezza della catena dei Super Hash Value

Sicurezza del Sistema

- Fissato il valore hash della radice, non è possibile
 - Inserire/Cambiare anche un valore nell'alberoMerkle
 - Per fare ciò dovremmo essere in grado di calcolare collisioni di funzioni hash
 - Due valori x_1 ed x_2 tali che $H(x_1) = H(x_2)$

Sicurezza del Sistema

• Si potrebbe rompere lo schema colludendo solo con la TSA e creando un insieme sufficientemente grande di alberi collegati

 Tale attacco è limitato notevolmente pubblicizzando ad intervalli regolari il Super Hash Value

Digital Notary http://www.surety.com

- L'utente usa un applicativo venduto dalla Surety
- La funzione hash produce un digest di 416 bit
 - Prodotto dalla concatenazione di SHA-256 e RIPEMD-160
- Il sistema usa una una struttura ad albero
- L'unità di tempo corrisponde ad un secondo
- Un numero seriale è inserito nel documento.
- Il SHV è pubblicato in posti accessibili via rete, su un CD-ROM, ed ogni settimana sul Sunday New-York Times

Progetto #3

- Implementare un servizio di timestamping
 - Non deve essere un'applicazione client/server
 - Il server esaminerà un lotto di richieste e genererà le corrispondenti marche temporali
 - Le richieste degli utenti sono cifrate con la chiave pubblica della TSA
- L'altezza dell'albero è 3
 - Si possono apporre 8 marche temporali in un timeframe
 - Se ci sono meno di 8 documenti, aggiungere nodi fittizi

Possibili campi in una Marca Temporale

- L'identificativo del mittente
- Il numero di serie della marca temporale
- Il tipo di algoritmo di firma della Marca Temporale
- L'identificativo del certificato della chiave pubblica della TSA con cui ha firmato la Marca
- Data ed ora in cui la Marca è stata generata
- Il digest calcolato dalla TSA partendo da quello fornito dal richiedente
- La firma digitale della marca apposta dalla TSA

KeyRing

- Deve conservare
 - Chiavi pubbliche e private di firma e di cifratura
 - Chiavi di cifrari simmetrici
 - Password di accesso a siti web
- Deve essere conservato in un file cifrato
 - Libera scelta per l'organizzazione delle informazioni nel KeyRing
 - Nella documentazione indicare le modalità di accesso al KeyRing e il recupero delle informazioni associate alle chiavi

Può essere consegnato con l'ultimo progetto