Machine Learning Demo: Analyzing Airbnb Data

By: Anna Hauk

_

What is Machine Learning?

- Deep learning is a subset of machine learning, and machine learning is a subset of artificial intelligence.
- Data science utilizes ML and statistics to uncover patterns and insights in data.
- ML-based Al learns its behavior from data.

Formal Definitions

- Artificial Intelligence: all-encompassing term that captures the research and implementation of systems that are capable of performing tasks intelligently in a given environment
 - Al is different because it uses its environment to shape its behavior, whether through experience or on the fly.
 - It can deal with the unknown and provide a generalized response for previously unseen situations.
- Machine Learning: subset, or implementation, of AI that deals with the research and implementation of systems that shape its behavior based on experience
 - Solves problems by "learning" from past data in order to make decision
 - needs historical data in order to perform well. It always goes through a training phase, where it consumes data (often in high volume) in order to update its inner data structure
 - Not all Al systems employ ML

Formal Definitions

- Deep Learning (DNN): subset of machine learning that uses neural networks as its underlying algorithm
 - often used in the fields of image recognition, language processing, and speech recognition
- Data Science: discipline concerned with finding patterns and providing insights from data
 - Machine learning automates these processes and can pick up subtle relationships within data that could otherwise be missed using a traditional statistics approach.

Supervised vs Unsupervised

Label is given

- Binary
- Multiclass
- Regression

Raw data without any labels

_

Regression vs Classification

Labels

Binary Classification

- Spam
- Not spam

Multiclass Classification

- Dog
- Cat
- Horse
- Fish
- Bird
- ...

Multi-label Classification

- Dog
- Cat
- Horse
- Fish
- Bird
- .

Regression

height of the animal? temperature for tomorrow? credit score of a person with a specific financial profile?

SUPERVISED LEARNING vs SEMI-SUPERVISED LEARNING vs UNSUPERVISED LEARNING

		Features					Label
		Feature 1	Feature 2	Feature 3	Feature 4	Feature 5	
		Size	Number of Bedrooms	Numbers of Bathrooms	Distance to School	Type of Heating	Price
Examples •–	Example 1	2,400 sqft	3	2	1.5 miles	Electric	\$292,000
	Example 2	1,200 sqft	2	1	2.0 miles	Electric	\$150,000
		6,540 sqft	6	2.5	3.1 miles	Forced Air	\$780,000
		•••	•••		•••	•••	
l	Example 5000	2,500 sqft	4	2	1.7 miles	Forced Air	\$320,000

Data Preparation

	_

Sample dataset									
Name	Income	Credit Score	Occupation	Job Sector	Loan Status				
John Doe	\$76,000	650	Engineer	Engineering	Good				
Gill Bates	\$85,000	760	Nurse	Healthcare	Defaulted				
Jane Doe	"95000.00"	0	Banker	Financial	Good				
John Doe	\$76,000	650	Engineer	Engineering	Good				
Melon Usk		810	Flight Attendant	Transportation	Excellent				
Barren Wuffet	5000/mo	35000	Contractor	Construction	Defaulted				

Sample dataset

Problems in the data:

- The entry for John Doe is repeated
- Income format is not standardized
- The entry for Melon Usk contains a missing value
- Credit score contains two outliers 0 and 35000, likely to be errors as typical range is between 350 to 850
- Occupation and Job Sector are somewhat redundant as they tell similar stories

Linear Regression

Decision Trees

Random Forest

RMSE & R Squared

Root Mean Squared Error

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

shows how well a regression model (independent variable) predicts the outcome of observed data (dependent variable)

R-Squared

$$R^{2} = 1 - \frac{\sum (y_{i} - y)^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Where,

$$\hat{y}$$
 - predicted value of y
 \bar{y} - mean value of y