

10000-224200-2

Claims

We claim:

1. A lift belt comprising:
 - an elastomeric body having a width w and a thickness t and having a pulley engaging surface; the elastomeric body having an aspect ratio w/t that is greater than 1;
 - a tensile cord contained within the elastomeric body and extending longitudinally;
 - the pulley engaging surface having a ribbed profile; and
 - the ribbed profile having a rib with an angle of approximately 90° .
2. The lift belt as in claim 1, wherein the tensile cord comprises a conductive material having a resistance.
3. The lift belt as in claim 2, wherein the resistance of the tensile cord varies to indicate a lifting belt load.
4. The lift belt as in claim 1 comprising a plurality of ribs.
- 25 5. The lift belt as in claim 4 having an end.
6. The lift belt as in claim 3 comprising a plurality of tensile cords.

30

2020/09/24 23:20:00

7. The lift belt as in claim 3 further comprising:
a jacket on a surface opposite the pulley engaging
surface.
- 5 8. The lift belt as in claim 7, wherein the jacket
comprises nylon.
9. The lift belt as in claim 8 wherein a tensile cord
comprises a metallic material.
- 10 10. The lift belt as in claim 9 wherein a tensile cord
comprises steel.
- 15 11. The lift belt as in claim 1 further comprising:
an electrical circuit connected to a tensile cord
for measuring a tensile cord load.
- 20 12. The lift belt as in claim 1 further comprising:
an electrical circuit for detecting a tensile cord
failure.
- 25 13. An elevator lift system comprising:
a belt having an elastomeric body having a width w
and a thickness t and having a pulley engaging
surface;
the elastomeric body having an aspect ratio w/t
that is greater than 1;
a tensile cord contained within the elastomeric
body and extending longitudinally;
30 the pulley engaging surface having a ribbed
profile;

P 0004242001 2020

the ribbed profile having a rib with an angle of approximately 90°; and

at least one pulley having a ribbed profile engaged with the pulley engaging surface.

5

14. The lift system as in claim 13, wherein the tensile cord comprises a conductive material having a resistance.

10

15. The lift system as in claim 14, wherein the resistance of the tensile cord varies according to a lifting belt load.

15

16. The lift system as in claim 13, wherein the pulley engaging surface comprises a plurality of ribs.

20

17. The lift system as in claim 16, wherein the belt has an end.

20

18. The lift system as in claim 15 comprising a plurality of tensile cords.

25

19. The lift system as in claim 15 further comprising: a jacket on a surface opposite the pulley engaging surface.

25

20. The lift system as in claim 19, wherein the jacket comprises nylon.

30

21. The lift system as in claim 18 wherein a tensile cord comprises a metallic material.

22. The lift system as in claim 21 wherein a tensile cord comprises steel.
- 5 23. The lift system as in claim 13 further comprising:
 an electrical circuit connected to a tensile cord
 for measuring a tensile cord load.
- 10 24. The lift system as in claim 13 further comprising:
 an electrical circuit for detecting a tensile cord
 failure.
- 15 25. The lift belt as in claim 1 further comprising
 fibers extending from the pulley engaging surface.
- 20 26. A lift system comprising:
 a belt having an elastomeric body having a width w
 and a thickness t and having a pulley engaging
 surface;
 the elastomeric body having an aspect ratio w/t
 that is greater than 1;
 a tensile cord contained within the elastomeric
 body and extending longitudinally;
 the pulley engaging surface having a ribbed
 profile;
 the ribbed profile having a rib with an angle of
 approximately 90°;
 at least one pulley having a ribbed profile engaged
 with the pulley engaging surface; and
 an electric circuit for detecting a tensile cord
 load and for controlling operation of the system.

2020TECH20001234567890

27.A method of operating a lift system comprising the
steps of:

5 training a tensile cord over a pulley between a
motor and a load;
measuring an electrical resistance of the tensile
cord; and
controlling an operation of the motor according to
the electrical resistance.

10

28.A lift belt comprising:

15 an elastomeric body having a width w and a
thickness t and having a pulley engaging surface;
the elastomeric body having an aspect ratio w/t
that is greater than 1;
a tensile cord contained within the elastomeric
body and extending longitudinally;
the pulley engaging surface having a ribbed
profile; and
20 the ribbed profile having a rib with a rib angle.

25 29.The lift belt as in claim 28, wherein the tensile
cord comprises a conductive material having a
resistance.

30 30.The lift belt as in claim 29, wherein the
resistance of the tensile cord varies to indicate a
lifting belt load.

35 31.The lift belt as in claim 28, wherein the rib angle
is in the range of approximately 60° to 120° .

32. The lift belt as in claim 28, wherein the rib angle
is approximately 90°.

202070 22428001