正の整数 n の正の平方根 \sqrt{n} の整数部分を a とおくと, $a \ge 1$ である. このとき \sqrt{n} が整数でなく, 十進数における小数点第 1 位が 0 となり, かつ第 2 位が 0 でないための必要十分条件は

$$a + 0.01 \le \sqrt{n} < a + 0.1$$

となる. 各辺を 2 乗して a^2 を引くと, $a \ge 1$ から 0.02a + 0.0001 > 0 となるため,

$$0 < 0.02a + 0.0001 \le n - a^2 < 0.2a + 0.01 \tag{1}$$

これを満たす a が存在する n の中で最小のものが求める n である. $n-a^2$ は正整数であるため, a は 0.2a+0.01>1 を満たす必要がある. 0.2a+0.01 が単調増加であり, $0.2\times4+0.01=0.81<1$, $0.2\times5+0.01=1.01>1$ から $a\geq5$ となることが必要である. また $n-a^2\geq1$ より $n\geq a^2+1$ となり, $a\geq5$ から n=26 が条件を満たす最小のものとなる. 実際, 不等式 (1) に a=5, n=26 を代入すると

$$0 < 0.1001 \le 1 < 1.01$$

となり条件を満たしていることが確認できる.

答え n=26