Algebra Linear Numérica A2 Recap

15/05/2025

Olha só, agora é em português! Coisa boa. Esse documento se refere aos capítulos 16 e posteriores.

1. Lecture 16 - Estabilidade da Triangularização de Householder

Nesse capítulo, a gente tem uma visão mais aprofundada da análise de **erro retroativo** (Backwards Stable). Dando uma breve recapitulada, para mostrar que um algoritmo $\tilde{f}: X \to Y$ é **backwards stable**, você tem que mostrar que, ao aplicar \tilde{f} em uma entrada x, o resultado retornado seria o mesmo que aplicar o problema original $f: X \to Y$ em uma entrada levemente perturbada $x + \Delta x$, de forma que $\Delta x = O(\varepsilon_{\text{machine}})$.

1.1. O Experimento

O livro nos mostra um experimento no matlab para demonstrar a estabilidade em ação e alguns conceitos importantes, irei fazer o mesmo experimento, porém, utilizarei código em python e mostrarei meus resultados aqui.

Primeiro de tudo, mostraremos na prática que o algoritmo de **Householder** é **backwards stable**. Vamos criar uma matriz A com a fatoração QR conhecida, então vamos gerar as matrizes Q e R. Aqui, temos que $\varepsilon_{\rm machine} = 2.220446049250313 \times 10^{-16}$:

```
1
     import numpy as np
                                                                                        Python
     np.random.seed(0) # Ter sempre os mesmos resultados
2
3
     # Crio R triangular superior (50 x 50)
     R_1 = np.triu(np.random.random_sample(size=(50, 50)))
5
     # Crio a matriz Q a partir de uma matriz aleatória
     Q_1, _ = np.linalg.qr(np.random_random_sample(size=(100, 50)), mode='reduced')
6
7
     # Crio a minha matriz com fatoração QR conhecida (A = Q_1 R_1)
     A = Q_1 @ R_1
8
9
     # Calculo a fatoração QR de A usando Householer
10
     Q_2, R_2 = householder_qr(A)
```

Sabemos que, por conta de erros de aproximação, a matriz A que temos no código não é **exatamente** igual a que obteríamos se tivéssemos fazendo Q_1R_1 na mão, mas é preciso o suficiente. Podemos ver aqui que elas são diferentes:

```
CÓDIGO

11 print(np.linalg.norm(Q_1 - Q_2))
12 print(np.linalg.norm(R_1 - R_2))
```

	SAÍDA
1	7.58392995752057e-8
2	8.75766271246312e-9

Perceba que é um erro muito grande, não é tão próximo de 0 quanto eu gostaria, se eu printasse as matrizes Q_2 e R_2 eu veria que, as entradas que deveriam ser 0, tem erro de magnitude $\approx 10^{17}$. Bem, se ambas tem um erro tão grande, então o resultado da multiplicação delas em comparação com A também vai ser grande, correto?

```
CÓDIGO  

Python

13 print(np.linalg.norm(A - Q_2 @ R_2))
```

```
SAÍDA
1 3.8022328832723555e-14
```

Veja que, mesmo minhas matrizes Q_2 e R_2 tendo erros bem grandes com relação às matrizes Q_1 e R_2 , conseguimos uma aproximação de A bem precisa com ambas. Vamos agora dar um destaque nessa acurácia de Q_2R_2 :

```
CÓDIGO

delta_Q_1 = np.random.random_sample(size=Q_1.shape)

delta_R_1 = np.random.random_sample(size=R_1.shape)

Q_3 = Q_1 + delta_Q_1 * 1e-4

R_3 = R_1 + delta_R_1 * 1e-4

print(np.linalg.norm(A - Q_3 @ R_3))
```

```
SAÍDA
1 0.05197521348918455
```

Perceba o quão grande é esse erro, é **enorme**, então: Q_2 não é melhor que Q_3 , R_2 não é melhor que R_3 , mas Q_2R_2 é muito mais preciso do que Q_3R_3

1.2. Teorema

Vamos ver que, de fato, o algoritmo de **Householder** é **backwards stable** para toda e qualquer matriz A. Fazendo a análise de backwards stable, nosso resultado precisa ter esse formato aqui:

$$\tilde{Q}\tilde{R} = A + \delta A$$

com $\|\delta A\|$ / $\|A\| = O(\varepsilon_{\text{machine}})$. Ou seja, calcular a QR de A pelo algoritmo é o mesmo que calcular a QR de $A+\delta A$ da forma matemática. Mas aqui temos uns adendos.

A matriz \tilde{R} é como imaginamos, a matriz triangular superior obtida pelo algoritmo, onde as entradas abaixo de 0 podem não ser exatamente 0, mas **muito próximas**.

Porém, \tilde{Q} não é aproximadamente ortogonal, ela é perfeitamente ortogonal, mas por quê? Pois no algoritmo de Householder, não calculamos essa matriz diretamente, ela fica "implícita" nos cálculos, logo, podemos assumir que ela é perfeitamente ortogonal, já que o computador não a calcula, ou seja, não há erros de arredondamento. Vale lembrar também que \tilde{Q} é definido por:

$$\tilde{Q} = \tilde{Q}_1 \tilde{Q}_2 ... \tilde{Q}_n$$

De forma que \tilde{Q} é perfeitamente unitária e cada matriz \tilde{Q}_j é definida como o refletor de householder no vetor de floating point $\tilde{v_k}$ (Olha a página 73 do livro pra você relembrar direitinho o que é esse vetor $\tilde{v_k}$ no algoritmo). Lembrando que \tilde{Q} é perfeitamente ortogonal, já que eu não calculo ela no computador diretamente, se eu o fizesse, então ela não seria perfeitamente ortogonal, teriam pequenos erros.

Teorema 1.2.1 (Householder's Backwards Stability): Deixe que a fatoração QR de $A \in \mathbb{C}^{m \times n}$ seja dada por A = QR e seja computada pelo algoritmo de **Householder**, o resultado dessa computação são as matrizes \tilde{Q} e \tilde{R} definidas anterioremente. Então temos:

$$\tilde{Q}\tilde{R} = A + \delta A$$

Tal que:

$$\frac{\|\delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}})$$

para algum $\delta A \in \mathbb{C}^{m \times n}$

1.3. Algoritmo para resolver Ax = b

Vimos que o algoritmo de householder é backwards stable, show! Porém, sabemos que não costumamos fazer essas fatorações só por fazer né, a gente faz pra resolver um sistema Ax=b, ou outros tipos de problemas. Certo, mas, se fizermos um algoritmo que resolve Ax=b usando a fatoração QR obtida com householder, a gente precisa que Q e R sejam precisos? Ou só precisamos que QR seja preciso? O bom é que precisamos apenas que QR seja precisa! Vamos mostrar isso para a resolução de sistemas $m\times m$ não singulares.

```
Algoritmo para resolver Ax = b
```

```
1 function ResolverSistema(A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{m \times 1}) {
2 | QR = \text{Householder}(A)
3 | y = Q^*b
4 | x = R^{-1}y
5 | return x
6 }
```

Esse algoritmo é **backwards stable**, e é bem passo-a-passo já que cada passo dentro do algoritmo é **backwards stable**.

Teorema 1.3.1: O algoritmo descrito anterioremente para solucionar Ax = b é **backwards stable**, satisfazendo

$$(A + \Delta A)\tilde{x} = b$$

com

$$\frac{\|\Delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}})$$

para algum $\Delta A \in \mathbb{C}^{m \times n}$

Demonstração: Quando computamos \tilde{Q}^*b , por conta de erros de aproximação, não obtemos um vetor y, e sim \tilde{y} . É possível mostrar (Não faremos) que esse vetor \tilde{y} satisfaz:

$$(\tilde{Q} + \delta Q)\tilde{y} = b$$

satisfazendo $\frac{\|\delta Q\|}{\|\tilde{Q}\|} = O(\varepsilon_{\mathrm{machine}})$

Ou seja, só pra esclarecer, aqui (nesse passo de y) a gente ta tratando o problema f de calcular Q^*b , ou seja $f(Q)=Q^*b$, então usamos um algoritmo comum $\tilde{f}(Q)=Q^*b$ (Não matematicamente, mas usando as operações de um computador), daí reescrevemos isso como $\tilde{f}(Q)=(Q+\delta Q)^*b$, por isso podemos reescrever como a equação que falamos anteriormente.

No último passo, a gente usa **back substitution** pra resolver o sistema $x = R^{-1}y$ e esse algoritmo é **backwards stable** (Isso vamos provar na próxima lecture). Então temos que:

$$(\tilde{R} + \delta R)\tilde{x} = \tilde{y}$$

satisfazendo $\frac{\|\delta R\|}{\|\tilde{R}\|} = O(\varepsilon_{\mathrm{machine}})$

Agora podemos ir pro algoritmo em si, temos um problema f(A): Resolver Ax=b, daí usamos $\tilde{f}(A)$: Usando householder, resolve Ax=b. Então, se o algoritmo nos dá as matrizes perturbadas que citei anteriormente $(Q+\delta Q$ e $R+\delta R)$, ao substituir isso por A, eu tenho que ter um resultado $A+\Delta A$ com $\frac{\|\Delta A\|}{\|A\|}=O(\varepsilon_{\mathrm{machine}})$, vamos ver:

$$b = \left(\tilde{Q} + \delta Q\right) \left(\tilde{R} + \delta R\right) \tilde{x}$$

$$b = \left(A + \delta A + \tilde{Q}(\delta R) + (\delta Q)\tilde{R} + (\delta Q)(\delta R)\right) \tilde{x}$$

$$b = (A + \Delta A)\tilde{x} \Leftrightarrow \Delta A = \delta A + \tilde{Q}(\delta R) + (\delta Q)\tilde{R} + (\delta Q)(\delta R)$$

Como ΔA é a soma de 4 termos, temos que mostrar que cada um desses termos é pequeno com relação a A (Ou seja, mostrar que $\frac{\|X\|}{\|A\|} = O(\varepsilon_{\text{machine}})$ onde X é um dos 4 termos de ΔA).

- δA : Pela própria definição que o algoritmo de householder é backwards stable nós sabemos que δA satisfaz a condição de $O(\varepsilon_{\mathrm{machine}})$
- $(\delta Q)\tilde{R}$:

$$\frac{\|(\delta Q)\tilde{R}\|}{\|A\|} \leq \|(\delta Q)\| \ \frac{\|\tilde{R}\|}{\|A\|}$$

Perceba que

$$\frac{\|\tilde{R}\|}{\|A\|} \le \frac{\|\tilde{Q}^*(A + \delta A)\|}{\|A\|} \le \|\tilde{Q}^*\| \frac{\|A + \delta A\|}{\|A\|}$$

Lembra que, quando trabalhamos com $O(\varepsilon_{\rm machine})$, a gente ta trabalhando com um limite implícito que, no caso, aqui é $\varepsilon_{\rm machine} \to 0$. Ou seja, se temos que $\varepsilon_{\rm machine} \to 0$, o erro de arredondamento diminui cada vez mais, certo? Então $\delta A \to 0$ ou seja:

$$\frac{\|\tilde{R}\|}{\|A\|} = O(1)$$

O que nos indica que

$$\|\delta Q\| \ \frac{\|\tilde{R}\|}{\|A\|} = O(\varepsilon_{\text{machine}})$$

• $\tilde{Q}(\delta R)$: Provamos de uma forma similar

$$\frac{\|\tilde{Q}(\delta R)\|}{\|A\|} \leq \|\tilde{Q}\|\frac{\|\delta R\|}{\|A\|} = \|\tilde{Q}\|\frac{\|\delta R\|}{\|\tilde{R}\|}\frac{\|\tilde{R}\|}{\|A\|} \leq \|\tilde{Q}\|\frac{\|\delta R\|}{\|\tilde{R}\|} = O(\varepsilon_{\text{machine}})$$

• $(\delta Q)(\delta R)$: Por último:

$$\frac{\|(\delta Q)(\delta R)\|}{\|A\|} \leq \|\delta Q\| \ \frac{\|\delta R\|}{\|A\|} = O(\varepsilon_{\text{machine}}^2)$$

Ou seja, todos os termos de ΔA são da ordem $O(\varepsilon_{\rm machine})$, ou seja, provamos que resolver Ax=b usando householder é um algoritmo **backwards stable**. Se a gente junta alguns teoremas e temos que:

Teorema 1.3.2: A solução \tilde{x} computada pelo algoritmo satisfaz:

$$\frac{\|\tilde{x} - x\|}{\|x\|} = O(\kappa(A)\varepsilon_{\text{machine}})$$