game (Russian)



## **Dots and Boxes**

Тамта и Анна — сестры, которым нравится играть в "Точки и Квадраты".

Игра начинается с пустой сетки N+1 на M+1 точек (и, соответственно, сетки N на M клеток). Игроки по очереди добавляют один горизонтальный или вертикальный отрезок между двумя несвязанными соседними точками (две точки являются соседними, если расстояние между ними равно 1). Если игрок добавляет четвертую сторону клетки  $1 \times 1$  в свой ход, он забирает ее, зарабатывает одно очко и **делает еще один ход**, в противном случае ход переходит к другому игроку. Игра заканчивается, когда больше невозможно добавить отрезок.

Возможные следующие три хода в сетке с N=2, M=3 (пунктирные линии — ходы игрока):



Анна и Тамта какое-то время играют, и вы заметили, что в текущем состоянии каждая клетка имеет ровно ноль или две несоединенных стороны, и сейчас ход Анны. (вы можете увидеть пример на рисунке справа. Обратите внимание, что рисунок выше не подходит под это описание).

Счет в этой игре будет рассчитываться как  $S_A - S_T$ , где  $S_A$  — это количество очков, которые Анна получит с этого момента, а  $S_T$  — это количество очков, которые получит



Тамта. Очевидно, Анна пытается максимизировать счет, а Тамта пытается его минимизировать. Вам нужно узнать, какой будет окончательный счет, зная, что оба игрока действуют оптимально.

game Page 1 of 3

#### game (Russian)



### Ввод

Первая строка содержит два целых числа N и M— число строк и число столбцов в сетке из клеток.

Каждая из следующих N+1 строк содержит M цифр, каждая из которых равна единице или нулю (без пробелов), j-е число в i-й строке равно единице тогда и только тогда, когда есть **горизонтальный** отрезок между точками с координатами (i, j) и (i, j+1).

Следующие N строк содержат M+1 цифр в том же формате, j-е число в i-й строке равно 1 тогда и только тогда, когда есть **вертикальный** отрезок между точками с координатами (i, j) и (i+1, j).

#### Вывод

Единственная строка должна содержать одно целое число — финальный счет.

### Ограничения

- $3 \le N, M \le 20$
- У каждой клетки ровно две или четыре уже нарисованных стороны.

# Подзадачи

Давайте определим компоненту как максимальный набор не взятых клеток в сетке, такой что из любой клетки набора можно дойти в любую другую, перемещаясь по сторонам, которые еще не нарисованы. На рисунке вы можете увидеть 5 различных компонент.

- 1. (20 баллов): В игре осталась только одна компонента
- 2. (20 баллов):  $N \cdot M \le 12$
- 3. (20 баллов): В игре остались только две компоненты
- 4. (20 баллов):  $N \leq 7, M \leq 7$
- 5. (20 баллов): Нет дополнительных ограничений



game Page 2 of 3

#### game (Russian)



# Примеры

| Ввод   | Вывод |
|--------|-------|
| 3 3    | -5    |
| 000    |       |
| 111    |       |
| 011    |       |
| 110    |       |
| 1010   |       |
| 1000   |       |
| 1001   |       |
| 5 5    | 6     |
| 00100  |       |
| 10100  |       |
| 11010  |       |
| 00100  |       |
| 01000  |       |
| 11100  |       |
| 011111 |       |
| 001011 |       |
| 101011 |       |
| 110111 |       |
| 100111 |       |
|        |       |
|        |       |
|        |       |

Первый пример и один из возможных оптимальных порядков ходов изображены ниже (числа на отрезках указывают номер хода, красным цветом обозначены клетки Анны, а синим — клетки Тамты).

Второй пример показан на рисунках выше.



game Page 3 of 3