MODELE Z INTERAKCJAMI I WIELOMIANAMI

EKONOMETRIA WNE

Sebastian Zalas

University of Warsaw s.zalas@uw.edu.pl

NIELINIOWOŚĆ W LINOWYM MODELU?

- TAK, a w jaki sposób?:
 - umieszczenie wielomianu zmiennej objaśniającej
 - interakcje
- Przykład: TestScore vs Income, STratio
 - dane CASchools dostępne w pakiecie AER
 - TestScore łączny wynik testu z matematyki i czytania; średnia w dystrykcie
 - Income średni dochód w dystrykcie
 - STratio stosunek liczby nauczycieli do liczby uczniów

Wynik testu vs Dochód

▶ Przybliżenie *y* za pomocą wielomianu *x*:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_1^3 + \dots + \beta_k x_1^k + \varepsilon$$

- model nadal jest linowy w stosunku do parametrów (linear in parameters), model szacujemy korzystając z MNK
- ▶ parametry takiego modelu są trudniejsze do interpretacji, ale możliwe ⇒ efekt cząstkowy

- Szacujemy relację między TestScore i Income (średni dochód w dystrykcie per capita)
- oszacowanie modelu z kwadratem dochodu

TestScore =
$$607.302 + 3.85099$$
Income – 0.04231 *Income*² + ε

oszacowanie modelu z sześcianem dochodu

TestScore =
$$600.079 + 5.018677$$
Income - 0.09580521 Income² + 0.0006854851 Income³ + ε

$\mathsf{Model}\,z\,x, x^2$

Model zx, x^2 oraz x^3

▶ Policz zmiany (dla modelu z kwadratem):

$$\Delta y = \beta_1 \Delta x_1 + \beta_2 \Delta x_1^2$$

▶ W przybliżeniu

$$\Delta y \approx \beta_1 + 2\beta_2 x_1$$

ightharpoonup równoważność efektu cząstkowego - pochodna po x_1

Przykład: model z kwadratem dochodu

$$\Delta TestScore_i = 3.85099 - 2 \times 0.04231 Income_i$$

dla zmiany dochodu o 1 tys. \$ pc., przy dochodzie pc. wynoszącym 10 tys. \$

$$\Delta TestScore_i = 3.85099 - 2 \times 0.04231 \times 10$$

= 3.005

➤ Zmiana dochodu o 1 tys. \$ pc. przy dochodzie pc. wynoszącym 10 tys. \$, jest związana ze wzrostem wyniku testu średnio o 3.005 punktu (w przybliżeniu)

- Interpretacja dokonywana w okolicy danego punktu
- Możemy policzyć zmiany wartości dopasowanych dla wybranych, konkretnych przedziałów

ΔIncome o 1 tys. \$ per capita	ΔTestScore
z 5 na 6 tys. pc	3.3856
z 10 na 11 tys. pc	2.9625
z 25 na 26 tys. pc	1.6933
z 45 na 46 tys. pc	0.0009

- ► Aby zinterpretować oszacowania:
 - zrób wykres
 - oblicz przewidywane $\frac{\Delta y}{\Delta x}$ dla różnych wartości x.
- Sposoby wyboru stopnia wielomianu k: sprawdź wrażliwość oszacowań w różnych wariantach, osąd własny, a także korzystamy ze statystyk t oraz F (w przyszłości)
- Im wyższy będzie stopień wielomianu, tym bardziej model stanie się podatny na odstające obserwacje

CZY DOSTRZEGAMY TU NIELINIOWOŚĆ?

Na pierwszy rzut oka, relacja między Test Score a Student-Teacher ratio nie wydaje się nieliniowa...

INTERAKCJE

Przyjrzyjmy się modelowi:

$$TestScore = \beta_0 + \beta_1 STratio + \varepsilon$$

- TestScore średni wyniku testu uczniów w Kalifornii w danym dystrykcie
- STratio stosunek liczby nauczycieli do liczby uczniów
- ➤ Zwykle mniej uczniów na jednego nauczyciela, oznacza bardziej indywidualne podejście ⇒ ↑ TestScore
- Ta zależność (reprezentowna przez β₁) zależy także od innych czynników

INTERAKCJE

- ► Jakich? Kontekst Kalifornii: ile uczniów zna j. angielski? Przez imigrację z Meksyku te odsetki różnią się między dystryktami
- \[
 \textit{\textite{\Delta Tratio}}{\Delta STratio}
 \]
 może różnić się w zależności od procenta uczniów uczących się angielskiego, \(PEL \)
- ▶ Bardziej ogólnie $\frac{\Delta Y}{\Delta X_1}$ może zależeć od X_2 . Jak modelować takie interakcje?
 - zmienne binarne vs ciągłe

INTERAKCJE - ZMIENNE BINARNE

▶ Model ze zmiennymi binarnymi *D*₁, *D*₂

$$y = \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \varepsilon$$

- ▶ β₁
 - mierzy efekt zmiany z D_1 = 0 na D_2 = 1
 - w takiej specyfikacji ten efekt jest niezależny od wartości D₂
- Aby zbadać łączną zależność między D₁ i D₂ a y, musimy uwzględnić interakcję, czyli D₁ × D₂:

$$y = \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \beta_3 (D_1 \times D_2) + \varepsilon$$

INTERAKCJE - ZMIENNE BINARNE - INTERPRETACJA

Intuicja: porównaj przypadki:

$$y = \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \beta_3 D_1 \times \beta_2 D_2 + \varepsilon$$

▶ Ustalamy wartości D_2 , zmieniamy D_1 :

$$\mathbb{E}(y|D_1 = 0, D_2 = d_2) = \beta_0 + \beta_2 d_2 \tag{1}$$

$$\mathbb{E}(y|D_1 = 1, D_2 = d_2) = \beta_0 + \beta_1 + \beta_2 d_2 + \beta_3 d_2 \tag{2}$$

odejmijmy (2) - (1):

$$\mathbb{E}(y_i|D_{1,i}=1,D_{2,i}=d_2) - \mathbb{E}(y_i|D_{1,i}=0,D_{2,i}=d_2) = \beta_1 + \beta_3 d_2$$

▶ to jak D_1 wpływa na y zależy od d_2 (wartość zm. D_2). β_3 mierzy wpływ zmiany D_1 gdy $D_2 = 1$

INTERAKCJE - ZMIENNE BINARNE - PRZYKŁAD

- ► Zależność TestScore, STratio; HEL oraz HSTr
 - HEL = 1 jeżeli odsetek uczących się angielskiego ≥ 10; 0 wpp.
 - HSTr = 1 jeżeli STratio ≥ 20,0 wpp.
- Oszacowanie:

$$TestScore = 664.1 - 18.2HEL - 1.9HSTr - 3.5(HSTr \times HEL)$$

Spróbujmy zinterpretować wyniki

INTERAKCJE - ZMIENNE BINARNE - PRZYKŁAD

▶ gdy *HEL* = 0

$$\mathbb{E}[\textit{TestScore}|\textit{HEL} = 0, \textit{HSTR} = 0] = 664.1$$

$$\mathbb{E}[\textit{TestScore}|\textit{HEL} = 0, \textit{HSTR} = 1] = 664.1 - 1.9 \times 1$$

gdy odsetek uczących się angielskiego jest niski, zwiększęszenie stosunku l. uczniów do nauczycieli zmniejszyło średnio wynik o 1.9

▶ gdy *HEL* = 1

$$\mathbb{E}[TestScore|HEL = 1, HSTR = 0] = 664.1 - 18.2$$

 $\mathbb{E}[TestScore|HEL = 1, HSTR = 1] = 664.1 - 18.2 - 1.9 - 3.5$

 Zmniejszenie liczby uczniów do nauczycieli ma silniejszy związek z wynikiem testu, gdy procent uczących się angielskiego jest duży

INTERAKCJA ZM. BINARNEJ I CIĄGŁEJ

Model z interakcją x (zm. ciągłej) oraz D (zm. binarna)

$$y = \beta_0 + \beta_1 D + \beta_2 x + \beta_3 D \times x + \varepsilon$$

- ► Stosując interakcję mamy dwie zagnieżdżone regresje:
 - przypadek z $D_i = 0$

$$y_i = \beta_0 + \beta_2 x_i + u_i$$

- przypadek z D = 1

$$y_i = (\beta_0 + \beta_1) + (\beta_2 + \beta_3)x + \varepsilon$$

► czy relacja między y ~ x zależy od D?

INTERAKCJA ZM. BINARNEJ I CIĄGŁEJ

► Co mierzy β_3 ?

$$y = \beta_0 + \beta_1 D + \beta_2 x + \beta_3 D \times x + \varepsilon$$

Ustalmy D, zmieńmy x

$$\Delta y = \beta_2 \Delta x + \beta_3 D \Delta x$$
$$\frac{\Delta y}{\Delta x} = \beta_2 + \beta_3 D$$

ightharpoonup Co mierzy β₃: różnicę nachylenia $y \sim x$ przy uwzględnieniu D

INTERAKCJA ZM. BINARNEJ I CIĄGŁEJ - PRZYKŁAD

ightharpoonup Zależność *TestScore*, *STratio* i *HEL* (*HEL* = 1 jeżeli odsetek uczących się angielskiego \geq 10)

```
TestScore = 682.2 - 0.97STratio + 5.6HEL - 1.28(STratio \times HEL)
```

- Spójrzmy na dwa przypadki:
 - gdy *HEL* = 0: *TestScore* = 682.2 0.97*STratio*
 - gdy HEL = 1:

TestScore = 682.2 - 0.97STratio + 5.6 - 1.28STratio = 687.8 - 2.25STratio

Obniżenie liczby uczniów przypadających na jednego nauczyciela ma o 1.28 silniejszy wpływ na wyniki uczniów, gdy udział uczniów uczących się angielskiego jest duży.

Pytania? Wątpliwości? Dziękuję!

e: s.zalas@uw.edu.pl