计组第八次作业答案 <mark>不作答疑,答案供参考</mark>

5.1, 5.2, 5.4, 5.5, 5.6, 5.10, 5.11

5.1

5.1.1

2

5.1.2

I,J 以及 B[I][0]

5.1.3

A[I][J]

5.1.4

使用 Matlab 时为 32004 个, 使用 C 语言时为 32008 个。

代码引用了矩阵 A 中的 8*8000=64000 个整数。由于每 16 字节块存储两个整数,所以供需要 32000 个块。

另外,代码还引用了矩阵 B 的每八行的第一个元素。Matlab 以列主序存储矩阵数据,因此所有八个整数是连续的,可以放在四个块中。而 C 语言以行主序存储矩阵数据,因此每行的第一个元素位于不同的块中。

5.1.5

A(J, I)和 B[I][0]。

5.1.6

I, J和B[I][0]。

5.2

5.2.1

Word Address	Binary Address	Tag	Index	Hit/Miss
0x03	0000 0011	0	3	M
0xb4	1011 0100	b	4	M
0x2b	0010 1011	2	b	M
0x02	0000 0010	0	2	M
Oxbf	1011 1111	b	f	М
0x58	0101 1000	5	8	М
Oxbe	1011 1110	b	е	М
0x0e	0000 1110	0	е	М
0xb5	1011 0101	b	5	М
0x2c	0010 1100	2	С	М
Oxba	1011 1010	b	а	М
Oxfd	1111 1101	f	d	М

5.2.2

Word Address	Binary Address	Tag	Index	Hit/	Miss
0x03	0000 0011	0	1	1	M
0xb4	1011 0100	b	2	0	М
0x2b	0010 1011	2	5	1	M
0x02	0000 0010	0	1	0	Н
Oxbf	1011 1111	b	7	1	M
0x58	0101 1000	5	4	0	М
Oxbe	1011 1110	b	6	0	Н
0x0e	0000 1110	0	7	0	М
0xb5	1011 0101	b	2	1	Н
0x2c	0010 1100	2	6	0	М
Oxba	1011 1010	b	5	0	М
Oxfd	1111 1101	f	6	1	М

5.2.3

1			Cache 1		Cache 2		Cache 3	
Word Address			index	hit/miss	index	hit/miss	index	hit/miss
0x03	0000 0011	0x00	3	M	1	M	0	M
0xb4	1011 0100	0x16	4	М	2	M	1	М
0x2b	0010 1011	0x05	3	M	1	M	0	М
0x02	0000 0010	0x00	2	М	1	M	0	М
Oxbf	1011 1111	0x17	7	M	3	M	1	M
0x58	0101 1000	0x0b	0	M	0	M	0	М
Oxbe	1011 1110	0x17	6	M	3	Н	1	Н
0x0e	0000 1110	0x01	6	M	3	M	1	M
0xb5	1011 0101	0x16	5	М	2	Н	1	M
0x2c	0010 1100	0x05	4	M	2	M	1	M
Oxba	1011 1010	0x17	2	М	1	M	0	M
Oxfd	1111 1101	0x1F	5	M	2	M	1	M

缓存1的未命中率 = 100%

缓存 1 的总周期数 = $12 \times 25 + 12 \times 2 = 324$

缓存 2 的未命中率 = 10/12 = 83%

缓存 2 的总周期数 = 10 × 25 + 12 × 3 = 286

缓存 3 的未命中率 = 11/12 = 92%

缓存 3 的总周期数 = $11 \times 25 + 12 \times 5 = 335$

因此缓存2提供了最佳的性能。

5.4

这是可能的。要实现一个直接映射缓存,我们只需要一个函数,该函数将地址作为输入并产生 10 位的输出。虽然以这种方式实现缓存是可能的,但并不明确这种实现方式是否会带来好处。这是因为这种缓存将需要更大的标记字段,而且可能会有更多的冲突未命中。

5.5

5.5.1

每个缓存块由四个 8 字节的单词组成,总偏移量为 5 位。这 5 位中的 3 位是字偏移量(即进入 8 字节单词的偏移量),剩下的两位是块偏移量。两位允许我们枚举 2^2=4 个单词。

5.5.2

有五位索引位,则缓存中有2个5=32行。

5.5.3

比率是 1.21。缓存总共存储 32 行*每块 4 个单词*每词 8 字节=1024 字节=8192 比特。

除了数据之外,每一行还包括 54 位标签位和 1 位有效位。因此,所需的总比特数=8192+5432+132=9952 比特。

5.5.4

见下页

Byte Address	Binary Address	Tag	Index	Offset	Hit/Miss	Bytes Replaced
0x00	0000 0000 0000	0x0	0x00	0x00	M	
0x04	0000 0000 0100	0x0	0x00	0x04	Н	
0x10	0000 0001 0000	0x0	0x00	0x10	Н	
0x84	0000 1000 0100	0x0	0x04	0x04	M	
0xe8	0000 1110 1000	0x0	0x07	0x08	M	
0xa0	0000 1010 0000	0x0	0x05	0x00	M	
0x400	0100 0000 0000	0x1	0x00	0x00	M	0x00-0x1F
0x1e	0000 0001 1110	0x0	0x00	0x1e	M	0x400-0x41F
0x8c	0000 1000 1100	0x0	0x04	0x0c	Н	
Oxc1c	1100 0001 1100	0x3	0x00	0x1c	M	0x00-0x1F
0xb4	0000 1011 0100	0x0	0x05	0x14	Н	
0x884	1000 1000 0100	0x2	0x04	0x04	M	0x80-0x9f

5.5.5

4/12=33.3%

5.5.6

<index, tag, data>

- <0, 3, Mem[0xC00]-Mem[0xC1F]>
- <4, 2, Mem[0x880]-Mem[0x89f]>
- <5, 0, Mem[0x0A0]-Mem[0x0Bf]>
- <7, 0, Mem[0x0e0]-Mem[0x0ff]>

5.6

5.6.1

L1 缓存具有较低的写未命中惩罚,而 L2 缓存具有较高的写未命中惩罚。在 L1 和 L2 缓存之间设置一个写缓冲区可以隐藏 L2 缓存的写未命中延迟。当 L2 缓存替换脏块时,写缓冲区特别有益,因为新块可以在脏块物理写入内存之前先被读取进来。

5.6.2

当 L1 发生写未命中时,该字直接写入 L2, 无需将其所在块调入 L1 缓存。如果这导致了 L2 的未命中,那么必须将该块调入 L2 缓存,可能需要替换一个脏块,而这个脏块必须先被写回内存。

5.6.3

在 L1 写未命中之后,该块将驻留在 L2 中,但不在 L1 中。随后对该同一块的读取未命中将要求 L2 中的块先被写回内存,然后传输到 L1,并在 L2 中失效。

5.10 5.10.1

P1	1.515 GHz
P2	1.11 GHz

5.10.2

P1	6.31ns	9.56 个周期
P2	5.11ns	5.68 个周期

对于 P1, 所有内存访问至少需要一个周期(来访问 L1)。8%的内存访问额外需要 70 纳秒的主存访问时间。这相当于 70/0.66 = 106.06 个周期。然而,我们不能分割周期,因此必须向上取整到 107 个周期。因此,平均内存访问时间为

1+0.08*107 = 9.56 个周期,或者 6.31ps。

对于 P2, 主存访问需要 70 纳秒。这相当于 70/0.90 = 77.78 个周期。由于我们不能分割周期,必须向上取整到 78 个周期。因此,平均内存访问时间为 1+0.06*78 = 5.68 个周期,或者 6.11ps。

5.10.3

P1	12.64CPI	8.34ns/周期
P2	7.36CPI	6.63ns/周期

对于 P1,每条指令至少需要一个周期。另外,所有指令中有 8%在指令缓存中未命中,会产生 107 个周期的延迟。此外,36%的指令涉及数据访问,其中 8%的数据访问会发生缓存未命中,这又会增加额外的 107 个周期。因此,计算公式为:1+0.08*107+0.36*0.08*107=12.64 个周期,考虑到时钟周期为 0.66 皮秒,每条指令需要的时间为 12.64*0.66 ps = 8.34 纳秒。

按照同样的逻辑分析,可以得出 P2 的每周期指令数(CPI)为 7.36,平均每个指令仅需 6.63 纳秒。

5.10.4

L2 访问需要九个周期(5.62/0.66,向上取整到最接近的整数)。所有内存访问至少需要一个周期。8%的内存访问在 L1 缓存中未命中,会进行 L2 访问,这需要九个周期。而 L2 访问中有 95%未命中,需要额外 107 个周期的内存查找时间。因此,计算公式为: 1+0.08*(9+0.95*107)=9.85 个周期。

5.10.5

13.04

可以通过以下公式计算答案: AMAT + %内存访问*(AMAT - 1)。利用此公式,可以计算出带有 L2 缓存的 P1 的 CPI 为 9.85 * 0.36 * 8.85=13.04。

5.10.6

由于两种版本的 P1 具有相同的时钟周期时间和内存指令百分比,我们只需 关注 AMAT。我们希望带有 L2 的 AMAT 小于仅带有 L1 的 AMAT

则有: 1+0.08*(9+m*107)<9.56。于是, m<0.916。

5.10.7

我们希望 P1 每条指令的平均时间少于 6.63 纳秒,则有(CPI_P1 * 0.66) < 6.63。于是,CPI P1 < 10.05。

易知 CPI_P1 = AMAT_P1 + 0.36(AMAT_P1-1),则有 AMAT_P1+0.36(AMAT_P1-1)<10.05。于是,AMAT_P1<7.65。

最后,有以下方程:

$$1 + 0.08(9 + m*107) < 7.65$$

解得,m<0.693,所以未命中率最多可以达到69.3%。

5.11

本题难度过大,答案过长,批阅时会酌情给分。

5.11.1

缓存中的每一行将总共有六个字(三个组中各有两个)。因此,总共有 48/6=8 行。

5.11.2

T(x)表示索引 x 处的标签。

Word	Binary							
Address	Address	Tag	Index	Offset	Hit/Miss	Way 0	Way 1	Way 2
0x03	0000 0011	0x0	1	1	M	T(1)=0		
0xb4	1011 0100	Oxb	2	0	M	T(1)=0 T(2)=b		
0x2b	0010 1011	0x2	5	1	M	T(1)=0		
						T(2)=b		
0x02	0000 0010	OxO	1	0	Н	T(5)=2 T(1)=0		
0.02	0000 0010	0,10	_			T(2)=b		
Oxbe	1011 1110	Oxb	7	0	M	T(5)=2 T(1)=0		
OXDE	1011 1110	OXD	,		IVI	T(2)=b		
						T(5)=2		
0x58	0101 1000	0x5	4	0	M	T(7)=b T(1)=0		
						T(2)=b		
						T(5)=2 T(7)=b		
						T(4)=5		
Oxbf	1011 1111	Oxb	7	1	Н	T(1)=0 T(2)=b		
						T(5)=2		
						T(7)=b T(4)=5		
0x0e	0000 1110	0x0	7	0	M	T(1)=0	T(7)=0	
						T(2)=b		
						T(5)=2 T(7)=b		
						T(4)=5		
0x1f	0001 1111	0x1	7	1	M	T(1)=0 T(2)=b	T(7)=0	T(7)=1
						T(5)=2		
						T(7)=b T(4)=5		
0xb5	1011 0101	Oxb	2	1	Н	T(1)=0	T(7)=0	T(7)=1
						T(2)=b T(5)=2		
						T(7)=b		
Oxbf	1011 1111	Ovh	7	1	Н	T(4)=5 T(1)=0	T/7)-0	T/7)_1
OXDI	1011 1111	Oxb	/		П	T(1)=0 T(2)=b	T(7)=0	T(7)=1
						T(5)=2		
						T(7)=b T(4)=5		
Oxba	1011 1010	Oxb	5	0	М	T(1)=0	T(7)=2	T(7)=1
						T(2)=b T(5)=2	T(5)=b	
						T(7)=b		
0x2e	0010 1110	0x2	7	0	M	T(4)=5 T(1)=0	T(7)=2	T(7)=1
0,26	0010 1110	0,72	'		141	T(2)=b	T(5)=b	1(1)-1
						T(5)=2 T(7)=b		
						T(4)=5		
Oxce	1100 1110	Oxc	7	0	M	T(1)=0	T(7)=2	T(7)=c
						T(2)=b T(5)=2	T(5)=b	
						T(7)=b		
						T(4)=5		

5.11.3

无答案(标答这么写的)

<mark>5.11.4</mark>

由于这个缓存是全相联的,并且每个块只包含一个字,所以不存在索引和偏移量。因此,字地址实质上就是标签。

Word Address	Binary Address	Tag	Hit/Miss	Contents
0x03	0000 0011	0x03	M	3
0xb4	1011 0100	0xb4	M	3, b4
0x2b	0010 1011	0x2b	M	3,b4, 2b
0x02	0000 0010	0x02	M	3, b4, 2b, 2
Oxbe	1011 1110	Oxbe	M	3, b4, 2b, 2, be
0x58	0101 1000	0x58	M	3, b4, 2b, 2, be, 58
Oxbf	1011 1111	Oxbf	M	3, b4, 2b, 2, be, 58, bf
0x0e	0000 1110	0x0e	M	3, b4, 2b, 2, be, 58, bf, e
0x1f	0001 1111	0x1f	M	b4, 2b, 2, be, 58, bf, e, 1f
0xb5	1011 0101	0xb5	M	2b, 2, be, 58, e, 1f, b5, b5
Oxbf	1011 1111	Oxbf	Н	2b, 2, be, 58, e, 1f, b5, bf
Oxba	1011 1010	Oxba	M	2, be, 58, e, 1f, b5, bf, ba
0x2e	0010 1110	0x2e	M	be, 58, e, 1f, b5, bf, ba, 2e
Oxce	1100 1110	Oxce	M	58, e, 1f, b5, bf, ba, 23, ce

5.11.5

无答案(标答这么写的)

5.11.6

因为这个缓存是全相联的,所以没有索引。(内容按照数据被访问的顺序展示。顺序并不表示实际的物理位置。)

Word Address	Binary Address	Tag	Offset	Hit/Miss	Contents
0x03	0000 0011	0x01	1	M	[2,3]
0xb4	1011 0100	0x5a	0	M	[2,3], [b4,b5]
0x2b	0010 1011	0x15	1	M	[2,3], [b4,b5], [2a,2b]
0x02	0000 0010	0x01	0	Н	[b4, b5], [2a,2b], [2,3]
Oxbe	1011 1110	0x5f	0	M	[b4,b5], [2a,2b], [2,3], [be,bf]
0x58	0101 1000	0x2c	0	M	[2a,2b], [2,3], [be,bf], [58,59]
Oxbf	1011 1111	0x5f	1	Н	[2a,2b], [2,3], [58,59], [be,bf]
0x0e	0000 1110	0x07	0	M	[2,3], [58,59], [be,bf], [e,f]
0x1f	0001 1111	Ox0f	1	M	[58,59], [be,bf], [e,f], [1e,1f]
0xb5	1011 1111	0x5a	1	M	[be,bf], [e,f], [1e,1f], [b4,b5]
Oxbf	1011 1111	0x5f	0	Н	[e,f], [1e,1f], [b4,b5], [ba,bb]
Oxba	1011 1010	0x5d	0	М	[1e,1f], [b4,b5], [b3,bf], [ba,bb]
0x2e	0010 1110	0x17	0	М	[b4,b5], [b3,bf], [ba,bb], [2e,2f]
Oxce	1100 1110	0x67	0	M	[be,bf], [ba,bb], [2e,2f], [ce,cf]

<mark>5.11.7、5.11.8 见下</mark>

5.11.7 (Contents shown in the order the data were accessed. Order does not imply physical location.)

Word Address	Binary Address	Tag	Offset	Hit/Miss	Contents
0x03	0000 0011	0x01	1	M	[2,3]
0xb4	1011 0100	0x5a	0	M	[2,3], [b4,b5]
0x2b	0010 1011	0x15	1	M	[2,3], [b4,b5], [2a,2b]
0x02	0000 0010	0x01	0	Н	[b4, b5], [2a,2b], [2,3]
Oxbe	1011 1110	0x5f	0	M	[b4,b5], [2a,2b], [2,3], [be,bf]
0x58	0101 1000	0x2c	0	M	[b4,b5], [2a,2b], [2,3], [58,59]
Oxbf	1011 1111	0x5f	1	Н	[b4,b5], [2a,2b], [2,3], [be,bf]
0x0e	0000 1110	0x07	0	M	[b4,b5], [2a,2b], [2,3], [e,f]
0x1f	0001 1111	OxOf	1	M	[b4,b5], [2a,2b], [2,3], [1e,1f]
0xb5	1011 1111	0x5a	1	Н	[2a,2b], [2,3], [1e,1f], [b4,b5]
Oxbf	1011 1111	0x5f	1	M	[2a,2b], [2,3], [1e,1f], [ba,bb]
0xba	1011 1010	0x5d	0	M	[2a,2b], [2,3], [1e,1f], [ba,bb]
0x2e	0010 1110	0x17	0	M	[2a,2b], [2,3], [1e,1f], [2e,2f]
Oxce	1100 1110	0x67	0	М	[2a,2b], [2,3], [1e,1f], [ce,cf]

5.11.8 Because this cache is fully associative, there is no index.

Word Address	Binary Address	Tag	Offset	Hit/Miss	Contents
0x03	0000 0011	0x01	1	М	[2,3]
0xb4	1011 0100	0x5a	0	M	[2,3], [b4,b5]
0x2b	0010 1011	0x15	1	M	[2,3], [b4,b5], [2a,2b]
0x02	0000 0010	0x01	0	Н	[2,3], [b4,b5], [2a,2b]
Oxbe	1011 1110	0x5f	0	M	[2,3], [b4,b5], [2a,2b], [be,bf]
0x58	0101 1000	0x2c	0	M	[58,59], [b4,b5], [2a,2b], [be,bf]
Oxbf	1011 1111	0x5f	1	Н	[58,59], [b4,b5], [2a,2b], [be,bf]
0x0e	0000 1110	0x07	0	M	[e,f], [b4,b5], [2a,2b], [be,bf]
0x1f	0001 1111	OxOf	1	M	[1e,1f], [b4,b5], [2a,2b], [be,bf]
0xb5	1011 1111	0x5a	1	Н	[1e,1f], [b4,b5], [2a,2b], [be,bf]
Oxbf	1011 1111	0x5f	1	Н	[1e,1f], [b4,b5], [2a,2b], [be,bf]
0xba	1011 1010	0x5d	0	M	[1e,1f], [b4,b5], [ba,bb], [be,bf]
0x2e	0010 1110	0x17	0	M	[1e,1f], [b4,b5], [2e,2f], [be,bf]
Oxce	1100 1110	0x67	0	М	[1e,1f], [b4,b5], [ce,cf], [be,bf]