

Olimpiada Națională de Matematică

Etapa Județeană/a Sectoarelor Municipiului București, 2023

CLASA a XII-a – soluții

Problema 1. Fie $f:\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\longrightarrow\mathbb{R}$ o funcție de două ori derivabilă cu proprietatea că

$$(f''(x) - f(x)) \cdot \operatorname{tg}(x) + 2 \cdot f'(x) \ge 1$$
, pentru orice $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Arătați că

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \cdot \sin(x) \, dx \ge \pi - 2.$$

Gazeta Matematică

Soluție. Deoarece $\cos(x) > 0$ pentru orice $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, inegalitatea din ipoteză se transcrie echivalent

$$(f''(x) - f(x)) \cdot \sin(x) + 2 \cdot f'(x) \cdot \cos(x) \ge \cos(x)$$
, pentru orice $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

$$\frac{g(x)+g(-x)}{2} \geq g(0) = 1 \,, \qquad \text{pentru orice } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \,.$$

Deoarece $\int_{-a}^{a} h(x) dx = \int_{-a}^{a} h(-x) dx$ are loc pentru orice funcție integrabilă și orice $a \ge 0$, avem

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g(x) \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{g(x) + g(-x)}{2} \, dx \geq \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx = \pi$$

......2p

Dar atunci

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \cdot \sin(x) \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g(x) - \cos(x)) \, dx \ge \pi - 2 \,. \qquad \Box$$

Problema 2. Fie (G, \cdot) un grup cu elementul neutru e, iar H și K două subgrupuri proprii ale lui G, cu proprietatea că $H \cap K = \{e\}$ și că $(G \setminus (H \cup K)) \cup \{e\}$ este parte stabilă în raport cu operația din G. Arătați că $x^2 = e$ pentru orice $x \in G$.

Problema 3. Fie $f:[0,1] \longrightarrow \mathbb{R}$ o funcție continuă.

a) Arătați că

$$\lim_{n\to\infty} \int_0^1 f(x^n) \, dx = f(0) \, .$$

b) Dacă f(0) = 0 și f este derivabilă la dreapta în 0, arătați că limitele

$$\lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} \frac{f(x)}{x} dx \qquad \text{si} \qquad \lim_{n \to \infty} \left(n \cdot \int_{0}^{1} f(x^{n}) dx \right)$$

există, sunt finite și egale.

Soluție. a) Din continuitatea funcției f rezultă că f este mărginită, cu $Im(f) \subseteq [-M, M]$, unde M>1, pentru orice $\varepsilon>0$ există $\delta>0$, astfel încât $|f(x)-f(0)|<\frac{\varepsilon}{2}, \ \forall x\in [0,\delta]$, și pentru orice $x\in [0,1-\frac{\varepsilon}{4M}]$ există $n_0\in \mathbb{N}^*$ astfel încât $x^n\in [0,\delta], \forall n\geq n_0$. Atunci

$$\left| \int_0^1 f(x^n) \, dx - f(0) \right| \le \int_0^1 |f(x^n) - f(0)| \, dx =$$

$$= \int_0^{1 - \frac{\varepsilon}{4M}} |f(x^n) - f(0)| \, dx + \int_{1 - \frac{\varepsilon}{4M}}^1 |f(x^n) - f(0)| \, dx < \frac{\varepsilon}{2} \left(1 - \frac{\varepsilon}{4M} \right) + \frac{\varepsilon}{4M} \cdot 2M < \varepsilon,$$

pentru orice $n \geq n_0$. Rezultă că

$$\lim_{n\to\infty} \int_0^1 f(x^n) \, dx = f(0) \, .$$

b) Deoarece feste derivabilă în 0, funcția
 $g:[0,1] \longrightarrow \mathbb{R}$ definită prin

$$g(x) = \begin{cases} \frac{f(x)}{x} & , \operatorname{dacă} x > 0, \\ f'(0) & , \operatorname{dacă} x = 0, \end{cases}$$

$$\int_{\varepsilon}^{1} \frac{f(x)}{x} dx = \int_{\varepsilon}^{1} g(x) dx = G(1) - G(\varepsilon),$$

și

$$\lim_{\varepsilon \to 0} \int_{-\pi}^{1} \frac{f(x)}{x} dx = G(1) - G(0).$$

______2p

De asemenea,

$$n \cdot \int_0^1 f(x^n) \, dx = n \cdot \int_0^1 x^n g(x^n) \, dx = \int_0^1 x \cdot (nx^{n-1}) g(x^n) \, dx =$$

$$= x \cdot G(x^n) \Big|_0^1 - \int_0^1 G(x^n) \, dx = G(1) - \int_0^1 G(x^n) \, dx.$$

Conform punctului a) rezultă atunci că

$$\lim_{n \to \infty} \left(n \cdot \int_0^1 f(x^n) \, dx \right) = G(1) - G(0),$$

Problema 4. Pe mulțimea $A = [0, \infty)$ a numerelor reale nenegative se consideră trei funcții $f, g, h : A \longrightarrow A$ și operația binară $* : A \times A \longrightarrow A$, definită prin

$$x * y = f(x) + g(y) + h(x) \cdot |x - y|$$
, pentru orice $x, y \ge 0$.

Dacă (A, *) este un monoid comutativ,

- a) arătați că funcția h este continuă pe A;
- b) determinați funcțiile f, g, h.

Soluție. a) Fie e elementul neutru al monoidului (A,*). Atunci

$$f(0) + g(x) + h(0) \cdot x = x$$
, si $f(x) + g(0) + h(x) \cdot x = x$,

$$x * y = x + y - x \cdot h(x) - y \cdot h(0) + h(x) \cdot |x - y|, \quad \forall x, y > 0.$$

Din comutativitatea operației " * " rezultă atunci că

$$xh(x) - yh(y) = h(0)(x - y) + (h(x) - h(y)) \cdot |x - y|, \quad \forall x, y \ge 0.$$

Cum h este mărginită, rezultă că $\lim_{x\to y} xh(x) = yh(y)$ pentru orice $y \geq 0$, astfel că funcția $p:A\longrightarrow A, \ p(x)=xh(x)$, este continuă. Dar atunci h este continuă pe $(0,\infty)$ **1p** De asemenea, pentru orice y>0 avem că

$$\lim_{x \to y} \frac{p(x) - p(y)}{x - y} = h(0),$$

astfel că există a=h(0) și $b\geq 0$ astfel încât $p(y)=ay+b=h(0)y+b, \forall y>0$. Atunci $b=\lim_{y\to 0}p(y)=p(0)=0$. Dar atunci yh(y)=p(y)=yh(0) pentru orice y>0 și rezultă că

$h(y) = h(0), \forall y > 0$. Funcția h este deci constantă, deci continuă
b) Fie $k = h(0)$. Atunci $h(x) = k$ și $f(x) = g(x) = x(1 - k)$, pentru orice $x \ge 0$, și
$x * y = (x + y)(1 - k) + k x - y , \forall x, y \ge 0.$ Atunci $(1 * 1) * 2 = 1 * (1 * 2) \Longrightarrow k(4k - 2) = 0$
astfel că $k \in \{0, \frac{1}{2}\}$
Pentru $k=0$ avem că $f=g=id_A$ și $x*y=x+y, \forall x,y\geq 0.$
Pentru $k = \frac{1}{2}$ avem că $f(x) = g(x) = \frac{x}{2}, \forall x \ge 0$ și $x * y = \frac{x+y}{2} + \frac{ x-y }{2} = \max(x, y), \forall x, y \ge 0$
1_1