Thermodynamics of the unitary Bose gas from first principles

Tommaso Comparin, Werner Krauth

Laboratoire de Physique Statistique

ITF, Utrecht November 10th, 2016

 $\textbf{2} \ \, \text{Efimov effect for} \, \, N = 3 \, \, \text{bosons}$

Range of interatomic potential (r_0) is small:

$$r_0\ll
ho^{-1/3}$$
 (low density)
$$r_0\ll \lambda_{
m th}=\sqrt{rac{2\pi\hbar^2}{mk_BT}} \qquad {
m (low\ temperature)}$$

Range of interatomic potential (r_0) is small:

$$r_0\ll
ho^{-1/3}$$
 (low density)
$$r_0\ll \lambda_{
m th}=\sqrt{rac{2\pi\hbar^2}{mk_BT}} \qquad {
m (low\ temperature)}$$

- Low-energy scattering properties encoded in s-wave scattering length a.
- Theory: Use a model potential for $V_2(r)$, with given a.
- Zero-range pseudopotential $(r_0 \to 0)$ removes any detail other than a.

Interactions in ultracold gases – strength

ullet First experiments with ultracold Bose gases o weak interactions:

$$\rho a^3 \ll 1$$

Successfully treated by Gross-Pitaevskii theory (for small T and a).

Beyond mean-field corrections (Lee-Huang-Yang, 1957):

$$\frac{E}{V} = \frac{4\pi\hbar^2 a}{m} \frac{\rho}{2} \left(1 + \frac{128}{15\sqrt{\pi}} \sqrt{\rho a^3} + \dots \right)$$

Interactions in ultracold gases - strength

ullet First experiments with ultracold Bose gases o weak interactions:

$$\rho a^3 \ll 1$$

Successfully treated by Gross-Pitaevskii theory (for small T and a).

Beyond mean-field corrections (Lee-Huang-Yang, 1957):

$$\frac{E}{V} = \frac{4\pi\hbar^2 a}{m} \frac{\rho}{2} \left(1 + \frac{128}{15\sqrt{\pi}} \sqrt{\rho a^3} + \dots \right)$$

• Unitary limit:

$$|a| \to \infty$$

- Experimentally accessible (Feshbach resonances).
- Easily realized with theoretical model potentials.

Unitary Bose gas

Does a *gaseous* metastable state exist at low temperature? How to reach it?

Unitary Bose gas

Does a *gaseous* metastable state exist at low temperature? How to reach it?

[Rem, PhD thesis, 2014]

Unitary Bose gas

Does a *gaseous* metastable state exist at low temperature? How to reach it?

Dynamical instability

- Three-body inelastic recombinations lead to atom losses.
- Loss rate scales as a^4 (at T=0) or as $\frac{1}{T^2}$ (at $|a|=\infty$).

 $\textbf{2} \ \, \text{Efimov effect for} \, \, N = 3 \, \, \text{bosons} \, \,$

3 Unitary Bose gas $(N \gg 1)$

Efimov trimers

Three spinless bosons, with $r_0 \ll |a|$. For a > 0, shallow dimer bound state:

$$E = -\frac{\hbar^2}{ma^2}$$

Efimov trimers

Three spinless bosons, with $r_0 \ll |a|$. For a > 0, shallow dimer bound state:

$$E = -\frac{\hbar^2}{ma^2}$$

[Ferlaino et al., FBS, 2011]

Efimov trimers

Three-body bound states [Efimov, 1970]:

• Geometric sequence:

$$\begin{cases} E_{n+1} \simeq E_n/515 \\ \text{size}_{n+1} \simeq 22.7 \times \text{size}_n \end{cases}$$

- Universal (for large n).
- Borromean, for $a \leq 0$:

Efimov trimers - experiments

- Predicted for nucleons, first observed with ultracold atoms (2006).
- ullet Appearance of first Efimov trimer o enhanced three-body losses.

[Kraemer et al., Nature, 2006]

- Discrete scale invariance \rightarrow a second length scale is needed to set E_n .
- Thomas collapse, for zero-range two-body interactions: Spectrum unbound from below, with infinitely small trimers.

- Discrete scale invariance \rightarrow a second length scale is needed to set E_n .
- Thomas collapse, for zero-range two-body interactions: Spectrum unbound from below, with infinitely small trimers.
- A solution is to add a three-body repulsion $V_3(R)$:

$$H = \sum_{i=1}^{3} \frac{\mathbf{p}_{i}^{2}}{2m} + \sum_{i < j} V_{2}(r_{ij}) + V_{3}(R) \qquad \left[R \equiv \sqrt{\frac{r_{12}^{2} + r_{23}^{2} + r_{31}^{2}}{3}} \right]$$

• Hard-core repulsion: $V_3(R) = \infty$ for $R < R_0$, zero otherwise [von Stecher, JPB, 2010]:

To verify

Does the three-body-cutoff model reproduce universal trimers?

 Path-integral formalism at T > 0:
 Partition function = weighted sum over imaginary-time paths.

Path-integral formalism at T > 0:
 Partition function = weighted sum over imaginary-time paths.

- ullet Positive weights o interpret as probability.
- Monte Carlo method: Sample path-integral configurations according to weights, to compute average observables.
- Controlled approximations in constructing the many-body density matrix.
- Efimov trimer: Alternate pinning of particle pairs.

2 Efimov effect for N=3 bosons

Initiary Bose gas $(N \gg 1)$

Unitary bosons – phase diagram

$$H = \sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2m} + \sum_{i < j} V_{2}(r_{ij}) + \sum_{i < j < k} V_{3}(R_{ijk})$$

Unitary bosons – phase diagram

$$H = \sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2m} + \sum_{i < j} V_{2}(r_{ij}) + \sum_{i < j < k} V_{3}(R_{ijk})$$

- Homogeneous system:
 - Clean measure of correlation functions.
 - 2 Homogeneous box available in experiments.
- Trapped system: [Piatecki&Krauth, NC, 2014].
- NVT ensemble, three length scales: $\lambda_{\rm th}, \rho^{-1/3}, R_0$.
- R_0 is linked to $l_{\rm vdW}$.

Unitary bosons – phase diagram

$$H = \sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2m} + \sum_{i < j} V_{2}(r_{ij}) + \sum_{i < j < k} V_{3}(R_{ijk})$$

- Homogeneous system:
 - Clean measure of correlation functions.
 - 2 Homogeneous box available in experiments.
- Trapped system: [Piatecki&Krauth, NC, 2014].
- NVT ensemble, three length scales: $\lambda_{\rm th}, \rho^{-1/3}, R_0$.
- R_0 is linked to l_{vdW} .

Unitary bosons – Efimov liquid

Unitary bosons – Efimov liquid

- NVT: Gas/liquid phase separation.
- Instability line predicted through approximate gas/liquid models, supported by quantum Monte Carlo.
- Density: $\rho_{\rm liq} \simeq (3.6R_0)^{-3} \gg \rho_{\rm gas}$.

Unitary bosons - Efimov liquid

Universal N-body bound state?

- Efimov effect does not exist for $N \ge 4$ (no new length scale).
- Universal tetramers associated with trimers [theo/exp: von Stecher *et al.*, Ferlaino *et al.*, 2009].
- Universal bound state of N unitary bosons? Open question, with predictions for up to $N\approx 15$ atoms.
- Is the Efimov liquid the finite-T, large-N limit of these states?

Unitary bosons - Efimov liquid

Universal N-body bound state?

- Efimov effect does not exist for $N \ge 4$ (no new length scale).
- Universal tetramers associated with trimers [theo/exp: von Stecher *et al.*, Ferlaino *et al.*, 2009].
- \bullet Universal bound state of N unitary bosons? Open question, with predictions for up to $N\approx 15$ atoms.
- ullet Is the Efimov liquid the finite-T, large-N limit of these states?

Experimentally observable?

- Approximate model: Incompressible liquid + normal gas
 → Coexistence free energy.
- \bullet Free-energy barrier: Droplets are stable when bigger than ≈ 5 atoms.
- In current experiments, dynamical instability (three-body losses) may hide thermodynamic instability (nucleation of liquid).

Unitary bosons – observables for homogeneous system

- One-body reduced density matrix: $g^{(1)}(\mathbf{r}) \leftrightarrow n(\mathbf{k})$.
- ullet Pair-correlation function: $g^{(2)}({f r})$.

Unitary bosons – observables for homogeneous system

- One-body reduced density matrix: $g^{(1)}(\mathbf{r}) \leftrightarrow n(\mathbf{k})$.
- Pair-correlation function: $g^{(2)}(\mathbf{r})$.

Long-range features

- BEC = off-diagonal long-range order in $g^{(1)}(\mathbf{r})$.
- Condensate fraction $N_0/N \propto n(\mathbf{k} = \mathbf{0})$

Unitary bosons – observables for homogeneous system

- One-body reduced density matrix: $g^{(1)}(\mathbf{r}) \leftrightarrow n(\mathbf{k})$.
- Pair-correlation function: $g^{(2)}(\mathbf{r})$.

Long-range features

- BEC = off-diagonal long-range order in $g^{(1)}(\mathbf{r})$.
- Condensate fraction $N_0/N \propto n(\mathbf{k} = \mathbf{0})$

Short-range features

- Two-body contact C_2
- $\bullet \ n(\mathbf{k}) \stackrel{k \to \infty}{\simeq} \frac{C_2}{k^4}$
- $g^{(2)}(\mathbf{r}) \stackrel{r \to 0}{\simeq} \frac{C_2/V}{(4\pi r)^2}$

Unitary bosons - Bose-Einstein condensation

Effect of interactions on Bose-Einstein condensation?

Unitary bosons – Bose-Einstein condensation

Effect of interactions on Bose-Einstein condensation?

Other (homogeneous) systems:

- Weak repulsive interactions: $T_c \stackrel{a \to 0}{\simeq} \left(1 + 1.32 \times a \rho^{1/3}\right) T_c^0$
- Liquid helium (strong interactions): $T_c/T_c^0 \simeq 0.69$

Unitary bosons – Bose-Einstein condensation

Effect of interactions on Bose-Einstein condensation?

Other (homogeneous) systems:

- Weak repulsive interactions: $T_c \stackrel{a \to 0}{\simeq} \left(1 + 1.32 \times a\rho^{1/3}\right) T_c^0$
- Liquid helium (strong interactions): $T_c/T_c^0 \simeq 0.69$

Unitary gas:

- Quantum Monte Carlo results for superfluid fraction ($N \le 256$).
- Finite-size-scaling analysis.
- $ullet T_c/T_c^0 \simeq 0.87 0.91.$
- Depletion of the condensate fraction N_0/N .

Unitary bosons – two-body contact

Contact density $c_2 \equiv C_2/V$.

- At large T, well described by virial expansion: $c_2 \propto T^{-2}$.
- Weak dependence on three-body cutoff R_0 .
- ullet $c_2(T)$ is non-monotonic. At low-T, similar to T=0 predictions.
- No signature of BEC transition.

Unitary bosons – momentum distribution

- Units: $k_F = (6\pi^2 \rho)^{1/3}$.
- Direct measure of $n(\mathbf{k})$ merges with C_2/k^4 (contact parameter from $g^{(2)}(\mathbf{r})$).

Unitary bosons – momentum distribution

- Units: $k_F = (6\pi^2 \rho)^{1/3}$.
- Direct measure of $n(\mathbf{k})$ merges with C_2/k^4 (contact parameter from $g^{(2)}(\mathbf{r})$).
- Dependence on N:
 - Weak for k > 0.
 - $n(\mathbf{k} = \mathbf{0}) \propto N$.

Unitary bosons – momentum distribution

- Units: $k_F = (6\pi^2 \rho)^{1/3}$.
- Direct measure of $n(\mathbf{k})$ merges with C_2/k^4 (contact parameter from $g^{(2)}(\mathbf{r})$).
- Dependence on N:
 - Weak for k > 0.
 - $n(\mathbf{k} = \mathbf{0}) \propto N$.
- Depletion of $n(\mathbf{k} = \mathbf{0})$.
- Reweighting of middle-k.

Unitary bosons - momentum distribution

Experiment:

- $\bullet \ \, {\rm Trapped \,\, BEC \,\, at} \,\, T < 10 \,\, {\rm nK,} \\ {\rm fast \,\, ramp \,\, to \,\, unitarity.}$
- Lifetime: $\approx 600~\mu \mathrm{s}$.
- Large-k equilibration: $100~\mu s$.
- T after the ramp? Local equilibration?

Unitary bosons - momentum distribution

Experiment:

- Trapped BEC at $T < 10 \ \mathrm{nK}$, fast ramp to unitarity.
- Lifetime: $\approx 600 \ \mu s$.
- Large-k equilibration: $100 \ \mu s$.
- T after the ramp? Local equilibration?

Comparison:

- Discrepancy at large k, approximately ×2.
- Trap average would increase theoretical C_2 .
- \bullet Is experimental T larger?

Conclusion

- Ultracold atoms to study strongly interacting systems.
 Microscopic model + quantum Monte Carlo for equilibrium theory.
- ullet For N=3, model captures universal Efimov physics.
- Unitary Bose gas: Homogeneous vs phase-separated.
- ullet Efimov liquid: Possibly universal, currently hard to observe (\leftarrow losses).
- BEC transition: 10% decrease of T_c .
- Low-T momentum distribution: Discrepancy with experimental curve.

Conclusion

- Ultracold atoms to study strongly interacting systems.
 Microscopic model + quantum Monte Carlo for equilibrium theory.
- ullet For N=3, model captures universal Efimov physics.
- Unitary Bose gas: Homogeneous vs phase-separated.
- ullet Efimov liquid: Possibly universal, currently hard to observe (\leftarrow losses).
- BEC transition: 10% decrease of T_c .
- ullet Low-T momentum distribution: Discrepancy with experimental curve.

T. Comparin & W. Krauth, Momentum distribution in the unitary Bose gas from first principles, *Phys. Rev. Lett.*, in press (arXiv:1604.08870).