

MCMC: algorithmes avancés

Langevin Dynamics

Avec h

 $dX_t = D\nabla \log (f(X_t)) dt + \sqrt{2D}\xi_t dt$

 $\Lambda t + h$

$$Dh\nabla \log (f(X_t)) dt +$$

La chaîne de Markov $(X_n)_n$ a pour distribution stationnaire une densité $\propto f$.

 $X_{n+1} = X_n + \varepsilon \nabla \log (f(X_n)) + \sqrt{2\varepsilon} \xi_n$

 $\xi_n \sim \mathcal{N}(0,1)$

Comment résoudre cette SDE numériquement?

"Somme de h variables $\mathcal{N}(0,1)$ i.i.d en t"

 $\nabla \log (f(X_s)) ds + \sqrt{2}D$

 $\mathrm{d}X_s = D$

 $\xi_s \mathrm{d}s$

C'est la méthode d'Euler

Avec D=1 et $\varepsilon=h\approx 0$, on définit la suite:

Langevin Dynamics

$$dX_t = D\nabla \log (f(X_t)) dt + \sqrt{2D}\xi_t dt$$

Comment résoudre cette SDE numériquement?

$$\int_{t}^{t+h} dX_{s} = D \int_{t}^{t+h} \nabla \log (f(X_{s})) ds + \sqrt{2D} \int_{t}^{t+h} \xi_{s} ds$$

$$\xi_{t}: \text{ processus}$$
 aléatoire
$$\sim \mathcal{N}(0, 1)$$

Avec $h \to 0$:

"Somme de h variables $\mathcal{N}(0,1)$ i.i.d en t" = $\sqrt{h}\xi_t$

$$X_{t+h} - X_t = Dh\nabla \log(f(X_t)) dt + \sqrt{2Dh}\xi_t$$

Avec D=1 et $\varepsilon=h\approx 0$, on définit la suite:

C'est la méthode d'Euler

$$X_{n+1} = X_n + \varepsilon \nabla \log \left(f(X_n) \right) + \sqrt{2\varepsilon} \xi_n \qquad \xi_n \sim \mathcal{N}(0, 1)$$

La chaîne de Markov $(X_n)_n$ a pour distribution stationnaire une densité $\propto f$.

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Langevin Dynamics

