The physics-patch package

Improved version of the physics package

Willie Shen (Willie 169)

Version 3.1

Last update: July 29, 2025

Contents

1	Prefa	ace	1
2	Usag	ge	1
	2.1	Required packages	1
	2.2	Using physics-patch in your LATEX document	1
	2.3	Options	1
3	Com	munication Channels	3
4	Lice	nse and Credit	3
5	List	of Commands	3
	5.1	Automatic bracing	3
	5.2	Vector notation	5
	5.3	Operators	6
	5.4	Utilities	8
	5.5	Quick quad text	9
	5.6	Derivatives	9
	5.7	Dirac bra-ket notation	11
	5.8	Matrix macros	12
	5.9	Symbols	16
	5.10	Arrows and lines	16
	5.11	Shorthands for Greek alphabet	18
		Shorthands for mathrm alphabet and chemical element symbols	18
		Shorthands for textnormal alphabet	18

1 Preface

Since version 2.0, the physics-patch package has evolved from merely patching the physics package to fully replacing it. While preserving the original goal—simplifying mathematical and physics typesetting for greater readability and efficiency—this package refines the design by addressing unintuitive behaviors, extending commands, and introducing additional macros. For instance, in the original package, parentheses and their contents after $\dv\{f\}\{x\}$ are ignored. This package also extends commands for broader applicability such as enabling \mbox{xmat} to support ellipses and introducing entirely new macros such as \mbox{omat} .

2 Usage

2.1 Required packages

The physics-patch package requires amsmath, etoolbox, xcolor, xparse, and xstring package to work. If you are unsure whether you've had them installed, you can either install it again using your local package manager (comes with most distributions) or by visiting the CTAN online package database, or even just try to use physics-patch package without worrying about it. Many modern LATEX compilers will locate and offer to download missing required packages for you.

2.2 Using physics-patch in your LATEX document

To use physics-patch in your LATEX document, simply insert \usepackage{physics-patch} in the preamble of your document, before \begin{document} and after \documentclass{class}:

```
\documentclass{class}
...
\usepackage{physics-patch}
...
\begin{document}
content...
\end{document}
```

This package will silently override the commands that have been defined before this package is loaded. To use the original definition provided by physics, load physics before this package and use the nooverride option for this package (not recommended). nooverride falls back to the original behavior if physics has not been loaded.

This package pretends that physics is loaded so that this package won't be overriden if loading physics is called afterward and packages that depend on physics (e.g. siunitx) work correctly. To disable this, use the nopretend option (not recommended).

If siuitx is loaded before this package, this package will define \ITquantity and \ITqty with the integration of the revised definition of physics's \qty (in \PHquantity and \PHqty) and siuitx's \SI. You can optionally set siintegrate option to override \PTquantity and \PTqty with \ITqty (not recommended). siintegrate falls back to the original behavior if siunitx is not loaded.

2.3 Options

Options available in this package include

- nooverride: Not override macros in physics to patched ones. Fall back to override if physics is not loaded. (not recommended)
- override: Override macros in physics to patched ones. This option can be set no matter whether physics is loaded. (default)
- nopretend: Not pretend that physics package is loaded. (not recommend).
- pretend: Pretend that physics is loaded so that this package won't be overriden if loading physics is called afterward and packages that depend on physics (e.g. siunitx) work correctly. (default)
- nosiintegrate: Not override \PTquantity and \PTqty with \ITqty. (default)
- siintegrate: Override \PTquantity and \PTqty with \ITqty. Fall back to nosiintegrate if siunitx is not loaded. (not recommended)
- nooriginaldiv: Let \div be \divergence. (not recommended)
- originaldiv: Let \div be division symbol. (default)
- notrig: Not define functions and operators with automatic bracing.
- trig: Define functions and operators with automatic bracing. (default)
- italicdiff: Italic differentials.
- uprightdiff: Upright differentials. (default)
- arrowdel: Vector arrow \nabla symbol.
- bolddel: Vector bold \nabla symbol. (default)
- bolddot: Vector bold dot product symbol.
- plaindot: Vector plain dot product symbol. (default)
- forcedefault: Forces the above options to their default ones.
- noshorttextgreek: Not define shorthands for text Greek alphabet. (default)
- shorttextgreek: Define shorthands for text Greek alphabet.
- noshortvargreek: Not define shorthands for variant Greek alphabet. (default)
- shortvargreek: Define shorthands for variant Greek alphabet.
- noshortupgreek: Not define shorthands for upright Greek alphabet. (default)
- shortupgreek: Define shorthands for upright Greek alphabet.
- noshortupvargreek: Not define shorthands for upright variant Greek alphabet. (default)
- shortupvargreek: Define shorthands for upright variant Greek alphabet.
- noshortboldgreek: Not define shorthands for bold Greek alphabet. (default)
- shortboldgreek: Define shorthands for bold Greek alphabet.
- noshortgreek: Not define all shorthands for Greek alphabet. (default)

- shortgreek: Define all shorthands for Greek alphabet.
- noshortmathrm: Not define shorthands for mathrm alphabet and chemical element symbols. (default)
- shortmathrm: Define shorthands for mathrm alphabet and chemical element symbols.
- noshorttext: Not define shorthands for textnormal alphabet. (default)
- shorttext: Define shorthands for textnormal alphabet.

To use all features of this package, load it with

\usepackage[shortgreek, shortmathrm, shorttext] {physics-patch}

3 Communication Channels

- Bug tracker: https://github.com/Willie169/physics-patch/issues.
- Announcements: https://github.com/Willie169/physics-patch/releases.
- **Repository:** https://github.com/Willie169/physics-patch.

4 License and Credit

• This package is released under the LaTeX Project Public License (LPPL) 1.3c.

See https://www.latex-project.org/lppl/lppl-1-3c for the details of that license.

 Many parts of this package are modified or copied from the physics package, created by Sergio C. de la Barrera and licenced under LPPL 1.3.

See https://ctan.org/pkg/physics for the details of that package.

• Many parts of this package rely on the amsmath package, created by **The LATEX Project Team** and licenced under **LPPL 1.3c**.

See https://ctan.org/pkg/amsmath for the details of that package.

5 List of Commands

In the commands listed below, the left column is long-form names with non-default alternate names (if any), the middle column is default shorthand commands with detailed syntaxes and explanations.

If the nooverride option is not used or the physics package is not loaded before this package, a command without PT prefix will be defined as the same definition as that prefixed with PT for every command prefixed with PT below silently.

5.1 Automatic bracing

\PTquantity,	\PTqty(\typical) → (■)	automatic () braces
\PHquantity or		
\PHqty		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	\PTqty(\grande) \rightarrow (
	\PTqty[\typical] → [□]	automatic [] braces
	\PTqty \typical → ■	automatic braces
	$\label{eq:ptqty} $$ \PTqty{\typical} \to {\blacksquare}$$	automatic { } braces
	$\PTqty\big\{\} \rightarrow \{\}$	
	$\PTqty\Big\{\} \rightarrow \left\{\right\}$	manual sizing (works with any of
	$\ \ \ \ \ \ \ \ \ \ \ \ \ $	the above bracket types)
	$\ \ \ \ \ \ \ \ \ \ \ \ \ $	
	↔ \PTqty()	
	↔ \PTqty[]	alternative syntax; robust and more
	↔ \PTqty	IATEX-friendly
	↔	
\absolutevalue	$\abs\{a\} \rightarrow a $	automatic sizing; equivalent to
		\PTqty a
	$\abs \Big{a} \rightarrow a $	inherits manual sizing syntax from
	_	\PTqty
	\abs*{\grande} →	star for no resize
\norm	$\operatorname{norm}\{a\} \to a $	automatic sizing
	$\operatorname{\mathbb{R}}\{a\} \to \ a\ $	manual sizing
	\norm*{\grande} →	star for no resize
\evaluated	$\langle \text{eval}\{x\}_0^{\text{infty}} \rightarrow x \Big _{0}^{\text{infty}}$	vertical bar for evaluation limits
	$ \text{veval}\{x\}_0^{\text{infty}} \to x _{0}^{\infty} $ $ \text{veval}(x _0^{\text{infty}} \to \left(x _{0}^{\infty}\right)^{\infty} $ $ \text{veval}[x _0^{\text{infty}} \to \left[x _{0}^{\infty}\right]^{\infty} $	alternate form
	$ \operatorname{veval}[x]_0^{-1}$ infty $\to x = x$	alternate form
	\eval[\venti _0^\infty	automatic sizing
	$\rightarrow \begin{bmatrix} \\ \end{bmatrix}_0$	
	\eval*[\venti _0^\infty	star for no resize
	$\rightarrow \begin{bmatrix} \\ \end{bmatrix}_0$	
\order	$\operatorname{\operatorname{Vorder}}\{x^2\} \to \mathcal{O}(x^2)$	order symbol; automatic sizing and
		space handling
	$\backslash \text{order}\backslash \text{Big}\{x^2\} \to \mathcal{O}(x^2)$	manual sizing

	$\colon \mathcal{O}($	star for no resize
\commutator	$\operatorname{Comm}\{A\}\{B\} \to [A,B]$	automatic sizing
	$\backslash \text{comm}\backslash \text{Big}\{A\}\{B\} \rightarrow \left[A,B\right]$	manual sizing
	\comm*{A}{\grande}	star for no resize
	$\rightarrow [A,]$	
\anticommutator	$\lambda \in \{A, B\}$	same as \poissonbracket
or\acommutator		
\poissonbracket	$\pharton{A}{B} \rightarrow \{A,B\}$	same as \anticommutator
\mid	<pre>\left\{x\mid x>0\right\}</pre>	Expands to \middle when inside a
	$\to \{x \mid x > 0\}$	\left\right group
		(\currentgrouptype=16)
		Falls back to original

5.2 Vector notation

The default del symbol ∇ used in physics-patch vector notation can be switched to appear with an arrow $\vec{\nabla}$ by including the option arrowdel in the document preamble:

\usepackage[arrowdel]{physics-patch}

\vectorbold	$\vb{a} \rightarrow a$	upright/no Greek
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	italic/Greek
\vectorarrow	$\forall a \{a\} \rightarrow \vec{a}$	upright/no Greek
	$\forall x \in \{a\}, \forall x \in \{\theta\} \rightarrow \vec{a}, \vec{\theta}$	italic/Greek
\vectorunit	\vu{a} → â	upright/no Greek
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	italic/Greek
\dotproduct	$\vdot \rightarrow \cdot as in a \cdot b$	note: \dp is a protected TEX
		primitive
\crossproduct	$\backslash cross \rightarrow \mathbf{x} \text{ as in } \mathbf{a} \times \mathbf{b}$	alternate name
	\c p \rightarrow \times as in $\mathbf{a} \times \mathbf{b}$	shorthand name
\gradient	$\grad o abla$	
	\grad{\Psi} $ ightarrow abla \Psi$	default mode
	\grad(\Psi+\tall) $ ightarrow abla \Big(\Psi + igcup \Big)$	long-form (like \PTqty but
	,	also handles spacing)
	$\grad[\Psi+\tall] \rightarrow \nabla \Psi + \square$	
\divisionsymbol	\divisionsymbol → ÷	
\divergence	\divg $ ightarrow abla \cdot$	note: if nooriginaldiv
		option is used, \div will be
		overriden as $\nabla \cdot$ too (not
		recommended)
	$\displaystyle \{ \bigvee \{ \bigvee \{a\} \} \rightarrow \nabla \cdot a \}$	default mode

	\divg(\vb{a}+\tall) $\rightarrow \nabla \cdot (a+)$	long-form
	\\divg[\vb{a}+\tall] $\rightarrow \nabla \cdot \left[\mathbf{a} + \mathbf{b}\right]$	
\curl	$\backslash \text{curl} \to \nabla \times$	
	$\curl{\vb{a}} \rightarrow \nabla \times a$	default mode
	\curl(\vb{a}+\tall)	long-form
	$\rightarrow \nabla \times (\mathbf{a} + \square)$	
	\curl[\vb{a}+\tall]	
	$\rightarrow \nabla \times \left[\mathbf{a} + \square \right]$	
\laplacian	\laplacian $ ightarrow abla^2$	
	\laplacian{\Psi} $ ightarrow abla^2 \Psi$	default mode
	\laplacian(\Psi+\tall)	long-form
	$\rightarrow \nabla^2 (\Psi + \square)$	
	\laplacian[\Psi+\tall]	
	$\rightarrow \nabla^2 \left[\Psi + \square \right]$	

5.3 Operators

The trig functions and some other functions are redefined in physics-patch to provide automatic braces that behave like \PTqty(). In addition, an optional power argument is provided. This behavior can be switched off by including the option notrig in the preamble:

\usepackage[notrig] {physics-patch}

Example redefinitions:

\sin	$\sin(\grande) \rightarrow sin($	automatic braces; old \sin renamed \sine
	$\sin[2](x) \rightarrow \sin^2(x)$	optional power
	$\sin x \rightarrow \sin x$	can still use without an argument

The full set of available such functions in physics-patch includes:

```
sin(x)
          sinh(x)
                     \arcsin(x)
                                  asin(x)
\cos(x)
         cosh(x)
                    arccos(x)
                                 acos(x)
         tanh(x)
tan(x)
                     \arctan(x)
                                  atan(x)
         csch(x)
csc(x)
                    arccsc(x)
                                  acsc(x)
         sech(x)
sec(x)
                     arcsec(x)
                                  asec(x)
\cot(x)
          \coth(x)
                     \operatorname{arccot}(x)
                                  acot(x)
\exp(x)
          log(x)
                       ln(x)
                                  det(x)
Pr(x)
          Arg(x)
                      arg(x)
                                   \Re(x)
\mathfrak{F}(x)
```

The same set of functions but without any automatic bracing are available under a new set of longer names:

\sine	\hypsine	\arcsine	\asine
\cosine	\hypcosine	\arccosine	\acosine
\tangent	\hyptangent	\arctangent	\atangent
\cosecant	\hypcosecant	\arccosecant	\acosecant
\secant	\hypsecant	\arcsecant	\asecant
\cotangent	\hypcotangent	\arccotangent	\acotangent
\exponential	\logarithm	\naturallogarithm	\determinant
\Probability	\Argument	\argument	\real
\imaginary			

New operators:

\tr	$\begin{array}{c} \langle \text{tr} \rangle \rightarrow \text{tr} \rho \text{ also } \langle \text{tr} (\langle \text{tall}) \rangle \\ \rightarrow \text{tr} \end{array}$	trace; same bracing as trig functions
\Tr	$\Tr\rho o Tr ho$	alternate
\rank	\rank $M \rightarrow \operatorname{rank} M$	matrix rank
\erf	$\backslash \operatorname{erf}(\mathbf{x}) \to \operatorname{erf}(\mathbf{x})$	error function
\Res	$\Res[f(z)] \rightarrow Res[f(z)]$	residue; same bracing as trig functions
\acosh	$\acosh(\pi) \rightarrow acosh(\pi)$	acosh
\acsch	$\acsch(\pi) \rightarrow acsch(\pi)$	acsch
\arccosh	$\arccosh(\pi) \rightarrow arccosh(\pi)$	arccosh
\arccsch	$\arcsch(\pi) \rightarrow arcsch(\pi)$	arccsch
\arcsech	$\arcsech(\pi) \rightarrow arcsech(\pi)$	arcsech
\arcsinh	$\arcsinh(\pi) \rightarrow arcsinh(\pi)$	arcsinh
\arctanh	$\arctanh(\pi) \rightarrow arctanh(\pi)$	arctanh
\arctantwo	$\arctantwo(\pi) \rightarrow arctan2(\pi)$	arctan2
\asech	$\aggreen (\pi) \rightarrow \operatorname{asech}(\pi)$	asech
\asinh	${}$ \asinh(\pi) $ ightarrow$ asinh(π)	asinh
\atanh	$\hat{\pi} \rightarrow atanh(\pi)$	atanh
\atantwo	\atantwo(\pi) \rightarrow atan2(π)	atan2

visor
tiple
visor
tiple

5.4 Utilities

\mathcolorbox	\mcbox{color}{content}	\colorbox for math
		environment, applying to
		all four levels of math
		styles
	\mcbox{cyan}{\typical} →	

\autocolorbox or	\cbox{color}{content}	calls \colorbox when in
\acbox		text mode, calls
		\mathcolorbox when
		in math mode
\tentothepowerof	$ tenpow{n} \rightarrow 10^n$	work in both math mode
		and text mode
\scientificnotation	\scinote{3.00}{8} $\rightarrow 3.00 \times 10^8$	work in both math mode
		and text mode
\numbercircled	$\operatorname{numcir}\{1\} \to \bigcirc$	<pre>patched \textcircled</pre>
		for numbers
\boldsymbol	\bsb{\tau} → τ	shorthand for
		\boldsymbol
\RNum	$\texttt{\Num\{1\}} \to I$	uppercase roman numeral
\flatfrac	$\frac{a}{b} \rightarrow a/b$	flat fraction

5.5 Quick quad text

This set of commands produces text in math-mode padded by \quad spacing on either side. This is meant to provide a quick way to insert simple words or phrases in a sequence of equations. Each of the following commands includes a starred version which pads the text only on the right side with \quad for use in aligned environments such as cases. General text:

\qqtext		general quick quad text with argument
	\qq{word or phrase} →word or phrase	normal mode; left and right
	\qq*{word or phrase} → word or phrase	starred mode; right only

Special macros:

\qcomma or \qc \rightarrow ,	right only
\qcc →c.c	complex conjugate; left and right unless starred \qcc* \rightarrow c.c
\qif →_if	left and right unless starred \qif* \rightarrow if

Similar to \qif:

\qthen	\qelse	\qotherwise	\qunless	\qgiven	\qusing
\qassume	\qsince	\qlet	\qfor	\qall	\qeven
\qodd	\qinteger	\qand	\qor	\qas	\qin

5.6 Derivatives

The default differential symbol d and default uppercase differential symbol D can be switched to italic forms d and D by including the option italicdiff in the preamble:

\usepackage[italicdiff]{physics-patch}

\dfd	\d dfd \rightarrow d	differential symbol
\dfD	$\backslash dfD \rightarrow D$	uppercase differential symbol
\differential	$\d d \rightarrow d$	
	\dd $x \to dx$	no spacing (not recommended)
	$\dashder dd\{x\} \rightarrow \dashder dx$	automatic spacing based on
		neighbors
	$\d [3] \{x\} \rightarrow d^3x$	optional power
	\dd(\cos\theta)	long-form; automatic braces
	\rightarrow d(cos θ)	
\Differential	$\backslash \text{Dd} \rightarrow d$	
	\Dd $x \to Dx$	no spacing (not recommended)
	$\backslash Dd\{x\} \rightarrow \Box Dx_{\Box}$	automatic spacing based on
		neighbors
		optional power
	\Dd(\cos\theta)	long-form; automatic braces
	$\rightarrow D(\cos \theta)$	
\Derivative	$ \text{Dv}\{x\} \to \frac{D}{Dx}$	one argument
	$ \operatorname{Dv}\{f\}\{x\} \to \frac{Df}{Dx} $	two arguments
	$\begin{array}{c} \langle \text{Dv}\{x\} \rangle \to \frac{D}{Dx} \\ \langle \text{Dv}\{f\}\{x\} \rangle \to \frac{Df}{Dx} \\ \langle \text{Dv}[n]\{f\}\{x\} \rangle \to \frac{D^n f}{Dx^n} \end{array}$	optional power
	\Dv{x}(\grande)	long-form; automatic braces,
	$\rightarrow \frac{D}{Dx}$	spacing
	$Dv*{f}{x} \rightarrow Df/Dx$	inline form using \flatfrac
\PTpartialderivative or	\PTdv{f}{x}(\grande)	note: in original physics
\PTpderivative	$\rightarrow \frac{\mathrm{d}f}{\mathrm{d}x}$	package,
	2	$\rightarrow \frac{\mathrm{d}f}{\mathrm{d}x}$
	$ PTpdv\{x\} \to \frac{\partial}{\partial x}$	shorthand name
	$eq:power_$	two arguments
	$ \mathbb{PTpdv}[n] \{f\} \{x\} \to \frac{\partial^n f}{\partial x^n}$	optional power
	\PTpdv{x}(\grande)	long-form
	$\rightarrow \frac{\partial}{\partial x}$	
	$ PTpdv\{f\}\{x\}\{y\} \to \frac{\partial^2 f}{\partial x \partial y}$	mixed partial
	$\label{eq:power_power} $$ \Pr dv * \{f\} \{x\} \to \partial f / \partial x $$$	inline form using \flatfrac
	$PTpdv\{f\}\{x\}\ (\grande)$	note: in original physics
	$ \rightarrow \frac{\partial f}{\partial x} $ ()	package,
		\pdv{f}{x} (\grande) $\rightarrow \frac{\partial f}{\partial x}$
		$\frac{1}{\partial x}$

\variation	$\operatorname{var}\{F[g(x)]\} \to \delta F[g(x)]$	functional variation (works like
		\dd)
	$\forall var(E-TS) \rightarrow \delta(E-TS)$	long-form
\functionalderivative	$\lceil fdv\{g\} \rightarrow \frac{\delta}{\delta g}$	functional derivative (works like \PTdv)
	$\lceil fdv\{F\}\{g\} \rightarrow \frac{\delta F}{\delta g}$	
	\fdv{V}(E-TS)	long-form
	$\rightarrow \frac{\delta}{\delta V}(E - TS)$	
	$ \text{fdv*}\{F\}\{x\} \to \delta F / \delta x$	inline form using \flatfrac

5.7 Dirac bra-ket notation

The following collection of macros for Dirac notation contains two fundamental commands, \bra and \ket, along with a set of more specialized macros which are essentially combinations of the fundamental pair. The fundamental commands are designed to contract with one another algebraically when appropriate and are thus suggested for general use. For instance, the following code renders correctly¹

$$\beta \left(\phi \right) \rightarrow \langle \phi | \psi \rangle$$
 as opposed to $\langle \phi | \psi \rangle$

whereas a similar construction with higher-level macros will not contract in a robust manner

$$\bra{\phi|\psi\rangle\xi|.}$$

On the other hand, the correct output can be generated by sticking to the fundamental commands,

$$\beta \left(\phi \right) \left(\phi \right) \left(\phi \right) \left(\phi \right) \left(\xi \right)$$

allowing the user to type out complicated quantum mechanical expressions without worrying about bra-ket contractions. That being said, the high-level macros do have a place in convenience and readability, as long as the user is aware of rendering issues that may arise due to an absence of automatic contractions.

\ket	\ket{\tall} →	automatic sizing
	\ket*{\tall} →	no resize
\bra	$\bra{\tall} \rightarrow \$	automatic sizing
	\bra*{\tall} → ⟨	no resize
	\bra{\phi}\ket{\psi}	automatic contraction
	$ ightarrow \langle \phi \psi angle$	
	\bra{\phi}\ket{\tall}	contraction inherits automatic
	$\rightarrow \langle \phi \rangle$	sizing
	\bra{\phi}\ket*{\tall}	a star on either term in the contrac-
	$\rightarrow \langle \phi $	tion prohibits resizing

¹Note the lack of a space between the bra and ket commands. This is necessary in order for the bra to find the corresponding ket and form a contraction.

	\bra*{\phi}\ket{\tall}	
	$\rightarrow \langle \phi $	
	\bra*{\phi}\ket*{\tall}	
	$\rightarrow \langle \phi \rangle$	
\innerproduct	$\braket{a}{b} \rightarrow \langle a b\rangle$	two-argument braket
	\braket{a} $\rightarrow \langle a a\rangle$	one-argument (norm)
	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	automatic sizing
	$\begin{tabular}{ll} \braket*{a}{\tall} \rightarrow \langle a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	no resize
	$\langle ip\{a\}\{b\} \rightarrow \langle a b\rangle$	shorthand name
\outerproduct	$\displaystyle \{b\} \rightarrow a\rangle\langle b $	two-argument dyad
	$\dyad{a} \rightarrow a\rangle\langle a $	one-argument (projector)
	\d \dyad{a}{\tall} $\rightarrow a\rangle$	automatic sizing
	\dyad*{a}{\tall} → aX	no resize
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	alternative name
	$\langle p\{a\}\{b\} \rightarrow a\rangle\langle b $	shorthand name
\expectationvalue	$\left\{ A\right\} \rightarrow\left\langle A\right\rangle$	implicit form
	$\left\{ \mathbb{A} \right\} \left\{ \mathbb{P} \right\} \rightarrow \left\langle \Psi A \Psi \right\rangle$	explicit form
	$\langle \Psi A \rangle \{ \langle Psi \rangle \rightarrow \langle \Psi A \Psi \rangle $	shorthand name
	\ev{\grande}{\Psi}	default sizing ignores middle
	$\rightarrow \langle \Psi \Psi \rangle$	argument
	\ev*{\grande}{\tall}	single star does no resizing
	→ ()	whatsoever
	\ev**{\grande}{\Psi}	double star resizes based on all
	$\rightarrow \langle \Psi \Psi \rangle$	parts
\matrixelement	\matrixel{n}{A}{m}	requires all three arguments
	$\rightarrow \langle n A m\rangle$	
	$\mathbb{N} \{n\} \{A\} \{m\} \rightarrow \langle n A m\rangle$	shorthand name
	$\mathbb{mel}_{n} {\grande} {m}$	default sizing ignores middle
	$\rightarrow \langle n $ $ m\rangle$	argument
	<pre>\mel*{n}{\grande}{\tall}</pre>	single star does no resizing
	$\rightarrow \langle n $	whatsoever
	\mel**{n}{\grande}{m}	double star resizes based on all
	$\rightarrow \langle n m \rangle$	parts

5.8 Matrix macros

Note: $\mbox{\sc wnd \sc uses} \mbox{\sc while \PTmqty and \PTsmqty in physics-patch don't.}$

The following matrix macros produce unformatted rows and columns of matrix elements for use as separate matrices as well as blocks within larger matrices. For example, the command $\identitymatrix\{2\}$ which has also has the shortcut $\identitymatrix\{2\}$ produces the elements of a 2×2 identity matrix $\begin{picture}1 & 0 \\ 0 & 1 \end{picture}$ without braces or grouping. This allows the command to also be used within another matrix, as in:

$$\begin{array}{ll} \texttt{begin}\{ & \texttt{pmatrix}\} \\ \texttt{limat}\{2\} \setminus \\ & \texttt{a \& b} \end{array} \qquad \Rightarrow \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ a & b \end{pmatrix} \qquad \text{To specify elements on the right of left sides of our } \\ \texttt{lend}\{ & \texttt{pmatrix} \} \end{array}$$

\imat{2} sub-matrix we use the grouping command \PTmatrixquantity or \PTmqty to effectively convert \imat{2} into a single matrix element of a larger matrix:

groups were required in this case in order to get the a and b elements to behave as a single element, since $\PTmqty{\{imat\{2\}\}\}}$ also acts like a single matrix element (the same can be said of the grouped c and d elements). Finally, the outermost pmatrix environment could have also been replaced with the physics-patch macro $\PTmqty()$, allowing the above example to be written on one line:

\PTmatrixquantity	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	groups a set of matrix elements into a single object
	$\label{eq:ptmqty} $$ \Pr (a \& b \ c \& d) \to \begin{pmatrix} a & b \\ c & d \end{pmatrix} $$ \Pr (a \& b \ c \& d) \to \begin{pmatrix} a & b \\ c & d \end{pmatrix} $$$	parentheses
	$ PTmqty*(a \& b \setminus c \& d) \rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} $	alternate parentheses
	$\label{eq:ptmqty} $$ \Pr \{a \& b \setminus c \& d\} \to \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$	square brackets
	\PTmqty a&b\\c&d $ ightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix}$	vertical bars
	$\operatorname{\operatorname{Nomqty}}\{\} \leftrightarrow \operatorname{\operatorname{PTmqty}}\{\}$	alternative syntax; robust and more LATEX-friendly
	$\protect\$ \pro	aternative syntax, rootst and more E-15x-mentity
	$\label{eq:ptpmqty} $$ \ \ \ \ \ \ \ \ \ \ \ \)$$	
	$\label{eq:ptpmqty*} $$ \PTmqty*{} $$	
	$ \leftrightarrow \PTmqty*()$	
	$ \leftrightarrow \PTmqty[]$	
	$\label{eq:condition} $$\operatorname{Vmqty}() \leftrightarrow \operatorname{PTmqty}() $$$	
\PTsmallmatrixquantity	\PTsmqty{a & b \\ c & d} $\rightarrow {a \atop c} {b \atop d}$	the smallmatrix form of \PTmqty
	$\label{eq:ptsmqty} $$ \PTsmqty() $$ or $\spmqty() $$ or $$$	small version of \PTmqty()
	<pre>\PTsmqty*() or or</pre>	small version of \PTmqty*()
	\PTspmqty*{}	
	<pre>\PTsmqty[] or </pre>	small version of \PTmqty[]
	<pre>\PTsmqty or </pre>	small version of \PTmqty
\matrixdeterminant	$\label{eq:define_a} $\mbox{$\$	matrix determinant
	$\label{eq:conditions} \texttt{\sc b} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	small matrix determinant

\identitymatrix	\imat{n}		elements of $n \times n$ identity matrix
	$\label{eq:ptmqty} $$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		formatted with \PTmqty or \PTsmqty
\PTxmatrix	$\label{eq:ptxmat} $$ \Pr\{x\} \{n\} \{m\} $$ $$ \Pr\{x\} \{3\} \{3\} $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$		elements of $n \times m$ matrix filled with x , if not provided, 1 is used
	\PTxmat*{x}{n}{m}		
	\PTmqty(\PTxmat*{x}{3}{3}) $\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{pmatrix}$	\rightarrow	star for element indices, skip row/column indices $n = 1/m = 1$
		\rightarrow	
	\PTxmat{x}{n}{m}[p] \PTmqty(\PTxmat{x}{5}{3}[3]) \begin{pmatering} (x & x & x \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\rightarrow	only show p rows (including \vdots row) with skipped rows indicated by \vdots . If n isn't provided, p is used
	$ \begin{pmatrix} x & x & x \\ x & x & x \end{pmatrix} $ $ \langle \text{PTmqty}(\text{PTxmat}\{x\}\{3\}\{3\}[3]) $ $ \begin{pmatrix} x & x & x \\ x & x & x \\ x & x & x \\ x & x &$	\rightarrow	
	$\begin{pmatrix} x & x & x \\ x & x & x \end{pmatrix}$	x	
	$\label{eq:ptmqty} $$ \Pr (\Pr x = \{x\}) = \begin{cases} x & x \\ \vdots & \vdots \\ x & x \end{cases} $$ \Pr x = \{x\} \} $$ in $\{n\} \} $$$	$\begin{pmatrix} \vdots \\ x \end{pmatrix}$	only show p rows (including \vdots row) and q
	$ \begin{array}{ccc} $		columns (including \ldots column) with skipped rows indicated by \vdots, skipped columns indicated by \ldots, intersection of \vdots row and \ldots column being \ddots. If n/m isn't pro-
	$ \begin{array}{ccc} $		vided, p/q is used. No indices will be added for ellipses even if star is given
	$ \begin{pmatrix} x & x & x \end{pmatrix} $ $ \land \text{PTmqty}(\land \text{PTxmat}\{x\}\{3\}\{3\}[3][3]) $ $ \rightarrow \begin{pmatrix} x & x & x \\ x & x & x \end{pmatrix} $		
	\(x x x \) \PTmqty(\PTxmat{x}{5}{}[3][3])		
	$\rightarrow \begin{pmatrix} x & \dots & x \\ \vdots & \ddots & \vdots \\ x & \dots & x \end{pmatrix}$		

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	customize last row's element indices to g
		customize last row's element indices to g and last column's element indices to h
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Change the \vdots row/\ldots column from the second last one to last one, 0 for both, 1 for row only, 2 for column only. Only work when corresponding <i>p/q</i> is provided and do not change the behavior of element indices
\zeromatrix		$n \times m$ matrix filled with zeros, equivalent to $\mathbf{n} \in \{n\}$ and $\{n\}$ are $\{n\}$ and $\{n\}$ are
\paulimatrix	$ \begin{array}{c} \left(0 0\right) \\ \left(0 0\right) \\ \left(0 1\right) \\ \left(0 -i\right) \\ \left(0 -i\right) \\ \left(0 0\right) \\ \left(0 -1\right) \\ \left(0 -1\right) \\ \end{array} \right) $	n^{th} Pauli matrix $n \in \{0, 1, 2, 3 \text{ or } x, y, z\}$
\diagonalmatrix	\dmat{a,b,c,}	specify up to eight diagonal or block diagonal elements

	$\label{eq:ptmqty} $$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	optional argument to fill spaces
	$ \text{PTmqty}(\text{dmat}\{1,2\&3\backslash 4\&5\}) \rightarrow \begin{vmatrix} 1 & & & \\ & 2 & 3 \\ & 4 & 5 \end{vmatrix} $	enter matrix elements for each block as a single diagonal element
\antidiagonalmatrix	\admat{a,b,c,}	same as syntax as \dmat

5.9 Symbols

\lparen → (
\rparen →)		
$ullet$ ordersymbol $ullet$ $\mathcal O$		
\typical →		
\tall →		
\grande →		
\venti →		
\parallelsum →/		
\calE→\mathcal{E}		
\bbR→\mathbb{R}		
\bbC→\mathbb{C}		
$\bdot \bdot \dot \dot \dot \dot \dot \dot \dot \$		
\bbN→\mathbb{N}		
\bbZ→\mathbb{Z}		
\bell→\boldsymbol{\ell}		
\Bell→\char"1F514	the \bell command in wasysym, which is	
	a bell symbol	
\Vtextvisiblespace[width] → _	a visible space character, where the optional	
	argument, defaulting to . 3em, sets the width	
	of the horizontal rule	
\kernnull	negate the space next to null	
	delimiters, implemented with	
	\kern-\nulldelimiterspace	
$\backslash ST \rightarrow s.t.$	such that with space before and after it	

5.10 Arrows and lines

For math mode only:

\Leftrightarrow or \Lra	⇔
\leftrightarrow or \lra	\leftrightarrow
\Rightarrow or \Ra	\Rightarrow
\rightarrow or \ra	\rightarrow
\Leftarrow or \La	←
\leftarrow or \la	←
\Uparrow or \Upa	1
\uparrow or \upa	1
\Downarrow or \Dna	1
\downarrow or \dna	↓
\rightleftharpoons or \rlh	=
\leftrightharpoons or \lrh	=
\rightharpoonup or \rhu	_
\leftharpoonup or \lhu	<u> </u>
\rightharpoondown or \rhd	7
\leftharpoondown or \lhd	~
\upharpoonright or \uhr	1
\upharpoonleft or \uhl	1
\downharpoonright or \dhr	l
\downharpoonleft or \dhl	1
\hookrightarrow or \hkra	c →
\hookleftarrow or \hkla	↔
\nLeftrightarrow or \nLra	⇔
\nleftrightarrow or \nlra	↔
\nRightarrow or \nRa	∌
\nrightarrow or \nra	<i>→</i>
\nLeftarrow or \nLa	#
\nleftarrow or \nla	↔
\mapsto or \mpto	\mapsto
\mapsfrom or \mpfr	\leftarrow
\stackrel{\mathrm{def}}{=} or \defeq	def =

Work in both math mode and text mode:

\equiv or \eqv	=
\geq	≥
\leq	≤
\gg	>>
\11	«
\approx or \apx	≈
\gtrapprox or \gapx	>≈

\lessapprox or \lapx	×≈
\sim	~

5.11 Shorthands for Greek alphabet

If the corresponding options are used, the following shorthands will be defined for every uppercase and lower-case Greek letter. Note that these don't ensure those commands are defined. Take Alpha for example.

Command	Option	Note
\tgAlpha →	shorttextgreek	accept an optional argument ar-
<pre>\text{\textAlpha}</pre>		gument in {} that is simply
		skipped
\vAlpha → \varAlpha	shortvargreek	
\uAlpha → \upAlpha	shortupgreek	
\uvAlpha → \upvarAlpha	shortupvargreek	
\bAlpha →	shortboldgreek	
\boldsymbol{\Alpha}		

5.12 Shorthands for mathrm alphabet and chemical element symbols

If option shortmathrm is used, the following shorthand will be defined for every uppercase and lowercase English letter and every chemical element symbol, which work in both math mode and text mode and allow superscript and/or subscript. Take A for example.

$$\label{eq:continuous_a^b} $$ \rmA_a^b \to A_a^b $$ \rmA^a_b \to A_b^a $$$$

5.13 Shorthands for textnormal alphabet

If option shorttext is used, the following shorthands will be defined for every uppercase and lowercase English letter. Take A for example.

$$\t XA \rightarrow \t XA$$