Homework 9

Jaden Wang

Problem (2.3.11). Move X around until it satisfies the assumption. Since x is a 1-submanifold, take a neighborhood U of 0 so that $\phi:\phi^{-1}(X)\subseteq\mathbb{R}\to X\cap U\subseteq\mathbb{R}^2$ is a diffeomorphism. Let $\pi:X\cap U\to\mathbb{R}, (x,y)\mapsto x$ be the projection to x-axis. Then define $f:=\pi\circ\phi:\phi^{-1}(X)\subseteq\mathbb{R}\to\mathbb{R}$. It is easy to see that df_p has rank 1 and therefore full rank for all $p\in\phi^{-1}(X)$ by chain rule. That is, df_0 is invertible. Consider the map $F:X\cap U\to\Gamma(f), x\mapsto (x,f(x))$. The Jacobian of F at 0 is simply $\begin{pmatrix} I&0\\0&df_0\end{pmatrix}$ which is invertible. Hence by IFT, there exists a neighborhood V of 0 s.t. F is a local diffeomorphism with F^{-1} being injective. That is, if $x_1=x_2$, then $f(x_1)=f(x_2)$ so f is a well-defined function on the Euclidean space, and $X=\Gamma(f)$ on $U\cap V$.

We wish to find a point y in \mathbb{R}^2 s.t. some $q \in h^{-1}(y)$ makes dh_q not a submersion. First, notice that for any point $\overline{x} \in X \cap U \cap V$, we can represent it by the graph $\overline{x} = (x, f(x))$ for some $x \in \mathbb{R}$. The tangent space can be identified as the tangent line to the curve, which is spanned by (1, f'(x)). The set of vectors in \mathbb{R}^2 normal to $T_{\overline{x}}X$ is the line spanned by (-f'(x), 1) by analytic geometry. So an element in NX is ((x, f(x)), c(-f'(x), 1)) for some $x, c \in \mathbb{R}$. Then the normal bundle map becomes $h : ((x, f(x)), c(-f'(x), 1)) \mapsto (x - cf'(x), f(x) + c)$. Then dh is simply the derivative wrt to x, which is (1 - cf''(x), f'(x)). Since we are given that $f''(0) \neq 0$ and f'(0) = 0, we quickly see that setting x = 0, $c = \frac{1}{f''(0)}$, and $q = ((0, f(0)), \frac{1}{f''(0)}(-f'(0), 1))$ makes dh_q not a submersion as it is the zero map. Hence $y = (0, f(0)) + \frac{1}{f''(0)}(-f'(0), 1) = (0, \frac{1}{\kappa(p)})$ is a focal point as desired.

Problem (2.3.14). Given an equivalent class of smooth curves $[\gamma]$ based at $z \in Z$, since 0 is in any subspace, and any curve in N(Z;Y) is determined by specifying a curve on each factor, we have the equivalence class of smooth curves $[(\gamma,0)]$ based at (z,0). Then $d\sigma_{(z,0)}:[(\gamma,0)]\mapsto [\sigma\circ(\gamma,0)]=[\gamma]$ so σ is a submersion.

$$\sigma^{-1}(z) = \{(z', v) \in N(Z; Y) : \sigma(z', v) = z' = z\} = \{(z, v) : v \in T_z Y, v \in T_z Z\}.$$

That is, it is the orthogonal complement of T_zZ .

Problem (2.4.4). First we must assume Y is connected. As I said before, since manifold is locally path-connected, Y is also path-connected. Suppose $f: X \to Y$ is homotopic to a constant function $e_0: x \mapsto y_0$ for some $y_0 \in Y$. If $\dim X > 0$, then $\dim Z < \dim Y$. Hence there exists a $y \notin Z$. Let γ be a path between y_0 and y. Then we see that $f \simeq e: x \mapsto y$ by composing the homotopy with the path. Since intersection number is invariant under homotopy, and $y \notin Z$, we have that $I_2(f, Z) = I_2(e, Z) = 0$.

Problem (2.4.5). Note that if dim X > 0, it suffices to show that every $f: X \to Y$ is homotopic to a constant map and then apply problem 4. Since Y is contractible, we have $1_Y \simeq e_{y_0}$. But notice

$$1_Y \circ f \simeq e_{y_0} \circ f$$
$$f \simeq \widetilde{f}$$

where $\tilde{f}: X \to Y, x \mapsto y_0$ is a constant function, as desired.

If $\dim X = 0$, X can be covered by using local diffeomorphism neighborhoods, so f maps X to a union of open sets so $\operatorname{im} f$ is open. It is also closed because $\operatorname{im} f$ is compact and Y is Hausdorff. Hence $\operatorname{im} f$ is clopen and by connectedness and nonemptyness (since f is a function) $\operatorname{im} f = Y$. But that means that $\dim Y = \dim X = 0$, a contradiction.

Problem (2.4.6). Suppose Y is a compact, contractible manifold. Then let $f: Y \to Y$ be the identity map. Let $Z = \{y\}$ be a single point with dim Z = 0 which is closed. Then $I_2(f,Z) = 0$ if dim Y > 0 according to Problem 5. However, since $Z \cap f(Y) = \{y\}$ so they intersect exactly once, a contradiction. This forces dim Y = 0. Since Y is compact, Y must be a finite set of points. Since Y is contractible, there exists a homotopy that maps finite points to a single point, *i.e.* finite paths from points to a single point contained in the manifold. Then the paths must be the trivial path or Y would be at least dimension 1. That is, Y must be a one-point space.

Problem (2.4.10). Take any two transversal 1-manifolds in S^2 , then since S^2 has no boundary, by classification of 1-manifold they must be loops. Homotop them so that one is contained in the north hemisphere and one is contained in the south hemisphere. Their intersection number mod 2 is clearly 0. However, if we take a horizontal circle and a vertical

circle in a torus, their intersection number mod 2 is 1. This is a structural difference so they cannot be diffeomorphic.

Problem (2.4.17). We wish to use the Boundary Theorem to prove the No Retraction Theorem.

Suppose X is a compact manifold with boundary, and suppose to the contrary that there is a smooth map $g: X \to \partial X$ s.t. $\partial g: \partial X \to \partial X$ is the identity. In other words, the smooth map ∂g extends to all of X. Let $Z = \{z\}$ be a single point of ∂X . Then clearly $\partial g(\partial X) \cap Z = \{z\}$ so $I_2(\partial g, Z) = 1$. However, $I_2(\partial g, Z) = 0$ by the Boundary Theorem, a contradiction.