Exercise session on order of convergence and Richardson extrapolation

September 27 2021

Exercise 1

Consider the function $f(x) = \exp(-x^2)$ on the interval [-3,3].

- (a) Using the centered finite difference approximation $\delta^0 f_i$, compute an approximation of $f'(x) = -2x \exp(-x^2)$ at the interior points x_1, \ldots, x_{n-1} of a uniform mesh $x_0, = -3 \ldots, x_n = 3$ with n = 10, 20, 40, 80, 160, 320, 640. In each case, compute the l_2 and l_{∞} relative error with respect to the exact solution. For each approximation pair $n = 10, 20, n = 20, 40, \ldots, n = 320, 640$ compute the empirical convergence order of the centered finite difference approximation. Explain if the results are coherent with the theory and why.
- (b) Repeat the computation for the function $f(x) = \exp(-100x^2)$, whose first derivative is $f'(x) = -200x \exp(-100x^2)$. Explain the differences between the results in this case and those in the previous case on the basis of the theory of finite difference approximations.

Exercise 2

Consider the function $f(x) = x^3 - 2x^2 + x - 1$ on the interval [-1, 1].

- (a) Using the fourth order finite difference approximation $\delta^{(4)} f_i$ compute an approximation of $f'(x) = 3x^2 4x + 1$ at the interior points x_2, \ldots, x_{n-2} of a uniform mesh $x_0, = -1 \ldots, x_n = 1$ with n = 15, 30, 60, 120. In each case, compute the l_2 and l_∞ relative error with respect to the exact solution. For each approximation pair compute the empirical convergence order. Explain if the results are coherent with the theory and why.
- (b) Repeat the computation for the function $f(x) = x^6 + x^4 x + 1$ whose first derivative is $f'(x) = 6x^5 + 4x^3 1$. Explain the differences between the results in this case and those in the previous case on the basis of the theory of finite difference approximations.

Exercise 3

Repeat the previous two exercises for the forward and backward finite difference approximations.

Exercise 4

Consider on the interval $[0, \frac{\pi}{2}]$ the function $f(x) = x \cos x$, whose second derivative is given by $f^{(2)}(x) = -x \cos x - 2 \sin x$.

- (a) Compute a centered finite difference approximation of the exact second derivative at the internal points at the interior points x_1, \ldots, x_{n-1} of a uniform mesh $x_0, = 0 \ldots, x_n = \frac{\pi}{2}$ with n = 50, 100, 200, 400, 800. For each approximation pair compute the empirical convergence order. Explain if the results are coherent with the theory and why.
- (b) Repeat the previous computation in the case $f(x) = x^{\frac{5}{2}}$, $f''(x) = \frac{15}{4}x^{\frac{1}{2}}$. Explain the difference between the results in the two cases on the basis of the theory of finite difference approximation.

Exercise 5

Consider function $f(x) = \arctan(2x)$, whose first derivative is given by $f'(x) = 2/(4x^2 + 1)$.

- (a) Compute a forward finite difference approximation of the derivative for x = 1 with steps h = 0.1 and h = 0.05. Build the Richardson extrapolation from the previously computed values. For all three approximations, compute the absolute error with respect to the true derivative values.
- (b) Repeat the computation for $h=10^{-10}$ and $h=0.5\times 10^{-10}$. Discuss the differences in the results with respect to the previous case.
- (c) Repeat point a) for the function $f(x) = \arctan(200x)$, whose first derivative is given by $f'(x) = 200/(40000x^2+1)$. Explain the differences in the results on the basis of the theory of finite difference approximation.

Exercise 6

Consider the function $f(x) = x^{\frac{15}{2}}$, whose second derivative is given by $f''(x) = \frac{195}{4}x^{\frac{11}{2}}$.

- (a) Compute a centered finite difference approximation of the exact second derivative at x = 1 with steps $h = 10^{-2}$ and $h = 0.5 \times 10^{-2}$. Build the Richardson extrapolation from the previously computed values. For all three approximations, compute the absolute error with respect to the true derivative values.
- (b) Repeat point a) for x = 10. Explain the differences in the results on the basis of the theory of finite difference approximation.

Exercise 7

Consider the function $f(x) = \exp(-x)$, whose first derivate is given by compute an approximation of $f'(x) = -\exp(-x)$.

(a) Compute a centered finite difference approximation of the exact first derivative at x=3 with steps $h=10^{-3}$ and $h=0.5\times 10^{-3}$. Build the Richardson extrapolation from the previously computed values. For all three approximations, compute the absolute error with respect to the true derivative values.

- (b) Compute a fourth order finite difference approximation of the first derivative at x=3 with step $h=0.5\times 10^{-3}$. Compare the accuracy with that of previously computed approximations and say which method is the most accurate.
- (c) Repeat the previous points computing all the approximations at x = -30. Explain the differences in the results on the basis of the theory of finite difference approximation.