Lecture 5: Bias-Variance Tradeoff; Regularization

TTIC 31020: Introduction to Machine Learning

Instructor: Kevin Gimpel

TTI-Chicago

October 15, 2019

Administrivia

- Final Exam: Thursday, Dec 12, 1:30-3:30pm
- Problem set 1 due Friday (Oct 18) 8:00pm
- Office Hours:
 - Mondays 3-4pm (me, room 531)
 - Tuesdays 1-2pm (TA)
 - Wednesdays 3:30-4:30pm (TA)
 - Thursdays 3:30-4:30pm (TA)
 - TA office hours held in 4th floor commons
- Recitations:
 - Tues 3:30-4pm or Thurs 1:20-1:50pm (same material for both)
 - This week: working through problems involving regression and likelihood
 - Next week: working through problems involving optimization and constraints; going over problem set 1

Review: generalized linear regression

ullet Define a **feature map** $\phi: \mathcal{X} o \mathbb{R}^{m+1}$, train linear model in the feature space

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})$$

• Can compute feature matrix to represent training data

$$\begin{bmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_m(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_m(\mathbf{x}_2) \\ \dots & \dots & \dots & \dots & \dots \\ \hline \phi_0(\mathbf{x}_n) & \phi_1(\mathbf{x}_n) & \phi_2(\mathbf{x}_n) & \dots & \phi_m(\mathbf{x}_n) \end{bmatrix}$$

polynomial

Review: overfitting and model complexity

- More complex models (with more parameters) can fit the same number of examples "better"
- But may generalize less well overfitting!

Review: detecting overfitting

- Can detect overfitting by evaluating models on heldout val set
- Small data regime: cross-validation Partition data into k folds: For each fold, train on all but one part, test on that part; Average test loss over k parts

lover Loss

$$m = 10: L = 0$$

$$\hat{L}_{\rm cv} = 4 \times 10^4$$

Decomposition of error

- $\hat{\mathbf{w}}$: learned from training data $D = (\mathbf{X}, \mathbf{y})$
- w*: optimal linear regression parameters (generally unknown!),

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \ \mathbb{E}_{p(\mathbf{x}, y)} \left[(y - \mathbf{w} \cdot \mathbf{x})^2 \right]$$

• Let's work with $\mathbb{E}_{\mathbf{x},y,D} \left| (y - \hat{\mathbf{w}} \cdot \mathbf{x})^2 \right|$:

residuals with data x: but may be dependent

residuals uncorrelated
$$\mathbb{E}_{\mathbf{x},y,D}\left[\left(y-\hat{\mathbf{w}}\cdot\mathbf{x}\right)^2\right] = \mathbb{E}_{\mathbf{x},y,D}\left[\left(y-\mathbf{w}^*\cdot\mathbf{x}\right)^2\right]$$
 with data \mathbf{x} : but may be dependent $+ \mathbb{E}_{\mathbf{x},y,D}\left[\left(y-\mathbf{w}^*\cdot\mathbf{x}\right)\left(\mathbf{w}^*\cdot\mathbf{x}-\hat{\mathbf{w}}\cdot\mathbf{x}\right)^2\right]$

• Second term vanishes since prediction errors $y - \mathbf{w}^* \cdot \mathbf{x}$ are uncorrelated with any linear function of x including $\mathbf{w}^* \cdot \mathbf{x} - \hat{\mathbf{w}} \cdot \mathbf{x}$

Decomposition of error

$$\mathbb{E}_{\mathbf{x},y,D}\left[\left(y-\hat{\mathbf{w}}\cdot\mathbf{x}\right)^{2}\right] = \underbrace{\mathbb{E}_{\mathbf{x},y}\left[\left(y-\mathbf{w}^{*}\cdot\mathbf{x}\right)^{2}\right]}_{\text{approximation}} + \underbrace{\mathbb{E}_{\mathbf{x},y,D}\left[\left(\mathbf{w}^{*}\cdot\mathbf{x}-\hat{\mathbf{w}}\cdot\mathbf{x}\right)^{2}\right]}_{\text{estimation}}$$

- Approximation error $\mathbb{E}_{\mathbf{x},y}\left[\left(y-\mathbf{w}^*\cdot\mathbf{x}\right)^2\right]$ measures inherent limitations of the chosen hypothesis class (linear function). This error will remain even with infinite training data.
- Estimation error $\mathbb{E}_{\mathbf{x},y,D}\left[\left(\mathbf{w}^*\cdot\mathbf{x}-\hat{\mathbf{w}}\cdot\mathbf{x}\right)^2\right]$ measures closeness to optimal \mathbf{w}^* of $\hat{\mathbf{w}}$ estimated from (finite) training data.
- Note: since training data \mathbf{X}, \mathbf{y} are random variables drawn from $p(\mathbf{x}, y)$, the estimated $\hat{\mathbf{w}}$ is a random variable as well.

Pearson correlations of x, y points

Uncorrelated variables might not be independent (may show complex structural dependencies):

By DenisBoigelot, original uploader was Imagecreator, CC0, https://commons.wikimedia.org/w/index.php?curid=15165296

A bit of estimation theory

- An **estimator** $\widehat{\theta}$ of a parameter θ is a function that for data $X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ produces estimate (estimated value) $\widehat{\theta}$
- Examples:
 - o maximum likelihood (ML) estimator for a Gaussian mean, given X, produces an estimate (vector) $\hat{\mu}$
 - ML estimator for linear regression parameters w under Gaussian noise model
- The estimate $\hat{\theta}$ is a random variable since it is based on a randomly drawn dataset X assume we know the true
- We can talk about $\mathbb{E}_X[\hat{\theta}]$ and $\mathrm{var}(\hat{\theta})$ parameter value/ form of (When θ is a vector, we have $\mathrm{Cov}(\hat{\theta})$. function
 - \circ Analysis done assuming that the data **is** distributed according to $p(\mathbf{x}; \theta)$ where θ is the true parameter value!

Bias of an estimator

• The **bias** of an estimator $\hat{\theta}$ is defined as

$$\operatorname{bias}(\hat{\theta}) \triangleq \mathbb{E}_X [\hat{\theta} - \theta]$$

i.e., the expected deviation of the estimate from the true value (taken over all possible sets of n examples)

- ullet An **unbiased** estimator therefore satisfies $\mathbb{E}_X \Big[\hat{ heta} \Big] = heta$
- Example: ML estimators of 1D Gaussian parameters $\hat{\mu}_{ML} = \frac{1}{n} \sum_i x_i$ $\widehat{\sigma^2}_{ML} = \frac{1}{n} \sum_i (x_i \hat{\mu})^2$
- Turns out $\hat{\mu}$ is unbiased; however, $\widehat{\sigma^2}_{ML}$ underestimates the variance in the data!

$$\mathbb{E}\left[\widehat{\sigma^2}_{ML}\right] = \frac{n-1}{n}\sigma^2$$

Consistency of an estimator

- With enough data, bias *may* not be so much of a problem.
- Consider an infinite sequence x_1, \ldots and define $\hat{\theta}_n$ an estimate obtained on x_1, \ldots, x_n .
- An estimator $\hat{\theta}$ is **consistent** if

$$\lim_{n \to \infty} \hat{\theta}_n = \theta$$

Note: this limit is **in probability**, i.e., the estimator converges in probability to the true value.

- The ML estimator is consistent (under certain conditions)
- So, $\widehat{\sigma^2}_{ML} = \frac{1}{n} \sum_i (x_i \mu_{ML})^2$, even though biased, is a consistent estimator of σ^2

Bias-variance decomposition

- Consider squared loss: $(\hat{\theta} \theta)^2$
- Denote $\bar{\theta}=\mathbb{E}_X\Big[\hat{\theta}\Big]=\mathbb{E}\left[\hat{\theta}\right]$. Expectations on this slide are taken with respect to distribution over samples X, so we'll drop the "X" subscript. Then, the expected error:

$$\begin{split} \mathbb{E}\left[(\hat{\theta}-\theta)^2\right] &= \mathbb{E}\left[(\hat{\theta}-\bar{\theta}+\bar{\theta}-\theta)^2\right] \\ &= \mathbb{E}\left[(\hat{\theta}-\bar{\theta})^2\right] + 2(\bar{\theta}-\theta) \underbrace{\mathbb{E}\left[\hat{\theta}-\bar{\theta}\right]}_{=0} + \mathbb{E}\left[(\bar{\theta}-\theta)^2\right] \\ &= \mathbb{E}\left[(\hat{\theta}-\bar{\theta})^2\right] + (\bar{\theta}-\theta)^2 \underbrace{\text{theta bar = E(theta head)}}_{= \operatorname{var}(\hat{\theta}) + \operatorname{bias}^2(\hat{\theta}) \end{split}$$

- Recall expected squared loss decomposition:
 - \circ bias² term \Leftrightarrow approximation error
 - variance ⇔ estimation error due to finite data

Bias-variance tradeoff

Image by MIT OpenCourseWare.

- Ideally, want to minimize bias and variance; turns out there is a tradeoff: lower bias generally corresponds to higher variance (cf. Cramer-Rao inequality)
- The objective in ML: find the "sweet spot"
- Major component in this struggle: model complexity

Estimation and regression

- The true model: $y = F(\mathbf{x}) + \nu$, zero-mean additive noise ν
- ullet We approximate F by $\hat{f}_D \in \mathcal{F}$, with \hat{f}_D estimated from data D
- We have:

$$F = \underset{f}{\operatorname{argmin}} \ \mathbb{E}_{p(\mathbf{x},y)} \Big[(y - f(\mathbf{x}))^2 \Big] \qquad \text{best predictor}$$

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \ \mathbb{E}_{p(\mathbf{x},y)} \Big[(y - f(\mathbf{x}))^2 \Big] \qquad \text{best predictor in } \mathcal{F}$$

$$\hat{f}_D = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{(\mathbf{x}_i,y_i) \in D} (y_i - f(\mathbf{x}_i))^2 \quad \text{predictor learned from } D$$

$$\bar{f} = \mathbb{E}_D \Big[\hat{f}_D \Big] \qquad \text{average predictor}$$

$$\bar{f}(\mathbf{x}_0) = \mathbb{E}_D \Big[\hat{f}_D(\mathbf{x}_0) \Big] \qquad \text{applying } \bar{f} \text{ to } \mathbf{x}_0$$

Bias-variance in regression

• For a single \mathbf{x}_0 with true output \mathbf{y}_0 and prediction $\hat{f}(\mathbf{x}_0)$, $\mathbb{E}_D\left[(y_0-\hat{f}(\mathbf{x}_0))^2\right]$ can be decomposed (shown without proof):

$$\mathbb{E}_D\left[(y_0 - \hat{f}(\mathbf{x}_0))^2\right] = (y_0 - \bar{f}(\mathbf{x}_0))^2 + \underbrace{\mathbb{E}_D\left[(\hat{f}(\mathbf{x}_0) - \bar{f}(\mathbf{x}_0))^2\right]}_{variance}$$

• The first term can be further decomposed (shown without proof):

$$(y_0 - \bar{f}(\mathbf{x}_0))^2 = \underbrace{(y_0 - F(\mathbf{x}_0))^2}_{\text{noise}} + \underbrace{(F(\mathbf{x}_0) - \bar{f}(\mathbf{x}_0))^2}_{\text{bias}^2}$$

• Can integrate all of this over \mathbf{x}_0, y_0 to get the *expected* bias and variance.

Bias-variance tradeoff

- The noise term is *irreducible* (independent of data/model) will be there even if we know $p(y|\mathbf{x})$
- The bias² term is due to difference between f and F; can address by changing f
- The variance is due to finite data; can address by getting more data
- Ideally, want to minimize bias and variance; can we drive both to zero?

Bias-variance tradeoff: theory

• Cramer-Rao inequality: for an unbiased estimator $\hat{\theta}_n$ and true parameter value θ ,

produce more information, var will be smaller

$$\operatorname{var}(\hat{ heta}_n) \geq rac{1}{\mathbb{E}_{\mathbf{X}}\left[\left(rac{\partial}{\partial heta} \log p(\mathbf{X}; heta)
ight)^2
ight]} rac{\mathsf{have}}{\mathsf{X}} \hspace{-0.5em} \hspace{-0.5em} ext{have model of}} \hspace{-0.5em} \mathsf{X}$$

• The **Fisher information** $\mathcal{I}(\theta) = \mathbb{E}_{\mathbf{X}} \left[\left(\frac{\partial}{\partial \theta} \log p(\mathbf{X}; \theta) \right)^2 \right]$ is related to the shape of $p(\mathbf{x}; \theta)$. Intuitively, it measures the amount of information the data \mathbf{X} provides about a parameter with true value θ

Model complexity - theory

- Remember: we are talking about complexity of model class, not individual model!
- Basic intuition: model complexity = number of models in the class (assuming finite model class!)
- For model f, can measure empirical loss $L(f) = \frac{1}{n} \sum_i \ell(f; \mathbf{x}_i, y_i)$ on n examples
- Interested in risk $R(f) = \mathbb{E}_{\mathbf{x},y} \left[\ell(f; \mathbf{x}, y) \right]$
- Learning theory provides generalization bounds of the form

$$\Pr\left(\max_{f\in\mathcal{F}}|L(f)-R(f)|>\epsilon\right)\leq 2|\mathcal{F}|e^{-2n\epsilon^2}$$

- If \mathcal{F} is infinite: $|\mathcal{F}|$ is replaced with another measure of complexity, e.g., VC-dimension
- \bullet Caution: bounds often very loose, hard to compute for interesting ${\cal F}$

Model complexity - intuition

- Intuitively, the complexity of the model can be measured by the number of "degrees of freedom" (independent parameters).
- The more complex the model, the more data needed to fit
 For a given number of points, a more complex model more likely to overfit.
- Example from Bishop: m-degree polynomial fit to n points

Penalizing model complexity

- Idea 1: restrict model complexity based on amount of data
 Rule of thumb: approx. 10 examples per parameter
- Idea 2: directly penalize by the number of parameters Akaike information criterion (AIC): maximize

$$\log p\left(\mathbf{y}, \mathbf{X}; \, \widehat{\mathbf{w}} \right) - \# \mathsf{params}$$

• But: Definition of model complexity as a number of parameters is a bit too simplistic. Consider feature vector

$$\phi(x) = \begin{bmatrix} 1 & x & -2x & 2x & x^2 & \frac{1}{2}x^2 \end{bmatrix}$$

Does linear regression $\phi(x) \to y$ really have 6 parameters?

• Idea: look at the behavior of the values of w*

Linear regression complexity

• Example: polynomial regression [from Bishop, Ch. 1]

• Value of the optimal (ML) regression coefficients:

			()	
	m=0	m = 1	m = 3	m = 9
w_0^*	0.19	0.82	0.31	0.35
w_1^*		-1.27	7.99	232.37
w_2^*			-25.43	-5321.83
$w_3^{\overline{*}}$			17.37	48568.31
w_4^*				-231639.30
w_5^*				640042.26
w_6^*				-1061800.52
w_7^*				1042400.18
w_8^*				-557682.99
w_9^*				125201.43

The weight are too large. cannot generalized well

Description length

- Intuition: should penalize not the parameters, but the number of bits required to encode the parameters
- We can limit the effective number of degrees of freedom by restricting the values of the parameters
- Note: this argument assumes finite precision (e.g., in a computer)
- Then we have penalized log-likelihood:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \log p(\mathsf{data}_i; \mathbf{w}) - \mathsf{penalty}(\mathbf{w}) \right\}$$

Equivalently, penalized ERM:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log p(\mathsf{data}_i; \mathbf{w}) + \mathsf{penalty}(\mathbf{w}) \right\}$$

Shrinkage methods

The

- Shrinkage methods impose penalty on the size of w value
- ullet Can measure "size" in different ways. Let us start with L_2 norm:

$$\mathbf{w}^*_{\mathsf{ridge}} \, = \, \operatorname*{argmin}_{\mathbf{w}} \left\{ - \sum_{i=1}^n \log p(\mathsf{data}_i; \, \mathbf{w}) \, + \, \lambda \|\mathbf{w}\|^2 \right\}$$

in regression "data $_i$ " = $y_i|\mathbf{x}_i$

- This is **ridge regression**; λ is the **regularization** parameter
- Does it matter that log-likelihood is not averaged?

can be differentiated directly, so this is more widely used

$$\begin{split} \min_{\mathbf{w}} \Bigl\{ -\sum_{i=1}^n \log p(\mathsf{data}_i; \mathbf{w}) + \lambda \|\mathbf{w}\|^2 \Bigr\} \\ \text{vs.} \quad \min_{\mathbf{w}} \Bigl\{ -\frac{1}{n} \sum_{i=1}^n \log p(\mathsf{data}_i; \mathbf{w}) + \lambda \|\mathbf{w}\|^2 \Bigr\} \end{split}$$

Ridge regression

$$\mathbf{w}_{\mathsf{ridge}}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \left\{ \sum_{i=1}^n (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 + \lambda \sum_{j=1}^m w_j^2 \right\}$$

• Recall: $\mathbf{w} = [w_0, w_1, \dots, w_m]$

- problem: setting lambda
- Usually do not include w_0 in regularization (why?)
- Closed form solution:

$$\hat{\mathbf{w}}_{\mathsf{ridge}}^* = \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

 Careful: solution not invariant to scaling! Should normalize input before solving.

Digression: feature normalization

- Feature normalization: bring features to common scale
- Often a good idea to ensure good numerical behavior (even if not stricly needed mathematically)
- Box normalization: $\forall j : \phi_j(\mathbf{x}) \in [0,1]$. Procedure:

limit them in a

$$\widetilde{\phi}_{j}(\mathbf{x}) =$$

limit them in a comparable space
$$\widetilde{\phi}_j(\mathbf{x}) = \frac{\phi_j(\mathbf{x}) - \min_i \phi_j(\mathbf{x}_i)}{\max_i \phi_j(\mathbf{x}_i) - \min_i \phi_j(\mathbf{x}_i)}$$

this normalization is sensible to outliers

Digression: feature normalization

• z-scoring: $\forall j, \widetilde{\phi}_i(\mathbf{x})$ is zero-mean, unit variance over i

$$\mu_j = \frac{1}{n} \sum_i \phi_j(\mathbf{x}_i), \ \sigma_j^2 = \frac{1}{n} \sum_i (\phi_j(\mathbf{x}_i) - \mu_j)^2,$$

$$\phi_j(\mathbf{x}) - \mu_j$$

$$\widetilde{\phi}_j(\mathbf{x}) = rac{\phi_j(\mathbf{x}) - \mu_j}{\sqrt{\sigma_j^2}}$$
 better

