МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра системи штучного інтелекту

Лабораторна робота 3

з дисципліни "Дискретна математика"

Виконав:

студент групи КН-109 Гладун Ярослав **Викладач:** Мельникова Н. І. Тема: Побудова матриці бінарного відношення

Мета: набуття практичних вмінь та навичок при побудові матриць бінарних відношень та визначені їх типів.

Теоретичні відомості:

Декартів добуток множин A і B (позначається $A \times B$) — це множина всіх упорядкованих пар елементів (a,b), де $a \in A$, $b \in B$. При цьому вважається, що $(a_1,b_1) = (a_2,b_2)$ тоді і тільки тоді, коли $a_1 = a_2$, $b_1 = b_2$.

Потужність декартова добутку дорівнює $|A \times B| = |A| \times |B|$.

<u>Приклад.</u> Довести тотожність $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$. Розв'язання.

Нехай
$$(x, y) \in (A \times B) \cap (C \times D) \Leftrightarrow$$

 $(x, y) \in (A \times B) \& (x, y) \in (C \times D) \Leftrightarrow$
 $(x \in A \& y \in B) \& (x \in C \& y \in D) \Leftrightarrow$
 $(x \in A \& x \in C) \& (y \in B \& y \in D) \Leftrightarrow$
 $(x \in A \cap C) \& (y \in B \cap D) \Leftrightarrow (x, y) \in (A \cap C) \times (B \cap D)$.

Бінарним відношенням R називається підмножина декартового добутку $A \times B$ (тобто $R \subset A \times B$). Якщо пара (a,b) належить відношенню R , то пишуть

$$(a, b) \in R$$
, a fo aRb .

Областю визначення бінарного відношення $R \subset X \times Y$ називається множина $\delta_R = \{x \mid \exists y \ (x, \ y) \in R\}$, а областю значень — множина $\rho_R = \{y \mid \exists x \ (x, \ y) \in R\}$ (\exists - ichy ϵ).

Для скінчених множин бінарне відношення $R \subset A \times B$ зручно задавати за допомогою матриці відношення $R_m \times_n = (r_{ij})$, де m = |A|, а n = |B|.

Елементами матриці є значення
$$r_{ij} = \begin{cases} 1, & \text{якщо } (a_i, b_j) \in \mathbb{R}, \\ 0, & \text{якщо } (a_i, b_j) \notin \mathbb{R}. \end{cases}$$

Види бінарних відношень.

Нехай задано бінарне відношення R на множині $A^2: R \subseteq A \times A = \{(a, b) | a \in A, b \in A\}$.

- 1. Бінарне відношення R на множині A називається $pe\phi$ лексивним, якщо для будь якого $a \in A$ виконується aRa, тобто $(a,a) \in R$. Головна діагональ матриці рефлексивного відношення складається з одиниць. Граф рефлексивного відношення обов'язково має петлі у кожній вершині.
- 2. Бінарне відношення R на множині A називається антирефлексивним, якщо для будь якого a ∈ A не виконується aRa, тобто $(a,a) \notin R$. Головна діагональ матриці антирефлексивного відношення складається з нулів. Граф антирефлексивного відношення не має петель.
- 3. Бінарне відношення R на множині A називається симетричним, якщо для будь яких $a,b \in A$ з aRb слідує bRa, тобто якщо $(a,b) \in R$ то і $(b,a) \in R$. Матриця симетричного відношення симетрична відносно головної діагоналі. Граф симетричного відношення не є орієнтованим.
- 4. Бінарне відношення R на множині A називається антисиметричним, якщо для будь яких $a,b \in A$ з aRb та bRa слідує що a=b. Тобто якщо $(a,b) \in R$ і $(b,a) \in R$, то a=b. Матриця антисиметричного відношення не має жодної пари одиниць, які знаходяться на симетричних місцях по відношенню до головної діагоналі. У графа антисиметричного відношення вершини з'єднуються тільки однією напрямною дугою.

- 5. Бінарне відношення R на множині A називається mpaнзитивним, якщо для будь яких $a, b, c \in A$ з aRb та bRc слідує, що aRc. Тобто якщо $(a,b) \in R$ і $(b,c) \in R$, то $(a,c) \in R$. Матриця транзитивного відношення характеризується тим, що якщо елемент матриці $\sigma_{ij} = 1$ та $\sigma_{jm} = 1$, то обов'язково $\sigma_{im} = 1$. Граф транзитивного відношення такий, що якщо з'єднані дугами, наприклад, перша-друга та другатретя вершини, то обов'язково ε дуга з першої в третю вершину.
- 6. Бінарне відношення R на множині A називається антитранзитивним, якщо для будь яких a, b, c∈ A з aRb та bRc слідує що не виконується aRc. Тобто якщо (a, b)∈R і (b, c)∈R, то (a, c)∉R. Матриця антитранзитивного відношення характеризується тим, що якщо елемент матриці $\sigma_{ij} = 1$ та $\sigma_{jm} = 1$, то обов'язково $\sigma_{im} = 0$. Граф транзитивного відношення такий, що якщо з'єднані дугами, наприклад, перша-друга та друга-третя вершини, то обов'язково немає дуги з першої в третю вершину.

Варіант 2 (завдання)

- 1. Чи є вірною рівність $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$?
- **2.** Знайти матрицю відношення $R \subset 2^A \times 2^B$: $R = \{(x, y) | x \in A \& y \subset B \& |y| = |x|, x \cap y = \emptyset\}$, де $A = \{1, 2\}, B = \{1, 3, 5\}$.
 - 3. Зобразити відношення графічно:

$$\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& x^2 - 2x + y^2 \le 3\}, \text{ де } \mathbb{R}$$
 - множина дійсних чисел.

4. Маємо бінарне відношення $R \subset A \times A$, де $A = \{a, b, c, d, e\}$, яке задане своєю матрицею:

$$A(R) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$
. Перевірити чи є дане відношення рефлексивним, симетричним, транзитивним,

антисиметричним?

Визначити множину (якщо це можливо), на якій дане відношення ϵ : а) функціональним; б) бієктивним: $\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& y = \ln |x| \}.$

Варіант 2 (розв'язок)

1. Нехай
$$(x, y) \in (A \cap B) \times (C \cap D) \Leftrightarrow$$
 $x \in (A \cap B) \& y \in (C \cap D) \Leftrightarrow$
 $x \in A \& x \in B \& y \in C \& y \in D$
Нехай $(x, y) \in (A \times C) \cap (B \times D) \Leftrightarrow$
 $(x, y) \in (A \times C) \& (x, y) \in (B \times D) \Leftrightarrow$
 $x \in A \& y \in C \& x \in B \& y \in D$
Отже, $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$
2. $R = \{(x, y)|x \in A \& y \in B \& |y| = |x|, x \cap y = \emptyset\}$
 $A = \{1, 2\}, B = \{1, 3, 5\}$

	Ø	{1}	{3}	{5}	{1, 3}	{1, 5}	{3, 5}	{1, 3, 5}
Ø	1	0	0	0	0	0	0	0
{1}	0	0	1	1	0	0	0	0
{2}	0	1	1	1	0	0	0	0
{1, 2}	0	0	0	0	0	0	1	0

3.
$$x^{2} - 2x + y^{2} - 3 = 0$$

 $x^{2} - 2x + 1 + y^{2} - 4 = 0$
 $(x-1)^{2} + y^{2} = 4$

$$(x-1)^2 + y^2 < 4$$

4. Дане відношення ϵ антисиметричне.

Як бачимо з графіку, дане відношення не ε бієктивне і не ε функціональне (у в т 0 не визначено).

Висновок: Отже, на цій лабораторній роботі я ознайомився на практиці із основними поняттями та типами бінарних відношень, навчився будувати матрицю бінарного відношення, та навчився користуватися деякими стандартними бібліотеками STL, які допомогли мені у виконанні лабораторної роботи.