Translation Syntax (SPSS, Stata, SAS and R)

The Basics

The following conventions are used in this document:

- Bold font indicates code or other text that should be typed literally.
- Un-bolded font shows code or text that should be replaced with user-supplied values (i.e., your own variables and other environment details).

Calling in a data set

SPSS	GET FILE= 'P:\QAC\qac201\Studies\study name\filename.sav'.
STATA	use "P:\QAC\qac201\Studies\study name\filename"
SAS	LIBNAME in "P:\QAC\QAC201\study name; DATA new; set in.filename;
R	load ("filename-including-path.Rdata") myData_orig <- name-of-object-that-loaded-in-your-workspace If calling in from a text file: myData_orig <- read.table(file = "filename-including-path.txt", sep = "\t", header = TRUE)

Selecting variables you want to examine

SPSS	/KEEP VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8. (Must follow the SAVE OUTFILE='dataname' command)
STATA	keep VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8
SAS	KEEP VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8;
R	var.keep <- c("VAR1", "VAR2", "VAR3", "VAR4", "VAR5", "VAR6", "VAR7", "VAR8") myData <- myData_orig [,var.keep]

Outputting your abbreviated data set

SPSS	SAVE OUTFILE= 'Drive:\folder\folder\title_of_new_data_set'.
STATA	save filename
SAS	Data libname.title_of_new_data_set; set dataname; by unique_id;
R	To open in excel: write.table(myData, file = "filename.txt", sep = "\t", row.names = FALSE) To use in R: save (file = "filename.txt", myData)

Sorting the data

SPSS	SORT CASES BY unique_id.	
STATA	sort unique_id	
SAS	proc sort; by unique_id;	
R	myData <- myData[order(myData\$unique_id, decreasing = FALSE),]	

Displaying frequency tables

SPSS	FREQUENCIES VARIABLES=VAR1 VAR2 VAR3 /ORDER=ANALYSIS.
STATA	tab1 VAR1 VAR2 VAR3
SAS	PROC FREQ; tables VAR1 VAR2 VAR3;
R	library(descr) freq(as.ordered(myData\$VAR1)) freq(as.ordered(myData\$VAR2)) freq(as.ordered(myData\$VAR3))

Data Management

Basic operations

SPSS	EQ or =	>= or GE	<= or LE	> or GT	< or LT	NE
STATA	==	>=	<=	>	<	!=
SAS	EQ or =	>= or GE	<= or LE	> or GT	< or LT	NE
R	==	>=	<=	>	<	!=

Examples

1. Need to identify missing data

Often, you must define the response categories that represent missing data. For example, if the number 9 is used to represent a missing value, you must either designate in your program that this value represents missingness or else you must recode the variable into a missing data character that your statistical software recognizes. If you do not, the 9 will be treated as a real/meaningful value and will be included in each of your analyses.

SPSS	RECODE VAR1 (9=SYSMIS).
STATA	replace VAR1=. if VAR1==9
SAS	if VAR1=9 then VAR1=.;
R	myData\$VAR1[myData\$VAR1 == 9] <- NA

2. Need to recode responses to "no" based on skip patterns

There are a number of skip outs in some data sets. For example, if we ask someone whether or not they have ever used marijuana, and they say "no", it would not make sense to ask them more detailed questions about their marijuana use (e.g. quantity, frequency, onset, impairment, etc.). When analyzing more detailed questions regarding marijuana (e.g. have you ever smoked marijuana daily for a month or more?), those individuals that never used the substance may show up as missing data. Since they have never used marijuana, we can assume that their answer is "no", they have never smoked marijuana daily. This would need to be explicitly recoded. Note that we commonly code a no as 0 and a yes as 1.

SPSS	RECODE VAR1 (SYSMIS=7).
STATA	replace VAR1=7 if VAR1==.
SAS	if VAR1=. then VAR1=7;
R	myData\$VAR1[is.na(myData\$VAR1)] <- 7

3. Recoding string variables into numeric

It is important when preparing to run statistical analyses in most software packages, that all variables have response categories that are numeric rather than "string" or "character" (i.e. response categories are actual strings of characters and/or symbols). All variables with string responses must therefore be recoded into numeric values. These numeric values are known as dummy codes in that they carry no direct numeric meaning.

SPSS	RECODE TREE ('Maple'=1) ('Oak'=2) INTO TREE_N.
STATA	generate TREE_N=. replace TREE_N=1 if TREE=="Maple" replace TREE_N=2 if TREE=="Oak" OR by using the encode command encode TREE, gen(TREE_N)
SAS	IF TREE='Maple' then TREE_N=1; else if TREE= 'Oak' then TREE_N=2;
R	Not necessary in R.

4. Need to collapse response categories

If a variable has many response categories, it can be difficult to interpret the statistical analyses in which it is used. Alternatively, there may be too few subjects or observations identified by one or more response categories to allow for a successful analysis. In these cases, you would need to collapse across categories. For example, if you have the following categories for geographic region, you may want to collapse some of these categories:

Region: New England=1, Middle Atlantic=2, East North Central=3, West North Central=4, South Atlantic=5, East South Central=6, West South Central=7, Mountain=8, Pacific=9.

New_Region: East=1, West=2.

SPSS	COMPUTE new_region=2. IF (region=1 region=2 region=3 region=5 region=6) new_region=1.
STATA	generate new_region =2 replace new_region=1 if region==1 region==2 region==3 region==5 region==6 OR by using the recode command recode region (1/3 5 6=2) gen(new_region)
SAS	if region=1 or region=2 or region=3 or region=5 or region=6 then new_region=1; else if region=4 or region=7 or region=8 or region=9 then new_region=2;
R	myData\$new_region[myData\$region == 1 myData\$region == 2 myData\$region == 3 myData\$region == 5 myData\$region == 6] <- 1 myData\$new_region[myData\$region == 4 myData\$region == 7 myData\$region == 8 myData\$region == 9] <- 2

5. Need to aggregate variables

In many cases, you will want to combine multiple variables into one. For example, while NESARC assesses several individual anxiety disorders, I may be interested in anxiety more generally. In this case I would create a general anxiety variable in which those individuals who received a diagnosis of social phobia, generalized anxiety disorder, specific phobia, panic disorder, agoraphobia, or obsessive compulsive disorder would be coded "yes" and those who were free from all of these diagnoses would be coded "no".

Syntax shown on next page.

5. Need to aggregate variables (continued)

SPSS	IF (socphob=1 gad=1 specphob=1 panic=1 agora=1 ocd=1) anxiety=1. RECODE anxiety (SYSMIS=0).
STATA	gen anxiety=1 if socphob==1 gad==1 specphob==1 panic==1 agora==1 ocd==1 replace anxiety=0 if anxiety==.
SAS	<pre>if socphob=1 or gad=1 or specphob=1 or panic=1 or agora=1 or ocd=1 then anxiety=1; else anxiety=0;</pre>
R	myData\$anxiety <- rep(0, nrow(myData)) myData\$anxiety[myData\$socphob == 1 myData\$gad==1 myData\$panic == 1 myData\$agora==1 myData\$ocd == 1] <- 1 myData\$anxiety[is.na(myData\$socphob) & is.na(myData\$gad) & is.na(myData\$panic) & is.na(myData\$agora) & is.na(myData\$ocd)] <- NA

6. Need to create continuous variables

If you are working with a number of items that represent a single construct, it may be useful to create a composite variable/score. For example, I want to use a list of nicotine dependence symptoms meant to address the presence or absence of nicotine dependence (e.g. tolerance, withdrawal, craving, etc.). Rather than using a dichotomous variable (i.e. nicotine dependence present/absent), I want to examine the construct as a dimensional scale (i.e. number of nicotine dependence symptoms). In this case, I would want to recode each symptom variable so that yes=1 and no=0 and then sum the items so that they represent one composite score.

SPSS	COMPUTE nd_sum=sum(nd_symptom1 nd_symptom2 nd_symptom3 nd_symptom4).
STATA	egen nd_sum=rsum(nd_symptom1 nd_symptom2 nd_symptom3 nd_symptom4)
SAS	nd_sum= sum (of nd_symptom1 nd_symptom2 nd_symptom3 nd_symptom4);
R	myData\$nd_sum <- myData\$nd_symptom1 + myData\$nd_symptom2 + myData\$nd_symptom4

7. Labeling variables

Given the often cryptic names that variables are given, it can sometimes be useful to label them.

SPSS	VARIABLE LABELS VAR1 'label'.
STATA	label variable VAR1 "label"
SAS	LABEL VAR1='label';
R	For frequency tables: library (Hmisc) label(myData\$VAR1) <- "label"

8. Renaming variables

Given the often cryptic names that variables are given, it can sometimes be useful to give a variable a new name (something that is easier for you to remember or recognize).

SPSS	COMPUTE newvarname=VAR1.
STATA	rename VAR1 newvarname
SAS	RENAME VAR1=newvarname;
R	names(myData)[names(myData)== "VAR1"] <- "newvarname"

9. Labeling variable responses/values

Given that nominal and ordinal variables have, or are given numeric response values (i.e. dummy codes), it can be useful to label those values so that the labels are displayed in your output.

Syntax shown on next page.

9. Labeling variable responses/values (continued)

SPSS	VALUE LABELS VAR1 0 'value0label' 1 'value1label' 2 'value2label' 3 'value3label'.
STATA	label define VAR1 0 "value0label" 1 "value1label" 2 "value2label" 3 "value3label" label values VAR1 newvarname
SAS	<pre>proc format; VAR1 0="value0label" 1="value1label" 2="value2label" 3="value3label";</pre>
R	Because the function doesn't name the existing levels, make sure you have them all in the right order. levels(myData\$VAR1) levels(myData\$VAR1) <- c("value0label", "value1label", "value2label", "value3label")

10. Need to further subset the sample

When using large data sets, it is often necessary to subset the data so that you are including only those observations that can assist in answering your particular research question. In these cases, you may want to select your own sample from within the survey's sampling frame. For example, if you are interested in identifying demographic predictors of depression among Type II diabetes patients, you would plan to subset the data to subjects endorsing Type II Diabetes.

SPSS	/SELECT=diabetes2 EQ 1 (must be added as a command option)
STATA	if diabetes2==1 (put this after the command)
SAS	if diabetes2=1; (put in the data step before sorting the data)
R	title_of_subsetted_data <- myData[myData\$diabetes2 == 1,]

11. Need to create groups that will be compared to one another

Often, you will need to create groups or sub-samples from the data set for the purpose of making comparisons. It is important to be certain that the groups that you would like to compare are of adequate size and number. For example, if you were interested in comparing complications of depression in parents who had lost a child through miscarriage vs. parents who had lost a child in the first year of life, it would be important to have large enough groups of each. It would not be appropriate to attempt to compare 5000 observations in the miscarriage group to only 9 observations in the first year group.

Graphing and Data Visualization

1. Univariate

Code for Univariate Output (Categorical):

SPSS	FREQUENCIES VARIABLES=CategVar1 CategVar2 CategVar3 /ORDER=ANALYSIS.
STATA	tab1 CategVar1 CategVar2 CategVar3
SAS	PROC FREQ; tables CategVar1 CategVar2 CategVar3;
R	library(descr) freq(as.ordered(myData\$CategVar1)) freq(as.ordered(myData\$CategVar2)) freq(as.ordered(myData\$CategVar3))

Code for Univariate Graph (Categorical):

SPSS	Use graphical user interface (GUI)
STATA	histogram BinaryVar
SAS	Proc GCHART; VBAR CategVar / Discrete type=PCT Width=30;
R	library(descr) freq(as.ordered(myData\$CategVar)) OR plot(myData\$CategVar)

Code for Univariate Output (Quantitative):

SPSS	DESCRIPTIVES VARIABLES=QuantVar1 QuantVar2 QuantVar3 /STATISTICS=MEAN STDDEV.
STATA	summarize QuantVar1 QuantVar2 QuantVar3
SAS	proc means; var QuantVar1 QuantVar2 QuantVar3;
R	Repeat for each variable. summary(myData\$QuantVar1) mean(myData\$QuantVar1, na.rm = TRUE) sd(myData\$QuantVar1, na.rm = TRUE)

Code for Univariate Graph (Quantitative):

SPSS	Use graphical user interface (GUI)
STATA	histogram QuantVar
SAS	Proc GCHART; VBAR QuantVar;
R	hist(myData\$QuantVar)

2. Bivariate

Code for Bivariate Output (Categorical Explanatory Variable and Categorical Response Variable):

SPSS	CROSSTABS /TABLES=CategResponseVar by CategExplanatoryVar /CELLS=COUNT ROW COLUMN TOTAL.
STATA	tab CategResponseVar CategExplanatoryVar, row column cell
SAS	Proc freq; tables CategResponseVar*CategExplanatoryVar;
R	tab1 <- table (myData\$CategResponseVar, myData\$CategExplanatoryVar) tab1 # to output the table tab1_colProp <- prop.table(tab1, 2) # column proportions tab1_rowProp <- prop.table(tab1, 1) tab1_cellProp <- prop.table(tab1) tab1_colProp tab1_rowProp tab1_rowProp tab1_cellProp

Code for Bivariate Bar Graph (Categorical Explanatory Variable and Categorical Response Variable):

SPSS	Use graphical user interface (GUI)
STATA	graph bar (mean) CategResponseVar, over(CategExplanatoryVar)
SAS	Proc GCHART; vbar CategExplanatoryVar /discrete type=mean sumvar=CategResponseVar descending;
R	tab1 <- table (myData\$CategResponseVar, myData\$CategExplanatoryVar) tab1_colProp <- prop.table(tab1, 2) barplot (tab1p[index-of-row(s)-to-plot,])

Code for Bivariate Output (Categorical Explanatory Variable and Quantitative Response Variable):

SPSS	MEANS TABLES = CategExplanatoryVar by QuantResponseVar /CELLS MEAN COUNT STDDEV.
STATA	bys CategExplanatoryVar : su QuantResponseVar
SAS	<pre>proc sort; by CategExplanatoryVar; proc means; var QuantResponseVar; by CategExplanatoryVar;</pre>
R	<pre>by(myData\$QuantResponseVar, myData\$CategExplanatoryVar, mean, na.rm = TRUE) by(myData\$QuantResponseVar, myData\$CategExplanatoryVar, sd, na.rm = TRUE) by(myData\$QuantResponseVar, myData\$CategExplanatoryVar, length)</pre>

Code for Bivariate Bar Graph (Categorical Explanatory Variable and Quantitative Response Variable):

SPSS	Use graphical user interface (GUI)
STATA	graph box QuantResponseVar, over(CategExplanatoryVar)
SAS	Proc GCHART; vbar CategExplanatoryVar /discrete type=mean sumvar=QuantResponseVar;
R	groupMeans1 <- by(myData\$QuantResponseVar, myData\$CategExplanatoryVar, mean, na.rm=T) barplot(groupMeans1)

Code for Bivariate Scatterplot (Quantitative Explanatory Variable and Quantitative Response Variable):

SPSS	GRAPH /scatterplot(bivar)=QuantExplanatoryVar with QuantResponseVar.
STATA	twoway (scatter QuantResponseVar QuantExplanatoryVar) (Ifit QuantResponseVar QuantExplanatoryVar)
SAS	Proc GPLOT; Plot QuantResponseVar *QuantExplanatoryVar;
R	<pre>plot(QuantResponseVar ~ QuantExplanatoryVar, data = myData)</pre>

3. Multivariate

Code for Multivariate Output (Categorical Explanatory Variable, Quantitative Response Variable, Categorical 3rd VAR):

SPSS	MEANS TABLES = QuantResponseVar BY CategExplanatoryVar BY CategThirdVar /CELLS MEAN COUNT STDDEV.
STATA	bys CategExplanatoryVar CategThirdVar : su QuantResponseVar
SAS	<pre>proc sort; by CategExplanatoryVar CategThirdVar; proc means; var QuantResponseVar; by CategExplanatoryVar CategThirdVar;</pre>
R	ftable(by(myData\$QuantResponseVar, list(myData\$CategExplanatoryVar, myData\$CategThirdVar), mean, na.rm = TRUE))

Code for Multivariate Output (Categorical Explanatory Variable and Categorical Response Variable, Categorical 3rd VAR):

SPSS	CROSSTABS /TABLES=CategResponseVar BY CategExplanatoryVar BY CategThirdVar.
STATA	bys CategExplanatoryVar CategThirdVar : tab CategResponseVar
SAS	<pre>proc sort; by CategThirdVar; proc freq; tables CategResponseVar*CategExplanatoryVar; by CategThirdVar;</pre>
R	tab1 <- ftable (myData\$CategResponseVar, myData\$CategExplanatoryVar, myData\$CategThirdVar) tab1 tab1_colProp <- prop.table (tab1, 2) tab1_colProp

Note: If your 3rd variable is continuous, for graphing purposes, create meaningful categories and then use the code above.

Bivariate Analysis

ANOVA

SPSS	UNIANOVA QuantResponseVar BY CategExplanatoryVar.
STATA	oneway QuantResponseVar CategExplanatoryVar, tabulate
SAS	<pre>proc anova; class CategExplanatoryVar; model QuantResponseVar = CategExplanatoryVar; means CategExplanatoryVar;</pre>
R	myAnovaResults <- aov(QuantResponseVar ~ CategExplanatoryVar, data = myData) summary(myAnovaResults)

Pearson Correlation

SPSS	CORRELATIONS /VARIABLES= QuantResponseVar QuantExplanatoryVar /STATISTICS DESCRIPTIVES.
STATA	corr QuantResponseVar QuantExplanatoryVar r OR pwcorr QuantResponseVar QuantExplanatoryVar, sig
SAS	Proc corr; var QuantResponseVar QuantExplanatoryVar;
R	cor.test(myData\$QuantResponseVar, myData\$QuantExplanatoryVar)

Chi-Square Test

SPSS	CROSSTABS /TABLES= CategResponseVar by CategExplanatoryVar /STATISTICS=CHISQ.
STATA	tab CategResponseVar CategExplanatoryVar , chi2 row col
SAS	Proc freq; tables CategResponseVar*CategExplanatoryVar/ chisq;
R	myChi <- chisq.test(myData\$CategResponseVar, myData\$CategExplanatoryVar) myChi myChi\$observed # for actual, observed cell counts prop.table(myChi\$observed, 2) # for column percentages prop.table(myChi\$observed, 1) # for row percentages

SPSS	UNIANOVA QuantResponseVar BY CategExplanatoryVar /POSTHOC=CategExplanatoryVar (TUKEY) /PRINT=ETASQ DESCRIPTIVE.
STATA	oneway QuantResponseVar CategExplanatoryVar, sidak
SAS	Proc anova; class CategExplanatoryVar; model QuantResponseVar=CategExplanatoryVar; means CategExplanatoryVar/duncan;
R	myAnovaResults <- aov(QuantResponseVar ~ CategExplanatoryVar, data = myData) TukeyHSD(myAnovaResults)

POST HOC TESTS FOR CHI SQUARE (must subset data in order to conduct 2X2 comparisons)

SPSS	TEMPORARY. SELECT IF CategExplanatoryVar=1 OR CategExplanatoryVar =3. CROSSTABS /TABLES= CategResponseVar CategExplanatoryVar /STATISTICS=CHISQ.
STATA	tab CategResponseVar CategExplanatoryVar If CategExplanatoryVar==1 CategExplanatoryVar==3, chi2
SAS	<pre>IF (CategExplanatoryVar = 1) AND (CategExplanatoryVar = 3); (in data step) Proc freq; tables CategResponseVar*CategExplanatoryVar/ chisq;</pre>
R	myDataSubset <- myData[myData\$CategExplanatoryVar == 1

Statistical Interactions: Testing for Moderation

ANOVA

In these analyses, the third variable must be categorical.

SPSS	SORT CASES BY CategThirdVar. SPLIT FILE LAYERED BY CategThirdVar. ONEWAY QuantResponseVar BY CategExplanatoryVar / STATISTICS DESCRIPTIVES / POSTHOC = BONFERRONI ALPHA (0.05). SPLIT FILE OFF.
STATA	bys CategThirdVar: oneway QuantResponseVar CategExplanatoryVar, tab
SAS	Proc sort; by CategThirdVar; Proc anova; class CategExplanatoryVar; model QuantResponseVar=CategExplanatoryVar; means CategExplanatoryVar; by CategThirdVar;
R	<pre>by(myData, myData\$CategThirdVar, function(x) list(aov(QuantResponseVar ~ CategExplanatoryVar, data = x), summary(aov(QuantResponseVar ~ CategExplanatoryVar, data = x))))</pre>

PEARSON CORRELATION

In these analyses, the third variable must be categorical.

SPSS	SORT CASES BY CategThirdVar. SPLIT FILE LAYERED BY CategThirdVar. CORRELATIONS /VARIABLES = QuantResponseVar QuantExplanatoryVar /STATISTICS DESCRIPTIVES. SPLIT FILE OFF.
STATA	bys CategThirdVar: corr QuantResponseVar QuantExplanatoryVar OR bys CategThirdVar: pwcorr QuantResponseVar QuantExplanatoryVar, sig
SAS	Proc sort; by CategThirdVar; Proc corr; var QuantResponseVar QuantExplanatoryVar; by CategThirdVar;
R	by(myData, myData\$CategThirdVar, function(x) cor.test(x\$Q uantResponseVar, x\$ QuantExplanatoryVar))

CHI-SQUARE TEST
In these analyses, the third variable must be categorical.

SPSS	CROSSTABS /TABLES = CategResponseVar by CategExplanatoryVar by CategThirdVar /CELLS = COUNT ROW /STATISTICS = CHISQ.
STATA	bys CategThirdVar: tab CategResponseVar CategExplanatoryVar, chi2 row
SAS	Proc sort; by CategThirdVar; Proc freq; tables CategResponseVar*CategExplanatoryVar/chisq; by CategThirdVar;
R	<pre>by(myData, myData\$CategThirdVar, function(x) list(chisq.test(x\$CategResponseVar, x\$CategExplanatoryVar), chisq.test(x\$CategResponseVar, x\$CategExplanatoryVar)\$observed, prop.table(chisq.test(x\$CategResponseVar,</pre>

MULTIPLE REGRESSION

SPSS	REGRESSION /DEPENDENT QuantResponseVar /METHOD ENTER ExplanatoryVar.
STATA	reg quan QuantResponseVar ExplanatoryVar
SAS	Proc reg; model QuantResponseVar=ExplanatoryVar;
R	my.lm <- lm(QuantResponseVar ~ ExplanatoryVar, data = myData)) summary(my.lm)

LOGISTIC REGRESSION

SPSS	LOGISTIC REGRESSION BinaryResponseVar with ExplanatoryVar.
STATA	logistic BinaryResponseVar ExplanatoryVar //displays odds ratios OR logit BinaryResponseVar ExplanatoryVar //displays logit coefficients
SAS	Proc logistic; class ExplanatoryVar (if ExplanatoryVar is categorical); model BinaryResponseVar=ExplanatoryVar;
R	my.logreg <- glm(BinaryResponseVar ~ ExplanatoryVar, data=myData, family="binomial") summary(my.logreg) # for p-values exp(my.logreg\$coefficients) # for odds ratios exp(confint(my.logreg\$coefficients)) # for confidence intervals on the odds ratios

Multivariate Regression: Testing for Confounding

MULTIPLE REGRESSION

SPSS	REGRESSION /DEPENDENT QuantResponseVar /METHOD ENTER ExplanatoryVar ThirdVar1 ThirdVar2.
STATA	reg QuantResponseVar ExplanatoryVar ThirdVar1 ThirdVar2
SAS	Proc glm; class CategExplanatoryVar (ref="0") CategThirdVar (ref="2"); When these variables are categorical with more than 2 levels, the number after ref tells SAS what category you want to compare the other categories to. Be sure to use values appropriate to your categorical variables. model QuantResponseVar= CategExplanatoryVar CategThirdVar QuantThirdVar / solution;
R	my.lm <- Im(QuantResponseVar ~ ExplanatoryVar + ThirdVar1 + ThirdVar2, data = myData) summary(my.lm)

LOGISTIC REGRESSION

SPSS	LOGISTIC REGRESSION BinaryResponseVar with ExplanatoryVar ThirdVar1 ThirdVar2.
STATA	logistic BinaryResponseVar ExplanatoryVar ThirdVar1 ThirdVar2
SAS	Proc logistic descending; Use 'descending' when variables are coded 0 (no) and 1 (yes). No need if coded 1 (yes) and 2 (no) class CategExplanatoryVar CategThirdVar; model BinaryResponseVar=CategExplanatoryVar CategThirdVar QuantThirdVar;
R	my.logreg <- glm(BinaryResponseVar ~ ExplanatoryVar + ThirdVar1 +