最优化理论与方法

讲课人:吕茂斌

模式识别与智能系统研究所

北京理工大学自动化学院

lumaobin@bit.edu.cn

基本性质

可行域

定理 线性规划的可行域是凸集

在线性规划中,约束条件均为线性等式及不等式,满足这些条件的点的集合是凸集

最优极点

设可行域的极点为 $x^{(1)}$, $x^{(2)}$, ... $x^{(k)}$, 极方向为 $d^{(1)}$, $d^{(2)}$, ... $d^{(k)}$. 根据表示定理,任何可行点x 可以表示为

$$x = \sum_{j=1}^{k} \lambda_j x^{(j)} + \sum_{j=1}^{l} \mu_j d^{(j)}$$

$$\sum_{j=1}^{k} \lambda_j = 1$$

$$\lambda_j \ge 0 \qquad j = 1, ..., k$$

$$\mu_j \ge 0 \qquad j = 1, ..., l$$

得到以 λ_i , μ_i 为变量的等价的线性规划

Min
$$cx$$

s.t. $Ax = b$,
 $x \ge 0$

$$x = \sum_{j=1}^{k} \lambda_j x^{(j)} + \sum_{j=1}^{l} \mu_j d^{(j)}$$
s.t.
$$\sum_{j=1}^{k} \lambda_j = 1$$

$$\lambda_j \ge 0 \qquad j = 1, ..., k$$

$$\mu_j \ge 0 \qquad j = 1, ..., l$$

如某个 $cd^{(j)}$ <0,因为 μ_j 可 $\rightarrow +\infty$,所以目标函数 $\rightarrow -\infty$,不存在有限最优值

如所有 $cd^{(j)} \ge 0$,为极小化目标函数,

$$\Rightarrow \mu_j = 0.$$

则:

min
$$\sum_{j=1}^{k} (cx^{(j)}) \lambda_j$$
s.t.
$$\sum_{j=1}^{k} \lambda_j = 1$$

$$\lambda_j \ge 0 \qquad j = 1, ..., k$$

如所有 $cd^{(j)} \ge 0$,为极小化目标函数,

$$cx = \sum_{j=1}^{k} (cx^{(j)})\lambda_j + \sum_{j=1}^{l} (cd^{(j)})\mu_j$$

$$\geq \sum_{j=1}^{k} (cx^{(j)})\lambda_j$$

$$\sum_{j=1}^{k} (cx^{(p)})\lambda_j = cx^{(p)}$$

定理 设线性规划的可行域非空,

则有以下结论:

- 1. 存在有限最优解的**充要条件**是所有的 $cd^{(j)}$ 为非负数. 其中 $d^{(j)}$ 是可行域的极方向.
- 2. 若**线性规划**存在有限最优解,则目标函数的最优值可在某个极点上达到.

而把无界问题归入不存在最优解的情形

最优基本可行解

极点的代数含义: 假设A=[B,N], 设矩阵 A 的秩为 m, B是 m 阶可逆矩阵。 $x=[x_B,x_N]^T$

$$(B,N)$$
 $\begin{bmatrix} x_B \\ x_N \end{bmatrix} = b$ $Bx_B + Nx_N = b$ $x_B = B^{-1}b - B^{-1}Nx_N$ 自由未知量,它们取不同的值就会得到方程组的不同的解

特别地, $\diamondsuit x_N = 0$,则得到解

$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$

假设A=[B,N], 设矩阵 A 的秩为 m, B是 m 阶可逆矩阵。 $x=[x_B,x_N]^T$

定义:

 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$ 称为方程组Ax = b的一个基本解;

B称为基矩阵,简称为基;

 x_B 的各分量称为基变量;

基变量的全体 $x_{B1}, x_{B2}, ..., x_{Bm}$ 称为一组基;

 x_N 的各分量称为非基变量。

定义(续):

又若 $B^{-1}b \ge 0$,则称该解x为约束条件Ax=b, $x \ge 0$ 的基本可

行解

相应地:

- 称B为可行基矩阵
- $x_{B1}, x_{B2}, \dots, x_{Bm}$ 为一组可行基
- 若 $B^{-1}b>0$,即基变量的取值均为正数,则称基本可行解是非退化的
- 如果 $B^{-1}b \ge 0$ 且至少有一个分量是零,则称基本可行解是退化的基本可行解

例 考虑下列不等式定义的多面集:

$$\begin{cases} x_1 + 2x_2 \le 8 \\ x_2 \le 2 \\ x_1, x_2 \ge 0 \end{cases} \longrightarrow \begin{cases} x_1 + 2x_2 + x_3 = 8 \\ x_2 + x_4 = 2 \\ x_j \ge 0 \end{cases}$$

引进松弛变量 x_3, x_4

$$A = [p_1, p_2, p_3, p_4] = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\Leftrightarrow B = (p_1, p_2) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$\Leftrightarrow B = (p_1, p_2) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

解得基本解: $x^{(1)} = (4,2,0,0)^T \longrightarrow 基本可行解$

$$B = (p_1, p_4) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x^{(2)} = (x_1, x_2, x_3, x_4)^{\mathrm{T}} = (8,0,0,2)^{\mathrm{T}}$$

$$B = (p_2, p_3) = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$$

$$x^{(3)} = (x_1, x_2, x_3, x_4)^{\mathrm{T}} = (0,2,4,0)^{\mathrm{T}}$$

$$B = (p_2, p_4) = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

$$x^{(4)} = (x_1, x_2, x_3, x_4)^{\mathrm{T}} = (0,4,0,-2)^{\mathrm{T}} \longrightarrow \mathbb{A} \mathbb{A} \mathbb{B}$$

$$B = (p_3, p_4) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x^{(5)} = (x_1, x_2, x_3, x_4)^{\mathrm{T}} = (0,0,8,2)^{\mathrm{T}}$$

• 当 $A \ge m \times n$ 矩阵,且秩为m时,基本可行解的个数不会超过

$$\binom{n}{m} = \frac{n!}{m! (n-m)!}$$

• 基本可行解对应可行域的极点

定理 令 $K=\{x \mid Ax=b, x \geq 0\}$, $A \in \mathbb{R}^n \times n$ 矩阵,A的秩为m,则K的极点集与Ax=b, $x \geq 0$ 的基本可行解集等价

线性规划问题的求解,可归结为求最优基本可 行解