Problème. Commutant d'une matrice.

Dans le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et n un entier naturel non nul.

On note $\mathcal{M}_n(\mathbb{K})$ l'ensemble des matrices carrées de taille n à coefficients dans \mathbb{K} .

La base canonique de $\mathcal{M}_n(\mathbb{K})$ est notée $(E_{i,j},(i,j) \in [1,n]^2)$.

Pour une matrice $A \in \mathcal{M}_n(\mathbb{K})$, on appelle **commutant** de A l'ensemble noté C(A) des matrices qui commutent avec A:

$$C(A) = \{ M \in \mathscr{M}_n(\mathbb{K}) \mid AM = MA \}$$

- I. Propriétés générales du commutant
- 1. Préciser $C(I_n)$ et $C(0_n)$.
- 2. (a) Montrer que C(A) est stable par combinaisons linéaires.
 - (b) Montrer que C(A) est stable pour le produit matriciel.
 - (c) Justifier que C(A) est un sous-anneau de $\mathcal{M}_n(\mathbb{K})$.
- 3. Soit $M \in GL_n(\mathbb{K})$. Montrer que : $M \in C(A) \iff M^{-1} \in C(A)$.
- 4. Soit $P \in GL_n(\mathbb{K})$.
 - (a) Montrer que pour tout $M \in \mathscr{M}_n(\mathbb{K})$,

$$M \in C(A) \iff P^{-1}MP \in C(P^{-1}AP).$$

(b) Montrer que l'application $\varphi: M \longmapsto P^{-1}MP$ est un isomorphisme d'anneaux de C(A) dans $C(P^{-1}AP)$.

II. Commutant d'une matrice diagonale

Soient n scalaires d_1, d_2, \ldots, d_n deux à deux distincts. On note D la matrice diagonale

$$D = \mathrm{Diag}(d_1, d_2, \dots, d_n)$$

- 6. Soit $(i, j) \in [1, n]^2$. Préciser le coefficient d'indice (i, j) des matrices MD et DM.
- 7. Montrer que C(D) est l'ensemble des matrices diagonales.
 - III. Commutant d'une matrice diagonalisable

Soient les matrices

$$A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & 1 \\ 1 & -4 \end{pmatrix}.$$

- 8. Montrer que P est inversible et calculer P^{-1} .
- 9. Calculer la matrice $\Delta = P^{-1}AP$.
- 10. Donner $C(\Delta)$ et en déduire C(A).
 - IV. Commutant d'une matrice élémentaire et applications
- 11. Soit $(i,j) \in [1,n]^2$. Déterminer C $(E_{i,j})$.
- 12. Application :
 Déterminer l'ensemble des matrices qui commutent avec toutes les matrices.
- 13. (a) Soit $(i,j) \in [1,n]^2$. Calculer $(I_n + E_{i,j})(I_n E_{i,j})$.
 - (b) Montrer que pour tout couple $(i, j) \in [1, n]^2$, $I_n + E_{i,j}$ est inversible.
- 14. Soit $(i,j) \in [1,n]^2$. Montrer que $C(E_{i,j}) = C(I_n + E_{i,j})$.
- 15. Application:
 Déterminer l'ensemble des matrices qui commutent avec toutes les matrices inversibles.