Seasonal Models: Fourier Representation

For any frequency $\omega \in (0, \pi)$, a model of the form $\{E_2, J_2(1, \omega), \cdot, \cdot\}$ with a 2-dimensional state vector $\boldsymbol{\theta}_t = (\theta_{t,1}, \theta_{t,2})'$ and

$$J_2(1,\omega) = \begin{pmatrix} \cos(\omega) & \sin(\omega) \\ -\sin(\omega) & \cos(\omega) \end{pmatrix},$$

has a forecast function

$$f_t(h) = (1,0) \mathbf{J}_2^h(1,\omega)(a_t,b_t) = a_t \cos(\omega h) + b_t \sin(\omega h), = A_t \cos(\omega h + B_t).$$

For $\omega = \pi$ the NDLM is $\{1, -1, \cdot, \cdot\}$ and has a forecast function of the form $f_t(h) = (-1)^h m_t$.

These are component Fourier models. Now, for a given period p we can build a model that contains components for the fundamental period and all the harmonics of such period using the superposition principle as follows:

Case: p = 2m - 1 odd

Let $\omega_j = 2\pi j/p$ for j = 1 : (m-1), \boldsymbol{F} a (p-1)-dimensional vector, or equivalently, a 2(m-1)-dimensional vector, and \boldsymbol{G} a $(p-1) \times (p-1)$ matrix with $\boldsymbol{F} = (\boldsymbol{E}_2', \boldsymbol{E}_2', \dots, \boldsymbol{E}_2')'$, $\boldsymbol{G} = \mathbf{blockdiag}[\boldsymbol{J}_2(1, \omega_1), \dots, \boldsymbol{J}_2(1, \omega_{m-1})]$.

Case: p = 2m even

In this case, \mathbf{F} is again a (p-1)-dimensional vector (or, equivalently a (2m-1)-dimensional vector), and \mathbf{G} is a $(p-1) \times (p-1)$ matrix such that $\mathbf{F} = (\mathbf{E}'_2, \dots, \mathbf{E}'_2, 1)'$ and $\mathbf{G} = (\mathbf{E}'_1, \dots, \mathbf{E}'_2, 1)'$

blockdiag[$J_2(1, \omega_1), \dots, J_2(1, \omega_{m-1}), -1$].

In both cases the forecast function has the general form:

$$f_t(h) = \sum_{j=1}^{m-1} A_{t,j} \cos(\omega_j h + \gamma_{t,j}) + (-1)^h A_{t,m},$$

with $A_{t,m} = 0$ if p is odd.

Examples

Fourier representation, p=12: In this case $p=2\times 6$ so $\boldsymbol{\theta}_t$ is an 11-dimensional state vector, $\boldsymbol{F}=(1,0,1,0,1,0,1,0,1,0,1)'$ the Fourier frequencies are $\omega_1=2\pi/12$, $\omega_2=4\pi/12=2\pi/6$, $\omega_3=6\pi/12=2\pi/4$, $\omega_4=8\pi/12=2\pi/3$, $\omega_5=10\pi/12=5\pi/6$ and $\omega_6=12\pi/12=\pi$ the Nyquist. $\boldsymbol{G}=\mathbf{blockdiag}(\boldsymbol{J}_2(1,\omega_1),\ldots,\boldsymbol{J}_2(1,\omega_5),1)$ and the forecast function is given by

$$f_t(h) = \sum_{j=1}^{5} A_{t,j} \cos(2\pi j/12 + \gamma_{t,j}) + (-1)^h A_{t,6}.$$

Linear trend + seasonal component with p = 4: We can use the superposition principle to build more sophisticated models. For instance, assume that we want a model with the following 2 components:

• Linear trend: $\{ \boldsymbol{F}_1, \boldsymbol{G}_1, \cdot, \cdot \}$ with $\boldsymbol{F}_1 = (1, 0)'$,

$$oldsymbol{G}_1 = oldsymbol{J}_2(1) = \left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight).$$

• Full seasonal model with p=4: $\{ \boldsymbol{F}_2, \boldsymbol{G}_2, \cdot, \cdot \}$ $p=2\times 2$ so m=2 and $\omega=2\pi/4=\pi/2,$

 $\mathbf{F}_2 = (1, 0, 1)'$, and

$$G_2 = \begin{pmatrix} \cos(\pi/2) & \sin(\pi/2) & 0 \\ -\sin(\pi/2) & \cos(\pi/2) & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

The resulting DLM is a 5-dimensional model $\{F, G, \cdot, \cdot\}$ with F = (1, 0, 1, 0, 1)', and

$$m{G} = \left(egin{array}{ccccc} 1 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & -1 & 0 & 0 \ 0 & 0 & 0 & 0 & -1 \end{array}
ight),$$

and

$$f_t(h) = (k_{t,1} + k_{t,2}h) + k_{t,3}\cos(\pi h/2) + k_{t,4}\sin(\pi h/2) + k_{t,5}(-1)^h.$$