Artificial Intelligence 2019/2020

Second Homework: Causal Inference

Model a problem of your choice using a Causal Graph.

1) Structure of the network

- List **at least 10 binary** variables **all measurable** involved in the problem.
- State which is the **objective** of the network: for instance, highlight a couple of situations in which decision making could be difficult and in which the graph could provide valuable indications.
- Explaining how you decide the arcs orientation, in case they are not selfexplaining.
- Which arrows can be reversed without being detectable by a statistical test? Explain why.
- Identify **at least 4** couple of nodes (the node of each couple should be not directly linked to each other) and analyze their d-separation properties possibly conditioning on others.
- Discuss how d-connected variables are in fact dependent in the real problem, while d-separated variables are instead independent in the real problem.

2) Conditional probability tables (CPTs)

Explain how do you fill the probability tables for the nodes. For instance:

- a. you have retrieved information from the internet (or other sources);
- b. you have estimated the CPTs from a database;
- c. you have relied on your personal experience/common sense.

3) Causal Inference

Choose one pair of variables. The pair must be made up of a variable X with at least one parent and another variable Y of the graph such that there is (at least) a causal path from X to Y.

For the pair (X,Y) perform:

- Calculate the causal effect of X on Y.
- Identify possible confounders between X and Y.

- Would it be practically possible in your specific problem to perform also a randomized controlled study to disentangle the causal effect between the variables from their correlation?
- Compute the ACE of X on Y.

Choose another pair of variable (X,Y) (it can be also the previous one) and:

- Choose another variable C such that it is possible to calculate the c-specific effect of X on Y and calculate it.
- Identify a minimal set of variables that must be measured in order to estimate the c-specific effect of X on Y.
- Choose a function g and compute the effect of the conditional intervention of X=g(C) on Y.

Choose another pair of variable (X,Y) (it can be also the previous one) and:

• Identify possible mediating variables between X and Y and calculate the CDE of Y changing the value of X.

4) Simulation

Suppose that you can't measure some parents of variable X chosen in every point of "Causal Inference".

Repeat the "Causal Inference" part of the exercise considering this new situation.

5) Comment on the results

What kind of experience have you got with this model? E.g., is the causal model responding in a sensible way to your queries? What should be changed/modified to make it more realistic?

PRACTICAL INFORMATION

Produce a report (a pdf file of maximum 20 pages) and a jupyter notebook containing code that you have used to solve the assignment and submit them on the website.

The deadline is January 15th.