(Vi sono alcune parentesi extra nelle formule sono puramente per leggibilità. perdonate possibili malintesi)

La forza di Coulomb è una copia spiccicata della gravitazione di Newton, ma per le cariche Se ho una particella di carica q_1 e una di carica q_2 la forza applicata su q_2 da q_1 sarà

$$\overrightarrow{F_{2,1}} = k_0 \frac{q_1 q_2}{(r_{2,1})^2} \overrightarrow{r_{2,1}}$$

con q_1 e q_2 pari alle cariche tra le quali si ha forza, r pari alla distanza tra le due cariche, e \overrightarrow{r} versore tra le due cariche possiamo vedere dalla formula (e dalla seconda legge di Newton) che il di $\overrightarrow{F_{1,2}}$ sarà pari a quello di $\overrightarrow{F_{2,1}}$ Se ho una carica q_1 e voglio sapere che forza viene esercitata su di essa da

altre due cariche q_2 e q_3 , allora posso possibile sommarle e ottenere

$$\overrightarrow{F_{tot}} = \overrightarrow{F_{2,1}} + \overrightarrow{F_{3,1}}$$

$$= k_0 \frac{q_1 q_2}{(r_{2,1})^2} \overrightarrow{r_{2,1}} + k_0 \frac{q_1 q_3}{(r_{3,1})^3} \overrightarrow{r_{3,1}}$$

$$= k_0 q_1 \left(\frac{q_2}{(r_{2,1})^2} \overrightarrow{r_{2,1}} + \frac{q_3}{(r_{3,1})^2} \overrightarrow{r_{3,1}}\right)$$

La forza esercitata su una q_1 può essere quindi espressa come " $q_1 \times$ qualcosa che dipende solo da come sono messe le due cariche intorno"

questa formulazione si può estendere a q_1 con altre tre cariche intorno (chiamate con molta fantasia q_2 q_3 q_4), in cui la forza totale farà

$$\overrightarrow{F_{tot}} = k_0 q_1 + \frac{q_2}{(r_{2,1})^2} \overrightarrow{r_{2,1}} + k_0 q_1 + \frac{q_3}{(r_{3,1})^2} \overrightarrow{r_{3,1}} + k_0 q_1 + \frac{q_4}{(r_{4,1})^2} \overrightarrow{r_{4,1}}$$

$$= k_0 q_1 + \left(\frac{q_2}{(r_{2,1})^2} \overrightarrow{r_{2,1}} + \frac{q_2}{(r_{3,1})^2} \overrightarrow{r_{3,1}} + \frac{q_2}{(r_{4,1})^2} \overrightarrow{r_{4,1}}\right)$$

questa cosa si può estendere a una qualsiasi distribuzione di tot cariche $q_1,q_2,...,q_{tot}$ che agiscono su, facciamo, q_0 , in questo caso la forza totale sarà

$$\overrightarrow{F_{tot}} = k_0 q_0 \sum_{i=1}^{tot} \frac{q_i}{(r_{i,0})^2}$$

andando nel caso continuo fai tendere tutto a un infinito e/o un infinitesimo finchè non arrivi alla stessa cazzo di formula se non che c'è un integrale

$$\overrightarrow{F_{tot}} = k_0 q_0 \int_{\mathcal{T}} \frac{q}{(r_{i,0})^2}$$