Knowledge Guided Disambiguation for Scene Recognition with Multi-Resolution CNNs

Sheng Guo, Limin Wang, Bowen Zhang, Yu Qiao

Shenzhen Institutes of Advanced Technology, CAS, China

June 26, 2016

Outline

- 1 Introduction
- 2 Knowledge Guided Disambiguation
- **3** Multi-Resolution CNNs
- 4 Experiments
- **5** Conclusions

Figure: Examples of ten scene categories.

LSUN scene classification challenge:

- 10 scene categories, each class containing from 126,227 to 3,033,042 images.
- 10M images for training, 3k images for validation and 10k images for testing.
- The number of images is much bigger than ImageNet and Places2.

• Scene classification is more challenging:

- The concept of scene is more subjective and high level than object.
- The number of each class images variations (classes imbalance)
- Large intra-class variations (visual inconsistency).
- Small inter-class variations (label ambiguity).

Our methods are pre-trained on imagenet, place and place2.

B. Zhou, A. Khosla, A. Lapedriza, A. Torralba and A. Oliva, Places2: A Large-Scale Database for Scene Understanding, in Arxiv, 2015

Classes Imbalance

SIAT_MMLAB

Visual Inconsistency

Label Ambiguity (Example 1)

Church Outdoor

Label Ambiguity (Example 2)

Conference Room

www.shutterstock.com · 164472893

SIAT

CHINESE
ACADENY OF
SCIENCES

技术体

- 1 Introduction
- 2 Knowledge Guided Disambiguation
- 3 Multi-Resolution CNNs
- 4 Experiments
- Conclusions

Knowledge from confusion matrix

- We propose a hierarchical strategy to merge similar categories into a super category, according to the confusion matrix on the validation data.
- The images of different scene categories, that belong to the same super category, will be given the same label.
- Totally, we reduce the number of scene categories from the Places2 dataset into 372 super categories.

Knowledge from networks trained on other datasets

- In previous scenario, all the images belonging to the same super category are constrained to have the same label, without considering the difference between images.
- We propose to automatically assign a soft code to each image, which
 is able to better encode the visual information of natural images.
- In the soft code space, the images from easily confused categories are equipped with similar codes.
- Finally, we design a multi-task framework to predict both hard code and soft code.

- Introduction
- 2 Knowledge Guided Disambiguation
- Multi-Resolution CNNs
- 4 Experiments
- Conclusions

Multi-Resolution CNNs

Multi-Resolution CNNs

Implementation details

Architectures:

- Low resolution: image (256*256), crop(224*224), inception2 network [2]
- High resolution, image (384*384), crop(336*336), inception2+2 convs

Knowledge networks:

- Object nets: inception2 trained with ImageNet
- Currently, knowledge disambiguation only for low resolution CNNs

• Implementation details:

- Resample images to balance the class distribution
- Data augmentation: fixed crop, scale jittering, horizontal flipping [1,6]

- Introduction
- 2 Knowledge Guided Disambiguation
- 3 Multi-Resolution CNNs
- Experiments
- **5** Conclusions

Experiments (pretrained models)

Method	Imagenet(top1/top5)	Places(top1/top5)	Places2(top1/top5)
AlexNet	40.7%/18.2%	50.0%/-	57.0%/-
VGGNet	27.0%/8.8%	39.4%/11.5%	52.4%/-
Normal BN-Inception	24.7%/7.2%	38.1%/11.3%	48.8%/17.4%
Deeper BN-Inception	23.7%/6.6%	37.8%/10.7%	48.0%/16.7%
Multi-resolution CNN	21.8%/6.0%	36.4%/10.4%	47.4%/16.3%

Table 1. Performance of our pretrained models with Multi-Resolution CNNs on the validation data from the datasets of ImageNet, Places and Places 2.

Experiments (pretrained models)

Method	Places2 (top5)
Normal BN-Inception (256 $ imes$ 256)	17.4%
Normal BN-Inception + object networks	17.4%
Normal BN-Inception + scene networks	16.7%
Normal BN-Inception + confusion matrix	17.3%
Deeper BN-Inception (384 $ imes$ 384)	16.7%
Deeper BN-Inception + object networks	16.3%
Deeper BN-Inception + scene networks	16.1%

Table 2. Performance of our pretrained models with different knowledge guided disambiguation techniques on the dataset of Places 2.

Experiments (pretrained models)

Scene Classification Results of Imagenet2015

Rank	Team	Top5	Rank	Team	Top5
1	WM	16.9	5	NTU_Rose	19.3
2	Our (best)	17.4	6	Mitsubishi Electric	19.4
3	Qualcomm	17.6	7	HiVision	20.0
4	Trimps- Soushen	18.0	8	DeepSEU	20.0

Our SIAT_MMLAB team (Limin Wang, Sheng Guo, Weilin Huang and Yu Qiao) secures the 2nd place for scene recognition at ILSVRC 2015.

- The challenge dataset contains 10 scene classes (7 indoor scene closses and 3 outdoor scene classes).
- The image numbers of different scene categories are very different, to balance data and calculation, we use 100,000 images from each category for training.
- As we can not access the label of evaluation data, we mainly train our models on the development data and report the results on the validation data.
- We finetune our challenge results on pretrain models that from Imagenet, Places and Places 2.

	Method	LSUN (top1)
A0	inception_256(pretrain on Imagenet)	89.73%
A1	inception_384(pretrain on Imagenet)	90.73%
	A0+A1	90.83%
A2	inception_256(pretrain on Places2)	89.90%
A3	inception_384(pretrain on Places2)	90.53%
	A2+A3	90.95%
A4	incpetion_256(pretrain on Places)	90.47%
A5	inception_384(pretrain on Places)	90.70%
	A4+A5	91.10%
A6	inception_384_kd_object(pretrain on Places2)	90.69%
	Fusion all	91.77%

Table3. Performance of our methods on the validation data.

Misclassified Examples

dining_room

dining_room

bedroom

Experiments Results (Test Data)

Rank	Team	Top1
1	SIAT_MMLAB(our)	91.61%
2	SJTU-ReadSense	90.43%
3	TEG Rangers	88.70%
4	ds-cube	83.02%
	Google (last year winner)	91.20%

- 1 Introduction
- 2 Knowledge Guided Disambiguation
- 3 Multi-Resolution CCNs
- Experiments
- Conclusions

Conclusions

- Large scale scene datasets with many categories come along with increased ambiguity between the class labels (e.g. bedroom vs.living room).
 - Knowledge guided disambiguation aims to regularize CNN training with extra knowledge and improve the generalization capacity.
- Scene or Places, defined by containing objects, spatial layout, human events, and global contexts, are more high-level concepts.
 - Multi-Resolution CNNs take images of different sizes as input and capture visual information from different levels.

Thank you!

