

Linear Algebra II SVD and PCA

Ming-Hsuan Kang

Projection onto Best-fit Subspaces

Let A be an $m \times n$ matrix with singular values $\lambda_1 \ge \cdots \ge \lambda_n \ge 0$ and a set of left singular vectors $\{\vec{v}_1, \cdots, \vec{v}_n\}$ and the corresponding right singular vectors $\{\vec{u}_1, \cdots, \vec{u}_m\}$.

Recall that for the row vectors $\vec{x}_1^t, \cdots, \vec{x}_m^t$ of A, $V_k = \operatorname{span}\{\vec{v}_1, \cdots, \vec{v}_k\}$ is a best-fit k-subspace of $\{\vec{x}_1, \cdots, \vec{x}_m\}$. Note that

$$\begin{pmatrix} \operatorname{proj}_{\vec{v_i}}(\vec{x_1})^t \\ \vdots \\ \operatorname{proj}_{\vec{v_i}}(\vec{x_m})^t \end{pmatrix} = \begin{pmatrix} \vec{x_1^t} \vec{v_i} \vec{v_i^t} \\ \vdots \\ \vec{x_m^t} \vec{v_i} \vec{v_i^t} \end{pmatrix} = \begin{pmatrix} \vec{x_1^t} \vec{v_i} \vec{v_i^t} \\ \vdots \\ \vec{x_m^t} \vec{v_i} \vec{v_i^t} \end{pmatrix} = A \vec{v_i} \vec{v_i^t} = \sqrt{\lambda_i} \vec{u_i} \vec{v_i^t}.$$

Therefore,

$$\begin{pmatrix} \operatorname{proj}_{V_k}(\vec{x}_1)^t \\ \vdots \\ \operatorname{proj}_{V_k}(\vec{x}_n)^t \end{pmatrix} = \sum_{i=1}^k \begin{pmatrix} \operatorname{proj}_{\vec{v}_i}(\vec{x}_1)^t \\ \vdots \\ \operatorname{proj}_{\vec{v}_i}(\vec{x}_n)^t \end{pmatrix} = \sum_{i=1}^k \sqrt{\lambda_i} \vec{u}_i \vec{v}_i^t.$$

Projection onto Best-fit Subspace

Theorem

Let A be an $m \times n$ matrix with singular values $\lambda_1 \ge \cdots \ge \lambda_n \ge 0$ and a set of left singular vectors $\{\vec{v}_1, \cdots, \vec{v}_n\}$ and the corresponding right singular vectors $\{\vec{u}_1, \cdots, \vec{u}_m\}$. Then for the row vectors $\vec{x}_1^t, \cdots, \vec{x}_m^t$ of A, the projection of these row vectors onto the best-fit k-subspace is given by

$$A(k) = \begin{pmatrix} \operatorname{proj}_{V_k}(\vec{x}_1)^t \\ \vdots \\ \operatorname{proj}_{V_k}(\vec{x}_m)^t \end{pmatrix} = \sum_{i=1}^k \sqrt{\lambda_i} \vec{u}_i \vec{v}_i^t.$$

Note that A(k) is an approximation of A and A(r) = A where r is the rank of A. Moreover, we only need use k(m+n) real numbers to characterize the matrix A(r).

Image Compression

Give an image of size $m \times n$, let A_R , A_G and A_B be the RGB matrices of the image. For instance, the (i,j)-entry of A_R is the red number of the (i,j) pixel. In this case, we need use 3mn real numbers to store the image. Apply the previous theorem, we obtain three matrices $A_R(k)$, $A_G(k)$ and $A_B(k)$, which gives us a new image using only 3k(m+n) real numbers.

Example

The right is a picture of size $m \times n = 380 \times 314$. Consider the following different k.

k	10	30	50	80
C.R.	5.82%	17.4%	29.1%	46.5%
	9		PLA	

Here C.R. is the compression rate which equals to k(m+n)/mn.

Best-fit affine Subspace

Given an $m \times n$ real matrix A, let $\{\vec{x}_1^t, \dots, \vec{x}_m^t\}$ be the rows of A, which is a subset of \mathbb{R}^n . A k-dimensional subspace W shifted by some vector \vec{w}_0 is called an affine k-subspace, denoted by $\vec{w}_0 + W$.

A k-dimensional affine subspace $\vec{w}_0 + W$ in \mathbb{R}^n is called a best-fit affine k-subspace of $\{\vec{x}_1, \dots, \vec{x}_m\}$, if

$$\vec{w}_0 + W \in \underset{\vec{w} + W' : dimW' = k}{\operatorname{arg \, min}} \left\{ \sum_{i=1}^m \| \vec{(x_i - \vec{w})} - \operatorname{proj}_{W'} (\vec{x_i} - \vec{w}) \|^2 \right\}.$$

Best-fit affine Subspace

Note that

$$\|\vec{(x_i - \vec{w})} - \operatorname{proj}_{W'}(\vec{x_i} - \vec{w})\|^2 = \|\operatorname{proj}_{W'^{\perp}}(\vec{x_i} - \vec{w})\|^2.$$

It is easy to see that when W' is fixed,

 $\sum_{i=1}^{m} \|\operatorname{proj}_{W'^{\perp}}(\vec{x_i}) - \operatorname{proj}_{W'^{\perp}}(\vec{w})\|^2 \text{ is minimal when } \operatorname{proj}_{W'^{\perp}}(\vec{w})$ is the mean vector of $\{\operatorname{proj}_{W'^{\perp}}(\vec{x_i})\}_{i=1}^{m}$. Especially, one can choose \vec{w} as the mean vector of $\vec{x_i}$. Then \vec{w} always gives minimal value for all W'.

Theorem

Given an $m \times n$ real matrix A, let $\{\vec{x}_1^t, \cdots, \vec{x}_m^t\}$ be the rows of A and \vec{x}_0^t be their mean vector. Let W be the best-fit k-subspace of $\{\vec{x}_1^t - \vec{x}_0^t, \cdots, \vec{x}_m^t - \vec{x}_0^t\}$. Then $\vec{x}_0 + W$ is the best-fit affine k-subspace.

Principal Component Analysis

Under the notation in the previous theorem, the *i*-th singular vectors of the matrix with rows $\{\vec{x}_1^t - \vec{x}_0^t, \cdots, \vec{x}_m^t - \vec{x}_0^t\}$ are called *i*-th principal component of $\{\vec{x}_1^t, \cdots, \vec{x}_m^t\}$.

Left Singular Vectors

Principal Components

Example

Example

Let $\{(3,2),(2,2),(0,4),(1,1),(1,1)\}$ be a set of points in \mathbb{R}^2 . Find its first principal component.

The mean vector of the set is (1,2) and the set of points shifted by (-1,-2) becomes $\{(2,0),(-1,0),(-1,2),(0,-1),(0,-1)\}$. Let

$$A = \begin{pmatrix} 2 & 0 \\ -1 & 0 \\ -1 & 2 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}$$
. Then $A^tA = \begin{pmatrix} 6 & -2 \\ -2 & 6 \end{pmatrix}$ which eigenvalues are 8 and

4. Let $(1,-1)^t$ be the eigenvector of A^tA corresponding to 8.

Then $\frac{1}{\sqrt{2}}(1,-1)$ is the first principal component of the set.