ZATVORENI TRANSPORTNI PROBLEMI – ZADACI

1. Zadan je transportni problem s četiri ishodišta i četiri odredišta. Ponuda ishodišta je 10, 28, 37 i 25 jedinica tereta, respektivno, a potražnja 30, 22, 24 i 24 jedinice tereta, respektivno.

Troškovi prijevoza po jedinici tereta, izraženi u novčanim jedinicama, iznose po pojedinoj relaciji:

(1,1)	4	(1,2)	2	(1,3)	1	(1,4)	6
(2,1)	2	(2,2)	0	(2,3)	6	(2,4)	5
(3,1)	3	(3,2)	6	(3,3)	0	(3,4)	4
(4,1)	7	(4,2)	2	(4,3)	4	(4,4)	1

Na relaciji (4,3) prijevoz nije moguć jer ne postoji prometnica, a na relaciji (2,4) cesta je u lošem stanju pa se ne preporuča odvijanje prometa tom relacijom.

Izračunati optimalno rješenje, tj. plan prijevoza tereta iz pojedinih ishodišta do pojedinih odredišta, da pritom ponuda ishodišta bude iskorištena i potražnja odredišta podmirena te troškovi prijevoza postignu minimalan iznos.

2. Zadana je matrica nabavke odabranog tipa vozila od dva proizvođača, s tri lokacije prodavatelja te troškovima prijevoza u n.j. po vozilu:

Proizvođač		Donudo		
Proizvouac	L1	L2	L3	Ponuda
P1	52	38	69	13
P2	84	100	75	7
Potražnja	6	6	8	20

Napomena: Pretpostavljeno je da su proizvođačke cijene vozila približno jednake, a razlike su samo u troškovima prijevoza od mjesta proizvodnje do prodavatelja, koji prema ugovoru preuzima troškove prijevoza.

Potrebno je odrediti broj vozila koja će se prevesti od pojedinog proizvođača do pojedine lokacije, ovisno o ponudi i potražnji broja vozila, s ciljem da ukupni troškovi prijevoza svih vozila od proizvođača do prodavatelja budu minimalni.

3. Građevinsko poduzeće treba organizirati prijevoz kamionima 80 tona građevinskog materijala dnevno iz tri proizvođačka pogona do četiri gradilišta. Dnevne potrebe gradilišta su: 20, 10, 10 i 40 tona, respektivno, a dnevni kapaciteti pogona: 20, 40 i 20 tona, respektivno. Udaljenosti od pojedinih pogona do gradilišta u kilometrima iznose:

Gradilište Pogon	G ₁	G ₂	G ₃	G ₄
\mathbf{P}_{1}	5	1	2	2
\mathbf{P}_2	3	2	2	4
P_3	2	3	2	1

Zadatak je odrediti dnevni program snabdijevanja gradilišta uz uvjet da potrebe gradilišta budu podmirene, kapacitet svakog pogona iskorišten i da ukupan iznos tonskih kilometara bude minimalan.

Da li broj kamena u početnom rješenju zadovoljava uvjet nedegeneriranog rješenja? Kako će se otkloniti degeneracija u matrici transporta?

4. Poduzeće ima tri pogona koja svoje proizvode dostavljaju na četiri potrošačka mjesta. Proizvodnja pogona iznosi 12, 18 i 10 jedinica mjesečno, a potražnja svakog mjesta je 10 jedinica mjesečno.

Udaljenost svakog pogona do odgovarajućeg potrošačkog mjesta iznosi u kilometrima:

Potrošač	1.	2.	3.	4.
Pogon				
1.	8	13	4	9
2.	11	15	8	10
3.	7	9	10	9

Cijena prijevoza za svaku jedinicu iznosi 10 jedinica plus 0,5 novčanih jedinica po kilometru udaljenosti.

Odrediti plan prijevoza od pogona do potrošačkih mjesta s ciljem da troškovi prijevoza budu minimalni.

5. Zadan je problem snabdijevanja četiri potrošača iz tri odredišta. Ponuda ishodišta, potrebe potrošača i cijene prijevoza u novčanim jedinicama po jedinici proizvoda dani su u tabeli:

Potrošač	\mathbf{P}_{1}	\mathbf{P}_{2}	P ₃	P ₄	Ponuda
Ishodište					
I-1	3	4	8	2	40
I-2	1	5	5	9	60
I-3	7	2	2	10	100
Potrebe	30	50	50	70	200

Postoji li za ovaj zadatak više optimalnih rješenja? Ako postoje, odrediti alternativna optimalna rješenja i usporediti ih međusobno.

6. Jedno poduzeće snabdijeva tri kupca istom robom. Skladišta poduzeća nalaze se na tri različita mjesta. Udaljenosti od skladišta do kupca u kilometrima dane su u tablici:

Kupci Skladište	K ₁	\mathbf{K}_2	K ₃
S_1	10	5	15
$\mathbf{S_2}$	5	20	30
S_3	10	15	25

Snabdjevenost skladišta tom robom iznosi: $S_1=30$ tona, $S_2=10$ tona i $S_3=20$ tona.

Potrebe kupaca su: $K_1=15$ tona, $K_2=15$ tona i $K_3=30$ tona.

Analizirati optimalno rješenje i usporediti ga s varijantom da se u problem uključe troškovi, i to: da trošak prijevoza do 5 km udaljenosti iznosi 4 novčane jedinice po jednom kilometru udaljenosti, do 10 km udaljenosti 3 novčane jedinice po kilometru udaljenosti, a iznad 10 km 2 novčane jedinice po kilometru udaljenosti.

7. Proizvođač s tri proizvodne lokacije treba sastaviti plan snabdijevanja svojim osnovnim proizvodom četiri potrošača.

Mogućnosti isporuka proizvođača su: 70, 50 i 80 jedinica, respektivno. Potrebe potrošača su: 60, 50, 40 i 50 jedinica, respektivno.

Troškovi prijevoza po jednoj jedinici proizvoda izraženi u novčanim jedinicama dani su u tabeli:

Potrošač Lokacija	I.	II.	III.	IV.
I.	10	5	16	36
II.	11	7	8	30
III.	6	9	10	32

8. Brodar u svojoj floti ima klasične brodove pogodne za prijevoz cementa koji se odvija na relacijama od tri luke iz zemalja proizvođača cementa do četiri luke u zemljama potrošačima cementa.

Izvozne količine cementa su 10, 17 i 20 tisuća tona, respektivno. Uvozne količine cementa su 12, 11, 14 i 10 tisuća tona, respektivno.

Troškovi prijevoza jedne tone cementa zavise od duljine puta, i to:

- do 6000 Nm 0,100 n.j. po jednoj Nm,
- od 6000 do 8000 Nm 0,075 n.j. po jednoj Nm,
- od 8000 do 10000 Nm 0,050 n.j. po jednoj Nm.

Udaljenosti između pojedinih luka u nautičkim miljama su:

Uvozna	U-1	U-2	U-3	U-4
Izvozna				
luka				
I-1	6200	5400	6900	7100
I-2	7100	6600	7800	8000
I-3	6000	5200	6700	9600

- a) Sastaviti matricu transporta za zadani transportni problem.
- b) Odgovarajućim metodama izračunati optimalno rješenje.
- **8.** Iz sjevernoeuropskih luka Antwerpen i Rotterdam svakodnevno se određene količine agruma i banana prevoze željeznicom u frigo-vagonima. Samo iz Antwerpena u München svakog dana vozi jedan vlak nakrcan isključivo bananama.

Na terminalima za južno voće u Antwerpenu i Rotterdamu za ukrcaj u frigovagone spremno je 1250 tona voća, od toga 750 tona u Antwerpenu i 500 tona u Rotterdamu. U Antwerpenu će se nakrcati 75 vagona, a u Rotterdamu 50 vagona dnevno. Voće je potrebno prevesti: do Münchena 40 vagona, Bruxellesa 10 vagona, Frankfurta 40 vagona, Kölna 20 vagona i Stuttgarta 15 vagona.

Cijene prijevoza su proporcionalne udaljenostima, pa željezničke tarife za količinu tereta jednog vagona iznose u n.j.:

Antwerpen – München	7,53	Rotterdam – München	7,94
Antwerpen – Bruxelles	0,42	Rotterdam – Bruxelles	1,42
Antwerpen – Frankfurt	7,94	Rotterdam – Frankfurt	7,62
Antwerpen – Köln	2,07	Rotterdam – Köln	2,43
Antwerpen – Stuttgart	5,35	Rotterdam – Stuttgart	5,85.

Treba odrediti plan prijevoza voća s ciljem da troškovi prijevoza budu minimalni.

Gradovi Luka	München	Bruxelles	Frankfurt	Köln	Stuttgart	Broj vagona
Antwerpen	7,53 40	0,42 10	7,94	2,07 10	5,35 15	75
Rotterdam	7,94	1,42	7,62 40	2,43 10	5,85	50
Broj vagona	40	10	40	20	15	125/125

9. U luku je stigao brod s teretom za domaćeg naručitelja koji zahtijeva od svog otpremnika da se teret što prije i uz što kraće vrijeme dopremi do odredišta. Otpremnik je organizirao prijevoz željeznicom i s tri ranžirna kolosijeka uputio vagone do četiri skladišta gdje je teret bio uskladišten.

Podaci o broju raspoloživih vagona na pojedinom kolosijeku te broju vagona koje treba uputiti ka pojedinim skladištima kao i vrijeme u minutama potrebno da vagon stigne od kolosijeka do skladišta dani su u tabeli:

Skladište	S_1	S_2	S_3	S ₄	Broj
Kolosijek					vagona
K ₁	25	22	48	32	12
\mathbf{K}_2	50	24	30	41	8
K_3	20	44	39	34	11
Broj vagona	15	5	8	3	31/31

Odrediti optimalan plan upućivanja vagona do pojedinih skladišta s ciljem da "utrošeno" vrijeme bude minimalno. Koliko ono iznosi u satima?

10. Brod za generalni teret iskrcao je četiri vrste tereta na operativnu obalu. Pri iskrcaju teret je odmah sortiran i složen u četiri grupe. Dimenzije i težina tereta pogodne su za prijevoz tog tereta viličarima do tri skladišta.

Broj viličara za pojedinu grupu tereta iznosi 4, 5, 3, 6, respektivno, a pri iskrcaju skladišta mogu prihvatiti 7, 5, 6 viličara, respektivno.

Budući da se radi o obalnom skladištu vrijeme vožnje za pojedinu grupu tereta do određenog skladišta iznosi:

- za 1. grupu tereta
- za 2. grupu tereta
- za 3. grupu tereta
- za 4. grupu tereta
- za 4. grupu tereta
- za 5, 4 i 6 minuta,
5, 3 i 8 minuta,
5, 6 i 7 minuta.

Zadatak je na temelju zadanih podataka odrediti ukupno minimalno vrijeme vožnje i plan kretanja viličara.

Za zadani problem jedinični troškovi, ponuda i potražnja su kako slijedi u tabeli:

Skladište	S_1	S_2	S_3	Broj
Teret				viličara
G_1	7	4	6	4
G_2	5	4	6	5
G ₃ G ₄	5	3	8	3
G_4	5	6	7	6
Broj viličara	7	5	6	18/18

11. Robu smještenu u tri veleprodajna skladišta treba dnevno prevesti do tri maloprodajna skladišta. Količina robe kao i troškovi skladištenja dani su u tabeli:

Skladište	Količina robe	Troškovi
	(t)	(n.j./t)
S_1	30	10
$\mathbf{S_2}$	28	17
S_3	42	12
Ukupno	100	

Narudžbe maloprodajnog skladišta iznose 33, 31, 36 tona respektivno, a troškovi prijevoza robe (novčanim jedinicama/t) od pojedinog veleprodajnog skladišta do pojedinog maloprodajnog skladišta iznose:

Potražnja Skladište	P ₁	P ₂	P ₃
S_1	10	18	21
S_2	20	11	13
S_3	15	9	28

Problem je definiran kao transportni problem s tri ishodišta i tri odredišta. Matrica transporta izgleda ovako:

Potražnja Skladište	P ₁	P ₂	P ₃	Količina
S_1	20	28	31	30
S_2	37	28	30	28
S ₃	27	21	40	42
Narudžbe	33	31	36	100

12. Poduzeće prodaje robu iste uporabne vrijednosti u tri mjesta. Potražnja na prvom prodajnom mjestu je 15 pošiljaka, drugom 10 pošiljaka i trećem 25 pošiljaka tog dobra. Tri proizvođača (dobavljača) mogu isporučiti ove količine: prvi 10 pošiljaka, drugi 25 i treći 15 pošiljaka.

Zavisno od dobavljača i prodajnog mjesta, razlika u cijeni po jednoj pošiljci, izražena u stotinama kuna iznosi:

Prod. mjesto Dobavljač	I.	II.	III.
I.	4	6	8
II.	3	9	11
III.	5	9	7

Poduzeće želi ostvariti maksimalnu razliku u cijeni. Koji program snabdijevanja ostvaruje postavljeni cilj i koliko iznosi maksimalna razlika?

OTVORENI TRANSPORTNI PROBLEMI – ZADACI

ZADATAK 1.

Zadan je problem s tri ishodišta i tri odredišta sljedećeg sadržaja:

Ponuda – 7, 5, 3 jedinica, respektivno.

Potražnja – 8, 4, 6 jedinica, respektivno.

Udaljenost u kilometrima:

10	5	3
8	4	6
12	10	5

Prijevoz na relaciji (2,2) nije moguć.

- a) Postaviti početno rješenje po metodi sjeverozapadnog kuta. Zašto je dobiveno rješenje degenerirano? U koje polje se stavlja kamen s vrijednosti 0?
- b) Odrediti plan prijevoza jedinica iz pojedinog ishodišta do zadanih odredišta uz minimalnu ukupnu udaljenost.

ZADATAK 2.

Razmatra se problem mjesečnog snabdijevanja s određenim proizvodom četiri potrošača iz tri proizvođačka centra. Količine proizvodnje su: 450, 400 i 550 tona, respektivno, a potrebe potrošača: 300, 300, 300 i 300 tona, respektivno.

Udaljenost između proizvođača i potrošača u kilometrima iznose:

Potrošač	1.	2.	3.	4.
Proizvođač				
1.	26	38	19	21
2.	22	40	48	26
3.	30	50	34	20

- a) Izračunati optimalno rješenje, tj. odrediti iznos tona tereta koji će se prevoziti od ishodišta do odredišta najkraćim putem.
- b) Kako bi se protumačio i proveo u praksi rezultat da je $x_{35} = 200$?
- c) Na koji način bi trebalo uzeti u obzir ograničenje da je na relacijama (2,1) i (3,4) obustavljen promet zbog rekonstrukcije prometnice?

ZADATAK 3.

Sa tri lokacije teret se prevozi kamionima na tri sabirna mjesta. Količine na lokacijama A, B, C su 10, 5 i 7 tona, respektivno. Najveće moguće količine tereta na sabirnim mjestima S-1, S-2, S-3 su 3, 7 i 9 tona, respektivno.

Udaljenost od pojedine lokacije do svakog sabirnog mjesta u kilometrima iznosi:

Sabirno mjesto Lokacija	S-1	S-2	S-3
A	8	5	10
В	3	2	8
C	5	4	6

Odrediti plan prijevoza tereta od lokacija A, B i C do sabirnih mjesta S-1, S-2 i S-3 da ukupan iznos tonskih kilometara bude minimalan.

ZADATAK 4.

Odjel veleprodaje koji ima na zalihi određene količine cementa tipa "Portland" smještene u tri skladišta, treba organizirati prijevoz za tri naručitelja prema sljedećim uvjetima. Iz prvog skladišta treba isporučiti 600 tona cementa, iz drugog skladišta 800 tona i iz trećeg skladišta 300 tona cementa. U prvo odredište treba stići 500 tona, u drugo odredište 200 tona, a u treće odredište 1000 tona cementa. Cement je za sva tri naručitelja iste vrste.

Cijene prijevoza u novčanim jedinicama jedne tone cementa po pojedinim relacijama zadane su u tabeli:

Odredište Skladište	O_1	O_2	O ₃
S_1	2	7	5
S_2	3	1	4
S_3	5	3	7

- a) Postaviti rješenje po: metodi sjeverozapadnog kuta i metodi najmanjih troškova te međusobno usporediti i objasniti razlike.
- b) Odabrati jedno početno rješenje iz točke a) i odgovarajućim metodama odrediti optimalno rješenje.
- c) Ispitati kako se mijenja optimalno rješenje ako se potražnja drugog naručitelja poveća 50%. Obrazložiti dobivena rješenja.

ZADATAK 5.

Poduzeće ima tri pogona koji proizvode određeni proizvod i njime snabdijevaju četiri veća potrošačka centra.

Raspoložive količine proizvođača i potrebe potrošača (u tonama) te troškovi prijevoza po jednoj toni dani su u tabeli:

Proizvođač	Potrošač				
Tioizvouac	C_1	C_2	C ₃	C_4	Količine
Pogon A	10	13	17	14	60
Pogon B	9	15	14	16	40
Pogon C	13	14	11	12	80
Potrebe	20	50	45	75	190/180

Direktan prijevoz iz pogona B u centar C₃ nije moguć s obzirom na postojeću mrežu prometnica.

- a) Odrediti plan snabdijevanja četiri potrošačka centra s ciljem da ukupni troškovi prijevoza budu minimalni.
- b) Da li postoji više optimalnih rješenja i ukoliko postoje, objasniti način njihovog izračunavanja. Po čemu se razlikuju dva alternativna rješenja međusobno?

ZADATAK 6.

Poduzeće ima tri pogona koji proizvode određeni proizvod i njime snabdijevaju tri veća potrošačka centra.

Mjesečna proizvodnja po pogonima iznosi 6,4 i 8 tisuća komada, respektivno, a potrošnja potrošača 2, 5 i 7.5 tisuća komada, respektivno.

Troškovi proizvodnje iznose 2, 2.5 i 3 novčane jedinice po komadu proizvoda, a troškovi prijevoza u novčanim jedinicama po komadu dani su u tabeli:

Pogon	C_1	\mathbb{C}_2	C_3
A	10	13	14
В	9	15	16
C	13	14	12

S obzirom na postojeću mrežu prometnica nije moguć direktan prijevoz iz pogona B u centar C_3 .

Odgovarajućim metodama odrediti plan snabdijevanja potrošačkih centara da ukupni troškovi proizvodnje i prijevoza budu minimalni.

ZADATAK 7.

Tri rezervoara snabdijevaju vodom četiri naselja. Kapaciteti rezervoara su: 1210, 1100, 730 litara na sat, a potrebe naselja 95, 325, 416 i 800 litara na sat. Cijena izgradnje vodovoda od i-tog rezervoara do j-tog naselja u milijunima kuna su:

Родонулови	Naselje					
Rezervoar	N-1	N-2	N-3	N-4		
R-1	11	21	13	8		
R-2	4	7	10	13		
R-3	8	6	11	7		

Odrediti minimalne troškove izgradnje vodovoda. Metodu izračunavanja optimalnog rješenja odabrati proizvoljno.

ZADATAK 8.

Iz tri skladišta otprema se određena roba u četiri prodavaonice. Udaljenosti od pojedinog skladišta do svake prodavaonice dane su u tabeli (u km):

Prodavaonice Skladišta	P-1	P-2	P-3	P-4
1.	32	28	50	46
2.	24	34	38	68
3.	56	62	43	76

Troškovi prijevoza zavise linearno od udaljenosti i to 2 novčane jedinice po jednom kilometru udaljenosti.

Kapacitet pojedinog skladišta je 100 tona, ali raspoloživa količina iznosi 80%, 90% i 100% od ukupnog kapaciteta skladišta, respektivno.

Narudžbe prodavaonica su 80, 100,120 i 60 tona robe, respektivno.

Odrediti plan snabdijevanja prodavaonica iz postojećih skladišta uz minimalne troškove prijevoza.

ZADATAK 9.

Dobivena količina proizvoda A (x_1 =700) raspoređuje se na kupce (K_1 , K_2 , K_3), koji su dostavili svoje maksimalne mjesečne potrebe u iznosu od 300, 200 i 350 komada A, respektivno.

Količina proizvoda A raspoređena je u skladištima s obzirom na njihov kapacitet prema proporciji 2:1:2.

Troškovi po jedinici proizvoda A od pojedinih skladišta do sjedišta kupaca, izraženi u novčanim jedinicama, dani su u sljedećoj tabeli:

Kupci Skladište	K ₁	K ₂	K ₃
S_1	30	34	24
$\mathbf{S_2}$	20	28	35
S_3	25	15	10

S obzirom na to da poduzeće snosi troškove prijevoza od skladišta do sjedišta kupaca, potrebno je odrediti raspored proizvedenih količina proizvoda na kupce uz minimalne prijevozne troškove. Analizirati dobiveno optimalno rješenje.

ZADATAK 10.

Problem je zadan sa sljedećim elementima:

Građevinski se radnici dnevno prevoze autobusom od mjesta stanovanja do gradilišta.

• Prijevoz po jednom radniku u novčanim jedinicama plaća poduzeće koje zapošljava radnike prijevozniku prema ugovoru ovisno o mjestu stanovanja i gradilištu:

7	8	3	8
9	13	1	4
4	7	2	5

- Mjesta stanovanja su A, B, C; broj raspoloživih radnika 10,5,5, respektivno.
- Gradilišta su G₁, G₂, G₃, G₄; broj potrebnih radnika 10, 8, 4, 8, respektivno.
 - a) Na temelju zadanih elemenata definirati zadatak i odrediti kriterij optimizacije.
 - b) Izračunati optimalno rješenje i objasniti dobivene rezultate. Budući da je broj raspoloživih radnika manji od potrebnog broja na gradilištima, koje gradilište, prema optimalnom rješenju, ima najnepovoljniju lokaciju?
 - c) Da li je za prijevoz, koji se redovito odvija na nekoj relaciji za posebnu skupinu korisnika (tzv. poseban prijevoz), povoljnije ugovoriti iznos prema broju osoba i duljini relacije ili, pak, fiksni iznos za dnevnu vožnju autobusom bez obzira na broj osoba? Može li ista odluka zadovoljiti interese prijevoznika i korisnika usluge prijevoza?

ZADATAK 11.

Zbog ograničenog kapaciteta lučkih skladišta, zamrznute namirnice koje stižu brodovima odnose se sa tri raspoloživa kamiona-hladnjače u četiri pozadinska skladišta – hladnjače.

Dnevni kapaciteti kamiona-hladnjača su: prvi kamion 25 t, drugi 10 t i treći 35t. Dnevne mogućnosti uskladištenja zamrznute robe u pozadinskim hladnjačama iznose: prvog skladišta 45 t, drugog 15 t, trećeg 20 t i četvrtog skladišta 30 t.

Troškovi prijevoza od luke do skladišta-hladnjača u novčanim jedinicama iznose:

Skladišta	$\mathbf{S_1}$	S_2	S_3	S_4
Kamioni				
$\mathbf{K_1}$	10	20	14	22
\mathbf{K}_2	12	10	18	18
\mathbf{K}_3	14	15	12	14

- a) Izračunati program prijevoza smrznutih namirnica, tako da ukupni troškovi prijevoza budu minimalni.
- b) Objasniti slučajeve kada neko skladište neće biti popunjeno.
- c) Izračunati program prijevoza ako prijevoz nije moguće izvesti na relaciji (2,2).

ZADATAK 12.

Proizvod A se prodaje na skladištima u Rijeci, Puli i Karlovcu. Kupci K-1, K-2, K-3 i K-4 potražuju 300, 300, 400 i 200 komada tog proizvoda. Proizvedena količina proizvoda A iznosi 1000 komada i raspoređuje se na skladišta u Rijeci 50%, Puli 20% i Karlovcu 30%.

Uvjeti isporuke proizvoda su fco kupac pa treba utvrditi takav plan prijevoza proizvoda A od skladišta do kupaca da ukupni troškovi prijevoza budu minimalni.

Troškovi prijevoza u novčanim jedinicama po jednom komadu iznose:

Kupac Skladište	K-1	K-2	K-3	K-4
Pula	60	100	120	80
Rijeka	60	100	100	90
Karlovac	50	70	90	60

ZADATAK 13.

Na željezničke stanice Rijeka, Zagreb, Ljubljana i Karlovac jednom mjesečno stiže pošiljka od 2000, 1000, 200 i 500 komada nekog proizvoda, respektivno. Navedeni proizvod se prodaje u Rijeci, Senju, Sisku i Puli čija potražnja iznosi 1500, 800, 700 i 1000 komada, respektivno.

Pošiljka se dostavlja kamionima od željezničke stanice do potrošača. Prijevoz kamiona organizira otpremnik "Animo". Cestovna udaljenost od pojedine željezničke stanice do potrošača u kilometrima iznosi:

Mjesto	Rijeka	Senj	Sisak	Pula
Rijeka	0	70	208	102
Zagreb	186	234	60	288
Ljubljana	127	197	199	207
Karlovac	130	178	78	232

Na teritoriju Hrvatske cijena prijevoza kamionima je ujednačena i iznosi jednu novčanu jedinicu po kilometru udaljenosti, ali u Sloveniji, s obzirom na tečaj valute, prijevoz iz Ljubljane je 2,5 puta skuplji.

Odgovarajućim metodama odrediti količine proizvoda koje će se prevoziti od pojedine željezničke stanice do svakog potrošača, s ciljem da ukupni troškovi prijevoza budu minimalni.