

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Grundlagen der Multimediatechnik – Tutorium

Informationstheorie & Textcodierung

Teilnahme auf ALMA registrieren

BESPRECHUNG ÜBUNG 1

Informationstheorie

Diskrete gedächtnislose Quelle

- → Betrachten jedes Zeichen unabhängig von seinen Nachbarn
- Quelle Q: ANANAS
- Zeichenvorrat X: {A, N, S}
- Auftrittswahrscheinlichkeiten p: $p_A = \frac{3}{6}$, $p_N = \frac{2}{6}$, $p_A = \frac{1}{6}$
- Informationsgehalt $I_i = -\log_2 p_i$: $I_A = -\log_2 p_A$
- Entscheidungsgehalt $H_0 = \log_2 |X|$
- Entropie $H(Q) = -\sum p_i \log_2 p_i$
- Durschn. Wortlänge $\overline{L} = \sum p_i \cdot |c(x_i)|$ hier $\forall x_i : |c(x_i)| = 1$
- Redundanz $R_Q = H_0 H(Q)$ oder $R = \overline{L} H(Q)$

Entropiekodierungen

- Datensemantik wird ignoriert
- Verlustfreie Komprimierung
- Lauflängenkodierung (RLE) ist nur gewinnbringend, wenn es viele gleiche Zeichen hintereinander in einem Wort gibt
- Huffman-Kodierung erzeugt einen optimalen Code mit möglichst kleiner mittlerer Codewortlänge
- Burrows-Wheeler-Transformation sortiert die Zeichen einer Quelle, so dass mit RLE komprimiert werden kann