Không gian vector

Hà Minh Lam hmlam@math.ac.vn

2021 - 2022

Tóm tắt

- 1 Vector trong mặt phẳng (\mathbb{R}^2)
- 2 Vector trong \mathbb{R}^n
- Skhông gian vector
- 4 Không gian vector con

Tóm tắt

- lacktriangledown Vector trong mặt phẳng (\mathbb{R}^2)
- 2 Vector trong \mathbb{R}^n
- 3 Không gian vector
- 4 Không gian vector con

Vector trong mặt phẳng

Hình: Larson et al., p. 180

- Một vector trong mặt phẳng là một đoạn thẳng có hướng:
 - điểm đầu là gốc tọa độ (0,0),
 - diểm cuối có tọa độ (x, y).
- Tọa độ của vector là tọa độ của điểm cuối: $\mathbf{u} = (x, y)$.

Vector trong mặt phẳng

Hình: Larson et al., p. 180

- Một vector trong mặt phẳng là một đoạn thẳng có hướng:
 - điểm đầu là gốc tọa độ (0,0),
 - diểm cuối có tọa độ (x, y).
- $T_{oa} \ d\hat{o}$ của vector là tọa độ của điểm cuối: $\mathbf{u} = (x, y)$.
- Hai vector $\mathbf{u}(x_1, y_1)$ và $\mathbf{v}(x_2, y_2)$ bằng nhau nếu $x_1 = x_2, y_1 = y_2$.

Phép cộng vector

Hình: Larson et al., p. 180

- $T \hat{o} n g$ của hai vector $\mathbf{u}(x_1, y_1)$ và $\mathbf{v}(x_2, y_2)$, ký hiệu là $\mathbf{u} + \mathbf{v}$:
 - là một vector;
 - $\mathbf{u} + \mathbf{v} = (x_1 + x_2, y_1 + y_2).$

Phép cộng vector

- \overrightarrow{Tong} của hai vector $\mathbf{u}(x_1, y_1)$ và $\mathbf{v}(x_2, y_2)$, ký hiệu là $\mathbf{u} + \mathbf{v}$:
 - là một vector;
 - $\mathbf{u} + \mathbf{v} = (x_1 + x_2, y_1 + y_2).$
- Trên mặt phẳng, phép cộng vector có thể được thực hiện nhờ quy tắc hình bình hành.

Phép cộng vector

Hình: Larson et al., p. 180

- \overrightarrow{Tong} của hai vector $\mathbf{u}(x_1, y_1)$ và $\mathbf{v}(x_2, y_2)$, ký hiệu là $\mathbf{u} + \mathbf{v}$:
 - là một vector;
 - $\mathbf{u} + \mathbf{v} = (x_1 + x_2, y_1 + y_2).$
- Trên mặt phẳng, phép cộng vector có thể được thực hiện nhờ quy tắc hình bình hành.
- Vector không $\mathbf{0} = (0,0)$ thỏa mãn $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ với mọi vector \mathbf{u} .

 Tích của một vector u(x, y) với một số thực c :

6/34

- là một vector;
- $c\mathbf{u} = (cx, cy)$.

- Tích của một vector u(x, y) với một số thực c :
 - là một vector;
 - cu = (cx, cy).
- Hai vector u và cu là cùng hướng nếu c > 0, ngược hướng nếu c < 0.

- Tích của một vector u(x, y) với một số thực c :
 - là một vector;
 - cu = (cx, cy).
- Hai vector u và cu là cùng hướng nếu c > 0, ngược hướng nếu c < 0.
- Vector đối của \mathbf{u} là $-\mathbf{u} = (-1)\mathbf{u}$.

- Tích của một vector u(x, y) với một số thực c:
 - là một vector;
 - cu = (cx, cy).
- Hai vector u và cu là cùng hướng nếu c > 0, ngược hướng nếu c < 0.
- Vector đối của \mathbf{u} là $-\mathbf{u} = (-1)\mathbf{u}$.
- *Phép trừ* vector: $\mathbf{u} \mathbf{v} = \mathbf{u} + (-\mathbf{v})$.

Cho
$$\mathbf{u} = (3,4)$$
 và $\mathbf{v} = (-2,5)$. Tính: $\bullet \ \frac{1}{2}\mathbf{v}$?

Cho
$$\mathbf{u}=(3,4)$$
 và $\mathbf{v}=(-2,5)$. Tính:

• $\frac{1}{2}$ **v**?

$$\frac{1}{2}\textbf{v} = \left(\frac{1}{2}\times(-2),\frac{1}{2}\times5\right) = \left(-1,\frac{5}{2}\right)\,.$$

Cho
$$\mathbf{u} = (3,4)$$
 và $\mathbf{v} = (-2,5)$. Tính:

• $\frac{1}{2}$ **v**?

$$\frac{1}{2}\textbf{v} = \left(\frac{1}{2}\times(-2),\frac{1}{2}\times5\right) = \left(-1,\frac{5}{2}\right)\,.$$

• $\mathbf{u} - \mathbf{v}$?

Cho $\mathbf{u} = (3,4)$ và $\mathbf{v} = (-2,5)$. Tính:

• $\frac{1}{2}$ **v**?

$$\frac{1}{2}\textbf{v} = \left(\frac{1}{2}\times(-2),\frac{1}{2}\times5\right) = \left(-1,\frac{5}{2}\right)\,.$$

• $\mathbf{u} - \mathbf{v}$?

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = (3,4) + (2,-5) = (5,-1).$$

Cho $\mathbf{u} = (3,4)$ và $\mathbf{v} = (-2,5)$. Tính:

• $\frac{1}{2}$ **v**?

$$\frac{1}{2}\textbf{v} = \left(\frac{1}{2}\times(-2),\frac{1}{2}\times5\right) = \left(-1,\frac{5}{2}\right)\,.$$

• $\mathbf{u} - \mathbf{v}$?

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = (3,4) + (2,-5) = (5,-1).$$

• $u + \frac{1}{2}v$?

Cho $\mathbf{u} = (3,4)$ và $\mathbf{v} = (-2,5)$. Tính:

• $\frac{1}{2}$ **v**?

$$\frac{1}{2}\textbf{v} = \left(\frac{1}{2}\times(-2),\frac{1}{2}\times5\right) = \left(-1,\frac{5}{2}\right)\,.$$

• $\mathbf{u} - \mathbf{v}$?

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = (3,4) + (2,-5) = (5,-1).$$

• $\mathbf{u} + \frac{1}{2}\mathbf{v}$?

$$\mathbf{u} + \frac{1}{2}\mathbf{v} = (3,4) + (-1,\frac{5}{2}) = (2,\frac{13}{2}).$$

Các tính chất của phép cộng và phép nhân với vô hướng

Định lý

Những điều sau đúng với mọi vector \mathbf{u} , \mathbf{v} , \mathbf{w} và với mọi số c, d:

- $\mathbf{0} \mathbf{u} + \mathbf{v} l \hat{a} m \hat{o} t vector.$ [tính đóng của phép cộng]
- 2 $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$. [tính giao hoán]
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$. [tính kết hợp của phép cộng]
- $\mathbf{0} \ \mathbf{u} + \mathbf{0} = \mathbf{u}$. [phần tử trung lập của phép cộng]
- o cu là một vector. [tính đóng của phép nhân với vô hướng]
- $oldsymbol{o}$ $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$. [tính phân phối]
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$. [tính phân phối]
- $\mathbf{0}$ $1\mathbf{u} = \mathbf{u}$. [phần tử trung lập của phép nhân]

Tóm tắt

- 1 Vector trong mặt phẳng (\mathbb{R}^2)
- 2 Vector trong \mathbb{R}^n
- Không gian vector
- Không gian vector con

Vector trong \mathbb{R}^n

Khái niệm vector trong mặt phẳng tọa độ có thể được mở rộng cho những bộ sắp thứ tự gồm n giá trị:

• Mỗi *vector* được đồng nhất với một "điểm": $\mathbf{u} = (x_1, x_2, \dots, x_n)$.

Vector trong \mathbb{R}^n

Khái niệm vector trong mặt phẳng tọa độ có thể được mở rộng cho những bộ sắp thứ tự gồm n giá trị:

- Mỗi *vector* được đồng nhất với một "điểm": $\mathbf{u} = (x_1, x_2, \dots, x_n)$.
- Hai vector bằng nhau nếu tất cả các thành phần tương ứng của chúng bằng nhau:

$$\mathbf{u}(x_1,\ldots,x_n)=\mathbf{v}(y_1,\ldots,y_n)\iff x_1=y_1,\ldots,x_n=y_n.$$

• $T \hat{o} n g$ của hai vector $\mathbf{u} = (x_1, \dots, x_n)$ và $\mathbf{v} = (y_1, \dots, y_n)$ cũng là một vector trong \mathbb{R}^n :

$$\mathbf{u}+\mathbf{v}=(x_1+y_1,\ldots,x_n+y_n).$$

ullet Tich của một vector ${f u}=(x_1,\ldots,x_n)$ và một vô hướng $c\in\mathbb{R}$ là

$$c\mathbf{u}=(cx_1,\ldots,cx_n).$$

• $T \circ ng$ của hai vector $\mathbf{u} = (x_1, \dots, x_n)$ và $\mathbf{v} = (y_1, \dots, y_n)$ cũng là một vector trong \mathbb{R}^n :

$$\mathbf{u}+\mathbf{v}=(x_1+y_1,\ldots,x_n+y_n).$$

• Tích của một vector $\mathbf{u}=(x_1,\ldots,x_n)$ và một vô hướng $c\in\mathbb{R}$ là $c\mathbf{u}=(cx_1,\ldots,cx_n)$.

• Vector không: $\mathbf{0} = (0, \dots, 0)$ thỏa mãn $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ với mọi vector \mathbf{u} .

• $T \circ ng$ của hai vector $\mathbf{u} = (x_1, \dots, x_n)$ và $\mathbf{v} = (y_1, \dots, y_n)$ cũng là một vector trong \mathbb{R}^n :

$$\mathbf{u}+\mathbf{v}=(x_1+y_1,\ldots,x_n+y_n).$$

• *Tích* của một vector $\mathbf{u}=(x_1,\ldots,x_n)$ và một *vô hướng* $c\in\mathbb{R}$ là $c\mathbf{u}=(cx_1,\ldots,cx_n)$.

- Vector không: $\mathbf{0} = (0, \dots, 0)$ thỏa mãn $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ với mọi vector \mathbf{u} .
- Vector đối của $\mathbf{u} = (x_1, \dots, x_n)$ là

$$-\mathbf{u}=\left(-x_1,\ldots,-x_n\right).$$

• $T \circ ng$ của hai vector $\mathbf{u} = (x_1, \dots, x_n)$ và $\mathbf{v} = (y_1, \dots, y_n)$ cũng là một vector trong \mathbb{R}^n :

$$\mathbf{u}+\mathbf{v}=(x_1+y_1,\ldots,x_n+y_n).$$

• *Tích* của một vector $\mathbf{u}=(x_1,\ldots,x_n)$ và một *vô hướng* $c\in\mathbb{R}$ là $c\mathbf{u}=(cx_1,\ldots,cx_n)$.

- Vector không: $\mathbf{0} = (0, \dots, 0)$ thỏa mãn $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ với mọi vector \mathbf{u} .
- *Vector đối* của $\mathbf{u} = (x_1, \dots, x_n)$ là

$$-\mathbf{u}=\left(-x_1,\ldots,-x_n\right).$$

• Hiệu của hai vector $\mathbf{u} = (x_1, \dots, x_n)$ và $\mathbf{v} = (y_1, \dots, y_n)$ là

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = (x_1 - y_1, \dots, x_n - y_n).$$

11 / 34

H. M. Lam Không gian vector 2021-2022

Các tính chất của phép cộng và phép nhân với vô hướng

Định lý

Những điều sau đúng với mọi vector \mathbf{u} , \mathbf{v} , \mathbf{w} và với mọi số c, d:

- $\mathbf{0}$ $\mathbf{u} + \mathbf{v}$ là một vector. [tính đóng của phép cộng]
- 2 $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$. [tính giao hoán]
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$. [tính kết hợp của phép cộng]
- $\mathbf{u} + \mathbf{0} = \mathbf{u}$. [phần tử trung lập của phép cộng]
- **5** $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$. [phần tử đối]
- o cu là một vector. [tính đóng của phép nhân với vô hướng]
- $oldsymbol{o}$ $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$. [tính phân phối]
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$. [tính phân phối]
- $\mathbf{0}$ $1\mathbf{u} = \mathbf{u}$. [phần tử trung lập của phép nhân]

Cho các vector trong \mathbb{R}^4 : $\mathbf{u}=(2,-1,5,0)$, $\mathbf{v}=(4,3,1,-1)$, $\mathbf{w}=(-6,-2,0,3)$. Tìm $\mathbf{x}\in\mathbb{R}^4$ biết rằng: (a) $\mathbf{x}=2\mathbf{u}-(\mathbf{v}+3\mathbf{w})$

Cho các vector trong \mathbb{R}^4 : $\mathbf{u}=(2,-1,5,0)$, $\mathbf{v}=(4,3,1,-1)$, $\mathbf{w}=(-6,-2,0,3)$. Tìm $\mathbf{x}\in\mathbb{R}^4$ biết rằng:

(a) $\mathbf{x} = 2\mathbf{u} - (\mathbf{v} + 3\mathbf{w})$ Tính biểu thức trong dấu ngoặc trước:

$$\mathbf{v} + 3\mathbf{w} = (-14, -3, 1, 8)$$

 $\implies \mathbf{x} = 2\mathbf{u} - (\mathbf{v} + 3\mathbf{w})$
 $= (18, 1, 9, -8).$

Sử dụng tính chất phân phối để bỏ dấu ngoặc:

$$-(\mathbf{v} + \mathbf{3}w) = -\mathbf{v} - 3\mathbf{w}$$

$$\implies \mathbf{x} = 2\mathbf{u} - \mathbf{v} - 3\mathbf{w}$$

$$= (18, 1, 9, -8).$$

Cho các vector trong \mathbb{R}^4 : $\mathbf{u}=(2,-1,5,0)$, $\mathbf{v}=(4,3,1,-1)$, $\mathbf{w}=(-6,-2,0,3)$. Tìm $\mathbf{x}\in\mathbb{R}^4$ biết rằng:

(a) $\mathbf{x} = 2\mathbf{u} - (\mathbf{v} + 3\mathbf{w})$ Tính biểu thức trong dấu ngoặc trước:

$$\mathbf{v} + 3\mathbf{w} = (-14, -3, 1, 8)$$

$$\implies \mathbf{x} = 2\mathbf{u} - (\mathbf{v} + 3\mathbf{w})$$

$$= (18, 1, 9, -8).$$
(b) $3(\mathbf{x} + \mathbf{w}) = 2\mathbf{u} - \mathbf{v} + \mathbf{x}$

Sử dụng tính chất phân phối để bỏ dấu ngoặc:

$$-(\mathbf{v} + \mathbf{3}\mathbf{w}) = -\mathbf{v} - 3\mathbf{w}$$

$$\implies \mathbf{x} = 2\mathbf{u} - \mathbf{v} - 3\mathbf{w}$$

$$= (18, 1, 9, -8).$$

Cho các vector trong \mathbb{R}^4 : $\mathbf{u}=(2,-1,5,0)$, $\mathbf{v}=(4,3,1,-1)$, $\mathbf{w}=(-6,-2,0,3)$. Tìm $\mathbf{x}\in\mathbb{R}^4$ biết rằng:

(a) $\mathbf{x} = 2\mathbf{u} - (\mathbf{v} + 3\mathbf{w})$ Tính biểu thức trong dấu ngoặc trước:

Sử dụng tính chất phân phối để bỏ dấu ngoặc:

$$\mathbf{v} + 3\mathbf{w} = (-14, -3, 1, 8)$$

 $\implies \mathbf{x} = 2\mathbf{u} - (\mathbf{v} + 3\mathbf{w})$
 $= (18, 1, 9, -8).$

$$-(\mathbf{v} + \mathbf{3}w) = -\mathbf{v} - 3\mathbf{w}$$

$$\implies \mathbf{x} = 2\mathbf{u} - \mathbf{v} - 3\mathbf{w}$$

$$= (18, 1, 9, -8).$$

(b)
$$3(x + w) = 2u - v + x$$

$$3x + 3w = 2u - v + x$$

 $2x = 2u - v - 3w$
 $2x = (18, 1, 9, -8)$
 $x = (9, \frac{1}{2}, \frac{9}{2}, -4)$.

Định lý

Trong không gian \mathbb{R}^n :

- Vector 0 là duy nhất.
- 2 Với mọi vector **v**, vector đối của **v** là duy nhất.

Định lý

Trong không gian \mathbb{R}^n :

- Vector 0 là duy nhất.
- 2 Với mọi vector **v**, vector đối của **v** là duy nhất.

Chứng minh

f 0 Giả sử có hai vector không là $f 0_1$ và $f 0_2$. Ta có:

$$egin{aligned} \mathbf{0}_1 &= \mathbf{0}_1 + \mathbf{0}_2 \ ext{(vi } \mathbf{0}_2 \ ext{là vector không}) \ &= \mathbf{0}_2 \ ext{(vi } \mathbf{0}_1 \ ext{là vector không}) \,. \end{aligned}$$

② Giả sử tồn tại một vector \mathbf{v} có hai vector đối là \mathbf{w}_1 và \mathbf{w}_2 . Ta có:

$$\begin{aligned} \textbf{w}_1 &= \textbf{w}_1 + \textbf{0} = \textbf{w}_1 + (\textbf{v} + \textbf{w}_2) \\ &= (\textbf{w}_1 + \textbf{v}) + \textbf{w}_2 = \textbf{0} + \textbf{w}_2 = \textbf{w}_2 \,. \end{aligned}$$

Định lý

Với mọi $\mathbf{v}, \mathbf{u} \in \mathbb{R}^n$ và $c \in \mathbb{R}$:

- **2** 0v = 0.
- **3** c**0** = **0**.
- 4 Nếu $c\mathbf{v} = \mathbf{0}$ thì c = 0 hoặc $\mathbf{v} = \mathbf{0}$.
- $\mathbf{0} (-\mathbf{v}) = \mathbf{v}$.

Định lý

Với mọi $\mathbf{v}, \mathbf{u} \in \mathbb{R}^n$ và $c \in \mathbb{R}$:

- **2** $0\mathbf{v} = \mathbf{0}$.
- **3** c**0** = **0**.

- $(-\mathbf{v}) = \mathbf{v} .$

Chứng minh

- ◆ Thêm -v vào (bên trái) hai vế của đẳng thức.
- ② $0\mathbf{v} = (0+0)\mathbf{v} = 0\mathbf{v} + 0\mathbf{v}$. Thêm $-(0\mathbf{v})$ vào hai vế ta thu được $0\mathbf{v} = \mathbf{0}$.
- **0**c**0**= c(**0**+**0**) = c**0**+ c**0**.
- **3** Nếu $c \neq 0$, nhân hai vế với 1/c ta thụ được $1\mathbf{v} = \mathbf{0}$ hay $\mathbf{v} = \mathbf{0}$.
- **1** Thêm $-\mathbf{v}$ vào (bên trái) hai vế của đẳng thức.
- Do định nghĩa.

Tổ hợp tuyến tính

Xét các vector $\mathbf{x}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ trong \mathbb{R}^n .

Ta nói vector \mathbf{x} là một $t\mathring{o}$ hợp tuyến tính của các vector $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ nếu tồn tại các vô hướng c_1, c_2, \dots, c_k sao cho:

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k.$$

2021-2022

Tổ hợp tuyến tính

Xét các vector $\mathbf{x}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ trong \mathbb{R}^n .

Ta nói vector \mathbf{x} là một $t\mathring{o}$ hợp tuyến tính của các vector $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ nếu tồn tại các vô hướng c_1, c_2, \dots, c_k sao cho:

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k.$$

Ví dụ: Vector $\mathbf{x}=(-1,-2,-2)$ có phải là tổ hợp tuyến tính của các vector $\mathbf{u}=(0,1,4), \mathbf{v}=(-1,1,2), \mathbf{w}=(3,1,2)$?

Tổ hợp tuyến tính

Xét các vector $\mathbf{x}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ trong \mathbb{R}^n .

Ta nói vector \mathbf{x} là một $t\mathring{o}$ hợp tuyến tính của các vector $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ nếu tồn tại các vô hướng c_1, c_2, \dots, c_k sao cho:

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k.$$

Ví dụ: Vector $\mathbf{x} = (-1, -2, -2)$ có phải là tổ hợp tuyến tính của các vector $\mathbf{u} = (0, 1, 4), \mathbf{v} = (-1, 1, 2), \mathbf{w} = (3, 1, 2)$?

Ta tìm các số a, b, c sao cho $\mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$:

Tổ hợp tuyến tính

Xét các vector $\mathbf{x}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ trong \mathbb{R}^n .

Ta nói vector \mathbf{x} là một $t\mathring{o}$ hợp tuyến tính của các vector $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ nếu tồn tại các vô hướng c_1, c_2, \dots, c_k sao cho:

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k.$$

Ví dụ: Vector $\mathbf{x} = (-1, -2, -2)$ có phải là tổ hợp tuyến tính của các vector $\mathbf{u} = (0, 1, 4), \mathbf{v} = (-1, 1, 2), \mathbf{w} = (3, 1, 2)$?

Ta tìm các số a, b, c sao cho $\mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$:

$$(-1, -2, -2) = a(0, 1, 4) + b(-1, 1, 2) + c(3, 1, 2)$$

$$(-1, -2, -2) = (-b + 3c, a + b + c, 4a + 2b + 2c)$$

Đồng nhất các phần tử tương ứng và giải hệ pttt ta được a=1,b=-2,c=-1. Vây ${\bf x}={\bf u}-2{\bf v}-{\bf w}$.

Tóm tắt

- lacksquare Vector trong mặt phẳng (\mathbb{R}^2)
- 2 Vector trong \mathbb{R}^n
- 3 Không gian vector
- 4 Không gian vector con

Không gian vector

Định nghĩa

Một không gian vector V được xác định bởi:

- Một tập hợp V;
- Hai phép toán trên V:
 - phép cộng,
 - phép nhân với vô hướng;

sao cho các tiên đề về không gian vector (xem trang sau) được thỏa mãn.

Không gian vector

Định nghĩa

- $\mathbf{0} \ \forall \mathbf{u} \in V, \forall \mathbf{v} \in V, \mathbf{u} + \mathbf{v} \in V.$ [tính đóng của phép cộng]
- $\forall \mathbf{u} \in V, \forall \mathbf{v} \in V, \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$ [tính giao hoán]
- $\forall \mathbf{u} \in V, \forall \mathbf{v} \in V, \forall \mathbf{w} \in V, (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$ [tính kết hợp của phép cộng]
- **3** ∃**0** ∈ V : \forall **u** ∈ V, **u** + **0** = **u**. [phần tử trung lập của phép cộng]

- $\forall \mathbf{u} \in V, \forall \mathbf{v} \in V, \forall c \in \mathbb{R}, c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.$ [tính phân phối]
- $\forall \mathbf{u} \in V, \forall c \in \mathbb{R}, \forall d \in \mathbb{R}, c(d\mathbf{u}) = (cd)\mathbf{u}$. [tính kết hợp của phép nhân]
- $\mathbf{0} \ \forall \mathbf{u} \in V, 1\mathbf{u} = \mathbf{u}$. [phần tử trung lập của phép nhân]

- Tập hợp các số thực $\mathbb R$ với phép cộng và phép nhân thông thường là một không gian vector:
 - Các tính chất giao hoán, kết hợp, phân phối, ... được thừa hưởng từ phép cộng và phép nhân các số thực;
 - Phần tử trung lập của phép cộng ("vector không") là 0; phần tử đối của a là -a.

- ullet Tâp hợp các số thực $\mathbb R$ với phép cộng và phép nhân thông thường là môt không gian vector:
 - Các tính chất giao hoán, kết hợp, phân phối, ... được thừa hưởng từ phép công và phép nhân các số thực;
 - Phần tử trung lập của phép công ("vector không") là 0; phần tử đối của a là -a.
- \mathbb{R}^n $(n \geq 2)$ với hai phép toán thông thường là một không gian vector:
 - Các tính chất giao hoán, kết hợp, phân phối, ... được thừa hưởng từ phép công và phép nhân với vô hướng trong \mathbb{R}^n ;
 - Phần tử trung lập của phép công là $\mathbf{0} = (0, 0, \dots, 0)$; phần tử đối của $\mathbf{v} = (x_1, x_2, \dots, x_n) \mid \hat{\mathbf{v}} = (-x_1, -x_2, \dots, -x_n).$

- Tập hợp $M_{2,2}$ gồm tất cả các ma trận 2×2 , với phép cộng ma trận và phép nhân với vô hướng là một không gian vector:
 - Các tính chất giao hoán, kết hợp, phân phối, ... được thừa hưởng từ phép cộng ma trận và phép nhân với vô hướng;
 - ullet Phần tử trung lập của phép cộng là ma trận $\mathcal{O}_{2,2}$; phần tử đối của

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} l \grave{a} - A = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}.$$

- Tập hợp $M_{2,2}$ gồm tất cả các ma trận 2×2 , với phép cộng ma trận và phép nhân với vô hướng là một không gian vector:
 - Các tính chất giao hoán, kết hợp, phân phối, ... được thừa hưởng từ phép cộng ma trận và phép nhân với vô hướng;
 - Phần tử trung lập của phép cộng là ma trận $\mathcal{O}_{2,2}$; phần tử đối của $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ là $-A = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$.
- Tập hợp $M_{m,n}$ gồm tất cả các ma trận $m \times n$, với phép cộng ma trận và phép nhân với vô hướng là một không gian vector.

• Tập hợp $P_2 = \{p(x) = a_2x^2 + a_1x + a_0 | a_0, a_1, a_2 \in \mathbb{R}\}$ các đa thức bậc *không quá 2* với hai phép toán:

$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$
$$c(a_2x^2 + a_1x + a_0) = ca_2x^2 + ca_1x + ca_0$$

- Tính đóng của các phép toán: từ định nghĩa trên.
- Các tính chất giao hoán, kết hợp, phân phối, ...: thừa hưởng từ các phép cộng và phép nhân của đa thức.
- Phần tử trung lập của phép cộng là đa thức $\mathbf{0}(x)$ ($a_0 = a_1 = a_2 = 0$); phần tử đối của $a_2x^2 + a_1x + a_0$ là $-a_2x^2 a_1x a_0$.

• Tập hợp $P_2 = \{p(x) = a_2x^2 + a_1x + a_0 | a_0, a_1, a_2 \in \mathbb{R}\}$ các đa thức bậc *không quá 2* với hai phép toán:

$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$
$$c(a_2x^2 + a_1x + a_0) = ca_2x^2 + ca_1x + ca_0$$

- Tính đóng của các phép toán: từ định nghĩa trên.
- Các tính chất giao hoán, kết hợp, phân phối, ...: thừa hưởng từ các phép cộng và phép nhân của đa thức.
- Phần tử trung lập của phép cộng là đa thức $\mathbf{0}(x)$ ($a_0 = a_1 = a_2 = 0$); phần tử đối của $a_2x^2 + a_1x + a_0$ là $-a_2x^2 a_1x a_0$.
- Tập hợp P_n các đa thức bậc không quá n cùng với phép cộng và phép nhân với vô hướng được định nghĩa tương tự như trên là một không gian vector.

• Tập hợp $\mathcal{C}(-\infty,\infty)$ gồm tất cả các hàm liên tục trên $\mathbb R$ với hai phép toán:

$$(f+g)(x) = f(x) + g(x)$$
$$(cf)(x) = c(f(x))$$

- Tính đóng của các phép toán: do tính chất của hàm liên tục.
- Các tính chất giao hoán, kết hợp, phân phối, \dots : thừa hưởng từ các phép cộng và phép nhân trong \mathbb{R} .
- Phần tử trung lập của phép cộng là hàm $f_0 \equiv 0$; phần tử đối của f(x) được xác định bởi (-f)(x) = -(f(x)) với mọi $x \in \mathbb{R}$. (Bài tập: Chứng minh rằng 1) f_0 là hàm liên tục và 2) -f là hàm liên tục nếu f liên tục.)

• Tập hợp $\mathcal{C}(-\infty,\infty)$ gồm tất cả các hàm liên tục trên \mathbb{R} với hai phép toán:

$$(f+g)(x) = f(x) + g(x)$$
$$(cf)(x) = c(f(x))$$

- Tính đóng của các phép toán: do tính chất của hàm liên tục.
- Các tính chất giao hoán, kết hợp, phân phối, \dots : thừa hưởng từ các phép cộng và phép nhân trong \mathbb{R} .
- Phần tử trung lập của phép cộng là hàm $f_0 \equiv 0$; phần tử đối của f(x) được xác định bởi (-f)(x) = -(f(x)) với mọi $x \in \mathbb{R}$. (Bài tập: Chứng minh rằng 1) f_0 là hàm liên tục và 2) -f là hàm liên tục nếu f liên tục.)
- Tương tự, các tập hợp sau cùng với các phép toán thông thường cũng là các không gian vector:
 - Tập hợp các hàm liên tục trên một miền $D \subset \mathbb{R}$ (khoảng đóng, khoảng mở, ...).
 - Tập hợp các hàm khả vi trên một miền $D \subset \mathbb{R}$.
 - ullet Tâp hơp các hàm khả tích trên một miền $D\subset \mathbb{R}.$

 \bullet Tập hợp $\mathbb Z$ các số nguyên với hai phép toán thông thường không phải một không gian vector.

- \bullet Tập hợp $\mathbb Z$ các số nguyên với hai phép toán thông thường không phải một không gian vector.
- Tập hợp \mathbb{R}^+ gồm các số thực dương cùng với hai phép toán thông thường không phải một không gian vector.

- \bullet Tập hợp $\mathbb Z$ các số nguyên với hai phép toán thông thường không phải một không gian vector.
- Tập hợp \mathbb{R}^+ gồm các số thực dương cùng với hai phép toán thông thường không phải một không gian vector.
- Tập hợp các đa thức bậc 2 cùng với hai phép toán thông thường không phải một không gian vector.

- \bullet Tập hợp $\mathbb Z$ các số nguyên với hai phép toán thông thường không phải một không gian vector.
- Tập hợp \mathbb{R}^+ gồm các số thực dương cùng với hai phép toán thông thường không phải một không gian vector.
- Tập hợp các đa thức bậc 2 cùng với hai phép toán thông thường không phải một không gian vector.
- ullet Tập hợp \mathbb{R}^2 với phép cộng thông thường và phép nhân sau:

$$c(x_1, x_2) = (cx_1, 0)$$

không phải một không gian vector.

Vector không và vector đối

Định lý

Cho V là một không gian vector.

- Vector 0 là duy nhất.
- ② Với mọi vector **v**, vector đối của **v** là duy nhất.

Định lý

Cho V là một không gian vector. Với mọi $\mathbf{v}, \mathbf{u} \in V$ và $c \in \mathbb{R}$:

- **2** 0v = 0.
- **3** c**0** = **0**.
- 4 Nếu c $\mathbf{v} = \mathbf{0}$ thì c = 0 hoặc $\mathbf{v} = \mathbf{0}$.
- (-v) = v.

Tóm tắt

- lacktriangle Vector trong mặt phẳng (\mathbb{R}^2)
- 2 Vector trong \mathbb{R}^n
- 3 Không gian vector
- 4 Không gian vector con

Không gian vector con

Ví dụ: Trong không gian vector \mathbb{R}^3 , xét

$$W = \{(x_1, x_2, 0) \mid x_1 \in \mathbb{R}, x_2 \in \mathbb{R}\} \pmod{Oxy}.$$

Ta có thể kiểm tra rằng W cùng với hai phép toán của \mathbb{R}^3 thỏa mãn các tiên đề của không gian vector. Ta nói rằng W là một không gian vector con của \mathbb{R}^3 .

Không gian vector con

Ví dụ: Trong không gian vector \mathbb{R}^3 , xét

$$W = \{(x_1, x_2, 0) \mid x_1 \in \mathbb{R}, x_2 \in \mathbb{R}\} \text{ (mặt phẳng } Oxy).$$

Ta có thể kiểm tra rằng W cùng với hai phép toán của \mathbb{R}^3 thỏa mãn các tiên đề của không gian vector. Ta nói rằng W là một *không gian vector con* của \mathbb{R}^3 .

Định nghĩa

Cho V là một không gian vector.

Một tập hợp con khác rỗng W của V được gọi là một không gian (vector) con của V nếu nó cùng với các phép toán của V tạo thành một không gian vector.

Dấu hiệu nhận biết và tính chất

Định lý

Một tập hợp con khác rỗng W của V là một không gian con của V nếu và chỉ nếu nó đóng đối với hai phép toán của V, nghĩa là:

- $\forall \mathbf{u} \in W, \forall \mathbf{v} \in W, \mathbf{u} + \mathbf{v} \in W$.
- $\forall \mathbf{u} \in W, \forall c \in \mathbb{R}, c\mathbf{u} \in W$.

Dấu hiệu nhận biết và tính chất

Định lý

Một tập hợp con khác rỗng W của V là một không gian con của V nếu và chỉ nếu nó đóng đối với hai phép toán của V, nghĩa là:

- $\forall \mathbf{u} \in W, \forall \mathbf{v} \in W, \mathbf{u} + \mathbf{v} \in W$.
- $\forall \mathbf{u} \in W, \forall c \in \mathbb{R}, c\mathbf{u} \in W$.

Mệnh đề

Cho V là một không gian vector.

- Mọi không gian con W của V đều chứa vector không của V. Hơn nữa, vector không của V cũng là vector không của W: $\mathbf{0}_W \equiv \mathbf{0}_V$.
- Các tập hợp $\{\mathbf{0}_V\}$ và V là các không gian con của V. Với mọi không gian con W của V, $\{\mathbf{0}_V\} \subset W \subset V$.

Dấu hiệu nhân biết và tính chất

Đinh lý

Môt tập hợp con khác rỗng W của V là một không gian con của V nếu và chỉ nếu nó đóng đối với hai phép toán của V, nghĩa là:

- $\forall \mathbf{u} \in W, \forall \mathbf{v} \in W, \mathbf{u} + \mathbf{v} \in W$.
- $\forall \mathbf{u} \in W, \forall c \in \mathbb{R}, c\mathbf{u} \in W$.

Mênh đề

Cho V là một không gian vector.

- Moi không gian con W của V đều chứa vector không của V. Hơn nữa, vector không của V cũng là vector không của W: $\mathbf{0}_W \equiv \mathbf{0}_V$.
- Các tập hợp $\{\mathbf{0}_V\}$ và V là các không gian con của V. Với mọi không gian con W của V, $\{\mathbf{0}_V\} \subset W \subset V$.

Chú ý: Các không gian con $\{\mathbf{0}_V\}$ và V được gọi là các không gian con $t \hat{a} m t h u \dot{\sigma} n g c u a V$.

• $V=M_{2,2}$, W là tập hợp các ma trận đối xứng cấp 2.

Ví du

- $V = M_{2,2}$, W là tập hợp các ma trận đối xứng cấp 2.
 - $W \neq \emptyset$ vì $h \in W$.
 - W đóng với phép công: nếu A, B ∈ W thì $(A + B)^T = A^T + B^T = A + B$, do đó $(A + B) \in W$.
 - W đóng với phép nhân với vô hướng: nếu $A \in W$, $c \in \mathbb{R}$ thì $(cA)^T = c(A^T) = cA$, do đó $cA \in W$.

Vây W là một không gian con của $M_{2,2}$.

- $V = M_{2,2}$, W là tập hợp các ma trận đối xứng cấp 2.
 - $W \neq \emptyset$ vì $I_2 \in W$.
 - W đóng với phép cộng: nếu $A, B \in W$ thì $(A+B)^T = A^T + B^T = A + B$, do đó $(A+B) \in W$.
 - W đóng với phép nhân với vô hướng: nếu $A \in W$, $c \in \mathbb{R}$ thì $(cA)^T = c(A^T) = cA$, do đó $cA \in W$.

Vậy W là một không gian con của $M_{2,2}$.

• $V = M_{2,2}$, U là tập hợp các ma trận khả nghịch cấp 2.

- $V = M_{2,2}$, W là tập hợp các ma trận đối xứng cấp 2.
 - $W \neq \emptyset$ vì $I_2 \in W$.
 - W đóng với phép cộng: nếu $A, B \in W$ thì $(A+B)^T = A^T + B^T = A + B$, do đó $(A+B) \in W$.
 - W đóng với phép nhân với vô hướng: nếu $A \in W$, $c \in \mathbb{R}$ thì $(cA)^T = c(A^T) = cA$, do đó $cA \in W$.

Vậy W là một không gian con của $M_{2,2}$.

• $V=M_{2,2}$, U là tập hợp các ma trận khả nghịch cấp 2. U không chứa ma trận $\mathcal{O}_{2,2}$ nên U không phải là không gian con của $M_{2,2}$.

- $V = M_{2,2}$, W là tập hợp các ma trận đối xứng cấp 2.
 - $W \neq \emptyset$ vì $I_2 \in W$.
 - W đóng với phép cộng: nếu $A, B \in W$ thì $(A+B)^T = A^T + B^T = A + B$, do đó $(A+B) \in W$.
 - W đóng với phép nhân với vô hướng: nếu $A \in W$, $c \in \mathbb{R}$ thì $(cA)^T = c(A^T) = cA$, do đó $cA \in W$.

Vậy W là một không gian con của $M_{2,2}$.

- $V=M_{2,2}$, U là tập hợp các ma trận khả nghịch cấp 2. U không chứa ma trận $\mathcal{O}_{2,2}$ nên U không phải là không gian con của $M_{2,2}$.
- $V = M_{2,2}$, U' là tập hợp các ma trận suy biến cấp 2.

- $V = M_{2,2}$, W là tập hợp các ma trận đối xứng cấp 2.
 - $W \neq \emptyset$ vì $I_2 \in W$.
 - W đóng với phép cộng: nếu $A, B \in W$ thì $(A+B)^T = A^T + B^T = A + B$, do đó $(A+B) \in W$.
 - W đóng với phép nhân với vô hướng: nếu $A \in W$, $c \in \mathbb{R}$ thì $(cA)^T = c(A^T) = cA$, do đó $cA \in W$.

Vậy W là một không gian con của $M_{2,2}$.

- $V=M_{2,2}$, U là tập hợp các ma trận khả nghịch cấp 2. U không chứa ma trận $\mathcal{O}_{2,2}$ nên U không phải là không gian con của $M_{2,2}$.
- $V=M_{2,2}$, U' là tập hợp các ma trận suy biến cấp 2. U' không đóng với phép cộng (*bài tập: vì sao?*) nên U' không phải là không gian con của $M_{2,2}$.

Xét các tập hợp sau:

- ullet W_1 gồm tất cả các đa thức trên khoảng [0,1];
- ullet W_2 gồm tất cả các hàm khả vi trên khoảng [0,1];
- ullet W_3 gồm tất cả các hàm liên tục trên khoảng [0,1];
- ullet W_4 gồm tất cả các hàm khả tích trên khoảng [0,1];
- W_5 gồm tất cả các hàm xác định trên khoảng [0,1];

Ta có quan hệ bao hàm $W_1\subset W_2\subset W_3\subset W_4\subset W_5$ như trong hình vẽ (*vì sao?*).

Hình: Larson et al., p. 201

Hình: Larson et al., p. 201

ullet W_5 là một không gian vector.

Hình: Larson et al., p. 201

- W_5 là một không gian vector.
- W_1, W_2, W_3, W_4 là các không gian con của W_5 .

Hình: Larson et al., p. 201

- W_5 là một không gian vector.
- W_1, W_2, W_3, W_4 là các không gian con của W_5 .
- Với mọi cặp chỉ số i < j, W_i là không gian con của W_j .

H. M. Lam Không gian vector 2021-2022

• $V = \mathbb{R}^2$, $U = \{(x, y) \mid x \ge 0, y \ge 0\}$ (góc phần tư thứ nhất).

Ví du

- $V = \mathbb{R}^2$, $U = \{(x, y) \mid x \ge 0, y \ge 0\}$ (góc phần tư thứ nhất).
 - $U \neq \emptyset$, đóng với phép cộng;
 - U không đóng với phép nhân với vô hướng.

Do đó, U không phải không gian con của \mathbb{R}^2 .

- $V = \mathbb{R}^2$, $U = \{(x, y) \mid x \ge 0, y \ge 0\}$ (góc phần tư thứ nhất).
 - $U \neq \emptyset$, đóng với phép cộng;
 - U không đóng với phép nhân với vô hướng.

Do đó, U không phải không gian con của \mathbb{R}^2 .

• $V = \mathbb{R}^2$, $W = \{(x,y) \mid xy \ge 0\}$ (góc phần tư thứ nhất hợp với góc phần tư thứ ba).

H. M. Lam Không gian vector 2021-2022 32 / 34

- $V = \mathbb{R}^2$, $U = \{(x, y) \mid x \ge 0, y \ge 0\}$ (góc phần tư thứ nhất).
 - $U \neq \emptyset$, đóng với phép cộng;
 - U không đóng với phép nhân với vô hướng.

Do đó, U không phải không gian con của \mathbb{R}^2 .

- $V = \mathbb{R}^2$, $W = \{(x, y) \mid xy \ge 0\}$ (góc phần tư thứ nhất hợp với góc phần tư thứ ba).
 - $W \neq \emptyset$, đóng với phép nhân với vô hướng;
 - W không đóng với phép cộng.

Do đó, W không phải không gian con của \mathbb{R}^2 .

H. M. Lam

Quiz:

Cho các tập hợp sau, tập nào là một không gian vector trên trường số thực?

$$U_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x \ge 0, y \ge 0\},$$

$$U_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y = 0, 2x + 3z = 0\}.$$

Quiz:

Cho các tập hợp sau, tập nào là một không gian vector trên trường số thực?

- $U_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x \ge 0, y \ge 0\},$
- $U_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y = 0, 2x + 3z = 0\}.$

Đáp án: Chỉ có U_4 là một không gian vector trên trường số thực (và là không gian con của \mathbb{R}^3).

Giao của hai không gian con

Định lý

Nếu U và W là hai không gian con của không gian vector V thì $U \cap W$ cũng là một không gian con của V.

Giao của hai không gian con

Định lý

Nếu U và W là hai không gian con của không gian vector V thì $U \cap W$ cũng là một không gian con của V.

Chú ý:

- Kết quả có thể mở rộng cho giao của một số hữu hạn các không gian con.
- Hợp của hai không gian con nói chung không phải là một không gian con.

Giao của hai không gian con

Định lý

Nếu U và W là hai không gian con của không gian vector V thì $U \cap W$ cũng là một không gian con của V.

Chú ý:

- Kết quả có thể mở rộng cho giao của một số hữu hạn các không gian con.
- Hợp của hai không gian con nói chung không phải là một không gian con.

(Ví dụ: $V=\mathbb{R}^2$, U là trục hoành, W là trục tung, $U\cup W$ không đóng với phép cộng)