Advanced Calc. Exam 1

Colin Williams

September 20, 2020

Question 1

Prove that $P(n) = 8^n - 3^n$ is divisible by 5 for every $n \in \mathbb{N}$.

Proof.

Base case n = 1:

For n = 1, we have $P(n) = P(1) = 8^1 - 3^1 = 8 - 3 = 5$ and 5 is clearly divisible by 5, so the above statement holds for n = 1.

Inductive Step:

First, note that for a number to be divisible by 5, that is equivalent to saying that number is an integer multiple of 5. From this, assume that P(n) is divisible by 5 for some $n = k \in \mathbb{N}$, i.e. $P(k) = 8^k - 3^k = 5m$ for some integer m, this is the Inductive Hypothesis. Next, I will examine whether P(k+1) must also be divisible by 5 in the following manner:

$$P(k+1) = 8^{k+1} - 3^{k+1}$$
 by the definition of $P(n)$

$$= 8 \cdot 8^k - 3 \cdot 3^k$$
 by exponent properties

$$= 8 \cdot (8^k - 3^k + 3^k) - 3 \cdot 3^k$$
 by adding and subtracting 3^k

$$= 8 \cdot (8^k - 3^k) + 8 \cdot 3^k - 3 \cdot 3^k$$
 by distributing the 8

$$= 8 \cdot (8^k - 3^k) + (8 - 3) \cdot 3^k$$
 by factoring

$$= 8 \cdot (5m) + 5 \cdot 3^k$$
 by using the Inductive Hypothesis

$$= 5(8m + 3^k)$$

Thus, we have shown that $P(k+1) = 5\widetilde{m}$ for $\widetilde{m} = 8m + 3^k \in \mathbb{Z}$. Therefore, we have shown that if P(k) is divisible by 5 for any $k \in \mathbb{N}$, then we must have that P(k+1) is divisible by 5 as well. Additionally, since we have shown that P(1) is divisible by 5, then by the Principle of Mathematical Induction, we can conclude that P(n) is divisible by 5 for all $n \in \mathbb{N}$, exactly what we wanted to show.

Is $\sqrt[3]{5-\sqrt{5}}$ a rational number?

Answer

First, note that if we let $x_0 = \sqrt[3]{5 - \sqrt{5}}$, we can find a polynomial with x_0 as one of its roots by doing the following algebraic manipulations:

$$x_0 = \sqrt[3]{5 - \sqrt{5}}$$

$$\implies x_0^3 = 5 - \sqrt{5}$$
 by cubing both sides
$$\implies x_0^3 - 5 = -\sqrt{5}$$
 by subtracting 5 from both sides
$$\implies (x_0^3 - 5)^2 = 5$$
 by squaring both sides
$$\implies x_0^6 - 10x_0^3 + 25 = 5$$
 by expanding the binomial
$$\implies x_0^6 - 10x_0^3 + 20 = 0$$
 by subtracting 5 from both sides

Thus, we can see that $x_0 = \sqrt[3]{5-\sqrt{5}}$ is a root of the polynomial $f(x) = x^6 - 10x^3 + 20$. Therefore, we can now apply the "Rational Zeros Theorem" to the polynomial f with n=6, $c_6=1$, $c_5=c_4=0$, $c_3=-10$, $c_2=c_1=0$, and $c_0=20$. The Rational Zeros Theorem states that if f has any rational zeros, r, then they must be of the form $r=\frac{c}{d}$ where c divides $c_0=20$ and d divides $c_6=1$. From this we know that $c\in\{\pm 1,\pm 2,\pm 4,\pm 5,\pm 10,\pm 20\}$ and $d\in\{\pm 1\}$ which implies that $r\in\{\pm 1,\pm 2,\pm 4,\pm 5,\pm 10,\pm 20\}$. Now, let's evaluate f at all of the possible values for r:

$f(1) = (1)^6 - 10(1)^3 + 20$	= 11
$f(-1) = (-1)^6 - 10(-1)^3 + 20$	= 31
$f(2) = (2)^6 - 10(2)^3 + 20$	=4
$f(-2) = (-2)^6 - 10(-2)^3 + 20$	= 164
$f(4) = (4)^6 - 10(4)^3 + 20$	= 3476
$f(-4) = (-4)^6 - 10(-4)^3 + 20$	=4756
$f(5) = (5)^6 - 10(5)^3 + 20$	= 14395
$f(-5) = (-5)^6 - 10(-5)^3 + 20$	= 16895
$f(10) = (10)^6 - 10(10)^3 + 20$	= 990020
$f(-10) = (-10)^6 - 10(-10)^3 + 20$	= 1010020
$f(20) = (20)^6 - 10(20)^3 + 20$	=63920020
$f(-20) = (-20)^6 - 10(-20)^3 + 20$	=64080020

Clearly, none of these values are 0, so none of the possible values for r are actually zeros of f. Thus, f has no rational zeros, so since $x_0 = \sqrt[3]{5 - \sqrt{5}}$ is a root of f, it cannot be rational. Therefore, $\sqrt[3]{5 - \sqrt{5}}$ is <u>not</u> a rational number.

Consider the set $X := \{\Box, \triangle\}$ with operation "+" defined as follows:

 $\Box + \Box = \Box$

 $\Box + \triangle = \triangle$

 $\triangle + \Box = \triangle$

 $\triangle + \triangle = \square$

Show that (X, +) satisfies A1 - A4 and find which element of X plays the role of "0".

Answer.

<u>A1</u>

I will check that a + (b + c) = (a + b) + c for all $a, b, c \in X$:

$$\Box + (\Box + \Box) = \Box + \Box = \Box \quad \text{and} \quad (\Box + \Box) + \Box = \Box + \Box = \Box$$

$$\Box + (\Box + \Delta) = \Box + \Delta = \Delta \quad \text{and} \quad (\Box + \Box) + \Delta = \Box + \Delta = \Delta$$

$$\Box + (\Delta + \Box) = \Box + \Delta = \Delta \quad \text{and} \quad (\Box + \Delta) + \Box = \Delta + \Box = \Delta$$

$$\Box + (\Delta + \Delta) = \Box + \Box = \Box \quad \text{and} \quad (\Box + \Delta) + \Delta = \Delta + \Delta = \Box$$

$$\Delta + (\Box + \Box) = \Delta + \Box = \Delta \quad \text{and} \quad (\Delta + \Box) + \Box = \Delta + \Delta = \Box$$

$$\Delta + (\Box + \Delta) = \Delta + \Delta = \Box \quad \text{and} \quad (\Delta + \Box) + \Delta = \Delta + \Delta = \Box$$

$$\Delta + (\Delta + \Box) = \Delta + \Delta = \Box \quad \text{and} \quad (\Delta + \Delta) + \Box = \Box + \Box = \Box$$

$$\Delta + (\Delta + \Delta) = \Delta + \Box = \Delta \quad \text{and} \quad (\Delta + \Delta) + \Delta = \Box + \Delta = \Delta$$

Thus, A1 is true for all possible choices of $a, b, c \in X$, so A1 is satisfied.

A2

I will check that a+b=b+a for all $a,b\in X$. First, note that for a=b, this is obviously true as the left and right sides of the equation would be the exact same expressions. Thus, I will consider all cases where $a\neq b$:

$$\Box + \triangle = \triangle \quad \text{and} \quad \triangle + \Box = \triangle$$

$$\triangle + \Box = \triangle \quad \text{and} \quad \Box + \triangle = \triangle$$

Therefore, a+b=b+a for all $a,b\in X$ both when a=b and when $a\neq b$, so A2 is satisfied.

A3

I will check that a+0=a for all $a\in X$. First, note that "0" in this context is given by \square , I will show this in the following:

$$\Box + \Box = \Box$$

$$\triangle + \Box = \triangle$$

Thus, $a + \square = a$ for all $a \in X$, so $\lceil "0" = \square \rceil$ and A3 is satisfied.

<u>A4</u>

I will check that for every $a \in X$, there exists an element $-a \in X$ such that a + (-a) = 0. In this context, since "0" = \square , we are trying to show that this -a satisfies $a + (-a) = \square$. I will try to find this -a for every element in X:

for
$$a = \square$$
, $-a = \square$ since $\square + \square = \square$ \checkmark for $a = \triangle$, $-a = \triangle$ since $\triangle + \triangle = \square$

Thus, -a exists for every $a \in X$, so A4 is satisfied.

Let $S, T \subset \mathbb{R}$ be nonempty bounded sets. Provide a proof or counterexample for the following:

$$\sup(S) \le \sup(T) \implies S \subset T \tag{1}$$

Answer.

I will provide a counterexample to show that the previous statement is false. Let S=(2,5) and let T=(6,10), then it is easy to see that $\sup(S)=5$ and $\sup(T)=10$. Thus, the condition for (1) is satisfied as $\sup(S)=5\leq 10=\sup(T)$. However, the implication is not true because, for example, $\pi\in S$ but $\pi\not\in T$, so it is clear that $S\not\subset T$. Therefore, this counterexample shows that (1) is false.

Fix an arbitrary $a \in \mathbb{R}$ and define the set $S := \{r \in \mathbb{Q} : r < a\}$. Show that $\sup(S) = a$.

Answer.

Since $\sup(S)$ is defined as the least upper bound of S, we first need to check that a is indeed an upper bound of S. However, due to how S is defined, every $r \in S$ satisfies r < a, so in particular $r \le a$ for all $r \in S$; thus, a is an upper bound by the definition of Upper Bound.

Next, I will show that a is actually the <u>Least</u> Upper Bound. To do this, assume that there exists a smaller upper bound for S, i.e. let $b \in \mathbb{R}$ be an upper bound for S with b < a. However, by the Density of \mathbb{Q} , we know that for any two $a, b \in \mathbb{R}$ with b < a there exists some $r \in \mathbb{Q}$ such that b < r < a. This implies that there is an $r_0 \in S$ that is greater than b meaning b cannot actually be an upper bound. Thus, our assumption of the existence of a smaller upper bound must have been false, so we know that a is not only an upper bound of S, but, in fact, the <u>Least</u> Upper Bound of S. Equivalently, we have shown that $\sup(S) = a$, just as desired.