

APEX INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

MACHINE LEARNING (21CSH-286) Faculty: Prof. (Dr.) Vineet Mehan (E13038)

Lecture - 4 Data Pre-Processing DISCOVER . LEARN . EMPOWER

COURSE OBJECTIVES

- 1. Understand and apply various data handling and visualization techniques.
- 2. Understand about some basic learning algorithms and techniques and their applications, as well as general questions related to analysing and handling large data sets.
- 3. To develop skills of supervised and unsupervised learning techniques and implementation of these to solve real life problems.
- 4. To develop basic knowledge on the machine techniques to build an intellectual machine for making decisions behalf of humans.
- 5. To develop skills for selecting suitable model parameters and apply them for designing optimized machine learning applications.

On completion of this course, the students shall be able to:-

Understand machine learning techniques and computing environment that are suitable for the applications under consideration.

Unit-1 Syllabus	
Unit-1	Introduction to Machine Learning
Introduction to	Definition of Machine Learning, Working principles of Machine
Machine Learning	Learning; Classification of Machine Learning algorithms: Supervised Learning, Unsupervised Learning, Reinforcement Learning, Semi Supervised Learning; Applications of Machine Learning.
Data Pre-	Data Sourcing and Cleaning, Handling Missing data, Encoding
Processing and	Categorical data, Feature Scaling, Handling Time Series data; Feature
Feature	Selection techniques, Data Transformation, Normalization
Extraction	Dimensionality reduction
Data Visualization	Data Frame Basics, Different types of analysis, Different types or plots, Plotting fundamentals using Matplotlib, Plotting Dat Distributions using Seaborn.

SUGGESTIVE READINGS

- TEXT BOOKS:
- There is no single textbook covering the material presented in this course. Here is a list of books recommended for further reading in connection with the material presented:
 Ti: Tom.M.Mitchell, "Machine Learning, McGraw Hill international Edition".
- T2: Ethern Alpaydin," Introduction to Machine Learning. Eastern Economy Edition, Prentice Hall of India, 2005."
- T3: Andreas C. Miller, Sarah Guido, Introduction to Machine Learning with Python, O'REILLY (2001).
- REFERENCE BOOKS:
- R1 Sebastian Raschka, Vahid Mirialili, Python Machine Learning, (2014)
- R2 Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification, Wiley, 2nd Edition".
 R3 Christopher Bishop, "Pattern Recognition and Machine Learning, illustrated Edition, Springer, 2006".

Data Sourcing

- For data sourcing Panda is used.
- Panda is a python Library for analyzing data.
- Panda = Panel Data + Python Data Analysis (Combination) gave the
- Panel data is a subset of longitudinal data where observations are for the same subjects each time.

Make a data Frame that tells the type of vehicles that passed a toll plaza.

• import pandas

• mydataset = { 'cars': ["Maruti", "Hundai", "Tata"], 'passings': [20, 12, 15]}

• myvar = pandas.DataFrame(mydataset)

• print(myvar)

Import pandas as pd and use pd

>>> import pandas as pd
>>> data = (
 "calorizes"; [420, 380, 390],
 "duration"; [50, 40, 45]
)
>>> \$load data into a DataFrame object:
dz = plotasFrame (data)
>>> print (df)
calorizes duration
0 420 50
1 380 40
2 390 48
>>> |

Reading CSV but print without converting to string

>>> import pandse as pd
>>> df = pd.read_carv(Pt\la_{3} Educational\\l_EngineeringSubjects\\Python Programmi np\\Lecture 2 Fands\\data at.carv')
>>> print(df)

Durstion Fulse Maxpulse Calories
0 60 110 100 409.1
1 60 117 145 479.0
2 65 109 117 155 979.0
3 65 109 117 155 979.0
1 66 60 105 110 290.6
168 60 105 110 290.6
168 60 110 165 300.0
169 60 115 165 300.0
169 75 120 150 300.4
169 75 120 150 300.6
169 FOMS x 4 columns)

For Larger Data

- For small data sets you might be able to replace the wrong data one by one, but not for big data sets.
- To replace wrong data for larger data sets you can create some rules, e.g. set some boundaries for legal values, and replace any values that are outside of the boundaries.

Removing Rows

- Another way of handling wrong data is to remove the rows that contains wrong data.
- This way you do not have to find out what to replace them with, and there is a good chance you do not need them to do your analyses.
- Value at position no 7 is removed

