

Introduction to Data Management

Lecture #7 (Relational Design Theory)

Instructor: Mike Carey mjcarey@ics.uci.edu

Today's Notices

- * Keep one eye on the wiki page...
 - http://www.ics.uci.edu/~cs122a/
- ... and the other eye on Piazza Q&A!
 - piazza.com/uci/fall2021/cs122aeecs116
- ❖ HW #1 is now in the rearview mirror
 - Thursday at 6PM is/was the drop-dead deadline
 - Ask questions in "lecture"/discussions/Piazza
- ❖ HW #2 is your next destination
 - Its starting point is *HW #1's solution (!)*
 - We never want you to be bored in this class...

Quick Roadmap Check...

Topic Coverage and Exam Schedule

Syllabus

Topic	Reading (Required!)			
Databases and DB Systems	Ch. 1			
Entity-Relationship (E-R) Data Model	Ch. 6.1-6.5, 6.8-6.9			
Relational Data Model	Ch. 2.1-2.4, 3.1-3.2			
E-R to Relational Translation	Ch. 6.6-6.7			
Relational Design Theory	Ch. 7.1-7.4.1			
Midterm Exam 1	Fri, Oct 22 (during lecture time)			
Relational Algebra	Ch. 2.5-2.7			
Relational Calculus	→ Wikipedia: Tuple relational calculus			
SQL Basics (SPJ and Nested Queries)	Ch. 3.3-3.5			
SQL Analytics: Aggregation, Nulls, and Outer Joins	Ch. 3.6-3.9, 4.1			
Advanced SQL: Constraints, Triggers, Views, and Security	Ch. 4.2, 4.4-4.5, 4.7			
Midterm Exam 2	Mon, Nov 15 (during lecture time)			
Storage	Ch. 12.1-12.4, 12.6-12.7			
Indexing	Ch. 14.1-14.4, 14.5			
Physical DB Design	Ch. 14.6-14.7, 15.1-15.3, 15.5.3			
Semistructured Data Management (a.k.a. NoSQL)	Ch. 8.1, → AsterixDB SQL++ Primer, → Couchbase SQL++ Book			
Data Science 1: Advanced SQL Analytics	Ch. 5.5, 11.3			
Data Science 2: Notebooks, Dataframes, and Python/Pandas	Lecture notes and Jupyter notebook			
Basics of Transactions	Ch. 4.3, Ch. 17			
Endterm Exam	Fri, Dec 3 (during lecture time)			

Midterm Exam 1

Time: Fri, Oct 22, Lecture Time

Place: SSLH 100

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - $ssn \rightarrow did$, $did \rightarrow lot$ implies $ssn \rightarrow lot$
 - (Translation: *Matching ssns* imply matching *lots*.)
- * An FD f is <u>implied by</u> a set of FDs F if f holds whenever all FDs in F hold.
 - $F^+ = closure\ of\ F$ is the set of all FDs that are implied by F.
- * Armstrong's Axioms (X, Y, Z are *sets* of attributes):
 - Reflexivity: If $X \subseteq Y$, then $Y \to X$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - <u>Transitivity</u>: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- * These are *sound* and *complete* inference rules for FDs!

Armstrong's Axioms: Examples

pno	name	title	state	zip
1	Sandy	Professor	CA	92697
2	Joe	Jim Gray Professor	CA	94720
3	Anhai	Professor	WI	53706
4	Alex	Associate Professor	CA	92697

- \clubsuit *Reflexivity*: If X⊆Y then Y \to X:
 - $zip \subseteq (zip, name)$, so $(zip, name) \rightarrow zip$.
- $\star \underline{Augmentation}$: If X \rightarrow Y then XZ \rightarrow YZ for any Z:
 - $zip \rightarrow state$, so $(zip, title) \rightarrow (state, title)$.
- * *Transitivity*: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$:
 - $pno \rightarrow zip$ and $zip \rightarrow state$, so $pno \rightarrow state$.

Reasoning About FDs (Cont'd.)

(Recall: "two matching X's always have the same Y")

- * A few additional rules (which follow from AA):
 - <u>Union</u>: If $X \to Y$ and $X \to Z$, then $X \to YZ$
 - *Decomposition*: If $X \to YZ$, then $X \to Y$ and $X \to Z$
- * Example: Contracts(cid,sid,pjid,did,pid,qty,value), and:
 - The **c**ontract id is the key: $\mathbb{C} \to \mathbb{C}$
 - A project purchases each part using single contract: $JP \rightarrow C$
 - A dept purchases at most one part from a supplier: $SD \rightarrow P$
- * JP \rightarrow C, C \rightarrow CSJDPQV imply (JP) \rightarrow CSJDPQV
- \star SD \to P implies SDJ \to JP (New candidate keys...!)
- \star SDJ \to JP, JP \to CSJDPQV imply (SDJ) \to CSJDPQV

Reasoning About FDs (Examples)

Let's consider R(ABCDE), $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\}$

- ❖ Let's work our way towards inferring F+ ...
- (a) $A \rightarrow B$ (b) $B \rightarrow C$ (c) $CD \rightarrow E$
- (d) $A \rightarrow C$
- BD→CD
- $BD \rightarrow E$
- AD→CD
- (h) $AD \rightarrow E$
- (j) $AD \rightarrow D$ $AD \rightarrow C$
- (k) AD→BD
- (1) $AD \rightarrow B$
- (n) $AD \rightarrow ABCDE$

Candidate key!

Note: If some attribute *X* is not on the RHS of any initial FD, then X must be part of the key!

(given)

- (a, b, and transitivity)
- (b and augmentation)
- (e, c and transitivity)
- (d and augmentation)
- (g, c and transitivity)
- (g and decomposition)
- (a and augmentation)
- (k and decomposition)
- (a and reflexivity)
- (h, i, j, l, m, and union)

Reasoning About FDs (Cont'd.)

- Computing the closure of a set of FDs can be very expensive. (Closure size is exponential in # of attrs!)
- * Typically, we just want to check if a *specific* FD $X \rightarrow Y$ is *in* the closure of a set of FDs F. An efficient check:
 - **First**: Compute *attribute closure* of *X* (denoted **X+**) w.r.t. *F*:
 - Set of all attributes A such that $X \rightarrow A$ is in F+ (i.e., all F+ attributes)
 - There is a *linear time algorithm* to compute this (look <u>here</u>): Start with *X* and keep adding attributes that can (now) be inferred via the FDs
 - Then: Check to see if Y is in X+
- ❖ Does $\mathbf{F} = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\} \text{ imply } A \rightarrow E$?
 - I.e.: Is $A \rightarrow E$ in the closure F+? Equivalently: Is E in A+?

FDs & Redundancy

- Role of FDs in detecting redundancy in a schema:
 - Consider a relation R with three attributes, say R(ABC).
 - If **no** (non-trivial) FDs hold: There is *no redundancy* here then. (Think about this ... in fact, think *hard*...!)
 - *Ex:* Prescriptions(doc_name, patient_name, drug_name)
 - Given A → B: Several tuples could have the same A value and if so, then they'll all have the same B value as well! Thus, if A is repeated for some reason, it will always have the same B "tagging along for the ride".
 - Ex: Employee(emp_name, dept_no, mgr_name)
 (Redundancy here if dept_no → mgr_name!)

Normal Forms

- * Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
- * We will define various *normal forms* (BCNF, 3NF etc.) based on the nature of FDs that hold.
- Depending upon the normal form a relation is in, it has a different level of redundancy.
 - E.g., a BCNF relation has NO redundancy (as you'll learn).
- Checking which normal form a given relation is in will help us decide if we need to decompose (fix) it.
 - E.g., there's no need to decompose a BCNF relation!

Normal Forms

First Normal Form (1NF)

- * Rel'n R is in 1NF if all of its attributes are atomic.
 - No set-valued attributes! (1NF = "flat" ②)
 - Usually goes *w/o* saying for relational model (but not for *NoSQL* systems, as we'll see at the end of the quarter ©).

(1NF is different than the other normal forms.)

Some Terms and Definitions (Review)

- * If X is part of a (candidate) key, we will say that X is a *prime attribute*.
- * If X (an attribute set) contains a candidate key, we will say that X is a *superkey*.
- * $X \rightarrow Y$ can be pronounced as "X determines Y", or "Y is functionally dependent on X".
- * Some types of dependencies (on a key):
 - Trivial: $XY \rightarrow X$
 - *Partial*: **X**Y is a key, $X \rightarrow Z$ (note that Y is absent)
 - *Transitive*: $X \rightarrow Y$, $Y \rightarrow Z$, Y is non-prime, $X \rightarrow Z$

To Be Continued....

