Name:	Rich	ard	Kabiry
Student	No:	150	684

Question	3
Soln	

i) Asset e	Kass	,			
Date	Equity	Equity returns	Bond	Bond return	Bond return
06/06/2023	40	N. 10,8	100		
Day 1	43.2	0.08	97.86	0/00/008531	-0.0214
Day 2	44.5	0.030092593	99.8	8-00012956/7	0.019824239
Day 3	47.6	0.069662921	102-1	0.00075	0.023046092
Day 4	40.9	-0.140756303	101.9		-0.001958864
Day 5	38.34	-0.062591687	94:56		-0.072031403
Day 6	42.2	0.100678143	93.9		-0.006979695
Day 7	39.6	-0.061611374	96.67		0.029499468

Variance =
$$\sum_{i=1}^{n} \frac{(\text{Return}_{i} - \mu)^{2}}{n-1} \quad \text{where} \quad \mu = \sum_{i=1}^{n} \frac{(\text{Return}_{i} - \mu)^{2}}{n}$$

The standard deviation of a two-asset portfolio σρ = (w, σe2) + (w, ω, ρ σε σω) where $\sigma_p \Rightarrow$ standard deviation of the portfolio $\omega_s + \omega_s = 7$ weights of the two assets

Te * $\sigma_b = 7$ standard deviation of the returns of two assets $\varepsilon_{12} = 7$ correlation between the returns of the assets (0) = 800,000 = 0.53333(800,000 + 700,000) $w_2 = 70000 = 0.46667$ (800,000 + 700,000) P = 6:1472 =7 $\sqrt{p} = (0.5333.0.91091881^2) + (0.46667^2.0.0350353232^2)$ + (2.0.5333.0.46667.0.1472.0.91091881 . 0.0350353232 Op= 0.002861404 VaR = 0.002861404 1-645 = 0.004707009

```
ii) Expected Shortfall
ES = VaR + f(z)

where f(z) = \frac{-0.5z^2}{\sqrt{211}} (1 - Confidence interval)
         = 0.004707009 + 0.103
                               1-0.95
    ES = 2.064707009
iii) Solution
    252-day Stressed 95% VaR
portfolio volatility increased by 20% $ 50%
27 0/00/1797099 $ 1/29 7
0.0047/07009/x 1/56 =
 => Op x percentage increase
     0.002861404 × 1-20 = 0.003433684
     0.002861404 × 1-50 = 0.004292105
.. 252 - day stressed 95% VaR with a 20% increase in portfolio
  Volatility = 0.003433684
    and
   252 - day stressed 95% VaR with a 50% increase in portfoli
  volatility = 0.004292105-
   252 - day stressed Expected Shortfall
      ES20 = 0.003433684 + 0.103
       ES20 = 2.065648411
       ES50 = 0.004292105+ 0.103
       ES50 = 2.067060513/
```