N-th Fibonacci Number

$$F_n = F_n - 1 + F_n - 2$$

 $F_0 = 0, F_1 = 1$

Since Fibonacci Number is defined in a recursive fashion, can we write a recursive algorithm for it?

What is recursion function?

```
Algorithm 1:

function xyz1(n)

if (n<2) then return n

else return xyz1(n-1)+

xyz1(n-2);
```

Time complexity?

Can we do better? How?

Can we do better?

What if we keep two pointers and keep moving the pointers?

What is the complexity of this algorithm?

Can we do even better?

How?

Can we do even better?

```
Algorithm 1:

function xyz1(n)

if (n<2) then return n

else return xyz1(n-1)+

xyz1(n-2);
```

```
Algorithm 2:

function xyz2(n)

i:=1; j:=0;

for k:=1 to n do

j:=i+j;

i:=j-i;

return j;
```

```
Algorithm 3:
function xyz3(n)
   i:=1; j:=0;
   k:=0; h:=1;
   while n>0 do
      if (n is odd) then
         t:=jh;
          j:=ih + jk + t;
          i:=ik + t;
      t:=square(h);
      h:=2kh + t;
      k:=square(k) + t;
      n:= n \text{ div } 2;
   return j;
```

How to Compute Fibonacci Number in O(log n) time?

- Transform Fibonacci number computation problem to a matrix chain multiplication problem.
- Matrix Chain Multiplication Problem
 - $P = A_1 * A_2 * A_3 * ... * A_p$, where A_i is an $n \times n$ matrix.
 - $A_1 * A_2$, where A_i is an n x n matrix, can be done in $O(n^3)$ complexity.
 - If dimensions of A₁ & A₂ are constant, the product A₁ * A₂ can be done in constant time.
 - The matrix chain $A_1 * A_2 * ... * A_n$, where $A_1 = A_2 = ... = A_n$, can be computed in O(log n) time.

Computation of the n-th Fibonacci Number, F_n

$$\begin{aligned} & \begin{bmatrix} F_{n-1} & F_{n} \end{bmatrix} \\ & = \begin{bmatrix} F_{n-1} & F_{n-1} + F_{n-2} \end{bmatrix} \\ & = \begin{bmatrix} F_{n-2} & F_{n-1} \end{bmatrix}^{0} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \\ & = \begin{bmatrix} F_{n-2} & F_{n-1} \end{bmatrix}^{*} A, \text{ where } A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \\ & = \begin{bmatrix} F_{n-3} & F_{n-2} \end{bmatrix}^{*} A^{*} A \\ & = \begin{bmatrix} F_{n-3} & F_{n-2} \end{bmatrix}^{*} A^{2} \end{aligned}$$

$$= [F_{n-4} F_{n-3}] * A^{3}$$
....
$$= [F_{0} F_{1}] * A^{n-1}$$

$$= [F_{0} F_{1}] * A^{-1} * A * A^{n-1}$$

$$= [0 1] \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^{-1} A^{n}$$

$$= [0 1] \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} A^{n}$$

$$= [1 0] * A^{n}$$

Hence,

$$\begin{bmatrix} F_{n-1} & F_n \end{bmatrix} = x * A^n,$$
where $x = \begin{bmatrix} 1 & 0 \end{bmatrix}$
and $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A^{2} = A. A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\begin{vmatrix} A^4 = A^2 \cdot A^2 = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} A^8 = A^4 \cdot A^4 = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 13 & 21 \\ 21 & 34 \end{bmatrix}$$

Product is of the form $\begin{bmatrix} x_1 & x_2 \\ x_2 & x_1 + x_2 \end{bmatrix}$

In the algorithm
$$x_1 = k$$
, $x_2 = h$

$$\begin{bmatrix} k & h \\ h & k+h \end{bmatrix} \begin{bmatrix} k & h \\ h & k+h \end{bmatrix} = \begin{bmatrix} k' & h' \\ h' & k'+h' \end{bmatrix}$$

where,
$$k' = k^2 + h^2$$

 $h' = kh + kh + h^2 = 2kh + h^2$

$$\begin{bmatrix} i & j \end{bmatrix} \begin{bmatrix} k & h \\ h & k+h \end{bmatrix} = \begin{bmatrix} i' & j' \end{bmatrix}$$

$$i' = ik + jh$$

$$j' = ih + jk + jh$$

Example 1: Computation of F₇

$$[F_6 F_7] = x * A^7$$

n = 7	n = 3	n = 1
x' = x A	$x'' = x' \cdot A'$	$x''' = x'' \cdot A''$
	$= x A . A^2$	$= x A^3 . A^4$
$A' = A^2$	$= x A^3$	$= x A^7$
	$A'' = A'^2$	$A''' = A''^2$
	$= A^4$	$=A^8$

$$x''' = x A^7$$

Example 2: Computation of F₈

$$[F_7 F_8] = x . A^8$$

n = 8	n = 4	n = 2	n = 1
$A' = A^2$	$A'' = A'^2$ $= A^4$	$A''' = A''^2$ $= A^8$	$x' = x \cdot A'''$ $= x \cdot A^8$
			$A'''' = A'''^2$

$$\mathbf{x}' = \mathbf{x} \, \mathbf{A}^8$$