2/2

3/3

2/2

4/4

Note: 20/20 (score total: 26/26)



+51/1/20+

IPS - S7A - Jean-Matthieu Bourgeot

QCM<sub>2</sub>

## IPS Quizz du 13/11/2013

| Nom et prénom | :       | į, |
|---------------|---------|----|
| BERNARD       | Ecworn. | 78 |

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs honnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

| Question 1 •       | Classer ses  | différentes | technologies | de | CAN | par | ordre | de | Temps | de | conversion |
|--------------------|--------------|-------------|--------------|----|-----|-----|-------|----|-------|----|------------|
| (du plus rapide at | u plus lent) | ?           |              |    |     |     |       |    |       |    |            |

|   | approximation successives - flash - sim | ple rampe - double rampe  |
|---|-----------------------------------------|---------------------------|
| 圖 | flash - approximation successives - sim | ple rampe - double rampe  |
|   | flash - approximation successives - dou | ible rampe - simple rampe |

## Question 2 •

On considère une résistance thermométrique Pt100 de résistance  $R_C(T)=R_0(1+\alpha T)$  où Treprésente la température en °C,  $R_0=1$ k $\Omega$  la résistance à 0°C et  $\alpha=3,85.10^{-3}$  °C  $^{-1}$  le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant





## Question 3 •

Quelle est la capacité d'un condensateur plan? On note :

- $\bullet$   $\epsilon$  : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d : Distance entre les armatures.

$$C = \frac{\epsilon S}{d} \qquad \qquad \Box \qquad C = \frac{\epsilon}{Sd} \qquad \qquad \Box \qquad C = \frac{\epsilon d}{S}$$

## Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...



| des différences de potentiels des potentiels. | <br>des résistances |
|-----------------------------------------------|---------------------|
| des températures des courants.                |                     |
| des différences de températures.              |                     |



|     | Question 5 • Pourquoi faire du sur-échantillonnage?                                                                                                                                                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2/2 | Pour supprimer les perturbations de mode commun.  Pour améliorer l'efficacité du filtre antirepliement.  Pour réduire le bruit de quantification                                                                                                                                                       |
|     | ${\bf Question} \ {\bf 6} \bullet  {\bf A} \ {\bf quoi} \ {\bf est} \ {\bf reliée} \ {\bf la} \ {\bf résistive} \ ?$                                                                                                                                                                                   |
| 1/1 | La course électrique.  Le pas de bobinage  La taille des grains de la poudre utilisée  La résistance maximale du potentiomètre  La longueur du potentiomètre                                                                                                                                           |
|     | Question 7 •  Des jauges extensométriques permettent de mesurer                                                                                                                                                                                                                                        |
| 1/1 | des courants des températures des grands déplacements des flux lumineux des déformations des résistances.                                                                                                                                                                                              |
|     | Question 8 • Un capteur LVDT permet de mesurer :                                                                                                                                                                                                                                                       |
| 1/1 | des flux lumineux des déplacement linéairés des courants des déplacements angulaires des températures                                                                                                                                                                                                  |
|     | Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?                                                                                                                                                                                                                            |
| 3/3 | De rejeter les perturbations de mode différentiel.  Les voies sont symétriques.  Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.  Les impédances d'entrées sont élevés.  Le gain est fixé par une seule résistance.                                                         |
|     | Question $10 \bullet$<br>Soit un CAN acceptant en entrée des signaux compris entre $0V$ et $10V$ , la quantification s'effectue sur 8bits, le temps de conversion est de $T_C = 1$ ms.<br>Quel est le pas de quantification de ce CAN ?                                                                |
| 1/1 | ☐ 78 mV ☐ 80 mV.s <sup>-1</sup> ☐ 39 mV ☐ 10 mV.s <sup>-1</sup>                                                                                                                                                                                                                                        |
|     | Question 11 •                                                                                                                                                                                                                                                                                          |
|     | On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) = \frac{A_0}{1 + \tau_C p}$ , avec $U_s$ la sortie de l'AOP et $\epsilon = u_+ - u$ . Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre $E$ et $U_s$ , Que dire de la stabilité du système bouclé ? |
| 6/6 | Le système est oscillant Le système est instable                                                                                                                                                                                                                                                       |