Event Extraction as Machine Reading Comprehension

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, Xiaojiang Liu

EMNLP 2020

Overview

- This paper casts the event extraction (EE) as a machine reading comprehension (MRC) task.
- This strategy has been done before for other tasks, e.g., Relation Extraction, Document-level Event Argument Extraction.
- The main contribution of this paper is how they design the questions which are decomposed into two components: (i) Question Topic, and (ii) Question Context.
- Casting EE as a MRC task enables the use of data augmentation.
- Finally, their MRC-based method achieves state-of-the-art performance on ACE2005 dataset with a significant margin.

Casting EE as a MRC task

S1: On Sunday, a protester stabbed an officer with a paper cutter.

Finding event triggers

• Finding event triggers:

[CLS] [EVENT] [SEP] Sentence [SEP]

S1: On Sunday, a protester stabbed an officer with a paper cutter.

1) Event Trigger Extraction

Qtrigger: [EVENT]

A_{trigger}: stabbed (Type=Attack)

Generating questions to find event arguments:

S1: On Sunday, a protester stabbed an officer with a paper cutter.

- Generating questions to find event arguments:
 - + Question topic generation:

CATEGORY	Role	TEMPLS.	
Time-related Place- related	Time Place	When Where	
Person- related	Victim, Attacker,	Who is the ROLE	
General role	<pre>Instrument, Target,</pre>	What is the ROLE	

- Generating questions to find event arguments:
 - + Question context generation:
 - Crawl (topic description, question) pairs from question.com

What are some of the legal issues in declaring bankruptcy?

Posted: 3+ months ago by spr1nkles

Topics: company, future, job, bankruptcy, legal

Details: If I declare that I am bankrupt, how will this affect me in the future for getting jobs?

building a company? etc. Also curious as to the different types of bankruptcy.

Thanks!

- Generating questions to find event arguments:
 - + Question context generation:
 - Crawl (topic description, question) pairs from question.com
 - Train a MT system to "translate" topic descriptions to questions.

$$P_{S\to Q}(q_s|s)$$

- Generating questions to find event arguments:
 - + Question context generation:
 - Crawl (topic description, question) pairs from question.com
 - Train a MT system to "translate" topic descriptions to questions.

$$P_{S\to Q}(q_s|s)$$

- Inference: the evidence sentence S_{x} is formed by taking a window of text around the predicted trigger.

$$q_{s_x} = \operatorname*{max}_{q_{s_x}} P_{S \to Q}(q_{s_x}|s_x)$$

- Generating questions to find event arguments:
 - + Question context generation:
 - Crawl (topic description, question) pairs from question.com
 - Train a MT system to "translate" topic descriptions to questions.

$$P_{S\to Q}(q_s|s)$$

- Inference: the evidence sentence S_{x} is formed by taking a window of text around the predicted trigger.

$$q_{s_x} = \operatorname*{arg\,max}_{q_{s_x}} P_{S \to Q}(q_{s_x}|s_x)$$

- Create the final question: Q = [Question topic] + [Question Context]

• Finding event arguments: standard MRC model.

$$H_c^q$$
 = BERT([CLS] Question [SEP] Sentence [SEP])

• Start and end token of the argument is determined by:

$$p_{start} = \operatorname{softmax}(H_c^q W_{start})$$
$$p_{end} = \operatorname{softmax}(H_c^q W_{end})$$

Data Augmentation

- Pretrain the model with SQUAD 2.0 dataset.
- Use pretrained MRC model to train it on ACE2005.

Results: standard case

Метнор	G_E	P_E	Δ F1
JointBeam (2013)	52.7	41.8	↓10.9
DMCNN (2015)	56.8	48.0^{\dagger}	$\downarrow 8.8$
JMEE (2018b)	60.3	50.4^{\dagger}	↓9.9
BERTEE	60.6^{\dagger}	51.9 [†]	↓8.7
Joint3EE (2019)	_	52.1	-
JointTrans (2019)	-	53.3	3. — 2.
RCEE	63.6	59.3*	↓4.3
RCEE w/o DA	62.7	58.7	↓4.0

Table 3: Results of argument extraction with unknown entities (P_E) . $\Delta F1$ indicates the performance gap compared with results with known entities (G_E) .

Results: zero-short (golden triggers)

Метнор	1%	5%	10%	20%
DMCNN	-	8.7	16.6	23.7
dbRNN	-	8.1	17.2	24.1
BERTEE	2.20	10.5	19.3	28.6
RCEE	38.8	51.3	55.7	59.4
RCEE w/o DA	2.00	23.8	35.2	49.2
RCEE_ER	49.8	59.9	65.1	67.6
RCEE_ER w/o DA	2.20	26.5	37.8	54.1

Table 4: F1 score (%) on exploring the extremely datascarce scenarios.