Contents

1	9-10-2014	2
	1.1 Measure Theory	2
2	10-10-2014	9
3	11-10-2014	18
4	12-10-2014	24
	4.1 Measure Theory Chapter 9	24
	4.2 Measure Theory Chapter 7	28

1 9-10-2014

1.1 Measure Theory

1.1 Problem 6.1a.

Consider on \mathbb{R} the family Σ of all Borel sets which are symmetric w.r.t. the origin. Show that Σ is a σ -algebra.

Proof.

- 1. To show that $\mathbb{R} \in \Sigma$, note that \mathbb{R} is a Borel set that is symmetric w.r.t. to the origin.
- 2. To show that $A \in \Sigma \Rightarrow A^c \in \Sigma$, it suffices to show that

$$\forall x \in A : -x \in A \Longrightarrow \forall y \in A^c : -y \in A^c$$
,

which is equivalent with showing that

$$\forall x \in A : -x \in A \Longrightarrow \forall y \notin A : -y \notin A$$
,

which is equivalent with showing that

$$\exists y \notin A : -y \in A \Longrightarrow \exists x \in A : -x \notin A.$$

This last statement hold if we set x := -y.

3. To show that Σ is stable under countable unions, assume $A_j = B_j \cup B_j$ for some $B_j \in \mathcal{B}([0,\infty)$. We have

$$\bigcup_{j\in\mathbb{N}} A_j = \bigcup_{j\in\mathbb{N}} B_j \cup \bigcup_{j\in\mathbb{N}} -B_j \in \Sigma$$

1.2 Problem 6.3i.

Show that non-void open sets in \mathbb{R}^n have always strictly positive Lebesgue measure.

Proof.

First remember that

1.
$$\lambda^n[a,b) = \prod_{j=1}^n (b_j - a_j)$$

- 2. λ^n is a pre-measure that can be extended to a measure on $\mathcal{B}(\mathbb{R}^n)$.
- 3. λ^n is invariant under translations

4.
$$A \subseteq B \Longrightarrow \mu(A) \le \mu(B)$$

5.
$$Q_{\epsilon} = [-\epsilon, \epsilon)$$

To show that $\lambda^n(U) > 0$ it suffices

$$\lambda^n(U') > 0$$

where $0 \in U'$ and U' = x + U for some $x \in \mathbb{R}^n$. To show that it suffices to show that

$$\lambda^n(B_{\epsilon}(0)) > 0$$

where $B_{\epsilon}(0) \subseteq U$. To show that it suffices to show that $Q_{\epsilon'} \subseteq B_{\epsilon}$ for some $\epsilon' > 0$. This holds if we set $\epsilon' := \frac{\epsilon}{\sqrt{2n}}$.

1.3 Problem 6.3ii.

Is 6.3i still true for closed sets?

Proof.

No, take $\{0\}$, then $\lambda\{x\} = 0$.

1.4 Problem 6.4i.

Show that $\lambda(a,b) = b - a$ for all $a,b \in \mathbb{R}, a \leq b$.

Proof.

$$\lambda(a,b) = \lambda([b-a) - \{b\})$$

$$= \lambda[b,a) - \lambda\{b\}$$

$$= b-a-0$$
 T4.3iii
Problem 4.11i

1.5 Problem 6.4ii.

Let $H \subseteq \mathbb{R}^2$ be a hyperplane which is perpendicular to the x_1 -direction (that is to say: H is a translate of the x_2 axis). Show that

- 1. $H \in \mathcal{B}(\mathbb{R}^2)$
- 2. $\lambda^{2}(H) = 0$

Proof.

1. To show that $H \in \mathcal{B}(\mathbb{R}^2)$, it suffices to show that H is writable as an intersection of countable half-open sets. Note that:

$$H := \{y\} \times \mathbb{R} = \bigcap_{j \in \mathbb{N}} [y, y + 1/j) \times \mathbb{R}$$

2. We have that for any $\epsilon > 0$:

$$\lambda^{2}(H) = \lambda^{2}(\{y\} \times \mathbb{R})$$

$$\leq \lambda^{2} \left(\bigcup_{n \in \mathbb{N}} [y, y + \epsilon_{n}) \times [-n, n) \right)$$

$$\leq 2 \sum_{n \in \mathbb{N}} \epsilon_{n} n$$

$$= \epsilon L$$

This follows if we choose $\epsilon_n := \frac{\epsilon}{2^n}$. Therefore $\lambda^2(H) = 0$.

1.6 Definition.

Let (X, \mathcal{A}, μ) be a measure space such that all singletons $\{x\} \in \mathcal{A}$. A point x is called an atom, if $\mu\{x\} > 0$. A measure is called *non-atomic* or *diffuse*, there are no atoms.

1.7 Problem 6.5i.

Show that λ^1 is diffuse.

Proof.

We've already shown that $\lambda\{x\} = 0$ for any $x \in \mathbb{R}$.

1.8 Problem 6.5iii.

Show that for a diffuse measure μ on (X, A) all countable sets are null sets.

Proof.

All countable sets are writable as

$$\bigcup_{j=0}^{\infty} \{x_j\}$$

where $x_i \neq x_j$. So we get

$$\lambda\left(\bigcup_{j=0}^{\infty} \{x_j\}\right) = \sum_{j=0}^{n} \lambda\{x_j\} = 0.$$

1.9 Definition.

A set $A \subseteq \mathbb{R}^n$ is called *bounded* if it can be contained in a ball $B_r \supseteq A$ of finite radius r. A set $A \subseteq \mathbb{R}^n$ is called *connected*, if we can go along a curve from any point $a \in A$ to any point $a' \in A$ without ever leaving A.

1.10 Problem 6.6a.

Construct an open and unbounded set in \mathbb{R} with finite, strictly positive Lebesgue measure.

Proof.

Consider the set

$$U := \bigcup_{n=1}^{\infty} \left(n - \frac{1}{2^n}, n + \frac{1}{2^n} \right).$$

This is an open set, as it union of countable open sets. It is unbounded, for any $B_r(0)$ we have that $r+1 \in U$ and not in $B_r(0)$. We have to show that it has finite lebesgue measure.

$$\lambda(U) = \bigcup_{n=1}^{\infty} \left(n - \frac{1}{2^n}, n + \frac{1}{2^n} \right)$$
$$= \sum_{n=1}^{\infty} \frac{2}{2^n} = 2.$$

1.11 Problem 6.6ii.

Construct an open, unbounded and connected set in \mathbb{R} with finite, strictly positive Lebesque measure.

Proof.

Consider

$$U = \bigcup_{j \in \mathbb{N}} [0, 0 + \epsilon/(2^j)) \times [-j, j)$$

then

$$\begin{split} \lambda^2(U) &= \left(\bigcup_{j \in \mathbb{N}} (-\frac{1}{2^j}, \frac{1}{2^j}) \times (-j, j) \right) \\ &\leq \sum_{j \in \mathbb{N}} \frac{4j}{2^j} \end{split}$$

Note that

$$\sum_{j\in\mathbb{N}}\frac{j}{2^j}$$

converges.

1.12 Problem 6.6iii.

Is there a connected, open and unbounded set in \mathbb{R} with finite, strictly positive Lebesgue measure?

Proof.

No, this is impossible. Since we are in one dimension, connectedness forces us to go between points in a straight, uninterrupted line. Since the set is unbounded, this means we must have a line of the sort (a, ∞) or $(-\infty, b)$ in our set and in both cases Lebesgue measure is infinite.

1.13 Definition.

Let $A \subset X$. The closure of A, denoted by \bar{A} , is the smallest closed set containing A, i.e.

$$\bar{A} = \bigcap_{\substack{F \in \mathcal{C} \\ F \supset A}} F$$

1.14 Definition.

A set $A \subseteq X$ is dense in X if $\bar{A} = X$

1.15 Problem 6.7.

Let $\lambda := \lambda^1|_{[0,1]}$ be a Lebesgue measure on $([0,1], \mathcal{B}[0,1])$. Show that for every $\epsilon > 0$ there is a dense open set $U \subseteq [0,1]$ with $\lambda(U) \leq \epsilon$.

Proof.

Note that \mathbb{Q} is dense. We are going to make an open set contained in \mathbb{Q} . Consider

$$U := \bigcup_{j=1}^{\infty} (q_j - \epsilon_j, q_j + \epsilon_j)$$

Then

$$\lambda(U) = \lambda(\bigcup_{j=1}^{\infty} (q_j - \epsilon_j, q_j + \epsilon_j)) \le \sum_{j=1}^{\infty} 2\epsilon_j.$$

So set $\epsilon_j := \frac{\epsilon}{2^{j-1}}$. And we are done.

1.16 Problem 6.10i.

Let μ be a measure on $A = \{\emptyset, [0,1), [1,2), [0,2)\}$ of X = [0,2). Such that

$$\mu[0,1) = \mu[1,2) = 1/2$$
 $\mu[0,2) = 1.$

Define for each $A \subseteq [0,2)$ the family of countable A-coverings of A

$$C(A) := \{ (A_j)_{j \in \mathbb{N}} \subseteq A : \bigcup_{j \in \mathbb{N}} A_j \supseteq A \}$$

and set

$$\mu^*(A) := \inf \left\{ \sum_{j \in \mathbb{N}} \mu(S_j) : (S_j)_{j \in \mathbb{N}} \in \mathcal{C}(A) \right\}.$$

 $Define \ \mathcal{A}^* := \{A \subseteq [0,2): \mu^*(B) = \mu^*(B \cap A) + \mu^*(B-A) \quad \forall B \subseteq X\}$

Show that

- 1. Find $\mu^*(a,b), \mu^*\{a\}$
- 2. $(0,1), \{0\} \not\in \mathcal{A}^*$

Note that in T6.1 it is proven that:

- $A \subseteq A^*$
- $\mu^*(A) = \mu(A) \quad \forall A \in \mathcal{A}$
- \mathcal{A}^* is a σ -algebra and μ^* is a measure on $([0,2),\mathcal{A}^*)$

Proof.

1. We have

$$\begin{split} \mu^*(a,b) &= \mu[0,1) \quad \text{if } a,b \in [0,1) \\ \mu^*(a,b) &= \mu[1,2) \quad \text{if } a,b \in [1,2) \\ \mu^*(a,b) &= \mu[0,2) \quad \text{if } a \in [0,1), b \in [1,2) \end{split}$$

In the case of a singleton $\{a\}$ the best possibble cover is always either [0,1) or [1,2) so that $\mu^*\{a\}=1/2$.

2. Suppose that $(0,1) \in \mathcal{A}^*$ then we would have that

$$\{0\} = [0,1) - (0,1) \in \mathcal{A}^*.$$

But this gives

$$\frac{1}{2} = \mu^*[0,1) = \mu^*(0,1) + \mu^*\{0\} = 1$$

2 10-10-2014

2.1 Definition.

Let $(X, \mathcal{A}), (X', \mathcal{A}')$ be two measurable spaces. A map $T: X \to X'$ is called \mathcal{A}/\mathcal{A}' -measurable (or measurable unlesss this is too amiguous) if the pre-image of every measurable set is a measurable set:

$$T^{-1}(A') \in \mathcal{A} \qquad \forall A' \in \mathcal{A}'.$$

We often denote this by $T^{-1}(\mathcal{A}') \subseteq \mathcal{A}'$.

2.2 Definition.

A random variable is a measurable map from a probability space (i.e. $\mu(X) = 1$) to any measurable space.

2.3 Lemma 7.2.

Let $(X, \mathcal{A}), (X', \mathcal{A}')$ be measurable spaces and let $\mathcal{A}' = \sigma(\mathcal{G}')$. Then $T: X \to X'$ is \mathcal{A}/\mathcal{A}' -measurable if and only if

$$T^{-1}(G') \in \mathcal{A} \qquad \forall G' \in \mathcal{G}'.$$

2.4 Problem 7.1.

Show that

$$\tau_r: \mathbb{R}^n \to \mathbb{R}^n: B \mapsto B - x$$

is a $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^n)$ measurable map.

Proof.

Showing that

$$\tau_x: \mathcal{B}(\mathbb{R}^n) \to \mathcal{B}(\mathbb{R}^n): B \mapsto B - x$$

is $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^n)$ measurable, is equivalent with showing that

$$\tau_x^{-1}(B) \in \mathcal{B}(\mathbb{R}^n) \qquad \forall B \in \mathcal{B}(\mathbb{R}^n),$$

which in turn is equivalent with showing that

$$x + B \in \mathcal{B}(\mathbb{R}^n) \qquad \forall B \in \mathcal{J}(\mathbb{R}^n),$$

which in turn is equivalent with showing that

$$x + [a, b) \in \mathcal{B}(\mathbb{R}^n) \qquad \forall a, b \in \mathbb{R}^n.$$

This follows as $x + [a, b) = [x + a, x + b) \in \mathcal{J}(\mathbb{R}^n) \subseteq \mathcal{B}(\mathbb{R}^n)$.

2.5 Theorem.

Every continuous map $T: \mathbb{R}^n \to \mathbb{R}^m$ is $\mathcal{B}^n/\mathcal{B}^m$ measurable.

Proof.

Showing that

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

is $\mathcal{B}^n/\mathcal{B}^m$ measurable, is equivalent with showing that

$$T^{-1}(\mathcal{O}^m)\subseteq \mathcal{B}^n$$
.

As $\mathcal{O}^n \subseteq \sigma(\mathcal{O}^n) = \mathcal{B}^n$, it suffices to show that

$$T^{-1}(\mathcal{O}^m) \subseteq \mathcal{O}^n$$
,

which follows from the continuity of T.

2.6 Definition.

Let $(T_i)_{i\in I}$ be arbitrarily many mappings $T_i: X \to X_i$ from the same space X into measurable spaces (X_i, \mathcal{A}_i) . The smallest σ -algebra on X that makes all T_i simultaneously measurable is

$$\sigma(T_i: i \in I) := \sigma\Big(\bigcup_{i \in I} T_i^{-1}(\mathcal{A}_i)\Big).$$

We say that $\sigma(T_i : i \in I)$ is generated by the family $(T_i)_{i \in I}$.

2.7 Theorem.

Let (X_j, A_j) , j = 1, 2, 3, be measurable spaces and $T : X_1 \to X_2$, $S : X_2 \to X_3$ be $\mathcal{A}_1/\mathcal{A}_2$ —resp. $\mathcal{A}_2/\mathcal{A}_3$ -measurable maps. Then $S \circ T : X_1 \to X_3$ is $\mathcal{A}_1/\mathcal{A}_3$ -measurable.

2.8 Problem 7.4.

Let X be a set, (X_i, A_i) , $i \in I$, be arbitrarily many measurable spaces, and $T_i: X \to X_i$ be a family of maps. Show that a map f from a measurable space (F, \mathcal{F}) to $(X, \sigma(T_i: i \in I)$ is measurable if, and only if, all maps $T_i \circ f$ are \mathcal{F}/A_i -measurable.

Proof of \Longrightarrow .

To show that all maps $T_i \circ f$ are $\mathcal{F}/\mathcal{A}_i$ -measurable, it suffices to show that $T_i: X \to X_i$ is $\sigma(T_i: i \in I)/\mathcal{A}_i$ -measurable and $f: F \to X$ is $\mathcal{F}/\sigma(T_i: i \in I)$ -measurable.

By hypothesis, is suffices to show that $T_i: X \to X_i$ is $\sigma(T_i: i \in I)/A_i$ -measurable, which is equivalent with showing that

$$T_i^{-1}(A_i) \in \sigma(T_i : i \in I) \qquad \forall A_i \in \mathcal{A}_i.$$

It suffices to assume $A_i \in \mathcal{A}_i$ and show that

$$T_i^{-1}(A_i) \in \bigcup_{i \in I} T_i^{-1}(A_i) \qquad \checkmark.$$

Proof of \Leftarrow .

To show that a map f from a measurable space (F, \mathcal{F}) to $(X, \sigma(T_i : i \in I))$ is measurable, it suffices to show that

$$f^{-1}(\bigcup_{i\in I}T_i^{-1}(\mathcal{A}_i))\subseteq \mathcal{F}$$

To show this it suffices to show that

$$\bigcup_{i\in I} f^{-1}(T_i^{-1}(\mathcal{A}_i)) \subseteq \mathcal{F},$$

to show this it suffices to show that

$$f^{-1}(T_i^{-1}(\mathcal{A}_i)) \subseteq \mathcal{F},$$

to show this it suffices to show that

$$(T_i \circ f)^{-1}(\mathcal{A}_i) \subseteq \mathcal{F}.$$

This follows by hypothesis.

2.9 Problem 7.8.

Let $T: X \to Y$ be any map. Show that

$$T^{-1}(\sigma(\mathcal{G})) = \sigma(T^{-1}(\mathcal{G}))$$

holds for arbitrary families of \mathcal{G} of subsets of Y.

Proof.

To show that

$$T^{-1}(\sigma(\mathcal{G})) = \sigma(T^{-1}(\mathcal{G}))$$

it suffices to show:

1.
$$T^{-1}(\sigma(\mathcal{G})) \subseteq \sigma(T^{-1}(\mathcal{G}))$$

2.
$$\sigma(T^{-1}(\mathcal{G})) \subseteq T^{-1}(\sigma(\mathcal{G}))$$

To show

$$T^{-1}(\sigma(\mathcal{G})) \subseteq \sigma(T^{-1}(\mathcal{G})),$$

it suffices to show that T is $\sigma(T^{-1}(\mathcal{G}))/\sigma(\mathcal{G})$ measurable.

To show that it suffices to show that

$$T^{-1}(\mathcal{G}) \subseteq \sigma(T^{-1}(\mathcal{G})) \qquad \checkmark.$$

To show

$$\sigma(T^{-1}(\mathcal{G})) \subseteq T^{-1}(\sigma(\mathcal{G})),$$

it suffices to show that

$$T^{-1}(\mathcal{G}) \subseteq T^{-1}(\sigma(\mathcal{G})) \qquad \checkmark.$$

2.10 Definition.

A family $\mathcal{D} \subseteq \mathcal{P}(X)$ is a *Dynkin system* if

$$X\in\mathcal{D}$$

$$D\in\mathcal{D}\Longrightarrow D^c\in\mathcal{D}$$

$$(D_j)_{j\in\mathbb{N}}\subseteq\mathcal{D} \text{ pairwise disjoint }\Longrightarrow\bigcup_{j\in\mathbb{N}}D_j\in\mathcal{D}$$

2.11 Definition.

Let $\mathcal{G} \subseteq \mathcal{P}(X)$. Then there is a smallest Dynkin system $\delta(\mathcal{G})$ containing \mathcal{G} . $\delta(\mathcal{G})$ is called the *Dynkin system generated by* \mathcal{G} .

2.12 Proposition.

Show that

$$\mathcal{G} \subseteq \delta(\mathcal{G}) \subseteq \sigma(\mathcal{G}).$$

Proof.

We have that $\mathcal{G} \subseteq \sigma(\mathcal{G})$. And therefore $\delta(\mathcal{G}) \subseteq \delta(\sigma(\mathcal{G})) = \sigma(\mathcal{G})$.

2.13 Theorem.

A Dynkin system \mathcal{D} is a σ -algebra if, and only if, it is stable under finite intersections: $D, E \in \mathcal{D} \Longrightarrow D \cap E \in \mathcal{D}$

Proof.

It suffices to show that a \cap -stable Dynkin system is stable under countable unions. To show this, it suffices to show that given $(D_i)_{i\in\mathbb{N}}\in\mathcal{D}$, we have

$$D:=\bigcup_{j\in\mathbb{N}}D_j\in\mathcal{D}.$$

Set $E_1 = D_1 \in \mathcal{D}$. And $E_2 := D_2 \cap D_1^c$. And $E_3 = D_3 \cap D_2^c \cap D_1^c$. And so on. Then

$$D = \bigcup_{j \in \mathbb{N}} E_j \in \mathcal{D}.$$

2.14 Theorem.

If $\mathcal{G} \subseteq \mathcal{P}(X)$ is stable under finite intersections, then $\delta(\mathcal{G}) = \sigma(\mathcal{G})$.

Proof.

It suffices to show that $\sigma(\mathcal{G}) \subseteq \delta(\mathcal{G})$. As $\mathcal{G} \subseteq \delta(\mathcal{G})$ it suffices to show that $\delta(\mathcal{G})$ is a σ -algebra. To show that $\delta(\mathcal{G})$ is a σ -algebra, it suffices to show that $\delta(\mathcal{G})$ is stable under finite intersections.

Fix $D \in \delta(G)$. Consider $\mathcal{D}_D := \{Q \subseteq X : Q \cap D \in \delta(\mathcal{G})\}$. It suffices to show that $\delta(\mathcal{G}) \subseteq \mathcal{D}_D$. To show that it suffices to show that \mathcal{D}_D is a Dynkin system and that $\mathcal{G} \subseteq \mathcal{D}_D$.

To show that $\mathcal{G} \subseteq \mathcal{D}_D$, it suffices to show that

$$G \cap D \in \delta(\mathcal{G}) \qquad \forall G \in \mathcal{G},$$

to show that it suffices to show that

$$\delta(\mathcal{G}) \subseteq \mathcal{D}_G \quad \forall G \in \mathcal{G},$$

to show that it suffices to show that (as \mathcal{D}_G is a dynkin system)

$$\mathcal{G} \subset \mathcal{D}_G \quad \forall G \in \mathcal{G}.$$

This follows from $\mathcal{G} \subseteq \delta(\mathcal{G})$ and \mathcal{G} is \cap -stable.

2.15 Proposition.

$$A_i \uparrow A \Longrightarrow A_i \cap B \uparrow A \cap B$$

Proof.

To show that

$$A_j \uparrow A \Longrightarrow A_j \cap B \uparrow A \cap B$$
,

it suffices to show that

$$A = \bigcup_{j} A_{j} \Longrightarrow A \cap B = \bigcup_{j} A_{j} \cap B,$$

which is equivalent with showing that

$$\left(\bigcup_{j} A_{j}\right) \cap B = \bigcup_{j} A_{j} \cap B \qquad \checkmark.$$

2.16 Definition.

An exhausting sequence $(A_j)_{j\in\mathbb{N}}\subseteq\mathcal{A}$ is an increasing sequence of sets $A_1\subseteq A_2\subseteq A_3\subseteq\dots$ such that $\bigcup_{j\in\mathbb{N}}A_j=X$.

2.17 Theorem.

Assume that (X, A) is a measurable space and that $A = \sigma(G)$ is generated by a family G such that

- \mathcal{G} is stable under finite intersections $G, H \in \mathcal{G} \Longrightarrow G \cap H \in \mathcal{G}$
- there exists an exhausting sequence $(G_j)_{j\in\mathbb{N}}\subseteq\mathcal{G}$ with $G_j\uparrow X$

Any two measure μ, ν that coincide on \mathcal{G} and are finite for all members of the exhausting sequence $\mu(G_i) = \nu(G_i) < \infty$, are equal on \mathcal{A} , i.e.

$$\mu(A) = \nu(A) \qquad \forall A \in \mathcal{A}.$$

Proof.

Remember that for any increasing sequence $(A_j)_{j\in\mathbb{N}}\subseteq\mathcal{A}$ with $A_j\uparrow A\in\mathcal{A}$ we have

$$\mu(A) = \lim_{j \in \infty} \mu(A_j).$$

To show that

$$\mu(A) = \nu(A) \qquad \forall A \in \mathcal{A}$$

it suffices to show that (as $G_j \cap A \uparrow X \cap A$)

$$\lim_{j \in \infty} \mu(G_j \cap A) = \lim_{j \in \infty} \mu(G_j \cap A) \qquad \forall A \in \mathcal{A}$$

To show that it suffices to show that

$$\mu(G_j \cap A) = \nu(G_j \cap A) \quad \forall j \in \mathbb{N}, \quad \forall A \in \mathcal{A}.$$

Consider $\mathcal{D}_j := \{ A \in \mathcal{A} : \mu(G_j \cap A) = \nu(G_j \cap A) \}$. It suffices to show that $\mathcal{A} \subseteq \mathcal{D}_j$, which is equivalent with showing $\sigma(\mathcal{G}) \subseteq \mathcal{D}_j$.

As \mathcal{G} is stable under finite intersections, it suffices to show that $\delta(\mathcal{G}) \subseteq \mathcal{D}_i$.

As \mathcal{G} is stable under finite intersections and $\mu(\mathcal{G}) = \nu(\mathcal{G})$, we have that $\mathcal{G} \subseteq D_j$ and therefore it suffices to show that \mathcal{D}_j is a Dynkin system.

Which you can check.

2.18 Theorem.

The n-dimensional Lebesgue measure λ^n is invariant under translations, i.e.

$$\lambda^n(x+B) = \lambda^n(B) \qquad \forall x \in \mathbb{R}^n, \forall B \in \mathcal{B}(\mathbb{R}^n).$$

Proof.

Set $\nu(B) := \lambda^n(x+B)$ for some fixed $x \in \mathbb{R}^n$. It suffices to show that

$$\lambda^n(B) = \nu(B)$$
 $B \in \mathcal{B}$.

To show that, it suffices to show that

- 1. \mathcal{J} is \cap -stable \checkmark
- 2. \mathcal{J} admits an exhausting sequence

•
$$[-j,j) \uparrow \mathbb{R}^n \quad \checkmark$$

3. $\lambda^n|_{\mathcal{J}} = \nu|_{\mathcal{J}}$

$$v([a,b)) = \lambda^{n}[x+a, x+b)$$
$$= \lambda^{n}[a,b)$$

4. ν is a measure on \mathcal{B}^n

To show that ν is a measure on \mathcal{B}^n , it suffices to show that

$$\nu(\bigcup_{j\in\mathbb{N}} B_j) = \sum_{j\in\mathbb{N}} \nu(B_j),$$

which is equivalent with

$$\lambda^n(x + \bigcup_{j \in \mathbb{N}} B_j) = \sum_{j \in \mathbb{N}} \lambda^n(x + B_j).$$

It suffices to show

$$B \in \mathcal{B}^n \Longrightarrow x + B \in \mathcal{B}^n.$$

Which we have already proven.

2.19 Theorem.

Let $(X, \mathcal{A}), (X, \mathcal{A}')$ be measurable spaces and $T: X \to X'$ be an \mathcal{A}/\mathcal{A}' measurable map. For every measure μ on (X, \mathcal{A}) ,

$$\mu'(A') := \mu(T^{-1}(A')), \qquad A' \in \mathcal{A}'.$$

The measure μ' is called the image measure of μ under T and is denoted by $T \circ \mu$ or $\mu \circ T^{-1}$.

2.20 Problem 7.7.

Use image measures to give a new proof of Problem 5.8, i.e. to show that

$$\lambda^n(t \cdot B) = t^n \lambda^n(B) \qquad \forall B \in \mathcal{B}(\mathbb{R}^n), \forall t > 0$$

Proof.

Set $\nu(B) := t^n \lambda^n(B)$ for some fixed $x \in \mathbb{R}^n$. It suffices to show that

$$\lambda^n(tB) = \nu(B) \qquad \forall B \in \mathcal{B}.$$

To show that, it suffices to show that

- 1. \mathcal{J} is \cap -stable \checkmark
- 2. \mathcal{J} admits an exhausting sequence

•
$$[-j,j) \uparrow \mathbb{R}^n \quad \checkmark$$

3. $\lambda^n|_{\mathcal{J}} = \nu|_{\mathcal{J}}$

$$\nu([a,b)) = \lambda^n[ta,tb)$$
$$= t^n \lambda^n[a,b)$$

4. ν is a measure on \mathcal{B}^n as it is a composition of the inverse of a measurable map and a measure.

3 11-10-2014

3.1 Definition.

Note that: $u^{-1}[a,\infty)=\{x\in X:u(x)\in[a,\infty)\}=\{x\in X:u(x)\geq a\}.$ We define:

$${u(x) \ge a} = u^{-1}[a, \infty).$$

3.2 Theorem.

Let (X, A) be a measurable space. The function $u : X \to \mathbb{R}$ is A/\mathcal{B} -measurable if, and only if, one, hence all, of the following conditions hold

1.
$$\{u \ge a\} \in \mathcal{A} \quad \forall a \in \mathbb{R}$$

2.
$$\{u > a\} \in \mathcal{A} \quad \forall a \in \mathbb{R}$$

3.
$$\{u \le a\} \in \mathcal{A} \quad \forall a \in \mathbb{R}$$

4.
$$\{u < a\} \in \mathcal{A} \quad \forall a \in \mathbb{R}$$

3.3 Definition.

We define the extended real line $\mathbb{R} := [-\infty, \infty]$ with the following rules for all $x \in \mathbb{R}$:

$$x + \infty = \infty + x = \infty$$
 $x + -\infty = -\infty + x = -\infty$
 $\infty + \infty = \infty$ $-\infty - \infty = -\infty$

And for $x \in (0, \infty]$:

$$\pm x \cdot \infty = \infty \cdot \pm x = \pm \infty$$

$$\pm x \cdot -\infty = -\infty \cdot \pm x = \mp \infty$$

$$0 \cdot \pm \infty = \pm \infty \cdot 0 = 0$$

$$\frac{1}{+\infty} = 0$$

3.4 Definition.

Functions which take values in \mathbb{R} are called *numerical functions*.

3.5 Definition.

The Borel σ -algebra $\bar{\mathcal{B}} = \mathcal{B}(\bar{\mathbb{R}})$ is defined by:

$$\bar{\mathcal{B}} := \left\{ B \cup S : B \in \mathcal{B} \text{ and } S \in \left\{ \varnothing, \{-\infty\}, \{\infty\}, \{-\infty, \infty\} \right\} \right\}$$

3.6 Theorem.

We have $\mathcal{B}(\mathbb{R}) = \mathbb{R} \cap \mathcal{B}(\bar{\mathbb{R}})$. Moreover $\bar{\mathcal{B}}$ is generated by all sets of the form $[a,\infty]$ or $[a,\infty]$ where $[a,\infty]$

3.7 Definition.

Let (X, \mathcal{A}) be a measurable space. We write $\mathcal{M} := \mathcal{M}(\mathcal{A})$ and $\mathcal{M}_{\mathbb{R}} := \mathcal{M}_{\mathbb{R}}(\mathcal{A})$ for the families of real valued \mathcal{A}/\mathcal{B} -measurable and numerical $\mathcal{A}/\bar{\mathcal{B}}$ -measurable functions on X.

3.8 Definition.

A simple function $g: X \to \mathbb{R}$ on a measurable space (X, \mathcal{A}) is a function of the form

$$g(x) := \sum_{j=1}^{M} y_j \mathbf{1}_{A_j}(x)$$

with finitely many sets $A_1, \ldots, A_m \in \mathcal{A}$ and $y_1, \ldots, y_M \in \mathbb{R}$. The set of simple functions is denoted by \mathcal{E} or $\mathcal{E}(\mathcal{A})$.

If the sets A_1, \ldots, A_M are mutally disjoint we call

$$\sum_{j=0}^{M} y_j \mathbf{1}_{A_j}(x)$$

with $y_0 := 0$ and $A_0 := (A_1 \cup \ldots \cup A_M)^c$ a standard representation of g. Caution, this representation is not unique.

3.9 Theorem.

Let (X, A) be a measurable space. Every A/\bar{B} -measurable numerical function $u: X \to \bar{\mathbb{R}}$ is the pointwise limit of simple functions:

$$u(x) = \lim_{j \to \infty} f_j(x)$$

where $f_j \in \mathcal{E}(\mathcal{A})$ and $|f_j| \leq |u|$.

If $u \ge 0$, all f_j can be chosen to be positive and increasing towards u so that $u = \sup_{j \in \mathbb{N}} f_j$.

3.10 Theorem.

Let (X, A) be a measurable space. If $u_j : X \to \mathbb{R}, j \in \mathbb{N}$ are measurable functions, then so are

$$\sup_{j\in\mathbb{N}}u_j\quad \inf_{j\in\mathbb{N}}u_j\quad \limsup_{j\to\mathbb{N}}u_j\quad \liminf_{j\to\mathbb{N}}u_j$$

and whenever it exists

$$\lim_{j\to\infty}u_j.$$

3.11 Theorem.

Let u, v be A/\bar{B} -measurable functions. Then the functions

$$u \pm v$$
 uv $u \lor v := \max\{u, v\}$ $u \land v := \min\{u, v\}$

are $A/\bar{\mathcal{B}}$ -measurable (whenever they are defined).

3.12 Theorem.

A function u is A/B measurable if, and only if, u^{\pm} are A/\bar{B} measurable.

3.13 Theorem.

Let $T:(X,\mathcal{A}) \to (X',\mathcal{A}')$ be an \mathcal{A}/\mathcal{A}' -measurable map and let $\sigma(T) \subseteq \mathcal{A}$ be the σ -algebra generated by T. Then u = w(T) for some $\mathcal{A}'/\bar{\mathcal{B}}$ measurable function $w: X' \to \bar{\mathbb{R}}$ if and only if $u: X \to \bar{\mathbb{R}}$ is $\sigma(T)/\bar{\mathcal{B}}$ -measurable.

3.14 Proposition.

Let (X, A) be a measurable space. We define the indicator function:

$$1_A: X \to \mathbb{R}: x \in A \mapsto 1 \quad x \in X - A \mapsto 0$$

Show that the indicator function is measurable if, and only if, $A \in \mathcal{A}$.

Proof.

To show that 1_A is measurable, it suffices to show that

$$1_A^{-1}(a,\infty) \in \mathcal{A}.$$

Note that

$$1_A^{-1}(a,\infty) = \{x \in X : 1_A(x) \in (a,\infty)\} = \{1_A > a\}$$

If $a \ge 1$, then $1_A^{-1}(a, \infty) = \emptyset$.

If $a \in [0, 1)$, then $1_A^{-1}(a, \infty) = A$.

If
$$a < 0$$
, then $1_A^{-1}(a, \infty) = X$.

3.15 Proposition.

Let $A_1, \ldots, A_M \in \mathcal{A}$ be mutally disjoint sets and $y_1, \ldots, y_M \in \mathbb{R}$. Then the function

$$g: X \to \mathbb{R}: x \mapsto \sum_{j=1}^{M} y_j 1_{A_j}(x)$$

is measurable.

Proof.

To show that g is measurable it suffices to show that

$$\{g > a\} \in \mathcal{A}$$

i.e.

$$\left\{x \in X : \sum_{j=1}^{M} y_j 1_{A_j}(x) > a\right\} = \bigcup_{j: y_j > a} A_j \in \mathcal{A}.$$

3.16 Problem 8.3i.

Let (X, A) be a measurable space. Let $f, g: X \to \mathbb{R}$ be measurable functions. Show that for every $A \in A$ the functions h(x) := f(x) if $x \in A$ and h(x) := g(x), if $x \notin A$, is measurable.

Proof.

Note that

$$h(x) := 1_A(x)f(x) + 1_{A^c}(x)g(x).$$

And remember that sums and products of measurable functions are again measurable. $\hfill\Box$

3.17 Problem 8.3ii.

Let $(f_j)_{j\in\mathbb{N}}$ be a sequence of measurable functions and let $(A_j)_{j\in\mathbb{N}}\subseteq \mathcal{A}$ such that $\bigcup_{j\in\mathbb{N}} A_j = X$. Suppose that $f_j|_{A_j\cap A_k} = f_k|_{A_j\cap A_k}$ for all $j,k\in\mathbb{N}$ and set $f(x) := f_j(x)$ if $x \in A_j$. Show that $f: X \to \mathbb{R}$ is measurable.jbr $/\dot{\delta}$

Proof.

We have that:

$$f^{-1}(B) = \bigcup_{j \in \mathbb{N}} A_j \cap f^{-1}(B) = \bigcup_{j \in \mathbb{N}} A_j \cap f_j^{-1}(B) \in \mathcal{A}$$

3.18 Problem 8.4.

Let (X, A) be a measurable space and let $\mathcal{B} \subset A$ be a sub- σ -algebra. Show that $\mathcal{M}(\mathcal{B}) \subset \mathcal{M}(A)$.

Proof.

To show that

$$\mathcal{M}(\mathcal{B}) \subset \mathcal{M}(\mathcal{A})$$

it suffices to show there exists a \mathcal{A} -measurable function that is not \mathcal{B} -measurable. By hypothesis, we have an element $A \in \mathcal{A}$, that is not in \mathcal{B} , i.e. $A \notin \mathcal{B}$. Since 1_A is \mathcal{B} -measurable if, and only if, $B \in \mathcal{B}$, we have find the \mathcal{A} -measurable function where we where looking for.

3.19 Theorem.

Let $u : \mathbb{R} \to \mathbb{R}$ be differentiable. Explain why u and u' = du/dx are measurable.

Proof.

If u is differentiable, it is continuous, hence measurable. Since u' exists, we can write it in the form

$$u'(x) = \lim_{k \to \infty} \frac{u(x+1/k) - u(x)}{1/k}$$

i.e. as limit of measurable functions. Thus, u' is also measurable.

3.20 Problem 8.17.

Show that the measurability of |u| does not, in general, imply the measurability of u.

Proof.

Let $A \subseteq \mathbb{R}$ be such that $A \notin \mathcal{B}$. Then it is clear that

$$u(x) := 1_A(x) - 1_{A^c}(x)$$

is not measurable. Take

$$\{u=1\}=A\not\in\mathcal{A}.$$

But |u(x)| = 1, which is a continuous function and therefore measurable.

3.21 Problem 8.14.

Consider $(\mathbb{R}, \mathcal{B})$ and $u : \mathbb{R} \to \mathbb{R}$. Show that $\{x\} \in \sigma(u)$ for all $x \in \mathbb{R}$ if, and only if, u is injective.

Proof.

To show that u is injective, it suffices to assume $x, y \in \mathbb{R}$ and show that

$$u(x) = u(y) \Longrightarrow x = y.$$

Showing that is equivalent with showing that

$$|\{u = u(x_0)\}| = 1.$$

We surely have that $\{x_0\} \subseteq \{u = u(x_0)\}$. And note that

$$\{x_0\} \in \sigma(u) = \sigma(u^{-1}(\mathcal{B}))$$

just means that $\{x_0\} = u^{-1}(B)$ for some $B \in \mathcal{B}$.

Proof.

Assume that u is injective,. This means that every point in the range $u(\mathbb{R})$ comes exactly from unique defined $x \in \mathbb{R}$. This can be expressed by saying that $\{x\} = u^{-1}(\{u(x)\}) = \{u(x)\}$. But then

$$\{x\} \in \sigma(u) = \sigma(u^{-1}(\mathcal{B})).$$

4 12-10-2014

4.1 Measure Theory Chapter 9

4.1 Definition.

Let $f = \sum_{j=0}^{M} y_j 1_{A_j} \in \mathcal{E}^+$ be a simple function in standard representation. Then the number

$$I_{\mu}(f) := \sum_{j=0}^{M} y_{j} \mu(A_{j}) \in [0, \infty]$$

is called the $(\mu$ -)integral of f.

4.2 Theorem.

1.
$$I_{\mu}(1_A) = \mu(A) \quad \forall A \in \mathcal{A}$$

2.
$$I_{\mu}(\lambda f) = \lambda I_{\mu}(f) \quad \forall \lambda \geq 0$$

3.
$$I_{\mu}(f+g) = I_{\mu}(f) + I_{\mu}(g)$$

4.
$$f \leq g \Longrightarrow I_{\mu}(f) \leq I_{\mu}(g)$$

4.3 Definition.

Let (X, \mathcal{A}, μ) be a measure space. The $(\mu$ -)integral of a positive numerical function $u \in \mathcal{M}_{\mathbb{R}}^+$ is given by

$$\int ud\mu := \sup\{I_{\mu}(g) : g \le u, g \in \mathcal{E}^+\} \in [0, \infty].$$

If we need to emphasize the integration variable, we also write

$$\int u(x)\mu(dx)$$
 or $\int u(x)d\mu(x)$

4.4 Theorem.

For all $f \in \mathcal{E}^+$ we have $\int f du = I_{\mu}(f)$.

4.5 Theorem.

Let (X, A, μ) be a measure space. For an increasing sequence of numerical functions $(u_j)_{j\in\mathbb{N}}\subseteq\mathcal{M}^+_{\mathbb{R}}, 0\leq u_j\leq u_{j+1}\leq\ldots$, we have $u:=\sup_{j\in\mathbb{N}}u_j\in\mathcal{M}^+_{\mathbb{R}}$ and

$$\int \sup_{j \in \mathbb{N}} u_j d\mu = \sup_{j \in \mathbb{N}} \int u_j d\mu$$

4.6 Theorem.

Let $u \in \mathcal{M}_{\mathbb{R}}^+$. Then

$$\int ud\mu = \lim_{j \to \infty} \int f_j d\mu$$

holds for every increasing sequence $(f_j)_{j\in\mathbb{N}}\subseteq\mathcal{E}^+$ with $\lim_{j\to\infty}f_j=u$.

4.7 Theorem.

Let $u, v \in \mathcal{M}_{\bar{\mathbb{R}}}^+$. Then

- 1. $\int 1_A d\mu = \mu(A) \quad \forall A \in \mathcal{A}$
- 2. $\int \alpha u d\mu = \alpha \int u d\mu$
- 3. $\int (u+v)d\mu = \int ud\mu + \int vd\mu$
- 4. $u \le v \Longrightarrow \int u d\mu \le \int v d\mu$

4.8 Theorem.

Let $(u_j)_{j\in\mathbb{N}}\subseteq\mathcal{M}_{\mathbb{R}}^+$. Then $\sum_{j=1}^\infty u_j$ is measurable and we have

$$\int \sum_{j=1}^{\infty} u_j d\mu = \sum_{j=1}^{\infty} \int u_j d\mu$$

4.9 Theorem.

Let $(u_j)_{j\in\mathbb{N}}\subseteq\mathcal{M}_{\mathbb{R}}^+$ be a sequence of positive measurable numerical functions. Then $u:=\liminf_{j\in\infty}\int u_jd\mu$ is measurable and

$$\int \liminf_{j \to \infty} u_j d\mu \le \liminf_{j \to \infty} \int u_j d\mu$$

4.10 Problem 9.1.

Let $f: X \to \mathbb{R}$ be a positive simple function of the form

$$f(x) = \sum_{j=1}^{m} \xi_j 1_{A_j}(x)$$
 $\xi_j \ge 0, A_j \in \mathcal{A}.$

Show that

$$I_{\mu}(f) = \sum_{j=1}^{m} \xi_j \mu(A_j)$$

Proof.

$$I_{\mu}(f) = I_{\mu}\left(\sum_{j=1}^{m} \xi_{j} 1_{A_{j}}\right) = \sum_{j=1}^{m} \xi_{j} I_{\mu}(1_{A_{j}}) = \sum_{j=1}^{m} \xi_{j} \mu(A_{j})$$

4.11 Problem 9.5.

Let (X, \mathcal{A}, μ) be a measure space and $u \in \mathcal{M}^+(\mathcal{A})$. Show that the set-function

$$A \mapsto \int 1_A u d\mu \quad A \in \mathcal{A}$$

is a measure.

Proof.

Set

$$\nu: \mathcal{A} \to [0, \infty]: A \mapsto \int 1_A u d\mu.$$

- 1. To show that $\nu(\emptyset) = 0$. Notice that $1_{\emptyset} \equiv 0$.
- 2. Let $A = \bigcup_{j \in \mathbb{N}} A_j$ a disjoint union of sets $A_j \in \mathcal{A}$. Note that

$$\sum_{j=1}^{\infty} 1_{A_j} = 1_A$$

We have to show that

$$\nu(\bigcup_{j\in\mathbb{N}} A_j) = \int \left(\sum_{j=1}^{\infty} 1_{A_j}\right) \cdot u d\mu$$
$$= \int \left(\sum_{j=1}^{\infty} 1_{A_j} u\right) d\mu$$
$$= \sum_{j=1}^{\infty} \int 1_{A_j} u d\mu$$
$$= \sum_{j=1}^{\infty} \nu(A_j).$$

4.12 Problem 9.8.

Let (X, \mathcal{A}, μ) be a measure space and $(u_j)_{j \in \mathbb{N}} \subseteq \mathcal{M}^+(\mathcal{A})$. If $u_j \leq u$ for all $j \in \mathbb{N}$ and some $u \in \mathcal{M}^+(\mathcal{A})$ with $\int u d\mu < \infty$, then

$$\limsup_{j \in \infty} \int u_j d\mu \le \int \limsup_{j \in \infty} u_j d\mu.$$

Proof.

Showing that

$$\limsup_{j \in \infty} \int u_j d\mu \le \int \limsup_{j \in \infty} u_j d\mu$$

is equivalent with showing that

$$-\liminf_{j\in\infty} \int -u_j d\mu \le -\int \liminf_{j\in\infty} -u_j d\mu$$

which is equivalent with showing that

$$\int \liminf_{j \in \infty} -u_j d\mu \le \liminf_{j \in \infty} \int -u_j d\mu$$

which is equivalent with showing that

$$\int ud\mu + \int \liminf_{j \in \infty} -u_j d\mu \le \int ud\mu + \liminf_{j \in \infty} \int -u_j d\mu$$

which is equivalent with showing that

$$\int u + \liminf_{j \in \infty} -u_j d\mu \le \liminf_{j \in \infty} \left(\int u d\mu + \int -u_j d\mu \right)$$

which is equivalent with showing that

$$\int \liminf_{j \in \infty} \left(u - u_j \right) d\mu \le \liminf_{j \in \infty} \left(\int u - u_j d\mu \right).$$

By hypothesis, $u_j \leq u$. So we have that $u - u_j$ is a sequence of postive measurable functions and therefore our last statement follows by the theorem of Fatou.

4.2 Measure Theory Chapter 7

4.13 Proposition.

Let $(X, \mathcal{A}), (X', \mathcal{A}')$ be measurable spaces and let $\mathcal{A}' = \sigma(\mathcal{G}')$. Then $T: X \to X'$ is \mathcal{A}/\mathcal{A}' -measurable if and only if $T^{-1}(\mathcal{G}') \subseteq \mathcal{A}$.

It suffices to show assume $T^{-1}(\mathcal{G}') \subseteq \mathcal{A}$ and show that

$$T^{-1}(\mathcal{A}) \subseteq \mathcal{A}$$
.

Consider $\Sigma := \{A' \subseteq X' : T^{-1}(A') \in \mathcal{A}\}$. We have that $\mathcal{G}' \subseteq \Sigma$. It suffices to show that

$$\mathcal{A}' \subseteq \Sigma$$
.

It suffices to show that Σ is a σ -algebra.

- 1. To show that $X' \in \Sigma$, it suffices to show that $T^{-1}(X') \in \mathcal{A}$.
- 2. Showing that

$$A' \in \Sigma \Longrightarrow A'^c \in \Sigma$$

is equivalent with showing that

$$T^{-1}(A') \in \mathcal{A} \Longrightarrow T^{-1}(A'^c) \in \mathcal{A} \qquad \checkmark$$

3. Showing that

$$(A'_j)_{j\in\mathbb{N}}\subseteq\Sigma\Longrightarrow\bigcup_{j\in\mathbb{N}}A_j\in\Sigma$$

is equivalent with showing that

$$T^{-1}(A'_j) \in \mathcal{A} \Longrightarrow T^{-1}\Big(\bigcup_{j \in \mathbb{N}} A_j\Big) \in \mathcal{A} \qquad \checkmark$$

4.14 Proposition.

Let $(X, \mathcal{A}), (X, \mathcal{A}')$ be measurable spaces and $T: X \to X'$ be an \mathcal{A}/\mathcal{A}' measurable map. For every measure μ on (X, \mathcal{A}) ,

$$\mu'(A') := T(\mu)(A') := \mu(T^{-1}(A')), \qquad A' \in \mathcal{A}'$$

defines a measure on (X', \mathcal{A}') .

Proof.

1. To show that

$$\mu(T^{-1}(\varnothing)) = 0 \qquad \checkmark$$

2. Assume $(A'_j)_{j\in\mathbb{N}}\subseteq\mathcal{A}'$ mutually disjoint sets and show that

$$\mu'(\bigcup_{j\in\mathbb{N}}A'_j)=\sum_{j\in\mathbb{N}}\mu'(A'_j),$$

which is equivalent with showing that

$$\mu(T^{-1}\Big(\bigcup_{j\in\mathbb{N}}A_j'\Big) = \sum_{j\in\mathbb{N}}\mu(T^{-1}(A_j')),$$

which is equivalent with showing that

$$\mu(T^{-1}\Big(\bigcup_{j\in\mathbb{N}}A_j'\Big) = \mu\Big(\bigcup_{j\in\mathbb{N}}T^{-1}(A_j')\Big) \qquad \checkmark.$$

4.15 Problem 7.9i.

Let μ be a measure on $(\mathbb{R}, \mathcal{B})$. Show that

$$F_{\mu}(x) := \begin{cases} \mu[0, x) & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -\mu[x, 0) & \text{if } x < 0 \end{cases}$$

- 1. is monotonically increasing
- 2. left-continuous funciton

Proof.

1. Showing that F_{μ} is monotonically increasing is equivalent with showing that

$$x \le y \Longrightarrow F_{\mu}(x) \le F_{\mu}(y).$$

- (a) $x \le 0 \le y$:. Then $F_{\mu}(x) = -\mu[x, 0) \le 0$ and $F_{\mu}(y) = \mu[0, y) \ge 0$.
- (b) $0 < x \le y$: Then $[0, x) \subseteq [0, y)$. And $\mu[0, x) \le \mu[0, y)$.
- (c) $x \le y < 0$: Then $[y, 0) \subseteq [x, 0)$. And $\mu[y, 0) \le \mu[x, 0)$.
- 2. Showing that F_{μ} is left continuous is equivalent with assuming (x_k) a sequence such that $x_k < x$ and $x_k \uparrow x$ and showing that

$$\lim_{k \to \infty} F_{\mu}(x_k) = F_{\mu}(x).$$

If if x > 0, it suffices to show that

$$\lim_{k \to \infty} \mu[0, x_k) = \mu[0, x).$$

If x < 0 it suffices to show that

$$\lim_{k \to \infty} -\mu[x_k, 0) = -\mu[x, 0).$$

If x = 0 it suffices to show that

$$\lim_{k \to \infty} -\mu[x_k, 0) = 0.$$

Remember that:

1. For any increasing sequence $(A_j)_{j\in\mathbb{N}}\subseteq\mathcal{A}$ with $A_j\uparrow A\in\mathcal{A}$ we have

$$\mu(A) = \mu(\cup A_j) = \lim_{j \in \infty} \mu(A_j)$$

2. For any decreasing sequence $(A_j)_{j\in\mathbb{N}}\subseteq\mathcal{A}$ with $A_j\downarrow A\in\mathcal{A}$ we have

$$\mu(A) = \mu(\cap A_j) = \lim_{j \in \mathbb{N}} \mu(A_j)$$

4.16 Problem 7.9ii.

Let $F: \mathbb{R} \to \mathbb{R}$ be a Stieltjes function. Show that

$$\nu_F[a,b) = F(b) - F(a) \qquad \forall a, b \in \mathbb{R}, a < b$$

has a unique extension to a measure on \mathcal{B} .

Proof.

By theorem 6.1 it suffices to show that ν_F is a pre-measure. To show this it suffices to show that

1.
$$\nu_F(\emptyset) = v_F[a, a) = 0$$

2.
$$\nu_F([a,b) \cup [b,c)) = \nu_F([a,b)) + \nu_F([b,c))$$

ullet

$$\nu_F([a,b)) + \nu_F([b,c)) = F(b) - F(a) + F(c) - F(b)$$

$$= F(c) - F(a)$$

$$= \nu_F[a,c)$$

$$= \nu_F([a,b) \cup [b,c))$$

3. For any decreasing sequence $[a_j, b_j)_{j \in \mathbb{N}} \subseteq \mathcal{J}$ with $[a_j, b) \downarrow [a, b) \in \mathcal{J}$ we have

$$\nu_F([a,b)) = \lim_{j \in \infty} \nu_F[a_j, b).$$

This last statement is equivalent with

$$F(b) - F(a) = \lim_{j \in \infty} (F(b) - F(a_j)).$$

Note that since $[a_j, b_j) \downarrow [a, b) \in \mathcal{J}$ we have that $a_j \uparrow a, a_j \leq a$ and therefore

$$\lim_{j \in \infty} (F(b) - F(a_j)) = F(b) - F(a),$$

as F is left-continous.

4. \mathcal{J} contains an exhausting sequence $[a_j,b_j)$ such that $[a_j,b_j)\uparrow\mathbb{R}$ and $v_F[a_j,b_j)<\infty$