Import In []: import gc import os import datetime import pandas as pd import numpy as np import plotly import plotly.express as px import plotly.graph_objects as go from sklearn.preprocessing import LabelEncoder import lightgbm as lgb import requests import time from datetime import datetime, timedelta from bs4 import BeautifulSoup csv to parquet 메모리에 효율적인 데이터 유형을 사용하여 용량을 크게 줄이고 빠른 작업이 가능합니다. pip install fastparquet In []: def csv_to_parquet(csv_path, save_name): In [2]: df = pd.read_csv(csv_path) df.to_parquet(f"./{save_name}.parquet") del df gc.collect() print(save_name, "Done.") os.getcwd() In [3]: 'C:\\deep1\\User\\Untitled Folder' Out[3]: In [4]: csv_to_parquet('./train.csv', 'train') csv_to_parquet('./test.csv', 'test') train Done. test Done. train = pd.read_parquet('./train.parquet') In [5]: test = pd.read_parquet('./test.parquet') EDA train.head() In [6]: Out[6]: id base_date day_of_week base_hour lane_count road_rating road_name multi_linked connect_code maximum_speed_lim 지방도1112 **0** TRAIN_0000000 20220623 목 106 0 17 1 0 60 호선 일반국도11 **1** TRAIN_0000001 20220728 21 2 103 0 0 60 호선 일반국도16 20211010 2 **2** TRAIN_0000002 7 103 0 0 80 호선 **3** TRAIN_0000003 20220311 107 금 태평로 일반국도12 **4** TRAIN_0000004 20211005 호선 5 rows × 23 columns pd.read_csv('./data_info.csv') In [7]: Out[7]: 변수명 변수 설명 아이디 0 id 날짜 base_date 1 요일 2 day_of_week 3 base_hour 시간대 4 도로사용여부 road_in_use 차로수 5 lane_count 도로등급 6 road_rating 중용구간 여부 7 multi_linked 8 connect_code 연결로 코드 maximum_speed_limit 최고속도제한 10 weight_restricted 통과제한하중 통과제한높이 11 hight_restricted 12 도로유형 road_type 13 시작지점의 위도 start_latitude 14 start_longitude 시작지점의 경도 start_turn_restricted 시작 지점의 회전제한 유무 15 도착지점의 위도 16 end_latitude 도착지점의 경도 17 end_longitude 18 도작지점의 회전제한 유무 end_turn_restricted 19 road_name 도로명 시작지점명 20 start_node_name 21 end_node_name 도착지점명 22 vehicle_restricted 통과제한차량 23 평균속도(km) target #null 값 존재 유무 train.isnull().sum() 0 id Out[8]: base_date 0 day_of_week 0 base_hour 0 lane_count 0 road_rating 0 road_name 0 multi_linked 0 connect_code 0 maximum_speed_limit 0 vehicle_restricted 0 weight_restricted 0 0 height_restricted road_type 0 0 start_node_name 0 start_latitude 0 start_longitude start_turn_restricted end_node_name end_latitude 0 end_longitude 0 end_turn_restricted 0 0 target dtype: int64 In [9]: train.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 4701217 entries, 0 to 4701216 Data columns (total 23 columns): Column Dtype _ _ _ _ _ 0 id object 1 base_date int64 2 day_of_week object 3 base_hour int64 lane_count int64 5 road_rating int64 6 road_name object multi_linked 7 int64 8 connect_code int64 9 maximum_speed_limit float64 vehicle_restricted float64 10 float64 weight_restricted 11 12 height_restricted float64 13 road_type int64 start_node_name 14 object start_latitude float64 15 16 start_longitude float64 start_turn_restricted 17 object 18 end_node_name object float64 19 end_latitude end_longitude float64 20 end_turn_restricted obiect float64 22 target dtypes: float64(9), int64(7), object(7) memory usage: 825.0+ MB 데이터전처리 train["base_date"] = train["base_date"].apply(str) In [10]: test["base_date"] = test["base_date"].apply(str) In [14]: test id base_date day_of_week base_hour lane_count road_rating road_name multi_linked connect_code maximum_speed Out[14]: 0 TEST_000000 목 3 0 0 20220825 17 107 연삼로 일반국도12 1 TEST 000001 20220809 화 12 2 103 0 호선 일반국도16 **2** TEST_000002 20220805 금 2 1 103 0 0 호선 일반국도11 3 TEST_000003 목 3 103 0 20220818 23 호선 4 TEST_000004 3 0 0 20220810 수 17 106 번영로 일반국도16 **291236** TEST_291236 토 5 103 0 0 20220827 1 호선 일반국도11 **291237** TEST_291237 20220819 금 20 2 103 0 0 호선 0 **291238** TEST_291238 20220805 금 11 1 107 신대로 0 2 경찰로 0 **291239** TEST_291239 20220812 금 7 107 0 지방도1132 **291240** TEST_291240 20220812 291241 rows × 22 columns In [18]: import datetime train["base_date"]= [datetime.datetime.strptime(timestamp, "%Y%m%d") for timestamp in train["base_date"] test["base_date"]= [datetime.datetime.strptime(timestamp2, "%Y%m%d") for timestamp2 in test["base_date"] test In [19]: Out[19]: id base_date day_of_week base_hour lane_count road_rating road_name multi_linked connect_code maximum_speed 2022-08-0 TEST_000000 목 17 3 107 연삼로 0 25 일반국도12 2022-08-화 1 TEST_000001 12 2 103 0 0 09 호선 일반국도16 2022-08-2 TEST_000002 금 2 1 103 0 0 호선 일반국도11 2022-08-목 3 TEST_000003 23 3 103 0 0 18 호선 2022-08-수 번영로 4 TEST_000004 17 3 106 0 0 10 일반국도16 2022-08-**291236** TEST_291236 토 5 1 103 0 0 호선 일반국도11 2022-08-291237 TEST_291237 금 20 2 103 0 0 19 호선 2022-08-291238 TEST_291238 금 1 107 신대로 0 0 11 2022-08-291239 TEST_291239 금 경찰로 0 7 2 107 0 12 지방도1132 2022-08-0 291240 TEST_291240 금 10 3 106 0 호선 291241 rows × 22 columns In [20]: train["Year"]= train['base_date'].dt.year train["Month"]= train['base_date'].dt.month train["day"]= train['base_date'].dt.day test["Year"]= test['base_date'].dt.year test["Month"]= test['base_date'].dt.month test["day"]= test['base_date'].dt.day In []: pip install holidays In [156... Requirement already satisfied: holidays in c:\users\jjun6\anaconda3\lib\site-packages (0.16)Note: you may need t o restart the kernel to use updated packages. Requirement already satisfied: python-dateutil in c:\users\jjun6\anaconda3\lib\site-packages (from holidays) (2. Requirement already satisfied: hijri-converter in c:\users\jjun6\anaconda3\lib\site-packages (from holidays) (2. Requirement already satisfied: korean-lunar-calendar in c:\users\jjun6\anaconda3\lib\site-packages (from holiday s) (0.3.1) Requirement already satisfied: convertdate>=2.3.0 in c:\users\jjun6\anaconda3\lib\site-packages (from holidays) (2.4.0) $Requirement already satisfied: pymeeus <= 1, >= 0.3.13 in c: \users \jun6 \anaconda 3 \lib \site-packages (from convertda between the convertda between$ te>=2.3.0->holidays) (0.5.11) Requirement already satisfied: six>=1.5 in c:\users\jjun6\anaconda3\lib\site-packages (from python-dateutil->hol idays) (1.16.0) In [21]: **import** holidays # 한국 휴일 객체 생성 kr_holidays = holidays.KR() # generate holiday table train['base_date'] = sorted(train['base_date']) test['base_date'] = sorted(test['base_date']) In [158... kr_holidays holidays.country_holidays('KR') Out[158]: train['holiday'] = train.base_date.apply(lambda x: 'holiday' if x in kr_holidays else 'non-holiday') In [22]: test['holiday'] = test.base_date.apply(lambda x: 'holiday' if x in kr_holidays else 'non-holiday') In [23]: str_col = ['day_of_week','start_turn_restricted','end_turn_restricted', 'holiday'] for i in str_col: le = LabelEncoder() le=le.fit(train[i]) train[i]=le.transform(train[i]) for label in np.unique(test[i]): if label not in le.classes_: le.classes_ = np.append(le.classes_, label) test[i]=le.transform(test[i]) train['day_of_week'].info() <class 'pandas.core.series.Series'> RangeIndex: 4701217 entries, 0 to 4701216 Series name: day_of_week Non-Null Count Dtype 4701217 non-null int32 dtypes: int32(1) memory usage: 17.9 MB In [39]: # 표준화 def data_standardization(x): $x_np = np.asarray(x)$ return (x_np - x_np.mean()) / x_np.std() # 너무 작거나 너무 큰 값이 학습을 방해하는 것을 방지하고자 정규화한다 # x가 양수라는 가정하에 최소값과 최대값을 이용하여 0~1사이의 값으로 변환 # Min-Max scaling def min_max_scaling(x): $x_np = np.asarray(x)$ return (x_np - x_np.min()) / (x_np.max() - x_np.min() + 1e-7) # 1e-7은 0으로 나누는 오류 예방차원 # 정규화된 값을 원래의 값으로 되돌린다 # 정규화하기 이전의 org_x값과 되돌리고 싶은 x를 입력하면 역정규화된 값을 리턴한다 def reverse_min_max_scaling(org_x, x): $org_x_np = np.asarray(org_x)$ $x_np = np.asarray(x)$ return $(x_np * (org_x_np.max() - org_x_np.min() + 1e-7)) + org_x_np.min()$ In [24]: | y_train = train['target'] X_train = train.drop(['id', 'base_date', 'target', 'road_name', 'start_node_name', 'end_node_name', 'vehicle_restri test = test.drop(['id', 'base_date', 'road_name', 'start_node_name', 'end_node_name', 'vehicle_restricted'], axis= print(X_train.shape) print(y_train.shape) print(test.shape) (4701217, 20)(4701217,)(291241, 20)norm_X_train = min_max_scaling(X_train) # 가격형태 데이터 정규화 처리 In [42]: norm_test = min_max_scaling(test) 모델 선언 및 학습 LR = lgb.LGBMRegressor(random_state=42).fit(X_train, y_train) In [25]: 예측 pred = LR.predict(test) In [26]: sample_submission = pd.read_csv('./sample_submission.csv') In [27]: sample_submission['target'] = pred In [28]: sample_submission.to_csv("./submit.csv", index = False) In [29]: sample_submission Out[29]: target **0** TEST_000000 27.183604 1 TEST_000001 43.829473 **2** TEST_000002 59.772398 **3** TEST_000003 36.681372 4 TEST_000004 37.398105 **291236** TEST_291236 45.664110 **291237** TEST_291237 51.887405 **291238** TEST_291238 20.688816 291239 TEST 291239 25.357124 **291240** TEST_291240 41.904254 291241 rows × 2 columns