CS589: Homework 5 Report

Author: Quoc Anh Bui

May 4, 2020

PCA

(a) Show that the direction that maximizes variance (minimizes reconstruction error) is the eigenvector corresponding to the largest eigenvalue of the Covariance matrix of the data Answer: We have an optimization problem (reconstruction error) below:

$$\min_{w} \ \frac{1}{N} \sum_{n=1}^{N} \|x^{(n)} - \hat{x}^{(n)}\| \quad \text{s.t } \|w\| = 1$$

Since this is constrained optimization, we need to convert f(x) to the Lagrangian form $L(x,\lambda)$. Thus:

$$L(w,\lambda) = \frac{1}{N} \sum_{n=1}^{N} \|x^{(n)} - (w^T x^{(n)}) w\|^2 + \lambda (\|w\|^2 - 1)$$

$$= \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - (w^T x^{(n)}) w)^T (x^{(n)} - (w^T x^{(n)}) w) + \lambda (w^T w - 1)$$
(1)

Then, we find $\frac{\partial L}{\partial w} = 0$. Note that, derivative of a summation is the summation of derivative with each components. So right now we can ignore the part $\frac{1}{N}\sum_{n=1}^{N}$. Therefore, the job is simplified down to find $\frac{\partial}{\partial w}(x - (w^Tx)w)^T(x - (w^Tx)w) + \lambda(w^Tw - 1)$.

$$\frac{\partial}{\partial w}(x - (w^T x)w)^T (x - (w^T x)w) + \lambda (w^T w - 1) = \frac{\partial}{\partial w} x^T x - 2(w^T x)^2 + (w^T x)^2 w^T w + \lambda (w^T w - 1)
= \frac{\partial}{\partial w} x^T x - 2(w^T x)^2 + (w^T x)^2 + \lambda (w^T w - 1)
= -2xx^T w + 2\lambda w$$
(2)

Now we can introduce the summation back and set the whole thing to 0, we obtain:

$$\frac{1}{N} \sum_{n=1}^{N} x^{(n)} x^{(n)T} w = \lambda w$$

$$Cw = \lambda w$$

Thus, this suggests that w must be the eigenvector of C and the Lagrangian term is the corresponding eigenvalue.

By duality property of Lagrangian Method: $q(\lambda) \leq \inf_{x} L(x,\lambda) \leq f(x)$ for all x. Then the dual problem is to maximize $q(\lambda)$ and since we deduce λ is the eigenvalue of C. Thus:

$$\underset{\lambda}{\operatorname{argmax}} \ q(\lambda) = \lambda_1$$

Where λ_1 is the largest eigenvalue of C and therefore w^* is the corresponding eigenvector (Q.E.D)

(b) Show that the subspace of 2 dimensions that maximizes variance are the 2 eigenvectors corresponding to the largest 2 eigenvalues of the Covariance matrix

Answer: Note that D components of the data are all pairwise orthogonal. Thus, the subspace of dimensions 2 that maximizes the variance consists of 2 vectors w_1 and w_2 s.t $w_1 \neq w_2$ and $w_1 \perp w_2$.

The optimization problem (reconstruction error) is defined as following:

$$\min_{w_1, w_2} \frac{1}{N} \sum_{n=1}^{N} \|x^{(n)} - (w_1^T x^{(n)}) w_1 - (w_2^T x^{(n)}) w_2\|^2 \quad \text{s.t } \|w_1\| = 1, \quad \|w_2\| = 1$$

Similar to part (a), we construct the Lagrangian form $L(w_1, w_2, \lambda_1, \lambda_2)$:

$$L(w_1, w_2, \lambda_1, \lambda_2) = \frac{1}{N} \sum_{n=1}^{N} \|x^{(n)} - (w_1^T x^{(n)}) w_1 - (w_2^T x^{(n)}) w_2\|^2 + \lambda_1 (\|w_1\|^2 - 1) + \lambda_2 (\|w_2\|^2 - 1)$$

Again, we simplify the part inside the sum for a particular x:

$$||x - (w_1^T x)w_1 - (w_2^T x)w_2||^2 = (x - (w_1^T x)w_1 - (w_2^T x)w_2)^T (x - (w_1^T x)w_1 - (w_2^T x)w_2)$$

$$= x^T x - (w_1^T x)^2 - (w_2^T x)^2 + 2(w_1^T x)(w_2^T x)w_1^T w_2 (= 0 \text{ since } w_1 \perp w_2)$$
(3)

Introduce back the summation:

$$\min_{w_1, w_2} \frac{1}{N} \sum_{n=1}^{N} \left(x^{(n)T} x^{(n)} - (w_1^T x^{(n)})^2 - (w_2^T x^{(n)})^2 \right) + \lambda_1 (w_1^T w_1 - 1) + \lambda_2 (w_2^T w_2 - 1)$$

Collect the all the same terms and we get the equivalent problem:

$$\min_{w_1} \frac{1}{N} \sum_{n=1}^{N} x^{(n)T} x^{(n)} - (w_1^T x^{(n)})^2 + \lambda_1 (w_1^T w_1 - 1) - \min_{w_2} \frac{1}{N} \sum_{n=1}^{N} -(w_2^T x^{(n)})^2 + \lambda_2 (w_2^T w_2 - 1)$$

From (a), we know the solution w_1^* is the eigenvector corresponding to the largest eigenvalue. Follow the same logic and steps in part (a), we also find that w_2^* is the eigenvector that corresponding to the second largest eigenvalue follows the assumption $w_1 \neq w_2$ (Note that $x^{(n)T}x^{(n)}$ part does not contribute to the gradient, thus does not affect the final solution). (Q.E.D)

(c) Minimum eigenvectors to store X

Answer: Since there exists a set of constants $a_1, a_2, ..., a_{D-1}$ such that the last component for every x is $x_D = \sum_{i=1}^{D-1} a_i x_i$, the last column of the dataset X is linear dependent. Thus, this would mean that X has D-1 rank and the Covariance matrix $C = 1/N \cdot X^T X = 1/N \cdot (U\Sigma V^T)^T (U\Sigma V^T) = 1/N \cdot (V\Sigma^2 V^T)$. There are D-1 singular values that make up C that corresponds to D-1 eigenvalues. Therefore, it would need D-1 eigenvectors to store X perfectly.

(d) For each k, show the projected image and plot the MSE of the reconstruction error for the dataset X as a function of k

Figure 1: Projecting New Face to the subspace of k eigenvectors

Note: The reconstruction error (MSE) takes account of mean pixels between $x^{(n)}$ and $\hat{x}^{(n)}$.

(e) Compression rate of compressed images for different values of k:

	Compression Rate
3	0.031
5	0.052
10	0.104
30	0.312
50	0.52
100	1.04
150	1.56
300	3.12

K-Means

(a) Explain the Elbow rule for determining the "optimal" number of clusters

Answer: The Elbow Method determines K to be the "optimal" number of clusters by making sure that $W(C_{K+1}, m_1, ..., m_{K+1})$, i.e adding 1 more cluster, is not much better than $W(C_K, m_1, ..., m_K)$. To do this, plot W over variety numbers of K and the point where the curve starts to flatten out will be the "optimal" number of clusters (Figure 1) that Elbow method suggests. A drawback of Elbow method is sometimes ambiguous; e.g the curve W(C, m) is linear so that $|W(C_k) - W(C_{k+1})|$ is determined by the slop of W, implying no "flatten" point mentioned earlier (Figure 2).

(b) Explain the idea behind K-means++

Answer: Instead of randomized initialization of the centroids, K-means++ greedily initialized the centroids such that they are far apart or evenly spaced between each others. K-means++ first choose a centroid randomly and then select another centroid so that they are apart, and repeat. This could help to avoid bad initialization of randomized centroids where the centroids are packed; leading to computional inefficiency by which we have to reallocate $m_1, ..., m_K$ and potentially poor clusterings (where a group of clusters fall into local optimal).

(c) Show the original image and report the reconstructed images for each value of k

(d) For each k, show the reconstruction error and the compression rate Answer: Using the Root Mean Squared Error provided in the code, we obtain:

	Reconstruction Error
2	70.15
5	44.5
10	31.33
25	22.41
50	17.88
100	14.15
200	11.15

	Compression Rate
2	0.042
5	0.097
10	0.139
25	0.194
50	0.237
100	0.28
200	0.325