EXAME NACIONAL DO ENSINO SECUNDÁRIO

12º Ano de Escolaridade (Decreto-Lei nº 286/89, de 29 de Agosto) Cursos de Carácter Geral e Cursos Tecnológicos

Duração da Prova: 120 minutos RESERVA 1

1998

PROVA ESCRITA DE MATEMÁTICA

Primeira Parte

Para cada uma das nove questões desta primeira parte, seleccione a resposta correcta de entre as alternativas que lhe são apresentadas e **escreva na sua folha de respostas a letra que lhe corresponde**. Não apresente cálculos. Atenção! Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.

Cotação: cada resposta certa, +9 pontos; cada resposta errada, -3 pontos; questão não respondida ou anulada, 0 pontos. Um total negativo nesta primeira parte da prova vale 0 pontos.

- **1.** Seja f uma função de domínio \mathbb{R} , injectiva e tal que f(0)=0. Qual das afirmações seguintes é verdadeira?
 - (A) f não tem zeros

- **(B)** f tem exactamente um zero
- **(C)** f tem exactamente dois zeros
- **(D)** f tem mais do que dois zeros
- **2.** Na figura está parte da representação gráfica de uma função $\,g.\,$

Indique o valor de $g'(0^+)$, derivada lateral direita de g no ponto 0.

- **(A)** 0
- **(B)** 1
- **(C)** 2
- (D) $+\infty$

3.	Pretende-se desenhar um rectângulo com $80cm$ de perímetro. Qual das expressões seguintes permite obter a área (em cm^2) do rectângulo, em do comprimento x (em cm) de um dos seus lados?		
	(A) $x \cdot (x - 40)$ (B) $x \cdot (80 - 40)$	(x) (C) (x) $(40-x)$	(D) $(x-80)^2$
4.	Qual é o limite da sucessão de termo geral $\ u_n = tg\left(\frac{\pi}{2} + \frac{1}{n}\right) \ ?$		
	(A) $-\infty$ (B) $+\infty$	(C) 0	(D) 1
5.	Considere, num referencial o. n. xOy , a cónica $\mathcal C$ definida por $(x-3)^2=4\left(y-1\right)$ A cónica $\mathcal C$ admite como eixo de simetria a recta de equação		
	(A) $x = 0$ (B) $x = 3$	(C) $y = 0$	(D) $y = 1$
6.	Considere, num referencial o. n. $Oxyz$, a recta $\ r$ definida por $\ x=y-1 \ \land$ Qual das afirmações seguintes é verdadeira?		
	(A) r é paralela ao plano xOy (C) r é paralela ao eixo Oz	(B) r contém o por (D) r é concorrent	·
7.	Num referencial o. n. $Oxyz$, considere: • o plano de α , de equação $y=4$ • a superfície esférica E , de equação $x^2+(y-2)^2+z^2=4$ A intersecção da superfície esférica E com o plano α é		
	(A) um ponto(C) uma circunferência de raio 2	(B) uma circunferê(D) o conjunto vazi	
8.	Antes do começo de uma partida de basquetebol, é habitual os 12 intervenientes (os 5 jogadores de cada equipa e os 2 elementos da equipa de arbitragem) disporem-se uns ao lados outros para uma fotografia. De quantas maneiras diferentes se podem dispor os 12 intervenientes, se os 2 elementos o equipa de arbitragem ficarem no meio, e os jogadores de cada equipa ficarem todos juntos?		
	(A) $2 \times 2 \times 5! \times 5!$ (C) $2 \times 2 \times 5!$	(B) $2 \times 5! \times 5!$ (D) $2 \times 10!$	
9.	Uma certa linha do triângulo de Pascal Escolhendo ao acaso um número dess		

(B) $\frac{1}{24}$ (C) $\frac{1}{25}$ (D) $\frac{2}{25}$

(A) $\frac{1}{12}$

Segunda Parte

Nas respostas às questões desta segunda parte apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações que entender necessárias. Atenção: pode ser-lhe útil consultar o formulário apresentado no final da prova.

1. Considere a função f, de domínio $[0, 2\pi]$, definida por

$$f(x) = \begin{cases} 1 + \ln(\pi - x), & se \quad 0 \le x < \pi \\ \cos(2x), & se \quad \pi \le x \le 2\pi \end{cases}$$

- a) Estude f quanto à continuidade.
- **b)** Determine os zeros de f.
- Seja $\alpha \in [\pi, 2\pi]$ tal que $\cos \alpha = \frac{2}{3}$. Determine $f(\alpha)$.
- **2.** Pretende-se ligar uma fábrica **F** a uma central de tratamento de resíduos **C**, por meio de uma conduta, conforme a figura.
 - A conduta deve seguir ao longo de um muro, até um certo ponto B, e daí deve seguir em linha recta até à central de tratamento.
 - Designou-se por A o ponto do muro mais próximo da central de tratamento.
 - A distância da fábrica ao ponto A é de 4 Km,
 e a distância deste ponto à central é de 2 Km.
 - Designou-se por x a distância entre A e B (em quilómetros).

O preço de colocação da conduta é:

- três mil contos por quilómetro, ao longo do muro;
- cinco mil contos por quilómetro, do muro à central de tratamento.
- a) Mostre que o preço de colocação da conduta, em milhares de contos, é dado, em função de x, por

$$p(x) = 12 - 3x + 5\sqrt{x^2 + 4} \qquad (x \in]0, 4[)$$

b) Determine o valor de x para o qual o preço de colocação da conduta é mínimo.

3. Para inaugurar uma ponte em Cegonhas de Baixo, a respectiva Junta de Freguesia vai organizar uma feijoada.

O principal clube desportivo da região, o Cegonhas Futebol Clube, foi convidado a fazer-se representar no almoço por três quaisquer membros da sua direcção. A Srª. Manuela Silvestre e o Sr. António Gonçalves são dois dos sete elementos dessa direcção.

Se a escolha dos três representantes for feita por sorteio, entre os sete membros da direcção do clube, qual é a probabilidade de a Sr^a. Manuela Silvestre e o Sr. António Gonçalves irem ambos à feijoada?

Apresente o resultado na forma de uma fracção irredutível.

- **4.** Considere, num referencial o. n. Oxyz, uma pirâmide triangular não regular [OPQV]. Tem-se que:
 - ullet O vértice O da pirâmide é a origem do referencial
 - ullet O vértice V tem coordenadas (0,4,2)
 - O vértice Q pertence ao plano xOy
 - Uma equação do plano OPQ é x-y=0
 - Uma equação do plano PQV é x+y+z=6
 - Uma equação do plano OPV é x+y-2z=0

- a) Mostre que o ponto P tem coordenadas (2,2,2) e que o ponto Q tem coordenadas (3,3,0).
- **b)** Mostre que o ângulo OPQ é recto.
- G) Justifique que a recta PV é perpendicular ao plano OPQ e utilize este facto para determinar o volume da pirâmide [OPQV].

Formulário

$$\cos\left(2x\right) = \cos^2 x - \sin^2 x$$

$$\left(\sqrt{u}\,\right)' = \frac{u'}{2\sqrt{u}}$$

Volume da Pirâmide = $\frac{1}{3}$ × Área da Base × Altura

FIM

COTAÇÕES

Primeira Parte	81
Cada questão certa	+9
Cada questão errada	- 3
Cada questão não respondida ou anulada	0
Nota: um total negativo nesta parte da prova vale 0 (zero) po	ntos.
Segunda Parte	119
1	
a)12	. 37
b)15	
c)10	
2	. 26
a)11 b)15	
3	. 20
4	. 36
a)12	
b)12 c)12	
TOTAL	200
IOIAL	∠00