МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 2.1.6

Эффект Джоуля-Томсона

Милославов Глеб Евгеньевич Б04-105

Долгопрудный 4 мая 2022 г.

1 Введение

- 1. **Цель работы:** 1) определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры;
 - 2) вычисление по результатам опытов коэффициентов Ван-дер-Ваалься "а"и "b".
- 2. В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; мокровольтметр; балластный баллон; манометр.

3. Краткая теоретическая справка

Эффектом Джоуля-Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции.

В работе исследуется изменение температуры идеального газа при его течении по трубке с пористой перегородкой (рис.1).

Рассматривая 2 произвольных сечения записываем уравнение

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right)$$

Учитывая некоторые формулы мы получаем, что

$$\mu_{D-T} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_p}$$

Рис. 1. Схема установки для изучения эффекта Джоуля-Томсона

2 Ход работы

2.1 Определение коэффициента Джоуля-Томсона

Проведём измерение зависимости ΔT от ΔP для разных значений температур. Полученные значения заносим в таблицы. При записи полученных данных также учитываем, что чувствительность термопары медь – константан зависит от температуры. При вычислении будем использовать следующую формулу:

$$\Delta T = \frac{U}{\alpha},$$

где

$$\alpha_{20^{\circ}C} = 40, 2 \text{ MKB}/^{\circ}C, \quad \alpha_{30^{\circ}C} = 41, 1 \text{ MKB}/^{\circ}C, \quad \alpha_{45^{\circ}C} = 42, 5 \text{ MKB}/^{\circ}C.$$

	t = 20°C					
∆Р, атм	σ(ΔР), атм	U - U(0), мкВ	σ(U - U(0)), мкВ	ΔТ, К	σ(ΔT), K	
4,0	0,05	156	0,124	3,88	0,0031	
3,5	0,05	132	0,109	3,28	0,0027	
3,0	0,05	108	0,095	2,69	0,0024	
2,5	0,05	86	0,082	2,14	0,0020	
2,0	0,05	65	0,069	1,62	0,0017	
		t =	30°C			
∆Р, атм	σ(ΔР), атм	U - U(0), мкВ	σ(U - U(0)), мкВ	ΔТ, К	σ(ΔT), K	
4,0	0,05	133	0,110	3,24	0,0027	
3,5	0,05	113	0,098	2,75	0,0024	
3,0	0,05	92	0,085	2,24	0,0021	
2,5	0,05	72	0,073	1,75	0,0018	
2,0	0,05	53	0,062	1,29	0,0015	
		t =	45°C			
ΔР, атм	σ(ΔР), атм	U - U(0), мкВ	σ(U - U(0)), мкВ	ΔТ, К	σ(ΔT), K	
4,0	0,05	104	0,092	2,45	0,0022	
3,5	0,05	82	0,079	1,93	0,0019	
3,0	0,05	61	0,067	1,44	0,0016	
2,4	0,05	42	0,055	0,99	0,0013	
2,0	0,05	28	0,047	0,66	0,0011	

Также необходимо учесть, что при $\Delta P=0$ показания вольтметра составляли U(0)=3мкВ. Поэтому для корректной обработки данных сделаем необходимую поправку, вычитая из полученных показаний U(0).

Кроме того, при вычислении ΔT погрешность этого вычисления определяем по формуле:

$$\sigma_{\Delta T} = \Delta T \frac{\sigma_U}{U}.$$

По имеющимся данным проведём аппроксимацию зависимости ΔT от ΔP , чтобы определить коэффициент Джоуля-Томсона. На рисунке ?? изображены графики зависимостей. Вычислим $\mu_{\text{Д-T}}=\frac{dT}{dP}$, используя метод наименьших квадратов.

Результаты вычислений заносим в таблицу:

$T, {}^{\circ}C$	$\mu_{\text{Д-T}},\mathrm{K/arm}$	$\sigma_{\mu_{\mathrm{Д-T}}},\mathrm{K/atm}$	ε , %
20	1,12	0,02	1,8
30	0,97	0,01	1,0
45	0,87	0,05	5,4

Таблица 1: Результаты измерений $\mu_{\text{Д-T}}$

2.2 Вычисление параметров газа Ван-дер-Ваальса

Вычислим параметры газа Ван-дер-Ваальса, используя коэффициенты $\mu_{\text{Д-T}}$, для разных пар температур.

Получим:

$$a = \frac{(\mu_1 - \mu_2)C_P R T_1 T_2}{2(T_2 - T_1)}, \ b = \frac{C_P(\mu_2 T_2 - \mu_1 T_1)}{T_1 - T_2}.$$

Погрешности этих вычислений можно оценить используя следующие формулы:

$$\sigma_a = a\sqrt{\varepsilon_{\mu_1 - \mu_2}^2 + \varepsilon_{T_1}^2 + \varepsilon_{T_2}^2 + \varepsilon_{T_2 - T_1}^2},$$

$$\sigma_b = b\sqrt{\varepsilon_{\mu_2 T_2 - \mu_1 T_1}^2 + \varepsilon_{T_1 - T_2}^2},$$

$$\sigma_{x \pm y} = \sqrt{\sigma_x^2 + \sigma_y^2}.$$

где

Для температур 20°C и 30°C, а также для 30°C и 45°C, вычисляем параметры «а» и «b» газа Ван-дер-Ваальса. Результаты вычислений заносим в таблицу 2.

$T, \circ C$	$a, \frac{\Pi a \cdot M^6}{MOJIb^2}$	$\sigma_a, \frac{\Pi a \cdot M^6}{MOJI b^2}$	ε_a , %	$b \cdot 10^{-4}, \frac{\text{M}^3}{\text{МОЛЬ}}$	$\sigma_b \cdot 10^{-4}, \frac{\text{M}^3}{\text{MOJID}}$	ε_b , %
20 - 30	2,02	0,31	15,4	12,45	2,48	19,92
30 - 45	0,98	0,47	48,2	4,19	3,73	89,01

Таблица 2: Результаты измерения параметров газа Ван-дер-Ваальса

Сверим полученные результаты с табличными. Согласно справочнику для углекислого газа:

$$a = 0,36 \; \frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\text{моль}^2},$$

$$b = 0.42 \cdot 10^{-4} \frac{\text{M}^3}{\text{MOJIb}}.$$

Полученные данные значительно отличаются от табличных. Про причины такого различия сказано в выводе.

2.3 Вычисление температуры инверсии

Go полученным параметрам газа Ван-дер-Ваальса вычислим $T_{\text{инв}}$. Также оценим погрешность по следующей формуле:

$$\sigma_{T_{\text{инв}}} = T_{\text{инв}} \sqrt{\varepsilon_a^2 + \varepsilon_b^2}.$$

Результаты вычислений занесём в таблицу:

$T, ^{\circ}C$	$T_{\text{инв}}$, °К	$\sigma_{T_{\text{\tiny MHB}}}, {}^{\circ}\text{K}$	ε , %
20-30	390	98	25
30–45	561	598	101

Для углекислого газа, согласно справочнику

$$T_{\text{инв}} = 2053 \text{ K}.$$

Полученные результаты снова сильно отличаются от табличных.

3 Обсуждение результатов и выводы

В ходе работы мы получили значения, очень сильно отличающиеся от табличных. Погрешность вычисления параметров газа Ван-дер-Ваальса составила десятки процентов. Такая большая ошибка может говорить нам о неприменимости уравнения Ван-дер-Ваальса в условия лабораторной работы. Действительно, это уравнение используется лишь для качественного описания процессов, происходящих с реальными газами. Количественный подход к этому уравнению неприменим.

Также для увеличения точности измерений можно использовать более точные методы измерения температуры. Повысить точность необходимо как у термостата, так и у вольтметра, т.к. температура на них колебалась на протяжении эксперимента, несмотря на то, что условия оставались неизменными.