How volumes of diffrenet 3D shapes translate to their cross sectional area

- a (simplified) calculation excercise

spheroid

$$CA_{spheroid} = \pi bc$$

$$V_{spheroid} = \frac{4}{3}\pi abc$$

let's consider a spheroid whereb = a and c = 1.5a

$$CA_{spheroid} = 1.5\pi a^2$$

$$V_{spheroid} = 2 \pi a^3$$

bullet*

$$CA_{bullet} = \frac{1}{2}\pi a^2 + 2ab$$

$$V_{bullet} = \frac{1}{2} \cdot \frac{4}{3} \pi a^3 + \pi a^2 b$$

let's consider an example where b = 2a

$$CA_{bullet} = \frac{1}{2}\pi a^2 + 4a^2$$

$$V_{bullet} = \frac{8}{3}\pi a^3$$

sphere

$$CA_{sphere} = \pi r^2$$

$$V_{sphere} = \frac{4}{3}\pi r^3$$

Let's consider an example:

For constant $V = 1200 \mu m^3$

 $CA_{spheroid} = 156.28 \mu m^2$

 $CA_{hullet} = 152.51 \, \mu \text{m}^2$

 CA_{sphere} = 136.52 μ m²

Constant volume:

$$CA_{spheroid} > CA_{bullet} > CA_{sphere}$$

For constant $CA = 150 \mu m^3$

 $V_{sphere} = 1382.0 \, \mu \text{m}^2$

 $V_{bullet} = 1170.5 \ \mu m^2$

 $V_{spheroid}$ = 1128.4 μ m²

Constant area:

$$V_{sphere} > V_{bullet} > V_{spheroid}$$

^{*}for simplicity I consider bullet as a sum of ½ sphere and a cyllinder