Deep learning

Mannu Malhotra

Until Now:

Now:

Agenda

Neural Networks 101:

- What are NN
- Why do we need NN
- What are computation graphs
- Derivation on computation graphs
- Hands on: Implement logistic regression in NN style
- NN representation

Advanced topics:

- Activation functions
- Gradient descent and Backpropagation
- Initialization of weights

Practical Approach

- Building blocks of DNN, forward and back prop
- Softmax and hands on: Softmax regression using Keras
- Explain homework: Building a NN in python using numpy.

What are Neural Networks

- We learned linear regression
 - $\circ \quad y = wx + b$
- Logistic regression : linear regression with sigmoid
 - o For binary classification.
 - Uses sigmoid activation.
 - Get the value between 0 and 1 to determine the class.
- Logistic regression : single layer, single unit neural network.

Why do we need Neural Networks?

- Linearly non-separable data
 - Linear models like logistic regression can not learn on such data.

- Use polynomial features
- Use kernels to do features transformation to new dimensions.
- Use stacking of logistic regression to build non linear learner.
 - NN: y = w2*sigmoid(w1*x+b1) + b2

Why do we need Neural Networks?

Feature learning/end-to-end learning!

Housing Price Prediction

Computation graphs & chain rule for first derivative

- A NN is nothing but a computation graph.
- Computation of neural network = forward propagation (output of the neural network) + backward propagation (for optimization like gradient descent).
- Illustration on chain rule: how would I calculate dJ/da (viz. da).

Logistic regression derivatives

$$z^{(i)} = w^{T} x^{(i)} + b$$

$$\hat{y}^{(i)} = a^{(i)} = sigmoid(z^{(i)})$$

$$\mathcal{L}(a^{(i)}, y^{(i)}) = -y^{(i)} \log(a^{(i)}) - (1 - y^{(i)}) \log(1 - a^{(i)})$$

- Objective: Modify w & b to min(L)
- Calculate derivative of Loss function w.r.t. to w and b.
 - o i.e. calculate dw & db
- da = -y/a + (1-y)/(1-a)
- $\bullet \quad da/dz = a(1-a)$
- dz = a y
- db = dz, dw = xdz

Gradient descent: One last time!

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}} \leftarrow \underline{J(w, b)} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$

Objective: Find w,b to minimize J (cost).

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$) }

Hands on: Implement logistic regression in NN style

NN representation : logistic regression vs NN

NN representation

- Forward prop:
 - o cal $z^{[1]}, a^{[1]}; w^{[2]} = a^{[1]}; cal z^{[2]}, a^{[2]}; pred = a^{[2]}; cal L(pred,y)$
- Backward prop:
 - \circ Cal da^[2],dz^[2],dw^[2],db^[2],da^[1],dz^[1],dw^[1],db^[2]

NN representation : layers

NN representation:

$$z_{1}^{[1]} = w_{1}^{[1]T} x + b_{1}^{[1]}, \ a_{1}^{[1]} = \sigma(z_{1}^{[1]})$$

$$z_{2}^{[1]} = w_{2}^{[1]T} x + b_{2}^{[1]}, \ a_{2}^{[1]} = \sigma(z_{2}^{[1]})$$

$$z_{3}^{[1]} = w_{3}^{[1]T} x + b_{3}^{[1]}, \ a_{3}^{[1]} = \sigma(z_{3}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

Back prop:

```
dz^{[2]} = A^{[2]} - Y
Z^{[1]} = w^{[1]} X + b^{[1]}
                                                                                                               dw^{[2]} = dz^{[2]*}A^{[1]}/m
                                                                                                                                                 (X -> A^{[1]})
a^{[1]} = g^{[1]}(z^{[1]})
                                                                                                               db^{[2]} = \sum dz^{[2]}/m
z^{[2]} = w^{[2]}A^{[1]} + b^{[2]}
                                                                                                               dz^{[1]} = w^{[2]*}dz^{[2]} * q^{[1]}'(z^{[1]})
A^{[2]} = g^{[2]}(z^{[2]})
                                                                                                               dw^{[1]} = dz^{[1]} XT
                                                                                                               db^{[2]} = \sum dz^{[1]}/m
            z^{[1]} = W^{[1]}x + b^{[1]} \Rightarrow a^{[1]} = \sigma(z^{[1]}) \Rightarrow z^{[2]} = W^{[2]}a^{[1]} + b^{[2]} \Rightarrow a^{[2]} = \sigma(z^{[2]})
```

Activation functions: Which Activation functions to use?

1. Linear:

3. Sigmoid:

2. Relu:

4. Softmax

Activation functions

- Default choice for hidden units.
- Prevent from vanishing gradients.

Activation functions: Why do we need activation functions?

- Why not linear activation function(no activation)?
- a = g(z), a = z.
- Y_pred = linear function to input parameters.
- z1 = w1.x + b
- a1 = g(z1) = z1
- a2 = w(a1)+b = w2.z1 + b2 = w2(w1.x + b1) + b2
- $Y_pred = A2 = w2.w1.x + w2.b1 + b2$

Initialization of weights

- All hidden units learning the same function: symmetric breaking.
- Initialise with small values of weights to make learning faster:
 - Large value of weights ->
 - High value of z ->
 - Flat part for sigmoid
 - Tangent value to be small.

Multiclass classification? : Softmax

- What if we have multiple classes in the target?
- We can have:
 - One vs all (One vs rest)
 - # of models trained: N (Number of classes)
 - Problems: Class imbalance, can not capture the interdependencies of the classes.
 - One vs One (One vs One)
 - # of models trained: N(N-1)/2
 - Problem: High time complexity, can not capture the interdependencies of the classes.
- Softmax layer to the rescue!

Multiclass classification? : Softmax

- N units in the output layer.
- Sigmoid vs Softmax:
 - Just a different activation function.

$$\frac{1}{1+e^{-(w^Tx+b)}} \qquad \frac{e^{y_i}}{\sum_{j} e^{y_j}}$$

Just a normalization of results.

Which deep learning framework to use?

PYTORCH

Which deep learning framework to use?

He said: "I will just install Caffe and I will come back"

I'm still waiting for him

Hands on: Softmax regression using Keras

Deep Learning What society thinks I do What my friends think I do What other computer scientists think I do In [1]: import keras Using TensorFlow backend. What mathematicians think I do What I think I do What I actually do

Hyperparameters!

- Parameters which can not be learned.
 - E.g. learning rate, number of layers, number of units, epochs (iterations), choice of activation functions.
- How to find the optimal values?
 - Trial and error and plot the cost function.

Hyperparameters!

Terima kasih!

Explain homework!

