Remote Sensing 1: GEOG 4/585 Lecture 6.2.

Active remote sensing: Radar

Johnny Ryan (he/him/his) jryan4@uoregon.edu

Office hours: Monday 15:00-17:00

in 165 Condon Hall

Required reading:
Principles of Remote Sensing pp 345-406

Definitions

- RADAR (RAdio Detection And Ranging)
- Transmit long-wavelength radiowaves (~1 − 100 cm) through the atmosphere and record energy backscattered from the terrain
- Advantages:
 - Can sense the surface through clouds and in darkness
 - Penetrate vegetation, dry sand, and snow
 - Support interferometry for mapping of 3D terrain and cm-scale motion
- Disadvantages:
 - Confusing, both in understanding how it works and also image interpretation.

Applications

 The Magellan spacecraft was launched on May 4, 1989 to map the surface of Venus beneath the clouds

Optical vs. radar imagery

Radar imagery from Seasat in 1978

Radar wavelengths

- Radar wavelengths are much longer than visible/NIR energy used in other remote sensing systems.
- Radiowave energy is measured in *centimeters* rather than micrometers/nanometers.
- Radiowaves (or microwaves) have a frequency of between 30 Hz and 300 GHz

Radar wavelengths

• Radar bands have unusual names (e.g., K, Ka, Ku, X, C, S, L, and P)

Frequency band	Frequency range (GHz)	Wavelength range (cm)	
L band	1–2	15-30	
S band	2–4	7.5–15	
C band	4–8	3.75-7.5	
X band	8-12	2.5-3.75	
Ku band	12–18	1.67-2.5	
K band	18–27	1.11-1.67	
Ka band	27–40	0.75-1.11	
V band	40–75	0.4-0.75	
W band	75–110	0.27 - 0.4	

Sending and receiving a radar pulse

- We use antennas to transmit radiowave signals to the Earth's surface where they are backscattered
- Antenna can be customized so that the signal characteristics (e.g., wavelength, polarization, incidence angle) can be adjusted according to the desired application

Polarization of radiowaves

- Radar antennas send and receive polarized energy meaning electromagnetic wave vibrations are only in a single plane that is perpendicular to the direction of travel.
- The pulse of electromagnetic energy sent out by the antenna may be vertically or horizontally polarized.
- Images can be produced using different polarizations (HH, HV, VV, VH)

Polarized radar

- send and receive vertically polarized energy (VV)
- send and receive horizontally polarized energy (HH)
- send horizontal and receive vertically polarized energy (HV)
- send vertical and receive horizontally polarized energy (VH)

Polarization

Figure 2.9 Schematic sketch of the three main scattering types considered for SAR data.

RELATIVE SCATTERING STRENGTH BY POLARIZATION:

Rough Surface Scattering	S _w > S _{HH} > S _{HV} or S _{VH}
Double Bounce Scattering	$ \mathbf{S}_{\mathrm{HH}}\> \!\!>\!\! \mathbf{S}_{\mathrm{W}}\> \!\!>\!\! \mathbf{S}_{\mathrm{HV}}\> $ or $ \mathbf{S}_{\mathrm{VH}}\> $
Volume Scattering	Main source of $ S_{HV} $ and $ S_{VH} $

VV = Vertical Transmit, Vertical Receive HH = Horizontal Transmit, Horizontal Receive VH = Vertical Transmit, Horizontal Receive HV = Horizontal Transmit, Vertical Receive

Polarization

- Cross-polarized images using L-band radar on ALOS-1
- Red channel = HH
- Green channel = HV
- Blue channel = HH/HV ratio
- Cross-polarized reflections make the fishbone logging pattern more visible because there is less randomization of polarized radiowaves (less volume scattering)

Radar backscatter coefficient, σ°

• It is the effects of terrain on the radar signal that we are usually most interested in, i.e. the amount of radar cross-section, σ , reflected back to the receiver, per unit area a on the ground. This is called the radar backscatter coefficient (σ °) and is computed as:

$$\sigma^{\circ} = \sigma / a$$

- The radar backscatter coefficient ("radar backscatter") determines the percentage of electromagnetic energy reflected back to the radar from within a resolution cell, e.g. 10 x 10 m.
- The actual σ° for a surface depends on a number of terrain parameters like geometry, surface roughness, moisture content, and the radar system parameters (wavelength, depression angle, polarization, etc.).
- σ° is logarithmic and has units of decibels (dB)

Factors influencing backscatter, σ°

- Dielectric constant
- Surface roughness (micro-roughness)
- Incidence angle
 - Sensor viewing geometry (fixed)
 - Local surface topography (variable)
- Radar system

Dielectric constant

- Electric permeability of a material, where higher means better at reflecting radiowaves
- Most earth materials have a dielectric constant in the range of 1 to 4 (air = 1, vegetation = 3, ice = 3.2), dielectric constant of liquid water is 80
- Moisture content therefore strongly affects radar reflectivity

Soil moisture from radar

- NASA's Soil Moisture Active
 Passive (SMAP) mission launched
 in Jan 2015
- Soil with a higher moisture content appears "brighter" when illuminated by microwave frequencies (1.2 GHz)
- Operational forecasting of flooding and droughts

Water in radar image?

Surface roughness

Antenna Depression angle $\gamma = 45^{\circ}$ Altitude Above-Ground-Level, H New Perfect Premise incident angle h < 0.17 cm h = $\theta = 45^{\circ}$ 0.17 to 0.96 cm a. Relatively smooth surface b. Intermediate surface with little backscatter - a roughness with moderate specular reflector backscatter h > 0.96 cm c. Rough surface with diffuse backscatter

Surface roughness

Lockheed F-117 Nighthawk is a specular reflector of radiowaves

Penetration of radiowaves

- Radiowaves can travel through objects that have small dielectric constants (e.g snow, sand, foliage)
- Longer wavelengths penetrate more than shorter wavelengths

Radiowaves in a pine forest stand

surface scattering from the top of the canopy

volume scattering

surface and volume scattering from the ground

Paleochannels of the River Nile

- The top photograph from color infrared film from Space Shuttle Columbia in November 1995.
- The radar image at the bottom was acquired by Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard Space Shuttle Endeavour in April 1994.

Radar viewing geometry

Simple case: Real-Aperture Radar (RAR)

- Nadir
- Azimuth (flight) direction
- Range direction
- Range (near and far)
- Look angle (φ)
- Altitude above-ground-level

Azimuth (flight) direction

- The aircraft (or spacecraft) travels in a straight line that is called the azimuth flight direction
- Radiowave pulses illuminate strips of terrain at right angles (orthogonal) to the azimuth flight direction which is called the range (or look) direction
- Terrain illuminated nearest the antenna is called the near-range and the farthest point of terrain is called the far-range

Range (or look) direction

- Generally, objects that are perpendicular to the range direction backscatter *more* than objects in aligned parallel to the range direction.
- Consequently, linear features that appear dark or are imperceptible in a radar image using one look direction may appear bright in another radar image with a different look direction.

X - band, HH polarization

look direction

Radar spatial resolution

- The spatial resolution of a radar image is a combination of the range and azimuth resolutions.
- The range resolution in the across-track direction (i.e. near- to far-range) is proportional to the length of the microwave pulse and the incident angle
- Pulse length is a function of the speed of light multiplied by the duration of the transmission.
- Objects at different ranges can be distinguished if their range separation is larger than half the transmitted pulse length.

Azimuth resolution

- The azimuth resolution is determined by the width of the beam's footprint on the ground
- Longer wavelengths have wider beam footprint than shorter wavelengths
- But shorter wavelengths have poorer atmospheric and vegetation penetration capability
- Fortunately, the width of the beam is inversely proportional to the antenna length

Azimuth resolution example

- C-band radar system operating at $\lambda = 0.03$ m and utilizing an antenna of L = 3 m length operating at 3000 m altitude with a look angle of 30°
- This system will achieve an acceptable azimuth resolution of 60 m
 - 0.03/3)*3000*2
- However, if the same system is operated from a spaceborne platform at 800 km altitude, the azimuth resolution will degrade to 16 km, which is below the required system performance for most Earth observation applications
- Antenna length of about 800 m would be needed to achieve a 60 m resolution from space which is not practical

Synthetic aperture radar (SAR)

- SAR uses motion of the antenna along the azimuth (flight) direction to "synthetize" a longer antenna
- The beam footprint is large (several km) but by aggregating returns from many different locations in the azimuth (flight) direction, we can derive a single image with high spatial resolution using postprocessing techniques
 - Modern spaceborne SAR sensors can achieve ground resolutions of between 0.5 and 20 m

SAR imagery

Summary

- Penetrates clouds and rain (C-band and longer) making it an all-weather remote sensing system
- May penetrate vegetation, sand, and surface layers of snow.
- Senses in wavelengths outside the visible and infrared regions of the electromagnetic spectrum, providing information on surface roughness, dielectric properties, and moisture content.
- Enables spatial resolution to be independent of distance to the object, with the size of a resolution cell being as small as 1 x 1 m
- Can make digital elevation models and motion maps from radar interferometry

Today's lab

Lab Assignment #6: Canopy height measurement using LiDAR

Objectives:

• We will make a canopy height model in QGIS using LiDAR data.

<u>Deadline:</u> November 9 Tuesday 11:59 pm

