In [1]:

```
# Import Python libraries for visualisation and data analysis
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns

# sns.set_theme() # Apply the default Seaborn theme
%matplotlib inline

# Suppress warnings to avoid potential confusion
import warnings

# Libraries for statistical and scientific computing
import statsmodels.api as sm
from scipy import stats

warnings.filterwarnings("ignore")
import ipywidgets as widgets
from IPython.display import display
```

In [2]:

```
d1=pd.read_csv('2020.csv')
# d1.set_index('date',inplace=True)
d2=pd.read_csv('2021.csv')
# d2.set_index('date',inplace=True)
d3=pd.read_csv('2022.csv')
# d3.set_index('date',inplace=True)
```

```
In [3]:
```

```
def subperiod mobility trends(data, start date, end date):
    Add your mobility data in `data`.
    This function selects a subperiod of the mobility data based on prespecified
start data and end date.
    subdata= data[
        data["date"].isin(pd.date range(start=start date, end=end date))
    return subdata
def rename mobility trends(data):
    This function renames the column headings of the six mobility categories.
    data = data.rename(
        columns={
            "retail and recreation percent change from baseline": "Retail Recrea
tion",
            "grocery and pharmacy percent change from baseline": "Grocery Pharma
cy",
            "parks percent change from baseline": "Parks",
            "transit stations percent change from baseline": "Transit stations",
            "workplaces percent change from baseline": "Workplaces",
            "residential percent change from baseline": "Residential",
        }
    return data
```

In [4]:

```
d1=rename mobility trends(d1)
d2=rename mobility trends(d2)
d3=rename mobility trends(d3)
```

In [5]:

```
d1['year']='2020'
d2['year']='2021'
d3['year']='2022'
```

In [8]:

```
data=d1.append(d2)
data=data.append(d3)
```

```
In [ ]:
```

```
In [9]:
```

```
ALL = 'ALL'
def unique_sorted_values_plus_ALL(array):
    unique = array.unique().tolist()
    unique.sort()
    unique.insert(0, ALL)
    return unique
```

displaying data by year

```
In [11]:
regions=data.sub_region_1.unique()
```

In [12]:

```
regions=regions[1:]
variabl=["Retail_Recreation", "Grocery_Pharmacy", "Parks", "Transit_stations", "Work
places", "Residential"]
```

In [13]:

```
c1 = widgets.Dropdown(options = regions )
c2 = widgets.Dropdown(options = regions )
c3 = widgets.Dropdown(options = regions )
c4 = widgets.Dropdown(options = regions )
c5= widgets.Dropdown(options = variabl )
```

plot of data for different cities

In [14]:

```
display(c1)
display(c2)
display(c3)
display(c4)
display(c5)
btn = widgets.Button(description='plot')
output plot = widgets.Output()
def btn eventhandler(obj):
    output plot.clear output()
    with output plot:
        bigcities = data[
        data["sub_region_1"].isin(
            [c1.value, c2.value, c3.value, c4.value]
        ) ]
        sns.catplot(
        x="sub_region_1",
        y=c5.value,
        kind="box",
        data=bigcities,
        height=6,
        aspect=1.5,)
        plt.show()
btn.on click(btn eventhandler)
display(btn)
display(output plot)
```

In []:

In [15]:

```
london_data=data.loc[data['sub_region_1'] == 'Greater London']
greater=london_data[london_data['sub_region_2'].isnull()]
```

In [16]:

london data

Out[16]:

	country_region_code	country_region	sub_region_1	sub_region_2	metro_area	iso_3166
36253	GB	United Kingdom	Greater London	NaN	NaN	
36254	GB	United Kingdom	Greater London	NaN	NaN	
36255	GB	United Kingdom	Greater London	NaN	NaN	
36256	GB	United Kingdom	Greater London	NaN	NaN	
36257	GB	United Kingdom	Greater London	NaN	NaN	
14337	GB	United Kingdom	Greater London	Royal Borough of Kingston upon Thames	NaN	
14338	GB	United Kingdom	Greater London	Royal Borough of Kingston upon Thames	NaN	
14339	GB	United Kingdom	Greater London	Royal Borough of Kingston upon Thames	NaN	
14340	GB	United Kingdom	Greater London	Royal Borough of Kingston upon Thames	NaN	
14341	GB	United Kingdom	Greater London	Royal Borough of Kingston upon Thames	NaN	

26622 rows × 16 columns

In [21]:

data=data[(data['sub_region_1']=='Greater London') & (data['sub_region_2'].isn
ull())]['sub_region_2'].replace(np.nan, 'all', inplace=True)

In [22]:

data[(data['sub_region_1']=='Greater London') & (data['sub_region_2'].isnull
())]['sub_region_2']

```
In [23]:
```

```
# data.loc[data['sub_region_1'] == 'Greater London']
```

In [17]:

```
london_regions=london_data.sub_region_2.unique()
london_regions=london_regions[1:]
variabl=["Retail_Recreation","Grocery_Pharmacy","Parks","Transit_stations","Work
places","Residential"]
```

In [18]:

```
c1 = widgets.Dropdown(options = london_regions )
c2 = widgets.Dropdown(options = london_regions )
c3 = widgets.Dropdown(options = london_regions )
c4 = widgets.Dropdown(options = london_regions )
c5 = widgets.Dropdown(options = variabl )
```

In [19]:

```
display(c1)
display(c2)
display(c3)
display(c4)
display(c5)
btn = widgets.Button(description='plot')
output plot = widgets.Output()
def btn eventhandler(obj):
    output plot.clear output()
    with output plot:
        bigcities = data[
        data["sub region 2"].isin(
            [c1.value, c2.value, c3.value, c4.value]
        ) ]
        sns.catplot(
        x="sub region 2",
        y=c5.value,
        kind="box",
        data=bigcities,
        height=6,
        aspect=1.5,)
        plt.show()
btn.on click(btn eventhandler)
display(btn)
display(output plot)
```

In [20]:

```
london_long = pd.melt(
    london_data,
    id_vars=[ "sub_region_2","date" ],
    # The columns 'date' and 'sub_region_1' are not needed for the box
    # plots below but we will need the two variables in subsequent tasks.
    value_vars=london_data.columns[9:15],
).dropna()
london_long
```

Out[20]:

	sub_region_2	date	variable	value
321	City of London	2020-02-15	Retail_Recreation	-5.0
322	City of London	2020-02-16	Retail_Recreation	-1.0
323	City of London	2020-02-17	Retail_Recreation	-3.0
324	City of London	2020-02-18	Retail_Recreation	-2.0
325	City of London	2020-02-19	Retail_Recreation	-7.0
159727	Royal Borough of Kingston upon Thames	2022-04-03	Residential	0.0
159728	Royal Borough of Kingston upon Thames	2022-04-04	Residential	12.0
159729	Royal Borough of Kingston upon Thames	2022-04-05	Residential	10.0
159730	Royal Borough of Kingston upon Thames	2022-04-06	Residential	11.0
159731	Royal Borough of Kingston upon Thames	2022-04-07	Residential	11.0

152724 rows × 4 columns

In [21]:

```
london_regions=london_data.sub_region_2.unique()
london_regions=london_regions[1:]
```

In [23]:

```
c1 = widgets.Dropdown(options = london regions )
c2 = widgets.Dropdown(options = london regions )
c3 = widgets.Dropdown(options = london regions )
c4 = widgets.Dropdown(options = london_regions )
display(c1)
display(c2)
display(c3)
display(c4)
btn = widgets.Button(description='plot')
output plot = widgets.Output()
def btn_eventhandler(obj):
    output plot.clear output()
    with output_plot:
        sub = london long[
        london long["sub region 2"].isin(
            [c1.value, c2.value, c3.value, c4.value]
        )]
        sns.catplot(
        x="sub region 2",
        y="value",
        col="variable",
        col wrap=2,
        kind="boxen",
        height=6,
        aspect=1.5,
        sharey=False,
        data=sub,
        plt.show()
#
          grid = sns.relplot(
#
          x="date",
#
          y="value",
#
          hue="sub region 2",
#
          col="variable",
#
          col wrap=1,
#
          height=6,
#
          aspect=4,
#
          linewidth=2,
#
          ci=99,
#
          seed=42,
#
          facet kws={"sharey": False, "sharex": True},
#
          kind="line",
#
          data=sub,)
#
          grid.set(ylabel="Mean mobility change from baseline (%)")
#
          grid.set xticklabels(rotation=45)
          # For each plot, draw a horizontal line at y = 0 representing the base
line
#
          for ax in grid.axes.flat:
#
              ax.axhline(color="gray", linestyle="--", lw=2)
```

```
btn.on_click(btn_eventhandler)
display(btn)
display(output_plot)
```

In [25]:

```
sub = london_long[
    london_long["sub_region_2"].isin(
        [c1.value, c2.value, c3.value, c4.value]
)]
```

In [26]:

sub

Out[26]:

	sub_region_2	date	variable	value
321	City of London	2020-02-15	Retail_Recreation	-5.0
322	City of London	2020-02-16	Retail_Recreation	-1.0
323	City of London	2020-02-17	Retail_Recreation	-3.0
324	City of London	2020-02-18	Retail_Recreation	-2.0
325	City of London	2020-02-19	Retail_Recreation	-7.0
159242	London Borough of Tower Hamlets	2022-04-03	Residential	1.0
159243	London Borough of Tower Hamlets	2022-04-04	Residential	14.0
159244	London Borough of Tower Hamlets	2022-04-05	Residential	12.0
159245	London Borough of Tower Hamlets	2022-04-06	Residential	12.0
159246	London Borough of Tower Hamlets	2022-04-07	Residential	11.0

17697 rows × 4 columns

In [27]:

```
grid = sns.relplot(
   x="date",
   y="value",
    hue="sub region 2",
    col="variable",
    col_wrap=1,
   height=6,
    aspect=4,
    linewidth=2,
    ci=99,
    seed=42,
    facet_kws={"sharey": False, "sharex": True},
    kind="line",
    data=sub,)
grid.set(ylabel="Mean mobility change from baseline (%)")
grid.set xticklabels(rotation=45)
#
          # For each plot, draw a horizontal line at y = 0 representing the base
line
for ax in grid.axes.flat:
    ax.axhline(color="gray", linestyle="--", lw=2)
```


bootstraping for tower hamlets

```
In [28]:
from scipy.stats import bootstrap

In [22]:
c=sub[(sub['sub_region_2']=='City of London')]
```

```
In [31]:
```

```
tower=london_data[london_data["sub_region_2"] == "London Borough of Tower Hamlet
s"]
```

```
In [47]:
```

In [60]:

```
tower hamlets , Retail_Recreation. median ConfidenceInterval(low=-4 8.0, high=-43.0).
tower hamlets , Grocery_Pharmacy. median ConfidenceInterval(low=-15.0, high=-13.0).
tower hamlets , Parks. median ConfidenceInterval(low=-17.0, high=-1 3.0).
tower hamlets , Transit_stations. median ConfidenceInterval(low=-55.0, high=-52.0).
tower hamlets , Workplaces. median ConfidenceInterval(low=-55.0, high=-51.0).
tower hamlets , Residential. median ConfidenceInterval(low=-55.0, high=-51.0).
```

lockdowns analysis

In [61]:

```
data_long = pd.melt(
    data,
    id_vars=["country_region", "sub_region_1", "date"],
    # The columns 'date' and 'sub_region_1' are not needed for the box
    # plots below but we will need the two variables in subsequent tasks.
    value_vars=data.columns[9:15],
).dropna()
```

```
In [62]:
```

```
first_lockdown_UK = data_long[
    (data_long["country_region"] == "United Kingdom")
    & (data_long["date"] >= "2020-03-24")
    & (data_long["date"] <= "2020-04-13")
]

second_lockdown_UK = data_long[
    (data_long["country_region"] == "United Kingdom")
    & (data_long["date"] >= "2020-11-05")
    & (data_long["date"] <= "2020-11-25")
]

third_lockdown_UK = data_long[
    (data_long["country_region"] == "United Kingdom")
    & (data_long["date"] >= "2021-01-06")
    & (data_long["date"] >= "2021-01-26")
]
```

In [66]:

```
lockdowns_dataframes = [first_lockdown_UK, second_lockdown_UK, third_lockdown_UK
]
three_lockdowns_UK = pd.concat(
    lockdowns_dataframes,
    keys=["first_lockdown_UK", "second_lockdown_UK", "third_lockdown_UK"],
).reset_index()
```

In [67]:

```
# Display the three lockdowns as a catplot multi-plot
grid = sns.catplot(
    kind="bar",
    x="country_region",
    y="value",
    hue="variable",
    col="level_0",
    data=three_lockdowns_UK,
)
grid.set_ylabels("Mean mobility change from baseline (%)")
```

Out[67]:

<seaborn.axisgrid.FacetGrid at 0x7fbdd51d9c10>

Third lockdown

In [78]:

```
sns.catplot(
    x="value",
    y="sub_region_1",
    col="variable",
    kind="violin",
    sharex=False,
    height=35,
    aspect=0.13,
    color="y",
    data=third_lockdown_UK,
);
```


In [68]:

```
third_lockdown_UK_mean = (
    third_lockdown_UK.groupby(["variable", "sub_region_1"])["value"]
    .mean()
    .reset_index()
)
third_lockdown_UK_mean
```

Out[68]:

value	sub_region_1	variable	
-25.333333	Aberdeen City	Grocery_Pharmacy	0
-26.190476	Aberdeenshire	Grocery_Pharmacy	1
-19.714286	Angus Council	Grocery_Pharmacy	2
-18.523810	Antrim and Newtownabbey	Grocery_Pharmacy	3
-13.285714	Ards and North Down	Grocery_Pharmacy	4
-54.952381	Windsor and Maidenhead	Workplaces	871
-55.714286	Wokingham	Workplaces	872
-42.469388	Worcestershire	Workplaces	873
-38.428571	Wrexham Principal Area	Workplaces	874
-53.904762	York	Workplaces	875

876 rows × 3 columns

In [69]:

```
third_lockdown_UK_mean_sorted = third_lockdown_UK_mean.sort_values(
    by=[
        "variable",
        "value",
    ],
    ascending=False,
)[["sub_region_1", "variable", "value"]]
third_lockdown_UK_mean_sorted
```

Out[69]:

	sub_region_1	variable	value
737	Blaenau Gwent	Workplaces	-29.523810
803	Mid Ulster	Workplaces	-31.142857
816	North East Lincolnshire	Workplaces	-32.523810
825	Orkney	Workplaces	-32.866667
818	North Lincolnshire	Workplaces	-33.380952
25	Ceredigion	Grocery_Pharmacy	-31.142857
83	Monmouthshire	Grocery_Pharmacy	-32.095238
77	Merthyr Tydfil County Borough	Grocery_Pharmacy	-32.761905
7	Bath and North East Somerset	Grocery_Pharmacy	-34.095238
112	Slough	Grocery_Pharmacy	-35.523810

876 rows × 3 columns

In [91]:

9523809526

```
for i in variabl:
    t_min=third_lockdown_UK_mean_sorted[third_lockdown_UK_mean_sorted['variable'
]==i].iloc[0]
    t_max=third_lockdown_UK_mean_sorted[third_lockdown_UK_mean_sorted['variable'
]==i].iloc[-1]

    print(f'min change is for {i} is {t_min.sub_region_1} with value of {t_min.v
alue}')
    print(f'max change is for {i} is {t_max.sub_region_1} with value of {t_max.v
alue}')
    print('\n')
```

min change is for Retail_Recreation is East Renfrewshire Council with value of -46.19047619047619 max change is for Retail_Recreation is Bath and North East Somerset with value of -76.0

min change is for Grocery_Pharmacy is Neath Port Talbot Principle Ar ea with value of -3.2857142857142856 max change is for Grocery_Pharmacy is Slough with value of -35.52380

min change is for Parks is South Lanarkshire with value of 31.285714 285714285

max change is for Parks is Gwynedd with value of -59.714285714285715

min change is for $Transit_stations$ is North Lincolnshire with value of -33.285714285714285

max change is for Transit_stations is Reading with value of -77.1904 7619047619

min change is for Workplaces is Blaenau Gwent with value of -29.5238 09523809526

max change is for Workplaces is Edinburgh with value of -59.23809523 809524

min change is for Residential is Wokingham with value of 23.85714285 7142858

max change is for Residential is North East Lincolnshire with value of 12.428571428571429

In [70]:

```
third_lockdown_UK_descriptive_stats = (
    third_lockdown_UK.groupby(["sub_region_1", "variable"])["value"]
    .agg([min, max, np.mean, np.median, np.std])
    .reset_index()
)
third_lockdown_UK_descriptive_stats
```

Out[70]:

	sub_region_1	variable	min	max	mean	median	std
0	Aberdeen City	Grocery_Pharmacy	-33.0	-20.0	-25.333333	-24.0	2.921187
1	Aberdeen City	Parks	-51.0	42.0	-3.142857	-4.0	20.060622
2	Aberdeen City	Residential	11.0	24.0	19.809524	22.0	4.319943
3	Aberdeen City	Retail_Recreation	-79.0	-68.0	-72.047619	-71.0	3.138092
4	Aberdeen City	Transit_stations	-64.0	-55.0	-58.619048	-58.0	2.290768
871	York	Parks	-63.0	-22.0	-46.190476	-45.0	10.975514
872	York	Residential	13.0	25.0	20.666667	22.0	3.799123
873	York	Retail_Recreation	-78.0	-64.0	-70.571429	-69.0	4.307800
874	York	Transit_stations	-78.0	-69.0	-73.380952	-74.0	2.578298
875	York	Workplaces	-60.0	-41.0	-53.904762	-57.0	6.847662

876 rows × 7 columns

In [82]:

```
third_lockdown_UK_descriptive_stats[
    third_lockdown_UK_descriptive_stats["variable"] == "Retail_Recreation"
].sort_values(by="median")
```

Out[82]:

	sub_region_1	variable	min	max	mean	median	std
44	Bath and North East Somerset	Retail_Recreation	-82.0	-71.0	-76.000000	-76.0	2.898275
575	Nottingham	Retail_Recreation	-80.0	-68.0	-73.619048	-74.0	3.513918
284	Edinburgh	Retail_Recreation	-78.0	-69.0	-73.809524	-74.0	2.400397
126	Cardiff	Retail_Recreation	-77.0	-67.0	-72.523810	-73.0	2.441701
3	Aberdeen City	Retail_Recreation	-79.0	-68.0	-72.047619	-71.0	3.138092
114	Caerphilly County Borough	Retail_Recreation	-64.0	-46.0	-50.238095	-50.0	3.871754
167	Clackmannanshire	Retail_Recreation	-57.0	-42.0	-49.352941	-49.0	4.076475
15	Angus Council	Retail_Recreation	-58.0	-41.0	-49.904762	-49.0	4.380694
27	Ards and North Down	Retail_Recreation	-56.0	-41.0	-47.857143	-47.0	3.650832
266	East Renfrewshire Council	Retail_Recreation	-55.0	-35.0	-46.190476	-47.0	4.331501

148 rows × 7 columns

In [83]:

```
third_lockdown_UK_descriptive_stats[
    third_lockdown_UK_descriptive_stats["variable"] == "Parks"
].sort_values(by="max", ascending=False)
```

Out[83]:

	sub_region_1	variable	min	max	mean	median	std
288	Essex	Parks	-69.0	270.0	-3.511737	-12.0	45.749895
213	Derbyshire	Parks	-86.0	168.0	0.476744	-4.5	45.763114
330	Greater London	Parks	-94.0	131.0	-3.167376	-3.0	35.234568
412	Leicester	Parks	-24.0	110.0	5.666667	1.0	28.812035
628	Reading	Parks	-29.0	101.0	6.526316	1.0	28.083939
847	Windsor and Maidenhead	Parks	-63.0	-27.0	-43.666667	-42.0	9.640194
436	Luton	Parks	-30.0	-29.0	-29.333333	-29.0	0.577350
148	Ceredigion	Parks	-56.0	-33.0	-43.857143	-43.0	6.966245
342	Gwynedd	Parks	-71.0	-45.0	-59.714286	-61.0	6.827466
651	Rutland	Parks	-55.0	-55.0	-55.000000	-55.0	0.000000

135 rows × 7 columns

second lockdown

```
In [94]:
```

```
second_lockdown_UK_mean = (
    second_lockdown_UK.groupby(["variable", "sub_region_1"])["value"]
    .mean()
    .reset_index()
)
```

In [95]:

```
second_lockdown_UK_mean_sorted = second_lockdown_UK_mean.sort_values(
    by=[
        "variable",
        "value",
    ],
    ascending=False,
)[["sub_region_1", "variable", "value"]]
```

```
In [96]:
```

```
for i in variabl:
    t min=second lockdown UK mean sorted[second lockdown UK mean sorted['variabl
e']==i].iloc[0]
    t max=second lockdown UK mean sorted[second lockdown UK mean sorted['variabl
e']==i].iloc[-1]
    print(f'min change is for {i} is {t min.sub region 1} with value of {t min.v
alue}')
    print(f'max change is for {i} is {t max.sub region 1} with value of {t max.v
alue}')
    print('\n')
min change is for Retail Recreation is Moray with value of -14.52380
9523809524
max change is for Retail Recreation is Bath and North East Somerset
with value of -69.42857142857143
min change is for Grocery Pharmacy is Neath Port Talbot Principle Ar
ea with value of 12.047619047619047
max change is for Grocery Pharmacy is Slough with value of -24.95238
0952380953
min change is for Parks is Bridgend County Borough with value of 46.
833333333333336
max change is for Parks is Rutland with value of -51.0
min change is for Transit stations is East Lothian Council with valu
e of -27.61904761904762
max change is for Transit stations is Luton with value of -73.238095
23809524
min change is for Workplaces is Moray with value of -17.857142857142
max change is for Workplaces is Greater London with value of -46.789
54802259887
min change is for Residential is Wokingham with value of 19.47619047
6190474
max change is for Residential is Moray with value of 6.777777777777
78
```

In [97]:

```
second_lockdown_UK_descriptive_stats = (
    second_lockdown_UK.groupby(["sub_region_1", "variable"])["value"]
    .agg([min, max, np.mean, np.median, np.std])
    .reset_index()
)
second_lockdown_UK_descriptive_stats
```

Out[97]:

	sub_region_1	variable	min	max	mean	median	std
0	Aberdeen City	Grocery_Pharmacy	-15.0	-1.0	-7.238095	-7.0	3.192253
1	Aberdeen City	Parks	-28.0	57.0	3.809524	-2.0	21.720081
2	Aberdeen City	Residential	6.0	16.0	12.428571	14.0	3.295018
3	Aberdeen City	Retail_Recreation	-42.0	-32.0	-36.857143	-37.0	2.574601
4	Aberdeen City	Transit_stations	-46.0	-37.0	-40.571429	-40.0	2.693908
871	York	Parks	-58.0	-5.0	-28.809524	-24.0	15.028703
872	York	Residential	12.0	20.0	17.380952	18.0	2.479439
873	York	Retail_Recreation	-73.0	-53.0	-60.619048	-59.0	6.468974
874	York	Transit_stations	-75.0	-59.0	-64.761905	-63.0	4.657304
875	York	Workplaces	-49.0	-40.0	-45.857143	-47.0	2.868549

876 rows × 7 columns

first lockdown

In [99]:

```
first lockdown UK mean = (
    first_lockdown_UK.groupby(["variable", "sub_region_1"])["value"]
    .mean()
    .reset index()
first lockdown UK mean sorted = first lockdown UK mean.sort values(
        "variable",
        "value",
    ],
    ascending=False,
)[["sub region 1", "variable", "value"]]
for i in variabl:
    t min=first lockdown UK mean sorted[first lockdown UK mean sorted['variable'
]==i].iloc[0]
    t max=first lockdown UK mean sorted[first lockdown UK mean sorted['variable'
]==i].iloc[-1]
    print(f'min change is for {i} is {t min.sub region 1} with value of {t min.v
alue}')
    print(f'max change is for {i} is {t max.sub region 1} with value of {t max.v
alue}')
    print('\n')
```

min change is for Retail_Recreation is East Renfrewshire Council with value of -64.4

max change is for Retail_Recreation is Bath and North East Somerset with value of -86.38095238095238

min change is for Grocery_Pharmacy is East Renfrewshire Council with value of -18.19047619047619

max change is for Grocery_Pharmacy is Monmouthshire with value of -4 5.33333333333336

min change is for Transit_stations is Scottish Borders with value of -44.19047619047619

max change is for Transit_stations is Luton with value of -86.095238
0952381

min change is for Workplaces is North East Lincolnshire with value o f -53.57142857142857

max change is for Workplaces is Edinburgh with value of -76.76190476 190476

min change is for Residential is Wokingham with value of 32.23076923 076923

max change is for Residential is Pembrokeshire with value of 18.0

In [100]:

```
first_lockdown_UK_descriptive_stats = (
    first_lockdown_UK.groupby(["sub_region_1", "variable"])["value"]
        .agg([min, max, np.mean, np.median, np.std])
        .reset_index()
)
second_lockdown_UK_descriptive_stats
```

Out[100]:

	sub_region_1	variable	min	max	mean	median	std
0	Aberdeen City	Grocery_Pharmacy	-15.0	-1.0	-7.238095	-7.0	3.192253
1	Aberdeen City	Parks	-28.0	57.0	3.809524	-2.0	21.720081
2	Aberdeen City	Residential	6.0	16.0	12.428571	14.0	3.295018
3	Aberdeen City	Retail_Recreation	-42.0	-32.0	-36.857143	-37.0	2.574601
4	Aberdeen City	Transit_stations	-46.0	-37.0	-40.571429	-40.0	2.693908
871	York	Parks	-58.0	-5.0	-28.809524	-24.0	15.028703
872	York	Residential	12.0	20.0	17.380952	18.0	2.479439
873	York	Retail_Recreation	-73.0	-53.0	-60.619048	-59.0	6.468974
874	York	Transit_stations	-75.0	-59.0	-64.761905	-63.0	4.657304
875	York	Workplaces	-49.0	-40.0	-45.857143	-47.0	2.868549

876 rows × 7 columns

In []:

In [92]:

```
ax = data["Workplaces"].plot.hist(bins=12, alpha=0.5)
```



```
In [ ]:
```

```
In [93]:
```

```
data.iloc[:, 9:15].mean()
```

Out[93]:

 Retail_Recreation
 -25.628914

 Grocery_Pharmacy
 -3.427401

 Parks
 30.829508

 Transit_stations
 -32.848772

 Workplaces
 -32.167015

 Residential
 10.469924

dtype: float64

In [95]:

```
data.iloc[:, 9:15].std()
```

Out[95]:

 Retail_Recreation
 27.519923

 Grocery_Pharmacy
 17.430261

 Parks
 55.238187

 Transit_stations
 24.075431

 Workplaces
 19.088629

 Residential
 7.068883

dtype: float64

In [101]:

Out[101]:

	Retail_Recreation	Grocery_Pharmacy	Parks	Transit_stations	Workplaces
sub_region_1					
Aberdeen City	-38.800515	-3.892670	14.851802	-40.639640	-38.903475
Aberdeenshire	-17.288918	-6.057592	28.317881	-38.360158	-32.154440
Angus Council	-14.431398	-1.850923	18.748106	-29.073879	-30.151866
Antrim and Newtownabbey	-19.798153	-2.240106	-26.127660	-40.439314	-30.236808
Ards and North Down	-18.643799	7.485488	12.363515	-36.190588	-32.114543

In [102]:

```
grid = sns.PairGrid(UK_mean)
grid.map_diag(sns.histplot, color="r")
grid.map_offdiag(sns.scatterplot, color="r")
```

Out[102]:

<seaborn.axisgrid.PairGrid at 0x7fbdd4fc6890>

In [105]:

Compute pairwise correlation between our six mobility categories
using the original (non-aggregated) mobility_trends_UK DataFrame.
mobility_trends_UK_corr = data.iloc[:, 9:15].corr()
mobility_trends_UK_corr

Out[105]:

	Retail_Recreation	Grocery_Pharmacy	Parks	Transit_stations	Workplac
Retail_Recreation	1.000000	0.774223	0.422229	0.685147	0.5194
Grocery_Pharmacy	0.774223	1.000000	0.431409	0.555065	0.4404
Parks	0.422229	0.431409	1.000000	0.388513	0.1061
Transit_stations	0.685147	0.555065	0.388513	1.000000	0.5784
Workplaces	0.519476	0.440429	0.106138	0.578451	1.0000
Residential	-0.695228	-0.511430	-0.199375	-0.663171	-0.8887

In [106]:

Plot a heatmap based on the correlation analysis
sns.heatmap(mobility_trends_UK_corr);


```
In [107]:
```

```
UK NADrop = data.dropna(
    subset=[
        "country region",
        "sub_region_1",
        "date",
        "Retail Recreation",
        "Grocery_Pharmacy",
        "Parks",
        "Transit_stations",
        "Workplaces",
        "Residential",
    ]
# Number of rows and columns in the DataFrame without NaNs
UK NADrop.shape
Out[107]:
(242309, 16)
In [106]:
UK_NADrop=UK_NADrop.drop(['year', ], axis=1)
```

linear regression

```
In [122]:
```

```
for i in range(len(variabl)):
    for j in range(i+1,len(variabl)):
        print(f'for {variabl[i]} and {variabl[j]} linear regression val is')
        model_outputs = stats.linregress(
        UK_NADrop[variabl[i]], UK_NADrop[variabl[j]])
        print(model_outputs)
        print('\n')
```

for Retail_Recreation and Grocery_Pharmacy linear regression val is LinregressResult(slope=0.4827166466083039, intercept=9.179190254423677, rvalue=0.7723367031159675, pvalue=0.0, stderr=0.0008065331968265191, intercept stderr=0.03024567938580045)

for Retail_Recreation and Parks linear regression val is LinregressResult(slope=0.8116073658003042, intercept=53.115413835430 86, rvalue=0.4009359906770533, pvalue=0.0, stderr=0.0037673304605785 763, intercept stderr=0.14127808960544078)

for Retail_Recreation and Transit_stations linear regression val is LinregressResult(slope=0.6237201227403455, intercept=-16.83689763894 0602, rvalue=0.7096518046916471, pvalue=0.0, stderr=0.00125798326533 35256, intercept stderr=0.04717544010053215)

for Retail_Recreation and Workplaces linear regression val is LinregressResult(slope=0.3865795292388424, intercept=-21.67746334820 0114, rvalue=0.5377346771428168, pvalue=0.0, stderr=0.00123132923412 7156, intercept stderr=0.0461758913090143)

for Retail_Recreation and Residential linear regression val is LinregressResult(slope=-0.19069057119350036, intercept=5.62606074834 7025, rvalue=-0.7039972092744856, pvalue=0.0, stderr=0.0003908027797 442044, intercept stderr=0.01465543591476649)

for Grocery_Pharmacy and Parks linear regression val is LinregressResult(slope=1.3288082390797014, intercept=36.492835713147 1, rvalue=0.41027681690897455, pvalue=0.0, stderr=0.0060003783908343 15, intercept stderr=0.10333442771969896)

for Grocery_Pharmacy and Transit_stations linear regression val is LinregressResult(slope=0.8051364701299387, intercept=-30.34023696804 468, rvalue=0.5725463587416176, pvalue=0.0, stderr=0.002342189884874 7127, intercept stderr=0.04033559812396155)

for Grocery_Pharmacy and Workplaces linear regression val is LinregressResult(slope=0.5104625561587575, intercept=-30.00818439798 682, rvalue=0.44379119749567925, pvalue=0.0, stderr=0.00209398395886 89254, intercept_stderr=0.03606116480495219)

for Grocery_Pharmacy and Residential linear regression val is LinregressResult(slope=-0.22497417336489223, intercept=9.82590788023 1666, rvalue=-0.5191107045696359, pvalue=0.0, stderr=0.0007525008014 315289, intercept stderr=0.012959056014420772)

for Parks and Transit_stations linear regression val is LinregressResult(slope=0.16207157466325198, intercept=-38.2443960028 621, rvalue=0.37327881627537934, pvalue=0.0, stderr=0.00081828968141 25932, intercept stderr=0.05185828988271547)

for Parks and Workplaces linear regression val is

LinregressResult(slope=0.027120979886880822, intercept=-32.598458525 09002, rvalue=0.0763669603070138, pvalue=0.0, stderr=0.0007193608544 16196, intercept stderr=0.04558877444744822)

for Parks and Residential linear regression val is LinregressResult(slope=-0.02645210955839176, intercept=11.43162631958967, rvalue=-0.19768465877070676, pvalue=0.0, stderr=0.00026646989860083776, intercept stderr=0.016887263227864744)

for Transit_stations and Workplaces linear regression val is LinregressResult(slope=0.4886704443238805, intercept=-15.57658189908 3553, rvalue=0.5974336882943647, pvalue=0.0, stderr=0.00133251933166 80141, intercept stderr=0.05423700038145337)

for Transit_stations and Residential linear regression val is LinregressResult(slope=-0.21044177995699906, intercept=3.62842775787 12016, rvalue=-0.6828387026551698, pvalue=0.0, stderr=0.000457395825 082221, intercept stderr=0.018617198977823345)

for Workplaces and Residential linear regression val is LinregressResult(slope=-0.33819117792270126, intercept=-0.1460163489 105284, rvalue=-0.8975833775370103, pvalue=0.0, stderr=0.00033743501 864197053, intercept stderr=0.012553904891912146)

In [111]:

```
fig = sns.regplot(
    x="Workplaces",
    y="Residential",

# label="r = {0:.3}, p-value < {1:.3}".format(r_value, 0.001),
    data=UK_mean,
)
fig.set(
    xlabel="Workplaces mean mobility change", ylabel="Residential mean mobility change"
)
fig.legend()</pre>
```

No handles with labels found to put in legend.

Out[111]:

<matplotlib.legend.Legend at 0x7fe264fc1950>

In [125]:

```
for i in range(len(variabl)):
    for j in range(i+1,len(variabl)):
        print(f'for {variabl[i]} and {variabl[j]} linear regression val is')
        X = sm.add_constant(UK_NADrop[variabl[i]])
        Y = UK_NADrop[variabl[j]]
        model = sm.OLS(Y, X)
        results = model.fit()

        print_model = results.summary()
        print(print_model)
        print('\n')
```

for Retail Recreation and Grocery Pharmacy linear regression val is

OLS Regression Results _____ _____ Dep. Variable: Grocery_Pharmacy R-squared: 0.597 Model: OLS Adj. R-squared: 0.597 Method: Least Squares F-statistic: 3.582e+05 Fri, 30 Sep 2022 Prob (F-statistic): Date: 0.00 Time: 05:06:20 Log-Likelihood: 9.1877e+05 No. Observations: 242309 AIC: 1.838e+06 Df Residuals: 242307 BIC: 1.838e+06 Df Model: Covariance Type: nonrobust ______ ============ coef std err t P>|t| [0.025 0.975] ______ 9.1792 0.030 303.488 0.000 const 9.120 9.238 Retail_Recreation 0.4827 0.001 598.508 0.000 0.481 0.484 ______ 21731.724 Durbin-Watson: Omnibus: 0.560 Prob(Omnibus): 0.000 Jarque-Bera (JB): 152969.554 Skew: -0.055 Prob(JB): 0.00 Kurtosis: 6.891 Cond. No. 52.1 ======== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. for Retail_Recreation and Parks linear regression val is OLS Regression Results ______ Dep. Variable: Parks R-squared: 0.161 Model: OLS Adj. R-squared: 0.161 Method: Least Squares F-statistic: 4.641e+04 Fri, 30 Sep 2022 Prob (F-statistic): Date: 0.00

Time:

05:06:20

Log-Likelihood:

1.2923e+06

No. Observations: 242309 AIC:

2.585e+06

Df Residuals: 242307 BIC:

2.585e+06

Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t|

[0.025 0.975]

const 53.1154 0.141 375.964 0.000 5 2.839 53.392

0.8116 0.004 215.433

0.000

Retail_Recreation

0.804 0.819

Omnibus: 91903.841 Durbin-Watson:

0.345

Prob(Omnibus): 0.000 Jarque-Bera (JB):

536055.839

Skew: 1.726 Prob(JB):

0.00

Kurtosis: 9.417 Cond. No.

52.1

=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Retail_Recreation and Transit_stations linear regression val is OLS Regression Results

========

Dep. Variable: Transit stations R-squared:

0.504

Model: OLS Adj. R-squared:

0.504

Method: Least Squares F-statistic:

2.458e+05

Date: Fri, 30 Sep 2022 Prob (F-statistic):

0.00

Time: 05:06:20 Log-Likelihood:

1.0265e+06

No. Observations: 242309 AIC:

2.053e+06

Df Residuals: 242307 BIC:

2.053e+06

Df Model: 1
Covariance Type: nonrobust

===========

coef std err t P>|t|

[0.025 0.975]

-16.8369 0.047 -356.900 0.000 -1 const 6.929 - 16.744Retail Recreation 0.6237 0.001 495.810 0.000

0.621 0.626

Omnibus: 76036.456 Durbin-Watson:

0.358

0.000 Jarque-Bera (JB): Prob(Omnibus):

564892.212

Skew: 1.312 Prob(JB):

0.00

Kurtosis: 10.005 Cond. No.

52.1

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Retail Recreation and Workplaces linear regression val is OLS Regression Results

=======

Dep. Variable: Workplaces R-squared:

0.289

Model: olsAdj. R-squared:

0.289

Least Squares Method: F-statistic:

9.857e+04

Fri, 30 Sep 2022 Date: Prob (F-statistic):

0.00

Time: 05:06:20 Log-Likelihood:

1.0213e+06

No. Observations: 242309 AIC:

2.043e+06

BIC: Df Residuals: 242307

2.043e+06

Df Model: 1

Covariance Type: nonrobust

==========

coef std err

t

P>|t|

[0.025 0.975]

-21.6775 0.046 -469.454 0.000 -2const

1.768 -21.587

0.001 Retail Recreation 0.3866 313.953 0.000

0.389

Omnibus: 566.360 Durbin-Watson:

0.950

Prob(Omnibus): 0.000 Jarque-Bera (JB):

564.759

-0.112 Prob(JB): Skew:

2.31e-123

Kurtosis: 2.924 Cond. No.

52.1

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Retail_Recreation and Residential linear regression val is OLS Regression Results

Den Venichler	Donidontial	D. samonod.
Dep. Variable: 0.496	Residential	R-squared:
Model:	OLS	Adj. R-squared:
0.496	ОПР	Adj. K-squared:
Method:	Least Squares	F-statistic:
2.381e+05	neast squares	r-statistic.
Date:	Fri, 30 Sep 2022	Prob (F-statistic):
0.00	111, 30 Sep 2022	riob (r-statistic).
Time:	05:06:20	Log-Likelihood: -
7.4321e+05	03.00.20	nog-nikerinood.
No. Observations:	242309	ATC.
1.486e+06	212309	
Df Residuals:	242307	BTC:
1.486e+06	212007	210.
Df Model:	1	
Covariance Type:	nonrobust	
=======================================	:=========	
==========		
	coef std er	r t P> t
[0.025 0.975]		
const	5.6261 0.01	15 383.889 0.000
5.597 5.655		
Retail_Recreation	-0.1907 0.00	0.000 0.000 -
0.191 -0.190		
=======================================	=======================================	
========		
Omnibus:	1779.179	Durbin-Watson:
0.914		
Prob(Omnibus):	0.000	Jarque-Bera (JB):
1831.316		
Skew:	0.203	Prob(JB):
0.00	2 100	Cond. No.
Kurtosis:	3.128	Cond. No.
52.1		

=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Grocery_Pharmacy and Parks linear regression val is OLS Regression Results

========

30/09/2022, 11:50 Untitled1-Copy1 Dep. Variable: Parks R-squared: 0.168 Model: OLS Adj. R-squared: 0.168 Method: Least Squares F-statistic: 4.904e+04 Fri, 30 Sep 2022 Prob (F-statistic): Date: 0.00 Time: 05:06:20 Log-Likelihood: 1.2912e+06 No. Observations: 242309 AIC: 2.582e+06 Df Residuals: 242307 BIC: 2.582e+06 Df Model: Covariance Type: nonrobust _____ ______ coef std err t P>|t| [0.025 0.975] _____ 36.4928 0.103 353.153 0.000 const 6.290 36.695 Grocery Pharmacy 1.3288 0.006 221.454 0.000 1.341 ______ ======== Omnibus: 90161.841 Durbin-Watson: 0.393 0.000 Jarque-Bera (JB): Prob(Omnibus): 528162.397 Skew: 1.687 Prob(JB): 0.00 Kurtosis: 9.398 Cond. No. 17.6 ======== Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Grocery_Pharmacy and Transit_stations linear regression val is OLS Regression Results

Transit stations R-squared: Dep. Variable: 0.328 Model: OLS Adj. R-squared: 0.328 Least Squares F-statistic: Method: 1.182e+05 Date: Fri, 30 Sep 2022 Prob (F-statistic): 0.00 Time: 05:06:20 Log-Likelihood: 1.0632e+06 No. Observations: 242309 AIC: 2.126e+06

242307

BIC:

Df Residuals:

2.126e+06 Df Model: Covariance Type: nonrobust

coef std err

P>|t| t [0.025 0.975]

const -30.3402 0.040 -752.195 0.000 -30.419 -30.261

Grocery_Pharmacy 0.8051 0.002 343.754 0.000 0.801 0.810

56913.261 Durbin-Watson: Omnibus:

0.346

Prob(Omnibus): 0.000 Jarque-Bera (JB):

262322.426

Skew: 1.077 Prob(JB):

0.00

7.620 Cond. No. Kurtosis:

17.6

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Grocery Pharmacy and Workplaces linear regression val is OLS Regression Results

========

Dep. Variable: Workplaces R-squared:

0.197

Model: OLS Adj. R-squared:

0.197

Method: Least Squares F-statistic:

5.943e+04

Fri, 30 Sep 2022 Prob (F-statistic): Date:

0.00

Time: 05:06:20 Log-Likelihood:

1.0361e+06

No. Observations: 242309 AIC:

2.072e+06

Df Residuals: 242307 BIC:

2.072e+06

Df Model: Covariance Type: nonrobust

==========

coef std err t P>|t| [0.025 0.975]

______ -30.0082 0.036 -832.147 0.000 const

0.079 -29.938

Grocery Pharmacy 0.5105 0.002 243.776 0.000

0.506 0.515

______ ======= 576.822 Durbin-Watson: Omnibus: 0.854 Prob(Omnibus): 0.000 Jarque-Bera (JB): 462.978 Skew: 0.019 Prob(JB): 2.92e-101 Kurtosis: 2.789 Cond. No. 17.6

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Grocery Pharmacy and Residential linear regression val is

OLS Regression Results _____ Residential R-squared: Dep. Variable: 0.269 Model: OLS Adj. R-squared: 0.269 Least Squares F-statistic: Method: 8.938e+04 Fri, 30 Sep 2022 Prob (F-statistic): Date: 0.00 Time: 05:06:20 Log-Likelihood: 7.8808e+05 No. Observations: 242309 AIC: 1.576e+06 Df Residuals: 242307 BIC: 1.576e+06 Df Model: Covariance Type: nonrobust ______ ============ coef std err t P>|t| [0.025 0.975] ______ 9.8259 0.013 758.227 0.000 const. 9.801 9.851 Grocery Pharmacy -0.2250 0.001 -298.969 0.000 0.226 -0.223 ______ Omnibus: 2382.387 Durbin-Watson: 0.677 Prob(Omnibus): 0.000 Jarque-Bera (JB): 2454.882 Skew: 0.243 Prob(JB): 0.00 Kurtosis: 3.084 Cond. No. 17.6 ========

localhost:8888/nbconvert/html/Desktop/tower/Google mobility data/Untitled1-Copy1.ipynb?download=false

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Parks and Transit_stations linear regression val is OLS Regression Results

==========	=====	=======	=====	=====	=====		
=======							
Dep. Variable:		Transit_	stat	ions	R-sq	uared:	
0.139		_	_		-		
Model:				OLS	Adj.	R-squared:	
0.139					,	-	
Method:		Least	. Sau	ares	F-sta	atistic:	
3.923e+04							
Date:		Fri. 30	Sep :	2022	Prob	(F-statistic):	1
0.00		,				(
Time:			05:00	6:20	I ₁ Oq-1	Likelihood:	_
1.0932e+06					5		
No. Observations			24	2309	AIC:		
2.186e+06	•				11101		
Df Residuals:			24:	2307	BTC:		
2.186e+06				2007	210.		
Df Model:				1			
Covariance Type:	!	r	onrol	_			
==============					====:	==========	
========							
	coef	std	err		+	P> t	[0.025
0.975]	0001	Dea	011		Č	1. 101	[0.023
•							
const -38	3.2444	0.	.052	-737	.479	0.000	-38.346
-38.143	,,,			, , ,			001010
Parks 0	1621	0.	.001	198	.061	0.000	0.160
0.164	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		130	• • • •	0.000	0.100
============		======		=====	=====	=========	=======
=======							
Omnibus:		3	30914	.879	Durb	in-Watson:	
0.229							
Prob(Omnibus):			0	.000	Jargi	ue-Bera (JB):	
83462.686						,	
Skew:			0	.712	Prob	(JB):	
0.00						` '	
Kurtosis:			5	.498	Cond	. No.	
73.4			,				
==========		======	=====	=====	=====	=========	=======
========							
Notes:							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Parks and Workplaces linear regression val is
OLS Regression Results

========

Dep. Variable: Workplaces R-squared:

0.006

Model: OLS Adj. R-squared:

0.006

Method: Least Squares F-statistic:

1421.

Date: Fri, 30 Sep 2022 Prob (F-statistic):

3.76e-310

Time: 05:06:20 Log-Likelihood: -

1.0619e+06

No. Observations: 242309 AIC:

2.124e+06

Df Residuals: 242307 BIC:

2.124e+06

Df Model: 1
Covariance Type: nonrobust

=======

0.975]

t

P>|t|

[0.025

-32.5985 0.046 -715.055 0.000 -32.688

const -32.509

Parks 0.0271 0.001 37.701 0.000 0.026

0.029

========

Omnibus: 2928.012 Durbin-Watson:

coef std err

0.620

Prob(Omnibus): 0.000 Jarque-Bera (JB):

2410.277

Skew: -0.177 Prob(JB):

0.00

Kurtosis: 2.662 Cond. No.

73.4

=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Parks and Residential linear regression val is OLS Regression Results

=======

Dep. Variable: Residential R-squared:

0.039

Model: OLS Adj. R-squared:

0.039

Method: Least Squares F-statistic:

9854.

Date: Fri, 30 Sep 2022 Prob (F-statistic):

0.00

Time: 05:06:20 Log-Likelihood: -

8.2130e+05

No. Observations: 242309 AIC:

1.643e+06

Df Residuals: 242307 BIC:

1.643e+06

Df Model: 1
Covariance Type: nonrobust

				**	
=======	_			- 1.1	
0.975]	coef	std err	t	P> t	[0.025
const	11.4316	0.017	676.938	0.000	11.399
11.465					
Parks	-0.0265	0.000	-99.269	0.000	-0.027
-0.026					
========		========		========	=======
=======					
Omnibus:		15578.4	451 Durbin	-Watson:	
0.411					
Prob(Omnibu	ıs):	0.0	000 Jarque	-Bera (JB):	
18756.333					
Skew:		0.0	676 Prob(J	B):	
0.00					
Kurtosis:		3.1	178 Cond.	No.	
73.4					

______ ========

Notes:

0.749

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Transit_stations and Workplaces linear regression val is OLS Regression Results					
=======================================	=======	=======	========	======	=====
Dep. Variable:	M	orkplaces	R-squared:		
0.357		07.0	- 11 -	,	
Model: 0.357		OLS	Adj. R-square	d :	
Method:	Leas	t Squares	F-statistic:		
1.345e+05					
Date:	Fri, 30	Sep 2022	Prob (F-stati	stic):	
0.00 Time:		05:06:20	Log-Likelihoo	d:	_
1.0092e+06			-		
No. Observations:		242309	AIC:		
2.018e+06 Df Residuals:		242307	BIC:		
2.018e+06		242307	BIC:		
Df Model:		1			
Covariance Type:		nonrobust			
		=======		======	=====
	coef	std err	t	P> t	
[0.025 0.975]					
const	-15.5766	0.054	-287.195	0.000	-1
5.683 -15.470					
Transit_stations 0.486 0.491	0.4887	0.001	366.727	0.000	
0.486 0.491	=======	========	:========		=====
=======					
Omnibus:		1697.591	Durbin-Watson	:	

0.000 Jarque-Bera (JB): Prob(Omnibus):

2363.961

Skew: -0.089 Prob(JB):

0.00

Kurtosis: 3.450 Cond. No.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Transit stations and Residential linear regression val is OLS Regression Results

Dep. Variable: Residential R-squared:

0.466

Model: OLS Adj. R-squared:

0.466

Method: Least Squares F-statistic:

2.117e+05

Fri, 30 Sep 2022 Prob (F-statistic): Date:

0.00

Time: 05:06:20 Log-Likelihood:

7.5006e+05

No. Observations: 242309 AIC:

1.500e+06

242307 BIC: Df Residuals:

1.500e+06

Df Model: Covariance Type: nonrobust

==========

coef std err [0.025 0.975] _____

t

P>|t|

3.6284 0.019 194.897 0.000 const

3.592 3.665

Transit stations -0.2104 0.000 -460.087 0.000

0.211 - 0.210

=======

11305.604 Durbin-Watson: Omnibus:

0.532

0.000 Jarque-Bera (JB): Prob(Omnibus):

14541.501

Skew: 0.480 Prob(JB):

0.00

Kurtosis: 3.719 Cond. No.

========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for Workplaces and Residential linear regression val is OLS Regression Results

=======================================	=======	======	====	======	=====		======
Dep. Variable	:	Res	siden	tial	R-sq	uared:	
0.806					-		
Model:				OLS	Adj.	R-squared:	
0.806							
Method:		Least	t Squ	ares	F-sta	atistic:	
1.004e+06							
Date:	F	ri, 30	Sep	2022	Prob	(F-statistic):	
0.00							
Time:			05:0	6:20	Log-1	Likelihood:	_
6.2766e+05			2.4	2200	A T.C.		
No. Observati 1.255e+06	ons:		24	2309	AIC:		
Df Residuals:			2.4	2307	DTC.		
1.255e+06			24	2307	ыс:		
Df Model:				1			
Covariance Ty	ne:	1	nonro	_			
-	=======						=======
=======							
	coef	std	err		t	P> t	[0.025
0.975]							
	-0.1460	0 .	.013	-11	.631	0.000	-0.171
-0.121	0 2200	•	000	1000	0.4.1	0.000	0 220
-	-0.3382	0	.000	-1002	. 241	0.000	-0.339
-0.338						=======================================	
========							
Omnibus:			1024	. 582	Durb	in-Watson:	
0.467			1021	.302	Duib.	in wacbon.	
Prob(Omnibus)	:		0	.000	Jargi	ue-Bera (JB):	
1098.269						(,-	
Skew:			-0	.132	Prob	(JB):	
3.27e-239						,	
Kurtosis:			3	.199	Cond	. No.	
71.3							
=========	=======	======	====	=====	=====		=======
=======							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

after lockdown improvements

In [126]:

```
first_lockdown_UK = data_long[
    (data_long["country_region"] == "United Kingdom")
    & (data_long["date"] >= "2020-04-13")
    & (data_long["date"] <= "2020-11-05")
]

second_lockdown_UK = data_long[
    (data_long["country_region"] == "United Kingdom")
    & (data_long["date"] >= "2020-11-25")
    & (data_long["date"] <= "2021-01-06")
]

third_lockdown_UK = data_long[
    (data_long["country_region"] == "United Kingdom")
    & (data_long["date"] >= "2021-01-26")
]
```

In [127]:

```
lockdowns_dataframes = [first_lockdown_UK, second_lockdown_UK, third_lockdown_UK
]
three_lockdowns_UK = pd.concat(
    lockdowns_dataframes,
    keys=["first_lockdown_UK", "second_lockdown_UK", "third_lockdown_UK"],
).reset_index()
```

In [128]:

```
# Display the three lockdowns as a catplot multi-plot
grid = sns.catplot(
    kind="bar",
    x="country_region",
    y="value",
    hue="variable",
    col="level_0",
    data=three_lockdowns_UK,
)
grid.set_ylabels("Mean mobility change from baseline (%)")
```

Out[128]:

<seaborn.axisgrid.FacetGrid at 0x7fbdd4f9da10>

In [129]:

```
third_lockdown_UK_mean = (
    third_lockdown_UK.groupby(["variable", "sub_region_1"])["value"]
    .mean()
    .reset_index()
)
third_lockdown_UK_mean
```

Out[129]:

value	sub_region_1	variable	
4.121281	Aberdeen City	Grocery_Pharmacy	0
0.391304	Aberdeenshire	Grocery_Pharmacy	1
3.462243	Angus Council	Grocery_Pharmacy	2
4.901602	Antrim and Newtownabbey	Grocery_Pharmacy	3
16.707094	Ards and North Down	Grocery_Pharmacy	4
-37.267735	Windsor and Maidenhead	Workplaces	876
-37.970252	Wokingham	Workplaces	877
-27.209546	Worcestershire	Workplaces	878
-24.196796	Wrexham Principal Area	Workplaces	879
-34.645309	York	Workplaces	880

881 rows × 3 columns

In [130]:

```
third_lockdown_UK_mean_sorted = third_lockdown_UK_mean.sort_values(
    by=[
        "variable",
        "value",
    ],
    ascending=False,
)[["sub_region_1", "variable", "value"]]
third_lockdown_UK_mean_sorted
```

Out[130]:

	sub_region_1	variable	value
741	Blackpool	Workplaces	-15.155606
796	Isle of Wight	Workplaces	-15.894737
802	Lincolnshire	Workplaces	-16.794622
845	Shropshire	Workplaces	-17.109840
810	Middlesbrough	Workplaces	-17.812357
56	Greater London	Grocery_Pharmacy	-6.331606
50	Falkirk	Grocery_Pharmacy	-6.496568
143	Wokingham	Grocery_Pharmacy	-6.510297
21	Cardiff	Grocery_Pharmacy	-7.908467
112	Slough	Grocery_Pharmacy	-15.302059

881 rows × 3 columns

In [131]:

```
for i in variabl:
    t_min=third_lockdown_UK_mean_sorted[third_lockdown_UK_mean_sorted['variable'
]==i].iloc[0]
    t_max=third_lockdown_UK_mean_sorted[third_lockdown_UK_mean_sorted['variable'
]==i].iloc[-1]

    print(f'min change is for {i} is {t_min.sub_region_1} with value of {t_min.v
alue}')
    print(f'max change is for {i} is {t_max.sub_region_1} with value of {t_max.v
alue}')
    print('\n')
```

min change is for Retail_Recreation is Cornwall with value of 6.4576659038901605

max change is for Retail_Recreation is Nottingham with value of -34.87185354691076

min change is for Grocery_Pharmacy is Pembrokeshire with value of 2 8.94724770642202

max change is for Grocery_Pharmacy is Slough with value of -15.302059496567505

min change is for Parks is Cornwall with value of 129.50114416475972 max change is for Parks is West Dunbartonshire Council with value of -56.0

min change is for $Transit_stations$ is Argyll and Bute Council with v alue of 17.217391304347824

max change is for Transit_stations is Clackmannanshire with value of
-53.08571428571429

min change is for Workplaces is Blackpool with value of -15.15560640 7322654

max change is for Workplaces is Cardiff with value of -41.0366132723 11214

min change is for Residential is East Renfrewshire Council with value of 13.047923322683706

max change is for Residential is Fermanagh and Omagh with value of 4.432

In [132]:

```
third_lockdown_UK_descriptive_stats = (
    third_lockdown_UK.groupby(["sub_region_1", "variable"])["value"]
    .agg([min, max, np.mean, np.median, np.std])
    .reset_index()
)
third_lockdown_UK_descriptive_stats
```

Out[132]:

	sub_region_1	variable	min	max	mean	median	std
0	Aberdeen City	Grocery_Pharmacy	-89.0	48.0	4.121281	6.0	11.868022
1	Aberdeen City	Parks	-51.0	112.0	12.828375	8.0	30.650072
2	Aberdeen City	Residential	-1.0	24.0	10.084668	10.0	5.463781
3	Aberdeen City	Retail_Recreation	-93.0	-1.0	-29.384439	-22.0	19.662602
4	Aberdeen City	Transit_stations	-86.0	-18.0	-36.562929	-33.0	11.356960
876	York	Parks	-77.0	235.0	31.549425	24.0	49.753301
877	York	Residential	-1.0	23.0	9.187643	9.0	5.514496
878	York	Retail_Recreation	-92.0	33.0	-15.283753	-10.0	25.313757
879	York	Transit_stations	-92.0	43.0	-28.382151	-25.0	22.297570
880	York	Workplaces	-78.0	-2.0	-34.645309	-36.0	15.206682

881 rows × 7 columns

In [133]:

```
second_lockdown_UK_mean = (
    second_lockdown_UK.groupby(["variable", "sub_region_1"])["value"]
    .mean()
    .reset_index()
)
```

In [134]:

```
second_lockdown_UK_mean_sorted = second_lockdown_UK_mean.sort_values(
    by=[
        "variable",
        "value",
    ],
    ascending=False,
)[["sub_region_1", "variable", "value"]]
```

In [135]:

```
for i in variabl:
    t_min=second_lockdown_UK_mean_sorted[second_lockdown_UK_mean_sorted['variabl
e']==i].iloc[0]
    t_max=second_lockdown_UK_mean_sorted[second_lockdown_UK_mean_sorted['variabl
e']==i].iloc[-1]
    print(f'min change is for {i} is {t_min.sub_region_1} with value of {t_min.v
alue}')
    print(f'max change is for {i} is {t_max.sub_region_1} with value of {t_max.v
alue}')
    print('\n')
min change is for Retail_Recreation is Clackmannanshire with value of
f -22.2
max change is for Retail_Recreation is Nottingham with value of -58.
```

max change is for Retail_Recreation is Nottingham with value of -58.06976744186046

min change is for Grocery_Pharmacy is Neath Port Talbot Principle Ar ea with value of 9.44186046511628

max change is for Grocery_Pharmacy is Slough with value of -26.906976744186046

min change is for Parks is Nottingham with value of 32.8604651162790

max change is for Parks is Inverclyde with value of -68.0

min change is for Transit_stations is Shropshire with value of -24.6 86046511627907

max change is for Transit stations is Orkney with value of -71.0

min change is for Workplaces is Dumfries and Galloway with value of -28.74418604651163

max change is for Workplaces is Edinburgh with value of -50.25581395348837

min change is for Residential is Wokingham with value of 19.976744186046513

max change is for Residential is Dumfries and Galloway with value of 10.093023255813954

In [136]:

```
first lockdown UK mean = (
    first_lockdown_UK.groupby(["variable", "sub_region_1"])["value"]
    .mean()
    .reset index()
first lockdown UK mean sorted = first lockdown UK mean.sort values(
        "variable",
        "value",
    ],
    ascending=False,
)[["sub region 1", "variable", "value"]]
for i in variabl:
    t min=first lockdown UK mean sorted[first lockdown UK mean sorted['variable'
]==i].iloc[0]
    t max=first lockdown UK mean sorted[first lockdown UK mean sorted['variable'
]==i].iloc[-1]
    print(f'min change is for {i} is {t min.sub region 1} with value of {t min.v
alue}')
    print(f'max change is for {i} is {t max.sub region 1} with value of {t max.v
alue}')
    print('\n')
```

min change is for Retail_Recreation is Cornwall with value of -13.92 5373134328359

max change is for Retail_Recreation is Aberdeen City with value of 56.62189054726368

min change is for $Grocery_Pharmacy$ is Neath Port Talbot Principle Ar ea with value of 3.368131868131868

max change is for Grocery_Pharmacy is Wokingham with value of -22.35 7142857142858

min change is for $Transit_stations$ is Argyll and Bute Council with v alue of -8.126373626373626

max change is for Transit_stations is Reading with value of -64.7149 7584541063

min change is for Workplaces is North East Lincolnshire with value o f -29.567164179104477

max change is for Workplaces is Edinburgh with value of -56.61835748792271

min change is for Residential is Wokingham with value of 20.09493670886076

max change is for Residential is Argyll and Bute Council with value of 7.963414634146342