

INFORME 9

Ensayo Curvas Bomba

11 DE DICIEMBRE DE 2020

NOMBRE: FELIPE MUÑOZ LISBOA Profesores: -Cristobal Galleguillos Ketterer -Tomás Herrera Muñoz

Índice

Introducción	2
Desarrollo	
3.1 Tabla valores medidos	
3.3 Tabla valores calculados	
3.4 Gráficos	
3.4.1 De rendimiento y potencia vs caudal	6
3.4.2 Cruva Ψ vs Φ	8
Conclusión	9

Introducción

En el presente informe se busca el graficar, gracias a datos obtenidos en el ensayo del laboratorio, distintos aspectos relevantes que tiene una bomba centrífuga, como su potencia y rendimiento, todos estos datos se verán diferenciados según sus revoluciones, con el fin de poder apreciar el funcionamiento y demás de la bomba a distintos aspectos de trabajo. Éstas bombas generan principal importancia debido a que son de las más comunes en la actualidad.

Desarrollo

3.1.- Tabla valores medidos

	VALORES MEDIDOS														
					3070	[rpm]									
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}					
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7					
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7					
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7					
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7					
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7					
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7					
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7					
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7					
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7					
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7					
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7					
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7					

	VALORES MEDIDOS														
					2900	[rpm]									
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	T	Patm					
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7					
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7					
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7					
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7					
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7					
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7					
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7					
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7					
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7					
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7					
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7					
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7					

	VALORES MEDIDOS														
					2700	[rpm]									
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}					
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7					
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7					
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7					
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7					
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7					
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7					
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7					
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7					
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7					
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7					
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7					
12	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7					

3.3.- Tabla valores calculados

	VALORES CACULADOS														
	3070 [rpm]														
Q	pax	pdx	Нх	Н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	ф	ψ			
[m ³ /h]	m_{ca}	m _{ca}	m_{ca}	m_{ca}	kW	kW	kW	%	m/s	m/s	[-]	[-]			
113,216	-1,165	2,765	3,930	3,917	3,483	3,466	1,232	35,543	21,690	3,028	0,140	0,163			
107,789	-0,915	5,605	6,520	6,495	3,801	3,779	1,945	51,462	21,690	2,883	0,133	0,271			
100,603	-0,635	7,925	8,560	8,527	4,050	4,026	2,383	59,185	21,690	2,691	0,124	0,355			
91,621	-0,415	9,965	10,380	10,340	4,185	4,161	2,631	63,241	21,690	2,451	0,113	0,431			
86,203	-0,175	11,805	11,980	11,926	4,277	4,248	2,856	67,220	21,690	2,306	0,106	0,497			
77,199	0,055	13,925	13,870	13,798	4,324	4,290	2,959	68,965	21,690	2,065	0,095	0,575			
71,813	0,405	16,685	16,280	16,195	4,347	4,313	3,231	74,909	21,690	1,921	0,089	0,675			
61,041	0,645	18,645	18,000	17,907	4,279	4,245	3,036	71,517	21,690	1,633	0,075	0,746			
46,678	0,885	19,845	18,960	18,862	4,143	4,111	2,446	59,495	21,690	1,248	0,058	0,786			
35,918	1,135	21,925	20,790	20,696	3,825	3,799	2,065	54,357	21,690	0,961	0,044	0,862			
25,135	1,315	22,925	21,610	21,498	3,509	3,482	1,501	43,109	21,690	0,672	0,031	0,896			
0,000	1,935	25,005	23,070	22,950	2,558	2,538	0,000	0,000	21,690	0,000	0,000	0,956			

	VALORES CACULADOS														
	2900 [RPM]														
Q	pax	pdx	Hx	Н	Nex	Ne	Nh	η_{gl}	U_2	cm ₂	ф	ψ			
[m ³ /h]	m_{ca}	m _{ca}	m_{ca}	m _{ca}	Kw	kW	kW	%	m/s	m/s	[-]	[-]			
107,888	-0,965	2,645	3,610	3,603	2,925	2,916	1,080	37,024	20,489	2,886	0,141	0,168			
101,055	-0,725	5,245	5,970	5,958	3,139	3,129	1,672	53,448	20,489	2,703	0,132	0,278			
92,424	-0,485	6,725	7,210	7,195	3,309	3,299	1,847	55,990	20,489	2,472	0,121	0,336			
89,907	-0,245	8,725	8,970	8,951	3,459	3,448	2,236	64,832	20,489	2,405	0,117	0,418			
79,118	-0,065	10,605	10,670	10,648	3,523	3,512	2,340	66,631	20,489	2,116	0,103	0,497			
75,548	0,225	12,365	12,140	12,123	3,586	3,578	2,544	71,097	20,489	2,021	0,099	0,566			
68,306	0,445	14,365	13,920	13,882	3,610	3,595	2,634	73,270	20,489	1,827	0,089	0,648			
57,560	0,695	16,245	15,550	15,529	3,586	3,578	2,483	69,384	20,489	1,540	0,075	0,725			
46,752	0,885	17,885	17,000	16,965	3,416	3,406	2,203	64,691	20,489	1,250	0,061	0,792			
35,963	1,115	19,405	18,290	18,252	3,181	3,172	1,823	57,491	20,489	0,962	0,047	0,852			
21,570	1,345	20,645	19,300	19,247	2,926	2,914	1,153	39,574	20,489	0,577	0,028	0,899			
0,000	1,835	22,605	20,770	20,713	2,008	1,999	0,000	0,000	20,489	0,000	0,000	0,967			

	VALORES CACULADOS													
2700 [RPM]														
Q	pax	pdx	Hx	Н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	ф	ψ		
[m ³ /h]	m_{ca}	m _{ca}	m _{ca}	m_{ca}	Kw	kW	kW	%	m/s	m/s	[-]	[-]		
100,725	-0,685	2,485	3,170	3,165	2,305	2,300	0,886	38,503	19,076	2,694	0,141	0,170		
92,417	-0,435	4,365	4,800	4,789	2,465	2,457	1,229	50,041	19,076	2,472	0,130	0,258		
89,900	-0,265	5,965	6,230	6,216	2,584	2,576	1,552	60,264	19,076	2,405	0,126	0,335		
79,472	-0,115	7,405	7,520	7,503	2,664	2,655	1,656	62,384	19,076	2,126	0,111	0,404		
75,544	0,125	9,205	9,080	9,067	2,743	2,736	1,903	69,528	19,076	2,021	0,106	0,488		
71,920	0,365	10,925	10,560	10,537	2,783	2,774	2,105	75,882	19,076	1,924	0,101	0,568		
58,255	0,595	13,005	12,410	12,382	2,783	2,774	2,004	72,232	19,076	1,558	0,082	0,667		
53,960	0,795	14,605	13,810	13,790	2,743	2,736	2,067	75,533	19,076	1,443	0,076	0,743		
43,168	1,015	16,125	15,110	15,088	2,584	2,578	1,809	70,183	19,076	1,155	0,061	0,813		
25,172	1,245	17,565	16,320	16,284	2,346	2,338	1,139	48,698	19,076	0,673	0,035	0,877		
17,980	1,375	18,285	16,910	16,872	2,087	2,081	0,843	40,504	19,076	0,481	0,025	0,909		
0,000	1,845	19,805	17,960	17,920	1,551	1,546	0,000	0,000	19,076	0,000	0,000	0,965		

3.4.- Gráficos

3.4.1.- De rendimiento y potencia vs caudal

3.4.1.1.- ¿Cuáles son las condiciones óptimas de operación de la bomba?

El punto óptimo de la bomba se encuentra cuando la velocidad rotacional son 2700[rpm], ya que es la curva que esta por sobre las demás en el rendimiento, y el punto de máximo rendimiento es de un 75,8%, para un caudal de 71,9[m3/hr].

3.4.1.2.- ¿Las curvas tienen la forma esperada?

En líneas generales las curvas tienen una forma bastante similar a la esperada, las pequeñas discrepancias que puedan hacer que la curva no sea visualmente tan perfecta se deben a que en la práctica siempre hay valores y pérdidas que no se pueden estimar en la teoría.

3.4.1.3.- ¿Cuál es la potencia máxima consumida?

La potencia máxima consumida ocurre cuando la velocidad rotacional son 3070 [rpm], ocurre cuando el caudal es 71,813 [m3/hr] y la potencia tiene un valor de 4,313 [kW]

3.4.1.4.- ¿Qué tipos de curvas son?

Ambas curvas previas son de la forma ascendente descendente, en el cual se aprecia que tanto su máximo como mínimo no están en los extremos, sino en un punto cercano al caudal medio.

3.4.2.- Cruva Ψ vs Φ

3.4.2.1.- ¿La nube de puntos que conforman esta curva son muy dispersos?

Como se logra apreciar en el gráfico, son todo lo contrario a dispersos, están todos los puntos muy unidos que apenas se logra diferenciar cada uno de los tramos según sus rpm.

3.4.2.2.- Al observar todas las curvas anteriores ¿Qué tipo de bomba centrífuga es?

Viendo las curvas previamente fabricadas, se aprecia que la bomba centrífuga es m18.

3.4.2.3.- Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta 3.4.3.2.

La velocidad específica será calculada en la condición óptima de operación.

La velocidad específica para 2700 rpm con un caudal de 71,9 [m3/hr] es de 2.569,32[-].

Esta en el rango medio de curva de las bombas, ésta puede manejar grandes caudales.

Conclusión

Con las curvas calculadas previamente, se logra apreciar que puntos tendrán mayor y menor rendimiento, y con eso otros parámetros, todo con el ánimo de poder visualizar gráficamente cómo se comporta la bomba, y como podría satisfacer de mejor manera algún tipo de demanda, ya que se espera que esta bomba tenga cierto grado de flexibilidad para realizar sus labores.