Generatorne funkcije i rekurentne relacije

Vaše ime

November 12, 2024

Contents

1	Uvo	od - Osnovni pojmovi	2
	1.1	Definicija generatorne funkcije	2
	1.2	Uloga generatornih funkcija	2
	1.3	Struktura dokumenta	2
2	Ope	eracije nad generatornim funkcijama	3
	2.1	Skaliranje	3
	2.2	Desno pomeranje (pomak)	3
	2.3	Sabiranje i množenje	3
	2.4	Diferenciranje	
	2.5	Primer primene operacija	3
3	Primena generatornih funkcija na rekurentne relacije		
	3.1	Proces pretvaranja u zatvorenu formu	4
	3.2	Primeri rešavanja rekurentnih relacija	6
		3.2.1 Konstrukcija generatorne funkcije	6
		3.2.2 Formulacija algebarske jednačine	7
		3.2.3 Dobijanje zatvorene forme	7
		3.2.4 Rezultat	8
4	Klji	učni primeri	9
	4.1	Zadatak 1: Rešavanje rekurentne relacije	9
	4.2	Zadatak 2: Generisanje zatvorene forme pomoću OGF	12
5	Zad	laci za vežbu	14

1 Uvod - Osnovni pojmovi

Generatorne funkcije predstavljaju alat za rešavanje rekurentnih relacija i analizu nizova. Kroz ovaj dokument, istražićemo kako generatorne funkcije pomažu u prevodjenju rekurentnih relacija u zatvorene forme i rešavanju složenih matematičkih nizova.

1.1 Definicija generatorne funkcije

Obična generatorna funkcija (OGF) za niz $\{a_n\}$ definisana je kao:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n$$

Eksponencijalna generatorna funkcija (EGF) ima oblik:

$$EG(x) = \sum_{n=0}^{\infty} \frac{a_n x^n}{n!}$$

Koeficijenti ovih funkcija odgovaraju članovima niza, i povezani su sa polinomima koji opisuju taj niz.

1.2 Uloga generatornih funkcija

Generatorne funkcije su korisne u rešavanju rekurentnih relacija jer omogućavaju transformaciju relacija u algebarske izraze koje je često lakše rešiti.

1.3 Struktura dokumenta

Ovaj dokument je organizovan tako da prvo pokriva osnovne operacije nad generatornim funkcijama, zatim se fokusira na njihovu primenu u rešavanju rekurentnih relacija. Na kraju, kroz konkretne primere i zadatke, prikazaće se kako generatorne funkcije mogu pomoći u pronalaženju zatvorene forme rekurentnih relacija.

2 Operacije nad generatornim funkcijama

2.1 Skaliranje

Skaliranje menja sve koeficijente niza množenjem sa konstantom c, tako da:

$$c \cdot G(x) = c \sum_{n=0}^{\infty} a_n x^n$$

2.2 Desno pomeranje (pomak)

Pomicanje niza na desno uvodi faktor x^k , gde k predstavlja broj pomaka:

$$x^k \cdot G(x) = \sum_{n=0}^{\infty} a_n x^{n+k}$$

2.3 Sabiranje i množenje

Za nizove $\{a_n\}$ i $\{b_n\}$, generatorne funkcije su:

$$A(x) = \sum_{n=0}^{\infty} a_n x^n, \quad B(x) = \sum_{n=0}^{\infty} b_n x^n$$

Sabiranjem dobijamo:

$$A(x) + B(x) = \sum_{n=0}^{\infty} (a_n + b_n)x^n$$

2.4 Diferenciranje

Diferenciranjem generatorne funkcije G(x) dobijamo:

$$G'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

2.5 Primer primene operacija

Pretpostavimo niz $\{a_n\}=\{1,2,3,\ldots\}$ sa generatornom funkcijom $G(x)=\sum_{n=0}^{\infty}nx^n$. Skaliranje sa c=2 i pomeranje za k=1 daje:

$$2 \cdot x \cdot G(x) = 2\sum_{n=0}^{\infty} nx^{n+1}$$

3 Primena generatornih funkcija na rekurentne relacije

Generatorne funkcije omogućavaju da se rekurentna relacija prevede u polinomski oblik, što često pojednostavljuje traženje zatvorene forme.

3.1 Proces pretvaranja u zatvorenu formu

Da bismo rekurentnu relaciju $a_n = a_{n-1} + a_{n-2}$ sa početnim uslovima $a_0 = 0$ i $a_1 = 1$ izrazili u zatvorenom obliku, koristimo generatornu funkciju. Definišemo generatornu funkciju za niz $\{a_n\}$ kao:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n$$

Korak po korak analiziramo kako generatorna funkcija može pomoći u rešavanju ove rekurentne relacije:

1. **Pisanje rekurentne relacije pomoću generatorne funkcije**: Pošto je $a_n = a_{n-1} + a_{n-2}$, izrazimo G(x) koristeći ovu relaciju. Pomnožimo generatornu funkciju sa x kako bismo dobili:

$$xG(x) = \sum_{n=0}^{\infty} a_{n-1}x^n = \sum_{n=1}^{\infty} a_{n-1}x^n$$

i sa x^2 kako bismo dobili:

$$x^{2}G(x) = \sum_{n=0}^{\infty} a_{n-2}x^{n} = \sum_{n=2}^{\infty} a_{n-2}x^{n}$$

2. Formulacija algebarske jednačine: Kombinovanjem ovih izraza prema rekurentnoj relaciji, dobijamo:

$$G(x) = a_0 + a_1 x + \sum_{n=2}^{\infty} (a_{n-1} + a_{n-2}) x^n$$

Zamenom izraza za a_{n-1} i a_{n-2} pomoću xG(x) i $x^2G(x)$, dobijamo:

$$G(x) = a_0 + a_1 x + xG(x) + x^2 G(x)$$

3. Rešavanje algebarske jednačine za G(x): Zamenimo početne uslove $a_0 = 0$ i $a_1 = 1$, čime dobijamo:

$$G(x) = x + xG(x) + x^2G(x)$$

Grupisanjem dobijamo:

$$G(x)(1-x-x^2) = x$$

$$G(x) = \frac{x}{1 - x - x^2}$$

4. **Dobijanje zatvorene forme**: Frakcija $\frac{x}{1-x-x^2}$ može se transformisati u eksplicitnu formu pomoću parcijalnih frakcija ili primenom standardnih metoda za nizove, kao što je rešavanje kvadratne jednačine za korene imenioca. Kvadratna jednačina povezana sa imeniteljem $1-x-x^2=0$ ima korene:

$$\alpha = \frac{1+\sqrt{5}}{2} \quad \text{i} \quad \beta = \frac{1-\sqrt{5}}{2}$$

Sada možemo napisati:

$$\frac{x}{1-x-x^2} = \frac{A}{1-\alpha x} + \frac{B}{1-\beta x}$$

gde su A i B konstante koje odredjujemo rešenjem sistema linearnih jednačina.

5. Razlaganje na parcijalne frakcije i eksplicitna formula: Nakon odredjivanja konstanti A i B, možemo izraziti G(x) u sledećem obliku:

$$G(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x} = A \sum_{n=0}^{\infty} (\alpha x)^n + B \sum_{n=0}^{\infty} (\beta x)^n$$

Razvijanjem svake sume dobijamo eksplicitnu formulu za a_n :

$$a_n = A\alpha^n + B\beta^n$$

Korišćenjem početnih uslova iz rekurentne relacije, možemo odrediti vrednosti A i B. Za početne uslove $a_0 = 0$ i $a_1 = 1$, dobijamo:

$$A = \frac{1}{\sqrt{5}} \quad i \quad B = -\frac{1}{\sqrt{5}}$$

Tako da zatvorena forma za a_n postaje:

$$a_n = \frac{1}{\sqrt{5}} \left(\alpha^n - \beta^n \right)$$

gde su
$$\alpha = \frac{1+\sqrt{5}}{2}$$
 i $\beta = \frac{1-\sqrt{5}}{2}$.

6. **Rezultat:** Na kraju, zatvorena forma za niz a_n nam omogućava da direktno izračunamo bilo koji član niza bez potrebe za korišćenjem rekurzije. Zatvorena formula je:

$$a_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

Ova formula pruža efikasan način za izračunavanje n-tog člana niza sa minimalnim proračunima, što je naročito korisno za velike vrednosti n.

3.2 Primeri rešavanja rekurentnih relacija

Primer 1: Fibonacci niz

Posmatrajmo Fibonacci niz definisan sledećom rekurentnom relacijom:

$$F_n = F_{n-1} + F_{n-2}$$

sa početnim uslovima $F_0 = 0$ i $F_1 = 1$. Cilj nam je da pronadjemo zatvorenu formu za F_n korišćenjem obične generatorne funkcije (OGF).

3.2.1 Konstrukcija generatorne funkcije

Definišimo OGF za niz $\{F_n\}$ kao:

$$G(x) = \sum_{n=0}^{\infty} F_n x^n$$

Korišćenjem rekurentne relacije $F_n = F_{n-1} + F_{n-2}$, možemo izraziti G(x) na sledeći način. Prvo pomnožimo G(x) sa x i x^2 da bismo dobili:

$$xG(x) = \sum_{n=0}^{\infty} F_{n-1}x^n = \sum_{n=1}^{\infty} F_{n-1}x^n$$

$$x^{2}G(x) = \sum_{n=0}^{\infty} F_{n-2}x^{n} = \sum_{n=2}^{\infty} F_{n-2}x^{n}$$

3.2.2 Formulacija algebarske jednačine

Sada koristimo rekurentnu relaciju u izrazu za G(x):

$$G(x) = F_0 + F_1 x + \sum_{n=2}^{\infty} (F_{n-1} + F_{n-2}) x^n$$

Ubacivanjem izraza za F_{n-1} i F_{n-2} iz xG(x) i $x^2G(x)$, dobijamo:

$$G(x) = 0 + x + xG(x) + x^2G(x)$$

Grupisanjem svih G(x) članova dobijamo:

$$G(x)(1-x-x^2) = x$$

$$G(x) = \frac{x}{1 - x - x^2}$$

3.2.3 Dobijanje zatvorene forme

Da bismo našli zatvorenu formu, razložimo izraz $\frac{x}{1-x-x^2}$. Primetimo da kvadratna jednačina $1-x-x^2=0$ ima korene $\alpha=\frac{1+\sqrt{5}}{2}$ i $\beta=\frac{1-\sqrt{5}}{2}$. Dakle, možemo napisati:

$$G(x) = \frac{x}{(1 - \alpha x)(1 - \beta x)}$$

Razlaganjem na parcijalne frakcije dobijamo:

$$G(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x}$$

gde su A i B konstante koje odredjujemo rešavanjem sistema. Posle odredjivanja A i B, rezultat možemo zapisati kao:

$$G(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x} = A \sum_{n=0}^{\infty} (\alpha x)^n + B \sum_{n=0}^{\infty} (\beta x)^n$$

Razvijajući ovo, dobijamo formulu za F_n :

$$F_n = A\alpha^n + B\beta^n$$

Koristeći početne uslove $F_0=0$ i $F_1=1$, nalazimo da su $A=\frac{1}{\sqrt{5}}$ i $B=-\frac{1}{\sqrt{5}}$, pa zatvorena forma postaje:

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

Rezultat 3.2.4

Na kraju, zatvorena forma za Fibonacci niz data je sledećom formulom:

$$F_n = \frac{1}{\sqrt{5}} \left(\alpha^n - \beta^n \right)$$

gde su
$$\alpha = \frac{1+\sqrt{5}}{2}$$
 i $\beta = \frac{1-\sqrt{5}}{2}$

gde su $\alpha=\frac{1+\sqrt{5}}{2}$ i $\beta=\frac{1-\sqrt{5}}{2}$. Ova formula omogućava da direktno izračunamo n-ti član Fibonacci niza bez potrebe za iterativnim izračunavanjem prethodnih članova.

4 Ključni primeri

4.1 Zadatak 1: Rešavanje rekurentne relacije

Neka je data rekurentna relacija:

$$a_n = 3a_{n-1} + 2$$
, sa početnim uslovom $a_0 = 1$.

U ovom zadatku koristićemo generatornu funkciju za rešavanje ove rekurentne relacije i dobijanje zatvorene forme za a_n .

• Postavljanje rekurentne relacije: Prvo, pišemo rekurentnu relaciju kao:

$$a_n = 3a_{n-1} + 2$$

sa početnim uslovom $a_0 = 1$. Ova relacija kaže da je svaki član niza a_n zavistan od prethodnog člana a_{n-1} , a uz to se dodaje konstanta 2.

• Primena generatorne funkcije: Sada postavljamo generatornu funkciju za niz $\{a_n\}$:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n$$

Da bismo koristili generatornu funkciju, prvo ćemo izraziti a_n u funkciji prethodnih članova niza pomoću rekurentne relacije. Pomnožimo celokupnu rekurentnu relaciju sa x^n i saberemo za sve vrednosti $n \geq 1$:

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} (3a_{n-1} + 2) x^n$$

Ovaj izraz možemo rastaviti na dva dela:

$$\sum_{n=1}^{\infty} a_n x^n = 3 \sum_{n=1}^{\infty} a_{n-1} x^n + 2 \sum_{n=1}^{\infty} x^n$$

Prvi zbir možemo izraziti kao:

$$3\sum_{n=1}^{\infty} a_{n-1}x^n = 3x\sum_{n=0}^{\infty} a_nx^n = 3xG(x)$$

Drugi zbir je jednostavan geometrijski niz:

$$2\sum_{n=1}^{\infty} x^n = 2\frac{x}{1-x}$$

Sada možemo zapisati generatornu funkciju kao:

$$G(x) - a_0 = 3xG(x) + 2\frac{x}{1-x}$$

• Derivacija zatvorene forme: Zamenjujemo početni uslov $a_0 = 1$ u prethodnu jednačinu:

$$G(x) - 1 = 3xG(x) + 2\frac{x}{1-x}$$

Sada rešavamo za G(x):

$$G(x) = 1 + 3xG(x) + 2\frac{x}{1-x}$$

Izolujemo G(x):

$$G(x) - 3xG(x) = 1 + 2\frac{x}{1-x}$$

$$G(x)(1-3x) = 1 + 2\frac{x}{1-x}$$

Sada rešavamo desnu stranu:

$$G(x) = \frac{1 + 2\frac{x}{1-x}}{1 - 3x}$$

Razvijamo desnu stranu:

$$G(x) = \frac{1 - x + 2x}{(1 - x)(1 - 3x)}$$

$$G(x) = \frac{1-x}{(1-x)(1-3x)} + \frac{2x}{(1-x)(1-3x)}$$

Prvo pojednostavimo:

$$G(x) = \frac{1}{1 - 3x} + \frac{2x}{(1 - x)(1 - 3x)}$$

• Pojednostavljivanje pomoću parcijalnih frakcija: Sada koristimo parcijalne frakcije za razlaganje drugog dela generatorne funkcije:

$$\frac{2x}{(1-x)(1-3x)} = \frac{A}{1-x} + \frac{B}{1-3x}$$

Množimo celu jednadžbu sa (1-x)(1-3x) da bismo rešili za A i B:

$$2x = A(1 - 3x) + B(1 - x)$$

Sada možemo proširiti i uporediti koeficijente uz x:

$$2x = A - 3Ax + B - Bx$$

$$2x = (A+B) + (-3A-B)x$$

Uporedjujući koeficijente uz 1 i x:

$$A + B = 0$$
 (konstantni član)

$$-3A - B = 2$$
 (koeficijent uz x)

Rešavamo ovaj sistem:

$$B = -A$$

$$-3A + A = 2 \implies -2A = 2 \implies A = -1$$

Dakle, B=1. Sada možemo zapisati parcijalnu frakciju:

$$\frac{2x}{(1-x)(1-3x)} = \frac{-1}{1-x} + \frac{1}{1-3x}$$

Tako da je generatorna funkcija:

$$G(x) = \frac{1}{1 - 3x} - \frac{1}{1 - x} + \frac{1}{1 - 3x}$$

• Izračunavanje a_n : Sada možemo koristiti poznati oblik generatornih funkcija da bismo dobili eksplicitnu formulu za a_n . Naime, generatorna funkcija:

$$G(x) = \frac{1}{1 - 3x} + \frac{1}{1 - x}$$

može se proširiti u formu niza pomoću poznate sume za geometrijski niz:

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} \quad \text{za } |r| < 1$$

Na taj način dobijamo:

$$G(x) = \sum_{n=0}^{\infty} 3^n x^n + \sum_{n=0}^{\infty} x^n$$

Dakle, a_n je:

$$a_n = 3^n + 1$$

• Rezultat: Za zadatu rekurentnu relaciju $a_n = 3a_{n-1} + 2$ sa početnim uslovom $a_0 = 1$, zatvorena forma za a_n je:

$$a_n = 3^n + 1$$
.

Ova formula nam omogućava da direktno izračunamo bilo koji član niza bez potrebe za rekurzivnim računanjem svakog člana, što čini proces efikasnijim.

4.2 Zadatak 2: Generisanje zatvorene forme pomoću OGF

Rešiti rekurentnu relaciju $a_n = 2a_{n-1} + n$ sa $a_0 = 0$ korišćenjem obične generatorne funkcije (OGF).

• Postavljanje rekurentne relacije:

$$a_n = 2a_{n-1} + n$$
, sa početnim uslovom $a_0 = 0$.

• Primena generatorne funkcije: Postavljamo generatornu funkciju G(x) kao:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Pomnožimo rekurentnu relaciju sa x^n i sumiramo za sve $n \geq 1$ kako bismo dobili:

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} (2a_{n-1} + n) x^n.$$

Razbijamo ovu sumu na dva dela:

$$\sum_{n=1}^{\infty} a_n x^n = 2 \sum_{n=1}^{\infty} a_{n-1} x^n + \sum_{n=1}^{\infty} n x^n.$$

Prvo, izraz za $\sum_{n=1}^{\infty} a_{n-1}x^n$ je xG(x), jer pomeranjem indeksa dobijamo generatornu funkciju pomnoženu sa x. Dakle:

$$2\sum_{n=1}^{\infty} a_{n-1}x^n = 2xG(x).$$

Sada, drugi zbir je poznat izraz:

$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}.$$

• Sastavljanje i rešavanje za G(x): Sada možemo zapisati generatornu funkciju sa oba dela:

$$G(x) = 2xG(x) + \frac{x}{(1-x)^2}.$$

Zamenjujemo početni uslov $a_0 = 0$:

$$G(x) - 2xG(x) = \frac{x}{(1-x)^2},$$

$$G(x)(1-2x) = \frac{x}{(1-x)^2}.$$

Sada rešavamo za G(x):

$$G(x) = \frac{x}{(1-x)^2(1-2x)}.$$

• Proširivanje G(x) u niz: Da bismo dobili zatvorenu formu za a_n , koristimo parcijalnu frakcijsku dekompoziciju da bismo izrazili G(x) u jednostavnijim oblicima:

$$G(x) = \frac{x}{(1-x)^2(1-2x)}.$$

Decompoziciju možemo zapisati kao:

$$\frac{1}{(1-x)^2(1-2x)} = \frac{A}{1-x} + \frac{B}{(1-x)^2} + \frac{C}{1-2x}.$$

Rešavanjem za A, B, i C, dobijamo:

$$G(x) = \frac{x}{(1-x)^2} - \frac{x}{(1-2x)}.$$

Zatim možemo proširiti oba dela u serije koristeći standardne metode za sumiranje izraza kao što su:

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1},$$

i

$$\frac{1}{1 - 2x} = \sum_{n=0}^{\infty} 2^n x^n.$$

Kombinovanjem ovih serija, dobijamo formulu za a_n :

$$a_n = 2^{n+1} - n - 1.$$

• Rezultat: Zatvorena forma za a_n je:

$$a_n = 2^{n+1} - n - 1.$$

Ova formula nam omogućava direktno izračunavanje n-tog člana niza bez potrebe za rekurzivnim računanjem svakog člana.

5 Zadaci za vežbu

- 1. Rešiti rekurentnu relaciju $a_n=4a_{n-1}-3a_{n-2}+1$ sa početnim uslovima $a_0=2$ i $a_1=5$, korišćenjem obične generatorne funkcije. Dobiti zatvorenu formu za a_n .
- 2. Rešiti rekurentnu relaciju $a_n=3a_{n-1}+2n,$ sa početnim uslovom $a_0=1,$ koristeći OGF. Dobiti zatvorenu formu za $a_n.$
- 3. Rešiti rekurentnu relaciju $a_n=2a_{n-1}-a_{n-2}$, sa početnim uslovima $a_0=1$ i $a_1=3$, koristeći običnu generatornu funkciju. Dobiti zatvorenu formu za a_n .
- 4. Rešiti rekurentnu relaciju $a_n = 5a_{n-1} 6a_{n-2} + 4n$, sa početnim uslovima $a_0 = 0$ i $a_1 = 1$, korišćenjem OGF. Dobiti zatvorenu formu za a_n .