



# MIPI\_CSI 参数和波形 设置指南

Richard Zhu

richardz@efinixinc.com



## 概述

- MIPI 的 Time 参数
  - MIPI 的 Timing 参数和波形的对应关系
  - MIPI Timing 的参数波形和设置
- MIPI 内部信号和外部信号对应关系
  - Vsync 、 Hsync 、 Dvalid
- MIPI 的底层协议和波形的关系
  - EoT 、 LPS 、 SoT
  - Data 、 Short Framer (FS、FE、LS、LE)



## MIPI 的 Time 参数

#### MIPITx

- Clk-Lane/Data-Lane
- Clk-Lane
- Data-Lane
- Clk-Lane -> Data-Lane
- Data-Lane -> Clk-Lane

#### MIPIRX

- Clk-Lane
- Data-Lane

CLK-Settle



# MIPI Timing 参数

• MIPI 发送有 9 个参 数需要设定



• MIPI 接收有 2 个参 数需要设定



## MIPI 时钟定时参数和 MIPI 波形对应关系

```
T_{Clk-Post} \ge 60ns + 52*UI

T_{Clk-Trail} \ge 60ns
```

```
\begin{array}{ll} \textbf{T}_{\text{Clk-Prepare}} & 38\text{ns} --- 95\text{ns} \\ \textbf{T}_{\text{Clk-Zero}} & \geq 300\text{ns} - \textbf{T}_{\text{Clk-Prepare}} \\ \textbf{T}_{\text{LPX}} & \geq 50\text{ns} \\ \textbf{T}_{\text{Clk-Pre}} & \geq 8\text{UI} \end{array}
```









## MIPI 数据定时参数与 MIPI 波形对应关系



## TCLK-Post 设置和测量



#### **T** Clk-Post

#### 标准要求 ≥ 60ns + 52\*UI

T<sub>CLK-Post</sub> 是从 Data-Lane 结束 HS-Trail 到 CLK-Trail 的时间;

CLK-Post 期间, CLK-Lane 保持时钟正常发送;

#### 下表是针对不同 MIPI 速率,可以设置的最小值

| MIPI Rate  | MHz | 1500  | 1200   | 1000   | 800    | 500    | 400    |
|------------|-----|-------|--------|--------|--------|--------|--------|
| Time/UI    | ns  | 0.67  | 0.83   | 1.00   | 1.25   | 2.00   | 2.50   |
| TCLK-      |     |       |        |        |        |        |        |
| Post(Min.) | ns  | 94.67 | 103.33 | 112.00 | 125.00 | 164.00 | 190.00 |





## Tclk-Trail 设置和测量



#### T<sub>Clk-Trail</sub>

#### 标准要求 ≥ 60ns

T<sub>CLK-Trail</sub> 是 CLK-Lane 发送时钟结束到进入 LP-11 状态的时间;

CIK-Trail 期间 CLK-Lane 保持 HS-0 的状态;





## TCLK-Prepare 设置和测量



### T<sub>Clk-Prepare</sub>

#### 标准要求 ≥ 60ns

T<sub>CLK-Prepare</sub> 是 CLK-Lane 的 LP-01 结束到进入 CLK-Zero 状态前的时间;

CIK-Prepare 期间 CLK-Lane 保持 LP-00 的状态;





## TCLK-Zero 设置和测量



### T<sub>Clk-Prepare</sub>

### 标准要求 ≥ 300ns - T<sub>Clk-Prepare</sub>

T<sub>CLK-Zero</sub> 是 CLK-Lane 的 CLK-Prepare 结束到进入时钟 发送状态前的时间;

CIK-Zero 期间 CLK-Lane 保持 HS-0 的状态;





# Escape Clock Freq 设置和测量



### **T**LPX

#### 标准要求 ≥ 50ns

此处 Efinity 设置的是 Escape Clock Freq ,取值范围为 10-20MHz ,必须与输入的 Escape Clock 的频率一致; 另外标准要求发送和接收的 Escape Clock 的频率偏差不能超过 2/3 ~ 3/3;所以提供 Escape Clock 时必须和接收端的一致;





## TCLK-Pre 设置和测量



#### T<sub>Clk-Pre</sub>

#### 标准要求 ≥ 8\*UI

T<sub>CLK-Pre</sub> 是 CLK-Lane 的 CLK-Zero 结束到 DATA-Lane 退出 LP-11 状态前的时间; CIK-Pre 期间 CLK-Lane 保持时钟发送的状态;

#### 下表是针对不同 MIPI 速率,可以设置的最小值

| MIPI Rate  | MHz | 1500 | 1200 | 1000 | 800   | 500   | 400   |
|------------|-----|------|------|------|-------|-------|-------|
| Time/UI    | ns  | 0.67 | 0.83 | 1.00 | 1.25  | 2.00  | 2.50  |
| TCLK-      |     |      |      |      |       |       |       |
| Post(Min.) | ns  | 5.33 | 6.67 | 8.00 | 10.00 | 16.00 | 20.00 |





## THS-Prepare 设置和测量



T<sub>HS-Prepare</sub> 标准要求 ≥ 40ns + 4\*UI ≤85ns + 6\*UI

T<sub>HS-Prepare</sub> 是 DATA-Lane 的 LP-01 结束到进入 HS-Zero 状态前的时间;

HS-Prepare 期间 DATA-Lane 保持 LP-00 的状态;

#### 下表是针对不同 MIPI 速率,可以设置的取值范围

| MIPI Rate    | MHz | 1500  | 1200  | 1000  | 800   | 500   | 400    |
|--------------|-----|-------|-------|-------|-------|-------|--------|
| Time/UI      | ns  | 0.67  | 0.83  | 1.00  | 1.25  | 2.00  | 2.50   |
| THS-         |     |       |       |       |       |       |        |
| Prepare(Min) | ns  | 42.67 | 43.33 | 44.00 | 45.00 | 48.00 | 50.00  |
| THS-         |     |       |       |       |       |       |        |
| Prepare(Max) | ns  | 89.00 | 90.00 | 91.00 | 92.50 | 97.00 | 100.00 |





## THS-Zero 设置和测量



T<sub>HS-Zreo</sub> 标准要求 ≥ 145ns + 10\*UI - T<sub>HS-Prepare</sub>

 $T_{HS-Zero}$  是 DATA-Lane 的 HS-Prepare 结束到进入数据 发送状态前的时间;

HS-Zero 期间 DATA-Lane 保持 HS-0 的状态;

#### 下表是针对不同 MIPI 速率,可以设置的最小值

|                  | MH |        |        |        |        |        |        |
|------------------|----|--------|--------|--------|--------|--------|--------|
| MIPI Rate        | Z  | 1500   | 1200   | 1000   | 800    | 500    | 400    |
| Time/UI          | ns | 0.67   | 0.83   | 1.00   | 1.25   | 2.00   | 2.50   |
| THS-Zero +       |    |        |        |        |        |        |        |
| THS-Prepare(Min) | ns | 151.67 | 153.33 | 155.00 | 157.50 | 165.00 | 170.00 |





## THS-Trail 设置和测量



#### T<sub>HS-7ren</sub> 标准要求 ≥ max(n\*8\*UI,

T<sub>HS-Trail</sub> 是 DATA-Lane 的数据发送结束到进入 LP-11 状态前的时间;

HS-Trail 期间 DATA-Lane 保持 HS-0 的状态;

#### 下表是针对不同 MIPI 速率,可以设置的最小值

|                 | MH |       |       |       |       |       |       |
|-----------------|----|-------|-------|-------|-------|-------|-------|
| MIPI Rate       | Z  | 1500  | 1200  | 1000  | 800   | 500   | 400   |
| Time/UI         | ns | 0.67  | 0.83  | 1.00  | 1.25  | 2.00  | 2.50  |
| THS-Trail (Min) | ns | 62.67 | 63.33 | 64.00 | 65.00 | 68.00 | 70.00 |





## TCLK-Settle 设置和测量



### T<sub>CLK-Settle</sub> 标准要求 ≥ 95ns ≤ 300ns

 $T_{CLK-Settle}$  设置接收器接收时钟 Lane 时应忽略的时间区间,这个时间是从 CLK-Prepare 开始计算的; 建议根据信号源端的波形,把  $T_{CLK-Settle}$  设置在 HS-Zero 的区间;躲开信号不稳定的区域即可;





## THS-Settle 设置和测量



### T<sub>HS-Settle</sub> 标准要求 ≥ 85ns + 6\*Ul ≤ 145ns + 10\*Ul

T<sub>HS-Settle</sub>H 设置接收器应忽略的时间区间,这个时间是从 HS-Prepare 开始计算的; 建议根据信号源端的波形,把 T<sub>Hs-Settle</sub> 设置在 HS-Zero 的区间;躲开信号不稳定的区域即可;

#### 下表是针对不同 MIPI 速率,可以设置取值范围

| MIPI Rate       | MHz | 1500   | 1200   | 1000   | 800    | 500    | 400    |
|-----------------|-----|--------|--------|--------|--------|--------|--------|
| Time/UI         | ns  | 0.67   | 0.83   | 1.00   | 1.25   | 2.00   | 2.50   |
| THS-Settle(Min) | ns  | 89.00  | 90.00  | 91.00  | 92.50  | 97.00  | 100.00 |
| THS-Settle(Max) | ns  | 151.67 | 153.33 | 155.00 | 157.50 | 165.00 | 170.00 |





## MIPI 内部信号和外部信号对应关系

- MIPI 内部 Rx 和 Tx 都包含以下信号
  - Vsync 帧同步信号
  - Hsync 行同步信号
  - Dvalid 数据有效信号
- MIPI 的外部信号
  - HS 高速模式 200mV 差分
  - LP 低功耗模式 1.2V 单端

# MIPI-TX 波 形 Vsync 对应关系

FramerMode = 0





# MIPI-TX 波 形 Vsync 对应关系

FramerMode = 1





# MIPI-TX 波 形 HSync/Dvalid 对应关系

FramerMode = 0





# MIPI-TX 波 形 HSync/Dvalid 对应关系

FramerMode = 1





# MIPI-RX 波 形 Vsync 对应关系

FramerMode = 1





# MIPI-RX 波 形 Vsync 对应关系

FramerMode = 0



File Edit Vertical Horiz/Acq Trig Display Cursors Measure Mask Math MyScope Analyze Utilities Help 🔻



# MIPI-RX 波 形 Hsync/DValid 对应关系

FramerMode = 0





# MIPI-RX 波 形 Hsync/DValid 对应关系

FramerMode = 1



File Edit Vertical Horiz/Acq Trig Display Cursors Measure Mask Math MyScope Analyze Utilities Help 🔻



# MIPI 的底层协议 (LLP)



- MIPI 的底层协议(LLP)是一个面向字节的,基于包的协议;它支持任意大小的数据通过短包和长包格式传输。各个包之间由 EOT-LPS-SOT 序列隔开;
  - EoT 是由 HS-Trail + LP 上升时间组成;
  - SoT 是由 LP-01 + HS-Prepare + HS-Zero + HS-Sync 组成
  - LPS 就是 LP-11——LP 模式且两个信号都为高;
- 在两个 SoT 和 EoT 之间采用 HS 模式传输数据;数据包括
  - Short Framer (短帧) 用于 FS (Framer Start)、FE (Framer End)、LS (Line

Start)、LE(Line End);



**DataLane** 





非连续时钟 两个连续短帧 FE、FS或LE、LS

**LP-01 CLK-Lane** CLK-**Prepare** CLK-**CLK-Zero HS**-Clk-Post **Clk-Pre** 0 **LP-01** HS-Prepage Zero **HS-Trail HS-Trail** Β<sub>w</sub>:1.0G A **C3 √** 462.0mV 20.0GS/s ET 50.0ps 500.0mV/div Trig Dly: 2 events 1MΩ B<sub>W</sub>:500M 500.0mV/div B **C2 √** 500.0mV 1MΩ B<sub>W</sub>:500M 300.0mV/div RL:100.0k Auto 1MΩ B'<sub>w</sub>:500M 300.0mV/div Auto October 03, 2019



非连续时钟 数据和 LE





非连续时钟 数据和 LS (这是一个丢掉了 LE 的波形)





非连续时钟 一行数据的全部组成 (HS-LE 是上一行的)

E O T Prepare CLK-Zero 0 Dat HS-Trail Prepas Prepare Prepare Zero B<sub>w</sub>:1.0G A' Aux \ 2.0V 400.0mV/div Z1C1) 400.0mV 6.882µs 10.88µs 2.0µs/div 5.0GS/s 200.0ps/pt Trig Dly: 2 events 1MΩ B<sub>W</sub>:500M 500.0mV/div 21C2) 500.0mV 6.882µs 10.88µs B' C3 \ 710.0mV 1MΩ B<sub>W</sub>:500M 6.882µs 10.88µs 500.0mV/div 21C3 500.0mV 0 accs RL:100.0k None 1MΩ B<sub>W</sub>:500M 500.0mV/div 2104) 500.0mV 6.882µs 10.88µs Auto October 07, 2019 **EFINIX**<sub>IM</sub>

Tek







## Www.efinixinc.com

