שניברסיטו תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, אריאל איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

שקילות ליניארית

הגדרה: משוואה מהצורה

$$ax \equiv b \pmod{m}$$

נקראת שקילות ליניארית.

אבחנה: אם $ax\equiv b\ (mod\ m)$ אזי למשוואה $x=x_0\in\mathbb{Z}$ אבחנה: אם אבחנה: אם מודולו $ax\equiv b\ (mod\ m)$ הינו פתרון למשוואה.

דוגמה: עבור ($x \equiv 1 \pmod 3$ קל לראות כי הפתרון הוא $x \equiv 1 \pmod 3$. כל איבר מאותה מחלקת שקילות גם יפתור את השקילות, כגון $x \equiv 4,7,13,31$.

למה $x_1=x_0+\left(\frac{m}{d}\right)t_1$, $x_2=x_0+\left(\frac{m}{d}\right)t_2$ יהיו יהיו יהיו בעם וואה $t_1\equiv t_2\ (mod\ d)$ אזי $x_1\equiv x_2\ (mod\ m)$ אם ורק אם ורק אם יהיו $ax\equiv b\ (mod\ m)$

הוכחה:

$$x_0 + \left(\frac{m}{d}\right)t_1 \equiv x_0 + \left(\frac{m}{d}\right)t_2 \pmod{m}$$
 ביוון ראשון: נניח כי

אזי, לפי משפט אריתמטיקה מודולרית נוכל לחסר את x_0 משני האגפים ונקבל

$$\left(\frac{m}{d}\right)t_1 \equiv \left(\frac{m}{d}\right)t_2 \ (mod \ m)$$

לפי משפט (משפט 6 מהרצאת שקילויות) נקבל

$$t_1 \equiv t_2 \pmod{m/D}$$

. כנדרש. $t_1\equiv t_2\ (mod\ d)$ ולכן $D=m/_d$ נקבל נקבל $\frac{m}{a}|m$ - היות ו- $D=(m,m/_d)$ כאשר

<u>כיוון שני</u>: דומה לכיוון הראשון, רק הולכים מלמטה למעלה.

.d=(a,m) ויהיו, $a,b\in\mathbb{Z}$ ויהיו ויהיו משפט: יהי יהי משפט

- אין פתרון. $ax \equiv b \pmod{m}$ אזי ל $d \nmid b$ אם 1.
- m יש $ax \equiv b \pmod{m}$ יש מדולו מחרת ל- $ax \equiv b \pmod{m}$

הוכחה: 1. לפי משפט 1 מההרצאה של שקילויות, פתירת המשוואה שקולה לפתירת משוואה הוכחה: 1. לפי משפט $d \nmid b$ משוואה אין פתרון.

אז למשוואה הדיאפנטית ש אינסוף פתרונות מהצורה $d \mid b$ אם 2.

$$x = x_0 + \left(\frac{m}{d}\right)t, \quad y = y_0 - \left(\frac{a}{d}\right)t, \quad t \in \mathbb{Z}$$

 $x=x_0+\left(rac{m}{d}
ight)t$ כאשר $x=x_0$ שנקבעו על ידי $x=x_0$ פתרון למשוואה. הערכים של $ax\equiv b\ (mod\ m)$ נותר להראות כי כל הפתרונות האלו מתחלקים בדיוק ל-t מחלקות שקילות מודולו t. לפי למה 1 נזדקק לתת ל-t את כל הערכים של קבוצת השאריות הקנונית מודולו t בשביל לקבל את כל הפתרונות שאינם t פתרונות עבור t.

מסקנה 3: אם במשוואה $ax \equiv b \pmod{m}$ מתקיים $ax \equiv b \pmod{m}$ אזי יש לה פתרון יחיד מודולו m. אמנם יש אינסוף פתרונות, אך כולם נמצאים באותה מחלקת שקילות מודולו

אוניברסיטו \ ©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, <mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

דוגמה: עבור השקילות (3,5) $3x \equiv 17 \pmod 5$ נקבל $3x \equiv 17 \pmod 5$ ולכן קיים פתרון יחיד מודולו 5. נפתור בעזרת הכלי של משוואה דיאפנטית:

$$17 = 3x - 5y$$

$$(5,3) \to 5 = 1 \cdot 3 + 2$$

$$(3,2) \to 3 = 1 \cdot 2 + 1$$

$$1 = 3 - 1 \cdot 2$$

$$1 = 3 - 1 \cdot (5 - 1 \cdot 3)$$

$$1 = 2 \cdot 3 - 1 \cdot 5$$

$$17 = 34 \cdot 3 - 17 \cdot 5$$

.5 ולכן קיבלנו ($x=34\equiv 4\ (mod\ 5)$ יש אינסוף פתרונות ממחלקה זו, אך כולם שקולים ל $x=34\equiv 4\ (mod\ 5)$ ולכן קיבלנו ($x=34\equiv 4\ (mod\ 5)$ ולכן לשקילות זו אין פתרון לעומת זאת, עבור השקילות ($x=34\equiv 4\ (mod\ 5)$ נקבל $x=31\equiv 3$ נקבל ($x=34\equiv 4\ (mod\ 5)$ ולכן לשקילות זו אין פתרון כלל