0.0.1. Medida

- Por espacio medible entendemos un par ordenado (Ω, B) que consta de un conjunto Ω y un σ -álgebra B de subconjuntos de Ω -. Un subconjunto A de Ω se llama medible si $A \in B$.
- Una medida Ω en un espacio medible (Ω, B) es una función $\mu : B \mapsto [0, \infty]$ que satisface:

$$\mu(\phi) = 0$$

$$\mu(\bigcup_{i=0}^{\infty} E_i) = \sum_{i=0}^{\infty} \mu(E_i)$$

para cualquier sucesión $\{E_i\}$ de conjuntos medibles disjuntos, es decir: $E_i \cap E_j = \emptyset$, $E_i \in B$, $i \neq j$.

 $-(\Omega, B, \mu)$ se llama espacio de medida.

Teorema 1. Las siguientes afirmaciones son ciertas para un grupo G.

1. P(G) = 1. 4. $G' = \{1\}$.

2. G es abeliano. 5. $C_G(a) = G$ para todo $a \in G$.

3. Z(G) = G. 6. $G/G' \cong G$.

Demostración. Si P(G) = 1, entonces $|L(G)| = |G|^2$. Luego $L(G) = G^2$, y esto significa que xy = yx para todo $x \in G$ y para todo $y \in G$. Así, G es un grupo abeliano. Es una observación inmediata que el razonamiento inverso también es cierto, lo que prueba que 1 es equivalente a 2.

Según este resultado, para tener grupos de conmutatividad diferentes de 1, debemos analizar grupos no abelianos.