4. Предел числовой последовательности. Теорема Вейерштрасса. Число е

1. Предел числовой последовательности

1.1. Интуитивное представление

Число a называется **пределом последовательности** $\{x_n\}$, если с ростом номера n члены x_n неограниченно приближаются к a. **Обозначение:** $\lim_{n \to \infty} x_n = a$ или $x_n \to a$.

1.2. Строгое определение (ε-Ν-формализм)

Число $a \in \mathbb{R}$ называется пределом последовательности $\{x_n\}$, если:

$$orall arepsilon > 0 \; \exists N(arepsilon) \in \mathbb{N} : orall n \geq N(arepsilon) \Rightarrow |x_n - a| < arepsilon.$$

2. Единственность предела

Теорема: Если последовательность имеет предел, то он единственный.

Доказательство (от противного):

- 1. Предположим, $\lim x_n=a$ и $\lim x_n=b$, где a
 eq b. Пусть $arepsilon=rac{|a-b|}{3}>0$.
- 2. По определению:
 - ullet $\exists N_1: orall n \geq N_1 \Rightarrow |x_n-a| < arepsilon$
 - ullet $\exists N_2: orall n \geq N_2 \Rightarrow |x_n-b| < arepsilon$
- 3. Возьмём $n \geq \max(N_1,N_2)$. Тогда:

$$|a-b| \leq |a-x_n| + |x_n-b| < arepsilon + arepsilon = rac{2}{3}|a-b| < |a-b|$$

Противоречие. Значит, a = b.

Теорема (Сходимость ⇒ ограниченность)

Если последовательность $\{x_n\}$ сходится, то она ограничена.

Доказательство:

4. Предел числовой последовательности. Теорема Вейерштрасса. Число е

Пусть $\lim_{n \to \infty} x_n = a$. По определению предела:

Для arepsilon=1 существует номер $N=N(1)\in\mathbb{N}$ такой, что для всех $n\geq N$ выполняется:

$$|x_n-a|<1.$$

Используя неравенство треугольника, получаем:

$$|x_n|=|x_n-a+a|\leq |x_n-a|+|a|<1+|a|$$
 для всех $n\geq N.$

Теперь рассмотрим конечное множество первых N-1 членов: $\{x_1, x_2, \dots, x_{N-1}\}$. Оно ограничено, так как является конечным. Пусть

$$M_1 = \max\{|x_1|, |x_2|, \dots, |x_{N-1}|\}.$$

Положим $M=\max\{M_1,1+|a|\}.$ Тогда для любого $n\in\mathbb{N}$:

- ullet Если n < N, то $|x_n| \leq M_1 \leq M$.
- ullet Если $n \geq N$, то $|x_n| < 1 + |a| \leq M.$

Следовательно, $|x_n| \leq M$ для всех $n \in \mathbb{N}$, что означает ограниченность последовательности. lacktriangle

Контрпример (Ограниченность ⇒ сходимость)

Последовательность $x_n=(-1)^n$ ограничена, но не сходится.

Доказательство:

- 1. Ограниченность: $|x_n|=|(-1)^n|=1\leq 1$ для всех $n\in\mathbb{N}.$
- 2. **Расходимость:** Предположим, что $\lim_{n \to \infty} (-1)^n = a$. Тогда для $\varepsilon = \frac{1}{2}$ существует $N = N(\varepsilon)$ такое, что для всех $n \ge N$:

$$|(-1)^n - a| < \frac{1}{2}.$$

Рассмотрим:

- ullet Для чётных $n=2k\geq N$: $|1-a|<rac{1}{2}\Rightarrow a\in (rac{1}{2},rac{3}{2})$
- Для нечётных $n=2k+1 \geq N$: $|-1-a| < rac{1}{2} \Rightarrow a \in (-rac{3}{2},-rac{1}{2})$

Эти интервалы не пересекаются — противоречие. Следовательно, последовательность расходится. ■

Блок-схема общего утверждения

3. Бесконечно малые последовательности

3.1. Определение

Последовательность $\{\alpha_n\}$ называется **бесконечно малой**, если $\lim_{n\to\infty}\alpha_n=0$.

3.2. Свойства с доказательствами

1. Сумма конечного числа бесконечно малых — бесконечно малая.

Доказательство:

Пусть $\{\alpha_n^{(1)}\}, \{\alpha_n^{(2)}\}, \dots, \{\alpha_n^{(k)}\}$ — бесконечно малые. Зафиксируем $\varepsilon>0$. Для каждого $i=1,\dots,k$ найдём N_i такой, что $\forall n\geq N_i\Rightarrow |\alpha_n^{(i)}|<\frac{\varepsilon}{k}$. Возьмём $N=\max(N_1,\dots,N_k)$. Тогда для $n\geq N$:

$$|lpha_n^{(1)}+\cdots+lpha_n^{(k)}|\leq |lpha_n^{(1)}|+\cdots+|lpha_n^{(k)}|<rac{arepsilon}{k}+\cdots+rac{arepsilon}{k}=arepsilon.$$

2. Произведение бесконечно малой на ограниченную последовательность — бесконечно малая.

Доказательство:

Пусть $\{\alpha_n\}$ — б.м., $\{b_n\}$ — ограничена ($|b_n|\leq M$). Зафиксируем $\varepsilon>0$. Для α_n найдём N такой, что $\forall n\geq N\Rightarrow |\alpha_n|<\frac{\varepsilon}{M}$. Тогда для $n\geq N$:

$$|lpha_n b_n| = |lpha_n| \cdot |b_n| < rac{arepsilon}{M} \cdot M = arepsilon.$$

3. Произведение двух бесконечно малых — бесконечно малая.

Доказательство:

Пусть $\{\alpha_n\}, \{\beta_n\}$ — б.м. Зафиксируем $\varepsilon>0$. Найдём N_1 такой, что $\forall n\geq N_1\Rightarrow |\alpha_n|<\sqrt{\varepsilon}.$ Найдём N_2 такой, что $\forall n\geq N_2\Rightarrow |\beta_n|<\sqrt{\varepsilon}.$ Тогда для $n\geq \max(N_1,N_2)$:

$$|\alpha_n \beta_n| < \sqrt{\varepsilon} \cdot \sqrt{\varepsilon} = \varepsilon.$$

4. Арифметические операции с пределами

Теорема: Если $\lim x_n = a$, $\lim y_n = b$, то:

1. $\lim(x_n+y_n)=a+b$

2. $\lim (x_n \cdot y_n) = a \cdot b$

3. Если $b \neq 0$, то $\lim \frac{x_n}{y_n} = \frac{a}{b}$

Доказательство для суммы

Зафиксируем arepsilon>0. Найдём $N_1: \forall n\geq N_1\Rightarrow |x_n-a|<rac{arepsilon}{2}$ Найдём $N_2: \forall n\geq N_2\Rightarrow |y_n-b|<rac{arepsilon}{2}$ Для $n\geq \max(N_1,N_2)$:

$$|(x_n+y_n)-(a+b)|\leq |x_n-a|+|y_n-b|<\varepsilon$$

Доказательство для произведения и отношения

Доказательство для произведения

Пусть $\lim_{n o \infty} a_n = a$ и $\lim_{n o \infty} b_n = b$. Тогда $\lim_{n o \infty} (a_n b_n) = ab$.

Зафиксируем произвольное $\varepsilon>0$. Требуется найти такое $N=N(\varepsilon)\in\mathbb{N}$, что для всех $n\geq N$ выполняется $|a_nb_n-ab|<\varepsilon.$

Преобразуем выражение:

$$a_n b_n - a b = a_n b_n - a b_n + a b_n - a b = b_n (a_n - a) + a (b_n - b).$$

Тогда:

$$|a_nb_n-ab|\leq |b_n|\cdot |a_n-a|+|a|\cdot |b_n-b|.$$

Поскольку последовательность $\{b_n\}$ сходится, она ограничена: существует M>0 такое, что $|b_n|\leq M$ для всех $n\in\mathbb{N}$.

Из сходимости $\{a_n\}$ и $\{b_n\}$ следует:

- ullet Для arepsilon'>0 существует $N_1=N_1(arepsilon')$ такое, что для всех $n\geq N_1$: $|a_n-a|<arepsilon'.$
- ullet Для того же arepsilon' существует $N_2=N_2(arepsilon')$ такое, что для всех $n\geq N_2$: $|b_n-b|<arepsilon'.$

Выберем ε' так, чтобы:

$$M\varepsilon' + |a|\varepsilon' \le \varepsilon$$
.

Например, положим $\varepsilon'=rac{arepsilon}{2(M+|a|+1)}$ (чтобы избежать деления на ноль; если M+|a|=0, то a=0 и b=0, и оценка упрощается). Теперь возьмем $N=\max(N_1,N_2)$. Тогда для всех $n\geq N$:

$$|a_nb_n-ab| < Marepsilon' + |a|arepsilon' \leq (M+|a|) \cdot rac{arepsilon}{2(M+|a|+1)} < arepsilon.$$

Таким образом, $\lim_{n o \infty} (a_n b_n) = ab$. lacktriangle

Доказательство для отношения

Пусть $\lim_{n o\infty}a_n=a$ и $\lim_{n o\infty}b_n=b$, причём b
eq 0. Тогда $\lim_{n o\infty}rac{a_n}{b_n}=rac{a}{b}$.

Зафиксируем $\varepsilon>0$. Требуется найти $N=N(\varepsilon)$ такое, что для всех $n\geq N$:

$$\left| rac{a_n}{b_n} - rac{a}{b}
ight| < arepsilon.$$

Преобразуем разность:

$$\left| rac{a_n}{b_n} - rac{a}{b}
ight| = \left| rac{a_n b - a b_n}{b_n b}
ight| = rac{|a_n b - a b_n|}{|b_n||b|}.$$

Оценим числитель:

$$|a_nb-ab_n|\leq |b||a_n-a|+|a||b_n-b|.$$

Таким образом:

$$\left| rac{a_n}{b_n} - rac{a}{b}
ight| \leq rac{|b||a_n - a| + |a||b_n - b|}{|b_n||b|} = rac{|a_n - a|}{|b_n|} + rac{|a||b_n - b|}{|b_n||b|}.$$

Так как $b \neq 0$, существует $\delta > 0$ такое, что $|b| > \delta$. Выберем $\delta = \frac{|b|}{2}$. Из сходимости $\{b_n\}$ следует, что существует $N_0 = N_0(\delta)$ такое, что для всех $n \geq N_0$: $|b_n - b| < \frac{|b|}{2}$. Тогда для $n \geq N_0$:

$$|b_n| \geq |b| - |b_n - b| > |b| - rac{|b|}{2} = rac{|b|}{2}.$$

Для $n \geq N_0$ получаем:

$$\left| rac{a_n}{b_n} - rac{a}{b}
ight| < rac{2}{|b|} |a_n - a| + rac{2|a|}{|b|^2} |b_n - b|.$$

Выберем $\varepsilon'>0$ так, чтобы:

$$rac{2}{|b|}arepsilon'+rac{2|a|}{|b|^2}arepsilon'$$

Например, положим:

$$arepsilon' = \minigg(rac{arepsilon|b|}{4}, rac{arepsilon|b|^2}{4(|a|+1)}igg).$$

Из сходимости $\{a_n\}$ и $\{b_n\}$:

- ullet Существует $N_1=N_1(arepsilon')$ такое, что для $n\geq N_1$: $|a_n-a|<arepsilon'.$
- ullet Существует $N_2=N_2(arepsilon')$ такое, что для $n\geq N_2$: $|b_n-b|<arepsilon'.$

Возьмём $N=\max(N_0,N_1,N_2)$. Тогда для всех $n\geq N$:

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| < \frac{2}{|b|}\varepsilon' + \frac{2|a|}{|b|^2}\varepsilon' \leq \frac{2}{|b|} \cdot \frac{\varepsilon|b|}{4} + \frac{2|a|}{|b|^2} \cdot \frac{\varepsilon|b|^2}{4(|a|+1)} = \frac{\varepsilon}{2} + \frac{|a|\varepsilon}{2(|a|+1)} < \varepsilon.$$

Следовательно, $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$. \blacksquare

5. Пределы и неравенства

5.1. Теорема о сохранении нестрогого неравенства

Теорема: Если $x_n \leq y_n$ для всех $n \geq N_0$ и пределы существуют, то $\lim x_n \leq \lim y_n$.

Доказательство (от противного):

Пусть $\lim x_n = a$, $\lim y_n = b$. Предположим, что a > b.

Возьмём $arepsilon=rac{a-b}{2}>0.$ Тогда:

- $\exists N_1: orall n \geq N_1 \Rightarrow x_n > a arepsilon = rac{a+b}{2}$
- $\exists N_2: orall n \geq N_2 \Rightarrow y_n < b + arepsilon = rac{a+b}{2}$

Для $n \geq \max(N_0, N_1, N_2)$ получаем:

$$x_n>rac{a+b}{2}>y_n$$

что противоречит условию $x_n \leq y_n$.

5.2. Обратное утверждение неверно

Контрпример: $x_n = \frac{1}{n}$, $y_n = 0$.

 $\lim x_n = 0 \leq 0 = \lim y_n$, но $x_n > y_n$ для всех n.

5.3. Теорема о двух милиционерах

Если $x_n \leq y_n \leq z_n$ и $\lim x_n = \lim z_n = a$, то $\lim y_n = a$.

Доказательство:

Зафиксируем arepsilon>0. Найдём N такой, что для $n\geq N$:

$$a-arepsilon < x_n \le y_n \le z_n < a+arepsilon$$

Следовательно, $|y_n - a| < \varepsilon$.

6. Теорема Вейерштрасса о пределе монотонной последовательности

Теорема: Всякая монотонная ограниченная последовательность имеет предел. При этом:

- Если последовательность возрастает и ограничена сверху, то её предел равен точной верхней грани: $\lim x_n = \sup\{x_n\}$
- Если последовательность убывает и ограничена снизу, то её предел равен точной нижней грани: $\lim x_n = \inf\{x_n\}$

Доказательство (для возрастающей ограниченной сверху):

Пусть $a = \sup\{x_n\}$. Покажем, что $\lim x_n = a$.

- 1. Так как a верхняя грань, то $x_n \leq a$ для всех n.
- 2. Так как a точная верхняя грань, то для любого $\varepsilon > 0$ существует номер N такой, что $x_N > a \varepsilon$ (иначе $a \varepsilon$ была бы верхней гранью, что меньше a).
- 3. Из монотонного возрастания следует, что для всех $n \geq N$ выполняется $x_n \geq x_N > a \varepsilon$.
- 4. Таким образом, для всех $n \ge N$ имеем:

$$a - \varepsilon < x_n \le a < a + \varepsilon$$

то есть $|x_n-a|<arepsilon.$

Следовательно, по определению предела $\lim x_n = a = \sup\{x_n\}.$

Доказательство (для убывающей ограниченной снизу) проводится аналогично с заменой sup на inf.

7. Число e

7.1. Определение

$$e = \lim_{n o \infty} \left(1 + rac{1}{n}
ight)^n$$

7.2. Существование предела

Рассмотрим последовательность $x_n = \left(1 + \frac{1}{n}\right)^n$. Можно доказать, что:

- 1. Последовательность возрастает (используя неравенство Бернулли)
- 2. Последовательность ограничена сверху (например, $x_n < 3$)

Так как последовательность монотонно возрастает и ограничена сверху, по теореме Вейерштрасса она имеет предел, который обозначается через e.

8. Бесконечно большие последовательности

8.1. Определение

Последовательность $\{x_n\}$ называется **бесконечно большой**, если:

$$orall E > 0 \; \exists N(E): orall n \geq N \Rightarrow |x_n| > E$$

8.2. Связь с бесконечно малыми

Если $x_n o \infty$, то $rac{1}{x_n} o 0$. Обратное верно, если x_n не обращается в ноль.

9. Вопросы для самопроверки

- 1. Докажите, что произведение бесконечно малой на ограниченную последовательность есть бесконечно малая.
- 2. Приведите пример, когда $x_n < y_n$, но $\lim x_n = \lim y_n$.
- 3. Докажите, что если $x_n o a$ и $x_n \ge 0$, то $a \ge 0$.
- 4. Верно ли, что из $\lim x_n > \lim y_n$ следует $x_n > y_n$ для всех достаточно больших n?
- 5. Докажите теорему о двух милиционерах.
- 6. Объясните, почему последовательность $\left(1+\frac{1}{n}\right)^n$ возрастает.
- 7. Сформулируйте и докажите теорему Вейерштрасса для убывающей ограниченной снизу последовательности.