UENF

Universidade Estadual do Norte Fluminense Darcy Ribeiro

Curso: Ciência de Computação Data: 27/.11./2023

Prova: P2 **Período:** 4° **Disciplina:** Estrutura de dados II

Professor: Fermín Alfredo Tang **Turno:** Diurno

Nome do Aluno:Matrícula:

1. [2,0 Pontos] Crie uma árvore AVL usando os seguintes dados ingressados em sequência:

7	10	14	23	33	56	66	70	80	l
---	----	----	----	----	----	----	----	----	---

Desenhe a árvore após cada inserção. Indicando a altura de cada nó e o fator de balanceamento. Caso seja necessário realize o balanceamento da árvore, indicando o tipo de rotação utilizada. [0,25 ponto c/u].

Resposta1.- Desenhando a árvore AVL temos:

Em todos os casos a rotação foi simples para o caso direita-direita, fazendo a rotação à esquerda.

- 2. **[2,0 Pontos]** Descreva as caraterísticas de uma árvore vermelha e preta, considerando os seguintes tópicos:
 - i) <u>Definição</u>.- Como definiria uma árvore vermelha-preta? Quais regras deve cumprir? [1,0 ponto].
 - ii) Organização dos nós.- Quantos filhos tem cada nó? Como se relacionam os dados de um nó com relação aos dados de seus filhos? [0,5 ponto].
 - iii) <u>Balanceamento</u>.- Responder se a árvore é balanceada ou não, e qual é o tipo de balanceamento adotado. [0,5 ponto].

Resposta2.-

- i) A árvore vermelha e preta é uma árvore binária balanceada que cumpre as seguintes regras:
 - 1. Os nós são coloridos como vermelhos ou pretos;
 - 2. O nó raiz é sempre preto;
 - 3. Todo nó vermelho tem sempre pai preto;

- 4. A contagem de nós pretos, da raiz até qualquer folha deve ser sempre a mesma.
- ii) Como a árvore é binária, cada nó pode ter até 2 filhos. O dado de um nó à esquerda de seu nó pai deve ser sempre menor que dado de seu pai. O dado de um nó à direita de seu nó pai deve ser sempre maior ou igual que dado de seu pai.
- iii) A árvore é balanceada, sendo que a regra 4 estabelece a condição de balanceamento.
- 3. [2,0 Pontos] Considerando uma árvore B de ordem m = 5, com 3 níveis, responda:
 - i) Qual é o maior número de dados (entradas) que podem ser armazenados nessa árvore?. Justifique mostrando o número de nós e dados em cada nível; [1,0 pontos].
 - ii) Qual é o menor número de dados (entradas) que podem ser armazenados nessa árvore?. Justifique mostrando o número de nós e dados em cada nível; [1,0 pontos].

Resposta3.-

i) O maior número de dados na árvore B acontece quando o nó raiz está cheio maximizando o número de filhos. De maneira semelhante, os nós intermediários devem estar cheios e os nós folhas também. Como a árvore tem ordem m=5, cada nó tem 5 filhos e 4 dados (entradas). Temos assim:

Nível 0	1 nó	1 = 4 dados
Nível 1	5 nós	5x4 = 20 dados
Nível 2	5x5=25 nós	25x4=100 dados
Total	31 nós	124 dados

ii) O menor número de dados na árvore B acontece quando o nó raiz possui apenas uma entrada minimizando o número de filhos. Apenas 2 filhos. Os nós intermediários devem estar cheios pela metade e os nós folhas também. Como a árvore tem ordem m=5, cada nó tem 2 dados (entradas) e 3 filhos. Temos assim:

Nível 0	1 nó	1 = 1 dado
Nível 1	2 nós	2x2 = 4 dados
Nível 2	2x3=6 nós	6x2=12 dados
Total	9 nós	17 dados

4.- [2,0 ponto] Dado o grafo da Figura 1, responda cada uma das questões justificando.

Figura 1. Grafo

- i) Determine a matriz de adjacência para esse grafo; [0,5 Ponto]
- ii) Determine as listas de adjacência para esse grafo; [0,5 Ponto]
- iii) Considerando os graus dos vértices, (inclusive grau exterior e interior) responda se o grafo é regular. Justifique. [0,5 Ponto]
- iv) Considerando a conexidade do grafo, responda se o grafo é conexo, simplesmente conexo ou fortemente conexo. Justifique [0,5 Ponto].

Resposta4.-

i) A matriz de adjacência é:

	1 2		3	4	5	5 6 0 1 1 0 0 0		
1	0	1	0 1 0 1 0 0	1	0	07		
2	0	0	1	0	0	1		
3	1	0	0	0	0	1		
4	0	0	1	0	1	0		
5	1	1	0	0	0	0		
61	0	0	0	1	1	0]		

ii) As listas de adjacência são:

- iii) O grafo é regular. Observa-se que cada nó possui grau 4. Sendo que em todos os casos o grau de entrada é 2; e o grau de saída é 2.
- iv) O grafo é fortemente conexo. Para qualquer par de nós existe um caminho de ida e volta entre esses nós.

- **5.-** [2,0 ponto] Começando em um nó da sua preferência, percorra o grafo mostrado na Figura 1:
 - i) utilizando o algoritmo de **busca em largura**. Mostre, passo a passo, o estado da estrutura de dados usada para este percurso; [1,0 Ponto];
 - ii) utilizando o algoritmo de **busca em profundidade**. Mostre, passo a passo, o estado da estrutura de dados usada para este percurso; [1,0 Ponto].

Resposta5.-

i) A busca em largura utiliza uma estrutura de fila. Começando no nó 5, temos:

A visitação acontece na remoção da fila. A remoção da fila permite a exploração dos vizinhos do nó removido.

ii) A busca em profundidade utiliza uma estrutura de pilha. Começando no nó 5, temos:

	Pilha	Descoberto			Pilha Descoberto			Pilha Descoberto			Pilha	Descoberto		
		1	0			1	2	4		1	2		I	2
3		2	0	3		2	3	3	6	2	3	4	2	3
2		3	0	2	2	3	o	2	3	3	4	3	3	4
1	5	4	0	1	1	4	0	1	1	4	0	1	4	6
		5	1			5	1	1		5	1		5	1
		6	0			6	0			6	5		6	5

