

25 A - 800 V - T-series Triac in D2PAK

Product status link T2535T-8G

Product summary		
I _{T(RMS)}	25 A	
V_{DRM}, V_{RRM}	800 V	
V_{DSM}, V_{RSM}	900 V	
I _{GT}	35 mA	

Features

- 25 A medium current Triac
- 150 °C maximum junction temperature T_J
- Surge capability V_{DSM}, V_{RSM} = 900 V
- · Three triggering quadrants
- High noise immunity static dV/dt
- Robust dynamic turn-off commutation (dl/dt)c
- ECOPACK2 compliant component

Applications

- General purpose AC line load control
- · AC induction and universal motor control
- · Heating: water heater, e-bidet
- Power tools
- Cooker, oven
- Lighting and automation I/O control
- · Inrush current limiting circuits
- Overvoltage crowbar protection

Description

The T2535T-8G Triac in SMD D^2 PAK package can be used for the on/off or phase angle control function in general purpose AC switching.

Based on the ST Snubberless technology, it offers higher specified turn-off commutation and noise immunity levels up to 150 $^{\circ}\text{C}.$

SMD D²PAK package is suitable for automatic assembly line.

The T2535T-8G safely optimizes the control of the motors and heaters loads for the most constraining environments of home appliances.

1 Characteristics

Table 1. Absolute maximum ratings (limiting values)

Symbol	Parameter	Value	Unit		
I _{T(RMS)}	RMS on-state current (full sine wave) T_c = 121 °			25	Α
L	Non repetitive surge peak on-state current (full cycle, T _i initia	t = 16.7 ms	210	^	
I _{TSM}	Nonrepetitive surge peak on-state current (full cycle, 1) initia	t = 20 ms	200	Α	
l ² t	I ² t value for fusing		t _p = 10 ms	264	A ² s
dl/dt	Critical rate of rise of on-state current, $I_G = 2 \times I_{GT}$, tr $\leq 100 \text{ n}$	s, f = 100 Hz	f = 120 Hz	100	A/µs
V _{DRM} /		T _j = 125 °C	800	.,	
V _{RRM}	Repetitive peak off-state voltage	T _j = 150 °C	600	V	
V _{DSM} / V _{RSM}	Non Repetitive peak off-state voltage t_p = 10 ms		T _j = 25 °C	900	٧
I _{GM}	Peak gate current	t _p = 20 μs	T _j = 150 °C	4	Α
p _{GM}	Maximum gate power dissipation	t _p = 20 μs	T _j = 150 °C	5	W
P _{G(AV)}	Average gate power dissipation $T_j = 150 ^{\circ}\text{C}$				W
T _{stg}	Storage temperature range	-40 to +150	°C		
T _j	Operating junction temperature range	-40 to +150	°C		
TL	Maximum lead temperature for soldering during 10 s	260	°C		

Table 2. Electrical characteristics (T_j = 25 °C, unless otherwise specified)

Symbol	Test conditions	Quadrants		Value	Unit	
la-			Min.	5	mA	
I _{GT}	V_D = 12 V, R_L = 30 Ω	1 - 11 - 111	Max.	35	IIIA	
V _{GT}			Max.	1	V	
V_{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega, T_j = 150 ^{\circ}\text{C}$	1 - 11 - 111	Min.	0.15	V	
IL	I _G = 1.2 x I _{GT}	1 - 111	Max.	50	mA	
"L	IG - 1.2 X IG	II	Max.	80	ША	
I _H ⁽¹⁾	I _T = 500 mA, gate open		Max.	35	mA	
dV/dt (1)	V _D = 536 V, gate open	T _j = 125 °C	Min.	1500	V/µs	
av/at (1)	V _D = 402 V, gate open	T _j = 150 °C	Min.	1000	V/µs	
(41/44) = (1)	Without snubber network	T _j = 125 °C	Min.	28	A/ms	
(dl/dt)c (1)	Without Shubber Hetwork	T _j = 150 °C	Min.	18	A/ms	

^{1.} For both polarities of A2 referenced to A1.

DS13451 - Rev 1 page 2/12

Table 3. Static characteristics

Symbol	Test conditions			Value	Unit
V _{TM} ⁽¹⁾	$I_{TM} = 35 \text{ A}, t_p = 380 \mu\text{s}$	T _j = 25 °C	Max.	1.5	V
V _{TO} ⁽¹⁾	Threshold voltage T_j = 150 °C		Max.	0.80	V
R _D ⁽¹⁾	Dynamic resistance	T _j = 150 °C	Max.	17	mΩ
	$V_D = V_R = 800 \text{ V}$, peak voltage	T _j = 25 °C	Max.	5	μΑ
I _{DRM} /I _{RRM}	VD - VR - 600 V, peak voltage	T _j = 125 °C	iviax.	5	mA
URM/IRRM	$V_D = V_R = 600 \text{ V}$, peak voltage	T _j = 150 °C	Max.	6	mA
	$V_D = V_R = 400 \text{ V}$, peak voltage	T _j = 150 °C	Max.	5	

^{1.} For both polarities of A2 referenced to A1.

Table 4. Thermal resistance

Symbol	Parameter		Value	Unit
R _{th(j-c)}	Junction to case (AC)	Max.	1	
R _{th(j-a)}	Junction to ambient (S _{CU} = 2 cm2)	Тур.	45	°C/W

^{1.} Scu: copper pad surface under tab, 35 μm copper thickness on FR4 PCB.

DS13451 - Rev 1 page 3/12

10

0

0

1.1 Characteristics (curves)

Figure 1. Maximum power dissipation versus on-state RMS current (full cycle)

 $I_{T(RMS)}(A)$

20

25

10

Figure 2. On-state RMS current versus case temperature (full cycle) I_{T(RMS)}(A) 30 25 20 α = 180° 15 10 5 T_c(°C) 0 0 50 75 100 125 150

Figure 3. On-state RMS current versus ambient temperature (free air convection) $I_{T(RMS)}(A)$ 4.5 α = 180 $^{\circ}$ 3.5 3 2.5 2 1.5 0.5 $T_a(^{\circ}C)$ 0 50 100 125 150

DS13451 - Rev 1 page 4/12

Figure 5. Relative variation of I_{GT} , I_H , I_L vs junction temperature (typical values)

Figure 6. Relative variation of critical rate of decrease of main current versus junction temperature

Figure 7. Relative variation of critical rate of decrease of current (dl/dt)c versus reapplied (dV/dt)c

Figure 8. Surge peak on-state current versus number of cycles

Figure 9. Non repetitive surge peak on-state current for a sinusoidal pulse width t_P < 10 ms

Figure 10. Relative variation of thermal impedance versus pulse duration

DS13451 - Rev 1 page 5/12

Figure 11. Leakage current versus junction temperature for different values of blocking voltage (typical values)

DS13451 - Rev 1 page 6/12

Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 D²PAK package information

- ECOPACK2 compliant
- · Lead-free package leads finishing
- Molding compound resin is halogen-free and meets UL94 flammability standard level V0

Figure 12. D²PAK package outline

(1) Resin gate is accepted in each of position shown on the drawing, or their symmetrical.

DS13451 - Rev 1 page 7/12

Table 5. D²PAK package mechanical data

		Dimensions					
Ref. Mill		Millimeters			Inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.30		4.60	0.1693		0.1811	
A1	2.49		2.69	0.0980		0.1059	
A2	0.03		0.23	0.0012		0.0091	
А3		0.25			0.0098		
b	0.70		0.93	0.0276		0.0366	
b2	1.25		1.7	0.0492		0.0669	
С	0.45		0.60	0.0177		0.0236	
c2	1.21		1.36	0.0476		0.0535	
D	8.95		9.35	0.3524		0.3681	
D1	7.50		8.00	0.2953		0.3150	
D2	1.30		1.70	0.0512		0.0669	
е	2.54			0.10000			
E	10.00		10.28	0.3937		0.4047	
E1	8.30		8.70	0.3268		0.3425	
E2	6.85		7.25	0.2697		0.2854	
G	4.88		5.28	0.1921		0.2079	
Н	15		15.85	0.5906		0.6240	
L	1.78		2.28	0.0701		0.0898	
L2	1.19		1.40	0.0460		0.0551	
L3	1.40		1.75	0.0551		0.0689	
R		0.40			0.0157		
V2 ⁽²⁾	0°		8°	0°		8°	

^{1.} Dimensions in inches are given for reference only

DS13451 - Rev 1 page 8/12

^{2.} Degrees

Figure 14. D²PAK stencil definitions (dimensions are in mm)

DS13451 - Rev 1 page 9/12

3 Ordering information

Figure 15. Ordering information scheme

in tape and reel, blank tabe

Table 6. Ordering information

Order code	Marking	Package	Weight	Base Qty.	Delivery mode
T2535T-8G	T2535T-8G	D²PAK	160	50	Tube
T2535T-8G-TR	T2535T-8G		1.6 g	2500	Tape and reel

DS13451 - Rev 1 page 10/12

Revision history

Table 7. Document revision history

Date	Version	Changes
23-Sep-2020	1	Initial release.

DS13451 - Rev 1 page 11/12

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DS13451 - Rev 1 page 12/12