Límite, continuidad de la función

1.1. Limite de la magnitud variable, variable infinitamente grande

Definición 1.1 El número constante a se denomina límite de la variable x, si para cualquier número infinitesimal positivo ϵ prefijado, se puede indicar tal valor de la variable x, a partir del cual todos los valores posteriores de la misma satisfacen la desigualdad:

$$|x-a|<\epsilon$$

Si el número a es el límite de la variable x, se dice que x tiende al límite a; su notación es:

$$x \longrightarrow a$$
 ó lím $x = a$

En términos geométricos la definición de limite puede enunciarse así: El número constante a es el limite de la variable x, si para cualquiera vecindad infinitesimal prefijada de radio ϵ y centro en el punto a, existe un valor de x tal que todo los puntos correspondientes a los valores posteriores de la variable se encuentren dentro de la misma vecindad.

Teorema 1.1 Una magnitud variable no puede tener dos límites.

Demostración.- En efecto, si lím x=a y lím x=b(a < b), entonces x debe satisfacer las dos desigual-dades simultáneamente: $|x-a| < \epsilon$ y $|x-b| < \epsilon$ siendo ϵ arbitrariamente pequeño, pero esto es imposible, si $\epsilon < \frac{b-a}{2}$

Definición 1.2 La variable x tiende al infinito, si para cualquier número positivo M prefijado se puede elegir un valor de x tal que, a partir de él todos los valores posteriores de la variable satisfagan la desigualdad |x| > M.

La variable x que tiende al infinito, se denomina infinitamente grande y esta tendencia se expresa así: $x \longrightarrow \infty$.

1.2. Limite de la función