## Prova di Comunicazioni Numeriche 075II

## 11/09/2023

- 1. Sia dato il codice convoluzionale con i polinomi generatori in notazione ottale  $g_1 = 7$  e  $g_2 = 5$ . Supponendo che il codificatore parta dallo stato 00 e vi torni dopo 4 intervalli di segnalazione, e data la sequenza ricevuta  $\mathbf{y} = \mathbf{x} + \mathbf{e} = [1, 1; 1, 1; 0, 1; 1, 1]$ , utilizzare il criterio di decodifica a massima verosimiglianza per trovare la sequenza  $\hat{\mathbf{x}}$  e la sequenza informativa  $\hat{\mathbf{u}}$ . (4 punti)
- 2. Si consideri il codice ciclico C(2,6) con polinomio generatore  $g(D)=D^4+D^2+1$ .
  - (a) Data la sequenza informativa  $\mathbf{u} = [1, 1]$ , determinare la parola di codice trasmessa.
  - (b) Calcolare la  $d_{min}$  del codice e, data la parola ricevuta  $\mathbf{y} = \mathbf{x} + \mathbf{e} = [1, 0, 1, 1, 1, 0]$ , utilizzare le proprietà dei codici ciclici per trovare  $\hat{\mathbf{e}}$  e successivamente  $\hat{\mathbf{x}}$  e  $\hat{\mathbf{u}}$ . (3 punti)
- 3. Derivare un bound per la probabilità di errore sul bit a valle del decodificatore per un codice a blocco C(4,7) con  $d_{\min}=3$  per una trasmissione con probabilità di errore sul bit non decodificato pari a  $p=10^{-6}$ . (3 punti)
- 4. Dimostrare e applicare ad un problema a scelta il teorema di integrazione completo. (3 punti)
- 5. Descrivere le operazioni necessarie per la ricostruzione in tempo reale di un segnale analogico di durata limitata nel tempo. (3 punti)
- 6. Dati due eventi A e B non disgiunti. (3 punti)
  - (a) Dimostrare che  $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$ .
  - (b) Nell'ipotesi in cui  $A \subset B$ , calcolare  $Pr(A \cup B)$ .
- 7. Le variabili aleatorie  $X \sim \mathcal{N}(1,10)$  e  $Y \sim \mathcal{N}(0,5)$  sono Gaussiane e indipendenti. (3 punti)
  - (a) Calcolare  $Pr(-3 \le X \le 3)$ .
  - (b) Calcolare Pr(X < 3, Y < 1).
- 8. Dato il sistema di comunicazione numerico PAM illustrato in figura dove  $g_T(t) = \text{sinc}(t/T)$  e  $g_R(t) = \text{sinc}(2t/T)$  e w(t) è un processo aleatorio di rumore Gaussiano bianco con densità spettrale di potenza  $N_0/2$ . (4 punti)



- (a) Calcolare la varianza dei campioni di rumore;
- (b) Calcolare il campione x(k) ottenuto all'istante di campionamento t = kT;
- 9. Si consideri il sistema di comunicazione numerico PAM illustrato in figura. (4 punti)
  - (a) Derivare la strategia di decisione a massima verosimiglianza per il generico simbolo  $a_k$ ;
  - (b) Derivare la strategia di decisione a massima verosimiglianza per la sequenza  $\{a_1,a_2,\ldots,a_K\}$ ;