CS360 Fall 2013-Assignment 2

Due Wednesday, October 9th, 11:59am

- 1. $[2 \times 10 \text{ points}]$ For each of the languages, L_1, L_2 below, construct a DFA that computes that languages. Represent your DFA's as tuples, $M = (\Sigma, Q, q_0, \delta, F)$, with a transition table for δ , and draw the transition diagram (graph representation) of M. Provide a brief justification of your construction.
 - (a) $L_1 = \{x \in \{a, b, c\}^* : ab \text{ is not a substring of } x\}.$
 - (b) $L_2 = \{x \in \{a, b\}^* : n_a(x) \text{ is even, or } n_b(x) \text{ is even}\}$, (where, for a letter $\sigma \in \Sigma$, and a word $w \in \Sigma^*$, $n_{\sigma}(w) = \text{the number of occurrences of } \sigma \text{ in } w$.
- 2. (a) [10 points] Let $M = (\Sigma, Q, q_0, \delta, F)$ be a DFA with a single accepting state (that is, |F| = 1). Prove that for every $x, y, \in L(M)$,

$$\{z \in \Sigma^* : xz \in L(M)\} = \{z \in \Sigma^* : yz \in L(M)\}\$$

- (b) [15 points] Find a regular language, L, (describe it either as L(A) for some DFA, A, or as L(r) for some regular expression r) that can not be computes by any DFA that has a single accepting state. Prove your claims.
- (c) [10 points] Prove that for every DFA, M, there exist a finite number of DFA's, A_1, \ldots, A_k , each having a single accepting state, such that $L(M) = \bigcup_{i=1}^k L(A_i)$.
- 3. [15 points] Convert the following NFA into a DFA. That is, construct a DFA that computes the same language computed by the NFA described by the transition diagram below. Explain the steps you took in that transformation.

- 4. We discussed in class how do construct NFA's for keyword searches. Let us elaborate about that construction. Given any finite set of words $\{w_1, \dots w_k\}$ over the alphabet $\{a, b\}$, let $|w_1| \dots |w_k|$, denote their lengths (respectively),
 - (a) [15 points] Construct an NFA, $N_{(w_1,\dots w_k)}$ that has $1 + \sum_{i=1}^k |w_i|$ states that accepts a word w if and only if it contains at least one of these k words as a substring (namely, for some $u, v \in \{a, b\}^*$ and some $i \leq k$, $w = uw_iv$).

- (b) [15 points] Construct a DFA, A_{w_1} that has $1 + |w_1|$ states that accepts a word w if and only if it contains w_1 as a substring (namely, $w = uw_1v$, for some $u, v \in \{a, b\}^*$).
- (c) [Bonus 10 points] Construct a DFA, $A_{(w_1,...w_k)}$ that has at most $1 + \sum_{i=1}^k |w_i|$ states that accepts the language $L(N_{(w_1,...w_k)})$.