

Data Structure & Algorithms

Matrix-Chain Multiplication

Matrix-Chain Multiplication

Problem: given a sequence $\langle A_1, A_2, ..., A_n \rangle$, compute the product:

$$A_1 \cdot A_2 \cdots A_n$$

• Matrix compatibility:

$$C = A \cdot B$$
 $C = A_1 \cdot A_2 \cdots A_i \cdot A_{i+1} \cdots A_n$
 $col_A = row_B$ $col_i = row_{i+1}$
 $row_C = row_A$ $row_C = row_{A1}$
 $col_C = col_A$

MATRIX-MULTIPLY(A, B)

```
if columns[A] \neq rows[B]
  then error "incompatible dimensions"
  else for i \leftarrow 1 to rows[A]
              do for j \leftarrow 1 to columns[B]
                                                                                                  rows[A] \cdot cols[A] \cdot cols[B]
                         do C[i, j] = 0
                                                                                                         multiplications
                                  for k \leftarrow 1 to columns[A]
                                          do C[i, j] \leftarrow C[i, j] + A[i, k] B[k, j]
                                                k
                                                                                                                   cols[B]
                                                                                cols[B]
                                                                                           =
                                                           *
                                                                            k
                                                                                      В
                                                    A
                            rows[A]
                                                                                            rows[A]
```

Data Structure & Algorithms Fall 2021

Matrix-Chain Multiplication

In what order should we multiply the matrices?

$$A_1 \cdot A_2 \cdots A_n$$

Parenthesize the product to get the order in which matrices are multiplied

• E.g.:
$$A_1 \cdot A_2 \cdot A_3 = ((A_1 \cdot A_2) \cdot A_3)$$

= $(A_1 \cdot (A_2 \cdot A_3))$

- Which one of these orderings should we choose?
 - The order in which we multiply the matrices has a significant impact on the cost of evaluating the product

Matrix-Chain Multiplication: Problem Statement

• Given a chain of matrices $\langle A_1, A_2, ..., A_n \rangle$, where A_i has dimensions $p_{i-1}x p_i$, fully parenthesize the product $A_1 \cdot A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

$$A_1 \cdot A_2 \cdot A_i \cdot A_{i+1} \cdot A_n$$
 $p_0 \times p_1 \cdot p_1 \times p_2 \cdot p_{i-1} \times p_i \cdot p_i \times p_{i+1} \cdot p_{n-1} \times p_n$

What is the number of possible parenthesizations?

- Exhaustively checking all possible parenthesizations is not efficient!
- It can be shown that the number of parenthesizations grows as $\Omega(4^n/n^{3/2})$ (see page 333 in your textbook)

1. The Structure of an Optimal Parenthesization

Notation:

$$A_{i...j} = A_i A_{i+1} \cdots A_j, i \leq j$$

• Suppose that an optimal parenthesization of $A_{i...j}$ splits the product between A_k and A_{k+1} , where $i \le k < j$

$$A_{i...j} = A_i A_{i+1} \cdots A_j$$

$$= A_i A_{i+1} \cdots A_k A_{k+1} \cdots A_j$$

$$= A_{i...k} A_{k+1...j}$$

Optimal Substructure

$$A_{i...j} = A_{i...k} A_{k+1...j}$$

- The parenthesization of the "prefix" $A_{i...k}$ must be an optimal parentesization
- If there were a less costly way to parenthesize $A_{i...k}$, we could substitute that one in the parenthesization of $A_{i...j}$ and produce a parenthesization with a lower cost than the optimum \Rightarrow contradiction!
- An optimal solution to an instance of the matrix-chain multiplication contains within it optimal solutions to subproblems

2. A Recursive Solution

• Subproblem:

determine the minimum cost of parenthesizing $A_{i...j} = A_i A_{i+1} \cdots A_j$ for $1 \le i \le j \le n$

- Let m[i, j] = the minimum number of multiplications needed to compute $A_{i...j}$
 - full problem (A_{1..n}): m[1, n]
 - $i = j: A_{i-i} = A_{i} \Rightarrow m[i, i] = 0$, for i = 1, 2, ..., n

3. Computing the Optimal Costs

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

- Computing the optimal solution recursively takes exponential time!
- How many subproblems?

$$\Rightarrow \Theta(n^2)$$

- Parenthesize A_{i...j}
 for 1 ≤ i ≤ j ≤ n
- One problem for each choice of i and j

Data Structure & Algorithms Fall 2021

3. Computing the Optimal Costs (cont.)

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

- How do we fill in the tables m[1..n, 1..n]?
 - Determine which entries of the table are used in computing m[i, j]

$$A_{i...j} = A_{i...k} A_{k+1...j}$$

- Subproblems' size is one less than the original size
- Idea: fill in m such that it corresponds to solving problems of increasing length

3. Computing the Optimal Costs (cont.)

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

- Length = 1: i = j, i = 1, 2, ..., n
- Length = 2: j = i + 1, i = 1, 2, ..., n-1

m[1, n] gives the optimal solution to the problem

Compute rows from bottom to top and from left to right

Data Structure & Algorithms Fall 2021

Example: min $\{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\}$

$$m[2, 5] = min \begin{cases} m[2, 2] + m[3, 5] + p_1p_2p_5 & k=2 \\ m[2, 3] + m[4, 5] + p_1p_3p_5 & k=3 \\ m[2, 4] + m[5, 5] + p_1p_4p_5 & k=4 \end{cases}$$

 Values m[i, j] depend only on values that have been previously computed

Example: min $\{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\}$

 $m[1, 2] + m[3, 3] + p_0p_2p_3 = 7,500 \quad ((A_1A_2)A_3)$

• A_1 : $10 \times 100 (p_0 \times p_1)$ • A_2 : $100 \times 5 (p_1 \times p_2)$ • A_3 : $5 \times 50 (p_2 \times p_3)$ m[i, i] = 0 for i = 1, 2, 3 $m[1, 2] = m[1, 1] + m[2, 2] + p_0 p_1 p_2 (A_1 A_2)$ = 0 + 0 + 10 * 100 * 5 = 5,000 $m[2, 3] = m[2, 2] + m[3, 3] + p_1 p_2 p_3 (A_2 A_3)$ = 0 + 0 + 100 * 5 * 50 = 25,000

 $m[1, 3] = min m[1, 1] + m[2, 3] + p_0p_1p_3 = 75,000 (A_1(A_2A_3))$

Compute $A_1 \cdot A_2 \cdot A_3$

3	2 7500	2 25000	0
2	1 5000	0	
1	0		

Matrix-Chain-Order(p)

```
MATRIX-CHAIN-ORDER (p)
     n \leftarrow length[p] - 1
  2 for i \leftarrow 1 to n
            do m[i, i] \leftarrow 0
    for l \leftarrow 2 to n > l is the chain length.
           do for i \leftarrow 1 to n-l+1
                    do j \leftarrow i + l - 1
                        m[i, j] \leftarrow \infty
                        for k \leftarrow i to j-1
 9
                             do q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_j
10
                                 if q < m[i, j]
11
                                   then m[i, j] \leftarrow q
12
                                          s[i,j] \leftarrow k
13
     return m and s
```

 $O(N^3)$

4. Construct the Optimal Solution

- In a similar matrix s we keep the optimal values of k
- s[i, j] = a value of k such that an optimal parenthesization of A_{i..j} splits the product between A_k and A_{k+1}

4. Construct the Optimal Solution

• s[i, j] = value of k such that the optimal parenthesization of $A_i A_{i+1} \cdots A_j$ splits the product between A_k and A_{k+1}

6	(3)	3	3	5	5	_	• $s[1, n] = 3 \Rightarrow A_{16} = A_{13} A_{46}$
5	3	3	3	4	ı		• $s[1, 1] = 3 \Rightarrow A_{16} = A_{13} A_{46}$ • $s[1, 3] = 1 \Rightarrow A_{13} = A_{11} A_{23}$
4	3	3	3	-			• $s[4, 6] = 5 \Rightarrow A_{46} = A_{45} A_{66}$
3	$(\overline{})$	2	-				$3[1,0] = 3 \Rightarrow 746 = 745 766$
2	1	-					J
1	1						
,			i				

4. Construct the Optimal Solution

```
PRINT-OPT-PARENS(s, i, j)

if i = j

then print "A";

else print "("

PRINT-OPT-PARENS(s, i, s[i, j])

PRINT-OPT-PARENS(s, s[i, j] + 1, j)

print ")"
```

	1	2	3	4	5	6	
6	3	3	3	5	5	-	
5	3	3	3	4	-		
4	3	3	3	_			
3	1	2	-				j
2	1	-					
1	1						
,				i			•

Example: $A_1 \cdot \cdot \cdot A_6$

5

6

 $((A_1 (A_2 A_3)) ((A_4 A_5) A_6))$

s[1..6, 1..6]

Matrix-Chain Multiplication - Summary

- The dynamic programming approach can solve the matrix-chain multiplication problem in O(n³)
- This method take advantage of the overlapping subproblems property
- There are only $\Theta(n^2)$ different subproblems
 - Solutions to these problems are computed only once
- Without memoization the natural recursive algorithm runs in exponential time