I Ensembles de nombres

1. Nombres entiers

Définition: • Les nombres entiers naturels sont les nombres entiers positifs.

On note \mathbb{N} l'ensemble des entiers naturels : $\mathbb{N} = \{0; 1; 2; 3; ...\}$.

• Les nombres **entiers relatifs** sont les nombres entiers positifs et les nombres entiers négatifs.

On note \mathbb{Z} l'ensemble des entiers relatifs : $\mathbb{Z} = \{...; -3; -2; -1; 0; 1; 2; 3; ...\}$.

2. Nombres décimaux

Définition: Un nombre **décimal** est un nombre qui peut s'écrire sous la forme d'un quotient d'un entier relatif par une puissance de 10.

On note \mathbf{D} l'ensemble des nombres décimaux : $\mathbf{D} = \left\{ \frac{a}{10^n} \text{ avec } a \in \mathbb{Z} \text{ et } n \in \mathbb{N} \right\}$.

Exemples: $-2.17 = \frac{-217}{100} = \frac{-217}{10^2}$ $63 = \frac{63}{1} = \frac{63}{10^0}$ -2.17 et 63 sont des nombres décimaux.

On ne peut pas écrire $\frac{4}{3}$ sous la forme d'un quotient d'un entier relatif par une puissance de 10, donc $\frac{4}{3}$ n'est pas un nombre décimal.

Remarques: • Tout entier relatif est un nombre décimal.

• Un nombre décimal peut s'écrire avec un <u>nombre fini</u> de chiffres. Ainsi, 1,333 33... n'est pas un nombre décimal.

3. Nombres rationnels

Définition: Un nombre **rationnel** est un nombre qui peut s'écrire sous la forme d'un quotient de deux entiers relatifs.

On note $\mathbb Q$ l'ensemble des nombres rationnels : $\mathbb Q=\Big\{\frac{a}{b} \text{ avec } a\in \mathbb Z \text{ et } b\in \mathbb N^*\Big\}.$

Remarque: $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$

Exemples: $\frac{4}{3}$ est un nombre rationnel; $-2.17 = \frac{-217}{100}$ et $63 = \frac{63}{1}$ sont des nombres rationnels.

4. Nombres réels

Définition: Les nombres **réels** sont les nombres qu'on peut représenter sur une droite graduée. On note $\mathbb R$ l'ensemble des nombres réels.

A tout point de la droite correspond un unique nombre réel, appelé abscisse du point.

A est le point d'abscisse $\sqrt{2}$ et B est le point d'abscisse π .

Remarque: Il existe des nombres réels qui ne sont pas rationnels, comme $\sqrt{2}$ et π . On les appelle des nombres **irrationnels**.

5. Inclusions d'ensembles de nombres

Les ensembles de nombres sont « emboîtés » de la façon suivante : $\mathbb{N} \subset \mathbb{Z} \subset \mathbf{D} \subset \mathbb{Q} \subset \mathbb{R}$. On parle d'inclusions : $\mathbb{N} \subset \mathbb{Z}$ se lit « l'ensemble \mathbb{N} est inclus dans l'ensemble \mathbb{Z} ».

II Intervalles

1. Définition

Définition: a et b sont deux nombres réels tels que a < b. L'ensemble des nombres réels x compris entre a et b (a et b inclus), c'est-à-dire tels que $a \le x \le b$, est appelé un **intervalle** de \mathbb{R} . On le note [a;b].

On peut découper sur la droite réelle d'autres intervalles. Ce sont des parties « sans trou » de la droite réelle.

Notation	Ensemble des réels x tels que	Représentation graphique
[a; b]	$a \le x \le b$	$a \Box b$
]a; b[a < x < b	
[a; b[$a \le x < b$	
]a; b]	$a < x \le b$	a = a = b
[<i>a</i> ; +∞[$a \le x$	
]a; +∞[a < x	\exists_a
]-∞; <i>b</i>]	$x \le b$	
]-∞; <i>b</i> [x < b	

Remarques: • a et b sont appelés les bornes de l'intervalle.

- La différence b-a est l'amplitude de l'intervalle [a;b].
- Les réels a et b appartiennent à l'intervalle [a; b], qui est dit **fermé** (un crochet tourné vers l'intérieur de l'intervalle « enferme » la borne dans l'intervalle).

Les réels a et b n'appartiennent pas à l'intervalle a; b, qui est dit ouvert (un crochet tourné vers l'extérieur de l'intervalle « n'enferme pas » la borne).

L'intervalle [a; b[est fermé en a et ouvert en b. Il est dit semi-ouvert.

• Les symboles $-\infty$ (lire « moins l'infini ») et $+\infty$ (lire « plus l'infini ») indiquent que l'intervalle n'est pas borné à gauche ou à droite.

Un intervalle est toujours ouvert en $-\infty$ et en $+\infty$.

• $]-\infty$: $+\infty[=\mathbb{R}$

- **Exemples**: \bullet $]0; +\infty[$ est l'intervalle des réels strictement positifs. On le note aussi \mathbb{R}^{+*} . $]-\infty$; 0 est l'intervalle des réels strictement négatifs. On le note aussi \mathbb{R}^{-*} .
 - [3; 4] est l'intervalle des réels dont la partie entière est égale à 3.
 - {3; 4} n'est pas un intervalle.

2. Réunion et intersection d'intervalles

Définitions : • L'intersection de deux intervalles I et J est l'ensemble des réels qui appartiennent à l'un et à l'autre des deux intervalles I et J.

On la note $I \cap J$ (lire « I inter J »).

• La réunion de deux intervalles I et J est l'ensemble des réels qui appartiennent à l'un ou à l'autre des deux intervalles I ou J (éventuellement aux deux à la fois). On la note $I \cup J$ (lire « I union J »).

Remarque : En général, le « ou » du langage courant et le « ou » mathématique n'ont pas le même sens. « Boire ou conduire, il faut choisir » : on ne doit pas faire les deux à la fois ; ici, le « ou » est exclusif.

> « ab=0 si et seulement si a=0 ou b=0 » : lorsque a et b sont tous les deux nuls, on a bien ab = 0; ici, le « ou » est *inclusif*.

Exemples: •
$$I = [-2; 3]$$
 et $J =]1; 7[$.

Déterminer l'intersection et la réunion de I et J.

L'intersection de I et J est l'ensemble des nombres coloriés à la fois en bleu et en rouge : $I \cap J = [1; 3].$

La réunion de I et J est l'ensemble des nombres coloriés en bleu ou en rouge (c'est-à-dire en bleu seulement, en rouge seulement, ou les deux couleurs à la fois) : $I \cup J = [-2; 7[.$

•] $-\infty$; 0[U]0; $+\infty[$ est l'ensemble des réels privé de 0. On le note aussi \mathbb{R}^* ou $\mathbb{R}\setminus\{0\}$.