Computer Architecture

Lecture 4 Numbers & ALU

Prof. Jongmyon Kim

Arithmetic

- Where we've been:
 - Performance (seconds, cycles, instructions)
 - Abstractions:
 - Instruction Set Architecture Assembly Language and Machine Language
- What's up ahead:
 - Implementing the Architecture

Numbers

- □ Bits are just bits (no inherent meaning) conventions define relationship between bits and numbers
- ☐ Binary numbers (base 2)

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...

decimal: 0...2ⁿ-1

- Of course it gets more complicated:
 - numbers are finite (overflow)
 - fractions and real numbers
 - negative numbers (e.g., no MIPS subi instruction; addi can add a negative number)
- How do we represent negative numbers? i.e., which bit patterns will represent which numbers?

Possible Representations

Sign Magnitude:	One's Complement	Two's Complement
000 = +0	000 = +0	000 = +0
001 = +1	001 = +1	001 = +1
010 = +2	010 = +2	010 = +2
011 = +3	011 = +3	011 = +3
100 = -0	100 = -3	100 = -4
101 = -1	101 = -2	101 = -3
110 = -2	110 = -1	110 = -2
111 = -3	111 = -0	111 = -1

- ☐ Issues: balance, number of zeros, ease of operations
- ☐ Which one is best? Why?

MIPS

□ 32 bit signed numbers:

Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
 - remember: "negate" and "invert" are quite different!
- Converting n bit numbers into numbers with more than n bits:
 - MIPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits

```
0010 -> 0000 0010
1010 -> 1111 1010
```

sign extension" (lbu vs. lb)

Addition & Subtraction

Just like in grade school (carry/borrow 1s, assume unsigned)

```
0111 0111 0110
+ 0110 - 0110 - 0101
```

- Two's complement operations easy
 - subtraction using addition of negative numbers

```
0111 + 1010
```

- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number 0111

```
+ 0001 note that overflow term is somewhat misleading,
1000 it does not mean a carry "overflowed"
```


Detecting Overflow

- No overflow when adding a positive and a negative number
- □ No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive

Effects of Overflow

- An exception (interrupt) occurs
 - Control jumps to predefined address for exception
 - Interrupted address is saved for possible resumption
- Details based on software system / language
 - example: flight control vs. homework assignment
- Don't always want to detect overflow
 - new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends!

□ same as addi except for no overflow exception note: sltu, sltiu for unsigned comparisons

Review: Boolean Algebra & Gates

Problem: Consider a logic function with three inputs:
 A, B, and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output F is true only if all three inputs are true

- Show the truth table for these three functions.
- Show the Boolean equations for these three functions.
- Show an implementation consisting of inverters, AND, and OR gates.

ALU (arithmetic logic unit)

- Let's build an ALU to support the "and" and "or" instructions
 - we'll just build a 1 bit ALU, and use 32 of them (bitslice)

□ Possible Implementation (sum-of-products):

AND and OR ALU

Review: The Multiplexer

 Selects one of the inputs to be the output, based on a control input

note: we call this a 2-input mux even though it has 3 inputs!

□ Lets build our ALU using a MUX:

Different Implementations

- Not easy to decide the "best" way to build something
 - Don't want too many inputs to a single gate
 - Don't want to have to go through too many gates
 - for our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

$$c_{out} = ab + ac_{in} + bc_{in}$$

 $sum = a \oplus b \oplus c_{in}$

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32-bit ALU

Subtraction (a - b)?

- □ Two's complement approach: just negate b and add 1.
- □ How do we negate?

A clever solution:

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
 - remember: slt is an arithmetic instruction
 - produces a 1 if rs < rt and 0 otherwise</p>
 - use subtraction: (a-b) < 0 implies a < b</p>
- Need to support test for equality (beq \$t5, \$t6, \$t7)
 - use subtraction: (a-b) = 0 implies a = b

Supporting slt

What Result31 is when (a-b)<0?

Test for equality

■ Notice control lines:

000 = and

001 = or

010 = add

110 = subtract

111 = slt

•Note: zero is a 1 when the result is zero!

Conclusion

- We can build an ALU to support the MIPS instruction set
 - key idea: use multiplexer to select the output we want
 - we can efficiently perform subtraction using two's complement
 - we can replicate a 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
 - all of the gates are always working
 - the speed of a gate is affected by the number of inputs to the gate
 - the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
- Our primary focus: comprehension, however,
 - Clever changes to organization can improve performance (similar to using better algorithms in software)
 - we'll look at two examples for addition and multiplication

Problem: Ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?

Can you see the ripple? How could you get rid of it?

An approach in-between our two extremes

- Motivation:
 - If we didn't know the value of carry-in, what could we do?

$$\Box$$
 $c_{i+1} = a_i b_i + a_i c_i + b_i c_i = a_i b_i + c_i (a_i + b_i)$

- When would we always generate a carry? g_i = a_i b_i
- When would we propagate the carry? $p_i = a_i + b_i$
- □ Did we get rid of the ripple?

Carry Lookahead

 $C_{i+1} = g_i + p_i C_i$

 $C_1 = g_0 + p_0 C_0$

$$C_{i+1} = A_i B_i + C_i (A_i + B_i)$$

$$g_i = A_i B_i \quad \text{(generate)}$$

$$C_{i+1} = g_i + p_i C_i \quad p_i = A_i + B_i \quad \text{(propagate)}$$

$$C_1 = g_0 + p_0 C_0$$

$$C_2 = g_1 + p_1 C_1 = g_1 + p_1 g_0 + p_1 p_0 C_0$$

$$C_3 = g_2 + p_2 C_2 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 C_0$$

$$C_4 = g_3 + p_3 C_3 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 C_0$$

Note that all the carry's are only dependent on input A and B and C

4-bit Carry Lookahead Adder

 $= D_{AND} + 2*D_{OR} + D_{XOR}$

Multiplication

- More complicated than addition
 - accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on grade school algorithm

$$0010 \quad \text{(multiplicand)}$$

$$\underline{x} \quad 1011 \quad \text{(multiplier)}$$

- Negative numbers: convert and multiply
 - there are better techniques, we won't look at them

Multiplication: Implementation

Second Version

Final Version

Floating Point (a brief look)

- We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .00000001
 - very large numbers, e.g., 3.15576x109
- Representation:
 - sign, exponent, significand: (-1)^{sign} x significand x 2^{exponent}
 - more bits for significand gives more accuracy
 - more bits for exponent increases range
- ☐ IEEE 754 floating point standard:
 - single precision: 8 bit exponent, 23 bit significand
 - double precision: 11 bit exponent, 52 bit significand
 - Signficand = (1 + fraction), defined implicitly

IEEE 754 Standard Floating-point Representation

Single Precision (32-bit)

(-1)^{sign} x (1+fraction) x 2^{exponent-127}

Double Precision (64-bit)

(-1)^{sign} x (1+fraction) x 2^{exponent-1023}

IEEE 754 floating-point standard

- □ Leading "1" bit of significand is implicit
- Exponent is "biased" to make sorting easier
 - all 0s is smallest exponent all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
 - summary: $(-1)^{sign} \times (1+fraction) \times 2^{exponent bias}$ (a.k.a. a normalized number because of the 1 for scientific notation)

Example:

- decimal: $-.75 = -3/4 = -3/2^2$
- binary: $-.11 = -1.1 \times 2^{-1}$
- floating point: exponent = 126 = 011111110

IEEE 754 Standard Example (single precision)

$$(-1)^{sign} * (1 + Fraction) * 2^{(exp-127)}$$

$$= (-1)^{sign} * (1 + s1 * 2^{-1} + s2 * 2^{-2} + s3 * 2^{-3} + ... + s23 * 2^{-23}) * 2^{(exp-127)}$$

$$(-0.75)_{10} = (????????)_{16}$$

$$(-0.75)_{10} = (BF400000)_{16}$$

IEEE 754 Standard Example (single precision)

$$(-1)^{sign} * (1 + Fraction) * 2^{(exp-127)}$$

$$= (-1)^{sign} * (1 + s1 * 2^{-1} + s2 * 2^{-2} + s3 * 2^{-3} + ... + s23 * 2^{-23}) * 2^{(exp-127)}$$

$$(23.15625)_{10} = (????????)_{16} \qquad (23.15625)_{10} = (41B94000)_{16}$$

IEEE 754 Standard Encoding

Single Precision		Double Precision		Object Represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0 (zero)
0	Non-zero	0	Non-zero	±Denormalized number
1-254	Anything	1-2046	Anything	±Floating-point number
255	0	2047	0	± Infinity
255	Non-zero	2047	Non-zero	NaN (Not a Number)

• NaN: (infinity – infinity), or 0/0

• Denormalized number = (-1)^{sign *} 0.f * 2^{1-bias}

Precision Issues

- Cannot represent all possible real numbers, they are infinite!
- Must be sacrifice precision when representing FP numbers in some cases
 - Precision lost when integer portion is too large
 - Precision lost when fraction portion is too small
- Example
 - How to represent 2^{24} and $2^{24}+1$?
 - ☐ Both = 4B800000 in single precision
 - How to represent 2⁻¹²⁷? (use denormalized number ?? 0.1*2⁻¹²⁶)
 - How about 2⁻¹⁵⁰? (use denormalized number ?? What is the smallest number by denormalized number?)

Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have "underflow"
- Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round
 - four rounding modes
 - positive divided by zero yields "infinity"
 - zero divide by zero yields "not a number"
 - other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
 - see text for description of 80x86 and Pentium bug!