Econométrie des variables qualitatives, Roland Garros 2013

Min Zhu, Antoine Setif, Team MASSS

Présentation du sujet

- Que cherchons-nous à analyser ?
 - Les victoires au 1er tour à Roland Garros (RG).
 Notre variable expliquée se nomme : T1RG.
- Avec quelles variables (explicatives) allons-nous chercher à expliquer ces victoires?
 - Classement (Ranking), Meilleur Classement (HighRank)
 - · Age, Taille, Poids
 - Droitier ou Gauchier (Main), Revers une main ou deux mains (TypRev)
 - Nombre de participations à RG (NbrePartRG)
- Il y a 128 participants (meilleurs joueurs mondiaux, qualifiés, invitations)

Visualisation des donnees

tennis[1:18,]										
##		T1RG	Ranking	HighRank	Age	Taille	Poids	Main	TypRev	NbrePartRG
##	1	1	1	1	26	188	80	1	2	8
##	2	0	58	42	22	180	67	1	2	1
##	3	0	51	32	28	183	80	1	2	2
##	4	1	83	83	23	182	75	2	2	0
##	5	0	171	158	26	182	76	1	2	0
##	6	1	324	310	19	185	81	1	2	0
##	7	0	74	48	29	182	76	2	2	7
##	8	1	28	26	22	188	77	1	1	2
##	9	0	24	13	25	180	71	1	2	3
##	10	1	60	20	30	185	82	1	2	9
##	11	0	61	27	20	193	77	1	2	3
##	12	1	54	26	31	198	85	1	1	9
##	13	0	88	36	27	183	79	1	1	6
##	14	1	76	33	29	180	74	1	2	5
##	15	0	127	125	19	198	90	2	2	0
##	16	1	19	16	29	178	70	1	1	8
##	17	1	14	2	35	188	88	1	1	11
##	18	0	98	84	23	186	73	1	2	3

Quelques caractéristiques statistiques

```
options(width = 70)
summary(tennis[, 2:9])
                             Age Taille
##
    Ranking HighRank
   Min. : 1.0 Min. : 1.0 Min. :18.0
                                         Min. :174
   1st Qu.: 34.8 1st Qu.: 15.8 1st Qu.:24.0
##
                                         1st Qu.:182
##
   Median: 68.5 Median: 36.5 Median: 27.0
                                         Median:185
##
   Mean : 87.1 Mean : 48.8 Mean : 26.8
                                         Mean :186
   3rd Qu.:103.2 3rd Qu.: 67.0 3rd Qu.:29.0
                                         3rd Qu.:190
   Max. :762.0 Max. :310.0 Max. :36.0
                                         Max. :206
##
   Poids
                    Main
                            TypRev NbrePartRG
##
   Min. : 67.0 Min. :1.00
                            Min.
                                  :1.00 Min. : 0.00
##
   1st Qu.: 74.0 1st Qu.:1.00
                            1st Qu.:2.00 1st Qu.: 1.00
   Median: 78.5 Median: 1.00
                            Median: 2.00 Median: 4.00
##
##
   Mean : 79.1
              Mean :1.15
                            Mean :1.78 Mean : 4.48
##
   3rd Qu.: 83.0 3rd Qu.:1.00 3rd Qu.:2.00 3rd Qu.: 8.00
##
   Max. :107.0 Max. :2.00
                            Max. :2.00
                                         Max. :14.00
```

Premiers pas

 Cherchons à déterminer les variables significativement liées à notre variable. Pour cela, nous avons effectué une régression entre T1RG et les variables explicatives, une à une.

- Ainsi, les variables les plus corrélées sont Ranking, HighRank et NbrePartRG.
- Notons que les signes des coefficients sont cohérents par rapport à ce que nous attendions.

Sélection de variables suivant le critère de l'AIC

```
mod.Nb <- glm(T1RG ~ NbrePartRG, family = binomial(logit), data = tennis)
mod.T <- glm(T1RG ~ ., family = binomial(logit), data = tennis)
step(mod.Nb, direction = "forward", scope = list(upper = formula(mod.T)))

AIC.jpg</pre>
AIC.jpg
```

 Comme l'âge n'est pas une variable significative avec T1RG, on décide de travailler avec le modèle suivant :

```
mod.F <- glm(T1RG ~ NbrePartRG + TypRev + HighRank, family = binomial(logit),
data = tennis)
```

Test de déviance

- Notre modèle est-il correct ?
- Rappel du principe du test : H1 : Le modèle n'est pas correct

```
1 - pchisq(mod.F$dev, df = 128 - 4)
## [1] 0.004761
```

On accepte H1 : on peut dire que le modèle n'est pas correct...

Cependant, constatons que :

```
1 - pchisq(mod.T$dev, df = 128 - 9)
## [1] 0.008812
```

Le modèle complet n'est pas non plus correct...

 Cela est probablement dû à la problèmatique posée (vainqueur du premier tour de RG).

Test de Hosmer-Lemeshow

• Rappel du principe du test : H1 : Le modèle n'est pas correct

```
## Loading required package: ResourceSelection
## ResourceSelection 0.2-3 2013-06-18
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: tennis[, 1], mod.F$fitted.values
## X-squared = 8.333, df = 8, p-value = 0.4016
```

lci, on n'accepte pas H1.
 Autrement dit, on ne peut pas dire que le modèle n'est pas correct.

Test de déviance - modèles emboités

- Rappel du principe du test : H1 : mod.T est meilleur que mod.F.
- La statistique de la différence de déviance suit approximativement une loi de $khi^2(p2-p1)$ sous H_0 .

```
1 - pchisq(mod.F$deviance - mod.T$deviance, df = 9 - 4)
## [1] 0.07647
```

On ne peut pas accepter que mod.T soit meilleur que mod.F.
 Autrement dit, le modèle choisi est significativement + informatif que le modèle complet.

Cote - Augmentation d'une unité

Que se passe-t-il si le régresseur NbrePartRG augmente d'une unité?

```
exp(mod.F$coeff[2])
## NbrePartRG
## 1.051
```

 $\frac{\text{Réponse}: \text{La cote (rapport entre les probabilités de succès et }}{\text{d'échec) va être multipliée par } 1.05.$

Autrement dit, les chances de succès augmentent légèrement.

• Que se passe-t-il si le régresseur **HighRank** augmente d'une unité ?

```
exp (mod.F$coeff[4])
## HighRank
## 0.9932
```

Réponse : La cote va être multipliée par 0.9932387. Les chances de succès diminuent légèrement.

Matrice de confusion

Construisons la matrice de confusion du modèle avec un seuil à 50%.

```
## $matconf
##
## 0 1
## 0 40 24
## 1 26 38
##
## $tbc
## [1] 0.6094
##
## $tvp
## [1] 0.625
##
## $tfp
## [1] 0.4062
```

On constate que le taux de bonne classification est de 61%.
 Le taux de vrais positifs est de 62.5% (pas très élevé).
 Le taux de faux positifs est de 40.625% (trop élevé).

Courbe ROC

 Construisons la courbe ROC du modèle retenu (en noir) ainsi que la courbe du modèle complet (en rouge).

```
roc(mod.F, seq(0.11, 0.77, 0.001))
roc(mod.T, seq(0.08, 0.89, 0.001), add = T)

plot.jpg
```

• Globalement, la qualité de prédiction concernant le modèle complet est meilleure que le modèle retenu.

Graphique des prédictions (1)

 Comment évoluent les chances de succès si la seule variable pouvant varier est HighRank?

Proba de succès au T1 de RG, NbrePartRG=10, TypRev=1

Graphique des prédictions (2)

 Comment évoluent les chances de succès si la seule variable pouvant varier est NbrePartRG?

Proba de succès au T1 de RG, HighRank=5, TypRev=2

Graphique des prédictions (3)

 Comment évoluent les chances de succès si la seule variable pouvant varier est NbrePartRG?

Proba de succès au T1 de RG, HighRank=100, TypRev=2

Graphique des prédictions (4)

 Comment évoluent les chances de succès si la seule variable pouvant varier est TypRev ?

Proba de succès au T1 de RG, NbrePartRG=10, HighRank=5

Résidus de Pearson

 Les résidus permettent de déceler des valeurs extrêmes et permettent de contrôler le modèle.

lci, seulement 2 valeurs sont en dehors des bornes [-2;2] => OK!

Points leviers

 Un point levier est un point qui participe à une hauteur importante à sa propre prédiction.

 Pour information, il s'agit de Lucas Pouille (19 ans, 324ème) et de Nick Kyrgios (18 ans, 262ème), qui ont tous les 2 gagné leur rencontre.

Points influents

 Un point influent est un point qui, quand il est supprimé, implique une grosse variation dans les estimations des paramètres.

• Merveille des merveilles, ce sont les mêmes individus !