GAN research WORK

What is a CGAN?

A Conditional Generative Adversarial Network (CGAN) is a variation of the traditional GAN that conditions the generator and discriminator on auxiliary information, such as labels or attributes.

- Generator (G):
 - Takes noise (zzz) and class labels (yyy).
 - Outputs synthetic images matching the desired label yyy.
- Discriminator (D):
 - Takes an image and the corresponding class label yyy.
 - o Determines if the image is real or fake while considering yyy.

3. Key Components in the Code

3.1 Generator

The **Generator** is responsible for creating synthetic images.

Key Functions:

- nn.Embedding:
 - o Embeds class labels into dense vectors for conditioning.
 - o Maps each label to a learnable vector in a high-dimensional space.
- torch.cat:
 - Concatenates the noise vector (zzz) and the embedded label into a single input for the generator.
- nn.Tanh:
 - Used in the last layer to scale output pixel values to [-1,1][-1, 1][-1,1].

3.2 Discriminator

The **Discriminator** evaluates whether the input image is real or fake.

Key Functions:

- nn.Embedding:
 - Embeds class labels, similar to the generator.
- view:
 - Flattens input images into a 1D vector for processing.
- torch.cat:

- Combines the flattened image and the embedded label for conditioning.
- nn.Sigmoid:
 - Outputs a probability score (real/fake) for the input.

4. Training Process

Steps:

1. Train Discriminator:

- Compute loss for real images (LDreal\mathcal{L}_{D_{\text{real}}}LDreal).
- Compute loss for fake images (LDfake\mathcal{L}_{D_{\text{fake}}}LDfake).

2. Train Generator:

- Generate fake images from zzz and yyy.
- o Compute loss based on the discriminator's output for fake images: LG=-logD(G(z,y),y)\mathcal{L}_G = -\log D(G(z, y), y)LG=-logD(G(z,y),y)
- Update generator weights to maximize LG\mathcal{L}_GLG.

5. Key Functions Used

5.1 Data Handling

- transforms.ToTensor():
 - Converts images to PyTorch tensors.
- transforms.Normalize():
 - Scales image pixel values to a specified range, in this case, [−1,1][-1, 1][-1,1].
- DataLoader:
 - o Handles batching and shuffling during training.

5.2 Model Optimization

- nn.BCELoss():
 - Binary cross-entropy loss used for real/fake classification.
 - Real images are labeled as 111; fake images as 000.
- optim.Adam():
 - Optimizer used to update the weights of the generator and discriminator.

5.3 Image Generation

- torch.randn():
 - Generates random noise for the generator.
- torch.arange():
 - Creates a sequence of class labels for generating images of specific classes.
- vutils.save_image():
 - Saves generated images in a grid format for visual inspection.

6. Results

The model generates images conditioned on class labels. For example:

• Given label y=3y = 3y=3, the generator produces an image resembling the digit "3".

Images are saved to the file cgan_generated.png for evaluation.

7. Applications

- Image Synthesis: Generate images for specific classes.
- Data Augmentation: Create additional samples for imbalanced datasets.
- **Style Transfer**: Condition on attributes like color, texture, or style.

8. Challenges and Improvements

- Mode Collapse: The generator may produce limited variations for each class.
 - Solution: Use techniques like mini-batch discrimination or Wasserstein loss.
- **Evaluation Metrics**: Use metrics like FID (Frechet Inception Distance) for quantitative assessment.

In a **CGAN**, the generator tries to minimize the **binary cross-entropy** loss, where the discriminator is tasked with distinguishing between real and fake images.

Fréchet inception distance (FID) is a metric for quantifying the realism and diversity of images generated by generative adversarial networks (GANs).