Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

Análise Matemática I - Engenharia Informática 2019/2020

4.1 Cálculo integral: integral definido e aplicações Regras de integração numérica

Aulas TP+P: Folha 7

- 1. Considere a região $\mathcal{B} = \{(x,y) \in \mathbb{R}^2 : x \ge 1 y^2 \land y \le -\ln(x) \land -1 \le y \le 0\}$.
 - (a) Represente graficamente a região \mathcal{B} .
 - (b) Usando integrais, indique expressões simplificadas que permitam calcular a área de $\mathcal B$
 - i. em função da variável x;
 - ii. em função da variável y.
 - (c) Explique as vantagens da expressão da alínea b(ii) e, a partir dela, calcule o valor exacto da área de $\mathcal B$.
 - (d) Tendo em conta a expressão da alínea b(ii) calcule uma aproximação para a área de \mathcal{B} recorrendo à regra dos trapézios e a uma partição uniforme em 4 sub-intervalos.
 - (e) Tendo em conta o gráfico da figura seguinte, calcule um majorante para o erro da estimativa da alínea anterior. Confirme o resultado, tendo em conta as alíneas (c) e (d).

2. Considere a região sombreada \mathcal{C} representada na figura seguinte.

- (a) Usando integrais, calcule a área de \mathcal{C} .
- (b) Tendo em conta o integral da alínea (b), calcule aproximações com 1 casa decimal correcta para a área de $\mathcal C$, recorrendo
 - i. à regra dos trapézios e ao Geogebra;
 - ii. à regra de Simpson.
- 12(c) [Folha 1] Verifique que a equação $x + \ln(x) = 0$ tem uma única solução e aproxime-a, efectuando 2 iterações de um método numérico à sua escolha. Apresente um majorante para o erro dessa estimativa.

Regra dos trapézios:
$$\int_a^b f(x) dx \simeq \frac{h}{2} \Big[f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n) \Big]$$
$$\operatorname{com} \quad \Delta x \leq \frac{(b-a)^3}{12 n^2} \times M_2, \quad \text{onde } M_2 = \max_{[a,b]} |f''(x)|$$

Regra de Simpson:
$$\int_a^b f(x) dx \simeq \frac{h}{3} \Big[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \Big]$$

Nota: n tem que ser **par**!

com
$$\Delta x \leq \frac{(b-a)^5}{180 n^4} \times M_4$$
, onde $M_4 = \max_{[a,b]} |f''''(x)|$

x	\sqrt{x}	x^2	e^x	ln(x)	$\frac{1}{x}$	$\sin(x)$	$\cos(x)$
-1.00	-	1.00	0.37	_	-1.00	-0.84	0.54
-0.90	_	0.81	0.41	_	-1.11	-0.78	0.62
-0.80	_	0.64	0.45	_	-1.25	-0.72	0.70
-0.75	_	0.56	0.47	_	-1.33	-0.68	0.73
-0.70	_	0.49	0.50	_	-1.43	-0.64	0.76
-0.60	_	0.36	0.55	_	-1.67	-0.56	0.83
-0.50	_	0.25	0.61	_	-2.00	-0.48	0.88
-0.40	_	0.16	0.67	_	-2.50	-0.39	0.92
-0.30	_	0.09	0.74	_	-3.33	-0.30	0.96
-0.25	_	0.06	0.78	_	-4.00	-0.25	0.97
-0.20	_	0.04	0.82	_	-5.00	-0.20	0.98
-0.10	_	0.01	0.90	_	-10.00	-0.10	1.00
0.00	0.00	0.00	1.00	_	_	0.00	1.00
0.10	0.32	0.01	1.11	-2.30	10.00	0.10	1.00
0.20	0.45	0.04	1.22	-1.61	5.00	0.20	0.98
0.25	0.50	0.06	1.28	-1.39	4.00	0.25	0.97
0.30	0.55	0.09	1.35	-1.20	3.33	0.30	0.96
0.40	0.63	0.16	1.49	-0.92	2.50	0.39	0.92
0.50	0.71	0.25	1.65	-0.69	2.00	0.48	0.88
0.60	0.77	0.36	1.82	-0.51	1.67	0.56	0.83
0.70	0.84	0.49	2.01	-0.36	1.43	0.64	0.76
0.75	0.87	0.56	2.12	-0.29	1.33	0.68	0.73
0.80	0.89	0.64	2.23	-0.22	1.25	0.72	0.70
0.90	0.95	0.81	2.46	-0.11	1.11	0.78	0.62
1.00	1.00	1.00	2.72	0.00	1.00	0.84	0.54

REGRAS DE INTEGRAÇÃO NUMÉRICA

O cálculo de um integral definido $\int_a^b f(x) dx$ recorrendo a primitivas (Teorema Fundamental do Cálculo),

$$\int_{a}^{b} f(x) dx = \left[F(x) \right]_{a}^{b} = F(b) - F(a)$$

nem sempre é possível, porque

- existem funções que não têm primitiva elementar, isto é, cuja primitiva não pode ser explicitada recorrendo a um número finito de operações elementares (soma, subtracção, multiplicação, divisão, composição e raiz) de funções polinomiais, exponenciais, logarítmicas, trigonométricas ou trigonométricas inversas. É o que acontece, por exemplo, com as funções

$$e^{-x^2}$$
, $\sin(x^2)$, $\cos(x^2)$, $\frac{\sin(x)}{x}$, $\frac{\cos(x)}{x}$, $\frac{1}{\ln(x)}$.

- nem sempre é conhecida a expressão analítica de f(x), (por exemplo, quando a função é estimada recorrendo a medições).

O uso de métodos de integração numérica permite determinar um valor aproximado do integral sem determinar a primitiva da função integranda. A ideia subjacente à integração numérica consiste em aproximar, no intervalo [a, b], a função f(x) através de uma função g(x) com primitiva elementar,

$$f(x) \simeq g(x), \quad \text{em } [a, b],$$

considerando-se depois a aproximação

$$\int_a^b f(x) dx \simeq \int_a^b g(x) dx.$$

A escolha da função g(x) origina diferentes famílias de fórmulas de integração numérica: regra dos trapézios, regra de Simpson, etc.

No que se segue vamos considerar $g(x) = p_n(x)$, o polinómio interpolador de grau $\leq n$ da função f(x) no intervalo [a,b], recorrendo a n+1 pontos igualmente espaçados no intervalo de integração. O intervalo [a,b] ficará assim dividido em n sub-intervalos de igual amplitude, h, dada por

$$h = x_{i+1} - x_i = \frac{b-a}{n}.$$

Note-se que o grau do polinómio originará diferentes fórmulas de integração numérica mas, em qualquer caso, a primitivação do polinómio $p_n(x)$ não levantará qualquer dificuldade do ponto de vista algébrico.

Regra dos trapézios

Tendo em conta que a área de um trapézio é dada por

$$\text{\'Area}(\text{trap\'ezio}) \ = \ \text{\'Area}(\text{rect\^angulo}) + \text{\'Area}(\text{tri\^angulo}) \ = \ b \times h + \frac{b \times (H-h)}{2} \ = \ b \, \frac{h+H}{2} \, .$$

Se considerarmos

$$f(x) \simeq p_1(x)$$
, em $[a,b]$,

onde $p_1(x)$ é o polinómio interpolador de grau ≤ 1 nos pontos (a, f(a)) e (b, f(b)), tem-se

$$\int_a^b f(x) \, dx \simeq \int_a^b p_1(x) \, dx = \underbrace{(b-a) \times \frac{f(a)+f(b)}{2}}_{\text{Área(trapézio)}}.$$

Esta regra numérica também pode, obviamente, ser deduzida analiticamente, mas essa dedução sai do âmbito desta UC.

A ideia anterior, de interpolar a função f(x) recorrendo a um polinómio $p_n(x)$, pode ser generalizada para um polinómio de qualquer grau. Porém, essa não é a melhor opção, porque:

- os polinómios de grau elevado podem tornar-se fortemente oscilantes, o que pode dar origem a erros de truncatura elevados;
- para calcular um majorante para o erro de truncatura da aproximação, é necessário estimar o máximo (do módulo) de derivadas de ordem elevada (ordem n+1).

Por essas razões, em vez de recorrer fórmulas de integração que têm por base polinómios de grau elevado, recorre-se a regras compostas. A ideia subjacente às regras compostas é dividir o intervalo de integração [a,b] num número suficientemente elevado de sub-intervalos, nos quais se aplica a regra simples.

Consideremos então uma partição do intervalo [a, b] recorrendo a pontos igualmente espaçados

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$
,
com $h = x_{i+1} - x_i$

e apliquemos a regra dos trapézios a cada um dos sub-intervalos

Obtemos

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{1}} f(x) dx + \int_{x_{1}}^{x_{2}} f(x) dx + \dots + \int_{x_{n-1}}^{x_{n}} f(x) dx$$

$$\simeq \frac{h}{2} \Big(f(x_{0}) + f(x_{1}) \Big) + \frac{h}{2} \Big(f(x_{1}) + f(x_{2}) \Big) + \dots + \frac{h}{2} \Big(f(x_{n-1}) + f(x_{n}) \Big)$$

$$= \frac{h}{2} \Big(f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-2}) + 2f(x_{n-1}) + f(x_{n}) \Big),$$

Note-se que os pontos intermédios têm peso 2, por intervirem como extremo superior num sub-intervalo e como extremo inferior no sub-intervalo seguinte, o que não acontece com os pontos $x_0=a$ e $x_n=b$.

O facto de as abcissas dos pontos serem igualmente espaçadas não constitui uma limitação à aplicação da regra dos trapézios uma vez que, no caso de as abcissas não serem igualmente espaçadas, podemos recorrer à aplicação sucessiva da regra dos trapézios simples em cada sub-intervalo (e, eventualmente, à aplicação da regra dos trapézios composta quando os sub-intervalos sucessivos tiverem a mesma amplitude).

Erro da regra dos trapézios

Prova-se que o erro que se comete ao aproximar o integral $\int_a^b f(x) dx$ recorrendo à regra dos trapézios é majorado através da desigualdade

$$E_T \le \frac{(b-a)^3}{12 n^2} M_2$$
, onde $M_2 = \max_{[a,b]} |f''(x)|$.

Observação 1

- Se aumentarmos o número de sub-intervalos, o intervalo [a,b] permanece inalterado pelo que os valores de $(b-a)^3$ e do máximo da segunda derivada também permanecem inalterados. Mas como o valor de n aumenta, então o erro de arredondamento diminui.
- A regra dos trapézios fornece resultados exactos sempre que a função f(x) é um polinómio de grau < 1.

REGRA DE SIMPSON

Outra possibilidade é considerar a aproximação

$$f(x) \simeq p_2(x)$$
, em $[a, b]$,

onde $p_2(x)$ é o **polinómio interpolador** de grau ≤ 2 que tem por base os três pontos igualmente espaçados

$$(a, f(a)), \quad \left(\frac{a+b}{2}, f\left(\frac{a+b}{2}\right)\right), \quad \left(b, f(b)\right):$$

$$f(b)$$

$$f\left(\frac{a+b}{2}\right)$$

$$f(a)$$

$$p_2(x)$$

$$f(x)$$

$$a \quad \frac{a+b}{2} \quad b$$

Após algumas manipulações matemáticas, verifica-se que

$$\int_{a}^{b} f(x) dx \simeq \int_{a}^{b} p_{2}(x) dx \simeq \frac{h}{3} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right), \text{ onde } h = \frac{b-a}{2}.$$

A estratégia que foi usada para construir a regra dos trapézios composta também pode ser usada para construir a regra de Simpson composta. Considera-se uma partição do intervalo [a, b] recorrendo a um **número ímpar de pontos** igualmente espaçados (ou seja, a um número **par**, n, de intervalos),

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$
,
com $h = x_{i+1} - x_i$

e aplica-se a regra de Simpson a cada um dos sub-intervalos

$$[x_0, x_2], [x_2, x_4], \cdots [x_{n-2}, x_n].$$

Tem-se então

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{2}} f(x) dx + \int_{x_{2}}^{x_{4}} f(x) dx + \dots + \int_{x_{n-2}}^{x_{n}} f(x) dx$$

$$\simeq \frac{h}{3} \left(f(x_{0}) + 4f(x_{1}) + f(x_{2}) \right) + \frac{h}{3} \left(f(x_{2}) + 4f(x_{3}) + f(x_{4}) \right) + \dots$$

$$= \frac{h}{3} \left(f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}) \right).$$

Os pesos dos pontos intermédios são alternadamente 4 e 2, começando e acabando em 4.

Note-se que h é o espaçamento entre pontos e não a amplitude de cada intervalo onde foi aplicada a regra de Simpson simples!

Tal como foi referido para a regra dos trapézios, a limitação de que as abcissas dos pontos sejam igualmente espaçadas também não constitui uma limitação à aplicação da regra de Simpson, desde que existam trios de pontos igualmente espaçados e sucessivos.

Erro da regra de Simpson

Prova-se que o erro que se comete ao aproximar o integral $\int_a^b f(x) dx$ através da regra de Simpson é majorado através da seguinte desigualdade:

$$E_S \le \frac{(b-a)^5}{180 n^4} M_4$$
, onde $M_4 = \max_{[a,b]} |f''''(x)|$.

Observação 2

- Quando se aumenta o número de sub-intervalos, o intervalo [a,b] permanece inalterado pelo que os valores de $(b-a)^5$ e do máximo da derivada de quarta ordem permanecem também inalterados. Mas como o valor de n aumenta, então o erro de arredondamento diminui.
- A fórmula de Simpson **é exacta para polinómios de grau** ≤ 3 . Este resultado é surpreendente, uma vez que a fórmula de Simpson resulta da aproximação da função f(x) recorrendo a polinómios p_2 de grau ≤ 2 !