Topology and Geometry Seminar

Characteristic Classes (II)

Xiong Rui

October 10, 2020

Preface

- As suggested by Wang Liao that, the definition of Chern class in algebraic geometry can be found in Fulton's intersection theory with less assumption.
- Still suggested by the same audience, the computation of Chow ring of $\mathbb{P}(\mathcal{E})$ is no that easy.

- Axioms of Chern Classes
- 2 CC in Differential Geomtry
- 3 CC in Algebraic Geometry
- General Characteristic Classes
- 5 Vector Bundles over Spheres
- 6 Thanks

Remind

• For a CW-complex B, the rank n vector bundles is classified by the homotopy class of $B \to \mathcal{G}r(n, \infty)$. Namely,

$$\operatorname{Vec}^n B \stackrel{1:1}{\longleftrightarrow} \pi(B, \mathcal{G}r(n, \infty)).$$

• For a vector bundle ξ over B, which is classified by φ , we define the Chern classes

$$c(\xi) = 1 + c_2(\xi) + c_4(\xi) + \cdots + c_{2n}(\xi), \qquad c_{2k} = \varphi^*(e_{2k})$$

with $e_{2k} \in H^{2k}(\mathcal{G}r(n,\infty))$, the description, see last lecture.

Properties (1) — Functorial Property

- For $f: X \to Y$, and ξ a vector bundle over Y, we define $f^*\xi$ the pull back (see the diagram below).
- The Chern classes are functorial.

$$f^*c(\xi) = c(f^*\xi).$$

$$\begin{vmatrix}
E(f^*\xi) & \to & E(\xi) \\
\downarrow & \text{pull} \\
\text{back} & \downarrow \xi \\
X & \to & Y
\end{vmatrix}$$

This property is indicated from the definition.

Properties (2) — Whitney Sum

Chern class acts well for direct sum

$$c(\xi \oplus \eta) = c(\xi)c(\eta).$$

This follows from our computation of e_{2k} .

$$\mathbb{C}P^{\infty}\times\stackrel{n}{\cdots}\times\mathbb{C}P^{\infty}\to\mathcal{G}r(n,\infty).$$

• By factoring through $\mathcal{F}\ell(n,\infty)$ one can also show $c(\xi)=c(\eta)c(\xi/\eta)$, for any sub-vector bundle $\eta\subseteq\xi$.

Properties (3) — Special Value

- $c_0 = 1$.
- For tautological bundle τ over $\mathbb{C}P^{\infty}$,

$$-c_2(\tau)$$
 = the canonic generator of $H^*(\mathbb{C}P^{\infty})$,

the Poincaré dual of hyperplane class. Equivalently,

$$c_2(\tau) = e(\tau) =$$
the Euler class of τ .

- We can change ∞ by each N.
- Actually, generally, the top Chern class is the Euler class in general.

Axioms of Chern classes

Theorem

The following axioms characterize the total Chern classes as the assignment $Vec B \rightarrow H^*(B)$ for each CW-complex B.

• $f^*c(\xi) = c(f^*\xi)$.

Functorial Property

• $c(\xi \oplus \eta) = c(\xi)c(\eta)$.

Whitney Sum

• $c(\tau) = 1 + e(\tau)$.

recover Euler Class for projective space

The proof is clear.

 $\sim \S$ CC in Differential Geomtry $\S \sim$

The de Rham Cohomology

 Let us fix some (not standard) notation, denote the fibre bundle and the space of global sections of differential forms,

$$\Lambda^*M$$
, $\Omega^*(M)$.

• Recall de Rham cohomology complex

$$0 \to \Omega^0(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n(M) \to 0.$$

It computes $H^*(M; \mathbb{R})$.

Connections

 For a (smooth) vector bundle E over a smooth manifold M. We consider the vector bundle E but with coefficient differential forms, and its global section

$$\Lambda^*M\otimes E$$
, $\Omega^*(M; E)$.

• Define the **connection** ∇ over E to be a map

$$\Omega^*(M; E) \rightarrow \Omega^{*+1}(M; E)$$

such that for $\alpha \in \Omega^*(M)$, and $s \in \Omega^*(M; E)$,

$$\nabla(\alpha \wedge s) = d\alpha \otimes s + (-1)^{\deg \alpha} \alpha \wedge \nabla(s).$$

Connections (continued)

For any

$$\nabla:\Omega^0(M;E)\to\Omega^1(M;E)$$

satisfying

$$\nabla(fs)=df\otimes s+f\nabla s$$

uniquely extends to a connection.

 \bullet Note that ∇ is generally not a tensor, that is, not an element in

$$\Gamma(M; \operatorname{\mathsf{Hom}}(\Lambda^*M \otimes E, \Lambda^{*+1}M \otimes E)).$$

Curvature Tensor

• But its square $\nabla^2:\Omega^0(M;E)\to\Omega^2(M;E)$ is, known as the curvature tensor K

$$\Gamma(M; \operatorname{\mathsf{Hom}}(\Lambda^0 M \otimes E, \Lambda^2 M \otimes E)) = \Omega^2(M; \operatorname{\mathsf{End}}(E)).$$

• To check one thing is a tensor, it suffices to show it is linear with respect to $C^{\infty}(M)$. So

$$\nabla\nabla(fs) = \nabla(df \otimes s + f\nabla s)$$

$$= d(df) \otimes s - df \otimes \nabla s + df \otimes \nabla s + f\nabla \nabla s$$

$$= f\nabla \nabla s.$$

Curvature Tensor

• It is useful to see how it locally looks like. Denote $\xi_i = \frac{\partial}{\partial x^i}$ the local tangent fields with respect to local coordinate $\{x_i\}$.

$$\nabla \xi_i = \sum \theta^{ij} \xi_j, \qquad \theta^{ij} \in \Omega^1(M).$$

Then

$$\nabla\nabla\xi_{i} = \nabla\left(\sum\theta^{ij}\xi_{j}\right)$$
$$= \sum d\theta^{ij} \otimes \xi_{j} - \sum\theta^{ij} \wedge \theta^{jk}\xi_{k}$$

So $K = d\theta - \theta \wedge \theta$.

16 / 51

• Then consider the curvature tensor K as matrix with coefficients in $\Omega^2(M)$. The index-wise d,

$$dK = d(d\theta - \theta \wedge \theta)$$

= $-d\theta \wedge \theta + \theta \wedge d\theta$
= $-K \wedge \theta + \theta \wedge K = [\theta, K].$

 An genius observation is that any symmetric polynomial in eigenvalues is closed, since the following genius observation

$$d \operatorname{tr} K^{k} = \sum \operatorname{tr}[K \cdots dK \cdots K]$$

=
$$\sum \operatorname{tr}[K \cdots [\theta, K] \cdots K] = 0.$$

• We can define the Chern classes $c_{2k}(E; \nabla) \in H^2(M; \mathbb{C})$ to be

$$\frac{1}{(2\pi i)^k}$$
 (k-th elementary symmetric polynomial in eigenvalues of K)

which appears as coefficients of characteristic polynomial.

ullet The Chern class is actually homotopy invariant. Consider the map "integral over [0,1]"

$$Q:\Omega^*(M\times[0,1])\to\Omega^{*-1}(M).$$

It satisfies $dQ - Qd = i_1^* - i_0^*$. Apply this formula on the curvature tensor over $M \times [0,1]$, we get the homotopy invariance.

• In particular, the class does not rely on the choice of ∇ .

Theorem

The Chern classes defined above is the same as we defined for topological space after complexification and tensoring over \mathbb{C} (actually over \mathbb{R}).

- To prove this, simply check the axioms.
- To make it is functoral, one can define the pull back of connection.
- By direct sum of connections, it is easy to check it has the Whitney sum property.
- To work better in the category of smooth manifold, we should consider $\mathbb{C}P^N$ for all N.

Riemannian Geometry

• In terms of Riemannian Geometry, and E=TM, we defined the Levi–Civita conenction $\nabla_X Y$, which turns out to be a tensor in X, so it defines a connection $\nabla:\mathfrak{X}(M)=\Omega^0(M;TM)\to\Omega^1(M;TM)$. Namely by

$$\langle \nabla Y, X \otimes 1 \rangle = \nabla_X Y.$$

• Recall the **Riemannian curvature tensor**

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

I claim this is exactly the tensor we just defined.

The proof

- Let us denote the pairing $\langle X \wedge Y \otimes id, s \rangle = s(X, Y)$ for $s \in \Omega^2(M; TM)$ for short, the similar for Ω^1 .
- Since ∇ is torsionfree, there is a formula for $s \in \Omega^1(M; TM)$,

$$(\nabla s)(X,Y) = \nabla_X (s(Y)) - \nabla_Y (s(X)) - s([X,Y])$$

Actually, this can be understood as a generalization of the formula $d\omega(X,Y) = X\omega(Y) - Y\omega(X) - \omega([X,Y])$.

• In particular, when $s = \nabla Z$, a fortiori $s(A) = \nabla_A Z$,

$$(\nabla^2 Z)(X,Y) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z = R(X,Y)Z.$$

 $\sim \S$ CC in Algebraic Geometry $\S \sim$

Chow Groups

• We can define for a variety X over algebraic closed field \Bbbk a Chow group by

$$\mathsf{Ch}^p(X) = \frac{\sum_{\substack{\mathsf{subvarity } Y \\ \mathsf{codim } Y = p}} \mathbb{Z} \cdot [Y]}{\mathsf{Rational equivalence}}.$$

• Two subvarieties Y_0 , Y_1 are said to be rational equivalent if there is an codimensional p+1 irreducible $Z\subseteq \mathbb{P}^1_X$ which is not "vertical" with

$$Y_0 = Z \cap (X \times \{0\}), \qquad Y_1 = Z \cap (X \times \{1\}),$$

Here vertical means the projection of Z to $\mathbb{P}^1_{\mathbb{k}}$ is not a point (say, Z not live over one point).

Chow Rings

- When X is smooth, then Chow group is equipped with a ring structure (in which case, it will be called Chow ring) with the product by "transversal intersection".
- For smooth (regular) variety X, $\operatorname{Ch}^1(X)$ is exactly the class group $\operatorname{Cl}(X)$. The same story appears, so we hope to define Chern class for algebraic vector bundle (locally trivial sheaf).
- Tips: there is no 2!

- The construction is due to Grothendieck.
- For a locally trivial sheaf \mathcal{E} of rank n over X, we can define the associated projective bundle $\mathbb{P}(\mathcal{E}) \to X$.
- Then $\mathcal{O}(1)$ is defined over $\mathbb{P}(\mathcal{E})$, which defines an element $\zeta \in \mathsf{Ch}^1(\mathbb{P}(\mathcal{E}))$. By more effort, one can show that $\mathsf{Ch}(\mathbb{P}(\mathcal{E}))$ is freely generated by $1, \zeta, \zeta^2, \ldots, \zeta^{n-1}$ over $\mathsf{Ch}(X)$ by excision property of Chow ring.
- As a result, there is a relation

$$\zeta^n + c_1 \zeta^{n-1} + \cdots + c_n = 0 \in \mathsf{Ch}(\mathbb{P}(\mathcal{E})), \qquad c_k \in \mathsf{Ch}(X).$$

Then we simply define the Chern class $c_k(\mathcal{E}) = c_k$.

The Axioms of Chern Classes

Theorem

The following axioms characterize the total Chern classes as the assignment LocTri $X \rightarrow Ch(X)$ for each smooth varieties X.

• For any morphism of variety

Functorial Property

$$f^*c(\mathcal{E})=c(f^*\mathcal{E}).$$

• For short exact sequence $0 \to \mathcal{F} \to \mathcal{E} \to \mathcal{G} \to 0$

Whitney Sum

$$c(\mathcal{E}) = c(\mathcal{F})c(\mathcal{G}).$$

• The first Chern class is constant 1 = [X]. The second Chern class gives the isomorphism $Cl(X) \rightarrow Ch^1(X)$ we stated before.

The proof

- The theorem should be proven simultaneously with splitting principle. But we cannot have an "algebraic" splitting, but a filtration. Say, consider $\mathcal{F}\ell(\mathcal{E}) \to X$, with the fibre of $x \in X$ to be $\mathcal{F}\ell(\mathcal{E} \otimes k(x))$.
- The the tautological flag forms a filtration of pull back of E.
- This is essentially the same to what we did last time, since $\mathcal{F}\ell(\mathcal{E})$ can be built by set-by-set projective bundles.
- Repeat what we do for projective bundles, we can conclude that $Ch(X) \to Ch(\mathcal{F}\ell(\mathcal{E}))$ is injective.

The proof

Then we can assume that we have

$$0 = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n = \mathcal{E},$$

Denote $Q_i = \mathcal{F}_i/\mathcal{F}_{i-1}$. We can also assume $\mathcal{F}_i/\mathcal{F}_{i-1}^*$ has nonzero global section from the construction.

- By picking a nonzero section over $(\mathcal{F}_i/\mathcal{F}_{i-1})^*$, we can talk about "coordinate".
- Put $\pi: \mathbb{P}(\mathcal{E}) \to X$. Now $\mathcal{O}(-1) \cong \pi^* \mathcal{Q}_i$ over the open set of the *i*-th coordinate none zero.
- So $\zeta + c(Q_i)$ can be chosen to be combination of subvarities out of this region. But these regions intersect empty. The proves $(\zeta + c(Q_1)) \cdots (\zeta + c(Q_n)) = 0$.

Stiefel-Whitney Classes

- For \mathbb{R} , as we stated, real line bundle is classifies by $H^1(X; \mathbb{Z}/2)$. So we also has a systematic class to extend this, called the **Stiefel–Whitney Classes**.
- We can do the same computation for real Grassmanian, say the map

$$\mathbb{R}P^{\infty} \times \cdots \times \mathbb{R}P^{\infty} \to \mathcal{G}r(n,\infty)$$

induces an injection in cohomology group

$$H^*(\mathcal{G}r(n,\infty);\mathbb{Z}/2) \to H^*(\mathbb{R}P^{\infty} \times \cdots \times \mathbb{R}P^{\infty}) = \mathbb{Z}/2[x_1,\ldots,x_n]$$

with image exactly the symmetric polynomials. So we can define Stiefel–Whitney class similar to Chern class.

Stiefel-Whitney Classes

Theorem

The following axioms characterize the total Stiefel–Whitney classes as the assignment $Vec B \to H^*(B; \mathbb{Z}/2)$ for each CW-complex B.

•
$$f^*c(\xi) = s(f^*\xi)$$
.

Functorial Property

•
$$s(\xi \oplus \eta) = s(\xi)s(\eta)$$
.

Whitney Sum

•
$$s(\tau) = 1 + e(\tau)$$
.

recover Euler Class for projective space

Pontryagin Classes

- One can consider the Chern class of the complexification of real bundle. It is well-defined for any coefficient ring with $1/2 \in R$, and only nontrivial terms appear in H^{4*} . This is (up to a subtle sign) called **Pontryagin classes**.
- Actually, we can compute

$$H^*(\mathcal{G}r(n,\infty);R)=R[p_4,\ldots,p_{4n}].$$

One can show they coincide, and they also admit an axioms description.

Principal bundle

• We call a locally trivial fibre bundle $\xi = \begin{bmatrix} E \\ \downarrow B \end{bmatrix}$ a G-principal bundle if G acts on E freely, with B = E/G, and ξ the natural projection. Equivalently, each fibre is a copy of G, and are glued by left multiplication of G. Here is left because

 $Aut_{right G}(G, G) = left multiplication of G.$

Principal bundle

- For vector bundle ξ , we can naturally associate to a GL_n -principal bundle by picking invertible element in $F \otimes F^*$.
- Conversely, for a GL_n -principal bundle $\begin{bmatrix} E \\ \downarrow \\ B \end{bmatrix}$, we can define $E \times_G \mathbb{F}^n$ a vector bundle over B.
- So there is a natural equivalence

$$\operatorname{Vect}^n B \stackrel{1:1}{\longleftrightarrow} \operatorname{GL}_n\operatorname{-Prin} B.$$

• This allows us to generalize the classifying theorem.

Milnor construction

Theorem (Milnor)

For any topological group G of CW-type then there is a principal bundle $\begin{bmatrix} E_G \\ \downarrow \\ B_Z \end{bmatrix}$, such that for any CW-complex B

$$G$$
-Prin $B \stackrel{1:1}{\longleftrightarrow} \pi(B, B_0)$.

Besides, this E_G is contractible, and any principal bundle $\begin{bmatrix} E \\ \downarrow B \end{bmatrix}$ satisfies this property if and only if E is contractible.

In some way, to find out a classfying space is simply to find a big enough space such that G acts freely and contractible.

Examples

- For discrete group G, $B_G = K(G, 1)$ the Eilenberg-MacLane space, E_G its universal covering.
- For $G = GL_n$, then $B_G = \mathcal{G}r(n, \infty)$, by the equivalence what we stated, and E_G corresponding to the tautological bundle.
- For $G = O_n$, then B_G is exactly real Grassmannian, by picking Riemannian metric, E_G the Stiefel variety (say, the fibre at L is the set of choice of orthogonal basis L).
- For $G = U_n$, then B_G is exactly complex Grassmannian, by picking unitary metric.
- For $G = \operatorname{Sp}_{2n}$, then B_G is the exactly Quaternionic Grassmannians.

General Characteristic Classes

Actually,

Any computation of $H^*(B_G)$ gives a theory of characteristic classes .

As we did for vector bundle.

• For example Euler class appear in the

$$H^*(BSL_n(\mathbb{R}); R) = H^*(BSO_n(\mathbb{R}); R)$$

for $1/2 \in R$. Note that BSO_n is a two fold covering of BO_n .

General Characteristic Classes

- The same story holds for manifold characteristic classes can be computed by connection and curvature. But in this case curvature should be Lie-algebra-valued.
- ullet Actually, for a compact Lie group or a reductive group, G, we know

$$\mathbb{C}[\mathfrak{g}]^G \cong \mathbb{C}[\mathfrak{h}]^W$$

where G acts on the polynomial over its Lie algebra $\mathfrak g$ by adjoint action, $\mathfrak h$ the Cartan subalgebra, Lie algebra of torus, and W the Weyl group.

• In the case of $G = GL_n(\mathbb{C})$, the left hand side is the symmetric polynomials in eigenvalues.

General Characteristic Classes

- Generally, the right hand side $\mathbb{C}[\mathfrak{h}]^W$ can be shown to be $H^*(BG;\mathbb{C})$ (lectures later).
- The Chern-Weil theory set up the exact relations. The most famous result is the Chern-Gauss-Bonnet theorem

$$\left(\frac{-1}{2\pi}\right)^k \int_M \mathsf{Pf}\, K = \chi(M)$$

where M is a 2k-dimensional compact Riemannian manifold, Pf the **Pfaffian** and $\chi(M)$ the Euler characteristic.

• More precisely, Pf $\in \mathbb{C}[\mathfrak{so}_{2k}]^{SO_{2k}}$ corresponds to the Euler class $e \in H^k(BSO_{2k};\mathbb{C}) = \mathbb{C}[x_1,\ldots,x_k]^{D_n}$.

 $\sim \S$ Vector Bundles over Spheres $\S \sim$

Vector bundles over spheres

• For $B = S^n$, and $\mathbb{F} = \mathbb{R}$,

Vec^k
$$S^n = \pi(S^n, BGL)$$

= $\pi_n(BGL_k)$:: GL is connected
= $\pi_{n-1}(GL_k)$:: long exact sequence
= $\pi_{n-1}(O_k)$

This is classically proven by the contractibility of the Stiefel varieties.

So we have the following table

\mathbb{R}	Vec ¹	Vec ²	Vec ³	Vec ⁴	Vec ⁵	
S^1	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	
S^2	1	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	
<i>S</i> ³	1	1	1	1	1	
:	• • •	• • •	•	• • •	• • •	٠

$$SO_3 \cong \mathbb{R}P^3$$
.

$$n \geq 3 \Longrightarrow \pi_1(\mathsf{SO}_n) = \mathbb{Z}/2.$$

Vector bundles over spheres

• For $B = S^n$, and $\mathbb{F} = \mathbb{C}$,

$$\operatorname{Vec}^k S^n = \pi_{n-1}(\mathsf{U}_k)$$

So we have the following table

\mathbb{C}	Vec ¹	Vec ²	Vec ³	Vec ⁴	Vec ⁵	
S^1	1	1	1	1	1	• • •
S^2	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	• • • •
S^3	1	1	1	1	1	• • • •
:	:	:	:	:	:	

46 / 51

The Hopf vector bundle (tautological bundle of $S^2=\mathbb{C}P^1$) is the generator. The unit circle form $\begin{bmatrix} S^3\\\downarrow S^2 \end{bmatrix}$ with fibre S^1 , the famous Hopf fibration.

The second homotopy groups of Lie groups vanish

- Note that the flag manifold G/T is simply connected, and $H^*(G/T)$ is free abelian. In particular, by Hurewicz theorem, $\pi_2(G/T)$ is free abelian.
- Then consider the long exact sequence

$$\underbrace{\pi_2(T)}_{=0} \to \pi_2(G) \to \pi_2(G/T) \to \pi_1(T) \to \pi_1(G) \to \underbrace{\pi_1(G/T)}_{=0}$$

ullet The connection map can be computed by the standard trick using SU_2 map. This computes

$$\pi_1(G) = \ker \exp / \langle h_{\alpha} \in \mathfrak{h} : \alpha \in \operatorname{root} \rangle, \qquad \pi_2(G) = 0.$$

References

- Benson. Cohomology and representation volume II.
- Morita. Geometry of differential forms.
- Husemoller. Fibre Bundles. GTM20.
- Fulton. Young Tableaux with applications in algebra and geometry.
- Fulton. Intersection theory.
- Werner Greub, Stephen Halperin, Ray Vanstone, Connections, Curvature, and Cohomology
- May. A concise introduction to Algebraic Topology.

 $\sim \S$ Thanks $\S \sim$