CS:APP Chapter 4 Computer Architecture Logic Design

Randal E. Bryant

Adapted by Thomas D. Howell for

San Jose State University

http://csapp.cs.cmu.edu

CS 47 Spring 2014

Overview of Logic Design

Fundamental Hardware Requirements

- Communication
 - How to get values from one place to another
- Computation
- Storage

Bits are Our Friends

- Everything expressed in terms of values 0 and 1
- Communication
 - Low or high voltage on wire
- **■** Computation
 - Compute Boolean functions
- Storage
 - Store bits of information

-2- CS 47 Spring 2014

Digital Signals

- Use voltage thresholds to extract discrete values from continuous signal
- Simplest version: 1-bit signal
 - Either high range (1) or low range (0)
 - With guard range between them
- Not strongly affected by noise or low quality circuit elements
 - Can make circuits simple, small, and fast

- 3 - CS 47 Spring 2014

Computing with Logic Gates

- Outputs are Boolean functions of inputs
- Respond continuously to changes in inputs
 - With some, small delay

-4- **Time** CS 47 Spring 2014

Combinational Circuits

Acyclic Network of Logic Gates

- Continously responds to changes on primary inputs
- Primary outputs become (after some delay) Boolean functions of primary inputs

- 5 - CS 47 Spring 2014

Bit Equality

Generate 1 if a and b are equal

Hardware Control Language (HCL)

- Very simple hardware description language
 - Boolean operations have syntax similar to C logical operations
- We'll use it to describe control logic for processors

-6- CS 47 Spring 2014

Word Equality

-7 - CS 47 Spring 2014

Bit-Level Multiplexor

- Control signal s
- Data signals a and b
- Output a when s=1, b when s=0

- 8 - CS 47 Spring 2014

Word Multiplexor

Word-Level Representation

HCL Representation

- Select input word A or B depending on control signal s
- HCL representation
 - Case expression
 - Series of test : value pairs
 - Output value for first successful test

CS 47 Spring 2014

HCL Word-Level Examples

Minimum of 3 Words

- Find minimum of three input words
- HCL case expression
- Final case guarantees match

4-Way Multiplexor

- Select one of 4 inputs based on two control bits
- HCL case expression
- Simplify tests by assuming sequential matching

CS 47 Spring 2014

Arithmetic Logic Unit

- Combinational logic
 - Continuously responding to inputs
- Control signal selects function computed
 - Corresponding to 4 arithmetic/logical operations in Y86
- Also computes values for condition codes

- 11 - CS 47 Spring 2014

Storing 1 Bit

Bistable Element

S 47 Spring 2014

Storing 1 Bit (cont.)

– 13 –

o.s Vin

17 Spring 2014

Storing and Accessing 1 Bit

Bistable Element

Resetting

Setting

Storing

– 15 –

CS 47 Spring 2014

1-Bit Latch

Latching

Storing

- 16 - CS 47 Spring 2014

Transparent 1-Bit Latch

Latching

Changing D

- When in latching mode, combinational propogation from D to Q+ and Q-
- Value latched depends on value of D as C falls

– 17 –

CS 47 Spring 2014

Edge-Triggered Latch

CS 47 Spring 2014 **–** 18 **–**

Registers

– 19 **–**

- Stores word of data
 - Different from program registers seen in assembly code
- Collection of edge-triggered latches
- Loads input on rising edge of clock

CS 47 Spring 2014

Register Operation

- Stores data bits
- For most of time acts as barrier between input and output
- As clock rises, loads input

– 20 – CS 47 Spring 2014

State Machine Example

- Accumulator circuit
- Load or accumulate on each cycle

-21 - CS 47 Spring 2014

Random-Access Memory

- Stores multiple words of memory
 - Address input specifies which word to read or write
- Register file
 - Holds values of program registers
 - %eax, %esp, etc.
 - Register identifier serves as address
 - » ID f implies no read or write performed
- Multiple Ports
 - Can read and/or write multiple words in one cycle
 - » Each has separate address and data input/output

Register File Timing

Hardware Control Language

- Very simple hardware description language
- Can only express limited aspects of hardware operation
 - Parts we want to explore and modify

Data Types

- bool: Boolean
 - a, b, c, ...
- int: words
 - A, B, C, ...
 - Does not specify word size---bytes, 32-bit words, ...

Statements

- bool a = bool-expr ;
- int A = int-expr ;

HCL Operations

Classify by type of value returned

Boolean Expressions

- Logic Operations
 - a && b, a || b, !a
- Word Comparisons

```
• A == B, A != B, A < B, A <= B, A >= B, A > B
```

- Set Membership
 - A in { B, C, D }

 » Same as A == B || A == C || A == D

Word Expressions

- Case expressions
 - [a: A; b: B; c: C]
 - Evaluate test expressions a, b, c, ... in sequence
 - Return word expression A, B, C, ... for first successful test

– 25 – CS 47 Spring 2014

Summary

Computation

- Performed by combinational logic
- Computes Boolean functions
- Continuously reacts to input changes

Storage

- Registers
 - Hold single words
 - Loaded as clock rises
- Random-access memories
 - Hold multiple words
 - Possible multiple read or write ports
 - Read word when address input changes
 - Write word as clock rises

- 26 - CS 47 Spring 2014