

Détectez les Bad Buzz grâce au Deep Learning

Création d'un prototype d'un produit IA pour prédire le sentiment associé à un tweet

Utilisation de données Open Source

Environnement de travail

Librairies python spécialisées importées :

- Scikit-learn
 - Keras
- TensorFlow

Transformation du jeu de données

"@sandydemandy =O I wish I could just afford the verizon version flat out when it drops.....but I can't...and don't have an upgrade..."

Remplacement des liens internet Remplacement des mentions (@...] Remplacement des hashtags Remplacement des émoticônes Remplacement des abréviations et contractions Suppression des caractères uniques Remplacement des caractères spéciaux

Tokenisation des phrases Tokenisation des mots Suppression de la ponctuation Étiquetages morpho-syntaxiques Lemmatisation Elimination des stop-words

Tokenisation des mots Suppression de la ponctuation Racinisation Elimination des stop-words

user emoticon surprise wish could just afford the verizon version flat out when it drops.....but can **not**...and **do not** have an upgrade... '

'user emoticon surpris wish could afford verizon version flat out drop but not not upgrad

'user emoticon surprise wish could afford verizon version flat out drop but not not upgrade'

Nombre de mots dans un tweet

Nombre de caractères dans un tweet en fonction de son sentiment

Transformation du jeu de données

positive

ti ame Slol need user thank want show show thank tweet still hashtag feel twitter new thank thank happy great fun see

Répartition de la variable 'target' au sein de la base de données

negative

Racinisation

Lemmatisation

Les modèles simples

Bag of Words

Term frequency-inverse document frequency

Occurrence des n-grammes

	« love, resort, fee, love, burger »	« love, view, love, sorry, credit, card, serious, fee»
Resort	1	0
Love	2	2
Credit	0	1

	« love, resort, fee, love, burger »	« love, view, love, sorry, credit, card, serious, fee»
Resort	1/5 * log (2 / 1) = 0,06	0
Love	2/5 * log (2 / 2) = 0	0
Credit	0	0,03

Seuil de fréquence minimum

Seuil de fréquence maximum

N-grammes

Classifieur Naive Bayes (nltk)

	Base de données	temps	accuracy
0	Petit - Brut	3.5	0.56
1	Petit - Nettoyé	3.1	0.55
2	Petit - Lemmatisation	2.5	0.57
3	Petit - Racinisation	2.5	0.57
4	Grand - Brut	16.7	0.57
5	Grand - Nettoyé	15.2	0.57
6	Grand - Lemmatisation	12.1	0.59
7	Grand - Racinisation	12.1	0.59

Classifieur Naive Bayes (Sklearn)

	Base de données	temps	accuracy	precision
0	Petit - Lemmatisation - BoW	0.1	0.71	0.71
1	Petit - Racinisation - BoW	0.1	0.71	0.71
2	Grand - Lemmatisation - BoW	0.2	0.73	0.72
3	Grand - Racinisation - BoW	0.2	0.73	0.72
4	Petit - Lemmatisation - TF-IDF	0.1	0.70	0.69
5	Petit - Racinisation - TF-IDF	0.1	0.70	0.69
6	Grand - Lemmatisation - TF-IDF	0.1	0.72	0.71
7	Grand - Racinisation - TF-IDF	0.1	0.73	0.71

Régression logistique (Sklearn)

	Base de données	temps	accuracy	precision
0	Petit - Lemmatisation - BoW	0.3	0.72	0.70
1	Petit - Racinisation - BoW	0.3	0.72	0.70
2	Grand - Lemmatisation - BoW	1.3	0.73	0.70
3	Grand - Racinisation - BoW	1.6	0.73	0.71
4	Petit - Lemmatisation - TF-IDF	0.2	0.71	0.70
5	Petit - Racinisation - TF-IDF	0.2	0.71	0.71
6	Grand - Lemmatisation - TF-IDF	1.0	0.73	0.72
7	Grand - Racinisation - TF-IDF	1.0	0.74	0.72

Le principe du Deep Learning

Choix des couches + paramétrisation des couches

Embedding

- Taille du vocabulaire
- Dimension de l'entrée
- Dimension de la sortie

Dropout

- Taux de neurones ignorés

Flatten

Dense

Nombre de neurones

Optimisation:

- Choix du learning rate
- Choix du type d'optimisation (learning rate)
- Choix de la fonction de perte (binary_crossentropy)
- Choix de la métrique à optimiser (accuracy)

Optimisation:

- Batch_size
- Epoch

Les types de plongements de mots

Embedding

=

Représentation vectorielle du vocabulaire d'un corpus

Mots qui ont une signification proche

→ vecteurs représentatifs + corrélés

Etablir le contexte d'un corpus et étudier la sémantique (les similarités de langage) des différents mots des textes

Grand texte : beaucoup de vecteurs !

Word2vec

CBOW → prédit la probabilité d'un mot dans le contexte **Skip-gram** → prédit le contexte d'un mot

Glove

Mesure de la similarité de facteurs entre des mots pour prédire leur co-occurrence

Les réseaux de neurones récurrents

simpleRNN

- Taille de sortie
- Taille séquence (T)
- Nombre de variables (M)

Le modèle LSTM - Long Short-Term Memory

- 1. Détecter les informations pertinentes venant du passé (via forget gate)
- 2. Choisir celles qui seront pertinentes à long terme (via l'input gate, cell state → mémoire longue)
- 3. Piocher dans cell state les informations importantes à court terme (hidden state suivant à travers l'output gate)

LSTM

- Activation
- Taille séquence (T)
- Nombre de variables (M)

Modélisations locales

Keras simple embedding simple

	Base de données	temps	accuracy	precision
0	Grand - Lemmatisation	25.6	0.75	0.78
1	Grand - Racinisation	26.6	0.76	0.76
2	Grand - Tweets nettoyés	24.6	0.75	0.80
3	Grand - Tweets bruts	27.0	0.75	0.70

Keras RNN embedding simple

	Base de données	temps	accuracy	precision
0	Grand - Lemmatisation	54.2	0.74	0.74
1	Grand - Racinisation	52.5	0.75	0.76
2	Grand - Tweets nettoyés	53.6	0.75	0.76
3	Grand - Tweets bruts	58.9	0.75	0.74

Keras LSTM embedding simple

	Base de données	temps	accuracy	precision
0	Grand - Lemmatisation	343.7	0.75	0.74
1	Grand - Racinisation	24.7	0.76	0.76
2	Grand - Tweets nettoyés	25.5	0.76	0.78
3	Grand - Tweets bruts	27.6	0.76	0.76

Keras LSTM embedding Word2vec

	Base de données	temps	accuracy	precision
0	Grand - Lemmatisation	461.1	0.75	0.78
1	Grand - Racinisation	516.0	0.76	0.76
2	Grand - Tweets nettoyés	524.0	0.76	0.77
3	Grand - Tweets bruts	544.5	0.75	0.73

Keras LSTM embedding Glove

	Base de données	temps	accuracy	precision
0	Grand - Lemmatisation	567.7	0.76	0.77
1	Grand - Racinisation	662.9	0.75	0.74
2	Grand - Tweets nettoyés	773.6	0.76	0.79
3	Grand - Tweets bruts	843.8	0.75	0.73

	precision	recall	f1-score	support
0 1	0.81 0.78	0.80 0.80	0.81 0.79	524 476
accuracy macro avg weighted avg	0.80 0.80	0.80 0.80	0.80 0.80 0.80	1000 1000 1000

Déploiement du modèle sur Azure

Keras LSTM embedding simple

- Importation du meilleure modèle
- Importation du meilleur tokenizer

Etapes du déploiement du modèle sur Azure :

- 1 Relier l'environnement local au compte Azure
- 2 Récupérer les variables d'environnements utiles pour l'identification
- 3 Accéder au workspace
- 4 Charger les modèles et les enregistrer sur l'espace de travail
- 5 Créer le script avec les fonctions souhaitées pour notre API
- 6 Définir l'environnement Python à envoyer à l'inférence
- 7 Envoyer l'environnement et le script avec les fonctions

Name	Version	Created on \downarrow	Tags	Created by
best_tokenizer	3	Jan 18, 2022	area : I · · ·	Sandy Morais
best_model	3	Jan 18, 2022	area:	Sandy Morais

Name		State	Тур	pe	Attac	ched/Created	Location
p7-cluster	-1	Succeeded	Ku	bernetes service	Creat	ted	francecentral
	Name ↑			Category		Available qu	uota 🛈
•	Standard_A2_ 2 cores, 4GB RA	.v2 AM, 20GB storage		General purpose	2	350 cores	

service.test_cloud_1_tweet(['i love apples'])

Le temps d'acquisition des prédictions est de 1.2 sec.

La prédiction pour ce tweet est [0]

```
Le temps d'acquisition des prédictions est de 55.1 sec.
Le score accuracy est : 0.75
Le score precision est : 0.74
             precision
                          recall f1-score support
                  0.75
                            0.75
                                      0.75
                  0.74
                                      0.75
                                                1000
                  0.75
                            0.75
                                                1000
weighted avg
                            0.75
```

L'approche « API sur étagère »

Score neutre

Score négatif

Service Cognitif Azure - Microsoft

Microsoft Azure

Cognitive Services

prediction_tweet		prediction_azure_tweet
1		[0.03, 0.96, 0.01]
0		[0.01, 0.0, 0.99]
0	7	[0.01, 0.04, 0.95]
1		[0.19, 0.77, 0.04]
1		[0.08, 0.91, 0.01]

<u>Résultats</u>

	precision	recall	f1-score	support
0	0.75	0.66	0.70	580
1	0.70	0.78	0.74	580
accuracy			0.72	1160
macro avg	0.72	0.72	0.72	1160
weighted avg	0.72	0.72	0.72	1160

Le score accuracy est : 0.72 Le score precision est : 0.7

Temps: entre 3 et 4 minutes

Niveaux/fonctionnalité	sFO Gratuit 5K Transactions sur 30 jours	S Standard 1000 Appels par minute
Prix	0,00 € EUR par mois	à partir de 1,00 USD/1000 enregistrements texte
Analyse des Sentiments	~	~
Extraction de phrases clés	~	~
Détection de langue	~	~
Extraction d'entité	~	~
Réponse aux questions	~	√ 1,26 € EUR