⋄⋄ Lycée de Dindéfélo ⋄⋄			A.S.: 2024/2025	
Matière : Mathématiques	Niveau : T S2	Date : 09/06/2025		

Problèmes proposés au BAC S2 Sénégal de 1999 à 2022

Exercice 1 Extrait BAC 1999 1er groupe | Partie B:

On considère la fonction f définie par :

$$f(x) = \begin{cases} x + \ln \left| \frac{x - 1}{x + 1} \right| & \text{si } x \in] - \infty, -1[\cup] - 1, 0[] \\ x^2 e^{-x} & \text{si } x \in [0, +\infty[] \end{cases}$$

et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$, d'unité 2 cm.

Partie A

- Déterminer l'ensemble de définition D_f de f. Calculer f(-2) et f(3).
- Calculer les limites aux bornes de D_f .
- Étudier la continuité de f en 0.
- a Etablir que la dérivée de f est donnée par

$$f'(x) = \begin{cases} \frac{x^2 + 1}{x^2 - 1} & \text{si } x \in]-\infty, -1[\cup] - 1, 0[\\ xe^{-x}(2 - x) & \text{si } x \in [0, +\infty[\end{cases}$$

- b La fonction f est-elle dérivable en 0 ? Justifier votre réponse.
- c Dresser le tableau de variations de f.
- Démontrer que l'équation f(x) = 0 admet une solution unique α comprise entre -1,6 et -1,5.
- Justifier que la droite (D) d'équation y =x est une asymptote à la courbe (C_f) en $-\infty$.
 - **b** Etudier la position relative de (C_f) par rapport à la droite (D) pour $x \in]$ – $\infty, -1[\cup] - 1, 0[.$
 - Tracer (C_f) .

y'....\....y'.....\....y'.....

Soit g la restriction de f à I = [0; 2].

- 1 Montrer que q définit une bijection de I vers un intervalle J à préciser.
- On note g^{-1} la bijection réciproque de g.
 - a Résoudre l'équation $q^{-1}(x) = 1$.
 - **b** Montrer que $\left(g^{-1}\right)'\left(\frac{1}{e}\right) = e$.
 - c Construire $(C_{q^{-1}})$, la courbe de g^{-1} .

Partie C:

 β étant un réel strictement positif, on pose :

$$I(\beta) = \int_0^\beta f(x) \, dx$$

- a Interpréter graphiquement $I(\beta)$.
 - b En procédant par une intégration par parties, calculer $I(\beta)$.
- Calculer $\lim_{\beta \to -\infty} I(\beta)$.
- 3 On pose $\beta = 2$.
 - a Calculer I(2).
 - b En déduire la valeur en cm² de l'aire du domaine du plan délimité par la courbe (C_f) , l'axe des abscisses et les droites d'équations x = 0 et $x = \frac{4}{e^2}$.

Exercice 2

Exercice 3