Typst-plotting

Auto generated documentation

17.6.2023

Pegacraffft

Gewi

ABSTRACT

Typst-plotting is a plotting library for <u>Typst</u>.

It supports drawing the following plots/graphs in a variety of styles.

- Scatter plots
- Line charts
- Histograms
- Bar charts
- Pie charts
- Overlaying plots/charts

More features will be added over time. If you have some feedback, let us know!

Contents

Axes	2
axis	2
Plots	5
plot	5
overlay	6
scatter_plot	7
graph_plot	8
histogram	10
pie_chart	
bar_chart	
Classification	
compare	15
class	
class_generator	16
classify	

Docs were created with typst-doc

Axes

axis

This is the constructor function for creating axes. Most plots/graphs will require axes to function.

Basics

The most important parameters are min, max, step and location. These need most likely be changed for a functioning axis. If min, max and step are set, the values parameter will automatically be filled with the correct values.

Example:

```
let x_axis = axis(min: 0, max: 11, step: 2, location: "bottom")
will cause values to look like this:
(0, 2, 4, 6, 8, 10)
```

If you want to specify your own values, for example when using text on an axis, you need to specify values by yourself. Custom specified values could look like this ("", "male", "female", "divers", "unknown") (the first empty string is not neccessary, but will make some graphs/plots look a lot better).

You can obviously do a lot more than just this, so I recommend taking a look at the examples.

Examples

An x-axis for different genders:

```
let gender_axis_x = axis(
   values: ("", "m", "w", "d"),
   location: "bottom",
   helper_lines: true,
   invert_markings: false,
   title: "Gender"
)
```

A y-axis displaying ascending numbers:

```
let y_axis_2 = axis(min: 0, max: 41, step: 10,
  location: "left", show_markings: true, helper_lines: true)
```

Parameters

```
axis(
  min: integer,
  max: integer,
  step: integer,
  values: array,
  location: string,
  show_values: boolean,
  show_markings: boolean,
  invert_markings: boolean,
  marking_offset_left: integer,
  marking_offset_right: integer,
  stroke: length color dictionary stroke,
  marking_color: color,
  value_color: color,
  helper_lines: boolean,
  helper_line_style: string,
  helper_line_color: color,
  marking_length: length,
  marking_number_distance: length ,
  title: content
)
```

min integer

From where values should started generating (inclusive)

Default: 0

max integer

Where values should stopped being generated (exclusive)

Default: 0

step integer

The steps that should be taken when generating values

Default: 1

values array

The values of the markings (exclusive with min, max and step)

Default: ()

location string

The position of the axis. Only valid options are: "top", "bottom", "left", "right"

Default: "bottom"

show_values boolean

If the values should be displayed

Default: true

show_markings boolean

If the markings should be displayed

Default: true

invert_markings boolean

If the markins should point away from the data (outwards)

Default: false

marking_offset_left integer

Amount of hidden markings from the left or bottom

Default: 1

marking_offset_right integer

Amount of hidden markings from the right or top

Default: 0

stroke length or color or dictionary or stroke

The color of the baseline for the axis

Default: black

marking_color color

The color of the marking

Default: black

value_color color

The color of a value

Default: black

helper_lines boolean

If helper lines (to see better alignment of data) should be displayed

Default: false

helper_line_style string

The style of the helper lines, valid options are: "solid", "dotted", "densely-dotted", "loosely-dotted", "dashed", "densely-dashed", "loosely-dashed", "dash-dotted", "densely-dash-dotted"

Default: "dotted"

helper_line_color color

The color of the helper line

Default: gray

marking_length length

The length of a marking in absolute size

Default: 5pt

marking_number_distance length

The distance between the marker and the number

Default: 5pt

title content

The display name of the axis

Default: []

Plots

plot

The constructor function for a plot. This combines the data with the axes you need to display a graph/plot. The exact structure of axes and data varies from the visual representation you choose. An exact specification of how these have to look will be found there.

Examples

This is how your plot initialisation will look most of the time:

```
let x_axis = axis(...)
let y_axis = axis(...)
let data = (...)
let pl = plot(axes: (x_axis, y_axis), data: data)
```

How your plot initialisation would look for a pie chart:

```
let data = (...)
let pl = plot(data: data)
```

This is a lot simpler ans a pie chart doesn't require any axes.

Parameters

```
plot(
   axes: axis,
   data: array
)
```

```
axes axis
```

A list of axes needed for drawing the plot (most likely a x- and y-axis)

Default: ()

data array

The data that should be mapped onto the plot. The format depends on the plot type Default: ()

overlay

This function is used to overlay multiple plots. This can be used to render multiple graph lines in one plot and much more. The axes that get rendered, are the axes of the first plot inserted. Make sure all plots use the same axes as otherwise this will cause issues.

Parameters

```
overlay(
  plots: array,
  size: length array
)
```

```
plots array
```

An array of all the plot objects you want to render.

```
Size length or array
```

The size as array of (width, height) or as a single value for both width and height

scatter_plot

This function will display a scatter plot based on the provided plot object.

How to create a simple scatter plot

First, we need to define the data we want to map to the scatter plot. In this case I will use some random sample data.

```
let data = ((0, 0), (1, 2), (2, 4), (3, 6), (4, 8), (5, 3), (6, 6), (7, 9), (11, 12))
```

Next, we need to define both the x and the y-axis. The x-axis location can either be "bottom" or "top". The y-axis location can either be "left" or "right". You can customise the look of the axes with axis specific parameters (here: helper lines: true)

```
let x_axis = axis(min: 0, max: 11, step: 1, location: "bottom")
let y_axis = axis(min: 0, max: 13, step: 2, location: "left", helper_lines: true)
```

Now we need to create a plot object based on the axes and the data.

```
let pl = plot(axes: (x_axis, y_axis), data: data)
```

Last, we need to just call this function. In this case the width of the plot will be 100% and the height will be 33%.

```
scatter_plot(pl, (100%, 33%))
```

Parameters

```
scatter_plot(
  plot: plot,
  size: length array,
  caption: content,
  stroke: color,
  fill: color,
  render_axes: boolean
)
```

plot plot

The format of the plot variables are as follows:

- axes: Two axes are required. The first one as the x-axis, the second as the y-axis.
 Example: (x axis, y axis)
- data: An array of x and y pairs.
 Example: ((0, 0), (1, 2), (2, 4), ...)

```
Size length or array
```

The size as array of (width, height) or as a single value for both width and height

caption content

The name of the figure

Default: [Scatter Plot]

stroke color

The stroke color of the dots

Default: black

fill color

The fill color of the dots

Default: none

render_axes boolean

If the axes should be visible or not

Default: true

graph_plot

This function will display a graph plot based on the provided plot object. It functions like the scatter plot but connects the dots with lines.

How to create a simple graph plot

First, we need to define the data we want to map to the graph plot. In this case I will use some random sample data.

```
let data = ((0, 0), (1, 2), (2, 4), (3, 6), (4, 8), (5, 3), (6, 6), (7, 9), (11, 12))
```

Next, we need to define both the x and the y-axis. The x-axis location can either be "bottom" or "top". The y-axis location can either be "left" or "right". You can customise the look of the axes with axis specific parameters (here: helper lines: true)

```
let x_axis = axis(min: 0, max: 11, step: 1, location: "bottom")
let y_axis = axis(min: 0, max: 13, step: 2, location: "left", helper_lines: true)
```

Now we need to create a plot object based on the axes and the data.

```
let pl = plot(axes: (x_axis, y_axis), data: data)
```

Last, we need to just call this function. In this case the width of the plot will be 100% and the height will be 33%.

```
graph_plot(pl, (100%, 33%))
```

Parameters

```
graph_plot(
  plot: plot,
  size: length array,
  caption: content,
  rounding: ratio,
  stroke: color,
  fill: color,
  render_axes: boolean
)
```

plot plot

The format of the plot variables are as follows:

- axes: Two axes are required. The first one as the x-axis, the second as the y-axis.
 Example: (x_axis, y_axis)
- data: An array of x and y pairs.

```
Example: ((0, 0), (1, 2), (2, 4), ...)
```

Size length or array

The size as array of (width, height) or as a single value for both width and height

caption content

The name of the figure

Default: "Graph Plot"

rounding ratio

The rounding of the graph, 0% means sharp edges, 100% will make it as smooth as possible (Bézier)

Default: 0%

stroke color

The stroke color of the graph

Default: black

fill color

The fill color for the graph. Can be used to display the area beneath the graph.

Default: none

```
render_axes boolean

If the axes should be visible or not

Default: true
```

histogram

This function will display a histogram based on the provided plot object.

How to create a simple histogram

First, we need to define the data and the classes we want to map to the graph plot. In this case I will use some random sample data.

The tricky part about this is, that this data gets represented in classes. These are necessary to combine the data the right way, so the bars height can be displayed correctly. Here, I will use the same class size every time but once.

Let's create the data now:

```
let data = (
    18000, 18000, 18000, 18000, 18000, 18000, 18000, 18000, 18000, 18000,
    28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 28000, 2800
```

Now, we will define the classes. To do this we can use the class_generator(start, end, amount) and the class(lower_lim, upper_lim) function (see classify.typ)

```
let classes = class_generator(10000, 50000, 4)
classes.push(class(50000, 100000))
classes = classify(data, classes)
```

This will result in creating the following classes: (10000 - 20000, 20000 - 30000, 30000 - 40000, 40000 - 50000, 50000 - 100000).

Next, we need to define both the x and the y-axis. The x-axis location can either be "bottom" or "top". The y-axis location can either be "left" or "right". You can customise the look of the axes with axis specific parameters (here: show_markings: true and helper_lines: true)

```
let x_axis = axis(min: 0, max: 100000, step: 20000, location: "bottom", show_markings:
false)
let y_axis = axis(min: 0, max: 26, step: 3, location: "left", helper_lines: true)
```

Now we need to create a plot object based on the axes and the data.

```
let pl = plot(axes: (x_axis, y_axis), data: data)
```

Last, we just need to call this function. Here we render the histogram with a black outline around the bars, and a gray filling of the bars.

```
histogram(pl, (100%, 20%), stroke: black, fill: gray)
```

Parameters

```
histogram(
  plot: plot,
  size: length array,
  caption: content,
  stroke: color array,
  fill: color array,
  render_axes: boolean
)
```

plot plot

The format of the plot variables are as follows:

- axes: Two axes are required. The first one as the x-axis, the second as the y-axis.
 - Example: (x_axis, y_axis)
- data: An array of x and y pairs. Example: ((0, 0), (1, 2), (2, 4), ...)

Size length or array

The size as array of (width, height) or as a single value for both width and height

caption content

The name of the figure

Default: [Histogram]

stroke color or array

The stroke color of a bar or an array of colors, where every entry stands for the stroke color of one bar

Default: black

fill color or array

The fill color of a bar or an array of colors, where every entry stands for the fill color of one bar

Default: gray

render axes boolean

If the axes should be visible or not

Default: true

pie_chart

This function will display a pie chart based on the provided plot object.

How to create a simple pie chart

This is the easiest diagram to create. First we need to specify the data. I will use random data here.

```
let data = ((10, "Male"), (20, "Female"), (15, "Divers"), (2, "Other"))
```

Because no axes are required, we can skip this step and jump straight to creating the plot.

```
let p = plot(data: data)
```

Last, we just need to call this function. I will call it with all styles available.

```
pie_chart(p, (100%, 20%), display_style: "legend-inside-chart")
pie_chart(p, (100%, 20%), display_style: "hor-chart-legend")
pie_chart(p, (100%, 20%), display_style: "hor-legend-chart")
pie_chart(p, (100%, 20%), display_style: "vert-chart-legend")
pie_chart(p, (100%, 20%), display_style: "vert-legend-chart")
```

Parameters

```
pie_chart(
  plot: plot,
  size: length array,
  caption: content,
  display_style: string,
  colors: array,
  offset: length
)
```

plot plot

The format of the plot variables are as follows:

- axes: No axes are required.
- data: An array of single values or an array of (amount, value) tuples.
 Example: ((10, "Male"), (5, "Female"), (2, "Divers"), ...) or ("Male", "Male", "Male", "Female", "Female", "Divers", ...)

```
Size length or array
```

The size as array of (width, height) or as a single value for both width and height

```
caption content
The name of the figure
Default: [Pie chart]
```

display_style string Changes the style of the pie chart. Available are: "vert-chart-legend", "hor-chart-legend", "vert-legend-chart", "hor-legend-chart", "legend-inside-chart". Default: "hor-chart-legend"

```
colors array
```

The colors used in the pie chart. If not enough colors were specified, the colors get repeated.

Default: (red, blue, green, yellow, purple, orange)

```
offset length
```

The distance from the center to the text in the pie chart (only relevant when using "legend-inside-chart")

Default: 50%

bar_chart

This function will display a bar chart based on the provided plot object.

How to create a simple bar chart

First we need to specify the data, we want to display. I will use some random data here. let data = ((20, 2), (30, 3), (16, 4), (40, 6), (5, 7))

Next we need to create the axes. Keep in mind that, if you want to make the bars go from left to right, not bottom to top, you need to basically invert the x and y-axis creation. You can also customise the axes (here: show_markings: true and helper_lines: true).

```
let x_axis = axis(min: 0, max: 9, step: 1, location: "bottom")
let y_axis = axis(min: 0, max: 41, step: 10, location: "left", show_markings: true,
helper_lines: true)
```

When rotated: true, in other words the bars grow from left to right, the axis creation looks like this:

```
let x_axis = axis(min: 0, max: 41, step: 10, location: "bottom", show_markings: true,
helper_lines: true)
let y_axis = axis(min: 0, max: 9, step: 1, location: "left")
```

Now we need to create the plot object.

```
let pl = plot(axes: (x_axis, y_axis), data: data)
```

Last, we just call this function to display the chart. We specify fill colors for every single bar

to make it easier to differenciate and we make the bars 30% smaller to create small gaps between bars close to each other.

```
bar_chart(pl, (100%, 120pt), fill: (purple, blue, red, green, yellow), bar_width: 70%)
```

Parameters

```
bar_chart(
  plot: plot,
  size: length array,
  caption: content,
  stroke: color array,
  fill: color array,
  centered_bars: boolean,
  bar_width: ratio,
  rotated: boolean,
  render_axes: boolean
)
```

plot plot

The format of the plot variables are as follows:

- axes: Two axes are required. The first one as the x-axis, the second as the y-axis. Example: (x axis, y axis)
- data: An array of single values or an array of (amount, value) tuples.

```
Example: ((10, "Male"), (5, "Female"), (2, "Divers"), ...) or ("Male", "Male", "Male",
"Female", "Female", "Divers", ...)
```

Size length or array

The size as array of (width, height) or as a single value for both width and height

caption content

The name of the figure

Default: "Barchart"

```
stroke color or array
```

The stroke color of a bar or an array of colors, where every entry stands for the stroke color of one bar

Default: black

fill color or array

The fill color of a bar or an array of colors, where every entry stands for the fill color of one bar

Default: gray

```
centered_bars boolean
```

If the bars should be on the number its corresponding to

Default: true

```
bar_width ratio
```

how thick the bars should be in percent. (default: 100%)

Default: 100%

rotated boolean

If the bars should grow on the x_axis - this means the data gets mapped to the y-axis. Don't forget to create the axes accordingly.

Default: false

render_axes boolean

If the axes should be visible or not

Default: true

Classification

compare

This function is used to compare the data in the classifying process. In most cases you can leave it be.

If you want a different ordinality, you can overwrite this function.

Return specification

- -1 if val1 < val2
- 1 if val1 > val2
- 0 if val1 == val2

Parameters

```
compare(
  val1,
  val2
```

class

This is the constructor function for a single class used to classify data. Right now, this is only used for histograms.

Parameters

```
class(
  lower_lim: integer,
  upper_lim: integer
)
```

```
lower_lim integer
```

The lower limit of the class. (Inclusive)

```
upper_lim integer
```

The upper limit of the class. (Exclusive)

class_generator

Generates a number of classes similarly how axis fills the values parameter on its own. It splits the area from start to end into the with amount specified amount of classes.

Right now, this is only used for historams.

Example:

```
let classes = class_generator(10000, 50000, 4)
```

This will result in creating the following classes: (10000 - 20000, 20000 - 30000, 30000 - 40000, 40000 - 50000, 50000 - 100000).

Parameters

```
class_generator(
  start: integer,
  end: integer,
  amount: integer)
```

```
start integer
```

The lower limit of the first generated class.

```
end integer
```

The upper limit of the last generated class.

amount integer

How many classes should be generated.

classify

Classifies the provided data into the given classes. This has to be done to create a histogram.

Parameters

```
classify(
  data: array,
   classes: array,
   compare: function
)
```

data array

The data you want to classify (needs to be comparable by the compare function). It's either an array of single values or an array of tuples looking like this: (amount, value).

classes array

An array of classes the data should be mapped to (lower_limit and uper_limit need to be comparable).

compare function

The method used for comparing. Most of the time this doesn't need to be changed. If you want to use a different compare function, look at the specification for it (see: compare(val1, val2)).

Default: compare