

INF2705 Infographie

Spécification des requis du système Travail pratique 2 Le pipeline graphique

Table des matières

1	Introduction	2
	1.1 But	2
	1.2 Portée	2
	1.3 Références	2
2	2 Description globale	
	2.1 But	3
	2.2 Travail demandé	3
	2.3 Fichiers fournis	3
3	B Exigences	
	3.1 Exigences fonctionnelles	5
	3.2 Exigences non fonctionnelles	5
Α	Liste des commandes	6
В	Figures supplémentaires	6
С	Apprentissage supplémentaire	8

1 Introduction

Ce document décrit les exigences fonctionnelles et non fonctionnelles du TP2 « *Le pipeline gra-phique* » du cours INF2705 Infographie.

1.1 But

Le but des travaux pratiques est de permettre à l'étudiant d'appliquer directement les notions vues en classe.

1.2 Portée

Chaque travail pratique permet à l'étudiant d'aborder un sujet spécifique.

1.3 Références

- 1. Site du cours INF2705
- 2. Site du cours INF2990
- 3. Guide de programmation C++ (INF2990).

2 Description globale

2.1 But

Le but de TP est de permettre à l'étudiant de mettre en pratique les fonctions de contrôle du pipeline graphique d'OpenGL pour la modification des matrices et la manipulation de la caméra synthétique : Rotate(), Translate(), Scale(), PushMatrix(), PopMatrix() et LookAt().

Ce travail pratique lui permettra aussi d'utiliser les fonctions liées aux *Vertex Buffer Objects (VBOs)* : glGenBuffers(), glBindBuffers(), glBufferData() et glDrawElements().

2.2 Travail demandé

Partie 1 : le bras articulé et sa théière

On demande de réaliser un programme permettant d'afficher, au centre d'un quadrilatère, un bras articulé composé de cylindres et de sphères mis à l'échelle et tracés par des appels aux fonctions fournies (sans les modifier). Le bras possède deux articulations avec chacune un degré de liberté représentant un angle de rotation dans l'axe des Z. Les angles de rotation seront contrôlés interactivement afin de tourner ou plier le bras. Ces mouvements permettront à l'extrémité du bras d'atteindre n'importe quel point sur le plan horizontal. Enfin, une théière est affichée au bout du bras et une rotation supplémentaire permettra de verser le thé avec cette théière. La Figure 1 montre ce bras mécanique et la Figure 2 montre la théière bien connue en infographie (voir aussi annexe B).

Partie 2 : la caméra synthétique et utilisation de Vertex Buffer Objects (VBOs)

Le logiciel permettra de manipuler la caméra synthétique en utilisant a) soit la fonction LookAt() pour la placer dans l'espace, b) soit une combinaison de Translate() et de Rotate(). L'affichage doit être le même, peu importe si on utilise l'une ou l'autre version pour définir le point de vue. La souris contrôlera les deux angles définissant la position de la caméra, tel qu'illustré à la Figure 3.

Enfin, la théière sera affichée en utilisant deux VBOs (sommets et indices). Ceux-ci doivent être créés, initialisés et utilisés lors de l'affichage.

2.3 Fichiers fournis

Le code fourni présente une sphère, un cylindre et une théière sur un quadrilatère. La sphère et le cylindre serviront à construire le bras. Ils seront mis à l'échelle avec les facteurs indiqués dans le code.

FIGURE 1 – Bras sur un plan

FIGURE 2 - Théière attachée au bras

FIGURE 3 – Angles de déplacement de la caméra : thetaCam et phiCam

3 Exigences

3.1 Exigences fonctionnelles

Partie 1:

- E1. Les articulations sont dessinées avec des sphères et les bras avec des cylindres en utilisant les fonctions afficherCylindre() et afficherSphere().
- E2. Les fonctions Rotate(), Translate() et Scale() sont correctement utilisées pour les transformations géométriques nécessaires au dessin de chaque partie du bras.
- E3. Les fonctions PushMatrix() et PopMatrix() sont correctement utilisées pour sauvegarder l'état des matrices pour le dessin de chaque partie du bras. La taille du bras est respectée.
- E4. La théière est placée au bout du bras tel qu'illustré à la Figure 2.
- E5. Les flèches du clavier influencent les angles des articulations et l'orientation de la théière.
- E6. L'angle de rotation de la seconde articulation est limité.
- E7. Le logiciel utilise correctement les touches listées à l'annexe A.

Partie 2:

- E8. Les fonctions glGenBuffers(), glBindBuffers(), glBufferData() et glDrawElements() sont correctement utilisées afin d'utiliser deux VBOs (sommets et indices) pour afficher la théière.
- E9. La caméra est placée de façon à regarder à partir d'un point d'observation P_{obs} vers la base du bras. Cette position d'observation peut être déplacée autour de la base du bras, selon un système de coordonnées sphériques (azimuth et élévation : thetaCam et phiCam). On peut contrôler les angles de rotations et la distance de la caméra à la base du bras.
- E10. On peut choisir entre deux méthodes peuvent être utilisées pour choisir le point de vue :
 - (a) La fonction LookAt() est correctement utilisée.
 - (b) Les fonctions Translate() et Rotate() sont correctement utilisées.
- E11. Le déplacement de la souris avec le bouton enfoncé influence les angles.
- E12. L'angle d'élévation est limité afin d'empêcher la caméra d'être placée directement au-dessus ou directement en dessous de la théière.
- E13. Le rapprochement de la caméra à la théière est limité afin de ne pas inverser la projection.
- E14. Le logiciel utilise correctement les touches listées à l'annexe A.

3.2 Exigences non fonctionnelles

Pour la partie 1, des modifications sont principalement à faire dans les fonctions afficherScene() et afficherBras(). Pour la partie 2, le dessin peut se faire en ajoutant les fonctions creerVBO() et definirCamera().

ANNEXES

A Liste des commandes

	Touche	Description
	g	Passage fil de fer ou plein
Flèches clavier : gauche, droite		Le bras tourne autour de son axe (phi)
	Flèches clavier : haut, bas	L'avant-bras se plie ou se déplie (theta)
	[ou]	La théière s'incline ou remonte (pour verser le thé)
	1	(caméra) Basculer l'utilisation de LookAt() ou l'utilisation de
		Translate() et Rotate() pour placer la caméra
	+ ou -	(caméra) Rapprocher ou éloigner la caméra de la base du
		bras
	r	(caméra) Remise à zéro de la caméra
	Mouvements souris en X avec	(caméra) Rotation de la caméra autour de l'axe des Z
	bouton enfoncé	
	Mouvements souris en Y avec	(caméra) Changement de l'angle d'élévation de la caméra
	bouton enfoncé	
	ESC	Arrêt de l'application

B Figures supplémentaires

Allez voir la théière bien connue en infographie sur Internet :

http://www.sjbaker.org/wiki/index.php?title=The_History_of_The_Teapot http://en.wikipedia.org/wiki/Utah_teapot.

FIGURE 4 – Esquisse

FIGURE 5 – La théière utilisée dans d'autres situations

C Apprentissage supplémentaire

- 1. Ajoutez une rotation pour manipuler le bras en 3D afin d'atteindre des positions en hauteur.
- 2. Si vous voulez que le bout du bras se rende à une certaine position au-dessus du plan (p.e. pour y saisir quelque chose), comment allez-vous vous y prendre pour déterminer les valeurs appropriées des angles afin de positionner le bras à cet endroit ? (C'est ce qu'on nomme la « cinématique inverse ».)
- 3. Ajoutez un mode automatique pour animer le bras. Utiliser diverses touches du clavier pour contrôler sa vitesse ou son déplacement.
- 4. Affichez la théière sans utiliser aucun VBO.
- 5. Une fois la théière affichée, ajoutez ou modifiez les VBOs existants pour afficher autre chose (ex. : un cube, une sphère).
- 6. Quel est le nombre minimal de PushMatrix()/PopMatrix() à utiliser? Pourquoi faut-il éviter d'en ajouter inutilement?