(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-70016

(43)公開日 平成9年(1997)3月11日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	FΙ	技術	表示箇所
H04N 5	/92		H 0 4 N 5/92	Н	•
G11B 20	/12 1 0 3	9295-5D	G11B 20/12	103	
H04N 7	/30		H 0 4 N 7/133	. A .	-

審査請求 未請求 請求項の数20 OL (全 17 頁)

(21)出願番号	特顯平8-133909	(71)出願人 390019839
		三星電子株式会社
(22)出願日	平成8年(1996)5月28日	大韓民国京畿道水原市八達区梅麓洞416
	•	(72)発明者 金 泰 應
(31)優先権主張番号	13686/1995	大韓民国京畿道水原市八達區梅攤 4 洞833
(32)優先日	1995年 5 月29日	-11番地
(33)優先権主張国	韓国(KR)	(74)代理人 弁理士 伊東 忠彦 (外1名)

(54) 【発明の名称】 ディジタルビデオデータ記録/再生方法及びその装置

(57)【要約】

(修正有)

【課題】トリックデータ用ECC回路無しに正常又はトリックモードで一つのECC回路によりハードウェアの負担を減らすATV又はDVB信号を記録/再生の方法とその装置を提供する。

【解決手段】記録時は伝送パケット構造で伝送される信号から正常、トリック再生データを抽出し、正常再生データを2個の伝送パケット毎に5個のシンクブロックに形成し、正常再生データはSD-ECC構造のトリック再生データを所定パターンデータに取替えて外部エラー訂正符号化する。トリック再生データはSD-ECC構造のビデオデータ領域に配列して同構造のビデオ補助データを所定パターンデータに取替えてトリック再生データに対してのみ外部エラー訂正符号化した後、5個のシンクブロック単位に形成する。外部エラー訂正符号化の正常及びトリック再生データ領域に再配列して内部エラー訂正符号化する。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 所定間隔で供給され独立的にデコーディング可能なピクチャデータと前記所定の間隔間の時間で供給される依存的にデコーディング可能なデータとを含むATV信号又はDVB信号を正常再生データとトリックデータとに区分してディジタルビデオテーブに記録する方法において、

- (a) 伝送パケットで伝送される所定間隔で供給され独立的にデコーディング可能なピクチャデータと前記所定間隔間の時間で供給される依存的にデコーディング可能 10なデータを正常再生データとして用いる段階と、
- (b) 前記所定間隔で供給され独立的にデコーディング 可能なピクチャデータからトリック再生データを抽出す る段階と、
- (c)前記正常再生データを所定個のシンクブロックより構成された基準ブロックに形成する第1フォーマッティング段階と、
- (d)前記(c)段階で形成された正常再生データ基準プロックを正常再生データ領域、トリック再生データ領域及びビデオ補助データ領域を有する所定のデータ構造で配列して外部パリティを付加するものの、前記外部パリティは前記トリック再生データ領域のトリック再生データとは独立的に付加される第1外部エラー訂正符号化段階と、
- (e)前記抽出されたトリック再生データを前記正常再生及びトリック再生データ領域に配列してトリック用外部パリティを付加するものの、前記トリック用外部パリティは前記ビデオ補助データ領域のビデオ補助データとは独立的に付加される第2外部エラー訂正符号化段階と、
- (f)前記外部エラー訂正符号化されたトリック再生データとトリック用外部パリティを前記基準プロック単位 に形成する第2フォーマッティング段階と、
- (g)前記外部エラー訂正符号化された正常再生データと前記(f)段階で形成されたトリック再生データ基準ブロックとトリックパリティ基準ブロックを前記正常再生データ領域及びトリック再生データ領域に配列して内部パリティを付加する内部エラー訂正符号化段階と、
- (h)前記内部エラー訂正符号化された正常再生データとトリック再生データを基準ブロック単位で前記テープ上の各トラックの所定の位置に記録する記録段階とを含むことを特徴とするディジタルビデオデータの記録方法。

【請求項2】 前記(c)及び(f)段階では二つの伝送パケット単位で伝送パケット I Dを分離して五つのシンクブロックを形成し、五つのシンクブロックが一つの基準ブロックであることを特徴とする請求項 I に記載のディジタルビデオデータの記録方法。

【請求項3】 前記二つのパケットデータの含まれた五 つのシンクブロック内には各パケット単位でデコーディ ングする時点を示す情報と、少なくともプログラム I D、データ種類、伝送ビット率の種類、トリックモードのための基準プロックを示すビットとを含む拡張可能な付加ヘッドが付加されることを特徴とする請求項 1 に記載のディジタルビデオデータの記録方法。

【請求項4】 前記トリックモードを示すビットは二つの伝送パケットのうち該当する伝送パケットを示すトッグルビットと前記トリック再生データ基準ブロック ID 及び前記トリックパリティ基準ブロック IDを示すビットとを含むことを特徴とする請求項3 に記載のディジタルビデオデータの記録方法。

【請求項5】 前記(f)段階で付加されたトリック用外部パリティも基準プロックより構成し、各基準プロックの五つのシンクプロックがトリック用パリティで完全に埋まらないと空のシンクプロックに対して所定のデータパターンで埋めることを特徴とする請求項1に記載のディジタルビデオデータ記録方法。

【請求項6】 前記(d)段階では前記トリック再生データのトリック再生データを予め所定のデータバターンに取り替えて正常再生データに対して外部エラー訂正符号化し、前記(e)段階では前記ビデオ補助データ領域のデータを所定パターンに取り替えてトリック再生データに対して外部エラー訂正符号化することを特徴とする請求項1に記載のディジタルビデオデータの記録方法。

【請求項7】 前記所定のデータパターンはパターンに おいて各バイトのためのそれぞれの所定の数より構成さ れることを特徴とする請求項6 に記載のディジタルビデ オデータの記録方法。

【請求項8】 前記パターンにおいて各バイトのための 30 前記それぞれの所定数は同一であることを特徴とする請 求項7に記載のディジタルビデオデータの記録方法。

【請求項9】 前記パターンにおいて各バイトのための前記それぞれの所定数は算術的なゼロであることを特徴とする請求項8に記載のディジタルビデオデータの記録方法。

【請求項10】 ディジタルビデオデータは所定間隔で供給され独立的にデコーディング可能なピクチャデータと前記所定間隔間の時間で供給される依存的にデコーディング可能なデータとを含むATV信号又はDVB信号を示し、前記正常再生データは所定間隔で供給され独立的にデコーディング可能なピクチャデータと前記所定間隔間の時間で供給される依存的にデコーディング可能なデータであり、前記トリック再生データは所定個のシンクブロックよりなる基準ブロックにフォーマッティングして正常再生データ領域、トリック再生データ領域及びビデオ補助データ領域を有する所定のデータ構造で正常再生データ領域に配列した後トリック再生データを除いて外部エラー訂正符号化し、前記トリック

- 7

再生データは前記データ構造の正常再生及びトリック再 生データ領域に配列してビデオ補助データを除いて外部 エラー訂正符号化した後基準ブロックを形成し、前記外 部エラー訂正符号化された正常再生データ及びトリック 再生データを内部エラー訂正符号化してテープ上の所定 位置に基準ブロック単位で記録し、これにより正常再生 データ及びトリック再生データを再生する方法におい て、

(a') 前記テープ上に基準プロックで記録された内部 エラー訂正符号化された正常再生データとトリック再生 10 データとを再生する段階と、

(b')前記再生された正常再生データとトリック再生 データを前記データ構造に再生して内部エラー訂正復号 化する段階と、

(c') 前記トリック再生データ領域のトリック再生デ ータを所定のデータパターンに取り替えて正常モード時 前記内部エラー訂正復号化された正常再生データを外部 エラー訂正復号化する段階と、

(d')前記正常モードの間、前記外部エラー訂正復号 化された正常再生データを伝送パケット構造で出力する 段階と、

(e')内部エラー訂正復号化されたトリック再生デー タを前記データ構造のビデオデータ領域に配列してトリ ックモード時前記ビデオ補助データ領域のビデオ補助デ ータを所定のデータパターンに取り替えて外部エラー訂 正復号化する段階と、

(f') 前記トリックモードの間、前記外部エラー訂正 復号化されたトリック再生データを伝送パケット構造で 出力する段階とを含むことを特徴とするディジタルビデ オデータの再生方法。

【請求項11】 前記(c')及び(e')段階におい て所定のデータバターンはバターンにおいて各バイトの ためのそれぞれの所定数より構成されることを特徴とす る請求項10に記載のディジタルビデオデータの再生方 法。

【請求項12】 前記パターンにおいて各バイトのため の前記それぞれの所定数は同一であることを特徴とする 請求項11に記載のディジタルビデオデータの再生方 法。

前記パターンにおいて各バイトのため 【請求項13】 の前記それぞれの所定数は算術的なゼロであることを特 徴とする請求項12に記載のディジタルビデオデータの 再生方法。

【請求項14】 所定間隔で供給される独立的にデコー ディング可能なピクチャデータと前記所定間隔間の時間 で供給される依存的にデコーディング可能なデータとを 含むATV信号又はDVB信号を記録及び再生する方法 において、

(a") 伝送パケットで伝送される所定間隔で供給され

所定間隔間の時間で供給される依存的にデコーディング 可能なデータとを再生データとして用いる段階と、

(b")前記所定間隔で供給される独立的にデコーディ ング可能なピクチャデータからトリック再生データを抽 出する段階と、

(c*) 前記正常再生データを所定個のシンクブロック より構成された基準ブロックに形成する段階と、

(d") 前記形成された正常再生データの基準ブロック を正常再生データ領域、トリック再生データ領域及びビ デオ補助データ領域を有する所定のデータ構造で配列し て前記トリック再生データ領域のトリック再生データは 所定のデータパターンに取り替えて外部パリティを付加 することにより外部エラー訂正符号化する段階と、

(e') 前記抽出されたトリック再生データを前記正常 再生及びトリック再生データ領域に配列して前記ビデオ 補助データ領域のビデオ補助データは所定のデータバタ ーンに取り替えてトリック用外部パリティを付加すると とにより外部エラー訂正符号化する段階と、

(f")前記外部エラー訂正符号化されたトリック再生 データとトリック用外部パリティを前記基準プロック単 位に形成する段階と、

(g")前記外部エラー訂正符号化された正常再生デー タと前記形成されたトリック再生データ基準ブロックと トリックパリティ基準プロックとを前記正常再生データ 領域及びトリック再生データ領域に配列して内部パリテ ィを付加することにより内部エラー訂正符号化する段階

(h")前記内部エラー訂正符号化された正常再生デー タとトリック再生データを基準ブロック単位で前記テー プ上の各トラックの所定の位置に記録する記録段階と、

(i ") 前記テープ上に基準プロック単位で記録された 内部エラー訂正符号化された正常再生データとトリック 再生データを再生する段階と、

(j")前記再生された正常再生データ及びトリック再 生データを前記データ構造に形成して内部エラー訂正復 号化する段階と、

(k")正常モード時前記トリック再生データ領域のデ ータを所定のデータバターンに取り替えて前記内部エラ 一訂正復号化された正常再生データを外部エラー訂正復 40 号化する段階と、

(1")前記正常再生モードの間、前記外部エラー訂正 復号化された正常再生データを伝送バケット構造で出力 する段階と、

(m")内部エラー訂正復号化されたトリック再生デー タを前記データ構造のビデオデータ領域に配列してトリ ックモード時前記ビデオ補助データ領域のビデオ補助デ ータを所定のデータバターンに取り替えて外部エラー訂 正復号化する段階と、

(n") 前記トリックモードの間前記外部エラー訂正復 る独立的にデコーディング可能なピクチャデータと前記 50 号化されたトリック再生データを伝送パケット構造で出

· 力する段階とを含むことを特徴とするディジタルビデオ データの記録及び再生方法。

【請求項15】 前記(c")及び(f")段階におい て二つの伝送パケット単位で伝送パケットIDを分離し て五つのシンクブロックを形成し、五つのシンクブロッ クが一つの基準ブロックであることを特徴とする請求項 14 に記載のディジタルビデオデータの記録及び再生方 法。

【請求項16】 前記二つのパケットデータの含まれた ィングする時点を示す情報と、少なくともプログラム【 D、データの種類、伝送ビット率の種類、トリックモー ドのためのトリック再生データ及びトリックパリティの 基準ブロックのIDを示すビットを含む拡張可能な付加 ヘッドが付加されるととを特徴とする請求項15に記載 のディジタルビデオデータの記録及び再生方法。

【請求項17】 前記所定のデータパターンにおいて各 バイトのための前記それぞれの所定数は算術的なゼロで あることを特徴とする請求項14に記載のディジタルビ デオデータの記録及び再生方法。

【請求項18】 所定間隔で供給される独立的にデコー ディング可能なピクチャデータと前記所定間隔間の時間 で供給される依存的にデコーディング可能なデータとを 含むATV信号又はDVB信号を記録及び再生する方法 において、

前記正常再生データを所定個のシンクブロックより構成 された基準ブロックに形成する第1フォーマッティング 手段と、

前記第1フォーマッティング手段で形成された正常再生 データ基準ブロックを正常再生データ領域、トリック再 生データ領域及びビデオ補助データ領域を有する所定の データ構造で配列して外部パリティを付加するものの、 前記外部パリティは前記トリック再生データ領域のトリ ック再生データとは独立的に付加される第1外部エラー 訂正符号化手段と、

前記所定間隔で供給される独立的にデコーディング可能 なピクチャデータからトリック再生データを抽出する抽 出手段と、

前記抽出されたトリック再生データを前記正常再生及び トリック再生データ領域に配列してトリック用外部パリ ティを付加するものの、前記トリック用外部パリティは 前記ビデオ補助データ領域のビデオ補助データとは独立 的に付加される第2外部エラー訂正符号化手段と、

前記外部エラー訂正符号化されたトリック再生データ及 びトリック用外部パリティを前記基準ブロック単位に形 成する第2フォーマッティング手段と、

前記外部エラー訂正符号化された正常再生データと第2 フォーマッティング手段で形成されたトリック再生デー タ基準ブロックとトリックパリティ基準ブロックとを前 正常再生データ領域及びトリック再生データ領域に配列 50 して内部パリティを付加する内部エラー訂正符号化手段 Ł.

前記内部エラー訂正符号化された正常再生データ及びト リック再生データを基準ブロック単位で前記テープ上の 各トラックの所定位置に記録する記録手段とを含むこと を特徴とするディジタルビデオデータの記録装置。

【請求項19】 ディジタルビデオデータは所定間隔で 供給される独立的にデコーディング可能なピクチャデー タと前記所定間隔間の時間で供給される依存的にデコー 五つのシンクブロック内には各パケット単位でデコーデ 10 ディング可能なデータとを含むATV信号又はDVB信 号を示し、前記正常再生データは所定間隔で供給される 独立的にデコーディング可能なピクチャデータと前記所 定間隔間の時間で供給される依存的にデコーディング可 能なデータであり、前記トリック再生データは所定間隔 で供給される前記独立的にデコーディング可能なピクチ ャデータから抽出されたデータであり、前記正常再生デ ータは所定個のシンクブロックよりなる基準ブロック単 位にフォーマッティングして正常再生データ領域、トリ ック再生データ領域及びビデオ補助データ領域を有する 20 所定のデータ構造で正常再生データ領域に配列した後ト リック再生データを除いて外部エラー訂正符号化し、前 記トリック再生データは前記正常再生及びトリック再生 データ領域に配列してビデオ補助データを除いて外部エ ラー訂正符号化した後基準ブロックを形成し、前記外部 エラー訂正符号化された正常再生データ及びトリック再 生データを内部エラー訂正符号化してテープ上の所定位 置に基準ブロック単位で記録し、とれにより正常再生デ ータ及びトリック再生データを再生する方法において、 前記テープ上に基準ブロック単位で記録された内部エラ 30 一訂正符号化された正常再生データとトリック再生デー タとを再生する段階と、

> 前記再生された正常再生データ及びトリック再生データ を前記データ構造で形成して内部エラー訂正復号化する 内部エラー訂正復号化手段と、

正常モード時、前記トリック再生データ領域のトリック 再生データを所定のデータパターンに取り替えて前記内 部エラー訂正復号化された正常再生データを外部エラー 訂正復号化し、トリックモード時、内部エラー訂正復号 化されたトリック再生データを前記正常再生及びトリッ ク再生データ領域に配列して前記ビデオ補助データ領域 のビデオ補助データを所定のデータパターンに取り替え て外部エラー訂正復号化する外部エラー訂正復号化手段 Ł.

前記正常モードの間、前記外部エラー訂正復号化された 正常再生データを伝送パケット構造で出力し、前記トリ ックモードの間前記外部エラー訂正復号化されたトリッ ク再生データを伝送パケット構造で出力するデフォーマ ッティング手段とを含むことを特徴とするディジタルビ デオデータの再生装置。

【請求項20】 所定間隔で供給され独立的にデコーデ

ィング可能なピクチャデータと前記所定間隔間の時間で 供給される依存的にデコーディング可能なデータとを含 むATV信号又はDVB信号を正常再生データとトリッ ク再生データとに区分してディジタルビデオテープに記 録及び再生する装置において、

正常再生データを所定個のシンクブロックより構成され た基準プロックに形成する第1フォーマッティング手段 ٠Ł.

前記第1フォーマッティング手段で形成された正常再生 データ基準ブロックを正常再生データ領域、トリック再 10 生データ領域及びビデオ補助データ領域を有する所定デ ータ構造で配列して外部パリティを付加するものの、前 記外部パリティは前記トリック再生データ領域のトリッ ク再生データとは独立的に付加される第1外部エラー訂 正符号化手段と、

前記所定間隔で供給される独立的にデコーディング可能 なピクチャデータからトリック再生データを抽出する抽 出手段と、

前記抽出されたトリック再生データを前記正常再生及び トリック再生データ領域に配列してトリック用外部パリ ティを付加するものの、前記トリック用外部パリティは 前記ビデオ補助データ領域のビデオ補助データとは独立 的に付加される第2外部エラー訂正符号化手段と、

前記外部エラー訂正符号化されたトリック再生データと トリック用外部パリティを前記基準ブロック単位に形成 する第2フォーマッティング手段と、

前記外部エラー訂正符号化された正常再生データと第2 フォーマッティング手段で形成されたトリック再生デー タ基準ブロックとトリックパリティ基準ブロックとを前 正常再生データ領域及びトリック再生データ領域に配列 して内部パリティを付加する内部エラー訂正符号化手段

前記内部エラー訂正符号化された正常再生データ及びト リック再生データを基準プロック単位で前記テープ上の 各トラックの所定位置に記録する記録手段と、

前記テープ上に基準ブロック単位で記録された内部エラ 一訂正符号化された正常再生データとトリック再生デー タとを再生する再生手段と、

前記再生された正常再生データ及びトリック再生データ を前記データ構造で形成して内部エラー訂正復号化する 内部エラー訂正復号化手段と、

正常モード時前記トリック再生データ領域のトリック再 生データを所定のデータパターンに取り替えて前記内部 エラー訂正復号化された正常再生データを外部エラー訂 正復号化し、前記トリックモード時内部エラー訂正復号 化されたトリック再生データを前記正常再生及びトリッ ク再生データ領域に配列して前記ビデオ補助データ領域 のビデオ補助データを所定のデータパターンに取り替え て外部エラー訂正復号化する外部エラー訂正復号化手段 Ł.

前記正常モードの間、前記外部エラー訂正復号化された 正常再生データを伝送パケット構造で出力し、前記トリ ックモードの間、前記外部エラー訂正復号化されたトリ ック再生データを伝送パケット構造で出力するデフォー マッティング手段とを含むことを特徴とするディジタル ビデオデータの記録及び再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はディジタルビデオデ ータの記録/再生方法及びその装置に係り、特にATV (Advanced Television)信号やDVB (Digital Video B roadcasting)信号を記録及び再生する装置においてトリ ック再生データのためのECC (Error Correction Cod e) 構造がSD(Standard Definition) 信号のECC構 造と同一の構造を有する上に別途のトリック再生データ のためのエラー訂正回路なしにエラー訂正するディジタ ルビデオデータの記録/再生方法及びその装置に関す る。

[0002]

【従来の技術】最近、日本ではNTSC信号、PAL信 20 号及びHD (High Definition)信号のSD信号をディジ タルビデオテープに記録及び再生するSD-VCRが開 発され、これによるSD信号のフォーマットが確定され た。ATV-VCRとDVB-VCRはATV信号及び DV B信号をディジタルビデオテープに記録及び再生し

【0003】ATV信号及びDVB信号はMPEG(Mov ing Picture Experts Group) - 2 構造を有する信号であ る。MPEG-2信号を記録及び再生するATV-VC R及びDVB-VCRはSD-VCRの記録フォーマッ トによる。ととで、DVB-VCRはATV-VCRに 比しディジタルビデオテープ上に複数のプログラムを記 録し得る長所がある。従って、DVB-VCRはデータ の画質の特性により伝送率が多様な特徴がある。

【0004】該ATV信号やDVB信号が伝送路を通じ てそれぞれATV-VCRやDVB-VCRに入力され る時は図1に示されたようにMPEG-2構造を有する 伝送パケットとして入力されている。即ち、伝送路上の データはMPEG-2のシステム層構造となっており、 該システム層構造は図1に示されているように188パ イト単位のパケット構造を有する。図1において、4バ イトのヘッド情報は1バイトのシンクと、3バイトのサ イド情報とよりなっている。ここで、ヘッド情報のバイ ト数は可変され得る。パケットでヘッド情報を除いた他 の領域にはビデオデータ、オーディオデータ又は使用者 データなどが入っている。ここで、ビデオデータは圧縮 されている。

【0005】一方、SD信号はピクチャ内符号化された データであり、ECC構造となっている。該エラー訂正 50 符号化のためのコードは通常的な2次元変形されたリー

ドソロモンコードである。即ち、通常データバイトはそ れぞれ行及び列に配列されるもとの見なされている。行 方向に延びるディジタルビデオデータのためのSD信号 のエラー訂正コード (以下、SD-ECCと称する) は 内部コードと呼ばれ(85,8)で示し、ディジタルビ デオデータの行毎に85バイトの8バイトは行パリティ を伝えるために用いられる。

【0006】列方向に延びるディジタルビデオデータの ためのSD-ECCは外部コードと呼ばれ(149, 1 1) で示し、ディジタルビデオデータの列毎に149パ 10 イトの11バイトは列バリティを伝えるために用いられ る。記録時には列方向に138バイトの外部コードに対 して11バイトの外部パリティを付加して外部エラー訂 正符号化した後、行方向に77パイトの内部コードに対 して8パイトの内部パリティを付加して内部エラー訂正 符号化する。

【0007】再生時は先ず、行方向に内部エラー訂正復 号化するが、85パイトのうち最大4パイトまでエラー 訂正した後、訂正できなかったシンクブロックにエラー フラグを付加する。この際、外部エラー訂正復号化は、 訂正されるシンクブロックを示すためのエラーフラグを 用いて訂正できなかったシンクブロックを訂正し149 バイトのうち最大11バイトまで列方向にエラー訂正を 行う。

【0008】そして、SD信号は各ピクチャがイントラ ピクチャのみより構成され、各ピクチャは5個のセグメ ントに分離されており、SD信号はピクチャの各セグメ ントの所定位置にある一つずつのマクロブロックを集め て5個のマクロブロックを構成する。5個のマクロブロ ック当たりビット数が固定され、5個のマクロブロック 単位でビデオセクタにヘッドがスキャンし始める方向に 順次に配置する。これにより、テープ上には別途のトリ ック再生データ領域がなくてもトリック再生が可能であ った。この際、記録するために伝送される信号は通常8 個の列と行に配列されたDCTブロックを構成し、所定 個(通常4個)の輝度信号のDCTブロックと所定個

(通常2個)の色度信号のDCTブロックとを集めてマ クロブロックを形成してDCTブロック単位で可変長符 号化されたコードのビット数をマクロブロック単位で一 定に制御している。

【0009】図2はSD-VCR記録フォーマットを有 するディジタルビデオテープ上に記録のために供給され るビデオセクタ信号のフォーマットである。図2に示さ れたように、ディジタルビデオテープ上のビデオセクタ はECC構造よりなっており、該SD-ECC構造は第 1ビデオ補助データ領域である19~20シンクブロッ ク、ビデオデータ領域である21~155シンクブロッ ク、第2ビデオ補助データ領域である156シンクブロ ック、外部パリティ領域である157~167シンクブ ロックより構成される。各シンクブロックは2バイトの 50 的にコーディング可能なイントラピクチャデータと、先

シンコード、3バイトのID、77バイトのデータ及び 内部エラー訂正のための8パイトの内部パリティより構 成される。

【0010】一方、ATV-VCRとDVB-VCRの 記録フォーマットは図2に示されたようなSD-VCR の記録フォーマットを有するECC構造よりなっている が、図2の22~155シンクブロックのビデオデータ 領域に対して図3及び図4に示されたように正常再生デ ータ領域とトリック再生データ領域が別途に存在する。 【0011】図3に示されたECC構造は21~155 シンクブロックのビデオデータ領域に対して21~12 6シンクブロックの正常再生データ領域と127~15 5シンクフロックのトリック再生データ領域とよりなっ ている。図3に示されたECC構造は一対のトラックデ ータ(ビデオデータ、オーディオデータなど)を最大倍 速の倍に対応するトラックに繰り返し記録する記録フォ ーマットを有するテープに適用される方式であり、トリ ック再生データ領域を各トラックの所定位置に配置す

【0012】図3の記録方式は正確なサーボ制御無しに 反復記録領域内でテープ上のトラックをスキャンするだ けで済むので記録/再生装置のコストが上がることなく トリック再生を具現する。しかしながら、反復記録によ り記録領域を大いに消費する。さらに、ピクチャ速度が 低倍速では遅すぎてフリッカーとジャーク動きが生じ、 よって目の疲れや画質の劣化を来す。

【0013】図4に示されたECC構造は各倍速に対応 するスキャン領域にトリック再生データを配置して記録 する記録フォーマットを有するテープに適用される方式 30 であり、トリック再生データ領域がk個の形態で分散配 置される。即ち、図2に示されたビデオデータ領域に対 して第1乃至第kトリック再生データ領域が総N(CC では30)個のシンクブロック、第1乃至第m正常再生 データ領域が総M(ここでは105)個のシンクブロッ クよりなっている。図4の記録方式はトリック再生時の 再生画面の画質は良好であるが、必ず各トリック再生速 度のための対応配置領域をスキャンしなければならない のでサーボ制御が正確であるべきで、且つ髙コストとな る。

【0014】図3及び図4において、トリック再生デー 40 タ領域が30個のシンクブロックより構成されると説明 したが、これは可変できる。現在、図3及び図4の記録 方式の各短所を補う記録方式に対する研究が行われてい る。一方、ATV信号及びDVB信号はMPEG-2構 造であり、ピクチャ間符号化されている。ここで、ピク チャ間符号化時、1GOP (通常15個のピクチャ) 単 位内のイントラピクチャを除いた他のピクチャは隣接ピ クチャ間の差のみを符号化する。

【0015】1GOP内には他の画面データ無しに独立

行するイントラピクチャデータや予測されるピクチャデータから隣接するピクチャデータ間の動き補償を用いてコーディンクできるブリディックティドピクチャデータと、先行するイントラピクチャデータ又は予測ピクチャデータと後続するイントラピクチャデータ又は予測ピクチャデータから動き補償を用いてコーディング可能な双方向予測ピクチャデータとが含まれる。

【0016】さらに、ディスプレイするための一画面は記録テープ上の所定個(ATV信号の場合10個、DV B信号の場合12個)のトラックより構成されるので例 10 えば、15個のピクチャより構成された1GOPのデータを記録するのに必要なトラック数はATV信号の場合平均150個であり、DVB信号の場合は平均180個である。

[0017] そして、ATV-VCRとDVB-VCR においてデータは188バイト単位の伝送パケットに入 力される。この際、ATV-VCRとDVB-VCRで 用いられるテープ上には所定個のトラックが1ピクチャ を構成する。各トラックは図3又は図4に示されたよう なSD-VCRの記録フォーマットを有するECC構造 20 を有する上に列方向に90パイトのシンクブロックより なる点から着目して伝送パケットを二つの伝送パケット 単位で図5に示されたように77バイトの5個のシンク ブロックにマッピングして内部及び外部エラー訂正符号 化した後ディジタルビデオテープのビデオセクタに記録 している。ととで、2個の伝送パケットを5シンクプロ ックにマッピングすることを通常2対5マッピングとい い、通常各シンクブロック毎に1バイトの付加ヘッドが 付加され、各パケット毎にデコーディングする時点を示 す3バイトのタイムスタンプが付加されている。

【0018】ここで、図3及び図4に示されたように正常再生データ領域とトリック再生データ領域が別途に存在するSD-ECC構造の記録フォーマットを有するATV-VCR、DVB-VCRにおいて、該トリック再生データに対しても外部パリティと内部パリティとを付加するエラー訂正符号化及び再びエラー訂正符号化されたトリック再生データを復号化する復号化過程が必要とされる。

【0019】このため、トリック再生データを正常再生データのようなSD-ECC構造を有する上にエラー訂正符号化及び復号化する方法と、トリック再生データにのみ対してSD-ECC構造でなく別途のECC構造でエラー訂正符号化及び復号化する方法とが提案されている。もし、トリック再生データがSD-ECC構造と他のECC構造を有すればトリック再生データのエラー訂正のための追加の複雑なハードウェアを必要とする問題点が生じる。

【0020】さらに、エラー訂正符号化回路よりはエラー訂正復号化回路のハードウェアが一層複雑である。 又、正常再生データのためのエラー訂正符号化及び復号 12

化回路と別途のトリック再生データのためのエラー訂正符号化及び復号化回路を用いるとハードウェアが必然的に増加する。本発明によれば、ATV-VCR及びDVB-VCRにおいて、正常再生データとトリック再生データの両方ともSD-ECCを有する上にエラー訂正符号化及び復号化する方法が提案されている。

【0021】さらに、正常再生データだけでなくトリック再生に対しても2対5マッピングが提案されている。もし、正常再生データのみ2対5マッピングし、トリック再生データに対しては2対5マッピングしないと、テーブ上にトリック再生データの記録される位置が倍速及び記録データの配置方法により異なるので、トリック再生データの各シンクブロックに対して別途のIDを与えるハードウェアを必要としIDによる付加情報が増える。

【0022】さらに、ATV-VCRと多様な伝送率を有するDVB-VCRとの互換性を提供するために正常再生データ及びトリック再生データを2対5マッピングする時、図5に示された従来の方法のように各シンクブロック毎に1バイトの付加へッドを付加せずに各パケット毎に拡張可能な所定ビットの付加へッドを付加して2対5マッピングする方法を提案している。

【0023】ここで、DVB信号は伝送率の種類とプログラムの種類を示すビット及び1バイトのシンクブロックIDをさらに必要とするので、少なくとも10ビットの付加へッドを必要とする。従って、従来のように各シンクブロック毎に付加される1バイトの付加へッドでは不充分なのでATV-VCRとDVB-VCRが互換できない問題がある。

30 [0024]

50

【発明が解決しようとする課題】従って、本発明の第1目的はATV信号やDVB信号をSD-VCRの記録フォーマットを有するテープに記録/再生する方法において、正常再生データだけでなくトリック再生データに対してSD-ECC構造と同一な構造を用いてエラー訂正符号化及び復号化するディジタルビデオデータの記録/再生方法を提供することにある。

【0025】本発明の第2目的は正常再生データだけでなくトリック再生データもSD-ECC構造を有する上に正常再生データとトリック再生データの両方を基準ブロック単位でディジタルビデオテーブ上の正常再生データ領域及びトリック再生データ領域にそれぞれ記録及び再生するディジタルビデオデータの記録/再生方法を提供することにある。

【0026】本発明の第3目的はATV-VCRとDVB-VCRが互いに互換性を有するように各伝送パケット毎に所定ビットの付加へッドを付加して2個の伝送パケットから5個のシンクブロックにマッピングして基準ブロックを構成して基準ブロック単位で正常及びトリック再生データをディジタルビデオテープ上に記録及び再

30

13

生する方法を提供することにある。

【0027】本発明の第4目的はトリック再生データの ための別途のエラー訂正符号化無しに正常モード又はト リックモードにより一つのエラー訂正回路を用いて正常 再生データ及びトリック再生データをエラー訂正し得る ディジタルビデオデータの記録/再生装置を提供するこ とにある。

[0028]

【発明を解決するための手段】前述した目的を達成する ために、本発明の特徴は記録時は伝送パケット構造で伝 10 送される信号から正常再生データとトリック再生データ を抽出し、抽出された正常再生データを2個の伝送パケ ット毎に5個のシンクブロックで形成し、正常再生デー タに対してはSD-ECC構造のトリック再生データを 所定パターンデータに取り替えて外部エラー訂正符号化 する。抽出されたトリック再生データはSD-ECC構 造のビデオデータ領域に配列してSD-ECC構造のビ デオ補助データを所定パターンに取り替えてトリック再 生データにのみ対して外部エラー訂正符号化した後、5 個のシンクブロック単位に形成する。外部エラー訂正符 号化された正常再生データとトリック再生データはSD - E C C 構造のビデオデータ領域の該当する正常再生デ ータ領域とトリック再生データ領域に再配列して内部エ ラー符号化する。

【0029】再生時は内部エラー訂正符号化された正常 再生データとトリック再生データを内部エラー訂正復号 化し、正常モード時にはトリック再生データを符号化時 用いたパターンデータに取り替えて正常再生データに対 して外部エラー訂正復号化し、トリックモード時には内 部エラー訂正復号化されたトリック再生データをSD-ECC構造のデータ領域に配列してビデオ補助データを 符号化時用いたパターンデータに取り替えてビデオデー タ領域に配列されたトリック再生データに対して外部エ ラー訂正復号化する。

【0030】さらに、本発明は2個の伝送パケットを5 個のシンクブロックより形成する時各パケット毎に拡張 可能な付加ヘッドを付加し、5個のシンクブロックを1 基準プロックとして各トラックのビデオセクタの正常再 生データ領域には正常再生データ基準ブロックをマッピ ングさせ、トリック再生データ領域にはトリック再生デ 40 ータ基準ブロック又はトリックパリティ基準ブロックを マッピングすることを特徴とする。

[0031]

[発明の詳細な説明]以下、添付した図面に基づき本発 明の実施の形態を詳細に説明する。先ず、本発明に用い られるSD-VCRの記録フォーマットを有するディジ タルビデオテープ上に記録のために供給されるビデオセ クタの信号のフォーマットについて図6を参照して説明 する。

【0032】図6に示されたECC構造は図3及び図4

14

に示されたECC構造を混合した変形例である。図6に おいて、21~156シンクブロックのピテオデータ領 域に対して5倍速のトリック再生データは101~11 5番目の15個のシンクブロックに記録されており、1 5倍速のトリック再生データは41~45、66~7 0、136~140番目のシンクブロックに分散記録さ れており、残り領域には正常再生データが記録されてい る。該トリック再生データの配置は実験によるものであ り、倍速により変形され得る。

【0033】本発明は図2及び図4に示されたECC構 造だけでなく正常及びトリック再生データ領域が5の整 数倍を有するシンクブロックよりなっているECC構造 に適用され得る。さらに、本発明はATV-VCR及び DVB-VCRの両方に適用できる。さらに、正常再生 モード時画質が最良である。15倍速トリック再生速度 は5倍速トリック再生速度より速いので15倍速トリッ ク再生の間、時間領域上で高まるフリッカーレートによ り多少目の疲れを減らし得る。従って、15倍速のトリ ック再生モードの間、画質は5倍速トリック再生モード より良好である。

【0034】図7は本発明によるディジタルビデオデー タ記録装置の一実施例によるブロック図である。図7に よれば、第1フォーマッティング部102及び第1抽出 部106に入力される信号はMPEG-2の伝送パケッ ト構造で伝送されるATV又はDVB信号である。

【0035】第1フォーマッティング部102では18 8 バイトのパケットに入力されるMPEG-2 ビデオデ ータから1バイトのシンクを分離して図8(A)に示さ れたように2個の187バイトのパケットを集めて図8 (B) のように5個のシンクブロックに形成する。 とと で、1パイトのシンクを分離することはアセンブリング 部114で各シンクブロック毎にシンクと IDを与えて パケットに対するシンクは記録時には余計なデータとな るので、純粋データ領域をさらに多く確保するためであ る。

【0036】図8(B)に示されたように77バイトの 5個のシンクブロックは各伝送パケット毎に付加される ヘッド情報と187バイトの2個の伝送パケットとより なっている。ととで、ヘッド情報は3パイトのタイムス タンプと20ビットの付加ヘッドとよりなっている。2 0ビットの付加ヘッドにはデータの種類を示す2ビッ ト、トリックモードのための6ビット、プログラム I D を示す2ビット、伝送ビット率を示す2ビットがあり、 その他のビットは保存されている。

【0037】 ここで、タイムスタンプはデコーディング 時デコーディングする時点を示す情報であり、2ビット のデータ種類は正常データ、トリック再生データ(5倍 速データ、15倍速データ)、ダミーデータのうち一つ であることを示している。さらに、トリックモードのた 50 めの6ビットは2個のパケットのうち該当するパケット

を示す1 ピットのトッグルフラグピットと、トリック再 生データ基準プロックの I D又はトリックパリティ基準 ブロックの I Dを示す5 ピットフラグよりなっている。 伝送ビット率を示す2ビットは25Mbps、12.5 Mbps、6.25Mbpsのうち一つを示す。もし、 25Mbpsの伝送ビット率が選択されると鮮明な画質 を有する一つのブログラムをテープ上に記録し得るが、 その反面6.25Mbpsの伝送ピット率を選択すると 25Mbpsに比し画質は劣っても4個のプログラムを 記録し得る。従って、2ビットのプログラムIDはビッ . ト率により決定される複数個(ことでは最大4個)のプ ログラムのうち該当するプログラムを示す。ここで、D VB-VCRでは前述したように画質により多様なビッ ト率で伝送されるのでビット率及び複数個のプログラム を選択する付加ビットがなくてはならないが、図5に示 されたように各シンクブロック毎に1バイトの付加へッ ドでは十分でないので本発明の第1及び第2フォーマッ ティング部102、112では2対5マッピング時、図 8 (B) に示されたように各パケット毎に20ビットの 付加ビットを付加している。

15

【0038】第1外部エラー訂正符号部104では第1フォーマッティング部102から5個のシンクブロックよりなっている基準ブロック単位で供給される正常再生データを外部エラー訂正符号化する。即ち、SD-VCRのビデオセクタのデータシンク構造を従うために図9に示されたようにSD-ECC構造において正常再生データ領域には第1フォーマッティング部102から基準ブロック単位で伝送される正常再生データを書き込み、第1及び第2ビデオ補助データ領域にはサーボシステムコントローラ(図示せず)から供給されるビデオ補助データを書き込み、5倍速及び15倍速トリック再生データ領域には"0"又は所定パターンのデータを書き込んで列方向に11シンクブロックの外部パリティを付加する

【0039】 ことで、所定パターンのデータのバイトは8ビットよりなり所定パターンのデータは8次元ビット空間で"0000000"から"1111111"までの2進数値と設定し得るが、回路を簡単にするためには算術的な"0"パターンと設定することが好ましい。第1抽出部106では伝送されるMPEG-2ビデ40オデータ(イントラ、ブリディックティド、双方向ピクチャ)からイントラビクチャデータを抽出する。即ち、第1抽出部106はパケットへッダのPID(パケットID)を参照して伝送されるMPEG-2ビデオデータストリームを抽出し、PSC(Picture StartCode)に後続く10ビットの後に位置するピクチャデコーディングタイプ(イントラピクチャ、プレディックティドピクチャ、双方向ピクチャ)を示す3ビットコードによりイントラ(1)ピクチャのみ抽出する。

【0040】第2抽出部108では抜けるDCTブロッ 50

クなしに、抽出されたイントラピクチャデータの各DC Tブロック毎に所定個の係数即ち、DC係数と低周波成 分の所定個のAC係数のみを抽出し、相異なる所定個の 係数を有する5倍速のトリック再生データ及び15倍速 のトリック再生データを出力する。CCで、15倍速ト リック再生データのDCT係数は5倍速トリック再生データのDCT係数より少ない。

【0041】第2外部エラー訂正符号化部110では第2抽出部108から供給されるトリック再生データをSD-ECC構造のビデオデータ領域に配列した後、11バイトの外部パリティを付加する。即ち、5倍速トリック再生データと15倍速トリック再生データそれぞれに対して独立的に外部パリティを付加する。トリック再生データのECC構造とSD-ECC構造を同一にすることも復号化時トリック再生データのECCのためのハードウェア追加無しに正常再生データ及びトリック再生データを一つのECC回路を用いてエラー訂正復号化するためである。

【0042】従って、第2抽出部108から供給されるトリック再生データを図10に示されたように121~155シンクブロックのビデオデータ領域に書き込み、ビデオ補助データ領域にはいずれも"0"又は所定パターンのデータを書き込む。これにより"0"又は所定パターンのデータに取り替えられた第1及び第2ビデオ補助データとトリック再生データ(135個のシンクブロック)に対して11シンクブロックの外部パリティを付加する。

【0043】ととで、第1外部エラー訂正符号化部11 0は5倍速及び15倍速トリック再生データの外部パリ 30 ティを独立的に付加するために図10に示されたような トラックの大きさを有する一対のバッファを必要とす る。該バッファはRAMより構成される。第2フォーマ ッティング部112ではトリック再生データだけでなく トリック用バリティも5個のシンクブロックにマッピン グするために第2外部エラー訂正符号化部110から供 給される第1及び第2ビデオ補助データ領域の3個のシ ンクブロックを除いた135個のシンクブロックのトリ ック再生データを5個のシンクブロックずつ27個のト リック再生データの基準プロックに形成し、11個のシ ンクブロックのトリック用外部パリティは3個のトリッ クパリティ基準ブロックに形成して図8(B)に示され たようにタイムスタンプ及び付加へッドを入力してフォ ーマッティングする。ここで、3個のトリックパリティ 基準ブロックのうち 1 個の基準ブロックにはただ 1 個の シンクプロックのトリック用外部パリティのみ存在し、 残り4個のシンクブロックには"0"パターンのダミー データが埋められたまま保存される。残り2個のトリッ クパリティ基準プロック内には10個のシンクブロック のトリック用外部パリティが存在する。

【0044】さらに、27個のトリック再生データ基準

プロックに対して各基準プロック I Dは "00000" ~ "11010" と設定され、3個のトリックバリティ基準プロックに対して各基準プロック I Dは "11011" ~ "11101" と設定される。さらに、倍速に係わらずに2対5マッピング時付加されるトリック再生データ用タイムスタンプは正常再生データ用タイムスタンプは1ピクチャ毎に "0" と設定される P C R (Program Clock Picture)、1ピクチャ毎に一定値と設定される P T S *

17

* (Presentation Time Stamp) を含むが、DTS (Decorde r Time Stamp) は含まない。

【0045】そして、正常再生データ用タイムスタンプは1ピクチャ毎に"0"とリセットされ、次の1ピクチャ前までは値が変化するPCR、PTS、DTSを含めている。次のテーブルを通じてタイムスタンプについてさらに詳しく説明する。

[0046]

【表1】

テーブル1:正常再生

時間	0	1/30	2/30	3/30	4/30	5/30	6/30	
ディスプレイ順序	I	В	В	P	В	В	P	
シーディグ 順序	1	P	В	В	P	B	В	
PCR	0	100	200	300	400	500	600	
PTS	0	300	100	200	600	400	500	
DTS	0	100	200	300	400	500	600	

【0047】 【表2】

テープル2:トリック再生

時間	0	15/30	30/30	45/30
ディスプンパ順序	1	1	1	1
シーディング 順序	1	1	1	1
PCR	0	0	0	0
DTS	100	100	100	100

【0048】そして、第2フォーマッティング部112は5倍速トリック再生データ及び15倍速トリック再生データを独立的にフォーマッティングするためにそれぞれ5個のシンクブロックの1対のバッファを含む。この際、バッファは書込及び読出できるRAMより構成される。ここで、正常再生データは1GOP内の全てのピクチャよりなるのに対してトリック再生データは所定個のDCT係数のみを用いてGOP内で1ピクチャデータのみを用いる。その結果、トリック再生データの外部パリティ計算を供給するための第2エラー訂正符号化部110で所定時間内にデータ伝送が完了されるのでオーバーラッピング無しに第2フォーマッティング部112のバッファに書込/読出できる。

【0049】アセンブリング部114において第1外部エラー訂正符号化部104から供給される外部エラー訂正符号化された正常再生データはSD-ECC構造の該当する正常再生データ領域に配列させ、第2フォーマッティング部112から供給されるトリック再生データの基準ブロックまたはトリックパリティ基準ブロックはSD-ECC構造の該当するトリック再生データ領域に配

20 列させて図11に示されたように2バイトのシンクデータと3バイトのIDデータとを付加する。ここで、2バイトのシンクデータ及び3バイトのIDデータは外部エラー訂正符号化する前に付加しても良く、内部エラー訂正した後付加しても良い。

【0050】アセンブリング部114は図11に示されたように、正常及びトリック再生データをアセンブリングするためにSD-ECC構造のトラック大きさのバッファと正常再生モード及びトリック再生モード時それぞれカウントするアドレスカウンタとを含めている。内部30 エラー訂正符号化部116では図11に示されたようにSD-ECC構造でアセンブリングされたデータが供給されて図6に示されたように149個のシンクブロックに対して8バイトの内部バリティを付加する。

【0051】変調部118では広く知られたように24/25変調し、変調する前にエラーに積極対応するために特に、バーストエラーをランダムエラー化するためにインターリーブ処理しても良い。ここで、24/25変調とは内部エラー訂正符号化部116で内部エラー訂正符号化された24ビットのディジタルデータを"0"と"1"が24ビットのディジタルデータの前に挿入された2チャネルの25ビットディジタルデータに変換した後、2チャネルの25ビットディジタルデータをインターリーブNRZI変調して望む周波数スペクトルを有する"0"と"1"の挿入された25ビットデータのうち一つを選択してディジタルビデオテーブのビデオセクタに記録することをいう。

【0052】図12は本発明に適用されるSD-VCRの記録フォーマットを有するディジタルビデオテープのトラック構造を示している。図12において、横方向はテープの走行方向であり、縦方向はヘッドの走行方向で

19

ある。シンクブロックはヘッドの走行する方向に一連番号が付く。即ち、ヘッドが走行し始める部分のシンクブロックは1番が付き、ヘッドの走行方向により番号が大きくなる。各トラックはスキャナ即ち、ヘッドのスキャンし始めるトラック開始部分からトラック情報が記録されるITI(Inserted and Track Information)セクタ、オーディオセクタ、ビデオセクタ及びサブコードセクタの順に区分される。

【0053】そして、負(-)のアジマス角を有するト ラックはf。周波数特性を有し、正(+)のアジマス角 10 を有するトラックは f, 或いは f, の周波数特性を交互 に有する。ととで、f。、f、f、周波数は周波数ト ラッキングのために設定される。図12に示されたフォ ーマットによる記録方式は所定の第1トラックとテープ の進行方向に隣接した第2トラックとより構成される第 1トラックペアにトリック再生データを分散させて記録 する。そして、テープの進行方向にトラックペアに隣接 したトラックには第1トラックペアに記録されたトリッ ク再生データが同一なパターンで繰り返し記録される。 ここで繰り返し記録されるトラックペアの数はトリック 再生速度に相応する倍速数と同一である。従って、繰り 返し記録されるトラックペアの数は整数であるべきなの で倍速数は整数に限られる。さらに、連続したトラック ペアにトリック再生データを分散させて記録するので、 トリック再生時ヘッドの位相を合わせるために倍速数は 奇数の整数でなければならない。

【0054】例えば、各トラックの中央部分に位置する5倍速トリック再生データ領域の位置は5倍速トリック再生データに相応する倍速でヘッドが走行する時、互いに180°の角度で配置された対向型ヘッド及び隣接して設けられたペア型ヘッドが共通的にスキャンする領域を実験的に求めて配置される。従って、相異なる5倍速トリック再生データ(又は、トリックパリティ)が記録された一対のトラックが水平に5回繰り返して10個のトラックに記録されている。さらに、各トラックは5倍速より速い相異なる15倍速のトリック再生データの記録された一対のトラックが15回繰り返して30個のトラックに分散配置されて記録されている。

【0055】図12に示されたフォーマットは図3及び図4に示されたフォーマットを混合したものであり、各 40トラックには倍速によりスキャン位置に対応した複数のトリック再生データ領域が存在し、相異なるトリック再生データの記録される隣接した二つのトラックよりなったトラックペアが各倍速に該当するトラック数ほと繰り返されるので正確なサーボ制御が求められず、よってハードウェアの負担が減る。

【0056】図12に記録された記録フォーマットは一実施例であり、多様な変形が可能である。図13は本発明による一実施例によるディジタルデータ再生装置のブロック図である。図13によれば、復調部202では2

4/25変調されたデータを復調し、復調されたデータがインターリーブされたデータならインターリーブ処理してECC構造として配列する逆ECCブロック配列部が構成できる。

【0057】内部エラー訂正復号化部204では復調された正常再生データとトリック再生データを内部エラー訂正復号化する。即ち、行単位で85パイトの一シンクブロックに対して4パイトまでエラーを訂正し、訂正できなかった各シンクブロックにはエラーフラグを付加する。2次元リードソロモンコードの内部エラー訂正能力は内部パリティの半分に該当するパイトとなる。エラーの位置を知らせるエラーフラグ信号のため2次元リードソロモンコードの外部エラー訂正能力は外部パリティバイト数と同一なパイト数となる。

【0058】ディスアセンブリング部(ディスアセンブラ)208では内部エラー訂正復号化された正常再生データとトリック再生データから2バイトのシンクと3バイトのIDコードを分離し、正常モード及びトリックモードにより正常再生データとトリック再生データとを分離する。第1外部エラー訂正復号化部206では正常モード時トリック再生領域のデータを外部エラー訂正符号化時用いた"0"や所定のデータバターンに取り替えて正常再生データを外部エラー訂正復号化する。

【0059】第1デフォーマッティング部214では第1外部エラー訂正復号化部208から供給される正常再生データに対して77パイトの5シンクブロック単位で入力してタイムスタンプと付加へッドとを分離して2個の187パイトの伝送パケットを構成する。さらに、各パケットに1パイトのパケットシンクデータを付加して188パイトの伝送パケットを選択部220に伝送する

【0060】第2外部エラー訂正復号化部210ではトリックモード時ディスアセンブリング部206から供給されるトリック再生データをSD-ECC構造のビデオデータ領域に配列し、外部エラー訂正符号化時用いたビデオ補助データ領域のデータを"0"または所定のデータパターンに取り替えてトリック再生データを外部エラー訂正復号化する。

【0061】5倍速/15倍速トリック再生モードによりトリック再生データ基準ブロック又はトリック再生パリティ基準ブロックIDを示す5ビットフラグを用いて内部エラー訂正復号化された5倍速又は15倍速トリック再生データをSD-ECC構造で配列する再配列器を含む。トリック再生モードの間、アドレスカウンタによりカウントされた基準ブロックが最終トリックパリティ基準ブロックであればその一番目のシンクブロックに配列される。トリック再生データはトリック再生速度に応じて繰り返し記録されることにより重複再生されるのでトリック再生データは再配列器でSD-ECC構造で配列され

る。

【0062】従って、第2外部エラー訂正復号化部210はSD-ECC構造を有するトラック大きさの一対のRAMとアドレスカウンタも含む。ここで、外部エラー訂正復号化部212の第1及び第2外部エラー訂正復号化部208、210の構成は同一なので共有でき、便宜上正常モード又はトリックモードによりトリック再生データ領域又はビデオ補助データ領域のデータを"0"または所定のデータバターンに取り替えて外部エラー訂正復号化することを説明するために分離して示されている。ここで、第1及び第2外部エラー訂正復号化部208、210の構成が第1及び第2外部エラー訂正符号化104、110に比し非常に複雑なので共有しないとハードウェアの負担は大きくなる。

【0063】第2デフォーマッティング部216では第2外部エラー訂正復号化部210から供給される外部エラー訂正復号化された基準ブロック単位であるトリック再生データに対して2個の187バイトの伝送パケットより構成し、各パケット毎に1バイトのパケットシンクデータを付加して188バイトのパケットを選択部220に伝送する。ととで、デフォーマッティング部218の第1及び第2デフォーマッティング部214、216の構成は同一なので共有できる。

【0064】選択部220では正常モード又はトリックモードにより第1又は第2デフォーマッティング部214、216から伝送された外部エラー訂正復号化された正常再生データ又はトリック再生データを選択して伝送する。

[0065]

【発明の効果】前述したように、本発明は正常再生データと同様にトリック再生データもSD-ECC構造を有する上に5シンクブロックを基準ブロックとしてトリック再生データ領域にマッピングすることにより別途のトリック再生データのためのECC回路無しに正常モード又はトリックモードにより一つのECC回路を用いることによりハードウェアの負担を減らし得る。

【0066】さらに、本発明は2個の伝送パケットを5個のシンクブロックにマッピングする時、各伝送パケット毎に拡張可能な付加へッドを付加することによりATV-VCR及びDVB-VCRが互いに互換性を有する。

【図面の簡単な説明】

【図1】MPEG-2伝送パケット構造を説明するための図である。

【図2】SD-VCR記録フォーマットを有するディジ タルビデオテープ上に記録のために供給されるビデオセ クタの信号フォーマットを示す図である。

【図3】SD-VCR記録フォーマットを有するビデオ

22

テープ上に記録のために供給されるビデオセクタのトリック再生データの配列を説明するための図である。

【図4】SD-VCR記録フォーマットを有するビデオテープ上に記録のために波供給されるビデオセクタのトリック再生データの配列を説明するための図である。

【図5】2個の伝送パケットを5個のシンクブロックにマッピングする2対5マッピングを説明するための図である。

【図6】本発明に用いられるSD-VCR記録フォーマットを有するディジタルビデオテーブ上に記録ために供給されるビデオセクタの信号フォーマットを示す図である。

【図7】本発明によるディジタルビデオデータの記録装置の一実施例によるブロック図である。

【図8】(A)及び(B)は図7に示された第1及び第273マッピングを説明するための図である。

【図9】図7に示された第1外部エラー訂正符号化部における外部エラー訂正符号化動作を説明するための図で20 ある。

【図10】図7に示された第2外部エラー訂正符号化部 における外部エラー訂正符号化動作を説明するための図 である。

【図11】図7に示されたアセンブリング部でアセンブリングされた結果を示す図である。

【図12】本発明に用いられるSD-VCRの記録フォーマットを有するディジタルビデオテープのトラック構造を示す図である。

[図13] 本発明によるディジタルビデオデータ再生装置の一実施例によるブロック図である。

【符号の説明】

- 102 第1フォーマッティング部
- 104 第1外部エラー訂正符号化部
- 106 第1抽出部
- 108 第2抽出部
- 110 第2外部エラー訂正符号化部
- 112 第2フォーマッティング部
- 114 アセンブリング部
- 116 内部エラー訂正符号化部
- 40 118 変調部
 - 202 復調部
 - 204 内部エラー訂正復号化部
 - 206 ディスアセンブラ
 - 208 第1外部エラー訂正符号化部
 - 210 第2外部エラー訂正符号化部
 - 214 第1デフォーマッティング部
 - 216 第2デフォーマッティング部
 - 220 選択部

【図1】

(従来の技術)

[図3] 【図5】 【図2】 (従来の技術) (従来の技術) (従来の技術) 77 パイト n=19 20 21 ビデオ権助データ ペイロード ビデオ補助データ 五街/ペリナイ 105 石筒パッかィ 155 156 ビデオ補助データ 157 90 90 パイト

【図4】

(従来の技術)

【図6】

【図9】

[図10]

【図8】

3×イト20 ピット タイム 付加 ペイロード スタンプ ヘッダ ペイロード スタンプ ヘッダ

•

187 バイト	ペイロード	187×4 ト	ペイロード
	<u>N</u>		.IS

【図11】

【図12】

