06_RegressioneEsempio

January 16, 2020

1 Cosa facciamo oggi?

Ripasso Regressione usando il California Housing Dataset!

- Regression Lineare
- Regressione polinomiale
- Decision Tree

2 Dove troviamo i dataset?

L'obbiettivo di oggi è quello di applicare gli algoritmi studiati sia di Regressione che di Classificazione a dei dataset un po' più corposi. L'idea è quella di cominciare ad affrontare problemi il più possibile vicini alla realtà. Per face ciò ci servono due dataset uno di regressione e uno di classificazione.

Dove troviamo i datasets?

- Scikit-Learn Toy datasets
- Scikit-Learn Real World Dataset
- Altri dataset importabili usando Scikit-Learn
- OpenML Dataset
- LIBSVM Regression Dataset

Datasets Scikit Learn Main Page

- Classificazione: The Labeled Faces in the Wild face recognition dataset (esempio)
- Regressione: California Housing dataset (esempio)

2.1 Regressione: California Housing dataset

2.1.1 0) Raccolta Informazioni e Link utili

- Esempio Utile Regressione
- Stesso dataset leggermente aggiornato Kaggle
- Spiegazione dataset

2.1.2 1) Comprensione del dataset

```
[62]: from sklearn.datasets import fetch_california_housing
     from sklearn.model_selection import train_test_split
     import pandas as pd
     # Download dataset
     cal_housing = fetch_california_housing()
     print(cal_housing.keys())
     print(cal_housing.DESCR)
    dict_keys(['data', 'target', 'feature_names', 'DESCR'])
    .. _california_housing_dataset:
    California Housing dataset
    **Data Set Characteristics:**
        :Number of Instances: 20640
        :Number of Attributes: 8 numeric, predictive attributes and the target
        :Attribute Information:
            - MedInc
                            median income in block
            - HouseAge
                            median house age in block
            - AveRooms
                            average number of rooms
            - AveBedrms
                            average number of bedrooms
            - Population block population
            - AveOccup
                            average house occupancy
            - Latitude
                          house block latitude
            - Longitude
                            house block longitude
        :Missing Attribute Values: None
    This dataset was obtained from the StatLib repository.
    http://lib.stat.cmu.edu/datasets/
    The target variable is the median house value for California districts.
    This dataset was derived from the 1990 U.S. census, using one row per census
    block group. A block group is the smallest geographical unit for which the U.S.
    Census Bureau publishes sample data (a block group typically has a population
    of 600 to 3,000 people).
```

It can be downloaded/loaded using the

:func:`sklearn.datasets.fetch_california_housing` function.

- .. topic:: References
 - Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions, Statistics and Probability Letters, 33 (1997) 291-297
 - Obbiettivo: Stimare qual'è il valore medio delle case in California.
 - Dati: Input o Attribute Information:
 - MedInc: media degli stipendi (annuale) delle persone che vivono nel quartiere in dollari per casa (unità di misura: decine di migliaia di dollari of US Dollars esempio: 8.3252
 83252 dollari). Date N case in un quartiere, per ogni casa mi calcolo lo stipendio medio annuale e faccio la media.
 - HouseAge: media dell'età delle persone che vivono nella casa. Un numero basso significa che l'edificio è nuovo.
 - AveRooms: numero medio camere per casa
 - AveBedrms: numero medio di camere da letto per casa
 - Population: numero di persone medio che vivono nel quartiere (block)
 - AveOccup: numero mddio di persone che vivono in ogni casa
 - Latitude: latitudine della casa. Una misura che mi dice quanto una casa è a nord
 - Longitude: longitudine della casa. Una misura che mi dice quanto una casa è ad ovest

• Target:

4

. . .

3.8462

20635 1.5603

. . .

 HousePrice: valore della casa in centinaia di migliaia di dollari (esempio: 4.526 => 4.5261001000 = 452600.0)

2.1.3 2) Estrazione dati dal dataset e conversione a dataframe (pandas)

```
# or cal_housing.data
  [0]: X = cal_housing['data']
      X_names = cal_housing['feature_names']
                                               # or cal_housing.feature_names
      Y = cal_housing['target']
                                               # or cal_houseing.target
      cal_housing.update([ ('target_names', ['HousePrice'])] ) # add missing names
      Y_names = cal_housing['target_names']
                                               # cal_houseing.target_names
[119]: df_X = pd.DataFrame(data=X, columns =X_names)
      df_Y = pd.DataFrame(data=Y, columns =Y_names)
      display(df_X)
      display(df_Y)
                    HouseAge AveRooms
                                             AveOccup
            {	t MedInc}
                                                       Latitude
                                                                  Longitude
     0
            8.3252
                        41.0 6.984127 ...
                                             2.555556
                                                           37.88
                                                                    -122.23
                                                                    -122.22
     1
            8.3014
                        21.0 6.238137
                                             2.109842
                                                           37.86
     2
            7.2574
                        52.0 8.288136 ... 2.802260
                                                           37.85
                                                                    -122.24
     3
            5.6431
                        52.0 5.817352 ... 2.547945
                                                           37.85
                                                                    -122.25
```

52.0 6.281853 ... 2.181467

25.0 5.045455 ... 2.560606

. . .

. . .

37.85

39.48

. . .

-122.25

-121.09

. . .

```
20636 2.5568
                  18.0 6.114035 ... 3.122807
                                                  39.49
                                                           -121.21
20637 1.7000
                  17.0 5.205543 ...
                                     2.325635
                                                  39.43
                                                           -121.22
                  18.0 5.329513 ... 2.123209
                                                  39.43
                                                           -121.32
20638 1.8672
20639 2.3886
                 16.0 5.254717 ... 2.616981
                                                  39.37
                                                           -121.24
```

[20640 rows x 8 columns]

	HousePrice
0	4.526
1	3.585
2	3.521
3	3.413
4	3.422
20635	0.781
20636	0.771
20637	0.923
20638	0.847
20639	0.894

[20640 rows x 1 columns]

2.1.4 3) Considerazioni e analisi dei dati

Correlation Matrix: Quanto le variabili di input sono correlate? È utile applicare la PCA cioè ridurre il numero di input? Il contenuto di informazioni delle variabili di input è omogeneo oppure vi sono variabili inutili?

```
[129]: import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [15, 12]

# Correlation Matrix
plt.matshow(df_X.corr())
plt.xticks(range(len(df_X.columns)), df_X.columns)
plt.yticks(range(len(df_X.columns)), df_X.columns)
plt.colorbar()
plt.show()
display(df_X.corr())
```


	${\tt MedInc}$	HouseAge	AveRooms	 AveOccup	Latitude	Longitude
MedInc	1.000000	-0.119034	0.326895	 0.018766	-0.079809	-0.015176
HouseAge	-0.119034	1.000000	-0.153277	 0.013191	0.011173	-0.108197
AveRooms	0.326895	-0.153277	1.000000	 -0.004852	0.106389	-0.027540
AveBedrms	-0.062040	-0.077747	0.847621	 -0.006181	0.069721	0.013344
Population	0.004834	-0.296244	-0.072213	 0.069863	-0.108785	0.099773
AveOccup	0.018766	0.013191	-0.004852	 1.000000	0.002366	0.002476
Latitude	-0.079809	0.011173	0.106389	 0.002366	1.000000	-0.924664
Longitude	-0.015176	-0.108197	-0.027540	 0.002476	-0.924664	1.000000

[8 rows x 8 columns]

2.1.5 Grafici utili

Libreria Bamboolib Demo

Non vi è ancora un integrazione con google-colab, in particolare vi è un errore di compatibilità, poichè Bamboolib richiede notebook>=5.3 mentre google-colab usa la versione 5.2.2.

Al fine di utilizzare la libreria è necessario visitare la pagina [Ufficiale]((https://bamboolib.8080labs.com/) e premere su "Try the Live Demo".

Copiare nel notebook il seguente codice: "'python from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split import pandas as pd

Download dataset cal_housing = fetch_california_housing() cal_housing "' Questo Video Demo spiega come utilizzare graficamente la libreria. Inoltre c'è un un interessante tutorial

2.1.6 Preprocessamento

Non è sempre un buona idea normalizzare i dati perchè si perde l'informazione del massimo e del minimo. Tuttavia liner regression algoritmi come Support Vector Machine e Linear Regression convergono più velocemente su data normalizzati.

- StandarScaler: input data con mean value (valore medio) uguale a zero e deviazione standard uguale ad 1.
- MinMaxScaler: scaliamo i dati in un range minimo massimo. Di solito da 0 a 1

La normalizzazione permetterà al nostro algoritmo di raggiungere la stima ottima in un tempo minore di quello che occorre se non normalizzaziamo.

```
[65]: from sklearn.preprocessing import StandardScaler
    # ------- Standard Scaler Mean=0, Variance=1
    data_X = StandardScaler().fit_transform(df_X.values)
    df_X_preprocessed_SC = pd.DataFrame(data = data_X , columns = X_names)

# ------ Min Max Scaler Min=0, Max=1
    data_X = MinMaxScaler().fit_transform(df_X.values)
    df_X_preprocessed_MMS = pd.DataFrame(data = data_X , columns = X_names)

display(df_X.describe())
    display(df_X_preprocessed_SC.describe())
    display(df_X_preprocessed_MMS.describe())
```

	${\tt MedInc}$	${ t House Age}$	 Latitude	Longitude
count	20640.000000	20640.000000	 20640.000000	20640.000000
mean	3.870671	28.639486	 35.631861	-119.569704
std	1.899822	12.585558	 2.135952	2.003532
min	0.499900	1.000000	 32.540000	-124.350000
25%	2.563400	18.000000	 33.930000	-121.800000
50%	3.534800	29.000000	 34.260000	-118.490000

```
75% 4.743250 37.000000 ... 37.710000 -118.010000 max 15.000100 52.000000 ... 41.950000 -114.310000
```

[8 rows x 8 columns]

```
MedInc
                        HouseAge
                                 . . .
                                          Latitude
                                                       Longitude
count 2.064000e+04 2.064000e+04 ... 2.064000e+04 2.064000e+04
mean
      3.734255e-16 8.557001e-16
                                 ... 1.256263e-15 -6.527810e-15
      1.000024e+00 1.000024e+00 ... 1.000024e+00 1.000024e+00
std
min
     -1.774299e+00 -2.196180e+00 ... -1.447568e+00 -2.385992e+00
25%
     -6.881186e-01 -8.453931e-01
                                 ... -7.967887e-01 -1.113209e+00
     -1.767951e-01 2.864572e-02 ... -6.422871e-01 5.389137e-01
50%
75%
      4.593063e-01 6.643103e-01
                                 ... 9.729566e-01 7.784964e-01
max
      5.858286e+00 1.856182e+00 ...
                                      2.958068e+00 2.625280e+00
```

[8 rows x 8 columns]

	${\tt MedInc}$	HouseAge	 Latitude	Longitude
count	20640.000000	20640.000000	 20640.000000	20640.000000
mean	0.232464	0.541951	 0.328572	0.476125
std	0.131020	0.246776	 0.226988	0.199555
min	0.000000	0.000000	 0.000000	0.000000
25%	0.142308	0.333333	 0.147715	0.253984
50%	0.209301	0.549020	 0.182784	0.583665
75%	0.292641	0.705882	 0.549416	0.631474
max	1.000000	1.000000	 1.000000	1.000000

[8 rows x 8 columns]

2.1.7 4) Divisione del dataset in training e test