UM 204 HOMEWORK ASSIGNMENT 4

Posted on February 01, 2024 (NOT FOR SUBMISSION)

- These problems are for self-study. Try these on your own before seeking hints.
- Some of these problems will be (partially) discussed at the next tutorial.
- A 15-min. quiz based on this assignment will be conducted at the end of the tutorial section.

Problem 1. Given $A, B \subset \mathbb{R}^n$, define

$$A + B = \{a + b : a \in A, b \in B\}.$$

Endow \mathbb{R}^n with the standard metric.

- (1) Is A + B open if both A and B are open?
- (2) Is A + B closed if both A and B are closed?

Problem 2. In this problem, (X, d) denotes a metric space and $E \subset X$ denotes a connected subset. For each of the claims below, determine whether it is either true (for all metric spaces) or false (in some metric space), and provide a justification for your answer.

- (1) \overline{E} is connected.
- (2) E° is connected.
- (3) $bE = \overline{E} \setminus E^{\circ}$ is connected.

Problem 3. Let C denote the Cantor set constructed in Lecture 13. Recall that

$$C = \bigcap_{j=0}^{\infty} E_n,$$

where each E_n is a disjoint union of 2^n closed intervals of length $1/3^n$.

- (1) Prove, rigorously, that E contains no interval of the form (a, b), a < b.

 Hint. Recall the form of the open intervals being removed from [0, 1] to construct C.
- (2) Show that every $p \in C$ is a limit point of C. Hint. Remember that the endpoints of the inervals comprising E_n are in C for all $n \in \mathbb{N}$.
- (3) (Bonus question¹) Show that C + C = [0, 2].

¹Not for the quiz.

Problem 4. Let p be a prime number. Let d_p be the distance on \mathbb{Q} defined in HW03. Show that $\{1/p^n\}_{n\in\mathbb{N}}$ is a divergent sequence, while $\{p^n\}_{n\in\mathbb{N}}$ is a convergent sequence in (\mathbb{Q}, d_p) . (Bonus question²) What about the sequence $\{n\}_{n\in\mathbb{N}}$?

Problem 5. Consider the following metrics on \mathbb{R}^2 :

$$d_1(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

$$d_2(x,y) = (|x_1 - y_1|^2 + |x_2 - y_2|^2)^{\frac{1}{2}}$$

$$d_{\infty}(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}, \quad x, y \in \mathbb{R}^2.$$

Show that if a sequence in \mathbb{R}^2 converges in any one of the above metrics, it also converges in the other two.

 $^{^2}$ Not for the quiz.