Econ 709 Problem Set 1

Sarah Bass *

November 9, 2020

Question 2.1

By the law of iterated expectations,

$$\begin{split} \mathbb{E}[\mathbb{E}[\mathbb{E}[Y|X_1,X_2,X_3]|X_1,X_2]|X_1] &= \mathbb{E}[\mathbb{E}[Y|X_1,X_2]|X_1] \\ &= \mathbb{E}[Y|X_1] \end{split}$$

Question 2.2

Using the conditioning theorem,

$$\begin{split} \mathbb{E}[XY] &= \mathbb{E}[X\mathbb{E}[Y|X]] \\ &= \mathbb{E}[X(a+bX)] \\ &= \mathbb{E}[Xa+bX^2] \\ &= \mathbb{E}[Xa] + \mathbb{E}[bX^2] \\ &= a\mathbb{E}[X] + b\mathbb{E}[X^2] \end{split}$$

Question 2.3

If $\mathbb{E}|Y| < \infty$, then for some function h(x) such that $\mathbb{E}|h(X)e| < \infty$,

$$\mathbb{E}[h(X)e] = \mathbb{E}[h(X)\mathbb{E}[e|X]] = \mathbb{E}[h(X)*0] = 0$$

^{*}I have discussed this problem set with Emily Case, Michael Nattinger, Alex Von Hafften, and Danny Edgel.

Question 2.4

$$\begin{split} \mathbb{E}[Y|X=0] &= 0.8 \\ \mathbb{E}[Y|X=1] &= 0.6 \\ \mathbb{E}[Y^2|X=0] &= 0.8 \\ \mathbb{E}[Y^2|X=1] &= 0.6 \\ var[Y|X=0] &= 0.8 - 0.64 = 0.16 \\ var[Y|X=1] &= 0.6 - 0.36 = 0.24 \end{split}$$

Question 2.5 - Part C

Let S(x) be some predictor of e^2 given X.

$$E[(e^{2} - S(X))^{2}] = E[(e^{2} - \sigma^{2}(X) + \sigma^{2}(X) - S(X))^{2}]$$

= $E[(e^{2} - \sigma^{2})^{2}] + 2E[(e^{2} - \sigma^{2}(X))(\sigma^{2}(X) - S(X))] + E[(\sigma^{2}(X) - S(X))^{2}].$

However, note that

$$\begin{split} E[(e^2-\sigma^2(X))(\sigma^2(X)-S(X))] &= E[E[(e^2-\sigma^2(X))(\sigma^2(X)-S(X))|X] \\ &= E[(\sigma^2(X)-S(X))E[(e^2-\sigma^2(X))|X]] \\ &= E[(\sigma^2(X)-S(X))(E[e^2|X]-\sigma^2(X))] \\ &= E[(\sigma^2(X)-S(X))(\sigma^2(X)-\sigma^2(X))] \\ &= 0. \\ \text{So.} \end{split}$$

$$E[(e^2 - S(X))^2] = E[(e^2 - \sigma^2)^2] + E[(\sigma^2(X) - S(X))^2].$$

 $E[(e^2 - \sigma^2)^2]$ is not dependent on S(X) and $E[(\sigma^2(X) - S(X))^2]$ is minimized when $S(X) = \sigma^2(X)$.

Question 2.8

$$\mathbb{E}[Y|X] = X'\beta$$
$$[Y|X] = X'\beta$$

Note that $\mathbb{E}[e|X] = \mathbb{E}[Y - X'\beta|X] = \mathbb{E}[Y|X] - X'\beta = X'\beta - X'\beta = 0$. So this justifies a linear regression model of the form $Y = X'\beta + e$.

Question 2.10

True

$$\mathbb{E}[X^2e] = \mathbb{E}[X^2\mathbb{E}[e|X]] = \mathbb{E}[X^2*0] = 0$$

Question 2.11

False. Consider $Y = X^2$ with $X \sim N(0,1)$. Then $\beta = 0, e = Y - X\beta = X^2$ $\mathbb{E}[Xe] = 0$ by symmetry, but $\mathbb{E}[X^2e] = \mathbb{E}[X^4] > 0$.

Question 2.12

False. Consider the following probabilities:

$$P(X = 0, e = 0) = \frac{1}{4}$$

$$P(X = 0, e = -1) = \frac{1}{8}$$

$$P(X = 0, e = 1) = \frac{1}{8}$$

$$P(X = 1, e = 0) = \frac{1}{2}$$

$$P(X = 1, e = -1) = 0$$

$$P(X = 1, e = 1) = 0$$

Then $\mathbb{E}[e|X] = 0$. However $P(e=1|X=1) = 0 \neq \left(\frac{1}{8}\right)\left(\frac{1}{2}\right) = P(e=1)P(X=1)$ so e is not independent of X.

Question 2.13

False. Using the example from 2.11, $\mathbb{E}[Xe] = 0$ by symmetry, but $\mathbb{E}[e|X=1] = \mathbb{E}[X^2|X=1] = 1$.

Question 2.14

False. Let $X_i \sim N(0,1)$, and consider Z_i such that $E[Z_i|X_i] = 1$ and $Var(Z_i|X_i) = \sigma^2/(X_i^2)$. Let $Y_i = X_i Z_i$ and $e_i = Y_i - E[Y_i|X_i]$. Then since $E[e_i|X_i] = 0$

$$E[e_i^2|X_i] = E[X_i^2(Z_i - 1)^2|X_i]$$

$$= X_i^2 E[(Z_i - 1)^2|X_i]$$

$$= X_i^2 Var(Z_i|X_i)$$

$$= \sigma^2$$

However e_i and X_i are not independent.

Question 2.16

We'll first compute the marginal density of X, then use that to calculate the conditional density of Y given X, then calculate the expectation of Y given X.

$$f_X(x) = \int_0^1 \frac{3}{2} (x^2 + y^2) dy$$

$$= \frac{3}{2} x^2 y + \frac{1}{2} y^3 \Big|_0^1$$

$$= \frac{3}{2} x^2 + \frac{1}{2}$$

$$f_{Y|X=x}(y) = \frac{\frac{3}{2} (x^2 + y^2)}{\frac{3}{2} x^2 + \frac{1}{2}}$$

$$\mathbb{E}[Y|X = x] = \int_0^1 \frac{y(\frac{3}{2} (x^2 + y^2))}{\frac{3}{2} x^2 + \frac{1}{2}} dy$$

$$= \frac{1}{x^2 + \frac{1}{3}} \left(\int_0^1 x^2 y dy + \int_0^1 y^3 dy \right)$$

$$= \frac{1}{x^2 + \frac{1}{3}} \left(\frac{1}{2} x^2 + \frac{1}{4} \right)$$

$$= \frac{x^2 + \frac{1}{2}}{2x^2 + \frac{2}{3}}$$

To calculate the best linear predictor, we'll first write $\tilde{X} = \begin{pmatrix} 1 & X \end{pmatrix}$. So we can calculate the best linear predictor as follows.

$$\begin{split} \tilde{\beta} &= \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \\ &= (\mathbb{E}[\tilde{X}'\tilde{X}])^{-1} \mathbb{E}[\tilde{X}'Y] \\ &= \left(\mathbb{E} \begin{pmatrix} 1 & X \\ X & X^2 \end{pmatrix} \right)^{-1} \mathbb{E} \begin{pmatrix} Y \\ XY \end{pmatrix} \\ &= \frac{1}{\mathbb{E}[X^2] - \mathbb{E}[X]^2} \begin{pmatrix} \mathbb{E}[X^2] & -\mathbb{E}[X] \\ -\mathbb{E}[X] & \mathbb{E}[1] \end{pmatrix} \begin{pmatrix} \mathbb{E}[Y] \\ \mathbb{E}[XY] \end{pmatrix} \\ &= \frac{1}{\mathbb{E}[X^2] - \mathbb{E}[X]^2} \begin{pmatrix} \mathbb{E}[X^2] \mathbb{E}[Y] - \mathbb{E}[X] \mathbb{E}[XY] \\ -\mathbb{E}[X] \mathbb{E}[Y] + \mathbb{E}[XY] \end{pmatrix} \end{split}$$

Note that

$$\mathbb{E}[X] = \int_0^1 \frac{3}{2} x^3 + \frac{x}{2} dx = \frac{5}{8}$$

$$\mathbb{E}[Y] = \int_0^1 \frac{3}{2} y^3 + \frac{y}{2} dy = \frac{5}{8}$$

$$\mathbb{E}[X^2] = \int_0^1 \frac{3}{2} x^4 + \frac{x^2}{2} dx = \frac{7}{15}$$

$$\mathbb{E}[XY] = \int_0^1 \int_0^1 \frac{3}{2} (x^3 y + y^3 x) dy dx = \frac{3}{8}$$

Using this, we can solve for $\hat{\beta}$ as

$$\hat{\beta} = \frac{1}{\frac{7}{15} - \frac{25}{64}} \begin{pmatrix} \frac{7}{15} (\frac{5}{8}) - \frac{5}{8} (\frac{3}{8}) \\ -\frac{5}{8} (\frac{5}{8}) + \frac{3}{8} \end{pmatrix}$$
$$= \begin{pmatrix} 55/73 \\ -15/73 \end{pmatrix}$$

So the best linear predictor $L(x)=\frac{55}{73}-\frac{15}{73}x$ is different from the best predictor of Y, $m(x)=\mathbb{E}[Y|X=x]=\frac{x^2+\frac{1}{2}}{2x^2+\frac{2}{3}}$

Question 4.1

(a)

Let $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.

(b)

$$\mathbb{E}[\hat{\mu}_k] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i^k\right]$$
$$= \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i^k]$$
$$= \frac{1}{n}\sum_{i=1}^n \mu_k$$
$$= \mu_k$$

(c)

$$var(\hat{\mu}_k) = var\left(\frac{1}{n}\sum_{i=1}^n X_i^k\right)$$

$$= \frac{1}{n^2}\sum_{i=1}^n var(X_i^k)$$

$$= \frac{1}{n^2}\sum_{i=1}^n (\mathbb{E}[X_i^{2k}] - \mathbb{E}[X_i^k]^2)$$

$$= \frac{1}{n}(\mu_{2k} - \mu_k^2)$$

This is finite if $|\mu_{2k}| < \infty$.

(d)

Let
$$v\hat{a}r(\bar{\mu}_k) = \frac{1}{n} \left(\frac{1}{n} \sum_{i=1}^n X_i^{2k} - \left(\frac{1}{n} \sum_{i=1}^n X_i^k \right)^2 \right)$$

Question 4.2

$$\mathbb{E}\left[(\bar{Y} - \mu)^{3}\right] = \mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}(y_{i} - \mu)\right)^{3}\right]$$

$$= \frac{1}{n^{3}}\mathbb{E}\left[\sum_{i=1}^{n}(y_{i} - \mu)^{3} + 3\sum_{i \neq j}(y_{i} - \mu)^{2}(y_{j} - \mu) + 6\sum_{1 \leq i < j < k \leq n}(y_{i} - \mu)(y_{j} - \mu)(y_{k} - \mu)\right]$$

$$= \frac{1}{n^{3}}\left[\sum_{i=1}^{n}\mathbb{E}(y_{i} - \mu)^{3} + 3\sum_{i \neq j}\mathbb{E}(y_{i} - \mu)^{2}\mathbb{E}(y_{j} - \mu) + 6\sum_{1 \leq i < j < k \leq n}\mathbb{E}(y_{i} - \mu)\mathbb{E}(y_{j} - \mu)\mathbb{E}(y_{k} - \mu)\right]$$

$$= \frac{1}{n^{3}}\left[\sum_{i=1}^{n}\mathbb{E}(y_{i} - \mu)^{3}\right]$$

$$= \frac{1}{n^{2}}\mathbb{E}[(y_{i} - \mu)^{3}]$$

The skew is 0 when the third central moment is 0.

Question 4.3

 \bar{Y} is the sample mean of Y, while μ is the true population mean. \bar{Y} is an unbiased estimator of μ . Similarly, $n^{-1} \sum_{i=1}^{n} X_i X_i'$ is the unbiased sample estimator of $\mathbb{E}[X_i X_i']$

Question 4.4

False.

$$\sum_{i=1}^{n} X_{i}^{2} \hat{e}_{i} = \sum_{i=1}^{n} X_{i}^{2} (Y_{i} - X_{i} \hat{\beta})$$

$$= \sum_{i=1}^{n} X_{i}^{2} Y_{i} - \sum_{i=1}^{n} X_{i}^{3} \hat{\beta}$$

$$= \sum_{i=1}^{n} X_{i}^{2} Y_{i} - \sum_{i=1}^{n} \left(X_{i}^{3} \left(\sum_{j=1}^{n} X_{j}^{2} \right)^{-1} \sum_{j=1}^{n} X_{j} Y_{j} \right)$$

In general this expression does not equal 0.

Question 4.5

4.15

$$\begin{split} \mathbb{E}[\hat{\beta}|X] &= \mathbb{E}[(X'X)^{-1}X'Y|X] \\ &= (X'X)^{-1}X'\mathbb{E}[Y|X] \\ &= (X'X)^{-1}X'\mathbb{E}[X\beta + e|X] \\ &= (X'X)^{-1}X'(X\beta + \mathbb{E}[e|X]) \\ &= (X'X)^{-1}X'(X\beta) \\ &= \beta \end{split}$$

4.16

$$\begin{split} var[\hat{\beta}|X] &= var[(X'X)^{-1}X'Y|X] \\ &= (X'X)^{-1}X'var[Y|X]((X'X)^{-1}X')' \\ &= (X'X)^{-1}X'var[Y|X]X(X'X)^{-1} \\ &= (X'X)^{-1}X'var[X\beta + e|X]X(X'X)^{-1} \\ &= (X'X)^{-1}X'var[e|X]X(X'X)^{-1} \\ &= (X'X)^{-1}X'\Omega X(X'X)^{-1} \end{split}$$

Question 4.6

Let A be any $n \times k$ unbiased function of X such that $A'X = I_k$. The estimator has variance $Var[A'Y|X] = A'var[e|X]A = A'\Omega A$.

Let $C = A - \Omega^{-1}X(X'\Omega^{-1}X)^{-1}$ and note that X'C = 0. Then we have the following:

$$\begin{split} A'\Omega A - (X'\Omega^{-1}X)^{-1} &= (C + \Omega^{-1}X(X'\Omega^{-1}X)^{-1})'\Omega(C + \Omega^{-1}X(X'\Omega^{-1}X)^{-1}) \\ &= C'\Omega C + C'\Omega\Omega^{-1}X(X'\Omega^{-1}X)^{-1} + (\Omega^{-1}X(X'\Omega^{-1}X)^{-1})'\Omega C \\ &+ (\Omega^{-1}X(X'\Omega^{-1}X)^{-1})'\Omega\Omega^{-1}X(X'\Omega^{-1}X)^{-1}) - (X'\Omega X)^{-1} \\ &= C'\Omega C + (X'C)'(X'\Omega^{-1}X)^{-1} + (X'\Omega^{-1}X)^{-1}X'C \\ &+ (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}X(X'\Omega^{-1}X)^{-1}) - (X'\Omega X)^{-1} \\ &= C'\Omega C = (\Omega^{1/2}C)'(\Omega^{1/2}C) \end{split}$$

Thus, $A'\Omega A - (X'\Omega^{-1}X)^{-1}$ is positive semidefinite.