W13 - Homework

Stepwise problems - Thu. 11:59pm

Parametric curves

01

Convert parametric curve to function graph

Write the following curves as the graphs of a function y = f(x). (Find f(x) for each case.)

(a)
$$x = t + 3$$
, $y = 4t$ and $0 < t < 1$

(b)
$$x = \cos t$$
, $y = \sin^2 t$ and $0 < t < 2\pi$

Sketch each curve.

Calculus with parametric curves

02

Parametric curves: Points with given slope

Where on the image of $(3t^2 - 2t, t^3 - 6t)$ does the tangent line have slope 3?

03

Parametric concavity

Find $\frac{d^2y}{dx^2}$ at t=1 for the curve given parametrically by $x=4-t^{-2}$, $y=t^{-1}+t$.

Regular problems - Sat. 11:59pm

Parametric curves

04

Convert parametric curve to function graph

Write the following curves as the graphs of a function y = f(x). (Find f(x) for each case.)

(a)
$$x = t$$
, $y = t$ and $-\infty < t < \infty$

(b)
$$x = e^t$$
, $y = e^t$ and $-\infty < t < \infty$

Sketch each curve.

05

Convert function graph to parametric curve

Find parametric curves c(t) = (x(t), y(t)) whose images are the following graphs:

(a)
$$y = 3x - 4$$
 and $c(0) = (2, 2)$

(b)
$$y = 3x - 4$$
 and $c(3) = (2, 2)$

Calculus with parametric curves

06

Parametric concavity

Find the intervals of t on which the parametric curve $c(t)=(t^2,\,t^3-4t)$ is concave up.

07

Parametric arclength

Find the arclength of the curve given parametrically by $x=2t^2$, $y=3t^2-1$ over the time interval $0 \le t \le 4$.

08

Minimum speed of a particle

Suppose a travelling particle has position modelled by the parametric curve:

$$c(t) = (t^3 - 4t, t^2 + 1)$$

What is the *slowest speed* of the particle?

09

☑ Cycloid - Arclength and surface area of revolution

Consider the cycloid given parametrically by $c(t) = (t - \sin t, 1 - \cos t)$.

- (a) Find the length of one arch of the cycloid.
- (b) Suppose one arch of the cycloid is revolved around the x-axis. Find the area of this surface of revolution.