Training of Hidden Markov models as an instance of the expectation maximization algorithm

Stefan Majewsky

22. August 2017

Caveat emptor!

Die Definitionen in diesem Vortrag sind aus Zeitgründen stark verkürzt. In der eigentlichen Arbeit wird alles rigoros eingeführt und abgeleitet.

Sprachmodelle

- ► Bigramm-Modell
- ► Hidden-Markov-Modell

Sprachmodelle

- ► Bigramm-Modell
- ▶ Hidden-Markov-Modell

EM-Algorithmen

▶ Baum-Welch-Algorithmus

Sprachmodelle

- ► Bigramm-Modell
- Hidden-Markov-Modell

EM-Algorithmen

- Baum-Welch-Algorithmus
- ► Inside-Outside-EM-Algorithmus
- Instanziierung für Hidden-Markov-Modell

Sprachmodell

▶ Ziel: probabilistische Beschreibung einer Sprache

Satz $x \mapsto$ Wahrscheinlichkeit p(x)

Sprachmodell

▶ Ziel: probabilistische Beschreibung einer Sprache

Satz
$$x \mapsto \text{Wahrscheinlichkeit } p(x)$$

b beschrieben durch *Modellparameter* $\omega \in \Omega$

Grafik nach: H. Vogler. *Maschinelles Übersetzen natürlicher Sprachen*. Vorlesung, TU Dresden, Wintersemester 2015/2016.

Bigramm-Modell

Idee:

- jedes Wort individuell betrachten
- Wahrscheinlichkeit hängt nur vom vorherigen Wort ab

Bigramm-Modell

Idee:

- jedes Wort individuell betrachten
- Wahrscheinlichkeit hängt nur vom vorherigen Wort ab

#___Alice___sees___Bob___#
$$p_b(x) = b(\text{Alice}|\#) \cdot b(\text{sees}|\text{Alice}) \cdot b(\text{Bob}|\text{sees}) \cdot b(\#|\text{Bob})$$

▶ Likelihood eines Korpus...

$$p_b(c) = \prod_x p_b(x)^{c(x)}$$

...wird durch empirische Wahrscheinlichkeit maximiert

$$b(w'|w) = \frac{\operatorname{count}(w \ w')}{\sum_{w''} \operatorname{count}(w \ w'')}$$

▶ Likelihood eines Korpus...

$$p_b(c) = \prod_x p_b(x)^{c(x)}$$

...wird durch empirische Wahrscheinlichkeit maximiert

$$b(w'|w) = \frac{\operatorname{count}(w \ w')}{\sum_{w''} \operatorname{count}(w \ w'')}$$

▶ z. B. für Korpus: "Alice sees Bob", "Alice likes cake"

\boldsymbol{x}	
Alice	
sees	
Bob	
likes	
cake	
#	

▶ Likelihood eines Korpus...

$$p_b(c) = \prod_x p_b(x)^{c(x)}$$

...wird durch empirische Wahrscheinlichkeit maximiert

$$b(w'|w) = \frac{\operatorname{count}(w \ w')}{\sum_{w''} \operatorname{count}(w \ w'')}$$

z. B. für Korpus: "Alice sees Bob", "Alice likes cake"

\boldsymbol{x}	count(Alice <i>x</i>)	
Alice	0	
sees	1	
Bob	0	
likes	1	
cake	0	
#	0	

▶ Likelihood eines Korpus...

$$p_b(c) = \prod_x p_b(x)^{c(x)}$$

...wird durch empirische Wahrscheinlichkeit maximiert

$$b(w'|w) = \frac{\operatorname{count}(w \ w')}{\sum_{w''} \operatorname{count}(w \ w'')}$$

z. B. für Korpus: "Alice sees Bob", "Alice likes cake"

\boldsymbol{x}	count(Alice <i>x</i>)	b(x Alice)
Alice	0	0
sees	1	0,5
Bob	0	0
likes	1	0,5
cake	0	0
#	0	0

Hidden-Markov-Modell

 Idee: Wahrscheinlichkeit jedes Wortes hängt vom Verhalten eines Zustandsautomaten ab

Hidden-Markov-Modell

 Idee: Wahrscheinlichkeit jedes Wortes hängt vom Verhalten eines Zustandsautomaten ab

Hidden-Markov-Modell

л	(A VCID)	λ	c(x modif)
Alice	0	Alice	0,5
Bob	0	Bob	0,25
cake	0	cake	0,25
likes	0,5	likes	0
sees	0,5	sees	0
	'		

- Idee: Wahrscheinlichkeit jedes Wortes hängt vom Verhalten eines Zustandsautomaten ab
- Modellparameter: $\omega = (t, e)$
 - ▶ Transitions-Wkt. *t*
 - Emissions-Wkt. e

$$p_{\omega}(x = x_1 \cdots x_n) = \sum_{q_1, \dots, q_n} t(q_1 | \#) \cdot e(x_1 | q_1) \cdot \left[\prod_{i=2}^n t(q_i | q_{i-1}) \cdot e(x_i | q_i) \right] \cdot t(\#|q_n)$$

Hidden-Markov-Modell: Training

- ▶ Problem: Korpus enthält nur Sätze, keine Zustände
 - optimales $\omega = (t, e)$ nicht direkt ablesbar

Hidden-Markov-Modell: Training

- Problem: Korpus enthält nur Sätze, keine Zustände
 - optimales $\omega = (t, e)$ nicht direkt ablesbar
- ▶ Idee: alle möglichen Beiträge zum Ergebnis abschätzen
 - ► Baum-Welch-Algorithmus

Hidden-Markov-Modell: Training

- Problem: Korpus enthält nur Sätze, keine Zustände
 - optimales $\omega = (t, e)$ nicht direkt ablesbar
- ▶ Idee: alle möglichen Beiträge zum Ergebnis abschätzen
 - ▶ Baum-Welch-Algorithmus
- ▶ z. B. für Transitionswahrscheinlichkeit von # nach *q*

Warum ein allgemeiner EM-Algorithmus?

ightharpoonup EM = iterative Anpassung des Modellparameters ω

Warum ein allgemeiner EM-Algorithmus?

- ightharpoonup EM = iterative Anpassung des Modellparameters ω
- ▶ Ist der neue Modellparameter wirklich *besser* als der alte?

$$p_{\omega'}(c) \geq p_{\omega}(c)$$

Warum ein allgemeiner EM-Algorithmus?

- ightharpoonup EM = iterative Anpassung des Modellparameters ω
- ▶ Ist der neue Modellparameter wirklich *besser* als der alte?

$$p_{\omega'}(c) \geq p_{\omega}(c)$$

► EM-Algorithmen nach [BSV15] haben bewiesene Konvergenz-Eigenschaften

[BSV15] Matthias Büchse, Torsten Stüber und Heiko Vogler. *A generic inside-outside EM algorithm.* Unpublished Manuscript, 2015.

Sprachmodelle

- ► Bigramm-Modell
- Hidden-Markov-Modell

EM-Algorithmen

- ▶ Baum-Welch-Algorithmus
- ► Inside-Outside-EM-Algorithmus
- Instanziierung für Hidden-Markov-Modell

Inside-Outside-EM-Algorithmus nach [BSV15]

- ▶ X_{\perp} : abzählbare Menge der *Beobachtungen* (z. B. Sätze)
- ▶ Y_{\perp} : abzählbare Menge der *versteckten Informationen* (z. B. Syntaxbäume)

Inside-Outside-EM-Algorithmus nach [BSV15]

- ▶ X_{\perp} : abzählbare Menge der *Beobachtungen* (z. B. Sätze)
- ▶ Y_{\perp} : abzählbare Menge der *versteckten Informationen* (z. B. Syntaxbäume)
- ▶ π_1 : $Y_{\cancel{\perp}} \to X_{\cancel{\perp}}$ ordnet jedem y eine Beobachtung x zu

Bsp. Kontextfreie Grammatiken

Jedes $y \in Y_{\perp}$ ist ein Baum mit Rang, der mit Zählereignissen beschriftet ist.

Jedes $y \in Y_{\not\perp}$ ist ein Baum mit Rang, der mit Zählereignissen beschriftet ist.

- ▶ $C \subseteq A \times B$: *Zählereignisse* (hierbei *A*, *B* abzählbare Mengen)
- Baum mit Rang: Anzahl der Nachfolger eines Knotens ist eine Funktion der Beschriftung des Knotens

Jedes $y \in Y_{\not\perp}$ ist ein Baum mit Rang, der mit Zählereignissen beschriftet ist.

- ▶ $C \subseteq A \times B$: Zählereignisse (hierbei A, B abzählbare Mengen)
- Baum mit Rang: Anzahl der Nachfolger eines Knotens ist eine Funktion der Beschriftung des Knotens

Jedes $y \in Y_{\perp}$ ist ein Baum mit Rang, der mit Zählereignissen beschriftet ist.

- ▶ $C \subseteq A \times B$: *Zählereignisse* (hierbei *A*, *B* abzählbare Mengen)
- Baum mit Rang: Anzahl der Nachfolger eines Knotens ist eine Funktion der Beschriftung des Knotens

Jedes $y \in Y_{\perp}$ ist ein Baum mit Rang, der mit Zählereignissen beschriftet ist.

- Ω : Menge von Modellparametern ω
- ightharpoonup q: Ω -Wahrscheinlichkeitsmodell für A und B (eingeschränkt auf C)
- $q_{\omega}(a|b)$: Wahrscheinlichkeit des Zählereignisses c=(a,b)

Inside-Outside-EM-Algorithmus (Forts.)

Bestandteile einer *Inside-Outside-Information*:

► X, Y, π_1 , A, B, C, Ω , q: wie gesehen

Inside-Outside-EM-Algorithmus (Forts.)

Bestandteile einer *Inside-Outside-Information*:

- ▶ X, Y, π_1 , A, B, C, Ω , q: wie gesehen
- ▶ K: reguläre Baumgrammatik (RTG), die alle $y \in Y_{\perp}$ erzeugt
- ▶ H(x): RTG, die alle $y \in Y_{\perp}$ mit $\pi_1(y) = x$ erzeugt
- ▶ Eindeutigkeit: je RTG genau eine Ableitung für jedes *y*

Inside-Outside-EM-Algorithmus (Forts.)

Bestandteile einer *Inside-Outside-Information*:

- ▶ X, Y, π_1 , A, B, C, Ω , q: wie gesehen
- ▶ K: reguläre Baumgrammatik (RTG), die alle $y \in Y_{\perp}$ erzeugt
- ▶ H(x): RTG, die alle $y \in Y_{\perp}$ mit $\pi_1(y) = x$ erzeugt
- ► Eindeutigkeit: je RTG genau eine Ableitung für jedes *y*
- ▶ reguläre Baumgrammatik: erzeugt Bäumen aus Regeln wie

$$q_{\mathrm{VP}} o \left(\begin{array}{|c|c|} \hline \mathrm{VP} o \mathrm{VBP} \ \mathrm{NP} \\ \hline q_{\mathrm{VBP}} & q_{\mathrm{NP}} \end{array} \right)$$

Bsp. Syntaxbaum einer CFG aus Baumgrammatik

 $q_{\rm S}$

Beispiele für Regeln:

$$q_{\rm S} \rightarrow \begin{pmatrix} \boxed{{
m S} \rightarrow {
m NP\ VP}} \\ q_{
m NP} & q_{
m VP} \end{pmatrix} \qquad q_{
m NP} \rightarrow \boxed{{
m NP} \rightarrow {
m Alice}}$$

$$q_{\rm NP} \rightarrow \boxed{\rm NP \rightarrow Alice}$$

Bsp. Syntaxbaum einer CFG aus Baumgrammatik

Beispiele für Regeln:

$$q_{\rm S} \rightarrow \begin{pmatrix} \boxed{{
m S} \rightarrow {
m NP\ VP}} \\ q_{
m NP} & q_{
m VP} \end{pmatrix} \qquad q_{
m NP} \rightarrow \boxed{{
m NP} \rightarrow {
m Alice}}$$

$$q_{\rm S}
ightarrow \left(\begin{array}{c} \hline {
m S}
ightarrow {
m NP \ VP} \\ \hline q_{
m NP} & q_{
m VP} \end{array} \right) \qquad q_{
m NP}
ightarrow \overline{
m NP}
ightarrow {
m Alice}$$

$$q_{\rm S} \rightarrow \begin{pmatrix} \boxed{{
m S} \rightarrow {
m NP\ VP}} \\ q_{
m NP} & q_{
m VP} \end{pmatrix} \qquad q_{
m NP} \rightarrow \boxed{{
m NP} \rightarrow {
m Alice}}$$

$$q_{\rm S} \rightarrow \begin{pmatrix} \boxed{{
m S} \rightarrow {
m NP\ VP}} \\ q_{
m NP} & q_{
m VP} \end{pmatrix} \qquad q_{
m NP} \rightarrow \boxed{{
m NP} \rightarrow {
m Alice}}$$

$$q_{\rm S} \rightarrow \begin{pmatrix} \boxed{{
m S} \rightarrow {
m NP\ VP}} \\ q_{
m NP} & q_{
m VP} \end{pmatrix} \qquad q_{
m NP} \rightarrow \boxed{{
m NP} \rightarrow {
m Alice}}$$

EM-Algorithmus für Inside-Outside-Informationen

EM-Algorithmus für Inside-Outside-Informationen

- ▶ $\chi_{\omega,x}(a,b)$ nutzt bekanntes q_{ω} , um Häufigkeit von (a,b) in der Beobachtung x abzuschätzen
- ▶ dann ω' so wählen, dass $q_{\omega'}$ der empirischen Wahrscheinlichkeitsverteilung von count(a,b) entspricht

EM-Algorithmus für Inside-Outside-Informationen

$$\chi_{\omega,x}(a,b) = \frac{\sum_{q \to (a,b)(q_1,\dots,q_k)} \alpha_x(q) \cdot q_\omega(a|b) \cdot \beta_x(q_1) \cdots \beta_x(q_k)}{\beta_x(q_0)}$$

EM-Algorithmus für Inside-Outside-Informationen

$$\chi_{\omega,x}(a,b) = \frac{\sum_{q \to (a,b)(q_1,\dots,q_k)} \alpha_x(q) \cdot q_\omega(a|b) \cdot \beta_x(q_1) \cdots \beta_x(q_k)}{\beta_x(q_0)}$$

Ist der Baum-Welch-Algorithmus eine Instanz hiervon?

Versteckte Information für Hidden-Markov-Modell

Alice sees Bob

Versteckte Information für Hidden-Markov-Modell

Versteckte Information für Hidden-Markov-Modell

(T,#)

- ► Zustände: (T,q) für $q \in Q \cup \{\#\}$ und (E,q) für $q \in Q$
- ► Startzustand: (*T*,#); Regeln:

$$(T,q) \to (q',(q,T))((E,q'),(T,q')) \quad \text{für } q \in Q \cup \{\#\}, q' \in Q$$

$$(T,q) \to (\#,(q,T)) \quad \text{für } q \in Q \cup \{\#\}$$

$$(E,q) \to (v,(q,E)) \quad \text{für } q \in Q, v \in V$$

- ► Zustände: (T,q) für $q \in Q \cup \{\#\}$ und (E,q) für $q \in Q$
- ▶ Startzustand: (T, #); Regeln:

$$(T,q) \to (q',(q,T))((E,q'),(T,q')) \quad \text{für } q \in Q \cup \{\#\}, q' \in Q$$

$$(T,q) \to (\#,(q,T)) \quad \text{für } q \in Q \cup \{\#\}$$

$$(E,q) \to (v,(q,E)) \quad \text{für } q \in Q, v \in V$$

- ► Zustände: (T,q) für $q \in Q \cup \{\#\}$ und (E,q) für $q \in Q$
- ▶ Startzustand: (T, #); Regeln:

$$(T,q) \to (q',(q,T))((E,q'),(T,q')) \quad \text{für } q \in Q \cup \{\#\}, q' \in Q$$

$$(T,q) \to (\#,(q,T)) \quad \text{für } q \in Q \cup \{\#\}$$

$$(E,q) \to (v,(q,E)) \quad \text{für } q \in Q, v \in V$$

- ► Zustände: (T,q) für $q \in Q \cup \{\#\}$ und (E,q) für $q \in Q$
- ► Startzustand: (*T*,#); Regeln:

$$\begin{aligned} (T,q) &\to \big(q',(q,T)\big)\big((E,q'),(T,q')\big) & \text{ für } q \in Q \cup \{\#\}, q' \in Q \\ (T,q) &\to \big(\#,(q,T)\big) & \text{ für } q \in Q \cup \{\#\} \\ (E,q) &\to \big(v,(q,E)\big) & \text{ für } q \in Q, v \in V \end{aligned}$$

- ▶ Zustände: (T,q) für $q \in Q \cup \{\#\}$ und (E,q) für $q \in Q$
- ▶ Startzustand: (T, #); Regeln:

$$(T,q) \to (q',(q,T))((E,q'),(T,q')) \quad \text{für } q \in Q \cup \{\#\}, q' \in Q$$

$$(T,q) \to (\#,(q,T)) \quad \text{für } q \in Q \cup \{\#\}$$

$$(E,q) \to (v,(q,E)) \quad \text{für } q \in Q, v \in V$$

- ► Zustände: (T,q) für $q \in Q \cup \{\#\}$ und (E,q) für $q \in Q$
- ▶ Startzustand: (T, #); Regeln:

$$(T,q) \to (q',(q,T))((E,q'),(T,q')) \quad \text{für } q \in Q \cup \{\#\}, q' \in Q$$

$$(T,q) \to (\#,(q,T)) \quad \text{für } q \in Q \cup \{\#\}$$

$$(E,q) \to (v,(q,E)) \quad \text{für } q \in Q, v \in V$$

Gliederung

Sprachmodelle

- ► Bigramm-Modell
- Hidden-Markov-Modell

EM-Algorithmen

- Baum-Welch-Algorithmus
- ► Inside-Outside-EM-Algorithmus
- Instanziierung für Hidden-Markov-Modell