1

Software Assignment: Finding Eigenvalues

EE24BTECH11007 - Arnav Makarand Yadnopavit

I. Introduction

There are various algorithms present to approximate eigenvalues of matrices. The best algorithms considering general $n \times n$ matrix are as following.

Algorithm	Advantages	Disadvantages
QR Algorithm with Householder technique and Wilkinson Shift	 Fast convergence for symmetric/Hermitian matrices. Wilkinson shift accelerates convergence. Householder transformations ensure numerical stability and efficiency. 	Computationally intensive for large matrices due to repeated QR decompositions.
Divide-and-Conquer	 Highly efficient for symmetric matrices. Scales well with matrix size for parallel computing. 	 Less numerically stable for small eigenvalues. Preprocessing required for non-symmetric matrices.
Jacobi Algorithm	 Simple to implement. Numerically stable for symmetric matrices. 	 Slower convergence compared to QR with shifts. Inefficient for large matrices.
Bisection Method	 Reliable for computing eigenvalues in a specific interval. Works well with tridiagonal matrices. 	Only provides eigenvalues, not eigenvectors. Convergence can be slow without good initial bounds.
Standard QR Algorithm (without Shift)	 Robust for small matrices. Simple structure and implementation. 	 Slower convergence compared to the shifted version. Requires significantly more iterations.

Hence QR Algorithm with Householder technique and Wilkinson Shift stands out for being generally better for any general $n \times n$ matrix due to its fast convergence rate, Numerical stability.

II. QR ALGORITHM WITH HOUSEHOLDER TECHNIQUE AND WILKINSON SHIFT

A. QR Decomposition

QR decomposition factors a given matrix A into:

$$A = QR$$

where Q is an orthogonal matrix $(Q^TQ = I)$, and R is an upper triangular matrix.

B. Householder Transformations

Householder transformations are used to zero out elements below the diagonal of a matrix column. Given a vector v, the Householder matrix is:

$$H = I - 2\frac{vv^{\top}}{v^{\top}v}$$

The way it works is:

Initialize Q as Identity matrix. Let x be the first column of A, and $\alpha = ||\mathbf{x}||$.

$$\mathbf{u} = \mathbf{x} - \alpha \mathbf{e}_1$$

$$\mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{u}\|}$$

$$Q = I - 2vv^H$$

By this we obtain Q_1 such that:

$$Q_1 A = \begin{pmatrix} \alpha_1 & * & \dots & * \\ 0 & & & \\ \vdots & & A' & \\ 0 & & & \end{pmatrix}$$

This can be repeated for A' (obtained from Q_1A by deleting the first row and first column), resulting in a Householder matrix Q'_2 . Note that Q'_2 is smaller than Q_1 . Since we want it really to operate on Q_1A instead of A' we need to expand it to the upper left, filling in a 1, or in general:

$$Q_k = \begin{pmatrix} I_{k-1} & 0 \\ 0 & Q_k' \end{pmatrix}$$

After n-1 iterations of this process.

$$R = Q_{n-1} \dots Q_2 Q_1 A$$

 $Q^{\top} = Q_{n-1} \dots Q_2 Q_1$
 $Q = Q_1 Q_2 \dots Q_{n-1}$

C. QR Algorithm for Eigenvalues

The QR algorithm iteratively applies QR decomposition to a shifted matrix $A - \mu I$ and reconstructs it as:

$$A = RQ + \mu I$$

converging to an upper triangular form with eigenvalues on the diagonal. where μ can be calculated by:

$$\mu = a_m - \frac{\delta}{|\delta|} \frac{b_{m-1}^2}{|\delta| + \sqrt{\delta^2 + b_{m-1}^2}}$$

where B is the lower rightmost 2×2 matrix of A, $B = \begin{pmatrix} a_{m-1} & b'_{m-1} \\ b'_{m-1} & a_m \end{pmatrix}$ $\delta = \frac{a_{m-1}-a_m}{2}$ If $\delta = 0$, then $\mu = a_m - b_{m-1}$

D. Complex Eigenvalues

In case a matrix has complex eigenvalues a hessenberg matrix (2×2) will be formed along the diagonal of the triangularised matrix A such that:

$$A = \begin{pmatrix} \lambda_1 & \dots & \dots \\ 0 & a & b & \dots \\ \vdots & c & d & \dots \\ 0 & \dots & \dots & \lambda_n \end{pmatrix}$$

then:

$$\lambda_2 = \frac{a + d + \sqrt{(a+d)^2 - 4(ad - bc)}}{2}$$

$$\lambda_3 = \frac{a + d - \sqrt{(a+d)^2 - 4(ad - bc)}}{2}$$

III. Code

```
#include <stdio.h>
#include <math.h>
#include <complex.h>
#include <stdlib.h>
//TO DO LIST
//QR DECOMPOSITION DONE
//QR Algo DONE
//MATRIX SUB DONE
//MATRIX SCALARMULT DONE
//MATRIX MULT DONE
//WILKINSON SHIFT DONE
//VECTOR NORM DONE
#define MAX_ITER 10000
#define ORDER 3
typedef struct matrix{
double complex mat[ORDER][ORDER];
}matrix;
typedef struct QR{
matrix Q;
matrix R;
}QR;
double complex VectorInnerProduct(double complex* vector1,double complex* vector2){
double complex ip=0;
for (int i=0; i<0RDER; i++) {
                ip+=vector1[i]*conj(vector2[i]);
        }
return ip;
double complex VectorNorm(double complex* vector){
return csqrt(VectorInnerProduct(vector, vector));
matrix Identity(){
```

```
4
```

```
matrix Id;
for (int i=0; i<0RDER; i++) {
for(int j=0;j<ORDER;j++){</pre>
if (i==j){
Id.mat[i][j]=1;
}
else{
Id.mat[i][j]=0;
}
}
}
return Id;
matrix MatScalMult(matrix mat,double complex scal){
matrix result;
for (int i=0;i<ORDER;i++){
for (int j=0; j<ORDER; j++) {
result.mat[i][j]=mat.mat[i][j]*scal;
}
}
return result;
matrix MatSub(matrix mat1,matrix mat2){
matrix result;
    for (int i=0; i<0RDER; i++) {
             for (int j=0; j<ORDER; j++){
                 result.mat[i][j]=mat1.mat[i][j]-mat2.mat[i][j];
             }
    }
        return result;
}
matrix MatMult(matrix mat1,matrix mat2) {
    matrix result;
    for (int i=0; i<0RDER; i++) {
        for (int j=0; j<ORDER; j++){
             result.mat[i][j]=0;
        }
    for (int i=0; i<0RDER; i++) {
        for (int j=0; j<0RDER; j++) {
             for (int k=0; k<0RDER; k++) {
                 result.mat[i][j]+=mat1.mat[i][k]*mat2.mat[k][j];
             }
        }
    }
    return result;
```

```
}
matrix trans(matrix mat){
    matrix result;
    for (int i=0;i<ORDER;i++){
        for (int j=0; j<ORDER; j++) {
        result.mat[i][j]=conj(mat.mat[j][i]);
    }
    return result;
}
double complex WilkinsonShift(matrix A){
    double complex delta = (A.mat[ORDER-2][ORDER-2]-A.mat[ORDER-1][ORDER-1])/2;
    if (cabs(delta)==0 && cabs(A.mat[ORDER-1][ORDER-2])==0){
        return A.mat[ORDER-1][ORDER-1]+1;
    }
    else if (cabs(delta)==0){
        return A.mat[ORDER-1][ORDER-1]-A.mat[ORDER-1][ORDER-2]+1;
    }
    else if(cabs(A.mat[ORDER-1][ORDER-2])==0){
        return A.mat[ORDER-1][ORDER-1]+1;
    }
    else{
        return A.mat[ORDER-1][ORDER-1]-((delta/cabs(delta))*(A.mat[ORDER-1][ORDER-2]*A.mat
    }
int tolcheck(matrix A){
    int t=0;
    double complex tol=1e-12;
    for (int i=1;i<0RDER;i++){</pre>
        for (int j=0; j< i; j++){
            if (cabs(A.mat[i][j])>cabs(tol)){
                t++;
                break;
            }
        }
    if (t>0){
        return 1;
    else{return 0;}
}
QR QRDecomposition(matrix A){
    QR result;
    matrix H;
    result.Q=Identity();
    result.R=A;
    for (int k=0; k<ORDER-1; k++) {
        double complex v[ORDER-k];
```

```
for (int i=k; i<0RDER; i++){
        v[i-k]=result.R.mat[i][k];
    }
    double complex alpha;
    //printf("%lf %lf\n",creal(v[0]),creal(v[1]));
    if (creal(v[0])==0){
    alpha=VectorNorm(v);
    }
    else{
    alpha=(result.R.mat[k][k]/cabs(result.R.mat[k][k]))*VectorNorm(v);
    }
    v[0]+=alpha;
    double complex vc=VectorNorm(v);
    if (vc!=0){
    for (int i=0;i<ORDER-k;i++){
        v[i]/=vc;
        }
    double complex qprime[ORDER-k][ORDER-k];
    for(int i=0;i<ORDER-k;i++){</pre>
        for(int j=0; j<0RDER-k; j++){
            if (i==j){
                qprime[j][i]=1-(2*conj(v[i])*v[j]);
            }
            else{
                 qprime[j][i]=-(2*conj(v[i])*v[j]);
            }
        }
    }
    for(int i=0;i<ORDER;i++){</pre>
        for (int j=0; j<ORDER; j++) {
            if (i==j && i<k){H.mat[i][j]=1;}
            else if(i \ge k\&j \ge k){
                H.mat[i][j]=qprime[i-k][j-k];
            }
            else{H.mat[i][j]=0;}
        }
    result.R=MatMult(H,result.R);
    result.Q=MatMult(result.Q,trans(H));
}
return result;
```

double complex beta;

}

```
7
```

```
double complex* QRAlgorithm(matrix A){
    double complex* eigenv = (double complex*)malloc(ORDER * sizeof(double complex));
    double complex shift;
    for (int i=0; i < MAX_ITER; i++){
        if (tolcheck(A)==0){
            break;
        }
         shift = WilkinsonShift(A);
         matrix identity = Identity();
         A = MatSub(A, MatScalMult(identity, shift));
         QR qr = QRDecomposition(A);
         A = MatMult(qr.R,qr.Q);
        A=MatSub(MatMult(qr.R, qr.Q),MatScalMult(identity, -shift));
    }
    int i;
    for (i=0;i<ORDER-1;i++){}
        if (cabs(A.mat[i+1][i])>1e-5){
            double complex eig1,eig2,a=A.mat[i][i],b=A.mat[i][i+1],c=A.mat[i+1][i],d=A.mat
            eigenv[i]=(a+d+csqrt((a+d)*(a+d)-4*(a*d-b*c)))/2;
            eigenv[i+1]=(a+d-csqrt((a+d)*(a+d)-4*(a*d-b*c)))/2;
            ++i;
        }
        else{
        eigenv[i]=A.mat[i][i];
    }
    if (i==ORDER-1){
    eigenv[ORDER-1]=A.mat[ORDER-1][ORDER-1];}
    return eigenv;
}
int main(){
double complex A[ORDER][ORDER] ={{1,2,5},
    {4,5,8},
    {2,4,6}};
   matrix Mat;
    for (int i=0;i<ORDER;i++){
        for (int j=0; j<ORDER; j++) {
            Mat.mat[i][j]=A[i][j];
        }
    }
double complex* eigen=(double complex*)malloc(ORDER*sizeof(double complex));
    eigen=QRAlgorithm(Mat);
```

```
for (int i=0;i<ORDER;i++){
printf("(%lf + %lfi)\n",creal(eigen[i]),cimag(eigen[i]));
}
return 0;
}</pre>
```

- IV. Properties of QR Algorithm with Householder technique and Wilkinson Shift
- Time complexity: $O(n^3)$
- Wilkinson shift quadratically converges the approx eigenvalues i.e convergence rate is quadratic:

$$\epsilon_k = \left| \lambda_i - \lambda_{i,k} \right|$$

$$\epsilon_{k+1} = C \epsilon_k^2$$

V. Conclusion

The QR decomposition and eigenvalue computation were successfully implemented using the Householder method. The results matched the expected theoretical outcomes.

VI. REFERENCES

- Trefethen, L.N. and Bau, D. (1997) Numerical Linear Algebra. SIAM, Philadelphia.
- Strang, Gilbert, Linear Algebra and Its Applications. New York, Academic Press, 1976.
- Online resources: https://www.wikipedia.org

Thank You