

# **Topics**

**General Reactions** 

Representing mechanisms through curly arrows

**S<sub>N</sub>1 & S<sub>N</sub>2:** Mecahanisms, Reaction profiles

**Various Effects on S<sub>N</sub>1 and S<sub>N</sub>2 reactions**Substrate, Solvent, Nucleophile, Leaving groups

**Stereo chemical implications** 

# Reactions

# Ionic reactions:

Bond breaking and bond making take place in a heterolytic fashion

# Radical reactions:

Bond breaking and bond making take place in a homolytic fashion

# **Ionic Reactions:**

1) Nucleophilic substitution:

$$\stackrel{\bigcirc}{Y}$$
 + R—X  $\longrightarrow$  R—Y +  $\stackrel{\bigcirc}{X}$ 

R = aliphatic as well as aromatic

2) Eletrophilic substitution:

$$R \longrightarrow H + X \longrightarrow R \longrightarrow X + H$$

$$R = \text{aromatic}$$

3) Nucleophilic addition:

4) Eletrophilic addition:

$$+ \overset{\oplus}{x} \xrightarrow{\psi} \overset{\psi}{\xrightarrow{\psi}} \overset{\psi}{\xrightarrow{\chi}}$$

5) Rearrangements:



# **Nucleophilic Substitution at a saturated carbon Nucleophile?** "Nucleophilic substitution"? It is an electron rich species one nucleophile replaces another nucleophile. reacts with an electron poor species It occurs when an electron rich species, the nucleophile, reacts with an electrophilic saturated C atom which Is attached to an electronegative group (important), the leaving group. nucleophile adds first & leaving gr. goes later leaving group goes first and nucleophile comes later $y + \frac{1}{2} c - x \longrightarrow c + x \odot$ S<sub>N</sub>1 nucleophile attacks and leaving group goes simultaneously S<sub>N</sub>2



# $S_N 2$

### Hydrolysis of bromomethane in aqueous base proceeds according to

## Rate = $k_2[CH_3Br][OH]$

- Both alkyl bromide and <sup>-</sup>OH are participating in the ratelimiting (slowest) step of the reaction.
- OH becomes partially attached to carbon before Br is fully detached.
- Energy necessary for breaking C-Br bond is supplied by that produced in forming HO-C bond.
- Quantum mechanical calculation shows that an approach by OH along the line of centers of the C & Br is that of lowest







# **Important Point to Remember:**

Inversion of configuration does not mean R going to S or vice versa. It means that bond formation takes place opposite to that of bond breaking......which leads to the inversion. it is like inversion of umbrella in a storm.







# $S_N1$ : Hydrolysis of *t*-butyl chloride by base proceeds according to Rate = $k_1[t-BuCl]$ or independent of $[OH^-]$

- 1. Halide undergoes slow ionization to yield the ion pair R<sup>+</sup> and Cl<sup>-</sup> followed by first attack by <sup>-</sup>OH or solvent or nuleophile.
- 2. The energy necessary to effect the initial ionization is largely recovered from the energy evolved through solvation of the resultant ion-pair.

# For S<sub>N</sub>1:

# **Racemization is expected**

**Extent of inversion = extent of retention** 

However, due to ion pair formation, more inversion then retention.

Ion pair mechanism:

$$\begin{array}{c}
R_1 \\
R_2 \parallel_{\mu_{11}} \\
R_3
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_3 \\
R_3$$

$$\begin{array}{c}
R_3 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_3 \\
R_3$$

$$\begin{array}{c}
R_3 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_3 \\
R_3$$

$$\begin{array}{c}
R_3 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_3 \\
R_3$$

$$\begin{array}{c}$$

7



# Factors Affecting the Rates of $S_{N}\mathbf{1}$ and $S_{N}\mathbf{2}$ reactions :

- 1) The structure of the substrate
- 2) Concentration and Reactivity of Nucleophile

  (for bimolecular reactions only)
- 3) The effect of solvent.
- 4) The nature of leaving group (nucleofuge)
- 5) Stereochemical implications of mechanism







| Relative rates of S <sub>N</sub> 2 reactions of alky | d chlorides with th | ne iodide ion                                       |
|------------------------------------------------------|---------------------|-----------------------------------------------------|
| Alkyl chloride                                       | relative rate       |                                                     |
| Me—CI                                                | 200                 | The rates are<br>given with<br>respect to<br>n-BuCl |
| CI                                                   | 0.02                |                                                     |
| CI                                                   | 79                  |                                                     |
| CI                                                   | 200                 |                                                     |
| Me O CI                                              | 920                 |                                                     |
| CI                                                   | 1,00,000            |                                                     |

# Relative Rates of Reaction of Alkyl Bromides with Lithium Iodide in Acetone

| with Lithium | Iodide in Acetone    |
|--------------|----------------------|
| Alkyl group  | Relative Rate        |
| Isopropyl    | 1.0                  |
| Cyclopropyl  | no reaction detected |
| Cyclobutyl   | 0.008                |
| Cyclopentyl  | 1.6                  |
| Cyclohexyl   | 0.01                 |
| Cycloheptyl  | 1.0                  |
|              |                      |



# Q. Relative rate of solvolysis under $S_N1$ condition $HC = C - C - CI \qquad H_2C = C - C - CI \qquad Me$ $1.0 \qquad 10,000$ Explain?

# Q. Compare the relative rates of solvolysis of

# **Solvent effect**

Dielectric constant ( $\epsilon$ , at 25 C): H<sub>2</sub>O 79

EtOH 25

Increase in dielectric constant and/or ion-solvating ability result in a marked increase in reaction rate

R—Hal 
$$\longrightarrow \begin{bmatrix} \delta^+ \\ R^{---} - Hal \end{bmatrix} \longrightarrow R^+ Hal^-$$

The energy required for this process decreases as dielectric constant increases

The process is facilitated by increasing solvation and consequent stabilization of the ion-pair

# For $S_N2$ : Increasing dielectric constant has much less effect. Results in slight decrease in rate

$$Nu^{\text{-}} + R \xrightarrow{\hspace{-0.5cm} \hspace{-0.5cm}} Hal \xrightarrow{\hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm}} \left[ \hspace{.1cm} Nu^{\underline{\delta^{\text{-}}} \cdots R \cdots Hal}^{\delta^{\text{-}}} \right] \xrightarrow{\hspace{-0.5cm} \hspace{-0.5cm}} R \xrightarrow{\hspace{-0.5cm} \hspace{-0.5cm}} Nu$$

- New charge is not developed.
- Existing charge is dispersed in the T.S. compared with the starting material

Marked effect on the rate of S<sub>N</sub>2 reaction, when that transferred from polar protic solvent to polar aprotic solvent.

Me—I + N<sub>3</sub>-Na<sup>+</sup> 
$$\xrightarrow{\text{solvent}}$$
 Me-N<sub>3</sub> + NaI

Rate in MeOH ( $\epsilon$  = 33) 1

DMF ( $\epsilon$  = 37) 4.5X10<sup>4</sup> DMF: HCONMe<sub>2</sub>

DMSO ( $\epsilon$  = 46) 1X10<sup>9</sup> DMSO: Me<sub>2</sub>SO

- In MeOH both Na<sup>+</sup> and N<sub>3</sub><sup>-</sup> are solvated.
- In DMF only Na<sup>+</sup> is solvated, but not N<sub>3</sub><sup>-</sup>.
- So, unsolvated N<sub>3</sub> is a much more powerful nucleophile
- •When RX is capable of undergoing both  $S_N1$  and  $S_N2$  reactions:
- •S<sub>N</sub>2 reaction will be favored by a high concentration of a good (negatively charged) nucleophile in a polar aprotic solvent,
- S<sub>N</sub>1 reaction will be favored by a poor (neutral) nucleophile in a polar protic solvent

Polar aprotic solvents: DMF & DMSO

$$H$$
— $\ddot{C}$ — $\dot{N}$ — $CH_3$   $H_3C$ — $\ddot{S}$ — $CH_3$   $H_3C$   $S$ = $O$ — $O$ = $S$ 
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $CH_3$ 

Me 
$$\stackrel{\circ}{\text{H}}$$
  $\stackrel{\circ}{\text{H}}$   $\stackrel{\circ}{\text{H}}$ 

Transfer from polar, protic to polar, aprotic solvents can change the reaction mode from  $S_N 1 \rightarrow S_N 2$ 

# Q. Which reaction will take place more rapidly?



# **Effect of Nucleophile:**

The nucleophilicity may be correlated to its basicity as both involve the availability of the electron pairs and the ease with which it is donated

Nucleophilicity of  $CH_3O$   $> CH_3OH$ 

A negatively charged nucleophile is always stronger than its conjugate acid.

Stronger base better nucleophile weaker base poorer nucleophile  $HO^{\bigcirc} > H_2O$   $CH_3O^{\bigcirc} > CH_3OH$   $H_2N^{\bigcirc} > NH_3$ 

The direct relationship between basicity and nucleophilicity is maintained if the reaction occurs in the gas phase



# Nucleophilic power towards saturated carbon

In a particular group, nucleophilicity increases as we go down the group

$$\overset{\bigcirc}{I} > \overset{\bigcirc}{Br} > \overset{\bigcirc}{Cl} > \overset{\bigcirc}{F}$$

$$RS_e^{\bigcirc} > RS > RO$$

$$R_3P: > R_3N:$$

# Effectiveness of different nucleophiles in S<sub>N</sub>2 reaction

# Relative rates of reaction with MeBr in EtOH

| Nucleophile      | pKa of HX | Relat. rates         |
|------------------|-----------|----------------------|
| HO-              | 15.7      | 1.2x10 <sup>4</sup>  |
| PhO <sup>-</sup> | 10.0      | 2.0x10 <sup>3</sup>  |
| AcO <sup>-</sup> | 4.8       | 19.0x10 <sup>2</sup> |
| H <sub>2</sub> O | -1.7      | 1.0                  |

The anions of the weakest acids are the best nucleophiles

# Relative rates of reaction with MeBr in EtOH

| Nucleophile      | pKa of HX | Relat. rates        |
|------------------|-----------|---------------------|
| PhS <sup>-</sup> | 6.4       | 5.0x10 <sup>7</sup> |
| PhO <sup>-</sup> | 10.0      | 2.0x10 <sup>3</sup> |

PhO<sup>-</sup> (RO<sup>-</sup>) is more basic than PhS<sup>-</sup> (RS<sup>-</sup>)

# Relative nucleophilicity toward CH<sub>3</sub>I in MeOH

So, sulfur is a better nucleophile than oxygen for saturated carbon. Why should this be  $\ref{eq:saturated}$ 





|                                                            | •                                                                   | nd Soft nucleophiles  Large & Flabby with diffuse high                                                                             | ıh |
|------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----|
| Small with closely held electrons with high charge density |                                                                     | energy electrons                                                                                                                   | "  |
| Only                                                       | y charged                                                           | Can be neutral                                                                                                                     |    |
| Bas                                                        | ic (HX weak acid)                                                   | Not basic (HY strong acid)                                                                                                         |    |
| Low                                                        | energy HOMO                                                         | High energy HOMO                                                                                                                   |    |
| Like to                                                    | attack at C=O                                                       | Like to attack at saturated carbon                                                                                                 |    |
| RO⁻, ⁻N                                                    | IH <sub>2</sub> , R <sup>-</sup> , F <sup>-</sup> , Cl <sup>-</sup> | RS <sup>-</sup> , I <sup>-</sup> ,R <sub>3</sub> P, RSH                                                                            |    |
|                                                            | s are controlled by<br>atic interactions                            | Reactions are controlled by HOMO-LUMO interactions                                                                                 |    |
|                                                            | Broder line: N <sub>3</sub> .                                       | $\stackrel{\bigcirc}{,}$ $\stackrel{\bigcirc}{\text{CN}}$ $\stackrel{\bigcirc}{\text{Br}}$ $\stackrel{\bigcirc}{,}$ $\text{RNH}_2$ |    |