

Mech-Elites

Illuminating the Mechanic Space of GVGAI

M Charity, Michael Cerny Green, Ahmed Khalifa, Julian Togelius

mechanic (n)

Any event in the game that involves game entities and changes the game's state

Concept

- Identify the mechanics of a game
 - i.e. jumping, collecting a key, attacking an enemy
- Tutorial levels center around these mechanics
- Have an Al identify these mechanics and generate levels

Tutorial Level from Cuphead (StudioMDHR, 2017)

World 1-1 from Super Mario Bros (Nintendo, 1985)

Background

Map-Elites

Map of *n*-dimensions based on a feature representation

a1	a2	а3	
b1	b2	b3	
c1	c2	с3	

Constrained Map-Elites

 Stores 2 populations of samples within the Map-Elites cells;

a1	a2	а3	
b1	b2	b3 _	b3.1
c1	c2	с3	b3.2
			DS.Z

Previous Work

AtDeLFI

 Showcase critical path mechanics from agent gameplay

MarioICLD

 Generated Mario levels based on the mechanic(s) performed in the level

arXiv:1807.04375

arXiv:1904.08972

= MechElites

- Generating GVG-Al levels using Constrained MAPElites
- Uses list of mechanics for the game as dimensionality for the map cells

Methods - Constraints (C)

- 1. Win condition of the agent (win)
- 2. Time taken to complete level (T_{survival} vs. T_{ideal})
- 3. Idle behavior survivability (N)

$$P = \frac{win}{|T_{win} - T_{ideal}|} + \frac{(1 - win) * 0.25}{|T_{survival} - T_{ideal}|}$$

$$E = \begin{cases} 1 & \text{if } \frac{N_{pass}}{N_{total}} \ge 0.5\\ \frac{N_{pass}}{N_{total}} & \text{otherwise} \end{cases}$$

$$C = P + E$$

Methods - Fitness

- Number of tiles in the level
- Surrounding tile similarity
- Minimalist level and fewer distractions for the player

$$H(x) = E(all tiles) = 0.58$$

 $H(\Delta x) = E(surround tiles) = 0.35$
 $w = 0.5$
fitness = 0.465

Experiment

- Agent: OLETS agent
- 10-20% initially randomized levels each generation
- Ideal time: 70 timesteps
- Total iterations: 500
- Mechanic list for dimensionality extracted from VGDL files

GVG-AI Games

Zelda

Plants

Solarfox

RealPortals

Results

ZELDA SOLARFOX PLANTS REALPORTALS

- 55 / 256 possible cells filled
- 52 / 1024 possible cells filled
- 31 / 128 possible cells filled
- 6966 / 34359738368 possible cells filled

Discussion

- Cell population affected by number of mechanics and complexity of mechanics
- Generated levels have a sense of uniformity with design
- Mechanics may not be required or have the possibility to be activated
- No patterns present from the original GVG-Al levels

Conclusion

- Proof of concept for developing isolated game mechanic focused levels
- Examine minimal level structure for a mechanic
- Future work to test more games from the GVG-AI framework
- Expand outside the system for games without predefined mechanic space

Thanks for watching!

Contact

M Charity - mlc761@nyu.edu

Michael Green - mike.green@nyu.edu

Ahmed Khalifa - ahmed@akhalifa.com

Julian Togelius - julian@togelius.com

<u>Paper</u>

https://arxiv.org/abs/2002.04733

