Sessió 10

Adem Ait

David Agut

1. App Classification Learner

L'objectiu d'aquesta pràctica és aprendre a classificar mostresa partir dels seus vectors de caracterìstiques. Usarem la App Classification learner de Matlab. Trobareu la informació necessària a:

https://uk.mathworks.com/help/stats/train-decision-trees-in-classification-learner-app.html

https://uk.mathworks.com/help/stats/train-classification-models-in-classification-learner-app.html

Podeu utilitzar el dataset Fisher iris (tot un clàssic) i experimentar amb diferents classificadors. En acabar heu de ser capaços de:

- Tunnejar correctament els paràmetres d'un classificador
- Probar diferents classificadors i escollir-ne els que donin millors resultats
- Fer experiments amb rigor (p.ex: cross-validation)
- Presentar els resultats de forma correcta (corba RoC, matriu de confusió...)

2. Classificació automàtica d'espècies arbòries

Un cop domineu la app Clasification learner, es planteja un problema de classificació amb imatges reals. Dins la tasca corresponent a la sessió 10 a Atenea, trobareu imatges de fulles de roure, faig i plàtan. Entreneu varios classificadors per aquestes tres espècies usant com a vectors de característiques els seus descriptors de Fourier.

Hem fet servir la variable de tipus table: https://es.mathworks.com/help/matlab/ref/table.html#d120e80740

```
clear all
N=1000;
vartypes = strings([1,N+1]);
vartypes{N+1} = 'string';
vartypes(1:N) = 'double';
T = table('Size',[48 N+1],'VariableTypes',vartypes);
matriu = zeros(48,N+1);
for i = 1:16
    if i < 10
        nameErable = "l2nr00";
        nameFaig = "l15nr00";
        nameRoure = "14nr00";
    else
        nameErable = "12nr0";
        nameFaig = "l15nr0";
        nameRoure = "l4nr0";
```

```
end
it = string(i);
Erable = imread('Erable\' + nameErable + it + '.jpg');
Faig = imread('Faig\' + nameFaig + it + '.jpg');
Roure = imread('Roure\' + nameRoure + it + '.jpg');
for j=1:3
    if (j == 1)
        im = Erable;
    end
    if (j == 2)
        im = Faig;
    end
    if (j == 3)
        im = Roure;
    end
    bw = im2bw(im, 0.6);
    bw = \sim bw;
    ee = strel('disk',5);
    bw = imclose(bw,ee);
    bw = imopen(bw,ee);
    ero=imerode(bw,strel('disk',1));
    cont=xor(ero,bw);
   % obtenim les coordenades del contorn
    [fila col] = find(bw,1); % Busquem el primer pixel
    B = bwtraceboundary(bw,[fila col],'E'); %direccio est a l'atzar
   % B conté les coordenades
   % Ho comprovem mostrant el resultat
    aux=zeros(size(bw));
    aux(sub2ind(size(aux),B(:,1),B(:,2)))=1;
   % centrem coordenades
   mig=mean(B);
    B(:,1)=B(:,1)-mig(1);
    B(:,2)=B(:,2)-mig(2);
   % Convertim les coordenades a complexes
    s = B(:,1) + i*B(:,2);
   % Cal que la dimensio del vector sigui parell
    [mida bobo]=size(B);
    if(mida/2~=round(mida/2))
    s(end+1,:)=s(end,:); %dupliquem l'ultim
    mida=mida+1;
    end
   % Calculem la Fast Fourier Transform
   z=fft(s);
   %% Reduim la quantitat de descriptors de Fourier
      N=1000; % agafem N descriptors
    tmp=z;
    tmp(N+1:end-N)=0; % eliminem els del mig perque es duplica l'espectre
    tmp2 = zeros(N,1);
```

%

```
tmp2(1:N) = tmp(1:N);
        % Tornem al pla
        ss2=abs(ifft(tmp2));
        ss2=ss2';
        if (j == 1)
            T{i,1:N} = ss2(1:N);
            T.Var1001(i) = 'Erable';
        end
        if (j == 2)
            T{i+16,1:N} = ss2(1:N);
            T.Var1001(i+16) = 'Faig';
        end
        if (j == 3)
            T{i+32,1:N} = ss2(1:N);
            T.Var1001(i+32) = 'Roure';
        end
    end
end
```

Es demana un informe (en pdf) que inclogui el codi usat per a obtenir els descriptors, la descripció dels experiments realitzats, els classificadors que han funcionat millor i els resultats obtinguts. Indiqueu quines caracaterístiques del vector són necessàries per a la correcta classificació, i quines no són significatives.

Primer hem provat amb 1000 descriptors, i en el millor dels casos ens donava un 77% d'encert. Hem pensat que potser 1000 descriptors eren més dels necessaris per obtenir un bon resultat. Després hem baixat el nombre de descriptors a 50. El resultat s'ha mantingut, un 77% d'encert. Aleshores hem usat PCA, limitant el nombre de components numèrics a 50 i la variança al 95%, usant 100 descriptors. Això ens ha donat millors resultat, un 85% d'encert. També hem provat amb 30 components numèrics usant 200 descriptors, amb un resultat millor: 87,5%.

Hem usat PCA per així de cara a la pràctica 2 anar amb més experiència. El PCA s'utilitza per reduir característiques que no ens aporten informació molt relevant en comparació amb altres.

A la següent imatge es veu el primer scatter plot de les primeres dos variables, treballant amb 50

descriptors:

Una altra manera de comprovar millors resultats és fent ús del feature selection. Enlloc d'anar seleccionant o no features aleatoriament hem buscat una funció que ens retorna un ranking de les features més relevants.

(https://es.mathworks.com/help/stats/fscchi2.html)

Ho hem fet amb 50 descriptors per tant la crida és la següent:

Gràcies a aquesta funció hem obtingut un ranking de les característiques del vector més rellevants, ordenades segons l'índex. Amb aquesta informació hem anat al final del ranking i hem anat desactivant del classification learner les característiques que sortien, ja que volia dir que aquestes no eren gaire rellevants i per tant no ajudaven en la classificació. Hem anat desactivant-les fins que ens hem quedat amb només 10 features, on obteníem una precisió del 87,5% amb el Cubic SVM.

Amb 50 features hem vist que les 10 necessàries i més relevants per obtenir bons resultats eren (en aquest ordre): 36 35 30 44 16 3 23 2 7 47. I les 10 que eren menys relevants i que, per tant, aportaven menys informació eren (de més a menys relevant): 8 24 46 40 39 42 20 41 27 28 33

El classificador que ens ha donat millor resultat ha sigut el Cubic SVM. També ens han donat bastant bon resultats els Fine, Coarse i Medium tree, tot i que a mesura que augmentàvem el número de features el seu rendiment baixava en picat. El Fine KNN i el Ensemble (subspace KNN) donaven millors resultats que el Cubic SVM quan teníem molts features, però a mesura que hem anat desactivant-ne, el Cubic SVM ha acabat obtenint millors resultats. Aquest canvi de rendiment s'ha produït quan hem arribat a 20-25 features.

A continuació mostrem diferents resultats:

2.14 KNN Last change: Fine KNN	Accuracy: 79.2% 30/50 features
3.23 🏠 Ensemble Last change: Subspace KNN	Accuracy: 81.3% 20/50 features
9.1 Tree Last change: Fine Tree	Accuracy: 77.1% 10/50 features
9.2 Tree Last change: Medium Tree	Accuracy: 77.1% 10/50 features
9.3 Tree Last change: Coarse Tree	Accuracy: 72.9% 10/50 features
9.10 🖒 SVM Last change: Cubic SVM	Accuracy: 87.5% 10/50 features