

IEL – protokol k projektu

Vojtěch, Šišma xsisma02

8. listopadu 2022

Obsah

1	Příklad 11.1 Zjednodušení obvodu	2
2	Příklad 2	5
3	Příklad 3	6
4	Příklad 4	7
5	Příklad 5	8
6	Shrnutí výsledků	9

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	120	350	650	410	130	360	750	310	190

Zjednodušení obvodu

Obrázek 1: Počáteční obvod

Obrázek 2: Zjednodušení \mathbb{R}_2 a \mathbb{R}_3

Obrázek 3: Zjednodušení ${\cal R}_6$ a ${\cal R}_8$

Obrázek 4: Úprava na hvězdu

Stanovte napětí U_{R5} a proud $I_{R5}.$ Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
D	150	200	200	660	200	550

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
D	115	0.6	0.9	50	38	48	37	28

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [\mathrm{mH}]$	C_1 [μ F]	C_2 [µF]	f [Hz]
A	3	5	12	14	120	100	200	105	70

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	L [H]	$R [\Omega]$	$i_L(0) [A]$
	E	50	30	40	10
		R			
	FL		٦i،		
t = 0 s	_\0		Î.∟		
s	_		<u>L</u> L		
_	٦		200		
			\supset		
υ	\triangle				
\ -\	$\overline{\bigcirc}$				

Shrnutí výsledků

Příklad	Skupina	Výsledky
1	A	$U_{R2} = I_{R2} =$
2	D	$U_{R5} = I_{R5} =$
3	D	$U_{R4} = I_{R4} =$
4	A	$ U_{C_2} = \qquad \qquad \varphi_{C_2} =$
5	Е	$i_L =$