

Química Nivel medio Prueba 1

Miércoles 22 de mayo de 2019 (tarde)

45 minutos

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

		**************************************	CA .		**	ພ	Φ	<u> </u>		an e	
	· yan	-15	w 3 %	11 Na 22,99	19 7 X 39,10	37 Rb 85,47	55 Cs 32,91	87 Fr (223)			
	8		4 8 0,0	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,33	88 Ra (226)			
	m				21 Sc 44,96	39 × 88,91	57.† La 138,91	89‡ Ac (227)	r Š	**	
	4	Número atómico Elemento Masa atómica relativa		22 T.i 47,87	40 Zr 91,22	72 Hf 178,49	105 (267)	58 Ce 140,12	90 1 232,04		
	ധ			23 < 6 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (268)	59 Pr 140,91	23.1,04		
	ဖ	nico elativa		24 Cr 52,00	42 Mo 95,96	74 W 183,84	106 Sg (269)	60 Nd 144,24	92 U 238,03		
	! ~~				25 Mn 54,94	(98)	75 Re 186,21	(2 tg (2)	61 Pm (145)	93 NP (237)	
Tabla periódica	60				26 Fe 55,85	44 <u>%</u> 101,07	76 0s 190,23	108 Hs (269)	62 Sm 150,36	2 g g g	
	Ø)			Transmission of the second of	27 Co 58,93	45 Rh 102,91	77 IF 192,22	109 Mt (278)	63 Eu 151,96	95 Am (243)	
	ć			Annual control of the	28 Ni 58,69	46 Pd 106,42	78 Pt 195,08	110 DS (281)	64 Gd 157,25	96 Cm (247)	
Ø	shere Sure				29 Cu 63,55	47 Ag 107,87	79 Au 196,97	78 (281)	65 Tb 158,93	5 (2 (2 (2 (2 (2 (2 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3	
	2				30 Zn 65,38	48 Cd 112,41	80 Hg 200,59	112 (285)	66 Dy 162,50	98 (251)	
	6			5 10,81	13 AI 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,38	113 Unt (286)	67 Ho 164,93	99 Es (252)
	4		6, C 12,01	14 Si 28,09	32 Ge 72,63	50 Sn 118,71	82 Pb 207,2	114 Uug (289)	68 Er 167,26	100 Fm (257)	
	ស			7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,76	83 Bi 208,98	115 Uup (288)	69 Tm 168,93	101 Md (258)
,	5		8 0 16,00	16 \$ 32,07	34 8e 78,96	52 Te 127,60	84 Po (209)	116 (293)	70 Yb 173,05	102 No (259)	
	<u> </u>		9 F 19,00	17 C1 35,45	35 Br 79,90	53 1 126,90	85 At (210)	117 Cus (294)	7.1 174,97	103 Lr (262)	
	<u>~</u>	2 1 4,00,	10 Ne 20,18	18 Ar 39,95	36 Kr 83,90	54 Xe 131,29	86 Rn (222)	118 Luo (294)			

1. ¿Cuántos moles de hidróxido de magnesio se producen con 0,50 mol de amoníaco?

$$\mathrm{Mg_3N_2(s)} + 6\mathrm{H_2O(l)} \rightarrow 3\mathrm{Mg(OH)_2(aq)} + 2\mathrm{NH_3(aq)}$$

-3-

- A. 0,25
- B. 0,33
- C. 0,75
- D. 1,5
- 2. ¿Cuál es la suma de los coeficientes enteros cuando el propeno sufre combustión completa?

$$_C_3H_6(g) + _O_2(g) \rightarrow _CO_2(g) + _H_2O(l)$$

- A. 11
- B. 17
- C. 21
- D. 23
- 3. ¿Cuál es el volumen de gas cuando la presión de 100 cm³ de gas se modifica de 400 kPa a 200 kPa a temperatura constante?
 - A. 50,0 cm³
 - B. 100 cm³
 - C. 200 cm³
 - D. 800 cm³
- 4. ¿Cuál es la concentración, en mol dm⁻³, de 20,0 g de NaOH ($M_r = 40,0$) en 500,0 cm³?
 - A. 0,250
 - B. 0,500
 - C. 1,00
 - D. 4,00

5. ¿Qué es correcto para el $\frac{34}{16}$ S²⁻?

	Protones	Neutrones	Electrones
A.	16	18	14
В.	18	16	18
C.	16	18	16
D.	16	18	18

6. ¿Cuál de las siguientes transiciones en el átomo de hidrógeno emite luz visible?

A.
$$n=1$$
 an $=2$

B.
$$n=2an=3$$

C.
$$n = 2 a \cdot n = 1$$

$$D_{1}$$
 $n = 3 a n = 2$

7. ¿Cuál de los siguientes tendría el mismo valor numérico para todos los elementos del mismo período?

- A. Mayores niveles de energía ocupados
- B. Energía de los subniveles ocupados
- C. Orbitales ocupados
- D. Electrones de valencia

8. ¿Cómo varían las siguientes propiedades hacia abajo en el grupo 17 de la tabla periódica?

	Energía de ionización	Radio iónico
Α.	aumenta	disminuye
B.	aumenta	aumenta
C.	disminuye	aumenta
D.	disminuye	disminuye

- 9. ¿Cómo forma un átomo de litio el ion más estable?
 - A. El átomo gana un protón para formar un ion positivo.
 - B. El átomo pierde un protón para formar un ion negativo.
 - / C. El átomo pierde un electrón para formar un ion positivo.
 - D. El átomo gana un electrón para formar un ion negativo.
- 10. ¿Qué combinación causa el aumento de la fuerza del enlace metálico?

	Carga sobre los cationes	Radio iónico
Α.	menor	menor
В.	mayor	mayor
C.	menor	mayor
D.	mayor	menor

- 11. ¿Qué molécula contiene un octeto incompleto de electrones?
 - A. NF₃
 - B. BF₃
 - C. BrF
 - D. SF₂
- 12. ¿Qué compuesto tiene enlaces de hidrógeno entre sus moléculas?
 - A. CH₄
 - B. CH₄O
 - C. CH₃Cl
 - D. CH₂O

13. Considere las siguientes ecuaciones.

$$2Al(s) + \frac{3}{2}O_{2}(g) \rightarrow Al_{2}O_{3}(s) \qquad \Delta H^{\Theta} = -1670 \text{ kJ}$$

$$Mn(s) + O_{2}(g) \rightarrow MnO_{2}(s) \qquad \Delta H^{\Theta} = -520 \text{ kJ}$$

¿Cuál es la variación de entalpía estándar, in kJ, para la reacción de abajo?

$$4Al(s) + 3MnO2(s) \rightarrow 2Al2O3(s) + 3Mn(s)$$

A.
$$-1670 + 520$$

B.
$$\frac{3}{2}(-1670) + 3(520)$$

C.
$$2(-1670) + 3(-520)$$

14. El metano sufre combustión incompleta.

$$2CH_4(g) + 3O_2(g) \rightarrow 2CO(g) + 4H_2O(g)$$

¿Cuál es la variación de entalpía, en kJ, usando los datos de entalpía de enlace dados abajo?

Enlace	Entalpía media de enlace / kJ mol ⁻¹
С-Н	414
O-H	463
0=0	498
C≣O	1077

A.
$$[2(1077) + 4(463)] - [2(414) + 3(498)]$$

D.
$$[2(1077) + 8(463)] - [8(414) + 3(498)]$$

15. ¿Cuál es la energía de activación para la reacción directa?

16. La misma cantidad de dos gases, X e Y, se encuentran en dos recipientes idénticos a la misma temperatura. ¿Cuál es la diferencia entre los gases?

- A. X tiene mayor masa molar.
- B. Y tiene mayor masa molar.
- C. X tiene mayor energía cinética media.
- § D. Y tiene mayor energía cinética media.

$$\mathsf{CaCO_3}(\mathsf{s}) + 2\mathsf{HCl}\,(\mathsf{aq}) \to \mathsf{CaCl}_2(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}\,(\mathsf{l}) + \mathsf{CO}_2(\mathsf{g})$$

-8-

¿Qué reacción tiene mayor velocidad?

	Concentración de HCl (aq)	Área superficial de la misma masa de CaCO₃ (s)	
[®] A.	mayor	mayor	
B.	menor	menor	
C.	menor	mayor	
D.	mayor	menor	

18. ¿Cuál es la expresión de la constante de equilibrio para la siguiente ecuación?

$$2NO_2(g) + F_2(g) \rightleftharpoons 2NO_2F(g)$$

A.
$$\frac{2[NO_2F]}{2[NO_2] + [F_2]}$$

B.
$$\frac{2[NO_2F]}{2[NO_2][F_2]}$$

C.
$$\frac{[NO_2]^2[F_2]}{[NO_2F]^2}$$

D.
$$\frac{[NO_2F]^2}{[NO_2]^2[F_2]}$$

19. ¿Cuál es el pH del NaOH (aq) 0,001 moldm⁻³?

- A. 1
- B. 3
- / C. 11
 - D. 13

20. ¿Cuál es la principal razón por la cual el pH de la lluvia sin contaminar es menor que 7?

- A. metano
- B. dióxido de carbono
 - C. óxidos de nitrógeno
 - D. dióxido de azufre

- 21. ¿Qué especie contiene nitrógeno en el mayor estado de oxidación?
 - A. NO₃
 - B. NO,
 - C. NO₂
 - D. N₂O
- 22. Considere la siguiente celda electroquímica.

¿Qué sucede a los iones en el puente salino cuando circula una corriente?

- A. los iones Na⁺ fluyen hacia la semicelda de cinc y los iones SO₄²⁻ fluyen hacia la semicelda de cobre.
- B. los iones Na⁺ fluyen hacia la semicelda de cobre y los iones SO₄²⁻ fluyen hacia la semicelda de cinc.
- C. Los iones Na⁺ y SO₄²⁻ fluyen hacia la semicelda de cobre.
- D. Los iones Na⁺ y SO₄²⁻ fluyen hacia la semicelda de cinc.
- 23. La siguiente reacción se produce en una pila voltaica (galvánica).

$$Mg(s) + 2Ag^{+}(aq) \rightarrow Mg^{2+}(aq) + 2Ag(s)$$

¿Qué reacción se produce en cada electrodo?

	Ánodo (electrodo negativo)	Cátodo (electrodo positivo)
A.	$Ag(s) \rightarrow Ag^{+}(aq) + e^{-}$	$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$
B.	$Ag^+(aq) + e^- \rightarrow Ag(s)$	$Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$
C.	$Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$	$Ag^+(aq) + e^- \rightarrow Ag(s)$
D.	Mg ²⁺ (aq) + 2e ⁻ → Mg (s)	$Ag(s) \rightarrow Ag^{+}(aq) + e^{-}$

- 24. ¿Qué compuesto tiene menor punto de ebullición?
 - A. CH₃CH₂CH₂CH₂CH₂CH₃
 - B. CH₃CH₂CH₂CH₂CH₃
 - C. CH₃CH(CH₃)CH₂CH₃
 - D. CH₃C(CH₃)₂CH₃
- 25. ¿Cuál de los siguientes se puede formar a partir de bromoetano y convertirse directamente en etanal?

$$CH_3CH_2Br \rightarrow X$$

$$X \rightarrow CH_3CHO$$

- A. CH₃CH₂OH
 - B. CH₃OCH₃
 - C. CH₃COOH
 - D. H₀C=CHBr
- 26. El metano reacciona con cloro en presencia de luz solar.

$$CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$$

¿Qué tipo de reacción se produce?

- A. sustitución por radicales libres
 - B. sustitución electrófila
 - C. sustitución nucleófila
 - D. adición electrófila

27. ¿Cuál es el nombre de este compuesto de acuerdo con las reglas de la IUPAC?

- A. 2,3-dietilbutano
- B. 2-etil-3-metilpentano
- C. 3-metil-4-etilpentano
- 28. Los siguientes datos se registraron en la determinación de la densidad de tres muestras de silicio, Si.

Masa / g ±0,01 g	Volumen / cm³ ±0,1 cm³
5,61	2,8
4,32	1,7
6,37	2,8

- ¿Qué valor de densidad media, en g cm⁻³, se ha calculado con el número correcto de cifras significativas?
- A. 2
- // B. 2,3
 - C. 2,27
 - D. 2,273

29. Los datos recogidos en la pregunta 28 para las muestras de silicio también se pueden graficar para determinar la densidad usando los siguientes ejes.

¿Qué enunciados son correctos?

- I. La densidad es la pendiente de la gráfica.
- II. Los datos mostrarán que la masa es proporcional al volumen.
- III. La línea de ajuste debe pasar por el origen.
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- √D. I, II y III
- 30. ¿Qué se puede deducir del espectro infrarrojo (IR) de un compuesto?
 - A. Número de hidrógenos
 - B. Número de ambientes de hidrógeno
 - / C. Enlaces presentes
 - D. Masa molar