LIF15 – Théorie des langages formels Sylvain Brandel 2015 – 2016 sylvain.brandel@univ-lyon1.fr

CM 2

ALPHABETS ET LANGAGES

• Un <u>alphabet</u> est un ensemble <u>fini</u>, <u>non vide</u>, de symboles.

On le note généralement Σ .

- Un mot sur un alphabet Σ est une suite finie d'éléments de Σ.
- On note Σ^* l'ensemble de <u>tous</u> les mots (y compris le mot vide) définis sur Σ .

- Longueur : nombre de symboles d'un mot.
- Deux mots u et v sont égaux ssi
 - ils ont même longueur
 - $\forall i \in \{1, ..., |u|\} : u_i = v_i.$

• La $\underline{\text{concaténation}}$ de 2 mots u et v de Σ^* est un mot noté uv et défini par :

$$- u = u_1 u_2 ... u_n, v = v_1 v_2 ... v_n \rightarrow w = u_1 ... u_n v_1 ... v_n$$

$$\bullet \forall i \in \{1, |u|\} \qquad (uv)_i = u_i$$

$$\bullet \forall i \in \{|u|+1, ... |u|+|v|\} \quad (uv)_i = v_{i-|u|}$$

Propositions

- la concaténation est régulière à droite et à gauche
 - $wu = wv \Rightarrow u = v$
 - $uw = vw \Rightarrow u = v$
- |uv| = |u| + |v|.

- On appelle <u>facteur gauche</u> de w un mot u tel que uv = w.
- On appelle <u>facteur droit</u> un mot v tel que uv = w.
- On appelle <u>facteur</u> de w un mot u tel que il existe v et v' tels que vuv' = w.

• Miroir (Reverse):

- La fonction miroir $R: \Sigma^* \rightarrow \Sigma^*$ est définie par récurrence :
 - $w tq |w| = 0 : w^R = e^R = e$
 - w tq |w| > 0 : \exists a \in Σ tq w = au et w^R = (au)^R = u^Ra

• Propriété

 $- \forall u, v \in \Sigma^* : (uv)^R = v^R u^R$

Alphabets et langages Langage

- On appelle <u>langage</u> sur Σ tout ensemble de mots sur Σ
- Remarque de cardinalité
 - $-\Sigma$ fini
 - $-\Sigma^*$ infini dénombrable (rappel : dont on peut énumérer les éléments)
 - $P(\Sigma^*)$ est infini non dénombrable
- Opérations sur les langages
 - ∪, ∩, ¬ (complément), \ ⇒ comme d'habitude (complément : ¬A = Σ^* \ A)
 - Concaténation : $L_1 \subset \Sigma^*$, $L_2 \subset \Sigma^*$
 - L = L₁.L₂ ou L₁L₂ est défini par L = {w | \exists w₁ \in L₁ et \exists w₂ \in L₂ : w = w₁w₂}
 - Clôture de Kleene (Kleene star) ou étoile de L
 - $L^* = \{ w \in \Sigma^* \mid \exists k \in \mathbb{N}, \exists w_1, w_2, ..., w_k \in L : w = w_1 w_2 ... w_k \}$

Représentation finie des langages

- Une description habituelle d'une certaine classe de langages est fournie par ce qu'on appelle les expressions régulières (ou rationnelles).
 - les éléments de base sont :
 - les singletons sur Σ
 - l'ensemble ∅
 - les opérations sont :
 - la concaténation de langages
 - la réunion de deux langages
 - la fermeture de Kleene

Représentation finie des langages

- Les expressions régulières / rationnelles constituent syntaxiquement un langage (que nous appellerons ER) de mots bien formés sur l'alphabet Σ ∪ {(,), Ø, ∪, *} tel que :
 - ① \varnothing et chaque lettre de Σ est une ER
 - ② si α et β sont des ER, alors $(\alpha\beta)$ et $(\alpha \cup \beta)$ aussi
 - ③ si α est une ER alors α^* aussi
 - ER est close pour ces propriétés
 (rien d'autre n'est une ER que les points ① à ③)

Représentation finie des langages

Exemple

- $-\Sigma = \{a, b, c\}$
- Ensemble des mots finissant par a :

$$L = (a \cup b \cup c)^*a$$
$$(= (a^*c \cup b)^*a)$$

Définition

 On appelle <u>Langage rationnel</u> (ou <u>régulier</u>) tout langage qui peut être décrit par une expression rationnelle.