EECE 5644 Fall 2022 - Homework 2 Pavan Rathnakar Shetty Due Date: 10/14/2022, 11:59 pm

```
Question 1:
x = 2 dimensional random vector
L = class label
p(x) = p(L=0)p(x|L=0)+p(x=1)p(x|L=1)
Priori Probability:
P(L=0)=0.65
P(L=1)=0.35
P(x|L=0)=w1g(x|m01,c01)+w2g(x|m02,c02)
P(x|L=1)=g(x|m1,c1)
Where g is a multivariate gaussian probability density function
m-mean
c-covariance
w1=w2=0.5
N=10000 data samples
m01=[3;0]
m02=[0;3]
cov01=[2 0;0 1]
cov02=[1 0;0 2]
cov1=[1 0;0 1]
m1=[2;2]
Part A:
```

1)

	M T W T F S S Page Ho.: Page Ho.: VOUVA
	Part A)
")	p(x L=0) > Y
	Mener Rek classeffration rule:
	Strue there are 2 class, the following winhum expected risk classification rule in the form of like thood rates test applies:
	$D=1 \stackrel{of}{\leftarrow} p(x L=1) > \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} p(L=0) = 1$ $p(x L=0) \qquad \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} p(L=1)$
	D=0 of p(x L=1) (no-noo) = P(L=1) = Y
) = deilifon label 1 = ground toth class label
	D = derform babel L = ground touth class babel Door represents loss for choosing class's' when there class 13'5'
	V: threshold value required to make the desiran.
	P(L=0) P(L=1)
	= (1-0) = 0.65 0.35
	- 1.857

2)

2.	NO= 6584 Number of sample posits for class 1
	NI = 3416 Number of sample point for class 2
	no-flot_dishibution = 334 b class 0 sampled from man in 01 and word
- 11	no-second_distribution = 3238 clan O sampled from mean moz and cov Oz

Data Distribution is as shown above (class vs feature vectors)

Implementing ERM classifier:

The classifier was implemented for multiple threshold (γ) values and based on the detection (D=1, L=1) and False Alarm (D=1, L=0) probabilities, the following ROC curve was plotted. ROC curve for minimum expected risk classifier applied on 10,000 samples where gamma is varied from 0 to infinity.

ROC curve for ERM-based classification

3)
Based on the parametric sweep of the threshold values, an estimated minimum probability of error, the value was found, and the theoretical minimum probability of error value was computed using the threshold value obtained from the ratio of the class priors. The true positive rate and false positive rate values corresponding to these threshold values have been superimposed on the ROC curve above.

3)	Part A: In this experiment, experimental game is 1.8458
Y	Part A: In this experiment, experimental gama is 1.84.58 and experimental winfumous probability error is 17.42%.
	(101) 1 (100) (100) (100)
	Theoretical gama is 1.857 and theoretical whitmum error
	Theoretical gama is 1.857 and theoretical minimum error
THE SECTION	Palal mala athat famour and
daye do	As observed the Verpermutal throrothal as the notos
	experimental theoretical

Part B)

7	Part Bo
L	Phear Descriminant Analysis based clarifier (LDA)
	D=1 Pf w 1=0
)=0
5	who is from genealised so, so with largest eigen value of = (40-41) (40-41) on = 50+51
7	The LDA ROC were is relatively poor compared to plot in as shown. The LDA ROC has higher minimum enor both enjewinumtal and theoretical.
2	Yenp = 3.01890
	Theoretical minimum error = 0.3500 i.e 35%. Theoretical minimum error = 0.3595 inc 35.95%.

Minimum expected risk ROC Curve 1.0 ROC CURVE Experimental minimum error Theoretical minimum error 0.8 Probability of True Positive 0.6 0.4 0.2 0.0 0.2 0.0 0.4 0.6 0.8 1.0 Probability of False Positive

ROC curve for LDA-based classification

2)Question 2

In order to generate samples for the 3-dimensional vector X, 4 Gaussian distributions with the following parameters were considered. The parameters were chosen such that the distance between mean values was twice the average standard deviation.

```
mu = [[7, 4, 4], [4, 7, 4], [4, 4, 7], [3, 3, 3]]

C = [
[[4, 0, 0], [0, 4, 0], [0, 0, 4]],
[[4, 0, 0], [0, 4, 0], [0, 0, 4]],
[[4, 0, 0], [0, 4, 0], [0, 0, 4]],
[[4, 0, 0], [0, 4, 0], [0, 0, 4]],
]
```

Part A

Part 1: Generating sample data

To generate the 10000 samples, the samples belonging to class 1 and 2 were generated from their corresponding gaussian distributions with parameters mu1, C1, and mu2, C2. To generate samples belonging to class 3, each data point was taken from either Gaussian 3 (mu3, C3) or Gaussian 4 (mu4, C4) with a 50% probability, thus satisfying the condition of the class 3 data being generated from a mixture of 2 Gaussians with equal weights. Following is a plot of the samples for each class

Class priors are: 0.3, 0.3, 0.4

a plot of sample data

Based on this classification rule, the classifier was implemented to classify the 10K samples and the following confusion matrices were obtained:

confusion matrix

Data Visualization

	Part A
2	Landa nation 0-1 % [01,7]
/	A. 1. 0.1
	110
	ARAMA Derision who to achieve minimum probability of error
	for the sample data & sperified below:
	$D(x) = arg_{min} R(x; x)$
	· ·
	= arguino EIRIS E MORP(A L=1) P(l=1)
	C- number of clases
	86ec represents
	Based on O-1 los, away of classification was found to be Acuracy = ¿ (D-1/L -1) + 100 = 25.48 %
	N 121 N
THE STATE OF THE S	

PART B

1000 2500		Date: YOUVA
	Part 8:	By tys
*	when I Awales bosed clarifier (LDA)	Linux Discon
	N2= [0110] N3= 01	100
	[100] (X X 0 1 0 1	0
	0	-(-)
1	we do the same as Part A with give	un & landa hamile
· Wallet	7/1-117/11	- 10 = 00

For 0-1-10 lambda matrix, we have the following data visualization after the classification and confusion matrix as shown below:

Data Visualization after classification

confusion matrix

For 0-1-100 lambda matrix, we have the following data visualization after the classification and confusion matrix as shown below:

Data Visualization after classification

confusion matrix

1000		M T W T F S S Page No.: Date: YOUV,
1	Part 8:	25 408
	1010 CXXX	100
	1 -1 -1 -1	
- 111110	Total lon of for 1, = 40.74 %	Blanda nation
	Obsewations	1 401 MT
	The two positive for class 3 increases with the error penalty in class 3. As interned in the confusion watrix, if the	enor penalty &
10 to 200	As thered in the confusion watris, if the significant, we notice P produced class total class of also friverse in uniday it watron of	3)=1
3	beas present in the classifier tending due to high penalty for misphed	towards class 3.
- 1	The overall loss as described above coorsens for balanced dataset. No. of tomest predictions No. of data	

GitHub Repository for Code: https://github.com/Pavan-r-shetty/5644.git