LT FISICA (Fioresi)

13 Febbraio, 2020

NOME:	
COGNOME:	

NUMERO DI MATRICOLA:

Non sono permesse calcolatrici, telefonini, libri o appunti.

Tutto il lavoro deve essere svolto su queste pagine. Non fate la brutta e siate chiari nei ragionamenti.

In tutto il compito siano a e b le ultime due cifre NON NULLE e DISTINTE del proprio numero di matricola. Esempio: se il numero di matricola e' 624040066 allora a=4, b=6.

1	
2	
3	
4	
5	
Totale	

Esercizio 1 (60 punti)

Sia $k \in \mathbb{R}$. Siano dati in \mathbb{R}^3 il punto P, la retta r e il piano π_k definiti da:

$$P = (1, 9, -3) r: \begin{cases} x + y - 1 = 0 \\ x - y - 6z = -9 \end{cases} \pi_k : kx + 3y - z = 2k$$

- ullet Calcolare la distanza di P da r.
- Per quali valori di $k \in \mathbb{R}$ si ha che $P \in \pi_k$?
- Per quali valori di $k \in \mathbb{R}$ si ha che $r \in \pi_k$ sono paralleli? Si calcoli in questo ultimo caso la distanza tra $r \in \pi_k$.
- Si dica se r e' un sottospazio vettoriale e per quali valori di k, π_k e' un sottospazio vettoriale. Nel caso di risposta affermativa (per uno o per entrambi) si determini una base.

Esercizio 2 (60 punti)

Sia $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ un'applicazione lineare tale che $f(e_1) = e_1 + 2e_2 + e_4$; $f(e_2) = e_1 + 4e_2 + 3e_3 + 2e_4$; $f(e_3) = -2e_2 - e_3$; $f(e_4) = 2e_1 + 6e_2 + 3e_3 + (k+3)e_4$.

- a) Si dica, motivando accuratamente la risposta, per quali k l'applicazione f è iniettiva, suriettiva o biettiva.
- b) Scelto un valore di k per cui f non e' iniettiva, si trovino basi per la sua immagine e per il suo nucleo. Successivamente, si completi ciascuna delle due basi a una base di \mathbb{R}^4 .
- c) Scelto k come al punto precedente, si dica per quali $\alpha \in \mathbb{R}$ il vettore $(1, 2, \alpha, 2)$ appartiene all'immagine di f.

Esercizio 3 (60 punti)

Si consideri la matrice

$$B = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

- 1. Scrivere la forma bilineare g e la forma quadratica q associate a B;
- 2. Dire se il prodotto scalare associato e' degenere e definito positivo e calcolarne la segnatura.

[Aiuto: un autovalore della matrice B e' uguale a 3].

- 3. Determinare una base ortogonale rispetto al prodotto scalare del punto (2). La base scelta e' anche base ortonormale rispetto al prodotto scalare (2)? Si motivi accuratamente ogni risposta.
- 4. Determinare il sottospazio ortogonale rispetto al prodotto scalare (2) a $W = \text{span}e_1, e_2 e_1, e_2$ vettori della base canonica di \mathbb{R}^3 .

Esercizio 4 (50 punti)

Si indichi con $M_n(\mathbb{R})$ lo spazio vettoriale di tutte le matrici reali $n \times n$. Si considerino i seguenti insiemi:

$$S = \{ X \in M_n(\mathbb{R}) \mid X = X^t \}$$

$$A = \{ X \in M_n(\mathbb{R}) \mid X = -X^t \}$$

- a) Si dimostri che S e A sono sottospazi vettoriali di $M_n(\mathbb{R})$. Se ne indichi la dimensione, motivando la risposta.
- b) Si dimostri che vale $M_n(\mathbb{R}) = S \oplus A$.

CREDITO EXTRA Si prenda $X \in A$. Si dimostri che, per ogni valore $s \in \mathbb{R}$, la matrice e^{sX} è ortogonale.

Esercizio 5 (70 punti)

- a) Si enunci con chiarezza il Teorema di Sylvester.
- b) Sia W un sottospazio vettoriale di V spazio vettoriale reale con un prodotto scalare. Si dia con chiarezza la definizione di W^{\perp} e W^{\vee} .
- c) Si risponda vero o falso alle seguenti domande motivando accuratamente la risposta.
- I) Siano $u, v \in w$ tre vettori in \mathbf{R}^3 . Il prodotto $u \times v \cdot w$ e' nullo se e solo se i vettori sono complanari.
- II) Un'applicazione lineare $f: V \longrightarrow V$ iniettiva e' anche suriettiva (discutere separatamente il caso finito e infinito dimensionale).
- III) Una matrice con autovalori ± 1 e' ortogonale.
- IV) Due matrici diagonalizzabili sono simili se e solo se hanno lo stesso polinomio caratteristico.