Makine Mühendisliği Bölümü SİSTEM MODELLEME VE OTOMATİK KONTROL ARASINAV SORULARI 04.11.2017 Süre: 80 dakika

- 1) Transfer fonksiyonu $T(s) = \frac{5(s-2)(s+3)}{(s+1)(s^2+6s+25)}$ olan sistemin
 - a) Kutup ve sıfırlarını karmaşık s düzleminde gösteriniz. (6 puan)
 - **b)** Alçak frekanslar ($\omega \to 0$) için sistem kazancını bulunuz. (3 puan)
 - c) Yüksek frekanslar ($\omega \to \infty$) için sistem kazancını bulunuz. (3 puan)
 - d) Sistem kararlı mıdır? Neden? (3 puan)
- 2) Transfer fonksiyonu $H(s) = \frac{3s-2}{s+1}$ olan sistemin birim basamak tepkisini $(y_b(t))$ bulunuz ve çiziniz. (10+5 puan)
- 3) Yanda doğrusal zamanla değişmez (DZD) bir sistemin blok diyagramı verilmiştir. Her alt sistemin transfer fonksiyonu harflerle gösterilmiştir. Bütün sistemin transfer fonksiyonunu A, B, C, D cinsinden bulunuz. (Kesirli terim olursa pay veya paydasında başka kesir kalmasın). (15 puan)

4) Yandaki iki sistemden yalnız birisinin $\frac{Y(s)}{U(s)}$ transfer fonksiyonunu bulunuz.

5) Aşağıdaki sistemin birim basamak tepkisinde maksimum aşma M = %8 ve %5'lik durulma zamanı $t_d = 6$ saniye isteniyor. Buna göre K ve b ne olmalıdır? (15 puan)

$$M = e^{-(\xi \pi / \sqrt{1 - \xi^2})} = e^{-(\alpha \pi / \omega_d)}$$

$$t_d(\%5) \approx \frac{3}{\alpha}$$

6) Aşağıda verilen sistem K'nın hangi aralığında kararlıdır? (25 puan)

Makine Mühendisliği Bölümü

SİSTEM MODELLEME VE OTOMATİK KONTROL ARASINAV CEVAP ANAHTARI 04.11.2017

Paydasının kökleri $\frac{-6 \mp \sqrt{6^2 - 4 \cdot 25}}{2} = -3 \mp j4$ ve -1 kutuplardır.

b)
$$s = j\omega = 0$$
 için $|T(0)| = \left| \frac{5 \cdot (-2) \cdot 3}{1 \cdot 25} \right| = \frac{6}{5} = 1,2$

c)
$$s = j\omega = j\infty$$
 için $|T(j\infty)| = 0$

d) Kararlıdır; çünkü bütün kutuplar sol yarı bölgededir.

2) Birim basamağın Laplace dönüşümü 1/s olduğu için

$$Y_b(s) = H(s) \cdot \frac{1}{s} = \frac{3s - 2}{s(s + 1)} = \frac{a}{s} + \frac{b}{s + 1}$$

Diğer yol: $y_b(t) = H(0) + (H(\infty) - H(0)) \cdot e^{-t/\tau} = -2 + 5e^{-t}$ (Burada -1/ τ kutup yani -1 olduğundan τ =1 alındı.)

3) A ve B ikilisi geri beslemeli blok olup bu blok D ile seridir. Bu seri kol da C'ye paraleldir. Dolayısıyla

$$\frac{Y(s)}{U(s)} = \frac{A}{1+AB}D - C = \frac{AD - C - ABC}{1+AB}$$

4) Elektrik devresinde y, direnç ve kondansatörün aşağı doğru akımlarının toplamıdır. s domeninde C yerine 1/sC yazarsak:

$$Y(s) = \frac{U(s)}{1/(sC)} + \frac{U(s)}{R} = \left(sC + \frac{1}{R}\right)U(s) \quad \rightarrow \quad \frac{Y(s)}{U(s)} = sC + \frac{1}{R}$$

Mekanik sistemde:
$$J_1\ddot{\theta}_1 = T - k\theta_1 \rightarrow J_1\ddot{y} + ky = u \rightarrow (J_1s^2 + k)Y(s) = U(s) \rightarrow \frac{Y(s)}{U(s)} = \frac{1}{J_1s^2 + k}$$

5) Geribeslemeli sistemin kapalı döngü transfer fonksiyonu

$$\frac{Y(s)}{U(s)} = \frac{\frac{K}{s^2 + bs}}{1 + \frac{K}{s^2 + bs}} = \frac{K}{s^2 + bs + K} = \frac{\omega_n^2}{s^2 + 2\alpha s + \omega_n^2}$$

Yani
$$\omega_n = \sqrt{K}$$
, $\alpha = b/2$. $t_d(\%5) \approx \frac{3}{\alpha} = 6s \rightarrow \alpha = 0.5s^{-1} \rightarrow b = 2 \times 0.5s^{-1}$ $b = 1s^{-1}$

$$\ln M = \ln(0.08) = -2,526 = -\frac{\xi\pi}{\sqrt{1-\xi^2}} \rightarrow \left(\frac{2,526}{\pi}\right)^2 = 0,646 = \frac{\xi^2}{1-\xi^2}$$

$$0,646 = 1,646\xi^2 \rightarrow \xi = 0,627 = \alpha/\omega_n \rightarrow \omega_n = \alpha/\xi = 0,5\text{s}^{-1}/0,627 = 0,797 \,\text{rad/s} \rightarrow K = \omega_n^2$$

$$K = 0,636 \,\text{rad}^2/\text{s}^2$$
(Burada eğik yazılan "s" Laplace değişkeni, düz yazılan "s" saniye anlamında kullanıldı.)

6)
$$G(s) = \frac{K}{s^4 + 5s^3 + 4s^2 + 7s}$$
, $H(s) = 1$. $1 + G(s)H(s) = 0 \rightarrow s^4 + 5s^3 + 4s^2 + 7s + K = 0$

s^4	1	4	K	0
s^3	5	7	0	0
s^2	$4 - \frac{7}{5} = \frac{13}{5}$	K	0	
s^1	$7 - \frac{5K}{13/5} = \frac{91 - 25K}{13}$	0	0	
s^0	K	0		

İlk sütunda işaret değişikliği olmamalı ki bütün kökler sol yarı bölgede olsun ve sistem kararlı olsun. Yani hem 91-25K>0 hem de K>0 olmalı. Düzenlenirse:

$$0 < K < 3,64$$
 olmalıdır.