Em que átomo preenche-se o subnível electrónico p?

A. Ba

B. Ti

B. 3 e 4

C. Fe

C. 2 e 5

D. Po

2 Que molécula apresenta a ligação covalente apolar?

1) CO

A. 2 e 4

- 2) CO₂
- $3) O_2$
- 4) Cl₂
- 5) HF

D. 2, 3 e 5

Qual das seguintes configurações electrónicas de um átomo, é correcta? 3

$$\mathbf{A.} \ \ \frac{\uparrow\downarrow}{S} \ \ p \ \qquad \mathbf{B.} \ \ \frac{\uparrow\uparrow}{S} \ \ p \ \qquad \mathbf{C.} \ \ \frac{\uparrow\downarrow}{S} \ \ p \ \qquad \mathbf{D.} \ \ \frac{\uparrow\downarrow}{S} \ \ p$$

$$\mathbf{B}. \ \ \frac{\uparrow \downarrow}{\varsigma} \ \ \stackrel{\uparrow \uparrow}{p} \ \ \stackrel{\uparrow}{\uparrow}$$

$$\mathbf{c}. \quad \underbrace{\uparrow\downarrow}_{S} \quad \stackrel{\uparrow}{p} \quad \underbrace{\uparrow}_{P}$$

$$\mathbf{D}. \quad \frac{\uparrow \downarrow}{S} \quad \stackrel{\uparrow \downarrow}{p} \quad \frac{\uparrow}{}$$

Dois elementos X e T apresentam somente covalência simples nos compostos oxigenados de fórmulas X₂O e TO₂. Assinale a 4 opção correcta:

- A. X pode formar hidróxidos de fórmulas XOH e X(OH)₂
- **B.** T pode formar ácidos de fórmulas HT e H₂T
- C. X pode formar oxiácidos de fórmulas HXO e HXO4
- D. T pode formar hidróxidos de fórmulas TOH e T(OH)2
- Na fórmula do ácido sulfúrico encontram se: 5
 - **A.** 6 ligações covalentes
- **B**. 8 ligações covalentes
- ligações dactivas
- C. 2 ligações covalentes e 2 D. 4 ligações covalentes e 2 ligações dactivas

Dalton, Rutherford e Bohr propuseram modelos atómicos com algumas das seguintes características: 6

Modelo	Características
I	núcleo com carga positiva e electrões em órbitas circulares
II	partículas indivisiveis e indestrutíveis
III	núcleo com carga positiva e electrões em órbitas circulares com energia quantizada

A associação correcta modelo/cientista é:

- A. I/Rutherford; II/Dalton; III/Bohr
- B. I/Bohr; II/Dalton; III/Rutherford
- C. I/Dalton; II/Rutherford; III/Bohr
- D. I/Rutherford; II/Bohr; III/Dalton
- Entre as alternativas abaixo, a correcta é:
 - A. Dois átomos com o mesmo número de neutrões pertencem ao mesmo elemento químico;
 - B. Dois átomos com o mesmo número de electrões de valência pertencem ao mesmo elemento químico;
 - C. Dois átomos com o mesmo número de protões pertencem ao mesmo elemento químico;
 - D. Dois átomos com o mesmo número de massa são isótopos.

8

Uma substância A conduz corrente eléctrica em solução aquosa. Outra substância, B, conduz corrente no estado sólido. E uma terceira, C, nunca conduz corrente eléctrica. O tipo de ligação química existente nessas substâncias é respectivamente:

A. Iónica; metálica; covalente polar

- B. Metálica, iónica; covalente apolar
- C. Covalente polar; iónica; covalente apolar
- D. Iónica; metálica; covalente apolar
- 9 Que sal se forma na reacção do ácido orto-fosfórico com 1 equivalente do hidróxido de sódio?
 - A. NaHPO₄
- B. NaH₂PO₄
- C. Na₃PO₄
- **D.** Na₃PO₃

Exam	ie de Admissão de Quim	nca – 2008		Pagina 2 de 8
10			forma os óxidos SeO ₂ e SeO ₃ anifestando os g r aus de oxidaç	e os hidróxidos H ₂ SeO ₃ e H ₂ SeO ₄ . Como não ão seguintes:
	A. -2, +4, +5, +6;	B. +2, 0, +4, +7;	C. –2, 0, +4, +6;	D. -4, -2, 0, +6.
11	Precisamente 0,7 litros e equivalente igual 28 g/r A massa do metal que r	nol.	NTP foram substituídos de um	ácido mineral por um metal coma massa
	A. 3,50 g	B. 2,75 g	C. 1,75 g	D. 4,25 g
12	Sabendo que um sisten pode-se afirmar que ele		l a 40 Kcal e que a sua variaçã	io de energia interna foi igual a -60 Kcal, então
	A. Recebeu 60 Kcal so	ob a forma de calor	B. Cedeu 20 Kcal s	ob a forma de calor
	C. Cedeu 40 Kcal sob	o a forma de calor	D. Não recebeu ner	m cedeu calor
13				
	A hidrazina (N_2H_4) e o $H_2O_2 + N_2H_4 \longrightarrow$	peroxido de hidrogenio sao us $HNO_3 + H_2O$.	sados como propelentes de fog	uetes segundo a reacçao:
	De acordo com esta equ	uação, a massa de peróxido ne	cessária para obter 45,8 gramas	de ácido é:
	A. 86,3 g	B. 80,3 g	C. 70,9 g	D. 83,3 g
14				e (c) mesmo nº de neutrões. Para esses átomos
	pode se afirmar que, ele	es correspondem respectivame	nte, as definições de:	
	A. isotonia, isobaria e	elemento químico	B. isobaria, isotonia	e elemento químico
	C. elemento químico,	isobaria e isotonia	D. elemento químio	co, isotonia e isobaria
15	Quando a água congela	ocorre:		
	A. redução de ligações	sintermoleculares	B. redução de ligaço	ões intramoleculares
	C. aumento de ligaçõe	es intermoleculares	D. aumento de liga	ções intramoleculares
16				minada quantidade de cobre consome-se duas us do cobre no primeiro e no segundo óxido?
	A. 1 : 1	B. 2:1	C. 1 : 2	D. 2 : 3
17	Nicotina é um dos com	postos prejudiciais à saúde en	contrado no tabaco. Um cigarr	o contém 1,7 mg de nicotina (C ₁₀ H ₁₄ N ₂).
		nicotina um indivíduo pode asp		, ,
	A. 1,54.10 ¹⁵	B. 1,26.10 ¹⁹	C. 5,13.10 ²³	D. $2,1.10^{51}$
18	Quais dos compostos q 1. ZnO 2. MgO		m hidróxido de sódio (NaOH) 4. SO ₂ :	
	A. 1 e 2	B. 1 e 3	C. 2 e 3	D. 1 e 4
19		distribuição de energia das part de partículas reagentes com es	tículas reagentes. nergia superior à energia de act	ivação.
	A. apenas a I é correc	cta B. apenas a II é cor	recta C. as afirmações I	e II são D. as afirmações II e III

correctas

são correctas

20	Ο.	grau	de d	disso	ciaçã	o do	ácido	fluo	orídric	0,2	2 N	é 3	,0 x	10-2	. A	con	stant	e de	diss	ocia	ção	deste	ácid	o é:

- **A.** 2 x 10⁻⁴
- **B.** 9 x 10⁻⁴
- **C.** 1.8×10^{-4}
- **D.** 4,5 x 10⁻⁴

21 As reacções I (lenta) e II (rápida) que se seguem monstram as etapas do processo de decomposição do NO₂Cl.

(II). $NO_2Cl + Cl \rightarrow NO_2 + Cl_2$.

(I). $NO_2Cl \rightarrow NO_2 + Cl$;

Em face disso pode-se escrever:

A. Vprocesso = $K.[NO_2Cl]^2$

- **B**. $Vprocesso = K.[NO_2Cl]$
- **C.** Vprocesso = K_1 .[NO₂Cl] K_2 .[NO₂Cl].[Cl]
- **D**. Vprocesso = $K.[Cl_2]$

22 Fez-se reagir quantidades iguais de carbonato de cálcio com duas soluções ácidas.

- Com 5 ml 0,2 M HCl I:
- Com 5 ml 0,2 M H₂SO₄ II:

Como é que serão as velocidades no início das duas reacções?

- **A.** VI > VII
- \mathbf{B} . VI = VII
- \mathbf{C} . VI < VII
- **D.** Nenhuma das respostas anteriores

- A. moléculas
- **B.** átomos
- C. iões

D. radicais

- **A.** Mg S Ca Se

- **D.** Zn P Ag Cr

- **A.** Energia de activação
- **B.** Energia do sistema **C.** Velocidade média das moléculas
- **D.** Velocidade da reacção

26 Para alguns cientistas, o cloro atômico proveniente de certas substâncias, entre as quais as empregadas como propelentes em aerossóis, acelera a destruição da camada de ozono da atmosfera de acordo com o seguinte mecanismo;

$$Cl(g) + O_3(g) \rightarrow ClO(g) + O_2(g)$$

$$ClO(g) + O(g) \rightarrow Cl(g) + O_2(g)$$

Por isso o cloro atómico reage como:

- A. Activador
- **B.** Inibidor
- **C.** Catalizador
- **D.** Veneno de catálise

Que métodos podem ser usados para deslocar o equilíbrio da reacção para a direita?

$$CH_3COONa (s) + NaOH(s) \Rightarrow Na_2CO_3(s) + CH_4(g); \Delta H>O:$$

- **A.** aumento da pressão
- **B.** aumento da concentração de CH₄
- **C.** diminuição da concentração de CH₄
- **D.** diminuição da temperatura

28 Considerando o equilíbrio: C(s) + CO₂(g)
$$\longrightarrow$$
 2 CO(g) relevante, por exemplo nos fornos siderúrgicos. O efeito da adição de mais C(s) será:

- **A.** o aumento da concentração de CO
- **B.** o aumento da concentração de CO₂
- C. nulo
- **D.** a diminuição da concentração de CO

29 É lhe dada a equação de uma reacção em equilíbrio e a coloração dos iões em solução:

$$\underbrace{Cu(NO_3)_{2\,(aq)}}_{azul} \ + \ \underbrace{2HCl}_{(aq)}_{incolor} \ \Longleftrightarrow \ \underbrace{CuCl_{2\ (aq)}}_{amarelo/verde} \ + \ \underbrace{2HNO_3\ _{(aq)}}_{incolor}$$

Para alterar a cor da solução azul para amerela/verde é necessário acrescentar:

A. H_2O

B. CuCl₂

C. HNO₃

D. HCl

30 Considere o equilíbrio

 $2NO_2(g)$ $N_2O_4(g)$ + vermelho incolor

A côr vermelha aumenta de intensidade quando:

A. Se aumenta a temperatura e a pressão

B. Se aumenta a temperatura e diminui a pressão

C. Se diminui a temperatura e a pressão

D. Se diminui a temperatura e aumenta a pressão

31 Uma solução 0,01 mol de um monoácido está ionizada. A constante de ionização desse ácido é:

A. 16,66.10⁻³

B. 1,66.10⁻⁵

C. 3,32.10⁻⁵

D. 4,00.10⁻⁵

32

Para a reacção: A + B

C + 2D, foram realizadas 4 experiências cujos resultados estão apresentados na tabela abaixo:

A) Experiência	B) Concentração (mol/l)								
	A	A B C							
I	1,0	8,0	2,0	2,0					
II	8,0	4,0	2,0	4,0					
III	8,0	6,0	4,0	4,0					
IV	18,0	4,0	2,0	6,0					

Em qual das experiências, o equilíbrio ainda não foi atingido?

A. I

B. II

C. III

D. IV

A lei de Boyle-Mariotte (PV = const.) não é obedecida no caso da mistura gasosa em equilíbrio químico: $N_2 + 3H_2 \longleftrightarrow 2NH_3$, em temperatura elevada constante, porque:

A. NH₃ não é uma substância simples

B. o equilíbrio químico é independente da pressão

C. a massa em gramas não permanece constante

D. o número de moles varia com a pressão

A constante de equilíbrio seguinte: $K = \frac{[H_2][I_2]}{[HI]^2}$ é denominada

A. constante de hidrólise

B. constante de ionização

C. constante de formação

D. constante de dissociação

Do repolho roxo, pode-se extrair por fervura com água, uma substância que é responsável pela sua coloração característica. Essa substância é um anião de um ácido fraco: HR amarelo H + R roxo

A adição de vinagre ou limão a este extrato faz com que ele mude de cor porque:

- **A.** Os ácidos libertam H⁺ que desloca o equilíbrio
- **C.** O limão e o vinagre têm propriedades ácidas
- B. Os ácidos fracos anulam o efeito do extrato
- **D.** A substância responsável pela coloração também tem propriedades ácidas

36 Quantos gramas de NaCl e de H₂O serão necessários para a preparação de 400 g de uma solução à 20% em massa?

A. 50 g de NaCl e 350 g de H_2O

 ${f B}$. 60 g de NaCl e de 340 g de ${f H}_2{f O}$

C. 20 g de NaCl e de 380 g de H_2O

D. 80 g de NaCl e de 320 g de H_2O

+ HCl

4) MnO₂

A. 1 e 2

Exame de Admissão de Química - 2008 Página 5 de 8 Que alteração de pH, sofrem 10 litros de água se lhe forem adicionados 10-2 mol de NaOH? **B.** aumenta em três unidades A. aumenta em duas unidades C. aumenta em quatro unidades **D.** reduz-se em quatro unidades 38 O sangue humano mantém-se em uma estreita faixa de PH, em torno de 7,4 mesmo após a ingestão de quantidades relativamente grandes de substâncias ácidas ou alcalinas. Isso deve-se principalmente ao fenómeno de: A. osmose. B. catálise C. hidrólise **D.** tamponamento 39 Qual o volume do ácido sulfúrico concentrado (d = 1,84g/ml e 98% em peso) que se deve diluir com água para se obter 200 ml de solução 2,5 molar? A. 27,1 ml **B.** 13,6 ml **C.** 54,2 ml **D.** 118,4 ml 40 A reacção química que mostra as propriedades anfotéricas do Hidróxido de Zinco, Zn(OH)2, é: Zn(OH), $+2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$ Zn(OH), +2HCl \rightarrow ZnCl, +2H,O $Zn(OH)_2 + CO_2 \rightarrow ZnCO_3 + H_2O$ $Zn(OH)_2 + H_2SO_4 \rightarrow ZnSO_4 + 2H_2O$ 41 De acordo com a teoria ácido-base de Bronsted, o ácido conjugado da água é: A. o hidroxila B. o hidrónio C. a água oxigenada **D.** o hidrogénio Dados os produtos de solubilidade: 42 $Cu(OH)_2 \ = 2,2.10^{-20} \ ; \quad CuC_2O_4 = 2,9.10^{-8} \ ; \quad CuS = 6,0.10^{-36} \ ; \quad Cu(IO_3)_2 = 7,4.10^{-8}.$ Assinale a alternativa correcta de acordo com as afirmações abaixo: I- o sal mais solúvel é o Cu(IO₃)₂; II- uma solução saturada de qualquer um desses sais contém, pelo menos, 2,4.10-18 iões g/l de Cu²⁺; III- a adição de NaOH(aq) não desloca nenhum desses equilibrios. A. somente as afirmações I e II são verdadeiras B. somente as afirmações II e III são verdadeiras **C.** somente as afirmações I e III são verdadeiras **D.** todas as afirmações são verdadeiras 43 Considere as seguintes transformações que envolvem o elemento sódio. Na (s) \rightarrow Na (l) \rightarrow Na (g) \rightarrow Na (g) + e-Há absorção de energia na realização: A. Da transformação I, somente B. Da transformação II, somente C. Da transformação III, somente **D.** Das transformações I, II e III As reacções redox são: 44 1) $H_2O \rightarrow H_2 + O_2$ 2) $Fe(OH)_3 \rightarrow Fe_2O_3 + H_2O$ 3) CaO + $H_2O \rightarrow$ Ca(OH)₂

 $MnCl_2 + Cl_2 + H_2O$

C. 3 e 4

D. 1 e 4

B. 2 e 3

- 45 Qual das seguintes reacções é de oxidação-redução?
 - **A.** $NH_4Cl \rightarrow NH_3 + HCl$

- **B.** $NH_4Cl + NaOH \rightarrow NaCl + NH_3 + H_2O$
- C. $2K_2CrO_4 + H_2SO_4 \rightarrow K_2Cr_2O_7 + H_2SO_4 + H_2O$
- **D.** $NH_4NO_3 \rightarrow N_2O + 2H_2O$

- 46 Assinale a opção certa:
 - A. O número de oxidação do hidrogénio é -1, excepto nos hidretos de metais activos, onde é +1;
 - **B.** O número de oxidação do oxigénio é −2, excepto nos peróxidos, onde é −1;
 - C. O número de oxidação dos halogéneos é sempre +1 em todos os compostos não-oxigenados;
 - **D.** O número de oxidação do enxofre é +2 em todos os compostos não-oxigenados.
- 47 Na reacção representada pela equação:

 $MnO_{4^{-}} + xFe^{2+} + yH^{+} \rightarrow Mn^{2+} + zFe^{3+} + wH_{2}O.$

Os coeficientes x, y, z e w; são respectivamente:

- **A.** 5, 8, 5 e 4
- **B.** 5, 4, 5 e 2
- **C.** 3, 8, 3 e 4
- **D.** 3, 8, 3 e 8

- 48 Nas transformações químicas a seguir apresentadas,
 - I: $2Ag_2O \rightarrow Ag + O_2$
 - II: $2F_2 + 2H_2O \rightarrow 4HF + O_2$
 - III: $HCl+NaOH \rightarrow NaCl+H_2O$
 - IV: $C+O_2 \rightarrow CO_2$
 - O Oxigénio actua como redutor nas reacções:
 - **A.** I, II, III e IV
- **B.** I, III e IV
- **C.** I e II
- **D.** II e III

- 49 Assinale a reacção que requere a maior energia de ionização:
 - **A.** $Si^{3+}(g) \rightarrow Si^{4+}(g) + e^{-}$

B. Si (g) \rightarrow Si⁺(g) + e⁻

C. $Si^{2+}(g) \rightarrow Si^{3+}(g) + e^{-}$

- **D.** $Si^{+}(g) \rightarrow Si^{2+}(g) + e^{-}$
- 50 Qual das reacções abaixo poderia fornecer electricidade?
 - **A.** Mg + 2HCl \rightarrow MgCl₂ + H₂

B. HCl + NaOH →NaCl + H₂O

C. $2NaCl \rightarrow 2Na + Cl_2$

- **D.** $CaCO_3 \rightarrow CaO + CO_2$
- 51 Entre as afirmações abaixo, assinale aquela que considera verdadeira:
 - A. A electrólise do ácido clorídrico em solução diluída, com eléctrodos inertes, origina o gás oxigénio;
 - B. Na electrólise do ácido clorídrico, em solução aquosa, a solução vai-se tornando cada vez mais concentrada em ácido clorídrico;
 - **C.** Na electrólise do ácido sulfúrico, em solução diluída, com eléctrodos inertes, a solução se torna cada vez mais ácida; isto é, mais concentrada em ácido sulfúrico;
 - D. Na electrólise do ácido sulfúrico, em solução diluída, com eléctrodos inertes, ocorre a oxidação anódica do sulfato.
- 52 A equação que representa a reacção que ocorre, quando se queima gás de cozinha é:
 - **A.** $C_3 + 4H_2 \rightarrow C_3H_8$
 - **B.** $CH_4 + O_2 \rightarrow CO_2 + 2H_2O$
 - C. $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$
 - $\mathbf{D}. C_3H_8 + H_2O \rightarrow C_3H_7OH + H_2$

- A borracha sintética tem como monómero o butadieno. A respeito do butadieno e da borracha, é correcto afirmar que:
 - A. O butadieno é um composto binário que apresenta carbonos primários e terciários;
 - B. O butadieno apresenta dois isómeros de posição: 1,3- butadieno e 1,4- butadieno;
 - C. A borracha sintética tem fórmula molecular (C₄H₆)n;
 - D. A borracha é formada pela reacção de substituição nas moléculas de butadieno;
- 54 Indique um éster entre os compostos oxigenados seguintes:
 - **A.** CH₃CH₂OCH₂CH₃
- **B.** CH₃CO₂CH₂CH₃
- C. CH₃CH₂COCH₂CH₃
- D. CH₃CH₂CO₂H

55 Dada a estrutura:

Seu nome correcto é:

- **A.** 2,2,3,4-tetrametil pentano
- B. 2,2,3,4- tetrametil hexano
- C. 2-etil 3,4,4- trimetil hexano
- **D.** 3,4,5,5-tetrametil hexano
- 56 Pertencem a função álcool e ácido carboxílico, respectivamente:
 - **A.** C₂H₆O e C₃H₆O

B. C₃H₆O e CH₄O

C. CH₄O e C₂H₄O₂

- **D.** C₂H₄O₂ e C₂H₆O
- 57 Um álcool hidratado quando tratado com um desidratante (cal virgem, por exemplo) produz:
 - A. álcool desnaturado
- B. álcool anidro
- C. acetona
- D. etileno

A vanilina possui a seguinte fórmula estrutural:

Com relação a essa molécula podemos afirmar que os grupos funcionais ligados ao núcleo aromático correspondem às funções:

A. fenol, éter, aldeído

B. fenol, ester, cetona

C. fenol, ester, aldeído

- D. álcool, éter, cetona
- 59 A aspirina, um dos medicamentos que obteve maior sucesso na moderna terapêutica, também se pode chamar:
 - A. Ácido tiossalicilico

B. Ácido acetil-salicílico

C. Acatanilida

D. Ácido para-mino-benzóico

60 Em qual dos seguintes casos a reacção é possível a quaisquer temperaturas?

A.
$$3H_2(g) + N_2(g) = 2NH_3(g) \Delta H^{\circ} < 0$$

B.
$$N_2O_4(g) = 2NO_2(g) \Delta H^{\circ} > 0$$

C.
$$C_6H_6(1) + 7,5O_2(g) = 6CO_2(g) + 2H_2O(g) \Delta H^{\circ} < 0$$

D.
$$N_2(g) + 2O_2(g) = 2NO_2(g) \Delta H^{\circ} > 0$$

CeAdm - 2008

FIM