Normalization

Normalization is a process in database design used to organize data to **reduce duplication** and **improve data accuracy**. The process involves structuring a database in such a way that it meets certain criteria, known as normal forms, which help eliminate undesirable characteristics **like insertion, update, and deletion anomalies(errors).**

- **Eliminate Redundancy**: Reduces duplicate data.
- **Ensure Data Integrity**: Ensures that data remains accurate and consistent.
- ❖ Improve Data Maintenance: Simplifies the processes of updating and maintaining the database.
- **Optimize Queries**: Improves the performance of data retrieval.

Fig-1 Normalization

Types of Normal Forms

- 1. First Normal Form (1NF):
 - **❖ Definition:** A table is in 1NF if it contains only atomic (indivisible) values and each column contains values of a single type.

ID	Name	Phone Numbers
1	John	123456,6789

ID	Name	Phone Numbers
1	John	123456
1	John	6789

- 2. Second Normal Form (2NF):
- **Definition:** A table is in 2NF if it is in 1NF and all non-key attributes are fully functionally dependent on the primary key.

Example

Student ID	Course ID	Student Name	Course Name
1	101	John	Math
1	102	John	Science

2NF Tables

Student ID	Student Name
1	John

Course ID	Course Name
1	Math

12	Science
----	---------

Student ID	Course ID
1	101
1	102

3. Third Normal Form (3NF):

Definition: A table is in 3NF if it is in 2NF and all the attributes are functionally dependent only on the primary key.

Example

Order ID	Customer ID	Customer Name
1001	500	Alice

3 NF tables

Order ID	Customer ID
1001	500

Customer ID	Customer Name
500	Alice

4. Boyce-Codd Normal Form (BCNF):

Definition: A stronger version of 3NF where every determinant is a candidate key.

Example:

Course ID	Instructor	Department
101	Prof.Smith	Math
102	Prof.Jonhson	Science

BCNF Tables

Course ID	Department
101	Math
102	Science

Instructor	Department
Prof.Smith	Math
Prof.Jonhson	Science

5. Fourth Normal Form (4NF):

Definition: A table is in 4NF if it is in BCNF and multivalued dependencies are removed.

Example:

Student ID	Course ID	Hobby
1	101	Chess
1	101	Music

4 NF Tables

Student ID	Course ID
1	101

Student ID	Hobby
1	Chess

2	Music

Reference –

Diagram Reference - https://www.sololearn.com/blog/what-is-normalization/

Definition Reference- Chat-GPT + My Mind + Google

Tables Reference - https://www.javatpoint.com/dbms-normalization + Chat GPT