

Compilation of Quantized Models in TVM

Animesh Jain Amazon SageMaker Neo AWS AI

Quantization Overview

- Represent FP32 numbers with a lower-precision INT8 numbers
- Integer number stands as a proxy for FP32 number (not a downcast)

Quantized tensor is represented with <u>a scale and a zero point</u>

$$real_value = scale * (quantized_value - zero_point)$$

http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf

Quantization in TVM

- Quantization within TVM Automatic Quantization
 - TVM stack ingests a FP32 graph and a small dataset
 - Finds suitable quantization scale
 - Produces a quantized graph

- Compiling Pre-quantized models QNN Dialect
 - TVM ingests a pre-quantized graph in TFLite or MxNet
 - Use high-level wrapper ops of QNN dialect

Framework Graph TVM Overview Framework Parsers TF Mxnet parsers Relay Graph Target-independent Relay passes Target-dependent Relay passes Graph level optimizations Target-optimized graph Intel ARM Nvidia ARM .. More **GPU GPU** targets **CPU** x86 Schedule templates written in TVM Tensor IR Tensor-level optimizations AutoTVM – Tuning the kernels Codegen - LLVM, Cuda, C, ... Machine code generation aws **Optimized Binary**

Quantization Appraoches in TVM

Outline

- QNN Dialect
 - Design
 - Operators
- Results on Intel Cascade Lake

Quantized Operators in Framework

- New operators like TF quantized_conv2d
 - Underlying calculations are different than FP32 conv2d

```
real\_value = scale * (quantized\_value - zero\_point)
```

- Sometimes operators are aggressively fused
 - TFLite fuses quantized_conv2d, bias, relu and requantize

How to Support Framework Quantized Operators?

Option 1 – Completely add new ops from scratch

- New Relay passes and TVM schedules required
 - AlterOpLayout, Graph Fusion etc require work/operator
- No reuse of existing Relay and TVM infrastructure.

Option 2 – Lower to a sequence of existing Relay operators

- We introduced a new Relay dialect QNN to encapsulate this work
- Complete reuse of Relay pass infrastructure
- Possible reuse of TVM schedules (only to some extent)

QNN Dialect

- Design operators that satisfy many framework operators
 - qnn.quantize, qnn.dequantize, qnn.requantize
 - qnn.conv2d, qnn.dense
 - qnn.concatenate
 - qnn.add, qnn.mul
- QNN operators will be lowered to Relay operators
- QNN Optimization passes
 - Some optimizations are easier at QNN level
 - Intel x86 VNNI requires conv input dtypes to uint8 x int8

Lowering of QNN Quantize Operator

```
fn (%input_data: Tensor[(2, 5), float32]) {
    qnn.quantize(%input_data, out_dtype="uint8", output_zero_point=127, output_scale=0.5f)
}
```

```
def @main(%input_data: Tensor[(2, 5), float32]) -> Tensor[(2, 5), uint8] {
  %0 = divide(%input_data, 0.5f /* ty=float32 */) /* ty=Tensor[(2, 5), float32] */;
  %1 = round(%0) /* ty=Tensor[(2, 5), float32] */;
  %2 = cast(%1, dtype="int32") /* ty=Tensor[(2, 5), int32] */;
  %3 = add(%2, 127 /* ty=int32 */) /* ty=Tensor[(2, 5), int32] */;
  %4 = clip(%3, a_min=0f, a_max=255f) /* ty=Tensor[(2, 5), int32] */;
  cast(%4, dtype="uint8") /* ty=Tensor[(2, 5), uint8] */
}
```


QNN Conv2D Operator

Calculations are different from FP32 Conv2D

```
real\_value = scale * (quantized\_value - zero\_point)
```

```
\begin{split} \Sigma c, r, s & \left( Q_W(k,\, c,\, r,\, s) - z p_{\_}w \right) \times \left( Q_A(n,\, c,\, h+r,\, w+s) - z p_{\_}a \right) \\ \Sigma c, r, s & Q_W(k,\, c,\, r,\, s) \times Q_A(n,\, c,\, h+r,\, w+s) \ /\!/ \ \text{Term 1} \\ & - \Sigma c, r, s \ z p_{\_}a \times Q_W(k,\, c,\, r,\, s) \ /\!/ \ \text{Term 2} \\ & - \Sigma c, r, s \ z p_{\_}w \times Q_A(n,\, c,\, h+r,\, w+s) \ /\!/ \ \text{Term 3} \\ & + \Sigma c, r, s \ z p_{\_}a \times z p_{\_}w \end{split}
```


Lowering of QNN Conv2D Operator

```
fn (%data: Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) {
qnn.conv2d(%data, %weight, ..., out_dtype="int32", input_zero_point=1, kernel_zero_point=1)}
```

```
def @main(%data: Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) -> Tensor[(1, 3, 1, 2), int32] {
 \%0 = \frac{1}{100} (\% \text{data}, \% \text{weight}, ..., \text{out dtype} = \frac{1}{100} (1, 3, 1, 2), \text{ int32} */;
 %1 = cast(%data, dtype="int32") /* ty=Tensor[(1, 3, 2, 3), int32] */;
 \%2 = \text{multiply}(\%1, 4 /* \text{ty=int32 */}) /* \text{ty=Tensor}[(1, 3, 2, 3), \text{int32}] */;
 \%3 = \text{nn.avg pool2d}(\%2, \text{pool size}=[2, 2]) /* ty=Tensor[(1, 3, 1, 2), int32] */;
 %4 = sum(%3, axis=[1], keepdims=True) /* ty=Tensor[(1, 1, 1, 2), int32] */;
 \%5 = \text{multiply}(1 /* \text{ty=int32 */, } \%4) /* \text{ty=Tensor}[(1, 1, 1, 2), \text{int32}] */;
                                                                                                                Asymmetric
 %6 = subtract(%0, %5) /* ty=Tensor[(1, 3, 1, 2), int32] */;
 \%7 = cast(\%weight, dtype="int32") /* ty=Tensor[(3, 3, 2, 2), int32] */;
 \%8 = sum(\%7, axis=[1, 2, 3]) /* ty=Tensor[(3), int32] */;
 \%9 = reshape(\%8, newshape=[1, 3, 1, 1]) /* ty=Tensor[(1, 3, 1, 1), int32] */;
 %10 = \text{multiply}(1 / \text{ty=int32 */, %9}) / \text{ty=Tensor}[(1, 3, 1, 1), int32] */;
 %11 = subtract(12 /* ty=int32 */, %10) /* ty=Tensor[(1, 3, 1, 1), int32] */;
 add(%6, %11) /* ty=Tensor[(1, 3, 1, 2), int32] */}
```

For zero-centered zero point, the lowering will have just nn.conv2d

Frontend Parsers

- TFLite Pre-quantized Models
 - In good shape
 - Supports all Image Classification PreQuantized hosted models

- MXNet Pre-quantized Models
 - Tested internally with MxNet + MKLDNN path
 - Will open RFC in a month

Evaluation

- Intel Cascade Lake 12-core Server
- TFLite Pre-quantized Hosted Models

Accuracy

Quantized models	TFLite graph via TVM	Reported TFLite accuracy
Inception V1	69.6%/89.5%	70.1%/89.8%
Inception V2	73.3%/91.3%	73.5%/91.4%
Inception V3	77.3%/93.6%	77.5%/93.7%
Inception V4	79.6%/94.2%	79.5%/93.90%
Mobilenet V1	70.1%/89.0%	70.0%/89.0%
Mobilenet V2	70.9%/90.1%	70.8%/89.9%

Performance Comparison

	Float32	Quantized	Speedup
Inception V1	NA	2.143	NA
Inception V2	NA	8.919	NA
Inception V3	10.373	6.115	1.7
Inception V4	21.233	12.315	1.72
Mobilenet V1	5.578	7.328	0.76
Mobilenet V2	6.424	8.798	0.73

- Metric Latency in ms for batch size = 1
- 1.7x speedup on Inception asymmetric quantized model
- Mobilenet requires depthwise convolution VNNI schedule
- Symmetric model improves the speedup to 2.8x

Quantization Approaches in TVM

Quantization Approaches in TVM

Conclusion

- TVM community is pursuing both Automatic- and Pre-quantized model support. Contributions are welcomed.
- We need new/tuned TVM schedules using fast Integer operations like Intel VNNI, ARM Dot, Nvidia DP4A
- Full pipeline is available. Please try it and give suggestions.
- Open-source discussions formed the foundations of both the approaches.

