Basic Proof Theory

A. S. Troelstra and H. Schwichtenberg

December 27, 2019

Contents

1	Introduction											2									
	1.1	Simple type theories																			2

1 Introduction

1.1 Simple type theories

Definition 1.1 (the set of simple types). the set of **simple types** $\mathcal{T}_{\rightarrow}$ is constructed from a countable set of **type variables** P_0, P_1, \ldots by means of a type-forming operation (**function-type constructor**) \rightarrow

- 1. type variables belong to $\mathcal{T}_{\rightarrow}$
- 2. if $A, B \in \mathcal{T}_{\rightarrow}$, then $(A \rightarrow B) \in \mathcal{T}_{\rightarrow}$

A type of the form $A \rightarrow B$ is called a **function type**

Definition 1.2 (Terms of the simply typed lambda calculus λ_{\rightarrow}). All terms appear with a type; for terms of type A we use t^A, s^A, r^A . The terms are generated by the following three clauses

- 1. For each $A \in T_{\rightarrow}$ there is a countably infinite supply of variables of type A; for arbitrary variables of type A we use $u^A, v^A, w^A, x^A, y^A, z^A$
- 2. if $t^{A \to B}$, s^A are terms, then $App(t^{A \to B}, s^A)^B$ is a term of type B
- 3. if t^B is a term of type B and x^A a variable of type A, then $(\lambda x^A, t^B)^{A \to B}$

For App $(t^{A \to B}, s^A)^B$ we usually write simply $(t^{A \to B} s^A)^B$

Definition 1.3. The set FV(t) of variables free in t is specified by

$$FV(x^{A}) := x^{A}$$

$$FV(ts) := FV(t) \cup FV(s)$$

$$FV(\lambda x.t) := FV(t) \setminus \{x\}$$

Definition 1.4 (Substitution). The operation of substitution of a term s for a variable x in a term t (notation t[x/s]) may be defined by recursion on the complexity of t, as follows

$$\begin{split} x[x/s] &:= s \\ y[x/s] &:= y \text{ for } y \not\equiv x \\ (t_1t_2)[x/s] &:= t_1[x/s]t_2[x/s] \\ (\lambda x.t)[x/s] &:= \lambda x.t \\ (\lambda y.t)[x/s] &= \lambda y.t[x/s] \text{ for } y \not\equiv x; \text{ w.l.o.g. } y \not\in \text{FV}(s) \end{split}$$

Lemma 1.5 (Substitution lemma). *If* $x \not\equiv y, x \not\in FV(t_2)$, *then*

$$t[x/t_1][y/t_2] \equiv t[y/t_2][x/t_1[y/t_2]]$$

Definition 1.6 (Conversion, reduction, normal form). Let T be a set of terms, and let conv be a binary relation on T, written in infix notation: t conv s. If t conv s, we say that t **converts to** s; t is called a **redex** or **convertible** term and s the **conversum** of t. The replacement of a redex by its conversum is called a **conversion**. We write $t \succ_1 s$ (t **reduces in one step to** s) if s is obtained from t by replacement of a redex t' of t by a conversum t'' of t'. The relation \succ (**properly reduces to**) is the transitive closure of \succ_1 and \succeq (**reduces to**) is the reflexive and transitive closure of \succ_1 . The relation \succeq is said to be the notion of reduction **generated** by cont.

With the notion of reduction generated by cony we associate a relation on T called **conversion equality**: $t =_{\text{conv}} s$ (t is equal by conversion to s) if there is a sequence t_0, \ldots, t_n with $t_0 \equiv t, t_n \equiv s$, and $t_i \preceq t_{i+1}$ or $t_i \succeq t_{i+1}$ for each $i, 0 \leq i < n$. The subscript "conv" is usually omitted when clear from the context

A term t is in **normal form**, or t is **normal**, if t does not contain a redex. t **has a normal form** if there is a normal s such that $t \succeq s$.

A **reduction sequence** is a (finite or infinite) sequence of pairs $(t_0, \delta_0), (t_1, \delta_1), \ldots$ with δ_i an (occurrence of a) redex in t_i and $t_i \succ t_{i+1}$ by conversion of δ_i , for all i. This may be written as

$$t_0 \stackrel{\delta_0}{\succ}_1 t_1 \stackrel{\delta_1}{\succ}_1 t_2 \stackrel{\delta_2}{\succ}_1 \dots$$

We often omit the δ_i , simply writing $t_0 \succ_1 t_1 \succ_1 t_2$

Finite reduction sequences are partially ordered under the initial part relation ("sequence σ is an initial part of sequence τ "); the collection of finite reduction sequences starting from a term g forms a tree, the **reduction tree** of t. The branches of this tree may be identified with the collection of all infinite and all terminating finite reduction sequences.

A term is **strongly normalizing** (is SN) if its reduction tree is finite

 β -conversion:

$$(\lambda x^A.t^B)s^A \operatorname{cont}_{\beta} t^B[x^A/s^A]$$

 η -conversion:

$$\lambda x^A . tx \operatorname{cont}_{\eta} t \quad (x \notin \operatorname{FV}(t))$$

 $\beta\eta$ -conversion cont $_{\beta\eta}$ is cont $_{\beta}\cup$ cont $_{\eta}$

Definition 1.7. A relation R is said to be **confluent**, or to have the **Church-Rosser property** (CR), if whenever t_0Rt_1 and t_0Rt_2 , then there is a t_3 s.t. t_1Rt_3 and t_2Rt_3 . A relation R is said to be **weakly confluent** or to have the **weak Church-Rosser property** if whenever t_0Rt_1 , t_0Rt_2 there is a t_3 s.t. $t_1R^*t_3$ and $t_2R^*t_3$ where R^* is the reflexive and transitive closure of T

Theorem 1.8. For a confluent reduction relation \succeq the normal forms of terms are unique. Furthermore, if \succeq is a confluent reduction relation we have t=t' iff there is a term t'' s.t. $t \succ t''$ and $t' \succ t''$

Theorem 1.9 (Newman's lemma). Let \succeq be the transitive and reflexive closure of \succ_1 , and let \succ_1 be weakly confluent. Then the normal form w.r.t. \succ_1 of a strongly normalizing t is unique. Moreover, if all terms are strongly normalizing w.r.t. \succ_1 then the relation \succeq is confluent.

Proof. Assume WCR, and let write $s \in UN$ to indicate that s has a unique normal form. Assume $t \in SN, t \notin UN$. Then there are two reduction sequences $t \succ_1 t'_1 \cdots \succ_1 t'$ and $t \succ_1 T''_1 \succ_1 \cdots \succ_1 t''$ with $t' \not\equiv t''$. Then either $t'_1 = t''_1$ or $t'_1 \not= t''_1$

In the first case we can take $t_1 := t_1' = t_1''$. In the second case, by WCR we can find a t^* s.t. $t^* \prec t_1', t_1''; t \in SN$ hence $t^* \succ t'''$ for some normal t'''. Since $t' \neq t'''$ or $t'' \neq t'''$, either $t_1' \notin UN$ or $t_1'' \notin UN$; so take $t_1 := t_1'$ if $t' \neq t'''$, $t_1 := t_1''$ otherwise.

Hence we can always find a $t_1 \prec t$ with $t_1 \not\in UN$ and get an infinite sequence contradicting the SN of t

Definition 1.10. The **simple typed lambda calculus** λ_{\rightarrow} is the calculus of β -reduction and β -equality on the set of terms of λ_{\rightarrow} . λ_{\rightarrow} has the term system as described with the following axioms and rules for \prec (\prec_{β}) and = (is = $_{\beta}$)

$$\begin{array}{ll} t \succeq t & (\lambda x^A.t^B)s^A \succeq t^B[x^A/s^A] \\ \frac{t \succeq s}{rt \succeq rs} & \frac{t \succ s}{tr \succ sr} & \frac{t \succeq s}{\lambda x.t \succeq \lambda x.s} & \frac{t \succeq s}{t \succeq r} \\ \frac{t \succeq s}{t = s} & \frac{t = s}{s = t} & \frac{t = s}{t = r} \end{array}$$

The extensional simple typed lambda calculus $\lambda \eta_{\rightarrow}$ is the calculus of $\beta \eta$ -reduction and $\beta \eta$ -equality and the ser of terms of λ_{\rightarrow} ; in addition there is the axiom

$$\lambda x.tx \succeq t \quad (x \not\in FV(t))$$

Lemma 1.11 (Substitutivity of \succ_{β} and $\succ_{\beta\eta}$). For \succeq either \succeq_{β} or $\succ_{\beta\eta}$ we have

if
$$s \succeq s'$$
 then $s[y/s''] \succeq s'[y/s'']$

Proof. By induction on the depth of a proof of $s \succeq s'$. It suffices to check the crucial basis step, where s is $(\lambda x.t)t'$ and s' is t[x/t'].

$$(\lambda x.t)t'[y/s''] = (\lambda x.(t[y/s''])t'[y/s'']) = t[y/s''][x/t'[y/s'']] = t[x/t'][y/s'']$$

Proposition 1.12. $\succ_{\beta,1}$ and $\succ_{\beta\eta,1}$ are weakly confluent

Proof. If the conversions leading from t to t' and t to t'' concern disjoint redexes, then t''' is simply obtained by converting both redexes

If
$$t \equiv \dots (\lambda x.s)s' \dots, t' \equiv \dots s[x/s'] \dots$$
 and $t'' \equiv \dots (\lambda x.s)s'' \dots, s' \succ_1 s''$, then $t''' \equiv \dots s[x/s''] \dots$

If
$$t \equiv \dots (\lambda x.s)s' \dots$$
, $t' \equiv \dots s[x/s'] \dots$ and $t'' \equiv \dots (\lambda x.s'')s' \dots$, $s \succ_1 s''$, then $t''' \equiv \dots s''[x/s'] \dots$

If
$$t \equiv \dots (\lambda x. sx)s'$$
, $t' = \dots (sx)[x/s']\dots$, $t'' = \dots ss'\dots$

Theorem 1.13. The terms of λ_{\rightarrow} , $\lambda\beta_{\rightarrow}$ are SN for \succeq_{β} and $\succeq_{\beta\eta}$ respectively, then hence the β - and $\beta\eta$ -normal forms are unique

Definition 1.14. \succeq_p on λ_{\rightarrow} is generated by the axiom and rules

$$\begin{split} &(\mathrm{id})x \succeq_p x \\ &(\lambda \mathrm{mon}) \frac{t \succeq_p t'}{\lambda x.t \succeq_p \lambda x.t'} \quad (\mathrm{appmon}) \frac{t \succeq_p t' \quad s \succeq_p s'}{ts \succeq_p t's'} \\ &(\beta \mathrm{par}) \frac{t \succeq_p t' \quad s \succeq_p s'}{(\lambda x.t)s \succeq_p t'[x/s']} (\eta \mathrm{par}) \frac{t \succeq_p t'}{\lambda x.tx \succeq_p t'} (x \not\in \mathrm{FV}(t)) \end{split}$$

Lemma 1.15 (Substitutivity of \succ_p). If $t \succ_p t', s \succ_p s'$, then $t[x/s] \succ_p t'[x/s']$

Proof. By induction on t.

1.
$$t \equiv (\lambda y.t_1)t_2$$
, then

$$\begin{split} t \succeq_p t_1'[y/t_2'] \\ t[x/s] &\equiv (\lambda y.t_1[x/s])t_2[x/s] \succeq_p t_1'[x/s'][y/t_2'[x/s']] \succeq_p t_1'[y/t_2'][x/s'] \end{split}$$

Lemma 1.16. \succeq_p is confluent

Proof. Induction on t

Theorem 1.17. β - and $\beta\eta$ -reduction are confluent

Proof. The reflexive closure of \succ_1 for $\beta\eta$ -reduction is contained in \succeq_p , and \succeq is therefore the transitive closure of \succeq_p . Write $t \succeq_{p,n} t'$ if there is a chain $t \equiv t_0 \succeq_p t_1 \succeq_p \cdots \succeq_p t_n \equiv t'$. Then we show by induction on n+m using the preceding lemma, that if $t \succeq_{p,n} t', t \succeq_{p,m} t''$ then there is a t'' s.t. $t' \succeq_{p,m} t''', t'' \succeq_{p,n} t'''$

Definition 1.18 (Terms of typed combinatory logic CL_{\rightarrow}). The terms are inductive defined as in the case of λ_{\rightarrow} , but now with the clauses

1. For each $A \in \mathcal{T}_{\rightarrow}$ there is a countably infinite supply of variables of type A; for arbitrary variables of type A we use $u^A, v^A, w^A, x^A, y^A, z^A$

2. for each $A, B, C \in \mathcal{T}$ there are constant terms

$$\begin{aligned} & \boldsymbol{k}^{A,B} \in A \rightarrow (B \rightarrow A) \\ & \boldsymbol{s}^{A,B,C} \in (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \end{aligned}$$

3. if $t^{A,B}, s^A$ are terms, then so is $t^{A,B}s$ $\mathrm{FV}(\mathbf{k}) = \mathrm{FV}(\mathbf{s}) = \emptyset$

Definition 1.19. The **weak reduction** relation \succeq_w on the terms of \mathbf{CL}_{\to} is generated by a conversion relation cont_w consisting of the following pairs

$$\mathbf{k}^{A,B}x^Ay^B$$
 cont_w x , $\mathbf{s}^{A,B,C}x^{A\to(B\to C)}y^{A\to B}z^A$ cont_w $xz(yz)$

In otherwords, \mathbf{CL}_{\to} is the term system defined above with the following axioms and rules for \succeq_w and $=_w$

$$t \succeq t \qquad kxy \succeq x \qquad sxyz \succeq xz(yz)$$

$$\frac{t \succeq s}{rt \succeq rs} \qquad \frac{t \succeq s}{tr \succeq sr} \qquad \frac{t \succeq s}{t \succeq r}$$

$$\frac{t \succeq s}{t = s} \qquad \frac{t = s}{s = t} \qquad \frac{t = s}{t = r}$$

Theorem 1.20. The weak reduction relation in CL_{\rightarrow} , is confluent and strongly normalizing, so normal forms are unique.

Theorem 1.21. To each term t in CL_{\rightarrow} , there is another term $\lambda^* x^A \cdot t$ such that

1.
$$x^A \notin FV(\lambda^* x^A.t)$$

2.
$$(\lambda^* x^A . t) s^A \succ_w t[x^A / s^A]$$

Proof.

$$\begin{split} & \lambda^* x^A.x := \boldsymbol{s}^{A,A \to A,A} \boldsymbol{k}^{A,A \to A} \boldsymbol{k}^{A,A} \\ & \lambda^* x^A.y^B := \boldsymbol{k}^{B,A} y^B \text{ for } y \not\equiv x \\ & \lambda^* x^A.t_1^{B \to C} t_2^B := \boldsymbol{s}^{A,B,C} (\lambda^* x.t_1) (\lambda^* x.t_2) \end{split}$$

Corollary 1.22. CL_{\rightarrow} is combinatorially complete, i.e. for every applicative combination t of k, s and variables $x_1, x_2, \ldots x_n$ there is a closed term s s.t. in $CL_{\rightarrow} \vdash sx_1 \ldots x_n =_w t$, in fact even $CL_{\rightarrow} \vdash sx_1 \ldots x_n \succeq_w t$

Remark. Note that: it's not true that if t = t' then $\lambda^* x.t = \lambda^* x.t'$. kxk = x but $\lambda^* x.kxk = s(s(kk)(skk))(kk)$, $\lambda^* x.x = skk$

Definition 1.23. The **Church numerals** of type A are β -normal terms \bar{n}_A of type $(A \to A) \to (A \to A), n \in \mathbb{N}$, defined by

$$\bar{n}_A := \lambda f^{A \to A} \lambda x^A . f^n(x)$$

where
$$f^0(x) := x, f^{n+1}(x) := f(f^n(x)). N_A = \{\bar{n}_A\}$$

N.B. If we want to use $\beta\eta$ -normal terms, we must use $\lambda f^{A\to A}.f$ instead of $\lambda fx.fx$ for $\bar{1}_A$

Definition 1.24. A function ff $f: \mathbb{N}^k \to \mathbb{N}$ is said to be **A-representable** if there is a term F of λ_{\to} s.t. (abbreviating \bar{n}_A as \bar{n})

$$F\bar{n}_1\ldots\bar{n}_k=f(n_1,\ldots,n_k)$$

for all $n_1, \ldots, n_k \in \mathbb{N}, \bar{n}_i = (\bar{n}_i)_A$

Definition 1.25. Polynomials, extended polynomials

- 1. The n-argument **projections** p_i^n are given by $p_i^n(x_1, \ldots, x_n) = x_i$, the unary constant functions c_m by $c_m(x) = m$, and sg, \bar{sg} are unary functions which satisfy $sg(S_n) = 1$, sg(0) = 0, where S is the successor function.
- 2. The *n*-argument function f is the **composition** of *m*-argument g, n-argument h_1, \ldots, h_m if f satisfies $f(\bar{x}) = g(h_1(\bar{x}), \ldots, h_m(\bar{x}))$
- 3. The **polynomials** in n variables are generated from p_i^n, c_m , addition and multiplication by closure under composition. The **extended polynomials** are generated from $p_i^n, c_m, \operatorname{sg}, \bar{sg}$, addition and multiplication by closure under proposition

Exercise 1.1.1. Show that all terms in β -normal form of type $(P \to P) \to (P \to P)$, P a propositional variable, are either of the form \bar{n}_P or of the form $\lambda f^{P \to P}.f$

Proof. 1. $\lambda f^{P\to P}.g^{P\to P}$, if $g\neq f$, then g is of the form $\lambda x^P.y^P$ and hence $\lambda f^{P\to P}\lambda x^P.y^P$