SK네트웍스 Family Al과정 6기

데이터 수집 및 저장 프로젝트 기획서

□개요

산출물 단계: 데이터 수집 및 저장평가 산출물: 프로젝트 기획서

• 제출 일자 : 25.02.03

● 작성 팀원 : 강채연, 전수연, 조해원

프로젝트 주제	레시피 추천 서비스	
문제정의	 자취생과 1인 가구 증가: 혼자 생활하면서 겪는 어려움(요리, 식비절약 등)에 대한 해결책이 필요하다 요린이: '요리+어린이=요린이'라는 신조어, 이들이 간단하고 쉽게요리할 수 있는 솔루션이 필요하다 배달 이용 증가: 비용 부담과 건강 문제 때문에 단순히 배달에의존하기보다, 이를 효율적으로 활용하거나 대체할 수 있는 방안이필요함 	

[경쟁 서비스]

- 냉장고 파먹기(APP)
 - 주요 기능
 - 즐겨찾기 기능: 사용자가 원하는 레시피를 저장.
 - 여러 식재료를 입력하면 레시피에 필요한 보유 재료와 부족한 재료를 구분하여 표시.
 - 선택한 레시피를 클릭하면 '만개레시피' 사이트로 이동하여 레시피를 보여준다. (같은 메뉴라도 다양한 레시피 확인)
 - 검색 기능: 특정 재료 또는 요리법 검색 가능.
 - 단점 및 한계
 - 만개레시피 사이트에서 가져오는 방식이므로 관련 없는 레시피가 함께 추천.

- 거꾸로레시피(APP)

- 주요 기능
 - 북마크 기능: 사용자가 원하는 레시피를 저장.
 - 한 가지 이상의 식재료를 입력하면 해당 재료 중 하나라도 포함된 레시피를 추천.
 - 소비기한 알림: 음식물 쓰레기를 줄이는데 도움.

- 단점 및 한계

- 아이폰에서만 사용 가능.
- 등록된 레시피 종류가 적다.
- 단순한 재료 매칭 기반으로 이루어져 사용자 맞춤형 추천 기능이 부족.

- 냉장고 즉석 레시피(WEB)

- 주요 기능
 - 사용자가 가진 재료를 입력하면 간단한 요리법부터 비건요리까지 추천.
 - 업로드한 사진에서 재료를 인식해 요리 추천.
 - 요리 과정 중 유용한 팁이나 셰프의 꿀팁 제공.
 - ChatGPT 사이트를 통해 서비스를 하고 있어 GPT 기본 기능 사용 가능. (TTS, 예상 완성 이미지 생성해 제공)
- 단점 및 한계
 - 리뷰 기능이 없어 사용자가 처음 보는 요리라면 맛에 대한 확신이 부족.

시장조사

- 실제 요리 완성 사진이 아닌 생성된 요리 완성 이미지 제공.

[차별화 포인트]

- 기술적 차별화
 - AI 챗봇을 활용하여 실시간으로 사용자가 입력한 재료를 분석한 후, 가능한 레시피를 즉시 추천한다.
 - "냉장고 속 재료" 기반의 개인 맞춤형 레시피 제공한다.
- 사용자 경험 개선
 - 음성 입력 또는 사진 분석(재료 인식)으로 인터페이스 단순화.
- 웹 기반 플랫폼
 - 기존의 앱 기반 서비스와 달리 운영체제(OS) 제한 없이 접근 가능. (PC, 태블릿, 스마트폰 등 다양한 환경에서 활용)
- 사용자 참여형
 - 사용자들이 선택한 레시피에 대해 리뷰를 작성, 열람할 수 있다.

1	이려	방신
	드드	· · ·

- a. 텍스트 입력: 사용자가 식재료를 텍스트로 입력
- b. 이미지 입력: 식재료 이미지를 업로드하면 AI가 재료를 인식하여 처리
- c. 음성 입력: 음성을 텍스트로 변환하여 재료를 입력
- d. 검색 필터 태그
 - i. 유명 TV 프로그램 '냉장고를 부탁해', '신상 출시 편스토랑'
 - ii. 태그를 클릭하면 해당 프로그램 방영 레시피 검색 가능

2. 추천 알고리즘

- a. RAG 기반 레시피 추천
 - i. 입력된 재료를 기반으로 Vector DB에 저장된 데이터를 검색하여 추천
 - ii. 웹 검색 툴을 통해 추가 정보를 실시간으로 가져와 컨텍스트를 보완

b. 사용 로그 학습

- i. 사용자가 추천받은 레시피 중 선택한 기록을 저장
- ii. 레시피 평가(별점, 리뷰 작성) 등을 반영

3. 출력 방식

- a. 텍스트 출력: 레시피 정보를 텍스트 형태로 제공
- b. 음성 출력: 레시피 정보를 TTS(Text-to-Speech)로 변환하여 제공
- c. 레시피 관련 이미지 및 동영상 제공
 - i. 레시피 출력 시 음식 이미지도 함께 제공
 - ii. '냉장고를 부탁해', '신상 출시 편스토랑' 레시피 질의 시 관련 동영상을 함께 제공
- d. '레시피 선택하기' 버튼 추가
 - i. 추천된 레시피와 함께 레시피 선택하기 버튼 제공
 - ii. 사용자가 버튼을 클릭하면 해당 레시피를 사용한 기록이 저장
- e. '리뷰 보러가기' 버튼 추가
 - i. 추천 받은 레시피에 대한 다른 사용자들의 리뷰를 열람할 수 있다.
- 4. 채팅 히스토리 및 세션 관리
 - a. 사용자의 대화 내역을 세션 형식으로 저장
 - i. 사용자가 채팅을 시작하면 새로운 세션 생성
 - ii. 사용자가 특정 세션을 선택적으로 삭제

시스템 구성

- b. 세션 데이터를 기반으로 마이페이지에 사용자가 선택한 레시피 목록 표시
- 5. 크레딧 시스템
 - a. 회원가입 시 기본 지급: 100 쿠키
 - b. 질문 시 10 쿠키 차감
 - c. 리뷰 작성 보상: 커뮤니티에 리뷰 작성 시 10 or 15(후기 이미지 포함 시) 쿠키 지급
- 6. 웹사이트 화면 구성
 - a. 시작 화면
 - i. 서비스 소개와 채팅 예시 템플릿 제공
 - ii. 로그인 버튼
 - iii. 채팅 시작하기 버튼
 - b. 로그인 화면
 - i. 아이디 및 비밀번호 입력창
 - ii. 카카오톡으로 로그인하기 버튼
 - iii. 회원가입 버튼
 - c. 회원가입 화면
 - i. 아이디, 비밀번호, 비밀번호 확인, 이메일, 이름 별명, 생년월일 입력 창
 - d. 아이디/비밀번호 찾기 화면
 - i. 이름,이메일/이름, 이메일, 아이디 입력 창
 - e. 채팅 화면
 - i. 입력 창(텍스트, 이미지, 음성 지원)과 검색 필터 태그 표시
 - ii. 좌측에 채팅 히스토리 세션 목록 표시
 - iii. 상단에 시작화면으로 돌아갈 수 있는 로고 버튼
 - iv. 상단에 리뷰 게시판으로 이동할 수 있는 리뷰 게시판 버튼
 - v. 상단에 보유하고 있는 쿠키 (로그인 시) 조회 버튼
 - f. 마이페이지 화면
 - i. 회원정보 조회 및 수정
 - ii. 사용자가 선택한 레시피 조회 기능
 - g. 리뷰 게시판 화면
 - i. 메뉴명, 작성자(별명), 별점을 띄워주는 리뷰 글 목록
 - ii. 최신 순, 조회 순, 별점 순으로 리뷰 글 조회 버튼
 - h. 리뷰 작성 화면
 - i. 사용자가 선택했던 메뉴들 리스트로 제공하는 창

ii. 선택 레시피에 대한 후기와 별점, 이미지(선택) 업로드 창

7. 기술 구성

- a. RAG 기반 레시피 추천
 - i. Vector DB를 활용하여 레시피 데이터를 검색하고, LLM이 이를 바탕으로 응답 생성
 - i. 실시간 웹 검색 툴을 통해 추가 정보를 보완
- b. 이미지 입력: YOLO와 CLIP 활용하여 이미지 인식 및 처리
- c. 음성 입력 및 출력: Google Speech-to-Text와 TTS API 사용
- d. 웹 프레임워크
 - i. 프론트엔드: HTML, CSS, JavaScript
 - ii. 백엔드: Django

1. 모델 선정

- a. 텍스트, 이미지, 음성 데이터를 효과적으로 처리할 수 있는 모델 선정
- b. RAG 기반 추천을 위해 Vector DB와 검색 모델 연동
- 2. 모델 학습 방법
 - a. 텍스트 데이터 학습
 - i. 만개의 레시피(226,995개), 냉장고를 부탁해(970개), 편스토랑 레시피(1816개)를 활용
 - b. 이미지 데이터 학습
 - i. roboflow의 식재료 이미지셋(9831개), 냉장고 내용물 이미지셋(8445개)으로 YOLOv8 모델 학습

3. 추천 및 결과 도출

- a. 텍스트 입력
 - i. 사용자가 입력한 텍스트 데이터를 기반으로 레시피 추천

b. 이미지 입력

- i. 업로드된 식재료 이미지를 분석하여 텍스트로 변환 후 레시피 추천
- c. 음성 입력
 - i. 음성 입력 데이터를 텍스트로 변환한 뒤, 레시피 추천
- d. 사용자 선호 학습
 - i. "레시피 사용하기" 버튼 클릭 데이터를 기반으로 사용자가 선호하는 레시피를 학습
 - ii. 자주 사용된 레시피 패턴을 분석하여 개인화된 추천 제공
 - iii. 사용자가 작성한 리뷰를 분석하여 개인화된 추천 제공

4. 모델 평가

- a. 채팅에 입력된 이미지를 올바르게 분류하였는지 평가
- b. 대규모 챗봇으로 채팅 생성 시나리오에 맞게 평가 데이터셋 생성

모델링 방안

	1. 레시피 데이터	
	a. 만개의 레시피 크롤링 데이터	
	b. TV 프로그램 냉장고를 부탁해 크롤링 데이터	
사용데이터	c. TV 프로그램 편스토랑 크롤링 데이터	
	2. 학습용 음식 이미지 데이터	
	a. https://universe.roboflow.com/workspace01-ae0oa/fridgify	
	b. https://universe.roboflow.com/workspace01-ae0oa/fridgify	
	1. 데이터 수집 및 저장	
	- 레시피 데이터 수집 : 강채연, 김동훈, 임연경, 전수연, 조해원	
	- 학습용 이미지 데이터 수집 : 강채연, 조해원	
	- 데이터베이스 설계 : 임연경, 전수연, 조해원	
	- 벡터 데이터베이스 구축 및 관리 : 김동훈, 전수연	
R&R	2. AI 모델 개발	
	- 이미지 처리 모델 : 강채연	
	- RAG 기반 추천 모델 : 강채연, 김동훈, 임연경, 전수연, 조해원	
	3. 웹 개발	
	- 프론트엔드 : 조해원, 임연경	
	- 백엔드 : 강채연, 김동훈, 전수연	