$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \qquad s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})}{n-1}$$

$$P(A^c) = 1 - P(A) \qquad P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

Discrete Random Variables

Let X be a discrete random variable with a pmf of p(x) then

$$E[X] = \sum_{x} x p(x)$$

Let X be a random variable, then

$$Var(X) = E[X^2] - E[X]^2$$

Linear combination of random variables X and Y and fixed numbers a and b:

$$E[aX + bY] = aE[X] + bE[Y]$$
$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y)$$

Distribution	pmf	E(X)	Var(X)
Binomial	$\binom{n}{k} p^k (1-p)^{n-k}$	$\mid np \mid$	np(1-p)
Geometric	$(1-p)^{n-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Discrete Uniform	$\frac{1}{n}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$
Poisson	$\frac{\lambda^k}{k!}e^{-\lambda}$	λ	λ

Continuous Random Variables

$$E[X] = \int_{x \in \Omega_x} x f(x) \, dx$$