■マネタリーモデルについて

購買力平価説は為替相場が二国間の商品の購買力によって決定されるという説である。E を二国間の為替相場、P を財の単価とし、外国における対応する変数を「*」をつけるならば、以下のように表せる。

$$E = \frac{P}{P^*}$$

また貨幣供給量(マネーサプライ)を M、貨幣需要、実質貨幣需要を L、Y を所得、r を利子率とすれば、以下のように表せる。(LM 曲線)

$$M = P \times L(Y,r)$$

上記の2式より、二国間の為替相場は以下のように表せる。下式はマネタリーモデルと呼ばれ、二国間の為替相場が自国と外国のマネーサプライ、所得、金利に依存して決定されることを意味する。

$$E = \frac{M}{L(Y,r)} \div \frac{M^*}{L^*(Y^*,r^*)} = \frac{M}{M^*} \div \frac{L^*(Y^*,r^*)}{L(Y,r)}$$

■回帰モデルについて

マネタリーモデルから以下のような回帰式を考える。

$$\log E = \beta_0 + \beta_1 \times \log(Y - Y^*) + \beta_2 \times (r - r^*) + \beta_3 \times \log(M - M^*)$$

なお、目的変数および説明変数を対数変換したモデルの解釈は、以下のように行える。

目的変数	説明変数	係数の推定値
無変換	無変換	説明変数が1単位増えると、応答変数は b 単位増える
無変換	自然対数	説明変数が 1%増えると、応答変数が b/100 単位増える
自然対数	無変換	説明変数が1単位増えると、応答変数が 100b%増える
自然対数	自然対数	説明変数が 1%増えると、応答変数が b%増える

(https://yukiyanai.github.io/jp/classes/econometrics1/contents/slides/econometrics_slides_12.pdf をもとに作表)

■仮説

仮説 1:自国の所得のみが増えたら、為替相場が下がる($\beta_1 < 0$)

仮説 2:自国の利子率のみが増えたら、為替相場が上がる $(\beta_2 > 0)$

仮説3:自国の貨幣供給量のみが増えたら、為替相場が上がる($\beta_3 > 0$)

■使用するデータ

FRED より年次データを取得した。

・年別の為替相場(ドル円): FRED, https://fred.stlouisfed.org/series/DEXJPUS#0

・実質 GDP: FRED, https://fred.stlouisfed.org/series/JPNRGDPEXP

・国債利回り:FRED, https://fred.stlouisfed.org/series/IRLTLT01USM156N#0

・貨幣供給量(M 1): FRED, https://fred.stlouisfed.org/series/MANMM101JPM189S#0

取得したデータより 1994 年~2020 年までの年ごとの日本とアメリカの国債利回り、M1、 実質 GDP およびドル円の為替相場の表を作成した。

<pre>df_test = tmp[tmp['DATE']>'1993-01-01'] df_test</pre>												
✓	0.1s											
	DATE	US_国債利回り	JP_国債利回り	JP_M1	US_M1	US_rGDP	JP_rGDP	為				
23	1994-01-01	7.0800000000000000	4.3633333333333333	165930005760708.3333	1145.2166666666666667	10358.9232500000000000	446538.800000000000	102.17896				
24	1995-01-01	6.5800000000000000	3.44350000000000000	179475682407083.6667	1143.0083333333333333	10636.9787500000000000	458237.550000000000	93.96494				
25	1996-01-01	6.4383333333333333	3.10150000000000000	204092412385529.6667	1106.816666666666667	11038.26600000000000000	472690.700000000000	108.78000				
26	1997-01-01	6.35250000000000000	2.3736666666666667	221886430305457.3258	1070.23333333333333333	11529.15700000000000000	477476.150000000000	121.05812				
27	1998-01-01	5.2641666666666667	1.5414166666666667	240855013708597.5858	1080.616666666666667	12045.8240000000000000	471182.400000000000	130.98916				
28	1999-01-01	5.636666666666667	1.74900000000000000	266201438044158.5025	1102.3000000000000000	12623.361000000000	470023.425000000000	113.73424				
29	2000-01-01	6.0291666666666667	1.7444166666666667	287978996714942.6667	1103.7000000000000000	13138.035250000000	482804.850000000000	107.80404				
30	2001-01-01	5.01750000000000000	1.3190000000000000	312504848413047.4167	1140.2416666666666667	13263.417000000000	484729.400000000000	121.56804				
31	2002-01-01	4.61083333333333333	1.2631666666666667	398448057227801.0050	1196.68333333333333333	13488.357000000000	484755.475000000000	125.22043				
32	2003-01-01	4.01500000000000000	1.003250000000000000000	430543829786152.4117	1274.06666666666666	13865.519250000000	492387.775000000000	115.93868				
33	2004-01-01	4.2741666666666667	1.4926666666666667	448447441666666.6667	1344.5833333333333333	14399.696000000000	502992.025000000000	108.15083				
34	2005-01-01	4.2900000000000000	1.35475000000000000	469326808333333.3333	1372.15833333333333333	14901.269000000000	512170.425000000000	110.10693				
35	2006-01-01	4.7916666666666667	1.7405000000000000	483207591666666.6667	1375.1666666666666667	15315.943250000000	519060.400000000000	116.31207				
36	2007-01-01	4.6291666666666667	1.66550000000000000	482837333333333.3333	1373.05833333333333333	15623.871500000000	526728.425000000000	117.76232				
37	2008-01-01	3.666666666666667	1.46733333333333333	480386675000000.0000	1434.7333333333333333	15642.962000000000	520163.550000000000	103.39063				
38	2009-01-01	3.2566666666666667	1.33375000000000000	482866958333333.3333	1638.1416666666666667	15236.262250000000	490637.625000000000	93.68265				
39	2010-01-01	3.2141666666666667	1.14833333333333333	492396041666666.6667	1742.62500000000000000	15648.991000000000	510760.950000000000	87.78168				
40	2011-01-01	2.7858333333333333	1.1024166666666667	515772008333333.3333	2010.20833333333333333	15891.534000000000	510939.550000000000	79.69665				
41	2012-01-01	1.80250000000000000	0.83558333333333333333	534532750000000.0000	2315.2833333333333333	16253.970000000000	517940.000000000000	79.81800				
42	2013-01-01	2.3508333333333333	0.689666666666666666	560226566666666666	2549.616666666666667	16553.347500000000	528519.625000000000	97.5971				
43	2014-01-01	2.54083333333333333	0.520333333333333333333	586532283333333.3333	2815.05000000000000000	16932.051750000000	529660.050000000000	105.73980				

■重回帰分析の結果とその解釈

結果は下図のとおりである。

- ightharpoonup 「仮説 1: 自国の所得のみが増えたら、為替相場が下がる($eta_1 < 0$)」について 重回帰分析の結果としては、日本の実質 GDP が増加すると為替相場は上がり、5%水準で 有意である。アメリカの実質 GDP が増加すると為替相場が下がるという結果が得られた。 これは、仮説 1 とは逆の結果となった。
- ightharpoons 「仮説 2: 自国の利子率のみが増えたら、為替相場が上がる($eta_2>0$)」について 重回帰分析の結果、アメリカ・日本の国債利回りが上がると、為替相場は下がると考えられる。
- ightharpoons 「仮説3:自国の貨幣供給量のみが増えたら、為替相場が上がる $(eta_3>0)$ 」について

重回帰分析の結果からは、日本の貨幣供給量が増えると為替相場が下がり、アメリカの貨幣供給量が増えると為替相場が下がり、アメリカの貨幣供給量が増えると為替相場が上がると言える。仮説3とは逆の結果が得られた。

OLS Regression Results									
Dep. Variable) :	為替		R-squared:					
Mode	l:	OLS		Adj. R-squared:					
Method	l: Least	Least Squares		F-statistic:					
Date	: Fri, 01 (Fri, 01 Oct 2021		Prob (F-statistic):					
Time):	23:03:07		Log-Likelihood:					
No. Observations	::	27		AIC:	216.0				
Df Residuals	: :	23		BIC:	221.2				
Df Mode	l:	3							
Covariance Type	: n	onrobust							
	coef	std err	t	P> t	[0.025	0.975]			
const	-0.0003	0.013	-0.026	0.980	-0.028	0.028			
US_国債利回り	-0.0919	3.586	-0.026	0.980	-7.510	7.327			
JP_国債利回り	-0.0545	2.125	-0.026	0.980	-4.450	4.341			
JP_M1	7.773e-14	8.8e-14	0.883	0.386	-1.04e-13	2.6e-13			
US_M1	-0.0003	0.002	-0.133	0.895	-0.004	0.004			
US_rGDP	-0.0126	0.009	-1.347	0.191	-0.032	0.007			
JP_rGDP	0.0005	0.000	2.111	0.046	1.02e-05	0.001			
Omnibus: 0.492 Durbin-\		Vatson:	0.680						
Prob(Omnibus):	0.782	0.782 Jarque-Be		ra (JB): 0.440					
Skew:	-0.277	Prob(JB):		0.802					
Kurtosis:	2.711	Cond. No.		2.81e+16					

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 2.81e+16. This might indicate that there are strong multicollinearity or other numerical problems.