

www.nagpurstudents.org

B.E. (Computer Science Engineering) Fourth Semester (C.B.S.)

Operating System

P. Pages: 3 Time: Three Hours			; * 1	NIR/KW/18/3380 Max. Marks :				
	Note	2. 3. 4. 5. 6. 7. 8.	All questions carry marks as Solve Question 1 OR Questic Solve Question 3 OR Questic Solve Question 5 OR Questic Solve Question 7 OR Questic Solve Question 9 OR Questic Solve Question 11 OR Quest Illustrate your answers when	ons No. ons No. ons No. ons No. ons No. tions No. ever nec	 4. 6. 8. 10. 12. cessary with the help of none 			
1	a)	i) M	n following types of operating sultiprogramming OS eal time OS	system. ii) iv)	Multitasking OS Distributed System	8 9		
7	b)	Define	operating system. What are dis		services offered by OS?	5		
2.	a)		n different levels of Design & I on that OS perform at different			oject & typical 7		
	b)	Explair	different types of system call	in detai	il.	6		
3.	a)	Explair	various directory structure of	operati	ng system.	6		
	b)	i) Co ii) In	n following Disk Space allocation ontiguous Allocation (Dynamic dex Allocation nked allocation					
				0	R C), //		
1. 2.	a)	Suppose that the head of a moving head disk with 5000 tracks numbered 0 to 4999 is currently serving a request at track 143 & has just finished a request at queue of request is kept in the FIFO order-86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. What is the total number of head movements needed to satisfy these requests for the following disk scheduling algorithms-						
		i) FO	CFS	ii)	SSTF			
		iii) S(CAN	iv)	LOOK.	$\int_{-\infty}^{\infty}$		
5	b)	Write s	hort note on scheduling Queue	S.				

MNagpurStudents

- **5.** a) Explain in detail interprocess communication.
 - b) Write short note on following:
 - i) Context Switching
- ii) Process Creation
- iii) Process termination
- c) What is CPU schedular?

3

8

OR

- 6. a) Consider 5 processes P₁, P₂, P₃, P₄, and P₅ with length of CPU burst time. Find out average waiting time & average turnaround time for following:
 - i) FCFS

ii) RR (Slice=2ms)

iii) SJF (Preemptive & non-preemptive)

Process	Average Time	Burst Time
P_1	0	3
P_2	1	5
P ₃	2	2
P ₄	3	5
P ₅	4	5

- b) What are the different scheduling criteria for selecting scheduling algorithm?
- 7. a) Explain paging and its implementation. What hardware is required for paging.
 - b) Consider the following segment table.

5

5

Segment	Base	Length
0	219	600
1_\	2300	14
2	90	100
3	1327	580
4	1952	96

What are the physical addresses for the following logical addresses?

i) 0, 430

ii) 1, 10

iii) 1, 11

iv) 2,500

v) 3,400

OR

8. a) Explain the need of virtual memory and how it is implemented.

7

b) Consider following page reference string-

4121541215

How many page fault would occur for the following page replacement algorithms assuming 3 frames?

i) FIFO

ii) LRU

iii) Optimal

Nagpußtudents

- **9.** a) What is semaphore? What is the difference between binary & counting semaphore.
 - b) Give the solution to Dining philosopher problem using monitor.

OR

- 10. a) What are the various solution to critical section problem. 5
 - b) Write short note on monitors.
 - c) What is Trashing? What is the cause of trashing.

7

- 11. a) Define Deadlock. To arise deadlock in system what are necessary conditions it should meet?
 - b) Write a short note on resource allocation graph.

OR

- **12.** a) Write a short note on access matrix implementation.
 - b) Consider following snapshot of a system Available
 - A B C D
 - 1 5 2 0

Process	Allocation			MAX				
1100055	A	В	C	D	A	В	C	D
$P_0 \rightarrow$	0	0	Λ	2	0	0	1	2
$P_1 \rightarrow$	1	0	0	0	1	7	5	0
$P_2 \rightarrow$	(1)	3	5	4	2	3	5	6
$P_3 \rightarrow$	0	6	3	2	0	6	5	2
$P_4 \rightarrow$	0	0	1	4	0	6	5	6

- i) What is the content of matrix need?
- ii) Is the system in safe state? Prove it.
- iii) If a request from process P_1 arrives for (0, 4, 2, 0) can the request be immediately granted? why?

All our dreams can come true if we have the courage to pursue them.

~ Walt Disney

