

Departamento de Ingeniería Eléctrica, Electrónica y Automática Universidad de Extremadura

Desarrollo y estudio del rendimiento de un seguidor Solar astronómico integrado en IoT

Aitor García Blanco

Trabajo de Fin de Grado

Grado en Física

Tutor: Carlos Javier García Orellana

14 de febrero de 2023

Índice

- 1. Introducción
- 2. Antecedentes
- 3. Materiales y desarrollo
- 4. Resultados
 - Carga activa
 - Seguidor Solar
- 5. Conclusiones

Introducción

Introducción

Con el objeto de mejorar la producción fotovoltaica, se estudia el rendimiento de un seguidor Solar astronómico de dos ejes frente a una posición fija.

- Desarrollo de una carga activa.
- Diseñar y fabricar la estructura mecánica del seguidor.
- Subir periódicamente los datos a la plataforma de "*Internet of Things*" (IoT).
- Analizar y estudiar los resultados obtenidos.

Seguidor Solar

Estructuras móviles que pretenden maximizar la producción de electricidad en instalaciones fotovoltaicas.

- > Seguidores Solares de un único eje móvil
- > Seguidor de dos ejes móviles:
 - **≻**Control manual
 - ➤ Control automático:
 - > Emplean sensores fotosensibles
 - > Se fundamentan en ecuaciones astronómicas

Astrofísica – Radiación Solar

Irradiación promedio anual en España

Irradiación promedio mensual en España

Astrofísica – Astronomía esférica

Materiales

☐Microcontrolador ESP32

☐ Células fotovoltaicas

☐ Componentes activos y pasivos

MOSFET

☐ Conversor DC-DC

ThingSpeak

Arduino IDE

☐ OpenSCAD

Carga Activa - Hardware

• Es un dispositivo electrónico que nos permite variar la corriente que se demanda a una fuente de tensión o batería

• En este trabajo se emplea para obtener el punto de máxima potencia de la célula Solar controlando el *setpoint* de la corriente; siendo así, un elemento fundamental del proyecto.

• Se ha diseñado explícitamente para este trabajo

Carga Activa - Hardware

Carga activa - Hardware

Carga Activa - Software

- Regula la salida del DAC para mantener el setpoint para la corriente
- Incluye un lazo de control PI y un filtro de mediana para las entradas del ADC
- Para encontrar el punto de máxima potencia, el software hace un muestreo por aproximaciones sucesivas variando el *setpoint* de la corriente
- Una vez se encuentra el punto máximo, se repite para la otra célula fotovoltaica

Comparación rendimiento células solares

Comparación rendimiento células solares

Seguidor – Impresión 3D

Seguidor – Impresión 3D

Seguidor – Software

- Biblioteca de tiempos (ESP32Time) sincroniza con el servidor NTP (*Network Time Protocol*), para proporciona información de tiempo en España
- Con la finalidad de obtener α y ψ, se emplean los Cálculos Generales de Posición Solar publicados por NOAA (*National Oceanic and Atmospheric Administration*)
- El cero del servomotor es 120 y el rango de movimiento [0-240]
- El movimiento del servo de dos ejes, tan solo tiene lugar cuando $\alpha \ge 0$

Integración

Integración

Carga Activa

Carga Activa

Carga Activa

$$f(x) = ax^2 + bx + c$$

Calibración de la intensidad	Calibración de la tensión
$a = (-5,581 \pm 3,426)10^{-9}$	$a = (-5,793 \pm 1,153)10^{-8}$
$b = (4,933 \pm 0,070)10^{-4}$	$b = (-5,581 \pm 3,430)10^{-3}$
$c = -0.160 \pm 0.003$	$c = -1,622 \pm 0,010$
$R^2 = 0.999$	$R^2 = 0,999$

Seguidor Solar

Eje vertical móvil

Eje vertical móvil

Eje vertical móvil

Energía fijo	Energía seguidor	Mejora del rendimiento
15,95 Wh	17,71 Wh	11,03 %

Eje horizontal móvil

Energía fijo	Energía seguidor	Mejora del rendimiento
16,20 Wh	19,90 Wh	22,84 %

Ambos ejes móviles

Energía fijo	Energía seguidor	Mejora del rendimiento
14,54 Wh	18,46 Wh	26,96 %

Ambos ejes móviles

Energía fijo	Energía seguidor	Mejora del rendimiento
16,13 Wh	20,48 Wh	26,97 %

Ambos ejes móviles

Fecha	Configuración del seguidor	Mejora del rendimiento (%)
25/01/2023	Eje vertical móvil	8,03
30/01/2023	Eje horizontal móvil	19,84
05/01/2023	Ambos ejes móviles	23,96
31/01/2023	Ambos ejes móviles	23,97

Conclusiones

Conclusiones

- Se ha diseñado y construido una carga activa para obtener el PMP de las células Solares
- Se ha diseñado y construido un seguidor Solar de dos ejes mediante impresión 3D y servomotores
- El seguidor Solar de doble eje es la configuración con mejor rendimiento
- El seguidor Solar es muy útil para espacios reducidos
- Se espera que los resultados mejoren significativamente para los meses de verano

Conclusiones

Departamento de Ingeniería Eléctrica, Electrónica y Automática Universidad de Extremadura

Desarrollo y estudio del rendimiento de un seguidor Solar astronómico integrado en IoT

Aitor García Blanco

Trabajo de Fin de Grado

Grado en Física

Tutor: Carlos Javier García Orellana

14 de febrero de 2023