#### Notes 9: Analysis of Variance (One-Way)

Nathaniel E. Helwig

Department of Statistics
University of Illinois at Urbana-Champaign

Stat 420: Methods of Applied Statistics Section N1U/N1G – Spring 2014

## Copyright

Copyright © 2014 by Nathaniel E. Helwig

#### Outline of Notes

- 1) Categorical Predictors:
  - Overview
  - Dummy coding
  - Effect coding

- 2) One-Way ANOVA:
  - Model form & assumptions
  - Estimation & basic inference
  - Memory example (part 1)

- 3) Multiple Comparisons:
  - Comparing means
  - Bonferroni correction
  - Tukey correction
  - Scheffé correction
  - Summary of corrections
  - Memory example (part 2)

## Categorical Variables (revisited)

Suppose that  $X \in \{x_1, \dots, x_q\}$  is a categorical variable with g levels.

- Categorical variables are also called "factors" in ANOVA context
- Example: sex ∈ {female, male} has two levels
- Example:  $drug \in \{A, B, C\}$  has three levels

To code a categorical variable (with g levels) in a regression model, we need to include g-1 different variables in the model.

- If we know  $\mu = \frac{1}{a} \sum_{i=1}^{g} \mu_i$ , where  $\mu_i$  is mean for *j*-th factor level
- Then we know  $\mu_g = g(\mu \frac{1}{g} \sum_{i=1}^{g-1} \mu_i)$  by definition
- Only g total free parameters, so cannot estimate  $\mu$  and  $\{\mu_i\}_{i=1}^g$

# Dummy Coding: Definition

Dummy coding uses q-1 binary variables to code a factor:

$$x_{ij} = \left\{ egin{array}{ll} 1 & ext{if $i$-th observation is in $j$-th level} \\ 0 & ext{otherwise} \end{array} 
ight.$$

for 
$$i \in \{1, ..., n_j\}$$
 and  $j \in \{1, ..., g-1\}$ .

Regression model becomes

$$y_{ij} = b_0 + \sum_{j=1}^{g-1} b_j x_{ij} + e_{ij}$$

where  $b_0 = \mu_q$  and  $b_i = \mu_i - \mu_q$  for  $j \in \{1, ..., g - 1\}$ .

Nathaniel E. Helwig (University of Illinois)

## **Dummy Coding: Considerations**

#### Dummy coding is useful for...

- One-way ANOVA model (unique parameter for each factor level)
- Comparing treatment groups to clearly defined "control" group

#### Dummy coding is less useful when...

- Have q > 2 levels and/or model is more complicated
- Do NOT have a clearly defined "control" or "reference" group

## **Dummy Coding: R Syntax**

The contrasts function controls the coding scheme for a factor.

Use the contritreatment option for dummy coding.

```
> x=factor(rep(letters[1:3],each=5))
> x
 [1] a a a a a b b b b b c c c c c
Levels: a b c
> contrasts(x) <-contr.treatment(nlevels(x))</pre>
> contrasts(x)
  2. 3
a 0 0
b 1 0
c = 0.1
```

# **Effect Coding: Definition**

Effect coding also uses g-1 variables to code a factor:

$$x_{ij} = \begin{cases} 1 & \text{if } i\text{-th observation is in } j\text{-th level} \\ -1 & \text{if } i\text{-th observation is in } g\text{-th level} \\ 0 & \text{otherwise} \end{cases}$$

for 
$$i \in \{1, ..., n_j\}$$
 and  $j \in \{1, ..., g-1\}$ .

Regression model becomes

$$y_{ij} = b_0 + \sum_{j=1}^{g-1} b_j x_{ij} + e_{ij}$$

where  $b_0 = \mu$  and  $b_j = \mu_j - \mu$  for  $j \in \{1, \dots, g\}$ ; note  $b_g = -\sum_{j=1}^{g-1} b_j$ .

Nathaniel E. Helwig (University of Illinois)

Notes 9: Analysis of Variance (One-Way)

Stat 420 N1 – Spring 2014

## Effect Coding: Considerations

#### Effect coding is useful for...

- Simple interpretation of  $b_0$  as overall mean
- Comparing each group's effect to overall mean

#### Effect coding is less useful when...

- Have q = 2 levels for a factor
- Do have a clearly defined "control" or "reference" group

## Effect Coding: R Syntax

The contrasts function controls the coding scheme for a factor.

Use the contr.sum option for effect (deviation) coding.

```
> x=factor(rep(letters[1:3],each=5))
> x
 [1] a a a a a b b b b b c c c c c
Levels: a b c
> contrasts(x) <-contr.sum(nlevels(x))</pre>
> contrasts(x)
  [,1] [,2]
a 1 0
b 0 1
c -1 -1
```

## One-Way ANOVA Model (cell means form)

The One-Way Analysis of Variance (ANOVA) model has the form

$$y_{ij} = \mu_j + e_{ij}$$

for  $i \in \{1, \dots, n_j\}$  and  $j \in \{1, \dots, g\}$  where

- $y_{ij} \in \mathbb{R}$  is real-valued response for *i*-th subject in *j*-th factor level
- ullet  $\mu_j \in \mathbb{R}$  is real-valued population mean for the j-th factor level
- $e_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$  is Gaussian measurement error
- $n_j$  is number of subjects in j-th factor level and  $n = \sum_{j=1}^g n_j$
- g is number of factor levels

Implies that  $y_{ij} \stackrel{\text{ind}}{\sim} N(\mu_j, \sigma^2)$ .

## One-Way ANOVA Model (dummy coding)

Using dummy coding, the one-way ANOVA becomes

$$y_{ij} = b_0 + \sum_{j=1}^{g-1} b_j x_{ij} + e_{ij}$$

for  $i \in \{1, \dots, n_j\}$  and  $j \in \{1, \dots, g\}$  where

- $x_{ij} = \begin{cases} 1 & \text{if } i\text{-th observation is in } j\text{-th level} \\ 0 & \text{otherwise} \end{cases}$
- $b_0 = \mu_g$  is reference group mean
- $b_j = \mu_j \mu_g$  for  $j \in \{1, \dots, g-1\}$

# One-Way ANOVA Model (effect coding)

Using effect coding, the one-way ANOVA becomes

$$y_{ij} = b_0 + \sum_{j=1}^{g-1} b_j x_{ij} + e_{ij}$$

for  $i \in \{1, \dots, n_j\}$  and  $j \in \{1, \dots, g\}$  where

- $\bullet \ \, x_{ij} = \left\{ \begin{array}{rl} 1 & \text{if $i$-th observation is in $j$-th level} \\ -1 & \text{if $i$-th observation is in $g$-th level} \\ 0 & \text{otherwise} \end{array} \right.$
- $b_0 = \mu$  is overall mean
- $b_j = \mu_j \mu \text{ for } j \in \{1, \dots, g\}$
- Note that  $b_g = -\sum_{i=1}^{g-1} b_i$  by definition

## One-Way ANOVA Model (matrix form)

In matrix form, the one-way ANOVA model is

$$\mathbf{y} = \mathbf{Xb} + \mathbf{e}$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1(g-1)} \\ 1 & x_{21} & x_{22} & \cdots & x_{2(g-1)} \\ 1 & x_{31} & x_{32} & \cdots & x_{3(g-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{n(g-1)} \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_{g-1} \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ e_n \end{pmatrix}$$

#### where

- definition of  $x_{ij}$  and  $\{b_j\}_{j=1}^{g-1}$  will depend on coding scheme
- $i \in \{1, ..., n\}$  and second subscript on y and e is dropped

Implies that  $\mathbf{y} \sim N(\mathbf{Xb}, \sigma^2 \mathbf{I}_n)$ .

## One-Way ANOVA Model (assumptions)

The fundamental assumptions of the one-way ANOVA model are:

- $\bigcirc$   $x_{ii}$  and  $y_i$  are observed random variables (constants)
- $e_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$  is an unobserved random variable
- $b_0, b_1, \ldots, b_{q-1}$  are unknown constants
- $(y_i|x_{i1},\ldots,x_{i(g-1)}) \stackrel{\text{ind}}{\sim} N(b_0 + \sum_{i=1}^{g-1} b_i x_{ii},\sigma^2)$ note: homogeneity of variance

Interpretation of  $b_i$  depends on coding scheme

- Dummy: b<sub>i</sub> is difference between j-th mean and reference mean
- Effect:  $b_i$  is difference between j-th mean and overall mean

#### Ordinary Least Squares (cell means form)

We want to find the factor level mean estimates (i.e.,  $\hat{\mu}_i$  terms) that minimize the ordinary least squares criterion

$$SSE = \sum_{j=1}^{g} \sum_{i=1}^{n_j} (y_{ij} - \mu_j)^2$$

The least-squares estimates are the factor level means

$$\hat{\mu}_{\it j} = ar{\it y}_{\it \cdot \it j}$$

where  $\bar{y}_{\cdot j} = \frac{1}{n_i} \sum_{i=1}^{n_j} y_{ij}$  is sample mean of Y for j-th factor level.

Nathaniel E. Helwig (University of Illinois)

# Ordinary Least Squares (simple proof)

Note that we want to minimize

$$(SSE)_j = \sum_{i=1}^{n_j} (y_{ij} - \mu_j)^2 = \sum_{i=1}^{n_j} y_{ij}^2 - 2\mu_j \sum_{i=1}^{n_j} y_{ij} + n_j \mu_j^2$$

separately for each  $j \in \{1, \dots, g\}$ .

Taking the derivative with respect to  $\mu_i$  we have

$$\frac{\mathsf{d}(SSE)_j}{\mathsf{d}\mu_j} = -2\sum_{i=1}^{n_j} y_{ij} + 2n_j\mu_j$$

and setting to zero and solving for  $\mu_j$  gives  $\hat{\mu}_j = \frac{1}{n_i} \sum_{i=1}^{n_j} y_{ij} = \bar{y}_{ij}$ 

Nathaniel E. Helwig (University of Illinois)

## Ordinary Least Squares (general case)

In general, we can use the regression approach

$$SSE = \sum_{i=1}^{n} (y_i - b_0 - \sum_{j=1}^{g-1} b_j x_{ij})^2 = \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2$$

where  $i \in \{1, ..., n\}$  and  $n = \sum_{j=1}^{g} n_j$ ; note that the second subscript on Y is now dropped because there is only one summation.

The OLS solution has the form

$$\hat{\boldsymbol{b}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

which is the same as the MLR model; note that ANOVA is MLR with categorical predictors!

#### Fitted Values and Residuals

SCALAR FORM:

Fitted values are given by

$$\hat{y}_i = \hat{b}_0 + \sum_{j=1}^{g-1} \hat{b}_j x_{ij}$$

and *residuals* are given by

$$\hat{e}_i = y_i - \hat{y}_i$$

MATRIX FORM:

Fitted values are given by

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{b}}$$

and *residuals* are given by

$$\hat{\mathbf{e}} = \mathbf{y} - \hat{\mathbf{y}}$$

## ANOVA Sums-of-Squares: Scalar Form

In one-way ANOVA model, the relevant sums-of-squares are

• Total: 
$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{g} \sum_{j=1}^{n_j} (y_{ij} - \bar{y})^2$$

• Treatment: 
$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \sum_{j=1}^{g} n_j (\bar{y}_{\cdot j} - \bar{y})^2$$

• Error. 
$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{j=1}^{g} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_{\cdot j})^2$$

The corresponding degrees of freedom are

- SST:  $df_{\tau} = n 1$
- SSR:  $df_R = q 1$
- SSE:  $df_F = n q$

## ANOVA Sums-of-Squares: Matrix Form

In MLR models, the relevant sums-of-squares are

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$= \mathbf{y}' [\mathbf{I}_n - (1/n)\mathbf{J}] \mathbf{y}$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$= \mathbf{y}' [\mathbf{H} - (1/n)\mathbf{J}] \mathbf{y}$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \mathbf{v}' [\mathbf{I}_n - \mathbf{H}] \mathbf{v}$$

Note:  $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$  and  $\mathbf{J}$  is an  $n \times n$  matrix of ones

Nathaniel E. Helwig (University of Illinois)

## Partitioning the Variance (same as MLR model)

We can partition the total variation in  $y_i$  as

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + 2\sum_{i=1}^{n} (\hat{y}_i - \bar{y})(y_i - \hat{y}_i)$$

$$= SSR + SSE + 2\sum_{i=1}^{n} (\hat{y}_i - \bar{y})\hat{e}_i$$

$$= SSR + SSE$$

See Notes 5 for the proof.

## Estimated Error Variance (Mean Squared Error)

An unbiased estimate of the error variance  $\sigma^2$  is

$$\hat{\sigma}^{2} = SSE/(n-g)$$

$$= \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}/(n-g)$$

$$= \frac{1}{n-g} \sum_{j=1}^{g} (n_{j} - 1)s_{j}^{2}$$

where  $s_i^2 = \frac{1}{n_i-1} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_{\cdot j})^2$  is *j*-th factor level's sample variance.

The estimate  $\hat{\sigma}^2$  is the *mean squared error (MSE)* of the model, and is the pooled estimate of sample variance.

Nathaniel E. Helwig (University of Illinois)

#### ANOVA Table and Overall F Test

We typically organize the SS information into an ANOVA table:

 $F^*$ -statistic and  $p^*$ -value are testing  $H_0: b_1 = \cdots = b_{q-1} = 0$  versus  $H_1: b_k \neq 0$  for some  $k \in \{1, \dots, g-1\}$ 

• Equivalent to testing  $H_0: \mu_i = \mu \ \forall j$  versus  $H_1:$  not all  $\mu_i$  are equal

Nathaniel E. Helwig (University of Illinois)

## Memory Example: Data Description

Visual and auditory cues example from Hays (1994) Statistics.

Does lack of visual/auditory synchrony affect memory?

Total of n = 30 college students participate in memory experiment.

- Watch video of person reciting 50 words
- Try to remember the 50 words (record number correct)

Randomly assign  $n_i = 10$  subjects to one of g = 3 video conditions:

- fast: sound precedes lip movements in video
- normal: sound synced with lip movements in video
- slow: lip movements in video precede sound

#### Memory Example: Descriptive Statistics

Number of correctly remembered words  $(y_{ii})$ :

| Subject (i)                                               | Fast $(j = 1)$ | Normal $(j = 2)$ | Slow $(j = 3)$ |
|-----------------------------------------------------------|----------------|------------------|----------------|
| 1                                                         | 23             | 27               | 23             |
| 2                                                         | 22             | 28               | 24             |
| 3                                                         | 18             | 33               | 21             |
| 4                                                         | 15             | 19               | 25             |
| 5                                                         | 29             | 25               | 19             |
| 6                                                         | 30             | 29               | 24             |
| 7                                                         | 23             | 36               | 22             |
| 8                                                         | 16             | 30               | 17             |
| 9                                                         | 19             | 26               | 20             |
| 10                                                        | 17             | 21               | 23             |
| $\sum_{i=1}^{10} y_{ij}$                                  | 212            | 274              | 218            |
| $\frac{\sum_{i=1}^{10} y_{ij}}{\sum_{i=1}^{10} y_{ij}^2}$ | 4738           | 7742             | 4810           |

#### Memory Example: OLS Estimation (by hand)

The least-squares estimates of  $\mu_i$  are the sample means:

$$\hat{\mu}_1 = \bar{y}_{.1} = \frac{1}{10} \sum_{i=1}^{10} y_{i1} = 212/10 = 21.2$$

$$\hat{\mu}_2 = \bar{y}_{.2} = \frac{1}{10} \sum_{i=1}^{10} y_{i2} = 274/10 = 27.4$$

$$\hat{\mu}_3 = \bar{y}_{.3} = \frac{1}{10} \sum_{i=1}^{10} y_{i3} = 218/10 = 21.8$$

#### Memory Example: OLS Estimation (in R: by hand)

```
# define response and factor vectors
> sync=c(23,27,23,22,28,24,18,33,21,15,
         19, 25, 29, 25, 19, 30, 29, 24, 23, 36,
         22, 16, 30, 17, 19, 26, 20, 17, 21, 23)
> cond=factor(rep(c("fast", "normal", "slow"), 10))
# sum of sync for each level of cond
> tapply(sync,cond,sum)
  fast normal slow
   212 274 218
# sum-of-squares of sync for each level of cond
> sumsq=function(x) {sum(x^2)}
> tapply(sync,cond,sumsq)
  fast normal slow
  4738 7742 4810
```

# Memory Example: OLS Estimation (in R: dummy pt. 1)

```
> smod=lm(svnc~cond)
> summary(smod)$coef
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.2 1.408440 15.0521126 1.183308e-14
condnormal 6.2 1.991835 3.1127073 4.350803e-03
condslow 0.6 1.991835 0.3012297 7.655470e-01
```

#### Note that...

- $\ddot{b}_0 = \bar{y}_{.1} = 21.2$  is mean of fast condition
- $\hat{b}_1 = \bar{y}_{.2} \bar{y}_{.1} = 27.4 21.2 = 6.2$  is difference between means of normal and fast conditions
- $\vec{b}_2 = \vec{y}_{.3} \vec{y}_{.1} = 21.8 21.2 = 0.6$  is difference between means of slow and fast conditions

# Memory Example: OLS Estimation (in R: dummy pt. 2)

```
> contrasts(cond)
> contrasts(cond)<-contr.treatment(3,base=2)
> contrasts(cond)
slow 0 1
> smod=lm(sync~cond)
> summary(smod)$coef
           Estimate Std. Error t value
(Intercept) 27.4 1.408440 19.454146 2.052094e-17
```

#### Note that...

- $\hat{b}_0 = \bar{v}_{.2} = 27.4$  is mean of normal condition
- $\hat{b}_1 = \bar{y}_{.1} \bar{y}_{.2} = 21.2 27.4 = -6.2$  is difference between means of fast and normal conditions
- $\hat{b}_2 = \bar{v}_{.3} \bar{v}_{.2} = 21.8 27.4 = -5.6$  is difference between means of slow and normal conditions

## Memory Example: OLS Estimation (in R: effect)

```
> contrasts(cond)<-contr.sum(3)
> contrasts(cond)
> smod=lm(sync~cond)
> summary(smod)$coef
            Estimate Std. Error t value
```

#### Note that...

- $\hat{b}_0 = \bar{y}_{..} = 23.47$  is grand mean  $(\bar{y}_{..} = \frac{212 + 274 + 218}{30} = \frac{704}{30} = 23.467)$
- $\hat{b}_1 = \bar{v}_{.1} \bar{v}_{..} = 21.2 23.467 = -2.266667$  is difference between mean of fast condition and overall mean
- $\hat{b}_2 = \bar{v}_{.2} \bar{v}_{..} = 27.4 23.467 = 3.933333$  is difference between mean of normal condition and overall mean
- Implicitly we have:  $\hat{b}_3 = -(\hat{b}_1 + \hat{b}_2) = -(3.933333 2.266667) =$  $\bar{y}_{.3} - \bar{y}_{..} = 21.8 - 23.467 = -1.67$  is difference between mean of slow condition and overall mean

#### Memory Example: Sums-of-Squares (by hand)

Defining  $n = \sum_{i=1}^{g} n_i = 30$ , the relevant sums-of-squares are

$$SST = \sum_{j=1}^{g} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_{..})^2 = \sum_{j=1}^{g} \sum_{i=1}^{n_j} y_{ij}^2 - \frac{1}{n} \left( \sum_{j=1}^{g} \sum_{i=1}^{n_j} y_{ij} \right)^2$$
$$= (4738 + 7742 + 4810) - (704^2/30) = 769.4667$$

$$SSE = \sum_{j=1}^{g} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_{ij})^2 = \sum_{j=1}^{g} \sum_{i=1}^{n_j} y_{ij}^2 - \sum_{j=1}^{g} \frac{\left(\sum_{i=1}^{n_j} y_{ij}\right)^2}{n_j}$$
$$= (4738 + 7742 + 4810) - ([212^2 + 274^2 + 218^2]/10) = 535.6$$

$$SSR = SST - SSE = 769.4667 - 535.6 = 233.8667$$

#### Memory Example: ANOVA Table (by hand)

Putting sums-of-squares on previous slide into an ANOVA table:

| Source | SS       | df | MS       | F      | p-value |
|--------|----------|----|----------|--------|---------|
| SSR    | 233.8667 | 2  | 116.9333 | 5.8947 | 0.0075  |
| SSE    | 535.6000 | 27 | 19.8370  |        |         |
| SST    | 769.4667 | 29 |          |        |         |

Note that  $F^* = 5.8947 \sim F_{2.27}$  and  $P(F_{2.27} > F^*) = 0.0075$ .

Assuming a typical  $\alpha$  level (e.g.,  $\alpha = 0.01$  or  $\alpha = 0.05$ ), we would reject the null hypothesis  $H_0: \mu_i = \mu \ \forall j$ .

We conclude that there is some mean difference on the response variable (# of remembered words) between the different conditions.

## Memory Example: ANOVA Table (in R)

```
> sync=c(23,27,23,22,28,24,18,33,21,15,
         19, 25, 29, 25, 19, 30, 29, 24, 23, 36,
         22, 16, 30, 17, 19, 26, 20, 17, 21, 23)
> cond=factor(rep(c("fast", "normal", "slow"), 10))
> smod=lm(svnc~cond)
> anova(smod)
Analysis of Variance Table
Response: sync
          Df Sum Sq Mean Sq F value Pr(>F)
cond 2 233.87 116.933 5.8947 0.007513 **
Residuals 27 535.60 19.837
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

#### Limitations of Overall F Test

If we reject  $H_0: \mu_j = \mu \ \forall j$  then we know that there are some mean differences, but we do not know where the mean differences exist

- This is assuming that g > 2
- Note that if g = 2 we have a T test (see Notes 2)

If g > 2 we need to perform followup tests (multiple comparisons) to determine where the mean differences are occurring in the data.

#### Linear Combinations of Factor Level Means

A linear combination L of the factor level means has the form

$$L = \sum_{j=1}^{g} c_j \mu_j$$

where  $c_i$  are the coefficients defining the particular linear combination.

In practice we never know  $\mu_i$  so we define

$$\hat{L} = \sum_{j=1}^{g} c_j \hat{\mu}_j$$

where  $\hat{\mu}_i$  is our least-squares estimate of  $\mu_i$ .

## **Testing Linear Combinations**

Remember  $\hat{\mu}_j = \bar{y}_{\cdot j}$  which implies

$$V(\hat{\mu}_j) = V\left(\frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}\right) = \frac{1}{n_j^2} V\left(\sum_{i=1}^{n_j} y_{ij}\right) = \frac{\sum_{i=1}^{n_j} V(y_{ij})}{n_j^2} = \frac{\sigma^2}{n_j}$$

is the variance of  $\hat{\mu}_i$ , given that  $V(y_{ii}) = \sigma^2$  from the assumptions.

This implies that

$$V(\hat{L}) = V\left(\sum_{j=1}^{g} c_{j}\hat{\mu}_{j}\right) = \sum_{j=1}^{g} c_{j}^{2} V(\hat{\mu}_{j}) = \sigma^{2} \sum_{j=1}^{g} c_{j}^{2} / n_{j}$$

is the variance of any linear combination  $\hat{L}$ .

#### Testing Linear Combinations (continued)

To test  $H_0: L = L^*$  versus  $H_1: L \neq L^*$  use

$$t^* = \frac{\hat{L} - L^*}{\sqrt{\hat{V}(\hat{L})}} \sim t_{n-g}$$

where  $\hat{V}(\hat{L}) = \hat{\sigma}^2 \sum_{i=1}^g c_i^2/n_i$  uses the MSE to estimate  $\sigma^2$ .

If population  $\sigma^2$  is known, then use

$$Z^* = \frac{\hat{L} - L^*}{\sqrt{V(\hat{L})}} \sim \mathrm{N}(0,1)$$

## Contrasts and Pairwise Comparisons

A *contrast* is a linear combination of the factor level means such that the coefficients sum to zero, i.e.,  $\sum_{i=1}^{g} c_i = 0$ .

- $\mu_1 \mu_2$  is mean difference of first two levels
- $(\mu_1 + \mu_2)/2 \mu_3$  is mean of first two levels minus third level

A pairwise comparison is a contrast involving two factor level means:

- $\mu_1 \mu_2$  is a pairwise comparison of first two levels
- $\mu_1 \mu_3$  is a pairwise comparison of first and third levels
- $\mu_2 \mu_3$  is a pairwise comparison of second and third levels

## Multiple Comparison Problem

If we test multiple linear combinations of factor level means, we need to worry about the Familywise Type I Error Rate (FWER).

FWER is probability of making at least one Type I Error among all tested linear combinations.

- Single test Type I Error =  $P(\text{Reject } H_0 \mid H_0 \text{ true}) = \alpha$
- For *q* independent tests with level  $\alpha$ : *FWER* = 1  $(1 \alpha)^q$

Generally FWER will depend on number of tests and whether or not tests are independent of one another.

#### Bonferroni's Correction: Definition

Suppose we want to test *f* linear combinations of factor level means.

According to Boole's inequality, for f tests with level  $\alpha^*$ 

FWER 
$$\leq \sum_{k=1}^{f} P(\text{Reject } H_{0k} \mid H_{0k} \text{ true}) = \sum_{k=1}^{f} \alpha^* = f\alpha^*$$

regardless of whether or not the tests are independent of one another.

Bonferroni's correction sets  $\alpha^* = \alpha/f$  to ensure that  $FWER \leq \alpha$ .

## Bonferroni's Correction: Properties

Major strength: applicable to many situations (no assumptions)

Major weakness: overly conservative in some cases

Suppose we have f = 3 independent tests and want  $FWER \le 0.05$ 

- $FWER = 1 (1 \alpha^*)^3$
- Bonferroni:  $\alpha^* = 0.05/3 = 0.0167$ FWER = 1 -  $(1 - 0.0167)^3 = 0.04917$

Suppose we have f = 10 independent tests and want  $FWER \le 0.05$ 

- $FWER = 1 (1 \alpha^*)^{10}$
- Bonferroni:  $\alpha^* = 0.05/10 = 0.005$  $FWER = 1 - (1 - 0.005)^{10} = 0.0489$

## Detour: Studentized Range Distribution

Assume the following...

- $z_k \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$  for  $k \in \{1, \dots, r\}$
- $\hat{\sigma}^2$  is an estimate of  $\sigma^2$  based on  $\nu$  degrees-of-freedom
- $\hat{\sigma}^2$  is independent of  $z_k$  for  $k \in \{1, \dots, r\}$

The *studentized range* statistic is defined as

$$q_{r,\nu} = \frac{\operatorname{range}(z_k)}{\hat{\sigma}}$$

where range( $z_k$ ) = max( $z_k$ ) - min( $z_k$ ), and (r,  $\nu$ ) are the numerator and denominator degrees of freedom.

One-sided probability distribution (similar to F), so only reject if observed  $q > q_{r,\nu}^{(\alpha)}$  where  $P(q_{r,\nu} > q_{r,\nu}^{(\alpha)}) = \alpha$ .

Nathaniel E. Helwig (University of Illinois) Notes 9: Analysis of Variance (One-Way)

# Testing All Possible Pairwise Comparisons

Want to test all possible pairwise comparisons between means.

- $H_0: \mu_i \mu_k = 0 \ \forall j, k \text{ versus } H_1: \text{not all } \mu_i \mu_k = 0$
- There are g(g-1)/2 unique pairwise comparisons

Note that the variance of a pairwise comparison  $\hat{L} = \mu_i - \mu_k$  is

$$V(\hat{L}) = \sigma^2 \left( \frac{1}{n_j} + \frac{1}{n_k} \right)$$

where  $n_i$  and  $n_k$  are the sample sizes of factor levels j and k.

If  $n_j = n_* \forall j$ , simplifies to  $V(\hat{L}) = \sigma^2(\frac{2}{n_*})$  for any pairwise comparison.

# Tukey's Honest Significant Difference (HSD) Test

Proposed by John Tukey (1953) for balanced ANOVA, i.e.,  $n_j = n_* \forall j$ .

Test statistic is defined as

$$q^* = \frac{\sqrt{2}\hat{L}}{\sqrt{\hat{V}(\hat{L})}} = \frac{\bar{y}_{\cdot j} - \bar{y}_{\cdot k}}{\sqrt{\hat{\sigma}^2/n_*}}$$

where  $\hat{L} = \bar{y}_{\cdot j} - \bar{y}_{\cdot k}$ ,  $\hat{V}(\hat{L}) = \hat{\sigma}^2(\frac{2}{n_*})$ , and  $\hat{\sigma}^2$  is MSE of model.

Considering all pairwise comparisons,  $q^* \sim q_{g,n-g}$  where  $q_{g,n-g}$  is studentized range distribution with (g, n-g) degrees of freedom.

- Note that  $\bar{y}_{.j} \sim N(\mu_j, \sigma^2/n_*)$  for all  $j \in \{1, \dots, g\}$
- Under  $H_0: \mu_i \mu_k = 0 \ \forall j, k$ , we have  $\bar{y}_{ij} \sim N(\mu, \sigma^2/n_*) \ \forall j$

## Tukey's HSD Test (continued)

To form a 100(1  $-\alpha$ )% CI around the mean difference  $\bar{y}_{.j} - \bar{y}_{.k}$  use

$$(ar{y}_{\cdot j} - ar{y}_{\cdot k}) \pm rac{q_{g,n-g}^{(lpha)}}{\sqrt{2}} \sqrt{\hat{V}(\hat{L})}$$

where  $q_{q,n-q}^{(\alpha)}$  is critical value from studentized range distribution.

If you form all possible CIs around pairwise mean differences, you will control FWER *exactly* at level  $\alpha$  using Tukey's HSD test.

- More conservative than forming all CIs using  $t_{n-g}$  critical values
- Example 95% CI:  $q_{3.27}^{(0.95)}/\sqrt{2} = 2.48$  and  $t_{27}^{(0.975)} = 2.05$

## Tukey-Kramer Test

In unbalanced ANOVA, i.e.,  $n_i \neq n_k$  for at least one (j, k), use HSD extension proposed by John Tukey (1953) and Clyde Kramer (1956)

Called the Tukey-Kramer test or Tukey-Kramer procedure

To form a 100(1 –  $\alpha$ )% CI around the mean difference  $\bar{y}_{.i} - \bar{y}_{.k}$  use

$$(ar{y}_{\cdot j} - ar{y}_{\cdot k}) \pm rac{q_{g,n-g}^{(lpha)}}{\sqrt{2}} \sqrt{\hat{V}(\hat{L})}$$

where  $\hat{V}(\hat{L}) = \hat{\sigma}^2(\frac{1}{n_i} + \frac{1}{n_k})$  is estimated variance of  $\hat{L} = \hat{\mu}_j - \hat{\mu}_k$ .

If you form all possible CIs around pairwise mean differences, you will control FWER *below* (but not exactly at) level  $\alpha$  using Tukey-Kramer.

See Hayter (1984) for formal proof of TK conservativeness

# Testing All Possible Contrasts

Want to test all possible contrasts between factor level means

- $H_0: \sum_{i=1}^g c_i \mu_i = 0$  for all  $\mathbf{c} \in \mathcal{C}$  where  $\mathcal{C} = \{\mathbf{c} = (c_1, \dots, c_g) : \sum_{i=1}^g c_i = 0\}$  is set of all contrasts
- $H_1: \sum_{i=1}^g c_i \mu_i \neq 0$  for some  $\mathbf{c} \in \mathcal{C}$

Note that 
$$\mu_j = \mu \ \forall j \Longleftrightarrow \sum_{j=1}^g c_j \mu_j = 0$$
 for all  $\mathbf{c} \in \mathcal{C}$ 

Proof of 
$$\mu_j = \mu \ \forall j \Longrightarrow \sum_{j=1}^g c_j \mu_j = 0$$
 for all  $\mathbf{c} \in \mathcal{C}$ 

• If 
$$\mu_j = \mu \ \forall j$$
, then  $\sum_{j=1}^g c_j \mu_j = \mu \sum_{j=1}^g c_j = \mu(0) = 0$  for all  $\mathbf{c} \in \mathcal{C}$ 

Proof of 
$$\sum_{i=1}^{g} c_{i}\mu_{j} = 0$$
 for all  $\mathbf{c} \in \mathcal{C} \Longrightarrow \mu_{j} = \mu \ \forall j$ 

• If  $\sum_{i=1}^g c_i \mu_i = 0$  for all  $\mathbf{c} \in \mathcal{C}$ , then  $\mu_i - \mu_k = 0$  for all j, k

#### Contrasts and Overall ANOVA F Test

Remember the overall F test (associated with ANOVA table) is testing  $H_0: \mu_i = \mu \ \forall j \text{ versus } H_1: \text{not all } \mu_i \text{ are equal}$ 

- Equivalent to testing  $H_0: \sum_{i=1}^g c_i \mu_i = 0$  for all  $\mathbf{c} \in \mathcal{C}$  versus  $H_1: \sum_{i=1}^g c_i \mu_i \neq 0$  for some  $\mathbf{c} \in \mathcal{C}$
- See previous slide for proof of equivalence

Point: if we want to test all possible contrasts, we can use  $F_{a-1,n-a}$ distribution to control FWER at level  $\alpha$ .

#### Scheffé's Method

Want to test all possible contrasts between factor level means

- $H_0: \sum_{j=1}^g c_j \mu_j = 0$  for all  $\mathbf{c} \in \mathcal{C}$  where  $\mathcal{C} = \{\mathbf{c} = (c_1, \dots, c_g) : \sum_{j=1}^g c_j = 0\}$  is set of all contrasts
- $H_1: \sum_{i=1}^g c_i \mu_i \neq 0$  for some  $\mathbf{c} \in \mathcal{C}$

To form a 100(1 –  $\alpha$ )% CI for a contrast  $L = \sum_{j=1}^{g} c_j \mu_j$  use

$$\hat{L} \pm \sqrt{(g-1)F_{g-1,n-g}^{(\alpha)}}\sqrt{\hat{V}(\hat{L})}$$

where  $\hat{V}(\hat{L}) = \hat{\sigma}^2 \sum_{j=1}^g c_j^2 / n_j$  is estimated variance of  $\hat{L} = \sum_{j=1}^g c_j \bar{y}_{\cdot j}$ .

If you form CIs around all possible contrasts, you will control FWER exactly at level  $\alpha$  using Scheffé's method.

#### Scheffé's Method: Logic

Remember that the overall ANOVA F test has the form

$$F^* = rac{MSR}{MSE} = rac{rac{1}{g-1} \sum_{j=1}^g n_j (ar{y}_{\cdot j} - ar{y}_{\cdot \cdot})^2}{\hat{\sigma}^2} \sim F_{g-1,n-g} \quad ext{under } H_0$$

which implies that

$$S^2 = \frac{SSR}{MSE} = \frac{\sum_{j=1}^g n_j (\bar{y}_{\cdot j} - \bar{y}_{\cdot \cdot})^2}{\hat{\sigma}^2} \sim (g-1) F_{g-1,n-g}$$
 under  $H_0$ 

Defining the test of a single contrast as  $T_{\mathbf{c}} = \frac{\hat{L}}{\sqrt{\hat{V}(\hat{I})}}$ , note that

$$\sup_{\boldsymbol{c}\in\mathcal{C}}\textit{T}_{\boldsymbol{c}}^{2}=\textit{S}^{2}$$

where sup denotes the supremum (i.e., least upper-bound).

## Scheffé's Method: Proof (part 1)

To prove the claim  $\sup_{c \in C} T_c^2 = S^2$ , define the  $n \times 1$  vector

$$\mathbf{a}' = \begin{pmatrix} \frac{c_1}{n_1} \mathbf{1}'_{n_1} & \frac{c_2}{n_2} \mathbf{1}'_{n_2} & \cdots & \frac{c_g}{n_g} \mathbf{1}'_{n_g} \end{pmatrix}$$

where  $c_i$  are contrast coefficients and  $\mathbf{1}_{n_i}$  is an  $n_i \times 1$  vector of ones.

Define  $\mathbf{y}' = (\mathbf{y}'_1, \dots, \mathbf{y}'_q)$  where  $\mathbf{y}'_i = (y_{1i}, \dots, y_{ni})$  and note that

$$\mathbf{a}'\mathbf{y} = \sum_{j=1}^g rac{c_j}{n_j} \mathbf{1}'_{n_j} \mathbf{y}_j = \sum_{j=1}^g c_j ar{y}_{\cdot j} = \hat{L}$$

$$\|\mathbf{a}\|^2 = \mathbf{a}'\mathbf{a} = \sum_{j=1}^g \left(\frac{c_j}{n_j}\right)^2 \mathbf{1}'_{n_j} \mathbf{1}_{n_j} = \sum_{j=1}^g c_j^2 / n_j$$

which implies that

$$T_{\mathbf{c}}^2 = \frac{(\mathbf{a}'\mathbf{y})^2}{\hat{\sigma}^2 \|\mathbf{a}\|^2}$$

for any contrast  $\mathbf{c} \in \mathcal{C}$ .

## Scheffé's Method: Proof (part 2)

Now note that  $\mathbf{a} = \mathbf{X}\tilde{\mathbf{b}}$  where

$$\mathbf{X} = \begin{pmatrix} \mathbf{1}_{n_{1}} & \mathbf{1}_{n_{1}} & \mathbf{0}_{n_{1}} & \cdots & \mathbf{0}_{n_{1}} \\ \mathbf{1}_{n_{2}} & \mathbf{0}_{n_{2}} & \mathbf{1}_{n_{2}} & \cdots & \mathbf{0}_{n_{2}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{1}_{n_{g-1}} & \mathbf{0}_{n_{g-1}} & \mathbf{0}_{n_{g-1}} & \cdots & \mathbf{1}_{n_{g-1}} \\ \mathbf{1}_{n_{g}} & \mathbf{0}_{n_{g}} & \mathbf{0}_{n_{g}} & \cdots & \mathbf{0}_{n_{g}} \end{pmatrix}$$

$$\tilde{\mathbf{b}} = \begin{pmatrix} \frac{c_{g}}{n_{g}} \\ \frac{c_{1}}{n_{1}} - \frac{c_{g}}{n_{g}} \\ \frac{c_{2}}{n_{2}} - \frac{c_{g}}{n_{g}} \\ \vdots \\ \frac{c_{g-1}}{n_{g-1}} - \frac{c_{g}}{n_{g}} \end{pmatrix}$$

which implies that  $\mathbf{a} = \mathbf{H}\mathbf{a}$  where  $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$  is hat matrix.

Also note that 
$$\mathbf{a}'\mathbf{1}_n = \sum_{j=1}^g \frac{c_j}{n_j} \mathbf{1}'_{n_j} \mathbf{1}_{n_j} = \sum_{j=1}^g c_j = 0$$
, which implies that  $\mathbf{a} = (\mathbf{H} - \mathbf{H}_0)\mathbf{a}$ 

where  $\mathbf{H}_0 = \frac{1}{n} \mathbf{1}_n \mathbf{1}_n'$  is projection matrix for constant space.

Nathaniel E. Helwig (University of Illinois)

Notes 9: Analysis of Variance (One-Way) Stat 420 N1 – Spring 2014

Slide 53

# Scheffé's Method: Proof (part 3)

Putting things together, we can write the single contrast test as

$$T_{\mathbf{c}}^2 = \frac{(\mathbf{a}'\mathbf{y})^2}{\hat{\sigma}^2 \|\mathbf{a}\|^2} = \frac{[\mathbf{a}'(\mathbf{H} - \mathbf{H}_0)\mathbf{y}]^2}{\hat{\sigma}^2 \|\mathbf{a}\|^2}$$

for any contrast  $\mathbf{c} \in \mathcal{C}$ , given that  $\mathbf{a}' = \mathbf{a}'(\mathbf{H} - \mathbf{H}_0)$ .

By the Cauchy-Schwarz inequality, we know that

$$(u'v)^2 \leq \|u\|^2 \|v\|^2$$

with equality holding only when  $\mathbf{u} = w\mathbf{v}$  for some  $w \neq 0$ .

## Scheffé's Method: Proof (part 4)

Letting  $\mathbf{a} = \mathbf{u}$  and  $\mathbf{v} = (\mathbf{H} - \mathbf{H}_0)\mathbf{y}$ , we have

$$\begin{split} \mathcal{T}_{\mathbf{c}}^2 &= \frac{[\mathbf{a}'(\mathbf{H} - \mathbf{H}_0)\mathbf{y}]^2}{\hat{\sigma}^2 \|\mathbf{a}\|^2} \\ &\leq \frac{\|\mathbf{a}\|^2 \|(\mathbf{H} - \mathbf{H}_0)\mathbf{y}\|^2}{\hat{\sigma}^2 \|\mathbf{a}\|^2} = \frac{\|(\mathbf{H} - \mathbf{H}_0)\mathbf{y}\|^2}{\hat{\sigma}^2} = S^2 \end{split}$$

If we define  $\mathbf{a} = (\mathbf{H} - \mathbf{H}_0)\mathbf{y}$ , then  $T_c^2$  reaches its upper bound of  $S^2$ .

To control FWER at level  $\alpha$  note that

$$P(T_{\mathbf{c}}^2 \leq S^2 \ \forall \mathbf{c} \in \mathcal{C}) = P(\sup_{\mathbf{c} \in \mathcal{C}} T_{\mathbf{c}}^2 \leq S^2)$$

and we know that  $S^2 \sim (g-1)F_{g-1,g-g}$  under  $H_0$ .

• Use  $S=\sqrt{(g-1)F_{q-1,n-q}^{(\alpha)}}$  to form 100(1  $-\alpha$ )% CI for  $T_{\mathbf{c}}$ 

# Summary of Multiple Comparisons

If we want to form 100(1  $-\alpha$ )% CI around all  $\hat{L} = \hat{\mu}_i - \hat{\mu}_k$  use

$$\hat{L} \pm C\sqrt{\hat{V}(\hat{L})}$$

where  $\hat{V}(\hat{L}) = \hat{\sigma}^2(\frac{1}{n_i} + \frac{1}{n_k})$  and C is some critical value.

Each procedure uses different critical value:

No correction: 
$$C=t_{n-g}^{(\alpha/2)}$$
Bonferroni:  $C=t_{n-g}^{(\alpha^*/2)}$  with  $\alpha^*=\alpha/[g(g-1)/2]$ 

Tukey: 
$$C = q_{g,n-g}^{(\alpha)}/\sqrt{2}$$

Scheffé: 
$$C = \sqrt{(g-1)F_{g-1,n-g}^{(\alpha)}}$$

Scheffe's critical value is ALWAYS larger than Tukey value, because set of all pairwise comparisons is subset of set of all contrasts.

## Choosing Between Multiple Comparisons

You want CIs that are as narrow as possible and control FWER.

If you are interested in all pairwise comparisons, use Tukey-Kramer.

If you are interested in all possible contrasts, use Scheffé.

If you are interested in some subset of all pairwise comparisons (or all contrasts), Bonferroni may be most efficient approach.

## Memory Example: Pairwise Comparison Estimates

Suppose we want to test all g(q-1)/2=3 unique pairwise comparisons between factor level means:

- $L_1 = \mu_1 \mu_2 = \mu_{\text{fast}} \mu_{\text{normal}}$
- $L_2 = \mu_2 \mu_3 = \mu_{\text{normal}} \mu_{\text{slow}}$
- $L_3 = \mu_3 \mu_1 = \mu_{slow} \mu_{fast}$

The estimated pairwise comparisons are given by

- $\hat{L}_1 = \hat{\mu}_1 \hat{\mu}_2 = 21.2 27.4 = -6.2$
- $\hat{L}_2 = \hat{\mu}_2 \hat{\mu}_3 = 27.4 21.8 = 5.6$
- $\hat{L}_3 = \hat{\mu}_3 \hat{\mu}_1 = 21.8 21.2 = 0.6$

and we know that  $\hat{V}(\hat{L}) = \hat{\sigma}^2(2/n_*) = (19.8370)(2/10) = 3.9674$ 

# Memory Example: Pairwise Comparison CI Values

If we want to form 95% CI around all three  $\hat{L} = \hat{\mu}_i - \hat{\mu}_k$  use

$$\hat{L} \pm C\sqrt{\hat{V}(\hat{L})} = \hat{L} \pm C\sqrt{3.9674}$$

where

- $C = t_{27}^{(.025)} = 2.0518$  with no correction
- $C = t_{27}^{(.008)} = 2.5525$  with Bonferroni correction
- $C = \frac{q_{3.27}^{(.05)}}{\sqrt{2}} = 2.4794$  with Tukey correction
- $C = \sqrt{2F_{2.27}^{(.05)}} = 2.5900$  with Scheffé correction

Note that Tukey is best (i.e., produces narrowest Cls), followed by Bonferroni, and then Scheffé.

#### Memory Example: Pairwise Cls (no correction)

Using no correction the CI estimates are:

$$\hat{L}_1 \pm t_{27}^{(.025)} \sqrt{\hat{V}(\hat{L}_1)} = -6.2 \pm 2.0518 \sqrt{3.9674} = [-10.2869; -2.1131]$$

$$\hat{L}_2 \pm t_{27}^{(.025)} \sqrt{\hat{V}(\hat{L}_2)} = 5.6 \pm 2.0518 \sqrt{3.9674} = [1.5131; 9.6869]$$

$$\hat{L}_3 \pm t_{27}^{(.025)} \sqrt{\hat{V}(\hat{L}_3)} = 0.6 \pm 2.0518 \sqrt{3.9674} = [-3.4869; 4.6869]$$

#### Memory Example: Pairwise CIs (Bonferroni)

Using Bonferroni correction the CI estimates are:

$$\hat{L}_1 \pm t_{27}^{(.008)} \sqrt{\hat{V}(\hat{L}_1)} = -6.2 \pm 2.5525 \sqrt{3.9674} = [-11.2841; -1.1159]$$

$$\hat{L}_2 \pm t_{27}^{(.008)} \sqrt{\hat{V}(\hat{L}_2)} = 5.6 \pm 2.5525 \sqrt{3.9674} = [0.5159; 10.6841]$$

$$\hat{L}_3 \pm t_{27}^{(.008)} \sqrt{\hat{V}(\hat{L}_3)} = 0.6 \pm 2.5525 \sqrt{3.9674} = [-4.4841; 5.6841]$$

# Memory Example: Pairwise Cls (Tukey)

Using Tukey correction the CI estimates are:

$$\begin{split} \hat{L}_1 &\pm \frac{q_{3,27}^{(.05)}}{\sqrt{2}} \sqrt{\hat{V}(\hat{L}_1)} = -6.2 \pm 2.4794 \sqrt{3.9674} = [-11.1386; \ -1.2614] \\ \hat{L}_2 &\pm \frac{q_{3,27}^{(.05)}}{\sqrt{2}} \sqrt{\hat{V}(\hat{L}_2)} = 5.6 \pm 2.4794 \sqrt{3.9674} = [0.6614; \ 10.5386] \\ \hat{L}_3 &\pm \frac{q_{3,27}^{(.05)}}{\sqrt{2}} \sqrt{\hat{V}(\hat{L}_3)} = 0.6 \pm 2.4794 \sqrt{3.9674} = [-4.3386; \ 5.5386] \end{split}$$

#### Memory Example: Pairwise Cls (Scheffé)

Using Scheffé correction the CI estimates are:

$$\begin{split} \hat{L}_1 &\pm \sqrt{2F_{2,27}^{(.05)}} \sqrt{\hat{V}(\hat{L}_1)} = -6.2 \pm 2.59 \sqrt{3.9674} = [-11.3589; \ -1.0411] \\ \hat{L}_2 &\pm \sqrt{2F_{2,27}^{(.05)}} \sqrt{\hat{V}(\hat{L}_2)} = 5.6 \pm 2.59 \sqrt{3.9674} = [0.4411; \ 10.7589] \\ \hat{L}_3 &\pm \sqrt{2F_{2,27}^{(.05)}} \sqrt{\hat{V}(\hat{L}_3)} = 0.6 \pm 2.59 \sqrt{3.9674} = [-4.5589; \ 5.7589] \end{split}$$



# Memory Example: Good use of Scheffé

#### Suppose we want to test four contrasts:

- $L_1 = \mu_1 \mu_2 = \mu_{fast} \mu_{normal}$
- $L_2 = \mu_2 \mu_3 = \mu_{\text{normal}} \mu_{\text{slow}}$
- $L_3 = \mu_3 \mu_1 = \mu_{\text{slow}} \mu_{\text{fast}}$
- $L_4 = \mu_2 \frac{\mu_1 + \mu_3}{2} = \mu_{\text{normal}} \frac{\mu_{\text{slow}} + \mu_{\text{fast}}}{2}$

If we want to form 95% CI around all four  $\hat{L}_i$  use

$$\hat{L}_{j} \pm C\sqrt{\hat{V}(\hat{L}_{j})}$$

#### where

- $C = t_{27}^{(.006)} = 2.6763$  using Bonferroni ( $\alpha^* = .05/4 = .0125$ )
- $C = \sqrt{2F_{2.27}^{(.05)}} = 2.59$  using Scheffé

#### Memory Example: Good use of Scheffé (continued)

Note that 
$$\hat{L}_4 = 27.4 - \frac{21.8 + 21.2}{2} = 5.9$$
 and  $\hat{V}(\hat{L}_4) = \hat{\sigma}^2 \sum_{j=1}^3 \frac{c_j^2}{n_j} = (19.8370) \left( \frac{1}{10} + \frac{(-1/2)^2}{10} + \frac{(-1/2)^2}{10} \right) = 2.9756$ 

Using Scheffé correction the CI estimates are:

$$\hat{L}_1 \pm \sqrt{2F_{2,27}^{(.05)}} \sqrt{\hat{V}(\hat{L}_1)} = -6.2 \pm 2.59 \sqrt{3.9674} = [-11.3589; -1.0411]$$

$$\hat{L}_2 \pm \sqrt{2F_{2,27}^{(.05)}} \sqrt{\hat{V}(\hat{L}_2)} = 5.6 \pm 2.59 \sqrt{3.9674} = [0.4411; 10.7589]$$

$$\hat{L}_3 \pm \sqrt{2F_{2,27}^{(.05)}} \sqrt{\hat{V}(\hat{L}_3)} = 0.6 \pm 2.59 \sqrt{3.9674} = [-4.5589; 5.7589]$$

$$\hat{L}_4 \pm \sqrt{2F_{2,27}^{(.05)}} \sqrt{\hat{V}(\hat{L}_4)} = 5.9 \pm 2.59 \sqrt{2.9756} = [1.4322; 10.3678]$$