

مساله انتخاب با تكرار:

در این نوع مسایل تکرار مجاز است ولی ترتیب مهم نیست.

مثال: فرض کنید مجموعه X به صورت $X = \{1,2,\dots,10\}$ باشد و می خواهیم ۴ عنصر از این مجموعه انتخاب کنیم. با درنظر گرفتن این نکته که اولا ترتیب انتخاب اهمیت ندارد ثانیا می توان از یک عنصر چند بار برداشت مثلا $\{1,1,1,10\}$ یکی از این گونه انتخاب هاست. به چند طریق این کار امکانپذیر است؟

ایده حل: حالات ممکن و مجاز را به فرم زیر توصیف می نماییم.

ادعا میکنیم هر جواب از این مساله متناظر با با یک جواب از معادله $x_1+x_2+\cdots+x_{10}=4$ است که مقادیر x_i ها صحیح و نامنفی است.

۱۰ توجه نمایید که هر جواب از معادله بالا را بگیریم و به تعداد x_1 تا عنصر ۱، x_2 تا عنصر ۲ و x_1 تا عنصر از مجموعه برداریم، آنچه حاصل می شود یک جواب برای مساله اصلی است. برعکس هرجواب مساله ی اصلی بوضوح یک پاسخ این معادله است.

میتوان تصور کرد که m گوی را در ردیفی قرار دادیم (ترتیب را وارد کردیم) و n-1 چوب را جهت قراردهی در بین این گوی ها در نظر میگیریم. هرچینش چنین گوی های و چوب هایی یک پاسخ برای معادبه به صورت زیر توصیف می کند.

تعداد گوی های بین چوب $\dot{\mathbf{j}}$ ام و $\mathbf{i+1}$ ام، x_{i+1} را مشخص مینماید.

بعد از چوب آخر است. مثلا: x_n قبل از چوب اول و x_n

شمارش با بازگشت

یکی از روشهای مهم شمارش استفاده از روابط بازگشتی است. در این روشها سعی میشود وضعیت شمارشی مرحله n را به گونهای به وضعیتهای شمارشی مراحل قبل موکول کنیم و برحسب آنها محاسبه نماییم.

مثال: برجهای هانوی

مساله این است که n تا دیسک با سایزهای از پایین به بالا کوچک شونده در یک ستون A داریم و میخواهیم همه را به ستون C منتقل کنیم. به طوریکه:

1) ترتیب چینشها در وضعیت اول و آخر یکی باشد.

2) در هرگام یک دیسک را حرکت دهیم.

3) در هیچ لحظهای، یک دیسک بزرگتر روی یک دیسک کوچکتر قرار نگیرد.

مساله یافتن مینیمم تعداد حرکات لازم است.

تحلیل مسئله: فرض کنید تعداد حرکات لازم در مرحله n ام، n باشد. میتوان a_n را اینطور تحلیل کرد که ابتدا a_n دیسک از شماره a_n تا a_n را با a_n را با a_n مرحله از ستون a_n به ستون a_n منتقل می کنیم. سپس دیسک اول از ستون a_n را به ستون a_n منتقل می کنیم. در نهایت با اقدامی برعکس آنچه در گام اول انجام دادیم، در a_{n-1} مرحله، دیسکهای ستون a_n را به روی دیسک بزرگ در ستون a_n منتقل می کنیم.

در نهایت
$$a_{n-1}+a_{n-1}+1=2a_{n-1}+1$$
 مرحله مورد نیاز است:

$$a_n = 2a_{n-1} + 1$$

و ضمنا بوضوح

$$(a_1 = 1)$$

در نهایت پاسخ زیر بدست می آید:

$$a_n = 2^n - 1$$

مثال دوم: تعداد دنبالههایی به طول n از درایههای 0 و 1 و 2 که تعداد 0 هایشان فرد باشد را حساب کنید.