Document Title

128K x8 bit Low Power CMOS Static RAM

Revision History

Revision No.	<u>History</u>	<u>Draft Data</u>	<u>Remark</u>
0.0	Initial draft for commercial product - Commercial Product only	October 28, 1992	Preliminary
0.1	- Initial draft for Extended/Industrial Product - Datasheet for Extended/Industrial Product	September 1, 1993	Preliminary
1.0	Finalized - Commercial product finalized at 1993 - Extended and industrial product finalized at 1994	September 1, 1993 September 24, 1994	Final
2.0	Revised - Change datasheet format : one datasheet for commercial, extended industrial product	April 12, 1996	Final
3.0	Revised - Change datasheet format - Erase 100ns part from extended and industrial product - Erase Low power part from TSOP package	January 20, 1998	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

128K x8 bit Low Power CMOS Static RAM

FEATURES

Process Technology: Poly Load
Organization: 128Kx8
Power Supply Voltage: 4.5~5.5V
Low Data Retention Voltage: 2V(Min)
Three state output and TTL Compatible
Package Type: 32-DIP-600, 32-SOP-525

32-TSOP1-0820F/R

GENERAL DESCRIPTION

The KM681000B families are fabricated by SAMSUNG's advanced CMOS process technology. The families support various operating temperature ranges and have various package types for user flexibility of system design. The families also support low data retention voltage for battery backup operation with low data retention current.

PRODUCT FAMILY

				Power Dis		
Product Family	Operating Temperature	Vcc Range	Speed(ns)	Standby (ISB1, Max)	Operating (Icc2, Max)	PKG Type
KM681000BL	Commercial(0~70°C)	nercial(070°C)		100μΑ		32-DIP,32-SOP
KM681000BL-L	Commercial(0°70°C)		55/70	20μΑ	70mA	32-TSOP1 R/F
KM681000BLE	Extended(-25~85°C)	d(-25~85°C) 4.5 to 5.5V	to 5.5V 70	100μΑ		32-SOP
KM681000BLE-L	Extended(-25~05 C)	4.5 10 5.5 V		50μΑ	70IIIA	32-TSOP1 R/F
KM681000BLI	Industrial(-40~85°C)		70	100μΑ		32-SOP
KM681000BLI-L	111du3t1lai(-40~03 C)		70	50μΑ		32-TSOP1 R/F

PIN DESCRIPTION

Name	Function
CS ₁ ,CS ₂	Chip Select Inputs
ŌĒ	Output Enable Input
WE	Write Enable Input
A0~A16	Address Inputs
I/O1~I/O8	Data Inputs/Outputs
Vcc	Power
Vss	Ground
N.C	No Connection

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial Temperature Products (0~70°C)			nperature Products 5~85°C)	Industrial Temperature Products (-40~85°C)			
Part Name	Function	Part Name	Function Part Name		Function		
KM681000BLP-5 KM681000BLP-5L KM681000BLP-7 KM681000BLP-7L KM681000BLG-5 KM681000BLG-5L KM681000BLG-7 KM681000BLG-7L KM681000BLT-5L KM681000BLT-7L KM681000BLR-5L KM681000BLR-5L	32-DIP,55ns,L-pwr 32-DIP,55ns,LL-pwr 32-DIP,70ns,L-pwr 32-DIP,70ns,LL-pwr 32-SOP,55ns,LL-pwr 32-SOP,55ns,LL-pwr 32-SOP,70ns,LL-pwr 32-TSOP F,55ns,LL-pwr 32-TSOP F,70ns,LL-pwr 32-TSOP R,55ns,LL-pwr 32-TSOP R,55ns,LL-pwr 32-TSOP R,70ns,LL-pwr	KM681000BLGE-7 KM681000BLGE-7L KM681000BLTE-7L KM681000BLRE-7L	32-SOP,70ns,L-pwr 32-SOP,70ns,LL-pwr 32-TSOP F,70ns,LL-pwr 32-TSOP R,70ns,LL-pwr	KM681000BLGI-7L KM681000BLTI-7L KM681000BLRI-7L	32-SOP,70ns,LL-pwr 32-TSOP F,70ns,LL-pwr 32-TSOP R,70ns,LL-pwr		

Note: LL means Low Low standby current.

FUNCTIONAL DESCRIPTION

CS ₁	CS ₂	OE	WE	I/O Pin	Mode	Power
Н	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
X ¹⁾	L	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	Н	Н	High-Z	Output Disabled	Active
L	Н	L	Н	Dout	Read	Active
L	Н	X ¹⁾	L	Din	Write	Active

^{1.} X means don't care.(Must be low or high state.)

ABSOLUTE MAXIMUM RATINGS(1)

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN, VOUT	-0.5 to 7.0	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to 7.0	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
		0 to 70	°C	KM681000BL
Operating Temperature	TA	-25 to 85	°C	KM681000BLE
		-40 to 85	°C	KM681000BLI
Soldering temperature and time	TSOLDER	260°C, 10sec (Lead Only)	-	-

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input high voltage	VIH	2.2	-	Vcc+0.5 ²⁾	V
Input low voltage	VIL	-0.5 ³⁾	-	0.8	V

Note

- Commercial Product: TA=0 to 70°C, unless otherwise specified Extended Product: TA=-25 to 85°C, unless otherwise specified Industrial Product: TA=-40 to 85°C, unless otherwise specified
- 2. Overshoot : Vcc+3.0V in case of pulse width $\!\leq\!30 ns$
- 3. Undershoot : -3.0V in case of pulse width≤30ns
- 4. Overshoot and undershoot are sampled, not 100% tested

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	Cin	VIN=0V	=	6	pF
Input/Output capacitance	Сю	Vio=0V	-	8	pF

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions			Тур	Max	Unit
Input leakage current	ΙLI	VIN=Vss to Vcc	/in=Vss to Vcc			1	μΑ
Output leakage current	ILO	CS1=VIH or CS2=VIL or OE=VIH or WE=VIL, VIO=	-1	-	1	μΑ	
Operating power supply	Icc	CS1=VIL, CS2=VIH, IIO=0mA, VIN= VIL or VIH	S1=VIL, CS2=VIH, IIO=0mA, VIN= VIL or VIH			15 ¹⁾	mA
Average operating current	ICC1	Cycle time=1µs, 100% duty, I₁o=0mA, CS₁≤0.2V, CS₂≥Vcc-0.2V	cle time=1µs, 100% duty, lio=0mA, $\overline{\text{CS}}$ 1≤0.2V, CS₂≥Vcc-0.2V, Vin≤0.2V or Vin≥Vcc-0.2V				mA
Icc2		Cycle time=Min, 100% duty, Iio=0mA, CS1=VIL, CS2=VI	-	-	70	mA	
Output low voltage	Vol	IoL=2.1mA	-	-	0.4	V	
Output high voltage	Vон	IOH=-1.0mA	2.4	-	-	V	
Standby Current(TTL)	Isb	CS₁=VIH, CS₂=VIL, Other input=VIL or VIH		-	-	3	mA
			KM681000BL KM681000BL-L		-	100 20	μΑ
Standby Current(CMOS)	ISB1	CS₁≥Vcc-0.2V, CS₂≥Vcc-0.2V or CS₂≤0.2V Other input=0~Vcc	KM681000BLE KM681000BLE-L		-	100 50	μΑ
		KM681000BLI KM681000BLI-L			-	100 50	μΑ

- 1. 20mA for Exteneded and Industrial Products
- 2. 15mA for Extended and Industrial Products

AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Test Input/Output Reference)

Input pulse level: 0.8 to 2.4V Input rising and falling time: 5ns Input and output reference voltage: 1.5V Output load (See right): CL=100pF+1TTL

1. Including scope and jig capacitance

$\begin{tabular}{ll} \textbf{AC CHARACTERISTICS} & (Vcc=4.5\sim5.5V, KM681000B \ Family: TA=0 \ to \ 70^{\circ}C, KM681000BE \ Family: TA=-25 \ to \ 85^{\circ}C, KM681000BI \ Family: TA=-40 \ to \ 85^{\circ}C) \\ \end{tabular}$

				Spee	d Bins		
	Parameter List	Symbol	55	55ns)ns	Units
			Min	Max	Min	Max	
	Read cycle time	trc	55	-	70	-	ns
	Address access time	taa	-	55	-	70	ns
	Chip select to output	tCO1,tCO2,	-	55	-	70	ns
	Output enable to valid output	toe	-	25	-	35	ns
Read	Chip select to low-Z output	tLZ	10	-	10	-	ns
	Output enable to low-Z output	toLz	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	20	0	25	ns
	Output disable to high-Z output	tonz	0	20	0	25	ns
	Output hold from address change	tон	10	-	10	-	ns
	Write cycle time	twc	55	-	70	-	ns
	Chip select to end of write	tcw	45	-	60	-	ns
	Address set-up time	tas	0	-	0	-	ns
	Address valid to end of write	taw	45	-	60	-	ns
Write	Write pulse width	twp	40	-	50	-	ns
VVIILE	Write recovery time	twR	0	-	0	-	ns
	Write to output high-Z	twnz	0	20	0	25	ns
	Data to write time overlap	tow	25	-	30	-	ns
	Data hold from write time	tрн	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	ns

DATA RETENTION CHARACTERISTICS

Item	Symbol	Test Conditi	Min	Тур	Max	Unit	
Vcc for data retention	Vdr	CS ₁ 1)≥Vcc-0.2V				5.5	٧
Data retention current	IDR (KM681000BL KM681000BL-L	-	1 0.5	50 10	μА
		Vcc=3.0V CS1≥Vcc-0.2V, CS2≥Vcc-0.2V or CS2≤0.2V Other Input+0~Vcc	KM681000BLE KM681000BLE-L	-	-	50 25	
			KM681000BLI KM681000BLI-L	-	-	50 25	
Data retention set-up time	trdr	See data retention waveform	Con data ratantian wayafarm			-	ms
Recovery time	trdr	See data retention wavelonii	5	-	-	1113	

^{1.} $\overline{CS}_1 \ge Vcc-0.2V, CS_2 \ge Vcc-0.2V(\overline{CS}_1 \text{ controlled}) \text{ or } CS_2 \le 0.2V(CS_2 \text{ controlled})$

TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS1=OE=VIL, WE=VIH)

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

NOTES (READ CYCLE)

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 Controlled)

TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap of a low \overline{CS}_1 , a high CS_2 and a low \overline{WE} . A write begins at the latest transition among \overline{CS}_1 goes low, CS_2 going high and \overline{WE} going low: A write end at the earliest transition among \overline{CS}_1 going high, CS_2 going low and \overline{WE} going high, twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the $\overline{CS_1}$ going low or CS_2 going high to the end of write.
- 3. tAS is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn(1) applied in case a write ends as $\overline{\text{CS}}_1$ or $\overline{\text{WE}}$ going high twn(2) applied in case a write ends as CS2 going to low.

DATA RETENTION WAVE FORM

Units: millimeter(inch)

PACKAGE DIMENSIONS

32 DUAL INLINE PACKAGE (600mil)

32 PLASTIC SMALL OUTLINE PACKAGE (525mil)

PACKAGE DIMENSIONS

Units: millimeter(inch)

32 THIN SMALL OUTLINE PACKAGE TYPE I (0820F)

32 THIN SMALL OUTLINE PACKAGE TYPE I (0820R)

