Intuitive Explanation of Physics-Informed Neural Networks (PINNs)

For Finite Element Experts

Core Concept: PINNs as Constrained Optimizers

PINNs train neural networks to satisfy:

- Governing PDE equations
- Boundary conditions (BCs)
- Initial conditions (ICs)

through a **composite loss function**. The network learns by minimizing violations of these physical constraints.

Key Components of PINN Loss Function

The total loss (\mathcal{L}_{total}) combines multiple constraint violations:

$$\mathcal{L}_{\text{total}} = \underbrace{w_{\text{PDE}}\mathcal{L}_{\text{PDE}}}_{\text{PDE residual}} + \underbrace{w_{\text{BC}}\mathcal{L}_{\text{BC}}}_{\text{Boundary violation}} + \underbrace{w_{\text{IC}}\mathcal{L}_{\text{IC}}}_{\text{Initial condition}}$$
(1)

1. PDE Loss (\mathcal{L}_{PDE})

Measures how well the solution satisfies the governing PDE at *collocation points* inside the domain:

$$\mathcal{L}_{\text{PDE}} = \frac{1}{N_{\text{PDE}}} \sum_{i=1}^{N_{\text{PDE}}} \|\mathcal{N}[u_{\theta}(\mathbf{x}_i)] - f(\mathbf{x}_i)\|^2$$
(2)

- \mathcal{N} : Differential operator (e.g., ∇^2 , $\frac{\partial}{\partial t}$)
- u_{θ} : NN prediction with parameters θ
- f: Source term
- Derivatives computed via automatic differentiation

2. Boundary Condition Loss (\mathcal{L}_{BC})

Enforces boundary constraints at sampled boundary points:

$$\mathcal{L}_{BC} = \frac{1}{N_{BC}} \sum_{j=1}^{N_{BC}} \|B[u_{\theta}(\mathbf{x}_j)] - g(\mathbf{x}_j)\|^2$$
(3)

- B: Boundary operator (Dirichlet, Neumann, etc.)
- g: Prescribed boundary value

3. Initial Condition Loss (\mathcal{L}_{IC})

For time-dependent problems, enforces initial state:

$$\mathcal{L}_{IC} = \frac{1}{N_{IC}} \sum_{k=1}^{N_{IC}} \|u_{\theta}(\mathbf{x}_k, t = 0) - h(\mathbf{x}_k)\|^2$$
(4)

Figure 1: PINN architecture showing loss components

Critical Insight: Soft vs. Hard Constraints

Why Derivatives Work in PINNs

- Automatic differentiation computes exact derivatives of u_{θ} (not finite differences)
- PDE loss directly compares NN's derivatives to physical laws
- Gradient descent propagates PDE violation errors backward through:

$$\frac{\partial \mathcal{L}_{\text{PDE}}}{\partial \theta} = \frac{2}{N} \sum \left(\mathcal{N}[u_{\theta}] - f \right) \cdot \frac{\partial \mathcal{N}[u_{\theta}]}{\partial \theta}$$
 (5)

• The NN **simultaneously** learns function values *and* derivatives

Soft Constraints (Standard PINNs)	Hard Constraints
Constraints enforced via loss terms BCs/ICs appear as penalty terms	Constraints built into network architecture BCs/ICs are exactly satisfied by construction
u_{θ} can violate constraints during	No constraint violation possible
training Weights (w_{BC} , w_{IC}) require tuning	No weighting needed
Easier to implement	Requires specialized architecture

Table 1: Constraint implementation strategies

Training Dynamics Visualization

Key Advantages for FEM Experts

- No meshing: Collocation points can be randomly sampled
- Unified framework: Handles both forward and inverse problems
- Adaptive refinement: Loss guides where to add collocation points
- High-dimensional problems: Avoids curse of dimensionality

Conclusion: Loss as Physics Interpreter

The PINN loss function acts as a physics interpreter that:

- 1. Translates PDEs into optimization constraints
- 2. Quantifies violations of physical laws

- 3. Balances multiple constraints through weighting
- 4. Provides training signals via automatic differentiation

The network becomes a **continuous function approximator** that satisfies physics in the weak sense defined by the composite loss.