Rank-76099 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_3 + X_1^2 X_2 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(2)$ is 76099

General information

Number of lines	9
Number of points	13
Number of singular points	0
Number of Eckardt points	4
Number of double points	6
Number of single points	3
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	39
Type of lines on points	$3^4, 2^6, 1^3$

Singular Points

The surface has 0 singular points:

The 9 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{8} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{8} = \mathbf{Pl}(1,0,1,0,0,1)_{23}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0,0,0,1,0,0)_{5}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \mathbf{Pl}(1,0,0,1,0,0)_{6}$$

$$\ell_{5} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \mathbf{Pl}(0,1,1,0,0,0)_{4}$$

$$\ell_{7} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0,1,0,1,0,0)_{7}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \mathbf{Pl}(1,1,1,1,0,1)_{28}$$

Rank of lines: (0, 4, 8, 30, 14, 34, 18, 33, 22)

Rank of points on Klein quadric: (0, 2, 23, 5, 6, 1, 4, 7, 28)

Eckardt Points

The surface has 4 Eckardt points:

$$0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0), T = 2$$

$$1: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0), T = 6$$

$$2: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1), T = 14$$

$$3: P_7 = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0). T = 12$$

Double Points

The surface has 6 Double points:

The double points on the surface are:

$$P_0 = (1,0,0,0) = \ell_0 \cap \ell_1$$

$$P_5 = (1,1,0,0) = \ell_0 \cap \ell_2$$

$$P_6 = (1,0,1,0) = \ell_1 \cap \ell_2$$

$$P_9 = (1,0,0,1) = \ell_4 \cap \ell_6$$

$$P_{11} = (1, 1, 0, 1) = \ell_4 \cap \ell_8$$

 $P_{13} = (1, 0, 1, 1) = \ell_6 \cap \ell_8$

Single Points

The surface has 3 single points:

The single points on the surface are:

0:
$$P_{10} = (0, 1, 0, 1)$$
 lies on line ℓ_3
1: $P_{12} = (0, 0, 1, 1)$ lies on line ℓ_5

2: $P_{14} = (0, 1, 1, 1)$ lies on line ℓ_7

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

 $\begin{array}{c|c} 012345678 \\ \hline 0 & 0111110000 \\ 1 & 101001100 \\ 2 & 110000011 \\ 3 & 100011010 \\ 4 & 100100101 \\ 5 & 010100110 \\ 6 & 010011001 \\ 7 & 001101001 \\ 8 & 001010110 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_0	P_5	P_1	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_5	ℓ_6
in point	P_0	P_6	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_7	ℓ_8
in point	P_5	P_6	P_7	P_7

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_7
in point	P_1	P_1	P_3	P_3

 ${\bf Line~4~intersects}$

Line	ℓ_0	ℓ_3	ℓ_6	ℓ_8
in point	P_1	P_1	P_9	P_{11}

Line 5 intersects

Line	ℓ_1	ℓ_3	ℓ_6	ℓ_7
in point	P_2	P_3	P_2	P_3

Line 6 intersects

Line	ℓ_1	ℓ_4	ℓ_5	ℓ_8
in point	P_2	P_9	P_2	P_{13}

Line 7 intersects

Line	ℓ_2	ℓ_3	ℓ_5	ℓ_8
in point	P_7	P_3	P_3	P_7

Line 8 intersects

Line	ℓ_2	ℓ_4	ℓ_6	ℓ_7
in point	P_7	P_{11}	P_{13}	P_7

The surface has 13 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$5: P_6 = (1,0,1,0)$	$10: P_{12} = (0,0,1,1)$
$1: P_1 = (0, 1, 0, 0)$	$6: P_7 = (0, 1, 1, 0)$	$11: P_{13} = (1,0,1,1)$
$2: P_2 = (0, 0, 1, 0)$	$7: P_9 = (1,0,0,1)$	12: $P_{14} = (0, 1, 1, 1)$
$3: P_3 = (0,0,0,1)$	$8: P_{10} = (0, 1, 0, 1)$	
$4: P_5 = (1, 1, 0, 0)$	$9: P_{11} = (1, 1, 0, 1)$	