Projektowanie układów sterowania (projekt grupowy): projekt 1, zespół ★

W pliku symulacja_obiektu \pm y_p1.p znajduje się funkcja symulująca działanie procesu. Umożliwia ona wyznaczenie sygnału wyjściowego procesu (y) w aktualnej chwili dyskretnej k zgodnie z zależnością, widoczną po wywołaniu w MATLABie:

Wyjście to zależy od wartości sygnału wejściowego (u) i wyjściowego w poprzednich chwilach próbkowania. Wartości sygnału wejściowego $(U_{\rm pp})$ i wyjściowego $(Y_{\rm pp})$ w punkcie pracy (w stanie ustalonym), a także ograniczenia wartości sygnału sterującego $(U^{\rm min}, U^{\rm max}, \Delta U^{\rm max})$) również są widoczne po wywołaniu powyższej instrukcji. Okres próbkowania wynosi $0.5\,\rm s$.

- 1. Sprawdzić poprawność wartości $U_{\rm pp},\ Y_{\rm pp}.$
- 2. Wyznaczyć symulacyjnie odpowiedzi skokowe procesu dla kilku zmian sygnału sterującego, przy uwzględnieniu ograniczeń wartości tego sygnału, jego wartość na początku eksperymentu wynosi $U_{\rm pp}$. Narysować te odpowiedzi na jednym rysunku. Narysować charakterystykę statyczną procesu y(u). Czy właściwości statyczne i dynamiczne procesu są (w przybliżeniu) liniowe? Jeżeli tak, określić wzmocnienie statyczne procesu.
- 3. Przekształcić jedną z otrzymanych odpowiedzi w taki sposób, aby otrzymać odpowiedź skokową wykorzystywaną w algorytmie DMC, tzn. zestaw liczb s_1, s_2, \ldots (przy skoku jednostkowym sygnału sterującego: od chwili k=0 włącznie sygnał sterujący ma wartość 1, w przeszłości jest zerowy). Zamieścić rysunek odpowiedzi skokowej.
- 4. Napisać i omówić program w języku MATLAB do symulacji cyfrowego algorytmu PID oraz algorytmu DMC (w najprostszej wersji analitycznej) dla symulowanego procesu. Istniejące ograniczenia wartości sygnału sterującego oraz ograniczenie szybkości zmian tego sygnału

$$-\triangle U^{\max} \leqslant \triangle u(k) \leqslant \triangle U^{\max}$$

gdzie , uwzględnić odpowiednio ograniczając (przycinając) wyznaczony przez regulator sygnał sterujący.

5. Dla zaproponowanej trajektorii zmian sygnału zadanego (kilka skoków o różnej amplitudzie) dobrać nastawy regulatora PID i parametry algorytmu DMC metodą eksperymentalną. Jakość regulacji oceniać jakościowo (na podstawie rysunków przebiegów sygnałów) oraz ilościowo, wyznaczając wskaźnik jakości regulacji

$$E = \sum_{k=1}^{k_{\text{konc}}} (y^{\text{zad}}(k) - y(k))^2$$

gdzie $k_{\rm konc}$ oznacza koniec symulacji (zawsze taki sam). Zamieścić wybrane wyniki symulacji (przebiegi sygnałów wejściowych i wyjściowych procesu oraz wartości wskaźnika E).

6. Dla zaproponowanej trajektorii zmian sygnału zadanego dobrać nastawy regulatora PID i parametry algorytmu DMC (N, N_u, λ) w wyniku optymalizacji wskaźnika jakości regulacji E. Omówić dobór parametrów optymalizacji. Zamieścić wyniki symulacji dla optymalnych regulatorów.