Лабораторная работа № 4

Определение коэффициента трения скольжения

Цель работы: определить коэффициент трения скольжения бруска.

Оборудование: динамометр, брусок, линейка, набор грузов, направляющая рейка.

Описание работы:

Часть 1. Определение зависимости силы трения скольжения от силы реакции опоры. Опыты с бруском, равномерно движущимся по горизонтальной плоскости.

- 1) Определите вес бруска при помощи динамометра.
- 2) Определите силу трения при равномерном движении бруска без груза, с одним грузом, с двумя одинаковыми грузами, с тремя одинаковыми грузами.
 - 3) Вычислите коэффициент трения по данным измерений.
- 4) Результаты оформите в таблицу. Постройте графики зависимости силы трения скольжения от силы реакции опоры.
- Часть 2. Определение силы трения скольжения бруска, равномерно движущегося по наклонной плоскости.
- 1) Соберите экспериментальную установку. Укрепите направляющую рейку с помощью штатива на минимальной высоте, при которой брусок начнет скользить.
 - 2) Измерьте длину рейки l и высоту верхнего края рейки h.
- 3) Проведите расчет основания d и коэффициента трения скольжения, зная, что он равен тангенсу угла наклона.
 - 4) Результаты оформите в таблицу.

Контрольные вопросы:

- 1) Какие три вида сухого трения различают? Когда они возникают?
- 2) Почему возникает сила трения скольжения?

- 3) Что показывает коэффициент трения? От чего он зависит?
- 4) Что такое сила реакции опоры?

После окончания выполнения лабораторной работы полученные экспериментальные данные предъявляются преподавателю, который должен убедиться в том, что данные эксперимента записаны правильно. Рекомендуем Вам проверить отчет по работе.

Таблица 1. Часть 1

№ опыта	<i>P</i> , H	N, H	$F_{\mathrm{Tp}}, \mathrm{H}$	μ
1				
2				
3				
4				

График зависимости силы трения скольжения от силы реакции опоры

Таблица 2. Часть 2.

№ опыта	<i>l</i> , м	<i>h</i> , м	d, M	$\mu = tg\alpha$
1				