Chapter 5

5-1 Timing-Related Terminology

duty Cycle

To control the direction and sometimes the speed of a motor, a **periodic pulse** with a **changing duty cycle** over time is used.

- (a): the periodic signal with 50% duty cycle
- (b): the periodic signal with 25% duty cycle

5-2 Timing System Overview

The very heart of the timing system is the crystal time base, which is used to generate a baseline clock signal for the microcontroller.

For a timer system, the system clock is used to update the contents of a special register which is called a **free-running counter**.

The job of a free-running counter is to count each time it sees a **rising/falling edge** of a clock signal, where other timer-related units reference it to perform I/O time-related activities: measurements, capture of timing events and generation of time-related signals

Input Time-Related Activities

All microcontrollers typically have timer hardware components, based on a free-running counter to capture external event times, that detect signal logic changes on one or input pins.

We can use such ability to measure the **period of an incoming signal**, the **width of a pulse** and the **time of a signal logic change**.

Output Timer Functions

The microcontroller uses a comparator to check the value of the free-running counter for a match with the contents of another special-purpose register where a programmer stores a specified time in terms of free-running counter value.

The checking process is executed at each clock cycle, and when a match occurs, the corresponding hardware system induces a programmed logic change on a programmed output port pin.

Using such capability, one can generate a simple logic change at designated time incident or a PWM signal to control DC motors

5-3 Applications

Input Capture

- an input signal is connected to pin, called input capture, of the timer
- an interrupt triggered when there's a change in interrupt capture pin
- when a preset event occurs on this pin, the current timer value is stored in a register

Output Compare

- a timer usually has a pin which is called output compare
- the output compare could be used to generate time critical signals for external devices
- when the timer reaches a preset value, the output compare pin can be automatically changed to logic 0 or logic 1
- output compare allows custom processing to be done when the timer reaches a preset target value

Counting Event

- the timer could be used to count external events
- the polling technique or the interrupt technique could be used to count events

Pulse Width Modulation

- the timer could be used to generate an PWM signal with the desired duty cycle
- PWM signal is the most common way to control industrial devices

5-4 The ATmega 16 Timers

The ATMEL ATmega16 is equipped with a flexible and powerful three-channel timing Timer 0, Timer 1 and Timer 2.

Both timer 0 and timer 2 are 8-bit timers, and the timer 1 is the 16-bit timer. Each timer is equipped with a prescaler, which is used to subdivide the main controller clock source down to the clock source for the timing system.

Each timing system has the capability to generate PWM signals, signal with a specific frequency, counting events and generate a precision signal. And the timer 1 is equipped with the input capture feature.

Basic Operation Modes

Normal Mode

Normal Mode (0) (WGM01: 0, WGM00:0)

The timer will continually counts from BOTTOM to TOP

As the TCNTx returns to 0 on each time cycle, the Timer/Counter Overflow Flag (TOVx) will be set

Clear Timer on Compare Match

Clear Timer on Compare Match (CTC) Mode (1) (WGM01: 0, WGM00:1)

$$f_{OC0} = (f_{clk_I/O})/(2 \times N \times (1 + OCR0))$$

$$OC0 \qquad OCR0 \qquad OCR0$$

$$TCNT0 \qquad OCQ \qquad OCQ \qquad OCQ \qquad OCQ$$

$$inter \qquad flag \qquad OCQ \qquad OCQ \qquad OCQ$$

TCNTx will be reset to 0 any time when it reaches to the value in OCR0

And the Output Compare Flag x (OCFx) is set when the reset occurs, which is enabled in Timer/Counter x Output Compare Match Interrupt Enable (OCIEx) flag in the TIMSK

Phase Correct PWM Mode

Phase Correct PWM Mode (3) (WGM01: 1, WGM00:1)

$$f_{OCOPWM} = f_{clk} I/O/(N \times 510)$$

TCNTx register will counts from BOTTOM to TOP, then decreases to BOTTOM continuously

Every time the TCNTx value matches the value set in the OCRx register, the OCFx is set

Fast PWM Mode

Fast PWM Mode (2) (WGM01: 1, WGM00:0)

$$f_{OCOPWM} = f_{clk_I/O}/(N \times 256)$$

When the TCNTx register value reaches the value set in OCRx register, it will cause a change in the PWM output.

And the TCNTx continues to count up to the TOP value, at which time the Timer/Counter x Overflow Flag (TOVx) is set

Timer 0/2

- 8-bit timer/counter
- 10-bit clock prescaler
- Functions:
 - Pulse width modulation
 - Frequency generation
 - Event counter
 - Output compare
- Modes of operation
 - Normal
 - Clear timer on compare match
 - Fast PWM
 - Phase correct PWM

Timer 0/2 Registers

FOC0/2 could only be active (set to logic one) in non-PWM mode,

Timer/Counter Interrupt Mask Register (TIMSK)

OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0
7							0

Bit Number	Register Bit	Register Bit Name	Function
7	OCIE2	Timer 2 Output Compare Match Interrupt Enable	1 to enable the compare match interrupt
6	TOIE2	Timer 2 Overflow Interrupt Enable	1 to enable the overflow interrupt
1	OCIE0	Timer 0 Output Compare Match Interrupt Enable	1 to enable the compare match interrupt
0	TOIE0	Timer 0 Overflow Interrupt Enable	1 to enable the overflow interrupt

Timer 1

- 16-bit timer/counter
- 10-bit clock prescaler
- Functions:
 - Pulse width modulation
 - Frequency generation
 - Event counter
 - Output compare 2 channel
 - Input capture
- Modes of operation
 - Normal
 - o Clear timer on compare match
 - Fast PWM
 - Phase correct PWM

Input Capture Mode

The input capture feature is used to capture the characteristics of an input signal, including period, frequency, duty cycle, or pulse length, which is accomplished by monitoring for a user-specified edge on the ICP1 microcontroller pin

When the desired edge occurs, the value of the Timer/Counter 1 (TCNT1) register is captured and stored in the Input Capture Register 1 (ICR1)

Timer 1 Registers

CS0[2:0]	Clock Source
000	None
001	${ m clk_{I/O}}$
010	clk _{I/O} /8
011	clk _{I/0} /64
100	clk _{I/0} /8clk _{I/0} /256
101	clk _{I/0} /8clk _{I/0} /1024
110	External clock on T0 (falling edge trigger)
111	External clock on T1 (rising edge trigger)

Clock Select

Timer/Counter 1 Control Register B (TCCR1B)

Timer, co	I	I I	i gister b	(ICCKI)	,		
ICNC1	ICES1	_	WGM13	WGM12	CS12	CS11	CS10
7							Λ

Timer/Counter 1 Control Register A (TCCR1A)

COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10
7							0

Waveform Generation Mode

Mode	WGM[13:12:11:10]	Mode
0	0000	Normal
1	0001	PWM, Phase Correct, 8-bit
2 3	0010	PWM, Phase Correct, 9-bit
3	0011	PWM, Phase Correct, 10-bit
4	0100	CTC
5	0101	Fast PWM, 8-bit
6	0110	Fast PWM, 9-bit
7	0111	Fast PWM, 10-bit
8	1000	PWM, Phase & Freq Correct
9	1001	PWM, Phase & Freq Correct
10	1010	PWM, Phase Correct
11	1011	PWM, Phase Correct
12	1100	CTC
13	1101	Reserved
14	1110	Fast PWM
15	1111	Fast PWM

Normal, CTC

COMx[1:0]	Description
00	Normal, OC1A/1B disconnected
	Toggle OC1A/1B on compare match
10	Clear OC1A/1B on compare match
11	Set OC1A/1B on compare match

PWM, Phase Correct, Phase & Freq Correct

COMx[1:0]	Description
00	Normal, OC0 disconnected
01	WGM1[3:0] = 9 or 14: toggle OCnA
	on compare match, OCnB discon-
	nected
	WGM1[3:0]= other settings,
	OC1A/1B disconnected
10	Clear OC0 on compare match
	when up-counting. Set OC0
	on compare match when
	down counting
11	Set OC0 on compare match
	when up-counting. Clear OC0
	on compare match when
	down counting.

Fast PWM

COMx[1:0]	Description
00	Normal, OC1A/1B disconnected
01	WGM1[3:0] = 15, toggle OC1A on
	compare match OC1B disconnected
	WGM1[3:0] = other settings,
	OC1A/1B disconnected
10	Clear OC1A/1B on compare match,
	set OC1A/1B at TOP
11	Set OC1A/1B on compare match,
	clear OC1A/1B at TOP

Timer/Counter Interrupt Mask Register (TIMSK)

OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0
7							0

Bit Number	Register Bit	Register Bit Name	Function
5	TICIE1	Timer 1 Input Capture Interrupt Enable	1 to enable the input capture interrupt
4:3	OCIE1A:B	Timer 1 Channel A:B Output Compare Match Interrupt Enable	1 to enable the compare match interrupt
2	TOIE1	Timer 1 Overflow Interrupt Enable	1 to enable the overflow interrupt