DEVOIR SURVEILLÉ 1

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Les documents, la calculatrice et tout matériel électronique sont interdits.

Vous pouvez traiter le sujet dans l'ordre que vous souhaitez tant que le correcteur peut clairement identifier la question à laquelle vous répondez. Il est possible d'admettre le résultat d'une question précédente pour répondre à une question tant que cela est spécifié clairement.

Ce sujet comporte 3 pages et est constitué de 6 problèmes. Bon courage!

Exercice 1 - Soient les matrices

$$A = \begin{pmatrix} -2 & -6 & 6 \\ 0 & 0 & 0 \\ -1 & -3 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 3 & -2 \\ 1 & 3 & -2 \end{pmatrix} \quad \text{et} \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1. (a) Calculer les produits matriciels A(A-I) et B(B-I).
 - (b) **En déduire** que $A^2 = A$ et que $B^2 = B$.
 - (c) Calculer AB ainsi que BA.
- 2. On note dans toute la suite W = A + 2B.
 - (a) En utilisant les relations obtenues à la question précédente, montrer que $W^2 = A + 4B$.
 - (b) Plus généralement, montrer par récurrence que pour tout entier naturel *n* non nul,

$$W^n = A + 2^n B$$

Exercice 2 – On définit les quatre matrices carrées de dimension 2

$$A = \begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{pmatrix}, \qquad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad P = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{et} \quad Q = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

- 1. Calculer les produits $P \times Q$ et $Q \times P$.
- 2. On souhaite calculer A^n . On pose B = QAP.
 - (a) Vérifier que $B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. (Les calculs intermédiaires doivent être indiqués sur la copie.)
 - (b) **En déduire** que A = PBQ.
 - (c) Donner les quatre coefficients de la matrice B^n .
 - (d) Démontrer par récurrence que $\forall n \ge 0$, $A^n = PB^nQ$.
 - (e) En déduire les quatre coefficients de la matrice A^n .

Exercice 3 – Résoudre les systèmes suivants.

$$\begin{cases} x + 2y - z = 8 \\ 3x + y = 12 \\ -x + 3y + z = 7 \end{cases} \qquad \begin{cases} 3x + y - z = 5 \\ 2x + 2y + z = 3 \\ x - y - 2z = 4 \end{cases}$$

Exercice 4 – Soient A, J et I les trois matrices carrées de dimension 3 définies par

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{ et } \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1. (a) Calculer J^2 et J^3 .
 - (b) Déterminer J^n pour tout entier n supérieur ou égal à 3.
- 2. (a) Montrer que A = I + J.
 - (b) À l'aide de la formule du binôme de Newton, exprimer pour tout entier n supérieur ou égal à 2, A^n en fonction des matrices I, J, J^2 et de n. $\underline{Indication}: \binom{n}{2} = \frac{n(n-1)}{2}.$
 - (c) En déduire pour tout entier n supérieur ou égal à 2, l'expression explicite de la matrice A^n en fonction de n.
 - (d) Vérifier que le résultat trouvé est encore valable pour n = 0 et n = 1.

Exercice 5 – On dispose d'un dé cubique classique équilibré et d'une pièce équilibrée. On lance le dé et on observe son résultat.

- Si celui-ci est un 6, on lance la pièce deux fois.
- Dans tous les autres cas, on lance la pièce une seule fois.

On note *X* la variable aléatoire égale au résultat du dé.

On note Y la variable aléatoire égale au nombre de PILE apparus au cours de cette expérience.

- 1. (a) Justifier que X suit une loi uniforme que l'on précisera en détail.
 - (b) Donner l'espérance E(X) et la variance V(X).
- 2. Montrer que $P(Y = 2) = P([Y = 2] \cap [X = 6]) = \frac{1}{24}$.
- 3. (a) Montrer que pour $k \in \{1, 2, 3, 4, 5\}, P_{[X=k]}(Y=0) = \frac{1}{2}$.
 - (b) Que vaut $P_{[X=6]}(Y=0)$? En déduire, en utilisant la formule des probabilités totales, que $P(Y=0)=\frac{11}{24}$.
 - (c) Donner finalement la loi de la variable *Y* et calculer son espérance.
- 4. (a) Recopier et compléter le tableau suivant afin qu'il fournisse la loi du couple (X, Y). (Aucune justification supplémentaire n'est demandée.)

	X = 1	X = 2	X = 3	X = 4	X = 5	X = 6
Y = 0						
Y = 1						
Y = 2						

(b) Calculer alors la covariance de *X* et de *Y* .

Exercice 6 – Soit *g* la fonction définie sur $]0, +\infty[$ par

$$g(x) = x^2 - 4\ln(x).$$

- 1. Étudier le sens de variation de g et vérifier que g admet un minimum sur $]0, +\infty[$ égal à $2(1-\ln(2))$.
- 2. En déduire le signe de g(x) pour tout réel x de $]0,+\infty[$. (Indication numérique : $\ln(2) \approx 0.7$.) On considère la fonction f définie sur $]0,+\infty[$ par

$$f(x) = \frac{x}{4} + \frac{1 + \ln(x)}{x}.$$

On appelle \mathcal{C} la courbe représentative de f dans un repère orthonormé (unité graphique 2 cm).

- 3. Déterminer la limite de f en 0. Interpréter graphiquement le résultat.
- 4. Déterminer la limite de f en $+\infty$.
- 5. Montrer que la droite \mathcal{D} d'équation $y = \frac{x}{4}$ est asymptote à la courbe \mathcal{C} .
- 6. Étudier la position relative de \mathcal{C} et de \mathcal{D} . On montrera en particulier que \mathcal{D} coupe \mathcal{C} en un point A dont on calculera les coordonnées.
- 7. Étudier le sens de variation de f. Dresser le tableau de variation de f.
- 8. (a) Vérifier que pour tout réel x de $]0, +\infty[$, on a

$$f''(x) = \frac{2\ln(x) - 1}{x^3}.$$

- (b) Étudier la convexité de f. La courbe $\mathcal C$ possède-t-elle des points d'inflexion?
- 9. On donne

$$\frac{1}{e} \approx 0.4$$
, $\sqrt{e} \approx 1.6$, $f(\sqrt{e}) \approx 1.3$ et $f'(\sqrt{e}) \approx 0.1$.

Représenter la courbe \mathcal{C} et la droite \mathcal{D} dans un même repère orthonormé.