class17

Steven Gan

2022-11-23

Table of contents

Getting Started	1
Working with dates	3
Working with ZIP codes	4
OPTION: Plotting on the percentage of fully vacination	5
Focus on the San Diego area	8
Focus on UCSD/La Jolla	11
Comparing to similar sized areas	12

Getting Started

```
vax <- read.csv("covid19vaccinesbyzipcode_test.csv")
Q1:
persons_fully_vaccinated
Q2:
zip_code_tabulation_area
Q3:
    sort(vax$as_of_date)[1]</pre>
```

[1] "2021-01-05"

Q4:

sort(vax\$as_of_date, decreasing = T)[1]

[1] "2022-11-22"

skimr::skim(vax)

Table 1: Data summary

Name	vax
Number of rows	174636
Number of columns	18
Column type frequency:	
character	5
numeric	13
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rat	e min	max	empty	n_unique	whitespace
as_of_date	0	1	10	10	0	99	0
local_health_jurisdiction	0	1	0	15	495	62	0
county	0	1	0	15	495	59	0
vem_source	0	1	15	26	0	3	0
redacted	0	1	2	69	0	2	0

Variable type: numeric

skim_variable	n_mission	g mplete	e <u>n</u> neten	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_	_area 0	1.00	93665.	11817.3	399000	192257	.7933658	.5905380	.5907635	.0
vaccine_equity_metric	c_ &64 8tile	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
age12_plus_population	on 0	1.00	18895.	048993	.880	1346.9	9513685	. 1301 756	.1828556	.7
age5_plus_population	n 0	1.00	20875.	2241105	.980	1460.5	5015364	.0304877	.000190	2.0

skim_variable	n_miss	simemplete	nneaen	sd	p0	p25	p50	p75	p100	hist
tot_population	8514	0.95	23372	.7272628	.5112	2126.0	018714.	.088168	.001116	5.0
persons_fully_vaccinat	e d 4921	0.91	13466	.314722	.461	883.00	8024.0	022529	.0807186	.0
persons_partially_vacc	in 4921	0.91	1707.5	501998.8	30 11	167.00	1194.0	02547.0	0039204	.0
percent_of_population	_1f8d6l6j5_v	vacc ûn&9 e	d 0.55	0.25	0	0.39	0.59	0.73	1.0	
percent_of_population	_ 1pa6i6t5 al	ly_ 0a&9 ir	na 0e01 8	0.09	0	0.05	0.06	0.08	1.0	
percent_of_population	1.9562	1_p 0u8 9_c	lo © e61	0.25	0	0.46	0.65	0.79	1.0	
booster_recip_count	70421	0.60	5655.1	1 7 6867.4	1911	280.00	2575.0	09421.0	0058304	.0
bivalent_dose_recip_c	o 1156 958	0.10	1646.0	022161.8	3411	109.00	719.00	2443.0	0018109	.0
eligible_recipient_coun	nt 0	1.00	12309	.1194555	.830	466.00	5810.0	021140	.0806696	.0

```
Q5:

13
Q6:

sum(is.na(vax$persons_fully_vaccinated))

[1] 14921

Q7:

per <- round(sum(is.na(vax$persons_fully_vaccinated)) / nrow(vax) * 100, 1)
pasteO(per, "%")

[1] "8.5%"
```

Working with dates

Q8:

```
library(lubridate)
```

Loading required package: timechange

Possibly due to that data remained uncollected

```
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
    date, intersect, setdiff, union
  today()
[1] "2022-11-23"
  vax$as_of_date <- ymd(vax$as_of_date)</pre>
  vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
Time difference of 686 days
Q9:
  today() - sort(vax$as_of_date, decreasing = T)[1]
Time difference of 1 days
Q10:
  length(unique(vax$as_of_date))
[1] 99
```

Working with ZIP codes

```
# install.packages("zipcodeR")
library(zipcodeR)

geocode_zip('92037')
```

```
# A tibble: 1 x 3
 zipcode lat lng
        <dbl> <dbl>
  <chr>
1 92037
         32.8 -117.
  zip_distance('92037','92109')
 zipcode_a zipcode_b distance
     92037 92109
  reverse_zipcode(c('92037', "92109"))
# A tibble: 2 x 24
 zipcode zipcode_~1 major~2 post_~3 common_c~4 county state lat
                                                                   lng timez~5
                   <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <chr> <dbl> <chr>
1 92037
         Standard La Jol~ La Jol~ <raw 20 B> San D~ CA
                                                            32.8 -117. Pacific
         Standard San Di~ San Di~ <raw 21 B> San D~ CA
                                                             32.8 -117. Pacific
2 92109
# ... with 14 more variables: radius_in_miles <dbl>, area_code_list <blob>,
   population <int>, population_density <dbl>, land_area_in_sqmi <dbl>,
   water_area_in_sqmi <dbl>, housing_units <int>,
  occupied_housing_units <int>, median_home_value <int>,
  median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
  bounds north <dbl>, bounds south <dbl>, and abbreviated variable names
   1: zipcode_type, 2: major_city, 3: post_office_city, ...
  zipdata <- reverse_zipcode(vax$zip_code_tabulation_area)</pre>
```

OPTION: Plotting on the percentage of fully vacination

```
# install.packages("maps")
library(maps)
library(ggplot2)

states <- map_data("state")
ca_df <- subset(states, region == "california")
counties <- map_data("county")</pre>
```

```
ca_county <- subset(counties, region == "california")</pre>
library(stringr)
library(dplyr)
vax county <- vax %>%
  filter(as_of_date == "2022-11-22") %>%
  group_by(county) %>%
  summarise(per = sum(persons_fully_vaccinated, na.rm = T) /
              sum(tot_population, na.rm = T)) %>%
  na.omit() %>%
  `colnames<-`(c("subregion", "percent_fully_vax")) %>%
  mutate_if(is.character, str_to_lower)
cacopa <- inner_join(ca_county, vax_county, by = "subregion")</pre>
ditch_the_axes <- theme(</pre>
  axis.text = element_blank(),
  axis.line = element_blank(),
  axis.ticks = element_blank(),
  panel.border = element_blank(),
  panel.grid = element_blank(),
  axis.title = element blank()
ca_base <- ggplot(data = ca_df, mapping = aes(x = long, y = lat, group = group)) +</pre>
  coord fixed(1.3) +
  geom_polygon(color = "black", fill = "gray")
elbow_room1 <- ca_base +
      geom_polygon(data = cacopa, aes(fill = percent_fully_vax), color = "white") +
      geom_polygon(color = "black", fill = NA) +
      theme_bw() +
      ditch_the_axes
elbow_room1
```


Focus on the San Diego area

```
sd <- vax %>% filter(county == "San Diego")
nrow(sd)

[1] 10593

sd.10 <- vax %>%
  filter(county == "San Diego" & age5_plus_population > 10000)

Q11:

sd %>%
  pull(zip_code_tabulation_area) %>%
  unique() %>%
  length()

[1] 107
```

```
Q12:
  sd %>%
    arrange(desc(age12_plus_population)) %>%
    filter(row_number() == 1) %>%
    pull(zip_code_tabulation_area)
[1] 92154
Q13:
  sd_20221115 <- sd %>% filter(as_of_date == ymd("2022-11-15"))
  sd_20221115 %>%
    summarise(per = sum(persons_fully_vaccinated, na.rm = T) /
                sum(tot_population, na.rm = T) * 100)
     per
1 75.2562
Q14:
  hist(sd_20221115$percent_of_population_fully_vaccinated,
       xlab = "Percent of Population Fully Vaccinated on 2022-11-15",
       main = "Histogram of Vaccination Rates Accross San Diego County")
```

Histogram of Vaccination Rates Accross San Diego Coun

Percent of Population Fully Vaccinated on 2022–11–15

```
ggplot(sd_20221115) + aes(percent_of_population_fully_vaccinated) +
  geom_histogram(bins = 12) +
  labs(x = "Percent of Population Fully Vaccinated in a Zip Code Area",
       y = "Count (Zip code areas)",
       title = "Histogram of Vaccination Rates Accross San Diego County",
       subtitle = "As of 2022-11-15")
```

Warning: Removed 8 rows containing non-finite values (`stat_bin()`).

Histogram of Vaccination Rates Accross San Diego County As of 2022–11–15

Focus on UCSD/La Jolla

Vaccination rate for La Jolla CA 92037

Comparing to similar sized areas

Vaccination rate for La Jolla CA 92037

Q17:

Q18:

```
ggplot(vax.36) + aes(percent_of_population_fully_vaccinated) +
  geom_histogram() +
  xlim(c(0, 1)) +
  labs(x = "Percent Vaccinated", y = "Count")
```

[`]stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing missing values (`geom_bar()`).

Q19:

```
vax %>%
  filter(as_of_date == "2022-11-15") %>%
  filter(zip_code_tabulation_area == "92040") %>%
  select(percent_of_population_fully_vaccinated)

percent_of_population_fully_vaccinated
```

Below the average value

Q20:

1

0.546646

Warning: Removed 184 rows containing missing values (`geom_line()`).

Vaccination rate accross California Areas with a population above 36k are shown

Q21: Highly agree!