Linear discrimination

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.

Books

- Chapter 10 and 13 of "Introduction to Machine Learning" by Ethem Alpaydin.
- Chapter 5 of "Pattern Classification" by R.O. Duda, P. E. Hart and D. G. Stork

Discriminant functions

- Choose C_i if $g_i(x) = \max_j g_j(x)$
- Linear function
 - $g_{i}(\mathbf{x}|\mathbf{w}_{i}, w_{i0}) = \mathbf{w}_{i}^{T}\mathbf{x} + w_{i0} = \sum_{j=1}^{d} w_{ij}x_{j} + w_{i0}$
 - Simple model, linear in form
 - O(d) storage and time of computing g(.).
- Quadratic function
 - $g_i(x|W_i, w_i, w_{i0}) = x^T W_i x + w_i^T x + w_{i0}$
 - $O(d^2)$ storage and time of computing g(.).

Two classes

- One discriminant function sufficient
 - $g(x)=g_1(x|w_1,w_{10})-g_2(x|w_2,w_{20})$
 - $= \mathbf{w_1}^T \mathbf{x} + \mathbf{w_{10}} \mathbf{w_2}^T \mathbf{x} \mathbf{w_{20}}$
 - $= (w_1 w_2)^{\mathrm{T}} x (w_{10} w_{20})$
 - $= \mathbf{w}^T \mathbf{x} + \mathbf{w}_0$
- If g(x) > 0 assign C_1 else C_2 .
- Hyper-plane dividing classes: g(x)=0
- Extend to more than 2 classes
 - Pairwise separation.
 - Only samples of the class lies in the +ve half.

g(x) > 0

g(x) < 0

Perceptron classifier

A linear classifier with a different perspective.

Augmented input and linear

Given $\{y_i, X_i\}$, compute optimum W minimizing classification error.

Interpretation of W^TX

Consider the hyperplane $W^TX=0$ separating two samples X and X' of classes 1 and 2.

Distance of X from the hyperplane.

Linearly separable classes

To find a hyperplane separating If a solution data points of two classes.

exists, the c

If a solution exists, the classes are called linearly separable.

Distance of X from the hyperplane.

An error function

Data Normalization:

Y=X, if X in class 1 (
$$o=1$$
).
=-X, if X in class 2 ($o=-1$)

For correct classification, $W^TY > 0$, for all Y.

(Perceptron Criterion):

$$W) = \sum_{\substack{Y \text{ misclassified} \\ Always + ve}} -W^{T}Y$$

Obtain W which minimizes J(W).

Gradient descent method for iterative optimization

- To obtain W which minimizes J(W).
- Start with an initial vector W⁽⁰⁾.
- Compute the gradient vector ∇J(W⁽⁰⁾)
- Move closer to minimum by updating W.

Iterative gradient descent **Optimization**

Data Normalization:

Y=X, if X in class 1 (
$$o=1$$
).
=-X, if X in class 2 ($o=-1$)

$$J_{p}(W) = \sum_{Y \text{ misclassified.}} -W^{T}Y$$

Iterative Optimization using gradient descent

- 1. Start with W⁽⁰⁾.
- 2. Update W

$$W^{(i)} = W^{(i-1)} - \eta(i)\nabla J_{p}(W)$$
 constant.

May be taken as a

3. Continue step 2 till converges.

Other forms of the error function

- There could be other forms of the criterion function.
 - J_p(W): not continuous
 - J_q(W): continuous.
 - Very smooth in boundary.
 - May get stuck there.
 - Value dominated by long Y's.

Gradient computation:

$$\nabla J_r(W) = \sum_{W^T Y \le b} \frac{Y(W^T Y - b)}{\|Y\|^2}$$

$$J_{q}(W) = \sum_{Y \text{ misclassified.}} (W^{T}Y)^{2}$$

Another error function (Relaxation criterion)

$$J_{\mathbf{r}}(\mathbf{W}) = \frac{1}{2} \sum_{\substack{Y \text{ misclassified} \\ \mathbf{W}^{T}\mathbf{Y} \leq \mathbf{b}}} \frac{\left(\mathbf{W}^{T}\mathbf{Y} - \mathbf{b}\right)^{2}}{\|\mathbf{Y}\|^{2}}$$

Stronger linear separability

More stringent criteria of linear separability

Linear support vector machines (SVM) maximize this margin of separation between two linearly separable data points of classes.

4

The algorithm (Batch relaxation with margin)

- Initialize W to W⁽⁰⁾.
- Iterate till convergence
- Compute the set M of misclassified samples (with margin b), so that
 - $M = \{Y | W^T Y < = b\}$
- Compute gradient.

$$\nabla J_r(W) = \sum_{W^T Y \le b} \frac{Y(W^T Y - b)}{\|Y\|^2}$$

Update W.

$$W^{(i)} = W^{(i-1)} - \eta(i)\nabla J_r(W^{(i-1)})$$

Single sample relaxation with margin

- Initialize W to W⁽⁰⁾.
- Perform the update of W by considering samples one by one in every iteration.
- Consider an i th sample Y_i at k th iteration.
- If $(W^TY_i <= b)$ • Update W. $W^{(k)} = W^{(k-1)} + \eta(k) \frac{b - W^TY_i}{\|Y_i\|^2} Y_i$
- Stop when very little change in updates at the end of an iteration.

Support Vector Machine (SVM)

- A linear discriminant classifier.
- Uses Vapnik's principle:
 - to never solve a more complex problem as a first step before the actual problem.
 - Classification: Sufficient to compute class boundaries (where $P(C_1|x)=P(C_2|x)$) without computing class distributions $P(C_i|x)$, etc.
 - Outlier detection: Compute boundaries separating those x having low P(x).
- After training the weight vector can be written in terms of training samples lying in class boundaries.
 - Support vectors.

Two class problem

- $X = \{x^t, r^t\}, t = 1, 2, ... N$
 - x^t in R^d , r^t in $\{+1, -1\}$.
- To compute w and w_0 such that for all t
 - $w^T x^t + w_0 > +1$ if $r^t = +1$
 - $w^T x^t + w_0 < -1$ if $r^t = -1$
- Rewritten as:
 - $r^t(w^Tx^t+w_0) \ge +1$ for all t
 - Note: it is harder than $r^t(w^Tx^t+w_0) \ge 0$
 - A margin left between zones of two classes.

Margin between classes

To minimize $||w||^2/2$ subject to $r^t(w^Tx^t+w_0) \ge +1$ for all t

Optimization problem

- Constrained optimization problem
 - To minimize $||w||^2/2$
 - subject to $r^t(\mathbf{w}^T\mathbf{x}^t + \mathbf{w}_0) \ge +1$ for all t
- Unconstrained problem:

Lagrange multipliers
$$L_p = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{t=1}^{N} \alpha^t [r^t(\mathbf{w}^T \mathbf{x}^t + w_0) - 1]$$

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{t=1}^{N} \alpha^t r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0) + \sum_{t=1}^{N} \alpha^t$$

■ To be minimized w.r.t w and w_0 and maximized w.r.t. Lagrange multipliers.

Convex quadratic optimization problem

Unconstrained problem:

Lagrange multipliers
$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{t=1}^N \alpha^t r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0) + \sum_{t=1}^N \alpha^t$$
 Convex objective function and linear constraints.

- Dual problem
- To be maximized w.r.t. Lagrange multipliers (>0) subject to that gradients w.r.t w and w_0 should be 0.

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_t \alpha^t r^t \mathbf{x}^t \qquad \frac{\partial L_p}{\partial w_0} = 0 \implies \sum_t \alpha^t r^t = \mathbf{0}$$

•

Dual optimization problem

Primary problem:

$$L_p = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{t=1}^{N} \alpha^t r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0) + \sum_{t=1}^{N} \alpha^t$$

 Dual problem derived by applying following conditions in the primary objective function.

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_{t} \alpha^t r^t \mathbf{x}^t \qquad \frac{\partial L_p}{\partial w_0} = 0 \implies \sum_{t} \alpha^t r^t = 0$$

$$L_d = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \mathbf{w}^T \sum_{t} \alpha^t r^t \mathbf{x}^t - w_0 \sum_{t} \alpha^t r^t + \sum_{t} \alpha^t$$

$$L_d = -\frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{t} \alpha^t$$

Dual optimization problem

Dual problem:

$$L_d = -\frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_t \alpha^t \qquad \frac{\partial L_p}{\partial w_0} = 0 \implies \sum_t \alpha^t r^t = 0$$

$$\alpha^t \ge 0$$

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_t \alpha^t r^t \mathbf{x}^t$$

$$\frac{\partial L_p}{\partial w_0} = 0 \implies \sum_t \alpha^t r^t = 0$$

$$\alpha^t \ge 0$$

Expand w from the condition.

$$L_d = -\frac{1}{2} \sum_{t} \sum_{s} \alpha^t \alpha^s r^t r^s (\mathbf{x}^t)^T \mathbf{x}^s + \sum_{t} \alpha^t$$

- To maximize L_d w.r.t. α^t ← Most of them
- Apply quadratic optimization technique: will be 0.
 - O(N³) time and O(N²) space complexity.

Solution

Dual problem:

Dual problem:
$$\frac{\partial L_p}{\partial w} = 0 \implies w = \sum_t \alpha^t r^t x^t$$

$$L_d = -\frac{1}{2} \sum_t \sum_s \alpha^t \alpha^s r^t r^s (x^t)^T x^s + \sum_t \alpha^t \qquad \frac{\partial L_p}{\partial w_0} = 0 \implies \sum_t \alpha^t r^t = 0$$

$$\alpha^t \ge 0$$

- Apply quadratic optimization technique:
 - O(N³) time and O(N²) space complexity.
- Most of α^t will be zero.
- Samples with positive (non-zero) α^t are support vectors.
 - Provide w as a linear combination of input samples (Condition 1).
 - w_0 is obtained from **any** of the support vector which lies in the boundary.
 - $r^t(w^Tx^t+w_0) = +1 \rightarrow w_0 = r^t w^Tx^t$ (For numerical stability take **avg.**).

SVM- Testing

- Check only the sign of discriminant value.
 - Margin not enforced.
- Only support vectors decide class boundaries.
 - Other samples do not influence the classifier.

The non-separable case: Soft margin hyperplane

Classes may not be linearly separable.

• Use of slack variable, $\{s^t\}$, t=1,2,...N

Slack variable to define soft margin

To minimize $||w||^2/2$ subject to $r^t(w^Tx^t+w_0) \ge +1-s^t$ for all t

Constraints with Soft margin hyperplanes

- Use of slack variable, $\{s^t\}$, t=1,2,...N to define constraints.
 - $r^t(\mathbf{w}^T\mathbf{x}^t+\mathbf{w}_0) \geq 1 s^t$ for all t
 - $0 < s^t < 1$, x^t correctly classified.
 - If $s^t \ge 1$, x^t misclassified.
 - $\#[s^t > 1]$: Number of misclassified points.
 - $\#[s^t>0]$: Number of non-separable points.
 - Soft error= $\Sigma_t s^t$

Optimization problem

- Add penalty term for soft error to define the objective function for minimization.
 - $L_p = ||w||^2/2 + C \Sigma_t s^t$
 - subject to $r^t(\mathbf{w}^T\mathbf{x}^t + \mathbf{w}_0) \geq 1 s^t$ for all t
 - C is the penalty factor.

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{t=1}^{N} s^t - \sum_{t=1}^{N} \alpha^t [r^t (\mathbf{w}^T \mathbf{x}^t + w_0) - 1 + s^t] - \sum_{t=1}^{N} \mu^t s^t$$

• μ^t are the new Lagrange parameters to guarantee that $s^t > 0$.

Optimization problem

Primary problem:

$$L_p = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{t=1}^{N} s^t - \sum_{t=1}^{N} \alpha^t [r^t (\mathbf{w}^T \mathbf{x}^t + w_0) - 1 + s^t] - \sum_{t=1}^{N} \mu^t s^t$$

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_t \alpha^t r^t \mathbf{x}^t \qquad \frac{\partial L_p}{\partial \mathbf{w}_0} = 0 \implies \sum_t \alpha^t r^t = \mathbf{0}$$

$$\frac{\partial L_p}{\partial s^t} = C - \alpha^t - s^t = 0 \quad \Box \quad 0 \leq \alpha^t \leq C \text{ as } s^t > 0$$

- Dual problem: $L_d = -\frac{1}{2} \sum_t \sum_s \alpha^t \alpha^s r^t r^s (\mathbf{x}^t)^T \mathbf{x}^s + \sum_t \alpha^t$ Subject to: $\sum_t \alpha^t r^t = 0$ and $0 \le \alpha^t \le C$

The solution

- The same quadratic optimization technique to be used.
- The support vectors have $\alpha^t > 0$
- Out of them whose values are less than C are used for deriving w_0 .
 - $\mathbf{w}_0 = \mathbf{r}^t \mathbf{w}^T \mathbf{x}^t$
 - Take average.

Projecting to higher dimensional space

May make them linearly separable!

Solving by projecting to a high-dimensional space.

- $z = \varphi(x)$, where $z_j = \varphi_j(x)$, j = 1, 2, ..., k
 - $g(z) = w^T z$
 - Assume z_1 =1 (for taking care of the constant term w_0 as used previously).
 - $g(x) = \sum_{j} w_{j} \varphi_{j}(x)$
 - No guarantee that the classes are linearly separable in the space of basis functions.
 - Similar optimization problem:
 - $L_p = ||w||^2/2 + C \Sigma_t s^t$
 - subject to $r^t w^T \varphi(x^t) \ge 1 s^t$ for all t
 - C is the penalty factor.

Primal-Dual problems

- Primal problem:
- To minimize w.r.t w

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{t=1}^{N} s^t - \sum_{t=1}^{N} \alpha^t [r^t (\mathbf{w}^T \boldsymbol{\varphi}(\mathbf{x}^t) + w_0) - 1 + s^t] - \sum_{t=1}^{N} \mu^t s^t$$

$$\frac{\partial L_p}{\partial w} = 0 \implies w = \sum_t \alpha^t r^t \varphi(x^t) \quad \frac{\partial L_p}{\partial s^t} = C - \alpha^t - s^t = 0 \quad \sum_t \alpha^t r^t = 0$$

$$\text{Dual problem} \quad \text{Kernel function}$$

$$L_{d} = -\frac{1}{2} \sum_{t} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s} (\varphi(\mathbf{x}^{t}))^{T} \varphi(\mathbf{x}^{s}) + \sum_{t} \alpha^{t}$$
• Subject to
$$\sum_{t} \alpha^{t} r^{t} = 0 \quad \text{and} \quad 0 \leq \alpha^{t} \leq C$$

Kernel machines

Discriminant function

$$g(\mathbf{x}) = \mathbf{w}^T \varphi(\mathbf{x}) = \sum_{t} \alpha^t r^t \varphi(\mathbf{x}^t)^T \varphi(\mathbf{x})$$
$$g(\mathbf{x}) = \sum_{t} \alpha^t r^t K(\mathbf{x}^t, \mathbf{x})$$

A real symmetric $n \times n$ matrix M is +ve semidefinite iff $z^T M z \ge 0$ for any non-zero z in R^n .

- No need to compute with basis functions and also performing dot products with z.
- Gram matrix: The matrix of kernel values **K**, where $K_{t,s} = K(x^t, x^s)$
 - Should be symmetric and +ve semidefinite.
 - To be provided.

Vectorial kernel functions

- Polynomials of degree q
 - $K(\mathbf{x}^t,\mathbf{x})=(\mathbf{x}^T\mathbf{x}^t+1)^q$
- Radial basis functions
 - $K(x^t, x) = \exp[-||x-x^t||^2/(2s^2)]$
- Mahalanobis kernel function
 - $K(x^t, x) = \exp[-(x-x^t)^T S^{-1}(x-x^t)/2]$
- Distance function based
 - $K(\mathbf{x}^t, \mathbf{x}) = \exp[-D(\mathbf{x}, \mathbf{x}^t)/(2s^2)]$
- Sigmoidal function: $K(x^t, x) = \tanh(2x^Tx^t+1)$

A typical example:

- Decision Boundaries of Quadratic Kernel in 2D:
 - $K(x,y)=(x^Ty+1)^2$

Courtesy: "Introduction to Machine" Learning by Ethem Alpaydin (Chapter 13, Fig. 13.4)

Defining kernels

- May be defined between a pair of objects flexibly.
 - without using any closed functional form.
- A few examples
 - Number of shared words of two documents.
 - Edit distance between two strings.
 - Number of shared paths between two graphs.
 - Empirical definition of a kernel matrix on training samples.
- The same principle applicable for designing SVM for classifying such objects.

SVM: Summary

- SVM provides maximum margin based linear discrimination for two linearly separable classes.
 - Generalizes to non-separable classes by using slack variables.
 - Use of basis functions to map nonseparable classes to separable in a higher dimensional space.
 - Computation becomes simple and efficient with kernel functions.

Parametric discrimination revisited

- Class densities $P(x|C_i)$ Gaussian sharing a common cov. Matrix: Σ , and μ_i : $E(x|C_i)$.
 - The discriminant function is linear
 - $g_i(\mathbf{x}) = \mathbf{w_i}^T \mathbf{x} + \mathbf{w_{i0}}$
 - $\mathbf{w_i} = \Sigma^{-1} \boldsymbol{\mu_i}$
 - $w_{i0} = -(\mu_i^T \Sigma^{-1} \mu_i)/2 + \log P(C_i)$
- Two classes: Let $P(C_1|x)=y$, hence $P(C_2|x)=1-y$
 - Choose C_I if $y > 0.5 \Leftrightarrow y/(1-y) > 1 \Leftrightarrow \log(y/(1-y)) > 0$
 - Else Choose C_2 .

logit(y) or log odds of y.

Parametric discrimination revisited

- Two classes: Let $P(C_1|\mathbf{x})=y$, hence $P(C_2|\mathbf{x})=1-y$
 - Choose C_1 if logit(y)(=log(y/1-y))>0, else Choose C_2 .
- For two normal classes sharing a common covariance matrix, the log odds linear.
- $logit(P(C_1|\mathbf{x})) = \mathbf{w}^T \mathbf{x} + w_0$
 - $w = \Sigma^{-1} (\mu_1 \mu_2)$
 - $w_0 = -((\mu_1 \mu_2)^T \Sigma^{-1} (\mu_1 \mu_2))/2 + \log P(C_1)/P(C_2)$
- The inverse of logit is the logistic function, also called sigmoid function.
- $P(C_1|\mathbf{x}) = \text{logit}^{-1}(\mathbf{w}^T\mathbf{x} + w_0) = 1/(1 + \exp(-(\mathbf{w}^T\mathbf{x} + w_0)))$

4

Parametric two class classification using discriminant

- **Estimate parameters,** Σ , μ_l , and μ_2 .
- Compute coefficients of g(x): w, and w_0 .
- During testing:
 - Calculate g(x).
 - Assign C_1 if g(x)>0, else C_2 .
- OR
 - Calculate $y=1/(1+\exp(-(w^Tx+w_0)))$
 - Assign C_1 if y>0.5 else C_2 .

Logistic discrimination of two classes

- Ratio of class densities modeled: $P(x|C_1)/P(x|C_2)$
- Assume log likelihood ratio is linear
 - true for normal density functions.
- $\log(P(x|C_1)/P(x|C_2)) = w^T x + w_0'$
- ⇒ logit($P(C_1|x)$)=log($P(C_1|x)/P(C_2|x)$) =log($P(x|C_1)/P(x|C_2)$) + log($P(C_1)/P(C_2)$) = w^Tx+w_0 (when $w_0=w_0'+\log(P(C_1)/P(C_2))$)
- $y=P(C_1|x)=1/(1+\exp(-(w^Tx+w_0))$

Learning weights of logit functions.

- Data: $X = \{x^t, r^t\}, t=1,2,...N$
 - $r^t=1$ for C_1 , and 0 for C_2 .
- Let $y=P(r^t=1|x) \sim \text{Bernoulli}(y)$.
 - Directly modeling likelihood of class assignment
 - instead of likelihood of data given classes as in the parametric approach. $\frac{N}{\prod_{t=1}^{N}} \left(t \right) r^{t} \left(t \right) = t \left(1 r^{t} \right)$

approach. $l(\mathbf{w}, w_0 | X) = \prod_{t=1}^{t} (y^t)^{r^t} (1 - y^t)^{(1-r^t)}$

■ To minimize E=-log(l) (Maximization of log likelihood)

$$E = -(\sum_{t} (r^{t} \log y^{t} + (1 - r^{t}) \log(1 - y^{t}))$$

Use gradient descent technique to iterate on weights.

$$y = 1/(1 + \exp(-a))$$

Gradient descent technique

• $y = sigmoid(a) \rightarrow dy/da = y.(1-y)$

$$\frac{\partial E}{\partial w_j} = -\sum_{t} \left(\frac{r^t}{y^t} - \frac{1 - r^t}{1 - y^t} \right) y^t (1 - y^t) x_j^t$$

$$= -\sum_{t} (r^t - y^t) x_j^t$$

$$\frac{\partial E}{\partial w_0} = -\sum_{t} (r^t - y^t)$$

Update of weights at i th iteration.

$$w_j^{(i)} = w_j^{(i-1)} - \eta \frac{\partial E}{\partial w_i}$$

4

distr.

Algorithm (Learning weights)

- 1. Assume initial w_0 , and w_0 .
- 2. Compute $y=\text{sigmoid}(w^Tx+w_0)$
- 3. Compute gradients.
- 4. Update w, and w_0 .
- 5. Continue steps 2 to 4 till convergence.

Extended to multi-class problem by modeling $P(C_i|x)$ by softmax(.) function, and multinomial

$$y_i = P(C_i|\mathbf{x}) = \frac{exp(\mathbf{w}_i^T \mathbf{x} + w_{i0})}{\sum_j exp(\mathbf{w}_j^t \mathbf{x} + w_{j0})}$$

$$l(\{\boldsymbol{w_i}, w_{i0}\}|X) = \prod_{t} \prod_{i} (y_i^t)^{r_i^t}$$

Summary

- Discriminant functions could be explained in the context of Bayesian inference.
- Could be explained by geometry.
- Weights of the function to be learned by minimizing an objective function (error due to miss-classification).
 - Gradient descent method.
 - Stochastic gradient descent.
- Linear SVM: optimally separable hyperplane.
- Logistic discrimination: regresses posterior directly from labelled data.

