UNCLASSIFIED

AD NUMBER AD100234 CLASSIFICATION CHANGES TO: UNCLASSIFIED FROM: CONFIDENTIAL LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;
Administrative/Operational Use; 15 JUL 1955.
Other requests shall be referred to Naval Powder Factory, Indian Head, MD. Document partially illegible.

AUTHORITY

NOS ltr 21 Mar 1972 ; NOS ltr 21 Mar 1972

UNCLASSIFIED

AD.

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA

DECLASSIFIED DOD DIR 5200.9

UNCLASSIFIED

Reproduced by

DOCUMENT SERVICE CENTER

KNOTT BUILDING, DAYTON, 2, OHIO

This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

BEST

AVAILABLE

COPY

4D NO. 100 3

101.25 429423

U.S.NAVAL POWDER FACTORY

RESEARCH & DEVELOPMENT DEPARTMENT

CONFIDENTIAL

55AA 44799

0076

1955

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794.

THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

U. S. NAVAL POWDER FACTORY RESEARCH AND DEVELOPMENT DEPARTMENT INDIAN HEAD, MARYLAND

No. 104

15 July 1955

REVISION OF ADDITIVE CONSTANTS FOR THE SIMPLE CALCULATION OF THERMOCHEMICAL PROPERTIES FOR USE IN BALLISTICS

By

B. W. Lewis S. Goldhagen

This material contains information affecting the national defense of the United States within the meaning of the Espionage laws, Title 18, U. S. C., Sections 793 and 794, the transmission or the revelation of which in any manner to an unauthorized person is prohibited by law.

Reproduction of the document in any form by other than naval activities is not authorized except by special approval of the Secretary of the Navy or the Chief of Naval Operations, as appropriate.

FOREWORD

This revision of thermochemical additive constants and equations for calculating them was performed under Eureau of Ordnance Task Assignment NPF-B2d-O2-15-54. It is part of a program to keep methods of calculating thermochemical properties of propellants up to date. Values of constants are published with the reservation that they may be modified by future work and new data in the literature. The data are as of 1 April 1955.

W. C. Cagle Head, Chemical Physics Division

Approved by:

Sol Skolnil: Director, Research and Development Department

Released by:

George E. Hing Captain, Unlary Commanding Officer

CONTENTS

Heading	Page no.
Foreword	. ii
Abstract	. v
Data	. 1
Revised Equations	. 2
Calculated Additive Constants for Selected Pro-	
pellant Ingredients	. 9
Use of Additive Constants	. 9
References	. 12
Appendix A	р
Calculation of the Additive Constants for Basic	
Lead Carbonate and Potassium Sulfate	. 14
Appendix B	,
Conventions Used et NPF for the Estimation of the	•
Composition of Total Volatiles in Conventional	Ĺ
Gun Propellants Using Ether-Alcohol Solvent	, 21
TABLES	
I. Thermochemical Data for Combustion Products	
of Propellant Ingredients	. 3
II. Thermochemical and Molecular Data for Selected	1
Propellant Ingredients	. 4
4 To 2 To	

III.	Gram-Atomic Weights of Elemental Constituents	
	per Gram of Ingredient for Selected Pro-	
	pellant Compounds	7
IV.	Thermochemical Additive Constants for Pro-	
	pellant Ingredients	10
٧.	Thermochemical Data for Selected Substances	18

ABSTRACT

The equations for the calculation of the thermochemical additive constants of propellant ingredients, originally presented by Hirschfelder and Sherman in 1942, are revised to accommodate the later thermochemical data of combustion products and ingredients. The new constants, which are for the terms energy released (E), mean heat capacity (C_V) , and number of moles of gas (n), were calculated and are tabulated for a number of the most used ingredients. Separate unique consideration is given for potassium sulfate and for basic lead carbonate, resulting in larger differences in constants than are obtained for the generalized treatment of organic ingredients.

REVISION OF ADDITIVE CONSTANTS FOR THE SIMPLE CALCULATION OF THERMOCHEMICAL PROPERTIES FOR USE IN BALLISTICS

In 1942 Hirschfelder and Sherman⁽¹⁾ presented a method for the simplified calculation of thermochemical properties for propellants by means of additive constants. Since then there have been a number of changes in the values of the thermochemical data used for these calculations. It is the purpose of this report to tabulate the newer data, to revise the equations for the additive constants on the basis of these data, and to calculate new constants for some of the most used ingredients. The revisions have been made following the procedures given by Hirschfelder and Sherman.⁽¹⁾

DATA

Experimental data were obtained from as many sources as were available to the authors. Reasonable estimates were made when no lata could be found. Changes from previous data involved the energy of formation at 0° K of carbon monoxide and carbon dioxide, the heat capacity of graphite and water(g), and correction of molar properties to conform with the latest international atomic weight for carbon, i.e., 12.011.(15)

Values for the heat capacities of hydrogen, nitrogen, carbon dioxide, and carbon monoxide had also changed slightly. The

data used for the calculation of the equations for the constants are given in Table I. The thermochemical and molecular data for ingredients are given in Table II. The atomic composition data for ingredients are given in Table III.

REVISED EQUATIONS

The revised equations for the calculation of the additive constants $E_{\hat{1}}$ and $C_{V_{\hat{1}}}$ are as follows:

$$\begin{split} E_i &= \text{E(1)}_i + 38966C_i + 6252H_i + 52073O_i + 6721N_i \\ C_{\text{V}} &= 1.803C_i + 3.264H_i + 5.608O_i + 3.382N_i \end{split}$$

For $\mathbb{E}_{\mathbf{i}}$ an alternative equation may be used

 $\mathbf{E_{i}} = H.C - 133018C_{i} = 40019H_{i} + 52073O_{i} = 6721N_{i}$

The equation for ni remains the same, i.e.,

$$n_i = C_i + 1/2H_i + 1/2N_i$$

E₁, C_{V_1} , and n_1 are the additive constants for energy released, mean heat capacity, and number of moles of gas for ingredient i, respectively. C_1 , H_1 , O_1 , and N_1 are the number of gram-atoms of the elements per gram of ingredient i. $E(1)_1$ is the negative of the energy of formation at 15° C (288.16° K) of the ingredient in cal/gram i.e., $\frac{\Delta E_1(15^{\circ} C)}{M}$ where ΔE is the molar quantity and M is the molecular weight. H. C. is the heat of combustion of the ingredient in calories per gram at 15° C for liquid-water product and constant volume. These equations are only changed in the values of the

THERMOCHEMICAL DATA FOR COMBUSTION PRODUCTS OF PROPELLANT INGREDIENTS Table I

Product	Cp15°-25°C Ce1/deg-mole	Cv15°-25° C DEf15° C	NEfis C Kcal/mole	Cal/deg-moleKcal/mole Cal/mole Kcal/mole	AE Oo K Kcal/mole	E2500° K -ECCal/mole	E2500° K-E° Cv2000°-3000° K Cal/mole Cal/deg-mole
(graphite)	2,021	2,021	0	231,4	0		
H2(3)	62869	4,892	0	1382.1	0	13386	6.527
2(R)	2,013	5.026	0	1426.5	0	15835	7,309
$N_{Z(D)}$	096°9	4.973	0	1430.1	0	14872	5.763
10,018/	6,965	Charles .			-27,2029	15041	6.811
CO2/2/8/	8,820	******	-94,0518		-93.9707	26515	12,812
H20(0)	8,022	BER PER Labor	Charles (TD		-57,1040	20806	10.542
H ₂ 0(11q)	18,010	1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-67.5347				1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Celc'd, from	(13)	(13)	(12)	(8)	(12)	(8)	(8)

AESOR is the energy of formetion at 0°K; E2500° K · E2 is the energy to heat from 0° K to 2500° K; Cv2000° R is the mesa heat All data convected to latest value of atomic weight for carbon, 12 011(15)
Notation: Up 150-250 C and Cw150-250 C and the mean molar heat capacities at constant pressure and volume, respectively, between the indicated compersuation (AEIISO Is the energy of formation at 15° C; E288, 16° K * E6 is the energy to heat from 0° K to 288, 16° K; capackly at constant volume in the range of $2000^{\circ}; 3000^{\circ}$ K

Table II

THERMOCHEMICAL AND MOLECULAR DATA FOR SELECTIO PROPELLANT INGREDIENTS

			Heat of		Energy of		,	
Transfer	KOPPER L	TO THE TOTAL	TOTMETION	1	rormat102	五(1)	وماده عده مار	
auerra Mil	Formara	weight	Kcal/mole		Kcal/moïs	Cal/gram	Cal/deg-mole	Ref
Butyl stearate	C22E4402	340.594	-253.92E/		-240,715	706.8	153.36/	
Dibutyl phthalate	C16H2204	278,352	-204,15	(11)	(11) -196,378	705.5	89.243	(11)
Dioctyl phthalate	C24H3804	390.568	~258,38 £ /		-245,655	631.6	175,86/	Half Wallshife your accord
Diphenylamine	Cl2H11N	169,228	30.6240/(3,7)	(3,7)	34,146	-201.8	57,03	(10)
Ethyl alcohol	С2460	020°94	-66,356	(12)	-64.337	1396.5	49°92	(12)
Ethyl centralite	C17H200H2	268,363	-31,27	(11)	-24,612	91.7	106,327	(11)
Nitrocellulose, Nid	_							
11,00		250.755			-175.804	701.1		
11.50		257,141			-172.259	6°699		
12,00		263,865			-158,594	638.7		

See footnoters at end of table

Table II (cont'd)

			Heat of Ene	Energy of	7	ļ:	
4		Formila	94	formation		Cp 150 -250 ct/	/
Ingredient	Formula	weight	CHY 25° C Ref Kcal/mole	of Wfise ce/	/ Cal/gram	cal/deg-mole	Ref
Nitrocellulose, 2nd/							
12,20		266,650		-167,003	626,3		
12,60		272,404		-163.853	601.5		
12,80		275.380		-162.089	9889		
13.00	•	278,418		-160,424	576.2		
13,15		280°240		-159,123	566.8		
13.25		282,310		-158,207	560.4		
13.50		286,315		-155.899	544.5		
14,14		297,101		-149.858	504°4		
2-Nitrodiphenylemine Cl2H1002N2 214.228 17.8198	$c_{12}^{H_{10}}c_{2}^{N_{2}}$	214,228	17,8192/	21,911	-102,3	/5892°49	
Nitroglycerin	C3H509N3 227.097 -89,123E	227.097	-89,1238/	-84.285	371.1	68,135/	
Nitroguanidine	$c_{\rm H} c_{\rm O} c_{\rm N} c_{\rm H}$	104,075	CH ₄ O ₂ N ₄ 104,075 -22,14b β/(12)	12) -19,260	185,1	35.014	(11)
			+				

See footnotes at end of table.

Table II (cont'd)

		Formila	Heat of formation		Energy of formation	E(1)	C. 163.060 Al/	180
Ingredient	Formula	weight	AHf25°C Ref Kcal/mole	Ref	Afiso ce/ Kcal/mole	Cal/gram	Cal/deg-mole Ref	36.
Petrolatum C20A42	€20¤42	202,556	=1,32,700	(E3)	-120.247	425.6	141.32	
RDX	C3H6O6H6	222,129	419,093	(6)	24,266	-109.2	12:19:99	
Water(11q) H20	02H	18.016	=68,3174 (12)	(12)	-67.5347	3748.6	18,010	(3)
Basic lead 2PbCO3.	2FbCO3.							
carbonate Pb(OH)2	Pb(0H)2	775.668	/5th 5Eth-	(14)	431.057	557.5	2005	
Potassium sulfate	K2SOμ	174.265	345°96	(12)	-347.491	1959.6	30.835	(9)

8 Cornered for lances mondo weight of carbon 12 011 (15)

Mean of two values.

Weatmened by authors to be resonable value.

d'Themportemient data for calculations of nitrocellulose constants were obtained from ref (4) and an assumed specific heat value of 0.36 cal/green Valless on other percentage misrogen misrocalluloses may be obtained by Buant interpolation

Calculated from AH 1250 C. The number of significant figures in table is not an indication of the accuracy of the data but is used here for consistency.

 $V_{TS, collect}$ values of C_p were used to calculate $\Delta H_{f, LS}^{0}$, from $\Delta H_{f, LS}^{0}$ C. From $\Delta H_{f, LS}^{0}$ C. Experimentally determined in these laboratories.

Table III

GRAM-ATOMIC WEIGHTS OF ELEMENTAL CONSTITUENTS FER GRAM OF INGREDIENT FOR SELECTED PROPELLANT CONPOUNDS

C 100 A C	To the second se		Gram-atomic weights/gram	ents/eran	
קווסס	റവും	້ ບໍ່	H,	O.	T _N
Butyl stearate		.064593	.129186	.005872	000000°
Dibutyl phthelate		.057481	.07.037	.014370	000000*
Dioctyl phthalate		644190°	*097294	.010241	000000°
Diphenylamine	-	00000°	.065001	000000°	606500°
Ethyl alcohol		.043412	.130236	.021706	000000°
Ethyl centralite	ever- eas	.063347	.074526	.003726	°007453
Mitrocellulose 8/	11.00% N	.023928	.032027	.035645	.007853
=	11.50% M	.023333	.030680	.035864	.008210
=	12,00% N	.022739	.029332	.036082	.008567
=	12.20% N	.022501	.028793	.036170	602800°
E	12.60, N	.022026	.027715	.036345	.008995
=	12,80% W	.021788	,027176	.036432	.009138

Table III (cont'd)

The second second			Gram-atomic weights/gram	1chts/crem	
argredient	3U.	ย์	H	1 0	I N ₁
Mitrocellulose 13	N 200° I	.021550	.026637	.036519	009280
E 13	1.15% N	.021372	.026233	.036585	009387
ं	1. 655° 11	((5,15,0)	.025963	,036629	.009459
I	3.50% N	956020*	.025289	.036738	269600
14	1.14% N	.020195	.023564	.037018	460010.
2-Witrodiphenylamine		.056015	629940.	.009336	.009336
Mitroglycerin		.013210	.022017	.039631	.013210
Mitrognanidine		809600*	,038434	.019217	038434
Petrolatum		.070782	.148643	000000	000000
XQL		,013506	110220	027011	027011
Water(11q)		000000*	111012	.055506	000000
					Pb
Basic lead carbonate		.002578	.002578	416010.	.003868
		I.			St
Potessium sulfate		.011477	000000	.022953	852500

Listermediate values for different percentage nisogen of nimocellulesse may be obtained by a linear interpolation.

numerical coe: ficients and have been arrived at by adherence to the methods and procedures of Hirschfelder and Sherman. (1)

CALCULATED ADDITIVE CONSTANTS FOR SELECTED PROPELLANT INGREDIENTS

The additive constants Ei, C_{Vi}, and ni have been calculated from the above equations for a number of the most common propellant ingredients and are given in Table IV. Numerous changes in energy of formation of ingredients including the nitrocelluloses were noted. For the inorganic salts, basic lead carbonate and potassium sulfate, the calculations had to be made by considering the effects of these ingredients to be unique. The calculations of the constants for these salts are given in Appendix A.

USE OF ADDITIVE CONSTANTS

The adiabatic flame temperature and impetus of a propellant are calculated by means of equations given by Hirschfelder and Sherman. (1) These equations are:

$$\mathbf{T}_{\phi} = 25\omega \Rightarrow \frac{\sum_{i} \mathbf{x}_{i} \mathbf{E}_{i}}{\sum_{i} \mathbf{x}_{i} \mathbf{C}_{\gamma_{i}}}$$

and

 $f = \sum_{n} \mathbf{x}_{n} \mathbf{n}_{n} RT_{n}$

Table IV
THERMOCHEMICAL ADDITIVE CONSTAITS FOR PROPELLANT INGREDIENTS

Compou	nd	Ei	C _{vi}	ni
Butyl stearate		-3726.	.5675	.12919
Dibutyl phthalate	9	-2691.	.4336	.09700
Dioctyl phthalate	3	-3101.	.4796	.11010
Diphenylamine		-3007.	,3600	.10636
Ethyl alcohol		-2772.	.6121	.10853
Ethyl centralite		-2882.	.4013	.10434
Nitrocellulose 4	11.00% N	-30.4	.3528	.0438?
u	11.50% N	41.5	.3496	.04278
II	12.00% N	113.2	.3464	.04169
n -	12.20% N	141.9	.3451	.04125
11	12.60% N	199.1	.3426	.04038
n	12.80% N	228.2	.3413	.03994
n	13.00% N	256.8	.3401	.03951
π	13.15% N	278.4	.3391	.03918
n	13.25% N	293.0	.3385	.03896
17	13.50% N	329.1	.3369	.03842
ti .	14.14% N	421.2	.3328	.03702
2-Nitrodiphenylan	nine	-1949.	.3317	.08402
Nitroglycerin		951.5	.3388	.03082
Nitroguanidine		-57.4	3690ء	.04804
Petrolatum		-4113.	,6128	.14510
RDX		639.0	-3391	.04052
Water(liq)		-1552.2	,6403	.05551
Basic lead carbon	ate	-199.7	.0910	.00387
Potassium sulfate		-1226.5	.2708	00574

Miness interpolation.

Note that the negative is inventional. See Appendix A for decivetion.

where T₀ is the adiabatic flame temperature in °K, x_i is the weight fraction of the <u>i</u>th ingredient in the propellant, f is the impetus in ft-lb/lb when R the gas constant is 2781.7 ft-lb-gram/deg-lb-mole, and \(\sum_{i} \

REFERENCES

- (J) Hirschfelder, J. O., and Jack Sherman. Simple Calculation of Thermochemical Properties for Use in Ballistics, National Defense Research Committee Report No. A-101 (OSRD 935) October 1942. CONFIDENTIAL
- (2) Hirschfelder, J. O., and Jack Sherman. Simple Calculations of Thermochemical Properties for Use in Ballistics, Addenda to National Defense Research Committee Report A-101 (OSRD 1300) March 1943. CCNFIDENTIAL
- (3) Hodgman, C. D., Editor. Handbook of Chemistry and Physics, 32nd Edition, Chemical Rubber Publishing Co., Cleveland, Ohio, 1950.
- (4) Jessup, Raiph S., and Edward J. Prosen. Heats of Combustion and Formation of Cellulose and Nitrocellulose (Cellulose Nitrate) J. Research Netl. Bur. Standards, 44, 387-93 (1950).
- (5) Kelley, K. K. Contributions to the Data on Theoretical Metallurgy, X. J. S. Bureau of Mines, Bulletin 476, 1949.
- (6) Kelley, K. K. Contributions to the Data on Theoretical Metallurgy, XI, U. S. Bureau of Mines, Bulletin 477, 1950.
- (7) Landolt-Börnstein, Physikalisch-Chemische Tabellen, Julius Springer, Berlin, 1923.
- (8) Lewis Bernard and Guenther Von Elbe, Combustion, Flames and Explosions of Gases, Academic Press, Inc., N. Y., 1951.

- (9) A. D. Little, Inc. Report on Study of Pure Explosive
 Compounds to the Office of Chief of Ordnance, Part IV, Contract
 No. DA-19-020-ORD-47, May 1, 1952. CONFIDENTIAL
- (10) Perry, J. H., Editor. Chemical Engineers' Handbook, 3rd Edition. McGraw-Hill Book Co., N. Y., 1950.
- (11) Frosen, E. J., and R. Gilmont. Heats of Combustion and Formation of Diethylphthalate, Dibutylphthalate, Dinitrotoluene, Diethyldiphenylurea and Nitroguanidine, National Defense Research Committee Report A-197, (OSRD-1590), July 1943. CONFIDENTIAL
- (12) Rossini, F. D., D. D. Wagman, and others, Selected Values of Chemical Thermodynamic Properties, National Bureau of Standards Circular 500, February 1, 1952.
- (13) Rossini, F. D., and others. Selected Values of Chemical Thermodynamic Properties, Series III. National Bureau of Standards.
- (14) Washburn, E. W., Editor. International Critical Tables of Numerical Tata, Physics, Chemistry and Technology, McGraw-Hill Book Co., N. Y., 1926.
- (15) Wichers, Edward. Report of the Committee on Atomic Weights of the American Chemical Society. J. Am. Chem. Soc., 76, 2033-35 (1954).

APPENDIX A

CALCULATION OF THE ADDITIVE CONSTANTS FOR BASIC LEAD CARBONATE AND POTASSIUM SULFATE

Basic Lead Carbonate, 2PbCO3 Pb(OH)2

Basic lead carbonate was considered to contribute to the water-gas equilibrium and to contribute liquid metallic lead in the form of fine droplets. Examination of the critical temperature and pressure of lead indicated that the most probable state under gun conditions was the liquid. Thus the calculations of E_1 and C_{V_1} had to allow for the production and presence of lead.

Calculation of E:

 $E_1 = E(1) + E(2) + E(3) = E(4)$

according to Hirschfelder and Sherman. (1) In this case the presence of lead affects only the values of E(2) and E(4). E(1) was estimated to be 557.5 cal/gram from the data for heat of reaction given in reference (14).

- E(2) is the energy envolved when the elements present are cooled from 288.16° to 0° K. The contribution of the lead in this compound to E(2) was estimated to be 5.49 cal/gram.
- E(4) is the energy necessary to heat the product gases (and/or finely divided liquids and solids) from 0° to 2500° K. The contribution of lead in this compound to E(4) was estimated to be 68.2 cal/gram, and the contribution to E(2) = E(4) was

-62.7 cal/gram for the lead in this compound. This figure was then added to the value of E_1 obtained for this compound on the basis of the regular E_1 equation. Thus:

 $E_s = E(1) = 38966C_s = 6252H_s = 52073O_s = 62.7 \approx 199.7 \ cel/gram.$ Calculation of $C_{V_2^*}$:

The assumption was made that the fine droplets of liquid lead were in thermal equilibrium with the gas and therefore a term for lead had to be added to the C_{Ψ_4} equation. Thus:

 $C_{W_1^2} \approx 1.803C_4 \approx 3.264H_4 \approx 5.008O_4 \approx 6.80 \text{ Pby}$ = .09102 cal/degrees-gram.

Calculation of ni:

The fine droplets of lead were not considered to contribute to the number of moles of gas per gram. Thus:

> n_j = C_j = 1/2H_j = .003867 moles/gram

The data used in the above calculations are listed in the various tables of this report.

Potassium Sulfate, K2SO4

The constants were previously estimated by Hirschfelder and Sherman⁽²⁾ on the assumption that, in guns, potassium sulfate vaporizes as potassium sulfate molecules. It was felt that this treatment was not a realistic one when reducing gases were present. A qualitative study was made of the products of explosion of a powder containing 4% potassium sulfate. This

powder was fired in a calorimetric bomb, and the gases were found to contain a considerable quantity of hydrogen sulfide. The residue left in the bomb was dissolved in water and tested for the presence of sulfate ion. This test showed a negligible amount of sulfate present. From this experiment it was felt that a more accurate estimate of the reaction of potassium sulfate in a propellant was:

$$K_g SO_{4(c,\gamma e)} + 4H_{2(g)} \longrightarrow H_2 S_{(g)} + 2KOH_{(Eq)} + 2H_2O_{(g)}$$

The hydrogen would be furnished by the water-gas equilibrium, which would adjust itself to the required condition. The calculations were made on the basis of the above assumptions with the additional products taken into consideration.

Calculation of Ei:

- E(1), the negative of the energy of formation per gram, was calculated in a straight-forward manner from the heat of formation and was found to be 1959.6 cal/gram.
- E(2), the energy to lower the temperature of the elements from 288.16° to 0° K, was calculated from the usual type equation.

$$E(2) = 1630K_{ij} + 1291S_{ij} + 713O_{ji}$$

= 42.5 cal/gram.

E(3) is the energy of formation of the combustion products.Equations for E(3) were obtained for the two extreme cases:(a) no carbon dioxide formed and (b) no water formed. These

cases followed the method of Hirschfelder and Sherman⁽¹⁾ but included the $K_2SO_4 + 4H_2$ reaction. This inclusion was made by considering the reaction to be:

$$\textbf{CHON} \circ \textbf{K_2SO_4} \longrightarrow \textbf{H_2O} \circ \textbf{H_3} \circ \textbf{CO_2} \circ \textbf{CO} \circ \textbf{H_2S} \circ \textbf{KOH} \circ \textbf{N_2}.$$

Then the equations relating the number of moles of products to the gram-atoms of elements of the reactants were as follows:

where the n's are in moles per gram and the C, H_0 O, N_0 K, and S are in gram-atoms per gram of the elements in the powder. Thus for the two cases:

(a) when
$$n_{CO_2} = 0$$

$$n_{H_2} = C + 1/2H = 0 = 4S$$

$$n_{CO} = C$$

$$n_{H_2O} = 0 = C + 2S$$
(b) when $n_{H_2O} = 0$

$$n_{H_3} = 1/2H = 2S$$

$$n_{CO_2} = 0 = C + 2S$$

$$n_{CO} = 2C = 0 - 2S$$

The other concentration expressions remained the same in both cases. The values for the separate cases were each substituted into the E(3) expression;

$$E(3) = (n\Theta)_{H_2O} + (n\Theta)_{CO_2} + (n\Theta)_{CO} + (n\Theta)_{H_2S} + (n\Theta)_{KOH}$$

where θ is the energy of formation at 0° K of the various product compounds as given in Table I and Table V. Thus two expressions were obtained, E(3)^a and E(3)^b in terms of constants and gram-atoms per gram of elements.

Table V
THERMOCHEMICAL DATA FOR SELECTED SUBSTANCES

Substance	Č _{v,} Cal∕	deg-mole	ΔE, Kcal/m	ole
Bubblance	0°-288,16° K	2000 ° 3000 ° K	Formation 0° K	0°-2500° K
K(crys)	5,657 ⁸	9534 <u>;</u> 62	0	
S(rh)	4,480b/	especturally	0	w~00 2 0
H2S(g)	CALL TRACTOR	14.23 c/	4.123ª/	21.825 <u>b</u> /
КОН	€ SPage care	18.00/	102.376 c/	49°440c/

A/Reference (13)

E(4) is the energy to heat all the products from 0° to 2500° K. E(4) equations were obtained for the two cases in a manner quite similar to that for E(3) from the equation:

$$E(4) = (na)_{H_2O} + (na)_{H_2} + (na)_{CO_2} + (na)_{CO} + (na)_{H_2S} + (na)_{KOH} + (na)_{N_2}$$

b/Reference (5)

C/Authors castimate

where the α 's are the energy to heat the respective products from 0° to 2500° K. Thus E(4)^a and E(4)^b expressions were obtained.

According to Hirschfelder and Sherman (1):

and

$$E(4) = 0.77E(4)^{4} \circ 0.23E(4)^{5}$$

and thus

$$E(3) = E(4) = 0.77(E(3)^6 - E(4)^4) = 0.23(E(3)^4 - E(4)^4)$$

A expression was derived from this for E(3) - E(4) in terms of constants and the gram-atoms per gram of elements. A similar E(3) - E(4) expression was obtained for the CHON system alone, and this expression was subtracted from that for the CHON plus potassium sulfate to give an expression for the potassium sulfate alone. Thus the expression:

$$\begin{split} (E(3) - E(4))_i &= .77 K_i \Phi_{H_3O} + (-S_i + .27 K_4) \Phi_{H_3} = .23 K_4 \Phi_{CO_2} + \\ &= .23 K_4 \Phi_{CO} + S_1 \Phi_{H_3S} + K_4 \Phi_{KOH} \end{split}$$

was obtained, where $\Phi = \Delta E_{f0}^{o} \circ \ K = \Delta E_{2500} \circ \ 0^{o} \ K$

for the various products. Substituting the numerical values gave:

combining = E(1) + E(2) + E(3) = E(4) gave: $E_{2} = 1226.5 \text{ cal/gram}$

Calculation of Cvi:

An expression for C_{V_1} was obtained from $C_v = (nC_v)_{H_2O} + (nC_v)_{H_2} + (nC_v)_{CO_2} + (nC_v)_{CO} + (nC_v)_{H_2S} + (nC_v)_{KOH} + (nC_v)_{N_2}$ together with the same concentration expressions and the two extreme cases: (a) no carbon dioxide and (b) no water. Expressions were obtained for C_V^a and C_V^b for both the CHONKS and CHON systems and the difference was obtained. Both C_V^a and C_V^b were given equal weight in obtaining the final expression, i.e.,

$$C_{\eta_g} = 1/2 \left[C_{\eta}^{-k} + C_{\eta}^{-k}\right].$$

The resultant equation was:

= 0.27079 cal/deg-gram

Calculation of ni:

On the basis of the reaction that was assumed between potassium sulfate and hydrogen, it was seen that the net effect was the consumption of 1 mole of gas rather than t furnishing of gas. Thus the value of ni had to be negative, and

APPENDIX B

CONVENTIONS USED AT NPF FOR THE ESTIMATION OF THE COMPOSITION OF TOTAL VOLATILES IN CONVENTIONAL GUN PROPELLANTS USING ETHER-ALCOHOL SOLVENT

Low Total Volatiles

When total volatiles are 0.7% or less, the volatiles are considered to be only water. This convention covers most nitroguanidine and most RDX powders that are solvent extruded.

High Total Volatiles

When the propellant has a high total-volatile content, the volatiles are considered to consist of 0.7% water, and the remainder is considered to be ethyl alcohol. This convention covers single- and double-base solvent-extruded powders.

DISTRIBUTION LIST

Addressee	Copy No.
Department of the Air Force Hq. USAF, DCS/D	
Washington 25, D. C. Attn: AFDRD-AN	
Maj. H. R. Schmidt	1
Commander Wright Air Development Center Wright-Patterson Air Force Base, Ohio	
Attn: WClGH-2	2
Commander Wright Air Development Center Wright-Patterson Air Force Base, Ohio	
Attn: \(\forall CLPN=3\)	3
Commander Wright Air Development Center Wright-Patterson Air Force Base, Ohio	
Attn: WCRRC	4
Commanding General Aberdeen Proving Ground, Maryland	
Attn: Ballistic Research Laboratories ORDBG-BLI	5-6
Commanding Officer Badger Ordnance Works	
Baraboo, Wisconsin Attn: R. R. Buell	7
Commanding General Frankford Arsenal Bridge and Tacony Streets	
Philadelphia, Pa.	9.0
Attn: Pitman-Dunn Laboratory	8==9
Department of the Army Office, Chief of Ordnance	
Washington 25, D. C. Attn: ORDTA-Propellant and Primer Section	10

Department of the Army Office, Chief of Ordnance Washington 25, D. G. Attn: ORDTU	11
Commanding Officer Office of Ordnance Research Box CM Duke Station Durham, North Carolina	12
Commanding Officer Picatinny Arsenal Dover, New Jersey Attn: Library	13~?. [‡]
Commanding Ceneral Redstone Arsenal Huntaville, Alabama Attn: Technical Library	15-16
Department of the Navy Bureau of Ordnance Washington 25, D. C. Attn: Ad3, Technical Library	17
Department of the Newy Bureau of Ordnance Washington 25, D. G. Attn: Re2d	2.3
Commander U. S. Naval Proving Ground Dahlgsen, Virginia Attn: OMI	19
Commander U. S. Naval Ordnauce Test Station Inyokern, China Lake, California Attn: Technical Library Branch	20-21-22
Department of the Navy Office of Naval Research Washington 25, D. C. Attn: Code 429	23

ŧ0

Commanding Officer Office of Naval Research, Branch Office 86 E. Randolph Street 24 Chicago 1. Illinois Commanding Officer Office of Naval Research 1030 E. Green Street Pasadena 1, Calif rnia 25 Allegany Ballistics Laboratory P. O. Box 21.0 26-27 Cumberland, Maryland E. 1. du Pont le Menours and Co. 10th and Market Streets Wilmington, Delaware Attn: W. F. Jackson 28 Hercules Experiment Station Woodale, Delaware Attn: A. M. Ball 29 Rohm and Haas Company 5000 Richmond Street Philadelphia 37, Pa Attn: 0, H. Loeffler 30 Solid Propellant Information Agency Applied Physics Laboratory The Johns Hopkins University Silver Spring, Maryland Attn: P. K. Reily, Jr. 31-32 British Joint Services Mission Via. Technical Services Department of the Navy 1800 K Street, N. W. Bureau of Ordnance Mashington 25, D. C. Washington, D. C. Attn: Reports Officer Attn: A38 33-34-35-36 Defence Research Member Via. Canadian Joint Staff (W) Department of the Mavy 2450 Mass. Ave., II Bureau of Ordnance Washington 8. D. C. Westington 25, D. C. Attn: Ad8 37-38-39-40

Purdue University Lafayette, Indiana Attn: E. T. McBee			41
Commanding General Ordnance Ammunition Joiliet, Illinois Attn: ORDLY-R-T	Command.		42
Naval Ordnance Resear School of Chemistry University of Minner Minneapolis 14, Minn Attn: B. L. Crawfor	ota leso t a		43-44
Thickel Chemical Con Redstone Arsenal Huntsville, Alabama Attn: Technical Din			45-46
U. S. Department of Bureau of Mines 4800 Forbes Street Pittsburgh 13, Penns Attn: Division of 1	gylvania	chnol o gy	47
Ohio State Universit Research Foundation Columbus 10, Chio Attn: M. L. Wolfro		Via: District Chief Cleveland Ordnance Di Auditorium Building 1367 East 6th Street Cleveland 14, Ohio	strict 48
Commanding Officer Radford Arsenal Radford, Virginia			49
Commanding Officer Sunflower Ordnance Lawrence, Kansas	lorks		50
Commander U. S. Naval Ordnanc White Oak Silver Spring, Mary	_		51-52
Attn: Library	annamattan		שנייזכ
Atlantic Research C 812 North Fairfax S Alexandria, Virgini	treet		53

100

ú

Catholic University of America 7th St. and Michigan Ave., N. E. Washington 17, D. C. Attn: F. O. Fice	54
Director Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena 3, California	55
Arthur D. Little, Inc. 30 Memorial Drive Cambridge 42, Massachusetts Attn: G. R. Handrick	56
University of Michigan Engineering Research Institute Ann Arbor, Michigan) 0
Attn: J. C. Brier	57
Minnesota Mining and Manufacturing Co. 900 Fauquier Avenue St. Paul, Minnesota Attn: C. R. Humphries	50
Phillips Petroleum Company Room 441, Adams Building Bartlesville, Oklahoma Attn: F. E. Yarvel for L. E. Taylor, Security Rep.	58 - - - 59
Purdue University Department of Chemistry Lafayette, Indiana Attn: H. Feuer	60
Rohm and Haas Company Redstone Arsenal Research Division Huntsville, Alabama Attn: Librarian	61
Southwest Research Institute Department of Chemistry and Chemical Engineering 8500 Culebra Road	
San Antonio 6, Texas Attn: J. H. Wiegand	62

Standard Oil Company Research Department P. O. Box 431 Whiting, Indiana Attn: W. H. Bahlke	63
Thickol Chemical Corporation Elkton Division Elkton, Maryland Attn: D. W. Kershner	64
Universial Match Corporation P. O. Box 191 Ferguson 21, Missouri Attn: Res. and Dev. Division Via: St. Louis Ordnance District	65
U. S. Rubber Company General Laboratories Market and South Streets Passaic, New Jersey Attn: P. O. Tawney	56
Reaction Motors, Inc. Rockaway, New Jersey Attn: Librarian	6?
Olin Mathieson Chemical Corporation East Alton, Illinois Attn: H. A. Cooley	68

9

dit.