Задача А. Герой гитары

Имя входного файла: guitar.in Имя выходного файла: guitar.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Недавно Вася приобрел себе увлекательную игру «Герой Гитары», в которой всем желающим предлагается опробовать себя в роли рок-гитариста. Для того, чтобы пройти ее, нужно каждую секунду зажимать определенные комбинации кнопок (которых, к счастью, немного). Если зажаты нужные кнопки, то считается, что игрок сыграл нужную ноту. В этом случае ему начисляется определенное количество очков (для каждой ноты разное, причем за некоторые ноты очки снимаются). Иначе раздается неприятный звук, и никаких очков не начисляется.

На первом и втором уровне сложности Вася все играл легко. Однако, перейдя на третий уровень, он столкнулся с тем, что не может исполнить одну особенно замысловатую композицию. После нескольких неудачных попыток, Вася неожиданно заметил, что может правильно сыграть любой отрезок из k или менее нот вне зависимости от их сложности. С другой стороны, ему никак не удается правильно исполнить k+1 ноту подряд, даже если они очень простые. Поскольку Вася не психолог, он не смог понять, почему так происходит. Зато после недолгих поисков в интернете он нашел подробное описание того, сколько очков начисляют за каждую правильно сыгранную ноту. Пользуясь этим, он хочет определить, какое максимальное количество очков он может набрать. Помогите Васе.

Формат входного файла

В первой строке входного файла содержатся два целых числа n и k ($1 \le n \le 10000, 1 \le k \le 1000$), где n — количество нот в композиции. Во второй строке n целых чисел — количество очков, получаемых за сыгранные ноты. Все числа во входном файле по модулю не превышают 10^9 .

Формат выходного файла

В выходной файл выведите одно число — максимальное число очков, которое может получить Вася.

Примеры

guitar.in	guitar.out
5 2	14
2 3 1 4 5	
5 1	8
2 3 1 4 5	
5 2	10
2 3 1 -4 5	

Задача В. Вода

Имя входного файла: water.in
Имя выходного файла: water.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Недавно Сергей пошел к колодцу за водой, но так и не вернулся. Он взял с собой n канистр, каждую из которых он полностью наполнил водой. Теперь Сергей хочет доставить их в свой загородный дом. Вот в этом и заключается проблема. За один раз Сергей может унести не более 2 канистр — у него ведь всего две руки. Более того, он может нести не более k литров воды.

Теперь Сергей стоит у колодца и думает, за какое минимальное число раз он может отнести всю воду домой, и может ли вообще. Помогите ему решить эту задачу.

Формат входного файла

В первой строке входного файла два целых числа — n и k ($1 \le n \le 10^5$). Во второй строке n целых чисел — объемы канистр в литрах. Все числа во входном файле положительные и не превышают 10^9 .

Формат выходного файла

Если Сергей не сможет унести всю воду домой, выведите «Impossible». Иначе выведите одно число — минимальное необходимое число раз.

Примеры

water.in	water.out
4 4	3
1 2 3 3	
4 2	Impossible
1 2 3 3	

Задача С. Матрица

Имя входного файла: matrix.in
Имя выходного файла: matrix.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

В НИИ данных строк открывается новый отдел — исследовательский отдел данных матриц. Для обобщения задачи о канонизации строки отделу было поручено решить задачу о канонизации матрицы.

Рассмотрим матрицу $m_{i,j}$ размера $2^n \times 2^n$, состоящую из маленьких букв латинского алфавита. Циклическим сдвигом матрицы m называется матрица m', такая что $m'_{i,j} = m_{(i+\Delta i) \bmod 2^n, (j+\Delta j) \bmod 2^n}$ для некоторых Δi и Δj (будем считать, что строки и столбцы матриц проиндексированы числами 0 до 2^n-1).

Матрицу p будем считать лексикографически меньше матрицы q того же размера, если для некоторых i и j выполнено следующее: $p_{i,j} < q_{i,j}$, а если i' < i, или i' = i и j' < j, то выполнено равенство $p_{i',j'} = q_{i',j'}$. Иначе говоря, мы сравниваем матрицы по строкам.

Для заданной матрицы m задача ее канонизации состоит в том, чтобы найти ее циклический сдвиг, который лексикографически меньше либо равен всех остальных ее циклических сдвигов.

Помогите исследователям нового отдела канонизировать данную матрицу.

Формат входного файла

Входной файл содержит матрицу m. Ее размер $2^n \times 2^n$, $0 \le n \le 9$.

Формат выходного файла

Выведите в выходной файл канонический циклический сдвиг данной матрицы.

Пример

matrix.in	matrix.out
baba	aabb
baab	abbb
abba	abab
bbba	bbaa

Задача D. Безызбыточная удовлетворимость булевой формулы в КНФ без повторения термов

Имя входного файла: sat.in
Имя выходного файла: sat.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Булевой формулой в КНФ называется формула вида

$$\Psi(x_1,\ldots x_n)=(t_{11}\vee t_{12}\vee\ldots\vee t_{1s_1})\wedge\ldots\wedge(t_{k1}\vee t_{k2}\vee\ldots\vee t_{ks_k}),$$

где каждый терм t_{ij} является либо некоторой переменной x_l , либо ее отрицанием $\overline{x_l}$. Если никакой терм не встречается в булевой формуле в КНФ дважды, то говорят, что это булева формула в КНФ без повторения термов. К примеру, формула $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor x_4)$ является формулой без повторения термов, а формула $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3} \lor x_4)$ таковой не является, так как терм $\overline{x_3}$ встречается дважды.

Задача о безызбыточном удовлетворении формулируется так: требуется проверить, можно ли таким образом назначить значения переменным, чтобы в каждой скобке был истинен ровно один терм. К примеру, формула $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor x_4)$ безызбыточно удовлетворена назначением значений $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0.$

По данной булевой формуле в $KH\Phi$ без повторения термов определите, существует ли для нее решение задачи о безызбыточном удовлетворении, и если есть, то найдите подходящие значения переменных.

Формат входного файла

Первая строка входного файла содержит два целых числа: n — количество переменных, которые встречаются в формуле, и k — количество скобок ($1 \le n \le 300, 1 \le k \le 300$). Следующие k строк содержат описание скобок: количество термов ней s_i , после чего следуют описания термов. Каждый терм описывается одним целым числом: p > 0, что означает вхождение терма x_p , или q < 0, что соответствует терму $\overline{x_{-q}}$.

Формат выходного файла

Если формула безызбыточно удовлетворима, то выведите в первой строке выходного файла "YES". Вторая строка выходного файла должна содержать n чисел, каждое из которых либо 0, либо 1- значения x_1, x_2, \ldots, x_n .

Если же формула не является безызбыточно удовлетворимой, выведите "NO" в первой строке выходного файла.

Примеры

sat.in	sat.out
4 2	YES
3 1 2 -3	1 0 1 0
3 -1 3 4	
5 4	NO
3 1 2 3	
3 -1 4 5	
2 -2 -4	
2 -3 -5	