Модуль 1, задача 1

- 1. Проинтегрировать следующие линейные дифференциальные уравнения при заданных условиях $a_0y(a)+a_1y'(a)=a_2,\ b_0y(b)+b_1y'(b)=b_2$ и построить график функции y(x) на интервале [a,b]. Сделать проверку.
- 2. Проинтегрировать следующие линейные дифференциальные уравнения методом Галеркина при заданных условиях $a_0y(a) + a_1y'(a) = a_2$, $b_0y(b) + b_1y'(b) = b_2$.
- 3. Найти в каком приближении достигается погрешность $\varepsilon < 0.001$ между точным y(x) и приближенным решенем $y_i(x)$. Построить совмещенные графики функций y(x) и $y_i(x)$.

No	y(x)	a	b	a_0	a_1	a_2	b_0	b_1	b_2
1	$y'' + 4y = e^x$	1	3	-1	0	1	0	3	-4
2	$y'' + 9y = \cos 3x$	-2	1	0	2	5	-2	3	0
3	y'' - 4y = x	-1	1	1	3	0	1	0	2
4	y'' - 9y = sh3x	-2	0	3	0	1	0	1	-1
5	y'' - 3y' = x	0	2	0	-2	1	2	1	0
6	$y'' - 4y' + 4y = e^{2x}$	-4	-2	1	2	0	2	0	4
7	$y'' - 4y' + 5y = e^x$	-2	1	1	0	1	0	1	2
8	$y'' + 2y' + 2y = x^2$	1	4	0	2	1	2	1	0
9	$y'' + 2y' + y = e^{-x}$	-2	2	-1	3	0	3	0	-4
10	$y'' + 4y' + 4y = e^{-2x}$	0	2	-1	0	1	0	3	-4
11	$y'' + y' = e^{-x}$	-2	1	0	-2	3	-2	3	0
12	$y'' + 3y' + 2y = e^x$	-1	3	1	1	0	1	0	2
13	$y'' + y' - 2y = e^x$	-1	2	3	0	1	0	1	-4
14	y'' - y' - 2y = x	-3	2	0	-1	-1	2	1	0
15	$y'' - 2y' = e^{2x}$	0	2	-1	2	0	1	0	5
16	y'' + 2y = x	-2	1	1	0	1	0	1	-2
17	$y'' + 2y' + y = e^{-x}$	1	4	0	2	3	-2	1	0
18	$y'' - 3y' = e^{3x}$	0	2	-1	1	0	3	0	-1
19	$y'' - 2y' + 2y = \sin x$	1	2	-1	0	-1	0	3	-2
20	$y'' + 4y = \sin 2x$	-2	1	0	-2	-3	-2	1	0
21	y'' - 9y = sh x	-1	2	1	1	0	1	0	-4
22	$y'' + y' = x^2$	-3	-1	3	0	-1	0	1	2
23	$y'' + y' - 2y = e^{-x}$	-2	2	0	-1	1	2	1	0
24	$y'' - y' - 6y = e^{-x}$	-2	0	2	2	0	-1	0	3
25	y'' - y' = x	-1	1	1	0	1	0	-1	-2