

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ 1" ΣΕΙΡΑ ΓΡΑΠΤΩΝ ΑΣΚΗΣΕΩΝ

Ειρήνη Δόντη ΑΜ 03119839

9ο εξάμηνο

Αθήνα 2023

Δεδομένα:

 D_t : ζήτηση το μήνα t, με t=1, 2, ..., 12

Κόστος παραγωγής 1 τεμαχίου: 50 €

Κόστος μηνιαίας διατήρησης αποθέματος 1 τεμαχίου: 0.8 €

Κόστος αύξησης ρυθμού παραγωγής από τον μήνα t στον μήνα t+1: 1.3 € / τεμάχιο

Κόστος μείωσης ρυθμού παραγωγής από τον μήνα t στον μήνα t+1: 2 € / τεμάχιο

Παραγωγική δυναμικότητα: 1800 τεμάχια / μήνα

Κόστος υπερωριών: 2,5 € / τεμάχιο

Κόστος υποαπασχόλησης: 4 € / τεμάχιο

Πωλήσεις μήνα = Ζήτηση μήνα

Μεταβλητές απόφασης:

Χ_t: αριθμός τεμαχίων που παράγονται τον μήνα t

Ι: διαθέσιμο απόθεμα στο τέλος του μήνα t

 R_t : αύξηση ρυθμού παραγωγής τον μήνα $t (X_t - X_{t-1})$

 M_t : μείωση ρυθμού παραγωγής τον μήνα t $(X_{t\text{--}1}$ - $X_t)$

Οι: ποσότητα παραγωγής από υπερωρίες το μήνα t

U_t: ποσότητα παραγωγής από υποαπασχόληση το μήνα t

 C_t : κόστος για χαμένες πωλήσεις το μήνα t, στην περίπτωση αυτή είναι 0 για κάθε μήνα, καθώς οι πωλήσεις της επιχείρησης κάθε μήνα είναι σύμφωνες με τη ζήτηση τον υπό εξέταση μήνα.

Αρχικές Συνθήκες:

 $X_0 = 1600$ τεμάχια

 $I_0 = 700$ τεμάχια

Αντικειμενική Συνάρτηση προς Ελαχιστοποίηση:

$$\min \mathbf{Z} = 50 \sum_{t=1}^{12} X_t + 0.8 \sum_{t=1}^{12} I_t + 1.3 \sum_{t=1}^{12} R_t + 2 \sum_{t=1}^{12} M_t + 2.5 \sum_{t=1}^{12} O_t + 4 \sum_{t=1}^{12} U_t = 1.045.500,000$$

Περιορισμοί:

Για κάθε μήνα t:

Όλες οι μεταβλητές απόφασης πρέπει να έχουν μη αρνητική τιμή.

Πρέπει να ισχύει η εξής σχέση για την παραγωγή και τα αποθέματα μαζί, ώστε να καλύπτουν τη ζήτηση:

$$X_t + I_{t-1} - I_t \ge D_t$$
, $t = 1, 2, ..., 12$

Αν από τη μηνιαία παραγωγή αφαιρέσουμε τα τεμάχια από υπερωρίες και προσθέσουμε τα τεμάχια από υποαπασχόληση, το αποτέλεσμα πρέπει να είναι πάντα 1800 τεμάχια, δηλαδή:

$$X_t - O_t + U_t = 1800, t = 1, 2, ..., 12$$

Οπότε, αν $X_t > 1800$, τότε $O_t > 0$ και $U_t = 0$, ενώ όταν $X_t < 1800$, τότε $O_t = 0$ και $U_t > 0$.

Σε περίπτωση που μειώνεται η παραγωγή, δηλαδή όταν $X_t < X_{t\text{-}1}$, τότε $R_t = 0$ και $M_t > 0$, ενώ όταν η παραγωγή αυξάνεται, δηλαδή όταν $X_t > X_{t\text{-}1}$, τότε $R_t > 0$ και $M_t = 0$, τότε $X_t - X_{t\text{-}1} = R_t - M_t$, t = 1, 2, ..., 12

Επίλυση του Προβλήματος:

Χρησιμοποιούμε το περιβάλλον Excel, το οποίο είναι κατάλληλο για την επίλυση προβλημάτων γραμμικού προγραμματισμού. Η βέλτιστη (ελάχιστη) τιμή της αντικειμενικής συνάρτησης είναι: minZ = 1.045.500, 000\$

Παρακάτω, εμφανίζονται αναλυτικά τα αποτελέσματα από την εκτέλεση:

M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	
	0	0	0	0	0	0	0	0	0	0	0	0
01	02	О3	04	O5	06	07	08	09	010	011	012	
	0	0	0	0	0	0	0	0	0	0	0	0
U1	U2	U3	U4	U5	U6	U7	U8	U9	U10	U11	U12	
U1	U2 0	U3 0	U4 0	U5 0	U6 0	U7	U8	U9 0	U10 0	U11 0		750

Το αρχείο βρίσκεται μαζί με τη δοθείσα αναφορά στο τελικό αρχείο .zip.