Podstawy logiki i teorii mnogości

Ćw. 7

opracował: dr inż. Jakub Długosz

Celem ćwiczenia jest zaznajomienie z funkcjami oraz mocami zbiorów.

Zadanie 1

Sprawdź, które z poniższych funkcji są surjekcjami (funkcjami "na"), iniekcjami (funkcjami "w"), które z nich są różnowartościowe (1-1) oraz jeśli jest to możliwe wyznacz funkcję odwrotną:

- a) $f:\{1,2,3\} \rightarrow \{1,2,3\}$
 - f(1) = 2, f(2) = 3, f(3) = 1
- b) $g: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ g(1) = 2, g(2) = 3, g(3) = 2
- c) $h: \{..., -4, -2, 0, 2, 4, ...\} \rightarrow \{..., -3, -1, 1, 3, ...\}$ h(a) = a + 1
- d) $s: \mathbb{Z} \longrightarrow \{0, 1, 2\}$ s(a) = a % 3,

a%3 oznacza resztę z dzielenia liczby a przez 3.

Zadanie 2

Dla funkcji z zad. 1 wyznacz:

- a) $f \circ g$
- b) $g \circ f$.

Zadanie 3

Czy dla funkcji f i s z zad. 1 możemy określić $f \circ s$?

Zadanie 4

Niech $f, g: \mathbb{R} \to \mathbb{R}$ będą funkcjami określonymi następująco:

$$f(x) = 5x + 9$$
, $g(x) = -3x^2$. Czym są:

a)
$$f \circ g$$

b)
$$g \circ f$$

Zadanie 5

Uzasadnij, że zachodzą bądź nie zachodzą następujące relacje:

b)
$$\{1, 2\} \sim \{5, 12\}$$

c)
$$\{-3,4\} \sim \{5,12\}$$
 d) $\{5\} \sim \{5,12\}$

d)
$$\{5\} \sim \{5, 12\}$$

e)
$$\{..., -4, -2, 0, 2, 4, ...\} \sim \{..., -3, -1, 1, 3, ...\}$$
 f) $\{..., -4, -2, 0, 2, 4, ...\} \sim \{1, 2, 3, 4\}$

f)
$$\{..., -4, -2, 0, 2, 4, ...\} \sim \{1, 2, 3, 4\}$$

g)
$$\{..., -4, -2, 0, 2, 4, ...\} \sim \mathbb{N}$$

h)
$$\{..., -3, -1, 1, 3, ...\} \sim \mathbb{N}$$

Zadanie 6

Podaj wartości:

a)
$$\overline{\{1,2\}}$$

b)
$$\overline{\{1,2\}\backslash\{2\}}$$

c)
$$\overline{\{5, 12\}}$$

d)
$$\overline{\{-4, 2\} \cup \{5, 12\}}$$

e)
$$\overline{\overline{\emptyset}}$$

Zadanie 7

Czy między jakimiś zapisami podanymi w punktach a)–f) możemy postawić znak równości (=)? Jeśli tak, to wypisz wszystkie takie równości.

a)
$$\overline{\mathbb{R}}$$

b)
$$\overline{\overline{\mathbb{Z}}}$$

d)
$$\overline{\{1,2,3,\dots\}}$$

Zadanie 8

Podaj wartości:

a)
$$\aleph_0 + 3$$

b)
$$\aleph_0 + \aleph_0$$

f) $4 \cdot \aleph_0^3 + 5 \cdot \aleph_0 + 3$

d)
$$\aleph_0 \cdot \aleph_0$$

e)
$$\aleph_0^3$$

Zadanie 9

Niech m i n będą dwoma liczbami kardynalnymi. Co to znaczy, że:

b)
$$m \le n$$

Zadanie 10

Jak uzasadnić, że:

a)
$$\overline{\overline{(2,3)}} = \overline{\mathbb{R}}$$

b)
$$\overline{[2,3]} = \overline{\mathbb{R}}$$
 ?

Uwaga: Zamiast oznaczenia [2,3] stosuje się też oznaczenie <2,3>.