

Co - Host Utilities

India SMART UTILITY Week 2024

Supporting Ministries

Session: Climate Resilience of Future Grids

Topic: Climate Resilience in Distribution System

Presented By

ARVIND SINGH, CEO, TPCODL

Impact of Climate change on Distribution Sector

Major Climatic Changes

Types

Impact on Distribution Network

Storms / Cyclones, floods,

Kalbaisakhis (Nor' westers)

- Damage Distribution infrastructure, including poles, wires, substations, and distribution transformers
- Service disruptions and outages

TEMPERATURE EXTREMES

Higher ambient temperatures during heatwaves

- Strain power distribution equipment, increase electricity demand for cooling, and lead to thermal stress on assets
- Reduce the capacity and efficiency of power distribution equipment, such as transformers and switchgear
- Lead to de-rating, increased maintenance requirements, and decreased reliability of the power grid during periods of high demand

Addressing climate change threats through

Risk Assessment

Robust Engineering design

Grid modernization

Improved Emergency Response

Adequate Investment in Resilient System

Risk to Distribution Sector in Odisha due to Disaster

POWER SECTOR IMPORTANCE

- Critical infrastructure
- Growth is directly correlated with economic growth of country
- Disruption in power sector due to crisis/ disaster creates hardship to the human beings

Cyclones impacting Odisha in the past

Name of Cyclone	Occurence	Severity Class	Peak Wind Speed (kmph)
Sitrang	October, 2022	Tropical Storm	88
Asani	May, 2022	Severe Cyclonic Storm	100
Jawad	December, 2021	Cyclonic Storm	100
Gulab	September, 2021	Severe Cyclone	95
Yaas	May, 2021	Very Severe Cyclonic Storm	140
Amphan	May, 2020	Super Cyclonic Storm	120
Bulbul	November, 2019	Very Severe Cyclonic Storm	110
Fani	May, 2019	Extremely Severe Cyclonic Storm	200 – 215
Titli	October, 2018	Very Severe Cyclonic Storm	60 - 80
Phailin	October, 2014	Extremely Severe Cyclonic Storm	214
Hudhud	October, 2013	Extremely Severe Cyclonic Storm	180 – 190
Super Cyclone	October, 1999	Extremely Severe Cyclonic Storm	260 – 270

The impact of the cyclone & Flood brought into focus the need for disaster and climate resilient power infrastructure systems in Odisha

Infrastructure Redesign for Flood Protection

9 major river systems and their tributaries and distributaries

Heavy to very heavy rainfall in different parts of the Odisha State

- All districts received substantial rainfall due to Low pressure over Bay of Bengal and active Monsoon
- Heavy rainfall occurred in the upstream catchment area of river system
- Heavy rainfall also in downstream area of river caused flood in several districts in the state

Design Approach

- Installation of all electrical equipment higher than Higher Flood Level
- Distribution Transformers to be installed on elevated plinth
- Substation to be constructed above the road level and with proper drainage system

Wind Zoning Study in TPCODL

Study of Winds & local zones : A comprehensive study of the high intensity winds & effects on existing Poles & Lines has been carried out. Highest wind speed of 260Kmph was recorded by IMD in the coastal areas.

Historical data related to Cyclones/HIW, from IMD and other Govt. sources analyzed and divisions classified into following zones:

- a) Very High Intensity wind zone (0 60 KM from Coast): Wind speed 250 to 300kmph
- b) High Intensity wind zone (60 100 KM from Coast): Wind speed 200 to 250kmph
- c) Moderate Intensity wind zone (100 150 KM from Coast): Wind speed 140 to 200kmph

Distance from	Max.Wind Speed	Basic Wind	Wind	Design Wind Speed
Coastline (km)	recorded in this	Speed (Vb)	Parameters	(Vd) kmph
	Zone or beyond	kmph		Vb*k1*k2*k2*k3*k4
Upto 10	260	180		265.36
1020	260	180	k1=1.08	265.36
2030	260	180	k2=1.05	265.36
3040	260	180	k3=1.0	265.36
4050	260	180	k4=1.3	265.36
5060	260	180		265.36
6070	260	180		204.12
70100	203	180		204.12
70100	203	158.4	k1=1.08	179.63
100-150	140	180	k2=1.05	204.12
100-150	140	158.4	k3=1.0	179.63
150-175	100	180	k4=1.0	204.12
150-175	100	158.4		179.63
>175	100	158.4		179.63

Pole Design and Resiliency During Cyclone

STAAD Pro Analysis of existing Poles : All existing Poles are failing in Wind zone 1 (0-60 Kmph)

S No	Section	Height, mtr	Conductor		Zone (0 to 60 km)		Zone (60 km to 100 km)			
			Area, mm2	Dia mm	Span, mtr	Design wind pressure, N/m2	utilization ratio	Design wind pressure	Utilization ratio	Recommendations
1	ISMC 200 (H POLE)	9.2	100	12.78	40	3880.09	1.356	2933.91	0.891	-
2	ISMC 200 (H POLE)	9.2	232	19.7	50	3880.09	2.22	2933.91	1.2	ISMC 200 (H POLE) With 40M span
4	160 X 152, WPB	9.2	100	12.78	40	3880.09	5.235	2933.91	3.964	ISMC 200 (H POLE)
5	160 X 152, WPB	9.2	232	19.7	40	3880.09	6.316	2933.91	4.247	IISMC 200 (H POLE)
6	160X150, WPB	9.2	80	11.43	35	3880.09	3.8	2933.91	2.97	ISMC 200 (H POLE)
7	150X150, WPB	13	80	11.43	35	3880.09	8.09	2933.91	6.596	ISMC 200 (H POLE)

Rebar Lacing Pole: Cyclone Resilient & Cost Effective SMART UTILITY Week 2024

Rebar Lacing Pole for 11 & 33 KV lines: TPCODL has developed a Low Cost pole which can withstand winds upto 300Kmph. Depending upon the various applications & situations the span length can be 60 to 80 meter.

Type tested at CPRI lab: Pole was designed jointly with TCE, Fabricated locally in Odisha & Type tested in CPRI Bangalore.

Design: Simple design uses a box frame made of ISAs supported by MS rod welded connections from inside. It can be fabricated in one piece or two pieces. Uses suspension insulators.

Foundation: Foundation design can be selected based on soil condition. A prefab STUB will be buried / embedded in foundation & The RLP has detachable bolted connection with the STUB.

Composite Insulated Cross Arm (CICA): TPCODL has developed low cost Composite Insulated Cross Arm (which will be used on RLP & will help in improving the overall reliability to very high level.

Installation at Puri Konark Marine Drive along coastline

Disaster Preparedness

Ensuring resilience

reliability

electricity

and after

natural disasters

grid during

and

of the

Benefits of the **Initiatives** initiatives Critical electricity supply during **Backup Power Systems** outages caused by disasters Maintain essential services DG sets at Critical Installations Support emergency response efforts Minimize the impact on communities and critical infrastructure Rapid restoration of electricity service in affected areas **Mobile Substations and** Quick deployment for replacement of **Transformers** damaged infrastructure Faster recovery and reducing downtime for customers

- ✓ Building resilience
- ✓ Reducing vulnerability
- ✓ Enhancing the reliability
- ✓ Better prepared for response and recovery from disasters
- Safeguarding critical infrastructure against the impacts of extreme events

 Prepositioning at strategic locations for expedite response and restoration efforts following disasters

Undergrounding Distribution Lines

Major cause of damage to overhead distribution lines

Cyclonic wind speed exceed the wind speed for which towers/ poles are designed

Need for Underground Cables

Underground cables eliminates impact of high wind and direct lightning strikes

Way Forward

For uninterrupted power supply during cyclone or natural disasters

- 33kV and 11kV lines should be planned for underground cable system within 20km from coast line
- Critical links like hospitals, water supply system may be considered with (N-1) contingency level

Mix of network maintained as per specific site requirements

Advance Weather Forecasting: In-house Weather Dashboard Week 2024

Specific Radar covering 200-350 KM radius to monitor weather conditions

- In-house weather Portal for real time weather monitoring & warning is under development
- Installation of weather stations at Strategic locations across the discom area and establishing connectivity of all field devices to a central server where all weather data can be stored
- Locations have been identified for dedicated weather stations in TPCODL area for predicting disasters

Emergency Plans-Basis for Disaster Management

Elimination of Unsafe Situations & Acts

Robust Safety Management Process

Reduce Direct Economic Loss

Faster Restoration

Rationale

BUILD BACK BETTER

Reduce Damage to Critical Infrastructure

Availability & Access to Technology for Early Warning /Action for faster restoration

Mitigation & Disaster Resilient Network

SCADA, GIS, Satellite phones, Weather Stations, IMD

Emergency Plans-Disaster Management Structure at SMART UTILITY Week 2024 **TPCODL**

Emergency Plans-Institutional Structure

DISASTER MANAGEMENT CELL

- CHIEF INCIDENT CONTROLLER
- CORE ASSESMENT TEAM
- EMERGENCY MANAGEMENT TEAM
- EMERGENCY SUPPORT TEAM
- CIRCLE INCIDENT CONTROLLERS
- CENTRAL EMERGENCY CONTROL CENTRE
- CIRCLE EMERGENCY CONTROL CENTRE

- ✓ EMERGENCY RESTORATION SYSTEMS
- ✓ EMERGENCY STORES WITH PREIDENTIFED INVENTORY
- ✓ DISASTER T&P
- ✓ NORMAL & ALTERNATE LOCATIONS FOR CONTROL CENTRES
- ✓ COMMUNICATION PLAN FOR CONSUMERS
- ✓ TRANSPORATATION ,STAY,FOOD ,MEDICAL ,SECURITY INCHARGES FOR EACH CIRCLE
- ✓ ENGAGEMENT OF LOCAL SKILLED AND UNSKILLED WORKFORCE
- ✓ TIE UP WITH VARIOUS BUSINESS ASSOCIATES
- ✓ ARRANGEMENT FOR MANPOWER FROM OTHER DISCOMS FOR COORDINATED AND COLLABORATIVE EFFORTS

Emergency Plans-Technology As A Enabler

<u>Communications Technology</u> - IT, GIS, Early Warning Systems, Efficient Information Dissemination, Digital Command Centre

<u>Power System Control Centre (PSCC)</u> - Centralized Monitoring & Control of Power Supply across the Discom. It also acts as Central Emergency Control Centre (CECC) during Disasters

<u>Supervisory Control & Data Acquisition System (SCADA)</u> - Real Time Visibility and Control of the Network

Weather Stations - Integration of Weather Stations to SCADA for Weather Info

<u>Geographical Information System (GIS)</u> - Mapping of Electrical Assets on Geographical Land base, Optimum Placement of Crew, Damage Assessment. Integration of GIS with Weather Information for Real Time Visibility of Area Affected

Satellite Phones - At Critical Locations for uninterrupted Communication

SAP CRM - For Customer Information and Customer Management

Emergency Plans-Technology As A Enabler -SCADA-Real Time Monitoring

TPCODL

KALABAISAKHI -BCDD-1 BCDD-1 (MW) 27.86MW

TP CENTRAL ODISHA DISTRIBUTION LIMITED 33kV INC PTR 11kV INC

	TOTAL	IN SERVICE	OUT OF SERVICE
33kV LINES	28	20	8
11kV I/C	21	21	0
11kV FDR	68	67	1

Emergency Plans-Technology As A Enabler -SCADA-Real Time Monitoring

Emergency Plans-Men & Material Deployment using GIS

Leveraging web based solution for likely to be affected sections on GIS platform for better Men & Material Deployment.

- 1. Basis on the alert and trajectory shared on the weather web plugin, highlight the likely to be affected sections.
- 2. Using the distance of the section from the coast line and estimated wind speed, plot the severity of the impact on the GIS
- 3. Deploy the Men & Material as per the severity of the impact in the identified sections.

Investment in Emergency Equipment and Reserves

Rs. 135 Cr

All 4 Discoms

For maintaining inventory for materials for restoration of distribution network during natural disasters

Inventory to be located

TPWODL

Plan for cyclical stock build up at strategic location – Due to Low incidences of Cyclones at TPWODL

THANK YOU

For discussions/suggestions/queries email: isuw@isuw.in

visit: www.isuw.in

Links/References (If any)