

wf_inputs _synchroniser Responsible for the synchronization of:

- The WISHBONE control signals with the wb_clk
- The FIELDRIVE signals with the uclk
- o The WorldFIP settings and General signals with uclk
- o The User Interface, NON WISHBONE signals with the uclk

Clocks & Resets

Crossing clock domains only through the Dual Port RAM

- WISHBONE reset : resets only WISHBONE logic
- o nFIP internal reset: resets all the rest

Counter of transmission periods

- $\circ \, \mathsf{FD_TXCK}$
- o tx_clk_p_buff

wf_tx_rx_osc orx_osc

- o significant edge window
- o adjacent bits transition window

Starts counting after a falling edge on the fd_rxd.

Starting from this edge, other falling or rising significant edges, are expected around one reception period later. A time window around the expected arrival time is set and its length is defined as 1/4th of the period. When the actual edge arrives, the counter is reset.

o sample_manch_bit_p

o sample bit p

sample_manch_clock: is inverted on each significant edge & between adjacent bits sample_bit_clock : is inverted only between adjacent bits

The significant edges are normally expected inside the signif_edge_window. In the cases of a code violation (V+ or V-) no edge will arrive in this window. In this situation rx_manch_clk is inverted right after the end of the signif_edge_window.

Edges between adjacent bits are expected inside the adjac_bits_window; if they do not arrive the rx_manch_clk and rx_bit_clk are inverted right after the end of the adjac bits window.

nanoFIP reset inputs:

- o Power On Reset
- $\circ \ User \ Interface \ General \ signal \ RSTIN$
- Reset variable from FIELDRIVE
- \circ Reset to the WISHBONE logic

wf_reset _unit

nanoFIP reset inputs:

- o Power On Reset
- o User Interface General signal RSTIN
- Reset variable from FIELDRIVE
- o Reset to the WISHBONE logic

Outputs of this unit:

- o nanoFIP internal reset
- ○FIELDRIVE reset
- o user reset RSTON

nanoFIP reset inputs:

- o Power On Reset
- o User Interface General signal RSTIN
- Reset variable from FIELDRIVE
- o Reset to the WISHBONE logic

wf_reset _unit

Outputs of this unit:

o nanoFIP internal reset

oFIELDRIVE reset

o user reset RSTON

- o Power On Reset
- o User Interface General signal RSTIN
- Reset variable from FIELDRIVE
- Reset to the WISHBONE logic

wf_reset _unit

Outputs of this unit:

o nanoFIP internal reset

oFIELDRIVE reset

o user reset RSTON

→ from_RSTIN OR from_var_rst OR from_PoR

→ from_RSTIN OR from_var_rst OR from_PoR

from_var_rst

hdl files : http://www.ohwr.org/projects/cern-fip/repository/show/trunk/hdl/design

Actel .prj : http://www.ohwr.org/projects/cern-fip/repository/changes/trunk/hdl/cad/libero/NanoFip/NanoFip.prj

 $Simulation: {\tt http://www.ohwr.org/projects/cern-fip/repository/changes/trunk/software/cadence_IUS/sim.tcl}$

