

Thesis submitted to obtain the title of Doctor of Philosophy

Doctoral School of Engineering Science Field: Computer Science

Real-time Soft Tissue Modelling on GPU for Medical Simulation

Prepared by Olivier COMAS at INRIA Lille, SHAMAN Team and CSIRO ICT Brisbane, EAHRC

 DRAFT - Fri 16^{th} of July 2010 at $10{:}37$

Jury:

Reviewers: Bernard - INRIA (Shaman)

Bernard - INRIA (Shaman)

Advisor:Stéphane COTIN- INRIA (Shaman)President:Bernard- INRIA (Shaman)Examinators:Bernard- INRIA (Shaman)

Bernard - INRIA (Shaman)

Contents

C	ontei	its	j
Ι	\mathbf{Int}	roduction	1
1	Me	dical simulation	3
	1.1	General context and goal: medical training, patient-specific planning and per-operative guidance	3
	1.2	Challenges (trade-off between accuracy and real-time)	3
2	One	e key point in medical simulation: soft-tissue modelling	5
	2.1	Necessary background in continuum mechanics	5
		2.1.1 Deformation tensor and strain tensor	5
		2.1.2 Stress and constitutive laws	5
	2.2	Tissue characterisation	5
		anisotropic)	5
		2.2.2 Measure/estimation of model parameters	5
3	Ma	in principles of Finite Element Method (or how to solve equa-	
	tion	ns of continuum mechanics from previous section)	7
	3.1	Discretisation	7
	3.2	Derivation of element equations	7
	3.3	Assembly of element equations	7
	3.4	Solution of global problem	7
II	So	olid organs modelling	9
4	Sta	te of art: FEM	11
5	Lin	${ m ear}$ not accurate $=>$ Non-linear FEM $=>$ Introduction of	f
	TLI	$\mathbf{E}\mathbf{D}$	13
	5.1	Differences with classic FEM and reasons of its efficiency	13
	5.2	Visco-elasticity and anisotropy added (MICCAI 2008; MedIA 2009) .	13
6	GP	U implementation of TLED	15
	6.1	What is GPGPU	15
	6.2	Re-formulation of the algorithm for its Cg implementation	15
	6.3	CUDA implementation/optimisations (ISBMS 2008a)	15

ii Contents

7	Implementation in SOFA 7.1 Presentation of SOFA project and architecture	1 7 17 17	
II	Hollow organs modelling	19	
8	State of art: hollow structures 8.1 Non-physic approaches (computer graphics stuff)	21 21 21	
9	Colonoscopy simulator project 9.1 Project introduction	23 23 23	
10	More accurate: a co-rotational triangular shell model (ISBMS 2010) 10.1 Model description	25 25 25 25	
11	Shell meshing' technique (MICCAI 2010) 11.1 State of art: reconstruction/simplification	27 27 27	
12	Applications to medical simulation 12.1 Nice medical stuff to show	29 29 29	
IV	Conclusion	31	
Re	References		

Part I

Introduction

Otaly

MEDICAL SIMULATION

- 1.1 General context and goal: medical training, patientspecific planning and per-operative guidance
- 1.2 Challenges (trade-off between accuracy and real-time)

ONE KEY POINT IN MEDICAL SIMULATION: SOFT-TISSUE MODELLING

- 2.1 Necessary background in continuum mechanics
- 2.1.1 Deformation tensor and strain tensor
- 2.1.2 Stress and constitutive laws
- 2.2 Tissue characterisation
- 2.2.1 Material models for organs (non-linear, visco-elastic and anisotropic)
- 2.2.2 Measure/estimation of model parameters

MAIN PRINCIPLES OF FINITE ELEMENT METHOD (OR HOW TO SOLVE EQUATIONS OF CONTINUUM MECHANICS FROM PREVIOUS SECTION)

- 3.1 Discretisation
- 3.2 Derivation of element equations
- 3.3 Assembly of element equations
- 3.4 Solution of global problem

Part II

Solid organs modelling

STATE OF ART: FEM

Orall Jersjon

LINEAR NOT ACCURATE => NON-LINEAR FEM => INTRODUCTION OF TLED

- 5.1 Differences with classic FEM and reasons of its efficiency
- 5.2 Visco-elasticity and anisotropy added (MICCAI 2008; MedIA 2009)

GPU IMPLEMENTATION OF TLED

- 6.1 What is GPGPU
- 6.2 Re-formulation of the algorithm for its Cg implementation
- 6.3 CUDA implementation/optimisations (ISBMS 2008a)

IMPLEMENTATION IN SOFA

- 7.1 Presentation of SOFA project and architecture
- 7.2 Implementation in SOFA and TLED released in open-source

Dr. alt Jerejon

Part III

Hollow organs modelling

STATE OF ART: HOLLOW STRUCTURES

- 8.1 Non-physic approaches (computer graphics stuff)
- 8.2 Physically accurate approches (plates/shells)

$_{\text{CHAPTER}}\,9$

COLONOSCOPY SIMULATOR PROJECT

- 9.1 Project introduction
- 9.2 Mass-spring model for colon implemented on GPU (ISBMS 2008b)

MORE ACCURATE: A CO-ROTATIONAL TRIANGULAR SHELL MODEL (ISBMS 2010)

- 10.1 Model description
- 10.2 Validation
- 10.3 Application to implant deployment simulation in cataract surgery

'SHELL MESHING' TECHNIQUE

(MICCAI 2010)

- 11.1 State of art: reconstruction/simplification
- 11.2 Our method

Orall Jerejoil

APPLICATIONS TO MEDICAL SIMULATION

- 12.1 Nice medical stuff to show
- 12.2 Interaction solid/hollow organs

Orall Jersjoth

Part IV

Conclusion

Ordin

References

Orall Jerejoin