Modélisation du système manguier – cécidomyies des fleurs pour une évaluation de modes de gestion du ravageur et de ses dégâts

Bastien Reyné

Encadrants

Isabelle Grechi

UPR HortSys

Frédéric Boudon équipe M2P2 (UMR AGAP)

Responsables pédagogiques

Xavier Bry

FDS

Corinne Janicot

IAF

Problématique

Le manguier est arbre fruitier qui présente de forts asynchronismes phénologiques.

ightarrow Favorise la prolifération des ravageurs

Figure 1: Un manguier 1

¹photo : I. Grechi

²photo : A. Franck

Problématique

Le manguier est arbre fruitier qui présente de forts asynchronismes phénologiques.

ightarrow Favorise la prolifération des ravageurs

ightarrow S'attaque aux inflorescences

Figure 1: Un manguier 1

Figure 2: Une cécidomyie des fleurs²

¹photo : I. Grechi

²photo : A. Franck

Objectif

Établir un modèle décrivant la dynamique de population de cécidomyies des fleurs en fonction de la dynamique de population d'inflorescences.

Connaissances

Figure 3: Une inflorescence de manguier (photo : F. Normand)

Figure 4: Les stades phénologiques C à F d'une inflorescence de manguier (photos : F. Normand)

Connaissances

Figure 5: Représentation du cycle de développement de la cécidomyie des fleurs du manguier.

Expérimentation

Figure 6: Description du dispositif mis en place sur les parcelles expérimentales

Données disponibles

Figure 7: Dynamiques de larves et d'inflorescences pour chacun des deux vergers

Objectif: Décrire la dynamique de population de cécidomyie des fleurs à l'intérieur d'un verger.

Entrée : Dynamiques d'inflorescences

Sortie : Dynamiques de cécidomyies (larves et adultes)

F_i

SOL

Figure 8: Schéma conceptuel du modèle pour la sous-parcelle *i*. En bleu est visible la date.

SOL

Figure 8: Schéma conceptuel du modèle pour la sous-parcelle *i*. En bleu est visible la date.

Figure 8: Schéma conceptuel du modèle pour la sous-parcelle *i*. En bleu est visible la date.

Figure 8: Schéma conceptuel du modèle pour la sous-parcelle *i*. En bleu est visible la date.

Figure 8: Schéma conceptuel du modèle pour la sous-parcelle *i*. En bleu est visible la date.

Figure 8: Schéma conceptuel du modèle pour la sous-parcelle *i*. En bleu est visible la date.

Figure 8: Schéma conceptuel du modèle pour la sous-parcelle *i*. En bleu est visible la date.

Paramètres

Paramètres issus de la littérature

Paramètre SR	Définition Sex-ratio	Valeur 0.5
p _p	Probabilité pour une larve d'entrer en phase de pupaison et d'y	\sim 0.77
d_ℓ	survivre Durée (en jours) de la période entre la ponte et l'apparition du	7 à 12
u _ℓ	troisième stade de développement larvaire	
d_{p}	Durée (en jours) de la phase de pupaison	4 à 6

Paramètres

Paramètres à calibrer

Paramètre γ	Définition Paramètre régulant l'arrivée des individus exogènes au verger	Valeur [0; 1]
p _m	Paramètre régulant l'intensité des échanges entre sous-parcelles	[0; 1]
μ_{ER}	Probabilité de survie à la modalité de couverture du sol de la sous- parcelle ER	[0; 1]
μ EH	Probabilité de survie à la modalité de couverture du sol de la sous- parcelle EH	[0; 1]
k	Paramètre quantifiant le nombre de femelles que peut accueillir une inflorescence chaque jour	[0.01; 10]
stock	Nombre d'individus entrés en diapause les années précédentes qui émergent l'année considérée	[500; 20000]
$E_0\mu_\ell$	Nombre d'œufs pondus qui arrivent jusqu'au troisième stade larvaire	[1; 11]

Fonction de coût

Évaluer la qualité de la calibration

Comparer les dynamiques de larves observées avec les dynamiques de larves estimées

Fonction de coût utilisée :

$$f(y, \hat{y}) = \frac{\sqrt{\frac{1}{n-1} \sum_{j=2}^{n} \left(y_{j}^{*} - \hat{y}_{j}^{*}\right)^{2}}}{\max_{j}(y_{j}^{*}) - \min_{j}(y_{j}^{*})},$$

où

$$y_j^* = y_{tj},$$
 et $\hat{y}_j^* = \frac{1}{t^j - t^{j-1}} \sum_{k=t^{j-1}}^{t^j} \hat{y}_k,$

avec t^{j} , le nombre de jours entre la première observation et le $j^{\text{ème}}$ relevé.

Figure 9: Schéma illustrant le fonctionnement de la fonction objectif.

Fonction de coût

NB : On n'utilisera que le premier verger pour la calibration ; le second servira à la validation.

Algorithme d'optimisation

Algorithme choisi : NSGA-II

Algorithme multicritères

Nous avons trois critères

Sous-ensemble du front de Pareto

Algorithme d'optimisation

Algorithme choisi : NSGA-II

Algorithme multicritères

Nous avons trois critères

Sous-ensemble du front de Pareto

Algorithme génétique

Les nouveaux jeux de paramètres sont obtenus par :

- croisement de solutions existantes
- mutation de certaines coordonnées

Choix des solutions

Il faut choisir une solution parmi un sous-ensemble du front de Pareto.

Regrouper les solutions semblables.

Hypothèse : Si deux jeux de paramètres sont proches, alors les solutions produites seront semblables.

- Effectuer une Classification Ascendante Hiérarchique sur les jeux de paramètres renvoyés par NSGA-II pour trouver différentes classes de solutions
- Explorer les classes de solutions pour identifier les solutions pertinentes

Mise en œuvre

- \longrightarrow Modèle

Résultats

Prise en compte de la température

Stade phénologique des inflorescences

Stade phénologique des inflorescences

Paramètre de saisonnalité

Paramètre de saisonnalité

Paramètre de saisonnalité

Conclusion

À partir des connaissances issues de la littérature et de données acquises sur le terrain, un modèle a pu être établi.

Le modèle a permi de tester des hypothèses.

Le modèle semble montrer qu'un phénomène se produit en fin de saison.

Perspectives pour de nouvelles expérimentations

Merci de votre attention!