1

GATE CH-23 44

EE23BTECH11011- Batchu Ishitha*

Q: A cascade control strategy is shown in the figure below. The transfer function between the output (y) and the secondary disturbance (d_2) is defined as

$$G_{d2}(s) = \frac{y(s)}{d_2(s)}$$

Which one of the following is the CORRECT expression for the transfer function $G_{d2}(s)$?

Fig. 0.

A.
$$\frac{1}{(11s+21)(0.1s+1)}$$

B.
$$\frac{1}{(s+1)(0.1s+1)}$$

C.
$$\frac{(s+1)}{(s+2)(0.1s+1)}$$

D.
$$\frac{(s+1)}{(s+1)(0.1s+1)}$$

Solution:

Variable	Description	
$d_1(s)$	Primary disturbance	
$d_2(s)$	Secondary disturbance	
$G_{d2}(s)$	Transfer function between $y(s)$ and $d_2(s)$	
$y_{set}(s)$	Set point for desired output	
y(s)	Output	

TABLE 4
INPUT PARAMETERS

Variable	Description	value	
P_1	Forward path gain e-c-d	$\frac{1}{(0.1s+1)(s+1)}$	
Δ_1	Determinant of forward path e-c-d	1	
Δ	Determinant of system	$1 + \frac{10}{s+1} + 10$	
n	Number of forward path	1	
TABLE 4			

DEFINED PARAMETERS

Fig. 4. signal flow graph

Using Mason's Gain formula for the above Signal flow graph,

$$G_{d2}(s) = \frac{y(s)}{d_2(s)} = \frac{\sum_{i=1}^n P_i \Delta_i}{\Delta}$$
 (1)

$$=\frac{P_1\Delta_1}{\Delta}\tag{2}$$

$$=\frac{\frac{1}{(0.1s+1)(s+1)}}{1+\frac{10}{s+1}+10} \tag{3}$$

$$=\frac{\frac{1}{(0.1s+1)(s+1)}}{\frac{11s+21}{s+1}}\tag{4}$$

$$= \frac{\frac{1}{(0.1s+1)(s+1)}}{\frac{11s+21}{s+1}}$$

$$\implies G_{d2}(s) = \frac{1}{(11s+21)(0.1s+1)}$$
(5)

Now taking the inverse laplace transform we have,

$$G_{d2}(t) = \mathcal{L}^{-1}\left(\frac{10}{(s+10)(11s+21)}\right) \tag{6}$$

$$= \mathcal{L}^{-1} \left(\frac{-10}{89(x+10)} + \frac{110}{89(11x+21)} \right) \tag{7}$$

$$=\frac{-10e^{-10t}}{89} + \frac{10e^{\frac{-21t}{11}}}{89} \tag{8}$$

$$=\frac{10\left(e^{\frac{-21t}{11}}-e^{-10t}\right)}{89}\tag{9}$$

Fig. 4.