1 7th of December 2018 — F. Poloni

In this lecture we are interested in using Arnoldi method to solve linear systems.

We can use the *sparse eigenvalues funtion* that we saw in last lecture and the **G**eneralized Minimum **RES**idual (GMRES).

Our task is to approximate the solution of a large-scale linear system of the form Ax = b and our approach is to look for "the closest thing to solution" inside $K_n(A, b)$.

Through Arnoldi of A, b and n, we obtained [Q, H] and we can approximate the solution x as $Q_1y_1 + Q_2y_2 + \cdots + Q_ny_n = Qy$, which is a good approximation of the solution inside $K_n(A, b)$, formally

$$\min_{x \in K_n(A,b)} ||Ax - b||, \ x = Q_n y.$$

which is equivalent to $\min_{y \in \mathbb{R}^n} ||AQ_n y - b||$.

We can perform some more reductions and:

$$||AQ_{n}y - b|| \stackrel{\text{(1)}}{=} ||Q_{n+1}\underline{H}_{n}y - b||$$

$$\stackrel{\text{(2)}}{=} ||Q_{n+1}\underline{H}_{n}y - Q_{n+1}||b|| e_{1}||$$

$$= ||Q_{n+1}(\underline{H}_{n}y - ||b|| e_{1})||$$

$$\stackrel{\text{(3)}}{=} ||\underline{H}_{n}y - ||b|| e_{1}||.$$

$$(1.1)$$

where $\stackrel{\text{(1)}}{=}$ is due to the equivalence $AQ_n = Q_{n+1}H_n$, with $H_n \in M(n+1,n)$, $\stackrel{\text{(2)}}{=}$ follows from the fact that $q_1 = \frac{b}{\|b\|}$ and $\stackrel{\text{(3)}}{=}$ is explained recalling that Q_{n+1} is an orthogonal rectangular matrix in M(mn+1) and $\|z\| = \|Q_{n+1}z\|$, since $z^Tz = z^TQ_{n+1}^TQ_{n+1}z$.

We got a LS problem of size $(n+1) \times n$ (small), where $y \in \mathbb{R}^n$ and $e_1 \in \mathbb{R}^{n+1}$; moreover \underline{H} has the following shape

hence it is quite sparse.

qr(H) can be computed in $O(n^2)$ using the fact that H is 'almost triangular' (Hessenberg matrix), although it is not a big optimization, since n Arnoldi steps need to be computed first.

Notice that instead of doing a QR at the end, we can compute QRs of $\underline{H}_1, \underline{H}_2, \ldots$ and update them at each step. This allows us to compute at each step a residual $||Ax_n - b||$ that we can use as stopping criterion.

Something on Matlab ...

Matlab has gmres(A, b) (and Python has scipy.sparse.linalg.gmres).

To estimate the convergence of GMRES we can see x as a plynomial (x = p(A)b, such that $p(t) = \alpha_0 + \alpha_1 t + \cdots + \alpha_{n-1} t^{n-1}$ is a polynomial of degree n-1).

As far as the residual is concerned $Ax - b = Ap(A)b - b = A(\alpha_0 I + \alpha_1 A + \dots + \alpha_{n-1} A^{n-1})b - b = q(A)b$, where q(t) = tp(t) - 1. If $A = V\Lambda V^{-1}$ diagonalizable, then:

$$A^{k} = V \begin{bmatrix} \lambda_{1}^{k} & & & \\ & \ddots & & \\ & & \lambda_{m}^{k} \end{bmatrix} V^{-1} \text{ and } q(A) = V \begin{bmatrix} q(\lambda_{1}) & & & \\ & \ddots & & \\ & & q(\lambda_{m}) \end{bmatrix} V^{-1}$$

All this computation was needed to write the residual GMRES in a clearer form:

$$\min_{x \in K_{n}(A,b)} ||Ax - b|| = \min_{\substack{q(x) = xp(x) - 1 \\ \text{of degree} \leq n}} ||Ap(A)b - b||$$

$$= \min_{\substack{q(x) = xp(x) - 1 \\ \text{of degree} \leq n}} ||q(A)b||$$

$$\leq (\min_{x \in K_{n}(A,b)} ||q(A)|| ||b||$$

$$= \min_{x \in K_{n}(A,b)} ||q(A)||$$

$$= \min_{x \in K_{n}(A,b)} ||$$

If A has very few distinct eigenvalues ($k \leq n$ of them), then we can find q such that $q(\lambda_i) = 0$ for all i and q(0) = -1, hence n steps of GMRES give us the exact solution.

If A has eigenvalues clustered in n points in the plane, we can find a polynomial q such that $q(\lambda_i)$ is small for all i.

Notice that Gauss operations on the rows of any matrix A (e.g. swapping rows or scalar multiplication of a row) change its eigenvalues, without changing the solution.

More generally, given $P \in M(n, \mathbb{R})$ we can change the problem Ax = b to PAx = Pb. If P is invertible, the two systems have the same solution. However, the spectrum of PA may be much better (in the above sense) than the spectrum of A, leading to a faster solution with GMRES.

FIGURE 1.1: In this picture the eigenvalues are clustered around P_1, P_2, P_3 and P_4 . We can find a polynomial q such that $q(\text{red points}) \approx 0$.

In particular, this happens if we manage to find $P \approx A^{-1}$. The perfect choice would be $P = A^{-1}$, but, of course, if we knew A^{-1} we would already have a way to solve linear systems: just compute the matrix multiplication $A^{-1}b$.

There are various techniques (often problem-dependent) to build effective preconditioners P. One comes from approximate LU factorizations of A (in a suitable sense); they are known as $incomplete\ LU$ preconditioners.