What is a "generative model"?

- Discriminative
 - Logistic Regression
 - Support Vector Machines
 - Random Forests

- Generative
 - Gaussian Naïve Bayes
 - Variational Autoencoders
 - Adversarial Networks

P(X, Y) and P(Y)

Generative Models

generated distribution frue data distribution p(x) loss image space

Generative Models

Generative Models

- Learning a distribution or manifold
 - Statistical notion of how the data were generated
- P(X) asks: how *likely* is the data point X?
 - If likely -> X was generated by this process
- Compare to P(Y), which asks: how likely is the label?
 - If likely -> X has label Y

Probabilistic Graphical Models

 Arrows represent conditional dependencies between random variables

 $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | \text{parents}_i)$

P(A, B, C, D) = P(A)P(B)P(C, D|A, B)

- Structure is used in generative models
 - Latent generating distribution (hidden)
 - Observed variables (influenced by latent vars)

Variational Inference

- What is variational inference?
- Good for learning latent variable models (i.e., generating distributions of data)
- For each observation x we assign a hidden variable z; our model p describes the joint distribution between x and z

Of course these are the things we want to calculate

- Inference is p(z|x)
- Learning involves p(x)

 $p_{\theta}(z)$ is very easy \mathfrak{S} , $p_{\theta}(x|z)$ is easy \mathfrak{S} , $p_{\theta}(x,z)$ is easy \mathfrak{S} , $p_{\theta}(x,z)$ is easy \mathfrak{S} , $p_{\theta}(x)$ is super-hard \mathfrak{S} , $p_{\theta}(z|x)$ is mega-hard \mathfrak{S}

Variational Inference

- Rather than learning p(z|x) directly, variational inference approximates with q(z|x)
- Maximize the evidence lower bound (ELBO)

$$ELBO(\theta, \psi) = \sum_{n} \log p(x_n) - KL \left[q_{\psi}(z|x_n) || p_{\theta}(z|x_n) \right]$$

This can be written in terms of the "friendly" emojis

$$p_{\theta}(z)$$
 is very easy \mathfrak{S} , $p_{\theta}(x|z)$ is easy \mathfrak{S} , $p_{\theta}(x,z)$ is easy \mathfrak{S} , $p_{\theta}(x,z)$ is super-hard \mathfrak{S} , $p_{\theta}(z|x)$ is mega-hard \mathfrak{S} , $p_{\theta}(z|x)$ is mega-hard \mathfrak{S} , $p_{\theta}(z|x)$ is mega-hard \mathfrak{S}

Recall: Autoencoders

latent vector / variables

Denoising Autoencoders

• Define a corruption process, C

- Autoencoder learns a reconstruction distribution $p_{!"\#\$\%\&'!(\#')}(x \mid x\#)$
- 1. Sample a training example x
- 2. Sample a corrupted version *x*#from *C*
- 3. Use (x, x#) as a training pair

Denoising Autoencoders

• De-corruption process results in learning a distribution

Variational Autoencoders (VAEs)

- Associated with autoencoders by virtue of architecture
 - Goal is to map inputs to latent space
- Encoder: Learn parameters of variational distribution, $q(z \mid x)$
- Decoder: Sample (generate!) from learned distribution to reconstruct input

Restricted Boltzmann Machines (RBMs)

- Wholly undirected deep network
 - Implementation of a probabilistic graphical model
 - Each variable conditionally independent given neighboring nodes
- Parameterized by energy function

$$\begin{split} P\left(\boldsymbol{v},\boldsymbol{h}^{(1)},\boldsymbol{h}^{(2)},\boldsymbol{h}^{(3)}\right) = &\frac{1}{Z(\boldsymbol{\theta})}\exp\left(-E(\boldsymbol{v},\boldsymbol{h}^{(1)},\boldsymbol{h}^{(2)},\boldsymbol{h}^{(3)};\boldsymbol{\theta})\right) \\ \text{hard, but training is paradoxically} \\ \text{easy} \end{split}$$

Deep Belief Nets (DBNs)

- Connections between layers, but not units within a layer
- Arguably one of the first successful applications of modern deep learning
 - Hinton 2006 and 2007
- Often built from an RBM template
- Training is nearly intractable
 - Posterior has to be approximated through annealed importance sampling (AIS)

Generative Adversarial Networks (GANs)

- Game-theoretic approach to generative modeling
- Two deep networks: a **generator** (G) and **discriminator** (D)

- Generator
- Input: a random vector z
- Output: something as close to a "real" data point as possible
- Discriminator
- Input: a "real" data point OR a synthetic example from *G*
- Output: 1 or 0 (real or fake)

- Minimax "game"
 - Generator and Discriminator have competing objectives
 - Goal is to find an equilibrium point

$$\min_{G} \max_{D} \mathbb{E}_{x \sim P_{real}} \log D(x) - \mathbb{E}_{z} \log(1 - D(G(z)))$$

Maximize the Discriminator's likelihood of identifying a real data example

Minimize the Discriminator's ability to differentiate real data from Generator examplars

VAEs versus GANs

VAEs
Expectation over
learned
distribution results
in blurring

GANs
Samples from learned
distribution, resulting
in sharper images

Autoregressive (AR) Models

- DALLE-1, in January 2021, was an autoregressive Transformer
- Our good friends, Thing 1 and Thing 2 Appearance and State

$$\begin{cases} y_t = Cx_t + u_t \\ x_t = Ax_{t-1} + Wv_t \end{cases}$$

• Once you've learned A_i , you can generate new x_t !

Latent Diffusion

- Closely related to VAEs, normalizing flows, and energy-based models
- Hard to convert noise into structured data
- Easy to convert structured data into noise

Latent Diffusion

- Similar to hierarchical VAE
 - BUT all latent states have same dimensionality as input
 - BUT encoder is a linear Gaussian model, rather than being learned
- Results in a very simple objective
 - No risk of posterior collapse (unlike GANs)
- Numerous variations of LD
 - Denoising Diffusion Probabilistic Models (DDPM)
 - Noise-conditioned Score Networks (NCSN)
 - Stochastic Differential Equations (SDE)

Large Language Models (LLMs)

- Not unique generative models *per se*
 - LLMs = very, very large Transformers
 - Usually with autoregressive blocks at inference / decoding
 - Trained on city blocks' worth of GPUs
- Sometimes called "Foundation Models"
 - "Foundation Models" are only found on Terminus; elsewhere in the galaxy, they're just "Sparkling Language Models"

Probably screaming into the void here, but...

- There's AI, and there's AI
- Al
 - Large language or image models
 - Trained on massive amounts of data with large numbers of parameters
 - Does a frighteningly good job of mimicking humans at very specific tasks
 - Not intelligent
- Al
 - Intelligence that isn't human but made by humans, aka artificial
 - Mimics humans very well at all possible tasks, even those it wasn't trained on
 - Nowhere in the 5-10 year roadmap

DALL-E, Midjourney, Stable Diffusion, Firefly

- Corporate backed text-to-image generators
- Subscription fees
- Open source options
- Training data

Evolution of Image generators

- DALL-E
- "a muscular barbarian with weapons beside a CRT television set, cinematic, 8K, studio lighting."
- April 2022
- October 2023

GPT-4

Powers ChatGPT

"Attention is All You Need", 2017

- A "Transformer-style model pre-trained to predict the next token in a document, using both publicly available data (such as internet data) and data licensed from third-party providers."
- "The model was then fine-tuned using Reinforcement Learning from Human Feedback (RLHF)."

 "Deep reinforcement learning from human preferences", 2017
- Several thousand GPUs + petabytes of data = ChatGPT

PaLM, Cerebras, LlaMA, Falcon, OpenHermes

- Similar underlying architecture to ChatGPT
- Billions (to trillions?) of parameters
 - GPT-4 rumored to have ~2T parameters (source: SoC Day keynote speaker)
- Billions to trillions of training tokens
 - PaLM 2 and LLaMA 2: 3.6T and 2T, respectively
- Varying levels of openness
 - Some pre-trained models on Huggingface
 - An open LLM + RLHF (reinforcement learning from human feedback) + RLAIF (reinforcement learning from AI feedback) + DPO (direct preference optimization) = best bang for buck, outside of ChatGPT or similar

Advantages of Generative Al

- Already legion!
- Democratize access to art and figure generation
- Interactive, natural-language interfaces
 - As opposed to arcane tricks and query optimization hacks with traditional search engines
- Revealed clear weaknesses in our assessment protocols
 - Educational assessment (i.e., grading) should not be contingent on whether or not you had access to a chatbot

Advantages of Generative Al

- New scientific discoveries around medicine, biology, chemistry, and biochemistry
- Design new compounds (drugs, antibiotics, treatments) by teaching generative models about known ones
- Keynote speaker at IOB Symposium in October spoke about using LLMs to discover new proteins!

Most Probable Decoding argmax p(*|z) Mol 3

Advantages of Generative Al

- Accessibility and interactivity
- Original image (top left) interpolated along VAE latent distribution, producing different facial expressions
- Virtual avatars, assistants, video gaming

Technical issues

- Recursive model training
 - As more information on the internet (images, text) is Al-generated, LLMs will ingest this data as part of their training, creating a recursive training loop
 - "The Curse of Recursion: Training on Generated Data Makes Models Forget"
 - https://arxiv.org/abs/2305.17493

Technical issues

• Examples of recursive model training

Legal issues

Copyright

- OpenAI, Midjourney most likely training on image datasets without permission from authors
- Currently in the US, Al-generated art cannot be copyrighted à potential boon for public domain!

Plagiarism

- Simply: if you didn't write/code/create it **yourself**, and you didn't otherwise specify where it came from (and sometimes, even if you did), it's **plagiarism**
- Is getting the answer from ChatGPT and presenting it as your own any different from getting the answer from your classmate and presenting it as your own?
- Huge implications in professional fields, given current chatbot accuracy levels

Ethical and moral issues

- Disinformation
- Enabling/scaling abuse
- Environmental concerns
- Worker exploitation
- Hidden costs of Al

Model name	Number of parameters	Datacenter PUE	Carbon intensity of grid used	Power consumption	CO ₂ eq emissions	CO ₂ eq emissions × PUE
GPT-3	175B	1.1	429 gCO2eq/kWh	1,287 MWh	502 tonnes	552 tonnes
Gopher	280B	1.08	330 gCO2eq/kWh	1,066 MWh	352 tonnes	380 tonnes
OPT	175B	1.09 2	231gCO2eq/kWh	324 MWh	70 tonnes	76.3 tonnes 3
BLOOM	176B	1.2	57 gCO2eq/kWh	433 MWh	25 tonnes	30 tonnes

Table 4: Comparison of carbon emissions between BLOOM and similar LLMs. Numbers in *italics* have been inferred based on data provided in the papers describing the models.

Philosophical issues

- Novelty
 - Is the content generated from ChatGPT / Midjourney new?
- The "tool" analogy
 - Generative AI is inherently neither good nor bad, but dependent on its application
- In 1999, French cultural theorist Paul Virilio wrote, "When you invent the ship, you also invent the shipwreck; when you invent the plane you also invent the plane crash; and when you invent electricity, you invent electrocution... Every technology carries its own negativity, which is invented at the same time as technical progress."

Conclusions

- Generative modeling
 - Learn a distribution instead of a decision boundary
 - Can still be used for classification
 - Usually requires more data than discriminative models
- Deep generative modeling
 - DBNs, RBMs, Denoising & Variational Autoencoders, GANs, AR models, LD
 - All ways of learning a generating distribution from data in deep neural architectures
- Deployments of generative Al
 - Commercial products (ChatGPT, Stable Diffusion, Midjourney, DALL-E)
 - Possibilities, advantages, moral/ethical/legal/philosophical considerations
 - Consider the possible use-cases

References

- "Generative Learning algorithms", CS 229 notes by Andrew Ng http://cs229.stanford.edu/notes/cs229-notes2.pdf
- Andrew Ng and Michael I. Jordan (!!!), "On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes" (NIPS 2002) http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf
- "Generative versus Discriminative", Cross-Validated https://stats.stackexchange.com/questions/12421/generative-vs-discriminative/223850
- "Generative Adversarial Networks", NIPS 2016 Tutorial https://arxiv.org/pdf/1701.00160.pdf
- Variational Inference http://www.inference.vc/choice-of-recognition-models-in-vaes-a-regularisation-view/
- Tutorial on Variational Autoencoders https://arxiv.org/abs/1606.05908
- "Progressive Growing of GANs for Improved Quality, Stability, and Variation", https://arxiv.org/abs/1710.10196
- "Generative Adversarial Networks (GANs), Some Open Questions", http://www.offconvex.org/2017/03/15/GANs/
- "GANs are Broken in More than One Way: The Numerics of GANs", http://www.inference.vc/my-notes-on-the-numerics-of-gans/
- "Diffusion Models in Vision: A Survey", https://ieeexplore.ieee.org/iel7/34/4359286/10081412.pdf
- "GPT-4 Technical Report", https://arxiv.org/abs/2303.08774
- "Deep reinforcement learning from human preferences", https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
- "An introduction to variational autoencoders", https://www.nowpublishers.com/article/DownloadSummary/MAL-056
- "Probabilistic Machine Learning, Advanced Topics", Kevin Murphy. Part IV: Generation. https://probml.github.io/pml-book/book2.html