DEPARTMENT OF MATHEMATICS & STATISTICS

MT234P

Homework 2

Due by 4 p.m. on March 10, 2023.

- 1. In each case below, state whether the statement is true or false. Justify your answer in each case.
- (i) There is no subset A in \mathbb{R}^2 such that Bdy(A) contains exactly four points.
- (ii) There is a subset C in \mathbb{R}^3 such that C is not the empty set and $\mathrm{Int}(C)$ is the empty set.
- **2.** Suppose the directional derivative of g(x,y) at (1,2) in the direction of $\vec{i} + \vec{j}$ is $2\sqrt{2}$ and the directional derivative of g(x,y) at (1,2) in the direction of $-2\vec{j}$ is -3. Find the directional derivative of g(x,y) at (1,2) in the direction of $-\vec{i}-2\vec{j}$.
- **3.** (i) Suppose $h(x,y) = \cos(y+x^2) + \sin(x-2y^2)$. Find $\frac{\partial h}{\partial x}$, $\frac{\partial h}{\partial y}$, $\frac{\partial^2 h}{\partial x^2}$, $\frac{\partial^2 h}{\partial y^2}$, $\frac{\partial^2 h}{\partial y \partial x}$
- (ii) Suppose $z = 2u 3w^2$, $u = e^{2r+3s}$, $w = s r^2$. Find, $\frac{\partial z}{\partial r}$, $\frac{\partial z}{\partial s}$ using the chain rule.
- **4.** Suppose $f(x,y) = y^2 \cos(y+x)$. Is f differentiable at every point in \mathbb{R}^2 ? Justify your answer.
- **5.** (i) Find the directional derivative of $g(x, y, z) = x^3 y^2 e^z \sin(yx)$ at $(1, \frac{\pi}{2}, 0)$ in the direction of $\vec{i} 2\vec{j} + 3\vec{k}$.
- (ii) Find the directions in which $g(x,y) = 2y^2x 4e^{yx}\sin x$ increases and decreases most rapidly at (0,1). Also, at what rate does g change in these directions?