Corso di Linguaggi di Programmazione — Parziale di fine modulo Prova scritta ${f B}$ del 18 Dicembre 2017

Tempo a disposizione: 2 ore e 30 minuti.

1. Sia P^{L_1} un programma scritto in L_1 . La seguente espressione

$$\mathcal{I}_{L_1}^{L_0}(\mathcal{C}_{L_1,L_2}^{L_1},P^{L_1})$$

cosa produce? Se non avessimo a disposizione un interprete per il linguaggio L_2 , avremmo comunque la possibilità, con i programmi a disposizione nell'espressione sopra, di eseguire P^{L_1} ?

- 2. Descrivere le regole di semantica operazionale strutturata per l'espressione aritmetica e_0*e_1 , secondo la disciplina di valutazione esterna-destra (ED). Mostrare un esempio di una espressione di quel tipo tale che la valutazione ED e quella ID (interna-destra) non sono uguali.
- 3. Costruire una grammatica G che generi il linguaggio $L = \{a^n b^{2m} c^{n+1} \mid n, m \ge 0\}.$
- 4. Classificare il linguaggio L del punto precedente, ovvero dire se L è regolare, oppure libero ma non regolare, oppure non libero, giustificando adeguatamente la risposta.
- 5. Si consideri l'espressione regolare $a^*(a|b)a$. Si costruisca l'automa NFA M associato, secondo la costruzione vista a lezione. Si trasformi l'NFA M nell'equivalente DFA M', secondo la costruzione per sottoinsiemi vista a lezione.
- 6. Preso il DFA M' calcolato al punto precedente, si ricavi da esso la grammatica regolare associata, seguendo la costruzione vista a lezione; quindi si semplifichi la grammatica ottenuta, eliminando i simboli inutili; infine, si ricavi da quella grammatica l'espressione regolare associata.
- 7. Se L ed R sono linguaggi regolari, il linguaggio $R \setminus L = \{w \in A^* \mid w \in R \land w \notin L\} = R \cap \overline{L}$ è regolare o libero, oppure non libero? Giustificare la risposta.
- 8. Mostrare che $L=\{a^nb^{2n+1}\mid n\geq 0\}$ è libero deterministico, costruendo un opportuno DPDA che riconosca L\$ per pila vuota.
- 9. Si consideri la seguente grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \rightarrow & AC \\ A & \rightarrow & \epsilon \mid \mathtt{a}SA \\ B & \rightarrow & \epsilon \mid \mathtt{b}B \\ C & \rightarrow & \mathtt{cc} \mid \mathtt{c}BC \end{array}$$

- (i) Si calcolino i First e i Follow per tutti i nonterminali. (ii) La grammatica G è di classe LL(1)? (iii) Si rimuovano le produzioni epsilon per ottenere una grammatica G' senza produzioni epsilon, che sia equivalente a G.
- 10. Si consideri la grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \to & S \mathbf{a} \mid \mathbf{b} B \\ B & \to & \epsilon \mid \mathbf{b} B \end{array}$$

- (i) Determinare il linguaggio generato L(G). (ii) Verificare che G non è di classe $\mathrm{LL}(1)$. (iii) Manipolare la grammatica per ottenerne una equivalente G' di classe $\mathrm{LL}(1)$. (iv) Costruire il parser $\mathrm{LL}(1)$ per G'. (v) Mostrare il funzionamento del parser $\mathrm{LL}(1)$ su input baa.
- 11. Si consideri la grammatica G del punto precedente. (i) Costruire l'automa canonico LR(0). (ii) Costruire la tabella di parsing SLR(1) e verificare se ci sono conflitti. (iii) Mostrare il funzionamento del parser SLR(1) per l'input baa.

Corso di Linguaggi di Programmazione — Parziale di fine modulo Prova scritta ${f B}$ del 18 Dicembre 2017

Tempo a disposizione: 2 ore e 30 minuti.

1. Sia P^{L_1} un programma scritto in L_1 . La seguente espressione

$$\mathcal{I}_{L_1}^{L_0}(\mathcal{C}_{L_1,L_2}^{L_1},P^{L_1})$$

cosa produce? Se non avessimo a disposizione un interprete per il linguaggio L_2 , avremmo comunque la possibilità, con i programmi a disposizione nell'espressione sopra, di eseguire P^{L_1} ?

- 2. Descrivere le regole di semantica operazionale strutturata per l'espressione aritmetica e_0*e_1 , secondo la disciplina di valutazione esterna-destra (ED). Mostrare un esempio di una espressione di quel tipo tale che la valutazione ED e quella ID (interna-destra) non sono uguali.
- 3. Costruire una grammatica G che generi il linguaggio $L=\{a^nb^{2m}c^{n+1}\mid n,m\geq 0\}.$
- 4. Classificare il linguaggio L del punto precedente, ovvero dire se L è regolare, oppure libero ma non regolare, oppure non libero, giustificando adeguatamente la risposta.
- 5. Si consideri l'espressione regolare $a^*(a|b)a$. Si costruisca l'automa NFA M associato, secondo la costruzione vista a lezione. Si trasformi l'NFA M nell'equivalente DFA M', secondo la costruzione per sottoinsiemi vista a lezione.
- 6. Preso il DFA M' calcolato al punto precedente, si ricavi da esso la grammatica regolare associata, seguendo la costruzione vista a lezione; quindi si semplifichi la grammatica ottenuta, eliminando i simboli inutili; infine, si ricavi da quella grammatica l'espressione regolare associata.
- 7. Se L ed R sono linguaggi regolari, il linguaggio $R \setminus L = \{w \in A^* \mid w \in R \land w \notin L\} = R \cap \overline{L}$ è regolare o libero, oppure non libero? Giustificare la risposta.
- 8. Mostrare che $L=\{a^nb^{2n+1}\mid n\geq 0\}$ è libero deterministico, costruendo un opportuno DPDA che riconosca L\$ per pila vuota.
- 9. Si consideri la seguente grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \rightarrow & AC \\ A & \rightarrow & \epsilon \mid \mathsf{a}SA \\ B & \rightarrow & \epsilon \mid \mathsf{b}B \\ C & \rightarrow & \mathsf{cc} \mid \mathsf{c}BC \end{array}$$

- (i) Si calcolino i First e i Follow per tutti i nonterminali. (ii) La grammatica G è di classe LL(1)? (iii) Si rimuovano le produzioni epsilon per ottenere una grammatica G' senza produzioni epsilon, che sia equivalente a G.
- 10. Si consideri la grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \to & S \mathtt{a} \mid \mathtt{b} B \\ B & \to & \epsilon \mid \mathtt{b} B \end{array}$$

- (i) Determinare il linguaggio generato L(G). (ii) Verificare che G non è di classe $\mathrm{LL}(1)$. (iii) Manipolare la grammatica per ottenerne una equivalente G' di classe $\mathrm{LL}(1)$. (iv) Costruire il parser $\mathrm{LL}(1)$ per G'. (v) Mostrare il funzionamento del parser $\mathrm{LL}(1)$ su input baa.
- 11. Si consideri la grammatica G del punto precedente. (i) Costruire l'automa canonico LR(0). (ii) Costruire la tabella di parsing SLR(1) e verificare se ci sono conflitti. (iii) Mostrare il funzionamento del parser SLR(1) per l'input baa.

I Lo (PL1, PL1) = PL2 do ve PL2 en progr.

equivalente a PL1 ma scrutto ui L2 Se non abbiams a dispositione un interprete per L2, possiam comunque esequire PL1 perché fia abbiama IL, cisé un interprete in grado di esequire programmi scutti in L1 < e1, 5> → < e1, 5> 2) < e0 * e1, 0> → < e0 * e1, 0'> ⟨€0*0,6⟩ → ⟨0,6⟩ <e0*1,6> → <e0,6> $\langle e_0, \sigma \rangle \rightarrow \langle e_0', \sigma' \rangle$ $\langle e_0 * n, \sigma \rangle \rightarrow \langle e_0' * n, \sigma' \rangle$ n +0,1 P= m*n < m * n, 5> -> < P, 5> < (2-5) ×0,6> = <0,6> < (2-5) * 0,6> / ID $L = \{a^{m} b^{2m} c^{m+1} | n, m \ge 0\}$ $S \rightarrow aSc \mid Bc$ $B \rightarrow \epsilon \mid bb \mid B$ S | Bc | 66Bc | 66c | 66 Bc m b c | m > 0 a b c c = a b c n+1

4) L= {a b2m cn+1 | n, m > 0} et libero, ferché generale da une que libere

Le non repolare pe il PLa rovesco.

- Finiamo N>0 generico

- Scepham Z = a 62 CN+1 ZEL e 12/2N

- Per ogno U, V, W tali che Z=UVW, IUVI≤N e IVI≥1, deve enere V∈a*, Sia V=a con J>1.

- Allow 3K=2. UV W &L. Infaction

UV W = a N+5 62N CN+1 &L

=> L non e regolare

5) a* (a16)a

) A - aB/bC A - a B I b C B - aDIbc B -> aD/bC CaE C=a } C - a E / SF Daablbele D-) a D I b C | E E -> E E - a ElbflE Soft! Tuends Es aF1 bf A > aB | ba B - a D I ba $C \rightarrow a$ am D-saDIbalE D = a* (bale) E -> E =) B = aa*(bale) | ba =) A = a (aa* (bale) | ba) | ba RALE regolare serche L'repolare R'regdare - Lé régolare, perché i ling, rèp. sons chius

The complementations

- RAI é replan, paché i lay, reg. sons chouse

ple intersessone

8) L= {a^m b^2n+1 | n ≥ 0}

	- an artistal	5	(January)	A	C	
		A	->	8	a	SA
6	Management of the Community of the Commu	B	->	8	6	B
		C	Consum	ce	10	BC

5	aic	\$, a, c]
4	a I E	
8	b. E	C

Gnon et de clare LL(1), perché, adves.

C→ccleBE crea conflix.

$$G' \begin{bmatrix} S \rightarrow AC \mid C \\ A \rightarrow aSA \mid aS \\ B \rightarrow bB \mid b \\ C \rightarrow cc \mid cBC \mid cC \end{bmatrix}$$

$$bB = b^{\dagger}$$

$$b^{\dagger} | b^{\dagger} | b^{\dagger} | b^{\dagger} | a^{\dagger}$$

$$= b^{\dagger} (\epsilon | a^{\dagger})$$

$$= b^{\dagger} a^{*}$$

Gnon & LL(1) paché é WCDrova SX S -> Sa $G' \begin{bmatrix} S \rightarrow bBS' \\ S' \rightarrow aS' | E \\ B \rightarrow E | bB \end{bmatrix}$

	4
> 0	H.
51 a, E	\$
a) a) c	a, \$

G'e LL(1) \leftarrow $\begin{cases}
F_{1}'xxt(aS') \land F_{1}'xxt(\epsilon) = \emptyset \\
F_{1}'xxt(aS') \land F_{2}ell_{w}(S') = \emptyset \\
F_{1}'xxt(\epsilon) \land F_{1}'xxt(bB) = \emptyset \\
F_{2}ell_{w}(B) \land F_{1}'xxt(bB) = \emptyset
\end{cases}$

	a	6	#	
	again camman tha the agus purpus an am mail de agus frair franche (agus frair agus frair agus frair agus frair	S → 6BS'		
3	S'as'			
	0	The second secon	B-> E	

baa\$

bBS'

aa\$

as'

as'

as'

accettata

,			1 44
10	8	baa	\$)
()	61	450 - 00 -	1

ACCEPT!

5	-	(1) Sa	16B
	->	اع	6B

	First	Follow
51	b	a,\$
R	b, E	a,#
0/	010	AND SECURE OF THE PROPERTY OF