Föreläsning 4: Fortsättning på inklusion-exklusion · 1MA020

Vilhelm Agdur¹

25 januari 2023

Vi fortsätter studera inklusion-exklusion, och ger fler tillämpningar.

Surjektioner

Definition 1. Låt A och B vara två mängder, och $f:A\to B$ en funktion. Vi definierar *bilden* av A som

$$f(A) = \{b \in B \mid \exists a \in A : f(a) = b\},\$$

det vill säga alla element i B som träffas av något element i A under f.

Funktionen f är en surjektion om f(A) = B. Om det finns en surjektion från A till B gäller det att $|A| \ge |B|^2$.

Definition 2. För $n \ge m \ge 1$ ges *Stirlings partitionstal*, också kallat *Stirlingtalet av andra sorten*, av

$${n \brace m} = \frac{1}{m!} \sum_{k=0}^{m} (-1)^k {m \choose k} (m-k)^n.$$

Teorem 3. Låt A och B vara ändliga mängder med |A| = n, |B| = m, och $n \ge m$. Antalet surjektioner från A till B ges av

$$S(n,m) = m! {n \choose m} = \sum_{k=0}^{m} (-1)^k {m \choose k} (m-k)^n.$$

Bevis. Låt X vara mängden av alla funktioner från A till B, och för varje $b \in B$, låt X_b vara mängden av funktioner från A till B som inte träffar b. Vi vill, som vanligt, räkna ut $|X \setminus \bigcup_{b \in B} X_b| = |X| - |\bigcup_{b \in B} X_b|$.

Multiplikationsprincipen ger oss enkelt att $|X| = m^n$ – varje element i A har m val för var det skall skickas, och vi har n stycken element att göra det valet för.

Inklusion-exklusion ger oss att

$$\left| \bigcup_{b \in B} X_b \right| = \sum_{I \subseteq B} (-1)^{|I|+1} \left| \bigcap_{b \in I} X_b \right|$$

och vad vi behöver räkna är antalet funktioner från A till B som undviker att träffa en viss mängd I. Ett specialfall ser vi omedelbart – om I=B måste snittet vara tomt, eftersom elementen i A måste skickas någonstans.

¹vilhelm.agdur@math.uu.se

 $^{^2}$ Detta är uppenbart för ändliga mängder A och B – för oändliga mängder är detta definitionen av ordningen mellan kardinaltal

Att räkna dem är relativt enkelt – en funktion från A till B som inte träffar en viss mängd $I \subset B$ är ju precis en funktion från A till $B \setminus I$, och vi vet att det finns $|B \setminus I|^{|A|} = (m - |I|)^n$ sådana. Så vad vi får är att

$$\left| \bigcup_{b \in B} X_b \right| = \sum_{I \subset B, I \neq B} (-1)^{|I|+1} (m - |I|)^n.$$

Så om vi grupperar den här summan efter storleken på *I* vet vi att det finns $\binom{m}{k}$ stycken val av I av storlek k, så

$$\left| \bigcup_{b \in R} X_b \right| = \sum_{k=0}^{m-1} (-1)^{k+1} {m \choose k} (m-k)^n$$

vilket ger oss resultatet, när vi stoppar in detta i S(n, m) = |X| - $|\bigcup_{b\in B}X_b|$.

Exempel 4. Antag att en farmor stickat fem filtar åt sina tre barnbarn. På hur många sätt kan hon fördela filtarna, så att varje barn får åtminstone en filt? Eftersom de är handstickade är så klart filtarna särskiljbara, så det här är inte ett exempel på de kompositioner vi såg i föreläsning två, utan ett exempel på surjektioner.

Vår sats säger oss att svaret är $3!\binom{5}{3} = 150$.

Övningar