SOMMES ET PRODUITS

EXERCICE 1 - Somme té lescopique et factorielle

En utilisant une somme tÃ@lescopique, calculer $\sum_{k=1}^{n} k \cdot k!$.

Exercice 2 - Transformer en somme $t\tilde{A}(\hat{C})$ lescopique

1. Dé terminer une suite (u_k) telle que, pour tout $k \geq 0$, on ait

$$u_{k+1} - u_k = (k+2)2^k.$$

2. En déduire $\sum_{k=0}^{n} (k+2)2^k$.

EXERCICE 3 - Calcul de sommes par d $\tilde{\mathbf{A}}$ coupage

Soit $n \in \mathbb{N}$.

- 1. Calculer $A_n = \sum_{k=2n+1}^{3n} (2n)$.
- 2. Calculer $B_n = \sum_{k=n}^{2n} k$.
- 3. En déduire la valeur de $S_n = \sum_{k=n}^{3n} \min(k, 2n)$

Exercice 4 - Sommation d'Abel

Soient $(a_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ deux suites de nombres complexes. On d $\tilde{\mathbf{A}}$ \mathbb{C} finit deux suites $(A_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ en posant :

$$A_n = \sum_{k=0}^n a_k, \quad b_n = B_{n+1} - B_n.$$

- 1. Démontrer que $\sum_{k=0}^{n} a_k B_k = A_n B_n \sum_{k=0}^{n-1} A_k b_k$.
- 2. En déduire la valeur de $\sum_{k=0}^{n} 2^{k}k$.

Exercice 5 - Somme de puissances

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

- 1. Calculer $S_n(x) = \sum_{k=0}^n x^k$.
- 2. En dÃ@duire la valeur de $T_n(x) = \sum_{k=0}^n kx^k$.

EXERCICE 6 - Quelques sommes doubles

Calculer les sommes doubles suivantes :

- 1. $\sum_{1 \le i,j \le n} ij.$
- $2. \sum_{1 \le i \le j \le n} \frac{i}{j}.$

EXERCICE 7 - Sommes doubles

Pour $n \in \mathbb{N}$, on note

$$a_n = \sum_{k=1}^n k$$
, $b_n = \sum_{k=1}^n k^2$ et $c_n = \sum_{k=1}^n k^3$.

1

Pour cet exercice, on admettra que $a_n = \frac{n(n+1)}{2}$, que $b_n = \frac{n(n+1)(2n+1)}{6}$ et que $c_n = a_n^2$.

1. Calculer
$$\sum_{1 \le i \le j \le n} ij$$
.

2. Calculer
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \min(i, j).$$

Exercice 8 - Une somme \tilde{A} partir de la formule du bin \tilde{A} 'me

L'objectif de l'exercice est de d $\tilde{\mathbf{A}}$ Comontrer la (surprenante!) formule suivante :

$$\sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^{k+1}}{k} = \sum_{k=1}^{n} \frac{1}{k}.$$

1. Soit x un r $\tilde{\mathbf{A}}$ ©el non nul. D $\tilde{\mathbf{A}}$ ©montrer que

$$\frac{1 - (1 - x)^n}{x} = \sum_{p=0}^{n-1} (1 - x)^p.$$

2. On pose pour $x \in \mathbb{R}$,

$$f(x) = \sum_{k=1}^{n} {n \choose k} \frac{(-1)^k}{k} x^k.$$

Dé montrer que, pour $x \in \mathbb{R}$, on a

$$f'(x) = -\sum_{p=0}^{n-1} (1-x)^p.$$

3. Conclure.

Cette feuille d'exercices a $\tilde{A} \odot t \tilde{A} \odot con \tilde{A}$ l'aide du site http://www.bibmath.net