Variable Selection Using Regularized Loss Functions

Adrian Barbu

Logistic Regression

Binary classification: classes y=1 and y=-1 (not 0)

$$P(y = 1|\mathbf{x}) = \frac{\exp(w_0 + \sum_i w_i x_i)}{1 + \exp(w_0 + \sum_i w_i x_i)} = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$
$$P(y = -1|\mathbf{x}) = \frac{1}{1 + \exp(w_0 + \sum_i w_i x_i)} = \frac{1}{1 + \exp(\mathbf{w}^T \mathbf{x})}$$

Hence

$$P(y|\mathbf{x}) = \frac{1}{1 + \exp(-y\mathbf{w}^T\mathbf{x})}$$

Conditional negative log likelihood for training examples $(\mathbf{x}_i, \mathbf{y}_i)$:

$$L(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ln(1 + e^{-y_j \mathbf{w}^T \mathbf{x}_j})$$

Variable Selection

- Why Variable Selection
 - Simpler model= better prediction accuracy
 - Occam's razor again
 - Can have many features e.g. 100000.
 - Computationally more efficient.
- Negative log likelihood + penalty

$$L(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ln(1 + e^{-y_j \mathbf{w}^T \mathbf{x}_j}) + \lambda \sum_{i=1}^{p} \rho(w_i)$$

Penalty

Penalty = Sparsifying effect

Variable Selection

Regularized logistic loss:

$$L(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ln(1 + e^{-y_j \mathbf{w}^T \mathbf{x}_j}) + \lambda \sum_{i=1}^{p} \rho(w_i)$$
Logistic Loss
Penalty

Sparsifying penalty functions ρ must be singular at origin

Variable Selection

- Sparsifying penalty functions
 - Hard thresholding $\rho_{\lambda}(x)=egin{cases} \lambda^2-(|x|-\lambda)^2 & \text{if } |x|<\lambda \\ \lambda^2 & \text{else} \end{cases}$
 - L1 penalty $\rho(x) = |x|$
 - Smoothly clipped absolute deviation (SCAD) penalty
- L₂ penalty to avoid overfitting $\rho(x) = x^2$

Penalty Functions

- The L₁ penalty biases coefficients (makes them smaller)
- The other penalties result in non-convex optimization
 - Suboptimal result
 - Computationally intensive

Regularized Loss Functions

More generally:

$$L(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} f(\mathbf{w}^{T} \mathbf{x}_{j}, y_{j}) + \lambda \sum_{i=1}^{p} \rho(w_{i})$$

- Loss functions f
 - Logistic (binomial deviance)

$$f(x,y) = \log_2(1 + e^{-xy})^{\circ}$$

Exponential loss

$$f(x,y) = e^{-xy}$$

Square loss

$$f(x,y) = (x-y)^2$$

Hinge (SVM) loss

$$f(x,y) = \begin{cases} 1 - xy & \text{if } xy < 1\\ 0 & \text{else} \end{cases}$$

FSU

Learning with Regularized Loss Functions

- Convex Optimization
 - Any convex loss with L_1 or L_2 penalty
 - E.g:
 - Logistic loss with L₁ penalty (Boyd 2007)
 - SVM (Hinge loss with L₂ penalty)
 - Can be slow
- Analytical:
 - Least Angle Regression (LARS) (Efron et al, 2004) for Square loss with L₁ penalty
 - For other combinations, see Rosset & Zhu, 2007
 - Faster but only defined for some combinations Loss/Penalty
- Greedy:
 - Grafting (Perking et al, 2003)
 - Keeps a set F of nonzero weights w_i
 - Adds variables to F based on a gradient criterion
 - Gradient descent using the weights in F only
 - Fast but can be suboptimal

Regularization Path

- Graph of the weights vs. λ
- In some cases it is piecewise linear
 - Can be obtained using the LARS algorithm

TISP – Thresholding-based Iterative Selection Procedure

Penalized Regression:

$$L(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \|\mathbf{w}^{T} \mathbf{x}_{j} - y_{j}\|^{2} + \lambda \sum_{i=1}^{p} \rho(w_{i})$$

Algorithm iterates:

$$\mathbf{w}^{(t+1)} = \Theta(\mathbf{w}^{(t)} + \eta(X^T\mathbf{y} - X^TX\mathbf{w}^{(t)}), \lambda)$$

where η could be 1/N and the thresholding operator Θ is connected to ρ through

$$\rho(x) = \int_0^{|x|} [\sup\{t, \Theta(t, \lambda) \le u\} - u] du$$

TISP

Example of thresholding operator:
$$\Theta(x,\lambda,\eta) = \begin{cases} 0 & \text{if } |x| \leq \lambda \\ \frac{x}{1+\eta} & \text{if } |x| > \lambda \end{cases}$$

parameter η controls the shape of its associated penalty ρ Hybrid penalty (λ =0, η =1) Hybrid penalty (λ =.3, η =.7)

TISP for Classification

Penalized logistic regression:

$$L(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ln(1 + e^{-y_j^* \mathbf{w}^T \mathbf{x}_j}) + \lambda \sum_{i=1}^{p} \rho(w_i)$$

y_i* take values -1 and 1

Algorithm iterates (y_i are 0 or 1):

$$\mathbf{w}^{(t+1)} = \Theta(\mathbf{w}^{(t)} + \eta' X^T \left[\mathbf{y} - \frac{1}{1 + \exp(-X\mathbf{w}^{(t)})} \right], \lambda)$$

where learning rate η' could be 1/N

Discussion Points

- Why do we want to do variable selection
- Why would we want a convex penalized loss?
- Which penalized loss function is convex?
 - What problems does it have?
- How to optimize a convex loss function?
- Which of the loss functions in slide 7 are convex?
- What is the regularization path?
- How does TISP work?

References

- B. Efron, T. Hastie, I.M. Johnstone and R. Tibshirani, Least angle regression (with discussion). Annals of Statistics 32 407–499. (2004).
- J Fan, R Li Variable Selection Via Nonconcave Penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 2001
- K. Koh, S.-J. Kim, and S. Boyd. An Interior-Point Method for Large-Scale I1-Regularized Logistic Regression. Journal of Machine Learning Research, 8:1519-1555, July 2007.
- S Perkins, K Lacker, J Theiler. Grafting: Fast, incremental feature selection by gradient descent in function space Journal of Machine Learning Research, 2003
- S. Rosset and J. Zhu. Piecewise linear regularized solution paths. Annals of Statistics 35, Number 3 (2007)
- Y. She. Thresholding-based iterative selection procedures for model selection and shrinkage. Electronic Journal of Statistics, 2009.
- Y She. An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors. Computational Statistics & Data Analysis, 2012