Power-aware Multi-DataCenter Management using Machine Learning

Josep Ll. Berral, Ricard Gavaldà, Jordi Torres

2nd Intl. Workshop on Power-aware Algorithms, Systems, and Architectures 2013

October 1st – Lyon (France)

Context: Energy, Quality of Service and Self-Management

Scenario: Multi-Datacenter Network

- Achieve allocation of virtualized web-services
- ... keeping good Quality of Service
- ... reducing energy costs
- ... and doing this "automatically"

Context: Autonomic Computing and Machine Learning

Keywords:

- Autonomic Computing (AC): Automation of management
- Machine Learning (ML): Learning patterns and predict them

Applying AC to energy control:

- 1. Self-management must include energy policies
- 2. Optimization mechanisms are becoming more complex
- 3. Decision makers can be improved through adaption over time

Modeling and prediction:

- Obtain a predictive model from the system from the past
- ...using minimal expert knowledge

Introduction

Energy Saving in Cloud Self-management:

Apply the well-known consolidation strategy

Challenges:

- How do we consolidate? Optimal place for a job/VM
- How much resources used? Required resources for the job/VM
- Resulting QoS / Energy cost in the new placement?

Contributions:

- Apply ML to learn about resource performance
- On a mathematical model for a multi-DC (Benefit-Cost optimization)
- Also include elements of geographical location (and their properties)

Multi-DataCenter Business Model

- Specific Case of Study:
 - Transactional jobs, Quality of Service (i.e. "Response Time")
- Problem:
 - As a provider: Schedule properly VMs to PMs

Multi-DataCenter Scenario

Network of DataCenters

- Each location has its own energy prices
- Each client connects to our DC network through the closest DC
- Each VM may have clients from around the world
- Each location clients have different "timetables"

Problem parts...

Model the multi-datacenter

Create a mathematical model to represent the multi-DataCenter

2. Fit the model to observations:

- Relevant variables only available a posteriori
- ML creates a model from past examples

3. Solving the optimization problem

Modeling the Multi-DataCenter

- Mathematical Model: Find VMs → (hosts × resources)
 - Profit = Benefits for running VMs QoS penalties power costs
 - Outputs: Schedule optimizing profit
 - Constraints: maintaining the consistence of M-DC and operations

Quality of Service

 $- RT = RT_{process} + RT_{transport}$ ("Latencies")

Subject to:

- VM requirements, depending on load
- Power functions, depending on resources and locations
- Migration penalties, on distances and VM volumes
- QoS, depending on resource competence and client distance

Modeling the Multi-DataCenter

- Mathematical Model: Find VMs → (hosts × resources)
 - Profit = Benefits for running VMs QoS penalties power costs
 - Outputs: Schedule optimizing profit
 - Constraints: maintaining the consistence of M-DC and operations
- Quality of Service
 - $RT = RT_{process} + RT_{transport}$ ("Latencies")

Machine Learning

- Subject to:
 - VM requirements, depending on load
 - Power functions, depending on resources and locations
 - Migration penalties, on distances and VM volumes
 - QoS, depending on resource competence and client distance

Learning and Prediction

Applying modeling and prediction

- How much CPU/Mem/IO… will each VM demand?
- How good will each VM behave?

Learning on the given scenario

- Apply ML modeling techniques for VM CPU/MEM/IO
- Also: learn PM CPU aggregate
- Also: learn QoS as "RT" or "SLA"

Benefits:

- When changing machines, we only need to re-learn ML models
- We discover the bottlenecks of the system

	ML Method	Correl.	MAE	Err-StDev	Train/Val	Date Range
Predict VM CPU	M5P $(M = 4)$	0.854	$4.41\%_{CPU}$	$4.03\%_{CPU}$	959/648	$[0,400] \%_{CPU}$
Predict VM MEM	Linear Reg.	0.994	26.85 MB	93.30 MB	959/1324	[256, 1024] MB
Predict VM IN	M5P $(M = 2)$	0.804	$1.77~\mathrm{KB}$	$4.01~\mathrm{KB}$	319/108	[0, 33] KB
Predict VM OUT	M5P (M=2)	0.777	$25.55~\mathrm{KB}$	$22.06~\mathrm{KB}$	319/108	[0, 141] KB
Predict PM CPU	M5P $(M = 4)$	0.909	$14.45\%_{CPU}$	$7.70\%_{CPU}$	477/95	$[25, 400] \%_{CPU}$
Predict VM RT	M5P $(M = 4)$	0.865	0.234 s	1.279 s	1887/364	[0, 19.35] s
Predict VM SLA	K-NN(K=4)	0.985	0.0611	0.0815	1887/364	[0.0, 1.0]

Experiments

- Intra-DataCenter comparatives
 - Using approximate algorithms (ordered best-fit):

Experiments

Inter-DataCenter results

- consolidating spare VMs
- Average SLA increases when migration costs are smaller than benefit improvements
- When no load, VMs are sent to cheapest place to stay parked
- ML models detect QoS violations better than no ML

In a dynamic context, energy savings may increase when

Energy/QoS/Load Trade-offs

Trade-off between energy consumption and SLA (QoS)

Summary

- Focus the "VMs × PMs" allocation problem :
 - With mathematical modeling on multi-datacenter systems
 - Focused on energy consumption and quality of service
 - Usage of automatic modeling through machine learning

Contributions:

- Introduce localization variables to a DC management model
- Studied learning models on different kind of machines and views of QoS
- Trade-off between SLA fulfillment and energy for transactional jobs
- Learning and Experimentation Results
 - When having different energy prices, de-location becomes a good option
- Future work:
 - Study new relevant variables to the multi-DC model, and other kind of jobs and web-services

Thank you for your attention

Josep Ll. Berral, Ricard Gavaldà, Jordi Torres

berral@ac.upc.edu
(also jlberral@lsi.upc.edu)