Problem 4 mus

W 1:30-3:36

T 3-5

Th 1:36 - 3:30

(a), (b) -you should NOT need finite dimensional

(c), (d) - Let V be finite dimensional SiTe I(V)

Dual Vector Spaces

Recall: (1) a LT P: V->IF is called a linear function on V

example

V= Co(R) choose nET, NTO

Define $Y_n: V \to IR$ by $Y_n(f) = \int_{1}^{2\pi} f(x) \cos(n\pi x) dx$

3 v* = L(V, IF) dual vector space to V

Proposition

If dim V=n

then dim V* = n = dim V

V, V* isomorphic ble same dimension

Proof

Krow dim L(V, W)= (dim V)(dim W)

:. L(V,F) has dim= (dim V)(dim IF) = dim V

Basis of V*

Suppose $a = (V_1, ..., V_n)$ is a basis of V.

To give a $P: V \rightarrow F$ LT, it suffices to give a numbers $a_1, ..., a_n \in F$ then $\exists ! P: V \rightarrow F$ s.t. $P(V_i) = q_i \forall V$

Let's get some elements of v*

let 152n

tefine 9:17

v; H

v; H

v; H

$$\varphi_i(a_i v_i + \cdots + a_n v_n)$$

$$= a_i \varphi(\vec{v}_i) = a_i$$

We have P, ..., In EV* as just defined

Is P,.... In a basis for V*?

"easy" lemma: Suppose qev*, then (4:U7IF) $P = \sum_{i=1}^{n} \varphi(v_i) \, \psi_i \in V^*$

Proof: To show LHS (Q) = RHS it suffices to show that for each
$$\vec{v}_{j}$$
 | $(\vec{v}_{j}) = RHS(\vec{v}_{j}) = RHS(\vec{v}_{j})$

$$Q(\vec{v}_{j}) = \sum_{i=1}^{n} [Q(\vec{v}_{i}) \ Q(\vec{v}_{i})] = \begin{cases} 1 \cdot Q(\vec{v}_{j}), & j=j \\ 0, & j \neq j \end{cases}$$

$$= \sum_{i=1}^{n} Q(\vec{v}_{i}) \ Q(\vec{v}_{i}) = \begin{cases} 1 \cdot Q(\vec{v}_{j}), & j=j \\ 0, & j \neq j \end{cases}$$

Proposition: let $a^* = (\ell_1, ..., \ell_n)$ Then a^* is a basis of V^* (assuming a is a basis of V)

One way: Prove l, ..., In is LI, than since it has same number of elements as dimension it must span

Another: Have already shown (P.,..., In) spans V* since n=din V*
it is also LI

Third: Show Ping In LI Show Ping In Spans V*

Proof) $a_1 P_1 + a_2 P_2 + \cdots + a_n P_n = 0$ as functions $v \to V$ Show $a_1 = a_2 - \cdots = a_n = 0$

Appry $a_1 l_1 + a_2 l_2 + \dots + a_n l_n$ to \vec{v}_i $a_1 l_1 (\vec{v}_i) + \dots + a_n l_n (\vec{v}_i) = 0$ $a_1 l_2 l_3 l_4 l_5$

example: V=R2, V*=(R2)* ~1R2 isomorphic to

Definition: Let $T: V \to W$ be a LT. Define the <u>transpose</u> of T $T^{t}: W \to V^{*}$ $f \mapsto T^{t}(f)$ $V \xrightarrow{g} Uf$

T + (f) = g = fT

Basic Shopping List of Facts 0.7^{t} is a linear transformation $0.(TS)^{t}(f) = St.T^{t}$

7: N→ N 2: N→ N