REPORT

Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation

Structure of the nCoV trimeric spike

The World Health Organization has declared the outbreak of a novel coronavirus (2019-nCoV) to be a public health emergency of international concern. The virus binds to host cells through its trimeric spike glycoprotein, making this protein a key target for potential therapies and diagnostics. Wrapp *et al.* determined a 3.5-angstrom-resolution structure of the 2019-nCoV trimeric spike protein by cryo-electron microscopy. Using biophysical assays, the authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor. They also tested three antibodies known to bind to the SARS-CoV spike protein but did not detect binding to the 2019-nCoV spike protein. These studies provide valuable information to guide the development of medical counter-measures for 2019-nCoV.

Science, this issue p. 1260

Abstract

The outbreak of a novel coronavirus (2019-nCoV) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure development, we determined a 3.5 angstrom-resolution cryo-electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated in a receptor-accessible conformation. We also provide biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S. Additionally, we tested several published SARS-CoV RBD-specific monoclonal antibodies and found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs. The structure of 2019-nCoV S should enable the rapid development and evaluation of medical countermeasures to address the ongoing public health crisis.

The novel coronavirus 2019-nCoV has recently emerged as a human pathogen in the city of Wuhan in China's Hubei province, causing fever, severe respiratory illness, and pneumonia—a disease recently named COVID-19 (\underline{I} , \underline{I}). According to the World Health Organization (WHO), as of 16 February 2020, there had been >51,000 confirmed cases globally, leading to at least 1600 deaths. The emerging pathogen was rapidly characterized as a new member of the betacoronavirus genus, closely related to several bat coronaviruses and to severe acute respiratory syndrome coronavirus (SARS-CoV) (\underline{J} , \underline{J}). Compared with SARS-CoV, 2019-nCoV appears to be more readily transmitted from human to human, spreading to multiple continents and leading to the WHO's declaration of a Public Health Emergency of International Concern (PHEIC) on 30 January 2020 (\underline{I} , \underline{J} , \underline{O}).

structural rearrangement to ruse the viral membrane with the nost cell membrane (\angle , $\underline{\aleph}$). This process is triggered when the S1 subunit binds to a host cell receptor. Receptor binding destabilizes the prefusion trimer, resulting in shedding of the S1 subunit and transition of the S2 subunit to a stable postfusion conformation ($\underline{\varrho}$). To engage a host cell receptor, the receptor-binding domain (RBD) of S1 undergoes hinge-like conformational movements that transiently hide or expose the determinants of receptor binding. These two states are referred to as the "down" conformation and the "up" conformation, where down corresponds to the receptor-inaccessible state and up corresponds to the receptor-accessible state, which is thought to be less stable ($\underline{10}-\underline{13}$). Because of the indispensable function of the S protein, it represents a target for antibody-mediated neutralization, and characterization of the prefusion S structure would provide atomic-level information to guide vaccine design and development.

Based on the first reported genome sequence of 2019-nCoV (4), we expressed ectodomain residues 1 to 1208 of 2019-nCoV S, adding two stabilizing proline mutations in the C-terminal S2 fusion machinery using a previous stabilization strategy that proved effective for other betacoronavirus S proteins (11, 14). Figure 1A shows the domain organization of the expression construct, and figure S1 shows the purification process. We obtained ~0.5 mg/liter of the recombinant prefusion-stabilized S ectodomain from FreeStyle 293 cells and purified the protein to homogeneity by affinity chromatography and size-exclusion chromatography (fig. S1). Cryo–electron microscopy (cryo-EM) grids were prepared using this purified, fully glycosylated S protein, and preliminary screening revealed a high particle density with little aggregation near the edges of the holes.

Fig. 1 Structure of 2019-nCoV S in the prefusion conformation. (A) Schematic of 2019-nCoV S primary structure colored by domain. Domains that were excluded from the ectodomain expression construct or could not be visualized in the final map are colored white. SS, signal sequence; S2', S2' protease cleavage site; FP, fusion peptide; HR1, heptad repeat 1; CH, central helix; CD, connector domain; HR2, heptad repeat 2; TM, transmembrane domain; CT, cytoplasmic tail. Arrows denote protease cleavage sites. (B) Side and top views of the prefusion structure of the 2019-nCoV S protein with a single RBD in the up conformation. The two RBD down protomers are shown as cryo-EM density in either white or gray and the RBD up protomer is shown in ribbons colored corresponding to the schematic in (A).

s2, and table S1). Because of the small size of the RBD (~21 RDa), the asymmetry of this conformation was not readily apparent until ab initio 3D reconstruction and classification were performed (Fig. 1B and fig. S3). By using the 3D variability feature in cryoSPARC v2 (15), we observed breathing of the S1 subunits as the RBD underwent a hinge-like movement, which likely contributed to the relatively poor local resolution of S1 compared with the more stable S2 subunit (movies S1 and S2). This seemingly stochastic RBD movement has been captured during structural characterization of the closely related betacoronaviruses SARS-CoV and MERS-CoV, as well as the more distantly related alphacoronavirus porcine epidemic diarrhea virus (PEDV) (10, 11, 13, 16). The observation of this phenomenon in 2019-nCoV S suggests that it shares the same mechanism of triggering that is thought to be conserved among the Coronaviridae, wherein receptor binding to exposed RBDs leads to an unstable three-RBD up conformation that results in shedding of S1 and refolding of S2 (11, 12).

Because the S2 subunit appeared to be a symmetric trimer, we performed a 3D refinement imposing C3 symmetry, resulting in a 3.2-Å-resolution map with excellent density for the S2 subunit. Using both maps, we built most of the 2019-nCoV S ectodomain, including glycans at 44 of the 66 N-linked glycosylation sites per trimer (fig. S4). Our final model spans S residues 27 to 1146, with several flexible loops omitted. Like all previously reported coronavirus S ectodomain structures, the density for 2019-nCoV S begins to fade after the connector domain, reflecting the flexibility of the heptad repeat 2 domain in the prefusion conformation (fig. S4A) (13, 16–18).

The overall structure of 2019-nCoV S resembles that of SARS-CoV S, with a root mean square deviation (RMSD) of 3.8 Å over 959 C α atoms (Fig. 2A). One of the larger differences between these two structures (although still relatively minor) is the position of the RBDs in their respective down conformations. Whereas the SARS-CoV RBD in the down conformation packs tightly against the N-terminal domain (NTD) of the neighboring protomer, the 2019-nCoV RBD in the down conformation is angled closer to the central cavity of the trimer (Fig. 2B). Despite this observed conformational difference, when the individual structural domains of 2019-nCoV S are aligned to their counterparts from SARS-CoV S, they reflect the high degree of structural homology between the two proteins, with the NTDs, RBDs, subdomains 1 and 2 (SD1 and SD2), and S2 subunits yielding individual RMSD values of 2.6 Å, 3.0 Å, 2.7 Å, and 2.0 Å, respectively (Fig. 2C).

Lon (left) is shown in ribbons colored according to Fig. 1. A protomer of 2019-nCoV S in the RBD up conformation is shown (center) ne protomer of SARS-CoV S in the RBD up conformation (right), displayed as ribbons and colored white (PDB ID: 6CRZ). (B) RBDs of 2019-and SARS-CoV aligned based on the position of the adjacent NTD from the neighboring protomer. The 2019-nCoV RBD is colored green the SARS-CoV RBD is colored white. The 2019-nCoV NTD is colored blue. (C) Structural domains from 2019-nCoV S have been aligned counterparts from SARS-CoV S as follows: NTD (top left), RBD (top right), SD1 and SD2 (bottom left), and S2 (bottom right).

2019-nCoV S shares 98% sequence identity with the S protein from the bat coronavirus RaTG13, with the motable variation arising from an insertion in the S1/S2 protease cleavage site that results in an "RRAR" furin relation site in 2019-nCoV (12) rather than the single arginine in SARS-CoV (fig. S5) (20–23). Notably, amino acturate insertions that create a polybasic furin site in a related position in hemagglutinin proteins are often found in highly virulent avian and human influenza viruses (24). In the structure reported here, the S1/S2 junction is in a disordered, solvent-exposed loop. In addition to this insertion of residues in the S1/S2 junction, 29 variant residues exist between 2019-nCoV S and RaTG13 S, with 17 of these positions mapping to the RBD (figs. S5 and S6). We also analyzed the 61 available 2019-nCoV S sequences in the Global Initiative on Sharing All Influenza Data database (https://www.gisaid.org/) and found that there were only nine amino acid substitutions among all deposited sequences. Most of these substitutions are relatively conservative and are not expected to have a substantial effect on the structure or function of the 2019-nCoV S protein (fig. S6).

fold higher than ACE2 binding to SARS-CoV S (Fig. 3A and fig. S7) (14). We also formed a complex of ACE2 bound to the 2019-nCoV S ectodomain and observed it by negative-stain EM, which showed that it strongly resembled the complex formed between SARS-CoV S and ACE2 that has been observed at high resolution by cryo-EM (Fig. 3B) (14, 28). The high affinity of 2019-nCoV S for human ACE2 may contribute to the apparent ease with which 2019-nCoV can spread from human to human (1); however, additional studies are needed to investigate this possibility.

Fig. 3 2019-nCoV S binds human ACE2 with high affinity. (A) Surface plasmon resonance sensorgram showing the binding kinetics for human ACE2 and immobilized 2019-nCoV S. Data are shown as black lines, and the best fit of the data to a 1:1 binding model is shown in red. (B) Negative-stain EM 2D class averages of 2019-nCoV S bound by ACE2. Averages have been rotated so that ACE2 is positioned above the 2019-nCoV S protein with respect to the viral membrane. A diagram depicting the ACE2-bound 2019-nCoV S protein is shown (right) with ACE2 in blue and S protein protomers colored tan, pink, and green.

The overall structural homology and shared receptor usage between SARS-CoV S and 2019-nCoV S prompted us to

test published SARS-CoV RBD-directed monoclonal antibodies (mAbs) for cross-reactivity to the 2019-nCoV RBD (Fig. 4A). A 2019-nCoV RBD-SD1 fragment (S residues 319 to 591) was recombinantly expressed, and appropriate folding of this construct was validated by measuring ACE2 binding using biolayer interferometry (BLI) (Fig. 4B). Cross-reactivity of the SARS-CoV RBD-directed mAbs S230, m396, and 80R was then evaluated by BLI (12, 29–31). Despite the relatively high degree of structural homology between the 2019-nCoV RBD and the SARS-CoV RBD, no binding to the 2019-nCoV RBD could be detected for any of the three mAbs at the concentration tested (1 µM) (Fig. 4C), in contrast to the strong binding that we observed to the SARS-CoV RBD (fig. S8). Although the epitopes of these three antibodies represent a relatively small percentage of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD, the logical process of the surface area of the 2019-nCoV RBD and the SARS-coV RBD area to the surface area of the 2019-nCoV RBD area to the surface area of the 2019-nCoV RBD area to the surface area of the 2019-nCoV RBD area to the surface area of the 2019-nCoV RBD area to the surface area of the

Fig. 4 Antigenicity of the 2019-nCoV RBD. (**A**) SARS-CoV RBD shown as a white molecular surface (PDB ID: 2AJF), with residues that vary in the 2019-nCoV RBD colored red. The ACE2-binding site is outlined with a black dashed line. (**B**) Biolayer interferometry sensorgram showing binding to ACE2 by the 2019-nCoV RBD-SD1. Binding data are shown as a black line, and the best fit of the data to a 1:1 binding model is shown in red. (**C**) Biolayer interferometry to measure cross-reactivity of the SARS-CoV RBD-directed antibodies S230, m396, and 80R. Sensor tips with immobilized antibodies were dipped into wells containing 2019-nCoV RBD-SD1, and the resulting data are shown as a black line.

The rapid global spread of 2019-nCoV, which prompted the PHEIC declaration by WHO, signals the urgent need for coronavirus vaccines and therapeutics. Knowing the atomic-level structure of the 2019-nCoV spike will allow for additional protein-engineering efforts that could improve antigenicity and protein expression for vaccine development. The structural data will also facilitate the evaluation of 2019-nCoV spike mutations that will occur as the virus undergoes genetic drift and help to define whether those residues have surface exposure and map to sites of known antibody epitopes for other coronavirus spike proteins. In addition, the structure provides assurance that the protein produced by this construct is homogeneous and in the prefusion conformation, which should maintain the most neutralization-sensitive epitopes when used as candidate vaccine antigens or B cell probes for isolating neutralizing human mAbs. Furthermore, the atomic-level detail will enable the design and screening of small molecules with fusion-inhibiting potential. This information will support precision vaccine design and the discovery of antiviral therapeutics, accelerating medical countermeasure development.

We thank J. Ludes-Meyers for assistance with cell transfection, members of the McLellan laboratory for critic reading of the manuscript, and A. Dai from the Sauer Structural Biology Laboratory at the University of Texas Austin for assistance with microscope alignment. **Funding:** This work was supported in part by a National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases (NIAID) grant awarded to J.S. (R01-AI127521) and by intramural funding from NIAID to B.S.G. The Sauer Structural Biology Laboratory is sported by the University of Texas College of Natural Sciences and by award RR160023 from the Cancer Prevent and Research Institute of Texas (CPRIT). **Author contributions:** D.W. collected and processed cryo-EM data. D.W., N.W., and J.S.M. built and refined the atomic model. N.W. designed and cloned all constructs. D.W., N.W., K.S.C., J.A.G., and O.A. expressed and purified proteins. D.W., J.A.G., and C.-L.H. performed binding studies. B.S.G. and J.S.M. supervised experiments. D.W., B.S.G., and J.S.M. wrote the manuscript with input from all authors.

Competing interests: N.W., K.S.C., B.S.G., and J.S.M. are inventors on U.S. patent application no. 62/412,703 ("Prefusion Coronavirus Spike Proteins and Their Use"), and D.W., N.W., K.S.C., O.A., B.S.G., and J.S.M. are inventors on U.S. patent application no. 62/972,886 ("2019-nCoV Vaccine"). Data and materials availability: Atomic coordinates and cryo-EM maps of the reported structure have been deposited in the Protein Data Bank under accession code 6VSB and in the Electron Microscopy Data Bank under accession codes EMD-21374 and EMD-21375.

0

Supplementary Material

Summary

Materials and Methods

Figs S1 to S8

Table S1

Movies S1 and S2

References (<u>32</u>–<u>41</u>)

MDAR Reproducibility Checklist

Resources

File (abb2507-wrapp-sm.pdf)

DOWNLOAD

File (abb2507_reproducibility_checklist.pdf)

DOWNLOAD

File (abb2507s1.mov)

DOWNLOAD

File (abb2507s2.mov)

DOWNLOAD

File (pap.pdf)

File (papv2.pdf)

DOWNLOAD

<u>View/request a protocol for this paper from *Bio-protocol*</u>.

References and Notes

J. F. Chan, S. Yuan, K.-H. Kok, K. K.-W. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C.-Y. Yip, R. W.-S. Poon, H.-W. Tsoi, S. K.-F. Lo, K.-H. Chan, V. K.-M. Poon, W.-M. Chan, J. D. Ip, J.-P. Cai, V. C.-C. Cheng, H. Chen, C. K.-M. Hui, K.-Y. Yuen, A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. *Lancet* **395**, 514–523 (2020).

```
+ SEE ALL REFERENCES ) · CROSSREF · PUBMED · GOOGLE SCHOLAR
```

C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* 395, 497–506 (2020).

O

Ø

11/29/21, 9:17 PM Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation HOME > SCIENCE > VOL. 367, NO. 6483 > CRYO-EM STRUCTURE OF THE 2019-NCOV SPI... Lancet S0140-6736(20)30251-8 (2020). ← GO TO REFERENCE) · CROSSREF · PUBMED · GOOGLE SCHOLAR F. Wu, S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, Y. Hu, Z.-W. Tao, J.-H. Tian, Y.-Y. Pei, M.-L. Yuan, Y.-L. Zhang, F.-H. Dai, Y. Liu, Q.-M. Wang, J.-J. Zheng, L. Xu, E. C. Holmes, Y.-Z. Zhang, A new coronavirus associated with human respiratory disease in China. *Nature* (2020). + SEE ALL REFERENCES) · CROSSREF · PUBMED · GOOGLE SCHOLAR N. Chen, M. Zhou, X. Dong, J. Ou, F. Gong, Y. Han, Y. Oiu, J. Wang, Y. Liu, Y. Wei, J. Xia, T. Yu, X. Zhang, L. Zhang, Epidemiological and clini-

O. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. M. Leung, E. H. Y. Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, O. Chen, D. Li, T. Liu, J. Zhao, M. Li, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. Y. Lam, J. T. K. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, Z. Feng, Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. NEJMoa2001316 (2020).

cal characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. *Lancet* **395**, 507–513 (2020).

```
      ∠
      GO TO REFERENCE
      )
      · CROSSREF
      · PUBMED
      · GOOGLE SCHOLAR
```

← GO TO REFERENCE

)

• CROSSREF • PUBMED • GOOGLE SCHOLAR

F. Li, Structure, Function, and Evolution of Coronavirus Spike Proteins. *Annu. Rev. Virol.* **3**, 237–261 (2016).

```
· CROSSREF · PUBMED · GOOGLE SCHOLAR
← GO TO REFERENCE
```

B. J. Bosch, R. van der Zee, C. A. de Haan, P. J. Rottier, The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–8811 (2003).

```
∠ GO TO REFERENCE
                  · CROSSREF · PUBMED · GOOGLE SCHOLAR
```

A. C. Walls, M. A. Tortorici, J. Snijder, X. Xiong, B.-J. Bosch, F. A. Rey, D. Veesler, Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc. Natl. Acad. Sci. U.S.A. 114, 11157–11162 (2017).

```
∠ GO TO REFERENCE
                  · CROSSREF · PUBMED · GOOGLE SCHOLAR
```

M. Gui, W. Song, H. Zhou, J. Xu, S. Chen, Y. Xiang, X. Wang, Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal 10 a prerequisite conformational state for receptor binding. Cell Res. 27, 119–129 (2017).

```
+ SEE ALL REFERENCES
                     • CROSSREF • PUBMED • GOOGLE SCHOLAR
```

J. Pallesen, N. Wang, K. S. Corbett, D. Wrapp, R. N. Kirchdoerfer, H. L. Turner, C. A. Cottrell, M. M. Becker, L. Wang, W. Shi, W.-P. Kong, E. L. Andres, A. N. Kettenbach, M. R. Denison, J. D. Chappell, B. S. Graham, A. B. Ward, J. S. McLellan, Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl. Acad. Sci. U.S.A. 114, E7348–E7357 (2017).

```
+ SEE ALL REFERENCES ) · CROSSREF · PUBMED · GOOGLE SCHOLAR
```

A. C. Walls, X. Xiong, Y.-J. Park, M. A. Tortorici, J. Snijder, J. Quispe, E. Cameroni, R. Gopal, M. Dai, A. Lanzavecchia, M. Zambon, F. A

```
D. Corti, D. Veesler, Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176, 1026–1039.e15 (20
 + SEE ALL REFERENCES ) · CROSSREF · PUBMED · GOOGLE SCHOLAR
```

Y. Yuan, D. Cao, Y. Zhang, J. Ma, J. Qi, Q. Wang, G. Lu, Y. Wu, J. Yan, Y. Shi, X. Zhang, G. F. Gao, Cryo-EM structures of MERS-CoV and CoV spike glycoproteins reveal the dynamic receptor binding domains. *Nat. Commun.* **8**, 15092 (2017).

```
+ SEE ALL REFERENCES ) · CROSSREF · PUBMED · GOOGLE SCHOLAR
```

R. N. Kirchdoerfer, N. Wang, J. Pallesen, D. Wrapp, H. L. Turner, C. A. Cottrell, K. S. Corbett, B. S. Graham, J. S. McLellan, A. B. Ward, Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci. Rep. 8, 157 (2018).

```
+ SEE ALL REFERENCES
                       CROSSREF · PUBMED · GOOGLE SCHOLAR
```

A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. 15 *Nat. Methods* **14**, 290–296 (2017).

```
← GO TO REFERENCE ) · CROSSREF · PUBMED · GOOGLE SCHOLAR
```

D. Wrapp, J. S. McLellan, The 3.1-angstrom cryo-electron microscopy structure of the porcine epidemic diarrhea virus spike protein in the 16 prefusion conformation. *J. Virol.* **93**, e00923-19 (2019).

```
+ SEE ALL REFERENCES ) · CROSSREF · PUBMED · GOOGLE SCHOLAR
```

A. C. Walls, M. A. Tortorici, B. Frenz, J. Snijder, W. Li, F. A. Rey, F. DiMaio, B.-J. Bosch, D. Veesler, Glycan shield and epitope masking of a 17 coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol. Biol. 23, 899–905 (2016).

B

<u><</u>

11/29/21, 9:17 PM Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation HOME > SCIENCE > VOL. 367, NO. 6483 > CRYO-EM STRUCTURE OF THE 2019-NCOV SPI... Pre-fusion structure of a human coronavirus spike protein. *Nature* **531**, 118–121 (2016). ← GO TO REFERENCE) · CROSSREF · PUBMED · GOOGLE SCHOLAR B. Coutard, C. Valle, X. de Lamballerie, B. Canard, N. G. Seidah, E. Decroly, The spike glycoprotein of the new coronavirus 2019-nCoV con-19 tains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176, 104742 (2020). • CROSSREF • PUBMED • GOOGLE SCHOLAR → GO TO REFERENCE

) B. J. Bosch, W. Bartelink, P. J. Rottier, Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion pro-20 tein upstream of rather than adjacent to the fusion peptide. J. Virol. 82, 8887–8890 (2008).

 ←
 GO TO REFERENCE
)
 • CROSSREF
 • PUBMED
 • GOOGLE SCHOLAR

I. Glowacka, S. Bertram, M. A. Müller, P. Allen, E. Soilleux, S. Pfefferle, I. Steffen, T. S. Tsegaye, Y. He, K. Gnirss, D. Niemeyer, H. Schneider, 21 C. Drosten, S. Pöhlmann, Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol. 85, 4122–4134 (2011).

CROSSREF · PUBMED · GOOGLE SCHOLAR

W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe, M. Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. *Nature* **426**, 450–454 (2003).

```
CROSSREF · PUBMED · GOOGLE SCHOLAR
```

S. Belouzard, V. C. Chu, G. R. Whittaker, Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. U.S.A. 106, 5871-5876 (2009).

J. Chen, K. H. Lee, D. A. Steinhauer, D. J. Stevens, J. J. Skehel, D. C. Wiley, Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95, 409–417 (1998).

```
· CROSSREF · PUBMED · GOOGLE SCHOLAR
```

M. Hoffmann, H. Kleine-Weber, N. Krüger, M. Müller, C. Drosten, S. Pöhlmann, The novel coronavirus 2019 (2019-nCoV) uses the SARScoronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 929042 [Preprint]. 31 January 2020. https:// doi.org/10.1101/2020.01.31.929042.

Y. Wan, J. Shang, R. Graham, R. S. Baric, F. Li, Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J. Virol. JVI.00127-20 (2020).

```
CROSSREF · PUBMED · GOOGLE SCHOLAR
```

P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang, G.-Z.-L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* (2020).

```
← GO TO REFERENCE ) · CROSSREF · PUBMED · GOOGLE SCHOLAR
```

W. Song, M. Gui, X. Wang, Y. Xiang, Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell recei ACE2. PLOS Pathog. 14, e1007236 (2018).

```
ط GO TO REFERENCE ) · CROSSREF · PUBMED · GOOGLE SCHOLAR
```

W. C. Hwang, Y. Lin, E. Santelli, J. Sui, L. Jaroszewski, B. Stec, M. Farzan, W. A. Marasco, R. C. Liddington, Structural basis of neutrali by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. J. Biol. Chem. 281, 34610–34616 (2006).

```
∠ GO TO REFERENCE ) · CROSSREF · PUBMED · GOOGLE SCHOLAR
```

P. Prabakaran, J. Gan, Y. Feng, Z. Zhu, V. Choudhry, X. Xiao, X. Ji, D. S. Dimitrov, Structure of severe acute respiratory syndrome coronavirus 30 receptor-binding domain complexed with neutralizing antibody. J. Biol. Chem. 281, 15829–15836 (2006).

```
CROSSREF · PUBMED · GOOGLE SCHOLAR
```

X. Tian, C. Li, A. Huang, S. Xia, S. Lu, Z. Shi, L. Lu, S. Jiang, Z. Yang, Y. Wu, T. Ying, Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. *bioRxiv* **9**, 382–385 (2020).

```
      ←
      GO TO REFERENCE
      CROSSREF
      • GOOGLE SCHOLAR
```

B. Carragher, N. Kisseberth, D. Kriegman, R. A. Milligan, C. S. Potter, J. Pulokas, A. Reilein, Leginon: An automated system for acquisition of images from vitreous ice specimens. J. Struct. Biol. 132, 33–45 (2000).

0

<u><</u>

HOME > SCIENCE > VOL. 367, NO. 6483 > CRYO-EM STRUCTURE OF THE 2019-NCOV SPI... CROSSREF · PUBMED · GOOGLE SCHOLAR E. Ramírez-Aportela, J. L. Vilas, A. Glukhova, R. Melero, P. Conesa, M. Martínez, D. Maluenda, J. Mota, A. Jiménez, J. Vargas, R. Marabini, P. M. Sexton, J. M. Carazo, C. O. S. Sorzano, Automatic local resolution-based sharpening of cryo-EM maps. *Bioinformatics* 36, 765–772 (2020). CROSSREF · PUBMED · GOOGLE SCHOLAR A. Šali, T. L. Blundell, Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993). 35 CROSSREF · PUBMED · GOOGLE SCHOLAR E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). CROSSREF · PUBMED · GOOGLE SCHOLAR P. D. Adams, R. W. Grosse-Kunstleve, L.-W. Hung, T. R. Ioerger, A. J. McCoy, N. W. Moriarty, R. J. Read, J. C. Sacchettini, N. K. Sauter, T. C. Terwilliger, PHENIX: Building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948-1954 (2002). CROSSREF · PUBMED · GOOGLE SCHOLAR T. I. Croll, ISOLDE: A physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 38 Struct. Biol. 74, 519-530 (2018). CROSSREF · PUBMED · GOOGLE SCHOLAR P. Emsley, K. Cowtan, Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004). 39 CROSSREF · PUBMED · GOOGLE SCHOLAR A. Morin, B. Eisenbraun, J. Key, P. C. Sanschagrin, M. A. Timony, M. Ottaviano, P. Sliz, Collaboration gets the most out of software. eLife 2, 40 e01456 (2013). CROSSREF · PUBMED · GOOGLE SCHOLAR

T. Grant, A. Rohou, N. Grigorieff, *cis*TEM, user-friendly software for single-particle image processing. *eLife* 7, e35383 (2018). 41

CROSSREF · PUBMED · GOOGLE SCHOLAR **GO TO REFERENCE**

eLetters (1)

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofred dexed. Please read our <u>Terms of Service</u> before submitting your own eLetter.

LOG IN TO SUBMIT A RESPONSE

Re: pH boosters/regulator as a potential candidate in managing COVID19

RAJESH KUMAR Associate Professor, Discipline of Physics, Indian Institute of Technology Indore

HEM C. JHA Assistant Professor, Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore

Thanks to Wrapp et al [1] for coming up with a clear picture of the 2019-nCoV spike structure. This work along with so \leq others (e.g, https://www.ncbi.nlm.nih.gov/books/NBK554776/) very clearly shows that the viral membrane consists of proteins (the S-protein) which are fatty in nature. This fatty nature of the virus spike suggests that its survival on a basic view more

MAR. 24, 2020

RE: Comments on "Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation"

SHENG CHEN Professor, Department of Infectious Diseases and Public Health, City University of Hong Kong

EDWARD WAI-CHI CHAN State Key Lab of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University

Comments on "Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation"

Change Chan 1* and Edward Ma: Chi Chang

0

 $\underline{\mathsf{HOME}}$ > $\underline{\mathsf{SCIENCE}}$ > $\underline{\mathsf{VOL.\,367, NO.\,6483}}$ > CRYO-EM STRUCTURE OF THE 2019-NCOV SPI...

SHOW ALL eLETTERS

View Full Text Download PDF

CURRENT ISSUE

Community policing does not build citizen trust in police or reduce crime in the Global South

BY GRAEME BLAIR, JEREMY M. WEINSTEIN, ET AL.

Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories

BY KEVIN ANDREW UY GONZALES, LISA POLAK, ET AL.

Too tired to stay

BY AVIKA DIXIT

TABLE OF CONTENTS >

LATEST NEWS

NEWS 29 NOV 2021

Choose your own Breakthrough of the Year with Science's 2021 poll

NEWS 29 NOV 2021

Venice's barrier against rising seas could jeopardize city's ecosystem

NEWS 25 NOV 2021

News at a glance: Missing clinical trial results, a quantum computing milestone, free peer review **NEWS** 29 NOV 2021

How one society rebounded from 'the worst year to be alive'

SCIENCEINSIDER | 27 NOV 2021

'Patience is crucial': Why we won't know for weeks how dangerous Omicron is

CAREERS EDITORIAL | 25 NOV 2021

If academia better supported women scientists like me, I may have opted to stay

Science Ad

Immunology

Signaling

FOLLOW US

NEWS

CAREERS

Find Jobs

COMMENTARY

JOURNALS

AUTHORS & REVIEWERS

Information for Authors

Information for Reviewers

All News <u>ScienceInsider</u>

News Features

Subscribe to News from Science

News from Science FAQ

About News from Science

Careers Articles

Employer Profiles

Opinion <u>Analysis</u>

<u>Blogs</u>

Science

Science Advances

Science Immunology Science Robotics

Science Signaling

Science Translational Medicine

Science Partner Journals

https://www.science.org/doi/10.1126/science.abb2507

HOME > SCIENCE > VOL. 367, NO. 6483 > CRYO-EM STRUCTURE OF THE 2019-NCOV SPI				<	\(\psi\		\$	<	>
Subscription	Custom Publishing Info	AAAS Communities	Work at AAAS	ork at AAAS		Access and Subscriptions			
<u>Library Admin Portal</u>	Post a Job	EurekAlert!	Prizes and Awards		Order a Single Issue				
Request a Quote Science in the Classroom						Reprints and Permissions			
<u>Librarian FAQs</u>						Conta	act Us		

© 2021 American Association for the Advancement of Science. All rights reserved. AAAS is a partner of HINARI, AGORA, OARE, CHORUS, CLOCKSS, CrossRef and COUNTER. Science ISSN 0036-8075.

Terms of Service | Privacy Policy | Accessibility

