Autumn 2022 November 16, 2022

Note:

- 1. This is a closed book test. Cheat sheets and calculators are not allowed.
- 2. Answers directly written without proper derivation/justification/computation will not be awarded any marks, irrespective of whether they are correct or not.
- 3. You will not get any marks for writing unnecessary theory.
- 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the objective function defined as $f(x,y) = x^2 + (y-3)^2 + 10$. The set of feasible points are $\Omega = \{(x,y) \in \mathbb{R}^2 \mid g_1(x,y) \leq 0, g_2(x,y) \leq 0\}$, where $g_1: \mathbb{R}^2 \to \mathbb{R}, g_2: \mathbb{R}^2 \to \mathbb{R}$ defined as $g_1(x,y) = x^2 - y, g_2(x,y) = y - x - 2$. [10]
 - (a) At the points of minima, which of the constraints are active, and why?
 - (b) Using the Karush-Kuhn-Tucker conditions, find the point of minima.
 - (c) Find the Lagrange multipliers, μ_1 , μ_2 associated with the constraints μ_1 , μ_2 .
 - 2. Let x, y, z denote the height, width and breadth of a closed box made out of a flat cardboard. Minimize the surface area of the required cardboard sheet needed to construct the closed box that has a volume of $10m^3$. Also compute the height, width and breadth of the optimal cardboard box, and compute the Lagrange multiplier associated with
 - 3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be defined as $f(x) = \frac{1}{2}x^TQx b^Tx$, where $Q \in SPD(n)$ and $b \in \mathbb{R}^n$ is a fixed vector. Let V_1 , V_2 be two subspaces of \mathbb{R}^n such that there is a non-zero vector $d \in V_1 \cap V_2$. If $x_1 = \arg\min_{x \in V_1} f(x)$ and $x_2 = \arg\min_{x \in V_2} f(x)$ with $f(x_1) < f(x_2)$, then show that $x_1 - x_2$ is Q-conjugate to d? Is this not true if $f(x_1) = f(x_2)$.
 - 4. Prove as applicable whether the following functions f are convex, concave, neither or both.
 - (a) Let $A \in \mathbb{R}^{m \times n}$, and $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) = ||Ax b||^2$.
 - (b) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 + 2y^3 2xy + y^2 + 10x + 100$.
 - (c) $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^2 y^2, \Omega = \{(x,y) \in \mathbb{R}^2 \mid x+y=0\}$ (d) $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^2 + y^2, \Omega = \{(x,y) \in \mathbb{R}^2 \mid x^2 - y^2 = 0\}$
 - 5. Let $f\mathbb{R} \to \mathbb{R}$ be defined as $f(x) = 10x \log(x)$, where \log denotes the natural \log a-
 - (a) Write the Newton's iteration for computing the minimizer for f.

 - (c) Will the Newton's method converge to the minima for any initialization? Why? (b) Find the minima of f.
 - 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as $f(x,y) = (x-y)^4 + x^2 y^2 2x + 2y + 10$. Find all points in \mathbb{R}^2 satisfying the First order necessary conditions. Which of these points satisfy the Second order necessary conditions?