

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS

DOCENTE: CARLOS ROMÁN

AYUDANTE: SANTIAGO GONZÁLEZ

MAT2505 - Ecuaciones Diferenciales Parciales

Ayudantía 9

— PROBLEMA 1 —

Sea $u \in \mathcal{C}^{(1,2)}(\Omega)$ solución de la ecuación del calor, donde $\Omega = \mathbb{R}_{\geq 0} \times \mathbb{R}^n$. Demuestre que:

- 1. si $u \in L^1(\Omega)$, entonces $u \equiv 0$.
- 2. si $u(t,x)=u_{\infty}(x)$ es estado estacionario (no depende del tiempo), y $u_{\infty}\in L^1(\mathbb{R}^n)$, entonces $u\equiv 0$.
- 3. observe que ocurre en el inciso anterior, pero con la condición

$$||u_{\infty}||_{L^1(B(0,r))} < r^{n-1}.$$