IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Stoyanov et. al.

Attorney Docket No. 25339

Application No. 10/748,977

Group Art Unit: 1623

Filed: 12/30/03

Examiner: White, NMN

Title: Method For Forming Individualized Intrafiber Crosslinked Cellulosic

Fibers With Improved Brightness And Color

DECLARATION OF ANGEL STOYANOV PURSUANT TO § 37 C.F.R.§ 1.132

Federal Way, WA, April 21, 2008

TO THE COMMISSIONER OF PATENTS:

- I, Angel Stoyanov, declare and state as follows:
- I am currently employed by the Weyerhaeuser Company as a Scientist and since 1998 have worked exclusively on crosslinking of cellulosic fibers.
- 2. I received my Bachelor of Science and my Master of Science from the University of Chemical Technology and Metallurgy at Sofia, Bulgaria, in 1980 and 1981, respectively. After graduation my work history is as follows:

I was a Research Assistant from 1982 to 1986 and an Assistant Professor from 1986 to 1994 at the University of Chemical Technology and Metallurgy at Sofia, Bulgaria. From 1990 to 1991 I worked under a Fulbright scholarship at the University of Washington, Seattle, WA, and completed all graduate courses for a Ph. D. in 1996. From 1996 to 1998 I conducted research for my Ph. D. and held various teaching positions in the Department of Engineering at the University of Washington.

- 3. I have read and am familiar with the Hansen et al patents US Patent No. 5,589,256 and US Patent No. 5,789,326.
- 4. Hansen et al. state in the '256 patent that initial application of the binder on high bulk fibers preferably occurs after the curing step, particularly if the binder is capable of functioning as a crosslinking material. Hansen then states that specific binders that can also crosslink are polyols, polycarboxylic acids and polyamines. If such binders are present during curing, the binder will be consumed during the curing step to form covalently crosslinked bonds. When this occurs, the binder is no longer available for hydrogen bonding or coordinate covalent bonding, and particle binding to fibers is ineffective, column 23, line 4 14.
- 5. Hansen further states that in processes that use polycarboxylic acid, polyols and polyaminesas binders the fibers should contain at least 20 % water (or 20 50 % water) by weight if the particles and binder are present in the fibers when curing occurs. The water inhibits covalent bond formation and prevents all of the binder from being used to form covalent intrafiber crosslinks. Hence, some of the binder remains available to form the non-covalent bonds with the particles and produce ease of densification in fiber products made by the process of the invention, column 23, line 21 32.
- 6. Hansen et al. state in the '326 patent that curing in the presence of the binder is not usually a problem because the binder cannot always participate in the crosslinking reaction. Hansen then states that in certain situations the binder can also form covalent intrafiber crosslinks. Polycarboxylic acids (such as citric acid), polyols (such as dipropylene glycol) and polyamines (such as ethylene diamine) can function as crosslinking agents and are consumed during the curing step in the formation of covalent crosslinks. Hansen further states that when the crosslinking agent is also a binder steps should be taken to prevent the binder from being consumed as a crosslinker in the curing step. Hansen found that about 20 % water but more preferably at least 30 % by weight of the fibers will retard curing so that adequate binder functional groups remain available to bind particles to fiber. Hansen states that when curing the crosslinking material in the presence of a binder that is also a crosslinking material the fibers should contain at least 20 % by weight of the fibers when curing begins, column 46, line 3 line 26.

- 7. Tests were undertaken to determine the effect of water addition on curing. Accordingly I planned and supervised experiments which were carried out by my assistant, Kathy Marsh. In the experiments, a polycarboxylic acid (citric acid), a polyol (sorbitol) and a catalyst (sodium hypophosphite) were added to cellulose fibers (CF416 pulp) and air dried. Water at the 20 and 30 % by weight level was added to the air dried samples which were then cured. Comparison was made to samples in which no water was added.
- 8. Exhibit A shows the experimental design for the tests and the procedure. All samples were cured at 171°C for 7 minutes. The acronyms are as follows: COP, chemical on pulp (CF416 pulp from Weyerhaeuser Co.); SHP, sodium hypophosphite; CA, citric acid; SOR, sorbitol. Exhibit B shows the addition levels for the various reagents; Exhibit C shows the summary of brightness testing by TAPPI T 525 om-02 and the FAQ wet bulk results determined by the procedure in the application. The Hunter color values were determined by TAPPI T 1231 sp 98. Whiteness Index, WI_{(CDM-L),} was calculated from the formula, WI_{(CDM-L),=}(L-3b).
- 10. The results are summarized in Table 1. It is well recognized by those skilled in the art of crosslinked fibers that an increase in FAQ wet bulk, relative to an untreated control, reflects that fibers have been crosslinked. For reference purposes, an untreated control is Sample A in my earlier Declaration of August 16, 2006 submitted on August 21, 2006 and September 29, 2006 in response to the Examiner's Action dated February 23, 2006.

Table 1

Effect of Water Addition On Crosslinking With A Polycarboxylic Acid in The presence Of A Polyol

ىدر پو⊯	η			-T			T.		T-	7		Ţ	
VICENT	Whiteness		Incha	***************************************			0010	88	81 50	01.70	80.97	01.10	
	alues		8			·	00 4	20.0	UL P		2,5	486	
	Hunter Space Values	ı	4				50	3	SSC		-	CI -)
	Hunter		-				01.30	5.55	08,60		22,73	0 7 7 1	
	081		Brightness				05.30	27.70	85.20			85.76	70.00
	FAQ Wet	Buk	at 0.6 kPa				16.40	10.47	16.47	J. J. J.	10.20	16.45	
	Cure		Time				-	,	~	ſ	1	~	
	Cure		Temp				340	2	340	OFE	7	340	
	Water		added				U	>	50	Ç	>	99	
			SHP Sorbitol				9		ø	y		9	
###***********************************			SHD				2		C-3	ç	***	~	
***************************************			XLinker) P	<u>.</u>	9	œ	And the Company of th	œ	œ		90	The state of the s
Annual management of the second secon			Chemistry	1			CA+polyol	Manual Control of the	CA+polyo	CAtholim		CA+polyo	
the state of the s	Sample					-	A3	The second secon	15.5	44	- M -	3 4	Control of the Salar Salar Sandar Sandara

Ť

11. Sample A3 is a control which has been treated with 8 % by weight citric acid crosslinking agent, 2 % by weight sodium hypophosphite and 6 % by weight sorbitol, and then air dried and cured. Sample B3 is treated in the same manner as sample A3 with the exception that 20 % by weight water was added after air drying. Both samples were then cured at 171°C for 7 minutes. Sample A4 is a control which has been treated with 8 % by weight citric acid crosslinking agent, 2 % by weight sodium hypophosphite and 6 % by weight sorbitol, and then air dried and cured. Sample B4 is treated in the same manner as sample A4 with the exception that 30 % by weight water was added after air drying. Both samples were then cured at 171°C for 7 minutes.

12. Based on the fact that there is no decrease in FAQ wet bulk when pulp is treated with citric acid, sodium hypophosphite, sorbitol, air dried and then treated with 20 % and 30 % by weight water, it is my opinion that the crosslinking reaction with citric acid is not affected by the presence of either 20 % or 30 % by weight water prior to curing.

13. In accordance with accepted Patent Office Practice, the dates in the laboratory notebook pages presented in Exhibits A-C have been reducted.

14. I hereby declare that all statements made herein of my knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under §1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued therefrom.

Respectfully submitted,

Date 4/21/08

Angel Stovanov

EXHIBIT A

15134

Patent Metron (3)

MM

101

Arngel

Weyerhaeuser Confidential

Patent Action

Due Date

Title;

Experiment # 157: CA + Polyols for Patent action (3)

Objective(x):

Investigate whether the addition of 8 20% water prevents the creeslinking with CA in the presence of polyel (Section)

Halerials:

- * Pulp CF416
- Sample size 20 g
- Ximker: CA
- Catalyst: SHP
- Polyols Sorbitol (Sorbidex)
- Fibenzer, 6" pad former
- Dispatch oven
- · Metal baskets for curing

Experimental Design:

1	·	y		**********			
Sample ID	Chemistry	XLinker	SEGP	Sorbatol	Water	Cure	Oute tune
		P's COP1	(% COP)		F.5.	Temp	
A3 B)	CAISILP-SOR	S S	1	6	-	3.40	famin i
[n)	CA+SHP+SOR	K		6	.`0	140	-

Procedure:

- 1 Weigh the sample 20 g (odh),
- Yough the crosslinking solution using the usual syringe method.
 Leave the samples of maintain in a scaled plastic bags.

 the the 6" pad former for fluffing (50% consumercy).

- Air dry the samples:
- Add 20% water by actosed spraying to Sample B3.
 7. Let Sample B3 stay is a plastic bag for 2 h.

 - 8. Cure both samples simultaneously in the Despatch V Series oven.
 - G Store the cored fibers in a plastic bay

Testing:

- 1. AFAQ Wet Bulk at 0 6 kPa
- 2 Brightness/Color

Exp #157 - CA+Polyols - patent action?

1(M

y (aly marsh

EXHIBIT A

5000000117

15734

Patet Action (4)

7.1

Weyerhaeuser Confidential

Patent Action

Duc Date

Title:

Experiment # 158: CA + Polyols for Patent action (4)

Objective(s):

Investigate whether the addition of 30% water prevents the crosslinking with CA in the presence

Materials:

- Pulp. CF416
- Sample size 20 g
- Xhaker CA
- Catalyst: SHP
- Polyols Sorbital (Sorbidex)
- Filterizer: 6" paul former
- Dispasch oven
- Metal baskets for coring

Experimental Design:

Sample ID	Chemastry	XLinks	SHP	Sortutol	Water	Cure	Cure time
		(C.COP)	1*+ COP)		29.7 7#	CF)	(1791)
14	CA+SHP+SOR	×	3	6	*	3-4()	7
[34	CA+SHP+SOR	8	2	6	36)	5-10)	, -

Procedure:

- ! Weigh the sample 20 g (odb);
- 7 Apply the crosslanking solution using the usual syringe method, 3. Leave the samples or remove in a scaled plastic bags.
- 4. Use the 6" pad former for fluffing (50% consistency).
- 5 Air dry the samples;
 6. Add 30% water by acrossol spraying to Sample B4;
 7. Let Sample B4 stay in a plastic beg for 2 h;
- 8. Cure both samples simultaneously in the Despatch V Series even;
- 9. Store the cured fibers in a plastic bag

Toting:

- 1. AFAQ Wet Bulk at 0.6 kPa
- 2. Brightness/Culor

Exp #158 - CA-Polyms - patent action4

MY

Warly Marsh

EXHIBIT B

15134

UM

taget	actual	plr	N.m.
3.2 3	_		
2.4	_	امي	

MM

15134

Erg. # 157 (cons.)

7(M

Sorbetal Same as Exp. # 154 SHe

Applied 202 solution in syringe metho. Egrillbrake overnight.
Eberized in 6" gal former - 1 Base

Dry overnight Sprayed sample B3 with H2O - sit 2 hours. Core in Despotch over - A3 in 1/2 of basket,

BI in other half with grip sheet Driller -340°F for 35 mm, turn backet, 3.5 mm longer.

7/2

305

EXHIBIT C

an pin			TEST							
(i)	5 ()#	posage	DATESF	HIGHTNESS	L	a l	b	r.	3*	₽*
A3	3	ì		85.72	95 92	-0.93	4 79	96.82	0 89	4 74
	2	2	788	85 17	95.67	-0 94	4.83	96.52	-0 9	4.79
	-%	3	300000	85 21	95,71	-0.92	4.8G	90 66	-0.89	4 81
	Í2	7		85.23	95 65	-0.98	4.78	96.61	-0 94	4 74
	b	2		85.27	95.72	-1 03	4.81	96 66	0.99	4 77
	b	3		85.33	95.69	-0.94	4.76	96.64	-0.91	4.71
			Average	85.32	95.73	-0.96	4.81	96.7	-0.9	4.8
			StDev	0.2	0.1	9.0	0.0	9.1	0.0	0.0
83	а	1		85.37	95.7	-0.9	4.69	96.65	-0.86	4 64
	a	2		85.18	95 62	-6.91	4.7	96.59	-0.87	4 66
	ä	3	000060cccv	85.27	95 63	-0.91	± 67	96.59	-0.88	4 62
	5	٠		85.27	95.66	-0.85	47	96.62	-0.32	4 65
	b	2		84 77	95 34	-0.94	4.65	96.37	-0 9	4 61
	Ω	.5	1	85 25	95 58	0 89	4 63	96.55	-0.85	4 58
			Average	85.19	95.59	-0.90	4.67	96.6	-0.9	4.6
			StDev	0.2	0.1	0.0	0.0	0.1	0.0	0.0

63

Vally March

EXHIBIT B

64

15134

1277

Exp. # 158

X7
 seeme III

(Same as Exp # 15	7)	target	actual
(Same as Exp. #15 Master Batch	CA	6.4 9	6.401
	SHR	1.928	1.928
	SOR	4.8	4.801
	H, 0	જિ	80.005

pulp wt. + 20 me solution

(1) AT 20.12 g 40.14 g

(2) 34 20.06 40.07

3000 420 BY dry wt. 22.24 3000 6.67 28.91 ~ 29

Sorbital }
CA Same as Exp. * 154
SHP

Apply solution via syringe.

Egislibrate oversight.

Fiberize in 6 pul former - 1 puss.

Day oversight.

Signey By with 420, equilibrate + cure.

NOM

66

Waty Marsh

EXHIBIT C

Exp. # 157 (cont.)

15134

TIM

Kry

FAQ

Toest Dato	Ref # ov Jumbo # AS-X157	Sample Number A3	Pulp Grede	Operator Initial	Lao Name	Run Number	Dxy Ebulk U GkP≥ cc/g	Dry Bulk 2.5kPa cc.g	Wick Time sec	Wick Rate mods	Weit Bulk 2.5kPa cc/a	Wet Bulk 0.5kPs cc/a	Absorb Capacity
		_	CA+SHP+SOR	Deb	ta b 1 76	*	44 87	24.71	2.3	13.07	13.86	16.56	<u>9/0</u> 16 58
	AS-X157	A3	CA+SHP+SOR	Deb	Lab 116	2	45.95	26 31	23	13.61	13.86	16.56	
	AS-X157	A3	CA+SHP+SOR	Deb	Lub 116	3	45 37	25.99	2.3	13 48	13.8	15 36	16.55
¥ .	AS-X157	A3	CA+SHP+SOF	Oct	Lab 116	AV	45.33	25,67	7.3	13.39			16.27
Š.	AS X157	83	CA+SHP+SOR	Och	Lab 116	1	44.79	25 54	2.7	-	13.84	15,49	16.46
	AS X157	83	CA+SHP+SOR	Deb	Lab 116	3	45.82	26.44		11.33	13.73	16 36	16.39
- Part 1	AS-X157	83	CA+SHP+SCR	Deb	1.35 116	-			28	11.21	13 86	16 49	15.56
	AS-X157	63	CA+SHP+3OR	Deta			44 99	26.0 8	26	11 90	13.93	16.56	16.54
100		7-14-15 (Verland) der spragel	**************************************		LID 116	ΑV	65.2	25,01	2.7	11.51	13.84	16.47	16.56

11/11

Ur.

Jun

Kmy.

Experiment #157: CA and Polyols for Patent Action (3) 3/5/2008

- 1													
1						Amount		****	Dry Bulk	Dry Bulk	Wick	Wick	
ĺ	Sample	Chemistry	Xlınker	SHP	Sorbitor	Water	Cure Temp	Cure Time	0 6kPa	2.5kPa	Time	Rate	
ı		~				(%)	(°F).	(mm)	cc/g	cc/g	sec	mm/s	
	ì	CA+SHP+SOR		2	Ġ.	0	340	7	45.33	25.67	2.3	13.39	
į		CWASSAMA SCILL	- 5 [2.	Fi ;	50	340	7	45.20	25.01	2.7	11.51	

Km

文27

76	<u>m</u>										0	٠
-	Sample	Wet Buik 2.5kPa			enghtness			Co	HOF	***********		1
	D	cc/g	cc/g	Capacity c/q	(%)	,	Hunter	r		CIE		ĺ
	4.3 33	13 8.4 13.84	16.49 1 6.47	16.46 16.56	85 3	95.7	~1.0	48	95.7	-0.9	b' 4.8	
			10.77	10.30	85.2	<u>95.6</u>	-0.9	4.7	96.6	-0.9	4.6	l

MM

77

Karty March

 χ_{ω}

EXHIBIT C

15134

Exg. # 158 (case.)

JUMFAQ

65

Test Oate	Ref# or Jumbo #	Sample Number	Operator Initial	Lab Name	Run Number	Dry Bulk 0 6kPa cc/g	Dry Bulk 2.5kPe cc/g	Wick Time sec	Wick Rate mm/s	Wet Bulk 2.5kPa cc/o	Wet Bulk 0.5kPa ccha	Absorb Capacity g/g
2 7.	AS-X158	Ad	Deb	Lab 116	1	45.89	26.38	2.6	12.06	13.86	16 62	16.59
	AS-X158	A4	Deb	Lab 116	2	45 5	26.44	2.6	12.1	13.93	16 56	16 68
	AS-X158	A4	Oeb	Lab 116	3	45.63	26.76	2.7	11.74	13.93	16.49	16.43
	AS-X158	Α4	Deb	Lab 116	AV	45.67	26.53	2.63	11.97	13.91	16.56	16.57
	AS-X158	94	Deb	Lab 116	1	45.24	26.25	2.7	11.59	13.93	16.56	16.68
	AS-X158	84	Deb	Lab 116	2	43.25	25.35	2.6	11.71	13.73	16.43	
	AS-X158	84	Deb	Lab 116	3	44.73	25.8	2.7	11 41	13.73		16.61
erate	AS-X158	<u>B4</u>	Deb	Lab 116	AV	44.41	25,8	2.67	11.57	13.5	16.36 • 16.45	16.52 16.5

My

Tech (lank

	Sample			i test							
EYP	O	5.790	con:Jian	DATE PR	UGHTNESS	L	a	ь	Ł*	a*	ъ*
18-1 X-2K	int	a	Ş	3	85.05	95.73	-1.09	5.03	96.67	~1.05	4.09
		J	ž.		85 08	95.64	-1 2	4 88	26.6	-1.06	₩ 484
		å	.3	3333333333	85 04	95.67	-1.12	4 97	96.63	-1.07	4.93
		þ	1		85,36	95.78	-1.11	4,89	96.71	-1.07	4.85
		3	2		85.27	95.72	-1.08	4 85	96.66	-1 03	4.8*
		5	3		85.47	95.81	-1.09	4 87	96.74	-1.04	4.82
				Average	85.21	95.73	-1.10	4.92	96.7	-1.1	
				StDey	0.2	0.1	0.0	0,1	0.1	0.0	
	84	э	1		85.32	95-71	-1.04	4.78	26 66	. 3	474
		a	2		85 34	95.76	-1.04	4.86	96.69	-1	4.82
		Э	3	Sec. and Sec.	85.21	95.66	-1 0 6	4.83	96.62	-1 02	4.79
		Ď.	*		85 2	95.7	-1.14	4.87	96.65	1.1	4.82
		っ	2		85.18	95.71	-1,17	4.94	96.66	-1 13	4 89
		b	3		85 31	95.72	-1.13	4.86	96.67	1 08	4.81
				Average	85.26	95.71	-1.10	4.86	96.7	-1.1	··· • • · ·
				StDev	0.1	0.0	0.1	0.1	0.0	0.1	

stray

Experiment #158: CA and Polyols for Patent Action (4) 3/5/2008

C(-	per a			1	Amount	1 :		Dry Bulk	Dry Bulk	Wick	Wick	
Sample	3 Chemistry	Xiinker	SHP	Sorbitol	1	Cure Temp	Cure Time	0.6kPa	2.5kPa	Time	Rate	
ID					(%)	(°F)	(min)	ec/a	oc/a	sec	nm/s	
A4	CA+SHP+SOR	8	2	6	٥	340	7	45.67	26.53	2.63	11.97	
े4	CA+SHP+SOR	ន	2	6	30	340	7	44 41	25.80	2.93	11.97	
		-		******	<u> </u>			T T	#.V.5V	ا د د د د	1.6.497	

MM

May

Wet Bulk	Wet Bulk	Absorb	Brightness	Color								
2.5kPa	0.6kPa	Capacity		**************************************	Hunter	W.	CIE					
cc/g	cc/g	g/g	(%)	L	а	h	; #		f. 20			
13.91	16.56	16.57	85.2	95.7	-11	40	96.7		D*			
13.80	16.45	16.60	85.3	95.7	-11	4.9 4.9	96.7 96.7	*1.]	4.9	ĺ		
	Management of the Party of the American	March Street, Square,	AND DESCRIPTION OF THE PERSON			74.4	7 ₽ ₩ . 1	1 - 1 1	4 8 1			

ncm

27