

Force And Circular Motion

Force

- Forces are what cause any change in the velocity of an object
 - A force is that which causes an acceleration
- The net force is the vector sum of all the forces acting on an object
 - Also called total force, resultant force, or unbalanced force

Newton's Second Law

- The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass
 - Force is the cause of change in motion, as measured by the acceleration
- Algebraically, F = m a

More About Newton's Second Law

- Σ **F** is the net force
 - This is the vector sum of all the forces acting on the object
- Newton's Second Law can be expressed in terms of components:

$$\Sigma F_{X} = m a_{X}$$

$$\Sigma F_y = m a_y$$

$$\Sigma F_z = m a_z$$

Units of Force

Table 5.1

Units of Mass, Acceleration, and Force ^a			
System of Units	Mass	Acceleration	Force
SI	kg	m/s^2	$N = kg \cdot m/s^2$
U.S. customary	slug	ft/s^2	$lb = slug \cdot ft/s^2$

 $^{^{}a}$ 1 N = 0.225 lb.

@ 2004 Thomson/Brooks Cole

Gravitational Force

- The gravitational force, \mathbf{F}_{gr} is the force that the earth exerts on an object
- This force is directed toward the center of the earth
- Its magnitude is called the weight of the object
- Weight = $|\mathbf{F}_g| = mg$

Uniform Circular Motion

- A force, \mathbf{F}_r , is directed toward the center of the circle
- This force is associated
 with an acceleration, a_c
- Applying Newton's Second Law along the radial direction gives

$$\sum F = ma_c = m\frac{v^2}{r}$$

Uniform Circular Motion, cont

- A force causing a centripetal acceleration acts toward the center of the circle
- It causes a change in the direction of the velocity vector
- If the force vanishes, the object would move in a straight-line path tangent to the circle

- The force causing the centripetal acceleration is sometimes called the centripetal force
- This is not a new force, it is a new role for a force
- It is a force acting in the role of a force that causes a circular motion

Motion in a Horizontal Circle

- The speed at which the object moves depends on the mass of the object and the tension in the cord
- The centripetal force is supplied by the tension

$$v = \sqrt{\frac{Tr}{m}}$$

 $\mathbf{m} a = F$

$$m \frac{v^2}{r} = T$$

$$v = \sqrt{\frac{Tr}{m}}$$

Conical Pendulum

 The object is in equilibrium in the vertical direction and undergoes uniform circular motion in the horizontal direction

$$v = \sqrt{Lg\sin\theta\tan\theta}$$

v is independent of*m*

Analysis

- Equation of motion:
- \blacksquare $m \ a = F$
- $m \frac{v^2}{r} = T \sin \theta$
- $But T cos \theta = mg$
- $v^2 = rg \tan \theta$
- But $r = L \sin \theta$

- The acceleration and force have tangential components
- F_r produces the centripetal acceleration
- F_t produces the tangential acceleration

@ 2004 Thomson/Brooks Cole