Machine Learning

Pawel Wocjan

University of Central Florida

Fall 2020

An Iterative Approach

► The figure below depicts the iterative trial-and-error process that machine learning algorithms use to train a model:

- ► The iterative approach diagram contains a green box "compute parameter updates."
- ► Let us now discuss the gradient descent algorithm that is used to update the parameters.

► We consider the linear regression model

$$\hat{y} = w_1 x_1 + w_2 x_2 + \ldots + w_n x_n b$$

► The loss function (mean squared error)

$$\mathcal{L}: \mathbb{R}^{n+1} \to \mathbb{R}$$

depends on the parameters n+1 parameters w_0, w_1, \ldots, w_n , where w_0 is the bias term b.

ightharpoonup Moreover, $\mathcal L$ defines a curve instead of a surface, which simplifies the presentation.

- ▶ For n = 1, the loss function \mathcal{L} depends on two parameters the bias term $b = w_0$ and the weight w_1 and defines a surface.
- ▶ For n > 1, the loss function \mathcal{L} defines a hypersurface and cannot be visualize so easily.
- ▶ To simplify the plots, we assume that n = 1 and the bias term $b = w_0$ is fixed to be 0. Then, the loss function \mathcal{L} defines a curve.

- ▶ The resulting plot of the loss function \mathcal{L} is be convex.
- ► Simply speaking, it means that it is bowl-shaped like this:

- ▶ It turns out that even in the general case the loss function \mathcal{L} is convex.
- ▶ This is important because problems have only one minimum.
- ▶ Calculating the loss function for all parameter values $w_0, \ldots, w_n \in \mathbb{R}^{n+1}$ set would be an inefficient way of finding the minimum.
- ► Let's examine a better mechanism very popular in machine learning called **gradient descent**.

- ▶ The first stage in gradient descent is to pick a starting value.
- ▶ The starting point doesn't matter much; therefore, many algorithms simply set $w_i = 0$ or set the w_i to random values.

- ▶ The gradient descent algorithm then calculates the gradient of the loss function \mathcal{L} at the starting point.
- ▶ The gradient

$$\nabla \mathcal{L} \in \mathbb{R}^{n+1}$$

is a vector whose entries

$$(\nabla \mathcal{L})_i$$

are given by the partial derivatives

$$\partial \mathcal{L}/\partial w_i$$

of the loss function \mathcal{L} with respect to the weights w_i .

- ▶ The $\nabla \mathcal{L}$ gradient has both a direction and a magnitude.
- ► The gradient points which way is "warmer" or "colder."
- ► The gradient always points in the direction of steepest increase in the loss function.

For the case n=1 and the bias $w_0=b$ is fixed to be 0, the gradient of the loss function $\mathcal L$ is simply the slope of the curve $\mathcal L$, that is, the derivative with respect to w_1 .

▶ The gradient descent algorithm takes a step in the direction of the negative gradient $-\nabla \mathcal{L}$ to reduce the loss.

► More precisely, the gradient descent algorithm updates the starting point as follows:

Key Terms

- ▶ gradient
- ▶ gradient descent
- ► step

- ▶ The gradient vector has both a direction and a magnitude.
- ► The gradient descent algorithm multiplies the gradient by a scalar known as the learning rate (also sometimes called step size) to determine the next point.
- ► For example, if the gradient magnitude is 2.5 and the learning rate is 0.01, then the gradient descent algorithm will pick the next point 0.025 away from the previous point.

- ► The learning rate is a so-called **hyperparameter**.
- ▶ A hyperparameter is a parameter that is external to the model.

► If the learning rate that is too small, learning will take too long:

▶ If the learning rate is too large, the next point will perpetually bounce haphazardly across the bottom of the well:

► There's a Goldilocks learning rate for every linear regression problem.

Key Terms

- hyperparameter
- ► learning rate
- ► step size

Stochastic Gradient Descent

- ► In gradient descent, a **batch** is the total number of examples you use to calculate the gradient in a single iteration.
- ➤ So far, we've assumed that the batch has been the entire data set.
- ▶ But often data sets contain huge numbers of examples with huge numbers of features.
- Consequently, a batch can be enormous. A very large batch may cause even a single iteration to take a very long time to compute.
- ► A large data set with randomly sampled examples probably contains redundant data. In fact, redundancy becomes more likely as the batch size grows.
- Some redundancy can be useful to smooth out noisy gradients, but enormous batches tend not to carry much more predictive value than large batches.

Stochastic Gradient Descent

- ► What if we could get the right gradient on average for much less computation?
- By choosing examples at random from our data set, we could estimate (albeit, noisily) a big average from a much smaller one.
- Stochastic gradient descent (SGD) takes this idea to the extreme—it uses only a single example (a batch size of 1) per iteration.
- ► Given enough iterations, SGD works but is very noisy. The term "stochastic" indicates that the one example comprising each batch is chosen at random.

Reducing Loss

- ► Mini-batch stochastic gradient descent (mini-batch SGD) is a compromise between full-batch iteration and SGD. A mini-batch is typically between 10 and 1,000 examples, chosen at random.
- Mini-batch SGD reduces the amount of noise in SGD but is still more efficient than full-batch.

Key Terms

- ► batch
- batch size
- ▶ mini-batch
- ► stochastic gradient descent (SGD)