

Learning Outcomes

- Why pre-processing the data?
- Different pre-processing tasks
- Descriptive data summarisation
 - Central Tendency
 - Data Dispersion

Why Data Pre-processing?

- Data in the real world is dirty
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - noisy: containing errors or outliers
 - inconsistent: containing discrepancies in codes or names
- No quality data, no quality mining results!
 - Quality decisions must be based on quality data
 - Data warehouse needs consistent integration of quality data

Data Quality

Perfect data

 Data is valid, complete, and reliable. No data extrapolation is needed

Not Perfect data

Data with NO serious flaws, but needs some pre-processing

Verbal/Inspection data

■ Data with serious gaps → requires additional documentation and verification prior to its inclusion in the DM process

Soft data

- Data relied on the memories of experienced personnel of the participating facility
- The most difficult to summarise

Examples

Not Perfect data

The data recorded in a dimension which is not important

Verbal/Inspection data

 Wrong or non-recorded values of an airplane flight parameters

Soft data

 Memories of an experienced analyst who dealt with the same problem before

Analysis Plan

- Purpose of the analysis
 - Identify population groups and domains of interests
 - Example
 - Population groups: customers, personnel, etc.
 - Opposition Domain of interest: sales, profit, stock, products, etc.
- Audience for the analysis
 - Agencies, companies, directors, communities, etc.
- Data availability and data quality
 - Choices about which data to include
 - Etc.

Major Tasks in Data Pre-processing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data transformation

Normalisation and aggregation

Data reduction

 Obtains reduced representation in volume but produces the same or similar analytical results

Data discretisation

 Part of data reduction but with particular importance, especially for numerical data

Data Summarisation

- Descriptive Data Summarisation
 - Identify typical properties of the data
 - Highlight which data values should be treated as noise or outliers
- Descriptive Statistics
 - Understand the distribution of the data
 - Central Tendency: mean, median, midrange
 - Data Dispersion: quartiles, inter-quartile range (IQR), variance

Central Tendency

- Arithmetic Mean
 - Effective numerical measure of the centre
 - Let x₁, x₂, ..., x_N a set of observations

$$\overline{X} = \frac{\sum_{i=1}^{N} w_i x_i}{\sum_{i=1}^{N} w_i}$$

- Drawbacks
 - Sensitivity to extreme values (outliers)
 - Trimmed mean: obtained after removing the extremes

Central Tendency (2)

Median

- Used for skewed (asymmetric data)
- Let $\{x_1, x_2, ..., x_N\}$ a set of ordered observations
- The median is the middle value if N is odd and is the average of the two middle values if N is even
- Example: consider the set of values (1, 2, 3, 4, 5, 90).
 Calculate the mean and the median
 - The mean: 17.5
 - The trimmed mean with p=40% is: 3.5
 - The median: 3.5

$$median(X) = \begin{cases} x_{r+1} & \text{if } N = 2r + 1\\ \frac{1}{2}(x_r + x_{r+1}) & \text{if } N = 2r \end{cases}$$

Central Tendency (3)

Mode

- Indicates the value that occurs most frequently in the set
- **Example:** {140 (0.33), 160 (0.27), 130 (0.22), 170 (0.18)
 - The mode is: 140

• Midrange

- Range(X) = max(X) min(X)
- Midrange(X) = [max(X) + min(X)]/2

Data Dispersion

- Dispersion of the Data
 - The degree to which numerical data tend to spread
 - The most common measures are
 - Range
 - Five-number summary
 - Inter-quartile range
 - Standard deviation
- Standard Deviation
 - Measures spread about the mean
 - Can only be used when the mean is chosen as the measure of the centre
 - Let X={x₁, x₂, ..., x_N}

$$std(X) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

Data Dispersion (2)

- Percentiles
 - Let X be a set of ordered observations
 - kth percentile of X is x_i such that k% of X is below x_i
- Quartile = 25th percentile
 - 1^{st} quartile (\mathbb{Q}_{1}), 2^{nd} quartile (\mathbb{Q}_{2}), 3^{rd} quartile (\mathbb{Q}_{3})
 - Inter-quartile range (IQR): IQR = Q₃ Q₁
- Five-number summary
 - Includes information about end-points
 - \blacksquare = {min(X), Q₁, median, Q₃, max(X)}

Examples: Q1 & Q3

Let X = {70, 65, 54, 56, 57, 80, 71, 46, 55, 63, 62, 53, 68, 76, 58, 54}.

Calculate Q1 and Q3

1) Sorting X. {46, 53, 54, 54, 55, 56, 57, 58, 62, 63, 65, 68, 70, 71, 76, 80}

2) Calculate positions

Q1 position: $16 \times 25\% = 4$,

Q3 position: $16 \times (100-25)\% = 12$

3) Find the values by the positions (The average of the 4th and 5th values, n=16) Q1 = $(54+55) \div 2 = 54.5$

Q3=?

Examples of Quartiles

N	values	Median	Q1	Q3
13	1, 2, 3, 4, 5, 6, 7 , 8, 9, 10, 11, 12, 13	7	4	10
14	1, 2, 3, 4, 5, 6, <mark>7, 8</mark> , 9, 10, 11, 12, 13, 14	7.5	4	11
15	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15	8	4	12
16	1, 2, 3, 4, 5, 6, 7, <mark>8, 9</mark> , 10, 11, 12, 13, 14, 15, 16	8.5	4.5	12.5

Visualising a Distribution

Histograms

- Frequency histograms
- A graphical method for summarising the distribution of a given attribute

Quantile plot

- Simple way to have a 1st look at a univariate data distribution
- Allows us to compare different distributions based on their quantiles

Quantile-Quantile Plot (q-q plot)

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- Is a powerful visualisation tool

Scatter Plot

- Each pair of values is treated as a pair of coordinates in an algebraic sense and plotted as points in the plane
- Most effective graphical methods for determining if there appears to be relationship, patterns, or trends between two numerical attributes

Home Work

Suppose a hospital tested the **age** and **body fat** data for 18 randomly selected adults with the following results.

- 1. Calculate the mean, median, and standard deviation of age and %fat.
- 2. Draw the boxplots for age and %fat.
- 3. Draw a scatter plot and q-q plot based on these two variables.
- 4. Normalise the two variables based on *z-score normalisation*.
- 5. Calculate the correlation coefficient (Pearson's product moment coefficient).
- 6. Are these two variables positively or negatively correlated?

age	23	23	27	27	39	41	47	49	50
%fat	9.5	26.5	7.8	17.8	31	4	25.9	27.4	31.2
age	52	54	54	56	57	58	58	60	61
%fat	34.6	42.5	28.8	33.4	30.2	34.1	32.9	41.2	35.7