Exercici 7.

- (a) Proveu que si mcd(a, b) = 1, llavors $mcd(a^n, b^n) = 1$, per a tot n natural.
- (b) Proveu que si mcd(a,b) = d, llavors $mcd(a^n,b^n) = d^n$, per a tot n natural.

Solució 7.

(a) Pel Teorema Fonamental de l'Aritmètica, sabem que tot nombre enter, és primer o producte de primers. Aleshores tenim dos casos:

Cas 1:

Suposem a i b primers, aleshores per definició mcd(a,b)=1, i veiem que $a^n=a\cdot a\cdots a$ i $b^n=b\cdots b$, com $a\neq b$ i $mcd(a,b)=1\Rightarrow mcd(a^n,b^n)=1$.

Cas 2:

En aquest cas suposarem a i b no primers, és a dir $\exists a_1, \dots, a_n, b_1, \dots, b_m \in \mathbb{Z}$, primers tals que $a = a_1 \dots a_n$, $b = b_1 \dots b_m$ amb m no necessàriament diferent de n. Com mcd(a, b) = 1, podem afirmar que $a_i \neq b_j$, $\forall i, j$. Aleshores, podem creure que :

$$a^n = (a_0 \cdots a_n)^n = a_0^n \cdots a_n^n$$

$$b^n = (b_0 \cdots b_m)^n = b_0^n \cdots b_m^n$$

Com a_i, b_j són primers aleshores, $a_i^n \neq b_j$, $\forall i, j$ i per tant, $mcd(a^n, b^n) = 1$

(b) Seguint la definició de màxim comú divisor, podem suposar que $\exists \ a',b' \in \mathbb{Z}$ tals que $a=a'\cdot d$, $b=b'\cdot d$, amb mcd(a',b')=1. Llavors:

$$mcd(a^{n}, b^{n}) = mcd(a^{'n}d^{n}, b^{'n}d^{n}) = d^{n} \cdot mcd(a^{'n}, b^{'n})$$

, com $mcd(a',b')=1\Rightarrow mcd(a^{'n},b^{'n})=1$, en conseqüència:

$$mcd(a^n, b^n) = d^n$$