

TABLE OF CONTENTS

- 1 A few words on Saint-Gobain
- 2 Key challenges in milling R&D
- 3 Predictive strategy on fluidized bed opposed jet milling
- 4 First results using gSOLIDS
- **5** Conclusions and next steps

A few words on Saint-Gobain

BECOME THE REFERENCE FOR SUSTAINABLE HABITAT

Saint-Gobain designs, manufactures and distributes high-performance and building materials providing innovative solutions to the challenges of growth, energy efficiency and environmental protection

INNOVATIVE

Materials

With Flat Glass and High-Performance Materials, the Innovative Materials Sector has a unique portfolio of materials and processes in the fields of habitat, transport, health and industry

FLAT GLASS

- No. 1 in Europe
- No. 2 worldwide
- Presence: 42 countries
- Almost **32,000** employees

HIGH-PERFORMANCE MATERIALS

No. 1 worldwide

most 27,000 temployees

CONSTRUCTION

Products

The Construction Products Sector provides interior and exterior finishing solutions that improve the quality of living spaces: plaster, insulation, facade coatings, roofing products and pipes

No. 1 worldwide

- Plasterboard and plaster
- Insulation: worldwide leader, including all insulation materials
- Ceramic tile adhesives
- Industrial mortars
- Ductile iron pipes

No. 1 in Europe

Facade coatings

No. 2 in the United States

Facade products

Presence: 61 countries

Almost 47,000 employees

BUILDING

Distribution

The Building Distribution Sector brings to the Group a deep understanding of the needs of customers: trades professionals, homeowners with a project, and small, medium and large companies. It serves the new construction, renovation and habitat finishing markets

No. 1 in Europe

Building materials distribution

Presence: 24 countries

Around **61,000** employees

Around **4,100** sales outlets

INNOVATION IN OUR DNA

^{*} Source: Thomson Reuters

Key challenges in milling R&D

COMMINUTION PROCESSES

- Most of our processes involve a comminution (i.e. size reduction) step
- The range of operated technologies is wide:
 - Depending on the material to be processed: ceramics, plastics, minerals, fibers, glass, ...
 - Depending on the targeted size: from the centimeter to some hundreds of nanometers
- Though comminution is an old science, operational know-how is mainly empirical and transferability is limited from one application to another

POTENTIAL INPUT FROM R&D

- R&D aims at addressing industrial issues:
 - Cost reduction through process optimization (less unvaluable fines, better targeting of specified PSD)
 - Techno choice with respect to several criteria (product size, targeted morphology, pollution free size reduction)
 - Product design with respect to grindability (to facilitate or prevent size reduction)
- Using analytical modelling and numerical simulation, we can predict with accuracy resulting in significant reduction in expensive large scale trials

Predictive strategy on fluidized bed opposed jet milling

FLUIDIZED BED OPPOSED JET MILL

Suitable for pollution-free micronization down to d₅₀~1 μm of hard materials (up to Mohs 10)

PREDICTIVE STRATEGY

Material related parameters, from single particle testing

Measured:

- S: breakage probability
- $W_{m,kin}$: input energy

Material parameters under impact conditions provided by B. Köninger, University of Erlangen

$$S = 1 - \exp\left[-f_{Mat}kx(W_{m,kin} - W_{m,min})\right]$$

Measured:

 Progeny size distribution on broken particles

Mill related parameters, from back fitting using gSOLIDS

On monosized model material: glass beads **To be performed once**

$$S = 1 - \exp[-f_{Mat}kx(W_{m,kin} - W_{m,min})]$$

Calculated:

- k: number of impacts
- W_{m,kin}: impact energy

as a function of operating parameters (air pressure, classifier rpm)

Selection function

Breakage function

Prediction of output PSD and throughput for multisized feeds

First results using gSOLIDS

CO-DEVELOPMENT WITH H. MUMTAZ FROM PSE USING

Inflow: glass beads Given mass in at t₀ No inflow during milling

Outflow:

Particles below cutsize Empirical cutsize=f(airflow, classifier rpm)

Vogel & Peukert (2005) kernel

$$S(w) = S_c \left[1 - e^{\left(-f_{mat}wk(W_{kin} - W_{min}) \right)} \right]$$

$$B(v,w) = \frac{v^{q}}{w} \frac{1}{2} \left(1 - \tanh\left(\frac{v - v'}{v'}\right) \right)$$

Additional assumptions

$$W_{kin} = W_{kin_{factor}} * Q_{nozzle}^2$$

k (number of impacts) set to 1

Ideal separation

- $W_{kinfactor}$, S_c and q estimated on one monosized feed 10' test
- Estimated parameters then used to simulate other configurations

Good fit for both hold up mass and PSD

Predicting lower classifier speed settings

Predicting bigger feed sizes

Predicting lower grinding pressure settings (i.e. lower air flows)

- Acceptable fit on final values both for hold up mass and PSD
- > But inverse non linearity of the mass time evolution (physical phenomena like attrition or damage that the model does not take into account)

Conclusions and next steps

- Ability to predict most trends related to process parameter modifications based on very few experimental data (one 10' jet mill test and one single particle fragmentation test for material parameters)
- Potential next steps to gain accuracy and move towards process optimization:
 - Take into account the non ideal separation
 - Estimate q directly from single particle testing
- Potential next step to reduce experimental time for material characterization:
 - Estimate all material related parameters from a standardized jet milling test using gSOLIDS

ACKNOWLEDGEMENTS

Hassan Mumtaz from PSE for the model development

Benedikt Köninger from University of Erlangen for providing the material parameters

From Saint-Gobain CREE, Caroline Bélondrade for performing the jet milling tests and my colleagues from the LAP laboratory for their analytical support

