# Deterministic Optimization

Illustration of the optimization process

#### **Shabbir Ahmed**

Anderson-Interface Chair and Professor School of Industrial and Systems Engineering

A portfolio optimization problem



## A portfolio optimization problem

#### **Learning objectives:**

- Identify basic portfolio optimization and associated issues
- Examine the Markowitz Portfolio Optimization approach



### The problem

- Want to invest \$1000 dollars in 3 stocks (MSFT= Microsoft, V = Visa, WMT = Walmart) for a one month period
- How should we distribute the budget among the 3 stocks?
- Available data:
  - File: monthly\_prices.csv
  - Closing price of each stock on the first day of each month for the last 24 months
  - The last row indicates the current price (i.e. buy price)

|    | MSFT      | V          | WMT       |
|----|-----------|------------|-----------|
| 1  | 44.259998 | 69.660004  | 64.839996 |
| 2  | 52.639999 | 77.580002  | 57.240002 |
| 3  | 54.349998 | 79.010002  | 58.84     |
| 4  | 55.48     | 77.550003  | 61.299999 |
| 5  | 55.09     | 74.489998  | 66.360001 |
| 6  | 50.880001 | 72.389999  | 66.339996 |
| 7  | 55.23     | 76.480003  | 68.489998 |
| 8  | 49.869999 | 77.239998  | 66.870003 |
| 9  | 53        | 78.940002  | 70.779999 |
| 10 | 51.169998 | 74.169998  | 73.019997 |
| 11 | 56.68     | 78.050003  | 72.970001 |
| 12 | 57.459999 | 80.900002  | 71.440002 |
| 13 | 57.599998 | 82.699997  | 72.120003 |
| 14 | 59.919998 | 82.510002  | 70.019997 |
| 15 | 60.259998 | 77.32      | 70.43     |
| 16 | 62.139999 | 78.019997  | 69.120003 |
| 17 | 64.650002 | 82.709999  | 66.739998 |
| 18 | 63.98     | 87.940002  | 70.93     |
| 19 | 65.860001 | 88.870003  | 72.080002 |
| 20 | 68.459999 | 91.220001  | 75.18     |
| 21 | 69.839996 | 95.230003  | 78.599998 |
| 22 | 68.93     | 93.779999  | 75.68     |
| 23 | 72.699997 | 99.559998  | 79.989998 |
| 24 | 74.769997 | 103.519997 | 78.07     |



#### **Price and Return**

 Stock prices are uncertain and so is their return

Monthly return:

$$r_{jt} = \frac{p_{jt} - p_{jt-1}}{p_{jt-1}}$$

where

 $r_{jt}$  = return of stock j in month t $p_{jt}$  = price of stock j in month t







#### **Portfolio**

Model the uncertain stock returns as a random vector, i.e. a vector whose each component is a random variable

$$\tilde{\mathbf{r}} = \begin{bmatrix} \tilde{r}_1 \\ \tilde{r}_2 \\ \tilde{r}_3 \end{bmatrix}$$
 where  $\tilde{r}_j$  is the random return of stock  $j$ .  
Here  $j = 1$ : MSFT,  $j = 2$ : V, and  $j = 3$ : WMT

Here 
$$j=1$$
: MSFT,  $j=2$ : V, and  $j=3$ : WMT

The portfolio is given by the vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 where  $x_j$  is the \$ invested in stock  $j$ 



#### Random returns

- The return of the portfolio  $\tilde{\mathbf{r}}^{\top}\mathbf{x}$  is a random variable
- How can we compare random variables (corresponding to different portfolios) to select a "best" portfolio?







# Markowitz Portfolio Optimization

- The Markowitz portfolio optimization criteria is a multi-objective problem
- Approaches:  $\lambda$ .
  - Maximize Expected Return Risk  $< s^{
    m max}$
  - Maximize Expected Return s.t. Risk $> r^{\min}$
  - Minimize Risk s.t. Expected Return
- By changing the parameters we can find a set of optimal portfolios that tradeoff Expected return and Risk
- From the remainder of this example, we will consider the third approach



## Optimization Problem Statement

- Given \$1000 dollars, how much should we invest in each of the three stocks MSFT, V and WMT so as to
  - have a one month expected return of at least a given threshold
  - Minimize the risk (variance) of the portfolio return
- Decision: Investment in each stock
- Alternatives: Any investment that meets the budget and the minimum expected return requirement
- Best: Minimize variance



### Summary

- Portfolio: Investments in a set of instruments (stocks)
- Return of a portfolio is uncertain
- Markowitz approach: Select a portfolio that trades off expected return and variance of returns
- We will consider

Minimize Risk s.t. Expected Return  $\geq r^{\min}$ 

