Data Collection

1 地区特征

1.1 地区大小

长治市,是中国山西省下辖得地级市,地处山西省东南部,是晋冀豫三省交界。长治市市境南界晋城市,西邻临汾市,北接晋中市,东倚太行山。长治市东西长约150km,南北宽约140km,东西长150千米,南北宽140千米,总面积为13955平方千米,占全省总面积的8.90%。2018年11月行政区划调整后,市辖区面积2631.3平方千米。[1]长治市的地理位置如下图所示:

利用AutoCAD对长治市的交通小区进行几何计算,得到交通小区总面积约为82.37平方公里。

1.2 人口信息

截止2020年第七次人口普查,长治市常住人口318万,中心区潞州区人口89.5万,占总人口约28%。各辖区地理位置如下图,各辖区人口分布见下表。

区划代码[11]	区划名称	汉语拼音	面积 ^{[注 1][12]} (平方公里)	常住人口 ^{[注 2][13]} (2020年普查)
140400	长治市	Chángzhì Shì	13,955.22	3,180,884
140403	潞州区	Lùzhōu Qū	344.27	895,280
140404	上党区	Shàngdǎng Qū	482.29	319,660
140405	屯留区	Túnliú Qū	1,190.38	253,756
140406	潞城区	Lùchéng Qū	614.45	219,256
140423	襄垣县	Xiāngyuán Xiàn	1,177.98	260,081
140425	平顺县	Píngshùn Xiàn	1,510.34	115,927
140426	黎城县	Líchéng Xiàn	1,113.33	134,186
140427	壶关县	Húguān Xiàn	1,007.71	240,109
140428	长子县	Zhăngzĭ Xiàn	1,031.18	298,690
140429	武乡县	Wǔxiāng Xiàn	1,614.50	155,386
140430	沁县	Qìn Xiàn	1,319.96	138,578
140431	沁源县	Qìnyuán Xiàn	2,548.85	149,975

1.3 时间价值 β

本小节利用长治市的经济发展相关数据确定该地区的时间价值β.

根据长治市2023年国民经济和社会发展公报[3],长治市2023年全年地区生产总值2806.2亿元,人均地区生产总值89536元。按照劳动法,劳动者每周工作时间不应超过44小时,由此可以计算人均地区生产总值的小时平均值,取为本研究的时间价值。

$$eta = rac{\overline{value}}{52 \cdot t_{wark}} = 39.13(yuan/hr)$$

2 车辆特征

2.1 长治市公交车巡航速度 v_{max}

本研究利用高德地图Amap平台以及长治市已有公交线路 (changzhi.gongjiao.com)推算长治市公交车无拥堵时的巡航速度 v_m

以1路公交为例,公交首发站为体育中心站,终点站为惠丰厂,途径共25站(包括起终点),全程12.7公里,耗时共45分钟。

因此有如下关系:

$$l = 12.7(km)$$

$$t_l=45(min)$$

$$N_s=25$$

暂时估算每站由于上下车和减速启动的损失时间为 $t_s=20s$,则

$$t = t_l - N_s \cdot t_s \approx 36.7(min)$$

于是可计算最大巡航速度 v_m

$$v_m=rac{l}{t}=20.8(km/h)$$

类似可计算17路、10路[红牌]、10路[蓝牌]、302路、11路、9路等市区热门公交路线的巡航速度。计算结果如下表:

	运营区 域	起点	终点	站 数	里程 (km)	用时 (min)	巡航速度
17路	市区	惠丰厂	客运中心	25	8.2	32	20.8
10路[红牌]	市郊	安居站	马厂	21	8.0	33	18.5
10路[蓝牌]	市郊	安居站	长治北站	20	9.0	35	19.1
302路	市区	昌盛商业 街	杜家河村	19	15.6	50	21.4
11路	郊区	太行宾馆	慈林山煤矿	20	40.0	66	40.0
9路	市区	城南生态 苑	景兴花园	20	7.2	31	17.8

考虑到本次研究涉及的区域主要在市中心区,且高德地图为了保障用户准时到达会对行程耗时保守估计,初步设置公交系统的最大巡航速度 v'_{max} 为:

$$v_{max}^{\prime}=20(km/hr)$$

2.2 每站损失时间 t_s

本小节尝试更加精确地推导公交在每个站点由于减速、启动、上下乘客的损失时间 t_s .

2.2.1 "减速—启动"过程

假设一辆公交车在抵达站点前以 $v'_{max} = 20(km/hr)$ d的速度行驶,接近站点时以 $a = 1.5(m/s^2)$ 的加速度进行减速。该加速度能保障乘客有一个安全且较为舒适的乘车体验。

类似地,启动时,同样以加速度a加速直至回到巡航速度 v_{max} 。可计算这一"减速—启动"过程的损失时间:

$$t_{lost} = 2 imes rac{v_{max}}{a} - rac{s_0}{v_{max}} = rac{v_{max}}{a}$$

其中80为公交车在"减速—启动"过程走过的路程

2.2.2 乘客上、下车过程

公交车在开关门时的损失时间分别约为1s-2s,于是设置开关门总损失时间

$$t_{doorlost} = 4s$$

假设每人次乘客上下车所需的时间为2s,每站台上、下车乘客数分别为 x_{aboard} 、 $x_{get-off}$,假设公交车为前门上车、后门下车的双门式车型,则乘客上、下车损失时间 t_{pax} 有:

$$t_{pax} = 2 imes max(x_{aboard}, x_{get-off})$$

综上, 可得损失时间t。计算表达式:

$$t_s = t_{lost} + t_{doorlost} + t_{pax} = rac{v_{max}}{a} + 4 + 2 imes max(x_{aboard}, x_{get-off})$$

于是, 在本研究中, 设置站点损失时间t。

$$t_s = 30s$$

2.2.3 修正巡航速度 v_{max}

在 2.1 中,研究假设公交车在每站点的损失时间为 $t_s = 20s$,由此计算出了一系列公交线路的巡航速度,并最终给出了本项目的设置最大巡航速度。

现利用 2.2 节确定的站点损失时间 $t_s=30s$ 对前述结果进行修正,结果如下表:

公交线路	站数	里程(km)	用时(min)	巡航速度
1路	25	12.7	45	23.4
17路	25	8.2	32	25.2
10路[红牌]	21	8.0	33	21.3
10路[蓝牌]	20	9.0	35	21.6
302路	19	15.6	50	23.1
11路	20	40.0	66	42.9
9路	20	7.2	31	20.6

根据修正计算表,最终确定本研究的公交最大巡航速度 v_{max} 为:

2.3 乘客走行速度 v_w

本小节研究乘客为了获取公共交通、抵达目的地或中途换乘时的步行速度 v_w 。

步行是人类的一种基本移动形式,步行速度与人的性别、年龄阶段和个人的 健康状况均有关系。考虑到实际的交通规划场景,乘客走行速度也与不同性别、 不同年龄段人群的交通发生量有关。

研究[1]基于参加剑桥CardioResource研究的358位献血者的7天自由生活活动数据,得到了步行速度与年龄、姓名的关系。总的来说,步行速度随着年龄的增长而逐渐下降,年轻人(20-29岁)的平均步行速度通常在每秒1.34至1.36米之间,而老年人(65岁及以上)的平均步行速度则降至每秒1.10至1.13米左右。不同年龄女性的步行速度范围为每秒1.13米到1.34米,男性则为每秒1.26米到1.52米。

Age	Average Walking Speed for Women (mph)	Average Walking Speed for Men (mph)
20-29	3.0	3.4
30-39	3.0	3.2
40-49	3.11	3.2
50-59	2.93	3.2
60-69	2.77	3.0
70-79	2.53	2.82
80-89	2.1	2.17

根据长治市第七次人口普查公报[2],对于人口的性别构成,全市男性人口为162万人,占50.88%;女性人口156万人,占49.12%。对于人口的年龄构成:0-14岁人口52万人,占16.48%;15-59岁人口为205万人,占64.36%;60岁及以上人口为61万人,占19.15%,其中65岁及以上人口约41万,占12.96%。较2010年第六次全国人口普查相比,老龄人口比重有所上升。

综合考虑不同年龄段人口速度的加权和、人口老龄化趋势以及不同年龄阶段的出行需求和出行方式选择,本研究最终确定的乘客步行速度 v_w

$$v_w=1.2(m/s)$$

2.4 运营花费

本小节确定公交系统的运营花费参数,包括行驶花销 $c_d=c_m+c_t/v_{max}$,停止花销 $c_s=c_tt_s$,公路建设花销 c_q 、站点建设花销 c_r 。

由于未能找到长治市近年的公共汽车运营成本数据,本研究参考了浙江衢州公交集团有限公司2018-2020年度的公共汽车运营成本数据[4]。该次统计的成本主要由直接运营成本、管理费用、财务费用和营业税金及附加等部分构成。

根据统计,城市公交总运营车辆数约310辆,行驶里程1813万公里,年均客运量2105万人次。运营总成本11142.35万元,单位车辆运营成本为35.8万元,每公里运营成本约6.15元,单位人次运营成本5.29元。

 c_m 表示随行驶里程增加的单位车辆固定成本, c_t 表示随行驶时间增加的单位车辆成本。考虑到长治市、衢州市的经济发展状况不同,可确定 c_d

$$c_d = 6(元/$$
 车次· km)

基础设施的建设通常涉及复杂的规划、设计、施工和维护过程,其成本的摊销需要跨越多年才能完成。而本研究的重点在于设计一套即时运行的公共交通网络,因此,暂不考虑每公里公路的基础建设费用 c_f 以及每个站点的建设分摊到每小时的运营成本 c_r 。于是有:

$$c_f = c_r = 0$$

3 OD数据分析

3.1 大区交通生成量

通过对2024年长治市OD数据进行小区合并处理,可以得到25个大区的OD数据。对每个大区的OD数据进行加和,可以得到每个大区的交通发生量,其结果如下表:

大区编号	大区名称	交通发生量(人次/hr)
23	湖东北部新区	11178.8
5	太行西街现代居住区	9388.6
10	东八一广场商务区	9142.8
9	西八一广场商务区	7865.4
6	高等教育园区	5577.1
21	新区起步区	5542.6
22	老顶山开发区	5445.5
15	城南教育科研区	4341.5
14	解放西路居住区	4290.2
18	生态区居住区	3874.5
25	马厂	3693.5
11	城东现在居住区	3533.1
24	湖西新区	3204.3
4	城北科技园服务区	3050.6
8	五一路现代居住区	2822.8
12	火车站物流商贸区	2793.2
1	城北科技园	2599.6
13	火车站配套居住区	2440.7
26	故县	2130.8
2	城北生态居住区	2074.0
19	产业配套居住区	1927.9
16	解放东路居住区	1901.5
17	城南生态居住区	1670.8
20	城区机械工业园区	1667.9
3	长兴路居住区	1607.2

各大区交通发生量

