This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

A201

Swedish Patent No. 121,737

Translated from Swedish by the Ralph McElroy Co., Custom Division 2102 Rio Grande, Austin, Texas 78705 USA

Code: 268-5884-1

SWEDISH PATENT

DESCRIPTION PUBLISHED BY THE ROYAL PATENT AND REGISTRATION OFFICE PATENT NO.: 121,737

Class: 5 a:41

Application No.: 4195/1940

Application Date: October 28, 1940

Publication Date: May 25, 1948

Granting Date: April 1, 1948

A PROCESS FOR THE IN SITU EXTRACTION OF OIL FROM SHALE BEDS AND SIMILAR FORMATIONS

Applicant: F. Ljungström

Svenska Skifferolje Aktiebolaget, Orebro

The present invention refers to a way of extracting oil from shale rock and similar beds in situ by means of channels which cut through the shale strata, are supplied with heat for the heating of the shale bed, and which are separated from the outlet boreholes formed in the shale by means of shale rock sections in between. The object of the invention is to achieve an improvement of this established procedure, in particular with regard to the quality and composition of the extracted products, which is essentially obtained by embedding heating elements which are preferably heated electrically, in heating boreholes, and which have smaller cross sections than the cross sections of the boreholes and by introducing into the interspace between the channel wall and the heating element thus obtained a filling that transfers heat from the heating element and the shale and simultaneously counteracts or prevents, respectively, a flow of the oil products gasified from the shale in the direction towards and along the heating element.

The invention will be more thoroughly described below with reference to the modes of implementation as shown in examples illustrated in the enclosed figure, and other accompanying characteristics of the invention which will also be discussed.

Figure 1 illustrates a section through a part of shale bed, in which the arrangement of a heating element installed according to the invention for the accomplishment of the process is shown. A vertical section through a rock formation according to a modified design is shown in Figure 2, and a flat view of this latter design is in Figure 3.

In a shale bed, 2, vertical channels, 4 in Figure 1 and 9 in Figures 2 and 3, are drilled, in which heating elements are embedded. These can consist of coiled pipe 44 according to Figure 1, equipped with inlet 32 and outlet 36 for a hot medium, gas or steam, which then remains separated from the surroundings during its passage through the coiled pipe 44. The pipe 44 can in addition be designed as an electrical resistor and function both for the fluid conduction of the medium mentioned and for the development of heat accompanying an electric current. With the design according to Figure 2 an electric heating element 17 is used. After the heating element has been inserted the channels are filled with backing sand a maleable substance, respectively, such as cement, clay or other suitable filler. The channels can be closed at the upper ends by collars 21, 28 which must necessarily be cemented into the rock foundation. On top of the shale bed 2 there is often an overlying stratum of lime 47 (Figure 2) with a thickness of several meters. Then the electrical resistance is only active within that portion of hole 9, which is surrounded by the oil-bearing shale. In other words, the electric current at the level of the lime laver is conducted through low resistance wires and therefore thermoelectric heat is not developed here to an appreciable extent.

Besides the channels mentioned above, exhaust holes 8 according to Figures 2 and 3 are made in the shale bed, through which the

products formed during the dry distillation [carbonization] are evacuated, and which consequently do not contain any heating element. These exhaust holes 8, which are sealed from the limestone at the top by collar 27, are connected through ducts 52 to a condenser which is best cooled by either air or cooling water.

At the surface expanse of the shale bed, channels 9 and 8, respectively, are arranged in such a way, as exemplified in Figure 3, that a heat-supplying channel 9 is surrounded by a number of exhaust holes 8. It is particularly advantageous to carry out the heating of the shale bed so that a wave of heat is transmitted horizontally through the shale bed, for example in the direction from the line of holes 40 in Figure 3 towards the line of holes 41 through a successive connection of the heating elements. "When this heat wave in part of the shale bed reaches a temperature of about 300°C, or prior to this, the shale begins to release combustible gases which in part are condensable and in part not condensable and which are conveyed to a condenser, common to a plurality of channels 8 which separates the former from the latter." The incondensable gases can be used, for example, for the preheating and heating, respectively, of a new zone of the shale bed with an arrangement as depicted in Figure 1. The duration of the degasification periods may be adjusted to the desired degree, by such variables as the distance between the holes, which can be, for example, 1/2 to 2 meters. The maximum temperature of the mentioned heat wave can amount to approximately 500°.

The hydrocarbons formed during the distillation process in the shale rock include condensable products from the lighest petroleum [gasoline] to the heaviest oil. Because the heating channels according to the invention are filled, the result is that the hydrocarbons are driven in the direction of the outlet channels 8, and thus away from the hot heating elements. Otherwise, of course, the hydrocarbons would find their way to these elements to a large extent, especially in the lower part of the shale layer because of the high rock pressure prevailing there. The extraordinary

advantage is thus gained that an unwanted cracking of the oil products is essentially avoided. The heating method according to the invention therefore allows recovery of a considerably greater percentage of high-grade gasoline products than with presently familiar methods.

While a shale bed section is being supplied with heat, an expansion of the shale sets in, at least in the beginning, in the longitudinal direction of the heat supply channels, and thus in such a direction as to cross the shale layers. If a number of such channels are simultaneously heated then these create within the shale mass static pillars of heat with a greater height than that of the colder shale mass located in between them. This shale mass therefore becomes affected by forces directed in a vertical direction, the effect of which is to separate the different strata of shale from one another, so that the combined vertical displacement of these plus the gaps formed between the strata of shale approach a configuration that corresponds to the shale layer at its highest temperature around the heated channels. In a cross section the shale layer assumes the appearance shown schematically in Figure 2. the other hand the shale layer within zones 54 limited by the dotted lines 53 in Figure 3 of the shale mass shows a falling temperature from the holes $\underline{9}$ to the holes $\underline{8}$, and within the resulting temperature differences the degasification can be considered to continue at different temperatures, for example from 300° to 500°. A certain molecule which is released from the shale mass at point 39 during the dry distillation process will on its way from this point to the outlet hole 8 pass through temperature zones of lower temperatures than that existing at point 39.

The pipe system shown in Figure 1 can be used for different heating purposes by allowing the existing channel in a previously degassed hot zone of the shale bed to conduct a fluid stream by means of pipes laid on the ground. Air, water, steam or other fluids which are heated in the process may then be led to a channel in a shale bed zone where the oil extraction is to be started or is already in progress.

After the rock mass has been degassed, it wholly or partially consists of what is called shale coke, which indicates that after the gases are driven off, combustible carbon remains in the shale. According to the invention the rock mass can be ignited before or after cooling and the residual shale coke can be oxidized to shale ashes by introducing combustion air to the existing channel system. A very slow combustion that persists for several years can in this manner remain in progress, and the heat thereby generated can be utilized for various purposes, such as the heating of shale rock and hot water for homes, steam production, cultivation of plants, etc. According to the invention the cultivation of plants can also be carried out directly on the shale rock and in this way utilize the heat stored in the rock for a great many years.

Patent claims:

- 1. A process for in situ recovery of oil from shale beds and similar rock layers by means of channels that penetrate the shale strata, and are supplied with heat for the heating of the shale mass and which are separated from the exhaust holes formed in the shale by means of shale bed sections in between, characterized by heating elements being embedded in the heating channels, which are preferably heated electrically, and which have smaller cross sections than the cross sections of these channels, such that the interspace thus obtained between the channel wall and the heating element may be provided with backing sand that transfers heat from the heating element to the shale and simultaneously counteracts or prevents, respectively, the flow of oil products gasified from the shale in the direction towards and along the heating elements.
- 2. A process according to claim 1, characterized by the interspace being filled with a cast compound.
- 3. A process according to claims 1 or 2, characterized by the fact that a heating element in the form of a pipeline is brought

down into the heating channels, and the inner part of the pipeline, through which is led a hot medium, is entirely separated from the channel and that the heat supply to the pipeline is also produced electrically.

- 4. A process according to one of the previous claims, characterized by the fact that the channel system made in the shale bed is utilized for regenerative heating of the rock mass in which channels in a previously degassed hot zone of the shale bed are connected with pipelines over the ground and are allowed to conduct a medium which is heated in this zone, and also characterized by the fact that channels in an untreated zone of the shale rock are directly or indirectly supplied with energy utilized in this manner from the previously mentioned zone.
- 5. A process according to one of the previous claims, characterized by the shale coke remaining in the shale rock after the degasification is combusted to produce shale ashes by introducing air into the available system of channels.

PATENT Nº 121737 SVERIGE

BESKRIVNING
OFFENTLIGGJORD AV KUNGL
PATENT- OCH REGISTRERINGSVERKET

KLASS 5 a:41

BEVILIAT DEN 1 APRIL 1948 PATENTID FRAN DEN 28 OKT 1940 PUBLICERAT DEN 25 MAJ 1948

Ans. den "/" 1930, ne 3195/1930.

Hartill en ritning.

SVENSKA SKIFFEROLJE AKTIEBOLAGET, ÖREBRO.

Sätt att utvinna olja ur skifferberg och dylikt in situ.

Uppfinnare: F. Ljungström

Föreliggande uppfinning hänför sig till ett sätt att utvinna olja ur skifferberg och dylikt in situ medelst skifferlagren skårande kanaler, vilka tillföras värme för uppvärmning av skiffermassan och vilka äro skilda från i skiffern utformade ayloppskanaler medetst mellanliggande partier av Skifferberget, Uppfinningen avser att åstadkomma en förbåttring av denna kända metod speciellt i avseende på de utvunna produkternas beskaffenhet och sammansättning, vilket väsentligen ernås därigenom, att i uppvärmningskanalerna nedföras värmeelement, vilka företrädesvis uppvärmak på elektrisk väg, och vilka hava mindre tvärsektionsarea än dessa kanalers tvärsektionsarea och att i det så erhållna mellanrummet mellan kanalväggen och värmeelementet anbringas en fyllmassa, som förmedlar varmeövergång mellan värmeelementet och skiffern och samtidigt motverkar resp. forhindrar en strömning av de ur skiffern förgasade ofjeprodukterna i riktning mot och langs utmed värmeelementet.

Uppfinningen skall nedan närmare beskrivas under hänvisning till å bifogade ritning som exempel visade utföringsformer av densamma, varvid även andra uppfinningen kännetecknande egenskaper skola angivas.

I fig. I visas en sektion genom ett parti av ett skifferberg, i vilket är anbragt ett för sättets genomförande enligt uppfinningen anordnat värmeelement. I fig. 2 visas en vertikalsektion genom ett bergparti enligt en modifierad utföringsform och fig. 3 en planvy av denna senare uttöringsform.

I ett skifferberg 2 äro nedborrade vertikala kanaler, i fig. I betecknade med 4 och i fig. 2 och 3 med 9, i vilka värmeelement anbringas. Dessa kunna utgöras av en rörslinga 41 enligt fig. 1, försødd med intag 32 och avlopp 36 för ett hett medium, gas eller ånga, som darvid under sin (passage genom rörslingan 44 ar skilt från omgivningen. Röret 44 kan därjamte vara utformat som elektriskt motstånd och fungera såvål för genomströmning av det nämnda mediet som för överbringande av värme genom elektrisk ström. Vid utföringsformen enligt fig. 2 användes ett elektriskt

värmeelement 17. Sedan värmeelementet nedförts, utfyllas kanalerna med en massa resp.
gjutmassa, sasom cement, lera eller dyfixt,
Kanalerna kunna upptill vara tillstutna av
lock 21, 28, som lämpligen cementeras fast i
berggrunden. Ovanpa skifferberget 2 av otta
överlagrat ett kalklager 47 (fig. 2) med en
mäktighet av många meter, varvid det elektriska motstandet endast ar verksamt monden del av hålen 9, som ar omgiven av den
oljeförande skiffern. Den elektriska strommen tillföres alltså motstandet genom ledningar, som i niva med kalklagret arv godaledare och därfor har icke avgiva varme i
nämnivård utsträckning.

Förntom de ovannamnda kapaleena upptagas kanaler 8 enligt fig. 2 och 3 i skatferhergel, genom vilka de vid forrdestillationen alstrade produkterna avledas och vilka alltsa icke inrymma nagon uppvarnningsamordning. Dessa kanaler 8, som upptili aco (il)slutna av lock 27, sta genom ledningar 52 i förhindelse med en kondensor, viiken landiligen kan vara luttkyld eller ocksa kyld av kylvatten.

I ytutsträckningen av det skifferberg, som skull avverkas, anbringas kanater 9 resp. 8 t, ex. på sätt, som framgar by (ig. 3. dar en värmelillförselkanal 9 omgives av ett antal avloppskanaler 8. Det år sårskilt fordelaktigt alt genomföra skifferbergets uppvarmning sa, alt en vag av varme horisontellt fortplantas genom skifferberget, t. ev. i riktning fran halraden 40 i fig. 3 mot halraden 11 genom suc- 7 cessiv inkoppling av varmeelementen. Nar denna värmevåg i ett parti av skitterberget natt en temperatur av omkring 300° eller tid): gare, börjar skittern avgiva brannbara gaser, som dels aro kondenserbara dels okondenserbara och som inledas i en för ett flertal kanaler 8 gemensam kondensor, som avskiljer de forra fran de senare De okondenserbara gaser j na kunna t, ex anyandas for fór- resp. uppvarmning av en ny zon av skitterberget vid utföringsformen enligt fig. 1. Avgasningsperiodens tidslangd varieras i onskad grad. bt. a. sammanhängande med det mellan hålen valda avstandet, som t. ev. kan vara 📆 a 2

4

meter. Den nämnda värmevägens maximitemperatur kan uppga till omkring 500-

De vid destitlationsprocessen i skifferberget bildade kolvatena omfatta kondenserbara produkter från den lättaste bensinen till den tyngsta oljan. Genom att uppvärmningskanalerna nu enligt uppfinningen äre igenfyllda ernas, att kotvätena föras i riktning mot avloppskanaderna 8, d. v. s. bort fran de heta uppvärmningselementen. Eljest skulle nämligen kolvätena i stor utsträckning söka sin väg till dessa element, speciellt i den nedre delen av skifferlagret till följd av det där rådande höga bergtrycket. Man vinner sålunda den utomordentliga fördelen, att en icke onskvard spaltning eller krackning av olje produkterna vasentligen undvikes. Uppvarmningsmetoden enligt uppfinningen medgiver därför en utvinning av procentuellt väsentligt mera högvärdiga bensinprodukter an vid bittills kända metoder.

Under varmetillförseln till ett skifferbergparti inträder atminstone till att borja med en utvidgning av skiffern i varmetillförselkanalernas längdriktning, vilken korsar skifferlagren. Om 🍂 antal dylika kanaler samiidigt bliva fóremál főr uppvármning, bilda dessa inom skiffermassan stående vårmepelare med större höjdmätt än den mellan desamma belagna kallare skitfermassan. Denna skiffetmassa blir darför påverkad av i vertikahildningen gående krofter, som stråva att skiljade olika skifferlagren Iran varandra, sa all dessas sammanlagda vertikala matt ptus mellan skifferlageen uppkomma spatterna naimar sig det, som motsvarar skifferlagret vid dess högsta temperatur kring de uppvarmda kanalerna. Skitterlagret far i sektion ett utseende, som schematiskt visas i fig. 2. A andra sidan uppvisar skifferlagret inom de medstreckade bujerna 53 begransade zonerna 54 i fig. 3 av skiffermassan en fallande temperatur från halen 9 till hålen 8, och kan inomde darvid forekommande temperaturdifferenserna avgasningen tankas tortga vid olika temperaturer t. ex. fran 300 - till 500%. En viss molekyl som vid punkten 39 under forrdestillationsprocessen frigores ur skiffermassan, kommer på sin våg från denna punkt till axtoppshålet 8 att passera temperaturzoner, som alla uppvisa lägre temperatur an den, som existerar vid punkten 39.

Det i fig. I visade ledningssystemet kan användas för olika uppvärmningsändamal, genom att en i en redan avgasad het zon av skifferberget belintlig kanal bringas genom över jord lagda tedningar att genomströmmas. av ett fluidum, t. ex. luft, vatten eller anga. som härunder uppvärmes och sedan t. ex. ledes till en kanal i en skifferbergzon, dar oljeutvinning skall inledas resp. pågår.

Sedan bergmassan avgasats, består den helt eller delvis av s. k. skifferkoks, d. v. s. guserna åro avdrivna, men brannbart kol finnes

annu kvar i skitfern. Enligt uppfinningen kan bergmassan fore effer effer assyalning anlándas och skitterkoksen i densamma förbrännas till skifferaska, genom inforande av förbranningsluft i det förefintliga kanalsystemet. En mycket langsam, under många år pågaende förbrånning kan på detta sätt fortgå och det darvid bildade varmet utnyttjas för olika andamat, sasom uppvarmning av skilferberg, varmvallen till bostader, angalstring, vaxtodling e. d. Växtodling kan öven enligt uppfinningen med fördel anbringas direkt på skifferberget, som på så sätt under en lång följd av år kan tillgodogora sig det i berget magasinerade varmet.

Palentaneprák:

 Sátt att atviuna olja ur skáfterberg och dylike in situ medelst skillferlagren skarande kanaler, vilka tillföras varme for uppvarmning av skiftermassan och vilka aco skilda Transconcerns of sude ave delst meltanliggande partier av skutterbergel. kännetecknat daray, att i uppyarmningskanalerna nedleras vármeelement, vilka foretradesvis uppyarmas på elektrisk vag, och vilka hava faindre tvärsektionsarea an dessa kanalers tvarsektionsarea och alt i del så erhailma medancumunet medan konalyaggen och varmeelementel anbringas en (vilmassasom formedlar var ocovergang mellan violeneelementer och skatfera och sambidigt motverkar resp. forhundrar en strömming av de ur skiftern forgasade objeprodukterna i viktuug mot och langs utmed varmeelemente!

2. Satt enligt patentinispraket 1. kannaliek nat daray, aft i mellanrummet itydes en gjub har Edhnassa

3. Satt enligt patentanspraket Letter 2. kans netecknal daray, att man a uppyarmnings kanalerna nedroc varmeelement i torm av en rörleilning, vars mie ar helt avskilt fran losnaten och genom vilken ledes ett hett medium, varjamte varmetillforsel till corledningen aven sker på elektrisk vag.

 Satt enligt nagot av de foregænde pår tentanspraken, kannetecknal daray, att dar i skifterberget upptagna kanalsystemet utnyttjas for regenerativ uppvarmning av bergmassan genom att kanaler i en redan avgæsad het zon av skatterberget förbundas med tedningar over jord och bringas att genomstrómmas av ett medium, som uppvarmes av denna zon, och att kanaler i en obchandhal zon av skitterberget direkt eller indirekt tillforas ur den forstnammda zonen på detta satt tillvaratagen energi.

5. Satt enligt nagot av de foregaende patentanspraken, kanneleeknat daray, alt i skifferberget effer avgasningen kvarvarande skifferkoks forbrannes till skifferaska genom införande av futt i det förhandenvarande ka-

nulsystemet.

Swedish specification 121 757 Translation; page 1, second column, 3rd paragraph, lines 10-17.

"When this heat wave in part of the shale rock reaches a temperature of about 300°C, or prior to this, the shale begins to give off combustible gases which in part are condensable and in part not condensable and which are conveyed to a condensor common to a plurality of channels which condenser separates the former from the latter."