Motivic Lefschetz Theorem for twisted Milnor Hypersurfaces arXiv:2404.07314

with Kirill Zainoulline

Rui Xiong

Motivic Decomposition

The idea of the **category of Chow motives** is due to Grothendieck. By definition, it is the idempotent completion of the category of correspondence. Roughly speaking

Chow motives = Linearization of varieties.

As a result, a variety X, when putting into the category of motives, could be decomposed into a direct sum of smaller pieces (known as **motivic decomposition**). For example,

$$\mathcal{M}(\mathbb{P}^n) \cong \mathbb{Z} \oplus \mathbb{Z}(1) \oplus \cdots \oplus \mathbb{Z}(n)$$
 where $\mathbb{Z} = \operatorname{Spec} k$.

In general, a variety decomposes into direct sum $\mathbb{Z}(i)$ if it admitting an affine paving. However, it is very hard to decompose an arbitrary variety.

Homogeneous Varieties

Let us focus on **homogeneous varieties** G/P. Over algebraic closed fields, homogeneous varieties are classified by **Dynkin diagrams**. For example,

However, over non-algebraically closed fields, besides Dynkin diagrams, we need to classify the **twisted forms** of an algebraic group, e.g.

twisted forms of $PGL_n \iff$ central simple algebras (classified by Brauer groups) twisted forms of $O_n \iff$ quadratic forms (classified by Witt rings)

Milnor hypersurfaces

Let *A* be a **cyclic algebra** of degree *n*:

$$A = F\langle u, v \rangle / \langle u^n = a, v^n = b, uv = \zeta v u \rangle, \qquad \zeta = \sqrt[n]{1}, a, b \in F.$$

It is a **central simple algebra** of dimension n^2 over F. Let us denote the **Severi–Brauer varieties**

$$\begin{split} \operatorname{SB}(A) &= \{I \subset A\}, & I \vartriangleleft_{\operatorname{r}} A, \ \dim I = n, \\ \Rightarrow \operatorname{SB}(A^{op}) &= \{I \subset A\}, & I \vartriangleleft_{\operatorname{r}} A, \ \dim I = n(n-1). \end{split}$$

Note that Severi–Brauer variety is a homogeneous variety, a twisted form of \mathbb{P}^{n-1} .

Theorem (Karpenko, 1994)

When A is a central division algebra, $\mathcal{M}(SB(A))$ is indecomposable.

Twisted Milnor hypersurfaces

Define the twisted Milnor hypersurface and a hypersurface of it

$$X = \{I_1 \subset I_{n-1} \subset A\} \subset SB(A) \times SB(A^{op}),$$

$$Y = \{(I_1 \subset I_{n-1}) \in X : uI_1 \subset I_{n-1}\} \subset X.$$

Note that X is a homogeneous variety, a twisted form of **incidence variety**. It is known that $\mathcal{M}(X) =$

Theorem (Calmès, Petrov, Semenov, Zainoulline, 2006)

$$\mathcal{M}(\mathrm{SB}(A)) \oplus \mathcal{M}(\mathrm{SB}(A))(1) \oplus \cdots \oplus \mathcal{M}(\mathrm{SB}(A))(n-3) \oplus \mathcal{M}(\mathrm{SB}(A))(n-2).$$

Our result is M(Y) = (assuming Rost nilpotence)

Theorem (Xiong, Zainoulline, 2024)

$$\mathcal{M}(\mathrm{SB}(A)) \oplus \mathcal{M}(\mathrm{SB}(A))(1) \oplus \cdots \oplus \mathcal{M}(\mathrm{SB}(A))(n-3) \oplus \mathcal{M}(\mathrm{Spec}\,L)(n-2).$$

Here $L = F[\sqrt[n]{a}]$ is a field extension of F of degree n.

Example (n = 5)

Hard Lefschetz

Recall the Hard Lefschetz theorem in complex algebraic geometry.

Theorem (Hard Lefschetz)

Let $\iota : Y \subset X$ be an ample smooth divisor. Then

the pullback the pushforward $\iota^*: H^*(X) \longrightarrow H^*(Y) \qquad \qquad \iota_*: H^*(Y) \longrightarrow H^{*+2}(X)$ is an isomorphism for $* < \dim Y$; is an isomorphism for $* > \dim Y$.

The Severi–Brauer part of the decompostion can be viewed as an analogy of this theorem:

Monodromy actions

Hodge theory also gives us hint about how the middle dimension cohomology supposed to be.

Theorem (Deligne invariant cycle theorem)

$$\operatorname{im}\left[H^*(X)\longrightarrow H^*(Y)\right] = monodromy invariant component.$$

In particular, the **primitive part** must have a non-trivial monodromy action. We can consider the **universal family of hyperplane sections**

$$\mathcal{Y} = \left\{ (I_1 \subset I_{n-1}, x) \in X \times A : xI_1 \subset I_{n-1} \right\} \xrightarrow{\operatorname{pr}_2} A.$$

Thus Y is the fiber at $u \in A$. If all these are defined over \mathbb{C} , then $A \simeq M_n(\mathbb{C})$. Moreover, the monodromy comes from the fundamental group of the locus $M_n(\mathbb{C})^{rs}$, the **Artin braid group**.

Galois group actions

In our case, the **Galois group** Γ_L plays the role of monodromy. Note that we have an isomorphism

$$\rho: A_L \simeq M_n(L)$$
 (as *L*-algebras).

But this does not commute with the obvious Galois group actions. The obstruction is recorded in a 1-cocycle (thus representing a class in the Galois cohomology)

$$\mathfrak{a}: \Gamma_L \longrightarrow \operatorname{Aut}_L(M_n(L)) \simeq PGL_n(L),$$

 $\sigma \longmapsto \mathfrak{a}_{\sigma} = \rho \circ \sigma \circ \rho^{-1} \circ \sigma^{-1}.$

Now we have the following commutative diagram

$$\begin{array}{c|c} Y_L \stackrel{\subset}{\longrightarrow} X_L \stackrel{\cong}{\longrightarrow} X_{0L} \\ \sigma \bigg| & \sigma \bigg| & \bigg|_{\mathfrak{a}_\sigma \times \sigma} \\ Y_L \stackrel{\subset}{\longrightarrow} X_L \stackrel{\cong}{\longrightarrow} X_{0L} \end{array} \qquad X_0 = \{V_1 \subset V_{n-1} \subset F^n\}, \\ \dim V_i = i.$$

Torus actions

Let $T \subset PGL_n$ be the standard maximal torus. Since L contains all eigenvalues of $u \in A$, we can assume the image of $\rho(u) \in M_n(L)$ is diagonal. This implies T_L acts on Y_L and X_L such that the **torus fixed points**

$$Y_L^{T_L} = X_L^{T_L} \simeq X_{0L}^{T_L} = \left\{ [ij] : 1 \le i \ne j \le n \right\}$$

where $[ij] = (\operatorname{span}(e_i) \subseteq \operatorname{span}(e_1, \dots, e_j, \dots, e_n))$. Moreover, the T_L -stable curves can be classified

$$[ij] \xrightarrow{\alpha_{jk}} [ik]$$
 and $[ij] \xrightarrow{\alpha_{ik}} [kj]$, where all i, j, k are distinct,

and $\alpha_{ij} = t_i - t_j \in T^*$. Using **localization theorems** of equivariant Chow ring, we are able to compute the (monodromy) Γ_L -actions and constructing algebraic cycles.

Example (n = 5)

The edges form two families of compounds of five tetrahedra

The Galois action corresponds to the rotations.

Artin motive part

We then constructed cycles $\{\gamma_{\ell} \in CH^{n-2}_T(Y_L) : \ell \in \Gamma_L\}$ such that

$$\forall \sigma \in \Gamma_L, \ \sigma \gamma_\ell = \gamma_{\sigma(\ell)}, \qquad \langle \gamma_k, \gamma_\ell \rangle_{Y_L} = (-1)^{n-2} \delta_{k,\ell}.$$

The sign $(-1)^{n-2}$ reflects the **Hodge–Riemann relation** in Hodge theory. When n = 5, each class is supported over each tetrahedron

One can show further that they are orthogonal to the Severi–Brauer parts, and give the last motive $\mathcal{M}(\operatorname{Spec} L)(n-2)$. Q.E.D.

THANKS

