

Computer Architecture Experiment

Topic 6. Pipelined CPU supporting Interrupt

浙江大学计算机学院 陈文智 chenwz@zju.edu.cn

实验操作流程

- 口阅读实验文档,理解CPO的工作原理和中断相关机制的实现方式
- 口以前一次实验为基础,增加协处理器CPO, 支持中断指令及中断相关机制
- □对处理器进行仿真,检验处理器的仿真结 果是否符合要求。
- 口综合工程并下载至开发板,在单步执行的 过程中检查调试屏幕的输出,检验处理器 的执行过程是否正确。

实验验收标准

口仿真执行过程中,处理器的行为和内部控制信号均符合要求。

□下载至开发板后的单步执行过程中,寄存 器的变化过程和最终执行结果与测试程序 相吻合。

Outline

- Experiment Purpose
- Experiment Task
- Basic Principle
- Operating Procedures
- Precaution
- Checkpoints

Experiment Purpose

- Understand the principle of CPU Interrupt and its processing procedure.
- Understand the function of CPO coprocessor.
- Master the design methods of pipelined CPU supporting interrupt.
- master methods of program verification of Pipelined CPU supporting interrupt.

Experiment Task

- Design of Pipelined CPU supporting Interrupt.
 - Design CP0
 - Design CPU Controller
 - Design datapath

 Verify the Pipelined CPU with program and observe the execution of program

What jobs does CP0 do?

- CPU configuration
- Cache control

- Exception/interrupt control
- Memory management unit control
- Miscellaneous

Exception/interrupt control

CP Instructions

- Simple interrupt control
- Some Mechanisms

Simple CP0 design

Code Example

CP Interrupt Instructions (1)

- Register index bits: 5 bits.
- MIPS32 uses another 3 bits "SEL" to extend index bits
- CP0 Interrupt Instructions
 - MTC0
 - MFC0
 - ERET

CP Interrupt Instructions (2)

Format: MFC0 rt, rd, sel

Function: GPR[rt] = CPR[0, rd, sel]

_3	1 26	25	21	20	16	15	11	10	3	2	0
	COP0 010000	ME 000			RT		RD	0000	0 0000	SI	ΞL

Format: MTC0 rt, rd, sel

Function: CPR[0, rd, sel] = GPR[rt]

31	26	25	21	20	16	15	11	10	3	2	0
COP0 01000	0	M 001			Ţ		RD	0000	0000	SE	L

• ERET

31	26	25	24						6	5	0
CO	P0	CO				0				ER	ET
010	0000	1		000	0000	0000	0000	0000		011	000

Simple interrupt control (1)

MFC0 rt, rd, sel

#GPR[rt] = CPR[0, rd, sel]

MTC0 rt, rd, sel

#CPR[0, rd, sel] = GPR[rt]

Interrupt is detected

- Instructions in IF is killed (ID_RST= 1)
- Return address (Delay slot)

Interrupt returns

Modify npc

Some Mechanisms

Interrupt signal should be saved

Interrupt handler could not be re-entered

Simple CP0 design

- Interrupt register file
 - Exception Handler Base Register (EHBR)
 - Exception Program Counter Register (EPCR)
- MTC0: Write Interrupt register file
- MFC0: Read Interrupt register file
- Interrupt is detected: jump to EHBR (External signal)
- ERET: jump to EPCR (From CPU controller)


```
module cp0 (
      input wire clk, // main clock
      // debug
      'ifdef DEBUG
      input wire [4:0] debug addr, // debug address
      output reg [31:0] debug data, // debug data
      `endif
      // operations (read in ID stage and write in EXE stage)
      input wire [1:0] oper, // CPO operation type
      input wire [4:0] addr_r, // read address
      output reg [31:0] data_r, // read data
      input wire [4:0] addr w, // write address
      input wire [31:0] data w, // write data
      // exceptions (check exceptions in MEM stage)
      input wire rst, // synchronous reset
      input wire ir en, // interrupt enable
      input wire ir in, // external interrupt input
      input wire [31:0] ret_addr, // target instruction address to store when interrupt occurred
      output reg jump_en, // force jump enable signal when interrupt authorised or ERET occurred
      output reg [31:0] jump addr // target instruction address to jump to
```



```
// interrupt determination
wire ir;
reg ir_wait = 0, ir_valid = 1;
reg eret = 0;
always @(posedge clk) begin
           if (rst)
                       ir wait <= 0;
           else if (ir_in)
                       ir wait <= 1;
           else if (eret)
                       ir wait <= 0;
end
always @(posedge clk) begin
           if (rst)
                       ir valid <= 1;
           else if (eret)
                       ir valid <= 1;
           else if (ir)
                       ir_valid <= 0; // prevent exception reenter
end
assign ir = ir_en & ir_wait & ir_valid;
```



```
// Exception Handler Base Register
always @(posedge clk) begin
end
// Exception Program Counter Register
always @(posedge clk) begin
end
// jump determination
always @(*) begin
end
```



```
// CP0 registers
localparam
//CP0_SR = 0,
//CP0_EAR = 1,
CP0_EPCR = 2,
CP0_EHBR = 3;
//CP0_IER = 4,
//CP0_ICR = 5,
//CP0_PDBR = 6,
//CP0_TIR = 7,
//CP0_WDR = 8;
```

```
// EXE CP operations
localparam
EXE_CP_NONE = 0,
EXE_CP_STORE = 1,
EXE_CPO_ERET = 2;
```


Datapath of CPU supporting interrupt.

Instr. Mem.(3)

0:	3c010000	lui	R1,0x0	//main entry
4:	24210020	addiu	R1,R1,32	
8:	40811800	mtc0	R1, R3	
c:	00001020	add	R2,R0,R0	
10:	00001820	add	R3,R0,R0	
14:	20420001	addi	R2,R2,1	//loop
18:	08000005	j	14	
1c:	00000000	nop		
20:	40041000	mfc0	R4,R2	//handler
24:	20630001	addi	R3,R3,1	
28:	42000018	eret		
2c:	00000000	nop		

Simulation (1)

Simulation (2)

Simulation (3)

Simulation (4)

lame	Value		5, 100 r	S .	5	,200 ns		5, 300 r	15	5, 400 ns		5,500 ns		5,600 ns		5, 700	ns	5,800 ns		5, 900 n	5	6,000 n	5	6, 100 ns	
750	1)													
7.0	0																								
l if_rst	0				\neg																				
l if_valid	1									-															
inst_addr[31:0]	0000002c	00000	14 X	00000	0018	_y_	000000	X	0000001	4 X	0000001	X	0000001c		00000014		00000018	X	0000001		00000020		00000024		0000
inst_data[31:0]	42000018		204200	01		08000008	Х	000000	000 (204200	01 X	0800000	X	00000000	χ	204 2	0001	0800000		000000	0 X	400410	00 X	2063000	01
7.0	1																								
ା id_rst	1																								
la id_valid	1				=														_						
inst_addr_id[31:0]	00000028	00000	lc X	00000	0014	X	000000	8 X	0000001	a X	0000001	4 X	00000018	X	0000001c		00000014	X	00000018	$-\bar{x}$	00000000	X	00000020	Х	0000
inst_data_id[31:0]	42000018	00000		20420		=	0800000		0000000		2042000		08000008	Ę (00000000	-	2042000	F)=	08000008	=	00000000		40041000	=	2063
la exe_rst	0									()															
୍ଲା exe_valid	1																								
inst_addr_exe[31:0]	00000024	00000	18 X	00000	001c	X	000000	4 X	0000001	.B)/	0000001	X	00000014	X	00000018		0000001	Х	00000014	X	00000018	-x	00000000		0000
	20630001	08000	05 (00000	0000	$=_{\swarrow}=$	2042000)1 X	0800000	15 X	0000000	a X	20420001	ĘΈ	08000005		00000000	X	20420001	$=\hat{\mathbf{x}}$	08000005	$=\hat{\chi}$	00000000	$=\hat{\mathbf{x}}$	4004
fwd_a_ctrl[2:0]	0																0								
fwd_b_ctrl[2:0]	0											0										X	4		
1 reg_stall	0																								
l₁ wb_rst	0																								
7.0	0									8		4													
l wb_wen_wb	1				_			Г												Г			-		
regw_addr_wb[4:0]	00	00	$-\chi$	0:	2	\neg		00		X	02	T X		00			02	- X		00		X	02		
regw_data_wb[31:0]	00000000	00000	00 X	00000	0007	$=_{\chi}=$		000000	000		0000000	a X		00000000)		00000009	×		000000	10	$=$ $\hat{\chi}$	0000000s	$=\hat{\mathbf{x}}$	
1 ir_in	0					703						_ °													
The second second	2													0											
■ addr_r[4:0]	00											00										Х	02	Х	
data_r[31:0]	00000000											00000	000									$=$ χ	00000018	Ξx	
addr_w[4:0]	00											.00										$=$ χ	02	$=_{\chi}$	
data_w[31:0]	00000001		0000000	>		00000007			0000000	10	χ	0000000	3 X		00000000		χ	0000000)9 X	0	000000	$=\hat{\chi}$	00000018	X00	0000014)
la jump_en	1				\top																				
jump_addr[31:0]	00000018									0000	0000							X	00000020				00000000		
■ epcr[31:0]	00000018										00000	000												000000	18
ehbr[31:0]	00000020																00000020								
regfile[1:31,31:0]	[00000020,	[000000	20	00000020	, 0000	0007, 00	000001, 00	000014, X	XXXXXXX, XXX	xxxx / [0	00000020, 00	000008, 00	000001, 000	00014, XXX	XXXX, XXXX	XXX	([00000020, 00	000009, 00	0000001, 000	00014, XX	XXXXXX, XXXX	xxx\[00000020, 00	00000a, 0	0000001
► 5 [1,31:0]	00000020																00000020								
5 [2,31:0]	0000000a	00000	06 X				0000000)7		X			00000008				X		00000009			Х			
▶ ■ [3,31:0]	00000001															00	000001								
► 6 [4,31:0]	00000014									Ü					000000										
	000000000000000000000000000000000000000																								

Simulation (5)

FPGA


```
    // interrupt
    wire interrupt;
    reg interrupt_prev;
    always @(posedge clk) begin
    interrupt_prev <= interrupter;</li>
    end
    assign interrupt = ~interrupt_prev & interrupter;
```

- Interrupter: West Button
- Interrupt is triggered at posedge of West Button's Pushing

Checkpoints

• CP 1:

Waveform Simulation of the Pipelined CPU with the verification program

CP 2:

FPGA Implementation of the Pipelined CPU with the verification program

Thanks!

