2021 年 12 月 14 日

近世代数

吴天阳 2204210460

习题 2.2

3. 如果环 R 中的元素 a 有一个正整数 n,使得 $a^n = 0$,那么称 a 是**幂零元**。证明:如果 a 是有单位元的环 R 中的一个幂零元,那么 1-a 可逆。

证明. 由于

$$(1-a)(1+a+a^2+\cdots+a^{n-1})=1-a^n=1$$

$$(1+a+a^2+\cdots+a^{n-1})(1-a)=1-a^n=1$$
 所以 $1-a$ 的逆元为 $1+a+a^2+\cdots+a^{n-1}$,故 $1-a$ 可逆。

5. 设 I_1, I_2, \cdots, I_s 都是环 R 的理想,并且

$$R = I_1 + I_2 + \dots + I_s,$$

 $I_i \cap (\sum_{j \neq i} I_j) = (0), \quad i = 1, 2, \dots, s.$

证明: (1) 环 R 的每个元素 x 都可以唯一表示成

$$x = x_1 + x_2 + \dots + x_s, \quad x_i \in I_i, i = 1, 2, \dots, s;$$

(2) 有环同构

$$R \cong I_1 \oplus I_2 \oplus \cdots \oplus I_s$$

此时称 R 是它的理想 I_1, I_2, \cdots, I_s 的**内直和**。

证明. (1). 由于 $R = I_1 + I_2 + \dots + I_s$,则 $\forall x \in R$, $\exists x_i \in I_i, \ i = 1, 2, \dots, s$, 使得 $x = x_1 + x_2 + \dots + x_s$

下证唯一性,若 x 有两种表示法, $x = x_1 + x_2 + \dots + x_s = x_1' + x_2' + \dots + x_s'$,不妨令 $x_1 \neq x_1'$,则

$$x_1 - x_1' = (x_2' - x_2) + (x_3' + x_3) + \dots + (x_s' - x_s)$$

又

$$\begin{cases} x_1 - x_1' \in I_1 \\ x_2' - x_2 \in I_2 \\ \vdots \\ x_s' - x_s \in I_s \end{cases}$$

若 $x_i = x_i'$ $\forall i \ge 2$, 则 $x_1 - x_1' = 0 \Rightarrow x_1 = x_1'$, 矛盾。 若 $x_i \ne x_i'$ $\exists i \ge 2$, 则

$$(x_2' - x_2) + \dots + (x_s' - x_s) = x_1 - x_1' \in I_1 \cap (\sum_{j \neq 1} I_j) \neq (0)$$

与 $I_1 \cap (\sum_{i \neq 1} I_i) = (0)$ 矛盾。

综上, $\forall x \in R$, 可以唯一表示成

$$x = x_1 + x_2 + \dots + x_s, \quad x_i \in I_i, i = 1, 2, \dots, s;$$

(2). 由群直和性质知,

$$(R,+) \cong (I_1,+) \oplus (I_2,+) \oplus \cdots \oplus (I_s,+) \cong (I_1 \oplus I_2 \oplus \cdots \oplus I_s,+)$$

其对应的群同构 σ 为:

$$R \to I_1 \oplus I_2 \oplus \cdots \oplus I_s$$

$$x \mapsto (x_1, x_2, \cdots, x_s) \quad \sharp \, \forall x_i \in I_i$$

下证 σ 对乘法保序, 对 $\forall i \neq j$, 有

$$x_i x_j \in I_i I_j \subset I_i \cap I_j \subset I_i \cap (\sum_{j \neq i} I_j) = (0)$$

则 $x_i x_j = 0 \ (\forall i \neq j)$,设 $x, y \in R, \ x = x_1 + x_2 \cdots + x_s, \ y = y_1 + y_2 + \cdots + y_s$,则

$$\sigma(xy) = \sigma((x_1 + \dots + x_s)(y_1 + \dots + y_s))$$

$$= \sigma(x_1y_1 + \dots + x_sy_s)$$

$$= (x_1y_1, \dots, x_sy_s)$$

$$= \sigma(x)\sigma(y)$$

综上, σ 为环同构, 故 $R \cong I_1 \oplus I_2 \oplus \cdots \oplus I_s$ 。

7. 韩信点兵问题:"有一队士兵,三三数余二,五五数余一,七七数余四,问:这队士 兵有多少人?"

解答. 该问题等价于求解同余方程:

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 1 \pmod{5} \\ x \equiv 4 \pmod{7} \end{cases}$$

由于

$$70 \equiv 1 \pmod{3}, \quad 70 \equiv 0 \pmod{35}$$

 $21 \equiv 1 \pmod{5}, \quad 21 \equiv 0 \pmod{21}$
 $15 \equiv 1 \pmod{7}, \quad 15 \equiv 0 \pmod{15}$

则解为

$$x \equiv 2 \cdot 70 + 1 \cdot 21 + 4 \cdot 15 \equiv 11 \pmod{105}$$

综上,这队士兵人数为 11 + 105k $(k \in \mathbb{Z}_{\geq 0})$ 。

8. \mathbb{Z}_{91} 中,求 $\overline{1}$ 的全部平方根。

解答. 由于 $91 = 7 \cdot 13$,该问题等价于求解如下同余方程:

$$\begin{cases} x \equiv \pm 1 \pmod{7} \\ x \equiv \pm 1 \pmod{13} \end{cases}$$

又由于

$$78 \equiv 1 \pmod{7}, \ 78 \equiv 0 \pmod{13}$$

 $14 \equiv 1 \pmod{13}, \ 14 \equiv 0 \pmod{7}$

则

$$x \equiv 78 + 14 \equiv 1 \pmod{91}$$

$$x \equiv 14 - 78 \equiv 27 \pmod{91}$$

$$x \equiv 78 - 14 \equiv 64 \pmod{91}$$

$$x \equiv -78 - 14 \equiv 90 \pmod{91}$$

综上, \mathbb{Z}_{91} 中 $\bar{1}$ 的全部平方根为 $\bar{1}, \overline{27}, \overline{64}, \overline{90}$ 。

习题 2.3

1. 设 F 是一个代数封闭域 (即 F[x] 中每一个不可约多项式都是一次多项式), 求 F[x] 的全部素理想。

解答. 由于 F[x] 为主理想整环,则

$$P$$
为 $F[x]$ 的素理想 $\iff P = (p(x))$ 或 (0)

其中 p(x) 为 F[x] 中的不可约多项式,则 F[x] 的全部素理想为

$$(0), x+c$$

其中 $c \in F$ 。

4. 设 $m = p_1^{r_1} p_2^{r_2} \cdots p_s^{r_s}$, 其中 p_1, p_2, \cdots, p_s 是两两不等的素数, $r_i > 0, i = 1, 2, \cdots, s$ 。 求 $\mathbb{Z}/(m)$ 的全部素理想。

解答. 由理想对应定理知,

 $\{I:I$ 为 $\mathbb{Z}/(m)$ 的理想 $\}\cong\{I$ 为 \mathbb{Z} 的理想 $:(m)\subset I\}\cong\{(k):(m)\subset (k),\ k\in\mathbb{N}\}$ 设 $\mathbb{Z}/(k)$ 为 $\mathbb{Z}/(m)$ 的素理想,由环同构第二定理知

$$(\mathbb{Z}/(m))/((k)/(m)) \cong \mathbb{Z}/(k)$$

则 $\mathbb{Z}/(k)$ 为整环 \iff (k) 为 \mathbb{Z} 的素理想 \iff k 为素数。

所以 $\mathbb{Z}/(k)$ 为 $\mathbb{Z}/(m)$ 的素理想,当且仅当,k 为素数且 $(m) \subset (k) \iff k|m$ 。 综上, $\mathbb{Z}/(m)$ 的所有素理想为

$$\mathbb{Z}/(p_i)$$
 $i=1,2,\cdots,s$

10. 设 R 是有单位元 $1(\neq 0)$ 的交换环,证明: R 的极大理想一定是素理想。证明.

M为R的极大理想 \iff R/M为域 \Rightarrow R/M为整环 \iff M为R的素理想

12. 设 R 是偶数环 $2\mathbb{Z}$,证明: $4\mathbb{Z}$ 是 R 的一个极大理想,但是 $R/4\mathbb{Z}$ 不是域。

证明. 存在 I 为 $2\mathbb{Z}$ 的理想,且 $4\mathbb{Z} \subsetneq I$,则存在 $k \in \mathbb{Z}$,使得 $2(2k+1) = 4k + 2 \in I$,由于 $4k \in 4\mathbb{Z} \subset I$,则 $2 \in I$,所以 $\forall k \in \mathbb{Z}$,有 $2k \in I$,则 $I = 2\mathbb{Z} = R$,故 $4\mathbb{Z}$ 为 R 的极大理想。

由于 $R/4\mathbb{Z} = \{4\mathbb{Z}, 2+4\mathbb{Z}\}$,其中 $4\mathbb{Z}$ 为 $R/4\mathbb{Z}$ 中的零元,则 $(2+4\mathbb{Z})(2+4\mathbb{Z}) = 4\mathbb{Z}$,则 $2+4\mathbb{Z}$ 为 $R/4\mathbb{Z}$ 中的非零的零因子,故 $R/4\mathbb{Z}$ 不是域。

习题 2.4

1. 构造含 9 个元素的有限域,写出它的全部元素。

解答. \mathbb{Z}_3 为含有 3 个元素的有限域,令 $m(x) = x^2 + 1$,由于 $m(\bar{0}) = \bar{1}, m(\bar{1}) = \bar{2}, m(\bar{2}) = \bar{2}$,所以 m(x) 是 $\mathbb{Z}_3[x]$ 上的不可约多项式,则 $\mathbb{Z}_3[x]/(m(x))$ 为含有 $3^2 = 9$ 个元素的有限域。

如下定义 \mathbb{Z}_3 到 $\mathbb{Z}_3[x]/(m(x))$ 上的映射 σ :

$$\sigma: \mathbb{Z}_3 \to \mathbb{Z}_3[x]/(m(x))$$

 $\bar{a} \mapsto \bar{a} + (m(x))$

不难验证, σ 为单同态,所以可以在 $\mathbb{Z}_3[x]/(m(x))$ 中将 \bar{a} 与 \bar{a} + (m(x)) 视为相同的元素,记 u = x + (m(x)),则

$$\mathbb{Z}_3[x]/(m(x)) = \{c_0 + c_1 u : c_0, c_i \in \mathbb{Z}_3\}$$
$$= \{\bar{0}, \bar{1}, \bar{2}, u, \bar{1} + u, \bar{2} + u, \bar{2}u, \bar{1} + \bar{2}u, \bar{2} + \bar{2}u\}$$

5. 证明 $t = \sqrt{2} + \sqrt{3}$ 是一个代数数, 并且求 t 在 \mathbb{Q} 上的极小多项式。

证明. 由于

$$t^2 = 5 + 2\sqrt{6} \Rightarrow (t^2 - 5)^2 = 24 \Rightarrow t^4 - 10t^2 + 1 = 0$$

所以 t 为代数数,设 $m(x) = x^4 - 10x^2 + 1 = (x^2)^2 - 10x^2 + 1$,将 m(x) 视为 \mathbb{R} 上的多项式,则 $x^2 = 5 \pm 2\sqrt{6} = (\sqrt{2} + \sqrt{3})^2$ 或 $(\sqrt{2} - \sqrt{3})^2$,所以

$$m(x) = (x - (\sqrt{2} + \sqrt{3}))(x - (-\sqrt{2} - \sqrt{3}))(x - (\sqrt{2} - \sqrt{3}))(x - (\sqrt{3} - \sqrt{2}))$$

则 m(x) 在 $\mathbb Q$ 中没有一次或二次多项式作为因子,故 m(x) 不可约且是首一多项式,则 m(x) 为 t 在 $\mathbb Q$ 上的极小多项式。

11. 证明: 对于任意整数 m, n, 复数 m + ni 是代数整数, 称这种形式的代数整数为**高 斯整数**。

证明. 设 t = m + ni, 则

$$(t-m)^2 = -n^2 \Rightarrow t^2 - 2mt + m^2 + n^2 = 0$$

则复数 m+ni 为整系数多项式 $x^2-2mx+m^2+n^2$ 的根,则 m+ni 为代数整数。 \square