CONDUCTIVE ADHESIVE FILM, ITS PRODUCTION AND ADHESION METHOD THEREFOR

Patent Number:

JP6145639

Publication date:

1994-05-27

Inventor(s):

YUSA MASAMI; others: 04

Applicant(s)::

HITACHI CHEM CO LTD

Requested Patent: | JP6145639

Application

Number:

JP19930193452 19930804

Priority Number(s):

IPC Classification:

C09J179/08; C09J7/00; C09J7/02; C09J163/00; H01B5/14; H01L21/52;

H05K3/38

EC Classification:

Equivalents:

Abstract

PURPOSE:To obtain a conductive adhesion film containing a specific polyimide resin and a conductive filler, excellent in heat resistance and hot adhesive force and useful for die-bonding materials, etc. CONSTITUTION: This adhesive film comprises (A) 100 pts.wt. of a polyimide resin obtained by reacting a tetracarboxylic acid dianhydride containing a tetracarboxylic acid dianhydride of the formula (n) is 2-20) in an amount of >=70mol.% based on the whole tetracarboxylic acid dianhydride with a diamine such as 1,2-diaminoethane, etc., (B) a conductive filler such as silver powder preferably in an amount of 1-8000 pts.wt., and further preferably (C) a thermosetting resin such as a resin composition containing an epoxy resin, phenolic resin, and a curing accelerating agent preferably in an amount of 0.1-200 pts.wt. The film is preferably nipped with a semi-conductor element and a supporting member and subsequently heated and pressed to adhere the semiconductor to the supporting member.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-145639

(43)公開日 平成6年(1994)5月27日

(51)Int.Cl. ⁵ C 0 9 J 179/08 7/00 7/02	機別記号 JGE JHK JKE JLH JFL	庁内整理番号 9285-4J 6770-4J 6770-4J 6770-4J 8830-4J	FI	技術表示箇所
·			審查請求 未請求	対 請求項の数7(全 11 頁) 最終頁に続く
(21)出願番号	特願平5-193452		(71)出願人	000004455 日立化成工業株式会社
(22)出願日	平成5年(1993)8	月 4 日	(72)発明者	
(31)優先権主張番号 (32)優先日	特顯平4-245395 平 4 (1992) 9 月16	Ð		茨城県つくば市和台48番 日立化成工業株 式会社筑波開発研究所内
(33)優先権主張国 (31)優先権主張番号 (32)優先日	日本(JP) 特顯平4-247758 平 4(1992)9月17	8	(72)発明者	武田 信司 茨城県つくば市和台48番 日立化成工業株 式会社筑波開発研究所内
(33)優先権主張国	日本(JP)		(72)発明者	増子 崇 茨城県つくば市和台48番 日立化成工業株 式会社筑波開発研究所内
			(74)代理人	弁理士 若林 邦彦 最終頁に続く

(54)【発明の名称】 導電性接着フィルム、その製造法及び接着法

(57)【要約】

【目的】接着時の熱処理を従来の銀ペーストと同じよう に比較的低温で行うことのできる、ダイボント用導電性 接着フィルムを提供する。

【構成】OD(A)下記の式(I)〔式(I)中、nは2 ~20の整数を示す。〕で表されるテトラカルボン酸二 無水物、の含量が、全テトラカルボン酸二無水物の70 モル%以上であるテトラカルボン酸二無水物と、ジアミ* *ンを反応させて得られるポリイミド樹脂;100重量部 に対して、(B) 導電性フィラー;1~8000重量 部、を含有してなる導電性接着フィルム。

②上記ポリイミド樹脂及び導電性フィラーに加え、熱硬 化性樹脂; 0. 1~200重量部、を含有してなる導電 性接着フィルム。

【化1】

1

* 【化1】

【特許請求の範囲】 【請求項 】 (A)式(「)

(ただし、n=2~20の整数を示す。)で表されるテトラカルボン酸二無水物、の含量が全テトラカルボン酸二無水物の70モル%以上であるテトラカルボン酸二無 10水物と、ジアミンを反応させて得られるボリイミド樹脂、及び(B) 導電性フィラー、を含有してなる導電性接着フィルム。

【請求項2】(A)式(I)のテトラカルボン酸二無水物、の含量が全テトラカルボン酸二無水物の70モル%以上であるテトラカルボン酸二無水物と、ジアミンを反応させて得られるボリイミド樹脂;100重量部に対し

(B) 導電性フィラー;1~8000重量部、を含有してなる導電性接着フィルム。

【請求項3】(A)式(I)のテトラカルボン酸二無水物、の含量が全テトラカルボン酸二無水物の70モル%以上であるテトラカルボン酸二無水物と、ジアミンを反応させて得られるポリイミド樹脂:

- (B) 導電性フィラー、及び
- (C) 熱硬化性樹脂、を含有してなる導電性接着フィルム。

【請求項4】(A)式(I)のテトラカルボン酸二無水物、の含量が全テトラカルボン酸二無水物の70モル%以上であるテトラカルボン酸二無水物と、ジアミンを反 30 応させて得られるポリイミド樹脂;100重量部に対

- (B) 導電性フィラー; 1~8000重量部、及び
- (C)熱硬化性樹脂;0.1~200重量部、を含有し てなる導電性接着フィルム。

【請求項5】熱硬化性樹脂が、エポキシ樹脂、フェノール樹脂及び硬化促進剤を含有する樹脂である、請求項3 又は4の導電性接着フィルム。

【請求項6】熱硬化性樹脂が、1分子中に少なくとも2個の熱硬化性イミド基を有するイミド化合物である、請求項3又は4の導電性接着フィルム。

【請求項7】半導体素子と支持部材の間に請求項1~6のいずれかの導電性接着フィルムを挟み、加熱圧着する、半導体素子と支持部材との接着法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ICやLSIとリードフレームの接合材料、すなわちダイボンディング用材料として用いられる導電性接着フィルム、その製造法及び

接着法に関する。

[0002]

【従来の技術】従来、「CやLSIとリードフレームの 接合にはAu-Si共晶合金、半田あるいは銀ペースト 等が用いられている。Au-Si共晶合金は、耐熱性及 び耐湿性は高いが、弾性率が大きいため大型チップへ適 用した場合に割れやすいほか、高価である難点がある。 半田は安価であるものの、耐熱性が劣り、更に弾性率は Au-Si共晶合金と同様に髙く、大型チップへ適用が 困難である。いっぽう、銀ペーストは安価で、耐湿性が 高く、弾性率も上記3者の中では最も低く、350℃の 熱圧着型ワイヤボンダーに適用できる耐熱性も有するの で、現在ハICやLSIとリードフレームの接着用材料 の主流である。しかし、近年ICやLSIの高集積化が 進み、それに伴ってチップが大型化しているなかで、Ⅰ CやLSIとリードフレームを銀ペーストで接合しよう とする場合、銀ペーストをチップ全面に広げ塗布するに は困難を伴う。

2

【0003】マイクロエレクトロニック マニュファク チャリング アンド テスティング(MICROELECTROMIC M ANUFACTURING AND TESTING 1985年10月)に、導電 性フィラーを熱可塑性樹脂に充填したダイボンド用の導 電性接着フィルムが報告された。これは熱可塑性樹脂の 融点付近まで温度を上げ、加圧接着するものである。 【0004】

【発明が解決しようとする課題】上記雑誌で報告された 導電性接着フィルムは、融点が低い熱可塑性樹脂を選ん で用いると接着温度を低くすることができ、リードフレームの酸化等、チップに与えるダメージは少なくてす む。しかし、熱時接着力が低いのでダイボンド後の熱処 理、例えばワイヤボンド、封止工程等に耐えられない。 そのような熱処理に耐えられるように融点の高い熱可塑 性樹脂を用いると、接着温度が高くなり、リードフレームの酸化等のダメージを受ける問題がある。本発明は、 ダイボンド時の熱処理を従来の銀ペーストと同じように 比較的低温で行うことができ、かつ、熱時接着力の高い ダイボント用導電性接着フィルムを提供することを目的 としている。

[0005]

【課題を解決するための手段】

① 本発明の導電性接着フィルムは、(A)式(I)【化2】

(ただし、 $n=2\sim20$ の整数を示す。) で表されるテ トラカルボン酸二無水物、の含量が、全テトラカルボン 酸二無水物に対して70モル%以上であるテトラカルボ ン酸二無水物と、ジアミンを反応させて得られる、ポリ イミド樹脂;100重量、に対し、

(B) 導電性フィラー; 1~8000重量部、を含有し てなる導電性接着フィルムである。

【0006】また本発明の導電性接着フィルムは、次の ようにして製造する。

(1)式(1)のテトラカルボン酸二無水物、の含量が 全テトラカルボン酸二無水物の70モル%以上であるテ トラカルボン酸二無水物と、ジアミンを反応させて得ら れるポリイミド樹脂(A);100重量部、を有機溶媒

(2) 導電性フィラー(B); 1~8000重量部を加 20 え、混合し、

(3) ベースフィルム上に塗布し、加熱する。

【0007】上記のポリイミド樹脂の原料として用いら れる、式(1)のテトラカルボン酸二無水物としては、 nが2~5のとき、1、2 - (エチレン) ビス (トリメ リテート二無水物)、1,3-(トリメチレン)ビス (トリメリテート二無水物)、1,4-(テトラメチレ ン) ビス(トリメリテート二無水物)、1,5-(ペン タメチレン) ビス (トリメリテート二無水物)、nが6 ~20のとき、1,6-(ヘキサメチレン)ビス(トリ メリテート二無水物)、1,7-(ヘプタメチレン)ビ ス(トリメリテート二無水物)、1,8-(オクタメチ レン)ビス(トリメリテート二無水物)、1.9-(ノ ナメチレン)ビス(トリメリテート二無水物)、1,1 0-(デカメチレン)ビス(トリメリテート二無水 物)、1、12-(ドデカメチレン)ビス(トリメリテ ート二無水物)、1、16-(ヘキサデカメチレン)ビ ストリメリテート二無水物、1,18-(オクタデカメ チレン)ビス(トリメリテート二無水物)、等があり、 これら2種以上を併用してもよい。

【0008】上記テトラカルボン酸二無水物は、無水ト リメリット酸モノクロライド及び対応するジオールから 合成することができる。また、全テトラカルボン酸二無 水物に対して上記テトラカルボン酸二無水物の含まれる 量は、70モル%以上である。70モル%未満である と、接着フィルムの接着時の温度が高くなり好ましくな い。

【0009】式(1)のテトラカルボン酸二無水物と共 に使用できるテトラカルボン酸無水物としては、例え ば、ピロメリット酸二無水物、3、3′、4、4′-ジ 50 無水物、4、8-ジメチル-1、2、3、5、6、7-

フェニルテトラカルボン酸二無水物、2,2′,3, 3′-ジフェニルテトラカルボン酸二無水物、2,2-ビス(3、4-ジカルボキシフェニル)プロパン二無水 物、2,2-ビス(2,3-ジカルボキシフェニル)プ 10 ロバン二無水物、1、1-ビス(2、3-ジカルボキシ フェニル)エタン二無水物、1,1-ビス(3,4-ジ カルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4 - ジカルボキシフェニル)メタン二無水物、ビス(3, 4 - ジカルボキシフェニル)スルホン二無水物、3、 4,9,10-ペリレンテトラカルボン酸二無水物、ビ ス(3,4-ジカルボキシフェニル)エーテル二無水 物、ベンゼン-1、2、3、4-テトラカルボン酸二無 水物、3,4,3′,4′-ベンゾフェノンテトラカル ボン酸二無水物、2、3、2′、3-ベンゾフェノンテ トラカルボン酸二無水物、2,3,3',4'-ベンゾ フェノンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7 -ナフタレンテトラカルボン酸二無水物、1,2,4, 5-ナフタレン-テトラカルボン酸二無水物、1、4. 5.8-ナフタレンーテトラカルボン酸二無水物、 [0010]2,6-ジクロルナフタレン-1,4. 5、8-テトラカルボン酸二無水物、2、7-ジクロル ナフタレン-1,4,5,8-テトラカルボン酸二無水 30 物、2、3、6、7-テトラクロルナフタレン-1、 4. 5. 8 - テトラカルボン酸二無水物、フエナンスレ ン-1,8,9,10-テトラカルボン酸二無水物、ピ ラジンー2、3、5、6-テトラカルボン酸二無水物、 チオフエン-2、3、4、5-テトラカルボン酸二無水 物、2,3,3´ ,4´ -ビフェニルテトラカルボン酸 二無水物、3,4,3′,4′-ビフェニルテトラカル ボン酸二無水物、2.3,2′,3′-ピフェニルテト ラカルボン酸二無水物、ビス(3,4-ジカルボキシフ ェニル)ジメチルシラン二無水物、ビス(3,4-ジカ 40 ルボキシフェニル) メチルフェニルシラン二無水物、ビ ス(3,4-ジカルボキシフェニル)ジフェニルシラン 二無水物、1,4-ビス(3,4-ジカルボキシフェニ ルジメチルシリル)ベンゼン二無水物、1、3-ビス (3, 4-ジカルボキシフェニル)-1, 1, 3, 3-テトラメチルジシクロヘキサン二無水物、p-フェニル ビス(トリメリット酸モノエステル酸無水物)、 【0011】エチレンテトラカルボン酸二無水物、1. 2,3,4-ブタンテトラカルボン酸二無水物、デカヒ

ドロナフタレンー1、4、5、8-テトラカルボン酸二

ヘキサヒドロナフタレン-1.2.5,6-テトラカル ボン酸二無水物、シクロペンタン-1,2,3,4-テ トラカルボン酸二無水物、ピロリジン-2,3,4,5 - テトラカルボン酸二無水物、1、2、3、4 - シクロ ブタンテトラカルボン酸二無水物、ビス(エキソービシ クロ〔2、2、1〕ヘプタン-2、3-ジカルボン酸無 水物)スルホン、ビシクロー(2、2、2)-オクト (7) -エン2, 3, 5, 6-テトラカルボン酸二無水 物、2、2-ビス(3、4-ジカルボキシフェニル)へ キサフルオロプロパン二無水物、2、2-ビス〔4-(3, 4-ジカルボキシフェノキシ) フェニル) ヘキサ フルオロプロパン二無水物、4,4′-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフイド二無水 物、1、4-ビス(2-ヒドロキシヘキサフルオロイソ プロピル)ベンゼンビス(トリメリット酸無水物)、 1.3-ビス(2-ヒドロキシヘキサフルオロイソプロ ピル)ベンゼンビス(トリメリット酸無水物)、5-(2, 5-ジオキソテトラヒドロフリル) -3-メチル -3-シクロヘキセン-1,2-ジカルボン酸無水物、 テトラヒドロフラン-2、3、4、5-テトラカルボン 酸二無水物等があり、2種類以上を混合して用いてもよ しょ

【0012】本発明で使用されるジアミンとしては、 1, 2-ジアミノエタン、1, 3-ジアミノプロパン、 1、4-ジアミノブタン、1、5-ジアミノペンタン、 1,6-ジアミノヘキサン、1,7-ジアミノヘブタ ン、1、8 - ジアミノオクタン、1、9 - ジアミノノナ ン、1、10-ジアミノデカン、1、11-ジアミノウ ンデカン、1, 12-ジアミノドデカン等の脂肪族ジア ミン、o-フェニレンジアミン、m-フェニレンジアミ 30 ン、p-フェニレンジアミン、3、3´ージアミノジフ ェニルエーテル、3、4′-ジアミノジフェニルエーテ ル、4、4′-ジアミノジフェニルエーテル、3、3′ -ジアミノジフェニルメタン、3、4′ -ジアミノジフ ェニルメタン、4,4′-ジアミノジフェニルメタン、 3, 3'-ジアミノジフェニルジフルオロメタン、3, 4′-ジアミノジフェニルジフルオロメタン、4,4′ ージアミノジフェニルジフルオロメタン、3,3'ージ アミノジフェニルスルホン、3、4′-ジアミノジフェ ニルスルホン、4、4′-ジアミノジフェニルスルホ ン、3、3′-ジアミノジフェニルスルフイド、3、 4′-ジアミノジフェニルスルフイド、4,4′-ジア ミノジフェニルスルフイド、

【0013】3、3′-ジアミノジフェニルケトン、 3, 4′-ジアミノジフェニルケトン、4, 4′-ジア ミノジフェニルケトン、2.2-ビス(3-アミノフェ ニル)プロパン、2、2′-(3、4′-ジアミノジフ ェニル)プロパン、2,2-ビス(4-アミノフェニ ル)プロバン、2、2-ビス(3-アミノフェニル)へ キサフルオロプロパン、2,2-(3,4′-ジアミノ 50 又は閉環触媒は、テトラカルボン酸二無水物1モルに対

ジフェニル) ヘキサフルオロプロパン、2、2-ビス (4-アミノフェニル) ヘキサフルオロプロバン、1. 3-ビス (3-アミノフェノキシ) ベンゼン、1、4-ビス (3-アミノフェノキシ) ベンゼン、1,4-ビス (4-アミノフェノキシ) ベンゼン、3,3′-(1, 4-フェニレンビス(1-メチルエチリデン))ビスア ニリン、3、4′-(1、4-フェニレンピス(1-メ チルエチリデン))ビスアニリン、4,4′-(1,4 ーフェニレンビス(1-メチルエチリデン))ビスアニ リン、2、2-ビス(4-(3-アミノフェノキシ)フ ェニル) プロパン、2,2-ビス(4-(4-アミノフ ェノキシ) フェニル) プロパン、2、2-ビス(4-(3-アミノフェノキシ) フェニル) ヘキサフルオロブ ロパン、2、2-ビス(4-(4-アミノフエノキシ) フエニル) ヘキサフルオロプロパン、ビス(4-(3-アミノフェノキシ) フェニル) スルフイド、ビス(4 -(4-アミノフェノキシ) フェニル) スルフイド、ビス (4-(3-アミノフェノキシ) フェニル) スルホン、 ビス (4-(4-アミノフェノキシ) フェニル) スルホ ン等の芳香族ジアミンを挙げることができる。

【0014】テトラカルボン酸二無水物とジアミンの縮 合反応は、有機溶媒中で行う。との場合、テトラカルボ ン酸二無水物とジアミンは等モル又はほぼ等モルで用い るのが好ましく、各成分の添加順序は任意である。用い る有機溶媒としては、ジメチルアセトアミド、ジメチル ホルムアミド、N-メチル-2-ピロリドン、ジメチル スルホキシド、ヘキサメチルホスホリルアミド、m-ク レゾール、o-クロルフェノール等がある。

【0015】反応温度は80°C以下、好ましくは0~5 ○℃である。反応が進行するにつれ反応液の粘度が徐々 に上昇する。この場合、ポリイミドの前駆体であるポリ アミド酸が生成する。

【0016】ポリイミドは、上記反応物(ポリアミド 酸)を脱水閉環させて得ることができる。脱水閉環は 1 20℃~250℃で熱処理する方法や化学的方法を用い て行うことができる。120℃~250℃で熱処理する 方法の場合、脱水反応で生じる水を系外に除去しながら 行うことが好ましい。この際、ベンゼン、トルエン、キ シレン等を用いて水を共沸除去してもよい。なお、本発 明においてポリイミド樹脂とは、ポリイミド及びその前 駆体を総称する。ポリイミドの前駆体には、ポリアミド 酸のほか、ポリアミド酸が部分的にイミド化したものが ある。

[0017] 化学的方法で脱水閉環させる場合は、閉環 剤として無水酢酸、無水プロピオン酸、無水安息香酸の 酸無水物、ジシクロヘキシルカルボジイミド等のカルボ ジイミド化合物等を用いる。このとき必要に応じてビリ ジン、イソキノリン、トリメチルアミン、アミノビリジ ン、イミダゾール等の閉環触媒を用いてもよい。閉環剤

し、それぞれ1~8モルの範囲で使用するのが好まし 61.

【0018】また、接着力を向上させるため、ポリイミ ド樹脂にシランカップリング剤、チタン系カップリング 剤、ノニオン系界面活性剤、フッ素系界面活性剤、シリ コーン系添加剤等を適宜加えてもよい。

【0019】本発明で用いる導電性フィラー(B)は、 接着剤に導電性を付与する目的で添加するものであり、 銀粉、金粉、銅粉等の導電性金属粉体を単独に、又は2 種以上混合して用いる。これらに導電性を損なわない範 10 囲でシリカ、アルミナ、チタニア、ガラス、酸化鉄等の 無機絶縁体を混合して使用することもできる。導電性フ ィラーの量は、ボリイミド樹脂100重量部に対し1~ 8000重量部、好ましくは50~4000重量部であ る。1重量部未満であると充分な導電性が得られず、8 ○○○重量部を越えると接着性が低下する。

【0020】本発明の導電性接着フィルムの製造は、以 下のようにする。まずポリイミド樹脂を有機溶媒に溶解 する。ここで用いられる有機溶媒は、均一に溶解又は混 練できるものであれば特に制限はなく、そのようなもの としては例えば、ジメチルホルムアミド、ジメチルアセ トアミド、N-メチルピロリドン、ジメチルスルホキシ ド、ジエチレングリコールジメチルエーテル、トルエ ン、ベンゼン、キシレン、メチルエチルケトン、テトラ ヒドロフラン、エチルセロソルブ、エチルセロソルブア セテート、ブチルセロソルブ、ジオキサン等が挙げられ る。

【0021】次いで、導電性フィラーを加え、必要に応 じ添加剤を加え、混合する。この場合、通常の撹拌機、 らいかい機、三本ロール、ボールミルなどの分散機を適 30 宜組み合せて、混練を行ってもよい。

【0022】こうして得たペースト状混合物を、例えば ポリエステル製シート等のベースフィルム上に均一に塗 布し、使用した溶媒が充分に揮散する条件、すなわち、 おおむね60~200℃の温度で、0.1~30分間加 熱し、導電性接着フィルムとし、通常、使用時にベース フィルムを除去して接着に用いる。

【0023】② 本発明の導電性接着フィルムは、

(A) 前記式(I) のテトラカルボン酸二無水物、の含 量が、全テトラカルボン酸二無水物の70モル%以上で 40 あるテトラカルボン酸二無水物と、ジアミンを反応させ て得られるポリイミド樹脂:100重量部に対し、

- (B) 導電性フィラー; 1~8000重量部、のほかに
- (C) 熱硬化性樹脂; 0.1~200重量部、を含有し てなる導電性接着フィルムでもある。

【0024】ととで、熱硬化性樹脂は、エポキシ樹脂、 フェノール樹脂及び硬化促進剤を含有する樹脂、及び、 1分子中に少なくとも2個の熱硬化性イミド基を有する イミド化合物から選ぶ。

ち、熱硬化性樹脂が、エポキシ樹脂、フェノール樹脂及 び硬化促進剤を含有する樹脂である場合の導電性接着フ

(1)式(1)のテトラカルボン酸二無水物、の含量が、 全テトラカルボン酸二無水物の70モル%以上であるテ トラカルポン酸二無水物と、ジアミンを反応させて得ら れるポリイミド樹脂(A):100重量部、

エポキシ樹脂; 1~200重量部,

フェノール樹脂;エポキシ樹脂100重量部に対し、2 ~150重量部、及び

硬化促進剤;エポキシ樹脂100重量部に対し、0.0 1~50重量部、を有機溶媒に溶解し、

(2) 導電性フィラー(B):1~8000重量部を加 え、混合し、

(3)ベースフィルム上に塗布し、加熱する、ことにより 製造され、熱硬化性樹脂が、1分子中に少なくとも2個 の熱硬化性イミド基を有するイミド化合物である場合の 導電性接着フィルムは、(1)式(I)のテトラカルボン 酸二無水物、の含量が、全テトラカルボン酸二無水物の 70モル%以上であるテトラカルボン酸二無水物と、シ アミンを反応させて得られるポリイミド樹脂(A):1 ○○重量部、及び1分子中に少なくとも2個の熱硬化性 イミド基を有するイミド化合物;0.1~200重量 部、を有機溶媒に溶解し、(2)導電性フィラー(B)、 を加え、混合し、(3)ベースフィルム上に塗布し、加熱 する、ことにより製造される。

【0026】熱硬化性樹脂を含有させた導電性接着フィ ルムは、熱時の剪断接着力が高くなる特徴がある。しか し、熱時のビール接着力は逆に低下するので、使用目的 に応じて、熱硬化性樹脂含有又は非含有の導電性接着フ ィルムとし、使い分けるとよい。なお、ここで、熱硬化 性樹脂とは、加熱により3次元的網目構造を形成し、硬 化する樹脂のことである。

[0027] 熱硬化性樹脂を含有させる場合、熱硬化性 樹脂の量は、ポリイミド樹脂(A)100重量部に対し 0. 1~200重量部、好ましくは1~100重量部と する。200重量部を越えるとフィルム形成性が悪くな

【0028】熱硬化性樹脂として、エポキシ樹脂、フェ ノール樹脂及び硬化促進剤を含有する樹脂を選ぶ場合 に、用いられるエポキシ樹脂は、分子内に少なくとも2 個のエポキシ基を含むもので、硬化性や硬化物特性の点 からフェノールのグリシジルエーテル型のエポキシ樹脂 が好ましい。このような樹脂としては、ピスフェノール A、ビスフェノールAD、ビスフェノールS、ビスフェ ノールF もしくはハロゲン化ビスフェノールAとエビク ロルヒドリンの縮合物、フェノールノボラック樹脂のグ リシジルエーテル、クレゾールノボラック樹脂のグリシ ジルエーテル、ビスフェノールAノボラック樹脂のグリ 【0025】また本発明の導電性接着フィルム、すなわ 50 シジルエーテル等が挙げられる。エボキシ樹脂の量は、

ポリイミド樹脂100重量部に対し1~200重量部、 好ましくは5~100重量部で、200重量部を越える とフィルム形成性が悪くなる。

【0029】用いられるフェノール樹脂は、分子中に少 なくとも2個のフェノール性水酸基を有するもので、と のような樹脂としては例えば、フェノールノボラック樹 脂、クレゾールノボラック樹脂、ビスフェノールAノボ ラック樹脂、ポリー p -ビニルフェノール、フェノール アラルキル樹脂等が挙げられる。フェノール樹脂の量 は、エポキシ樹脂100重量部に対して2~150重量 10 必要に応じ添加剤を加え、先に述べた手順と同様にし 部、好ましくは50~120重量部で、2重量部未満も しくは150重量部を越えると硬化性が不充分となる。 【0030】硬化促進剤は、エポキシ樹脂を硬化させる ために用いられるものであれば特に制限はない。 とのよ うなものとしては例えば、イミダゾール類、ジシアンジ アミド誘導体、ジカルボン酸ジヒドラジド、トリフェニ ルホスフィン、テトラフェニルホスホニウムテトラフェ ニルボレート、2-エチル-4-メチルイミダゾールー テトラフェニルボレート、1,8-ジアザビシクロ (5, 4, 0) ウンデセン-7-テトラフェニルボレー 20 ベンゼンのほか、下記の式(II)~(IV)で表されるイ ト等が用いられる。これらは、2種以上を併用してもよ い。硬化促進剤の量はエポキシ樹脂100重量部に対 し、0.01~50重量部、好ましくは0.1~20重*

*量部で、0.01重量部未満では、硬化性が不充分とな り、50重量部を越えると保存安定性が悪くなる。 【0031】このような導電性接着フィルムの製造は、 以下のようにする。まずエボキシ樹脂、フェノール樹 脂、ポリイミド系樹脂を有機溶媒に溶解する。ここで用 いられる有機溶媒は、上記材料を均一に溶解又は混練で きるものであれば特に制限はなく、先に挙げたジメチル ホルムアミド等の溶媒がある。

[0032]次いで、硬化促進剤、導電性フィラー及び て、混合・混練し、ペースト状混合物を得、これをベー スフィルム上に均一に塗布し、加熱して、導電性接着フ ィルムとする。

【0033】熱硬化性樹脂として、1分子中に少なくと も2個の熱硬化性イミド基を有するイミド化合物を使用 する場合、その化合物の例としては、バラビスマレイミ ドベンゼン、メタビスマレイミドベンゼン、パラビスマ レイミドベンゼン、1,4-ピス(p-マレイミドクミ ル) ベンゼン、1,4-ビス(m-マレイミドクミル) ミド化合物等がある。

[化3]

(式 (II) 中、XはO、CH, CF, SO, S、C O、C(CH,),又はC(CF,),を示し、R,、R,、 R,及びR,はそれぞれ独立に水素、低級アルキル基、低 級アルコキシ基、フッ素、塩素又は臭素を示し、Dはエ※

30※ チレン性不飽和二重結合を有するジカルボン酸残基を示 す。) [化4]

O、C(CH,),又はC(CF,),を示し、R,、R。、 R,及びR。はそれぞれ独立に水素、低級アルキル基、低 級アルコキシ基、フッ素、塩素又は臭素を示し、Dはエ

〔式(III)中、YはO、CH、CF、SO、S、C 40 チレン性不飽和二重結合を有するジカルボン酸残基を示 す。)

[化5]

[式 (IV) 中、nは0~4の整数を示す。]

【0034】本発明で用いられるイミド化合物の量は、ポリイミド樹脂100重量部に対して0.1~200重量部、好ましくは1~100重量部である。200重量部を越えるとフィルム形成性が悪くなる。

【0035】式(II)のイミド化合物としては、例えば、4、4-ビスマレイミドジフェニルエーテル、4、4-ビスマレイミドジフェニルメタン、4、4-ビスマレイミド・3、3'ージメチルージフェニルメタン、4、4-ビスマレイミドジフェニルスルホン、4、4-ビスマレイミドジフェニルスルフィド、4、4-ビスマレイミドジフェニルケトン、2、2'ービス(4-マレイミドジフェニルフルオロメタン、1、1、1、3、3、3-ヘキサフルオロ-2、2-ビス(4-マレイミドフェニル)プロパン、等がある。

【0037】 これらイミド化合物の硬化を促進するため、ラジカル重合剤を使用してもよい。ラジカル重合剤 40 としては、アセチルシクロヘキシルスルホニルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド、オクタノイルパーオキサイド、アセチルパーオキサイド、ジクミルパーオキサイド、クメンハイドロパーオキサイド、アゾビスイソブチロニトリル等がある。このとき、ラジカル重合剤の使用量は、イミド化合物100重量部に対して概ね0.01~1.0重量部が好ましい。

【0038】 この場合の導電性接着フィルムの製造は、 キシフェニル) フロバン32.8g(0.08モル)、 以下のようにする。まず、ボリイミド樹脂(A)及び上 50 3,3′,5,5′ーテトラメチルー4,4′ージアミ

記のイミド化合物をとり、先と同様にして、有機溶媒に溶解し、導電性フィラー及び必要に応じ添加剤を加え、混合・混練し、混合・混練し、ベースト状混合物を得、 とれをベースフィルム上に均一に塗布し、加熱して、導電性接着フィルムとする。

【0039】IC、LSI等の半導体素子と、リードフレーム、セラミックス配線板、ガラスエポキシ配線板、ガラスボリイミド配線板等の支持部材との間に、本発明で得られた導電性接着フィルムを挟み、加熱圧着すると、両者は接着する。

[0040]

【実施例】以下、本発明を実施例により説明する。 合成例 1

温度計、攪拌機及び塩化カルシウム管を備えた500m 1の四つ口フラスコに、2,2ービス(4ーアミノフェノキシフェニル)プロパン41g(0.1モル)及びジメチルアセトアミド150gをとり、攪拌した。ジアミンの溶解後、フラスコを氷浴中で冷却しながら、1,2ー(エチレン)ビス(トリメリテート二無水物)41g(0.1モル)を少量ずつ添加した。室温で3時間反応させたのち、キシレン30gを加え、N.ガスを吹き込みながら150℃で加熱し、水と共にキシレンを共沸除去した。その反応液を水中に注ぎ、沈澱したポリマーを濾過により採り、乾燥してポリイミド樹脂(A,)を得た

[0041]合成例 2

温度計、攪拌機及び塩化カルシウム管を備えた500mlの四つ口フラスコに、ビス(4-(3-アミノフェノキシ)フェニル)スルホン43.2g(0.1モル)及びN-メチルー2-ビロリドン150gをとり、攪拌した。ジアミンの溶解後、室温で、1,4-(テトラメチレン)ビス(トリメリテート二無水物)43.8g(0.1モル)を加えた。5℃以下で5時間反応させ、無水酢酸20.4g(0.2モル)及びビリジン15.8g(0.2モル)を加え、1時間室温で攪拌した。この反応液を水中に注ぎ、沈澱したポリマーを濾過により採り、乾燥してポリイミド樹脂(A₁)を得た。

[0042] 合成例 3

温度計、攪拌機、塩化カルシウム管を備えた500mlの四つ口フラスコに、2、2-ビス(4-アミノフェノキシフェニル)プロバン32、8g(0、08モル)、3、3、5、5、-テトラメエル-4、4、-ジマミ

13

ノジフェニルメタン5.08g(0.02モル)及びジメチルアセトアミド100gをとり、撹拌した。ジアミンの溶解後、フラスコを氷浴中で冷却しながら、1,10-(デカメチレン)ビス(トリメリテート二無水物)41.8g(0.08モル)及びベンゾフェノンテトラカルボン酸二無水物6.44g(0.02モル)を少量ずつ添加した。添加終了後、氷浴中で3時間、更に室温で4時間反応させた後、無水酢酸25.5g(0.25モル)及びピリジン19.8g(0.25モル)を添加 *

* し、2時間室温で攪拌した。その反応液を水中に注ぎ、 沈澱したポリマーを濾過により採り、乾燥してポリイミ ド樹脂(A₁)を得た。

【0043】実施例1

表] に示す配合表に従い、まず、2種類のペースト状混合物を調合した。なお、表 1 中、TCC-1とあるのは、徳力化学(株)製の銀粉を意味する。

【表1】

表 1 配合表

(単位:重量部)

材 料	No. 1	No. 2
ポリイミド樹脂	A. 100部	A. 100部
銀粉(TCG-1)	150	6 7
 溶 媒 (ジメチルアセトアミド)	3 0 0	300

【0044】このペースト状混合物を30~50μmの 厚さにポリエステルフィルム上に塗布し、80℃で10 分、つづいて150℃で30分加熱し、2種類の導電性※

※接着フィルムを得た。フィルム形成性は、いずれも良好 であった(表2)。

【表2】

表2 ワニスのフィルム形成性

項 目	No. 1	No. 2
フィルム形成性	0	0

なお、表2(あるいは、後述の表4及び表6)において、フィルム形成性の〇、×はそれぞれ下記の意味である

○:ベトツキがなく、ボリエステルフィルムから容易に 剥がすことができる。

×:ベトツキがあり、又はフィルムが脆く、ポリエステ★

★ルフィルムから剥がすことが困難。

[0045] 実施例2

表3に示す配合表に従い、No.3~No.8の6種類のペースト状混合物(ただし、No.8は比較)を調合した。 [表3]

(単位:重量部)

表3	配合表	,				中心·星重吗/
———— 材 料	No. 3	4	5	6	7	8 (比較)
 エポキシ 樹脂	YDON-702 50部	N-865 20部	ESCN-195 10部	N-865 10部	N-865 7部	YDCN-702 100部
———— フェノー ル樹脂	H-1 24	H-1 10	VH-4170 6	VH4170 6	VH-4170) H-1 48
———— 硬化促進 剤	2 P4MHZ 0.5	TPPK 0.4	2MA_OK 0.1	TPPK 0.5	TPPK 0.7	2 P4MHZ 1
ボリイミ	Α,	Α,	Α,	Α,	Α,	_

15						16
ド樹脂	100	100	100	100	100	0
銀 粉	TCG-1	TCG-1	TCG-1	TCG-1	TCG-1	TCG-1
	400	200	70	500	67	800
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DMAA	NMP	DMF	DMF	DMF	DMAA
	400	200	100	100	67	1000

【0046】なお、表3において、種々の記号は下記の

意味である。

YDCH-702: 東都化成、クレゾールノボラック型エポキシ

(エポキシ当量220)

N-865: 大日本インキ製、ビスフェノールノボラック型

エポキシ (エポキシ当量208)

ESCN-195: 日本化薬、クレゾールノボラック型エポキシ

(エポキシ当量200)

H-1:明和化成、フェノールノボラック(OH当量106)

VH-4170: 大日本インキ、ビスフェノールAノボラック *

表4 ワニスのフィルム形成性

* (OH当量118)

10 TCG-1: 徳力化学

DMAA: ジメチルアセトアミド

MMP: N-メチルピロリドン

DMF: ジメチルホルムアミド

【0047】このペースト状混合物を30~50μmの 厚さにポリエステルフィルム上に塗布し、80℃で10 分、つづいて150℃で30分加熱し、導電性接着フィ

ルムを得た。フィルム形成性は、表4に示した。

【表4】

項 目	No. 3	4	5	6	7	8 (比較)
 フィルム形成性	0	0	0	0	0	×

【0048】実施例3

※ ースト状混合物を調合した。

表5に示す配合表に従い、No.9~No.13の5種類のペ※ 【表5】

表5 配合表		•		(	(単位:重量部)
 材 料	No.9	10	1 1	1 2	1 3
 ポリイミド 樹脂	A, 100部	A, 100部	A, 100部	A, 100部	A. 100部
	BMDADPM 20	BMDADFM 50	BMPPP 10	BMPPP 50	BMDADPE 30
 銀粉(TCG-1)	500	50	100	800	100
 溶 媒	DMAA	DMAA	NMP	DMF	DMAA
 その他	B P O 0.1	DCP0 0.2	BPO 0.01	CHPC 0.003	

【0049】ただし、表5中の記号は、下記の意味であ

BMDADPM: 4, 4'ービスマレイミドジアミノジフェニ

BMPPP: 2, 2-ビス (4-(4-マレイミドフェノキ

シ) フェニル) プロバン

ルメタン

BMDADPE: 4, 4' -ビスマレイミドジアミノジフェニ 50 CHPO: クメンハイドロパーオキサイド

ルエーテル

DMAA: ジメチルアセトアミド NMP: N-メチルピロリドン DMP: ジメチルホルムアミド BPO: ベンゾイルパーオキサイド CCPO: ジクミルパーオキサイド

17

【0050】ペースト状混合物を30~50μmの厚さ にポリエステルフィルム上に塗布し、80℃で10分、つ づいて150℃で15分加熱し、導電性接着フィルムを*

* 得た。フィルム形成性は、表6 に示した。 【表6】

٠. .

表6 ワニスのフィルム形成性

項目	No.9	10	1 1	1 2	1 3	
フィルム形成性	0	0	0	0	0	

#### 【0051】試験例 1

実施例1で得られた導電性接着フィルムの剪断接着力を 測定すると、表7に示す通りであった。なお、試験方法 は、導電性接着フィルムを4×4mmの大きさに切断 し、これを4×4mmのシリコンチップと銀メッキ付リ※

10% - ドフレームの間に挟み、1000gの荷重をかけて、260℃、3秒間圧着させたのち、ブッシュブルゲージを用いて、室温時及び350℃加熱20秒後の熱時に、剪断接着力を測定した。

【表7】

表7 導電性接着フィルムの剪断接着力

項 目		No. 1	No. 2	
剪断接着力	室温	15.0	14.5	
(kqf/ chip)	350°C	0.5	0.4	

## 【0052】試験例 2

実施例2で得られた導電性接着フィルムの剪断接着力を 測定すると、表8に示す通りであった。なお、試験方法 は、導電性接着フィルムを4×4mmの大きさに切断 し、これを4×4mmのシリコンチップと銀メッキ付リ ードフレームの間に挟み、50gの荷重をかけて、20 0℃、3分間圧着させたのち、プッシュブルゲージを用★

★いて、室温時及び350℃加熱20秒後の熱時に、剪断接着力を測定した。表7及び表8を比較すると、熱硬化性樹脂含有の導電性接着フィルム(No.3~7)は、熱硬化性樹脂非含有の導電性接着フィルム(No.1~2)よりも、350℃における剪断接着力が高いことが分かる。

【表8】

表8 導電性接着フィルムの剪断接着力

項 目		No.3	4	5	6	7	8 (比較)
剪断接着力	室温	11.0	10.5	12.3	9.8	13.4	- *
(kqf/ chip) 3	50°C	2.0	2.5	3.0	1.8	2.1	- *

*:フィルムが形成できなかったので、測定不可。

[0053]試験例 3

☆は、試験例2と同様にして行った。

実施例3で得られた導電性接着フィルムの剪断接着力を 40 【表9】

測定すると、表9に示す通りであった。なお、試験方法☆

表 9 導電性接着フィルムの剪断接着力

項目		No. 9	10	11	12	1 3
	室温	10.7	12.3	17.5	15.7	11.3
(Rgr) Grip)	350°C	1.5	3.3	2.8	2.3	2.8

ピール接着力を測定すると、表10に示す通りであっ た。なお、ピール接着力は、導電性接着フィルムを8× 8mmの大きさに切断し、これを8×8mmのシリコン チップと銀メッキ付リードフレームの間に挟み、100*

*0gの荷重をかけて、300℃、5秒間圧着させたの ち、250℃、20秒加熱時に測定した。 【表10】

表10 導電性接着フィルムのピール接着力

項 目	No. 1	2	3	4	5	6	7	8 (比較)
ピール接着力 (kgf/chip)250℃	> 3	> 3	1.9	1.5	1.7	1.0	2.5	-+

*:フィルムが形成できなかったので、測定不可。

表10の結果から、熱硬化性樹脂非含有の導電性接着フ ※ 【発明の効果】請求項1~請求項6の導電性接着フィル ィルム(No.1~2)は熱硬化性樹脂含有の導電性接着 フィルム(No.3~7)よりも、250℃におけるピー ル接着力が高いことが分かる。

[0055]

ムは、比較的低温で行うことのできるダイボンド用導電 性接着フィルムである。請求項7の方法により、半導体 素子と支持部材を接着できる。

フロントページの続き

(51)Int.Cl. ³ C 0 9 J		識別記 <del>号</del> JFN JFP	庁内整理番号 8830-4J 8830-4J	FI	技術表示箇所
HOIB	5/14	Z	•		
HOIL	21/52	E	7376-4M		
H05K	3/38	E	7011-4E		
// H01B	1/22		7244-5G		

Ж

(72)発明者 宮寺 康夫

茨城県つくば市和台48番 日立化成工業株 式会社筑波開発研究所内

(72)発明者 山崎 充夫

茨城県日立市東町4丁目13番1号 日立化 成工業株式会社山崎工場内

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第3区分 【発行日】平成11年(1999)5月18日

【公開番号】特開平6-145639

【公開日】平成6年(1994)5月27日

【年通号数】公開特許公報6-1457

[出願番号]特願平5-193452

## 【国際特許分類第6版】

C09J 179/08 JGE JHK 7/00 7/02 JKE. JLH JFL 163/00 **JFN** JFP H01B 5/14 HO1L 21/52 3/38 H05K // H01B 1/22 [FI] C09J 179/08 JGE **JHK** 7/00 7/02 JLH JFL 163/00 JFP HO1B 5/14 H01L 21/52 HO5K 3/38 H01B 1/22

#### 【手続補正書】

【提出日】平成9年12月22日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正内容】

【発明の名称】導電性接着フィルム、接着法、導電性接

着フィルム付き支持部材及び半導体装置

【手続補正2】

*

*【補正対象售類名】明細書

【補正方法】変更

【特許請求の範囲】

[請求項1](A)式(I)

【補正内容】

【化1】

【補正対象項目名】特許請求の範囲

(ただし、nは2~20の整数を示す。)で表されるテトラカルボン酸二無水物の含量が全テトラカルボン酸二無水物の10モル%以上であるテトラカルボン酸二無水

物と、ジアミンを反応させて得られるボリイミド樹脂 及び(B) 導電性フィラーを含有してなる導電性接着フィルム。 【請求項2】(A)請求項1記載の式(I)で表されるのテトラカルボン酸二無水物の含量が全テトラカルボン酸二無水物の70モル%以上であるテトラカルボン酸二無水物と、ジアミンを反応させて得られるポリイミド樹脂;100重量部に対し、(B)導電性フィラー;1~8000重量部を含有してなる導電性接着フィルム。

【請求項3】(A)請求項1記載の式(I)で表されるテトラカルボン酸二無水物の含量が全テトラカルボン酸二無水物の70モル%以上であるテトラカルボン酸二無水物と、ジアミンを反応させて得られるポリイミド樹脂

(B) 導電性フィラー 及び(C) 熱硬化性樹脂を含有してなる導電性接着フィルム。

【請求項4】(A)請求項1記載の式(I)で表されるテトラカルボン酸二無水物の含量が全テトラカルボン酸二無水物の70モル%以上であるテトラカルボン酸二無水物と、ジアミンを反応させて得られるボリイミド樹脂:100重量部に対し、(B)導電性フィラー;1~8000重量部及び(C)熱硬化性樹脂;0.1~200重量部を含有してなる導電性接着フィルム。

【請求項5】熱硬化性樹脂が、エポキシ樹脂、フェノール樹脂及び硬化促進剤を含有する樹脂である、請求項3 又は4に記載の導電性接着フィルム。 【請求項6】熱硬化性樹脂が、1分子中に少なくとも2個の熱硬化性イミド基を有するイミド化合物である、請求項3又は4に記載の導電性接着フィルム。

【請求項7】半導体素子と支持部材の間に請求項1~6 のいずれかに記載の導電性接着フィルムを挟み、加熱圧 着する、半導体素子と支持部材との接着法。

【請求項8】支持部材に請求項1~6のいずれかに記載 の導電性接着フィルムを接着させた導電性接着フィルム 付き支持部材。

[請求項9]半導体素子を請求項1~6のいずれかに記 裁の導電性接着フィルムで支持部材に接着させてなる半 導体装置。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0001

【補正方法】変更

【補正内容】

[0001]

【産業上の利用分野】本発明は、ICやLSIとリードフレームの接合材料、すなわちダイボンディング用材料として用いられる導電性接着フィルム、接着法、導電性接着フィルム付き支持部材及び半導体装置に関する。