FP-Growth Algorithm – Overview

- Apriori requires one pass for each k
 (2+ on first pass for PCY variants)
- Can we find all frequent item sets in fewer passes over the data?

FP-Growth Algorithm:

- Pass 1: Count items with support ≥ s
- Sort frequent items in descending order according to count
- Pass 2: Store all frequent itemsets in a frequent pattern tree (FP-tree)
- Mine patterns from FP-Tree

FP-Tree Construction

TID	Items Bought	Frequent Items	
1	{a,b,f}	{a,b}	
2	{b,g,c,d}	{b,c,d}	
3	{h, a,c,d,e}	{a,c,d,e}	
4	{a,d, p,e}	{a,d,e}	
5	{a,b,c}	{a,b,c}	
6	{a,b,q,c,d}	{a,b,c,d}	
7	{a}	{a}	
8	{a,m,b,c}	{a,b,c}	
9	{a,b,n,d}	{a,b,d}	
10	{b,c,e}	{b,c,e}	

a: 8, b: 7, c: 6, d: 5, e: 3, f: 1, g: 1, h: 1, m: 1, n: 1

TID = 10

Mining Patterns from the FP-Tree

Step 1: Extract subtrees ending in each item

Mining Patterns from the FP-Tree

Step 2: Construct Conditional FP-Tree for each item

Prune nodes with count ≤ s

Mining Patterns from the FP-Tree

Step 3: Recursively mine conditional FP-Tree for each item

Mining Patterns from the FP-Tree

Suffix	Conditional Pattern Base
е	acd:1; ad:1; bc:1
d	abc:1; ab:1; ac:1; a:1; bc:1
С	ab:3; a:1; b:2
b	a:5
a	ϕ

Suffix	Frequent Itemsets	
е	$\{e\}, \{d,e\}, \{a,d,e\}, \{c,e\}, \{a,e\}$	
d	$\label{eq:dd} \begin{center} $\{d\},\ \{c,d\},\ \{b,c,d\},\ \{a,c,d\},\ \{b,d\},\ \{a,b,d\},\ \{a,d\} \end{center}$	
С	{c}, {b,c}, {a,b,c}, {a,c}	
b	{b}, {a,b}	
a	{a}	

Projecting Sub-trees

- "Cutting" and "pruning" trees requires that we create copies/mirrors of the subtrees
- Mining patterns requires additional memory

FP-Growth vs Apriori

Simulated data 10k baskets, 25 items on average

FP-Growth vs Apriori

File	Apriori	FP-Growth
Simple Market Basket test file	3.66 s	3.03 s
"Real" test file (1 Mb)	8.87 s	3.25 s
"Real" test file (20 Mb)	34 m	5.07 s
Whole "real" test file (86 Mb)	4+ hours (Never finished, crashed)	8.82 s

FP-Growth vs Apriori

Advantages of FP-Growth

- Only 2 passes over dataset
- Stores "compact" version of dataset
- No candidate generation
- Faster than A-priori

Disadvantages of FP-Growth

- The FP-Tree may not be "compact" enough to fit in memory
- Even more memory required to construct subtrees in mining phase