Université de Yaoundé 1

Faculté des Sciences

The University of Yaounde 1

Faculty of Science

Département d'Informatique

Department of Computer Science

INF 304 : Correction de l'examen (Semestre 2)

Pr. R. NDOUNDAM - Dr. E. KOUOKAM

Juin 2016

Exercice 1: QCM (3 pts)

Attention, dans ces questions il y a toujours une et une seule réponse valable. En particulier, lorsque plusieurs réponses sont possibles, prendre la plus restrictive. Par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, sélectionner nul qui est plus restrictif que positif et négatif, tous deux vrais. (0.5 * 5 pts)

- 1.1 Parmi les questions 1.2 à 1.6, la première ayant pour réponse b. est...
 - **a. 1.2 a.** 1.4 **c.** 1.5 **d.** Aucune **e.** je ne sais pas
- 1.2 Automate minimal et automate canonique
 - a. sont des synonymes b. sont équivalents
 - c. sont non déterministes d. n'ont rien en commun e. je ne sais pas
- 1.3 Le langage a^nb^m est **a.** fini **b.** rationnel **c.** non reconnaissable par automate fini **d.** vide **e.** je ne sais pas
- 1.4 L'automate de Thompson de l'expression rationnelle $(ab)^*c$ est
 - a. sans boucle
 b. sans transition spontanée
 c. contient 0, 8, 10 ou
 12 états
 d. est déterministe
 e. je ne sais pas
- **1.5** Soit L_r est un langage rationnel. Si $L \subseteq L_r$, alors...
 - a. L est rationnel b. L est hors-contexte. c. L est sensible au contexte.
 - d. L peut ne pas être rationnelle e. je ne sais pas
- 1.6 Le lemme de pompage exprime
 - a. une condition nécessaire de rationalité
 b. une condition suffisante de rationalité
 c. une condition nécessaire et suffisante de rationalité
 d. ça dépend
 e. je ne sais pas

Exercice 2: Langages, équations et déterminisme (12 pts)

On considère l'alphabet $\Sigma = \{a, b, c\}$

2.1. Soit A l'automate de Thompson pur associé à l'expression régulière a^*b+ac . Construire A. (2 pts)

Solution: La construction de Thompson pure conduit à l'automate à 12 états, représenté à la figure 1

FIGURE 1 – Automate A

2.2. Déterminisez l'automate A. Vous donnerez toutes les étapes du calcul ainsi que la représentation graphique dudit automate. (3 pts).

Solution: La table 1 donne l' ϵ -fermeture de chaque état de l'automate A ainsi que table de transitions de l'automate déterministe associé à A (dont l'état initial est $\epsilon - fermeture(0) = \{0, 1, 2, 4, 5, 7\}$). l'AFD obtenu est donné à la figure 2.

Etat	ϵ -fermeture	Etat	ϵ -fermeture	
0	0, 1, 2, 4, 5, 7	6	6, 11	
1	1, 2, 4, 5	7	7	
2	2	8	8, 9	
3	2, 3, 4, 5	9	9	
4	4, 5	10	10, 11	
5	5	11	11	

Détats	a	b	c
$A = \{0, 1, 2, 4, 5, 7\}$	В	\bigcirc	Ø
$B = \{2, 3, 4, 5, 8, 9\}$	D	С	Ε
$C = \{6, 11\}$	Ø	Ø	Ø
$D = \{2, 3, 4, 5\}$	D	С	Ø
$E = \{10, 11\}$	Ø	Ø	Ø

Table $1 - \epsilon$ -fermeture des états de A et table de transitions de l'AFD

2.3. Donnez l'automate B correspondant au langage $\overline{L(A)}$. Vous justifierez la méthode employée et expliquerez vos calculs. (3 pts).

Solution: Nous savons pour l'avoir vu en TD que les langages rationnels sont clos par complémentation. Par conséquent, connaissant l'automate reconnaissant le langage L(A), on peut aisément déduire l'automate reconnaissant $\overline{L(A)}$. Pour ce faire, il faut tout d'abord compléter l'automate

FIGURE 2 – Automate déterminisé correspondant à A

déterministe de la figure 2 puis inverser le statut des états de l'automate (tout état final devient non final et tout état non final devient final). On obtient donc l'automate B de la figure 3. Ici, l'état F est l'état correspondant au puits de l'automate déterministe.

FIGURE 3 – Automate B

2.4. Dériver le système d'équations résultant de l'automate B et produire une expression rationnelle qui lui corresponde. (1+1 pts).

Solution:

$$\begin{cases} X_A = aX_B + bX_C + cX_F + \epsilon \\ X_B = aX_D + bX_C + cX_E + \epsilon \\ X_C = (a+b+c)X_F \\ X_D = aX_D + bX_C + cX_F + \epsilon \\ X_E = (a+b+c)X_F \\ X_F = (a+b+c)X_F + \epsilon \end{cases}$$
(1)

On veut donc résoudre ce système en X_A .

De la dernière équation, on tire donc $X_F = (a+b+c)^*$ et on déduit que

$$X_E = X_C = (a + b + c)^+$$
.

Pareillement, l'équation donnant X_D donne après substitution des formules précédentes $X_D = a^*(b(a+b+c)^+ + c(a+b+c)^* + \epsilon)$

Ensuite on a $X_B = a(a^*(b(a+b+c)^+ + c(a+b+c)^* + \epsilon)) + b(a+b+c)^+ + c(a+b+c)^* + \epsilon$ Il ne nous reste plus qu'à mener une substitution dans la formule donnant X_A , ce qui aboutit à

$$X_A = a(X_B = a(a^*(b(a+b+c)^+ + c(a+b+c)^* + \epsilon)) + b(a+b+c)^+ + c(a+b+c)^* + \epsilon) + b(a+b+c)^+ + c(a+b+c)^* + \epsilon$$

2.5. Minimiser l'automate B et déduire l'automate canonique associé. (2 pts)

Solution: En appliquant l'algorithme vu en cours, pour rendre cet automate minimal, nous commençons par le partitionner en états finaux et non finaux. On obtient alors

$$\Pi_0 = \{ \{A, B, D, F\}, \{C, E\} \}$$

.

En considérant le symbole c, on réalise que la transition sur c partant de A, D et F reste dans la première partition tandis que celle sur c partant de l'état B conduit à E qui se trouve dans une partition séparée. B ne peut donc rester dans la première partition, on obtient un nouveau partitionnement

$$\Pi_1 = \{\{A, D, F\}, \{B\}, \{C, E\}\}\$$

.

De façon similaire, la transition sur le symbole b dans la partition $\{A, D, F\}$ mène vers deux partions séparés, ce qui permet d'avoir un autre partitionnement

$$\Pi_2 = \{\{A, D\}, \{F\}, \{B\}, \{C, E\}\}\$$

.

Aussi, la transition sur le symbole a, partant de la partition $\{A,D\}$ conduit à des partitions différentes. Il faut donc la partitionner à nouveau et on obtient

$$\Pi_3 = \{\{A\}, \{D\}, \{F\}, \{B\}, \{C, E\}\}\$$

.

Ce partitionnement reste stable par la suite. L'automate est à présent minimal. Cet automate étant déjà complet, il correspond donc à l'automate canonique. Au final, l'automate (minimal et canonique) recherché est bien celui de la figure 4

FIGURE 4 – Automate canonique (et minimal)

Exercice 3: Pompage et autres... (7 pts)

3.1 Démontrer que les langages suivants ne sont pas réguliers

3.1.1 $L_{311} = \{0^n 1^n | n \text{ est un entier naturel } \geq 0\}$. (2 pts)

Solution: Vu en TD et en cours.

3.1.2 $L_{312} = \{w | w \text{ a autant de 0 que de 1}\}.$ (2 pts)

Solution: Suivant la stratégie énoncée ci-dessus, nous prenons n quelconque et construisons la chaîne $w=0^n1^n\in L_{311}$ Prenons une décomposition w=xyz quelconque telle que $y\neq \epsilon$ et $|xy|\leq n$. Étant donné que $w=xyz=0^n1^n$, $|xy|\leq n$ et que $y\neq \epsilon$, nous savons que $xy=0^i$ avec $|0|_y\geq 1$

Prenons k=0 et formons $xy^0z=xz$, nous montrons que xz n'est pas dans L.

Étant donné que $|1|_{xy}=|1|_{0^i}=0$, on a donc $|1|_{xz}=|1|_{xyz}=|0|_{xyz}=m$. Par ailleurs, nous savons que $|0|_{xz}=|0|_{xyz}-|0|_y=m-|0|_y$ et nous savons que $|0|_y\geq 1$, ce qui signifie que $|0|_{xz}=m-|0|_y< m=|1|_{xz}$ D'où l'on tire que xz n'est pas dans L_{312} , L_{312} n'est donc pas régulier. \square

3.2 On considère $\Sigma = \{a, b\}$. Construire un AFD correspondant au langage $L_{32} = \{w|w \text{ est de longueur paire et contient un nombre impair de a}\}$, i-e $L_{32} = \{w||w| \equiv 0(2) \text{ et } |w|_a \equiv 1(2)\}$ en présentant clairement les différentes étapes de la construction (3 pts)

Solution: Pour construire cet automate, on commence par construire un AFD A_1 reconnaissant les mots de longueur paire sur $\Sigma = \{a, b\}$ puis un autre, A_2 , reconnaissant les mots ayant un nombre impair de a. On obtient ainsi les automates des figures 5 et 7.

FIGURE 5 – Automate A_1

FIGURE 6 – Automate A_2

Il ne nous reste plus qu'à construire l'automate intersection de A_1 et A_2 . Il aura au plus $2^2 = 4tats$ à savoir $\{0,0\}$, $\{0,1\}$, $\{1,0\}$ et $\{1,1\}$. Seul l'état $\{0,1\}$ sera final.

Au final on obtient l'automate suivant :

Figure 7 – Automate $A = A_1 \cap A_2$

Bon courage!!!