KOVÁCS HUNOR ÁDÁM SZAKDOLGOZAT

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

GÉPÉSZMÉRNÖKI KAR

MECHATRONIKA, OPTIKA ÉS GÉPÉSZETI INFORMATIKA TANSZÉK

SZAKDOLGOZATOK

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

GÉPÉSZMÉRNÖKI KAR

MECHATRONIKA, OPTIKA ÉS GÉPÉSZETI INFORMATIKA TANSZÉK

Kovács Hunor Ádám SZAKDOLGOZAT

Szálastakarmány felszedő adapter szenzortechnikai fejlesztése

Konzulens: Témavezető:

Vincze Bálint Haba Tamás Ügyvezető igazgató, HEVESGÉP Kft. PhD hallgató

Budapest, 2024.

Szerzői jog © Kovács Hunor Ádám, 2024.

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar

Mechatronika, Optika és Gépészeti Informatika Tanszék https://mogi.bme.hu

SZAKDOLGOZAT-FELADAT

NYILVÁNOS

TÁS	Név: Kovács Hu	ınor Ádám	Azonosító: 71604575360					
	Képzéskód:	2N-AM0	Specializác	rió kódja:	Feladatkiírás azonosítója:			
osín	Szak: Mechati	onikai mérnöki alapszak (BSc)	2N-AM0	-BI-2017	GEMI:2025-1:2N-AM0:P953MO			
ON O	Szakdolgozatot	kiadó tanszék:	Záróvizsgát szervező tanszék:					
ZO	Mechatronika,	Optika és Gépészeti Informatika Tanszék	Mechatron	echatronika, Optika és Gépészeti Informatika Tanszék				
A	Témavezető:	Haba Tamás (78224838890), doktorandu						

	Cím	Szálastakarmány felszedő adapter szenzortechnikai fejlesztése Sensor technology development for a forage harvester's collection header
FELADAT	Részletes feladatok	Tárja fel a mezőgazdasági gépeken használatos szenzortechnikai, adatfeldolgozási és visszajelzési megoldásokat! Válasszon a szálastakarmány felszedő adapteren alkalmazható fordulatszám meghatározására alkalmazható szenzort! Tervezzen az adapterhez és a szenzorhoz megfelelő adatfeldolgozó és visszajelző rendszert! Vizsgálja meg a tervezett mérőrendszer alkalmazási lehetőségeit üzembiztonsági és diagnosztikai feladatok esetén! Foglalja össze a kapott eredményeket magyar és angol nyelven.
	Hely	A szakdolgozat készítés helye: HEVESGÉP KFT. 3360 Heves, Munkácsy út 4. Konzulens: Vincze Bálint, Ügyvezető igazgató

3A	1. záróvizsga tantárgy(csoport)	2. záróvizsga tantárgy(csoport)	3. záróvizsga tantárgy(csoport)
ZÁRÓVIZSC	ZVEGEMIBMIE Irányításelmélet	ZVEGEMIBMBM Biomechatronika	ZVEGEGTBMRO Robotok orvosi alkalmazásai

	Feladat kiadása: 2024. szeptember 2.	Bea	eadási határidő: 2024. december 6.						
	Összeállította:	Ellenőrizte:			Jóváhagyta:				
	Haba Tamás (78224838890)	Dr. Kiss Rita Mária s.k.			Dr. Györke Gábor s.k.				
ÉS	témavezető			tanszékvezető dékánhelyettes					
HITELESÍTÉS	Alulírott, a feladatkiírás átvételével egyúttal kijelenten dolgozat-készítés c. tantárgy előkövetelményeit mara		_	1962 C K (ES)					
	jesítettem. Tudomásul veszem, hogy jogosulatlan t		L <u>.</u>						
	esetén a jelen feladatkiírás hatálytalan.	 F-L							
五		5							
			377						
	Kovács Hunor Ádám] \						

NYILATKOZATOK

Nyilatkozat az önálló munkáról

Alulírott, *Kovács Hunor Ádám* (P953MO), a Budapesti Műszaki és Gazdaságtudományi Egyetem hallgatója, büntetőjogi és fegyelmi felelősségem tudatában kijelentem és sajátkezű aláírásommal igazolom, hogy ezt a szakdolgozatot meg nem engedett segítség nélkül, saját magam készítettem, és dolgozatomban csak a megadott forrásokat használtam fel. Minden olyan részt, melyet szó szerint vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a hatályos előírásoknak megfelelően, a forrás megadásával megjelöltem.

Budapest, 2024. november 19.	
	hallgató

Tartalomjegyzék

El	őszó														хi
Jel	lölése	ek jegyz	zéke												xiii
1.	Beve	ezetés													1
	1.1.	Felada	ıt bemuta	tása					 				 		1
	1.2.	Célkit	űzések .						 				 		2
	1.3.	Átteki	ntés				 •	 •	 	•		 •	 	•	3
2.	Szal	kirodal	mi átteki:	ntés											5
	2.1.	Szenze	orok fajtá	i					 				 		5
		2.1.1.	Mérend	ő mennyis	égek .				 				 		5
		2.1.2.	Elmozd	ulás érzék	elése .				 				 		5
			2.1.2.1.	Potencio	méter				 				 	•	6
			2.1.2.2.	Kapacití	v szenz	orok			 				 	•	7
	2.2.	Jelek f	eldolgozá	ísának me	nete .				 				 	•	8
	2.3.	Vissza	jelzés leh	etőségei .					 				 	•	8
	2.4.	Szabál	lyozás esz	zközei				 •	 			 •	 	•	8
3.	Mér	őrends	zer fejles	ztése											9
	3.1.	Szenze	orok						 				 		10
		3.1.1.	Mérend	ő mennyis	égek .				 				 		10
		3.1.2.	Elhelyez	zés					 				 		10
		3.1.3.	Szennye	ződések .					 				 		10
		3.1.4.	Szervize	elhetőség					 						10

		3.1.5.	Kábelezés	10
	3.2.	Jelek .		10
		3.2.1.	Szenzorokból származó jelek	10
		3.2.2.	Jelekből adat	10
	3.3.	Szabál	lyozás	10
		3.3.1.	Szabályozás eszközei	10
		3.3.2.	Adatok összehasonlítása	10
		3.3.3.	Hibatűrő rendszer kialakítása	11
		3.3.4.	Szennyeződés kizárása	11
	3.4.	Vissza	ijelzés	11
		3.4.1.	Visszajelzés eszközei	11
		3.4.2.	Human-Machine interface	11
		3.4.3.	Kommunikáció	11
4.	Öss	zefogla	lás	13
	4.1.	Alkalr	mazási lehetőségek	13
		4.1.1.	Feladat kivitelezésének lehetőségei	13
		4.1.2.	Üzembiztonsági megoldások	13
		4.1.3.	Diagnosztikai feladatok kivitelezése	13
	4.2.	Eredm	nények	13
	4.3.	Javasla	atok/Következtetések/Tanulságok	13
Ire	odalo	mjegyz	zék	14
St	ımma	ıry		17
Fü	iggelé	ék		19
M	ellék	letek		21
	M.1.			21
	МЭ			22

Előszó

~ ~ ~

Köszönetnyilvánítás

A köszönetnyilvánítás ide írható. Ez a sablon a Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék szakdolgozat és diplomaterv sablonja alapján készült. Köszönöm készítőinek és karbantartóinak a munkájukat.

Budapest, 2024. november 19.

Kovács Hunor Ádám

Jelölések jegyzéke

A ++ a még bővítésre szoruló paragrafusokat jelzi.

1. fejezet

Bevezetés

A mezőgazdasági fejlesztésre ma nagyobb szükség van mint valaha, hiszen a növekedő népesség ellátásához, – a mezőgazdasági területek növekedése nélkül - intenzívebb és produktívabb termelés szükséges. Az előrejelzések szerint több évtizedig a föld népessége növekedni fog [3], ezen felül a termőföld véges, a mezőgazdasági területek növelése és a korlátlan erdőirtás sem fenntartható [2]. Így a már mezőgazdasági termelésre alkalmazott területek termelékenységének növelése elengedhetetlen. Ehhez a sok tényezős folyamathoz a gépgyártók és mérnökök a technológiai fejlesztés és integráció megvalósításával tudnak hozzájárulni. Ehhez jelen szakdolgozat célja a mezőgazdasági gépek biztonságát és akadálymentes működését fejleszteni, egy szabályozási rendszer fedélzeti integrálásával. Ezt a működési állapot visszajelzésével, a veszélyes folyamatok megelőzésével igyekszik megvalósítani. A dolgozat ezen rendszer kidolgozását, megtervezését, egyes eszközeinek kiválasztását és megfontolását tárgyalja.

1.1. Feladat bemutatása

A szakdolgozatom a szálastakarmány felszedő adapter szenzortechnikai fejlesztése címet kapta. A szálastakarmány felszedő adapter a mezőgazdaságban alkalmazott szerkezet, amely a silózoknak hajtja végre a szálastakarmány összegyűjtését. A silózók olyan mezőgazdasági gépek, amelyek a szálastakarmány (pl.: lucerna, széna) begyűjtését, összevágását és rövidre darabolását ("szecskázását") végzik, mely állat tápként lesz felhasználva. Az adapter a silózóhoz van csatlakoztatva, ezáltal a működtetést a silózó végzi. Innen érkezik az irányító jel, az elektromos feszültség, a hidraulikus energia és a forgatónyomaték. Az felszedőn több tengely is található, a legfontosabb a felszedő, melyen fogakkal történik a szálastakarmány gyűjtése, felette egy csiga helyezkedik el, mely az adapter szélességében tereli a takarmányt a középtengely felé, ahol is a begyüjtés történik. A csigánál található tengelyen helyezkedik el egy nyomatékhatároló. A

nyomatékhatároló feladata, hogy a túlzott terheléstől megvédje a felszedő adaptert, így ha túl nagy nyomaték érkezik a silózó felől, a nyomatékhatároló szétkapcsol és a felszedő roncsolódása elkerülhető. A nyomatékhatároló szétkapcsolások a benne található tárcsák tapadási súrlódása megszűnik, így elkezdenek csúszni egymáson, amely a tárcsák felületének súrládásához, hosszabb idő alatt roncsolódásához vezet. A nyomatékhatárolók védelme érdekében van szükség egy visszajelző rendszerre, amely a nagy terhelés esetén jelzi az irányítóknak, hogy a nyomatékhatároló megcsúszott. Az én feladatom ezt a rendszert megtervezni, amely a tengelyek fordulatszámának figyelésével érzékelni tudja ha azok eltérnek a beérkező fordulatszámtól, majd a különbség fennmaradásával egy visszajelzést adjon a silózóban tartózkodó irányítónak. A visszajelzés történhet fény, hang vagy mindkettő formájában, a jelzőegységek lehetnek az adapter látható felületein, vagy akár az irányító fülkében is. Abban az esetben ha a fülkében egy kijelző elhelyezése és azzal való kommunikáció megoldható, a fordulatszámok aktuális értékei is megjelenítésre kerülhetnek.

1.2. Célkitűzések

A dolgozat célja, hogy bemutassa egy mezőgazdasági környezetben való rendszer kialakításának megfontolásait, valamint a tervezési folyamat megvalósítását. Ezen felül az elvárásoknak megfelelő rendszerre való javaslatot tegyen, amely egy termékként alkalmazhatóvá váljék a gyakorlatban is. A feladat során több olyan irányadó cél, elv mentén történt a tervezés, amely vagy felhasználói, környezeti igényeket elégít ki, vagy a fenntarthatóság, az életciklus növelését segíti.

- I. Környezettel, szennyeződésekkel való ellenálló képesség. A felszedő adapteren a két fő szennyező a por és az olaj, így olyan rendszert kell kialakítani, amely vagy szigetelve van kellő mértékben, vagy a szennyeződések nem károsítják a működését. Ez megköveteli az eszközök burkolatban, házban történő tárolását, a csatlakozók kellő szigetelését, illetve por- és olajmentes, vízálló eszközök használatát.
- II. Modularitás, cserélhetőség. A jelen kori gazdák egyik panasza a mezőgazdasági gépgyártók felé, a szerelhetőség jogának ("Right to repair") figyelmen kívül hagyása. Ez a gépek szétszedhetőségét, a felhasználó általi javítási lehetőségének csökkenését jelenti, ezáltal a gyártó szakszervizeiben való költséges, idő- és szállításigényes javításra kötelezi a gazdákat. A cél egy olyan rendszer kialakítása, amelynek minden alkatrésze cserélhető és hozzáférhető, így bármelyik elem meghibásodása során csak az szorul cserére. Ez a szenzorok csatlakozós, nem kábellel egybeépített változatában, a moduláris, egyszerűen szétköthető szabályozó eszközben, valamint, a vízálló csatlakozók szétszedhetőségében nyilvánul meg.

- III. Támogató tervezés csökkentése. A projekt tekintetében egyszerűségre, a mechanikai tervezés csökkentésére törekvés jellemző, a mechatronikai, rendszer tervezésének előnyben részesítése, valamint a felszedő adapter bonyolításának elkerülése végett. Ez az eszközök a meglévő geometriába való integrálásában, az adapter alkatrészeinek direkt mérésében, és a külön szigetelési és burkolási feladatok csökkentésében látható.
- IV. Biztonság. A biztonságosság mind a rendszer kitartó működésére, mind a környezetének, üzemeltetőinek megóvására vonatkozik. A projekt során az elektromos berendezések szigetelésére és elzárására, valamint az eszközök külső hatásoktól védésére is hangsúly lett fektetve.

1.3. Áttekintés

A rendszernek 4 alapvető része van: érzékelés (szenzorok), szabályozás, visszajelzés és kommunikáció. Az érzékelés esetében bemutatásra kerül a különböző fordulatszám mérő mechanizmusok közötti különbség, az egyes mechanizmusok előnyei és hátrányai, valamint ezek alapján a célnak megfelelőek is kiderülnek. A szenzorok megvalósítása is tárgyalva lesz, a különböző rendszerekben alkalmazott szenzor kivitelezések, szabványok és megoldások. Ezen felül a szenzorok elhelyezkedése, kábelezése, a felszedő adapterre való alkalmazásuk is ábrázolva lesz. A szabályozás során az ipari eszközök lesznek bemutatva, amelyek a szenzorok adatfeldolgozására képesek, valamint programkódokat, irányítási feladatokat kivitelezni tudnak. Lesz szó a különböző megoldások alkalmazásainak lehetőségéről, egymáshoz képesti összehasonlításuk is megtörténik, az egyes szabályozó eszközökkel járó rendszerbeli változtatás, valamint a rendszer igényei szerinti szabályozó eszköz változása is feltérképezésre kerül. Végül a szabályozás eszközeinek elhelyezése, biztonságtechnikai megfontolásai és időállóságának kialakítása is fényre derül. A visszajelzés a rendszer mindennapokban érzékelhető része, ugyanis ez az emberrel való kommunikációjának a platformja. A jelzésnek több módszere áll rendelkezésre, melyek között a rendszer adottságai valamint a felhasználó igényei választanak. Az egyszerű fényjelzések, hangjelzésektől egészen a kijelzőkön megjelenő részletes információkig bemutatásra kerül, melyiknek milyen igényei vannak, illetve melyik praktikus jelen felhasználásunkban. A kommunikáció fogja össze a projektet, biztosítja az egyes részek közötti információáramlást. A kommunikációs protokollok, metódusok meghatározzák a rendszer többi részének minden elemét, a szenzorok feldolgozásának sebességétől, a szabályozó elem kiválasztásán át, a visszajelzés platformjáig. A rendszerünk egészének tervezése során bemutatásra kerül a kommunikáció módszereinek hangsúlya, lehetőségei, valamint a környezeti hatásokkal szemben való védelem kritikus szerepe is.

2. fejezet

Szakirodalmi áttekintés

2.1. Szenzorok fajtái

A szenzorválasztás az alapja a folyamatnak. Meghatározza milyen technológiákkal, módszerekkel hajtjuk végre a méréseket, és ezáltal milyen kapacitású, programozású rendszert kell válasszunk. A szenzorokat érintő kutatómunka ezt a választási folyamatot segíti elő, hiszen az összes népszerű lehetőség tudatában lehet egy informált döntést hozni. ++

2.1.1. Mérendő mennyiségek

A feladatom során, a nyomatékhatároló csúszásának meghatározásához az azt megelőző és azutáni tengelyek fordulatszámának összehasonlítására van szükség. A harmadik fordulatszámmérés a felszedő tengelyen történik meg, kifejezetten az operátor informálása céljából. Egy tengely fordulatszámának mérésére több megközelítés is létezik. Lehetséges a tengely elfordulásának közvetlen mérése, akár fordulatonként egyszer történő jeladás regisztrálása, vagy a tengely kerületén érzékelhető folyamatos változás. A fordulatszám más mért mennyiségekből is származtatható, például integrálás útján gyorsulásmérésből, vagy deriválással szögelfordulásból, azonban ezeknek a pontossága nem minden esetben megfelelő, valamint a számítási igénye is magasabb az ilyen módon származtatott jeleknek [5].

2.1.2. Elmozdulás érzékelése

Az elmozdulás mérése általában egy adott távolság, szögelfordulás tartományán belül alkalmazható, így folyamatos elfordulást mérni csak limitált fordulatszám mellett alkal-

masak. A fordulatok mérésénél ezért általában a kerület mentén történő távolságbeli különbség mérése valósul meg. Erre a kerület menti geometriát (pl. fogaskerekek), egy segédlemezzel kialakított változást, vagy akár egy felhelyezett jeladó (pl. mágnes) érzékelés is mérhető.

2.1.2.1. Potenciométer

Az alapvető potenciométer egy lineáris vagy elfordulásmérésre alkalmas szenzor. Az elfordulást lehetséges 0-360° között mérni egy kör kerületén, vagy akár annak egy részletén is, azonban ha 360° fölötti mérésre van szükség egy spirális szalagot szokás alkalmazni, amelyek akár 60 fordulatot is képesek mérni [4]. A potenciométer működési mechanizmusa a vezetékek ellenállásán alapszik. Egy vezeték ellenállása lineárisan növekszik a hosszával, így a hosszának változása a rajta eső feszültségen keresztül mérhető. A hosszváltozás eléréséhez egy csúszka teremt kapcsolatot a vezetékkel, amelyen a vezeték végéhez képesti potenciált mérjük. A potenciál a 2.1 összefüggésből kapható meg, ahol *E* a tápfeszültség, *d* az elmozdulás, *D* pedig a teljes elmozdulás [1].

$$V = E \frac{d}{D} \tag{2.1}$$

A potenciométeres szenzoroknak többféle megvalósítása is létezik. A legalapvetőbb lineáris vezeték elvén egy tekercset is lehetséges vezetékként használni, így valamivel pontosabb, nagyobb felbontású érzékelést eredményez. Léteznek potenciálmérés alapú nyomásmérő, valamint piezoelektromosságon alapuló deformáció mérésre alkalmas cellák [1]. Az elektromos potenciál alapú szenzorok széles felhasználásuk mellett rendelkeznek számos hátránnyal is:

- Mechanikai terhelés által súrlódás
- Fizikai érintkezés szüksége
- Korlátozott sebesség
- Veszteségek miatti hő termelődés
- Szennyeződések és kopásoknak való kitettség

A fizikai kontaktus elkerülésére alkalmaznak mágneses elven működő potenciométereket. Ezeknél a szenzoroknál a csúszka egy ferromágneses bevonattal van ellátva, a vezeték alatt pedig egy mágneses réteg helyezkedik el, amelyet a csúszka vonzása összeérint a vezetékkel, így zárva az áramkört és feszültséget adva az eszközre.

2.1. ábra. Monopoláris, egylemezes kondenzátor vezető felületek távolság mérésére alkalmazva. (a) metszetként; (b) kívülről

2.1.2.2. Kapacitív szenzorok

A kapacitív érzékelők elmozdulás és pozíció meghatározására is alkalmasak, a későbbiekben ismertetésre kerülő mágneses alapú szenzorokkal ellentétben bármilyen anyag jelenlétét képesek érzékelni. A kondenzátorok kapacitása fordítottan arányos a fegyverzetek közötti távolsággal, ami meglapozza a kapacitív szenzorok működését. A kapacitás változását a távolság változása vagy a fegyverzetek között található közeg változása okozhatja, amely a gyakorlatban elmozdulásmérésre alkalmas, a kapacitás változásának elektromos jellé alakításával. A kapacitív szenzoroknak több kialakítása is alkalmazható elmozdulásmérésre, valamint egy szenzorok részeként, ahol az elmozdulást egy erő, nyomás vagy hőmérséklet változásainak dekódolására alkalmazhatják. A monopoláris kapacitív érzékelő tkondenzátor alkalmazására értendő, ahol két fegyverzet mozgása regisztrálódik. Az egyik fegyverzeten mérhető az elektromos jel, a másik fegyverzet azonban lehet például egy vezető felület is, mint ahogy a ?? ábrán látható szenzor kialakítása is mutatja [1]. Ezek a szenzorok akár 40 kHz-es mérési frekvenciát is képesek produkálni, valamint nem vezető felületeken is működőképes, habár alacsonyabb pontossággal. Egy másik kialakítás a differenciál kapacitív érzékelő, amely során három fegyverzet két egyforma térrészt választ el. A középen elhelyezkedő lemez legkisebb mozgása során is megjelenik az így kialakult két kondenzátor kapacitásán, és egy változó jellel táplálva a pontos elmozdulás meghatározására is képes. Egy kapacitív hidat látunk a ?? ábrán. A szenzor két párhuzamosan elrendezett elektróda készletből állnak, konstans d távolsággal közöttük, melyek közül a négy lemezből álló készlet statikus, míg a két fegyverzet elmozdulhat. A négy lemez keresztbe van kötve, így kialakítva a híd architektúrát, melynek előnye, hogy a mérés linearitását megtartja, valamint a zajok megjelenését is minimalizálja. A párhuzamos lemezek kapacitása arányos a vele szemben lévő fegyverzetek területével, így a két kondenzátor egymáshoz képesti kisebb elmozdulását vagy elfordulását is képes detektálni.

2.2. ábra. Párhuzamos lemezű kapacitív híd szenzorbeli elhelyezése (a) és áramköri rajz (b)

2.2. Visszajelzés lehetőségei

2.3. Szabályozás eszközei

3. fejezet

Mérőrendszer fejlesztése

3.1. Szenzorok

- 3.1.1. Mérendő mennyiségek
- 3.1.2. Elhelyezés
- 3.1.3. Szennyeződések
- 3.1.4. Szervizelhetőség
- 3.1.5. Kábelezés

3.2. Jelek

- 3.2.1. Szenzorokból származó jelek
- 3.2.2. Jelekből adat

3.3. Szabályozás

- 3.3.1. Szabályozás eszközei
- 3.3.2. Adatok összehasonlítása

A 3.1 táblázat tartalmazza a programozható relék közül a megfelelő feszültséggel operálókat.

	Schneider Electric Zelio Logic	IDEC SmartRelay	Siemens LOGO!	Eaton Easy			
Modellszám	SR2B121JD	FL1F-B12RCE	6ED1052-2MD08-0BA2	EASY-E4-UC-12RCX1			
Feszültség	12V	12/24V	12/24V	12/24V			
Bemenetek	4 DI + 4 AI	4 DI + 2 AI	4 DI + 4 DI/AI	4 DI + 4 DI/AI			
Kimenetek	4 DO	8 DO	4 DO	4 DO			
Számítási frekvencia	1 kHz	5 kHZ	5 kHz	5 kHz			
Kommunikáció	N/A	N/A	Modbus TCP	MODBUS TCP/IP			
Program felület	ZelioSoft 2	WingLGC	LOGO! Soft Comfort	EASYSOFT-SWLIC/easySoft7			
r rogram terulet	(LD, FBD)	(LD, FBD)	(LD, FBD)	(EDP, LD, FBD, ST)			
Internet csatlakozó	Nincs	Ethernet RJ45	Ethernet RJ45	Ethernet RJ45			
SD memory	Nincs	MicroSD	MicroSD	Nincs			
Méret	90x68x10	90x71.5x58	90x71.5x58	90x72x58			
Költség	75 000	69 000	58 000	72 000			

3.1. táblázat. Programozható relék összehasonlítása

3.3.3. Hibatűrő rendszer kialakítása

3.3.4. Szennyeződés kizárása

3.4. Visszajelzés

- 3.4.1. Visszajelzés eszközei
- 3.4.2. Human-Machine interface
- 3.4.3. Kommunikáció

4. fejezet

Összefoglalás

4.1. Alkalmazási lehetőségek

- 4.1.1. Feladat kivitelezésének lehetőségei
- 4.1.2. Üzembiztonsági megoldások
- 4.1.3. Diagnosztikai feladatok kivitelezése

Budapest, 2024. november 19.

Kovács Hunor Ádám

Irodalomjegyzék

- [1] Jacob Fraden: *Presence, Displacement, and Level.* 2016, Springer International Publishing, 335–377. p. ISBN 9783319193038.
- [2] Deborah Lawrence Karen Vandecar: Effects of tropical deforestation on climate and agriculture. *Nature Climate Change*, 5. évf. (2014. december) 1. sz., 27–36. p. ISSN 1758-6798.
- [3] Wolfgang Lutz Samir KC: Dimensions of global population projections: what do we know about future population trends and structures? *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365. évf. (2010. szeptember) 1554. sz., 2779–2791. p. ISSN 1471-2970.
- [4] Alan S. Morris-Reza Langari: *Rotational Motion Transducers*. 2016, Elsevier, 599–632. p. ISBN 9780128008843.
- [5] Alan S. Morris Reza Langari: *Translational Motion, Vibration, and Shock Measurement*. 2016, Elsevier, 565–598. p. ISBN 9780128008843.

Summary

Keywords mechatronika, szabályozástechnika, szálastakarmány, szenzor, mezőgazdaság

Függelék

Mellékletek

M.1.

M.2.