Drake Pitts · CMPS 101 · hw3

Each problem is restated and followed by my solution to the problem, indicated by the " \hookrightarrow " symbol. For multi-part problems, my solutions are placed directly following the statement of the relevant part and preceding the statement of the next part.

1. Prove that for all
$$n \ge 1$$
: $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$. Do this twice:

- a. Using form IIa of the induction step.
 - \hookrightarrow **Proof.** For all $n \in \mathbb{Z}^+$, let P(n) be the above proposition.

I. BASE Notice that
$$\sum_{i=1}^{1} i^3 = 1^3 = 1 = 1^2 = \frac{1^2 \cdot 2^2}{2^2} = \left(\frac{1 \cdot 2}{2}\right)^2$$
, so $P(1)$ is true.

IIa. INDUCTION Let $n \geq 1$ be arbitrarily chosen. Assume for this particular n that $\sum_{i=1}^{n} i^3 = 1$

 $\left(\frac{n(n+1)}{2}\right)^2$. We must show that $\sum_{i=1}^{n+1} i^3 = \left(\frac{(n+1)(n+2)}{2}\right)^2$. In the following algebraic manipulations, we start with the left-hand side and derive the right-hand side.

$$\sum_{i=1}^{n+1} i^3 = (n+1)^3 + \sum_{i=1}^n i^3$$
 from the definition of summation
$$= (n+1)^3 + \left(\frac{n(n+1)}{2}\right)^2$$
 by the induction hypothesis
$$= \frac{4(n+1)^3}{4} + \frac{n^2(n+1)^2}{4}$$

$$= \frac{(n+1)^2[4(n+1) + n^2]}{4} = \frac{n^2(n^2 + 4n + 4)}{4}$$

$$= \frac{(n+1)^2(n+2)^2}{4} = \left(\frac{(n+1)(n+2)}{2}\right)^2$$

So we have shown that $P(n) \to P(n+1)$.

By the First Principle of Mathematical Induction, it follows that $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$ holds for all positive integers n.

- b. Using form IIb of the induction step.
 - \hookrightarrow **Proof.** For all $n \in \mathbb{Z}^+$, let P(n) be the above proposition.

I. BASE Notice that
$$\sum_{i=1}^{1} i^3 = 1^3 = 1 = 1^2 = \frac{1^2 \cdot 2^2}{2^2} = \left(\frac{1 \cdot 2}{2}\right)^2$$
, so $P(1)$ is true.

IIb. INDUCTION Let n > 1 be arbitrarily chosen. Assume for this particular n that $\sum_{i=1}^{n-1} i^3 = 1$

 $\left(\frac{(n-1)n}{2}\right)^2$. We must show that $\sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2$. In the following algebraic manipulations, we start with the left-hand side and derive the right-hand side.

$$\sum_{i=1}^{n} i^3 = n^3 + \sum_{i=1}^{n-1} i^3$$
 from the definition of summation
$$= n^3 + \left(\frac{(n-1)n}{2}\right)^2$$
 by the induction hypothesis
$$= \frac{4n^3}{4} + \frac{(n-1)^2n^2}{4}$$

$$= \frac{n^2[4n + (n-1)^2]}{4} = \frac{n^2(n^2 + 2n + 1)}{4}$$

$$= \frac{n^2(n+1)^2}{4} = \left(\frac{n(n+1)}{2}\right)^2$$

So we have shown that $P(n-1) \to P(n)$.

By the First Principle of Mathematical Induction, it follows that $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$ holds for all positive integers n.

2. Define S(n) for $n \in \mathbb{Z}^+$ by the recurrence:

$$S(n) = \begin{cases} 0 & \text{if } n = 1\\ S(\lceil n/2 \rceil) + 1 & \text{if } n \ge 2 \end{cases}$$

Prove that $S(n) \ge \lg(n)$ for all $n \ge 1$, and hence $S(n) = \Omega(\lg n)$.

- \hookrightarrow **Proof.** For all $n \in \mathbb{Z}^+$, let P(n) be the proposition " $S(n) \ge \lg(n)$ ".
- I. BASE We must show that $S(1) \ge \lg(1)$. This inequality simply asserts that $0 \ge 0$, which is true because 0 = 0. Hence P(1) is true.
- IId. INDUCTION Let n > 1 be arbitrarily chosen and assume for all k in the range $1 \le k < n$ that $S(k) \ge \lg(k)$. We must show that $S(n) \ge \lg(n)$. So

$$S(n) = S(\lceil n/2 \rceil) + 1$$
 by the definition of $S(n)$
 $\geq \lg(\lceil n/2 \rceil) + 1$ by the IH with $k = \lceil n/2 \rceil$
 $\geq \lg(n/2) + 1$ since $\lg x$ is increasing
 $= \lg(n) - \lg(2) + 1$
 $= \lg(n)$

Hence $S(n) \ge \lg(n)$, so $[P(1) \land \cdots \land P(n-1)] \to P(n)$.

By the Second Principle of Mathematical Induction, we have $S(n) \leq \lg(n)$ for all $n \geq 1$. Because $S(n) \geq 0$, we conclude that $S(n) = \Omega(\log n)$.

3. Let T(n) be defined by the recurrence formula:

$$T(n) = \begin{cases} 0 & n = 1\\ T(\lfloor n/2 \rfloor) + n^2 & n \ge 2 \end{cases}$$

Show that $\forall n \geq 1 : T(n) \leq \frac{4}{3}n^2$, and hence $T(n) = O(n^2)$.

 \hookrightarrow **Proof.** For all $n \in \mathbb{Z}^+$, let P(n) be the proposition " $T(n) \leq \frac{4}{3}n^2$ ".

I. BASE Since $T(1) = 0 \le \frac{4}{3} = \frac{4}{3}(1)^2$, we know that P(1) is true.

IId. INDUCTION Let n > 1 be chosen arbitrarily and assume for all k in the range $1 \le k < n$ that $T(k) \le \frac{4}{3}k^2$. We must show that $T(n) \le \frac{4}{3}n^2$. We have that

$$T(n) = T(\lfloor n/2 \rfloor) + n^2$$
 from the definition of $T(n)$

$$\leq \frac{4}{3}(\lfloor n/2 \rfloor)^2 + n^2$$
 by the IH with $\lceil n/2 \rceil$

$$\leq \frac{4}{3}(n/2)^2 + n^2$$
 since x^2 is increasing

$$= \frac{1}{3}n^2 + n^2 = \frac{4}{3}n^2$$

We have now shown that $T(n) \leq \frac{4}{3}n^2$, which means that $[P(1) \wedge \cdots \wedge P(n-1)] \to P(n)$.

From the Second PMI, we have shown that $T(n) \leq \frac{4}{3}n^2$ for all integers $n \geq 1$. It follows that $T(n) = O(n^2)$.

4. Let T(n) be defined by the recurrence formula:

$$T(n) = \begin{cases} 2 & n = 1, 2\\ 9T(\lfloor n/3 \rfloor) + 1 & n \ge 3 \end{cases}$$

Show that $\forall n \geq 1 : T(n) \leq 3n^2 - 1$, and hence $T(n) = O(n^2)$.

 \hookrightarrow **Proof.** For all $n \in \mathbb{Z}^+$, let P(n) be the proposition " $T(n) \leq 3n^2 - 1$ ".

I. BASE Notice that

$$T(1) = 2 \le 2 = 3 - 1 = 3(1)^{1} - 1$$
 and
$$T(2) = 2 \le 11 = 12 - 1 = 3(4) - 1 = 3(2)^{2} - 1$$

Hence P(1) and P(2) both hold.

IId. INDUCTION Let n > 2 be arbitrarily chosen. Assume for all k in the range $1 \le k < n$ that $T(k) \le 3n^2 - 1$. In particular, we have assumed that $T(\lfloor n/3 \rfloor) \le 3\lfloor n/3 \rfloor^2 - 1$. We must show that $T(n) \le 3n^2 - 1$.

$$T(n) = 9T(\lfloor n/3 \rfloor) + 1$$
 by the definition of T(n)

$$\leq 9 (3\lfloor n/3 \rfloor^2 - 1) + 1$$
 by the IH with $k = \lfloor n/3 \rfloor$

$$= 27\lfloor n/3 \rfloor^2 - 8$$
 since $27x^2 - 8$ is increasing

$$= 3n^2 - 8$$

$$\leq 3n^2 - 1$$
 since $-8 \leq -1$

So we have shown that $[P(1) \wedge \cdots \wedge P(n-1)] \rightarrow P(n)$.

By the Second PMI, we conclude that $T(n) \leq 3n^2 - 1$ for all positive integers n, which implies that $T(n) = O(n^2)$.

5. Let g(n) be an asymptotically non-negative function. Prove that $o(g(n)) \cap \Omega(g(n)) = \emptyset$.

 \hookrightarrow Suppose that there exists a function $f(n) = o(g(n)) \cap \Omega(g(n))$. That is, suppose that for all positive constants c_1 there exist positive constants c_2 and n_0 such that the following inequalities hold for all $n \geq n_0$:

$$0 \le f(n) < c_1 g(n)$$
 and $0 \le c_2 g(n) \le f(n)$

Combining these, we obtain the chain of inequalities

$$0 \le c_2 g(n) \le f(n) < c_1 g(n)$$

However, in the case $c_1 = c_2$, these inequalities cannot both be satisfied: $c_2g(n) \leq f(n)$ cannot be true at the same time as $c_2g(n) > f(n)$. From this contradiction, we reject our supposition that such a function exists. Thus $o(g(n)) \cap \Omega(g(n)) = \emptyset$.