IFT-6390 Fundamentals of Machine Learning Professor: Ioannis Mitliagkas

Homework 2 - Practical component

One-versus-all, L2 loss SVM

This part consists of the implementation of a one-versus-all, L2 SVM Loss, which is commonly used for multiclass classification. The L2 loss is differentiable and imposes a bigger penalty on points that violate the margin. In the one-versus-all (OVA) approach, we train m binary classifiers, one for each class. At inference time, we select the class which classifies the test data with maximum margin.

Given a training set $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, where $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{1, ..., m\}$ where p is the number of features and m is the number of classes, we would like to minimize the following objective function:

$$\frac{1}{n} \sum_{(\mathbf{x}_i, y_i) \in S} \sum_{j'=1}^{m} \mathcal{L}(\mathbf{w}^{j'}; (\mathbf{x}_i, y_i)) + \frac{C}{2} \sum_{j'=1}^{m} \|\mathbf{w}^{j'}\|_2^2$$

where

$$\mathcal{L}(\mathbf{w}^{j'}; (\mathbf{x}_i, y_i)) = \left(\max\{0, 2 - (\langle \mathbf{w}^{j'}, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\}\}\right)^2$$

and

$$\mathbb{1}{y_i = j'} = \begin{cases} 1 & \text{if } y_i = j' \\ -1 & \text{if } y_i \neq j' \end{cases}$$

In order to update the parameters \mathbf{w} of the SVM, gradient descent techniques are used. (Note: in the dataset provided with this assignment, the last element of each row is a dummy element with the value 1. That means there is no separate bias parameter b; it is implicitly included in \mathbf{w} as the weight for the dummy element.)

The training set for this part can be downloaded from https://drive.google.com/file/d/1Z5wfMe5DOLWTMDQXLGNbuwOY7z6Kk31D/view?usp=sharing.

The solution template file contains a function to load the data and do some preprecessing for you such as normalization. There are four files, one for the training features, training labels, test features and test labels.

Le fichier solution contient une fonction pour lire et effectuer quelques transformations sur les données telle que la normalization. Quatre fichiers sont disponible, les *features* pour le jeu de données d'entraînement, un pour les cibles d'entraînement, un pour les *features* de test ainsi que les cibles.

1. [5 pts] What is the derivative of the regularization term

$$\frac{C}{2} \sum_{j'=1}^{m} \|\mathbf{w}^{j'}\|_2^2$$

with respect to w_k^j (the kth weight of the weight vector for the jth class)? Show all your work and write your answer in the report.

Answer.

$$\begin{split} \frac{\partial}{\partial w_k^j} \frac{C}{2} \sum_{j'=1}^m & \|\mathbf{w}^{j'}\|_2^2 = \frac{\partial}{\partial w_k^j} \frac{C}{2} \sum_{j'=1}^m \sum_{k'=1}^p \left(w_{k'}^{j'}\right)^2 \\ & = \frac{C}{2} \sum_{j'=1}^m \sum_{k'=1}^p \frac{\partial}{\partial w_k^j} \left(w_{k'}^{j'}\right)^2 \\ & = \frac{C}{2} \sum_{j'=1}^m \frac{\partial}{\partial w_k^j} \left(w_k^{j'}\right)^2 \\ & = \frac{C}{2} \frac{\partial}{\partial w_k^j} \left(w_k^j\right)^2 \\ & = \frac{2C}{2} w_k^j \\ & = C w_k^j. \end{split}$$

Only the indices $j \in j'$ and $k \in k'$ have a non-zero derivative, so we drop the summation and keep only those.

2. [10 pts] What is the derivative of the hinge loss term

$$\frac{1}{n} \sum_{(\mathbf{x}_i, y_i) \in S} \sum_{j'=1}^{m} \mathcal{L}(\mathbf{w}^{j'}; (\mathbf{x}_i, y_i))$$

with respect to w_k^j ?

Express your answer in terms of $\mathbf{x}_{i,k}$ (the kth entry of the ith training example \mathbf{x}_i).

Assume that

$$\frac{\partial}{\partial a} \max\{0, a\} = \begin{cases} 1 & \text{if } a > 0\\ 0 & \text{if } a \le 0 \end{cases}$$

(This is not exactly true: at a = 0, the derivative is undefined. However, for this problem, it's OK to make this assumption.)

Answer.

$$\frac{\partial}{\partial w_k^j} \frac{1}{n} \sum_{(\mathbf{x}_i, y_i) \in S} \sum_{j'=1}^m \mathcal{L}(\mathbf{w}^{j'}; (\mathbf{x}_i, y_i))$$

$$= \frac{\partial}{\partial w_k^j} \frac{1}{n} \sum_{(\mathbf{x}_i, y_i) \in S} \sum_{j'=1}^m \left(\max\{0, 2 - (\langle \mathbf{w}^{j'}, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\}\} \right)^2$$

$$= \frac{1}{n} \sum_{(\mathbf{x}_i, y_i) \in S} \sum_{j'=1}^m \frac{\partial}{\partial w_k^j} \left(\max\{0, 2 - (\langle \mathbf{w}^{j'}, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\}\} \right)^2$$

Because the partial derivative is over j we can drop every other terms in the summation over the classes

$$\frac{1}{n} \sum_{(\mathbf{x}_i, y_i) \in S} \frac{\partial}{\partial w_k^j} \left(\max\{0, 2 - (\langle \mathbf{w}^j, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\}\} \right)^2$$

$$= \frac{2}{n} \sum_{(\mathbf{x}_i, y_i) \in S} \max\{0, 2 - (\langle \mathbf{w}^j, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\}\} \frac{\partial}{\partial w_k^j} \left(\max\{0, 2 - (\langle \mathbf{w}^j, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\}\} \right)$$

$$= \frac{2}{n} \sum_{(\mathbf{x}_i, y_i) \in S} \max\{0, 2 - (\langle \mathbf{w}^j, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\}\} \frac{\partial}{\partial w_k^j} \left(2 - (\langle \mathbf{w}^j, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\} \right)$$

Here the derivative of the max has two terms; 0 if $(\langle \mathbf{w}^{j'}, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\} \geq 2$, 1 otherwise. We can avoid writing it down because the zero condition is alreay reflected in the left over max function from the chain derivative and 1 can simply be ignored.

$$\frac{2}{n} \sum_{(\mathbf{x}_i, y_i) \in S} \max\{0, 2 - (\langle \mathbf{w}^j, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\}\} \frac{\partial}{\partial w_k^j} \left(2 - (\langle \mathbf{w}^j, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\}\right)$$

$$= \frac{-2}{n} \sum_{(\mathbf{x}_i, y_i) \in S} \max\{0, 2 - (\langle \mathbf{w}^j, \mathbf{x}_i \rangle) \mathbb{1}\{y_i = j'\}\} x_i^k \mathbb{1}\{y_i = j'\}$$

$$= \frac{-2}{n} \sum_{(\mathbf{x}_i, y_i) \in S} \mathcal{L}(\mathbf{w}^j; (\mathbf{x}_i, y_i)) x_i^k \mathbb{1}\{y_i = j'\}$$

- 3. [30 pts] Fill in the following in the code
 - (a) [5 pts] SVM.make_one_versus_all_labels: Given an array of integer labels and the number of classes m, this function should create a 2-d array corresponding to the $\mathbb{I}\{y_i=j'\}$ term above. In this array, each row is filled with -1, except for the entry corresponding to the correct label, which should have the entry 1. For example, if the array of labels is [1,0,2] and m=4, this function would return the following array: [[-1,1,-1,-1],[1,-1,-1,-1],[-1,-1,1,-1]]. The inputs are y (a numpy array of shape (number of labels,)) and m (an integer representing the number of classes), and the output should be a numpy array of shape (number of labels, m). For this homework, m will be 8, but you should write this function to work for any m > 2.
 - (b) [5 pts] SVM.compute_loss: Given a minibatch of examples, this function should compute the loss function. The inputs are x (a numpy array of shape (minibatch size, 3073)), y (a numpy array of shape (minibatch size, 8)), and the output should be the computed loss, a single float.
 - (c) [10 pts] SVM.compute_gradient: Given a minibatch of examples, this function should compute the gradient of the loss function with respect to the parameters \mathbf{w} . The inputs are X (a numpy array of shape (minibatch size, 3073)), y (a numpy array of shape (minibatch size, 8)), and the output should be the computed gradient, a numpy array of shape (3073, 8), the same shape as the parameter matrix \mathbf{w} . (Hint: use the expressions you derived

above.)

- (d) [5 pts] SVM.infer: Given a minibatch of examples, this function should infer the class for each example, i.e. which class has the highest score. The input is X (a numpy array of shape (minibatch size, 3073)), and the output is $y_inferred$ (a numpy array of shape (minibatch size, 8)). The output should be in the one-versus-all format, i.e. -1 for each class other than the inferred class, and +1 for the inferred class.
- (e) [5 pts] SVM.compute_accuracy: Given an array of inferred labels and an array of true labels, this function should output the accuracy as a float between 0 and 1. The inputs are y_inferred (a numpy array of shape (minibatch size, 8)) and y (a numpy array of shape (minibatch size, 8)), and the output is a single float.
- 4. [5 pts] The method SVM.fit uses the code you wrote above to train the SVM. After each epoch (one pass through the training set), SVM.fit computes the training loss, the training accuracy, the test loss, and the test accuracy.

Plot the value of these four quantities for every epoch for C = 0.1, 1, 30. Use 200 epochs, a learning rate of 0.0001, and a minibatch size of 5000.

You should have four plots: one for each of training loss, training accuracy, test loss, and test accuracy. Each plot must contain 3 curves, one for each value of C. Include these four plots in your report.

Answer.

Figure 1: Metrics on train and test set