AEROSPACE CORP EL SEGUNDO CA AEROPHYSICS LAB F/G 20/4 NUMERICAL SOLUTIONS FOR LAMINAR BOUNDARY LAYER BEHIND BLAST WAV--ETC(U) MAY 80 S W LIU; H MIRELS F04701-79-C-0080 TR-0080(59%0-02)-22 SD -TR-80-23 NL AD-A084 435 UNCLASSIFIED 1 -- ,2

REPORT SO THE 023

NA 1184435

Numerical Solutions for Laminar Boundary Layer
Behind Blast Wayes

S. W. LIU and H. MIRELS Aerophysics Laboratory Laboratory Operations The Aerospace Corporation El Segundo, Calif. 90245

1 May 1980

Interim Report

APPROVED FOR PUBLIC MEEASE; DISTRIBUTION UNLIMITED

THE AEROSPACE CORPORATION

Prepared for

SPACE DIVISION
AIR FORCE SYSTEMS COMMAND
Los Angeles Air Force Station
P.O. Box 92960, Worldway Postal Center
Los Angeles, Calif. 90009

80 5 19 013

OC FILE COPY

This final report was submitted by The Aerospace Corporation, El Segundo, CA 90245, under Contract No. F04701-79-C-0080 with the Space Division, Contracts Management Office, P.O. Box 92960, Worldway Postal Center, Los Angeles, CA 90009. It was reviewed and approved for The Aerospace Corporation by W. R. Warren, Jr., Director, Aerophysics Laboratory. Gerhard E. Aichinger was the project officer for Mission-Oriented Investigation and Experimentation (MOIE) Programs.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

... Apt. A.

Ming

Gerhard E. Aichinger

Project Officer

FOR THE COMMANDER

Evan R. Brossman, Chief

Contracts Management Office

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SD-TR-80-23	2. GOVT ACCESS	
4. TITLE (and Subtitle)	/ At AARU	HON NO. 3. RECIPIENT'S CATALOG NUMBER
And the second s	V MV-17007 9	S TYPE OF REPORT & PERIOD COVERED
NUMERICAL SO	LUTIONS FOR LAMINAR	19) Interim Report
DOUNDARI LAI	er behind blast wave:	6. PERFORMING ORG. REPORT NUMBER
A Company of Text of the State	The state of the s	TR-0080(5940-02)-2)
7. AUTHOR(A)	A CONTRACT OF THE STATE OF THE	T. CONTRACT OR GRANT NUMBER(s)
Shaowen W./Liu	Harold Mirels	15 F04701-79-C-0080
9. PERFORMING ORGANIZAT	TION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
The Aerospace C	Cornoration	AREA & WORK UNIT NUMBERS
El Segundo, Cali		12/110/
11. CONTROLLING OFFICE N		J2. REPORT DATE
Space Division	, , , , , , , , , , , , , , , , , , , ,	11 1 May \$80
Los Angeles Air		13. NUMBER OF PAGES
Los Angeles, Ca	lif. 90009 AME & ADDRESS(if different from Controlling (112 .
MUNITURING AGENCY NA	nme & Address(II gilleren Irom Controlling (
		Unclassified
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for pub		,
	NT (of the abstract entered in Block 20, if diffe	·
17. DISTRIBUTION STATEMENTS 18. SUPPLEMENTARY NOTES	NT (of the abstract entered in Block 20, if diffe	erent from Report)
17. DISTRIBUTION STATEMEN 18. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on r	NT (of the ebetrect entered in Block 20, if diffe	erent from Report)

and the same of the same

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) 19. KEY WORDS (Continued)
,
SIGNE SUBS
cignobar
20. ABSTRACT (Continued)
$\sigma = 1$ and $\sigma = 2$, $\sigma = 1$. Wall shear and heat transfer are found to increase
with $\mathfrak{S}=1-x/x_s$ at a rate faster than that indicated by previous solutions for the flow directly behind the shock ($\mathfrak{S} > 1$). The results are applicable in the laminar-boundary-layer region, $p_{\infty}x_s \leq 0$ ($10^{-3}-10^{-3}$) atm/ft, where p_{∞} is
laminar-boundary-layer region, p.x. \$0(10-3-10-4) atm/ft. where p. is
ambient pressure.
ambient pressure.
4 - 1 - 1
Accession For
NTIS GRALI
DOC TAB
Unempounced
Justification
DT: ~
Distribution/ ELECT.
Availability Codes
Availability Codes MAY 20 1980
Dist. special
I IKI I D
·
·

wie win washing him a .

CONTENTS

I.	INTRODUCTION	9
II.	ANALYSIS	11
ш.	RESULTS AND DISCUSSIONS	23
IV.	CONCLUDING REMARKS	103
APPI	ENDIX A - BLAST-WAVE STRENGTH	105
APPI	ENDIX B - BOUNDARY-LAYER TRANSITION	107
REFI	ERENCES	100

FIGURES

1.	Boundary Layer Behind Moving Shock	21
2.	Moving Shock-Plane Wall Orientation	22
3.	Inviscid Flow Field, $\overline{\sigma} = 0$	36
4.	Inviscid Flow Field, $\overline{\sigma} = 1$	37
5.	Inviscid Flow Field, $\overline{\sigma} = 2$	38
6.	Local Mach Number	39
7.	Local Reynolds Number	40
8.	Composite Profile Summary	42
9.	Approximate η_e Distribution	46
0.	Detailed Boundary-Layer Profiles	50
1.	Wall Gradients of Boundary-Layer Profiles	86
2.	Friction Coefficient and Stanton Number	90
3.	Integral Lengths and Lateral Mass Flux	94
	TABLES	
1.	Inviscid Flow Functions, $\overline{\sigma} = 0$, $\gamma = 1.4$	27
2.	Inviscid Flow Functions, $\overline{\sigma} = 1$, $\gamma = 1.4$	30
3.	Inviscid Flow Functions, $\overline{\sigma} = 2$, $\gamma = 1.4$	33
4.	Comparison with Wall Gradients of Reference 1	41
5.	Boundary-Layer Functions for Case A, B, C, and D	98

NOMENCLATURE

A	constant, Eqs. (10) and (17)
В	conversion factor, Eq. (40)
C	constant, Eq. (7)
$\mathtt{c}_{\mathbf{f}}$	friction coefficient, $\tau_{\rm w}/\frac{1}{2}\rho_{\rm e}u_{\rm e}^2$, Eq. (36)
c ₂	conversion factor, Eq. (40)
D ₁ , D ₂ , D ₃ , D ₄	conversion factors, Eq. (40)
f	velocity function, Eq. (11)
F	inviscid flow function, Eq. (8)
F ₁ , F ₂	conversion factors, Eqs. (22) and (23)
g	enthalpy function, Eq. (12)
h	enthalpy, Eqs. (3) and (4)
н	total enthalpy
m	exponent of power law shock, Eq. (7)
M	normalized lateral flux, Eq. (39)
M	Mach number, Eq. (32)
p	pressure
Pr	Prandtl number
$q_{\overline{w}}$	surface heat transfer, Eq. (35)
R	inviscid flow function, Eq. (8)
Re	Reynolds number, Eq. (33)
S	function defined in Eq. (23)

Salah Salah

s ₀ , s ₁ , s ₂ , s ₃	integral functions, Eqs. (28), (29), (30), and (31)
St	Stanton number, qw/peueHe, Eq. (37)
t	time
u	velocity component in x-direction
v	velocity component in y-direction
v	transformed lateral velocity
x, y, z	coordinate axes
α	(m-1)/m
Υ	ratio of specific heats
6 *	displacement thickness, Eq. (25)
ô**	integral thickness defined by Eq. (26)
η	transformed coordinate, Eq. (10)
θ	momentum thickness, Eq. (27)
μ	viscosity
ν	kinematic viscosity, μ/ρ
5	transformed coordinate, = 1 - (x/x_s) , Eq. (10)
ρ	density
σ	= 0, two dimensional; = 1, axisymmetric
ਰ	= 0, plane wave; = 1, axisymmetric; = 2, spherical
τ	transformed coordinate, Eq. (10)
T W	surface shear, Eq. (34)
φ	inviscid flow function, Eq. (8)
Y	stream function, Eqs. (9) and (12)

Subscripts

- e outer edge of boundary layer
- 0 initial value
- w wall or surface
- s shock front
- () $_{\xi, \ \eta, \ \xi\eta}$ partial derivative
- ()' 8()/ ϑ N, alternative notation for partial derivation of η

I. INTRODUCTION

The solution for the wall boundary layer behind a shock wave moving with nonuniform velocity is, in general, complicated because of the addition of the temporal dimension to the problem. However, for a large class of flow problems of practical importance, similarity solutions exist so that the analysis is tractable. Such is the case with the boundary-layer flow behind a strong shock moving with power-law velocity. The formulation of the problem and the transformation devised to reduce the independent variables from three (x, y, t) of the original problem to two normalized spatial variables (ξ, Ŋ) in the transformed frame have been detailed in Ref. 1. Numerical solutions were also obtained in Ref. 1 by series expansions of both the inviscid and boundary-layer flow in powers of the normalized distance from the shock wave, \$. Two terms in each expansion were used. and the results are limited to the region directly behind the shock wave ($\xi^2 \ll 1$). The effort involved in extending the series to higher order terms increases very rapidly. Chen and Chang, 2 apparently unaware of the existence of Ref. 1, reformulated the problem using essentially the same approach, but they carried the expansion to the next term. Unfortunately, some of their coefficients appear to be in error.

Numerical finite difference methods are available for evaluating boundary-layer flows in two coordinate variables. We have, therefore, reexamined the shock-induced boundary-layer problem in the light of a direct application of finite difference methods to the transformed boundary-layer equations. In this report similarity (ξ, η) solutions are obtained for the laminar boundary layer behind a power-law shock associated with a blast wave. A finite difference method based upon Blottner's numerical scheme is used. The results are valid, at all times, in the entire flow region between the shock front and the immediate vicinity of the blast-wave

origin provided the boundary layer remains laminar. The method of analysis is described in Section II. Results and discussions are given in Section III. The relation between blast-wave strength and the energy of the disturbed flow is discussed in Appendix A. The extent of the laminar boundary layer, behind blast waves, is discussed in Appendix B.

II. ANALYSIS

Similarity properties of the inviscid flow associated with strong power-law shocks and the corresponding similarity transformation devised for the shock-induced laminar boundary layer have already been detailed in Ref. 1. For completeness, the governing equations and basic assumptions are briefly repeated here.

With the assumption that the fluid Prandtl number and specific heats are constant and that the viscosity is proportional to temperature, the unsteady, compressible laminar boundary-layer equations for a perfect gas are:

Continuity

$$\frac{\partial \rho}{\partial t} + \frac{1}{x^{\sigma}} \frac{\partial (\rho u x^{\sigma})}{\partial x} + \frac{\partial (\rho v)}{\partial y} = 0$$
 (1)

Momentum

$$\rho \frac{D\mathbf{u}}{D\mathbf{t}} = -\frac{\partial P_{\mathbf{e}}}{\partial \mathbf{x}} + \frac{\partial}{\partial \mathbf{y}} \left(\mu \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \right) \tag{2}$$

Energy

$$\rho \frac{\mathrm{Dh}}{\mathrm{Dt}} - \frac{\mathrm{Dp}_{\mathbf{e}}}{\mathrm{Dt}} = \frac{1}{\mathrm{Pr}} \frac{\partial}{\partial y} \left(\mu \frac{\partial h}{\partial y} \right) + \mu \left(\frac{\partial u}{\partial y} \right)^{2} \tag{3}$$

State

$$p = [(\gamma - 1)/\gamma] \rho h \tag{4}$$

where

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y}$$

Symbols are defined in the Nomenclature section, and the orientation of coordinates is indicated in Fig. 1. Both two-dimensional and axisymmetric boundary layers corresponding to $\sigma = 0$ and 1, respectively, are included. The choice of σ is determined by the geometry of the propagating shock and the surface on which the boundary layer develops (Fig. 2). The boundary conditions are:

at
$$y = \infty$$
 $u(x, \infty, t) = u_e(x, t)$

$$h(x, \infty, t) = h_e(x, t)$$
 (6)

We confined our attention to a strong shock that moves according to the power law (Appendix A)

$$x_s = Ct^m$$
, $u_s = \frac{dx_s}{dt} = Cmt^{m-1}$ (7)

The disturbed flow for constant specific heats is similar at successive instants in time. ⁴ If the independent variable x is replaced by $\xi = 1 - (x/x_g)$, the disturbed flow can be expressed as

$$p_e/p_{\infty} = u_s^2 F(\xi),$$
 $\rho_e/\rho_{\infty} = R(\xi)$

$$u_e = u_s \phi(\xi), \quad h_e = \frac{\gamma}{\gamma - 1} \frac{p_e}{p_e} = \frac{\gamma}{\gamma - 1} u_s^2 \frac{F(\xi)}{R(\xi)}$$
(8)

The functions F, R, and φ depend on the geometry of the shock wave as well as the parameters γ , m, and the coordinate ξ . Analytical and numerical solutions for F, R, and φ are given in Ref. 4 for plane, cylindrical, and spherical shocks (corresponding to $\overline{\sigma} = 0$, 1, 2 respectively) and $\gamma = 1$, 4. When $m = 2/(3 + \overline{\sigma})$, the flows correspond to constant energy blast waves. These cases are discussed in Appendix A.

Four combinations of shock and surface orientation are of practical interest. These are shown schematically in Fig. 2.

Equation (1) is satisfied by a scalar stream function ψ such that

 $\xi = 1 - x/Ct^m$

$$\mathbf{u} = \frac{\rho_{\infty}}{\rho \mathbf{x}^{\sigma}} \frac{\partial \psi}{\partial \mathbf{y}}, \qquad \mathbf{v} = -\frac{\rho_{\infty}}{\rho \mathbf{x}^{\sigma}} \left[\frac{\partial \psi}{\partial \mathbf{x}} + \frac{\partial}{\partial \mathbf{t}} \left(\mathbf{x}^{\sigma} \int_{0}^{\mathbf{y}} \frac{\rho}{\rho_{\infty}} d\overline{\mathbf{y}} \right) \right]$$
(9)

The following independent variables are introduced:

$$\eta = \frac{x^{\sigma} \int_{0}^{y} \left(\frac{\rho}{\rho_{\infty}}\right) d\overline{y}}{\left[At^{2m(\sigma+1)} - \frac{1}{1(1-x/Ct^{m})}\right]^{1/2}}$$

$$\tau = t$$
(10)

where A is a constant to be defined later. Next, the following form is assumed for the dependent variables

$$\psi = u_e \left[A \tau^{2m(\sigma+1) - 1} \xi \right]^{1/2} f(\xi, \eta)$$
 (11)

$$h/h_e = \rho_e/\rho = g(\xi, \eta)$$
 (12)

which, by Eq. (9), gives $f_{\eta} = u/u_e$. For the present, the surface is assumed impermeable. The boundary conditions on $f(\xi, \eta)$ are then

$$f(\xi, 0) = f_{\eta}(\xi, 0) = 0, \qquad f_{\eta}(\xi, \infty) = 1$$
 (13)

Wall temperature is assumed negligible compared with the free-stream temperature. 1 The boundary conditions on g (ξ , η) are then

$$g(\xi, 0) = 0, g(\xi, \infty) = 1 (14)$$

When Eqs. (10), (11), and (12) are introduced into Eqs. (1), (2), and (3), they become

$$(1 - \xi)^{2\sigma} (F/F_o) f_{\eta\eta\eta} + (\eta - \varphi f) f_{\eta\eta}$$

$$= 2\xi \left\{ \left[f \varphi_{\xi} + \varphi f_{\xi} - \frac{1}{2} (2\sigma + \alpha) \eta \right] f_{\eta\eta} + \left[\alpha + (1 - \xi - \varphi f_{\eta}) \left(\frac{\varphi_{\xi}}{\varphi} + \frac{f_{\eta\xi}}{f_{\eta}} \right) \right] f_{\eta} - \frac{F_{\xi}g}{R\varphi} \right\}$$

$$(15)$$

$$(1 - \xi)^{2\sigma} \left(\frac{1}{\Pr} \frac{F}{F_o} g_{\eta\eta} + \frac{\gamma - 1}{\gamma} \frac{R\phi^2}{F_o} f_{\eta\eta}^2 \right)$$

$$+ (\eta - \phi f) g_{\eta} = 2\xi \left\{ \left[f\phi_{\xi} + \phi f_{\xi} - \frac{1}{2} (2\sigma + \alpha) \eta \right] g_{\eta} + \left[\frac{2\alpha}{\gamma} + (1 - \xi - \phi f_{\eta}) \left(\frac{g_{\xi}}{g} + \frac{F_{\xi}}{\gamma F} - \frac{R_{\xi}}{R} \right) \right] g \right\}$$

$$(16)$$

where $\alpha = (m-1)/m$. In deriving Eqs. (15) and (16) the constant A was chosen as follows to simplify the coefficients of $f_{\eta\eta\eta}$ and $g_{\eta\eta}$

$$A = 2mF_{o}C^{2(\sigma+1)}v_{\infty}\rho_{\infty}/p_{\infty}$$
 (17)

The explicit dependence of the flow on the independent variable τ has now been eliminated.

The development up to here is the same as that presented in Ref. 1. Equations (15) and (16) are two simultaneous equations for f and g in terms of the two independent transformed variables 5 and 7. Functionally, they are analogous to the steady-state boundary layer equations successfully treated by Blottner. Blottner's derivation, however, made use of a transformed lateral velocity component that reduced the order of the differential equation for f by one. The lateral velocity component is, in turn, defined by an additional differential equation arising from the continuity equation.

The transformed lateral velocity component is defined by

$$V = -2 \frac{5}{\varphi}^{1/2} \frac{\partial (\varphi \xi^{1/2} f)}{\partial \xi}$$
 (18)

which is motivated by the expanded form for ψ_x . The relation between V and v is found with the use of Eq. (9). Eqs. (15), (16), and (18) now become

$$2\xi \left[\frac{(1-\xi)}{f'} - \varphi \right] \frac{\partial f'}{\partial \xi} - \left[\varphi V + \eta \left\{ 2\xi \left(\sigma + \frac{\alpha}{2} \right) + 1 \right\} \right] \frac{1}{f'} f' \eta$$

$$+ 2\xi \left[\alpha + (1-\xi) \frac{\varphi_{\xi}}{\varphi} - \varphi_{\xi} f' - \frac{F_{\xi}}{R\varphi} \frac{g}{f'} \right] - (1-\xi)^{2\sigma} \left(\frac{F}{F_{o}} \right) \frac{1}{f'} f' \eta \eta = 0$$
(19)

$$2\xi \left(1-\xi-\phi f'\right) \frac{\partial g}{\partial \xi} - \left[\phi V + \eta \left\{2\xi \left(\sigma + \frac{\alpha}{2}\right) + 1\right\}\right] g_{\eta}$$

$$- \left(1-\xi\right)^{2\sigma} \frac{\gamma - 1}{\gamma} \phi^{2} \frac{R}{F_{o}} \left(f'_{\eta}\right)^{2} + 2\xi \left[\left(1-\xi-\phi f'\right) \left(\frac{F_{\xi}}{\gamma F} - \frac{R_{\xi}}{R}\right) + \frac{2\alpha}{\gamma}\right] g$$

$$- \left(1-\xi\right)^{2\sigma} \frac{F}{F_{o}} \frac{1}{\Pr} g_{\eta\eta} = 0$$
(20)

$$\frac{\partial V}{\partial \eta} + \left(2\xi \frac{\varphi \xi}{\varphi} + 1 \right) f' + 2\xi \frac{\partial f'}{\partial \xi} = 0$$
 (21)

Note that $f'(\equiv \partial f/\partial T)$ is now the lowest order of the function f appearing in the above equations, which, termwise, are now directly comparable to Blottner's equations of Ref. 3.

A computer program has been written based on the numerical scheme outlined in Ref. 3, and Eqs. (19), (20), and (21) have been integrated for the four cases of practical interest shown in Fig. 2. The results are presented in Section III. Quantities of interest are noted below.

Physical coordinates are obtained from [e.g., Eqs. (10) and (17)]

$$x = x_{g} (1 - \xi)$$

$$y = F_{1} \cdot F_{2} \cdot S$$
(22)

where

$$F_{1}(\tau) = \left[F_{0} \frac{\mu_{\infty}}{p_{\infty}} u_{\mathbf{g}} \mathbf{x}_{\mathbf{g}}\right]^{1/2}$$

$$F_{2}(\xi) = \frac{(2\xi)^{1/2}}{(1-\xi)^{\sigma} R}$$

$$S(\xi, \eta) = \int_{0}^{\eta} \mathbf{g} d\eta \qquad (23)$$

Boundary-layer integral lengths are expressible as:

$$y_e = F_1 \cdot F_2 \cdot S_0 (\xi)$$
 (24)

$$\delta^* = \int_0^\infty \left(1 - \frac{\rho u}{\rho_e u_e} \right) dy = F_1 \cdot F_2 \cdot S_1 (\xi)$$
 (25)

$$\delta^{**} = \int_0^\infty \left(1 - \frac{\rho}{\rho_e}\right) dy = F_1 \cdot F_2 \cdot S_2(\xi)$$
 (26)

$$\theta = \int_0^\infty \frac{\rho u}{\rho_e u_e} \left(1 - \frac{u}{u_e} \right) dy = F_1 \cdot F_2 \cdot S_3(\xi)$$
 (27)

where

$$S_0 = \int_0^{\eta_e} g d\eta$$
 (28)

$$s_i = \int_0^{\eta_e} (g - f') d\eta$$
 (29)

$$S_2 = \int_0^{\eta_e} (g-1) d\eta$$
 (30)

$$S_3 = \int_0^{\eta_e} f'(1-f') d\eta$$
 (31)

Here Π_e is the value of Π at the outer edge of the boundary layer, where the edge boundary conditions $(y=\infty)$ are satisfied in the present numerical code. The choice for Π_e is discussed later. The quantity y_e is the value of y_e corresponding to Π_e and is a rough measure of boundary layer thickness. The quantity δ^* is the familiar displacement thickness. The use of δ^* will be discussed later; θ is the momentum thickness. Note that these integral lengths are dominated by the factor F_2 , which is singular at $\xi=1$.

Local Mach number M and Reynolds number Re can be expressed in the form

$$M = \frac{u_e}{(\gamma p_e / \rho_e)^{1/2}} = \frac{\varphi}{(\gamma F/R)^{1/2}}$$
 (32)

$$Re = \frac{\rho_e u_e (x_s - x)}{\mu_e} = \left(\frac{p_{\infty} x_s}{\mu_{\infty} u_s}\right) \left(\frac{R^2 \varphi \xi}{F}\right)$$
(33)

The shear and heat transfer at the wall can be found from

$$\tau_{\mathbf{w}} = \mu_{\mathbf{w}} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}} \right)_{\mathbf{w}} = \left[\frac{\mu_{\infty}}{2F_{0} p_{\infty} \mathbf{u_{s} x_{s}}} \right]^{1/2} \left[\frac{(1-\xi)^{\sigma}}{(2\xi)^{1/2}} \right] p_{e} \mathbf{u_{e}} f_{\eta \eta} (\xi, 0)$$
(34)

$$q_{w} = -k_{w} \left(\frac{\partial T}{\partial y}\right)_{w} = -\frac{1}{Pr} \left[\frac{\mu_{\infty}}{2F_{o}p_{\infty}u_{s}x_{s}}\right]^{1/2} \left[\frac{(1-\xi)^{\sigma}}{(2\xi)^{1/2}}\right] p_{e}h_{e}g_{\eta}(\xi,0)$$
(35)

Normalized expressions for the above are

$$C_f (Re)^{1/2} = \frac{\tau_w}{\frac{1}{2} \rho_e u_e^2} (Re)^{1/2} = \left(\frac{2F}{\phi F_o}\right)^{1/2} (1-\xi)^{\sigma} f_{\eta\eta}(\xi,0)$$
 (36)

St (Re)^{1/2} =
$$\frac{q_w}{\rho_e u_e H_e}$$
 (Re)^{1/2} = $-\frac{1}{Pr} \left(\frac{F}{2F_o}\right)^{1/2} \frac{(1-\xi)^{\sigma}}{\varphi \left(1 + \frac{\gamma-1}{2} \frac{\varphi^2}{\gamma F/R}\right)} g_{\eta} (\xi, 0)$ (37)

where C_f and St represent the friction coefficient and Stanton number, respectively. These are functions only of ξ .

Integration of the continuity equation [Eq. (1)] across the boundary layer provides an expression for net mass flux in the lateral direction, namely

$$(\rho \mathbf{v})_{\mathbf{e}} - (\rho \mathbf{v})_{\mathbf{w}} = \frac{\partial}{\partial \mathbf{t}} (\rho_{\mathbf{e}} \delta^{**}) + \frac{\sigma}{\mathbf{x}} \rho_{\mathbf{e}} \mathbf{u}_{\mathbf{e}} \delta^{*} + \frac{\partial}{\partial \mathbf{x}} [\rho_{\mathbf{e}} \mathbf{u}_{\mathbf{e}} \delta^{*}]$$
(38)

which can be expressed in the form

$$\mathcal{M} = (2\xi)^{1/2} [(\rho v)_{e} - (\rho v)_{w}]/B$$

$$= C_{2} \left[D_{1}S_{2} + D_{2}\xi \frac{dS_{2}}{d\xi} - D_{3}S_{1} - D_{4} \frac{dS_{1}}{d\xi} \right]$$
(39)

where

$$B = \rho_{\infty} \left[F_{o} \mu_{\infty} u_{s}^{3} / p_{\infty} x_{s} \right]^{1/2}$$

$$C_{2} = 1/(1-\xi)^{\sigma}$$

$$D_{1} = 1 + 2\xi \left(\frac{\alpha}{2} + \sigma \right)$$

$$D_{2} = 2\xi (1-\xi)$$

$$D_{3} = 2\xi \phi_{\xi} + \phi$$

$$D_{4} = 2\xi \phi \qquad (40)$$

The normalized lateral mass flux $\mathcal M$ is a function only of ξ . The present computing program provides S_1 and S_2 versus ξ in appropriate tables such that the derivatives $dS_1/d\xi$, $dS_2/d\xi$ and the corresponding values of $\mathcal M$ can be subsequently calculated.

Fig. 1. Boundary layer behind moving shock

- (a) PLANE MOVING SHOCK $(\overline{\sigma}=0,\ \sigma=0)$
- (b) CYLINDRICAL MOVING SHOCK $(\overline{\sigma}=1,\ \sigma=0)$

- (c) CYLINDRICAL MOVING SHOCK $(\bar{\sigma}=1,\;\sigma=1)$
- (d) SPHERICAL MOVING SHOCK $(\overline{\sigma}=2,\ \sigma=1)$

Fig. 2. Moving shock-plane wall orientation

III. RESULTS AND DISCUSSIONS

Inviscid and viscid flow-field solutions have been obtained; the results are discussed herein. The inviscid flow functions F, R, and φ associated with blast waves are discussed in Ref. 4. Both analytical expressions and numerical tables for the cases $\overline{\sigma}=0$, 1, 2, and $\gamma=1.4$ are given. For the present applications, however, it has been found necessary to refine the tabular results to minimize the interpolation errors in coefficients appearing in the boundary-layer equations. To this end, it was found more convenient to recalculate the inviscid flow functions and their derivatives to the degree of accuracy desired by starting from the basic equations governing a power-law shock, such as those given in Ref. 5. The results for $\gamma=1.4$ are given here as Tables 1, 2, and 3, for the cases $\overline{\sigma}=0$, 1, and 2, respectively. They are also presented as Figs. 3, 4, and 5. The variation of Mach number M with ξ for the three inviscid blast-wave flows are plotted as Fig. 6. The variation of Re/ $(\rho_{\infty} x_{8}/\mu_{\infty} u_{8})$ with ξ for the same cases are plotted as Fig. 7.

Boundary-layer solutions have been obtained for $\gamma=1.4$, $\Pr=0.72$ for the four cases noted in Fig. 2. In each, the integration has been successfully carried out from the shock to the immediate vicinity of the blast origin. At the blast origin ($\xi=1.0$), both the inviscid flow and the boundary-layer equations are singular. Results have been obtained for all cases to well beyond $\xi=0.9$. Divergence did set in, however, as the integration approached $\xi=1$. The refinement of the inviscid-flow functions discussed earlier contributed noticeably to extending the range of integration closer to the singularity. The numerical techniques and the results are discussed in the following paragraphs.

^{*}The authors are indebted to Heather Bagwell of The Aerospace Corporation for providing these results.

The boundary-layer equations were programmed using Blottner's numerical technique. ³ At each streamwise station 5 the present computing program allowed up to 100 mesh points distributed, either uniformly or nonuniformly, in the interval $0 \le \mathbb{N} \le \mathbb{N}_e$, where, as previously noted, \mathbb{N}_e denotes the value of \mathbb{N}_e at which the freestream boundary conditions ($y = \infty$) are applied. For the results herewith presented, 98 mesh points were used. A graduated grid size was used so that the mesh network was finest near the surface where the definition of the profiles is of the greatest interest. The calculation is most accurate when the value of \mathbb{N}_e at each streamwise station is just sufficient for the profiles to approach the outer edge asymptotically within an acceptable tolerance.

The boundary-layer solution at $\xi = 0$ was obtained by iteration, using reasonable profiles for f_{η} and g as first estimates. For $\xi = 0$, Eqs. (19) and (20) reduce to the zero-order equations of Ref. 1; the two results are, therefore, directly comparable. As has been noted in Ref. 1, they do not depend on σ or $\overline{\sigma}$. The wall gradients of the present calculation are listed in Table 4 and are shown to compare very favorably with those of Ref. 1.

A first estimate of the boundary-layer solution for $\xi > 0$ was obtained by satisfying outer-edge boundary conditions at $\Pi_e = 6$ for all values of ξ . The choice $\Pi_e = 6$ was based on the $\xi = 0$ solution. The resulting velocity and enthalpy profiles at successive values of ξ are given in Fig. 8 in the form of composite profile summary plots. Note that the velocity profiles develop overshoot with increase in ξ . It is also seen from Fig. 8 that, in terms of Π , the boundary-layer thickness decreases significantly with increase in ξ . That is, the physical edge of the boundary layer occurs at significantly smaller values of Π as ξ increases. (This is a consequence of the definition of Π . In the physical variable, y, the boundary-layer thickness increases with increase in ξ .) In order to maintain computational accuracy, it is desirable to decrease Π_e with increase in ξ . The present approach was to let the second choice for Π_e correspond to the values of Π ,

at which $u/u_e \equiv f_{\eta} = 1 \pm 0.0005$ in the preceding $\eta_e = 6$ solution. The + and - signs refer to velocity profiles with and without overshoot. The resulting values of η_e are given in Fig. 9. The boundary-layer profiles were recalculated using the new η_e -distribution. These calculations not only provided a more detailed description of the profiles by utilizing more fully the effective η -thickness of the boundary, but also improved the stability of the numerical process at large ξ where the η -thickness can be as much as two orders of magnitude smaller than that at $\xi = 0$. It was found, however, that the results for wall shear and heat transfer and for the boundary layer thicknesses δ^* , δ^{***} , and θ from the second calculation did not differ significantly from the first $\eta_e = 6$ calculation (i.e., were within computational accuracy). Hence further iterations of η_e were not needed.

The results from the variable η_{a} solution are given in Figs. 10 to 13 and in Tables 4 and 5. Sample velocity and enthalpy profiles are given in Fig. 10. These figures provide somewhat more detail than Fig. 8. Note that the velocity overshoot is least severe for the case $\sigma = \overline{\sigma} = 0$ and is most severe for the case $\overline{\sigma} = 1$, $\sigma = 0$. A maximum overshoot velocity of about $u/u_0 = 1.09$ is achieved at $\xi = 0.5$ in the latter case. Velocity and enthalpy gradients, evaluated at the wall, are given in Fig. 11 and Table 5. The derivative of $f_{\eta\eta}$ (ξ , 0) and g_{η} (ξ , 0) with ξ at ξ' = 0 has been obtained numerically in this study, and a comparison is made in Table 4 with the corresponding values from Ref. 1. Agreement is to within about three significant figures, which is about the accuracy of some of the present computer code subroutines. Wall shear and wall heat transfer coefficients, referenced to local flow properties [Eqs. (36) and (37)], are given in Fig. 10. It is seen that the shear and heat transfer coefficients increase by about an order of magnitude, as § increases from 0 to about 0.9. The results for normalized lateral mass flux and boundary-layer lengths are given in Table 5 and Fig. 13. These quantities have been normalized to remain of order one as ξ varies. The value of S_0 in Table 5 is based on the variable η solution (Fig. 9). Hence the corresponding value y provides a rough estimate of

local boundary-layer thickness. Equations (22) to (31) indicate that in physical variables the characteristic boundary-layer lengths (e.g., y_e , δ^* , . . .) are proportional to $1/(1-\xi)^{\sigma}R$. Because $R \rightarrow 0$ as $\xi \rightarrow 1$, these lengths tend to become infinite as $\xi \rightarrow 1$, for $\sigma = 0$ as well as $\sigma = 1$ cases.

Because both the inviscid and the boundary-layer flow fields near the blast origin are more or less idealized, the solution in this regime is more of analytical, than practical, interest in that it serves as a test for the functional self-consistency of the equations and the method of calculation used.

Table 1. Inviscid flow functions, $\ddot{\sigma} = 0$, $\gamma = 1.4$

dR d£	######################################	-,40,4958E+01 -,386823E+01
œ	.5000100E+01 .518304E+01 .450304E+01 .350405E+01 .350405E+01 .350405E+01 .350405E+01 .350405E+01 .250305E+01 .250305E+01 .250305E+01 .250305E+01 .250305E+01 .250305E+01 .250305E+01 .250305E+01 .150606E+01 .150606E+01 .131306E+01 .131306E+01 .131306E+01 .131306E+01 .131306E+01 .131306E+01 .131306E+01 .131306E+01 .131306E+01 .131306E+01 .131306E+01	ທ - 4
dF dE	37500E+01 325500E+01 293652E+01 293652E+01 129365E+01 129365E+01 12936E+01 12936E+01 12936E+01 1396E+01 1396E+01 1396E+01 1396E+01 1396E+01 1396E+01 255376E+01 255376E+01 255376E+00 2563203E+001 2563203E+001 2563203E+001 263203E+001 263203E+001 263203E+001 368996E+000 368996E+000 368996E+000 368996E+000	
L	- 年の下のことをできる。 かんしょう こうしょう こうしょう こうしょう こうしょう こうしょう こうしょう こうしょう こうしょう こうしょう こうしゅう しょう こうしょう こうしょう アンション アーン・ション・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.3 67 586E+00 .3 64 53E+03
9 P P P P P P P P P P P P P P P P P P P	0.000000000000000000000000000000000000	822811E+03 815711E+03
9	.83333E+65 .820896E+65 .726412E+60 .77266E+60 .77266E+60 .77266E+60 .77266E+60 .77266E+60 .772998E+60 .651275E+60 .651275E+60 .651275E+60 .651276E+60 .651276E+60 .651276E+60 .651279E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60 .572995E+60	77271 69078
w	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.35

Table 1. Inviscid flow functions, $\ddot{\sigma} = 0$, $\gamma = 1.4$ (Continued)

dR de	369777E+01	3537385+01	-, 33 6620 E+01	324349E+£1	31 C 65 7E+G1	298.82E+01	285967E+01	274460E+01	263514E+01	253386E+01	243136E+01	233628E+01	-,224528E+61	215837E+01	237436E+31	19939uE+01	191646E+61	184182E+01	176979E+01	170018E+01	163284E+01	156762E+i1	150437E+01	144297E+61	138332E+01	13253cE+c1	126883E+01	121382E+01	116619E+01	116789E+01	1 u 5 68 4 E + 0 1	10C70JE+01	958316E+03	91C751E+00	864268E+CJ
œ	.772713E+00	.736542E+0G	.7C1332E+0L	.6687 93 E+0C	.637336E+00	.606595E+00	.577398E+00	.549381E+0E	.522487E+0G	.496661E+00	.471854E+0C	.446319E+00	.425115E+00	.403101E+0G	.381942€+36	.361603E+00	.342054E+00	.323265E+0C	.305209E+00	.287861E+0G	.271197E+00	.255197E+00	.239839E+00	.225163E+00	.210973E+30	.197432E+Di	.184462E+00	.172050E+00	.160181E+0L	.148842E+00	.138)19E+0C	.127701E+00	.117875E+0C	. 10 65 31E +CC	.996568E-01
d A F	83 760 E+	655646+	÷	±	217161E+00	232877E+00	189424E+0C	176753E+00	164817E+00	153572E+00	142980E+00	133003E+00	123 60 7 E+00	114761E+00	106433E+00	985972E-61	912268E-01	842978E-01	777 87 3E-01	716740E-61	-,659378E-01	6(5599E-61	555223E-01	508083E-01	464:176-01	422875E-01	-,38451 3E-01	348793E-01	-,315585E-01	284762E-01	-,256216E-C1	229861E-01	2:5436E-01	183 JG 5E-01	162436E-01
	.361920E+03	.3591746+01	.356605E+00	.354202E+00	.351955E+00	.349856E+0J	.347 E95E+0C	.3+6065E+03	.344357E+00	.342766E+03	.341284E+60	•339904E+60	.338622E+60	.337430E+03	.336325E+01	.335300E+00	.334351E+00	.333474E+D3	.332664E+00	.331917E+0.	.331229E+00	30597E+0	.330017E+00	.329485E+10	.329C00E+G3	.32855E+03	.328153E+03	.327786E+00	.3274546+00	.327155E+00	.326 884E+30	.3266415+00	326424E+0]	.326236E+03	.326057E+0.
d &	808956E+11	802536E+00	0	a	785233E+0ù	780C 35E +00	775156E+03	776556E+00	766224E+03	762151E+00		754738E+03	751379E+00	0	745305E+00	742572E+03	740C27E+00	9	735470E+00		~	(3	728238E+00	726774E+00	9		0	722065E+00	721140E+03	0	719547E+00	718867E+03	718257E+00	717713E+10	717228E+00
e	6.955E+u		· 444304E+00	. 436968E+00	.429089E+0	.421263E+00	.413487E+0J	•+35759€+üC	.338075E+63	.390434E+05	.382832E+00	.375266E+∪0	G	ō	.352771E+00				.32316 5E+00	.315820E+0:	.338495E+0J	.301189E+03	.293898E+00	.286623E+00	.279352E+00	.272114E+00	.264878E+CC	.257652E+06	.250436E+00	.243229E+00	.236030E+00	.228838E+00	.221652E+00	.214473E+C0	.207298E+00
~	.37	.38	•39	04.	.41	.42	643	3	.45	94.	74.	84.	64.	•50	.51	.52	.53	•54	• 55	•56	.57	.58	•59	99.	.61	• 62	•63	•9•	•65	•66	.67	.68	69•	.70	.71

Table 1. Inviscid flow functions, $\bar{\sigma} = 0$, $\gamma = 1.4$ (Continued)

dg d\$	1818637E+0	1731040E	1688637E+C	1647216E+0	1636768E+0	1567292E+0	1528787E+0	1491259E+0	1454715E+0	1 419167E+3	1384631E+C	1351126E+0	1318 676E+0	12873096+0	1257057E+G	1227957E+0	2200653E+0	2173396E+0	2 1 +8C 43E+0	2124.66E+C	2101545E+0	2865813E-C	26130016-0	343862EE-0	3284896E-C	31556776-0	4546279E-	•
α	12421E	7501	86525E	19741E	57049E-	98355E-	43559E-	92565	45274E-	1588E	61407E	4628E	91147E	61857E	33648E	3 940 7E	0165E	93547E	32939	97C G 3E	84323E	93394E	2600E	OE	41874E	4061	+1	
वह वह	143539E-01	110621E-J	63675E-0	35213E-0	76E-0	15545E-0	522924E-02	43 741E-0	246E-0	C4712E-0	249433E-02	317256-0	160925E-62	26394E-0	5117E-0	3684GE-0	76E-0	892+0E-6	69191E-6	78247E-0	8E-0	51225E-0	30 E-C	57547E-0	9-3+19	53E-0	J-328-	
L		25651	25548E+0	25458E+0	253862+0	25314	25257E+0	25209E+0	25169E+0	25135E+0	25107	25085E+0	25067E+0	2505E+0	25041E+C	25333E+0	25 C26E+0	25 C 22E+0	25118E+0	25016E+0	25015E+0	25014E+0	25013E+0	25013E+0	25013€+0	25113E+0	25013E+B	25013E+0
d € d €	716798E+03		7	15542E+0	15323E+0	15135E+0	714974E+00	14839E+	714725E+00	1463GE+0	714552E+00	14488E+0	14437E+0	143976+3	4365E+3	14341E+0	14323E+0	310E+0	14301E+1	142956+1	14291E+0	714288E+G3	14287E+0	14286E+3	14286E+0	1428	868+4	14286E+0
e	.200128E+0C	5799E+G	78640E+0	71483E+3	64329E+D	57177E+0	50026E+0	42877E+0	35729E+	28 58 3 E+0	21437E+	14292E+0	10	59003E+0	28592E-3	5715 SE-3	572	14290E-0	42853E-0	71+30E-0	3000E-3	572E-0	57143E-J	85714E-C	1429 6E-0	7E-0	14287E-0	
~	.72									• 92	.83	*9 •	• 85	.86	.87	. 68	.89	96.	.91	.92	.93	•6•	• 95	96•	.97	.98	66.	

Table 2. Inviscid flow functions, $\bar{\sigma} = 1$, $\gamma = 1.4$

d g	850000E+02 705753E+02 591028E+02 498892E+02	.424232E+0 .363231E+0 .313004E+0 .271348E+0	cu/342E+02 182635E+02 161627E+02 143667E+02 128232E+02 114900E+02	.32405E+0 .342403E+0 .766304E+0 .697641E+0	.534073E+0 .534073E+0 .490616E+0 .451505E+0 .416186E+0 .355120E+0	-, 32862 9E+01 -, 304416E+01 -, 261859E+01 -, 243102E+01 -, 226796E+01 -, 29796E+01
a	000E+0 493E+0 368E+0 537E+0	57509E 18236E 84504E 55350E	0/65/25+0 8838/2+0 712022+0 55960E+0 42384E+0 19345+0	109528E 109528E 100528E 926121E 852994E 786334E	5 422E+0 9 637E+0 8 441E+0 13 69E+0 8 0 14E+0	.416911E+80 .355961E+80 .356961E+80 .326770E+80 .230101E+00 .250332E+80
다 나 나	35E+0 35E+0 09E+0 57E+0	.368891E+0 .323501E+0 .264776E+0 .251552E+0		33675E+0 33954E+0 53871E+0 62216E+0	.560203E+0 .500194E+0 .461272E+0 .41865E+0 .345683E+0	259269E+00 235518E+00 213657E+00 194106E+00 159650E+00
	.8 :3333E+80 .72759E+00 .72050+E+00 .675187E+00	035699E+0 6 [1141E+0 57 0777E+0 544003E+0	. 444794E+ 00 . 468960E+ 00 . 468960E+ 00 . 485608E+ 00 . 43596E+ 00	13064E+0 94285E+0 86353E+0 79179E+0	66798E¢ 61461E¢ 56617E¢ 52220E¢ 48227E¢ 44599E¢	.3.25.06 .3.25.06 .3.25.06 .3.30.06 .3.26.30 .3.26.30 .3.26.30 .3.25.30 .3.25.30 .3.25.30 .3.25.30 .3.25.30 .3.25.30 .3.25.30 .3.25.30
ਹ ਹ	152778E+01 149375E+01 145895E+01 142366E+01	138813E+0 135262E+0 131737E+0 128260E+0 124851E+0	121529E+01 118198E+01 112211E+01 109354E+01 106632E+01	.101599E+0 .992887E+0 .971146E+0 .950734E+0	.913748E+0 .897083E+0 .881568E+0 .867152E+0 .853779E+0 .841394E+0	619371E+UU 609625E+UU 792411E+BU 77912E+UB 777912E+UB 771568E+UB
9	M M	774989E+0 761285E+0 747935E+0 734936E+0 722281E+0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2196E 2196E 2377E 2358E	322 E + 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	576 561 756 171 171 590 515
~	 					

المراجع والمعادر والمراجع

Table 2. Inviscid flow functions, $\bar{\sigma} = 1$, $\gamma = 1.4$ (Continued)

			5,0		30
50	768463E+00 755666E+00	.322486E+00 .321160E+00	130942E+00 118434E+00	.219301E+00 .201825E+00	161227E+U
5725E+	751285E+0	20033E+ 0	1 07 01 7E+0	82E+0	156559E+0
38233E+	747387E	19016E	965969E-0	+86E+	145479E'
43677664	/45/BIE+0	180 96E+ 0		.155461E+UU	-113214464
423353E+	- / 404 36E +0	1/2/2E+	2 E	00+3094941.	122474571
412300E+		1672/ET 0	332765-0	12012415400	1888446
81271E+	732437E+0	15259E+	5 6	1 09714E+08	10015 5E+0
393957E+	730286E+0	147 21E+ 0	5 08279E-0	.100072E+00	927704E+0
86664 E+	728358E+0	14240E+0	454217E-0	.9114+5E-01	858569€+0
79389E+	726632E+0	13811E+ 0	05178E-0	.828861E-01	-,793835E+00
72131E+	725091E+0	13428E+ 0	360730E-	.752541E-01	733221E+0
64 887 E+	723718E+0	.313008E+00	320518E-	.682088E-01	676472E+0
5765	0	12786E+0		.617126E-01	623356E+0
50437E+0	0	12519E+ 0	51410E-	.557303E-01	573658E+8
43227E+8	Ò	12282E+ 0	21893E-	.502287E-01	527181E+0
3602	Ö	1207+E+		.451765E-01	483743E+B
28835E+0	0	11891E+ 0	71553E-0	. 4 05 442E-01	443176E+0
21649E+0	Ö	11730E+0		. 363039E-01	485321E+0
1+4786+0	•	11589E+0	131194E-01	.324293E-01	370032E+0
07 296 E+0	Ó	.311467E+00	14221E-0	.288952E-01	337168E+0
0012	ė	11360E+ 0	91286E-D	.256 782E-01	-,306602E+0
9536	0	. 311266E+ 00	57445E-0	. 227 560E-01	278288E+8
85800E+0	0	11188E+ 8	39078E-0	.2010726-01	2518716+0
7864	0	11120E+0	0	.177121E-01	2274796+0
71486E+0	0	.311061E+00	•	.155515E-01	204927E+0
64332E+0		11011E+ 0	62546E-0	.136077E-01	18411 3E+B
57180E+0	715109E+00	10968E+ 0		.118638E-01	164941E+0
5003		. 3 109 32E+ 00	31278E-0	.103037E-01	147318E+80
42 E81E+0	18E+0	10902E+ 0	0	.891255E-02	131156E+D
35733E+0	14E+	10876E+ B	32 66 8E-0	.767 ED4E-02	116368E+0
28586E+0	714647E+00	. 3 18855E+ 00	0	.650089E-02	102872E+0
214	Ñ	108375+0	0	.561456E-02	905895E-0
14294E+0	714516E+00	108	0	.476531E-02	794442E-0
07149F+0	714467	1001	8 UK 6 7 A B 7		

and the second

Table 2. Inviscid flow functions, $\vec{\sigma} = 1$, $\gamma = 1.4$ (Continued)

4.	9	9 p p	L	dF वेड्ड	α	A 20
.72	00005E+0	714428E+00	108016+8	9	ė	602739E-01
.73	92861E+0	E +	10793E+0	•	ė	521102E-01
* ~ .	85717E+0)E+0	10787	B-0	ė	448062E-01
.75	178573E+0	4350E+0	10 782E+ 0	39631E-0	Ö	382989E-81
.76	171430	•	0778	344118E-03	.156125E-02	325279E-01
.77	6+287E+0	2E+0	10775E+ 0	563E-0	Ö	274354E-01
.78	57144E+0	2E+0	10773E+ 0	7E-0	ö	229658E-01
.79	50000E+0	2E+0	107716+0	7	ė	190661E- 0 1
8.	42	714299E+00	10770E+0	9E-0	.527 412E-03	156856E-01
.81	35715E+0	5E+0	107 69 €+ 0	111E-0	ė	127759E-01
.82	28572E+0	2E+0	10768E+ 0	612424E-04	478E-0	102911E-01
.83	429E+0		107		.278384E-0	818780E-02
18.	14286E+	714289E+00	.310767E+00	02089E	.205	642466E-02
•85	071436+0	3E+0	10767E+ 8		.148 886E-0	496288E-02
.86	000000 E+0	0+1	10767	355766-	.105448E-0	376600E-02
.87	28572E-0	714286E+00	10767E+ 0	69109E-	.727972E-0	279989E- 0 2
.88	57143E-0	9	18766E+ 0		.487870E-	203279E-02
69.	85714E-0	E+0	10766E+ B		.315	143529E-02
06.	14286E-0	5	107		.196064E-	-,9803196-03
.91	-2857E-0	0+	10766E+ 8	•	.115774E-0	643188E-03
.92	71429E-0	+	10766E+0		.642462E-0	401539E-03
.93	0-300000	+	10766E+0	•	.329525E-0	235375E-03
6	28571E-0	0+	10766E+ 8		.152459E-0	127049E-03
• 95	57143E-0	7	10766E+ 0	281342E-07	•	612700E-04
.96	85714E-0	7	10766E+8	520E-0	00 769E-0	250962E-04
.97	14286E-0	7	10766E+ 0	263E-0	76435E-	9405
86.	42857E-0	86E+1	1076	238	1045-0	56851
66.	14 286 E-0	٠	10766E+ 0	180059E-11	.196064E-09	98 U3 1 9E-117
1.08	•	714286E+00	.310766E+00	•	••	•

Table 3. Inviscid flow functions, $\bar{\sigma}=2$, $\gamma=1.4$

dR d£		880E+0
œ		.748440E-J1
dF d\$	2000	// 3392E-01 62 4418E-01
u.	28 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.308778E+00
φ φ ₽		/*(140E+00 736652E+00
e		0 E + 0
~		.35

Service Grandstates .

Table 3. Inviscid flow functions, $\bar{\sigma} = 2$, $\gamma = 1.4$ (Continued)

dR d£	7925605+36	71239 if + 00	٠	573616E+00	٠	459432E+00	44E+	7216+	516+	96	2	196+	00173	6310	15 4921E+00	7E+0	٠	103484E+00	899567E-01	779615E-01	90	579935E-01	497615E-01	425420E-01	303E-	07305	9547E-0	9	182621E-01	152060E-01	-, 1259436-01	28E-0	849225E-02	0866E-0		447841E-02
α	.6648396-01	.549656E-01	221136-	î	. 4071866-01	E-0	9	76368E-0	13€ −	111466-0	?	•	10	10	ò	444	Ŷ	-	.551324E-02				785776	.232505E-02	3190E	w	31488E	w	765206	9573E	709196	56387E-0	62327E-0	5553E-	23296E-0	73
वह वह	545672E-01	47 6047E-01	414555E-01	360316E-01	\$	9	29E-0	L	6-0	•	126806E-01	2	9025E-	77 8847E-02	65 7941E-02	.55 3950E-		3885286-02	323557E-02	268379E-02	221684E-02	182315E-02	149253E-02	121600E-02	5727 E	48336-0	7339E-0	ç	2493E-0	9	247596E-03	921	7890	29116-	54 E-	640530E-04
	.308194E+00	.307684E+00	.3072396+00	•	.3065166+00	06225	059746+0	05757E+0	05570E+0	05409E+	05272E+	.305155E+00	05055E+	.3049706+00	.304899E+00	.304838E+00	.3347876+00	.304745E+00		•				.304605E+00		585	04578E+	572E+	04568	564E+	04561	045596+0	045586+0	04556E+0	4555E+0	045
व व	7335876+00	.	728559E+00	726515E+00	724737E+00	Ť	•	72C705E+00	715711E+00	*	18126E+	717501E+00	0	716517E+00	716134E+00	715811E+00	15540E+	715313E+00	715123E+00	714965E+00	٠	76+	38E+	714566E+00	•	714460E+00	714422E+00	±	714367E+00	14348E+0	714333E+00	714321E+00	714312E+00	14305E+0	14300	714296E+00
9.	0+G	450997E+0	3700 E+0	.436425E+0C	9169E+0	9 E	4734 E+0	491 E+0	3289E+0	93097E	85912 E	78734	71561E	64394E+C	57231 €	50	42914 E	•	28608	21454	14309 E	07161	00014 E	2868 E	85723 E	~	71434 6+0	49	57146E+0	50002 E+	42859E+0	35715E+0	28572E+0	1429 E+	14286E+0	071436+0
~		.37		•39	9	.41	.42	.43	***	• 45	.46	.47	34.	64.	• 50	.51	. 52	•53	• 54	.55	• 56	5	S	• 59	9.	•61	.62	•63	• 64	•	• 66	.67	• 68	69.		

Table 3. Inviscid flow functions, $\bar{\sigma}=2$, $\gamma=1.4$ (Continued)

dR de	4	281448E-02	L	•	-· 130889E-02	ш	743494E-03	549484E-03	00152 E	900	2017446-03	-, 139139E-03	9382306-04	616769E-04	8	43311E-	144613E-04	821451E-05	442109E-05	-, 222898E-05	103661E-05	Ţ	159776E-06	488466E-07	30E-0	176530E-08	126539E-09	139807E-11	•
œ	E-0	Ţ	.763430E-04	ı.	.418845E-04	.304388E-04	.218091E-04	.153855E-04	06707	.726307E-05	.484186E-05	.315381E-05		.123354E-05		.4217386-06	.231381E-06	0480	.5894796-07	.2674776-07	.110571E-07	.406166E-08	.1278216-08	.325644E-09	27	.7061186-11	.337437E-12	.186410E-14	•
वह वह	Ĭ	Ī	253179E-04	ш	12 82 18 E-04	w	ш	21136	w	176018E-05	1111656-05	683861E-06	408481E-06	-, 23 6009E-06	13 12 93 E-06	699311E-07	354154E-07	169040E-07	751886E-08	30 7053E-08	11 28 28 E-08	362648E-09	978222E-10	207681E-10	1646	270198E-12	860809E-14	.237767	•
L	4554E+	04554E+0	.304553E+00	.304553E+00	.304553E+00	04553E+	.304553E+00	.304553E+00	04553E+	.304553E+00	.304553E+00	04553E+	.304553E+00	.304553E+00	045536+	.304553E+00	.304553E+00	.304553E+00	.304553E+00	*	.304553E+00	04553	.334553E+00	.304553E+00	4553E+0	.304553E+00	.304553E+00	E+0	.304553E+00
9 p	714293£+00	714291E+00	714289E+00	714268E+03	7142876+00	714267E+00	714286E+00	714286E+0J	142866+	714286E+00	714286E+00	714286E+00	714286E+00	714286E+00	714286E+00	714286E+00	714286E+00	14286E+	714286E+00	714286E+00	714286E+JU	714286E+00	714286E+00	714286E+00	~	71 4266E+00	714266E+JJ	714286E+00	714286E+00
æ	0000	92857E	85714E	8571 E		64286E	57143E	50000 E	42857E	.135714E+0C	16	1429 E	4286 E	.107143 6+00	0000 E	8571 E	.857143 E-01	85714 E	4286E	5	71429E	90000	.428571 E-01	57143E	.285714 E-01	.214286 E-01	42657 E	286 E	• 0
44	.72			.75		.77	.78	.79	.80	.81	. 62	.83	•8•	. 85	99.	.87	.88	68.	96.	16.	.92	.93	•6•	66.	96•	.97	96.	66.	1.00

Same of the state of the same of

Fig. 3. Inviscid flow field, $\overline{\sigma} = 0$

Fig. 4. Inviscid flow field, $\overline{\sigma} = 1$

Fig. 5. Inviscid flow field, $\overline{\sigma} = 2$

٠٠ ۽ ٣٠ ر**ٽو**ھر

Fig. 6. Local Mach number

Fig. 7. Local Reynolds number

Table 4. Comparison with wall gradients of Reference 1

Г			f " =	(0,0)	g'(0,0)					
,	γ = 1 Pr = (Present	Ref. 1	Present	Ref. 1				
Ľ	- <u> </u>	J. 12	0.66198	0.66141	0.89864	0.89693				
ō	σ	α	[ð <u>f</u> "/8	^[ξ] ς=0	[əg'/əg] _{g=0}					
			Present	Ref. 1	Present	Ref. 1				
0	0	-1/2	1.785	1.787	-1.435	-1.437				
1	0	-1	2.597	2.601	-3.025	-3.040				
1	1	-1	3.775	3.788	-1.814	-1.816				
2	1	-3/2	4.576	4.601	-3.405	-3.419				

$$\bar{f}'' = \frac{f'''(\xi,0)}{f'''(0,0)}$$
 $\bar{g}' = \frac{g'(\xi,0)}{g'(0,0)}$

Fig. 8. Composite profile summary, Case A

Fig. 8. Composite profile summary, Case B

Fig. 8. Composite profile summary, Case C

Fig. 8. Composite profile summary, Case D

Fig. 9. Approximate ne distribution, Case A

Fig. 9. Approximate \(\Pi\$ distribution, Case B

Fig. 9. Approximate $\mathbb{I}_{\mathbf{e}}$ distribution, Case C

Fig. 9. Approximate ne distribution, Case D

Fig. 10A-1. Detailed boundary-layer profiles, $\zeta = 0.10$, Case A

Fig. 10A-2. Detailed boundary-layer profiles, $\zeta = 0.20$, Case A

Fig. 10A-3. Detailed boundary-layer profiles, $\zeta = 0.30$, Case A

Fig. 10A-4. Detailed boundary-layer profiles, $\zeta = 0.40$, Case A

Fig. 10A-5. Detailed boundary-layer profiles, $\zeta = 0.50$, Case A

Fig. 10A-6. Detailed boundary-layer profiles, $\zeta = 0.60$, Case A

Fig. 10A-7. Detailed boundary-layer profiles, $\zeta = 0.70$, Case A

Fig. 10A-8. Detailed boundary-layer profiles, $\zeta = 0.80$, Case A

Fig. 10A-9. Detailed boundary-layer profiles, $\zeta = 0.90$, Case A

Fig. 10B-1. Detailed boundary-layer profiles, $\zeta = 0.10$, Case B

Fig. 10B-2. Detailed boundary-layer profiles, $\zeta = 0.20$, Case B

Fig. 10B-3. Detailed boundary-layer profiles, $\zeta = 0.30$, Case B

Fig. 10B-4. Detailed boundary-layer profiles, $\zeta = 0.40$, Case B

1

man use fran**tist t**

Fig. 10B-5. Detailed boundary-layer profiles, $\zeta = 0.50$, Case B

Fig. 10B-6. Detailed boundary-layer profiles, $\zeta = 0.60$, Case B

Fig. 10B-7. Detailed boundary-layer profiles, $\zeta = 0.70$, Case B

Fig. 10B-8. Detailed boundary-layer profiles, $\zeta = 0.80$, Case B

Fig. 10B-9. Detailed boundary-layer profiles, $\zeta = 0.90$, Case B

Fig. 10C-2. Detailed boundary-layer profiles, $\zeta = 0.20$, Case C

Fig. 10C-4. Detailed boundary-layer profiles, $\zeta = 0.40$, Case C

Fig. 10C-5. Detailed boundary-layer profiles, $\zeta = 0.50$, Case C

Fig. 10C-6. Detailed boundary-layer profiles, $\zeta = 0.60$, Case C

Fig. 10C-7. Detailed boundary-layer profiles, $\zeta = 0.70$, Case C

Fig. 10C-8. Detailed boundary-layer profiles, $\zeta = 0.80$, Case C

Fig. 10C-9. Detailed boundary-layer profiles, $\zeta = 0.90$, Case C

Fig. 10D-1. Detailed boundary-layer profiles, $\zeta = 0.10$, Case D

Fig. 10D-2. Detailed boundary-layer profiles, $\zeta = 0.20$, Case D

Fig. 10D-3. Detailed boundary-layer profiles, $\zeta = 0.30$, Case D

Fig. 10D-4. Detailed boundary-layer profiles, $\zeta = 0.40$, Case D

Fig. 10D-5. Detailed boundary-layer profiles, $\zeta = 0.50$, Case D

Fig. 10D-6. Detailed boundary-layer profiles, $\zeta = 0.60$, Case D

Fig. 10D-7. Detailed boundary-layer profiles, $\zeta = 0.70$, Case D

Fig. 10D-8. Detailed boundary-layer profiles, ζ = 0.80, Case D

Fig. 10D-9. Detailed boundary-layer profiles, $\zeta = 0.90$, Case D

Fig. 11. Wall gradient of f'and g, Case A

Fig. 11. Wall gradient of f' and g, Case B

Fig. 11. Wall gradient of f' and g, Case C

Fig. 11. Wall gradient of f' and g, Case D

Fig. 12. Friction coefficient and Stanton number, Case A

Fig. 12. Friction coefficient and Stanton number, Case B

Fig. 12. Friction coefficient and Stanton number, Case C

Fig. 12. Friction coefficient and Stanton number, Case D

Fig. 13. Integral lengths and lateral mass flux, Case A

Fig. 13. Integral lengths and lateral mass flux, Case B

AEROSPACE CORP EL SEGUNDO CA AEROPHYSICS LAB NUMERICAL SOLUTIONS FOR LAMINAR BOUNDARY LAYER BEHIND BLAST WAV--ETC(U) MAY 80 S WIJU, H MIRELS F04701-79-C-0080 TR-0080 (5940-02)-2 SD -TR-80-23 AD-A084 435 UNCLASSIFIED 2 -- 2 END DATE 7 80

Fig. 13. Integral lengths and lateral mass flux, Case C

Charles of the state of the sta

Fig. 13. Integral lengths and lateral mass flux, Case D

A CONTRACTOR OF CHARLES CALLE

Table 5A. Boundary-layer functions for Case A

		· CASE A	$\overline{\sigma} = 0.0$, σ	'= 0.0 , γ=	$\overline{\sigma}$ = 0.0 , σ = 0.0 , γ = 1.4 , Pr = 0.72	0.72	
₩,	$f_{\eta\eta}(\xi,0)$	$g_{\eta}(\xi,0)$	S	S	s ²	S3	N.
00.0	.661981	.898634	5.0249	.0628	0540	.4521	-1.0274
.10	.786964	.794417	4.0363	-,1667	-1.0087	9725.	6299
. 20	. 925999	.726410	3.2793	2751	9707	. 2892	4623
.30	1.078690	.684235	2.7069	3302	9131	2752.	1975
.40	1.245440	.666328	2.3162	-,3552	8488	.1953	3865
.50	1.424570	.675090	2.0642	-,3580	7809	.1641	4057
.60	1.609090	.713830	1.8884	3424	7116	.1405	4532
.70	1.783150	.779053	1.7528	-,3152	6472	.1258	5101
.80	1.928510	.851701	1.6340	2878	0965	.1173	5678
.90	2.046290	.909773	1.5102	2686	5598	.1112	5983

Table 5B. Boundary-layer functions for Case B

 $\overline{\sigma}=1.0$, $\sigma=0.0$, $\gamma=1.4$, $\mathrm{Pr}=0.72$ CASE B

3	-1.6274	5528	7885	-,1820	0845	2056	1810	3912	4000	4250
S	1150.	.3701	.2027	1551.	. 0831	.0408	.0532	.0587	(.5197)	(. 4972)
S ₂	0576	-1.0748	-1,0547	ח-מט.ו-	6806*-	7656-	6487	0509	5673	0005
S	.0528	2908	4450	5400	5745	5119	4101	3724	3541	3322
S	5.0249	4.0552	3.2853	2.5570	2.2411	2.0144	1.8713	1.7570	1.6827	1.5250
gη(ξ, 0)	.898535	. 699514	.583187	.512713	. 485995	. 523739	.637757	.720585	.759502	.807216
$f_{\eta\eta}(\xi,0)$.651981	.835105	1.018720	1.219840	1.454370	1.722890	1.970780	2.125890	2.267300	2.405150
w	00 0	.10	. 20	.30	.40	. 50	. 60	.70	.80	06.

Carlothe described a language

Table 5C. Boundary-layer functions for Case C

		CASE C	CASE C $\vec{\sigma}$ = 1.0, σ = 1.0, γ = 1.4, Pr = 0.72	$= 1.0 , \gamma = 1$	1.4 , $Pr = 0$.	72	•
₩	$f_{\eta\eta}(\xi,0)$	$g_{\eta}(\xi,0)$	S ₀	Sı	s ₂	S3	*
00.00	.651981	.898536	5.0249	.0628	9750	.4511	-1.0274
.10	.945834	.801057	3.4854	7022-	9145	. 2853	5187
. 20	1.315150	.787550	2.3857	2845	7544	. 1885	1574
. 30	1.810550	.845471	1.4212	2717	5988	.1251	- 2305
. 40	2.503180	1.005040	1.1436	2282	4564	C - R.O.	515
. 50	3.480520	1.327780	.8155	[571	5768-	.0573	902P -
. 60	4.881010	1.883540	.5870	1224	2380	. 0412	5102
.70	7.069370	2,777460	.4355	1.80	1635	J620.	5474
.80	11.338800	4.469330	.3233	0515	-1017	.0181	5824
06.	23.999900	9.462470	.2371	0240	0479	.0087	Kl 29

Table 5D. Boundary-layer functions for Case D

		CASE D	\vec{f} = 2.0 , σ =	1.0 , $\gamma = 1$	$\vec{\sigma} = 2.0$, $\sigma = 1.0$, $\gamma = 1.4$, Pr = 0.72	.72	
س	$f_{\eta\eta}(\xi,0)$	g _n (ξ, 0)	°S	S1	S ₂	S ₃	. *
00.00	.661981	.898635	5.0249	.0528	9750	.4531	-1.0274
.10	. 995978	.713260	3.3624	-, 2165	9576	.2567	4150
. 20	1.421550	.650511	2.3499	3895	8001	. 1529	152
.30	2.016990	.679150	1.7593	3701	6207	٤(٢).	1152
.40	2.881340	.845368	1.3850	2758	0356	6623.	2387
.50	4.030950	1.294200	1.0454	1836	-, 3045	P150.	An1A
.60	5.521770	.1.829020	.7715	1333	2235	. 1247	4077
.70	7.941190	2.614950	. 4945	0931	1555	.0167	9267-
. 80	12.736900	4.195700	.2721	0590	6960*-	5010.	6457
. 90	27.230900	9.023530	1047	0269	0453	(.0504)	504?

IV. CONCLUDING REMARKS

The results of this study provide the first exact solutions of the laminar boundary layer behind power-law shocks that cover the entire terrain swept by a blast wave, with the exception of a small area near the center of the blast where the inviscid and viscid equations are singular. Upon increase in ξ , the results depart significantly from the previous solutions for $\xi^2 \ll 1$. In particular, in all four cases, Case A through Case D, the normalized heat transfer showed a minimum before $\xi = 0.5$. For the axisymmetric boundary layers ($\sigma = 1$, Case C and D) both wall shear and heat transfer increase at much faster rates with increase in ξ than were indicated by the solutions for $\xi^2 \ll 1$.

Boundary-layer transition is discussed in Appendix B. The present results are applicable only in that portion of the flow field where the boundary layer remains laminar. For strong shocks in air or argon, the boundary layer is laminar for $p_{\infty}x_{g} \leq 0~(10^{-3}~-10^{-2})$ atm-ft. For larger values of $p_{\infty}x_{\infty}$, the fraction of the disturbed field that remains laminar is $\xi_{t} = 0(10^{-3}-10^{-2})/p_{\infty}x_{g}$, where $p_{\infty}x_{g}$ is in units of atm-ft. Therefore, the results presented here are of primary interest for low pressure test facilities and, possibly, for studies of the interaction of pulsed laser induced blast waves with ambient surfaces.

APPENDIX A

BLAST-WAVE STRENGTH

The variation of blast-wave radius x_s with time t is discussed herein. For blast waves with constant energy E the variation of shock radius with time can be expressed 4

$$\mathbf{x_s} = \left(\frac{\mathbf{E}}{\overline{\alpha}\rho_{\infty}}\right)^{\frac{1}{\overline{\alpha}+3}} \mathbf{t}^{\frac{2}{\overline{\alpha}+3}} \tag{A-1}$$

where $\overline{\alpha}$ is a nondimensional constant that depends on γ and $\overline{\sigma}$. Numerical estimates for $\overline{\alpha}$ are obtained from 4,5

$$\overline{\alpha} = \Delta \left(\frac{2}{\overline{\sigma}+3}\right)^2 \int_0^1 \left(\frac{F}{\gamma-1} + \frac{\varphi^2 R}{2}\right) \xi^{\overline{\sigma}} d\xi \tag{A-2}$$

where $\Delta=2$, 2π , and 4π for $\overline{\sigma}=0$, 1, and 2, respectively. The choice $\Delta=2$ for $\overline{\sigma}=0$ indicates that the latter corresponds to a symmetric blast (i.e., $-1 \le \xi \le 1$). The units of E in Eq. (A-1) are energy/area, energy/length, and energy for $\overline{\sigma}=0$, 1, and 2, respectively. Numerical estimates for $\overline{\alpha}$ are provided in Table A-1.

Table A-1. Blast-wave strength parameter. Data obtained from Ref. 5 ($\overline{\sigma}$ = 0,1) and H. Bagwell ($\overline{\sigma}$ = 2) Values for $\overline{\sigma}$ = 0 correspond to symmetric blasts, -1 $\leq \xi \leq 1$.

<u> </u>		~	
J	γ = 1.15	γ = 1.4	$\gamma = 5/3$
0	2.999	1.078	0.606
1	2.674	0.984	0.551
2	ļ	0.851	0.493
		<u> </u>	

APPENDIX B

BOUNDARY-LAYER TRANSITION

The boundary layer is laminar directly behind the shock, but it may undergo transition to a turbulent boundary layer at some distance behind the shock. The location of the transition point defines the extent of the laminar boundary layer and, therefore, the region of validity of the present theory. The latter is discussed herein.

Assume that local Reynolds number Re can be characterized by flow conditions directly behind the shock. An appropriate Reynolds number (based on distance a freestream particle has traveled relative to the wall) is

$$Re = \frac{u_e (x_s - x)}{v_e} \left[\frac{u_e}{u_s - u_e} \right]$$
$$= \frac{\xi x_s u_s}{v_e} \left[\frac{\left[R(0) - 1 \right]^2}{R(0)} \right]$$
(B-1)

where R(0) is the density ratio across the shock and $\nu_e = \mu_e/\rho_e$ is evaluated at $\xi = 0$. For an ideal gas, a strong shock $(M_s^{-2} \ll 1)$ and $\mu \sim T$, Eq. (B-1) becomes

$$\frac{\mathrm{Re}}{\xi \, \mathbf{x_s}} = \left(\frac{2}{\gamma - 1}\right)^2 \left[\frac{(\gamma + 1)^2}{2\gamma(\gamma - 1)}\right]^{\omega} M_s^{1 - 2\omega} \frac{\rho_{\infty} \, a_{\infty}}{\mu_{\infty}} \tag{B-2}$$

For most gases, w = 1/2. Thus the dependence of Eq. (B-2) on shock Mach number M_g is weak. Taking w = 1/2 in Eq. (B-2) yields

$$\frac{\text{Re}}{\xi \mathbf{x}_{s}} = \frac{4(\gamma+1)}{\left[2\gamma(\gamma-1)^{5}\right]^{1/2}} \frac{\rho_{\infty}^{a}_{\infty}}{\mu_{\infty}}$$
 (B-3)

Let ξ_t and Re_t denote the transition location and the transition Reynolds number, respectively. For air and argon, Eq. (B-3) can be expressed in the form

$$p_{\infty} \times s = \xi_t \left[\frac{10^6}{Re_t} \frac{522^{\circ}R}{T_{\infty}} \right] = 2.5 \times 10^{-3} \text{ atm-ft}$$
 (air) (B-4a)

=
$$8.4 \times 10^{-3}$$
 atm-ft (argon) (B-4b)

where $x_s \ \xi_t = x_s - x_t$ denotes the distance behind the shock at which transition occurs and ξ_t is a direct measure of the fraction of the flow field which is laminar. The bracketed term on the left-hand side of Eq. (B-4) is of order one. Hence, the boundary layer is laminar in the entire disturbed flow region [i.e., $\xi_t = 0(1)$] for $p_\infty x_s \le 0$ ($10^{-3} - 10^{-2}$) atm-ft. The latter regime occurs primarily in test facilities (e.g., blast-wave-driven low pressure shock tubes) but may also be of interest in connection with the study of pulsed laser induced blast waves. With increase in $p_\infty x_s$ above values of the order of 10^{-2} atm-ft, the fraction of the disturbed flow that is laminar is reduced (i.e., $\xi_t \to 0$). For $\xi_t < 1$ and a given ambient gas, $x_s - x_t$ depends only on p_∞ and is independent of blast energy and shock radius.

REFERENCES

- 1. H. Mirels and J. Hamman, Phys. Fluids 5 (1), a1-6 (1962).
- 2. C. J. Chen and L. M. Chang, "Unsteady Compressible Laminar Boundary Layer Flow Behind a Plan Blast Wave," Paper presented 11th AIAA Thermophysics Conference, San Diego, California, July 1976.
- 3. F. G. Blottner, "Finite Difference Method of Solution of the Boundary Equations," AIAA Journal 8 (2), 193-205 (February 1970).
- 4. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (English translation), Academic Press, New York (1959), p. 222.
- 5. H. Mirels, "Similarity Solutions for Inviscid Hypersonic Flow Over Slender Power and Related Bodies," Advances in Applied Mechanics, Vol. VII, Academic Press, New York (1962).
- 6. H. Mirels, "Boundary Layer Effects in Shock Tubes," Shock Tube Research, Proceedings of the Eighth International Shock Tube Symposium, ed. J. L. Hollery, A. G. Gaydon, and P. R. Owen, Chapman and Hall, London (1971), p. 6-1.

LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting experimental and theoretical investigations necessary for the evaluation and application of scientific advances to new military concepts and systems. Versatility and flexibility have been developed to a high degree by the laboratory personnel in dealing with the many problems encountered in the nation's rapidly developing space and missile systems. Expertise in the latest scientific developments is vital to the accomplishment of tasks related to these problems. The laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat transfer, reentry physics, chemical kinetics, structural mechanics, flight dynamics, atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmospheric optics, chemical reactions in polluted atmospheres, chemical reactions of excited species in rocket plumes, chemical thermodynamics, plasma and laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum and radiation effects on materials, lubrication and surface phenomena, photosensitive materials and sensors, high precision laser ranging, and the application of physics and chemistry to problems of law enforcement and biomedicine.

Electronics Research Laboratory: Electromagnetic theory, devices, and propagation phenomena, including plasma electromagnetics; quantum electronics, lasers, and electro-optics; communication sciences, applied electronics, semiconducting, superconducting, and crystal device physics, optical and acoustical imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal matrix composites and new forms of carbon; test and evaluation of graphite and ceramics in reentry; spacecraft materials and electronic components in nuclear weapons environment; application of fracture mechanics to stress corrosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radiation from the atmosphere, density and composition of the atmosphere, aurorae and airglow; magnetospheric physics, cosmic rays, generation and propagation of plasma waves in the magnetosphere; solar physics, studies of solar magnetic fields; space astronomy, x-ray astronomy; the effects of nuclear explosions, magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and magnetosphere; the effects of optical, electromagnetic, and particulate radiations in space on space systems.

THE AEROSPACE CORPORATION El Segundo, California

a lar a substitute suite