Programação Linear Prof. Moretti

Método Simplex na Forma de Tableau

$$\begin{array}{c} \text{Considere as equações} & & Bx_{\text{B}} + Nx_{\text{N}} = b \\ z - c_{\text{B}}x_{\text{B}} - c_{\text{N}}x_{\text{N}} = 0 \end{array}$$

Podemos rescrevê-las como
$$\begin{array}{l} 0z + Ix_{\scriptscriptstyle B} + B^{\text{--}1}Nx_{\scriptscriptstyle N} = B^{\text{--}1}b \\ 1z - 0x_{\scriptscriptstyle B} + \left(c_{\scriptscriptstyle B}B^{\text{--}1}N - c_{\scriptscriptstyle N}\right)\!x_{\scriptscriptstyle N} = c_{\scriptscriptstyle B}B^{\text{--}1}b \end{array}$$

O Método Simplex na forma tableau é dado então por:

	Z	\mathbf{x}_{B}	X _N	
Z	1	0	$c_{\rm B}B^{-1}N - c_{\rm N}$	$c_B B^{-1} b$
\mathbf{x}_{B}	0	I	$\mathrm{B}^{-1}\mathrm{N}$	$\mathrm{B}^{-1}\mathrm{b}$

Exemplos:

1) Considere o seguinte PPL:

$$\begin{array}{l} \text{Min } z = x_1 + x_2 - 4x_3 \\ \text{sa} \\ x_1 + x_2 + 2x_3 \leq 9 \\ x_1 + x_2 + 2x_3 \leq 2 \\ -x_1 + x_2 + x_3 \leq 4 \\ x_1 \geq 0 \; , \; x_2 \geq 0 \; , \; x_3 \geq 0 \end{array}$$

Colocando este problema na forma padrão, temos:

Min
$$z = x_1 + x_2 - 4x_3 + 0x_4 + 0x_5 + 0x_6$$

sa
 $x_1 + x_2 + 2x_3 + x_4 = 9$
 $x_1 + x_2 + 2x_3 + x_5 = 2$
 $-x_1 + x_2 + x_3 + x_6 = 4$
 $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$, $x_6 \ge 0$

Tableau inicial

	Z	\mathbf{x}_1	X ₂	Х 3	X 4	X 5	X 6	
z	1	-1	-1	4	0	0	0	0
X 4	0	1	1	2	1	0	0	9
X 5	0	1	1	-1	0	1	0	2
X 6	0	-1	1	1	0	0	1	4

Iteração 1

Como $z_3 - c_3 = 4$ é o único custo reduzido, x_3 entra na base.

	z	\mathbf{x}_1	X ₂	ж3	X 4	X 5	X 6		
z	1	-1	-1	4	0	0	0	0	TR
X 4	0	1	1	2	1	0	0	9	9/2
X 5	0	1	1	-1	0	1	0	2	_
X 6	0	-1	1	1	0	0	1	4	4/1

Temos que min $\{9/2, 4\} = 4 \implies x_6$ sai da base.

Como o valor do elemento piv \hat{o} já é igual a 1, temos apenas que anular os demais componentes da coluna de x_3 .

	z	\mathbf{x}_1	X 2	ж3	X 4	X 5	X 6	
z	1	3	-5	0	0	0	-4	-16
X 4	0	3	-1	0	1	0	-2	1
X 5	0	0	2	0	0	1	1	6
ж3	0	-1	1	1	0	0	1	4

Iteração 2

Temos $z_1 - c_1 = 3$, que é positivo. Logo, x_1 é candidata para entrar na base.

	Z	\mathbf{x}_1	\mathbf{x}_2	X 3	X 4	\mathbf{x}_5	X 6		
z	1	3	-5	0	0	0	-4	-16	TR
X 4	0	3	-1	0	1	0	-2	1	1/3
X 5	0	0	2	0	0	1	1	6	_
X 3	0	-1	1	1	0	0	1	4	-

x₄ sai da base.

O valor do elemento pivô é 3. Dividindo a linha do pivô por 3, e anulando os demais componentes da coluna de x_1 , temos o seguinte tableau:

	z	\mathbf{x}_1	\mathbf{x}_2	X 3	X 4	X 5	X 6	
z	1	0	-4	0	-1	0	-2	-17
$\mathbf{x_1}$	0	1	-1/3	0	1/3	0	-2/3	1/3
X 5	0	0	2	0	0	1	1	6
X 3	0	0	2/3	1	1/3	0	1/3	13/3

Como todos os custos reduzidos são negativos, estamos na solução ótima, que é dada por z = -17 , com x_1 = 1/3 , x_3 = 13/3 , x_5 = 6 e as demais variáveis iguais a zero.

2) Considere o seguinte PPL:

$$\label{eq:maxz} \begin{aligned} \text{Max z} &= 4x_1 + 5x_2 + 9x_3 + 11x_4\\ \text{sa} \\ &\quad x_1 + x_2 + x_3 + x_4 \leq 15\\ &\quad 7x_1 + 5x_2 + 3x_3 + 2x_4 \leq 120\\ &\quad 3x_1 + 5x_2 + 10x_3 + 15x_4 \leq 100\\ &\quad x_1 \geq 0 \;,\; x_2 \geq 0 \;,\; x_3 \geq 0 \;,\; x_4 \geq 0 \end{aligned}$$

Colocando este problema na forma padrão, temos:

Max
$$z = 4x_1 + 5x_2 + 9x_3 + 11x_4 + 0x_5 + 0x_6 + 0x_7$$
 sa
$$x_1 + x_2 + x_3 + x_4 + x_5 = 15$$

$$7x_1 + 5x_2 + 3x_3 + 2x_4 + x_6 = 120$$

$$3x_1 + 5x_2 + 10x_3 + 15x_4 + x_7 = 100$$

$$x_1 \ge 0$$
 , $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$, $x_6 \ge 0$, $x_7 \ge 0$

Tableau inicial

	z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X 4	x_5	x_6	x_7	
z	1	4	5	9	11	0	0	0	0
X 5	0	1	1	1	1	1	0	0	15
X 6	0	7	5	3	2	0	1	0	120
X 7	0	3	5	10	1 2 15	0	0	1	100

Observe que as variáveis de folga formam uma base canônica.

Iteração 1

Como temos $z_j - c_j > 0$, devemos escolher uma variável para entrar na base. Como z_4 - c_4 é o maior valor dos custos reduzidos, x_4 entra na base.

A variável x_7 sai da base, pois min { 15/1, 120/2, 100/15} = 100/15

	z	\mathbf{x}_1	\mathbf{x}_2	ж з	X 4	X 5	X 6	X 7	
z	1	4	5	9	11	0	0	0	0
X 5	0	1	1	1	1	1	0	0	15
X 6	0	7	5	3	2	0	1	0	120
X 7	0	3	5	10	15	0	0	1	100

O valor do pivô é quinze, mostrado na célula sombreada. Para realizarmos o pivoteamento, devemos igualar este valor a 1, e anular os demais componentes da respectiva coluna.

Após o pivoteamento, temos o seguinte tableau:

	z	\mathbf{x}_1	\mathbf{x}_2	X 3	X 4	X 5	X 6	X 7	
z	1	9/5	4/3	5/3	0	0	0	-11/15	-220/3
X 5	0	4/5	2/3	1/3	O	1	O	-1/15	25/3
X 6	0	33/5	13/3	5/3	0	0	1	-2/15	320/3
X 4	0	1/5	1/3	2/3	1	0	0	1/15	20/3

Iteração 2

x₁ entra na base e x₅ sai.

	Z	X 1	X 2	Ж 3	X 4	X 5	X 6	X 7	
z	1	0	-1/6	11/12	0	0	0	-11/15	-1105/12
$\mathbf{x_1}$	0	1	5/6	5/12	0	5/4	0	-1/15	125/12
X 6	0	0	-7/6	-13/12	0	-33/4	1	-2/15	455/12
X 4	0	0	1/6	7/12	1	-1/4	0	1/15	55/12

Iteração 3

x₃ entra na base e x₄ sai.

	z	\mathbf{x}_1	X 2	х 3	X4 X5	X 6	X 7	
Z	1	0	-3/7	0	-11/7 -13/7	0	-11/15	-695/7
$\mathbf{x_1}$	0	1	5/7	0	-5/7 10/7	0	-1/15	50/7
x 6	0	0	-6/7	0	13/7 -61/7	1	-2/15	325/7
ж3	0	0	2/7	1	12/7 -3/7	0	1/15	55/7

Estamos no ótimo, pois todos os $\, z_{\, j} - c_{\, j} \! \leq 0 \, . \,$

A solução ótima é dada então por z = 695/7, com x_1 = 50/7; x_6 = 325/7 e x_3 = 55/7.

Exercício: Considere o seguinte quadro:

	Z	\mathbf{x}_1	X 2	X 3	X 4	
\boldsymbol{z}	1	b	1	f	æ	6
X 3	0	С	0	1	1/5	4
\mathbf{x}_1	0	d	e	O	2	a

- a) Ache os valores de a, b, c, d, e, f e g.
- b) Ache B⁻¹
- c) Estamos no ótimo?