Math103A Modern Algebra

seraph

December 6, 2024

Contents

1	Group and Subgroups			
	1.1	Binary Operators	2	
		Groups		
	1.3	Abelian Groups	5	
	1.4	Non Abelian Groups	7	
		Subgroups		
	1.6	Cyclic Groups	11	
2			L 5	
	2.1	Groups of Permutations	15	
	2.2	Finitely Generated Abelian Groups	18	
	2.3	Cosets & the Theorem of Lagrange	21	
		Homomorphisms & Factor Groups		
		Factor Group Computation & Simple Groups		

Chapter 1

Group and Subgroups

Lecture 2

binary operator?

Binary Operators 1.1

Definition 1.1.1. A binary operation * on S is a function mapping every element in $S \times S$ into S

Exercise. Let $M(\mathbb{R}) = \text{set of all square matrices in } \mathbb{R}$, is + a binary operator on M?

Answer. No, because different sized matrices cannot add together.

Exercise. Let $\mathbb{Z}^+ = \{1, 2, 3, ...\}$, then we define a * b = c s.t. c is at least 5 more than a + b, is * a

*

*

Answer. No, because the output isn't unique. $1 * 2 = \{8, 9, 10...\}$.

Definition 1.1.2. If (S,*) is a binary algebraic structure, then $H\subseteq S$ is closed under this operation iff $\forall a, b \in H, a * b \in H$

Note. If $M_2(\mathbb{R})$ are all 2×2 matrices over \mathbb{R} , then $(M_2(\mathbb{R}), +)$ is a proper algebraic structure.

Exercise. If $H \subseteq M_2(\mathbb{R})$, $H = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\}$, is H closed under +?

Answer. Yes *

Proof.
$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a+c & -(b+d) \\ b+d & a+c \end{bmatrix} \in H$$

Exercise. Let $\mathbb{C} = \{a + bi : a, b \subseteq \mathbb{R}\}$, is \mathbb{C} closed under addition and multiplication?

Answer. Yes, using Euler's formula we know that $a + bi = \sqrt{a^2 + b^2}e^{i\theta}$, so it will stay complex under + and \times .

Exercise. Let $H \subseteq \mathbb{C}$ and $H = \{a + bi : \sqrt{a^2 + b^2} = 1\}$, is H closed under addition / multiplication?

Answer. It is closed under multiplication but not addition.

Example. Let (S, *) and (S', *) be two algebraic structures, we want to show whether they are the same.

Answer. Need to consider basic properties: * is commutative $\Leftrightarrow a * b = b * a$ Let $\mathcal{F} =$ the set of functions $f : \mathbb{R} \to \mathbb{R}$, we argue that $f \circ g$ is not commutative

Proof. \circ is not commutative on \mathcal{F} because lets say $h = \sin(x)$, $g = e^x$, then

$$h \circ g = h(g(x)) = \sin(e^x) \in \mathcal{F}$$

$$g \circ h = g(h(x)) = e^{\sin(x)} \in \mathcal{F}$$

but $\sin(e^x) \neq e^{\sin(x)}$, so back to the question, it may or may not be the same depending on what * is.

Definition 1.1.3. If we have a structure (\mathcal{F}, \circ) , then \circ is associative, i.e. $f \circ (g \circ h) = (f \circ g) \circ h$

Proof. Computing them shows that they are equal

$$(f\circ (g\circ h))(x)=f((g\circ h)(x))=f(g(h(x)))$$

$$((f\circ g)\circ h)(x)=(f\circ g)(h(x))=f(g(h(x)))$$

Exercise. $\mathbb{Z}^+ = \{1, 2, 3, 4...\}$, and define $a * b = 2^{a \cdot b}$, is $(\mathbb{Z}^+, *)$ 1. commutative, 2. associative?

Answer.

1. Yes, $a * b = 2^{a \cdot b} = 2^{b \cdot a} = b * a$

2. No,
$$2*(3*4) \neq (2*3)*4$$

Exercise. Given (S,*) where * is commutative and associative. Given $H \subseteq S$ where $H = \{a \in S : a*a=a\}$, show that H is closed under *.

Proof. a * a = a and b * b = b, we can show [a * b] * [a * b] = [a * b] because by associativity and commutativity

$$[a * b] * [a * b] = a * b * a * b = a * a * b * b = a * b$$

Lecture 3

Definition 1.1.4. Let (S, *) be an algebraic structure, and $e \in S$ s.t. $\forall a \in S, a * e = a = e * a$ Then e is called the identity element of S.

Example.

 $(\mathbb{Z},+)$ has identity element 0.

 (\mathbb{Z}^+,\times) has identity element 1.

 $(\mathbb{Z}^+,+)$ has no identity element.

Theorem 1.1.1. If (S, *) has an identity element, it is unique.

Proof. For sake of contradiction, suppose e and e' are both identity elements of S. Then e = e * e' = e'.

*

Definition 1.1.5. Let (S,*) be an algebraic structure, and $x \in S$. If $\exists x' \in S$ s.t. x*x' = x'*x = e, then x' is called the inverse of x.

Example.

 $(\mathbb{Z},+)$, the inverse of a is -a.

 $(\mathbb{Z}^+,+)$, has no inverses

 (\mathbb{Z}, \times) , the inverse of a is $\frac{1}{a}$ if $a \neq 0$.

1.2 Groups

Definition 1.2.1. A group is an algebraic structure (G, *) if:

- 1. * is associative.
- 2. \exists an identity element $e \in G$.
- 3. $\forall a \in G, \exists \text{ an inverse } a' \in G.$

Example. $G = \{e, a, b\}$ where

$$e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad a = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}, \quad b = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

 (G, \times) where \times is standard matrix multiplication is a group.

(G,+) where + is standard matrix addition is not a group because it is not closed under addition.

Definition 1.2.2. A group (G, *) is **abelian** if $\forall a, b \in G$, a * b = b * a.

Example. Consider $(\mathbb{Q}^+,*)$ where * is defined by $a*b = \frac{ab}{2}$.

Associativity: For any $a, b, c \in \mathbb{Q}^+$

$$(a*b)*c = \left(\frac{ab}{2}\right)*c = \frac{\left(\frac{ab}{2}\right)c}{2} = \frac{abc}{4} = a*(b*c)$$

Thus, * is associative.

Identity element: We need $e \in \mathbb{Q}^+$ such that $\forall a \in \mathbb{Q}^+$,

$$a * e = \frac{ae}{2} = a$$
 and $e * a = \frac{ea}{2} = a$

Solving $\frac{ae}{2} = a$ gives e = 2. Thus, 2 is the identity element. **Inverses:** For any $a \in \mathbb{Q}^+$, we need $a' \in \mathbb{Q}^+$ such that

$$a*a' = \frac{aa'}{2} = 2$$
 and $a'*a = \frac{a'a}{2} = 2$

Solving $\frac{aa'}{2} = 2$ gives $a' = \frac{4}{a}$. Thus, every element has an inverse.

Therefore, $(\mathbb{Q}^+, *)$ is a group.

Commutativity: For any $a, b \in \mathbb{Q}^+$,

$$a * b = \frac{ab}{2} = \frac{ba}{2} = b * a$$

Thus, $(\mathbb{Q}^+, *)$ is an abelian group.

Theorem 1.2.1. Let (G, *) be a group. Then

- 1. The identity element is unique (Theorem 1.1.1).
- 2. Every element has a unique inverse .

Proof. Let a, a', a'' be inverses of $a \in G$. Then a' = a' * e = a' * (a * a'') = (a' * a) * a'' = e * a'' = a''.

Corollary 1.2.1. Let (G, *) be a group and $a, b \in G$. If $a * b \in G$, then the inverse of (a * b) is b' * a', where b' is the inverse of b and a' is the inverse of a.

Proof.

$$(a*b)*(b'*a') = a*(b*b')*a' = a*e*a' = a*a' = e$$

 $(b'*a')*(a*b) = b'*(a'*a)*b = b'*e*b = b'*b = e$

Lecture 4

1.3 Abelian Groups

Example. $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$ is an albelian group under addition.

Example. Let $\mathbb{R}^2=\left\{\begin{bmatrix}a\\b\end{bmatrix}:a,b\in\mathbb{R}\right\}$, $(\mathbb{R}^2,\,+)$ is an albelian group.

Example. Let $\mathbb{P}_1 = \{ax + b : a, b \in \mathbb{R}\}$., $(\mathbb{P}_1, +)$ is an albelian group.

Definition 1.3.1. A **group isomorphism** is a bijective group homomorphism. Specifically, if $(G, *_1)$ and $(H, *_2)$ are groups, a function $\phi : G \to H$ is called a group isomorphism if:

- 1. ϕ is a homomorphism, i.e., $\forall a, b \in G, \phi(a *_1 b) = \phi(a) *_2 \phi(b)$.
- 2. ϕ is bijective, i.e., ϕ is both injective (one-to-one) and surjective (onto).

If such a function ϕ exists, we say that G and H are **isomorphic** and write $G \cong H$.

Exercise. Let $(\mathbb{Z}, +)$ and $(2\mathbb{Z}, +)$ be groups under addition. Define the function $\phi : \mathbb{Z} \to 2\mathbb{Z}$ by $\phi(n) = 2n$ for all $n \in \mathbb{Z}$. Do we have an isomorphism between $(\mathbb{Z}, +)$ and $(2\mathbb{Z}, +)$?

Answer. 1. ϕ is a homomorphism: For all $a, b \in \mathbb{Z}$,

$$\phi(a+b) = 2(a+b) = 2a + 2b = \phi(a) + \phi(b).$$

- 2. ϕ is bijective:
 - Injective: Suppose $\phi(a) = \phi(b)$. Then 2a = 2b, which implies a = b. (For an output check if the input are the same)
 - Surjective: For any $m \in 2\mathbb{Z}$, there exists $n \in \mathbb{Z}$ such that m = 2n. Hence, $\phi(n) = m$.

Therefore, ϕ is an isomorphism, and $(\mathbb{Z}, +) \cong (2\mathbb{Z}, +)$.

Lecture 5

1.3.1 More Abelian Examples

Example. $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ where $+_n$ is addition modulo n. When $a, b \in \mathbb{Z}_n$, $a +_n b = (a + b)$ mod n.

• Many groups are isomorphic to \mathbb{Z}_n .

Remark (Fact). Any group of size 1 is isomorphic to \mathbb{Z}_1 .

Exercise. If we have a group $\mathbb{Z}_2 = 0, 1$ equipped with $(\mathbb{Z}_2, +)$ and an abstract group $G = \{e, a\}$. Do these groups have the same structure?

Answer. We can check its operation table.

Remark (Fact). Any group of size 2 is isomorphic to \mathbb{Z}_2 .

Exercise. Let $G = \{I, A, B\}$ where I is the identity matrix, $A = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$, and $B = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$. Is this group isomorphic to \mathbb{Z}_3 ?

Answer. This is also isomorphic to \mathbb{Z}_3 .

We can check it using the same method as above.

Remark (Fact). All groups on 3 elements is isomorphic to \mathbb{Z}_3 .

Theorem 1.3.1. Let (G,*) be a group. If we fix $a,b \in G$, then:

- 1. a * x = b has a unique solution for x.
- 2. y * a = b has a unique solution for y.

Example. $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ and the Klein 4-group $V_4 = \{e, a, b, c\}$ with their operation tables:

Proof. Check the diagonals and it is clear that they are not isomorphic.

Theorem 1.3.2. Every group on 4 elements is isomorphic to either $(\mathbb{Z}_4, +)$ or (V, *).

6

Partial proof. Generate all possible tables and check if they are isomorphic to $(\mathbb{Z}_4, +)$ or (V, *). Turns out they will only be isomorphic to one of these two groups.

Lecture 6

1.3.2 Circle Algrbra

Example. Define $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$. Then $(\mathbb{C}, +)$ is an abelian group.

Remark. (\mathbb{C}, \times) is not abelian group because 0 does not have an inverse.

Note. So we come up with a notation $\mathbb{C}^* = \mathbb{C} - \{0\}$. (\mathbb{C}^*, \times) is an abelian group.

Note (Euler's Formula). $z \in \mathbb{C}^*$, z = a + bi. Then $z = |z|e^{i\theta}$. where $|z| = \sqrt{a^2 + b^2}$ and $\theta = \arctan(\frac{b}{a})$.

Example. 1. Let $u = \{z \in \mathbb{C}^*, |z| = 1\}$. Then (u, \times) is an abelian group.

Example (Roots of Unity). Let $n \in \mathbb{N}$. Then $u_n = \{z \in \mathbb{C}^*, z^n = 1\}$.

- 1. $u_1 = \{1\}.$
- 2. $u_2 = \{1, -1\}.$
- 3. $u_3 = \{1, e^{\frac{2\pi i}{3}}, e^{\frac{4\pi i}{3}}\}.$
- 4. $u_4 = \{1, i, -1, -i\}.$
- 5. $u_n = \{e^{\frac{2\pi ik}{n}} \mid k = 0, 1, 2, \dots, n-1\}.$

Note. (u_n, \times) is an abelian group of order n. Also, $u_n \cong \mathbb{Z}_n$.

1.4 Non Abelian Groups

1.4.1 Permutation Groups

Note (Notation). From now on, if (G, *) is a group, we will write a*b as ab. a^k means $a*a*\ldots*a$ (k times). a^{-k} means $a^{-1}*a^{-1}*\ldots*a^{-1}$ (k times). Operator should be clear from context so most of the time we will omit it.

Definition 1.4.1. The order of a group G is the number of elements in G.

Definition 1.4.2. Let A be a set. A permutation of A is a bijection $\phi: A \to A$.

Example. Let A = 1, 2, 3, 4, 5Let σ be a permutation of A. Then $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$. **Definition 1.4.3.** Let's define a composite operator on S_A . Let $\sigma, \tau \in S_A$. Then $\sigma \circ \tau$ is a permutation of A defined by $(\sigma \circ \tau)(x) = \sigma(\tau(x))$.

Theorem 1.4.1. A set (S_A, \circ) is a group.

Proof.

- 1. Associativity: Let $\sigma, \tau, \rho \in S_A$. Then $(\sigma \circ \tau) \circ \rho = \sigma \circ (\tau \circ \rho)$.
- 2. Identity: The identity element is the identity permutation id(x) = x.
- 3. Inverse: Let $\sigma \in S_A$. Then σ^{-1} is the inverse of σ . This reverse the mapping of σ .

Lecture 7

Example (Finite Setting). Let $A = \{1, 2, 3, \dots, n\}$. $S_A = S_n =$ the symmetric group on n letters. (S_n, \circ) is a group.

Remark. $|S_n| = n!$.

Example. Let $\sigma \in S_6$ and we define σ with the two row notation as follows:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 6 & 2 & 5 & 1 \end{pmatrix}$$

Example (Disjoint Cycles). There is a notion that is 1. shorter and 2. more "natural":

$$\sigma = (1, 3, 6)(2, 4)$$

Definition 1.4.4 (Dihedral Group). Let $D_n \in S_n$.

 $P_n = \text{regular n-gon in the plane with vertices } 0, 1, 2, \dots, n-1 \text{ in counter-clockwise order with origin at } (1, 0).$

$$D_n = \{e, \rho, \rho^2, \rho^3, \dots, \rho^{n-1}, \mu, \mu\rho, \dots, \mu\rho^{n-1}\}$$

where ρ is a counter-clockwise rotation and μ is a horizontal reflection.

Definition 1.4.5. D_n is the set of permutations (bijections) $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ such that ϕ preserves the distance between vertices of P_n .

Theorem 1.4.2. D_n are reflections and rotations of P_n . $|D_n| = 2n$.

Theorem 1.4.3. D_n is a group under composition.

Lecture 8

1.5 Subgroups

As previously seen. If \mathbb{C}^* is a nonzero complex number, then (\mathbb{C}^*, \times) is a group. We also know that (U_n, \times) is a group and $(U_n, \times) \in \mathbb{C}^*$.

Definition 1.5.1. Let G be a group. If $H \in G$, and H is a group under the same operator as G, then H is called a subgroup of G.

Remark. From the previous definition, we can see that (U_n, \times) is a subgroup of (\mathbb{C}^*, \times) .

Example. Let G be a group. If $G = \{e, \dots\}$ and H = e, then H is a subgroup of G. H is called the trivial subgroup.

Proof.

- 1. H is closed under the same operator as G.
- 2. H is associative under the same operator as G.
- 3. H has an identity element under the same operator as G.
- 4. H has an inverse element under the same operator as G.

Exercise. Let $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ and $+_4$ is addition mod 4. Analyze the subgroups of this group.

Answer. Let $H = \{0, 1\}$, then H is NOT a subgroup of G. Because H is not closed under $+_4$. However, if $H = \{0, 2\}$, then H is a subgroup of G. We also have the trivial subgroup $H = \{0\}$. \circledast

As previously seen. Recall that there are exactly two 2 non-isomporphic groups of size 4. One is \mathbb{Z}_4 and the other is the Klein 4-group.

Subgroup Diagram of \mathbb{Z}_4

Subgroup Diagram of Klein 4-group

Note.

9

Theorem 1.5.1. Let G be a group. If $H \in G$, then H is a subgroup of G if and only if:

- 1. H is closed under the same operator as G.
- 2. H has an identity element under the same operator as G.
- 3. H has an inverse element under the same operator as G.

Remark. If $H \in G$ is finite, then it's easier to check if H is a subgroup of G.

Theorem 1.5.2. If G is a group and we have a finite subset $H \in G$. Then it is a subgroup of G if and only if it is closed under the same operator on G.

Proof.

- (\Rightarrow) If H is a subgroup of G, then by definition of being a subgroup, H is closed under this operator.
- (\Leftarrow) H is finite, and |H|=n. We know H is closed under the same operator as G. We can check the properties:
 - 1. H is closed under the same operator as G. (Given)
 - 2. Identity: |H| = n, and $H = \{a^1, a^2, \dots, a^n, a^{n+1}\}$. By pigeonhole principle, there exists 2 elements a^i, a^j and i < j that are the same.

$$a^{-i}a^i = a^{-i}a^j$$

$$e = \underbrace{a^{-1}a^{-1}\dots a^{-1}}_{i \text{ times}} \underbrace{aaa\dots a}_{i \text{ times}} = \underbrace{a^{-1}a^{-1}\dots a^{-1}}_{i \text{ times}} \underbrace{aaa\dots a}_{j \text{ times}} = a^{j-i}$$

Therefore e is in H.

3. Inverse: Let $a \in H$, we need to find $a^{-1} \in H$. |H| = n, and $H = \{a^1, a^2, \dots, a^n, a^{n+1}\}$. By pigeonhole principle, there exists 2 elements a^i, a^j and i < j that are the same.

Case 1: Suppose j - i = 1, then $a = a^{-1} = e \in H$.

Case 2: Suppose $j-1 \ge 2$, then we multiply a^{-1} to both sides of $e=a^{j-i}$. Then by construction of the list:

$$a^{-1} = a^{-1}e = a^{-1}a^{j-i} = a^{j-i-1} \in H$$

Lecture 9

1.5.1 Cyclic Subgroups

Exercise. Let $\mathbb{Z}_{12} = \{0, 1, 2, \dots, 11\}$ and H is the trivial subgroup. What is the smallest subgroup of \mathbb{Z}_{12} that contains 3?

Answer. Let $H = \{0, 3, 6, 9\}$, we can see that this is the smallest because we use 3 to generate the other numbers. Additionally, H is isomorphic to \mathbb{Z}_4 .

Remark. If G is a group and H is a subgroup of G.

If $a \in H$ then $a^n \in H \quad \forall \quad n \in \mathbb{Z}$, where $a^0 = e$ is the identity element.

Theorem 1.5.3. Let G be a group and $a \in G$ and set $H = \{a^n : n \in \mathbb{Z}\}$, then H is a subgroup, and it's the smallest subgroup of G that contains a.

Proof.

- 1. H is closed: Given $a^r, a^s \in H$, then $(a^r)(a^s) = a^{r+s} \in H$.
- 2. H has an identity element: $e = a^0 \in H$.
- 3. H has an inverse element: $a^r \in H$, take $a^{-r} \in H$ such that $a^r(a^{-r}) = a^{-r}(a^r) = e$.

CHAPTER 1. GROUP AND SUBGROUPS

Definition 1.5.2. Let G be a group and $a \in G$. If $H = \{a^n : n \in \mathbb{Z}\}$, then H is called the cyclic subgroup generated by a. We denote $H = \langle a \rangle$.

Definition 1.5.3. A group G is cyclic if $G = \langle a \rangle$ for some $a \in G$.

Example. $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ is a cyclic group $= \langle 1 \rangle$.

Example. $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ is a cyclic group $= \langle 1 \rangle$. 1 is a generator for \mathbb{Z}_4 . We can see 3 is also a generator for \mathbb{Z}_4 . But 2 is not a generator for \mathbb{Z}_4 .

Example. $U_n = \text{the } n^{th} \text{ roots of unity.}$

$$U_n = \{e^{2\pi i k/n} : k = 0, 1, 2, \dots, n-1\}$$

So this is a cyclic group generated by $e^{2\pi i/n}$. So $U_n = \langle e^{2\pi i/n} \rangle$.

Exercise. S_{10} is a permutation on $A = \{1, 2, \dots, 10\}$. $\sigma = (1, 10)(2, 9)(3, 8)(4, 7)(5, 6)$ Compute $|\langle \sigma \rangle|$.

Answer. $\sigma \circ \sigma = (1, 10)(2, 9)(3, 8)(4, 7)(5, 6) \circ (1, 10)(2, 9)(3, 8)(4, 7)(5, 6) = (1)(2)(3) \cdots (10) = i$ So $|\langle \sigma \rangle| = 2$.

1.6 Cyclic Groups

Theorem 1.6.1. Every cyclic group is abelian.

Proof. Let $G = \langle a \rangle$ be a cyclic group.

Let $a^r, a^s \in G$.

Then

$$(a^r)(a^s) = a^{r+s} = a^{s+r} = (a^s)(a^r)$$

So G is abelian.

Example. Let $\mathbb{Z}_{10} = \{0, 1, 2, \cdots, 9\}.$

$$\langle 2 \rangle = \{0, 2, 4, 6, 8\}$$

did not generate all of \mathbb{Z}_{10} .

$$\langle 3 \rangle = \{0, 3, 6, 9, 2, 5, 8, 1, 4, 7\}$$

generated all of \mathbb{Z}_{10} .

You can check if they have a common divisor or not to determine if they generate all of \mathbb{Z}_{10} .

Theorem 1.6.2 (Division Algorithm). n = qm + r

Theorem 1.6.3. Let G be a cyclic group. Then any subgroup of G is also cyclic.

Lecture 10

Theorem 1.6.4. If $G = \langle a \rangle$

1. If
$$|G| = \infty \Longrightarrow G \cong (\mathbb{Z}, +)$$

2. If
$$|G| = n \Longrightarrow G \cong (\mathbb{Z}_n, +_n)$$

Proof. Case 1:

Suppose $|G| = \infty$, For all positive $m \ge 1$, $a^m \ne e$

Goal is show that $G \cong (\mathbb{Z}, +)$

We need to check all elements in G are distinct. For sake of contradiction, suppose there exists i < j such that:

$$a^i = a^j \Rightarrow e = a^{j-i}$$

But j-i is a positive integer. This contradicts the assumption that $a^m \neq e$ for all positive m, so every element in G is distinct.

So we can define:

$$\phi: G \to \mathbb{Z}, \phi(a^i) = i$$

This is a bijection.

Case 2:

There exists positive m > 0 such that $a^m = e$.

Again we define $\phi: G \to \mathbb{Z}_m$ by $\phi(a^i) = i \mod m$

Example. Let $\mathbb{Z}_{12} = \{0, 1, 2, \dots, 11\}$ equipped with addition modulo 12.

Let $\langle 3 \rangle$ = the subgroup of \mathbb{Z}_{12} generated by 3.

We get $\langle 3 \rangle = \{0, 3, 6, 9\}$

 $|\langle 3 \rangle| = 4$

 $\langle 8 \rangle = \{0, 8, 4\}$

 $|\langle 8 \rangle| = 3$

Remark. The size of a subgroup of a finite cyclic group depends on the divisors.

Definition 1.6.1 (Greatest Common Divisor). Fix integers r and s. $\gcd(r,\,s)$ is the largest positive integer that divides both r and s.

Definition 1.6.2. Fix r and s. The gcd(r, s) is the generator of the cyclic subgroup of

$$H = \{n \cdot r + m \cdot s : n, m \in \mathbb{Z}\} \le \mathbb{Z}$$

 $H = \langle \gcd(r, s) \rangle$

Corollary 1.6.1. Fix r and s. If there exists $m, n \in \mathbb{Z}$ such that $n \cdot r + m \cdot s = 1$, then $\gcd(r, s) = 1$. So r and s are coprime.

Proof.

As previously seen. Recall that let $G = \langle a \rangle$. If G is a cyclic group generated by a, then ANY subgroup of G is also cyclic.

$$(\mathbb{Z},+)=\langle 1\rangle$$

Fix r and s. $H \subseteq \mathbb{Z}$ and $H = \{m \cdot r + n \cdot s : m, n \in \mathbb{Z}\}$

By the above theorem, (H, +) is cyclic because it is a subgroup of a cyclic group. Now we also show that H is a subgroup:

- 1. H is closed under addition: $m_1 \cdot r + n_1 \cdot s + m_2 \cdot r + n_2 \cdot s = (m_1 + m_2) \cdot r + (n_1 + n_2) \cdot s$
- 2. Identity: $0 \cdot r + 0 \cdot s = 0$
- 3. H is closed under inverses: $m \cdot r + n \cdot s \Rightarrow -m \cdot r + -n \cdot s$, and (mr + ns) + (-mr ns) = 0

Example. $\mathbb{Z}_4 = \{0, 1, 2, 3\}$

All subgroups of \mathbb{Z}_4 are cyclic.

- $\langle 0 \rangle = \{0\}$

- $\langle 1 \rangle = \{0, 1, 2, 3\} \cong \mathbb{Z}_4$ $\langle 2 \rangle = \{0, 2\} \cong \mathbb{Z}_2$ $\langle 3 \rangle = \{0, 1, 2, 3\} \cong \mathbb{Z}_4$

Theorem 1.6.5. Let $G = \langle a \rangle$ be a cyclic group of order n. $G = \{e, a, a^2, \cdots, a^{n-1}\}$

- 1. Let $a^s \in G$, then $|H| = |\langle a^s \rangle| = \frac{n}{\gcd(n,s)}$
- 2. Moreover, $a^s, a^t \in G$, if gcd(s, n) = d = gcd(t, n), then $\langle a^s \rangle = \langle a^t \rangle$

Proof. Let m be the smalllest positive integer such that $(a^s)^m = e$.

We want to show that $|H| = m = \frac{n}{d}$. If $(a^s)^m = e$, then $a^{sm} = e = (a^{s \cdot m})$

Which will have some multiple of n on the exponent.

Let $d = \gcd(s, n)$.

We know $d = u \cdot n + v \cdot s$ for some integers $u, v \in \mathbb{Z}$.

$$1 = u(\frac{n}{d}) + v(\frac{s}{d})$$

 $(\frac{n}{d})$ and $(\frac{s}{d})$ are coprime from the corollary above.

We know $s\cdot m$ is a multiple of n. It follows that $(\frac{sm}{n})=(\frac{m\frac{s}{d}}{\frac{n}{d}})$ is an integer.

Hence, $(\frac{n}{d})$ must divide m.

Lecture 11

1.6.1 Generating Sets & Cayley Digraphs

As previously seen. Recall that let $G = \langle a \rangle$. Then

- 1. $G = \{e, a, a^2, \dots, a^{n-1}, a^{-1}, a^{-2}, \dots, a^{-n+1}\}$
- 2. G is generated by a.
- 3. If $G \subseteq H$, (G is a subgroup of H), then G is the smallest subgroup of H containing a.

CHAPTER 1. GROUP AND SUBGROUPS

13

Let us generalize the idea of generating with 1 element.

Example. $\mathbb{Z}_4 = \langle 1 \rangle$ which is cyclic. But we also know Klein 4-group, let us call it V. (V, *) is not cyclic.

But what about $\langle a, b \rangle$?

 $V = \langle a, b \rangle = \{e, a, b, c\}$, so this set $\{a, b\}$ generates the Klein-4 group

Example. The Dihedral group D_n is the set of permutations of \mathbb{Z}_n that are the rotations and reflections of a regular n-gon.

We know it is not cyclic because the operations are not communitive.

But D_n can be generated by 2 elements, $\{\rho \& \mu\}$.

Exercise. Does $\{2,3\}$ generate \mathbb{Z}_12 ?

Answer. Yes, because this generates $H = \{2n + 3m : n, m \in \mathbb{Z}\}$

 $H = \langle \gcd(2,3) \rangle = \langle 1 \rangle = \mathbb{Z}_{12}$

(

Lecture 13

Definition 1.6.3. Let G be a group. A Cayley digraph C = (V, E) is a directed graph where V = G and $E = \{(g, g \cdot a) : g \in G, a \in A\}$ Where A is a generating set of G.

Example. Let $G = \mathbb{Z}_8 = \{0, 1, 2, \dots, 7\}$

Let $S = \{2, 5\}$

The Cayley digraph for G with S is shown below.

Answer.

Cayley Digraph for Z_8 with $S = \{2, 5\}$

*

Chapter 2

Structure & Groups

2.1 Groups of Permutations

Theorem 2.1.1 (Cayley's Theorem). Every group is isomorphic to a group of permutations.

Example. Roots of unity. Let $\omega = e^{\frac{2\pi i}{n}}$

$$U_{6} = \{1, \omega, \omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}\}$$
$$U_{3} = \{1, \omega^{2}, \omega^{4}\}$$

It is obvious that there is no isomorphism between U_6 and U_3 . But we can define a homomorphism $\phi: U_6 \to U_3$

Answer. We can define $\phi: U_6 \to U_3$ by $\phi(\omega) = \omega^2$ Let $z1, z2 \in U_6$

$$\phi(z1\cdot z2)=(z1\cdot z2)^2=z1^2\cdot z2^2=\phi(z1)\cdot\phi(z2)$$

⊕

Lecture 14

Definition 2.1.1 (Images).

- 1. $\phi[a] = {\phi(a) : a \in A}$ This is called the image of ϕ
- 2. $\phi^{-1}[b] = \{a : \phi(a) = b\}$ This is called the pre-image of ϕ

Definition 2.1.2 (Properties of a homomorphism). Let G,G^{\prime} to be groups.

Then ϕ is a homomorphism if $\forall a, b \in G$

$$\phi(ab) = \phi(a)\phi(b)$$

Theorem 2.1.2. Let G, G' to be groups.

Define $\phi: G \to G'$ as a homomorphism.

Then:

1. For $e \in G$, $\phi(e) = e' \in G'$

2.
$$[\phi(a)]^{-1} = \phi(a^{-1})$$

- 3. If H is a subgroup of G, then $\phi[H]$ is a subgroup of G'
- 4. \bigstar If K' is a subgroup of G', then $\phi^{-1}[K']$ is a subgroup of G

Try to draw images for these for better intuition.

Definition 2.1.3 (Kernel). Let G, G' to be groups.

Define $\phi: G \to G'$ as a homomorphism.

We define:

$$\phi^{-1}[\{e\}]=x\in G:\phi(x)=e'$$

This is called the kernel of ϕ and is denoted by $ker(\phi)$

Example. Let $\mathbb{Q}^* = \mathbb{Q}/\{0\}$

Let
$$G = (\mathbb{Q}^*, \times)$$

Let

$$\phi: \mathbb{Q}^* \to \mathbb{Q}^*, \phi(x) = |x|$$

Then ϕ is not a isomorphism, but it is still a homomorphism.

Then $ker(\phi) = \{-1, 1\}$

Exercise. $\mathbb{Z} = (\mathbb{Z}, +)$

$$\mathbb{Z}_8 = (\mathbb{Z}_8, +)$$

Let $\phi(1) = 6$ What is $ker(\phi)$?

Answer. $\phi(24) = \phi(1) + \phi(1) + \dots + \phi(1) = 24 \cdot 6 = 144 = 0$

We notice that $ker(\phi) = \langle 4 \rangle$

Exercise. $\mathbb{Z} \times \mathbb{Z}$ is the cartesian product on the integers.

$$(a,b) \in \mathbb{Z} \times \mathbb{Z}$$

Let's define a cooredinate-wise addition

$$(a,b) + (c,d) = (a+c,b+d)$$

Let $\phi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ where $\phi(0,1) = -5, \phi(1,0) = 3$

What is $ker(\phi)$?

Answer. Let $(a,b) \in \mathbb{Z} \times \mathbb{Z}$

$$\phi(a,b) = \phi(a,0) + \phi(0,b) = a \cdot \phi(1,0) + b \cdot \phi(0,1)$$

$$\phi(a,b) = a \cdot 3 + b \cdot -5$$

$$\phi(a,b) = 0 \Rightarrow 3a - 5b = 0$$

$$3a = 5b$$

$$a=5k, b=3k$$

$$ker(\phi) = \langle (5,3) \rangle$$

*

Lecture 15

Note. So far, all groups of permutations we've seen are equipped with the composition operation.

Example. \mathbb{Z}_n is not a permutation group. $\mathbb{Z}_n \cong (\text{group of permutations}).$

Example. σ^i can be defined in two row notation as:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ 1+i & 2+i & 3+i & 4+i & \dots & n+i \end{pmatrix}$$

$$\sigma^n = \sigma^0 = i$$
.

Also
$$\langle \sigma \rangle = \{e, \sigma, \sigma^2, ..., \sigma^{n-1}\}.$$

Remark. $\langle \sigma \rangle \cong (\mathbb{Z}_n, +_n)$.

Exercise. Let GL(n, R) be the set of all invertible $n \times n$ matrices with real entries. Let $G = (GL(n, R), \times)$.

Is this a permutation group?

Answer. Yes, because $A: \mathbb{R}^n \to \mathbb{R}^n$ is a bijection of \mathbb{R}^n if and only if A is invertible.

*

Theorem 2.1.3 (Cayley's Theorem). Every group G is isomorphic to a group of permutations.

Corollary 2.1.1. Every finite group G is isomorphic to a subgroup of S_n for a sufficiently large n.

Definition 2.1.4 (Properties of S_n). Let S_n be the permutation group on $\{1, 2, ..., n\}$. $|S_n| = n!$.

Let us define A_n and B_n as follows: A_n is the alternating group on $\{1, 2, ..., n\}$, i.e. the set of all even permutations.

 B_n is the set of all odd permutations.

Definition 2.1.5. A cycle of length 2 is called a transposition.

Theorem 2.1.4. Any $\sigma \in S_n$ can be written as a product of transpositions. Another way to think of this is any permutation can be obtained by swapping pairs

Exercise. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 2 & 8 & 4 & 7 & 6 & 1 \end{pmatrix}$.

We get $\sigma = (1, 5, 4, 8)(2, 3)(6, 7)$. = (1, 8)(1, 4)(1, 5)(2, 3)(6, 7).

Theorem 2.1.5. If $\sigma \in S_n$, then sigma cannot be expressed as both an even and an odd number of

transpositions.

Definition 2.1.6. $S_n = A_n \cup B_n$. Where A_n is the set of all even permutations and B_n is the set of all odd permutations. $|A_n| = |B_n| = \frac{n!}{2}$.

Lecture 16

2.2 Finitely Generated Abelian Groups

Note. The motivation for this section is to use known examples of abelian and non-abelian groups and construct larger groups with them via cartisian product.

Theorem 2.2.1. Suppose we have n groups $G_1, G_2, ..., G_n$. Then we calculate cartesian product $G = G_1 \times G_2 \times ... \times G_n$ s.t. $(a_1, a_2, ..., a_n) \in G$. Define * on G where $(a_1, a_2, ..., a_n), (b_1, b_2, ..., b_n) \in G$. Then:

$$(a_1, a_2, ..., a_n) * (b_1, b_2, ..., b_n) = (a_1b_1, a_2b_2, ..., a_nb_n)$$

G is a group with identity $(e_1, e_2, ..., e_n)$ and inverse $(a_1, a_2, ..., a_n)^{-1} = (a_1^{-1}, a_2^{-1}, ..., a_n^{-1})$.

As previously seen. Recall two definitions of order:

- 1. Order of a group: G = |G|.
- 2. Order of an element: smallest positive integer n s.t. $a^n = e$. Moreover, $n = |\langle a \rangle|$.

```
Example. \mathbb{Z}_2 = \{0, 1\}, and \mathbb{Z}_3 = \{0, 1, 2\}. \mathbb{Z}_2 \times \mathbb{Z}_3 = \{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)\}. |\mathbb{Z}_2 \times \mathbb{Z}_3| = 2 \times 3 = 6.
```

Remark. $\mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$ and is cyclic. It's generator is (1,1).

Exercise. We have $|\mathbb{Z}_3 \times \mathbb{Z}_3| = 9$. Is $\mathbb{Z}_3 \times \mathbb{Z}_3$ cyclic?

Answer. Find whether there exists an element of order 9.

The answer is no. Suppose $(a,b) \in \mathbb{Z}_3 \times \mathbb{Z}_3$. Then (a,b) + (a,b) + (a,b) = (3a,3b) = (0,0).

Therefore the maximum order is 3.

Theorem 2.2.2. The group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Corollary 2.2.1. $G = \mathbb{Z}_{m1} \times \mathbb{Z}_{m2} \times ... \times \mathbb{Z}_{mn}$ is cyclic if and only if $gcd(m_1, m_2, ..., m_n) = 1$.

Theorem 2.2.3. $(a_1, a_2, ..., a_n) \in G = \mathbb{Z}_{m1} \times \mathbb{Z}_{m2} \times ... \times \mathbb{Z}_{mn}$. If r_i is the order of a_i , then $|(a_1, a_2, ..., a_n)| = lcm(r_1, r_2, ..., r_n)$.

Exercise. $G = \mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{20} \times \mathbb{Z}_{24}$.

- 1. Is G cyclic?
- 2. Find the order of G.
- 3. $(3,6,12,14) \in G$. Find the order of (3,6,12,14).

Answer. 1. $gcd(4, 12, 20, 24) = 4 \neq 1$. Therefore G is not cyclic.

- 2. $|G| = 4 \times 12 \times 20 \times 24 = 11520$.
- 3. |(3,6,12,14)| = lcm(4,2,5,3) = 60.

Lecture 17

Theorem 2.2.4 (Finite version). Let G be a finite abelian group. Then

$$G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_k^{n_k}}$$

where p_1, \ldots, p_n are prime numbers (not necessarily distinct). Where $|G| = p_1^{r_1} \cdots p_n^{r_n}$.

Theorem 2.2.5 (General version). Let G be some abelian group that has a finite number of generators. Let $\mathbb{Z} = \langle 1 \rangle$ be the additive group of integers. Then

$$G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_k^{n_k}} \times \mathbb{Z} \times \mathbb{Z} \times \cdots$$

Remark.

$$\mathbb{Z}_3 \times \mathbb{Z}_2 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$$

Just swap the corrdinates.

Corollary 2.2.2. If $n = p_1^{r_1} \cdots p_n^{r_n}$, then $\mathbb{Z})n = \mathbb{Z}_{p_1^{r_1}} \times \cdots \times \mathbb{Z}_{p_n^{r_n}}$.

Exercise. Find all abelian groups on 360 elements.

$$360 = 2^3 * 3^2 * 5.$$

For $8=2^3$, we have $\mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. For $9=3^2$, we have $\mathbb{Z}_9, \mathbb{Z}_3 \times \mathbb{Z}_3$.

For 5, we have \mathbb{Z}_5 .

By combinatorics, we have 3 * 2 * 1 = 6 possibilities.

Exercise. Suppose we have $G_1 = \mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24}$ and $G_2 = \mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{40}$. Are G_1 and G_2 isomorphic?

Answer.

First step: Check orders.

 $|G_1| = 8 * 10 * 24 = 1920$ and $|G_2| = 4 * 12 * 40 = 1920$.

Second step: Decompose the groups into subgroups as small as possible.

 $G_1 = \mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24} = \mathbb{Z}_{2^3} \times \mathbb{Z}_{2^3} \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$ $G_2 = \mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{40} = \mathbb{Z}_{2^3} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_3 \times \mathbb{Z}_5$

So they are actually different because the exponents are different.

(*)

Lecture 18

Exercise. $G_1 = \mathbb{Z}_2 \times \mathbb{Z}_{12}$ and $G_2 = \mathbb{Z}_4 \times \mathbb{Z}_6$. Are these two groups isomorphic?

Answer. We can use the theorem that $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$ if and only if gcd(m, n) = 1.

$$G_1 = \mathbb{Z}_2 \times \mathbb{Z}_{43} \cong \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3$$

$$G_2 = \mathbb{Z}_4 \times \mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3$$

$$\Rightarrow G_1 \cong G_2$$
.

*

Theorem 2.2.6 (Finite Version). Let G be a finite abelian group. Then G is isomorphic to a direct product of cyclic groups of prime power order. That is,

$$G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_k^{n_k}}$$

And,

$$|G| = p_1^{n_1} \cdots p_k^{n_k}$$

where p_1, \ldots, p_k are prime numbers and n_1, \ldots, n_k are positive integers. Moreover, this decomposition is unique up to the order of the factors.

Example. Find all abelian groups up to isomorphosm of order 720. $720 = 2^4 \cdot 3^2 \cdot 5$.

Answer. By the theorem above, list out the primary factor representation of a group of order 720.

2^4	3^{2}	5
\mathbb{Z}_{16}	\mathbb{Z}_9	\mathbb{Z}_5
$\mathbb{Z}_8 imes \mathbb{Z}_2$	\mathbb{Z}_9	\mathbb{Z}_5
$\mathbb{Z}_4 imes \mathbb{Z}_4$	\mathbb{Z}_9	\mathbb{Z}_5
$\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$	\mathbb{Z}_9	\mathbb{Z}_5
$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$	\mathbb{Z}_9	\mathbb{Z}_5
\mathbb{Z}_{16}	$\mathbb{Z}_3 \times \mathbb{Z}_3$	\mathbb{Z}_5
$\mathbb{Z}_8 imes \mathbb{Z}_2$	$\mathbb{Z}_3 \times \mathbb{Z}_3$	\mathbb{Z}_5
$\mathbb{Z}_4 imes \mathbb{Z}_4$	$\mathbb{Z}_3 \times \mathbb{Z}_3$	\mathbb{Z}_5
$\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_3 \times \mathbb{Z}_3$	\mathbb{Z}_5
$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_3 \times \mathbb{Z}_3$	\mathbb{Z}_5

*

Definition 2.2.1. We define torsion and torsion-free subgroups of a group as follows:

1. Torsion Subgroup:

The torsion subgroup of a group G, denoted T(G), is defined as:

$$T(G) = \{g \in G \mid \text{there exists } n \in \mathbb{N} \text{ such that } g^n = e\}$$

where e is the identity element in G. It consists of all elements of G with finite order.

2. Torsion-Free Subgroup:

A torsion-free subgroup of G contains only elements with infinite order, meaning:

$$g^n \neq e$$
 for any nonzero integer n

except for g = e itself.

2.3 Cosets & the Theorem of Lagrange

Remark. Let $G \cong \mathbb{Z}_n$ and $G = \langle a \rangle$ If H is a subgroup of G, then |H| divides |G| = n.

Proof. Let $H = \langle a^s \rangle$, then $(a^s)^{|H|} = e = a^n$. $(a^s)^{|H|} = \underbrace{a^s a^s \cdots a^s}_{|H|} = a^n$

So s|H| = n, and |H| divides n.

Theorem 2.3.1 (Lagrange's Theorem). Let G be a finite group and H be a subgroup of G. Then |H| divides |G|.

Moreover, the number of left cosets of H in G is $\frac{|G|}{|H|}$.

Corollary 2.3.1. Let G be a group and |G| = p =prime. Then G is cyclic $\cong \mathbb{Z}_p$.

Proof. |G| = p is prime. Let $H = \langle a \rangle$ be a subgroup of G.

By Lagrange's Theorem, |H| divides |G| = p.

So |H| = 1 or p.

So H = G.

The proof is based on cosets which we will see later.

Definition 2.3.1. Let G be a group and H be a subgroup of G. We define a partition to have equivalence relation " \sim " on G as follows:

$$a \sim b \Leftrightarrow a^{-1}b \in H$$

- 1. Reflexive: $a \sim a$ since $a^{-1}a = e \in H$.
- 2. Symmetric: $a \sim b \Leftrightarrow a^{-1}b \in H \Leftrightarrow (a^{-1}b)^{-1} = b^{-1}a \in H \Leftrightarrow b \sim a$.
- 3. Transitive: $a \sim b$ and $b \sim c \Leftrightarrow a^{-1}b \in H$ and $b^{-1}c \in H \Leftrightarrow a^{-1}b \cdot b^{-1}c = a^{-1}c \in H \Leftrightarrow a \sim c$.

If you take an element and add other elements based on this equivalence relation, you get a subgroup. This is called a *coset*.

Lecture 19

Definition 2.3.2. Let G be a group and H be a subgroup of G. The *left coset* of H in G is defined as:

$$aH = \{ah \mid h \in H\} \subseteq G$$

for all $a \in G$. That is, all elements that is equivalent to a. Similarly, the *right coset* of H in G is defined as:

$$Ha = \{ha \mid h \in H\} \subseteq G$$

for all $a \in G$.

Example. Let $G = \mathbb{Z}_{18} = \{0, 1, 2, \dots, 17\}$ and $H = \langle 3 \rangle = \{0, 3, 6, 9, 12, 15\}$.

21

Then the left cosets of H in G are:

$$0 + H = \{0, 3, 6, 9, 12, 15\}$$

$$1 + H = \{1, 4, 7, 10, 13, 16\}$$

$$2 + H = \{2, 5, 8, 11, 14, 17\}$$

Note that 1 + H is not a subgroup of G.

Remark. We observe the following:

- 1. The left cosets of H in G partition G.
- 2. $|H| = |1 + H| = |2 + H| = \ldots = |a + H|$ for all $a \in G$. (partitions have the same size)

Example. Let $D_4 = \{e, \rho, \rho^2, \rho^3, \mu, \mu\rho, \mu\rho^2, \mu\rho^3\}$ be the dihedral group of permutation of a square. Let $H = \langle \mu\rho \rangle = \{e, \mu\rho\}$.

Then the left cosets of H in D_4 are:

$$D_{4} = \begin{array}{|c|c|c|} \hline & \cdot e & & \cdot \rho \\ & \{e, \mu \rho\} & & \{\rho, \mu\} \\ \hline & & & \\ & & \cdot \rho^{2} & & \cdot \rho^{3} \\ & \{\rho^{2} \mu \rho^{3}\} & & \{\rho^{3} \mu \rho^{2}\} \\ \hline \end{array}$$

Theorem 2.3.2. Let G be a group and H be a subgroup of G. Then for all $a \in G$, |H| = |aH|.

Proof. Define a function $f: H \to aH$ by f(x) = ax. We show that f is a bijection.

- 1. **one-to-one**: Suppose $f(h_1) = f(h_2)$. Then $ah_1 = ah_2 \Rightarrow h_1 = h_2$.
- 2. **onto**: $y \in aH$ implies y = ah for some $h \in H$. So f(h) = ah = y.

As previously seen (Lagrange's Theorem). Recall:

Let G be a finite group and H be a subgroup of G. Then |H| divides |G|.

Moreover, the number of left cosets of H in G is $\frac{|G|}{|H|}$.

Proof. Let $G = \{a_1, a_2, \dots, a_n\}$ and $H = \{h_1, h_2, \dots, h_m\}$.

Then

$$G = \bigcup_{i=1}^{n} a_i H$$
 and $a_i H \cap a_j H = \emptyset$ for $i \neq j$.

So

$$|G| = \sum_{i=1}^{n} |a_i H| = n|H|.$$

Hence, |H| divides |G|.

Example. Let $G = \mathbb{Z}_{24} = \{0, 1, 2, \dots, 23\}$ and $H = \langle 3 \rangle = \{0, 3, 6, \dots, 21\}$. Then |H| = 8 and |G| = 24. So the number of left cosets of H in G is $\frac{24}{8} = 3$.

Exercise. Let S_5 be the permutation group of 5 elements. Let $\sigma \in S_5$ and $\sigma = (1, 2, 5, 4)(2, 3)$. Find $(S_5, \langle \sigma \rangle)$.

Answer. $(S_5, \langle \sigma \rangle) = \frac{|S_5|}{|\langle \sigma \rangle|} = \frac{5!}{|\langle \sigma \rangle|}.$ $|\langle \sigma \rangle| = |(1, 2, 3, 5, 4)| = 5.$ So $(S_5, \langle \sigma \rangle) = \frac{5!}{5} = 24.$

Exercise. Let $\phi: G \to G'$ be a group homomorphism. Show that $\phi(a) = \phi(b) \Leftrightarrow a^{-1}b \in Ker(\phi)$.

Answer. (\Rightarrow) Suppose $\phi(a) = \phi(b)$. Then,

$$\phi(a^{-1}b) = \phi(a^{-1})\phi(b) = \phi(a)^{-1}\phi(a) = e$$

So $a^{-1}b \in Ker(\phi)$.

Lecture 20

Example. When will the left and right cosets of a subgroup H of a group G coincide?

Answer. Obviously abelian groups have this property, but there are non-abelian groups that have this property as well.

Theorem 2.3.3. Let H be a subgroup, and let $\phi: G \to G'$ be a homomorphism. If $H = \ker \phi$, then the left cosets of H in G are the same as the right cosets of H in G.

Example. Let $G = GL(2, \mathbb{R})$, which are invertible 2×2 matrices. This is non abelian. Let H be 2×2 matrices with determinant 1.

Are the left and right cosets of H in G the same?

Answer. Use the theorem above:

Let $\phi: G \to (\mathbb{R}^*, \times)$ be a mapping to $e' = 1 \in \mathbb{R}^*$. Then $\ker \phi = H$. So the left and right cosets of H in G are the same.

2.4 Homomorphisms & Factor Groups

Example. Recall $\mathbb{Z}_{12} = \{0, 1, 2, \dots, 11\}$ with addition modulo 12. Let $H = \{0, 3, 6, 9\}, 1 + H = \{1, 4, 7, 10\}, 2 + H = \{2, 5, 8, 11\}.$ Then (0 + H) + (1 + H) = 1 + H, (0 + H) + (2 + H) = 2 + H.

CHAPTER 2. STRUCTURE & GROUPS

23

Definition 2.4.1. Let G be a group, and let H be a subgroup of G. If for all $a, b \in G$, (aH)(bH) = (ab)H, then the left cosets of H is induced by the operaction of G

Example. When does the left cosets of H induce the operation of G?

Answer. When the left cosets are the same as the right cosets.

(¥)

Definition 2.4.2. A subgroup H is called a normal subgroup of G if the left cosets of H in G are the same as the right cosets of H in G.

Theorem 2.4.1. A factor group $G/H = \{H, aH, bH, \dots\}$ is a group with the operation (aH)*(bH) = (ab)H.

* is well defined if and only if H is a normal subgroup of G.

Example. $G = \mathbb{Z}_{50} \times \mathbb{Z}_{75}$ and $H = \langle (15, 15) \rangle$. What is |G/H|?

Answer. $|G/H| = \frac{|G|}{|H|} = \frac{50 \times 75}{|H|}$. The order of 15 in $\mathbb{Z}_{50} = \frac{50}{\gcd(15,50)} = 10$, and the order of 15 in $\mathbb{Z}_{75} = \frac{75}{\gcd(15,75)}$ is 5. |H| = lcm(10,5) = 10. So $|G/H| = \frac{50 \times 75}{10} = 1875$.

(P)

Lecture 21

Example. The factor group G/H has left cosets equal to right cosets. We can show that (G/N,*) is a group.

- 1. Identity: eH is the identity element.
- 2. Inverse: $(aH)^{-1} = a^{-1}H$.
- 3. It is closed under *
- 4. Associative: (aH * bH) * cH = aH * (bH * cH).

Example. Let $G = \mathbb{Z}_3 \times \mathbb{Z}_6$ and |G| = 18. Let $H = \langle (1,1) \rangle = \{(0,0), (1,1), (2,2), (0,3), (1,4), (2,5)\}$. $G/H = \{H, (1,0) + H, (2,0) + H\} \cong \mathbb{Z}_3$. What is the order of (1,4) + H? What is the order of (2,1) + H?

Answer. We need to find the minimum n such that $[(1,4) + H]^n = H$. (1,4) + H = H, which is the identity in G/H, so the order is 1. (2,1) + H has order 3.

*

Theorem 2.4.2. The following 4 equivalent conditions are required for subgroup H in G to be normal

- 1. $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$.
- 2. $gHg^{-1} = \{ghg^{-1} : h \in H\} = H \text{ for all } g \in G.$
- 3. $\exists \phi: G \to G' \text{ such that } H = \ker \phi.$
- 4. gH = Hg for all $g \in G$ (normal group).

Example. Let G be a finite group, and let H be a subgroup of G. H is the only subgroup of G with |H| = d. Prove that H is normal in G.

Proof. By the above theorem, it suffices to show that $gHg^{-1} = H$ for all $g \in G$.

For sake of contradiction, $\exists g \in G$ such that $gHg^{-1} \neq H$.

If we can show that gHg^{-1} is a subgroup of G, and $|gHg^{-1}| = |H|$, then we have a contradiction. By the automorphism $\phi : gtogHg^{-1}$, we know $|gHg^{-1}| = |H|$ because ϕ is bijective. Now we need to show that gHg^{-1} is a subgroup of G.

- 1. Closure: $g(xy)g^{-1} = (gxg^{-1})(gyg^{-1})$.
- 2. Identity: $e \in H$, so $geg^{-1} = e \in gHg^{-1}$.
- 3. Inverse: $q(x^{-1})q^{-1} = (qxq^{-1})^{-1}$.

Definition 2.4.3 (Automorphism). An automorphism $\phi: G \to G$ is an isomorphism from G to G. We can define the mapping as $g(x) = gxg^{-1}$.

- 1. Bijective: Suppose g(x) = g(y), then $gxg^{-1} = gyg^{-1}$, so x = y.
- 2. Onto: For all $y \in G$, $\exists x \in G$ such that g(x) = y. Choose $y = g^{-1}yg$, then $g(g^{-1}yg) = y$.

Lecture 22

Remark. Here are some facts about factor groups:

|H| = |aH| for all $a \in G$

If we have a factor group $G/H = \{H, 1+H, 2+H\}$ on \mathbb{Z}_1 2, its equal to $\{3+H, 7+H, 8+H\}$. The index of H in G is the number of cosets of H in G = |G|/|H|.

Theorem 2.4.3 (Fundemental Homomorphism Theorem). Let $\phi: G \to G'$ be a homomorphism. Then for $H = \ker(\phi)$, we have $G/H \cong G'$.

Example. For a group \mathbb{Z}_{12} , we have a homomorphism $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_3$ where $\phi(x) = x \mod 3$.

Example. Let $G = \mathbb{Z}_4 \times \mathbb{Z}_2$ and $H = \{(0,0),(0,1)\}$, we can see there are 4 cosets of H in G. Then we have a homomorphism $\phi((a,b)) = a$

Example. Let \mathbb{C}^* be the group of non-zero complex numbers under multiplication. Let $H = \{z \in \mathbb{C}^* | |z| = 1\}$, then H is a subgroup of \mathbb{C}^* . Find the factor group \mathbb{C}^*/H .

Answer. Let $\phi(x) = |x|$ be a homomorphism from \mathbb{C}^* to \mathbb{R}^* . Then $H = \ker(\phi)$.

(*)

Lecture 25

2.5 Factor Group Computation & Simple Groups

Note. Computing factor groups: We will classify according to the fundamental theorem of finitely generated abelian groups.

As previously seen. Recall that if G is an abelian group with finitely many generators, then $G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_k^{n_k}} \times \mathbb{Z}^r$ for some primes p_1, \ldots, p_k and $n_1, \ldots, n_k, r \in \mathbb{N}$.

Theorem 2.5.1. Let G be a finite cyclic group and H is a subgroup. If G is abelian, then H is normal and thus |G/H| = |G|/|H|. $G/H \cong \mathbb{Z}_{|G|/|H|}$, which is also cyclic.

Theorem 2.5.2 (First Isomorphism Theorem). If there exists a homomorphism $\varphi: G \to G'$ and $H = \ker(\varphi)$, then $G/H \cong G'$.

Example. $G = \mathbb{Z}_{100}$ and $H = \langle 25 \rangle$. Then |G| = 100 and |H| = 4. Thus |G/H| = 100/4 = 25. $G/H \cong \mathbb{Z}_{25}$.

Example. $G = \mathbb{Z}_4 \times \mathbb{Z}_6$ (not cyclic). Let $H = \langle (0,1) \rangle$. Then $|G| = 4 \times 6 = 24$ and |H| = 6. Thus |G/H| = 24/6 = 4. $G/H \cong \mathbb{Z}_4$.

Define $\phi: \mathbb{Z}_4 \times \mathbb{Z}_6 \to \mathbb{Z}_4$ by $\phi(a,b) = a$. Then $\ker(\phi) = H$. It is indeed a homomorphism because $\phi((a+c,b+d)) = a+c = \phi(a,b) + \phi(c,d)$. Thus by the first isomorphism theorem, $\mathbb{Z}_4 \times \mathbb{Z}_6/\langle (0,1) \rangle \cong \mathbb{Z}_4$.

Example. $G = \mathbb{Z}_4 \times \mathbb{Z}_6$ and $H = \langle (2,3) \rangle = \{(0,0),(2,3)\}$. Then |G| = 24 and |H| = 2. Thus |G/H| = 24/2 = 12.

This time we have two possible choices however, \mathbb{Z}_{12} or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$.

Answer. Intuition: draw a lattice diagram and draw a line from the origin to the generator.

It is not hard to see that the line only intersect 2 points, so imagine 12 parrallel lines, which is the 12 cosets of G, so $G/H \cong \mathbb{Z}_{12}$ and the G/H is cyclic.

Now we use the first isomorphism theorem:

Define

$$\phi: \mathbb{Z}_4 \times \mathbb{Z}_6 \to \mathbb{Z}_{12} = \phi(a,b) = 3a - 2b$$

Then $\ker(\phi) = H$

It is indeed a homomorphism because

$$\phi((a+c,b+d)) = 3(a+c) - 2(b+d) = 3a - 2b + 3c - 2d = \phi(a,b) + \phi(c,d)$$

Thus by the first isomorphism theorem, $\mathbb{Z}_4 \times \mathbb{Z}_6/\langle (2,3) \rangle \cong \mathbb{Z}_{12}$.

Example. $G = \mathbb{Z}_4 \times \mathbb{Z}_6$ and $H = \langle (0,2) \rangle = \{ (0,0), (0,2), (0,4) \}$. Then |G| = 24 and |H| = 3. Thus |G/H| = 24/3 = 8.

Now G/H could be isomorphic to \mathbb{Z}_8 or $\mathbb{Z}_4 \times \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Answer. Again, draw the lattice diagram, but we will omit here: intuitively, we see that $G/H \cong \mathbb{Z}_4 \times \mathbb{Z}_2$.

Now we use the first isomorphism theorem:

Define

$$\phi(a,b) = (a,b \mod 2)$$

Then $\ker(\phi) = H$

It is indeed a homomorphism because

$$\phi((a+c,b+d)) = (a+c,b+d \mod 2) = (a,b \mod 2) + (c,d \mod 2) = \phi(a,b) + \phi(c,d)$$

Thus by the first isomorphism theorem, $\mathbb{Z}_4 \times \mathbb{Z}_6/\langle (0,2) \rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_2$.

Lecture 26

Example. $G = S_n$ is a permutation group. A_n is the alternating group with even permutations. Is the alternating group a normal subgroup? S_n/A_n ?

Answer. Yes, because the left cosets are the same as the right cosets. S_n/A_n is a group of order 2.

 *

*

Lecture 27

Note. There are 3 types of normal subgroups:

- 1. Maximal normal subgroups (Simple Groups)
- 2. Center of G, Z(G)
- 3. Intersection of 2 normal subgroups, NM

Example. Let G be a group, and H = G, then H is normal because $ghg^{-1} \in H = G \to H$ is normal. |G/H| = 1 and $G/H \cong \mathbb{Z}_1$.

Remark. If G is a group and the only normal subgroups are $H = \{e\}$ and H = G, then G does not produce any interesting factor groups.

Theorem 2.5.3. Let G be a group. Then G is simple if it has no proper and nontrivial normal subgroups.

Trivial means $H = \{e\}$ and Non-proper means H = G.

Example. $G = \mathbb{Z}_p$ where p is prime. Then G is simple because the only normal subgroups are $H = \{e\}$ and H = G.

Example. G is a group and |G| = p where p is prime. Then G is also simple for the same reason above.

Theorem 2.5.4. If $n \geq 5$, then A_n is simple.

Example. Let G be a group and there exists a subgroup $H \subseteq G$ such that [G:H] = 2. Is G simple?

Answer. This means the number of left cosets is 2, so aH = Ha so H is normal. $|H| \neq 1$, thus G is not simple.

Definition 2.5.1. $H \subseteq G$ is a maximal normal subgroup if:

- 1. H is normal.
- 2. There exists no proper nontrivial normal subgroup that contains H.

Remark. It is possible that H is a maximal subgroup, but there are larger subgroups that do not contain H.

Theorem 2.5.5. Let G be a group and H be a subgroup. H is maximal normal subgroup if and only if G/H is simple.

Definition 2.5.2. The center of a group G, denoted by $Z(G) = \{g \in G \mid gh = hg \ \forall h \in G\}$.

Theorem 2.5.6. Let G be a group. Then Z(G) is a normal subgroup of G.

Proof. First, check for subgroup properties:

- 1. Closed: Let $Z_1, Z_2 \in Z(G)$ then for all $g \in G$, $g(Z_1Z_2) = Z_1gZ_2 = (Z_1Z_2)g$
- 2. Identity: $e \in Z(G)$ because eg = ge for all $g \in G$.

3. Inverse: Let $z \in Z(G)$, then $z^{-1} \in Z(G)$ because for all $g \in G$,

$$gzz^{-1} = g = zgz^{-1} \Rightarrow g(z^{-1}) = (z^{-1})g$$

Now check for normality:

$$gzg^{-1} = z \ \forall z \in Z(G) \Rightarrow gZ(G)g^{-1} = Z(G)$$

CHAPTER 2. STRUCTURE & GROUPS