Data Cleaning and EDA using Python:

Data Cleaning:

Importing Medical inventory dataset and viewing the data

import pandas as pd

df = pd.read_csv("Medical Inventory Optimaization Dataset.csv")

df

	Typeofsales	Patient_ID	Specialisation	Dept	Dateofbill	Quantity	ReturnQuantity	Final_Cost	Final_Sales	RtnMRP	Formulation	DrugName
	Sale	12018098765	Specialisation6	Department1	06-01- 2022	1	0	55.406	59.260	0.0	Form1	ZINC ACETATE 20MG/5ML SYP
	Sale	12018103897	Specialisation7	Department1	7/23/2022	1	0	768.638	950.800	0.0	Form1	CEFTAZIDIME 2GM+AVIBACTAM 500MG
	Sale	12018101123	Specialisation2	Department3	6/23/2022	1	0	774.266	4004.214	0.0	Form2	EPTIFIBATIDE 0.75MG/ML
i	Sale	12018079281	Specialisation40	Department1	3/17/2022	2	0	40.798	81.044	0.0	Form1	WATER FOR INJECTION 10ML SOLUTION
	Sale	12018117928	Specialisation5	Department1	12/21/2022	1	0	40.434	40.504	0.0	Form1	LORAZEPAM 1MG
				***					***			
i	Sale	12018099994	Specialisation39	Department1	6/19/2022	3	0	61.436	145.200	0.0	Form1	SODIUM CHLORIDE IVF 100ML
	Sale	12018047025	Specialisation4	Department1	2/24/2022	2	0	64.448	119.692	0.0	Form1	PIPERACILLIN 1GM + TAZOBACTAM 125MG
i	Sale	12018017139	Specialisation1	Department1	6/27/2022	4	0	74.944	642.040	0.0	Form1	PARACETAMOL 1GM IV INJ
i	Sale	12018044140	Specialisation20	Department1	7/30/2022	1	0	111.680	181.000	0.0	Form3	MEROPENEM 1GM INJ
	Sale	12018116820	Specialisation26	Department1	10/24/2022	3	0	46.182	133.800	0.0	Form1	TRAMADOL

Displaying only 5 rows from top

df.head()

	Typeofsales	Patient_ID	Specialisation	Dept	Dateofbill	Quantity	ReturnQuantity	Final_Cost	Final_Sales	RtnMRP	Formulation	DrugNam
0	Sale	12018098765	Specialisation6	Department1	06-01- 2022	1	0	55.406	59.260	0.0	Form1	ZINC ACETATE 20MG/5ML SYF
1	Sale	12018103897	Specialisation7	Department1	7/23/2022	1	0	768.638	950.800	0.0	Form1	CEFTAZIDIMI 2GM+AVIBACTAN 500MC
2	Sale	12018101123	Specialisation2	Department3	6/23/2022	1	0	774.266	4004.214	0.0	Form2	EPTIFIBATIDE 0.75MG/MI
3	Sale	12018079281	Specialisation40	Department1	3/17/2022	2	0	40.798	81.044	0.0	Form1	WATER FOF INJECTION 10MI SOLUTION
4	Sale	12018117928	Specialisation5	Department1	12/21/2022	1	0	40.434	40.504	0.0	Form1	LORAZEPAN 1MC
4 0												•

Displaying last 5 rows of dataset

df.tail()

Out[3]:		Typeofsales	Patient_ID	Specialisation	Dept	Dateofbill	Quantity	ReturnQuantity	Final_Cost	Final_Sales	RtnMRP	Formulation	DrugNa
	14213	Sale	12018099994	Specialisation39	Department1	6/19/2022	3	0	61.436	145.200	0.0	Form1	SODI CHLORIDE 100
	14214	Sale	12018047025	Specialisation4	Department1	2/24/2022	2	0	64.448	119.692	0.0	Form1	PIPERACIL 1G TAZOBACT 125
	14215	Sale	12018017139	Specialisation1	Department1	6/27/2022	4	0	74.944	642.040	0.0	Form1	PARACETAN 1GM IV
	14216	Sale	12018044140	Specialisation20	Department1	7/30/2022	1	0	111.680	181.000	0.0	Form3	MEROPEN 1GM
	14217	Sale	12018116820	Specialisation26	Department1	10/24/2022	3	0	46.182	133.800	0.0	Form1	TRAMAE
	4												•

Checking for the null values

checking null values

df.isnull()

Out[4]:	Typeofsales	Patient_ID	Specialisation	Dept	Dateofbill	Quantity	ReturnQuantity	Final_Cost	Final_Sales	RtnMRP	Formulation	DrugName	SubCat	SubCat1
	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False	False	False	False	False	

#returns boolean value if null values is present in data

df.isna().any()

```
Out[5]: Typeofsales
                          False
        Patient_ID
                          False
        Specialisation
                          False
        Dept
                          False
        Dateofbill
                          False
        Quantity
                          False
        ReturnQuantity
                          False
        Final_Cost
                          False
        Final_Sales
                          False
        RtnMRP
                          False
                           True
        Formulation
        DrugName
                           True
        SubCat
                           True
        SubCat1
                           True
        dtype: bool
```

#identifying total null values

df.isna().sum()

Out[6]:	Typeofsales	0	
	Patient ID	0	
	Specialisation	0	
	Dept	0	
	Dateofbill	0	
	Quantity	0	
	ReturnQuantity	0	
	Final_Cost	0	
	Final_Sales	0	
	RtnMRP	0	
	Formulation	653	
	DrugName	1668	
	SubCat	1668	
	SubCat1	1692	
	dtype: int64		

number of columns contining null values

df.isna().any().sum()

Out[7]: 4

From the above code we can see we have null values in 4 different column namely Formulation, Drugname, Subcat, Subcat1. Here Formulation contains 653 values, Drugname contains 1668, Subcat contains 1688, Subcat1 contains 1692 null values.

Replacing null values with NA. So the sum of columns will remain same df.fillna('NA')

DrugNam	Formulation	RtnMRP	Final_Sales	Final_Cost	ReturnQuantity	Quantity	Dateofbill	Dept	Specialisation	Patient_ID	Typeofsales
ZINC ACETATI 20MG/5ML SYI	Form1	0.0	59.260	55.406	0	1	06-01- 2022	Department1	Specialisation6	12018098765	Sale
CEFTAZIDIMI 2GM+AVIBACTAN 500M0	Form1	0.0	950.800	768.638	0	1	7/23/2022	Department1	Specialisation7	12018103897	Sale
EPTIFIBATIDI 0.75MG/M	Form2	0.0	4004.214	774.266	0	1	6/23/2022	Department3	Specialisation2	12018101123	Sale
WATER FOR INJECTION 10M SOLUTION	Form1	0.0	81.044	40.798	0	2	3/17/2022	Department1	Specialisation40	12018079281	Sale
LORAZEPAI 1M	Form1	0.0	40.504	40.434	0	1	12/21/2022	Department1	Specialisation5	12018117928	Sale
SODIU CHLORIDE IV 100M	Form1	0.0	145.200	61.436	0	3	6/19/2022	Department1	Specialisation39	12018099994	Sale
PIPERACILLII 1GM TAZOBACTAI 125M	Form1	0.0	119.692	64.448	0	2	2/24/2022	Department1	Specialisation4	12018047025	Sale
PARACETAMO 1GM IV IN	Form1	0.0	642.040	74.944	0	4	6/27/2022	Department1	Specialisation1	12018017139	Sale
MEROPENEI	Form3	0.0	181.000	111.680	0	1	7/30/2022	Department1	Specialisation20	12018044140	Sale

Formating Date values:

From the observation in date column, the format is in consistant. 08-06-2022 and 7/15/2022 are the two formats we can see in the date column. So we are changing the format uniformly 7/15/2022 and convert the format from m/d/y to d/m/y

```
import pandas as pd
```

from dateutil import parser

```
# Function to convert different date formats to dd/mm/yyyy def convert_to_dd_mm_yyyy(date_str):
```

try:

Try parsing as mm/dd/yy format

date_parsed = parser.parse(date_str, dayfirst=False, yearfirst=False)

except ValueError:

 $\mbox{\it \#}$ If parsing fails, try parsing as dd-mm-yyyy format

date_parsed = parser.parse(date_str, dayfirst=True, yearfirst=False)

Convert the date to the desired format 'dd/mm/yyyy' return date_parsed.strftime('%d/%m/%Y')

```
# Apply the conversion function to the 'dateofbill' column

df['Dateofbill'] = df['Dateofbill'].apply(convert_to_dd_mm_yyyy)
```

Display the updated DataFrame

print(df)

```
Typeofsales
                   Patient_ID
                                 Specialisation
                                                              Dateofbill
0
            Sale 12018098765
                                Specialisation6 Department1
                                                              01/06/2022
                  12018103897
            Sale
                                Specialisation7 Department1
                                                              23/07/2022
1
            Sale
                  12018101123
                                Specialisation2 Department3
                                                              23/06/2022
                  12018079281 Specialisation40 Department1
            Sale
            Sale 12018117928 Specialisation5 Department1
            ... ... ... ... ... Sale 12018099994 Specialisation39 Department1
14213
                                                             19/06/2022
14214
                  12018047025 Specialisation4 Department1
                                                              24/02/2022
            Sale
14215
            Sale 12018017139
                                Specialisation1 Department1
            Sale 12018044140 Specialisation20 Department1
14217
            Sale 12018116820 Specialisation26 Department1 24/10/2022
      Quantity ReturnQuantity Final_Cost Final_Sales RtnMRP Formulation
0
                                    55.406
                                                59.260
                                                           0.0
                                                                     Form1
1
                                   768.638
                                                950.800
                                                            0.0
                                                                      Form1
                                    40.798
                                                 81.044
4
             1
                             0
                                    40.434
                                                 40.504
                                                           0.0
                                                                     Form1
14213
                                    61.436
                                                145.200
                                                            0.0
                                                                     Form1
14214
                                    64.448
                                                119.692
                                                            0.0
                                                                      Form1
                                                642.040
14216
                                                181.000
                                                133.800
                                                                SubCat \
                                 DrugName
                ZINC ACETATE 20MG/5ML SYP
                                                     SYRUP & SUSPENSION
          CEFTAZIDIME 2GM+AVIBACTAM 500MG
                                                            INJECTIONS
                   EPTIFIBATIDE 0.75MG/ML
                                                            INJECTIONS
3
        WATER FOR INJECTION 10ML SOLUTION
                                                            INJECTIONS
                                                    TABLETS & CAPSULES
4
                            LORAZEPAM 1MG
```

Feature engineering:

Create column with month name from date and add that column and remaning cleaned data from MioView to other view name MioView1

```
# Feature Engineering
```

```
df['month'] = pd.to_datetime(df['Dateofbill'], format='%d/%m/%Y').dt.strftime('%b')
```

EDA Analysis:

df

Summary statistics for all numerical columns

```
numerical_summary = df[['Quantity', 'ReturnQuantity', 'Final_Cost', 'Final_Sales', 'RtnMRP']].describe()
print(numerical_summary)
```

	Quantity	ReturnQuantity	Final_Cost	Final_Sales	RtnMRP
count	14218.000000	14218.000000	14218.000000	14218.000000	14218.000000
mean	2.231748	0.291954	124.823957	234.038300	29.126755
std	5.132043	1.643322	464.782794	671.261572	182.262335
min	0.000000	0.000000	40.000000	0.000000	0.000000
25%	1.000000	0.000000	44.928000	47.815000	0.000000
50%	1.000000	0.000000	53.650000	86.424000	0.000000
75%	2.000000	0.000000	77.800000	181.000000	0.000000
max	150.000000	50.000000	33178.000000	39490.000000	8014.000000

df['Typeofsales'].value_counts()

Out[31]: Sale 12537

Return 1681

Name: Typeofsales, dtype: int64

df['Specialisation'].value_counts()

Out[32]:	Specialisation4	3999
	Specialisation7	2098
	Specialisation3	734
	Specialisation2	609
	Specialisation8	594
	Specialisation20	554
	Specialisation11	516
	Specialisation16	509
	Specialisation1	440
	Specialisation14	436
	Specialisation5	390
	Specialisation21	360
	Specialisation26	342
	Specialisation6	251
	Specialisation23	249
	Specialisation25	201
	Specialisation31	184
	Specialisation17	178
	Specialisation9	158
	Specialisation15	143
	Specialisation42	132
	Specialisation27	117
	Specialisation10	107
	Specialisation50	100
	Specialisation33	99
	Specialisation55	91
	Specialisation43	74
	Specialisation45	55
	Specialisation34	53
	Specialisation39	47
	Specialisation41	44
	Specialisation40	43
	Specialisation28	34
	Specialisation19	30
	Specialisation48	24
	Specialisation61	23
	Specialisation12	23
	Specialisation49	23
	Specialisation54	20

df['Dept'].value_counts()

Out[33]: Department1 12440 Department2 1566

Department3 212

Name: Dept, dtype: int64

df['DrugName'].value_counts()

```
Out[34]: SODIUM CHLORIDE IVF 100ML
                                                                                      604
         SODIUM CHLORIDE 0.9%
                                                                                      526
         MULTIPLE ELECTROLYTES 500ML IVF
                                                                                      467
         ONDANSETRON 2MG/ML
                                                                                      444
         PANTOPRAZOLE 40MG INJ
                                                                                      441
         BASILIXIMAB 20 MG
                                                                                        1
         MULTIVITAMIN + MULTIMINERAL + ANTIOXIDANTS + METHYLCOBALAMIN 200ML SYRUP
                                                                                        1
         ROPINIROLE 0.5MG TAB
         IRON SUCROSE 100MG INJ
         FENTANYL 12.5MCG/HR
                                                                                        1
         Name: DrugName, Length: 751, dtype: int64
```

df['Formulation'].value_counts()

```
Out[35]: Form1 11622
Form2 1325
Patent 539
Form3 79
```

Name: Formulation, dtype: int64

df['SubCat'].value_counts()

Out[36]:	INJECTIONS	6500
	IV FLUIDS, ELECTROLYTES, TPN	2709
	TABLETS & CAPSULES	1505
	INHALERS & RESPULES	469
	OINTMENTS, CREAMS & GELS	364
	LIQUIDS & SOLUTIONS	265
	SYRUP & SUSPENSION	237
	POWDER	216
	NUTRITIONAL SUPPLEMENTS	126
	PESSARIES & SUPPOSITORIES	55
	DROPS	53
	VACCINE	19
	SPRAY	12
	PATCH	11
	LOTIONS	5
	SOLUTION	3
	SACHETS	1
	Name: SubCat, dtype: int64	

df['SubCat1'].value_counts()

0+[20].		
Out[38]:	INTRAVENOUS & OTHER STERILE SOLUTIONS	3192
	GASTROINTESTINAL & HEPATOBILIARY SYSTEM	1738
	ANTI-INFECTIVES	1647
	CARDIOVASCULAR & HEMATOPOIETIC SYSTEM	1480
	CENTRAL NERVOUS SYSTEM	1262
	RESPIRATORY SYSTEM	593
	ANAESTHETICS	591
	NUTRITION	331
	MUSCULO-SKELETAL SYSTEM	322
	VITAMINS & MINERALS	303
	HORMONES	291
	IMMUNOLOGY	186
	ENDOCRINE & METABOLIC SYSTEM	161
	DERMATOLOGY	156
	EAR & MOUTH/ THROAT	74
	ONCOLOGY	64
	GENITO-URINARY SYSTEM	44
	CARDIIVASCULAR&HEMATOPOIETIC SYSTEM	38
	OPHTHALMOLOGY	34
	ANTIDOTES, DETOXIFYING AGENTS & DRUGS USED IN SUBSTANCE DEPENDENCE	11
	MISCELLANEOUS	8
	Name: SubCat1, dtype: int64	
	, ->	

df['month'].value_counts()

```
Out[39]:
               Dec
                          1417
               Aug
                          1375
                          1294
               Jul
               Apr
                          1252
               May
                          1196
               Sep
                          1190
               Mar
                          1180
               Nov
                          1150
               Oct
                          1118
               Jun
                          1042
                          1017
               Jan
               Feb
                            987
               Name: month, dtype: int64
First moment bussiness decision: Mean, Median, Mode
# Calculate mean, median, and mode for numerical columns
numerical_columns = ['Quantity', 'ReturnQuantity', 'Final_Cost', 'Final_Sales', 'RtnMRP']
# Mean
mean_values = df[numerical_columns].mean()
print("Mean Values:")
print(mean_values)
# Median
median_values = df[numerical_columns].median()
print("\nMedian Values:")
print(median_values)
# Mode
```

mode_values = df[numerical_columns].mode().iloc[0]

print("\nMode Values:")

print(mode_values)

Mean Values:

Quantity 2.231748
ReturnQuantity 0.291954
Final_Cost 124.823957
Final_Sales 234.038300
RtnMRP 29.126755

dtype: float64

Median Values:

Quantity 1.000
ReturnQuantity 0.000
Final_Cost 53.650
Final_Sales 86.424
RtnMRP 0.000

dtype: float64

Mode Values:

Quantity 1.000
ReturnQuantity 0.000
Final_Cost 49.352
Final_Sales 0.000
RtnMRP 0.000

Name: 0, dtype: float64

Second Moment Business Decision: Variance, Standard Deviation, Range import pandas as pd

Compute variance for numerical columns

variance_df = df[['Quantity', 'ReturnQuantity', 'Final_Cost', 'Final_Sales', 'RtnMRP']].var()

```
# Compute standard deviation for numerical columns

std_dev_df = df[['Quantity', 'ReturnQuantity', 'Final_Cost', 'Final_Sales', 'RtnMRP']].std()

# Compute range for numerical columns

range_df = df[['Quantity', 'ReturnQuantity', 'Final_Cost', 'Final_Sales', 'RtnMRP']].max() - df[['Quantity', 'ReturnQuantity', 'Final_Cost', 'Final_Sales', 'RtnMRP']].min()

# Display the results

print("Variance:")

print(variance_df)

print("\nStandard Deviation:")

print(std_dev_df)

print("\nRange:")
```

print(range_df)

Variance:

Quantity26.337862ReturnQuantity2.700506Final_Cost216023.045394Final_Sales450592.097666RtnMRP33219.558938

dtype: float64

Standard Deviation:

 Quantity
 5.132043

 ReturnQuantity
 1.643322

 Final_Cost
 464.782794

 Final_Sales
 671.261572

 RtnMRP
 182.262335

dtype: float64

Range:

Quantity 150.0
ReturnQuantity 50.0
Final_Cost 33138.0
Final_Sales 39490.0
RtnMRP 8014.0

dtype: float64

Third Moment Business Decision: skewness, Kurtosis

from scipy.stats import skew, kurtosis

numerical_columns = ['Quantity', 'ReturnQuantity', 'Final_Cost', 'Final_Sales', 'RtnMRP']

for column in numerical_columns:

col_data = df[column].dropna() # Remove NaN values

skew_val = skew(col_data)

kurt_val = kurtosis(col_data)

print(f"\n{column} Skewness: {skew_val:.4f}")

print(f"{column} Kurtosis: {kurt_val:.4f}")

Quantity Skewness: 11.3398 Quantity Kurtosis: 180.0901

ReturnQuantity Skewness: 17.1706
ReturnQuantity Kurtosis: 409.2725

Final_Cost Skewness: 34.5046
Final_Cost Kurtosis: 2025.1537

Final_Sales Skewness: 21.0045 Final_Sales Kurtosis: 948.1888

RtnMRP Skewness: 15.7962 RtnMRP Kurtosis: 403.3826

Analysis:

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Q1) Total Distinct Patients
total_distinct_patients = df['Patient_ID'].nunique()
print(f"Q1) Total Distinct Patients: {total_distinct_patients}")

Q2) Patient_ID count where type of sale is return
return_patients_count = df[df['Typeofsales'] == 'Return']['Patient_ID'].nunique()
print(f"Q2) Patient ID count where type of sale is return: {return patients count}")

Q3) Patient_ID count where type of sale is sales
sales_patients_count = df[df['Typeofsales'] == 'Sale']['Patient_ID'].nunique()
print(f"Q3) Patient_ID count where type of sale is sales: {sales_patients_count}")

```
# Q4) Overall Bounce Rate
overall_bounce_rate = (return_patients_count / total_distinct_patients) * 100
print(f"Q4) Overall Bounce Rate: {overall_bounce_rate:.2f}%")
# Q5) Bounce rate by Specialization
bounce_rate_by_specialization = df[df['Typeofsales'] ==
'Return'].groupby('Specialisation')['Patient ID'].nunique() /
df.groupby('Specialisation')['Patient_ID'].nunique() * 100
print(f"Q5) Bounce Rate by Specialization:")
print(bounce_rate_by_specialization)
# Q6) Total cost of purchase that returns from SubCat
total_cost_return_subcat = df[df['Typeofsales'] == 'Return']['Final_Cost'].sum()
print(f"Q6) Total cost of purchase that returns from SubCat: {total_cost_return_subcat:.2f}")
# Q7) Count of drugs returned without sales
drugs_returned_without_sales_count = df[(df['Typeofsales'] == 'Return') & (df['Final_Sales'] ==
0)]['DrugName'].nunique()
print(f"Q7) Count of drugs returned without sales: {drugs_returned_without_sales_count}")
# Q8) Return items based on month
return items by month = df[df['Typeofsales'] == 'Return'].groupby('month')['Patient ID'].count()
print(f"Q8) Return items based on month:")
print(return items by month)
# Q9) Total sales when sales is return or sale
total_sales_return_sale = df[df['Typeofsales'].isin(['Return', 'Sale'])]['Final_Sales'].sum()
print(f"Q9) Total sales when sales is return or sale: {total sales return sale:.2f}")
```

```
# Q10) Drugs which are mostly returned
mostly_returned_drugs = df[df['Typeofsales'] == 'Return']['DrugName'].value_counts().idxmax()
print(f"Q10) Drugs which are mostly returned: {mostly_returned_drugs}")
# Q11) Total sales based on month
total_sales_by_month = df.groupby('month')['Final_Sales'].sum()
print(f"Q11) Total sales based on month:")
print(total sales by month)
# Q12) Average quantity of drug purchases
average_quantity_purchases = df.groupby('DrugName')['Quantity'].mean()
print(f"Q12) Average quantity of drug purchases:")
print(average_quantity_purchases)
#Q13) Relation between quantity and total sales
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Quantity', y='Final_Sales', data=df)
plt.title('Q13) Relation between quantity and total sales')
plt.show()
# Q14) Average Sales based on Specialisation
average_sales_by_specialization = df.groupby('Specialisation')['Final_Sales'].mean()
print(f"Q14) Average Sales based on Specialisation:")
print(average_sales_by_specialization)
# Q15) Frequency of return quantity
return_quantity_frequency = df[df['Typeofsales'] == 'return']['ReturnQuantity'].value_counts()
print(f"Q15) Frequency of return quantity:")
print(return_quantity_frequency)
```

```
Q1) Total Distinct Patients: 4883
Q2) Patient_ID count where type of sale is return: 1217
Q3) Patient_ID count where type of sale is sales: 4632
Q4) Overall Bounce Rate: 24.92%
Q5) Bounce Rate by Specialization:
Specialisation
Specialisation1
                    21.844660
Specialisation10
                   16.417910
Specialisation11
                    13.939394
Specialisation12
                    14.285714
Specialisation13
                    50.000000
Specialisation14
                     9.465021
Specialisation15
                   30.188679
Specialisation16
                   26.282051
Specialisation17
                   26.373626
                  50.000000
Specialisation18
Specialisation19
                  45.454545
Specialisation2
                   15.580737
Specialisation20
                    15.471698
  Q6) Total cost of purchase that returns from SubCat: 191156.52
  Q7) Count of drugs returned without sales: 249
  Q8) Return items based on month:
  month
  Apr
        129
  Aug
        177
  Dec
        151
  Feb
       123
        110
  Jan
  Jul
       156
```

Name: Patient_ID, dtype: int64

Jun

Mar

May

Nov

Oct

Sep

116

143

178

133

130

135

```
Q9) Total sales when sales is return or sale: 3327556.56
Q10) Drugs which are mostly returned: SODIUM CHLORIDE IVF 100ML
Q11) Total sales based on month:
month
Apr
      267918.874
      319996.630
Aug
Dec
      412259.126
Feb 247230.908
Jan
     236331.070
      309785.630
Jul
Jun
     216637.552
Mar
      250913.852
May
      300612.102
Nov
      273303.022
Oct
     258533.458
Sep
      234034.332
Name: Final_Sales, dtype: float64
Q12) Average quantity of drug purchases:
DrugName
ACEBROPHYLLINE 100MG CAP
                                                                   1.000000
ACEBROPHYLLINE 200MG TAB
                                                                   0.857143
ACECLOFENAC 100MG + PARACETAMOL 325MG + SERRATIOPEPTIDASE 15MG TAB
                                                                   1.000000
ACECLOFENAC 100MG + PARACETAMOL 325MG TAB
                                                                   1.000000
ACYCLOVIR 200MG TAB
                                                                   0.750000
ZINC ACETATE 20MG/5ML SYP
                                                                   1.000000
ZINC OXIDE 30GM CREAM
                                                                   1.666667
ZINC OXIDE + CALENDULA + ALOE + JOJOBA OIL 100ML CREAM
                                                                   0.666667
ZOLPIDEM 10MG TAB
                                                                   1.000000
ZOLPIDEM 5MG TAB
                                                                   1.000000
Name: Quantity, Length: 751, dtype: float64
```


Q14) Average Sales based on Specialisation:

Specialisation

Specialisation	
Specialisation1	171.599727
Specialisation10	130.044243
Specialisation11	106.872860
Specialisation12	66.252783
Specialisation13	234.074800
Specialisation14	124.797812
Specialisation15	129.600280
Specialisation16	170.053363
Specialisation17	234.976562
Specialisation18	166.272800
Specialisation19	122.689133
Specialisation2	155.996772
Specialisation20	209.146895
Specialisation21	203.732750
Specialisation22	106.925750
Specialisation23	277.191920
Specialisation24	81.176400
Specialisation25	90.791642
Specialisation26	250.757211
Specialisation27	119.352718
Specialisation28	96.545765
Specialisation3	172.143183
Specialisation31	180.635783
Specialisation33	202.323111
Specialisation34	109.033434
Specialisation35	53.040000
Specialisation37	91.583000
Specialisation38	75.821286
Specialisation39	85.267660
Specialisation4	300.532188
Specialisation40	147.677628
Specialisation41	359.269227
Specialisation42	129.751045
Specialisation43	97.807162

Specialisation44 151.843294

```
Q15) Frequency of return quantity:
     901
1
2
     404
3
     161
4
     70
5
      50
6
      18
10
      14
12
      7
7
       7
15
       6
9
       6
20
       4
18
       3
8
       3
       3
50
17
       3
14
       3
30
       2
22
       2
21
       2
19
       1
24
       1
45
       1
13
       1
16
       1
11
       1
44
       1
48
       1
23
       1
40
       1
42
       1
32
        1
Name: ReturnQuantity, dtype: int64
```

Univariant Analysis:

```
How does the 'Final_Sales' vary over different 'month' values? import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
```

Univariate chart for month and sales using a line plot
plt.figure(figsize=(12, 6))
sns.lineplot(x='month', y='Final_Sales', data=df, ci=None)
plt.title('Univariate Chart for Month and Sales')
plt.xlabel('Month')
plt.ylabel('Total Sales')
plt.show()

Is the distribution of 'Final_cost' skewed or symmetric?
Is the distribution of 'Final_cost' skewed or symmetric?
import pandas as pd
import seaborn as sns

```
# Plot a histogram and kernel density plot for 'Final_cost'

plt.figure(figsize=(10, 6))

sns.histplot(df['Final_Cost'], kde=True)

plt.title('Distribution of Final_Cost')

plt.xlabel('Final_Cost')

plt.show()

# Calculate skewness

skewness = df['Final_Cost'].skew()

# Assess skewness

if skewness > 0:

print(f"The distribution is right-skewed (positively skewed) with skewness value: {skewness:.2f}")

elif skewness < 0:

print(f"The distribution is left-skewed (negatively skewed) with skewness value: {skewness:.2f}")

else:
```

print("The distribution is approximately symmetric.")

import matplotlib.pyplot as plt


```
Are there extreme values in the 'Quantity' column? import pandas as pd import matplotlib.pyplot as plt # Check for extreme values using a boxplot plt.figure(figsize=(8, 6)) sns.boxplot(x='Quantity', data=df) plt.title('Boxplot of Quantity') plt.show()

# Calculate the interquartile range (IQR)
Q1 = df['Quantity'].quantile(0.25)
Q3 = df['Quantity'].quantile(0.75)
IQR = Q3 - Q1
```

```
# Identify potential outliers using the IQR method outliers = (df['Quantity'] < (Q1 - 1.5 * IQR)) | (df['Quantity'] > (Q3 + 1.5 * IQR))
```

Display the number of potential outliers

print(f"Number of potential outliers in Quantity: {outliers.sum()}")

Boxplot of Quantity

What are the 25th, 50th, and 75th percentiles of 'Final_Sales'? import pandas as pd import seaborn as sns import matplotlib.pyplot as plt

Calculate percentiles using describe method

percentiles = df['Final_Sales'].describe(percentiles=[.25, .5, .75])[['25%', '50%', '75%']]

print("Percentiles of Final_Sales:")

```
# Create a boxplot for 'Final_Sales'
plt.figure(figsize=(8, 6))
sns.boxplot(x='Final_Sales', data=df)
plt.title('Boxplot of Final_Sales')
```

plt.show()

plt.xlabel('Final_Sales')

print(percentiles)

Percentiles of Final_Sales: 25% 47.815 50% 86.424 75% 181.000

Name: Final_Sales, dtype: float64

Bivariant Analysis:

Return quantity by drug formulation import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

Analysis of Return Quantity by Drug Formulation

```
plt.figure(figsize=(12, 6))
sns.boxplot(x='Formulation', y='ReturnQuantity', data=df)
plt.title('Analysis of Return Quantity by Drug Formulation')
plt.xticks(rotation=45, ha='right')
plt.show()
```


How Month Effect Final sales

```
# Time Series Plot for Final Sales

df['Dateofbill'] = pd.to_datetime(df['Dateofbill']) # Convert Dateofbill to datetime if it's not already

df_time_series = df.set_index('Dateofbill')

plt.figure(figsize=(12, 6))

df_time_series['Final_Sales'].resample('M').sum().plot()

plt.title('Time Series Plot of Final Sales')

plt.xlabel('Date')

plt.ylabel('Final Sales')

plt.show()
```


Here we can see we have more sales on December

Explore how Return Quantity relates to the cost of the products

plt.figure(figsize=(12, 6))

sns.scatterplot(x='Final_Cost', y='ReturnQuantity', data=df)

plt.title('Relation between Return Quantity and Cost')

plt.show()

Differences in Return Quantity and Final Sales across different Subcategories

```
plt.figure(figsize=(12, 6))
sns.boxplot(x='SubCat', y='ReturnQuantity', data=df)
plt.title('Differences in Return Quantity across Subcategories')
plt.xticks(rotation=45, ha='right')
plt.show()
```


Differences in Final Sales across different Departments plt.figure(figsize=(12, 6)) sns.boxplot(x='Dept', y='Final_Sales', data=df) plt.title('Differences in Final Sales across Departments')

plt.show()

Multi Variant Analysis:

Correlation heatmap for numerical columns

correlation_matrix = df[['Quantity', 'Returnquantity', 'Final_cost', 'Final_Sales', 'RtnMRP']].corr()

plt.figure(figsize=(10, 8))

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)

plt.title('Correlation Heatmap for Numerical Columns')

plt.show()


```
How does the Specialisation or Dept impact the Final_Sales or Returnquantity?
# Bar plot for average Final_Sales by Specialisation
avg_sales_by_specialisation =
df.groupby('Specialisation')['Final_Sales'].mean().sort_values(ascending=False)
plt.figure(figsize=(10, 6))
sns.barplot(x=avg_sales_by_specialisation.index, y=avg_sales_by_specialisation.values)
plt.title('Average Final_Sales by Specialisation')
plt.xticks(rotation=45, ha='right')
plt.show()
# Bar plot for average Returnquantity by Dept
avg_return_quantity_by_dept =
df.groupby('Dept')['ReturnQuantity'].mean().sort_values(ascending=False)
plt.figure(figsize=(10, 6))
sns.barplot(x=avg_return_quantity_by_dept.index, y=avg_return_quantity_by_dept.values)
plt.title('Average Returnquantity by Dept')
plt.xticks(rotation=45, ha='right')
plt.show()
```


Department 1 has highest average returns and specialization41 has highest average sales

ANOVA Analysis to check if month effect sales

import pandas as pd

from scipy.stats import f_oneway

One-way ANOVA

dept_groups = [df['Final_Sales'][df['month'] == dept] for dept in df['month'].unique()]

Perform one-way ANOVA

anova_result = f_oneway(*dept_groups)

Display the ANOVA result

print("ANOVA Result:")

```
print(anova_result)
# Check if the p-value is less than a significance level (e.g., 0.05) to determine significance
if anova_result.pvalue < 0.05:
  print("There is a significant effect of 'Month' on 'Final_Sales'.")
else:
  print("There is no significant effect of 'Month' on 'Final_Sales'.")
 ANOVA Result:
 F_onewayResult(statistic=1.755518422272744, pvalue=0.055855110206130425)
 There is no significant effect of 'Month' on 'Final_Sales'.
Which subcategory has more return items
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Filter rows where Typeofsales is 'return'
returns_df = df[df['Typeofsales'] == 'Return']
# Count the returns for each subcategory
returns by subcategory = returns df['SubCat'].value counts()
# Plot a bar chart
plt.figure(figsize=(12, 6))
sns.barplot(x=returns by subcategory.index, y=returns by subcategory.values, palette="viridis")
plt.title('Returns by Subcategory')
plt.xlabel('Subcategory')
plt.ylabel('Number of Returns')
plt.xticks(rotation=45, ha='right') # Rotate x-axis labels for better visibility
plt.show()
```


insights:

From Sub category Injections, tablets and IV fuilds, electrolytes, TPN has highest number of returns

Department 1 has highest average returns and specialization 41 has highest average sales

Department 1 contains highest average sales in department compared to other two departments

Form 1 has more return quantity, form 3 has lowest return quantities

In sales we can see dec month has highest sales compared to other months

Conclusion

From the above analysis we can see the sub categories Injections and tablets and IV fuilds were returned frequently, so there may be some dissatisfaction with this products we need to check for those reasons for the items returned, the data we analyse does not consists that field so there is no correct finding for the reasons

We can these two categories injections, tablets, IV fluids return frequently and it costs lots of money, finding the reason for these returns we can reduce the amount of money lose to inventory

reason, we can i	est average sales in Dencrease the sales in ot	her months.		