Contents

1	01.19.21				
	1.1	Tuples & DFAs			
	1.2	Domains & Codomains			
	1.3	Strings			
	1.4	TODO Review Recursive Definitions			
	1.5	Languages			
2	01.14.21				
	2.1	Automaton (automata)			
	2.2	The Mathematics of Automata			
		2.2.1 Mathematicians & History			
		2.2.2 Sequential Logic			
	2.3	Necessary Review			
	2.4	Functions			
	2.5	TODO Types of Functions - Definition & Logical Statement .			
	2.6	Finite Automaton (Finite State Machine)			
1	0.	1.19.21			
1.	1 7	Tuples & DFAs			
	• T	uples are sequences which are always finite in length			
	• T	he deterministic finite automaton shown is a 5-tuple:			
		1. Q: finite nonempty set of states			
		- state: configuration of logic of a machine			
		2. Σ (Sigma) - input alphabet			
		 alphabet: a finite, nonempty set of symbols where symbols are an object of length 1 			
		3. δ (Delta) - transition function			
		4. $Q_0 \in Q$ - starting state			
		5. $F \subset Q$ - set of final states			
	• F	or this deterministic finite automaton,			
		$-\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}_2$			

Represented as a table,

Step	State	Input	Transition
1	Q_1	1	$Q_1 \to Q_2$
2	Q_2	0	$Q_2 \to Q_1$
3	Q_1	1	$Q_1 \to Q_2$
4	Q_2	1	$Q_2 \rightarrow Q_2$

1.2 Domains & Codomains

- Domain: set of all possible function inputs
- Codomain: set of all possible outputs

1.3 Strings

- In computer science, strings are character arrays
- In mathematics, strings are sequences of symbols
- Specifically a string over an alphabet, Σ , is a sequence of symbols belonging to Σ
- ϵ is the empty string
- Concatenation: If $w_1, w_2 \in \Sigma, w_1 \cdot w_2 = w_1 w_2$
- If $c \in \Sigma$, then $\epsilon \cdot c = c \cdot \epsilon = c$

1.4 TODO Review Recursive Definitions

- Base step: a step that can not be broken down any further, a fact that is always true regardless of the input
- Recursive step:
- Defining the length of a string over Σ
 - Base: $|\epsilon| = 0$
 - Recursive:
 - * let w be a string over Σ , and $c \in \Sigma$
 - * then $|\mathbf{w} \cdot \mathbf{c}| = |\mathbf{w}| + 1$
- Using this to define |1011|,

- 1. $|1011| = |101 \cdot 1| = |101| + 1 =$
- 2. $|10 \cdot 1| + 1 = |10| + 1 + 1 =$
- 3. $|1 \cdot 0| + 1 + 1 = |1| + 1 + 1 + 1 = |1|$
- 4. $|\epsilon \cdot 1| + 1 + 1 + 1 =$
- 5. $|\epsilon| + 1 + 1 + 1 + 1 =$
- 6. 0+1+1+1+1=4

1.5 Languages

- Languages over Σ a set of finite strings over Σ
- \bullet Langauges recognized by an automaton, M, L(M) is the language accepted by M
- \emptyset is the empty language
- $\epsilon \neq \emptyset$
- $\epsilon \neq \{\epsilon\}$
- ϵ is not a symbol in any alphabet

$2 \quad 01.14.21$

2.1 Automaton (automata)

- Self running machine requiring a continuous power source
 - Historically used power sources include water, steam, and electricity
- Course revolves around defining the mathematics powering machines

2.2 The Mathematics of Automata

2.2.1 Mathematicians & History

- Cantor defines sets as collections of objects
- Cantor also argues that infinites can be of different magnitudes there are infinitely more real numbers than natural numbers
- Goedel eventually derives his incompleteness theorem

- No logical system that contains the natural numbers can prove its own soundness
- Every sound logical system containing the natural numbers contains valid statements that cannot be proved or disproved
- In 1936, Turing proves The Halting Problem is not decidable, it is impossible
 - The Halting Problem is an algorithm that can analyze any other algorithm and determine whether or not it goes into an infinite loop
- Turing creates the turing machine as an object consisting of sets and processes wherein the object can use any finite process to complete an action.
- Turing machine sets the basis for a computer, which leads to a series of important questions:
 - What can & can't a machine do?
 - What does it mean for a problem of be harder than another?
 - What does it mean for a machine to be more powerfule than another?

2.2.2 Sequential Logic

- Sentential Logic- based on boolean results
 - Predicated on AND, OR, NOT
 - XOR, XAND, etc. can be derived using the above

2.3 Necessary Review

- Textbook Ch. 0
- Logic Statements
- Set Theory
- Functions

2.4 Functions

- Functions something that maps objects from one set to another
- Given f: $a \rightarrow b$;
 - Everything in a is mapped to something in b
 - * For every x, such that x is an element of a, there exists a y, such that y is an element of b
 - No one point in the domain can be mapped to two different points in the codomain
 - * Logically, you can't have a function that takes in one input and returns two different outputs
 - * If f maps $x \to y1$ and y2, y1 = y2
 - - \forall x \in A $y_1,y_2 \in$ B $[f(x)=y_1 \land f(x)=y_2 \rightarrow y_1=y_2]$

2.5 TODO Types of Functions - Definition & Logical Statement

- Injective Functions
- Surjective Functions
- Proof by Induction (\forall)
- Proof by Contradiction (¬∃)

2.6 Finite Automaton (Finite State Machine)

- States are logical confirgurations
- States are generally based upon input
- Purpose of a state machine is to make a yes/no decision