Circle Drawing Spiral Drawing Ellipse Drawing

COM524T-Interactive Computer Graphics Circle and Ellipse Drawing Algorithms

Dr. Ram Prasad Padhy

Computer Science & Engineering, IIITDM Kancheepuram

Table of contents

- Circle Drawing
 - Circle Drawing
 - Midpoint Circle Drawing Algorithm

- Spiral Drawing
 - Spiral Drawing
- 3 Ellipse Drawing
 - Ellipse Drawing
 - Midpoint Ellipse Drawing Algorithm

Equation of a circle

• General circle drawing problem: parameters are center and radius $(x - x_c)^2 + (y - y_c)^2 = r^2$

$$(x - x_c)^2 + (y - \underline{y}_c)^2 = r^2$$

$$\Rightarrow (y) = y_c \pm (\sqrt{r_c^2 - (x_c - x)_c^2})$$

Creates uneven spacing if plotted!!!

- How to eliminate uneven spacing?
- parametric polar form:
- $x = x_c + r \cos \theta$
- $y = y_c + r \sin \theta_1$

0,1,2,3

N34 M3=43

(x-ne)+(y-ye)2= x2

parametri

N=71+8(010

y=yc+rsina

(764 7 CUND

COM524T-Interactive Computer Graphics

- How to vary θ ?
- We are aiming to plot 4r 4 points $\Rightarrow 9(\gamma 1)$
- Step size for varying θ is $2\pi/4(r-1)$
- Computation can be reduced by exploiting symmetry

Figure: Parametric circle drawing

Graneral Dime drawing

(ALK)

- $\bullet \Rightarrow y = y_c \pm \sqrt{r^2 (x_c x)^2}$
- $\bullet \Rightarrow x = x_c \pm \sqrt{r^2 (y_c y)^2}$

- Uneven plotting won't be there if we plot 1/8th of a circle!
- Each pixel computation would need 3 addition (or subtraction) and 3 exponentiation (or root) operation

Midpoint Circle Drawing

- $f_{circle} = x^2 + y^2 r^2$ Without loss of generalization, we consider center at (0,0)

$$f_{circle}(x,y) = \begin{cases} <0; & \text{if } (x,y) \text{ is inside the boundary} \\ =0; & \text{if } (x,y) \text{ is on the boundary} \\ >0; & \text{if } (x,y) \text{ is outiside the boundary} \end{cases}$$

- Assuming (x_k, y_k) is plotted, we want to plot (x_{k+1}, y_{k+1})
- Without loss of generalization, we consider $x_{k+1} = x_k + 1$ and we check if $y_{k+1} = y_k$ or $y_{k+1} = y_k 1$

$$F_{0} = f_{circle}(x_{k} + 1, v_{k} - \frac{1}{2})$$

$$= (x_{k} + 1)^{2} + (y_{k} - \frac{1}{2})^{2} - r^{2}$$

$$= (x_{k} + 1)^{2} + (y_{k} - \frac{1}{2})^{2} - r^{2}$$

$$F_{0} = integer$$

$$F_{1} = f(F_{0})$$

$$F_{1} = f(F_{0})$$

$$F_{2} = f_{2} - (y_{k} - y_{k})^{2} + \delta^{2}$$

$$F_{2} = f_{2} - (y_{k} - y_{k})^{2} + \delta^{2}$$

$$F_{2} = f_{2} - (y_{k} - y_{k})^{2} + \delta^{2}$$

$$P_{k+1} = + (P_k) = \frac{1}{1} \operatorname{cond}_k (\neg u_{k+1} + 1) \cdot \frac{1}{1} \operatorname{d}_{k+1} - \frac{1}{2})$$

$$= \left[(\neg u_{k+1} + 1)^2 + (\neg u_{k+1} - 1)^2 - \neg u_{k+1}^2 \right]$$

$$= \left[(\neg u_{k+1} + 1)^2 + (\neg u_{k+1} - 1) + (\neg u_{k+1} - 1)^2 - \neg u_{k+1}^2 \right]$$

$$= \left[(\neg u_{k+1} + 1)^2 + (\neg u_{k+1} - 1) + (\neg u_{k+1} - 1) + (\neg u_{k+1} + 1) + (\neg u_{k+1} + 1) + (\neg u_{k+1} + 1) + (\neg u_{k+1} - 1) + (\neg u_{k$$

$$P_{k+1} = + (P_k) = \frac{1}{1} \operatorname{cord}_{k} (\neg u_{k+1} + 1) \cdot \frac{1}{1} \operatorname{d}_{k+1} - \frac{1}{2})$$

$$= \left[(\neg u_{k+1} + 1)^{2} + (y_{k+1} - y_{2})^{2} - y^{2} \right]$$

$$= \left[(\neg u_{k+1} + 1)^{2} + (y_{k+1} - y_{2})^{2} - y^{2} \right]$$

$$= \left[(\neg u_{k+1} + 1)^{2} + (y_{k+1} - y_{2})^{2} - y^{2} \right]$$

$$= \left[(\neg u_{k+1} + 1)^{2} + (y_{k+1} - y_{2})^{2} - y^{2} \right]$$

$$= \left[(\neg u_{k+1} + 1)^{2} + (y_{k+1} - y_{k+1} + y_{k+1}$$

$$P_{k+1} = P_{k} + 2(\gamma_{k+1}) + (\gamma_{k+1} - \gamma_{k}^{2}) - (\gamma_{k+1} - \gamma_{k}) + 1$$

$$= P_{k} + 2(\gamma_{k+1}) + (\gamma_{k-1})^{2} - \gamma_{k}^{2} - (\gamma_{k+1} - \gamma_{k}) + 1$$

$$= P_{k} + 2(\gamma_{k+1}) + (\gamma_{k-1})^{2} - \gamma_{k}^{2} - (\gamma_{k+1} - \gamma_{k}) + 1$$

$$= P_{k} + 2(\gamma_{k+1}) + 1 - 2\gamma_{k} - \gamma_{k} - \gamma_{k} + \gamma_{k} + 1$$

$$= P_{k} + 2(\gamma_{k+1}) + 1 - 2\gamma_{k} - \gamma_{k} + \gamma_{k} + \gamma_{k} + 1$$

$$= P_{k} + 2\gamma_{k+1} + 1 - 2\gamma_{k} - \gamma_{k} + \gamma_{k}$$

Finding p_0 and halting the algorithm

Circle drawn on a quadrant

Midpoint circle drawing algorithm

A simple example by MCD

A simple example by MCD

$$p_0 = 1 - 10 = -9$$

 $(x_0, y_0) \leftarrow (0, 10)$
 $2x_0 = 0$
 $2y_0 = 20$

k	p_k	x_{k+1}	y_{k+1}	$2x_{k+1}$	$2y_{k+1}$
-	-	0	10	0	20
0	-9	1	10	2	20
1	-6	2	10	4	20
2	-1	3	10	6	20
3	6	4	9	8	18
4	-3	5	9	10	18
5	8	6	8	12	16
6	5	7	7	14	14

A simple example by MCD

Shifting center at (3,4)

X	y	$x + x_c$	$y + y_c$	
0	10	(3	14	
1	10	4	14)	
2	10	(5	14)	
3	10	(6	14 1	
4	9	7	13	
5	9	8	13	
6	8	9	12	J
7	7	10	11	-

Midpoint Circle Drawing

102-1 [m/2]

- What would happen if we do not stop at $x_{k+1} = y_{k+1}$?
- If we dont consider the computation, would the answer be correct? NO
- WHY? because our decision parameter p_k is designed to check inclusion or exclusion of the midpoint along y axis and not along x axis, which role is reversed once we cross x = y

Spiral Drawing

Can a spiral be drawn based on any circle drawing algorithm?

Spiral Drawing

- $x = x_c + r\theta \cos \theta$
- $y = y_c + r_\theta \sin \theta$
- $r_{\theta} = \frac{(r_{\text{oyter}} r_{\text{inner}}) \times \theta}{2\pi}$ keeps on recomputed as intermediate value of r
- How to vary θ ?
- We aim to plot 4r 4 points for a circle with radius r
- Step size for varying θ is $2\pi/4(r_{\theta}-1)$

H end (5-0) 25 5 Youter 80 =0 1

Equation of an ellipse

- General ellipse drawing problem: parameters are center and radius along x and y axes
- $(\frac{x-x_c}{r_x})^2 + (\frac{y-y_c}{r_y})^2 = 1$
- $\bullet \Rightarrow y = y_c \pm \frac{r_y}{r_x} \sqrt{r_x^2 (x_c x)^2}$
- $\bullet \Rightarrow x = x_c \pm \frac{r_x}{r_y} \sqrt{r_y^2 (y_c y)^2}$
- Creates uneven spacing if plotted!!!

Drawing an ellipse

- How to eliminate uneven spacing?
- parametric polar form:
- $x = x_c + r_x \cos \theta$
- $y = y_c + r_y \sin \theta$

Drawing an ellipse

- How to vary θ ?
- We are aiming to plot $p = max(4r_x 4, 4r_x 4)$ points
- Step size for varying θ is $2\pi/p$
- Computation can be reduced by exploiting symmetry

Rationally choosing the independent axes

Figure: Rationally choosing the independent axes

Midpoint Ellipse Drawing

- $f_{ellipse} = r_y^2 x^2 + r_x^2 y^2 r_x^2 r_y^2$
- Without loss of generalization, we consider center at (0,0)

.

$$f_{ellipse}(x,y) = \begin{cases} < 0; & \text{if } (x,y) \text{ is inside the boundary} \\ = 0; & \text{if } (x,y) \text{ is on the boundary} \\ > 0; & \text{if } (x,y) \text{ is outiside the boundary} \end{cases}$$

• Slope of ellipse at $(x, y) = \frac{dy}{dx} = -\frac{2r_y^2x}{2r_x^2y}$

Midpoint Ellipse Drawing

- The algorithm starts from (0, r_y) (slope = 0)
- We move towards $(r_x, 0)$ (slope = $-\infty$)
- We move from Region 1 to 2 when $\frac{dy}{dx} = -\frac{2r_y^2x}{2r^2y} \ge -1$, i.e. $r_y^2x \ge r_x^2y$
- Midpoint parameters are formed in different way in two regions
- Region 1: Change in x > Change in y
- Region 2: Change in y > Change in x

Figure : Rationally choosing the independent axes

Finding Decision Parameter in Region 1

- Assuming (x_k, y_k) is plotted, we want to plot (x_{k+1}, y_{k+1})
- We consider $x_{k+1} = x_k + 1$ and we check if $y_{k+1} = y_k$ or $y_{k+1} = y_k - 1$
- $\begin{aligned} \bullet & p1_k \\ &= f_{ellipse}(x_k + 1, y_k \frac{1}{2}) \\ &= r_y^2(x_k + 1)^2 + r_x^2(y_k \frac{1}{2})^2 r_x^2 r_y^2 \end{aligned}$

Figure : Decision parameter in Region 1

Finding Decision Parameter in Region 1

$$\begin{aligned} \bullet & p1_k \\ &= f_{ellipse}(x_k + 1, y_k - \frac{1}{2}) \\ &= r_y^2(x_k + 1)^2 + r_x^2(y_k - \frac{1}{2})^2 - r_x^2 r_y^2 \end{aligned}$$

$$\begin{aligned} \bullet & \rho \mathbf{1}_{k+1} \\ &= f_{ellipse}(x_{k+1} + 1, y_{k+1} - \frac{1}{2}) \\ &= \\ r_v^2[(x_k + 1) + 1]^2 + r_x^2(y_{k+1} - \frac{1}{2})^2 - r_x^2 r_v^2 \end{aligned}$$

$$\begin{array}{l} \bullet \quad p \mathbf{1}_{k+1} \\ = p \mathbf{1}_k + 2r_y^2(x_k + 1) + r_y^2 + \\ r_x^2[(y_{k+1} - \frac{1}{2})^2 - (y_k - \frac{1}{2})^2] \end{array}$$

- IF $p1_k < 0$ $y_{k+1} = y_k$ $p1_{k+1} = p1_k + 2r_v^2 x_{k+1} + r_v^2$
- OTHERWISE $y_{k+1} = y_k - 1$ $p1_{k+1} = p1_k + 2r_v^2 x_{k+1} + r_v^2 - 2r_x^2 y_{k+1}$

Figure : Decision parameter in Region 1

Finding $p1_0$

Figure : Decision parameter in Region 1

Finding Decision Parameter in Region 2

- Assuming (x_k, y_k) is plotted, we want to plot (x_{k+1}, y_{k+1})
- We consider $y_{k+1} = y_k 1$ and we check if $x_{k+1} = x_k$ or $x_{k+1} = x_k + 1$
- $p2_k$ $= f_{ellipse}(x_k + \frac{1}{2}, y_k - 1)$ $= r_y^2(x_k + \frac{1}{2})^2 + r_x^2(y_k - 1)^2 - r_x^2 r_y^2$

Figure : Decision parameter in Region 2

Finding Decision Parameter in Region 2

$$\begin{aligned} \bullet & p2_k \\ &= f_{ellipse}(x_k + \frac{1}{2}, y_k - 1) \\ &= r_y^2(x_k + \frac{1}{2})^2 + r_x^2(y_k - 1)^2 - r_x^2 r_y^2 \end{aligned}$$

$$\begin{aligned} \bullet & p 2_{k+1} \\ &= f_{ellipse}(x_{k+1} + \frac{1}{2}, y_{k+1} - 1) \\ &= \\ &r_{v}^{2}(x_{k+1} + \frac{1}{2})^{2} + r_{x}^{2}[(y_{k} - 1) - 1]^{2} - r_{x}^{2}r_{v}^{2} \end{aligned}$$

$$p2_{k+1} = p2_k - 2r_x^2(y_k - 1) + r_x^2 + r_y^2[(x_{k+1} + \frac{1}{2})^2 - (x_k + \frac{1}{2})^2]$$

• IF
$$p2_k > 0$$

 $x_{k+1} = x_k$
 $p2_{k+1} = p2_k - 2r_x^2 y_{k+1} + r_x^2$

• OTHERWISE $x_{k+1} = x_k + 1$ $p2_{k+1} = p2_k - 2r_x^2 y_{k+1} + r_x^2 + 2r_y^2 x_{k+1}$

Figure : Decision parameter in Region 2

Finding $p2_0$

- $\begin{aligned} \bullet & p2_0 \\ &= f_{ellipse}(x_0 + \frac{1}{2}, y_0 1) \\ &= r_v^2(x_0 + \frac{1}{2})^2 + r_x^2(y_0 1)^2 r_x^2 r_y^2 \end{aligned}$
- (x_0, y_0) is the last point of Region 1.
- $\bullet (x_0, y_0) = \left(\left\lceil \sqrt{\frac{r_x^4}{r_x^2 + r_y^2}} \right\rceil, \left\lfloor \sqrt{\frac{r_y^4}{r_x^2 + r_y^2}} \right\rfloor \right)$

Figure : Decision parameter in Region 2

Midpoint ellipse drawing algorithm

- 1 Input: r_x , r_y
- **2** (x_0, y_0) ← $(0, r_y)$
- **3** Load (x_0, y_0)
- 0 $p1_0 \leftarrow r_v^2 r_x^2 r_y + r_x^2/4$
- 6 $k \leftarrow 0$
- $\mathbf{0} \quad \text{if } (p1_k < 0) \\
 x_{k+1} \leftarrow x_k + 1, \ y_{k+1} \leftarrow y_k, \\
 \text{Load } (x_k + 1, y_k) \\
 p1_{k+1} = p1_k + 2r_v^2 x_{k+1} + r_v^2$
- **1** Otherwise $x_{k+1} \leftarrow x_k + 1$, $y_{k+1} \leftarrow y_k 1$, Load $(x_k + 1, y_k 1)$ $p1_{k+1} = p1_k + 2r_y^2 x_{k+1} + r_y^2 2r_x^2 y_{k+1}$
- 0 $k \leftarrow (k+1)$
- **9** Repeat steps 6,7,8 while $r_v^2 x_k \not> r_x^2 y_k$

- **1** Load (x_0, y_0)
- $p2_0 \leftarrow r_y^2 (x_0 + 1/2)^2 + r_x^2 (y_0 1)^2 r_x^2 r_y^2$
- $\bigotimes k \leftarrow 0$
- if $(p2_k > 0)$ $x_{k+1} \leftarrow x_k, y_{k+1} \leftarrow y_k - 1,$ Load $(x_k, y_k - 1)$ $p2_{k+1} = p2_k - 2r_k^2 y_{k+1} + r_k^2$
- **1** Otherwise $x_{k+1} \leftarrow x_k + 1, \ y_{k+1} \leftarrow y_k 1, \ \text{Load} \ (x_k + 1, y_k 1) \ p2_{k+1} = p2_k 2r_x^2 y_{k+1} + r_x^2 + 2r_y^2 x_{k+1}$
- $0 k \leftarrow (k+1)$
- **1** Repeat steps 14,15,16 while $y_k > 0$