# CURVED SURFACES (Section 10-2 in *Computer Graphics*)

- Introduction
- Parametric Equations
- Bézier Curves
- B-spline Curves
- Bézier Surfaces
- B-spline Surfaces

#### Introduction to Curved Surfaces

- two surface generation methods
  - mathematical functions define the surfaces
    - · representation in analytic form
      - y = f(x)
      - -z=g(x)
      - changes in slope may mean changing the independent variable
      - awkward for multivalued functions
    - see figure 10-6 on page 194
  - a set of user-specified data points
    - see figure 10-7 on page 194

### **Parametric Equations**

any point on a curve can be represented by
 P(u) = (x(u), y(u), z(u))
 0 < u < 1, usually</li>

• example: a circle in the xy plane of radius r centered at the origin

$$x (u) = rcos(2 \prod u)$$
  
 $y (u) = rsin(2 \prod u)$   
 $z (u) = 0$ 

- approximations to other curves can be represented by polynomials
- sometimes, different polynomials are used for different portions of the curve

#### Parametric Equations, continued

- continuity between sections of the curve becomes important
  - zero-order continuity means the curves meet (a)
  - first-order continuity means the tangent lines of the adjoining sections match at the joint (b)
  - second-order continuity means the curvatures of the adjoining sections match at the joint (c)



### parametric equations for surfaces

- P(u, v) = (x(u, v), y(u, v), z(u, v))
- $0 \le u, v \le 1$ , usually
- example: a sphere of radius r centered at the origin
  - $x (u, v) = rsin(\prod u)cos(2\prod v)$
  - $y(u, v) = rsin(\Pi u)sin(2\Pi v)$
  - $z(u, v) = rcos(\Pi u)$



### setting up parametric polynomial equations

- control points to indicate the shape of the curve
- sometimes the control points are interpolated



• sometimes the control points are approximated



### Bézier Curves

- developed for Renault automobile bodies
- the Bézier coordinate function is

$$P(u) = \sum_{k=0}^{n} p_k B_{k,n}(u)$$

#### where

- $p_k = (x_k, y_k, z_k)$ , k = 0 to n, are the n+1 control points
- each  $B_{k,n}$  is a polynomial function called a blending function

$$B_{k,n}(u) = C(n,k)u^k (1 - u)^{n-k}$$

- the C(n,k) represent the binomial coefficient

$$C(n,k) = \frac{n!}{k! (n-k)!}$$

individual coordinates are represented by

$$x(u) = \sum_{k=0}^{n} x_k B_{k,n}(u)$$

$$y(u) = \sum_{k=0}^{n} y_k B_{k,n}(u)$$

$$z(u) = \sum_{k=0}^{n} z_k B_{k,n}(u)$$



• the curve lies within a convex hull



### • the blending functions











• multiple copositional control points



- the degree of the polynomial is one less than the number of control points
- curves can be pieced together
  - avoids high order polynomials
  - provides local control
  - continuity at the joint can be controlled



# **Bezier Curve Example**

GIVEN:

four control points at (0,0), (1,2), (4,2)

and (5,0)

FIND:

the Bézier curve

$$B_{0,3} = C(3,0)u^{0}(1-u)^{3-0} = [3!/(0!3!)](1-u)^{3} = (1-u)^{3}$$
  
 $B_{1,3} = 3u(1-u)^{2}$   
 $B_{2,3} = 3u^{2}(1-u)$   
 $B_{3,3} = u^{3}$ 

$$P(u) = \sum_{i=0}^{3} p_i B_i(u)$$

$$P(u) = p_0B_0,n(u) + p_1B_{1,n}(u) + p_2B_{2,n}(u) + p_3B_{3,n}(u)$$

$$(x,y) = (0,0)(1-u)^3 + (1,2)[3u(1-u)^2] + (4,2)[3u^2(1-u)] + (5,0)u^3$$

or

$$x = 0(1-u)^3 + 3u(1-u)^2 + 12u^2(1-u) + 5u^3$$
  
=  $-4u^3 + 6u^2 + 3u$ 

$$y = 0(1-u)^3 + 6u(1-u)^2 + 6u^2(1-u) + 0u^3$$
  
=  $-6u^2 + 6u$ 

#### **B-spline Curves**

• the B-spline coordinate function is

$$P(u) = \sum_{k=0}^{n} p_k N_{k,t}(u)$$

where

- pk, k = 0 to n, are the n+1 control points
- each N<sub>k,t</sub> is a blending function, defined recursively

$$\begin{split} N_{k,l} &= \begin{cases} 1 & \text{if } u_k \leq u < u_{k+1} \\ 0 & \text{otherwise} \end{cases} \\ N_{k,t}(u) &= \frac{u - u_k}{u_{k+t-1} - u_k} N_{k,t-1}(u) + \frac{u_{k+t} - u}{u_{k+t} - u_{k+1}} N_{k+1, \ t-1}(u) \end{split}$$

the defining positions or breakpoints u are defined by

$$u_{j} = \begin{cases} 0 & \text{if } j < t \\ j - t + 1 & \text{if } t \leq j \leq n \\ n - t + 2 & \text{if } j > n \end{cases}$$

### the blending functions using 5 control points



• local control by repositioning the third control point



- an increase in the number of control points does not increase the degree of the curve
- no need to piece sections together
- multiple coincident control points
  - one, two and three control points at the center position



• closed curves



convex hulls

#### other curves

#### CURRENT SYNOPSIS OF PARAMETRIC CURVE FORMS

| PARAMETRIC CURVE<br>REPRESENTATIONS | Basis<br>(Blending)<br>Functions | Continuity *   | Points<br>On/Off<br>Curve | Convex Hull,<br>Variation<br>Diminishing | Global/<br>Local<br>Control | Additional<br>Contral<br>Parameters |
|-------------------------------------|----------------------------------|----------------|---------------------------|------------------------------------------|-----------------------------|-------------------------------------|
| B-Spline<br>(Cubic)                 | B-Spline                         | $C^2$          | Off                       | Yes                                      | Local                       | None                                |
| Rational                            | B-Spline                         | C <sup>2</sup> | Off                       | Yes                                      | Local                       | Weights                             |
| <u>Beta-Spline</u><br>(Cubic)       | B-Spline                         | G²             | Off                       | Yes                                      | Local                       | β1-Bias<br>β2-Tensian               |
| <u>Beta2-Spline</u><br>(Cubic)      | B-Spline                         | $G^2$          | Off                       | Yes                                      | Local                       | β2-Tension                          |
| <u>Bézier</u><br>(Any Order)        | Bernstein                        | C"             | Off                       | Yes                                      | Global                      | None                                |
| Rational                            | Bernstein                        | C∞             | Off                       | Yes                                      | Global                      | Weights                             |
| <u>Cardinal Spline</u><br>(Cubic)   | Hermite                          | C²             | On                        | No                                       | Global                      | None                                |
| Cincy Parabola<br>(Quadratic)       | Standard                         | Cº             | On                        | No                                       | Local                       | None                                |
| <u>Hermite</u><br>(Cυbic)           | Hermite                          | C <sub>1</sub> | On                        | No                                       | Local                       | Endpoint<br>Tangents                |
| Overhauser<br>(Cubic)               | Parabolic<br>Blending            | C <sup>1</sup> | On                        | No                                       | Local                       | None                                |
| Q-Spline<br>(Quintic)               | Standard                         | C²             | On                        | No                                       | Local                       | None                                |

<sup>\*</sup> C - parametric continuity
G - geometric continuity

### Bézier Surfaces

- two sets of Bézier curves can represent surfaces specified by control points
- the Bézier coordinate function

$$P(u,v) = \sum_{j=0}^{m} \sum_{k=0}^{n} p_{j,k} B_{j,m}(u) B_{k,n} (v)$$

#### where

- p<sub>j,k</sub> represent the (m + 1)-by-(n + 1) control
  - points



### Bézier Surfaces, continued

• transition from one section to another



- first order continuity
  - ratio of a to b is constant for each line of control points across the boundary line

### **B-spline Surfaces**

• the B-spline coordinate function

$$P(u, v) = \sum_{j=0}^{m} \sum_{k=0}^{n} p_{j,k} N_{j,s}(u) N_{k,t} (v)$$

#### where

-  $p_{j,k}$  represent the (m + 1)-by-(n + 1) control points

#### **CURVED SURFACES**

- Parametric EquationsBézier curves
- B-spline curvesBézier surfaces
- B-spline surfaces