Algèbre 1 *Groupes*

Question 1/43

Cardinal des classes de congruence

Réponse 1/43

$$|Ha, a \in G| = |Ha, a \in G| = |H|$$

Question 2/43

Soient (G, \Leftrightarrow) et (H, \diamond) deux groupes $f: G \to H$ est un homomorphisme de groupes

Réponse 2/43

$$\forall (x,y) \in G^2, \ f(x \not\approx y) = f(x) \diamond f(y)$$

L'ensemble des homomorphisme de G dans H
est noté $\operatorname{Hom}(G,H)$
Si $(G, \not\approx) = (H, \diamond), \ f$ est un endomorphisme
L'ensemble des automorphismes de G est noté $\operatorname{Aut}(G)$

Question 3/43

Si G est un gruope Structure de $(Aut(G), \circ)$

Réponse 3/43

$$(\operatorname{Aut}(G), \circ)$$
 est un groupe

Question 4/43

Description des groupes monogènes Si $G = \langle x \rangle$

Réponse 4/43

Si $\operatorname{ord}(x) = +\infty$, G est isomorphe à \mathbb{Z} Si $\operatorname{ord}(x) = n \in \mathbb{N}^*$, G est isomorphe à $\mathbb{Z}/n\mathbb{Z}$

Question 5/43

Sous-groupe engendrée par une partie X

Réponse 5/43

$$\langle X \rangle$$

C'est le plus petit sous-groupe contenant X

Question 6/43

Les classes à gauche modulo ${\cal H}$

Réponse 6/43

$$\{aH, a \in G\}$$

Question 7/43

x et y sont dans la même classe à droite modulo H

Réponse 7/43

$$x \equiv_d y [H] \Leftrightarrow xy^{-1} \in H$$

Question 8/43

Si H est un sous-groupe distingué de G

Réponse 8/43

$$\forall a \in G, \ aH = Ha$$

$$\Leftrightarrow \forall a \in G, \ \forall h \in H, \ aha^{-1} \in H$$

Question 9/43

Description par le bas du sous-groupe engendré par une partie

Réponse 9/43

$$\langle X \rangle = \{x_1 \cdots x_n, (x_1, \cdots, x_n) \in X^n\}$$

 $\cup \{x^{-1}, x \in X\}$
 $e \text{ correspond au produit vide}$

Question 10/43

Premier théorème d'isomorphisme

Réponse 10/43

Si
$$f \in \text{Hom}(G, H)$$

 $\ker(f)$ est un sous-groupe distingué de G, et f passe au quotient, définissant un morphisme de groupes $\tilde{f}:G/\ker(f)\to H$ \tilde{f} est injectif et sa corestriction à son image est

t sa corestriction a son image est un isomorphisme

Question 11/43

Automorphisme de groupes

Réponse 11/43

Endomorphisme et isomorphisme de groupes

Question 12/43

Ensemble formé par les classes à gauche et à droite

Réponse 12/43

```
\{Ha, a \in G\} est une partition de G
\{aH, a \in G\} est une partition de G
```

Question 13/43

Description par le haut du sous-groupe engendré par une partie

Réponse 13/43

Soient ${\mathcal G}$ l'ensemble des sous-groupes de G et

$$\mathcal{H} = \{ H \in \mathcal{G} \mid X \subset H \}$$
$$\langle X \rangle = \bigcap_{H \in \mathcal{H}} (H)$$

Question 14/43

Isomorphisme de groupes

Réponse 14/43

Homomorphisme de groupes bijectif

Question 15/43

Sous-groupe propre de G

Réponse 15/43

Sous-groupe de G distinct de G et $\{e_G\}$

Question 16/43

Propriété des groupes monogènes

Réponse 16/43

Un groupe monogène est abélien

Question 17/43

Réciproque d'isomorphisme

Réponse 17/43

Si $f: F \to F$ est un isomorphisme, alors f^{-1} est un isomorphisme

Question 18/43

Ordre d'un groupe Si G est un groupe

Réponse 18/43

$$\operatorname{ord}(G) = |G|$$

Question 19/43

Propriétés d'un groupe (G, \Rightarrow)

Réponse 19/43

$$G$$
 admet un uique élément neutre pour \Rightarrow $\forall x \in G, \ \exists! x^s \in G$

Question 20/43

Si G et H sont deux groupes et $f \in \text{Hom}(g, h)$ un morphisme de groupes $\ker(f)$

Réponse 20/43

$$f^{-1}(e_H) = \{ y \in G \mid f(y) = e_H \}$$

Question 21/43

Théorème de Lagrange pour l'ordre des éléments d'un groupe

Réponse 21/43

Si G est un groupe fini et $x \in G$ ord $(x) \mid |G|$

Question 22/43

Ordre d'un élément d'un groupe

Réponse 22/43

$$\operatorname{ord}(x) = \min(\{n \in \mathbb{N}^* \mid x^n = e\})$$

Question 23/43

Résolution de
$$x^n = e$$

Réponse 23/43

$$\{n \in \mathbb{N}^* \mid x^n = e\}$$
 est de la forme $a\mathbb{Z}$
 x est d'ordre fini si et seulement si $a \neq 0$ (on a donc $\operatorname{ord}(x) = a$)

Question 24/43

Fibres de
$$f$$

Soit $x \in f^{-1}(\{y\})$

Réponse 24/43

$$f^{-1}(\{y\}) = x \times \ker(f)$$
$$= \{x \times z, \ z \in \ker(f)\} = \ker(f) \times x$$

Question 25/43

Groupe

Réponse 25/43

Muni d'une loi de composition interne, de l'associativité, d'un élément neutre et de symétriques

Question 26/43

Sous-groupe monogène

Réponse 26/43

$$\langle x \rangle = \{x^n, \ n \in \mathbb{N}\}\$$

Question 27/43

Théorème de Lagrange pour l'ordre des groupes

Réponse 27/43

Si G est un groupe fini et H un sous-groupe de $G \label{eq:G} |H| \mid |G|$

Question 28/43

Groupe cyclique

Réponse 28/43

Groupe monogène fini

Question 29/43

x et y sont dans la même classe à gauche modulo H

Réponse 29/43

$$x \equiv_q y[H] \Leftrightarrow x^{-1}y \in H$$

Question 30/43

Si
$$G$$
 et H sont deux groupes et $f \in \text{Hom}(G, H)$ $f(e_G)$

Réponse 30/43

$$f(e_H)$$

Question 31/43

Les classes à droite modulo H

Réponse 31/43

$$\{Ha, a \in G\}$$

Question 32/43

Endomorphisme de groupes

Réponse 32/43

Homomorphisme de groupes de E dans lui-même (muni des mêmes lois)

Question 33/43

Intersection de sous-groupes Si G est un groupe, et $(H_i)_{i\in I}$ une famille de sous-groupes de G

Réponse 33/43

 $i \in I$

$$\bigcap (H_i)$$
 est un sous-groupe de G

Question 34/43

Image directe et réciproque de sous-groupes par un homomorphisme

Réponse 34/43

Si G et H sont deux groupes, et $f \in \text{Hom}(G, H)$ un morphisme de groupes, G' et H' deux sous-groupes respectivement de G et H f(G') est un sous-groupe de H

 $f^{-1}(H')$ est un sous-groupe de G

Question 35/43

Si
$$G$$
 et H sont deux groupes et $f \in \text{Hom}(G, H)$ $f(x^{-1})$

Réponse 35/43

$$f(x)^{-1}$$

Question 36/43

Passage au quotient de la loi dans le cas d'un sous-groupe distingué Si G est un groupe et H un sous-groupe

distingué de G

Réponse 36/43

$$\equiv_g = \equiv_d$$
 et on note la relation \equiv
La loi induite corrrespond au produit des
classes élément par élément
 $(ab)H = (aH) \cdot (bH)$
 $= \{x \cdot y, \ x \in aH, \ y \in bH\}$
La loi induite sur l'ensemble quotient munit
celui-ci d'une structure de groupe

Question 37/43

Si (G, \Leftrightarrow) est un groupe et $H \subset G$ Caractérisation(s) des sous-groupes

Réponse 37/43

$$H \neq \varnothing \quad \forall (x,y) \in H, \ x \Leftrightarrow y \in H$$
$$\forall x \in H, \ x^s \in H$$
$$H \neq \varnothing \quad \forall (x,y) \in H^2, \ x \Leftrightarrow y^s \in H$$
$$e_G \in H \quad \forall (x,y) \in H^2, \ x \Leftrightarrow y^s \in H$$

Question 38/43

Passage au quotient de la loi dans le cas abélien Si G est un groupe abélien et H un sous-groupe de G

Réponse 38/43

$$\equiv_g = \equiv_d$$
 et on note la relation \equiv
La loi induite corrrespond au produit des
classes élément par élément
 $(ab)H = (aH) \cdot (bH)$
 $= \{x \cdot y, \ x \in aH, \ y \in bH\}$

La loi induite sur l'ensemble quotient munit celui-ci d'une structure de groupe abélien

Question 39/43

Groupe abélien

Réponse 39/43

La loi \Rightarrow de G est commutative

Question 40/43

Si
$$f \in \text{Hom}(G, K)$$
 et H est un sous-groupe distingué et $H \subset \ker(f)$

Réponse 40/43

$$f = \tilde{f} \circ \pi$$
 La réciproque est vraie

Question 41/43

Si
$$\ker(f) = \{e_G\}$$

Réponse 41/43

f est injectif (la réciproque est vraie)

Question 42/43

Si (G, *) est un groupe Un sous-ensemble H de G est un sous-groupe de G

Réponse 42/43

H est stable pour la loi de G et la loi induite définit sur H une structure de groupe

Question 43/43

Si $f \in \text{Hom}(G, K)$ et H est un sous-groupe distingué

Réponse 43/43

f passe au quotient avec $\tilde{f}:G/H\to K$