1. Governing system for the benchmark problem

$$\frac{\partial p}{\partial t} - \nabla \cdot (\mathbf{K} \nabla p) = q, \qquad (\mathbf{x}, t) \in \Omega \times (0, T]$$

$$p = g_D(\mathbf{x}, t) \quad \text{for} \quad \mathbf{x} \in \Gamma_D, t \in (0, T] \quad \Gamma_D = \{\mathbf{x} | \mathbf{x} \in (\cdot, 0) \cup (1, \cdot)\}$$

$$\mathbf{u} \cdot \mathbf{n} = g_N(\mathbf{x}, t) \quad \text{for} \quad \mathbf{x} \in \Gamma_N, t \in (0, T] \quad \Gamma_N = \{\mathbf{x} | \mathbf{x} \in (\cdot, 1) \cup (0, \cdot)\}$$

$$g_D = \cos(x_1 + t) \quad \text{for} \quad \mathbf{x} \in (\cdot, 0)$$

$$g_D = \cos(1 - x_2 + t) \quad \text{for} \quad \mathbf{x} \in (1, \cdot)$$

$$g_N = -x_1 \sin(x_1 - 1 + t) \quad \text{for} \quad \mathbf{x} \in (\cdot, 1)$$

$$g_N = -x_2 \sin(-x_2 + t) \quad \text{for} \quad \mathbf{x} \in (0, \cdot)$$

$$\mathbf{u} = -\mathbf{K} \nabla p \quad \mathbf{K} = \begin{bmatrix} x_2 & 0 \\ 0 & x_1 \end{bmatrix}$$

$$p(\mathbf{x}, 0) = p_0(\mathbf{x}) \quad \text{for} \quad \mathbf{x} \in \Omega \quad p = \cos(x_1 - x_2 + t)$$

$$q = \sin(\mathbf{x} \cdot \mathbf{y} + t) + (\mathbf{x} + \mathbf{y})^* \cos(\mathbf{x} \cdot \mathbf{y} + t)$$

2. Figures:

Figure 1. Benchmark t=0

Figure 2. Benchmark t=1

3. Error Analysis

Table 1: Spatial convergence rate study

Cycle	Time step/s	Mesh size	#cells	Dofs	L2	convergence
1	0.01	4	16	4	0.0173	
2	0.01	8	64	4	0.0043	4
3	0.01	16	256	4	0.0011	4
4	0.01	32	1024	4	0.0011	1

Table 2: Temporal convergence rate study

Cycle	Time step/s	Mesh size	#cells	Dofs	L2	convergence
1	0.1	32	1024	4	0.0125	
2	0.01	32	1024	4	0.0011	10
3	0.001	32	1024	4	0.000265	4
4	0.0005	32	1024	4	0.00029	1