PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Bûro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5:

(11) Internationale Veröffentlichungsnummer:

WO 91/18934

C08F 10/00, 4/654

A1

(43) Internationales Veröffentlichungsdatum:

12. Dezember 1991 (12.12.91)

(21) Internationales Aktenzeichen:

PCT/EP91/00966

(22) Internationales Anmeldedatum:

24. Mai 1991 (24.05.91)

(30) Prioritätsdaten:

P 40 17 661.4

1. Juni 1990 (01.06.90)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): HO-ECHST AKTIENGESELLSCHAFT [DE/DE]; Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BÖHM, Ludwig [DE/ DE]; Leonhardstraße 36, D-6234 Hattersheim am Main

(74) Gemeinsamer Vertreter: HOECHST AKTIENGESELL-SCHAFT; Zentrale Patentabteilung, Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE).

(81) Bestimmungsstaaten: AT (europäisches Patent), AU, BE (europäisches Patent), BR, CH (europäisches Patent), DE (europäisches Patent), DK (europäisches Patent), ES (europäisches Patent), FR (europäisches Patent), GB (europäisches Patent), GR (europäisches Patent), IT (europäisches Patent), JP, KR, LU (europäisches Patent), NL (europäisches Patent), US.

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: PROCESS FOR PRODUCING A POLY-1-OLEFIN

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG EINES POLY-1-OLEFINS

(57) Abstract

Poly-1-olefins, in particular polyethylene, are produced using a Ziegler catalyst whose transition metal constituents are produced by reacting a transition metal compound of titanium, zirconium, vanadium or chromium with a gel-like dispersion of a magnesium, alcoholate. An organoaluminium compound is used as co-catalyst. The polymerizates are obtained in high to very high yields and the particle size distribution of the polymerizates can be controlled.

(57) Zusammenfassung

Zur Herstellung von Poly-1-olefinen, insbesondere von Polyethylen, wird ein Ziegler-Katalysator verwendet, dessen Übergangsmetallkomponente durch Umsetzung einer Übergangsmetallverbindung des Titans, Zirkons, Vanadins oder Chroms mit einer gelartigen Dispersion eines Magnesiumalkoholats hergestellt wurde. Als Cokatalysator dient eine aluminiumorganische Verbindung. Man erhält die Polymerisate in hoher bis sehr hoher Ausbeute und hat die Möglichkeit, die Teilchengrößenverteilung der Polymerisate zu steuern.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	ES	Spanien	ML	Mali
ΑU	Australien	FI	Finnland	MN	Mongolei
BB	Barbados	FR	Frankreich	MR	Mauritanien
BE	Belgien	GA	Gabon	MW	Malawi
BF	Burkina Faso	GB	Vereinigtes Königreich	NL	Niederlande
BG	Bulgarien	GN	Guinca	NO	Norwegen
BJ	Benin	GR	Griechenland	PL	Polen
BR	Brasilien	HU	Ungaro	RO	Rumänien
CA	Kanada	IT	Italien	SĐ	Sudan
CF	Zentrale Afrikanische Republik	JP	Japan	SE	Schweden
CG	Kongo	KP	Demokratische Volksrepublik Korea	SN	Senegal
CH	Schweiz	KR	Republik Korca	ธบ	Soviet Union
CI	Côte d'Ivoire	LI	Liechtenstein	TD	Tschad
CM	Kamerun	LK	Sri Lanka	TG	Togo
cs	Tschechoslowakei	LU	Luxemburg	US	Vereinigte Staaten von Amerika
DE	Deutschland	MC	Monaco		
DK	Dänemark	MG	Madagaskar		

WO 91/18934 PCT/EP91/00966

Beschreibung

Verfahren zur Herstellung eines Poly-1-olefins

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Poly-1-olefins unter Verwendung eines Katalysators auf Basis einer gelartigen Magnesiumalkoholat-Dispersion.

Aus Magnesiumalkoholaten $Mg(OR^1)(OR^2)$ oder "komplexen" Magnesiumalkoholaten lassen sich durch Umsetzung mit Verbindungen des Titans, Zirkons, Vanadiums oder Chroms Feststoffe herstellen, die zusammen mit metallorganischen Verbindungen der 1. bis 3. Hauptgruppe des Periodensystems hervorragende Katalysatoren für die Olefinpolymerisation ergeben.

Bekannt ist ein Verfahren zur Polymerisation von α -Olefinen in Gegenwart eines Mischkatalysators, dessen Komponente A durch Umsetzung von Magnesiumalkoholaten mit vierwertigen, halogenhaltigen Titanverbindungen hergestellt wurde (vgl. US 3644318). Die Magnesiumalkoholate werden in der Form eingesetzt, wie sie im Handel erhältlich sind. Die in diesen Verfahren erhältlichen Polymeren besitzen eine enge Molmassenverteilung.

Weiterhin ist ein Verfahren zur Herstellung eines Zieglerkatalysators bekannt, bei welchem ein gelöstes Magnesiumalkoholat mit einer halogenhaltigen Ti- oder V-Verbindung und einem Übergangsmetallalkoholat umgesetzt wird (vgl. EP 319173). Die dabei entstehenden Katalysatorpartikel sind kugelförmig und besitzen eine mittlere Teilchengröße von 10 bis 70 µm.

Schließlich ist bekannt, als Übergangsmetallkomponente ein Produkt der Reaktion einer vierwertigen, halogenhaltigen Titanverbindung mit einem Magnesiumalkoholat, welches mindestens 40 Gew.-% Teilchen eines Durchmessers kleiner 63 µm enthält, zu verwenden (vgl. EP 223011). Ein Magnesiumalkoholat mit dieser Korngröße erhält man unter anderem durch Mahlen eines Handelsproduktes in einer Kugelmühle. Das Magnesiumalkoholat wird als Suspension in einem inerten Kohlenwasserstoff eingesetzt. Indessen befriedigen die bekannten Katalysatoren noch nicht.

Es wurde gefunden, daß man Katalysatoren mit hoher bis sehr hoher Aktivität und mit der Möglichkeit, die Teilchengrößenverteilung des Polymerisats zu steuern, erhält, wenn man das Magnesiumalkoholat als gelförmige Dispersion einsetzt.

Die Erfindung betrifft somit ein Verfahren zur Herstellung eines Poly-1-olefins durch Polymerisation eines 1-Olefins der Formel R⁴CH=CH₂, in der R⁴ Wasserstoff oder einen Alkylrest mit 1 bis 10 Kohlenstoffatomen bedeutet, in Suspension, in Lösung oder in der Gasphase, bei einer Temperatur von 20 bis 200 °C und einem Druck von 0,5 bis 50 bar, in Gegenwart eines Katalysators, der aus dem Umsetzungsprodukt eines Magnesiumalkoholats mit einer Übergangsmetallverbindung (Komponente a) und einer metallorganischen Verbindung eines Metalls der Gruppe I, II oder III des Periodensystems (Komponente b) besteht, dadurch gekennzeichnet, daß man die Polymerisation in Gegenwart eines Katalysators durchführt, dessen Komponente a in der Weise hergestellt wurde, daß eine Übergangsmetallverbindung des Titans, des Zirkons, des Vanadium oder des Chroms mit einer gelartigen Dispersion des Magnesiumalkoholats in einem inerten, gesättigten Kohlenwasserstoff umgesetzt wurde.

Die Erfindung betrifft weiterhin den in diesen Verfahren eingesetzten Katalysator.

Zur Herstellung der Komponente a wird ein im Handel erhältliches Magnesiumalkoholat verwendet.

Dieses Magnesiumalkoholat kann ein "einfaches" Magnesiumalkoholat der Formel $Mg(OR^1)(OR^2)$ sein, in der R^1 und R^2 gleich oder verschieden sind und einen Alkylrest mit 1 bis 6 Kohlenstoffatomen bedeuten. Beispiele sind $Mg(OC_2H_5)_2$, $Mg(OiC_3H_7)_2$, $Mg(OnC_4H_9)_2$, $Mg(OCH_3)(OC_2H_5)$, $Mg(OC_2H_5)(OnC_3H_7)$. Es kann auch ein "einfaches" Magnesiumalkoholat der Formel $Mg(OR)_nX_m$ verwendet werden, in der X = Halogen, $(SO_4)_{1/2}$, OH, $(CO_3)_{1/2}$, $(PO_4)_{1/3}$, Cl ist, R die oben genannte Bedeutung von R^1 oder R^2 hat und n + m = 2 ist.

Es kann jedoch auch ein "komplexes" Magnesiumalkoholat eingesetzt werden.

Als "komplexes" Magnesiumalkoholat wird ein Magnesiumalkoholat bezeichnet, das neben Magnesium mindestens ein Metall der 1. bis 4. Hauptgruppe des Periodensystems enthält. Beispiele für ein derartiges komplexes Magnesiumalkolat sind:

Die Herstellung der komplexen Magnesiumalkoholate (Alkoxosalze) erfolgt nach bekannten Methoden. Für die Herstellung seien folgende Beispiele genannt:

- Man läßt zwei Metallalkoholate in einem geeigneten Lösemittel aufeinander einwirken, zum Beispiel 2Al(OR)₃ + Mg(OR)₂ → [Al₂(OR)₈]Mg
- 2. Auflösen von Magnesium in einer alkoholischen Lösung eines Metallalkoholats
 2LiOR + Mg + 2 ROH → [Mg(OR)₄]Li₂ + H₂
- 3. Gleichzeitiges Auflösen zweier Metalle in Alkohol 8 ROH + Mg + 2 Al \rightarrow [Al₂(OR)₈]Mg + 4 H₂

Bevorzugt verwendet werden die einfachen Magnesiumalkoholate, insbesondere $Mg(OC_2H_5)_2$, $Mg(OnC_3H_7)_2$ und $Mg(OiC_3H_7)_2$. Das Magnesiumalkoholat wird in reiner Form eingesetzt.

Handelsübliches $Mg(OC_2H_5)_2$ hat im allgemeinen folgende Spezifikation:

Mg-Gehalt 21-22 Gew.-% Summe Mg(OH)₂ $MgCO_3 \le 1$ Gew.-% C_2H_5OH -Gehalt < 0.3 Gew.-%

Der mittlere Korndurchmesser liegt bei 500 μm . 90 % der Partikel haben einen Korndurchmesser im Bereich von 200 bis 1200 μm .

Das Magnesiumalkoholat wird in einem inerten gesättigten Kohlenwasserstoff suspendiert. Die Suspension wird unter Schutzgas (Ar,N₂) in einem Reaktor mittels eines hochtourigen Dispergators (z.B ®Ultra-Turrax oder ®Dispax, IKA-Maschinenbau Janke & Kunkel GmbH) in eine gelartige Magnesiumalkoholat-Dispersion überführt.

Diese Dispersion unterscheidet sich von der Suspension in zwei wesentlichen Merkmalen. Sie ist wesentlich viskoser als die Suspension und gelförmig, und das dispergierte Magnesiumalkoholat sedimentiert im Gegenstaz zum suspendierten Magnesiumalkoholat sehr viel langsamer, und sehr viel weniger (einige Stunden, Volumen des überstehenden Kohlenwasserstoffs bei suspendiertem Magnesiumalkoholat ca. 80 Vol-%, bei dispergierten Magnesiumalkoholat ca. 10 Vol-% bei gleichen Gehalt (131 g/1 dm³)).

Das dispergierte Magnesiumalkoholat kann man auch durch mechanische Zerkleinerung mit Glaskugeln (ø 1 cm) in einem Rundkolben herstellen, wobei der Kolbeninhalt mit einem

zweiflügeligen Rührer bewegt wird. Dieses Verfahren ist allerdings sehr zeitaufwendig.

Als inerter gesättigter Kohlenwasserstoff eignet sich ein aliphatischer oder cycloaliphatischer Kohlenwasserstoff wie Butan, Pentan, Hexan, Heptan, Isooctan, Cyclohexan, Methylcyclohexan, sowie ein aromatischer Kohlenwasserstoff wie Toluol, Xylol; auch hydrierte Dieselöl- oder Benzininfraktionen, die sorgfältig von Sauerstoff, Schwefelverbindungen und Feuchtigkeit befreit worden sind, sind brauchbar.

Die gelartige Dispersion wird dann in einer Stufe oder in mehreren Stufen mit einer Ti-Verbindung (TiCl₄, Ti(OR)₄ u.a.), Zr-Verbindung (Zr(OR)₄ u.a.), V-Verbindung (VCl₄, VOCl₃ u.a.) oder Cr-Verbindung (CrO₂Cl₂ u.a.) umgesetzt.

Dabei wird das Magnesiumalkoholat mit der Übergangsmetallverbindung bei einer Temperatur von 50 bis 100 °C, vorzugsweise von 60 bis 90 °C, in Gegenwart eines inerten Kohlenwasserstoffs unter Rühren umgesetzt. Auf 1 mol Magnesiumalkoholat werden 0,9 bis 5 mol Übergangsmetallverbindung eingesetzt, vorzugsweise 1,4 bis 3,5 mol Übergangsmetallverbindung auf 1 mol Magnesiumalkoholat.

Die Reaktionsdauer beträgt 0,5 bis 8 Stunden, vorzugsweise 2 bis 6 Stunden.

Man erhält einen in Kohlenwasserstoff unlöslichen, magnesium- und übergangsmetallhaltigen Feststoff, der als Komponente a bezeichnet wird.

Die Herstellung des erfindungsgemäß zu verwendenden Polymerisationskatalysators erfolgt durch Zusammenbringen der Komponente a und einer metallorganischen Verbindung eines Metalls der Gruppe I, II oder III des Periodensystems (Komponente b).

Die Komponente a kann als Suspension direkt mit der Komponente b umgesetzt werden; sie kann jedoch auch zunächst als Feststoff isoliert, gelagert und zur späteren Weiterverwendung wieder suspendiert werden.

Vorzugsweise verwendet man als Komponente b aluminiumorganische Verbindungen. Als aluminiumorganische Verbindungen eignen sich chlorhaltige aluminiumorganische Verbindungen, die Dialkylaluminiummonochloride der Formel $^3_{\rm R_2AlCl}$ oder Alkylaluminiumsesquichloride der Formel $^3_{\rm R_3Al_2Cl_2}$, worin $^3_{\rm ein}$ Alkylrest mit 1 bis 16 Kohlenstoffatomen ist. Als Beispiele seien genannt $({\rm C_2H_5})_2{\rm AlCl}$, $({\rm iC_4H_9})_2{\rm AlCl}$, $({\rm C_2H_5})_3{\rm Al_2Cl_3}$. Es können auch Gemische dieser Verbindungen eingesetzt werden.

Besonders bevorzugt werden als aluminiumorganische Verbindungen chlorfreie Verbindungen eingesetzt. Hierfür eigenen sich einerseits die Umsetzungsprodukte von Aluminiumtrialkylen oder Aluminiumdialkylhydriden mit Kohlenwasserstoffresten mit 1 bis 6 Kohlenstoffatomen, vorzugsweise Al(iC_4H_9) $_3$ oder Al(iC_4H_9) $_2H$, mit 4 bis 20 Kohlenstoffatome enthaltenden Diolefinen, vorzugsweise Isopren. Beispielsweise sei Aluminiumisoprenyl genannt.

Andererseits eigenen sich als solche chlorfreie aluminiumorgansiche Verbindungen Aluminiumtrialkyle AlR_3 oder Aluminiumdialkylhydride der Formel AlR_2^H , in denen R^3 ein Alkylrest mit 1 bis 16 Kohlenstoffatomen bedeutet. Beispiele sind $Al(C_2H_5)_3$, $Al(C_2H_5)_2H$, $Al(C_3H_7)_3$, $Al(C_3H_7)_2H$, $Al(iC_4H_9)_3$, $Al(iC_4H_9)_2H$, $Al(C_8H_{17})_3$, $Al(C_{12}H_{25})_3$, $Al(C_2H_5)(C_{12}H_{25})_2$, $Al(iC_4H_9)(C_{12}H_{25})_2$.

Es können auch Mischungen von metallorganischen Verbindungen von Metallen der I., II. oder III. Gruppe des

Periodensystems, insbesondere Mischungen verschiedener aluminiumorganischer Verbindungen eingesetzt werden.

Beispielsweise seien folgende Mischungen genannt: $Al(C_2H_5)_3 \text{ und } Al(iC_4H_9)_3, \ Al(C_2H_5)_2Cl \text{ und } Al(C_8H_{17})_3, \\ Al(C_2H_5)_3 \text{ und } Al(C_8H_{17})_3, \ Al(C_4H_9)_2H \text{ und } Al(C_8H_{17})_3, \\ Al(iC_4H_9)_3 \text{ und } Al(C_8H_{17})_3, \ Al(C_2H_5)_3 \text{ und } Al(C_{12}H_{25})_3, \\ Al(iC_4H_9)_3 \text{ und } Al(C_{12}H_{25})_3, \ Al(C_2H_5)_3 \text{ und } Al(C_{16}H_{33})_3, \\ Al(C_3H_7)_3 \text{ und } Al(C_{18}H_{37})_2(iC_4H_9), \ Al(C_2H_5)_3 \text{ und} \\ Auluminiumisoprenyl (Umsetzungsprodukt von Isopren mit \\ Al(iC_4H_9)_3 \text{ oder } Al(iC_4H_9)_2H).$

Das Mischen der Komponente a und der Komponente b kann vor der Polymerisation in einem Rührkessel bei einer Temperatur von -30 °C bis 150 °C, vorzugsweise -10 bis 120 °C erfolgen. Es ist auch möglich, die beiden Komponenten direkt im Polymerisationskessel bei einer Temperatur von 20 bis 200 °C zu vereinigen. Die Zugabe der Komponente b kann jedoch auch in zwei Schritten erfolgen, indem vor der Polymerisationsreaktion die Komponente a mit einem Teil der Komponente b einer einer Temperatur von -30 °C bis 150 °C voraktiviert wird und die weitere Zugabe der Komponente b in dem Polymerisationsreaktor bei einer Temperatur von 20 bis 200 °C erfolgt.

Der erfindungsgemäß zu verwendende Polymerisationskatalysator wird zur Polymerisation von 1-Olefinen der Formel R^4 -CH=CH $_2$, in der R^4 ein Wasserstoffatom oder einen Alkylrest mit 1 bis 10 C-Atomen bedeutet, eingesetzt, beispielsweise Ethylen, Propylen, Buten-(1), Hexen-(1), 4-Methylpenten-(1), Octen-(1).

Vorzugsweise wird Ethylen allein oder als Gemisch von mindestens 50 Gew.-% Ethylen und maximal 50 Gew.-% eines anderen 1-Olefins der obigen Formel polymerisiert.

Insbesondere wird Ethylen allein oder ein Gemisch von mindestens 90 Gew.-% Ethylen und maximal 10 Gew.-% eines anderen 1-Olefins der obigen Formel polymerisiert.

Die Polymerisation wird in bekannter Weise in Lösung, in Suspension oder in der Gasphase, kontinuierlich oder diskontinuierlich, ein- oder mehrstufig bei einer Temperatur von 20 bis 200 °C, vorzugsweise 50 bis 150 °C, durchgeführt. Der Druck beträgt 0,5 bis 50 bar. Bevorzugt ist die Polymerisation in dem technisch besonders interessanten Druckbereich von 5 bis 30 bar.

Dabei wird die Komponente a in einer Konzentration, bezogen auf Übergangsmetall, von 0,0001 bis 1, vorzugsweise 0,001 bis 0,5 mmol Übergangsmetall pro dm³ Dispergiermittel angewendet. Die metallorganische Verbindung wird in einer Konzentration von 0,1 bis 5 mmol, vorzugsweise 0,5 bis 4 mmol pro dm³ Dispergiermittel verwendet. Prinzipiell sind aber auch höhere Konzentrationen möglich.

Die Suspensionspolymerisation wird in einem für das ZieglerNiederdruckverfahren gebräuchlichen inerten
Dispergiermittel durchgeführt, beispielsweise in einem
aliphatischen oder cycloaliphatischen Kohlenwasserstoff;
als solcher sei beispielsweise Butan, Pentan, Hexan,
Heptan, Isooctan, Cyclohexan, Methylcyclohexan genannt.
Weiterhin können Benzin- bzw. hydrierte Dieselölfraktionen,
die sorgfältig von Sauerstoff, Schwefelverbindungen und
Feuchtigkeit befreit worden sind, benutzt werden.

Die Gasphasenpolymerisation kann direkt oder nach Vorpolymerisation des Katalysators in einem Suspensionsverfahren durchgeführt werden.

Die Molmasse des Polymerisats wird in bekannter Weise geregelt, vorzugsweise wird dazu Wasserstoff verwendet.

Das erfindungsgemäße Verfahren ergibt infolge der hohen Aktivität des verwendeten Katalysators Polymerisate mit sehr geringem Übergangsmetall- und Halogengehalt und daher äußerst guten Werten im Farbbeständigkeits- und Korrosionstest.

Ferner ermöglicht das erfindungsgemäße Verfahren, die Katalysatoren so herzustellen, daß damit die Korngrößenverteilung und in gewissem Umfang auch die Kornform des entstehenden Polymerpulvers eingestellt werden kann.

Man erhält im allgemeinen eine verbesserte Kornmorphologie, hohe mittlere Korndurchmesser (d_{50} -Werte), enge Korngrößenverteilung, keine Grob- und Feinanteile, und hohe Katalysatorproduktivitäten. Die Schüttdichten sind vergleichbar zum Stand der Technik.

Somit können beim Einsatz dieser gelförmigen Dispersionen der Magnesiumalkoholate die morphologischen Eigenschaften des Polymerpulvers beeinflußt werden, was für ein technisches Verfahren Vorteile bringt (Filtration des Polymerpulvers ist einfacher, die Restgehalte an Dispersionsmittel sind geringer, dadurch ist der Energieaufwand zum Trocknen geringer), der Transport des Polymerpulvers in der Anlage ist einfacher, die Rieselfähigkeit ist besser, der Feinanteil in den Zyklonen der Trockner ist geringer). Die hohe Katalysatorproduktivität ergibt geringere Katalysatorrestgehalte im Produkt.

Die nachfolgenden Beispiele sollen die Erfindung erläutern.

Bei den Beispielen wurde zur Kontaktherstellung und zur Polymerisation eine hydrierte Dieselölfraktion mit einem Siedebereich von 130 bis 170 °C verwendet.

Die Verhältnisse Mg:Ti:Cl zur Charakterisierung der Katalysatoren wurden nach üblichen, analytischen Verfahren bestimmt.

Der zur Berechnung der Katalysatorproduktivität KA (S. Tabellen) erforderliche Titangehalt pro Masse des Katalysators wurde folgendermaßen ermittelt:

Aus der Katalysator-Suspension wurde ein bestimmtes Volumen pipettiert. Der Katalysator wurde mit Schwefelsäure hydrolysiert und der Titangehalt nach bekannten Methoden bestimmt.

Ergebnis: Titangehalt (mmol) pro Volumeneinheit (cm3).

Aus der Suspension entnahm man eine zweite Probe mit der Pipette, zog das Suspensionsmittel im Vakuum ab und wog den Feststoff.

Ergebnis: Feststoff (g) pro Volumeneinheit (cm^3). Damit erhält man durch Quotientenbildung mmol Ti/g Katalysator.

Beispiel 1

1,2 mol $\mathrm{Mg}(\mathrm{OC}_2\mathrm{H}_5)_2$ (\triangleq 137 g) wurden in 1,0 dm³ (1) Dieselöl suspendiert. Die Suspension wurde in einem zylindrischen Glasgefäß unter Schutzgas (Ar, N₂), um Feuchtigkeit und Luft (O₂) auszuschließen, mit einem hochtourigen Dispergator in eine Dispersion überführt (Dauer ca. 3 h). Die Dispersion hatte eine gelartige Konsistenz. Es war ohne Schwierigkeit der Unterschied zwischen Suspension und Dispersion zu erkennen.

Vergleichsbeispiel A

Herstellung der Katalysatorkomponente a unter Verwendung einer $Mg(OC_2H_5)_2$ -Suspension.

In einem 2 dm² Rührgefäß mit Rückflußkühler, 2-flügeligen Blatt-Rührer und Schutzgasüberlagerung (Ar) wurden 57 g Mg(OC₂H₅)₂ in 0,5 dm³ (1) Dieselöl (hydrierte Benzinfraktion mit Siedebereich 120-140 °C) suspendiert. Die Suspension wurde auf 85 °C gebracht. Die Rührerdrehzahl wurde bei 350 Upm (optimale Rührerdrehzahl bei Einsatz suspendierten Mg-alkoholats; setzt man die Rührerdrehzahl herunter, so entstehen inhomogene, unbrauchbare Katalysatoren) eingestellt. Während 4 h wurden 0,15 mol ·TiCl_A in 350 cm³ Dieselöl zudosiert. Danach wurde die entstandene Suspension 1 h auf 110 °C erhitzt. Dann wurde ein Gemisch von 0,2 mol Al(C2H5)Cl2 und 0,2 mol Al(C₂H₅)Cl in 400 cm³ Dieselöl während 2 h zudosiert. Anschließend wurde die Temperatur weitere 2 h bei 110 °C gehalten. Damit war die Herstellung der Katalysatorkomponente a abgeschlossen. Die Feststoff-Suspension ließ man auf Raumtemperatur abkühlen. Das molare Verhältnis betrug: Mg:Ti:Cl ≈ 1:0,3:2,4. Diese Katalysatorkomponente a erhielt die Operations-Nummer 2.1.

Beispiel 2

Nach dem Verfahren gemäß Vergleichsbeispiel A wurde ein Katalysator unter Verwendung der nach Beispiel 1 hergestellten gelartigen $\text{Mg}(\text{OC}_2\text{H}_5)_2$ -Dispersion (hier liegt keine Korngrößen-Verteilung vor; der mittlere Korndurchmesser liegt bei $\leq 1~\mu\text{m}$) hergestellt. Das molare Verhältnis betrug etwa: $\text{Mg}:\text{Ti}:\text{Cl} \approx 1:0,3:2,4$. Diese Katalysatorkomponente erhielt die Operations-Nummer 2.2.

Beispiel 3

In einem 2 dm³ Rührgefäß mit Rückflußkühler, Rührer und Schutzgasüberlagerung (Ar) wurden 57 g ${\rm Mg}({\rm OC_2H_5})_2$ in 0,5 dm³ Dieselöl dispergiert. Die gelartige Dispersion wurde auf 85 °C gebracht. Die Rührerdrehzahl wurde auf 150 Upm eingestellt. Während 4 h wurden 0,15 Mol TiCl₄ in 350 cm³ Dieselöl zudosiert.

Die nachfolgende Umsetzung der entstandenen Suspension mit $Al(C_2H_5)Cl_2$ und $Al(C_2H_5)_2Cl$ wurde wie im Vergleichsbeispiel A beschrieben durchgeführt.

Das molare Verhältnis betrug etwa Mg:Ti:Cl \approx 1:0,3:2,4. Diese Katalysatorkomponente erhielt die Operations-Nummer 2.3.

Beispiel 4

Die Herstellung erfolgte wie in Beispiel 3, jedoch wurde die Reaktion bei 85 °C bei einer Rührerdrehzahl von 75 Upm durchgeführt.

Das molare Verhältnis betrug Mg:Ti:Cl = 1:0,3:2. Diese Katalysatorkomponente a erhielt die Operations-Nummer 2.4.

Wenn man von einer Magnesiumethylat-Suspension wie im Vergleichsbeispiel A ausgeht und die Rührerdrehzahl verändert (vgl. Beispiele 2 bis 4), so erhält man unbrauchbare Katalysatoren, weil sich das suspendierte Magnesiumethylat nicht gleichmäßig umsetzt und damit keine homogene Katalysator-Suspension entsteht. Wenn man die Rührerdrehzahl steigert (> 350 Upm), so erhält man homogene Katalysatoren, die aber ein sehr feines Polymerpulver bilden und somit wiederum nicht optimal sind.

Vergleichsbeispiel B

Vergleichsbeispiel A wurde wiederholt unter Verwendung einer $Mg(OC_2H_5)_2$ -Suspension aus feinteiligem $Mg(OC_2H_5)_2$ ($d_{50} \approx 6~\mu m$). Das molare Verhältnis Mg:Ti:Cl war etwa 1:0,3:2,4. Diese Katalysatorkomponente a erhielt die Operations-Nummer 2.5.

Die Suspension war milchig trübe, während die ${\rm Mg(OC_2H_5)_2}$ -Dispersion nur leicht trübe war (Tyndall-Phänomen).

Beispiel 5

Polymerisations versuche mit den Katalysatoren Operations-Nummer 2.1 bis 2.4 und 2.5.

Die Polymerisationsversuche wurden in einem 200 dm 3 Reaktor diskontinuierlich durchgeführt. Dieser Reaktor war mit einem Impellerrührer und Stromstörer ausgestattet. Die Temperatur im Reaktor wurde gemessen und automatisch konstant gehalten. Polymerisationstemperatur 85 \pm 1 °C. Die Polymerisationsreaktion wurde in folgender Weise durchgeführt:

In den mit N_2 überlagerten Reaktor wurden 100 dm³ Dieselöl eingefüllt und auf 85 °C aufgeheizt. Unter N_2 wurde dann der Cokatalysator ($Al(C_2H_5)_3$) zugegeben, so daß im Reaktor eine Cokatalysatorkonzentration von 0,14 mmol/dm³ vorlag. Danach wurde die Katalysatorkomponente a zugegeben, wobei der Katalysatorgehalt ~ 1 mmol/dm³ im Dieselöl betrug. Der Katalysatorgehalt wurde in g-Atom Titan angegeben. Der Titangehalt in der Feststoff-Suspension wurde kolorimetrisch bestimmt.

Der Reaktor wurde mehrmals bis 8 bar mit H_2 (Wasserstoff) beaufschlagt und wieder entspannt, um den Stickstoff vollständig aus dem Reaktor zu entfernen (der Vorgang wurde durch Messung der H_2 -Konzentration im Gasraum des Reaktors kontrolliert, die schließlich 95 Vol-% anzeigte). Die Polymerisation wurde durch Öffnen des Ethyleneingangs gestartet. Über die gesamte Polymerisationszeit wurde Ethylen in einer Menge von 7,0 kg/h zugeführt. Im Gasraum des Reaktors wurde der Gehalt an Ethylen und Wasserstoff ständig gemessen und die Volumenanteile konstant gehalten, indem Wasserstoff entsprechend dosiert wurde (Vol-% H_2 = 50; Vol-% C_2H_4 = 45).

Die Polymerisation wurde beendet, wenn der Gesamtdruck 9,5 bar erreicht hatte. Der Reaktorinhalt wurde auf ein Filter abgelassen. Das mit Dieselöl behaftete Polymere wurde mehrere Stunden im Stickstoffstrom getrocknet. Die Polymerisationsergebnisse sind in Tabelle 1 angegeben.

Die Korngrößen-Verteilung des Polymerpulvers, die in Tab. 2 angegeben ist (entsp. DIN 66144), zeigt den starken Anstieg des d_{50} -Wertes bei paralleler Verschiebung der Kurven. Das bedeutet, daß die Korngrößen-Verteilung gleich bleibt, nur der mittlere Korndurchmesser ist angestiegen. Deshalb nehmen die Feinanteile (< 100 μ m) stark ab, was besonders vorteilhaft ist.

Es ist außerdem erkennbar, daß die Katalysatorproduktivität stark ansteigt bei gleichzeitigen Anstieg der Schmelzindex-Werte bei gleichem Wasserstoff-Gehalt im Gasraum des Reaktors.

Alle erhaltenen Produkte besaßen nach GPC-Messungen eine enge Molmassenverteilung. Die $M_{\rm w}/M_{\rm n}$ -Werte lagen zwischen 5 und 6. Es handelte sich also um Spritzguß-Produkte.

Vergleichsbeispiel C

In einem 2 dm³ Rührgefäß mit Rückflußkühler, 2-flügeligem Blatt-Rührer und Schutzgasüberlagerung (Ar) wurden 57 g Mg(OC₂H₅)₂ in 0,5 dm³ (1) Dieselöl (hydrierte Benzinfraktion mit Siedebereich 120-140°C) suspendiert. Die Suspension wurde auf 85°C gebracht. Die Rührerdrehzahl wurde bei 350 Upm eingestellt. Während 4 h wurde 1,0 mol TiCl₄ (unverdünnt) zugetropft. Nach Zugabe des TiCl₄ ließ man den Ansatz 1 h bei den vorstehend angegebenen Bedingungen nachreagieren. Die gebildete Feststoff-Suspension wurde mehrmals mit frischem Dieselöl bei 60°C gewaschen, bis der Titangehalt im Suspensionsmittel weniger als 10 mmol betrug. Als das erreicht war, ließ man die Feststoff-Suspension auf Raumtemperatur abkühlen.

Das molare Verhältnis Mg:Ti:Cl betrug etwa: 1:0,085:2,1 Diese Katalysatorkomponente a erhielt die Operations-Nummer 3.1

Beispiel 6

Die Herstellung der Katalysatorkomponente a erfolgte entsprechend Vergleichsbeispiel C unter Verwendung einer gelartigen Mg(OC₂H₅)₂-Dispersion, jedoch mit dem Unterschied der Rührerdrehzahl von 75 Upm. Das molare Verhältnis Mg:Ti:Cl betrug etwa: 1:0,17:2,4 Diese Katalysatorkomponente a erhielt die Operations-Nummer 3.2

Beispiel 7

Polymerisationsversuche mit den Katalysatoren Op.Nr. 3.1, 3.2 wurden wie in Beispiel 5 beschrieben durchgeführt. Unterschiedlich waren die Katalysator- und Cokatalysator- Stoffmengen und die Zusammensetzung im Gasraum des Reaktors (Vol % $\rm H_2$ = 36 Vol % $\rm C_2H_4$ = 60). Die Ergebnisse sind in Tabelle 3 zusammengestellt. Die Daten der Siebanalyse sind in Tabelle 4 angegeben.

Vergleichsbeispiel D

In einem 2 dm³ Rührgefäß mit Rückflußkühler, 2-flügeligem Blatt-Rührer und Schutzgasüberlagerung (Ar) wurden 57 g Mg(OC_2H_5)2 in 0,5 dm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140-170°C) suspendiert. Die Suspension wurde auf 120°C gebracht. Die Rührerdrehzahl wurde auf 350 Upm eingestellt. Während 5 h wurden 0,65 mol Ti/ Cl_4 (unverdünntes Ti Cl_4) gleichmäßig zugegeben. Anschließend wurde der Ansatz 60 h bei 120°C gerührt. Danach wurde er auf 70°C abgekühlt und der Feststoff so lange mit frischem Dieselöl gewaschen, bis der Titangehalt im Dieselöl (gelöste Titanverbindung) < 5 mmol/dm³ betrug. Bei dieser

Verfahrensweise wurde bei 120°C Ethylchlorid abgespalten. Diese Katalysatorkomponente a erhielt die Operations-Nummer 4.1. Mg:Ti:Cl = 1:1,3:3,6.

Vergleichsbeispiel E

Vergleichsbeispiel D wurde wiederholt unter Verwendung einer feinteiligen $Mg(OC_2H_5)_3$ -Suspension ($d_{50}\approx 6~\mu m$). Diese Katalysatorkomponente a erhielt die Operations-Nummer 4.2. $Mg:Ti:Cl\approx 1:1,3:3,6$.

Beispiel 8

Herstellung der Katalysatorkomponente a

Vergleichsbeispiel D wurde wiederholt unter Verwendung einer $Mg(OC_2H_5)_2$ -Dispersion. Die Katalysatorkomponente a erhielt die Operations-Nummer 4.3. $Mg:Ti:Cl \approx 1:1,3:4$.

Beispiel 9

Polymerisationsversuche wurden mit den Katalysatorkomponenten a Operations-Nummer 4.1-4.3 durchgeführt. Unterschiedlich war der Cokatalysator. Hier wurde Isoprenylaluminium (Handelsprodukt) eingesetzt. Die Stoffmengen von Katalysatorkomponente a und Cokatalysator, sowie die Zusammensetzung im Gasraum des Reaktors (Vol % $\rm H_2=55~Vol~\%~C_2H_4=40)$ mußten geändert werden. Die Ergebnisse sind in Tabelle 4 zusammengestellt. Alle erhaltenen Produkte besaßen nach GPC-Messungen eine breite Molmassenverteilung. Die $\rm M_w/M_n$ -Werte lagen zwischen 10 und 15. Es handelte sich also um Extrusionstypen.

Es ist erkennbar, daß sich die aus der gelartigen Dispersion hergestellte Katalysatorkomponente a in der mittleren Korngröße (d_{50} -Wert) und der Katalysatorproduktivität vorteilhaft von den Katalysatorkomponenten a unterscheidet, welche aus einer Suspension grob- oder feinteiligen Magnesiumethylats hergestellt wurden.

Vergleichsbeispiel F

In einem 2 dm³ Rührgefäß mit Rückflußkühler, 2-flügeligem Blatt-Rührer und Schutzgas-Überlagerung (Ar) wurden 57 g Mg(OC_2H_5)2 in 0,5 dm³ Dieselöl bei einer Rührerdrehzahl von 350 Upm suspendiert. Die Suspension wurde auf 85°C gebracht. Während 5,5 h wurden 1,25 mol TiCl4 zugetropft. Nach Beendigung der TiCl4-Zugabe wurde der Ansatz 1 h bei 85°C gerührt. Bei 65°C wurde der Feststoff mit Dieselöl so lange gewaschen, bis der Ti-Gehalt im Dieselöl < 5 mmol/dm³ betrug. Man gab so viel Dieselöl zu, bis der ursprüngliche Füllstand im Rührgefäß erreicht war. Dann gab man 60 mmol Ti(OC_2H_5)4 hinzu, erhöhte die Temperatur unter Rühren über 20 h. Diese Katalysatorkomponente a erhielt die Operations-Nummer 5.1. Das Mg:Ti:Cl-Verhältnis betrug etwa 1:0,135:2,15.

Vergleichsbeispiel G

Vergleichsbeispiel F wurde wiederholt unter Verwendung einer feinteiligen Mg(OC₂H₅)₂-Suspension (d₅₀ \approx 6 μ m).

Die Katalysatorkomponente a erhielt die Operations-Nummer 5.2. Das Mg:Ti:Cl-Verhältnis betrug etwa 1:0,14:2,15.

Beispiel 10

Der Katalysator wurde entsprechend Vergleichsbeispiel F hergestellt unter Verwendung einer Mg(OC₂H₅)₂-Dispersion

Die Rührerdrehzahl betrug 350 Upm. Die Katalysatorkomponente a erhielt die Operations-Nummer 5.3. Das Mg:Ti:Cl-Verhältnis betrug etwa 1:0,20:2,3.

Beispiel 11

Beispiel 10 wurde wiederholt unter Verwendung einer $Mg(OC_2H_5)_2$ -Dispersion. Die Rührerdrehzahl betrug jedoch 75 Upm. Die Katalysatorkomponente a erhielt die Operations-Nummer 5.4. Das Mg:Ti:Cl-Verhältnis betrug etwa 1:0,28:2,4.

Beispiel 12

Polymerisationsversuche wurden mit den Katalysatorkomponenten a 5.1 bis 5.4 durchgeführt entsprechend Beispiel 5. Als Cokatalysator wurde Aluminiumtriisobutyl (Handelsprodukt) eingesetzt. Die Stoffmengen von Katalysatorkomponente a und Cokatalysator, sowie die Zusammensetzung im Gasraum des Reaktors (Vol % $H_2 = 40$; Vol % $C_2H_4 = 55$) mußten geändert werden. Die Ergebnisse sind in Tabelle 4 zusammengestellt. Nach GPC-Messungen bewirken diese Katalysatoren eine Molmassen-Verteilung mit M_w/M_n -Werten von 7-10.

Beispiel 13

Copolymerisationsversuche wurden mit der Katalysatorkomponente a 4.3 in einem 200 dm³ Reaktor diskontinuierlich durchgeführt. Dieser Reaktor war mit einem Impellerrührer und Stromstörer ausgestattet. Die Temperatur wurde automatisch geregelt. Die Versuchstemperatur betrug 85°C ± 1°C. Die Polymerisation wurde entsprechend Beispiel 5 durchgeführt. Vorlage: 100 dm³ Dieselöl Cokatalysator:Isoprenylaluminium Cokatalysatorkonzentration 1,2 mmol/dm³.

Vol % H_2 im Gasraum nach GC-Messung: 40 Vol %.

Ethylenzufuhr: 5 kg/h, Reaktionszeit: 4 h.

Die Polymerisation wurde durch Öffnen der Ethylenzufuhr gestartet. 5 Minuten danach wurde das Comonomere zugegeben (s. Tabelle 5). Um den Comonomergehalt im Gasraum (GC-Messung) konstant zu halten, wurde Comonomeres kontinuierlich nachdosiert (s. Tabelle 5). Im Laufe der Zeit stieg der Druck im Reaktor an. Die Drücke nach 4 h sind in Tabelle 5 ebenfalls angegeben. Die Tabelle enthält weitere Angaben über Katalysatorproduktivität (KA) Schmelzindex (MFI) entsprechend DIN 53735 und Dichte (d) nach DIN 53479

Druck (maximal) 9,5 bar, 50 Vol % Wasserstoff im Gasraum Polymerisations versuche 200 dm^3 - Reaktor Dieselöl, 7 kg/h Ethylen 85°C, 100 dm³ Tabelle i

d ₅₀ 6) [μμ]	150	140	260	440	480
$\frac{\mathrm{SD}}{\mathrm{[g/cm^3]}}$	0,37	0,36	0,37	0,34	0,31
MEI 190/5 4) [g/10']	9,5	10,0	16	17	16
KA 3) [kg/g]	22 7)	18 7)	50 8)	55 8)	50 8)
n_{A1R_3} 2) [mmol]	14	14	14	14	14
n _k 1) [mmol]	1	1,1	6'0	6'0	6,0
Katalysator	Op.Nr. 2.1	Op.Nr. 2.5	Op.Nr. 2.2	Op.Nr. 2.3	Op.Nr. 2.4

Stoffmenge Katalysator in mmol Übergangsmetall (Ti)-Verbindung

Stoffmenge Cokatalysator (Al(C_2H_5)3)

Katalysatorproduktivität (kg PE/g Katalysator)

Schmelzindex nach DIN 53735 2) 3) 4) 5)

Schüttdichte nach DIN 53468

d₅₀-Wert aus log. Normalverteilung nach DIN 66144 6)

Ti-Gehalt des Katalysators: 1,47 mMol/g

Ti-Gehalt des Katalysators: 1,73 mMol/g

Einwaage: 100 g; Auswaage in g auf dem angegebenen Sieb Korngrößen-Verteilungs-Analyse der PE-Pulver Tabelle 2

Komponente a

Op. Nr.					
Sieb	2.1	2.5	2.2	2.3	2.4
1000 µm	1	ı	1	4,0	10,3
шт 008	ı	·	1	4,6	8,8
mr 009	i	1	1,0	4,8	10,4
mi 003	1	1	3,5	16,4	15,9
400 µm	1	f	4,3	29,5	24,4
	2,6	2,9	21,5	22,5	19,5
	5,1	4,3	21,4	8,3	5,3
200 µm	13,4	15,2	28,1	8,2	4,0
150 µm	29,2	28,8	15,1	1,5	1,0
100 µm	34,8	34,2	4,8	0,3	.0,2
63 µm	13,5	12,5	ı	ı	ı
< 63 µm	1,5	2,0	0,2	•	•
dεn/μm	150	140	260	440	480
<pre>< 100 µm/Gew%</pre>	15	14,5	0,2	< 0,1	< 0,1

Druck (maximal) 9,5 bar, 36 Vol % Wasserstoff im Gasraum Polymerisationsversuche 200 dm^3 - Reaktor 85°C, 100 dm³ Dieselöl, 7 kg/h Ethylen Tabelle 3

Katalysator	n _k 1) [mmol]	nA1R ₃ 2) [mmol]	KA ³) [kg/g]	MFI 190/5 4) [g/10']	SD 5) [g/cm ³]	[wr]
Op.Nr. 3.1 Op.Nr. 3.2	0 0	40	25 7) 45 8)	0'9	0,38	160 290

Legenden s. Tabelle 1

Ti-Gehalt des Katalysators: 0,85 mmol/g 8) 7

Ti-Gehalt des Katalysators: 1,7 mmol/g

Korngrößen-Verteilungen s. Tabelle 2

Nach GPC-Messungen handelt es sich um Produkte mit enger Molmassenverteilung und $\mathrm{M_W/M_{n}\text{-}Werten}$ zwischen 4,5 und 5,5

Polymerisationsversuche $200 \, \mathrm{dm}^3$ - Reaktor Tabelle 4

85°C, 100 dm³ Dieselöl, 7 kg/h Ethylen

Druck (maximal) 9,5 bar, 55 Vol % Wasserstoff im Gasraum

$\frac{\text{SD 5}}{\text{[g/cm}^3]}$ $\frac{\text{d}_{50}}{\text{[lm]}}$	0,37 190		
MEI 190/5 4) [g/10']	2,8	3,0	
KA 3) [kg/g]	10	11	
nA1R ₃ 9) [mmol]	100	100	
$n_{\mathbf{k}}$ 1) [mmol]	6	6	
Katalysator	Op.Nr. 4.1	Op.Nr. 4.2	

Legenden s. Tabelle 1

Abweichend sind 9) Cokatalysator: Isoprenylaluminium

Druck (maximal) 9,5 bar, 50 Vol % Wasserstoff im Gasraum Polymerisations versuche 200 dm^3 - Reaktor 85°C, 100 dm³ Dieselöl, 7 kg/h Ethylen Tabelle 5

d ₅₀ 6)	150	160	280	290
SD 5) [g/cm ³]	0,34	0,32	0,30	0,30
MEI 190/5 4) [g/10']	3,0	3,5	4,0	4,5
ка ³⁾ [kg/g]	30	30	50	20
$rac{ extbf{nAlR}_3}{ extbf{[mmol]}}$	25	25	20	20
$n_{\mathbf{k}}^{-1}$	1,5	1,5	1,0	1,0
Katalysator	Op.Nr. 5.1	Op.Nr. 5.2	Op.Nr. 5.3	Op.Nr. 5.4

Legenden s. Tabelle 1

Abweichend sind 10) Cokatalysator: Triisobutylaluminium

- Reaktor	Ethylen		
$200 dm^3$, 5 kg/h	Gasraum	
Polymerisationsversuche 200 dm ³	85°C, 100 dm ³ Dieselöl,	40 Vol % Wasserstoff im	Katalysator Op. Nr. 4.3
rabelle 6			

Comonomeres	Volumen Comonomeres nach 5 Min./dm ³	Volumen Comonomeres Nachdosierung/dm ³	ⁿ К [mmol]	nAIR3 [mmol]	p [bar]	КЛ [kg/g]	ⁿ к ⁿ AIR ₃ р KA MFI/190/5 d SD d ₅ ([mmol] [mmol] [bar] [kg/g] [g/10'] [g/cm ³] [µm]	/5 d {g/cm³}	SD [g/cm³]	SD d ₅₀ /cm³] [μm]
Propen	5'0	2,9	0,15	120	120 4 35	35	1,4	0,935	0,37	390
1-Buten	0,45	1,3	0,15	120	120 4	33	1,2	0,940	0,35	370
1-llexen	8'0	4,2	0,20	150	Ŋ	36	1,1	0,941	0,35	390
1-Octen	1,1	6,8	0,25	300	9	32	0.25 300 6 32 1.2 0.941 0.14	0 941	ላ ባ	Car

25

Patentansprüche:

- 1: Verfahren zur Herstellung eines Poly-1-olefins durch Polymerisation eines 1-Olefins der Formel R4CH=CH2, in der R4 Wasserstoff oder einen Alkylrest mit 1 bis 10 Kohlenstoffatomen bedeutet, in Suspension, in Lösung oder in der Gasphase, bei einer Temperatur von 20 bis 200 °C und einem Druck von 0,5 bis 50 bar, in Gegenwart eines Katalysators, der aus dem Umsetzungsprodukt eines Magnesiumalkoholats mit einer Übergangsmetallverbindung (Komponente a) und einer metallorganischen Verbindung eines Metalls der Gruppe I, II oder III des Periodensystems (Komponente b) besteht, dadurch gekennzeichnet, daß man die Polymerisation in Gegenwart eines Katalysators durchführt, dessen Komponente a in der Weise hergestellt wurde, daß eine Übergangsmetallverbindung des Titans, des Zirkons, des Vanadins oder des Chroms mit einer gelartigen Dispersion des Magnesiumalkoholats in einem inerten gesättigten Kohlenwasserstoff umgesetzt wurde.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein einfaches Magnesiumalkoholat der Formel $Mg(OR^1)(OR^2)$ in der R^1 und R^2 gleich oder verschieden sind und einen Alkylrest mit 1 bis 6 C-Atomen bedeuten, eingesetzt wird.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das eingesetzte Magnesiumalkoholat ${\rm Mg(OC_2H_5)_2}$, ${\rm Mg(OnC_3H_7)_2}$ oder ${\rm Mg(OiC_3H_7)_2}$ ist.

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP91/00966

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 4 According to International Patent Classification (IPC) or to both National Classification and IPC COSF 4/654 C08F 10/00 Int.Cl.5 II. FIELDS SEARCHED Minimum Documentation Searched 7 Classification Symbols Classification System C08F Int.Cl.5 Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched III. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to Claim No. 13 Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Category • 1 EP-A-0 223 011 (RUHRCHEMIE AG) 27 May 1987 Α see claims 1,3,4,5,6,8,11; example 1 (cited in the application) 1 DE-A-3 323 729 (HOECHST) 10 January 1985 Α see claims; example 1 FR-A-2 016 081 (HOECHST) 30 April 1970 1 see claims 1-9; example 1, & US-A-3 644 318 EP-A-0 095 138 (HOECHST) 30 November 1983 1 Α see claims 1,2,5,6; example 1; comparison example A "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Special categories of cited documents: 10 "A" document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step earlier document but published on or after the international "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family IV. CERTIFICATION Date of Mailing of this International Search Report Date of the Actual Completion of the International Search 17 September 1991 (17.09.91) 9 August 1991 (09.08.91) Signature of Authorized Officer International Searching Authority European Patent Office

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

EP 9100966 SA 47572

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 12/09/91

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report			Publication date	
EP-A- 0223011	27-05-87	DE-A-	3538099	30-04-87
DE-A- 3323729	10-01-85	None		
FR-A- 2016081	30-04-70	DE-A- DE-A- AT-A- BE-A- CH-A- GB-A- NL-A- SE-B- US-A-	1795197 1928772 291559 737778 524645 1275142 6912466 371200 3644318	31-05-72 10-12-70 15-06-71 23-02-70 30-06-72 24-05-72 24-02-70 11-11-74 22-02-72
EP-A- 0095138	30-11-83	DE-A- AU-A- JP-A-	3219117 1484183 58213008	24-11-83 24-11-83 10-12-83

FORM P0479

INTERNATIONALER RECHERCHENBERICHT

Internationales Akte then PCT/EP 91/00966

I. KLASSII	FIKATION DES ANM	ELDUNGSGEGENSTANDS (bei mehreren	KJassifikationssymbolen sind alle anzugeben)	
Nach der I	internationalen Patentk	classifikation (IPC) oder nach der nationalen	Klassifikation und der IPC	
Int.C	1.5	C 08 F 10/00 C 08	3 F 4/654	
II. RECHE	RCHIERTE SACHGE	ВІЕТЕ		
		Recherchierter M	lindestprüfstoff ⁷	
Klassifika	tionssytem	l k	Uassifikationssymbole	
1555				
Int.Cl	1.5	C 08 F		
			Line 1 Martin Walnut and disease	
}		Recherchierte nicht zum Mindestprüfstoff ge unter die recherchierte	ehorende veromentlichungen, soweit diese n Sachgebiete fallen ⁸	
ļ				
	HLAGIGE VEROFFE		2 11 1 - T n 12	Betr. Anspruch Nr. 13
Art.º	Kennzeichnung der	Veröffentlichung 11 , soweit erforderlich unte	er Angabe der maßgeblichen Teile **	Betr. Anspruch ivr.
	_		WIE 40) 07 Mad	1
Α		P-A-O 223 O11 (RUHRCHE 1987, siehe Patentansprü		1
	1	1987, stene Patentanspru 1,3,4,5,6,8,11; Beispiel	1 (in der	
	م ا	Anmeldung erwähnt)	2 (45)	
	ĺ			
Α		E-A-3 323 729 (HOECHST		1
	1	1985, siehe Patentansprü	che; Beispiel 1	
	_	(NOTCUST	:\ 20 April	1
A		R-A-2 016 081 (HOECHST 1970, siehe Patentansprü		
		Beispiel 1, & US-A-3 644	318	
	_			
Α		P-A-0 095 138 (HOECHST		1
	1	.983, siehe Patentansprü	che 1,2,5,6;	
	В	Beispiel 1; Vergleichsbe	ispiel A	
			·	
0.75	less Vataranias sus and	gegebenen Veröffentlichungen 10 :		•
		allgemeinen Stand der Technik	"T" Spätere Veröffentlichung, die nach dem in	ternationalen An-
def	iniert, aber nicht als be	sonders bedeutsam anzusehen ist	meldedatum oder dem Prioritätsdatum ver ist und mit der Anmeldung nicht kollidiert	offentlicht worden , sondern nur zum
tio	nalen Anmeldedatum ve		Verständnis des der Erfindung zugrundelie oder der ihr zugrundeliegenden Theorie an	egenden Prinzips Igegeben ist
"L" Ver zwe	röffentlichung, die geeig ifelhaft erscheinen zu l	gnet ist, einen Prioritätsanspruch lassen, oder durch die das Veröf-	"X" Veröffentlichung von besonderer Bedeutun te Erfindung kann nicht als neu oder auf	g; die beanspruch-
fent nan	tlichungsdatum einer at inten Veröffentlichung	nderen im Recherchenbericht ge- belegt werden soll oder die aus einem	keit beruhend betrachtet werden	
and	eren besonderen Grund	l angegeben ist (wie ausgefuhrt) auf eine mündliche Offenbarung,	"Y" Veröffentlichung von besonderer Bedeutun te Erfindung kann nicht als auf erfinderis	cher Tätigkeit be-
eine	e Benutzung, eine Auss	stellung oder andere Maßnahmen	ruhend betrachtet werden, wenn die Veröff einer oder menreren anderen Veröffentlich	ungen dieser Kate-
	ieht öffentlichung, die vor d	lem Internationalen Anmeldeda-	gorie in Verbindung gebracht wird und die einen Fachmann naheliegend ist	se Verbindung für
tum	n, aber nach dem beans nt worden ist		"&" Veröffentlichung, die Mitglied derseiben P	atentfamilie ist
IV. BESCH	IEINIGUNG			
Datum des A	Abschlusses der interna	tionalen Recherche	Absendedatum des internationalen Recherci	henberichts
	09-08-1	991	17. 09. 9t	
			Unterschrift des bevollmächtigten Bedienst	
International	le Recherchenbehörde			
	EUROPAI	SCHES PATENTAMT	M. PEIS	Per

ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.

EP 9100966 SA 47572

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 12/09/91 Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichur
EP-A- 0223011	27-05-87	DE-A-	3538099	30-04-87
DE-A- 3323729	10-01-85	Keine		
FR-A- 2016081	30-04-70	DE-A- DE-A- AT-A- BE-A- CH-A- GB-A- NL-A- SE-B- US-A-	1795197 1928772 291559 737778 524645 1275142 6912466 371200 3644318	31-05-72 10-12-70 15-06-71 23-02-70 30-06-72 24-05-72 24-02-70 11-11-74 22-02-72
EP-A- 0095138	30-11-83	DE-A- AU-A- JP-A-	3219117 1484183 58213008	24-11-83 24-11-83 10-12-83