Assignment 1

DISC Nonlinear Control Systems 2017-2018 Due date: Monday 12 February 2018

Note

• Please send the solutions to {b.besselink, b.jayawardhana}@rug.nl with the email subject "DISC NCS: Assignment 1".

Exercises

- 1. Exercise 4.15 from [1].
- 2. Exercise 4.21 from [1].
- 3. Exercise 4.25 from [1].

For convenience, the pages from [1] containing the relevant exercises are copied on the next pages.

References

[1] H.K. Khalil. Nonlinear systems. Prentice Hall, Upper Saddle River, USA, third edition, 2002.

4.15 Consider the system

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -h_1(x_1) - x_2 - h_2(x_3), \quad \dot{x}_3 = x_2 - x_3$$

where h_1 and h_2 are locally Lipschitz functions that satisfy $h_i(0) = 0$ and $yh_i(y) > 0$ for all $y \neq 0$.

- (a) Show that the system has a unique equilibrium point at the origin.
- (b) Show that $V(x) = \int_0^{x_1} h_1(y) \ dy + x_2^2/2 + \int_0^{x_3} h_2(y) \ dy$ is positive definite for all $x \in \mathbb{R}^3$.
- (c) Show that the origin is asymptotically stable.
- (d) Under what conditions on h_1 and h_2 , can you show that the origin is globally asymptotically stable?

4.16 Show that the origin of

$$\dot{x}_1 = x_2, \qquad \dot{x}_2 = -x_1^3 - x_2^3$$

is globally asymptotically stable.

4.17 ([77]) Consider Liénard's equation

$$\ddot{y} + h(y)\dot{y} + g(y) = 0$$

where g and h are continuously differentiable.

- (a) Using $x_1 = y$ and $x_2 = \dot{y}$, write the state equation and find conditions on g and h to ensure that the origin is an isolated equilibrium point.
- (b) Using $V(x) = \int_0^{x_1} g(y) \ dy + (1/2)x_2^2$ as a Lyapunov function candidate, find conditions on g and h to ensure that the origin is asymptotically stable.
- (c) Repeat part (b) using $V(x) = (1/2) \left[x_2 + \int_0^{x_1} h(y) \ dy \right]^2 + \int_0^{x_1} g(y) \ dy$.
- 4.18 The mass-spring system of Exercise 1.12 is modeled by

$$M\ddot{y} = Mq - ky - c_1\dot{y} - c_2\dot{y}|\dot{y}|$$

Show that the system has a globally asymptotically stable equilibrium point.

- **4.19** Consider the equations of motion of an m-link robot, described in Exercise 1.4. Assume that P(q) is a positive definite function of q and g(q) = 0 has an isolated root at q = 0.
- (a) With u=0, use the total energy $V(q,\dot{q})=\frac{1}{2}\dot{q}^TM(q)\dot{q}+P(q)$ as a Lyapunov function candidate to show that the origin $(q=0,\ \dot{q}=0)$ is stable.

4.10. EXERCISES 185

(b) With $u = -K_d\dot{q}$, where K_d is a positive diagonal matrix, show that the origin is asymptotically stable.

- (c) With $u = g(q) K_p(q q^*) K_d\dot{q}$, where K_p and K_d are positive diagonal matrices and q^* is a desired robot position in R^m , show that the point $(q = q^*, \dot{q} = 0)$ is an asymptotically stable equilibrium point.
- **4.20** Suppose the set M in LaSalle's theorem consists of a finite number of isolated points. Show that $\lim_{t\to\infty} x(t)$ exists and equals one of these points.
- **4.21** ([81]) A gradient system is a dynamical system of the form $\dot{x} = -\nabla V(x)$, where $\nabla V(x) = [\partial V/\partial x]^T$ and $V: D \subset \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable.
- (a) Show that $\dot{V}(x) \leq 0$ for all $x \in D$, and $\dot{V}(x) = 0$ if and only if x is an equilibrium point.
- (b) Take $D = R^n$. Suppose the set $\Omega_c = \{x \in R^n \mid V(x) \le c\}$ is compact for every $c \in R$. Show that every solution of the system is defined for all $t \ge 0$.
- (c) Continuing with part (b), suppose $\nabla V(x) \neq 0$, except for a finite number of points p_1, \ldots, p_r . Show that for every solution x(t), $\lim_{t\to\infty} x(t)$ exists and equals one of the points p_1, \ldots, p_r .
- **4.22** Consider the Lyapunov equation $PA + A^TP = -C^TC$, where the pair (A, C) is observable. Show that A is Hurwitz if and only if there exists $P = P^T > 0$ that satisfies the equation. Furthermore, show that if A is Hurwitz, the Lyapunov equation will have a unique solution.

Hint: Apply LaSalle's theorem and recall that for an observable pair (A, C), the vector $C \exp(At)x \equiv 0 \ \forall t$ if and only if x = 0.

4.23 Consider the linear system $\dot{x} = (A - BR^{-1}B^TP)x$, where $P = P^T > 0$ satisfies the Riccati equation

$$PA + A^T P + Q - PBR^{-1}B^T P = 0$$

 $R = R^T > 0$, and $Q = Q^T \ge 0$. Using $V(x) = x^T P x$ as a Lyapunov function candidate, show that the origin is globally asymptotically stable when

- (1) Q > 0.
- (2) $Q = C^T C$ and (A, C) is observable; see the hint of Exercise 4.22.
- 4.24 Consider the system³⁶

$$\dot{x} = f(x) - kG(x)R^{-1}(x)G^{T}(x)\left(\frac{\partial V}{\partial x}\right)^{T}$$

³⁶This is a closed-loop system under optimal stabilizing control. See [172].

where V(x) is a continuously differentiable, positive definite function that satisfies the Hamilton–Jacobi–Bellman equation

$$\frac{\partial V}{\partial x}f(x) + q(x) - \frac{1}{4}\frac{\partial V}{\partial x}G(x)R^{-1}(x)G^{T}(x)\left(\frac{\partial V}{\partial x}\right)^{T} = 0$$

- q(x) is a positive semidefinite function, R(x) is a nonsingular matrix, and k is a positive constant. Using V(x) as a Lyapunov function candidate, show that the origin is asymptotically stable when
- (1) q(x) is positive definite and $k \ge 1/4$.
- (2) q(x) is positive semidefinite, k > 1/4, and the only solution of $\dot{x} = f(x)$ that can stay identically in the set $\{q(x) = 0\}$ is the trivial solution $x(t) \equiv 0$.

When will the origin be globally asymptotically stable?

- **4.25** Consider the linear system $\dot{x} = Ax + Bu$, where (A, B) is controllable. Let $W = \int_0^\tau e^{-At} B B^T e^{-A^T t} dt$ for some $\tau > 0$. Show that W is positive definite and let $K = B^T W^{-1}$. Use $V(x) = x^T W^{-1} x$ as a Lyapunov function candidate for the system $\dot{x} = (A BK)x$ to show that (A BK) is Hurwitz.
- **4.26** Let $\dot{x} = f(x)$, where $f: R^n \to R^n$. Consider the change of variables z = T(x), where T(0) = 0 and $T: R^n \to R^n$ is a diffeomorphism in the neighborhood of the origin; that is, the inverse map $T^{-1}(\cdot)$ exists, and both $T(\cdot)$ and $T^{-1}(\cdot)$ are continuously differentiable. The transformed system is

$$\dot{z} = \hat{f}(z)$$
, where $\hat{f}(z) = \left. \frac{\partial T}{\partial x} f(x) \right|_{x = T^{-1}(z)}$

- (a) Show that x = 0 is an isolated equilibrium point of $\dot{x} = f(x)$ if and only if z = 0 is an isolated equilibrium point of $\dot{z} = \hat{f}(z)$.
- (b) Show that x = 0 is stable (asymptotically stable or unstable) if and only if z = 0 is stable (asymptotically stable or unstable).
- 4.27 Consider the system

$$\dot{x}_1 = -x_2x_3 + 1, \quad \dot{x}_2 = x_1x_3 - x_2, \quad \dot{x}_3 = x_3^2(1 - x_3)$$

- (a) Show that the system has a unique equilibrium point.
- (b) Using linearization, show that the equilibrium point asymptotically stable. Is it globally asymptotically stable?
- 4.28 Consider the system

$$\dot{x}_1 = -x_1, \qquad \dot{x}_2 = (x_1 x_2 - 1)x_2^3 + (x_1 x_2 - 1 + x_1^2)x_2$$