Ahsanullah University of Science & Technology

Department of Computer Science & Engineering FALL 2019

Digital System Design Lab

CSE 3110

Submitted By:

Adnan Saky	17.02.04.035
Julfikar Ibnul Haque	17.02.04.055
Tanvir Ahmed Siddigi	16.01.04.069

Introduction:

An arithmetic and logic unit (ALU) is a combinational digital electronics circuit that performs arithmetical and logical operations on integer binary numbers. In this given experiment, we have built a 4-bit ALU.

Problem Statement:

			Group V	
gn the	e following	4-bit ALU (A	arithmetic Logic Unit):	
52	S1 S0 Output Ft		Function	
1	0	1	Ai-Bi	Subtract
0	1	1	Ai + Bi + 1	Add with Carry
1	1	1	Ai + Bi	Add
0	0	1	Ai + 1 + 1	Transfer A with Carry
1	X	0	Ai I Bi	OR
0	X	0	Ai xor Bi	XOR

Function Generation:

Equipment and Budget Comparison:

For this project required equipment are:

7408 IC (AND Gate) – 8 pieces

7404 IC (NOT Gate) – 2 pieces

7432 IC (OR Gate) – 2pieces

7486 IC (X-OR Gate) - 1piece

7483 IC (ADDER) - 1piece

Simulation:

The project that we implemented on proteus is down below

Implementation:

Our Hardwire Project is down below

Result:

By Fixing the value of A= 1010 and B=0101, we get the following output

S2	S1	S0	Output	Cout	F3	F2	F1	F0
1	0	1	Sub	1	0	1	0	1
0	1	1	Add w C	1	0	0	0	0
1	1	1	Add	0	1	1	1	1
0	0	1	Transfer w C	1	1	0	1	0
1	Χ	0	OR	0	1	1	1	1
0	Х	0	XOR	0	1	1	1	1

Conclusion:

At first, we implemented functions from the given table. Then we have done the experiment in Proteus software. We found an error in XOR operation and have fixed it. Then we implemented the experiment in hardware. Finally, we are able to complete our experiment without any error.