

Modulhandbuch des Masterstudiengangs Energiesystemtechnik

basierend auf den Ausführungsbestimmungen vom 13.06.2023

Stand: 22.11.2022

Inhaltsverzeichnis

Abkürzungsverzeichnis	4
Pflichtmodule	5
Ingenieurmathematik III	5
Regelungstechnik II (+)	8
Wärmeübertragung II (+)	10
Thermodynamik II	12
Sektorenkopplung	14
Energiewirtschaft	17
Projekt Energiesystemtechnik	19
Masterarbeit inkl. Kolloquium	21
Studienrichtung Elektrisches Energiesystem	23
Energy storage systems for power systems and E-mobility	26
Leistungselektronik	23
Netzschnittstellen und Systemtintegration	28
Elektrische Energieverteilung und Netze	31
Regenerative Energietechnik	33
Studienrichtung Thermisches Energiesystem	36
Computational Thermodynamics for Materials and Process Design	36
Thermische Prozesse in Kraftwerken (+)	38
Reactive Flows in High Temperature Processes	40
Hochtemperaturtechnik zur Stoffbehandlung (+)	43
Thermodynamik III	45
Wahlpflichtfächer:	47
Abgasreinigungstechnik in Theorie und Praxis	47
Brennstofftechnik I	49
Chemische Energiesysteme	51
Elektronik I	55
Elektronik II	58
Elektrothermische Prozesstechnik	60
Energieflüsse, Stoffkreisläufe und Globale Entwicklung	62
Energiewirtschaftsrecht einschließlich Wasserstoffwirtschaft	64
Grundlagen der Kälte- und Wärmepumpentechnik	67

Grundlagen der Künstlichen Intelligenz	69
Grundstoffindustrie und Energiewende	71
Leistungsmechatronische Systeme	74
Life Cycle Assessment	77
Nachhaltigkeit und Globaler Wandel	80
Neue Konzepte der Photovoltaik	82
Optimierung und Instandhaltung von Elektroenergieanlagen (mit Exkursion)	84
Personal- und Unternehmensführung für Naturwissenschaftler und Ingenieure	86
Polymer Thermodynamik	88
Einführung in die Prozessmodellierung für Ingenieure	90
Prozessmodellierung für Ingenieure 2	93
Recht der erneuerbaren Energien	96
Software Systems Engineering	98
Technical Presentations in English	101
Technical Writing	103
Technisches Englisch	105
Thermische Behandlung von Rest- und Abfallstoffen	107
Wirtschaftsenglisch I	109

Abkürzungsverzeichnis

B.Sc. Bachelor of Science

BA Bachelorarbeit

E Exkursion
h Stunden

LN Leistungsnachweis

LP Leistungspunkte gemäß European Credit Transfer System

LV Lehrveranstaltung

MA Masterarbeit
MP Modulprüfung
MTP Modulteilprüfung

M.Sc. Master of Science

P Praktikum

PV Prüfungsvorleistung

S Seminar

SS Sommersemester

SWS Semesterwochenstunden

T Tutorium
Ü Übung
V Vorlesung

WS Wintersemester

Pflichtmodule

1a. Modultitel (deutsch)1b. Modultitel (englisch)Ingenieurmathematik IIIMathematics for Engineers III(Numerische Mathematik für
nichtmathematische(Numerical mathematics for
non-mathematical courses)Studiengänge)

2. Verwendbarkeit des Moduls in Studiengängen						
B.Sc. Maschinenbau, B.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulverantwor	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Prof. O. Ippisch		Fakultät für Mathematik/Informatik und Maschinenbau				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch	6	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden kennen die Probleme, die beim Rechnen mit Fließkommazahlen auftreten und haben Verfahren kennengelernt um Algorithmen auf ihre Stabilität zu untersuchen. Sie kennen eine Reihe von verschiedenen numerischen Verfahren für relevante Anwendungsprobleme und können anhand der Eigenschaften der Verfahren das jeweils geeignete auswählen. Die Studierenden haben erste Erfahrungen mit der praktischen Umsetzung numerischer Algorithmen in Computerprogramme gesammelt.

Die Studierenden sind in der Lage, je nach Fragestellung selbstständig und in Teams zu arbeiten und ihre Kenntnisse der Mathematik auf neue Fragestellungen anzuwenden. Auftauchende Probleme können sie teilweise mit Hilfe der Literatur selbstständig lösen. Bei größeren Schwierigkeiten können sich die Studierenden gezielt Hilfe holen. Die Studierenden arbeiten ausdauernd auch an komplexeren Problemen.

Lehrve	Lehrveranstaltungen						
	12. Lehrveranstaltungstitel	13.	14. LV-	15. LV-	16.	17. Arbeitsaufwand	
11.Nr.	(deutsch/englisch)	Dozent(in)	Nr.	Art	SWS	Präsenz-/Eigenstudium	
1	Ingenieurmathematik III (Mathematics for Engineers III)	Prof. O. Ippisch, Prof. A. Potschka, Dr. H. Behnke	W 0120	V+Ü	5	70 h / 124 h	

18. Empf. Voraussetzungen	Ingenieurmathematik I und II			
19. Inhalte	 Fließkommazahlen, Rundungsfehler und Stabilität Lösung linearer Gleichungssysteme: Konditionierung, LR-Zerlegung, Pivotisierung, Irreguläre Systeme Polynominterpolation, numerische Differentiation, Extrapolation Trigonometrische Interpolation, Diskrete Fourier-Transformation Numerische Integration Iterative Lösung von linearen und nichtlinearen Gleichungssystemen 			
20. Medienformen	Tafel, Beispiele als Beamerpräsentationen, Vorführungen und Übungen am Rechner			
21. Literatur	Bärwolf, G.: "Numerik für Ingenieure, Physiker und Informatiker: für Bachelor und Diplom", Spektrum Akademischer Verlag Dahmen, W. und Reusken, A.: "Numerik für Ingenieure und Naturwissenschaftler", Springer, 2. korr. Aufl. 2008 Hanke-Bourgeois, M.: "Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens", Vieweg+Teubner Verlag, 3. akt. Aufl. 2009 Plato, R.: "Numerische Mathematik kompakt: Grundlagenwissen für Studium und Praxis", Vieweg+Teubner Verlag, 4. Aufl. 2010 Rannacher, R.: "Einführung in die Numerische Mathematik (Numerik 0)", Vorlesungsskriptum, Institut für Angewandte Mathematik Universität Heidelberg. Schwarz, H. R.: "Numerische Mathematik", Vieweg+Teubner Verlag, 8. akt. Aufl. 2011			
22. Sonstiges				

Studien-/Prüfungsleistung						
25. P 26. 27. 28. Anteil an						
23. Nr.	24. Zugeordnete Lehrveranstaltung	Art	LP	Benotung	Modulnote	
1	Ingenieurmathematik III	MP	6	benotet	100 %	
2	Hausübungen zu Ingenieurmathematik III	PV	0	unbenotet	0 %	
Zu Nr. 1:						

29a. Prüfungsform / Voraussetzung für	Klausur (120 Minuten) >= 10 Teilnehmer
die Vergabe von LP	Mündliche Prüfung (30 Minuten, Einzelprüfung) < 10
	Teilnehmer
30a. Verantwortliche(r) Prüfer(in)	Prof. O. Ippisch
31a. Verbindliche Prüfungsvorleistungen	Hausübungen
Zu Nr. 2:	
29b. Prüfungsform / Voraussetzung für	Erfolgreiche Bearbeitung von Übungsaufgaben in Haus-
die Vergabe von LP	und/oder Präsenzübungen
30b. Verantwortliche(r) Prüfer(in)	Prof. O. Ippisch
31b. Verbindliche Prüfungsvorleistungen	Keine

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Regelungstechnik II (+)	Control Systems II (w/ benefits)

2. Verwendbarkeit des Moduls in Studiengängen								
M.Sc. Maschinenba	M.Sc. Maschinenbau, M.Sc. Elektrotechnik und Informationstechnik							
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer								
Prof. C. Bohn		Fakultät für Mathematik/Informatik und Maschinenbau						
		und Maschinenbau						
6. Sprache 7	'. LP	8. Dauer	9. Angebot					
Deutsch 6	5	[X] 1 Semester	[] jedes Semester					
		[] 2 Semester	[X] jedes Studienjahr					
			[] unregelmäßig					

Die Studierenden sollen in die Lage versetzt werden, Regelungssysteme im Zeitbereich über sogenannte Zustandsraummethoden behandeln zu können. Hierunter fallen die Analyse von Regelstrecken und Regelkreisen sowie der Entwurf von Zustandsreglern und -beobachtern.

Die Studierenden begreifen das für die Behandlung linearer Systeme und deren Regelung im Zustandsraum notwendige theoretisch/mathematische und praktische Grundlagenwissen und wenden dieses (z.B. in den Übungen) zur Lösung von fachspezifischen Problemstellungen an.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel		14. LV-	15. LV-	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	Art	sws	Präsenz-/Eigenstudium	
	Regelungstechnik II (+)						
1	(Control Systems II (w/	Prof. C. Bohn	W 8921	V + Ü	4	56 h / 124 h	
	benefits))						
		Grundlegende Kenntnisse aus der (Ingenieur)-Mathematik sind zwingend					
	€	erforderlich (Bruchrechnung, komplexe Zahlen, Differential- und					
	I	Integralrechnung, Exponentialfunktion, gewöhnliche lineare					
	[Differentialgleichungen erster Ordnung mit kontanten Koeffizienten,					
18a	Empf. Voraussetzungen	Polynome, gebrochen rationale Funktionen, Partialbruchzerlegung).					
	V	Weiterhin sind für das Verständnis des Stoffes Grundlagen aus der					
	I	linearen Algebra erforderlich (Umgang mit Vektoren und Matrizen:					
		Multiplikation, Addition, Inversion, Transposition; Eigenwerte und					
		Eigenvektoren; Determinante und charakteristisches Polynom).					

	Grundkenntnisse der Regelungstechnik, wie sie standardmäßig in einer ersten Grundlagenvorlesung der Regelungstechnik vermittelt werden, werden vorausgesetzt (z.B. Laplace-Transformation, Systembeschreibung im Bildbereich, Übertragungsfunktion, Pole und Nullstellen).
19a. Inhalte	Grundlagen der Zustandsraumdarstellung, Lösung der Zustandsdifferentialgleichung,. Zeitdiskrete Systeme, Eigenschaften von Zustandsraummodellen (Steuerbarkeit, Beobachtbarkeit, Erreichbarkeit, Detektierbarkeit), Zustandsregelung, Entwurf von Zustandsreglern über Polvorgabe, Zustandsregler mit Integralanteil, Zustandsbeobachter, Beobachterbasierte Zustandsregelung, Ausblick auf optimale Regelung und Zustandsschätzung
20a. Medienformen	Tafelanschrieb, ggf. ergänzt durch ausgegebene Unterlagen (Übungsblätter o.ä.)
21a. Literatur	Auf ergänzende Literatur wird in der Veranstaltung verwiesen.
22a. Sonstiges	

Studien-/Prüfungsleistung							
			25. P	26.	27.	28. Anteil an der	
23. Nr.	23. Nr. 24. Zugeordnete Lehrveranstaltungen		Art	LP	Benotung	Modulnote	
1	Regelungstechnik II			6	benotet	100 %	
29. Prüfu	29. Prüfungsform / Voraussetzung für Modulprüfung: Klausur oder mündliche Prüfung,) ,		
die Verga	abe von LP	Prüfungsdurch	führung ι	ınd Dau	er gemäß der ge	eltenden	
		Prüfungsordnung					
30. Verar	30. Verantwortliche(r) Prüfer(in) Prof. C. Bohn						
31. Prüfu	ngsvorleistungen	Keine					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Wärmeübertragung II (+)	Heat Transfer II (+)

2. Verwendbarkeit des Moduls in Studiengängen

M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Wirtschaftsingenieurwesen (SR Produktion und Prozesse), M.Sc. Energiesystemtechnik

3. Modulverantwortliche(r)		4. Zuständige Fakultät	5. Modulnummer		
Prof. DrIng. R. Weber		Fakultät für Energie- und			
		Wirtschaftswissenschaften			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Englisch	6	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden:

- vertiefen das bereits erlernte Wissen in der Wärmeübertragung im Bereich der Gasstrahlung
- erweitern und ergänzen die mathematischen und physikalischen Grundlagen der Wärmeübertragung mit Schwerpunkt an Gasstrahlung
- können den Wärmetausch durch Strahlung anhand verschiedener Konfigurationen mit und ohne aktive Medien sowie unterschiedliche Oberflächeneigenschaften erläutern, bestimmen und z.B. in Wärmebehandlungsöfen anwenden
- können sich in allgemeinen ingenieurwissenschaftlichen Themen kompetent auszudrücken und die eigene Meinung verteidigen
- können Lösungen entwickeln und Entscheidungen vertreten
- können praktische Problemstellungen aus dem Bereich der Gasstrahlung selbständig bearbeiten

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-	15. LV-	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	Art	SWS	Präsenz-/Eigenstudium
1	Wärmeübertragung II (+)	Prof. DrIng. R.	W 85XX	V/Ü	4	56 h / 124 h
'	(Heat Transfer II (+))	Weber	WOJAX	V/O	7	3011/12411
18. ا	Empf. Voraussetzungen	Wärmeübertragung	<u> </u>			
		1. Governing	Laws for Th	nermal Radia	ation	
19. Inhalte		2. Radiation Intensity, Emissive Power and Radiosity				
		3. Surface Radiation Characteristics				

	4. Solar Radiation			
	5. Radiation Exchange in Enclosures Containing a Radiatively Non			
	Participating Medium			
	6. Radiation in Absorbing, Emitting and Scattering Media			
	7. Absorption and Emission of Radiation by Gaseous Atoms and			
	Molecules			
	8. Absorption and Emission of a Volume of Gas of Uniform			
	Properties			
	9. Radiation Exchange in an Enclosure Containing an Absorbing			
	Emitting Medium			
20. Medienformen	PowerPoint, Übungsaufgaben, Skript			
	Weber: Lecture Notes in Heat Transfer II. Part 1: Thermal Radiation			
21. Literatur	Siegel, Howell: Thermal Radiation Heat Transfer, Taylor & Francis			
21. Literatur	Incropera, Dewit: Fundamentals of Heat and Mass Transfer, John Wiley			
	and Sons			
22. Sonstiges				

Studier	Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveransta	ltung	Тур	LP	Benotung	Modulnote	
1	Wärmeübertragung II (+)		MP	6	benotet	100 %	
29. Prüfungsform / Voraussetzung für		Mündliche Prüfung (30 min)					
die Verg	abe von LP						
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. R. Weber					
31. Verbindliche		Keine					
Prüfungs	vorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Thermodynamik II	Thermodynamics II

2. Verwendbarkeit des Moduls in Studiengängen						
B.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Energiesystemtechnik						
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Prof. Dr. M. Fischlschweiger		Fakultät für Energie- und				
		Wirtschaftswissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch 6		[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

- Studierende verstehen das Verhalten von realen Gasen, Gas-Dampf-Gemischen, einfachen realen
 Gemischen und chemischen Gleichgewichten idealer Gase.
- Studierende sind in der Lage, die entsprechenden thermodynamischen Prozesse mit Hilfe von Zustandsgleichungen und Prozessschemata zu erklären.
- Studierende können diese Prozesse auf der Basis von Bilanzen und Gleichgewichten analysieren, berechnen und bewerten.
- Studierende beherrschen den Umgang mit chemischen Potentialen, Mischungsgrößen und Phasendiagrammen.
- Studierende werden ermutigt und in die Lage versetzt, im Rahmen der Übungen, Beiträge anderer
 Studierender kritisch zu bewerten bzw. zu hinterfragen, eigene Vorschläge zur Thermodynamik II zu entwickeln, Hypothesen zu bilden und zu verifizieren oder zu verwerfen.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-	15. LV-	16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	Art	sws	Präsenz-/Eigenstudium
1	Thermodynamik II	Prof. Dr. M.	C 0 / 1 1	วง//วบั	4	56 h / 124 h
'	(Thermodynamics II)	Fischlschweiger S 8411	2V/2Ü	4	56 h / 124 h	
18.	Empf. Voraussetzungen	Ingenieurmathemat	tik I und II,	Thermodyn	amik I	
		Reale Gase, Zustano	dsgleichun	gen für reale	Reinsto	ffe, Zustands-
19	nhalte	änderungen mit Dissipation, Potentialfunktionen, Charakterisierung von				
17.1		Mischungen, Mischungen idealer Gase, Gas-Dampf-Gemische und				
		Prozesse mit feuchter Luft, Phasengleichgewichte und Phasendiagramme,				

	Gesetze von Raoult und Henry, Flüssig-Flüssig-Gleichgewichte, Enthalpie von Mischungen, Allgemeine Beschreibung von Mischphasen und das chemische Potential, Reaktionsgleichgewichte in idealen Gasen, Grundlagen der Berechnung von Phasengleichgewichten
20. Medienformen	Folien/PowerPoint, Tafel, Übungsaufgaben
21. Literatur	J. Gmehling, B. Kolbe: Thermodynamik, Wiley-VCH 1992 H.D. Baehr und S. Kabelac: Thermodynamik Grundlagen und technische Anwendungen, Springer Verlag, 15. Aufl. 2012 P. Stephan, K. Schaber, K. Stephan und F. Mayinger: Thermodynamik, Grundlagen und technische Anwendungen Band 2 Mehrstoffsysteme und chemische Reaktionen, Springer Verlag, 15. Aufl. 2010 S.I. Sandler: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, Fifth Ed. 2016
22. Sonstiges	

Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der
23. Nr.	lr. 24. Zugeordnete Lehrveranstaltung		Тур	LP	Benotung	Modulnote
1	Thermodynamik II		MP	6	benotet	100 %
29. Prüfungsform / Voraussetzung für		Klausur (120 Minuten) (bei weniger als 5 Teilnehmern mündlich)				
die Verga	abe von LP					
30. Verantwortliche(r) Prüfer(in)		Prof. Dr. M. Fischlschweiger				
31. Verbindliche		Keine				
Prüfungs	vorleistungen					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Sektorenkopplung	Integrated Energy

2. Verwendbarkeit des Moduls in Studiengängen							
MSc. Energiesystemtechnik							
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Prof. DrIng. Ines Hauer		Fakultät für Energie- und Wirtschaftswissenschaften					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch und	6	[X] 1 Semester	[] jedes Semester				
Englisch		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Die Studierenden erkennen die energetische Sektorenkopplung als eine Notwendigkeit in nachhaltigen Energiesystemen und verstehen die Vielschichtigkeit eines integrierten Energiesystems mit stofflichen und nicht-stofflichen Energieträgern. Sie können die verschiedenen Konzepte zur energetischen Sektorenkopplung unterscheiden, kennen die verschiedenen Charakteristika und können die Anforderungen an das Energiesystem formulieren und verstehen seine Grundfunktionen.

Durch die Ringvorlesung können die Studierenden die verschiedenen Sichtweisen zu den Vor- und Nachteilen möglicher Konzepte nachvollziehen und haben die Grundlagen für eine spätere fachliche Vertiefung.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel		14. LV-	15. LV-	16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	Art	sws	Präsenz-/Eigenstudium		
		Prof. Hauer,						
		Dr. Mancini,						
	Sektorenkopplung (Integrated Energy)	Dr. Lindermeir,						
		Dr. Turschner,						
		Dr. zum Hingst,						
1		Dr. Benger,	S 8823	V/Ü	4	56 h / 124 h		
		Prof. Ganzer,						
		Prof. Jaeger,						
		Prof.						
		Buddenberg,						
		Dr. Mecke						

	(Ringvorlesung)					
18. Empf. Voraussetzungen	Elektrotechnik, Nachhaltige Energiesysteme					
19. Inhalte	 Elektrotechnik, Nachhaltige Energiesysteme Einführung - Buddenberg, IEE Energiewirtschaftlich Grundlagen der Sektorkopplung Energiebedarf, Energiebereitstellung, primäre, sekundäre Energieträger, Energieflussdiagramme Marktmechanismen, Prognose der Energiebreitstellung, Systemansätze von Substitutionsoptionen Sektorenkopplung als Grundlage einer Dekarbonisierung Stromerzeugung – zum Hingst, Turschner, IEE Erneuerbare Stromerzeugung onshore und offshore Wind/Freiflächen PV Stromnetze und Speicher – Hauer, Benger, IEE Wärmeübertragung und -speicherung – NN, IEVB Industrieprozesse – Mecke, IEE Sektorenkopplung zur Dekarbonisierung der Grundstoffindustrie Beispiel: SALCOS (Elektro)mobilität und Verkehr – NN, NN (Lehrbeauftrager IEE) Power-to-Gas und Power-to-Liquid - Lindermeir, CUTEC Elektrolyse und Brennstoffzelle Methanisierung und Fischer-Tropsch-Synthese Gasnetze und Speicher – Ganzer, ITE 					
20. Medienformen	Präsentation, Tafel, Übungen, Video					
21. Literatur	tba					
22. Sonstiges						

Studien	Studien-/Prüfungsleistung							
			25. P	26.	27.	28. Anteil an der		
23. Nr.			Тур	LP	Benotung	Modulnote		
1	Sektorenkopplung	MP	6	benotet	100 %			
	ngsform / Voraussetzung für abe von LP	Mündliche Prü	fung oder	· Klausur	•			
30. Verar	ntwortliche(r) Prüfer(in)	Prof. DrIng. Ir	nes Hauer					

31. Verbindliche	Keine
Prüfungsvorleistungen	

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Energiewirtschaft	Energy Industry

2. Verwendbarkeit des Moduls in Studiengängen						
.Sc. Technische BWL (Energiemanage	ement)					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Fakultät für Energie- und						
Wirtschaftswissenschaften						
8. Dauer	9. Angebot					
[X] 1 Semester	[] jedes Semester					
[] 2 Semester	[X] jedes Studienjahr					
	[] unregelmäßig					
	.Sc. Technische BWL (Energiemanage 4. Zuständige Fakultät Fakultät für Energie- und Wirtschaftswissenschaften 8. Dauer [X] 1 Semester					

Die Studenten kennen nach Abschluss des Faches die grundlegenden technischen, wirtschaftlichen, rechtlichen und sozioökonomischen Rahmenbedingungen des elektrischen Energieversorgungssystems in Deutschland und werden befähigt, die systematischen Zusammenhänge der Elektrizitätswirtschaft und des Energierechts zu erkennen und zu bewerten.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel		14. LV-	15. LV-	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	Art	sws	Präsenz-/Eigenstudium	
1	Elektrizitätswirtschaft	Prof. DrIng.	W 88XX			541 /4041	
1	(Electricity Industry)	Ines Hauer	W 00AA	V/Ü	4	56 h / 124 h	
18. Empt. Voraussetzungen				k, Einführun ing in das Re	_	BWL für Ingenieure und	
		Einführung in die Elektrizitätswirtschaft					
		 Grundlagen der Elektrizitätswirtschaft 					
		 Einführung in das Energierecht 					
10	la la alea	Stromkunde und Stromverbrauch					
19.	nhalte	– Stromerzeugung					
		Stromtransport und Stromverteilung					
		– Stromhandel					
		 Aktuelle Themen der Elektrizitätswirtschaft 					
20.	20. Medienformen Foliensammlung						

21. Literatur	Maubach: Energiewende – Wege zu einer bezahlbaren Energieversorgung, Springer VS, 2013. Maubach: Strom 4.0 – Innovationen für die deutsche Stromwende, Springer Vieweg, 2015.
22. Sonstiges	-

Studien-/Prüfungsleistung							
			25. P	26.	27.	28. Anteil an der	
23. Nr.	. Nr. 24. Zugeordnete Lehrveranstaltung		Тур	LP	Benotung	Modulnote	
1	Energiewirtschaft		MP	6	benotet	0 %	
29. Prüfu	ngsform / Voraussetzung für	Klausur					
die Verga	abe von LP						
30. Verar	ntwortliche(r) Prüfer(in)	Prof. DrIng. Ines Hauer					
31. Verbi	ndliche	Keine					
Prüfungs	vorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Projekt Energiesystemtechnik	Project Energy Systems
	Engineering

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Energiesys	temtechnik					
3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer			
Prof. DrIng. Ines Hauer		Fakultät für Energie- und				
		Wirtschaftswissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch 12		[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

Nach Abschluss des Moduls können die Studierenden Komponenten eines Energiesystems beschreiben und modellieren sowie die Schnittstellen definieren. Auch komplexere Zusammenhänge zwischen die Komponenten können Sie mit Gleichungen und Bedingungen abbilden, ggf. vereinfachen. Anschließend können sie mit einem geeigneten Softwarewerkzeug das Energiesystem modellieren und simulieren, die Auslegung und den Betrieb optimieren und unterschiedliche Varianten anhand verschiedener Kennwerte bewerten und vergleichen.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel		14. LV-	15. LV-	16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	Art	sws	Präsenz-/Eigenstudium	
1	Projekt Energiesystemmodellierung (Project Energy System Modelling)	Prof. DrIng. Ines Hauer	W 88XX	Ü	4	56 h / 124 h	
18.	Empf. Voraussetzungen	Projekt Energiesyste	mauslegu	ng			
19.	Inhalte	 Einführung in die Energiesystemmodellierung durch den Dozenten/die Dozentin Modellierung der Komponenten Modellierung der Zusammenhänge Treffen und Bewerten von Annahmen Simulation eines Energiesystems 				ng durch den	

	 Vergleich und Bewertung verschiedener Varianten
	– Projekt
	 Aufteilung in Kleingruppen, Ausgabe einer Fragestellung
	 Eigene Aufteilung und Koordination innerhalb der
	Projektgruppe
	 Literaturrecherche zur Einordnung und Modellierung der Thematik
	 Regelmäßige Beratung durch die betreuenden Dozenten und Dozentinnen
	 Erstellung und fristgemäße Abgabe der schriftlichen Dokumentation
	 Präsentation der Ergebnisse in einem 20-minütigen Vortrag
20. Medienformen	Vortragsfolien, Berechnungsprogramm (z.B. Excel, Matlab), Textsystem mit Formelsatz (z.B. Latex, Word)
21. Literatur	Bekanntgabe in Abhängigkeit von der Themenstellung, eigene Literaturrecherche erforderlich
22. Sonstiges	

Studier	Studien-/Prüfungsleistung							
			25. P	26.	27.	28. Anteil an der		
23. Nr.	. Nr. 24. Zugeordnete Lehrveranstaltung			LP	Benotung	Modulnote		
1	Projekt Energiesystemauslegung		PA	6	benotet.	100%		
29. Prüfu	ingsform / Voraussetzung für	schriftliche Dokumentation und Vortrag (20 Minuten)						
die Verg	abe von LP							
30. Vera	ntwortliche(r) Prüfer(in)	Prof. DrIng. Ines Hauer						
31. Verb	indliche							
Prüfungs	vorleistungen							

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Masterarbeit inkl. Kolloquium	Master Thesis incl. Colloquium

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Energiesystemtechnik							
3. Modulveranty	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Prof. DrIng. Ines Hauer		Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch/ 30		[X] 1 Semester	[] jedes Semester				
Englisch		[] 2 Semester	[] jedes Studienjahr				
			[X] unregelmäßig				

Die Master-Abschlussarbeit zeigt, dass die oder der Studierende in der Lage ist, innerhalb einer vorgegebenen Zeit ein Problem gehobener Schwierigkeit aus ihrem oder seinem Schwerpunkt zu analysieren, geeignete Modelle und Methoden zu seiner Lösung zu identifizieren, eventuell anzupassen und einzusetzen und das Ergebnis in angemessener Form schriftlich und mündlich darzustellen.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium		
		Mitglieder der						
		Hochschullehre						
	Masterarbeit inkl. Kolloquium	rgruppe gemäß						
1	(Master Thesis incl.	aktueller Auf-			20	0 h / 600 h		
	Colloquium)	listung in den						
		Ausführungsbe						
		stimmungen						
	,	Voraussetzungen nach den aktuellen Ausführungsbestimmungen (AFB)						
		des Masterstudiengangs Energiesystemtechnik und der Allgemeinen						
18.	Empf. Voraussetzungen	Prüfungsordnung (APO) müssen erfüllt sein.						
		Zur Anmeldung müssen mindestens 75 ECTS an Studienleistungen						
	!	nachgewiesen werden.						
10	nhalte	Ausgabe einer Aufgabenstellung, eigene Literaturrecherche zur						
17.		Einordnung der Thematik; Beratung durch die betreuenden Dozenten						

	und Dozentinnen; Erstellung und fristgemäße Abgabe der schriftlichen Ausarbeitung; Präsentation der Ergebnisse in einem 20-minütigen Vortrag
20. Medienformen	Textsystem mit Formelsatz (LaTex, Word, etc.)
21. Literatur	Bekanntgabe in Abhängigkeit von der Themenstellung ggf. Leitfaden zur Erstellung wissenschaftlicher Arbeiten (abhängig vom Institut)
22. Sonstiges	Mögliche Institute für studentische Arbeiten sind in den Ausführungsbestimmungen des Masterstudiengangs Energiesystemtechnik aufgelistet. Themen werden in den Instituten durch Aushang bekannt gegeben oder im Stud.IP.

Studien	Studien-/Prüfungsleistung							
23. Nr.	24. Zugeordnete Lehrveransta	ltung	25. P Typ	26. LP	27. Benotung	28. Anteil an der Modulnote		
1	Masterarbeit inkl. Kolloquium			30	benotet	100 %		
	Schriftliche Ausarbeitung, Präsentation im Rahmen eines Kolloquiums Die Bewertung setzt sich zu 100% aus dem schriftlichen Teil zu 0% aus dem mündlichen Prüfungsteil zusammen.				nriftlichen Teil und			
30. Verai	30. Verantwortliche(r) Prüfer(in) Mitglieder der Hochschullehrergruppe gemäß aktueller Auflistung in den Ausführungsbestimmungen			aktueller				
	rbindliche Keine gsvorleistungen							

Studienrichtung Elektrisches Energiesystem

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Leistungselektronik	Power Electronics

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Energiesystemtechnik							
3. Modulverant	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
DrIng. Dirk Turschner		Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	4	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden kennen nach Abschluss des Moduls Bauelemente, Schaltungen (Gleich-, Wechsel- und Umrichter) und Steuerverfahren der Leistungselektronik. Durch die begleitende Übung wird die in der Vorlesung vermittelte Theorie vertieft, sodass die Studierenden anschließend befähigt sind, leistungselektronische Grundschaltungen zu modellieren, zu beurteilen und zu entwerfen.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel			14. LV-		16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	1	3. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium	
1	Leistungselektronik	С	DrIng. Dirk	W 0002	v//ü	4	56 h / 124 h	
1	(Power Electronics)	Т	Turschner	W 8802	V/Ü	4	56 h / 124 h	
18.	Empf. Voraussetzungen	Elek	trotechnik für In	genieure	I und II (emp	ofohlen)		
		– Einführung						
		– Systemkomponenten						
		 Lineare Komponenten 						
10		 Halbleiterventile 						
19.	nhalte	 Nichtlineare Komponenten 						
			Bauelemente der Energieelektronik					
			Einführung in die Grundbegriffe					
			– Halbleiterdiode					

	Leistungstransistor, IGBT
	Thyristor
	 Abschaltbarer Thyristor (Gate-Turn-Off-Thyristor)
	 Schaltvorgänge und Kommutierung
	 Schaltbedingungen in elektrischen Netzen
	 Definition der Kommutierung
	 Stromrichtertypen
	 Halbleiterschalter und -steller (Nichtkommutierende Stromrichter)
	 Der Transistor als Gleichstromschalter und -steller
	 Halbleiterschalter f ür Wechsel- und Drehstrom
	 Halbleitersteller f ür Wechsel- und Drehstrom
	 Fremdgeführte Stromrichter
	 Netzgeführte Gleich- und Wechselrichter
	 Netzgeführte Umrichter
	 Lastgeführte Wechselrichter (Umrichter)
	 Selbstgeführte Stromrichter
	 Halbleiterschalter für Gleichstrom
	 Halbleitersteller für Gleichstrom
	 Selbstgeführte Wechselrichter
	Modulations- und Ansteuerverfahren
	 Sinus-Dreieck-Modulation
	 Pulsweitenmodulation
	 Raumzeigermodulation
	 parallele Simulationsübungen
20.14 11 6	Skript in Papier- und PDF-Form
20. Medienformen	Vorlesungsbegleitende Versuchsvorführungen
	Heumann: Grundlagen der Leistungselektronik Michel:
	Leistungselektronik
21. Literatur	Jäger/Stein: Leistungselektronik – Grundlagen und Anwendungen
	Specovius: Grundkurs Leistungselektronik
	Stephan: Leistungselektronik interaktiv
22. Sonstiges	

Studien-/Prüfungsleistung

23. Nr.	24. Zugeordnete Lehrveransta	ltung	25. P Typ	26. LP	27. Benotung	28. Anteil an der Modulnote	
1	1 Leistungselektronik		MP	6	benotet	100 %	
29. Prüfungsform / Voraussetzung für Mie Vergabe von LP		Mündliche Pr	üfung				
30. Verar	30. Verantwortliche(r) Prüfer(in)		DrIng. Dirk Turschner				
31. Verbindliche Prüfungsvorleistungen		Keine					

1a. Modultitel (englisch)	1b. Modultitel (deutsch)
Energy storage systems for	Energiespeichersysteme für
power systems and E-mobility	elektrische Netze und
	Elektromobilität

2. Verwendbarkeit des Moduls in Studiengängen								
M.Sc. Energiesys	M.Sc. Energiesystemtechnik							
3. Modulverant	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Prof. DrIng. Ines Hauer		Fakultät für Energie- und						
		Wirtschaftswissenschaften						
6. Sprache	7. LP	8. Dauer	9. Angebot					
Englisch/	6	[X] 1 Semester	[] jedes Semester					
Deutsch		[] 2 Semester	[X] jedes Studienjahr					
			[] unregelmäßig					

Die Studenten werden durch den Abschluss des Moduls in die Lage versetzt, die verschiedenen Verfahren, Einsatzgebiete und Anwendungsmöglichkeiten zur Energiespeicherung zu verstehen bzw. umzusetzen. Sie sind in der Lage Speicher für verschiedene Anwendungen auszulegen. Der Abschluss des Moduls befähigt die Studenten, ein geeignetes Speichersystem für eine spezielle Anwendung zu identifizieren und auszulegen und geeignete Betriebsstrategien zu entwickeln z.B.

- Dimensionierung und Betrieb von Solarspeichersysteme
- Dimensionierung und Betrieb von Speichern in PV und Windparks
- Speicher in der Elektromobilität
- Speicher in elektrischen Versorgungsnetzen
- Mehrfachnutzungsstrategien

Leh	Lehrveranstaltungen							
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV- Nr.	15. LV- Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium		
141.	(dedtsch/englisch)	13. Dozent(III)	INI.	AIT	3443	rrasenz-/Eigenstudium		
	Energy storage systems for power systems and E-mobility	Prof. DrIng. Ines Hauer	W 8836	V/Ü	4	56 h / 124 h		
1	(Energiespeichersysteme für							
	elektirsche Netze und							
	Elektromobilität)							

18. Empf. Voraussetzungen	B .Sc. Technischer Studiengang, VL Batteriesystemtechnik, VL Elektrische Energieverteilung und Netze			
19. Inhalte	 Energiespeichertechnologien Modellierung und Optimierung von Energiespeichersystemen Dimensionierung von Energiespeichertechnologien für die Anwendung in den elektrischen Netzen Anwendung von Energiespeichertechnologien in der Elektromobilität Ladesysteme Netzintegration von mobilen Speichern 			
20. Medienformen	Tafelanschrieb, Präsentationen			
21. Literatur	wird noch bekannt gegeben			
22. Sonstiges				

Studier	Studien-/Prüfungsleistung							
			25. P	26.	27.	28. Anteil an der		
23. Nr.	24. Zugeordnete Lehrveransta	ltung	Тур	LP	Benotung	Modulnote		
1	Energy storage systems for power syste and E-mobility		MP	6	benotet	100 %		
	ingsform / Voraussetzung für abe von LP	mündliche Pr	üfung					
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. Ines Hauer						
31. Verb	indliche							
Prüfungs	vorleistungen							

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Netzschnittstellen und	Grid Interfaces and System
Systemtintegration	Integration

2. Verwendbarkeit des Moduls in Studiengängen							
MSc. Energiesyst	MSc. Energiesystemtechnik						
3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Prof. DrIng. Ines Hauer		Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	6	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Am Beispiel Offshore Wind und Photovoltaik werden die Herausforderungen untersucht, die sich bei der technischen und wirtschaftlichen Integration von erneuerbaren Energien in ein bestehendes Energiesystem ergeben. Die Studierenden sollen verstehen, welche netztechnischen/elektrotechnischen Gesetzmäßigkeiten berücksichtigt werden müssen und wie diese gelöst werden können. Darüber hinaus werden die technischen Charakteristika der genannten Erzeugungstechnologien sowie deren Entwicklung im Hinblick auf die Netzintegration dargestellt und analysiert. Neben den technischen Aspekten der Netzintegration werden die rechtlichen und wirtschaftlichen Randbedingungen erläutert und deren Entwicklung parallel zum Ausbau didaktisch aufbereitet und vermittelt. In einem Ausblick werden weitere Optionen für eine sektorübergreifende Integration von erneuerbaren Energien z.B. über Wasserstoff vermittelt.

Im Rahmen einer Hausarbeit werden einzelne Aspekte des Vorlesungsinhaltes vertieft. Diese Hausarbeit ist Voraussetzung für die Teilnahme an der Prüfung.

Die Studierenden kennen unterschiedliche Netzschnittstellen und deren Auswirkungen auf das elektrische Netz. Anhand dieser Eigenschaften können sie die Anforderungen für eine Netzintegration von leistungselektronischen Stellgliedern insbesondere für regenerative Energien ableiten. Dadurch sind sie in der Lage, umrichterdominierte Netze zu analysieren und geeignete Maßnahmen für einen stabilen und sicheren Netzbetrieb auszuwählen und auszulegen.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	SWS	Präsenz-/Eigenstudium	
1	Netzschnittstellen und Systemintegration	Prof. DrIng. Ines Hauer	S 88XX	V/Ü	4	56 h / 124 h	

(Grid Interfaces and System					
Integration					
18. Empf. Voraussetzungen	Elektrotechnik, Fossile und regenerative Energieressourcen				
19. Inhalte	 Entwicklung und technische Grundlagen der Beispieltechnologien Offshore Wind Photovoltaik Technische Grundlagen Energienetze Netzsicherheit und Netzstabilität im Kontext erneuerbare Energien Systemdienstleistungen von Erzeugungsanlagen, Lasten und Speicher Technische Anforderungen bei Netzkopplung von Erzeugungsanlagen, Lasten und Speicher Technische Optionen der Netzanbindung (Drehstrom/Gleichstrom) und Wechselwirkung mit dem Stromnetz Energiewirtschaftliche und energierechtliche Grundlagen ENWG, EEG, WindSeeGesetz etc. Strommarkt und Preisbildungsmechanismen Netzentwicklungsplanung Entwicklung von alternativer Systemintegration Wind – Wasserstoff PV – Wasserstoff Schnittstellentechnologien Erarbeiten und Gegenüberstellen der Eigenschaften von Synchrongeneratoren und Umrichtern mit Hinblick auf einen stabilen und sicheren Netzbetrieb Auswirkungen auf das Netz durch die Transformation von maschinendominierten zu umrichterdominierten Netzen Grundlagen von grid following control und grid forming control von Umrichtern 				
20. Medienformen	Präsentation, Übungen, Video, Internet				
21. Literatur	Crastan, V.: Elektrische Energieversorgung 1, 2 und 3 (2015, 2010 und 2011) Kundur, P.: Power System Stability and Control (1994)				

	Jenni, F., Wüest, D.: Steuerverfahren für selbstgeführte Stromrichter (1995)
	Binder, A.: Elektrische Maschinen und Antriebe (2012)
	Schulz, D.: Elektrische Energieversorgung (2013)
	Marenbach, R.: Elektrische Energietechnik (2013)
	Michel, M.: Leistungselektronik (2011)
	Oswald, B.: Berechnung von Drehstromnetzen (2012)
	Schwab, A.: Elektroenergiesysteme (2012)
22. Sonstiges	

Studier	Studien-/Prüfungsleistung							
23. Nr.	24. Zugeordnete Lehrveransta	ltung	25. P Typ	26. LP	27. Benotung	28. Anteil an der Modulnote		
1	Netzschnittstellen und Systemintegration		MP	6	benotet	100 %		
29. Prüfungsform / Voraussetzung für die Vergabe von LP		mündliche Pr	üfung					
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. Ines Hauer						
31. Verbindliche Prüfungsvorleistungen		keine						

1a. Modultitel (deutsch)1b. Modultitel (englisch)Elektrische Energieverteilung und
NetzeElectrical Power Distribution and
Power Grids

2. Verwendbarkeit des Moduls in Studiengängen

M.Sc. Wirtschaftsingenieurwesen (SR Energie- und Rohstoffmanagement, AFB 2014), B.Sc. Energie und Rohstoffe, M.Sc. Wirtschaftsingenieurwesen (SR Energie- und Rohstoffmanagement, AFB 2011), M.Sc. Verfahrenstechnik/Chemieingenieurwesen

3. Modulveranty	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer
Prof. DrIng. Ine	s Hauer	Fakultät für Energie- und Wirtschaftswissenschaften	
6. Sprache	7. LP	8. Dauer	9. Angebot
Deutsch	6	[X] 1 Semester	[] jedes Semester
		[] 2 Semester	[X] jedes Studienjahr
			[] unregelmäßig

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden lernen den Aufbau und die elektrischen Parameter (R-L-G-C) verschiedener Leitungssysteme kennen. Sie erlernen Verfahren zur Berechnung und Auslegung von elektrischen Netzen unterschiedlicher Strukturen. Hierzu gehören die klassische Lastflussrechnung und die Berechnung von Fehlerströmen sowohl im symmetrischen als auch im unsymmetrischen Netz mit dem Verfahren der "Symmetrischen Komponenten" sowie die Berechnung "langer" Leitungen für die Fernübertragung elektrischer Energie (Gleichstromleitungen (HGÜ) und Drehstromleitungen (DHÜ)).

Leh	Lehrveranstaltungen						
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV- Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
1	Elektrische Energieverteilung und Netze (Electrical Power Distribution and Power Grids)	DrIng. J. zum Hingst	W 8806	V/Ü	4	56 h / 124 h	
18.	Empf. Voraussetzungen	Grundlagen der Elektrotechnik I und II					
19.	10. Einführung (Stromarten, Spannungsniveaus, Netzformen) 11. Aufbau und Daten elektrischer Leitungen — Freileitungen, Kabel, Erwärmung, elektrische Kenng (Widerstands-, Induktivitäts- und Kapazitätsbelag)				elektrische Kenngrößen		

	12. Kenngrößen von Kabeln und Leitungen				
	13. Verluste, Induktivitäten, Kapazitäten				
	14. Berechnung elektrischer Netze				
	15. Leitungsnachbildung (Ersatzschaltbild), einseitig / zweiseitig				
	16. gespeiste Leitung, vermaschtes Netz, HDÜ: Leitungsgleichungen, charakteristische Betriebsarten, Blindleistung und Oberschwingungen				
	17. Hochspannungs-Gleichstromübertragung (HGÜ)				
	18. Fehlerarten				
	19. Dreisträngiger Kurzschluss (generatornah / -fern),				
	20. unsymmetrische Fehler, symmetrische Komponenten				
20. Medienformen	gedrucktes Skript, kommentierte Präsentationsfolien werden über Stud.IP zur Verfügung gestellt				
	Flosdorf: Elektrische Energieverteilung				
	Oeding: Elektrische Kraftwerke und Netze				
21. Literatur	Knies: Elektrische Anlagentechnik				
	Happold: Elektrische Kraftwerke und Netze				
	Weiter Angaben im Skript				
22. Sonstiges	Die Funktionsweise des Netzberechnungsprogramms PowerFactory wird in der Vorlesung vorgestellt und in Übungen von den Studierenden eigenständig durchgeführt; damit stehen Grundkenntnisse zur				
	Verfügung, die in studentischen Arbeiten weiter genutzt werden können				

Studien	Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveranstal	tung	Тур	LP	Benotung	Modulnote	
1	Elektrische Energieverteilung und	d Netze	MP	6	benotet	100 %	
29. Prüfungsform / Voraussetzung für die Vergabe von LP		Mündliche Pr	üfung (30) min)			
30. Verar	30. Verantwortliche(r) Prüfer(in)		DrIng. Jens zum Hingst				
31. Verbindliche		Keine					
Prüfungs	vorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Regenerative Energietechnik	Renewable Energy Technology

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Energiesystemtechnik					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Fakultät für Energie- und					
Wirtschaftswissenschaften					
8. Dauer	9. Angebot				
[X] 1 Semester	[] jedes Semester				
[] 2 Semester	[X] jedes Studienjahr				
	[] unregelmäßig				
	4. Zuständige Fakultät Fakultät für Energie- und Wirtschaftswissenschaften 8. Dauer [X] 1 Semester				

Nachdem Studierende das Modul besucht haben, sind sie in der Lage physikalischen Grundlagen auf das Themengebiet der "Regenerativen Elektrischen Energietechnik" anzuwenden. Sie können die Umwandlung regenerativer Energien in elektrische Energie erklären.

Leh	rveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	SWS	Präsenz-/Eigenstudium
1	Regenerative Energietechnik	Prof. DrIng. Ines Hauer	S 88XX	V/Ü	4	56 h / 124 h
18.	Empf. Voraussetzungen	keine				
19.	Inhalte	Regenerative Elektrischeroduktion elektrischeroduktion elektrischer Echwerpunkt auf die Einen hohen Reifegraufweisen. Als Ergän Anforderungen an obtabilen Netzbetrieb Einführung in die ON Nutzung betrachtet Die Themen im Über	rische Energeienigen Tad besitzenzung soll die Technolonotwenden, erblick:	rgietechnik" ie eingesetzt Fechnologien en oder aber I das Thema I blogien geht, lig sind. Abs g am Beispie	mit den werden gelegt ein hohe Netzinte die für chließer I einer o	werden, die entweder es Wachstumspotenzial gration, bei dem es um einen sicheren und nd erfolgt die

	Wasserkraft				
	 Biomassenutzung 				
	 Grundlagen der Nutzung von solarer Strahlungsenergie 				
	 Konzentrierende Solarthermie 				
	 Photovoltaik 				
	– Windenergienutzung				
	 Dimensionierung von Anlagen mit Hilfe von 				
	Optimierungsalgorithmen				
	 Netzintegration 				
20. Medienformen	Präsentation, Übungen, Video, Internet				
	Quaschning, V.: "Regenerative Energiesysteme"; Technologie –				
	Berechnung – Simulation; 7. Auflage; Carl Hanser Verlag, München, 2011				
	Wesselak, V., Schabbach, Th.: "Regenerative Energietechnik", Springer				
	Verlag, 2009				
	Mertens, K.:"Photovoltaik, Lehrbuch zu Grundlagen, Technologie und Praxis", 2. Auflage, Hanser Verlag, 2013				
	Gasch R., Twele, J.: "Windkraftanlagen, Grundlagen, Entwurf, Planung und Betrieb", Springer & Vieweg, 8. Auflage, 2013				
	Heier, S.: "Windkraftanlagen, Systemauslegung, Netzintegration und Regelung", Vieweg & Teubner Verlag, 5. Auflage, 2009				
21. Literatur	Hau, E.: "Windkraftanlagen – Grundlagen, Technik, Einsatz,				
	Wirtschaftlichkeit", Springer Vieweg-Verlag, 5. Auflage 2014				
	Molly, JP., "Windenergie, Theorie, Anwendung, Messung", Verlag C. F. Müller Karlsruhe, 2. Auflage 1990				
	Reich, G., Peppcih, M.: "Regenerative Energietechnik – Überblick über ausgewählte Technologien zur nachhaltigen Energieversorgung", Springer Vieweg-Verlag, 2013				
	Stober, I., Bucher, K.: "Geothermie", Springer Spektrum-Verlag, 2. Auflage 2014				
	Giesecke, J., Heimerl, St.: "Wasserkraftanlagen – Planung, Bau, Betrieb", Springer Vieweg-Verlag, 6. Auflage 2014				
22. Sonstiges					

Studien	Studien-/Prüfungsleistung					
		25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveranstaltung	Тур	LP	Benotung	Modulnote	

1	Regenerative Energietechnik		MP	6	benotet	100 %	
29. Prüfungsform / Voraussetzung für die Vergabe von LP		Mündliche Pr	üfung				
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. Ines Hauer					
31. Verbindliche keine			keine				
Prüfungs	vorleistungen						

Studienrichtung Thermisches Energiesystem

1a. Modultitel (englisch)	1b. Modultitel (deutsch)
Computational Thermodynamics	Computergestützte
for Materials and Process Design	Thermodynamik für die Material-
	und Prozessentwicklung

2. Verwendbark	2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Umweltverfahrenstechnik und Recycling, M.Sc.					
Materialwissensc	haft und Werkstoffte	echnik, M.Sc Wirtschaftsingenieurwe	sen, M.Sc. Energiesystemtechnik			
3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer			
Prof. Dr. M. Fisch	lschweiger	Fakultät für Energie- und				
		Wirtschaftswissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch/	6	[X] 1 Semester	[] jedes Semester			
Englisch		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

- Studierende können selbständig Phasendiagramme mit thermodynamischen Modellen und numerischer Software berechnen.
- Studierende k\u00f6nnen thermodynamische Eigenschaften von komplexen Vielstoffsystemen mit numerischer Software berechnen und die Ergebnisse selbstst\u00e4ndig interpretieren.
- Studierende können diffusionskontrollierte Prozesse mit numerischer Software berechnen.
- Studierende sind in der Lage, die für die Berechnung erforderlichen Daten zu interpretieren und diese für die numerischen Berechnungen entsprechend aufzubereiten.
- Studierende sind in der Lage, im Rahmen der Übung, die computergestützte Thermodynamik zur Entwicklung von neuen Materialien und Prozessen einzusetzen.

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (englisch/deutsch)	13. Dozent(in)	14. LV- Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Computational Thermodynamics for Materials and Process Design	Prof. Dr. M. Fischlschweiger	W 8510	2V/2Ü	4	56 h / 124 h

	(Computergestützte Thermodynamik für die Material- und Prozessentwicklung)						
18.	Empf. Voraussetzungen	Thermodynamik I	•				
19.	nhalte	Einführung in die Computergestützte Thermodynamik, Modellierungsstrategien der temperatur- und zusammensetzungsabhängigen Gibbs-Energien, Modellierungsstrategien der temperatur- und zusammensetzungsabhängigen Mobilitäten, Nichtgleichgewichtsthermodynamik und Onsager Relationen, Erstellung von Simulationsmodellen und deren numerische Implementierung, Erstellung thermodynamischer Datenbanken, Fallstudien des Einsatzes der computergestützten Thermodynamik in der Material- und Prozessentwicklung					
20.	Medienformen	Folien/PowerPoint, Python	Beispielpr	ogramme in	der Prog	grammiersprache	
21.	Literatur	H.L. Lukas, S.G. Fries, B. Sundman: Computational Thermodynamics – The Calphad Method, Cambridge University Press, 1. Aufl. 2007 Z.K. Liu, Y. Wang: Computational Thermodynamics of Materials, Cambridge University Press, First Ed. 2016 T. Matsushita, K. Mukai: Chemical Thermodynamics in Materials Science – From Basics to Practical Applications, Springer Verlag, 2018					
22.	Sonstiges						

Studien	Studien-/Prüfungsleistung							
			25. P	26.	27.	28. Anteil an der		
23. Nr.	3. Nr. 24. Zugeordnete Lehrveranstaltung		Тур	LP	Benotung	Modulnote		
1	Computergestützte Thermodynamik i Material- und Prozessentwicklung		MP	6	benotet	100 %		
	ngsform / Voraussetzung für abe von LP	Klausur (120 Min.) (bei weniger als 5 Teilnehmern mündlich)						
30. Verar	ntwortliche(r) Prüfer(in)	Prof. Dr. M. Fischlschweiger						
31. Verbi	ndliche	Keine						
Prüfungs	vorleistungen							

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Thermische Prozesse in	Thermal Processes in Power Plants
Kraftwerken (+)	(+)

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Energiesystemtechnik						
3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Mancini, M.		Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	6	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Studierende können:

- 1. die mathematischen und physikalischen Grundlagen der Gasdynamik wiedergeben, erläutern und auf die einfachen Problemstellungen im Bereich der Kraftwerktechnik anwenden.
- 2. die eigenständige Berechnung thermischer Strömungsmaschinen sowohl mit idealen als auch realen Gasen durchführen.
- 3. die thermische Strömungsmaschine im energetischen Sinne bewerten und die Ergebnisse auch konkret beurteilen sowie verifizieren.
- 4. den Stand der Technik bei thermischen Kraftwerksprozessen beschreiben und die Anwendung verschiedener Technologien begründen.
- 5. erlerntes Wissen eigenständig vertiefen und ergänzen.
- 6. in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen.
- 7. eigenständig ihr Verständnis komplexer Konzepte überprüfen.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	SWS	Präsenz-/Eigenstudium		
	Thermische Prozesse in		W					
1	Kraftwerken (+)	Manaini M		V/Ü	4	56 h / 124 h		
1	(Thermal Processes in Power	Mancini, M.	85XX	V/U	4	3611/12411		
	Plants (+))							

18. Empf. Voraussetzungen	Technische Thermodynamik I				
	1. Einleitung				
	2. Einführung in die Gasdynamik				
	3. Thermische Maschinen				
19. Inhalte	4. Kreisläufe mit idealem Gas				
	5. Kreisläufe mit realem Gas (Dampf)				
	6. Kessel und Kondensatoren				
	7. Kombinierte Gas-, Dampfturbinenkraftwerke				
20. Medienformen	-				
	Skript				
	Käppeli, Ernst: Hydrostatik, Hydrodynamik, Gasdynamik,				
	Strömungsmaschinen; 1. Auflage, Deutsch Verlag, 1996				
	Strauß, Karl: Kraftwerkstechnik: zur Nutzung fossiler, regenerativer und				
21. Literatur	nuklearer Energiequellen; 3. Auflage, Springer Verlag, 1997				
	Dolezal, Richard: Kombinierte Gas- und Dampfkraftwerke; Springer				
	Verlag, 2001				
	Kehlhofer, Rolf: Gasturbinenkraftwerke, Kombikraftwerke, Heizkraftwerke				
	und Industriekraftwerke; Hrsg.: T. Bohn, Technischer Verlag Resch /				
	Verlag TÜV Rheinland, 1984				
22. Sonstiges					

Studien-/Prüfungsleistung							
			25. P	26.	27.	28. Anteil an der	
23. Nr.	23. Nr. 24. Zugeordnete Lehrveranstaltung		Тур	LP	Benotung	Modulnote	
1	1 Thermische Prozesse in Kraftwerk		MP	6	benotet	25%	
	ngsform / Voraussetzung für	mündliche. Prüfung (Dauer max. 60 min)					
die Verga	abe von LP						
30. Verar	ntwortliche(r) Prüfer(in)	Mancini, M.					
31. Verbi	ndliche	Keine					
Prüfungs	vorleistungen						

1a. Modultitel (englisch)	1b. Modultitel (deutsch)
Reactive Flows in High	Reaktive Strömungen in
Temperature Processes	Hochtemperaturprozessen

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Energiesystemtechnik						
3. Modulveranty	vortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
DrIng. M. Mano	ini	Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Englisch	6	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

The Student:

- knows and understands the methods of modelling for reactive and continuum mechanical systems
- knows the issues of the interaction between turbulence and chemical reactions (micro and macro mixing) and knows the various methods used in its resolution
- can analyse unknown problems and apply the presented simulation methods to them
- can work on a problem together in a team and independently within a limited time
- can use several software for the simulation of chemical reacting flows
- can visualize, present and critically question the results obtained from numerical

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand		
Nr.	(englisch/deutsch)	13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium		
1	Reactive Flows in High Temperature Processes (Reaktive Strömungen in Hochtemperaturprozessen)	DrIng. M. Mancini	S 8507	2V/2Ü	4	56 h / 124 h		
18. Empf. Voraussetzungen		Basic knowledge from a bachelor's degree in engineering (fluid mechanics, thermodynamics, heat transfer)						
19. Inhalte		 Mathematics of transport equation a. Numerical solution of advection-diffusionreaction equations Equations of reactive computational fluid dynamics 						

	b. Mass and momentum conservation
	c. Energy and enthalpy conservation
	d. Entropy conservation
	3. Turbulence and its effects
	4. Reduction of complex mechanisms
	5. Interaction of chemistry and turbulence
	a. EBU and EDC models
	b. Flamelet and further probabilistic models
	6. Solution of the radiative heat transfer equation
	7. Conversion of solid fuels
	a. DPM models
	b. Heterogeneous reactions
	8. Applications to industrial processes
20. Medienformen	Lecture notes, Powerpoint, Board, Exercises with PC
	Own lecture notes
21. Literatur	Computational methods for turbulence reactive flows, R. Fox, 1995
	Turbulent Combustion, N. Peters, 2000
22. Sonstiges	

Studien	Studien-/Prüfungsleistung							
			25. P	26.	27.	28. Anteil an der		
23. Nr.	24. Zugeordnete Lehrveransta	ltung	Тур	LP	Benotung	Modulnote		
1	Reactive Flows in High Temperat	ture Processes	MP	4	benotet	80 %		
2	Reactive Flows in High Temperat	ture Processes	MP	2	benotet	20 %		
Zu Nr. 1								
29a. Prüf	ungsform / Voraussetzung für	other practica	al / theore	tical wo	rk according to	APO §14, 1d		
die Verga	be von LP	(paragraph 6) including presentation and discussion						
30a. Vera	ntwortliche(r) Prüfer(in)	DrIng. habil	DrIng. habil. M. Mancini					
31a. Verl	oindliche	None						
Prüfungs	vorleistungen							
Zu Nr. 2								
29b. Prüf	ungsform / Voraussetzung für	other practical / theoretical work according to APO §14, 1d						
die Verga	be von LP	(paragraph 6) including presentation and discussion						
30b. Vera	antwortliche(r) Prüfer(in)	Drlng. habil. M. Mancini						
31b. Verl	oindliche	None						
Prüfungs	vorleistungen							

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Hochtemperaturtechnik zur	High Temperature Technology (+)
Stoffbehandlung (+)	

2. Verwendbarkeit des Moduls in Studiengängen

M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Umweltverfahrenstechnik und Recycling, M.Sc. Energiesystemtechnik

3. Modulverantwortliche(r) Prof. Drlng. R. Weber		4. Zuständige Fakultät	5. Modulnummer			
		Fakultät 2				
6. Sprache 7. LP		8. Dauer	9. Angebot			
englisch	6	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

After passing the exam, the students can independently apply the content discussed in the lecture to technical issues in thermal process technology for material treatment. For this purpose, the thermodynamic and mathematical basics of the technical design of industrial furnaces and burners are conveyed, taking environmental aspects into account. Building on this, options for avoiding pollutants and recovering energy are presented. Students know the thermodynamic and chemical basics of combustion processes and can carry out energy and mass balances calculations. Based on knowledge of the properties of different fuels and fluid mechanics, they can derive characteristics of the flames' behavior from describing the fundamentals of the combustion chamber design of the furnaces for gaseous, liquid, and solid fuels. They master the basics of pollutant formation, and they know how primary measures can safely discharge exhaust gases to evaluate the legal regulations and limit values. With the completion of this module, together with previous knowledge of thermodynamics, heat transfer, fluid mechanics, and reaction kinetics, students can apply the theoretical learned concepts. They can professionally assess the interrelationships in the design of the systems. You can discuss the given tasks in small groups and work out a common solution.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel	13. 14. L Dozent(in) Nr.	14. LV-	15. LV-	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
Nr.	(deutsch/englisch)		Nr.	Art			
1	Hochtemperaturtechnik zur Stoffbehandlung (+) (High Temperature Technology (+))	Prof. DrIng. R. Weber	S 85XX	V/Ü	4	56 h / 124 h	
18.	Empf. Voraussetzungen	ombustion Techno	ology, Hea	at transfer I, F	luid dyr	namics I	

	Basics of Furnace Design and Operation			
	2. Principles of Heat Exchanger Design			
19. Inhalte	3. Industrial Burners			
19. Innaite	4. Swirling Flows and Flames			
	5. Combustion Generated Air Pollutants			
	6. NOx Formation and Destruction Mechanism			
20. Medienformen	Skript, PowerPoint, Exercises			
	Weber: High Temperature Processes. Furnaces in Steel, Glass and Cement			
21. Literatur	Making Industries (Skript und Folien zur Vorlesung)			
Z1. Litti utui	Brauer: Handbuch des Umweltschutzes und der Umweltschutztechnik.			
	Band 2: Produktions- und produktintegrierter Umweltschutz			
22. Sonstiges				

Studie	Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an	
23. Nr. 24. Zugeordnete Lehrverans		staltung	Тур	LP	Benotung	der Modulnote	
1	1 High Temperature Technology (+)		MP	6	benotet	100 %	
	ungsform / Voraussetzung /ergabe von LP	Oral examination (30 min)					
30. Vera	ntwortliche(r) Prüfer(in)	Prof. DrIng. R. Weber					
31. Verb	indliche	None					
Prüfung	svorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Thermodynamik III	Thermodynamics III

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Energiesystemtechnik						
4. Zuständige Fakultät	5. Modulnummer					
Fakultät für Energie- und						
Wirtschaftswissenschaften						
8. Dauer	9. Angebot					
[X] 1 Semester	[] jedes Semester					
[] 2 Semester	[X] jedes Studienjahr					
	[] unregelmäßig					
	4. Zuständige Fakultät Fakultät für Energie- und Wirtschaftswissenschaften 8. Dauer [X] 1 Semester					

- Studierende sind vertraut mit den grundlegenden Prinzipien zur Beschreibung von komplexen
 Mischphasen und von Gleichgewichten mit chemischen Reaktionen.
- Studierende sind in der Lage, geeignete Stoffmodelle auszuwählen und die Zustandsgrößen realer
 Mehrstoffsysteme zu berechnen.
- Studierende sind in der Lage, Modellierungen von Phasengleichgewichten auf Basis der Zustandsgleichungen der molekularen Thermodynamik durchzuführen.
- Studierende sind vertraut mit Grenzflächengleichgewichten und mit der thermodynamischen
 Beschreibung von Transportprozessen.
- Studierende beherrschen im Rahmen der Übungen, die Anwendung der Modellierung von Phasengleichgewichten zur Analyse und Bewertung von technischen Prozessen.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium	
1	Thermodynamik III	Prof. Dr. M.	W 8511	2V/2Ü	4	56 h / 124 h	
•	(Thermodynamics III)	Fischlschweiger	W 6311	20/20	4	3611/12411	
18.	Empf. Voraussetzungen	Thermodynamik I/II					
		Thermodynamische Modellierung und Berechnung von					
		Phasengleichgewichten von komplexen Mischungen, binäre und tern					
19	Inhalte	Flüssig-Flüssig-Gleichgewichte, binäre und ternäre Dampf-Flüssig-					
' ' '		Gleichgewichte, binäre und ternäre Dampf-Flüssig-Flüssig-					
		Gleichgewichte, Extraktion, Gaslöslichkeit, Grenzflächengleichge					
		Thermodynamische Diffusionsmodelle, Modellierung					

	thermophysikalischer Eigenschaften von Arbeitsfluiden mit Anwendungsbeispielen aus der Thermischen Energiesystemtechnik
20. Medienformen	Folien/Powerpoint, Tafel, Übungsaufgaben
	S.I. Sandler: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, Fifth Ed. 2016
	J. Gmehling, B. Kolbe, M. Kleiber, J. Rarey: Chemical Thermodynamics for Process Simulations, Wiley-VCG-Verlag, 2012
21. Literatur	J.M. Prausnitz, R.N. Lichtenthaler, E.G. Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice Hall PTR, Third Ed. 1999
	P. Stephan, K. Schaber, K. Stephan und F. Mayinger: Thermodynamik, Grundlagen und technische Anwendungen Band 2 Mehrstoffsysteme und chemische Reaktionen, Springer Verlag, 15. Aufl. 2010
22. Sonstiges	

Studien-/Prüfungsleistung							
			25. P	26.	27.	28. Anteil an der	
23. Nr.	23. Nr. 24. Zugeordnete Lehrveranstaltung		Тур	LP	Benotung	Modulnote	
1	Thermodynamik III/Thermodynamics III		MT	6	benotet	100 %	
29. Prüfu	ngsform / Voraussetzung für	Klausur (120 Minuten) (bei weniger als 5 Teilnehmern mündlich)					
die Verga	abe von LP						
30. Verar	ntwortliche(r) Prüfer(in)	Prof. Dr. M. Fischlschweiger					
31. Verbi	ndliche	Keine					
Prüfungs	vorleistungen						

Wahlpflichtfächer:

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Abgasreinigungstechnik in	Emission Control Technology in
Theorie und Praxis	Theory and Practice

2. Verwendbark	eit des Moduls in S	Studiengängen			
M.Sc. Umweltver	fahrenstechnik und	Recycling, M.Sc. Energiesystemtechi	nik, M.Sc.		
Wirtschaftsingen	ieurwesen, M.Sc. Ve	erfahrenstechnik/Chemieingenieurwe	esen, M.Sc. Materialwissenschaft und		
Werkstofftechnik					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
DrIng. Dr. rer. nat. Sven Meyer		Fakultät für Energie- und			
		Wirtschaftswissenschaften			
6. Sprache 7. LP		8. Dauer	9. Angebot		
Deutsch 4		[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

- Studierende erhalten einen Überblick über die Schadstoffpotenziale in der Abluft aus industriellen Produktionsprozessen
- Studierende kennen die Schadstoffentstehungsprozesse und können diese beurteilen
- Studierende sind in der Lage, die Notwendigkeit für Abgasreinigungsmaßnahmen abzuschätzen und zu beurteilen
- Studierende sind mit den verschiedenen Verfahren zur Reduzierung von Emissionen (Verfahren der Wiedergewinnung und Verfahren der Entsorgung) vertraut und können diese in ihren Anwendungsbereichen in der industriellen Praxis einschätzen
- Studierende k\u00f6nnen f\u00fcr eine Problemstellung eine grundlegende Verfahrensauswahl f\u00fcr Prozesse der industriellen Praxis treffen und begr\u00fcnden sowie zugeh\u00f6rige Verfahrensschemata entwickeln
- Studierende sind mit den immissionsschutzrechtlichen Bestimmungen vertraut

Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	SWS	Präsenz-/Eigenstudium

1	Abgasreinigungstechnik in Theorie und Praxis (Emission Control Technology in Theory and Practice)	DrIng. Dr. rer. nat. S. Meyer	S 8561	V/Ü	3	35 h/ 85 h
18.	Empf. Voraussetzungen	Grundkenntnisse de	er Verfahre	enstechnik / T	Thermod	dynamik
19. Inhalte		 Gesetzliche G industriellen F Schadstoffpot Produktionspi Primär- und S Senkung des S Vermeidungss Ausgewählte Emissionen au Apparate- und 	Produktior enziale ar rozesse ekundärm Schadstoff strategien Sekundäri us industri	nsprozessen n Beispiel un naßnahmen s fausstoßes ei maßnahmen ellen Produk	terschied owie Eir nschließ zur Red tionspro	dlicher nrichtungen zur dlich uzierung von ozessen
20.	Medienformen	Tafelanschrieb, Folien, Übungsblätter und Lösungen				
21.	Literatur	Gesetze, Verordnung, VDI-Richtlinien				
22.	Sonstiges	Blockveranstaltung (1 Woche)				

Studien	Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der	
23. Nr.	23. Nr. 24. Zugeordnete Lehrveranstalt		Тур	LP	Benotung	Modulnote	
1	1 Abgasreinigungstechnik in Theor		MP	4	benotet	100 %	
29. Prüfu	ıngsform / Voraussetzung für	Mündl. Prüfung					
die Verga	abe von LP						
30. Verantwortliche(r) Prüfer(in)		DrIng. Dr. rer. nat. S. Meyer					
31. Verbi	indliche						
Prüfungs	vorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Brennstofftechnik I	Fuel Technology I

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrenstechnik/Che	emieingenieurwesen (SR Energie), M.S	Sc. Energiesystemtechnik			
3. Modulverantwortliche(r	4. Zuständige Fakultät	5. Modulnummer			
Prof. DrIng. R. Weber	Fakultät für Energie- und				
	Wirtschaftswissenschaften				
6. Sprache 7. LP	8. Dauer	9. Angebot			
Deutsch 4	[X] 1 Semester	[] jedes Semester			
	[] 2 Semester	[X] jedes Studienjahr			
		[] unregelmäßig			

Fossile Brennstoffe werden auch in Zukunft eine tragende Rolle im Bereich der elektrischen Energieerzeugung und Stoffbehandlung einnehmen. Daher sollen die Studierenden in dieser Vorlesung lernen, wie die Eigenschaften und das Brennverhalten von fossilen und Sekundärbrennstoffen charakterisiert werden und sich im alltäglichen Einsatz in der Technik auswirken. In den Übungen werden einfache Problemstellungen gemeinsam gelöst. Dabei haben die Studierenden eine Möglichkeit sich mit dem Betreuer und mit anderen Studenten über die Ideen, Probleme und Lösungen auszutauschen.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium
1	Brennstofftechnik I	Prof. DrIng. R.	S 8522	V/Ü	3	42 h / 78 h
'	(Fuel Technology I)	Weber	3 6322	V/U	3	42 11 / 76 11
18.	Empf. Voraussetzungen	keine				
18. Empf. Voraussetzungen 19. Inhalte		 Grundlage Die Verbrei Die Verbrei 	e: Entstehun der Bren nnung fest nnung flüs nnung gas rennstoffe aus Brenr	nstofftechnik ter Brennstof ssiger Brenns förmiger Bre	fe toffe	Klassifizierung

	10. Übungen
20. Medienformen	Skript, PowerPoint
21. Literatur	J. Zelkowski, Kohlecharakterisierung und Kohleverbrennung: Kohle als Brennstoff, Physik und Theorie der Kohleverbrennung, Technik, 2. Ausg. Essen: VGB PowerTech, 2004. J. Zelkowski, Kohleverbrennung: Brennstoff, Physik und Theorie, Technik, 1. Aufl Essen: VGB-Kraftwerkstechnik GmbH, 1986. J. G. Singer, Combustion Fossil Power Systems, A Reference Book on Fuel Burning and Steam Generation, Combustion Engineering, INC, 1981.
22. Sonstiges	Blockveranstaltung

Studien	Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveranstal	ltung	Тур	LP	Benotung	Modulnote	
1	Brennstofftechnik I		MP	4	benotet	100 %	
29. Prüfu	ngsform / Voraussetzung für	Mündliche Prüfung (max. 60 Minuten bei gleichzeitig zwei					
die Verga	abe von LP	Studierenden)					
30. Verar	ntwortliche(r) Prüfer(in)	Prof. DrIng. R. Weber					
31. Verbi	ndliche	Keine					
Prüfungs	vorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Chemische Energiesysteme	Chemical Power Systems

2. Verwendbark	2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Energiesys	M.Sc. Energiesystemtechnik						
3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Dr. Andreas Lind	ermeir	Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch	8	[] 1 Semester	[] jedes Semester				
		[x] 2 Semester	[x] jedes Studienjahr				
			[] unregelmäßig				

Chemische Energiespeicher und -systeme:

Die Studierenden

- können den (zukünftigen) Bedarf für chemische Energiespeicherverfahren nennen und sachlich begründen
- können die möglichen Prozesse zur chemischen Energiespeicherung benennen, deren Funktion erklären und die Anforderungen begründen
- beherrschen sicher die grundlegenden Gleichungen zur verfahrenstechnischen und reaktionstechnischen Beschreibung von Syntheseverfahren und können diese plausibel auf reale Anwendungsfälle übertragen
- können Modellannahmen kritisch hinterfragen, reale Abweichungen implementieren und angepasste Modellvorstellungen ableiten
- kennen unterschiedliche Verfahren zur Synthesegas- und Wasserstofferzeugung und -aufbereitung und können diese anhand ihrer spezifischen Vor- und Nachteile systematisch vergleichen
- können mögliche Einsatzgebiete von chemischen Energiespeichersystemen analysieren und bewerten
- sind in der Lage, den Systemnutzen von chemischen Energiespeichern kritisch zu bewerten und anhand von Praxisbeispielen zu einzuschätzen

Brennstoffzellen und elektrochemische Energiewandler:

Die Studierenden

- können den Aufbau von Brennstoffzellen selbstständig skizzieren
- können die wesentlichen Bauteile benennen, deren Funktion erklären und die Anforderungen hinsichtlich der Materialien begründen

- beherrschen sicher die grundlegenden Gleichungen zur thermodynamischen Beschreibung von
 Brennstoffzellen und können diese plausibel auf reale Anwendungsfälle übertragen
- können Modellannahmen kritisch hinterfragen, reale Abweichungen implementieren und angepasste
 Modellvorstellungen ableiten
- kennen unterschiedliche Verfahren zur Brenngaserzeugung und -aufbereitung und können diese anhand ihrer spezifischen Vor- und Nachteile systematisch vergleichen
- können mögliche Einsatzgebiete von Brennstoffzellen-Systemen analysieren und bewerten
- sind in der Lage, den Systemnutzen von Brennstoffzellen kritisch zu bewerten und anhand von
 Praxisbeispielen zu einzuschätzen

Leh	Lehrveranstaltungen						
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV- Nr.	15. LV- Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
1	Chemische Energiespeicher und -systeme (Chemical Energy Storage and -Systems)	Dr. Andreas Lindermeir	W 2318	2V/1Ü	3	42 h / 78 h	
Brennstoffzellen und elektrochemische Energiewandler (Fuel Cells and Electrochemical Energy Converters)		Dr. Andreas Lindermeir	S 2325	2V/1Ü	3	42 h / 78 h	
		•		Summe:	6	84 h / 156 h	
Zu	Nr. 1:						
18a	Empf. Voraussetzungen	Vorausgesetzt werden Grundkenntnisse der Physik, Chemie und Materialwissenschaft, wie sie beispielsweise im Bachelorstudiengang Energie und Materialphysik der TU Clausthal vermittelt werden.					
19a. Inhalte		Die Vorlesung vermittelt das Wissen über Bedarf, Konzepte, Entwicklungslinien und Probleme chemischer Energiespeichertechnologien. Dem Studierenden werden die verfahrenstechnischen Aspekte der Verfahren und die verschiedenen Umsetzungskonzepte erläutert. Dabei wird auf die Anforderungen und die Probleme derzeitiger Realisierungen aufmerksam gemacht. Über die Übung wird dieses Wissen vertieft, auf praktische Fragestellungen angewendet und die Studierenden zu einem selbstständigen Arbeiten in diesem Bereich ermuntert.					

	Die Vorlesungsinhalte reichen vom Status-Quo der heutigen Energieversorgung, über die mit der Energiewende verbundenen Änderungen und zukünftigen Entwicklungen zur Erzeugung erneuerbarer Energieträger bis hin zu den konkreten Power-to-X-Verfahren und - Prozessschritten.
20a. Medienformen	Folien, Tafel
21a. Literatur	Vorlesungs-Skriptum des Dozenten Sterner, M., Stadler, I.: "Energiespeicher – Bedarf, Technologien, Integration" Springer Vieweg Verlag, ISBN 978-3-662-48893-5 Huggins, R.: "Energy Storage", Springer Verlag, ISBN: 978-1-4419-1023-3 Schlögl (Ed.) • Chemical Energy Storage, De Gruyter, ISBN: 978-3-11-
	026632-0
22a. Sonstiges	
Zu Nr. 2:	
18a. Empf. Voraussetzungen	Vorausgesetzt werden Grundkenntnisse der Physik, Chemie und Materialwissenschaft, wie sie beispielsweise im Bachelorstudiengang Energie und Materialphysik der TU Clausthal vermittelt werden.
19a. Inhalte	Die Vorlesung eröffnet das Gebiet der heutigen Brennstoffzellenforschung mit den derzeitig sehr verschiedenen Realisierungsformen der Brennstoffzellen und ihren Vor- und Nachteilen. Die Vorlesungsinhalte orientieren sich an den aktuellen Publikationen zu diesem Arbeitsgebiet. Behandelt werden die wichtigsten unterschiedlichen Brennstoffzellentypen und ihre Funktionsweise, z.B. PEM, DMFC, SOFC, MCFC. Die behandelten Themen umfassen den grundsätzlichen Aufbau und die Funktionsweise von Brennstoffzellen, Thermodynamik elektrochemischer Energiewandler, Strom-Spannungs-Kennlinie und Verlustmechanismen, Brenngaserzeugung und -aufbereitung, Systemtechnik und Praxiserfahrungen.
20a. Medienformen	Folien, Tafel
21a. Literatur	Vorlesungs-Skriptum des Dozenten Heinzel, F. Mahlendorf, J. Roes: "Brennstoffzellen. Entwicklung, Technologie, Anwendung", C.F. Müller Verlag, Heidelberg, ISBN 3-7880-7741-7 H. Jungbluth: "Kraft-Wärme-Kopplung mit Brennstoffzellen in Wohngebäuden im zukünftigen Energiesystem", Download unter: http://juwel.fz- juelich.de:8080/dspace/bitstream/2128/2556/1/Energietechnik_59.pdf

	K. Kordesch, G. Simader: "Fuel Cells and their Applications", VCH Wiley Verlag, Weinheim
	W. Vielstich, A. Lamm, H. Gasteiger: "Handbook of Fuel Cells – Fundamentals, Technology, Applications", VCH-Verlag, Weinheim
	DoE: "Fuel Cell Handbook", Download unter: http://www.osti.gov/bridge/servlets/purl/769283/769283.pdf
22a. Sonstiges	

Studien	Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveranst	altungen	Тур	LP	Benotung	Modulnote	
	Chemische Energiespeicher un	d -systeme,					
1	Brennstoffzellen und elektroch	emische	MP	8	benotet	100 %	
	Energiewandler						
29. Prüfu	ingsform / Voraussetzung für	Mündl. Prüfung (Modul)					
die Verga	abe von LP						
30. Verai	ntwortliche(r) Prüfer(in)	Dr. Andreas Lindermeir					
31. Verb	indliche	Keine					
Prüfungs	vorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Elektronik I	Electronics I

2. Verwendbarkeit des Moduls in Studiengängen						
B.Sc. Informatik,	B.Sc. Informatik, B.Sc. Maschinenbau (SR Mechatronik)					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
apl. Prof. Dr. G. Kemnitz		Fakultät für Energie- und				
		Wirtschaftswissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch	6	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

Die Studierenden erwerben ein Grundverständnis, wie elektronische Schaltungen aus Widerständen, Kondensatoren und anderen Bauteilen analysiert, berechnet und entworfen werden. Sie besitzen einen auf den physikalischen und mathematischen Grundlagen basierenden Werkzeugkasten zur Analyse elektronischer Schaltungen. Sie kennen die Funktionsweise ausgewählter elektronischer Bauteile und die vereinfachten linearen Ersatzschaltungen für nichtlineare Bauteile.

Im begleitenden Praktikum Elektronik I wird das erlernte Wissen an Steckbrettern und mit echten Bauteilen ausprobiert und die Studenten sind nach Abschluss des Praktikums in der Lage, Beispielschaltungen selbstständig zu entwerfen und zu untersuchen.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	13. Dozent(in) Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium	
1	Elektronik I (Electronics I)	apl. Prof. Dr. C	. W 1115	V/Ü	4	56 h / 124 h	
18.	18. Empf. Voraussetzungen Grundlagenkenntnisse der Physik						
19.	Inhalte	 Physik: Energie, Potential, Spannung, Strom, Ohm'sches Gesetz, Leistung. Mathematik: Knoten- und Maschengleichungen, Lineare Zweipole, Nützliche Vereinfachungen, gesteuerte Quellen, Bauteile mit nichtlinearen Kennlinien. 					
		 Handwerkszeug: Widerstandsnetzwerke, Spannungsteiler, Stromteiler, Zerlegung in Überlagerungen, Zweipolvereinfachung. 					

	 Dioden: LED-Anzeige für Logikwerte, Gleichrichter, Diode als Spannungsquelle, Logikfunktionen.
	 Schaltungen mit Bipolar Transistoren: Spannungsverstärker, Differenzverstärker, Stromquellen, Transistorinverter, DT-Gatter, Spannungsstabilisierung.
	 MOS-Transistoren: Verstärker, Schaltbetrieb, CMOS-Gatter, Speicherzellen.
	 Operationsverstärker: Verstärker, Rechenelemente, Komparator, Analog-Digital-Wandler.
	 Kapazität, Induktivität, Gegeninduktivität, Dreckeffekte.
	 Zeitdiskretes Modell: Prinzip, Glättungskondensator, Schaltnetzteil, H-Brücke, CMOS-Inverter.
	 Geschaltete Systeme: Sprungantwort, Geschaltetes RC-Glied, Abbildung auf RC-Glieder, Geschaltetes RL-Glied, Abbildung auf RL-Glieder, RC-Oszillator.
	 Frequenzraum: Fourier Transformation, FFT/Matlab, komplexe U, I, R, Abbildung von Schaltungen auf Gleichungssysteme, Handwerkszeug, Transistorverstärker, Operationsverstärker.
	 Halbleiter: Bewegliche Elektronen, Leiter und Nichtleiter, Dotierte Halbleiter.
	 pn-Übergang: Spannungsfrei, Sperrbereich, Durchlassbereich.
	 Bipolar Transistor: Transistoreffekt, Übersteuerung.
	 MOS-Transistor: Feldeffekt, aktiver Bereich, Einschnürbereich.
	 Leitungen: Wellengleichung, Wellenwiderstand, Reflexion,
	Sprungantwort, Messen von Leitungsparametern.
20. Medienformen	Tafel, Beamer, Laborarbeitsplätze
21. Literatur	Günter Kemnitz: Technische Informatik 1: Elektronik. Springer, 2009
22. Sonstiges	

Studien	Studien-/Prüfungsleistung						
23. Nr.	24. Zugeordnete Lehrveransta	ltung	25. P Typ	26. LP	27. Benotung	28. Anteil an der Modulnote	
1	Elektronik I		MP	6	benotet	100 %	
	ingsform / Voraussetzung für abe von LP	Klausur					
30. Verantwortliche(r) Prüfer(in)		apl. Prof. Dr.	G. Kemni	tz			

31. Verbindliche	Hausübungen
Prüfungsvorleistungen	

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Elektronik II	Electronics II

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Maschinenbau (SR Mechatron	ik), M.Sc. Maschinenbau, M.Sc. Infor	matik			
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
apl. Prof. Dr. G. Kemnitz	Fakultät für Energie- und				
	Wirtschaftswissenschaften				
6. Sprache 7. LP	8. Dauer	9. Angebot			
Deutsch 4	[X] 1 Semester	[] jedes Semester			
	[] 2 Semester	[X] jedes Studienjahr			
		[] unregelmäßig			

- fortgeschrittenes Verständnis der physikalischen Funktionsweise von Halbleiterbauteilen und elektronischen Schaltungen
- Kenntnis, Untersuchung und Bewertung von in der Praxis gebräuchlichen Bauteilmodellen
- selbstständiger simulationsgestützter Schaltungsentwurf zur Lösung von Entwurfsaufgaben
- Analyse von Schaltungen

Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel			14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)		13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium
_	Elektronik II (Electronics II)		apl. Prof. Dr. G.	C 0720	v//ü		
•			Kemnitz S 8738	V/Ü	3	42 h / 78 h	
18. I	Empf. Voraussetzungen	Gr	undlagen der Elel	ktrotechni	k, Elektronik	I	
19.	nhalte	 Schaltungssimulation mit LT-Spice: Arbeitspunktanalyse, Kennlinienbestimmung, Transferfunktion, Simulation mit Bauteiltoleranzen, zeitdiskrete Simulation, Simulation im Frequenzbereich, Spektralanalyse, Rauschanalyse. Spice-Modelle für Dioden, Bipolartransistoren, FET, Thyristor Schaltungstechnik: Stromquellen, Verstärker, Oszillatoren 					
20. I	Medienformen	Tafel, Beamer, Laborarbeitsplätze					
21.	Literatur	Günter Kemnitz: Technische Informatik 1: Elektronik. Springer, 2009					

	Tietze, U.; Schenk, C.: Halbleiterschaltungstechnik, Springer-Verlag, 2002ISBN 3-540-42849-6.
	Reisch, M.: Elektronische Bauelemente – Funktion, Grundschaltungen, Modellierung mit SPICE, Springer-Verlag, 1997. ISBN 3-540-60991-1
22. Sonstiges	

Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der
23. Nr.	24. Zugeordnete Lehrveransta	ltung	Тур	LP	Benotung	Modulnote
1	Elektronik II	MP 4 benotet 100 %				100 %
29. Prüfu	ingsform / Voraussetzung für	schriftlich oder mündlich (Prüfungsart wird zu				
die Verga	abe von LP	Veranstaltungsbeginn bekannt gegeben und ist dem				
		Klausurenplan zu entnehmen)				
30. Verar	ntwortliche(r) Prüfer(in)	apl. Prof. Dr. G. Kemnitz				
31. Verbindliche		Hausübungen				
Prüfungs	vorleistungen					

1a. Modultitel (deutsch)1b. Modultitel (englisch)Elektrothermische ProzesstechnikElectrothermal ProcessTechnology

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Wirtschaftsingenieurwesen, M.Sc. Energiesystemtechnik, M.Sc. Energie und Materialphysik, M.Sc. Maschinenbau, M.Sc. Technische Betriebswirtschaftslehre, M.Sc. Verfahrenstechnik/Chemieingenieurwesen					
3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer		
DrIng. Stefan So	chubotz	Fakultät für Energie- und			
		Wirtschaftswissenschaften			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Deutsch	4	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[x] jedes Studienjahr		
			[] unregelmäßig		

- Studierende erhalten einen Überblick über die Verfahren zur Erwärmung von Materialien durch Elektrizität
- Studierende können die technische und wirtschaftliche Bedeutung, Vorteile, Eigenschaften und Einsatzbereiche elektrothermischer Prozesse beurteilen
- Studierende sind in der Lage, die Notwendigkeit industrieller Prozesswärmeverfahren zur Behandlung von Werkstoffen zu bewerten
- Studierende können elektrothermische Prozesse und Anlagen berechnen und auslegen
- Studierende sind in der Lage, die verschiedenen Verfahren (z. B. Widerstands- und Induktionserwärmung, Hochfrequenz-/ Mikrowellenerwärmung, Lichtbogen-, Laserstrahl-, Plasmastrahlerwärmung) zu verstehen und zu bewerten
- Studierende erzielen insbesondere über induktive Erwärmungsverfahren tiefergehende Kenntnisse

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel	13.	14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium
1	Elektrothermische Prozesstechnik (Electrothermal Process Technology)	DrIng. Stefan Schubotz	W 8533	V/Ü	3	35 h / 85 h
18.	18. Empf. Voraussetzungen Grundkenntnisse der Elektrotechnik					

19. Inhalte	 Technische und wirtschaftliche Bedeutung elektrothermischer Prozesse Vorteile, Eigenschaften und Anwendungen von Elektrowärmeverfahren an typischen Beispielen Grundlagen der Wärmeübertragung und der Elektrotechnik, die zum Verständnis elektrothermischer Prozesse erforderlich sind Induktionserwärmung (Schwerpunkt), konduktive sowie indirekte Widerstandserwärmung Spezielle Verfahren, wie z. B. Laseranwendungen 	
20. Medienformen	Tafelanschrieb, Folien, Übungsblätter und Lösungen	
21. Literatur	Bücher, Paper	
22. Sonstiges	Blockveranstaltung (2 Wochen)	

Studier	Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveranstal	ltung	Тур	LP	Benotung	Modulnote	
1	1 Elektrothermische Prozesstechnik		MP	4	benotet	100 %	
29. Prüfu	29. Prüfungsform / Voraussetzung für		Schriftliche Prüfung				
die Verg	abe von LP						
30. Vera	30. Verantwortliche(r) Prüfer(in)		DrIng. Stefan Schubotz				
31. Verbindliche							
Prüfungs	svorleistungen						

1a. Modultitel (deutsch)1b. Modultitel (englisch)Energieflüsse, Stoffkreisläufe und
Globale EntwicklungEnergy Flows, Material Cycles and
Global Development

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Maschinen	bau, M.Sc. Verfahre	nstechnik/Chemieingenieurwesen					
3. Modulverant	wortliche(r)	5. Modulnummer					
Prof. DrIng. Thomas Turek		Fakultät für Mathematik/Informatik					
		und Maschinenbau					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Englisch	3	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

10. Lern-/Qualifikationsziele des Moduls

The students learn how global energy flows and material cycles can be understood from an engineering perspective. The students

- understand how and to which extent natural global energy flows and material cycles are altered by anthropogenic activities,
- understand the concept of sustainability,
- analyze the stationary and transient behavior of different systems in nature and technology and are able to transfer the feedback concept to other situations,
- understand the energy balance of the earth and the fundamental importance of the greenhouse effect,
- become familiar with the relevance of selected global material cycles for the bio-geosphere and the resulting limitations for industrial energy and material flows,
- are able to deduce the necessary consequences for a future sustainable development of technology and society.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium
1	Energieflüsse, Stoffkreisläufe und globale Entwicklung (Energy Flows, Material Cycles and Global Development)	Prof. DrIng. Thomas Turek	S 8413	V	2	28 h / 62 h
18. 1	8. Empf. Voraussetzungen Keine					

	Introduction and fundamentals (balancing and behavior of systems, thermodynamics and the different forms of energy)					
	2. The bio-geosphere (historical development and present situation)					
19. Inhalte	3. The Energy balance of the earth (radiation, greenhouse effect, photosynthesis, climate models)					
	4. Global material cycles (e.g., carbon, oxygen, water, nitrogen)					
	5. Anthropogenic material and energy flows and their limits					
	6. Scenarios for the global development					
	Tafel					
20. Medienformen	Folien					
	Foliensammlung/Handout					
	Schaub, Georg/Turek, Thomas: Energy Flows, Material Cycles and Global					
21. Literatur	Development. A Process Engineering Approach to the Earth System,					
	Springer: Berlin u. a. (2. Auflage) 2016.					
22. Sonstiges						

Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der
23. Nr.	24. Zugeordnete Lehrveranst	altungen	Art	LP	Benotung	Modulnote
1	Energy Flows, Material Cycles and Global Development		MP	3	benotet	100 %
	ngsform / Voraussetzung für abe von LP					
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. Thomas Turek				
31. Prüfu	31. Prüfungsvorleistungen					

1a. Modultitel (deutsch)1b. Modultitel (englisch)EnergiewirtschaftsrechtEnergy Industry Law includingeinschließlichHydrogen IndustryWasserstoffwirtschaft

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Wirtschafts	ingenieurwesen (SR	Energie- und Rohstoffmanagement)				
3. Modulveranty	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Prof. Dr. jur. H. W	Veyer	Fakultät 2				
6. Sprache	7. LP	8. Dauer	9. Angebot			
deutsch	4	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden kennen die wichtigsten Rechtsquellen für die Strom-, Gas- und Wasserstoffversorgung. Sie können den Regelungsgehalt des Energiewirtschaftsgesetzes (EnWG) sowie der zugehörigen Rechtsverordnungen und regulierungsbehördlichen Entscheidungen einschließlich des komplexen Systems der Netzentgeltregulierung darstellen. Darüber hinaus sind sie in der Lage, die klimaschutzbezogenen Vorgaben für die Energiebereitstellung im Überblick zu beschreiben. Sie können die wesentlichen rechtlichen Instrumente definieren und die maßgeblichen Vorschriften benennen. Mit diesem Wissen sind die Studierenden in der Lage, einfache rechtliche Fragestellungen im Bereich des Energierechts zu lösen. Sie können die rechtlichen Anforderungen bei Tätigkeiten im Bereich der Strom-, Gas- und Wasserstoffversorgung einschätzen und erkennen das Zusammenspiel von Energieversorgungsunternehmen und Regulierungsbehörden. Die Studierenden verstehen darüber hinaus die den Regelungen zugrundeliegenden Interessenkonflikte und die in den Normen zum Ausdruck kommenden Wertungen des Gesetzgebers. Sie sind in der Lage, ihr Verständnis zu formulieren und im Austausch mit anderen zu vertreten und weiterzuentwickeln.

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV- Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Energiewirtschaftsrecht einschließlich Wasserstoffwirtschaft (Energy Industry Law including Hydrogen Industry)	Prof. Dr. jur. H. Weyer	S 6516	V/Ü	2	28 h / 62 h

	Summe:	2	28 h / 62 h				
18. Empf. Voraussetzungen	Einführung in das Recht I und II						
	Einführung in das Energiewirtschaftsrecht						
	Energieregulierung in den Bereichen	Strom	und Gas (Methan)				
	– Entflechtung						
	 Netzanschluss und Netzzu 	igang					
19. Inhalte	– Netzentgelte, Anreizreguli	erung					
	 Grund- und Ersatzversorg 	ung					
	 Energieregulierung im Bereich Wasse 	erstoff					
	– Klimaschutzbezogene Anforderunge	en an die	e Energiebereitstellung				
20. Medienformen	Folien, Skript						
	Zur Vorlesung mitzubringen ist ein Gesetz Textausgabe	estext. E	Empfohlen wird die				
	 Energierecht, dtv, neueste Auflage 						
	oder						
	elektronischer Zugriff: www.gesetze	-ım-ınte	rnet.de				
	Zur Vertiefung wird empfohlen						
21. Literatur	zum Energieregulierungsrecht:						
	Kühling/Rasbach/Busch, Energierech						
	Stuhlmacher/Stappert/Schoon/Janse2. Aufl. 2015	en, Grun	driss zum Energierecht,				
	sowie zum Klimaschutzrecht:						
	 Frenz, Grundzüge des Klimaschutzre 	echts, 2.	Auflage 2021				
	– Rodi, Handbuch Klimaschutzrecht, 2	022					
	Ekardt/Valentin, Das neue Energiere	cht, 201	5 (noch zum EEG 2014)				
22. Sonstiges							

Studien-/Prüfungsleistung					
23. Nr.	24. Zugeordnete Lehrveranstaltung	25. P Typ		27. Benotung	28. Anteil an der Modulnote
1	Energiewirtschaftsrecht einschließlich Wasserstoffwirtschaft	MP	4	Benotet	100 %

29. Prüfungsform / Voraussetzung für	Klausur (60 Minuten), wenn ≥ 5 Teilnehmer		
die Vergabe von LP	mündliche Prüfung (Dauer nach Prüfungsordnung), wenn < 5 Teilnehmer		
30. Verantwortliche(r) Prüfer(in)	Prof. Dr. jur. H. Weyer		
31. Verbindliche	keine		
Prüfungsvorleistungen			

1a. Modultitel (deutsch)1b. Modultitel (englisch)Grundlagen der Kälte- undFundamentals in RefrigerationWärmepumpentechnikand Heat Pump Technology

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Energiesystemtechnik						
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Fakultät für Energie- und						
Wirtschaftswissenschaften						
8. Dauer	9. Angebot					
[X] 1 Semester	[] jedes Semester					
[] 2 Semester	[X] jedes Studienjahr					
	[] unregelmäßig					
	4. Zuständige Fakultät Fakultät für Energie- und Wirtschaftswissenschaften 8. Dauer [X] 1 Semester					

10. Lern-/Qualifikationsziele des Moduls

Aufbauend auf dem bereits vorhandenen thermodynamischen Grundlagenwissen verfügen die Studierenden über die Kenntnisse der Prinzipien der Kälteerzeugung sowie des Heizens mit Umgebungswärme (Wärmepumpe). Die Studierenden sind in der Lage, die grundlegenden Modelle zur Auslegung kältetechnische Prozesse und Komponenten anzuwenden.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	SWS	Präsenz-/Eigenstudium
1	Grundlagen der Kälte- und Wärmepumpentechnik (Fundamentals in Refrigeration and Heat Pump Technology)	Drlng. M. Olbricht	\$ 8525	V/Ü	2	28 h / 52 h
18. Empf. Voraussetzungen		Technische Thermodynamik I, Technische Thermodynamik II, Wärmeübertragung I				
19. Inhalte		• • •	zesse (Kal htungen) msetzung en, Absorp	(Kompressio	ns-Kälte	npfprozess, maschinen und en und Wärmepumpen,

	 Maßnahmen zur Steigerung der Energieeffizienz kältetechnischer Anlagen und Prozesse zur Realisierung sehr tiefer Temperaturen Einführung in den Wärme- und Stofftransport mit Phasenwechsel (Verdampfung, Kondensation, Absorption)
20. Medienformen Vorlesungsskript, Übungsblock, Foliensatz	
21. Literatur	Cube, Steimle, Lotz, Kunis: Lehrbuch der Kältetechnik, C.F. Müller Verlag, 1997 Jungnickel, Agsten, Kraus: Grundlagen der Kältetechnik, Verlag Technik, 3. Auflage, Berlin, 1990 Stephan: Wärmeübergang beim Kondensieren und beim Sieden, Springer-Verlag Berlin Heidelberg, 1. Auflage, 1988
22. Sonstiges	

Studien	Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveranstal	ltung	Тур	LP	Benotung	Modulnote	
1	Grundlagen der Kälte- und Wärmepumpentechnik		MP	3	benotet	100 %	
29. Prüfungsform / Voraussetzung für die Vergabe von LP		Mündlich (30) Minuten)			
30. Verantwortliche(r) Prüfer(in)		Drlng. M. Olbricht					
	31. Verbindliche						
Prüfungs	vorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Grundlagen der Künstlichen	Introduction to Artificial
Intelligenz	Intelligence

2. Verwendbarkeit des Moduls in Studiengängen					
B.Sc. Digital Techno	logies, B.Sc. Inform	atik, M.Sc. Informatik/Wirtschaftsin	nformatik		
3. Modulverantwor	tliche(r)	4. Zuständige Fakultät	5. Modulnummer		
Prof. Dr. R. Ehlers		Fakultät für Mathematik/Informatik und Maschinenbau	Prof. Dr. R. Ehlers		
6. Sprache	7. LP	8. Dauer	9. Angebot		
Deutsch	6	[x] 1 Semester	[] jedes Semester		
		[] 2 Semester	[x] jedes Studienjahr		
			[] unregelmäßig		

- Die Studierenden kennen die grundlegenden Begriffe und Verfahren des maschinellen Lernens und können diese qualifiziert benutzen und beurteilen. Sie können komplexe Probleme in geeigneter Form formalisieren und passende Verfahren zur Lösung dieser Probleme einsetzen.
- Sie sind in der Lage, grundlegende Datenanalysen großer Datenmengen selbstständig mit Softwareunterstützung durchführen zu können.
- Sie k\u00f6nnen die G\u00fcte eines Datensatzes einsch\u00e4tzen und maschinelles Lernen zur Assoziationsanalyse,
 Clustering, Klassifikation, Regression und Zeitreihenanalyse anwenden.
- Sie können die Güte berechneter Modelle beurteilen.

Lehrve	Lehrveranstaltungen						
11.Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV- Nr.	15. LV- Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
1	Grundlagen der Künstlichen Intelligenz (Introduction to Artificial Intelligence)	Prof. Dr. S. Herbold	W 1608	V/Ü	4	56h / 94h	
Summe: 4 56h / 94h							
Zu Nr. 1:							
18a. Empf. Voraussetzungen keine							

	Behandelt werden u.a. folgende Themen:				
	– Grundbegriffe				
	 Ablauf von Data Science Projekten 				
	- Erkunden und kennelernen von Daten				
	 Assoziationsanalyse 				
	 Clusteralgorithmen (k-Means, EM, DBSCAN, Single Linkage) 				
19a. Inhalte	 Klassifikation (Nearest Neighbor, Entscheidungsbäume, Random 				
19a. innaite	Forest, Logistic Regressiong, Naive Bayes, SVM, (Tiefe) Neuronale				
	Netze)				
	– (Lineare) Regression				
	Zeitreihenanalyse mit ARIMA				
	 Evaluationsmethoden für gelernte Modelle 				
	 Nutzung der genannten Verfahren mit Bibliotheken für die 				
	Programmiersprache Python				
20a. Medienformen	Beamer-Präsentation, Beispiele an Tafel/Whiteboard, Übungen				
21a. Literatur	Wird zu Beginn der Veranstaltung bekannt gegeben.				
22. Sanatina	Das Modul ist inhaltlich identisch zu Grundlagen der Künstlichen				
22a. Sonstiges	Intelligenz an der TU Clausthal.				

Studien-/	Studien-/Prüfungsleistung					
23. Nr.	24. Zugeordnete Lehrveranst	altung	25. P Art	26. LP	27. Benotung	28. Anteil an der Modulnote
1	Grundlagen der Künstlichen Int	telligenz	MP	6	benotet	100 %
2	Hausübungen zu Grundlagen der Künstlichen Intelligenz		PV	0	unbenotet	0 %
Zu Nr. 1:	Zu Nr. 1:					
29a. Prüfungsform / Voraussetzung für die Vergabe von LP		K (120 Minuten) oder M (30 Minuten)				
30a. Verant	wortliche(r) Prüfer(in)	Prof. Dr. R. E	hlers			
31a. Verbin	dliche Prüfungsvorleistungen	Hausübungen zu Grundlagen der Künstlichen Intelligenz				
Zu Nr. 2:	Zu Nr. 2:					
29b. Prüfungsform / Voraussetzung für die Vergabe von LP		Projektarbeit				
30b. Verant	twortliche(r) Prüfer(in)	Prof. Dr. R. E	hlers			

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Grundstoffindustrie und	Primary Industry and Energy
Energiewende	Transition

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Energiesys	temtechnik					
3. Modulverantwortliche(r)		4. Zuständige Fakultät	5. Modulnummer			
Prof. DrIng. Ines Hauer		Fakultät für Energie- und				
		Wirtschaftswissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch	4	[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			

Den Studierenden sollen Herausforderungen und entsprechende Lösungsansätze vermittelt werden, die die Energiewende für den Bereich der industriellen Produktion mit sich bringt. Es wird dabei auf die energieintensive Grundstoffindustrie und hier insbesondere auf die Stahlindustrie eingegangen.

Lehrveranstaltungen							
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV- Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium	
1	Grundstoffindustrie und Energiewende (Primary Industry and Energy Transition)	DrIng. Stefan Mecke (Salzgitter AG)	S 8837	V/Ü	3	42 h / 78 h	
18. Empf. Voraussetzungen Grundlagen		Grundlagen der Ch	agen der Chemie und technischen Thermodynamik				
19. Inhalte		 Der globale "Treibhauseffekt" (als eine Motivation für die Energiewende) Naturwissenschaftliche Grundlagen Einige Kernaussagen IPCC-Berichte u.ä. Kritische Stimmen Abgeleitete politische Zielstellungen EU-Emissionshandel (ETS) als politisches "Werkzeug" um u.a. in der Industrie CO2 – als wichtigstes Treibhausgas (THG) – einzusparen Grundlagen des ETS 					

	 Wie beeinflussen CO2-Kosten die Wirtschaftlichkeit von Investitionen/Produktionsgütern?
	– "Carbon-Leakage"-Thematik
	– Energiewende
	– Ziele
	bisheriger Stand
	 Energieeffizienz als eine Säule der Energiewende
	 Energieeffizienz-Programme in der Grundstoffindustrie
	 Energieeffizienzmaßnahmen Querschnittstechnologien
	 Energiemanagement nach der Norm ISO 50001
	 Energieintensive Grundstoffindustrie
	 Einbindung in Wertschöpfungsketten
	 Energieintensive Branchen als Teilnehmer im ETS
	 Chemische Industrie
	– Raffinerien
	 Mineralverarbeitende Industrie
	 Eisen- und Stahlindustrie
	 Energieflüsse bei der Stahlerzeugung
	 Integriertes Hüttenwerk – Aufbau, Prozesse, Energieflüsse,
	 Elektrostahlwerk – Aufbau, Prozesse, Energieflüsse,
	 Mögliche Ansätze der Grundstoffindustrie zur Anpassung an die
	Erfordernisse der Energiewende
	 Exemplarische Vertiefung sogenannter "Breakthrough-
	Technologien" am Beispiel der Primärstahlerzeugung
	 Technische Beschreibung
	 Energetische und THG-seitige Betrachtung
	wirtschaftliche Konsequenzen
	 Einbindung industrieller Großverbraucher in mögliche "Stromnetze der Zukunft"
20. Medienformen	Folienpräsentation
21. Literatur	Wird ggf. im Rahmen der Vorlesung bekannt gegeben
22. Sonstiges	

Studien-/Prüfungsleistung

23. Nr.	24. Zugeordnete Lehrveransta	ltung	25. P Typ	26. LP	27. Benotung	28. Anteil an der Modulnote
1	Grundstoffindustrie und Energie	wende	MP	4	benotet	100 %
29. Prüfungsform / Voraussetzung für die Vergabe von LP		mündliche Pr	üfung			
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng.	Ines Haue	er		
31. Verbindliche Prüfungsvorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Leistungsmechatronische	Systems of Power Mechatronics
Systeme	

2. Verwendbarkeit des Moduls in Studiengängen								
M.Sc. Maschinen	M.Sc. Maschinenbau							
3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer					
Dr. D. Turschner		Fakultät für Energie- und						
		Wirtschaftswissenschaften						
6. Sprache	7. LP	8. Dauer	9. Angebot					
Deutsch	6	[X] 1 Semester	[] jedes Semester					
		[] 2 Semester	[X] jedes Studienjahr					
			[] unregelmäßig					

Leistungsmechatronische Systeme:

Die Studenten erwerben Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen, sowie spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen. Ihr Wissen und Verstehen bildet die Grundlage für die Entwicklung eigenständiger Ideen.

Projekt: Simulation eines mechatronischen Systems:

Absolventen erhalten die Kompetenz, ihre Fähigkeiten zur Problemlösung neuer Situationen anzuwenden, die in einem multidisziplinären Zusammenhang mit ihrem Studienfach stehen. Sie können weitgehend autonom eigenständige Forschungsprojekte durchführen.

Leh	Lehrveranstaltungen							
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand		
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	SWS	Präsenz-/Eigenstudium		
	Leistungsmechatronische							
1	Systeme	Dr. D.	D. S 8826		2	42 h / 70 h		
'	(Systems of Power	Turschner	3 0020	V/Ü	3	42 h / 78 h		
	Mechatronics)							
	Projekt: Simulation eines							
2	mechatronischen Systems	Dr. D.	C 9970	8879 S	1	14 h / 46h		
	(Project: Simulation of a	Turschner	3 00/9					
	Mechatronic System)							

		Summe	4		56 h / 124 h		
Zu Nr. 1:							
18a. Empf. Voraussetzungen	Regelungstechnik I						
19a. Inhalte	 Fremderregt Gleichstrom Ankerstrom Ankerzeitkor Spannung, of Feldschwäch Drehstroma Beschreibung feldorientier Asynchronm Blockschalte strömen, Streichte Entkopplung der permand der permand Regelung der Steuerverfah Berechnung Modellierung Regelkreisen 	e Grundlagen: Impuls te Gleichstrommaschir maschine, Regelung in regelkreis, Reglereinste nstanten, zusätzliche A der Drehzahlregelkreis nbereich, ntriebe: Prinzip der Fe g der Asynchronmaschine mit eingepräg sild der Asynchronmas ruktur der Regelung de g der Stromregelkreise enterregten Vollpolsyn er Synchronmaschine nren für Frequenzumri der Schaltzeiten g zeitdiskreter System a, Algorithmen für digi ion, diskrete lineare Fi	dorient chine, D kschaltl gten Stä chine n er Asyne , Mathe achronr chter: R e: Arbe	ddre ür gi Itunç itieru arste oild c inde chro emat masc masc	ehzahlbereich, der roße g der induzierten egelung im ang, mathematische ellung in der erspannungen, ingeprägten Ständerenmaschine, tische Beschreibung chine, Blockschaltbild chine, Struktur der enzeigermodulation, eise von digitalen		
20a. Medienformen	Skript in Papierfor MATLAB/Simulink	m, Rechnerpräsentatio	n, Übu	ngei	n mit		
21a. Literatur	Quang, N.; Dittrici Drehstromantrieb: Schröder, D.: Elekt Springer Vieweg 2 Wüest, D.; Jenni, F	telung elektrischer Ant h, J.: Praxis der feldorie sregelungen; Expert-V trische Antriebe - Rege 2015 .: Steuerverfahren für TH Zürich 1995 (Stan	entierte erlag 19 lung vo selbstg	n 999 on Ai efüh	(Standardwerk) ntriebssystemen;		
22a. Sonstiges	Zur Vorlesung wir	d ein umfangreiches S	kript ar	ngeb	ooten		
Zu Nr. 2:			•				

18b. Empf. Voraussetzungen	Regelungstechnik I
19b. Inhalte	Es ist eine komplexe Aufgabe in der Simulation aus dem Bereich der mechatronischen Systeme im Team oder einzeln zu lösen. Ausgehend von den Differentialgleichungen eines dynamischen Systems oder den Algorithmen einer komplexen Steuerung wird zunächst ein regelungstechnisches Blockschaltbild erstellt. Anschließend erfolgt die Implementierung in dem Software-Paket MARLAB/Simulink. Es werden Fragen zur Stabilität und Dynamik diskutiert. In einem schriftlichen Bericht werden die Ergebnisse dokumentiert.
20b. Medienformen	Schriftlicher Bericht, Simulationen mit MATLAB/Simulink
21b. Literatur	Bosl, A.: Einführung in MATLAB/Simulink: Berechnung, Programmierung, Simulation; Hanser 2017 Angermann, A.: MATLAB - Simulink - Stateflow: Grundlagen, Toolboxen, Beispiele; De Gruyter Studium 2020 Glöckler, M.: Simulation mechatronischer Systeme: Grundlagen und Beispiele für MATLAB und Simulink, Springer Vieweg 2018
22b. Sonstiges	

Studien	Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveranst	altungen	Art	LP	Benotung	Modulnote	
1	Leistungsmechatronische Syste	me	MP	4	benotet	100 %	
2	Projekt: Simulation eines mechatronischen Systems			2	unbenotet	0 %	
Zu Nr. 1	Zu Nr. 1:						
29. Prüfu	ngsform / Voraussetzung für	Klausur oder m	ündliche	Prüfung	(20 bis 30 Minu	uten)	
die Verga	abe von LP						
30. Verar	ntwortliche(r) Prüfer(in)	Dr. D. Turschn	Or. D. Turschner				
31. Prüfu	ngsvorleistungen	Projekt: Simulation eines mechatronischen Systems					
Zu Nr. 2	2:						
29. Prüfungsform / Voraussetzung für		Theoretische Arbeit					
die Vergabe von LP							
30. Verantwortliche(r) Prüfer(in)		Dr. D. Turschner					
31. Prüfu	ngsvorleistungen	Keine					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Life Cycle Assessment	Life Cycle Assessment

2. Verwendbarkeit	2. Verwendbarkeit des Moduls in Studiengängen						
	M.Sc. Umweltverfahrenstechnik und Recycling, M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M. Sc. Wirtschaftsingenieurwesen, M.Sc. Technische Betriebswirtschaftslehre						
3. Modulverantwo	rtliche(r)	4. Zuständige Fakultät	5. Modulnummer				
Prof. Drlng C. Minke		Fakultät für Energie- und					
		Wirtschaftswissenschaften					
6. Sprache	7. LP	8. Dauer	9. Angebot				
Deutsch / Englisch	6	[x] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				

Die Studierenden können das Konzept der Nachhaltigkeit und den durch anthropogene Aktivitäten verursachten "Treibhauseffekt" erläutern. Sie können die Grundbegriffe des Life Cycle Assessment/der Ökobilanzierung beschreiben und die Schritte einer Ökobilanz nach DIN ISO 14040/44 wiedergeben sowie Anwendungsbeispiele aus dem Bereich der Ingenieurwissenschaften formulieren. Die Studierenden können die Software Umberto® und die Datenbank Ecoinvent anwenden und sind in der Lage, eine stoffstrombasierte Ökobilanz durchzuführen. Sie können Bewertungskriterien zur Einordnung von Ökobilanzdaten ableiten und Ökobilanzstudien kritisch bewerten.

Lehrve	Lehrveranstaltungen							
11.Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV-Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium		
1	Life Cycle Assessment (Ökobilanz)	Prof. DrIng. C. Minke	W 8420	V/S	2	28h / 62h		
2	Modellierung mit LCA-Software	Prof. DrIng. C. Minke	W 6219	Ü	2	16h / 74h		
		Summe:	4	44h / 136h				

Zu Nr. 1:

18a. Empf. Voraussetzungen	keine
	 Nachhaltigkeit und Produktlebenszyklus
19a. Inhalte	 Grundlagen der Ökobilanzierung (Methodik und Paxis)
	 Schritte einer Ökobilanz nach DIN ISO 14040/44

	Erstellen einer Sachbilanz mit verschiedenen Allokationsmethoden
	- Wirkungsbilanz und Umweltindikatoren
	 Kritische Bewertung der Methodik, Datenbasis und Ergebnisse
20a. Medienformen	Tafel, PowerPoint-Präsentation, Videos, Handout, Fallstudien
	M. Kaltschmitt, L. Schebek (Hrsg.): "Uweltbewertung für Ingenieure: Methoden und Verfahren", Springer 2015
21a. Literatur	W. Klöpffer, B. Grahl: "Life Cycle Assessment (LCA): A Guide to Best Practice", Wiley-VCH 2014 (Standardwerk)
	W. Klöpffer, B. Grahl: "Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf", Wiley-VCH 2009 (Standardwerk)
22a. Sonstiges	-
Zu Nr. 2:	
18a. Empf. Voraussetzungen	"Life Cycle Assessment (Ökobilanz)" in demselben Semester oder vorab
19a. Inhalte	 Modellierung mit LCA-Software Anwendung der Schritte einer Ökobilanz nach DIN ISO 14040/44 Definition von funktionellen Einheiten und Bilanzgrenzen Erstellen von Sachbilanzen Erstellen von Wirkungsabschätzungen Interpretation der Ergebnisse, Sensitivitätsanalyse und Ableitung von Handlungsempfehlungen
20a. Medienformen	Softwareschulung und Computerarbeit, PowerPoint-Präsentation, Handout
21a. Literatur	ifu Hamburg GmbH: "Tutorial - Life Cycle Assessment (LCA) with Umberto", Hamburg 2018 ifu Hamburg GmbH: "Umberto® LCA+ (v10) User Manual", Hamburg 2017 W. Klöpffer, B. Grahl: "Life Cycle Assessment (LCA): A Guide to Best Practice", Wiley-VCH 2014 (Standardwerk)
22a. Sonstiges	-

Studien-/Prüfungsleistung						
		25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveranstaltung	Art	LP	Benotung	Modulnote	
1	Life Cycle Assessment (Ökobillanz)	MD	4	hanatat	100%	
2	Modellierung mit LCA-Software	MP	6	benotet	100%	

29. Prüfungsform / Voraussetzung für	Seminarleistung: Modellierung, schriftliche Ausarbeitung und
die Vergabe von LP	Präsentation
30. Verantwortliche(r) Prüfer(in)	Prof. DrIng. C. Minke
31. Verbindliche Prüfungsvorleistungen	keine

Wirtschaft kennen

1a. Modultitel (deutsch)1b. Modultitel (englisch)Nachhaltigkeit und GlobalerSustainability and Global ChangeWandel

2. Verwendbarkeit des Moduls in Studiengängen							
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer							
Prof. C. Berg		Fakultät für Energie- und					
Wirtschaftswissenschaften							
6. Sprache	7. LP	8. Dauer	9. Angebot				
deutsch	3	[X] 1 Semester	[] jedes Semester				
		[] 2 Semester	[X] jedes Studienjahr				
			[] unregelmäßig				
10. Lern-/Qualifikationsziele des Moduls							
Grundlagen für das Verständnis von Ursachen, Dimensionen und der Beschreibung des Globalen Wandels							
kennen sowie in	Lösungsansätzen ar	nwenden, Konzept Nachhaltigkeit, w	ichtige Treiber, Bedeutung der				

Leh	Lehrveranstaltungen						
11.	1. 12. Lehrveranstaltungstitel			14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)		13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium
1	Nachhaltigkeit und Globaler Wandel		Prof. C. Berg	S 8066	V	2	28 h / 62 h
18a	18a. Empf. Voraussetzungen keine						
Beg Ökc Befu (Wa Grü 19a. Inhalte Barı (Ext stru Akte			Begriffe und Konzepte: Nachhaltigkeit, Globaler Wandel, Ökosystemleistungen, Planetare Grenzen Befunde: Stoffeinträge (N, P, POPs etc.), Klimawandel, Ressourcen (Wasser, Rohstoffe, Boden/Fläche, Biolog. Vielfalt), Energie, Bevölkerung) Gründe: Warum sind wir nicht nachhaltiger? Darstellung wichtiger Barrieren der Nachhaltigkeit aus verschiedenen Disziplinen (Externalitäten, Value-Action Gap, moralische Defizite, Systemträgheiten, strukturelles Silodenken etc.) Akteure und Lösungsansätze: Politik (Ordnungspolitik, Fiskalpolitik, Wettbewerbspolitik), Wirtschaft (Gründe für Corporate Sustainability),				

20a. Medienformen	Folien, Foliensammlung/Handout, Videos
21a Litaratur	Berg, Chr.: Ist Nachhaltigkeit utopisch? Wie wir Barrieren überwinden und zukunftsfähig handeln, oekom: München 2020 Jischa, M. F.: Herausforderung Zukunft, Technischer Fortschritt und Globalisierung; zweite (stark veränderte) Auflage, Elsevier, Spektrum Akademischer Verlag, Heidelberg 2005
21a. Literatur	Wijkman, A., Rockström, J., Bankrupting Nature, London/New York 2012 Diverse Studien des Wissenschaftlichen Beirats der Bundesregierung Globale Umweltveränderungen (WBGU), vor allem Jahresgutachten 1996, 2004, 2011 Berlin 1996, 2004, 2011 Steffen, Will et al.: »Planetary boundaries: Guiding human development on a changing planet«. Science 347, 13.02.2015: 736
22a. Sonstiges	

Studien-/Prüfungsleistung							
			25. P	26.	27.	28. Anteil an der	
23. Nr.	Nr. 24. Zugeordnete Lehrveranstaltungen		Art	LP	Benotung	Modulnote	
1	Nachhaltigkeit und Globaler W	andel	K	3	benotet	100 %	
29. Prüfu	29. Prüfungsform / Voraussetzung für						
die Verga	abe von LP						
30. Verantwortliche(r) Prüfer(in)		Prof. C. Berg					
31. Prüfu	ingsvorleistungen	Keine					

1a. Modultitel (deutsch)1b. Modultitel (englisch)Neue Konzepte der PhotovoltaikNew Concepts in Photovoltaics

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Materialwissenschaft und Werkstofftechnik					
3. Modulverantwortliche(r)		4. Zuständige Fakultät	5. Modulnummer		
Prof. Dr. D. Schaadt		Fakultät für Energie- und			
		Wirtschaftswissenschaft			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Deutsch	4	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		
10. Lern-/Qualifikationsziele des Moduls					
Es werden fortgeschrittene Kenntnisse zu aktuellen neuen Konzepten in der Photovoltaik vermittelt (Lernziel).					
Studenten erhalten damit die Möglichkeit, sich an vorderster Front der Forschung weiterzubilden					
(Kompetenz).					

Leh	rveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	SWS	Präsenz-/Eigenstudium
1	Neue Konzepte der Photovoltaik (New Concepts in Photovoltaics)	Prof. Dr. D. Schaadt	W 2331	V/Ü	3	42 h / 78 h
18.	18. Empf. Voraussetzungen Messtechnik I					
Einführung — Probleme e Verbesserte Si-Sc — Hochleistu — Si-Dünnscl Verbindungshalk — Materialier			zellen s-Si-Solarz ntsolarzell ter nd Hetero	en	-	1

	– Konzentratorzellen und Stapelzellen			
	 Quantentrog- und Quantenpunktsolarzellen 			
	Verbindungshalbleiter-Dünnschichtsolarzellen			
	– CdTe-Zellen			
	 Zellen aus Chalkopyriden 			
	Plasmonische Solarzellen			
	Metallische Nanopartikel			
	– Plasmonische Zellen			
	Photoelektrolytische Zellen			
	– Konzept			
	 Zellen auf Nitridbasis 			
	Solarzellen aus organischen Materialien			
	– Farbstoffzellen			
	– Polymerzellen			
20. Medienformen	Tafel, PowerPoint, elektronisch abrufbare Skripte und Präsentationen			
21 Litaratur	Green: Third Generation Photovoltaics, Springer Verlag			
21. Literatur	Hamakawa (Ed.): Thin-Film Solar Cells, Springer Verlag			
22. Sonstiges				

Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der
23. Nr.	24. Zugeordnete Lehrveransta	ltung	Тур	LP	Benotung	Modulnote
1	Neue Konzepte der Photovoltaik		MP	4	benotet	100 %
29. Prüfungsform / Voraussetzung für		Klausur				
die Verga	abe von LP					
30. Verantwortliche(r) Prüfer(in)		Prof. Dr. D. Schaadt				
31. Verbindliche						
Prüfungs	vorleistungen					

1a. Modultitel (deutsch)
Optimierung und
Instandhaltung von
Elektroenergieanlagen (mit
Exkursion)

1b. Modultitel (englisch)

Optimisation and Maintenance of Electrical Energy Facilities

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Energiesys	M.Sc. Energiesystemtechnik, M.Sc. Wirtschaftsingenieurwesen					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer						
Prof. DrIng. G. Lülf		Fakultät für Energie- und				
		Wirtschaftswissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch 4		[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unrogolmäßig			

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden kennen nach Abschluss des Faches die Vorgehensweisen bei der Optimierung und Instandhaltung von Elektroenergieanlagen u. Schadensanalysen. Ein weiteres Ziel ist es, die Grundlagen für Condition Monitoring basierte Instandhaltung und betriebswirtschaftliches Denken zu vermitteln.

Leh	rveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	SWS	Präsenz-/Eigenstudium
1	Optimierung und Instandhaltung von Elektroenergieanlagen (Optimisation and Maintenanc of Electrical Energy Facilities)	Prof. DrIng. G. Lülf	S 8828	V/Ü	3	42 h / 78 h
18.	Empf. Voraussetzungen	Grundlagen der Elektrotechnik				
Th Me Co		Themenschwerpunkte: Elektrische Maschinen im industriellen Einsatz, Messtechnische Untersuchungen, Schadensanalysen, Krisenmanagement, Condition Monitoring, Anforderungen an den Jungingenieur in ndustrieunternehmen, am Beispiel ThyssenKrupp Steel — Instandhaltung el. Maschinen, was ist das? (Technik, Menschen, Verfügbarkeit, Hightech)				

	klassische Methoden? neue Methoden?			
	 Wo liegt ein Optimum? 			
	 Condition Monitoring Teil 1, Lifecycle Management 			
	Condition Monitoring Teil 2			
	 Der Störungsfall, was nun? Schadensanalysen 			
	 Anforderungen an den Ingenieur / die Ingenieurin 			
	Auswirkungen von ,Kostenreduktion'?			
	 From Ore to Steel (aus energie- und antriebstechnischer Sicht) 			
	 Abschlussgespräch 			
20. Medienformen	Präsentationsskripte, CD, Smartphone -Anwendungsprogramme			
21. Literatur	Im Verlauf der Vorlesung werden aktuelle Veröffentlichungen bzw. Bücher angesprochen. Für die Vorlesung ist keine spezielle Literatur notwendig.			
	Die Vorlesung findet nur statt, wenn mindestens 5 Hörer teilnehmen.			
22. Sonstiges	Zur Vorlesung wird stets eine Exkursion zur ThyssenKrupp Stahl AG in			
	Duisburg, mit Besichtigung großtechnischer Elektroenergieanlagen,			
	angeboten.			

Studier	Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveransta	ltung	Тур	LP	Benotung	Modulnote	
1	Optimierung und Instandhaltung von Elektroenergieanlagen		MP	4	benotet	100 %	
29. Prüfungsform / Voraussetzung für die Vergabe von LP		Mündliche Pr	üfung (30) min)			
30. Vera	ntwortliche(r) Prüfer(in)	Prof. DrIng.	G. Lülf				
31. Verbindliche							
Prüfungs	svorleistungen						

1a. Modultitel (deutsch)1b. Modultitel (englisch)Personal- undHuman Resource and CompanyUnternehmensführung fürManagement for NaturalNaturwissenschaftler undScientists and EngineersIngenieure

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Materialwissenschaft und Werkstofftechnik					
3. Modulveranty	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer		
Prof. DrIng. D. Meiners		Fakultät für Natur- und			
		Materialwissenschaften			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Deutsch	3	[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden kennen Unternehmensorganisationsformen und können diese einordnen. Sie beherrschen die Prinzipien der Personalführung, kennen unterschiedliche Karrierewege und können diese für sich evaluieren. Weiterhin lernen sie an aktuellen (Fall-)Beispielen Themen der Unternehmensführung kennen.

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV- Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz- /Eigenstudium
1	Personal- und Unternehmens- führung für Naturwissen- schaftler und Ingenieure (Human Resource and Company Management for Natural Scientists and Engineers)	D. Meiners	W 7950	S	2	28 h / 62 h
18.	Empf. Voraussetzungen k	eine				
19.	nhalte	Prinzipien der Führung)	Personalf	ührung (Disz	ziplinaris	sche und fachliche

	 Instrumente der Personalführung (Familie und Beruf, flexible Arbeitszeitmodelle, Mitarbeitergespräche, Mitarbeiterbefragung usw.)
	 Mitbestimmung im Unternehmen (Aus Sicht des Unternehmers, Gewerkschaftlers)
	 Erfolgreiche Personalführung (Vom Vorgesetzten zum Chef)
	 Karriereplanung (Karriere ja oder nein)
	 Bewerbung, Bewerbungsgespräch, Einstellungsvertrag
	 Von der Ich AG zur Aktiengesellschaft
	 Unternehmensplanung (Strategische Planung, Budgetplanung)
	 Organisationsstrukturen von Unternehmen (Eigentümer, Geschäftsführer, Beirat)
	 Unternehmensfinanzierung Private Equity (Chancen und Risiken)
	Compliance Anforderungen im Unternehmen
	 Führungsstrukturen im Unternehmen (Zentrale/ Dezentrale Organisationen)
	 Operative Organisationsstrukturen im Unternehmen (Linien/ Matrixorganisation)
20. Medienformen	Beamer-Präsentation, Skript, ext. Vorträge
21. Literatur	
22. Sonstiges	

Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der
23. Nr.	24. Zugeordnete Lehrveransta	ltung	Тур	LP	Benotung	Modulnote
1	Personal- und Unternehmensfüh Naturwissenschaftler und Ingeni	MP	3	benotet	100 %	
29. Prüfungsform / Voraussetzung für die Vergabe von LP		theoretische A	Arbeit			
30. Verantwortliche(r) Prüfer(in)		Prof. DrIng. D. Meiners				
31. Verbindliche		keine				
Prüfungs	vorleistungen					

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Polymer Thermodynamik	Polymer Thermodynamics

2. Verwendbarkeit des Moduls in Studiengängen				
M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Umweltverfahrenstechnik und Recycling, M.Sc.				
Materialwissensc	haft und Werkstoffte	echnik, M.Sc Wirtschaftsingenieurwe	sen, M.Sc. Energiesystemtechnik	
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer				
Prof. Dr. M. Fisch	lschweiger	Fakultät für Energie- und		
		Wirtschaftswissenschaften		
6. Sprache	7. LP	8. Dauer	9. Angebot	
Englisch	6	[X] 1 Semester	[] jedes Semester	
		[] 2 Semester	[X] jedes Studienjahr	
			[] unregelmäßig	

- Studierende können die Herstellungs-, Verarbeitungs- und Recyclingverfahren von Polymeren mit den Methoden der Thermodynamik analysieren.
- Studierende sind in der Lage, Energie- und Stoffumwandlungen in der Polymerverfahrenstechnik mit den Methoden der Thermodynamik zu berechnen und insbesondere Stoffkreisläufe zu bewerten.
- Studierende können selbstständig, im Rahmen der Übung, die Methodik des Prozessdesigns für die Herstellung, die Verarbeitung und das Recycling von Polymeren auf Basis der Thermodynamik anwenden.

Leh	rveranstaltungen						
11.	12. Lehrveranstaltungstitel			14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)		13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium
1	Polymer Thermodynamik (Polymer Thermodynamics)		Prof. Dr. M. Fischlschweiger	W 8509	2V/2Ü	4	56 h / 124 h
18. Empf. Voraussetzungen Keine							
19.	Inhalte	Eigenschafen von Polymeren, Herstellungs- Verarbeitungs- und Recyclingverfahren, Thermodynamische Modelle zur Beschreibung des Phasenverhaltens von Polymeren, Zustandsgleichungen für Polymere, Druckeinfluss auf Polymer-Phasengleichgewichte, Grenzflächeneigenschaften von Polymeren, Thermodynamische Modellierung von polymeren Herstellungs-, Verarbeitungs- und Recyclingprozessen, Bewertung von polymeren Stoffkreisläufen auf Basi der Thermodynamik				zur Beschreibung des ungen für Polymere, nodynamische beitungs- und	
20.	Medienformen	Fo	lien/Powerpoint,	Tafel, Übu	ungsaufgabe	n	

21. Literatur	P.J. Flory: Principles of Polymer Chemistry, Cornell University Press, Ithaca and London,16 th Ed. 1995 J.M. Prausnitz, R.N. Lichtenthaler, E.G. Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice Hall PTR, Third Ed. 1999
	S. Enders, B.A. Wolf: Polymer Thermodynamics Liquid Polymer- Containing Mixtures, Springer-Verlag Berlin Heidelberg, 2011
22. Sonstiges	

Studien	Studien-/Prüfungsleistung					
			25. P	26.	27.	28. Anteil an der
23. Nr.	24. Zugeordnete Lehrveranstal	ltung	Тур	LP	Benotung	Modulnote
1	Polymer Thermodynamik / Polymer Thermodynamics		MP	6	benotet	100 %
29. Prüfungsform / Voraussetzung für die Vergabe von LP		Klausur (120	Min.) (bei	wenige	r als 5 Teilnehm	ern mündlich)
30. Verantwortliche(r) Prüfer(in)		Prof. Dr. M. Fischlschweiger				
31. Verbindliche Prüfungsvorleistungen		Keine				

1a. Modultitel (deutsch)1b. Modultitel (englisch)Einführung in dieIntroduction to Process ModellingProzessmodellierung fürfor EngineersIngenieure

2. Verwendbarkeit des Moduls in Studiengängen				
M.Sc. Energiesys	temtechnik			
3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer	
Dr. J. Wendelstorf		Fakultät für Natur- und		
		Materialwissenschaften		
6. Sprache	7. LP	8. Dauer	9. Angebot	
Deutsch	4	[X] 1 Semester	[] jedes Semester	
		[] 2 Semester	[X] jedes Studienjahr	
			[] unregelmäßig	

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden können Prozesse und Systeme strukturiert betrachten und eine formale Schnittstelle zu einem Modell definieren, mit dem relevante Aspekte des Systemverhaltens simuliert werden können. Sie können einfache Prozessmodelle selbst realisieren und die möglichen Fitparameter eines Modells aus Messwerten ableiten. Sie sind in der Lage, für konkrete Anwendungen Modellierwerkzeuge und Modelle auszuwählen und Simulationsergebnisse zu bewerten. Sie können in der Wolfram Language einfache Prozessmodelle als *computational document* erstellen, parametrieren und analysieren.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	SWS	Präsenz-/Eigenstudium
1	Einführung in die Prozessmodellierung für Ingenieure (PM1) (Introductio to Process Modelling for Engineers)	Dr. J. Wendelstorf	\$7903	V/Ü	3	30h / 30h
18. Empf. Voraussetzungen		Ingenieurmathematik, Physik und Chemie				
19. Inhalte		 Grundbegriffe der Prozessmodellierung: Gegenstand der Vorlesung, Paradigmen und Anwendungsfelder. Grundlagen der Prozessmodellierung: Aufgaben und Konzepte bei der Beschreibung realer Prozesse. 				

Prozessmodell von den Studierenden selbst erstellt. 5. Metamodellierung: Der Weg vom Modell zur Vorhersage zukünftigen optimalen Systemverhaltens wird exemplarisch untersucht. Dabei werden die grundlegenden Aufgaben der Prozessmodellierung erlernt: Schnittstellendefinition, Sensitivitätsanalyse, Parametrierung, Falsifizierung und Einbindung in automatisierte Systeme. 6. Die Wissenschaft und Technologie der System- und Prozessmodellierung					
Grundlagen der z.Zt. mächtigsten computational language. 4. Übungsbeispiel pmHaus:		· · ·			
Grundlagen der z.Zt. mächtigsten computational language. 4. Übungsbeispiel pmHaus:		3. Einführung in die Wolfram Language:			
Am anschaulichen Beispiel der thermischen Beschreibung eines Hauses (Heizung und Wärmeverluste an die Umgebung) wird ein Prozessmodell von den Studierenden selbst erstellt. 5. Metamodellierung: Der Weg vom Modell zur Vorhersage zukünftigen optimalen Systemverhaltens wird exemplarisch untersucht. Dabei werden die grundlegenden Aufgaben der Prozessmodellierung erlernt: Schnittstellendefinition, Sensitivitätsanalyse, Parametrierung, Falsifizierung und Einbindung in automatisierte Systeme. 6. Die Wissenschaft und Technologie der System- und Prozessmodellierung Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		Grundlagen der z.Zt. mächtigsten computational language.			
Am anschaulichen Beispiel der thermischen Beschreibung eines Hauses (Heizung und Wärmeverluste an die Umgebung) wird ein Prozessmodell von den Studierenden selbst erstellt. 5. Metamodellierung: Der Weg vom Modell zur Vorhersage zukünftigen optimalen Systemverhaltens wird exemplarisch untersucht. Dabei werden die grundlegenden Aufgaben der Prozessmodellierung erlernt: Schnittstellendefinition, Sensitivitätsanalyse, Parametrierung, Falsifizierung und Einbindung in automatisierte Systeme. 6. Die Wissenschaft und Technologie der System- und Prozessmodellierung Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		4. Übungsbeispiel pmHaus:			
Prozessmodell von den Studierenden selbst erstellt. 5. Metamodellierung: Der Weg vom Modell zur Vorhersage zukünftigen optimalen Systemverhaltens wird exemplarisch untersucht. Dabei werden die grundlegenden Aufgaben der Prozessmodellierung erlernt: Schnittstellendefinition, Sensitivitätsanalyse, Parametrierung, Falsifizierung und Einbindung in automatisierte Systeme. 6. Die Wissenschaft und Technologie der System- und Prozessmodellierung Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der					
5. Metamodellierung: Der Weg vom Modell zur Vorhersage zukünftigen optimalen Systemverhaltens wird exemplarisch untersucht. Dabei werden die grundlegenden Aufgaben der Prozessmodellierung erlernt: Schnittstellendefinition, Sensitivitätsanalyse, Parametrierung, Falsifizierung und Einbindung in automatisierte Systeme. 6. Die Wissenschaft und Technologie der System- und Prozessmodellierung Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		Hauses (Heizung und Wärmeverluste an die Umgebung) wird ein			
zukünftigen optimalen Systemverhaltens wird exemplarisch untersucht. Dabei werden die grundlegenden Aufgaben der Prozessmodellierung erlernt: Schnittstellendefinition, Sensitivitätsanalyse, Parametrierung, Falsifizierung und Einbindung in automatisierte Systeme. 6. Die Wissenschaft und Technologie der System- und Prozessmodellierung Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		Prozessmodell von den Studierenden selbst erstellt.			
untersucht. Dabei werden die grundlegenden Aufgaben der Prozessmodellierung erlernt: Schnittstellendefinition, Sensitivitätsanalyse, Parametrierung, Falsifizierung und Einbindung in automatisierte Systeme. 6. Die Wissenschaft und Technologie der System- und Prozessmodellierung Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		5. <u>Metamodellierung</u> : Der Weg vom Modell zur Vorhersage			
Prozessmodellierung erlernt: Schnittstellendefinition, Sensitivitätsanalyse, Parametrierung, Falsifizierung und Einbindung in automatisierte Systeme. 6. Die Wissenschaft und Technologie der System- und Prozessmodellierung Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		zukünftigen optimalen Systemverhaltens wird exemplarisch			
Schnittstellendefinition, Sensitivitätsanalyse, Parametrierung, Falsifizierung und Einbindung in automatisierte Systeme. 6. Die Wissenschaft und Technologie der System- und Prozessmodellierung Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		untersucht. Dabei werden die grundlegenden Aufgaben der			
Falsifizierung und Einbindung in automatisierte Systeme. 6. Die Wissenschaft und Technologie der System- und Prozessmodellierung Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		Prozessmodellierung erlernt:			
6. Die Wissenschaft und Technologie der System- und Prozessmodellierung Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		Schnittstellendefinition, Sensitivitätsanalyse, Parametrierung,			
Prozessmodellierung Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		Falsifizierung und Einbindung in automatisierte Systeme.			
Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		6. Die Wissenschaft und Technologie der System- und			
dem Thema werden diskutiert, wobei einige Konzepte und Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		Prozessmodellierung			
Werkzeuge kurz vorgestellt werden. 20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		Die Möglichkeiten und Grenzen einer weiteren Beschäftigung mit			
20. Medienformen PowerPoint, Tafel, Softwaresysteme (Mathematica,) R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der					
R Aris (1978): Mathematical modelling techniques R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		Werkzeuge kurz vorgestellt werden.			
R Aris (1999): Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der	20. Medienformen	PowerPoint, Tafel, Softwaresysteme (Mathematica,)			
Mathematical Modeling A Chemical Engineer's Perspective J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		R Aris (1978): Mathematical modelling techniques			
J Mikles, M Fikar (2007): Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		R Aris (1999):			
Process Modelling, Identification and Control P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		Mathematical Modeling A Chemical Engineer's Perspective			
P Wellin (2015): Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der		J Mikles, M Fikar (2007):			
Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der	21. Literatur	Process Modelling, Identification and Control			
J Wendelstorf (2016): Prozessmodellierung in der		Essentials of Programming in Mathematica J Wendelstorf (2016): Prozessmodellierung in der			
Hochtemperaturverfahrenstechnik					
22. Sonstiges -	22. Sonstiges	_			

Studien-/Prüfungsleistung					
23. Nr.	24. Zugeordnete Lehrveranstaltung	25. P Typ	26. LP	27. Benotung	28. Anteil an der Modulnote
1	Einführung in die Prozessmodellierung für Ingenieure (PM1)	MP	4	benotet	100%

29. Prüfungsform / Voraussetzung für die Vergabe von LP	Mündliche Prüfung
30. Verantwortliche(r) Prüfer(in)	J. Wendelstorf
31. Verbindliche Prüfungsvorleistungen	keine

1a. Modultitel (deutsch) 1b. Modultitel (englisch) Prozessmodellierung für **Process Modelling for Engineers 2** Ingenieure 2

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Energiesys	M.Sc. Energiesystemtechnik					
3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer			
Dr. J. Wendelstor	f	Fakultät für Natur- und				
		Materialwissenschaften				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch 4		[X] 1 Semester	[] jedes Semester			
		[] 2 Semester	[X] jedes Studienjahr			
			[] unregelmäßig			
10. Lern-/Qualif	10. Lern-/Qualifikationsziele des Moduls					

Aufbauend auf den in der "Einführung in die Prozessmodellierung für Ingenieure (PM1)" [W7925] erworbenen Grundkenntnissen lernen die Studenten weitere grundlegende Konzepte und erarbeiten sich eigene Kompetenzen in der Prozessmodellierung.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium
1	Prozessmodellierung für Ingenieure 2 (Process Modelling for Engineers 2)	Dr. J. Wendelstorf	\$7903	V/Ü	3	30 h / 30 h
18.	Empf. Voraussetzungen	V 7925: Einführung	g in die Pro	ozessmodelli	erung fü	ir Ingenieure 1 (PM1)
19. Inhalte		Prozessmoo an die Reali Vorgehensv 2. <u>Prozessmoo</u> Es wird der 3. <u>IT Werkzeug</u>	dellierung tät verstar veise (wo delle ident Arbeitsab ge in der f	nden und die rkflow) wird ifizieren und lauf der Mod Prozessmode	ative Anr allgeme behande parame ellidenti	trieren: fikation eingeübt.

	Verfügung stehenden IT-Systeme behandelt,				
	die Wolfram Language wird vertieft.				
	4. Wissenschaftliche Grundlagen der Prozessmodellierung:				
	Dem Hörerkreis entsprechend wird die Methodik der				
	Implementierung von Naturgesetzen in Prozessmodelle				
	behandelt (mathematische Modellierung).				
	5. Beispiele aus der Praxis:				
	Auf der Basis der Fachgebiete der Hörer und dem jeweiligen				
	Stand der Technik erstellen die Studierenden selbst				
	Prozessmodelle. Die Spannweite reicht von einfachen				
	dynamischen Modellen bis zu anwendungsnahen				
	Fragestellungen, bei denen Betriebsdaten zu verarbeiten sind.				
20. Medienformen	PowerPoint, Tafel, Softwaresysteme (Mathematica,)				
	K Torkar, H Krischner (1968):				
	Rechenseminar in physikalischer Chemie				
	R Aris (1978): Mathematical modelling techniques				
	M M Denn (1986): Process modelling				
	R Aris (1999):				
	Mathematical Modeling A Chemical Engineer's Perspective				
	K M Hangos, I T Cameron (2001):				
21. Literatur	Process modelling and model analysis				
	J Mikles, M Fikar (2007):				
	Process Modelling, Identification and Control				
	K J Keesman (2011):				
	System Identification: An Introduction				
	P Wellin (2015): Essentials of Programming in Mathematica				
	J Wendelstorf (2016): Prozessmodellierung in der				
	Hochtemperaturverfahrenstechnik				
22. Sonstiges	-				

Studien	Studien-/Prüfungsleistung					
			25. P	26.	27.	28. Anteil an der
23. Nr.	24. Zugeordnete Lehrveranstaltung		Тур	LP	Benotung	Modulnote
1	Prozessmodellierung für Ingenieure II		MP	4	benotet	100%
29. Prüfungsform / Voraussetzung für		Mündliche Pr	üfung			
die Vergabe von LP						

30. Verantwortliche(r) Prüfer(in)	J. Wendelstorf
31. Verbindliche	W7925 (PM1) oder vergleichbare Kenntnisse (Vorgespräch)
Prüfungsvorleistungen	

1a. Modultitel (deutsch)1b. Modultitel (englisch)Recht der erneuerbaren EnergienLaw of Renewable Energy Sources

2. Verwendbarkeit des Moduls in Studiengängen

B.Sc. Energie und Rohstoffe, B.Sc. Wirtschaftsingenieurwesen, B.Sc. Energietechnologien, B.Sc. Betriebswirtschaftslehre, B.Sc. Maschinenbau, B.Sc. Verfahrenstechnik/Chemieingenieurwesen, M.Sc. Wirtschaftsinformatik

3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer	
Prof. Dr. jur. H. Weyer		Fakultät 2		
6. Sprache 7. LP		8. Dauer	9. Angebot	
deutsch	3	[X] 1 Semester	[] jedes Semester	
		[] 2 Semester	[X] jedes Studienjahr	
			[] unregelmäßig	

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden sind in der Lage, den Rechtsrahmen für den Einsatz erneuerbarer Energien in den Sektoren Strom, Wärme/Kälte, Verkehr einschließlich der Sektorenkopplung zu beschreiben. Sie können wesentliche Instrumente zur Förderung erneuerbarer Energien darstellen.

Mit diesem Wissen können die Studierenden die unterschiedlichen Ansätze zur Förderung erneuerbarer Energien in die Gesamtziele Deutschlands und der EU im Energiesektor einordnen und Wechselwirkungen zwischen den Sektoren erkennen. Sie verstehen darüber hinaus die den Regelungen zugrundeliegenden Interessenkonflikte und die in den Normen zum Ausdruck kommenden Ziele und Wertungen des Gesetzgebers. Sie sind in der Lage, ihr Verständnis zu formulieren und im Austausch mit anderen zu vertreten und weiterzuentwickeln. Die Studierenden können auf dieser Basis einfache rechtliche Fragestellungen im Bereich des Energierechts lösen.

Leh	Lehrveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	SWS	Präsenz-/Eigenstudium
1	Recht der erneuerbaren Energien (Law of Renewable Energy Sources)	Prof. Dr. jur. H. Weyer	S 6512	V	2	28 h / 62 h
	Summe: 2 28 h / 62 h					
18. 1	18. Empf. Voraussetzungen Vorlesung "Energierecht", kann auch parallel besucht werden				ıcht werden	
19.1	19. Inhalte – Energie- und klimapolitische Ziele Deutschlands und der EU			nds und der EU		

	 Stromerzeugung aus erneuerbaren Energien 			
	 Wärme- und Kälteerzeugung aus erneuerbaren Energien 			
	 Kraftstofferzeugung aus erneuerbaren Energien 			
	 Einspeisung von Biomethan und Speichergas in das Erdgasnetz 			
	 Sektorkopplung (Stromeinsatz für Wärme/Kälte, Verkehr, Industrie) 			
20. Medienformen	Folien, Skript			
	Zur Vorlesung mitzubringen ist ein Gesetzestext. Empfohlen wird die			
	Textausgabe			
21. Literatur	* Energierecht, dtv, neueste Auflage			
	Zur Vor- und Nachbereitung wird empfohlen:			
	* Ekardt/Valentin, Das neue Energierecht, 2015 (noch zum EEG 2014)			
22. Sonstiges				

Studien	Studien-/Prüfungsleistung					
			25. P	26.	27.	28. Anteil an der
23. Nr.	24. Zugeordnete Lehrveranstaltung		Тур	LP	Benotung	Modulnote
1	Recht der erneuerbaren Energien	1	MP	3	Benotet	100 %
29. Prüfungsform / Voraussetzung für		Klausur oder mündlich				
die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Prof. Dr. jur. H. Weyer				
31. Verbindliche		Keine				
Prüfungsvorleistungen						

1a. Modultitel (deutsch)1b. Modultitel (englisch)Software Systems EngineeringSoftware Systems Engineering

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Informatik, M.	M.Sc. Informatik, M.Sc. Wirtschaftsinformatik					
3. Modulverantwor	3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Prof. Dr. Andreas Rausch		Prof. Dr. Andreas Rausch				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch	6	[x] 1 Semester	[] jedes Semester			
		[] 2 Semester	[x] jedes Studienjahr			
			[] unregelmäßig			

10. Lern-/Qualifikationsziele des Moduls

Die Studierenden haben nach Abschluss des Moduls die grundlegenden Kenntnisse für die Entwicklung großer verteilter Anwendungen. Hierbei werden insbesondere anhand einer Reihe von praxisnahen Beispielen die notwendigen Kenntnisse eines erfolgreichen Softwarearchitekten vermittelt. Anhand einer Reihe von praxisnahen Beispielen wird gezeigt, wie sich große Systeme in Komponenten zerlegen lassen und welche Beziehungen es zwischen diesen gibt. Hierbei werden zum Beispiel folgende Punkte erörtert:

Wie gestaltet sich der Entwurfsprozess?

Welche Methoden und Beschreibungstechniken sind geeignet?

Welche erprobten Lösungen gibt es für technische Aspekte wie Transaktionsverwaltung oder Persistenz? Darüber hinaus werden Formalismen für die Spezifikation des Systemverhaltens eingeführt. Außerdem vermittelt die Vorlesung den Teilnehmenden ein grundlegendes Verständnis von Qualitätssicherung im Software Engineering. Anhang praxisnaher Beispiele und formaler Beschreibungen werden Begrifflichkeiten wie Quality Assurance, Code Qualität, Code Analyse, Verifikation und Testen definiert. Die Studierenden werden durch Bearbeitung von praxisorientierten Fragestellungen dazu angeleitet, selbstständige Beurteilungen hinsichtlich Code Qualität, sowie Verifikations- und Testverfahren durchzuführen und diese anzuwenden.

Lehrve	Lehrveranstaltungen					
	12. Lehrveranstaltungstitel		14. LV-	15. LV-	16.	17. Arbeitsaufwand Präsenz-/Eigenstudium
11.Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	Art	SWS	
1	Software Systems Engineering	Prof. Dr. Andreas Rausch	W 1268	V/Ü	4	56h / 124h
	Summe: 4 56h / 124h					
Zu Nr. 1:						

18a. Empf. Voraussetzungen	Grundlagen der Softwaretechnik
	Definition der Begriffe verteiltes System, Softwarearchitektur,
	Komponente und Schnittstelle
	Überblick über Vorgehensmodelle für die Softwareentwicklung
	Grundlagen des Requirements Engineerings von verteilten Systemen
	Grundbegriffe der Softwarearchitektur sowie Einführung in den
	Architekturentwurf
	Sichten- und UML-basierte Spezifikation von Softwarearchitekturen:
	Fachliche Sicht, technische Sicht, Verteilungssicht,
	Deploymentsicht, etc.
	Dokumentationstemplate für Architekturbeschreibungen
	Wie kommt man zu einer guten Architektur?
	Zerlegungsstruktur und Systematik beim Architekturentwurf
19a. Inhalte	Beispiele von Softwarearchitekturen für Informationssysteme,
	komplexe Systeme und eingebettete Systeme
	Moderne Software Produktionsumgebungen
	Formale Spezifikation des Systemverhaltens anhand ausgewählter
	Formalismen, wie z.B. Petrinetze, Timed Automata oder
	Statecharts
	Methoden zur Analyse und Sicherung von Code Qualität
	Testverfahren und Testziele in verschiedenen Phasen und auf
	verschiedenen Ebenen der Entwicklung
	Formale Grundlagen der Analyse von Systemen (z.B. Statische
	Analyse des Codes, Abstrakte Ausführung auf Basis des
	Kontrollflussgraphen, Invariantenbeweise oder Model Checking)
	Grundlagen des Software Product Line Engineering
20a. Medienformen	Beamer-Präsentation, Tafel, Whiteboard
	Clemens Szyperski: Component Software: Beyond Object-Oriented
	Programming, Addison Wesley Publishing Company, 2002
	Jon Siegel: An Overview Of CORBA 3.0, Object Management Group,
	2002
	Christine Hofmeister, Robert Nord, Dilip Soni: Applied Software
	Architecture, Addison Wesley — Object Technology Series, 1999
21a. Literatur	Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
	Reed Little, Robert Nord, Judith Stafford: Documenting Software
	Architectures - Views and Beyond, Addison-Wesley, 2002
	Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
	Michael Stal: Pattern-Oriented Software Architecture, Volume 1: A
	System of Patterns, John Wiley & Sons., 1996
	System of Fatterns, John Wiley & Johns., 1770

	Gary T. Leavens, Murali Sitaraman: Foundations of Component-Based Systems, Cambridge University Press, 2000
	Anneke Kleppe, Jos Warmer, Wim Bast: MDA Explained: The Model Driven Architecture: Practice and Promise, Addison Wesley, 2003
	Andreas Andresen: Komponentenbasierte Softwareentwicklung mit MDA, UML 2 und XML, Hanser Fachbuchverlag, 2004
	M. Born, E. Holz, O. Kath: Softwareentwicklung mit UML 2; Addison- Wesley; 2003
	David S. Frankel: Model Driven Architecture, John Wiley & Sons, 2003
	Chris Raistrick, Paul Francis, John Wright: Model Driven Architecture with Executable UML, Cambridge University Press, 2004
	Mahbouba Gharbi, Arne Koschel, Andreas Rausch, Gernot Starke:
	Basiswissen für Softwarearchitekten, dpunkt.verlag, 2015
	OMG: UML 2.5, MOF und ZMI Specification, 2019
	weitere Literatur wird in der Vorlesung bekannt gegeben
22a. Sonstiges	

Studien-/	Studien-/Prüfungsleistung					
23. Nr.	24. Zugeordnete Lehrveranst	altung	25. P Art	26. LP	27. Benotung	28. Anteil an der Modulnote
1	Software Systems Engineering		MP	6	benotet	100 %
2	Hausübungen zu Software Syst Engineering	PV	0	unbenotet	0 %	
Zu Nr. 1:						
29a. Prüfungsform / Voraussetzung für die Vergabe von LP		Schriftliche Klausur (120 Minuten) oder mündliche Prüfung (30 Minuten)				
30a. Verant	wortliche(r) Prüfer(in)	Prof. Dr. Andreas Rausch				
31a. Verbindliche Prüfungsvorleistungen		Hausübungen zu Grundlagen des Software Systems Engineering				
Zu Nr. 2:						
29b. Prüfungsform / Voraussetzung für die Vergabe von LP		Hausübungen				
30b. Verantwortliche(r) Prüfer(in)		Prof. Dr. Andreas Rausch				

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Technische Präsentationen in	Technical Presentations in English
Englisch	_

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Maschinen	M.Sc. Maschinenbau, M.Sc. Verfahrenstechnik/Chemieingenieurwesen				
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Klaudia Böhleweld		prachenzentrum			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Englisch	3	[X] 1 Semester	[X] jedes Semester		
		[] 2 Semester	[] jedes Studienjahr		
			[] unregelmäßig		

- can comprehend complex ideas and details in technical-oriented reading and listening tasks;
- can communicate ideas and opinions in a professional and technical way;
- can use appropriate grammar and sentence structures for technical-oriented texts;
- can explain a technical idea, process, or procedure clearly in front of an audience;
- have developed knowledge concerning working in international, professional, and scientific contexts.

Leh	Lehrveranstaltungen					
11. Nr.	12. Lehrveranstaltungstitel (deutsch/englisch)	13. Dozent(in)	14. LV- Nr.	15. LV-Art	16. SWS	17. Arbeitsaufwand Präsenz-/Eigenstudium
1	Technical Presentations in English (Technische Präsentationen in Englisch)	Andrew Rose	W/S 9092	V	2	28h / 62h
18.	Empf. Voraussetzungen	Keine				
19.	Inhalte	The aim of this course is to develop the verbal and presentational skills necessary to deliver technical and/or scientific presentations in English. The course consists of a formal instruction phase in which students are taught the skills needed to deliver presentations (usually in PTT), followe by a workshop phase in which students draft their own presentations. The course culminates in the delivery and assessment of student				sentations in English. In which students are usually in PTT), followed own presentations.

	presentations. The language practiced in this course goes beyond the B2 level of the CEFR to enable participants to express themselves fluently in a scientific and technical context.
20. Medienformen	Tafel, Folien, Foliensammlung/Handout
	Reading materials will be discussed in the first class meeting.
21. Literatur	Es wird mit authentischen und dem neuesten Stand entsprechenden
	Texten aus den jeweiligen Fachgebieten gearbeitet, die ständig
	aktualisiert und in der ersten Sitzung benannt werden.
22. Sonstiges	

Studien	Studien-/Prüfungsleistung					
23. Nr.			25. P Art	26. LP	27. Benotung	28. Anteil an der Modulnote
1	Technical Presentations in English		LN	2	benotet	0 %
29. Prüfungsform / Voraussetzung für die Vergabe von LP		Präsentation				
30. Verantwortliche(r) Prüfer(in)		Andrew Rose				
31. Prüfungsvorleistungen		keine				

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Technisches Schreiben	Technical Writing

2. Verwendbarkeit des Moduls in Studiengängen					
3. Modulverantwortliche(r) 4. Zuständige Fakultät 5. Modulnummer					
Jessica Schulze-Bentrop		Sprachenzentrum			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Englisch	3	[X] 1 Semester	[X] jedes Semester		
		[] 2 Semester	[] jedes Studienjahr		
			[] unregelmäßig		

- can communicate fluently, both orally and in written form, in academic and professional technicaloriented situations;
- can comprehend complex details in technical reading and listening texts;
- can express themselves more clearly with a wide range of Technical English vocabulary;
- can understand and properly use specific technical-oriented grammar structures;
- can produce a variety of technical, professional and academic documents.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium	
1	Technical Writing	Jessica Schulze-	W/S	V			
'	(Technisches Schreiben)	Bentrop	9009	v			
18.	Empf. Voraussetzungen	Member of TU Clausthal, B2 English level					
		This course aims at the development of the writing skills and specialized					
		language required for scientific, technical and engineering settings. The					
19.	Inhalte	language practiced in this course goes beyond the B2 level of the CEFR to					
		enable the participants to express themselves appropriately and					
		effectively in a scientific and technical context.					
20.	Medienformen	Students work with various forms of print and digital media.					
		Es wird mit authentischen und dem neuesten Stand entsprechenden					
21.	Literatur	Texten aus den jeweiligen Fachgebieten gearbeitet, die ständig					
		aktualisiert und in der ersten Sitzung benannt werden.					

22. Sonstiges

Studien	Studien-/Prüfungsleistung					
			25. P		27.	28. Anteil an der
23. Nr.	24. Zugeordnete Lehrveranst	altungen	Art	LP	Benotung	Modulnote
1	Technical Writing	LN	2	benotet	0 %	
29. Prüfu	29. Prüfungsform / Voraussetzung für		3 pages),	or Writt	en Exam (120 m	in)
die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Jessica Schulze	-Bentrop			
31. Prüfungsvorleistungen						

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Technisches Englisch	Technical English

2. Verwendbarkeit des Moduls in Studiengängen				
M.Sc. Verfahrens	technik/Chemieinge	enieurwesen		
3. Modulveranty	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer	
Jessica Schulze-Bentrop		Sprachenzentrum		
6. Sprache	7. LP	8. Dauer	9. Angebot	
Englisch	6	[X] 1 Semester	[X] jedes Semester	
		[] 2 Semester	[] jedes Studienjahr	
			[] unregelmäßig	

- can communicate fluently, both orally and in written form, in academic and professional technicaloriented situations;
- can comprehend complex details in technical reading and listening texts;
- can express themselves more clearly with a wide range of Technical English vocabulary;
- can understand and properly use specific technical-oriented grammar structures.

Leh	Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand	
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium	
1	Technisches Englisch (Technical English)	Jessica Schulze- Bentrop Dr. Hakan Gür	W/S 9000	V	4	56 h / 124 h	
18a. Empf. Voraussetzungen		Member of TU Clausthal, B2 English level					
19a. Inhalte		This course aims at the development of the communication skills and specialized language required for scientific, technical and engineering settings. The language practiced in this course goes beyond the B2 level of the CEFR to enable the participants to express themselves appropriately in a scientific and technical context.					
20a.	Medienformen	Students work with various forms of print and digital media.					

21a. Literatur	Ibbotson, Mark: Cambridge English for Engineering, Cambridge University Press: Cambridge u. a. (8. Auflage) 2013. Weiterhin wird mit authentischen und dem neuesten Stand entsprechenden Texten aus den jeweiligen Fachgebieten gearbeitet, die ständig aktualisiert und in der ersten Sitzung benannt werden.
22a. Sonstiges	70% Anwesenheitspflicht

Studien	Studien-/Prüfungsleistung						
			25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveranstaltungen		Art	LP	Benotung	Modulnote	
1	Technisches Englisch		LN	4	benotet	0 %	
29. Prüfungsform / Voraussetzung für		Written Exam (90 Min) or Report (about 3 pages)					
die Verga	die Vergabe von LP						
30. Verantwortliche(r) Prüfer(in)		Jessica Schulze	-Bentrop,	Dr. Hak	an Gür		
31. Prüfungsvorleistungen							

1a. Modultitel (deutsch)	1b. Modultitel (englisch)
Thermische Behandlung von	Thermal Treatment of Residue
Rest- und Abfallstoffen	and Waste Materials

2. Verwendbarkeit des Moduls in Studiengängen					
M.Sc. Verfahrens	M.Sc. Verfahrenstechnik/Chemieingenieurwesen, M. Sc. Energiesystemtechnik				
3. Modulverant	wortliche(r)	4. Zuständige Fakultät	5. Modulnummer		
Prof. M. Fischlschweiger		Fakultät für Energie- und			
		Wirtschaftswissenschaften			
6. Sprache	7. LP	8. Dauer	9. Angebot		
Deutsch 4		[X] 1 Semester	[] jedes Semester		
		[] 2 Semester	[X] jedes Studienjahr		
			[] unregelmäßig		

Die Studierenden haben die Funktion von thermischen Abfallbehandlungsanlagen im Detail verstanden. Sie können die einzelnen Komponenten einer Anlage benennen und deren Funktion beschreiben. Die Studierenden sind in der Lage, das Zusammenwirken der Einzelkomponenten zu erkennen und zu erklären. Sie können das System energetisch bilanzieren. Sie können die Auswirkungen der Abfallbehandlungsanlagen auf die Umwelt beurteilen. Die Studierenden wenden Methoden der Systembetrachtung an, um die Interaktionen zwischen einzelnen Komponenten zu erkennen und zu abstrahieren. Sie verknüpfen dafür disziplinares Einzelwissen und erarbeiten sich entsprechende Lösungsansätze. Mit Berechnungsmethoden werden Zusammenhänge quantifiziert und diskutiert. Die Studierenden lernen in der Lehrveranstaltung komplexere Verfahren zu analysieren und zu interpretieren.

Leh	L ehrveranstaltungen					
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	SWS	Präsenz-/Eigenstudium
1	Thermische Behandlung von Rest- und Abfallstoffen (Thermal Treatment of Residue and Waste Materials)	Prof. M. Fischlschweiger	\$ 8508	2V/Ü	3	42 h / 78 h
18.	Empf. Voraussetzungen	Keine				
19. Inhalte		2. Abfallcharal	Abfallcharakterisierung und -vorbehandlung			

	4. Verbrennung				
	, and the second se				
	5. Vergasung				
	6. Pyrolyse				
	7. Mechanismen zur Schadstoffentstehung und -verminderung in				
	Feuerungen				
	8. Systematischer Aufbau von Prozessführungen				
	9. Apparate				
	10. Systematische Darstellung, Bilanzierung und Bewertung				
	11. Derzeitiger Stand der Technik				
	12. Entwicklungstendenzen thermischer Abfallbehandlungsverfahren				
	13. Konzepte aus mechanischen, biologischen und thermischen				
	Verfahrensbausteinen				
	14. Mathematische Modellierung thermischer Prozesse zur				
	Abfallbehandlung - Beispiele				
20. Medienformen	Vortrag, Beamer, Skript, Tafel				
	R. Scholz, F. Schulenburg, M. Beckmann: Abfallbehandlung in				
	thermischen Verfahren - Verbrennung, Vergasung, Pyrolyse, Verfahrens-				
21 124	und Anlagenkonzepte, Vieweg + Teubner Verlag				
21. Literatur	R. Scholz et al.: Zur systematischen Bewertung der				
	Energieumwandlungen bei der thermischen Abfallbehandlung – Was ist				
	Energieeffizienz? In Optimierung der Abfallverbrennung 1, TK – Verlag				
22. Sonstiges					

Studien-/Prüfungsleistung							
			25. P	26.	27.	28. Anteil an der	
23. Nr.	24. Zugeordnete Lehrveranstaltung		Тур	LP	Benotung	Modulnote	
1	Thermische Behandlung von Rest- und Abfallstoffen		MP	4	benotet	100 %	
29. Prüfungsform / Voraussetzung für die Vergabe von LP		Klausur (60 N	1in.)				
30. Verantwortliche(r) Prüfer(in)		Prof. M. Fischlschweiger					
31. Verbindliche		Keine					
Prüfungsvorleistungen							

1a. Modultitel (deutsch)	1b. Modultitel (englisch)	
Wirtschaftsenglisch I	Business English I	

2. Verwendbarkeit des Moduls in Studiengängen						
M.Sc. Maschinenbau, M.Sc. Verfahrenstechnik/Chemieingenieurwesen						
3. Modulverantwortliche(r) 4. Zuständige Fakultät			5. Modulnummer			
Klaudia Böhlefeld		Sprachenzentrum				
6. Sprache	7. LP	8. Dauer	9. Angebot			
Deutsch /	3	[X] 1 Semester	[X] jedes Semester			
Englisch		[] 2 Semester	[] jedes Studienjahr			
			[] unregelmäßig			

- can express specialized vocabulary comprehensively in various forms of communication relating to company structures, management and marketing;
- can use improved oral communications skills to interact effectively in small talk, meetings and presentations;
- can understand the basic principles of business grammar;
- can comprehend complex details in listening tasks in specialized areas;
- have developed knowledge concerning working in international, professional, and business-oriented contexts.

Lehrveranstaltungen						
11.	12. Lehrveranstaltungstitel		14. LV-		16.	17. Arbeitsaufwand
Nr.	(deutsch/englisch)	13. Dozent(in)	Nr.	15. LV-Art	sws	Präsenz-/Eigenstudium
1	Wirtschaftsenglisch I (Business English I)	Klaudia Böhlefeld Dr. Hakan Gür	W/S 9096	V	2	28 h / 62 h
18a. Empf. Voraussetzungen		Keine				
19a. Inhalte		This course aims at the development of commercial and business communication skills. The language practiced in this course goes beyond the B2 level of the CEFR and familiarizes learners with the finer points of business correspondence, conversation, and business-related procedures.				
20a. Medienformen		Tafel, Folien, Foliensammlung/Handout, E-Learning Modul				

21a. Literatur	Es wird mit authentischen und dem neuesten Stand entsprechenden Texten aus den jeweiligen Fachgebieten gearbeitet, die ständig aktualisiert und in der ersten Sitzung benannt werden.
22a. Sonstiges	

Studien-/Prüfungsleistung							
23. Nr.	24. Zugeordnete Lehrveranstaltungen		25. P Art	26. LP	27. Benotung	28. Anteil an der Modulnote	
23. 141.	24. Zugeordnete Lenrveranstaltungen		AIT	Lr	benotung	Wiodulliote	
1	Wirtschaftsenglisch I		MP	2	benotet	100 %	
	ngsform / Voraussetzung für abe von LP	Klausur (90 Mi	nuten)				
30. Verantwortliche(r) Prüfer(in)		Klaudia Böhlefeld, Dr. Hakan Gür					
31. Prüfungsvorleistungen		Keine					