Problem Set 1: Proof Techniques and Sets

- 1. Prove the following via direct proof:
 - sum of an even number and odd number is odd
 - product of two odd numbers is odd
 - the square of an even number is even
- 2. Prove by contradiction:
 - Show that $p^2 q^2 = 1$ does not have positive integer solutions
- 3. Prove by Mathematical Induction that for any positive integer number n, n³ + 2n is divisible by 3.
 - Base Step
 - Inductive Hypothesis
 - Inductive Step
- 4. Show that the sum of the squares from 1 to n is (n(n+1)(2n+1))/6. Prove the claim via Mathematical Induction.
- 5. Determine if each of the following is true or false
 - \bullet $\varnothing \subseteq \varnothing$
 - ∅ € {∅}
 - $\bullet \quad \varnothing \subseteq \{\varnothing\}$
 - {a,b} € {a,b,c, {a,b}}
 - $\{a,b\} \subseteq \{a,b,\{a,b\}\}$
 - $\{a,b\} \subset 2^{\{a,b,\{a,b\}\}}$
 - $\{a,b\} \in 2^{\{a,b,\{a,b\}\}}$
 - $\{a,b, \{a,b\}\} \{a,b\} = \{a,b\}$
- 6. What are these sets?
 - $(\{1,3,5\} \cup \{3,1\}) \cap \{3,5,7\}$
 - $(\{1,2,5\} \{5,7,9\}) \cup (\{5,7,9\} \{1,2,5\})$
 - $2^{\{7,8,9\}} 2^{\{7,9\}}$
 - \cup {{3},{3,5}, \cap {{5,7},{7,9}}}