

PROPOSTA DE TESTE INTERMÉDIO N.º 4

MATEMÁTICA A - 12.º ANO

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Um grupo de dez pessoas vai ser dividido em dois grupos, um de quatro pessoas e outro de seis pessoas. O grupo de seis pessoas irá desempenhar tarefas diferenciadas ao contrário do grupo de quatro pessoas que irá desempenhar tarefas indiferenciadas.

De quantas maneiras distintas se podem formar os dois grupos?

- 210
- 5040
- **C** 151200

Exercício Extra: Suponha agora que o grupo vai ser dividido em dois grupos de cinco pessoas, ambos com tarefas indiferenciadas. De quantas maneiras distintas se podem formar os dois grupos?

2. Sejam a, b, c três números reais positivos tais que $\log_a(b^2) = c$. A expressão $\log_a b + \log_b(a^2) - \log_{\sqrt[3]{a}}(b^3)$ igual a:

A
$$\frac{(2-2c)(2+2c)}{c}$$
 B $\frac{(2-2c)^2}{c}$

$$(2-c)(2+c)$$

3. Na figura está representado, em referencial o.n. xOy, parte do gráfico de uma função f de domínio $\mathbb{R} \setminus \{2\}$.

Seja (u_n) a sucessão definida por $u_n = \frac{\ln\left(\frac{1}{n}\right)}{n^{15}}$. Qual é o valor de $\lim f(-u_n - 2)$?

- \mathbf{A} -1

C 1

D 2

4. Na figura está representado, em referencial o.n. xOy, parte do gráfico de uma função g de domínio \mathbb{R}^+ e uma recta r, assimptota do gráfico de g.

Sabe-se que:

$$\bullet \cos \alpha = \frac{\sqrt{10}}{10};$$

• a recta r intersecta o eixo Oy no ponto de coordenadas (0,2).

Qual é o valor de $\lim_{x \to +\infty} \left(\frac{3x^2}{g(x)} - x \right)$?

B
$$-\frac{2}{3}$$

$$\frac{2}{3}$$

5. Seja f uma função de domínio \mathbb{R} , do tipo $f(x) = ax^2 + ax$ cujo gráfico tem a concavidade voltada para cima. Considere a função h, de domínio \mathbb{R} , definida por $h(x) = e^{-x} \times f(x)$.

Qual das seguintes afirmações é verdadeira?

- lacksquare O gráfico de h tem a concavidade voltada para baixo em lacksquare 0,3.
- f B O gráfico de h tem a concavidade voltada para cima em [0,2].
- lacktriangle O gráfico de h tem a concavidade voltada para baixo em $\left]-\infty,0\right]$ e em $\left[3,+\infty\right[$.
- lacksquare O gráfico de h tem a concavidade voltada para cima em $\left]-\infty,0\right]$ e em $\left[2,+\infty\right[$.

GRUPO II – ITENS DE RESPOSTA ABERTA

1. A distribuição de probabilidades de uma variável aleatória X é dada pela tabela:

X_i	1	2	3
$P(X=x_i)$	P(A)	P(B)	P(A B)

Sabendo que A e B dois acontecimentos contidos num espaço de resultados S, associado a uma experiência aleatória tais que 0 < P(A) < P(B), $P(A \cap B) = 0.09$ e $P(\overline{A}) = 3P(A)$, qual é o valor de P(B)?

2. Considere a função f, de domínio \mathbb{R} , definida por:

$$f(x) = \begin{cases} x \ln x - 2x & \text{se } x \ge 1\\ \frac{2e^{0.5 - 0.5x}}{x - 2} & \text{se } x < 1 \end{cases}$$

- **2.1.** Mostre que f'(1) = -1 e escreva uma equação vectorial da recta tangente ao gráfico de f no ponto de abcissa 1.
- **2.2.** Seja $g(x) = \sqrt[3]{x^3 2x}$. Mostre que $(f \circ g)'(-1) = -\frac{1}{3}$
- **2.3.** Estude a função *f* quanto à monotonia e existência de extremos relativos.
- **2.4.** Determine $\lim_{x\to\infty} f(x)$ e conclua sobre a existência de assimptota horizontal do gráfico de f, quando $x\to -\infty$.
- **3.** Seja g, a função de domínio $[-2\pi, +\infty[$, definida por:

$$g(x) = \begin{cases} \operatorname{sen} x + \cos(2x) & \operatorname{se} \quad -2\pi \le x \le 0 \\ \frac{x^3 + 3x}{e - e^{ax + 1}} & \operatorname{se} \quad x > 0 \end{cases}, \text{ com } a \in \mathbb{R} \setminus \{0\}$$

- **3.1.** Determine a de modo que a função g seja contínua em todo o seu domínio.
- **3.2.** Determine, no intervalo $\left[-2\pi,0\right]$, os zeros da função g.

3.3. Seja
$$\theta \in \left] -\frac{\pi}{2}, 0 \right]$$
. Sabendo que $\operatorname{tg}\left(\theta + \frac{\pi}{4}\right) = \frac{1}{3}$, determine $g\left(\theta - \pi\right)$.

- **4.** Considere a função h, de domínio $\mathbb{R}\setminus\{0\}$, definida por $h(x)=x^3-6\ln\left(\frac{1}{x^2}\right)$.
 - **4.1.** Estude a função h, quanto ao sentido das concavidades e à existência de pontos de inflexão do seu gráfico.
 - **4.2.** Mostre que o gráfico de h e a bissectriz dos quadrantes pares se intersectam pelo menos uma vez no intervalo [0,2].
 - **4.3.** Considere a recta r definida por 2y x = 4. A recta r intersecta o gráfico de h em três pontos A, B e C, sendo que A tem a menor abcissa e C tem a maior abcissa.

Recorrendo às capacidades gráficas da calculadora, determine a área do triângulo [AOC].

Na sua resposta deve:

- reproduzir o(s) gráfico(s) (devidamente identificado(s)) que achar necessário(s) para a resolução do problema;
- representar o triângulo [AOC];
- indicar as coordenadas dos pontos A e C, arredondadas às milésimas;
- indicar a área do triângulo [AOC], arredondada às décimas.
- 5. Na figura estão representados, num referencial Oxyz, um cubo [OABCDEFG] e um tetraedro não regular [ACHI].

Sabe-se que:

- os vértices A, C e G pertencem aos eixos, Ox, Oy e Oz, respectivamente;
- os vértices H e I pertencem à diagonal facial [EG];

•
$$\overline{OA} = 4$$
 e $\overline{GH} = \overline{IE} = \sqrt{2}$

- 5.1. Escreva uma equação cartesiana do plano ACI.
- **5.2.** Escolhem-se, simultaneamente e ao acaso, quatro dos dez vértices assinalados. Qual é a probabilidade de apenas dois serem vértices do cubo?