MTH 102 - ANALYSIS IN ONE VARIABLE ASSIGNMENT 1

- 1. Prove $3 + 11 + (8n5) = 4n^2 n$ for all positive integers n.
- **2.** Prove $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{2^n} = 2 \frac{1}{2^n}$ for all positive integers n.
- 3. The principle of mathematical induction can be extended as follows. A list P_m, P_{m+1}, \dots of propositions is true provided
 - (1) P_m is true,
 - (2) P_{n+1} is true whenever P_n is true and $n \ge m$.
 - a. Prove $n^2 > n+1$ for all integers $n \ge 2$.
 - b. Prove $n! > n^2$ for all integers $n \ge 4$. [Recall $n! = n(n-1) \cdots 21$;]
- 4. Determine for which integers the inequality $2^n > n^2$ is true. Prove your claim by mathematical induction.
 - **5.** For each $n \in \mathbb{N}$, let P_n denote the assertion $n^2 + 5n + 1$ is an even integer.
 - (1) Prove P_{n+1} is true whenever P_n is true.
 - (2) For which n is P_n actually true? What is the moral of this exercise?
 - **6.** Prove $7^n 6n 1$ is divisible by 36 for all positive integers n.
 - 7. Show $\sqrt[3]{5-\sqrt{3}}$ is not a rational number.
 - **8.** Show $[3+\sqrt{2}]^{\frac{2}{3}}$ is not a rational number.
 - 9. Show the following irrational-looking expressions are actually rational numbers:
 - (1) $\sqrt{4+2\sqrt{3}}-\sqrt{3}$,
 - (2) $\sqrt{6+4\sqrt{2}}-\sqrt{2}$.

10. Given
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
, and $s_k = \sum_{k=0}^n \frac{(-1)^k}{k!}$, prove $e^{-1} - s_{2n+1} > 0$, for all $n \in \mathbb{N}$.