Exercise Set 1

Saliba, February 20 2019

Exercise 1. Let X and Y be two independent random variables following a Poisson distribution with respective parameters λ and μ .

- (1) Find the law of X + Y.
- (2) Find the conditional law of X knowing X + Y = n.

Exercise 2. Let X and Y be two independent exponential random variables with respective parameters λ and μ . What is the probability that $Y \leq X$?

Exercise 3. Let $X_1, X_2, ..., X_n$ be independent exponential random variables with parameters $\mu_1, \mu_2, ..., \mu_n$. Show that the random variable $Z = \min\{X_1, X_2, ..., X_n\}$ is again exponentially distributed and find its parameter.

Exercise 4. (Memorylessness) A random variable X is called memorylessness if $\forall s, t \geq 0$

$$\mathbb{P}\{X \ge t + s \mid X \ge s\} = \mathbb{P}\{X \ge t\}.$$

- (1) Show that an exponential random variable has this property.
- (2) Show that there is no other continuous random variable having this property.

Exercise 5. Let the distance driven until failure of a new car battery be modeled by an exponential distribution with mean value 20000 kilometers. Somebody wants to go on a 10000 kilometers trip. We know that the car was used during k kilometers before (distance driven without failure since the last battery change).

- (1) What is the probability that it will arrive at destination without battery failure?
- (2) How does this probability change if we do not assume an exponential distribution?

Exercise 6. Let X be a discrete random variable such that

$$\mathbb{P}\{X=n\} = \frac{2}{3^n} \ \forall n \in \mathbb{N} \setminus \{0\}.$$

We define the random variable Y as follow: knowing X = n, Y takes values n or n + 1 with equal probability.

- (1) Compute $\mathbb{E}(X)$.
- (2) Compute $\mathbb{E}(Y|X=n)$ and deduce $\mathbb{E}(Y|X)$, then $\mathbb{E}(Y)$.
- (3) Compute the joint law of (X, Y).
- (4) Compute the marginal law of Y.
- (5) Compute $\mathbb{E}(X|Y=i)$ ($\forall i \in \mathbb{N} \setminus \{0\}$) and deduce $\mathbb{E}(X|Y)$.
- (6) Compute the covariance of X and Y.