Introduction to Cryptography Lecture 3

Monika K. Polak

February 2, 2021

Content of this Lecture

- Properties of Modular Arithmetic
- Shift (or Caesar) Cipher, Affine Cipher
- Euclidean algorithm
- Hill cipher
- Intro to stream ciphers
- Intro to random number generators (RNGs)
- One-Time Pad (OTP)

Greatest Common Divisor (GCD)

The formal definition of the GCD is:

$$gcd(a, b) = max[k, such that k|a and k|b].$$

We stated that two integers a and b are relatively prime if their only common positive integer factor is 1. This is equivalent to saying that a and b are relatively prime if

$$gcd(a, b) = 1.$$

Properties of Modular Arithmetic

How do we perform modular division?

First, note that rather than performing a division, we prefer to multiply by the inverse

$$b/a \equiv b \times a^{-1} \mod m$$
.

The inverse a^{-1} of a number a is defined such that:

$$a \times a^{-1} \equiv 1 \mod m$$
.

Example: What is 5 / 7 mod 9?

The inverse of 7 mod 9 is 4 since $7 \times 4 \equiv 28 \equiv 1 \mod 9$, hence:

$$5/7 \equiv 5 \times 4 = 20 \equiv 2 \mod 9.$$

► How is the inverse compute?

The inverse of a number $a \mod m$ only exists if and only if:

$$gcd(a, m) = 1$$

(note that gcd(7,9) = 1, so that the inverse of 7 exists modulo 9).

Properties of Modular Arithmetic

Modular reduction can be performed at any point during a calculation

Example: We want to compute $3^8 \mod 7$.

1. Approach: Exponentiation followed by modular reduction

$$3^8=6561\equiv 2\mod 7$$

Note that we have the intermediate result 6561 even though we know that the final result can't be larger than 6.

2. Approach: Exponentiation with intermediate modular reduction

$$3^8 = 3^4 \times 3^4 = 81 \times 81 \equiv 4 \times 4 \mod 7 = 16 \mod 7 = 2 \mod 7$$

Note that we can perform all these multiplications without pocket calculator, whereas mentally computing $3^8 = 6561$ is a bit challenging for most of us.

General rule: For most algorithms it is advantageous to reduce intermediate results as soon as possible.

An Algebraic View on Modulo Arithmetic: The Ring \mathbb{Z}_m

The integer ring \mathbb{Z}_m has the following properties:

- Closure: We can add and multiply any two numbers and the result is always in the ring.
- Addition and multiplication are associative, i.e., for all $a,b,c\in\mathbb{Z}_m$

$$a + (b + c) = (a + b) + c$$
, $a \times (b \times c) = (a \times b) \times c$

and addition is commutative: a + b = b + a

- ► The distributive law holds: $a \times (b+c) = (a \times b) + (a \times c)$ for all $a,b,c \in \mathbb{Z}_m$
- ▶ There is the neutral element 0 with respect to addition, i.e., for all $a \in \mathbb{Z}_m$ $a + 0 \equiv a \mod m$
- For all $a \in \mathbb{Z}_m$, there is always an additive inverse element -a such that $a + (-a) \equiv 0 \mod m$
- ▶ There is the neutral element 1 with respect to multiplication. For all $a \in \mathbb{Z}_m$ $a \times 1 \equiv a \mod m$
- The multiplicative inverse a^{-1} $a \times a^{-1} \equiv 1 \mod m$ exists only for some, but not for all, elements in \mathbb{Z}_m .

Modulo Arithmetic: multiplicative inverse

More at

https://www.cs.rit.edu/spr/COURSES/CRYPTO/modtabs.txt

An Algebraic View on Modulo Arithmetic: The Ring \mathbb{Z}_m

Roughly speaking, a ring is a structure in which we can always add, subtract and multiply, but we can only divide by certain elements (namely by those for which a multiplicative inverse exists).

▶ We recall from above that an element $a \in \mathbb{Z}_m$ has a multiplicative inverse only if:

$$gcd(a, m) = 1$$

We say that a is coprime or relatively prime to m.

Example: We consider the ring $\mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. The elements 0, 3, and 6 do not have inverses since they are not coprime to 9. The inverses of the other elements 1, 2, 4, 5, 7, and 8 are:

$$1^{-1} \equiv 1 \mod 9$$
 $2^{-1} \equiv 5 \mod 9$ $4^{-1} \equiv 7 \mod 9$
 $5^{-1} \equiv 2 \mod 9$ $7^{-1} \equiv 4 \mod 9$ $8^{-1} \equiv 8 \mod 9$

Shift (or Caesar) Cipher

- Ancient cipher, allegedly used by Julius Caesar.
- Replaces each plaintext letter by another one.
- Replacement rule is very simple: Take letter that follows after k positions in the alphabet.

Needs mapping from letters to numbers:

Α	В	С	D	Е	F	G	Н	-1	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Example
$$k = 7$$

Plaintext =
$$ATTACK = 0, 19, 19, 0, 2, 10$$

$$Ciphertext = \frac{\texttt{haahjr}}{1} = 7, 0, 0, 7, 9, 17$$

Note that the letters "wrap around" at the end of the alphabet, which can be mathematically be expressed as reduction modulo 26, e.g.,

$$19 + 7 = 26 \equiv 0 \mod 26$$
.

Shift (or Caesar) Cipher

- Elegant mathematical (:D) description of the cipher.
 - Let $k, x, y \in [0, 1, ..., 25] = \mathbb{Z}_{26}$
 - ► Encryption: $y = e_k(x) \equiv x + k \mod 26$
 - ▶ Decryption: $x = d_k(y) \equiv y k \mod 26$
- ► The shift cipher is NOT secure.
 - Exhaustive key search (key space is only 26).
 - Letter frequency analysis attack.

Affine Cipher

Extension of the shift cipher: rather than just adding the key to the plaintext, we also multiply by the key.

We use for this a key consisting of two parts: k = (a, b) Let

$$k,x,y\in 0,1,\ldots,25=\mathbb{Z}_{26}$$

- ► Encryption: $y = e_k(x) \equiv ax + b \mod 26$
- ▶ Decryption: $x = d_k(y) \equiv a^{-1}(y b) \mod 26$
- Since the inverse of a is needed for inversion, we can only use values for a for which:

$$gcd(a, 26) = 1.$$

There are 12 values for a that fulfill this condition.

- From this follows that the key space is only $12 \times 26 = 312$ (cf. Sec 1.4 in Understanding Cryptography)
- It is not secure!
 - Exhaustive key search and letter frequency analysis can be used

Why Euclidean Algorithm is cool?

- Compute the greatest common divisor gcd(a, b) of two integers a and b
- gcd is easy for small numbers:
 - 1. factor a and b
 - 2. gcd = highest common factor

Example

$$a = 84 = 2 \cdot 2 \cdot 3 \cdot 7, b = 30 = 2 \cdot 3 \cdot 5$$

The gcd is the product of all common prime factors:

$$2 \cdot 3 = 6 = gcd(30, 84)$$

But: Factoring (without Euclidean Algorithm) is complicated (and often infeasible) for large numbers.

Why Euclidean Algorithm is cool?

- ▶ Observation: gcd(a, b) = gcd(a b, b)
- Core idea:
 - ► Reduce the problem of finding the gcd of two given numbers to that of the *gcd* of two smaller numbers
 - Repeat process recursively
 - ▶ The final gcd(b,0) = b is the answer to the original problem!
- ► Very efficient method even for long numbers: the complexity grows linearly with the number of bits.

Euclidean Algorithm

Euclidean Algorithm

Euclidean Algorithm Example: gcd(710, 310)

Hill Cipher

- Developed by the mathematician Lester Hill in 1929
- ► Strength is that it completely hides single-letter frequencies
 - ▶ The use of a larger matrix hides more frequency information
 - ► A 3 × 3 Hill cipher hides not only single-letter but also two-letter frequency information
- ► Strong against a ciphertext-only attack but easily broken with a known plaintext attack

Stream Ciphers in the Field of Cryptology

Stream Ciphers (Vernam Ciphers)

- Stream Ciphers were invented in 1917 by Gilbert Vernam
- ▶ Plaintext x, ciphertext y and key stream k consist of individual bits x_i , y_i , $k_i \in \{0,1\}$
- Encryption and decryption are simple additions modulo 2 (XOR)
- ► Encryption and decryption are the same functions
 - ► Encryption: $y_i = e_{k_i}(x_i) = x_i + k_i \mod 2$
 - ▶ Decryption: $x_i = d_{k_i}(y_i) = y_i + k_i \mod 2$

Stream Cipher vs. Block Cipher

- Stream Ciphers
 - Encrypt bits individually
 - ▶ Usually small and fast \rightarrow common in embedded devices (e.g., A5/1 for GSM phones)
- Block Ciphers
 - Always encrypt a full block (several bits)
 - ► Are common for Internet applications

Synchronous vs. Asynchronous Stream Cipher

- Security of stream cipher depends entirely on the key stream k_i:
 - ▶ Should be random, i.e., $Pr(k_i = 0) = Pr(k_i = 1) = 0.5$
 - Must be reproducible by sender and receiver
- Synchronous Stream Cipher
 - Key stream depend only on the key (and possibly an initialization vector IV)
- Asynchronous Stream Ciphers
 - Key stream depends also on the ciphertext (dotted feedback enabled)

Why is Modulo 2 Addition a Good Encryption Function?

- Modulo 2 addition is equivalent to XOR operation
- For perfectly random key stream k_i, each ciphertext output bit has a 50% chance to be 0 or 1 Good statistic property for ciphertext
- ▶ Inverting XOR is simple, since it is the same XOR operation

Xi	Si	y i
0	0	0
0	1	1
1	0	1
1	1	0

Stream Cipher: Throughput

Performance comparison of symmetric ciphers (Pentium4):

Cipher	Key length	Mbit/s		
DES	56	36.95		
3DES	112	13.32		
AES	128	51.19		
RC4 (stream cipher)	(choosable)	211.34		

Random number generators (RNGs)

Needed in cryptography, in particular for stream ciphers

Randomness

- ► Basic requirements for randomness:
 - Uniform distribution (the frequency of occurrence of ones and zeros should be approximately equal)
 - Independence (each bit uncorrelated with all previous)
- For cryptography, we also need:
 - Compromise of one output must not compromise future or previous output
 - Different output for each use

True Random Number Generators (TRNGs)

- Based on physical random processes: coin flipping, dice rolling, semiconductor noise, radioactive decay, mouse movement, clock jitter of digital circuits
- Output stream k_i should have good statistical properties: $Pr(k_i = 0) = Pr(k_i = 1) = 0.5$ (often achieved by post-processing)
- Output can neither be predicted nor be reproduced
- ► Typically used for generation of keys, nonces (used only-once values) and for many other purposes

True Random Number Generators (TRNGs)

Possible Sources of Randomness

The following possible sources of randomness can be used on a computer to generate true random sequences:

- ► Sound/video input
- Disk drives

True Random Number Generators (TRNGs)

"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin."

John von Neumann

Pseudorandom Number Generator (PRNG)

An algorithm that is used to produce an open-ended sequence of bits

- ► Generate sequences from initial seed value
- ► Typically, output stream has good statistical properties
- Output can be reproduced and can be predicted Often computed in a recursive way:

$$k_0 = seed$$

$$k_{i+1} = f(k_i, k_{i-1}, \ldots, k_{i-t})$$

Most PRNGs have bad cryptographic properties!

TRNG vs. two forms of PRNG's

TRNG = true random number generator PRNG = pseudorandom number generator PRF = pseudorandom function

Other than the number of bits produced there is no ference between a PRNG and a PRF

PRNG Requirements

The basic requirement when a PRNG or PRF is used for a cryptographic application is that an adversary who does not know the seed is unable to determine the pseudorandom string

The requirement for secrecy of the output of a PRNG or PRF leads to specific requirements in the areas of:

- Randomness (the generated bit stream needs to appear random even though it is deterministic)
 - ► NIST SP 800-22 Software, the diehard tests developed by George Marsaglia
- Unpredictability (a random sequence will have no correlation with the seed)
- Characteristics of the seed

Random number generators

PRNG Examples: Linear Congruential Generator

► An algorithm first proposed by Lehmer that is parameterized with four numbers:

► The sequence of random numbers $\{x_n\}$ is obtained via the following iterative equation:

$$x_{n+1} = (ax_n + b) \mod m$$

- ► Bad cryptographic properties due to the linearity of most PRNGs
- ► The selection of values for *a*, *b*, and *m* is critical in developing a good random number generator

PRNG Examples: Linear Congruential Generator

					Xi					
	a=1	2	3	4	5	6	7	8	9	10
i=0	1	1	1	1	1	1	1	1	1	1
1	1	2	3	4	5	6	7	8	9	10
2		4	9	5	3	3	5	9	4	1
3		8	5	9	4	7	2	6	3	
4		5	4	3	9	9	3	4	5	
5		10	1	1	1	10	10	10	1	
6		9				5	4	3		
7		7				8	6	2		
8		3				4	9	5		
9		6				2	8	7		
10		1				1	1	1		

PRNG Examples: Linear Congruential Generator

PRNG Examples: Blum Blum Shub (BBS) Generator

- ► Has perhaps the strongest public proof of its cryptographic strength of any purpose-built algorithm
- Referred to as a cryptographically secure pseudorandom bit generator (CSPRBG)
 - ▶ A CSPRBG is defined as one that passes the next-bit-test if there is not a polynomial-time algorithm that, on input of the first k bits of an output sequence, can predict the (k+1)st bit with probability significantly greater than 1/2
- ► The security of BBS is based on the difficulty of factoring *n*

PRNG Examples: Blum Blum Shub (BBS) Generator

PRNG Examples: Blum Blum Shub (BBS) Generator

i	X_i	\mathbf{B}_i
0	20749	
1	143135	1
2	177671	1
3	97048	0
4	89992	0
5	174051	1
6	80649	1
7	45663	1
8	69442	0
9	186894	0
10	177046	0

i	X_i	\mathbf{B}_i
11	137922	0
12	123175	1
13	8630	0
14	114386	0
15	14863	1
16	133015	1
17	106065	1
18	45870	0
19	137171	1
20	48060	0

Seed Requirements

- ► The seed that serves as input to the PRNG must be secure and unpredictable
- ▶ The seed itself must be a random or pseudorandom number
- ► Typically the seed is generated by TRNG

Typically, the seed is generated by a TRNG

Comparison of PRNGs and TRNGs

	PRNG	TRNG		
Efficiency	Very Efficient	Generally inefficient		
Determinism	Deterministic	Nondeterministic		
Periodicity	Periodic	Aperiodic		

One-Time Pad

One-Time Pad

- Improvement to Vernam cipher proposed by an Army Signal Corp officer, Joseph Mauborgne
- Use a random key that is as long as the message so that the key need not be repeated
- Key is used to encrypt and decrypt a single message and then is discarded
- ► Each new message requires a new key of the same length as the new message
- ► Scheme is unbreakable
 - Produces random output that bears no statistical relationship to the plaintext
 - ▶ Because the ciphertext contains no information whatsoever about the plaintext, there is simply no way to break the code

One-Time Pad – Difficulties

- ➤ The one-time pad offers complete security but, in practice, has two fundamental difficulties:
 - There is the practical problem of making large quantities of random keys
 Any heavily used system might require millions of random characters on a regular basis
 - Key distribution problem For every message to be sent, a key of equal length is needed by both sender and receiver
- Because of these difficulties, the one-time pad is of limited utility
 - Useful primarily for low-bandwidth channels requiring very high security
- ► The one-time pad is the only cryptosystem that exhibits perfect secrecy

Thanks for Your attention.

