وزارة التربية الوطنية مديرية التربية لولاية: تبسة

ثانوية: جبل الجرف _ تبسة-أساتذة المادة:

البطاقة التربوية لعمل مخبرى

رقم المذكرة: 2 المستوى: 2 علوم تجريبية + رياضى + تقنى رياضى الوحدة:الطاقة الكامنة

المجال: الطاقة

عنوان التجرية: تحديد عبارة الطاقة الكامنة المرونية

مؤشرات الكفاءة :

- يحسن تمثيل الحصيلة الطاقوية وكتابة معادلة الإنحفاظ.
 - يربط بين الجملة والطاقة المخزنة فيها.
 - يستخرج عبارة الطاقة الكامنة المرونية

النشاط 1: مقاربة أولية لعبارة الطاقة الكامنة المرونية

البروتوكول التجريبي

الأدوات:

نابض طویل - جسم کتلته M - مسطرة مدرجة

طريقة العمل:

نربط جسما كتلته M الى أحد طرفي نابض طويل ثم نتركه يسقط من الموضع A دون سرعة ابتدائية فيستطيل النابض حتى الموضع B . أين تنعدم سر : الجسم ويستطيل النابض بالمقدار x كما في الشكل (3- ج)

المطلوب:

- 1- مثل الحصيلة الطاقوية للجملة المكونة من النابض ، الجسم و الأرض بين الشكل 3- الشكل الموضعين A و B
 - 2- استنتج من معادلة انحفاظ الطاقة بين الموضعين A و B المعادلة ديث E_{Pe} الطاقة الكامنة المرونية للنابض . E_{Pe}
 - $_{\rm X}$ كرر التجربة من أجل قيم مختلفة للكتلة $_{\rm X}$ وقس في كل مرة الاستطالة $_{\rm X}$ للنابض.
 - 4- دون نتائجك في الجدول التالى:

M(Kg)	x(m)	Mgx(J)	$x^2(m^2)$

- $^{\circ}$ ارسم المنحنى الممثل لتغيرات E_{Pe} بدلالة المقدار $^{\circ}$ ماذا تلاحظ $^{\circ}$
- $E_{
 m Pe}=K_{
 m e}\,{
 m x}^2$: احسب ميل المنحنى و استنتج أن عبارة الطاقة الكامنة المرونية تكتب على الشكل -6

حل النشاط 1

النتائج:

5- رسم البيان:

 $E_{PeB} = E_{PPA} - E_{PPB}$ ومنه یمکن کتابه $E_{PPA} = E_{PeB} + E_{PPB} + E_{PPB} = 2$ ومنه یمکن کتابه $E_{Pe} = \Delta E_{PP} = \Delta E_{PP}$ وبالتالي تصبح $E_{Pe} = \Delta E_{PP}$ وبالتالي تصبح $E_{Pe} = \Delta E_{PP}$ وبالتالي تصبح $E_{Pe} = \Delta E_{PP}$

M(Kg)	x(m)	Mgx(J)	$\mathbf{x}^2(\mathbf{m}^2)$
0,1	0,049	0,048	2,4x10 ⁻³
0,2	0,098	0,192	9,6x10 ⁻³
0,4	0,196	0,768	3,8x10 ⁻²
0,5	0,245	1,200	6,0x10 ⁻²

0,2 0.01 x²(m²)

. هو الميل عبارة عن خط مستقيم يمر بالمبدأ معادلته من الشكل ${\bf E}_{
m pe}=a{f x}^2$ حيث ${f a}$ هو الميل

$$a = \frac{6x0.2}{6x0.01} = 20$$
 -6

 $a = K_e$ حيث $\frac{E_{pe} = K_e x^2}{E_{pe}}$ عن خط مستقيم يمر بالمبدأ إذن يمكن كتابة معادلته من الشكل ومنه K_e=20 SI

النشاط 2: تحديد الثابت

نعاير النابض المستعمل سابقا و ذلك بتعليق أجساما مختلفة الكتلة و نقيس في كل مرة الاستطالة عند وضع التوازن ونسجل النتائج في الجدول التالي:

P (N)

0,05

M(kg)		
P=T(N)		
$\mathbf{l} = \mathbf{x}(\mathbf{cm})$		

- 1- ارسم المنحنى البياني لتغيرات القوة المطبقة على النابض بدلالة الاستطالة. ماذا تلاحظ؟
 - 2- احسب ميل المنحنى الذي يمثل ثابت مرونة النابض.
 - 3- قارن قيمة الميل مع قيمة K_e . ماذا تلاحظ
 - 4- استنتج من هذه المقارنة أن $K_{\rm e}$ حيث K ثابت مرونة النابض.
 - 5- استنتج عبارة الطاقة الكامنة المرونية .

حل النشاط 2

النتائج هي:

M(kg)	0,3	0,4	0,6	0,7
P=T(N)	2.94	3.92	5.88	6.86
$\Delta l = x(cm)$	7.3	9.8	14.7	17.1

1- رسم البيان:

نلاحظ أن البيان عبارة عن خط مستقيم يمر بالمبدأ معادلته من الشكل:

P=T=Kx حيث الميل هو ثابت مرونة النابض

2- حساب الميل:

$$K = \frac{HJ}{IJ} = \frac{1,5x2}{1,5x0,05} = 40.SI$$

$$K_e = 20 \text{ SI}$$

$$\frac{K_e}{K} = \frac{20}{40} = \frac{1}{2}$$
 ومنه

$$\mathbf{K}_{\mathrm{e}} = \frac{1}{2}\mathbf{K}$$
 اي نستنج أن -4

: وجدنا في النشاط 1 أن
$$\mathbf{E}_{\mathrm{pe}} = \mathbf{K}_{\mathrm{e}} \mathbf{x}^2$$
 ومنه تصبح العلاقة \mathbf{E}_{pe}

وهي عبارة الطاقة الكامنة المرونية

x (m)

$$E_{pe} = \frac{1}{2}K x^2$$