AMENDMENTS TO THE CLAIMS

Claim 1. (Currently Amended)

A solid-state image pickup apparatus for separating incident light into colors at positions

corresponding to apertures formed in a screening member, which screens the incident light,

converting resulting color-separated light to electric signals, and processing said electric signals

to thereby output broadband signals, said apparatus comprising:

an image pickup section comprising:

a color filter comprising color filter segments for separating light incident via the

apertures into a plurality of colors each having a particular spectral characteristic, wherein said

color filter segments include color filter segments having complementary color spectral

characteristics;

an image sensing section comprising photosensitive cells for converting the light

transmitted through said color filter segments to electric signals, wherein nearby ones of said

photosensitive cells are shifted from each other in at least one of a vertical and a horizontal

direction in a bidimensional arrangement;

electrodes arranged in such a manner as to skirt round the apertures for producing signals

from said photosensitive cells; and

transfer registers each for sequentially transferring the signals input via said electrodes in

a vertical direction or a horizontal direction;

an operation commanding circuit for outputting a timing and any one of a plurality of

modes for reading the signals out of said image pickup section;

a digitizing circuit for converting the signals read out of said image pickup section to

digital data, wherein said digital data are arranged in a plane that contains said photosensitive

cells and virtual pixels derived from a shifted arrangement of said photosensitive cells; and

a signal processing circuit for interpolating, in a first mode designated by said operation

commanding circuit, pixel data in positions of said virtual pixels or positions of said

photosensitive cells and generating three primary color data on the basis of a plurality of pixel

data, which are produced by mixing pixel data, or interpolating, in a second mode designated by

said operation commanding circuit, three primary color image data in the positions of said virtual

pixels on the basis of all pixel data sequentially read out of said photosensitive cells, generating

three primary color pixel data at the positions of said photosensitive cells on the basis of said

pixel data given to said virtual pixels, and broadening a frequency band of said thee three

primary color image data.

Claim 2. (Original)

The apparatus in accordance with claim 1, wherein assuming that a distance between

nearby ones of said photosensitive cells each corresponding to one of the apertures is represented

by a pixel pitch, said apertures have a tetragonal or a polygonal shape and are arranged

bidimensionally by being shifted from each other by one-half of the pixel pitch in the vertical

direction column by column or in the horizontal direction row by row or have a 45°-rotated

tetragonal or a polygonal shape and are arranged bidimensionally.

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 4 of 55

Claim 3. (Original)

The apparatus in accordance with claim 2, wherein said color filter segments use a

plurality of colors selected from cyan (Cy), magenta (Mg), yellow (Ye), white (W) and green (G)

derived from subtractive mixture, wherein a first color is arranged in a tetragonal lattice pattern

with the nearby photosensitive cells being shifted from each other by one-half of the pixel pitch,

and wherein a second and a third color are arranged in either one of a checker pattern and a full-

checker pattern while being shifted from said tetragonal lattice pattern by one-half of the pixel

pitch.

Claim 4. (Withdrawn)

The apparatus in accordance with claim 2, wherein said color filter segments use a

plurality of colors selected from Cy, Mg, Ye, W and G derived from subtractive mixture,

wherein a first color is arranged in a tetragonal lattice pattern with the nearby photosensitive

cells being shifted from each other by one-half of the pixel pitch, and wherein a second and a

third color are arranged in stripe patterns alternating with each other in the horizontal direction,

while being shifted from said tetragonal lattice pattern by one-half of the pixel pitch.

Claim 5. (Withdrawn)

The apparatus in accordance with claim 1, wherein said color filter segments use a

plurality of colors selected from Cy, Mg, Ye, W and G derived from subtractive mixture,

wherein a first tetragonal lattice implemented by four of said colors contains first color

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 5 of 55

positioned at one pair of diagonally opposite corners, a second and a third color respectively

positioned at the other pair of diagonally opposite corners, and a fourth color positioned at a

center, and wherein a second tetragonal lattice, which is shifted from said first tetragonal lattice

by one-half of the pixel pitch in the horizontal and vertical directions, contains said second and

third colors at one pair of diagonally opposite corners and said fourth color at the other pair of

diagonally opposite corners in a full-checker pattern.

Claim 6. (Withdrawn)

The apparatus in accordance with claim 2, wherein said color filter segments use a

plurality of colors selected from Cy, Mg, Ye, W and G derived from subtractive mixture,

wherein a first tetragonal lattice implemented by four of said colors contains a first color

positioned at one pair of diagonally opposite corners, a second color positioned at the other pair

of diagonally opposite corners, and a third color positioned at a center, wherein a second

tetragonal lattice, which is shifted from said first tetragonal lattice by one-half of the pixel pitch

in the horizontal and vertical directions, contains a same color positioned at one pair of

diagonally opposite corners and a same color positioned at the other pair of diagonally opposite

corners in a checker pattern, and wherein said first and second tetragonal lattices partly overlap

each other.

Claim 7. (Withdrawn)

The apparatus in accordance with claim 2, wherein said color filter segments use a

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 6 of 55

plurality of colors selected from Cy, Mg, Ye, W and G derived from subtractive mixture,

wherein a first tetragonal lattice implemented by four of said colors contains a first color

positioned at one pair of diagonally opposite corners, a second and a third color respectively

positioned at the other pair of diagonally opposite corners, and a fourth color positioned at a

center, wherein a second tetragonal lattice, which is shifted from said first tetragonal lattice by

one-half of the pixel pitch in the horizontal and vertical directions, contains a same color

positioned at one pair of diagonally opposite corners, and a color different from three colors

positioned at vertexes of a triangle, which is formed in a shifted direction of said first tetragonal

lattice, in a full-checker pattern, and wherein said first and second tetragonal lattices overlap

each other.

Claim 8. (Currently Amended)

The apparatus in accordance with claim 3, wherein said image pickup section performs,

in the fist mode, interlace scanning to thereby read out signal charges of a same filed field while

mixing pixels or sequentially reads out, in the second mode, all signal pixels.

Claim 9. (Withdrawn)

The apparatus in accordance with claim 4, wherein said image pickup section performs,

in the fist mode, interlace scanning to thereby read out signal charges of a same filed while

mixing pixels or sequentially reads out, in the second mode, all signal pixels.

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 7 of 55

Claim 10. (Withdrawn)

The apparatus in accordance with claim 5, wherein said image pickup section performs,

in the fist mode, interlace scanning to thereby read out signal charges of a same filed while

mixing pixels or sequentially reads out, in the second mode, all signal pixels.

Claim 11. (Withdrawn)

The apparatus in accordance with claim 6, wherein said image pickup section performs,

in the fist mode, interlace scanning to thereby read out signal charges of a same filed while

mixing pixels or sequentially reads out, in the second mode, all signal pixels.

Claim 12. (Withdrawn)

The apparatus in accordance with claim 7, wherein said image pickup section performs,

in the fist mode, interlace scanning to thereby read out signal charges of a same filed while

mixing pixels or sequentially reads out, in the second mode, all signal charges.

Claim 13. (Original)

The apparatus in accordance with claim 8, wherein said signal processing circuit

comprises:

a correcting circuit for correcting pixel data fed from said photosensitive cells;

an interpolating circuit for generating, in the first mode, primary color pixel data at the

positions of said virtual pixels or the positions of said photosensitive cells or calculating, in the

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 8 of 55

second mode, primary color pixel data at the positions of said virtual pixels, calculating the

primary color data at the positions of said photosensitive cells by using calculated primary color

pixel data, generating luminance data at the positions of said virtual pixels, and calculating

luminance data at the positions of said photosensitive cells by using calculated luminance data;

a high frequency circuit for raising a frequency band of the pixel data output from said

interpolating circuit to a higher frequency band;

a matrix circuit for generating luminance data and chrominance data by using pixel data

output from said high frequency circuit;

a first filter circuit for removing aliasing distortion from the luminance data and the

chrominance data; and

a chroma adjusting circuit for executing gain adjustment with each of the luminance data

and the chrominance data.

Claim 14. (Withdrawn)

The apparatus in accordance with claim 9, wherein said signal processing circuit

comprises:

a correcting circuit for correcting pixel data fed from said photosensitive cells;

an interpolating circuit for generating, in the first mode, primary color pixel data at the

positions of said virtual pixels or the positions of said photosensitive cells or calculating, in the

second mode, primary color pixel data at the positions of said virtual pixels, calculating the

primary color data at the positions of said photosensitive cells by using calculated primary color

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 9 of 55

pixel data, generating luminance data at the positions of said virtual pixels, and calculating

luminance data at the positions of said photosensitive cells by using calculated luminance data;

a high frequency circuit for raising a frequency band of the pixel data output from said

interpolating circuit to a higher frequency band;

a matrix circuit for generating luminance data and chrominance data by using pixel data

output from said high frequency circuit;

a first filter circuit for removing aliasing distortion from the luminance data and the

chrominance data; and

a chroma adjusting circuit for executing gain adjustment with each of the luminance data

and the chrominance data.

Claim 15. (Withdrawn)

The apparatus in accordance with claim 10, wherein said signal processing circuit

comprises:

a correcting circuit for correcting pixel data fed from said photosensitive cells;

an interpolating circuit for generating, in the first mode, primary color pixel data at the

positions of said virtual pixels or the positions of said photosensitive cells or calculating, in the

second mode, primary color pixel data at the positions of said virtual pixels, calculating the

primary color data at the positions of said photosensitive cells by using calculated primary color

pixel data, generating luminance data at the positions of said virtual pixels, and calculating

luminance data at the positions of said photosensitive cells by using calculated luminance data;

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 10 of 55

a high frequency circuit for raising a frequency band of the pixel data output from said

interpolating circuit to a higher frequency band;

a matrix circuit for generating luminance data and chrominance data by using pixel data

output from said high frequency circuit;

a first filter circuit for removing aliasing distortion from the luminance data and the

chrominance data; and

a chroma adjusting circuit for executing gain adjustment with each of the luminance data

and the chrominance data.

Claim 16. (Withdrawn)

The apparatus in accordance with claim 11, wherein said signal processing circuit

comprises:

a correcting circuit for correcting pixel data fed from said photosensitive cells;

an interpolating circuit for generating, in the first mode, primary color pixel data at the

positions of said virtual pixels or the positions of said photosensitive cells or calculating, in the

second mode, primary color pixel data at the positions of said virtual pixels, calculating the

primary color data at the positions of said photosensitive cells by using calculated primary color

pixel data, generating luminance data at the positions of said virtual pixels, and calculating

luminance data at the positions of said photosensitive cells by using calculated luminance data;

a high frequency circuit for raising a frequency band of the pixel data output from said

interpolating circuit to a higher frequency band;

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 11 of 55

a matrix circuit for generating luminance data and chrominance data by using pixel data

output from said high frequency circuit;

a first filter circuit for removing aliasing distortion from the luminance data and the

chrominance data; and

a chroma adjusting circuit for executing gain adjustment with each of the luminance data

and the chrominance data.

Claim 17. (Withdrawn)

The apparatus in accordance with claim 12, wherein said signal processing circuit

comprises:

a correcting circuit for correcting pixel data fed from said photosensitive cells;

an interpolating circuit for generating, in the first mode, primary color pixel data at the

positions of said virtual pixels or the positions of said photosensitive cells or calculating, in the

second mode, primary color pixel data at the positions of said virtual pixels, calculating the

primary color data at the positions of said photosensitive cells by using calculated primary color

pixel data, generating luminance data at the positions of said virtual pixels, and calculating

luminance data at the positions of said photosensitive cells by using calculated luminance data;

a high frequency circuit for raising a frequency band of the pixel data output from said

interpolating circuit to a higher frequency band;

a matrix circuit for generating luminance data and chrominance data by using pixel data

output from said high frequency circuit;

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 12 of 55

a first filter circuit for removing aliasing distortion from the luminance data and the

chrominance data; and

a chroma adjusting circuit for executing gain adjustment with each of the luminance data

and the chrominance data.

Claim 18. (Original)

The apparatus in accordance with claim 13, wherein said interpolating circuit comprises:

a primary color generating circuit for generating, in the first mode, primary color pixel

data at the position of said virtual pixels or said photosensitive cells on the basis of pixel data of

colors, which include the complementary colors, surrounding said virtual pixels or said

photosensitive cells; and

a still picture data calculating circuit for generating, in the second mode, primary color

pixel data at the positions of said virtual pixels on the basis of actual pixel data of colors

including the complementary colors, calculating the primary color data at the positions of said

photosensitive cells by using calculated pixel data, generating luminance data at the positions of

said virtual pixels, and calculating luminance data at the positions of said photosensitive cells by

using calculated luminance data.

Claim 19. (Withdrawn)

The apparatus in accordance with claim 14, wherein said interpolating circuit comprises:

a primary color generating circuit for generating, in the first mode, primary color pixel

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 13 of 55

data at the position of said virtual pixels or said photosensitive cells on the basis of pixel data of

colors, which include the complementary colors, surrounding said virtual pixels or said

photosensitive cells; and

a still picture data calculating circuit for generating, in the second mode, primary color

pixel data at the positions of said virtual pixels on the basis of actual pixel data of colors

including the complementary colors, calculating the primary color data at the positions of said

photosensitive cells by using calculated pixel data, generating luminance data at the positions of

said virtual pixels, and calculating luminance data at the positions of said photosensitive cells by

using calculated luminance data.

Claim 20. (Withdrawn)

The apparatus in accordance with claim 15, wherein said interpolating circuit comprises:

a primary color generating circuit for generating, in the first mode, primary color pixel

data at the position of said virtual pixels or said photosensitive cells on the basis of pixel data of

colors, which include the complementary colors, surrounding said virtual pixels or said

photosensitive cells; and

a still picture data calculating circuit for generating, in the second mode, primary color

pixel data at the positions of said virtual pixels on the basis of actual pixel data of colors

including the complementary colors, calculating the primary color data at the positions of said

photosensitive cells by using calculated pixel data, generating luminance data at the positions of

said virtual pixels, and calculating luminance data at the positions of said photosensitive cells by

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 14 of 55

using calculated luminance data.

Claim 21. (Withdrawn)

The apparatus in accordance with claim 16, wherein said interpolating circuit comprises:

a primary color generating circuit for generating, in the first mode, primary color pixel

data at the position of said virtual pixels or said photosensitive cells on the basis of pixel data of

colors, which include the complementary colors, surrounding said virtual pixels or said

photosensitive cells; and

a still picture data calculating circuit for generating, in the second mode, primary color

pixel data at the positions of said virtual pixels on the basis of actual pixel data of colors

including the complementary colors, calculating the primary color data at the positions of said

photosensitive cells by using calculated pixel data, generating luminance data at the positions of

said virtual pixels, and calculating luminance data at the positions of said photosensitive cells by

using calculated luminance data.

Claim 22. (Withdrawn)

The apparatus in accordance with claim 17, wherein said interpolating circuit comprises:

a primary color generating circuit for generating, in the first mode, primary color pixel

data at the position of said virtual pixels or said photosensitive cells on the basis of pixel data of

colors, which include the complementary colors, surrounding said virtual pixels or said

photosensitive cells; and

a still picture data calculating circuit for generating, in the second mode, primary color

pixel data at the positions of said virtual pixels on the basis of actual pixel data of colors

including the complementary colors, calculating the primary color data at the positions of said

photosensitive cells by using calculated pixel data, generating luminance data at the positions of

said virtual pixels, and calculating luminance data at the positions of said photosensitive cells by

using calculated luminance data.

Claim 23. (Original)

The apparatus in accordance with claim 18, wherein said still picture data calculating

circuit comprises:

a primary color generating circuit for simultaneously generating three primary color pixel

data at the position of each virtual pixel;

a primary color generating and interpolating circuit for calculating and interpolating, by

using the three primary color pixel data, the primary color data at the position of each

photosensitive cell surrounded by said three primary color pixel data, and outputting plane pixel

data color by color;

a luminance data generating circuit for generating luminance data at the position of said

virtual pixel on the basis of the surrounding pixel data of colors, which include complementary

colors; and

a luminance generating and interpolating circuit for interpolating luminance data at the

position of said photosensitive cell surrounded by the luminance data, and outputting plane

luminance data.

Application No.: 09/805,163 Docket No.: 0378-0381P

Reply to Office Action of July 14, 2005

Page 16 of 55

Claim 24. (Withdrawn)

The apparatus in accordance with claim 19, wherein said still picture data calculating

circuit comprises:

a primary color generating circuit for simultaneously generating three primary color pixel

data at the position of each virtual pixel;

a primary color generating and interpolating circuit for calculating and interpolating, by

using the three primary color pixel data, the primary color data at the position of each

photosensitive cell surrounded by said three primary color pixel data, and outputting plane pixel

data color by color;

a luminance data generating circuit for generating luminance data at the position of said

virtual pixel on the basis of the surrounding pixel data of colors, which include complementary

colors; and

a luminance generating and interpolating circuit for interpolating luminance data at the

position of said photosensitive cell surrounded by the luminance data, and outputting plane

luminance data.

Claim 25. (Withdrawn)

The apparatus in accordance with claim 20, wherein said still picture data calculating

circuit comprises:

a primary color generating circuit for simultaneously generating three primary color pixel

data at the position of each virtual pixel;

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 17 of 55

a primary color generating and interpolating circuit for calculating and interpolating, by

using the three primary color pixel data, the primary color data at the position of each

photosensitive cell surrounded by said three primary color pixel data, and outputting plane pixel

data color by color;

a luminance data generating circuit for generating luminance data at the position of said

virtual pixel on the basis of the surrounding pixel data of colors, which include complementary

colors; and

a luminance generating and interpolating circuit for interpolating luminance data at the

position of said photosensitive cell surrounded by the luminance data, and outputting plane

luminance data.

Claim 26. (Withdrawn)

The apparatus in accordance with claim 21, wherein said still picture data calculating

circuit comprises:

a primary color generating circuit for simultaneously generating three primary color pixel

data at the position of each virtual pixel;

a primary color generating and interpolating circuit for calculating and interpolating, by

using the three primary color pixel data, the primary color data at the position of each

photosensitive cell surrounded by said three primary color pixel data, and outputting plane pixel

data color by color;

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P Page 18 of 55

a luminance data generating circuit for generating luminance data at the position of said

virtual pixel on the basis of the surrounding pixel data of colors, which include complementary

colors; and

a luminance generating and interpolating circuit for interpolating luminance data at the

position of said photosensitive cell surrounded by the luminance data, and outputting plane

luminance data.

Claim 27. (Withdrawn)

The apparatus in accordance with claim 22, wherein said still picture data calculating

circuit comprises:

a primary color generating circuit for simultaneously generating three primary color pixel

data at the position of each virtual pixel;

a primary color generating and interpolating circuit for calculating and interpolating, by

using the three primary color pixel data, the primary color data at the position of each

photosensitive cell surrounded by said three primary color pixel data, and outputting plane pixel

data color by color;

a luminance data generating circuit for generating luminance data at the position of said

virtual pixel on the basis of the surrounding pixel data of colors, which include complementary

colors; and

a luminance generating and interpolating circuit for interpolating luminance data at the

position of said photosensitive cell surrounded by the luminance data, and outputting plane

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 19 of 55

luminance data.

Claim 28. (Original)

The apparatus in accordance with claim 23, wherein said primary color generating and

interpolating circuit comprises:

a red (R) plane interpolating circuit for generating R pixel data on the basis of pixel data

around said R pixel data while taking account of a correlation between said R pixel data and said

pixel data around said R pixel data;

a G plane interpolating circuit for generating G pixel data on the basis of pixel data

around said G pixel data while taking account of a correlation between said G pixel data and said

pixel data around said G pixel data; and

a blue (B) plane interpolating circuit for generating B pixel data on the basis of pixel data

around said B pixel data while taking account of a correlation between said B pixel data and said

pixel data around said B pixel data.

Claim 29. (Withdrawn)

The apparatus in accordance with claim 24, wherein said primary color generating and

interpolating circuit comprises:

a red (R) plane interpolating circuit for generating R pixel data on the basis of pixel data

around said R pixel data while taking account of a correlation between said R pixel data and said

pixel data around said R pixel data;

MRC/CJB/vd

a G plane interpolating circuit for generating G pixel data on the basis of pixel data

around said G pixel data while taking account of a correlation between said G pixel data and said

pixel data around said G pixel data; and

a blue (B) plane interpolating circuit for generating B pixel data on the basis of pixel data

around said B pixel data while taking account of a correlation between said B pixel data and said

pixel data around said B pixel data.

Claim 30. (Withdrawn)

The apparatus in accordance with claim 25, wherein said primary color generating and

interpolating circuit comprises:

a red (R) plane interpolating circuit for generating R pixel data on the basis of pixel data

around said R pixel data while taking account of a correlation between said R pixel data and said

pixel data around said R pixel data;

a G plane interpolating circuit for generating G pixel data on the basis of pixel data

around said G pixel data while taking account of a correlation between said G pixel data and said

pixel data around said G pixel data; and

a blue (B) plane interpolating circuit for generating B pixel data on the basis of pixel data

around said B pixel data while taking account of a correlation between said B pixel data and said

pixel data around said B pixel data.

Docket No.: 0378-0381P Reply to Office Action of July 14, 2005 Page 21 of 55

Claim 31. (Withdrawn)

The apparatus in accordance with claim 26, wherein said primary color generating and

interpolating circuit comprises:

a red (R) plane interpolating circuit for generating R pixel data on the basis of pixel data

around said R pixel data while taking account of a correlation between said R pixel data and said

pixel data around said R pixel data;

a G plane interpolating circuit for generating G pixel data on the basis of pixel data

around said G pixel data while taking account of a correlation between said G pixel data and said

pixel data around said G pixel data; and

a blue (B) plane interpolating circuit for generating B pixel data on the basis of pixel data

around said B pixel data while taking account of a correlation between said B pixel data and said

pixel data around said B pixel data.

Claim 32. (Withdrawn)

The apparatus in accordance with claim 27, wherein said primary color generating and

interpolating circuit comprises:

a red (R) plane interpolating circuit for generating R pixel data on the basis of pixel data

around said R pixel data while taking account of a correlation between said R pixel data and said

pixel data around said R pixel data;

a G plane interpolating circuit for generating G pixel data on the basis of pixel data

around said G pixel data while taking account of a correlation between said G pixel data and said

MRC/CJB/vd Birch, Stewart, Kolasch & Birch, LLP

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 22 of 55

pixel data around said G pixel data; and

a blue (B) plane interpolating circuit for generating B pixel data on the basis of pixel data

around said B pixel data while taking account of a correlation between said B pixel data and said

pixel data around said B pixel data.

Claim 33. (Original)

The apparatus in accordance with claim 23, wherein said luminance data generating

circuit comprises a sum calculating circuit for calculating a sum of four-color pixel data of said

photosensitive cells that surround the virtual pixel being observed.

Claim 34. (Withdrawn)

The apparatus in accordance with claim 24, wherein said luminance data generating

circuit comprises a sum calculating circuit for calculating a sum of four-color pixel data of said

photosensitive cells that surround the virtual pixel being observed.

Claim 35. (Withdrawn)

The apparatus in accordance with claim 25, wherein said luminance data generating

circuit comprises a sum calculating circuit for calculating a sum of four-color pixel data of said

photosensitive cells that surround the virtual pixel being observed.

MRC/CJB/vd

Birch, Stewart, Kolasch & Birch, LLP

Docket No.: 0378-0381P Reply to Office Action of July 14, 2005 Page 23 of 55

Claim 36. (Withdrawn)

The apparatus in accordance with claim 26, wherein said luminance data generating

circuit comprises a sum calculating circuit for calculating a sum of four-color pixel data of said

photosensitive cells that surround the virtual pixel being observed.

Claim 37. (Withdrawn)

The apparatus in accordance with claim 27, wherein said luminance data generating

circuit comprises a sum calculating circuit for calculating a sum of four-color pixel data of said

photosensitive cells that surround the virtual pixel being observed.

Claim 38. (Original)

The apparatus in accordance with claim 23, wherein said luminance generating and

interpolating circuit interpolates luminance data in the position of the photosensitive cell, which

is being observed, by using luminance data around said photosensitive cell while taking account

of a correlation between said luminance data.

Claim 39. (Withdrawn)

The apparatus in accordance with claim 24, wherein said luminance generating and

interpolating circuit interpolates luminance data in the position of the photosensitive cell, which

is being observed, by using luminance data around said photosensitive cell while taking account

of a correlation between said luminance data.

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 24 of 55

Claim 40. (Withdrawn)

The apparatus in accordance with claim 25, wherein said luminance generating and

interpolating circuit interpolates luminance data in the position of the photosensitive cell, which

is being observed, by using luminance data around said photosensitive cell while taking account

of a correlation between said luminance data.

Claim 41. (Withdrawn)

The apparatus in accordance with claim 26, wherein said luminance generating and

interpolating circuit interpolates luminance data in the position of the photosensitive cell, which

is being observed, by using luminance data around said photosensitive cell while taking account

of a correlation between said luminance data.

Claim 42. (Withdrawn)

The apparatus in accordance with claim 27, wherein said luminance generating and

interpolating circuit interpolates luminance data in the position of the photosensitive cell, which

is being observed, by using luminance data around said photosensitive cell while taking account

of a correlation between said luminance data.

Claim 43. (Original)

The apparatus in accordance with claim 13, wherein said high frequency circuit

comprises:

MRC/CJB/vd

Docket No.: 0378-0381P

Page 25 of 55

a high-pass filter circuit for passing high frequency components of the luminance data to

thereby output high frequency luminance data; and

a first adding circuit for adding color-by-color plane pixel data fed from said primary

color generating and interpolating circuit and the high frequency luminance data.

Claim 44. (Withdrawn)

The apparatus in accordance with claim 14, wherein said high frequency circuit

comprises:

a high-pass filter circuit for passing high frequency components of the luminance data to

thereby output high frequency luminance data; and

a first adding circuit for adding color-by-color plane pixel data fed from said primary

color generating and interpolating circuit and the high frequency luminance data.

Claim 45. (Withdrawn)

The apparatus in accordance with claim 15, wherein said high frequency circuit

comprises:

a high-pass filter circuit for passing high frequency components of the luminance data to

thereby output high frequency luminance data; and

a first adding circuit for adding color-by-color plane pixel data fed from said primary

color generating and interpolating circuit and the high frequency luminance data.

Claim 46. (Withdrawn)

MRC/CJB/vd

The apparatus in accordance with claim 16, wherein said high frequency circuit comprises:

a high-pass filter circuit for passing high frequency components of the luminance data to thereby output high frequency luminance data; and

a first adding circuit for adding color-by-color plane pixel data fed from said primary color generating and interpolating circuit and the high frequency luminance data.

Claim 47. (Withdrawn)

The apparatus in accordance with claim 17, wherein said high frequency circuit comprises:

a high-pass filter circuit for passing high frequency components of the luminance data to thereby output high frequency luminance data; and

a first adding circuit for adding color-by-color plane pixel data fed from said primary color generating and interpolating circuit and the high frequency luminance data.

Claim 48. (Original)

The apparatus in accordance with claim 8, wherein said signal processing circuit comprises:

a correcting circuit for correcting pixel data fed from said photosensitive cells;

an interpolating circuit for generating, in the first mode, primary color pixel data at the positions of said virtual pixels or the positions of said photosensitive cells or calculating, in the

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 27 of 55

second mode, primary color pixel data at the positions of said virtual pixels, calculating the

primary color data at the positions of said photosensitive cells by using calculated primary color

pixel data, generating luminance data at the positions of said virtual pixels, and calculating

luminance data at the positions of said photosensitive cells by using calculated luminance data;

and

a broadband circuit for interpolating data in said virtual pixels by using said

photosensitive cells, generating pixel data at the positions of said photosensitive cells on the

basis of said data, and broadening a frequency band of said data interpolated and said data

generated;

said broadband circuit comprising:

a band-by-band data generating circuit for calculating, based on the pixel data output

from said interpolating circuit and assigned to said virtual pixels, luminance data and

chrominance data relating to the pixel data assigned to said photosensitive cells in accordance

with a frequency band;

a quasi-frequency adding circuit for adding, with respect to frequency, a component

signal output from said band-by-band data generating circuit and giving priority to color

reproducibility and a component signal also output from said band-by-band data generating

circuit, but giving priority to resolution; and

an overlap preventing circuit for preventing, when said component signal giving priority

to color reproducibility and said component signal giving priority to resolution contain a same

frequency band, said same frequency band from overlapping.

MRC/CJB/vd

Birch, Stewart, Kolasch & Birch, LLP

Claim 49. (Withdrawn)

The apparatus in accordance with claim 9, wherein said signal processing circuit

comprises:

a correcting circuit for correcting pixel data fed from said photosensitive cells;

an interpolating circuit for generating, in the first mode, primary color pixel data at the

positions of said virtual pixels or the positions of said photosensitive cells or calculating, in the

second mode, primary color pixel data at the positions of said virtual pixels, calculating the

primary color data at the positions of said photosensitive cells by using calculated primary color

pixel data, generating luminance data at the positions of said virtual pixels, and calculating

luminance data at the positions of said photosensitive cells by using calculated luminance data;

and

a broadband circuit for interpolating data in said virtual pixels by using said

photosensitive cells, generating pixel data at the positions of said photosensitive cells on the

basis of said data, and broadening a frequency band of said data interpolated and said data

generated;

said broadband circuit comprising:

a band-by-band data generating circuit for calculating, based on the pixel data output

from said interpolating circuit and assigned to said virtual pixels, luminance data and

chrominance data relating to the pixel data assigned to said photosensitive cells in accordance

with a frequency band;

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 29 of 55

a quasi-frequency adding circuit for adding, with respect to frequency, a component

signal output from said band-by-band data generating circuit and giving priority to color

reproducibility and a component signal also output from said band-by-band data generating

circuit, but giving priority to resolution; and

an overlap preventing circuit for preventing, when said component signal giving priority

to color reproducibility and said component signal giving priority to resolution contain a same

frequency band, said same frequency band from overlapping.

Claim 50. (Withdrawn)

The apparatus in accordance with claim 10, wherein said signal processing circuit

comprises:

a correcting circuit for correcting pixel data fed from said photosensitive cells;

an interpolating circuit for generating, in the first mode, primary color pixel data at the

positions of said virtual pixels or the positions of said photosensitive cells or calculating, in the

second mode, primary color pixel data at the positions of said virtual pixels, calculating the

primary color data at the positions of said photosensitive cells by using calculated primary color

pixel data, generating luminance data at the positions of said virtual pixels, and calculating

luminance data at the positions of said photosensitive cells by using calculated luminance data;

and

a broadband circuit for interpolating data in said virtual pixels by using said

photosensitive cells, generating pixel data at the positions of said photosensitive cells on the

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 30 of 55

basis of said data, and broadening a frequency band of said data interpolated and said data

generated;

said broadband circuit comprising:

a band-by-band data generating circuit for calculating, based on the pixel data output

from said interpolating circuit and assigned to said virtual pixels, luminance data and

chrominance data relating to the pixel data assigned to said photosensitive cells in accordance

with a frequency band;

a quasi-frequency adding circuit for adding, with respect to frequency, a component

signal output from said band-by-band data generating circuit and giving priority to color

reproducibility and a component signal also output from said band-by-band data generating

circuit, but giving priority to resolution; and

an overlap preventing circuit for preventing, when said component signal giving priority

to color reproducibility and said component signal giving priority to resolution contain a same

frequency band, said same frequency band from overlapping.

Claim 51. (Withdrawn)

The apparatus in accordance with claim 11, wherein said signal processing circuit

comprises:

a correcting circuit for correcting pixel data fed from said photosensitive cells;

an interpolating circuit for generating, in the first mode, primary color pixel data at the

positions of said virtual pixels or the positions of said photosensitive cells or calculating, in the

second mode, primary color pixel data at the positions of said virtual pixels, calculating the

primary color data at the positions of said photosensitive cells by using calculated primary color

pixel data, generating luminance data at the positions of said virtual pixels, and calculating

luminance data at the positions of said photosensitive cells by using calculated luminance data;

and

a broadband circuit for interpolating data in said virtual pixels by using said

photosensitive cells, generating pixel data at the positions of said photosensitive cells on the

basis of said data, and broadening a frequency band of said data interpolated and said data

generated;

said broadband circuit comprising:

a band-by-band data generating circuit for calculating, based on the pixel data output

from said interpolating circuit and assigned to said virtual pixels, luminance data and

chrominance data relating to the pixel data assigned to said photosensitive cells in accordance

with a frequency band;

a quasi-frequency adding circuit for adding, with respect to frequency, a component

signal output from said band-by-band data generating circuit and giving priority to color

reproducibility and a component signal also output from said band-by-band data generating

circuit, but giving priority to resolution; and

an overlap preventing circuit for preventing, when said component signal giving priority

to color reproducibility and said component signal giving priority to resolution contain a same

frequency band, said same frequency band from overlapping.

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 32 of 55

Claim 52. (Withdrawn)

The apparatus in accordance with claim 12, wherein said signal processing circuit

comprises:

a correcting circuit for correcting pixel data fed from said photosensitive cells;

an interpolating circuit for generating, in the first mode, primary color pixel data at the

positions of said virtual pixels or the positions of said photosensitive cells or calculating, in the

second mode, primary color pixel data at the positions of said virtual pixels, calculating the

primary color data at the positions of said photosensitive cells by using calculated primary color

pixel data, generating luminance data at the positions of said virtual pixels, and calculating

luminance data at the positions of said photosensitive cells by using calculated luminance data;

and

a broadband circuit for interpolating data in said virtual pixels by using said

photosensitive cells, generating pixel data at the positions of said photosensitive cells on the

basis of said data, and broadening a frequency band of said data interpolated and said data

generated;

said broadband circuit comprising:

a band-by-band data generating circuit for calculating, based on the pixel data output

from said interpolating circuit and assigned to said virtual pixels, luminance data and

chrominance data relating to the pixel data assigned to said photosensitive cells in accordance

with a frequency band;

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 33 of 55

a quasi-frequency adding circuit for adding, with respect to frequency, a component

signal output from said band-by-band data generating circuit and giving priority to color

reproducibility and a component signal also output from said band-by-band data generating

circuit, but giving priority to resolution; and

an overlap preventing circuit for preventing, when said component signal giving priority

to color reproducibility and said component signal giving priority to resolution contain a same

frequency band, said same frequency band from overlapping.

Claim 53. (Original)

The apparatus in accordance with claim 48, wherein said band-by-band data generating

circuit comprises a high frequency, luminance data generating circuit for executing high-pass

filtering with the pixel data input to said signal processing circuit either directly or after

transforming said pixel data to primary color pixel data.

Claim 54. (Withdrawn)

The apparatus in accordance with claim 49, wherein said band-by-band data generating

circuit comprises a high frequency, luminance data generating circuit for executing high-pass

filtering with the pixel data input to said signal processing circuit either directly or after

transforming said pixel data to primary color pixel data.

Claim 55. (Withdrawn)

MRC/CJB/vd

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 34 of 55

The apparatus in accordance with claim 50, wherein said band-by-band data generating

circuit comprises a high frequency, luminance data generating circuit for executing high-pass

filtering with the pixel data input to said signal processing circuit either directly or after

transforming said pixel data to primary color pixel data.

Claim 56. (Withdrawn)

The apparatus in accordance with claim 51, wherein said band-by-band data generating

circuit comprises a high frequency, luminance data generating circuit for executing high-pass

filtering with the pixel data input to said signal processing circuit either directly or after

transforming said pixel data to primary color pixel data.

Claim 57. (Withdrawn)

The apparatus in accordance with claim 52, wherein said band-by-band data generating

circuit comprises a high frequency, luminance data generating circuit for executing high-pass

filtering with the pixel data input to said signal processing circuit either directly or after

transforming said pixel data to primary color pixel data.

Claim 58. (Original)

The apparatus in accordance with claim 53, wherein said quasi-adding circuit comprises:

a second adding circuit for receiving a first component signal up to a frequency band,

which gives priority to resolution, from said band-by-band data generating circuit via a

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 35 of 55

subtraction terminal and receiving a second component signal lower in frequency band than said

first component signal and giving priority to color reproducibility via an addition terminal;

a second filter circuit for removing aliasing distortion from said an output of said second

adding circuit and said first component signal; and

a third adding circuit for adding outputs of said second filtering circuit.

Claim 59. (Withdrawn)

The apparatus in accordance with claim 54, wherein said quasi-adding circuit comprises:

a second adding circuit for receiving a first component signal up to a frequency band, which

gives priority to resolution, from said band-by-band data generating circuit via a subtraction

terminal and receiving a second component signal lower in frequency band than said first

component signal and giving priority to color reproducibility via an addition terminal;

a second filter circuit for removing aliasing distortion from said an output of said second

adding circuit and said first component signal; and

a third adding circuit for adding outputs of said second filtering circuit.

Claim 60. (Withdrawn)

The apparatus in accordance with claim 55, wherein said quasi-adding circuit comprises:

a second adding circuit for receiving a first component signal up to a frequency band,

which gives priority to resolution, from said band-by-band data generating circuit via a

subtraction terminal and receiving a second component signal lower in frequency band than said

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 36 of 55

first component signal and giving priority to color reproducibility via an addition terminal;

a second filter circuit for removing aliasing distortion from said an output of said second

adding circuit and said first component signal; and

a third adding circuit for adding outputs of said second filtering circuit.

Claim 61. (Withdrawn)

The apparatus in accordance with claim 56, wherein said quasi-adding circuit comprises:

a second adding circuit for receiving a first component signal up to a frequency band,

which gives priority to resolution, from said band-by-band data generating circuit via a

subtraction terminal and receiving a second component signal lower in frequency band than said

first component signal and giving priority to color reproducibility via an addition terminal;

a second filter circuit for removing aliasing distortion from said an output of said second

adding circuit and said first component signal; and

a third adding circuit for adding outputs of said second filtering circuit.

Claim 62. (Withdrawn)

The apparatus in accordance with claim 57, wherein said quasi-adding circuit comprises:

a second adding circuit for receiving a first component signal up to a frequency band,

which gives priority to resolution, from said band-by-band data generating circuit via a

subtraction terminal and receiving a second component signal lower in frequency band than said

first component signal and giving priority to color reproducibility via an addition terminal;

a second filter circuit for removing aliasing distortion from said an output of said second adding circuit and said first component signal; and

a third adding circuit for adding outputs of said second filtering circuit.

Claim 63. (Original)

The apparatus in accordance with claim 58, wherein said overlap preventing circuit comprises:

a third filter circuit for limiting a frequency band of one of signals output from said quasiadding circuit identical with a frequency band of the other signal; and

an adding circuit for adding an output of said third filter circuit and the other signal containing a same frequency band as the one signal.

Claim 64. (Withdrawn)

The apparatus in accordance with claim 59, wherein said overlap preventing circuit comprises:

a third filter circuit for limiting a frequency band of one of signals output from said quasiadding circuit identical with a frequency band of the other signal; and

an adding circuit for adding an output of said third filter circuit and the other signal containing a same frequency band as the one signal.

Claim 65. (Withdrawn)

The apparatus in accordance with claim 60, wherein said overlap preventing circuit comprises:

a third filter circuit for limiting a frequency band of one of signals output from said quasiadding circuit identical with a frequency band of the other signal; and

an adding circuit for adding an output of said third filter circuit and the other signal containing a same frequency band as the one signal.

Claim 66. (Withdrawn)

The apparatus in accordance with claim 61, wherein said overlap preventing circuit comprises:

a third filter circuit for limiting a frequency band of one of signals output from said quasiadding circuit identical with a frequency band of the other signal; and

an adding circuit for adding an output of said third filter circuit and the other signal containing a same frequency band as the one signal.

Claim 67. (Withdrawn)

The apparatus in accordance with claim 62, wherein said overlap preventing circuit comprises:

a third filter circuit for limiting a frequency band of one of signals output from said quasiadding circuit identical with a frequency band of the other signal; and

an adding circuit for adding an output of said third filter circuit and the other signal

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 39 of 55

containing a same frequency band as the one signal.

Claim 68. (Original)

The apparatus in accordance with claim 63, wherein said primary color generating circuit

comprises:

a difference calculating circuit for calculating a difference between, among pixel data of

one field derived from signal charges read out of said image pickup section and mixed by two

lines by interlace scanning and pixel data of the other field derived from signal charges read out

of said image pickup section and mixed by two lines by interlace scanning, two lines of mixed

pixel data belonging to different fields from each other, but spatially adjoining each other;

a sum producing circuit for producing a sum of the two lines of mixed pixel data;

a G generating circuit for subtracting the differences from the sum output from said sum

producing circuit to thereby generate G pixel data; and

a RB generating circuit for adding one of the two differences and the G pixel data and adding the

other of said two differences and said G pixel data to thereby generate R pixel data and B pixel

data.

Claim 69. (Withdrawn)

The apparatus in accordance with claim 64, wherein said primary color generating circuit

comprises:

a difference calculating circuit for calculating a difference between, among pixel data of

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 40 of 55

one field derived from signal charges read out of said image pickup section and mixed by two

lines by interlace scanning and pixel data of the other field derived from signal charges read out

of said image pickup section and mixed by two lines by interlace scanning, two lines of mixed

pixel data belonging to different fields from each other, but spatially adjoining each other;

a sum producing circuit for producing a sum of the two lines of mixed pixel data;

a G generating circuit for subtracting the differences from the sum output from said sum

producing circuit to thereby generate G pixel data; and

a RB generating circuit for adding one of the two differences and the G pixel data and

adding the other of said two differences and said G pixel data to thereby generate R pixel data

and B pixel data.

Claim 70. (Withdrawn)

The apparatus in accordance with claim 65, wherein said primary color generating circuit

comprises:

a difference calculating circuit for calculating a difference between, among pixel data of

one field derived from signal charges read out of said image pickup section and mixed by two

lines by interlace scanning and pixel data of the other field derived from signal charges read out

of said image pickup section and mixed by two lines by interlace scanning, two lines of mixed

pixel data belonging to different fields from each other, but spatially adjoining each other;

a sum producing circuit for producing a sum of the two lines of mixed pixel data;

a G generating circuit for subtracting the differences from the sum output from said sum

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 41 of 55

producing circuit to thereby generate G pixel data; and

a RB generating circuit for adding one of the two differences and the G pixel data and

adding the other of said two differences and said G pixel data to thereby generate R pixel data

and B pixel data.

Claim 71. (Withdrawn)

The apparatus in accordance with claim 66, wherein said primary color generating circuit

comprises:

a difference calculating circuit for calculating a difference between, among pixel data of

one field derived from signal charges read out of said image pickup section and mixed by two

lines by interlace scanning and pixel data of the other field derived from signal charges read out

of said image pickup section and mixed by two lines by interlace scanning, two lines of mixed

pixel data belonging to different fields from each other, but spatially adjoining each other;

a sum producing circuit for producing a sum of the two lines of mixed pixel data;

a G generating circuit for subtracting the differences from the sum output from said sum

producing circuit to thereby generate G pixel data; and

a RB generating circuit for adding one of the two differences and the G pixel data and

adding the other of said two differences and said G pixel data to thereby generate R pixel data

and B pixel data.

Claim 72. (Withdrawn)

MRC/CJB/vd

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 42 of 55

The apparatus in accordance with claim 67, wherein said primary color generating circuit

comprises:

a difference calculating circuit for calculating a difference between, among pixel data of

one field derived from signal charges read out of said image pickup section and mixed by two

lines by interlace scanning and pixel data of the other field derived from signal charges read out

of said image pickup section and mixed by two lines by interlace scanning, two lines of mixed

pixel data belonging to different fields from each other, but spatially adjoining each other;

a sum producing circuit for producing a sum of the two lines of mixed pixel data;

a G generating circuit for subtracting the differences from the sum output from said sum

producing circuit to thereby generate G pixel data; and

a RB generating circuit for adding one of the two differences and the G pixel data and adding the

other of said two differences and said G pixel data to thereby generate R pixel data and B pixel

data.

Claim 73. (Withdrawn)

A signal processing method applicable to a solid image pickup apparatus including

photosensitive cells arranged bidimensionally while being shifted from adjoining ones in a

horizontal and a vertical direction with respect to a pixel and color filter segments, which include

complementary colors, arranged bidimensionally, for reading out signal charges generated by

said photosensitive cells in response to light incident via said color filter segments, converting

said signal charges to pixel signals, and processing said pixel signals, said method comprising:

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P Page 43 of 55

a mode selecting step of selecting, when reading the signal charges out of the

photosensitive cells, either one of a first mode in which said signal charges are read out of a

plurality of lines and mixed to thereby produce the pixel signals and a second mode in which all

of said signal charges are sequentially read out to thereby produce the pixel signals;

a shooting step of outputting image signals representative of a scene picked up in

accordance with drive signals in the first mode or the second mode selected;

a digitizing step of digitizing the image signal to corresponding digital data;

a data storing step of storing the digital data as pixel data;

a primary color generating step of reading out the pixel data stored, correcting said pixel

data, and executing particular processing with said pixel data corrected in accordance with each

of the first and second modes; and

a signal processing step of generating, based on resulting three primary color pixel data,

luminance data and chrominance data and processing said luminance data and said chrominance

data for enhancing quality;

said primary color generating step comprising:

a first primary color generating step of interlace-scanning, in the first mode, the signal

charges derived from the color filter segments, which include the complementary colors, to

thereby read out the signal charges belonging to a same field, mixing said signal charges, and

generating the primary color pixel data on the basis of resulting mixed pixel data; and

a second primary color generating step of sequentially reading out, in the second mode,

the signal charges derived from the color filter segments, which include the complementary

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 44 of 55

colors, to thereby generate primary color pixel data on the basis of a plurality of pixel data read

out, generating the primary color image data greater in number than the photosensitive cells, and

raising a frequency band of said primary color pixel data.

Claim 74. (Withdrawn)

The method in accordance with claim 73, wherein said first primary color generating step

comprises:

a difference calculating step of calculating two differences between, among two lines of

mixed pixel data each belonging to a particular field, between the mixed pixel data each

belonging to a particular field, but spatially adjoining each other;

a sum calculating step of adding, among the two lines of mixed pixel data, the pixel data

each belonging to a particular field, but spatially adjoining each other to thereby produce a sum

of all colors;

a G calculating step of subtracting the two differences from the sum and dividing

resulting differences by a preselected constant to thereby generate G pixel data;

an R calculating step of adding one of the two differences and the G pixel data and

dividing a resulting sum by a preselected constant to thereby generate R pixel data; and

a B calculating step of adding the other of the two differences and the G pixel data and

dividing a resulting sum by a preselected constant to thereby generate B pixel data.

Claim 75. (Withdrawn)

MRC/CJB/vd

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 45 of 55

The method in accordance with claim 74, wherein said second primary color generating

step comprises:

a virtual pixel generating step of generating, assuming that void positions where the

photosensitive cells are absent due to a shifted arrangement of said photosensitive cells are

virtual pixels, three primary color data at a position of each virtual pixel surrounded by the pixel

data, which are sequentially read out, on the basis of said pixel data sequentially read out by

using a matrix;

an actual pixel generating step of generating, based on the three primary color pixel data

generated at positions of the virtual pixels, the three primary color pixel data at positions of

actual pixels defined by the photosensitive cells;

a luminance data generating step of producing a sum of a plurality of pixel data around

each virtual pixel to thereby generate luminance data for said virtual pixel;

a luminance interpolating step of generating luminance data at a position of each

photosensitive cell on the basis of a plurality of luminance data around said photosensitive cell;

and

a frequency raising step of adding to each primary color pixel data a high frequency

component of a corresponding one of the luminance data to thereby raise a frequency band.

Claim 76. (Withdrawn)

The method in accordance with claim 74, wherein said primary color generating step

executes at least one of said first and second primary color generating steps with the pixel data

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P

Page 46 of 55

by derived from a color filter in which a plurality of colors selected from Cy, Mg, Ye, W and G

derived from subtractive mixture are used, a first tetragonal lattice is implemented by four of said

colors and contains a first color positioned at one pair of diagonally opposite corners, a second

color positioned at the other pair of diagonally opposite corners, and a third color positioned at a

center, wherein a second tetragonal lattice, which is shifted from said first tetragonal lattice by

one-half of the pixel pitch in the horizontal and vertical directions, contains a same color

positioned at one pair of diagonally opposite corners and a fourth color positioned at the other

pair of diagonally opposite corners in a checker pattern, and wherein said first and second

tetragonal lattices partly overlap each other.

Claim 77. (Withdrawn)

The method in accordance with claim 75, wherein said frequency raising step comprises:

a first filtering step of passing only high frequency components of the luminance data and

the luminance generated by interpolation; and

a second adding step of adding the luminance data of the high frequency components

respectively assigned to the positions of the three primary color data.

Claim 78. (Withdrawn)

The method in accordance with claim 75, wherein said luminance data generating step

directly uses the pixel data resulting from a shot as the luminance data at the positions of the

photosensitive cells, and wherein said luminance interpolating step interpolates the luminance

data in the position of each virtual pixel by low-pass filtering, by using a mean of four pixel data

around said virtual pixel, or by using a horizontal, a vertical or an oblique correlation between

the pixel data around said virtual pixel.

Claim 79. (Withdrawn)

The method in accordance with claim 73, wherein said second primary color generating

step comprises:

a virtual pixel generating step of generating, assuming that void positions where the

photosensitive cells are absent due to a shifted arrangement of said photosensitive cells are

virtual pixels, three primary color data at a position of each virtual pixel surrounded by the pixel

data, which are sequentially read out, on the basis of said pixel data sequentially read out by

using a matrix;

an actual pixel generating step of generating, based on the three primary color pixel data

generated at positions of the virtual pixels, the three primary color pixel data at positions of

actual pixels defined by the photosensitive cells;

a luminance data generating step of producing a sum of a plurality of pixel data around

each virtual pixel to thereby generate luminance data for said virtual pixel;

a luminance interpolating step of generating luminance data at a position of each

photosensitive cell on the basis of a plurality of luminance data around said photosensitive cell;

and

a frequency raising step of adding to each primary color pixel data a high frequency

Reply to Office Action of July 14, 2005

Docket No.: 0378-0381P Page 48 of 55

component of a corresponding one of the luminance data to thereby raise a frequency band; and

wherein said frequency raising step comprises:

an item-by-item data generating step of generating, based on the three primary color pixel

data and the luminance data, component signals respectively giving priority to accurate color

reproducibility and resolution in at least one of the horizontal and vertical directions;

a quasi-frequency adding step of adding the component signals respectively giving

priority to accurate color reproducibility and resolution with respect to frequency;

an overlap preventing step of preventing, when the component signals giving priority to

resolution in the vertical and horizontal directions contain a same frequency band, said same

frequency band from overlapping; and

an adjusting step of adjusting the luminance data output via said overlap preventing step

or plane luminance data to thereby enhance a contour.

Claim 80. (Withdrawn)

The method in accordance with claim 73, wherein said second primary color generating

step comprises:

a virtual pixel generating step of generating, assuming that void positions where the

photosensitive cells are absent due to a shifted arrangement of said photosensitive cells are

virtual pixels, three primary color data at a position of each virtual pixel surrounded by the pixel

data, which are sequentially read out, on the basis of said pixel data sequentially read out by

using a matrix; and

Birch, Stewart, Kolasch & Birch, LLP

MRC/CJB/vd

an actual pixel generating step of generating, based on the three primary color pixel data

generated at positions of the virtual pixels, the three primary color pixel data at positions of

actual pixels defined by the photosensitive cells; and

wherein a frequency raising step of adding to each primary color pixel data a high

frequency component of a corresponding one of the luminance data to thereby raise a frequency

band; and

wherein said frequency raising step comprises:

an item-by-item data generating step of generating, based on the three primary color pixel

data and the luminance data, component signals respectively giving priority to accurate color

reproducibility and resolution in at least one of the horizontal and vertical directions;

a quasi-frequency adding step of adding the component signals respectively giving

priority to accurate color reproducibility and resolution with respect to frequency;

an overlap preventing step of preventing, when the component signals giving priority to

resolution in the vertical and horizontal directions contain a same frequency band, said same

frequency band from overlapping; and

an adjusting step of adjusting the luminance data output via said overlap preventing step

or plane luminance data to thereby enhance a contour.

Claim 81. (Withdrawn)

The method in accordance with claim 80, wherein said item-by-item data generating step

generates high frequency luminance data on the basis of the pixel data and outputs said high

Page 50 of 55

frequency luminance data as the component signals giving priority to resolution.

Claim 82. (Withdrawn)

The method in accordance with claim 80, wherein said quasi-frequency adding step

comprises:

a subtracting step of subtracting from first component signals generated in said pixel data

generating step and lying in a frequency band giving priority to resolution second component

signals that are lower in frequency than said first component signals and give priority to color

reproducibility;

a distortion preventing step of removing aliasing distortion from signals output in said

subtracting step and the first component signals; and

a second adding step of adding signals output in said distortion preventing step.

Claim 83. (Withdrawn)

The method in accordance with claim 82, wherein said overlap preventing step

comprises:

a band limiting step of limiting a frequency band of one of the component signals in the

vertical and horizontal directions identical with a frequency band of the other component signal;

and

an adding step of adding a band-limited output of said band limiting step and the other

component signal containing a same said frequency band as the one component signal.