Lecture 26 Backtracking Line Search

Note by Samion Suwito on 4/24/25

Announcements

- Previously: 1 Automatic HW Drop + 1 Drop from Survey
 - Switched to 2 Automatic HW Drop + 1 Drop from Survey
- Previously: 50% Midterm Clobber
 - Switched to full midterm clobber
- 2 Review sessions during RRR week at normal time
- Around 6 questions on Final Exam
- Discussions end next Wednesday

Last Time

Assuming suitable constraint qualification (E.g. Slater),

We can solve **constrained optimisation problems** by solving a sequence of **unconstrained optimisation problems**.

 $ilde{\it Ex}$. Important Phase I/II by running Interior Point Method (IPM) for decreasing parameter t

So we will still need to understand how to solve unconstrained problems. Many possible approaches (gradient descent, Newton's Method, Gauss-Seidel, Stochastic GD,...)

1-dim optimisation: Can solve by bisection Lecture 25 Algorithms 2 > Unconstrained 1D Minimisation:

Extension to n dimensions

Given starting point x_0 and direction v_0 , solve $\alpha^\star = \arg\min_{t\in\mathbb{R}} f_0(x_0+tv_0)$. Update $x_0\leftarrow x_0+\alpha^\star v_0$ Choose new descent direction v_0 , repeat.

Question: How to choose descent direction v_0 at each step

Example 1: Coordinate Descent: let v_0 loop among coordinate directions (in \mathbb{R}^n it's

 $\{e_1,\ldots,e_n\}$)

Example 2: Gradient Descent: $v_0 = -\nabla f_0(x_0)$

Example 3: Newton's Method: choose v_0 in the direction you would travel if objective were quadratic.

At each step solving for optimal step size α^* is overkill. Don't need to solve exactly it suffices to solve approximately:

Backtracking line search

Given point x_0 , direction v_0 , parameters $\alpha, \beta \in (0,1)$ and $s_0 =$ initial step size, (typically $s_0 = 1$)

1. Set
$$s = s_0, \delta =
abla f_0(x_0)^ op v_0$$

2. If $f_0(x_0+sv_0) \leq f_0(x_0)+s\alpha\delta$, then $x_0 \leftarrow x_0+sv_0$, otherwise $s \leftarrow \beta s$ then repeat step 2.

Bisection is really trying to solve the equation f'(x)=0 where $x\in\mathbb{R}$. For a convex function, $f''\geq 0\implies f'$ is nondecreasing. f'(x)

