Proof of Maximum principle

Assume u(x,t) solves $u_t = ku_{xx}$ on $R = [0, l) \times [0,T)$

$$(U(x,t))$$
 solves a diff eq $=$ $(U(x,t))$

$$=) \left(u \text{ is continuous on } R \right) =) \left(u \text{ attains a max on } R \right)$$

$$= VT$$

On the edges where
$$t=0$$
, $x=0$, $x=1$

$$\left(u(x,0),u(0,t)\right)$$
 $u(0,t)$ continuous on $\left[0,l\right],\left[0,T\right],\left[0,T\right]$

Call theke
$$M_1$$
, M_2 , M_3 $M = Max \{ M_1, M_2, M_3 \}$

$$V(x,t) := u(x,t) + ix^{2}$$

we wont $u(x,t) \leq n$ $\forall (x,t) \in \mathbb{R}$ FINE, $|V(x,t)| \leq M + 2L^2 \qquad \forall (x,t) \in R$ (1)Recall (M : 5 max edge temperature) = $\{u(x,t) \geq M \text{ on the three edger } t=0, x=0, x=1$ $0 \le x \le l$ $\Rightarrow x^2 \le l^2 \Rightarrow (x^2 \le z l^2)$ A(50 $V(x, t) = M + 2l^2$ holds on all 3 edges Thus $V(x,t) := u(x,t) + tx^{2}$ Nov consider $V_{t} \cdot k V_{xx} = u_{t} \cdot k \left(u_{xx} + 2 \xi \right)$ $= U_t - k Y_{xx} - 2k \Sigma = -2k \Sigma \angle 0$ $\left(U_{t} = k U_{xx} \right)$.. VE-KV** 20 (2)

"Diffusion Inequality"

Assume by contr. (V attrive its max on intR =
$$(0, L) \times (0, T)$$
)

$$= \left(\exists (x_0, t_0) \in intR \ \ \forall (x_0, t_0) \supseteq \forall (x, t) \in R \right)$$

From Calc III ,
$$V_{x} = 0$$
 , $V_{t} = 0$
At (x_0, t_0) : $V_{xx} = 0$, $V_{tt} = 0$

From (2):
$$6 > V_t - kV_{xx}$$
 $\Rightarrow 0 > -kV_{xx}$ $kV_{xx} > 0 \Rightarrow V_{xx} > 0$

This contrasizts our assumption that the max is attained in intR

Assure by contr.

$$\left(\exists x_{0} \in (0, 1) \circ V(x_{0}, T) \geq V(x_{0}, t) \quad \forall (x_{0}, t) \in \mathbb{R}\right) \quad (3)$$

$$\forall (x,t) \in \mathbb{R}$$
 (3)

So then $V_{x} = 0$, $V_{xx} \leq 0$

Furthermore
$$(3) \Longrightarrow \left(V(x_0, T) \stackrel{?}{>} V(x_0, T - S) \right) \qquad \forall S > 0$$

Thin

$$V_{t}(x_{0},T) = \lim_{S \to 0} \frac{V(x_{0},T) - V(x_{0},T-S)}{S} \geq 0$$

at (xo, T): .. V = 0

This contradicts or assumption that the max is attached at t=T

Cose 3 - Elge t=0, x=0, x=1

x=0 Mx x=1

So: Y(x,t) ER

 $V(x,t) \leq M + \varepsilon l^{2} \implies u(x,t) + \varepsilon x^{2} \leq M + \varepsilon l^{2}$ $\implies u(x,t) \leq M + \varepsilon (l^{2} - x^{2})$

2→0 gives

 $u(x,t) \leq M$ $\forall (x,t) \in \mathbb{R}$