

# **PYTHON JOURNEY** MACHINE & DEEP LEARNING

# MODELOS CLASSIFICATÓRIOS E PREDITIVOS

## PARA RECORDARMOS



## ANÁLISE EXPLORATÓRIA DE DADOS



## PROBABILIDADE DE UM EVENTO OCORRER

$$P(A) = \frac{\text{número de elementos de A}}{\text{número de elementos de }\Omega} \Rightarrow P(A) = \frac{n(A)}{n(\Omega)}$$



#### PROBABILIDADE DE UM EVENTO OCORRER

Definição

Dados dois eventos A e B, com  $P(A) \neq 0$ , a probabilidade condicional de B, na certeza de A, é o número:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}.$$

Se P(B) = 0, decretamos  $P(A \mid B) = 0$ .

É muito comum o uso dessa fórmula para o cálculo de P(A∩B).

Pois,



$$P(A \cap B) = P(A).P(B|A)$$

#### PROBABILIDADE CONDICIONAL

Numa caixa, contendo 4 bolas vermelhas e 6 bolas brancas, retiram-se, sucessivamente e sem reposição, duas bolas dessas. Determine a probabilidade de a primeira bola ser vermelha, sabendo que a segunda bola é vermelha.

Solução: Sejam A = {a primeira bola é vermelha} e B = {a segunda bola é vermelha}, temos:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$



#### TEOREMA DE BAYES

O teorema de Bayes é um corolário (consequência imediata de um teorema) do teorema da probabilidade total. E, com ele, é possível o cálculo da seguinte probabilidade:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Em que:

- P(A) e P(B) são as probabilidades a priori de A e B.
- P(B|A) e P(A|B) são as probabilidades a posteriori de B condicional a A e de A condicional a B, respectivamente.

#### **EXEMPLO**

A tabela abaixo, dá a distribuição dos funcionários de uma empresa, por sexo e por departamento em que está alocado.

| Departamento       | Homens (H) | Mulheres (M) | Total |
|--------------------|------------|--------------|-------|
| Venda (V)          | 153        | 48           | 201   |
| Operações (O)      | 161        | 153          | 314   |
| Administrativo (A) | 18         | 10           | 28    |
| Demais (D)         | 45         | 25           | 70    |
| Total              | 377        | 236          | 613   |

Escolhe-se, ao acaso, um funcionário. Defina os eventos:

H: o funcionário selecionado é do sexo masculino.

V: o funcionário selecionado é do departamento de Vendas.

Note que P(H) = 377/613, P(V) = 201/613, mas, dentre os funcionários do departamento de Vendas, temos que a probabilidade de ele ser do sexo masculino é: 153/201. Isto é, P(H|V) = 153/201.

# ÁRVORE DE DECISÃO



## ÁRVORE DE DECISÃO

- Pontos positivos
  - Facilmente interpretável
  - Fácil de implementar
  - Lida bem com todo tipo de preditor (assimétrico, esparso, contínuo)
  - Realiza seleção de variáveis

- Pontos negativos
  - Alta variância / instabilidade
  - Baixa performance preditiva

## ÁRVORE DE DECISÃO

| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 1   | Yes     | Large   | 125K    | No    |
| 2   | No      | Medium  | 100K    | No    |
| 3   | No      | Small   | 70 K    | No    |
| 4   | Yes     | Medium  | 120 K   | No    |
| 5   | No      | Large   | 95K     | Yes   |
| 6   | No      | Medium  | 60K     | No    |
| 7   | Yes     | Large   | 220K    | No    |
| 8   | No      | Small   | 85K     | Yes   |
| 9   | No      | Medium  | 75K     | No    |
| 10  | No      | Small   | 90 K    | Yes   |

Training Set

| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 11  | No      | Small   | 55K     | ?     |
| 12  | Yes     | Medium  | 80K     | ?     |
| 13  | Yes     | Large   | 110 K   | ?     |
| 14  | No      | Small   | 95K     | ?     |
| 15  | No      | Large   | 67K     | ?     |

Test Set



## **EXEMPLO**

categórico categórico contínuo class

| ld | Casa<br>própria | EstCivil | Rendim. | Mau<br>Pagador |
|----|-----------------|----------|---------|----------------|
| 1  | S               | Solteiro | 125K    | NÃO            |
| 2  | N               | Casado   | 100K    | NÃO            |
| 3  | N               | Solteiro | 70K     | NÃO            |
| 4  | S               | Casado   | 120K    | NÃO            |
| 5  | N               | Divorc.  | 95K     | SIM            |
| 6  | N               | Casado   | 60K     | NÃO            |
| 7  | S               | Divorc.  | 220K    | NÃO            |
| 8  | N               | Solteiro | 85K     | SIM            |
| 9  | N               | Casado   | 75K     | NÃO            |
| 10 | N               | Solteiro | 90K     | SIM            |
| 10 |                 |          |         |                |

atributos Casa Pr. NÃO Est. Civil Casado Solteiro, Divorc. valores de NÃO Rendim. atributos - <= 80K > 80K NÃO SIM classe

Dados de treinamento

Modelo: árvore de decisão

#### **EXEMPLO**

categorico categorico continuo classe

| ld | Casa<br>própria | EstCivil | Rendim. | Mau<br>Pagador |
|----|-----------------|----------|---------|----------------|
| 1  | S               | Solteiro | 125K    | NÃO            |
| 2  | N               | Casado   | 100K    | NÃO            |
| 3  | N               | Solteiro | 70K     | NÃO            |
| 4  | S               | Casado   | 120K    | NÃO            |
| 5  | N               | Divorc.  | 95K     | SIM            |
| 6  | N               | Casado   | 60K     | NÃO            |
| 7  | s               | Divorc.  | 220K    | NÃO            |
| 8  | N               | Solteiro | 85K     | SIM            |
| 9  | N               | Casado   | 75K     | NÃO            |
| 10 | N               | Solteiro | 90K     | SIM            |



Pode haver mais de uma árvore para o mesmo conjunto de dados!





# PASSOS PARA A CONSTRUÇÃO DA ÁRVORE DE DECISÃO

- Seleciona um atributo como sendo o nodo raiz.
- 2. Arcos são criados para todos os diferentes valores do atributo selecionado no passo 1.
- 3. Se todos os exemplos de treinamento (registros) sobre uma folha pertencerem a uma mesma classe, essa folha recebe o nome da classe. Se todas as folhas possuem uma classe, o algoritmo termina.
- 4. Senão, o nodo é determinado com um atributo que não ocorra no trajeto da raiz, e arcos são criados para todos os valores. O algoritmo retorna ao passo 3.

Comece pela raiz da árvore.



| Casa    | Estado | Rendim. | Mau     |
|---------|--------|---------|---------|
| Própria | Civil  |         | pagador |
| N       | Casado | 80K     | ?       |

Comece pela raiz da árvore.



| Casa    | Estado | Rendim. | Mau     |
|---------|--------|---------|---------|
| Própria | Civil  |         | pagador |
| N       | Casado | 80K     | ?       |



Comece pela raiz da árvore.



| Casa    | Estado | Rendim. | Mau     |
|---------|--------|---------|---------|
| Própria | Civil  |         | pagador |
| N       | Casado | 80K     | ?       |



Comece pela raiz da árvore.



| Casa    | Estado | Rendim. | Mau     |
|---------|--------|---------|---------|
| Própria | Civil  |         | pagador |
| N       | Casado | 80K     | ?       |

Comece pela raiz da árvore.



| Casa    | Estado | Rendim. | Mau     |
|---------|--------|---------|---------|
| Própria | Civil  |         | pagador |
| N       | Casado | 80K     | ?       |



Comece pela raiz da árvore.



| Casa    | Estado | Rendim. | Mau     |
|---------|--------|---------|---------|
| Própria | Civil  |         | pagador |
| N       | Casado | 80K     | ?       |







| Casa    | Estado | Rendim. | Mau     |
|---------|--------|---------|---------|
| Própria | Civil  |         | pagador |
| N       | Casado | 80K     | ?       |

Comece pela raiz da árvore.



| Casa    | Estado | Rendim. | Mau     |
|---------|--------|---------|---------|
| Própria | Civil  |         | pagador |
| N       | Casado | 80K     | ?       |

Comece pela raiz da árvore.



| Casa    | Estado | Rendim. | Mau     |
|---------|--------|---------|---------|
| Própria | Civil  |         | pagador |
| N       | Casado | 80K     | ?       |





#### Dado para teste

| Casa    | Estado Rendim. |     | Mau     |
|---------|----------------|-----|---------|
| Própria | Civil          |     | pagador |
| N       | Casado         | 80K | ?       |

Atribua à classe (Mau

Pagador) o valor NÃO





| Casa    | Estado Rendim. |     | Mau     |
|---------|----------------|-----|---------|
| Própria | Civil          |     | pagador |
| N       | Casado         | 80K | Não     |



## **OUTRO EXEMPLO - EXEMPLOS DE TREINO**

| Dia | Aspecto | Temperatura | Umidade | Vento | Jogar Tênis |
|-----|---------|-------------|---------|-------|-------------|
| D1  | Sol     | Quente      | Elevada | Fraco | Não         |
| D2  | Sol     | Quente      | Elevada | Forte | Não         |
| D3  | Nuvens  | Quente      | Elevada | Fraco | Sim         |
| D4  | Chuva   | Ameno       | Elevada | Fraco | Sim         |
| D5  | Chuva   | Fresco      | Normal  | Fraco | Sim         |
| D6  | Chuva   | Fresco      | Normal  | Forte | Não         |
| D7  | Nuvens  | Fresco      | Normal  | Fraco | Sim         |
| D8  | Sol     | Ameno       | Elevada | Fraco | Não         |
| D9  | Sol     | Fresco      | Normal  | Fraco | Sim         |
| D10 | Chuva   | Ameno       | Normal  | Forte | Sim         |
| D11 | Sol     | Ameno       | Normal  | Forte | Sim         |
| D12 | Nuvens  | Ameno       | Elevada | Forte | Sim         |
| D13 | Nuvens  | Quente      | Normal  | Fraco | Sim         |
| D14 | Chuva   | Ameno       | Elevada | Forte | Não         |

### **OUTRO EXEMPLO - EXEMPLOS DE TREINO**

| Dia | Aspecto | Temp.  | Umidade | Vento | Jogar Tênis |
|-----|---------|--------|---------|-------|-------------|
| D1  | Sol     | Quente | Elevada | Fraco | Não         |
| D2  | Sol     | Quente | Elevada | Forte | Não         |
| D3  | Nuvens  | Quente | Elevada | Fraco | Sim         |
| D4  | Chuva   | Ameno  | Elevada | Fraco | Sim         |
| D5  | Chuva   | Fresco | Normal  | Fraco | Sim         |
| D6  | Chuva   | Fresco | Normal  | Forte | Não         |
| D7  | Nuvens  | Fresco | Normal  | Fraco | Sim         |
| D8  | Sol     | Ameno  | Elevada | Fraco | Não         |
| D9  | Sol     | Fresco | Normal  | Fraco | Sim         |
| D10 | Chuva   | Ameno  | Normal  | Forte | Sim         |
| D11 | Sol     | Ameno  | Normal  | Forte | Sim         |
| D12 | Nuvens  | Ameno  | Elevada | Forte | Sim         |
| D13 | Nuvens  | Quente | Normal  | Fraco | Sim         |
| D14 | Chuva   | Ameno  | Elevada | Forte | Não         |





## ESPERAR POR UMA MESA EM UM RESTAURANTE

Decidir que propriedades ou atributos estão disponíveis para descrever os exemplos do domínio.

Existem alternativas?, Existe um bar no local?, dia da semana, estado da fome, estado do restaurante, preço, chuva, reserva, tipo de comida, tempo de espera...



## ESPERAR POR UMA MESA EM UM RESTAURANTE



# REGRESSÃO LOGÍSTICA



## **EXEMPLOS**





## ANÁLISE INFERENCIAL BANCO - BACEN

#### Manifestação?



- O que diferencia aqueles que abriram manifestação dos que não abriram?
- Quais são os ofensores?
- Qual a probabilidade de um cliente abrir manifestação dados os ofensores?

## **POSSÍVEIS OFENSORES**

#### Variáveis avaliadas:

#### **Empresa**

- B Relacionamento
- B SAC

#### Manifestação do BMG

- Não
- Sim

#### Tipo de Contato

- Acompanhamento de proposta
- Atendimento
- Back Office
- Canais de Atendimento
- Características
- Contrato
- Fatura

- Ligação interrompida pelo cliente
- Pesquisa Satisfação
- Prêmio Época Reclame Aqui 2016
- Produtos
- Outros



## **POSSÍVEIS OFENSORES**

1.487 clientes que abriram manifestação no BACEN entraram em contato com o B antes da abertura.

| Quantidade de chamadas realizadas |       |               |  |
|-----------------------------------|-------|---------------|--|
| Manifestação no BACEN             | Média | Desvio-padrão |  |
| Não                               | 2     | 5             |  |
| Sim                               | 6     | 14            |  |

| 10.461 chamadas realizadas antes da abertura da manifestação. | 63% no mês da abertura                             |
|---------------------------------------------------------------|----------------------------------------------------|
|                                                               | 29% no mês anterior à abertura                     |
|                                                               | 4% nos dois meses anteriores à abertura            |
|                                                               | 4% nos três ou mais meses anteriores<br>à abertura |

 Aparentemente, a quantidade de chamadas realizadas nos dois meses anteriores pode diferenciar os grupos de clientes em relação à abertura de manifestação.

## RESULTADOS DO MODELO: CHANCE DE ABERTURA DE MANIFESTAÇÃO NO BACEN



#### **Empresa**

Chance 13% menor no

B-SAC



#### Manifestação no B

Chance 600% maior para aqueles que abriram manifestação no B



## Quantidade de chamadas nos últimos 2 meses

Chance 2% maior para cada chamada a mais



- 147% maior para Back Office
- 82% maior para Ligação Interrompida pelo Cliente
- 73 % maior para Atendimento
- 52% maior para outros tipos



- 32% menor para Canais de Atendimento
- 33% menor para Características
- 75% menor para Fatura
- 86% menor para Produto

## CLASSIFICAÇÃO DOS CLIENTES E ASSERTIVIDADE

Para cada cliente, uma probabilidade de abertura de manifestação:



|                       | Grupo d | e Risco |
|-----------------------|---------|---------|
| Manifestação no BACEN | Não     | Sim     |
| Não                   | 43.091  | 17.266  |
| Sim                   | 79      | 174     |

Cliente classificado como grupo de risco se probabilidade estiver entre as 25% maiores.

#### Assertividade:

- Dentro de BACEN "Não": 71%
- Dentro de BACEN "Sim": 69%
- Total: 71%

## **CONCLUSÃO E MELHORIAS**

#### Maiores ofensores da abertura de manifestação no Ações que podem levar à melhoria da assertividade BACEN: do modelo: Abertura de manifestação no B. Inclusão de variáveis (exemplo: gênero, idade, Tipo de contato: Back Office. escolaridade, estado civil). Diferenciação das chamadas, como Informação, Ofensores em menor escala: Solicitação e Reclamação. Tipos de contato: Ligação Interrompida pelo Cliente, Ligação direta entre as chamadas realizadas no B e Contrato e Atendimento. as chamadas realizadas no BACEN. Quantidade de chamadas realizadas no período de dois meses.

# DISCRIMINAR OS OFENSORES RELACIONADOS AO TURNOVER



## CLASSIFICAÇÃO DE TURNOVER



- Entender melhor as diferentes distribuições de perfis entre os operadores da empresa.
- Primeiro passo para o desenvolvimento de um modelo preditivo.

Escopo: Buscar entendimento no perfil dos operadores e quais variáveis influenciam seu possível desligamento da operação.



## DISTRIBUIÇÃO DE CARGOS

Atual

#### Desligada







. . .

. . .

## DISTRIBUIÇÃO DE CARGOS





## PERFIL DOS OPERADORES BASE COMPLETA – 60 MIL OPERADORES



## PERFIL DOS OPERADORES BASE COMPLETA – 60 MIL OPERADORES



## PERFIL DOS OPERADORES BASE COMPLETA – 60 MIL OPERADORES









#### Objetivos

- Entender, por meio de métodos matemáticos e de machine learning, quais variáveis têm maior influência na saída do operador.
- Mecanismo de previsão de Turnover.

| Variáve    | is de entrad       | a                           |                     |      |                  |                          |                       |                           |           |
|------------|--------------------|-----------------------------|---------------------|------|------------------|--------------------------|-----------------------|---------------------------|-----------|
| Idade      | Estado civil       | Escolaridade                | Número<br>de filhos | Sexo | Carga<br>horária | Absenteísmo<br>total     | Chamadas<br>atendidas | Ocorrência<br>disciplinar | Desligado |
| 20,<br>25, | Solteiro<br>Casado | Ens. Médio<br>Ens. Superior | 0, 1, 2,            | M, F | (horas)          | % do tempo<br>trabalhado | Volume Mensal         | Sim / Não                 | Sim / Não |





| Variáve    | eis de entrad      | a                           |                     |      |                  |                          |                       |                           |           |
|------------|--------------------|-----------------------------|---------------------|------|------------------|--------------------------|-----------------------|---------------------------|-----------|
| Idade      | Estado civil       | Escolaridade                | Número<br>de filhos | Sexo | Carga<br>horária | Absenteísmo<br>total     | Chamadas<br>atendidas | Ocorrência<br>disciplinar | Desligado |
| 20,<br>25, | Solteiro<br>Casado | Ens. Médio<br>Ens. Superior | 0, 1, 2,            | M, F | (horas)          | % do tempo<br>trabalhado | Volume Mensal         | Sim / Não                 | Sim / Não |







| Variáve    | eis de entrad      | a                           |                     |      |                  |                          |                       |                           |           |
|------------|--------------------|-----------------------------|---------------------|------|------------------|--------------------------|-----------------------|---------------------------|-----------|
| Idade      | Estado civil       | Escolaridade                | Número<br>de filhos | Sexo | Carga<br>horária | Absenteísmo<br>total     | Chamadas<br>atendidas | Ocorrência<br>disciplinar | Desligado |
| 20,<br>25, | Solteiro<br>Casado | Ens. Médio<br>Ens. Superior | 0, 1, 2,            | M, F | (horas)          | % do tempo<br>trabalhado | Volume Mensal         | Sim / Não                 | Sim / Não |





. . . .

## RISCO RELACIONADO A AÇÕES JUDICIAIS



#### **PROJETO**

- 1. Análise do perfil dos funcionários.
- 2. Estimar a probabilidade de entrada de processo trabalhista para cada funcionário.
- 3. Estimar a probabilidade de cada tipo de processo trabalhista para cada funcionário.

#### Análise do perfil



Análise de Cluster

Descrição dos grupos de funcionários:

- Idade
- Tempo de casa (meses)
- Site
- Cliente
- Operação: Trade Marketing, Call Center, Back
   Office e Administrativo

#### DADOS DO PROJETO

#### Base geral:

- Dados fornecidos pelo RH.
- 817.363 funcionários.

#### Base do Jurídico:

- Dados fornecidos pelo Jurídico.
- 23.973 funcionários.

#### Risco:

• 59.459 ex-funcionários dentro do período legal de abrir processos.

## COMPARAÇÃO: BASE GERAL E BASE DO JURÍDICO

#### Base geral

817.363 funcionários

#### Gênero

- 72% Feminino
- 28% Masculino

Idade: 26 anos

Quantidade de dependentes: 1

Tempo de casa: 1 ano

#### Estado civil

- 82% solteiros
- 15% casados
- 3% outros

#### Base do Jurídico 23.973 funcionários admitidos

#### Gênero

- 78% Feminino
- 22% Masculino

Idade: 29 anos

Quantidade de dependentes: 1

Tempo de casa: 2,5 anos

#### Estado civil

- 78% solteiros
- 18% casados
- 2% divorciados
- 2% outros

## COMPARAÇÃO: BASE GERAL E BASE DO JURÍDICO

## COMPARAÇÃO: BASE GERAL E BASE DO JURÍDICO - ESCOLARIDADE



Proporções próximas em todas as categorias.



## COMPARAÇÃO: BASE GERAL E BASE DO JURÍDICO – ÚLTIMO CARGO

| Base geral       | Base do Jurídico |
|------------------|------------------|
| Último cargo     | Último cargo     |
| 79% Teleoperador | 72% Teleoperador |
| 21% Outros       | 28% Outros       |



Proporções maiores de assistentes e de consultores

## COMPARAÇÃO: BASE GERAL E BASE DO JURÍDICO – ESTADO

|                   | Base geral | Base do Jurídico | Variação |
|-------------------|------------|------------------|----------|
| Bahia             | 6%         | 6%               | 0%       |
| Goiás             | 4%         | 5%               | 25%      |
| Minas Gerais      | 3%         | 10%              | 233%     |
| Rio de Janeiro    | 13%        | 9%               | -31%     |
| Rio Grande do Sul | 3%         | 5%               | 67%      |
| São Paulo         | 67%        | 62%              | -7%      |
| Outros            | 2%         | 3%               | 50%      |

Destaque para Minas Gerais, Rio Grande do Sul e Goiás.

|                   | Total na base geral | Total na base do jurídico |       | Variação em relação a SP |
|-------------------|---------------------|---------------------------|-------|--------------------------|
| Bahia             | 50836               | 1497                      | 3%    | 0%                       |
| Goiás             | 36550               | 1276                      | 3,50% | 17%                      |
| Minas Gerais      | 24534               | 2292                      | 9%    | 200%                     |
| Rio de Janeiro    | 108097              | 2043                      | 2%    | -33%                     |
| Rio Grande do Sul | 26907               | 1247                      | 5%    | 67%                      |
| São Paulo         | 550599              | 14974                     | 3%    | -                        |

## COMPARAÇÃO: BASE GERAL E BASE DO JURÍDICO – ESTADO

|              | Base geral | Base do Jurídico | Variação |
|--------------|------------|------------------|----------|
| Voluntária   | 45%        | 29%              | -37%     |
| Involuntária | 40%        | 37%              | -8%      |
| Justa Causa  | 4%         | 19%              | 367%     |
| Outras       | 11%        | 16%              | 49%      |

|              |        |      |     |     | Total |
|--------------|--------|------|-----|-----|-------|
| Voluntária   | 369993 | 6844 | 2%  | 688 | 34434 |
| Involuntária | 325782 | 8755 | 3%  | 635 | 21184 |
| Justa Causa  | 32549  | 4446 | 14% | 462 | 3307  |
| Outras       | 89039  | 3874 | 4%  | 21  | 534   |

## COMPARAÇÃO: BASE GERAL E BASE DO JURÍDICO – MEDIDAS DISCIPLINARES

|                      | Base geral | Base do Jurídico |
|----------------------|------------|------------------|
| Nenhuma              | 80%        | 53%              |
| Termo de notificação | 2%         | 1%               |
| Advertência          | 10%        | 18%              |
| Suspensão de 1 dia   | 4%         | 10%              |
| Suspensão de 2 dias  | 2%         | 6%               |
| Suspensão de 3 dias  | 2%         | 12%              |

Tendência de aumento da probabilidade conforme aumenta a gravidade da medida disciplinar

|                      | Total na base geral | Total na base do Jurídico | Probabilidade estimada de abertura de processo | Variação em relação a<br>Nenhuma |
|----------------------|---------------------|---------------------------|------------------------------------------------|----------------------------------|
| Suspensão de 3 dias  | 18359               | 2794                      | 15,0%                                          | 650%                             |
| Suspensão de 2 dias  | 13278               | 1366                      | 10,0%                                          | 400%                             |
| Suspensão de 1 dia   | 29828               | 2362                      | 8,0%                                           | 300%                             |
| Advertência          | 82804               | 4392                      | 5,0%                                           | 150%                             |
| Termo de notificação | 13391               | 304                       | 2,0%                                           | 0%                               |
| Nenhuma              | 659703              | 12755                     | 2,0%                                           | -                                |

## PERFIS GERAIS DENTRO DOS GRUPOS

#### Trade Marketing (Geral e Jurídico: 4%)

- 85% Mulheres
- 87% Solteiros, 12% Casados e 1% Outros
- 25 anos
- 1 dependente
- 1 ano e meio de casa

#### Back Office (Geral: 2% - Jurídico: 3%)

- 77% Mulheres
- 79% Solteiros, 19% Casados e 2% Outros
- 30 anos
- 1 dependente
- · 4 anos de casa

#### Administrativo (Geral e Jurídico: 3%)

- 65% Mulheres
- 66% Solteiros, 31% Casados
- 33 anos
- 2 dependente
- 4 anos de casa

#### Call Center (Geral: 91% - Jurídico: 90%)

- 80% Mulheres
- 79% Solteiros, 18% Casados e 3% Outros
- 29 anos
- 1 dependente
- 2 anos e meio de casa

### **QUICK WIN**



#### Grupo de análise

#### Perfil de risco:

- 1.239 ex-funcionários
- 652 funcionários
- Tipo de demissão:
- 1.806 ex-funcionários

## Possíveis alavancas para abertura de processo trabalhista

- Gênero
- Tempo de casa
- Último cargo
- Estado
- Medidas disciplinares
- Tipo de demissão



## **ESTIMAÇÃO**

80%



• Hora extra: 50%

• FGTS: 30%

Assédio moral: 20%



## **ESTIMAÇÃO**

A área de crédito deseja avaliar a propensão ao risco de seus clientes e implementar políticas de redução da inadimplência.



Média de dias com pagamentos em atraso nos últimos 6 meses





### Tempo de relacionamento em anos





#### Valor médio da fatura mensal





### Percentual dos gastos em alimentação





### Regiões de risco





#### Renda média mensal





| Tabela de       |
|-----------------|
| coeficientes do |
| modelo          |

| Variável                   | Categoria             | Coeficientes |
|----------------------------|-----------------------|--------------|
| Fatura em atraso           | até 3 dias            | -1,276       |
|                            | 3 a 15 dias           | -0,611       |
|                            | de 15 a 30 dias       | 0,580        |
|                            | mais de 30 dias       | 1,308        |
| Tempo de cliente           | até 1 ano             | 0,580        |
|                            | de 1 a 3 anos         | 0,401        |
|                            | de 3 a 8 anos         | -0,264       |
|                            | mais de 8 anos        | -0,718       |
| Valor da fatura            | Até R\$250            | 0,262        |
|                            | R\$ 250 a R\$ 800     | 0,103        |
|                            | R\$ 800 a R\$ 1.499   | -0,105       |
|                            | Mais de R\$1.500      | -0,261       |
|                            | até 10%               | 0,581        |
| % de gasto com alimentação | de 10% a 20%          | 0,401        |
|                            | de 20% a 30%          | -0,264       |
|                            | mais de 30%           | -0,718       |
|                            | Região 4              | 1,067        |
| Região de risco            | Região 3              | 0,371        |
|                            | Região 2              | -0,368       |
|                            | Região 1              | -1,069       |
|                            | Até R\$ 1.518         | 0,455        |
| Renda mensal               | R\$ 1.519 a R\$ 3.000 | 0,080        |
|                            | R\$ 3.000 a R\$ 4.500 | -0,122       |
|                            | Mais de R\$ 4.500     | -0,413       |
| tante                      |                       | 0,099        |



### Modelo Logístico

### Pesos definidos na modelagem

| -1,276 | Até 3 dias        | Fatura em atraso           | Mais de 30 dias | 1,308 |
|--------|-------------------|----------------------------|-----------------|-------|
| -0,718 | Mais de 8 anos    | Tempo de relacionamento    | Até 1 ano       | 0,580 |
| -0,261 | Mais de R\$ 1.500 | Valor da fatura            | Até R\$ 250     | 0,262 |
| -0,718 | Mais de 30%       | % de gasto com alimentação | Até 10%         | 0,580 |
| -1,069 | Região 1          | Região de risco            | Região 4        | 1,067 |
| -0,413 | Mais de R\$ 4.500 | Renda mensal               | Até R\$ 1.518   | 0,455 |
| 0,099  |                   | Constante                  |                 | 0,099 |
| 4%     |                   | Propensão                  |                 | 98%   |

## MODELOS CLASSIFICATÓRIOS E PREDITIVOS CONCEITOS



### REGRESSÃO LOGÍSTICA

- Desenvolvida na década de 1960.
- Modelos de regressão não linear são usados, em geral, em duas situações: casos em que as variáveis respostas são qualitativas e os erros não são normalmente distribuídos.
- Verifica a probabilidade de ocorrência do evento de interesse.
- O modelo de regressão não linear logístico binário é utilizado quando a variável resposta é qualitativa com dois resultados possíveis, por exemplo, sobrepeso de crianças (têm sobrepeso ou não têm sobrepeso).

## MODELOS DE REGRESSÃO COM VARIÁVEIS RESPOSTAS BINÁRIAS

Em muitos estudos, a variável resposta tem duas possibilidades e, assim, pode ser representada pela variável indicadora, recebendo os valores 0 (zero) e 1 (um).

#### Exemplo:

Num estudo sobre a participação das esposas no mercado de trabalho, como função da idade da esposa, número de filhos e rendimento do marido, a variável resposta Y foi definida do seguinte modo: a mulher participa do mercado de trabalho ou não. Novamente, essas respostas podem ser codificadas como 1 e 0, respectivamente.

## TÉCNICAS DE DISCRIMINAÇÃO

- Como os heavy users se diferem em seu perfil demográfico dos light users?
- Quais são os clientes ativos que se assemelham aos clientes cancelados?
- Que fatores ou atitudes fazem com que os meus clientes prefiram o meu produto?
- Quais são as características que apresentam os clientes que compraram o produto de maior rentabilidade?



Como separar grupos previamente definidos? Como definir critérios, funções das variáveis que discriminem os grupos?

## TÉCNICAS DE DISCRIMINAÇÃO





#### Probabilidade (lembrando...)

Sendo Y: a resposta à preferência por um evento (sim ou não),

- a probabilidade de:
  - Preferência (ou sucesso) será p
  - Não preferência (de fracasso) será (1 p)

#### "Chance de Ocorrência de um Evento"

• Chance = (probabilidade de sucesso) / (probabilidade de fracasso)

Exemplo, se a probabilidade de sucesso é 0,65:

a chance é igual a: 
$$p / (1 - p) = p / q = 0.65 / 0.35 = 1.86$$



#### Exemplo: Preferência por canal de futebol

| Gênero    | Prefere | Não prefere | Total |
|-----------|---------|-------------|-------|
| Masculino | 146     | 120         | 266   |
| Feminino  | 110     | 124         | 234   |
| Total     | 256     | 244         | 500   |

 Chance de preferir o canal de futebol entre homens:

 Chance de preferir o canal de futebol entre mulheres:

$$- p2/(1 - p2) = (110/234) / (124/234) = 0,47 / 0,53 = 0,89$$

 Razão de chances de preferir canal de futebol entre homens, em relação às mulheres:

$$- [p1/(1-p1)] / [p2/(1-p2)] = 1,22 / 0,89 = 1,37$$



#### Modelo de Regressão Logística

G: logit da resposta de preferência (sim)

a: Intersecção

B1, B2, ..., Bn: coeficientes logísticos

 A função logística é dada pelo logito-inverso (anti-logit) que nos permite transformar o logito em probabilidade:







Seleção Conjuntos de Atributos (Variáveis)

- Variáveis Discriminantes
- Variáveis Não Discriminantes

Instrumento para selecionar variáveis (atributos) significativos

BACKWARD FORWARD STEPWISE

- Backward Selection: Procedimento constrói adicionando todas as variáveis e vai eliminando iterativamente uma a uma até que não haja mais variáveis.
- Forward Selection: Procedimento constrói iterativamente adicionando variáveis uma a uma até que não haja mais variáveis preditoras.
- Stepwise: Combinação de Forward Selection e Backward Elimination. Procedimento constrói iterativamente uma sequência de modelos pela adição ou remoção de variáveis em cada etapa.

# QUALIFICAÇÃO DO AJUSTE DO MODELO MEDIDAS DE AVALIAÇÃO

|                    |          | Classe Predita                |                               |  |
|--------------------|----------|-------------------------------|-------------------------------|--|
|                    |          | Positivo                      | Negativo                      |  |
| Classe<br>Esperada | Positivo | Verdadeiros Positivos<br>(VP) | Falsos Negativos<br>(FN)      |  |
|                    | Negativo | Falsos Positivos<br>(FP)      | Verdadeiros Negativos<br>(VN) |  |

# QUALIFICAÇÃO DO AJUSTE DO MODELO MEDIDAS DE AVALIAÇÃO

- Sensibilidade ou taxa de verdadeiros positivos: (VP / (VP + FN))
- Especificidade ou taxa de verdadeiros negativos: (VN / (FP + VN))
- Taxa de falsos positivos: % de falsos positivos dentre todos em que a classe esperada é a classe negativa
   (FP / (VN + FP))
- Taxa de falsas descobertas: % de falsos positivos dentre a classe esperada é a classe positiva (FP / (VP + FP))
- Preditividade positiva ou precisão: % de acertos ou verdadeiros positivos (VP / (VP + FP))
- Preditividade negativa: % de verdadeiros negativos dentre todos classificados como negativos (VN / (VN + FN))
- Acurácia: É a proporção de predições corretas, sem considerar o que é positivo e o que é negativo e, sim, o acerto total. É dada por: (VP + VN) / (VP + FN + FP + VN)



|      |       | Previsão ( | do modelo | Total   |
|------|-------|------------|-----------|---------|
|      |       | y = 1      | y = 0     |         |
| Obs. | y = 1 | n1         | n2        | n1 + n2 |
|      | y = 0 | n3         | n4        | n3 + n4 |

Sensibilidade = n1 / (n1 + n2)Especificidade = n4 / (n3 + n4)





#### MEDIDAS DE AJUSTE

| Área abaixo da curva ROC | Interpretação           |  |
|--------------------------|-------------------------|--|
| Menor ou igual a 0,5     | Não há discriminação    |  |
| Entre 0,7 e 0,8          | Discriminação aceitável |  |
| Maior que 0,8            | Discriminação excelente |  |

Quanto maior a área abaixo da Curva ROC, maior é a capacidade do modelo em discriminar os grupos de evento de interesse e de não interesse.



## **OBRIGADO**





lattes.cnpq.br/687652 8572507972



Copyright © 2021 | Professor André Silva de Carvalho

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente proibido sem consentimento formal, por escrito, do professor/autor

