TD Analyses asymptotique

Ex 1

Quels sont les équivalents corrects parmi les propositions suivantes?

$$1. n \sim_{n \to +\infty} n + 1$$

$$2. n^2 \sim_{n \to +\infty} n^2 + n$$

3.
$$ln(n) \sim_{n \to +\infty} ln(10^6 n)$$

4.
$$e^n \sim_{n \to +\infty} e^{(n+10^{-6})}$$

5.
$$e^n \sim_{n \to +\infty} e^{(2n)}$$

6.
$$ln(n) \sim_{n \to +\infty} ln(n+1)$$

Ex 2

Calculer les développements limités suivants :

(Somme et produit de DLs)

1.
$$\frac{1}{1-x} - e^x$$
 à l'ordre 3 en 0

2.
$$\sqrt{1-x} + \sqrt{1+x}$$
 à l'ordre 4 en 0

4.
$$(ln(1 + x))^2$$
 à l'ordre 4 en 0

(Quotient de DLs)

5.
$$\frac{1}{1+x+x^2}$$
 à l'ordre 4 en 0

6.
$$\frac{\sin x - 1}{\cos x + 1}$$
 à l'ordre 2 en 0

(Composition de DLs)

7.
$$ln(\frac{\sin x}{x})$$
 à l'ordre 4 en 0

8.
$$e^{\sin x}$$
 à l'ordre 4 en 0

Ex 3

Déterminer les limites des fonctions suivantes :

1.
$$\frac{\sin x - x}{x^3}$$
 en 0

2.
$$\frac{1+\ln(1+x)-e^x}{1-\cos x} \text{ en } 0$$
3.
$$\frac{e^{\sin x}-e^{\tan x}}{\sin x-\tan x} \text{ en } 0$$

3.
$$\frac{e^{\sin x} - e^{\tan x}}{\sin x - \tan x}$$
 en 0

4.
$$\frac{2x}{\ln(\frac{1+x}{1-x})}$$
 en 0

Ex 4

On considère , pour chaque entier $n \in N$, l'équation x + lnx = n

- 1. Démontrer que cette équation admet une unique solution $x_n \in \]0,+\infty[$, puis démontrer que la suite (x_n) est strictement croissante.
- 2. Démontrer que (x_n) tend vers $+ \infty$.
- 3. Démontrer que $x_n \sim_{n \to +\infty} n$.
- 4. Démontrer que $x_n = n ln(n) + o(ln(n))$.
- 5. Démontrer que $x_n = n \ln(n) + \frac{\ln n}{n} + o(\frac{\ln n}{n})$.
- 6. En admettant éventuellement le résultat de la question précédente , dire parmi les propositions suivantes lesquelles sont vraies :

a.
$$x_n \sim_{n \to +\infty} n - ln(n)$$

b.
$$x_n \sim_{n \to +\infty} n - 2ln(n)$$

$$C. x_n = n - ln(n) + o(\sqrt{ln n})$$

$$d. x_n = n - ln(n) + \frac{ln n}{n}$$