Subgroup

Problem:

Prove that a group $\langle G, \cdot \rangle$ is abelian, if and only if $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$, for all $a, b \in G$.

Cosets

Definition (Left Coset)

Let H be a subgroup of a group $\langle G, \cdot \rangle$. The left cosets of G relative of H are defined by

$$g \cdot H = \{g \cdot h | h \in H\}, \forall g \in G.$$

If $\cdot = +$, then

$$g \cdot H = g + H = \{g + h | h \in H\}.$$

Definition (Right Coset)

Let H be a subgroup of a group $\langle G, \cdot \rangle$. The right cosets of G relative of H are defined by

$$H \cdot g = \{h \cdot g | h \in H\}, \forall g \in G.$$

Cosets

Example

Let $\underline{3} = \{1,2,3\}$ be a finite set. Considering all 3! = 6 permutations on $\underline{3}$, define a set $S_3 = \{e, (12), (13), (23), (123), (132)\}$. Then, S_3 forms a group under permutation composition (multiplication). Also, S_3 is called a symmetric group of degree 3. Find the left and right cosets of S_3 relative to a subgroup $H = \{e, (12)\} \subseteq S_3$, where e is the identity permutation defined on $\underline{3}$.

Group

Problem: If H be a subgroup of a group $\langle G, \circ \rangle$ and $h \in H$, then $h \circ H = H \circ h = H$.

Group

Problem: For each g in a group [G, .], the set $N_g = \{h | h.g.h^{-1} = g\}$ is called the *normalizer* of g. Show that N_g is a subgroup of G for every g.