An Application of Machine Learning to model a Temperature Sensor(PT100)

Lokesh Surana (ES20BTECH11017)

April 27, 2023

Outline

- Introduction
- 2 Circuit
- Oata
- Model
- Data visulization

Aim

- The modeling of the voltage-temperature characteristics of the PT-100 RTD (Resistance Temperature Detector) using least squares method.
- In next slide we have training and validation data. This data have been recorded using voltage readings from serial monitor of arduino and temperature readings from a thermometer.

Circuit Diagram

Figure: Schematic Circuit Diagram to Measure the Output of PT-100 (P).

Why $R = 100 \Omega$?

- Source voltage V = 3.3Volt
- ② The most common type (PT100) has a resistance (P) of 100 Ω at 0° C and 138.4 Ω at 100 ° C.
- **3** So for any R we use voltage drop accross R will be, $\frac{VP}{P+R}$
- 1 In terms of sensorvalue, $\frac{Sensorvalue \times P}{P+R} \times \frac{3.3}{1023}$
- So it we use very large R compared to P, the voltage drop will be very small even for signficant change in sensorvalue/Temperature.
- **1** That's why we use $R = 100 \Omega$, a comparable value to P.

Experiment

PT-100 circuit is connected to arduino 3.3V and ground pins. The 200Ω resistor is being used in circuit. The voltage/sensorvalue is read from A0 pin of arduino.

Experiment

This is the LCD circuit which is used to display the temperature readings.

Experiment

This is the LCD circuit which is used to display the temperature readings.

Training data

Temperature (°C)	Voltage (V)
16	1.52
21	1.54
25	1.56
33	1.57
41	1.60
48	1.62
53	1.63
61	1.65
70	1.69
78	1.70
81	1.72
90	1.74

Validation data

Temperature (°C)	Voltage (V)
18	1.53
36	1.58
45	1.61
65	1.66
85	1.73

Model

The voltage reding for arduino varies as per temperature. The voltage reading can be modelled as

$$V(T) = A + BT \tag{1}$$

this can be written in the form of $y = \mathbf{x}^{\top} \mathbf{n}$ (2)

$$y = V(T), \mathbf{n} = \begin{pmatrix} A \\ B \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 1 \\ T \end{pmatrix}$$
 (3)

For multiple points, eqn (3) becomes

$$\mathbf{X}^{\mathsf{T}}\mathbf{n} = \mathbf{Y} \tag{4}$$

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ T_1 & T_2 & \dots & T_n \end{pmatrix} \tag{5}$$

$$\mathbf{Y} = \begin{pmatrix} V(T_1) \\ V(T_2) \\ \vdots \\ V(T_n) \end{pmatrix} \tag{6}$$

$$\mathbf{n} = \begin{pmatrix} A \\ B \end{pmatrix} \tag{7}$$

Here \mathbf{n} is the unknown, \mathbf{X} and \mathbf{Y} are readings.

We approximate \mathbf{n} by using the least squares method. The Python code codes/lsq.py solves for \mathbf{n} . The calculated value of \mathbf{n} is

$$\mathbf{n} = \begin{pmatrix} 1.48 \\ 0.0029 \end{pmatrix} \tag{8}$$

The linear model between temperature and voltage is given by

$$V(T) = 1.48 + 0.0029T \tag{9}$$

Data visulization

Figure: Training data

Data visulization

Figure: Validation data