Theoretical Part Replication results

Replication of "Educational Expansion and Its Heterogeneous Returns for Wage Workers" BY Michael Gebel and Friedhelm Pfeiffer

Luisa Hammer and Marcelo Avila

22 Nov 2018

Theoretical Part Replication results

TODO: include outline of present.

Introduction Econometric Approach

THEORETICAL PART

Introduction Econometric Approach

Introduction

SUMMARY

- Educational Expansion and Its Heterogeneous Returns for Wage Workers
- by Michael Gebel and Friedhelm Pfeiffer, published on Schmollers Jahrbuch in 2010
- basic idea: examine evolution of returns to education in West German labour market. Focus on change in returns to education over time covering education expansion in Germany.
- methodology:
 - Wooldrigdge's (2004) conditional mean independence
 - Garen's (1984) control function approach, that requires an exclusion restriction
 - as well as OLS
- data: SOEP 1984 2006

DATA AND VARIABLES

- Log of hourly wage
- Years of education (constructed from categorical variable)
- Age and age squared
- Gender
- Father's education
- Mother's ecucation
- Father's occupation
- Rural or urban household
- Number of Siblings

TODO: more detailed table?

BACKGROUND INFORMATION

- increase in educational attainment in the 1960s. From 1984 to 2006, avg years of schooling:
 - woman: 11.3 -> 12.8
 - men: 11.9 -> 12.9 (but with a shrinking gap over time.)
- unobserved characteristics leading to selection bias:
 - higher ability and motivation to stay longer in education
 - select jobs with expected higher returns.

A FEW A PRIORI HYPOTHESES

Factors affecting RtE	↑ RTE	↓ RTE
Increase in female labour participation		√
Birth cohort sizes (Baby boom)		\checkmark
Wage determination processes (entrants)		\checkmark
Skill-biased technological change	\checkmark	

INTRODUCTION ECONOMETRIC APPROACH

ECONOMETRIC APPROACH

EMPIRICAL FRAMEWORK (DERIVATION) I

The study is based on the **correlated random coefficient model** (Blundell / Dearden / Sianesi, 2005; Heckman / Vytlacil, 1998; Wooldridge, 2004).

$$\ln Y_i = a_i + b_i S_i$$

with
$$a_i = a'X_i + \varepsilon_{ai}$$
, and $b_i = b'X_i + \varepsilon_{bi}$

where $\ln Y_i$: \log of wages and S_i years of schooling of individual i

- The model has, therefore, an **individual-specific intercept** a_i and **slope** b_i dependent on **observables** X_i and **unobservables** ε_{ai} and ε_{bi} .
- Do not assume b_i and S_i are independent -> Individuals with higher expected benefits from education are more likely to remain longer in education -> b_i may be correlated with S_i meaning positive self-selection.

EMPIRICAL FRAMEWORK (DERIVATION) II

 focus: estimate average partial effect (APE), which is the return per aditional year of education for a randomly chosen individual (or averaged across the population)

$$E(\partial \ln Y/\partial S) = E(b_i) = \beta$$

Would one assume homogenous returns to education:

$$\ln Y_i = a'X_i + \bar{b}S_i + \varepsilon_{ai}$$

- Unobserved heterogeneity may only affect the intercept of the wage equation.
- still potential Endogeneity if ε_{ai} correlates with S_i

EMPIRICAL FRAMEWORK (INTUITION) I

■ Simple OLS

EMPIRICAL FRAMEWORK (INTUITION) II

■ Multiple OLS with homogenous return to Educ

EMPIRICAL FRAMEWORK (INTUITION) III

Correlated Random Coefficient Model

DISTINCTION TO CONVENTIONAL METHODS

- OLS
- ability and "background" bias
- IV Methods
 - if education correlates with unobserved individual heterogeneity, IV methods may fail to identiy APE.
 - alternative: Local Average Treatment Effect.

CONDITIONAL MEAN INDEPENDENCE

According to Wooldridge (2004, pg. 7), APE is identified by:

$$E \ln Y_i \mid a_i, b_i, S_i, X_i,) = E \ln Y_i \mid a_i, b_i, S_i) = a_i + b_i S_i$$
 (A.1)

$$E(S_i \mid a_i, b_i, X_i) = E(S_i \mid X_i) \text{ and } Var(S_i \mid a_i, b_i, X_i) = Var(S_i \mid X_i)$$
(A.2)

TODO: add interpretation of assumptions

Estimator for β and GLM

$$\hat{\beta} = \frac{1}{N} \sum_{i=1}^{N} \left(\left(S_i - \hat{E}(S_i \mid X_i) \ln Y_i \right) \middle/ \hat{Var}(S_i \mid X_i) \right)$$

$$E(S_i \mid X_i) = e^{\gamma X_i}$$
 and $Var(S_i \mid) = \sigma^2 e^{\gamma X_i}$

Where σ^2 can be consistently estimated by the mean of squared Pearson residuals and standard errors are bootstrapped.

CONTROL FUNCTION APPROACH I

- Based on proposition by Garen (1984).
- Similar to Heckman two-step estimator.
- CF approach can identify APE in heterogeneus returns while standard IV approach may not.

$$S_i = c'X_i + dZ_i + v_i$$
 with $E(v_i \mid Z_i, X_i) = 0$

where:

- \blacksquare X_i and Z_i influence the educational decision.
- v_i: Error term incorporating unobserved determinants of education choice.
- Z_i : Exclusion restriction.
- V_i , ε_{ai} and ε_{bi} are normally distributed with zero means and positive variances.

CONTROL FUNCTION APPROACH II

possible correlation between error terms

Augmented Wage equation:

$$In Y_i = a_i + \beta S_i + \gamma_1 v_i + \gamma_2 V_i S_i + w_i$$

where:

- - $\gamma_2 = cov(\varepsilon_{bi}, v_i)/var(v_i)$
- $E(w_i \mid X_i, S_i, v_i) = 0$ (as shown in Heckman / Robb, 1985)

TODO: intuition for CF approach

THEORETICAL PART REPLICATION RESULTS

REPLICATION RESULTS

THEORETICAL PART REPLICATION RESULTS

. . .