§3 简谐振动的合成(一质点同时参与两种振动)

当一个物体同时参与几 个谐振动时,就需考虑振 动的合成问题。

本节只讨论满足<u>线性叠加</u>的情况。

- 一、两个同方向、同频率简谐振动的合成
- *二、两个同方向、不同频率简谐振动的合成----拍
- 三、两个相互垂直简谐振动的合成

(同频率或不同频率)

一、振动方向相同、振动频率相同的两个SHV的合成

(双光束干涉的理论基础)

$$x_1 = A_1 \cos(\omega t + \varphi_1)$$
$$x_2 = A_2 \cos(\omega t + \varphi_2)$$

一质点同时参与此两振动,则

•质点合振动:
$$x = x_1 + x_2$$
 ?

- 1. 解析法
- 2. 旋转矢量法

2. 旋转矢量法

$$x_1 = A_1 \cos(\omega t + \varphi_1)$$

$$x_2 = A_2 \cos(\omega t + \varphi_2)$$

$$\vec{A} = \vec{A}_1 + \vec{A}_2$$

$$x = A\cos(\omega t + \varphi)$$

合成后仍为同频率的简谐运动

两振动的<u>相位差</u> $\Delta \varphi = \varphi_2 - \varphi_1$

•合振动的振幅
$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi}$$

初相
$$\varphi = \arctan \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2}$$

合振幅
$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi}$$

$$A = A_1 + A_2$$

 $A = A_1 + A_2$ 同相 合振动加强

$$A = |A_1 - A_2|$$

 $A = |A_1 - A_2|$ 反相 合振动减弱

• 若
$$A_1 = A_2$$

同相 $A = 2A_1$ 可能的最强振动

反相 A=0 "振动加振动"不振动

两个分振动的相位差对合振动起着重要作用

一般情况 $\Delta \varphi$ 为其它任意值,则: $|A_1 - A_2| < A < (A_1 + A_2)$

两个分振动的相位差对合振动起着重要作用

例 三个同频率 ω ,同振幅 A_0 ,同方向的简谐振动,相邻相位差为 $\pi/3$ 。求:合振幅A。

解: 画旋转矢量图

由图很容易得到

$$A = 2A_0$$

* 多个同方向、同频率简谐运动的合成

$$x_1 = A_1 \cos(\omega t + \varphi_1)$$

$$x_2 = A_2 \cos(\omega t + \varphi_2)$$

$$\dots$$

$$x_N = A_N \cos(\omega t + \varphi_N)$$

$$x = x_1 + x_2 + \dots + x_N$$

$$x = A \cos(\omega t + \varphi)$$

多个同方向同频率简谐运动合成仍为简谐运动

习题 N个同方向、同频率的简谐振动,它们的振幅相等,初相分别为 $0,\alpha,2\alpha,\dots$ 依次差一个恒量 α ,振动表达式可写为

$$x_1 = a\cos\omega t$$
 $x_2 = a\cos(\omega t + \alpha)$
 $x_3 = a\cos(\omega t + 2\alpha)$
 $x_N = a\cos[\omega t + (N-1)\alpha]$
求它们的合振动的振幅和初相。

解 采用旋转矢量法

$$\angle OCM = N\alpha$$
 $A = 2R\sin\frac{N\alpha}{2}$ $A = a\frac{\sin(N\alpha/2)}{\sin(\alpha/2)}$ $A = a\frac{\sin(N\alpha/2)}{\sin(\alpha/2)}$

$$A = a \frac{\sin(N\alpha/2)}{\sin(\alpha/2)}$$

 φ 为 A与x轴间的夹角,即合振动的初相。

$$\varphi = \angle COP - \angle COM$$

$$= \frac{1}{2}(\pi - \alpha) - \frac{1}{2}(\pi - N\alpha)$$

$$\varphi = \frac{N-1}{2}\alpha$$

合振动的表达式为

$$x = A\cos(\omega t + \varphi) = a \frac{\sin(N\alpha/2)}{\sin(\alpha/2)}\cos(\omega t + \frac{N-1}{2}\alpha)$$

讨论:
$$x = a \frac{\sin(N\alpha/2)}{\sin(\alpha/2)} \cos(\omega t + \frac{N-1}{2}\alpha)$$

(1) 如果各分振动的初相相同,即 $\alpha = 0$,则有

(2)
$$N\alpha = 2k'\pi$$

$$(k'=\pm 1,\pm 2,\cdots, (\exists k' \neq kN)$$

$$A = 0$$

二、振动方向相同、频率略有差别、振幅相等

的两个SHV的合成 拍

设分振动:
$$x_1 = A_0 \cos \omega_1 t$$

$$x_2 = A_0 \cos \omega_2 t$$
 $\omega_1 \approx \omega_2$

$$\omega_1 \approx \omega_2$$

线性相加:

$$x = x_1 + x_2 = 2A_0 \cos \frac{\omega_1 - \omega_2}{2} t \cos \frac{\omega_1 + \omega_2}{2} t$$

结论: 合振动已不再是谐振动

但因 $\omega_1 \approx \omega_2$,可用谐振动表达式等效,加深认识

$$x = x_1 + x_2 = 2A_0 \cos \frac{\omega_1 - \omega_2}{2} t \cos \frac{\omega_1 + \omega_2}{2} t$$

分析: $\omega_1 \approx \omega_2$

$$\overline{\omega} = \frac{\omega_1 + \omega_2}{2} \qquad \Delta \ \omega = \omega_1 - \omega_2 << \overline{\omega}$$

则 $2A_0\cos\frac{\omega_1-\omega_2}{2}t$ 较 $\cos\frac{\omega_1+\omega_2}{2}t$ 随时间变化缓慢得多,

将合成式写成谐振动形式 $x = A(t)\cos \overline{\omega}t$

合振动的振幅
$$A(t) = \left| 2A_0 \cos \frac{\omega_1 - \omega_2}{2} t \right|$$

合振动可看做是振幅缓慢、周期变化的谐振动

$$x = \left[2A_0 \cos \frac{\omega_1 - \omega_2}{2}t\right] \cos \frac{\omega_1 + \omega_2}{2}t$$

$$u_1 = \frac{\omega_1}{2\pi}$$

$$u_2 = \frac{\omega_2}{2\pi}$$

$$\nu = \frac{\nu_1 + \nu_2}{2}$$

拍: 合振动的周期性的强弱变化叫做<mark>拍</mark> 白频: 单位时间内合振动加强或减弱的次数叫拍频

曲
$$A(t) = \left| 2A_0 \cos \frac{\omega_1 - \omega_2}{2} t \right|$$

$$v_{\rm H} = |v_1 - v_2|$$
 测未知频率的一种方法

三、两个振动方向相互垂直的谐振动的合成

$$\omega_1 = \omega_2 = \omega$$

设分振动

$$x = A_1 \cos(\omega t + \varphi_1)$$

$$y = A_2 \cos(\omega t + \varphi_2)$$

消去参数 t , 得合运动的轨迹方程: 椭圆方程

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} - 2\frac{x}{A_1} \frac{y}{A_2} \cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1)$$

一般而言,合振动轨迹为椭圆。椭圆的性质(方位、长短轴、左右旋)在 A_1 、 A_2 确定之后,主要取决于相位差 $\Delta \varphi = \varphi_2 - \varphi_1$

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} - \frac{2xy}{A_1A_2}\cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1)$$

特殊结果:

(1)
$$\Delta \varphi = 0$$
 $\exists f$, $y = \frac{A_2}{A_1} x$ $r = \sqrt{x^2 + y^2}$

合运动
$$r = \sqrt{A_1^2 + A_2^2} \cos(\omega t + \varphi)$$

仍是频率为 ω 的简谐振动。 $A = \sqrt{A_1^2 + A_2^2}$

(2)
$$\Delta \varphi = \pi \text{ iff}, \quad y = -\frac{A_2}{A_1} x$$

$$\Delta \varphi = 0 \longrightarrow \Delta \varphi = \pi$$
 振动方向旋转 2θ

(3)
$$\Delta \varphi = \pm \frac{\pi}{2}$$
 $\text{ iff, } \frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} = 1$

$$tg\theta = \frac{A_1}{A_2}$$

(3)
$$\Delta \varphi = \pm \frac{\pi}{2}$$
 By, $\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} = 1$

合运动是椭圆振动;

若 $A_1 = A_2$ 则为圆振动

(偏振光干涉的理论基础)

 $\Delta \varphi = \varphi_2 - \varphi_1$ 的值不同,椭圆形状、旋向也<u>不同</u>

2. 不同频率的两个相互垂直的谐振动的合成

设分振动
$$x = A_1 \cos(\omega_1 t + \varphi_1)$$
 $\omega_1 \neq \omega_2$ $y = A_2 \cos(\omega_2 t + \varphi_2)$

1) 若频率相差很小 $\omega_1 \approx \omega_2$

可看作两频率相等而 $\Delta \varphi$ 随 t 缓慢变化 合运动轨迹将按上页图依次缓慢变化。

2) 频率比是整数比 $\frac{\omega_1}{\omega_2} = \frac{m}{n}$, $m, n = 1, 2, \cdots$

则合成轨迹为稳定的闭合曲线—李萨如图

李萨如图形状取决于频率比和相差 $\Delta \varphi = \varphi_2 - \varphi_1$

频率比不为整数时,合成运动的轨迹是不闭合的曲线.

李萨如图形 $\omega_x : \widetilde{\omega_y}$ $\pi/2$ $\pi/4$ $3\pi/4$ π 1:1 2:1 3:1 3:2

简谐振动的合成

- 一、两个同方向、同频率简谐振动的合成
- 二、两个同方向、不同频率简谐振动的合成----拍
- 三、两个相互垂直简谐振动的合成

(同频率或不同频率)