${\bf Vorlesung smitschrift}$

REDUZIERTE BASIS METHODEN

Universität Stuttgart, SS15 Prof. Dr. Bernard Haasdonk

AUTOREN:

STAND:

	Frank Schneider 14. Mai 2015	
Ir	nhaltsverzeichnis	
1	Einleitung	2
	1.1 Modellreduktion	. 3
2	Grundlagen	8
3	RB-Methoden für lineare koerzive Probleme	16
	3.1 Primales RB-Problem	. 16
	3.2 Fehleranalyse	. 19

1 Einleitung

Parameterabhängige Probleme

Beispiel 1.1 (Parameterabhängige PDE)

Sie $\Omega \subseteq \mathbb{R}^d$ polygonales Gebiet. Zu Parametervektor $\mu \in \mathcal{P} \subset \mathbb{R}^p$ aus einer Menge \mathcal{P} von "erlaubten" Parametern ist eine Funktion (z. B. "Temperatur") $u(\mu) : \Omega \to \mathbb{R}$, s. d.:

$$\nabla \cdot (\kappa(\mu)\nabla u) = q(\mu) \qquad \text{in } \Omega$$
$$u(\mu) = 0 \qquad \text{auf } \delta\Omega$$

mit $\kappa(\mu): \Omega \to \mathbb{R}$ (z. B. "Wärmeleitungskoeffizient") und $q(\mu): \Omega \to \mathbb{R}$ (z. B. "Wärmequelle/-senke")

z. B.
$$q(x; \mu) := \begin{cases} 1 & \text{für } x \in \Omega_q \\ 0 & \text{sonst} \end{cases}$$

Weiter kann Ausgabe erwünscht, z.B. mittlere Temperatur

$$s(\mu) = \frac{1}{|\Omega_s|} \int u(x; \mu) \, dx$$

Abbildung 1: Beispiel Wärmeleitung mit Quelle Ω_q und Messbereich Ω_s (aus B. Haasdonk, Reduzierte-Basis-Methoden, Skript zur Vorlesung SS 2011, Universität Stuttgart, IANS-Report 4/11, 2011.)

Beispiel 1.2 (Parametrisches stationäres System)

Zu Parameter $\mu \in \mathcal{P} \subseteq \mathbb{R}^p$ ist Zustandsvektor $u(\mu) \in \mathbb{R}^n$ und Ausgabe $s(\mu) \in \mathbb{R}^k$ gesucht, s. d.:

$$0 = A(\mu) \cdot u(\mu) + B(\mu)w(\mu)$$

$$s(\mu) = l(\mu) \cdot u(\mu)$$

mit parameterabhängigen Matrizen $A(\mu) \in \mathbb{R}^{n \times n}, B(\mu) \in \mathbb{R}^{n \times m}, C(\mu) \in \mathbb{R}^{k \times n}$ mit Eingabevektor $w \in \mathbb{R}^m$.

Schwache Formulierung in Hilberträumen

Sie X reeller Hilbertraum (reel, seperabel). Zu $\mu \in \mathcal{P}$ ist gesucht ein $u(\mu) \in X$ und $s(\mu) \in \mathbb{R}$

$$a(u(\mu), v; \mu) = f(v; \mu)$$

$$s(\mu) = l(u(\mu); \mu) \qquad \forall v \in X$$

Mit Bilinearform $a(\cdot,\cdot;\mu)$ und Linearform $f(\cdot;\mu),\ l(\cdot;\mu)$. Beide Beispiele lassen sich so formulieren.

z. B. 1.1:

$$X = H_0^1(\Omega) := \{ f \in L^2(\Omega) | \frac{\partial}{\partial x_i} f \in L^2(\Omega), f_{|\delta\Omega} = 0 \}$$

$$\underbrace{\int_{\Omega} \kappa(x; \mu) \nabla u(x; \mu) \cdot \nabla v(x) dx}_{a(u(\mu), v; \mu)} = \underbrace{\int_{\Omega} q(x; \mu) \cdot v(x) dx}_{f(v; \mu)} \qquad \forall v \in X$$

$$s(\mu) = \frac{1}{|\Omega_s|} \int_{\Omega_s} u(x; \mu) =: l(u(\mu); \mu)$$

$$Zu \text{ Bsp. 1.2 } (k = 1, \text{ ,,single output"}) \qquad X = \mathbb{R}^n$$

$$\underbrace{v^T A(\mu) u(\mu)}_{a(u(\mu), v; \mu)} = \underbrace{-v^T Bw}_{f(v; \mu)}$$

$$s(\mu) := \underbrace{C(\mu) u(\mu)}_{l(u(\mu); \mu)}$$

In der Vorlesung werden weitere Verallgemeinerungen zu $a: X_1 \times X_2 \to \mathbb{R}$ mit $X_1 \neq X_2$, nichtlinear und instationäre Probleme behandelt.

1.1 Modellreduktion

Grundidee/Motivation

- $\mathcal{M}:=\{u(\mu)|\mu\in\mathcal{P}\}\subset X$ für $\mathcal{P}\subseteq\mathbb{R}^p$ ist die durch μ parametrisierte Lösungsmannigfaltigkeit.
- X ist im allgemeinen ∞-dimensional Sobolev-Raum) oder endlich- aber sehr hochdimensional (FEM, FV, FD-Raum). M ist aber höchstens p-dimensional.
 ⇒ Motivation für Suche nach einem niedrigdimensionalen Teilraum X_n ⊆ X zur Approximation von M und einer Approximation u_N(µ) ≈ u(µ), u_N(µ) ∈ X_N
- Insbesondere bei Reduzierten-Basis-Methoden (RB-Methoden): X_N durch Beispiellösungen erzeugt, sog. "Snapshots" $X_N \subseteq \operatorname{span}\{u(\mu_1),...,u(\mu_n)\}$ für geeignete Parameterwerte $\mu_i \in \mathcal{P}$. Ziel ist außerdem Fehlerkontrolle durch Schranken $\Delta_N(\mu)$:

$$||u(\mu) - u_N(\mu)|| < \Delta_N(\mu)$$

Illustration

Abbildung 2: Parametrisierte niedrigdimensionale Lösungsmenge (aus dem Online-Skript von Prof. Dr. Haasdonk zu Reduzierte Basen 2015)

Beispiel 1.3

Gesucht ist $u(\mu) \in C^2([0,1])$ mit

$$(1 + \mu)u'' = 1$$
 auf(0,1)
 $u(0) = u(1) = 1$

Für $\mu \in [0,\!1] =: \mathcal{P} \subseteq \mathbb{R}.$ Spezielle Lösungen ("Snapshots")

$$\mu = 0 \Rightarrow u_0(x) = u(x; \mu = 0) = \frac{1}{2}x - \frac{1}{2}x + 1$$
$$\mu = 1 \Rightarrow u_1(x) = u(x; \mu = 1) = \frac{1}{4}x - \frac{1}{4}x + 1$$

RB-Raum: $X_N := \operatorname{span}(u_0, u_1)$ Reduzierte Lösung gegeben durch

$$u_N(\mu) := \alpha_0(\mu)u_0 + \alpha_1(\mu)u_1$$

 $\alpha_0(\mu) = \frac{2}{\mu+1} - 1; \qquad \alpha_1(\mu) = 2 - \frac{2}{\mu+1}$

Diese erfüllt

$$||u_N(\mu) - u(\mu)||_{\infty} = \sup_{\mu} ||u(\mu) - u_N(\mu)|| = 0$$

ist somit exakt. \mathcal{M} ist enthalten in 2-dimensionalem Unterraum X_N : Genauer $\alpha_0 + \alpha_1 = 1, 0 \leq \alpha_0, \alpha_1 \leq 1$, also ist \mathcal{M} Menge der Konvexkombinationen von u_0, u_1 .

Begriffe

- Eine PDE ist ein analytisches Modell, welches die exakte Lösung $u(\mu) \in X$ in einem typischerweise ∞ -dimensionalen Funktionenraum X charakterisiert.
- Ein detailliertes Modell (auch hochdimensionales Modell) ist ein Berechnungsverfahren oder charakterisiert eine Approximation $u(\mu) \in X$ in hochdimensionalen Raum mit sehr allgemeinen Approximationseigenschaften. (z. B. FEM/FV/FD, dim $X = 10^3 10^8$). In dieser Vorlesung kann $u(\mu)$ sowohl eine analytische als auch eine detaillierte Lösung darstellen.
- Ein reduziertes Modell ist ein Berechnungsverfahren bzw. eine Charakterisierung einer reduzierten Lösung $u_N(u)$ in einem sehr problemangepassten Raum X_N (dim $X_N = 1 10^3$).
- *Modellreduktion* beschäftigt sich mit Methoden der Erzeugung reduzierter Modelle und Untersuchung ihrer Eigenschaften
- Modellreduktion ist ein modernes Gebiet der angewandten Mathematik und Ingenieurwissenschaften (Schwerpunkt in SimTech PN3, MOR-Seminar)

Anwendungen für parametrische reduzierte Modelle

"Kleinere" Modelle stellen geringere Anforderungen an Rechenzeit und Speicher, daher Einsatz in:

- "multi-query"-Kontext, d. h. Vielfachanfragen unter Parametervariation: Parameterstudien, Design, Parameteridentifikation, Inverse Probleme, Optimierung, statistische Analyse
- Multi-skalen-Modelle (reduzierte Mikrolöser)
- "real-time"-Kontext, d. h. Anwendungen mit schneller Simulationsantwort: Interaktive Benutzeroberfläche, Web-Formulare, Echtzeitsteuerung von Prozessen
- "cool-computing"-Kontext, d. h. Simulation auf "einfacher" Hardware: elektronische Regler, Smartphones, Ubiquitious Computing

Demonstration

demo_thermalblock.m aus RBmatlab, Smartphone App JaRMoS

Abbildung 3: Beispiel des Thermischen Blocks aus demo_thermalblock.m (aus B. Haasdonk, Reduzierte-Basis-Methoden, Skript zur Vorlesung SS 2011, Universität Stuttgart, IANS-Report 4/11, 2011.)

Offline/Online Zerlegung

Typischerweise wird eine Verechnungsintensive Generierung des reduzierten Modells akzeptiert, sog. Offline-Phase. Dies ermöglicht schnelle Anwendbarkeit des reduzierten Modells in der Online-Phase. Offline-Kosten werden gerechtfertigt durch Amortisierung im multi-query-Kontext, d.h. Laufzeitgewinn bei genügend großer Anzahl an Online-Simulationen

multi-query mit detaillieiem Modell:

agran agra

Abbildung 4: Laufzeitvergleich eines detaillierten mit einem reduzierten Modell (aus dem Online-Skript von Prof. Dr. Haasdonk zu Reduzierte Basen 2015)

Zentrale Fragen

- Reduzierte Basis: Wie kann ein möglichst kompakter Teilraum konstruiert werden? Können solche Verfahren beweisbar gut sein?
- Reduziertes Modell: Wie kann eine Lösung $u_N(\mu) \in X_N$ bestimmt werden
- Berechnungs-Effizienz: Wie kann $u_N(\mu)$ schnell berechnet wreden?
- Stabilität: Wie kann Stabilität des reduzierten Modells garantiert werden bei wachsendem $N := \dim X_N$?
- Fehlerschätzer: Kann der Fehler des reduzierten zum detaillierten oder analytischen modells beschränkt werden? Sind die Fehlerschätzer schnell berechenbar?
- Effektivität der Fehlerschätzer: Kann garantiert werden, dass der Schätzer den Fehler nicht zu pessimistisch überschätzt?
- Für welche Problemklassen kann ein RB-Ansatz funktionieren, für welche nicht?

Vorläufige Gliederung

- 1 Einleitung
- 2 Grundlagen
- 3 RB Verfahren für lineare koerzive Probleme
- 4 Allgemeinere lineare Probleme
- 5 Nichtlineare Probleme
- 6 Instationäre Probleme
- 7 Weiterführende Aspekte

2 Grundlagen

Im Folgenden sei X (oder X_1, X_2) stets reeller Hilbertraum mit Skalarprodukt $\langle \cdot, \cdot \rangle_X$, Norm $\| \cdot \|_X$ und Dualraum X'. Subskript wird weggelassen falls keine Verwechslungsgefahr besteht.

Definition 2.1 (Parametrische Formen)

Sei $\mathcal{P} \subset \mathbb{R}^p$ beschränkte Parametermenge. Dann nennen wir

i) $l: X \times \mathcal{P} \to \mathbb{R}$ parametrische stetige Linearform falls $\forall \mu \in \mathcal{P}$:

$$l(\cdot;\mu) \in X'$$

ii) $a: X_1 \times X_2 \times \mathcal{P} \to \mathbb{R}$ eine parametrische stetige (symmetrische) Bilinearform, falls für alle $\mu \in \mathcal{P}$

$$a(\cdot,\cdot;\mu):X_1\times X_2\to\mathbb{R}$$
 ist bilinear und stetig (symmetrisch)

Wir bezeichnen die Stetigkeitskonstante mit

$$\gamma(\mu) := \sup_{u \in X_1} \sup_{v \in X_2} \frac{a(u, v; \mu)}{\|u\|_{X_1} \|v\|_{X_2}}$$

Falls $X_1 = X_2 =: X$ und $a(\cdot, \cdot; \mu)$ ist koerziv für alle $\mu \in \mathcal{P}$, so ist $a(\cdot, \cdot; \cdot)$ parametrisch koerziv und wir bezeichnen die Koerzivitätskonstante mit

$$\alpha(\mu) := \inf_{u \in X} \frac{a(u, u; \mu)}{\|u\|^2}$$

Bemerkung. Eine parametrische stetige Bi-/Linearform ist nicht unbedingt stetig bzgl. μ . Beispiel: $X = \mathbb{R}, \mathcal{P} = [0,1], l: X \times \mathcal{P} \to \mathbb{R}$ definiert durch

$$l(x; \mu) := \begin{cases} x & \text{falls } \mu < \frac{1}{2} \\ \frac{1}{2}x & \text{sonst} \end{cases}$$

 $\bf Definition~2.2~(Parametrische Beschränktheit / Lipschitz-Stetigkeit / Koerzivität)$ Wir nennen

i) eine parametrische stetige Linearform l bzw. Bilinearform a gleichmäßig beschränkt bzgl. μ falls ex. $\bar{\gamma}_l, \bar{\gamma} < \infty$ mit

$$\sup_{\mu \in \mathcal{P}} \|l(\,\cdot\,;\mu)\|_{X'} \leq \bar{\gamma}_l \quad \text{bzw.} \quad \sup_{\mu \in \mathcal{P}} \gamma(\mu) \leq \bar{\gamma}$$

ii) a gleichmäßig koerziv bzgl. μ falls ex. $\bar{\alpha} > 0$ mit

$$\inf_{\mu \in \mathcal{P}} \alpha(\mu) \ge \bar{\alpha}$$

iii) l bzw. a Lipschitz-stetig bzgl. μ falls ex. L_l bzw. $L_a \in \mathbb{R}^+$, sodass $\forall \mu_1, \mu_2 \in \mathcal{P}$ gilt

$$|l(u; \mu_1) - l(u; \mu_2)| \le L_l ||u|| ||\mu_1 - \mu_2|| \quad \forall u \in X$$

bzw.

$$|a(u,v;\mu_1) - a(u,v;\mu_2)| \le L_a ||u|| ||v|| ||\mu_1 - \mu_2|| \quad \forall u \in X_1, v \in X_2$$

Definition 2.3 (Sensitivitätsableitung)

Sei $\mu_0 \in \mathcal{U} \subset \mathcal{P}$ in Umgebung \mathcal{U} von μ_0 . Wir nennen $f : \mathcal{U} \to X$ (Frechet)-differenzierbar in μ_0 , falls ex. ein $\mathrm{D} f(\mu_0) \in L(\mathbb{R}^p, X)$ mit

$$\lim_{h \to 0} \frac{\|f(\mu_0 + h) - f(\mu_0) - Df(\mu_0)h\|}{\|h\|} = 0$$

Falls f in jedem $\mu \in \mathcal{U}$ diffbar, dann existieren insbesondere partielle Ableitungen

$$\frac{\partial}{\partial \mu_i} f(\,\cdot\,) := \mathrm{D}f(\,\cdot\,) e_i : \mathcal{U} \to X$$

für $e_i \in \mathbb{R}^p$ Einheitsvektor $i = 1, \dots, p$. Falls diese wiederrum diffbar in \mathcal{U} bezeichnet allgemein

$$\partial_{\sigma} f(\,\cdot\,) := \frac{\partial^{|\sigma|}}{\partial_{\mu_1}^{\sigma_1} \cdots \partial_{\mu_p}^{\sigma_p}} f(\,\cdot\,) : \mathcal{U} \to X$$

die Sensitivitätsableitung der Ordnung $|\sigma| := \sum_{i=1}^p \sigma_i$ für Multiindex $\sigma = (\sigma_i)_{i=1}^p \in \mathbb{N}_0^p$.

Bemerkung. Diese Ableitungen werden später insbesondere bei parameterabhängigen Lösungen $u(x; \mu)$ verwendet:

 $u: \Omega \times \mathcal{P} \to \mathbb{R}$ mit $u(\cdot; \mu) \in X$ kann auch als

 $u: \mathcal{P} \to X$ aufgefasst werden mit Sensitivitätsableitungen

 $\partial_{\sigma}u: \mathcal{P} \to X$, d.h. $\partial_{\sigma}u(\cdot; \mu) \in X \ \forall \mu \in \mathcal{P}$ und insbesondere

 $\partial_{\sigma}u:\Omega\times\mathcal{P}\to\mathbb{R}$, d.h. ∂_{σ} sind wieder Funktionen auf Ω

Definition 2.4 (Separierbare Parameterabhängigkeit)

i) Eine Funktion $v: \mathcal{P} \to X$ nennen wir separierbar parametrisch, falls existieren Komponenten $v^q \in X$ und Koeffizientenfunktionen $\Theta_v^q: \mathcal{P} \to \mathbb{R}$ für $q = 1, \dots, Q_v$ mit

$$v(\mu) = \sum_{q=1}^{Q_v} \Theta_v^q(\mu) \, v^q$$

ii) Eine parametrische stetige Linearform $l: X \times \mathcal{P} \to \mathbb{R}$ bzw. Bilinearform $a: X_1 \times X_2 \times \mathcal{P} \to \mathbb{R}$ ist separierbar parametrisch, falls existieren $l^q \in X'$ und $\Theta_l^q: \mathcal{P} \to \mathbb{R}$ für $q = 1, \ldots, Q_l$ bzw. $a^q: X_1 \times X_2 \to \mathbb{R}$ stetig, bilinear und $\Theta_a^q: \mathcal{P} \to \mathbb{R}$ für $q = 1, \ldots, Q_a$ mit

$$l(v; \mu) = \sum_{q=1}^{Q_l} \Theta_l^q(\mu) l^q(v) \qquad \forall v \in X, \mu \in \mathcal{P}$$
$$a(u, v; \mu) = \sum_{q=1}^{Q_a} \Theta_a^q(\mu) a^q(u, v) \qquad \forall u \in X_1, v \in X_2, \mu \in \mathcal{P}$$

Bemerkung.

- i) In Literatur auch "affine Annahme" oder "affin parametrisch" verwendet. Wir verwenden jedoch "separierbar", da Θ^q_l auch nichtlinear sein können.
- ii) Q_a, Q_l sollten möglichst klein sein, weil diese in die Online-Komplexität eingehen, siehe $Abschnitt\ 3.$

Satz 2.5 (Energienorm)

Sei $a: X \times X \times \mathcal{P} \to \mathbb{R}$ parametrische stetige, koerzive Bilinearform, und $a_s(u,v;\mu) = \frac{1}{2}(a(u,v;\mu) + a(v,u;\mu))$ der symmetrische Anteil. Dann ist für $\mu \in \mathcal{P}$

$$\langle u, v \rangle_{\mu} := a_s(u, v; \mu)$$
 bzw. $||u||_{\mu} := \sqrt{\langle u, u \rangle_{\mu}}$

das Energie-Skalarprodukt bzw. die Energienorm bzgl. μ . Diese ist äquivalent zu $\|\cdot\|_X$:

$$\sqrt{\alpha(\mu)}\|u\| \le \|u\|_{\mu} \le \sqrt{\gamma(\mu)}\|u\|$$

Beweis. Skalarprodukt: klar wegen Bilinearität, Stetigkeit und Koerzivität. Normäquivalenz folgt aus Stetigkeit und Koerzivität von a_s .

$$\alpha(\mu) \|u\|^2 \le \underbrace{a(u,u;\mu)}_{\le \|u\|^2 \gamma(\mu)} = a_s(u,u;\mu) = \|u\|_{\mu}^2$$

Satz 2.6 (Übertragung von Koeffizienten-Eigenschaften)

Seien f bzw. a separierbar parametrische stetige Linear- bzw. Bilinearform.

- i) Falls $\Theta_f^q(\mu)$ bzw. $\Theta_a^q(\mu)$ beschränkt sind, dann sind f bzw. a gleichmäßig beschränkt bzgl. μ .
- ii) Falls $\Theta_a^q(\mu)$ strikt positiv, d.h. ex. $\bar{\Theta}$ mit $\Theta_a^q(\mu) \geq \bar{\Theta} > 0 \ \forall \mu \in \mathcal{P}$ alle Komponenten positiv semidefinit, d.h. $a^q(v,v) \geq 0 \ \forall v,q$ und $a(\cdot,\cdot;\bar{\mu})$ ist koerziv für mindestens ein $\bar{\mu} \in \mathcal{P}$, dann ist a gleichmäßig koerziv bzgl. μ .

- iii) Falls Θ_f^q , Θ_a^q Lipschitz-stetig, so ist f, a Lipschitz-stetig bzgl. μ . Beweis.
 - i) Sei $\bar{\Theta}_f^q \in \mathbb{R}^+$ mit $|\Theta_f^q(\mu)| \leq \bar{\Theta}_f^q \ \forall \mu$. Dann gilt

$$||f(\cdot;\mu)|| = ||\sum_{q} \Theta_f^q(\mu) f^q|| \le \sum_{q} |\Theta_f^q(\mu)|||f^q|| \le \sum_{q} \bar{\Theta}_f^q ||f^q|| =: \bar{\gamma}_f < \infty$$

analog für $a(\cdot,\cdot;\mu)$.

ii) Für $u \in X$, $\mu \in \mathcal{P}$ gilt

$$a(u,u;\mu) = \sum_{q} \Theta_a^q(\mu) \, a^q(u,u) = \sum_{q} \underbrace{\underbrace{\Theta_a^q(\mu)}_{\Theta_a^q(\bar{\mu})}}_{>0} \underbrace{\underbrace{\Theta_a^q(\bar{\mu}) \, a^q(u,u)}_{\sum(\cdot) = a(u,u;\bar{\mu})}}_{\geq (\bar{\mu})} \ge \underbrace{\sum_{q} \underbrace{\overline{\Theta}_{\alpha}^q(\bar{\mu}) \, \alpha(\bar{\mu})}_{=:\bar{\alpha}>0} \alpha(\bar{\mu}) \|u\|^2}_{=:\bar{\alpha}>0}$$

iii) Sei $|\Theta_f^q(\mu_1) - \Theta_f^q(\mu_2)| \le L_f^q |\mu_1 - \mu_2| \ \forall \mu_1, \mu_2 \in \mathcal{P}$ mit geeignetem $L_f^q \in \mathbb{R}$. Dann gilt

$$|f(v; \mu_1) - f(v; \mu_2)| = |\sum_{q} \Theta_f^q(\mu_1) f^q(v) - \sum_{q} \Theta_f^q(\mu_2) f^q(v)|$$

$$\leq \sum_{q} |\Theta_f^q(\mu_1) - \Theta_f^q(\mu_2)| ||f^q|| ||v||$$

$$\leq \sum_{q} L_f^q ||f^q|| ||\mu_1 - \mu_2|| ||v||$$

$$= L_f$$

analog für $a(\cdot,\cdot;\mu)$.

Definition 2.7 (Volles Problem $(P(\mu))$)

Seien a bzw. f, l parametrische Bilinearform bzw. Linearform und gleichmäßig stetig bzgl. μ , sei a gleichmäßig koerziv bzgl. μ . Dann ist für $\mu \in \mathcal{P}$ gesucht $u(\mu) \in X$ und $s(\mu) \in \mathbb{R}$ als Lösung von

$$a(u(\mu), v; \mu) = f(v; \mu) \qquad \forall v \in X$$

$$s(\mu) := l(u(\mu); \mu)$$

Bemerkung.

- Das volle Problem kann also ein analytisches Modell (PDE) oder ein detailliertes Modell (PDE-Diskretisierung) darstellen.
- Symmetrie von a wird nicht vorausgesetzt.

• In ??, ?? werden Verallgemeinerungen von $(P(\mu))$ betrachtet.

Satz 2.8 (Wohlgestelltheit und Stabilität)

Das Problem $(P(\mu))$ besitzt eine eindeutige Lösung mit

$$||u(\mu)|| \le \frac{||f(\mu)||_{X'}}{\alpha(\mu)} \le \frac{\bar{\gamma}_f}{\bar{\alpha}}, \quad |s(\mu)| \le ||l(\mu)||_{X'} ||u(\mu)|| \le \frac{\bar{\gamma}_l \bar{\gamma}_f}{\bar{\alpha}}$$

Beweis. Existenz, Eindeutigkeit und Schranke für $u(\mu)$ folgen mit Lax-Milgram (siehe z.B. Satz 2.5 in Braess'03). Gleichmäßige Stetigkeit und Koerzivität ergeben μ -unabhängige Schranke für $u(\mu)$. Definition von $s(\mu)$ ergibt Eindeutigkeit und entsprechende Schranken.

Definition 2.9 (Lösungsmannigfaltigkeit)

Wir definieren

$$\mathcal{M} := \{ u(\mu) \in X : \mu \in \mathcal{P} \text{ und } u(\mu) \text{ löst } (P(\mu)) \}$$

Bemerkung. Wir verwenden den Begriff "Mannigfaltigkeit" nicht im strengen differentialgeometrischen Sinn, weil keine Stetigkeit / Diffbarkeit von \mathcal{M} gefordert wird.

Beispiel 2.10 (Thermischer Block) TODO

Beispiel 2.11 (Matrixgleichung)

• Zu $\mu \in \mathcal{P}$ suche $u(\mu) \in \mathbb{R}^H$ als Lösung von

$$A(\mu)u(\mu) = b(\mu)$$

für $A(\mu) \in \mathbb{R}^{H \times H}$ und $b(\mu) \in \mathbb{R}^H$.

• Dies ist Beispiel für $(P(\mu))$ via

$$X := \mathbb{R}^H, \quad a(u, v; \mu) := v^{\top} A(\mu) u, \quad f(v; \mu) := v^{\top} b(\mu)$$

und beliebiger linearer Ausgabe $l(v; \mu) := l^{\top} v$ für $l \in \mathbb{R}^H$.

Beispiel 2.12 $(Q_a = 1)$

Falls $a(\cdot,\cdot;\mu)$, $f(\cdot;\mu)$ separierbar parametrisch mit $Q_a=1$ und Q_f beliebig, so ist \mathcal{M} enthalten in einem Q_f -dimensionalen linearen Teilraum von X:

$$(P(\mu))$$
 \Rightarrow $\Theta_a^1(\mu)a^1(u,v) = \sum_q \Theta_f^q(\mu)f^q(v) \quad \forall v \in X$

 $\Theta_a^1(\mu) \neq 0$ wegen a gleichmäßig koerziv

$$a^{1}(u,v) = \sum_{q} \frac{\Theta_{f}^{q}(\mu)}{\Theta_{a}^{1}(\mu)} f^{q}(v) \quad \forall v \in X$$
 (*)

 $a^{1}(\cdot,\cdot)$ ist koerziv, f^{q} linear und stetig

$$\begin{array}{l} \text{Lax-Milgram} \\ \Rightarrow \end{array} \text{ ex. } u^q, q = 1, \ldots, Q_f \text{ mit } a^1(u^q, v) = f^q(v), \quad v \in X \\ \\ \Rightarrow u := \sum_q \frac{\Theta_f^q(\mu)}{\Theta_a^1(\mu)} u^q \text{ löst } (*) \text{ wegen Linearität} \\ \\ \Rightarrow u \in \text{span}\{u^q\}_{q=1}^{Q_f}$$

Beispiel 2.13 ($(P(\mu))$ mit vorgegebener Lösung)

Sei $u: \mathcal{P} \to X$ beliebig komplizierte Abbildung. Dann existiert ein $(P(\mu))$ mit $u(\mu)$ als Lösung via Skalarprodukten:

$$a(v,w;\mu) := \langle w, v \rangle_X, \quad f(v;\mu) := \langle u(\mu), v \rangle_X$$

d.h. Klasse der Probleme $(P(\mu))$ können beliebig komplizierte, nichtglatte oder sogar unstetige Lösungsmannigfaltigkeit \mathcal{M} besitzen.

Bemerkung (Parameter-Anzahl und Lösungskomplexität). Es gibt (sogar in der Literatur) ein Missverständnis zwischen Parameteranzahl $p \in \mathbb{N}$ und Komplexität der Lösungsmannigfaltigkeit \mathcal{M} , denn es kann Redundanz in Parametern vorliegen (siehe Thermischer Block). Extremfall: $p \in \mathbb{N}$ beliebig, für geeignetes $a(\cdot,\cdot;\mu)$, $f(\mu)$ hat $(P(\mu))$ ein \mathcal{M} , welches in einem 1D-Raum enthalten ist. (Übung) Beispiel 2.13 zeigt andererseits einen anderen Extremfall: Sogar für p=1 kann bei geeignetem $(P(\mu))$ das \mathcal{M} beliebig kompliziert sein (z.B. "Raumfüllende Kurve"). Unter geeigneter Annahmen an $a(\cdot,\cdot;\mu)$ und $f(\cdot;\mu)$ können einfache Regularitätseigenschaften von $u(\mu)$ bzw. \mathcal{M} geschlossen werden.

Korollar 2.14 (Beschränktheit von \mathcal{M})

Weil $a(\cdot,\cdot;\mu)$ gleichmäßig koerziv und $f(\cdot;\mu)$ gleichmäßig beschränkt, so ist \mathcal{M} beschränkt

$$\mathcal{M} \subseteq B_{\frac{\bar{\gamma}_f}{\bar{\alpha}}}(0)$$

Beweis. Klar weil $\|u(\mu)\| \leq \frac{\bar{\gamma}_f}{\bar{\alpha}}$ nach Satz 2.8.

Satz 2.15 (Lipschitz-Stetigkeit)

Falls $a(\cdot,\cdot;\mu)$, $f(\cdot;\mu)$, $l(\cdot;\mu)$ Lipschitz-stetig bzgl. μ , so sind $u(\mu)$ und $s(\mu)$ Lipschitz-stetig bzgl. μ mit Lipschitz-Konstanten

$$L_u = \frac{L_f}{\bar{\alpha}} + \bar{\gamma}_f \frac{L_a}{\bar{\alpha}^2}$$
 und $L_s = L_l \frac{\bar{\gamma}_f}{\bar{\alpha}} + \bar{\gamma}_l L_u$

Beweis. Übung. □

Satz 2.16 (Diffbarkeit)

Sei $a(u,\cdot;\mu) \in X'$ Frechet-diffbar in Umgebung von $(u_0,\mu_0) \subset X \times \mathcal{P}$ und $f(\cdot;\mu) \in X'$

Frechet-diffbar in Umgebung von $\mu_0 \in \mathcal{P}$. Dann ist Lösung $u(\mu)$ von $(P(\mu))$ Frechet-diffbar in Umgebung von $\mu_0 \in \mathcal{P}$ mit

$$D_{\mu}u(\mu) := -\left(\frac{\partial}{\partial u}F(u,\mu)\right)^{-1}\frac{\partial}{\partial \mu}F(u,\mu)$$

wobei $F(u,\mu) := a(u,\cdot;\mu) - f(\cdot;\mu) \in X'$.

Beweis. Aus Frechet-Diffbarkeit von $a(\cdot,\cdot;\cdot)$ und $f(\cdot;\cdot)$ folgt Frechet-Diffbarkeit von $F: X \times \mathcal{P} \to X'$ in Umgebung von (u_0,μ_0) mit partiellen Ableitungen

$$\frac{\partial}{\partial \mu} F(u_0, \mu_0) := \frac{\partial}{\partial \mu} a(u_0, \cdot; \mu_0) - \frac{\partial}{\partial \mu} f(\cdot; \mu_0) \in L(\mathbb{R}^p, X')$$

und $\frac{\partial}{\partial u}F(u_0,\mu_0) \in L(X,X')$ durch

$$\frac{\partial}{\partial u}F(u_0,\mu_0)h_u := a(h_u,\cdot;\mu_0) \in X' \quad \forall h_u \in X$$

Dann erfüllt $u(\mu)$ als Lösung von $(P(\mu))$ gerade

$$F(u(\mu),\mu) = 0$$

in Umgebung von μ_0 . Dann ist (z.B. mit Folgerung 2.15 in Ruzicka: Nichtlineare Funktionalanalysis, Springer 2004) auch $u(\mu)$ Frechet-diffbar in Umgebung von μ_0 mit Ableitung

$$D_{\mu}u(\mu) := -\left(\frac{\partial}{\partial u}F(u,\mu)\right)^{-1}\frac{\partial}{\partial \mu}F(u,\mu)$$

Bemerkung.

• Plausibilität der Ableitungsformel folgt aus formellem Ableiten:

$$\begin{split} \mathrm{D}_{\mu}\left(F(u(\mu),\mu)\right) &= 0\\ \Rightarrow \quad \frac{\partial}{\partial u}F(u(\mu),\mu)\mathrm{D}_{\mu}u(\mu) + \frac{\partial}{\partial \mu}F(u,\mu) &= 0\\ \Rightarrow \quad \frac{\partial}{\partial u}F(u(\mu),\mu)\mathrm{D}_{\mu}u(\mu) &= -\frac{\partial}{\partial \mu}F(u,\mu)\\ \Rightarrow \quad \mathrm{D}_{\mu}u(\mu) &= -\left(\frac{\partial}{\partial u}F(u(\mu),\mu)\right)^{-1}\frac{\partial}{\partial \mu}F(u,\mu) \end{split}$$

• Man kann zeigen, dass die Sensitivitäts-Ableitungen $\partial_{\mu_i} u(\mu) \in X$ für $i = 1, \dots, p$ erfüllen das sogenannte Sensitivitätsproblem

$$a(\partial_{\mu_i} u(\mu), v; \mu) = \tilde{f}_i(v; u(\mu), \mu)$$

mit rechter Seite $\tilde{f}_i(\,\cdot\,;u(\mu),\!\mu)\in X'$ gegeben durch

$$\tilde{f}_i(\,\cdot\,;w,\mu) := \partial_{\mu_i} f(\,\cdot\,;\mu) - \partial_{\mu_i} a(w,\,\cdot\,;\mu)$$

d.h. das Problem $(P(\mu))$ mit modifizierter rechter Seite, in welcher insbesondere $u(\mu)$ eingeht. (Übung)

- Hinreichend für die Diffbarkeit von a, f in Satz 2.16 sind z.B. im Fall von separierbarer Parameterabhängigkeit die Diffbarkeit der Koeffizienten $\Theta^q_a(\mu), \ \Theta^q_f(\mu), \ q=1,\dots$ (Übung)
- Ähnliche Aussagen / Sensitivitätsprobleme gelten für Ableitungen höherer Ordnung. Also überträgt sich Glattheit der Koeffizientenfunktionen auf Glattheit der Lösung / Mannigfaltigkeit.

3 RB-Methoden für lineare koerzive Probleme

3.1 Primales RB-Problem

Definition 3.1 (Reduzierte Basis, RB-Räume)

Sei $S_N = \{\mu_1, \dots, \mu_N\} \subset \mathcal{P}$ Menge von Parametern mit (o.B.d.A.) linear unabhängigen Lösungen $\{u(\mu_i)\}_{i=1}^N$ von $(P(\mu_i))$. Dann ist $X_N := \operatorname{span}\{u(\mu_i)\}_{i=1}^N$ ein sog. Lagrange-BB-Raum.

Sei $\mu^0 \in \mathcal{P}$ und $u(\mu)$ Lösung von $(P(\mu^0))$ k-mal diffbar in Umgebung von μ^0 . Dann ist

$$X_{k,\mu^0} := \operatorname{span} \left\{ \partial_{\sigma} u(\mu^0) : \sigma \in \mathbb{N}_0^p, |\sigma| \le k \right\}$$

ein Taylor-RB-Raum. Eine Basis $\Phi_N = \{\varphi_1, \cdots, \varphi_N\} \subseteq X$ eines RB-Raums ist eine reduzierte Basis.

Bemerkung.

- Φ_N kann direkt aus Snapshots $u(\mu^i)$ oder, für numerische Stabilität (siehe ??), auch orthonormiert sein.
- Wahl der Parameter $\{\mu^i\}$ ist entscheidend für Güte des RB-Modells: Hier: zufällige oder äquidistante Menge ausreichend Später: intelligente Wahl durch a-priori Analysis oder Greedy-Verfahren
- Es ex. auch andere Arten von RB-Räumen (Hermite, POD). Gemeinsam ist diesen die Konstruktion aus Snapshots von u bzw. $\partial_{\sigma}u$.
- Andere MOR-Techniken: Φ_N kann auch komplett unabhängig von Snapshots auf andere Weise konstruiert werden: Balanced Truncation, Krylov-Räume, etc. (siehe z.B. Antoulas: Approximation of large scale dynamical systems, SIAM 2004)

Definition 3.2 (Reduziertes Problem $(P_N(\mu))$)

Sei eine Instanz von $(P(\mu))$ gegeben und $X_N \subseteq X$ ein RB-Raum. Zu $\mu \in \mathcal{P}$ ist die RB-Lösung $u_N(\mu) \in X_N$ und Ausgabe $s_N(\mu) \in \mathbb{R}$ gesucht mit

$$a(u_N(\mu), v; \mu) = f(v; \mu) \qquad \forall v \in X_N$$

$$s_N(\mu) = l(u_N; \mu)$$

Bemerkung.

- Wir nennen obiges "primal" weil im Fall $f \neq l$ oder a asymmetrisch, kann mit Hilfe eines geeigneten dualen Problems bessere Schätzung für s erreicht werden.
- Obiges ist "Ritz-Galerkin"-Projektion im Gegensatz zu "Petrov-Galerkin"-Projektion, welches für nicht-koerzive Probleme notwendig ist. → ??

Satz 3.3 (Galerkin-Projektion, Galerkin-Orthogonalität)

Sei $P_{\mu}: X \to X_N$ die orthogonale Projektion bzgl. Energieskalarprodukt $\langle \cdot, \cdot \rangle_{\mu}$, sei a symmetrisch und $u(\mu)$, $u_N(\mu)$ Lösung von $(P(\mu))$ bzw. $(P_N(\mu))$. Dann:

- i) $u_N(\mu) = P_{\mu}u(\mu)$ "Galerkin-Projektion"
- ii) $\langle e(\mu), v \rangle_{\mu} = 0 \ \forall v \in X_N$, wobei $e(\mu) := u(\mu) u_N(\mu)$

Beweis. Nach Aufgabe 1/Blatt 1 ist P_{μ} wohldefiniert, denn $(X, \langle \cdot, \cdot \rangle_{\mu})$ ist Hilbertraum und $X_N \subseteq X$ abgeschlossen weil endlichdimensional. Orthogonale Projektion des Fehlers ergibt

$$\langle P_{\mu}u(\mu) - u(\mu), \varphi_{i} \rangle_{\mu} = 0 \qquad \forall i = 1, \dots, N$$

$$\Leftrightarrow \qquad a(P_{\mu}u(\mu) - u(\mu), \varphi_{i}; \mu) = 0 \qquad \forall i = 1, \dots, N$$

$$\Leftrightarrow \qquad a(P_{\mu}u(\mu), \varphi_{i}; \mu) = a(u(\mu), \varphi_{i}; \mu) = f(\varphi_{i}; \mu) \qquad \forall i = 1, \dots, N$$

- i) also ist $P_{\mu}u(\mu)$ Lösung von $(P_N(\mu))$
- ii) $e(\mu)$ ist also Projektions-Fehler, orthogonal nach Aufgabe 1/Blatt 1

Bemerkung. Für a nichtsymmetrisch gilt immer noch folgende "Galerkin-Orthogonalität"

$$a(u - u_N, v; \mu) = 0 \quad \forall v \in X_N$$

(auch wenn a kein Skalarprodukt)

Satz 3.4 (Existenz und Eideutigkeit für $(P_N(\mu))$)

Zu $\mu \in \mathcal{P}$ ex. eindeutige Lösung $u_N(\mu) \in X_N$ und RB-Ausgabe $s_n(\mu) \in \mathbb{R}$ von $(P_N(\mu))$. Diese sind beschränkt

$$||u_N(\mu)|| \le \frac{||f(\cdot;\mu)||_{X'}}{\alpha(\mu)} \le \frac{\bar{\gamma}_f}{\bar{\alpha}}$$
$$||s_N(\mu)|| \le ||l(\cdot;\mu)|| ||u_N(\mu)|| \le \frac{\bar{\gamma}_l \bar{\gamma}_f}{\bar{\alpha}}$$

Beweis. Weil $X_N \subset X$ ist $a(\cdot,\cdot;\mu)$ stetig und koerziv auf X_N .

$$\alpha_N(\mu) := \inf_{v \in X_N} \frac{a(v, v; \mu)}{\|v\|^2} \ge \inf_{v \in X} \frac{a(v, v; \mu)}{\|v\|^2} = \alpha(\mu) > 0$$

$$\gamma_N(\mu) := \sup_{u, v \in X_N} \frac{a(u, v; \mu)}{\|u\| \|v\|} \le \sup_{u, v \in X} \frac{a(u, v; \mu)}{\|u\| \|v\|} = \gamma(\mu) < \infty$$

analog f, l stetig auf X_N . Existenz, Eindeutigkeit und Schranken folgen also mit Lax-Milgram analog zu 2.8.

Korollar 3.5 (Lipschitz-Stetigkeit)

Seien f, l gleichmäßig beschränkt und a, f, l Lipschitz-stetig bzgl. μ , dann sind auch $u_N(\mu)$, $s_N(\mu)$ Lipschitz-stetig bzgl. μ mit L_u , L_s wie in 2.15.

Beweis. Analog zu 2.15 / Übung. □

Satz 3.6 (Diskrete RB-Probleme)

Sei $\Phi_N = \{\varphi_1, \dots, \varphi_N\}$ eine reduzierte Basis für X_N . Für $\mu \in \mathcal{P}$,

$$A_{N}(\mu) := (a(\varphi_{j}, \varphi_{i}; \mu))_{i,j=1}^{N} \qquad \in \mathbb{R}^{N \times N}$$

$$\underline{l}_{N}(\mu) := (l(\varphi_{i}; \mu))_{i=1}^{N} \qquad \in \mathbb{R}^{N}$$

$$f_{N}(\mu) := (f(\varphi_{i}; \mu))_{i=1}^{N} \qquad \in \mathbb{R}^{N}$$

und $\underline{u}_N = (u_{N,i})_{i=1}^N \in \mathbb{R}^N$ als Lösung von

$$A_N(\mu)\underline{u}_N = f_N(\mu) \tag{3.1}$$

Dann ist $u_N(\mu) := \sum_{i=1}^N u_{N,i} \varphi_i$ und $s_N(\mu) := \underline{l}_N^\top(\mu) \underline{u}_N$.

Beweis. Einsetzen und Linearität zeigt, dass

$$a\left(\sum u_{N,j}\,\varphi_j,\varphi_i;\mu\right) = \left(A_N(\mu)\underline{u}_N\right)_i = \left(\underline{f}_N\right)_i = f(\varphi_i;\mu)$$

Satz 3.7 (Kondition bei ONB und Symmetrie)

Falls $a(\cdot,\cdot;\mu)$ symmetrisch und Φ_N ist ONB, so ist Kondition von (3.1) unabhängig von N beschränkt

$$\operatorname{cond}_2(A_N) := \|A_N\|_2 \|A_N^{-1}\|_2 \le \frac{\gamma(\mu)}{\alpha(\mu)}$$

Beweis. Wegen Symmetrie gilt

$$\operatorname{cond}_{2}(A_{N}) = \frac{|\lambda_{\max}|}{|\lambda_{\min}|} \tag{3.2}$$

mit betragsmäßig größtem/kleinstem Eigenwert $\lambda_{\max}/\lambda_{\min}$ von $A_N(\mu)$. Sei $\underline{u}_{\max}=(u_i)_{i=1}^N\in\mathbb{R}^N$ Eigenvektor zu λ_{\max} und

$$u_{\max} := \sum_{i=1}^{N} u_i \, \varphi_i \quad \in X_N$$

Dann gilt

$$\begin{split} \lambda_{\max} \| \underline{u}_{\max} \|^2 &= \lambda_{\max} \underline{u}_{\max}^\top \underline{u}_{\max} = \underline{u}_{\max}^\top A_N \underline{u}_{\max} \\ &= \sum_{i,j=1}^N u_i u_j \, a(\varphi_j, \varphi_i; \mu) = a \left(\sum_j u_j \varphi_j, \sum_i u_i \varphi_i; \mu \right) \\ &= a(u_{\max}, u_{\max}; \mu) \leq \gamma(\mu) \|u_{\max}\|^2 \end{split}$$

Wegen

$$||u_{\max}||^2 = \langle \sum u_i \varphi_i, \sum u_j \varphi_j \rangle = \sum u_i u_j \langle \varphi_i, \varphi_j \rangle = \sum u_i^2 = ||u_{\max}||^2$$

folgt $|\lambda_{\max}| \leq \gamma(\mu)$. Analog zeigt man $|\lambda_{\min}| \geq \alpha(\mu)$ also folgt mit (3.2) die Behauptung.

Bemerkung (Unterschied FEM zu RB). Es bezeichne $A_h(\mu) \in \mathbb{R}^{H \times H}$ die FEM Matrix (oder FV/FD).

- i) Die RB-Matrix $A_N(\mu) \in \mathbb{R}^{H \times H}$ ist klein aber typischerweise vollbesetzt im Gegensatz zur großen aber dünnbesetzten Matrix A_h .
- ii) Die Kondition von A_N verschlechtert sich nicht mit wachsendem N (falls eine ONB verwendet wird), während die Konditionszahl von A_h typischerweise polynomiell in H wächst, also schlechter wird.

Satz 3.8 (Reproduktion von Lösungen)

Seien $u(\mu)$, $u_N(\mu)$ Lösungen von $(P(\mu))$ bzw. $(P_N(\mu))$, $\underline{e}_i \in \mathbb{R}^n$ i-ter Einheitsvektor

- i) Falls $u(\mu) \in X_N \implies u_N(\mu) = u(\mu)$
- ii) Falls $u(\mu) = \varphi_i \in \Phi_N \quad \Rightarrow \quad \underline{u}_N(\mu) = \underline{e}_i \in \mathbb{R}^N$

Beweis.

i) Mit $u(\mu), u_N(\mu) \in X_N \Rightarrow e := u(\mu) - u_N(\mu) \in X_N$. Wegen Galerkin-Orthogonalität $(a(e, v; \mu) = 0 \ \forall v \in X_N)$ und Koerzivität folgt:

$$0 = a(e,e;\mu) \ge \underbrace{\alpha(\mu)}_{>0} \underbrace{\|e\|^2}_{\geq 0} \quad \Rightarrow \quad \|e\| = 0 \Rightarrow e = 0 \Rightarrow u = u_N$$

ii) $u_N(\mu) = \varphi_i$, nach i). Mit Eindeutigkeit der Basisexpansion folgt die Behauptung.

Bemerkung.

- Reproduktion von Lösungen ist grundlegende Konsistenzeigenschaft. Es gilt trivialerweise falls/sobald Fehlerschranken vorliegen, aber für komplexe RB-Probleme ohne Fehlerschranken ist obiges ein guter Test.
- Validierung für Programmcode: Wähle Basis aus Snapshots $\varphi_i = u(\mu^i), i = 1, \dots, N$, ohne Orthonormierung, dann muss $\underline{u}_N(\mu^i) = \underline{e}_i \in \mathbb{R}^N$ ein Einheitsvektor sein.

3.2 Fehleranalyse

Satz 3.9 (Céa, Beziehung zur Bestapproximation)

Für alle $\mu \in \mathcal{P}$ gilt

$$||u(\mu) - u_N(\mu)|| \le \frac{\gamma(\mu)}{\alpha(\mu)} \inf_{v \in X} ||u - v||$$

Beweis. $\forall v \in X_N$ mit Stetigkeit und Koerzivität

$$\alpha \|u - u_N\|^2 \le a(u - u_N, u - u_N) = a(u - u_N, u - v) + \underbrace{a(u - u_N, v - u_N)}_{=0 \text{ (Galerkin-Orth.)}}$$

$$\le \gamma(\mu) \|u - u_N\| \|u - v\|$$

Division durch α , $||u - u_N||$ liefert

$$||u-u_N|| \leq \frac{\gamma}{\alpha} ||u-v||$$

also Behauptung durch Infimum-Bildung.

Bemerkung.

- i) Ähnliche Bestapproximationsaussagen gelten auch für andere Interpolationstechniken, aber die zugehörige Lebesgue-Konstante divergiert meist mit wachsender Dimension N. Obiges ist konzeptioneller Vorteil von Galerkin-Projektion über anderen Interpolationstechniken, da $\frac{\gamma}{\alpha}$ unabhängig von N beschränkt bleibt. "Quasi-Optimalität" der Galerkin-Projektion/des RB-Ansatzes.
- ii) Falls $a(\cdot,\cdot;\mu)$ zusätzlich symmetrisch ist, kann um eine "Wurzel" verbessert werden mittels Normäquivalenz 2.5 und Bestapproximation der orthogonalen Projektion (Aufg. 1/Blatt 1)

$$\sqrt{\alpha} \|u - u_N\| \stackrel{2.5}{\leq} \|u - u_N\|_{\mu} = \|u - P_{\mu}u\|_{\mu} = \inf_{v \in X_N} \|u - v\|_{\mu} \stackrel{2.5}{\leq} \sqrt{\gamma} \inf_{v \in X_N} \|u - v\|
\Rightarrow \|u - u_N\| \leq \sqrt{\frac{\gamma}{\alpha}} \inf_{v \in X_N} \|u - v\|$$

iii) Implikation von 3.9: Wähle guten Approximationsraum X_N , so wird Galerkin-Projektion/RB-Approximation auch garantiert gut sein.

Satz 3.10 (Ausgabe und Bestapproximation)

i) Für alle $\mu \in \mathcal{P}$ gilt

$$|s(\mu) - s_N(\mu)| \le ||l(\cdot; \mu)||_{X'} \frac{\gamma(\mu)}{\alpha(\mu)} \inf_{v \in X_N} ||u - v||$$

ii) Für den sog. "compliant" Fall (d.h. $a(\cdot,\cdot;\mu)$ symmetrisch und l=f) gilt sogar

$$0 \le s(\mu) - s_N(\mu) = \|u - u_N\|_{\mu}^2$$

= $\inf_{v \in X_N} \|u - v\|_{\mu}^2$
\$\le \gamma(\mu) \int_{v \in X_N} \|u - v\|^2\$

Beweis.

i) Klar mit Céa, Bestapproximation und Linearität

$$|s(\mu) - s_N(\mu)| = |l(u) - l(u_N)| = |l(u - u_N)| \le ||l|| ||u - u_N|| \le ||l|| \frac{\gamma}{\alpha} \inf_{v \in X_N} ||u - v||$$

ii) Wegen $a(\cdot,\cdot;\mu)$ symmetrisch gilt wie in voriger Bemerkung

$$||u - u_N||_{\mu} = ||u - P_{\mu}u||_{\mu} = \inf_{v \in X_N} ||u - v||$$
(3.3)

Damit

$$s(\mu) - s_N(\mu) = l(u) - l(u_N) \stackrel{f=l}{=} f(u) - f(u_N) = f(u - u_N)$$

$$= a(u, u - u_N) - \underbrace{a(u_N, u - u_N)}_{=0 \text{ (Gal.-Orth./Symm.)}} = \|u - u_N\|_{\mu}^2$$

$$\stackrel{3.3}{=} \inf_{v \in X_N} \|u - v\|_{\mu}^2$$

$$\stackrel{2.5}{\leq} \gamma \inf_{v \in X_N} \|u - v\|^2$$

Also insbesondere $s - s_N = ||u - u_N||_{\mu}^2 \ge 0$.

Bemerkung.

- Im "compliant" Fall ist der Ausgabefehler i.A. sehr klein, da das Quadrat des RB-Fehlers eingeht.
- Im "nicht-compliant" Fall geht der RB-Fehler nur linear in die Schranke ein, das wird später durch primal-duale Technik verbessert.
- Aus ii) folgt nicht nur Fehlerschranke, sondern sogar Vorzeichen-Information, $s_N(\mu)$ ist untere Schranke für s.

Korollar 3.11 (Monotoner Fehlerabfall in Energienorm)

Falls $a(\cdot,\cdot;\mu)$ symmetrisch, $(X_N)_{N=1}^{N_{\text{max}}}$ Folge von RB-Räumen, mit $X_N\subseteq X_{N'}, \forall N\leq N'$ ("hierarchische Räume") und für $\mu\in\mathcal{P}$ setze $e_{u,N}:=u(\mu)-u_N(\mu),\,e_{s,N}:=s(\mu)-s_N(\mu).$

- i) Dann ist $(\|e_{u,N}\|_{\mu})_{N=1}^{N_{\text{max}}}$ monoton fallend.
- ii) Falls l = f (also "compliant" Fall) ist $e_{s,N}$ monoton fallend.

Beweis.

i) Mit (3.3) gilt für $N \leq N'$

$$||e_{u,N}||_{\mu} = ||u - u_N||_{\mu} \stackrel{(3.3)}{=} \inf_{v \in X_N} ||u - v||_{\mu} \ge \inf_{v \in X_{N'}} ||u - v||_{\mu} \stackrel{(3.3)}{=} ||e_{u,N'}||_{\mu}$$

ii) Mit Satz 3.10 ii) gilt

$$e_{s,N} = \|e_{u,N}\|_{\mu}^2,$$
also Behauptung folgt mit i)

Bemerkung.

- "Worst-case" ist Stagnation des Fehlers (unrealistisch, jeder neue Basisvektor müsste orthogonal zum Fehler $e_N(\mu)$ sein). In Praxis ist bei geschickter Basiswahl und "glatten" Problemen exponentielle Konvergenz zu erwarten, siehe Basisgenerierung, §??.
- Monotonie gilt nicht notwendigerweise bezüglich anderen Normen trotz Normäquivalenz

$$c\|e_{u,N}\|_{\mu} \leq \|e_{u,N}\| \leq C\|e_{u,N}\|_{\mu}$$
, mit c, C unabhängig von N

Fehlernorm $||e_{u,N}||$ kann gelegentlich anwachsen, bleibt aber in einem "Korridor", welcher monoton fällt.

Abbildung 5: Fehlerabfall mit wachsender reduzierter Dimension. (aus B. Haasdonk, Reduzierte-Basis-Methoden, Skript zur Vorlesung SS 2011, Universität Stuttgart, IANS-Report 4/11, 2011.)

Bemerkung (Gleichmäßige Konvergenz von Lagrange RB-Ansatz).

• Sei \mathcal{P} kompakt und $S_N := \{\mu^1, \dots, \mu^N\} \subset \mathcal{P}, N \in \mathbb{N}$, sodass die sog. Füll-Distanz (fill-distance) h_N gegen 0 geht:

ce)
$$h_N$$
 gegen 0 geht:
$$h_N:=\sup_{\mu\in\mathcal{P}}\operatorname{dist}(\mu,S_N),\quad\operatorname{dist}(\mu,S_N):=\min_{\mu'\in S_N}\|\mu-\mu'\|$$

$$\lim_{N\to\infty}h_N=0$$

• Falls $u(\mu)$, $u_N(\mu)$ Lipschitz-stetig mit Lipschitz-Konstante L_u unabhängig von N, so folgt für alle N, μ und "nächstes" $\mu^* := \arg\min_{\mu' \in S_N} \|\mu - \mu'\|$:

$$||u(\mu) - u_N(\mu)|| \le ||u(\mu) - u(\mu^*)|| + ||u(\mu^*) - u_N(\mu^*)|| + ||u_N(\mu^*) - u_N(\mu)||$$

$$\le L_u \underbrace{||\mu - \mu^*||}_{\le h_N} + 0 + L_u \underbrace{||\mu - \mu^*||}_{\le h_N} \le 2L_u h_N$$

• Also folgt uniforme Konvergenz

$$\lim_{N \to \infty} \sup_{\mu \in \mathcal{P}} \|u(\mu) - u_N(\mu)\| = 0$$

- Jedoch Konvergenzrate linear in h_N ist nicht praktisch bedeutsam, weil h_N sehr langsam mit N abfällt, also muss N sehr groß sein, um kleinen Fehler zu garantieren.
- Wir werden sehen, dass bei gleichmäßig koerziven Problemen und geschickter Wahl der μ^i sogar exponentielle Konvergenz erreicht wird.

Lemma 3.12 (Fehler-Residuums-Beziehung)

Für $\mu \in \mathcal{P}$ definieren wir mittels der RB-Lösung u_N das Residuum $r(\cdot; \mu) \in X'$ bzw. seinen Riesz-Repräsentanten $v_r(\mu) \in X$

$$\langle v_r(\mu), v \rangle_X := r(v; \mu) := f(v; \mu) - a(u_N(\mu), v; \mu) \quad \forall v \in X$$

Dann erfüllt der Fehler $e(\mu) := u(\mu) - u_N(\mu)$

$$a(e(\mu), v; \mu) = r(v; \mu) \quad \forall v \in X$$

Beweis.
$$a(e(\mu), v; \mu) = \underbrace{a(u, v)}_{f(v)} - a(u_N, v) = r(v)$$

Bemerkung.

- Fehler erfüllt " $(P(\mu))$ mit Residuum als rechte Seite"
- Insbesondere ist $r(v; \mu) = 0 \ \forall v \in X_N$ (wegen Galerkin-Orthogonalität)
- $r(\cdot;\mu) = 0 \Rightarrow e = 0$

Satz 3.13 (A-posteriori Fehlerschätzer, absoluter Fehler)

Sei $\mu \in \mathcal{P}$, $u(\mu)$ bzw. $u_N(\mu)$ Lösung von $(P(\mu))$, $(P_N(\mu))$ und $e = u - u_N$. Sei $\alpha_{LB}(\mu)$ eine untere Schranke für $\alpha(\mu)$ und $v_r \in X$ Riesz-Repräsentant von $r(\cdot; \mu)$ aus Lemma 3.12. Dann gelten folgende Schranken

i) Fehler in Energienorm

$$||e(\mu)||_{\mu} \le \Delta_N^{en}(\mu) := \frac{||v_r||}{\sqrt{\alpha_{LB}(\mu)}}$$

ii) Fehler in X-Norm $\|\cdot\|$

$$||e(\mu)|| \le \Delta_N(\mu) := \frac{||v_r||}{\alpha_{LB}(\mu)}$$

iii) Ausgabefehler

$$|s(\mu) - s_N(\mu)| \le \Delta_{N,s}(\mu) := ||l(\cdot; \mu)||\Delta_N(\mu)$$

Beweis.

i) Normäquivalenz 2.5 impliziert

$$||e|| \le \frac{||e||_{\mu}}{\sqrt{\alpha_{LB}(\mu)}}$$

Damit folgt

$$||e||_{\mu}^{2} = a_{s}(e,e) = a(e,e) = r(v) = \langle v_{r}, e \rangle \le ||v_{r}|| ||e|| \le \frac{||v_{r}||}{\sqrt{\alpha_{LB}(\mu)}}$$

Division durch $||e||_{\mu}$ liefert die Behauptung i).

ii) Koerzivität liefert

$$\alpha_{LB}(\mu) \|e\|^2 \le a(e,e) = r(e) = \langle v_r, e \rangle \le \|v_r\| \|e\|$$

Division durch α_{LB} und ||e|| liefert ii).

iii) Stetigkeit von l liefert

$$|s(\mu) - s_N(\mu)| = |l(u - u_N; \mu)| \le ||l|||u - u_N|| \stackrel{ii)}{\le} ||l||\Delta_N$$

Bemerkung.

- $\alpha_{LB}(\mu)$ soll eine schnell berechenbare untere Schranke an $\alpha(\mu)$ sein, z.B. $\alpha_{LB}(\mu) := \bar{\alpha}$ falls $\bar{\alpha}$ bekannt, andere Möglichkeiten folgen später ("min Θ ", "SCM").
- Δ_N ist also immer um Faktor $\sqrt{\alpha_{LB}(\mu)}$ schlechter.
- Beschränkung des Fehlers durch Residuums-Norm ist bekannte Technik aus FEM, um FEM-Lösung u_h gegen Sobolev-Raum Lösung u abzuschätzen. In diesem Fall ist X ∞-dimensional und Residuums-Norm algorithmisch nicht berechenbar. In RB-Methoden wird ||v_r|| eine berechenbare Größe sobald X endlich-dimensional, z.B. FEM-Raum, ist. Für Residuum ist u_N(μ) erforderlich, daher sind Schranken "a posteriori".
- Allgemeines Vorgehen (und alternative Begründung für ii)) zur Herleitung von Fehlerschranken: Zeige, dass Fehler e erfüllt $(P(\mu))$ mit rechter Seite, genannt r (Residuum), wende a-priori Stabilitätsaussage an:

$$||e|| \le \frac{||r||}{\alpha(\mu)}$$
 z.B. Lax-Milgram

und erhalte berechenbare Größe durch Wahl $X = X_{FEM}$ und untere Schranke $\alpha_{LB}(\mu) \leq \alpha(\mu)$.

- Weil die Schranken beweisbare obere Schranken an Fehler darstellen, nennt man sie "rigorose" Fehlerschranken (vgl. "zuverlässige" Schätzer in FEM, bei denen jedoch die Konstante unbekannt ist).
- Fehlerschranken liefern eine Absicherung für RB-Methoden, "certified" RB-Methode, im Gegensatz zu vielen anderen Reduktionsmethoden (z.B. Krylov-Raum-Methoden).
- Ausgabefehler ist grob, indem Δ_N nur linear eingeht. Verbesserungen können für den "compliant" Fall oder mit primal-dual Techniken erreicht werden. (\rightsquigarrow §??)

Korollar 3.14 (Verschwindende Fehlerschranke)

Falls
$$u(\mu) = u_N(\mu)$$
 dann ist $\Delta_N(\mu) = \Delta_N^{en}(\mu) = \Delta_{N,s}(\mu) = 0$

Beweis.

$$0 = a(0, v; \mu) = a(e, v; \mu) = r(v; \mu)$$

$$\Rightarrow r \equiv 0 \Rightarrow ||v_r|| = 0 \Rightarrow \Delta_N = \Delta_N^{en} = \Delta_{N,s} = 0$$

Bemerkung.

- Dies ist initialer Wunsch an eine Fehlerschranke: diese soll verschwinden falls exakte Approximation vorliegt. Dies ist Grundlage dafür, dass der Faktor der Überschätzung endlich ist.
- Aussage ist trivial für *effektive* Fehlerschätzer (sehen wir bald), aber in komplexen Problemen kann 3.14 schon das maximal erreichbare sein.
- 3.14 ist wieder sinnvoll um Programmcode zu validieren.

Satz 3.15 (A-posteriori Fehlerschranken, relative Fehler)

Mit Bezeichnungen/Voraussetzungen aus 3.13 und unter Annahme, dass alle Brüche im Folgenden wohldefiniert sind, gilt:

i) Für den relativen Fehler gilt in Energienorm:

$$\frac{\|e(\mu)\|_{\mu}}{\|u(\mu)\|_{\mu}} \leq \Delta_{N}^{en,rel}(\mu) := 2 \frac{\|v_{r}\|}{\sqrt{\alpha_{LB}(\mu)}} \cdot \frac{1}{\|u_{N}(\mu)\|_{\mu}} \quad \text{falls} \quad \Delta_{N}^{en,rel} \leq 1$$

ii) Für den relativen Fehler gilt in X-Norm:

$$\frac{\|e(\mu)\|}{\|u(\mu)\|} \le \Delta_N^{rel}(\mu) := 2 \frac{\|v_r\|}{\alpha_{LB}(\mu)} \cdot \frac{1}{\|u_N(\mu)\|} \quad \text{falls} \quad \Delta_N^{rel} \le 1$$

Beweis.

i) Falls $\Delta_N^{en,rel}(\mu) \leq 1$, so ist

$$\left| \frac{\|u\|_{\mu} - \|u_{N}\|_{\mu}}{\|u_{N}\|_{\mu}} \right| \stackrel{\Delta\text{-Ungl.}}{\leq} \frac{\|u - u_{N}\|_{\mu}}{\|u_{N}\|_{\mu}} = \frac{\|e\|_{\mu}}{\|u_{N}\|_{\mu}} \stackrel{3.13 \text{ i}}{\leq} \frac{\|v_{r}\|}{\sqrt{\alpha_{LB}(\mu)} \|u_{N}\|_{\mu}}$$

$$= \frac{1}{2} \Delta_{N}^{en,rel}(\mu) \leq \frac{1}{2}$$

Falls $||u_N||_{\mu} > ||u||_{\mu}$ gilt $||u_N||_{\mu} - ||u||_{\mu} \le \frac{1}{2} ||u_N||_{\mu}$ also

$$\frac{1}{2}||u_N||_{\mu} \le ||u||_{\mu} \tag{*}$$

Falls $||u||_{\mu} \ge ||u_N||_{\mu}$, so ist (*) klar. Damit folgt

$$\frac{\|e\|_{\mu}}{\|u\|_{\mu}} \stackrel{3.13 \text{ i})}{\leq} \frac{\|v_r\|}{\sqrt{\alpha_{LB}}} \cdot \frac{1}{\|u\|_{\mu}} \stackrel{(*)}{\leq} \frac{\|v_r\|}{\sqrt{\alpha_{LB}}} \cdot \frac{1}{\|u_N\|_{\mu}} \cdot 2 = \Delta_N^{en,rel}(\mu)$$

ii) analog zu i).

Bemerkung.

• Analog folgt auch relativer Ausgabefehlerschätzer

$$\frac{|s(\mu) - s_N(\mu)|}{|s(\mu)|} \le \Delta_{N,s}^{rel}(\mu) := \frac{\|l(\cdot; \mu)\| \cdot \Delta_N}{|s_N(\mu)|} \cdot 2 \quad \text{falls} \quad \Delta_{N,s}^{rel}(\mu) \le 1$$

• Relative Fehlerschranken sind nur mit Zusatzbedingung ($\Delta^{rel}_* \leq 1$) gültig. Diese Bedingung ist jedoch konkret überprüfbar. Falls $\Delta^{rel}_N(\mu) > 1$, sollte der RB-Raum verbessert werden.

Satz 3.16 (Effektivität der Fehlerschranken)

Mit Bezeichnungen aus 3.13 sei $u(\mu) \neq u_N(\mu)$ und $\gamma_{UB}(\mu) < \infty$ eine obere Schranke an $\gamma(\mu)$. Dann sind die *Effektivitäten* $\eta_N^{en}(\mu)$ und $\eta_N(\mu)$ definiert und beschränkt durch

i)
$$\eta_N^{en}(\mu):=\frac{\Delta_N^{en}(\mu)}{\|e\|_\mu}\leq \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)}$$

Falls $a(\cdot,\cdot;\mu)$ symmetrisch, gilt sogar $\eta_N^{en}(\mu) \leq \sqrt{\frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)}}$

ii)
$$\eta_N(\mu) := \frac{\Delta_N(\mu)}{\|e\|_\mu} \le \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)}$$

Beweis.

ii)
$$||v_r||^2 = \langle v_r, v_r \rangle = r(v_r) = a(e, v_r) \le \gamma_{UB}(\mu) ||e|| ||v_r||$$

 $||v_r|| \le \gamma_{UB}(\mu) ||e||$ (3.4)

Damit

$$\frac{\Delta_N(\mu)}{\|e\|} = \frac{\|v_r\|}{\alpha_{LB}} \cdot \frac{1}{\|e\|} \stackrel{(3.4)}{\leq} \frac{\gamma_{UB}}{\alpha_{LB}} \cdot \frac{\|e\|}{\|e\|}$$

i)
$$\frac{\Delta_N^{en}(\mu)}{\|e\|_{\mu}} = \frac{\|v_r\|}{\sqrt{\alpha_{LB}}} \cdot \frac{1}{\|e\|_{\mu}} \le \frac{\|v_r\|}{\alpha_{LB}} \cdot \frac{1}{\|e\|} \stackrel{\text{ii}}{\le} \frac{\gamma_{UB}}{\alpha_{LB}}$$

$$\ge \sqrt{\alpha_{LB}} \cdot \|e\|$$

Falls $a(\cdot,\cdot)$ symmetrisch, gilt wegen Normäquivalenz

$$||v_r||_{\mu} \le \sqrt{\gamma_{UB}} ||v_r||$$

und

$$||v_r||^2 = a(e, v_r) \stackrel{\text{CS}}{\leq} ||e||_{\mu} ||v_r||_{\mu} \quad \Rightarrow \quad ||v_r|| \leq ||e||_{\mu} \cdot \sqrt{\gamma_{UB}}$$

Damit

$$\frac{\Delta_N^{en}(\mu)}{\|e\|_{\mu}} = \frac{\|v_r\|}{\sqrt{\alpha_{LB}}} \cdot \frac{1}{\|e\|_{\mu}} \leq \frac{\|e\|_{\mu} \cdot \sqrt{\gamma_{UB}}}{\sqrt{\alpha_{LB}} \cdot \|e\|_{\mu}}$$

Bemerkung.

- Wir nennen Δ_N , Δ_N^{en} daher "effektive" Fehlerschranken weil Faktor der Überschätzung höchstens $\frac{\gamma_{UB}}{\alpha_{LB}}$ beträgt.
- "Rigorosität" also äquivalent mit $\eta_N(\mu) \ge 1$.
- Für den Ausgabefehler $\Delta_{N,s}(\mu)$ ohne weitere Annahmen keine Effektivität beweisbar. Tatsächlich kann $\frac{\Delta_{N,s}}{|s-s_N|}$ beliebig groß oder nicht definiert sein, falls $\Delta_{N,s} \neq 0$, aber $s(\mu) = s_N(\mu)$:

Wähle X_N und μ so dass $u(\mu) \neq u_N(\mu)$, wird erreicht durch $u(\mu) \notin X_N$

$$\Rightarrow e(\mu) \neq 0 \Rightarrow \Delta_N \neq 0, \Delta_{N,s} \neq 0$$
 falls $l \neq 0$

Wähle $l(\cdot; \mu) \neq 0$, so dass $l(u - u_N; \mu) = 0$

$$\Rightarrow s(\mu) - s_N(\mu) = l(u - u_N; \mu) = 0$$

• Wir nennen die Fehlerschranken auch Fehlerschätzer weil sie äquivalent zum Fehler sind.

$$||e|| < \Delta_N < \eta_N ||e||$$

Satz 3.17 (Effektivität, relative Fehlerschätzer)

Für $\Delta_N^{rel}(\mu)$ aus 3.15 ist Effektivität definiert und beschränkt durch

$$\eta_N^{rel}(\mu) := \frac{\Delta_N^{rel}(\mu)}{\frac{\|e\|}{\|u\|}} \le 3 \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)} \quad \text{falls} \quad \Delta_N^{rel}(\mu) \le 1$$

Beweis. Wie in Beweis zu 3.15 impliziert $\Delta_N^{rel} \leq 1$:

$$\left|\frac{\|u\| - \|u_N\|}{\|u\|}\right| \le \frac{1}{2}$$

Falls $||u_N|| \le ||u||$ so gilt $||u|| - ||u_N|| \le \frac{1}{2} ||u_N||$ also

$$||u|| \le \frac{3}{2}||u_N||$$

Falls $||u_N|| > ||u||$, so ist (*) klar. Dann gilt

$$\eta_N^{rel}(\mu) = \underbrace{\frac{2\|v_r\|}{\alpha_{LB}(\mu)\|u_N\|}}_{\Delta_N^{rel}} \cdot \frac{1}{\frac{\|e\|}{\|u\|}} \stackrel{(3.4)}{\leq} 2 \frac{\gamma_{UB}\|e\|}{\alpha_{LB}\|e\|} \cdot \frac{\|u\|}{\|u_N\|} \stackrel{(*)}{\leq} 3 \frac{\gamma_{UB}}{\alpha_{LB}}$$

Bemerkung.

- Ähnlich für $\Delta_N^{en,rel}$
- Verbesserung von Schranken und Effektivität durch Normwechsel.

Wähle $\bar{\mu} \in \mathcal{P}$ und $\|u\| := \|u\|_{\bar{\mu}}$ als neue Norm auf X. Dann gilt für symmetrisches $a: \alpha(\bar{\mu}) = 1 = \gamma(\bar{\mu})$ also Effektivitäten $\eta_N, \eta_N^{en} = 1$, Schätzer sind genau der echte Fehler. Dies lässt u_N unberührt, liefert aber bessere Fehlerschätzung. Im Fall von Stetigkeit bzgl. μ kann auch in Umgebung von $\bar{\mu}$ gute Effektivität erwartet werden.

Satz 3.18 (Ausgabefehlerschranke und Effektivität, compliant Fall)

Sei $a(\cdot,\cdot;\mu)$ symmetrisch, l=f. Dann erhalte verbesserte Ausgabeschranke

$$0 \le s(\mu) - s_N(\mu) \le \bar{\Delta}_{N,s}(\mu) := \frac{\|v_r\|^2}{\alpha_{LB}}$$

und Effektivität

$$\bar{\eta}_{N,s}(\mu) := \frac{\bar{\Delta}_{N,s}(\mu)}{s(\mu) - s_N(\mu)} \le \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)}$$

Beweis. Nach Satz 3.10 ii) und 3.13 gilt

$$0 \stackrel{3.10}{\leq} s(\mu) - s_N(\mu) = \|u - u_N\|_{\mu}^2 = \|e\|_{\mu}^2 \stackrel{3.13}{\leq} \Delta_N^{en}(\mu)^2 = \bar{\Delta}_{N,s}(\mu)$$

Für Effektivität gilt entsprechend mit 3.16 i)

$$\bar{\eta}_{N,s}(\mu) = \frac{\bar{\Delta}_{N,s}}{s(\mu) - s_N(\mu)} \stackrel{3.10}{=} \frac{\Delta_N^{en}(\mu)^2}{\|u - u_N\|_{\mu}^2} = \eta_N^{en}(\mu)^2 \stackrel{3.16}{=} \sqrt{\frac{\gamma_{UB}}{\alpha_{LB}}}^2 = \frac{\gamma_{UB}}{\alpha_{LB}}$$

Bemerkung. Analog kann man im compliant Fall eine relative Ausgabefehlerschranke und Effektivität beweisen.

$$\frac{s(\mu) - s_N(\mu)}{s(\mu)} \le \bar{\Delta}_{N,s}^{rel}(\mu) := \frac{\|v_r\|^2}{\alpha_{LB} s_N(\mu)}$$

und

$$\bar{\eta}_{N,s}^{rel}(\mu) := \frac{\bar{\Delta}_{N,s}^{rel}}{\frac{s(\mu) - s_N(\mu)}{s(\mu)}} \le 2 \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)}$$

falls $\bar{\Delta}_{N,s}^{rel}(\mu) \leq 1$.

Bemerkung (Zusammenfassende Relevanz der Fehlerschätzer).

- Rigorose obere Schranke für tatsächlichen Fehler nicht nur "Indikatoren" wie bei FEM.
- Effektivität Faktor der Überschätzung des Fehlers ist klein und bleibt beschränkt. Insbesondere:

$$e(\mu) = 0 \Rightarrow \Delta_N(\mu) = 0$$

also "a-posteriori" exakte Approximation verifizierbar.

- Theoretische Untermauerung der i.A. empirischen Basiswahl.
- Unabhängig von Basiswahl sind Fehlerschätzer anwendbar, auch für nicht-Snapshot-Basen (z.B. Krylov-Unterräume, etc.).
- Effiziente Berechnung: Durch Offline-Online-Zerlegung (\rightsquigarrow §3.3) ist neben reduzierter Simulation auch Fehlerschranken & Effektivitätsschranken schnell berechenbar.
- Weitere Einsatzmöglichkeiten: Offline zur Basisgenerierung (~~ §??) und Online zur adaptiven Dimensionswahl.

Numerische Beispiele

demos_chapter3(1) Thermischer Block aus Beispiel 2.10, $B_1 = B_2 = 2$; N = 5, $\langle \cdot, \cdot \rangle_X := \langle \cdot, \cdot \rangle_{H_0^1}$,

$$S_N = \{0.1, 0.5, 0.9, 1.4, 1.7\} \times \{0.1\}^3 \subseteq \mathbb{R}^4$$

Erkenntnisse:

- Fehlerschätzer kann günstig für sehr feines Parametergitter berechnet werden, Fehler ist teuer zu berechnen, daher nur in wenigen Punkten.
- Fehler und Schätzer sind 0 für Basisparameter (bestätigt 3.8, 3.14).
- Fehlerschätzer ist obere Schranke für Fehler gemäß 3.13.
- Für kleine Werte von μ_1 größere Fehler \Rightarrow gute Wahl von S_N wird vermutlich (und später bewiesen) hier mehr Samples benötigen.

demos_chapter3(2) Effektivitäten $\eta_N(\mu)$ und obere Schranke $\frac{\gamma}{\alpha} \leq \frac{\mu_{max}}{\mu_{min}}$. Erkenntnisse:

- Effektivitäten sind gut, nur etwa Faktor 10 über Fehler.
- Obere Schranke für Effektivität gemäß 3.16.
- Effektivitäten sind undefiniert für Parametersamples $\mu \in S_N$ (Division durch Null).

 $demos_chapter3(3)$ Fehlerkonvergenz bezüglich N.

$$B_1 = B_2 = 3, \quad \mu_1 \in [0.5, 2], \quad \mu = (\mu_1, 1, \dots, 1) \in \mathbb{R}^9$$

Lagrange-Basis mit Gram-Schmidt-Orthonormierung, $\{\mu_i\}_{i=1}^N$ äquidistant. Erkenntnisse für Testfehler: (Maximierung über 100 zufällige Parameter)

$$S_{test} \subset \mathcal{P}, \quad |S_{test}| = 100$$

- Exponentielle Konvergenz für Fehler und Schätzer.
- Obere Schranke sehr gut.
- Numerische Ungenauigkeiten für Schätzer.

3.3 Offline/Online-Zerlegung

Bisher:

- $(P_N(\mu))$ niedrigdimensional, aber noch keine schnelle Berechnungsvorschrift.
- Um "berechenbares" Verfahren zu erhalten: Forderung dim $X < \infty$ in diesem Kapitel.
- Für effiziente Berechnung ist separierbare Parameterabhängigkeit von $(P(\mu))$ essenziell.

Offline-Phase:

• Typischerweise berechnungsintensiv, Komplexität polynomiell in $H := \dim X$

- Einmal durchgeführt.
- Berechnung hochdimensionaler Daten: Snapshots, reduzierte Basis, Riesz-Repräsentanten. ("detailed_data" in RBmatlab)
- Projektion der hochdimensionalen Daten in parameterunabhängigen niedrigdimensionalen Daten. ("reduced data")

Online-Phase:

- Schnelle Berechnung, Komplexität polynomiell in $N, Q_a, Q_f, Q_l, unabhängig von H$
- Typischerweise häufig ausgeführt für variierendes μ .
- Assemblierung des reduzierten parametrischen Systems für $(P_N(\mu))$.
- Lösen von $(P_N(\mu))$.
- Berechnung von Fehlerschranken und Effektivität.

Komplexitätsbetrachtung der bisherigen Formulierung

- Mit dim X = H und dünnbesetzter Matrix für $(P(\mu))$ ist Lösung z.B. in $\mathcal{O}(H^2)$ erreichbar (z.B. H Schritte eines iterativen Lösers mit $\mathcal{O}(H)$ Komplexität für Matrix-Vektor-Multiplikation dank Dünnbesetztheit).
- $N \times N$ System für $(P_N(\mu))$ ist vollbesetzt, also in $\mathcal{O}(N^3)$ lösbar, also $N \ll H$ erforderlich, um Gewinn zu bewirken.
- Genaue Betrachtung der Berechnung von $u_N(\mu)$:
 - 1. N Snapshots berechnen mittels $(P(\mu))$: $\mathcal{O}(N \cdot H^2)$
 - 2. N^2 Auswertungen von $a(\varphi_i, \varphi_j; \mu)$: $\mathcal{O}(N^2 \cdot H)$
 - 3. N Auswertungen von $f(\varphi_i; \mu) : \mathcal{O}(N \cdot H)$
 - 4. Lösen des $N \times N$ Systems für $(P_N(\mu))$: $\mathcal{O}(N^3)$
- Wir haben noch keine Offline/Online-Zerlegung: 1. gehört zur Offline-Phase, 4. gehört zur Online-Phase, aber 2. und 3. können nicht in Offline-Phase berechnet werden (wegen Parameterabhängigkeit) und nicht in Online-Phase (wegen *H*-Abhängigkeit).
 - \rightarrow Zerlegung von 2. und 3. mittels separierbarer Parameterabhängigkeit

Definition 3.19 (Notation für Zerlegung von $(P(\mu))$)

Unter Annahme $H = \dim X < \infty, X = \operatorname{span} \{\psi_i\}_{i=1}^H$, definiere Matrix

 $K := (\langle \psi_i, \psi_j \rangle)_{i,j=1}^H \in \mathbb{R}^{H \times H}$ "Gram'sche Matrix" / "Skalarprodukt-Matrix"

Mit separierbare Parameterabhängigkeit definiere Matrizen und Vektoren

$$A^{q} := (a^{q}(\psi_{j}, \psi_{i}))_{i,j=1}^{H} \in \mathbb{R}^{H \times H}, \qquad q = 1, \dots, Q_{a}$$

$$\underline{f}^{q} := (f^{q}(\psi_{i}))_{i=1}^{H} \in \mathbb{R}^{H}, \qquad q = 1, \dots, Q_{f}$$

$$\underline{l}^{q} := (l^{q}(\psi_{i}))_{i=1}^{H} \in \mathbb{R}^{H}, \qquad q = 1, \dots, Q_{l}$$

Korollar 3.20 (Lösung von $(P(\mu))$)

Lösung von $(P(\mu))$ wird erhalten durch Assemblieren des vollen Systems

$$A(\mu) = \sum_{q=1}^{Q_a} \Theta_a^q(\mu) \cdot A^q, \quad \underline{f}(\mu) = \sum_{q=1}^{Q_f} \Theta_f^q(\mu) \underline{f}^q, \quad \underline{l}(\mu) = \sum_{q=1}^{Q_l} \Theta_l^q(\mu) \underline{l}^q$$

und Lösen von $A(\mu)\underline{u}(\mu)=\underline{f}(\mu)$ nach $\underline{u}(\mu)=(u_i)_{i=1}^H\in\mathbb{R}^H$ und

$$u(\mu) = \sum_{i=1}^{H} u_i \varphi_i \in X, \quad s(\mu) = \underline{l}^T(\mu) \cdot \underline{u}(\mu)$$

Beweis. Klar mit Definitionen.

Bemerkung.

Das Vorliegen der A^q, <u>f</u>^q, <u>l</u>^q ist nicht trivial im Fall von "fremden" Diskretisierungspaketen und stellt wesentliche Schwierigkeit in breiter praktischer Anwendung dar. Motivation für Eigenentwicklung von Diskretisierungscode.

 \bullet Sinn von Matrix K ist Berechnung von Skalarprodukten und Normen, z.B. für

$$u = \sum u_i \psi_i, \quad v = \sum v_i \psi_i \in X \quad \text{für} \quad \underline{u} = (u_i), \underline{v} = (v_i)_{i=1}^H \in \mathbb{R}^H$$
$$\Rightarrow \langle u, v \rangle_X = \sum_{i,j} u_i v_j \langle \psi_i, \psi_j \rangle = \underline{u}^T K \underline{v}$$