21 Shoemakers of America formaces to "

product must be processed on each of three types of machines. When a machine is in use, it must be operated by a worker. The time (in hours) required to process each product on each machine and the profit associated with each product are shown in Table 59. At present, five type 1 machines, three type 2 machines, and four type 3 machines are available. The company has 10 workers available and must determine how many workers to assign to each machine. The plant is open 40 hours per week, and each worker works 35 hours per week. Formulate an LP that will enable Kiriakis to assign workers to machines in a way that maximizes weekly profits. (Note: A worker need not spend the entire work week operating a single machine.)

24 Gotham City Hospital serves cases from four

317 A Sunco oil delivery truck contains five compartments, holding up to 2,700, 2,800, 1,100, 1,800, and 3,400 gallons of fuel, respectively. The company must deliver three types of fuel (super, regular, and unleaded) to a customer. The demands, penalty per gallon short, and the maximum allowed shortage are given in Table 29. Each compartment of the truck can carry only one type of gasoline. Formulate an IP whose solution will tell Sunco how to load the truck in a way that minimizes shortage costs.

TABLE 29

Type of Gasoline	Demand	Cast per Gallen Short (S)	Maximum Allowed
Super Regular Unleaded	2,900 4,000 4,900	10 8	500 500 500

use (morano more vono mo moramig costs).

6 Gandhi Clothing Company produces shirts and pants. Each shirt requires 2 sq yd of cloth, each pair of pants, 3. During the next two months, the following demands for shirts and pants must be met (on time): month 1—10 shirts, 15 pairs of pants; month 2—12 shirts, 14 pairs of pants. During each month, the following resources are available: month 1—90 sq yd of cloth; month 2—60 sq yd. (Cloth that is available during month 1 may, if unused during month 1, be used during month 2.)

During each month, it costs \$4 to make an article of clothing with regular-time labor and \$8 with overtime labor. During each month, a total of at most 25 articles of clothing may be produced with regular-time labor, and an unlimited number of articles of clothing may be produced with overtime labor. At the end of each month, a holding cost of \$3 per article of clothing is assessed. Formulate an LP that can be used to meet demands for the next two months (on time) at minimum cost. Assume that at the beginning of month 1, 1 shirt and 2 pairs of pants are available.

7 Each year, Paynothing Shoes faces demands (which must be met on time) for pairs of shoes as shown in Table 37. Workers work three consecutive quarters and then receive one quarter off. For example, a worker may work during quarters 3 and 4 of one year and quarter 1 of the next year. During a quarter in which a worker works, he or she can produce up to 50 pairs of shoes. Each worker is paid \$500 per quarter. At the end of each quarter, a holding cost of \$50 per pair of shoes is assessed. Formulate an LP that can be used to minimize the cost per year (labor + holding) of meeting the demands for shoes. To simplify matters, assume

TABLE 37

Quarter 1	Quarter 2	Quarter 3	Quarter
600	300	800	100

that at the end of each year, the ending inventory is zero. (Hint: It is allowable to assume that a given worker will get the same quarter off during each year.)