S 628.168 W3pdm 1978

PRELIMINARY DRAFT

MONTANA STATEWIDE 208 SURFACE AND GROUND-WATER QUALITY ASSESSMENT AND MANAGEMENT ALTERNATIVES

PLEASE RETURN

STATE DOCUMENTS COLLECTION

NOVEMBER, 1978

APR 1 8 1985

MONTANA STATE LIBRARY 1515 E. 6th AVE. HELENA, MONTANA 59620

Funded In Part By a Grant From The U. S. Environmental Protection Agency

Montana Department of Health and Environmental Sciences, Water Quality Bureau, Helena, Montana IAN 5 1994;

MONTANA STATE LIBRARY \$ 202. 168 W3pdm 1976 c.1 Preliminary darti Montana statewide 208

249 249

TABLE OF CONTENTS

		page
BBREVIATIONS USED IN THIS REPORT		vii viii
NTRODUCTION		1
ROJECT DESCRIPTION		1
AUTHORIZATION		2
OBJECTIVES		2
STUDY AREA DESCRIPTION		
Physical Description		2
General Water Quality Problem Description		9
RELATIONSHIP OF 208 TO WATER QUALITY BUREAU PROGRAM POLICY		 9
ATED OUALITY ACCECCMENT		 12
COMPUTERIZED DATA COMPILATION AND EVALUATION		 12
LAND USE INVENTORY		 13
		13
INDIVIDUAL NONPOINT SOURCE SURFACE AND GROUND-WATER ASSESSMENTS	۶. ،	 15
Surface Water		
Agriculture		 15
sediment-water erosion		 17 17
sediment-streambank erosion		23
sediment-wind erosion		 23
salinity		 26
nutrients	•	 26
land conversion	•	 29
Stormwater Runoff	•	 29
urban runoff	•	 32
Mining	:	32
mineral commodities		 32
mineral fuels		
coal		 33
natural gas		 33
oil		 33
uranium		 44
mining-related water quality problems		 44
Silviculture		 63
state, private, and BLM lands		 68
U. S. Forest Service lands		 82
Land Disposal		 95 98
Dewatering	•	 98
Ground Water		100
Ground-Water Quality in the Statewide 208 Area	•	 112
Ground-Water Use in the Statewide 208 Area	•	 113
Ground-Water Quality Problems in the Statewide 208 Area		 113
oil and gas		 113
		 119
uranium		 113

	potash solution mining	119
		120
	agriculture	120
	dryland farming	120
	irrigation	121
	fertilizers and pesticides	122
		122
	forest products	122
	solid waste	123
	storage reservoirs	123
P0.		127
		127
- 1		131
		131
	Effects of Dewatering	133
1	Effects of Dewatering. VORTHERN BOULDER BATHOLITH STUDY Boulder Biver Depice.	133 135
		135
		137
		138
5		139
		142
		144
		144
		151
		153
		154
		157
		161
RIR	BLIOGRAPHY	166
	LICT OF TARLES	
	LIST OF TABLES	
1.	County and Incorporated City and Town Projections for the	
	Montana Statewide 208 Study Area	
	Annual Court at 200 Study Area	3
2.	Drainage Basin Acreages - Conservation District Inventory	
	for the Statewide 108 Area	10
		18
3.	Water Erosion on Dry Cropland in the Statewide 208 Study Area	19
		19
4.	Water Erosion on Rangeland Pasture in the Statewide 208	
	Study Area	20
_		LU
5.	Water Erosion on Irrigated Cropland in the Statewide 208	
	Study Area	21
6.		
0.	Streambank Erosion in the Statewide 208 Study Area	22

		page
7.	Wind Erosion Contributing to Sediment Pollution in the Statewide 208 Study Area	24
8.	Acreage Affected by Salinity in the Statewide 208 Study Area	25
9.	Animal Confinement Facilities Which Contribute Surface Runoff to Receiving Streams in the Statewide 208 Area	. 27
10.	Summary of Land Use Change from Rangeland to Cropland in the Statewide 208 Study Area Since 1972.	. 28
11.	Stormwater Runoff Assessment for Large Towns in the Statewide 208 Study Area	. 30
12.	Mineral Commodities' Data Summary	. 34
13.	Location and Activity of Major Mineral Commodity Mines in the Statewide 208 Study Area	. 40
14.	Coal Fields in the Montana Statewide 208 Area	. 41
15.	Oil and Gas Leasing Activity in National Forest Land in Western Montana	. 43
16.	Impact Matrix Relating Mining and Water Quality	. 45
17.	Mining-Related Water Quality Problems in the Statewide 208 Area	. 47
18.	Summary of Major Mining Related Water Quality Problems in Montana Statewide 208 Area	. 64
19.	Ownership of Commercial Forest Land in Montana	. 67
20.	Silviculture-Related Water Quality Problems on State and Private Forest Lands in the Statewide 208 Study Area	. 69
21.	Planned Silvicultural Activities	. 83
22.	Potential Silviculture-Related Problem Areas on State and Private Forest Lands in the Statewide 208 Area	. 84
23.	Acreages of the National Forest in Montana Taken from the Annual Statistical Report of National Forest Areas, 1976	. 92
24.	Productive Non-Reserved Forest Lands Exclusive of Referred Forest Lands as of 12/77	. 93
25.	Timber Sale Program Statistics for Montana National Forests	. 94
26.	An Evaluation of Pollution Impacts on Montana's National Forests.	. 96

	page
27.	Miles of Dewatered Stream Segments in the Statewide 208 Study Area
28.	Montana Streams with Reduced Fishery Resource Value Due to Water Removal or Fluctuation for Agriculture 101
29.	Summary of Ground-Water Problems in the Statewide 208 Area 114
30.	Pollution Potential of Thirty-Four Solid Waste Sites in the Statewide 208 Area
31.	Subdivision Growth in Montana
32.	Construction Grant Projects in the Statewide 208 Area 128
33.	MPDES Permits in the Statewide 208 Area
34.	Heavy Metal Pollution from Anaconda Company Smelter 139
35.	Comparison of Smelter Discharge Quality Before and After Company Strike (Site #15)
36.	Settling Efficiency of Opportunity and Warm Springs Ponds 141
37.	Data Used in Urban Stormwater Runoff Computer Model 143
38.	Parameters Covered in Southwest Biological Monitoring Loop 148
39.	Composite Ranking of Stations in the Southwest Loop 150
40.	Montana's Initial Statewide 208 Problem Priorities-November, 1978. 153
	LIST OF FIGURES
1.	Basin Delineations Used in Conservation District Inventory $$ 16
2.	Potential Agriculture-Related Water Quality Problems Map in Statewide 208 Area - 1977 (Not yet available) Pocket
3.	Mining-Related Water Quality Problem Sites in the Statewide 208 Area (Schmidt, et al., 1978) 62
4.	Silviculture-Related Water Quality Problem Sites in the Statewide 208 Area (Rasmussen, et al.,1978 8)
5.	Big Hole River Drainage (41D)

6.	Northern Boulder Batholith Study Area				136
7.	Schematic Diagram of the Silver Bow Creek Study Area				140
8.	Biological Monitoring Stations				148

ABBREVIATIONS

Ag-NPS--agriculture nonpoint source APO--areawide planning organization BDR--Boulder River below Boulder BHES--Board of Health and Environmental Sciences BHR--Big Hole River near Twin Bridges BLC--Board of Land Commissioners BLM--Bureau of Land Management BMP--Best Management Practice BNRC--Board of Natural Resources and Conservation BOD--biochemical oxygen demand BVR-Beaverhead River at Twin Bridges CFD-Clark Fork River at Deer Lodge COD--chemical oxygen demand DCA--Department of Community Affairs DHES--Department of Health and Environmental Sciences DNRC--Department of Natural Resources and Conservation DSL--Department of State Lands EGR--East Gallatin River F&G--Department of Fish and Game FY--fiscal year GRC--Grasshopper Creek near mouth JER--Jefferson River near Three Forks MACD--Montana Association of Conservation Districts MAR--Madison River station MCD--Muddy Creek near Dell MDT--Minimum Dilution Time mgd--million gallons per day MMBF--million board feet MPDES--Montana Pollutant Discharge Elimination System MWPCA--Montana Water Pollution Control Act MWORS--Montana Water Quality Records System NACD--National Association of Conservation Districts NPS--nonpoint source PPE--Prickly Pear Creek at East Helena PPL--Prickly Pear Creek near Helena RCM--Revised Code of Montana RRR--Red Rock River above Lima Reservoir RUR--Ruby River at Twin Bridges SAR--sodium adsorption ratio SBC--Silver Bow Creek below Warm Springs ponds SCS--Soil Conservation Service SHC--Sheep Creek above Muddy Creek TDS--total dissolved solids USFS--United States Forest Service USGS--United States Geological Survey WFM--West Fork Madison River near mouth WGR--West Gallatin River at Central Park WQB--Water Quality Bureau

FOREWARD

The following draft report contains and assessment of surface and ground-water quality conditions in the Statewide 208 area and lists alternative management actions which could be implemented to deal with the major water quality problems.

As a preliminary draft, the report is subject to change based on public comment. Please submit suggestions and opinions to:

Statewide 208 Project Water Quality Bureau, DHES Capitol Station Helena, Montana 59601

Comments must be received by this office no later than February 1, 1979, if they are to be considered in the final Statewide 208 report and recommended plan.

INTRODUCTION

The Water Quality Bureau's 1976, 305(b) report and 1977 Program Plan estimated 3,995 stream miles were being adversely impacted by nonpoint sources. These two reports also stated that point sources were or would soon be essentially under control.

The various nonpoint source assessments and technical studies undertaken through the Statewide 208 project have identified numerous specific problem segments not previously identified in the WQB's basin plans. At first glance, these new studies make it appear that Montana's NPS pollution problems are much more abundant than originally thought and that very little in the way of correcting or preventing problems has been accomplished in the past few years.

The person reading the following report should bear these points in mind:

- 1) The Statewide 208 project has done much to more specifically locate problems. For example, past studies have indicated the Clark Fork drainage has extensive mining problems; the 208 assessments have identified particular stream segments being adversely impacted by mining activities. Thus, the 208 project has not shown water quality problems to be more extensive than previously expected but it has more specifically identified water quality problems.
- 2) Not only is the treatment of nonpoint source problems different than that of point source problems, i.e., land management vs. end-of-pipe treatment, but the extent of the prevention and mitigation of nonpoint source problems is frequently not measurable. Thus, many improvements to Montana's water quality by elimination of nonpoint source problems have not and may never be quantitatively documented.

PROJECT DESCRIPTION

AUTHORIZATION

The Montana Statewide 208 Water Quality Management Planning project, described herein, was conducted with a grant from the United States Environmental Protection Agency. The Water Quality Bureau, Department of Health and Environmental Sciences, was designated by Governor Thomas Judge as the Statewide 208 planning agency authorized to receive funds under Section 208 (a)(b) of the Federal Water Pollution Control Act Amendments of 1972 (P.L. 92-500).

OBJECTIVES

Principal objectives of the Statewide 208 planning process included:

- 1) Development of a water quality management plan to achieve the 1983 national goals of "water quality which provides for protection and propagation of fish, shellfish, and wildlife and provides for recreation in and on the water by July 1, 1983;" and "the discharge of pollutants into the navigable waters be eliminated by 1985;"
- Placement of planning emphasis on nonpoint source pollution which may be the greatest single barrier to attaining the 1983-1985 goals in Montana;
- Development of a preservation philosophy and strategy to maintain the quality of waters currently meeting or exceeding the 1983-85 goals and the state's water quality standards.

SCOPE

Statewide 208 planning was limited in scope by fund availability and time. Since the project area covers approximately 107,000 square miles (73 percent of the state's total) and contains about 500,000 people (65 percent of the state's total), in-depth, site-specific studies were limited to a few critical areas and high priority problems.

Identification of water quality problems in the remainder of the study area relied on existing data. As a result, there are still several drainages in the study area and some problems, such as ground-water pollution, which need further quantification. The report contained herein, in addition to outlining management programs for identified problems, will also identify additional assessments for the next year.

STUDY AREA DESCRIPTION

Physical Description

The 1975 population of the Statewide 208 study area was estimated to be 467,941 (does not include those counties wholly or partially within the designated 208 project areas). Study area population is expected to reach 540,300 by the year 2000; population projections for the study area are contained in Table 1.

Eastern Montana is mostly rural with large population centers being located along the Yellowstone and Missouri Rivers. Dryland farming and cattle ranching provide most of the economic support for this part of the state, but continued development and expansion of coal mining is expected to play an increasingly important role in the economy.

The majority of Montana's population lives in the western part of the state. Major industries there include mining, logging, and tourism. Climate of the study area is as variable as the topography. The Continental Divide and variations in elevation significantly influence

-3-TABLE 1

COUNTY AND INCORPORATED CITY AND TOWN PROJECTIONS FOR THE MONTANA STATEWIDE 208 STUDY AREA

	1980	1985	1990	1995	2000
BEAVERHEAD COUNTY	8,200	8,200	8,200	8,200	8,300
Dillon Lima	4,600 350	4,600 350	4,600 350	4,600 350	4,650 350
BLAINE COUNTY	6,700	6,600	6,500	6,500	6,400
Chinook Harlem	1,800 1,150	1,800 1,150	1,750 1,100	1,750 1,100	1,750 1,100
BROADWATER COUNTY	3,100	3,100	3,100	3,100	3,100
Townsend	1,700	1,700	1,700	1,700	1,700
CASCADE COUNTY	85,600	89,000	93,000	97,300	101,400
Belt Cascade Great Falls Neihart	700 700 62,500 100	700 750 65,100 100	750 800 67,900 100	800 800 71,050 100	800 850 74,050 100
CHOTEAU COUNTY	6,300	6,200	6,100	5,900	5,800
Big Sandy Fort Benton Geraldine	800 1,850 350	800 1,800 350	800 1,800 350	750 1,700 350	750 1,700 350
DANIELS COUNTY	3,100	2,900	3,700	3,600	3,400
Flaxville Scobey	200 1,550	200 1,450	250 2,250	200 2,200	200 2,100
DAWSON COUNTY	11,200	11,200	11,200	11,400	11,600
Glendive Richey	6,150 400	6,150 400	6,150 350	6,250 350	6,400 350
DEER LODGE COUNTY	13,500	13,300	13,000	12,700	12,400
Anaconda	8,550	8,450	8,250	8,050	7,850
FERGUS COUNTY	13,300	13,300	13,300	13,400	13,600
Denton Grass Range	400 200	400 200	400 200	400 200	400 200

-4-

TABLE 1, Continued

2000	1995	1990	1985	1980	
6,950	6,850	6,800	6,800	6,800	Lewistown
200	200	200	200	200	Moore
200	200	200	200	200	Winifred
1,600	1,700	1,800	1,800	1,800	GARFIELD COUNTY
450	500	550	550	550	Jordan
12,100	11,900	11,600	11,300	11,200	GLACIER COUNTY
1,950	1,900	1,850	1,800	1,800	Browning
4,200	4,150	4,050	3,950	3,900	Cut Bank
900	900	900	1,000	1,000	GOLDEN VALLEY
150	150	150	200	200	Lavina
250	250	250	300	300	Ryegate
2,800	2,800	2,800	2,800	2,700	GRANITE COUNTY
500	500	500	500	500	Drummond
1,000	1,000	1,000	1,000	1,000	Philipsburg
20,300	19,800	19,200	18,700	18,200	HILL COUNTY
12,400	12,100	11,750	11,400	11,100	Havre
300	300	300	300	250	Hingham
10,200	9,400	8,200	8,000	7,300	JEFFERSON COUNTY
1,100	1,100	1,100	1,100	1,100	Boulder
1,850	1,750	1,550	1,500	1,450	Whitehall
2,200	2,300	2,400	2,600	2,700	JUDITH BASIN COUNTY
150	150	200	200	200	Hobson
400	450	450	500	500	Stanford
57,500	52,800	48,800	44,900	40,900	LEWIS AND CLARK COUNTY
2,850	2 600	2.400	2.250	2.050	East Helena
38,650	35,500	32,800	30,200	27,500	Helena
2,200	2,300	2,300	2,400	2,500	LIBERTY COUNTY
850	900	900	950	1,000	Chester
17,500	18,600	18,300	18,100	17,900	LINCOLN COUNTY
	52,800 2,600 35,500 2,300 900	48,800 2,400 32,800 2,300 900	44,900 2,250 30,200 2,400 950	500 40,900 2,050 27,500 2,500 1,000	Stanford LEWIS AND CLARK COUNTY East Helena Helena LIBERTY COUNTY Chester

-5-

TABLE 1, Continued

	1980	1985	1990	1995	2000
Eureka Libby	1,050 3,250 150	1,100 3,300 150	1,100 3,350 150	1,100 3,400 150	1,100 3,200
Rexford Troy	1,100	1,100	1,100	1,150	150 1,050
McCONE COUNTY	2,600	2,600	2,500	2,400	2,300
Circle	1,050	1,050	1,050	1,000	950
MADISON COUNTY	5,700	5,800	5,800	5,700	5,700
Sheridan Twin Bridges Virginia City	750 750 200	750 750 200	750 750 200	750 750 200	750 750 200
MEAGHER COUNTY	2,300	2,300	2,300	2,300	2,300
White Sulphur Springs	1,400	1,400	1,400	1,400	1,400
MINERAL COUNTY	3,700	3,800	3,900	4,000	4,100
Alberton Superior	500 1,100	500 1,100	550 1,150	550 1,150	550 1,200
MISSOULA COUNTY	69,500	74,100	78,300	83,600	89,000
Missoula	31,300	33,300	35,250	37,600	40,050
MUSSELSHELL COUNTY	4,400	4,600	4,600	4,600	4,600
Melstone Roundup	250 2,400	250 2,500	250 2,500	250 2,500	250 2,500
PARK COUNTY	12,800	13,100	13,500	13,800	14,200
Clyde Park Livingston	300 7,300	300 7,450	300 7,700	300 7,850	350 8,100
PETROLEUM COUNTY	700	600	600	500	500
Winnett	250	200	200	150	150
PHILLIPS COUNTY	5,500	5,300	5,200	5,200	5,100
Dodson Malta Saco	200 2,300 350	150 2,250 350	150 2,200 350	150 2,200 350	150 2,150 350
PONDERA COUNTY	7,100	7,000	6,800	6,700	6,600

TABLE 1, Continued

-6-

	1980	1985	1990	1995	2000
Conrad Valier	3,350 700	3,300 700	3,200 650	3,150 650	3,100 650
POWELL COUNTY	8,000	8,200	8,300	8,500	8,600
Deer Lodge	5,150	5,300	5,350	5,500	5,550
PRAIRIE COUNTY	1,800	1,800	1,700	1,700	1,600
Terry	900	900	850	850	800
RAVALLI COUNTY	20,500	21,400	22,700	23,800	25,000
Darby Hamilton Stevensville	550 3,350 1,300	550 3,500 1,350	550 3,800 1,450	550 3,900 1,500	550 4,150 1,600
RICHLAND COUNTY	10,400	10,300	10,200	10,100	10,000
Fairview Sidney	1,000 4,850	950 4,800	950 4,800	900 4,750	900 4,700
ROOSEVELT COUNTY	10,700	10,900	11,100	11,300	11,500
Bainville Brockton Culbertson Froid Poplar Wolf Point	200 400 850 300 1,450 3,650	200 400 850 300 1,450 3,700	200 400 900 300 1,500 3,750	200 400 900 300 1,550 3,850	200 450 900 300 1,550 3,900
SHERIDAN COUNTY	5,400	5,200	5,200	5,100	5,000
Medicine Lake Outlook Plentywood Westby	350 100 2,300 250	350 100 2,200 250	350 100 2,200 250	350 100 2,150 250	350 100 2,150 250
SILVER BOW COUNTY	40,900	40,700	40,500	40,500	40,500
Butte Walkerville	22,950 1,000	22,850 1,000	22,750 1,000	22,750 1,000	22,750 1,000
TETON COUNTY	6,300	6,300	6,200	6,100	6,100
Choteau Dutton Fairfield	1,650 400 650	1,650 400 650	1,650 400 650	1,600 400 650	1,600 400 650

-7-

TABLE 1, Continued

	1980	1985	1990	1995	2000
TOOLE COUNTY	5,300	5,400	5,400	5,500	5,500
Kevin Shelby Sunburst	200 2,900 550	200 2,950 550	200 2,950 550	200 3,000 550	200 3,000 550
VALLEY COUNTY	13,300	13,100	13,000	12,900	12,900
Glasgow Nashua Opheim	5,400 600 350	5,300 600 350	5,250 600 350	5,200 600 350	5,200 600 350
WHEATLAND COUNTY	2,500	2,500	2,500	2,400	2,400
Harlowton Judith Gap	1,350 150	1,350 150	1,350 150	1,300 150	1,300 150
WIBAUX COUNTY	1,500	1,500	1,500	1,400	1,300
Wibaux	650	650	650	600	600

the area's climate. East of the Divide, winters are colder and summers hotter and drier than in the mountainous area west of the Divide with its modified North Pacific Coast type weather.

The study area is part of two physiographic provinces, the Northern Rocky Mountain province and the Missouri Plateau section of the Great Plains. The latter section can be further subdivided into glaciated and unglaciated sections. The western third of the Statewide 208 project area falls into the Rocky Mountain section. Several north-south trending mountain ranges occur in the northwest corner. Eastward are the frontal ranges of the Northern Rockies. Rocks in the area are of the Paleezoic and Mesozoic Age while rocks to the west are Precambrian. Eastward of the front ranges are the Big and Little Belt Mountains, topographically low compared to the western mountains. The Belts are anticlinal uplifts with Precambrian batholithic caves and Paleozoic and Mesozoic sedimentary rocks on their flanks.

Southwestern Montana contains many short mountain ranges and intermountain basins which are structural rather than erosional in origin. Many of the ranges are covered by Precambrian rocks and intermountain basins are filled with sediment deposited from Eocene to recent times.

The far eastern part of the study area, the Great Plains, is characterized by more subdued topography and composed of nearly horizontal, relatively undisturbed sedimentary rocks. The glaciated Missouri Plateau occurs north of the Missouri River. South of the Missouri River, much of the landscape is characterized by badland topography formed in the Tertiary and Cretaceous rocks. The Tertiary Fort Union Formation is a wide band running north-south in the far eastern portion of the study area.

Standing above the topography of the Great Plains are several mountain ranges which are outliers of the Rocky Mountains. These ranges include the Bear Paws, Highwoods, Judiths, Moccasins, Snowey's, Little Rockies, and Sweetgrass Hills.

The Statewide 208 study area is a headwaters area for several large river systems flowing from both sides of the Continental Divide and north to Hudson Bay. The Missouri River is the largest river and heads in the southwest corner at the confluence of the Madison, Jefferson, and Gallatin Rivers. The Missouri River flows northward, then eastward across the plains. South of the Missouri River is the Yellowstone River with headwaters in Wyoming. The river flows northeast and occurs in the Statewide 208 study area during its passage through Park, Prairie, Dawson, and Richland Counties. Major tributaries of the Yellowstone include the Big Horn, Tongue, and Powder Rivers. West of the Continental Divide, the Clark Fork of the Columbia River heads in the Butte-Anaconda area and flows into Idaho. A major tributary of the Clark Fork River is the Bitterroot River. In the northwest portion of the project area, the Kootenai River flows toward Canada. Also, a small area on the east side of the Divide, near Glacier Park, is drained by the St. Mary River which flows to Canada and the Hudson Bay.

General Water Quality Problem Description

Compared nationally, Montana has some of the United States' highest quality waters. In particular, some of the mountain headwater streams support excellent trout fisheries. However, nonpoint source pollution and excessive dewatering are significant problems in Montana. The Water Quality Bureau's 1976, 305(b) report estimated 3,995 stream miles were being degraded by nonpoint source pollution and dewatering. Of these segments, 2,512 miles were estimated to be degraded by sediment, dewatering was estimated to adversely affect 860 miles, and 1,400 miles were being degraded by salinity. Natural processes contribute to these problems; however, numerous human activities are responsible for a great portion. Logging, mining, urban and rural development, construction and in particular, agriculture are the major nonpoint source polluters and dewaterers in the Statewide 208 study area.

Presently, nonpoint source pollution and dewatering are localized, but continuing development of the state's natural resources poses a significant threat to all surface and ground waters.

RELATIONSHIP OF 208 TO WATER QUALITY BUREAU PROGRAM POLICY

Objectives and philosophies of the Water Quality Bureau's Program are the result of the state's Water Pollution Control Act which states in part:

- 1) It is the public policy of this state to:
 - conserve water by protecting, maintaining, and improving the quality and potability of water for public water supplies, wildlife, fish and aquatic life, agriculture, industry, recreation, and other beneficial uses;
 - b) provide a comprehensive program for the prevention, abatement, and control of water pollution.

The Montana Water Quality Standards are an administrative rule adopted by the Board of Health for the purpose of meeting responsibilities dictated by the Water Pollution Control Act. The Water Quality Standards contain water use classifications for all of Montana's classification. Water quality criteria define the minimum quality conditions and waste treatment requirements needed to protect, maintain, and improve the quality of potability of the state's surface waters.

From its inception, the state's water quality control program has been mitigative in nature and has focused almost entirely on point source pollution, i.e., municipal and industrial discharges. This emphasis on point source pollution seems questionable in a relatively non-industrial, non-urbanized state; however, from a nationwide perspective, a major portion of the water quality problems are the result of cities and industries. This national emphasis was carried down to the state level. In addition, a majority of the public health problems associated with water are caused by point source discharges.

The point source control philosophy is exemplified in the Montana Pollutant Discharge Elimination System (MPDES) which authorizes and controls point source discharges to state waters by means of a permit system. The permits regulate the quality, quantity, and duration of waste discharges.

Primarily as a result of the MPDES rule, the number of point source pollution problems have been dramatically reduced in the past few years. As of June, 1977, only an estimated 200 stream miles, out of approximately 4,000 miles being degraded, were being polluted by point source discharges and all of those 200 miles were expected to be corrected by construction measures in subsequent years.

Although the WQB's point source control program will virtually eliminate point source pollution, it has had little or no effect on nonpoint source pollution due mainly to funding constraints. Nationwide success of point source pollution control programs and passage of P.L. 92-500 have begun to focus attention of water quality management agencies on nonpoint source pollution and federal funds have been provided to states. Though these funds will facilitate correction of nonpoint source problems, integration of a comprehensive nonpoint source pollution control program is a few years away.

RELATIONSHIP OF 208 TO OTHER PROGRAMS

Since water quality management planning is concerned with one major resource, water, and is directly affected by the use of another major resource, land, numerous local, state, and federal programs affect or are affected to some degree by 208 planning. Though continuous coordination of so many programs is a monumental task in itself, efficient use and protection of our natural resources demands that each planning agency at the least be aware of other applicable programs and ideally, actively participate in the most directly applicable planning processes. The Statewide 208 project has not succeeded in achieving the necessary degree of coordination with all other programs but has attempted to remain abreast of a few programs which most directly relate to water quality management planning. Those programs are discussed below.

Obviously, active integration of existing WQB programs with 208 planning was immediate. For example, it was not necessary for the Statewide 208 project to initiate facility planning, water quality monitoring, and a waste discharge permit program; these programs were already in existence within the WQB and the Statewide 208 project has used the programs with, in some cases, only slight priority modifications.

Within the Department of Health and Environmental Sciences, three other bureaus have programs with some degree of relationship to 208 planning. Subdivisions are subject to review by the Subdivision Bureau for public health considerations if facilities requiring water supply and sewage disposal are proposed. The WQB attempts to be aware of at least the larger proposed subdivisions as construction activities and subsurface disposal can have severe impacts on both surface and ground-water supplies.

The Water Quality Bureau also periodically reviews control practices recommended by the Solid Waste Bureau for land disposal sites. Poorly planned placement and operation of sites can again severely degrade ground and surface waters.

And, state air quality plans are reviewed periodically for possible conflicts with the water quality management objectives. Though the relationship between air and water quality is a bit obscure in most of Montana, reciprocal impacts are apparent in some of the more heavily populated and/or industrialized areas. For example, water quality can be directly affected by air quality, in particular, fall-out of heavy metals in Anaconda. Conversely, air quality can be affected by stormwater runoff pollution control measures such as frequent street sweeping.

The relationship of the designated 208 area planning programs to the Statewide 208 program is obvious since the WQB is responsible for review and approval of APO plans, coordination of the two programs has been continuous and will result in a well coordinated final product for the state.

Compatibility of objectives of the Statewide Sediment Control Project and 208 planning have warranted a continuous relationship between the projects. The Sediment Project is intended to identify the nature and extent of sediment pollution in Montana and to implement a management program. Since sediment pollution is a Statewide 208 priority, the two projects have worked closely in an inventory of the problems and development of a pilot control program.

Level B basin plans are reconnaissance-level evaluations of water and land resources for the purposes of recommending action plans and programs for the management of these resources. In the past, direct input of the WQB into Level B plans has consisted mostly of a review of the final reports. This lack of an active relationship between water quantity and quality planning is unfortunate in view of the ever-occurring conflicts between water use and water quality in Montana. However, attempts to increase the coordination have been made in the recently initiated Upper Missouri Level B study. Since that study area is contained entirely within the Statewide 208 study area, the WQB will attempt to be actively involved and express water quality concerns through the ad hoc groups, study team, and management board. Hopefully, this participation will insure that water quality is considered in planning for the use of Upper Missouri River water.

The various local, state, and federal land use-related planning programs are, by sheer number, the most difficult with which to maintain coordination. These consist of programs of Conservation Districts, county planning boards, Department of State Lands, Department of Community Affairs, Department of Natural Resources and Conservation, Department of Fish and Game, Department of Highways, Soil Conservation Service, Agriculture Stabilization and Conservation Service, U. S. Forest Service, Bureau of Land Management, Bureau of Reclamation, U. S. Fish and Wildlife Service, and U. S. Corps of Engineers to name a few. The WQB simply does not have

the people and time required to completely maintain active contact with each of these planning processes. At least, the WQB has attempted to make other agencies aware of its management responsibilities and hopefully, those responsibilities will be considered in other planning programs. Likewise, the WQB strives for the same consideration of other management programs and responsibilities.

WATER QUALITY ASSESSMENT

The Statewide 208 water quality assessment relied, for the most part, on existing information. However, it became quickly apparent that nonpoint source problems were extensive and complex and sufficient data did not exist to adequately address them. Thus, early in the effort, a few specilized projects were initiated to obtain new data. Basically then, the assessment consisted of the following seven major efforts:

- 1) Computerized data compilation and evaluation
- 2) Land use inventory
- 3) Population projections
- 4) Fishery resource inventory
- 5) Individual nonpoint source surface and ground-water assessments
- 6) Specific technical studies
- 7) Point source evaluation

The assessment was then the basis for prioritization of problems and development of management alternatives.

COMPUTERIZED DATA COMPILATION AND EVALUATION

The data handling system developed and being implemented for the Statewide 2008 Program is the Montana Water Quality Records System (MMQRS). This is a computer-based system for entering, maintaining, and retrieving records of water quality information. The system was originally designed by the Research and Information Systems Division of the Montana Department of Community Affairs under a contract with the United States Geological Survey. Cooperating in the design were the Department of Health and Environmental Sciences, Water Quality Bureau, and the Montana Bureau of Mines and Geology. MMQRS utilizes the Mark IV File Management System developed and marketed by Informatics, Inc. This system is a software package which allows storage, updating, and retrieval of water quality data to be made with relative ease. The MQB is continuing to store all available water quality data in the system and has begun to recall data by various parameters as part of the evaluation process. The storage and evaluation will continue in the next year.

LAND USE INVENTORY

The land use inventory and mapping effort, being conducted by the Montana Department of Community Affairs, Planning Division (DCA) is expected to be completed in late 1979. To initiate the inventory the WQB submitted a list of priority counties to DCA; final printed or at least work maps have been completed for those counties which include:

2.	Lewis & Clark Cascade Teton	7.	Phillips Valley Missoula	12. 13.	Silver Bow Powell Granite
4.	Hill	9.	Ravalli	14.	Deer Lodge
5.	Blaine	10.	Mineral		

The land use data and maps have, to a limited extent in the past few months, been used to identify possible water quality problem areas. A concentrated study of the Milk River and Clark Fork River Basins is anticipated for FY '79 and the land use information will be particularly valuable to those more detailed, specific efforts.

POPULATION PROJECTIONS

Population projections for the Statewide 208 study area were derived by the Montana Department of Community Affairs, Research and Information Systems Division; their report by Phil Brooks details methodology used to derive those projections. The projections were listed in a previous section of this report. A major, practical use of the projections is in municipal point source management. The WQB's facility planning priority list (discussed in a later section) is based in part on those projections.

FISHERY RESOURCE INVENTORY

In view of the Clean Water Act's emphasis on the biological integrity of streams, the Department of Fish and Game's (F & G) continuing effort to categorize fishery value of streams in Montana has served to satisfy a major objective of the Statewide 208 project.

One of the Department's initial classification systems, "the Blue Ribbon System," placed 8.813 stream miles in one of four classes based on their value as a fishery resource. Class 1, Blue Ribbon streams, were those streams of state and national value. Blue Ribbon segments totalled 452 miles and included portions of the Big Hole, Flathead, Madison, Missouri, West Gallatin and Yellowstone Rivers and Rock Creek. A total of 989 miles were ranked as Class 2, streams of statewide value; 2,412 miles were rated as Class 3, having value to large districts of the state; 4,960 miles were considered to be Class 4, having restricted local value. The Blue Ribbons system is somewhat subjective and in an attempt to use fisheries data to more accurately classify the fishery resource value of streams in Montana, F & G in cooperation with the U. S. Forest Service, designed a Fishery Data Input Form to compile and organize all existing fisheries data. Recognizing the data's importance to water quality management, the Statewide 208 project provided financial support for development of the computer storage/handling system.

Data entered into the system included:

- Identification--stream name, state code, National Watershed Number, reach number, and boundaries
- 2) Resource value--ratings from 1 to 4 as follows:
 - (a) Highest valued fishery resource
 - (b) High-priority fishery resource
 - (c) Substantial fishery resource
 - (d) Limited fishery resource
- 3) Administrative locations
- 4) Ingress--describes types of legal rights to enter
- 5) Peak water temperature reached in an average summer
- 6) Indication of presence of spring creek defined as having fairly constant temperature and flow and clean water
- 7) Indication as to whether or not water temperature, flow pattern, and/or fish food are significantly affected by a lake or impoundment or if a downstream lake or reservoir results in fish runs into a reach or there is an ice problem in a reach.
- Special value--used to show value of a reach which does not have significant game or sport fish population
- Fish population--type, abundance, and fish's use of reach. Number of catchable size game and sport fish is recorded when available.
- 10) Habitat trends--indicated as improving, deteriorating or static
- 11) Esthetics--a code number from 1(poorest) to 5 (best)
- 12) Entries made for a variety of natural and man-caused limiting factors including man-caused pollution.

The survey effort has covered all major streams (1,457) having significant fishery values; these segments total 22,386 kilometers. Future efforts will be devoted to compiling data on second priority streams and breaking down the initial segments into reaches. This latter effort will facilitate a more accurate location of specific problems. As the data now read, each stream segment was examined for particular problems; however, not every kilometer recorded is affected by a particular problem. For example, a 20.6 km segment of the Beaverhead River was reported as having mining-related problems; somewhere within the 20.6 km segment mining impacts are

occurring but not every kilometer of the segment may be adversely affected. Man-caused pollution problems as identified in the inventory will be discussed in applicable sections of this report.

In addition to becoming more detailed and refined in the next year, the F & G inventory will be the basis for maps designed to depict the fishery resource value of all streams in the state. The WQB will continue to use the data to identify site-specific nonpoint source problems.

INDIVIDUAL NONPOINT SOURCE SURFACE AND GROUND-WATER ASSESSMENTS

Nonpoint source problems have been the major focus of the Statewide 208 project. The individual assessments, discussed in this section, have significantly added to our knowledge of the nature and extent of Montana's most difficult water quality problems; however, the assessments have also shown the need for additional assessments to more accurately identify nonpoint problems and causes. As a function of the elements and man's seasonally changing land use patterns, nonpoint source problems are more difficult to document. Thus, the Statewide 208 project has really just "scratched the surface" of awareness regarding nonpoint source problems, but it has been a significant first achievement necessary for development of a successful nonpoint source management program for Montana.

Surface Water

Agriculture--Agricultural land use has long been considered to be Montana's most critical nonpoint source pollution problem. Prior to 208 planning, this assumption was based on the facts that many streams were suffering from sediment pollution, agriculture was accounting for 82 percent of the land use in the state, and on about 57 percent of the agriculture acres, soil erosion was identified as the dominant problem (Conservation Needs Inventory, 1970). Thus, early in the Statewide 208 planning process, Ag-NPS pollution was selected as the project's highest priority. Even though the WQB was convinced an active land conservation program would significantly improve Montana's water quality, the extent of agricultural-related water quality problems which could feasibly be corrected remained to be ascertained.

Early in the Statewide 208 program a contract was developed with the Montana Association of Conservation Districts (MACD) for an assessment of agriculture nonpoint source problems. The first step of that assessment was development of a questionnaire to identify areas where agricultural activities were known or suspected to be causing water quality degradation. The Statewide Sediment Control Project, MACD, and the WQB worked cooperatively to revise the Sediment Project questionanire to cover streambank erosion, salinity, and confined feeding operations. The questionnaires were then distributed to each district in the Statewide 208 study area for completion. The information was compiled and mapped by subdrainage basin as delineated by the USGS Hydrologic Unit Map, 1974. Figure 1 identifies basins in the study area; Figure 2 (map pocket) is a depiction of the Districts' data. MACD hired an individual consultant to summarize and analyze Districts' data; the following discussion is based on that consultant's report (Hehn, 1978).

Figure 1. Basin delineations used in Conservation District inventory.

The Statewide 208 study area covers 60,880,091 acres. Table 2 shows the acreage totals for each major drainage basin. The conservation districts estimated about 72 percent of the project area, 43,797,138 acreas, is being used for agricultural purposes. Rangeland and pasture make up about 71 percent of the agriculture land; the remainder is classed as dry or irrigated cropland.

Viewed geographically, a majority (about 82 percent) of the agricultural land is in the Great Plains area east of the Continental Divide. Data from the district survey also indicate only about 14 percent of land west of the Continental Divide (Kootenai and Clark Fork Basins) is used for agricultural purposes while 85 percent of the plains area (remaining basins) is devoted to agricultural use.

sediment-water erosion--Tables 3-5 show acreages for each major agricultural land use and the degree of soil erosion in each basin as reported by the Conservation Districts. The majority of soil erosion by water occurs on dry cropland. Thirty-four percent of the dry cropland in the Statewide 208 study area (3,667,226 acres) is experiencing some degree of water erosion. About 16 percent (4,870,591 acres) of rangeland pasture has some degree of soil loss by water. Only 8 percent (144,403 acres) of the irrigated acres are experiencing water erosion.

Depending on the way in which the Conservation District data are compiled, apparent impacts of agriculture-related soil erosion on water quality is significantly changed. For example, the fact that the Districts estimate soil is being removed by water from 8,682,219 acres in the Statewide 208 study area is, in itself, dramatic; however, that figure cannot be used alone to describe water quality impacts due to water erosion. That acreage represents only about 15 percent of the study area and only about nine percent of the entire state. Also, the figure obviously does not indicate the length of time those acres are eroding, how much soil is being removed, and most importantly, how much of the lost soil is actually entering water bodies to the detriment of their quality. The most that can be said of Ag-NPS sediment pollution from the Districts' data is that the potential for detrimental impact due to water erosion in the Statewide 208 study area is significant.

The Fish and Game survey has identified sements that, from a fishery standpoint, are being degraded by sediment, Irrigation-related pollution, including silt, is affecting some portion of 87 segments, the length of which total 2.761.5 km.

sediment-streambank erosion.—Table 6 summarizes the Districts' data on streambank erosion. Thirty-two percent of all streambank erosion was considered to be natural. Of the man-related activities considered to cause streambank erosion, grazing affected the most miles. Most of the grazing-impacted streams are expected to occur in smaller pastures located close to ranch headquarters and subjected to year-around use or are those used for concentrated winter feeding.

TABLE 2

DRAINAGE BASIN ACREAGES

CONSERVATION DISTRICT INVENTORY FOR THE STATEWIDE 208 AREA

BASIN	USES NUMBER	TOTAL ACRES
ootenai	170101	2,299,400
lark Fork	170102	8,724,249
efferson	100200	6,052,264
ladison	100200	250,364
Ipper Yellowstone	100700	1,607,588
Ipper Missouri	100301	6,595,110
larias	100302	4,617,580
iiddle Missouri	100401	8,585,710
Musselshell	100402	5,664,680
1i1k	100500	8,347,020
ower Missouri	100600	4,621,956
ower Yellowstone	101000	3,204,770
ower Tongue	100902	67,200
eaver	101102	242,200
		60,880,091

TABLE 3
WATER EROSION ON DRY CROPLAND
IN THE STATEWIDE 208 STUDY AREA

BASIN	ACRES IN DRY CROPLAN & % OF BASIN TOTAL	D ACRES WITH SLIGHT-SEVERE ERO- SION & % BASIN LANDUSE TOTAL
Kootenai	6,820 (1%)	20 (<1%)
Clark Fork	79,827 (1%)	19,220 (24%)
Jefferson	77,832 (1%)	13,185 (17%)
Madison	2,500 (1%)	50 (<1%)
Upper Yellowstone	79,000 (5%)	27,513 (35%)
Upper Missouri	930,356 (14%)	254,303 (27%)
Marias	2,431,563 (53%)	979,905 (40%)
Middle Missouri	1,605,173 (19%)	740,138 (46%)
Musselshell	279,912 (5%)	67,562 (24%)
Milk	2,417,438 (29%)	526,937 (22%)
Lower Missouri	2,107,740 (46%)	832,592 (40%)
Lower Yellowstone	708,462 (22%)	85,117 (12%)
Lower Tongue	5,362 (8%)	590 (11%)
Beaver	149,330 (62%)	120,093 (80%)
	10,881,315 (18%)	3,667,225 (34%)

TABLE 4
WATER EROSION ON RANGELAND/PASTURE IN THE
STATEWIDE 208 STUDY AREA

	& % OF BASIN	AND/PASTURE TOTAL	& % OF BASIN I	HT-SEVERE EROSION ANDUSE TOTAL
Kootenai	36,105	(71%)		0
Clark Fork	1,160,092	(14%)	185,966	(16%)
Jefferson	3,573,303	(69%)	1,069,670	(30%)
Madison	147,561	(59%)	120	(1%)
Upper Yellows	tone 662,243	(41%)	62,130	(9%)
Upper Missour	i 3,375,191	(51%)	531,341	(16%)
Marias	1,539,719	(33%)	456,702	(30%)
Middle Missou	ri 5,906,085	(69%)	1,101,868	(16%)
Musselshell	4,558,454	(80%)	775,547	(17%)
Milk	5,394,178	(65%)	259,683	(5%)
ower Missouri	2,343,350	(51%)	257,284	(11%)
Lower Yellows	tone 2,248,722	(70%)	152,719	(7%)
Lower Tongue	60,415	(90%)	604	(1%)
Beaver	81,788 31,087,206		$\frac{16,957}{4,870,591}$	(21%) (16%)

TABLE 5
WATER EROSION ON IRRIGATED CROPLAND IN THE STATEWIDE 208 STUDY AREA

BASIN		GATED CROPLAND ASIN TOTAL		GHT-SEVERE EROSION I LANDUSE TOTAL
Kootenai	4,570	(<1%)	40	(<1%)
Clark Fork	209,369	(3%)	28,249	(14%)
Jefferson	657,519	(11%)	9,691	(<2%)
Madison	4,400	(1%)	22	(<1%)
Upper Yellowston	ne 61,622	(4%)	4,580	(7%)
Upper Missouri	322,724	(5%)	42,410	(13%)
Marias	192,789	(4%)	27,492	(14%)
Middle Missouri	56,075	(<1%)	13,151	(23%)
Musselshell	110,850	(2%)	6,344	(6%)
Milk	114,702	(1%)	5,007	(4%)
Lower Missouri	30,940	(<1%)	1,303	(4%)
Lower Yellowston	ne 62,462	(2%)	6,099	(10%)
Lower Tongue	295	(<1%)	15	(5%)
Beaver	300 1,828,617	(<1%) (3%)	1 44,403	(8%)

TABLE 6
STREAMBANK EROSION IN THE STATEWIDE 208 STUDY AREA

	Cause of Erosion							
	Geologic	Modification	Construction (miles)	Logging	Grazing	Tillage	Mining	Other
Kootenai	2	0	120	0	7	17	0	0
Clark Fork	118	0	28	193	55	11	11	18
Jefferson	57	2	2	18	116	7	5	0
Madison	0	0	1	0	0	0	0	0
Upper Yellowstone	0	0	1	6	30	2	0	0
Upper Missouri	131	0	8	0	24	10	1	8
Marias	323	0	0	0	34	20	0	40
Middle Missouri	25	40	15	85	412	54	10	0
Musselshell	317	179	0	90	241	20	0	0
Milk	65	0	0	0	5	19	0	0
Lower Missouri	0	95	222	0	23	0	0	0
Lower Yellowstone	54	0	0	0	0	1	0	0
Lower Tongue	0	0	0	0	0	0	0	0
Beaver	0	0 316(9%)	0 397(12%)	0 392(12%)	0 947(28%)	0 161(5%)	0 27(<1%)	0 66(2%

The 179 miles of stream modification in the Musselshell Basin are the result of past railroad grade construction. Flow fluctuation as a result of operations of the Fort Peck Reservoir account for the 95 miles of erosion in the Lower Missouri Basin. Excluding natural erosion, the Middle Missouri and Musselshell Basins had the greatest number of miles of eroded streambanks. Considering the major land use in both basins is rangeland/pasture, the extensive impact of grazing is not surprising.

The Montana Department of Fish and Game estimates there are approximately 16,000 miles of streams in the state; no accurate estimate has yet been made for the Statewide 208 study area. According to the Conservation District survey, grazing and tillage accounted for 1108 of the total miles affected by streambank erosion in the study area; that figure represents about seven percent of the state's total stream miles. The Fish and Game survey has identified stream segments with bank erosion problems. Channels of 100 segments have been altered for agricultural purposes. These segments amount to 2,258.2 km. In addition, bank encroachment, defined as a road, plowed field, etc., and bank deterioration due to agricultural activities have been identified in 96 segments (2,116.1 km.). However, the apparent slight impact does not preclude the fact that certain affected segments may warrant management consideration by virtue of a specific stream's relative statewide value.

This information must be considered to be fairly cursory as the question of streambank erosion is subject to interpretation and the Districts only reported the most obvious and critical problems. Additional district by district assessments will more accurately quantify the extent of streambank erosion.

sediment-wind erosion--Table 7 shows basin summaries for the degree of wind erosion. A total of 1,994,351 acres in the Statewide 208 area are affected by accelerated wind erosion. Of the total acreage affected, dry cropland accounted for 92 percent; but, those acres represent only 17 percent of the total dry cropland acreage in the Statewide 208 area. Of the rangeland/pasture acreages affected by wind erosion, the Middle Missouri River Basin had the greatest number. Other basins, such as the Musselshell and Milk, have nearly as much acreage in rangeland and pasture but were reported to have relatively little wind erosion.

Cropland wind erosion is an age-old problem; however, its significance as a source of water pollution is debatable. Obviously, soil that is being moved by wind action is ultimately deposited either on land or in water, but District data do not quantify actual water quality impacts. At any rate, the potential for aeolian deposition of sediment into water systems in the Statewide 208 area exists when approximately two million acres are losing topsoil.

salinity--Magnitude of salinity impacts are shown in Table 8 More acres of dry cropland are affected by salinity but the percentage of land affected is higher on irrigated cropland than in dry cropland (3.2 percent vs. 1.5 percent). Though total acreage affected by salinity (170,222 acres) represents only .28 percent of the project area, in those basins where the problem is most prevelant, affected acreage is increasing.

TABLE 7
WIND EROSION CONTRIBUTING TO SEDIMENT POLLUTION IN THE STATEWIDE 208 STUDY AREA

Basin	Acres of Win Rangeland/Pasture	nd Erosion & % of Bas Cropland	in Total Other
Kootenai	0	0	3,000 (78%)
Clark Fork	2,969 (<1%)	1,658 (<1%)	6,224 (<1%)
Jefferson	8,300 (<1%)	20,970 (3%)	2,215 (2%)
Madison	0	250 (4%)	20 (59%)
Upper Yellowsto	ne 0	1,200 (1%)	0
Upper Missouri	9,190 (<1%)	96,436 (10%)	1,770 (1%)
Marias	8,462 (<1%)	610,429 (25%)	36,312 (28%)
Middle Missouri	59,750 (1%)	157,723 (10%)	225 (<1%)
Musselshell	1,796 (<1%)	35,978 (13%)	1,600 (2%)
Milk	5,877 (<1%)	214,203 (9%)	200 (<1%)
Lower Missouri	20,020 (<1%)	644,633 (31%)	365 (<1%)
Lower Yellowsto	ne 20 (<1%)	40,021 (6%)	35 (<1%)
Lower Tongue	0	0	0
Beaver	0	0 1,826,001 (3%)	0 51,966 (.1%)

TABLE 8

ACREAGE AFFECTED BY SALINITY IN THE STATEWIDE 208 STUDY AREA

Basin	Irrigated Acres	Cropland Trend	Dry Acres	Cropland Trend
Kootenai	0	-	0	-
Clark Fork	2,850	same	6,714	same
Jefferson	21,675	same	150	same
Madison	0	-	0	-
Upper Yellowstone	350	same	0	-
Upper Missouri	18,585	variable	26,860	increase
Marias	2,800	increase	20,929	increase
Middle Missouri	1,061	variable	37,619	increase
Musselshell	2,630	increase	12,682	increase
Milk	7,225	increase	14,960	increase
Lower Missouri	506	variable	37,230	increase
Lower Yellowstone	340	variable	3,271	increase
Lower Tongue	0	-	4,000	increase
Beaver	0 58,022	-	5 164,420	same

Irrigation return flows and natural runoff from salt laden croplands have been estimated to degrade about 1400 miles of stream in the state (MQB, 1976). Though the Conservation District data do not quantify the number of stream miles being adversely impacted and though 200,000 acres appear to be statistically insignificant on a statewide basis, two facts make the problem particularly critical. First, the necessary long-term recovery rate needed for accumulated salts to be flushed out of the soil means a long-term impact on receiving waters; and second, the annual increase of saline seep magnifies the potential threat to surface water quality.

nutrients--Another agriculture-related water quality problem is nutrient runoff from confined feeding operations. The Conservation District survey was restricted to facilities used for extended periods of time and from which surface runoff entered a stream. This definition excludes winter feeding operations. Table 9 lists the basin figures. Although these facilities represent a potential threat to surface water quality in the area, the degree of impact is unknown and needs quantification. In addition, Hehn (1978) suggested that winter feeding areas should be included in an inventory of animal waste pollution sources. In some areas winter feeding in drainages is common and is unnecessarily polluting streams.

Excessive agricultural nutrients can also enter streams via irrigation return flows. The Fish and Game survey has identified 87 segments (2,761.5 km.) in the state which have significantly increased temperature, silt, and/or nutrients due to irrigation return flows.

land conversion--Even though agriculture-related pollution needs more analysis to better quantify its extent, the fact is obvious that it does represent a significantly potential water quality problem in the Statewide 208 area. Consequently, agriculture trends, and in particular, conversion of marginal rangeland to cropland is of interest because these lands are generally most susceptible to erosion.

The Districts were asked to estimate acres of rangeland converted to cropland since 1972, (Table 10). They were also asked to indicate how much of the land was being converted by use of Best Management Practices, how much of the converted land was Class IV-VI (land requiring specific limitations if it is to be used successfully for cropland), how much of the new cropland was being irrigated, and the source of the irrigation water. Most of the conversion is occurring in those basins where cropping is already extensive, i.e., Middle and Lower Missouri, Marias, and Milk Basins.

This plow-under of grassland is of concern to water quality management in the Statewide 208 area for several reasons. First, about half of the converted land is characterized as Class IV-VI. Class IV lands "have very severe limitations that restrict the choice of plants and require very careful management or both." Class V lands "have limitations that restrict normal tillage, and the choice of plants that can be grown. Lands are nearly level but wet, and may be frequently subject to flooding or ponding. "Class VI lands "have continuing

TABLE 9

ANIMAL CONFINEMENT FACILITIES WHICH CONTRIBUTE
SURFACE RUNOFF TO RECEIVING STREAMS IN THE STATEWIDE 208 AREA

Basin	Less than 300 animals	300 to 1,000 animals	1,000 or more animals
Kootenai	0	0	0
Clark Fork	63	0	0
Jefferson	16	4	1
Madison	0	0	0
Upper Yellowstone	1	1	0
Upper Missouri	9	1	0
Marias	6	3	1
Middle Missouri	5	0	1
Musselshell	5	8	1
Milk	19	4	3
Lower Missouri	2	4	0
Lower Yellowstone	9	11	5
Lower Tongue	0	0	0
Beaver	0 135	<u>0</u> 36	0 12

TABLE 10

SUMMARY OF LAND USE CHANGE FROM RANGELAND
TO CROPLAND IN THE STATEWIDE 208 STUDY AREA SINCE 1972

	Acres Converted (% of rangeland)	BMP's Applied (%)	Class IV-VI Land (%)	Acres Irrigated (%)	Well	Source Stream %)
Kootenai	1,000 (3%)	50	60	10	0	100
Clark Fork	9,181 (<1%)	91	69	47	11	89
Jefferson	14,320 (41%)	82	32	92	2	80
Madison	200 (41%)	100	10	0	-	-
Upper Yellowstone	2,800(41%)	100	57	64	0	100
Upper Missouri	36,145 (>1%)	67	34	35	36	64
Marias	96,640 (6%)	54	51	3	0	93
Middle Missouri	140,147 (2%)	47	46	1	2	96
Musselshell	56,753 (1%)	50	59	8	1	92
Milk	144,821 (3%)	65	26	3	0	100
Lower Missouri	86,683 (4%)	34	72	1	0	100
Lower Yellowstone	45,522 (2%)	25	73	2	0	71
Lower Tongue	3,000 (4%)	50	80	0	-	-
Beaver	1,200 (2%) 639,412	50 51%	100 48%	0 7 %	- 2%	90%

limitations that cannot be corrected, such as; (1) steep slopes that have high erosion hazard, (2) shallow rooting zone, (3) stoniness, (4) excessive wetness overflow, (5) low moisture storage capacity, (6) high salinity or alkalinity---" (Conservation Needs Inventory, 1970). Thus, these lands have an inherent ability to produce sediment-laden and/or saline runoff unless they are handled with carefully designed management practices. And, as the districts indicated, better than half of the conversion are not using BMP's. In addition, when new cropland is plowed under, it is often in large blocks rather than strips, thus increasing the potential for wind erosion. And, irrigation of submarginal land facilitates leaching of salts to ground and surface waters.

Wheat prices of the 60's have stimulated conversion in eastern Montana. SCS estimated 250,000 acres were converted between 1967 and 1973 (Environmental Quality Council, 1976; Ross, et al., 1973). The Montana Crop and Livestock Reporting Service has collected data on the breakup in the past four years. Slightly more than one million acres have been converted in the state since July 1, 1974. The conversion peaked at 325,000 acres in 1975, and has been decreasing slightly. Continued conversion of acreage to marginal cropland underscores the need for creating an awareness of environmental capabilities and constraints if future water quality degradation is to be avoided.

Stormwater Runoff--The initial stormwater runoff assessment for the Statewide 208 area was restricted to a fairly in-depth treatment of all towns over 3,000 population, a mapping and cursory consideration of small towns with 100-3,000 people, and evaluation of impacts from a few selected, larger industrial sites. Selection of the 3,000 population cut-off was arbitrary; however, smaller towns in the area generally do not have extensively developed curb and gutter systems which are conducive to runoff and receiving streams are probably, in most cases, adequately assimilating any runoff. In addition, the population criterium resulted in a sample size adequate for assessment within budget and time constraints.

urban runoff--For larger towns, data on land use, storm sewer systems, precipitation, population density, and street sweeping frequency were obtained from questionnaires sent to city sanitarians. These data were used to determine pollutant loads for total suspended solids, fiveday biochemical oxygen demand, phosphorus, and nitrogen.

A comparative relationship between suspended solids increase and turbidity violations was used to quantify the effect of pollutant loads on the quality of receiving streams. In each case, total number of hours needed to dilute stornwater and not exceed turbidity limits (Minimum Dilution Time, i.e., MDT) was calculated. For comparative purposes, if MDT exceeds 500 hours, turbidity violations can be expected and further field investigations are warranted. A detailed description of the models used in the assessment is contained in Brown and Garvins (1977) report.

Table 11 summarizes the large town urban runoff assessment. Ten communities were apparently causing no critical stormwater runoff problems. The potential problems are discussed individually below.

TABLE 11

STORMWATER RUNOFF ASSESSMENT FOR LARGE TOWNS
IN THE STATEWIDE 208 STUDY AREA

Town	Population	Receiving Stream	TSS* #/yr	Minimum Dilution Time (hours)
Anaconda	9,771	Warm Springs Creek	112,904	834
Butte	23,368	Blacktail Creek	77,787	4,208
Cut Bank	4,004	Cut Bank Creek	93,388	1,818
Deer Lodge	4,306	Clark Fork River	4,259	8.87
Dillon	4,548	Blacktail Deer Creek	8,179	184
Glasgow	4,700	Milk River	45,676	504
Glendive	6,305	Yellowstone River	15,198	0.95
Great Falls	60,091	Missouri River 1	,438,692	77
Havre	10,558	Milk River	113,629	1,077
Helena	22,730	Ten Mile Creek	50,060	
Lewistown	6,437	Big Spring Creek	55,997	115
Libby	3,286	Kootenai River	85,614	32
Livingston	6,883	Yellowstone River	70,991	50
Missoula	29,497	Clark Fork River	331,213	60
Shelby	3,111	Marias River	67,258	284
Sidney	4,543	Yellowstone River	?	7

^{*}TSS = Total Suspended Solids

- 1) Anaconda--Data indicate Warm Springs Creek probably is degraded by stormwater pollutants. In addition, the problem is likely further compounded by the fact that the area is used extensively by industry. The area warrants additional study since Warm Springs Creek flows through an extensively used municipal park.
- 2) Butte--Located in another heavy industrialized area, Blacktail Creek is also apparently significantly affected by stormwater runoff. Though Silver Bow Creek also receives a portion of the city's runoff, the stream is already heavily impacted and has no quality limits. Because of growth potential in the Blacktail Creek drainage, further investigation of the area to quantify impacts and assess treatment needs is warranted.
- 3) Cut Bank--Most of the stormwater pollutant load from Cut Bank enters Cut Bank Creek. Field investigations are likely to document biological degradation since stormwater, sewage, and water treatment wastes are all discharged at the same point.
- 4) Glasgow--Since quality of the Milk River is fairly poor with high total suspended solids, the additional impact from stormwater runoff is not considered to be significant.
- 5) Havre--Though data indicated the Milk River may be adversely affected by Havre's stormwater runoff, a subsequent biological analysis showed benthic populations below the stormwater discharge point were similar in quality and quantity to those above the point. Apparently, as at Glasgow, inherent poor quality of the Milk River has resulted in stormwater loadings being received without any apparent additional degradation from a biological standpoint.
- 6) Helena--MDT for Ten Mile Creek was not calculated since much sediment settles prior to reaching the discharge point and the stream is intermittent. No significant problems are thought to be occuring; however, continuing development in the area will necessitate additional data collection to adequately monitor the increasing pollution potential.

Ultimate effects of stormwater runoff are contingent on the receiving streams assimilative capacity which is in turn dependent on stream size and flow rate. Degree of impact is also related to stream quality prior to stormwater discharge. For example, in a stream with inherent high sediment loads such as the Milk River, additional impact of stormwater runoff apparently has a negligible effect. However, data are inadequate to show what would happen to the quality of such streams as the Milk River should stormwater pollutant loads be discontinued.

In any case, the need for further field investigation to more accurately determine the effect of stormwater pollution from larger towns is justified. As a result, a more detailed, technical study of stormwater runoff, described on page 143 was initiated by the Statewide 208 project.

Since the overall impact of small town stormwater runoff is negligible at this point, the assessment consisted of mapping flow directions of runoff

water and a short narrative describing any pertinent conditions. The report by Brown and Garvin (1977) contains this information which will be used by the WQB in any future management considerations should any of these towns experience substantial growth.

industrial runoff--Of the five industrial sites examined, none were suspected to be causing any significant water quality problems.

The Anaconda Company's copper smelting operation in Anaconda generates 174,107 pounds/year of total suspended solids; however, runoff is collected in a treatment lagoon prior to discharge to the Clark Fork River. The Company also has a copper refining operation near Great Falls on the Missouri River. Pollutant loads for total suspended solids were calculated to be 94,728 lbs/year. MDT was estimated to be only 4.08 hours. Though both operations are not apparently contributing to stormwater degradation, the model used does not address heavy metal pollution which may be a problem in both cases,

The wood products plant at Missoula, operated by Hoerner Waldorf, is a fairly extensive operation. However, all runoff enters a treatment system or percolates into the ground and no stormwater pollutant loads are contributed to surface waters.

Similarly, the Holly Sugar Industry at Sidney discharges contaminated runoff into a holding pond during operation. During the off-season, discharge is directly to the Yellowstone River; but since plant operations are minimal then, the Yellowstone River is probably not being adversely affected by stormwater discharges.

Malmstrom Air Force Base runoff has been sampled extensively, but the monioning program has been so poorly planned, meaningful data are lacking. At this point, the degree of stormwater impact is unknown.

Mining--There are 183 mining districts in the Statewide 208 study area. Many of these districts experience little or no mining today, but with more sophisticated exploration methods and changing economic conditions, many districts may become productive again.

The majority of existing and projected mining occurs in that part of Montana with highest quality waters of local and national significance from a recreational standpoint. In particular, the upper Clark Fork River and upper Missouri River basins contain some excellent quality waters, have some of the finest trout fisheries in the Continental United States, and contain a major portion of existing and proposed mining activities. The resource conflict is apparent and emphasizes the need for development of strategies to prevent mining related impacts on Montana's water. In partial fulfillment of this need, the Water Quality Bureau contracted with Westech to assess mining NPS pollution; the following discussion is extracted from the Westech report by Schmidt and Botz (1978).

mineral commodities--Of the 36 minerals occurring in commercially important quantities in the Statewide 208 Area, 25 have been mined in the

past or are mined today. Table 12 summarizes current statewide production and projection information for the individual commodities. Twelve mineral commodities will experience the most significant levels of production in Montana in the next 10-20 years. These commodities are: bauxite, bentonite, copper, gold, lead, phosphate, sand and gravel, silver, talc, tungsten, vermiculite, and zinc. Other commodities that will experience development, but of a smaller magnitude, are: antimony, fluorspar, gemstones, limestone, silica, and possibly graphite. Locations and activity of mines for these commodities in the Statewide 208 area are listed in Table 13.

mineral fuels--

1) <u>coal</u>--Future production of Montana coal has been projected at 43.6 million tons by 1980 and 101.1 million tons by 1985. Most of this production is expected to occur in the Powder River Basin which is outside the Statewide 208 study area.

Within the Statewide 208 area, lignite development is projected in three areas: (1) Dreyer Brothers' Circle West Ranch in McCone County at one million tons per year in 1984 and five million tons in 1985; (2) Knife River Mine at Savage in Richland County, increasing from the current 300,000 tons/year to 400,000/year in 1979, (3) Wibaux area in Wibaux County.

The Bell Mountain area north of Billings and portions of Hill, Elaine, Liberty, Choteau, and Fergus counties have reserves of sub-bituminous coal. Smaller areas along the front of the Rocky Mountains near the Canadian Border and between Great Falls and Lewistown have discontinuous deposits of bituminous coal; present activity in these areas is limited.

Total coal reserve in Montana is estimated to be 108 billion tons, which amounts to over 25 percent of known coal reserves in the entire U.S. Table 1 locates major coal fields in the Statewide 208 study area and indicates their potential for development.

2) <u>natural</u> <u>gas--The American Gas Association has estimated Montana's gas reserves to total 930 billion cubic feet. Major fields occur in eastern and north central portions of the state, particularly between Cut Bank and Glasgow.</u>

Exploration and development of natural gas reserves are continuing. Numerous discoveries and new field extensions have occurred in Choteau, Glacier, Hill, Liberty, Pondera, Toole, Phillips, and Blaine counties. Future natural gas development in Montana will probably be extensive in the potentially vast unexplored resources of the Rocky Mountains Overthrust Belt which has been described as the "hottest new area for drilling in the United States." Extensive application for oil and gas leases from various national forests document interest in this area. (Table 15)

3) oil--Major oil producing fields in the Statewide 208 study area are near Cutbank (Pondera and Teton Counties), near Wolf Point (Roosevelt County), east of the Big Snowy Mountains (Fergus, Petroleum, and Musselshell Counties), and west of Sidney (Richland County). Oil exploration activities in Montana have been continuous and are expected to increase as the nationwide shortage of crude oil increases. Proven reserves of crude

TABLE 12

MINERAL COMMODITIES DATA SUMMARY*

Commodity and Method Mined. U-Underground S-Strip O-Open Pit Quarry	Has Been Mined	Being Mined N-None S-Small M-Medium L-Large	Potential for Future Develop- ment N,S,M,L I-increased production expected P-Proven mineable resources will be developed under right economic circumstances	Is Montana a nationally major supplier?	Nature of existing or potential water quality problems	Comments
Antimony (U)	Yes	S-1 mine	S/I	Yes/but total do- mestic pro- duction is insignificant	Acid mine drainage arsenic	U.S. imports, 1-2 mines supply most of U.S. production
Arsenic	Smelter By-product	Smelter By-product	Only as smelter by-product	Yes		Butte is largest do- mestic producer
Asbestos (0,U)	Yes	N	N		None in Montana; prob- lem is fiber gets into drinking water	U.S. imports
Barite (0)	Yes	S-3 mines	M/I	No		U.S. is large importer, but has reserves
Bentonite (S)	Yes	М	L/I	Yes	Sediment, tur- bidity and dis- solved soilds	
0		٠	0		,	able deposits

onmodity nd Method ined. -Underground -Strip -Open Pit Quarry	Has Been Mined	Being Mined N-None S-Small M-Medium L-Large	Potential for Future Develop- ment N,S,M,L I-Increased production expected P-Proven mineable resources will be developed under right economic circumstances	Is Montana a nationally major supplier?	Nature of existing or potential water quality problems	Comments
ismuth	Smelter By-product	Smelter By-product	Only as smelter by-product	No		U.S. imports most of its needs
Cadmium	Smelter By-product	Smelter By-product	Only as smelter by-product	No		U.S. imports
Chromium (U)	Yes	N	N		Possible acid mine drainage from associ- ated ores	U.S. imports 90 percent of its needs
Clay (S)	Yes	N	S/P	No	Minimal-dis- solved solids and suspended sediment	U.S. exports
Copper (U,O)	Yes	L	L/P	Yes	Acid mine drainage	U.S. is largest producer
· Fluorspar (0,U)	Yes	S	M/P	Yes	None in Montana; excess fluoride concentrations in water	U.S. imports 80 percent of its needs
Gems (0)	Yes	S	S/I	Yes	Minor problems in Montana; sediment and turbidity	U.S. imports and exports

Commodity and Method Mined. U-Underground S-Strip O-Open Pit Quarry	Has Been Mined	Being Mined N-None S-Small M-Medium L-Large	Potential for Future Develop- ment N,S,M,L I-Increased production expected P-Proven mineable resources will be developed under right economic circumstances	Is Montana a nationally major supplier?	Nature of existing or potential water quality problems	Comments
Gold (0,U)	Yes	М	M/I	Yes	Severe-sedi- ment from placer Sever-cyanide leaching Severe-acid mine drainage	U.S. imports, Montana is 1 of states pro- ducing 96 per- cent of U.S. gold
Graphite (0,U)	Yes	S	S/I	No	Minimal suspended sediment	U.S. imports
Gypsum and Anhydrite (0)	Yes	S-M	M/I	No	Increased salinity and hardness of water; waste dump erosion problems	U.S. is self- & Sufficient U.S. is largest producer
Iron (0)	Yes	S	M/P	No	Minimal in Montana, can be toxic to aquatic life	U.S. is among major producers
Lead (U)	Yes	S	M/P	No	Acid mine drainage	U.S. is largest producer
Limestone (0)	Yes	М	M/I	No	Minimal- sediment	U.S. is self- sufficient
Manganese (U)	Yes	N	S/P	Yes in 1960's	Minimal	U.S. imports
Molybdenum (U,0)	No	N .	S/P		May signif- icantly affect irrigation wate	U.S. exports

ommodity nd Method ined. -Underground -Strip -Open Pit Quarry	Has Been Mined	Being Mined N-None S-Small M-Medium L-Large	Potential for Future Develop- ment N,S,M,L I-Increased production expected P-Proven mineable resources will be developed under right economic circumstances	Is Montana a nationally major supplier?	Nature of existing or potential water quality problems	Comments
iobium olumbium) (U,0)	No	N	N		Minimal- Sediment	U.S. imports all needs could be self-suffi- cient
egmatite nerals (U,0)	Yes	S-Feldspar	S/P-Feldspar	No		U.S. exports feldspar; U.S. has large reserve of scrap and flake mica; U.S. has sufficient reserves of beryllium minerals
nosphate (0)	Yes	M-l Mine	L/P, expected after 1990	No	Suspended sed- iment potential problem from uranium associ- ated with phos- phate rock	sufficient; potential exists for Montana to
and & Gravel (S)	Yes	L	L/I		Sediment and turbidity, alteration of stream channels	U.S. is self- sufficient
ilica (0)	Yes	S	M/ I	No	Sediment problems	U.S. has large reserves
illimanite inerals (U,O)	No	N	N			Large reserves in U.S.

Commodity and Method Mined. U-Underground S-Strip O-Open Pit Quarry	Has Been Mined	Being Mined N-None S-Small M-Medium L-Large	Potential for Future Develop- ment N,S,M,L I-Increased production expected P-Proven mineable resources will be developed under right economic circumstances	Is Montana a nationally major supplier?	Nature of existing or potential water quality problems	Comments
Silver (U,0)	Yes	L-mostly by-product	м/Р	Yes	Acid mine drainage	U.S. imports; along with 2 other states; Montana produce: 24 percent of domestic output
Sodium Sulfate (0)	No	N	N	No		U.S. has large reserves but imports some
Stone (0)	Yes	М	M/I	No	Minimal- sediment	U.S. is self- sufficient &
Sulfur	By-product	S By-product	Only as by-product	No	Some sulfide minerals pro- duce acid water	U.S. reserves are of world total, imports some
Talc (0)	Yes	М	L/I	Yes	Waste dump erosion problems	U.S. is self- sufficient Montana is 4th largest pro- ducing state
Thorium & Rare Earths (U,0)	Yes	N	S/I		Radioactivity	U.S. has large reserves
Titanium (0)	No	N	N		None in Montana; little known about the problem	U.S. imports but could pro- duce for all needs

. .

Commodity and Method Mined. U-Underground S-Strip O-Open Pit Quarry	Has Been Mined	Being Mined N-None S-Small M-Medium L-Large	Potential for Future Develop- ment N,S,M,L I-Increased production expected P-Proven mineable resources will be developed under right economic circumstances	Is Montana a nationally major supplier?	Nature of existing or potential water quality problems	Comments
Tungsten (0)	Yes	S	L/P	No	None in Montana Metals problem known at Cali- fornia mine	U.S. able to produce 75 percent of needs
Vermiculite	Yes	L	L/I	Yes	Large disturb- ance area; past tailings/sedi- mentation im- pacts	U.S. largest producer; most U.S. production is from Montana
Zinc (U,O)	Yes	By-product of copper mining	M/P	No	Acid mine drainage	U.S. imports &

TABLE 13

LOCATION AND ACTIVITY OF MAJOR MINERAL COMMODITY
MINES IN THE STATEWIDE 208 STUDY AREA

Commodity	Location	Activity
Antimony	Babbitt mine, Sanders County	responsible for ½ U.S. production
Bauxite	Missoula & Mineral Counties	active
Bentonite	Central and NC Montana	some operating, some proposed
Copper	Butte N.W. Montana Beartooth Mt. and Hughesville- Neihart area Bull Lake, Lincoln County	active - 99% of Mt.'s past production potential active active exploration proposed mine
Gold	Numerous	active & propose cyanide oper- ations
Graphite	Jefferson Co. mine	being developed
Lead	Numerous locations associ- ated with copper mines	some production, will increase
Phosphate	CW & SW Montana	depositsexpected to be de- veloped
Sand & Gravel	Numerous	active
Talc	Beaverhead & Madison Co.	extensive exploration
Tungsten	Significant reserves	sporadic production will increase
Vermiculite	W.R. Grace Mine, Libby, Skalkaho Mts., Ravalli Co.	most of U.S Production Pro- posed

TABLE 14

COAL FIELD	IN THE	ΜΟΝΤΔΝΔ	STATEWIDE	208 ARF	Δ

Field	County	Potential for Development In Next Ten Years
Garfield	Garfield	Low (some exploration)
Bull Mountain	Musselshell - Yellowstone	Moderate - existing small mines additional exploration - considerable leasing
Electric	Park	Low
Livingston - Trail Creek	Park	Low
Lombard	Broadwater	Low
Great Falls	Cascade	Low
Lewistown	Fergus - Judith Basin	Low
North Central	Liberty - Hill - Blaine - Choteau	Moderate - planned small mines - exploration activities
Blackfeet - Valier	Glacier - Pondera - Teton	Low
Western Tertiary Fields	Missoula - Granite	Low
Lamesteer	Wibaux	Low
Wibaux	Wibaux	Moderate - high, planned gasification facilities - intensive exploration activities
Little Beaver	Wibaux	II .
Four Buttes	Wibaux	п
Hodges	Dawson - Wibaux	Low
Griffith Creek	Dawson	Low
Smith - Dry Creek	Wibaux - Richland	Low

O'Brien - Alkali Creek	Richland	Low
Breezy Flat	Richland - Dawson	Moderate - existing mine - exploration activities
Burns Creek - Thirteen Mile Creek	Dawson - Richland	Moderate
Southwest Glendive	Dawson	Moderate
Fox Lake	Richland	Moderate - intensive explora- tion - and leasing activities
Lane	Richland	Moderate
Carroll	Richland - Dawson	Moderate
Redwater River	McCone - Dawson	Moderate
Weldon - Timber Creek	McCone	High - planned fertilizer plant - and other conversion facilities
Fort Kipp	Roosevelt	Low
Lanark	Roosevelt	Low
Medicine Lake	Sheridan	Low
Reserve	Sheridan	Low
Coal Ridge	Sheridan	Low

Prairie - McCone -Garfield Low - moderate - considerable exploration and leasing

Little Sheep Mtn.

TABLE 15

OIL AND GAS LEASING ACTIVITY IN NATIONAL FOREST LAND IN WESTERN MONTANA

Forest	Acres Already Leased	Acres Applied For
Beaverhead	up to 350,000	about 750,000
Deer Lodge	one lease	about 185,000
Flathead	0	about 500,000
Gallatin	70,000	entire forest except Absaroka Range
Helena	0	about 100,000
Lewis and Clark	19,697	571,000
Lolo	0	about 10,000

petroleum are estimated to be from 164 million barrels by the American Petroleum Institute to 255 million barrels by the Montana Department of Natural Resources and Conservation.

4) uranium—In Montana, fairly extensive uranium deposits occur in the Boulder Batholith in Jefferson County. Other deposits are located in Mineral, Ravalli, and Beaverhead counties in western lignite deposits, in shale and lignite beds of Lewis and Clark, Broadwater, and Jefferson counties, and in southwestern phosphorite deposits. Although there are unranium leases in ten counties of the Statewide 208 study area and prospecting is currently underway, no commercial deposits have been announced, and the possibilities for development of underground or openituranium mines are poor.

mining-related water quality problems--Water quality impacts of commodity and fuel resource mining are dependent upon the methods used, eg., strip, open pit, or underground mining, and the type of practices employed during the mining operation. A number of impacts, such as mine drainage, sedimentation, erosion of waste dumps and accidental spills are general to the mining industry and not commodity specific. In addition, each specific resource can be responsible for a particular pollutant.

A subjective relationship of mining and water quality is shown in Table 16. Magnitude and intensity of impacts are highly variable and dependent on the type of mining and BMP's employed. Also, a specific commodity can occur in a variety of deposits having a varying potential to harm water quality. For example, copper can occur in sulfide deposits which can create substantial acid mine drainage or it can occur as oxides which pose much less of a problem. Since sedimentation is common to all types of mining, the impact is rated only for particularly important cases. Similarly, nutrients are present where explosives are used and nutrient impacts are rated for only the applicable commodities. Oil and grease problems are common to all mining and are not listed in the matrix.

Table 17 lists site specific water quality problems resulting from mining activities in the Statewide 208 study area. Although no more than 25 percent of the cited problems have supporting field data, some degree of water pollution could be documented at all sites. Mining related water quality problems have occurred in nearly every major drainage basin in central and western Montana (Figure 3). The 133 problems can be grouped into five main categories:

Problem Type	Percentage
mine drainage	17
tailings and waste dump erosion	34
placer workings	35
sand and gravel mining	12
roads and ground disturbance	2

TABLE 16

IMPACT MATRIX RELATING MINING AND WATER QUALITY*

Commodity Mined	Metals	pH- Acidity	Sediment- Turbidity	Common Ions	Nutrients	Other
Antimony	L	L		_	_	-
Asbestos	-	-	L	-	_	Asbestos Fibers
Barite	_	_	_	_	_	Barium
Bentonite	_	_	L	S	_	-
Chromium	S	S	-	-	_	_
Clay	_	_	L	S	-	_
Copper	L	L		L	S	
Fluorine	_		-	S	_	Fluoride
Gems	_		S-L		-	_
Gold (Place	er) —	_	L	-	_	_
Gold (Lode)) L	L	-	L	_	Cyanide
Graphite	S?	_	-		_	_
Gypsum	_		L	L	S	Hardness
Iron	S-L	S	_	_	_	_
Limestone	_	S	_	S	S	Hardness
Lead	L	L	-	L	_	_
Manganese	L	L	_	L	_	
Molybdenum	L	L	_	L	_	_
Niobium	-	_	-	_	_	_
Pegmetite	-		S		_	-
Phosphate	_	-	L	S	L	Phosphat
Sand & Gra	vel -	_	L		_	-

			C - 12	C		
Commodity Mined	Metals	pH- Acidity	Sediment- Turbidity	Common Ions	Nutrients	0ther
Silica	_		S	_	_	_
Silver	L	L	_	L		_
Sodium Sulfa	te-	-		L	_	_
Stone	_	_	S	_	_	_
Talc	_	_	S-L	_	-	_
Thorium	S	S	_	_	-	Radio- Activity
Titanium	_	_	L	_	S	
Tungsten	S	S	_		-	_
Uranium	S-L	S-L	S-L	_	_	Radio- Activity
Vermiculite		_	L		S	
Zinc	L	L		L		
Coal	S	S	L	L	L	_
0i1	_	_		L	_	
Natural Gas			S-L	_	Accordan	Methane

^{*}L = Potential Large Impact

S = Potential Small Impact

Blank = No Impact Expected

TABLE 17

MINING-RELATED WATER QUALITY PROBLEMS IN THE STATEWIDE 208 AREA

		Hard 1	Rock Mining	and or the state of the state o
Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
(1) 40EJ	Phillips	Ruby Gulch Group I	Ruby Creek/ Missouri Rv.	Tailings washed into stream
(2) 40EJ	Phillips	Gold Bug Mine I	Montana Gulch/ Rock Creek/ Missouri Rv.	Acid mine drainage problems
(3) .401	Phillips	Little Ben Mine I	King Ck./ Peoples Ck./ Milk River	Tailings washed into stream
(4) 41D	Beaver- head	Tomatan/ Mine 0	Placer Ck./ Trail Ck./ North Fk. Big Hole Rv.	Developed access road up stream bed to get to expl. adit; construction has undercut slope
(5) 41D	Beaver- head	Elkhorn I	Elkhorn Ck./ Wise Rv./ Big Hole Rv.	Old adit discharges acid waters to ck
(6) 41D	Madison	Rochester Mining District I	Rochester Ck./ Big Hole Rv.	Extensive old mining; dumps have high amounts sulfide minerals; dumps erode into stream
(7) 41E	Jeffer- son	Crystal 0	Uncle Sam Gulch/ Cataract Ck./Boulder Rv.	Creek runs through pit and transports area waste
(8) 41E	Jefferson	Comet I	High Ore Ck./ Boulder Rv.	Tailings disposed in in Creek
(9) 41E	Jefferson	Elkhorn Queen I	Elkhorn Ck./ Boulder Rv./ Jefferson Rv.	Runoff from dumps and tailings; looks bad for ¹ / ₂ mile from mine
(10) 41G	Madison	Mammoth A	South Boulder River/Jefferson River	Runoff from precipitation washes tailings into creek ore minerals auriferous pyrite and chalcophyrite, sphalerite

-48-TABLE 17, Continued

Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
(11) 41I	Broadwater	Argo I	Hellgate Gulch/ Canyon Ferry Lake	Some acid drainage; some dump erosion
(12) 41I	Broadwater	Klein- Schmidt I January I E. Pacific O	Weasel Ck./ Beaver Ck./ Canyon Ferry Lake	Acid mine drainage
(13) 41Q	Cascade	Neihart Mining District A	Carpenter Ck./ Belt Ck./ Missouri Rv.	Old tailings ponds and dumps are actively eroding into ck.
(14) 41Q	Cascade	Silver Dyke A	Carpenter Ck./ Belt Ck./ Missouri Rv.	15-20 gpm discharge into creek
(15) 41Q	Judith Basin	Block P A	Dry Fork/ Belt Ck./ Missouri Rv.	Discharge - seepage from waste dump
(16) 41QJ	Lewis & Clark	Gould Mine A	Gould Ck. & Fool Hen Ck./ Virginia Ck./ Canyon Ck./ Little Prickly Pear Ck./ Missouri River	Acid mine drainage and waste dump erosion
(17) 43B	Park	Jardine A	Bear Ck./ Yellowstone Rv.	Tailings have slumped into creek
(18) 43C	Park	McLaren I	Daisy Creek/ Stillwater Rv.	"Ponding of snowmelt and rainfall waters in disturbed areas, resulting in runoff and groundwater emerging with high, heavy metal concentrations."
(19) 43D	Park	Glengary I	Fisher Ck./ Clark Fork of Yellowstone	Infiltration into mine from two raises and groundwater seeps; ponding of snowmelt and rainfall waters which then pass through disturbed material result in discharges of high acidity, high in sulfate, iron, and aluminum

Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
(20) 76C	Lincoln	A	Silver Butte Creek/East Fisher Creek/Fisher Rv.	Discharge from adit for 40 yrs.; seeps into ground prior to reaching creek
(21) 76D	Lincoln	Snowshoe A	Snowshoe Ck./ Big Cherry Ck./ Libby Ck.	
(22) 76E	Granite	A	Brewster Ck./ Rock Cr.	Shaft with discharge immedi- ately next to the creek.
(23) 76F	Lewis & Clark	Mike Horse/ Heddelston District I		Acid mine drainage; tailings dam burst depositing tailings in ck.; necessitated excavations in ck. for gravel to rebuild dam
(24) 76F	Lewis & Clark	Sevenup Pete A	Sevenup Pete Ck./Blackfoot River	Erosion of waste dumps
(25) 76G	Deer- Lodge	Cable Mine A	Cable Ck./ Warm Springs Clark Fork	Tailings are quicksand swampy below dumps; Mg staining on mill dumps
(26) 76G	Deer- Lodge		South Fork Dry Cottonwood Ck./ Clark Fork	Adit mine discharge; quality unknown
(27) 76G	Deer- Lodge	Champion	Orofino Ck./ Clark Fork	Adit has discharge into Impacts creek
(28) 76G	Granite	Hidden Lake	Warm Springs Creek/Clark Fork	Adit has discharge; no water quality data; ore minerals - pyrite quartz vein
(29) 76G	Granite	Forest Rose A	Dunkleberg Ck./ Clark Fork	Acid mine drainage; erosion of tailings; culvert under tailings plugged; major flood will wash out tailings; ore minerals - argentiferous galena, sphalerite, pyrite, angeloite, cerussite, smithsonite

TABLE 17, Continued

Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
(30) 76G	Powel1	A	Rocker Gulch/ Cottonwood Ck./ Clark Fork	Mine discharg of unknown quality
(31) 76G	Powel1	Master I	Gold Ck./ Clark Fork	
(32) 76G	Silver Bow	Butte Highlands O	Basin Ck./ Silver Bow	Old adit discharges to stream; ore - auriferous pyrite & pyrhatite, galena sphalerite, chalcopyrite
(33) 76G	Silver Bow	Berkeley Pit/Butte Underground Mines O	Silver Bow Ck./ Clark Fork	Anaconda effluent main source of flow in Silver Bow Ck.;old mill tailings also erode into creek
(34) 76GJ	Granite	Wasa A	Douglas Ck./	Acid mine drainage; ore minerals - sphalerite, pyrite, chalcopyrite
(35) 76GJ	Granite	Phillipsburg Mining District	Flint Ck./ Clark Fork	Tailings erosion, adit discharges
(36) 76M	Mineral	Nancy Lee 0	Keystone Ck.	Tailings piled near dry channel; apparently acidi discharge from old adit but does not reach a perennial stream
(37) 76M	Mineral	Tarbox A	Packer Ck./ St. Regis Rv./ Clark Fork	Stream runs through old waste dumps
(38) 76M	Mineral	Bud King Missoula 0	Pardee Ck./ Clark Fork	Discharge from old adit may reach creek
(39) 76M	Missoula	A	Kennedy Ck./ Ninemile Ck./ Clark Fork	Old adit discharge to ck
(40) 76M	Missoula	Joe Wallit, Missoula A	St. Louis Ck./ Ninemile Creek	Stream erodes waste pile stream blocked at times

Drain Bas:		County	Mining District/ or mine * operator	Drainage	Water Quality Problem
(41)	76N	Sanders	Holliday I	West Fork Pilgrim Ck.	Stream runs through tailings dump
(42)	76N	Sanders	Jack Waite I	Dixie Ck./ Beaver Ck.	Waste from old workings in and alongside creek; ore minerals - galena, sphal- erite, tetrahedrite, pyrite chalcopyrite
(43)	76N	Sanders	Heidel- berg A	East Fork Rock Creek	Old adit discharges to stream
(44)	76N	Sanders	State Mining Co.	Eddy Creek	Waste debris in creek; discharge from adit into creek
				Mills	-
(45)	41B	Beaverhead	Gold Leaf A	Grasshopper Creek/ Beaverhead Rv.	Creek has eroded into tailings pond; oppo- site bank of oversize gravel from hydraulic mining eroding; runoff across tailings carrying tailings into creek
(46)	41B	Beaverhead		Rattlesnake Ck./ Beaverhead Rv.	Sediment from mill tailings
(47)	41D	Beaverhead	Mining & Minerals Resource Corp. I	Sappington Ck./ Trapper Ck./ Big Hole Rv.	In 12/75 dike of tailings burst 30-50 tons of tailings exited a portion into creek and into Trapper Ck.
(48)	41QJ	Lewis & Clark	Gould A	Fool Hen Creek Virginia Creek Canyon Creek Little Prickly Pear Creek	Mill tailings washed by acid mine drainage
(49)	76GJ	Granite	Old Red Mill A	Douglas Creek/ Flint Creek	

Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
(50) 43B	Park	McLaren Mill A	Soda Butte Ck./ Lamar Rv./ Yellowstone Rv.	Erosion of tailings into into creek
(51) 76GJ	Granite	A	Boulder Ck./ Flint Creek	Eroding tailings
(52) 76F	Lewis & Clark	A	Blackfoot Rv.	Acid mine tailings erode into stream
		Gold (C	yanide Leach)	_
(53) 41I	Lewis & Clark	John B. White leach mill I	Silver Creek/ Missouri Rv.	2/77 (?) leaks in holding ponds; road build across creek, no culvert
(54) 41B	Beaver- head	Hendrich Mine	Grasshopper Creek/Beaver- head River	Runoff into creek from tailings pond
(55) 41B	Beaver- head	Ermont A	Ermont Gulch/ Beaverhead River	Runoff from cyanide leach dumps
(56) 41C	Madison	Virginia City/ Sheitland O	Alder Gulch/ Ruby River	Tailings pond in valley bottom; potential prob- lem if large flooding
		manufacture of the second seco	Coal	
(57) 41QJ	Cascade	Sand Coulee Mining Area A	Sand Coulee Creek/Missouri River	9 old mines discharging acid waters
		F1	uorspar	
(58) 76M	Mineral	Snowbird 0	Cedar Log Creek/ Fish Creek/ Clark Fork	Discharge from operations reaches creek

TABLE 17, Continued

Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
	_	(Gems	
(59) 41S	Judith Basin	Yogo Sap- phire 0	Yogo Creek/ Judith Riv.	Tailings pond could be washed out by flood; washing operation may go into creek
	-	Gr	aphite	
(60) 411	Broad- water	National Minerals Corp. 0	Indian Creek/ Missouri Riv.	Water discharging from adit and may flow into Indian Creek at high flow
		Gy	psum	
(61) 418	Fergus	Shoemaker Mine/U.S. Gypsum 0	Big Springs Creek/Judith River/Missouri River	Waste dump erosion
		Lin	estone	_
(62) 411	Jefferson	Montana City Quarry/ Kaiser 0	Prickly Pear Creek	Waste dump slumped into Prickly Pear Creek
		Pho	osphate	
(63) 76G	Powell	Brock (And- erson)/ Cominco Amer	Brock Creek/ Clark Fork River	Mine yard and crusher in stream bed

TABLE 17, Continued

Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
			Talc	
(64) 41B	Beaverhead	Smith- Dillon A	Axes Creek/ Blacktail Deer Creek/ Beaverhead River	
(65) 41B	Madison	Treasure Chest Treasure State	Left Fork & Middle Fork/ Stone Creek/ Beaverhead River	Potential Water pollution problem from hillside waste dumps (WQB Memo)
(66) 41B	Madison	Regal	Carter Creek & Hoffman Creek/ Beaverhead Rv.	Waste rock placed in head of drainage
			Quartz	
(67) 41E	Jefferson	Basin Quar Quarry/Pac fic Silica	i-	Discharge sediment from settling ponds (1974) WQB report on inadequacies of mine site for controlling erosion into creek
		V	ermiculite	
(68) 76D	Lincoln	Vermiculit Mtn. Mine/ W.R. Grace	Kootenai Rv.	Old tailings deposited in Creek; Erosion at mine area may cause problems

Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
		Sand a	nd Gravel	
(69) 41E	Jefferson	Montana Dept. of Highways 0	Boulder River	Mining terrace of Boulder River close to river, stream capture of mined area likely since MDH has not put in promised rip rap
(70) 41G	Jefferson	Continental Concrete Co. 0	Jefferson River	Mining terrace of Jefferson River; dewaters pit by discharging to river; may be stream capture
(71) 40J	ні11	Hill County A	Beaver Creek/ Milk River	Former pit on terrace of Beaver Creek; stream has captured pit; gravel berms have been ineffective
(72) 41K	Cascade	Big Sky Sand and Gravel 0	Sun River	Mining streambed of Sun River, wash plant on terrace may discharge to river
(73) 41K	Cascade	Lewis Con- struction Co.	Sun River	Mining streambed of Sun River, wash plant on terrace may discharge to river
(74) 410	Teton	? 0	Teton River	"Extraction of gravel in stream channel has aggra- vated lateral erosion and caused widening of flood channel. Depletion of bed- load on property has caused subsequent post-flood head- cutting, scouring, erosion
(75) 410	Choteau	Charles J. Naeseth A	Teton River	Mining streambed of Teton River; dumps excess con- crete into river/has agreed to move
(76) 418	Fergus	McDonald Ready Mix 0	Boyd Creek/ Big Spring Creek/ Judith River	Settling pond overflow may impact stream

TABLE 17, Continued

Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
(77) 42M	Dawson	Dawson County	Morgan Creek	Mining streambed of creek
(78) 42M	Dawson	Fisher Sand and Gravel 0	Sevenmile Creek/ Yellowstone	Mining activity, stockpiles, disturbance in channel and floodplain of Seven- mile Creek
(79) 42M	Dawson	Dawson County 0	Sevenmile Creek/ Yellowstone	Mining streambed of creek
(80) 42M	Richland	Sidney Ready Mix 0	Lone Tree Creek/ Yellowstone	Settling pond "has potential and probably has overflow into creek"
(81) 43B	Park	Eggar Const.	Yellowstone	Mining island of Yellowstone
(82) 76D	Lincoln	Granite Concrete Co.	Cherry Creek/ Libby Creek & Libby Creek	Mine streambeds of Cherry Creek and Libby Creek at low flow
(83) 76G	Deerlodge	Montana Dept. of Highways I	Clark Fork	Pit has intercepted ground- waters high in iron and fluoride; no adequate reclama tion plan for area has been proposed
(84) 76H	Ravalli	Donaldson Ready Mix O	Bitterroot River	Mining streambed of Bitter- root
(85) 76H	Ravalli	A & B Con- crete 0	Bitterroot River	Inadequate settling, turbid waters discharged to slough which flows to Bitterroot
(86) 76H	Ravalli	A & B Con- crete	Bitterroot River	Pit opened illegally on actively eroding bank of Bitterroot
(87) 76M	Missoula	MonRoc 0	Clark Fork	Mining gravel bar of Clark Fork; mining area floods yearly

Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
		Plac	er Gold	
(88) 41A	Beaverhead		Jeff Davis Creek/ Horse Prairie Creek/Clark Canyon Dam	Erosion/sediment deposition producing streamflow alterations
(89) 41B	Beaverhead		Grasshopper Creek/Beaverhead River	Severe sediment deposition producing stream flow alterations (approx. 24 km of stream affected)
(90) 41B	Beaverhead		Dyce Creek/Grass- hopper Creek/ Beaverhead River	Sediment deposition producing stream flow alterations
(91) 41C	Madison	0	Browns Gulch/ Barton Bulch/ Ruby River	Erosion and sedimentation from placer operation
(92) 41C	Madison		Alder Gulch/ Ruby River	Extensive placer mining since 1863 has left stream as a series of dredge piles
(93) 41C	Madison		Harris Creek/ Ruby River	Old placer workings; old dumps and tailings from hardrock minings impact streams as well as distur- bance from placer mining; high spring sediment loads
(94) 41C	Madison		Ramshorn Creek/ Ruby River	11
(95) 41C	Madison		Mill Creek/ Ruby River	11
(96) 41C	Madison		Indian Creek/ Ruby River	n
(97) 41C	Madison		Wisconsin Creek/ Ruby River	п
(98) 41C	Madison		Dry Georgia Gulch, Ruby River	<i>'</i>

Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
(99) 41C	Madison		Goodrich Gulch/ Ruby River	Old placer workings; old dumps and tailings from hardrock minings impact streams as well as distur- bance from placer mining; high spring sediment loads
(100) 41C	Madison		Barton Gulch/ Ruby River	Old placer workings have caused sediment problems
(101) 41C	Madison		Bivin Creek/ Ruby River	Sedimentation; reduction of trout population
(102) 41C	Madison		California Creek/ Ruby River	Sedimentation; reduction of trout population
(103) 41C	Madison		Warm Spring Creek/ Ruby River	Sediment deposition and stream channel alteration
(104) 41D	Silver Bow		Moose Creek/Big Hole River	Old placer mining still causing siltation problems
(105) 41D	Silver Bow/		Camp Creek/Big Hole River	Old placer mining still causing siltation problems
(106) 41D	Silver Bow		Soap Gulch/Big Hole River	Old placer mining still causing siltation problems
(107) 41G	Madison		Bear Gulch/Jef- ferson River	Old placer workings; old dumps and tailings from hardrock minings impact streams as well as distur- bance from placer mining; high spring sediment loads
(108) 41G	Madison		Coal Creek/Jef- ferson River	n .
(109) 41G	Madison		Beall Creek/Jef- ferson River	**
(110) 41I	Broadwater	David Boomer Robert Car- son 0	Cooney Gulch/ Avalanche Gulch/ Canyon Ferry Lake	Discharges directly to cree no settling ponds

	Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
	(111) 411	Broadwater		Conferate Gulch/ Canyon Ferry Lake	High sediment loads in spring
	(112) 41I	Lewis & Clark	Harold Ellingson Steve Walks 0	Soup Creek/ Hauser Lake	Occasionally discharges to ephemeral drainage
	(113) 411	Lewis & Clark	Harvey Paul 0	Walker Creek/ Tenmile Creek/ Hauser Lake	Pick and shovel work in streambed of perennial stream
	(114) 76B	Lincoln		Yaak River	Discharges to stream; no obvious impacts
	(115) 76E	Granite	Tim Gregori 0	Solomon Creek/ Rock Creek	Very small operation with discharge to stream; no apparent impacts
	(116) 76F	Lewis & Clark		Beaver Creek/ Blackfoot River	Occasional sediment problems
ن	(117) 76F	Lewis & Clark		Stonewall Creek/ Blackfoot River	Occasional sediment problems
	(118) 76F	Lewis & Clark		Keep Cool Creek/ Blackfoot River	Occasional sediment problems
	(119) 76F	Lewis & Clark		Poorman Creek/ Blackfoot River	Very small placer mining; dozing into creek
	(120) 76F	Powel1		American Gulch & Washington Creek & Jefferson Creek Madison Gulch & Buffalo Creek/ Nevada Creek/ Blackfoot River	Intermittent placer workings; worked by small mines each year
	(121) 76F	Powel1		Douglas Creek & Nevada Creek/ Blackfoot River	Past siltation evident; ground clayey and swampy
	(122) 76F	Missoula	O'Loughlin Austin D'Orazi O	Elk Creek/ Blackfoot River	Mining in bed of stream and/ or discharging to stream; sedimentation

TABLE 17, Continued

Drainage Basin				Drainage	Water Quality Problem
(123)	76G	Deerlodge		German Gulch/ Silver Bow Creek/ Clark Fork	During high water, creek runs with high loads braided channel
(124)	76G	Powel1	Clark J. Smith 0	Ophir Creek/ Carpenter Creek/ Little Blackfoot River	Discharge from small operation
(125)	76G	Powel1		Gold Creek/ Clark Fork	Siltation, N. & S. Forks, N. Fork diverted into S. Fork; severe erosion problems
(126)	76GJ	Granite		Little Gold Creek/ Flint Creek	Diversion over glacial debris
(127)	76M	Mineral	Arpan 0	Trout Creek/ Clark Fork	Small placer operation with discharge to stream; no obvious impacts; operates streambed and floodplain
(128)	76M	Mineral	Coleman Brothers 0	Meadow Creek/ Clark Fork	In spring, discharges to stream; does not have settling pond; downstream sedimentation problems
(129)	76M	Mineral	Pete Balison 0	Quartz Creek/ Clark Fork	Discharges to stream; in past, settling ponds have inadequately settled discharge
(130)	76M	Missoula	Clay Lewis O	Ninemile Creek/ Clark Fork	Mine discharges to stream but no apparent problems except physical disturbance of streambed and floodplain
(131)	76M	Missoula	John Woodens O	Little McCormick Creek/McCormick Creek/Ninemile Creek/Clark Fork	Discharges to stream in spring; inadequate settling facilities

TABLE 17, Continued

Drainage Basin	County	Mining District/ or mine * operator	Drainage	Water Quality Problem
(132) 41D	Missoula	Fluto 0	Favorite Gulch/ McCormick Creek/ Ninemile Creek/ Clark Fork	Discharges to stream; have corrected past settling pond problems
(133) 41D	Beaverhead	Jack DeBore O	Little Goosehorn Cr/Ruby Cr/ Big Hole River	Placer work beginning, discharge to stream through pond

Operating - O Inactive - I Abandoned - A

STATE OF MONTANA

Of these 133 problems, Westech identified 18 problems as the most serious based on extent and severity of water quality impacts, length of affected streams, and extent of the mining area (Table 18). Of these major problems, 53 percent are caused principally by erosion of tailings and waste dumps, 35 percent are drainage related, and 18 percent are related to old placer workings.

Three major drainages in the Statewide 208 study area are experiencing the most significant levels of mining development. The upper Clark Fork River basin has the most hard rock operating permits (7) in the state and the most identified mining related problems, excluding placer mining. The basin contains the Anaconda Company's operations, the Black Pine Mine, and four limestone or silica mines. There are 141 small miner operations in Deer Lodge, Granite, Powell, and Silver Bow counties. Exploration activity in the basin is significant in both the Flint Creek Range and the Boulder Batholith area. Phosphate reserves are extensive around the Flint Creek Range and north of Garrison. Applications for oil and gas leasing have been received for most of the Flint Creek range.

The Beaverhead River drainage basin has five operating permits, all related to talc mining in the Ruby Range. Mineralization is high as is the potential for future development in the basin. Natural gas reserves are accessible in the Centennial Valley. Two drainages are affected by placer mining.

The Missouri River drainage, Holter Lake to Three Forks, has a number of quarry operations and several hard rock and placer mining related problems. Exploration for uranium, molybdenum, and silver is currently underway in the basin.

Silviculture--About one quarter (23 million acres) of Montana is forested. Of the forested area, an estimated 14 million acres are considered to be commercial forest and as such, have the potential to contribute nonpoint source pollution during some forest practice activity. Ownership of these commercial forest lands is shown in Table 19.

Since water quality management is supposedly an inherent aspect of the United States Forest Service's resource management planning programs, assessment of NPS pollution from silviculture activities on Forest Service lands was logically assumed to be best accomplished by that agency. Consequently, a memorandum of understanding was developed between the Forest Service and the MQB for the purpose of assessing water quality degradation on National forest lands due to silvicultural activities. Assessment of silviculture NPS pollution on remaining forested lands was accomplished through a contract with Westech. Westech's assessment was restricted to state, private, and Bureau of Land Management (BLM) lands. Other forested lands were either not within jurisdiction of the Statewide 208 project or were of small enough area not to be of major concern at this time. The following discussions are based on Westech's and the U. S. Forest Service's reports.

TABLE 18

SUMMARY OF MAJOR MINING RELATED WATER QUALITY PROBLEMS IN MONTANA STATEWIDE 208 AREA

Mine or District	Drainage	Mine Type	Problem	Problem Status
Little Ben Mine	King Creek/ Peoples Creek/ Milk River	Silver- Hardrock	Erosion of tailings and deposition into stream.	No work on problem known.
Bannack	Grasshopper Creek/ Beaverhead River	Gold Leaf Mill Gold Placer	Erosion of old mill tailings into stream. Old hydraulic mining banks eroding. Metals and sediments prob- lem. Approx. 24 km of stream affected.	Preliminary investigation completed. Conceptual abatement plan developed.
Virginia City	Browns Gulch/ Barton Gulch/ Ruby River	Gold Placer	Erosion of disturbed placer areas. Deposits and sediment in stream.	No work on problem known.
Crystal Mine	Uncle Sam Gulch/ Cataract Creek/ Boulder River	Silver- Hardrock	Erosion and sediment transport from pits and wastes. Acid mine discharges. Sediment, metals and acid problem.	Technical investigation completed. Legal action being taken by DHES.
Comet Mine	High Ore Creek/ Boulder River	Silver- Hardrock	Erosion of old mill tailings. Some acid water production. Sediment and metals problem.	Preliminary investigation completed. No further action.
Hughesville District Block P Mine	Dry Fork/Belt Creek/Missouri River	Silver- Hardrock	Acid mine waters from old adits and waste dumps. Metals, sulfate, acid problems. Effects extend to Belt Creek.	Technical investigation completed. Corrective measures developed; corrective progress planned but not funded.
Neihart District	Carpenter Creek/ Belt Creek/Missouri River	Misc Hardrock	Acid mine drainage from mine workings and from waste rock dumps. Metals, acidity, sedimentation problem.	No work on problem known

Drainage	Mine Type	Problem	Problem Status
Sand Coulee Creek/ Missouri River	Coal- Underground	Acid mine drainage from 9 old mines. Sediment, coating of stream bottom, metals, acid problems. Extends to Missouri River.	Technical investigation completed. Corrective measures outlined. No action on corrective plan.
Gould Creek/ Fool Hen Creek/ Canyon Creek/ Little Prickly Pear Creek	Gold- Hardrock	Acid mine drainage; erosion of waste dump	No work on problem known
Daisy Creek/Stillwater River	Gold- Hardrock	Precipitation infiltration into wastes and disturbed areas. Acid mine drainage, metals, sediment. Daisy Creek aquatic community depressed and devoid of fish for 1.8 miles downstream from nine.	Technical investigation completed. Corrective measures developed; corrective program planned but not funded.
Fisher Creek/ Clark Fork of Yellow- stone River	Gold- Hardrock	Infiltration of precipitation into mine workings. Acid mine drainage metals, sulfate.	Technical investigation completed. Corrective measures developed; corrective program planned but not funded.
Snowshoe Creek/ Kootenai River	Misc Hardrock	Drainage from tailings contains metals; toxic to fish.	No work problem known.
Blackfoot River	Silver, Copper, Lead, Zinc- Hardrock	Acid mine drainage from several mines but Mike Horse Mine is major problem; tailings dam burst and deposited sediment downstream.	Reconnaisance investigation completed. No further action.
Elk Creek/ Blackfoot River	Gold Placer	Erosion of disturbed area. Erosion and deposition into stream.	No work known on problem
	Gould Creek/ Fool Hen Creek/ Canyon Creek/ Little Prickly Pear Creek Daisy Creek/Stillwater River Fisher Creek/ Clark Fork of Yellow- stone River Snowshoe Creek/ Kootenai River Blackfoot River	Gould Creek/ Fool Hen Creek/ Canyon Creek/ Little Prickly Pear Creek Daisy Creek/Stillwater River Fisher Creek/ Clark Fork of Yellow- stone River Snowshoe Creek/ Kootenai River Blackfoot River Elk Creek/ Gold Placer Gold- Hardrock Misc Hardrock Silver, Copper, Lead, Zinc- Hardrock Elk Creek/ Gold Placer	Missouri River Underground mines. Sediment, coating of stream bottom, metals, acid problems. Extends to Missouri River. Gould Creek/ Canyon Creek/ Little Prickly Pear Creek Daisy Creek/Stillwater River Biver Gold- Hardrock Gold- Hardrock Gold- Hardrock Fisher Creek/ Clark Fork of Yellow- stone River Gold- Hardrock Fisher Creek/ Clark Fork of Silver, Kootenai River Misc Blackfoot River Gold Placer Fisher Creek/ Rold- Hardrock Misc Hardrock Gold- Hardrock Fisher Creek/ Rootenai River Gold- Hardrock Misc Hardrock Gold- Hardrock Gold- Hardrock Misc Hardrock Blackfoot River Gold Placer Fisher Creek/ Rold- Hardrock Gold- Hardrock Fisher Creek/ Rootenai River Gold- Hardrock Gold- Hardrock Blackfoot River Gold Placer Frosion of disturbed area. Erosion and deposition into

Mine or District	Drainage	Mine Type	Problem	Problem Status
Forest Rose Mine	Dunkleburg Creek/ Clark Fork River	Misc Hardrock	Acid mine drainage; erosion of tail- ings; culvert plugged - additional erosion will occur.	No work on problem known.
Butte Mining District	Silver Bow Creek/ Clark Fork River	Copper	Effluent from mining facilities and major pollutath input from old tailings deposits in Silver Bow Creek. Sediment, metals, sulfate problem. Stream aquatic community depressed in Silver Bow Creek.	Major correction of problem by Anaconda Company contribution completed. Additional corrective actions being investigated for stream system.
	Gold Creek/ Clark Fork River	Gold Placer	Erosion of disturbed areas from stream diversions and mining.	No work on problem known
Philipsburg District	Flint Creek	Misc Hardrock	Mercury from gold recovering operations in stream. Tailings erosion; adit discharges. Sediment and metals problems.	No work on problem known

TABLE 19
OWNERSHIP OF COMMERCIAL FOREST LAND IN MONTANA

Landowner	Acres	% of Total	
U. S. Forest Service	7,944,700	56.35	
BLM	315,000	2.23	
Misc. federal	53,000	0.38	
Indian	620,000	4.4	
State	421,000	2.99	
City/County	4,700	0.03	
Private			
Industrial	1,590,000	11.28	
Individual	3,150,000	22.34	
TOTAL	14,098,400		

state, private, and BLM lands--Westech's assessment covered about one quarter of Montana's forested acreage. Three industries, Burlington Northern, Champion, and St. Regis, own 11 percent of Montana's commercial forest lands. These industries accounted for 30 percent of all the timber harvested in Montana in 1976. Harvested volumes from industrial lands increased from 194 to 339 million board feet between 1970 and 1976. An estimated 19,000 individuals own over 22 percent of Montana's commercial forests. These lands accounted for 21 percent of the state's total harvest in 1976. The State of Montana controls about three percent of the commercial forests. The Forestry Division of the Department of Natural Resources and Conservation administers these lands, but decisions are made by the Board of Land Commissioners. Since 1974, state forest lands have supplied about one percent of the total timber harvest. The BLM is the only other major federal owner of forest lands besides the Forest Service. Since 1974, BLM lands have accounted for less than one percent of the state's total timber harvest.

Westech identified a total of 183 known, suspected, or anticipated water quality problem areas related to silviculture activities in the Statewide 208 area. Due to the nature of nonpoint source pollution and lack of adequate stream monitoring systems, many reported problems were difficult or impossible to document. In many cases, silviculture activities were one of several concurrent land uses in a particular watershed making it difficult to specifically quantify the effects of the timber-use activity. A major general problem identified by Westech was that of checkerboard ownership. In many basins, independent and simultaneous forest activities of several owners cause more disturbance than if those activities had been coordinated.

Table 20 identifies watersheds which are currently being adversely affected by silviculture activities; problem areas are shown in Figure 4.

Those watersheds currently the most severly degraded as the result of forest activities include: Fisher River, Shields River, Fish Creek (tributary to Clark Fork River), Thompson River, Tobacco River, and the Smith River.

Four major drainage basins were found to have significant silviculture NPS problems and are discussed below. In most cases, particularly in areas of checkerboard ownership, it was not possible to determine which forest ownership was responsible for the degradation.

1) <u>Kootenai River Basin</u>—This basin lies in the northwest corner of Montana. Headwaters of the Kootenai River are on the Columbia River in British Columbia. Approximately 2.3 million acres of the Kootenai Basin's 2.4 million acres are forested. About 53 percent of the forest are of commercial value. The USFS is the largest single landowner. Slope and soil conditions are the primary limiting factors in the basin. Glacial till and glaciofluvial and glaciolacustrine deposits occur in narrow valleys and steep slopes. Timber production is extensive on these soils which present a severe erosion hazard when mismanaged.

TABLE 20

SILVICULTURE-RELATED WATER QUALITY PROBLEMS ON STATE AND PRIVATE FOREST LANDS IN THE STATEWIDE 208 STUDY AREA

Upper Kootenai River Drainage

Drainage Basin	County	Stream Affected	Reported type of Impact	Reported Cause of Impact
(1) 76D	Lincoln	Dodge Creek (perennial)	High sediment load; change in flow regime; unstable banks	Poor road design (lack of drainage structures), poor road location (caused stream diversion); cumulative effect of harvests within drainage; slash debris in stream
(2) 76D	Lincoln	Pinkham Creek (perennial)	High sediment load; change in flow regime; unstable banks	Poor road design (lack of drainage structures), poor road maintenance; cumulative effects of harvests within drainage; steep slope and erosive soil conditions
(3) 76D	Lincoln	Young Creek (perennial)	High sediment loads; increased water yield	Heavily roaded; large area harvested; inadequate coordination of harvest activities between owner- ships
(4) 76D	Lincoln	Tobacco River & Fortine Creek (per- ennial)	Bank degradation; increased sedi- ment load; flow alterations	Log transport in river (1920-30's); stream channelization (railroad construction); extensive harvesting in drainage
(5) 76D	Lincoln	Meadow Creek (perennial)	Increased sedi- ment yield; alter- ation of flow regime	Poor road construction; skidding in stream channel; logging debris left in stream channel; logging debris left in channel
(6) 76D	Lincoln	Deep Creek (perennial)	Increased sedi- ment load; alter- ation of flow regime	Harvest activities within stream channel; logging debris left in channel

TABLE 20, Continued

Drainage Basin	County	Stream Affected	Reported type of Impact	Reported Cause of Impact
(7) 76D	Lincoln	Swamp Creek (perennial)	Increased sedi- ment load; bank instability	Harvest activities within and immediately adjacent to stream
(8) 76C	Flathead & Lincoln	Pleasant Valley Creek (per- ennial)	Increased water yield and associ- ated sedimenta- tion	Extensive harvesting and road construction (also grazing)
(9) 76C	Flathead	Pleasant Valley Fisher River (perennial)	Increased water yield and associ- ated sedimentation	Extensive harvesting; poor road design (steep grades, no erosion con- trols); grazing
(10) 76C	Lincoln	Middle Fisher Rv. (U.S. High- way #2) to Wolf Creek (perennial	High sediment load	Stream cutting its banks (due to channelling and increased water yield)
(11) 76C	Lincoln	Lower Fisher Rv. (Wolf Creek to mouth)(perennial		Stream cutting its banks (due to channelling and increased water yield)
(12) 76C	Lincoln	Wolf Creek (perennial)	High sediment load increased water yields; tempera- ture increase	Extensive harvesting; (channelizing from rail- road construction)
(13) 76D	Lincoln	North Fork Keeler Creek (perennial)	Flooding, channel adjustments, sedi- mentation	Extensive harvest; poor road management
(14) 76D	Lincoln	Iron Creek (perennial)	High sediment load	Poor road design and maintenance
(15) 76D	Lincoln	Lake Creek (perennial)	Periodic high sedi- ment loads, silting in reservoir at at Troy Dam (pri- marily from Iron Creek and Keeler Creek)	Extensive harvests in watershed, poor road design and maintenance
(16) 76D	Lincoln	Blue Creek (perennial)	Erosion and sedi- mentation	Poor road design (inade- quate drainage); steep slope logging, skidded in stream

Drainage Basin	County	Stream Affected	Reported type of Impact	Reported Cause of Impact
(17) 76B	Lincoln	Wampoo Creek (perennial)	Siltation; change in channel geom- etry (no defined channel); (may significantly affect Yaak River)	Skidded on steep slopes and across streams; poor road design and maintenance; debris in stream
(18) 76B	Lincoln	East Fork Yaak River (perennial)	Erosion	Gully channels created by skidding; slash debris in stream
(19) 76G	Lewis & Clark	Hope Creek (perennial)	Sedimentation; pos- sible water yield increases	Road construction, clear- cut harvesting
(20) 76G	Lewis & Clark	Dog Creek (perennial)	Sedimentation; possible water yield increase	Road construction; clear- cut harvesting
(21) 76G	Powel1	Telegraph Creek (per- ennial)	Sedimentation; channel impacts and instability	Streamside harvest activi- ties; debris in stream; channel rehabilitation
(22) 76G	Powell & Deer Lodge	Peterson Creek (perennial)	Sedimentation; channel impacts	Road construction; lack of erosion control measure
(23) 76G	Deer Lodge	Perkins Gulch (perennial)	Soil movement; sedimentation	Road construction; improper skid trails
(24) 76G	Missoula	Deer Creek (perennial)	Increased sedi- ment loads	Road construction; clearcut harvesting
(25) 76G	Deer Lodge	Mill Creek (perennial)	High sediment loads; channel degradation	Initial logging and subsequent lack of vegetation (fire, fume kills)
(26) 76G	Powell	Little Black- foot River (perennial)	Not defined by DF&G	Watershed abuse due to logging
(27) 76F	Lewis & Clark	Keep Cool Creek (per- ennial)	Minor sedimenta- tion; possible increased water yields; soil movement	Extensive clearcut

TABLE 20, Continued

Drainage Basin	County	Stream Affected	Reported type of Impact	Reported Cause of Impact
(28) 76F	Lewis & Clark	Beaver Creek (perennial)	High sediment load	Extensive roads and harvests; steep gradient of stream
(29) 76F	Powel1	Arrastra Creek (intermittant)	Excessive soil disturbance; sedimentation	Heavily logged (lack of coordination with adjacent mixed ownership); poor roa construction; poor skidding practices
(30) 76F	Lewis & Clark	Landers Fork and North	High sediment load; unstable stream- banks; soil move- ment	Logging practices, grazing practices, and a natural fire
(31) 76F	Lewis & Clark	Hogum Creek (perennial)	Possible accelerate erosion	ed Harvested on steep slopes
(32) 76F	Missoula	Gold Creek	Increased water yield probable; sedimentation	Large areas of harvest, extensive road building (over last 30 years)
(33) 76F	Missoula	Belmont Creek (perennial)	Increased water yield probable; sedimentation	Large areas of harvest, extensive road building (over last 30 years)
(34) 76F	Missoula	Blackfoot River (main- stem)(per- ennial)	Not defined by DF&G	Watershed abuse due to logging
(35) 76F	Powell	Monture Creek (perennial)	Not defined by DF&G	Watershed abuse due to logging practices
(36) 76F	Lewis & Clark	Alice Creek (perennial)	Mud slide washing into stream, high sediment load	Improper placement of logging road
(37) 76F	Lewis & Clark	Blackfoot River (per- ennial)	Accelerated erosion	Poor skidding practices in steep terrain
(38) 76F	Powel1	Nevada Creek (perennial)	Not defined by DF&G	Watershed abuse due to logging
(39) 76F	Missoula	Twin Creeks (perennial)	Sedimentation; alteration of flow regime	Extensive harvest and road construction activities

9	Drain		County	Stream Affected	Reported type of Impact	Reported Cause of Impact
	(40)	76F	Powel1	Chamberlain Creek (perennial)	High sediment loads	Past logging (1950's) and subsequent over- grazing
	(41)	76F	Lewis & Clark	Willow Creek (perennial)	Sediment contri- bution	Poor road construction
	(42)	76F	Missoula	West Fork Clearwater River (perennial)	High sediment loads; increased water yields; channel degradation	Extensive harvesting and road construction
	(43)	76F	Missoula	Deer Creek (perennial)	High sediment loads; increased water yields; channel degradation	Extensive harvesting and road construction
	(44)	76F	Missoula	Richmond Creek (perennial)	High sediment loads; increased water yields; channel degradation	Extensive harvesting and road construction
	(45)	76F	Missoula	Placid Creek (perennial)	Sedimentation, other impacts to Placid Lake	Harvesting and road construction; water diversion associated with Jocko reservoirs
	(46)	76F	Missoula	Lost Prairie Creek (perennial)	High sediment loads; increased water yields; channel degradation	Extensive harvesting and road construction
	(47)	76F	Powell and Missoula	Morrel Creek (perennial)	High sediment loads; increased water yields; channel degradation	Extensive harvesting and road construction
	(48)	76F	Missoula	Blanchard Creek (perennial)	Increased sediment loads	Harvesting and road construction
	(49)	76GH	Granite	Douglas Creek (perennial)	Watershed abuse	Not delineated (DF&G)
	(50)	76GJ	Granite	Boulder Creek (perennial)	Watershed abuse	Not delineated (DF&G)

Drainage Basin	County	Stream Affected	Reported type of Impact	Reported Cause of Impact
(51) 76Н	Ravalli	Sleeping Child Area (Cameron, Martin, Rye, Lyman and Bertie Lord Creeks) (perennial)	Sedimentation; increased water yield; channel degradation (effects still felt in lower reaches)	Natural fire and timber harvests
(52) 76Н	Ravalli	Moose Creek (perennial)	Sedimentation	Road construction in natural hazard area
(53) 76н	Ravalli	Claremont & Haacke Creeks (perennial)	Soil movement; sedimentation	Harvest practices; steep slopes; soil type
(54) 76н	Ravalli	Ambrose Creek (perennial)	Sedimentation; channel degrada- tion	Road construction; logging in stream; debris in stream
(55) 76M	Missoula	Sixmile Creek (perennial)	High sediment load; flooding	Large area harvested (non-coordination between ownerships)
(56) 76M	Missoula	Petty Creek (perennial)	High sediment loads	Harvest and road building activities; other land uses (development, grazing)
(57) 76M	Missoula, Mineral, Sanders	Clark Fork River (perennial)	Not defined by DF&G	Watershed abuse due to logging
(58) 76M	Missoula	Mill Creek (perennial)	High sediment load; channel degradation	Extensive harvest; road construction; non- coordination of manage- ment activities between mixed ownerships
(59) 76M	Missoula	Rattlesnake Creek (perennial)	Not defined by DF&G	Past logging resulting in general watershed abuse
(60) 76M	Missoula	Deep Creek (perennial)	High sediment loads; increased water yields; channel degrada- tion	Extensive harvest and road construction debris in streams

Drainage Basin	County	Stream Affected	Reported type of Impact	Reported Cause of Impact
(61) 76M	Missoula	Ninemile Creek (perennial)	Severe erosion, sedimentation, and habitat deterioration	Combined abuse of watershed (logging, dredge mining, road construction)
(62) 76M	Mineral	Fish Creek (perennial)	High sediment loads	Road construction; extensive harvest; other poor logging practices
(63) 76M	Mineral	Thompson Creek (perennial)	High sediment load; flooding; channel degrada- tion	Road construction; streamside harvest; improper skidding; poor road design and mainten- ance (drainage problems)
(64) 76M	Mineral	Deer Creek (perennial)	High sediment load; flooding; channel degrada- tion	Placement of log landing in creek
(65) 76M	Mineral	Bear Creek (perennial)	High sediment load; flooding; channel degrada- tion	Poor road design and maintenance (inadequate drainage and erosion structures)
(66) 76N	Sanders	Elk Creek (perennial)	Sedimentation; channel altera- tion	Skidding logs in stream; felling logs in stream; some channelization
(67) 76N	Sanders	Weeksville Creek (perennial)	Channel modifica- tions; sedimenta- tion	Streamside road con- struction; skidding in stream
(68) 76N	Sanders	Dry Creek (perennial)	Channel modifica- tions	Streamside harvests; skidding logs in streambed
(69) 76N	Sanders	Clark Fork River	General impacts of harvesting (low to moderate)	Cumulative effects of USFS and other harvest activities
(70) 76N	Sanders	Thompson River (perennial)	High sediment loads; channel degradation	Extensive harvest; stream- side road location; steep area harvested
(71) 76N	Sanders	Little Thompson River (perennial)	Not defined by DF&G	Watershed abuse due to logging

TABLE 20, Continued

Drainage Basin	County	Stream Affected	Reported type of Impact	Reported Cause of Impact
(72) 76N	Sanders	Lazier Creek (perennial)	High sediment load; increased water yield	Extensive harvest in basin
(73) 76N	Sanders	Fishtrap Creek (perennial)	Potential for further degrada- tion (present USFS impacts)	Additional forestry activities without coordinated planning between ownerships
(74) 76N	Sanders	McGregor Creek (perennial)	Sedimentation	Construction and silvi- cultural activities
(75) 76K	Missoula	Swan River (perennial)	Not defined by DF&G	Watershed abuse due to logging practices
(76) 41D	Beaverhead	Nugget Creek and Pioneer Creek (perennial)	Sedimentation; channel altera- tion	Logging debris in stream; skidding across stream; streamside harvesting
(77) 41A	Beaverhead	Winslow Creek & Tipton Creek (perennial)	Accelerated erosion	Excessive soil disturbance due to harvesting in wet soil conditions
(78) 41A	Beaverhead	Bloody Dick Creek (perennial)	Increased sedi- ment load; channel alteration	Road construction (steep gradient, poor drainage structures, stream crossing)
(79) 41C	Madison	Idaho Creek (perennial)	Sediment increases	Streamside harvest; debris in stream
(80) 41B	Beaverhead	St. Louis Creek (perennial)	Increased sediment load; channel degradation	Logging debris in stream channel
(81) 41E	Jefferson	Headwaters area of several streams	Physical damage to channel; accelera- ted erosion	Felling and skidding in streams
(82) 411	Broadwater	Duck Creek (& general area) (perennial & ephemeral)	Possible accel- erated erosion	Road construction
(83) 41I	Broadwater	Gabish Gulch (ephemeral)	Sedimentation; channel impacts	Road located in stream bottom

Drainage Basin	County	Stream Affected	Reported type of Impact	Reported Cause of Impact
(84) 41I	Lewis & Clark	East Skelly Gulch (perennial)	Sedimentation; channel impacts	Streamside harvest; logging across stream
(85) 4103	Lewis & Clark	Wolf Creek (perennial)	Sedimentation; channel impacts	Logging debris in stream (possibly complicated by streamside grazing activity)
(86) 4103	Lewis & Clark	Rattlesnake Creek and Mill Creek (per- ennial)	Possible accelera- ted erosion	Generally poor harvest practices
(87) 4103	Lewis & Clark	South Fork Stickney Creek (perennial)	Not defined by DF&G	Watershed abuse due to logging practices
(88) 410	Cascade	Belt Creek (perennial)	Not defined by DF&G	Watershed abuse due to logging practices
(89) 411	Jefferson	Buffalo Creek (perennial)	Accelerated ero- sion; possible water yield increase	Clear-cut on steep slopes; inadequate road drainage and grade
(90) 411	Jefferson	Middle Fork Warm Springs Creek	Possible accelera- ted erosion	Poor road construction
(91) 41U	Lewis & Clark	Green Creek (perennial)	Accelerated erosion	Road construction (steep slopes, erosive soil conditions)
(92) 41U	Lewis & Clark	Middle Fork Dearborn River (perennial)	Accelerated erosion	Road construction (steep slopes, erosive soil conditions)
(93) 41J	Meagher	Benton Gulch (perennial)	Not defined by DF&G	Watershed abuse due to logging practices (may pos- sibly relate to USFS land)
(94) 41J	Meagher	Newland Creek (perennial)	Not defined by DF&G	Watershed abuse due to logging practices (probably extensive clearcut harvests)

Drain Basi		County	Stream Affected	Reported type of Impact	Reported Cause of Impact
(95)	41J	Meagher	North Fork Smith River (perennial)	Stream channel degradation; sedi- mentation	Extensive clearcut harvesting
(96)	41J	Meagher	Sheep Creek (perennial)	Stream channel degradation; sedimentation	Extensive clearcut harvesting; road construction (channel- ized stream segments)
(97)	41J	Meagher & Cascade	Smith River (perennial)	Not identified by DF&G	Watershed abuse due to logging practices
(98)	41J	Meagher	Moose Creek (perennial)	Possible sedi- mentation	Clearcut harvestalong streambanks
(99)	41J	Meagher	Thompson Gulch (perennial)	Possible sedimen- tation	Clearcut harvest along streambanks
(100)	41J	Meagher	Elk Creek (perennial)	Possible sedimen- tation	Poor road construction
(101)	41J	Meagher	Beaver Creek (perennial)	Sedimentation	Numerous stream crossings
(102)	41S	Fergus	Big Springs Creek (perennial)	Sedimentation; decreased oxygen; increased stream- flow	Logging and associated road construction
(103)	41S	Judith Basin	Judith River headwaters (perennial and ephemeral)	High sediment load	Poor logging practices
(104)	40A	Meagher	Forest Lake	Sedimentation; increased water yield	Large areas harvested; poor road construction
(105)	40B	Fergus	N. Fork Flat- willow Creek/ S. Fork Flat- willow Creek	Not defined by DF&G	Watershed abuse due to logging practices
(106)	40A	Meagher	Cottonwood Creek (perennial)	Sedimentation; possible water yield increases	Extensive harvest in headwaters area
(107)	43B	Park	Bassett Creek (perennial)	High sediment load	Naturally unstable area (erosive volcanic material - Tertiary)

TABLE 20, Continued

)	Drainage Basin	County	Stream Affected	Reported type of Impact	Reported Cause of Impact
	(108) 43B	Park	Cedar Creek (perennial)	High sediment load	Naturally unstable area (erosive volcanic material - Tertiary)
	(109) 43B	Park	Stoughten Creek (perennial)	High sediment load; increased water yield	Naturally unstable area; impact aggravated by poor road design and construction; skidding logs in stream
	(110) 43B	Park	Donahue Creek (perennial)	High sediment load; increased water yield	Naturally unstable area; impact aggravated by harvest activities
	(111) 43B	Park	Little Donahue Creek (perennial)	High sediment load; increased water yield	Naturally unstable area; impact aggravated by harvest activities
	(112) 43B	Park	Fridley Creek (perennial)	High sediment load; increased water yield	Naturally unstable area; impact aggravated by harvest activities
)	(113) 43B	Park	Pine Creek (perennial)	High sediment load; increased water yield	Poor road location; poor stream crossings
	(114) 43B	Park	Trail Creek (perennial)	High sediment load; increased water yield	Poor road location; poor stream crossings; harvesting along streams
	(115) 43B	Park	Morrison Gulch (perennial)	High sediment load; increased water yield	Poor road location; poor stream crossings; harvesting along streams
	(116) 43B	Park	S. Fork Deep Creek (perennial)	High sediment load; increased water yield	Poor road location; poor stream crossings; harvesting along streams
	(117) 43B	Park	Rock Creek (perennial)	High sediment load; increased water yield	Naturally unstable area; impacts aggravated by extensive timber harvestin
	(118) 43B	Park	Tom Miner Creek (perennial)	High sediment load; increased water yield	Naturally unstable area; impacts aggravated by extensive timber har- vesting and grazing

Drainage Basin	County	Stream Affected	Reported type of Impact	Reported Cause of Impact
(119) 43A	Gallatin & Park	Brackett Creek (perennial)	Increased water yield; high sediment load; channel adjust- ments	Large area of timber harvested
(120) 43A	Gallatin	Skunk Creek (perennial)	Increased water yield; high sediment load; channel adjustments	Large area of timber harvested; road along creek
(121) 43A	Meagher & Park	Shields River (upper reaches) (perennial)	Increased water yield; high sediment load; channel adjust- ments; high nutrient levels	Road construction; large area of timber harvested
(122) 43A	Park	Shields River (lower reaches) (perennial)	Channel adjustments high sediment load	; Combined abuse of watershed (forestry, agriculture)
(123) 43A	Park	Horsefly Creek (perennial)	High sediment load	Road construction
(124) 43A	Park	Middle Fork Pitch Creek (perennial)	High sediment load	Road construction
(125) 43A	Park	Cottonwood Creek (perennial)	High sediment load	Road construction

STATE OF MONTANA

- 2) Clark Fork River Basin--The Clark Fork River is a tributary of the Columbia River and receives water from most of Montana west of the Continental Divide. In the upper portion of the basin, from headwaters to the north of the Blackfoot River, much of the timberland is administered by the USFS. On non-USFS lands, agriculture, mining, and urbanization add to silvilculture NPS problems. The middle portion of the Clark Fork River Basin, from the mouth of the Blackfoot River to the Flathead River Confluence, receives water from large forested areas. Again, the USFS is the major landowner. The lower portion of the Clark Fork River Basin begins at the mouth of the Flathead River and extends to the Idaho state line. USFS ownership dominates the basin except in the Thompson River drainage.
- gradually changing in the upper Missouri River Basin.—Timber harvesting trends have been harvesting occurred on USFS lands; however, private timber resources are currently supplying 75 percent of the production. Though USFS ownership dominates the middle Missouri River Basin, Burlington Northern, Champion, and several large ranch companies own significant portions. Some water quality impacts are minimized due to dry climatic conditions in the basin. On the other hand, others are aggravated due to slow regeneration rates on some sites. Commercial timber resources of the lower Missouri River Basin are primarily limited to the Musselshell and Judith River basins headwater areas.
- 4) Yellowstone River Basin--The upper Yellowstone River basin lies in southcentral Montana and is the only segment of the basin within the Statewide 208 area. Most forested land is owned either by USFS or BN along with significant small private holdings. There are also scattered BLM and state ownerships. Much of the private land was harvested ten years ago but some merchantable timber still remains in most drainages. Several drainages have experienced extensive clear and selective cutting.

Planned forest development activities are shown in Table 21. Planning of these activities does not mean water quality problems will ultimately result from every acre affected or road constructed. The figures do indicate the magnitude of opportunities for water quality problem development. Table 22 lists specific drainages where additional problems may be created or existing problems aggravated by intensified silvicultural activities.

U. S. Forest Service lands--National Forest boundaries in Montana encompass nearly 20,000,000 acres (Table 23). Although National Forests are managed under the multiple use concept, timber resource management dominates each forest's planning program. Acreage of productive timber lands are shown in Table 24.

Timber harvest is big business in western Montana. The harvest in FY 1976 totalled over 444.1 million board feet (MMBF) (Table 25) and was valued at nearly \$15 million. Figures for FY 1977 show substantial increases over 1976, but are still far below 1966 when the Montana forests produced 714.3 MMBF. Logging was carried out on 33,035 acres in 2,096 timber sales during

TABLE 21
PLANNED SILVICULTURAL ACTIVITIES

Landowner	Comm. Forest Base	Acres Affected In Next 10 Years (Estimated)	Road Construction	Herbicides Fertilizers	Estimated Cut (Annual) MMBF	Principal Harvesting Method
BLM	315,000	60,000-70,000	<5 miles/yr.	Minimal Use	14	Selection Cutting
State	421,000	85,000-100,000	12-16 miles/yr.	Minimal Use	21	Selection Cutting
Large Private	1,590,000	500,000-750,000	500-700 miles next 5/yrs.	Minimal Use	300-400	Selection, Shelter, Wood, Seed, Tree, Salvage
Small Private	3,150,000	250,000-400,000	Unknown	Minimal Use	150-250	Variable &&

TABLE 22

POTENTIAL SILVICULTURE-RELATED PROBLEM AREAS ON STATE AND PRIVATE FOREST LANDS IN THE STATEWIDE 208 AREA

Upper Kootenai River Drainage

Drainage Basin	County	Stream Affected	Possible Impact	Cause of Impact
(1) 76D	Lincoln	Kootenai River & tributaries	Aggravation of existing problems; aggravation of naturally erosive conditions	Further harvesting activities; inadequate site planning in critical areas
(2) 76D	Lincoln	Kootenai River & tributaries	Creation of similar problems in other drainages	Lack of coordination in planning activities between mixed ownerships
		Tobacco R	iver Drainage	
(3) 76D	Lincoln	Meadow Creek & tributaries	Increased sedi- ment load; increase in water yield	Continuing harvest on small ownerships (some for subdivision)
		Fisher	River Drainage	
(4) 76C	Lincoln	East Fisher Creek and Silver Butte Creek (per- ennial)	Potential impact	Potential for poorly coordinated land manage- ment in checkerboard ownership
(5) 76C	Lincoln	Wolf Creek (perennial)	Potential impact	Potential for poorly coordinated land manage- ment in checkerboard ownership
(6) 76C	Lincoln & Flathead	Fisher River watershed	Complicate existing impacts	3
		Lower Kooten	ai River Drainage	
(7) 76D	Lincoln	Pipe Creek (perennial	Potential prob- lem	Uncoordinated management activities on multiple ownerships

Drainage Basin	County	Stream Affected	Possible Impact	Cause of Impact			
(8) 76D	Lincoln	O'Brien Creek (perennial)	Potential problem (municipal water supply)	Uncoordinated management activities on multiple ownerships			
(9) 76D	Lincoln	Flower Creek (perennial)	Potential problem (municipal water supply)	Uncoordinated management activities on multiple ownerships			
(10) 76D	Lincoln	Brush Creek & Ruby Creek (perennial)	Potential problem	Uncoordinated management activities on multiple ownerships			
(11) 76B	Lincoln	Yaak River (perennial)	Potential sedi- mentation	Streamside harvesting			
(12) 76B	Lincoln	Yaak River (watershed)	Potential sedi- mentation	Streamside harvesting			
	Ma	instem Clark Forkl	River Drainage (Uppe	<u>r)</u>			
(13) 76G	Deer Lodge	Lost Creek (perennial	Potential problem (large area of commercial timber under contract)	Extensive harvest and road construction without use of BMP's may create impacts			
(14) 76G	Powell	Trout Creek (perennial)	Possible problems	Numerous harvests			
(15) 76G	Granite	Tributaries to Clark Fork River (perennial and ephemeral)	Potential problem	Non-coordination of forestry activities in area of mixed ownership may lead to watershed abuse			
Blackfoot River Drainage							
(16) 76F	Powel1	Nevada Creek tributary (perennial)	Possible accelerated erosion	Harvested on steep slopes adjacent to stream; improper skidding prac- tices			
(17) 76F	Lewis & Clark	South Fork Blackfoot River (perennial)	Potential for sed- imentation increas- ed water yield	Non-coordination of for- estry activities in area of mixed ownership; may lead to watershed abuse			

Basin	County	Affected	Possible Impact	Cause of Impact
(18) 76F	Missoula	Elk Creek (perennial)	Possible problem	Mainly due to mining but may be some effects of harvesting
(19) 76F	Missoula	Bear Creek (perennial)	Possible problems	Extensive harvest and road construction
(20) 76F	Lewis & Clark	Lincoln Gulch (ephemeral)	Suspect accelerated erosion	High road density; improper skidding practices in steep terrain
(21)	Lewis & Clark	Sucker Creek (ephemeral)	Possible sediment contribution	Old gullied skid trails
(22) 76F	Missoula	Boles Creek (perennial)	Potential for sedi- mentation; in- creased water yield; impacts to Placid Lake	Non-coordination of forestry activities in area of mixed ownership may lead to watershed abuse; logging in Boles Creek is starting (BN, USFS)
(23) 76F	Missoula	Clearwater River watershed	Potential for sedimentation; increased water yield; compli- cation of exis- ting impacts	Non-coordination of forestry activities in area of mixed ownership may lead to watershed abuse
		Flint	Creek Drainage	
(24) 76GJ	Granite	Cow Creek (perennial)	Potential problem	Uncoordinated activities occurring on multiple ownership
(25) 76GJ	Granite	Willow Creek (perennial)	Potential problem	Uncoordinated activities occurring on multiple ownership

Possible channel

impacts and

sedimentation

Upper Willow Creek (per-

ennial)

(26) 76E Granite

Streamside harvest

activities

Drainage Basin	County	Stream Affected	Possible Impact	Cause of Impact
(27) 76E	Granite	Rock Creek (perennial)	Possible channel impacts and sedimentation	Streamside harvest activities
(28) 76E	Missoula	Gilbert Creek (perennial)	Potential for sedimentation increased water yield	Non-coordination of forestry activities in area of mixed ownership; may lead to watershed abuse
		Bitterroot	River Drainage	
(29) 76Н	Ravalli & Missoula	Bitterroot River watershed	Potential for sedi- mentation; in- creased water yield	Non-coordination of forestry activities in area of mixed owner- ship may lead to water- shed abuse
(30) 76Н	Missoula	Lolo Creek (perennial)	Potential for sedimentation; increased water yield	Non-coordination of forestry activities in area of mixed ownership may lead to watershed abuse
(31) 76H	Ravalli	Burnt Fork Creek (perennial)	Potential for sedimentation; increased water yeidl	Non-coordination of forestry activities in area of mixed ownership may lead to watershed abuse (municipal water supply)
(32) 76M	Missoula, Mineral, Sanders	Clark Fork River and tributaries	Potential problems (sedimentation, increased water yield, channel degradation)	Non-coordination of forestry activities in area of mixed ownership may lead to watershed abuse
(33) 76M	Missoula	Albert Creek (perennial)	Possible existing or future impacts	Non-coordination of forestry activities in area of mixed ownership may lead to watershed abuse
(34) 76M	Missoula	Rock Creek (perennial)	Possible existing or future impacts	Non-coordination of forestry activities in area of mixed owner- ship may lead to water- shed abuse

Drainage Basin	County	Stream Affected	Possible Impact	Cause of Impact
		nich Con	eek Drainage	
		FISH CIE	eek brainage	
(35) 76M	Mineral	Fish Creek watershed	Potential for additional sedi- mentation, in- creased water yield	Non-coordination of forestry activities in area of mixed ownership; continued poor practices
	Ma	in Stem Clark Fo	rk River Drainage (Lo	wer)
(36) 76N	Sanders	White Pine Creek (perennial)	Potential erosion and sedimentation	Streamside harvest; logging debris piled along stream
(37) 76N	Sanders	Vermillion River (perennial)	Potential problem	Non-coordination of forestry activities between ownerships
		Thompson	River Drainage	
(38) 76N	Sanders	Thompson River & tributaries (perennial)	Further watershed abuse and water quality degrada- tion	Extensive harvest and road construction without coordination between land owners
(39) 76K	Missoula	Swan River & tributaries	Potential for sedi- mentation; in- creased water	 Non-coordination of forestry activities in area of mixed ownership may lead to watershed abuse
		Big Hole	River Drainage	
				n to bound in
(40) 41D	Beaverhead	Bull Creek (perennial)	Potential problem	Extensive harvest in area
(41) 41D	Beaverhead	Unnamed ephemeral stream	Potential problem	Logging debris in channel; skidded across drainages; streamside harvesting
(42) 41D	Deer Lodge	California and Oregon Creeks (perennial)	Potential problem	Naturally erosive soil conditions; could be complicated by timber harvest and road building

	Drainage Basin	County	Stream Affected	Possible Impact	Cause of Impact
	(43) 41D	Deer Lodge	Drainages in area of Mt. Haggin land purchase (DF&G) (perennial and ephemeral)	Potential problem	Extensive harvest activities
			Red Rock R	iver Drainage	
	(44) 41A	Beaverhead	Medicine Lodge Creek (perennial)	Potential problem	Uncoordinated harvest activities
	(45) 41A	Beaverhead	Red Rock River drainage	Potential problem	Uncoordinated or poorly planned activities in critical areas
			Ruby Riv	er Drainage	
	(46) 41C	Madison	Noble Fork of Wisconsin Creek (perennial)	Potential problem	Streamside harvest
	(47) 41C	Madison	Ruby River and tributaries	Potential for in- creased sediment loads and other impacts	Naturally unstable areas activities could aggra- vate situation
	(48) 41B	Beaverhead	Blacktail Deer Creek (per- ennial)	Potential problems	Uncoordinated harvest activities which may accelerate erosion in sensitive areas (poorly consolidated sediments)
			Jefferson	River Drainage	
	(49) 41G	Jefferson	Headwaters (Whitehall Creek) (perennial)	Potential problem	Non-coordinated harvest activities; possible critical area
0	(50) 41G	Madison	Wyckham Creek, Spring Creek, and Mill Creek (Perennial)	Potential problem	Non-coordinated harvest activities; possible critical area

Orainage Basin	County	Stream Affected	Possible Impact	Cause of Impact			
		Boulder R	liver Drainage				
(51) 41E	Jefferson	Headwaters of Dry Creek	Potential problem	Non-coordination of harvest activities between mixed ownership			
52) 41E	Jefferson	Headwaters area of several streams	Potential problem (extensive harvest)	Non-coordination of harvest activities between mixed ownership			
		Rocky Mountai	in Front Drainages				
(53) 41U	Lewis & Clark	Dearborn River	Potential problem (accelerated erosion)	Non-coordination of harvest and road building activities among mixed ownership			
		Smith R	iver Drainage				
(54) 41J	Meagher & Cascade	Smith River & tributaries	Aggravation of existing problems; creation of simi- lar problems in other drainages	Continued use of poor forestry practices (and agricultural practices) in an uncoordinated mann			
		Judith R	iver Drainage				
(55) 418	Judith Basin & Fergus	Judith River headwaters	Potential problem	Future harvest potential			
(56) 40A	Wheatland	Roberts Creek (ephemeral)	Potential problem	Future harvest potential			
		Upper Yellowst	one River Drainage				
(57) 43B	Park	Upper Yellow- stone River Drainage (and tributaries)	Aggravation of existing problems; creation of simi- lar problems in other drainages	Continued harvesting activities in critical areas without coordin- ation between land managers			

Drainage Basin	County	Stream Affected	Possible	Impact	Cause of	Impact
-------------------	--------	--------------------	----------	--------	----------	--------

Shields River Drainage

(58) 43A Park, Shields River Aggravation of Continued use of poor Gallatin, and tributaries existing problems; creation of simiagricultural practices) lar problems in an uncoordinated other drainages manner

TABLE 23

ACREAGES OF THE NATIONAL FOREST IN MONTANA TAKEN FROM THE ANNUAL STATISTICAL REPORT OF NATIONAL FOREST AREAS, 1976.^a

National Forest	Area (Net) (Acres)	Area (Others) ^b (Acres)	Total Area (Acres)		
Beaverhead	2,114,577	82,705	2,197,282		
Bitterroot	1,115,083	74,386	1,189,469		
Custer	1,113,892	86,512	1,200,404		
Deer Lodge	1,177,318	177,627	1,354,945		
Flathead	2,363,392	263,920	2,627,312		
Gallatin	1,726,707	424,056	2,150,763		
Helena	972,408	186,931	1,159,339		
Kootenai	1,779,932 ^c	318,032	2,097,964		
Lewis and Clark	1,835,264	116,431	1,951,695		
Lolo	2,091,043	523,881	2,614,924		
Kaniksu	446,962 ^d	44,844	491,856		
Total	16,736,578 ^e	2,349,375	19,085,953		

a/ All acreages are inside the National Forest Boundary

b/ State and private land inside the National Forest Boundary

c/ Includes 46,395 acres in Idaho which drain into Montana

d/ Lands now administered by the Kootenai National Forest

e/ Does not include 157 acres in Missoula at three facilities

TABLE 24

PRODUCTIVE NON-RESERVED FOREST LANDS EXCLUSIVE OF DEFERRED FOREST LANDS AS OF 12/'77.

		Product	ive Timber L	ands (Acres)	
National Forest	Standard	Special	Marginal	Unregulated	Total
Beaverhead	71,370	45,075	59,547	43,523	219,515
Bitterroot <u>a</u> /					
Custer	61,322	27,137	65,066	90,999	244,524
Deer Lodge	167,674	216,058	145,294	36,491	565,517
Flathead	201.738	255,110	186,845	112,509	756,202
Gallatin	38,137	54,576	190,789	18,104	301,606
Helena	70,472	54,770	97,315	7,030	229,587
Kootenai	1,046,396	251,143	121,233	187,468	1,606,240
Lewis and Clark	216,820	42,732	40,449	2,124	302,235
Lolo	549,584	315,436	130,427	72,573	1,068,020
Total Nat. Forest	t 2,423,513	1,262,037	1,037,075	570,821	5,293,446

a/ Bitterroot data unavailable.

 $[\]frac{b/}{a} \ \ \, \text{An additional 2,270,606 acres of non-reserved land are included in lakes and as non-forest and non-productive forest lands. Productive forest land constitutes 70 percent of the non-reserved forest lands.}$

TABLE 25

TIMBER SALE PROGRAM STATISTICS FOR MONTANA NATIONAL FORESTS (ALL VOLUME IN MMBF)

Fiscal Year	AAC or Potential Yield	Total Cut	Total Sold	Volume Under Contract (End FY)
1961	662.0	450.3	549.6	1,129.5
1962	696.7	520.8	748.2	1,245.5
1963	761.2	641.3	679.8	1,292.1
1954	761.2	649.9	723.3	1,449.0
1965	761.2	659.4	668.2	1,624.4
1966	746.1	714.3	654.1	1,742.6
1967	766.3	683.3	664.4	1,713.6
1968	802.3	680.3	730.2	1,685.1
1969	830.3	725.6	725.8	1,790.7
1970	895.1	704.2	1,181.4	2,307.6
1971	955.5	657.8	576.6	1,828.6
1972	955.5	659.2	425.0	1,588.6
1973	941.3	567.3	449.6	1,427.1
1974	916.6	534.9	457.1	1,373.5
1975	916.6	453.1	524.0	1,401.6
1976	916.6	444.1	448.5	1,444.8
Total	13,284.5	9,745.8	10,205.8	25,044.3
Averag	e 830.3	609.1	637.9	1,565.3

1976. Over 80 percent of these sales were valued at \$300 or less while less than four percent involved volumes of 2.0 MMBF or greater. An additional 376,070 acres were examined for future timber sales or silviculturally treated by other than timber sales. The total silviculture and logging program in Montana's National Forest in 1976 affected 409,106 acres. Of this 103,544 acres were subjected to varying degrees of site disturbance or alteration, exclusive of roads.

- The U. S. Forest Service has developed a sensitivity rating for each watershed in Montana's National Forests. The ratings express susceptibility to erosion as a result of land use activities.
- 1) High sensitivity recognizes a high (80 percent) probability of accelerating erosion and of polluting the area's waters when following routine, normal management practices. Prevention of erosion in these areas will require extraordinary measures. In some situations, prevention may not be feasible under existing technology and knowledge.
- 2) <u>Moderate sensitivity</u> is the most commonly occuring sensitivity class. Accelerating erosion due to oversight or carelessness in carrying out routine management practices can occur, but adequate quality control should overcome most problems.
- 3) Low sensitivity lands present few constraints to management, or there is little probability (20 percent) of accelerating erosion when following routine management practices.

The sensitivity classification is intended to alert land use planners to possible erosion problem areas prior to project initiation. None of the classes are pure at 1:500,000 map scale; i.e., all classes have inclusions of the other two classes. However, as the planning level progresses toward the site specific, class purity will increase. Finalized maps depicting the sensitivity classes should be available by Spring, 1979.

The U. S. Forest Service has also identified water quality problem areas in Montana forests. Maps are being finalized to depict these problem areas which are summarized by activity, severity, and feasibility for correction in Table 26. Table 26 also essentially summarizes management priorities on National Forest lands in Montana; roads, by virtue of impact severity and high feasibility for correction are the major management priority.

Land disposal--Surface and subsurface disposal of waste products is a potential threat to both surface and ground-water quality. Ground-water impacts are discussed in a following section.

Surface water quality impacts occur directly as the result of runoff discharge into receiving streams or indirectly as the result of recharge of polluted ground water to surface waters. The major land disposal water quality problem in the Statewide 208 area is sanitary land filling.

TABLE 26

AN EVALUATION OF POLLUTION IMPACTS ON MONTANA'S NATIONAL FORESTS

	SEVERITY OF IMPACT												
		HIGH				MODERATE				LOW			
	Feasibility of Correction			Feasibility of Correction			Feasibility of Correction Total				1		
Activity	High	Moderate	Low	<u>Total</u>	High	Moderate	Low	Total	High	Moderate	Low	101.4	Т
Roads	7	18	5	30	37	34	6	77	15	15	13	43	
Timber Harvesting & Logging	2	7	5	14	24	17	7	48	` 23	13	3	39	-96
Grazing & Stockwater	6	9	4	19	11	27	11	49	20	33	21	74	Ŷi
Municipal & Domestic	1			1	2			2		2		2	
Recreation & Aesthetics			1	1	3	4	2	9	12	5	20	37	
Mining		3	4	7	2	14	8	24	3	4	7	14	
Total	16	37	19	72	79	96	34	209	73	73	64	210	_

Again, though most of the problem sites are causing ground-water impacts, a few are or have the potential to affect surface waters. Nine of the 36 sites examined had existing surface water quality problems or had the potential to develop future water quality impacts. Those sites are discussed helow.

Cascade (Cascade County)--The Cascade disposal site was opened some fifty years ago prior to implementation of disposal regulations. Although precipitation in the area is low, leachate will inevitably form during wetter seasons. The disposal site is located near the Missouri River which receives the leachate. It is likely the river effectively dilutes the polluted runoff now, but the contribution may become more significant in the future.

Fresno (Hill County)--This site is situated so that potential problems could arise. The surrounding area is predominantly agriculture land and significant amounts of herbicides and pesticides are in use. If these hazardous wastes are disposed of at this site and the area were to experience large amounts of precipitation, the hazardous wastes could enter Havre's water supply. In view of this significant threat, the site needs to be relocated or closed to disposal of agricultural hazardous wastes.

Glasgow (Valley County)—The site is located in a natural drainage leading to the Cherry Creek drainage. Cherry Creek is one of Glasgow's main water supplies. Although low precipation and continuation of good operation practices should keep the amount of leachate to a minimum, the importance of Cherry Creek warrants additional evaluation of the site.

Great Falls (Cascade County)—The site is located 3/8 of a mile south of the Missouri River and is expanding down a natural draw towards the river. The current practice of infrequent covering of refuse allows direct infiltration and produces more contaminated leachate. As landfill operations commence towards the Missouri River, the leachate will become a greater threat unless operation practices are altered.

Lima (Beaverhead County)—The site is located in the Junction Creek floodplain and serves a rural and agricultural population. As in the Fresno site, the potential for disposal of herbicides, pesticides, and other hazardous materials is a serious threat to the quality of Junction Creek.

<u>Livingston (Park County)</u>—Ground-water pollution at the site is an accepted fact. And, although ground water flows to the Yellowstone River, actual impacts on the river have not been documented. However, the possibility of degradation is sufficient to warrant further evaluation of the situation.

Sand Coulee (Cascade)--There is no doubt that the site is contributing polluted leachate to Mining and Sand Coulee Creeks. However, both streams are already severely polluted by acid mine drainage.

Nevertheless, Sand Coulee Creek does enter the Missouri River south of Great Falls and possible upgrading of Sand Coulee Creek's water quality needs to be evaluated.

Sheridan (Madison County)--Ground-water pollution is evident at this site. Although the Ruby River ultimately receives ground water from the site, the leachate is probably sufficiently diluted prior to reaching the recharge point. However, the site is unattended and open continuously and the potential for disposal of hazardous wastes is high.

Ulm (Cascade) -- Under ideal conditions this site could act as a dam. Ponded water would leach contaminants from refuse and may even wash out the site. Since all drainage from the site eventually reaches the Missouri River. its pollution potential is noteworthy.

Dewatering--All Streams in Montana are dewatered, i.e., a certain amount of water is removed from every stream for one or more beneficial uses. By strict definition, dewatering itself is not pollution, but in some cases reduced flows do contribute to water quality degradation and so, deserve attention from a nonpoint source management aspect.

Essentially, the major effects of dewatering are reduction of the stream's dilution capacity and a decrease in biotic habitat. In extreme cases, the stream channel may become totally dry. With reduced flows mineral and temperature increases and oxygen depletion may create toxic conditions for biota and reduce quality of the water for other beneficial uses. The problem may be compounded by additional pollutant loads which the stream can no longer adequately assimilate.

The degree to which a stream's quality is degraded by dewatering depends on several factors: pre-existing water level and quality, total amount of water removed, duration of reduced flows, time of year the dewatering occurs, and the social, economical, and environmental value of the stream prior to dewatering. The problem is often a subtle one, particularly on larger streams where significant amounts of water can be removed without apparent noticeable effects.

Although critical dewatering has been most noticeable in the Beaverhead, Bitterroot, West Gallatin, Big Hole, and Jefferson Rivers, many other stream segments are affected annually. The Conservation District's questionnaire and the Fish and Game have helped to more accurately identify the extent of the dewatering problem. Any beneficial use can potentially dewater a stream to the point that its quality is reduced, however, since irrigation accounts for more than 80 percent of the annual water losses in Montana, both surveys have concentrated on that aspect of dewatering.

Some of the most obviously and critically dewatered streams were identified by the Conservation District questionnaire. By definition, the survey identified streams which were dewatered by irrigation withdrawal to the point that: 1) the stream is actually or for all practical purposes, dry; 2) the stream is reduced to a series of separated pools, or 3) significant portions of the streambed, which would otherwise be under water, are exposed. Dewatered segments identified by the Districts totalled 873 miles (Table 27, Figure 2-map pocket).

TABLE 27

MILES OF DEWATERED STREAM SEGMENTS IN

Ba	sin	Miles	Dewatered	
Kootenai			4	
Clark Fo	rk		155	
Jefferso	n		41	
Madison			0	
Upper Ye	llowstone		32	
Upper Mi	ssouri		55	
Marias			67	
Middle M	lissouri		135	
Musselsh	ell		224	
Milk			160	
Lower Mi	ssouri		0	
Lower Ye	ellowstone		0	
Lower To	ongue		0	
Beaver			0	
			873	

The Fish and Game survey identified 285 stream segments in which the fishery resource value is reduced by agricultural removal of water. These segments total 7,618.5 km. The Fish and Game figures represent the total length of the stream segments in the survey, not the total length affected by a particular problem. For example, 45.7 km. of the Beaverhead River was included in the survey and that segment is affected by dewatering; however, dewatering may not necessarily be occurring along the total length of that segment. Table 28 lists the affected segments.

Ground Water

From a management aspect, the major emphasis in the Statewide 208 area and Montana has been on surface waters. However, ground water shares the same hydrologic cycle with surface water and its occurrence and quality are affected by and in turn, affect quality and quantity of surface water. The two are intimate and management of one cannot be effectively accomplished without consideration of the other. If surface water degradation as well as demands for clean water continue in Montana, importance of ground water will also increase. In an effort to determine the quality of ground water in the Statewide 208 area and quantify research and management needs, the WQB contracted with Westech for a ground-water assessment. The following discussion is extracted from their report by Botz and Gartner (1978).

Ground-water Quality in the Statewide 208 Area—The Montana Water Quality Records System (MTWQRS), described in detail in Westech's report, was used to assess ground-water quality in the Statewide 208 area. The system used computer-plotted maps to show sample sites and ranges of concentrations for seven parameters including; specific conductance, total hardness, sodium absorption ratio, sulfate, nitrate, nitrite, iron, and zinc. In addition, one map indicates if any of the following 9 metals had been analyzed for: aluminum, cadmium, copper, iron, lead, manganese, mercury, molybdeum, selenium.

Distribution, quantity, and quality of ground-water resources varies greatly in the Statewide 208 study area. Quality is generally good to excellent in mountainous areas and poor in eastern and northern portions of Montana with predominantly sedimentary geological formations and less precipitation. Dominant quality problems throughout the state consist of high total dissolved solids, sulfate, and sodium. The following points were summarized from the MTWQRS data:

- Western Montana ground water generally has specific conductances less than 700 umhos (suitable for most uses) except for scattered points, an area along the Beaverhead River, and near Townsend and Helena. Many central and eastern portions had nearly all conductances above 750 umhos with many above 2,250 jumhos (limited use, even for irrigation).
- 2. Hardness in most of Montana ranges from 60-180 mg/l with many eastern sites showing excesses of 180 mg/l (rated very hard by USGS). Fifty-nine percent of the plotted points showed values greater than 180 mg/l.

TABLE 28

MONTANA STREAMS WITH REDUCED FISHERY RESOURCE VALUE DUE
TO WATER REMOVAL OR FLUCTUATION FOR AGRICULTURE

Stream Segment	Tributary To	Segment Length (Km)
Alder Gulch	Ruby River	17.9
Beaverhead River	Jefferson River	101.0
Blacktail Deer Creek	Beaverhead River	43.5
Grasshopper Creek	Beaverhead River	64.3
Indian Creek	Ruby River	10.6
Little Sheep Creek	Red Rock River	18.6
Long Creek	Red Rock River	14.0
Medicine Lodge Creek	Horse Prairie Creek	28.2
Mill Creek	Ruby River	10.1
Nicholia Creek	Big Sheep Creek	23.8
O'Dell Creek	Red Rock River	19.5
Rattlesnake Creek	Beaverhead River	29.9
Red Rock River	Clark Canyon Reservoir	30.4
Red Rock River	Beaverhead River	34.0
Ruby River	Beaverhead River	98.9
Sage Creek	Red Rock River	38.6
Big Sheep Creek	Red Rock River	4.8
Spring Creek	Beaverhead River	10.6
Sweetwater Creek	Ruby River	5.5
Wisconsin Creek	Ruby River	5.8
Poindexter Slough	Beaverhead River	8.0
Big Hole River	Jefferson River	79.7

Stream Segment	Tributary To	Segment Length (Km)
Big Hole River	Jefferson River	50.4
Big Hole River	Jefferson River	84.5
Birch Creek	Big Hole River	16.4
Camp Creek	Big Hole River	21.2
Trapper Creek	Big Hole River	10.1
Willow Creek	Big Hole River	17.9
Bass Creek	Bitterroot River	11.3
Bitterroot River	Clark Fork River	36.9
Bitterroot River	Clark Fork River	27.4
Bitterroot River	Clark Fork River	66.6
Burnt Fork Creek	Bitterroot River	25.6
East Fork Bitterroot River	Bitterroot River	11.4
Lolo Creek	Bitterroot River	45.3
Miller Creek	Bitterroot River	8.7
Miller Creek	Bitterroot River	12.2
Skalkaho Creek	Bitterroot River	12.9
West Fork Bitterroot River	Bitterroot River	31.5
Blackfoot River	Clark Fork River	69.2
Blackfoot River	Clark Fork River	47.5
Clearwater River	Blackfoot River	27.0
Cottonwood Creek	Blackfoot River	19.3
Nevada Creek	Blackfoot River	35.4
Nevada Creek	Blackfoot River	24.6
Placid Creek	Owl Creek	13.8
Poorman Creek	Blackfoot River	9.3
Deep Creek	Clark Fork River	1.6

Stream Segment	Tributary To	Segment Length (Km)
Dry Creek	Clark Fork River	4.8
Little Thompson River	Thompson River	23.8
Nine Mile Creek	Clark Fork River	39.8
Pilgrim Creek	Clarks Fork River	13.4
Dempsey Creek	Clark Fork River	19.3
Douglas Creek	Flint Creek	1.5
East Fork Rock Creek	Rock Creek	12.9
Flint Creek	Clark Fork River	42.0
Flint Creek	Clark Fork River	17.5
Lost Creek	Clark Fork River	24.1
Lower Willow Creek	Flint Creek	11.5
Little Blackfoot River	Clark Fork River	37.2
Middle Fork Rock Creek	Rock Creek	23.7
Mill Creek	Silver Bow Creek	6.8
Racetrack Creek	Clark Fork River	1.5
Ranch Creek	Rock Creek	15.4
Schwartz Creek	Clark Fork River	5.6
Warm Springs Creek	Clark Fork River	45.7
Little Bitterroot River	Flathead River	11.3
Little Bitterroot River	Flathead River	24.1
Stillwater River	Flathead River	32.5
Stillwater River	Flathead River	21.9
Whitefish River	Stillwater River	8.4
Whitefish River	Stillwater River	15.3
Whitefish River	Stillwater River	15.4
Baker Creek	Gallatin River	3.1

Stream Segment	-104- Tributary To	Segment Length (Km)
Baker Creek	Gallatin River	8.7
Camp Creek	Gallatin River	14.5
Hyalite Creek	Gallatin River	5.6
Hyalite Creek	Gallatin River	8.2
Smith Creek	East Gallatin River	6.6
Sourdough Creek (Bozeman C)	East Gallatin River	10.6
Gallatin River	Missouri River	16.7
Gallatin River	Missouri River	17.7
Big Pipestone Creek	Jefferson River	15.1
Big Pipestone Creek	Jefferson River	10.1
Boulder River	Jefferson River	22.7
Boulder River	Jefferson River	48.9
Cherry Creek	Jefferson River	3.9
Dry Boulder Creek	Jefferson River	8.0
Dry Creek	Boulder River	9.7
Fish Creek	Jefferson River	14.5
Jefferson River	Missouri River	73.1
Jefferson River	Missouri River	18.7
Jefferson River	Missouri River	30.7
North Willow Creek	Willow Creek	17.4
South Boulder River	Jefferson River	4.8
South Boulder River	Jefferson River	10.8
South Willow Creek	Willow Creek	22.4
Willow Creek	Jefferson River	17.7
Willow Creek	Jefferson River	1.1
East Fisher River	Fisher River	20.4

Stream Segment	Tributary To	Segment Length (Km)
Elk Creek	Fisher River	15.0
Fisher River	Kootenai River	51.8
Fortine Creek	Tobacco River	37.7
Grave Creek	Tobacco River	27.8
Indian Creek	Tobacco River	6.4
Laughing Water Creek	Murphy Lake	3.5
Libby Creek	Kootenai River	20.8
McGinnis Creek	Elk Creek	15.1
Mud Creek	Therriault Creek	6.1
Pinkham Creek	Kootenai River	9.7
Pinkham Creek	Kootenai River	24.1
Pleasant Valley Fisher River	Fisher River	19.3
St. Clair Creek	Tobacco River	1.8
St. Clair Creek	Tobacco River	11.6
Tobacco River	Kootenai River	34.1
Young Creek	Kootenai River	10.0
Birch Creek	Two Medicine River	60.2
Cut Bank Creek	Marias River	7.1
Deep Creek	Teton River	22.5
Dupuyer Creek	Birch Creek	13.5
Dupuyer Creek	Birch Creek	38.3
Marias River	Missouri River	12.9
McDonald Creek	Teton River	16.1
North Fork Deep Creek	Deep Creek	8.8
North Fork Dupuyer Creek	Dupuyer Creek	5.0
North Fork Willow Creek	Willow Creek	10.9

Stream Segment	-106_ Tributary To	Segment Length (Km)
South Fork Deep Creek	Deep Creek	6.0
South Fork Dupuyer Creek	Dupuyer Creek	6.4
South Fork Willow Creek	Willow Creek	10.3
Teton River	Marias River	265.5
Teton River	Marias River	16.1
Teton River	Marias River	48.3
Willow Creek	Deep Creek	20.9
Beaver Creek	Milk River	24.1
Beaver Creek	Milk River	12.9
Little Box Elder Creek	Milk River	39.1
Milk River	Missouri River	165.6
Milk River	Missouri River	165.6
Milk River	Missouri River	82.8
Milk River	Missouri River	215.7
Milk River	Missouri River	19.3
Muddy Creek	Milk River	7.9
Peoples Creek	Milk River	28.3
Arrow Creek	Missouri River	15.3
Cottonwood Creek	Arrow Creek	12.1
Cow Creek	Missouri River	4.8
Eagle Creek	Missouri River	12.4
Judith River	Missouri River	35.2
North Fork Cow Creek	Cow Creek	8.0
South Fork Cow Creek	Cow Creek	8.2
Wolf Creek	Judith River	8.0
Avalanche Creek	Canyon Ferry Reservoir	5.1

Stream Segment	Tributary To	Segment Length (Km)
Beaver Creek	Smith River	10.6
Beaver Creek	Missouri River	22.5
Butte Creek	Sheep Creek	15.1
Camas Creek	Smith River	23.3
Crow Creek	Missouri River	13.2
Crow Creek	Missouri River	9.0
Dearborn River	Missouri River	75.6
Deep Creek	Missouri River	4.0
Deep Creek	Missouri River	18.8
Dry Creek	Missouri River	12.9
Eagle Creek	Smith River	13.4
Hound Creek	Smith River	45.7
Little Belt Creek	Belt Creek	24.9
Little Prickly Pear Creek	Missouri River	43.0
Little Prickly Pear Creek	Missouri River	13.8
Missouri River	Mississippi River	211.9
Newlan Creek	Smith River	29.6
North Fork Smith River	Smith River	14.5
North Fork Smith River	Smith River	14.3
Otter Creek	Belt Creek	21.3
Seven Mile Creek	Ten Mile Creek	8.7
Sheep Creek	Smith River	43.6
Silver Creek	Missouri River	3.4
Smith River	Missouri River	21.2
Smith River	Missouri River	29.6
Smith River	Missouri River	41.0

Segment Length

Stream Segment	Tributary To	Segment Length (Km)
South Fork Dearborn River	Dearborn River	16.4
Spring Creek	Smith River	16.7
Ten Mile Creek	Prickly Pear Creek	13.7
Thomas Creek	Smith River	4.0
Cottonwood Creek	South Fork Musselshell River	10.4
Flagstaff Creek	North Fork Musselshell River	7.2
Musselshell River	Fort Peck Reservoir	119.5
North Fork Musselshell River	Musselshell River	20.9
North Fork Musselshell River	Musselshell River	6.0
South Fork Musselshell River	Musselshell River	11.5
South Fork Musselshell River	Musselshell River	9.4
Big Muddy Creek	Sun River	12.9
Duck Creek	Sun River	9.7
Elk Creek	Sun River	36.8
Ford Creek	Smith Creek	10.0
Mill Coulee	Sun River	9.7
North Fork Willow Creek	Willow Creek	13.4
Smith Creek	Elk Creek	22.5
Sun River	Missouri River	29.5
Sun River	Missouri River	74.3
Sun River	Missouri River	47.9
Sun River	Missouri River	4.8
Willow Creek	Sun River	21.2
Glendive Creek	Yellowstone River	16.1
Little Powder River	Power River	106.9
Powder River	Yellowstone River	350.0

Stream Segment	Tributary To	Segment Length (Km)
Tongue River	Yellowstone River	140.5
Tongue River	Yellowstone River	163.8
Tongue River	Yellowstone River	22.2
Yellowstone River	Missouri River	88.0
Yellowstone River	Missouri River	126.2
Bad Canyon Creek	Stillwater River	9.3
Bear Creek	Clarks Fork River	30.4
Big Creek	Yellowstone River	3.9
Big Timber Creek	Yellowstone River	17.7
Big Timber Creek	Yellowstone River	8.9
Bluewater Creek	Clarks Fork River	14.5
Boulder River	Yellowstone River	49.2
Bridger Creek	Yellowstone River	7.2
Bridger Creek	Yellowstone River	10.8
Butcher Creek and Forks	Rosebud Creek	45.1
Cayuse Creek	Sweetgrass Creek	20.1
Cedar Creek	Yellowstone River	5.6
Clarks Fork Yellowstone River	Yellowstone River	65.3
Clarks Fork Yellowstone River	Yellowstone River	46.2
Clear Creek	Rock Creek	14.2
Cottonwood Creek	Shields River	4.8
Deep Creek	Yellowstone River	1.6
Deep Creek	Yellowstone River	3.5
East Boulder River	Boulder River	12.8
East Boulder River	Boulder River	9.3
East Rosebud Creek	Rosebud Creek	38.6

-110-		Segment Length
Stream Segment	Tributary To	(Km)
Eight Mile Creek	Yellowstone River	6.4
Elbow Creek	Yellowstone River	20.9
Emigrant Creek	Yellowstone River	5.6
Hogan Creek	West River Lodge Creek	4.8
Little Rocky Creek	Stillwater River	7.1
Little Trail Creek	Yellowstone River	8.0
Lodgepole Creek	Castle Creek	2.4
Lower Deer Creek	Yellowstone River	23.7
Meyers Creek	Lodgepole Creek	7.2
Midnight Creek	Stillwater River	9.7
Mill Creek	Yellowstone River	6.4
Pryor Creek	Yellowstone Eiver	12.0
Red Lodge Creek	Rock Creek	15.8
Robinson Draw	Clarks Fork River	3.7
Rock Creek	Clarks Fork River	27.8
Rock Creek	Clarks Fork River	13.7
Rock Creek	Clarks Fork River	21.1
Rock Creek	Yellowstone River	11.7
Rock Creek	Shields River	7.2
Rock Creek	Shields River	11.6
Rosebud Creek	Stillwater River	6.0
Sage Creek	Big Horn River	10.9
Sage Creek	Big Horn River	11.3
Shields River	Yellowstone River	25.4
Shields River	Yellowstone River	21.6
Shields River	Yellowstone River	45.9

Stream Segment	Tributary To	Segment Length (Km)
Six Mile Creek	Yellowstone River	4.8
Stillwater River	Yellowstone River	6.4
Suce Creek	Yellowstone River	2.4
Sweetgrass Creek	Yellowstone River	53.1
Tom Miner Creek	Yellowstone River	10.9
Tom Miner Creek	Yellowstone River	6.4
Trail Creek	Yellowstone River	17.7
Trail Creek	Yellowstone River	34.6
Upper Deer Creek	Yellowstone River	22.5
West Red Lodge Creek	Red Lodge Creek	2.4
Willow Creek	Shields River	12.2
Willow Creek	Red Lodge Creek	23.7

- 3. Sodium absorption ratios (SAR) of less than four are suitable for irrigation use. Sixty-one percent of the plotted points had SAR's of less than four; Toole, Liberty, and Cascade counties had values from four to greater than nine. Eastern points were variable ranging from four to nine and above; many locations in McCone, Dawson, and Richland counties exceeded nine.
- 4. Sulfate is particularly abundant in northern and eastern ground waters. Concentrations in excess of 500~mg/l are unsuitable for most uses. Twenty-nine percent of the plotted points exceeded 500~mg/l. Many eastern and northweastern points exceeded 500~mg/l.
- 5. Nitrogen in excess of 10 mg/l is unsuitable as a public water supply. Fifty-five percent of the plotted points showed values between .35 10.0 mg/l and seven percent of the points scattered throughout the areas exceeded 10 mg/l.
- 6. In excess of 5 mg/l, iron inhibits many uses. Nearly all points in the Statewide 208 area were less than 0.3 mg/l with a few scattered values of 0.3 5 mg/l. Most points in excess of 5 mg/l were either at the Cooke City or Hughesville acid mine drainages.
- 7. Public water supplies are recommended to contain less than 5 mg/l zinc. Seventeen percent of the plotted points exceeded 5 mg/l. Many of these samples were from acid mine drainages at Cooke City and Hughesville. Though many of the sites have values greater than .01 mg/l, there are insufficient zinc data to determine area trends.

Ground-water Use in Statewide 208 Area--In 1970 only about two percent of the water used in Montana was ground water. Though this is a relatively small percentage, ground water is a vital resource which will be further exploited as surface supplies become limited in quantity and quality.

Major ground-water uses in the study area are irrigation, municipal, industrial, rural, domestic, and livestock. Rural domestic requirements are satisfied almost totally by ground water and amount to 19.6 million gallons per day (mgd). Municipal systems supply 159,000 people 41.9 mgd (31 percent of their supply) of ground water. Industry requires 152.7 mgd of which 3.9 mgd are ground water.

Total water used for irrigation amounts to 12.4 million acre feet (22,165 mgd) over a six-month period. Although only one percent is ground water (222 mgd), this amount is about equal to the entire amount supplied for all other ground-water uses in Montana.

Based on well data, there has been a relatively constant rate of groundwater development for rural domestic and livestock uses. As more rangeland is improved and developed and people move to areas not served by municipal systems, this trend will continue. Similarly, increasing irrigation development, suburban development, and mining can be expected to place heavier demands on Montana's ground-water supplies. Ground-water Quality Problems in Statewide 208 Area--The difficulty and expense involved in ground-water monitoring have resulted in relatively few documented problems in the Statewide 208 area. Thirty specific problems are show in Table 29; these and general land use-related impacts are discussed below.

oil and gas—-Several phases of oil and gas production have the potential to adversely affect ground-water supplies. Though seismic exploration has not been identified as a problem to date, many thousands of such holes are drilled annually, and may, in isolated cases, cause ground-water quality problems. During the processes of getting oil to the surface, separating it from co-produced brines, and storing and transporting the product, ground-water problems can develop due to loss of brine and/or oil to aquifers.

There are an estimated 3,400 producing oil wells in Montana and about 1,000 brine disposals or evaporation pits in use. Given this magnitude of activity, a relatively small number of complaints have been recorded. However, many oil operations are in remote areas, away from used wells where problems are not likely to be reported. The overall impact in the Statewide 208 area is simply poorly known.

Though petroleum refining can cause ground-water problems due to spills and waste disposal, none have been reported in the Statewide 208 area. The lack of documentation may simply be due to the lack of investigation in the area. Potential contamination of ground water by transported petroleum products is great by virtue of the vast existing supply. During 1976, 29,736,442 barrels of crude oil were transported by state pipelines. Total pipeline mileage exceeds 3,000 miles. In addition, products are moved by rail and truck. Again, there have been few reported problems and no intensive investigations in the study area.

There are seven known ground-water problems resulting from petroleum product storage in the Statewide 208 area. In an area with about 3,000-4,000 steel buried storage tanks and 20-25 miles of underground pipe, seven problems seem to be of relatively minor significance.

<u>coal</u>--Vast reserves of subbituminous coal are found along the Rocky Mountain front near the Canadian border and between Great Falls and Lewistown. Total coal reserve base of the state is estimated to be 108 billion tons or 25 percent of the United States' known reserves.

Coal fields in the Statewide 208 study area with high to moderate potentials for development include the Bull Mountains (Musselshell County), North Central field (Liberty, Hill, Blaine, Choteau counties), Wibaux field (Wibaux County), Little Beaver field (Wibaux County), Four Buttes field (Wibaux County), Four Buttes field (Wibaux County), Four Buttes field (Wibaux County), If class in Dawson and Richland counties, Redwater River area (McCone and Dawson counties), and Weldon-Timber Creek field (McCone County). If coal production expands in the Statewide 208 area, it will probably occur at the Knife River Coal Company lignite mine near Savage in Richland County, at the Dryer Brothers' Circle West Ranch lignite mine in McCone County, or in the Wibaux area.

TABLE 29
SUMMARY OF GROUND-WATER PROBLEMS IN THE STATEWIDE 208 AREA

		Petroleum Related			
	Problem	Location	Date	Impact	Comment
١.	Brine leakage from injection wells	Near Cut Bank	1976	Saline soils and ground- water	Possibly caused by brine injection in the Cut Bank oil fields
2.	Brine seepage from unlined pits	Northeastern Montana, Goose Lake field	1975	Trees killed by brine seepage, abandoned wells were flowing water, and soil damage by salt water	Seepage from brine pits. Most problems corrected after initial field report completed
3.	Brine seepage from disposal pit	36N58E33 Goose Lake field	1975	Damage to domestic water well; high concentrations of sodium chloride	Well may have been damaged by leakage from the disposal pit. Oil company directed to either discontinue use of the dis- posal pit and backfill it, or to line the pit
4.	Alleged well pollution near oil fields	Cut Bank - Sweetgrass area		Unknown	Investigated by the WQB. Samples from these wells did not confirm pollution from petroleum activities; com- plaints have continued
5.	Brine seepage from unlined emergency pits	Dwyer oil field 32N58E	1975	Unknown; concern that rapid brine seepage may affect the Medicine Lake refuge	No specific problems were described and present status of the reported unlined pond is unknown

Problem	Location	Date	Impact	Comment
Oil Spill	Raymond field 36N54E	1975	None	Field investigation showed no problems with oil and brine discharge pits. No detailed information
Brine seepage from unlined pit	Outlook field 36N52E	1975	Land south of pit was barren for at least 100 feet by 50 feet. Deep, eroded trenches extending from pit	Pit was taken out of service after the site visit
Crude oil seepage and brine spills	Murphy field, North of Poplar	1975	Brine had spilled from ponds. One water injection well was found flowing water with a conductivity of 90,000 umhos. Shallow groundwater appeared to be degraded by brine leakage	Problems seemed to be local- ized. Main damage appeared to be to small tracts of land and some impacts on ground- water at the Murphy oil field
Gasoline pollution	Deer Lodge	April 1972	Strong gasoline odors in municipal water supply. Water surface in the well was covered with gasoline	Well was rehabilitated and ha been operating successfully
Diesel fuel spill (several thousand gallons)	Deer Lodge	1970- 1971	Migrating toward the Clark Fork River and threatening a municipal supply well	No detailed investigation of problem
Gasoline spill (22,000 gallons)	Missoula	Sept. 1973	Petroleum odors in water wells. Strong odors at times, nonexistent during most of the year	Petroleum company provided carbon filtration units for some wells to remove organics Gasoline has moved about 4000 feet in two years
Gasoline spill (126,000 gallons	Missoula)	Sept. 1972	Well contamination 3000 feet from spill	Pipeline leakage for 30-60 days. New wells drilled, carbon filters installed, odd became less noticeable

	Problem	Location	Date	Impact	Comment
13.	Gasoline leakage (10,000 gallons)	Conrad retail gasoline station	March 1975	Gasoline and oil in base- ment. Heavy fumes	Examined by WQB in June, 1975. Corrective program outlined.
14.	Diesel fuel spill (18,000 gallons)	Glendive, 2000 feet from Yellow- stone River, 3000 feet from Glendive Creek	1975	No known groundwater contamination	City engineer indicated he would examine the area. No known detailed investigation
15.	Diesel fuel pollution	Livingston ground- water drain	1977	Impact to surface waters at the drain outlet	Source unknown. May be related to fuel oil storage at a nearby railroad. Under active consideration by the MQB
			Agr	iculture Related	
16A.	Saline seep (164,000 acres)	Northcentral, Cocentral, and northeastern Montana	ntinuous	Impairs or eliminates productive plant growth. Contaminates wells with saline waters. Pollutes streams.	Problem is understood fairly well. Needed changes in farming practices have been slow.
16B.	Irrigation salinity (58,000 acres)	Phillips, Teton, Co Blaine, Deer Lodge, Beaverhead, Madison Jefferson and Meagh counties	,	Impairs or eliminates productive plant growth. Contaminates wells with saline waters. Pollutes streams	Problem is poorly documented. Has not been intensively studied.
17.	Pesticide disposal	Great Falls		Contaminated soils. Health hazard to pets and children	Pesticides flushed into an open seepage ditch

	Problem	Location	Date	Impact	Comment
18.	Infiltration of log spraying water	Bonner, wood products plant	1975	Odor and taste problems in domestic wells located near ponded effluent	Corrective steps taken to improve the operation. Company worked with community on improvement of water supply.
19.	Paper mill wastewater seepage	Frenchtown	1974	Complaints of phenol odors in domestic wells	No substantial cases of groundwater degradation peri- pheral to the Hoerner-Waldorf property
			Mining a	and Mineral Processing	
20.	Acid mine drainage	Numerous (see Schmidt and Botz, 1978)	Continuous	Seepage to streams, severely impacts aquatic life	It is seldom cost-effective to abate/correct these problems. Attempts are being made to abate acid drainage at Hughes-11, ville and Cooke City
21.	Opportunity tailings ponds seepage (4000 acres)	Opportunity	Continuous	Possible saturated solutions of calcium sulfate and small quan- tities of metals beneath and peripheral to ponds	No detailed investigations have been done. Movement of water is eastward or north- easterly to the Clark Fork River
22.	Warm Springs tailings ponds seepage (1600 acres)	Warm Springs	Continuous	Seepage of metals down- stream from middle pond to a lower pond. Overall impact unknown	No detailed investigation of groundwater conditions in the area. No major groundwater pollution problem is thought to be present
				Solid Waste	
23.	Solid waste disposal site	Livingston, adjacent to	1977	Groundwater was degraded substantially by both	Leachates downgradient from disposal site were typical of

	Problem	Location	Date	Impact	Comment
23.	(Continued)	Yellowstone River		organic and inorganic constituents. Seeps to Yellowstone River	other landfills in the U.S.
24.	Solid waste disposal sites	Anaconda, Butte, Cascade, Choteau, Darby	1977	Creation of leachates due to precipitation, high seasonal groundwater, or spring runoff	These communities have intermittent seepage of leachates. Have a low to moderate potential for pollution
			San	itary Waste	
26.	Domestic sewage, septic tank failure	South Libby flats (2,200 residents)	Continuing	Potential contamination of domestic wells	DHES recommended further monitoring
27.	Well flooding	Sewell's Addition #4, Helena Valley (41 acres)	1971 Continuing	Potential contamination of domestic wells	Further subdividing of this project has been delayed
28.	Sewage treatment systems failure	Opportunity (600 families)	Continuing	Threat of human health- fecal coliform contam- ination of wells	No definite plans implemented for installation of water or sewer systems
29.	Cesspool failures	H & R Addition, Hamilton (100 lots)	Mid-1960s Continuing	Sewage entering high groundwater proximity of Skalkaho Creek	Further study recommended by DHES
30.	Flood irrigation affecting sewage systems	Five Acre Tracts Livington (407 units)	1930s - Continuing	Contaminated domestic wells	Contaminated irrigation return flows enter Yellowstone River

To date, coal mining in the Statewide 208 area has been free from substantial water quality problems. The Knife River Coal Company's mine, producing 300,000 tons per year, is located five miles upstream from the Yellowstone River on an ephemeral drainage. The company has applied for a Montana Pollutant Discharge Elimination System (MPDES) permit for discharge of mine and runoff water through settling ponds. No major water quality problems have been noted at the operation. Two Bull Mountain mines in Musselshell County have operated without water quality problems, mainly because of their small size and location in a dry area.

Even though no major water quality problems are known to exist in the Statewide 208 area due to coal mining, problems that have been noted elsewhere could develop in the project area if mining is expanded. These potential problems include dewatered and polluted aquifers and disruption of the hydrologic balance in alluvial valley floors.

Should eastern lignite deposits be substantially developed, it is likely this low quality coal will remain in-state and be converted to electricity, gas, fertilizer, or some other higher grade product. Such conversion complexes can degrade ground-water systems by contaminating them with cooling tower blowdown, brine, ash, and wastewater.

Presently, only one coal conversion complex exists in the Statewide 208 area; the Montana-Dakota Utilities steam electric generating plant at Sidney has experienced no known water quality problems. With the large coal reserves and Fort Peck Reservoir available in McCone County, development of coal conversion facilities in the area is possible. However, since no construction plans have been finalized, it is difficult to predict the type and extent of possible water quality problems.

uranium—Jefferson County deposits of uranium were mined extensively after their discovery in the late 1950's; however, mining has since ceased. Other deposits in the Statewide 208 area include those in Mineral, Ravalli, Beaverhead, Lewis and Clark, Broadwater, and Jefferson counties, in eastern lignite deposits, and in southwestern phosphorite deposits. Although prospecting and leasing are active, no commercial deposits have been announced and it appears that development of underground or open-pit uranium mines in the next 10-15 years in the Statewide 208 area is unlikely. Nevertheless, the USGS (1968) states: "If the need were great enough, very large quantities of uranium could be recovered from the uraniferous lignite deposits of eastern Montana and from the phosphorite deposits of western Montana. Montana, therefore, is an important potential source for the future production of uranium."

Thus, potential future impacts must be considered. Such impacts could include: aquifer, dewatering, and liquid and solid waste disposal and storage.

potash solution mining-Mineable potash deposits are found in the northeastern counties of Sheridan, Daniels, and Roosevelt. However, the deposits are found in deep sedimentary rocks at the 7,000-9,000 foot

depth and are available only by solution mining techniques. Currently, no solution mining of potash occurs in the United States. However, the drive to nationalize Saskatchewan's potash industry, which presently supplies one-fourth of the world's potash needs, may lead to development of Montana's supplies. Solution mining involves well drilling, pumping a dissolving solution down a well, and removing brine solutions. The brine solutions are then evaporated and potash removed. Dangers to ground water include interaquifer exchange and direct aquifer contamination.

<u>minerals</u>—-As stated previously, there is substantial mining and processing of a variety of minerals in the Statewide 208 area. Various stages of the operations have the potential to degrade ground-water quality.

Mineral removal frequently results in acid mine drainages, of which there are many in the Statewide 208 area. Ground-water in these areas becomes polluted with acid water and metals. Processing activities, including crushing, washing, sorting, concentrating, leaching, and refining, all occur in the Statewide 208 area and each has liquid and/or solid wastes requiring disposal; however, at this time, no known ground-water problems have been documented.

There are seven concentrating facilities in the Statewide 208 area where ore is chemically and physically processed to concentrate a specific mineral. The Red Pine flotation mill separates gold; the Anaconda Company concentrator in Butte produces copper; the Babbit Mine near Thompson Falls produces tungsten; there is a gold stamp mill west of Townsend; and there is a flotation-cyanide mill near Virginia City. No known ground-water problems exist at these sites; however, it is possible disposal of concentrator waste materials is degrading subsurface systems.

There are a number of cyanide and acid leaching operations in the project area designed to produce silver, gold, and copper. During the operation, the opportunity exists for leaching of contaminants into ground-water; however, at this time, no such problems have been documented.

Similarly, the several refining facilities throughout the area produce potentially harmful by-products but each of the investigations has resulted in no problem documentation.

On the other hand, quality problems resulting from tailings and waste disposal have been documented. Water infiltrating these dumps creates a polluted water body that enters the ground-water system.

agriculture—Five facets of the agricultural industry have the potential to adversely affect ground water: dryland farming, irridation, fertilizer use, pesticide use, and feedlot operation.

1) dryland farming--About 11 million acres in the Statewide 208 area are used for dryland farming. Much of this land is farmed in a crop-fallow rotation system which is conducive to saline seep development and increased recharge to ground water. Saline seep waters have very high concentrations of dissolved solids, sulfate, nitrate, sodium, magnesium, and trace metals. The waters are unsuitable for nearly all uses and eliminate or inhibit vegetative growth. The basic hydrologic flow system consists of precipitation infiltration into salt-laden soil, dissolution of salt, percolation of salty water and lateral movement in the ground-water system, and reappearance of salt-laden ground water on ground surface. Saline seep detrimentally affects agriculture land, but also is a potential threat to water supply systems, ponds, reservoirs, springs and streams. Saline seeps are characteristic of shallow aquifer systems which are a major water source for rural and municipal use and are hydrologically connected to springs, ponds, and streams.

Total acreage affected by saline seep in Montana is estimated by various sources to be from 140,000 to 200,000 acres. The Conservation District survey estimated 164,400 acres in just the Statewide 208 area were being affected by saline seep. However, all reports agree that affected acreage is increasing annually. This increase is attributable not only to continuation of crop-fallow system, but to the fact that annually, thousands of acres of rangeland are being converted to dryland farming.

The wide-spread occurrence of saline seep and the tendency towards annual increase of the problem make it one of the most significant threats to Montana's ground-water supplies.

Although there has been considerable research on saline seeps, there have been few on-the-ground attempts at correction or prevention. Most solutions require less profitable crops or a change in standard farming practices and consequently, public acceptance of the solutions has been slow. Even with comprehensive acceptance and implementation of successful management practices, recovery of already affected aquifers will be slow and saline seep will continue to adversely affect Montana's ground water for many years.

?) irrigation—Crop irrigation, either by sprinklers or flooding, contributes Fertilizers, pesticides, and minerals to ground water. Unfortunately, few data are available to quantify these impacts.

It has been estimated that in an efficient irrigation system, 80 percent of the water is lost by evapo-transpiration. The remaining 20 percent that enters the ground-water system increased the concentration of the original salt load by as much as 500 percent. However, most irrigators, concerned about maintaining their water right, use excessive amounts of water. Typically, five acre-feet/acre (average crop need is two-three acrefeet/acre) are diverted annually with a return of two acre feet/acre to streams.

Extensive investigations have been conducted in many states in an attempt to determine specific impacts of irrigation on ground water. The impacts are highly variable and dependent on the site, operator, amount and quality of applied water, ground-water quality, and fertilizer and pesticide application techniques. It is highly probable with the large acreages of irrigated land (1,828,617 acres) in the project area, the variety of operating techniques used, and the extreme variation in site-

specific characteristics, that there are numerous cases of ground-water degradation. However, the impacts are virtually unknown and a necessary first step in solution of the problem is development of an understanding of the relationship of irrigation and ground-water quality in Montana.

- 3) fertilizers and pesticides—Little or no research has been conducted in the Statewide 208 area to determine the degree of impact of fertilizers and pesticides on ground-water systems. However, studies in other states have documented adverse impacts and the extensive use of fertilizers and pesticides in Montana warrants ranking their use as a potential threat to ground water.
- 4) feedlots--There are approximately 175 permitted feedlots in Montana. The Conservation Districts estimated there are 183 feeding facilities in Statewide 208 area which contribute runoff to streams; however, there have been few documented impacts of feedlots on ground water. A study by Montana Testing Labs did show that nitrate concentrations do increase below feedlots. Numerous studies in other areas also indicate that nitrate does move into ground water; the degree of movement is determined by soil type, amount of precipitation, number of animals, and length of confinement.

It is likely that some feedlots in the study area are contaminating ground water, but the extent of the problem remains to be quantified. In many cases, changes in management would probably serve to lessen or eliminate the problem.

forest products—As indicated in the previous section on silviculture, timber harvest is a major industry in Montana. Several steps in the process have the potential to degrade ground water. Excess water from log spraying can infiltrate to subsurface systems carrying organic chemicals. Surface and subsurface disposal of wood wastes, as a result of air restrictions on teepee burners, can result in leaching of organic pollutants into aquatic systems. Though not a recorded problem in the project area, surface waste disposal has caused domestic well contamination in the Kalispell area.

Production of posts and poles can degrade ground water during disposal wood wastes and loss of creosote and other preservatives. However, such problems have not been documented to date. Similarly, production of plywood and fiberboard can pollute ground water with leachate from wood and liquid wastes containing adhesives.

The only paper product operation in Montana is the Hoerner-Waldorf plant near Missoula. As part of the operation, wastewater is disposed of in 750 acres of storage and seepage ponds. The plant discharges 15.8 mgd of liquid wastes into these lagoons. The percolating effluent has created a ground-water body under and peripheral to the storage ponds. Though this waste water contains odor, taste, and color-producing compounds, it appears to be confined to the shallow aquifer in the area and there have been no documented cases of ground-water degradation.

solid waste--There are 203 waste disposal sites in the Statewide 208 area. Dominant refuse at most sites is normal community wastes. Potential pollution from landfills is a function of moisture, refuse material, vegetation, time, and management operations.

Leachate from landfills has been shown to percolate down to the ground-water table. In Montana, there have been two detailed investigations of ground-water pollution from landfills, Livingston, and West Yellowstone. In both cases, leachate showed an increase in dissolved solids, specific conductance, and COD. Leachate from the Livingston dump also had higher values for hardness, alkalinity, chloride, potassium, and total organic carbon while the West Yellowstone dump's percolate had increased carbon dioxide, lead, iron, and manganese. Leachate from both sites had reached subsurface aquifers.

During the summer of 1977, the Solid Waste Management Bureau examined 34 disposal sites for ground-water pollution potential. Table 30 summarizes this study.

<u>sanitary waste</u>—Several potential problems are associated with sanitary waste disposal. In particular, increases of nitrogenous compounds and total dissolved solids and contamination by microorganisms, organic compounds, and metals are problems most frequently encountered.

Municipal disposal systems in the Statewide 208 area consist of 20 sewage treatment plants and 102 treatment lagoons. There are few data on ground-water impacts of treatment plants, and no problems have been reported in the Statewide 208 area.

Lagoons are widely used by small communities and isolated industries. Again, little information exists on actual impacts of lagoons on ground water, but the main concern is the movement of nitrate into ground water. Researchers speculate that a body of polluted ground water forms beneath lagoons and is a potential threat to receiving systems. However, areas around lagoons are generally uninhabited and no problems have been reported in Montana.

Once treated, liquid wastes are generally discharged into surface waters; however, increasing population and increasing loads to streams have resulted in land disposal becoming more popular. There are land disposal systems operating in Missoula, Gregson Hot Springs, Great Falls, and Helena. Land application of wastes is apparently very effective and no resulting ground-water problems have been noted; however, nitrate contamination is possible.

Rural domestic waste disposal consists of septic tanks with drain fields, cesspools, or septic tanks with seepage pits. A majority of the systems are septic tank/drain fields. Potential septic tank impacts on ground water are similar to those of lagoons and land disposal. Nitrate increases are the most frequently encountered problem; however, bacteria and virus contamination also often result.

TABLE 30

POLLUTION POTENTIAL OF THIRTY-FOUR SOLID WASTE SITES IN THE STATEWIDE 208 AREA

Community	Groundwater Pollution Problems
Alder	Groundwater pollution during spring runoff and high seasonal groundwater. No control of septic tank pumpings or hazardous wastes
Anaconda	Infiltration of runoff and formation of leachate
Butte	Slight pollution potential from infiltration of runoff
Cascade	Possible long-term groundwater pollution problem due to infiltration of precipitation
Choteau	Slight potential for groundwater pollution due to infiltration of precipitation
Conrad	Minor pollution potential due to infiltration of precipitation
Cut Bank	Very low potential for pollution
Darby	Pollution potential possibly high due to creation of leachates
Deer Lodge	Very low possibility of pollution
Dillon	Slight potential for pollution
East Helena	Very low potential for leachate production
Eureka	Low to moderate pollution potential from leachate, groundwater contact
Fresno	Intense use of pesticides in this area may lead to disposal in the Havre sanitary landfill which is in the Havre water supply basin. Pollution poten tial high enough to recommend closing or re- locating the site
Glasgow	Low pollution potential, but additional studies needed
Great Falls	Some pollution potential due to infiltration of precipitation and creation of leachate
Havre	Low pollution potential

Community	Groundwater Pollution Problems
Helena	Low to moderate pollution potential
Helena (Scratch Gravel Site)	Low pollution potential
Lewistown (Harfort)	Low pollution potential
Lewistown (Mintyala)	Low pollution potential
Libby	Low pollution potential
Lima	High pollution potential due to infiltration and high water levels
Livingston	High pollution potential
Lozeau	Low to moderate pollution potential
Missoula (City Disposal)	Low potential
Plentywood	Low pollution potential
Sand Coulee	High pollution potential
Shelby	Low pollution potential
Sheridan	High pollution potential due to high seasonal groundwater
Sidney	Low pollution potential
Stanford	High pollution potential due to high groundwater
Ulm	Uncertain pollution potential

Victor Moderate to high due to infiltration of precipitation

Wolf Point Low potential

There is no accurate estimate of the number of individual septic tank systems in Montana and no attempt has been made to quantify or qualify their impacts on ground water.

Community septic tank systems associated with subdivisions have received some attention. The interest has been stimulated by the rapid increase of subdivided areas (Table 31). Land division has been most active in Mineral, Missoula, Ravalli, Deer Lodge, Jefferson, Lewis and Clark, Powell, Cascade, Park, and Musselshell counties in the Statewide 208 area.

TABLE 31
SUBDIVISION GROWTH IN MONTANA

Year	Subdivisions Approved	Acres Subdivided
FY 75-76	915	6,204
FY 76-77	1578	9,430
FY 77-78	2768	14,970
FY 78-79	3447	18,410

The figures in Table 31 include only subdivisions approved by DHES. Many others are denied or are exempt from review. DCA has estimated 93 percent of all subdividing has occurred outside the review process.

With increasing subdivision activity and limitations of the review process, regulations of domestic waste disposal is of major concern. Five suspected problem areas in the Statewide 208 area have been examined to date. The Helena valley is an area with widespread usage of septic tanks and individual wells. Ground water is shallow in the valley and most wells are only 25-60 feet deep. Health concern prompted the USGS to sample wells in the valley in 1973 and 1974 for possible contamination. Tests showed the ground water to be of good quality and uncontaminated by domestic waste. However, development of the valley is rapidly increasing and population is expected to reach 4,000 by 1990. It is likely contamination is just a matter of time unless future development is strictly regulated.

A minimal amount of sampling in a mobile home court southwest of Great Falls showed a substantial amount of water was put into the ground-water system by septic tanks. Though it was suspected some pollution may have occurred, it was not quantified.

The old community of Melrose, on the Big Hole River, has had health problems in the past as a result of waste contamination. In addition to being located on coarse gravel over a shallow ground-water system, most wells are improperly sealed and located within 50 feet of drain fields or cesspools.

Lincoln also has a high ground-water table and rapid growth has caused concern for well contamination. Even though sampling in 1974 showed no contamination, concern may be justified with future growth.

Libby Flats near Libby has recently experienced contamination of wells. The five subdivisions in the area are located on sandy soils over high ground-water tables. In addition, the area is a designated flood plain. Continual growth of the area may warrant a community disposal system in the future.

The significant potential threat of subdivisions on ground-water systems prompted the technical study described in a following section. Basically, the study will attempt to quantify subdivision impacts and recommend statewide measures to control the problem.

<u>storage reservoirs</u>—There is strong evidence to indicate that reservoirs do enhance movement of water into ground-water systems and can, as a result, change the quality of those systems.

There are about 250 reservoirs in the state with a total surface area of about 1,000,000 acres. Most of the impoundments are not lined and it is likely a substantial amount of water is entering the ground. The process of evaporation often increases salinity of the stored waters, particularly in smaller ponds, and this percolating water could degrade receiving aquifers as well as streams. However, no in-depth investigation of reservoir impacts has been made in Montana. Though aerial surveys have shown saline deposits in stream channels downstream from reservoirs, no specific degradation problems have been reported.

POINT SOURCE EVALUATION

The WQB's Construction Grant and Waste Discharge Permit Programs are effectively managing point source pollution in Montana. Currently, less than 100 stream miles are degraded by point source pollution and these problems are expected to be easily eliminated by 1983.

The Construction Grant Program is based on a priority system for fund allocation since community needs outweigh available funds. The system considers sewage treatment to be of the highest priority except in cases of extreme public health hazard. The annually revised priority list contains all projects expressing a need; grant monies are obligated to top priority projects until funding is expended. Table 32 lists projects in the Statewide 208 area that were ranked in the FY 1978 Priority List. The priority totals are based on stream segment designation, water use classification, population, and scope of the project in abating pollution. The Butte project was highest on the 1978 priority list.

TABLE 32

CONSTRUCTION GRANT PROJECTS IN THE STATEWIDE 208 AREA

Community	Priority Total	Grant Step
Butte-Silver Bow Co.	63	3
Eureka	54	3
Three Forks	54	1
Stevensville	53	. 3
Thompson Falls	49	3
Havre East	47	2
Anaconda	45	1
Livingston	44	2
Dillon	44	1
Libby	44	1
Hamilton	44	1
Choteau	44	1
Townsend	44	1
Boulder	44	1
Plains	44	1
Whitehall	44	1
Lolo	43	1
Sheridan	43	1
Sunburst	43	1
Darby	43	2
Drummond	43	1
Hobson	43	1
Cooke City - Silvergate	43	1
Lewistown	42	1

Community	Priority Total	Grant Step
Harlowton	42	1
Chester	41	-
Roy	41	1
Rocker	41	1
Deer Lodge	40	1
Wolf Point	40	1
Chinook	40	1
East Helena	40	1
Cut Bank	39	1
White Sulphur Springs	39	-
Big Sandy	39	-
Gildford	39	1
Malta	38	1
Warm Springs	38	1
Sweetgrass	38	-
Great Falls	36	1 & 3
Valier	36	-
Winnett	36	1
Judith Gap	36	-
Sidney	35	1
Harlem	35	1
West Glendive	35	1
Plentywood	35	-
Fairview	35	1
Power-Teton County Water Assn.	35	1
Circle	34	1

Community	Priority Total	Grant Step
Terry	34	1
Stanford	34	-
Denton	34	-
Saco	34	-
Dodson	34	-
Savage	34	i
Fairfield	32	-
Nashua	32	-
Cherry Creek RID (Glasgow)	32	-
Missoula Sewers	31	1 & 3
Willow Creek	30	1
Dillon Sewers	29	-
Troy	29	-
Livingston Sewers	28	-
Lolo Sewers	28	-
St. Regis	28	-
Corvallis	28	ì
Ulm	28	-

The grant process is divided into three steps:

- Facilities planning is a detailed planning effort to solve particular community problems. Existing systems are analyzed, growth and development trends are projected, and treatment alternatives are analyzed, and a recommended solution is derived.
- 2. System design is initiated if the Step 1 process is approved; plans and specifications of a selected treatment system are prepared.
- 3. <u>Construction</u> obviously incorporates the major portion of the project costs. Table 32 indicates the step each project had achieved at the time of this writing.

The Montana Pollutant Discharge Elimination System (MPDES) has all major significant point source dischargers under permit. Those in the Statewide 208 study area are shown in Table 33. The WQB undertakes active compliance inspection to insure that permit conditions are being obtained.

SPECIFIC TECHNICAL STUDIES

As a public health oriented agency, the Water Quality Bureau's emphasis in the past has been on point source pollution. Consequently, there are relatively few data available which adequately identify the nature and extent of nonpoint source problems in Montana. The Statewide 208 project has attempted to fill this data gap by initiation of several technical studies designed to show the extent of nonpoint source problems in the study area, determine what types of pollutants were most prevalent, and illustrate the relationship between land use and nonpoint source pollution.

Some of the studies have been recently initiated and will require continuation in the next year to meet their objectives. In other cases, a one-year study simply was not sufficient to meet intended objectives and these projects will be continued for at least another year and may ultimately become part of the Bureau's regular monitoring program.

The objectives, results, and recommendations of each study are summarized in the following text. For a more detailed account of the projects, the reader is referred to the project's specific report listed in the Bibliography.

RIG HOLE RIVER STUDY

Many streams in the Statewide 208 area are adversely affected by excessive dewatering. Though some of the dewatering is attributable to natural

TABLE 33

Discharger	Basin
unicipal	
Dillon	Upper Missouri
Missoula	Lower Clark Fork
Silver Bow Metro	Upper Clark Fork
Hamilton	Upper Clark Fork
Deer Lodge	Upper Clark Fork
Livingston	Upper Yellowstone
Great Falls	Missouri-Sun-Smith
Helena	Missouri-Sun-Smith
Havre	Milk
Glasgow	Milk
Glendive	Lower Yellowstone
Libby	Kootenai
Conrad	Marias
Cut Bank	Marias
Lewistown	Middle Missouri
Wolf Point	Missouri-Fort Peck
on-Municipal	
Anaconda Company	Missouri-Sun-Smith
Phillips Petroleum Company	Missouri-Sun-Smith
Anaconda Company (2 discharges)	Upper Clark Fork
Hoerner Waldorf Corporation	Lower Clark Fork
T. R. Daily	Lower Clark Fork
St. Regis Paper	Kootenai

losses, irrigation withdrawals are the primary cause of decreased water levels. Though flow reduction is common to many streams, the effects on water quality are poorly understood. In an effort to document the effects of flow reductions, the Water Quality Bureau initiated the Big Hole River Study.

The Big Hole River, a nationally known Blue Ribbon trout stream, has periodically experienced low flows due to irrigation withdrawals. Though possessing a prime fishery in the past, Department of Fish and Game surveys indicate a diminishment of aquatic habitat to the point that the fishery is described as average at best. Since the Big Hole River has exhibited extreme dewatering in the past and since meterological data in Spring of 1977 indicated the summer would see drought in southwestern Montana, the Big Hole River was chosen for the study.

The study consisted of two aspects. The technical aspect was intended to document water quality impacts of depleted stream flows in the Big Hole River at its mouth near Twin Bridges. Appropriate biological, physical and chemical parameters were measured periodically during the 1977 irrigation season. These data were to provide support to the study's other aspect-education. For this part of the study, the Bureau intended to produce a color film documenting the effects of irrigation drawdown in the Big Hole River. The film is discussed in the Public Participation section.

Land Use and Water Quality

The Big Hole River (Figure 5) drains 6,413 km. (2,476 square miles). Cattle grazing and hay production are major land uses in the drainage. The number of irrigation diversions between Divide Dam and the mouth of the Big Hole River increased from 26 in 1970 to 44 in 1973. It is this portion of the stream which is a nationally recognized trout fishery. The WGB considers the Big Hole River to be of generally excellent quality except for periodic excessive stream temperatures expected to be due, at least in part, to irrigation withdraws.

Effects of Dewatering

The initial effect of dewatering is, obviously, reduction of aquatic habitat. The loss is reflected not only in available space for fish and other aquatic organisms but in the stream's primary productive capacity. Bahls (1978) estimated that when one square meter of Big Hole River bed becomes dry, about one third of a gram of algal production is lost for each day of exposure. In terms of fish loss, this represents about 0.03 pounds for every day an acre of river bottom is exposed, or about 11 pounds per year.

Subsequent to the initial impact of habitat loss, dewatering effects several water quality changes. In the case of a trout stream such as the Big Hole River, rising temperature due to dewatering is a most lethal impact. During 1977, maximum daily temperatures that exceed the upper limit for optimum growth of brown trout (170c) were recorded almost consecutively from June first to mid-September in the Big Hole River. Though maximum temperatures known to be lethal to brown trout (23.50c) were not observed in 1977, a peak

Figure 5. Big Hole River drainage.

of 23.4°C was recorded in August. Higher temperatures have been recorded in the past. It is likely these elevated temperatures are accompanied by dissolved oxygen decreases which would certainly have a detrimental impact on fish populations.

In addition to temperature increases, specific conductance, calcium, sulfate, and other common chemical parameters tend to increase during dewatering. Specific conductance in the Big Hole River increased from 186 µmhos/cm to 283 µmhos/cm during the 1977 irrigation season.

According to the 1977 summer data, the Big Hole River is nitrogen limited during the irrigation season. With cultural additions of inorganic nitrogen to the river, increased algal growth could be expected. This, coupled with flow reductions and increasing temperatures, could result in critical dissolved oxygen problems in the river.

The lower Big Hole River did not become critically dewatered during 1977 as anticipated. Though some late summer rains helped maintain flows, it is possible irrigation itself was responsible for the river's relative wellbeing. When drought threatens in the lower Big Hole River Basin, ranchers begin flood irrigating much earlier than in normal years--April rather than around May 15 to June 1. Though this would seem to insure reduced flows in the stream, ranchers believe that heavy application of water in early spring serves to recharge ground-water systems and sustain surface flows during dry summer months. Though there are not yet sufficient data to confirm the aluvial recharge theory, it is a likely possibility in the lower Big Hole River Basin at least. A commonly accepted practice to reduced dewatering is to change from flood to sprinkler irrigation systems. Certainly, in the case of the Big Hole River at least, the environmental effects of flooding vs. sprinkler irrigation need to be carefully examined.

Although the Big Hole River study has probably asked more questions than it answered, it has served to emphasize the close relationship that exists between water use and water quality. Further, the relationship can be very unique to one system and is not conducive to broad generalization. In view of the Big Hole River's importance and its uniqueness, additional study is not only warranted but would be of Value.

NORTHERN BOULDER BATHOLITH STUDY

The Boulder Batholith (Figure 6) has, in the past, experienced intense mining activities. The primary objective then was gold, leaving behind ores laden with zinc, copper, silver, lead, and other metals.

Increasing demand and prices for gold and other base metals have renewed mining interest in Boulder Batholith. In an effort to quantify the relationship between mining and water quality, the WQB initiated the Boulder Batholith study to take advantage of potential developments in the area and obtain data on existing conditions. Four drainages in Batholith were examine during the summer of 1977. Aerial and ground surveys were used to locate and describe mines, adits, tailings, dumps, and receiving streams. Waters in the drainages were analyzed for flow rate, pH,

Figure 6. Northern Boulder Batholith study area (within dotted circle).

conductivity, sulfate, silver, arsenic, cadmium, copper, iron, mercury, manganese, lead, zinc, and periphyton composition.

Nearly all streams in the study area are affected by past and current mining activities. Fifty-six of 66 stream sample sites had metal concentrations exceeding those known to adversely affect aquatic organisms. Some streams were being severely stressed by acid mine drainage.

Boulder River Drainage

The Boulder River Drainage is well documented as having degraded water quality due to mine waste.

"Toxic metals discharged from mine seeps upstream of Boulder, Montana, are present in the Boulder River in concentrations reported to cause avoidance reactions to migrating fish, thus, blocking existing or potential spawning runs from downstream. Fish food production, fish growth, and spawning success are inhibited severely in some tributaries in portions of the Boulder River. Water quality impairment is due principally to input of sediment and toxic metals from the High Ore and Cataract Creek drainages (Braico and Botz, December, 1974)."

The Boulder River above Basin is relatively free from mining-related pollution. Basin Creek carries an appreciable amount of iron and zinc, probably due to seeps from the Josephine Mine near Clear Creek and the Morning and Bullion Mines near Jack Creek.

The Crystal Mine severely impacts Uncle Sam Gulch and lower Cataract Creek. "Aquatic insects were not present in Uncle Sam Gulch below the Crystal Mine and were not found in Cataract Creek 3 miles below the confluence with Uncle Sam Gulch (Elser and Marcoux, April, 1972.)" The Eva May Mine also contributes a metal load to Cataract Creek.

High Ore Creek is sterile below the Comet Mine. The stream flows through old mine tailings picking up sediment and heavy metals.

In comparing parameter concentrations and recommended limits, all sites except for Boulder River above Basin, Basin Creek at Winters Camp, Jack Creek above and below Vindicater Mine, and Basin Creek above the reservoir, had metal concentrations exceeding those known to cause an impact on aquatic organisms.

Prickly Pear Creek Drainage

Prickly Pear Creek and Clancy Creek were sites of intense placer mining activity for many years. Stream beds have been severely disturbed and covered with sediment. Abandonment of placer mines years ago has allowed these two streams to naturally recover to some extent.

Spring Creek is severely impaired by mine waste and contributes a tremendous load of sediment and heavy metals to Prickly Pear Creek.

Spring Creek is stressed by mine seeps from Alta Mountain, Wood Chute Creek, and the Washington Mine. A small stream flowing through tailings piles dumped in Corbin severely impacts Spring Creek below that town.

Gregory Mine and many smaller mines deliver an appreciable amount of pollutants to upper Clancy Creek. Observations indicate Clancy Creek contributes a pollutant load to Prickly Pear at certain times of the year.

Even though the Froehner and Nellie Grant Mine seeps flow into the headwaters of Lump Gulch Creek and have an impact on these headwaters, the stream appears to be unstressed in its lower reaches.

Ten Mile Creek Drainage

Upper Ten Mile Creek and its tributaries were relatively pollution free at the time of sampling. Seeps from two mines, Porphry Dike and Peerless, have a slight influence on the upper reaches of Ten Mile Creek. These problems would be especially prevalent during spring runoff.

The most drastic pollution problems in the Ten Mile Drainage were observed in and very near Rīmini. A seep from the mine above Rīmini flows into Ten Mile Creek about one-quarter of a mile above the City of Helena's water diversion. This mine and the three mines (Grant, Lee Mountain, and Valley Forge) in Rīmini, degrade Ten Mile Creek for a number of miles downstream.

The Justice Mine seep near upper Minnehaha Creek is very concentrated in metals and acid. Even though the seep went underground before reaching the creek, the effects were noticed (e.g., zinc concentration of .34 mg/l at the mouth of Minnehaha Creek). During period of high runoff, one can expect concentrations of metals and acid in Minnehaha Creek to increase. Minnehaha Creek is also a source for Helena's drinking water.

With the exception of Grizzly Gulch, lower Ten Mile Creek and its tributaries appeared unstressed by mine related pollutants. Grizzly Gulch is impaired by sediment and from.

Little Blackfoot River Drainage

With the exception of the headwaters of Telegraph Creek, the Little Blackfoot River and its tributaries are relatively free from pollution. Lily-Orphan Mine has degraded two to five miles of Telegraph Creek.

Most mine seeps in the drainage are in an area where they do not flow into any stream. This appears to be the reason why stress on waters in the Little Blackfoot Drainage are minimal.

Large mining companies and many small miners are actively exploring and mining in the Northern Boulder Batholith. Some operations are using existing addits, tailings, and dumps. Most abandoned mine shafts have since filled with ground water having low pH and high concentrations of

metals. Future use of such shafts will require removal of this contaminated water which could severely degrade receiving streams.

Confidentiality between small miners and the Department of State Lands makes it impossible for the WQB to advise miners on the control of wastes unless so requested. The most the WQB can do at this point is to continually monitor receiving waters in order to be in a better position to advise miners of necessary control measures should the Hard Rock Law be revised to include DMES.

STILVER BOW CREEK STUDY

Silver Bow Creek has long been considered to be a biological desert, due mainly to heavy metal pollution from mining. In recent years, the Anaconda Company has expended a considerable effort in restoration of the stream. Though numerous studies have examined water quality improvements in Silver Bow Creek and the Clark Fork Drainage, few have dealt with chemical characteristics, particularly in Silver Bow Creek.

During the summer of 1977, the WQB contracted with Montana State University for sampling of 21 stations in the Upper Clark Fork drainage (Figure 7). In addition to taking flow measurements and temperature readings at the sites, samples were analyzed for pH, specific conductance, cadmium, copper zinc, nitrogen, ammonia, nitrate, and phosphorous. Anaconda Company smelter discharges were the major sources of metal pollution. Particularly high concentrations of zinc and copper were being discharged to the Opportunity Ponds (Table 34). Anaconda Company was on strike for a period during the study.

TABLE 34
HEAVY METAL POLLUTION FROM ANACONDA COMPANY SMELTER

Metal	Site	Range kg/day	Average kg/day
Zinc	15	1.67 - 3348	995
	16A	15.75 - 105	59
Copper	15	7.62 - 8658	2290
	16A	8.22 - 2745	800
Cadmium	15	0.07 - 4.92	1.10.
	16A	0.36 - 6.29	2.44

Table 35 compares water quality before the strike and just prior to start-up of plant operations.

TABLE 35

COMPARISON OF SMELTER DISCHARGE QUALITY
BEFORE AND AFTER COMPANY STRIKE (SITE NO. 15)

Metal	Average of 3 runs before strike	Average of 6 runs after strike
Zinc	6.76	1414
Copper	76.58	3397
Cadmium	0.34	1.48

Stream data above and below the Colorado tailings indicate large amounts of zinc (145.34 kg/day), moderate amounts of copper (11.37 kg/day), and small quantities of cadmium (1.17 kg/day) are leaching into Silver Bow Creek.

The Butte Metro sewer and raw sewage ditches from Anaconda are major sources of nutrients; as much as 611 kg/day of Kjeldahl nitrogen and 216 kg/day of orthophosphate were recorded at site No. 3.

Though the potential for stream pollution in the study area is substantial, the Opportunity and Warm Springs ponds are highly efficient in removing nutrients and heavy metals (Table 36).

TABLE 36
SETTLING EFFICIENCY OF OPPORTUNITY AND WARM SPRINGS PONDS

Parameter	% Removed - Opportunity Pond	% Removed - Warm Springs Ponds
Cadmium	92.2	69.0
Copper	99.9	91.3
Zinc	99.7	98.2
Kjeldah Nitrogen	94.8	78.0
Ammonia	95.7	94.3
Nitrate + Nitrite	83.4	83.5
Total Phosphorous	99.9	93.4
Orthophosphate	94.1	95.0

STORMWATER RUNOFF

The desk-top assessment of stormwater runoff pollution (described in a previous section) is a workable screening tool for identifying potential problems; as such, it is the first step necessary in a comprehensive assessment of statewide stormwater pollution. The next steps, problem quantification and correction, have been recently initiated through a contract with Wright-McLaughlin Engineers. Two cities, Helena and Anaconda, were identified in the initial assessment as potential problems, and are the sites for a detailed study of actual stormwater runoff conditions. Objectives of the study are to quantify specific water quality impacts in the two basins, apply the impacts on a statewide basis, and develop general statewide guidelines for dealing with stormwater runoff.

In addition to any existing water quality data, runoff from both communities is being sampled during summer storm events and spring runoff. The samples are being analyzed for nutrients, metals, BOD, and sediment. These data will be evaluated to detect special water quality problems and, through use of a computer model, predict pollutant loadings under present and future conditions. Data to be used in the model are listed in Table 37. Subsequent to data evaluation, various structural and management alternatives will be reviewed for effectiveness in eliminating the impacts to receiving waters.

The assessment's ultimate step, and most difficult one, will be to compare runoff data and model results with statewide urban runoff problems. Since most urban situations are unique in one or more characteristics, the comparison may be superficial; however, the model will at least have been tried in one of the most difficult situations with Anaconda. The area has a variety of land uses, including extensive mining operations, which contribute in various degrees to the runoff problem. If the model can effectively predict pollutant loadings in Anaconda, hopefully it will be usable statewide.

Once stormwater impacts have been identified, control and abatement guidelines will be developed. Though the guidelines will be oriented towards both prevention and remedial measures, a major emphasis will be placed on the preventative aspect to avoid creation of future storm water runoff pollution problems. In view of the state's growth potential, a strong preventative program for storm water runoff pollution will represent a significant water quality achievement in Montana.

TABLE 37

DATA USED IN URBAN STORMWATER RUNOFF COMPUTER MODEL

Precipitation

1, 2, and 10-year storms

Highest 30-minute intensity

Evaporation rates

Channel/storm Sewer Specifications

Slope direction

Length

Depth

Roughness

Pipe size

Catchment Characteristics

Width

Area and volume

Percent imperviousness

Slope

Surface resistance

Detention depth

Infiltration rates

Runoff Quality Data

Number of days since last rain

Average BOD in catch basin

Exponential coefficient of pollutant washoff

Street sweeping frequency

Dust and dirt loading

Concentration of selected quality parameters

Amount of suspended solids

Erosion data

Land Use

Types of land use

Total gutter length

SUBDIVISION GROUND-WATER POLLUTION

Though subdivision construction results in surface runoff problems, these impacts can be minimal and short term with proper practices. A more critical quality threat from subdivision development is pollution of ground water by subsurface disposal systems.

The preliminary subdivision assessment, described in a previous section, evaluated the pollution potential of 32 major subdivisions in the Statewide 208 area. That study's major objective was to subjectively evaluate several developments and rank them according to potential for causing ground-water pollution.

Using that study's results, a more in-depth evaluation of subdivision pollution was initiated in July, 1978. Five of the top priority subdivisions listed in the preliminary report were selected for ground-water monitoring. South Libby Flats, number one priority, and Opportunity, number three priority, were not selected because of planned or on-going studies of a similar nature in those areas. The five subdivisions to be evaluated are: Sewell's Addition No. 4 and Lambkins (Lewis and Clark County), H & R Addition and Hawken Lane Estates (Ravalli County), and Five Acre Tracts (Park County).

Existing and new wells and sandpoints will be used to obtain water samples which will be analyzed for fecal coliforms, chemical oxygen demand, nitrate, ammonia, TDS, chlorides, and pH. At least five sites in each development will be sampled bimonthly in the next year.

Depending on sampling results, additional analyses may be performed in these subdivisions and should the information prove valuable, other developments listed in the preliminary report may be added to the monitoring program. The objective is to use these new and any existing data to quantify the actual effects of subsurface disposal systems on ground water.

The monitoring data will then be the basis for an evaluation of the effectiveness of existing guidelines or regulations for the protection of ground-water systems and development of management programs to deal with existing problems.

BIOLOGICAL MONITORING

The following discussion is extracted from the report "Biological Water Quality Monitoring in Southwest Montana, 1977-1978" (Bahls, et al., 1978).

The national goal of fishable and swimmable water by 1983 presumes that basic biological communities and processes that permit these uses are maintained in a healthy balance. For example, it presumes that the small aquatic animals that fish eat will be present in variety and abundance, and it presumes that algae will not become a nuisance to boating, swimming,

and fishing. Until recently, basic biological processes such as photosynthesis and aquatic life forms lower than fish had been given little consideration in water quality planning and management, yet these processes and life forms are basic to the integrity of the entire aquatic ecosystem. Any effects here on the "ground floor" likely will have repercussions on up the food chain.

Chemical and physical properties of water affect living organisms in ways we are just beginning to understand. Aquatic organisms are capable of integrating the many and diverse factors of their environment and of expressing their combined effect in terms of growth, reproductive success, and genetic diversity. Aquatic organisms are known to be differentially sensitive to various pollutants, hence some of the more sensitive and tolerant taxa have become useful as water quality indicators. Lower life forms are particularly useful as indicators because they are almost always present in statistically significant numbers.

To maintain water quality for fish and aquatic life is public policy of the State of Montana [Sec. 69-480] $(\overline{1})$, R.C.M. $\overline{1}$ 947]. Pollution is defined in part as "contamination, or other alteration of the physical, chemical, or biological properties of any state..." [Sec. 69-4802(5), R.C.M $\overline{1}$ 947]. If we are to measure our success at protecting aquatic life and controlling pollution, we need a good yardstick. What better yardstick than the biological organisms and processes themselves? Yet there has been no comprehensive, systematic, and continuing biological monitoring to date in Montana.

The Montana Biological Monitoring Program is designed to help fill this need. The program consists of a network of stations, a battery of parameters, and a sampling strategy.

The network includes 79 stations on 60 streams statewide, selected from completed water quality inventories and management plans (Water Quality Bureau, 1976) on the basis of likely improvement or degradation of water quality. Sites monitored for biological parameters by the U.S.G.S. were considered in station selection in order to complement state and federal programs. Stations are grouped geographically into five loops, each with about 16 stations (Figure 8).

Data are gathered for seven biologically-related parameters: streamflow, common ions (including specific conductance and total alkalinity), algal nutrients, algal growth response to nutrient additions (algal assay), periphyton production, periphyton community structure, and macroinvertebrate community structure.

Stations are monitored seasonally, once in summer, once in fall, and once in spring. Ice has proven to be a serious impediment to sampling, expecially to flow gaging, periphyton production measurements, and macroinvertebrate collecting. Consequently, winter sampling will not be pursued, even though it is a season of stress for aquatic organisms.

STATE OF MONTANA

Realistically, with available manpower, only one or two loops can be monitored each year, hence each loop will be resampled every fourth or fifth year. Subsequent reports will evaluate changes in water quality over the intervening periods. Obviously, the program is not designed for rapid detection of acute problems but rather for evaluation of chronic, long-term trends.

The Southwest Loop was the first to be sampled in the biological monitoring program. This loop includes some of the most popular and productive cold water fisheries in Montana. Also represented is a nearly complete cross-section of Montana water quality problems: sediment, temperature, dewatering, nutrients, coliforms, eutrophication, and acid mine drainage. The only major pollutant that is not a serious problem in southwestern Montana is salinity.

All but four of the stations in the Southwest Loop are included in the Upper Missouri Tributaries drainage basin. Two stations, one on Silver Bow Creek and one on the Upper Clark Fork River, are located in the Upper Clark Fork basin. The two stations on Prickly Pear Creek near Helena are located in the Missouri-Smith basin.

Parameters covered are listed in Table 38. All parameters but common ions were collected seasonally, in August or September, 1977 (summer), November or December, 1977 (fall), and March or April, 1978 (spring). Common ions were determined for the summer trip only.

There is clearly a need for consolidating the obtained information so that stations in the Southwest Loop can be compared at a glance and prioritized from the standpoint of management urgency. Two such consolidation schemes are presented below.

Both schemes incorporate mean values for the following key indicators:

- Specific conductance (micromhos @ 25 C)
- Total soluable inorganic nitrogen (mg/l) Total phosphorus (mg/l)
- 4. Algal assay control maximum standing crop (mg/l)
- Chlorophyll a accrual (mg/m²/day)
 Biomass accrual (mg/m²/day)
- Autotrophic Index (Biomass accrual/Chlorophyll a accrual)
- 8. Chlorophyll a/Pheophytin a ratio
- 9. Carotene/Chlorophyll ratio 10. Percent relative abundance Achnanthes species
- 11. Percent relative abundance Nitzschia species
- 12. Number of diatom species
- 13. Diatom species diversity (\overline{d})
- 14. Percent relative abundance intolerant macroinvertebrates
- Number of macroinvertebrate genera 16. Macroinvertebrate genus diversity (d)

In scheme A, the assumption is made that the least amount of nutrients and production, whatever the cause, is the most desirable case. All mean values are listed in order from lowest to highest for each indicator.

TABLE 38

PARAMETERS COVERED IN SOUTHWEST BIOLOGICAL MONITORING LOOP

```
Instantaneous Streamflow (m³/sec)
```

Common Ions

- -Cation Ratio: Ca:Mg:Na
- -Anion Ratio: HCO3:SO4:Cl
- -Specific Conductance (micromhos @ 25C)
- -Total Alkalinity (mg/l CaCO3)

Algal Nutrients

- -NO2+NO3-N; NH3-N; Kjeldahl-N; PO4-P; Total P (all in mg/l)
- -Total Soluable Inorganic Nitrogen (NO2+NO3-N plus NH3-N): PO4-P Ratio
- -TSIN and TOTAL P as % of recommended maximum instream levels (0.35 mg/l TSIN and 0.05 mg/l Total P)

Algal Assay

-Control

Mean maximum standing crop (mm5C) (mg/l)

Statistic significance of mm5c

Limiting nutrient

-Nutrient Spike

Mean maximum standing crop (mm5c) (mg/l)

Statistical significance of mm5c

Limiting nutrient

Periphyton Production

- -Chlorophyll a Accrual (mg/m²/day)
- -Biomass Accrual (mg/m²/day)
- -Chlorophyll a/Pheophytin a Ratio (0D663b/0D663a)
- -Carotene/Chlorophyll Ratio (OD430/OD663)

Periphyton Community Structure

- -Rank of diatoms relative to other algae
- -Percent relative abundance (PRA) of major diatom species
- -PRA Achnanthes Species
- -PRA Nitzschia Species
- -Number of diatom species
- -Diatom species diversity (d)

Macroinvertebrate Community Structure

- -Mean PRA major macroinvertebrate orders
- -Mean PRA tolerant, facilitative and intolerant macroinvertebrates
- -Number of macroinvertebrate genera
- -Macroinvertebrate genus diversity (\overline{d})

Indicators where the highest value is presumed to reflect the best water quality are numbers 8, 9, 10, 12, 13, 14, 15, and 16 in the list above. Indicators where the lowest value is presumed to reflect the best water quality are numbers 1-7 and 11. The station with the extreme (highest or lowest) value indicating the poorest water quality is given a ranking of one for that indicator. The station with the second highest or lowest value indicating the second poorest water quality is then given a rank of two, and so on until all 17 stations are ranked for that indicator. When all 1 station have been ranked for each of the 16 indicators, ranks for each station are totaled and divided by the number of indicators measured at that station. The resulting composite rank may be used to assess relative biological health among the 17 stations of the Southwest Loop.

Scheme B presumes that moderate amounts of nutrient enrichment and production are desirable and that too much (eutrophication) or too little (natural sterility or man-caused toxicity) production is not good. Scheme B differs from Scheme A in that production-related indicators (Numbers 2-6) are ranked according to their divergence from the median value, which is considered optimum. In other words, the station with the median value is given a ranking of 17 and the station with the value most distant from the median is given a ranking of one. The remaining indicators which are principally indicators of water quality (Numbers 1, 7, 10, 11, and 14), algal condition (Number 8), and community stability and diversity (Numbers 9, 12, 13, 15, and 16), are ranked as they were under system A.

Composite rankings under the two schemes, arranged in order from lowest (worst quality) to highest (best quality), are presented in Table 39.

Only the Madison River station (MAR) changed significantly in position from one scheme to the other. The Madison had the best water quality under Scheme A, but only the eleventh best water quality under Scheme B. This difference was due to the exceptionally low nutrient and periphyton production values measured in the river at Three Forks which is a function of the river's large macrophyte (higher plant) community tying up nutrients and competing with periphytic algae.

The four stations with the worst biological conditions were the same under both rating systems: East Gallatin River near Belgrade (EGR), Muddy Creek near Dell (MCD), Prickly Pear Creek near Lake Helena (PPL), and Silver Bow Creek below the Warm Springs Ponds (SBC). All four stations are on relatively small streams having limited capacity for assimilating pollution. Three of the four stations are influenced primarily by municipal wastewater discharges and by residual minerals processing waste in the case of Silver Bow Creek. Only Muddy Creek receives no significant wastewater discharge. Thus, its water quality problems are presumed to be diffuse in origin.

On the basis of these composite rating systems it may be concluded that most of the serious biologically-debilitating water quality problems at these monitoring stations derive from inadequate treatment of discrete

TABLE 39

COMPOSITE RANKING OF STATIONS IN THE SOUTHWEST LOOP
(Best possible rank = 17; worst possible rank = 1)*

Water	SCHEME A		SCHEME B	
Quality	STATION	RANK	STATION	RANK
POOR	EGR	4.8	EGR	4.8
	MCD	6.0	MCD	5.4
	SBC	6.3	PPL	5.8
	PPL	6.8	SBC	6.5
EAIR BA	CFD	7.9	RRR	7.1
	BVR	8.2	CFD	7.6
	RRR	8.3	MAR	8.5
	GRC	8.4	GRC	8.6
	PPE	9.2	PPE	9.2
	BHR	9.3	BVR	9.8
JER SHC WFM BDR WGR RUR	JER	9.6	JER	9.8
	SHC	9.6	SHC	9.8
	WFM	9.8	WFM	10.1
	BDR	10.0	BHR	10.2
	WGR	10.6	WGR	10.8
	RUR	10.8	BDR	10.9
	MAR	11.2	RUR	11.8

^{*}See page vii for List of Abbreviations

discharges and not from nonpoint sources of pollution. Consequently, installation of technological measures aimed at improving treatment of key municipal wastewater discharges will go a long way toward improving overall water quality in streams of the Southwest Loop. In the case of Silver Bow Creek, the isolation, removal or treatment of residual mine tailings, e.g., the Colorado tailings, may also contribute appreciably to biological recovery.

Conditions at these 17 stations cannot be considered totally representative of overall water quality in southwestern Montana. First, the parameters measured may not reflect the effects of certain forms of pollution, namely chronic, sublethal metals, high temperature, and dewatering. Second, station selections were made for the purpose of monitoring only the known, more highly visible problems. This resulted in a bias toward the larger, more popular streams. Consequently, the effects of nonpoint pollution in smaller tributary streams are not fairly represented in this survey.

The Southwest Loop is scheduled to be run again in 1981-1982. At that time changes in values of the different parameters can be compared are avaluation of long-term trends in water quality can begin. Meanwhile, the Water Quality Bureau will strive to develop a single, comprehensive, biological water quality index to simplify the rating of streams and the evaluation of trends.

PROBLEM PRIORITIZATION

Scope of the Statewide 208 project has, for the most part, precluded site-specific problem assessments; study area size and time and funding constraints necessitated a more general assessment. Some of the studies did identify problem stream segments but on the whole, the Statewide 208 assessment has identified general types of surface and ground-water quality problems and the general area of the state where those problems are most significant.

However, critical site-specific problems in the study area will not be ignored. For example, Muddy Creek (Cascade County) has extensive sediment pollution problems and has been identified as a local priority for correction. The Statewide 208 plan will not present a management program designed specifically to correct sediment pollution in Muddy Creek; but sediment pollution in general is a project priority and the Conservation Districts are identified as a likely management agency. Under the Statewide 208 program then, the Cascade Conservation District would be responsible for the problem, determine the causes, decide where responsibility for correction of the problem lies, and, if the problem can be feasibly corrected, see that a solution is implemented. Basically then, although the Statewide 208 project is identifying general problem types, the recommended control programs can be expanded to the practical site-specific level.

Of the two general types of water quality problems, nonpoint source pollution is much more of a management problem than point source pollution. A few point source problems are still occurring, but past management emphasis carried through to today's construction grant and waste discharge permit programs have resulted in effective management of point source pollution.

Conversely, nonpoint source pollution has received relatively little attention; this lack of a comprehensive management program and increasing development of Montana's natural resources have resulted in widespread and severe nonpoint source surface and ground-water quality problems which only promise to increase in magnitude without immediate management.

In Montana, nonpoint source pollution consists of increases in sediment, salinity, toxic metals, nutrients, herbicides, pesticides, and minerals. In addition, excessive reductions of instream flows can alone reduce water quality or intensify a pollution problem. Of these problems, sediment and salinity increases in surface and ground water and stream dewatering are the most extensive water quality problems in the Statewide 208 area and will be the project's highest priorities.

Although any land disturbing activity can result in erosion and sediment pollution, agricultural activities are responsible for a major portion of the sediment problem. Urban development, silviculture, and mining also contribute significant amounts of sediment to the state's waters, but with more than 80 percent of Montana being used for some agricultural endeavor, the magnitude of that industry's impact on water quality is not surprising.

Sediment pollution is ubiquitous in the Statewide 208 study area, but some of the most severely affected streams are in the eastern, more agriculturalized portion of Montana. Similarly, surface and ground-water salinity problems are related to agricultural activities and are also most prevalent in the eastern and northcentral parts of the state. In particular, saline seeps and irrigation return flows are the culprits. Although the degree of adverse salinity impacts on ground water is far from being completely understood, the possibility of extensive ground-water pollution is exceedingly important in light of the ever-increasing use and value of ground-water supplies in Montana.

Extreme dewatering due to irrigation occurs in numerous Montana streams. As with pollution discharges, a certain amount of dewatering must be tolerated in exchange for continuation of an area's economic base. However, excessive dewatering is critically important since it is occurring in or threatens to affect some of Montana's most valuable surface waters, the "Blue Ribbon" (having national as well as statewide value) and "Red Ribbon" (having statewide value) stream segments. So designated by the Department of Fish and Game because of their fishery resource value, these streams also contain some of Montana's highest quality water.

In addition to agricultural pollution (sediment and salinity) and dewatering, numerous other nonpoint source pollution problems must eventually be addressed if the 1983-85 water quality goals are to be met in Montana. In particular, sediment from silviculture, mining, and urban development, acid mine drainage, and subsurface waste disposal are in need of immediate management attention. And ultimately, the impacts of construction and mining exploration and production will need to be addressed.

These problems, then, represent priorities in the Statewide 208 area (Table 40). Subsequent assessments may not only rearrange these priorities but may delete or add problems to the list. The problems are now listed essentially according to extent; additional assessments may reveal economic, environmental, or social infeasibility for correction of a priority problem in a particular area.

TABLE 40

MONTANA'S INITIAL STATEWIDE 208 PROBLEM PRIORITIES November, 1978

Salinity - surface and ground water Agriculture Dewatering - surface water Agriculture Sediment - surface water Urban development Sediment - surface water Silviculture	PROBLEM	CAUSE
Dewatering - surface water Agriculture Sediment - surface water Urban development Sediment - surface water Silviculture Nutrients & pathogenic Subdivisions	1. Sediment - surface water	Agriculture
Sediment - surface water Urban development Sediment - surface water Silviculture Nutrients & pathogenic Subdivisions	2. Salinity - surface and ground water	Agriculture
Sediment - surface water Silviculture Nutrients & pathogenic Subdivisions	3. Dewatering - surface water	Agriculture
Nutrients & pathogenic Subdivisions	1. Sediment - surface water	Urban development
	5. Sediment - surface water	Silviculture
	. Nutrients & pathogenic contamination - ground water	Subdivisions
Acid drainage - surface water Mining	. Acid drainage - surface water	Mining
Sediment - surface water Mining	. Sediment - surface water	Mining

REGULATORY FRAMEWORK ANALYSIS AND MANAGEMENT ALTERNATIVES

Although the distinction between Areawide and Statewide 208 programs has been emphasized throughout the preceeding discussions, the difference will be most obvious in discussion of Statewide 208 management programs.

The Areawide 208 projects have essentially identified site-specific pollution problems. Even in those cases where a particular problem may be common to the whole APO area, those study areas are so small, compared to the Statewide 208 area, that management of the problem is still site-specific. For example, sediment pollution in two adjacent counties is much easier to manage than sediment pollution in 25 scattered counties. Thus, Areawide projects are identifying specific management programs while the Statewide 208 project is identifying the mechanisms through which such site-specific problem solving can be implemented.

The following discussion will present several possible means of dealing with the Statewide 208 area's priority water quality problems. Following public review of those alternatives, the final Statewide 208 report will

recommend a water quality management plan which has been identified as capable of correcting the area's water quality problems in the most environmentally and economically feasible and socially acceptable way. The final Statewide 208 report and plan will be released early in 1979 for Governor certification and EPA approval.

REGULATORY FRAMEWORK ANALYSIS

Since EPA has final approval of the 208 plan, a discussion of the federal requirements for an approvable final plan is in order.

The 1975 federal rules and regulations state: "The plans shall identify the controls, regulatory programs (emphasis added), and management agencies necessary to attain the water quality goals and the established State water quality standards." However, subsequent federal guidance in September, 1977, (SAM-31) stated: "Nonregulatory programs may be approved only where such programs will result in implementation of a nonpoint source program which will result in achievement of desired water quality goals."

In view of the complexity of nonpoint source pollution management, relaxing of the requirement for a regulatory program was probably necessary. An enforceable regulatory program must be able to document a specific water quality impact is resulting from a particular activity and must possess a degree of certainty that a specific change in that activity will correct the problem. In Montana, sufficient data and regulatory authority is lacking to comprehensively enforce a regulatory nonpoint source control program.

At any rate, a nonregulatory program must also meet several criteria in order to receive federal approval. Those criteria are:

- -identification of Best Management Practices
- -agreement on schedule of milestones
- -provision of an effective educational program to inform the public of the requirements
- -provision of adequate technical and financial assistance
- -agreement to an annual reporting system to EPA's Regional Administrator on progress

Certainly, the most difficult of those criteria to meet will be the financial aspect. In addition, that criterium has created a Catch-22 situation; an approvable plan must show provision of implementation funds but committenet of any federal funds, such as through the Rural Clean Water program is contingent upon a final 208 plan being approved. In Montana, implementation of management programs for our most critical water quality problems, i.e., Ag-NPS pollution, will certainly be dependent upon additional funding. Hopefully, that need will not jeopardize water quality management in Montana because of inconsistencies in federal regulations.

The adequacy of existing regulatory authority to control nonpoint source probems was analyzed as a result of the Yellowstone River flow reservation

controversy. The following discussion of Montana's regulatory framework and some of the management recommendations for control of nonpoint source problems in the Statewide 208 area are based, in part, on the report, "The Adequacy of Montana's Regulatory Framework For Water Quality Control" (Jamison, 1978).

Point source pollution in Montana is adequately controlled by the MPDES program which authorizes the issuance of permits for the discharge of point source pollutants. The only real hindrance to the point source regulatory program is the lack of sufficient manpower and funding for comprehensive enforcement activities.

Nonpoint source water quality problems are Montana's greatest obstacles to achieving state and federal water quality goals and have been the emphasis of the Statewide 208 project. Although nonpoint source pollution control is outside the scope of MPDES, the Montana Water Pollution Control Act (MMPCA) and the water quality standards provide the legal authority to the State of Montana for control of nonpoint source pollution. Section 69-480(1)(b), R.C.M. 1947 of the MMPCA states the declared policy of the State is to "provide a comprehensive program for the prevention, abatement, and control of water pollution." Since no distinction is made between point and nonpoint source pollution, this state policy mandates nonpoint source management. In addition, the water quality standards' rule gives DHES the authority to eliminate or minimize nonpoint source pollution. ARM 16-2.14 (10)-514480(6)(0) states:

"Pollution resulting from storm drainage, storm sewer discharges, and nonpoint sources, including irrigation practices, road building, construction, logging practices, overgrazing and other practices, are to be eliminated or minimized as ordered by the department."

Authority to adopt a nonpoint source program, therefore, is firmly established by both statute and regulation; however, enforcement authority and capabilities are lacking. Not only is a nonpoint source compliance monitoring network lacking but Best Management Practices are not specifically outlined in the water quality standards. Clearly, having the regulatory authority to adopt a nonpoint source control program means little without enforcement capabilities.

With respect to dewatering, Montana's regulatory authority and management abilities are even more obscure and complex than with nonpoint source management. The water quality standards [ARM 16-2.14(10) S14480(3)] define a dewatered stream as a "perennial or intermittent stream whose water has been removed for one or more beneficial uses." Although the DHES has the authority, under MWPCA, to "prevent, abate, or control the pollution of state waters" Section [59-4820.1 (1)(a), R.C.M. 1947], the scope of this authority is limited to pollutant discharges and alterations of conditions permitted by water quality standards and does not include withdrawal of water. Dewatering may violate water quality standards but the DHES has no control over the amount of water withdrawn for beneficial uses.

The Department of Natural Resources (DNRC) administers the Montana Water Use Act (Section 80-865 et seq., R.C.M. 1947) which determines a person's right to appropriate water. Although the Water Use Act allows denial of a use permit based on water quality degradation at the expense of existing appropriators, DNRC has not denied permits because of possible water quality degradation. DNRC's unwritten policy seems to be that "rights" only include water quantity.

However, two possible legal routes are still available to the DHES for dealing with dewatering: the "Reservation of Water" provision of the Water Use Act (Section 89-890, R.C.M. 1947) and the nondegradation policy of the MWPCA.

The DHES can apply to the Board of Natural Resources and Conservation (BNRC) to reserve waters "for existing or future beneficial uses, or to maintain a minimum flow, level, or quantity of water throughout the year or at such periods or for such length of time as the board designates" [Section 89-890(1), R.C.M. 1947]. However, to be granted a reservation, DHES must establish the purpose of the reservation, establish the amount of water necessary for the purpose of the reservation, and establish that the reservation is in the public interest. But frequently, as in the case of the Yellowstone River flow reservation case, total requested reservations far exceed a river's capacity and the reservation process does not guarantee all requests will be granted.

Although the MWPCA does not specifically address a policy of nongradation, the policy is implied:

"The board shall require that any state waters, whose existing quality is higher than the established water quality standards, be maintained at that high quality unless it has been affirmatively demonstrated to the board that a change is justifiable as a result of necessary economic or social development and will not preclude present and anticipated use of these waters. [Section 69-4808.2 (1)(C)(ii), R.C.M.] 1947 ."

Further, nondegradation has been incorporated into the water quality standards [ARM16-2.14 (10)-S14480(6)]:

General Water Quality Critera

- (a) The degree of waste treatment required to restore and maintain the standards is to be determined by the department and is to be based on the following:
 - The state's policy on nondegradation of existing high water quality...

Thus, a water quality standard defines a minimum level of water quality to be maintained or achieved and is not a justification for degradation.

Although a nondegradation policy is mandated by MWPCA and affirmed in the water quality standards, rules and standards for implementation of the policy have not been adopted by the Board of Health and Environmental Sciences (BHES) and so, DHES lacks the ability to fulfill its nondegradation duties.

The DHES's nongradation responsibilities are also complicated by similar responsibilities of another state agency, the Department of State Lands (DSL), under the Strip and Underground Mine Reclamation and Mine Stiing Acts (Section 50-1034 \underline{et} seq., R.C.M. 1947 and Section 50-1601 \underline{et} seq., R.C.M. 1947. A nondegradation policy is proclaimed in the rules adopted to implement these Acts:

"Nondegradation of waters. Waters within the public domain of the state that possess a higher quality than that established on the effective date of established standards shall be maintained at their present high quality consistent with the powers granted to the board. Such high quality waters shall not be lowered in quality unless and until it is affirmatively demonstrated to the board through public hearing, that such a change is justifiable as a result of necessary economic or social development and that the change will not adversely affect the present and future uses of such waters..." [ARM 26-2.10(10)-S10330(1)(a)].

"Nondegradation of waters. Waters within the public domain that possess a quality higher than established standards shall be maintained at this present high quality consistent with the powers granted to the board." [ARM 26-2.10(18)-S10400(G)(3)(a)].

If pollutants decrease existing high quality, the nondegradation policy is violated and DSL is authorized to exercise its enforcement powers. Since DHES has statuatory jurisdiction over water quality, the DSL water quality rules may be unauthorized by virtue of being outside the scope of the Reclamation and Siting Acts; however, issues of conflicting and overlapping jurisdiction have yet to be raised.

MANAGEMENT ALTERNATIVES

In view of Montana's existing regulatory framework for water quality management and the state and federal water quality goals, the Statewide 208 project presents the following management alternatives for consideration. One, all, or any combination of alternatives may be possible for a particular problem. Obviously, a viable alternative for all the problems is to maintain the status quo; however, the philosophy of the Statewide 208 project is to assume that if a problem is identified, it must be managed to some degree and at some point in time and so, the status quo alternative is not specifically addressed. However, in some cases, funding constraints and problem priorities may mean the status quo is maintained at least for a period of time.

Problem: Agricultural Nonpoint Source Pollution of Surface and Ground Water and Stream Dewatering

Alternatives:

- 1. Implement a nonregulatory water quality management program designating the Conservation Districts as the management agencies. Although such a program would ultimately deal with all water quality problems caused by agricultural activities, its primary initial objective would be sediment control. In many cases, if erosion is abated, salinity and dewatering impacts are also lessened. Major emphasis of the program would be to update Conservation District Long Range Plans to specifically include evaluation and management of water quality problems and to implement an active public education program.
- Implement statewide Conservation District Ordinances similar to Lewis and Clark Conservation District Sediment Control Ordinance. The ordinance could require submittal of farm plans detailing necessary conservation measures and could provide enforcement capabilities to deal with violators.
- Implement a statewide Sediment Control Law. Such a law would require legislative support but could be made broad enough to cover all sediment producing activities.
- 4. Recommend the BHES: (a) adopt rules to implement a nondegradation policy and standards to be applied in determining whether economic or social development will be allowed to degrade high quality waters and/or (b) make BMP's a specific part of the water quality standards.
- Initiate a model Ag-NPS management demonstration project to to quantitatively document the effects of BMP's on water quality protection.
- Initiate a statewide surface and ground-water monitoring network to document specific instances of Ag-NPS pollution and long-term impact trends and to more accurately quantify the extent of the problems.
- Legislatively establish that water withdrawal applications should be evaluated for effects on water quality by DHES.
- Initiate applications for flow reservations for water quality on at least some of the more valuable streams such as the Blue Ribbon segments.
- Consolidate jurisdiction over water quality and withdrawals under one department.

- Develop legislation to prohibit crop-fallow farming on saline seep-prone lands and to require immediate implementation of BMP's on lands suffering from saline seep.
- 11. Initiate a monitoring program in a priority basin, such as the Milk River Basin, to more accumately document the sediment and salinity impacts of irrigation return flows.

Problem: Sediment From Urban Stormwater Runoff

Alternatives:

- Develop statewide guidelines to assist communities in predicting pollutant loadings and designing applicable structural and/or nonstructural management solutions.
- 2. Implement a nondegradation policy (discussed previously).
- Develop new or modify exisiting city ordinances to specifically address stormwater runoff at least in priority cities.

Problem: Sediment From Silvicultural Activities

Alternatives:

- Develop a State Forest Practices Act for approval by the legislature. The Act would deal with all silvicultural activities on state and private forest lands and require determination of potential water quality degradation prior to initiation of silvicultural activities.
- 2. Develop a Statewide Sediment Control Law (discussed previously).
- 3. Develop Conservation District Ordinances in forested areas. Districts have the statutory authority to regulate soil erosion through adoption of an ordinance by referendum vote. Such an ordinance could be made broad enough to deal with all sediment-producing activities or could be restricted to a single activities, such as silviculture, in those districts where the problem is particularly critical.
- Implement a nondegradation policy and modify water quality standards to specifically address BMP's (discussed previously).
- Develop a management agreement between DHES and the U. S. Forest Service. Major objectives would be to refine and expand UFSF methodologies and priorities to deal more specifically with water quality protection and to develop a mechanism of continuous coordination between USFS and DHES.

- 6. Develop a state silviculture committee consisting of private, state, industrial, and federal forest owners. The group's major objective would be to implement joint land use planning to avoid independent and simultaneous silviculture activities in drainages with checkerboard ownership.
- Assess and modify the state timber tax structure to prevent logging of private lands solely to reduce property taxes.
- Support provision of additional funding and staffing to Division of Forestry for more comprehensive implementation of the Cooperative Management program.
- Support hiring of an extension forester by the USDA Cooperative Extension Service for the purpose of intensifying public education and technical assistance.

Problem: Ground-Water Contamination of Subdivisions

Alternatives:

- Develop more comprehensive statewide guidelines to facilitate selection of suitable subsurface disposal areas and installation of systems.
- Modify or develop county regulations to control design, location, and installation of subsurface disposal systems. Such regulations could include zoning to prohibit development in high ground-water areas.
- Develop ground-water quality standards to include subsurface impacts.
- Develop a statewide ground-water monitoring network to document impacts of subsurface disposal systems.

Problem: Acid Drainage and Sediment From Mining

Alternatives:

- 1. Develop a Statewide Sediment Control Law (discussed previously).
- 2. Develop Conservation Sediment Control Ordinances in problem areas (discussed previously).
- Implement a nondegradation policy and include BMP's in the water quality standards (discussed previously).
- Recommend the Board of Land Commissioners adopt by rule the nondegradation in standards developed by BHES.

- Establish a monitoring network to collect baseline data in drainages having significant potential for future mining development.
- 6. Develop ground-water quality regulations to control pollution.
- Evaluate existing regulations for mining and exploration activities to determine their adequacy in protecting water quality and make appropriate modifications.
- Develop an education program to provide small miners technical assistance on how to avoid water quality impacts.
- Develop a special fund for correcting major existing mining problems by apportioning a small percentage of existing mining tax revenues or by placing an additional tax on mining operations.
- Provide additional staffing to DHES or DSL to review and investigate specific mining and reclamation water quality problems.
- Initiate a monitoring program to evaluate the adequacy of pollution control efforts on mine sites.

PUBLIC PARTICIPATION

The Statewide 208 planning area includes 42 counties, 106,278 square miles and 437,000 people. The effort to stimulate and maintain continuous interaction between citizens and the planning staff (the goal of public participation) has proven to be challenging in such a large planning area with a relatively sparse population.

Steps taken by the Water Quality Bureau to encourage public participation in its 208 planning program include:

- An advisory system, consisting of an advisory council and technical and citizens' information groups was organized. The function of the advisory system is to provide the 208 staff with program guidance, assist policy making and provide advice on public attitudes and technical management decisions.
- Informational materials were distributed. Approximately 4,000 Statewide 208 pamphlets and 3,000 booklets on the state's water pollution control program were distributed to the public. A newsletter with a current mailing list of 520 has been distributed throughout the program period. And, fifteen different technical studies were distributed to the advisory system and general public.

- 3. Five-minute programs, explaining various aspects of 208 and water pollution problems were produced and distributed to local radio stations. Copies of the programs are available through the Water Quality Bureau. Interviews on two Montana radio stations and three television stations were made. One major article on 208 was widely publicized in the Montana Stockgrowers magazine Montana Farmers Stockman, Montana-Myoming News, the Prairie Star and other smaller local newspapers. Public service announcements on stream bank, mining and dewatering problems were produced and aired on Montana television stations. Seven more television spots on rangeland, cropland, feedlots, salinity, erosion and subdivision development will be released before January, 1979.
- 4. Public involvement meetings were held in Butte, Anaconda, Dillon, Twin Bridges, Fairmont Hot Springs, Missoula, Sidney, Glendive, Plentywood, Malta, Great Falls and Lewistown. Additional meetings were conducted in conjunction with Institute of the Rockies water forums in Wolf Point, Glasgow, Missoula, Deborgia, and Great Falls. Presentations were given to Kiwanis Clubs, Granges, Conservation Districts and Council of Governments in many communities of Montana.
- 5. Visual aids (slide shows and films) were produced to aid public meetings and to reach the public through television. An excellent tape-slide series on water quality problems in Montana and a description of the 208 planning process as a problem-solving mechanism was developed. Two films were produced: One entitled Man and Water depicts the conflicts which arise between maintenance of instream flows and consumptive water uses; the other film, entitled Well Spring, discusses the purpose of the 208 planning program. Both films were shown on numerous occasions at 208 meetings. Also used was the NACD film, Non-Point '83.
- Public meetings to obtain public input to the first draft of the Statewide 208 report will be held in October and November. These meetings are scheduled for Hamilton, Libby, Havre, Harlowton, Lewistown, Sidney, Plentywood, Helena, Libby and Havre.

A major objective of public meetings has been to receive citizen assistance in identifying critical water quality issues in their areas. The following are issues which were identified at the public workshops:

- Southwestern Montana Area (Butte, Anaconda, Fairmont, and Twin Bridges)
 - (a) Future use by the City of Anaconda of the Anaconda Companyowned Warm Springs treatment ponds for municipal wastewater treatment. The city does not want the expense of a sewage treatment plant if the existing ponds are adequate.

- (b) Contamination of ground water and water supplies in the Opportunity subdivision area east of Anaconda from failing septic tanks and high ground-water conditions.
- (c) Bacterial contamination of Blacktail Deer Creek from home sewage disposal systems located on the northeast side of Butte.
- (d) Inadequate funding and staffing of 208 nonpoint source programs. Consequently, landowners fear they will be required to comply with regulations without sufficient financial or technical assistance causing them additional hardships. Uncertainty of funds to support NPS programs has also left considerable doubt as to the effectiveness of 208 programs in solving nonpoint source problems.
- (e) Concern that water quantity-water quality problems will become more acute. Better program coordination between DNRC (Water Rights Bureau) and DHES (Water Quality Bureau) was felt to be needed to resolve conflicts. Also, limited water rights on unappropriated streams to protect instream values, improving enforcement of water rights and reservations by DNRC and speeding up water adjudication were all recognized as essential to resolving water use-water quality conflicts.
- (f) Logging impacts. Regulating practices on forest watersheds (particularly private forest lands) was felt necessary if NPS water quality management programs are to be effective in non-woodland areas which are influenced by upstream forest management activites. People felt that since mining activities on private and federal lands are regulated, so should forest management activities be reculated.
- (g) Adequacy of present mining laws (Open Cut and Hardrock Mining laws) is questionable. In particular, the seemingly inadequate enforcement capabilities and environmental protection provisions provided by the small miners exclusion were questioned. Opinions were expressed that more regulations would make mining unprofitable for the small miner; but, on the other hand, stronger environmental protection measures should be provided and their cost passed on to the consumer who would pay the true social cost for the product. A general feeling prevailed that increased mining potential in the area could adversely affect water quality given present capabilities of state agencies and inadequacies of environmental protection measures.

2. Sidney-Plentywood-Glendive

General degradation of ground and surface waters from increasing saline seeps and oil and gas activity is a major concern. Frequent disposal of brine water on roads in borrow ditches and coulees was identified as a potential pollution source of local surface waters, and seemed to be the major local concern.

3. Great Falls Area

(a) Clearly, the major problem of concern is the high sediment load in the lower Sun River caused by irrigation returns and erosion of Muddy Creek. Participants view the problem as correctable within certain limitations. Both recreational water users and agriculturalists see the need to correct the problem, but have expressed considerable disappointment in the "no follow-through action" by past government studies.

Muddy Creek will be the yardstick for which local citizenry of this area measure the success of the 208 program. It represents a local problem of significant impact and one which can be corrected within certain limitations. Past efforts have failed because the problem has not had sufficient priority within the Bureau of Reclamation to warrant proper staff study or funding for planning and construction.

(b) Dewatering on the Teton, Sun and Smith Rivers, salinity in the Teton River and Freezeout and Priests Butte Lakes, and mining effects in Belt and Sand Coulee Creeks were also listed as problems of concern. Solutions, however, were not as apparent as the Muddy Creek problem.

4. Missoula

(a) Potential for contamination of the valley drinking water was a major concern. Rapid housing development in a valley characterized by heavy irrigation and high water tables associated with the flooding of outhouses, cesspools, septic tanks and drainfields is the cause for concern. City-county officials feel strongly that financial assistance from state or federal sources is needed to fund a study to better define the ground-water problems.

Public attitudes toward nonpoint source control programs have been diffficult to ascertain. Meeting attendance, although exceptionally successful, was not truly representative of the general public. People in attendance mostly represented local, state or federal resource agencies and consequently nonpoint source control issues were expressed from a professional manager's point of view. This does not mean, however, that views among the group were unanimously consistent. Controversy, even among the professional group was apparent. Generally less than 10 percent of the

people attending meetings actually represented the "general public." However, for a few meetings such as at Great Falls and Lewistown, the majority of attendees represented the general public.

Most Montanans appreciate good water quality. However, at the same time, the average person's concepts of clean water and what affects its quality vary widely. The general concept of Best Management Practices is generally understood and accepted. Most people realize that more widespread use of farm management practices to control erosion would alleviate many water quality problems, even though elimination of erosion and sediment would never be completely realized. The major point of controversy was the cost-benefits that would be realized from specific practices and whether the practices should be encouraged voluntarily or through some level of regulatory process. In no way did any meeting approach resolving these points of controversy, even though healthy discussion was always the case.

Although BMP's seem to be intuitively accepted as the solution to NPS pollution, most people attending the meetings felt that BMP's should be cost-shared by the government because the practices would benefit the public (on a short-term basis) far more than the landowner. Whether implementation of BMP's is voluntary or regulatory, the consensus of opinion from the public meetings was that implementation would only be successful if adequate financial and technical assistance were provided. Adequate cost-sharing, better problem determination, definitive BMP's and increased education were felt to be essential to be an effective nonpoint source pollution control program.

Overall, the Statewide 208 public participation program has been moderately successful. A degree of public awareness of water quality issues has been achieved, but considering the size of the study area, still has a way to go. However, considering the program at the local level, it was most successful in stimulating public interest and involvement in southwestern Montana.

Certainly, there can never enough awareness and involvement by citizens and an active public participation program needs to be continued and expanded if 208 planning is to meet its objectives in Montana.

BIBL TOGRAPHY

- Bahls, L. L. 1978. Streamflow and Water Quality in the Lower Big Hole River Summer 1977. WQB, DHES, Helena, Montana
- Bahls, L. L., G. Ingman, and A. Horpestad. 1978. Biological Water Quality Monitoring in Southwest Montana, 1977-1978. WQB (DHES), Helena, Montana
- Botz, M. K. and A. Gartner. 1978. Groundwater Quality and Pollution Assessment for Montana Statewide 208 Area. Westech, Inc., Helena, Montana
- Braico, R. D. and M. K. Botz. 1974. Appraisal of Water Quality in the Boulder River Drainage and Potential Methods of Pollution Abatement or Control MOB (OHES), Helena, Montana
- Brown, K. and W. Garvin. 1977. Urban and Industrial Stormwater Assessment for the Montana Statewide Section 208 Water Quality Management Planning Area. MQB, (DHES) Helena, Montana
- Division of Research and Information Systems (DCA). 1978. Montana Population Projections, 1980-2000 for Counties and Incorporated Cities and Towns Helena, Montana
- Elser, A. A. and R. G. Marcoux. 1972. Inventory of Waters of the Project Area F-9-R-19. Montana Department F&G, Helena, Montana
- Environmental Quality Council. 1972. Fifth Annual Report, Helena, Montana
- Hehn, E. R. 1978. Agricultural Nonpoint Source Assessment. Montana Association of Conservation Districts., Helena, Montana
- Jamison, M. 1978. The Adequacy of Montana's Regulatory Framework for Water Quality Control. Yellowstone Impact Study Technical Report No. 4. Department of Nat. Res. and Cons., Helena, Montana
- Montana Association of Conservation Districts. 1978. An Agricultural Nonpoint Source Pollution Management Plan. Helena, Montana
- Rasmussen, R. and D. Culwell. 1978. Evaluation of Water Quality Problems and Management Needs Associated with Non-USFS Silvicultural Practices in the Montana Statewide 208 Area. Westech, Inc., Helena, Montana
- Ross, R. L., E. P. Murray, and J. G. Haigh. 1973. Soil and Vegetation Inventory of Near Pristine Sites in Montana. USDA Soil Conservation Service, Bozeman. Montana.
- Schmidt, J. and M. K. Botz. 1978. Mining and Mineral Fuels Development in the Montana Statewide 208 Study Area: Implications to Water Quality. Westech, Inc. Helena, Montana

- State Conservation Needs Committee. 1970. Montana Soil and Water Conservation Needs Inventory. Soil Conservation Service, Bozeman, Montana
- U. S. Geological Survey. 1968. Mineral and Water Resources of Montana: MBMG Special Bulletin 28.
- Water Quality Bureau (DHES). 1976. Montana Water Pollution Control Program
 Plan for Fiscal Year 1977. Helena, Montana
- Water Quality Bureau (DHES). 1976. Water Quality in Montana. Helena, Montana
- Wheeler, R. H. 1978. A Forest Service Assessment of Water Pollution Problems in the National Forests in Montana with Emphasis on Silviculture and Related Activities, Logging and Roads. USDA, Forest Service, Missoula, Montana

