

АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ

Кафедра теоретических Основ электротехники

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Методические указания и задания к курсовой работе

для студентов специальности 5В0702- Автоматизация и управление

СОСТАВИТЕЛИ: С.Ю. Креслина, А.Т Аршабекова. Теоретические основы электротехники. Методические указания и задания к курсовой работе для студентов специальности 5В0702- Автоматизация и управление. – Алматы: АУЭС, 2013. – 15 с.

Методические указания и задания к курсовой работе содержит требования к выполнению и оформлению РГР, задания, схемы и параметры электрических цепей. Курсовая работа по теме «Расчет переходных процессов в линейных электрических цепей» предназначена для студентов специальности 5В0702- Автоматизация и управление. Методические указания и задания к курсовой работе соответствуют типовой программе по Теоретическим основам электротехники.

Ил. 10, табл. 5, библиогр. – 7 назв.

Рецензент:

Печатается по плану издания «НАО Алматинского университета энергетики и связи» на 2013 г.

^{© «}НАО Алматинского университет энергетики и связи», 2013г.

1 Требования к выполнению и оформлению курсовой работы

- 1.1 Курсовая работа должна быть выполнена в соответствии с фирменным стандартом «Работы учебные», АИЭС, 2002г. и включать следующие элементы:
 - а) титульный лист (образец прилагается);
 - б) содержание;
 - в) введение;
 - г) задание;
 - д) основную часть;
 - е) заключение (выводы);
 - ж) список литературы;
 - з) приложения.
- 1.2 Текст задания (условие задачи) должен быть переписан полностью, со всеми рисунками и числовыми значениями для своего варианта.
 - 1.3 Каждый этап курсовой работы должен быть озаглавлен.
- 1.4 Курсовая работа выполняется рукописным способом, а также с применением компьютерной печати (в программе Microsoft Word, шрифт высотой 14 пунктов с интервалом 1,0-1,5). Текст пишется на одной стороне листа белой бумаги формата A4. По всем четырем сторонам листа оставляются поля: левое не менее 30 мм, правое не менее 10 мм, верхнее и нижнее 20 мм.
- 1.5 Все листы курсовой работы должны иметь сквозную нумерацию, начиная с титульного листа, включая приложение. Номер листа пишется в правом верхнем углу без точки.
- 1.6 Расчеты должны сопровождаться пояснениями. Нельзя приводить только расчетные формулы и конечные результаты. Курсовые работы, в которых вычисления и пояснения приводятся сокращенно, к защите не допускаются и возвращаются студентам на доработку.
- 1.7 Рисунки, графики и схемы должны быть выполнены аккуратно и пронумерованы.
- 1.8 На графиках обязательно указываются названия изображаемых величин, их единицы измерения. Масштабы необходимо подбирать так, чтобы было удобно пользоваться графиком или диаграммой. В соответствии с выбранным масштабом подписываются шкалы графиков и диаграмм.
- 1.9 У параметров, имеющих определенные размерности, писать в окончательных результатах соответствующие единицы измерения. Все обозначения электрических величин должны соответствовать ГОСТу.
- 1.10 Во введении обосновать необходимость изучения переходных процессов и методов их расчета.

- 1.11 В заключение провести анализ методов расчета переходных процессов, использованных в курсовой работе; сравнить результаты, полученные классическим и операторным методами; определить время, которое требуется для завершения переходного процесса на практике; для этого момента времени определить в процентах отношение переходного тока (напряжения) к принужденному току (напряжению).
- 1.12 Курсовая работа должна быть сдана на проверку в срок, указанный преподавателем. В случае нарушения студентом срока сдачи работы, ему выдается дополнительное задание или другой вариант (по усмотрению преподавателя), а также снижается итоговый балл за работу.

РЕСПУБЛИКА КАЗАХСТАН АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ

Кафедра Элек	тротехники
Курсовая	работа
по дисципл	
(полное наимено	вание работы)
Работа выполн	нена
Студентом	(фамилия и инициалы)
	(номер зачетной книжки)
Группа	
	(шифр группы)
Отчет прин	(шифр группы)
Отчет прин	ят(дата принятия отчета)
Отчет прин Преподават	(шифр группы) ят (дата принятия отчета) тель
	ят(дата принятия отчета)
	(шифр группы) ЯТ (дата принятия отчета) тель
	(шифр группы) ят (дата принятия отчета) тель

Алматы 20...

2 Задание. Расчет переходных процессов в линейной электрической цепи классическим и операторным методом

Содержание задания: Дана электрическая цепь (рис. 1.1-1.10), в которой в момент времени t=0 происходит коммутация, переключение ключа из положения 1 в положение 2, то есть цепь от источника синусоидального напряжения $u(t) = U_{\rm m} \sin(\omega t + \varphi_{\rm u})$ переключается к источнику постоянного напряжения $U_0 = const$. Параметры источников заданы в таблице 1.1. Параметры электрической цепи приведены в таблицах 1.2-1.3. Необходимо рассмотреть переходный процесс в цепи второго порядка и определить закон изменения во времени тока в одной из ветвей или напряжения на каком-либо элементе после коммутации (таблица 1.2), решив задачу двумя методами:

1.классическим;

2. операторным.

На основании полученного аналитического выражения требуется построить график изменения искомой величины в функции времени в интервале от t=0 до $t=3/|p_{min}|$, где $|p_{min}|$ - меньший по модулю корень характеристического уравнения, используя программы Mathcad или Excel.

Т	a	б	Л	И	П	a	2.1	

Год поступления		Последняя цифра зачетной книжки								
Четный	1	2	3	4	5	6	7	8	9	0
Нечетный	0	1	2	3	4	5	6	7	8	9
№ схемы	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	2.10
$U_{ m m},{ m B}$	100	110	120	150	140	160	180	200	170	130
φ_{u} , град	30°	-45°	60°	-50°	45°	-60°	50°	40°	-40°	-30°
f , к Γ ц	0,8	1,0	0,9	1,2	1,5	0,7	1,3	1,2	1,4	1,1
$U_{\rm o}{ m B}$	60	30	40	60	50	70	80	90	100	110

Таблипа 2.2

1 4 0 11 11 4 2 12										
Год поступления		Предпоследняя цифра зачетной книжки								
Четный	1	2	3	4	5	6	7	8	9	0
Нечетный	0	1	2	3	4	5	6	7	8	9
L, мГн	15	55	20	25	30	35	40	45	50	10
С, мкФ	3	5	10	8	6	11	12	9	4	7
определить	$i_L(t)$	$u_L(t)$	$i_c(t)$	$u_c(t)$	$i_{R1}(t)$	$u_{R1}(t)$	$i_{R2}(t)$	$u_{R2}(t)$	$i_{R3}(t)$	$u_{R3}(t)$

Таблица 2.3

Год поступл-ия		Первая буква фамилии								
Четный	АЛФ	БМЦ	ВНЧ	ГОШ	ДПЩ	ЕРЭ	ЖСЮ	RTE	ИУ	КХ
Нечетный	КЦЭ	ЧХЛ	AHM	БЮО	ВПЯ	3Ф	ГРШ	ЕТЩ	ДСИ	УЖ
R_1 , Om	70	65	120	30	35	25	40	45	50	60
R_2 , Om	20	30	40	10	150	60	35	25	45	70
R_3 , Om	60	50	30	120	100	150	250	35	60	80

Рисунок 2.1

Рисунок 2.2

Рисунок 2.3

Рисунок 2.4

Рисунок 2.5

Рисунок 2.6

Рисунок 2.7

Рисунок 2.8

Рисунок 2.9

Рисунок 2.10

3. Методические указания к выполнению курсовой работы

3.1 Классический метод расчёта переходных процессов

Расчёт переходных процессов классическим методом включает следующие этапы:

а) Определение независимых начальных условий: $i_{\scriptscriptstyle L}(0)$, $u_{\scriptscriptstyle C}(0)$.

Независимые начальные условия определяются путём расчета установившегося режима в цепи до коммутации и с применением законов коммутации:

$$i_L(0_+) = i_L(0) = i_L(0_-);$$
 $u_C(0_+) = u_C(0) = u_C(0_-);$

Так как в электрической цепи до коммутации действовал источник переменного синусоидального напряжения $U(t)=U_m \sin(\omega t + \phi_u)$ (ключ находился в положении 1), то расчет установившихся значений $U_C(t)$ и $i_L(t)$ до коммутации осуществляют комплексным методом. Сначала определяют комплексные амплитуды напряжения на конденсаторе и тока в катушке, а затем переходят к их мгновенным значениям $U_C(t)$ и $i_L(t)$ и в полученные выражения подставляют t=0;

б) Определение принуждённого тока $i_{\text{пр}}$ или принужденного напряжения $u_{\text{пр}}$ путём расчёта установившегося режима в цепи после коммутации.

Принужденной режим цепи после коммутации (ключ находится в положении 2) обусловлен действием источника постоянного напряжения U_0 , поэтому принужденная составляющая тока i_{np} (или напряжения U_{np}) может быть найдена методами расчета цепей постоянного тока. Следует отметить, что сопротивление индуктивного элемента постоянному току равно нулю, а емкостного элемента — бесконечности.

в) Запись выражения для искомого переходного тока или переходного напряжения в виде:

$$i(t) = i_{\Pi P} + i_{CB};$$
 $u(t) = u_{\Pi P} + u_{CB};$

- г) Запись дифференциальных уравнений по законам Кирхгофа для цепи после коммутации.
- д) Определение свободного тока i_{CB} или напряжения u_{CB} .Для определения i_{CB} или u_{CB} составляется характеристическое уравнение и находятся его корни. Характеристическое уравнения составляют наиболее простым методом входного сопротивления. Для этого записывают формулу комплексного входного сопротивления для цепи после коммутации $\underline{Z}ex(j\omega)$, в которой $j\omega$ заменяют на \mathbf{p} и полученное выражение входного операторного сопротивления приравнивают нулю $Z_{ex}(p) = 0$. После подстановки числовых значений параметров цепи рассчитывают корни характеристического уравнения \mathbf{p}_1 , \mathbf{p}_2 (цепь второго порядка);

Запись выражения $i_{\rm CB}$ или $u_{\rm CB}$ определяется типом корней характеристического уравнения. Выражение свободной составляющей тока i_{ce} (или напряжения U_{ce}) определяется видом корней характеристического уравнения $Z_{\rm ex}(p) = 0$. Если корни характеристического уравнения p_1 и p_2 -различные и вещественные, то i_{ce} имеет вид $i_{ce} = A_1 e^{p_1 t} + A_2 e^{p_2 t}$,

где A_1 и A_2 - постоянные интегрирования.

Если корни характеристического уравнения равны, т.е. $p_1=p_2=p$, то i_{cs} имеет вид $i_{cs}=(A_1+A_2t)e^{pt}$.

В случае комплексно-сопряженных корней характеристического уравнения $p_{1,2} = -\alpha \pm j\omega_{cs}$ (α – собственное затухание, ω_{cs} – частота свободных колебаний) i_{cs} имеет вид

$$i_{cs} = Ae^{-\alpha t}\sin(\omega_{cs}t + \psi),$$

где A и ψ — постоянные интегрирования. В цепях второго порядка для определения постоянных интегрирования используют начальные условия, причем независимые начальные условия определяют из законов коммутации $U_C(0-)=U_C(0+),\ i_L(0-)=i_L(0+),\ a$ зависимые начальные условия находят путем решения уравнений, составленных по законам Кирхгофа для цепи после коммутации при t=0.

ж) Определение постоянных интегрирования по начальным значениям искомой величины и её первой производной (для цепи второго порядка).

3.2 Операторный метод расчёта переходных процессов

Расчёт переходных процессов операторным методом включает следующие этапы:

- а) Определение независимых начальных условий: $i_1(0), u_2(0)$.
- б) Составление эквивалентной операторной схемы (схема составляется для цепи после коммутации).

Эквивалентные операторные схемы пассивных элементов

Исходная схема i(t) $u_R(t)$ $u_R(t)$

Таблица 3.1

- в) Составление уравнений для определения изображения искомой величины, используя любой из методов расчёта: законы Кирхгофа в операторной форме, метод контурных токов, метод узловых потенциалов, метод эквивалентного генератора и т.п. (уравнения составляются для цепи после коммутации),
- и определение изображения искомой величины.
- г) Определение искомой величины (оригинала) по найденному изображению, используя теорему разложения.

Таблица 3.2

таолица 5.2							
	Теорема разложения						
Изображение имеет вид рациональной дроби:							
$\frac{F_1(p)}{F_2(p)} = \frac{a_m p^m + a_{m-1} p^{m-1} + \dots + a_1 p + a_0}{b_n p^n + b_{n-1} p^{n-1} + \dots + b_1 p^1 + b_0},$							
$F_2(p)^{-1}b_np^n+b_{n-1}p^{n-1}+$	$+b_1p^1+b_0$						
где m <n, <math="">F_2(p) = 0 - характери</n,>	истическое уравнение. Оригинал определяется по						
теореме разложения.							
Вид корней характеристического уравнения $F_2(p) = 0$,	Теорема разложения						
для n = 2.							
	$\frac{F_1(p)}{F_2(p)} = f(t) = \frac{F_1(p_1)}{F_2'(p_1)} e^{p_1 t} + \frac{F_1(p_2)}{F_2'(p_2)} e^{p_2 t},$ где $F_2'(p) = dF(p)/dp$.						
корни характеристического уравнения $F_2(p) = 0$ комплексные сопряженные $p_{1,2} = -\alpha \pm j\omega_{CB}$	$\frac{F_1(p)}{F_2(p)} \stackrel{=}{=} f(t) = 2 \operatorname{Re} \left[\frac{F_1(p_1)}{F_2'(p_1)} e^{p_1 t} \right].$						
знаменатель имеет один нулевой корень: $pF_2(p)$, корни характеристического уравнения $F_2(p) = 0$, p_1 , p_2 вещественные и различные	$\frac{F_{1}(p)}{pF_{2}(p)} \stackrel{=}{=} f(t) = \frac{F_{1}(0)}{F_{2}(0)} + \frac{F_{1}(p_{1})}{p_{1}F'_{2}(p_{1})} e^{p_{1}t} + \frac{F_{1}(p_{2})}{p_{2}F'_{2}(p_{2})} e^{p_{2}t},$						
знаменатель имеет один нулевой корень: $pF_2(p)$, корни характеристического уравнения $F_2(p) = 0$ комплексные сопряженные $p_{1,2} = -\alpha \pm j\omega_{CB}$	$\frac{F_1(p)}{pF_2(p)} = f(t) = \frac{F_1(0)}{F_2(0)} + 2 \operatorname{Re} \left[\frac{F_1(p_1)}{p_1 F_2'(p_1)} e^{p_1 t} \right].$						

Список литературы

- 1. Сборник задач по теоретическим основам электротехники/ Л.Д.Бессонов, И.Г.Демидова, М.Е.Заруди и др.-М.: Высшая школа, 2003.-52с.
- 2. Бессонов Л.А. Теоретические основы электротехники.-М.: Гардарики,1999. 638с.
- 3. Шебес М.Р., Каблукова М.В. Задачник по теории линейных электрических цепей. М.: Высшая школа, 1990. 544с.
- 4. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей.- М.: Энергоатомиздат, 1989. -528с.
- 5. Денисенко В.И., Зуслина Е.Х ТОЭ. Учебное пособие.- Алматы: АИЭС, 2000, 83 с.
- 6. Денисенко В.И., Креслина С.Ю. ТОЭ1. Конспект лекций (для баколавриата 050702 Автоматизация и управление). Алматы: АИЭС, 2008, с. 67.
- 7. Денисенко В.И., Креслина С.Ю., Светашев Г.М. ТОЭ2. Конспект лекций (для бакалавриата 050702 Автоматизация и управление). Алматы: АИЭС, 2009, с. 62.

Содержание

1 Требования к выполнению и оформлению курсовой работы	3
2 Задание к курсовой работе	6
3 Методические указания к выполнению курсовой работы	
4 Список литературы	13

Алма Тлендиевна Аршабекова Светлана Юрьевна Креслина

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Методические указания и задания к курсовой работе для студентов специальности 5B0702 — Автоматизация и управление

Редактор: 3.Т. Абдраимова

Специалист по стандартизации: Б.Н. Мауталинова

Тираж100 экз.	Бумага типографская	
Подписано в печать	Формат 60х84 1/16 №1	
Объем уч изд. л.	Заказ Ценатен	ге.

Копировально-множительное бюро Некоммерческого акционерного общества «Алматинский университет энергетики и связи» 050013, Алматы, Байтурсынова, 126