The perils and promise of single-gene solutions to crop yield: extraordinary claims require extraordinary evidence

Merritt Khaipho-Burch¹, Mark Cooper^{2,3}, José Crossa⁴, Natalia de Leon⁵, James Holland⁶, Ramsey Lewis⁶, Susan McCouch¹, Seth Murray⁷, Ismail Rabbi⁸, Pamela Ronald⁹, Jeffrey Ross-Ibarra¹⁰, Detlef Weigel¹¹, Jianbing Yan¹², Edward S. Buckler^{1,13}

Current yield trends are insufficient to meet growing demands.

Inaccurate measurement and reporting on yield has drastic consequences for feeding the planet.

Studies touted as breakthroughs with 8-68% increases in crop yield are often flawed in how they measure field performance & have never translated into significant gains once tested at scale.

1600+ gene constructs were field tested at scale, only 8 significantly increased yield and had small effects (1-4%).

Most gene constructs significantly decrease or have no effect on yield.

Some single genes have worked well in domestication & to stabilize yield; however, robust yield increases are delivered using genomic selection.

Limited env.

adaptation

Tb1

Improving

harvestability

Global warming induced pests

Rh1 and Rh2 Response to

synthetic fertilizers

Molecular biologists don't seem to know this one simple trick to increase intrinsic plant yield.

(It's genomic selection)

We suggest approaches for researchers and reviewers to use when evaluating the impact of single genes on crop yield:

This work was supported by the USDA National Institute of Food and Agriculture Predoctoral Fellowship Grant No. 2022-67011-36458.