Controlabilidade e observabilidade — Parte 1

Valter J. S. Leite¹

¹CEFET-MG / Campus V Divinópolis, MG – Brasil

Programa de Pós-Graduação em Engenharia Elétrica Associação ampla entre CEFET–MG e UFSJ

O que nos espera?

Controlabilidade & Observabilidade

2 Controlabilidade

Observabilidade

6.1 Controlabilidade e observabilidade

- Um sistema é chamado controlável se os estados do sistema podem ser controlados a partir de suas entradas.
- Um sistema é chamado observável se os estados do sistema podem ser obtidos das saídas.

6.2 Controlabilidade

Considere o sistema

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \tag{1}$$

com $\mathbf{A} \in \mathbb{R}^{n \times n}$ e $\mathbf{B} \in \mathbb{R}^{n \times p}$.

Controlabilidade

A equação de estados (1) ou o par (\mathbf{A},\mathbf{B}) é dito controlável se para qualquer estado inicial $\mathbf{x}(0) = \mathbf{x}_0$ e qualquer estado final \mathbf{x}_1 , existe uma entrada $\mathbf{u}(t)$ que transfere \mathbf{x}_0 para \mathbf{x}_1 em um tempo finito.

Teoria e Projeto de Sistemas Lineares Controlabilidade

 \bullet Ver Exemplo 6.1 .

Teorema 6.1

As seguintes afirmativas são equivalentes:

- (1) O par n-dimensional (A,B) é controlável.
- (2)A matriz $n \times n$

$$\mathbf{W}_c(t) = \int_0^t e^{\mathbf{A}\tau} \mathbf{B} \mathbf{B}' e^{\mathbf{A}'\tau} d\tau = \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{B}' e^{\mathbf{A}'(t-\tau)} d\tau$$
 (2)

é não singular para qualquer t > 0.

(3)A matriz de controlabilidade $n \times np$

$$\mathfrak{C} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^2\mathbf{B} & \cdots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$$
 (3)

tem posto n (posto completo de linhas).

- (4)A matriz $[(\mathbf{A} \lambda \mathbf{I}) \ \mathbf{B}]$, de dimensões $n \times (n+p)$, possui posto completo de linhas em cada autovalor, λ , de \mathbf{A} .
- (5)Se todos os autovalores de ${\bf A}$ possuem parte real negativa, então a solução única de

$$\mathbf{A}\mathbf{W}_c + \mathbf{W}_c \mathbf{A}' = -\mathbf{B}\mathbf{B}' \tag{4}$$

é definida positiva.

A solução é chamada *Gramiano de controlabilidade* e pode ser expressa como

$$\mathbf{W}_c(t) = \int_0^\infty e^{\mathbf{A}\tau} \mathbf{B} \mathbf{B}' e^{\mathbf{A}'\tau} d\tau.$$
 (5)

- A equivalência entre as duas formas integrais de (2) pode ser provada por meio da mudança de variável $\overline{\tau} = t \tau$.
- O que garante que \mathbf{W}_c é semidefinida positiva é a forma do integrando $(\mathbf{H}\mathbf{H}')$.
- $(1)\leftrightarrow(2)$: \mathbf{W}_c é não singular se e só se $(\mathbf{A,B})$ é controlável. A solução do sistema é dada por

$$\mathbf{X}(t_1) = e^{\mathbf{A}t_1}\mathbf{X}(0) + \int_0^{t_1} e^{\mathbf{A}t_1 - \tau} \mathbf{B}\mathbf{u}(\tau) d\tau.$$

Para qualquer $\mathbf{X}(0) = \mathbf{X}_0$ e $\mathbf{X}(1) = \mathbf{X}_1$ a entrada

$$\mathbf{u}(t) = -\mathbf{B}' e^{\mathbf{A}'(t_1 - t)} \mathbf{W}_c^{-1}(t_1) \left[e^{\mathbf{A}t_1} \mathbf{X}_0 - \mathbf{X}_1 \right]$$

transfere \mathbf{X}_0 para \mathbf{X}_1 no tempo t_1 .

Assim, substituíndo $\mathbf{u}(t)$ em $\mathbf{X}(t_1)$ tem-se

$$\mathbf{X}(t_1) = e^{\mathbf{A}t_1} \mathbf{X}_0 + \int_0^{t_1} e^{\mathbf{A}(t_1 - \tau)} \mathbf{B} \underbrace{\left(-\mathbf{B}' e^{\mathbf{A}'(t_1 - \tau)} \mathbf{W}_c^{-1}(t_1) \left[e^{\mathbf{A}t_1} \mathbf{X}_0 - \mathbf{X}_1\right]\right)}_{\mathbf{u}(t)} d\tau,$$
(6)

$$\mathbf{X}(t_1) = e^{\mathbf{A}t_1} \mathbf{X}_0 - \left(\int_0^{t_1} e^{\mathbf{A}(t_1 - \tau)} \mathbf{B} \mathbf{B}' e^{\mathbf{A}'(t_1 - t)} d\tau \right) \mathbf{W}_c^{-1} \times (t_1) \left[e^{\mathbf{A}t_1} \mathbf{X}_0 - \mathbf{X}_1 \right], \quad (7)$$

$$\mathbf{X}(t_1) = e^{\mathbf{A}t_1}\mathbf{X}_0 - \mathbf{W}_c(t_1)\mathbf{W}_c^{-1}(t_1)\left[e^{\mathbf{A}t_1}\mathbf{X}_0 - \mathbf{X}_1\right] = \mathbf{X}_1.$$

Assim conclui-se que se \mathbf{W}_c é não singular então $(\mathbf{A},\!\mathbf{B})$ é controlável.

Em seguida será mostrado, por contradição, que "se o par (\mathbf{A},\mathbf{B}) é controlável então \mathbf{W}_c é não singular."

Suponha que (\mathbf{A},\mathbf{B}) é controlável mas que \mathbf{W}_c não é definida positiva para algum t_1 . Então existe um vetor $\mathbf{v} \neq 0$ tal que

$$\mathbf{v}'\mathbf{W}_{c}\mathbf{v} = \int_{0}^{t_{1}} \mathbf{v}' e^{\mathbf{A}(t_{1}-\tau)} \mathbf{B} \mathbf{B}' e^{\mathbf{A}'(t_{1}-t)} \mathbf{v} d\tau =$$

$$\int_{0}^{t_{1}} \left\| \mathbf{B}' e^{\mathbf{A}'(t_{1}-t)} \mathbf{v} \right\|^{2} d\tau = 0. \quad (8)$$

Isso implica em

$$\mathbf{B}' e^{\mathbf{A}'(t_1-t)} \mathbf{v} = 0$$
 ou $\mathbf{v}' e^{\mathbf{A}(t_1-\tau)} \mathbf{B} = 0$

para todo τ em $[0,t_1]$.

Se (\mathbf{A},\mathbf{B}) é controlável então existe uma entrada que transfere $\mathbf{X}(0) = e^{-\mathbf{A}'t_1}\mathbf{v}$ para $\mathbf{X}(t_1) = \mathbf{0}$ e a equação de $\mathbf{X}(t)$ se torna

$$\mathbf{0} = \mathbf{v} + \int_0^{t_1} e^{\mathbf{A}(t_1 - \tau)} \mathbf{B} \mathbf{u}(\tau) d\tau.$$

$$\mathbf{0} = \mathbf{v} + \int_0^{t_1} e^{\mathbf{A}(t_1 - \tau)} \mathbf{B} \mathbf{u}(\tau) d\tau.$$

Multiplicando ambos os lados por v' tem-se

vetor não-nulo tal que $\mathbf{v}'\mathfrak{C} = \mathbf{0}$ ou $\mathbf{v}'\mathbf{A}^k\mathbf{B} = \mathbf{0}$.

$$\mathbf{0} = \mathbf{v}\mathbf{v}' + \int_0^{t_1} \mathbf{v}' e^{\mathbf{A}(t_1 - \tau)} \mathbf{B} \mathbf{u}(\tau) d\tau = \mathbf{v}\mathbf{v}' + \int_0^{t_1} \mathbf{0} \mathbf{u}(\tau) d\tau = \|\mathbf{v}\|^2 + \mathbf{0}.$$

Isso contradiz a hipótese de que $\mathbf{v} \neq 0$, provando a relação entre (1) e (2).

(2) \leftrightarrow (3): \mathbf{W}_c é não singular se e só se \mathfrak{C} tem posto completo de linhas. • \mathbf{W}_c é não singular então \mathfrak{C} tem posto completo de linhas. Suponha que \mathfrak{C} não tem posto completo de linhas, então existe um

Sabe-se que $e^{\mathbf{A}t}$ pode ser expresso como uma combinação linear de $[\mathbf{B}, \ \mathbf{A}\mathbf{B}, \ \mathbf{A}^2\mathbf{B}, \ \dots, \mathbf{A}^{n-1}\mathbf{B}]$. Assim $e^{\mathbf{A}t}=0$ o que contradiz a hipótese de que \mathbf{W}_c é não-singular, provando o enunciado.

- ullet tem posto completo de linhas então \mathbf{W}_c é não singular.
- \star Assuma que \mathbf{W}_c é singular. Assim, $\mathbf{v}'e^{\mathbf{A}t}\mathbf{B}=0$. Para t=0 tem-se $\mathbf{v}'\mathbf{B}=\mathbf{0}$.
 - * Derivando $\mathbf{v}'e^{\mathbf{A}t}\mathbf{B} = 0$ e fazendo t = 0 tem-se $\mathbf{v}'\mathbf{A}\mathbf{B} = \mathbf{0}$.
 - * Repetindo o procedimento tem-se $\mathbf{v}'\mathbf{A}^k\mathbf{B} = \mathbf{0}$.
 - * Esses termos podem ser agrupados como
- $\mathbf{v}'[\mathbf{B}, \mathbf{AB}, \mathbf{A}^2\mathbf{B}, \dots, \mathbf{A}^{n-1}\mathbf{B}] = \mathbf{v}'\mathfrak{C} = 0.$
 - \star Isso contradiz a hipótese de $\mathfrak C$ ter posto completo de linhas.

- (3) \leftrightarrow (4): $\mathfrak C$ tem posto completo de linhas $(\rho(\mathfrak C)=n)$ se e só se $[(\mathbf A-\lambda\mathbf I)\ \mathbf B]$ tem posto completo de linhas $(\rho([(\mathbf A-\lambda\mathbf I)\ \mathbf B])=n)$.
- Suponha que $\mathfrak C$ tem posto completo de linhas e que para um determinado autovalor λ_1 a matriz $[(\mathbf A \lambda \mathbf I) \ \mathbf B]$ não tem posto n, ou seja, $[(\mathbf A \lambda \mathbf I) \ \mathbf B]$ é singular.
- $\star \text{ Assim, existe } \mathbf{q} \neq \mathbf{0} \text{ tal que } \mathbf{q} \left[(\mathbf{A} \lambda \mathbf{I}) \quad \mathbf{B} \right] = \mathbf{0} \text{ o que implica que } \mathbf{q} \mathbf{A} = \lambda_1 \mathbf{q} \text{ e } \mathbf{q} \mathbf{B} = 0.$
 - $\star \mathbf{q}$ é um autovetor de \mathbf{A} .
 - $\star \mathbf{q} \mathbf{A}^2 = (\mathbf{q} \mathbf{A}) \mathbf{A} = (\lambda_1 \mathbf{q}) \mathbf{A} = \lambda_1 (\lambda_1 \mathbf{q}) = \lambda_1^2 \mathbf{q} \Rightarrow \mathbf{q} \mathbf{A}^k = \lambda_1^k \mathbf{q}.$
 - $\star \mathbf{q} \mathbf{A}^k = \lambda_1^k \mathbf{q}.$
 - $\star \mathbf{q}[\mathbf{B}, \mathbf{AB}, \mathbf{A}^2\mathbf{B}, \dots, \mathbf{A}^{n-1}\mathbf{B}] =$
- $[\mathbf{qB}, \lambda_1 \mathbf{qB}, \lambda_1^2 \mathbf{qB}, \dots, \lambda_1^{n-1} \mathbf{qB}] = \mathbf{0}.$
- \star Isso contradiz a hipótese de que ${\mathfrak C}$ tem posto completo de linhas.

- $\rho(\mathfrak{C}) < n \Rightarrow \rho([(\mathbf{A} \lambda \mathbf{I}) \ \mathbf{B}]) < n.$
 - * Dois resultados são necessários:
 - A controlabilidade é invariante sobre qualquer transformação de equivalência.
 - ② Se o posto de $\mathfrak C$ é menor que n, ou seja, $\rho(\mathfrak C)=n-m$, para algum $m\geq 1$, então existe uma matriz $\mathbf P$ tal que

$$\overline{\mathbf{A}} = \mathbf{P}\mathbf{A}\mathbf{P}^{-1} = \left[\begin{array}{cc} \overline{\mathbf{A}}_c & \overline{\mathbf{A}}_{12} \\ \mathbf{0} & \overline{\mathbf{A}}_{\overline{c}} \end{array} \right] \qquad e \qquad \overline{\mathbf{B}} = \mathbf{P}\mathbf{B} = \left[\begin{array}{cc} \overline{\mathbf{B}}_c \\ \mathbf{0} \end{array} \right].$$

 \star Seja λ_1 um autovalor de $\overline{{f A}}_{\overline c}$ e ${f q}_1$ o correspondente autovetor não nulo.

$$\begin{array}{ll} \star \ \mathbf{q} \left[\left(\overline{\mathbf{A}} - \lambda_1 \mathbf{I} \right) \ \overline{\mathbf{B}} \right] = \\ \left[\mathbf{0} \ \mathbf{q}_1 \right] \left[\begin{array}{cc} \left(\overline{\mathbf{A}}_c - \lambda_1 \mathbf{I} \right) & \overline{\mathbf{A}}_{12} & \overline{\mathbf{B}}_c \\ \mathbf{0} & \left(\overline{\mathbf{A}}_{\overline{c}} - \lambda_1 \mathbf{I} \right) & \mathbf{0} \end{array} \right] = \mathbf{0} \ \text{o implica que} \\ \rho(\left[\left(\overline{\mathbf{A}} - \lambda \mathbf{I} \right) \ \overline{\mathbf{B}} \right]) < n \ \text{o que implica que} \ \rho(\left[\left(\mathbf{A} - \lambda \mathbf{I} \right) \ \overline{\mathbf{B}} \right]) < n \\ \text{para algum autovalor de } \mathbf{A}. \\ (2) \leftrightarrow (5): \end{array}$$

Se \mathbf{A} é estável, então a solução única da equação de Lyapunov pode ser expressa como \mathbf{W}_c . O Gramiano \mathbf{W}_c é sempre semidefinido positivo. Será definido positivo se e só se \mathbf{W}_c é não singular. (c.q.d.)

Exemplo 6.2: Para um determinado pêndulo invertido tem-se

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ -2 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{X}.$$

Ver dedução no Exemplo 2.8 do Chen.

O cálculo da matriz de controlabilidade resulta em

$$\mathfrak{C} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^2\mathbf{B} & \mathbf{A}^3\mathbf{B} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 0 & -2 & 0 & -10 \\ -2 & 0 & -10 & 0 \end{bmatrix}.$$

A matriz $\mathfrak C$ tem posto 4. Assim conclui-se que o sistema é controlável.

No Matlab:

- ctrb: calcula a matriz de controlabilidade.
- gram: calcula o gramiano de controlabilidade.

Exemplo 6.3:

$$\dot{\mathbf{x}} = \begin{bmatrix} -0.5 & 0\\ 0 & -1 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0.5\\ 1 \end{bmatrix} u.$$

Se as condições iniciais são $x_1(0)=10$ e $x_2(0)=-1$, é possível trazer o sistema para o ponto de equilíbrio ${\bf X}={\bf 0}$ em 2 segundos?

Resolução: Verificação de controlabilidade

$$\rho\left(\begin{bmatrix}\mathbf{B} & \mathbf{A}\mathbf{B}\end{bmatrix}\right) = \rho\begin{bmatrix}0.5 & -0.25\\1 & -1\end{bmatrix} = 2.$$

Conclusão: O sistema é controlável.

O próximo passo é determinar a entrada:

$$\mathbf{W}_{c}(2) = \int_{0}^{2} \left(\begin{bmatrix} e^{-0.5\tau} & 0 \\ 0 & e^{-\tau} \end{bmatrix} \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \begin{bmatrix} 0.5 & 1 \end{bmatrix} \begin{bmatrix} e^{-0.5\tau} & 0 \\ 0 & e^{-\tau} \end{bmatrix} \right) d\tau.$$

$$u_{1} = -\mathbf{B}' e^{\mathbf{A}'(t_{1}-t)} \mathbf{W}_{c}^{-1}(t_{1}) \begin{bmatrix} e^{\mathbf{A}t_{1}} \mathbf{X}_{0} - \mathbf{X}_{1} \end{bmatrix}$$

$$u_{1} = -\begin{bmatrix} 0.5 & 1 \end{bmatrix} \begin{bmatrix} e^{(0.5t-1)} & 0 \\ 0 & e^{(t-2)} \end{bmatrix} \mathbf{W}_{c}^{-1}(2) \begin{bmatrix} e^{-1} & 0 \\ 0 & e^{-2} \end{bmatrix} \begin{bmatrix} 10 \\ -1 \end{bmatrix}$$

$$u_{1} = -58.82 e^{0.5t} + 27.96 e^{t}.$$

Evolução temporal dos estados e entrada do sistema.

• A entrada u(t) é chamada controle de energia mínima pois para qualquer outra $\overline{u}(t)$ tem-se que

$$\int_{t_0}^{t_1} \overline{\mathbf{u}}'(t) \overline{\mathbf{u}}(t) dt \ge \int_{t_0}^{t_1} \mathbf{u}'(t) \mathbf{u}(t) dt.$$

- O esforço de controle (amplitude) aumenta com a diminuição do tempo de transferência;
- Se alguma restrição é imposta a $\mathbf{u}(t)$, então pode não ser possível transferir o sistema em um intervalo de tempo arbitrariamente pequeno.

Comparação entre diferentes entradas.

Teorema 6.2

A propriedade de controlabilidade é invariante sobre qualquer transformação de equivalência.

Demonstração

• Considere $\mathfrak C$ e as matrizes $\overline{\mathbf A} = \mathbf P \mathbf A \mathbf P^{-1}$ e $\overline{\mathbf B} = \mathbf P \mathbf B$.

Com \mathbf{P} é não singular, $\rho(\mathbf{C}) = \rho(\overline{\mathbf{C}})$. (c.q.d.)

6.3 Observabilidade

Considere o sistema

$$\begin{vmatrix}
\dot{\mathbf{X}}(t) = \mathbf{A}\mathbf{X}(t) + \mathbf{B}\mathbf{u}(t) \\
\mathbf{y}(t) = \mathbf{C}\mathbf{X}(t) + \mathbf{D}\mathbf{u}(t)
\end{vmatrix}$$
(9)

sendo $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$, $\mathbf{C} \in \mathbb{R}^{q \times n}$ e $\mathbf{D} \in \mathbb{R}^{q \times p}$. Observabilidade

A equação de estados (9) ou o par (\mathbf{A}, \mathbf{C}) é dito observável se para qualquer estado inicial $\mathbf{X}(0)$ existe um tempo finito $t_1 > 0$ tal que o conhecimento da entrada $\mathbf{u}(t)$ e da saída $\mathbf{y}(t)$ no intervalo $[0, t_1]$ seja suficiente para determinar de forma única o estado inicial $\mathbf{X}(0)$.

• Ver exemplos: 6.6 e 6.7

• A resposta de (9) é

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{X}(0) + \mathbf{C}\int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau + \mathbf{D}\mathbf{u}(t).$$

- Assume-se que a entrada ${\bf u}(t)$ e a saída ${\bf y}(t)$ são conhecidas e somente ${\bf X}(0)$ é desconhecido.
- A resposta de (9) pode ser escrita como

$$\mathbf{C}e^{\mathbf{A}t}\mathbf{X}(0) = \overline{\mathbf{y}}(t) \tag{10}$$

sendo $\overline{\mathbf{y}}(t) := \mathbf{y}(t) - \mathbf{C} \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{B}\mathbf{u}(\tau) d\tau - \mathbf{D}\mathbf{u}(t).$

• Assim o problema da observabilidade se reduz a obter $\mathbf{X}(0)$ de (10).

- A equação (9) é observável se e somente se o estado inicial $\mathbf{X}(0)$ puder ser determinado unicamente da resposta a entrada zero em um intervalo finito de tempo.
- Para um t fixo, é sempre possível obter $\mathbf{X}(0)$ de (10). No entanto, a solução não será única.
- $\mathbf{X}(0)$ será determinado unicamente se forem conhecidas $\mathbf{u}(t)$ e $\mathbf{y}(t)$ em certo intervalo de tempo. Como formalizado no teorema abaixo. Teorema 6.4

A equação de estado (9) é observável se e somente se a matriz $n \times n$

$$\mathbf{W}_0(t) = \int_0^t e^{\mathbf{A}'\tau} \mathbf{C}' \mathbf{C} e^{\mathbf{A}\tau} d\tau$$

é não singular para qualquer t>0.

• Se $\mathbf{W}_0(t)$ é não singular então (9) é observável.

Se multiplicarmos (10) a esquerda por $e^{\mathbf{A}'\tau}\mathbf{C}'$ e então integrarmos no intervalo de $[0,t_1]$ resulta em

$$\left(\int_0^{t_1} e^{\mathbf{A}'\tau} \mathbf{C}' \mathbf{C} e^{\mathbf{A}\tau} d\tau\right) \mathbf{X}(0) = \int_0^{t_1} e^{\mathbf{A}'\tau} \mathbf{C}' \overline{y}(t) dt.$$

Se $\mathbf{W}_0(t)$ é não singular então

$$\mathbf{X}(0) = \mathbf{W}_0^{-1}(t) \int_0^{t_t} e^{\mathbf{A}'\tau} \mathbf{C}' \overline{y}(t) dt.$$

• Se $\mathbf{W}_0(t)$ é singular (semidefinida positiva) então (9) é não-observável.

Se $\mathbf{W}_0(t)$ é semidefinida positiva então existe um vetor $\mathbf{v} \neq \mathbf{0}$ tal que

$$\mathbf{v}'\mathbf{W}_0(t_1)\mathbf{v} = \int_0^{t_1} \mathbf{v}' e^{\mathbf{A}'\tau} \mathbf{C}' \mathbf{C} e^{\mathbf{A}\tau} \mathbf{v} d\tau = \int_0^{t_1} \left\| \mathbf{C} e^{\mathbf{A}\tau} \mathbf{v} \right\|^2 d\tau = 0$$

o que implica que

$$\mathbf{C}e^{\mathbf{A}\tau}\mathbf{v}\equiv 0.$$

Assim, se $\mathbf{u}(t) \equiv 0$ e dados $\mathbf{X}_1(0)$ e $\mathbf{X}_2(0)$ diferentes a saída será $\mathbf{y}(t) \equiv 0$. Isso demonstra a não unicidade de soluções e consequentemente a não observabilidade. (c.q.d.).

Teorema 6.5

O par (A,B) é controlável se e somente se o par (A',B') é observável.

Teorema 6.01

As seguintes afirmativas são equivalentes:

- (1) O par n-dimensional (\mathbf{A}, \mathbf{C}) é observável.
- (2)A matriz $n \times n$

$$\mathbf{W}_{o}(t) = \int_{0}^{t} e^{\mathbf{A}'\tau} \mathbf{C}' \mathbf{C} e^{\mathbf{A}\tau} d\tau$$
 (11)

é não singular para qualquer t > 0.

(3)A matriz de observabilidade $nq \times n$

$$\mathbf{O} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \vdots \\ \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix}$$
 (12)

tem posto n (posto completo de colunas).

- (4)A matriz $\begin{bmatrix} \mathbf{A} \lambda \mathbf{I} \\ \mathbf{C} \end{bmatrix}$, de dimensões $(n+q) \times n$, possui posto completo de colunas em cada autovalor, λ , de \mathbf{A} .
- (5)Se todos os autovalores de $\bf A$ possuem parte real negativa, então a solução única de

$$\mathbf{A}'\mathbf{W}_o + \mathbf{W}_o \mathbf{A} = -\mathbf{C}'\mathbf{C} \tag{13}$$

é definida positiva. A solução (13) é chamada *Gramiano de observabilidade* e pode ser expressa como

$$\mathbf{W}_{o}(t) = \int_{0}^{\infty} e^{\mathbf{A}'\tau} \mathbf{C}' \mathbf{C} e^{\mathbf{A}\tau} d\tau.$$
 (14)

Teorema 6.02

A propriedade de observabilidade é invariante sobre qualquer transformação de equivalência.

Forma alternativa de obtenção de $\mathbf{X}(0)$

Derivando $\mathbf{C}e^{\mathbf{A}t}\mathbf{X}(0)=\overline{\mathbf{y}}(t)$ repetidamente e igualando t=0 tem-se:

$$\begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \vdots \\ \mathbf{C}\mathbf{A}^{(v-1)} \end{bmatrix} \mathbf{X}(0) = \begin{bmatrix} \overline{\mathbf{y}}(t) \\ \dot{\overline{\mathbf{y}}}(t) \\ \vdots \\ \overline{\mathbf{y}}^{(n-1)}(t) \end{bmatrix}$$

ou

$$\mathbf{O}_v \mathbf{X}(0) = \tilde{\mathbf{y}}(0).$$

Assim, $\mathbf{X}(0)$ pode ser obtido por mínimos quadrados

$$\mathbf{X}(0) = [\mathbf{O}_v'\mathbf{O}_v]^{-1}\mathbf{O}_v'\tilde{\mathbf{y}}(0).$$

No entanto, como $\tilde{\mathbf{y}}(0)$ é composto pelas derivadas de \mathbf{y} , e derivadas amplificam ruído de alta frequência, essa forma alternativa de obtenção de $\mathbf{X}(0)$ geralmente não é empregada na prática.