

Introduction to National Science Experiments (NSE) Classroom Experiments

Feb 2016

The National Science Experiment is a massparticipation event among students where they would use a device called SENSg to collect data from their surrounding.

Through participation in the NSE, students can understand the roles and functions of sensors in providing vital information about our environment.

Beyond the NSE phase, participating schools may utilize the SENSg in classroom curriculum.

SENSg: Lab on a lanyard

NSE Classroom Experiments

- 6 Primary lessons
- 6 Secondary lessons
- 5 Junior College lessons

Classroom Experiments

1) Primary: Change of temperature due to the cooling effect of evaporation

2) Lower Sec: Change of air pressure in a pressure jar

3) Upper Sec: Estimation of distance using an accelerometer

Primary

STENCE

Brought To You By
Science Centre Singapore

Time: 2 periods (1 h 10 min)

Topic: Evaporation

Sensor: Ambient temperature

Learning objectives:

- Understand that a cooling effect is produced due to evaporation
- Interpret the change in temperature with time
- 3) Be aware of other examples of evaporation in daily life

Cooling effects from evaporation

After adding alcohol swab

Before adding alcohol swab

Cooling effects from evaporation

Recording of temperature as alcohol evaporates

Brought To You By Science Centre Singapore

Activity:

- Understand the
 evaporation process
 and that it involves
 the removal of heat
 thereby creating a
 cooling effect
- 2) Apply knowledge to real life events such as sweating during physical activity and drying of clothes

- **3) Interpret** a graph of temperature against time over the course of evaporation
- **4) Analyse** the results of the temperature decrease

Lower Secondary

Time: 2 periods (1 h 10 min)

Topic: Pressure

Sensor: Air pressure

Learning objectives:

 Understand that air particles in a jar causes air pressure

 Understand that the removal of air particles results in a lower air pressure

3) Interpret the change in air pressure with time

SENSg

Change of air pressure in a pressure jar inc

After pumping out air

Change of air pressure in a pressure jar

Recording of air pressure as air is being pumped out

Lower Secondary

Activity:

- 1) Understand what atmospheric pressure is and how air pressure changes as air particles are removed from a jar
- 2) Apply knowledge of kinetic model of matter to explain change in air pressure
- **3) Interpret** the change in air pressure with time

4) Analyse the results to understand pressure change

Upper Secondary

Time: 2 periods (1 h 10 min)

Topic: Kinematics

Sensor: Accelerometer

Learning Objectives:

 Understand that acceleration is a vector which involves direction, and its relation with gravity.

2) Interpret simple accelerationtime (a-t) graphs

 Be aware of alternative methods to carry out measurements.

Science Centre Singapore

SENSg

Estimating distance with accelerometer

Graphical representation of motion

SENSg attached to the spokes of a wheel

Estimating distance with accelerometer inc

Recording of number of revolutions as wheel is being rotated on the ground

STEME Brought To You By Science Centre Singapore

Activity:

- 1) Understand the acceleration due to gravity and how to measure it with an accelerometer
- 2) Apply circular measure to estimate distance
- **3) Interpret** an a-t graph of an accelerometer

4) Analyse the results to understand the motion of object