Semi-Supervised QA with Generative Domain-Adaptive Nets

Carnegie Mellon University

Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, William W. Cohen

Outline

- Author
- Overview
- Semi-Supervised QA
- Discriminative Model
- Domain Adaptation with Tags
- Generative Model
- Objective function
- Training Algorithm
- Experiment
- Conclusion

Author

杨植麟 (Zhilin Yang)

- Third-year PhD student
- Language Technologies Institute
- School of Computer Science
- Carnegie Mellon University
- Prior to coming to CMU, worked
 with Jie Tang at Tsinghua University

Overview

- Task : Semi-supervised question answering → Use unlabeled data
- Model :

- 1. Use linguistic tags to extract possible answer
- 2. Train a **generative model** to generate questions
- 3. Train a discriminative model based on both data
- Problem: Discrepancy between the model-generated data distribution and the <u>human-generated data distribution</u>
- Method : Domain adaptation algorithms, based on reinforcement learning (Two domain adaptation techniques)
 - **Domain tag** (For D) : model-generated or human-generated
 - Reinforcement learning (For G) : minimize the loss of the discriminative model in an adversarial way

Semi-Supervised QA

1. Dataset:

 $L = \left\{q^{(i)}, a^{(i)}, p^{(i)}\right\}_{i=1}^{N}$

 $\textbf{Question:}\ q^{(i)}$

Answer: $a^{(i)}$

Paragraph: $p^{(i)}$

2. Extractive question answering: where a is always a consecutive chunk of text in p.

Paragraph: $p=(p_1,p_2,\cdots,p_T)$

Answer: $a = (p_i, p_{i+1}, \dots, p_{k-1}, p_k)$

Question: $q=(q_1,q_2,\cdots,q_{T'})$

3. Unlabeled Dataset:

$$U = \left\{a^{(i)}, p^{(i)}\right\}_{i=1}^{M}$$

4. Question answering mode D

- Discriminative model
- Data: the labeled data L and the unlabeled data U
- Goal : $\mathbb{P}(a|p,q)$.

Discriminative Model

- Goal: Learns the Conditional probability of an answer(a) chunk given the paragraph (p) and the question (q) $\longrightarrow \mathbb{P}(a|p,q)$.
- Base Model: Gated-attention (GA) reader
 - The GA model consists of K layers.
 - \circ \mathbf{H}_p^k be the intermediate paragraph representation at layer k, \mathbf{H}_p^k is a $T \times d$ matrix.
 - \circ \mathbf{H}_q be the question representation, \mathbf{H}_q is a $T' \times d$ matrix.
 - Bi-directional Gated Recurrent Unit (GRU) network.
 - \circ The question and paragraph representations are combined with the gated-attention (GA) mechanism:for each paragraph token \mathbf{p}_i

$$\bullet \ \alpha_j = \frac{\exp \mathbf{h}_{q,j}^T \mathbf{h}_{p,i}^{k-1}}{\sum_{j'=1}^{T'} \exp \mathbf{h}_{q,j'}^T \mathbf{h}_{p,i}^{k-1}}$$

- $\mathbf{h}_{p,i}^k = \sum_{j=1}^{T'} \alpha_j \mathbf{h}_{q,j} \odot \mathbf{h}_{p,i}^{k-1}$
- $\mathbf{h}_{p,i}^k$ is the the the i-th row of \mathbf{H}_p^k and $\mathbf{h}_{q,j}$ is the j-th row of \mathbf{H}_q .
- \circ Apply two softmax layers on top of \mathbf{H}_p^K to predict the start and end indices of a.

Domain Adaptation with Tags

• **Problem:** Learning from both <u>human-generated data</u> and <u>model-generated data</u> can thus lead to a **biased model**.

Method:

By introducing the domain tags, we expect the discriminative model to factor out domain-specific and domain-invariant representations.

Generative Model

• Goal: Learns the Conditional probability of generating a question(q) given the paragraph(p) and the answer(a) $\longrightarrow \mathbb{P}(q|p,a)$

Base Model:

sequence-to-sequence model with copy and attention mechanism

Encoder:

- Encodes the input paragraph into a sequence of hidden states H
- Inject the answer information by appending an additional zero/one feature to the word embeddings of the paragraph tokens

Decoder:

$$\mathbf{p}_{\text{overall}} = g_t \mathbf{p}_{\text{vocab}} + (1 - g_t) \mathbf{p}_{\text{copy}}$$
 probability of generating the token from the **vocabulary** probability of copying a token from the **paragraph**
$$g_t = \sigma\left(\mathbf{w}_g^T \mathbf{h}_t\right)$$

Objective function

- D: Relies on the data generated by the generative mode
- G: Aims to match the model-generated data distribution with the human-generated data distribution <u>using the signals from the</u> <u>discriminative model</u>.
- **D objective function** (conditioning on domain tags)

$$J(L, \mathsf{tag}, D) = \frac{1}{|L|} \sum_{p^{(i)}, q^{(i)}, a^{(i)} \in L} \log \mathbb{P}_{D, \mathsf{tag}}(a^{(i)} | p^{(i)}, q^{(i)})$$

Final D objective function :

$$J(L, d_{\text{true}}, D) + J(U_G, d_{\text{gen}}, D).$$

Objective function

- For G, What will happen if we maxing $J(U_G, \mathbf{d}_{-}\text{gen}, D)$. ?
 - G aims to generate questions that can be reconstructed by the D

- Generated question maybe the same as the answer!!!
- Similar to Auto-encoder
- Method: adversarial training objective $J(U_G, d_true, D)$

Training Algorithm

Training Algorithm

Reinforcement Learning

- Action space : all possible questions with length T (maybe padding)
- Reward : $J(U_G, d_{true}, D)$
- Gradient :

$$\frac{\partial J(U_G, \operatorname{d_true}, D)}{\partial \theta_G}$$

$$= \mathbb{E}_{\mathbb{P}_{G}(q|p,a)}(\log \mathbb{P}_{D,\operatorname{\mathbf{d_true}}}(a|p,q) - b) \frac{\partial \log \mathbb{P}_{G}(q|p,a)}{\partial \theta_{G}}$$

Experiment - Answer Extraction

- Assumes: answers are available for unlabeled data
- Answers in the SQuAD dataset can be categorized into ten types,
 i.e., "Date", "Other Numeric", "Person", "Location", "Other
 Entity", "Common Noun Phrase", "Adjective Phrase", "Verb
 Phrase", "Clause" and "Other"
 - Part-Of-Speech (POS) tagger: label each word
 - Constituency parser: noun phrase, verb phrase, adjective and clause
 - Named Entity Recognizer (NER): assign each word with one of the seven labels, "Date", "Money", "Percent", "location", "Organization" and "Time".
- Subsample five answers from all the extracted answers for each paragraph according to the <u>percentage of answer types</u> in the SQuAD dataset.

Experiment - Baseline model

- Given $p=(p_1,p_2,\cdots,p_T)$
- Given $a=(p_j,p_{j+1},\cdots,p_{k-1},p_k),$
- Q: $(p_{j-W}, p_{j-W+1}, \cdots, p_{j-1}, p_{k+1}, p_{k+2}, p_{k+W})$
 - W: window size

Experiment- Comparison Methods

Methods

Method	Model	Description	
SL		supervised learning setting, train the model D on the labeled data L	
Context	D	simple context-based method(baseline mode	
Context + domain		Context method with domain tags	

Experiment- Comparison Methods

Methods

Method	Model	Description	
Gen		train a generative model and use the generated questions as additional training data(copy+attn)	
Gen + GAN		Reinforce	
Gen + dual	D+G	Dual learning method	
Gen + domain		Gen with domain tags , while the generative model is trained with MLE and fixed .	
Gen + domain + adv		Adversarial(adv) training based on Reinforce	

- Labeling rates
 - percentage of training instances that are used to train D
- Unlabeled dataset sizes:
 - sample a subset of around 50,000 instances
- Metric
 - F1 score
 - Exact matching (EM) scores

SL v.s. SSL

 use only 0.1 training instances to obtain even better performance than a supervised learning approach with 0.2 training instances

Labeling rate	U	Method	Dev F1	Test F1	Test EM
0.1	50K	Gen + domain + adv	0.5313	0.4802	0.3218
0.2	50K	SL	0.5134	0.4674	0.3163

Ablation Study

 both the domain tags and the adversarial training contribute to the performance of the GDANs

Labeling rate	U	Method	Dev F1	Test F1	Test EM
0.1	50K	Gen	0.5049	0.4553	0.3018
0.1	50K	Gen + domain	0.5234	0.4703	0.3145
0.1	50K	Gen + domain + adv	0.5313	0.4802	0.3218

Unlabeled Data Size

 the performance can be further improved when a larger unlabeled dataset is used

Labeling rate	U	Method	Dev F1	Test F1	Test EM
0.1	50K	SL	0.4262	0.3815	0.2492
0.1	50K	Context	0.5046	0.4515	0.2966
0.1	50K	Context + domain	0.5139	0.4575	0.3036
0.1	50K	Gen	0.5049	0.4553	0.3018
0.1	50K	Gen + GAN	0.4897	0.4373	0.2885
0.1	50K	Gen + dual	0.5036	0.4555	0.3005
0.1	50K	Gen + domain	0.5234	0.4703	0.3145
0.1	50K	Gen + domain + adv	0.5313	0.4802	0.3218
0.1	5M	SL	0.4262	0.3815	0.2492
0.1	5M	Context	0.5140	0.4641	0.3014
0.1	5M	Context + domain	0.5166	0.4599	0.3083
0.1	5M	Gen	0.5099	0.4619	0.3103
0.1	5M	Gen + domain	0.5301	0.4703	0.3227
0.1	5M	Gen + domain + adv	0.5442	0.4840	0.3270

Context-Based Method

 the simple context-based method, though performing worse than GDANs, still leads to substantial gains

Labeling rate	U	Method	Dev F1	Test F1	Test EM
0.1	50K	SL	0.4262	0.3815	0.2492
0.1	50K	Context	0.5046	0.4515	0.2966

MLE vs RL

 the simple context-based method, though performing worse than GDANs, still leads to substantial gains

- Samples of Generated Questions
 - RL-generated questions are more informative
 - RL-generated questions are more accurate

P1: is mediated by ige, which triggers degranulation of mast cells and basophils when cross - linked by antigen. type ii hypersensitivity occurs when antibodies bind to antigens on the patient's own cells, marking them for destruction. this

A: type ii hypersensitivity

GQ: antibody - dependent hypersensitivity belongs to what class of hypersensitivity?

Q (MLE): what was the UNK of the patient 's own cells?

Q (RL): what occurs when antibodies bind to antigens on the patient 's own cells by antigen when cross

P2: an additional warming of the earth 's surface. they calculate with confidence that co0 has been responsible for over half the enhanced greenhouse effect. they predict that under a "business as usual" (bau) scenario,

A: over half

GQ: how much of the greenhouse effect is due to carbon dioxide?

Q (MLE): what is the enhanced greenhouse effect?

Q (RL): what the enhanced greenhouse effect that co0 been responsible for

Conclusion

- Task: Semi-supervised question answering
- Model: Generative Domain-Adaptive Nets
- Simple Baseline method: Context
- Experiment

Thank you!