

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

2024-2025

Batch Number	BG11
Team Members	Kolipaka Bhavana (21471A0576)
	Gude Chaitanya (21471A0588)
	Madagunda Sravani (21471A05C4)
Guide	T.G.Ramnadh Babu _{M.Tech}
Title	Feature Augmentation and Convolutional Neural Networks for
	Accurate prediction of Heart Disease
Domain/Technology	DEEP LEARNING
Base Paper Link	https://github.com/Kolipaka-Bhavana/base
	Paper/blob/main/springer%20final.pdf
Dataset Link	https://www.kaggle.com/ fedesoriano/heart failure-prediction
Software Requirements	Browser: Any latest browser like Chrome
	Operating System: Windows 7 Server or later Python
	(COLAB)
Hardware Requirements	SystemType: Intel Core i5 or above
	RAM: 8 GB
	Number of cores:5
	Number of Threads: 4
Abstract	Heart diseases are considered the foremost cause of death within
	developing nations; therefore, prediction of heart disease is crucial for
	evaluating the risk of patients. This paper will introduce a new method
	to enhance prediction accuracy by combining CNNs with SAE for
	feature enhancement. Our method uses a data set of 918 patient records
	with 11 clinical variables, and it removes the drawback of traditional
	classifiers by using feature augmentation to build more informative
	features. Experimental results show that our model's accuracy is
	93.478%, an improvement over traditional classifiers like MLP and RF
	by 4.98%. Latent space size is also optimized, and 100 best features are
	obtained. The results suggest that the deep learning methods, especially
	the combination of SAE with CNN, bring in notable benefits for heart
	disease prediction, which might further be used for the clinical purpose
	of earlier interventions.

Signature of the student(s) Signature of the Guide Signature of the project coordinator