Semester I

ME010101 Abstract Algebra

Text book: John B. Fraleigh, A first course in abstract algebra, 7th edition, Pearson Education, 2003

- Week 1 Introduction to abstract algebra, direct product of groups, finite cyclic groups, fundamental theorem of finitely generated abelian groups, decomposible group, finite indecomposible abelian groups. Reading: §11.1-17 Nov 6, 2020 Assignment: Exercises 11
- Week 2 factor group, normal subgroup, fundamental homomorphism theorem, inner automorphisms, conjugate subgroups. Reading: §14.1-15

 Nov 13, 2020 Assignment: Exercises 14
- Week 3 group action, homomorphism into permutations of G-set, faithful action, transitive action, isotropy subgroups G_x , orbits X_g , index of isotropy subgroups $(G:G_x)$. Reading: §16.1-17

 Nov 20, 2020 Assignment: Exercises 16
- Week 4 Burnside's formula, corollary. Reading: §17.1-7
 Nov 27, 2020 Assignment: Exercises 17
 Nov 30, 2020 Module 1 Internal Examination

ME010102 Linear Algebra

ME010103 Basic Topology

ME010103 Real Analysis

Graph Theory

Semester II

ME010201 Advanced Abstract Algebra

ME010202 Advanced Topology

Numerical Analysis with Python3

Revision Plan

- Day 1 Gauss elimination Elimination phase ('Pivot Equation', n^3 operations), Back substitution phase. §2.2 (Kiusalaas pages 37-44) Oct 8, 2020
- Day 2 Doolittle LU decomposition ('LU' factorisation, Comparison), Modifications to Gauss Elimination, combined matrix, Forward + Back substitution §2.3(Kiusalaas pages 44-47) Oct 9, 2020
- Day 3 Numerical Integration Lagrange's interpolant, Newton-Cotes formula $\mathbf{Oct}\ \mathbf{12},\ \mathbf{2020}$

ME010204 Complex Analysis

$\begin{array}{c} \mathbf{ME010205} \ \mathbf{Measure} \ \& \\ \mathbf{Integration} \end{array}$

Semester III

ME010301 Advanced Complex Analysis

ME010302 Partial Differential Equations

ME010303 Multivariate Calculus & Integral Transforms

Textbooks: Tom M. Apostol, Mathematical Analysis, 2nd Edition, Addison-Wesley, 1974

Walter Rudin, Principles of mathematical analysis, 3rd Edition

- Week 1 Weierstrass approximation theorem, other forms of Fourier series, Fourier integral theorem, exponential form of Fourier integral theorem, integral transforms. Reading: §11.15-20
- Week 2 directional derivatives, total derivative, complex valued functions, matrix of linear functions, Jacobian matrix. Reading: §12.1-8
- Week 3 chain rule, matrix form of chain rule, mean-value theorem. Reading : $\S 12.9\text{-}11$
- Week 4 convolution theorem for Fourier transforms. Reading : $\S11.21$ (pending) Oct 12, 2020 Internal Examination Module 1 & 2
- Week 5 sufficient condition for differentiability, sufficient condition for equality of partial derivatives. Reading: §12.12-13

 Oct 16,2020
- Week 6 implicit function, Jacobian determinant $J_f(\overline{x})$, Jacobian determinant of complex-valued functions, properties of functions with non-zero Jacobian determinant, inverse function theorem, implicit function theorem. Reading: §13.1-4

Oct 23, 2020

- Week 7 extrema of function on one variable, extrema of functions on several variables. Reading: §13:5-6

 Oct 30, 2020
- Week 8 k-cell I_k , integration over k-cell, support, primitive mappings, flip, local representaion as composition of primitives and flips, partitions of unity,

change of variables on continuous functions with compact support. Reading : $\S 10.1-9$

Nov 6, 2020

Week 9 k-surface, k-form (differential form of order k), properties of k-forms, basic k-forms. Reading: §10.10-14 **Nov 13, 2020**

ME010304 Functional Analysis

ME010305 Optimization Technique

Semester IV

ME010401 Spectral Theory

ME010402 Analytic Number Theory

ME800401 Differential Geometry

ME800402 Algorithmic Graph Theory

ME800403 Combinatorics

Subject 21 Probability Theory

Operational Research

Operational Research

Commutative Algebra

Ordinary Differential Equations

Classical Mechanics

Bibliography