Basis Data Relasional

Oleh: Rahmi Hidayati, S.Kom., M.Cs

MODEL DATA

- Model data merupakan suatu cara untuk menjelaskan tentang data-data yang tersimpan dalam basis data dan bagaimana hubungan antar data tersebut untuk para pemakai secara logik.
- Tujuan model data adalah untuk menyajikan data agar mudah dimodifikasi dan dimengerti.

Jenis Model Data

- Secara garis besar model data dikelompokkan dalam 3 macam yaitu :
 - Model data berbasis obyek (object based data model)
 - Model data berbasis record (record based data model)
 - Model data fisik (physical based data model)

Model Data Berbasis Obyek (Object Based Data Model)

Merupakan himpunan Data dan Prosedur atau Relasi yang menjelaskan hubungan Logik antar data dalam suatu Basis Data berdasarkan obyek datanya.

Terdiri Atas:

- Entity Relationship Model
- Semantic Model
- Binary Model

Model Data Berbasis Record (Record Based Data Model)

Model ini berdasarkan Record atau Rekaman untuk menjelaskan kepada pemakai mengenai hubungan Logik antar data dalam Basis Data.

Terdiri Dari:

- Hierarchycal Model
- Network Model
- Relational Model

Model Data Fisik (Physical Based Data Model)

Model ini digunakan untuk menguraikan data di tingkat Internal atau menjelaskan kepada pemakai bagaimana datadata dalam Basis Data di simpan dalam media penyimpanan secara fisik.

Model ini jarang digunakan karena kerumitan dan kompleksitasnya yang justru menyulitkan pemakai.

Model Ini Terdiri Dari:

- Unifying Model
- Frame Memory

Konsep Relational Model

- Model Basis Data Relasional atau Model Relasional atau Basis Data Relasional.
- Model Relasional pertama kali dicetuskan oleh Dr. E.F. Codd di IBM pada tahun 1970 dalam paper dengan judul: "A Relational Model for Large Shared Data Banks," Communications of the ACM, June 1970.
- Merepresentasikan data pada basis data sebagai kumpulan dari relasi-relasi (relations).

Mengapa model relasi di perlukan untuk perancangan basis data?

Mempunyai piranti komunikasi yang baik antara user & designer

Model relasional mendefinisikan salah satu kriteria perancangan basis data yang penting yaitu relasi bentuk normal.

Struktur data yang direpresentasikan oleh relasi dapat segera dikonversikan & diimplementasikan ke RDBMS.

Pengertian Relasi

Relasi pertama kali didefinisikan menggunakan teori himpunan.

Cara termudah untuk mendefinisikan sebuah relasi adalah sebagai sebuah tabel dimana data-datanya disimpan dalam baris tabel.

Basis Data Relasional

Basis Data Relasional menggunakan tabel dua dimensi yang terdiri atas baris dan kolom untuk memberi gambaran sebuah berkas data.

- Data disusun dalam bentuk tabel-tabel
- Antar dua tabel bisa punya hubungan

Contoh Model Relasional

NO_MHS NA		NAMA	A_MHS			KODE_	MK	NAMA_	MK
55		Ashadi				DB001		Pengan	itar Basis Data
56		Rina				DB002		Basis D	ata Lanjut
						PI001	Teknik Mul		Multimedia
57		Budi						ı	
	<u> </u>		NO_MHS	K	ODE	E_MK	NILA	1	
,			55	DB00 PI001)1	Α		
			55			1	В		
Hubungan		56	D	DB001		В			
		57	D	B00)1	Α			
		57	DB002		Α				

Contoh Informasi yang Bisa Diperoleh

NO_MHS		NAMA_MHS
55		Ashadi
56		Rina
57		Budi

KODE_MK	NAMA_MK
DB001	Pengantar Basis Data
DB002	Basis Data Lanjut
PI001	Teknik Multimedia

NO_MHS	KODE_MK	NILAI
55	DB001	Α
55	PI001	В
56	DB001	В
57	DB001	Α
57	DB002	Α

NAMA_MHS	NAMA_MK	NILAI
Ashadi	Pengantar Basis Data	A
Ashadi	Teknik Multimedia	В
Rina	Pengantar Basis Data	В
Budi	Pengantar Basis Data	A
Budi	Basis Data Lanjut	A

Istilah dalam Basis Data Relasional

Relasi : Sebuah tabel yang terdiri dari beberapa kolom dan

beberapa baris

Atribut : Kolom pada sebuah relasi

Tupel : Baris pada sebuah relasi

Domain : Kumpulan nilai yang valid untuk satu atau lebih atribut

Derajat (degree): Jumlah atribut dalam sebuah relasi

Cardinality: Jumlah tupel dalam sebuah relasi

Istilah Dasar

- Sebuah database terdiri atas sejumlah tabel
- Tabel sering disebut sebagai relasi
- Setiap tabel menyimpan sekumpulan data atau baris

Istilah Dasar (Lanjutan...)

Data dalam sebuah tabel mengikuti hierarki seperti disamping

Istilah Dasar (Lanjutan...)

Perbedaan Istilah

ER Model	Relational Model	Database	Traditional Programmer
Entity	Relation	Table	File
Entity Instance	Tuple	Row	Record
Attribute	Attribute	Column	Field
Identifier	Key	Key	Key (or link)

Karakteristik Dalam Relasi

- Tidak ada baris yang kembar
- Urutan baris tidak penting
- Setiap atribut memiliki nama yang unik
- Letak atribut bebas
- Setiap atribut memiliki nilai tunggal dan jenisnya sama untuk semua baris

Pengertian Tidak Ada Baris Kembar

- Baris punya identitas yang membuat dua buah baris tidak kembar
- Identitas tersebut dinamakan "primary key"

Primary key

NO_MHS	KODE_MK	NILAI
55	DB001	Α
55	PI001	В
56	DB001	В
57	DB001	Α
57	DB001	В

Contoh baris kembar

Pengertian Urutan Baris Tidak Penting

NO_MHS	KODE_MK	NILAI	NO_MHS	KODE_MK	NILAI
55	DB001	A	57	DB001	Α
55	PI001	В	59	PI001	В
56	DB001	В	56	DB001	В
57	DB001	Α	55	DB001	Α
57	DB002	Α	57	DB002	Α

Setiap Atribut Memiliki Nama Unik

NO_SISWA	TES_1	TES_2
12	75	80
13	76	78
14	89	58
15	60	90
16	75	86

NO_SISWA	TES	TES
12	75	80
13	76	78
14	89	58
15	60	90
16	75	86

Letak Atribut Bebas

NO_SISWA	TES_1	TES_2
12	75	80
13	76	78
14	89	58
15	60	90
16	75	86

TES_2	TES_1	NO_SISWA
80	75	12
78	76	13
58	89	14
90	60	15
86	75	16

Setiap Atribut Memiliki Nilai Tunggal

Semua atribut bernilai tunggal Nilai TIDAK TUNGGAL

NO_SISWA	TES_1	TES_2
12	75	80
13	76	78
14	89	58
15	60	90
16	75	86

NO_SISWA	TES
12	75 [/]
	80
13	76
	78
14	89
	58
15	60
	90
16	75
	86

Setiap Atribut Berjenis Sama untuk Semua Baris

Semua atribut bernilai tunggal

Jenis tidak sama

NO_SISWA	TES_1	TES_2
12	75	80
13	76	78
14	89	58
15	60	90
16	75	86

NO_SISWA	TES_1	ES_2
12	75	80
13	Tujuh puluh enam	78
14	89	58
15	60	90
16	75	86

Manfaat Basis Data Relasional

- Bentuknya sederhana
- 2. Mudah untuk melakukan berbagai operasi data

Contoh Tabel Keterhubungan

Tabel Mahasiswa

NIM	NAMA	ALAMAT
H1051021	Dian	Jln. Merdeka
H1051022	Eka	Jln. Imam Bonjol
H1051023	Putra	Jln. Tanjung Sari
H1051024	lwan	Jln. Sejahtera
H1051025	Rio	Jln. Irian

RELATIONAL KEY

Super key

Satu atribut atau kumpulan atribut yang secara unik mengidentifikasi sebuah tupel di dalam relasi (satu atau lebih field yang dapat dipilih untuk membedakan antara satu record dengan record lainnya).

Contoh: Untuk tabel Mahasiswa, Super key-nya:

- ► NIM
- NAMA (dengan syarat tidak ada nama yang sama)
- ► ALAMAT (dengan syarat tidak ada alamat yang sama)
- NIM + NAMA
- NIM + ALAMAT
- NAMA + ALAMAT
- NIM + NAMA + ALAMAT

Candidate Key

Kumpulan atribut minimal yang membedakan setiap baris data dalam tabel secara unik.

Untuk bisa menjadi *candidate key*, suatu atribut harus memenuhi persyaratan sebagai berikut:

- Untuk satu nilai hanya mengindentifikasikan satu baris dalam satu relasi (unik)
- Tidak dapat bernilai null
- Super key dengan jumlah field yang paling sedikit

Maka, candidate key pada tabel mahasiswa:

NIM, NAMA dan ALAMAT (karena hanya terdiri dari satu field saja)

Primary Key

Candidate key yang dipilih untuk mengidentifikasikan tupel secara unik dalam relasi.

Kunci relasi terdiri dari satu atau lebih atribut-atribut relasi. Agar bisa menjadi sebuah **primary key** sebuah atribut harus memenuhi persyaratan sebagai **candidate key**.

Maka, **primary key** yang dipilih pada tabel mahasiswa adalah NIM (unik, tidak ada NIM yang sama).

Pemilihan *primary key* dari sejumlah *candidate key* umumnya didasari oleh :

- Key tersebut lebih sering (lebih natural) untuk dijadikan

sebagai acuan.

- Jaminan keunikan key tersebut lebih baik.

Alternate Key

Kunci alternatif dibuat ketika tidak ada satupun atribut dalam sebuah relasi yang bisa mewakili relasi tersebut atau ada yang bisa menjadi *candidate key* tetapi tidak cukup efektif untuk digunakan sebagai *primary key*.

Candidate key yang tidak dipilih sebagai primary key adalah NAMA dan ALAMAT sebagai alternate key.

Foreign Key (FK)

Atribut dengan domain yang sama yang menjadi kunci utama pada sebuah relasi tetapi pada relasi lain atribut tersebut hanya sebagai atribut biasa.

Sebuah FK adalah sekumpulan atribut dalam suatu relasi (misal A) sedemikian sehingga kumpulan atribut ini bukan kunci relasi A tetapi merupakan kunci dari relasi lain.

Contoh Basis Data Relasional

Tabel Mahasiswa:

Primary key: NoMhs Foreign key: Kode_Wali

	Nomhs	Nama	Alamat	Sks	IPK	Kode_wali
•	151000500	Prima Santoro	Jl.Menu 12 Demangan Yk.	20	2.51	2
	151000501	Priyani	Jl.Demangan Kidul 221 Yk.	18	2.92	2
	151000502	Lufti Yudhianto	Bantengan Lor 34 Yk.	18	3.05	3
	151000503	Sudarno Prawiro	Sagan 76 Yk.	22	2.21	3
	151000504	Yanti Komariah	JI.Inpres 88 CT XI Yk.	21	3.42	2
	151000505	Sambudi Ratno	Jl.Perkutut 332 Yk.	18	2.02	3

	Kode_wali	Nama	NIP	Pangkat	Jabatan
Þ	1	DR.Samtidar	093065531	Lektor	Dosen
	2	Drs.Panca Wahono	094067432	Lektor Kepala	Dosen
	3	Dra.Siti Munawati	094071303	Lektor	Sesjur

Relational Integrity Rules

I. Null

Nilai suatu atribut yang tidak diketahui dan tidak cocok untuk baris (tuple) tersebut

2. Entity Integrity

Tidak ada satu komponen primary key yang bernilai null

3. Referential Integrity

Suatu domain dapat dipakai sebagai kunci primer bila merupakan atribut tunggal pada domain yang bersangkutan

Bahasa Basis Data

Bahasa Pada Basis Data Relational

- ▶ Menggunakan bahasa query → pernyataan yang diajukan untuk mengambil informasi.
- Bahasa pada basis data relasional terbagi menjadi dua yaitu :
- Bahasa Formal
- 2. Bahasa Komersial

Bahasa Formal

- Bahasa query yang diterjemahkan dengan menggunakan simbol-simbol matematis, terbagi menjadi dua yaitu:
- a. **Prosedural**, yaitu pemakai memberi spesifikasi data apa yang dibutuhkan dan bagaimana cara mendapatkannya.
 - Misal: Aljabar Relasional, yaitu dimana query diekspresikan dengan cara menerapkan operator tertentu terhadap suatu tabel atau relasi.
- b. **Non Prosedural**, yaitu pemakai menspesifikasikan data apa yang dibutuhkan tanpa menspesifikasikan bagaimana untuk mendapatkannya.
 - Misal: Kalkulus Relasional, dimana query menjelaskan set tuple yang diinginkan dengan cara menjelaskan predikat tuple yang diharapkan, terbagi menjadi dua:
 - Kalkulus Relasional Tupel
 - Kalkulus Relasional Domain

Aljabar Relasional

- Kumpulan operasi yang digunakan untuk memanipulasi seluruh relasi.
- ▶ Berdasar teori himpunan : gabungan (union), irisan (intersection), beda (difference) dan hasil kali cartesian (cartesian product).
- ▶Untuk relasi basis data : **select, project**, **join** dan **division**.

Bahasa Komersil

- Bahasa Query yang dirancang sendiri oleh programmer menjadi suatu program aplikasi agar pemakai lebih mudah menggunakannya (user friendly).
- QUEL: Berbasis pada bahasa kalkulus relasional
- QBE: Berbasis pada bahasa kalkulus relasional
- SQL : Berbasis pada bahasa kalkulus relasional dan aljabar relasional

Contoh Basis Data Relasional

- \rightarrow DB2 \rightarrow IBM
- → ORACLE → Oracle
- ► SYBASE → Powersoft
- **→ INFORMIX** → Informix
- ▶ Microsoft Access → Microsoft

Model Hirarki atau Tree

- Biasa juga disebut : **tree structure** (Struktur Pohon "dibalik"), hubungan bertingkat. Dalam model ini elemen-elemen penyusunnya disebut **node**.
- Dapat berupa rincian data, agregat data dan record.
- Menggunakan pola hubungan orangtua anak.
- Istilah-istilah yang biasa digunakan dalam Model Hirarki :
- **Root** : node yang memiliki kedudukan paling tinggi dalam hirarki.
- Parent : node yang memiliki kedudukan lebih tinggi.
- Child: node yang memiliki kedudukan lebih rendah.
- Leaves : node yang tidak mempunyai child.

Model Hirarki atau Tree

Dalam model hirarki ini hanya ada satu **root**, setiap **child** hanya boleh mempunyai | **parent** dan **parent** boleh mempunyai | > (lebih dari) | **child**.

Contoh:

DBMS yang pakai model hirarki : Information Management System, dikembangkan oleh IBM dan Rockwell International Corporation.

Pada model data hirarki, hubungan antar entitas dinyatakan dalam satu-banyak (one to many) atau satu-satu (one to one).

Dalam satu Universitas terdapat banyak Fakultas dan setiap Fakultas terdapat banyak Dosen atau banyak Mahasiswa dan seterusnya.

Tanda panah menunjukkan derajat keterhubungan "banyak".

Model Jaringan

Mirip dengan hirarki model, dimana data dan hubungan antar data direpresentasikan dengan **record** dan **links**.

Perbedaannya terletak pada susunan **record** dan **link**nya yaitu **network** model menyusun **record-record** dalam bentuk **graph**.

Sebuah *child* dapat mempunyai lebih dari satu *parent*.

Dalam model ini lebih sedikit terdapat data rangkap, namun lebih banyak terdapat hubungan antar entitas, sehingga akan menambah informasi hubungan yang harus disimpan dalam *database*. Hal ini akan menambah volume dan kerumitan dalam penyimpanan berkas data.

Data dalam model jaringan direpresentasikan dengan sekumpulan **record** (Pascal) dan relasi antara data direpresentasikan oleh **record & link**. **Link** dipandang sebagai **pointer**. **Record-record** diorganisasikan sebagai **graph**.

Contoh: DBMS yang menggunakan model jaringan yaitu CA-IDMS/DB dan *Integrated database management system* yang dibangun oleh *Cullinet Software Inc.*

A.

B.

Model Relasional

Representasi dalam bentuk tabel yang terdapat sejumlah Baris yang menunjuk **record** dan **kolom** yang menunjuk **atribut**.

Model ini banyak digunakan dalam pemodelan dan perancangan Basis Data.

Konsep dan terminologi yang digunakan mirip dengan kondisi nyata yang dihadapi oleh pemakai sehingga mudah dipahami.

LATIHAN

- Desainlah tabel untuk penyimpanan informasi pada sebuah toko pakaian *online*, informasi mengenai jenis pakaian yang dijual, informasi pembeli dan informasi pengiriman barang.
- Buat tabel yang terdiri dari kolom, tipe data, dan keterangan (setiap tabel terdapat minimal 3 baris data).
- Tentukan key pada setiap tabel dan gambarkan relasi tabel tersebut.
- Contoh tabel :

No.	Nama Kolom	Tipe Data	Keterangan
1.	Id_MK	Varchar(6)	Primary Key
2.	Nama_MK	Varchar(20)	
3.	SKS	Integer	

Id_MK	Nama_MK	SKS
SK-101	Basis Data	3
SK-102	Fisika	3
SK-103	Multimedia	3

TERIMA KASIH

