Ibraheem Qasim 42896 Assignment 3

Question 1: IPv4 Plan for Riphah International University

1. Organization Overview

Riphah International University has 5 main departments:

- Administration (50 hosts)
- Faculty of Engineering (120 hosts)
- Faculty of Sciences (80 hosts)
- Library (30 hosts)
- Computer Labs (100 hosts)

2. Network Topology

The network will use a hierarchical design with:

- Core router connecting to the internet
- Distribution switches for each department
- Access switches for end devices
- Wireless access points for mobile devices

3. Subnet Planning (Using 192.168.0.0/16)

Subnet	Subnet Mask	Network ID	First Host IP	Last Host IP	Broadcast IP	Host Range	
Administr ation Departme nt	192.168 .1.0	255.255.25 5.192	192.168 .1.0	192.168 .1.1	192.168.1 .62	192.168.1 .63	192.168.1 .1 - 192.168.1 .62
Faculty of Engineerin g	192.168 .2.0	255.255.25 5.128	192.168 .2.0	192.168 .2.1	192.168.2 .126	192.168.2 .127	192.168.2 .1 - 192.168.2 .126
Faculty of Sciences	192.168 .3.0	255.255.25 5.128	192.168 .3.0	192.168 .3.1	192.168.3 .126	192.168.3 .127	192.168.3 .1 - 192.168.3 .126
Library	192.168 .4.0	255.255.25 5.224	192.168 .4.0	192.168 .4.1	192.168.4 .30	192.168.4 .31	192.168.4 .1 - 192.168.4 .30
Computer Labs	192.168 .5.0	255.255.25 5.128	192.168 .5.0	192.168 .5.1	192.168.5 .126	192.168.5 .127	192.168.5 .1 - 192.168.5 .126

4. Hardware Plan

Hardware devices	Cable	Port	Network ID/connection
Core Router	Fiber	6	ISP + 5 distribution switches
Distribution Switch 1	Cat6	24	192.168.1.0/26 (Admin)
Distribution Switch 2	Cat6	48	192.168.2.0/25 (Engineering)
Distribution Switch 3	Cat6	48	192.168.3.0/25 (Sciences)
Distribution Switch 4	Cat6	24	192.168.4.0/27 (Library)
Distribution Switch 5	Cat6	48	192.168.5.0/25 (Computer Labs)
Access Points	Cat6	N/A	Each department's subnet
Printers	Cat6	N/A	Each department's subnet

Question 2: OSI Model and Protocol Layering

2(a) OSI Model Explanation and Security Layer

OSI Model Layers and Functions:

1. Physical Layer (Layer 1):

- Physical connections and raw bit transmission
- Electrical/mechanical specifications
- Hardware: Cables, connectors, hubs

2. Data Link Layer (Layer 2):

- Node-to-node communication
- Error detection/correction (CRC)
- MAC addressing, switching
- Protocols: Ethernet, PPP

3. Network Layer (Layer 3):

- Logical addressing (IP addresses)
- Routing packets across networks

- Protocols: IP, ICMP, ARP

4. Transport Layer (Layer 4):

- End-to-end communication
- Flow control, error recovery
- Protocols: TCP (reliable), UDP (unreliable)

5. Session Layer (Layer 5):

- Establishes, manages, terminates sessions
- Synchronization points in data stream

6. Presentation Layer (Layer 6):

- Data translation, encryption/decryption
- Data compression, formatting

7. Application Layer (Layer 7):

- Interface for user applications
- Protocols: HTTP, FTP, SMTP, DNS

Security Layer Addition:

For application layer encryption/decryption, we don't add a new TCP/IP layer. This functionality belongs to the Presentation Layer in OSI, which in TCP/IP is part of the Application Layer. Encryption details would be added to application layer headers.

Updated TCP/IP Layers with Security:

- 1. Application Layer (with encryption)
- 2. Transport Layer
- 3. Network Layer
- 4. Data Link Layer
- 5. Physical Layer

2(b) Protocol Layering in Air Travel

Round-Trip Protocol Layers:

1. Baggage Layer:

- Departure: Check-in baggage

- Arrival: Baggage claim- Return: Check-in baggage- Home: Baggage claim

2. Boarding Layer:

- Departure: Boarding pass check, security

- Arrival: Deboarding

- Return: Boarding pass check, security

- Home: Deboarding

3. Transport Layer:

Departure: Take offArrival: LandingReturn: Take offHome: Landing

4. Routing Layer:

- Flight path determination
- Air traffic control communication
- Navigation between airports

5. Physical Layer:

- Aircraft operation
- Runway usage
- Fuel management