

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial 2

Measure Theory

Author: Adam J. Gray Student Number: 3329798

1

Consider a line ℓ restricted to $[0,1]^d$. This line has length at most \sqrt{d} and thus can be covered by $N = \left\lceil \frac{\sqrt{d}}{\varepsilon} \right\rceil$ boxes of size ε .

Where $d>1,\,\ell$ is closed and hence Borel, and hence measurable and so $\mu(\ell)$ is well defined.

Then

$$\mu(\ell) = \lim_{\varepsilon \longrightarrow 0} \varepsilon^d \times \lceil \frac{\sqrt{d}}{\varepsilon} \rceil$$

$$= 0 \qquad \text{so long as } d > 1.$$

This result extends to a line in \mathbb{R}^d by countable additivity.

 $\mathbf{2}$

2.1

2.1.1

$$A^{c}\Delta B^{c} = (A^{c} \setminus B^{c}) \cup (B^{c} \setminus A^{c})$$
$$= (A^{c} \cap B) \cup (B^{c} \cap A)$$
$$= (B \setminus A) \cup (A \setminus B)$$
$$= A\Delta B$$

2.1.2

Suppose $x \in A$ but $x \notin C$ then

if $x \in B$, $x \notin A\Delta B$ but $X \in B\Delta C$ because $x \in C$.

If $x \in B$ then $x \in A\Delta B$.

The argument is symmetric if $x \in C$ but $x \notin A$.

Thus $A\Delta C \subseteq (A\Delta B) \cup (B\Delta C)$.

2.2

Suppose $B \in G$, then for all $\varepsilon > 0 \exists B_{\varepsilon} \in \mathcal{A}$ s.t. $\mu(B_{\varepsilon}\Delta B) < \varepsilon$. Because $(B_{\varepsilon}\Delta B) = (B_{\varepsilon}^{c}\Delta B^{c})$ then $\mu(B_{\varepsilon}^{c}\Delta B^{c}) = \mu(B_{\varepsilon}\Delta B) < \varepsilon$. Note that ε was arbitrary so it holds for all $\varepsilon > 0$ and thus $B^{c} \in \mathcal{G}$. Note

$$(B \in \mathcal{G} \Longrightarrow B^c \in \mathcal{G}) \Longrightarrow \left(B^C \in \mathcal{G} \Longrightarrow B \in \mathcal{G}\right)$$

1

and thus the result follows.

Adam J. Gray

August 13, 2014

2.3

Since $A = \bigcup_{j=1} A_j$ and A_j is an increasing sequence

$$A = \bigcup_{j=0}^{\cdot} (A_j \Delta A_{j+1})$$
 where $A_0 = \emptyset$

and thus

$$\mu(A) = \sum_{j=1} \mu(A_j \Delta A_{j+1}).$$

Because $\mu(A)$ must be finite there exists an N such that

$$\sum_{j=N} \mu(A_j \Delta A_{j+1}) < \varepsilon$$

but

$$A_n \Delta A \subseteq \bigcup_{j=N}^{\cdot} A_j \Delta A_{j+1}$$

and so

$$\mu(A_N \Delta A) \le \sum_{j=N} \mu(A_j \Delta A_{j+1}) < \varepsilon$$

2.4

The ε used in the above argument was arbitrary so it holds for all $\varepsilon > 0$. Then by definition $A \in \mathcal{G}$. (because in each case $B_{\varepsilon} = A_N$)

2.5

The following is clear

- $\mathcal{A} \subset \mathcal{G}$
- $\sigma(\mathcal{G}) = \mathcal{F}$
- \mathcal{G} is a d-class (proved above)
- \mathcal{G} is an algebra (and hence π -class)

thus

$$\mathcal{F} = \sigma(\mathcal{F}) = \sigma(\mathcal{G}) \underbrace{\qquad \qquad}_{\text{by the monotone class theorem}} d(\mathcal{G}) = \mathcal{G}.$$

3

3.1

Note that

- $\emptyset, X \in \mathcal{A}_{\mu}$ because $\emptyset, X \in \mathcal{A}$
- If $E, F \in \mathcal{A}$ such that $E \subseteq A \subseteq F$ and $\mu(F \setminus E) = 0$ for some $A \in \mathcal{A}_{\mu}$, then $F^c \subseteq A^c \subseteq E^c$ and $\mu(E^c \setminus F^c) = 0$ and so $A^c \in \mathcal{A}_{\mu}$.
- If $E_i, F_i \in \mathcal{A}$ such that $E_i \subseteq A_i \subseteq F_i$ and $\mu(F_i \setminus E_i)$ for some countable collection $\{A_i\}_{i \in \mathbb{Z}} \subseteq \mathcal{A}_{\mu}$ then

$$\bigcup_{i \in \mathbb{Z} \atop \circledast} E_i \subseteq \bigcup_{i \in \mathbb{Z}} A_i \subseteq \bigcup_{i \in \mathbb{Z} \atop \circledast \circledast} F_i$$

and because \mathcal{A} is a σ -algebra, \circledast and $\circledast \circledast \in \mathcal{A}$.

Also

$$\mu\left(\bigcup_{i\in\mathbb{Z}}F_{i}\setminus\bigcup_{i\in\mathbb{Z}}F_{i}\right) = \mu\left(\bigcup_{i\in\mathbb{Z}}F_{i}\cap\left(\bigcup_{i\in\mathbb{Z}}E_{i}\right)^{c}\right)$$

$$= \mu\left(\bigcup_{i\in\mathbb{Z}}F_{i}\cap\left(\bigcap_{i\in\mathbb{Z}}E_{i}^{c}\right)\right)$$

$$\leq \mu\left(\bigcup_{i\in\mathbb{Z}}\left(F_{i}\cap E_{i}^{c}\right)\right)$$

$$= \mu\left(\bigcup_{i\in\mathbb{Z}}\left(F_{i}\setminus E_{i}^{c}\right)\right)$$

$$\leq \sum_{i\in\mathbb{Z}}\mu(F_{i}\setminus E_{i})$$

$$= 0$$

Thus \mathcal{A}_{μ} is closed with respect to countable unions and hence \mathcal{A}_{μ} is a σ -algebra.

3.2

Suppose $\{A_i\}_{i\in\mathbb{Z}}\subseteq\mathcal{A}_u$ such that $A_i\cap A_j=\emptyset$ when $j\neq i$ with $E_i,F_i\in\mathcal{A}$ such that $E_i\subseteq A_i\subseteq F_i$ and $\mu(F_i\setminus E_i)=0$. Then

$$\overline{\mu}\left(\bigcup_{i\in\mathbb{Z}}A_i\right) = \mu\left(\bigcup_{i\in\mathbb{Z}}E_i\right)$$

$$= \sum_{i\in\mathbb{Z}}\mu(E_i) \qquad \text{because the E_i must be disjoint}$$

$$= \sum_{i\in\mathbb{Z}}\overline{\mu}(A_i).$$

This means that $\overline{\mu}$ is countably additive and thus $\overline{\mu}$ is a measure on \mathcal{A}_{μ} .

3.3

Suppose $A \in \mathcal{A}$ with $E \subseteq A \subseteq F$ such that $\mu(F \setminus E) = 0$ and $E, F \in \mathcal{A}$. Then $\mu(E) \leq \mu(A) \leq \mu(F)$ but $\mu(E) = \mu(F)$ and hence $\mu(A) = \mu(E) = \overline{\mu}(A)$.

3.4

Suppose $D \in 2^X$ and $D \subseteq A \in \mathcal{A}_{\mu}$ such that $\overline{\mu}(A) = 0$. Then $\emptyset \subseteq D \subseteq A$ and $\mu(A \setminus \emptyset) = \mu(A) - \mu(\emptyset) = 0$. Thus $D \in \mathcal{A}_{\mu}$ and so $(X, \mathcal{A}_{\mu}, \overline{\mu})$ is complete. \square