THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Solutions to Number Theory and *O***-Notation – Week 6 Tutorials**

MATH1064: Discrete Mathematics for Computing

1. Prove that for all $x \in \{0, 1, 2, 3, 4\}, x^2 + x + 41$ is a prime number.

Solution: Exhaustion — try all cases. Try larger values if you don't find it exhausting! This is called Euler's polynomial, and every $x \in \{n \in \mathbb{N} \mid 0 \le n \le 39\}$ will give you a prime number. Can you see why x = 40 and x = 41 give composite numbers?

2. Prove the following statement by contradiction. For all integers n and all prime numbers p, if n^2 is divisible by p, then n is divisible by p.

Solution: Contraposition: Assume n is not divisible by p. Then by uniqueness of prime factorisation, n^2 is not divisible by p.

3. Write each of the following integers as a product of primes. Don't use a calculator!

Solution:
$$5440 = 2^6 \cdot 5 \cdot 17$$

Solution:
$$43560 = 2^3 \cdot 3^2 \cdot 5 \cdot 11^2$$

Solution:
$$44352 = 2^6 \cdot 3^2 \cdot 7 \cdot 11$$

4. Given the following values for n and d, find integers q and r such that $n = d \cdot q + r$ and $0 \le r < d$.

(a)
$$n = 102$$
 and $d = 11$

Solution:
$$102 = 11 \cdot 9 + 3$$
, so $q = 9$ and $r = 3$

(b)
$$n = -4$$
 and $d = 5$

Solution:
$$-4 = 5 \cdot (-1) + 1$$
, so $q = -1$ and $r = 1$

(c)
$$n = 200$$
 and $d = 71$

Solution:
$$200 = 71 \cdot 2 + 58$$
, so $q = 2$ and $d = 58$

5. (a) Find gcd(m, n), where $m = 2^3 \cdot 3^2 \cdot 5 \cdot 11^2$ and $n = 2 \cdot 3^2 \cdot 11 \cdot 13^2$.

Solution:
$$gcd(m,n) = 2 \cdot 3^2 \cdot 11$$
.

(b) A positive integer is called squarefree if it is not divisible by the square of any prime. What can you deduce about the factorisation of a squarefree number into distinct primes?

Solution: All the exponents of the factorisation have to be equal to one, i.e. the integer $n = p_1 \cdots p_n$ where the p_i are distinct primes.

(c) Show that every positive integer can be expressed as a product of a squarefree integer and a square number.

Solution: Let n be a positive integer. By the fundamental theorem we can factor n into distinct primes: $n = p_1^{a_1} \cdots p_n^{a_n}$. Write each $a_i = 2k_i + \delta_i$, where δ_i is either 0 or 1 depending on whether a_i is even or odd. Let $s = p_1^{2k_1} \cdots p_n^{2k_n}$ and $t = p_1^{\delta_1} \cdots p_n^{\delta_n}$. Then we have n = st. Further, note that s is a square number since $\sqrt{s} = p_1^{k_1} \cdots p_n^{k_n}$, and t is squarefree.

6. Use the Euclidean algorithm to find

(a)
$$gcd(101, 100)$$
. (b) $gcd(123, 277)$. c) $gcd(14039, 1529)$.

Solution:

$$a = 101, b = 100.$$

Sequence of remainders: 1,0, $gcd(101, 100) = 1$

Solution:

$$a = 277, b = 123.$$

Sequence of remainders: 31,30,1,0, gcd(277,123) = 1

Solution:

$$a = 14039, b = 1529.$$

Sequence of remainders: 278, 139, 0, $gcd(14039, 1529) = 139$

7. (More difficult) Prove or disprove the following statement.

$$\forall a, b \in \mathbb{Z}, ((\gcd(a, b) = r) \rightarrow (\exists x, y \in \mathbb{Z} \text{ such that } r = ax + by))$$

Solution: This is called Bézout's identity.

Proof 1: run the extended Euclidean algorithm, see

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

Proof 2: Here is a proof without using the Euclidean algorithm.

Suppose $a, b \in \mathbb{Z}$ and $r = \gcd(a, b)$.

Define
$$D = \{k \mid k = ax + by, x, y \in \mathbb{Z}, k > 0\}.$$

Let c be the smallest element of D. This exists since all elements of D are positive integers.

We now use the definition of gcd(a,b) to show that r divides c and so $r \le c$.

Namely, a = rn and b = rm for some $n, m \in \mathbb{Z}$. Since $c \in D$, we have c = ax + by for some $x, y \in \mathbb{Z}$. Hence c = rnx + rmy = r(nx + my), and so r divides c. Hence $r \le c$.

We next show that $r \ge c$. For this, do division with remainder. To get started, note that $|a| \in D$ and $|b| \in D$. This follows from choosing x (or y) equal to zero and y (or x) equal

to ± 1 , depending on whether a (or b) is positive or negative. This implies that $c \le |a|$ and $c \le |b|$.

So we can write a = qc + s, where $q, s \in \mathbb{Z}$ and $0 \le s < c$. Since c = ax + by, we have a = q(ax + by) + s and so s = a(1 - qx) - bqy. If s > 0, we have $s \in D$. But s < c and c is the smallest element in D, a contradiction Hence s = 0. Hence c divides a.

By a similar argument, c divides b. So c divides both a and b and hence $c \le r$.

So we have shown that $c \le r$ and $c \ge r$. This implies c = r. The upshot is that $r \in D$ and hence the statement is true.

- **8.** Convert the decimal expansion of each of these integers to a binary expansion.
 - (a) 231
- (b) 321
- (c) 1023

Solution:

- (a) $(11100111)_2$
- (b) $(101000001)_2$
- (c) $(11111111111)_2$
- 9. Convert the binary expansion of each of these integers to a decimal expansion.
 - (a) $(111111)_2$
- (b) $(1000000001)_2$
- (c) $(101010101)_2$

Solution:

- (a) 31
- (b) 513
- (c) 341
- 10. Convert the hexadecimal expansion of each of these integers to a binary expansion.
 - (a) $(80E)_{16}$
- (b) $(135AB)_{16}$
- (c) $(ABBA)_{16}$

Solution: All you need to do is translate every hexadecimal letter into a 4-digit binary number (i.e., $A \mapsto 1010$) and concatenate the result.

- (a) $(100000001110)_2$
- (b) $(10011010110101011)_2$
- (c) $(10101011110111010)_2$
- 11. Find the sum and the product of each of these pairs of numbers. Express your answers as a binary expansion.
 - (a) $(111)_2$, $(101)_2$

Solution:

Sum: $(1100)_2$

Product: (100011)₂

(b) $(1110)_2$, $(1010)_2$

Solution:

Sum: (11000)₂

Product: (10001100)₂

(c) $(1010101010)_2$, $(10)_2$

Solution:

Sum: (1010101100)₂

Product: (10101010100)₂

12. Let $f(n) = n^2 + n$ and $g(n) = \frac{1}{2}n^3$.

Use the definition of *O*–notation to show that $f(n) \in O(g(n))$ but $g(n) \notin O(f(n))$.

Solution: First note that f(n) > 0 and g(n) > 0 for all $n \in \mathbb{N}$. We therefore don't need to take absolute values of the functions involved.

We have $n^2 + n \le n^3 + n^3 = 2n^3 = 4 \cdot (\frac{1}{2}n^3)$ for all n > 1, hence $f(n) \in O(g(n))$.

The second statement is shown by contradiction. Suppose $g(n) \in O(f(n))$. Then there are witnesses C and k such that $g(n) \le Cf(n)$ for all n > k.

Hence $\frac{1}{2}n^3 = g(n) \le f(n) = n^2 + n$ for all n > k.

This implies $\frac{1}{2}n^2 \le n+1$ for all n > k.

Now $n+1 \le n+n = 2n$ for all n > 0, and so we have

 $\frac{1}{2}n^2 \le 2n \text{ for all } n > \max(0, k).$

This implies $\frac{1}{2}n \le 2$ for all $n > \max(0, k)$, and therefore $n \le 4$ for all $n > \max(0, k)$. But this is a contradiction. Hence $g(n) \notin O(f(n))$.

13. Let c be a constant. Multiply $(\log(n) + c + O(1/n))$ by $(n + O(\sqrt{n}))$ and express your answer in O-notation.

Solution: Answer: $n \log(n) + cn + O(\sqrt{n} \log(n))$

14. True or false? If f(n) and g(n) are positive for all $n \in \mathbb{N}$, then

$$O(f(n) + g(n)) = f(n) + O(g(n)).$$

If true give a proof; if false, give a counterexample.

Solution: Let $f(n) = n^2$, g(n) = 1 and h(n) = n. Then $h(n) \in O(f(n) + g(n))$ but $h(n) \notin f(n) + O(g(n))$.

4