Outils pour le traitement du signal et des images Partie Signal

Sébastien Adam Cours de Licence 2 EEEA-INFO 2023-2024

Présentation

Sébastien Adam

- Professeur des Universités
 - Chercheur au laboratoire LITIS, équipe Apprentissage
 - Enseignant en :
 - * L1 IEEEA (LCS, AO)
 - * L2 EEEA/INFO (Prog C, OTSI)
 - ★ L3 EEEA (TASI)
 - * M1 SID (RO)
 - M2 SID (MLG)
 - Directeur du Master Sciences (et Ingénierie) des Données : SD+SIME (http://mastersid.univ-rouen.fr/)
 - Directeur adjoint de la fédération CNRS Norm@stic (http://www.normastic.fr/)
- Sebastien.Adam@univ-rouen.fr
- Bureau U2.1.41

Organisation de l'enseignement

Objectifs de l'UE OTSI

- Acquérir ou renforcer les bases de mathématiques nécessaires au traitement du signal (complexes, intégration...)
- Acquérir les bases de programmation python
- Comprendre les outils fondamentaux d'analyse spectrale du signal et les mettre en œuvre en python

Structure

- 4 parties, deux enseignants (Sébastien Adam, Maxime Bérar)
 - Rappels de maths (nombres complexes, intégration)
 - Introduction au langage Python
 - Outils mathématiques d'analyse de signaux analogiques (DSF, TF)
 - Outils mathématiques d'analyse des signaux numériques

Organisation de l'enseignement

Volumes horaires sur la maquette

- 24h (14h+10h) de Cours,
- 18h (10h+8h) de TD
- 18h de TP

Informations pratiques

- Cours le lundi matin
- TD : le lundi après midi et le mercredi après midi
- TP : le jeudi après midi (NB : # absences > 2 : ABS)
- Supports sur https://universitice.univ-rouen.fr/

Evaluation

- Deux CCs (60%)
- Une note de TP (40%)

Plan

- 1 Introduction au traitement du signal
 - Contexte du cours : signaux et traitements
 - Représentation des signaux

- Rappels de mathématiques
 - Le corps des nombres complexes

Signal et traitement du signal

Signal

- Représentation physique (souvent électrique) d'une information, souvent mesurable par un capteur, évoluant selon une ou plusieurs variables et convoyée d'une source vers une destination.
- Exemples de type d'information : sonore (parole, musique), visuelle (images, vidéos), biologiques (EEG, ECG...), boursières
- Analogique vs. numérique

Traitement du signal

- Discipline des sciences de l'ingénieur permettant de :
- Détecter
- Compresser
- Transformer
- **)** ...

Exemples 1D et 2D

Détection/Identification

NB : Un son voisé est un son produit en faisant vibrer les cordes vocales. Un son non-voisé ou dévoisé est un son produit sans faire vibrer les cordes vocales.

Exemples

Compression : un exemple de votre vie de tous les jours

- Ici, les h_i sont des filtres, qui éliminent certaines composantes
- Applications du filtrage : Détection de craquements sur un enregistrement, Suppression de bruit, Annulation d'écho, etc.
- Les filtres modifient le contenu fréquentiel des signaux

Réprésentation des signaux

Deux représentations duales

- Représentation en fonction de la variable indépendante
 - ▶ En général, c'est le temps $\rightarrow f(t)$
 - Parfois l'espace $\rightarrow f(x, y)$
 - ▶ Voire le temps et l'espace $\rightarrow f(x, y, t)$

Fréquence (Hz)

Son grave

Réprésentation des signaux

Deux représentations duales

- Représentation en fonction des fréquences présentes dans le signal
- Notion de fréquence
 - Nombre de reproduction d'un motif pendant une durée donnée
 - linverse de la période f = 1/T
 - Exprimée en Hertz (Hz)
 - L'analyse spectrale détermine le contenu fréquentiel d'un signal

Fréquence (Hz)

Son aigu

Outils pour l'analyse spectrale

Objectif: étudier les différents outils pour différents signaux

- Signaux analogiques périodiques
 - → le développement en séries de Fourier
- Signaux analogiques non périodiques
 - ightarrow la transformée de Fourier
- Signaux à temps discret
 - → la transformée de Fourier à temps discret
- Signaux et fréquences numériques
 - → la transformée de Fourier discrète

Pré-requis mathématiques indispensables

La TF d'un signal x(t), c'est : $X(f) = \int_{-\infty}^{+\infty} x(t)e^{-2j\pi ft}dt$

- Une intégrale
- Des exponentielles complexes

Plan

- 1 Introduction au traitement du signal
 - Contexte du cours : signaux et traitements
 - Représentation des signaux

- Rappels de mathématiques
 - Le corps des nombres complexes

Des nombres pas si complexes

- Introduits au XVIeme siècle en Italie pour résoudre des eq. du 3eme et 4eme degrés
- Très utiles en maths (carrés négatifs, transf. du plan) et en physique

Forme algébrique ou cartésienne

Un nombre complexe s'écrit sous une forme algébrique avec z = a + ib, avec $(a, b) \in \mathbb{R}^2$ et $i^2 = -1$ [NB : parfois, c'est j]

- a est la partie réelle de z, on la note aussi Re(z)
- b est la partie imaginaire de z, on la note aussi Im(z)
- \bullet L'ensemble des nombres complexes est noté $\mathbb C$
- Un nombre complexe de la forme z = ib (a = 0) est imaginaire pur
- Un nombre complexe de la forme z = a (b = 0) est réel pur
- z = 0 est à la fois réel pur et imaginaire pur

Opérations sur les complexes

Soient z = a + ib et z' = a' + ib' deux nombres complexes, on a :

•
$$z = z' \iff a = a' \text{ et } b = b'$$

•
$$z + z' = (a + a') + i(b + b')$$

•
$$z \cdot z' = (a + ib) \cdot (a' + ib') = (aa' - bb') + i(ab' + a'b)$$

•
$$\frac{1}{z} = \frac{1}{(a+ib)} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}$$

•
$$\frac{z}{z'} = \frac{a+ib}{(a'+ib')} = \frac{(a+ib)(a'-ib')}{(a'+ib')(a'-ib')} = \frac{(aa'+bb')+i(a'b-ab')}{a'^2+b'^2}$$

Exo

Soient $z_1 = 2 + i$ et $z_2 = 3 - 2i$, calculez $z_1 + z_2$, $z_1 z_2$, z_1^2 , $\frac{1}{z_2}$, $\frac{z_1}{z_2}$

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

Représentation géométrique par un vecteur ou un point

Comme un nombre complexe est défini par un couple (a, b), on peut le représenter dans un plan \mathcal{P} muni d'un repère orthonormé $(O; \vec{e_1}, \vec{e_2})$ par :

- un vecteur \vec{v} de coordonnées (a, b)
 - $(a+ib) \in \mathbb{C} \rightarrow \vec{v} = a\vec{e_1} + b\vec{e_2}$
 - On dit que a + ib est l'affixe de \vec{v}
- un point *M* de coordonnées (*a*, *b*)
 - $(a+ib) \in \mathbb{C} \to M \in \mathcal{P}$
 - ightharpoonup On dit que a+ib est l'affixe de M
 - ► M est l'image de z
- $(O, \vec{e_1})$ est l'axe des réels, $(O, \vec{e_2})$ est l'axe des imaginaires

Exo

Soit les point A, B et C d'affixes $z_A = 1$, $z_B = 2 + 2i$ et $z_C = 4 + i$. Trouver D tel que ABCD forme un parallélogramme.

Module, argument et forme trigonométrique

Soit
$$z = a + ib \in \mathbb{C}$$

- Le nombre $\sqrt{a^2 + b^2}$ est appelé module de z et noté |z| [Pythagore]
- Si M est l'image de z dans \mathcal{P} , le module de z est la distance à l'origine du point d'affixe z (la longueur/norme du vecteur \overrightarrow{OM})
- L'argument de z est la classe modulo 2π des réels θ vérifiant : $cos(\theta) = \frac{a}{|z|} \text{ et } sin(\theta) = \frac{b}{|z|}$
- ullet Dans ${\mathcal P}$, l'argument de z est une mesure de l'angle orienté $(ec{e_1}, \mathit{OM})$
- Avec module et argument (coordonnées polaires), on peut définir la forme trigonométrique d'un complexe z par :

$$z = a + ib = |z|(cos(\theta) + isin(\theta))$$

- Pour z = 0, on a |z| = 0 et θ est indifférent
- z est réel pur si $arg(z) = 0[\pi]$ et imaginaire pur si $arg(z) = \pi/2[\pi]$

Propriétés du module

- $|z| = 0 \iff z = 0$
- produit : |zz'| = |z||z'|
- quotient : $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$
- puissance : $|z^n| = |z|^n$
- somme : $|z + z'| \le |z| + |z'|$

Propriétés de l'argument

- produit arg(zz') = arg(z) + arg(z')
- quotient $arg(\frac{z}{z'}) = arg(z) arg(z')$

Exo

- Déterminer l'ensemble des points d'affixe z vérifiant |z+i|=|iz+1|
- Ecrire $z = -2 2\sqrt{3}i$ sous forme trigonométrique

Forme exponentielle

• Pour tout réel θ , on définit l'exponentielle complexe $e^{i\theta}$ par :

$$e^{i\theta} = \cos\theta + i\sin\theta$$

- Avec cette notation, un nombre complexe z non nul de module ρ et d'argument θ vaudra : $z = \rho e^{i\theta} = |z|e^{i\arg(z)}$
- On garde ainsi les propriétés bien connues de la fonction exponentielle. Soient $z = \rho e^{i\theta}$ et $z' = \rho e^{i\theta'}$, on a :
 - $ightharpoonup zz' = \rho \rho' e^{i(\theta + \theta')}$
 - $ightharpoonup z^n = \rho^n e^{in\theta}$
 - $\sum_{z'} = \frac{\rho}{\rho'} e^{i(\theta \theta')}$
- Pour tout réel θ , on a

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Forme exponentielle : remarques

- $e^0 = 1 = e^{2ik\pi}$, $e^{i\pi/2} = i$, $e^{i\pi} = -1$, $e^{in\pi} = (-1)^n$...
- L'image par l'application exponentielle de $i\mathbb{R}$ est l'ensemble des nombres complexes de module 1 qui est appelé cercle unité de \mathbb{C}

Complexe conjugué

Définition du complexe conjugué

Le conjugué d'un nombre complexe z = a + ib est le complexe noté $\bar{z} = a - ib$.

Par conséquent, on aura :

- $\bar{z} = z$
- $z\bar{z} = a^2 + b^2$
- $\bullet \ \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{\bar{z}}{a^2 + b^2}$

Propriétés

Pour tout complexe z, on a

- $Re(z) = \frac{z+\bar{z}}{2}$ et $Im(z) = \frac{z-\bar{z}}{2i}$
- z est un réel ssi $z = \bar{z}$
- z est un imaginaire pur ssi $z = -\bar{z}$

40.40.45.45. 5 000

Complexe conjugué

Propriétés (suite)

Pour tout complexe z, on a

- addition : $\overline{z+z'} = \bar{z} + \bar{z'}$
- multiplication : $\overline{z \cdot z'} = \overline{z} \times \overline{z}'$
- puissance : $\bar{z^n} = (\bar{z})^n$
- quotient : $\overline{\left(\frac{z}{z'}\right)} = \frac{\bar{z}}{\bar{z}'}$

Sur la représentation géométrique

Naturellement, le point N du plan complexe image de \bar{z} est le symétrique par rapport à l'axe des réels du point M représentant z

Exo

Soit $Z = \frac{z}{z-1}$ avec $z \in \mathbb{C}$, déterminer l'ensemble des z tels que Z soit un réel, puis tels que Z soit un imaginaire pur

Racines n^{iemes} de z

Définition

Soit z un nombre complexe non nul, et n un entier naturel ≥ 2 . On appelle racine n^{iemes} de z tout nombre complexe Z tel que $Z^n = z$. On peut montrer qu'il en existe n qui s'écrivent : $Z_k = \sqrt[n]{r}e^{i\left(\frac{\alpha}{n} + \frac{2k\pi}{n}\right)}$, $k = 0, 1, \ldots n-1$

- où:
 - r est le module de z
 - \bullet α est l'argument de z

Les Z_k sont toutes de même module, et en passant de Z_k à Z_{k+1} , on décale l'argument de $\frac{2\pi}{n}$

Racines n^{iemes} de z

Cas des racines de l'unité

Soit z=1, les racines n^{iemes} de 1 sont les $Z_k=e^{2ik\pi/n}$, $k=0,1,\ldots n-1$. En posant $w=e^{2i\pi/n}=\cos(2\pi/n)+i\sin(2\pi/n)$, ces n racines n^{iemes} s'écrivent $1,w,w^2,w^3,\ldots w^{n-1}$

La somme des racines n^{iemes} de l'unité fait toujours 0.

Quelques formules utiles pour la suite

A retenir!

- Euler : $e^{i\theta} = cos(\theta) + isin(\theta)$
- Euler : $cos(\theta) = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$
- Euler : $sin(\theta) = \frac{1}{2i}(e^{i\theta} e^{-i\theta})$
- Moivre : $(e^{i\theta})^n = cos(n\theta) + isin(n\theta)$

Exo

- Linéariser $P(x) = cos^2(x)sin(x)$
- Montrer que $1+e^{i\theta}=2e^{i\frac{\theta}{2}}cos(\frac{\theta}{2})$

Cette dernière démonstration nous sera fort utile pour la suite!

Exercices qui seront traités lors du TD 1

- Calculs
 - **o** Soit $z_1 = 3 5i$ et $z_2 = -2 + i$, calculer $z_1 + z_2$, $|z_1|$, $\bar{z}_1 z_2$, $\frac{z_1}{z_2}$.
 - ② Soit $z_1 = -2 + 2i$ et $z_2 = -i$, calculer $\frac{z_1}{z_2}$, z_1z_2 et z_1^4 .
- Trouver le nombre complexe z qui vérifie
 - (2+i)z (3-i) = 1-2i
 - (2+i)z-(3-i)=(3-2i)z-2i
 - (1-i)z (1-4i) = 2+3i
- Trouver la solution du système linéaire complexe en x et y suivant :

$$x + (1+i)y = 2$$

 $(1-i)y = 1+i$

Exercices

- Trouver le module et l'argument des nombres complexes suivants 1+i, $(1+i)^2$, $(1+i)^7$, $1-\sqrt{3}i$, $-\sqrt{3}-i$,
- 2 Trouver les nombres complexes z tels que
 - ① z et $\frac{1}{z}$ aient le même module
 - 2 z et $\frac{1}{z}$ aient le même module et z soit un imaginaire pur
 - 3 $z, \frac{1}{z}$ et 1-z aient le même module
- 3 Linéariser les fonctions suivantes
 - $g(\theta) = \sin^4 \theta$
 - $h(\theta) = \cos^2 \theta \sin \theta$