Quiz 1 – Thursday 10/3

solution

Each question is worth 1 point.

- 1. What is one difference between a High Level Language (HLL) like C++ and an Assembly Language (AL)?
 - a. A single HLL statement might compile to many Machine Language instructions, while each AL instruction assembles to a single Machine Language instruction
 - **b.** A single AL statement might compile to many Machine Language instructions, while each HLL instruction assembles to a single Machine Language instruction
 - **c.** AL programs are not as powerful as HLL programs
 - **d.** There is no major difference between them.
- 2. The LC-3 AL program you wrote in lab1 multiplied a number stored in a register by the constant 6. Which of the following best describes the algorithm used?
 - a. Use the LC-3 instruction MULTIPLY
 - b. Invoke the AL library subroutine MULTIPLY
 - c. Add the value in the register to itself 6 times
 - **d.** Look up a multiplication table stored in memory
- 3. If two microprocessors are separately designed & built to the specifications of the same ISA (Instruction Set Architecture), they will be functionally identical. They will also necessarily end up being electronically identical:
 - a. True b. False
- 4. A label in assembly language code is:
 - a. An abbreviation for an instruction
 - **b.** Just a visual reminder for the programmer, ignored by the assembler.
 - c. A name given to a variable
 - d. A name given to a memory location
 - e. An adhesive sticker placed on the front page of the code
- 5. A "pseudo-op" in assembly language code (e.g. the LC-s's ".FILL") is:
 - a. an instruction to the assembler (like a compiler preprocessor directive)
 - **b.** an alias for a genuine assembly language instruction
 - c. a "place-holder" which has no effect on the code
 - **d.** a "redirect" placed in the code
- **6.** Assembly language instructions can be categorized in three groups. These are:
 - a. Operations, Data Movement and Control
 - b. Labels, instructions, pseudo-ops
 - c. High Level, Assembly, and Machine
 - **d.** Signed magnitude, one's complement, and two's complement
 - e. Load, store, and arithmetic
- 7. The asssembly language instruction ADD RO, R1, R2
 - a. adds the contents of registers 0, 1 and 2, and stores the result in register 2
 - b. adds the contents of registers 0, 1 and 2, and stores the result in register 0
 - c. adds the contents of registers 0 and 1, and stores the result in register 2
 - d. adds the contents of registers 1 and 2, and stores the resutl in register 0
 - e. none of the above

8.	8. The total "number of numbers" representable by a 9-bit binary word is:		
	a. 32	c. 128	e. 512
	b. 64	d. 256	f. 1024
9.	9. Convert the 8-bit unsigned magnitude binary number 1000 1111 into decimal ("unsigned magnitude" is just the name of the encoding we studied on Tuesday)		
	a. 15	c. 113	e. 255
	b. 81	d. 143	f. 321
10. Convert the decimal number 53 into an 8-bit unsigned magnitude binary number:			
	a. 0000 1011	C. 0011 0101	e. 0011 0011
	b. 0101 0101	d. 0010 1101	f. 1000 1101