Лабораторная работа

Исследование энергетического спектра eta-частиц и определение их максимальной энергии при помощи магнитного спектрометра

Теоретические сведения

Бета-распад это самопроизвольное преваращение ядер, при котором их массовове число не изменяется, а заряд изменяется на единицу. В данной работе мы будем иметь дело с электронным распадом:

$${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}X + e^{-} + \widetilde{v}$$

 $_{Z}^{A}X o_{Z+1}^{A}X+e^{-}+\widetilde{v}$ Освобождающаяся в результате распада энергия делится между исходным ядром, электроном и нейтрино. При этом доля энергии, уносимая ядром крайне мала, так что вся энергия делится между нейтрино и электроном. Поэтому электроны могут иметь любую энергию от нулевой до некоторой макимальной энергии, высвобождаемой при распаде.

Вероятность $d\omega$ того, что электрон вылетит с имульсом d^3p , а нейтрино с импульсом d^3k равна произведению этих дифференциалов, но мы должны учесть также закон сохранения энергии.

$$E_e - E - ck = 0$$

Энергия электрона связана с импульсом обычным образом:

$$E = c\sqrt{p^2 + m^2c^2} - mc^2$$

Таким образом, вероятность $d\omega$ принимает вид:

$$d\omega = D\delta(E_e - E - ck)d^3pd^3k = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_e$$

 $d\omega=D\delta(E_e-E-ck)d^3pd^3k=D\delta(E_e-E-ck)p^2dpk^2dkd\Omega_ed\Omega_{\widetilde{\nu}}$ D можно считать с хорошей точностью константой. В этом случае можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино. В этом случае δ -функция исчезнет, а ck всюду заменится на E_e-E . После умножения на полное число распадов выражение примет вид:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp$$

В нерелятивистском случае выражение упрощается и принимает вид:

$$\frac{dN}{dE} \simeq \sqrt{E}(E_e - E)^2$$

Экспериментальная установка

Энергия определяется с помощью β -спектрометров. В работе используется магнитный спектрометр с короткой линзой. Как показывает расчет, для заряженных частиц тонкая катушка эквивалентна линзе:

$$\frac{1}{f} \simeq \frac{I^2}{p_e^2}$$

При заданной силе тока на входное окно счетчика собираются электроны с определенным импульсом.

Рис. 1. Форма спектра В-части: при разрешенных переходах

Рис. 2. Схема В-спектрометра с короткой магнитной линзой

Рис. 3. Блок-схема установки для изучения β-спектра

Ход работы

1. Запускаем и настраиваем установку. Проводим измерения β -спектра, изменяя ток магнитной линзы от 0.2A до 5A, заносим результаты в таблицу. Также измеряем фоновое излучение, оно равно N_b = 0.6 1/c

In [2]:

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
```

In [3]:

```
table = pd.read_csv('''C:\\Users\\Nikeyson-PC\\Desktop\\Lab_4_2.csv''', sep=';')
```

In [4]:

table

Out[4]:

	I, A	N, 1/s	N-Nb, 1/s	p, keV/s	T, keV	mkFermi
0	0,2	0,69	0,09	47,7	2,2	910,6336326
1	0,4	0,64	0,04	95,4	8,8	214,6384056
2	0,6	0,6	0	143,1	19,7	0
3	0,8	0,56	-0,04	190,8	34,5	0
4	1	1,12	0,52	238,5	52,9	195,7803483
5	1,2	1,799	1,199	286,2	74,7	226,1544551
6	1,4	3,569	2,969	333,9	99,4	282,4102597
7	1,6	5,188	4,588	381,6	126,8	287,34203
8	1,8	6,498	5,898	429,3	156,4	273,0304289
9	2	8,088	7,488	477	188	262,6669004
10	2,2	9,197	8,597	524,7	221,4	243,9533954
11	2,4	10,667	10,067	572,4	256,3	231,6864295
12	2,6	11,647	11,047	620,1	292,5	215,2432694
13	2,8	10,277	9,677	667,8	329,9	180,2605735
14	3	8,448	7,848	715,5	368,2	146,3743704
15	3,2	6,408	5,808	763,2	407,5	114,3025084
16	3,4	4,649	4,049	810,9	447,5	87,14107992
17	3,6	2,639	2,039	858,6	488,1	56,75737308
18	3,8	1,65	1,05	906,3	529,4	37,55663553
19	4	1,49	0,89	954	571,2	32,01639587
20	4,1	6,988	6,388	977,85	592,3	82,65594463
21	4,2	12,856	12,256	1001,7	613,5	110,4251163
22	4,3	12,736	12,136	1025,55	634,8	106,0724318
23	4,4	9,257	8,657	1049,4	656,2	86,55100577
24	4,5	3,739	3,139	1073,25	677,7	50,38999464
25	4,6	1,54	0,94	1097,1	699,3	26,68053932
26	4,8	0,63	0,03	1144,8	742,7	4,47163345
27	5	0,4	-0,2	1192,5	786,4	0

In [7]:

```
E = np.array(table.iloc[:, 4].str.replace(',', '.').astype(float))

F = np.array(table.iloc[:, 5].str.replace(',', '.').astype(float))

#Уберем часть начальных точек, где N-Nb ~ 0

E = E[4:]

F = F[4:]
```

In [11]:

```
x = E[2:-10]
y = F[2:-10]
a, b = np.polyfit(x,y,1)
```

In [12]:

```
fig = plt.figure(figsize= (12, 8), dpi= 100)
ax1 = fig.add_subplot()
ax1.plot(E, F, 'o' ,label= "Bcë")
ax1.grid(True)
ap = [i for i in range(100, 600, 10)]
p = [a*i + b for i in ap]
ax1.plot(ap, p, "--", label= "Аппроксимация")
plt.xlabel("E, keV")
plt.ylabel("mkFermi")
plt.title("График Ферми-Кюри")
plt.show()
```


In [14]:

```
Emax = -b/a
print("Максимальная энергия:", round(Emax,1), "keV")
```

Максимальная энергия: 605.4 keV

Вывод

Исследовали энергетический спектр β -частиц при распаде ^{137}Cs , определили их максимальную энергию

```
In [ ]:
```