

SEQUENCE LISTING

<110> Genentech, Inc. Ashkenazi, Avi Botstein, David Desnoyers, Luc Eaton, Dan L. Ferrara, Napoleone Filvaroff, Ellen Fong, Sherman Gao, Wei-Qiang Gerber, Hanspeter Gerritsen, Mary E. Goddard, A. Godowski, Paul J. Grimaldi, Christopher J. Gurney, Austin L. Hillan, Kenneth, J. Kljavin, Ivar J. Mather, Jennie P. Pan, James Paoni, Nicholas F. Roy, Margaret Ann Stewart, Timothy A/. Tumas, Daniel Williams, P. Mickey Wood, William, I.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> 10466-14

<140> 09/665,350

<141> 2000-09-18

<150> PCT/US00/04414

<151> 2000-02-22

<150> US 60/143,048

<151> 1999-07-07

<150> US 60/145,698

<151> 1999-07-26

<150> US 60/146,222

<151> 1999-07-28

<150> PCT/US99/20594

<151> 1999-09 08

<150> PCT/US99/20944

<151> 1999-0/9-13

```
<150> PCT/US99/21090
<151> 1999-09-15
<150> PCT/US99/21547
<151> 1999-09-15
<150> PCT/US99/23089
<151> 1999-10-05
<150> PCT/US99/28214
<151> 1999-11-29
<150> PCT/US99/28313
<151> 1999-11-30
<150> PCT/US99/28564
<151> 1999-12-02
<150> PCT/US99/28565
<151> 1999-12-02
<150> PCT/US99/30095
<151> 1999-12-16
<150> PCT/US99/30911
<151> 1999-12-20
<150> PCT/US99/30999
<151> 1999-12-20
<150> PCT/US00/00219
<151> 2000-01-05
<160> 423
<210> 1
<211> 1825
<212> DNA
<213> Homo sapiens
<400> 1
actgcacctc ggttctatcg attgaattcc ccggggatcc tctagagatc cctcgacctc 60
gacccacgcg tccgggccgg agcagcacgg ccgcaggacc tggagctccg gctgcgtctt 120
cccgcagcgc tacccgccat gcgcctgccg cgccgggccg cgctggggct cctgccgctt 180
ctgctgctgc tgccgcccgc gccggaggcc gccaagaagc cgacgccctg ccaccggtgc 240
cgggggctgg tggacaagtt taaccagggg atggtggaca ccgcaaagaa gaactttggc 300
```

ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag cgagattcgc 360 ctgctggaga tcctggaggg gctgtgcgag agcagcgact tcgaatgcaa tcagatgcta 420 gaggcgcagg aggagcact ggaggcctgg tggctgcagc tgaagagcga atatcctgac 480 ttattcgagt tcgcatgcca gggcggatcc cagaggccct gcagcgggaa tcgccactgc 540 agcggagatg ggagcagaca gggcgacggg tcctgccggt gccacatggg gtaccagggc 660

```
ccgctgtgca ctgactgcat ggacggctac ttcagctcgc tccggaacga gacccacagc 720
atetgeacag cetgtgacga gteetgeaag aegtgetegg geetgaceaa cagagaetge 780
ggcgagtgtg aagtgggctg ggtgctggac gagggcgcct gtgtggatgt ggacgagtgt 840
gcggccgagc cgcctccctg cagcgctgcg cagttctgta agaacgccaa cggctcctac 900
acgtgcgaag agtgtgactc cagctgtgtg ggctgcacag gggaaggccc aggaaactgt 960
aaagagtgta tetetggeta egegagggag caeggaeagt gtgeagatgt ggaegagtge 1020
tcactagcag aaaaaacctg tgtgaggaaa aacgaaaact gctacaatac tccagggagc 1080
tacgtctgtg tgtgtcctga cggcttcgaa gaaacggaag atgcctgtgt gccgccggca 1140
gaggetgaag ecacagaagg agaaageeeg acacagetge eeteeegega agacetgtaa 1200
tgtgccggac ttacccttta aattattcag aaggatgtcc cgtggaaaat gtggccctga 1260
ggatgccgtc tcctgcagtg gacagcggcg gggagaggct gcctgctctc taacggttga 1320
ttctcatttg tcccttaaac agctgcattt cttggttgtt cttaaacaga cttgtatatt 1380
ttgatacagt tctttgtaat aaaattgacc attgtaggta atcaggagga aaaaaaaaa 1440
aaaaaaaaa aaagggcggc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1500
gcccaacttg tttattgcag cttataatgg ttacaaataa agcaatagca tcacaaattt 1560
cacaaataaa gcatttttt cactgcattc tagttgtggt ttgtccaaac tcatcaatgt 1620
atcttatcat gtctggatcg ggaattaatt cggcgcagca ccatggcctg aaataacctc 1680
tgaaagagga acttggttag gtaccttctg aggcggaaag aaccagctgt ggaatgtgtg 1740
tcagttaggg tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aagcatgcat 1800
ctcaattagt cagcaaccca gtttt
<210> 2
<211> 353
<212> PRT
<213> Homo sapiens
<400> 2
Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu Leu
                                     10
Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His
Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr
```

35 40 45

Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr
50 55 60

Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Leu Glu Ile Leu Glu 65 70 75 80

Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala 85 90 95

Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr 100 105 110

Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys Cys 115 120 125

Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser 130 135 140 Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg 150 Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr 185 His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys 295 Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro 315 305 310 Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp Leu

<210> 3 <211> 2206 <212> DNA <213> Homo sapiens

<400> 3
caggtccaac tgcacctcgg ttctatcgat tgaattcccc ggggatcctc tagagatccc 60
tcgacctcga cccacgcgtc cgccaggccg ggaggcgacg cgccagccg tctaaacggg 120
aacagccctg gctgagggag ctgcagcgca gcagagtatc tgacggcgcc aggttgcgta 180
ggtgcggcac gaggagtttt cccggcagcg aggaggtcct gagcagcatg gcccggagga 240

```
gegeetteee tgeegeegeg etetggetet ggagcateet eetgtgeetg etggeaetge 300
gggeggagge egggeegeeg eaggaggaga geetgtaeet atggategat geteaceagg 360
caagagtact cataggattt gaagaagata teetgattgt tteagagggg aaaatggeac 420
cttttacaca tgatttcaga aaagcgcaac agagaatgcc agctattcct gtcaatatcc 480
attccatgaa ttttacctgg caagctgcag ggcaggcaga atacttctat gaattcctgt 540
ccttgcgctc cctggataaa ggcatcatgg cagatccaac cgtcaatgtc cctctgctgg 600
gaacagtgcc tcacaaggca tcagttgttc aagttggttt cccatgtctt ggaaaacagg 660
atqqqqtqqc agcatttgaa gtgqatqtga ttgttatgaa ttctqaaqqc aacaccattc 720
tccaaacacc tcaaaatgct atcttcttta aaacatgtca acaagctgag tgcccaggcg 780
ggtgccgaaa tggaggcttt tgtaatgaaa gacgcatctg cgagtgtcct gatgggttcc 840
acggacetea etgtgagaaa geeetttgta eeceacgatg tatgaatggt ggaetttgtg 900
tgactcctgg tttctgcatc tgcccacctg gattctatgg agtgaactgt gacaaagcaa 960
actgctcaac cacctgcttt aatggaggga cctgtttcta ccctggaaaa tgtatttgcc 1020
ctccaggact agagggagag cagtgtgaaa tcagcaaatg cccacaaccc tgtcgaaatg 1080
gaggtaaatg cattggtaaa agcaaatgta agtgttccaa aggttaccag ggagacctct 1140
gttcaaagcc tgtctgcgag cctggctgtg gtgcacatgg aacctgccat gaacccaaca 1200
aatgccaatg tcaagaaggt tggcatggaa gacactgcaa taaaaggtac gaagccagcc 1260
tcatacatgc cctgaggcca gcaggcgcc agctcaggca gcacacgcct tcacttaaaa 1320
aggccgagga gcggcgggat ccacctgaat ccaattacat ctggtgaact ccgacatctg 1380
aaacgtttta agttacacca agttcatagc ctttgttaac ctttcatgtg ttgaatgttc 1440
aaataatgtt cattacactt aagaatactg gcctgaattt tattagcttc attataaatc 1500
actgagctga tatttactct tccttttaag ttttctaagt acgtctgtag catgatggta 1560
tagattttet tgttteagtg etttgggaca gattttatat tatgteaatt gateaggtta 1620
aaattttcag tgtgtagttg gcagatattt tcaaaattac aatgcattta tggtgtctgg 1680
gggcagggga acatcagaaa ggttaaattg ggcaaaaatg cgtaagtcac aagaatttgg 1740
atggtgcagt taatgttgaa gttacagcat ttcagatttt attgtcagat atttagatgt 1800
ttaaacaata taatatatto taaacacaat gaaataggga atataatgta tgaacttttt 1980
aaaaaaaaa aaaaaaaaa aaaaaaaaaa gggcggccgc gactctagag tcgacctgca 2160
gaagettgge egecatggee caacttgttt attgeagett ataatg
```

<210> 4

<211> 379

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp Ser 1 5 10 15

Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln
20 25 30

Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu 35 40 45

Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala
50 55 60

Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile

65					70					75					80
Pro	Val	Asn	Ile	His 85	Ser	Met	Asn	Phe	Thr 90	Trp	Gln	Ala	Ala	Gly 95	Gln
Ala	Glu	Tyr	Phe 100	Tyr	Glu	Phe	Leu	Ser 105	Leu	Arg	Ser	Leu	Asp 110	Lys	Gly
Ile	Met	Ala 115	Asp	Pro	Thr	Val	Asn 120	Val	Pro	Leu	Leu	Gly 125	Thr	Val	Pro
His	Lys 130	Ala	Ser	Val	Val	Gln 135	Val	Gly	Phe	Pro	Cys 140	Leu	Gly	Lys	Gln
Asp 145	Gly	Val	Ala	Ala	Phe 150	Glu	Val	Asp	Val	Ile 155	Val	Met	Asn	Ser	Glu 160
Gly	Asn	Thr	Ile	Leu 165	Gln	Thr	Pro	Gln	Asn 170	Ala	Ile	Phe	Phe	Lys 175	Thr
Cys	Gln	Gln	Ala 180	Glu	Cys	Pro	Gly	Gly 185	Cys	Arg	Asn	Gly	Gly 190	Phe	Cys
Asn	Glu	Arg 195	Arg	Ile	Суз	Glu	Cys 200	Pro	Asp	Gly	Phe	His 205	Gly	Pro	His
Cys	Glu 210	Lys	Ala	Leu	Cys	Thr 215	Pro	Arg	Cys	Met	Asn 220	Gly	Gly	Leu	Cys
Val 225	Thr	Pro	Gly	Phe	Cys 230	Ile	Cys	Pro	Pro	Gly 235	Phe	Tyr	Gly	Val	Asn 240
Cys	Asp	Lys	Ala	Asn 245	Cys	Ser	Thr	Thr	Cys 250	Phe	Asn	Gly	Gly	Thr 255	Cys
Phe	Tyr	Pro	Gly 260	Lys	Cys	Ile	Cys	Pro 265	Pro	Gly	Leu	Glu	Gly 270	Glu	Gln
Cys	Glu	Ile 275	Ser	Lys	Cys	Pro	Gln 280	Pro	Cys	Arg	Asn	Gly 285	Gly	Lys	Cys
Ile	Gly 290	Lys	Ser	Lys	Cys	Lys 295	Cys	Ser	Lys	Gly	Tyr 300	Gln	Gly	Asp	Leu
Cys 305	Ser	Lys	Pro	Val	Cys 310	Glu	Pro	Gly	Cys	Gly 315	Ala	His	Gly	Thr	Cys 320
His	Glu	Pro	Asn	Lys 325	Cys	Gln	Cys	Gln	Glu 330	Gly	Trp	His	Gly	Arg 335	His
Cys	Asn	Lys	Arg 340	Tyr	Glu	Ala	Ser	Leu 345	Ile	His	Ala	Leu	Arg 350	Pro	Ala

Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu 355 360 365	
Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp 370 375	
<210> 5 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 5 agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca	45
<210> 6 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 6 agagtgtatc tctggctacg c	21
<210> 7 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 7 taagtccggc acattacagg tc	22
<210> 8 <211> 49 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 8	49

```
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 9
                                                                22
aaagacgcat ctgcgagtgt cc
<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 10
tgctgatttc acactgctct ccc
                                                                23
<210> 11
<211> 2197
<212> DNA
<213> Homo sapiens
<400> 11
cggacgcgtg ggcgtccggc ggtcgcagag ccaggaggcg gaggcgcgcg ggccagcctg 60
ggccccagcc cacaccttca ccagggccca ggagccacca tgtggcgatg tccactgggg 120
ctactgctgt tgctgccgct ggctggccac ttggctctgg gtgcccagca gggtcgtggg 180
cgccgggagc tagcaccggg tctgcacctg cggggcatcc gggacgcggg aggccggtac 240
tgccaggage aggacetgtg etgcegegge egtgeegaeg aetgtgeeet geeetaeetg 300
ggcgccatct gttactgtga cetettetge aacegcaegg teteegaetg etgeeetgae 360
ttctgggact tctgcctcgg cgtgccaccc ccttttcccc cgatccaagg atgtatgcat 420
ggaggtcgta tctatccagt cttgggaacg tactgggaca actgtaaccg ttgcacctgc 480
caggagaaca ggcagtggca tggtggatcc agacatgatc aaagccatca accagggcaa 540
ctatggctgg caggctggga accacagcgc cttctggggc atgaccctgg atgagggcat 600
tegetacege etgggeacea teegeceate tteeteggte atgaacatge atgaaattta 660
tacagtgctg aacccagggg aggtgcttcc cacagccttc gaggcctctg agaagtggcc 720
caacctgatt catgageete ttgaccaagg caactgtgea ggeteetggg cetteteeac 780
agcagetgtg geateegate gtgteteaat ecattetetg ggacacatga egeetgteet 840
gtcgccccag aacctgctgt cttgtgacac ccaccagcag cagggctgcc gcggtgggcg 900
tetegatggt geetggtggt teetgegteg eegaggggtg gtgtetgaee aetgetaeee 960
etteteggge egtgaaegag aegaggetgg eeetgegeee eeetgtatga tgcacageeg 1020
agccatgggt cggggcaagc gccaggccac tgcccactgc cccaacagct atgttaataa 1080
caatqacatc taccaqqtca ctcctqtcta ccqcctcqqc tccaacqaca aggagatcat 1140
gaaggagetg atggagaatg geeetgteea ageeeteatg gaggtgeatg aggaettett 1200
cctatacaag ggaggcatct acagccacac gccagtgagc cttgggaggc cagagagata 1260
```

```
tggaaggacg ctcaaatact ggactgcggc caactcctgg ggcccagcct ggggcgaqaq 1380
gggccacttc cgcatcgtgc gcggcgtcaa tgagtgcgac atcgagagct tcgtgctqqq 1440
cgtctggggc cgcgtgggca tggaggacat gggtcatcac tgaggctgcg ggcaccacgc 1500
ggggtccggc ctgggatcca ggctaagggc cggcggaaga ggccccaatg gggcggtgac 1560
cccagcctcg cccgacagag cccggggcgc aggcgggcgc cagggcgcta atcccggcgc 1620
gggttccgct gacgcagcgc cccgcctggg agccgcgggc aggcgagact ggcggagccc 1680
ccagacctcc cagtggggac ggggcagggc ctggcctggg aagagcacag ctgcagatcc 1740
caggeetetg gegeeceeae teaagaetae caaageeagg acaceteaag tetecageee 1800
caatacccca ccccaatccc gtattctttt ttttttttt ttagacaggg tcttgctccg 1860
ttgcccaggt tggagtgcag tggcccatca gggctcactg taacctccga ctcctgggtt 1920
caagtgaccc tcccacctca gcctctcaag tagctgggac tacaggtgca ccaccacacc 1980
tggctaattt ttgtattttt tgtaaagagg ggggtctcac tgtgttgccc aggctggttt 2040
egaacteetg ggeteaageg gteeacetge eteegeetee caaagtgetg ggattgeagg 2100
catgagccac tgcacccagc cctgtattct tattcttcag atatttattt ttctttcac 2160
tgttttaaaa taaaaccaaa gtattgataa aaaaaaa
<210> 12
<211> 164
<212> PRT
<213> Homo sapiens
<400> 12
Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly
His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Glu Leu Ala
Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys
Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu
Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr
Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro
Pro Pro Phe Pro Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr
Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln
       115
Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln
Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly
                                        155
```

His Asp Pro Gly

```
<210> 13
<211> 533
<212> DNA
<213> Homo sapiens
<221> modified base
<222> (33)
<223> a, t, c or g
<220>
<221> modified base
<222> (80)
<223> a, t, c or g
<220>
<221> modified_base
<222> (94)
<223> a, t, c or g
<220>
<221> modified base
<222> (144)
<223> a, t, c or g
<220>
<221> modified_base
<222> (188)
<223> a, t, c or g
<400> 13
aggeteettg geeettttte cacageaage tintgenate eegattegit gieteaaate 60
caattetett gggacacatn acgeetgtee tttngceeca gaacetgetg tettgtacae 120
ccaccagcag cagggetgcc gcgntgggcg tctcgatggt gcctggtggt tcctgcgtcg 180
ccgagggntg gtgtctgacc actgctaccc cttctcgggc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca ctcctgtcta 360
ccgcctcggc tccaacgaca aggagatcat gaaggagctg atggagaatg gccctgtcca 420
agccctcatg gaggtgcatg aggacttctt cctatacaag ggaggcatct acagccacac 480
gccagtgagc cttgggaggc cagagagata ccgccggcat gggacccact cag
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 14
```

```
ttcgaggcct ctgagaagtg gccc
                                                                   24
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 15
ggcggtatct ctctggcctc cc
                                                                   22
<210> 16
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
ttctccacag cagetgtggc atccgatcgt gtctcaatcc attctctggg
                                                                   50
<210> 17
<211> 960
<212> DNA
<213> Homo sapiens
<400> 17
gctgettgec ctgttgatgg caggettggc cctgcagcca ggcactgecc tgctgtgcta 60
ctcctgcaaa gcccaggtga gcaacgagga ctgcctgcag gtggagaact gcacccagct 120
gggggagcag tgctggaccg cgcgcatccg cgcagttggc ctcctgaccg tcatcagcaa 180
aggetgeage ttgaactgeg tggatgaete acaggaetae taegtgggea agaagaacat 240
cacqtqctqt gacaccqact tqtqcaacqc caqcqqqqcc catqccctqc agccqqctqc 300
egecateett gegetgetee etgeaetegg eetgetgete tggggaeeeg geeagetata 360
ggetetgggg ggeecegetg cageceacae tgggtgtggt geeceaggee tetgtgeeae 420
tecteacaga cetggeecag tgggageetg teetggttee tgaggeacat cetaacgeaa 480
gtctgaceat gtatgtctgc accectgtcc cccaccctga ccctcccatg gccctctcca 540
ggactcceac ceggeagate agetetagtg acacagatec geetgeagat ggeeceteea 600
accetetetg etgetgttte catggeecag cattetecae cettaaccet gtgeteagge 660
acctettece ecaggaagee tteeetgeee acceeateta tgaettgage eaggtetggt 720
ccgtggtgtc ccccgcaccc agcaggggac aggcactcag gagggcccag taaaggctga 780
gatgaagtgg actgagtaga actggaggac aagagtcgac gtgagttcct gggagtctcc 840
agagatgggg cctggaggcc tggaggaagg ggccaqqcct cacattcqtg ggqctccctg 900
aatggcagcc tgagcacagc gtaggccctt aataaacacc tgttggataa gccaaaaaaa 960
<210> 18
<211> 189
<212> PRT
<213> Homo sapiens
```

<400> 18

Met Thr His Arg Thr Thr Thr Trp Ala Arg Arg Thr Ser Arg Ala Val 1 5 10 15

Thr Pro Thr Cys Ala Thr Pro Ala Gly Pro Met Pro Cys Ser Arg Leu 20 25 30

Pro Pro Ser Leu Arg Cys Ser Leu His Ser Ala Cys Cys Ser Gly Asp 35 40 45

Pro Ala Ser Tyr Arg Leu Trp Gly Ala Pro Leu Gln Pro Thr Leu Gly 50 55 60

Val Val Pro Gln Ala Ser Val Pro Leu Leu Thr Asp Leu Ala Gln Trp 65 70 75 80

Glu Pro Val Leu Val Pro Glu Ala His Pro Asn Ala Ser Leu Thr Met 85 90 95

Tyr Val Cys Thr Pro Val Pro His Pro Asp Pro Pro Met Ala Leu Ser 100 105 110

Arg Thr Pro Thr Arg Gln Ile Ser Ser Ser Asp Thr Asp Pro Pro Ala 115 120 125

Asp Gly Pro Ser Asn Pro Leu Cys Cys Cys Phe His Gly Pro Ala Phe 130 135 140

Ser Thr Leu Asn Pro Val Leu Arg His Leu Phe Pro Gln Glu Ala Phe 145 150 155 160

Pro Ala His Pro Ile Tyr Asp Leu Ser Gln Val Trp Ser Val Val Ser 165 170 175

Pro Ala Pro Ser Arg Gly Gln Ala Leu Arg Arg Ala Gln 180 185

<210> 19

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<400> 19

tgctgtgcta ctcctgcaaa gccc

24

<210> 20

<211> 24

<212> DNA

```
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide probe
 <400> 20
 tgcacaagtc ggtgtcacag cacq
                                                                   24
<210> 21
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 21
agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg
                                                                   44
<210> 22
<211> 1200
<212> DNA
<213> Homo sapiens
<400> 22
cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca acctcactct 60
gtgcttacag ctgctgattc tctgctgtca aactcagtac gtgagggacc agggcgccat 120
gaccgaccag ctgagcaggc ggcagatccg cgagtaccaa ctctacagca ggaccagtgg 180
caagcacgtg caggtcaccg ggcgtcgcat ctccgccacc gccgaggacg gcaacaagtt 240
tgccaagete atagtggaga eggacaegtt tggcageegg gttegcatea aaggggetga 300
gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc ccagcgggaa 360
gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg ccttccagaa 420
egeceggeae gagggetggt teatggeett caegeggeag gggeggeeee gecaggette 480
ccgcagccgc cagaaccagc gcgaggccca cttcatcaag cgcctctacc aaggccagct 540
gcccttcccc aaccacgccg agaagcagaa gcagttcgag tttgtgggct ccgccccac 600
ccgccggacc aagcgcacac ggcggcccca gcccctcacg tagtctggga ggcagggggc 660
agcagcccct gggccgcctc cccacccctt tcccttctta atccaaggac tgggctgggg 720
tggcgggagg ggagccagat ccccgaggga ggaccctgag ggccgcgaag catccgagcc 780
cccagctggg aaggggcagg ccggtgccc aggggcggct ggcacagtgc ccccttcccg 840
gacgggtggc aggccctgga gaggaactga gtgtcaccct gatctcaggc caccagcctc 900
tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg aaggccttgc 960
agacaaccgt ctggaggtgg ctgtcctcaa aatctgcttc tcggatctcc ctcagtctgc 1020
ccccagcccc caaactcctc ctggctagac tgtaggaagg gacttttgtt tgtttgtttg 1080
tttcaggaaa aaagaaaggg agagagga aaatagaggg ttgtccactc ctcacattcc 1140
acgacccagg cetgeacece acceecaact eccageceeg gaataaaace atttteetge 1200
<210> 23
<211> 205
<212> PRT
<213> Homo sapiens
```

<400> 23

Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln Leu 1 5 10 15

Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly Ala Met 20 25 30

Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln Leu Tyr Ser 35 40 45

Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg Arg Ile Ser Ala 50 55 60

Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu Ile Val Glu Thr Asp 65 70 75 80

Thr Phe Gly Ser Arg Val Arg Ile Lys Gly Ala Glu Ser Glu Lys Tyr 85 90 95

Ile Cys Met Asn Lys Arg Gly Lys Leu Ile Gly Lys Pro Ser Gly Lys
100 105 110

Ser Lys Asp Cys Val Phe Thr Glu Ile Val Leu Glu Asn Asn Tyr Thr 115 120 125

Ala Phe Gln Asn Ala Arg His Glu Gly Trp Phe Met Ala Phe Thr Arg 130 135 140

Gln Gly Arg Pro Arg Gln Ala Ser Arg Ser Arg Gln Asn Gln Arg Glu 145 150 155 160

Ala His Phe Ile Lys Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn 165 170 175

His Ala Glu Lys Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr 180 185 190

Arg Arg Thr Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr 195 200 205

<210> 24

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<400> 24

cagtacgtga gggaccaggg cgccatga

28

<210> 25

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 25
                                                                   24
ccqqtqacct gcacqtgctt gcca
<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<220>
<221> modified base
<222> (21)
<223> a, t, c or g
<400> 26
                                                                   41
geggatetge egeetgetea netggteggt catggegeee t
<210> 27
<211> 2479
<212> DNA
<213> Homo sapiens
<400> 27
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcag caaagaggc aacacaggct gataagacca gagacagcag ggagattatt 120
ttaccatacg ccctcaggac gttccctcta gctggagttc tggacttcaa cagaacccca 180
tccagtcatt ttgattttgc tgtttatttt ttttttcttt ttcttttcc caccacattg 240
tattttattt ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
cttttttcct gaagtcttgg cttatcattt ccctggggct ctactcacag gtgtccaaac 360
tcctggcctg ccctagtgtg tgccgctgcg acaggaactt tgtctactgt aatgagcgaa 420
gettgacete agtgeetett gggateeegg agggegtaae egtaetetae etceacaaca 480
accaaattaa taatgctgga tttcctgcag aactgcacaa tgtacagtcg gtgcacacgg 540
tctacctgta tggcaaccaa ctggacgaat tccccatgaa ccttcccaag aatgtcagag 600
ttctccattt gcaggaaaac aatattcaga ccatttcacg ggctgctctt gcccagctct 660
tgaagcttga agagctgcac ctggatgaca actccatatc cacagtgggg gtggaagacg 720
gggccttccg ggaggctatt agcctcaaat tgttgttttt gtctaagaat cacctgagca 780
gtgtgcctgt tgggcttcct gtggacttgc aagagctgag agtggatgaa aatcgaattg 840
ctgtcatatc cgacatggcc ttccagaatc tcacgagctt ggagcgtctt attgtggacg 900
ggaacctcct gaccaacaag ggtatcgccg agggcacctt cagccatctc accaagctca 960
aggaatttte aattqtacqt aattcgctgt cccaccctcc tcccgatctc ccaggtacgc 1020
atctqatcaq qctctatttq caqqacaacc agataaacca cattcctttg acagccttct 1080
caaatctqcq taaqctqqaa cggctgqata tatccaacaa ccaactgcgg atgctgactc 1140
```

```
aaggggtttt tgataatctc tccaacctga agcagctcac tgctcggaat aacccttggt 1200
tttgtgactg cagtattaaa tgggtcacag aatggctcaa atatatccct tcatctctca 1260
acgtgcgggg tttcatgtgc caaggtcctg aacaagtccg ggggatggcc gtcagggaat 1320
taaatatgaa tettttgtee tgteecacca egaceeegg eetgeetete tteaceeeag 1380
ccccaagtac agcttctccg accactcagc ctcccaccct ctctattcca aaccctagca 1440
gaagctacac gcctccaact cctaccacat cgaaacttcc cacgattcct gactgggatg 1500
gcagagaaag agtgacccca cctatttctg aacggatcca gctctctatc cattttgtga 1560
atgatactic cattcaagic agciggetet eteteticae egigatggea tacaaactca 1620
catgggtgaa aatgggccac agtttagtag ggggcatcgt tcaggagcgc atagtcagcq 1680
gtgagaagca acacctgagc ctggttaact tagagccccg atccacctat cggatttgtt 1740
tagtgccact ggatgctttt aactaccgcg cggtagaaga caccatttgt tcagaggcca 1800
ccacccatge etectatetg aacaacggca gcaacacage gtecagecat gagcagacga 1860
cgtcccacag catgggctcc ccctttctgc tggcgggctt gatcgggggc gcggtgatat 1920
ttgtgctggt ggtcttgctc agcgtctttt gctggcatat gcacaaaaag gggcgctaca 1980
ceteccagaa gtggaaatac aaceggggee ggeggaaaga tgattattge gaggeaggea 2040
ccaagaagga caactccatc ctggagatga cagaaaccag ttttcagatc gtctccttaa 2100
ataacgatca actccttaaa ggagatttca gactgcagcc catttacacc ccaaatgggg 2160
gcattaatta cacagactgc catateecca acaacatgeg atactgcaac agcagegtgc 2220
cagacctgga gcactgccat acgtgacagc cagaggccca gcgttatcaa ggcggacaat 2280
tagactettg agaacacact egtgtgtgca cataaagaca egcagattac atttgataaa 2340
tgttacacag atgcatttgt gcatttgaat actctgtaat ttatacggtg tactatataa 2400
tgggatttaa aaaaagtgct atcttttcta tttcaagtta attacaaaca gttttgtaac 2460
tctttgcttt ttaaatctt
<210> 28
<211> 660
<212> PRT
<213> Homo sapiens
<400> 28
Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu
Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys
Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr
Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly
Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe
Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr
Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg
                                105
Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala
       115
```

120

Leu	Ala 130		Leu	Leu	Lys	Leu 135		Glu	Leu	His	Leu 140	Asp	Asp	Asn	Ser
Ile 145		Thr	· Val	Gly	Val 150		Asp	Gly	Ala	Phe 155		Glu	Ala	Ile	Ser 160
Leu	Lys	Leu	Leu	Phe 165		Ser	Lys	Asn	His 170		Ser	Ser	Val	Pro 175	
Gly	Leu	Pro	Val 180		Leu	Gln	Glu	Leu 185	Arg	Val	Asp	Glu	Asn 190	Arg	Ile
		195					200					205			
	210		Asp			215					220				
225			His		230					235					240
			His	245					250					255	
			Gln 260					265					270		
		275	Arg				280					285			
	290		Thr			295					300				
305			Arg		310					315					320
			Trp	325					330					335	
			Gln 340					345					350		
		355	Asn				360					365			
	370		Pro			3 7 5					380				
385			Ile		390					395					400
Inr	Tnr	ser	Lys	Leu	Pro	Thr	IIe	Pro	Asp	Trp	Asp	Gly	Arg	Glu	Arg

				405					410					415	
Val	Thr	Pro	Pro 420	Ile	Ser	Glu	Arg	Ile 425	Gln	Leu	Ser	Ile	His 430	Phe	Val
Asn	Asp	Thr 435	Ser	Ile	Gln	Val	Ser 440	Trp	Leu	Ser	Leu	Phe 445	Thr	Val	Met
Ala	Tyr 450	Lys	Leu	Thr	Trp	Val 455	Lys	Met	Gly	His	Ser 460	Leu	Val	Gly	Gly
Ile 465	Val	Gln	Glu	Arg	Ile 470	Val	Ser	Gly	Glu	Lys 475	Gln	His	Leu	Ser	Leu 480
Val	Asn	Leu	Glu	Pro 485	Arg	Ser	Thr	Tyr	Arg 490	Ile	Cys	Leu	Val	Pro 495	Leu
Asp	Ala	Phe	Asn 500	Tyr	Arg	Ala	Val	Glu 505	Asp	Thr	Ile	Cys	Ser 510	Glu	Ala
Thr	Thr	His 515	Ala	Ser	Tyr	Leu	Asn 520	Asn	Gly	Ser	Asn	Thr 525	Ala	Ser	Ser
His	Glu 530	Gln	Thr	Thr	Ser	His 535	Ser	Met	Gly	Ser	Pro 540	Phe	Leu	Leu	Ala
Gly 545	Leu	Ile	Gly	Gly	Ala 550	Val	Ile	Phe	Val	Leu 555	Val	Val	Leu	Leu	Ser 560
Val	Phe	Cys	Trp	His 565	Met	His	Lys	Lys	Gly 570	Arg	Tyr	Thr	Ser	Gln 575	Lys
Trp	Lys	Tyr	Asn 580	Arg	Gly	Arg	Arg	Lys 585	Asp	Asp	Tyr	Cys	Glu 590	Ala	Gly
Thr	Lys	Lys 595	Asp	Asn	Ser	Ile	Leu 600	Glu	Met	Thr	Glu	Thr 605	Ser	Phe	Gln
Ile	Val 610	Ser	Leu	Asn	Asn	Asp 615	Gln	Leu	Leu	Lys	Gly 620	Asp	Phe	Arg	Leu
Gln 625	Pro	Ile	Tyr	Thr	Pro 630	Asn	Gly	Gly	Ile	Asn 635	Tyr	Thr	Asp	Cys	His 640
Ile	Pro	Asn	Asn	Met 645	Arg	Tyr	Cys	Asn	Ser 650	Ser	Val	Pro	Asp	Leu 655	Glu

660

His Cys His Thr

<210> 29

<211> 21

<212> DNA

<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 29 cggtctacct gtatggcaac c	21
<210> 30 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 30 gcaggacaac cagataaacc ac	22
<210> 31 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 31 acgcagattt gagaaggctg tc	22
<210> 32 <211> 46 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 32 ttcacgggct gctcttgccc agctcttgaa gcttgaagag ctgcac	46
<210> 33 <211> 3449 <212> DNA <213> Homo sapiens	
<400> 33 acttggagea ageggeggeg geggagaeag aggeagagge agaagetggg geteegteet	60
cgcctcccac gagcgatccc cgaggagagc cgcggccctc ggcgaggcga	

gaggaagacc cgggtggctg cgcccctgcc tcgcttccca ggcgccggcg gctgcagcct 180 tgcccctctt gctcgccttg aaaatggaaa agatgctcgc aggctgcttt ctgctgatcc 240 teggacagat egtecteete eetgeegagg eeagggageg gteaegtggg aggteeatet 300 ctaggggcag acacgctcgg acccacccgc agacggccct tctggagagt tcctgtgaga 360 acaageggge agacetggtt tteateattg acageteteg eagtgteaac acceatgact 420 atgcaaaggt caaggagtte ategtggaca tettgcaatt ettggacatt ggteetgatg 480 teaccegagt gggeetgete eaatatggea geactgteaa gaatgagtte teecteaaga 540 ccttcaagag gaagtccgag gtggagcgtg ctgtcaagag gatgcggcat ctgtccacgg 600 gcaccatgac tgggctggcc atccagtatg ccctgaacat cgcattctca gaagcagagg 660 gggcccggcc cctgagggag aatgtgccac gggtcataat gatcgtgaca gatgggagac 720 ctcaggactc cgtggccgag gtggctgcta aggcacggga cacgggcatc ctaatctttg 780 ccattggtgt gggccaggta gacttcaaca ccttgaagtc cattgggagt gagccccatg 840 aggaccatgt etteettgtg gecaatttea gecagattga gaegetgaee teegtgttee 900 agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt gcccacttct 960 geateaacat eeetggetea taegtetgea ggtgeaaaca aggetacatt eteaactegg 1020 atcagacgac ttgcagaatc caggatctgt gtgccatgga ggaccacaac tgtgagcagc 1080 tetgtgtgaa tgtgeeggge teettegtet geeagtgeta eagtggetae geeetggetg 1140 aggatgggaa gaggtgtgtg getgtggaet aetgtgeete agaaaaceae ggatgtgaae 1200 atgagtgtgt aaatgctgat ggctcctacc tttgccagtg ccatgaagga tttgctctta 1260 acccagatga aaaaacgtgc acaaggatca actactgtgc actgaacaaa ccgggctgtg 1320 agcatgagtg cgtcaacatg gaggagagct actactgccg ctgccaccgt ggctacactc 1380 tggaccccaa tggcaaaacc tgcagccgag tggaccactg tgcacagcag gaccatggct 1440 gtgagcaget gtgtctgaac acggaggatt ccttcgtctg ccagtgctca gaaggcttcc 1500 teatcaacga ggacetcaag acetgeteee gggtggatta etgeetgetg agtgaceatg 1560 gttgtgaata ctcctgtgtc aacatggaca gatcctttgc ctgtcagtgt cctgagggac 1620 acgtgctccg cagcgatggg aagacgtgtg caaaattgga ctcttgtgct ctgggggacc 1680 acggttgtga acattcgtgt gtaagcagtg aagattcgtt tgtgtgccag tgctttgaag 1740 gttatatact ccgtgaagat ggaaaaacct gcagaaggaa agatgtctgc caagctatag 1800 accatggctg tgaacacatt tgtgtgaaca gtgacgactc atacacgtgc gagtgcttgg 1860 agggatteeg getegetgag gatgggaaac getgeegaag gaaggatgte tgeaaateaa 1920 cccaccatgg ctgcgaacac atttgtgtta ataatgggaa ttcctacatc tgcaaatgct 1980 cagagggatt tgttctagct gaggacggaa gacggtgcaa gaaatgcact gaaggcccaa 2040 ttgacctggt ctttgtgatc gatggatcca agagtcttgg agaagagaat tttgaggtcg 2100 tgaagcagtt tgtcactgga attatagatt ccttgacaat ttcccccaaa gccgctcgag 2160 tggggctgct ccagtattcc acacaggtcc acacagagtt cactetgaga aacttcaact 2220 cagccaaaga catgaaaaaa gccgtggccc acatgaaata catgggaaag ggctctatga 2280 ctgggctggc cctgaaacac atgtttgaga gaagttttac ccaaggagaa ggggccaggc 2340 ccetttccac aagggtgccc agagcagcca ttgtgttcac cgacggacgg gctcaggatg 2400 acgtetecga gtgggecagt aaagecaagg ccaatggtat cactatgtat getgttgggg 2460 taggaaaagc cattgaggag gaactacaag agattgcctc tgagcccaca aacaagcatc 2520 tettetatge egaagaette ageacaatgg atgagataag tgaaaaacte aagaaaggea 2580 tetgtgaage tetagaagae teegatggaa gacaggaete teeageaggg gaaetgeeaa 2640 aaacggtcca acagccaaca gaatctgagc cagtcaccat aaatatccaa gacctacttt 2700 cctgttctaa ttttgcagtg caacacagat atctgtttga agaagacaat cttttacggt 2760 ctacacaaaa gctttcccat tcaacaaaac cttcaggaag ccctttggaa gaaaaacacg 2820 atcaatgcaa atgtgaaaac cttataatgt tccagaacct tgcaaacgaa gaagtaagaa 2880 aattaacaca gegettagaa gaaatgacae agagaatgga ageeetggaa aategeetga 2940 gatacagatg aagattagaa atcgcgacac atttgtagtc attgtatcac ggattacaat 3000 gaacgcagtg cagagcccca aagctcaggc tattgttaaa tcaataatgt tgtgaagtaa 3060 aacaatcagt actgagaaac ctggtttgcc acagaacaaa gacaagaagt atacactaac 3120 ttgtataaat ttatctagga aaaaaatcct tcagaattct aagatgaatt taccaggtga 3180 gaatgaataa gctatgcaag gtattttgta atatactgtg gacacaactt gcttctgcct 3240 catectgeet tagtgtgeaa teteatttga etataegata aagtttgeae agtettaett 3300

ctgtagaaca ctggccatag gaaatgctgt ttttttgtac tggactttac cttgatatat 3360 gtatatggat gtatgcataa aatcatagga catatgtact tgtggaacaa gttggatttt 3420 ttatacaata ttaaaattca ccacttcag 3449

<210> 34

<211> 915

<212> PRT

<213> Homo sapiens

<400> 34

Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile 1 5 10 15

Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile 20 . 25 30

Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu 35 40 45

Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser 50 55 60

Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile 65 70 75 80

Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val
85 90 95

Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys
100 105 110

Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg 115 120 125

His Leu Ser Thr Gly Thr Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu 130 135 140

Asn Ile Ala Phe Ser Glu Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn 145 150 155 160

Val Pro Arg Val Ile Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser 165 170 175

Val Ala Glu Val Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe 180 185 190

Ala Ile Gly Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly
195 200 205

Ser Glu Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln 210 215 220

Ile Glu Thr Leu Thr Ser Val Phe Gln Lys Lys Leu Cys Thr Ala His

225					230					235					240
Met	Cys	Ser	Thr	Leu 245	Glu	His	Asn	Cys	Ala 250		Phe	Cys	Ile	Asn 255	
Pro	Gly	Ser	Tyr 260		Cys	Arg	Cys	Lys 265	Gln	Gly	Tyr	Ile	Leu 270	Asn	Ser
Asp	Gln	Thr 275		Cys	Arg	Ile	Gln 280		Leu	Сув	Ala	Met 285		Asp	His
Asn	Cys 290	Glu	Gln	Leu	Cys	Val 295		Val	Pro	Gly	Ser 300	Phe	Val	Cys	Gln
Cys 305	Tyr	Ser	Gly	Tyr	Ala 310	Leu	Ala	Glu	Asp	Gly 315	Lys	Arg	Cys	Val	Ala 320
Val	Asp	Tyr	Cys	Ala 325	Ser	Glu	Asn	His	Gly 330	Cys	Glu	His	Glu	Cys 335	Val
Asn	Ala	Asp	Gly 340	Ser	Tyr	Leu	Cys	Gln 345	Cys	His	Glu	Gly	Phe 350	Ala	Leu
Asn	Pro	Asp 355	Glu	Lys	Thr	Cys	Thr 360	Arg	Ile	Asn	Tyr	Cys 365	Ala	Leu	Asn
Lys	Pro 370	Gly	Cys	Glu	His	Glu 375	Cys	Val	Asn	Met	Glu 380	Glu	Ser	Tyr	Tyr
Cys 385	Arg	Cys	His	Arg	Gly 390	Tyr	Thr	Leu	Asp	Pro 395	Asn	Gly	Lys	Thr	Cys 400
Ser	Arg	۷al	Asp	His 405	Cys	Ala	Gln	Gln	Asp 410	His	Gly	Суѕ	Glu	Gln 415	Leu
Cys	Leu	Asn	Thr 420	Glu	Asp	Ser	Phe	Val 425	Cys	Gln	Cys	Ser	Glu 430	Gly	Phe
Leu	Ile	Asn 435	Glu	Asp	Leu	Lys	Thr 440	Cys	Ser	Arg	Val	Asp 445	Tyr	Сув	Leu
Leu	Ser 450	Asp	His	Gly	Cys	Glu 455	Tyr	Ser	Cys	Val	Asn 460	Met	Asp	Arg	Ser
Phe 465	Ala	Cys	Gln	Cys	Pro 470	Glu	Gly	His	Val	Leu 475	Arg	Ser	Asp	Gly	Lys 480
Thr	Cys	Ala	Lys	Leu 485	Asp	Ser	Cys	Ala	Leu 490	Gly	Asp	His	Gly	Cys 495	Glu
His	ser	Cys	Val 500	Ser	Ser	Glu	Asp	Ser 505	Phe	Val	Cys	Gln	Cys 510	Phe	Glu

- Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val 515 520 525
- Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp 530 535 540
- Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp 545 550 560
- Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly
 565 570 575
- Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys 580 585 590
- Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Cys 595 600 605
- Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser 610 615 620
- Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile 625 630 635 640
- Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu 645 650 655
- Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn 660 670
- Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly 675 680 685
- Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser 690 695 700
- Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg 705 710 715 720
- Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu 725 730 735
- Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly
 740 745 750
- Val Gly Lys Ala Ile Glu Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro 755 760 765
- Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu 770 775 780
- Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser 785 790 795 800

Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu Leu Pro Lys Thr Val Gln 805 810 815													
Gln Pro Thr Glu Ser Glu Pro Val Thr Ile Asn Ile Gln Asp Leu Leu 820 825 830													
Ser Cys Ser Asn Phe Ala Val Gln His Arg Tyr Leu Phe Glu Glu Asp 835 840 845													
Asn Leu Leu Arg Ser Thr Gln Lys Leu Ser His Ser Thr Lys Pro Ser 850 855 860													
Gly Ser Pro Leu Glu Glu Lys His Asp Gln Cys Lys Cys Glu Asn Leu 865 870 875 880													
Ile Met Phe Gln Asn Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln 885 890 895													
Arg Leu Glu Glu Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu 900 905 910													
Arg Tyr Arg 915													
<210> 35 <211> 23 <212> DNA <213> Artificial Sequence													
<pre><213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic</pre>													
<400> 35 gtgaccctgg ttgtgaatac tcc	23												
<210> 36 <211> 22 <212> DNA <213> Artificial Sequence													
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe													
<400> 36 acagccatgg tctatagctt gg	22												
<210> 37 <211> 45 <212> DNA <213> Artificial Sequence													

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 37
gcctgtcagt gtcctgaggg acacgtgctc cgcagcgatg ggaag
                                                                  45
<210> 38
<211> 1813
<212> DNA
<213> Homo sapiens
<400> 38
ggagccgccc tgggtgtcag cggctcggct cccgcgcacg ctccggccgt cgcgcagcct 60
cggcacctgc aggtccgtgc gtcccgcggc tggcgcccct gactccgtcc cggccaggga 120
gggccatgat ttccctcccg gggcccctgg tgaccaactt gctgcggttt ttgttcctgg 180
ggctgagtgc cctcgcgccc ccctcgcggg cccagctgca actgcacttg cccgccaacc 240
ggttgcaggc ggtggaggga ggggaagtgg tgcttccagc gtggtacacc ttgcacgggg 300
aggtgtcttc atcccagcca tgggaggtgc cctttgtgat gtggttcttc aaacagaaag 360
aaaaggagga tcaggtgttg tcctacatca atggggtcac aacaagcaaa cctggagtat 420
ccttggtcta ctccatgccc tcccggaacc tgtccctgcg gctggagggt ctccaggaga 480
aagactctgg cccctacagc tgctccgtga atgtgcaaga caaacaaggc aaatctaggg 540
gccacagcat caaaacctta gaactcaatg tactggttcc tccagctcct ccatcctgcc 600
gtctccaggg tgtgccccat gtgggggcaa acgtgaccct gagctgccag tctccaagga 660
gtaagcccgc tgtccaatac cagtgggatc ggcagcttcc atccttccag actttctttg 720
caccagcatt agatgtcatc cgtgggtctt taagcctcac caacctttcg tcttccatgg 780
ctggagtcta tgtctgcaag gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc 840
tqqaaqtqaq cacaqqqcct gqagctgcag tggttgctgg agctgttgtg ggtaccctgg 900
ttggactggg gttgctggct gggctggtcc tcttgtacca ccgccggggc aaggccctgg 960
aggagecage caatgatate aaggaggatg ceattgetee eeggaceetg eeetggeeca 1020
agageteaga cacaatetee aagaatggga ceettteete tgteacetee geacgageee 1080
teeggeeace ceatggeest eccaggeetg gtgeattgae ecceaegees agteteteea 1140
gccaggccct gccctcacca agactgccca cgacagatgg ggcccaccct caaccaatat 1200
cccccatccc tggtggggtt tcttcctctg gcttgagccg catgggtgct gtgcctgtga 1260
tggtgcctgc ccagagtcaa gctggctctc tggtatgatg accccaccac tcattggcta 1320
aaggatttgg ggtctctcct tcctataagg gtcacctcta gcacagaggc ctgagtcatg 1380
qqaaaqaqtc acactcctga cccttagtac tctgccccca cctctcttta ctgtgggaaa 1440
accatctcag taagacctaa gtgtccagga gacagaagga gaagaggaag tggatctgga 1500
attgggagga gcctccaccc acccctgact cctccttatg aagccagctg ctgaaattag 1560
ctactcacca agagtgaggg gcagagactt ccagtcactg agtctcccag gcccccttga 1620
totgtacccc acccctatct aacaccaccc ttggctccca ctccagctcc ctgtattgat 1680
ataacctgtc aggctggctt ggttaggttt tactggggca gaggataggg aatctcttat 1740
taaaactaac atgaaatatg tgttgttttc atttgcaaat ttaaataaag atacataatg 1800
                                                                  1813
tttgtatgaa aaa
<210> 39
<211> 390
<212> PRT
<213> Homo sapiens
<400> 39
```

Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu

1				5					10					15	
Phe	Leu	Gly	Leu 20	Ser	Ala	Leu	Ala	Pro 25	Pro	Ser	Arg	Ala	Gln 30	Leu	Gln
Leu	His	Leu 35	Pro	Ala	Asn	Arg	Leu 40	Gln	Ala	Val	Glu	Gly 45	Gly	Glu	Val
Val	Leu 50	Pro	Ala	Trp	Tyr	Thr 55	Leu	His	Gly	Glu	Val 60	Ser	Ser	Ser	Gln
Pro 65	Trp	Glu	Val	Pro	Phe 70	Val	Met	Trp	Phe	Phe 75	Lys	Gln	Lys	Glu	Lys 80
Glu	Asp	Gln	Val	Leu 85	Ser	Tyr	Ile	Asn	Gly 90	Val	Thr	Thr	Ser	Lys 95	Pro
Gly	Val	Ser	Leu 100	Val	Tyr	Ser	Met	Pro 105	Ser	Arg	Asn	Leu	Ser 110	Leu	Arg
Leu	Glu	Gly 115	Leu	Gln	Glu	Lys	Asp 120	Ser	Gly	Pro	Tyr	Ser 125	Cys	Ser	Val
Asn	Val 130	Gln	Asp	Lys	Gln	Gly 135	Lys	Ser	Arg	Gly	His 140	Ser	Ile	Lys	Thr
Leu 145	Glu	Leu	Asn	Val	Leu 150	Val	Pro	Pro	Ala	Pro 155	Pro	Ser	Cys	Arg	Leu 160
Gln	Gly	Val	Pro	His 165	Val	Gly	Ala	Asn	Val 170	Thr	Leu	Ser	Cys	Gln 175	Ser
Pro	Arg	Ser	Lys 180	Pro	Ala	Val	Gln	Tyr 185	Gln	Trp	Asp	Arg	Gln 190	Leu	Pro
Ser	Phe	Gln 195	Thr	Phe	Phe	Ala	Pro 200	Ala	Leu	Asp	Val	Ile 205	Arg	Gly	Ser
Leu	Ser 210	Leu	Thr	Asn	Leu	Ser 215	Ser	Ser	Met	Ala	Gly 220	Val	Tyr	Val	Cys
Lys 225	Ala	His	Asn	Glu	Val 230	Gly	Thr	Ala	Gln	Cys 235	Asn	Val	Thr	Leu	Glu 240
Val	Ser	Thr	Gly	Pro 245	Gly	Ala	Ala	Val	Val 250	Ala	Gly	Ala	Val	Val 255	Gly
Thr	Leu	Val	Gly 260	Leu	Gly	Leu	Leu	Ala 265	Gly	Leu	Val	Leu	Leu 270	Tyr	His
Arg	Arg	Gly 275	Lys	Ala	Leu	Glu	Glu 280	Pro	Ala	Asn	Asp	Ile 285	Lys	Glu	Asp

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile 290 295 300	
Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg 305 310 315 320	
Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser 325 330 335	
Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly 340 345 350	
Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser 365	
Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser 370 375 380	
Gln Ala Gly Ser Leu Val 385 390	
<210> 40	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Synthetic</pre>	
oligonucleotide probe	
<400> 40	22
agggtctcca ggagaaagac tc	۷.
<210> 41	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe	
<400> 41	
	24
<210> 42	
<211> 50 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
orrange prope	

<400> 42 ggccacagca tcaaaacctt agaactcaat gtactggttc ctccagctcc	50
<210> 43 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 43 gtgtgacaca gcgtgggc	18
<210> 44 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 44 gaccggcagg cttctgcg	18
<210> 45 <211> 25 <212> DNA <213> Artificial Sequence	
<pre><223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 45 cagcagcttc agccaccagg agtgg	25
<210> 46 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 46 ctgagccgtg ggctgcagtc tcgc	24
<210> 47	

```
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 47
ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc
                                                                  45
<210> 48
<211> 2822
<212> DNA
<213> Homo sapiens
<400> 48
cgccaccact gcggccaccg ccaatgaaac gcctcccgct cctagtggtt ttttccactt 60
tgttgaattg ttcctatact caaaattgca ccaagacacc ttgtctccca aatgcaaaat 120
gtgaaatacg caatggaatt gaagcctgct attgcaacat gggattttca ggaaatggtg 180
tcacaatttg tgaagatgat aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg 240
ctaattgcac taacacagaa ggaagttatt attgtatgtg tgtacctggc ttcagatcca 300
gcagtaacca agacaggttt atcactaatg atggaaccgt ctgtatagaa aatgtgaatg 360
caaactgcca tttagataat gtctgtatag ctgcaaatat taataaaact ttaacaaaaa 420
tcagatccat aaaagaacct gtggctttgc tacaagaagt ctatagaaat tctgtgacag 480
atctttcacc aacagatata attacatata tagaaatatt agctgaatca tcttcattac 540
taggttacaa gaacaacact atctcagcca aggacaccct ttctaactca actcttactg 600
aatttgtaaa aaccgtgaat aattttgttc aaagggatac atttgtagtt tgggacaagt 660
tatctgtgaa tcataggaga acacatctta caaaactcat gcacactgtt gaacaagcta 720
ctttaaggat atcccagagc ttccaaaaga ccacagagtt tgatacaaat tcaacggata 780
tageteteaa agttttettt tttgatteat ataacatgaa acatatteat eeteatatga 840
atatggatgg agactacata aatatatttc caaagagaaa agctgcatat gattcaaatg 900
gcaatgttgc agttgcattt ttatattata agagtattgg tcctttgctt tcatcatctg 960
acaacttctt attgaaacct caaaattatg ataattctga agaggaggaa agagtcatat 1020
cttcagtaat ttcagtctca atgagctcaa acccacccac attatatgaa cttgaaaaaa 1080
taacatttac attaagtcat cgaaaggtca cagataggta taggagtcta tgtgcatttt 1140
ggaattactc acctgatacc atgaatggca gctggtcttc agagggctgt gagctgacat 1200
actcaaatga gacccacacc tcatgccgct gtaatcacct gacacatttt gcaattttga 1260
tgtcctctgg tccttccatt ggtattaaag attataatat tcttacaagg atcactcaac 1320
taggaataat tatttcactg atttgtcttg ccatatgcat ttttaccttc tggttcttca 1380
gtgaaattca aagcaccagg acaacaattc acaaaaatct ttgctgtagc ctatttcttg 1440
ctgaacttgt ttttcttgtt gggatcaata caaatactaa taagctcttc tgttcaatca 1500
ttgccggact gctacactac ttctttttag ctgcttttgc atggatgtgc attgaaggca 1560
tacatctcta tctcattgtt gtgggtgtca tctacaacaa gggatttttg cacaagaatt 1620
tttatatctt tggctatcta agcccagccg tggtagttgg attttcggca gcactaggat 1680
acagatatta tggcacaacc aaagtatgtt ggcttagcac cgaaaacaac tttatttgga 1740
gttttatagg accagcatgc ctaatcattc ttgttaatct cttggctttt ggagtcatca 1800
tatacaaagt ttttcgtcac actgcagggt tgaaaccaga agttagttgc tttgagaaca 1860
taaggtettg tgeaagagga geeetegete ttetgtteet teteggeace acetggatet 1920
ttggggttct ccatgttgtg cacgcatcag tggttacagc ttacctcttc acagtcagca 1980
atgctttcca ggggatgttc attttttat tcctgtgtgt tttatctaga aagattcaag 2040
aagaatatta cagattgttc aaaaatgtcc cctgttgttt tggatgttta aggtaaacat 2100
agagaatggt ggataattac aactgcacaa aaataaaaat tccaagctgt ggatgaccaa 2160
```

```
tgtataaaaa tgactcatca aattatccaa ttattaacta ctagacaaaa agtattttaa 2220
atcagttttt ctgtttatgc tataggaact gtagataata aggtaaaatt atgtatcata 2280
tagatatact atgtttttct atgtgaaata gttctgtcaa aaatagtatt gcagatattt 2340
ggaaagtaat tggtttctca ggagtgatat cactgcaccc aaggaaagat tttctttcta 2400
acacgagaag tatatgaatg teetgaagga aaccaetgge ttgatattte tgtgaetegt 2460
gttgcctttg aaactagtcc cctaccacct cggtaatgag ctccattaca gaaagtggaa 2520
cataagagaa tgaaggggca gaatatcaaa cagtgaaaag ggaatgataa gatgtatttt 2580
gaatgaactg ttttttctgt agactagctg agaaattgtt gacataaaat aaagaattga 2640
agaaacacat tttaccattt tgtgaattgt tctgaactta aatgtccact aaaacaactt 2700
agacttctgt ttgctaaatc tgtttctttt tctaatattc taaaaaaaaa aaaaaggttt 2760
<210> 49
<211> 690
<212> PRT
<213> Homo sapiens
<400> 49
Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn Cys
Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys
Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe
Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn Glu Cys Gly Asn
Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly
 65
Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Ser Asn Gln
Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn
Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys
                           120
Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln
Glu Val Tyr Arg Asn Ser Val Thr Asp Leu Ser Pro Thr Asp Ile Ile
                                       155
                   150
Thr Tyr Ile Glu Ile Leu Ala Glu Ser Ser Ser Leu Leu Gly Tyr Lys
```

Asn Asn Thr Ile Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr

			180					185					190		
Glu	Phe	Val 195	Lys	Thr	Val	Asn	Asn 200	Phe	Val	Gln	Arg	Asp 205	Thr	Phe	Val
Val	Trp 210	Asp	Lys	Leu	Ser	Val 215	Asn	His	Arg	Arg	Thr 220	His	Leu	Thr	Lys
Leu 225	Met	His	Thr	Val	Glu 230	Gln	Ala	Thr	Leu	Arg 235	Ile	Ser	Gln	Ser	Phe 240
Gln	Lys	Thr	Thr	Glu 245	Phe	Asp	Thr	Asn	Ser 250	Thr	Asp	Ile	Ala	Leu 255	Lys
Val	Phe	Phe	Phe 260	Asp	Ser	Tyr	Asn	Met 265	Lys	His	Ile	His	Pro 270	His	Met
Asn	Met	Asp 275	Gly	Asp	Tyr	Ile	Asn 280	Ile	Phe	Pro	Lys	Arg 285	Lys	Ala	Ala
Tyr	Asp 290	Ser	Asn	Gly	Asn	Val 295	Ala	Val	Ala	Phe	Leu 300	Tyr	Tyr	Lys	Ser
Ile 305	Gly	Pro	Leu	Leu	Ser 310	Ser	Ser	Asp	Asn	Phe 315	Leu	Leu	Lys	Pro	Gln 320
Asn	Tyr	Asp	Asn	Ser 325	Glu	Glu	Glu	Glu	Arg 330	Val	Ile	Ser	Ser	Val 335	Ile
Ser	Val	Ser	Met 340	Ser	Ser	Asn	Pro	Pro 345	Thr	Leu	Tyr	Glu	Leu 350	Glu	Lys
Ile	Thr	Phe 355	Thr	Leu	Ser	His	Arg 360	Lys	Val	Thr	Asp	Arg 365	Tyr	Arg	Ser
Leu	Cys 370	Ala	Phe	Trp	Asn	Tyr 3 7 5	Ser	Pro	Asp	Thr	Met 380	Asn	Gly	Ser	Trp
Ser 385	Ser	Glu	Gly	Cys	Glu 390	Leu	Thr	Tyr	Ser	Asn 395	Glu	Thr	His	Thr	Ser 400
Cys	Arg	Cys	Asn	His 405	Leu	Thr	His	Phe	Ala 410	Ile	Leu	Met	Ser	Ser 41 5	Gly
Pro	Ser	Ile	Gly 420	Ile	Lys	Asp	Tyr	Asn 425	Ile	Leu	Thr	Arg	Ile 430	Thr	Gln
Leu	Gly	Ile 435	Ile	Ile	Ser	Leu	Ile 440	Cys	Leu	Ala	Ile	Cys 445	Ile	Phe	Thr
Phe	Trp	Phe	Phe	Ser	Glu	Ile	Gln	Ser	Thr	Arg	Thr	Thr	Ile	His	Lys

Asn Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly 470 475 Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly Leu 490 Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile 580 Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln 665 Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys Leu Arg 690 <210> 50 <211> 589 <212> DNA <213> Homo sapiens <220> <221> modified_base

<222> (61)

```
<223> a, t, c or g
<400> 50
tgqaaacata tcctccctca tatgaatatg gatggagact acataaatat atttccaaag 60
ngaaaagccg gcatatggat tcaaatggca atgttgcagt tgcattttta tattataaga 120
gtattggtcc ctttgctttc atcatctgac aacttcttat tgaaacctca aaattatgat 180
aattetgaag aggaggaaag agteatatet teagtaattt eagteteaat gageteaaac 240
ccacccacat tatatgaact tgaaaaaata acatttacat taagtcatcg aaaggtcaca 300
gataggtata ggagtctatg tggcattttg gaatactcac ctgataccat gaatggcagc 360
tggtcttcag agggctgtga gctgacatac tcaaatgaga cccacacctc atgccgctgt 420
aatcacctga cacattttgc aattttgatg tcctctggtc cttccattgg tattaaagat 480
tataatattc ttacaaggat cactcaacta ggaataatta tttcactgat ttgtcttgcc 540
atatgcattt ttaccttctg gttcttcagt gaaattcaaa gcaccagga
<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 51
                                                                   20
ggtaatgagc tccattacag
<210> 52
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 52
                                                                   18
ggagtagaaa gcgcatgg
<210> 53
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 53
                                                                   22
cacctgatac catgaatggc ag
<210> 54
<211> 18
```

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 54
                                                                   18
cgagctcgaa ttaattcg
<210> 55
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 55
ggatctcctg agctcagg
                                                                    18
<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 56
cctagttgag tgatccttgt aag
                                                                    23
<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 57
atgagaccca cacctcatgc cgctgtaatc acctgacaca ttttgcaatt
                                                                   50
<210> 58
<211> 2137
<212> DNA
<213> Homo sapiens
<400> 58
gctcccagcc aagaacctcg gggccgctgc gcggtgggga ggagttcccc gaaacccggc 60
cgctaagcga ggcctcctcc tcccgcagat ccgaacggcc tgggcggggt caccccggct 120
```

```
qqqacaaqaa qccqccgcct gcctgcccgg gcccggggag ggggctgggg ctggggccgg 180
aggcggggtg tgagtgggtg tgtgcggggg gcggaggctt gatgcaatcc cgataagaaa 240
tgctcgggtg tcttgggcac ctacccgtgg ggcccgtaag gcgctactat ataaggctgc 300
eggeeeggag eegeegeee gteagageag gagegetgeg teeaggatet agggeeaega 360
ccatcccaac ccggcactca cagccccgca gcgcatcccg gtcgccgccc agcctcccgc 420
acccccatcg ccggagctgc gccgagagcc ccagggaggt gccatgcgga gcgggtgtgt 480
ggtggtccac gtatggatcc tggccggcct ctggctggcc gtggccgggc gcccctcgc 540
cttctcggac geggggccc acgtgcacta eggctggggc gaccccatcc gcctgcggca 600
cetqtacace teeggeeece aegggetete eagetgette etgegeatee gtgeegaegg 660
cgtcgtggac tgcgcgggg gccagagcgc gcacagtttg ctggagatca aggcagtcgc 720
tetgeggace gtggceatea agggegtgea eagegtgegg tacetetgea tgggegeega 780
cggcaagatg caggggctgc ttcagtactc ggaggaagac tgtgctttcg aggaggagat 840
ccgcccagat ggctacaatg tgtaccgatc cgagaagcac cgcctcccgg tctccctgag 900
cagtgccaaa cagcggcagc tgtacaagaa cagaggcttt cttccactct ctcatttcct 960
gcccatgctg cccatggtcc cagaggagcc tgaggacctc aggggccact tggaatctga 1020
catgttctct tcgcccctgg agaccgacag catggaccca tttgggcttg tcaccggact 1080
ggaggccgtg aggagtccca gctttgagaa gtaactgaga ccatgcccgg gcctcttcac 1140
tgctgccagg ggctgtggta cctgcagcgt gggggacgtg cttctacaag aacagtcctg 1200
agtccacgtt ctgtttagct ttaggaagaa acatctagaa gttgtacata ttcagagttt 1260
tccattggca gtgccagttt ctagccaata gacttgtctg atcataacat tgtaagcctg 1320
tagettgeec agetgetgee tgggeececa ttetgeteec tegaggttge tggacaaget 1380
gctgcactgt ctcagttctg cttgaatacc tccatcgatg gggaactcac ttcctttgga 1440
aaaattetta tgtcaagetg aaatteteta atttttete ateaetteee caggageage 1500
cagaagacag gcagtagttt taatttcagg aacaggtgat ccactctgta aaacagcagg 1560
taaatttcac tcaaccccat gtgggaattg atctatatct ctacttccag ggaccatttg 1620
cccttcccaa atccctccag gccagaactg actggagcag gcatggccca ccaggcttca 1680
ggagtagggg aageetggag eeceaeteea geeetgggae aaettgagaa tteeecetga 1740
ggccagttet gtcatggatg etgteetgag aataaettge tgteeeggtg teaectgett 1800
ccatctccca qcccaccaqc cctctqccca cctcacatqc ctccccatqq attggggcct 1860
atttgaagac cccaagtett gtcaataact tgctgtgtgg aagcageggg ggaagaceta 1980
gaaccettte cecageaett ggtttteeaa eatgatattt atgagtaatt tattttgata 2040
tgtacatctc ttattttctt acattattta tgcccccaaa ttatatttat gtatgtaagt 2100
gaggtttgtt ttgtatatta aaatggagtt tgtttgt
<210> 59
<211> 216
<212> PRT
<213> Homo sapiens
<400> 59
```

Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu

1 5 10 15

Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro 20 25 30

His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr 35 40 45

Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala
50 55 60

Asp 65	Gly	Val	Val	Asp	Cys 70	Ala	Arg	Gly	Gln	Ser 75	Ala	His	Ser	Leu	Leu 80	
Glu	Ile	Lys	Ala	Val 85	Ala	Leu	Arg	Thr	Val 90	Ala	Ile	Lys	Gly	Val 95	His	
Ser	Val	Arg	Tyr 100	Leu	Cys	Met	Gly	Ala 105	Asp	Gly	Lys	Met	Gln 110	Gly	Leu	
Leu	Gln	Tyr 115	Ser	Glu	Glu	Asp	Cys 120	Ala	Phe	Glu	Glu	Glu 125	Ile	Arg	Pro	
Asp	Gly 130	Tyr	Asn	Val	Tyr	Arg 135	ser	Glu	Lys	His	Arg 140	Leu	Pro	Val	Ser	
Leu 145	Ser	Ser	Ala	Lys	Gln 150	Arg	Gln	Leu	Tyr	Lys 155	Asn	Arg	Gly	Phe	Leu 160	
Pro	Leu	Ser	His	Phe 165	Leu	Pro	Met	Leu	Pro 170	Met	Val	Pro	Glu	Glu 175	Pro	
Glu	Asp	Leu	Arg 180	Gly	His	Leu	Glu	Ser 185	Asp	Met	Phe	Ser	Ser 190	Pro	Leu	
Glu	Thr	Asp 195	Ser	Met	Asp	Pro	Phe 200	Gly	Leu	Val	Thr	Gly 205	Leu	Glu	Ala	
Val	Arg 210	ser	Pro	ser	Phe	Glu 215	Lys									
)> 60 -> 20															
<212	2> Di	AV.														
<213	3> A1	rtlI:	ıcıa.	l Sec	quen	ce										
<220 <223	3> De			on of			cial	Seq	ience	e: Sy	ynthe	etic				
)> 60															
atco	gcc	cag a	atgg	ctaca	aa t	gtgta	a									26
)> 6: .> 4:															
<212	2> Di	AV	icia	l Sed	queno	ce										
	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe															
)> 6:		ataa	ctgag	ac ac	ataco	caaa	c ado	egaca	agta	ta		-			42
700		335 \			,	<u>-</u> \		- ∽⊐`	- コラー`	2 - 2						

```
<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 62
                                                                22
ccagtccggt gacaagccca aa
<210> 63
<211> 1295
<212> DNA
<213> Homo sapiens
<400> 63
cccagaagtt caagggcccc cggcctcctg cgctcctgcc gccgggaccc tcgacctcct 60
cagageagec ggetgeegec eegggaagat ggegaggagg ageegeeace geeteeteet 120
getgetgetg egetacetgg tggtegeeet gggetateat aaggeetatg ggttttetge 180
cccaaaagac caacaagtag tcacagcagt agagtaccaa gaggctattt tagcctgcaa 240
aaccccaaag aagactgttt cetecagatt agagtggaag aaactgggte ggagtgtete 300
ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg agatgataga 360
tttcaatatc cggatcaaaa atgtgacaag aagtgatgcg gggaaatatc gttgtgaagt 420
tagtgcccca tctgagcaag gccaaaacct ggaagaggat acagtcactc tggaagtatt 480
agtggctcca gcagttccat catgtgaagt accetettet getetgagtg gaactgtggt 540
agagetacga tgtcaagaca aagaagggaa tecageteet gaatacacat ggtttaagga 600
tggcatccgt ttgctagaaa atcccagact tggctcccaa agcaccaaca gctcatacac 660
aatgaataca aaaactggaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
atattcctgt gaagcccgca attctgttgg atatcgcagg tgtcctggga aacgaatgca 780
agtagatgat ctcaacataa gtggcatcat agcagccgta gtagttgtgg ccttagtgat 840
ttccgtttgt ggccttggtg tatgctatgc tcagaggaaa ggctactttt caaaagaaac 900
ctccttccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa atgtgcagtg 960
geteaegeet gtaateeeag eaetttggaa ggeegeggeg ggeggateae gaggteagga 1020
gttctagacc agtctggcca atatggtgaa accccatctc tactaaaata caaaaattag 1080
ctgggcatgg tggcatgtgc ctgcagttcc agctgcttgg gagacaggag aatcacttga 1140
accegggagg eggaggttge agtgagetga gateaegeea etgeagteea geetgggtaa 1200
tgtagaattc ttacaataaa tatagcttga tattc
                                                                1295
<210> 64
<211> 312
<212> PRT
<213> Homo sapiens
<400> 64
Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
                                    10
Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
```

Lys	Asp	Gln 35	Gln	Val	Val	Thr	Ala 40	Val	Glu	Tyr	Gln	Glu 45	Ala	Ile	Leu
Ala	Cys 50	Lys	Thr	Pro	Lys	Lys 55	Thr	Val	Ser	Ser	Arg 60	Leu	Glu	Trp	Lys
Lys 65	Leu	Gly	Arg	Ser	Val 70	Ser	Phe	Val	Tyr	Tyr 75	Gln	Gln	Thr	Leu	Gln 80
Gly	Asp	Phe	Lys	Asn 85	Arg	Ala	Glu	Met	Ile 90	Asp	Phe	Asn	Ile	Arg 95	Ile
Lys	Asn	Val	Thr 100	Arg	Ser	Asp	Ala	Gly 105	Lys	Tyr	Arg	Cys	Glu 110	Val	Ser
Ala	Pro	Ser 115	Glu	Gln	Gly	Gln	Asn 120	Leu	Glu	Glu	Asp	Thr 125	Val	Thr	Leu
	130					135	Val				140				
Ala 145	Leu	Ser	Gly	Thr	Val 150	Val	Glu	Leu	Arg	Cys 155	Gln	Asp	Lys	Glu	Gly 160
				165			Trp		170					175	
			180				Gln	185					190		
Asn	Thr	Lys 195	Thr	Gly	Thr	Leu	Gln 200	Phe	Asn	Thr	Val	Ser 205	Lys	Leu	Asp
	210		-		_	215	Ala				220				
225					230		Val			235					240
Ile	Ala	Ala	Val	Val 245	Val	Val	Ala	Leu	Val 250	Ile	Ser	Val	Cys	Gly 255	Leu
_		_	260				Lys	265					270		
Phe	Gln	Lys 275	Ser	Asn	Ser	Ser	Ser 280	Lys	Ala	Thr	Thr	Met 285	Ser	Glu	Asn
Val	Gln 290	Trp	Leu	Thr	Pro	Val 295	Ile	Pro	Ala	Leu	Trp 300	Lys	Ala	Ala	Ala

Gly Gly Ser Arg Gly Gln Glu Phe

```
310
305
<210> 65
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 65
                                                                   22
atcgttgtga agttagtgcc cc
<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 66
                                                                   23
acctgcgata tccaacagaa ttg
<210> 67
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 67
                                                                   48
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc
<210> 68
<211> 2639
<212> DNA
<213> Homo sapiens
<400> 68
gacatcggag gtgggctagc actgaaactg cttttcaaga cgaggaagag gaggagaaag 60
agaaagaaga ggaagatgtt gggcaacatt tatttaacat gctccacagc ccggaccctg 120
gcatcatgct gctattcctg caaatactga agaagcatgg gatttaaata ttttacttct 180
aaataaatga attactcaat ctcctatgac catctataca tactccacct tcaaaaagta 240
catcaatatt atatcattaa ggaaatagta accttctctt ctccaatatg catgacattt 300
ttggacaatg caattgtggc actggcactt atttcagtga agaaaaactt tgtggttcta 360
tggcattcat catttgacaa atgcaagcat cttccttatc aatcagctcc tattgaactt 420
actagcactg actgtggaat ccttaagggc ccattacatt tctgaagaag aaagctaaga 480
tgaaggacat gccactccga attcatgtgc tacttggcct agctatcact acactagtac 540
```

```
aagctgtaga taaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttqqt 600
ttacacccag atccatttat atggaagcat ctacagtgga ttgtaatgat ttagqtcttt 660
taactttccc agccagattg ccagctaaca cacagattct tctcctacag actaacaata 720
ttgcaaaaat tgaatactcc acagactttc cagtaaacct tactggcctg gatttatctc 780
aaaacaattt atetteagte aecaatatta atgtaaaaaa gatgeeteag eteetttetg 840
tgtacctaga ggaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc gaactgagca 900
acttacaaga actctatatt aatcacaact tgctttctac aatttcacct ggagccttta 960
ttggcctaca taatcttctt cgacttcatc tcaattcaaa tagattgcag atgatcaaca 1020
gtaagtggtt tgatgctctt ccaaatctag agattctgat gattggggaa aatccaatta 1080
tcagaatcaa agacatgaac tttaagcctc ttatcaatct tcgcagcctg gttatagctg 1140
gtataaacct cacagaaata ccagataacg ccttggttgg actggaaaac ttagaaagca 1200
tctcttttta cgataacagg cttattaaag taccccatgt tgctcttcaa aaagttgtaa 1260
atctcaaatt tttggatcta aataaaaatc ctattaatag aatacgaagg ggtgatttta 1320
gcaatatgct acacttaaaa gagttgggga taaataatat gcctgagctg atttccatcg 1380
atagtettge tgtggataac etgecagatt taagaaaaat agaagetaet aacaaceeta 1440
gattgtctta cattcacccc aatgcatttt tcagactccc caagctggaa tcactcatgc 1500
tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaacctca 1560
aggaaatcag catacacagt aaccccatca ggtgtgactg tgtcatccgt tggatgaaca 1620
tgaacaaaac caacattcga ttcatggagc cagattcact gttttgcgtg gacccacctg 1680
aattccaagg tcagaatgtt cggcaagtgc atttcaggga catgatggaa atttgtctcc 1740
ctcttatagc tcctgagagc tttccttcta atctaaatgt agaagctggg agctatgttt 1800
cettteactg tagagetact geagaaceae ageetgaaat etactggata acacettetg 1860
gtcaaaaact cttgcctaat accctgacag acaagttcta tgtccattct gagggaacac 1920
tagatataaa tggcgtaact cccaaagaag ggggtttata tacttgtata gcaactaacc 1980
tagttggcgc tgacttgaag tctgttatga tcaaagtgga tggatctttt ccacaagata 2040
acaatggctc tttgaatatt aaaataagag atattcaggc caattcagtt ttggtgtcct 2100
ggaaagcaag ttctaaaatt ctcaaatcta gtgttaaatg gacagccttt gtcaagactg 2160
aaaattetea tgetgegeaa agtgetegaa taccatetga tgteaaggta tataatetta 2220
ctcatctgaa tccatcaact gagtataaaa tttgtattga tattcccacc atctatcaga 2280
aaaacagaaa aaaatgtgta aatgtcacca ccaaaggttt gcaccctgat caaaaagagt 2340
atgaaaagaa taataccaca acacttatgg cctgtcttgg aggccttctg gggattattg 2400
gtgtgatatg tettateage tgeetetete eagaaatgaa etgtgatggt ggaeaeaget 2460
atgtgaggaa ttacttacag aaaccaacct ttgcattagg tgagctttat cctcctctga 2520
taaatctctg ggaagcagga aaagaaaaaa gtacatcact gaaagtaaaa gcaactgtta 2580
taggtttacc aacaaatatg tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639
<210> 69
<211> 708
<212> PRT
<213> Homo sapiens
```

<400> 69

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile

1 5 10 15

Thr Thr Leu Val Gln Ala Val Asp Lys Val Asp Cys Pro Arg Leu 20 25 30

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met 35 40 45

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro 50 55 60

Ala 65	Arg	Leu	Pro	Ala	Asn 70	Thr	Gln	Ile	Leu	Leu 75	Leu	Gln	Thr	Asn	Asn 80
Ile	Ala	Lys	Ile	Glu 85	Tyr	Ser	Thr	Asp	Phe 90	Pro	Val	Asn	Leu	Thr 95	Gly
Leu	Asp	Leu	Ser 100	Gln	Asn	Asn	Leu	Ser 105	Ser	Val	Thr	Asn	Ile 110	Asn	Val
Lys	Lys	Met 115	Pro	Gln	Leu	Leu	Ser 120	Val	туr	Leu	Glu	Glu 125	Asn	Lys	Leu
Thr	Glu 130	Leu	Pro	Glu	Lys	Cys 135	Leu	Ser	Glu	Leu	Ser 140	Asn	Leu	Gln	Glu
Leu 145	Tyr	Ile	Asn	His	Asn 150	Leu	Leu	Ser	Thr	Ile 155	Ser	Pro	Gly	Ala	Phe 160
Ile	Gly	Leu	His	Asn 165	Leu	Leu	Arg	Leu	His 170	Leu	Asn	Ser	Asn	Arg 175	Leu
Gln	Met	Ile	Asn 180	Ser	Lys	Trp	Phe	Asp 185	Ala	Leu	Pro	Asn	Leu 190	Glu	Ile
Leu	Met	Ile 195	Gly	Glu	Asn	Pro	Ile 200	Ile	Arg	Ile	Lys	Asp 205	Met	Asn	Phe
Lys	Pro 210	Leu	Ile	Asn	Leu	Arg 215	Ser	Leu	Val	Ile	Ala 220	Gly	Ile	Asn	Leu
Thr 225	Glu	Ile	Pro	Asp	Asn 230	Ala	Leu	Val	Gly	Leu 235	Glu	Asn	Leu	Glu	Ser 240
Ile	Ser	Phe	Tyr	Asp 245	Asn	Arg	Leu	Ile	Lys 250	Val	Pro	His	Val	Ala 255	Leu
Gln	Lys	Val	Val 260	Asn	Leu	Lys	Phe	Leu 265	Asp	Leu	Asn	Lys	Asn 270	Pro	Ile
Asn	Arg	Ile 275	Arg	Arg	Gly	Asp	Phe 280	Ser	Asn	Met	Leu	His 285	Leu	Lys	Glu
Leu	Gly 290	Ile	Asn	Asn	Met	Pro 295	Glu	Leu	Ile	Ser	Ile 300	Asp	Ser	Leu	Ala
Val 305	Asp	Asn	Leu	Pro	Asp 310	Leu	Arg	Lys	Ile	Glu 315	Ala	Thr	Asn	Asn	Pro 320
Arg	Leu	Ser	Tyr	Ile 325	His	Pro	Asn	Ala	Phe 330	Phe	Arg	Leu	Pro	Lys 335	Leu
Glu	Ser	Leu	Met	Leu	Asn	Ser	Asn	Ala	Leu	Ser	Ala	Leu	Tyr	His	Gly

			340					345					350		
Thr	Ile	Glu 355	Ser	Leu	Pro	Asn	Leu 360	Lys	Glu	Ile	Ser	Ile 365	His	Ser	Asn
Pro	Ile 370	Arg	Cys	Asp	Cys	Val 375	Ile	Arg	Trp	Met	Asn 380	Met	Asn	Lys	Thr
Asn 385	Ile	Arg	Phe	Met	Glu 390	Pro	Asp	Ser	Leu	Phe 395	Cys	Val	Asp	Pro	Pro 400
Glu	Phe	Gln	Gly	Gln 405	Asn	Val	Arg	Gln	Val 410	His	Phe	Arg	Asp	Met 415	Met
Glu	Ile	Cys	Leu 420	Pro	Leu	Ile	Ala	Pro 425	Glu	Ser	Phe	Pro	Ser 430	Asn	Leu
Asn	Val	Glu 435	Ala	Gly	Ser	Tyr	Val 440	Ser	Phe	His	Cys	Arg 445	Ala	Thr	Ala
	450					455					460		Gln		
465					470					475			Glu		480
	_			485					490				Tyr	495	
			500					505					Met 510		
		515					520					525	Asn		
	530	_				535					540		Lys		
545					550					555			Val		560
				565					570				Asp	575	
			580					585					Lys 590		
		595					600					605	Cys		
Val	Thr	Thr	Lys	Gly	Leu	His		Asp	Gln	Lys	Glu 620	Tyr	Glu	Lys	Asn

Asn Thr Thr Leu Met Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp 650 Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro 695 Thr Asn Met Ser 705 <210> 70 <211> 1305 <212> DNA <213> Homo sapiens <400> 70 gcccgggact ggcgcaaggt gcccaagcaa ggaaagaaat aatgaagaga cacatgtgtt 60 agctgcagcc ttttgaaaca cgcaagaagg aaatcaatag tgtggacagg gctggaacct 120 ttaccacget tgttggagta gatgaggaat gggctegtga ttatgetgae attecageat 180 gaatetggta gacetgtggt taacecgtte cetetecatg tgteteetee tacaaagttt 240 tgttcttatg atactgtgct ttcattctgc cagtatgtgt cccaagggct gtctttgttc 300 ttcctctggg ggtttaaatg tcacctgtag caatgcaaat ctcaaggaaa tacctagaga 360 tetteeteet gaaacagtet taetgtatet ggaeteeaat eagateacat etatteecaa 420 tgaaattttt aaggacetee atcaaetgag agtteteaae etgteeaaaa atggeattga 480 gtttatcgat gagcatgcct tcaaaggagt agctgaaacc ttgcagactc tggacttgtc 540 cgacaatcgg attcaaagtg tgcacaaaaa tgccttcaat aacctgaagg ccagggccag 600 aattgccaac aaccectggc actgcgactg tactctacag caagttctga ggagcatggc 660 gtccaatcat gagacageee acaaegtgat etgtaaaaeg teegtgttgg atgaacatge 720 tggcagacca ttcctcaatg ctgccaacga cgctgacctt tgtaacctcc ctaaaaaaaac 780 taccgattat gccatgctgg tcaccatgtt tggctggttc actatggtga tctcatatgt 840 ggtatattat gtgaggcaaa atcaggagga tgcccggaga cacctcgaat acttgaaatc 900 cctgccaagc aggcagaaga aagcagatga acctgatgat attagcactg tggtatagtg 960 tccaaactga ctgtcattga gaaagaaaga aagtagtttg cgattgcagt agaaataagt 1020 ggtttacttc tcccatccat tgtaaacatt tgaaactttg tatttcagtt ttttttgaat 1080 tatgccactg ctgaactttt aacaaacact acaacataaa taatttgagt ttaggtgatc 1140 caccccttaa ttgtaccccc gatggtatat ttctgagtaa gctactatct gaacattagt 1200 tagatccatc tcactattta ataatgaaat ttattttttt aatttaaaag caaataaaag 1260 cttaactttg aaccatggga aaaaaaaaaa aaaaaaaaa aaaca <210> 71 <211> 259 <212> PRT

<400> 71

<213> Homo sapiens

Met	Asn	Leu	Val	Asp	Leu	Trp	Leu	Thr	Arg	ser	ьeu	ser	Met	Cys	ьeu
1				5					10					15	

Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser 20 25 30

Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val

Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro 50 55 60

Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro 65 70 75 80

Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser 85 90 95

Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala 100 105 110

Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val 115 120 125

His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn 130 135 140

Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met 145 150 155 160

Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val 165 170 175

Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala 180 185 190

Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val

Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr 210 215 220

Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys 225 230 235 240

Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser 245 250 255

Thr Val Val

<210> 72

<211> 2290

<212> DNA <213> Homo sapiens <400> 72 accgagccga gcggaccgaa ggcgcgcccg agatgcaggt gagcaagagg atgctggcgg 60 ggggcgtgag gagcatgccc agccccctcc tggcctgctg gcagcccatc ctcctgctgg 120 tgctgggctc agtgctgtca ggctcggcca cgggctgccc gccccgctgc gagtgctccg 180 cccaggaccg cgctgtgctg tgccaccgca agtgctttgt ggcagtcccc gagggcatcc 240 ccaccgagac gcgcctgctg gacctaggca agaaccgcat caaaacgctc aaccaggacg 300 agttcgccag cttcccgcac ctggaggagc tggagctcaa cgagaacatc gtgagcgccg 360 tggagcccgg cgccttcaac aacctcttca acctccggac gctgggtctc cgcagcaacc 420 gcctgaagct catcccgcta ggcgtcttca ctggcctcag caacctgacc aagcaggaca 480 tcagcgagaa caagatcgtt atcctactgg actacatgtt tcaggacctg tacaacctca 540 agtcactgga ggttggcgac aatgacctcg tctacatctc tcaccgcgcc ttcagcggcc 600 tcaacagcct ggagcagctg acgctggaga aatgcaacct gacctccatc cccaccgagg 660 cgctgtccca cctgcacggc ctcatcgtcc tgaggctccg gcacctcaac atcaatgcca 720 tccgggacta ctccttcaag aggctgtacc gactcaaggt cttggagatc tcccactggc 780 cctacttqqa caccatgaca cccaactgcc tctacggcct caacctgacg tccctgtcca 840 tcacacactg caatctgacc gctgtgccct acctggccgt ccgccaccta gtctatctcc 900 gcttcctcaa cctctcctac aaccccatca gcaccattga gggctccatg ttgcatgagc 960 tgctccggct gcaggagatc cagctggtgg gcgggcagct ggccgtggtg gagccctatg 1020 ccttccgcgg cctcaactac ctgcgcgtgc tcaatgtctc tggcaaccag ctgaccacac 1080 tggaggaatc agtcttccac tcggtgggca acctggagac actcatcctg gactccaacc 1140 cgctggcctg cgactgtcgg ctcctgtggg tgttccggcg ccgctggcgg ctcaacttca 1200 accggcagca gcccacgtgc gccacgcccg agtttgtcca gggcaaggag ttcaaggact 1260 tccctgatgt gctactgccc aactacttca cctgccgccg cgcccgcatc cgggaccgca 1320 aggcccagca ggtgtttgtg gacgagggcc acacggtgca gtttgtgtgc cgggccgatg 1380 gcgacccgcc gcccgccatc ctctggctct caccccgaaa gcacctggtc tcagccaaga 1440 gcaatgggcg gctcacagtc ttccctgatg gcacgctgga ggtgcgctac gcccaggtac 1500 aggacaacgg cacgtacctg tgcatcgcgg ccaacgcggg cggcaacgac tccatgcccg 1560 cccacctgca tgtgcgcagc tactcgcccg actggcccca tcagcccaac aagaccttcg 1620 ctttcatctc caaccagecg ggcgagggag aggccaacag caccegegec actgtgeett 1680 teceettega cateaagace eteateateg ceaecaceat gggetteate tettteetgg 1740 gegtegteet ettetgeetg gtgetgetgt ttetetggag eeggggeaag ggeaacacaa 1800 agcacaacat cgagatcgag tatgtgccc gaaagtcgga cgcaggcatc agctccgccg 1860 acgcgccccg caagttcaac atgaagatga tatgaggccg gggcgggggg cagggacccc 1920 cgggcggccg ggcaggggaa ggggcctggt cgccacctgc tcactctcca gtccttccca 1980 cetectecet accettetac acaegttete tttetecete eegeeteegt eeeetgetge 2040 cccccgccag ccctcaccac ctgccctcct tctaccagga cctcagaagc ccagacctgg 2100 ggaccccacc tacacagggg cattgacaga ctggagttga aagccgacga accgacacgc 2160 ggcagagtca ataattcaat aaaaaagtta cgaactttct ctgtaacttg ggtttcaata 2220 attatggatt tttatgaaaa cttgaaataa taaaaagaga aaaaaactaa aaaaaaaaa 2280 2290 aaaaaaaaa <210> 73 <211> 620 <212> PRT

Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met Pro

10

<213> Homo sapiens

<400> 73

Ser	Pro	Leu	Leu 20	Ala	Cys	Trp	Gln	Pro 25	Ile	Leu	Leu	Leu	Val 30	Leu	Gly
Ser	Val	Leu 35	Ser	Gly	Ser	Ala	Thr 40	Gly	Cys	Pro	Pro	Arg 45	Cys	Glu	Cys
Ser	Ala 50	Gln	Asp	Arg	Ala	Val 55	Leu	Cys	His	Arg	Lys 60	Cys	Phe	Val	Ala
Val 65	Pro	Glu	Gly	Ile	Pro 70	Thr	Glu	Thr	Arg	Leu 75	Leu	Asp	Leu	Gly	Lys 80
Asn	Arg	Ile	Lys	Thr 85	Leu	Asn	Gln	Asp	Glu 90	Phe	Ala	Ser	Phe	Pro 95	His
Leu	Glu	Glu	Leu 100	Glu	Leu	Asn	Glu	Asn 105	Ile	Val	Ser	Ala	Val 110	Glu	Pro
Gly	Ala	Phe 115	Asn	Asn	Leu	Phe	Asn 120	Leu	Arg	Thr	Leu	Gly 125	Leu	Arg	Ser
Asn	Arg 130	Leu	Lys	Leu	Ile	Pro 135	Leu	Gly	Val	Phe	Thr 140	Gly	Leu	Ser	Asn
Leu 145	Thr	Lys	Gln	Asp	Ile 150	Ser	Glu	Asn	Lys	Ile 155	Val	Ile	Leu	Leu	Asp 160
Tyr	Met	Phe	Gln	Asp 165	Leu	Tyr	Asn	Leu	Lys 170	Ser	Leu	Glu	Val	Gly 175	Asp
	_		180	Tyr				185					190		
		195		Thr			200					205			
	210			His		215					220				
225				Ala	230					235					240
				Glu 245				•	250					255	
			260	Tyr				265					270		
		275		Ala			280					285			
Leu	Arg 290	Phe	Leu	Asn	Leu	Ser 295		Asn	Pro	Ile	Ser 300		Ile	Glu	Gly

Ser 305	Met	Leu	His	Glu	Leu 310	Leu	Arg	Leu	Gln	Glu 315	Ile	Gln	Leu	Val	Gly 320
Gly	Gln	Leu	Ala	Val 325	Val	Glu	Pro	Tyr	Ala 330	Phe	Arg	Gly	Leu	Asn 335	Tyr
Leu	Arg	Val	Leu 340	Asn	Val	Ser	Gly	Asn 345	Gln	Leu	Thr	Thr	Leu 350	Glu	Glu
Ser	Val	Phe 355	His	Ser	Val	Gly	Asn 360	Leu	Glu	Thr	Leu	Ile 365	Leu	Asp	Ser
Asn	Pro 370	Leu	Ala	Cys	Asp	Cys 375	Arg	Leu	Leu	Trp	Val 380	Phe	Arg	Arg	Arg
Trp 385	Arg	Leu	Asn	Phe	Asn 390	Arg	Gln	Gln	Pro	Thr 395	Cys	Ala	Thr	Pro	Glu 400
Phe	Val	Gln	Gly	Lys 405	Glu	Phe	Lys	Asp	Phe 410	Pro	Asp	Val	Leu	Leu 415	Pro
Asn	Tyr	Phe	Thr 420	Cys	Arg	Arg	Ala	Arg 425	Ile	Arg	Asp	Arg	Lys 430	Ala	Gln
Gln	Val	Phe 435	Val	Asp	Glu	Gly	His 440	Thr	Val	Gln	Phe	Val 445	Cys	Arg	Ala
Asp	Gly 450	Asp	Pro	Pro	Pro	Ala 455	Ile	Leu	Trp	Leu	Ser 460	Pro	Arg	Lys	His
Leu 465	Val	Ser	Ala	Lys	Ser 470	Asn	Gly	Arg	Leu	Thr 475	Val	Phe	Pro	Asp	Gly 480
Thr	Leu	Glu	Val	Arg 485	Tyr	Ala	Gln	Val	Gln 490	Asp	Asn	Gly	Thr	Tyr 495	Leu
Cys	Ile	Ala	Ala 500	Asn	Ala	Gly	Gly	Asn 505	Asp	Ser	Met	Pro	Ala 510	His	Leu
His	Val	Arg 515	Ser	Tyr	Ser	Pro	Asp 520	Trp	Pro	His	Gln	Pro 525	Asn	Lys	Thr
Phe	Ala 530	Phe	Ile	Ser	Asn	Gln 535	Pro	Gly	Glu		Glu 540		Asn	Ser	Thr
Arg 545	Ala	Thr	Val	Pro	Phe 550	Pro	Phe	Asp	Ile	Lys 555	Thr	Leu	Ile	Ile	Ala 560
Thr	Thr	Met	Gly	Phe 565	Ile	Ser	Phe	Leu	Gly 570	Val	Val	Leu	Phe	Cys 575	Leu
Val	T.e.11	T.e.11	Phe	T.em	Trn	Ser	Ara	Glv	Lvs	Glv	Asn	Thr	Lvs	His	Asn

		580					585					590			
Ile G	lu Ile 595	Glu	Tyr	Val	Pro	Arg 600	Lys	Ser	Asp	Ala	Gly 605	Ile	Ser	Ser	
	sp Ala 10	Pro	Arg	Lys	Phe 615	Asn	Met	Lys	Met	Ile 620					
<210><211><212><213>	22	icial	. Seq	Jueno	ce										
<220> <223>	Descri					cial	Sequ	ience	e: Sy	nthe	etic				
<400>															
tcacc	tggag d	cttt	atto	ig co	2										22
<210><211>															
<211>															
<213>	Artifi	cial	Sec	uenc	e										
<220>					-										
<223>	Descri oligor					ial	Sequ	ence	e: Sy	nthe	etic				
<400>	75														
atacc	agcta t	aacc	aggo	t go	g:										23
<210>	76														
<211>															
<212><213>	DNA Artifi	cial	Seq	uenc	e										
			-												
<220> <223>	Descri oligon					ial	Sequ	ence	: Sy	nthe	tic				
<400> caacag	76 gtaag t	.ggtt	tgat	g ct	cttc	caaa	tct	agag	ratt	ctga	tgat	tg			50 52
<210>	77														
<211>															
<212>		, -													
<213>	Artifi	cial	Seq	uenc	e										
<220>															
<223>	Descri oligon					ial	Sequ	ence	: Sy	nthe	tic				

<400> 77 ccatgtgtct cctcctacaa ag	22
<210> 78 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe	
<400> 78 gggaatagat gtgatctgat tgg	23
<210> 79 <211> 50 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 79 cacctgtagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg	50
<210> 80 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 80 agcaaccgcc tgaagctcat cc	22
<210> 81 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 81 aaggegeggt gaaagatgta gaeg	24
<210> 82	

```
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 82
gactacatgt ttcaggacct gtacaacctc aagtcactgg aggttggcga
                                                                 50
<210> 83
<211> 1685
<212> DNA
<213> Homo sapiens
<400> 83
cccacgegte egcacetegg eccegggete egaagegget egggggegee ettteggtea 60
acategtagt ceacecete eccatececa geceegggg atteaggete gecagegeee 120
agccagggag ccggccggga agcgcgatgg gggccccagc cgcctcqctc ctqctcctqc 180
tectgetgtt egeetgetge tgggegeeeg geggggeeaa ceteteceag gacqacagee 240
agecetggae atetgatgaa acagtggtgg etggtggcae egtggtgete aagtgecaag 300
tgaaagatca cgaggactca tccctgcaat ggtctaaccc tgctcagcag actctctact 360
ttggggagaa gagagccctt cgagataatc gaattcagct ggttacctct acgccccacg 420
ageteageat cageateage aatgtggeee tggeagaega gggegagtae acetgeteaa 480
tetteactat geetgtgega actgeeaagt eeetegteac tgtgetagga atteeacaga 540
agcccatcat cactggttat aaatcttcat tacgggaaaa agacacagcc accctaaact 600
gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaaagggt gaccaagaac 660
tccacggaga accaacccgc atacaggaag atcccaatgg taaaaccttc actgtcagca 720
gctcggtgac attccaggtt acccgggagg atgatgggc gagcatcgtg tgctctgtga 780
accatgaatc tctaaaggga gctgacagat ccacctctca acgcattgaa gttttataca 840
caccaactgc gatgattagg ccagaccctc cccatcctcg tgagggccag aagctgttgc 900
tacactgtga gggtcgcggc aatccagtcc cccagcagta cctatgggag aaggaggca 960
gtgtgccacc cetgaagatg acccaggaga gtgccctgat cttccctttc ctcaacaaga 1020
gtgacagtgg cacctacggc tgcacagcca ccagcaacat gggcagctac aaggcctact 1080
acacceteaa tgttaatgae eecagteegg tgeeeteete etecageace taccaegeea 1140
teateggtgg gategtgget treattgtet teetgetget cateatgete atetteettg 1200
gccactactt gatccggcac aaaggaacct acctgacaca tgaggcaaaa ggctccgacg 1260
atgetecaga egeggaeaeg geeateatea atgeagaagg egggeagtea ggaggggaeg 1320
acaagaagga atatttcatc tagaggegec tgeeceaette etgegeecee caggggeeet 1380
gtggggactg ctggggccgt caccaacccg gacttgtaca gagcaaccgc agggccgccc 1440
ctcccgcttg ctccccagcc cacccaccc cctgtacaga atgtctgctt tgggtgcggt 1500
ccctttccgt ggcttctctg catttgggtt attattattt ttgtaacaat cccaaatcaa 1620
atctgtctcc aggctggaga ggcaggagcc ctggggtgag aaaagcaaaa aacaaacaaa 1680
aaaca
                                                                1685
<210> 84
<211> 398
<212> PRT
<213> Homo sapiens
```

<400> 84

Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Leu Leu Phe Ala 10 Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys Pro Ala 150 Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp 235 230 Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu His Cys Glu Gly Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe

Leu	Asn 290	Lys	Ser	Asp	Ser	Gly 295	Thr	Tyr	Gly	Cys	Thr 300	Ala	Thr	Ser	Asn	
Met 305	Gly	Ser	Tyr	Lys	Ala 310	Tyr	Tyr	Thr	Leu	Asn 315	Val	Asn	Asp	Pro	Ser 320	
Pro	Val	Pro	Ser	Ser 325	Ser	Ser	Thr	Tyr	His 330	Ala	Ile	Ile	Gly	Gly 335	Ile	
Val	Ala	Phe	Ile 340	Val	Phe	Leu	Leu	Leu 345	Ile	Met	Leu	Ile	Phe 350	Leu	Gly	
His	Tyr	Leu 355	Ile	Arg	His	Lys	Gly 360	Thr	Tyr	Leu	Thr	His 365	Glu	Ala	Lys	
Gly	Ser 370	Asp	Asp	Ala	Pro	Asp 375	Ala	Asp	Thr	Ala	Ile 380	Ile	Asn	Ala	Glu	
Gly 385	Gly	Gln	Ser	Gly	Gly 390	Asp	Asp	Lys	Lys	Glu 395	Tyr	Phe	Ile			
<210 <211 <212 <213	> 22 > DN	IA.	cial	. Sec	_{[uenc}	:e										
<220 <223		scri	ptic	n of	Art	ific	ial	Sequ	ence	e: Sy	nthe	tic				
	ol	igon	ucle	otid	le pr	obe		-		-						
<400 gcta			caca	gaag	ic co	!										22
<210: <211: <212: <213:	> 22 > DN	A	cial	Sec	nenc											
<220:		CILI	CIAI	beq	uenc	C										
<223	> De			n of otid			ial	Sequ	ence	: Sy	nthe	tic				
<400: aacct		at g	tcac	cgag	c tg											22
<210: <211: <212: <213:	> 26 > DN		cial	Seq	uenc	e										
<220; <223;		scri	ptio:	n of	Art	ific	ial :	Seau	ence	: Sv	nthe	tic				
			_					-	_	-4						

oligonucleotide probe

```
<400> 87
cctagcacag tgacgaggga cttggc
                                                                   26
<210> 88
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 88
aagacacage caccetaaac tgtcagtett etgggageaa geetgeagee
                                                                   50
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 89
gccctggcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt
                                                                   50
<210> 90
<211> 2755
<212> DNA
<213> Homo sapiens
<400> 90
gggggttagg gaggaaggaa tccaccccca ccccccaaa cccttttctt ctcctttcct 60
ggcttcggac attggagcac taaatgaact tgaattgtgt ctgtggcgag caggatggtc 120
gctgttactt tgtgatgaga tcggggatga attgctcgct ttaaaaaatgc tgctttggat 180
tctgttgctg gagacgtctc tttgttttgc cgctggaaac gttacagggg acgtttgcaa 240
agagaagatc tgttcctgca atgagataga aggggaccta cacgtagact gtgaaaaaaa 300
gggcttcaca agtctgcagc gtttcactgc cccgacttcc cagttttacc atttattct 360
gcatggcaat tccctcactc gacttttccc taatgagttc gctaactttt ataatgcggt 420
tagtttgcac atggaaaaca atggcttgca tgaaatcgtt ccgggggctt ttctggggct 480
gcagctggtg aaaaggctgc acatcaacaa caacaagatc aagtcttttc gaaagcagac 540
ttttctgggg ctggacgatc tggaatatct ccaggctgat tttaatttat tacgagatat 600
agacccgggg gccttccagg acttgaacaa gctggaggtg ctcattttaa atgacaatct 660
catcagcacc ctacctgcca acgtgttcca gtatgtgccc atcacccacc tcgacctccg 720
gggtaacagg ctgaaaacgc tgccctatga ggaggtcttg gagcaaatcc ctggtattgc 780
ggagateetg etagaggata accettggga etgeacetgt gatetgetet ecetgaaaga 840
atggctggaa aacattccca agaatgccct gatcqqccqa qtqqtctqcq aaqcccccac 900
cagactgcag ggtaaagacc tcaatgaaac caccgaacag gacttqtqtc ctttqaaaaa 960
ccgagtggat tctagtctcc cggcgccccc tgcccaagaa gagacctttg ctcctqqacc 1020
cctgccaact cctttcaaga caaatgggca agaggatcat gccacaccag ggtctgctcc 1080
```

```
aaacqqaqqt acaaagatcc caggcaactg qcagatcaaa atcagaccca caqcaqcqat 1140
agcqacqqqt aqctccaqga acaaaccctt agctaacaqt ttaccctqcc ctqqqqqctq 1200
caqctqcqac cacatcccag ggtcgqgttt aaagatqaac tqcaacaaca qqaacqtqaq 1260
cagettgget gatttgaage ceaagetete taacgtgeag gagettttee tacgagataa 1320
caagateeac ageateegaa aategeactt tgtggattae aagaaeetea ttetgttgga 1380
tctgggcaac aataacatcg ctactgtaga gaacaacact ttcaagaacc ttttggacct 1440
caggtggcta tacatggata gcaattacct ggacacgctg tcccgggaga aattcgcgqq 1500
gctgcaaaac ctagagtacc tgaacgtgga gtacaacgct atccagctca tcctcccggg 1560
cactttcaat gccatgccca aactgaggat cctcattctc aacaacaacc tgctgaggtc 1620
cetgeetgtg gaegtgtteg etggggtete getetetaaa eteageetge acaacaatta 1680
cttcatgtac ctcccggtgg caggggtgct ggaccagtta acctccatca tccagataga 1740
cctccacgga aacccctggg agtgctcctg cacaattgtg cctttcaagc agtgggcaga 1800
acgettgggt teegaagtge tgatgagega eetcaagtgt gagaegeegg tgaacttett 1860
tagaaaggat ttcatgctcc tctccaatga cgagatctgc cctcagctgt acgctaggat 1920
ctegeceaeg ttaacttege acagtaaaaa cageaetggg ttggeggaga cegggaegea 1980
ctccaactcc tacctagaca ccagcaggt gtccatctcg gtgttggtcc cgggactgct 2040
getggtgttt gteaceteeg cetteacegt ggtgggeatg etegtgttta teetgaggaa 2100
ccgaaagcgg tccaagagac gagatgccaa ctcctccgcg tccgagatta attccctaca 2160
gacagtetgt gactetteet aetggeacaa tgggeettae aaegeagatg gggeecaeag 2220
agtgtatgae tgtggetete aetegetete agaetaagae eecaaeeeca ataggggagg 2280
gcagagggaa ggcgatacat ccttccccac cgcaggcacc ccgggggctg gaggggcgtg 2340
tacccaaatc cccgcgccat cagcctggat gggcataagt agataaataa ctgtgagctc 2400
gcacaaccga aagggcetga cecettactt ageteeetee ttgaaacaaa gagcagactg 2460
tggagagetg ggagagegea geeagetege tetttgetga gageeeettt tgacagaaag 2520
cccagcacga ccctgctgga agaactgaca gtgccctcgc cctcggcccc ggggcctgtg 2580
gggttggatg ccgcggttct atacatatat acatatatcc acatctatat agagagatag 2640
atatctattt ttcccctgtg gattagcccc gtgatggctc cctgttggct acgcagggat 2700
gggcagttgc acgaaggcat gaatgtattg taaataagta actttgactt ctgac
<210> 91
<211> 696
<212> PRT
<213> Homo sapiens
<400> 91
Met Leu Leu Trp Ile Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala
Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn
Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr
Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe
```

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu

90

70

85

- Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His 100 105 110
- Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly
 115 120 125
- Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp 130 135 140
- Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile 145 150 155 160
- Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr
 165 170 175
- Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu 180 185 190
- Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu 195 200 205
- Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys 210 215 220
- Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val 225 230 235 240
- Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr 245 250 255
- Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro 260 265 270
- Ala Pro Pro Ala Glu Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr 275 280 285
- Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala 290 295 300
- Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg 305 310 315 320
- Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala 325 330 335
- Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly 340 345 350
- Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala 355 360 365
- Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp 370 375 380

Asn Lys Ile 385	His Ser	Ile Arg	Lys	Ser	His	Phe 395	Val	Asp	Tyr	Lys	Asn 400
Leu Ile Leu	Leu Asp 405	Leu Gly	Asn	Asn	Asn 410	Ile	Ala	Thr	Val	Glu 415	Asn
Asn Thr Phe	Lys Asn 420	Leu Lei	. Asp	Leu 425	Arg	Trp	Leu	Tyr	Met 430	Asp	Ser
Asn Tyr Leu 435	Asp Thr	Leu Ser	Arg 440	Glu	Lys	Phe	Ala	Gly 445	Leu	Gln	Asn
Leu Glu Tyr 450	Leu Asn	Val Glu 455		Asn	Ala	Ile	Gln 460	Leu	Ile	Leu	Pro
Gly Thr Phe 465	Asn Ala	Met Pro	Lys	Leu	Arg	Ile 475	Leu	Ile	Leu	Asn	Asn 480
Asn Leu Leu	Arg Ser 485	Leu Pro	Val	Asp	Val 490	Phe	Ala	Gly	Val	Ser 495	Leu
Ser Lys Leu	Ser Leu 500	His Asr	a Asn	Tyr 505	Phe	Met	Tyr	Leu	Pro 510	Val	Ala
Gly Val Leu 515	Asp Gln	Leu Thi	Ser 520	Ile	Ile	Gln	Ile	Asp 525	Leu	His	Gly
Asn Pro Trp 530	Glu Cys	Ser Cys		Ile	Val	Pro	Phe 540	Lys	Gln	Trp	Ala
Glu Arg Leu 545	Gly Ser	Glu Val	. Leu	Met	Ser	Asp 555	Leu	Lys	Сув	Glu	Thr 560
Pro Val Asn	Phe Phe 565	Arg Lys	: Asp	Phe	Met 570	Leu	Leu	Ser	Asn	Asp 575	Glu
Ile Cys Pro	Gln Leu 580	Tyr Ala	Arg	Ile 585	Ser	Pro	Thr	Leu	Thr 590	Ser	His
Ser Lys Asn 595	Ser Thr	Gly Let	Ala 600	Glu	Thr	Gly	Thr	His 605	Ser	Asn	Ser
Tyr Leu Asp 610	Thr Ser	Arg Val		Ile	Ser	Val	Leu 620	Val	Pro	Gly	Leu
Leu Leu Val 625	Phe Val	Thr Ser	Ala	Phe	Thr	Val 635	Val	Gly	Met	Leu	Val 640
Phe Ile Leu	Arg Asn 645	Arg Lys	Arg	Ser	Lys 650	Arg	Arg	Asp	Ala	Asn 655	Ser
Ser Ala Ser	Glu Ile	Asn Ser	Leu	Gln	Thr	Val	Cys	Asp	Ser	Ser	Tyr

660 665 670	
Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp 675 680 685	
Cys Gly Ser His Ser Leu Ser Asp 690 695	
<210> 92 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 92 qttqqatctq qqcaacaata ac	22
	22
<210> 93 <211> 24	
<212> DNA <213> Artificial Sequence	
-	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 93	0.4
attgttgtgc aggctgagtt taag	24
<210> 94	
<211> 45 <212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 94	
ggtggctata catggatagc aattacctgg acacgctgtc ccggg	45
<210> 95 <211> 2226	
<212> DNA	
<213> Homo sapiens	
<400> 95	
agtogactgo gtoccotgta cooggogoca gotgtgttoc tgaccocaga ataactcagg	
gctgcaccgg gcctggcagc gctccgcaca catttcctgt cgcggcctaa gggaaactgt tggccgctgg gcccgcgggg ggattcttgg cagttggggg gtccgtcggg agcgagggcg	

```
gaggggaagg gagggggaac cgggttgggg aagccagetg tagagggegg tgacegeget 240
ccaqacacaq ctctgcgtcc tcgagcggga cagatccaag ttgggagcag ctctgcgtgc 300
qqqqcctcaq agaatgaggc cggcgttcgc cctgtgcctc ctctggcagg cgctctggcc 360
cqqqccqqqc ggcqgcgaac accccactgc cgaccgtgct ggctgctcgg cctcgggggc 420
ctgctacagc ctgcaccacg ctaccatgaa gcggcaggcg gccgaggagg cctgcatcct 480
gcgaggtggg gcgctcagca ccgtgcgtgc gggcgccgag ctgcgcgctg tgctcgcgct 540
cctgcgggca ggcccagggc ccggaggggg ctccaaagac ctgctgttct gggtcgcact 600
ggagegeagg egtteecact geaccetgga gaacgageet ttgeggggtt teteetgget 660
gtcctccgac cccggcggtc tcgaaagcga cacgctgcag tgggtggagg agccccaacg 720
ctcctgcacc gcgcggagat gcgcggtact ccaggccacc ggtggggtcg agcccgcagg 780
ctggaaggag atgcgatgcc acctgcgcgc caacggctac ctgtgcaagt accagtttga 840
ggtcttgtgt cctgcgccgc gccccggggc cgcctctaac ttgagctatc gcgcgccctt 900
ccagetgeac agegeegete tggaetteag tecaeetggg acegaggtga gtgegetetg 960
ccqqqqacag ctcccgatct cagttacttg catcgcggac gaaatcggcg ctcgctggga 1020
caaacteteg ggcgatgtgt tgtgteeetg eeeegggagg taeeteegtg etggeaaatg 1080
cgcagagctc cctaactgcc tagacgactt gggaggcttt gcctgcgaat gtgctacggg 1140
cttcgagctg gggaaggacg gccgctcttg tgtgaccagt ggggaaggac agccgaccct 1200
tggggggacc ggggtgccca ccaggcgccc gccggccact gcaaccagcc ccgtgccgca 1260
gagaacatgg ccaatcaggg tcgacgagaa gctgggagag acaccacttg tccctgaaca 1320
agacaattca gtaacatcta ttcctgagat tcctcgatgg ggatcacaga gcacgatgtc 1380
taccettcaa atgteeette aageegagte aaaggeeact ateaceecat cagggagegt 1440
gatttccaag tttaattcta cgacttcctc tgccactcct caggetttcg actcctcctc 1500
tgccgtggtc ttcatatttg tgagcacagc agtagtagtg ttggtgatct tgaccatgac 1560
agtactgggg cttgtcaagc tctgctttca cgaaagcccc tcttcccagc caaggaagga 1620
gtctatgggc ccgccgggcc tggagagtga tcctgagccc gctgctttgg gctccagttc 1680
tgcacattgc acaaacaatg gggtgaaagt cggggactgt gatctgcggg acagagcaga 1740
gggtgccttg ctggcggagt cccctcttgg ctctagtgat gcatagggaa acaggggaca 1800
tgggcactcc tgtgaacagt ttttcacttt tgatgaaacg gggaaccaag aggaacttac 1860
ttgtgtaact gacaatttct gcagaaatcc cccttcctct aaattccctt tactccactg 1920
aggagetaaa teagaactge acaeteette eetgatgata gaggaagtgg aagtgeettt 1980
aggatggtga tactggggga ccgggtagtg ctggggagag atattttctt atgtttattc 2040
ggagaatttg gagaagtgat tgaacttttc aagacattgg aaacaaatag aacacaatat 2100
aatttacatt aaaaaataat ttctaccaaa atggaaagga aatgttctat gttgttcagg 2160
ctaggagtat attggttcga aatcccaggg aaaaaaataa aaataaaaaa ttaaaggatt 2220
                                                                  2226
gttgat
<210> 96
<211> 490
<212> PRT
<213> Homo sapiens
<400> 96
Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro
                                     10
```

Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser 20 25 30

Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln
35 40 45

Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val

Arg 65	Ala	Gly	Ala	Glu	Leu 70	Arg	Ala	Val	Leu	Ala 75	Leu	Leu	Arg	Ala	Gly 80
Pro	Gly	Pro	Gly	Gly 85	Gly	Ser	Lys	Asp	Leu 90	Leu	Phe	Trp	Val	Ala 95	Leu
Glu	Arg	Arg	Arg 100	Ser	His	Cys	Thr	Leu 105	Glu	Asn	Glu	Pro	Leu 110	Arg	Gly
Phe	Ser	Trp 115	Leu	Ser	Ser	Asp	Pro 120	Gly	Gly	Leu	Glu	Ser 125	Asp	Thr	Leu
Gln	Trp 130	Val	Glu	Glu	Pro	Gln 135	Arg	Ser	Cys	Thr	Ala 140	Arg	Arg	Cys	Ala
Val 145	Leu	Gln	Ala	Thr	Gly 150	Gly	Val	Glu	Pro	Ala 155	Gly	Trp	Lys	Glu	Met 160
Arg	Сув	His	Leu	Arg 165	Ala	Asn	Gly	Tyr	Leu 170	Cys	Lys	Туr	Gln	Phe 175	Glu
Val	Leu	Cys	Pro 180	Ala	Pro	Arg	Pro	Gly 185	Ala	Ala	Ser	Asn	Leu 190	Ser	Tyr
Arg	Ala	Pro 195	Phe	Gln	Leu	His	Ser 200	Ala	Ala	Leu	Asp	Phe 205	Ser	Pro	Pro
Gly	Thr 210	Glu	Val	Ser	Ala	Leu 215	Cys	Arg	Gly	Gln	Leu 220	Pro	Ile	Ser	Val
Thr 225	Cys	Ile	Ala	Asp	Glu 230	Ile	Gly	Ala	Arg	Trp 235	Asp	Lys	Leu	Ser	Gly 240
Asp	Val	Leu	Cys	Pro 245	Cys	Pro	Gly	Arg	Туг 250	Leu	Arg	Ala	Gly	Lys 255	Cys
Ala	Glu	Leu	Pro 260	Asn	Cys	Leu	Asp	Asp 265	Leu	Gly	Gly	Phe	Ala 270	Cys	Glu
Cys	Ala	Thr 275	Gly	Phe	Glu	Leu	Gly 280	Lys	Asp	Gly	Arg	Ser 285	Cys	Val	Thr
Ser	Gly 290	Glu	Gly	Gln	Pro	Thr 295	Leu	Gly	Gly	Thr	Gly 300	Val	Pro	Thr	Arg
Arg 305	Pro	Pro	Ala	Thr	Ala 310	Thr	Ser	Pro	Val	Pro 315	Gln	Arg	Thr	Trp	Pro 320
Ile	Arg	Val	Asp	Glu 325	Lys	Leu	Gly	Glu	Thr 330	Pro	Leu	Val	Pro	Glu 335	Gln
Asp	Asn	Ser	Val	Thr	ser	Ile	Pro	Glu	Ile	Pro	Arg	Trp	Gly	Ser	Gln

				340					345					350			
	Ser	Thr	Met 355	Ser	Thr	Leu	Gln	Met 360	Ser	Leu	Gln	Ala	Glu 365	Ser	Lys	Ala	
	Thr	Ile 370	Thr	Pro	Ser	Gly	Ser 375	Val	Ile	Ser	Lys	Phe 380	Asn	Ser	Thr	Thr	
	Ser 385	Ser	Ala	Thr	Pro	Gln 390	Ala	Phe	Asp	Ser	Ser 395	Ser	Ala	Val	Val	Phe 400	
	Ile	Phe	Val	Ser	Thr 405	Ala	Val	Val	Val	Leu 410	Val	Ile	Leu	Thr	Met 415	Thr	
	Val	Leu	Gly	Leu 420	Val	Lys	Leu	Cys	Phe 425	His	Glu	Ser	Pro	Ser 430	Ser	Gln	
	Pro	Arg	Lys 435	Glu	Ser	Met	Gly	Pro 440	Pro	Gly	Leu	Glu	Ser 445	Asp	Pro	Glu	
	Pro	Ala 450	Ala	Leu	Gly	Ser	Ser 455	Ser	Ala	His	Cys	Thr 460	Asn	Asn	Gly	Val	
	Lys 465	Val	Gly	Asp	Cys	Asp 470	Leu	Arg	Asp	Arg	Ala 475	Glu	Gly	Ala	Leu	Leu 480	
	Ala	Glu	Ser	Pro	Leu 485	Gly	ser	ser	Asp	Ala 490							
<210> 97 <211> 24 <212> DNA <213> Artificial Sequence																	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>																	
<400> 97														24			
<210> 98 <211> 20 <212> DNA <213> Artificial Sequence																	
	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
		> 98 cagt		gaac	gaca	.g											20

```
<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 99
                                                                   20
acagagcaga gggtgccttg
<210> 100
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 100
                                                                    24
tcagggacaa gtggtgtctc tccc
<210> 101
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 101
                                                                    24
tcagggaagg agtgtgcagt tctg
<210> 102
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 102
acageteceg ateteagtta ettgeatege ggacgaaate ggegeteget
                                                                    50
<210> 103
<211> 2026
<212> DNA
<213> Homo sapiens
```

<400> 103

```
cggacgcgtg ggattcagca gtggcctgtg gctgccagag cagctcctca ggggaaacta 60
agegtegagt cagaeggeae cataategee tttaaaagtg ceteegeeet geeggeegeg 120
tatececegg etacetggge egeeeegegg eggtgegege gtgagaggga gegegeggge 180
agcegagege eggtgtgage eagegetget geeagtgtga geggeggtgt gagegeggtg 240
ggtgcggagg ggcgtgtgtg ccggcgcgcg cgccgtgggg tgcaaacccc gagcgtctac 300
getgecatga ggggegegaa egeetgggeg ceaetetgee tgetgetgge tgeegeeaec 360
cagetetege ggeageagte eccagagaga cetgttttea eatgtggtgg cattettaet 420
ggagagtetg gatttattgg cagtgaaggt tttcctggag tgtaccetce aaatagcaaa 480
tgtacttgga aaatcacagt tcccgaagga aaagtagtcg ttctcaattt ccgattcata 540
gacctegaga gtgacaacct gtgccgctat gactttgtgg atgtgtacaa tggccatgcc 600
aatggccagc gcattggccg cttctgtggc actttccggc ctggagccct tgtgtccagt 660
ggcaacaaga tgatggtgca gatgatttct gatgccaaca cagctggcaa tggcttcatg 720
gccatgttct ccgctgctga accaaacgaa agaggggatc agtattgtgg aggactcctt 780
gacagacett ceggetettt taaaaceeee aactggeeag acegggatta eeetgeagga 840
gtcacttgtg tgtggcacat tgtagcccca aagaatcagc ttatagaatt aaagtttgag 900
aagtttgatg tggagcgaga taactactgc cgatatgatt atgtggctgt gtttaatggc 960
ggggaagtca acgatgctag aagaattgga aagtattgtg gtgatagtcc acctgcgcca 1020
attgtgtctg agagaaatga acttcttatt cagtttttat cagacttaag tttaactgca 1080
gatgggttta ttggtcacta catattcagg ccaaaaaaac tgcctacaac tacagaacag 1140
cctgtcacca ccacattccc tgtaaccacg ggtttaaaac ccaccgtggc cttgtgtcaa 1200
caaaagtgta gacggacggg gactctggag ggcaattatt gttcaagtga ctttgtatta 1260
gccggcactg ttatcacaac catcactcgc gatgggagtt tgcacgccac agtctcgatc 1320
atcaacatct acaaagaggg aaatttggcg attcagcagg cgggcaagaa catgagtgcc 1380
aggetgaetg tegtetgeaa geagtgeeet eteeteagaa gaggtetaaa ttacattatt 1440
atgggccaag taggtgaaga tgggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500
ttcaaqacca aqaatcaqaa qctcctqqat qccttaaaaa ataaqcaatq ttaacaqtqa 1560
actgtgtcca tttaagctgt attctgccat tgcctttgaa agatctatgt tctctcagta 1620
gaaaaaaaaa tacttataaa attacatatt ctgaaagagg attccgaaag atgggactgg 1680
ttgactette acatgatgga ggtatgagge etcegagata getgagggaa gttetttgce 1740
tgctgtcaga ggagcagcta tctgattgga aacctgccga cttagtgcgg tgataggaag 1800
ctaaaagtgt caagcgttga cagcttggaa gcgtttattt atacatctct gtaaaaggat 1860
attttagaat tgagttgtgt gaagatgtca aaaaaagatt ttagaagtgc aatatttata 1920
gtgttatttg tttcaccttc aagcctttgc cctgaggtgt tacaatcttg tcttgcgttt 1980
tctaaatcaa tgcttaataa aatattttta aaggaaaaaa aaaaaa
<210> 104
<211> 415
<212> PRT
<213> Homo sapiens
<400> 104
Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala Ala
                                     10
Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val Phe Thr
Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly
                             40
Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr
```

Val 65	Pro	Glu	Gly	Lys	Val 70	Val	Val	Leu	Asn	Phe 75	Arg	Phe	Ile	Asp	Leu 80
Glu	Ser	Asp	Asn	Leu 85	Cys	Arg	Tyr	Asp	Phe 90	Val	Asp	Val	Tyr	Asn 95	Gly
His	Ala	Asn	Gly 100	Gln	Arg	Ile	Gly	Arg 105	Phe	Cys	Gly	Thr	Phe 110	Arg	Pro
Gly	Ala	Leu 115	Val	Ser	Ser	Gly	Asn 120	Lys	Met	Met	Val	Gln 125	Met	Ile	Ser
Asp	Ala 130	Asn	Thr	Ala	Gly	Asn 135	Gly	Phe	Met	Ala	Met 140	Phe	Ser	Ala	Ala
Glu 145	Pro	Asn	Glu	Arg	Gly 150	Asp	Gln	Tyr	Cys	Gly 155	Gly	Leu	Leu	Asp	Arg 160
Pro	Ser	Gly	Ser	Phe 165	Lys	Thr	Pro	Asn	Trp 170	Pro	Asp	Arg	Asp	Tyr 175	Pro
Ala	Gly	Val	Thr 180	Cys	Val	Trp	His	Ile 185	Val	Ala	Pro	Lys	Asn 190	Gln	Leu
Ile	Glu	Leu 195	Lys	Phe	Glu	Lys	Phe 200	Asp	Val	Glu	Arg	Asp 205	Asn	Tyr	Cys
Arg	Tyr 210	Asp	Tyr	Val	Ala	Val 215	Phe	Asn	Gly	Gly	Glu 220	Val	Asn	Asp	Ala
Arg 225	Arg	Ile	Gly	Lys	Tyr 230	Cys	Gly	Asp	Ser	Pro 235	Pro	Ala	Pro	Ile	Val 240
Ser	Glu	Arg	Asn	Glu 245	Leu	Leu	Ile	Gln	Phe 250	Leu	Ser	Asp	Leu	Ser 255	Leu
Thr	Ala	Asp	Gly 260	Phe	Ile	Gly	His	Tyr 265	Ile	Phe	Arg	Pro	Lys 270	Lys	Leu
Pro	Thr	Thr 275	Thr	Glu	Gln	Pro	Val 280	Thr	Thr	Thr	Phe	Pro 285	Val	Thr	Thr
Gly	Leu 290	Lys	Pro	Thr	Val	Ala 295	Leu	Cys	Gln	Gln	Lys 300	Cys	Arg	Arg	Thr
Gly 305	Thr	Leu	Glu	Gly	Asn 310	Tyr	Cys	Ser	Ser	Asp 315	Phe	Val	Leu	Ala	Gly 320
Thr	Val	Ile	Thr	Thr 325	Ile	Thr	Arg	Asp	Gly 330	Ser	Leu	His	Ala	Thr 335	Val
Ser	Ile	Ile	Asn	Ile	Tyr	Lys	Glu	Gly	Asn	Leu	Ala	Ile	Gln	Gln	Ala

	340			345					350			
Gly Lys Asn 355		Ala Arg	Leu 360	Thr	Val	Val	Cys	Lys 365	Gln	Cys	Pro	
Leu Leu Arg 370	Arg Gly	Leu Asn 375	Tyr	Ile	Ile	Met	Gly 380	Gln	Val	Gly	Glu	
Asp Gly Arg 385	Gly Lys	Ile Met 390	Pro	Asn	Ser	Phe 395	Ile	Met	Met	Phe	Lys 400	
Thr Lys Asn	Gln Lys 405	Leu Leu	Asp	Ala	Leu 410	Lys	Asn	Lys	Gln	Cys 415		
<210> 105 <211> 22 <212> DNA <213> Artificial Sequence												
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe												
<400> 105 ccgattcata gacctcgaga gt												22
<210> 106 <211> 22 <212> DNA <213> Artificial Sequence												
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe												
<400> 106 gtcaaggagt o	ctccacaa	ıt ac										22
<210> 107 <211> 45 <212> DNA <213> Artificial Sequence												
<220> <223> Descri oligon	ption of ucleotid	Artific e probe	ial :	Sequ	ence	: Sy	nthe	tic				
<400> 107 gtgtacaatg g	ccatgcca	a tggcca	gcgc	att	ggcc	gct	tctg	t				45
<210> 108 <211> 1838 <212> DNA												

<213> Homo sapiens

```
<400> 108
cggacgcgtg ggcggacgcg tgggcggccc acggcgcccg cgggctgggg cggtcgcttc 60
tteettetee gtggeetaeg agggteeeea geetgggtaa agatggeeee atggeeeeeg 120
aagggeetag teecagetgt getetgggge etcageetet teetcaacet cecaggacet 180
atotggotoc agocototoc acotococag tottotococ egecteagec coatcogtqt 240
catacctgcc ggggactggt tgacagcttt aacaagggcc tggagagaac catccgggac 300
aactttggag gtggaaacac tgcctgggag gaagagaatt tgtccaaata caaagacagt 360
gagaccegcc tggtagaggt gctggagggt gtgtgcagca agtcagactt cgagtgccac 420
cgcctgctgg agctgagtga ggagctggtg gagagctggt ggtttcacaa gcagcaggag 480
gccccggacc tcttccagtg gctgtgctca gattccctga agctctgctg ccccgcaggc 540
accttcgggc cctcctgcct tccctgtcct gggggaacag agaggccctg cggtggctac 600
gggcagtgtg aaggagaagg gacacgaggg ggcagcgggc actgtgactg ccaagccggc 660
tacgggggtg aggcctgtgg ccagtgtggc cttggctact ttgaggcaga acgcaacgcc 720
agccatctgg tatgttcggc ttgttttggc ccctgtgccc gatgctcagg acctgaggaa 780
tcaaactgtt tgcaatgcaa gaagggctgg gccctgcatc acctcaagtg tgtagacatt 840
gatgagtgtg gcacagaggg agccaactgt ggagctgacc aattctgcgt gaacactgag 900
ggctcctatg agtgccgaga ctgtgccaag gcctgcctag gctgcatggg ggcagggcca 960
ggtcgctgta agaagtgtag ccctggctat cagcaggtgg gctccaagtg tctcgatgtg 1020
gatgagtgtg agacagaggt gtgtccggga gagaacaagc agtgtgaaaa caccgagggc 1080
ggttatcgct gcatctgtgc cgagggctac aagcagatgg aaggcatctg tgtgaaggag 1140
cagateceag agteageagg ettettetea gagatgaeag aagaegagtt ggtggtgetg 1200
cagcagatgt tetttggcat catcatetgt geactggcca egetggetge taagggegae 1260
ttggtgttca ccgccatctt cattggggct gtggcggcca tgactggcta ctggttgtca 1320
gagcgcagtg accgtgtgct ggagggcttc atcaagggca gataatcgcg gccaccacct 1380
gtaggacete etcecaceca egetgeeece agagettggg etgeceteet getggacaet 1440
caggacagct tggtttattt ttgagagtgg ggtaagcacc cctacctgcc ttacagagca 1500
gcccaggtac ccaggcccgg gcagacaagg cccctggggt aaaaagtagc cctgaaggtg 1560
gataccatga gctcttcacc tggcggggac tggcaggctt cacaatgtgt gaatttcaaa 1620
agtttttcct taatggtggc tgctagagct ttggcccctg cttaggatta ggtggtcctc 1680
acaggggtgg ggccatcaca gctccctcct gccagctgca tgctgccagt tcctgttctq 1740
tgttcaccac atccccacac cccattgcca cttatttatt catctcagga aataaagaaa 1800
ggtcttggaa agttaaaaaa aaaaaaaaa aaaaaaaa
<210> 109
<211> 420
```

<212> PRT

<213> Homo sapiens

<400> 109

Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly

Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser 25

Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr 35

Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile 55

Arg 65	Asp	Asn	Phe	Gly	Gly 70	Gly	Asn	Thr	Ala	Trp 75	Glu	Glu	Glu	Asn	Leu 80
Ser	Lys	Tyr	Lys	Asp 85	Ser	Glu	Thr	Arg	Leu 90	Val	Glu	Val	Leu	Glu 95	Gly
Val	Cys	Ser	Lys 100	Ser	Asp	Phe	Glu	Cys 105	His	Arg	Leu	Leu	Glu 110	Leu	Ser
Glu	Glu	Leu 115	Val	Glu	Ser	Trp	Trp 120	Phe	His	Lys	Gln	Gln 125	Glu	Ala	Pro
Asp	Leu 130	Phe	Gln	Trp	Leu	Cys 135	Ser	Asp	Ser	Leu	Lys 140	Leu	Cys	Cys	Pro
Ala 145	Gly	Thr	Phe	Gly	Pro 150	Ser	Cys	Leu	Pro	Cys 155	Pro	Gly	Gly	Thr	Glu 160
Arg	Pro	Cys	Gly	Gly 165	Tyr	Gly	Gln	Cys	Glu 170	Gly	Glu	Gly	Thr	Arg 175	Gly
Gly	Ser	Gly	His 180	Cys	Asp	Cys	Gln	Ala 185	Gly	Tyr	Gly	Gly	Glu 190	Ala	Cys
Gly	Gln	Cys 195	Gly	Leu	Gly	Tyr	Phe 200	Glu	Ala	Glu	Arg	Asn 205	Ala	Ser	His
Leu	Val 210	Cys	Ser	Ala	Cys	Phe 215	Gly	Pro	Cys	Ala	Arg 220	Cys	Ser	Gly	Pro
Glu 225	Glu	Ser	Asn	Cys	Leu 230	Gln	Cys	Lys	Lys	Gly 235	Trp	Ala	Leu	His	His 240
Leu	Lys	Cys	Val	Asp 245	Ile	Asp	Glu	Cys	Gly 250	Thr	Glu	Gly	Ala	Asn 255	Cys
Gly	Ala	Asp	Gln 260	Phe	Cys	Val	Asn	Thr 265	Glu	Gly	Ser	Tyr	Glu 270	Cys	Arg
Asp	Cys	Ala 275	Lys	Ala	Cys	Leu	Gly 280	Cys	Met	Gly	Ala	Gly 285	Pro	Gly	Arg
Cys	Lys 290	Lys	Cys	Ser	Pro	Gly 295	Tyr	Gln	Gln	Val	Gly 300	Ser	Lys	Cys	Leu
Asp 305	Val	Asp	Glu	Cys	Glu 310	Thr	Glu	Val	Cys	Pro 315	Gly	Glu	Asn	Lys	Gln 320
Cys	Glu	Asn	Thr	Glu 325	Gly	Gly	Tyr	Arg	Cys 330	Ile	Cys	Ala	Glu	Gly 335	Tyr
Lys	Gln	Met	Glu 340	Gly	Ile	Cys	Val	Lys 345	Glu	Gln	Ile	Pro	Glu 350	Ser	Ala

```
Gly Phe Phe Ser Glu Met Thr Glu Asp Glu Leu Val Val Leu Gln Gln
Met Phe Phe Gly Ile Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys
Gly Asp Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met
385
Thr Gly Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe
Ile Lys Gly Arg
            420
<210> 110
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 110
cctggctatc agcaggtggg ctccaagtgt ctcgatgtgg atgagtgtga
                                                                   50
<210> 111
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 111
attctgcgtg aacactgagg gc
                                                                   22
<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 112
atctgcttgt agccctcggc ac
                                                                   22
<210> 113
```

```
<211> 1616
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1461)
<223> a, t, c or g
<400> 113
tgagaccete etgeageett eteaagggae ageeceaete tgeetettge teeteeaggg 60
cagcaccatg cagcccctgt ggctctgctg ggcactctgg gtgttgcccc tggccagccc 120
cggggccgcc ctgaccgggg agcagctcct gggcagcctg ctgcggcagc tgcagctcaa 180
agaggtgccc accetggaca gggccgacat ggaggagetg qtcatcccca cccacqtqaq 240
ggcccagtac gtggccctgc tgcagcgcag ccacggggac cgctcccgcq gaaaqaqqtt 300
cagecagage tteegagagg tggeeggeag gtteetggeg ttggaggeea geacacacet 360
getggtgtte ggeatggage ageggetgee geecaacage gagetggtge aggeegtget 420
geggetette caggageegg teeceaagge egegetgeac aggeaeggge ggetgteece 480
gegeagegee egggeeeggg tgacegtega gtggetgege gteegegaeg aeggeteeaa 540
ccgcacctcc ctcatcgact ccaggctggt gtccgtccac gagagcggct ggaaggcctt 600
cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc agccgctgct 660
gctacaggtg tcggtgcaga gggagcatct gggcccgctg gcgtccggcg cccacaagct 720
ggtccgcttt gcctcgcagg gggcgccagc cgggcttggg gagccccagc tggagctgca 780
caccetggac ettggggact atggagetea gggegaetgt gaccetgaag caccaatgac 840
cgagggcacc cgctgctgcc gccaggagat gtacattgac ctgcagggga tgaagtgggc 900
cgagaactgg gtgctggagc ccccgggctt cctggcttat gagtgtgtgg gcacctgccg 960
gcagcccccg gaggccctgg ccttcaagtg gccgtttctg gggcctcgac agtgcatcgc 1020
ctcggagact gactcgctgc ccatgatcgt cagcatcaag gagggaggca ggaccaggcc 1080
ccaggtggtc agcctgccca acatgagggt gcagaagtgc agctgtgcct cggatggtgc 1140
gtgtgtgttt ctgaagtgtt cgagggtacc aggagagctg gcgatgactg aactgctgat 1260
ggacaaatgc tctgtgctct ctagtgagcc ctgaatttgc ttcctctgac aagttacctc 1320
acctaatttt tgcttctcag gaatgagaat ctttggccac tggagagccc ttgctcagtt 1380
ttctctattc ttattattca ctgcactata ttctaagcac ttacatgtgg agatactgta 1440
acctgaggge agaaageeea ntgtgteatt gtttacttgt eetgteactg gatetggget 1500
aaagteetee accaccaete tggacetaag acetggggtt aagtgtgggt tgtgeateee 1560
caatccagat aataaagact ttgtaaaaca tgaataaaac acattttatt ctaaaa
<210> 114
<211> 366
<212> PRT
<213> Homo sapiens
<400> 114
Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu Ala
Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser Leu Leu
Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg Ala Asp Met
                            40
```

Glu	Glu 50	Leu	Val	Ile	Pro	Thr 55	His	Val	Arg	Ala	Gln 60	Tyr	Val	Ala	Leu
Leu 65	Gln	Arg	Ser	His	Gly 70	Asp	Arg	Ser	Arg	Gly 75	Lys	Arg	Phe	Ser	Gln 80
Ser	Phe	Arg	Glu	Val 85	Ala	Gly	Arg	Phe	Leu 90	Ala	Leu	Glu	Ala	Ser 95	Thr
His	Leu	Leu	Val 100	Phe	Gly	Met	Glu	Gln 105	Arg	Leu	Pro	Pro	Asn 110	Ser	Glu
Leu	Val	Gln 115	Ala	Val	Leu	Arg	Leu 120	Phe	Gln	Glu	Pro	Val 125	Pro	Lys	Ala
Ala	Leu 130	His	Arg	His	Gly	Arg 135	Leu	Ser	Pro	Arg	Ser 140	Ala	Arg	Ala	Arg
Val 145	Thr	Val	Glu	Trp	Leu 150	Arg	Val	Arg	Asp	Asp 155	Gly	Ser	Asn	Arg	Thr 160
Ser	Leu	Ile	Asp	Ser 165	Arg	Leu	Val	Ser	Val 170	His	Glu	Ser	Gly	Trp 175	Lys
Ala	Phe	Asp	Val 180	Thr	Glu	Ala	Val	Asn 185	Phe	Trp	Gln	Gln	Leu 190	Ser	Arg
Pro	Arg	Gln 195	Pro	Leu	Leu	Leu	Gln 200	Val	Ser	Val	Gln	Arg 205	Glu	His	Leu
Gly	Pro 210	Leu	Ala	Ser	Gly	Ala 215	His	Lys	Leu	Val	Arg 220	Phe	Ala	Ser	Gln
Gly 225	Ala	Pro	Ala	Gly	Leu 230	Gly	Glu	Pro	Gln	Leu 235	Glu	Leu	His	Thr	Leu 240
Asp	Leu	Gly	Asp	Tyr 245	Gly	Ala	Gln	Gly	Asp 250	Cys	Asp	Pro	Glu	Ala 255	Pro
Met	Thr	Glu	Gly 260	Thr	Arg	Cys	Cys	Arg 265	Gln	Glu	Met	Tyr	Ile 270	Asp	Leu
Gln	Gly	Met 275	Lys	Trp	Ala	Glu	Asn 280	Trp	Val	Leu	Glu	Pro 285	Pro	Gly	Phe
Leu	Ala 290	Tyr	Glu	Cys	Val	Gly 295	Thr	Cys	Arg	Gln	Pro 300	Pro	Glu	Ala	Leu
Ala	Phe	Lys	Trp	Pro	Phe	Leu	Gly	Pro	Arg	Gln	Cys	Ile	Ala	Ser	Glu

```
Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser
Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro
<210> 115
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 115
aggactgcca taacttgcct g
                                                                    21
<210> 116
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 116
ataggagttg aagcagcgct gc
                                                                    22
<210> 117
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
tgtgtggaca tagacgagtg ccgctaccgc tactgccagc accgc
                                                                   45
<210> 118
<211> 1857
<212> DNA
<213> Homo sapiens
<400> 118
gtctgttccc aggagtcctt cggcggctgt tgtgtcagtg gcctgatcgc gatggggaca 60
aaggcgcaag tcgagaggaa actgttgtgc ctcttcatat tggcgatcct gttgtgctcc 120
ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcagaat tcctgagaat 180
```

```
aatcctgtga agttgtcctg tgcctactcg ggcttttctt ctccccgtgt ggagtggaag 240
tttgaccaag gagacaccac cagactcgtt tgctataata acaagatcac agcttcctat 300
gaggaccggg tgaccttctt gccaactggt atcaccttca agtccgtgac acgggaagac 360
actgggacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420
gtcaagetea tegtgettgt geetecatee aageetacag ttaacateee etectetgee 480
accattggga accgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
tacacctggt tcaaagatgg gatagtgatg cctacgaatc ccaaaagcac ccgtgccttc 600
agcaactett cetatgteet gaateecaca acaggagage tggtetttga teecetgtea 660
gcctctgata ctggagaata cagctgtgag gcacggaatg ggtatgggac acccatgact 720
tcaaatgctg tgcgcatgga agctgtggag cggaatgtgg gggtcatcgt ggcagccgtc 780
cttgtaaccc tgattctcct gggaatcttg gtttttggca tctggtttqc ctataqccqa 840
ggccactttg acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccaqcct 900
agtgcccgaa gtgaaggaga attcaaacag acctcgtcat tcctggtgtg agcctggtcg 960
geteacegee tateatetge atttgeetta eteaggtget aceggaetet ggeeeetgat 1020
gtctgtagtt tcacaggatg ccttatttgt cttctacacc ccacagggcc ccctacttct 1080
teggatgtgt ttttaataat gteagetatg tgeeceatee teetteatge eeteeeteee 1140
tttcctacca ctgctgagtg gcctggaact tgtttaaagt gtttattccc catttctttg 1200
agggatcagg aaggaateet gggtatgeea ttgaetteee ttetaagtag acageaaaaa 1260
tggcgggggt cgcaggaatc tgcactcaac tgcccacctg gctggcaggg atctttgaat 1320
aggtatettg agettggtte tgggetettt cettgtgtae tgacgaccag ggccagetgt 1380
tctagagcgg gaattagagg ctagagcggc tgaaatggtt gtttggtgat gacactgggg 1440
teettecate tetggggece actetettet gtetteccat gggaagtgee actgggatee 1500
ctctgccctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt ggaaaatggg 1560
agctcttgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620
accgctgctc taaagaaaag aaaactggag gctgggcgca gtggctcacg cctgtaatcc 1680
cagaggetga ggeaggegga teacetgagg tegggagtte gggateagee tgaceaacat 1740
ggagaaaccc tactggaaat acaaagttag ccaggcatgg tggtgcatgc ctgtagtccc 1800
agctgctcag gagcctggca acaagagcaa aactccagct caaaaaaaaa aaaaaaa
<210> 119
<211> 299
<212> PRT
<213> Homo sapiens
<400> 119
Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile
Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
                                 25
Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr
```

Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe

90

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro 150 155 Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu 280 Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val 295 <210> 120 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

tcgcggagct gtgttctgtt tccc

<400> 120

<210> 121 <211> 50

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 121
tgatcgcgat ggggacaaag gcgcaagctc gagaggaaac tgttgtgcct
                                                                    50
<210> 122
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 122
acacctggtt caaagatggg
                                                                    20
<210> 123
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 123
taggaagagt tgctgaaggc acgg
                                                                    24
<210> 124
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 124
ttgccttact caggtgctac
                                                                    20
<210> 125
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
```

oligonucleotide probe

```
<400> 125
actcagcagt ggtaggaaag
                                                                   20
<210> 126
<211> 1210
<212> DNA
<213> Homo sapiens
<400> 126
cagegegtgg ceggegeege tgtggggaea geatgagegg eggttggatg gegeaggttg 60
gagegtggeg aacagggget etgggeetgg egetgetget getgetegge eteggaetag 120
geetggagge egeegegage eegettteea eecegaeete tgeecaggee geaggeeeca 180
getcaggetc gtgcccaccc accaagttcc agtgccgcac cagtggctta tgcgtgcccc 240
tcacctggcg ctgcgacagg gacttggact gcagcgatgg cagcgatgag gaggagtgca 300
ggattgagee atgtacceag aaagggeaat geecacegee ceetggeete eeetgeeeet 360
gcaccggcgt cagtgactgc tctgggggaa ctgacaagaa actgcgcaac tgcagccgcc 420
tggcctgcct agcaggcgag ctccgttgca cgctgagcga tgactgcatt ccactcacgt 480
ggcgctgcga cggccaccca gactgtcccg actccagcga cgagctcggc tgtggaacca 540
atgagatect eceggaaggg gatgecaeaa ecatggggee ecetgtgaee etggagagtg 600
tcacctctct caggaatgcc acaaccatgg ggccccctgt gaccctggag agtgtcccct 660
ctgtcgggaa tgccacatcc tcctctgccg gagaccagtc tggaagccca actgcctatg 720
gggttattgc agctgctgcg gtgctcagtg caagcctggt caccgccacc ctcctcttt 780
tgtcctggct ccgagcccag gagcgcctcc gcccactggg gttactggtg gccatgaagg 840
agtccctgct gctgtcagaa cagaagacct cgctgccctg aggacaagca cttgccacca 900
ccgtcactca gccctgggcg tagccggaca ggaggagagc agtgatgcgg atggqtaccc 960
gggcacacca gccctcagag acctgagttc ttctqqccac qtqqaacctc qaacccqaqc 1020
tectgeagaa gtggeeetgg agattgaggg teeetggaca eteeetatgg agateeggg 1080
agctaggatg gggaacctgc cacagccaga actgaggggc tggccccagg cagctcccag 1140
ggggtagaac ggccctgtgc ttaagacact ccctgctgcc ccgtctgagg gtggcgatta 1200
aagttgcttc
<210> 127
<211> 282
<212> PRT
<213> Homo sapiens
<400> 127
Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly Ala
Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly Leu Glu
                                 25
Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln Ala Ala Gly
Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln Cys Arg Thr Ser
Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp Arg Asp Leu Asp Cys
```

Lys Gly Gln Cys Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly 110 Th

Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu Ser Leu 260 265 270

Ser Asp Gly Ser Asp Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln

Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro 275 280

<210> 128

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 128

aagttccagt gccgcaccag tggc

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 129
ttggttccac agccgagctc gtcg
                                                                   24
<210> 130
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 130
gaggaggagt gcaggattga gccatgtacc cagaaagggc aatgcccacc
                                                                   50
<210> 131
<211> 1843
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1837)
<223> a, t, c or g
<400> 131
cccacgcgtc cggtctcgct cgctcgcgca gcggcggcag cagaggtcgc gcacagatgc 60
gggttagact ggcggggga ggaggcggag gagggaagga agctgcatgc atgagaccca 120
cagactettg caagetggat gecetetgtg gatgaaagat gtateatgga atgaaceega 180
gcaatggaga tggatttcta gagcagcagc agcagcagca gcaacctcag tccccccaga 240-
gactettgge egtgateetg tggttteage tggegetgtg etteggeeet geacagetea 300
cgggcgggtt cgatgacctt caagtgtgtg ctgaccccgg cattcccgag aatggcttca 360
ggacccccag cggaggggtt ttctttgaag gctctgtagc ccgatttcac tgccaagacg 420
gattcaagct gaagggcgct acaaagagac tgtgtttgaa gcattttaat ggaaccctag 480
gctggatccc aagtgataat tccatctgtg tgcaagaaga ttgccgtatc cctcaaatcg 540
aagatgctga gattcataac aagacatata gacatggaqa qaaqctaatc atcacttqtc 600
atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta tgtcgcgatg 660
atggaacgtg gaataatctg cccatctgtc aaggctgcct gagacctcta gcctcttcta 720
atggctatgt aaacatetet gageteeaga eeteetteee ggtggggaet gtgateteet 780
ategetgett teeeggattt aaacttgatg ggtetgegta tettgagtge ttacaaaace 840
ttatctggtc gtccagccca ccccggtgcc ttgctctgga agcccaagtc tgtccactac 900
ctccaatggt gagtcacgga gatttcgtct gccacccgcg gccttgtgag cgctacaacc 960
acggaactgt ggtggagttt tactgcgatc ctggctacag cctcaccagc gactacaagt 1020
acatcacctg ccagtatgga gagtggtttc cttcttatca agtctactgc atcaaatcag 1080
agcaaacgtg gcccagcacc catgagaccc tcctgaccac gtggaagatt gtggcgttca 1140
```

```
cggcaaccag tgtgctgctg gtgctgctgc tcgtcatcct ggccaggatg ttccagacca 1200
 agttcaaggc ccactttccc cccagggggc ctccccggag ttccagcagt gaccctgact 1260
ttgtggtggt agacggcgtg cccgtcatgc tcccgtccta tgacgaagct gtgagtggcg 1320
gettgagtge ettaggeece gggtacatgg ectetgtggg ecagggetge ecettaceeg 1380
tggacgacca gagcccccca gcataccccg gctcagggga cacggacaca ggcccagggg 1440
agtcagaaac ctgtgacagc gtctcaggct cttctgagct gctccaaagt ctgtattcac 1500
ctcccaggtg ccaagagagc acccaccctg cttcggacaa ccctgacata attgccagca 1560
cggcagagga ggtggcatcc accagcccag gcatccatca tgcccactgg gtgttgttcc 1620
taagaaactg attgattaaa aaatttccca aagtgtcctg aagtgtctct tcaaatacat 1680
gttgatctgt ggagttgatt cctttccttc tcttggtttt agacaaatgt aaacaaagct 1740
ctgatcctta aaattgctat gctgatagag tggtgagggc tggaagcttg atcaagtcct 1800
gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa
<210> 132
<211> 490
<212> PRT
<213> Homo sapiens
<400> 132
Met Tyr His Gly Met Asn Pro Ser Asn Gly Asp Gly Phe Leu Glu Gln
                                     10
Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu Ala Val
Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala Gln Leu Thr
Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro Gly Ile Pro Glu
Asn Gly Phe Arg Thr Pro Ser Gly Gly Val Phe Phe Glu Gly Ser Val
Ala Arg Phe His Cys Gln Asp Gly Phe Lys Leu Lys Gly Ala Thr Lys
Arg Leu Cys Leu Lys His Phe Asn Gly Thr Leu Gly Trp Ile Pro Ser
            100
Asp Asn Ser Ile Cys Val Gln Glu Asp Cys Arg Ile Pro Gln Ile Glu
                            120
Asp Ala Glu Ile His Asn Lys Thr Tyr Arg His Gly Glu Lys Leu Ile
Ile Thr Cys His Glu Gly Phe Lys Ile Arg Tyr Pro Asp Leu His Asn
                                        155
Met Val Ser Leu Cys Arg Asp Asp Gly Thr Trp Asn Asn Leu Pro Ile
```

Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asn Gly Tyr Val Asn

			180					185					190)	
Ile	Ser	Glu 195		Gln	Thr	Ser	Phe 200		Val	Gly	Thr	Val 205		Ser	Ту
Arg	Cys 210		Pro	Gly	Phe	Lys 215		Asp	Gly	Ser	Ala 220		Leu	Glu	Суя
Leu 225		Asn	Leu	Ile	Trp 230		Ser	Ser	Pro	Pro 235		Cys	Leu	Ala	Let 240
Glu	Ala	Gln	Val	Cys 245	Pro	Leu	Pro	Pro	Met 250		Ser	His	Gly	Asp 255	Phe
Val	Cys	His	Pro 260		Pro	Cys	Glu	Arg 265		Asn	His	Gly	Thr 270	Val	Va]
Glu	Phe	Tyr 275	Cys	Asp	Pro	Gly	Туг 280	Ser	Leu	Thr	Ser	Asp 285	Tyr	Lys	Туг
Ile	Thr 290	Cys	Gln	Tyr	Gly	Glu 295		Phe	Pro	Ser	Tyr 300	Gln	Val	Tyr	Cys
Ile 305	Lys	Ser	Glu	Gln	Thr 310	Trp	Pro	Ser	Thr	His 315	Glu	Thr	Leu	Leu	Thr 320
Thr	Trp	Lys	Ile	Val 325	Ala	Phe	Thr	Ala	Thr 330	Ser	Val	Leu	Leu	Val 335	Leu
Leu	Leu	Val	Ile 340	Leu	Ala	Arg	Met	Phe 345	Gln	Thr	Lys	Phe	Lys 350	Ala	His
Phe	Pro	Pro 355	Arg	Gly	Pro	Pro	Arg 360	Ser	Ser	Ser	Ser	Asp 365	Pro	Asp	Phe
Val	Val 370	Val	Asp	Gly	Val	Pro 375	Val	Met	Leu	Pro	Ser 380	Tyr	Asp	Glu	Ala
Val 385	Ser	Gly	Gly	Leu	Ser 390	Ala	Leu	Gly	Pro	Gly 395	Tyr	Met	Ala	Ser	Val 400
Gly	Gln	Gly	Cys	Pro 405	Leu	Pro	Val	Asp	Asp 410	Gln	Ser	Pro	Pro	Ala 415	Tyr
Pro	Gly	Ser	Gly 420	Asp	Thr	Asp	Thr	Gly 425	Pro	Gly	Glu	Ser	Glu 430	Thr	Cys
Asp	Ser	Val 435	Ser	Gly	Ser	Ser	Glu 440	Leu	Leu	Gln	Ser	Leu 445	Tyr	Ser	Pro
Pro	Arg 450	Суѕ	Gln	Glu	Ser	Thr 455	His	Pro	Ala	Ser	Asp 460	Asn	Pro	Asp	Ile

```
Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His
                    470
                                         475
His Ala His Trp Val Leu Phe Leu Arg Asn
                485
<210> 133
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 133
atctcctatc gctgctttcc cgg
                                                                   23
<210> 134
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 134
agccaggatc gcagtaaaac tcc
                                                                   23
<210> 135
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 135
atttaaactt gatgggtctg cgtatcttga gtgcttacaa aaccttatct
                                                                   50
<210> 136
<211> 1815
<212> DNA
<213> Homo sapiens
<400> 136
cccacgcgtc cgctccgcgc cctcccccc gcctcccgtg cggtccgtcg gtggcctaga 60
gatgctgctg ccgcggttgc agttgtcgcg cacgcctctg cccgccagcc cgctccaccg 120
ccgtagcgcc cgagtgtcgg ggggcgcacc cgagtcgggc catgaggccg ggaaccgcgc 180
tacaggccgt gctgctggcc gtgctgctgg tggggctgcg ggccgcgacg ggtcgcctgc 240
tgagtgcctc ggatttggac ctcagaggag ggcagccagt ctgccgggga gggacacaga 300
```

```
ggccttgtta taaagtcatt tacttccatg atacttctcg aagactgaac tttgaggaag 360
 ccaaagaaqc ctgcaggagg gatggaggcc agctagtcag catcgagtct gaagatgaac 420
 agaaactgat agaaaagttc attgaaaacc tcttgccatc tgatggtgac ttctggattg 480
 ggeteaggag gegtgaggag aaacaaagca atagcacage etgecaggae etttatgett 540
 ggactgatgg cagcatatca caatttagga actggtatgt ggatgagccg tcctgcggca 600
 gcgaggtctg cgtggtcatg taccatcagc catcggcacc cgctggcatc ggaggcccct 660
 acatgttcca gtggaatgat gaccggtgca acatgaagaa caatttcatt tgcaaatatt 720
ctgatgagaa accagcagtt ccttctagag aagctgaagg tgaggaaaca gagctgacaa 780
cacctgtact tccagaagaa acacaggaag aagatgccaa aaaaacattt aaagaaagta 840
gagaagetge ettgaatetg geetacatee taateeceag eatteeeett eteeteetee 900
ttgtggtcac cacagttgta tgttgggttt ggatctgtag aaaaagaaaa cgggagcagc 960
cagaccctag cacaaagaag caacacca tetggcccte teetcaccag ggaaacagee 1020
cggacctaga ggtctacaat gtcataagaa aacaaagcga agctgactta gctgagaccc 1080
ggccagacct gaagaatatt tcattccgag tgtgttcggg agaagccact cccgatgaca 1140
tgtcttgtga ctatgacaac atggctgtga acccatcaga aagtgggttt gtgactctgg 1200
tgagcgtgga gagtggattt gtgaccaatg acatttatga gttctcccca gaccaaatgg 1260
ggaggagtaa ggagtctgga tgggtggaaa atgaaatata tggttattag gacatataaa 1320
aaactgaaac tgacaacaat ggaaaagaaa tgataagcaa aatcctctta ttttctataa 1380
ggaaaataca cagaaggtet atgaacaage ttagateagg teetgtggat gageatgtgg 1440
tececaegae etectgttgg acceeeaegt tttggetgta teetttatee eagecagtea 1500
tecagetega cettatgaga aggtacettg eccaggtetg geacatagta gagteteaat 1560
aaatgtcact tggttggttg tatctaactt ttaagggaca gagctttacc tggcagtgat 1620
aaagatggge tgtggagett ggaaaaccac etetgtttte ettgetetat acagcagcae 1680
atattatcat acagacagaa aatccagaat cttttcaaag cccacatatg gtagcacagg 1740
ttggcctgtg catcggcaat tctcatatct gtttttttca aagaataaaa tcaaataaag 1800
agcaggaaaa aaaaa
<210> 137
<211> 382
<212> PRT
<213> Homo sapiens
<400> 137
Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu Leu
Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu
Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro
Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe
Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gln Leu Val Ser
 65
                     70
Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn
                                     90
Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Glu
```

105

	GIu	Lys	GIn 115	Ser	Asn	ser	Thr	Ala 120	Cys	GIn	Asp	Leu	Tyr 125	Ala	Trp	Thi
	Asp	Gly 130	Ser	Ile	Ser	Gln	Phe 135	Arg	Asn	Trp	Tyr	Val 140	Asp	Glu	Pro	Ser
	Cys 145	Gly	Ser	Glu	Val	Cys 150	Val	Val	Met	Tyr	His 155	Gln	Pro	Ser	Ala	Pro 160
	Ala	Gly	Ile	Gly	Gly 165	Pro	Tyr	Met	Phe	Gln 170	Trp	Asn	Asp	Asp	Arg 175	Cys
	Asn	Met	Lys	Asn 180	Asn	Phe	Ile	Cys	Lys 185	Tyr	Ser	Asp	Glu	Lys 190	Pro	Ala
	Val	Pro	Ser 195	Arg	Glu	Ala	Glu	Gly 200	Glu	Glu	Thr	Glu	Leu 205	Thr	Thr	Pro
	Val	Leu 210	Pro	Glu	Glu	Thr	Gln 215	Glu	Glu	Asp	Ala	Lys 220	Lys	Thr	Phe	Lys
	Glu 225	Ser	Arg	Glu	Ala	Ala 230	Leu	Asn	Leu	Ala	Tyr 235	Ile	Leu	Ile	Pro	Ser 240
	Ile	Pro	Leu	Leu	Leu 245	Leu	Leu	Val	Val	Thr 250	Thr	Val	Val	Cys	Trp 255	Val
				260		Arg			265					270		-
	Lys	Gln	His 275	Thr	Ile	Trp	Pro	Ser 280	Pro	His	Gln	Gly	Asn 285	Ser	Pro	Asp
		290				Val	295					300				
	305					Leu 310					315					320
					325	Asp				330					335	
				340		Gly			345					350		
]	Phe	Val	Thr 355	Asn	Asp	Ile	Tyr	Glu 360	Phe	Ser	Pro	Asp	Gln 365	Met	Gly	Arg
	Ser	Lys 370	Glu	Ser		Trp					Ile			Tyr		

<210> 138

```
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 138
gttcattgaa aacctcttgc catctgatgg tgacttctgg attgggctca
                                                                   50
<210> 139
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 139
aagccaaaga agcctgcagg aggg
                                                                   24
<210> 140
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 140
cagtccaagc ataaaggtcc tggc
                                                                   24
<210> 141
<211> 1514
<212> DNA
<213> Homo sapiens
<400> 141
ggggtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg ctggatgtac 60
gcatccgcag gttcccgcgg acttgggggc gcccgctgag ccccggcgcc cgcagaagac 120
ttgtgtttgc ctcctgcagc ctcaaccegg agggcagcga gggcctacca ccatgatcac 180
tggtgtgttc agcatgcgct tgtggacccc agtgggcgtc ctgacctcgc tggcgtactg 240
cctgcaccag cggcggtgg ccctggccga gctgcaggag gccgatggcc agtgtccggt 300
cgaccgcagc ctgctgaagt tgaaaatggt gcaggtcgtg tttcgacacg gggctcggag 360
teeteteaag eegeteeege tggaggagea ggtagagtgg aaceeecage tattagaggt 420
cccaccccaa actcagtttg attacacagt caccaatcta gctggtggtc cgaaaccata 480
ttctccttac gactctcaat accatgagac caccctgaag gggggcatgt ttgctgggca 540
gctgaccaag gtgggcatgc agcaaatgtt tgccttggga gagagactga ggaagaacta 600
tgtggaagac attccctttc tttcaccaac cttcaaccca caggaggtct ttattcgttc 660
cactaacatt tttcggaatc tggagtccac ccgttgtttg ctggctgggc ttttccagtg 720
```

```
tcagaaagaa ggacccatca tcatccacac tgatgaagca gattcagaag tcttgtatcc 780
caactaccaa agctgctgga gcctgaggca gagaaccaga ggccggaggc agactgcctc 840
tttacagcca ggaatctcag aggatttgaa aaaggtgaag gacaggatgg gcattgacag 900
tagtgataaa gtggacttct tcatcctcct ggacaacgtg gctgccgagc aggcacacaa 960
cctcccaagc tgccccatgc tgaagagatt tgcacggatg atcgaacaga gagctgtgga 1020
cacatecttg tacatactgc ccaaggaaga cagggaaagt cttcagatgg cagtaggccc 1080
attectecae atectagaga geaacetget gaaagecatg gaetetgeea etgeeecega 1140
caagatcaga aagctgtatc tctatgcggc tcatgatgtg accttcatac cgctcttaat 1200
gaccctgggg atttttgacc acaatggcc accgtttgct gttgacctga ccatggaact 1260
ttaccagcac ctggaatcta aggagtggtt tgtgcagctc tattaccacg ggaaggagca 1320
ggtgccgaga ggttgccctg atgggctctg cccgctggac atgttcttga atgccatgtc 1380
agtttatacc ttaagcccag aaaaatacca tgcactctgc tctcaaactc aggtgatgga 1440
agttggaaat gaagagtaac tgatttataa aagcaggatg tgttgatttt aaaataaagt 1500
gcctttatac aatg
<210> 142
<211> 428
<212> PRT
<213> Homo sapiens
<400> 142
Met Ile Thr Gly Val Phe Ser Met Arq Leu Trp Thr Pro Val Gly Val
                  5
Leu Thr Ser Leu Ala Tyr Cys Leu His Gln Arg Arg Val Ala Leu Ala
Glu Leu Gln Glu Ala Asp Gly Gln Cys Pro Val Asp Arg Ser Leu Leu
                             40
Lys Leu Lys Met Val Gln Val Val Phe Arg His Gly Ala Arg Ser Pro
Leu Lys Pro Leu Pro Leu Glu Glu Gln Val Glu Trp Asn Pro Gln Leu
                     70
Leu Glu Val Pro Pro Gln Thr Gln Phe Asp Tyr Thr Val Thr Asn Leu
                                     90
Ala Gly Gly Pro Lys Pro Tyr Ser Pro Tyr Asp Ser Gln Tyr His Glu
Thr Thr Leu Lys Gly Gly Met Phe Ala Gly Gln Leu Thr Lys Val Gly
Met Gln Gln Met Phe Ala Leu Gly Glu Arg Leu Arg Lys Asn Tyr Val
    130
Glu Asp Ile Pro Phe Leu Ser Pro Thr Phe Asn Pro Gln Glu Val Phe
                    150
                                        155
Ile Arg Ser Thr Asn Ile Phe Arg Asn Leu Glu Ser Thr Arg Cys Leu
                165
                                    170
```

Leu Ala Gly Leu Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile His 180 185 190

Thr Asp Glu Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys 195 200 205

Trp Ser Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu 210 215 220

Gln Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly 225 230 235 240

Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn Val
245 250 255

Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu Lys Arg 260 265 270

Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser Leu Tyr Ile 275 280 285

Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala Val Gly Pro Phe 290 295 300

Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala Met Asp Ser Ala Thr 305 310 315 320

Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Tyr Ala Ala His Asp Val 325 330 335

Thr Phe Ile Pro Leu Leu Met Thr Leu Gly Ile Phe Asp His Lys Trp 340 345 350

Pro Pro Phe Ala Val Asp Leu Thr Met Glu Leu Tyr Gln His Leu Glu 355 360 365

Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val 370 375 380

Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn 385 390 395 400

Ala Met Ser Val Tyr Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys 405 410 415

Ser Gln Thr Gln Val Met Glu Val Gly Asn Glu Glu
420 425

<210> 143

<211> 24

<212> DNA

<213> Artificial Sequence

	Description of Artificial S oligonucleotide probe	Sequence: S	Synthetic		
<400> 1	-				24
<210> 1 <211> 2 <212> D	24	,		·	
<220> <223> D	Description of Artificial Soligonucleotide probe	Sequence: S	Synthetic		
<400> 1	144 etat taccacggga agga				24
<210> 1 <211> 2 <212> D <213> A	24				
	Description of Artificial S bligonucleotide probe	Sequence: S	Synthetic		
<400> 1	145 cegt ggtaatagag etge				24
<210> 1 <211> 4 <212> D <213> A	15				
	Description of Artificial S Digonucleotide probe	Sequence: S	Synthetic		
<400> 1 ggcagag	.46 gaac cagaggcegg aggagactge	ctctttacaç	g ccagg		45
<210> 1 <211> 1 <212> D <213> H	.686				
cttaaat	.47 ttaa catacttgca gctaaaacta	cttggtcatg	g gctctgctat	tctccttgat	120

```
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt ggggcaccgt 240
gtgtgatgac ggctgggaca ttaaggacgt ggctgtgttg tgccgggagc tgggctgtgg 300
agctgccagc ggaaccccta gtggtatttt gtatgagcca ccagcagaaa aagagcaaaa 360
ggtcctcatc caatcagtca gttgcacagg aacagaagat acattggctc agtgtgagca 420
agaagaagtt tatgattgtt cacatgatga agatgctggg gcatcgtgtg agaacccaga 480
gagetettte tececagtee cagagggtgt caggetgget gaeggeeetg ggeattgcaa 540
gggacgcgtg gaagtgaagc accagaacca gtggtatacc gtgtgccaga caggctggag 600
ceteegggee geaaaggtgg tgtgeeggea getgggatgt gggagggetg tactgaetea 660
aaaacgctgc aacaagcatg cctatggccg aaaacccatc tggctgagcc agatgtcatg 720
ctcaggacga gaagcaaccc ttcaggattg cccttctggg ccttggggga agaacacctg 780
caaccatgat gaagacacgt gggtcgaatg tgaagatccc tttgacttga gactagtagg 840
aggagacaac ctctgctctg ggcgactgga ggtgctgcac aagggcgtat ggggctctgt 900
ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac tgggctgtgg 960
gaagtccctc tctccctcct tcagagaccg gaaatgctat ggccctgggg ttggccgcat 1020
ctggctggat aatgttcgtt gctcagggga ggagcagtcc ctggagcagt gccagcacag 1080
attttggggg tttcacgact gcacccacca ggaagatgtg gctgtcatct gctcagtgta 1140
ggtgggcatc atctaatctg ttgagtgcct gaatagaaga aaaacacaga agaagggagc 1200
atttactgtc tacatgactg catgggatga acactgatct tcttctgccc ttggactggg 1260
acttatactt ggtgcccctg attctcaggc cttcagagtt ggatcagaac ttacaacatc 1320
aggtctagtt ctcaggccat cagacatagt ttggaactac atcaccacct ttcctatgtc 1380
tccacattgc acacagcaga ttcccagcct ccataattgt gtgtatcaac tacttaaata 1440
catteteaca cacacacaca cacacacaca cacacacaca cacacataca ccattegtee 1500
tgtttctctg aagaactctg acaaaataca gattttggta ctgaaagaga ttctagagga 1560
acggaatttt aaggataaat tttctgaatt ggttatgggg tttctgaaat tggctctata 1620
atctaattag atataaaatt ctggtaactt tatttacaat aataaagata gcactatgtg 1680
ttcaaa
<210> 148
<211> 347
<212> PRT
<213> Homo sapiens
<400> 148
Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly
Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg
Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val
Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu
Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu
Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys
                                     90
Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr
                                105
```

Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu 310 Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr 330 His Gln Glu Asp Val Ala Val Ile Cys Ser Val <210> 149

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

```
<400> 149
ttcagctcat caccttcacc tgcc
                                                                   24
<210> 150
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 150
ggctcataca aaataccact aggg
                                                                   24
<210> 151
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 151
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaagqccaqt
                                                                   50
<210> 152
<211> 1427
<212> DNA
<213> Homo sapiens
<400> 152
actgeacteg gttetatega ttgaatteee eggggateet etagagatee etegaceteg 60
acccacgcgt cogoggacgc gtgggoggac gcgtgggccg gctaccagga agagtctgcc 120
gaaggtgaag gecatggaet teateacete cacagecate etgeceetge tgtteggetg 180
cetgggegte tteggeetet teeggetget geagtgggtg egegggaagg cetacetgeg 240
gaatgctgtg gtggtgatca caggcgccac ctcagggctg ggcaaagaat gtgcaaaagt 300
cttctatgct gcgggtgcta aactggtgct ctgtggccgg aatggtgggg ccctagaaga 360
geteateaga gaaettaceg etteteatge caccaaggtg cagacacaca ageettactt 420
ggtgaccttc gacctcacag actctggggc catagttgca gcagcagctg agatcctqca 480
gtgctttggc tatgtcgaca tacttgtcaa caatgctggg atcagctacc gtggtaccat 540
catggacacc acagtggatg tggacaagag ggtcatggag acaaactact ttggcccagt 600
tgctctaacg aaagcactcc tgccctccat gatcaagagg aggcaaggcc acattgtcgc 660
catcagcagc atccagggca agatgagcat teettttega teagcatatg cagectecaa 720
gcacgcaacc caggetttet ttgactgtet gcgtgccgag atggaacagt atgaaattga 780
ggtgaccgtc atcagccccg gctacatcca caccaacctc tctgtaaatg ccatcaccgc 840
ggatggatct aggtatggag ttatggacac caccacagcc cagggccgaa gccctgtgga 900
ggtggcccag gatgttcttg ctgctgtggg gaagaagaag aaagatgtga tcctggctga 960
cttactgcct tccttggctg tttatcttcg aactctggct cctgggctct tcttcaqcct 1020
catggcctcc agggccagaa aagagcggaa atccaagaac tcctagtact ctgaccagcc 1080
```

agggccaggg cagagaagca gcactcttag gcttgcttac tctacaaggg acagttgcat 1140

ttgttgagac tttaatggag atttgtctca caagtgggaa agactgaaga aacacatctc 1200 gtgcagatet getggcagag gacaateaaa aacgacaaca agettettee cagggtgagg 1260 ggaaacactt aaggaataaa tatggagctg gggtttaaca ctaaaaacta gaaataaaca 1320 tetcaaacag taaaaaaaaa aaaaaaggge ggeegegact etagagtega eetgeagaag 1380 cttggccgcc atggcccaac ttgtttattg cagcttataa tggttac <210> 153 <211> 310 <212> PRT <213> Homo sapiens <400> 153 Met Asp Phe Ile Thr Ser Thr Ala Ile Leu Pro Leu Leu Phe Gly Cys Leu Gly Val Phe Gly Leu Phe Arg Leu Leu Gln Trp Val Arg Gly Lys Ala Tyr Leu Arg Asn Ala Val Val Ile Thr Gly Ala Thr Ser Gly Leu Gly Lys Glu Cys Ala Lys Val Phe Tyr Ala Ala Gly Ala Lys Leu Val Leu Cys Gly Arg Asn Gly Gly Ala Leu Glu Glu Leu Ile Arg Glu Leu Thr Ala Ser His Ala Thr Lys Val Gln Thr His Lys Pro Tyr Leu Val Thr Phe Asp Leu Thr Asp Ser Gly Ala Ile Val Ala Ala Ala Ala 100 Glu Ile Leu Gln Cys Phe Gly Tyr Val Asp Ile Leu Val Asn Asn Ala 120 Gly Ile Ser Tyr Arg Gly Thr Ile Met Asp Thr Thr Val Asp Val Asp Lys Arg Val Met Glu Thr Asn Tyr Phe Gly Pro Val Ala Leu Thr Lys 155

Ala Ala Ser Lys His Ala Thr Gln Ala Phe Phe Asp Cys Leu Arg Ala 195 200 205

Ala Leu Leu Pro Ser Met Ile Lys Arg Arg Gln Gly His Ile Val Ala

Ile Ser Ser Ile Gln Gly Lys Met Ser Ile Pro Phe Arg Ser Ala Tyr

185

165

180

Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr

	210					215					220					
Ile 225	His	Thr	Asn	Leu	Ser 230	Val	Asn	Ala	Ile	Thr 235	Ala	Asp	Gly	Ser	Arg 240	
Tyr	Gly	Val	Met	Asp 245	Thr	Thr	Thr	Ala	Gln 250	Gly	Arg	Ser	Pro	Val 255	Glu	
Val	Ala	Gln	Asp 260	Val	Leu	Ala	Ala	Val 265	Gly	Lys	Lys	Lys	Lys 270	Asp	Val	
Ile	Leu	Ala 275	Asp	Leu	Leu	Pro	Ser 280	Leu	Ala	Val	Tyr	Leu 285	Arg	Thr	Leu	
Ala	Pro 290	Gly	Leu	Phe	Phe	Ser 295	Leu	Met	Ala	Ser	Arg 300	Ala	Arg	Lys	Glu	
Arg 305	Lys	Ser	Lys	Asn	Ser 310											
<210 <211 <212 <213	> 24 > DN	: IA	.cial	. Seq	_{[uenc}	:e										
<220 <223	> De	scri igon	ptic ucle	n of	Art le pr	ific obe	ial	Sequ	ience	e: Sy	nthe	tic				
<400 ggtg			ggtg	ctct	g tg	gc										24
<210 <211 <212 <213	> 20 > DN	A	cial	Seq	uenc	e										
<220:	> De			n of otid			ial	Sequ	ence	: Sy	nthe	tic				
<400: cagg			gagc	attc	C											20
<210: <211: <212: <213:	> 24 > DN	A	cial	Seq	uenc	e										
<220: <223:	> De			n of otid			ial	Sequ	ence	: Sy	nthe	tic				

```
<400> 156
 tcatactgtt ccatctcggc acgc
                                                                 24
<210> 157
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 157
aatggtgggg ccctagaaga gctcatcaga gaactcaccg cttctcatgc
                                                                50
<211> 1771
<212> DNA
<213> Homo sapiens
<400> 158
cccacgcgtc cgctggtgtt agatcgagca accctctaaa agcagtttag agtggtaaaa 60
aaaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg atgaaatttc ttctqqacat 120
cetectgett etecegttae tgategtetg etecetagag teettegtga agetttttat 180
teetaagagg agaaaateag teaceggega aategtgetg attacaggag etgggeatgg 240
aattgggaga ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300
tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg gtgccaaggt 360
tcataccttt gtggtagact gcagcaaccg agaagatatt tacagctctg caaagaaggt 420
gaaggcagaa attggagatg ttagtatttt agtaaataat gctggtgtag tctatacatc 480
agatttgttt getacacaag ateeteagat tgaaaagaet tttgaagtta atgtaettge 540
acatttctgg actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600
tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg cttactgttc 660
aagcaagttt gctgctgttg gatttcataa aactttgaca gatgaactgg ctgccttaca 720
aataactgga gtcaaaacaa catgtctgtg tcctaatttc gtaaacactg gcttcatcaa 780
aaatccaagt acaagtttgg gacccactct ggaacctgag gaagtggtaa acaggctgat 840
gcatgggatt ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900
aacattggaa aggatccttc ctgagcgttt cctggcagtt ttaaaacgaa aaatcagtgt 960
taagtttgat gcagttattg gatataaaat gaaagcgcaa taagcaccta gttttctgaa 1020
aactgattta ccaggtttag gttgatgtca tctaatagtg ccagaatttt aatgtttgaa 1080
cttctgtttt ttctaattat ccccatttct tcaatatcat ttttgaggct ttggcagtct 1140
tcatttacta ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200
tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac tttattaaaa 1260
taatttccaa gattatttgt ggctcacctg aaggctttgc aaaatttgta ccataaccgt 1320
ttatttaaca tatattttta tttttgattg cacttaaatt ttgtataatt tgtgtttctt 1380
tttctgttct acataaaatc agaaacttca agctctctaa ataaaatgaa ggactatatc 1440
tagtggtatt tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500
gccactctgt ttcctgagag atacctcaca ttccaatgcc aaacatttct gcacagggaa 1560
gctagaggtg gatacacgtg ttgcaagtat aaaagcatca ctgggattta aggagaattg 1620
agagaatgta cccacaaatg gcagcaataa taaatggatc acacttaaaa aaaaaaaaa 1680
aaaaaaaaa aaaaaaaaa a
                                                                1771
```

<211> 300

<212> PRT

<213> Homo sapiens

<400> 159

Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Leu Pro Leu Leu Ile Val $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg Lys
20 25 30

Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile 35 40 45

Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys Ser Lys Leu Val 50 60

Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu Thr Ala Ala Lys Cys 65 70 75 80

Lys Gly Leu Gly Ala Lys Val His Thr Phe Val Val Asp Cys Ser Asn 85 90 95

Arg Glu Asp Ile Tyr Ser Ser Ala Lys Lys Val Lys Ala Glu Ile Gly
100 105 110

Asp Val Ser Ile Leu Val Asn Asn Ala Gly Val Val Tyr Thr Ser Asp 115 120 125

Leu Phe Ala Thr Gln Asp Pro Gln Ile Glu Lys Thr Phe Glu Val Asn 130 135 140

Val Leu Ala His Phe Trp Thr Thr Lys Ala Phe Leu Pro Ala Met Thr 145 150 155 160

Lys Asn Asn His Gly His Ile Val Thr Val Ala Ser Ala Ala Gly His
165 170 175

Val Ser Val Pro Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala 180 185 190

Val Gly Phe His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile 195 200 205

Thr Gly Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly 210 215 220

Phe Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu 225 230 235 240

Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys Met 245 250 255

```
Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu Arg Ile
                                 265
Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser Val Lys
                             280
Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln
<210> 160
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 160
ggtgaaggca gaaattggag atg
                                                                    23
<210> 161
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 161
atcccatgca tcagcctgtt tacc
                                                                    24
<210> 162
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
gctggtgtag tctatacatc agatttgttt gctacacaag atcctcag
                                                                   48
<210> 163
<211> 2076
<212> DNA
<213> Homo sapiens
<400> 163
cccacgcgtc cgcggacgcg tgggtcgact agttctagat cgcgagcggc cgcccgcggc 60
tcagggagga gcaccgactg cgccgcaccc tgagagatgg ttggtgccat gtggaaggtg 120
```

```
attgtttcgc tggtcctgtt gatgcctggc ccctgtgatg ggctgtttcg ctccctatac 180
agaagtgttt ccatgccacc taagggagac tcaggacagc cattatttct caccccttac 240
attgaagctg ggaagatcca aaaaggaaga gaattgagtt tggtcggccc tttcccagga 300
ctgaacatga agagttatgc cggcttcctc accgtgaata agacttacaa cagcaacctc 360
ttcttctggt tcttcccagc tcagatacag ccagaagatg ccccagtagt tctctggcta 420
cagggtgggc cgggaggttc atccatgttt ggactctttg tggaacatgg gccttatgtt 480
gtcacaagta acatgacctt gcgtgacaga gacttcccct ggaccacaac gctctccatg 540
ctttacattg acaatccagt gggcacaggc ttcagtttta ctgatgatac ccacggatat 600
gcagtcaatg aggacgatgt agcacgggat ttatacagtg cactaattca gtttttccag 660
atatttcctg aatataaaaa taatgacttt tatgtcactg gggagtctta tgcagggaaa 720
tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
aacctgaacg gaattgctat tggagatgga tattctgatc ccgaatcaat tatagggggc 840
tatgcagaat teetgtaeca aattggettg ttggatgaga agcaaaaaaa gtaettecag 900
aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggtttga ggcctttgaa 960
atactggata aactactaga tggcgactta acaagtgatc cttcttactt ccagaatgtt 1020
acaggatgta gtaattacta taactttttg cggtgcacgg aacctgagga tcagctttac 1080
tatgtgaaat ttttgtcact cccagaggtg agacaagcca tccacgtggg gaatcagact 1140
tttaatgatg gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaag 1200
ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg ccaactggac 1260
atcatcgtgg cagctgccct gacagagcgc tccttgatgg gcatggactg gaaaggatcc 1320
caggaataca agaaggcaga aaaaaaagtt tggaagatct ttaaatctga cagtgaagtg 1380
gctggttaca tccggcaagc gggtgacttc catcaggtaa ttattcgagg tggaggacat 1440
attttaccct atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500
aaaggatggg atccttatgt tggataaact accttcccaa aagagaacat cagaggtttt 1560
cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaa aattatcttt 1620
tcatatctgc aagatttttt tcatcaataa aaattatcct tgaaacaagt gagcttttgt 1680
ttttgggggg agatgtttac tacaaaatta acatgagtac atgagtaaga attacattat 1740
ttaacttaaa ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800-
ttttagggtc ttgaatagga agttttaatt tcttctaaga gtaagtgaaa agtgcagttg 1860
taacaaacaa agctgtaaca tctttttctg ccaataacag aagtttggca tgccgtgaag 1920
gtgtttggaa atattattgg ataagaatag ctcaattatc ccaaataaat ggatgaagct 1980
ataatagttt tggggaaaag attctcaaat gtataaagtc ttagaacaaa agaattcttt 2040
gaaataaaaa tattatatat aaaagtaaaa aaaaaa
<210> 164
<211> 476
<212> PRT
<213> Homo sapiens
<400> 164
Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met
Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser
Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr
Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly
```

Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val

65	5				70	כ				7	5				8
Asr	Lys	s Th	с Ту	r Ası 85		Ası	ı Let	ı Phe	e Phe		Phe	e Pho	e Pro	Ala 9!	
Ile	Glr	ı Pro	Gl: 100	ı Asp	Ala	a Pro	o Val	l Val		ı Tr <u>ı</u>	Let	ı Glı	n Gly 110		y Pro
Gly	Gly	Ser 115	Sei	Met	Phe	e Gly	/ Let	ı Phe	e Val	l Glu	ı His	Gl ₃	y Pro	Ту1	Val
Val	Thr 130	Ser	Asr	Met	Thr	Leu 135		y As <u>r</u>	Arg	g Asp	Phe 140		Trp	Thr	Thr
Thr 145	Leu	Ser	Met	: Leu	Tyr 150		Asp	Asr.	Pro	Val 155		Thr	Gly	Phe	Ser 160
Phe	Thr	Asp	Asp	Thr 165	His	Gly	Tyr	Ala	Val		Glu	Asp	Asp	Val 175	
Arg	Asp	Leu	180	Ser	Ala	Leu	Ile	Gln 185		Phe	Gln	Ile	Phe 190		Glu
Tyr	Lys	Asn 195	Asn	Asp	Phe	Tyr	Val 200		Gly	Glu	Ser	Tyr 205	Ala	Gly	Lys
Tyr	Val 210	Pro	Ala	Ile	Ala	His 215	Leu	Ile	His	Ser	Leu 220	Asn	Pro	Val	Arg
Glu 225	Val	Lys	Ile	Asn	Leu 230	Asn	Gly	Ile	Ala	Ile 235	Gly	Asp	Gly	Tyr	Ser 240
Asp	Pro	Glu	Ser	Ile 245	Ile	Gly	Gly	Tyr	Ala 250	Glu	Phe	Leu	Tyr	Gln 255	Ile
Gly	Leu	Leu	Asp 260	Glu	Lys	Gln	Lys	Lys 265	Tyr	Phe	Gln	Lys	Gln 270	Cys	His
Glu	Cys	Ile 275	Glu	His	Ile	Arg	Lys 280	Gln	Asn	Trp	Phe	Glu 285	Ala	Phe	Glu
Ile	Leu 290	Asp	Lys	Leu	Leu	Asp 295	Gly	Asp	Leu	Thr	Ser 300	Asp	Pro	Ser	Tyr
Phe 305	Gln	Asn	Val	Thr	Gly 310	Cys	Ser	Asn	Tyr	Tyr 315	Asn	Phe	Leu	Arg	Cys 320
Thr	Glu	Pro	Glu	Asp 325	Gln	Leu	Tyr	Tyr	Val 330	Lys	Phe	Leu	Ser	Leu 335	Pro
Glu	Val	Arg	Gln 340	Ala	Ile	His	Val	Gly 345	Asn	Gln	Thr	Phe	Asn 350	Asp	Gly

Thr	Ile	Val 355	GLu	Lys	Tyr	Leu	Arg 360	Glu	Asp	Thr	Val	Gln 365	Ser	Val	Lys	
Pro	Trp 370	Leu	Thr	Glu	Ile	Met 375	Asn	Asn	Tyr	Lys	Val 380	Leu	Ile	Tyr	Asn	
Gly 385	Gln	Leu	Asp	Ile	Ile 390	Val	Ala	Ala	Ala	Leu 395	Thr	Glu	Arg	Ser	Leu 400	
Met	Gly	Met	Asp	Trp 405	Lys	Gly	Ser	Gln	Glu 410	Tyr	Lys	Lys	Ala	Glu 415	Lys	
Lys	Val	Trp	Lys 420	Ile	Phe	Lys	Ser	Asp 425	Ser	Glu	Val	Ala	Gly 430	Tyr	Ile	
Arg	Gln	Ala 435	Gly	Asp	Phe	His	Gln 440	Val	Ile	Ile	Arg	Gly 445	Gly	Gly	His	
Ile	Leu 450	Pro	Tyr	Asp	Gln	Pro 455	Leu	Arg	Ala	Phe	Asp 460	Met	Ile	Asn	Arg	
Phe 465	Ile	Tyr	Gly	Lys	Gly 470	Trp	Asp	Pro	Tyr	Val 475	Gly					
<211 <212	> 16 > 24 > DN > Ar	IA	cial	l Sec	quenc	:e										
<220 <223	> De			on of eotid			ial	Sequ	ience	e: S <u>y</u>	⁄nth∈	tic				
<400			:ctaa	ı g gga	ig ac	tc										24
<210 <211 <212 <213	> 24 > DN	IA.	.cial	. Seq	[uenc	e										
<220 <223	> De			n of otid			ial	Sequ	ience	: Sy	nthe	tic				
<400 tgga		_	tgca	atgq	c tq	gc										24
<210 <211 <212 <213	> 16 > 24 > DN	7 'A				_	,									

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 167
agctctcaga ggctggtcat aggg
                                                                 24
<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 168
gtcggccctt tcccaggact gaacatgaag agttatgccg gcttcctcac
                                                                 50
<210> 169
<211> 2477
<212> DNA
<213> Homo sapiens
<400> 169
cgagggcttt tccggctccg gaatggcaca tgtgggaatc ccagtcttgt tggctacaac 60
atttttccct ttcctaacaa gttctaacag ctgttctaac agctagtgat caggggttct 120
tettgetgga gaagaaaggg etgagggeag ageagggeae teteaeteag ggtgaeeage 180
teettgeete tetgtggata acagageatg agaaagtgaa gagatgeage ggagtgaggt 240
gatggaagtc taaaatagga aggaattttg tgtgcaatat cagactctgg gagcagttga 300
cctggagagc ctgggggagg gcctgcctaa caagctttca aaaaacagga gcgacttcca 360
ctgggctggg ataagacgtg ccggtaggat agggaagact gggtttagtc ctaatatcaa 420
attgactggc tgggtgaact tcaacagcct tttaacctct ctgggagatg aaaacgatgg 480
tatagcataa aggctagaga ccaaaataga taacaggatt ccctgaacat tcctaagagg 600
gagaaagtat gttaaaaata gaaaaaccaa aatgcagaag gaggagactc acagagctaa 660
accaggatgg ggaccctggg tcaggccagc ctctttgctc ctcccggaaa ttattttttgg 720
tetgaceaet etgeettgtg tittgeagaa teatgtgagg geeaaeeggg gaaggtggag 780
cagatgagca cacacaggag cegteteete acegeegeee eteteageat ggaacagagg 840
cagecetgge eeegggeeet ggaggtggae ageegetetg tggteetget eteagtggte 900
tgggtgctgc tggccccccc agcagccggc atgcctcagt tcagcacctt ccactctgag 960
aatcgtgact ggaccttcaa ccacttgacc gtccaccaag ggacgggggc cgtctatgtg 1020
ggggccatca accgggtcta taagctgaca ggcaacctga ccatccaggt ggctcataag 1080
acagggccag aagaggacaa caagtctcgt tacccgcccc tcatcgtgca gccctgcagc 1140
gaagtgetea eeeteaceaa caatgteaae aagetgetea teattgaeta etetgagaae 1200
cgcctgctgg cctgtgggag cctctaccag ggggtctgca agctgctgcg gctggatgac 1260
ctcttcatcc tggtggagcc atcccacaag aaggagcact acctgtccag tgtcaacaag 1320
acgggcacca tgtacggggt gattgtgcgc tctgagggtg aggatggcaa gctcttcatc 1380
ggcacggctg tggatgggaa gcaggattac ttcccgaccc tgtccagccg gaagctgccc 1440
cgagaccctg agtcctcagc catgctcgac tatgagctac acagcgattt tgtctcctct 1500
ctcatcaaga teeetteaga caeeetggee etggteteee aetttgaeat ettetacate 1560
tacggctttg ctagtggggg ctttgtctac tttctcactg tccagcccga gacccctgag 1620
ggtgtggcca tcaactccgc tggagacctc ttctacacct cacgcatcgt gcggctctgc 1680
```

```
gtggaatacc gcctcctgca ggctgcttac ctggccaagc ctggggactc actggcccag 1800
 gccttcaata tcaccagcca ggacgatgta ctctttgcca tcttctccaa agggcagaag 1860
 cagtatcacc accegecega tgactetgee etgtgtgeet teeetateeg ggecateaac 1920
 ttgcagatca aggagcgcct gcagtcctgc taccagggcg agggcaacct ggagctcaac 1980
 tggctgctgg ggaaggacgt ccagtgcacg aaggcgcctg tccccatcga tgataacttc 2040
 tgtggactgg acatcaacca gcccctggga ggctcaactc cagtggaggg cctgaccctg 2100
 tacaccacca gcagggaccg catgacctct gtggcctcct acgtttacaa cggctacagc 2160
 gtggtttttg tggggactaa gagtggcaag ctgaaaaagg taagagtcta tgagttcaga 2220
 tgctccaatg ccattcacct cctcagcaaa gagtccctct tggaaggtag ctattggtgg 2280
 agatttaact ataggcaact ttattttctt ggggaacaaa ggtgaaatgg ggaggtaaga 2340
 aggggttaat tttgtgactt agcttctagc tacttcctcc agccatcagt cattgggtat 2400
 gtaaggaatg caagcgtatt tcaatatttc ccaaacttta agaaaaact ttaagaaggt 2460
 acatctgcaa aagcaaa
<210> 170
 <211> 552
 <212> PRT
<213> Homo sapiens
<400> 170
Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn Tyr
Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys Glu Gly
                                  25
Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser Arg Leu Leu
Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro Trp Pro Arg Ala
Leu Glu Val Asp Ser Arg Ser Val Val Leu Leu Ser Val Val Trp Val
Leu Leu Ala Pro Pro Ala Ala Gly Met Pro Gln Phe Ser Thr Phe His
Ser Glu Asn Arg Asp Trp Thr Phe Asn His Leu Thr Val His Gln Gly
                                105
Thr Gly Ala Val Tyr Val Gly Ala Ile Asn Arg Val Tyr Lys Leu Thr
        115
Gly Asn Leu Thr Ile Gln Val Ala His Lys Thr Gly Pro Glu Glu Asp
                        135
Asn Lys Ser Arg Tyr Pro Pro Leu Ile Val Gln Pro Cys Ser Glu Val
                    150
Leu Thr Leu Thr Asn Asn Val Asn Lys Leu Leu Ile Ile Asp Tyr Ser
```

170

Glu Asn Arg Leu Leu Ala Cys Gly Ser Leu Tyr Gln Gly Val Cys Lys 185 Leu Leu Arg Leu Asp Asp Leu Phe Ile Leu Val Glu Pro Ser His Lys Lys Glu His Tyr Leu Ser Ser Val Asn Lys Thr Gly Thr Met Tyr Gly Val Ile Val Arg Ser Glu Gly Glu Asp Gly Lys Leu Phe Ile Gly Thr Ala Val Asp Gly Lys Gln Asp Tyr Phe Pro Thr Leu Ser Ser Arg Lys Leu Pro Arg Asp Pro Glu Ser Ser Ala Met Leu Asp Tyr Glu Leu His 265 Ser Asp Phe Val Ser Ser Leu Ile Lys Ile Pro Ser Asp Thr Leu Ala Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly Phe Ala Ser Gly 290 Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu Thr Pro Glu Gly Val Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr Thr Ser Arg Ile Val Arg Leu Cys Lys Asp Asp Pro Lys Phe His Ser Tyr Val Ser Leu Pro Phe 345 Gly Cys Thr Arg Ala Gly Val Glu Tyr Arg Leu Leu Gln Ala Ala Tyr Leu Ala Lys Pro Gly Asp Ser Leu Ala Gln Ala Phe Asn Ile Thr Ser 375 Gln Asp Asp Val Leu Phe Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr His His Pro Pro Asp Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala 410 Ile Asn Leu Gln Ile Lys Glu Arg Leu Gln Ser Cys Tyr Gln Gly Glu Gly Asn Leu Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr Lys Ala Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn

	450					455					460					
Gln 465	Pro	Leu	Gly	Gly	Ser 470	Thr	Pro	Val	Glu	Gly 475	Leu	Thr	Leu	Tyr	Thr 480	
Thr	Ser	Arg	Asp	Arg 485	Met	Thr	Ser	Val	Ala 490	Ser	Tyr	Val	Tyr	Asn 495	Gly	
Tyr	Ser	Val	Val 500	Phe	Val	Gly	Thr	Lys 505	Ser	Gly	Lys	Leu	Lys 510	Lys	Val	
Arg	Val	Tyr 515	Glu	Phe	Arg	Cys	Ser 520	Asn	Ala	Ile	His	Leu 525	Leu	Ser	Lys	
Glu	Ser 530	Leu	Leu	Glu	Gly	Ser 535	Tyr	Trp	Trp	Arg	Phe 540	Asn	Tyr	Arg	Gln	
Leu ' 545	Tyr	Phe	Leu	Gly	Glu 550	Gln	Arg									
<210 <211 <212 <213 <220 <223 <400 tggaa	> 20 > DN > Ar > De ol > 17	Exification of the second of t	ptic	on of	Art le pr	ific	:ial	Sequ	ience	e: Sy	rnthe	etic				20
<210:	> 24															
<212:			cial	Seq	uenc	e										
<220: <223:	> De				Art e pr		ial	Sequ	ence	: Sy	nthe	tic				,
<400×			tgga	gaag	a tg	gc										24
<210 × <211 × <212 × <213 ×	> 43 > DN	A	cial	Seq	uenc	e										
<220> <223>	De:				Art e pr		ial	Sequ	ence	: Sy	nthe	tic				

```
<400> 173
ggactcactg gcccaggcct tcaatatcac cagccaggac gat
                                                                   42
<210> 174
<211> 3106
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (1683)
<223> a, t, c or g
<400> 174
aggetecege gegeggetga gtgeggaetg gagtgggaac eegggteeee gegettagag 60
aacacgcgat gaccacgtgg agcctccggc ggaggccggc ccgcacgctg ggactcctgc 120
tgctggtcgt cttgggcttc ctggtgctcc gcaggctgga ctggagcacc ctggtccctc 180
tgcggctccg ccatcgacag ctggggctgc aggccaaggg ctggaacttc atgctggagg 240
attccacctt ctggatcttc gggggctcca tccactattt ccgtgtgccc agggagtact 300
ggagggaccg cctgctgaag atgaaggcct gtggcttgaa caccctcacc acctatgttc 360
cgtggaacet gcatgageca gaaagaggea aatttgaett etetgggaac etggaeetgg 420
aggeettegt eetgatggee geagagateg ggetgtgggt gattetgegt eeaggeeect 480
acatetgeag tgagatggae eteggggget tgeecagetg getaeteeaa gaecetggea 540
tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
tgatgtccag ggtggtgcca ctccagtaca agcgtggggg acctatcatt gccgtgcagg 660
tggagaatga atatggttcc tataataaag accccgcata catgccctac gtcaagaagg 720
cactggagga ccgtggcatt gtggaactgc tcctgacttc agacaacaag gatgggctga 780
gcaaggggat tgtccaggga gtcttggcca ccatcaactt gcagtcaaca cacgagctgc 840
agetactgae cacetttete tteaaegtee aggggaetea geecaagatg gtgatggagt 900
actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat tcttctgagg 960
ttttgaaaac cgtgtctgcc attgtggacg ccggctcctc catcaacctc tacatgttcc 1020
acggaggcac caactttggc ttcatgaatg gagccatgca cttccatgac tacaagtcag 1080
atgtcaccag ctatgactat gatgctgtgc tgacagaagc cggcgattac acggccaagt 1140
acatgaaget tegagaette tteggeteea teteaggeat ceeteteeet eccecacetg 1200
accttettee caagatgeeg tatgageeet taaegeeagt ettgtaeetg tetetgtggg 1260
acgeceteaa gtaeetgggg gageeaatea agtetgaaaa geeeateaae atggaqaaee 1320
tgccagtcaa tgggggaaat ggacagtcct tcgggtacat tctctatgag accagcatca 1380
cctcgtctgg catcctcagt ggccacgtgc atgatcgggg gcaggtgttt gtgaacacag 1440
tatccatagg attcttggac tacaagacaa cgaagattgc tgtccccctg atccagggtt 1500
acaccgtgct gaggatcttg gtggagaatc gtgggcgagt caactatggg gagaatattg 1560
atgaccageg caaaggetta attggaaate tetatetgaa tgatteacee etgaaaaact 1620
tcagaatcta tagcctggat atgaagaaga gcttctttca gaggttcggc ctggacaaat 1680
ggngttccct cccagaaaca cccacattac ctgctttctt cttgggtagc ttgtccatca 1740
getecaegee ttgtgaeace tttetgaage tggagggetg ggagaagggg gttgtattea 1800
tcaatggcca gaaccttgga cgttactgga acattggacc ccagaagacg ctttacctcc 1860
caggtccctg gttgagcagc ggaatcaacc aggtcatcgt ttttgaggag acgatggcgg 1920
geoetgeatt acagtteaeg gaaaceeece acetgggeag gaaceagtae attaagtgag 1980
eggtggcace ecetectget ggtgeeagtg ggagaetgee geeteetett gaeetgaage 2040
ctggtggctg ctgccccacc cctcactgca aaagcatctc cttaagtagc aacctcaggg 2100
actggggget acagtetgee eetgteteag eteaaaaeee taageetgea gggaaaggtg 2160
ggatggetet gggeetgget ttgttgatga tggettteet acagecetge tettgtgeeg 2220
```

aggetgtegg getgteteta gggtgggage agetaateag ategeeeage etttggeeet 2280

```
cagaaaaagt gctgaaacgt gcccttgcac cggacgtcac agccctgcga gcatctgctg 2340
gactcaggcg tgctctttgc tggttcctgg gaggcttggc cacatccctc atggccccat 2400
tttatccccg aaatcctggg tgtgtcacca gtgtagaggg tggggaaggg gtgtctcacc 2460
tgagctgact ttgttcttcc ttcacaacct tctgagcctt ctttgggatt ctggaaggaa 2520
ctcggcgtga gaaacatgtg acttcccctt tcccttccca ctcgctgctt cccacagggt 2580
gacaggctgg gctggagaaa cagaaatcct caccctgcgt cttcccaagt tagcaggtgt 2640
ctctggtgtt cagtgaggag gacatgtgag tcctggcaga agccatggcc catgtctgca 2700
catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga agccatggcc 2760
catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga 2820
agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag 2880
tcctggcaga agccatggcc catgtctgca catccaggga ggaqqacaga aggcccaqct 2940
cagtggcccc cgctccccac cccccacgcc cgaacagcag gggcagagca gccctccttc 3000
gaagtgtgtc caagtccgca tttgagcctt gttctggggc ccagcccaac acctggcttg 3060
ggctcactgt cctgagttgc agtaaagcta taaccttgaa tcacaa
<210> 175
<211> 636
<212> PRT
<213> Homo sapiens
<220>
<221> MOD RES
<222> (539)
<223> Any amino acid
<400> 175
Met Thr Trp Ser Leu Arg Arg Pro Ala Arg Thr Leu Gly Leu
Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp
Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly Leu Gln
Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr Phe Trp Ile Phe
Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg Glu Tyr Trp Arg Asp
Arg Leu Leu Lys Met Lys Ala Cys Gly Leu Asn Thr Leu Thr Tyr
Val Pro Trp Asn Leu His Glu Pro Glu Arg Gly Lys Phe Asp Phe Ser
Gly Asn Leu Asp Leu Glu Ala Phe Val Leu Met Ala Ala Glu Ile Gly
                            120
Leu Trp Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ser Glu Met Asp
    130
                        135
```

Leu 145		Gly	Leu	Pro	Ser 150	Trp	Leu	Leu	Gln	Asp 155	Pro	Gly	Met	Arg	Leu 160
Arg	Thr	Thr	Tyr	Lys 165	Gly	Phe	Thr	Glu	Ala 170	Val	Asp	Leu	Tyr	Phe 175	Asp
His	Leu	Met	Ser 180	Arg	Val	Val	Pro	Leu 185	Gln	Tyr	Lys	Arg	Gly 190	Gly	Pro
Ile	Ile	Ala 195	Val	Gln	Val	Glu	Asn 200	Glu	Tyr	Gly	Ser	Tyr 205	Asn	Lys	Asp
Pro	Ala 210	Tyr	Met	Pro	Tyr	Val 215	Lys	Lys	Ala	Leu	Glu 220	Asp	Arg	Gly	Ile
Val 225	Glu	Leu	Leu	Leu	Thr 230	Ser	Asp	Asn	Lys	Asp 235	Gly	Leu	Ser	Lys	Gly 240
Ile	Val	Gln	Gly	Val 245	Leu	Ala	Thr	Ile	Asn 250	Leu	Gln	Ser	Thr	His 255	Glu
Leu	Gln	Leu	Leu 260	Thr	Thr	Phe	Leu	Phe 265	Asn	Val	Gln	Gly	Thr 270	Gln	Pro
Lys	Met	Val 275	Met	Glu	Tyr	Trp	Thr 280	Gly	Trp	Phe	Asp	Ser 285	Trp	Gly	Gly
Pro	His 290	Asn	Ile	Leu	Asp	Ser 295	Ser	Glu	Val	Leu	Lys 300	Thr	Val	Ser	Ala
Ile 305	Val	Asp	Ala	Gly	Ser 310	Ser	Ile	Asn	Leu	Tyr 315	Met	Phe	His	Gly	Gly 320
Thr	Asn	Phe	Gly	Phe 325	Met	Asn	Gly	Ala	Met 330	His	Phe	His	Asp	Tyr 335	Lys
Ser	Asp	Val	Thr 340	Ser	Tyr	Asp	Tyr	Asp 345	Ala	Val	Leu	Thr	Glu 350	Ala	Gly
Asp	Tyr	Thr 355	Ala	Lys	Tyr	Met	Lys 360	Leu	Arg	Asp	Phe	Phe 365	Gly	Ser	Ile
Ser	Gly 370	Ile	Pro	Leu	Pro	Pro 375	Pro	Pro	Asp	Leu	Leu 380	Pro	Lys	Met	Pro
Tyr 385	Glu	Pro	Leu	Thr	Pro 390	Val	Leu	Tyr	Leu	Ser 395	Leu	Trp	Asp	Ala	Leu 400
Lys	Tyr	Leu	Gly	Glu 405	Pro	Ile	Lys	Ser	Glu 410	Lys	Pro	Ile	Asn	Met 41 5	Glu
Asn	Leu	Pro	Val 420	Asn	Gly	Gly	Asn	Gly 425	Gln	Ser	Phe	Gly	Tyr 430	Ile	Leu

```
Tyr Glu Thr Ser Ile Thr Ser Ser Gly Ile Leu Ser Gly His Val His
                            440
Asp Arg Gly Gln Val Phe Val Asn Thr Val Ser Ile Gly Phe Leu Asp
                        455
Tyr Lys Thr Thr Lys Ile Ala Val Pro Leu Ile Gln Gly Tyr Thr Val
Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn
Ile Asp Asp Gln Arg Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp
Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser
Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr
Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Ser Thr
545
                                         555
Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val
Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln
                                585
Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln
Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr
    610
Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys
625
                    630
<210> 176
<211> 2505
<212> DNA
<213> Homo sapiens
<400> 176
ggggacgcgg agctgagagg ctccgggcta gctaggtgta ggggtggacg ggtcccagga 60
ccctggtgag ggttctctac ttggccttcg gtgggggtca agacgcaggc acctacgcca 120
aaggggagca aagccgggct cggcccgagg cccccaggac ctccatctcc caatgttgga 180
ggaatccgac acgtgacggt ctgtccgccg tctcagacta gaggagcgct gtaaacgcca 240
tggctcccaa gaagctgtcc tgccttcgtt ccctgctgct gccgctcagc ctgacgctac 300
tgctgcccca ggcagacact cggtcgttcg tagtggatag gggtcatgac cggtttctcc 360
```

tagacggggc cccgttccgc tatgtgtctg gcagcctgca ctactttcgg gtaccgcggg 420

```
tgctttgggc cgaccggctt ttgaagatgc gatggagcgg cctcaacgcc atacagtttt 480
atgtgccctg gaactaccac gagccacagc ctggggtcta taactttaat ggcagccggg 540
acctcattgc ctttctgaat gaggcagctc tagcgaacct gttggtcata ctgagaccag 600
gaccttacat ctgtgcagag tgggagatgg ggggtctccc atcctggttg cttcgaaaac 660
ctgaaattca tctaagaacc tcagatccag acttccttgc cgcagtggac tcctggttca 720
aggtettget geccaagata tatecatgge tttateacaa tgggggeaac ateattagea 780
ttcaggtgga gaatgaatat ggtagctaca gagcctgtga cttcagctac atgaggcact 840
tggctgggct cttccgtgca ctgctaggag aaaagatctt gctcttcacc acagatgggc 900
ctgaaggact caagtgtggc tccctccggg gactctatac cactgtagat tttggcccag 960
ctgacaacat gaccaaaatc tttaccctgc ttcggaagta tgaaccccat gggccattgg 1020
taaactctga gtactacaca ggctggctgg attactgggg ccagaatcac tccacacggt 1080
ctgtgtcagc tgtaaccaaa ggactagaga acatgctcaa gttgggagcc agtgtgaaca 1140
tgtacatqtt ccatqqaqqt accaactttg gatattggaa tggtgccqat aagaagggac 1200
getteettee gattactace agetatgact atgatgeace tatatetgaa geaggggace 1260
ccacacctaa getttttgct cttcgagatg tcatcagcaa gttccaggaa gttcctttgg 1320
gacctttacc tcccccgagc cccaagatga tgcttggacc tgtgactctg cacctggttg 1380
ggcatttact ggctttccta gacttgcttt gcccccgtgg gcccattcat tcaatcttgc 1440
caatgacett tgaggetgte aageaggace atggetteat gttgtacega acetatatga 1500
cccataccat ttttgagcca acaccattct gggtgccaaa taatggagtc catgaccgtg 1560
cctatgtgat ggtggatggg gtgttccagg gtgttgtgga gcgaaatatg agagacaaac 1620
tatttttgac ggggaaactg gggtccaaac tggatatctt ggtggagaac atggggaggc 1680
tcagctttgg gtctaacagc agtgacttca agggcctgtt gaagccacca attctggggc 1740
aaacaatcct tacccagtgg atgatgttcc ctctgaaaat tgataacctt gtgaagtggt 1800
ggtttcccct ccagttgcca aaatggccat atcctcaagc tccttctggc cccacattct 1860
actccaaaac atttccaatt ttaggctcag ttggggacac atttctatat ctacctggat 1920
ggaccaaggg ccaagtctgg atcaatgggt ttaacttggg ccggtactgg acaaagcagg 1980
ggccacaaca gaccctctac gtgccaagat tcctgctgtt tcctagggga gccctcaaca 2040
aaattacatt gctggaacta gaagatgtac ctctccagcc ccaagtccaa tttttggata 2100
agectatect caatageact agtaetttge acaggacaca tateaattee ettteagetg 2160
atacactgag tgcctctgaa ccaatggagt taagtgggca ctgaaaggta ggccgggcat 2220
ggtggetcat gcctgtaatc ccagcacttt gggaggctga gacgggtgga ttacctgagg 2280
tcaggacttc aagaccagcc tggccaacat ggtgaaaccc cgtctccact aaaaatacaa 2340
aaattageeg ggegtgatgg tgggeaeete taateeeage taettgggag getgagggea 2400
ggagaattgc ttgaatccag gaggcagagg ttgcagtgag tggaggttgt accactgcac 2460
tccagcctgg ctgacagtga gacactccat ctcaaaaaaa aaaaa
<210> 177
<211> 654
<212> PRT
<213> Homo sapiens
<400> 177
Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro Leu
Ser Leu Thr Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val
                                 25
Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr
```

Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala

Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His Leu Arg Thr Ser Asp Pro Asp Phe Leu Ala Ala Val Asp Ser Trp Phe Lys Val Leu Leu Pro Lys Ile Tyr Pro Trp Leu Tyr His Asn Gly Gly Asn Ile Ile Ser Ile Gln Val Glu Asn Glu Tyr Gly Ser Tyr Arg Ala Cys Asp Phe Ser Tyr Met Arg His Leu Ala Gly Leu Phe Arg Ala Leu 200 Leu Gly Glu Lys Ile Leu Leu Phe Thr Thr Asp Gly Pro Glu Gly Leu Lys Cys Gly Ser Leu Arg Gly Leu Tyr Thr Thr Val Asp Phe Gly Pro Ala Asp Asn Met Thr Lys Ile Phe Thr Leu Leu Arg Lys Tyr Glu Pro His Gly Pro Leu Val Asn Ser Glu Tyr Tyr Thr Gly Trp Leu Asp Tyr 265 Trp Gly Gln Asn His Ser Thr Arg Ser Val Ser Ala Val Thr Lys Gly Leu Glu Asn Met Leu Lys Leu Gly Ala Ser Val Asn Met Tyr Met Phe His Gly Gly Thr Asn Phe Gly Tyr Trp Asn Gly Ala Asp Lys Lys Gly 305 Arg Phe Leu Pro Ile Thr Thr Ser Tyr Asp Tyr Asp Ala Pro Ile Ser 330

Glu Ala Gly Asp Pro Thr Pro Lys Leu Phe Ala Leu Arg Asp Val Ile

			340					345					350		
Ser	Lys	Phe 355	Gln	Glu	Val	Pro	Leu 360	Gly	Pro	Leu	Pro	Pro 365	Pro	Ser	Pro
Lys	Met 370	Met	Leu	Gly	Pro	Val 375	Thr	Leu	His	Leu	Val 380	Gly	His	Leu	Leu
Ala 385	Phe	Leu	Asp	Leu	Leu 390	Cys	Pro	Arg	Gly	Pro 395	Ile	His	Ser	Ile	Leu 400
Pro	Met	Thr	Phe	Glu 405	Ala	Val	Lys	Gln	Asp 410	His	Gly	Phe	Met	Leu 415	Tyr
Arg	Thr	Tyr	Met 420	Thr	His	Thr	Ile	Phe 425	Glu	Pro	Thr	Pro	Phe 4 30	Trp	Val
Pro	Asn	Asn 435	Gly	Val	His	Asp	Arg 440	Ala	Tyr	Val	Met	Val 445	Asp	Gly	Val
Phe	Gln 450	Gly	Val	Val	Glu	Arg 455	Asn'	Met	Arg	Asp	Lys 460	Leu	Phe	Leu	Thr
Gly 465	Lys	Leu	Gly	Ser	Lys 470	Leu	Asp	Ile	Leu	Val 475	Glu	Asn	Met	Gly	Arg 480
Leu	Ser	Phe	Gly	Ser 485	Asn	Ser	Ser	Asp	Phe 490	Lys	Gly	Leu	Leu	Lys 495	Pro
Pro	Ile	Leu	Gly 500	Gln	Thr	Ile	Leu	Thr 505	Gln	Trp	Met	Met	Phe 510	Pro	Leu
Lys	Ile	Asp 515	Asn	Leu	Val	Lys	Trp 520	Trp	Phe	Pro	Leu	Gln 525	Leu	Pro	Lys
Trp	Pro 530	Tyr	Pro	Gln	Ala	Pro 535	Ser	Gly	Pro	Thr	Phe 5 4 0	Tyr	Ser	Lys	Thr
Phe 5 4 5	Pro	Ile	Leu	Gly	Ser 550	Val	Gly	Asp	Thr	Phe 555	Leu	Tyr	Leu	Pro	Gly 560
Trp	Thr	Lys	Gly	Gln 565	Val	Trp	Ile	Asn	Gly 570		Asn	Leu	Gly	Arg 575	
Trp	Thr	Lys	Gln 580	Gly	Pro	Gln	Gln	Thr 585	Leu	Tyr	Val	Pro	Arg 590	Phe	Leu
Leu	Phe	Pro 595	Arg	Gly	Ala	Leu	Asn 600	Lys	Ile	Thr	Leu	Leu 605	Glu	Leu	Glu
Asp	Val 610	Pro	Leu	Gln	Pro	Gln 615	Val	Gln	Phe	Leu	Asp 620	Lys	Pro	Ile	Leu

Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala 625 630 635 640	
Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His 645 650	
<210> 178 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 178 tggctactcc aagaccctgg catg	24
<210> 179 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 179 tggacaaatc cccttgctca gccc	24
<210> 180 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 180 gggcttcacc gaagcagtgg acctttattt tgaccacctg atgtccaggg	50
<210> 181 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 181	22

```
<210> 182
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 182
                                                                   24
tggcacccag aatggtgttg gctc
<210> 183
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 183
cgagatgtca tcaqcaagtt ccaqgaagtt cctttqqqac ctttacctcc
<210> 184
<211> 1947
<212> DNA
<213> Homo sapiens
<400> 184
gctttgaaca cgtctgcaag cccaaagttg agcatctgat tggttatgag gtatttgagt 60
gcacccacaa tatggcttac atgttgaaaa agcttctcat cagttacata tccattattt 120
gtgtttatgg ctttatctgc ctctacactc tcttctggtt attcaggata cctttgaagg 180
aatattettt egaaaaagte agagaagaga geagttttag tgacatteea gatgteaaaa 240
acgattttgc gttccttctt cacatggtag accagtatga ccagctatat tccaagcgtt 300
ttggtgtgtt cttgtcagaa gttagtgaaa ataaacttag ggaaattagt ttgaaccatg 360
agtggacatt tgaaaaactc aggcagcaca tttcacgcaa cgcccaggac aagcaggagt 420
tgcatctgtt catgctgtcg ggggtgcccg atgctgtctt tgacctcaca gacctggatg 480
tgctaaagct tgaactaatt ccagaagcta aaattcctgc taagatttct caaatgacta 540
acctccaaga gctccacctc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600
ttettegega teaettgaga tgeetteaeg tgaagtteae tgatgtgget gaaatteetg 660
cctgggtgta tttgctcaaa aaccttcgag agttgtactt aataggcaat ttgaactctg 720
aaaacaataa gatgatagga cttgaatctc tccgagagtt gcggcacctt aagattctcc 780
acgtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
caaagttagt cattcataat gacggcacta aactcttggt actgaacagc cttaagaaaa 900
tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
ttttcagcct ctctaattta caggaactgg atttaaagtc caataacatt cgcacaattg 1020
aggaaatcat cagtttccag catttaaaac gactgacttg tttaaaatta tggcataaca 1080
aaattgttac tattcctccc tctattaccc atgtcaaaaa cttggagtca ctttatttct 1140
ctaacaacaa gctcgaatcc ttaccagtgg cagtatttag tttacagaaa ctcagatgct 1200
tagatgtgag ctacaacaac atttcaatga ttccaataga aataggattg cttcagaacc 1260
tgcagcattt gcatatcact gggaacaaag tggacattct gccaaaacaa ttgtttaaat 1320
```

```
gcataaagtt gaggactttg aatctgggac agaactgcat cacctcactc ccagagaaag 1380
 ttggtcagct ctcccagctc actcagctgg agctgaaggg gaactgcttg gaccgcctgc 1440
 cagcccagct gggccagtgt cggatgctca agaaaagcgg gcttgttgtg gaagatcacc 1500
 tttttgatac cctgccactc gaagtcaaag aggcattgaa tcaagacata aatattccct 1560
 ttgcaaatgg gatttaaact aagataatat atgcacagtg atgtgcagga acaacttcct 1620
 agattgcaag tgctcacgta caagttatta caagataatg cattttagga gtagatacat 1680
 cttttaaaat aaaacagaga ggatgcatag aaggctgata gaagacataa ctgaatgttc 1740
 aatgtttgta gggttttaag tcattcattt ccaaatcatt ttttttttt ttttggggaa 1800
 agggaaggaa aaattataat cactaatett ggttettttt aaattgtttg taaettggat 1860
 gctgccgcta ctgaatgttt acaaattgct tgcctgctaa agtaaatgat taaattgaca 1920
 ttttcttact aaaaaaaaa aaaaaaa
 <210> 185
 <211> 501
 <212> PRT
<213> Homo sapiens
<400> 185
Met Ala Tyr Met Leu Lys Lys Leu Leu Ile Ser Tyr Ile Ser Ile Ile
Cys Val Tyr Gly Phe Ile Cys Leu Tyr Thr Leu Phe Trp Leu Phe Arg
Ile Pro Leu Lys Glu Tyr Ser Phe Glu Lys Val Arg Glu Glu Ser Ser
Phe Ser Asp Ile Pro Asp Val Lys Asn Asp Phe Ala Phe Leu Leu His
Met Val Asp Gln Tyr Asp Gln Leu Tyr Ser Lys Arg Phe Gly Val Phe
Leu Ser Glu Val Ser Glu Asn Lys Leu Arg Glu Ile Ser Leu Asn His
Glu Trp Thr Phe Glu Lys Leu Arg Gln His Ile Ser Arg Asn Ala Gln
                                105
Asp Lys Gln Glu Leu His Leu Phe Met Leu Ser Gly Val Pro Asp Ala
                            120
Val Phe Asp Leu Thr Asp Leu Asp Val Leu Lys Leu Glu Leu Ile Pro
Glu Ala Lys Ile Pro Ala Lys Ile Ser Gln Met Thr Asn Leu Gln Glu
                                        155
Leu His Leu Cys His Cys Pro Ala Lys Val Glu Gln Thr Ala Phe Ser
Phe Leu Arg Asp His Leu Arg Cys Leu His Val Lys Phe Thr Asp Val
                                185
```

Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile 305 310 Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu 390 395 His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser 425 Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu 435 Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg

Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr

465	470	475	480
Leu Pro Leu Glu Va 48	=	Asn Gln Asp Ile As	n Ile Pro 495
Phe Ala Asn Gly Ile 500	=		
<210> 186 <211> 21 <212> DNA <213> Artificial Se	equence		
<220> <223> Description of oligonucleot:		uence: Synthetic	
<400> 186 cctccctcta ttacccat	gt c		21
<210> 187 <211> 24 <212> DNA <213> Artificial Se	equence		
<220> <223> Description of oligonucleot:		uence: Synthetic	
<400> 187 gaccaacttt ctctggga	ıgt gagg		24
<210> 188 <211> 47 <212> DNA <213> Artificial Se	equence		
<220> <223> Description of oligonucleotic	-	uence: Synthetic	
<400> 188 gtcactttat ttctctaa	ıca acaagetega ato	ccttacca gtggcag	47
<210> 189 <211> 2917 <212> DNA <213> Homo sapiens			
<400> 189 cccacgcgtc cggccttc acttttttta tttctttt aagacatttg tgttttac	tt tccatctctg ggd	ccagcttg ggatcctagg	ccgccctggg 120

```
acattggcat tgcttagtgg ttgtgtgggg agggagacca cgtgggctca gtgcttgctt 240
gcacttatet geetaggtae ategaagtet tttgaeetee atacagtgat tatgeetgte 300
ategetggtg gtateetgge ggeettgete etgetgatag ttgtegtget etgtetttae 360
ttcaaaatac acaacgeget aaaagetgea aaggaacetg aagetgtgge tgtaaaaaat 420
cacaacccag acaaggtgtg gtgggccaag aacagccagg ccaaaaccat tgccacggag 480
tettgteetg ceetgeagtg etgtgaagga tatagaatgt gtgeeagttt tgatteeetg 540
ccaccttgct gttgcgacat aaatgagggc ctctgagtta ggaaaggctc ccttctcaaa 600
geagageeet gaagaettea atgatgteaa tgaggeeace tgtttgtgat gtgeaggeac 660
agaagaaagg cacageteee cateagttte atggaaaata acteagtgee tgetgggaac 720
cagetgetgg agatecetae agagagette caetggggge aaccetteca ggaaggagtt 780
ggggagagag aacceteact gtggggaatg ctgataaacc agteacacag ctgetetatt 840
ctcacacaaa tctacccctt gcgtggctgg aactgacgtt tccctggagg tgtccagaaa 900
getgatgtaa cacagageet ataaaagetg teggteetta aggetgeeca gegeettgee 960
aaaatggage ttgtaagaag geteatgeea ttgaceetet taattetete etgtttggeg 1020
gagetgaeaa tggeggagge tgaaggeaat geaagetgea eagteagtet agggggtgee 1080
aatatggcag agacccacaa agccatgatc ctgcaactca atcccagtga gaactgcacc 1140
tggacaatag aaagaccaga aaacaaaagc atcagaatta tcttttccta tgtccagctt 1200
gatccagatg gaagctgtga aagtgaaaac attaaagtct ttgacggaac ctccagcaat 1260
gggcctctgc tagggcaagt ctgcagtaaa aacgactatg ttcctgtatt tgaatcatca 1320
tccagtacat tgacgtttca aatagttact qactcaqcaa qaattcaaaq aactqtcttt 1380
gtettetaet aettettete teetaacate tetatteeaa aetgtggegg ttaeetggat 1440
accttggaag gatccttcac cagccccaat tacccaaagc cgcatcctga gctggcttat 1500
tgtgtgtggc acatacaagt ggagaaagat tacaagataa aactaaactt caaagagatt 1560
ttcctagaaa tagacaaaca gtgcaaattt gattttcttg ccatctatga tggcccctcc 1620
accaactotg gootgattgg acaagtotgt ggoogtgtga otoccacott cgaatcgtca 1680
tcaaactctc tgactgtcgt gttgtctaca gattatgcca attcttaccg gggattttct 1740
getteetaca eeteaattta tgeagaaaac ateaacacta catetttaac ttgetettet 1800
gacaggatga gagttattat aagcaaatcc tacctagagg cttttaactc taatgggaat 1860
aacttgcaac taaaagaccc aacttgcaga ccaaaattat caaatgttgt ggaattttct 1920
gtccctctta atggatgtgg tacaatcaga aaggtagaag atcagtcaat tacttacacc 1980
aatataatca cettttetge ateeteaact tetgaagtga teaccegtea gaaacaacte 2040
cagattattg tgaagtgtga aatgggacat aattctacag tggagataat atacataaca 2100
gaagatgatg taatacaaag tcaaaatgca ctgggcaaat ataacaccag catggctctt 2160
tttgaatcca attcatttga aaagactata cttgaatcac catattatgt ggatttgaac 2220
caaactcttt ttgttcaagt tagtctgcac acctcagatc caaatttggt ggtgtttctt 2280
gatacetgta gageetetee cacetetgae tittgeatete caaeetaega ectaateaag 2340
agtggatgta gtcgagatga aacttgtaag gtgtatccct tatttggaca ctatgggaga 2400
ttccagttta atgcctttaa attcttgaga agtatgagct ctgtgtatct gcagtgtaaa 2460
gttttgatat gtgatagcag tgaccaccag tctcgctgca atcaaggttg tgtctccaga 2520
agcaaacgag acatttette atataaatgg aaaacagatt ecateatagg acceattegt 2580
ctgaaaaggg atcgaagtgc aagtggcaat tcaggatttc agcatgaaac acatgcggaa 2640
gaaactccaa accagccttt caacagtgtg catctgtttt ccttcatggt tctagctctg 2700
aatgtggtga ctgtagcgac aatcacagtg aggcattttg taaatcaacg ggcagactac 2760
aaataccaga agctgcagaa ctattaacta acaqqtccaa ccctaaqtqa qacatgtttc 2820
tccaggatgc caaaggaaat gctacctcgt ggctacacat attatgaata aatgaggaag 2880
ggcctgaaag tgacacacag gcctgcatgt aaaaaaa
                                                                  2917
```

<210> 190

<211> 607

<212> PRT

<213> Homo sapiens

<400> 190

Met 1		Leu	. Val	Arg 5	Arg	Leu	Met	Pro	Leu 10	Thr	Leu	Leu	Ile	Leu 15	Ser
Cys	Leu	Ala	Glu 20		Thr	Met	Ala	Glu 25	Ala	Glu	Gly	Asn	Ala 30	Ser	Cys
Thr	Val	Ser 35		Gly	Gly	Ala	Asn 40	Met	Ala	Glu	Thr	His 45	Lys	Ala	Met
Ile	Leu 50	Gln	Leu	Asn	Pro	Ser 55	Glu	Asn	Cys	Thr	Trp 60	Thr	Ile	Glu	Arg
Pro 65	Glu	Asn	Lys	Ser	Ile 70	Arg	Ile	Ile	Phe	Ser 75	Tyr	Val	Gln	Leu	Asp 80
Pro	Asp	Gly	Ser	Cys 85	Glu	Ser	Glu	Asn	Ile 90	Lys	Val	Phe	Asp	Gly 95	Thr
Ser	Ser	Asn	Gly 100	Pro	Leu	Leu	Gly	Gln 105	Val	Cys	Ser	Lys	Asn 110	Asp	Tyr
Val	Pro	Val 115	Phe	Glu	Ser	Ser	Ser 120	Ser	Thr	Leu	Thr	Phe 125	Gln	Ile	Val
Thr	Asp 130	Ser	Ala	Arg	Ile	Gln 135	Arg	Thr	Val	Phe	Val 140	Phe	Tyr	Tyr	Phe
Phe 145	Ser	Pro	Asn	Ile	Ser 150	Ile	Pro	Asn	Cys	Gly 155	Gly	Tyr	Leu	Asp	Thr 160
Leu	Glu	Gly	Ser	Phe 165	Thr	Ser	Pro	Asn	Tyr 170	Pro	Lys	Pro	His	Pro 175	Glu
Leu	Ala	Tyr	Cys 180	Val	Trp	His	Ile	Gln 185	Val	Glu	Lys	Asp	Tyr 190	Lys	Ile
Lys	Leu	Asn 195	Phe	Lys	Glu	Ile	Phe 200	Leu	Glu	Ile	Asp	Lys 205	Gln	Cys	Lys
Phe	Asp 210	Phe	Leu	Ala	Ile	Tyr 215	Asp	Gly	Pro	Ser	Thr 220	Asn	Ser	Gly	Leu
11e 225	Gly	Gln	Val	Cys	Gly 230	Arg	Val	Thr	Pro	Thr 235	Phe	Glu	Ser	Ser	Ser 240
Asn	Ser	Leu	Thr	Val 245	Va l	Leu	Ser	Thr	Asp 250	Tyr	Ala	Asn	Ser	Tyr 255	Arg
Gly	Phe	Ser	Ala	Ser	Tyr	Thr	Ser	Ile	Tyr	Ala	Glu	Asn	Ile	Asn	Thr

Thr Ser Leu Thr Cys Ser Ser Asp Arg Met Arg Val Ile Ile Ser Lys

Ser	Туг 290		Glu	Ala	Phe	Asn 295		Asn	Gly	Asn	Asn 300	Leu	Gln	Leu	Lys
Asp 305		Thr	Cys	Arg	Pro 310	Lys	Leu	Ser	Asn	Val 315	Val	Glu	Phe	ser	Val 320
Pro	Leu	Asn	Gly	Cys 325	Gly	Thr	Ile	Arg	Lys 330		Glu	Asp	Gln	Ser 335	Ile
Thr	Tyr	Thr	Asn 340	Ile	Ile	Thr	Phe	Ser 345		Ser	Ser	Thr	Ser 350	Glu	Val
Ile	Thr	Arg 355	Gln	Lys	Gln	Leu	Gln 360	Ile	Ile	Val	Lys	Cys 365	Glu	Met	Gly
His	Asn 370	Ser	Thr	Val	Glu	Ile 375	Ile	Tyr	Ile	Thr	Glu 380	Asp	Asp	Val	Ile
Gln 385	Ser	Gln	Asn	Ala	Leu 390	Gly	Lys	Tyr	Asn	Thr 395	Ser	Met	Ala	Leu	Phe 400
Glu	Ser	Asn	Ser	Phe 405	Glu	Lys	Thr	Ile	Leu 410	Glu	Ser	Pro	Tyr	Tyr 415	Val
Asp	Leu	Asn	Gln 420	Thr	Leu	Phe	Val	Gln 425	Val	Ser	Leu	His	Thr 430	Ser	Asp
Pro	Asn	Leu 435	Val	Val	Phe	Leu	Asp 440	Thr	Cys	Arg	Ala	ser 445	Pro	Thr	Ser
Asp	Phe 450	Ala	Ser	Pro	Thr	Tyr 455	Asp	Leu	Ile	Lys	Ser 460	Gly	Cys	Ser	Arg
Asp 465	G l u	Thr	Cys	Lys	Val 470	Tyr	Pro	Leu	Phe	Gly 475	His	Tyr	Gly	Arg	Phe 480
Gln	Phe	Asn	Ala	Phe 485	Lys	Phe	Leu	Arg	Ser 490	Met	Ser	Ser	Val	Tyr 495	Leu
Gln	Cys	Lys	Val 500	Leu	Ile	Cys	Asp	Ser 505	Ser	Asp	His	Gln	Ser 510	Arg	Cys
Asn	Gln	Gly 515	Cys	Val	Ser	Arg	ser 520	Lys	Arg	Asp	Ile	Ser 525	Ser	Tyr	Lys
Trp	Lys 530	Thr	Asp	ser	Ile	Ile 535	Gly	Pro	Ile	Arg	Leu 540	Lys	Arg	Asp	Arg
Ser 545	Ala	Ser	Gly	Asn	ser 550	Gly	Phe	Gln	His	Glu 555	Thr	His	Ala	Glu	Glu 560
Thr	Pro	Asn	Gln	Pro	Phe	Asn	Ser	Val	His	Leu	Phe	Ser	Phe	Met	Val

565	570	575	
Leu Ala Leu Asn Val Val Thr 580	Val Ala Thr Ile 585	Thr Val Arg His Phe	e
Val Asn Gln Arg Ala Asp Tyr 595	Lys Tyr Gln Lys 600	Leu Gln Asn Tyr 605	
<210> 191 <211> 21 <212> DNA <213> Artificial Sequence			
<220> <223> Description of Artific oligonucleotide probe	ial Sequence: Sy	mthetic	
<400> 191 tctctattcc aaactgtggc g			21
<210> 192 <211> 22 <212> DNA <213> Artificial Sequence			
<220> <223> Description of Artific oligonucleotide probe	ial Sequence: Sy	nthetic	
<400> 192 tttgatgacg attcgaaggt gg			22
<210> 193 <211> 47 <212> DNA <213> Artificial Sequence			
<220> <223> Description of Artific oligonucleotide probe	ial Sequence: Sy	rnthetic	
<400> 193 ggaaggatcc ttcaccagcc ccaatt	accc aaagccgcat	cctgagc	47
<210> 194 <211> 2362 <212> DNA <213> Homo sapiens			
<400> 194 gacggaagaa cagcgctccc gaggcccgggacatgc ggccccagga gctcccctgctgctgc cgccgccgcc gtgccc	cagg ctcgcgttcc	cgttgctgct gttgctgt	tg 120

```
gagteeetgg aegeeegeea getgeeegeg tggtttgaee aggeeaagtt eggeatette 240
atccactggg gagtgttttc cgtgcccagc ttcggtagcg agtggttctg gtggtattgg 300
caaaaggaaa agataccgaa gtatgtggaa tttatgaaag ataattaccc tcctagtttc 360
aaatatgaag attttggacc actatttaca gcaaaatttt ttaatgccaa ccagtgggca 420
gatatttttc aggcctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
tttaccttgt gggggtcaga atattcgtgg aactggaatg ccatagatga ggggcccaag 540
agggacattg tcaaggaact tgaggtagcc attaggaaca gaactgacct qcgttttqqa 600
ctgtactatt ccctttttga atggtttcat ccgctcttcc ttgaggatga atccagttca 660
ttccataagc ggcaatttcc agtttctaag acattgccag agctctatga gttagtgaac 720
aactatcagc ctgaggttct gtggtcggat ggtgacggag gagcaccgga tcaatactgg 780
aacagcacag gettettgge etggttatat aatgaaagee cagttegggg cacagtagte 840
accaatgate gttggggage tggtageate tgtaageatg gtggetteta tacetgeagt 900
gatcgttata acccaggaca tcttttgcca cataaatggg aaaactgcat gacaatagac 960
aaactgtcct ggggctatag gagggaagct ggaatctctg actatcttac aattgaagaa 1020
ttggtgaagc aacttgtaga gacagtttca tgtggaggaa atcttttgat gaatattggg 1080
cccacactag atggcaccat ttctgtagtt tttgaggagc gactgaggca agtggggtcc 1140
tggctaaaag tcaatggaga agctatttat gaaacctata cctggcgatc ccagaatgac 1200
actgtcaccc cagatgtgtg gtacacatcc aagcctaaag aaaaattagt ctatgccatt 1260
tttcttaaat ggcccacatc aggacagctg ttccttggcc atcccaaagc tattctgggg 1320
gcaacagagg tgaaactact gggccatgga cagccactta actggatttc tttqqaqcaa 1380
aatggcatta tggtagaact gccacagcta accattcatc agatgccgtg taaatggggc 1440
tgggctctag ccctaactaa tgtgatctaa agtgcagcag agtggctgat gctgcaagtt 1500
atgtctaagg ctaggaacta tcaggtgtct ataattgtag cacatggaga aagcaatgta 1560
aactggataa gaaaattatt tggcagttca gccctttccc tttttcccac taaatttttc 1620
ttaaattacc catgtaacca ttttaactct ccagtgcact ttgccattaa agtctcttca 1680
cattgatttg tttccatgtg tgactcagag gtgagaattt tttcacatta tagtagcaag 1740
gaattggtgg tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800
tatatagtta tgcatcactt aatatgggga tattttctgg gaaatgcatt gctagtcaat 1860
ttttttttgt gccaacatca tagagtgtat ttacaaaatc ctagatggca tagcctacta 1920
cacacctaat gtgtatggta tagactgttg ctcctaggct acagacatat acagcatgtt 1980
actgaatact gtaggcaata gtaacagtgg tatttgtata tcgaaacata tggaaacata 2040
gagaaggtac agtaaaaata ctgtaaaata aatggtgcac ctgtataggg cacttaccac 2100
gaatggaget tacaggactg gaagttgete tgggtgagte agtgagtgaa tgtgaaqqee 2160
taggacatta ttgaacactg ccagacgtta taaatactgt atgcttaggc tacactacat 2220
ttataaaaaa aagtttttct ttcttcaatt ataaattaac ataagtgtac tgtaacttta 2280
caaacgtttt aatttttaaa acctttttgg ctcttttgta ataacactta gcttaaaaca 2340
taaactcatt qtqcaaatqt aa
<210> 195
<211> 467
<212> PRT
<213> Homo sapiens
<400> 195
Met Arg Pro Gln Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu Leu
Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr
                                 25
```

Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala

Trp	Phe 50	Asp	GIn	Ala	Lys	Phe 55	Gly	Ile	Phe	Ile	His 60	Trp	Gly	Val	Phe
Ser 65	Val	Pro	Ser	Phe	Gly 70	Ser	Glu	Trp	Phe	Trp 75	Trp	Tyr	Trp	Gln	Lys 80
Glu	Lys	Ile	Pro	Lys 85	Tyr	Val	Glu	Phe	Met 90		Asp	Asn	Tyr	Pro 95	Pro
Ser	Phe	Lys	Tyr 100	Glu	Asp	Phe	Gly	Pro 105		Phe	Thr	Ala	Lys 110	Phe	Phe
Asn	Ala	Asn 115	Gln	Trp	Ala	Asp	Ile 120	Phe	Gln	Ala	Ser	Gly 125	Ala	Lys	Tyr
Ile	Val 130	Leu	Thr	Ser	Lys	His 135	His	Glu	Gly	Phe	Thr 140	Leu	Trp	Gly	Ser
Glu 145	Tyr	Ser	Trp	Asn	Trp 150	Asn	Ala	Ile	Asp	Glu 155	Gly	Pro	Lys	Arg	Asp 160
Ile	Val	Lys	Glu	Leu 165	Glu	Val	Ala	Ile	Arg 170	Asn	Arg	Thr	Asp	Leu 175	Arg
Phe	Gly	Leu	Tyr 180	Tyr	Ser	Leu	Phe	Glu 185	Trp	Phe	His	Pro	Leu 190	Phe	Leu
Glu	Asp	Glu 195	Ser	Ser	Ser	Phe	His 200	Lys	Arg	Gln	Phe	Pro 205	Val	Ser	Lys
Thr	Leu 210	Pro	Glu	Leu	Tyr	Glu 215	Leu	Val	Asn	Asn	Tyr 220	Gln	Pro	Glu	Val
Leu 225	Trp	Ser	Asp	Gly	Asp 230	Gly	Gly	Ala	Pro	Asp 235	Gln	Tyr	Trp	Asn	Ser 240
Thr	Gly	Phe	Leu	Ala 245	Trp	Leu	Tyr	Asn	Glu 250	Ser	Pro	Val	Arg	Gly 255	Thr
Val	Val	Thr	Asn 260	Asp	Arg	Trp	Gly	Ala 265	Gly	Ser	Ile	Cys	Lys 270	His	Gly
Gly	Phe	Tyr 275	Thr	Cys	Ser		Arg 280		Asn	Pro	Gly	His 285	Leu	Leu	Pro
His	Lys 290	Trp	Glu	Asn	Cys	Met 295	Thr	Ile	Asp	Lys	Leu 300	Ser	Trp	Gly	Tyr
Arg 305	Arg	Glu	Ala	Gly	Ile 310	Ser	Asp	Tyr	Leu	Thr 315	Ile	Glu	Glu	Leu	Val 320
Lys	Gln	Leu	Val	Glu 325	Thr	Val	Ser	Cys	Gly 330	Gly	Asn	Leu	Leu	Met 335	Asn

11e Gly Pro Thr Leu Asp Gly Thr Ile Ser Val Val Phe 340 345	Glu Glu 350	Arg
Leu Arg Gln Val Gly Ser Trp Leu Lys Val Asn Gly Glu 355 360 365	Ala Ile	Tyr
Glu Thr Tyr Thr Trp Arg Ser Gln Asn Asp Thr Val Thr 370 375 380	Pro Asp	Val
Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala 385 390 395	Ile Phe	Leu 4 00
Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro 405 410	Lys Ala 415	Ile
Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln 420 425	Pro Leu 430	Asn
Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu 435 440 445	Pro Gln	Leu
Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu 450 455 460	Ala Leu	Thr
Asn Val Ile 465		
<210> 196 <211> 23 <212> DNA <213> Artificial Sequence		
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 196 tggtttgacc aggccaagtt cgg		23
<210> 197 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 197 ggattcatcc tcaaggaaga gcgg		24
<210> 198		

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 198
                                                                   24
aacttgcagc atcagccact ctgc
<210> 199
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 199
                                                                   45
ttccgtgccc agcttcggta gcgagtggtt ctggtggtat tggca
<210> 200
<211> 2372
<212> DNA
<213> Homo sapiens
<400> 200
agcagggaaa tccggatgtc tcggttatga agtggagcag tgagtgtgag cctcaacata 60
gttccagaac tctccatccg gactagttat tgagcatctg cctctcatat caccagtggc 120
catctgaggt gtttccctgg ctctgaaggg gtaggcacga tggccaggtg cttcagcctg 180
gtgttgcttc tcacttccat ctggaccacg aggctcctgg tccaaggctc tttgcgtgca 240
gaagagettt ceatecaggt gteatgeaga attatgggga teaccettgt gageaaaaag 300
gcgaaccagc agctgaattt cacagaagct aaggaggcct gtaggctgct gggactaagt 360
ttggccggca aggaccaagt tgaaacagcc ttgaaagcta gctttgaaac ttgcagctat 420
ggctgggttg gagatggatt cgtggtcatc tctaggatta gcccaaaccc caagtgtggg 480
aaaaatgggg tgggtgtcct gatttggaag gttccagtga gccgacagtt tgcagcctat 540
tgttacaact catctgatac ttggactaac tcgtgcattc cagaaattat caccaccaaa 600
gatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgacagt 660
acctactcgg tggcatcccc ttactctaca atacctgccc ctactactac tcctcctgct 720
ccagcttcca cttctattcc acggagaaaa aaattgattt gtgtcacaga agtttttatg 780
gaaactagca ccatgtctac agaaactgaa ccatttgttg aaaataaagc agcattcaag 840
aatgaagetg etgggtttgg aggtgteece aeggetetge tagtgettge teteetette 900
tttggtgctg cagctggtct tggattttgc tatgtcaaaa ggtatgtgaa ggccttccct 960
tttacaaaca agaatcagca gaaggaaatg atcgaaacca aagtagtaaa ggaggagaag 1020
gccaatgata gcaaccctaa tgaggaatca aagaaaactg ataaaaaccc agaagagtcc 1080
aagagtccaa gcaaaactac cgtgcgatgc ctggaagctg aagtttagat gagacagaaa 1140
tgaggagaca cacctgaggc tggtttcttt catgctcctt accctgcccc agctggggaa 1200
atcaaaaqqq ccaaaqaacc aaaqaaqaaa qtccaccctt ggttcctaac tggaatcagc 1260
tcaqqactqc cattqqacta tqqaqtqcac caaagagaat gcccttctcc ttattgtaac 1320
cctqtctqqa tcctatectc ctacetccaa agetteccae ggeettteta geetggetat 1380
gtcctaataa tatcccactg ggagaaagga gttttgcaaa gtgcaaggac ctaaaacatc 1440
```

```
tcatcagtat ccagtggtaa aaaggcetee tggetgtetg aggetaggtg ggttgaaage 1500
caaggagtca ctgagaccaa ggctttetet actgattccg cagctcagac cetttettca 1560
getetgaaag agaaacaegt ateceaeetg acatgteett etgageeegg taagageaaa 1620
agaatggcag aaaagtttag cccctgaaag ccatggagat tctcataact tgagacctaa 1680
tetetgtaaa getaaaataa agaaatagaa caaggetgag gatacgacag tacaetgtca 1740
gcagggactg taaacacaga cagggtcaaa gtgttttctc tgaacacatt gagttggaat 1800
cactgtttag aacacacac cttacttttt ctggtctcta ccactgctga tattttctct 1860
aggaaatata cttttacaag taacaaaaat aaaaactctt ataaatttct attttatct 1920
gagttacaga aatgattact aaggaagatt actcaqtaat ttqtttaaaa aqtaataaaa 1980
ttcaacaaac atttgctgaa tagctactat atgtcaagtg ctgtgcaagg tattacactc 2040
tgtaattgaa tattattcct caaaaaattg cacatagtag aacgctatct gggaagctat 2100
ttttttcagt tttgatattt ctagcttatc tacttccaaa ctaattttta tttttgctga 2160
gactaatctt attcattttc tctaatatgg caaccattat aaccttaatt tattattaac 2220
atacctaaga agtacattgt tacctctata taccaaagca cattttaaaa gtgccattaa 2280
caaatgtatc actagccctc ctttttccaa caagaaggga ctgagagatg cagaaatatt 2340
tgtgacaaaa aattaaagca tttagaaaac tt
<210> 201
<211> 322
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic protein
<400> 201
Met Ala Arg Cys Phe Ser Leu Val Leu Leu Leu Thr Ser Ile Trp Thr
Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile
Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala
Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu
                         55
Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala
Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val
Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly
Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys
```

Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile

135

130

Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr 145 150 155 Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser 165 170 Thr Ile Pro Ala Pro Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser 180 185 Ile Pro Arg Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu Thr Ser Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Gly Leu Gly Phe Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn Lys Asn 265 Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu Glu Lys Ala Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro 295 Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala 305 310 Glu Val

<210> 202

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 202

gagettteca tecaggtgte atge

<210> 203

<211> 22

<212> DNA

<213> Artificial Sequence

24

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 203
gtcagtgaca gtacctactc gg
                                                                    22
<210> 204
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 204
tggagcagga ggagtagtag tagg
                                                                    24
<210> 205
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 205
aggaggeetg taggetgetg ggactaagtt tggeeggeaa ggaccaagtt
                                                                   50
<210> 206
<211> 1620
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (973)
<223> a, t, c or g
<220>
<221> modified_base
<222> (977)
<223> a, t, c or g
<220>
<221> modified_base
<222> (996)
<223> a, t, c or g
<220>
<221> modified_base
```

<222> (1003)

<223> a, t, c or g <400> 206 agatggcggt cttggcacct ctaattgctc tcgtgtattc ggtgccgcga ctttcacgat 60 ggctcgccca accttactac cttctgtcgg ccctgctctc tgctgccttc ctactcgtga 120 ggaaactgcc gccgctctgc cacggtctgc ccacccaacg cgaagacggt aacccgtgtg 180 actttgactg gagagaagtg gagatcctga tgtttctcag tgccattgtg atgatgaaga 240 accgcagatc catcactgtg gagcaacata taggcaacat tttcatgttt agtaaagtgg 300 ccaacacaat tettteette egettggata ttegeatggg cetaetttae ateacaetet 360 gcatagtgtt cctgatgacg tgcaaacccc ccctatatat gggccctgag tatatcaagt 420 acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480 tggagttett tgccaattgg tetaatgaet gecaateatt tgeceetate tatgetgaee 540 totocottaa atacaactgt acagggctaa attttgggaa ggtggatgtt ggacgctata 600 ctgatgttag tacgcggtac aaagtgagca catcacccct caccaagcaa ctccctaccc 660 tgatcctgtt ccaaggtggc aaggaggcaa tgcggcggcc acagattgac, aagaaaggac 720 gggctgtctc atggaccttc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780 tataccagcg ggccaagaaa ctatcaaagg ctggagacaa tatccctgag gagcagcctg 840 tggcttcaac ccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900 actttggcag tgcttcctct cctgtcaatt ccaggctctt tccataacca caagcctgag 960 gctgcagcct ttnattnatg ttttcccttt ggctgngact ggntggggca gcatgcagct 1020 tctgatttta aagaggcatc tagggaattg tcaggcaccc tacaggaagg cctgccatgc 1080 tgtggccaac tgtttcactg gagcaagaaa gagatctcat aggacggagg gggaaatggt 1140 ttccctccaa gcttgggtca gtgtgttaac tgcttatcag ctattcagac atctccatgg 1200 tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagcttggtt 1260 agacctagat ttaaccctaa ggtaagatgc tggggtatag aacgctaaga attttccccc 1320 aaggactett getteettaa geeettetgg ettegtttat ggtetteatt aaaagtataa 1380 gcctaacttt gtcgctagtc ctaaggagaa acctttaacc acaaagtttt tatcattgaa 1440 gacaatattg aacaacccc tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500 actttccttt gtgtggtagg acttggagga gaaatcccct ggactttcac taaccctctg 1560 acatactccc cacacccagt tgatggcttt ccgtaataaa aagattggga tttccttttg 1620 <210> 207 <211> 296 <212> PRT <213> Homo sapiens <400> 207 Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu 25 Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn 70

Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe 85 90 95

Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met 100 105 110

Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys 115 120 125

Pro Pro Leu Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys 130 135 140

Thr Ile Asp Glu Glu Leu Glu Arg Asp Lys Arg Val Thr Trp Ile Val 145 150 155 160

Glu Phe Phe Ala Asn Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile 165 170 175

Tyr Ala Asp Leu Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly
180 185 190

Lys Val Asp Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val

Ser Thr Ser Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln 210 215 220

Gly Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg 225 230 235 240

Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe Asn 245 250 255

Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp 260 265 270

Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val Ser 275 280 285

Asp Gly Glu Asn Lys Lys Asp Lys 290 295

<210> 208

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<400> 208

gcttggatat tcgcatgggc ctac

```
<210> 209
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 209
tggagacaat atccctgagg
                                                                   20
<210> 210
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 210
aacagttggc cacagcatgg cagg
                                                                   24
<210> 211
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 211
ccattgatga ggaactagaa cgggacaaga gggtcacttg gattgtggag
                                                                   50
<210> 212
<211> 1985
<212> DNA
<213> Homo sapiens
<400> 212
ggacageteg eggeeeega gagetetage egtegaggag etgeetgggg aegtttgeee 60
tggggcccca gcctggcccg ggtcaccctg gcatgaggag atgggcctgt tgctcctggt 120
cccattgctc ctgctgcccg gctcctacgg actgcccttc tacaacggct tctactactc 180
caacagegee aaegaecaga acetaggeaa eggteatgge aaagaeetee ttaatggagt 240
gaagctggtg gtggagacac ccgaggagac cctgttcacc taccaagggg ccagtgtgat 300
cetgecetge egetaceget acgageegge cetggtetee eegeggegtg tgegtgteaa 360
atggtggaag ctgtcggaga acggggcccc agagaaggac gtgctggtgg ccatcgggct 420
gaggcaccgc tcctttgggg actaccaagg ccgcgtgcac ctgcggcagg acaaagagca 480
tgacgtctcg ctggagatcc aggatctgcg gctggaggac tatgggcgtt accgctgtga 540
ggtcattgac gggctggagg atgaaagcgg tctggtggag ctggagctgc ggggtgtggt 600
```

```
ctttccttac cagtccccca acgggcgcta ccagttcaac ttccacgagg gccagcaggt 660
ctgtgcagag caggctgcgg tggtggcctc ctttgagcag ctcttccggg cctgggagga 720
gggcctggac tggtgcaacg cgggctggct gcaggatgct acggtgcagt accccatcat 780
gttgccccgg cagccctgcg gtggcccagg cctggcacct ggcgtgcgaa gctacggccc 840
ccgccaccgc cgcctgcacc gctatgatgt attctgcttc gctactgccc tcaaggggcg 900
ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggcctgcca 960
ggaagatgat gccacgatcg ccaaggtggg acagctcttt gccgcctgga agttccatgg 1020
cctggaccgc tgcgacgctg gctggctggc agatggcagc gtccgctacc ctgtggttca 1080
cccgcatect aactgtgggc ccccagagcc tggggtccga agctttggct tccccqaccc 1140
gcagagccgc ttgtacggtg tftactgcta ccgccagcac taggacctgg ggccctcccc 1200
tgccgcattc cctcactggc tgtgtattta ttgagtggtt cgttttccct tgtgggttgg 1260
agccatttta actgttttta tacttctcaa tttaaatttt ctttaaacat ttttttacta 1320
ttttttgtaa agcaaacaga acccaatgcc tccctttgct cctggatgcc ccactccagg 1380
aatcatgctt gctcccctgg gccatttgcg gttttgtggg cttctggagg gttccccgcc 1440
atccaggetg gtetecetee ettaaggagg ttggtgeeca gagtgggegg tggeetgtet 1500
agaatgccgc cgggagtccg ggcatggtgg gcacagttct ccctgcccct cagcctgggg 1560
gaagaagagg geeteggggg ceteeggage tgggetttgg geeteteetg eecaceteta 1620
cttctctgtg aagccgctga ccccagtctg cccactgagg ggctagggct ggaagccagt 1680
tctaggcttc caggcgaaat ctgagggaag gaagaaactc ccctccccgt tccccttccc 1740
ctctcggttc caaagaatct gttttgttgt catttgtttc tcctgtttcc ctgtgtgggg 1800
aggggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgccaa 1860
aaaaa
<210> 213
<211> 360
<212> PRT
<213> Homo sapiens
<400> 213
Met Gly Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr
Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp
Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys
                           40
Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala
Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser
Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala
Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe
```

Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp

		115					120					125			
Val	Ser 130	Leu	Glu	Ile	Gln	Asp 135	Leu	Arg	Leu	Glu	Asp 140	Tyr	Gly	Arg	Tyr
Arg 145	Cys	Glu	Val	Ile	Asp 150	Gly	Leu	Glu	Asp	Glu 155	Ser	Gly	Leu	Val	Glu 160
Leu	Glu	Leu	Arg	Gly 165	Val	Val	Phe	Pro	Tyr 170	Gln	Ser	Pro	Asn	Gly 175	Arg
Tyr	Gln	Phe	Asn 180	Phe	His	Glu	Gly	Gln 185	Gln	Val	Cys	Ala	Glu 190	Gln	Ala
Ala	Val	Val 195	Ala	Ser	Phe	Glu	Gln 200	Leu	Phe	Arg	Ala	Trp 205	Glu	Glu	Gly
Leu	Asp 210	Trp	Cys	Asn	Ala	Gly 215	Trp	Leu	Gln	Asp	Ala 220	Thr	Val	Gln	Tyr
Pro 225	Ile	Met	Leu	Pro	Arg 230	Gln	Pro	Cys	Gly	Gly 235	Pro	Gly	Leu	Ala	Pro 240
Gly	Val	Arg	Ser	Tyr 245	Gly	Pro	Arg	His	Arg 250	Arg	Leu	His	Arg	Tyr 255	Asp
Val	Phe	Cys	Phe 260	Ala	Thr	Ala	Leu	Lys 265	Gly	Arg	Val	Tyr	Tyr 270	Leu	Glu
His	Pro	Glu 275	Lys	Leu	Thr	Leu	Thr 280	Glu	Ala	Arg	Glu	Ala 285	Cys	Gln	Glu
Asp	Asp 290	Ala	Thr	Ile	Ala	Lys 295	Val	Gly	Gln	Leu	Phe 300	Ala	Ala	Trp	Lys
Phe 305	His	Gly	Leu	Asp	Arg 310	Cys	Asp	Ala	Gly	Trp 315	Leu	Ala	Asp	Gly	Ser 320
Val	Arg	Tyr	Pro	Val 325	Val	His	Pro	His	Pro 330	Asn	Cys	Gly	Pro	Pro 335	Glu
Pro	Gly	Val	Arg 340	Ser	Phe	Gly	Phe	Pro 345	Asp	Pro	Gln	Ser	Arg 350	Leu	Tyr
Gly	Val	Tyr 355	Cys	Tyr	Arg	Gln	His 360								
<211 <212)> 21 .> 18 !> DN !> Ar	IA	.cial	. Sec	lu enc	:e									

<220>

<223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tgctt	214 egeta etgecete	18
<210><211><211><212><213>	18	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> ttccct	215 :tgtg ggttggag	18
<210><211><211><212><213>	18	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> agggct	216 ggaa gccagttc	18
<220>	18 DNA Artificial Sequence	
<223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> agccag	217 tgag gaaatgcg	18
<210><211><211><212><213>	24	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400>	218	24

```
<210> 219
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 219
gatgccacga tcgccaaggt gggacagctc tttgccgcct ggaag
                                                                45
<210> 220
<211> 1503
<212> DNA
<213> Homo sapiens
<400> 220
ggagagcgga gcgaagctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
gcttctgttg ctactgaggc acggggccca ggggaagcca tccccagacg caggccctca 120
tggccagggg agggtgcacc aggcggcccc cctgagcgac gctccccatg atgacgccca 180
cgggaacttc cagtacgacc atgaggcttt cctgggacgg gaagtggcca aggaattcga 240
ccaactcacc ccagaggaaa gccaggcccg tctggggcgg atcgtggacc gcatggaccg 300
cgcgggggac ggcgacggct gggtgtcgct ggccgagctt cgcgcgtgga tcgcgcacac 360
gcagcagegg cacatacggg acteggtgag egeggeetgg gacacgtacg acacggaceg 420
cgacgggcgt gtgggttggg aggagctgcg caacqccacc tatqqccact acqcqcccqq 480
tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgctgg ctcgggacga 540
geggegttte egggtggeeg accaggatgg ggactegatg gecaetegag aggagetgae 600
agectteetg caceeegagg agtteeetea catgegggae ategtgattg etgaaaceet 660
ggaggacctg gacagaaaca aagatggcta tgtccaggtg gaggagtaca tcgcggatct 720
gtactcagec gagectgggg aggaggagec ggegtgggtg cagaeggaga ggeageagtt 780
ccgggacttc cgggatctga acaaggatgg gcacctggat gggagtgagg tgggccactg 840
ggtgctgccc cctgcccagg accagcccct ggtggaagcc aaccacctgc tgcacgagag 900
cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctgggtaatt ggaacatgtt 960
tgtgggcagt caggccacca actatggcga ggacctgacc cggcaccacg atgagctgtg 1020
agcaccgcgc acctgccaca gcctcagagg cccgcacaat gaccggagga ggggccgctg 1080
tggtctggcc ccctccctgt ccaggccccg caggaggcag atgcagtccc aggcatcctc 1140
etgeceetgg geteteaggg acceetggg teggettetg teeetgteac acceecaace 1200
ccagggaggg gctgtcatag tcccagagga taagcaatac ctatttctga ctgagtctcc 1260
cageceagae ecagggaeee ttggeeecaa geteagetet aagaacegee ecaaceete 1320
cagctccaaa tctgagcctc caccacatag actgaaactc ccctggcccc agccctctcc 1380
tgcctggcct ggcctgggac acctcctctc tgccaggagg caataaaagc cagcgccqqq 1440
1503
<210> 221
<211> 328
<212> PRT
<213> Homo sapiens
<400> 221
```

Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Leu Arg His

1				5					10					15	,
Gly	Ala	Gln	Gly 20	Lys	Pro	Ser	Pro	Asp 25	Ala	Gly	Pro	His	Gly 30	Gln	Gly
Arg	Val	His 35	Gln	Ala	Ala	Pro	Leu 40	Ser	Asp	Ala	Pro	His 45	Asp	Asp	Ala
His	Gly 50	Asn	Phe	Gln	Tyr	Asp 55	His	Glu	Ala	Phe	Leu 60	Gly	Arg	Glu	Val
Ala 65	Lys	Glu	Phe	Asp	Gln 70	Leu	Thr	Pro	Glu	Glu 75	Ser	Gln	Ala	Arg	Leu 80
Gly	Arg	Ile	Val	Asp 85	Arg	Met	Asp	Arg	Ala 90	Gly	Asp	Gly	Asp	Gly 95	Trp
Val	Ser	Leu	Ala 100	Glu	Leu	Arg	Ala	Trp 105	Ile	Ala	His	Thr	Gln 110	Gln	Arg
His	Ile	Arg 115	Asp	Ser	Val	Ser	Ala 120	Ala	Trp	Asp	Thr	Tyr 125	Asp	Thr	Asp
Arg	Asp 130	Gly	Arg	Val	Gly	Trp 135	Glu	Glu	Leu	Arg	Asn 140	Ala	Thr	Tyr	Gly
His 145	Tyr	Ala	Pro	Gly	Glu 150	Glu	Phe	His	Asp	Val 155	Glu	Asp	Ala	Glu	Thr 160
Tyr	Lys	Lys	Met	Leu 165	Ala	Arg	Asp	Glu	Arg 170	Arg	Phe	Arg	Val	Ala 175	Asp
Gln	Asp	Gly	Asp 180	Ser	Met	Ala	Thr	Arg 185	Glu	Glu	Leu	Thr	Ala 190	Phe	Leu
His	Pro	Glu 195	Glu	Phe	Pro	His	Met 200	Arg	Asp	Ile	Val	Ile 205	Ala	Glu	Thr
Leu	Glu 210	Asp	Leu	Asp	Arg	Asn 215	Lys	Asp	Gly	Tyr	Val 220	Gln	Val	Glu	Glu
Tyr 225	Ile	Ala	Asp	Leu	Tyr 230	Ser	Ala	Glu	Pro	Gly 235	Glu	Glu	Glu	Pro	Ala 240
Trp	Val	Gln	Thr	Glu 245	Arg	Gln	Gln	Phe	Arg 250	Asp	Phe	Arg	Asp	Leu 255	Asn
Lys	Asp	Gly	His 260	Leu	Asp	Gly	Ser	Glu 265	Val	Gly	His	Trp	Val 270	Leu	Pro
Pro	Ala	Gln 275	Asp	Gln	Pro	Leu	Val 280	Glu	Ala	Asn	His	Leu 285	Leu	His	Glu

Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Lys Ala Glu Ile Leu Gly 290 295 300	
Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr Asn Tyr Gly Glu Asp 305 310 315 320	
Leu Thr Arg His His Asp Glu Leu 325	
<210> 222 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 222 cgcaggccct catggccagg	20
<210> 223 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 223 gaaatcctgg gtaattgg	18
<210> 224 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 224 gtgcgcggtg ctcacagctc atc	23
<210> 225 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	

```
<400> 225
ccccctgag cgacgetece ccatgatgae geccaeggga aett
                                                                  44
<210> 226
<211> 2403
<212> DNA
<213> Homo sapiens
<400> 226
ggggccttgc cttccgcact cgggcgcagc cgggtggatc tcgagcaggt gcggagcccc 60
gggcggcggg cgcgggtgcg agggatccct gacgcctctg tccctgtttc tttgtcgctc 120
ccagcetgte tgtegtegtt ttggegeece egeeteeceg eggtgegggg ttgcacaceg 180
atcctggget tegetegatt tgeegeegag gegeeteeca gaeetagagg ggegetggee 240
tggagcageg ggtegtetgt gteetetete etetgegeeg egeeegggga teegaagggt 300
geggggetet gaggaggtga egegegggge etecegeace etggeettge eegeattete 360
cetetetece aggtgtgage ageetateag teaceatgte egeageetgg ateceggete 420
teggeetegg tgtgtgtetg etgetgetge eggggeeege gggeagegag ggageegete 480
ccattgctat cacatgtttt accagaggct tggacatcag gaaagagaaa gcagatgtcc 540
tetgeecagg gggetgeect ettgaggaat tetetgtgta tgggaacata gtatatgett 600
ctgtatcgag catatgtggg gctgctgtcc acaggggagt aatcagcaac tcagggggac 660
ctgtacgagt ctatagccta cctggtcgag aaaactattc ctcagtagat gccaatggca 720
tecagtetea aatgetttet agatggtetg ettettteae agtaactaaa ggeaaaagta 780
gtacacagga ggccacagga caagcagtgt ccacagcaca tccaccaaca ggtaaacgac 840
taaagaaaac acccgagaag aaaactggca ataaagattg taaagcagac attgcatttc 900
tgattgatgg aagctttaat attgggcagc gccgatttaa tttacagaag aattttgttg 960
qaaaaqtggc tctaatgttg ggaattggaa cagaaggacc acatgtgggc cttgttcaag 1020
ccagtgaaca tcccaaaata gaattttact tgaaaaactt tacatcagcc aaagatgttt 1080
tgtttgccat aaaggaagta ggtttcagag ggggtaattc caatacagga aaagccttga 1140
agcatactgc tcagaaattc ttcacggtag atgctggagt aagaaaaggg atccccaaag 1200
tggtggtggt atttattgat ggttggcctt ctgatgacat cgaggaagca ggcattgtgg 1260
ccagagagtt tggtgtcaat gtatttatag tttctgtggc caagcctatc cctgaagaac 1320
tggggatggt tcaggatgtc acatttgttg acaaggctgt ctgtcggaat aatggcttct 1380
tetettaeca catgeecaac tggtttggea ecacaaaata egtaaageet etggtaeaga 1440
agetgtgeac teatgaacaa atgatgtgea geaagacetg ttataactea gtgaacattg 1500
cetttetaat tgatggetee ageagtgttg gagatageaa ttteegeete atgettgaat 1560
ttgtttccaa catagccaag acttttgaaa tctcggacat tggtgccaag atagctgctg 1620
tacagtttac ttatgatcag cgcacggagt tcagtttcac tgactatagc accaaagaga 1680
atgteetage tgteateaga aacateeget atatgagtgg tggaacaget aetggtgatg 1740
ccatttcctt cactgttaga aatgtgtttg gccctataag ggagagcccc aacaagaact 1800
tectagtaat tgtcacagat gggcagteet atgatgatgt ecaaggeeet geagetgetg 1860
cacatgatgc aggaatcact atcttctctg ttggtgtggc ttgggcacct ctggatgacc 1920
tgaaagatat ggcttctaaa ccgaaggagt ctcacgcttt cttcacaaga gagttcacag 1980
gattagaacc aattgtttct gatgtcatca gaggcatttg tagagatttc ttagaatccc 2040
agcaataatg gtaacatttt gacaactgaa agaaaaagta caaggggatc cagtgtgtaa 2100
attgtattct cataatactg aaatgettta gcatactaga atcagataca aaactattaa 2160
gtatgtcaac agccatttag gcaaataagc actcctttaa agccgctgcc ttctggttac 2220
aatttacagt gtactttgtt aaaaacactg ctgaggcttc ataatcatgg ctcttagaaa 2280
ctcaggaaag aggagataat gtggattaaa accttaagag ttctaaccat gcctactaaa 2340
tgtacagata tgcaaattcc atagctcaat aaaagaatct gatacttaga ccaaaaaaaa 2400
```

<211> 550

<212> PRT

<213> Homo sapiens

<400> 227

Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu Leu 1 5 10 15

Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile Ala Ile 20 25 30

Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys Ala Asp Val 35 40 45

Leu Cys Pro Gly Gly Cys Pro Leu Glu Glu Phe Ser Val Tyr Gly Asn 50 60

Ile Val Tyr Ala Ser Val Ser Ser Ile Cys Gly Ala Ala Val His Arg 65 70 75 80

Gly Val Ile Ser Asn Ser Gly Gly Pro Val Arg Val Tyr Ser Leu Pro 85 90 95

Gly Arg Glu Asn Tyr Ser Ser Val Asp Ala Asn Gly Ile Gln Ser Gln 100 105 110

Met Leu Ser Arg Trp Ser Ala Ser Phe Thr Val Thr Lys Gly Lys Ser 115 120 125

Ser Thr Gln Glu Ala Thr Gly Gln Ala Val Ser Thr Ala His Pro Pro 130 135 140

Thr Gly Lys Arg Leu Lys Lys Thr Pro Glu Lys Lys Thr Gly Asn Lys 145 150 155 160

Asp Cys Lys Ala Asp Ile Ala Phe Leu Ile Asp Gly Ser Phe Asn Ile 165 170 175

Gly Gln Arg Arg Phe Asn Leu Gln Lys Asn Phe Val Gly Lys Val Ala 180 185 190

Leu Met Leu Gly Ile Gly Thr Glu Gly Pro His Val Gly Leu Val Gln 195 200 205

Ala Ser Glu His Pro Lys Ile Glu Phe Tyr Leu Lys Asn Phe Thr Ser 210 215 220

Ala Lys Asp Val Leu Phe Ala Ile Lys Glu Val Gly Phe Arg Gly Gly 225 230 235 240

Asn Ser Asn Thr Gly Lys Ala Leu Lys His Thr Ala Gln Lys Phe Phe 245 255

Thr Val Asp Ala Gly Val Arg Lys Gly Ile Pro Lys Val Val Val

- Phe Ile Asp Gly Trp Pro Ser Asp Asp Ile Glu Glu Ala Gly Ile Val 280

 Ala Arg Glu Phe Gly Val Ass Val Phe Ile Val Ser Val Ala Lys Pro 290

 Ile Pro Glu Glu Leu Gly Met Val Gln Asp Val Thr Phe Val Asp Lys 300

 Ala Val Cys Arg Asn Asn Gly Phe Phe Ser Tyr His Met Pro Asn Trp 335

 Phe Gly Thr Thr Lys Tyr Val Lys 340

 His Glu Gln Met Met Cys Ser Lys 360

 Ala Phe Leu Ile Asp Gly Ser Ser Ser Val Gly Asp Ser Asn Phe Arg 370

 Asp Ile Gly Ala Lys Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg 415

 Thr Glu Phe Ser Phe Thr Asp Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp
- Asp Val Gln Gly Pro Ala Ala Ala Ala His Asp Ala Gly Ile Thr 495

 Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met 510

 Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr 525

Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser

Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp

Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp 530 540

Phe Leu Glu Ser Gln Gln 545 550	
<210> 228 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 228 tggtctcgca caccgatc	18
<210> 229 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 229 ctgctgtcca caggggag	18
<210> 230 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 230 ccttgaagca tactgctc	18
<210> 231 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 231 gagatagcaa tttccgcc	18
<210> 232	

```
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 232
                                                                   18
ttcctcaaga gggcagcc
<210> 233
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 233
                                                                   24
cttggcacca atgtccgaga tttc
<210> 234
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 234
gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg
                                                                   45
<210> 235
<211> 2586
<212> DNA
<213> Homo sapiens
<400> 235
cgccgcgctc ccgcacccgc ggcccgccca ccgcgccgct cccgcatctg cacccgcagc 60
ccggcggcct cccggcggga gcgagcagat ccagtccggc ccgcagcgca actcggtcca 120
gtcggggcgg cggctgcggg cgcagagcgg agatgcagcg gcttggggcc accetgctgt 180
gcctgctgct ggcggcggcg gtccccacgg cccccgcgcc cgctccgacg gcgacctcgg 240
ctccagtcaa gcccggcccg gctctcagct acccgcagga ggaggccacc ctcaatgaga 300
tgttccgcga ggttgaggaa ctgatggagg acacgcagca caaattgcgc agcgcggtgg 360
aagagatgga ggcagaagaa gctgctgcta aagcatcatc agaagtgaac ctggcaaact 420
tacctcccag ctatcacaat gagaccaaca cagacacgaa ggttggaaat aataccatcc 480
atgtgcaccg agaaattcac aagataacca acaaccagac tggacaaatg gtcttttcag 540
agacagttat cacatctgtg ggagacgaag aaggcagaag gagccacgag tgcatcatcg 600
acgaggactg tgggcccagc atgtactgcc agtttgccag cttccagtac acctgccagc 660
catgccgggg ccagaggatg ctctgcaccc gggacagtga gtgctgtgga gaccagctgt 720
```

```
gtgtctgggg tcactgcacc aaaatggcca ccaggggcag caatgggacc atctgtgaca 780
accagaggga ctgccagccg gggctgtgct gtgccttcca gagaggcctg ctgttccctg 840
tgtgcacacc cctgcccgtg gagggcgagc tttgccatga ccccgccagc cggcttctgg 900
aceteateae etgggageta gageetgatg gageettgga eegatgeeet tgtgeeagtg 960
gcctcctctg ccagccccac agccacagcc tggtgtatgt gtgcaagccg accttcgtgg 1020
ggagccgtga ccaagatggg gagatcctgc tgcccagaga ggtccccgat gagtatgaag 1080
ttggcagctt catggaggag gtgcgccagg agctggagga cctggagagg agcctgactg 1140
aagagatggc gctgggggag cctgcggctg ccgccgctgc actgctggga ggggaagaga 1200
tttagatctg gaccaggctg tgggtagatg tgcaatagaa atagctaatt tatttcccca 1260
ggtgtgtgct ttaggcgtgg gctgaccagg cttcttccta catcttcttc ccagtaagtt 1320
teccetetgg ettgacagea tgaggtgttg tgeatttgtt eageteecee aggetgttet 1380
ccaggcttca cagtctggtg cttgggagag tcaggcaggg ttaaactgca ggagcagttt 1440
gccacccctg tccagattat tggctgcttt gcctctacca gttggcagac agccgtttgt 1500
tetacatgge tttgataatt gtttgagggg aggagatgga aacaatgtgg agteteeete 1560
tgattggttt tggggaaatg tggagaagag tgccctgctt tgcaaacatc aacctggcaa 1620
aaatgcaaca aatgaatttt ccacgcagtt ctttccatgg gcataggtaa gctgtgcctt 1680
cagetgttgc agatgaaatg ttetgtteac cetgeattac atgtgtttat teatecagea 1740
gtgttgctca gctcctacct ctgtgccagg gcagcatttt catatccaag atcaattccc 1800
teteteagea eageetgggg agggggteat tgtteteete gteeateagg gateteagag 1860
gctcagagac tgcaagctgc ttgcccaagt cacacagcta gtgaagacca gagcagtttc 1920
atctggttgt gactctaagc teagtgetet etceactace ecacaccage ettggtgeea 1980
ccaaaagtgc tccccaaaag gaaggagaat gggatttttc ttgaggcatg cacatctgga 2040
attaaggtca aactaattct cacatccctc taaaagtaaa ctactgttag gaacagcagt 2100
gttctcacag tgtggggcag ccgtccttct aatgaagaca atgatattga cactgtccct 2160
ctttggcagt tgcattagta actttgaaag gtatatgact gagcgtagca tacaggttaa 2220
cctgcagaaa cagtacttag gtaattgtag ggcgaggatt ataaatgaaa tttgcaaaat 2280
cacttagcag caactgaaga caattatcaa ccacgtggag aaaatcaaac cgagcagggc 2340
tgtgtgaaac atggttgtaa tatgcgactg cgaacactga actctacqcc actccacaaa 2400
tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt tcttaaagtt 2460
taaagttgca catgattgta taagcatgct ttctttgagt tttaaattat gtataaacat 2520
aaaaaa
<210> 236
<211> 350
<212> PRT
<213> Homo sapiens
```

<400> 236

Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala Ala

Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val 20

Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn 40

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Ala Lys

- Ala Ser Ser Glu Val Asn Leu Ala Asn Leu Pro Pro Ser Tyr His Asn 85 90 95
- Glu Thr Asn Thr Asp Thr Lys Val Gly Asn Asn Thr Ile His Val His 100 105 110
- Arg Glu Ile His Lys Ile Thr Asn Asn Gln Thr Gly Gln Met Val Phe 115 120 125
- Ser Glu Thr Val Ile Thr Ser Val Gly Asp Glu Glu Gly Arg Arg Ser 130 135 140
- His Glu Cys Ile Ile Asp Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln 145 150 155 160
- Phe Ala Ser Phe Gln Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met
 165 170 175
- Leu Cys Thr Arg Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp
 180 185 190
- Gly His Cys Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys 195 200 205
- Asp Asn Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg 210 215 220
- Gly Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu 225 230 235 240
- Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu Leu 245 250 255
- Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly Leu Leu 260 265 270
- Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys Pro Thr Phe 275 280 285
- Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu Pro Arg Glu Val 290 295 300
- Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu Glu Val Arg Gln Glu 305 310 315 320
- Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu Glu Met Ala Leu Gly Glu
 325 330 335
- Pro Ala Ala Ala Ala Ala Leu Leu Gly Gly Glu Glu Ile 340 345 350

<211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic oligonucleotide probe	
<400> 237 ggagctgcac cccttgc	17
<210> 238 <211> 49 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 238 ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg	49
<210> 239 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 239 gcagagcgga gatgcagcgg cttg	24
<210> 240 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 240 ttggcagctt catggagg	18
<210> 241 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 241 cctgggcaaa aatgcaac	18

```
<210> 242
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 242
                                                                   24
ctccagctcc tggcgcacct cctc
<210> 243
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 243
                                                                    45
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg
<210> 244
<211> 3679
<212> DNA
<213> Homo Sapien
<400> 244
 aaggaggctg ggaggaaaga ggtaagaaag gttagagaac ctacctcaca 50
 tctctctggg ctcagaagga ctctgaagat aacaataatt tcagcccatc 100
 cactctcctt ccctcccaaa cacacatgtg catgtacaca cacacataca 150
 cacacataca cetteetete etteaetgaa gaeteaeagt caeteaetet 200
 gtgagcaggt catagaaaag gacactaaag ccttaaggac aggcctggcc 250
 attacctctg cagctccttt ggcttgttga gtcaaaaaac atgggagggg 300
 ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg 350
 tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaacatgg 400
 agaaaccccc atctctacta aaaatacaaa aattagccag gagtggtggc 450
 aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt 500
 gaatccagga ggcggaggat gcagtcagct gagtgcaccg ctgcactcca 550
```

gcctgggtga cagaatgaga ctctgtctca aacaaacaaa cacgggagga 600

ggggtagata ctgcttctct gcaacctcct taactctgca tcctcttctt 650 ccagggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700 agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccg 750 gtgtagaatg actgccctgg gagggtggtt ccttgggccc tggcagggtt 800 gctgaccctt accctgcaaa acacaaagag caggactcca gactctcctt 850 gtgaatggtc ccctgccctg cagctccacc atgaggcttc tcgtggcccc 900 actcttgcta gcttgggtgg ctggtgccac tgccactgtg cccgtggtac 950 cetggeatgt teectgeece ceteagtgtg cetgeeagat eeggeeetgg 1000 tatacgcccc gctcgtccta ccgcgaggct accactgtgg actgcaatga 1050 cctattcctg acggcagtcc ccccggcact ccccgcaggc acacagaccc 1100 tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctgggc 1150 tacctggcca atctcacaga gctggacctg tcccagaaca gcttttcgga 1200 tgcccgagac tgtgatttcc atgccctgcc ccagctgctg agcctgcacc 1250 tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggctg 1300 gccagcctac aggaactcta tctcaaccac aaccagctct accgcatcgc 1350 ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctcaact 1400 ccaacctcct gagggccatt gacagccgct ggtttgaaat gctgcccaac 1450 ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500 gaacttccgg cccctggcca acctgcgtag cctggtgcta gcaggcatga 1550 acctgcggga gatctccgac tatgccctgg aggggctgca aagcctggag 1600 agcctctcct tctatgacaa ccagctggcc cgggtgccca ggcgggcact 1650 ggaacaggtg cccgggctca agttcctaga cctcaacaag aacccgctcc 1700 agcgggtagg gccgggggac tttgccaaca tgctgcacct taaggagctg 1750 ggactgaaca acatggagga gctggtctcc atcgacaagt ttgccctggt 1800 gaacctcccc gagctgacca agctggacat caccaataac ccacggctgt 1850 cetteateca eccegegee ttecaceace tgeeceagat ggagaceete 1900 atgctcaaca acaacgctct cagtgccttg caccagcaga cggtggagtc 1950

cctgcccaac ctgcaggagg taggtctcca cggcaacccc atccgctgtg 2000 actgtgtcat ccgctgggcc aatgccacgg gcacccgtgt ccgcttcatc 2050 gageegeaat ceaceetgtg tgeggageet eeggacetee agegeeteec 2100 ggtccgtgag gtgcccttcc gggagatgac ggaccactgt ttgcccctca 2150 tctccccacg aagcttcccc ccaagcctcc aggtagccag tggagagagc 2200 atggtgctgc attgccgggc actggccgaa cccgaacccg agatctactg 2250 ggtcactcca gctgggcttc gactgacacc tgcccatgca ggcaggaggt 2300 accgggtgta ccccgagggg accctggagc tgcggagggt gacagcagaa 2350 gaggcagggc tatacacctg tgtggcccag aacctggtgg gggctgacac 2400 taagacggtt agtgtggttg tgggccgtgc tctcctccag ccaggcaggg 2450 acgaaggaca ggggctggag ctccgggtgc aggagaccca cccctatcac 2500 atcctgctat cttgggtcac cccacccaac acagtgtcca ccaacctcac 2550 ctggtccagt gcctcctccc tccggggcca gggggccaca gctctggccc 2600 gcctgcctcg gggaacccac agctacaaca ttacccgcct ccttcaggcc 2650 acggagtact gggcctgcct gcaagtggcc tttgctgatg cccacaccca 2700 gttggcttgt gtatgggcca ggaccaaaga ggccacttct tgccacagag 2750 cettagggga tegteetggg etcattgeca teetggetet egetgteett 2800 ctcctggcag ctgggctagc ggcccacctt ggcacaggcc aacccaggaa 2850 gggtgtgggt gggaggcggc ctctccctcc agcctgggct ttctggggct 2900 ggagtgcccc ttctgtccgg gttgtgtctg ctcccctcgt cctgccctgg 2950 aatccaggga ggaagctgcc cagatcctca gaaggggaga cactgttgcc 3000 accattgtct caaaattctt gaagctcagc ctgttctcag cagtagagaa 3050 atcactagga ctactttta ccaaaagaga agcagtctgg gccagatgcc 3100 ctgccaggaa agggacatgg acccacgtgc ttgaggcctg gcagctgggc 3150 caagacagat ggggctttgt ggccctgggg gtgcttctgc agccttgaaa 3200 aagttgccct tacctcctag ggtcacctct gctgccattc tgaggaacat 3250

ctccaaggaa caggaggac tttggctaga gcctcctgcc tccccatctt 3300 ctctctgccc agaggctcct gggcctggct tggctgtccc ctacctgtgt 3350 ccccgggctg caccccttcc tcttctcttt ctctgtacag tctcagttgc 3400 ttgctcttgt gcctcctggg caagggctga aggaggccac tccatctcac 3450 ctcggggggc tgccctcaat gtgggagtga ccccagccag atctgaagga 3500 catttgggag agggatgccc aggaacgcct catctcagca gcctgggctc 3550 ggcattccga agctgacttt ctataggcaa ttttgtacct ttgtggagaa 3600 atgtgtcacc tcccccaacc cgattcactc ttttctctg ttttgtaaaa 3650 aataaaaata aataataaca ataaaaaaa 3679

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

<400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly
1 5 10

Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro
20 25 30

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser 35 40 45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu 50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu 65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly
80 85 90

Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe 95 100 105

Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu
110 115 120

Ser Leu His Leu Glu Glu Asn Gln Leu Thr Arg Leu Glu Asp His
125 130 135

Ser Phe Ala Gly Leu Ala Ser Leu Gln Glu Leu Tyr Leu Asn His 140 145 150

Asn Gln Leu	Tyr Arg 155	Ile	Ala	Pro	Arg	Ala 160	Phe	Ser	Gly	Leu	Ser 165
Asn Leu Leu	Arg Leu 170	His	Leu	Asn	Ser	Asn 175	Leu	Leu	Arg	Ala	Ile 180
Asp Ser Arg	Trp Phe 185	Glu	Met	Leu	Pro	Asn 190	Leu	Glu	Ile	Leu	Met 195
Ile Gly Gly	Asn Lys 200	Val	Asp	Ala	Ile	Leu 205	Asp	Met	Asn	Phe	Arg 210
Pro Leu Ala	Asn Leu 215	Arg	Ser	Leu	Val	Leu 220	Ala	Gly	Met	Asn	Leu 225
Arg Glu Ile	Ser Asp 230	Tyr	Ala	Leu	Glu	Gly 235	Leu	Gln	Ser	Leu	Glu 240
Ser Leu Ser	Phe Tyr 245	Asp	Asn	Gln	Leu	Ala 250	Arg	Val	Pro	Arg	Arg 255
Ala Leu Glu	Gln Val 260	Pro	Gly	Leu	Lys	Phe 265	Leu	Asp	Leu	Asn	Lys 270
Asn Pro Leu	Gln Arg 275	Val	Gly	Pro	Gly	Asp 280	Phe	Ala	Asn	Met	Leu 285
His Leu Lys	Glu Leu 290	Gly	Leu	Asn	Asn	Met 295	Glu	Glu	Leu	Val	Ser 300
Ile Asp Lys	Phe Ala 305	Leu	Val	Asn	Leu	Pro 310	Glu	Leu	Thr	Lys	Leu 3 1 5
Asp Ile Thr	Asn Asn 320	Pro	Arg	Leu	Ser	Phe 325	Ile	His	Pro	Arg	Ala 330
Phe His His	Leu Pro 335	Gln	Met	Glu	Thr	Leu 340	Met	Leu	Asn	Asn	Asn 345
Ala Leu Ser	Ala Leu 350	His	Gln	Gln	Thr	Val 355	Glu	Ser	Leu	Pro	Asn 360
Leu Gln Glu	Val Gly 365	Leu	His	Gly	Asn	Pro 370	Ile	Arg	Cys	Asp	Cys 375
Val Ile Arg	Trp Ala 380	Asn	Ala	Thr	Gly	Thr 385	Arg	Val	Arg	Phe	Ile 390
Glu Pro Gln	Ser Thr 395	Leu	Cys	Ala	Glu	Pro 400	Pro	Asp	Leu	Gln	Arg 405
Leu Pro Val	Arg Glu	Val	Pro	Phe	Arg	Glu	Met	Thr	Asp	His	Cys

				410					415					420
Leu	Pro	Leu	Ile	Ser 425	Pro	Arg	Ser	Phe	Pro 430	Pro	Ser	Leu	Gln	Val 435
Ala	ser	Gly	Glu	Ser 440	Met	Val	Leu	His	Cys 445	Arg	Ala	Leu	Ala	Glu 450
Pro	Glu	Pro	Glu	Ile 455	Tyr	Trp	Val	Thr	Pro 460	Ala	Gly	Leu	Arg	Leu 465
Thr	Pro	Ala	His	Ala 470	Gly	Arg	Arg	Tyr	Arg 475	Val	Tyr	Pro	Glu	Gly 480
Thr	Leu	Glu	Leu	Arg 485	Arg	Val	Thr	Ala	Glu 490	Glu	Ala	Gly	Leu	Tyr 495
Thr	Cys	Val	Ala	Gln 500	Asn	Leu	Val	Gly	Ala 505	Asp	Thr	Lys	Thr	Val 510
Ser	Val	Val	Val	Gly 515	Arg	Ala	Leu	Leu	Gln 520	Pro	Gly	Arg	Asp	Glu 525
Gly	Gln	Gly	Leu	Glu 530	Leu	Arg	Val	Gln	Glu 535	Thr	His	Pro	Tyr	His 540
Ile	Leu	Leu	Ser	Trp 545	Val	Thr	Pro	Pro	Asn 550	Thr	Val	Ser	Thr	Asn 555
Leu	Thr	Trp	Ser	Ser 560	Ala	Ser	Ser	Leu	Arg 565	Gly	Gln	Gly	Ala	Thr 570
Ala	Leu	Ala	Arg	Leu 575	Pro	Arg	Gly	Thr	His 580	Ser	Tyr	Asn	Ile	Thr 585
Arg	Leu	Leu	Gln	Ala 590	Thr	Glu	Tyr	Trp	Ala 595	Cys	Leu	Gln	Val	Ala 600
Phe	Ala	Asp	Ala	His 605	Thr	Gln	Leu	Ala	Cys 610	Val	Trp	Ala	Arg	Thr 615
Lys	Glu	Ala	Thr	Ser 620	Cys	His	Arg	Ala	Leu 625	Gly	Asp	Arg	Pro	Gly 630
Leu	Ile	Ala	Ile	Leu 635	Ala	Leu	Ala	Val	Leu 640	Leu	Leu	Ala	Ala	Gly 6 4 5
Leu	Ala	Ala	His	Leu 650	Gly	Thr	Gly	Gln	Pro 655	Arg	Lys	Gly	Val	Gly 660
Gly	Arg	Arg	Pro	Leu 665	Pro	Pro	Ala	Trp	Ala 670	Phe	Trp	Gly	Trp	Ser 675

Ala Pro Ser Val Arg Val Val Ser Ala Pro Leu Val Leu Pro Trp 680 Asn Pro Gly Arg Lys Leu Pro Arg Ser Ser Glu Gly Glu Thr Leu Leu Pro Pro Leu Ser Gln Asn Ser 710 <210> 246 <211> 22 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 246 aacaaggtaa gatgccatcc tg 22 <210> 247 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 247 aaacttgtcg atggagacca gctc 24 <210> 248 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45 <210> 249 <211> 3401 <212> DNA <213> Homo Sapien <400> 249 gcaagccaag gcgctgtttg agaaggtgaa gaagttccgg acccatgtgg 50 aggagggga cattgtgtac cgcctctaca tgcggcagac catcatcaag 100

gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150

catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200 accgcaccta ccgctgtgcc caccccttgg ccacactctt caagatcctg 250 gcgtccttct acatcagcct agtcatcttc tacggcctca tctgcatgta 300 cacactgtgg tggatgctac ggcgctccct caagaagtac tcgtttgagt 350 cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400 ttegeettea tgetgeacet cattgaceaa taegaceege tetaeteeaa 450 gcgcttcgcc gtcttcctgt cggaggtgag tgagaacaag ctgcggcagc 500 tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550 aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600 ccctgacact gtgtttgacc tggtggagct ggaggtcctc aagctggagc 650 tgateceega egtgaeeate eegeeeagea ttgeeeaget eaegggeete 700 aaggagetgt ggetetaeea eacageggee aagattgaag egeetgeget 750 ggccttcctg cgcgagaacc tgcgggcgct gcacatcaag ttcaccgaca 800 tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850 cacctgacgg gcaacctgag cgcggagaac aaccgctaca tcgtcatcga 900 cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950 taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000 ctgtccatca acaatgaggg caccaagctc atcgtcctca acagcctcaa 1050 gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100 gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150 aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200 gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250 ccatccagat cggcaacctc accaacctgg agcgcctcta cctgaaccgc 1300 aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350 ctacctggac ctcagccaca acaacctgac cttcctccct gccgacatcg 1400 gecteetgea gaaceteeag aacetageea teaeggeeaa eeggategag 1450

acgetecete eggagetett ceagtgeegg aagetgeggg ceetgeacet 1500 gggcaacaac gtgctgcagt cactgccctc cagggtgggc gagctgacca 1550 acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600 gagctgggcg agtgcccact gctcaagcgc agcggcttgg tggtggagga 1650 ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggaggg 1700 ctgacaagga gcaggcctga gcgaggccgg cccagcacag caagcagcag 1750 gaccgctgcc cagtcctcag gcccggaggg gcaggcctag cttctcccag 1800 aactcccgga cagccaggac agcctcgcgg ctgggcagga gcctggggcc 1850 gcttgtgagt caggccagag cgagaggaca gtatctgtgg ggctggcccc 1900 ttttctccct ctgagactca cgtcccccag ggcaagtgct tgtggaggag 1950 agcaagtete aagagegeag tatttggata atcagggtet cetecetgga 2000 ggccagctct gccccagggg ctgagctgcc accagaggtc ctgggaccct 2050 cactttagtt cttggtattt atttttctcc atctcccacc tccttcatcc 2100 agataactta tacattccca agaaagttca gcccagatgg aaggtgttca 2150 gggaaaggtg ggctgccttt tccccttgtc cttatttagc gatgccgccg 2200 ggcatttaac acccacctgg acttcagcag agtggtccgg ggcgaaccag 2250 ccatgggacg gtcacccagc agtgccgggc tgggctctgc ggtgcggtcc 2300 acgggagage aggeeteeag etggaaagge eaggeetgga gettgeetet 2350 tcagtttttg tggcagtttt agttttttgt ttttttttt tttaatcaaa 2400 aaacaatttt ttttaaaaaa aagctttgaa aatggatggt ttgggtatta 2450 aaaagaaaaa aaaaacttaa aaaaaaaaag acactaacgg ccagtgagtt 2500 ggagteteag ggeagggtgg cagttteeet tgageaaage ageeagaegt 2550 tgaactgtgt ttcctttccc tgggcgcagg gtgcagggtg tcttccggat 2600 ctggtgtgac cttggtccag gagttctatt tgttcctggg gagggaggtt 2650 tttttgtttg ttttttgggt ttttttggtg tcttgttttc tttctcctcc 2700 atgtgtcttg gcaggcactc atttctgtgg ctgtcggcca gagggaatgt 2750 tctggagctg ccaaggaggg aggagactcg ggttggctaa tccccggatg 2800

aacggtgete cattegeace tecectecte gtgeetgeee tgeeteteea 2850 egeacagtgt taaggageea agaggageea ettegeecag actttgtte 2900 eecaceteet geggeatggg tgtgteeagt geeacegetg geeteegetg 2950 ettecateag eectgtegee acetggteet teatgaagag eagacaetta 3000 gaggetggte gggaatgggg aggtegeee tgggaagggea ggegttggtt 3050 eeaageeggt tecegteet ggegeetgga gtgeacaeag eecagtegge 3100 acetggtgge tggaageeaa eetgettag ateaeteggg tececaett 3150 agaagggtee eegeettaga teaateaegt ggacaetaag geaegtttta 3200 gagtetettg tettaatgat tatgteeate egtetgteeg teeatttgtg 3250 ettetgeaca eeatgaagea aaaateegtt acatgtgggt etgaacetag 3300 eetetgacaa eeatgaagea aaaateegtt acatgtgggt etgaacettg 3350 agaeteggte acagtateaa ataaaateta taacagaaaa aaaaaaaaa 3400 a 3401

<210> 250

<211> 546

<212> PRT

<213> Homo Sapien

<400> 250

Met Arg Gln Thr Ile Ile Lys Val Ile Lys Phe Ile Leu Ile Ile 1 5 10 15

Cys Tyr Thr Val Tyr Tyr Val His Asn Ile Lys Phe Asp Val Asp $20 \\ 25 \\ 30$

Cys Thr Val Asp Ile Glu Ser Leu Thr Gly Tyr Arg Thr Tyr Arg
35 40 45

Cys Ala His Pro Leu Ala Thr Leu Phe Lys Ile Leu Ala Ser Phe
50 55 60

Tyr Ile Ser Leu Val Ile Phe Tyr Gly Leu Ile Cys Met Tyr Thr
65 70 75

Leu Trp Trp Met Leu Arg Arg Ser Leu Lys Lys Tyr Ser Phe Glu 80 85 90

Ser Ile Arg Glu Glu Ser Ser Tyr Ser Asp Ile Pro Asp Val Lys

				95					100					105
Asn	Asp	Phe	Ala	Phe 110	Met	Leu	His	Leu	Ile 115	Asp	Gln	Tyr	Asp	Pro 120
Leu	Tyr	Ser	Lys	Arg 125	Phe	Ala	Val	Phe	Leu 130	Ser	Glu	Val	Ser	Glu 135
Asn	Lys	Leu	Arg	Gln 140	Leu	Asn	Leu	Asn	Asn 145	Glu	Trp	Thr	Leu	Asp 150
Lys	Leu	Arg	Gln	Arg 155	Leu	Thr	Lys	Asn	Ala 160	Gln	Asp	Lys	Leu	Glu 165
Leu	His	Leu	Phe	Met 170	Leu	Ser	Gly	Ile	Pro 175	Asp	Thr	Val	Phe	Asp 180
Leu	Val	Glu	Leu	Glu 185	Val	Leu	Lys	Leu	Glu 190	Leu	Ile	Pro	Asp	Val 195
Thr	Ile	Pro	Pro	Ser 200	Ile	Ala	Gln	Leu	Thr 205	Gly	Leu	Lys	Glu	Leu 210
Trp	Leu	Tyr	His	Thr 215	Ala	Ala	Lys	Ile	Glu 220	Ala	Pro	Ala	Leu	Ala 225
Phe	Leu	Arg	Glu	Asn 230	Leu	Arg	Ala	Leu	His 235	Ile	Lys	Phe	Thr	Asp 240
Ile	Lys	Glu	Ile	Pro 245	Leu	Trp	Ile	Tyr	Ser 250	Leu	Lys	Thr	Leu	Glu 255
Glu	Leu	His	Leu	Thr 260	Gly	Asn	Leu	Ser	Ala 265	Glu	Asn	Asn	Arg	Tyr 270
Ile	Val	Ile	Asp	Gly 275	Leu	Arg	Glu	Leu	Lys 280	Arg	Leu	Lys	Val	Leu 285
Arg	Leu	Lys	Ser	Asn	Leu	Ser	Lys	Leu	Pro	Gln	Val	Val	Thr	Asp
				290					295					300
Val	Gly	Val	His	Leu 305	Gln	Lys	Leu	Ser	Ile 310	Asn	Asn	Glu	Gly	Thr 315
Lys	Leu	Ile	Val	Leu 320	Asn	Ser	Leu	Lys	Lys 325	Met	Ala	Asn	Leu	Thr 330
Glu	Leu	Glu	Leu	Ile 335	Arg	Cys	Asp	Leu	Glu 340	Arg	Ile	Pro	His	Ser 345
Ile	Phe	Ser	Leu	His 350	Asn	Leu	Gln	Glu	Ile 355	Asp	Leu	Lys	Asp	Asn 360

Asn Leu Lys Thr Ile Glu Glu Ile Ile Ser Phe Gln His Leu His Arg Leu Thr Cys Leu Lys Leu Trp Tyr Asn His Ile Ala Tyr Ile 380 Pro Ile Gln Ile Gly Asn Leu Thr Asn Leu Glu Arg Leu Tyr Leu Asn Arg Asn Lys Ile Glu Lys Ile Pro Thr Gln Leu Phe Tyr Cys 415 Arg Lys Leu Arg Tyr Leu Asp Leu Ser His Asn Asn Leu Thr Phe 425 430 Leu Pro Ala Asp Ile Gly Leu Leu Gln Asn Leu Gln Asn Leu Ala Ile Thr Ala Asn Arg Ile Glu Thr Leu Pro Pro Glu Leu Phe Gln Cys Arg Lys Leu Arg Ala Leu His Leu Gly Asn Asn Val Leu Gln 470 Ser Leu Pro Ser Arg Val Gly Glu Leu Thr Asn Leu Thr Gln Ile 490 Glu Leu Arg Gly Asn Arg Leu Glu Cys Leu Pro Val Glu Leu Gly Glu Cys Pro Leu Leu Lys Arg Ser Gly Leu Val Val Glu Glu Asp Leu Phe Asn Thr Leu Pro Pro Glu Val Lys Glu Arg Leu Trp Arg 530 Ala Asp Lys Glu Gln Ala

<210> 251

<211> 20

<212> DNA

<213> Artificial Sequence

<223> Synthetic Oligonucleotide Probe

<400> 251

caacaatgag ggcaccaagc 20

<210> 252

<211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 252
gatggctagg ttctggaggt tctg 24
<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 253
caacctgcag gagattgacc tcaaggacaa caacctcaag accatcg 47
<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien
<400> 254
gcctgttgct gatgctgccg tgcggtactt gtcatgqagc tqqcactqcq 50
gegetetece gteeegegt ggttgetget getgeegetg etgetgggee 100
tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200
ttatgccacc aactcctgca agaacttctc agaactgccc ctggtcatgt 250
ggcttcaggg cggtccaggc ggttctagca ctggatttgg aaactttgag 300
gaaattgggc cccttgacag tgatctcaaa ccacggaaaa ccacctggct 350
ccaggctgcc agtctcctat ttgtggataa tcccgtgggc actgggttca 400
gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggct 450
tcagacatga tggttctcct gaagaccttc ttcagttgcc acaaagaatt 500
ccagacagtt ccattctaca ttttctcaga gtcctatgga ggaaaaatgg 550
cagctggcat tggtctagag ctttataagg ccattcagcg agggaccatc 600
aagtgcaact ttgcgggggt tgccttgggt gattcctgga tctcccctgt 650
tgattcggtg ctctcctggg gaccttacct gtacagcatg tctcttctcg 700
```

aagacaaagg totggcagag gtgtotaagg ttgcagagca agtactgaat 750 gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800 agaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850 taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900 cagagecace tagtttgtct ttgtcagege caegtgagac acctacaaeg 950 agatgeetta agecagetea tgaatggeee catcagaaag aageteaaaa 1000 ttattcctga ggatcaatcc tggggaggcc aggctaccaa cgtctttgtg 1050 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150 teqtaqatac catqqqteaq qaqqeetqqq tgeggaaaet gaagtggeca 1200 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250 taaatctttg gaaacatctg cttttgtcaa gtcctacaag aaccttgctt 1300 tctactggat tctgaaagct ggtcatatgg ttccttctga ccaaggggac 1350 atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400 gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450 cgctgaagct gtaggaagcg ccattcttcc ctgtatctaa ctggggctgt 1500 gatcaagaag gttctgacca gcttctgcag aggataaaat cattgtctct 1550 ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagattttt 1600 taaaaaattg atttgttttg atcaaaataa aggatgataa tagatattaa 1650

Met Glu Leu Ala Leu Arg Arg Ser Pro Val Pro Arg Trp Leu Leu 1 5 10 15

Leu Leu Pro Leu Leu Gly Leu Asn Ala Gly Ala Val Ile Asp 20 25 30

Trp Pro Thr Glu Glu Gly Lys Glu Val Trp Asp Tyr Val Thr Val
35 40 45

<210> 255

<211> 452

<212> PRT

<213> Homo Sapien

<400> 255

Arg	Lys	Asp	Ala	Tyr 50	Met	Phe	Trp	Trp	Leu 55	Tyr	Tyr	Ala	Thr	Asn 60
Ser	Cys	Lys	Asn	Phe 65	Ser	Glu	Leu	Pro	Leu 70	Val	Met	Trp	Leu	Gln 75
Gly	Gly	Pro	Gly	Gly 80	Ser	Ser	Thr	Gly	Phe 85	Gly	Asn	Phe	Glu	Glu 90
Ile	Gly	Pro	Leu	Asp 95	Ser	Asp	Leu	Lys	Pro 100	Arg	Lys	Thr	Thr	Trp 105
Leu	Gln	Ala	Ala	Ser 110	Leu	Leu	Phe	Val	Asp 115	Asn	Pro	Val	Gly	Thr 120
Gly	Phe	Ser	Tyr	Val 125	Asn	Gly	Ser	Gly	Ala 130	Tyr	Ala	Lys	Asp	Leu 135
Ala	Met	Val	Ala	Ser 140	Asp	Met	Met	Val	Leu 145	Leu	Lys	Thr	Phe	Phe 150
Ser	Cys	His	Lys	Glu 155	Phe	Gln	Thr	Val	Pro 160	Phe	Tyr	Ile	Phe	Ser 165
Glu	Ser	Tyr	Gly	Gly 170	Lys	Met	Ala	Ala	Gly 175	Ile	Gly	Leu	Glu	Leu 180
Tyr	Lys	Ala	Ile	Gln 185	Arg	Gly	Thr	Ile	Lys 190	Cys	Asn	Phe	Ala	Gly 195
Val	Ala	Leu	Gly	Asp 200	Ser	Trp	Ile	Ser	Pro 205	Val	Asp	Ser	Val	Leu 210
Ser	Trp	Gly	Pro	Tyr 215	Leu	Tyr	Ser	Met	Ser 220	Leu	Leu	Glu	Asp	Lys 225
Gly	Leu	Ala	Glu	Val 230	Ser	Lys	Val	Ala	Glu 235	Gln	Val	Leu	Asn	Ala 240
Val	Asn	Lys	Gly	Leu 245	Tyr	Arg	Glu	Ala	Thr 250	Glu	Leu	Trp	Gly	Lys 255
Ala	Glu	Met	Ile	Ile 260	Glu	Gln	Asn	Thr	Asp 265	Gly	Val	Asn	Phe	Tyr 270
Asn	Ile	Leu	Thr	Lys 275	Ser	Thr	Pro	Thr	Ser 280	Thr	Met	Glu	Ser	Ser 285
Leu	Glu	Phe	Thr	Gln 290	Ser	His	Leu	Val	Cys 295	Leu	Cys	Gln	Arg	His 300
Val	Arg	His	Leu	Gln	Arg	Asp	Ala	Leu	Ser	Gln	Leu	Met	Asn	Gly

Pro	Ile	Arg	Lys	Lys 320	Leu	Lys	Ile	Ile	Pro 325		Asp	Gln	Sei	330
Gly	Gly	Gln	Ala	Thr 335	Asn	Val	Phe	Val	Asn 340	Met	Glu	Glu	Asp	Phe 345
Met	Lys	Pro	Val	Ile 350	Ser	Ile	Val	Asp	Glu 355	Leu	Leu	Glu	Ala	Gly 360
Ile	Asn	Val	Thr	Val 365	Tyr	Asn	Gly	Gln	Leu 370	Asp	Leu	Ile	Val	Asp 375
Thr	Met	Gly	Gln	Glu 380	Ala	Trp	Val	Arg	Lys 385	Leu	Lys	Trp	Pro	Glu 390
Leu	Pro	Lys	Phe	Ser 395	Gln	Leu	Lys	Trp	Lys 400	Ala	Leu	Tyr	Ser	Asp 405
Pro	Lys	Ser	Leu	Glu 410	Thr	Ser	Ala	Phe	Val 415	Lys	Ser	Tyr	Lys	Asn 420
Leu	Ala	Phe	Tyr	Trp 425	Ile	Leu	Lys	Ala	Gly 430	His	Met	۷al	Pro	Ser 435
Asp	Gln	Gly	Asp	Met 440	Ala	Leu	Lys	Met	Met 445	Arg	Leu	Val	Thr	Gln 450
Gln	Glu													
212>	110 DNA	0	ıpien	L										
400>														
ggcc	gcgg	iga g	agga	.ggcc	a tg	iggc9	cgcg	cgg	iggeg	ctg	ctgo	tggc	gc	50
tgct	gctg	gc t	cggg	ctgg	a ct	cagg	aago	cgg	agto	gca	ggag	gegg	lca	100
ccgt	tatc	ag g	acca	tgcg	g co	gacg	ggtc	atc	acgt	cgc	gcat	cgtg	igg	150
tgga	gagg	ac g	ccga	acto	g gg	cgtt	ggcc	gtg	gcag	aaa	agcc	tgcg	lcc	200
tgtg	ggat	tc c	cacg	tatg	c gg	agtg	agcc	tgc	tcag	cca	ccgc	tggg	ca	250
ctca	cggc	gg c	gcac	tgct	t tg	aaac	ctat	agt	gacc	tta	gtga	tccc	tc	300
cggg	tgga	tg g	tcca	gttt	g gc	cagc	tgac	ttc	catg	cca	tcct	tc t g	ga	350
qcct	qcaq	ac c	tact	acac	c ca	ttac	ttca	tat	cgaa	tat	ctat	ctga	ac -	400

cetegetace tggggaatte accetatgae attgeettgg tgaaqetqte 450 tgcacctgtc acctacacta aacacatcca gcccatctgt ctccaggcct 500 ccacatttga gtttgagaac cggacagact gctgggtgac tggctqqqqq 550 tacatcaaag aggatgaggc actgccatct ccccacaccc tccaqqaaqt 600 tcaggtcgcc atcataaaca actctatgtg caaccacctc ttcctcaagt 650 acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgcc 700 caaggcggga aggatgcctg cttcggtgac tcaggtggac ccttggcctg 750 taacaagaat ggactgtggt atcagattgg agtcgtgagc tggggagtgg 800 getgtggteg geceaategg eceggtgtet acaccaatat cagecaccac 850 tttgagtgga tccagaagct gatggcccag agtggcatgt cccagccaga 900 cocctectgg ccactactet ttttecetet tetetggget eteccactee 950 tggggccggt ctgagcctac ctgagcccat gcagcctggg gccactgcca 1000 agtcaggccc tggttctctt ctgtcttgtt tggtaataaa cacattccag 1050 <210> 257

<400> 257

Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg

Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser

20 25 30

Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly

Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg

Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg

Trp Ala Leu Thr Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu

<211> 314

<212> PRT

<213> Homo Sapien

Ser Asp	Pro	Ser	Gly 95	Trp	Met	Val	Gln	Phe 100	Gly	Gln	Leu	Thr	Ser 105
Met Pro	Ser	Phe	Trp 110	Ser	Leu	Gln	Ala	Tyr 115	Tyr	Thr	Arg	Tyr	Phe 120
Val Ser	Asn	Ile	Tyr 125	Leu	Ser	Pro	Arg	Tyr 130	Leu	Gly	Asn	Ser	Pro 135
Tyr Asp	lle	Ala	Leu 140	Val	Lys	Leu	Ser	Ala 145	Pro	Val	Thr	Tyr	Thr 150
Lys His	Ile	Gln	Pro 155	Ile	Cys	Leu	Gln	Ala 160	Ser	Thr	Phe	Glu	Phe 165
Glu Asr	Arg	Thr	Asp 170	Cys	Trp	Val	Thr	Gly 175	Trp	Gly	Tyr	Ile	Lys 180
Glu Asp	Glu	Ala	Leu 185	Pro	Ser	Pro	His	Thr 190	Leu	Gln	Glu	Val	Gln 195
Val Ala	lle	Ile	Asn 200	Asn	Ser	Met	Cys	Asn 205	His	Leu	Phe	Leu	Lys 210
Tyr Ser	Phe	Arg	Lys 215	Asp	Ile	Phe	Gly	Asp 220	Met	Val	Cys	Ala	Gly 225
Asn Ala	Gln	Gly	Gly 230	Lys	Asp	Ala	Cys	Phe 235	Gly	Asp	Ser	Gly	Gly 240
Pro Leu	ı Ala	Cys	Asn 245	Lys	Asn	Gly	Leu	Trp 250	Tyr	Gln	Ile	Gly	Val 255
Val Ser	Trp	Gly	Val 260	Gly	Cys	Gly	Arg	Pro 265	Asn	Arg	Pro	Gly	Val 270
Tyr Thr	Asn	Ile	Ser 275	His	His	Phe	Glu	Trp 280	Ile	Gln	Lys	Leu	Met 285
Ala Glr	. Ser	Gly	Met 290	Ser	Gln	Pro	Asp	Pro 295	Ser	Trp	Pro	Leu	Leu 300
Phe Phe	Pro	Leu	Leu 305	Trp	Ala	Leu	Pro	Leu 310	Leu	Gly	Pro	Val	

<210> 258

<211> 2427

<212> DNA

<213> Homo Sapien

<400> 258

cccacgcgtc cgcggacgcg tgggaagggc agaatgggac tccaagcctg 50

cctcctaggg ctctttgccc tcatcctctc tggcaaatgc agttacagcc 100 cggagcccga ccagcggagg acgctgcccc caggctgggt gtccctgggc 150 cgtgcggacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200 gaatgtggaa agactctcgg agctggtgca ggctgtgtcg gatcccagct 250 ctcctcaata cggaaaatac ctgaccctag agaatgtggc tgatctggtg 300 aggccatccc cactgaccct ccacacggtg caaaaatggc tcttggcagc 350 cggagcccag aagtgccatt ctgtgatcac acaggacttt ctgacttgct 400 ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagtttcat 450 cactatgtgg gaggacctac ggaaacccat gttgtaaggt ccccacatcc 500 ctaccagett ccacaggect tggeccccca tgtggacttt gtggggggac 550 tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600 gtgacaggga ctgtaggcct gcatctgggg gtaaccccct ctgtgatccg 650 taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700 acagccaagc ctgtgcccag ttcctggagc agtatttcca tgactcagac 750 ctggctcagt tcatgcgcct cttcggtggc aactttgcac atcaggcatc 800 ccagtctaga tgtgcagtac ctgatgagtg ctggtgccaa catctccacc 900 tgggtctaca gtagccctgg ccggcatgag ggacaggagc ccttcctgca 950 gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000 tgagctatgg agatgatgag gactccctca gcagcgccta catccagcgg 1050 gtcaacactg agctcatgaa ggctgccgct cggggtctca ccctgctctt 1100 cgcctcaggt gacagtgggg ccgggtgttg gtctgtctct ggaagacacc 1150 agttccgccc taccttccct gcctccagcc cctatgtcac cacagtggga 1200 ggcacatcct tccaggaacc tttcctcatc acaaatgaaa ttgttgacta 1250 tatcagtggt ggtggcttca gcaatgtgtt cccacggcct tcataccagg 1300 aggaagctgt aacgaagttc ctgagctcta gccccacct gccaccatcc 1350 agttacttca atgccagtgg ccgtgcctac ccagatgtgg ctgcactttc 1400

tgatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450 gaacctegge etetaeteea gtgtttgggg ggateetate ettgateaat 1500 gagcacagga teettagtgg eegeceeet ettggettte teaacceaag 1550 getetaceag cageatgggg caggtetett tgatgtaace egtggetgee 1600 atgagtcctg tctggatgaa gaggtagagg gccagggttt ctgctctggt 1650 cctggctggg atcctgtaac aggctgggga acaccaactt cccagctttg 1700 ctgaagactc tactcaaccc ctgacccttt cctatcagga gagatggctt 1750 gtoccotgoo otgaagotgg cagttoagto cottattotg cootgttgga 1800 agecetgetg aacceteaac tattgaetge tgeagaeage ttateteeet 1850 aaccctgaaa tgctgtgagc ttgacttgac tcccaaccct accatgctcc 1900 atcatactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950 gtaactagca ttttttgaat gcctctccct ccgcatctca tctttctctt 2000 ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050 acttgatatt cattccccaa ttcactgcaa ggagacctct actgtcaccg 2100 tttactcttt cctaccctga catccagaaa caatggcctc cagtgcatac 2150 ttctcaatct ttgctttatg gcctttccat catagttgcc cactccctct 2200 cettacttag ettecaggie tiaacttete tgactactet tgietteete 2250 tctcatcaat ttctgcttct tcatggaatg ctgaccttca ttgctccatt 2300 tgtagatttt tgctcttctc agtttactca ttgtcccctg gaacaaatca 2350 ctgacatcta caaccattac catctcacta aataagactt tctatccaat 2400 aatgattgat acctcaaatg taaaaaa 2427

Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr

<210> 259

<211> 556

<212> PRT

<213> Homo Sapien

<400> 259

Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu 1 5 10

				20					25					30
Leu	Pro	Pro	Gly	Trp 35	Val	Ser	Leu	Gly	Arg 40	Ala	Asp	Pro	Glu	Glu 45
Glu	Leu	Ser	Leu	Thr 50	Phe	Ala	Leu	Arg	Gln 55	Gln	Asn	Val	Glu	Arg
Leu	Ser	Glu	Leu	Val 65	Gln	Ala	Val	Ser	Asp 70	Pro	Ser	Ser	Pro	Gln 75
Tyr	Gly	Lys	Tyr	Leu 80	Thr	Leu	Glu	Asn	Va1 85	Ala	Asp	Leu	Val	Arg
Pro	Ser	Pro	Leu	Thr 95	Leu	His	Thr	Val	Gln 100	Lys	Trp	Leu	Leu	Ala 105
Ala	Gly	Ala	Gln	Lys 110	Cys	His	Ser	Val	Ile 115	Thr	Gln	Asp	Phe	Leu 120
Thr	Cys	Trp	Leu	Ser 125	Ile	Arg	Gln	Ala	Glu 130	Leu	Leu	Leu	Pro	Gly 135
Ala	Glu	Phe	His	His 140	Tyr	Val	Gly	Gly	Pro 145	Thr	Glu	Thr	His	Val 150
Val	Arg	Ser	Pro	His 155	Pro	Tyr	Gln	Leu	Pro 160	Gln	Ala	Leu	Ala	Pro 165
His	Va1	Asp	Phe	Val 170	Gly	Gly	Leu	His	Arg 175	Phe	Pro	Pro	Thr	Ser 180
Ser	Leu	Arg	Gln	Arg 185	Pro	Glu	Pro	Gln	Val 190	Thr	Gly	Thr	Va1	Gly 195
Leu	His	Leu	Gly	Val 200	Thr	Pro	Ser	Va1	Ile 205	Arg	Lys	Arg	Tyr	Asn 210
Leu	Thr	Ser	Gln	Asp 215	Val	Gly	Ser	Gly	Thr 220	Ser	Asn	Asn	Ser	Gln 225
Ala	Cys	Ala	Gln	Phe 230	Leu	Glu	Gln	Tyr	Phe 235	His	Asp	Ser	Asp	Leu 240
Ala	Gln	Phe	Met	Arg 245	Leu	Phe	Gly	Gly	Asn 250	Phe	Ala	His	Gln	Ala 255
Ser	Val	Ala	Arg	Val 260	Val	Gly	Gln	Gln	Gly 265	Arg	Gly	Arg	Ala	Gly 270
Ile	Glu	Ala	Ser	Leu 275		Val	Gln		Leu 280		Ser	Ala	Gly	Ala 285

Asn	Ile	Ser	Thr	Trp 290	Val	Tyr	Ser	Ser	Pro 295	Gly	Arg	His	Glu	Gly 300
Gln	Glu	Pro	Phe	Leu 305	Gln	Trp	Leu	Met	Leu 310	Leu	Ser	Asn	Glu	Ser 315
Ala	Leu	Pro	His	Val 320	His	Thr	Val	Ser	Tyr 325	Gly	Asp	Asp	Glu	Asp 330
Ser	Leu	Ser	Ser	Ala 335	Tyr	Ile	Gln	Arg	Val 340	Asn	Thr	Glu	Leu	Met 345
Lys	Ala	Ala	Ala	Arg 350	Gly	Leu	Thr	Leu	Leu 355	Phe	Ala	Ser	Gly	Asp 360
Ser	Gly	Ala	Gly	Cys 365	Trp	Ser	Val	Ser	Gly 370	Arg	His	Gln	Phe	Arg 375
Pro	Thr	Phe	Pro	Ala 380	Ser	Ser	Pro	Tyr	Val 385	Thr	Thr	Val	Gly	Gly 390
Thr	Ser	Phe	Gln	Glu 395	Pro	Phe	Leu	Ile	Thr 400	Asn	Glu	Ile	Val	Asp 405
Tyr	Ile	Ser	Gly	Gly 410	Gly	Phe	Ser	Asn	Val 415	Phe	Pro	Arg	Pro	Ser 420
Tyr	Gln	Glu	Glu	Ala 425	Val	Thr	Lys	Phe	Leu 430	Ser	Ser	Ser	Pro	His 435
Leu	Pro	Pro	Ser	Ser 440	Tyr	Phe	Asn	Ala	Ser 445	Gly	Arg	Ala	Tyr	Pro 450
Asp	Val	Ala	Ala	Leu 455	Ser	qaA	Gly	Tyr	Trp 460	Val	Val	Ser	Asn	Arg 465
Val	Pro	Ile	Pro	Trp 470	Val	Ser	Gly	Thr	Ser 475	Ala	Ser	Thr	Pro	Val 480
Phe	Gly	Gly	Ile	Leu 485	Ser	Leu	Ile	Asn	Glu 490	His	Arg	Ile	Leu	Ser 495
Gly	Arg	Pro	Pro	Leu 500	Gly	Phe	Leu	Asn	Pro 505	Arg	Leu	Tyr	Gln	Gln 510
His	Gly	Ala	Gly	Leu 515	Phe	Asp	Val	Thr	Arg 520	Gly	Cys	His	Glu	Ser 525
Cys	Leu	Asp	Glu	Glu 530	Val	Glu	Gly	Gln	Gly 535	Phe	Cys	Ser	Gly	Pro 540
Gly	Trp	Àsp	Pro	Val 545	Thr	Gly	Trp	Gly	Thr 550	Pro	Thr	Ser	Gln	Leu 555

Cys

<210> 260

<211> 1638

<212> DNA

<213> Homo Sapien

<400> 260

geogegeget etetecegge geocacacet gtetgagegg egeagegage 50 cgcggcccgg gcgggctgct cggcgcggaa cagtgctcgg catggcaggg 100 attccagggc tectetteet tetettett etgetetgtg etgttgggca 150 agtgageeet taeagtgeee eetggaaace eacttggeet geatacegee 200 tccctgtcgt cttgccccag tctaccctca atttagccaa gccagacttt 250 ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300 taagggaact ccactgccca cttacgaaga ggccaagcaa tatctgtctt 350 atgaaacgct ctatgccaat ggcagccgca cagagacgca ggtgggcatc 400 tacatcctca gcagtagtgg agatggggcc caacaccgag actcagggtc 450 ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcaggt 500 tcagcatttt tgggaaggac ttcctgctca actacccttt ctcaacatca 550 gtgaagttat ccacgggctg caccggcacc ctggtggcag agaagcatgt 600 cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650 cccagaagct tcgagtgggc ttcctaaagc ccaagtttaa agatggtggt 700 cgaggggcca acgactccac ttcagccatg cccgagcaga tgaaatttca 750 gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaagggca 800 atgccaatga catcggcatg gattatgatt atgccctcct ggaactcaaa 850 aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctcctgctaa 900 gcagctgcca gggggcagaa ttcacttctc tggttatgac aatgaccgac 950 caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000 ttgctctacc agcaatgcga tgcccagcca ggggccagcg ggtctggggt 1050 ctatgtgagg atgtggaaga gacagcagca gaagtgggag cgaaaaatta 1100 ttggcattt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150 gatttcaacg tggctgtcag aatcactcct ctcaaatatg cccagatttg 1200 ctattggatt aaaggaaact acctggattg tagggagggg tgacacagtg 1250 ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagaggg 1300 ccaaattgtt ttttgtcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgtg 1350 tgtgtgtaag gtgtcttata atcttttacc tatttcttac aattgcaaga 1400 tgactggctt tactatttga aaactggttt gtgtatcata tcataatca 1450 tttagggcaa tgaggaatat ttgacaatta agttaatcat cacgtttttg 1550 caaactttga tttttattc atctgaactt gtttcaaaga tttatattaa 1600 atatttggca tacaagagat atgaaaaaa aaaaaaaa 1638

<400> 261

Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Leu 1 5 10 15

Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Thr Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr 35 40 45

Leu Asn Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu
50 55 60

Val Ser Ser Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu 65 70 75

Pro Thr Tyr Glu Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu 80 85 90

Tyr Ala Asn Gly Ser Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile

95 100 105

Leu Ser Ser Ser Gly Asp Gly Ala Gln His Arg Asp Ser Gly Ser 110 115 120

<210> 261

<211> 383

<212> PRT

<213> Homo Sapien

Ser	Gly	Lys	Ser	Arg 125	Arg	Lys	Arg	Gln	Ile 130	Tyr	Gly	Tyr	Asp	Ser 135
Arg	Phe	Ser	Ile	Phe 140	Gly	Lys	Asp	Phe	Leu 145	Leu	Asn	Tyr	Pro	Phe 150
Ser	Thr	Ser	Val	Lys 155	Leu	Ser	Thr	Gly	Cys 160	Thr	Gly	Thr	Leu	Val 165
Ala	Glu	Lys	His	Val 170	Leu	Thr	Ala	Ala	His 175	Суз	Ile	His	Asp	Gly 180
Lys	Thr	Tyr	Val	Lys 185	Gly	Thr	Gln	Lys	Leu 190	Arg	Val	Gly	Phe	Leu 195
Lys	Pro	Lys	Phe	Lys 200	Asp	Gly	Gly	Arg	Gly 205	Ala	Asn	Asp	Ser	Thr 210
Ser	Ala	Met	Pro	Glu 215	Gln	Met	Lys	Phe	Gln 220	Trp	Ile	Arg	Val	Lys 225
Arg	Thr	His	Val	Pro 230	Lys	Gly	Trp	Ile	Lys 235	Gly	Asn	Ala	Asn	Asp 240
Ile	Gly	Met	Asp	Tyr 245	Asp	Tyr	Ala	Leu	Leu 250	Glu	Leu	Lys	Lys	Pro 255
His	Lys	Arg	Lys	Phe 260	Met	Lys	Ile	Gly	Val 265	Ser	Pro	Pro	Ala	Lys 270
Gln	Leu	Pro	Gly	Gly 275	Arg	Ile	His	Phe	Ser 280	Gly	Tyr	Asp	Asn	Asp 285
Arg	Pro	Gly	Asn	Leu 290	Val	Tyr	Arg	Phe	Суs 295	Asp	Val	Lys	Asp	Glu 300
Thr	Tyr	Asp	Leu	Leu 305	Tyr	Gln	Gln	Суз	Asp 310	Ala	Gln	Pro	Gly	Ala 315
Ser	Gly	Ser	Gly	Val 320	Tyr	Val	Arg	Met	Trp 325	Lys	Arg	Gln	Gln	Gln 330
Lys	Trp	Glu	Arg	Lys 335	Ile	Ile	Gly	Ile	Phe 340	Ser	Gly	His	Gln	Trp 345
Val	Asp	Met	Asn	Gly 350	Ser	Pro	Gln	Asp	Phe 355	Asn	Val	Ala	Val	Arg 360
Ile	Thr	Pro	Leu	Lys 365	Tyr	Ala	Gln	Ile	Cys 370	Tyr	Trp	Ile	Lys	Gly 375
Asn	Tyr	Leu	Asp	Cys 380	Arg	Glu	Gly							

```
<210> 262
```

<400> 262 gcatcgccct gggtctctcg agcctgctgc ctgctccccc gccccaccag 50 ccatggtggt ttctggagcg cccccagccc tgggtggggg ctgtctcggc 100 accttcacct ccctgctgct gctggcgtcg acagccatcc tcaatgcggc 150 caggatacct gttcccccag cctgtgggaa gccccagcag ctgaaccggg 200 ttgtgggcgg cgaggacagc actgacagcg agtggccctg gatcgtgagc 250 atccagaaga atgggaccca ccactgcgca ggttctctgc tcaccagccg 300 ctgggtgatc actgctgccc actgtttcaa ggacaacctg aacaaaccat 350 acctgttctc tgtgctgctg ggggcctggc agctggggaa ccctggctct 400 cggtcccaga aggtgggtgt tgcctgggtg gagccccacc ctgtgtattc 450 ctggaaggaa ggtgcctgtg cagacattgc cctggtgcgt ctcgagcgct 500 ccatacagtt ctcagagcgg gtcctgccca tctgcctacc tgatgcctct 550 atccacctcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600 ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650 tteetateat egaeteggaa gtetgeagee atetgtaetg geggggagea 700 ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750 ggagegggat gettgtetgg gegaeteegg gggeeeete atgtgeeagg 800 tggacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850 gccgagcgca acaggcccgg ggtctacatc agcctctctg cgcaccgctc 900 ctgggtggag aagatcgtgc aaggggtgca gctccgcggg cgcgctcagg 950 ggggtgggc cctcagggca ccgagccagg gctctggggc cgccgcgcgc 1000 tectagggeg cagegggaeg egggetegg atetgaaagg eggeeagate 1050 cacatetgga tetggatetg eggeggeete gggeggttte eeeegeegta 1100

aataggetea tetaceteta eetetggggg eeeggaegge tgetgeggaa 1150

<211> 1378

<212> DNA

<213> Homo Sapien

aggaaacccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200 catcaggccc cgcccaacgg cctcatgtcc ccgccccac gacttccggc 1250 cccgcccccg ggccccagcg cttttgtgta tataaatgtt aatgatttt 1300 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350 ataaattatt tattctccaa aaaaaaaa 1378

<210> 263

<211> 317

<212> PRT

<213> Homo Sapien

<400> 263

Met Val Val Ser Gly Ala Pro Pro Ala Leu Gly Gly Cys Leu Gly Thr Phe Thr Ser Leu Leu Leu Leu Ala Ser Thr Ala Ile Leu Asn Ala Ala Arq Ile Pro Val Pro Pro Ala Cys Gly Lys Pro Gln Gln Leu Asn Arg Val Val Gly Gly Glu Asp Ser Thr Asp Ser Glu Trp Pro Trp Ile Val Ser Ile Gln Lys Asn Gly Thr His His Cys Ala Gly Ser Leu Leu Thr Ser Arg Trp Val Ile Thr Ala Ala His Cys Phe Lys Asp Asn Leu Asn Lys Pro Tyr Leu Phe Ser Val Leu 95 100 Leu Gly Ala Trp Gln Leu Gly Asn Pro Gly Ser Arg Ser Gln Lys 110 Val Gly Val Ala Trp Val Glu Pro His Pro Val Tyr Ser Trp Lys 130 Glu Gly Ala Cys Ala Asp Ile Ala Leu Val Arg Leu Glu Arg Ser Ile Gln Phe Ser Glu Arg Val Leu Pro Ile Cys Leu Pro Asp Ala Ser Ile His Leu Pro Pro Asn Thr His Cys Trp Ile Ser Gly Trp 170 175

```
Gly Ser Ile Gln Asp Gly Val Pro Leu Pro His Pro Gln Thr Leu
Gln Lys Leu Lys Val Pro Ile Ile Asp Ser Glu Val Cys Ser His
Leu Tyr Trp Arg Gly Ala Gly Gln Gly Pro Ile Thr Glu Asp Met
Leu Cys Ala Gly Tyr Leu Glu Gly Glu Arg Asp Ala Cys Leu Gly
Asp Ser Gly Gly Pro Leu Met Cys Gln Val Asp Gly Ala Trp Leu
                                     250
Leu Ala Gly Ile Ile Ser Trp Gly Glu Gly Cys Ala Glu Arg Asn
Arg Pro Gly Val Tyr Ile Ser Leu Ser Ala His Arg Ser Trp Val
                 275
Glu Lys Ile Val Gln Gly Val Gln Leu Arg Gly Arg Ala Gln Gly
Gly Gly Ala Leu Arg Ala Pro Ser Gln Gly Ser Gly Ala Ala Ala
                                     310
Arg Ser
<210> 264
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 264
gtccgcaagg atgcctacat gttc 24
<210> 265
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 265
gcagaggtgt ctaaggttg 19
<210> 266
```

<211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 266
agctctagac caatgccagc ttcc 24
<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 267
gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45
<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 268
ggggaattca ccctatgaca ttgcc 25
<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 269
gaatgccctg caagcatcaa ctgg 24
<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 270
gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50
```

```
<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 271
 gcggaagggc agaatgggac tccaag 26
<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 272
cagccctgcc acatgtgc 18
<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 273
tactgggtgg tcagcaac 18
<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 274
ggcgaagagc agggtgagac cccg 24
<210> 275
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

```
<400> 275
gccctcatcc tctctggcaa atgcagttac agcccggagc ccgac 45
<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 276
gggcagggat tccagggctc c 21
<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 277
ggctatgaca gcaggttc 18
<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 278
tgacaatgac cgaccagg 18
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 279
 gcatcgcatt gctggtagag caag 24
<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic Oligonucleotide Probe
<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataccgc ctccc 45
<210> 281
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 281
cgtctcgagc gctccataca gttcccttgc ccca 34
<210> 282
<211> 61
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 tggagggga gegggatget tgtctgggeg actccggggg ccccctcatg 50
 tgccaggtgg a 61
<210> 283
<211> 119
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 283
 ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50
 gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100
 atgctgtgtg ccggctact 119
<210> 284
<211> 1875
<212> DNA
<213> Homo Sapien
<400> 284
 gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50
 ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100
```

agatgaggag aaacgtttga tggtggagct gcacaacctc taccgggccc 150 aggtatcccc gacggcctca gacatgctgc acatgagatg ggacgaggag 200 ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250 caaggagcgc gggcgccgcg gcgagaatct gttcgccatc acagacgagg 300 gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350 tacaacetea gegeegeeae etgeageeea ggeeagatgt geggeeaeta 400 cacgcaggtg gtatgggcca agacagagag gatcggctgt ggttcccact 450 tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500 tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550 ggggactccg tgctcccaat gtccctctgg ctaccactgc aagaactccc 600 tctgtgaacc catcggaagc ccggaagatg ctcaggattt gccttacctg 650 gtaactgagg ccccatcctt ccgggcgact gaagcatcag actctaggaa 700 aatgggtact ccttcttccc tagcaacggg gattccggct ttcttggtaa 750 cagaggtete aggeteeetg geaaceaagg etetgeetge tgtggaaace 800 caggececaa etteettage aaegaaagae eegeeeteea tggeaaeaga 850 ggctccacct tgcgtaacaa ctgaggtccc ttccattttg gcagctcaca 900 gcctgccctc cttggatgag gagccagtta ccttccccaa atcgacccat 950 gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000 ctctaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050 caagggaact cctaccccat gcccaggagg aggctgaggc tgaggctgag 1100 ttgcctcctt ccagtgaggt cttggcctca gtttttccag cccaggacaa 1150 gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200 agtccctgcc caatttcccc aatacctctg ccaccgctaa tgccacgggt 1250 gggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300 caagectage gttgtgtcag ggetgaacte gggeeetggt catgtgtggg 1350 gccctctcct gggactactg ctcctgcctc ctctggtgtt ggctggaatc 1400 ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctctgt 1450
catcttcccc accctgtccc cagcccctaa acaagatact tcttggttaa 1500
ggccctccgg aagggaaagg ctacggggca tgtgcctcat cacaccatcc 1550
atcctggagg cacaaggcct ggctggctgc gagctcagga ggccgcctga 1600
ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtcctg 1650
ggggtgggag gatttgaggg agctcactgc ctacctggcc tggggctgtc 1700
tgcccacaca gcatgtgcgc tctccctgag tgcctgtta gctggggatg 1750
gggattccta ggggcagatg aaggacaagc cccactggag tggggttctt 1800
tgagtggggg aggcagggac gagggaagga aagtaactcc tgactctca 1850
ataaaaacct gtccaacctg tgaaa 1875

<400> 285

- Met His Gly Ser Cys Ser Phe Leu Met Leu Leu Leu Pro Leu Leu 1 5 10 15
- Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp 20 25 30
- Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala
- Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp
 50 55
- Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val
 65 70 75
- Trp Gly His Asn Lys Glu Arg Gly Arg Gly Glu Asn Leu Phe 80 85 90
- Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu 95 100 100
- Trp His His Glu Arg Glu His Tyr Asn Leu Ser Ala Ala Thr Cys
 110 115 120
- Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala

<210> 285

<211> 463

<212> PRT

<213> Homo Sapien

Lys	Thr	Glu	Arg	Ile 140	Gly	Cys	Gly	Ser	His 145	Phe	Cys	Glu	Lys	Leu 150
Gln	Gly	Val	Glu	Glu 155	Thr	Asn	Ile	Glu	Leu 160	Leu	Val	Cys	Asn	Tyr 165
Glu	Pro	Pro	Gly	Asn 170	Val	Lys	Gly	Lys	Arg 175	Pro	Tyr	Gln	Glu	Gly 180
Thr	Pro	Cys	Ser	Gln 185	Cys	Pro	Ser	Gly	Tyr 190	His	Cys	Lys	Asn	Ser 195
Leu	Cys	Glu	Pro	Ile 200	Gly	Ser	Pro	Glu	Asp 205	Ala	Gln	Asp	Leu	Pro 210
Tyr	Leu	Val	Thr	Glu 215	Ala	Pro	Ser	Phe	Arg 220	Ala	Thr	Glu	Ala	Ser 225
Asp	Ser	Arg	Lys	Met 230	Gly	Thr	Pro	Ser	Ser 235	Leu	Ala	Thr	Gly	Ile 240
Pro	Ala	Phe	Leu	Val 245	Thr	Glu	Val	Ser	Gly 250	Ser	Leu	Ala	Thr	Lys 255
Ala	Leu	Pro	Ala	Val 260	Glu	Thr	Gln	Ala	Pro 265	Thr	Ser	Leu	Ala	Thr 270
Lys	Asp	Pro	Pro	Ser 275	Met	Ala	Thr	Glu	Ala 280	Pro	Pro	Cys	Val	Thr 285
Thr	Glu	Val	Pro	Ser 290	Ile	Leu	Ala	Ala	His 295	Ser	Leu	Pro	Ser	Leu 300
Asp	Glu	Glu	Pro	Val 305	Thr	Phe	Pro	Lys	Ser 310	Thr	His	Val	Pro	Ile 315
Pro	Lys	Ser	Ala	Asp 320	Lys	Val	Thr	Asp	Lys 325	Thr	Lys	Val	Pro	Ser 330
Arg	Ser	Pro	Glu	Asn 335	Ser	Leu	Asp	Pro	Lys 340	Met	Ser	Leu	Thr	Gly 345
Ala	Arg	Glu	Leu	Leu 350	Pro	His	Ala	Gln	Glu 355	Glu	Ala	Glu	Ala	Glu 360
Ala	Glu	Leu	Pro	Pro 365	Ser	Ser	Glu	Val	Leu 370	Ala	Ser	Val	Phe	Pro 375
Ala	Gln	Asp	Lys	Pro 380	Gly	Glu	Leu	Gln	Ala 385	Thr	Leu	Asp	His	Thr 390
Gly	His	Thr	Ser	Ser 395	Lys	Ser	Leu	Pro	Asn 400	Phe	Pro	Asn	Thr	Ser 405

```
Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser
Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser
Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly
Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe
<210> 286
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 286
tcctgcagtt tcctgatgc 19
<210> 287
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 287
ctcatattgc acaccagtaa ttcg 24
<210> 288
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 288
atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45
<210> 289
<211> 3662
<212> DNA
<213> Homo Sapien
<400> 289
gtaactgaag tcaggctttt catttgggaa gccccctcaa cagaattcgg 50
```

tcattctcca agttatggtg gacgtacttc tgttgttctc cctctgcttg 100 ctttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150 caaggcaagt tecatgagee acetteaaag eettegagaa gtgaaaetga 200 acaacaatga attggagacc attccaaatc tgggaccagt ctcggcaaat 250 attacacttc tctccttggc tggaaacagg attgttgaaa tactccctga 300 acatctgaaa gagtttcagt cccttgaaac tttggacctt agcagcaaca 350 atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400 tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450 tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500 ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550 aaccgaaaca agattaaaaa tgtagatgga ctgacattcc aaggccttgg 600 tgctctgaag tctctgaaaa tgcaaagaaa tggagtaacg aaacttatgg 650 atggagcttt ttgggggctg agcaacatgg aaattttgca gctggaccat 700 aacaacctaa cagagattac caaaggctgg ctttacggct tgctgatgct 750 gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800 cctgggagtt ctgccagaag ctcagtgagc tggacctaac tttcaatcac 850 ttatcaaggt tagatgattc aagctteett ggeetaaget tactaaatac 900 actgcacatt gggaacaaca gagtcagcta cattgctgat tgtgccttcc 950 gggggctttc cagtttaaag actttggatc tgaagaacaa tgaaatttcc 1000 tggactattg aagacatgaa tggtgettte tetgggettg acaaactgag 1050 gcgactgata ctccaaggaa atcggatccg ttctattact aaaaaagcct 1100 tcactggttt ggatgcattg gagcatctag acctgagtga caacgcaatc 1150 atgtctttac aaggcaatgc attttcacaa atgaagaaac tgcaacaatt 1200 gcatttaaat acatcaagcc ttttgtgcga ttgccagcta aaatggctcc 1250 cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300 gcccatcctc agctgctaaa aggaagaagc atttttgctg ttagcccaga 1350

tggctttgtg	tgtgatgatt	ttcccaaacc	ccagatcacg	gttcagccag	1400
aaacacagtc	ggcaataaaa	ggttccaatt	tgagtttcat	ctgctcagct	1450
gccagcagca	gtgattcccc	aatgactttt	gcttggaaaa	aagacaatga	1500
actactgcat	gatgctgaaa	tggaaaatta	tgcacacctc	cgggcccaag	1550
gtggcgaggt	gatggagtat	accaccatcc	ttcggctgcg	cgaggtggaa	1600
tttgccagtg	aggggaaata	tcagtgtgtc	atctccaatc	actttggttc	1650
atcctactct	gtcaaagcca	agcttacagt	aaatatgctt	ccctcattca	1700
ccaagacccc	catggatctc	accatccgag	ctggggccat	ggcacgcttg	1750
gagtgtgctg	ctgtggggca	cccagccccc	cagatageet	ggcagaagga	1800
tgggggcaca	gacttcccag	ctgcacggga	gagacgcatg	catgtgatgc	1850
ccgaggatga	cgtgttcttt	atcgtggatg	tgaagataga	ggacattggg	1900
gtatacagct	gcacagetca	gaacagtgca	ggaagtattt	cagcaaatgc	1950
aactctgact	gtcctagaaa	caccatcatt	tttgcggcca	ctgttggacc	2000
gaactgtaac	caagggagaa	acagccgtcc	tacagtgcat	tgctggagga	2050
agccctcccc	ctaaactgaa	ctggaccaaa	gatgatagcc	cattggtggt	2100
aaccgagagg	cacttttttg	cagcaggcaa	tcagcttctg	attattgtgg	2150
actcagatgt	cagtgatgct	gggaaataca	catgtgagat	gtctaacacc	2200
cttggcactg	agagaggaaa	cgtgcgcctc	agtgtgatcc	ccactccaac	2250
ctgcgactcc	cctcagatga	cageceeate	gttagacgat	gacggatggg	2300
ccactgtggg	tgtcgtgatc	atagccgtgg	tttgctgtgt	ggtgggcacg	2350
tcactcgtgt	gggtggtcat	catataccac	acaaggcgga	ggaatgaaga	2400
ttgcagcatt	accaacacag	atgagaccaa	cttgccagca	gatattccta	2450
gttatttgtc	atctcaggga	acgttagctg	acaggcagga	tgggtacgtg	2500
tcttcagaaa	gtggaagcca	ccaccagttt	gtcacatctt	caggtgctgg	2550
atttttctta	ccacaacatg	acagtagtgg	gacctgccat	attgacaata	2600
gcagtgaagc	tgatgtggaa	gctgccacag	atctgttcct	ttgtccgttt	2650
ttgggatcca	caggccctat	gtatttgaag	ggaaatgtgt	atggctcaga	2700

tccttttgaa acatatcata caggttgcag tcctgaccca agaacagttt 2750 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800 tgttctcatc cttcagaaga atcctgcgaa cggagcttca gtaatatatc 2850 gtggccttca catgtgagga agctacttaa cactagttac tctcacaatq 2900 aaggacctgg aatgaaaaat ctgtgtctaa acaagtcctc tttagatttt 2950 agtgcaaatc cagagccagc gtcggttgcc tcgagtaatt ctttcatggg 3000 tacctttgga aaagctctca ggagacctca cctagatgcc tattcaagct 3050 ttggacagcc atcagattgt cagccaagag ccttttattt gaaagctcat 3100 tetteeccag acttggacte tgggteagag gaagatggga aagaaaggae 3150 agattttcag gaagaaaatc acatttgtac ctttaaacag actttagaaa 3200 actacaggac tccaaatttt cagtcttatg acttggacac atagactgaa 3250 tgagaccaaa ggaaaagctt aacatactac ctcaagtgaa cttttattta 3300 aaagagagag aatcttatgt tttttaaatg gagttatgaa ttttaaaagg 3350 ataaaaatgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400 aaatttttat actgggaatg atgctcatat aagaatacct ttttaaacta 3450 ttttttaact ttgttttatg caaaaaagta tcttacgtaa attaatgata 3500 taaatcatga ttattttatg tattttata atgccagatt tctttttatg 3550 gaaaatgagt tactaaagca ttttaaataa tacctgcctt gtaccatttt 3600 ttaaatagaa gttacttcat tatattttgc acattatatt taataaaatg 3650 tgtcaatttg aa 3662

<210> 290

<211> 1059

<212> PRT

<213> Homo Sapien

<400> 290

Met Val Asp Val Leu Leu Phe Ser Leu Cys Leu Leu Phe His

Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys

Ala Ser S	er Met	Ser 35	His	Leu	Gln	Ser	Leu 40	Arg	Glu	Val	Lys	Leu 45
Asn Asn A	sn Glu	Leu 50	Glu	Thr	Ile	Pro	Asn 55	Leu	Gly	Pro	Val	Ser 60
Ala Asn I	le Thr	Leu 65	Leu	Ser	Leu	Ala	Gly 70	Asn	Arg	Ile	Val	Glu 75
Ile Leu P	ro Glu	His 80	Leu	Lys	Glu	Phe	Gln 85	Ser	Leu	Glu	Thr	Leu 90
Asp Leu S	er Ser	Asn 95	Asn	Ile	Ser	Glu	Leu 100	Gln	Thr	Ala	Phe	Pro 105
Ala Leu G	ln Leu	Lys 110	Tyr	Leu	Tyr	Leu	Asn 115	Ser	Asn	Arg	Val	Thr 120
Ser Met G	lu Pro	Gly 125	Tyr	Phe	Asp	Asn	Leu 130	Ala	Asn	Thr	Leu	Leu 135
Val Leu L	ys Leu	Asn 140	Arg	Asn	Arg	Ile	Ser 145	Ala	Ile	Pro	Pro	Lys 150
Met Phe L	ys Leu	Pro 155	Gln	Leu	Gln	His	Leu 160	Glu	Leu	Asn	Arg	Asn 165
Lys Ile L	ys Asn	Val 170	Asp	Gly	Leu	Thr	Phe 175	Gln	Gly	Leu	Gly	Ala 180
Leu Lys S	er Leu	Lys 185	Met	Gln	Arg	Asn	Gly 190	Val	Thr	Lys	Leu	Met 195
Asp Gly A	la Phe	Trp 200	Gly	Leu	Ser	Asn	Met 205	Glu	Ile	Leu	Gln	Leu 210
Asp His A	sn Asn	Leu 215	Thr	Glu	Ile	Thr	Lys 220	Gly	Trp	Leu	Tyr	Gly 225
Leu Leu M	et Leu	Gln 230	Glu	Leu	His	Leu	Ser 235	Gln	Asn	Ala	Ile	Asn 240
Arg Ile S	er Pro	Asp 245	Ala	Trp	Glu	Phe	Cys 250	Gln	Lys	Leu	Ser	Glu 255
Leu Asp L	eu Thr	Phe 260	Asn	His	Leu	Ser	Arg 265	Leu	Asp	Asp	Ser	Ser 270
Phe Leu G	ly Leu	Ser 275	Leu	Leu	Asn	Thr	Leu 280	His	Ile	Gly	Asn	Asn 285
Arg Val S	er Tyr	Ile	Ala	Asp	Cys	Ala	Phe	Arg	Gly	Leu	Ser	Ser

				290					295					300
Leu	Lys	Thr	Leu	Asp 305	Leu	Lys	Asn	Asn	Glu 310	Ile	Ser	Trp	Thr	Ile 315
Glu	Asp	Met	Asn	Gly 320	Ala	Phe	Ser	Gly	Leu 325	Asp	Lys	Leu	Arg	Arg 330
Leu	Ile	Leu	Gln	Gly 335	Asn	Arg	Ile	Arg	Ser 340	Ile	Thr	Lys	Lys	Ala 345
Phe	Thr	Gly	Leu	Asp 350	Ala	Leu	Glu	His	Leu 355	Asp	Leu	Ser	Asp	Asn 360
Ala	Ile	Met	Ser	Leu 365	Gln	Gly	Asn	Ala	Phe 370	Ser	Gln	Met	Lys	Lys 3 7 5
Leu	Gln	Gln	Leu	His 380	Leu	Asn	Thr	Ser	Ser 385	Leu	Leu	Cys	Asp	Cys 390
Gln	Leu	Lys	Trp	Leu 395	Pro	Gln	Trp	Val	Ala 400	Glu	Asn	Asn	Phe	Gln 405
Ser	Phe	Val	Asn	Ala 410	Ser	Cys	Ala	His	Pro 415	Gln	Leu	Leu	Lys	Gly 420
Arg	Ser	Ile	Phe	Ala 425	Val	Ser	Pro	Asp	Gly 430	Phe	Val	Cys	Asp	Asp 435
Phe	Pro	Lys	Pro	Gln 440	Ile	Thr	Val	Gln	Pro 445	Glu	Thr	Gl n	Ser	Ala 450
Ile	Lys	Gly	Ser	Asn 455	Leu	Ser	Phe	Ile	Cys 460	Ser	Ala	Ala	Ser	Ser 465
Ser	Asp	Ser	Pro		Thr	Phe	Ala	Trp	_	Lys	Asp	Asn	Glu	
				470					475			٠		480
Leu	His	Asp	Ala	Glu 485	Met	Glu	Asn	Tyr	Ala 490	His	Leu	Arg	Ala	Gln 495
Gly	Gly	Glu	Val	Met 500	Glu	Tyr	Thr	Thr	11e 505	Leu	Arg	Leu	Arg	Gl u 510
Val	Glu	Phe	Ala	Ser 515	Gl u	Gly	Lys	Tyr	Gln 520	Cys	Val	Ile	Ser	Asn 525
His	Phe	Gly	Ser	Ser 530	Tyr	Ser	Val	Lys	Ala 535	Lys	Leu	Thr	Val	Asn 540
Met	Leu	Pro	Ser	Phe 545	Thr	Lys	Thr	Pro	Met 550	Asp	Leu	Thr	Ile	Arg 555

Ala	Gly	Ala	Met	Ala 560	Arg	Leu	Glu	Cys	Ala 565	Ala	Val	Gly	His	Pro 570
Ala	Pro	Gln	Ile	Ala 575	Trp	Gln	Lys	Asp	Gly 580	Gly	Thr	Asp	Phe	Pro 585
Ala	Ala	Arg	Glu	Arg 590	Arg	Met	His	Val	Met 595	Pro	Glu	Asp	Asp	Val 600
Phe	Phe	Ile	Val	Asp 605	Val	Lys	Ile	Glu	Asp 610	Ile	Gly	Val	Tyr	Ser 615
Cys	Thr	Ala	Gln	Asn 620	Ser	Ala	Gly	Ser	Ile 625	Ser	Ala	Asn	Ala	Thr 630
Leu	Thr	Val	Leu	Glu 635	Thr	Pro	Ser	Phe	Leu 640	Arg	Pro	Leu	Leu	Asp 645
Arg	Thr	Val	Thr	Lys 650	Gly	Glu	Thr	Ala	Val 655	Leu	Gln	Cys	Ile	Ala 660
Gly	Gly	Ser	Pro	Pro 665	Pro	Lys	Leu	Asn	Trp 670	Thr	Lys	Asp	Asp	Ser 675
Pro	Leu	Val	Val	Thr 680	Glu	Arg	His	Phe	Phe 685	Ala	Ala	Gly	Asn	Gln 690
Leu	Leu	Ile	Ile	Val 695	Asp	Ser	Asp	Val	Ser 700	Asp	Ala	Gly	Lys	Tyr 705
Thr	Cys	Glu	Met	Ser 710	Asn	Thr	Leu	Gly	Thr 715	Glu	Arg	Gly	Asn	Val 720
Arg	Leu	Ser	Val	Ile 725	Pro	Thr	Pro	Thr	Cys 730	Asp	Ser	Pro	Gln	Met 735
Thr	Ala	Pro	Ser	Leu 740	Asp	Asp	Asp	Gly	Trp 745	Ala	Thr	Val	Gly	Val 750
Val	Ile	Ile	Ala	Val 755	Val	Cys	Cys	Val	Val 760	Gly	Thr	Ser	Leu	Val 765
Trp	Val	Val	Ile	11e 770	Tyr	His	Thr	Arg	Arg 775	Arg	Asn	Glu	Asp	Cys 780
Ser	Ile	Thr	Asn	Thr 785	Asp	Glu	Thr	Asn		Pro	Ala	Asp	Ile	Pro 795
Ser	Tyr	Leu	Ser	Ser	Gln	Gly	Thr	Leu		Asp	Arg	Gln	Asp	Gly
				800					805					810

Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr 835 Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr 845 Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr 865 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp 925 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn 970 Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu 985 Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg 995 1000 Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn 1025 His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro Asn Phe Gln Ser Tyr Asp Leu Asp Thr

<210> 291 <211> 2906 1055

<212> DNA <213> Homo Sapien

<400> 291 ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100 tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagettttt ettgtgagee etggatetta acacaaatgt gtatatgtge 200 acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250 ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300 ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350 agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggatttttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgcgttttc tcttgttctt aaccacctgg atttccatct ggatgttgct 750 gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggtccta ggtttaacag ggccctattt gaccccctgc ttgtggtgct 900 gctggctctt caacttcttg tggtggctgg tctggtgcgg gctcagacct 950 gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000 cggaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050 gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actetttgae aategtetta etaecatece gaatggaget tttgtataet 1250 tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300 ccttcttatg cttttaacag aattccttct ttgcgccgac tagacttagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaaccttc agtcactagt ggagatcaac ctggcacaca ataatctaac 1650 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggctcage 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacacteet eecaatetaa aggggaggta cattggagag etegaceaga 1850 attacttcac atgctatgct ccggtgattg tggagccccc tgcagacctc 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cctgacatct gtatcttgga ttactccaaa tggaacagtc atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactactcc tttctcttac ttttcaaccg tcacagtaga gactatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550 catggaaagc cacctgcca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850 aaaagaaaag aaatttatt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

- <210> 292
- <211> 640
- <212> PRT
- <213> Homo Sapien
- <400> 292
- Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
 1 5 10 15
- Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu 20 25 30
- Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln
 35 40 45
- Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val
 50 55
- Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser
 65 70 75
- Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile 80 85 90
- Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu 95 100 105
- Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe
- Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg
 125 130 135
- Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu
 140 145 150
- Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser

				155					160					165
Tyr	Ala	Phe	Asn	Arg 170	Ile	Pro	Ser	Leu	Arg 175	Arg	Leu	Asp	Leu	Gly 180
Glu	Leu	Lys	Arg	Leu 185	Ser	Tyr	Ile	Ser	Glu 190	Gly	Ala	Phe	Glu	Gly 195
Leu	Ser	Asn	Leu	Arg 200	Tyr	Leu	Asn	Leu	Ala 205	Met	Cys	Asn	Leu	Arg 210
Glu	Ile	Pro	Asn	Leu 215	Thr	Pro	Leu	Ile	Lys 220	Leu	Asp	Glu	Leu	Asp 225
Leu	Ser	Gly	Asn	His 230	Leu	Ser	Ala	Ile	Arg 235	Pro	Gly	Ser	Phe	Gln 240
Gly	Leu	Met	His	Leu 245	Gln	Lys	Leu	Trp	Met 250	Ile	Gln	Ser	Gln	Ile 255
Gln	Val	Ile	Glu	Arg 260	Asn	Ala	Phe	Asp	Asn 265	Leu	Gln	Ser	Leu	Val 270
Glu	Ile	Asn	Leu	Ala 275	His	Asn	Asn	Leu	Thr 280	Leu	Leu	Pro	His	Asp 285
Leu	Phe	Thr	Pro	Leu 290	His	His	Leu	Glu	Arg 295	Ile	His	Leu	His	His 300
Asn	Pro	Trp	Asn	Cys 305	Asn	Cys	Asp	Ile	Leu 310	Trp	Leu	Ser	Trp	Trp 315
Ile	Lys	Asp	Met	Ala 320	Pro	Ser	Asn	Thr	Ala 325	Cys	Cys	Ala	Arg	Cys 330
Asn	Thr	Pro	Pro	Asn 335	Leu	Lys	Gly	Arg	Tyr 340	Ile	Gly	Glu	Leu	Asp 345
Gln	Asn	Tyr	Phe	Thr 350	Cys	Tyr	Ala	Pro	Val 355	Ile	Val	Glu	Pro	Pro 360
Ala	Asp	Leu	Asn	Val 365	Thr	Glu	Gly	Met	Ala 370	Ala	Glu	Leu	Lys	Cys 375
Arg	Ala	Ser	Thr	Ser 380	Leu	Thr	Ser	Val	Ser 385	Trp	Ile	Thr	Pro	Asn 390
Gly	Thr	Val	Met	Thr 395	His	Gly	Ala	Tyr	Lys 400	Val	Arg	Ile	Ala	Val 405
Leu	Ser	Asp	Gly	Thr 410	Leu	Asn	Phe	Thr	Asn 415	Val	Thr	Val	Gln	Asp 420

Thr Gl	y Met	Tyr	Thr 425	Суѕ	Met	Val	Ser	Asn 430	Ser	Val	Gly	Asn	Thr 435
Thr Al	a Ser	Ala	Thr 440	Leu	Asn	Val	Thr	Ala 445	Ala	Thr	Thr	Thr	Pro 450
Phe Se	r Tyr	Phe	ser 455	Thr	Val	Thr	Val	Glu 460	Thr	Met	Glu	Pro	Ser 465
Gln As	p Glu	Ala	Arg 470	Thr	Thr	Asp	Asn	Asn 475	Val	Gly	Pro	Thr	Pro 480
Val Va	l Asp	Trp	Glu 485	Thr	Thr	Asn	Val	Thr 490	Thr	Ser	Leu	Thr	Pro 495
Gln Se	r Thr	Arg	Ser 500	Thr	Glu	Lys	Thr	Phe 505	Thr	Ile	Pro	Val	Thr 510
Asp Il	e Asn	Ser	Gly 515	Ile	Pro	Gly	Ile	Asp 520	Glu	Val	Met	Lys	Thr 525
Thr Ly	s Ile	Ile	Ile 530	Gly	Cys	Phe	Val	Ala 535	Ile	Thr	Leu	Met	Ala 540
Ala Va	l Met	Leu	Val 545	Ile	Phe	Tyr	Lys	Met 550	Arg	Lys	Gln	His	His 555
Arg Gl	n Asn	His	His 560	Ala	Pŗo	Thr	Arg	Thr 565	Val	Glu	Ile	Ile	Asn 570
Val As	p Asp	Glu	Ile 575	Thr	Gly	Asp	Thr	Pro 580	Met	Glu	Ser	His	Leu 585
Pro Me	t Pro	Ala	Ile 590	Glu	His	Glu	His	Leu 595	Asn	His	Tyr	Asn	Ser 600
Tyr Ly	s Ser	Pro	Phe 605	Asn	His	Thr	Thr	Thr 610	Val	Asn	Thr	Ile	Asn 615
Ser Il	e His	Ser	Ser 620	Val	His	Glu	Pro	Leu 625	Leu	Ile	Arg	Met	Asn 630
Ser Ly	s Asp	Asn	Val 635	Gln	Glu	Thr	Gln	Ile 640					

<210> 293

<211> 4053

<212> DNA

<213> Homo Sapien

<400> 293

agccgacgct gctcaagctg caactctgtt gcagttggca gttcttttcg 50

gtttccctcc tgctgtttgg gggcatgaaa gggcttcgcc gccgggagta 100 aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcgc acgcgaccgc 150 gagggcgggc gtgcaccctc ggctggaagt ttgtgccggg ccccgagcgc 200 gcgccggctg ggagcttcgg gtagagacct aggccgctgg accgcgatga 250 qeqeqeeqaq ceteeqtqeq egegeeqegq ggttgggget getgetgtge 300 geggtgetgg ggegegetgg eeggteegae ageggeggte geggggaact 350 cgggcagccc tctggggtag ccgccgagcg cccatgcccc actacctgcc 400 gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500 attatettte atcaaggeaa gtteeatgag eeacetteaa ageettegag 550 aagtgaaact gaacaacaat gaattggaga ccattccaaa tctgggacca 600 gtctcggcaa atattacact tctctccttg gctggaaaca ggattgttga 650 aatactccct gaacatctga aagagtttca gtcccttgaa actttggacc 700 ttagcagcaa caatatttca gagctccaaa ctgcatttcc agccctacag 750 ctcaaatatc tgtatctcaa cagcaaccga gtcacatcaa tggaacctgg 800 gtattttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850 accgaatctc agctatccca cccaagatgt ttaaactgcc ccaactgcaa 900 catctcgaat tgaaccgaaa caagattaaa aatgtagatg gactgacatt 950 ccaaggcctt ggtgctctga agtctctgaa aatgcaaaga aatggagtaa 1000 cgaaacttat ggatggagct ttttgggggc tgagcaacat ggaaattttg 1050 cagctggacc ataacaacct aacagagatt accaaaggct ggctttacgg 1100 cttgctgatg ctgcaggaac ttcatctcag ccaaaatgcc atcaacagga 1150 tcagccctga tgcctgggag ttctgccaga agctcagtga gctggaccta 1200 actttcaatc acttatcaag gttagatgat tcaagcttcc ttggcctaag 1250 cttactaaat acactgcaca ttgggaacaa cagagtcagc tacattgctg 1300 attgtgcctt ccgggggctt tccagtttaa agactttgga tctgaagaac 1350

aatgaaattt cctggactat tgaagacatg aatggtgctt tctctgggct 1400 tgacaaactg aggcgactga tactccaagg aaatcggatc cgttctatta 1450 ctaaaaaagc cttcactggt ttggatgcat tggagcatct agacctgagt 1500 gacaacgcaa tcatgtcttt acaaggcaat gcattttcac aaatgaagaa 1550 actgcaacaa ttgcatttaa atacatcaag ccttttgtgc gattgccagc 1600 taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgta 1650 aatgccagtt gtgcccatcc tcagctgcta aaaggaagaa gcatttttgc 1700 tgttagccca gatggctttg tgtgtgatga ttttcccaaa ccccagatca 1750 cggttcagcc agaaacacag tcggcaataa aaggttccaa tttgagtttc 1800 atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttggaa 1850 aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900 teegggeeca aggtggegag gtgatggagt ataccaecat cetteggetg 1950 cgcgaggtgg aatttgccag tgaggggaaa tatcagtgtg tcatctccaa 2000 tcactttggt tcatcctact ctgtcaaagc caagcttaca gtaaatatgc 2050 ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100 atggcacgct tggagtgtgc tgctgtgggg cacccagccc cccagatagc 2150 ctggcagaag gatgggggca cagacttccc agctgcacgg gagagacgca 2200 tgcatgtgat gcccgaggat gacgtgttct ttatcgtgga tgtgaagata 2250 gaggacattg gggtatacag ctgcacagct cagaacagtg caggaagtat 2300 ttcagcaaat gcaactctga ctgtcctaga aacaccatca tttttgcggc 2350 cactgttgga ccgaactgta accaagggag aaacagccgt cctacagtgc 2400 attgctggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450 cccattggtg gtaaccgaga ggcacttttt tgcagcaggc aatcagcttc 2500 tgattattgt ggactcagat gtcagtgatg ctgggaaata cacatgtgag 2550 atgtctaaca cccttggcac tgagagagga aacgtgcgcc tcagtgtgat 2600 ccccactcca acctgcgact cccctcagat gacagcccca tcgttagacg 2650 atgacggatg ggccactgtg ggtgtcgtga tcatagccgt ggtttgctgt 2700

gtggtggca cgtcactcgt gtgggtggtc atcatatacc acacaaggcg 2750 gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800 cagatattcc tagttatttg tcatctcagg gaacgttagc tgacaggcag 2850 gatgggtacg tgtcttcaga aagtggaagc caccaccagt ttgtcacatc 2900 ttcaggtgct ggatttttct taccacaaca tgacagtagt gggacctgcc 2950 atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000 ctttgtccgt ttttgggatc cacaggccct atgtatttga agggaaatgt 3050 gtatggctca gatccttttg aaacatatca tacaggttgc agtcctgacc 3100 caagaacagt tttaatggac cactatgagc ccagttacat aaagaaaaag 3150 gagtgctacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200 cagtaatata tcgtggcctt cacatgtgag gaagctactt aacactagtt 3250 acteteacaa tgaaggacet ggaatgaaaa atetgtgtet aaacaagtee 3300 tetttagatt ttagtgeaaa teeagageea gegteggttg cetegagtaa 3350 ttctttcatg ggtacctttg gaaaagctct caggagacct cacctagatg 3400 cctattcaag ctttggacag ccatcagatt gtcagccaag agccttttat 3450 ttgaaagctc attcttcccc agacttggac tctgggtcag aggaagatgg 3500 gaaagaaagg acagattttc aggaagaaaa tcacatttgt acctttaaac 3550 agactttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600 acatagactg aatgagacca aaggaaaagc ttaacatact acctcaagtg 3650 aacttttatt taaaagagag agaatcttat gttttttaaa tggagttatg 3700 aattttaaaa ggataaaaat gctttattta tacagatgaa ccaaaattac 3750 aaaaagttat gaaaattttt atactgggaa tgatgctcat ataagaatac 3800 ctttttaaac tatttttaa ctttgtttta tgcaaaaaag tatcttacgt 3850 aaattaatga tataaatcat gattatttta tgtattttta taatgccaga 3900 tttcttttta tggaaaatga gttactaaag cattttaaat aatacctgcc 3950 ttgtaccatt ttttaaatag aagttacttc attatatttt gcacattata 4000

aaa 4053 <210> 294 <211> 1119 <212> PRT <213> Homo Sapien <400> 294 Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg Pro Cys Pro Thr Thr Cys Arg Cys Leu Gly Asp Leu Leu Asp Cys Ser Arg Lys Arg Leu Ala Arg Leu Pro Glu Pro Leu Pro Ser Trp Val Ala Arg Leu Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser 115 Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro 160 Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr 175 Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 190 185 Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 205

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

				215					220					225
Lys	Ile	Lys	Asn	Val 230	Asp	Gly	Leu	Thr	Phe 235	Gln	Gly	Leu	Gly	Ala 240
Leu	Lys	Ser	Leu	Lys 245	Met	Gln	Arg	Asn	Gly 250	Val	Thr	Lys	Leu	Met 255
Asp	Gly	Ala	Phe	Trp 260	Gly	Leu	Ser	Asn	Met 265	Glu	Ile	Leu	Gln	Leu 270
Asp	His	Asn	Asn	Leu 275	Thr	Glu	Ile	Thr	Lys 280	Gly	Trp	Leu	Tyr	Gly 285
Leu	Leu	Met	Leu	Gln 290	Glu	Leu	His	Leu	Ser 295	Gln	Asn	Ala	Ile	Asn 300
Arg	Ile	Ser	Pro	Asp 305	Ala	Trp	Glu	Phe	Cys 310	Gln	Lys	Leu	Ser	Glu 315
Leu	Asp	Leu	Thr	Phe 320	Asn	His	Leu	Ser	Arg 325	Leu	Asp	Asp	Ser	Ser 330
Phe	Leu	Gly	Leu	Ser 335	Leu	Leu	Asn	Thr	Leu 340	His	Ile	Gly	Asn	Asn 345
Arg	Val	Ser	Tyr	Ile 350	Ala	Asp	Cys	Ala	Phe 355	Arg	Gly	Leu	Ser	Ser 360
Leu	Lys	Thr	Leu	Asp 365	Leu	Lys	Asn	Asn	Glu 370	Ile	Ser	Trp	Thr	Ile 375
Glu	Asp	Met	Asn	Gly 380	Ala	Phe	Ser	Gly	Leu 385	Asp	Lys	Leu	Arg	Arg 390
Leu	Ile	Leu	Gln	Gly 395	Asn	Arg	Ile	Arg	Ser 400	Ile	Thr	Lys	Lys	Ala 405
Phe	Thr	Gly	Leu	Asp 410	Ala	Leu	Glu	His	Leu 415	Asp	Leu	Ser	Asp	Asn 420
Ala	Ile	Met	Ser	Leu 425	Gln	Gly	Asn	Ala	Phe 430	Ser	Gln	Met	Lys	Lys 435
Leu	Gln	Gln	Leu	His 440	Leu	Asn	Thr	Ser	Ser 445	Leu	Leu	Cys	Asp	Cys 450
Gln	Leu	Lys	Trp	Leu 455	Pro	Gln	Trp	Val	Ala 460	Glu	Asn	Asn	Phe	Gln 465
Ser	Phe	Val	Asn	Ala 470	Ser	Cys	Ala	His	Pro 475	Gln	Leu	Leu	Lys	Gly 480

Arg	Ser	Ile	Phe	Ala 485	Val	Ser	Pro	Asp	Gly 490	Phe	Val	Cys	Asp	Asp 495
Phe	Pro	Lys	Pro	Gln 500	Ile	Thr	Val	Gln	Pro 505	Glu	Thr	Gln	Ser	Ala 510
Ile	Lys	Gly	Ser	Asn 515	Leu	Ser	Phe	Ile	Cys 520	Ser	Ala	Ala	Ser	Ser 525
Ser	Asp	Ser	Pro	Met 530	Thr	Phe	Ala	Trp	L ys 535	Lys	Asp	Asn	Glu	L eu 540
Leu	His	Asp	Ala	Glu 545	Met	Glu	Asn	Tyr	Ala 550	His	Leu	Arg	Ala	Gln 555
Gly	Gly	Glu	Val	Met 560	Glu	Tyr	Thr	Thr	Ile 565	Leu	Arg	Leu	Arg	Glu 570
Val	Glu	Phe	Ala	Ser 575	Glu	Gly	Lys	Tyr	Gln 580	Cys	Val	Ile	Ser	Asn 585
His	Phe	Gly	Ser	Ser 590	Tyr	Ser	Val	Lys	Ala 595	Lys	Leu	Thr	Val	Asn 600
Met	Leu	Pro	Ser	Phe 605	Thr	Lys	Thr	Pro	Met 610	Asp	Leu	Thr	Ile	Arg 615
Ala	Gly	Ala	Met	Ala 620	Arg	Leu	Glu	Cys	Ala 625	Ala	Val	Gly	His	Pro 630
Ala	Pro	Gln	Ile	Ala 635	Trp	Gln	Lys	Asp	Gly 640	Gly	Thr	Asp	Phe	Pro 645
Ala	Ala	Arg	Glu	Arg 650	Arg	Met	His	Val	Met 655	Pro	Glu	Asp	Asp	Val 660
Phe	Phe	Ile	Val	Asp 665	Val	Lys	Ile	Glu	Asp 670	Ile	Gly	Val	Tyr	Ser 675
Cys	Thr	Ala	Gln	Asn 680	Ser	Ala	Gly	Ser	Ile 685	Ser	Ala	Asn	Ala	Thr 690
Leu	Thr	Val	Leu	Glu 695	Thr	Pro	Ser	Phe	Leu 700	Arg	Pro	Leu	Leu	Asp 705
Arg	Thr	Val	Thr	Lys 710	Gly	Glu	Thr	Ala	Val 715	Leu	Gln	Cys	Ile	Ala 720
Gly	Gly	Ser	Pro	Pro 725	Pro	Lys	Leu	Asn	Trp 730	Thr	Lys	Asp	Asp	Ser 735
Pro	Leu	Val	Val	Thr 740	Glu	Arg	His	Phe	Phe 745	Ala	Ala	Gly	Asn	Gln 750

Leu	Leu	Ile	Ile	Val 755	Asp	Ser	Asp	Val	Ser 760	Asp	Ala	Gly	Lys	Tyr 765
Thr	Cys	Glu	Met	Ser 770	Asn	Thr	Leu	Gly	Thr 775	Glu	Arg	Gly	Asn	Val 780
Arg	Leu	Ser	Val	Ile 785	Pro	Thr	Pro	Thr	Cys 790	Asp	Ser	Pro	Gln	Met 795
Thr	Ala	Pro	Ser	Leu 800	Asp	Asp	Asp	Gly	Trp 805	Ala	Thr	Val	Gly	Val 810
Val	Ile	Ile	Ala	Val 815	Val	Cys	Cys	Val	Val 820	Gly	Thr	Ser	Leu	Val 825
Trp	Val	Val	Ile	Ile 830	Tyr	His	Thr	Arg	Arg 835	Arg	Asn	Glu	Asp	Cys 840
Ser	Ile	Thr	Asn	Thr 845	Asp	Glu	Thr	Asn	Leu 850	Pro	Ala	Asp	Ile	Pro 855
Ser	Tyr	Leu	Ser	Ser 860	Gln	Gly	Thr	Leu	Ala 865	Asp	Arg	Gln	Asp	Gly 870
Tyr	Val	Ser	Ser	Glu 875	Ser	Gly	Ser	His	His 880	Gln	Phe	Val	Thr	Ser 885
Ser	Gly	Ala	Gly	Phe 890	Phe	Leu	Pro	Gln	His 895	Asp	Ser	Ser	Gly	Thr 900
Cys	His	Ile	Asp	Asn 905	Ser	Ser	Glu	Ala	Asp 910	Val	Glu	Ala	Ala	Thr 915
Asp	Leu	Phe	Leu	Cys 920	Pro	Phe	Leu	Gly	Ser 925	Thr	Gly	Pro	Met	Tyr 930
Leu	Lys	Gly	Asn	Val 935	Tyr	Gly	Ser	Asp	Pro 940	Phe	Glu	Thr	Tyr	His 945
Thr	Gly	Cys	Ser	Pro 950	Asp	Pro	Arg	Thr	Val 955	Leu	Met	Asp	His	Tyr 960
Glu	Pro	Ser	Tyr	Ile 965	Lys	Lys	Lys	Glu	Cys 9 7 0	Tyr	Pro	Cys	Ser	His 975
Pro	Ser	Glu	Glu	Ser 980	Cys	Glu	Arg	Ser	Phe 985	Ser	Asn	Ile	Ser	Trp 990
Pro	Ser	His	Val	Arg 995	Lys	Leu	Leu		Thr L000	Ser	Tyr	Ser		Asn 1005
Glu	Gly	Pro	Gly	Met	Lys	Asn	Leu	Cys	Leu	Asn	Lys	Ser	Ser	Leu

		1010				1015				1020
Asp Phe	e Ser	Ala Asn 1025	Pro	Glu	Pro	Ala Ser 1030	Val	Ala	Ser	Ser Asn 1035
Ser Phe	Met	Gly Thr 1040	Phe	Gly	Lys	Ala Leu 1045	Arg	Arg	Pro	His Leu 1050
Asp Ala	Tyr	Ser Ser 1055	Phe	Gly	Gln	Pro Ser 1060	Asp	Cys	Gln	Pro Arg 1065
Ala Phe	Tyr	Leu Lys 1070	Ala	His	Ser	Ser Pro 1075	Asp	Leu	Asp	Ser Gly 1080
Ser Glu	Glu	Asp Gly 1085	Lys	Glu	Arg	Thr Asp 1090	Phe	Gln	Glu	Glu Asn 1095
His Ile	e Cys	Thr Phe 1100	Lys	Gln	Thr	Leu Glu 1105	Asn	Tyr	Arg	Thr Pro 1110
Asn Phe	e Gln	Ser Tyr 1115	Asp	Leu	Asp	Thr				
210. 20										
<210> 29										
<211> 18										
<212> DN				_						
(213) AI	LILL	cial Seq	dence	=						
<220>										
	nthe	tic Olig	onuc:	leot	ide 1	Probe				
<400> 29	95									
ggaaccg	gaat	ctcagcta	18							
<210> 29	96									
<211> 19	9									
<212> DN										
<213> Ar	tifi	cial Seq	uence	е						,
<220>										
<223> Sy	nthe	tic Olig	onuc:	leot:	ide 1	Probe				
<400> 29	96									
cctaaac	tga	actggacc	a 19							
<210> 29	7									
<211> 19)									
<212> DN	IA									
<213> Ar	tifi	cial Seq	uence	е						
<220>										
-223 - Ct	mthe	tic Olia	onua.	leat.	i do i	Probe				

```
<400> 297
 ggctggagac actgaacct 19
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 298
 acagetgeae ageteagaae agtg 24
<210> 299
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 299
cattcccagt ataaaaattt tc 22
<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 300
gggtcttggt gaatgagg 18
<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 301
gtgcctctcg gttaccacca atgg 24
<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 302
 gcggccactg ttggaccgaa ctgtaaccaa gggagaaaca gccgtcctac 50
<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 303
gcctttgaca accttcagtc actagtgg 28
<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 304
ccccatgtgt ccatgactgt tccc 24
<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
tactgcctca tgacctcttc actcccttgc atcatcttag agcgg 45
<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 306
actccaagga aatcggatcc gttc 24
<210> 307
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 307
ttagcagctg aggatgggca caac 24
<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 308
actccaagga aatcggatcc gttc 24
<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 309
gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50
<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien
<400> 310
caaaacttgc gtcgcggaga gcgcccagct tgacttgaat ggaaggagcc 50
cgagcccgcg gagcgcagct gagactgggg gagcgcgttc ggcctgtggg 100
gcgccgctcg gcgccggggc gcagcaggga aggggaagct gtggtctgcc 150
ctgctccacg aggcgccact ggtgtgaacc gggagagccc ctgggtggtc 200
ccgtccccta tccctccttt atatagaaac cttccacact gggaaggcag 250
cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300
gcgcacagca ttccgagttt acagattttt acagatacca aatggaaggc 350
gaggaggeag aacageetge etggtteeat cageeetgge geeeaggege 400
```

tcagcgagct gagcagcctg cgcgagctat acctgcagaa caactacctg actgacgagg gcctggacaa cgagaccttc tggaagctct ccagcctgga gtacctggat ctgtccagca acaacctgtc tcgggtccca gctgggctgc						450
gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgaggcccga gaggaacgaa tttgcggagg aggagccggt gctggtactg agccctgagg ggcgccgggcc tggcccagcc gcggtcagct gccccgaga ctgtgcctgt cccaggagg gcgtcgtgaa ctgtggcggt attgacctgc gtgagttccc ggggggacctg cctgagcaca ccaaccacct atctctgcag aacaccagc tggaaaagat ctaccctgag gagctctccc ggctgcaccg gctggagaca ctgaacctgc aaaacaaccg cctgaactcc cagagggctcc cagagaaagac gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc gttgaccttgc acccgcttc ctgccaaacg cctgatcag tgtggacttt gctgaccact atctcaccaa gatctatggg ctcacctttg gccagaagcc aaacttgagg tctgtgtacc tgcacaacaa caagctggca gacgccgggc tgccggacaa catgttcaac ggctccagca acgtcgaga gacgccgggc tgccagaact tcctgcgcca cgtgccaaacaa caagctggca gacgccgggc tccagcaact tcctgcgcca cgtgcccaag cacctgccg ctgccctgta caagctgcac ctcaagaaca acaagctgga gaagatccc ccgggggcct tcagcgagc gacgagcct gacgagctg gacgagctt tggaacctt tggaagact tccagcaaca acaagctgga gaagatccc ccgggggcct tcagcagaa cacatacctg actgacgag gcctggacaa cgagacctt tggaagctct tggaagctct tcagcagag gcctgaacaa cgagaccttc tggaagctct ccagcctgga gacgcagag gcctgaaca acaacctgtc tggaagctct ccagcctgga gacgcagact ggtgctgct cacttggaa agaacgccat ccggagctgc cgcgcagact ggtgctgct cacttggaa agaacgccat ccggagctgg gacgcaaccag ctgcggaacc catccgcag ctggagcacc cagcaaccag ctgcggaac agggcatca cccactggcc ttccagggc tgcaaccag ctgcggaac agggcatca accactggcc ttccagggcc tgcaagcggtt gcacaccagg cacctgtaca acaacggct ggagcggtt gcacagggtt gcacacgggt gacgcaacca cccactggcc ttccagggcc tgcccagtggc tgcccagtggc ctgcccagtggc ctccagtggc ctgcccagtggc ctccagtggc ctgcccagtggc ctgcccagtggc ctccagtggc ctgcccagtggc ctccagtggc ctgcccagtggc ctccagtggc ctgcccagtggc ctccagtggc ctccagtggc ctccagtggc ctccagtggc ctccagtacc ctcagagact ctgccagagact c	atctgactcg	gcaccccctg	caggcaccat	ggcccagagc	cgggtgctgc	450
agagaacgaa tttgcggagg aggagccggt gctggtactg agccctgagg agcccgggcc tggcccagcc gcggtcagct gcccccgaga ctgtgcctgt acccaggagg gcgtcgtgga ctgtggcggt attgacctgc gtgagttccc ggggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc tggaaaaagat ctaccctgag gagctctccc ggctgcaccg gctggagacaa ctgaacctgc aaaacaacacg cctgaacttcc cagagggctcc cagagaagagc gtttgagcat ctgaccaacc tcaattacct gtacttggc aataacaagc gttgaaccttgc acccgcttc ctgccaaacg cctgatcag tgtggacttt gctgaccacc atctcaccaa gatctatggg ctcacctttg gccagaagcc aaaacttgagg tctgtgtacc tgcacaacaa caagctggca gacgcgggc tgcaggacaa catgttcaac ggctccagca acgtcgagg cctcatcttg gccagaacca ctcaagaaca catgttcaac ggctccaaga acgtcgagg cctcatctgg tccagcaact tcctgcgcca cgtgcccaag cacctgcgc ctgcctgta caagctgcac ctcaagaaca acaagctgga gaagatccc ccgggggcct tcagcgagct gagcagcct gagcagctg cgcagactat acctgcaga cacctgcgc ctgcctgta acctgacgag gacgcagaca cacactgct tggaagctct tggaagctct tggaagctct tggaagctct tggaagctct tggaagcct ggtgccaaa caaacctggc tggaagccgaaccag ctgcagga acaacctggc tggaagcca ccaggaggggggggacgaaccagaccag	tgctcctgct	gctgctgccg	ccacagctgc	acctgggacc	tgtgcttgcc	500
agecegggee tggeceagee geggteaget gececegaga etgtgeetgt (eccaggagg gegtegtgga etgtggeggt attgacetge gtgagtteee ggggggacetg ectgageaca ceaaceacet atetetgeag aacaaceage tggaaaagat etaceetgag gageteteee ggetgeaceg getggagaca etgaacetge aaaacaaceg ectgaaettee eagagggetee eagagaagge gettggageace tegacettge acceegette etgecaaacg ectgateag tgtggaaett getggeegae ateteagegg ectggagaea eaacttgagg tetgtgtace tgcacaacaa eaagetggea gaegeeggge etgeegagaea eatgteaac ggetecaaga acgteggagaea eatgteaac ggetecaaga acgteggagaea eagageeggge etgeegagaea etgageacaa acaagetgga gaagateee etgagggeegggeeggggeeggggeeggggeeggggeeggggeegggg	gtgagggccc	caggat t tgg	ccgaagtggc	ggccacagcc	tgagccccga	550
teccaggagg gegtegtgga etgtggeggt attgacetge gtgagttece ggggggacetg cetgageaca ceaaceacet atectgeag aacaaceage ggggggacetg cetgageaca ceaaceacet atectgeag aacaaceage gggggaaaagat etaceetgag gageteteee ggetgeaceg getggagaca etgaacetge aaaacaaceg etgacettee egagggetee cagagaagge gtttgageat etgaceace teaattacet gtacttggee aataacaage getgeedacet atecteaceaa gatetatggg etcacetttg gecagaagee aaacttgagg tetgtgtace tgeacaacaa caagetggea gacgeeggge tgeeggacaa eatgtteaac ggetecaaga acgtegagg ecteateetg tecageaaca eatgtteaac ggetecaaga acgtegagg ecteateetg tecageaact teetgegea eggeecaag eacetgeege etgaceace etcaagaaca acaagetgga gaagateee eegggggeet teageggage ggegggeetgageace etgaceaga eggageetgagaggggeet teagegagg geetggacaa eggageetga gaagateee eegggggeetgacetggaggageetggageageetggggeetggageetggggeetggageetggggeetgggggeetggggggeetgggggeetgggggg	agagaacgaa	tttgcggagg	aggagccggt	gctggtactg	agccctgagg	600
gggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc tggaaaaagat ctaccctgag gagctctccc ggctgcaccg gctggagaca ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc gctgcacacc acccgcttc ctgccaaacg ccctgatcag tgtggacttt gctgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc aaacttgagg tctgtgtacc tgcacaacaa caagctggca gacgccgggc tgccggacaa catgtcaac ggctccaaga acgtcgaggt cctcatcctg tccagcaaca catgtcaac ggctccaaga acgtcgaggt cctcatcctg tccagcaaca tcctgcgca cgtgccaaga cacctgccgc ctgccctgta caagctgcac ctcaagaaca acaagctgga gaagatcccc ccgggggcct tcagcagagc gacgcagcac cggagcct tcgagcagag gcctggacaa cgagacctc tggaagctct ccagcaggag gcctggacaa cgagacctc tggaagctct ccagcagca gacgcaggagcggacaccaggagcagcagcagcagcagca	agcccgggcc	tggcccagcc	gcggtcagct	gcccccgaga	ctgtgcctgt	650
tggaaaagat ctaccetgag gagetetece ggetgeaeeg getggagaea etgaacetge aaaacaaceg cetgaettee egagggetee eagagaagge gtttgageat etgaceaace teaattacet gtacttggee aataacaage getgeeaeeg ecetgateag tgtggaettt getgeeaaee ateteaeeaa gatetatggg eteaeetttg gecagaagee aaacttgagg tetgtgtace tgeaeaacaa caagetggea gaegeeggge tgeeggaeaa eatgteaae ggeteeaaga eacetggea gaegeeggge teaagetgea eteaegagae eteaegagae eteaegagae eteaegagae eteaegagae eteagegage eteageagae egagaeette tggaageete eegaggeetgaaea egagaeette tggaageetet eegageetgga gaegeegagae egacetggaa eacetggaa eacetggaae eegageaatg tgetgacee eacetggaa etgagatee eacetggaae eacetggee tgetgegaae ecaacetgge etgagaaeea ecaacetgge etgagaaeea ecaacetggee tteeagggee tgeacaaggag eaggeateea eccaatggee tteeagggee tgeacaaggaaea aacacetgae eccaatggee tteeagggee tgeacaaggaaea aacacetgae etaaaceaa eacaaggget gaacaaggaaea aacacetgae eccaatggee tteeagggee tgeacaaggaaeaa aacacetgae eccaatggee tteeagagaa aacaceaa etaacetgaaeaaacaa aacaceggaeaaaacaa aacaceggaeaaaacaa aacaceggaeaaaacaa aacaceggaeaaaacaa aacaceggaeaaaacaa aacaceggaeaaaacaa aacaceggaeaaacaa aacaceggaeaaacaa aacaceggaeaaaacaa aacaceggaeaaaacaa aacaceggaeaaaacaa aacaceggaeaaaacaa aacaceggaeaaaacaa aacaceggaeaaaacaaaac	tcccaggagg	gcgtcgtgga	ctgtggcggt	attgacctgc	gtgagttccc	700
ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc ggttgagcat ctgaccaacc ctgaccaacg ccctgatcag tgtggacttt gctgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc aaacttgagg tctgtgtacc tgcacaacaa caagctggca gacgccgggc tgcaggacaa catgttcaac ggctccaaga acgtcgaggt cctcatcctg tccagcaact tcctgcgcca cgtgcccaag cacctgccgc ctgccctgta caagctgcac ctcaagaaca acaagctgga gaagatccc ccgggggcct tcagcgagct gagcagcctg cgcagactat acctgcagaa caactacctg actgacgag gacctggacaa cgagaccttc tggaagatct ccagcctgga gacctggaca cggagacctt tggaagctct ccagcctgga gacctggacaa caactacctg actgacgag gcctggacaa acaacctgtc tcgggtccca gctgggctgc cgcgcagcct ggtgctgct cacttggaga agaacgccat ccggagcgtg accggaact tgctgaccc catccgcagc ctggagtacc tgctgctgca cagcaaccag ctgcggagc agggcatcca cccactggcc ttccagggcc tgcagcggt cacctgtaca acaaccggct ggagcgcgtg cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca gaccaggtg cacctggcacc ctcatgatcc tgcacaacca gaccaggtg cacctggcacc ctcatgatcc tgcacaacca gaccaaccag ctgccgcg cgtgcgcacc ctcatgatcc tgcacaacca gaccaaccag ctgccagca acaacctgtc ccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca gaccaaccag attggccgc aagactttgc caccacctac ttcctggagg	gggggacctg	cctgagcaca	ccaaccacct	atctctgcag	aacaaccagc	750
gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc tgaccttggc accecgette ctgccaaacg ccetgatcag tgtggacttt getgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc aaacttgagg tctgtgtacc tgcacaacaa caagctggca gacgccgggc tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg tccagcaact tcctgcgcca cgtgcccaag cacctgccgc ctgccctgta caagctgcac ctcaagaaca acaagctgga gaagatcccc ccgggggcct tcagcgagct gagcagcctg cgcgagctat acctgcagaa caactacctg actgacgagg gcctggacaa cgagaccttc tggaagctct ccagcagca gtacctgga gacgcgtga cacactgga gacgcgagct tcggcagcat ctgccagca cacactgcc ccagcgagct gccggagctat ccgggagctct ccagcagca ctgtccaagca cacactgga gacgcagcct ggtgctgcc acacactgtc tcgggtccca gctgggctgc cgcgcagcct ggtgctgcc cacttggaga agaacgccat ccggagcgtg gacgcgaatg tgctgaccc catccgcagc ctggagtacc tgctgcgaccc cacacggcc ttccagcgct gcacaccag ctgcggagc agggcatca acaacgcgct ggagcgcgtg caccagtggcc tgcccagtggcc tgcccagtggcc cccagtggcc tgcccagtgcc cccagtggcc tgcccagtgcc ctcatgatcc tgcacaacca gatcacaggc attggcgcacc ctcatgatcc tgcacaacca gatcacaggc attggccgcacc ctcatgatcc tgcacaacca gatcacaggc attggccgcacc aacacctacctac ttcctggagg	tggaaaagat	ctaccctgag	gagctctccc	ggctgcaccg	gctggagaca	800
tgacettgge accecgette etgecaaacg ecetgateag tgtggacette getgecaact ateteaceaa gatetatggg eteacetttg gecagaagee aaacttgagg tetgtgtace tgeacaacaa caagetggca gacgeeggge tgeeggacaa catgtteaac ggetecaaga acgtegaggt ecteateetg tecageaact teetgegeca egtgeceaag eacetgeege etgeeetgta etgacgaget gageageetg egegagetat acetgeagat eacetacetg actgacgaget gageageetg egegagetat acetgeagaa eaactaeetg actgacgagg geetggacaa egageette tggaagetet eeageetgga gacgeetgga gacgeaget etgeeegga eacacetgee egegagetet etgacgaga eacacetgee egegeageet ggtgetgetg eacttggaa agaacgeeat eeggagetge eacetggaa eacaceag etgeggage aggeateea eeggagete tgeeggaget eacetgaca eccaetggee tteeagegee tgeetegee egtgegeace etcatgaca acaacgeget ggagegetge eccagtggee tgeetegeeg egtgegeace etcatgatee tgeacaacea eccagtggee tgeetegeeg egtgegeace etcatgatee tgeacaacea eacacgeget gagacgegtg eacetgtaca acaacgeget ggagegegtg eccagtggee tgeetegeeg egtgegeace etcatgatee tgeacaacea eacacgegee tgeacaacea etgeageace etcatgatee tgeacaacea eacacgegee attgeeggage aagactttge eacacctace tteetgagg	ctgaacctgc	aaaacaaccg	cctgacttcc	cgagggctcc	cagagaaggc	850
getgecaact ateteaceaa gatetatggg eteacetttg gecagaagee aaacttgagg tetgtgtace tgeacaacaa caagetggca gaegeeggge tgeeggacaa catgtteaac ggetecaaga acgtegaggt eeteateetg tecageaact teetgegeca egtgeecaag cacetgeege etgeeetgta caagetggac eteaagaaca acaagetgga gaagateeee eegggggeet teagegaget gageageetg egeagetat acetgeagaa caactacetg actgaegag geetggacaa egagacette tggaagetet eeageetgga gaecetgga gaecetgga gaecetgga gaecetgga gaecetgga eggaecet tegggteeca getggeetge egegagett tegggteeca getgggetge egegagett tegggteeca getgggetge egegageatg tgetgaecee eateegeage etggagtace tgetgetgea eageaceage etgeggage agggeateea eccaetggee teeaageggt gaecageggt geacetgtaca acacetgte teeaggee tteeagggee teeaageggt eacetgtaca acaacetgee teeaagegee teeaagegee tgeetegeae eccagtggee tgeetegeae eccagtggee tgeetegeae eccagtggee tgeetegeae etgeetegeae etgeetegeae eccagtggee tgeetegeae eccagtggee tgeetegeae etgeetegeae etgeetegeaee etgeetegeae etgeetegage etgeetegeae etgeetegage etgeetegeae etgeetegage etgeetegaaee etgeetegageggggtggateaeaeaeaggageaeaeaea	gtttgagcat	ctgaccaacc	tcaattacct	gtacttggcc	aataacaagc	900
aaacttgagg tetgtgtace tgeacaacaa caagetggea gaegeeggge tgeeggacaa catgtteaac ggeteeagea aegtegaggt eeteateetg tecageaact teetgegeea egtgeecaag caectgeege etgeecetgta caagetgeae etcaagaaca acaagetgga gaagateeee eegggggeet gageageetg egegagetat aectgeagaa caactaeetg aetgaegagg geetggacaa egagaeette tggaagetet eeageeggage ggtgeegagea acaacetgte tegggteeca getgggeetge egegeageet ggtgetgetg eaettggaga agaacegeet eegggagetge eaeteggag etggagaea egggeatee egggagetge eaeteggag etggageae etgeggage etgeggage etgeggage eegageetge eegageetge etgeeggage egggagetge eecaagegget geacaeggge eaeetggae eecaageget ggagegegtg eaeetggae eecaageget etgeetgees eggagegeetge eecaagegee tgeetegeeg egtgegeace etcatgatee tgeacaacea gateacagge attggeege egtgegeace etcatgatee tgeacaacea gateacagge attggeege aagaetttge eaeeaceacea tteetggagg	tgaccttggc	accccgct t c	ctgccaaacg	ccctgatcag	tgtggacttt	950
tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg tccagcaact tcctgcgcca cgtgcccaag cacctgccgc ctgccctgta caagctgcac ctcaagaaca acaagctgga gaagatcccc ccgggggcct tcagcgagct gagcagcctg cgcgagctat acctgcagaa caactacctg actgacgagg gcctggacaa cgagaccttc tggaaagctct ccagcctgga gtacctggat ctgtccagca acaacctgtc tcgggtccca gctgggctgc cgcgcagcct ggtgctgctg cacttggaga agaacgccat ccggagcgtg gacgcgaatg tgctgaccc catccgcagc ctggagtacc tgctgcca cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc tcaagcggtt gcacacggtg cacctgtaca acaacgcgct ggagcgcgtg cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca gatcacaggc attggccgcg aagactttgc caccacctac ttcctggagg	gctgccaact	atctcaccaa	gatctatggg	ctcacctttg	gccagaagcc	1000
tecageaact tectgegeea egtgeceaag eacetgeege etgeeetgta eaagetgeae etcaagaaca acaagetgga gaagateeee eegggggeet gageageetg egegageett tegaageetg eeggageett tegaageetg eeggageett tegaageete eegggageetg eeggageette tegggateee getggaetge egegeageet tegggateee egegeageet ggtgetgeetg eacetggaa agaacgeeat eegggagetge egegeageet ggetgaeeee eateeggaa agaacgeeat eeggageeggage eacetggaage etgeggaatg tegetgaeeee eateegeage etggagtaee tegetggae eacetggae eegegaaceat egegggage agggeateea eecaactggee teeaageggte eacetgtaea acaacgeget ggaageggtg eccaageggt geacacgggte eacetgtaea acaacgeget ggaagegegtg eccaagtggee tegeetegee egtgegeace etcaatgatee tegeacaacea gateacaagee attggeegeg aagactttge eaceacetae teetggagg	aaacttgagg	tctgtgtacc	tgcacaacaa	caagctggca	gacgccgggc	1050
caagetgeac cteaagaaca acaagetgga gaagateece cegggggeet teagggggeet gageageetg egegagetat acetgeagaa caactacetg actgacgagg geetggacaa egagacette teggaagetet ceaggeetgga gtacetggat ctgteeagea acaacetgte tegggteeca getgggetge egegeageet ggtgetgetg caettggaag agaacgeeat eegggagetg eacetggaag agaacgeeat tegetgaaga agaacgeeat tegetgeaga eageageageage etgeeggaage agggeateea eecaageggee tteeagggee tegeageage agggeateea eecaactggee tteeagggee eccaagtggee tgeetegee egtgeegaace etcaageggt egetgeegage agageegaee etcaageggee tgeetegeeg egtgegeace etcaatgatee tgeacaacea gateacagge attggeegeg aagaetttge eaceacetae tteetggagg	tgccggacaa	catgttcaac	ggctccagca	acgtcgaggt	cctcatcctg	1100
teagegaget gageageetg egegagetat acetgeagaa caactacetg actgacgagg geetggacaa egagacette tggaagetet eceageetgga gtacetggat etgteeagea acaacetgte tegggteeca getgggetge egegeageet ggtgetgetg caettggaga agaacgeeat eegggagegtg gacgegaatg tgetgaceee cateegeage etggagtace tgeetgea eageaaceag etgeggage agggeateea eceaetggee tteeagggee teaageggtt geacaeggtg caeetgtaca acaacgeget ggagegegtg eceagtggee tgeetegeeg egtgegeace eteatgatee tgeacaacea gateacagge attggeegea aagaetttge caeecetae tteetggagg	tccagcaact	tcctgcgcca	cgtgcccaag	cacctgccgc	ctgccctgta	1150
actgacgagg gcctggacaa cgagaccttc tggaagctct ccagcctgga gtacctggat ctgtccagca acaacctgtc tegggtccca gctgggctgc cgcgcagcct ggtgctgctg cacttggaga agaacgccat ccgggagcgtg caccggaatg tgctgaccc catccgcagc ctggagtacc tgctgcgagc cacctggac cccagtggcc tgcctcgccg cgtgcgacc ctcatggac tgcacaccag cgtgcgcacc ctcatgacc tgcacaccag cgtgcgcgcg cgtgcgacc ctcatgatcc tgcacaacca gatcacaggc attggccgc aagactttgc caccacctac ttcctggagg	caagctgcac	ctcaagaaca	acaagctgga	gaagatcccc	ccgggggcct	1200
gtacetggat ctgtecagea acaacetgte tegggtecea getgggetge egcgcagect ggtgetgetg caettggaga agaacgecat ceggagegtg gacgegaatg tgetgacece cateegcage etggagtace tgetgetgea eagecaaceag ctgeggage agggeateca eccaetggee ttecagggee tegecggtg caectgtaca acaacgeget ggagegegtg eccagtggee tgeetegee egtgegeace etcatgatee tgeacaacea gateacagge attggeege aagaetttge caecacetae ttectggagg	tcagcgagct	gagcagcctg	cgcgagctat	acctgcagaa	caactacctg	1250
egegeageet ggtgetgetg caettggaga agaacgeeat ceggagegtg gacgegaatg tgetgaceee cateegeage etggagtace tgetgetgea cagcaaceag etgegggage agggeateea eceaetggee ttecagggee tcaageggtt gcacaeggtg caectgtaca acaaegeget ggagegegtg cecagtggee tgeetegeeg egtgegeace eteatgatee tgeaeaacea gateacagge attggeegeg aagaetttge caecaectac ttectggagg	actgacgagg	gcctggacaa	cgagaccttc	tggaagctct	ccagcctgga	1300
gacgcgaatg tgctgaccc catccgcagc ctggagtacc tgctgcaccc cagcaaccag ctgcggagc agggcatcca cccactggcc ttccagggcc tcaagggtt gcacacggtg cacctgtaca acaacgcgct ggagcgcgtg cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca gatcacaggc attggccgc aagactttgc caccacctac ttcctggagg	gtacctggat	ctgtccagca	acaacctgtc	tcgggtccca	gctgggctgc	1350
cagcaaccag ctgcggagc agggcatcca cccactggcc ttccagggcc tcaagcggtt gcacacggtg cacctgtaca acaacgcgct ggagcgcgtg cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca gatcacaggc attggccgcg aagactttgc caccacctac ttcctggagg	cgcgcagcct	ggtgctgctg	cacttggaga	agaacgccat	ccggagcgtg	1400
tcaagcggtt gcacacggtg cacctgtaca acaacgcgct ggagcgcgtg cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca gatcacaggc attggccgcg aagactttgc caccacctac ttcctggagg	gacgcgaatg	tgctgacccc	catccgcagc	ctggagtacc	tgctgctgca	1450
cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca gatcacaggc attggccgcg aagactttgc caccacctac ttcctggagg	cagcaaccag	ctgcgggagc	agggcatcca	cccactggcc	ttccagggcc	1500
gatcacagge attggccgcg aagactttgc caccacctac ttcctggagg	tcaagcggtt	gcacacggtg	cacctgtaca	acaacgcgct	ggagcgcgtg	1550
	cccagtggcc	tgcctcgccg	cgtgcgcacc	ctcatgatcc	tgcacaacca	1600
agctcaacct cagctacaac cqcatcacca gcccacaggt gcaccgcgac	gatcacaggc	attggccgcg	aagactttgc	caccacctac	ttcctggagg	1650
	agctcaacct	cagctacaac	cgcatcacca	gcccacaggt	gcaccgcgac	1700

gccttccgca agctgcgcct gctgcgctcg ctggacctgt cgggcaaccg 1750 gctgcacacg ctgccacctg ggctgcctcg aaatgtccat gtgctgaagg 1800 tcaagcgcaa tgagctggct gccttggcac gaggggcgct ggcgggcatg 1850 gctcagctgc gtgagctgta cctcaccagc aaccgactgc gcagccgagc 1900 cctgggcccc cgtgcctggg tggacctcgc ccatctgcag ctgctggaca 1950 tcgccgggaa tcagctcaca gagatccccg aggggctccc cgagtcactt 2000 gagtacctgt acctgcagaa caacaagatt agtgcggtgc ccgccaatgc 2050 cttcgactcc acgcccaacc tcaaggggat ctttctcagg tttaacaagc 2100 tggctgtggg ctccgtggtg gacagtgcct tccggaggct gaagcacctg 2150 caggictigg acattgaagg caacttagag titiggigaca titiccaagga 2200 aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300 gatggaccgc cggactcttt tctgcagcac acgcctgtgt gctgtgagcc 2350 ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400 tcccacatga cacgggctga cacagtctca tatccccacc ccttcccacg 2450 gegtgtecea eggeeagaea catgeacaea cateacaeee teaaacaeee 2500 ageteageea cacacaacta ceetecaaac caccacagte tetgteacac 2550 ccccactacc gctgccacgc cctctgaatc atgcagggaa gggtctgccc 2600 ctgccctggc acacacaggc acccattccc tccccctgct gacatgtgta 2650 tgcgtatgca tacacaccac acacacaca atgcacaagt catgtgcgaa 2700 cageceteca aageetatge cacagacage tettgeecca gecagaatca 2750 gccatagcag ctcgccgtct gccctgtcca tctgtccgtc cgttccctgg 2800 agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850 ggaactcaca aaagctggct tttattcctt tcccatccta tggggacagg 2900 agcetteagg actgetggee tggeetggee caeeetgete etceaggtge 2950 tgggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000 caggcacttt tccaatgggc aagcccagtg gaggcaggat gggagagccc 3050

```
cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100
 ctgggctgag ccagggagga aggacccagc tgcacctagg agacaccttt 3150
 gttcttcagg cctgtggggg aagttccggg tgcctttatt ttttattctt 3200
 ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttgttata 3250
 gaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296
<210> 311
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 311
gcattggccg cgagactttg cc 22
<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 312
gcggccacgg tccttggaaa tg 22
<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 313
tggaggaget caaceteage tacaacegea teaceagece acagg 45
<210> 314
<211> 3003
<212> DNA
<213> Homo Sapien
<400> 314
gggaggggc teegggegee gegeageaga eetgeteegg eegegeget 50
```

cgccgctgtc ctccgggagc ggcagcagta gcccgggcgg cgagggctgg 100

gggtteeteg agaeteteag aggggegeet eecateggeg eecaecacee 150 caacctgttc ctcgcgcgcc actgcgctgc gccccaggac ccgctgccca 200 acatggattt teteetggeg etggtgetgg tateeteget etaeetgeag 250 gcggccgccg agttcgacgg gaggtggccc aggcaaatag tgtcatcgat 300 tggcctatgt cgttatggtg ggaggattga ctgctgctgg ggctgggctc 350 gccagtcttg gggacagtgt cagcctgtgt gccaaccacg atgcaaacat 400 ggtgaatgta tcgggccaaa caagtgcaag tgtcatcctg gttatgctgg 450 aaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccggccct 500 gtaagcacag gtgcatgaac acttacggca gctacaagtg ctactgtctc 550 aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600 ctccatggca aactgtcagt atggctgtga tgttgttaaa ggacaaatac 650 ggtgccagtg cccatcccct ggcctgcacc tggctcctga tgggaggacc 700 tgtgtagatg ttgatgaatg tgctacagga agagcctcct gccctagatt 750 taggcaatgt gtcaacactt ttgggagcta catctgcaag tgtcataaag 800 gcttcgatct catgtatatt ggaggcaaat atcaatgtca tgacatagac 850 gaatgctcac ttggtcagta tcagtgcagc agctttgctc gatgttataa 900 cgtacgtggg tcctacaagt gcaaatgtaa agaaggatac cagggtgatg 950 gactgacttg tgtgtatatc ccaaaagtta tgattgaacc ttcaggtcca 1000 attcatgtac caaagggaaa tggtaccatt ttaaagggtg acacaggaaa 1050 taataattgg attcctgatg ttggaagtac ttggtggcct ccgaagacac 1100 catatattcc tcctatcatt accaacaggc ctacttctaa gccaacaaca 1150 agacctacac caaagccaac accaattcct actccaccac caccaccacc 1200 cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250 caaccaccgg actgacaact atagcaccag ctgccagtac acctccagga 1300 gggattacag ttgacaacag ggtacagaca gaccctcaga aacccagagg 1350 agatgtgttc agtgttctgg tacacagttg taattttgac catggacttt 1400

gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450 gacccagcag gtggacaata tctgacagtg tcggcagcca aagccccagg 1500 gggaaaagct gcacgcttgg tgctacctct cggccgcctc atgcattcag 1550 gggacctgtg cctgtcattc aggcacaagg tgacggggct gcactctggc 1600 acactccagg tgtttgtgag aaaacacggt gcccacggag cagccctgtg 1650 gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700 gggctgacat caagagcgaa tcacaaagat gattaaaggg ttggaaaaaa 1750 agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800 agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggttg 1850 gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900 caagaggaaa ctggcttaga ctagagtata agggagcatt tcttggcagg 1950 ggccattgtt agaatacttc ataaaaaaag aagtgtgaaa atctcagtat 2000 ctctctctct ttctaaaaaa ttagataaaa atttgtctat ttaagatggt 2050 taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaaa 2100 agatgttttg atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150 taatttggac aaggettaat ttaggeattt eeetettgae eteetaatgg 2200 agagggattg aaaggggaag agcccaccaa atgctgagct cactgaaata 2250 tctctccctt atggcaatcc tagcagtatt aaagaaaaaa ggaaactatt 2300 tattccaaat gagagtatga tggacagata ttttagtatc tcagtaatgt 2350 cctagtgtgg cggtggtttt caatgtttct tcatggtaaa ggtataagcc 2400 tttcatttgt tcaatggatg atgtttcaga ttttttttt tttaagagat 2450 ccttcaagga acacagttca gagagatttt catcgggtgc attctctctg 2500 cttcgtgtgt gacaagttat cttggctgct gagaaagagt gccctgcccc 2550 acaceggeag acettteett caceteatea gtatgattea gtttetetta 2600 tcaattggac tctcccaggt tccacagaac agtaatattt tttgaacaat 2650 aggtacaata gaaggtette tgteatttaa eetggtaaag geagggetgg 2700 agggggaaaa taaatcatta agcctttgag taacggcaga atatatggct 2750

gtagatccat ttttaatggt tcatttcctt tatggtcata taactgcaca 2800 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850 tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900 catcttgttt attattaat gttttctaaa ataaaaaatg ttagtggttt 2950 tccaaatggc ctaataaaaa caattatttg taaataaaaa cactgttagt 3000 aat 3003

<210> 315

<211> 509

<212> PRT

<213> Homo Sapien

<400> 315

Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu 1 5 10 15

Gln Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val \$20\$ \$25\$

Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys 35 40 45

Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys
50 55 60

Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys
65 70 75

Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu 80 85 90

Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met

95 100 105

Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met 110 $$\rm 115$$

Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met
125 130 135

Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg 140 145 150

Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg 155 160 165

Thr	Cys	Val	Asp	Val 170	Asp	Glu	Cys	Ala	Thr 175	Gly	Arg	Ala	Ser	Cys 180
Pro	Arg	Phe	Arg	Gln 185	Cys	Val	Asn	Thr	Phe 190	Gly	Ser	Tyr	Ile	Cys 195
Lys	Cys	His	Lys	Gly 200	Phe	Asp	Leu	Met	Tyr 205	Ile	Gly	Gly	Lys	Tyr 210
Gln	Cys	His	Asp	Ile 215	Asp	Glu	Cys	Ser	Leu 220	Gly	Gln	Tyr	Gln	Cys 225
Ser	Ser	Phe	Ala	Arg 230	Cys	Tyr	Asn	Val	Arg 235	Gly	Ser	Tyr	Lys	Cys 240
Lys	Cys	Lys	Glu	Gly 245	Tyr	Gln	Gly	Asp	Gly 250	Leu	Thr	Cys	Val	Tyr 255
Ile	Pro	Lys	Val	Met 260	Ile	Glu	Pro	Ser	Gly 265	Pro	Ile	His	Val	Pro 270
Lys	Gly	Asn	Gly	Thr 275	Ile	Leu	Lys	Gly	Asp 280	Thr	Gly	Asn	Asn	Asn 285
Trp	Ile	Pro	Asp	Val 290	Gly	Ser	Thr	Trp	Trp 295	Pro	Pro	Lys	Thr	Pro 300
Tyr	Ile	Pro	Pro	Ile 305	Ile	Thr	Asn	Arg	Pro 310	Thr	Ser	Lys	Pro	Thr 315
Thr	Arg	Pro	Thr	Pro 320	Lys	Pro	Thr	Pro	Ile 325	Pro	Thr	Pro	Pro	Pro 330
Pro	Pro	Pro	Leu	Pro 335	Thr	Glu	Leu	Arg	Thr 340	Pro	Leu	Pro	Pro	Thr 345
Thr	Pro	Glu	Arg	Pro 350	Thr	Thr	Gly	Leu	Thr 355	Thr	Ile	Ala	Pro	Ala 360
Ala	Ser	Thr	Pro	Pro 365	Gly	Gly	Ile	Thr	Val 370	Asp	Asn	Arg	Val	Gln 375
Thr .	Asp	Pro	Gln	Lys 380	Pro	Arg	Gly	Asp	Val 385	Phe	Ser	Val	Leu	Val 390
											Trn	-1-		~ 3
His	Ser	Сув	Asn	Phe 395	Asp	His	Gly	Leu	Cys 400	GIY	пр	пе	Arg	G1u 405
His Lys				395					400					405

430 425 Ala Ala Arg Leu Val Leu Pro Leu Gly Arg Leu Met His Ser Gly Asp Leu Cys Leu Ser Phe Arg His Lys Val Thr Gly Leu His Ser Gly Thr Leu Gln Val Phe Val Arg Lys His Gly Ala His Gly Ala Ala Leu Trp Gly Arg Asn Gly Gly His Gly Trp Arg Gln Thr Gln Ile Thr Leu Arg Gly Ala Asp Ile Lys Ser Glu Ser Gln Arg <210> 316 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 316 gatggttcct gctcaagtgc cctg 24 <210> 317 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 317 ttgcacttgt aggacccacg tacg 24 <210> 318 <211> 50 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 318 ctgatgggag gacctgtgta gatgttgatg aatgtgctac aggaagagcc 50 <210> 319 <211> 2110 <212> DNA

<213> Homo Sapien

<400> 319 cttctttgaa aaggattatc acctgatcag gttctctctg catttgcccc 50 tttagattgt gaaatgtggc tcaaggtctt cacaactttc ctttcctttg 100 caacaggtgc ttgctcgggg ctgaaggtga cagtgccatc acacactgtc 150 catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200 cactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250 caatgcccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300 ttggaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350 tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400 acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450 gttgatgatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500 ggctgtggag tatgtgggga acatgaccet gacatgccat gtggaagggg 550 gcactegget agettaceaa tggetaaaaa atgggagaee tgteeacaee 600 agetecacet acteettte tecceaaaac aataceette atattgetee 650 agtaaccaag gaagacattg ggaattacag ctgcctggtg aggaaccctg 700 tcagtgaaat ggaaagtgat atcattatgc ccatcatata ttatggacct 750 tatggacttc aagtgaattc tgataaaggg ctaaaagtag gggaagtgtt 800 tactgttgac cttggagagg ccatcctatt tgattgttct gctgattctc 850 atcccccaa cacctactcc tggattagga ggactgacaa tactacatat 900 atcattaagc atgggcctcg cttagaagtt gcatctgaga aagtagccca 950 gaagacaatg gactatgtgt gctgtgctta caacaacata accggcaggc 1000 aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050 cttgcacaga aaggaaaatc attgtcacct ttagcaagta taactggaat 1100 atcactattt ttgattatat ccatgtgtct tctcttccta tggaaaaaat 1150 atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200 gaatacagga aagctcaaac attttcaggc catgaagatg ctctggatga 1250

cttcggaata tatgaatttg ttgcttttcc agatgtttct ggtgtttcca 1300 ggattccaag caggtctgtt ccagcctctg attgtgtatc ggggcaagat 1350 ttgcacagta cagtgtatga agttattcag cacatccctg cccagcagca 1400 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450 ttctgaagaa acattttaag gaaaaacagt ggaaaagtat attaatctgg 1500 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550 tgcagaatag aggcatttat gcaaattgaa ctgcaggttt ttcagcatat 1600 acacaatgtc ttgtgcaaca gaaaaacatg ttggggaaat attcctcagt 1650 ggagagtcgt tctcatgctg acggggagaa cgaaagtgac aggggtttcc 1700 tcataagttt tgtatgaaat atctctacaa acctcaatta gttctactct 1750 acactttcac tatcatcaac actgagacta tcctgtctca cctacaaatg 1800 tggaaacttt acattgttcg atttttcagc agactttgtt ttattaaatt 1850 tttattagtg ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900 ttctatcttg ttatttgtac aacaaagtaa taaggatggt tgtcacaaaa 1950 acaaaactat gccttctctt ttttttcaat caccagtagt atttttgaga 2000 agacttgtga acacttaagg aaatgactat taaagtctta tttttatttt 2050 tttcaaggaa agatggattc aaataaatta ttctgttttt gcttttaaaa 2100 aaaaaaaaa 2110

<210> 320

<211> 450

<212> PRT

<213> Homo Sapien

<400> 320

Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly
1 5 10 15

Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His
20 25 30

Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe 35 40 45

His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg
50 55 60

Pro His Thr	Met Pro 65	Lys :	Гуr	Leu	Leu	Gly 70	Ser	Val	Asn	Lys	Ser 75
Val Val Pro	Asp Leu 80	Glu 5	Tyr	Gln	His	Lys 85	Phe	Thr	Met	Met	Pro 90
Pro Asn Ala	Ser Leu 95	Leu :	Ile	Asn	Pro	Leu 100	Gln	Phe	Pro	Asp	Glu 105
Gly Asn Tyr	Ile Val 110	Lys V	Val	Asn	Ile	Gln 115	Gly	Asn	Gly	Thr	Leu 120
Ser Ala Ser	Gln Lys 125	Ile (Gln	Val	Thr	Val 130	Asp	Asp	Pro	Val	Thr 135
Lys Pro Val	Val Gln 140	Ile I	His	Pro	Pro	Ser 145	Gly	Ala	Val	Glu	Tyr 150
Val Gly Asn	Met Thr 155	Leu :	Thr	Cys	His	Val 160	Glu	Gly	Gly	Thr	Arg 165
Leu Ala Tyr	Gln Trp 170	Leu 1	Lys	Asn	Gly	Arg 175	Pro	Val	His	Thr	Ser 180
Ser Thr Tyr	Ser Phe 185	Ser 1	Pro	Gln	Asn	Asn 190	Thr	Leu	His	Ile	Ala 195
Pro Val Thr	Lys Glu 200	Asp :	Ile	Gly	Asn	Tyr 205	Ser	Cys	Leu	Val	Arg 210
Asn Pro Val	Ser Glu 215	Met (Glu	ser	Asp	Ile 220	Ile	Met	Pro	Ile	Ile 225
Tyr Tyr Gly	Pro Tyr 230	Gly 1	Leu	Gln	Val	Asn 235	Ser	Asp	Lys	Gly	Leu 240
Lys Val Gly	Glu Val 245	Phe '	Thr	Val	Asp	Leu 250	Gly	Glu	Ala	Ile	Leu 255
Phe Asp Cys	Ser Ala 260	Asp :	Ser	His	Pro	Pro 265	Asn	Thr	Tyr	Ser	Trp 270
Ile Arg Arg	Thr Asp 275	Asn '	Thr	Thr	Tyr	Ile 280	Ile	Lys	His	Gly	Pro 285
Arg Leu Glu	Val Ala 290	Ser (Glu	Lys	Val	Ala 295	Gln	Lys	Thr	Met	Asp 300
Tyr Val Cys	Cys Ala 305	Tyr Z	Asn	Asn	Ile	Thr 310	Gly	Arg	Gln	Asp	Glu 315
Thr His Phe	Thr Val	Ile	Ile	Thr	Ser	Val	Gly	Leu	Glu	Lys	Leu

320 325 330 Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly 340 Ile Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp 355 Lys Lys Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly 370 Arg Pro Glu Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His Glu Asp Ala Leu Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe 395 Pro Asp Val Ser Gly Val Ser Arg Ile Pro Ser Arg Ser Val Pro Ala Ser Asp Cys Val Ser Gly Gln Asp Leu His Ser Thr Val Tyr Glu Val Ile Gln His Ile Pro Ala Gln Gln Gln Asp His Pro Glu 445 <210> 321 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 321 gatcctgtca caaagccagt ggtgc 25 <210> 322 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 322 cactgacagg gttcctcacc cagg 24 <210> 323 <211> 45 <212> DNA <213> Artificial Sequence

<223> Synthetic Oligonucleotide Probe <400> 323 ctccctctgg gctgtggagt atgtggggaa catgaccctg acatg 45 <210> 324 <211> 2397 <212> DNA <213> Homo Sapien <400> 324 gcaagcggcg aaatggcgcc ctccgggagt cttgcagttc ccctggcagt 50 cctggtgctg ttgctttggg gtgctccctg gacgcacggg cggcggagca 100 acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150 tggatgatag aattttatgc cccgtggtgc cctgcttgtc aaaatcttca 200 accggaatgg gaaagttttg ctgaatgggg agaagatctt gaggttaata 250 ttgcgaaagt agatgtcaca gagcagccag gactgagtgg acggtttatc 300 ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350 ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400 aagagtggaa gagtattgag cccgtttcat catggtttgg tccaggttct 450 gttctgatga gtagtatgtc agcactcttt cagctatcta tgtggatcag 500 gacgtgccat aactacttta ttgaagacct tggattgcca gtgtggggat 550 catatactgt ttttgcttta gcaactctgt tttccggact gttattagga 600 ctctgtatga tatttgtggc agattgcctt tgtccttcaa aaaggcgcag 650 accacagoca tacccataco ottoaaaaaa attattatoa gaatotgoao 700 aacctttgaa aaaagtggag gaggaacaag aggcggatga agaagatgtt 750 tcagaagaag aagctgaaag taaagaagga acaaacaaag actttccaca 800 gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850 cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900

aagattgatc attttgtttg gtttgaagtg aactgtgact tttttgaata 950

ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000

acataaaagc actaggtata caagtttgaa atatgattta agcacagtat 1050 gatggtttaa atagttctct aatttttgaa aaatcgtgcc aagcaataag 1100 atttatgtat atttgtttaa taataaccta tttcaagtct gagttttgaa 1150 aatttacatt tcccaagtat tgcattattg aggtatttaa gaagattatt 1200 ttagagaaaa atatttctca tttgatataa tttttctctg tttcactgtg 1250 tgaaaaaaag aagatatttc ccataaatgg gaagtttgcc cattgtctca 1300 agaaatgtgt atttcagtga caatttcgtg gtctttttag aggtatattc 1350 caaaatttcc ttgtattttt aggttatgca actaataaaa actaccttac 1400 attaattaat tacagttttc tacacatggt aatacaggat atgctactga 1450 tttaggaagt ttttaagttc atggtattct cttgattcca acaaagtttg 1500 attttctctt gtatttttct tacttactat gggttacatt ttttatttt 1550 caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600 tatttttttg ttgtttcaaa ctgaagttta ctgagagatc catcaaattg 1650 aacaatctgt tgtaatttaa aattttggcc acttttttca gattttacat 1700 cattettget gaactteaac ttgaaattgt ttttttttt tttttggatg 1750 tgaaggtgaa cattcctgat ttttgtctga tgtgaaaaag ccttggtatt 1800 ttacattttg aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850 caggaaaaag catcttcttg tatatgtctt aaatgtattt ttgtcctcat 1900 atacagaaag ttcttaattg attttacagt ctgtaatgct tgatgtttta 1950 aaataataac atttttatat tttttaaaag acaaacttca tattatcctg 2000 tgttctttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050 gtaggatgga acattttagt gtatttttac tccttaaaga gctagaatac 2100 atagttttca ccttaaaaga agggggaaaa tcataaatac aatgaatcaa 2150 ctgaccatta cgtagtagac aatttctgta atgtcccctt ctttctaggc 2200 tctgttgctg tgtgaatcca ttagatttac agtatcgtaa tatacaagtt 2250 ttotttaaag coctotoott tagaatttaa aatattgtac cattaaagag 2300 tttggatgtg taacttgtga tgccttagaa aaatatccta agcacaaaat 2350

aaacctttct	aaccacttca	ttaaaqctqa	aaaaaaaaa	aaaaaaa	2397

<210> 325

<211> 280														
<212> PRT														
<213> Homo Sapien														
<400> 325														
Met 1	Ala	Pro	Ser	Gly 5	Ser	Leu	Ala	Val	Pro 10	Leu	Ala	Val	Leu	Val 15
Leu	Leu	Leu	Trp	Gly 20	Ala	Pro	Trp	Thr	His 25	Gly	Arg	Arg	Ser	Asn 30
Val	Arg	Val	Ile	Thr 35	Asp	Glu	Asn	Trp	Arg 40	Glu	Leu	Leu	Glu	Gly 45
Asp	Trp	Met	Ile	Glu 50	Phe	Tyr	Ala	Pro	Trp 55	Cys	Pro	Ala	Cys	Gln 60
Asn	Leu	Gln	Pro	Glu 65	Trp	Glu	Ser	Phe	Ala 70	Glu	Trp	Gly	Glu	Asp 75
Leu	Glu	Val	Asn	Ile 80	Ala	Lys	Val	Asp	Val 85	Thr	Glu	Gln	Pro	Gly 90
Leu	Ser	Gly	Arg	Phe 95	Ile	Ile	Thr	Ala	Leu 100	Pro	Thr	Ile	Tyr	His 105
Cys	Lys	Asp	Gly	Glu 110	Phe	Arg	Arg	Tyr	Gln 115	Gly	Pro	Arg	Thr	Lys 120
Lys	Asp	Phe	Ile	Asn 125	Phe	Ile	Ser	Asp	Lys 130	Glu	Trp	Lys	Ser	Ile 135
Glu	Pro	Val	Ser	Ser 140	Trp	Phe	Gly	Pro	Gly 145	Ser	Val	Leu	Met	Ser 150
Ser	Met	Ser	Ala	Leu 155	Phe	Gln	Leu	Ser	Met 160	Trp	Ile	Arg	Thr	Cys 165
His	Asn	Tyr	Phe	Ile 170	Glu	Asp	Leu	Gly	Leu 175	Pro	Val	Trp	Gly	Ser 180
Tyr	Thr	Val	Phe	Ala 185	Leu	Ala	Thr	Leu	Phe 190	Ser	Gly	Leu	Leu	Leu 195
Gly	Leu	Cys	Met	Ile 200	Phe	Val	Ala	Asp	Cys 205	Leu	Cys	Pro	Ser	Lys 210
Arg	Arg	Arg	Pro	Gln	Pro	Tyr	Pro	Tyr	Pro	Ser	Lys	Lys	Leu	Leu

225 215 220 Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Glu Ala Asp Glu Glu Asp Val Ser Glu Glu Glu Ala Glu Ser Lys Glu 245 Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser 265 Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser 275 <210> 326 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 326 tgaggtgggc aagcggcgaa atg 23 <210> 327 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 327 tatgtggatc aggacgtgcc 20 <210> 328 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 328 tgcagggttc agtctagatt g 21 <210> 329 <211> 25 <212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 329
ttgaaggaca aaggcaatct gccac 25
<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 330
ggagtettge agtteecetg geagteetgg tgetgttget ttggg 45
<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien
<400> 331
gcgagtgtcc agctgcggag acccgtgata attcgttaac taattcaaca 50
 aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
ggacaggcgg attggaagag cgggaaggtc ctggcccaga gcagtgtgac 150
 acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
ggtttggtgt cctgagctgt gtgcaggccg aattcttcac ctctattggg 250
cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
agagtacate ettgtggagg aagecaaget ttecaagatt aagagetggg 350
 ccaacaaaat ggaagccttg actagcaagt cagctgctga tgctgagggc 400
 tacctggctc accctgtgaa tgcctacaaa ctggtgaagc ggctaaacac 450
agactggcct gcgctggagg accttgtcct gcaggactca gctgcaggtt 500
 ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
caatgctgag tgtggatgac tgctttggga tgggccgctc ggcctacaat 700
```

gaaggggact attatcatac ggtgttgtgg atggagcagg tgctaaagca 750

gettgatgee ggggaggagg ceaceaeae eaagteaeag gtgetggaet 800 acctcagcta tgctgtcttc cagttgggtg atctgcaccg tgccctggag 850 ctcacccgcc gcctgctctc ccttgaccca agccacgaac gagctggagg 900 gaatctgcgg tactttgagc agttattgga ggaagagag gaaaaaacgt 950 taacaaatca gacagaagct gagctagcaa ccccagaagg catctatgag 1000 aggectgtgg actacctgcc tgagagggat gtttacgaga gcctctgtcg 1050 tggggagggt gtcaaactga cacccgtag acagaagagg cttttctgta 1100 ggtaccacca tggcaacagg gccccacagc tgctcattgc ccccttcaaa 1150 gaggaggacg agtgggacag cccgcacatc gtcaggtact acgatgtcat 1200 gtctgatgag gaaatcgaga ggatcaagga gatcgcaaaa cctaaacttg 1250 cacgagecae egitegigat eccaagacag gagiceteae igiegecage 1300 taccgggttt ccaaaagctc ctggctagag gaagatgatg accctgttgt 1350 ggcccgagta aatcgtcgga tgcagcatat cacagggtta acagtaaaga 1400 ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450 ccgcacttcg acttctctag gcgacctttt gacagcggcc tcaaaacaga 1500 ggggaatagg ttagcgacgt ttcttaacta catgagtgat gtagaagctg 1550 gtggtgccac cgtcttccct gatctggggg ctgcaatttg gcctaagaag 1600 ggtacagetg tgttetggta caacetettg eggagegggg aaggtgaeta 1650 ccgaacaaga catgctgcct gccctgtgct tgtgggctgc aagtgggtct 1700 ccaataagtg gttccatgaa cgaggacagg agttcttgag accttgtgga 1750 tcaacagaag ttgactgaca teettttetg teetteeeet teetggteet 1800 teageceatg teaacgtgae agacacettt gtatgtteet ttgtatgtte 1850 ctatcaggct gatttttgga gaaatgaatg tttgtctgga gcagagggag 1900 accatactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950 gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000 gttagctgtc tagcgcctag caaggtgcct ttgtacctca ggtgttttag 2050 gtgtgagatg tttcagtgaa ccaaagttct gataccttgt ttacatgttt 2100 gtttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150 cctaccagaa aaaaaaaa 2168

<210> 332 <211> 533 <212> PRT <213> Homo Sapien <400> 332 Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met 20 Thr Asp Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val 80 Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg Gln Phe Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile 140 Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly 170 Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln Leu Asp Ala Gly Glu Glu Ala Thr Thr Lys Ser Gln Val Leu

205

Asp	Tyr	Leu	Ser	Tyr 215	Ala	Val	Phe	Gln	Leu 220	Gly	Asp	Leu	His	Arg 225
Ala	Leu	Glu	Leu	Thr 230	Arg	Arg	Leu	Leu	Ser 235	Leu	Asp	Pro	Ser	His 240
Glu	Arg	Ala	Gly	Gly 245	Asn	Leu	Arg	Tyr	Phe 250	Glu	Gln	Leu	Leu	Glu 255
Glu	Glu	Arg	Glu	Lys 260	Thr	Leu	Thr	Asn	Gln 265	Thr	Glu	Ala	Glu	L eu 270
Ala	Thr	Pro	Glu	Gly 275	Ile	Tyr	Glu	Arg	Pro 280	Val	Asp	Tyr	Leu	Pro 285
Glu	Arg	Asp	Val	Tyr 290	Glu	ser	Leu	Cys	Arg 295	Gly	Glu	Gly	Val	Lys 300
Leu	Thr	Pro	Arg	Arg 305	Gln	Lys	Arg	Leu	Phe 310	Cys	Arg	Tyr	His	His 315
Gly	Asn	Arg	Ala	Pro 320	Gln	Leu	Leu	Ile	Ala 325	Pro	Phe	Lys	Glu	Glu 330
Asp	Glu	Trp	Asp	Ser 335	Pro	His	Ile	Val	Arg 340	Tyr	Tyr	Asp	Val	Met 345
Ser	Asp	Glu	Glu	11e 350	Glu	Arg	Ile	Lys	Glu 355	Ile	Ala	Lys	Pro	Lys 360
Leu	Ala	Arg	Ala	Thr 365	Val	Arg	Asp	Pro	Lys 370	Thr	Gly	Val	Leu	Thr 375
Val	Ala	Ser	Tyr	Arg 380	Val	Ser	Lys	Ser	Ser 385	Trp	Leu	Glu	Glu	Asp 390
Asp	Asp	Pro	Val	Val 395	Ala	Arg	Val	Asn	Arg 400	Arg	Met	Gln	His	Ile 405
Thr	Gly	Leu	Thr	Val 410	Lys	Thr	Ala	Glu	Leu 415	Leu	Gln	Val	Ala	Asn 420
Tyr	Gly	Val	Gly	Gly 425	Gln	Tyr	Glu	Pro	His 430	Phe	Asp	Phe	Ser	Arg 435
Arg	Pro	Phe	Asp	Ser 440	Gly	Leu	Lys	Thr	Glu 445	Gly	Asn	Arg	Leu	Ala 450
Thr	Phe	Leu	Asn	Tyr 455	Met	Ser	Asp	Val	Glu 460	Ala	Gly	Gly	Ala	Thr 465

```
Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp Tyr
 Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp
                 500
 Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg
                                      520
 Pro Cys Gly Ser Thr Glu Val Asp
<210> 333
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 333
ccaggcacaa tttccaga 18
<210> 334
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 334
ggacccttct gtgtgccag 19
<210> 335
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 335
ggtctcaaga actcctgtc 19
<210> 336
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
```

```
<400> 336
acactcagca ttgcctggta cttg 24
<210> 337
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 337
gggcacatga ctgacctgat ttatgcagag aaagagctgg tgcag 45
<210> 338
<211> 2789
<212> DNA
<213> Homo Sapien
<400> 338
qcaqtattqa qttttacttc ctcctctttt tagtggaaga cagaccataa 50
teccagtgtg agtgaaattg attgttteat ttattacegt tttggetggg 100
ggttagttcc gacaccttca cagttgaaga gcaggcagaa ggagttgtga 150
agacaggaca atcttcttgg ggatgctggt cctggaagcc agcgggcctt 200
gctctgtctt tggcctcatt gaccccaggt tctctggtta aaactgaaag 250
cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300
cctggggcac ccacctggca gggcctacca ccatgcgact gagctccctg 350
ttggctctgc tgcggccagc gcttcccctc atcttagggc tgtctctggg 400
gtgcagcctg agcctcctgc gggtttcctg gatccagggg gagggagaag 450
atccctgtgt cgaggctgta ggggagcgag gagggccaca gaatccagat 500
tcgagagctc ggctagacca aagtgatgaa gacttcaaac cccggattgt 550
cccctactac agggacccca acaagcccta caagaaggtg ctcaggactc 600
ggtacatcca gacagagctg ggctcccgtg agcggttgct ggtggctgtc 650
ctgacctccc gagctacact gtccactttg gccgtggctg tgaaccgtac 700
ggtggcccat cacttccctc ggttactcta cttcactggg cagcgggggg 750
cccgggctcc agcagggatg caggtggtgt ctcatgggga tgagcggccc 800
```

gcctggctca tgtcagagac cctgcgccac cttcacacac actttggggc 850 cgactacgac tggttcttca tcatgcagga tgacacatat gtgcaggccc 900 cccgcctggc agcccttgct ggccacctca gcatcaacca agacctgtac 950 ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccggtactg 1000 tcatgggggc tttggctacc tgttgtcacg gagtctcctg cttcgtctgc 1050 ggccacatct ggatggctgc cgaggagaca ttctcagtgc ccgtcctgac 1100 gagtggcttg gacgctgcct cattgactct ctgggcgtcg gctgtgtctc 1150 acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200 accetgagaa ggaagggage teggetttee tgagtgeett egeegtgeae 1250 cctgtctccg aaggtaccct catgtaccgg ctccacaaac gcttcagcgc 1300 tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350 tccggaacct gaccgtgctg acccccgaag gggaggcagg gctgagctgg 1400 cccgttgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450 gggctgggac tacttcacag agcagcacac cttctcctgt gcagatgggg 1500 ctcccaagtg cccactacag ggggctagca gggcggacgt gggtgatgcg 1550 ttggagactg ccctggagca gctcaatcgg cgctatcagc cccgcctgcg 1600 cttccagaag cagegactge tcaaeggeta teggegette gacecageae 1650 ggggcatgga gtacaccctg gacctgctgt tggaatgtgt gacacagcgt 1700 gggcaccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750 ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccgagtgc 1800 agetggtget gecaeteetg gtggetgaag etgetgeage eeeggettte 1850 ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900 caccetgttg etggtetacg ggccacgaga aggtggccgt ggagetecag 1950 acccatttct tggggtgaag gctgcagcag cggagttaga gcgacggtac 2000 cctgggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050 ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100

tettecttac caccetting acaagering georgaagt ceteaacege 2150 tgtegcatga atgecatete tggetggeag geottette cagtecattt 2200 ccaggagtte aateetgeee tgteaceaca gagateacee eccetecege 2300 ggggeteeta taggggggag atttgacege caggettett eggagggetg 2350 ettetacaac getgactace tggeggeeeg ageeeggetg geaggtgaac 2400 tggeaggeea ggaagaggag gaageeetgg agggetegga ggtgatggat 2450 gttteetee ggtteteag getecacete tttegggeeg tagageeag 2500 getggtgaa aagtteteee tgegagaetg cageeeggetg geaggtgaac 2500 getggtgaa aagtteteee tgegagaetg cageeeggetg aggggeegg 2550 aactetacea eegetgeeg eteageace tggagggee aggggeegg 2600 geeeagetgg etatggete etttgageag gageaggeea atageaetta 2650 geeeggeetgg gggeeetaac eteattacet tteetttgte tgeeteagee 2700 ccaggaaggg caaggeaaga tggtggaeag atagagaatt gttgetgtat 2750 tttttaaata tgaaaatgtt attaaacatg tettetgee 2789

<400> 339

Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro 1 5 10 15

Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg
20 25 30

Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala 35 40 45

Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg
50 55 60

Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr
65 70 75

Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg 80 85 90

Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala

<210> 339

<211> 772

<212> PRT

<213> Homo Sapien

				95					100					105
Val	Leu	Thr	Ser	Arg 110	Ala	Thr	Leu	Ser	Thr 115	Leu	Ala	Val	Ala	Val 120
Asn	Arg	Thr	Val	Ala 125	His	His	Phe	Pro	Arg 130	Leu	Leu	Tyr	Phe	Thr 135
Gly	Gln	Arg	Gly	Ala 140	Arg	Ala	Pro	Ala	Gly 145	Met	Gln	Val	Val	Ser 150
His	Gly	Asp	Glu	Arg 155	Pro	Ala	Trp	Leu	Met 160	Ser	Glu	Thr	Leu	Arg 165
His	Leu	His	Thr	His 170	Phe	Gly	Ala	Asp	Tyr 175	Asp	Trp	Phe	Phe	Ile 180
Met	Gln	Asp	Asp	Thr 185	Tyr	Val	Gln	Ala	Pro 190	Arg	Leu	Ala	Ala	Leu 195
Ala	Gly	His	Leu	Ser 200	Ile	Asn	Gln	Asp	Leu 205	Tyr	Leu	Gly	Arg	Ala 210
Glu	Glu	Phe	Ile	Gly 215	Ala	Gly	Glu	Gln	Ala 220	Arg	Tyr	Cys	His	Gly 225
Gly	Phe	Gly	Tyr	Leu 230	Leu	Ser	Arg	Ser	Leu 235	Leu	Leu	Arg	Leu	Arg 240
Pro	His	Leu	Asp	Gly 245	Cys	Arg	Gly	Asp	Ile 250	Leu	Ser	Ala	Arg	Pro 255
Asp	Glu	Trp	Leu	Gly 260	Arg	Cys	Leu	Ile	Asp 265	Ser	Leu	Gly	Val	Gly 270
Cys	Val	Ser	Gln	His 275	Gln	Gly	Gln	Gln	Tyr 280	Arg	Ser	Phe	Glu	Leu 285
Ala	Lys	Asn	Arg	Asp 290	Pro	Glu	Lys	Glu	Gly 295	Ser	Ser	Ala	Phe	Leu 300
Ser	Ala	Phe	Ala	Val 305	His	Pro	Val	Ser	Glu 310	Gly	Thr	Leu	Met	Tyr 315
Arg	Leu	His	Lys	Arg 320	Phe	Ser	Ala	Leu	Glu 325	Leu	Glu	Arg	Ala	Tyr 330
Ser	Glu	Ile	Glu	Gln 335	Leu	Gln	Ala	Gln	Ile 340	Arg	Asn	Leu	Thr	Val 345
Leu	Thr	Pro	Glu	Gly 350		Ala	Gly	Leu	Ser	Trp	Pro	Val	Gly	Leu

Pro	Ala	Pro	Phe	Thr 365	Pro	His	Ser	Arg	Phe 370	Glu	Val	Leu	Gly	Trp 375
Asp	Tyr	Phe	Thr	Glu 380	Gln	His	Thr	Phe	Ser 385	Cys	Ala	Asp	Gly	Ala 390
Pro	Lys	Cys	Pro	Leu 395	Gln	Gly	Ala	Ser	Arg 400	Ala	Asp	Val	Gly	Asp 405
Ala	Leu	Glu	Thr	Ala 410	Leu	Glu	Gln	Leu	Asn 415	Arg	Arg	Tyr	Gln	Pro 420
Arg	Leu	Arg	Phe	Gln 425	Lys	Gln	Arg	Leu	Leu 430	Asn	Gly	Tyr	Arg	Arg 435
Phe	Asp	Pro	Ala	Arg 440	Gly	Met	Glu	Tyr	Thr 445	Leu	Asp	Leu	Leu	Leu 450
Glu	Cys	Val	Thr	Gln 455	Arg	Gly	His	Arg	Arg 460	Ala	Leu	Ala	Arg	Arg 465
Val	Ser	Leu	Leu	Arg 470	Pro	Leu	Ser	Arg	Val 475	Glu	Ile	Leu	Pro	Met 480
Pro	Tyr	Val	Thr	Glu 485	Ala	Thr	Arg	Val	Gln 490	Leu	Val	Leu	Pro	Leu 495
Leu	Val	Ala	Glu	Ala 500	Ala	Ala	Ala	Pro	Ala 505	Phe	Leu	Glu	Ala	Phe 510
Ala	Ala	Asn	Val	Leu 515	Glu	Pro	Arg	Glu	His 520	Ala	Leu	Leu	Thr	Leu 525
Leu	Leu	Val	Tyr	Gly 530	Pro	Arg	Glu	Gly	Gly 535	Arg	Gly	Ala	Pro	Asp 540
Pro	Phe	Leu	Gly	Val 545	Lys	Ala	Ala	Ala	Ala 550	Glu	Leu	Glu	Arg	Arg 555
Tyr	Pro	Gly	Thr	Arg 560	Leu	Ala	Trp	Leu	Ala 565	Val	Arg	Ala	Glu	Ala 570
Pro	Ser	Gln	Val	Arg 575	Leu	Met	Asp	Val	Val 580	Ser	Lys	Lys	His	Pro 585
Val	Asp	Thr	Leu	Phe 590	Phe	Leu	Thr	Thr	Val 595	Trp	Thr	Arg	Pro	Gly 600
Pro		-		_	7	Cve	Δra	Met	Asn	Δla	Tla	Ser	al. .	Trn
	Glu	Val	Leu	Asn 605	Arg	Cys	m g	1100	610	nia	110	DCI	GIĄ	615

Ser Pro	Gln Ar	9 Ser 635	Pro	Pro	Gly	Pro	Pro 640	Gly	Ala	Gly	Pro	Asp 645
Pro Pro	Ser Pro	Pro 650	Gly	Ala	Asp	Pro	Ser 655	Arg	Gly	Ala	Pro	Ile 660
Gly Gly	Arg Ph	Asp 665	Arg	Gln	Ala	Ser	Ala 670	Glu	Gly	Cys	Phe	Tyr 675
Asn Ala	Asp Ty	Leu 680	Ala	Ala	Arg	Ala	Arg 685	Leu	Ala	Gly	Glu	Leu 690
Ala Gly	Gln Glı	Glu 695	Glu	Glu	Ala	Leu	Glu 700	Gly	Leu	Glu	Val	Met 705
Asp Val	Phe Le	Arg 710	Phe	Ser	Gly	Leu	His 715	Leu	Phe	Arg	Ala	Val 720
Glu Pro	Gly Le	val 725	Gln	Lys	Phe	Ser	Leu 730	Arg	Asp	Cys		Pro 735
Arg Leu	Ser Gl	Glu 740	Leu	Tyr	His	Arg	Cys 7 4 5	Arg	Leu	Ser	Asn	Leu 750
Glu Gly	Leu Gl	755	Arg	Ala	Gln	Leu	Ala 760	Met	Ala	Leu	Phe	Glu 765
Gln Glu	Gln Ala	Asn 770	Ser	Thr								

<210> 340

<211> 1572

<212> DNA

<213> Homo Sapien

<400> 340

cggagtggtg cgccaacgtg agaggaaacc cgtgcgcggc tgcgctttcc 50
tgtccccaag ccgttctaga cgcgggaaaa atgctttctg aaagcagctc 100
ctttttgaag ggtgtgatgc ttggaagcat tttctgtgct ttgatcacta 150
tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200
catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250
ggatgagcgc atggagctca gtaagagctt tcgagtatac tgtattatcc 300
ttgtaaaacc caaagatgtg agtctttggg ctgcagtaaa ggagacttgg 350
accaaacact gtgacaaagc agagttcttc agttctgaaa atgttaaagt 400

gtttgagtca attaatatgg acacaaatga catgtggtta atgatgagaa 450 aagcttacaa atacgccttt gataagtata gagaccaata caactggttc 500 ttccttgcac gccccactac gtttgctatc attgaaaacc taaagtattt 550 tttgttaaaa aaggatccat cacagccttt ctatctaggc cacactataa 600 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750 cagtttgcct gaaatatgct ggagtatttg cagaaaatgc agaagatgct 800 gatggaaaag atgtatttaa taccaaatct gttgggcttt ctattaaaga 850 ggcaatgact tatcacccca accaggtagt agaaggctgt tgttcagata 900 tggctgttac ttttaatgga ctgactccaa atcagatgca tgtgatgatg 950 tatggggtat accgccttag ggcatttggg catattttca atgatgcatt 1000 ggttttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050 agogtgaata tgatctttgt ataggacgtg tgttgtcatt atttgtagta 1100 gtaactacat atccaataca gctgtatgtt tctttttctt ttctaatttg 1150 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaaatga 1200 gggtggtttt tttctttaaa acacatgaac attgtaaatg tgttggaaag 1250 aagtgtttta agaataataa ttttgcaaat aaactattaa taaatattat 1300 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350 tttgctgatt ggttaaaaaa ttttaacagg tctttagcgt tctaagatat 1400 gcaaatgata tctctagttg tgaatttgtg attaaagtaa aacttttagc 1450 tgtgtgttcc ctttacttct aatactgatt tatgttctaa gcctccccaa 1500 gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550 attaaagtga aagttgaaaa at 1572

<210> 341

<211> 318

<212> PRT

<213> Homo Sapien

<400	> 34	1												
Met 1	Leu	Ser	Glu	Ser 5	Ser	Ser	Phe	Leu	Lys 10	Gly	Val	Met	Leu	Gly 15
Ser	Ile	Phe	Cys	Ala 20	Leu	Ile	Thr	Met	Leu 25	Gly	His	Ile	Arg	Ile 30
Gly	His	Gly	Asn	Arg 35	Met	His	His	His	Glu 40	His	His	His	Leu	Gln 45
Ala	Pro	Asn	Lys	Glu 50	Asp	Ile	Leu	Lys	Ile 55	Ser	Glu	Asp	Glu	Arg 60
Met	Glu	Leu	Ser	Lys 65	Ser	Phe	Arg	Val	Tyr 70	Cys	Ile	Ile	Leu	Val 75
Lys	Pro	Lys	Asp	Val 80	Ser	Leu	Trp	Ala	Ala 85	Val	Lys	Glu	Thr	Trp 90
Thr	Lys	His	Cys	Asp 95	Lys	Ala	Glu	Phe	Phe 100	Ser	Ser	Glu	Asn	Val 105
Lys	Val	Phe	Glu	Ser 110	Ile	Asn	Met	Asp	Thr 115	Asn	Asp	Met	Trp	Leu 120
Met	Met	Arg	Lys	Ala 125	Tyr	Lys	Tyr	Ala	Phe 130	Asp	Lys	Tyr	Arg	Asp 135
Gln	Tyr	Asn	Trp	Phe 140	Phe	Leu	Ala	Arg	Pro 145	Thr	Thr	Phe	Ala	Ile 150
Ile	Glu	Asn	Leu	Lys 155	Tyr	Phe	Leu	Leu	Lys 160	Lys	Asp	Pro	Ser	Gln 165
Pro	Phe	Tyr	Leu	Gly 170	His	Thr	Ile	Lys	Ser 175	Gly	Asp	Leu	Glu	Tyr 180
Val	Gly	Met	Glu	Gly 185	Gly	Ile	Val	Leu	Ser 190	Val	Glu	Ser	Met	Lys 195
Arg	Leu	Asn	Ser	Leu 200	Leu	Asn	Ile	Pro	Glu 205	Lys	Cys	Pro	Glu	Gln 210
Gly	Gly	Met	Ile	Trp 215	Lys	Ile	Ser	Glu	Asp 220	Lys	Gln	Leu	Ala	Val 225
Cys	Leu	Lys	Tyr	Ala 230	Gly	Val	Phe	Ala	Glu 235	Asn	Ala	Glu	Asp	Ala 240
Asp	Gly	Lys	Asp	Val 245	Phe	Asn	Thr	Lys	Ser 250	Val	Gly	Leu	Ser	Ile 255
Lys	Glu	Ala	Met	Thr	Tyr	His	Pro	Asn	Gln	Val	Val	Glu	Gly	Cys

				260					265					270
Cys	Ser	Asp	Met	Ala 275	Val	Thr	Phe	Asn	Gly 280	Leu	Thr	Pro	Asn	Gln 285
Met :	His	Val	Met	Met 290	Tyr	Gly	Val	Tyr	Arg 295	Leu	Arg	Ala	Phe	Gly 300
His	Ile	Phe	Asn	Asp 305	Ala	Leu	Val	Phe	Leu 310	Pro	Pro	Asn	Gly	Ser 315
Asp .	Asn	Asp												
<210> <211> <212> <213>	23 DNA		ial	Sequ	ience	<u> </u>								
<220>														
<223>	Syn	thet	ic (Oligo	nucl	.eoti	lde I	robe)					
<400> tccc			gttet	agac	g cg	jg 23	3							
<210>	210> 343													
	211> 18													
<212><213>			ial	Sequ	ence	:								
<220>														
<223>	Syn	thet	ic C	ligo	nucl	eoti	.de F	robe	9					
<400> ctggt			ttgo	acg	18									
<210> <211>														
<212> <213>			ial	Sequ	ence									
:220> :223>	Syn	thet	ic C	l i go	nucl	eoti	de P	robe	:					
:400> gccca			ctaa	.ggcg	g ta	tacc	cc 2	8						
:210> :211> :212> :213>	50 DNA		ial	Sequ	ence									
				_										

<220>

```
<223> Synthetic Oligonucleotide Probe
<400> 345
 gggtgtgatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50
<210> 346
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 346
gggatgcagg tggtgtctca tgggg 25
<210> 347
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 347
ccctcatgta ccggctcc 18
<210> 348
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 348
ggattctaat acgactcact atagggctca gaaaagcgca acagagaa 48
<210> 349
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 349
ctatgaaatt aaccctcact aaagggatgt cttccatgcc aaccttc 47
<210> 350
<211> 48
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 350
ggattctaat acgactcact atagggcggc gatgtccact ggggctac 48
<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 351
ctatgaaatt aaccctcact aaagggacga ggaagatggg cggatggt 48
<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 352
ggattctaat acgactcact atagggcacc cacgcgtccg gctgctt 47
<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 353
 ctatgaaatt aaccctcact aaagggacgg gggacaccac ggaccaga 48
<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 354
 ggattctaat acgactcact atagggcttg ctgcggtttt tgttcctg 48
<210> 355
<211> 48
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 355
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggtatt 48
<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46
<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 357
ctatgaaatt aaccctcact aaagggagcc cgggcatggt ctcagtta 48
<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggcggg aagatggcga ggaggag 47
<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cggaaatc 48
```

```
<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 360
 ggattctaat acgactcact atagggctgt gctttcattc tgccagta 48
<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
ctatgaaatt aaccctcact aaagggaggg tacaattaag gggtggat 48
<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 362
ggattctaat acgactcact atagggcccg cctcgctcct gctcctg 47
<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 363
ctatgaaatt aaccctcact aaagggagga ttgccgcgac cctcacag 48
<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 364
```

```
ggattctaat acgactcact atagggcccc tcctgccttc cctgtcc 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 365
ctatgaaatt aaccctcact aaagggagtg gtggccgcga ttatctgc 48
<210> 366
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 366
ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48
<210> 367
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 367
ctatgaaatt aaccctcact aaagggacag acggggcaga gggagtg 47
<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 368
ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47
<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic Oligonucleotide Probe
<400> 369
 ctatgaaatt aaccctcact aaagggaaag acatgtcatc gggagtgg 48
<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 370
 ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48
<210> 371
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 371
ctatgaaatt aaccctcact aaagggacac agacagagcc ccatacgc 48
<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47
<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 373
ctatgaaatt aaccctcact aaagggagta aggggatgcc accgagta 48
<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 374
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47
<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 375
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48
<210> 376
<211> 997
<212> DNA
<213> Homo Sapien
<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaagag 50
aaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
tgcttctctt cccaaatgtt cttatggact gttgctggga tccccatcct 200
atttctcagt gcctgtttca tcaccagatg tgttgtgaca tttcgcatct 250
ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactgggaa tattttcaat ccagctgcta cttctttct actgacacca 400
tttcctgggc gttaagttta aagaactgct cagccatggg ggctcacctg 450
taaaatgaga gagtttttta ttggactgtc agaccaggtt gtcgagggtc 550
agtggcaatg ggtggacggc acacctttga caaagtctct gagcttctgg 600
gatgtagggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactct tcaaacccaa ggcaaaattg gaatgatgta acctgtttcc 700
```

tcaattattt tcggatttgt gaaatggtag gaataaatcc tttgaacaaa 750

- <210> 377
- <211> 219
- <212> PRT
- <213> Homo Sapien
- <400> 377
- Met Asn Ser Ser Lys Ser Ser Glu Thr Gln Cys Thr Glu Arg Gly
 1 5 10 15
- Cys Phe Ser Ser Gln Met Phe Leu Trp Thr Val Ala Gly Ile Pro 20 25 30
- Ile Leu Phe Leu Ser Ala Cys Phe Ile Thr Arg Cys Val Val Thr 35 40 45
- Phe Arg Ile Phe Gln Thr Cys Asp Glu Lys Lys Phe Gln Leu Pro
 50 55
- Glu Asn Phe Thr Glu Leu Ser Cys Tyr Asn Tyr Gly Ser Gly Ser
 65 70
- Val Lys Asn Cys Cys Pro Leu Asn Trp Glu Tyr Phe Gln Ser Ser 80 85
- Cys Tyr Phe Phe Ser Thr Asp Thr Ile Ser Trp Ala Leu Ser Leu
 95 100 105
- Lys Asn Cys Ser Ala Met Gly Ala His Leu Val Val Ile Asn Ser 110 115 120
- Gln Glu Glu Gln Glu Phe Leu Ser Tyr Lys Lys Pro Lys Met Arg 125 130 135
- Glu Phe Phe Ile Gly Leu Ser Asp Gln Val Val Glu Gly Gln Trp
 140 145
- Gln Trp Val Asp Gly Thr Pro Leu Thr Lys Ser Leu Ser Phe Trp 155 160 165
- Asp Val Gly Glu Pro Asn Asn Ile Ala Thr Leu Glu Asp Cys Ala 170 175 180

```
Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val
                  185
                                      190
 Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile
                  200
 Asn Pro Leu Asn Lys Gly Lys Ser Leu
                  215
<210> 378
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 378
ttcagcttct gggatgtagg g 21
<210> 379
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 379
tattcctacc atttcacaaa tccg 24
<210> 380
<211> 49
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49
<210> 381
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 381
gcagattttg aggacagcca cctcca 26
```

```
<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 382
ggccttgcag acaaccgt 18
<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 383
cagactgagg gagatccgag a 21
<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 384
cagetgeeet teeceaacea 20
<210> 385
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 385
catcaagcgc ctctacca 18
<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

<400> 386

cacaaactcg aactgcttct g 21 <210> 387 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 387 gggccatcac agctccct 18 <210> 388 <211> 22 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 388 gggatgtggt gaacacagaa ca 22 <210> 389 <211> 22 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 389 tgccagctgc atgctgccag tt 22 <210> 390 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 390 cagaaggatg tcccgtggaa 20 <210> 391 <211> 17

<212> DNA

<220>

<213> Artificial Sequence

```
<223> Synthetic oligonucleotide probe
<400> 391
 gccgctgtcc actgcag 17
<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 392
 gacggcatcc tcagggccac a 21
<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 393
atgtcctcca tgcccacgcg 20
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 394
gagtgcgaca tcgagagctt 20
<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 395
ccgcagcctc agtgatga 18
<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 396
 gaagagcaca gctgcagatc c 21
<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 397
gaggtgtcct ggctttggta gt 22
<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 398
cctctggcgc ccccactcaa 20
<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 399
ccaggagagc tggcgatg 18
<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 400
gcaaattcag ggctcactag aga 23
<210> 401
<211> 29
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
cacagagcat ttgtccatca gcagttcag 29
<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 402
ggcagagact tccagtcact ga 22
<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 403
gccaagggtg gtgttagata gg 22
<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 404
caggeceet tgatetgtae ecca 24
<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 405
gggacgtgct tctacaagaa cag 23
```

```
<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 406
caggettaca atgttatgat cagaca 26
<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 407
tattcagagt tttccattgg cagtgccagt t 31
<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 408
tctacatcag cctctctgcg c 21
<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 409
cgatcttctc cacccaggag cgg 23
<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 410
```

```
gccaggcctc acattcgt 18
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 411
ctccctgaat ggcagcctga gca 23
<210> 412
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
aggtgtttat taagggccta cgct 24
<210> 413
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 413
cagagcagag ggtgccttg 19
<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 414
tggcggagtc ccctcttggc t 21
<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
<400> 415
ccctgtttcc ctatgcatca ct 22
<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 416
tcaacccctg accctttcct a 21
<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 417
ggcaggggac aagccatctc tcct 24
<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 418
gggactgaac tgccagcttc 20
<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 419
gggccctaac ctcattacct tt 22
<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 420
tgtctgcctc agccccagga agg 23
<210> 421
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 421
tctgtccacc atcttgcctt g 21
<210> 422
<211> 3554
<212> DNA
<213> Homo Sapien
<400> 422
gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50
atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100
cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150
tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaa 200
ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250
gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300
ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350
aagatetgga atgtgacacg gagagaetea geeetttate getgtgaggt 400
cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450
ctgtgcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500
ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
ccggcctcac tacagctggt atcgcaatga tgtaccactg cccacggatt 600
ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650
acaggcactt tggtgttcac tgctgttcac aaggacgact ctgggcagta 700
```

ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750

agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800 gttgtccttg ctgtactggc cctgatcacg ttgggcatct gctgtgcata 850 cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900 acccagggaa accagatgga gttaactaca tccgcactga cgaggagggc 950 gacttcagac acaagtcatc gtttgtgatc tgagacccgc ggtgtggctg 1000 agagcgcaca gagcgcacgt gcacatacct ctgctagaaa ctcctgtcaa 1050 ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100 ttttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150 catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200 ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250 gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300 aaacgcccgt gctgggccct gtgaagccag catgttcacc actggtcgtt 1350 cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400 agcagcgcat cccggcggga acccagaaaa ggcttcttac acagcagcct 1450 tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500 tgatcggtgt tgcagtgtcc attgtggaga agctttttgg atcagcattt 1550 tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600 cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650 accttcgtct taggctaagt ctgaaatggt actgaaatat gcttttctat 1700 gggtettgtt tattttataa aattttacat etaaattttt getaaggatg 1750 tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800 catacaatgt taaataacct attttttaa aaaagttcaa cttaaggtag 1850 aagttccaag ctactagtgt taaattggaa aatatcaata attaagagta 1900 ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccttttct 1950 cacacaagtt ttagcctttt tcacaaggga actcatactg tctacacatc 2000 agaccatagt tgcttaggaa acctttaaaa attccagtta agcaatgttg 2050

aaatcagttt gcatctcttc aaaagaaacc tctcaggtta gctttgaact 2100 gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150 gccctcagat gtacatacac agatgccagt cagctcctgg ggttgcgcca 2200 ggcgcccccg ctctagctca ctgttgcctc gctgtctgcc aggaggccct 2250 gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcacg 2300 tggcccttgc ttcatccagc acagctctca ggtgggcact gcagggacac 2350 tggtgtcttc catgtagcgt cccagctttg ggctcctgta acagacctct 2400 ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450 ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500 tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550 cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600 gtcgcatttc aaaacaaacc atgatggagt ggcggccagt ccagcctttt 2650 aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggaggaaag 2700 tgaaacgcct gaatcaaaag cagttttcta attttgactt taaatttttc 2750 atccgccgga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800 tcagaagcct gtgttcttca agagcaggtg ttctcagcct cacatgccct 2850 gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900 aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950 ctttcagctt ccagtgtctt gggtttttta tactttgaca gctttttttt 3000 aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050 tgccgcaggc cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100 gctccctggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150 cctccatcat tgccaccttg gtagagaggg atggctcccc accctcageg 3200 ttggggattc acgctccagc ctccttcttg gttgtcatag tgatagggta 3250 geettattge eccetettet tataccetaa aacettetae aetagtgeea 3300 tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctgggaa 3350 gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatttt 3400

aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450 gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500 caccgtaatt tggcatttgt ttaacctcat ttataaaagc ttcaaaaaaa 3550 ccca 3554

<210> 423

<211> 310

<212> PRT

<213> Homo Sapien

<400> 423

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu 1 5 10 15

Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly 20 25 30

Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu
35 40 45

Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr 50 55 60

Ser Asp Pro Arg Ile Glu Trp Lys Lys Ile Gln Asp Glu Gln Thr
65 70 75

Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly 80 85 90

Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val 95 100 105

Thr Arg Arg Asp Ser Ala Leu Tyr Arg Cys Glu Val Val Ala Arg 110 115 120

Asn Asp Arg Lys Glu Ile Asp Glu Ile Val Ile Glu Leu Thr Val 125 130 135

Gln Val Lys Pro Val Thr Pro Val Cys Arg Val Pro Lys Ala Val 140 145 150

Pro Val Gly Lys Met Ala Thr Leu His Cys Gln Glu Ser Glu Gly
155 160 165

His Pro Arg Pro His Tyr Ser Trp Tyr Arg Asn Asp Val Pro Leu 170 175 180

Pro Thr Asp Ser Arg Ala Asn Pro Arg Phe Arg Asn Ser Ser Phe 185 190 195

His	Leu	Asn	Ser	Glu 200	Thr	Gly	Thr	Leu	Val 205	Phe	Thr	Ala	Val	His 210
Lys	Asp	Asp	Ser	Gly 215	Gln	Tyr	Tyr	Cys	Ile 220	Ala	Ser	Asn	Asp	Ala 225
Gly	Ser	Ala	Arg	Cys 230	Glu	Glu	Gln	Glu	Met 235	Glu	Val	Tyr	Asp	Leu 240
Asn	Ile	Gly	Gly	Ile 245	Ile	Gly	Gly	Val	Leu 250	Val	Val	Leu	Ala	Val 255
Leu	Ala	Leu	Ile	Thr 260	Leu	Gly	Ile	Cys	Cys 265	Ala	Tyr	Arg	Arg	Gly 270
Tyr	Phe	Ile	Asn	Asn	Lys	Gln	Asp	Gly	Glu	Ser	Tyr	Lys	Asn	Pro
				275					280					285
Gly	Lys	Pro	Asp	Gly 290	Val	Asn	Tyr	Ile	Arg 295	Thr	Asp	Glu	Glu	Gly 300
Asp	Phe	Arg	His	Lys 305	Ser	Ser	Phe	Val	Ile 310					