

CLAIM SUMMARY DOCUMENT

1. (Currently Amended) A method of inhibiting growth and reproduction of microorganisms in a cooling water system used in an industrial process, comprising the steps of:

a) providing cooling water;

b) adding an effective amount of deactivatable biocide to the cooling water; and

c) adding an effective amount of a neutralizing agent to the cooling water to irreversibly deactivate the biocide before or upon disposal of the cooling water.

2. (Original) A method according to claim 1, wherein the biocide is added in an amount of at least 1 ppm.

3. (Original) A method according to claim 1, wherein the biocide is added in an amount of at least 10 ppm.

4. (Original) A method according to claim 1, wherein the biocide is added in an amount of at least 100 ppm.

5. (Currently Amended) A method according to claim 1, further comprising a step (d) releasing the cooling water into a natural environment after the biocide has been irreversibly deactivated.

6. (Original) A method according to claim 1, further comprising a step (d) discharging the cooling water into a biological oxidation facility.

A
com.

7. (Original) A method according to claim 1, wherein the biocide is an aldehyde and the neutralizing agent is a nitrogen-containing compound selected from the group consisting of amines, amino acids, amino alcohols, and mixtures thereof.
8. (Original) A method according to claim 1, wherein the biocide is an alkyne and the neutralizing agent is a hydrogenation catalyst and H₂.
9. (Original) A method according to claim 7, wherein the biocide is glutaraldehyde and the nitrogen-containing compound is selected from the group consisting of monethanolamine, diethanolamine, methyldiethanolamine, and diethylamine.
10. (Original) A method according to claim 1, wherein after the neutralizing agent is added, the cooling water supports visible growth of microorganisms in less than 10 days when exposed to a certified inoculum, growth media, and rapidly biodegradable substance under ambient conditions.
11. (Original) A method according to claim 1, wherein after the neutralizing agent is added, the cooling water supports visible growth of microorganisms in less than 5 days when exposed to a certified inoculum, growth media, and rapidly biodegradable substance under ambient conditions.
12. (Currently Amended) A method of inhibiting growth and reproduction of microorganisms in a cooling water system for a Fischer Tropsch facility, comprising the steps of:
 - a) providing cooling water;
 - b) performing a Fischer-Tropsch synthesis process;
 - c) isolating Fischer-Tropsch-derived liquid products from the Fischer-Tropsch process;
 - d) isolating Fischer-Tropsch derived deactivatable biocides from the Fischer-Tropsch process;

e) adding an effective amount of the Fischer-Tropsch derived deactivatable biocide to the cooling water; and

f) adding an effective amount of a neutralizing agent to the cooling water to irreversibly deactivate the biocide before or upon disposal of the cooling water.

13. (Original) A method according to claim 1, wherein the biocide is added in an amount of at least 100 ppm.

14. (Currently Amended) A method according to claim 12, further comprising a step (g) releasing the cooling water into a natural environment after the biocide has been irreversibly deactivated.

15. (Original) A method according to claim 12, further comprising a step (g) discharging the cooling water into a biological oxidation facility.

16. (Original) A method according to claim 12, wherein the biocide is glutaraldehyde and the nitrogen-containing compound is selected from the group consisting of monethanolamine, diethanolamine, methylidiethanolamine, and diethylamine.

17. (Original) A method according to claim 12, wherein the cooling water supports growth of microorganisms in less than 5 days after adding the neutralizing agent under ambient conditions when exposed to a certified inoculum, growth media, and a hydrocarbonaceous product.

18. (Original) A method according to claim 12, wherein the biocide is an alkyne and the neutralizing agent is a hydrogenation catalyst and H₂.

19. (Original) A method according to claim 12, wherein the Fischer-Tropsch derived deactivatable biocides are isolated by distillation or chromatographic separation.

20. (Currently Amended) A method of inhibiting growth and reproduction of microorganisms in a cooling water system for a Fischer Tropsch facility, comprising the steps of:

A
Cont.

- a) providing cooling water;
- b) performing a Fischer-Tropsch synthesis process to provide a product stream;
- c) fractionally distilling the product stream and isolating liquid hydrocarbonaceous products and oxygenates;
- d) subjecting the oxygenates to oxidation to form aldehydes;
- e) adding an effective amount of the aldehydes to the cooling water to resist visible growth for at least 10 days under ambient conditions when exposed to a certified inoculant; and
- f) adding an effective amount of a neutralizing agent to the cooling water to irreversibly deactivate the aldehydes before or upon disposal of the cooling water.

A
COM

- 21. (Original) A method according to claim 20, wherein the biocide is added in an amount of at least 100 ppm.
- 22. (Original) A method according to claim 20, wherein the biocide is glutaraldehyde and the neutralizing agent is selected from the group consisting of monethanolamine, diethanolamine, methyldiethanolamine, and diethylamine.
- 23. (Original) A method according to claim 20, wherein the oxygenates are isolated from light Fischer Tropsch products.
- 24. (Currently Amended) A method of inhibiting growth and reproduction of microorganisms in a cooling water system for a Fischer Tropsch facility, comprising the steps of:
 - a) providing cooling water;
 - b) performing a Fischer-Tropsch synthesis process to provide a product stream;

AI
com

- c) fractionally distilling the product stream and isolating liquid hydrocarbonaceous products and olefins;
- d) subjecting the olefins to dehydrogenation to form alkynes;
- e) adding an effective amount of the alkynes to the cooling water to resist visible growth for at least 10 days under ambient conditions when exposed to a certified inoculant; and
- f) adding an effective amount of a neutralizing agent to the cooling water to irreversibly deactivate the alkynes before or upon disposal of the cooling water.

- 25. (Original) A method according to claim 24, wherein the biocide is added in an amount of at least 100 ppm.
- 26. (Original) A method according to claim 24, wherein the alkynes are primary alkynes and the neutralizing agent is a hydrogenation catalyst and H₂.
- 27. (Original) A method according to claim 24, wherein the olefins are formed from a thermal cracking process which uses a heavy Fischer Tropsh feed derived from a Fischer Tropsch process.
- 28. (Original) A method according to claim 24, wherein the olefins are isolated from light Fischer Tropsch products.
