PAGE – 1-

$P_1(1,1)$
$P_2(2,1)$
$P_3(1.5,2)$
P ₄ (4, 4)
$P_5(5,4)$
$P_6(4,3)$
$P_7(5,2)$
P ₈ (5, 1)
P ₉ (6, 1)

Assume $k = 3$		
1 st seeds		
\mathbf{m}_1	m_2	m_3
p_2	p_8	p ₉

object	Cluster
P_1	1
P_2	1
P_3	1
P_4	2
P ₅	2
P_6	2
P_7	2
P_8	2
P ₉	3

Cluster membership based on Euclidean distance

Assume $k = 3$		
1 st seeds		
m_1	m_2	m ₃
p_2	p_8	p ₉

2 nd seeds		
mc_1 :	x = (1+2+1.5)/(3) = 1.5	y = (1+1+2)/(3) = 1.33
mc_2 :	x = (4+5+4+5+5) / (5) = 4.6	y = (4+4+3+2+1)/(3) = 2.8
mc_3 :	x = 6	y = 1

Cluster Analysis Page 1 of 6

PAGE – 2-

8 - J		
objects	Cluster	
P_1	1	
P_2	1	
P_3	1	
P_4	2	
P ₅	2	
P ₆	2	
P ₇	2	
P_8	3	
P ₉	3	

3 rd seeds			
C_1 :	x = 1.5 $y =$	= 1.33	y = (same as before)
C ₂ :	x = (4+5+4+5) / (4+5+4+5)	4) = 4.5	y = (4+4+3+2) / (4) = 3.25
C ₃ :	x = (5+6)/(2) = 5	5.5	y = (1+1) / (2) = 1

Cluster Analysis Page 2 of 6

PAGE -3-

Assign objects	to clusters	
objects	cluster	
P_1	1	
P_2	1	
P_3	1	
P_4	2	
P ₅	2	
P_6	2	
P_7	3?	$ \{ d (??, C_2) = \sqrt{(5-4.5)^2 + (2-3.25)^2} = \sqrt{(0.5)^2 + (1.25)^2} $ $ \{ d (??, C_3) = \sqrt{(5-5.5)^2 + (2-1)^2} = \sqrt{(1.25)} $
		$\{ d(??, C_3) = \sqrt{(5-5.5)^2 + (2-1)^2} = \sqrt{(1.25)} $
P_8	3	
P ₉	3	

New seeds		
C_1 :	same	
C_2 :	x = (4+5+4)/(3) = 4.25	y = (3+4+4) / (3) = 3.66
C_3 :	x = (5+5+6)/(3) = 5.33	y = (2+1+1)/(3) = 1.33

Assign objects to clusters

Assign objects to clusters		
objects	cluster	
P_1	1	
P_2	1	
P_3	1	
P_4	2	
P ₅	2	
P ₆	2	
P ₇	3?	
P_8	3	
P_9	3	

No change done $\rightarrow \rightarrow \rightarrow$

Cluster results		
C_1 :	1.5 , 1.33	
C ₂ :	4.25 , 3.66	
C ₃ :	5.33 , 1.33	

Cluster Analysis Page 3 of 6

PAGE -4-

E = (mean squared error)

$$E = \sum_{I=1}^{k} \sum_{P_i C_i} |P - m_i|^2$$

=
$$(P_{ix} - m_{ix})^2 + (P_{iy} - m_{iy})^2$$
 squared distance from $P_i + m_i$

=	$(P_{ix} - m_{ix})^2 + (P_{iy} - m_{iy})^2$	squared distance from P _i + m _i
	+ $(P_{2x} - m_{1x})^2 + (P_{2y} - m_{1y})^2$	Cluster 1
	$+ (P_{3x} - m_{1x})^2 + (P_{3y} - m_{1y})^2$	

$+ (P_{4x} - m_{2x})^2 + (P_{4y} - m_{2y})^2$	Cluster 2
+	
$+ (P_{6x} - m_{2x})^2 + (P_{6y} - m_{2y})^2$	

$+ (P_{7x} - m_{3x})^2 + (P_{7y} - m_{3y})^2$	Cluster 3
+	
$+ (P_{9x} - m_{3x})^2 + (P_{9y} - m_{3y})^2$	

$$\begin{array}{c}
.3589 & .3589 \\
= [(1-1.5)^2 + (1-1.33)^2] + [(2-1.5)^2 + (1-1.33)^2] + [(1.5-1.5)^2 + (2-1.33)^2] \\
1.781 & .6781 & .4981 \\
+ [(4-4.25)^2 + (4-3.66)^2] + [(5-4.25)^2 + (4-3.66)^2] + [(4-4.25)^2 + (3-3.66)^2] \\
- .5578 & .2178 & .5578 \\
+ [(5-5.33)^2 + (2-1.33)^2] + [(5-533)^2 + (1-1.33)^2] + [(6-5.33)^2 + (1-1.33)^2] \\
= & 3.8544
\end{array}$$

 \rightarrow the choice of initial seed can be crucial! see next example with K = 2

Cluster Analysis Page 4 of 6

What if K = 2 in the previous case?

Option 1		
Initial seeds	3	
C_1		P_3
C_2		P ₆

Assign objects to clusters

Assign objects to cluster		
object	Cluster	
P_1	1	
P_2	1	
P_3	1	
P_4	2	
P_5	2	
P_6	2	
P_7	2	
P_8	2	
P ₉	2	

2 nd set	of seed	
m_1 :	x = 1.5 $y = 1.33$	
m ₂ :	x = (4+5+4+5+5+6) / (6) = 4.83	y = (4+4+3+2+1+1)/(6) =
2.5		

object	Cluster
\mathbf{P}_1	1
P_2	1
P_3	1
P_4	2
P ₅	2
P_6	2
P_7	2
P_8	2
P ₉	2

Stop

Cluster Analysis Page 5 of 6

Option 2		
Initial seeds	S	
C_1		P_6
C ₂		Po

Assign objects to cluster		
object	Cluster	
P_1	1	
P_2	1	
P_3	1	
P_4	1	
P_5	1	
P_6	1	
P_7	2	
P_8	2	
P ₉	2	

m ₁ : 2.5	x = (1+2+1.5+4+5+4) / (6) = 2.91	y = () / () =
m_2 :	x = 5.33	y = 1.33

2nd round object distribution

objects	cluster	
P_1	1	
P ₂	1	
P_3	1	
P_4	1	
P ₅	?	
P ₆	1	
P_7	2	
P_8	2	
P ₉	2	

Stop

$$= [(1-2.91)^2 + (1-2.5)^2] + [(2-2.91)^2 + (1-1.2.5)^2] + [(1.5-2.91)^2 + (2-2.5)^2] + [(4-2.91)^2 + (4-2.5)^2] + [(5-2.91)^2 + (4-2.5)^2] + [(4-2.91)^2 + (3-2.5)^2] + [(5-5.33)^2 + (2-1.33)^2] + [(5-5.33)^2 + (1-1.33)^2] + [(6-5.33)^2 + (1-1.33)^2] +$$

= 24.042

Cluster Analysis Page 6 of 6