$$\int \frac{\sqrt{11x^2 - 2}}{x} \, dx$$

## Solution 1

$$\int \frac{\sqrt{11x^2 - 2}}{x} \, dx = \int \frac{\sqrt{(\sqrt{11}x)^2 - 2}}{x} \, dx$$

If  $u = \sqrt{11}x$ , then  $du = \sqrt{11} dx$  so the integral becomes

$$\frac{1}{\sqrt{11}} \int \frac{\sqrt{u^2 - 2}}{x} \, du$$

Let  $u = \sqrt{2} \sec \theta$  with  $\theta$  in quadrants I or III. So,  $du = \sqrt{2} \sec \theta \tan \theta \, d\theta$  and we use  $\sec \theta = \frac{u}{\sqrt{2}}$  to draw a right triangle with u as the hypotenuse side and  $\sqrt{2}$  as the adjacent side. The side opposite to  $\theta$  is  $\sqrt{u^2 - 2}$ , which is found using the Pythagorean Theorem, and we have



Then  $\tan \theta = \frac{\sqrt{u^2-2}}{\sqrt{2}}$ . Based on this equation, we will use  $\sqrt{2} \tan \theta = \sqrt{u^2-2}$  if it is helpful. Since  $\cos \theta = \frac{\sqrt{2}}{u}$ , we will use  $u = \frac{\sqrt{2}}{\cos \theta} = \sqrt{2} \sec \theta$  if it is helpful.

So

$$\frac{1}{\sqrt{11}} \int \frac{\sqrt{u^2 - 2}}{u} du = \frac{1}{\sqrt{11}} \int \frac{\sqrt{2} \tan \theta}{\sqrt{2} \sec \theta} \sqrt{2} \sec \theta \tan \theta d\theta$$

$$= \frac{\sqrt{2}}{\sqrt{11}} \int \tan^2 \theta d\theta$$

$$= \frac{\sqrt{2}}{\sqrt{11}} \int (\sec^2 \theta - 1) d\theta$$

$$= \frac{\sqrt{2}}{\sqrt{11}} \left[ \tan \theta - \theta \right] + C$$

$$= \frac{\sqrt{2}}{\sqrt{11}} \left[ \frac{\sqrt{u^2 - 2}}{\sqrt{2}} - \sec^{-1} \frac{u}{\sqrt{2}} \right] + C$$

$$= \frac{\sqrt{2}}{\sqrt{11}} \left[ \frac{\sqrt{(\sqrt{11}x)^2 - 2}}{\sqrt{2}} - \sec^{-1} \frac{\sqrt{11}x}{\sqrt{2}} \right] + C$$

## Solution 2

$$\int \frac{\sqrt{11x^2 - 2}}{x} \, dx = \int \frac{\sqrt{11(x^2 - \frac{2}{11})}}{x} \, dx = \sqrt{11} \int \frac{\sqrt{x^2 - \frac{2}{11}}}{x} \, dx$$

Let  $x = \frac{\sqrt{2}}{\sqrt{11}} \sec \theta$  with  $\theta$  in quadrants I or III. So,  $dx = \frac{\sqrt{2}}{\sqrt{11}} \sec \theta \tan \theta \, d\theta$  and we use  $\sec \theta = \frac{x}{\frac{\sqrt{2}}{\sqrt{11}}}$  to draw a right triangle with x as the hypotenuse side and  $\frac{\sqrt{2}}{\sqrt{11}}$  as the adjacent side. The side opposite to  $\theta$  is  $\sqrt{x^2 - \frac{2}{11}}$ , which is found using the Pythagorean Theorem, and we have

1



Then  $\tan \theta = \frac{\sqrt{x^2 - \frac{2}{11}}}{\frac{\sqrt{2}}{\sqrt{11}}}$ . Based on this equation, we will use  $\frac{\sqrt{2}}{\sqrt{11}} \tan \theta = \sqrt{x^2 - \frac{2}{11}}$  if it is helpful. Since  $\cos \theta = \frac{\frac{\sqrt{2}}{\sqrt{11}}}{x}$ , we will use  $x = \frac{\frac{\sqrt{2}}{\sqrt{11}}}{\cos \theta} = \frac{\sqrt{2}}{\sqrt{11}} \sec \theta$  if it is helpful.

So

$$\sqrt{11} \int \frac{\sqrt{x^2 - \frac{2}{11}}}{x} dx = \sqrt{11}\sqrt{2} \int \frac{\frac{\sqrt{2}}{\sqrt{11}} \tan \theta}{\frac{\sqrt{2}}{\sqrt{11}} \sec \theta} \cdot \frac{\sqrt{2}}{\sqrt{11}} \sec \theta \tan \theta d\theta$$

$$= (\sqrt{2})^2 \int \tan^2 \theta d\theta$$

$$= 2 \int (\sec^2 \theta - 1) d\theta$$

$$= 2 \left[ \tan \theta - \theta \right] + C$$

$$= 2 \left[ \frac{\sqrt{11}}{\sqrt{2}} \sqrt{x^2 - 1} - \sec^{-1} \frac{\sqrt{11}x}{\sqrt{2}} \right] + C$$