ADA 032 484

TECHNICAL REPORT
TR-76-27-FEL

DIELECTRIC PROPERTIES OF FOODS

Massachusetts Institute of Technology
Dept. of Nutrition and Food Science
Cambridge, Massachusetts

Project Reference: 1T762724AH99

Approved for public release; distribution unlimited.

November 1976

UNITED STATES ARMY
NATICK RESEARCH and DEVELOPMENT COMMAND
NATICK, MASSACHUSETTS 01760

Food Engineering Laboratory
Fel-45

Approved for public release; distribution unlimited.

Citation of trade names in this report does not constitute an official indorsement or approval of the use of such items.

Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

	JMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FO
1. REPORT NUMBER 76-27 - FEL	2. GOVT ACC	ESSION NO. 1. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)		S. TYPE OF THE OWNER OF THE OWNER OF
DIBLECTRIC PROPERTIES	OF FOODS .	Final vept. 14 June 72 - 15 June 75
		FEL-45
Daniel T o human	9	CONTRACT OR GRANT HUMBEN
Daniel I. C. Wang	Semiet Woldstratt	DAUG17-72-C-19142 M
s. Performing Greanization NA Massachusetts Institut		PROGRAM ELEMENT, PROJECT, REA & WORK UNIT JUN BERS
Dept. of Nutrition and		6 11762724 AH99
Cambridge, Massachuset		6.2 2 CA 006
II. CONTROLLING OFFICE NAME A		REPORT DATE
US Army Natick Research	h and Development Co	
Natick, MA 01760		NUMBER OF PAGES
14. HONITORING AGENCY NAME &	AGGRESS(II different from Control	
	(2/02)	UNCLASSIFIED
	(12/27p.	
1.0		154, OECLASSFICATION/DOWNGRA
18 NARADCOM,	(9) TR- 45	76-27-FEL,
IS. SUPPLEMENTARY HOTES IS. KEY WORDS (Continue on reverse DIEIECTRIC PROPERTIES	MOISTURE	PREQUENCY
IS. KEY WORDS (Continue on reverse DIELECTRIC PROPERTIES MEAT FOOD TEMPERATURE MEASUREMENT	MOISTURE COAXIAL LINE MICROWAVES PENETRATION D DEPTH	FREQUENCY TECHNIQUE FROZEN FOODS THAMING EPTHS COMPUTATIONS HEATING
DIELECTRIC PROPERTIES MEAT POOD TEMPERATURE MEASUREMENT The purpose of the word data needed in the mat involving the use of m	MOISTURE COAXIAL LINE MICROWAVES PENETRATION D DEPTH k reported herein was hematical modelling s icrowave energy.	FREQUENCY TECHNIQUE FROZEN FOODS THAMING EPTHS COMPUTATIONS

PICATION OF THE FASE (Main Date Shirty)

	ACCTATED
بالملالات	ASSTFIRD

SECURITY CLASSIFICATION OF THIS PAGE(When Date Betered)

20. (Abstract (Cont.
-------	------------	-------

samples above freezing is used for all measurements. The results are in general agreement with published data in the literature. For thawed samples, K* decreases with temperature and frequency but increases with moisture content. K* on the other hand increases with temperature and moisture content but decreases with frequency. Calculations using these dislectric data show that at high temperatures the differences in penetration depth and power absorption between the three frequencies are reduced.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/Phon Date Between

SUMMARY

The dielectric properties of various types of meats have been determined as a function of frequency and temperature. The specific meat products which have been tested include raw beef, pork, chicken breast, chicken thigh, and turkey rolls. The frequencies which were employed in the dielectric measurements were 2450, 915, and 300 MHz. The temperature range in these measurements was from -40 to +120 C. In addition, these precooked meats and their juices were also measured with respect to their dielectric properties at frequencies of 2450, 915, and 300 MHz and temperatures ranging from 5 to 65 C.

PREFACE

Microwave energy is e technique which could lead to substantial improvements in the cooking process. In order to apply this technology most effectively, it is necessary to have a knowledge of the properties of foods which affect this heating performance. The dielectric constant and dielectric lose factor are the two most important properties which need to be determined. This report describes the results of measurements of the properties for beef, pork, chicken and turkey as a function of microwave frequency and temperature.

The work was performed under Project No. 1T762724AH99, Food Technology, Tech Area AH99C, Food Service Technology, Technical Effort AH99CA, Studies on Garrison and Field Food Service Equipment. Dr. Robert V. Decareau and Mr. John C. Perry were the Project Officer and the Alternate Project Officer, respectively, for the US Army Natick Research and Development Command.

TABLE OF CONTENTS

Summary	1
Prefsce	2
List of Figures	4
List of Tables	5
Introduction	6
Materials and Methods	
A. Measurement Techniques and Equipment	7
B. Sample Preparation	8
Results and Discussion	8,9,10
References Cited	11
Figures 1 through 6	12-17
Tables 1 through 9	18-26

LIST OF FIGURES

- Figure 1: Schematic diagram of the open circulated low temperature holder for all three frequencies.
- Figure 2: Schematic diagram of the quarter wavelength holder for 2450 MHz. 50 to 650C.
- Figure 3: Schematic diagram of the quarter wavelength holder for 900, 300 MHz, 80° to 120°C.
- Figure 4: Dielectric constant, K*, of unsalted meate at 2450 MHz and 915 MHz, 50 to 1200C. Mean and standard deviatione.
- Figure 5: Dielectric loea, K", of unsalted meats at 2450, 915, and 300 MHz, 50 to 1200C. Mean and standard deviations.
- Figure 6: Half power penetration depth of raw unsalted meats at 2450, 915, and 300 MHz, 50 to 1200C. Mean and standard deviations.

LIST OF TABLES

Table 1:	Dimensions and Specifications of Coaxial Sample Holders
Table 2:	Dielectric Properties of Water Measured at Three Frequencies and Seven Temperatures.
Table 3:	Dielectric Properties of Beef Products at Three Frequencies and Different Temperatures.
Table 4:	Dielectric Properties of Pork Products at Three Frequencies and Different Temperatures.
Table 5:	Dielectric Properties of Chicken (Breast) at Three Frequencies and Different Temperatures.
Table 6.	Dielectric Properties of Chicken (Thigh) at Three Frequencies and Different Temperatures.
Table 7:	Dielectric Properties of Turkey Products at Three Frequencies and Different Temperatures.
Table 8:	Proximate Compositions for All Samples in Percent by Weight. Unsalted Meat Values are Mean <u>+</u> Standard Deviation for Beef, Pork, Chicken.
Table 9:	Dielectric Properties of Unsalted Meats (Beef, Pork, Chicken) at Three Frequencies, Mean + Standard Deviation.

DIELECTRIC PROPERTIES OF FOODS

Introduction

In the use of microwaves to heat foodstuffs, two parameters which determine the rate of heating are the amount of power (P) absorbed by the eample and the depth of penetration by the microwaves into the sample as measured by the half-power-penetration depth (HPD). Power absorption in watts per cubic centimeter ie given by:

$$P = 55.6 \times 10^{-14} E^{2} f K^{n}$$
 (1)

where E is the electric field strength in volts/cm, f the frequency in Hz and K" the relative dielectric lose. The half-power-penetration depth is defined as the depth in the sample at which the power level is reduced to 50% of the incident power at the surface. It can be calculated by:2

$$HPD = \frac{\lambda \ln 2}{2 (K')^{1/2}} \left\{ \frac{2}{(1+\tan^2 \delta)^{1/2} - 1} \right\}^{1/2}$$
 (2)

where HPD has the units of the wavelength, and the K' is the relative dielectric constant, $\tan^2 \ell$ is the ratio K'/K' or the loss tangent. Given a microwave field of fixed intensity and frequency, the dependence of a food's heating intensition on its dielectric properties K' and K' are indicated in Equations 1 and 2. Although there have been numerous published data on the dielectric properties of foods and agricultural products, there was until recently no information on the dielectric properties of meat products from the frozen state up to sterilization temperatures. The purpose of this report is to provide a summary of the results of dielectric measurements from the start of this project in June 1972 to dats.

^{1.} Goldblith, S.A. Adv. Food Res. 15:277, 1967

^{2.} Püschner, H. Heating and Microwavee; Phillips, Technical Library, Springer-Verlag, New York, 1966.

Goldblith, S.A., and R.V. Decareau, An Annotated Bibliography on Microwaves; MIT Prees, Cambridge, 1973.

^{4.} Tinga, W.R., And S.O. Nelson. J. Microwave Power 8 (1):23, 1973.

^{5.} Chlsson, T., and N.E. Bengtsson. J. Microwave Power 10 (1):93, 1975.

II. Matsrials and Methods

A. Measurement technique and squipment.

Details of the measurement technique using the coaxial line 6 method have been described for high loss? as well as low loss8 samples. For measurements in the temperature range of -400 to +650C, klystron tubes were used to generate the 2450 and 915 MHz signals and an oscillator (General Radio, Concord, Massachusetts) was used to supply the 300-Miss signal. For the high temperature measurements, a crystal oscillator (Lektronics Lab, Philadelphia, Pennsylvania) which simultaneously puts out signals at 900 and 300 MHz was used so that the same sample holder could be used to measure one sample at the two lower frequencies. Figures 1 to 3, respectively, show sample holders used to measure frozen samples, thawed samples up to 65°C, and thawed samples from 80°C to 120°C. All holders are constructed of brass with a one-inch inner-diameter outer conductor and a 3/8-inch outer-diameter center conductor. All but the open circuited low loss holder for low temperatures had alumina bottom covers. A total of six sample holders were constructed for these measurements, each with specifications shown in Table 1.

Temperature control was achieved using a constant temperature bath with a Haake E51 thermostated heater. Water was used in the bath for temperatures between 50 and 650C. Mineral oil was used for higher temperatures. Sample holders were immersed, and ten minutes was allowed for temperature equilibration. For the below-freezing temperatures, a refrigerated bath (Tenney Engineering, Union, New Jersey) was used to circulate cooled denatured ethanol to the styrofoam insulated holder (Figure 1). Because of the size of the sample at these temperatures, one hour was allowed for temperature equilibration. Temperatures in the holder were monitored by a thermocouple with ice/water reference junction. At temperatures below ambient, dry nitrogen was used to purge the holder and remove moisture condensation which would otherwise markedly affect the measurements.

^{6.} Roberts, S., and A.J. von Hippel. Appl. Phys. 17(6):610, 1946.

^{7.} To, E.C. MS Thssis. MIT, 1974.

^{8.} Pace, W.E. MS Thesis, MIT, 1967.

Measurements were started at the low end of the range (5° or 80° respectively in the water or oil bath) working up. In low temperature measurements, the sample was cooled to-20°C first, then -40°C. Calculations were done by computer using the two programs of Westphal and Iglesias.9

B. Sample preparation.

All meat samples were brought fresh from local supermarkets. Turkey roll used was a commercial frozen product (Top Frost) which contained added salt. Sample preparation, storage, cooking, and rendering of the cooked juices as well as loading techniques have been described. ? For the low temperature measurements, the frozen meat (unground) was allowed to thaw slightly in order to facilitate cutting into blocks. A specially designed borer 1.5 inches in diameter was used to bore out disks about two inches thick. These are cut into one-cm disks in a cutter with micrometer advance, and then cut to conform to the dimensions of the coaxial line using a doughnut-shaped cutter. Eight to ten disks were then stacked into the holder to give a sample thickness of about 10 cm. The exact sample thickness was obtained by difference in micrometer depth gauge measurements of the empty and filled holder. Thermal expansion of the sample was assumed negligible compared to its length. Moisture content of the samples was determined by vacuum oven drying, 4 to 8 hours at 95°C. Protein content was determined by micro-kjeldahl10 and ash content by muffle-furnace at 450°C.10 Fat content was determined by the method of Bligh and Dyer. 11

III. Results and Discussion

The coaxial line technique and other forms of dielectric measurement methods such as resonant cavities are accurate only for samples with tané less than one. In such cases the error is estimated at about $3\%^{-12}$ With foodstuffs, tané of four is common at high temperatures and low frequencies. The accuracy of the method is then reduced, due partly to the fact that very thin samples have to be used, whose thickness have to be accurately known (Table 1).

^{9.} Westphal, W.B., and J. Iglesias. Technical Report AFML-TR-71-66, Air Force Materials Laboratories, Chio, 1971.

^{10.} Horwitz, W., ed. Official Methods of Analysis of the AOAC, 11th edition; AOAC, Washington, DC, 1970.

^{11.} Bligh, E.G., and W.J.Dyer. Can. J. Biochem. Physiol. 37.911, 1959.

^{12.} Westphal, W.B. personal communication, 1975.

The method's precision is determined largely by the degree of homogeneity of the sample and the reproducibility of packing the samples into the holder. The standard deviation of repeatedly packing the same meat eample into a holder has been found to be about 5% of the mean value, and thie should aerve as an indicator of degree of sample preparation reproducibility. As a calibration check, water is measured at the three frequencies 2450, 915, and 300 MHz from 50 to 650C (Table 2). The results were in agreement with values for water at these frequencies calculated using the Debye equations and literature parametere. 13

Dielectric properties of the five meat eamples are presented in Tables 3 through 7 and their proximate compositions are given in Table 9. As has been pointed out? the added salt in turkey gives this sample a significantly higher dialactric loss at all temperatures and frequencies except in the frozen state. Effects of ealt on the dielectric constant of themed samples were also not evident as found in the studies. Taking into account the differences in frequency and possible packing density, the data for beef and pork were in agreement with literature values.

The proximate compositions of tha four unsalted raw meata (beef, pork, chicken breast, and chicken thigh) are very similar (Table 8). Their moisture contents show a standard deviation of 2.3.% of their mean, and tha leee active dielectric components such as protein and fat show a total standard deviation of 2.6% from their combined mean. Similarly, the cooked meats and cooked meat juicee of thase meats show proximate compositions very similar to one another. However, as a result of cooking, the variationa in the moisture and solids contents were larger than in the case for the raw meats. The etandard deviation in the moisture content, the component which has the most effect on dielectric properties, was found to be 5.1% of their combined mean. Based on this, the data for unsalted meats (Tables 4 through 7) are pooled to give the dielectric properties of fresh meat products (Table 9). It should be mentioned that presenting the data collectively is not construed to mean that the dielectric properties of all meats are identical. The results were presented in this fashion only as a convenient way for schieving a reduced format.

The dependence of dialactric constant and dialectric lose of unsalted raw meats on temperature and frequency are shown in Figures 4 and 5, respectively. In all cases, the standard daviations in K* and K* of the different unsalted meats were less than 10%. Considering the sensitivity of the coaxial line method and an astimated error of 10% the slight differences in the dielectric properties of unsalted meats was not detected.

^{13.} Collie, C.H., J.B. Hasted and D.M. Ritson. Proc. Phys. Soc. (London) 60(2):145, 1948.

The exact differences in K* measured at different frequencies were also hard to determine (Figure 4). In general, difference in K* measured at 2450 MHz and at 915 MHz ie only a fsw percent and can be considered to be insignificant. It is clear from Figurs 4 that K* dscreases with temperature. Figure 5 showe that K* increases with temperature for 915 and 300 MHz, but is relatively less dependent on temperature for 2450 MHz. This fact can have important implications in heating applications, as will be discussed later.

The dependence of penetration depth on wavelength has often been stressed, and the effects of dielectric properties on absorption of power is all too often overlooked. Recently, Chlsson and Bengtsson⁵ pointed out that, as temperatures reach above 50°C, the penetration depths achisved by the three frequencies 2800, 900, and 450 MHz are almost the same. This is because at higher temperatures the lower frequency gives such high tanô that the factor in brackets in Equation 2 is substantially reduced, offsetting the larger wavelength and making HPD small. On the other hand, the variation of K" and tanô with temperature is small at the high frequencies, making the HPD relatively constant. Calculations of HPD from data in Table 9 show that at 5°C HPD for 2450, 915, and 300 MHz are, respectively, 1.0, 2.8, and 4.6 cm, but at 120°C these figures are 0.7, 1.2, and 1.6 cm, respectively (Figure 6). This is in support of earlier observations by the Swedish workers.

Based on the measuremente reported here, it can be seen that at 2450 MHz, the dislectric properties are relatively independent of moisture, temperature, and salt, as compared to the other two frequencies studied. As a result, power absorption and penetration depth, both functions of dielectric properties, are relatively independent of temperature, moisture, and salt. Choice of 2450 MHz as a heating frequency would give versatility, since different loads within a range of moisture, salt contents, and different temperatures would be heated with about the same power at about the same penetration.

References Cited

- 1. Goldblith, S.A. Adv. Food Res. 15:277, 1967
- 2. Alschner, H. Heating and Microwaves; Phillips, Technical Library, Springer-Verlag, New York, 1966.
- 3. Goldblith, S.A., and R.V. Decareau, An Annotated Bibliography on Microwaves; MIT Press, Cambridge, 1973.
- 4. Tinga, W.R., and S.C. Nelson. J. Microwave Power 8 (1):23, 1973.
- 5. Chlsson, T., and N.E. Bengtsson. J. Microwave Power 10 (1):93, 1975.
- 6. Roberts, S., and A. J. von Hippel. Appl. Phys. 17 (6):610, 1946.
- 7. To, E.C. MS Thesis, MIT, 1974.
- 8. Pace, W.E. MS Thesis, MIT, 1967.
- 9. Westphal, W.B., and J. Iglesias. Technical Report AFML-TR-71-66, Air Force Materials Laboratories, Chio, 1971.
- 10. Horwitz, W., ed. Official Methods of Analysis of the AOAC, 11th edition; AOAC, Washington, DC, 1970.
- 11. Bligh, E.G., and W.J. Dyer. Can. J. Biochem. Physiol. 37:911, 1959.
- 12. Westphal, W.B. personal communication, 1975.
- 13. Collie, C.H., J.B. Hasted and D.M. Ritson. Proc. Phys. Soc. (London) 60(2):145, 1948.

Schematic diagram of the open circulated low temperature holder for all three frequencies. Figure 1:

Schematic diagram of the quarter wavelength holder for 2450 MHz, 5 to 65°C. Figure 2:

Schematic diagram of the quarter wavelength holder for 900, 300 MHz, 80 to 120°C. Figure 3:

Figure 4: Dielectric constant K' of unsalted meats at 2450 and 915 MHz, 5 to 120°C. Mean and standard deviations.

Figure 5: Dielectric loss K" of unsalted meats at 2450, 915, and 300 MHz, 5 to 120°C. Mean and standard deviations.

Pigure 6: Half Power Penetration Depth of raw unsalted meats at 2450, 915, and 300 MHz, 5 to 120°C.

Mean and standard deviation.

Table I. Dimensions and Specifications of Coaxial Sample Holders

						7.0.000	
Frequency (Mix)	$Temp(^{\circ}C)$	Top	Top Cover	ų	Bottom Cover	Ver	Sample
		Material	×.	K' Thickness Thickness XO(cm)	Thickness	Xo (cm)	Thickness
2450	5 - 65	Teflon	2.05	0.9472	0.1587	2.1	0.110
915	5 - 65	Teflon	2.05	0.9472	0.1587	7.3	0.154
300	5 - 65	Teflon	2.05	0.9472	0.1587	23.0	0.140
2450	65 - 120 Alumina		9.57	0.9159	0.1587	2.1	0.104
900,006	65 - 120 Alumina	Alumina	9.57	0.9159	1.905	16.0	0.152
2450,915,300	-40 - 0	ı	ı	1	ı	0	10

Distance from bottom cover to short (see Figure 2)

Dielectric Properties of Water Measured at Three Frequencies Table 2:

	ures
	mperati
١	Temp
	even
•	and Se
	디

Temp.		2450 MHz			915 MHz			300 MHz	
၁.	K*	K"	TAN	K.	K.	TAN	K	K"	TAN
S	81.2	13.8	0.170	85.6	5.98	0.070	81.1	2.22	0.027
15	80.4	11.7	0.146	82.3	4.47	0.054	77.4	1.69	0.022
25	7.97	8.88	0.116	78.1	3.41	0.044	73.5	1.40	0.019
35	73.6	66.9	0.095	74.6	2.64	0.035	69.4	1.09	0.016
45	70.6	5.77	0.082	71.1	2.17	0.031	65.7	0.89	0.014
55	*	*	*	67.7	1.75	0.026	61.8	0.83	0.013
65	9.49	3.99	0.062	64.0	1,41	0.022	58.0	0.77	0.013
						: !			

*Data not taken

Dielectric Properties of Beef Products at Three Frequencies Table

T	7			~		~~			_				_		T		6	S	_		_			_	_	
		TAN		80.0	٦.	æ (7	7	'n	۰.	₹.	'n.	9.				9.	٠.	1.40	9.				7	9	2.63
	300 MHz	×		0.34	9	7	•	87.	-	$\overline{}$	7	~	3	140			ω,	8	52.7	7.			ω.	94.1	25	164
		ж.		9.0	'n.	٠.	•	6	m	÷	5	ä	ä	· •			8	6	37.7	s.			~	0	•	62.4
		TAN			=:	m.	7	. 52	.65	.72	.87	. 95	99	4			.36	.42	0.525	.62			36	46	9	0.805
	915 MHz	Κ"		0.21	v.	٥.	•	۲.	m.	۳,	7	۰.	6	7			7	'n					6	'n	4	52.9
atures		Κ'		3.6	.	7	•	m	6	'n	س	ä	4				m	S	34.9	i.			7	9		65.7
ent Temperatures	22	TAN		0.037	٦.	m.	m.	۳.	٣.	₹.	'n	'n	'n	9			.37	33	0,338	.36		Juice	٣,	~	<u></u>	0.437
and Different	2450 MHz	K"	Beef	0.13	9	6	7		œ	6	7	7	÷			ad Bee	10	0	٠	•		Beef	24.0	~	7	23.7
æ		X.	e: Rav	3,5			•	-	-	4	۳.	7	0	39.7		Cook	0.6	-	•	9		— ←: Cooked		6		54.3
	Temp.	ာ့	Samol	9	-20		25			8	100	-	4	120		Semol	5		45			See		25	45	9

Table 4: Dielectric Properties of Pork Products at Three

Frequencies and Different Temperatures

Temp.		2450 MHz			915 MHz			300 MHz	
ာ့ ၁	K.	K"	TAN	K.	. X	TAN	×	**	TAN
Sampl	B: Raw	Pork							
4		٥.	.03	•	٦.	.04	•	7	.07
-20		5	.14	•	•	14	•	•	. 21
S	7	8	.36	S	9.3	.34	H	9	S
25		9	32	-	7	.41	-	m	. 86
45	50.9	17.7	0.348	53.1	28.2	0.531	61.4	74.0	1.21
65	φ,	6	.40	7	+	.65	œ	2	r.
2	3	8	. 42	4	8	.86	÷	ï	9.
0	ä	ä	.51	7	4	0.	ä	0	٦.
110	0	7	.54	0	7	٦.	6	118	۳.
~	6	ä	.57	9	8	7	œ	~	'n
N	8	e.	. 62	8	6	7	9	7	
Sampl	Cook	2 2							
'n	æ	10.6	.36	ä	0	.33	7	o.	'n
25	30.2	0	0.333	32.1	•	0.396	8	•	76
45	6	0	34	i	'n.	. 49	6	۰.	0.
9	œ.	0	.37		17.7	. 58	39.2	47.3	7
Sample	: Cooked	Pork	Juice						
S	0.69	2.92	\sim	82.7		•	6	69,3	•
	ø.	ŝ	.38	œ	æ	48	·	0	m.
45	i.	9	.43	щ.	46.9		76.9		1.81
	9	œ	.50	7.	æ	.87	7.	~	9.

Dielectric Properties of Chicken (Breast) at Three Frequencies and Different Temperatures Table 5:

oc K*		rus 4						
mple: Raw	*	TAN	Κ¹	К*	TAN	ж.	E M	TAN
40 3.	cken (B	ינו						
	0.15	0.04	•	~	.05	•	•	10
-	'n	13			13	•	٣.	. 25
5	0,7	38	1	1.7	.35	7	0.0	'n.
55.	6	34	<u>_</u>	'n	42	۲.	7	. 85
54		0.367	59.7	31.7	0.530	9.99	78.	1.18
5 52.	Ξ.	17	۲.	.	99.	4	4	9
0 47	0	. 42	6	2	.65	ø,	S	۰.
0	'n	.55	7	φ.	. 79	'n		٥.
0 44	~	9	9	7	.90	ω,	~	٣.
5 43	8	.64	9	~	.93	e,	2	₹.
0 43	8	.67	5	9	٥.	7	\sim	Ś
mple: Cooked	Chi	(Breas				_		
	'n	0.38	0	4	.36	۰,	۰,	'n
5 39		35	Ή.		0.432	50.7	42.0	0.827
5 37	•	.36	0	ij	.53	ij	'n.	0
65 34.2	13.9	0.406	38,3	24.5	.64	œ٠	m.	۳.
+-2	10 10							i a
o ToTo	֓֞֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֡֓	(768)		c	5	c	u	٢
000	4.	110	•	•	֚֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			
5 65	0	.379	_:	æ	-		9	•
45 61.6	G.	0.436	77.1	47.4	0.615	82.4	130	28
5 55.	8.7	.513	_:	ė.	. 79	_;	9	~

Dielectric Properties of Chicken (Thigh) at Three Frequencies and Different Temperatures Table 6:

Sample: Raw Chicken(T -40 3.5 0.15 -20 3.9 0.54 5 54.4 19.3 25 54.7 17.6 45 53.6 18.2 65 51.7 20.0 80 46.3 19.7 110 42.3 26.2 115 42.0 26.6 120 41.5 27.0	Thigh) 0.043 0.140 0.322 0.338 0.425 0.548 0.633	59 4 4 4 5 3 8 1 1 8 1 8 1 1 8 1 1 1 1 1 1 1 1 1 1	7" 0.22 19.3 22.9 34.1 34.1 43.2 43.2	1AN 0.059 0.110 0.323 0.391 0.492 0.618 0.720 0.960	6.7.9 6.7.9 64.6 64.6 64.0 68.3 88.8	0.40 1.10 38.4 57.7 76.6 102 107	1AN 0.100 0.200 0.582 0.849 1.19 1.61 1.82 2.19
Ample: Raw Chicken (40 3.5 0.15 20 0.15 25 4.4 19.3 25 54.7 17.6 53.6 18.2 20.0 43.8 24.0 10 42.3 22.0 26.6 20 41.5 27.0	40.00 0.35 0.35 0.35 0.03 0.05 0.05 0.05		00008440000	0.1.0.1.0.1.0.0.1.0.0.1.0.0.0.0.0.0.0.0	4.0.0.440000	0.1 1.1 257.7 276.6 002.0	01.08.00 8.00 8.00 8.00 8.00 8.00 8.00 8
40 3.5 20 3.9 5.54.4 19.3 45.53.6 51.7 20.0 43.8 20.0 43.8 20.0 20.0 43.8 20.0 2	4466684466	M4987363488	000000440000		4.0.0.4.40.8.8	0.14 0.02 0.02 0.04	0128814
20 3.9 0.5 5 54.4 19.3 25 54.7 17.6 65 51.7 20.0 80 46.3 19.7 10 42.3 24.0 15 42.0 26.6 20 41.5 27.0	4000004000	40000004WW	0008440mm6	1264972	7.7.4.088	1.1 557.7 76.6 002.0	588.198.14
25 54.4 19. 25 54.7 17. 45 53.6 18. 65 51.7 20. 80 46.3 19. 10 42.3 24. 15 42.0 26. 20 41.5 27.		987999489	948449EV	26. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	7.744088	38. 07. 02. 19.	82 61 61 61 61 61 61
25 54.7 17. 45 53.6 18. 65 51.7 20. 80 46.3 19. 10 42.3 24. 15 42.0 26. 20 41.5 27.	4.0.00 A. 0.00	∞ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8.72 6.90 7.80 9.00 9.00	F44088	57. 002. 101.	28 10 20 20 4
45 53.6 18. 65 51.7 20. 80 46.3 19. 10 42.3 24. 15 42.0 26. 20 41.5 27.	£ 4.0.00	7999488	8449WW	61 61 72 87 87	44088	92. 191.	4004
65 51.7 20. 80 46.3 19. 00 43.8 24. 10 42.3 26. 15 42.0 26. 20 41.5 27.	5.42	ひなり★50 0	44666	22.82.29	4088	91. 19	0 8 A
80 46.3 19. 00 43.8 24. 10 42.3 26. 15 42.0 26. 20 41.5 27.	5.00	65466	40000	27. 87. 96.	0 8 8	91.	81.4
00 43.8 24. 10 42.3 26. 15 42.0 26. 20 41.5 27.	4.66.6	10 4 m m	9.4.49	.87 .96 .02	∞ ∞	01	7
10 42.3 26. 15 42.0 26. 20 41.5 27.	.63 .65	400	20.00	.02	8	-	4
15 42.0 26. 20 41.5 27.	.63	m m	5	٥.		1	•
20 41.5 27.	.65	m	9		8	N	9
-			•	۰.	-	~	9.
_							
ple: Cooked Chick	igh		•				
39	0.350	~	w.	•	6	9	.53
5 40.9 12.	3	~	ø.	.37		۲.	۲.
39.5 12.	.32	42.5	ö	47	50,3	$\boldsymbol{\vdash}$	1.02
5 34.5 12.	.37	6	22.5	.57	7.	59.2	~
Cooked Ch	en(Thigh) J	Juice					
67.4 23	0.352	78	4	.31	2	6	.64
5 67.5 20	0.308	9	6	.39	9	76.8	6
3,1 21	0.338	7	36.7	0.514	70.2	90	51
5 57.8 22	.5 0,389	9	س	99.	m.	133	0

Dielectric Properties of Turkey Products at Three Frequencies and Different Temperatures 7: Table

Temp.		2450 MHz			915 MHz			300 MHz	
ာ့	K.	K*	TAN	K.	K"	TAN	×.	m E	TAN
Sample	: Raw T	۸ ا	11						
-40			0.03	•	۲.	.0		7	.07
-20	•	9.	0.15	•		16	•		. 23
Ś	5	1.6	0.40	·	6.4	43	7	8.1	8
25	ω.	ä	.39	6	~	.55	7	9	7
45	52.5	23.8	0.453	58.3	42.8	0.734	65.4	18	1,81
65	。	Ŷ.	. 62	9	۳.	.93	-	S	S
80	'n.	5	. 55	8	9	7.	9		ω.
0	4	7	.60	7	8	9.	8	0	7
110	7	۰.	.68	7	ς.		7	$\boldsymbol{\vdash}$	٦.
~	ä	6	.71	7	S.	8	ä	2	7
~	6	•	.76	9	8	₩.	•	~	
Sample	s: Cooked	d Turkey	Roll						
5	38.2	16.1	0.42	H	6	. 47	è.	+	6.
	6	16.7	0.42	m.	ø.	9.	7	9	7.
45	37.3	17.2	0	41.4	32.4	0.782	44.8	27.5	1.96
	34.4	17.8	0.51	7.	9	.98	•		٥.
Sample	e: Cooked		Rol 1	a 1					
'n	70	29.7	0.422	78.	4	'n	9	_	٣.
25	67.5	30.9	0	74.5	57.5	0.771	82.1	166	2.02
45	2	35.4	0	6	4	٥.	2	2	0
9	9	40.1	0.7	2	·	7	?	œ	S

Proximate Compositions for all Samples in Percent by Weight. Unsalted Meat Values are Mean ± Standard Deviation for Beef, Pork, Chicken .**..** 89 Table

State	Sample	Moisture	Protein	Fat	Ash
Cooked	Turkey Roll Beef Pork Chicken(Breast) Chicken(Thigh)	66.5 63.9 57.2 66.3	28.7 29.4 31.1 32.5 27.5	4.0 10.4 1.5	2444
	Unsalted Meats	64,115,1	30.112.2	5.7±3.6	1.2±0.1
Rav	Turkey Roll Beef Pork Chicken(Breast) Chicken(Thigh)	73.8 74.1 69.9 73.6 75.3	22.1 22.7 23.2 25.2 21.1	2.6 3.3 3.5	44444
	Unsalted Meats	73.2±2.3	23.1±1.7	3.3±1.9	1.1±0.1
Cooked Juice	Turkey Roll Beef Pork Chicken(Breast) Chicken(Thigh)	91.9 93.1 92.3 86.4	N.4. W. A.	1.5 1.5 1.0 8.3	2.1 1.3 1.2 0.9
	Unsalted Meats	90.7±3.0	4.7±0.9	4.2±3.5	1.2±0.2

Chicken) at Three Frequencies, Mean # Standard Deviation Dielectric Properties of Unsalted Meats (Beef, Pork, Table 9:

Temp.	450 MRz	91	15 MRz	3(300 MHz
K,	X.	х.	K"	K,	**
Raw Unsa	lted Meats				
.50	0.1410	6410.3	.19±0.0	.9010.	.34±0.0
.08±	55±0.0	.60±0.	.66±0.	.3010.	.14±0.
3.4±1.	9.5±0	8.612.	0.011.1	3.7±3.9	0.614.9
3.411.	7.8±1.	7,113.	3.511.	3.0±6.	8.815.
2.4	18,311,1	55,813,3	911	60,617,5	79,215.9
0.112	9.911	4.117.	5.112	7.9±1	3 ±8.
5.412.	9.410.	6.712.	4.5±2.	2.5±4.	91.612.
.611.	3.4±1.	4.5±2.	9.813.	0.61	14 19.
2,711.	4.612.	3,312.	3.1±3.	9.2±4.	4 ±6.
1.5±1.	5.4±2.	2.7±2.	4.5±3.	8.314.	28 ±5.
0.7±2.	6.2±2.	2.0±3.	6.013.	7.5±4.	32 ±6.
: Cooked U	nsalted Meats	·			
3.815.	2.5	7.015.	2.7±1.	3.7±6.	4.913.
315	.2±2	8±4	412	9 ∓	015
4.115.	1.711.	7.615.	9.012.	4.7±7.	9.816.
0.914.	1,811.	4.814.	1,113.	2.9±6.	6.7±6.
1 .	Juice of Unsalted	1 '			
7,811.5	5.311.7	82.212.	9.313.	8.114.	2.017
66,111,0	25,312,2	.112	6±4	81,214,4	92,8112
_	4,3±3	.2±2.	3.8±4.	6.115.	5 ±1
9	5.913	6+2	3 1+6	7+1 9	£0 +1