РГПУ им. А.И. Герцена

Тема: «Теория игр»

Свистунова М. П., 2ИВТ (1) 2 подгруппа

Лабораторная работа №9

Понятие об игровых моделях

Задача: магазин может завезти в различных пропорциях товары трех типов (A_1, A_2, A_3) ; их реализация и прибыль магазина зависят от вида товара и состояния спроса. Предполагается, что спрос может иметь три состояния (B_1, B_2, B_3) и не прогнозируется. Определить оптимальные пропорции в закупке товаров из условия максимизации средней гарантированной прибыли при следующей матрице прибыли.

	B_1	B_2	B_3	α.
A_1	28	23	18	18
A_2	24	20	22	20
A_3	21	26	23	21
A_4	23	24	26	23
β	28	26	26	

Так как $\propto \neq \beta$, то седловая точка отсутствует и оптимальное решение необходимо искать в смешанных стратегиях игроков:

$$S_A^* = (p_1^*, p_2^*, p_3^*, p_4^*), S_B^* = (q_1^*, q_2^*, q_3^*)$$

Найдем оптимальную стратегию игрока В:

При этом
$$x_i = \frac{p_i}{v}$$
, $i=1,2,3,4$, $y_i = \frac{q_i}{v}$, $j=1,2,3$.
$$\begin{cases} 28y_1 + 23y_2 + 18y_3 \leq 1\\ 24y_1 + 20y_2 + 22y_3 \leq 1\\ 21y_1 + 26y_2 + 23y_3 \leq 1\\ 23y_1 + 24y_2 + 26y_3 \leq 1 \end{cases}$$
 $y_j \geq 0$, $j=1,2,3$
$$Z = y_1 + y_2 + y_3 \rightarrow max.$$

Решение задачи производится симплексным методом.

$$\begin{cases} 28y_1 + 23y_2 + 18y_3 + y_4 = 1 \\ 24y_1 + 20y_2 + 22y_3 + y_5 = 1 \\ 21y_1 + 26y_2 + 23y_3 + y_6 = 1 \\ 23y_1 + 24y_2 + 26y_3 + y_7 = 1 \end{cases}$$

$$y_j \ge 0, j = 1, 2, 3$$

$$Z = y_1 + y_2 + y_3 \rightarrow max.$$

Базис	Переменные								
Базис	y_1	y_2	y_3	y_4	y_5	y_6	y_7	$D_{\dot{l}}$	
y_4	28	23	18	1	0	0	0	1	
y_5	24	20	22	0	1	0	0	1	
y_6	21	26	23	0	0	1	0	1	
y_7	23	24	26	0	0	0	1	1	
c_i	1	1	1	0	0	0	0	0	

Допустимое базисное решение: :(0,0,0,1,1,1,1), L=0.

Разрешающий столбец:

$$c_r = \max\{c_j\} = \max\{1, 1, 1, 0, 0, 0, 0\} = 1 => r = 1$$

Разрешающая строка:

If
$$a_{ir} > 0$$
, $D_s = \min\left\{\frac{b_i}{a_{ir}}\right\} = \min\left\{\frac{1}{28}, \frac{1}{24}, \frac{1}{21}, \frac{1}{23}\right\} = \frac{1}{28} = > s = 1$

Разрешающий элемент:

$$a_{sr} = a_{11} = 28$$

Из базисного решения исключается y_4 .

Пересчет элементов симплекс-таблицы:

Базис	Переменные									
	y_1	y_2	y_3	y_4	y_5	y_6	y_7	b_i		
y_1	1	0,821429	0,642857	0,035714	0	0	0	0,035714		
y_5	0	0,285714	6,571429	-0,85714	1	0	0	0,142857		
y_6	0	5,75	9,5	-0,75	0	1	0	0,25		
y_7	0	5,107143	11,21429	-0,82143	0	0	1	0,178571		
c_j	0	0,178571	0,357143	-0,03571	0	0	0	-0,03571		

Допустимое базисное решение:

$$(0,035714;0;0;0;0,142857;0,25;0,178571),$$

$$L = -0.03571.$$

Разрешающий столбец:

$$c_r = \max\{c_j\} = \max\{0; 0,178571; 0,357143; -0,03571; 0; 0; 0\}$$

= 0,357143 => $r = 3$

Разрешающая строка:

If
$$a_{ir} > 0$$
, $D_s = \min\left\{\frac{b_i}{a_{ir}}\right\} =$

$$= \min\{0,0555555556; 0,02173913; 0,026315789; 0,015923567\}$$

$$= 0,015923567 => s = 4$$

Разрешающий элемент:

$$a_{sr} = a_{43} = 11,21428571$$

Из базисного решения исключается y_7 .

Пересчет элементов симплекс-таблицы:

Гариа	Переменные							la	
Базис	y_1	y_2 y_3 y_4 y_5 y_6 y_7		y_7	b_i				
y_1	1	0,52866242	0	0,082802548	0	0	-0,057324841	0,025477707	
y_5	0	0,181073703	0	-0,836214741	1	0	0	0,163785259	
y_6	0	5,75	0	-0,75	0	1	0	0,25	
y_3	0	0,455414013	1	-0,073248408	0	0	0,089171975	0,015923567	
c_j	0	0,015923567	0	-0,00955414	0	0	-0,031847134	-0,041401274	

Допустимое базисное решение:

$$(0.025477707; 0; 0.015923567; 0; 0.163785259; 0.25; 0)$$

$$L = -0.041401274$$
.

Разрешающий столбец:

$$c_r = \max\{c_j\}$$

= $\max\{0; 0,015923567; 0; -0,00955414; 0, 0, -0,031847134\} =$
= $0,015923567 => r = 2$

Разрешающая строка:

If
$$a_{ir} > 0$$
, $D_s = \min\left\{\frac{b_i}{a_{ir}}\right\} =$

$$= \min\{0,048192771; 0,904522613; 0,043478261; 0,034965035\}$$

$$= 0,034965035 => s = 4$$

Разрешающий элемент:

$$a_{sr} = a_{42} = 0,455414013$$

Пересчет элементов симплекс-таблицы:

Базис	Переменные							
Базис	y_1	y_2	y_3	y_4	y_5	y_6	y_7	b_i
y_1	1	0	-1,16084	0,167832	0	0	-0,16084	0,006993
y_5	0	0	-0,3976	-0,80709	1	0	-0,03545	0,157454
y_6	0	0	-12,6259	0,174825	0	1	-1,12587	0,048951
y_2	0	1	2,195804	-0,16084	0	0	0,195804	0,034965
c_j	0	0	-0,03497	-0,00699	0	0	-0,03497	-0,04196

Допустимое базисное решение:

(0,006993; 0,034965; 0; 0; 0,157454; 0,048951; 0),

L = -0.04196.

 $c_{j} \leq 0 = >$ решение является оптимальным.

$$v = \frac{1}{y_1 + y_2 + y_3} = \frac{1}{0,006993 + 0,034965 + 0} = \frac{1}{0,041958} = 23,83$$

$$q_1 = y_1 v = 0,006993 * 23,83 = 0,17$$

$$q_2 = y_2 v = 0,034965 * 23,83 = 0,83$$

$$q_3 = y_3 v = 0 * 23,83 = 0$$

Найдем оптимальную стратегию игрока А:

При этом
$$x_i = \frac{p_i}{v}$$
, $i = 1, 2, 3, 4$, $y_i = \frac{q_i}{v}$, $j = 1, 2, 3$.

Из теоремы двойственности: $X = C * A^{-1}$

$$X = CA^{-1} = (1, 0, 0, 1) * \begin{pmatrix} 0.167832 & 0 & 0 & -0.16084 \\ -0.80709 & 1 & 0 & -0.03545 \\ 0.174825 & 0 & 1 & -1.12587 \\ -0.16084 & 0 & 0 & 0.195804 \end{pmatrix} =$$

= (0.006993007; 0; 0; 0.034965035)

$$v = \frac{1}{x_1 + x_2 + x_3 + x_4} = \frac{1}{0,006993007 + 0 + 0 + 0,034965035} = \frac{1}{0,041958}$$

$$= 23,83$$

$$p_1 = x_1 v = 0,006993 * 23,83 = 0,17$$

$$p_2 = x_2 v = 0 * 23,83 = 0$$

$$p_3 = x_3 v = 0 * 23,83 = 0$$

$$p_4 = x_4 v = 0,034965 * 23,83 = 0,83$$