FONCTIONS LINEAIRES ET FONCTIONS AFFINES

1) Fonctions linéaires

a) Qu'est-ce qu'une fonction linéaire?

Définition

On appelle fonction linéaire de coefficient a la fonction définie de la manière suivante : $f: x \mapsto ax$.

Exemple

La fonction linéaire de coefficient 3 est la fonction $f: x \mapsto 3x$. L'image de 4 est 12. 18 a pour antécédent 6.

b) Représentation graphique d'une fonction linéaire

Propriété

Dans un repère, la représentation graphique d'une fonction linéaire est une droite passant par l'origine.

Définition

On dit que y = ax est une <u>équation de cette droite</u>. Le nombre a est appelé <u>coefficient directeur</u> de la droite.

Propriété

Appelons (d) la droite d'équation y = ax. Appelons M un point de coordonnées $(x_M; y_M)$

Si $M \in (d)$, alors ses coordonnées vérifient l'égalité $y_M = ax_M$.

Réciproquement, si les coordonnées de M vérifient l'égalité $y_M = ax_M$, alors $M \in (d)$.

Exemple

Représenter graphiquement la fonction linéaire $x \mapsto 2x$.

D'après ce qui précède, on sait qu'il s'agit d'une droite passant par l'origine. Pour tracer cette droite, il faut un deuxième point.

y = 2x est l'équation de la droite à tracer. Si x = 1, alors y = 2 donc le point de coordonnées (1; 2) appartient à cette droite.

c) Déterminer une fonction linéaire par la donnée d'un nombre et de son image

Exemple

Quelle est la fonction linéaire telle que 6 ait pour image 7 ?

Une fonction linéaire est de la forme $x\mapsto ax$. L'image de 6 est 6a. On veut donc 6a=7. On en déduit que $a=\frac{7}{6}$. La fonction linéaire cherchée est $x\mapsto \frac{7}{6}x$.

2) Fonctions affines

a) Qu'est-ce qu'une fonction affine?

<u>Définition</u>

On appelle fonction affine une fonction du type $x \mapsto ax + b$, où a et b sont des nombres.

Exemple

$$f: x \mapsto -2x + 3$$

f est une fonction affine. L'image de 2 est -1 ($-2 \times 2 + 3 = -1$). L'antécédent de 7 est -2 (résoudre l'équation -2x + 3 = 7).

b) Représentation graphique d'une fonction affine

Propriété

Dans un repère, la représentation graphique d'une fonction affine est une droite.

Définition

On dit que y = ax + b est une <u>équation de cette droite</u>. Le nombre a est appelé <u>coefficient directeur</u> de la droite et b est <u>l'ordonnée</u> à <u>l'origine</u>.

Propriété

Appelons (d) la droite d'équation y = ax + b. Appelons M un point de coordonnées $(x_M; y_M)$

Si $M \in (d)$, alors ses coordonnées vérifient l'égalité $y_M = ax_M + b$.

Réciproquement, si les coordonnées de M vérifient l'égalité $y_{_M}=ax_{_M}+b$, alors $M\in(d)$.

Exemple

Représenter graphiquement la fonction affine $x \mapsto 2x-3$.

D'après ce qui précède, on sait qu'il s'agit d'une droite.

Pour tracer cette droite, il faut deux points.

y = 2x - 3 est l'équation de la droite à tracer.

Si x = 0, alors y = -3 donc le point de coordonnées (0; -3) appartient à la droite.

Si x = 2, alors y = 1 donc le point de coordonnées (2;1) appartient à la droite.

c) Déterminer une fonction affine par la donnée de deux nombres et leurs images

Propriété

Si f est une fonction affine, alors les accroissements de f(x) et de x sont proportionnels, le coefficient de proportionnalité étant a. Autrement dit, si f(x) = ax + b, alors quels que soient les nombres x_1 et x_2 : $f(x_2) - f(x_1) = a(x_2 - x_1)$.

Exemple

Déterminer la fonction affine telle que :

- 2 ait pour image -3;
- -3 ait pour image 7.

Une fonction affine est de la forme $x \mapsto ax + b$.

D'après la propriété précédente, on a :

$$f(2) - f(-3) = a(2 - (-3))$$

$$-3-7=a\times 5$$

$$5a = -10$$

$$a = -\frac{10}{5} = -2$$

On sait maintenant que la fonction affine est de la forme $x \mapsto -2x + b$

L'image de 2 est -4+b donc -4+b=-3. On en déduit :

$$b = -3 + 4 = 1$$

La fonction affine cherchée est $x \mapsto -2x+1$.