- (1) Find all solutions (in **C**) to the following equations:
 - (a) $z^6 = 1$
 - (b) $z^4 = -16$
 - (c) $z^6 = -9$
 - (d) $z^6 z^3 2 = 0$.

Solution. By the fundamental theorem of algebra, a polynomial equation of degree n has exactly n solutions (counting with multiplicities), in which case it thus suffices to give n distinct numbers that satisfy the equation.

- (a) $z = e^{\pi i k/3}$ for $1 \le k \le 6$ satisfy $z^6 = 1$.
- (b) $z = 2e^{\pi ik/4}$ for k = 1, 3, 5, 7 satisfy $z^4 = -16$.
- (c) $z = \sqrt[3]{3}e^{\pi ik/3}$ for k = 1, 3, 5 satisfy $z^6 = -9$.
- (d) The quadratic equation $x^2 x 2 = 0$ has the solutions x = -1, 2, and so $z^6 z^3 2 = 0$ has the solutions $z = e^{\pi i k/3}$ for k = 1, 3, 5 and $z = \sqrt[3]{2}e^{2\pi i k/3}$ for k = 1, 2, 3.
- (2) Suppose U_1, U_2, \dots, U_n are subspaces of V. Prove that $U_1 + U_2 + \dots + U_n$ is a subspace of V.

Proof. We will check that $0 \in U_1 + U_2 + \cdots + U_n$ and that $U_1 + U_2 + \cdots + U_n$ is closed under addition and scalar multiplication.

The first assertion follows since $0 \in U_j$ for all j, and so $0 = 0 + o + \cdots + 0 \in U_1 + U_2 + \cdots + U_n$.

Now suppose $u_j, w_j \in U_j$ for each j; that is, we have two elements $u_1 + u_2 + \cdots + u_n \in U_1 + U_2 + \cdots + U_n$ and $w_1 + w_2 + \cdots + w_n \in U_1 + U_2 + \cdots + U_n$. Since $u_j + w_j \in U_j$ (because U_j is a subspace),

$$u_1 + u_2 + \dots + u_n + w_1 + w_2 + \dots + w_n = (u_1 + w_1) + (u_2 + w_2) + \dots + (u_n + w_n) \in U_1 + U_2 + \dots + U_n$$

that is, $U_1 + U_2 + \cdots + U_n$ is closed under addition. Similarly, given $a \in \mathbb{F}$, we know that $au_j \in U_j$ (again because U_j is a subspace), and so

$$a(u_1 + u_2 + \dots + u_n) = au_1 + au_2 + \dots + au_n \in U_1 + U_2 + \dots + U_n$$

that is, $U_1 + U_2 + \cdots + U_n$ is closed under scalar multiplication.

- (3) Carefully reason whether or not the following sets are subspaces of \mathbb{R}^2 :
 - (a) $\{(a,b) \in \mathbf{R}^2 : a,b \ge 0\}$
 - (b) $\{(a,b) \in \mathbb{R}^2 : ab \ge 0\}$
 - (c) $\{(a,b) \in \mathbb{R}^2 : a = b\}$
 - (d) Z^2

Solution. (a) $(1,1) \in \{(a,b) \in \mathbb{R}^2 : a,b \ge 0\}$ but $-(1,1) \notin \{(a,b) \in \mathbb{R}^2 : a,b \ge 0\}$, so this is not a subspace.

- (b) (1,1) and (-2,0) are both in $\{(a,b) \in \mathbf{R}^2 : ab \ge 0\}$ but (1,1) + (-2,0) = (-1,1) is not, so this is not a subspace.
- (c) $\{(a,b) \in \mathbb{R}^2 : a = b\}$ is a subspace: (0,0) is in it, it is closed under addition ((x,x) + (y,y) = (x+y,x+y)) and scalar multiplication (a(x,x) = (ax,ax)).
- (d) $(1,1) \in \mathbb{Z}^2$ but $\frac{1}{2}(1,1) \notin \mathbb{Z}^2$, so \mathbb{Z}^2 is not a subspace.
- (4) Consider the subspace $U := \{ p \in \mathcal{P}(\mathbf{F}) : \deg(p) \le 3 \}$ of the vector space $\mathcal{P}(\mathbf{F})$ consisting of all polynomials with coefficients in \mathbf{F} . Construct a subspace W of $\mathcal{P}(\mathbf{F})$ such that $\mathcal{P}(\mathbf{F}) = U \oplus W$.

Solution. We claim that $W := \{x^4p(x) : p \in \mathscr{P}(\mathbf{F})\}$ will do the trick (that is, W consists of the zero polynomial and all polynomials that do not have constant, linear, quadratic, or tertiary terms). W is a subspace because it contains 0 and is closed under addition and scalar multiplication. By construction we have $\mathscr{P}(\mathbf{F}) = U + W$ and $U \cap W = \{0\}$, so by Proposition 1.9, $\mathscr{P}(\mathbf{F}) = U \oplus W$.

- (5) Suppose U and W are subspaces of V. Prove that $U \cap W$ is the largest subspace of V that is contained in both U and W; that is:
 - (a) $U \cap W$ is a subspace of V, and

(b) any other subspace of V that is contained in both U and W is also contained in $U \cap W$.

Proof. Since U and W are subspaces, they both contain 0, and so $0 \in U \cap W$. Given $v_1, v_2 \in U \cap W$, they are both in U and W. As subspaces, U and W are closed under addition and scalar multiplication, and so $v_1 + v_2$ is in both U and V, that is, $v_1 + v_2 \in U \cap W$; similarly, for $a \in \mathbb{F}$, av_1 is in both U and V, that is, $av_1 \in U \cap W$. Thus $U \cap W$ is also closed under addition and scalar multiplication, and this proves (a).

Now let S be a subspace of V that is contained in both U and W. Then (as a set) S is contained in $U \cap W$, and this proves (b).