(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-93866 (P2000-93866A)

(43)公開日 平成12年4月4月(2000.4.4)

(51) Int.Cl. ⁷		識別配号	FΙ			テーマコード(参考)
B05C	-,	101	B05C	5/00	1.01	4D075
B05D	1/26		305D	1/26	Z	4F041

審査請求 未請求 請求項の数4 OL (全 11 頁)

(21)出廣番号	特顧平10-265184	(71)出願人	000233077
(22) 出版日	平成10年9月18日(1998.9.18)		日立テクノエンジニアリング株式会社 東京都足立区中川四丁目13番17号
		(72)発明者	川隅 幸宏
			茨城県竜ケ崎市向陽台5 厂目2番 日立テ
			クノエンジニアリング株式会社開発研究所
			内
		(72)発明者	石田 茂
			茨城県竜ケ崎市向陽台5 「目2番 日立テ
			クノエンジニアリング株式会社開発研究所
		į	内
		(74)代理人	100078134
			弁理士 武 顕次郎
			最終頁に続く

(54) 【発明の名称】 ベースト塗布方法とベースト塗布機

(57)【要約】

【課題】 迅速なペースト塗布量の調整を容易にし、所 望形状のペーストパターンを高精度に形成することがで きるようにする。

【解決手段】 ノズル13aと実基板22との相対的な位置関係を変化させながら、ノズル13aの吐出口からペースト23を吐出させることにより、この実基板22の表面に所望のペーストパターンが塗布描画されるが、実基板22上の予め変更ポイントとして決められた位置にノズル13aが達すると、実基板22の表面からノズル13aのペースト吐出口までの距離、即ち、塗布高さ1から予め設定されている塗布高さ2に変更され、これに伴って、ノズル13aからのペースト吐出量が変化する。これにより、ノズル13aを備えたペースト収納筒(図示せず)に印加される圧力を変化させるよりも迅速に、塗布ペーストの厚さを変化させることができる。

[図7]

【特許請求の範囲】

【請求項1】 ノズルの吐出口に対向するようにして基 板をテーブル上に載置し、該基板の主面に垂直な方向で の該ノズルと該基板との間に所望の距離を持たせ、ペー スト収納筒に充填したペーストを該吐出口から該基板上 に吐出させながら、該基板と該ノズルとの該基板の主面 と平行な方向における相対位置関係を変化させることに より、該基板上に所望形状のペーストバターンを描画す るペースト塗布方法において、

該基板の主面に垂直な方向での該ノズルと該基板との間 の距離を変更し、その変更された距離に比例した量のペ ーストを該基板上に吐出させることを特徴とするペース 卜塗布方法。

【請求項2】 請求項1に記載のペースト途布方法にお NT.

前記基板と前記ノズルとの該基板の主面と平行な方向に おける相対位置関係の単位時間当りの変化量を変更して 該基板上に描画するペーストパターンを所望の形状とす ることを特徴とするペースト塗布方法。

【請求項3】 ノズルの吐出口に対向するようにして基 板をテーブル上に載置し、該基板の主面に垂直な方向で の該ノズルと該基板との間に所望の距離を持たせ、ペー スト収納筒に充填したペーストを該吐出口から該基板上 に吐出させながら、該基板と該ノズルとの該基板の主面 と平行な方向における相対位置関係を変化させることに より、該基板上に所望形状のペーストパターンを描画す るペースト塗布方法においてペーストパターン描画中に 該基板と該ノズルとの該基板の主面と平行な方向におけ る相対位置関係を検出し、検出したペーストパターン描 画位置が所望の塗布量変更箇所であるとき、該基板の主 面に垂直な方向での該ノズルと該基板との間の距離を変 化させることにより、塗布量を変更することを特徴とす るペースト途布方法。

【請求項4】 ノズルの吐出口に対向するようにして基 板をテーブル上に載置し、該基板の主面に垂直な方向で の該ノズルと該基板との間を所望の距離を持たせ、ペー スト収納筒に充填したペーストを該吐出口から該基板上 に吐出させながら、該基板と該ノズルとの該基板の主面 と平行な方向における相対位置関係を変化させることに より、該基板上に所望形状のペーストパターンを描画す るペースト塗布機において、

ペーストパターンの塗布量に対応する該基板の主面に垂 直な方向での該ノズルと該基板との距離とペーストパタ ーンの塗布量を変更する該基板と該ノズルとの該基板の 主面と平行な方向における相対位置との関係を表わすデ ータを記憶する記憶手段と、

描画中のペーストパターンにおける該ノズルとの該基板 の主面と平行な方向での相対位置を検出する検出手段

該検出手段で検出した該ノズルとの該基板の主面と平行

な方向での相対位置がペーストパターンの塗布量を変更 する相対位置である場合、該記憶手段に記憶された該デ ータからその相対位置に対応したペーストパターンの塗 布量に対応する該基板の主面に垂直な方向での該ノズル と該基板との距離に変更する変更手段とを備えたことを 特徴とするペースト塗布機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ノズルの吐出口に 対向するように基板をテーブル上に載置し、基板の主面 に垂直な方向での該ノズルと該基板との間に任意 (所 望)の距離を持たせ、ペースト収納筒に充填されたペー ストを該吐出口から該基板上に吐出させながら、該基板 と該ノズルの主面と平行な方向における相対位置関係を 変化させ、該基板上に所望形状のペーストパターンを途 布するペースト塗布方法とペースト塗布機に関する。

[0002]

【従来の技術】従来のペースト塗布機では、塗布量を調 節するために、収納筒に充填したペーストをノズルから 基板上に吐出させながら、基板の主面に垂直な方向での 該ノズルと該基板の相対距離が基板主面のうねりに係わ らず所定(所望の値)に維持するように調節し、ノズル と基板との間の相対移動速度、即ち、ペーストパターン を塗布するときの速度(以下、塗布速度という)の調整 や、ノズルからのペースト吐出量を決めるペースト収納 筒に印加される圧力(以下、塗布圧力という)の調整に より、塗布量の調節を行なっている。

【0003】例えば、塗布速度が一定の場合、ペースト の吐出量を増やすときには、塗布圧力を増大させる。逆 に、ペーストの吐出量を減らすときには、塗布圧力を減 少させることによって吐出量の調整が可能である。ま た、塗布圧力一定の場合、ペーストの吐出量を増やすと きには、塗布速度を低速にする。逆に、ペーストの叶出 **量を減らすときには、塗布速度を高速にすることによっ** て吐出量の調整を行なっている。

[0004]

【発明が解決しようとする課題】従来のペースト塗布機 においては、基板の主面に垂直な方向でのノズルと基板 の相対距離が、基板主面のうねりにかかわらず、所定に 維持するように調節することを前提にして、途布圧力や 塗布速度を調整することによって塗布量の調節を行なっ ている。

【0005】塗布圧力によってペースト塗布量の調整を 行おうとすると、塗布圧力の調整結果がペースト収納筒 を通ってノズル先端からの吐出量に反映されるまでの伝 播時間を要し、その間にも、ペーストパターン塗布動作 は、塗布速度に応じた分だけ進行する。このため、急峻 な塗布量調節が困難であった。

【0006】塗布速度によるペースト塗布量の調整につ いては、生産性を上げるための手段として既に極力高速 に調整してある場合が多く、さらに高速化すると、ペースト塗布量は減少するだけであり、単位距離当たりの塗布量を変えずに塗布速度を高くすることは不可能であった

【0007】本発明の目的は、かかる問題を解消し、迅速な塗布量調整が容易にして、所望形状のペーストパターンを形成することができるようにしたペースト塗布方法とペースト塗布機を提供することにある。

[0008]

【課題を解決するための手段】上記目的を達成するために、本発明によるペースト塗布方法は、ノズルの吐出口に対向するようにして基板をテーブル上に載置し、該基板の主面に垂直な方向での該ノズルと該基板との間に任意(所望)の距離を持たせ、ペースト収納筒に充填したペーストを該吐出口から該基板上に吐出させながら該基板と該ノズルとの該基板の主面と平行な方向における相対位置関係を変化させることにより、該基板上に所望形状のペーストパターンを描画するものであって、該基板の主面に垂直な方向での該ノズルと該基板との間の距離を変更し、その変更された距離に比例した量のペーストを該基板上に吐出させることにある。

【0009】上記目的を達成するために、本発明による

ペースト塗布機は、ノズルの吐出口に対向するようにし て基板をテーブル上に載置し、該基板の主面に垂直な方 向での該ノズルと該基板との間を任意 (所望) の距離を 持たせ、ペースト収納筒に充填したペーストを該吐出口 から該基板上に吐出させながら該基板と該ノズルとの該 基板の主面と平行な方向における相対位置関係を変化さ せることにより、該基板上に所望形状のペーストパター ンを描画するものであって、ペーストパターンの塗布量 に対応する該基板の主面に垂直な方向での該ノズルと該 基板との距離とペーストパターンの塗布量を変更する該 基板と該ノズルとの該基板の主面と平行な方向における 相対位置との関係を表わすデータを記憶する記憶手段 と、描画中のペーストパターンにおける該ノズルとの該 基板の主面と平行な方向における相対位置を検出する検 出手段と、該検出手段で検出した該ノズルとの該基板の 主面と平行な方向における相対位置がペーストパターン の塗布量を変更する相対位置である場合に該記憶手段に 記憶された該データからその相対位置に対応したペース トパターンの塗布量に対応する該基板の主面に垂直な方 向での該ノズルと該基板との距離に変更する変更手段と を備えたことにある。

[0010]

【発明の実施の形態】以下、本発明の一実施形態を図面に基づいて説明する。

【0011】図1は本発明によるペースト塗布機の一実施形態を示す斜視図であって、1は架台、2a,2bは基板搬送コンペア、3は支持台、4は基板吸着盤、5はの軸移動テーブル、6a,6bはX軸移動テーブル、7

はY軸移動テーブル、8a,8bはサーボモータ、9は 2軸移動テーブル、10はサーボモータ、11はボール ねじ、12はサーボモータ、13はペースト収納筒(シリンジ)、14は距離計、15は支持板、16a.16 bは画像認識カメラ、17は制御部、18はモニタ、19はキーボード、20は外部記憶装置を備えたパソコン本体、21はケーブルである。

【0012】同図において、架台1上には、X軸方向に並行で、かつ昇降可能な2つの基板搬送コンベア2a. 2bが設けられており、図示していない基板を図面の奥の方から手前の方に、即ち、X軸方向に水平に搬送する。また、架台1上に支持台3が設けられ、この支持台3上に θ 軸移動テーブル5を介して基板吸着盤4が載置されている。この θ 軸移動テーブル5は、基板吸着盤4を2軸廻りの θ 方向に回転させるものである。

【0013】架台1上には、さらに、基板搬送コンベア 2a. 2bよりも外側でX軸に平行にX軸移動テーブル 6a, 6bが設けられ、これらX軸移動テーブル6a, 6 b間を渡るようにしてY軸移動テーブル7が設けられ ている。このY軸移動テーブル7は、X軸移動テーブル 6a, 6bに設けられたサーボモータ8a, 8bの正転 や逆転の回転(正逆転)によりX軸方向に水平に搬送さ れる。Y軸移動テーブル7上には、サーボモータ10の 駆動によるボールねじ11の正逆転によってY軸方向に 移動する2軸移動テーブル9が設けられている。この2 軸移動テーブル9には、ペースト収納筒13や距離計1 4を支持固定した支持板15が設けられ、サーボモータ 12がこれらペースト収納筒13や距離計14をこの支 持板15に設けられた図示していないリニヤガイドの可 動部を介して2軸方向に移動させる。ペースト収納筒1 3は、このリニヤガイドの可動部に着脱自在に取り付け られている。また、架台1の天板には、図示していない 基板の位置合わせなどのための画像認識カメラ16a. 16 bが上方向を向けて設けられている。

【0014】架台1の内部には、サーボモータ8a,8b.10,12,24 (図示せず)などを制御する制御部17が設けられており、この制御部17はケーブル21を介してモニタ18やキーボード19,パソコン本体20と接続されており、かかる制御部17での各種処理のためのデータがキーボード19から入力され、画像認識カメラ16a,16bで捉えた画像や制御部17での処理状況がモニタ18で表示される。

【0015】また、キーボード19から入力されたデータなどは、パソコン本体20の外部記憶装置でフロッピディスクなどの記憶媒体に記憶保管される。

【0016】図2は図1に示すペースト収納筒13と距離計14との部分を拡大して示す斜視図であって、13 aはノズル、22は基板、23はペーストパターンであり、図1に対応する部分には同一符号を付けている。

【0017】同図において、距離計14は、その下端部

に三角形の切込部があって、その切込部に発光素子と複数の受光素子とが設けられている。ノズル13aは、距離計14の切込部の下部に位置付けられている。距離計14は、ノズル13aの先端部から基板22の表面(上面)までの距離を非接触の三角測法で計測する。即ち、上記三角形の切込部での片側の斜面に発光素子が設けられ、この発光素子から放射されたレーザ光しは基板22上の計測点Sで反射し、上記切込部の他方の斜面に設けられた複数の受光素子のいずれかで受光される。従って、レーザ光しはペースト収納筒13やノズル13aで適られることはない。

【0018】また、基板22上でのレーザ光しの計測点 Sとノズル13aの直下位置とは基板22上で僅かな距離 ΔX、ΔYだけずれるが、この僅かな距離 ΔX、ΔY 程度ずれた位置間では、基板22の表面のうねり(凹凸)に差がないので、距離計14の計測結果とノズル13aの先端部から基板22の表面までの距離との間に差は殆ど存在しない。従って、この距離計14の測定結果に基づいてサーボモータ12を制御することにより、基板22の表面のうねりに合わせてノズル13aの先端部から基板22の表面までの距離を所望値に維持する。

【0019】図3は図1に示した制御部17の構成やペースト収納筒13の空気圧の制御、基板22の制御を示すブロック図であって、17aはマイクロコンピュータ、17bはモータコントローラ、17c1、17c2はX1、X2軸ドライバ、17dはY軸ドライバ、17eはの軸ドライバ、17fはZ軸ドライバ、17gはデータ通信バス、17hは外部インターフェース、24はの軸移動テーブル5(図1)を駆動するサーボモータ、25~29はエンコーダ、30は正圧源、30aは正圧レギュレータ、31は負圧源、31aは負圧レギュレータ、32はバルブユニットであり、図1及び図2に対応する部分には同一符号をつけている。

【0020】同図において、制御部17は、マイクロコンピュータ17aやモータコントローラ17b、X、Y、Z、のの各軸ドライバ17c1~17f、画像認識カメラ16a、16bで得られる映像信号を処理する画像処理装置17i、キーボード19などとの間の信号伝送を行なう外部インターフェース17hを内蔵している。制御部17は、さらに、基板搬送コンベア2a、2bの駆動制御系を含むが、ここでは、図示を省略している

【0021】また、マイクロコンピュータ17aは、図示しないが、主演算部や後述するペーストの塗布描画を行なうための処理プログラムを格納したROM、主演算部での処理結果や外部インターフェース17h及びモータコントローラ17bからの入力データを格納するRAM、外部インターフェース17hやモータコントローラ17bとデータをやりとりする入出力部などを備えている。各サーボモータ8a、8b、10、12、24に

は、回転量を検出するエンコーダ25~29が設けられ ており、その検出結果をX, Y, Z, θの各軸ドライバ 17c1~17fに戻して位置制御を行なっている。 【0022】サーボモータ8a, 8b, 10がキーボー ド19から入力されてマイクロコンピュータ17aのR AMに格納されているデータに基いて正逆回転すること により、負圧源131から分配した負圧によって基板吸 着盤4(図1)に真空吸着された基板22に対し、ノズ ル13a (図2)が、2軸移動テーブル9 (図1)を介 して、X. Y軸方向に任意の距離を移動し、その移動 中、マイクロコンピュータ17aがバルブユニット32 を制御することにより、正圧源30から、正圧レギュレ ータ30aとバルブユニット32とを介して、ペースト 収納筒13に僅かな空気圧が印加され、ノズル13aの 先端部の吐出口からペーストが吐出されて基板22にペ ーストが所望のパターンが塗布される。この 2 軸移動デ ーブル9のX、Y軸方向への水平移動中に距離計14が ノズル13aと基板22との間の距離を計測し、この距 離を常に一定に維持するように、サーボモータ12が2 軸ドライバ17fで制御される。

【0023】また、ペースト塗布を行なわない待機状態では、マイクロコンピュータ17aがバルブユニット32を制御することにより、負圧レギュレータ31a及びバルブユニット32を介して負圧源31がペースト収納筒13に連通し、ノズル13aの吐出口から垂れ出たペーストをペースト収納筒13内に引き戻す。これにより、この吐出口からのペーストの液垂れを防止することができる。なお、図示しない画像認識カメラでこのノズル13aの吐出口を監視し、液垂れが生じたときのみ、負圧源31をペースト収納筒13に連通するようにしてもよい。

【0024】図4は図1に示したペースト塗布機での本発明によるペースト塗布方法の一実施形態を示すフローチャートである。

【0025】同図において、まず、ペースト塗布機に電源が投入されると(ステップ100)、その初期設定が実行される(ステップ200)。

【0026】この初期設定では、図1において、サーボモータ8a、8b,10により、2軸移動テーブル9をX、Y方向に移動させて所定の基準位置に位置決めし、ノズル13a(図2)を、そのペースト吐出口がペーストを吐出開始させる位置(即ち、ペースト壁布開始点)に位置付けられるように、所定の原点位置に設定するが、さらに、ペーストパターン措画の対象とする基板(以下、実基板という)に塗布措画する1以上のペーストパターン毎のデータ(以下、ペーストパターンデータといい、これは、実基板に塗布形成するペーストパターンを構成する一連の位置データからなる)と、このペーストパターン毎の塗布条件のデータとが入力される。これらデータの入力はキーボード19(図1)から行なわ

れ、入力されたこれらデータはマイクロコンピュータ1 7a (図3) に内蔵されたRAMに格納される。

【0027】この塗布条件は、いま、1つの実基板に塗 布描画するペーストパターンがm個(但し、mは1以上 の整数) あるとすると、図5に示すように、これらペー ストパターンをパターンNo. 1, 2,, mのペー ストパターンとし、夫々のペーストパターン毎に、実基 板に実際にペーストを塗布するときのこの実基板とノズ ルとの間の相対速度(これを塗布速度というが、特に、 この場合の塗布速度を初期設定塗布速度という)と、ノ ズルからのペースト吐出量を決めるペースト収納筒13 に印加される圧力(これを塗布圧力というが、特に、こ の場合の塗布圧力を初期設定塗布圧力という)と、基板 表面からのノズルの高さ (これを塗布高さというが、特 に、この場合の塗布高さを初期設定塗布高さという) と、ペースト吐出量を変更すべき位置 (ポイント)を表 わす変更ポイントなどの各データからなっている。な お、変更ポイントとしては、例えば、他の部分よりもペ ースト塗布量を多く(または少なく)して塗布パターン の高さを高く(または低く)したり、あるいは、パター ンの屈曲部のように、直線部と同じ高さにペーストを塗 布するために、ペーストの単位時間当りの吐出量を変化 させるようにしたポイントなどである。

【0029】また、塗布高さのデータは変更ポイントとそれ以外の位置とに夫々設定されるものであり、図5においては、塗布高さ1,2が設定されており、塗布高さ2が変更ポイント1~nでの塗布高さを規定するものとしている。勿論、変更ポイント間で塗布高さが異なる、即ち、或る変更ポイントから次の変更ポイントまでは同じ塗布高さが銀定される。この変更ポイント1~nの位置データは上記のペーストパターンデータのいずれかであり、ペーストパターン上の或る長さを持つ所定の領域で塗布高さを変更する場合には、その領域の位置データ全てが変更ポイントとして塗布条件に設定される。

【0030】なお、図5に図示しないが、塗布条件には、塗布パターン移動データや開始点座標。終点座標。 塗布したペーストパターンの計測位置データ、サックバック圧力なども設定される。

【0031】以上の初期設定(ステップ200)が終了すると、次に、実基板を基板吸着盤4(図1)に搭載して吸着保持させる(ステップ300)。この基板搭載では、基板搬送コンベア2a、2b(図1)によって実基板がX軸方向に基板吸着盤4の上方まで搬送され、図示しない昇降手段によってこれら基板搬送コンベア2a、2bを下降させることにより、実基板を基板吸着盤4に載置する。

 $\{0032\}$ 次に、基板予備位置決め(ステップ400)を行なう。この処理では、図1において、図示しない位置決めチャックにより、この実基板のX、Y方向の位置合わせが行なわれる。また、基板吸着盤4に載置された実基板の位置決め用マークを画像認識カメラ16a、16bで撮影し、位置決め用マークの重心位置を画像処理で求めて実基板の θ 方向での傾きを検出し、これに応じてサーボモータ24(図3)を駆動し、その θ 方向の傾きも補正する。

【0033】なお、ペースト収納筒13内のペースト残 量が少なくなり、ペーストパターンの塗布動作中にペーストが途切れる可能性がある場合には、前もってペースト収納筒13をノズル13aとともに交換するが、ノズル13aを交換したときには、その交換前と比較して、取付位置の位置ずれが生じて再現性が損なわれることもある。そこで、再現性を確保するために、実基板上のペーストを塗布しない箇所に交換した新たなノズル13aを用いて十字状にペーストを塗布し、この十字塗布パターンの交点の重心位置を画像処理で求め、この重心位置と実基板上の位置を画像処理で求め、この重心位置と実基板上の位置で成め用マークの重心位置との間の距離を算出して、これをノズル13aのペースト吐出口の位置ずれ量dx、dy(図2)とし、マイクロコンピュータ17aに内蔵のRAMに格納する。

【0034】以上が実基板に対する基板予備位置決め (ステップ400)であり、かかるノズル13aの位置 ずれ量dx, dyを用いて、後に行なうペーストパター ンの塗布描画時でのノズル13aの位置ずれを補正する ようにする。

【0035】次に、パターンNo.1のペーストパターンデータから順番にペーストのパターン塗布(ステップ500)を行なう。これを図6によって詳細に説明する。

【0036】同図において、まず、塗布条件の設定を行なう(ステップ501)。ここで、マイクロコンピュータ17a(図3)のRAMには、各ペーストパターンのペーストパターンデータと図5に示すような塗布条件が格納された記憶テーブルが設けられているが、このステップ501は、塗布描画しようとするペーストパターン

のペーストパターンデータと塗布条件とをこの記憶テーブルから読出して上記RAMの所定の領域に、マイクロコンピュータ17aで使用可能に、保存されるものである。ここでは、まず、パターンNo.1のペーストパターンを塗布描画するものであるから、この場合の塗布条件は、図5により、塗布速度=V1、塗布圧力=P1、塗布高さ1=H11、塗布高さ2=H12、変更ポイント座標1=(X11,Y11)、変更ポイント座標0=(X12,Y12)、……、変更ポイント座標n=(X1n,Y1n)が記憶テーブルから読み出されて上記RAMの所定の領域に、マイクロコンピュータ17aで使用可能に、保存される。

【0037】かかる塗布条件の設定が終わると、次に、 サーボモータ8a, 8b, 10 (図1) を駆動し、 描画 (塗布) 開始点上にノズル13 aを移動させる (ステッ プ502).この塗布開始位置にノズル13aの吐出口 を位置付けるために、2軸移動テーブル9(図1)を移 動させ、ノズル位置の比較・調整移動を行なうが、この ために、先の基板予備位置決め(図4のステップ40 0)で得られてマイクロコンピュータ17aのRAMに 格納されたノズル13aの位置ずれ量 dx, dyが、図 2に示したノズル13aの位置ずれ量の許容範囲△X, △Y内にあるか否かの判断を行なう。この位置すれ最 d x,d yが許容範囲内(即ち、△X≧d x及び△Y≧d y) であれば、そのままとし、許容範囲外 (即ち、△X <d \times または Δ Y<dy)であれば、この位置ずれ最々 x. dyを基にZ軸移動テーブル9を移動させてペース ト収納筒13を調整することにより、ノズル13aのペ 一スト吐出口と実基板の所望位置との間の位置ずれを解 消させ、ノズル13aを所望位置に初期位置決めする。 【0038】次に、サーボモータ12(図1)を駆動 し、ノズル13aの高さの設定を行なう(ステップ50 3). この設定される高さは、既に上記RAMの記憶テ ーブルから読み出されたパターンNo. 1の塗布条件に 設定されている塗布高さ1(具体的には、図5の高さH 11)であり、ノズル13aの吐出口から実基板の表面 までの距離がこの塗布高さ H 1 1 に設定される.

【0039】以上の処理が終了すると、次に、マイクロコンピュータ17aのRAMに格納されているペーストパターンデータに基づいてサーボモータ8a.8b.10(図1)が駆動され、これにより、ノズル13aのペースト吐出口が、実基板に対向した状態で、このペーストパターンデータに応じてX、Y方向に移動する(ステップ504)。また、バルブユニット32(図3)を介して正圧源30(図3)からペースト収納筒13に.正圧レギュレータ30a(図3)によって上記パターンNo.1の塗布条件での塗布圧力P1に調整された空気圧が印加されて、ノズル13aのペースト吐出口からペーストが吐出し始める(ステップ505)。このとき、ペーストが吐出し前にバルブユニット32(図3)を介し

て負圧源31(図3)からペースト収納筒13に負圧レギュレータ31a(図3)によってサックバック圧力に調整された負圧をわずかな時間印加して、ノズル13aのペースト吐出口に溜っているペーストを吸い込むと、始端部では、ペーストが溜ることなく塗布できる。

【0040】かかる塗布描画動作の開始とともに、マイクロコンピュータ17aは、距離計14からノズル13aのペースト吐出口と実基板の表面との間の距離の実測データを取り込んで実基板の表面のうわりを測定し、この測定値に応じてサーボモータ12を駆動することにより、図7(a)のように、実基板の表面からのノズル13aの設定高さが一定、即ち、上記のパターンNo.1の塗布条件での塗布高さ1になるように維持されて、ペーストパターンの塗布描画が行なわれる(ステップ506)。

【0041】また、マイクロコンピュータ17aは、実 基板上でのペーストバターンの塗布位置、即ち、座標をモータコントローラ17bから読み込み(ステップ507)、上記パターンNo.1の塗布条件での変更ポイント1(X11,Y11)に到達したか否かを判定する(ステップ508)。

【0042】この変更ポイント1に到達すると、実基板のペースト塗布面とノズルとの間の間隔を上記パターンNo.1の塗布条件の塗布高さ1=H11から塗布高さ2=H12に変更する(ステップ509)。これはサーボモータ12を駆動することによって行なわれる。図7(b)はこの変更ポイント1での状態を示すものであって、ここでは、H11>H12としている。変更ポイント1、2、……と続く場合には、この間、塗布高さ2ーH12が設定されながらペーストパターンの塗布描画が継続実行される。

【0043】 ここで、図7(b)に示すように、塗布高 さが低くなる変更ポイントでは、塗布速度及び塗布圧力 に変更がなければ、ノズル13aから吐出されたペース トは、実基板からの反作用の力を受けて吐出抵抗が大き くなるため、ノズル13aから吐出されにくくなり、途 布高さを下げた分ペーストの塗布量が減少することにな る。逆に、塗布高さ2=H12が塗布高さ1=H11よ りも高くなる場合には、ノズル13aが実基板から離れ るため、この実基板からの反作用力が小さくなって叶出 抵抗が小さくなり、このため、ペーストがノズル13a から出易くなってペーストの塗布量は増大することにな る。従って、塗布速度や塗布圧力、塗布高さ 1、塗布高 さ2などの値と変更ポイントの位置座標との関係を図5 に示した塗布条件として設定し、マイクロコンピュータ 17aのRAMでの記憶テーブルに格納しておくことに より、ペーストパターンの任意の位置でのペーストの途 布量、従って、実基板上でのペーストの塗布高さを調節 することができるようになる。

【0044】このようにしてペーストパターンの塗布描

画が進むが、ペーストパターンの塗布描画動作を継続す るか終了するかの判定が、塗布点がペーストパターンデ ータによって決まる塗布すべきペーストパターンの終端 であるかどうかの判断によって決定され(ステップ51 0)、終端でなければ、再び実基板の表面のうねりの測 定処理、即ち、塗布高さ制御 (ステップ506) に戻 り、次いで、座標確認(ステップ507)を実行する。 そして、変更ポイントに到達する度に塗布高さの変更を 行ない、変更ポイントnまで塗布高さの変更を行なう。 【0045】以下、上記の各工程を繰り返して、ペース トパターンの塗布終端に達すると、バルブユニット32 (図3)を介して正圧源30(図3)からペースト収納 筒13に、正圧レギュレータ30a (図3) によって塗 布圧力P1に調整された空気圧の印加を停止し、ノズル 13 aのペースト吐出口からのペースト吐出を停止する (ステップ511)。

【0046】かかるペーストパターンの塗布動作は、設定されたm個のペーストパターンデータの全てが終了するまで行なわれ(ステップ512)、最後のパターンNo. mのペーストパターンの終端に達すると、サーボモータ12を駆動してノズル13aを上昇させ、パターン描画動作、即ち、パターン塗布(ステップ500)を終了させる。

【0047】その後、図4において、基板排出(ステップ600)に進み、図1において、実基板の基板吸着盤4への吸着が解除され、基板搬送コンベア2a,2bを上昇させて実基板22を載置させ、その状態でこの基板搬送コンベア2a,2bにより装置外に排出する。そして、全工程が終了したか否かで判定する(ステップ700)。複数枚の実基板に同じペーストパターンデータを用いてペーストパターンを塗布描画する場合には、夫々の実基板に対して基板搭載(ステップ300)から繰り返される。そして、全ての実基板についてかかる一連の処理が終了すると、作業が全て終了(ステップ800)となる。

【0048】以上、本発明の一実施形態について説明したが、本発明はかかる実施形態のみに限定されるものではない。

【0049】即ち、上記実施形態では、ノズルを可動、 基板を固定としたが、ノズルを固定、基板を可動として もよい。

【0050】また、ペーストパターンの曲線部で塗布速度を遅くした場合にも、遅い範囲で塗布高さを低くしてペースト塗布量を減少させ、ペーストパターン全体にわたって単位時間当たりのペースト塗布量を一定にすることができ、所望形状のペーストパターンを高い精度で塗布形成することも可能となる。

【0051】さらに、塗布圧力を一定として塗布高さを高くし、これに合わせて塗布速度を高くすると、単位距離当たりのペースト塗布量は変化せず、形成されるペーストパターンの線幅は一定であるので、応答性の悪い塗布圧力の調整を描画の途中に行なうことなく、塗布高さと塗布速度との組み合わせから、高い信頼性を維持しつつ、所望のペーストパターンの塗布描画時間を短縮して生産性を高めることができる。

[0052]

【発明の効果】以上説明したように、本発明によれば、 急峻な塗布量調整が容易となり、所望形状のペーストパ ターンを精度良く形成することができる。

【図面の簡単な説明】

【図1】本発明によるペースト塗布機の一実施形態を示す斜視図である。

【図2】図1に示すペースト収納筒と距離計の部分を拡大して示す斜視図である。

【図3】図1に示した制御部の構成やベースト収納筒の 空気圧制御部および基板制御部の構成を示すブロック図 である。

【図4】図4は図1に示したペースト塗布機での本発明によるペースト塗布方法の一実施形態を示すフローチャートである。

【図5】図4でのステップ200で設定される塗布条件の一具体例を示す図である。

【図6】図4におけるステップ500の詳細を示すフローチャートである。

【図7】塗布圧力を同一としたときの塗布高さの変化に対するペースト塗布量の変化を示す図である。

【符号の説明】

13a…ノズル

22…基板

23…ペーストパターン

(31)

【図2】

[図 |]

[図21

【図5】

[図5]

パタ -ン No.	途布速度	绘布压力	塗布 高さ I	途布 高さ 2	変更 ポイント (変更 ポイント2	変更 ポイントn
1	VI	19	HII	HI2	XII,YII	X12,Y12	XIn,YIa
2	V2	P2	H21	1122	X21,Y21	X22,Y22	X2n,Y2n
3	V3	P3	151	H32	X31,Y31	X32,Y32	X3n,Y3n
	Vin	?m	Hml	Hm2	Xml,Yml	Xm2,Ym2	Xmn,Ymn

【図6】

图 6]

フロントページの続き

(72)発明者 米田 福男

茨城県竜ケ崎市向陽台5丁目2番 日立テクノエンジニアリング株式会社開発研究所内

(72)発明者 三階 春夫

茨城県竜ケ崎市向陽台5丁目2番 日立テクノエンジニアリング株式会社開発研究所内

Fターム(参考) 4D075 AA02 AA37 AA38 BB99X CA47 DA06 DC18 EA35 4F041 AA05 AA12 BA38