LUCAS PEINADO BRUSCATO - 103170

DMA - IMECC - UNICAMP

18/09/2013

MS 629: Métodos Computacionais de Otimizao

PROVA UM

Prof. Roberto Andreani

Questão 1: 2pts Encontre e classifique os pontos estacionários da função

$$f(x_1, x_2) = x^4 + 2x^2y^2 + y^4 + 2x^2 - 2y^2 + 1.$$

Questão 2: 3pts Sejam $f: \mathbb{R}^n \to \mathbb{R}, f \in \mathbb{C}^2$,

- (a) Desenhe as curvas de nível de uma função diferenciável definida em \mathbb{R}^2 , ilustrando a seguinte situação:, d é uma direção de descida a partir do ponto x e y é o minimizador da função f na semi-reta gerada por d a partir de x. Desenhe os gradientes de f em x e y supondo que eles são diferentes de zero.
- (b) Na condição de Armijo para direções de descida \boldsymbol{d}

$$f(x + \lambda d) \le f(x) + \alpha \lambda \nabla f(x)^T d$$

Explique porque não é razoável tomar α da condição de Armijo igual a 1.

Questão 3: 1.5pts Seja $f(x) = \frac{1}{2}x^TAx - b^Tx$ onde $A \in \mathbb{R}^{n \times n}$ Simétrica definida positiva e $x \in \mathbb{R}^n$, e sejam L_1 e L_2 duas retas cujo vetor diretor das duas d, sejam x_1 e x_2 os minimizadores de f em L_1 e L_2 respectivamente. Prove que $Ax_1 - Ax_2$ e ortogonal a d

Questão 4: 3.5pts Seja $f(x) = x_1^2 + (x_1 - x_2)^2$, $x^0 = (1, 2)^T$ e $x^1 = x^0 + \lambda d \operatorname{com} \lambda \ge 0$. A direção d tem que satisfazer

- 1. $||d|| \ge ||\nabla f(x^0)||$,
- 2. $\nabla f(x^0)^T d \le -0.1 ||d|| ||\nabla f(x^0)||,$

e o passo λ tem que satisfazer $f(x^1) \leq f(x^0) + 0.25 \lambda \nabla f(x^0)^T d$

- (a) Verifique que $d = -\nabla f(x^0)$ e $\lambda = 0.5$ podem ser utilizados para calcular x^1 .
- (b) Para $d = -\nabla f(x^0)$ qual é o valor máximo de λ que pode ser utilizado.
- (c) Verifique que a direção de Newton é aceitável e ache o intervalo no qual λ satisfaz o critério de acima.

As respostas não justificadas não serão consideradas

MT601

2º Semestre de 2013

Prof.: Roberto Andreani

18/11/2013

Nome: LUCAS PEINADO BRUSCATO

RA: 103170

Segunda Prova

1. Dado o seguinte problema

Min
$$\frac{1}{2}((x-4)^2 + (y-6)^2)$$

s.a.
$$\begin{cases} x+y \le 6\\ 0 \le x \le 4\\ 0 \le y \le 4 \end{cases}$$

- (a) Achar a solução grafica
- (b) Verificar as condições de otimalidade de primeiro ordem no ótimo.
- (c) Reaolver aplicando o método das restrições ativas, a partir de $(x_0, y_0) = (2, 0)$.

2. Dado o seguinte problema

Min
$$x^2 + 4y^2$$
 s.a. $2x + y = 2$

- (a) Achar a solução do problema aplicando as condições de otimalidade.
- (b) penalizar o problema é achar $x(\rho)$ otimo do problema penalizado
- (c) mostrar que $x(\rho)$ converge ao otimo quando ρ tende a ∞
- 3. Dadas duas restrições lineares de desigualdade em \mathbb{R}^2 , representar com graficos, usando curvas de nivel e vetores gradientes, as seguintes situções:
 - (a) As duas restrições são ativas no ponto x, o qual é um minimizador local regular.
 - (b) As duas restrições são ativas em x, x é um ponto regular, mas não se cumprem as condiciones de otimalidade de primeira ordem, neste caso mostrar no desenho todas as direções fatíveis de descida
 - (c) x é ótimo, mas não é regular.