Задание 1

Приведем доказательство пункта 2, т.к. из него следует и первый:

2) Следует доказать, что группа порядка 15 является абелевой.

Докажем, что центр группы не тривиален (от противного):

Пусть он тривиален. Тогда $\exists x,y: 3x+5y+1=15 \Rightarrow x=3, y=1$ – единственное решение из натуральных чисел. Получается, у нас есть 3 орбиты из трех элементов и одна из пяти. То есть 5 элементов группы коммутирует с тремя элементами порядка 3.

Однако, если какой-то элемент g коммутирует с тремя элементами, то и g^2 коммутирует с тремя элементами, откуда следует четность количества таких элементов.

Значит, центр группы нетривиален и элемент порядка 5 коммутирует с каким-то элементом порядка 3. Их произведение равно 15, из чего следует, что группа циклическая. Кроме того, подгруппа H порядка 5 лежит в центре. Но поскольку факторгруппа неабелевой группы по центру не может быть циклической, то мы получаем противоречие.

Тогда получается, что центр не совпадает с H, откуда следует, что он равен самой группе и в таком случае группа G абелева.

Задание 2

Нам необходимо найти различные раскраски $f:\{a,b,c,d\} \to \{1,2\}$ Квадрат мы можем повернуть на $0,\frac{\phi}{2},\phi$ и $\frac{3\phi}{2}$.

S_4	кол-во
()	1
(2)	2
(2)(2)	1
(4)	1

Всего возможных раскрасок – $2^4 = 16$

Порядок группы квадрата |G| = 4.

Тогда по Лемме Бернсайда количество раскрасок $r=\frac{2^4\cdot 1+1\cdot 2^1+2^1\cdot 2+2^1\cdot 1}{4}=\frac{24}{4}=6$

Ответ: 6 раскрасок