ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 12 gennaio 2017

Esercizio A

$R_1 = 100 \ \Omega$ $R_2 = 100 \ k\Omega$ $R_4 = 500 \ \Omega$ $R_5 = 4 \ k\Omega$ $R_6 = 2 \ k\Omega$ $R_7 = 35 \ k\Omega$	$R_{10} = 3 \text{ k}\Omega$ $R_{11} = 3.5 \text{ k}\Omega$ $R_{12} = 50 \Omega$ $R_{13} = 50 \text{ k}\Omega$ $C_1 = 1 \text{ nF}$ $C_2 = 500 \text{ nF}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$1 \text{ V}_{\text{c}}(^{+}) \qquad \text{R}_{\text{s}} \leq \qquad \qquad$
$R_8 = 10 \text{ k}\Omega$	C ₃ = 4.7 nF	
$R_9 = 29 \text{ k}\Omega$	V _{CC} = 18 V	

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.5 mA/V² e $V_T=1$ V; Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₃ in modo che, in condizioni di riposo, la tensione sul collettore di Q₂ sia 12 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₁. (R: R₃ = 26393 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 1.74$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{z1} =0 Hz; f_{p1} =7585 Hz; f_{z2} =10.97 Hz; f_{p2} =11.27 Hz; f_{z3} = 0 Hz; f_{p3} =638 Hz;)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{\overline{A}D}(\overline{B}C + \overline{C}E) + \overline{(C+D)}(\overline{B} + \overline{E}) + AC(B+E)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 400 \Omega$	$R_5 = 600 \Omega$
$R_2 = 1 \text{ k}\Omega$	$R_6 = 2 k\Omega$
$R_3 = 1 \text{ k}\Omega$	C = 470 nF
$R_4 = 2.5 \; k\Omega$	$V_{CC} = 6 \text{ V}$

Il circuito IC_1 è un NE555 alimentato a $V_{CC}=6$ V; Q_1 ha una $R_{on}=0$ e $V_T=1$ V; l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f=3516 Hz)