Confidence Intervals

It's What's in Between

James Hunter

7 November 2019

jameshunterbr@gmail.com

Introduction

First, a Step Backward

Theory of Confidence Intervals

An Example Using an Invented Data Set

Constructing Confidence Intervals

Conclusion

How to Deal with the CHIKV/DENV Problem

Bioinformatics at EPM/UNIFESP

Introduction

- Last year: **p-values**
 - · Use and abuse
 - Is α = 0.05 a reasonable standard to use?
- · This year: confidence intervals
 - · Define them
 - · Show how to calculate a simple CI
 - · Evaluate their use and abuse

First, a Step Backward

Description vs. Inference

- · We can do 2 things with data
 - · Describe it
 - · Draw inferences about populations based on it
- The data we normally collect represents a **sample** of a population
 - a subgroup
 - · We can describe this
- To draw inferences, we need to know what the population is we want to study
- · A distinction with a very great difference
 - That most people forget or never learned

Example coming from the ever popular "Reviewer #2"

- · A study of co-infection of Chikungunya and Dengue in Tocantins
 - Textual description of how many patients were in each of the 4 groups being studied
 - · CHIK mono infected
 - · DENV-1 mono infected
 - · DENV-2 mono infected
 - Coinfected

Data Involved

bank	n	percent
CHIKV	47	46.08%
DENV-1	28	27.45%
DENV-2	22	21.57%
Coinfect	5	4.90%
TOTAL	102	-

Reviewer 2 Gets in the Act

Prevalence rates of Chikungunya virus infection and Coinfection with Dengue virus should be estimate [sic] using CI 95%.

- Prevalence rates??
 - What's the base for the prevalence?
- CI assumes we are making an inference about some population which population?
- The numbers as a description without CI's or p-values were just fine.
- Problem extends to most of the Table 1's we see in papers
 - Simple descriptions of the sample are pushed by editors and reviewers into meaningless p-values and confidence intervals

Theory of Confidence Intervals

Some Basic Definitions

· Population Parameter:

- A summary measure representing the true population value for the measure
- Example: population mean (μ) , a measure of the central tendency of a continuous variable

· Sample Statistic:

- A point estimate of the population parameter based on the values of a sample from the population
- Example: sample mean (\bar{x}) , a number calculated from the values of the sample under study

· Standard Frror

- · The standard deviation of the sampling distribution
- Measure of uncertainty associated with point estimate
- i.e., the standard deviation of all the possible means of the distribution of values in our sample

Objective of Using These Quantities

- Have our point estimate (sample statistic) exactly match the population parameter
- · Not going to happen
 - Except in extremely rare random (i.e., lucky) cases

What is a Confidence Interval?

- · "A plausible range of values for the population parameter"
 - Diez, Barr, Cetinkaya-Rundel, OpenIntro Statistics (and others who have copied from their open source work)

Fishing Metaphor (credit to Diez, Barr, Cetinkaya-Rundel)

- Trying to hit the population parameter with a point estimate (sample statistic) is like fishing with a spear
 - · Very unlikely to hit the target
- Using a confidence interval is like fishing with a net
 - Much more likely to capture the fish (population parameter value) in the range that the interval covers

Better than a p-value?

- · Expressed in the same units as the statistic and the parameter
 - · Easier to interpret than a p-value
- · Represents a range of values in which the parameter could fall
 - · Shows a bit of humility about your powers of inference

An Example Using an Invented Data Set

- Objective: replicate process of looking at all potential samples of a population
- · We have 50 coins and we know the year they were minted
- · Add a variable (yrs) that is number of years since minting of the coin

##	#	Α	tibb	ole:	6	X	3
##			ID	yea	ar		yrs
##		<j< td=""><td>int></td><td><db< td=""><td>1></td><td><0</td><td>lbl></td></db<></td></j<>	int>	<db< td=""><td>1></td><td><0</td><td>lbl></td></db<>	1>	<0	lbl>
##	1		1	200)2		17
##	2		2	198	36		33
##	3		3	20	17		2
##	4		4	198	38		31
##	5		5	200	38		11
##	6		6	198	33		36

Show Statistics for This Sample

```
## Descriptive Statistics
## ps$yrs
## N: 50
##
##
                       yrs
##
                     23.56
##
             Mean
##
          Std.Dev
                     15.18
##
              Min
                      1.00
               Q1
                     11.00
##
           Median
                     23.50
##
##
               Q3
                     36.00
##
              Max
                     57.00
```

Histogram of Data

Bootstrap Resampling

- We can't go out and get the mint year of all the coins in the U.S.
- However, we can take many, many samples of the coins we do know about
- · Bootstrapping
- Technique invented at Stanford in 1980's
- Proofs that effectively imitates drawing samples of unknown coins
- · We are going to make 1,000 resamples of our set of coins
- Sampling will be done with replacement
 - This means that when we draw a coin, we put it back so it can be drawn again
 - · Coins can repeat within a given sample

One Resample

##	# A	tibble: 1	L5 x 4		
##	# G	roups: 1	replica	ate [1]	
##		replicate	ID	year	yrs
##		<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>
##	1	1	49	2006	13
##	2	1	37	1962	57
##	3	1	1	2002	17
##	4	1	25	1979	40
##	5	1	10	2000	19
##	6	1	36	2015	4
##	7	1	18	1996	23
##	8	1	49	2006	13
##	9	1	47	1982	37
##	10	1	24	2017	2
##	11	1	7	2008	11
##	12	1	36	2015	4
##	13	1	25	1979	40
##	14	1	37	1962	57
##	15	1	46	2017	2

Statistics for Our Resample Compared to Statistics for Original Sample

```
## Descriptive Statistics
## ps$yrs
## N: 50
##
##
                     yrs
##
            Mean
                   23.56
##
         Std.Dev
                  15.18
## Descriptive Statistics
## resamp1$yrs
## N: 50
##
##
                     yrs
##
            Mean
                   24.32
         Std.Dev
                  17.06
##
```

Differences among 6 Samples

Do the full 1,000 Resamples

```
## # A tibble: 1,000 x 2
##
     replicate stat
##
         <int> <dbl>
             1 24.2
##
##
             2 22.6
             3 21.0
##
##
             4 24.0
##
             5 22.9
##
             6 26.6
             7 21.5
##
##
             8 26.3
##
             9
               22.1
## 10
            10 22.1
## # ... with 990 more rows
```

Statistics for 1,000 Resamples

```
## Descriptive Statistics
## resamples$stat
## N: 1000
##
##
                     stat
##
           Mean
                    23.61
                     2.18
##
        Std.Dev
##
            Min
                    16.02
             Q1
                    22.18
##
##
         Median
                    23.59
##
             QЗ
                    25.10
##
            Max
                    30.98
        N.Valid
                  1000.00
##
```

Histogram of Means of Resamples

Comparison of Means

- Mean of Sample of 50 Coins = 23.56
- Means of 1,000 Means of Samples = 23.61

Constructing Confidence Intervals

We say we want a 95% confidence interval - which means ??

95% of all the confidence intervals we can create will have the true population mean between the interval's lower and upper limits

· How to determine the upper and lower limits that will enable this

Standard Error Method of Computing Confidence Interval

$$\bar{x} \pm SE * multiplier$$

- · Information we need
- \bar{x} : mean from the *original* sample
- · SE: standard deviation of mean of means of bootstrap samples
- multiplier: appropriate percentiles of standard normal distribution to cover 95% of the resamples

Calculation of Confidence Interval

- $\bar{x} = 23.56$
- SE = 2.179
- multiplier = approximately 2 (1.96 exactly)

```
lower_ci <- x_bar - (SE * 1.96)
upper_ci <- x_bar + (SE * 1.96)
```

· Confidence Interval is 19.29 to 27.83

Visualize Confidence Interval

Conclusion

- More flexible, interpretable tool to report inferences about population parameters
- Needs to be applied in situations where inference is being undertaken rather than simple description
 - Inference implies we are concerned about the nature of the distribution of values and where our sample data sit in an overall distribution
 - · Description is simply describing what you measured

How to Deal with the CHIKV/DENV Problem

bank	n	percent
CHIKV	47	46.08%
DENV-1	28	27.45%
DENV-2	22	21.57%
Coinfect	5	4.90%
TOTAL	102	-

- To satisfy Reviewer 2, we can treat each of the categories as a proportion of the number of cases, which is similar to binomial (Yes/No, True/False, Heads/Tails) problems
- Use the Binomial distribution, which calculates proportions and translate the results back to numbers

The Final Table

##		bank	cases	${\tt total cases}$	${\tt proportion}$	low_num	hi_num
##	1	Chik	47	102	0.46078431	37.1331556	56.866844
##	2	coinf	5	102	0.04901961	0.7261539	9.273846
##	3	DENV-1	28	102	0.27450980	19.1662952	36.833705
##	4	DENV-2	22	102	0.21568627	13.8585017	30.141498

Bioinformatics at EPM/UNIFESP

- · Center of Bioinformatics is in process of being established
- · Desire to meet with as many laboratories as possible to find out
 - · What kinds of techniques you are using
 - · What you would like to be doing with data
 - · What your frustrations with computation and biostatistics are
- My post-doc is focused this year on assisting in getting the Center up and running