EGZAMIN Z AISD. NR 3.

IIUWr. II rok informatyki. 16.04.2013

Numer indeksu:

1. Dowodząc dolną granicę $\lceil 3/2n-2 \rceil$ na liczbę porównań, jaką musi wykonać każdy algorytm znajdujący jednocześnie minimum i maksimum w zbiorze S, używaliśmy gry adwersarza z algorytmem. Podaj najistotnejsze elementy strategii adwersarza i uzasadnij, dlaczego prowadzi ona do jego zwycięstwa.

2. Podany na wykładzie algorytm sprawdzający izomorfizm drzew (z korzeniami) korzysta z algorytmu sortowania leksykograficznego ciągów (lub inaczej słów) niekoniecznie jednakowej długości. Jaki będzie rozmiar alfabetu, nad którym są te słowa, gdy drzewa izomorficzne są do poniższego drzewa?

indeksu	

3. Podaj dowód tego, że podany na wykładzie algorytm sortowania ciągów jednakowej długości działa poprawnie.

4. Rozważmy drzewa trzyarne (tj. takie, w których każdy wierzchołek wewnętrzny ma co najwyżej trzech synów), w których zachodzi następujący warunek zrównoważenia: dla każdego wierzchołka wewnętrznego wysokości drzew zakrzenionych w jego synach różnią się o co najwyżej 1. Oblicz sensowne oszacowanie na wysokość takich drzew.

5. Zapisz w pseudokodzie algorytm Hoare'a znajdowania k-tego elementu w zbiorze. Jaki jest oczekiwany czas działania tego algorytmu. Dla przypomnienia: algorytm Hoare'a oparty jest na podobnych ideach co Quicksort.

6. Uzasadnij fakt, że czas algorytmu magicznych trójek znajdowana mediany nie jest liniowy (co oznacza, że trójki wcale nie są magiczne:-).

7. Wykaż, że zachłany algorytm wydawania reszty, gdy dysponujemy monetami $2^0, 2^1, 2^2, 2^3, \dots$ daje rozwiązanie optymalne.

8. Rozważ następującą wersją problemu wydawania reszty: dla danych liczb naturalnych a, b ($a \le b$) chcemy przedstawić ułamek $\frac{a}{b}$ jako sumę różnych ułamków o licznikach równych 1. Udowodnij, że algorytm zachłanny zawsze daje rozwiązanie.