1 Гомоморфизмы, гомоморфные образы, конгруэнтности, фактор-алгебры

Определение 1.1 (Гомоморфизм). Отображение $f: G_1 \to G_2$ называется гомоморфизмом групп $(G_1, *), (G_2, \times),$ если оно одну групповую операцию переводит в другую: $f(a*b) = f(a) \times f(b), a, b \in G_1$.

Следствие 1.2. Изоморфизм и вложение - частный случай изоморфизма

Определение 1.3 (Единичаня алгебра). Единичная алгебра - алгебра, содержащая всего один элемент. Σ - сигнатура, e - единственный элемент, $f^{(n)}(e,...,e)=e$

Пример 1.4 (Пример единичной алгебры). $(\{0\}; +, \cdot), (\{1\}; \cdot)$

Следствие 1.5. Все единичные алгебры одной сигнатуры изоморфны между собой

Доказательство. Пусть $\varepsilon_1 = (\{e_1\}; I), \, \varepsilon_2 = (\{e_2\}; J), \,$ тогда

$$h(f^{\varepsilon_1}(e_1,...,e_1)) = h(e_1) = e_2$$

$$f^{\varepsilon_2}(h(e_1),...,h(e_1)) = f^{\varepsilon_2}(e_2,...,e_2) = e_2$$

следовательно

$$h(f^{\varepsilon_1}(e_1,...,e_1)) = f^{\varepsilon_2}(h(e_1),...,h(e_1))$$

Теорема 1.6. Из любой алгебры существует изоморфизм в единичную алгебру и только один

Доказательство. Пусть $\mathcal{A}=(A,I),\, \varepsilon=(\{e\},J)$ и $h:\mathcal{A}\to \varepsilon$ определено так: h(a)=e, для всех $a\in A.$ Тогда

$$h(f^{\mathcal{A}}(a_1,...,a_n)) = e$$

$$f^{\varepsilon}(h(a_1),...,h(a_n)) = f^{\varepsilon}(e,...,e) = e$$

следовательно

$$h(f^{\mathcal{A}}(a_1, ..., a_n)) = f^{\varepsilon}(h(a_1), ..., h(a_n))$$

 \Box

Теорема 1.7. Пусть $h: \mathcal{A} \to \mathcal{B}$ - гомоморфизм, $t(x_1,...,x_n)$ - терм, $a_1,...,a_n \in \mathcal{A}$, тогда $h(t^{\mathcal{A}}(a_1,...,a_n)) = t^{\mathcal{B}}(h(a_1),...,h(a_n))$

 \Box

Доказательство. Так же как для изоморфизма

Теорема 1.8. Пусть $h: \mathcal{A} \to \mathcal{B}$ - гомоморфизм, тогда образ множества A при отображении h образует подалгебру в \mathcal{B}

Доказательство. Так же как для вложения

Определение 1.9 (Эпиморфизм). сюръективный гомоморфизм

Пример 1.10 (Пример на Эпиморфизм).

Определение 1.11 (Эндоморфизм). гомоморфизм в само множество

Пример 1.12 (Пример на Эндоморфизм).

Определение 1.13 (Автоморфизм). взаимно однозначный гомоморфизм в само множество

Пример 1.14 (Пример на Автоморфизм).

Определение 1.15 (Отношение эквивалентности). пока нет

Определение 1.16 (Класс эквивалентности). пока нет

Теорема 1.17. Любое отношение эквивалентности получается из функции

ДОКАЗАТЕЛЬСТВО. Пусть \equiv - отношение эквивалентности на $A \neq \emptyset$. B = A = -1 множество классов эквивалентности. Для $a \in A$, $h(a) = \{b \in A : a \equiv b\}$. Пусть $R(a,b) \Leftrightarrow h(a) = h(b)$, тогда

$$R(a,b) \Leftrightarrow h(a) = h(b) \Leftrightarrow \{c \in A : a \equiv c\} = \{c \in A : b \equiv c\}$$

Из этого следует

$$b \in \{c \in A : a \equiv c\} \Rightarrow b \equiv a$$

Следовательно

$$a \equiv b \Rightarrow h(a) = h(b) \Rightarrow R(a,b)$$

Любое отношение эквивалентности можно получить таким образом

Теорема 1.18. $h:A\to B$ - гомоморфизм, тогда $x\equiv y\Leftrightarrow h(x)=h(y)$ - отношение эквивалентности.

ДОКАЗАТЕЛЬСТВО. Пусть $f^{(n)}$ - сигнаутрная операция, $x_1,...,x_n,y_1,...,y_n \in A$ и $x_1 \equiv y_1,...,x_n \equiv y_n$, тогда

$$h(f^{A}(x_{1},...,x_{n})) = f^{B}(h(x_{1}),...,h(x_{n}))$$
$$h(f^{A}(y_{1},...,y_{n})) = f^{B}(h(y_{1}),...,h(y_{n}))$$

Так как $x_i \equiv y_i \Leftrightarrow h(x_i) = h(y_i)$, то

$$h(f^A(x_1,...,x_n)) = h(f^A(y_1,...,y_n)) \Leftrightarrow f^A(x_1,...,x_n) \equiv f^A(y_1,...,y_n)$$

Определение 1.19 (Конгруэнтность). \mathcal{A} - алгебра с сигнатурой Σ , Отношение \equiv - конгруэнтность в \mathcal{A} , если

- $1. \equiv$ эквивалентность
- 2. если $x_1,...,x_n,y_1,...,y_n\in\mathcal{A},\ f^{(n)}\in\Sigma,\ x_1\equiv y_1,...,x_n\equiv y_n,$ то $f^A(x_1,...,x_n)\equiv f^A(y_1,...,y_n)$

Следствие 1.20. Пусть $h:A\to B$ - гомоморфизм, то $x\equiv y\Leftrightarrow h(a)=h(b)$ - отношение конгруэнтности на A

Определение 1.21 (Фактор-алгебра). Пусть \mathcal{A} - алгебра с сигнатурой Σ , Отношение \equiv - конгруэнтность в \mathcal{A} , тогда фактор-алгебра - $B=\mathcal{A}/\equiv$ - множество классов эквивалентности по отношению к конгруэнтности

Теорема 1.22. Для каждого отношения конгруэнтности существует порождающий его гомоморфизм

Доказательство. Пусть ${\cal A}$ - алгебра с сигнатурой Σ , Отношение \equiv - конгруэнтность в ${\cal A}$, ${\cal B}={\cal A}/_{\equiv}$ - множество классов эквивалентности.

 $f^{\mathcal{B}}(b_1,...,b_n) = b \Leftrightarrow f^{\mathcal{A}}(a_1,...,a_n) = a$ для некоторых $a_1 \in b_1,...,a_n \in b_n, a \in b$. Докажем что от выбора $a_1,...,a_n$ значение $f^{\mathcal{B}}(b_1,...,b_n)$ не зависит.

Предположим что зависит, выберем значения $a'_1,...,a'_n$, такие что $a'_1 \in b_1,...,a'_n \in b_n$, тогда $f^{\mathcal{A}}(a'_1,...,a'_n) = a' \notin b$, но так как $a_1 \equiv a'_1,...,a_n \equiv a'_n$ и \equiv - конгруэнтность, то $a \equiv a'$, но при этом $a' \notin b$. Противоречие.

Возьмём $h: \mathcal{A} \to \mathcal{B}, h(a) =$ класс эквивалентности a

$$h(a) = h(f^{\mathcal{A}}(a_1,...,a_n)) = f^{\mathcal{B}}(h(a_1),...,h(a_n)) = h(a)$$
 $f^{\mathcal{A}}(a_1,...,a_n) = a$, $h(a) = b$, к чему всё это

Теорема 1.23. Пусть $h:\mathcal{A}\to\mathcal{B}$ - эпиморфизм, \equiv - отношение кон энтности для h , тогда $\mathcal{A}/_{\equiv}\simeq\mathcal{B}$	нгру-
Доказательство. не уверен что вообще нужно	
Следствие 1.24. $h:\mathcal{A}\to\mathcal{B}_1$ и $h:\mathcal{A}\to\mathcal{B}_2$ - эпиморфзмы, если \equiv_1 совпадают, то $\mathcal{B}_1\simeq\mathcal{B}_2$	и ≡2
Доказательство. не уверен что вообще нужно	