Epsilon s	shittuckery				
t. 1 (c)) definition or	C [0.013-			
	if for ea	to move 5 > 0 there	exists an	$n \ge 1$ $(n \in M)$	uch
hat that	on - L < 4		S(1) (1)	$n \geq N (n \in N)$	SC-IC
E-8 defin					
	Lif for eve	4 + (2) - 1 < 6	exists a	8>0 such tha	‡
17 0	$< x-a < \delta$, the	h f(x) - 1 = 1			
Monotone	Convergence	Theorem			
		monotoric and	ti behaod	converges	
	7+0				
Ex. You	$a_{\mu} = \frac{1}{5}$	converges, if	o ₁ = .		
Inductive	mpothosis;	$a_n \leq a_{n+1} \leq 5$			
=> 8=7+a,	- 1 - 90+1 -	12			
8 7 1 2 €	an = 7tant	= <u>L</u> 5			
8		12			
$\Rightarrow \frac{0}{5} < \alpha_n$	41 < 0,42 <	<u>11</u>			
By induct	tion, this is	the for all	u e lh '		
To Kan I	the boses	o lockby o	- 1 ·		
To Fma	the bounds,	substitute a	- an = L;		
a, =)	-, 7+an =	7+1 =			
	5	5			

Limit Solving St	trategies	
in sinx = 0	$\lim_{x\to\infty}\frac{x}{\cos x}=0 \lim_{x\to\infty}\frac{x}{x}=0 (b>0)$	
$\lim_{x\to \infty} \frac{x^p}{e^x} = 0 (p)$	0) I'm Sinx = 1 I'm COSX DNE	
L'Hopital's rule ound only works	only applies to 0 and = indeterminate forms if both numerator and denominator exist near limit	
Minima/Maxima		
local min/max - v	min/max point over some subinterval. CANNOT be endpoint.	
	min/max point over entire interval. Can be endpoint.	
To got global min	n/max, check (Ps (f'(x)=0) and engloints	
Taylor Polynomials		
	$\frac{1}{2}\left(x-a\right)+\frac{f''(a)}{2!}\left(x-a\right)^{2}+\cdots+\frac{f''(a)}{n!}\left(x-a\right)^{n}$	
= \frac{r}{k!} \left(\alpha) \left(7)	(-a)*	
Taylor Remainder		
$R_{n,\alpha}(x) = \xi(x) - 7$	$T_{n,a}(x)$ ener = $ R_{n,a}(x) $	

Taylor's Theorem				
Taylor's Theorem There exists a point c	between x	and	a Sedn	thet
$R_{n,\alpha}(x) = \frac{F(n+n)(c)}{(n+1)!} (x-\alpha)^{n+1}$				
Ex. Approximate VI.T.				
enor = $ f(x) - \lfloor f(x) \rfloor = \frac{M}{2}$	x-a)2			
Bounded Decivotive Theore				
If f is differentiable	on [a, b]	and	m = F' (x') = M, then
$f(\alpha) + m(x - \alpha) \leq f(x) \leq$	F(a) + M(x	(-a)		
tagent the with lover slope	targest Im	9000		
/ * (a) + M(x-a)				
F(a) + ,	nlx-m)			
When Finding MAS, get him	f(x) AND	I'm Flx) (- ds))[!]
W X 2		842-02	don't f	

