

Inner Product Space

Linear Algebra

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu

Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

1

Overview

Linear Form

What are Linear Functions?

- \Box $f: \mathbb{R}^n \to \mathbb{R}$ means that f is a function that maps real n-vectors to real numbers
- \Box f(x) is the value of function f at x (x is referred to as the argument of the function).

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is linear if it satisfies the following two properties:

- \square Additivity: For any n-vector x and y, f(x+y)=f(x)+f(y)
- \square Homogeneity: For any n-vector x and any scalar $\alpha \in R$: $f(\alpha x) = \alpha f(x)$

Superposition property:

Definition

Superposition property:

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

Note

☐ A function that satisfies the superposition property is called linear

Homogeneity and Additivity

Definition

☐ Additivity:

For any *n*-vector x and y, f(x + y) = f(x) + f(y)

■ Homogeneity:

For any *n*-vector *x* and any scalar $\alpha \in R$: $f(\alpha x) = \alpha f(x)$

Counterexample:

$$f(a+\sqrt{5}b) \rightarrow a+b+\sqrt{5}b$$

What are Linear Functions?

☐ If a function f is linear, superposition extends to linear combinations of any number of vectors:

$$f(\alpha_1 x_1 + \dots + \alpha_k x_k) = \alpha_1 f(x_1) + \dots + \alpha_k f(x_k)$$

Inner product is Linear Function?

Theorem

A function defined as the inner product of its argument with some fixed vector is linear.

Proof?

$$f(x) = a^T x = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

What are Linear Functions?

Theorem

If a function is linear, then it can be expressed as the inner product of its argument with some fixed vector.

Proof?

What are Linear Functions?

Theorem

The representation of a linear function f as $f(x) = a^T x$ is unique, which means that there is only one vector a for which $f(x) = a^T x$ holds for all x.

Proof?

Linear Form Examples

Example

- Is average a linear function?
- Is maximum a linear function?

Bilinear Form

Bilinear Form over a real vector space

Definition

Suppose V and W are vector spaces over the same field \mathbb{F} . Then a function $f: V \times W \to \mathbb{F}$ is called a **bilinear form** if it satisfies the following properties:

- a) It is linear in its first argument:
 - i. $f(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = f(\mathbf{v_1}, \mathbf{w}) + f(\mathbf{v_2}, \mathbf{w})$ and
 - ii. $f(c\mathbf{v_1}, \mathbf{w}) = cf(\mathbf{v_1}, \mathbf{w})$ for all $c \in \mathbb{F}, \mathbf{v_1}, \mathbf{v_2} \in V$, and $\mathbf{w} \in W$.
- b) It is linear in its second argument:
 - i. $f(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = f(\mathbf{v}, \mathbf{w_1}) + f(\mathbf{v}, \mathbf{w_2})$ and
 - ii. $f(\mathbf{v}, c\mathbf{w_1}) = cf(\mathbf{v}, \mathbf{w_1})$ for all $c \in \mathbb{F}, \mathbf{v} \in V$, and $\mathbf{w_1}, \mathbf{w_2} \in W$.

Bilinear Form

Note

Let V be a vector space over a field \mathbb{F} . Then the **dual** of V, denoted by V^* , is the vector space consisting of all linear forms on V.

Example

Let V be a vector space over a field \mathbb{F} . Show that the function $g: V^* \times V \to \mathbb{F}$ defined by

$$g(f, \mathbf{v}) = f(\mathbf{v})$$
 for all $f \in V^*, \mathbf{v} \in V$

is a bilinear form.

Positive Definite Bilinear Form

Definition 3.5 – Positive definite

A bilinear form $\langle \, , \, \rangle$ on a real vector space V is positive definite, if

$$\langle \boldsymbol{v}, \boldsymbol{v} \rangle > 0$$
 for all $\boldsymbol{v} \neq 0$.

Example

☐ Bilinear form: $\langle x, y \rangle = x_1y_1 - 2x_1y_2 - 2x_2y_1 + 5x_2y_2$

☐ Bilinear form: $\langle x, y \rangle = x_1y_1 + 2x_1y_2 + 2x_2y_1 + 3x_2y_2$

Symmetric Bilinear Form

Definition 3.6 – Symmetric

A bilinear form \langle , \rangle on a real vector space V is called symmetric, if

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \langle \boldsymbol{w}, \boldsymbol{v} \rangle$$
 for all $\boldsymbol{v}, \boldsymbol{w} \in V$.

Bilinear forms over a complex vector space

Bilinear forms on \mathbb{R}^n	Bilinear forms on \mathbb{C}^n
Linear in the first variable	Conjugate linear in the first variable
$ig \langle oldsymbol{u}+oldsymbol{v},oldsymbol{w}ig angle = \langle oldsymbol{u},oldsymbol{w}ig angle + \langle oldsymbol{v},oldsymbol{w}ig angle$	$ig \langle oldsymbol{u} + oldsymbol{v}, oldsymbol{w} angle = \langle oldsymbol{u}, oldsymbol{w} angle + \langle oldsymbol{v}, oldsymbol{w} angle$
$\langle \lambda oldsymbol{u}, oldsymbol{v} angle = \lambda \langle oldsymbol{u}, oldsymbol{v} angle$	$\langle \lambda oldsymbol{u}, oldsymbol{v} angle = \overline{\lambda} \langle oldsymbol{u}, oldsymbol{v} angle$
Linear in the second variable	Linear in the second variable

Inner product

Inner products over real vector space

- ☐ An inner product is a positive—definite symmetric bilinear form.
- \square An inner product on V is a function $\langle , \rangle : V \times V \rightarrow \mathbb{R}$ such that
 - 1. $\langle v, v \rangle \geq 0$ for all $v \in V$.
 - 2. $\langle v, v \rangle = 0$ if and only if v = 0.
 - 3. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in V$.
 - 4. $\langle cw, u \rangle = c \langle w, u \rangle$ for all $u, w \in V$ and $c \in \mathbb{R}$.
 - 5. $\langle w, v \rangle = \langle v, w \rangle$.

Inner Products

Definition (Inner Product)

- \square A function $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is an inner product if
 - 1. $\langle x, x \rangle \ge 0$, $\langle x, x \rangle = 0 \Leftrightarrow x = 0$ (positivity)
 - 2. $\langle x, y \rangle = \langle y, x \rangle$ (symmetry)
 - 3. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ (additivity)
 - 4. $\langle rx, y \rangle = r \langle x, y \rangle$ for all $r \in \mathbb{R}$ (homogeneity)
- ☐ Using properties (2) and (4) and again (2)

$$\langle x, ry \rangle = \langle ry, x \rangle = r \langle y, x \rangle = r \langle x, y \rangle$$

☐ Using properties (2), (3) and again (2)

$$\langle x, y + z \rangle = \langle y + z, x \rangle = \langle y, x \rangle + \langle z, x \rangle = \langle x, y \rangle + \langle x, z \rangle$$

Inner Products

Definition

☐ The standard inner product is:

$$\langle x, y \rangle = x^T y = \sum x_i y_i, \qquad x, y \in \mathbb{R}^n$$

 \square The standard inner product between matrices is: $(X, Y \in \mathbb{R}^{m \times n})$

$$\langle X, Y \rangle = Tr(X^TY) = \sum_{i} \sum_{j} X_{ij} Y_{ij}$$

Example

Example

$$U = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}, \qquad V = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

General Inner products

Definition

Suppose that $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and that V is a vector space over \mathbb{F} . Then an **inner product** on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that the following three properties hold for all $c \in \mathbb{F}$ and all $\mathbf{v}, \mathbf{w}, \mathbf{x} \in V$:

- a) $\langle \mathbf{v}, \mathbf{w} \rangle = \overline{\langle \mathbf{w}, \mathbf{v} \rangle}$ (conjugate symmetry)
- b) $\langle v+cx,w\rangle = \langle v,w\rangle + c\langle x,w\rangle$ (linearity)
- c) $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$, with equality if and only if $\mathbf{v} = \mathbf{0}$. (pos. definiteness)

Complex Dot Product

Example

Show that the function $\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ defined by

$$\langle \mathbf{v}, \mathbf{w} \rangle = v \mathbf{w}^* = \sum_{i=1}^n v_i \overline{w_i}$$
 for all $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$

is an inner product on \mathbb{C}^n .

Inner Product on Continuous Functions

Example

Let a < b be real numbers and let C[a, b] be the vector space of continuous functions on the real interval [a, b].

Show that the function $\langle \cdot, \cdot \rangle : C[a, b] \times C[a, b] \to \mathbb{R}$ defined by

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$
 for all $f, g \in C[a, b]$

is and inner product on C[a, b].

Inner product on Polynomials

Example

Find
$$\langle p, q \rangle$$
 which $p(x) = 3 - x + 2x^2$ and $q(x) = 4x + x^2$ on [0,1].