I. Objectifs

- RPCA : faire varier la régularisation λ pour voir l'effet de seuil sur le rang.
- Lire Thèse Amailland
- Effet de seuil sur l'erreur en fonction du rang : lien avec les bornes + et des VP (cf distribution Marcenko-Pastur) ?
- Courbe d'erreurs sur interspectres bruités moyennés
 - Alternating projection + Hald + Dougherty
 - SLRD
 - EM (dont impact de l'initialisation)
- Bruit corrélé selon Corcos.
- État de l'art not. débruitage avec mesure de bruit de fond
- Prise en main code MCMC

Reprise des études d'erreurs précedentes en changeant :

- fréquence : 15000 Hz,
- une seule ligne de sources avec un angle de 1 ° (parallèlement au plan de l'antenne) pour casser la symétrie

Avec ces deux changements, la matrice signal a exactement le même rang que le nombre de sources.

II. Effet de seuil

Pas de lien avec les bornes + et - des VP (cf distribution Marcenko-Pastur)

Pas de lien avec la précision numérique

Test seuillage des plus petites VP de Sp à 0 : pas d'effet

III. Réduction successive

3.1. Erreur en fonction du nombre de snapshots

Pour Nsrc = 20, 60, 80 et 96. Décroissance en $\frac{1}{\sqrt{M_w}}$? -> non, cf EM.

3.2. Erreur en fonction du rang de S_p

On fixe $M_w = 10^4$, SNR= 10.

IV. SLDR

4.1. Réglage de λ

 λ_{opt} doit croître avec le degré de parcimonie de la matrice de bruit. Ce paramètre doit donc être ajusté en fonction du nombre de snapshots.

Biblio Amailland:

— Dans le cas d'un bruit décorrélé, ? propose une valeur universelle : $1/\sqrt{M_m ic}$

V. Analyse factorielle

5.1. Erreur en fonction du nombre de snapshots

En rang réduit, la pente est plus forte que pour la réduction successive. En rang plein, l'erreur est du même ordre de grandeur.

5.2. Erreur en fonction du rang de S_p

VI. Thèse Amailland

Context : étude de signatures acoustique navires Chap 3 : Réduction de bruit de couche limite A. étend l'ACPR au bruit spatialement corrélé (modèle de CLT Corcos/Goody).

6.1. Éléments de biblio

VII. Conclusion

Les algorithmes de réduction successive minimisent la somme des éléments diagonaux de la CSM, ce qui est très proche de :

$$\min ||\hat{S}_p||_* \Leftrightarrow \min \sum \lambda \tag{1}$$

Le bruit est recherché sous forme d'une matrice diagonale, ce qui est analogue à une contrainte de parcimonie.

RPCA propose de minimiser le rang de \hat{S}_p avec une contrainte sur la parcimonie du bruit. Ce problème est relaxé : on minimise en fait $||\hat{S}_p||_*$.

Les deux problèmes sont très proches.

Note : $||S_p||_*$ augmente linéairement avec le nombre de sources.

Réductions successives	RPCA
$\min \operatorname{trace}(\hat{S}_p)$	$\min \ \hat{S}_p\ _*$
s.c. \hat{S}_n diagonale	s.c. $\ \hat{S}_n\ _1 \le \epsilon$