1. Explain the concept of Version Spaces with a suitable example. Draw the version space for a simple concept learning problem.

Solution

Concept

A Version Space is a set of all possible hypotheses that are consistent with the given training examples. It is bounded by two sets:

- General Boundary (G): Most general hypotheses that fit the data.
- Specific Boundary (S): Most specific hypotheses that fit the data.

Example: Learning "Play Tennis"

Attributes:

- Outlook (Sunny, Rainy, Overcast)
- Humidity (High, Normal)
- Wind (Strong, Weak)

Training Data:

Outlook	Humidity	Wind	Play Tennis?
Sunny	High	Weak	No (-)
Rainy	High	Strong	No (-)
Overcast	Normal	Weak	Yes (+)

Version Space Construction

1. Initialize G and S:

- G: Most general hypothesis (<?, ?, ?> meaning any combination is possible).
- o S: Most specific hypothesis ($\langle \emptyset, \emptyset, \emptyset \rangle$ meaning no instance is covered).

2. After 1st Example (Sunny, High, Weak \rightarrow No):

- o G: Exclude hypotheses that cover this negative example.
 - <?, ?, ?> is too general (covers a negative example), so we specialize it.
 - New G:
 - $\langle Sunny, ?, ? \rangle$ (if Outlook=Sunny \rightarrow No)
 - <?, High, ?> (if Humidity=High \rightarrow No)

```
• \langle ?, ?, \text{Weak} \rangle \text{ (if Wind=Weak} \rightarrow \text{No)}
```

- \circ S: Still $<\emptyset$, \emptyset , \emptyset > (no positive example seen yet).
- 3. After 2nd Example (Rainy, High, Strong \rightarrow No):
 - o G: Further refine to exclude this negative example.
 - New G:
 - Sunny or Rainy, High, ?>
 - <?, High, Weak or Strong>
 - ∘ S: Still <Ø, Ø, Ø>.
- 4. After 3rd Example (Overcast, Normal, Weak \rightarrow Yes):
 - o S: Now updates to <Overcast, Normal, Weak>.
 - o G: Remains as before (since it must still exclude negatives).

Final Version Space

- G: { <?, Normal, ?>, <Overcast, ?, ?> }
- S: { <Overcast, Normal, Weak> }

Diagram:

```
G: { (Overcast, ?, ?), (?, Normal, ?) }

↑

All hypotheses in between

↓

S: { (Overcast, Normal, Weak) }
```

2. What is inductive bias? Explain its importance in machine learning algorithms.

Solution

Definition

Inductive bias refers to the assumptions a learning algorithm makes to generalize from limited training data to unseen examples.

Why is it Important?

- Without bias, a model cannot prefer one hypothesis over another (No Free Lunch Theorem).
- Helps in efficient learning by narrowing down the hypothesis space.

Examples of Inductive Bias

Algorithm	Inductive Bias	
Decision Trees	Prefer shorter trees (Occam's Razor).	
K-Nearest Neighbors	Nearby points belong to the same class.	
Linear Regression	Assumes a linear relationship between features.	
Neural Networks Smooth interpolation between data points.		

3. Draw and explain the basic structure of a decision tree for classifying whether a customer will buy a product based on age, income, and student status.

Solution

Problem Statement

Predict whether a customer will buy a product based on:

- Age (Young, Middle, Old)
- Income (High, Medium, Low)
- Student (Yes, No)

Decision Tree Construction

- 1. Choose Root Node (Attribute with highest Information Gain).
 - o Suppose Income provides the best split.
- 2. Split Data:
 - \circ If Income = High → Buys (Yes)
 - o If Income = Medium \rightarrow Further split by Age
 - If Age = Young \rightarrow Buys (Yes)
 - If Age = Old \rightarrow Buys (No)
 - \circ If Income = Low \rightarrow Further split by Student
 - If Student = Yes \rightarrow Buys (No)
 - If Student = $No \rightarrow Buys$ (Yes)

Final Decision Tree

4. List and explain the different types of learning problems in machine learning.

Solution

1. Supervised Learning

- Input: Labeled data (features + target).
- Goal: Learn a mapping from inputs to outputs.
- Examples:
 - o Classification (Spam Detection).
 - o Regression (House Price Prediction).

2. Unsupervised Learning

- Input: Unlabeled data.
- Goal: Discover hidden patterns.
- Examples:
 - o Clustering (Customer Segmentation).
 - o Dimensionality Reduction (PCA).

3. Semi-Supervised Learning

- Input: Mix of labeled + unlabeled data.
- Goal: Improve learning using unlabeled data.
- Example: Google Photos (few labeled images, many unlabeled).

4. Reinforcement Learning (RL)

- Input: Agent interacts with environment, gets rewards.
- Goal: Learn a policy to maximize rewards.
- Example: AlphaGo (plays Go by trial and error).

5. Online Learning

- Input: Data arrives sequentially.
- Goal: Update model incrementally.
- Example: Stock price prediction in real-time.

5. Assume S is a collection containing 14 examples, [9+, 5–]. Of these 14 examples, suppose 6 of the positive and 2 of the negative examples have Wind = Weak, and the remainder have Wind = Strong. What will be the information gain on attribute wind?

Solution

Given Data:

- Total examples: 14 (9+, 5-).
- Wind = Weak: 6+, 2- → 8 examples.
- Wind = Strong: 3+, 3- → 6 examples.

Step 1: Compute Entropy of Original Data (S)

$$Ent(S) = -\left(\frac{9}{14}\log_2\frac{9}{14} + \frac{5}{14}\log_2\frac{5}{14}\right) = 0.940 \text{ bits.}$$

Step 2: Compute Entropy After Splitting by Wind

1. For Wind = Weak:

$$Ent(S_{Weak}) = -\left(rac{6}{8}\log_2rac{6}{8} + rac{2}{8}\log_2rac{2}{8}
ight) = 0.811 ext{ bits.}$$

2. For Wind = Strong:

$$Ent(S_{Strong}) = -\left(rac{3}{6}\log_2rac{3}{6} + rac{3}{6}\log_2rac{3}{6}
ight) = 1.0 ext{ bit.}$$

Step 3: Compute Weighted Entropy

$$Weighted\ Entropy = \left(rac{8}{14} imes 0.811
ight) + \left(rac{6}{14} imes 1.0
ight) = 0.892\ {
m bits}.$$

Step 4: Compute Information Gain

$$Gain(S, Wind) = Ent(S) - Weighted\ Entropy = 0.940 - 0.892 = 0.048\ bits.$$

Conclusion

The Information Gain for "Wind" is 0.048 bits, meaning it provides a small improvement in classification.