

Tarea 1

Teoría de Control II // Varia. de Est. y Cntrl Digital

Problema

sistema eléctrico trifásico balanceado que se muestra en la Fig. 1 representa un sistema fotovoltaico que inyecta energía a la red eléctrica. Este sistema posee múltiples entradas, las que están dadas por el interruptor del convertidor elevador y los seis otros interruptores del convertidor trifásico. En este trabajo se utilizará el modelo promedio, lo que conlleva a las siguientes simplificaciones:

Fig. 1. Sistema de inyección energía solar a la red eléctrica.

 $G_{dc} = G_{ac} = 0.5$. Considerar que $L_f = 7$ mH, $R_f = 0.7 \Omega$, $C_{dc} = 2$ mF, $L_L = 5.7$ mH, $R_L = 5 \Omega$ y que la tensión de fase rms es de 220 V. Se pide desarrollar y **fundamentar** en todo lo siguiente:

- a) Escriba las ecuaciones diferenciales que describen al sistema, considerando $\mathbf{x} = [x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7]^T = [v_{dc} \ i_c{}^a \ i_c{}^b \ i_c{}^c \ i_L{}^a \ i_L{}^b \ i_L{}^c]^T$. Las ecuaciones diferenciales deben de tener la forma $\dot{\mathbf{x}} = \mathbf{f} \left(\mathbf{x}, \mathbf{m}^{abc}, \left\{ \mathbf{v}_{\mathbf{s}}^{abc}, i_{pv} \right\} \right)$ donde las moduladoras son las entradas al sistema y las tensiones de red pasan a ser perturbaciones.
- b) Reescriba las ecuaciones en ejes rotatorios dq sincronizados con la tensión de red. En este caso el vector de estado es $\mathbf{x} = [x_1 \ x_2 \ x_3 \ x_4 \ x_5]^T = [v_{dc} \ i_c{}^d \ i_c{}^q \ i_L{}^d \ i_L{}^q]^T$ y las ecuaciones son de la forma $\dot{\mathbf{x}} = \mathbf{f} \left(\mathbf{x}, \mathbf{m}^{dq}, \left\{ \mathbf{v_s}^{dq}, i_{pv} \right\} \right)$. Asuma como salida el voltaje dc y la corriente de cuadratura $i_s{}^q$.
- c) Determine el punto de operación para obtener $v_{dc} = 800 \text{ V}$ y factor de potencia $fp_s = 0.93$ inductivo en el PCC (voltaje-corriente v_s e i_s), considerando que el arreglo de paneles solares entrega un voltaje $v_{pv} = v_{dc} = 800 \text{ V}$ y una corriente $i_{pv} = 23.35 \text{ A}$ en el punto de operación. Simule el sistema en dq0 con Condiciones Iniciales (CI) tales que el sistema está en el punto de operación en t = 0 y asuma que en $t = 50 \text{ ms } m^d$ disminuye un 10%, que en $t = 300 \text{ ms } v_s^d$ disminuye un 5% y que $t = 550 \text{ ms } m^d$ disminuye un 10%. Simule para $0 \le t \le 1000 \text{ ms}$, grafique \mathbf{x} , las entradas, perturbaciones, y las salidas en ejes dq0.
- d) Simule ahora para el modelo en *abc* y con las condiciones anteriores. Grafique \mathbf{x} en ejes *abc*, las entradas, perturbaciones, y las salidas y compare con lo obtenido en c), corrobore el corrimiento entre v_s e i_s .
- e) Linealice el modelo en dq en torno al punto de operación indicado en b) ($v_{dc} = 800 \text{ V}$, $fp_s = 0.93 \text{ y}$ la tensión de fase rms de 220 V) e identifique **A**, **B**, **C**, **D**, **E** y **F**, del modelo y los vectores $\Delta \mathbf{x}$, $\Delta \mathbf{u}$, $\Delta \mathbf{y}$ y $\Delta \mathbf{p}$. Simule bajo las condiciones dadas en c) y compare sus resultados.
- f) Determine si el sistema definido en e) es controlable y si es controlable por alguna de las entradas. Si no lo es, determine los estados (o modos) no controlables. Utilice rango y determinante en donde sea posible.
- g) Determine si el sistema definido en (e) es observable. Lo razonable es disponer sólo de las salidas del sistema. ¿Es posible determinar las otras variables de estado?
- h) Determine las matrices **A**_T, **B**_T, **C**_T, **D**_T, **E**_T y **F**_T de la Forma Canónica Controlable, la Forma Canónica Observable y la Forma Canónica Diagonal.

Fecha de Entrega 14 de Octubre

Importante ¿Cómo debo subir mi Tarea?

- creo un .pdf con mi apellido y el de mi compañero ejemplo: 'Rohten Quezada.pdf'
 mis archivos .m, ejemplo 'tarea.m', "call_tarea.m".
 junto todos los archivos en un .rar (ejemplo 'Rohten Quezada.rar') y lo subo a la plataforma.