CH08-320201

Algorithms and Data Structures ADS

Lecture 19

Dr. Kinga Lipskoch

Spring 2019

Conclusions: Greedy Approach for the Knapsack Problem

- ► As already mentioned, the locally optimal choice of a greedy approach does not necessary lead to a globally optimal one.
- ► For the knapsack problem, the greedy approach actually fails to produce a globally optimal solution.
- However, it produces an approximation, which sometimes is good enough.

0-1 vs. Fractional Knapsack Problem

- ▶ 0-1 knapsack problem
 - ▶ Either take (1) or leave an object (0)
 - Greedy fails to produce global optimum
- fractional knapsack problem
 - You can take fractions of an object
 - ► Greedy strategy: value per weight v/w → begin taking as much as possible of item with greatest v/w, then with next greater v/w, ...
 - Leads to global optimum (proof by contradiction)
- What is the difference?

Alternatives for 0-1 Knapsack (1)

Brute-Force:

- ▶ Benefit: it finds the optimum
- ▶ Drawback: it takes very long $O(2^n)$
- Because recomputing the results of the same subproblems over and over again

Alternatives for 0-1 Knapsack (2)

Dynamic programming:

- Optimal substructure:
 - optimal solution to problem consists of optimal solutions to subproblems
- Overlapping subproblems:
 - few subproblems in total, many recurring instances of each
- ► Main idea:
 - use a table to store solved subproblems

Dynamic Programming: Problem

- ▶ Given two sequences x[1..m] and y[1..n], find a longest subsequence common to both of them.
- Example:

$$x: A \quad B \quad C \quad B \quad D \quad A \quad B$$
 $y: B \quad D \quad C \quad A \quad B \quad A$

$$BCBA = LCS(x, y)$$

Brute-Force Solution

Check every subsequence of x[1..m] to see if it is also a subsequence of y[1..n].

Analysis:

- ▶ Checking per subsequence is done in O(n).
- ► As each bit-vector of m determines a distinct subsequence of x, x has 2^m subsequences.
- ▶ Hence, the worst-case running time is $O(n \cdot 2^m)$, i.e., it is exponential.

Strategy

- ▶ Look at length of longest-common subsequence.
- Let |s| denote the length of a sequence s.
- ► To find LCS(x, y), consider prefixes of x and y (i.e., we go from right to left)
- ▶ Definition: c[i,j] = |LCS(x[1..i], y[1..j])|. In particular, c[m, n] = |LCS(x, y)|.
- ► Theorem (recursive formulation):

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

990

Proof (1)

Case
$$x[i] = y[j]$$
:

Let
$$z[1..k] = LCS(x[1..i], y[1..j])$$
 with $c[i,j] = k$.

Then,
$$z[k] = x[i] = y[j]$$
 (else z could be extended).

Thus, z[1..k-1] is *CS* of x[1..i-1] and y[1..j-1].

Claim:
$$z[1..k-1] = LCS(x[1..i-1], y[1..j-1]).$$

- Assume w is a longer CS of x[1..i-1] and y[1..j-1], i.e., |w| > k-1.
- ▶ Then the concatenation w + +z[k] is a *CS* of x[1..i] and y[1..i] with length > k.
- ▶ This contradicts |LCS(x[1..i], y[1..j])| = k.
- ▶ Hence, the assumption was wrong and the claim is proven.

Hence,
$$c[i-1, j-1] = k-1$$
, i.e., $c[i, j] = c[i-1, j-1] + 1$.

Proof (2)

Case $x[i] \neq y[j]$:

Then, $z[k] \neq x[i]$ or $z[k] \neq y[j]$.

- ► $z[k] \neq x[i]$: Then, z[1..k] = LCS(x[1..i-1], y[1..j]). Thus, c[i-1,j] = k = c[i,j].
- ► $z[k] \neq y[j]$: Then, z[1..k] = LCS(x[1..i], y[1..j - 1]). Thus, c[i, j - 1] = k = c[i, j].

In summary, $c[i,j] = \max\{c[i-1,j], c[i,j-1]\}.$

Dynamic Programming Concept (1)

Step 1: Optimal substructure.

An optimal solution to a problem contains optimal solutions to subproblems.

Example:

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive Algorithm

► Computation of the length of *LCS*:

▶ Remark: if $x[i] \neq y[j]$, the algorithm evaluates two subproblems that are very similar.

Recursive Tree

Height = $m + n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

Dynamic Programming Concept (2)

Step 2: Overlapping subproblems.

A recursive solution contains a "small" number of distinct subproblems repeated many times.

Example:

The number of distinct *LCS* subproblems for two prefixes of lengths m and n is only $m \cdot n$.

Memoization Algorithm

Memoization:

- ▶ After computing a solution to a subproblem, store it in a table.
- Subsequent calls check the table to avoid repeating the same computation.

Recursive Algorithm with Memoization

Computation of the length of *LCS*:

```
LCSlength (x,y,i,j):
   if c[i,j] = NIL
2
     then if i=0 or j=0
3
       c[i,j] = 0
4
     else if x[i] = y[j]
5
       c[i,j] = LCSlength (x,y,i-1,j-1)+1
6
     else c[i,j] = \max \{LCSlength (x,y,i-1,j),
7
                         LCSlength (x,y,i,j-1)}
8
   return c[i,j]
g
```

Dynamic Programming (1)

Compute the table bottom-up:

Dynamic Programming (2)

Compute the table bottom-up:


```
LCS-LENGTH(X, Y)
    m = X.length
    n = Y.length
    let b[1..m, 1..n] and c[0..m, 0..n] be new tables
    for i = 1 to m
         c[i, 0] = 0
    for i = 0 to n
         c[0, i] = 0
    for i = 1 to m
         for j = 1 to n
             if x_i == y_i
10
                  c[i, j] = c[i-1, j-1] + 1
12
                  b[i, i] = "\\\"
             elseif c[i - 1, j] \ge c[i, j - 1]
13
14
                  c[i, j] = c[i - 1, j]
                  b[i, j] = "\uparrow"
15
             else c[i, j] = c[i, j - 1]
16
                  b[i, i] = "\leftarrow"
    return c and b
```

Complexity

- ▶ Time complexity: $T(m, n) = \Theta(m \cdot n)$
- ▶ Space complexity: $S(m, n) = \Theta(m \cdot n)$

Reconstructing LCS

► Trace backwards:


```
PRINT-LCS(b, X, i, j)

1 if i = 0 or j = 0

2 return

3 if b[i, j] = \text{```\'}

4 PRINT-LCS(b, X, i - 1, j - 1)

5 print x_i

6 elseif b[i, j] = \text{``\'}

7 PRINT-LCS(b, X, i - 1, j)

8 else PRINT-LCS((b, X, i, j - 1))
```

▶ Time complexity: O(m+n)

Fibonacci Numbers Revisited (1)

Recall:

Recursive definition:

$$F_n = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

Recursion tree of brute-force implementation:

Fibonacci Numbers Revisited (2)

Dynamic programming solution:

- ▶ Avoid re-computations of same terms.
- Store results of subproblems in a table.
- ▶ Thus, Fib(k) is computed exactly once for each k.
- This basically leads to the previously discussed bottom-up approach.
- ▶ Computation time is $T(n) = \Theta(n)$.

Knapsack Problem (Revisited)

Knapsack Problem: Greedy Algorithm

- Greedy approaches make a locally optimal choice.
- There is no guarantee that this will lead to a globally optimal solution.
- ▶ In the 0-1 Knapsack Problem it did not.

Knapsack Problem: Dynamic Programming Approach (1)

- ▶ Let us try a dynamic programming approach.
- ▶ We need to carefully identify the subproblems.
- ▶ If items are labeled 1..*n*, then a subproblem would be to find an optimal solution for $S_k = \{\text{items labeled } 1, 2, ..., k\}$.

Knapsack Problem: Dynamic Programming Approach (2)

Max weight: W = 20

For S₄:

Total weight: 14 Maximum benefit: 20

$\begin{vmatrix} w_1 = 2 \\ b_1 = 3 \end{vmatrix} \begin{vmatrix} w_2 = 4 \\ b_2 = 5 \end{vmatrix}$	w ₃ =5 b ₃ =8	$w_5 = 9$ $b_5 = 10$
---	--	----------------------

For S₅:

Total weight: 20
Maximum benefit: 26

Solution for S₄ is not part of the solution for S₅

Knapsack Problem: Dynamic Programming Approach (3)

- ► Re-define the subproblem by also considering the weight that is given to the subproblem.
- ▶ The subproblem then will be to compute V[k, w], i.e., to find an optimal solution for $S_k = \{\text{items labeled } 1, 2, ...k\}$ in a knapsack of size w, with $w \leq W$.
- ▶ V[k, w] denotes the overall benefit of the solution.
- ▶ Question: Assuming we know V[i,j] for i = 0, 1, 2, ..., k-1 and j = 0, 1, 2, ..., w, how can we derive V[k, w]?
- Answer:

$$V[k, w] = \begin{cases} V[k-1, w] & \text{if } w_k > w \\ \max\{V[k-1, w], V[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$