of 25~75%.

What is claimed is:

16

17

18

19

1 A wire grid polarizer with double metal layers, 2 comprising: 3 a transparent substrate; 4 an array of parallel and elongated dielectric layers formed 5 on the transparent substrate, wherein the dielectric 6 layers have a period and a trench is located between 7 adjacent dielectric layers; 8 a first metal layer having a first thickness formed in the 9 trench; and 10 a second metal layer having a second thickness and a width 11 formed on each dielectric layer, wherein the first 12 and second metal layers are separated by a vertical 13 distance: 14 wherein the period is not greater than 250nm; 15 wherein the first thickness is not greater than 150nm and

1 2. The wire grid polarizer according to claim 1, wherein 2 the transparent substrate is exposed in the trench.

is equal to the second thickness;

wherein the vertical distance is not greater than 100nm;

wherein the ratio of the width to the period is in a range

- The wire grid polarizer according to claim 1, wherein
 a remaining dielectric layer is formed on a bottom of the trench.
- 1 4. The wire grid polarizer according to claim 1, wherein 2 a thickness of the transparent substrate is 500~1500nm.

Client's ref: 工材所P05920029/邱至和等 File:0178-A20029USF/Jacky/Steve

- 1 5. The wire grid polarizer according to claim 4, wherein
- 2 the transparent substrate is a glass or plastic substrate.
- 1 6. The wire grid polarizer according to claim 1, wherein
- 2 the dielectric layers are PMMA (polymethyl methacrylate) layers.
- 1 7. The wire grid polarizer according to claim 1, wherein
- 2 the first metal layer is an Au, Ag, Cu or Al layer.
- 1 8. The wire grid polarizer according to claim 1, wherein
- 2 the second metal layer is an Au, Ag, Cu or Al layer.
- 1 9. The wire grid polarizer according to claim 1, wherein
- 2 the first and second metal layers comprise the same material.
- 1 10. The wire grid polarizer according to claim 1, further
- 2 comprising:
- 3 a protective layer formed on the first and second metal
- 4 layers.
- 1 11. The wire grid polarizer according to claim 10, wherein
- 2 the protective layer is a SiO_2 , SiN or SiON layer.
- 1 12. The wire grid polarizer according to claim 1, wherein
- 2 the period is in a range of $10\sim250$ nm.
- 1 13. The wire grid polarizer according to claim 1, wherein
- 2 the first or second thickness is in a range of 30~150nm.
- 1 14. The wire grid polarizer according to claim 1, wherein
- 2 the vertical distance is in a range of 10~100nm.
- 1 15. A wire grid polarizer with double metal layers,
- 2 comprising:

3	a transparent substrate;
4	an array of parallel and elongated dielectric layers formed
5	on the transparent substrate, wherein the dielectric
6	layers have a period and a trench is located between
7	adjacent dielectric layers;
8	a first metal layer having a first thickness formed in the
9	trench; and
L O	a second metal layer having a second thickness and a width
l 1	formed on each of the dielectric layers, wherein a
L2	vertical distance is between the first and second
L3	metal layers;
L 4	wherein the period is in a range of $10~250$ nm;
L 5	wherein the first thickness is in a range of $30\sim150\mathrm{nm}$ and
16	is equal to the second thickness;
L 7	wherein the vertical distance is in a range of 10~100nm;
L 8	wherein the ratio of the width to the period is in a range
L 9	of 25~75%.
1	16. The wire grid polarizer according to claim 15, wherein
2	the transparent substrate is exposed in the trench.
1	17. The wire grid polarizer according to claim 15, wherein
2	a remaining dielectric layer is formed on a bottom of the trench.
1	18. A method of forming a wire grid polarizer with double
2	metal layers, comprising the steps of:
3	providing a transparent substrate;
4	forming an array of parallel and elongated dielectric layers
5	on the transparent substrate, wherein the dielectric
6	layers have a period and a trench is located between
7	adjacent dielectric layers;

Client's ref: 工材所P05920029/邱至和等 File:0178-A20029USF/Jacky/Steve

of 25~75%.

19

8	forming a first metal layer having a first thickness in
9	the trench; and
10	forming a second metal layer having a second thickness and
11	a width on each dielectric layer, wherein the first
12	and second metal layers are separated by a vertical
13	distance;
14	wherein the period is in a range of 10~250nm;
15	wherein the first thickness is in a range of $30\sim150\mathrm{nm}$ and
16	is equal to the second thickness;
17	wherein the vertical distance is in a range of $10\sim100\mathrm{nm}$;
18	wherein the ratio of the width to the period is in a range

- 1 19. The method according to claim 18, the transparent 2 substrate is exposed in the trench.
- 1 20. The method according to claim 18, wherein a remaining 2 dielectric layer is formed on a bottom of the trench.
- 1 21. The method according to claim 18, further comprising 2 the step of:
- forming a protective layer on the first and second metal layers.
- 1 22. The method according to claim 18, wherein the 2 dielectric layers are formed by photolithography or nanoimprint.