1. Rappels

1.1. Espaces probabilisés. Soit Ω un ensemble non vide. Une tribu sur Ω est un ensemble \mathcal{A} de parties de Ω contenant \emptyset , stable par passage au complémentaire et par réunion dénombrable. Le couple (Ω, \mathcal{A}) est un espace probabilisable (on dit aussi un espace mesurable).

Exemples 1.1. L'ensemble $\mathcal{P}(\Omega)$ des parties de Ω est évidemment une tribu sur Ω . $\mathcal{A} = \{\emptyset, \Omega\}$ est la tribu $grossi\`ere$.

Définition 1.1. Soit (Ω, \mathcal{A}) un espace mesurable. Une probabilité sur (Ω, \mathcal{A}) est une application $\mathbb{P} : \mathcal{A} \to [0, 1]$ vérifiant les propriétés suivantes :

- (1) $\mathbb{P}(\emptyset) = 0$.
- (2) Pour toute suite (A_k) d'éléments de \mathcal{A} deux à deux disjoints on a $\mathbb{P}(\bigcup A_i) = \sum \mathbb{P}(A_i)$.

Il résulte des deux premières propriétés que $\mathbb{P}(\Omega) = 1$. La seconde entraîne en particulier que si $(A_i)_{i \in \{1,\dots,n\}}$ est une famille finie d'éléments de \mathcal{A} deux à deux disjoints, on a

$$\mathbb{P}\left(\bigcup A_i\right) = \sum_{1}^{n} \mathbb{P}(A_i).$$

On dit que $(\Omega, \mathcal{A}, \mathbb{P})$ est un espace probabilisé. Les éléments de \mathcal{A} sont aussi appelés évènements . On vérifie sans peine les propriétés suivantes :

- (1) Si $A \subset B$ sont des évènement alors $\mathbb{P}(A) \leq \mathbb{P}(B)$. (Écrire $B = A \cup (B \setminus A)$)
- (2) Pour tout $A \in \mathcal{A}$, $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$.
- (3) Si A et B sont des évènements on a $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.

On dit que deux évènements A et B sont incompatibles si $\mathbb{P}(A\cap B)=0.$

Proposition 1.1. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Si (A_n) est une suite croissante (pour tout entier $n, A_n \subset A_{n+1}$) d'évènements, alors

$$\mathbb{P}\left(\bigcup_{1}^{+\infty} A_{k}\right) = \lim_{n \to \infty} \mathbb{P}\left(\bigcup A_{n}\right).$$

 $Si B_k$ est une suite décroissante d'évènements,

$$\mathbb{P}\left(\bigcap_{k} B_{k}\right) = \lim_{j} \mathbb{P}\left(B_{j}\right).$$

Démonstration. On définit une suite C_n par $C_0 = A_0$ et, pour tout entier n positif, $C_n = A_n \cap A_{n-1}^c$. Ces évènements sont deux à deux disjoints de réunion $\bigcup_{k=0}^{+\infty} A_k$. Il en résulte que

$$\mathbb{P}\left(\bigcap C_k\right) = \sum \mathbb{P}\left(C_k\right).$$

De plus, notant $A = \bigcap A_n$,

$$\mathbb{P}(A) = \mathbb{P}(A_n) + \sum_{k \ge n+1} \mathbb{P}(C_k),$$

de sorte que

$$\lim_{n\to\infty} |\mathbb{P}(A) - \mathbb{P}(A_n)| = 0.$$

La seconde assertion se démontre par passage au complémentaire.

Définition 1.2. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et (A_i) une famille d'éléments de \mathcal{A} . On dit que les évènements A_i sont indépendants si pour toute partie finie J de I,

$$\mathbb{P}\left(\bigcap_{j\in J}A_j\right) = \prod_{j\in J}\mathbb{P}\left(A_j\right).$$

2. Variables aléatoires

Définition 2.1. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Une application de Ω dans \mathbb{R} telle que $X^{-1}(I) \in \mathcal{A}$ pour tout interalle I de \mathbb{R} est appelée variable aléatoire.

Proposition 2.1. Soit X une variable aléatoire de $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs réelles.

$$\mathcal{F} = \{B \subset \mathbb{R} : X^{-1}(B) \in \mathcal{A}\}$$

est une tribu sur \mathbb{R} et l'application

$$\mathbb{P}_X : B \in \mathcal{F} \mapsto \mathbb{P}_X(B) = \mathbb{P}\left(X^{-1}(B)\right)$$

est une probabilité sur \mathcal{F} appelée loi de X.

2.1. Variables aléatoires discrètes. Si X est une application de $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans \mathbb{R} et si Ω est au plus dénombrable, pour que X soit une variable aléatoire , il suffit que pour tout $x \in \mathbb{R}$, $X^{-1}(x)$ appartienne à \mathcal{A} (cf??). On dit alors que X est une variable aléatoire discrète.

Exemples 2.1. Si Ω est un ensemble fini, $X(\Omega)$ est fini; on peut donc écrire $X(\Omega) = \{x_1, \dots, x_n\}$ et supposer que $x_1 < x_2 \dots < x_n$.

Si B est une partie de \mathbb{R} , la loi de probabilité de X est définie par

$$P_X(B) = \sum_{x_i \in B} \mathbb{P}\left(\left\{X = x_i\right\}\right).$$

Elle est entièrement définie par les réels $p_i = \mathbb{P}(\{X = x_i\})$. Par exemple :

Définition 2.2. On dit qu'une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ suit une loi de Bernoulli de paramètre $p \in [0, 1]$ si

- (1) $X(\Omega) = \{0, 1\}$
- (2) $\mathbb{P}(X=1) = p$ et donc $\mathbb{P}(X=0) = 1 p$.

Ce type de variable aléatoire modélise, par exemple, le lancer d'une pièce (1 pour pile, 0 pour face). On note $X \sim \mathcal{B}(1,p)$. Si on lance n pièces simultanément, l'univers est $\Omega_1 = \Omega^n$ muni de la tribu produit et de la probabilité produit Soit Y est la variable aléatoire qui donne le nombre de succès (*i.e.* la nombre de pièces qui donnent « pile ». Il y a $\binom{n}{k}$ n-uplets ayant exactement k composantes égales à 1. Si (a_1, \dots, a_n) en est un, sa probabilité est égale à $p^k(1-p)^{n-k}$. La loi de Y est donc définie par

$$\mathbb{P}(Y=k) = \left(\begin{array}{c} n \\ k \end{array}\right) p^k (1-p)^k.$$

La formule du binôme montre que c'est bien une loi de probabilité. On dit que Y suit la loi binomiale $\mathcal{B}(n,p)$.

Définition 2.3. Si Ω est un ensemble fini de cardinal n, On dit q'une application X de Ω dans $X(\Omega) = \{x_1, \dots, x_n\} \subset \mathbb{R}$ suit une loi *uniforme* si pour tout i, $\mathbb{P}(X = x_i) = \frac{1}{n}$.

Définition 2.4. Soient $(X_k)_{k\in\mathbb{N}}$ des variable aléatoire . On dit que ces variables aléatoires sont indépendantes si, pour toute partie finie $J\subset\mathbb{N}$ et pour toute famille $(B_i)_{i\in J}$ d'éléments de $\mathcal{B}(\mathbb{R})$, les évènements $((X_i\in B_i)_{i\in J}$ sont indépendants.

Exemple 2.1. [Loi géométrique] Soit (X_n) une suite de variables aléatoires indépendantes de même loi $\mathcal{B}(1,p)$ avec $p \in]0,1[$. On note Z la variable aléatoire $Z=\inf\{k\;;X_k=1\}^{\;1}$: autrement dit, Z donne l'instant du premier succès lors d'une suite d'épreuves de Bernoulli indépendantes. Puisque les variables aléatoires sont indépendantes,

$$\mathbb{P}(Z=k) = \mathbb{P}(X_1=0) \cdots \mathbb{P}(X_{k-1}=0) \mathbb{P}(X_k=1) = (1-p)^{k-1} p.$$

Ceci définit bien une loi de probabilité puisque $\sum (1-p)^{k-1}p = p\frac{1}{1-(1-p)} = 1$.

Exemple 2.2. On dit qu'une variable aléatoire suit une loi de Poisson de paramètre $\lambda > 0$ si $X(\Omega) = \mathbb{N}$ et, pour tout entier k on a $\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$. Le développement en série de $e^{-\lambda}$ montre que ceci définit bien une loi de probabilité.

$$Z^{-1}(n) = \bigcap_{1^{n-1}} (X_i = 0) \cap (X_k = 1).$$

^{1.} Z est une variable aléatoire puisque si $x \notin \mathbb{N}^*$ on a $Z^{-1}(x) = \emptyset \in \mathcal{A}$ et, si $n \in \mathbb{N}^*$.

2.1.1. Espérance.

Définition 2.5. Soit X une variable aléatoire discrète. On dit que X admet une espérance si la famille $X(\omega) \mathbb{P}(\{\omega\})$ est sommable. L'espérance de X est alors le réel

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \, \mathbb{P}(\{\omega\}).$$

Remarque 2.1. Si X est à valeurs dans \mathbb{Z} , pour que X admette une espérance, il faut et il suffit que la série $\sum x_i p_i$ soit absolument convergente.

Par regroupement de termes on démontre alors la propriété fondamentale suivante :

Proposition 2.2. [Théorème du transfert] Soit X une variable aléatoire discrète. Si X admet une espérance, alors

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \, \mathbb{P}(\{\omega)\} = \sum_{x_i \in X(\Omega)} x_i \, \mathbb{P}\left(X = x_i\right).$$

L'espérance de X ne dépend donc que de la loi de X.

On note $L^1((\Omega, \mathcal{A}, \mathbb{P}))$ –ou simplement L^1 si aucune confusion n'est à craindre– l'ensemble des variables aléatoires définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ admettant une espérance.

Proposition 2.3. L^1 est un \mathbb{R} espace vectoriel et l'espérance est une forme linéaire sur L^1 .

- (1) $X \in L^1$ si et seulement si $|X| \in L^1$ et $|\mathbb{E}(X)| \leq \mathbb{E}(|X|)$.
- (2) L'espérance est une forme linéaire positive sur L^1 .
- (3) Toute variable aléatoire bornée appartient à L^1 .
- (4) Si Ω est fini, toutes les variables aléatoires appartiennent à L^1 .

Définition 2.6. Soit X une variable aléatoire réelle et n > 0 un entier . On dit que X admet un moment d'ordre n si X^n admet une espérance.

Définition 2.7. Soit X une variable aléatoire réelle. Si X admet un moment d'ordre 2, alors $(X - \mathbb{E}(X))$ admet un moment d'ordre 2 et

$$Var(X) = \mathbb{E}\left(X - \mathbb{E}(X)\right)^2\right) = \mathbb{E}(X^2) - \left(\mathbb{E}(X)\right)^2.$$

Dans le cas des variable aléatoire discrètes on a donc, avec les notations précédentes et en posant $\bar{x} = \mathbb{E}(X)$,

$$Var(X) = \sum (x_i - \bar{x})^2 p_i$$

Théorème 2.1. Soit X une variable aléatoire d'espérance m et de variance σ^2 , pour tout réel $\alpha > 0$ on a

$$\mathbb{P}\left(|X - m| \ge \alpha\right) \le \frac{\sigma^2}{\alpha^2}.$$

Théorème 2.2. [Loi faible des grands nombres] Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variable aléatoire indépendantes ayant même espérance $\mathbb{E}(X_1)$ et même variance $Var(X_1)$ alors, pour tout $\varepsilon > 0$,

$$\lim_{n \to +\infty} \mathbb{P}\left(\left|\frac{X_1 + \dots + X_n}{n} - \mathbb{E}(X_1)\right| \ge \varepsilon\right) \to 0.$$

2.2. Probabilité conditionnelle. Soient A et B deux évènements avec $\mathbb{P}(B) > 0$. La probabilité conditionnelle de A sachant B est le réel

$$P_B(A) = \mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Proposition 2.4. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et B un évènement de probabilité strictement positive. L'application

$$\mathbb{P}_B : A \in \mathcal{A} \mapsto \mathbb{P}_B(A)$$

définit une probabilité sur $(\Omega, \mathcal{A}, \mathbb{P})$.

2.2.1. Fonction génératrice.

Définition 2.8. Soit X une variable aléatoire à valeurs dans \mathbb{N} . La fonction génératrice de X est la fonction $g_X : [0,1] \to \mathbb{R}$ définie par

$$g_X(s) = \sum \prod (X = n)s^n.$$

3. Exercices

Exercice 3.1 Montrer que toute intersection de tribus sur %0 est une tribu sur Ω . En déduire que pour toute famille \mathcal{C} de parties de Ω il existe une plus petite tribu contenant \mathcal{C} . C'est la tribu engendrée par \mathcal{C} .

Exercice 3.2 Modéliser un jeu de pile ou face s'arrêtant la première fois qu'on obtient pile (on suppose les lancers indépendants et que la probibilité d'obtenir pile à chaque lancer). Quelle est la probabilité de ne jamais obtenir pile?

Exercice 3.3 On joue deux fois à pile ou face avec une pièce non nécessairement équilibrée. Les résultats « obtenir pile au premier lancer » et « obtenir deux fois le même résulta » sont-ils indépendants? (On discutera suivant la valeur de la probabilité p d'obtenir pile).

Exercice 3.4 On vous propose le jeu suivant : vous lancez une pièce ; si vous obtenez pile, le jeu s'arrête et vous gagnez $2 \in$; sinon vous rejouez et si vous obtenez pile, le jeu s'arrête et vous gagnez $4 \in$; sinon vous continuez jusqu'à ce que vous ayez obtenu pile pour la première fois ; si c'est au n-ième lancer, vous gagnez $2^n \in$ te jeu s'arrête. Combien êtes-vous prêt à payer pour participer à un tel jeu?

Exercice 3.5 On considère une urne contenant $N = N_1 + N_2$ boule, N_1 étant rouges et N_2 blanches. On tire $n \le N$ boules (on utilise le modèle équiprobable). Déterminer, pour tout entier $k \in [0, n]$ la probabilité p_k d'obtenir k boules blanches.

Déterminer la limite de cette probabilité lorsque $N_1, N_2 \to +\infty$ avec $N_1/N_2 = p$ (on pourra utiliser la formule de Stirling : $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$).

Exercice 3.6 Une particule se trouve à l'instant 0 au point d'abscisse a (entier) du segment [0, N]. Si à l'instant n sa position est u_n , à l'instant n+1 on a $u_{n+1}=u_n+1$ avec une probabilité p et u_{n-1} avec une probabilité 1-p. Le processus se termine lorsque $u_n=0$ ou $u_n=N$.

Soit p_a la probabilité pour que, partant de a, le processus se termine en 0.

- (1) Calculer p_0 et p_N .
- (2) On suppose 0 < a < N. Montrer que $p_a = pp_{a+1} + (1-p)p_{a-1}$.
- (3) En déduire p_a .
- (4) On note q_a la probabilité pour que, partant de a, le processus se termine au point N. Calculer $p_a + q_a$. Que peut-on en déduire?

Exercice 3.7 Soit n un entier supposé strictement supérieur à 1. On munit $\{1,...,n\}$ de la probabilité uniforme. Pour tout entier $m \le n$, on note A_m l'événement $\{x \in \Omega : m \text{ divise } x\}$ On note également B l'événement "x est premier avec n". Enfin, on note $p_1,...,p_r$ les diviseurs premiers de n.

- (1) Exprimer B en fonction des A_{p_k} .
- (2) Pour tout $m \leq n$ qui divise n, calculer la probabilité de A_m .
- (3) Montrer que les événements A_{p_1}, \cdots, A_{p_r} sont mutuellement indépendants.
- (4) En déduire la probabilité de B.
- (5) Application : on note $\varphi(n)$ le nombre d'entiers $k \leq n$ premiers avec n. Démontrer que $\varphi(n) = n \prod \left(1 \frac{1}{p_k}\right)$.

Exercice 3.8 Soit X_1 et X_2 deux variables aléatoires définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ indépendantes suivant une loi de Bernoulli de paramètre $p \in]0,1[$.

Déterminer la loi de $Y = \max\{X_1, X_2\}$ ainsi que la loi de $Z = \min\{X_1, X_2\}$.

Exercice 3.9 Soit (X_n) une suite de variables aléatoires de Bernoulli définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ indépendantes de paramètre $p \in]0, 1[$. On note Z_1 la variable aléatoire donnant le rang du premier succès.

- (1) Déterminer la loi de Z_1 , son espérance et sa variance.
- (2) On note \mathbb{Z}_2 la variable aléatoire donnant le rang du second succès. Déterminer sa loi, son espérance et sa variance.

(3) Plus généralement, pour tout entier $n \ge 1$, on note Z_n le rang du n-ième succès et $A_n = Z_n - Z_{n-1}$. Montrer que pour $n \ge 2$ les variables A_1, \dots, A_n sont indépendantes et suivent une même loi que l'on déterminera.

Exercice 3.10

- (1) Soit X une variable aléatoire à valeurs dans \mathbb{N} .
 - (a) Montrer que, pour tout $n \in \mathbb{N}^*$, on a :

$$\sum_{k=0}^{n} kP(X=k) = \sum_{k=0}^{n-1} P(X>k) - nP(X>n).$$

- (b) On suppose que $\sum_{k=0}^{+\infty} P(X > k)$ converge. Démontrer que X admet une espérance.
- (c) Réciproquement, on suppose que X admet une espérance. Démontrer alors que $(nP(X>n))_n$ tend vers 0, puis que la série $\sum_{k=0}^{+\infty} P(X>k)$ converge, et enfin que

$$E(X) = \sum_{k=0}^{+\infty} P(X > k).$$

- (2) Application : on dispose d'une urne contenant N boules indiscernables au toucher numérotées de 1 à N. On effectue, à partir de cette urne, n tirages successifs d'une boule, avec remise, et on note X le plus grand nombre obtenu.
 - (a) Que vaut $P(X \le k)$? En déduire la loi de X.
 - (b) A l'aide des questions précédentes, donner la valeur de E(X).
 - (c) A l'aide d'une somme de Riemann, démontrer que la suite $\left(\frac{1}{N}\sum_{k=0}^{N-1}\left(\frac{k}{N}\right)^n\right)_N$ admet une limite (lorsque N tend vers $+\infty$) que l'on déterminera.
 - (d) En déduire que $\lim_{N\to+\infty} \frac{E(X)}{N} = \frac{n}{n+1}$.

Exercice 3.11 On suppose que le nombre X d'œufs pondus par une tortue au cours d'une ponte suit une loi de Poisson $\mathcal{P}(\lambda)$. Chaque œuf arrive à éclosion (indépendamment les uns des autres) avec une probabilité p. On note X le nombre de bebés tortues issus d'une ponte. Déterminer la loi de X. On note Y le nombre d'œufs qui n'arrivent pas à éclosion, déterminer la loi de Y. Les variables X et Y sont-elles indépendantes?

Soient X et Y deux variables aléatoires indépendantes. On suppose que $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$. Déterminer la loi de X + Y.

Exercice 3.12 Déterminer la fonction génératrice d'une variable aléatoire suivant

- une loi $\mathcal{B}(1,p)$.
- une loi $\mathcal{B}(n,p)$.
- une loi de Poisson $\mathcal{P}(\lambda)$.

Exercice 3.13 Déterminer la fonction génératrice g_S d'une variable aléatoire S suivant la loi uniforme sur $\{2, 3, \dots 12\}$. Montrer que g_S est un polynôme et déterminer ses racines réelles en précisant leur ordre de multiplicité. b) Montrer qu'il est impossible de piper deux dés, de manière éventuellement différente, de façon à ce que la somme des points obtenus en lançant ces deux dés suive la loi uniforme sur $\{2, \dots, 12\}$.