# Assignment 3: Collaborating in Github

Brandon Yee

Veronica Leary

2025-03-24

### Introduction

This report generates and displays summary statistics of text message counts by **Group** and **Time Point**. We calculate measures of central tendency and variability to understand texting patterns across two groups and over time.

### Load Required Libraries

```
library(readr)  # Reading CSV files
library(gt)  # Generating clean, styled summary tables
library(ggplot2)  # For plotting
library(dplyr)  # For data manipulation
library(tidyr)  # For reshaping data
library(wesanderson)  # For Wes Anderson-inspired color palettes
library(reshape)  # For converting data to long with melt()
```

## Data Loading and Cleaning

```
# set working directory as folder on desktop
# setwd("C:/Users/brand/OneDrive/Desktop/BHDS2010/ASSIGN3/bhds-assign-3")
# setwd("/Users/vleary71/Desktop/BHDS2010/ASSIGN3/bhds-assign-3")
# successfully set working directory

# Read in the dataset and clean header rows
data <- read.csv("TextMessages.csv") # Reads the dataset into an R dataframe

# Reshape from wide to long format
data_long <- data %>%
```

### **Summary Statistics Calculation**

We calculate:

- Count of observations per group/time
- Mean, Median, and Standard Deviation of text message counts

```
summary_table <- data_long %>%
group_by(Group, Time) %>%
summarise(
   Count = n(),
   Mean = round(mean(TextMessages, na.rm = TRUE), 2),
   Median = round(median(TextMessages, na.rm = TRUE), 2),
   SD = round(sd(TextMessages, na.rm = TRUE), 2),
   .groups = "drop"
)
```

## **Summary Table Output**

```
summary_table %>%
  gt() %>%
  tab_header(
   title = "Summary Statistics of Text Messages",
   subtitle = "Grouped by Treatment Group and Time Point"
  ) %>%
  cols_label(
   Group = "Group",
   Time = "Time Point",
   Count = "N",
   Mean = "Mean",
   Median = "Median",
   SD = "Standard Deviation"
 fmt_number(columns = c(Mean, Median, SD), decimals = 2) %>%
  tab_options(
   table.font.size = 12,
   heading.title.font.size = 16,
   heading.subtitle.font.size = 14
```

#### Summary Statistics of Text Messages Grouped by Treatment Group and Time Point

| Group | Time Point | N  | Mean  | Median | Standard Deviation |
|-------|------------|----|-------|--------|--------------------|
| 1     | Baseline   | 25 | 64.84 | 64.00  | 10.68              |
| 1     | Six_months | 25 | 52.96 | 58.00  | 16.33              |
| 2     | Baseline   | 25 | 65.60 | 65.00  | 10.84              |
| 2     | Six_months | 25 | 61.84 | 62.00  | 9.41               |

### Inference

###Visualization 1:

- If the **mean** and **median** differ substantially, this may suggest skewness in message volume.
- Compare between **Groups** to explore differences in texting behavior.
- An increase from **Baseline** to **Six** months may indicate behavioral changes over time.
- Use standard deviation to understand variability within each subgroup.

```
#Stratified boxplot of text messages by Group and Time
#Hint: Faceted Boxplot
#Read data set in
#Use read.csv since the file is a csv file
text_data <- read.csv("TextMessages.csv")</pre>
#File was successfully read in
#Use nrow() to check the number of rows/observations
nrow(text data)
## [1] 50
#There are 50 rows in the dataset
#Use names() to view the variable names
names(text_data)
## [1] "Group"
                     "Baseline"
                                    "Six months"
                                                 "Participant"
#There are variables "Group", "Baseline", "Six_months" and "Participant"
#Using cbind to combine the melted text data without the Group variable with a
#a column containing the Group variable replicated a second time.
long_text_data <- cbind(melt(text_data[,-1],</pre>
                             id.vars = "Participant", #not melting Participant
                             variable_name = "Time", #Variable name for melted
                       value.names = "Texts"), #argument not working? Supposed
                       #to change the variable name to "Texts", but doesn't
                       #seem to work anymore.
                       Group = rep(text_data$Group, 2)) #Using rep() to replicate
```

```
#Use is.factor() to check if Group is a factor
is.factor(long_text_data$Group)
## [1] FALSE
#FALSE was returned
#Use as.factor() to change it to a factor
long_text_data$Group <- as.factor(long_text_data$Group)</pre>
#Verify again with is.factor()
is.factor(long_text_data$Group)
## [1] TRUE
#TRUE is returned this time
#Check if Time is a factor with is.factor()
is.factor(long_text_data$Time)
## [1] TRUE
#TRUE was returned
#Check the factor names of Time using levels()
levels(long_text_data$Time)
## [1] "Baseline" "Six_months"
#"Baseline" and "Six_months" were returned
#Use levels again and set the names of the factors to have "Six Months" for
#easier readability for the boxplots
levels(long_text_data$Time) <- c("Baseline", "Six Months")</pre>
#check the levels again
levels(long_text_data$Time)
## [1] "Baseline"
                    "Six Months"
#Now "Baseline" and "Six Months" was returned
#####Plot the boxplots
#Use ggplot() with aes set for group on x to stratify and value on y with
#fill = group to allow the plots to be colored
ggplot(long_text_data, aes(x=Group, y = value, fill = Group)) +
  #adding a boxplot with geom_boxplot()
  geom_boxplot() +
  #Use facet_wrap() to stratify the boxplots by time
 facet_wrap(.~Time) +
```

```
#add labels for the title and y axis
labs(title = "Boxplots of Text Data Stratified by Group and Time",
    y = "Total Text Messages")+
#adding a color to the boxplots
scale_fill_brewer(palette = "Pastel1") +
#centering the title of the plot
theme(plot.title = element_text(hjust = 0.5))
```

### Boxplots of Text Data Stratified by Group and Time



#The figure was successfully created

```
###Visualization 2:
# stratified_bar_chart.R
# Stratified Bar Chart of Text Messages by Group and Time
# Author: Collaborative GitHub Project Team/Veronica Leary
# Description: This script generates a stratified bar chart with a Wes Anderson
#color palette using ggplot2 and dplyr

# Load and clean the dataset
data <- read.csv("TextMessages.csv") # Load dataset

# Rename columns for clarity
colnames(data) <- c("Group", "Baseline", "Six_months", "Participant")

# Remove redundant header row
data <- data[-1, ]</pre>
```

## Stratified Bar Chart of Text Messages by Group and Time



### **Project Summary**

This script outlines the contributions and workflow from our group project analyzing text message data.

It can be used as a reference in combination with the visual and statistical output scripts.

#### Contributions Overview

#### Brandon Yee:

- Responsible for initial setup of Github repository
- Responsible for Visualization 1: Stratified boxplot using ggplot2 default theme.
- This visualization highlighted the distribution of text messages across time and group,

including medians, variability, and outliers.

- Responsible originally for summary statistics:
- Wrote code for summary statistics using stat.desc and by functions.
- Deferred and handed off to Veronica since she had a more aesthetic display method.

## Veronica Leary:

- Responsible for Visualization 2: Stratified bar chart using ggplot2 + wesanderson theme.
- Allowed for comparison of total message counts between groups and time points.
- Revealed possible increase in message volume in Group B over time.
- Responsible for Summary Statistics:

#### GitHub Workflow

- Created a dedicated branch for visualizations and documentation tasks.
- Commit messages included:
- "Added stratified bar chart with Wes Anderson color palette"
- "Generated summary statistics table with gt"
- "Created documentation and embedded inference blocks"
- Pushes were successful, but merge is pending due to repository permissions

(partner is the owner of the GitHub repo).

- Push and merge to main branch by Brandon was successful after he reviewed and edited.

### Reflection

This assignment helped reinforce:

- The value of clear commit messages and reproducible code.
- Collaborative coding practices using Git and GitHub.
- Communicating visual and statistical insights clearly through embedded narrative.