

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Redox Oxidation Number 1

Oxidation Number 1

Essential Pre-Uni Chemistry K1.1

Give the oxidation number of nitrogen in the following compounds:						
Part A	NH_3					
NH_3						
Part B	NO					
NO						
Part C	N_2					
N_2						
Part D	NO_2					
NO_2						

Part E HNO ₃	$ m HNO_3$
Part F ${ m Ca(NO_3)}$	$ m Ca(NO_3)_2$
Part G $ m N_2H_4$	$ m N_2H_4$
Part H ${ m Mg_3N_2}$	$ m Mg_3N_2$
Part I	$ m NCl_3$

Part J	NO^{-}

 NO^+

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Redox Oxidation Number 2

Oxidation Number 2

Essential Pre-Uni Chemistry K1.2

	Te-oni chemistry Ki.2
Vrite dowr	the oxidation number of:
Part A	$ m H_2O$
Oxygen ir	n $ m H_2O$
Part B	$ m H_2SO_4$
Sulfur in]	$ m H_2SO_4$
Part C	$ m H_{3}PO_{4}$
Phosphor	rus in $ m H_3PO_4$
Part D	$ m H_{3}PO_{3}$
Phosphor	rus in ${ m H_3PO_3}$

Part E $ m ClO_2$						
Chlorine in ${ m ClO}_2$						
Part F OF_2						
Oxygen in OF_2						
Part G Sodium nitrite						
Nitrogen in sodium nitrite NaNO_2						
Part H Ammonium sulfate						
Nitrogen in ammonium sulfate $(\mathrm{NH_4})_2(\mathrm{SO_4})$						
Part I Hydrogen peroxide						
Oxygen in hydrogen peroxide $\mathrm{H}_2\mathrm{O}_2$						

Part 0	${\rm I_3}^-$				
${ m I}$ in ${ m I_3}^-$					

Gameboard:

STEM SMART Chemistry Week 10

<u>Home</u>

<u>Gameboard</u>

Chemistry

Inorganic

Redox

Oxidation Number 3

Oxidation Number 3

Essential Pre-Uni Chemistry K1.3

Select the element or species that is being reduced in the following reactions

Part A (a)

$$CuO + H_2 \longrightarrow Cu + H_2O$$

- O in H_2O
- $H \ \mathsf{in} \ H_2$
- Cu in CuO
- $O \ \text{in} \ CuO$

Part B (b)

$$C_3H_6+H_2 {\:\longrightarrow\:} C_3H_8$$

- C_3H_6
- C_3H_8
- $H \ \text{in} \ H_2$
- H in C_3H_6

Part C (c)

 $2\,\mathrm{Na} + \mathrm{Br}_2 \longrightarrow 2\,\mathrm{NaBr}$

- O Na
- $ightharpoonup Br_2$
- Br in NaBr
- Na in NaBr

Part D (d)

 $\mathrm{H_2O_2} + 2\,\mathrm{FeSO_4} + \mathrm{H_2SO_4} \longrightarrow 2\,\mathrm{H_2O} + \mathrm{Fe_2(SO_4)_3}$

- ${f S}$ in H_2SO_4
- ightharpoonup Fe in ${
 m FeSO_4}$
- ightharpoonup S in $FeSO_4$
- H_2O_2

Part E (e)

 $ZnCl_2 \longrightarrow Zn + Cl_2$

- \bigcirc Cl in ZnCl₂
- \bigcirc Cl in Cl₂

Part F (f)

 ${
m Fe_2(SO_4)_3 + Zn} \longrightarrow 2\,{
m FeSO_4 + ZnSO_4}$

- igcap Fe in $\mathrm{Fe_2}(\mathrm{SO_4})_3$
- $\mathbf{Zn} \text{ in } \mathbf{ZnSO}_4$
- $S \text{ in } \mathrm{Fe}_2(\mathrm{SO}_4)_3$
- Zn

Part G (g)

 $NiSO_4 + Fe \longrightarrow FeSO_4 + Ni$

- $ightharpoonup S ext{ in NiSO}_4$
- O in NiSO₄
- () Fe
- Ni in NiSO₄

Part H (h)

 $4\,\mathrm{C_3H_6O} + \mathrm{NaBH_4} + 4\,\mathrm{H_2O} \longrightarrow 4\,\mathrm{C_3H_8O} + \mathrm{NaB(OH)_4}$

- \bigcirc C₃H₆O
- H in NaBH₄
- \bigcirc H in C_3H_6O
- B in NaBH₄

Home Gameboard

oard Chemistry

Inorganic

Redox

Oxidation Number 4

Oxidation Number 4

Essential Pre-Uni Chemistry K1.4

Select the element or species that is being oxidised in the following reactions.

Part A (a)

$$2\,\mathrm{Al} + \mathrm{Cr}_2\mathrm{O}_3 \longrightarrow \mathrm{Al}_2\mathrm{O}_3 + 2\,\mathrm{Cr}$$

- Al
- O in Cr_2O_3
- $m Cr~in~Cr_2O_4$
- Al in Al_2O_3

Part B (b)

$$2\,NH_3 + 3\,CuO \longrightarrow N_2 + 3\,Cu + 3\,H_2O$$

- \bigcirc NH₃
- O in CuO
- $N \text{ in } N_2$
- Cu in CuO

Part C (c)

 $2\,Cu^{2+} + 4\,I^- \longrightarrow 2\,CuI + I_2$

- Cu in CuI
- I in CuI
- Cu^{2+}

Part D (d)

 $6\,PbO + O_2 \longrightarrow 2\,Pb_3O_4$

- Pb in PbO
- O in PbO
- \bigcirc Pb in Pb₃O₄
- \bigcirc O in O_2

Part E (e)

 $H_2O_2 + SO_2 \longrightarrow H_2SO_4$

- $m H~in~H_2SO_4$
- H_2O_2
- \bigcirc SO₂
- $\ \ \, S \text{ in } H_2SO_4$

Part F (f)

 $3\,H_2SO_4 + 2\,NaBr \longrightarrow 2\,NaHSO_4 + Br_2 + SO_2 + 2\,H_2O$

- Br in NaBr
- $H \text{ in } H_2SO_4$
- $S \text{ in } H_2SO_4$
- Na in NaBr

Part G (g)

 $\mathrm{Mg} + 2\,\mathrm{CH_3COOH} \longrightarrow \mathrm{Mg}(\mathrm{CH_3COO})_2 + \mathrm{H_2}$

- Mg
- \bigcirc H₂
- \bigcirc C in $\mathrm{CH_3COOH}$
- $Mg \text{ in } Mg(CH_3COO)_2$

Part H (h)

 $2\,\mathrm{Fe^{3+}} + 6\,\mathrm{ClO^-} + 4\,\mathrm{OH^-} \longrightarrow 2\,\mathrm{FeO_4}^{2-} + 3\,\mathrm{Cl_2} + 2\,\mathrm{H_2O}$

- Fe^{3+}
- OH_
- \bigcirc O in ClO $^-$
- Cl in ClO

 ${\color{red} \underline{\mathsf{Home}}} \quad {\color{red} \underline{\mathsf{Gameboard}}} \quad {\color{red} \mathsf{Chemistry}} \quad {\color{red} \mathsf{Inorganic}} \quad {\color{red} \mathsf{Redox}} \quad {\color{red} \mathsf{Oxidation}} \, {\color{red} \mathsf{States}} \, {\color{red} \mathsf{of}} \, {\color{red} \mathsf{S}} \, {\color{red} \mathsf{and}} \, {\color{red} \mathsf{N}}$

Oxidation States of \boldsymbol{S} and \boldsymbol{N}

Part A Oxidation states of sulfur

In which of the following pairs of species is the sulfur in the same oxidation state in both members of the pair?

- 1. ${\rm SF}_6$ and ${{\rm SO_4}^{2-}}$
- ${f 2}.~{
 m SO}_2$ and ${
 m HSO}_3^-$
- 3. $\mathrm{S_2O_3}^{2-}$ and $\mathrm{S_4O_6}^{2-}$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 3 only is correct

Part B Oxidation states of nitrogen

In which of the following conversions does the oxidation number of the nitrogen change by two?

- $\textbf{1}.\ NH_2OH \longrightarrow NH_3$
- $\textbf{2}.\ N_2 \longrightarrow NO$
- $\textbf{3}.\ NO_2 \longrightarrow HNO_3$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 3 only is correct

Part A adapted with permission from UCLES, A-Level Chemistry, June 1990, Paper 1, Question 35; Part B adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 34

Gameboard:

STEM SMART Chemistry Week 10

Home Gameboard

Chemistry

Inorganic

Redox

Rocket and Metal Reduction

Rocket and Metal Reduction

Part A Solid rocket booster

The propellant used in the solid rocket booster of a space shuttle is a mixture of aluminium and compound \mathbf{X} . Compound \mathbf{X} contains chlorine in an oxidation state of +7.

Which of the following could be compound X?

- N_2H_5Cl
- NCl₃
- NH₄ClO₃
- NH₄ClO₄
- NH₄Cl

Part B Metals and reduction

In which of the following changes has the metal undergone reduction?

- $\qquad [\mathrm{Al}(\mathrm{H}_2\mathrm{O})_6]^{3+} \longrightarrow [\mathrm{Al}(\mathrm{OH})_2(\mathrm{H}_2\mathrm{O})_4]^+$

- $\operatorname{MnO_4}^{2-} \longrightarrow \operatorname{MnO_4}^{-}$
- $[\operatorname{Cr}(\operatorname{OH})_6]^{3-} \longrightarrow \operatorname{CrO_4}^{2-}$

<u>Home</u> <u>Gameboard</u>

<u>neboard</u> Chemistry

Inorganic

Redox

Oxidation Numbers of Halides

Oxidation Numbers of Halides

Part A Oxidation of bromine

What changes can be regarded as oxidation of bromine?

- $\textbf{1}.\ Br_2 \longrightarrow BrO^-$
- $\textbf{2}.\;Br_2 \longrightarrow BrF$
- $\textbf{3}.\;Br_2 \longrightarrow BrI$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct

Part B Oxidation numbers of halides

Which of the statements about the reaction below are correct?

$${
m IO_3}^-({
m aq}) + 2\,{
m I}^-({
m aq}) + 6\,{
m H}^+({
m aq}) + 6\,{
m Cl}^-({
m aq}) \longrightarrow 3\,{
m ICl_2}^-({
m aq}) + 3\,{
m H_2\,O\,(l)}$$

- **1**. The oxidation number of chlorine changes from -1 to -2.
- **2**. The oxidation number of the iodine in the iodide ion $I^{-}(aq)$ changes from -1 to +1.
- **3**. The oxidation number of the iodine in the iodate ion $\mathrm{IO_3}^-(\mathrm{aq})$ changes from +5 to +1.
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 37; Part B adapted with permission from UCLES, A-Level Chemistry, June 1989, Paper 3, Question 37

Gameboard:

STEM SMART Chemistry Week 10

Home Gameboard

Chemistry

Inorganic

Platinum, Hydroquinone and Silver

Platinum, Hydroquinone and Silver

Part A Oxidation numbers of platinum

The anti-cancer drug *cis-platin* has the formula $Pt(NH_3)_2Cl_2$.

In the human body, one of the chloride ions of *cis-platin* is replaced by one water molecule.

Redox

$$Pt(NH_3)_2Cl_2 + H_2O \longrightarrow [Pt(NH_3)_2(H_2O)Cl]^+ + Cl^-$$

What is the oxidation number of platinum in each of these complexes?

	cis-platin	in the aquo complex
Α	+2	+1
В	+2	+2
С	+4	+3
D	+4	+4

() C

() **D**

Part B Hydroquinone and silver bromide

When exposed film from a camera is developed, one step involves reacting the light-activated silver bromide crystals with hydroquinone in alkali according to the following equation:

$$OH \\ + 2AgBr + 2OH^{-} \\ OH \\ + 2Ag + 2H_{2}O + 2Br^{-}$$
 Hydroquinone

Figure 1: Hydroquinone and silver bromide in presence of base.

Which of the following describes the role of hydroquinone?

It acts only as a reducing agent
It acts as both a base and a reducing agent
It acts only as an oxidising agent
It acts only as an acid
It acts as both an acid and a reducing agent

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 9; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 3

Gameboard:

STEM SMART Chemistry Week 10

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Redox Ferrite

Ferrite

Aerials in portable radios are made of a mixed oxide of calcium and iron known as 'Ferrite'. It contains $18.5\,\%$ calcium and $51.9\,\%$ iron by mass. Calculate the empirical formula of 'Ferrite' and hence deduce the oxidation number of the iron it contains.

Part A	Empirical formula
Empirical	Formula:
Part B	Oxidation number
Oxidation	number:

Adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 2, Question 3

Gameboard:

STEM SMART Chemistry Week 10

Home Gameboard Chemistry Inorganic Redox Oxides of Nitrogen

Oxides of Nitrogen

Part A Oxides of nitrogen

In an attempt to establish the formula of an oxide of nitrogen, a known volume of the pure gas was mixed with hydrogen and passed over a catalyst at a suitable temperature. 100% conversion of the oxide to ammonia and water was shown to have taken place.

$$\mathrm{N}_x\mathrm{O}_y \xrightarrow[\mathrm{catalyst}]{\mathrm{H}_2} x\,\mathrm{NH}_3 + y\,\mathrm{H}_2\,\mathrm{O}$$

 $2400\,\mathrm{cm^3}$ of the nitrogen oxide, measured at room temperature and pressure (RTP) produced $7.200\,\mathrm{g}$ of water. The ammonia produced was neutralised by $200\,\mathrm{cm^3}$ of $1.0\,\mathrm{mol}\;\mathrm{dm^{-3}}\;\mathrm{HCl}.$

[Molar volume of gas at RTP = $24000 \, \mathrm{cm^3 \ mol^{-1}}$]

What was the oxidation number of nitrogen in the solid oxide?

- () +1
- +2
- +3
- +4
- () +5

Part B Oxidation numbers of nitrogen

The key stage in the manufacture	of nitric acid is the	reaction of a	ammonia with	air in the	presence	of a
platinum-rhodium gauze:						

$$4\,\mathrm{NH_{3}}\left(g\right)+5\,\mathrm{O_{2}}\left(g\right)\longrightarrow4\,\mathrm{NO}\left(g\right)+6\,\mathrm{H_{2}O}\left(g\right)$$

What is the oxidation number of nitrogen in

 NH_3

NO

Part A adapted with permission from UCLES, A-Level Chemistry, November 1989, Paper 3, Question 2; Part B adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 3, Question 1