Алгоритм Брона-Кербоша

Алгоритм Брона-Кербоша (1973г.) был первоначально разработан для решения задачи поиска клик в заданном скелетном неографе G(X, U) на основе применения метода ветвей и границ. Метод ветвей и границ является универсальным методом решения многих оптимизационных задач, в том числе NP-полных графовых задач. Решение находится по дереву всех возможных решений, но в отличие от полного перебора позволяет отсечь бесперспективные, заведомо не содержащие оптимальные решения. Отсюда и такое название метода.

Рассмотрим алгоритм ДЛЯ далее ЭТОТ поиска максимальных внутренне устойчивых множеств (ВУМ). Идея метода для данных задач заключается в следующем. Каждое максимальное ВУМ (МВУМ) состоит из максимального по включению в него несмежных между собой вершин, МВУМ порождает в графе максимальный пустой подграф. Начиная с произвольной вершины (образующей ВУМ), пытаемся добавить в новые вершины из множества кандидатов, не нарушая свойств внутренней устойчивости (не смежности вершин). Высокая скорость данного алгоритма обеспечивается за счет отсечения тех вариантов, которые не приведут к расширению ВУМ. Для этого в алгоритме используется дополнительное множество, в котором фиксируются те вершины, которые уже использовались ранее для расширения данного ВУМ.

В алгоритме Брона-Кербоша на каждом шаге строятся следующие три множества:

- S_k множество вершин ВУМ,
- Q^{+}_{k} множество вершин кандидатов для расширения S_{k} ,
- $Q^{\scriptscriptstyle -}{}_{\scriptscriptstyle k}$ множество вершин, которые уже использовались для расширения
- S_k на предыдущих шагах алгоритма (дополнительное множество).

Алгоритм использует следующие условия для определения состояний процесса поиска.

№	Условие	Состояние процесса поиска в алгоритме		
1.	$Q^{+}_{k} = S_{k} = \emptyset$	Конец поиска (закончен перебор всех возможных решений)		
2.	$Q^{+}_{k} \neq \emptyset$	Дальнейшее расширение множества S_k		
3.	$Q^{+}{}_{k}=Q^{-}{}_{k}=\emptyset$	Найдено очередное МВУМ (больше нет кандидатов на		
		расширение S_k и в нем нет повторов удаленных вершин)		

При расширении множества S_k за счет добавления в него вершины x по условию №2 производится коррекция множества Q^{-_k} следующим образом. Вначале устанавливается $Q^{-_k} = \emptyset$, а затем в него добавляются вершины из множества $Q^{-_{k-1}}$, не смежные со всеми вершинами из множества.

Обозначим далее $\Gamma(x)$ - множество образов вершины x, F - множество МВУМ в графе, p - количество МВУМ в графе. Ветвление в алгоритме Брона-Кербоша для поиска решений осуществляется следующим образом.

Установка начальных значений: k=0 , p=0 , $S_0=\emptyset$, $Q^+{}_0=X$, $Q^-{}_0=\emptyset$. ПОКА $\neg(Q^+{}_k=S_k=\emptyset)$ ВЫПОЛНЯТЬ:

- 1. ПОКА $Q^{+}_{k} \neq \emptyset$ ВЫПОЛНЯТЬ:
 - 1.1. Определить следующий уровень в дереве решений: k = k + 1
 - 1.2. Выбрать любую вершину $x \in Q^+k$
 - 1.3. Построить множества k -го уровня за счет добавления вершины x :

$$S_k = S_{k-1} \bigcup x, Q_k^+ = Q_{k-1}^+ \setminus (x \bigcup \Gamma(x)), Q_k^- = \emptyset$$

1.4. Учесть повторы в S_k ранее удаленных вершин по условию

$$\forall v \in Q^{-}_{k-1}(\Gamma(v) \cap S_k = \emptyset): \ Q^{-}_k = Q^{-}_k \bigcup v$$

- 2. ЕСЛИ $Q^{+}_{k} = Q^{-}_{k} = \emptyset$, ТО ВЫПОЛНИТЬ: p = p + 1, $F_{p} = S_{k}$
- 3. Вернуться к предыдущему уровню: k = k 1
- 4. Скорректировать множества k -го уровня за счет удаления вершины x : $S_k = S_k \setminus x$, $Q^+{}_k = Q^+{}_k \setminus x$, $Q^-{}_k = Q^-{}_k \cup x$

ПРИМЕР. Для данного графа найти все МВУМ с помощью алгоритма Брона-Кербоша.

Решение для заданного на рисунке графа заполним в виде следующей таблицы.

No	k	S_{k}	$Q^+{}_k$	$Q^{-}{}_{k}$	МВУМ?
1	0	-	a,b,c,d,e,f	-	
2	1	c	b,d	-	
3	2	c,b	-	-	+

4	1	С	d	b	
5	2	c,d	-	-	+
6	1	c	-	b,d	
7	0	-	a,b,d,e,f	c	
8	1	d	f	c	
9	2	d,f	-	-	+
10	1	d	-	c,f	
11	0	-	a,b,e,f	c,d	
12	1	e	a,b	-	
13	2	e,a	-	-	+
14	1	e	b	a	
15	2	e,b	-	-	+
16	1	e	-	a,b	
17	0	-	a,b,f	c,d,e	
18	1	a	-	e	
19	0	-	b,f	a,c,d,e	
20	1	b	-	c,e	
21	0		f	a,b,c,d,e	
22	1	f	-	d	
23	0	-	-	a,b,c,d,e,f	

В результате работы алгоритма была построена следующая таблица МВУМ.

No	МВУМ	НВУМ?
1	c,b	+
2	c,d	+
3	d,f	+
4	e,a	+
5	e,b	+

Для данного графа все МВУМ являются также и НВУМ. Поэтому $\alpha_0(G)=2$, а количество НВУМ равно 5.