Random Forest and Applications

Sambit Panda

Question: What to do with all this data?

Mouse	Group	Locomotor Activity	Grip Strength
10	WT	24	0.1
7.2	Mutant	18	0.12
34	Mutant	17	0.22
20	WT	33	0.05
8.8	Mutant	15	0.3

Subjects (n)Rows

Columns = Features = Dimensions (p or d)

Mouse	Group	Locomotor Activity	Grip Strength
10	WT	24	0.1
7.2	Mutant	18	0.12
34	Mutant	17	0.22
20	WT	33	0.05
8.8	Mutant	15	0.3

•

Locomotor Activity

How Random Forest Works

Locomotor Activity

Locomotor Activity

Mouse	Group	Locomotor Activity	Grip Strength
10	WT	24	0.1
7.2	Mutant	18	0.12
34	Mutant	17	0.22
20	WT	33	0.05
8.8	Mutant	15	0.3

Locomotor Activity

Summary

- Learned what tabular data is
- What splits are geometrically and within the algorithm
- How random forests trains on current data and tests on new points
- How random forest estimates feature importance

Independence Testing, K-Sample Testing and Random Forest

Question: Is there a relationship?

How to Compute Dcorr

Estimate Pairwise Distance Matrices

Linear Algebra

Calculate Dcorr Statistic

> Permutation Test

Calculate P-value

How to Compute KMERF

Compute similarities via RF

Exact Equivalence

Estimate Pairwise Distance Matrices

Question: Are they different?

 $H_0: \mu_X = \mu_Y$

 $H_A: \mu_X \neq \mu_Y$

 $H_0: F_X = F_Y$

 $H_A: F_X \neq F_Y$

Question: Is there a relationship?

Question: Are they different?

(via a transformation of the data)

Summary

- Learned what independence and k-sample testing are
- Learned how Dcorr and KMERF works
- Found out what results are on our data

Methods to Evaluate Performance

Leave One Out

$\underline{\mathsf{K-Fold}\,(k=5)}$

Predicted

Actual

False

(Neg)

Predicted

False True (Pos) (Neg) False True True Negative Positive (Pos) (TP) (FN)

False True Negative Positive (FP) (TN)

False Positive Rate (1 – Specificity)

TN + FP

True Positive Rate (Sensitivity)

TP

TP + FN

Summary

- Methods of performing cross-validation
- How to evaluate classifiers using classification accuracy and ROC
- What a good and bad classifier is with regards to AUC and ROC
- How this works with our data

Hierarchical Clustering

Summary

Learned how to do hierarchical clustering

Acknowledgements

JHU

- Joshua Vogelstein
- Cencheng Shen

NIEHS

- Jesse Cushman
- Dalisa Kendricks
- Leslie Wilson
- Jariatu Stallone
- Sydney Fry
- DaNashia Thomas

Questions?

