Fouille de données

وم ملاله وم

1. Méthodes de regression

1.1 Repression lineoire Univariée (avecure seule voirable)

Exemple de l'apence immabiliere on a & x = sonface

- hypothese: avec 0 = 20, 05 $h_{\theta}(x) = \theta_0 + \theta_1$ parametes

→ Objectif Trouver les voleurs de tos qui parmettent de définir le modèle (droite) qui sappelle le plus des données = modelisé

-> Hinimiser l'erreur mayenne en tous les de d.

min
$$J(\theta_i, \theta_1) = \frac{1}{n} \sum_{n=1}^{\infty}$$

min
$$f(x) = ? f'(x) = 0?$$

min $f(x) = x^2, f(x) = 2x = 0$ ssi $[x = 0]$

on pose
$$pt$$
 | 1 | 2 | 3 | 4 | 5 \Rightarrow $\xi = 1$.

CS Scanne avec CamScanner

La per absolue n'est pas devirable! -> clest pour co on a ajouté le carrie dous la formulede 2

L'algorithme du Gradient : also pui sert à minimier la fi coût J (8, 02)

REGLE DE MISE À JOUR:

on a
$$\frac{\partial J(\theta_0,\theta_1)}{\partial \theta_0} = \frac{\partial}{\partial \theta_0} \left[\frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 \pi i - y_i)^2 \right]$$

$$= \frac{1}{2m} \sum_{i=1}^{m} \frac{\partial}{\partial \theta_0} (\theta_0 + \theta_1 \pi i - y_i)^2$$

$$= \frac{1}{2m} \sum_{i=1}^{m} \frac{1}{2k} \left(\theta_0 + \theta_1 z_i - y_i\right) \times 1$$

$$\frac{\partial J(\theta_0,\theta_1)}{\partial \theta_1} = \frac{1}{2m} \frac{\int_{i=1}^{m} (\theta_0 + \theta_1)^2}{i=1}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} \right) \frac{\partial u}{\partial x}$$

Algorithme de Gnadient : 81 - 8 - × 32(8°, 8T) J - J(0,02); 8, - 80 Javant - Jold; Jold - J. - Juspu'à (Javant -J) & 2 Retroiver (Oo, Os) La machine Approud? on s'arrête 1.2: Repression lineaire multivariée Données $\frac{\alpha_1}{\alpha_1} \frac{\alpha_2}{\alpha_2} \frac{\alpha_n}{\alpha_n} \frac{y}{y} = 2$ $\frac{\alpha_1}{\alpha_2} \frac{\alpha_1}{\alpha_2} \frac{\alpha_1}{\alpha_2} \frac{y}{\alpha_n} = 2$ $\frac{\alpha_1}{\alpha_2} \frac{\alpha_1}{\alpha_2} \frac{\alpha_1}{\alpha_2} \frac{y}{\alpha_2} = 2$ $\frac{\alpha_1}{\alpha_2} \frac{\alpha_1}{\alpha_2} \frac{\alpha_2}{\alpha_2} \frac{x}{\alpha_2} + 2$ $\frac{\alpha_1}{\alpha_2} \frac{\alpha_1}{\alpha_2} \frac{x}{\alpha_2} + 2$ $\frac{\alpha_1}{\alpha_2} \frac{\alpha_2}{\alpha_2} \frac{x}{\alpha_2} + 2$ $\frac{\alpha_1}{\alpha_2} \frac{x}{\alpha_2} \frac{x}{\alpha_2} \frac{x}{\alpha_2} + 2$ $\frac{\alpha_1}{\alpha_2} \frac{x}{\alpha_2} \frac{x}{\alpha_2} \frac{x}{\alpha_2} + 2$ $\frac{\alpha_1}{\alpha_2} \frac{x}{\alpha_2} \frac{x}{\alpha_2} + 2$ $\frac{\alpha_1}{\alpha_2} \frac{x}{\alpha_2} \frac{x}{\alpha_2} \frac{x}{\alpha_2} + 2$ hypothere ho(x) =0. + 82x2 + 82x2 + --- + 8moun = 80 + 5 8i 2i dont 8 = 280, 81, 82, ..., 8m 3 E 18th Erreur = ho (ni) - 4j content to se in i=1 (ho(ni)-yi) et le iem element de

1.3. Sur / Sous Apprentisiage

$$ho(n) = g(b_0 + \sum_{i=1}^{m} b_i \alpha_i)$$

	22	712	Ro(a)	Đ _o	+ 01 21 +	0222	
	0	0	g(-30)~0	-30	20	20	
	0	1	q(-10) NO				
	1	0	g (-10) NO	_			
	1	1	8(10)				
R	1	7	(3)	. NO	-gkoc	4)	00 0 10 1 1 1
7	ot 10	4	(2). 10°,	Q _	22 AoC 0 L 10	×)	
(6)	n	(01	Pb mon line Sépons	bient Le.	0 0 0 1 1	4004	