Devoir maison 5.

À rendre le jeudi 21 novembre 2024

Exercice

On pose, pour tout $n \in \mathbb{N}$,

$$u_n = \int_0^1 x^n \sqrt{1-x} \, \mathrm{d}x.$$

- $\mathbf{1}^{\circ}$) Calculer u_0 .
- **2°) a)** Montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{2}{3}(n+1)(u_n u_{n+1})$.
 - **b)** En déduire une expression de u_{n+1} en fonction de u_n , pour tout $n \in \mathbb{N}$.
 - c) On pose, pour tout $n \in \mathbb{N}$, $\alpha_n = \frac{(2n+3)!}{n!(n+1)!}u_n$. Justifier que (α_n) est une suite géométrique.
 - d) En déduire l'expression de u_n en fonction de n, pour tout $n \in \mathbb{N}$.
- **3°)** A l'aide du changement de variable $x=1-t^2$, montrer que pour tout $n\in\mathbb{N}$,

$$\sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^k}{2k+3} = \frac{(n+1)!n!}{(2n+3)!} 2^{2n+1}.$$

4°) Question facultative

On pose, pour tout $n \in \mathbb{N}$,

$$I_n = \int_0^{\frac{\pi}{2}} (\sin \theta)^{2n+1} d\theta.$$

- a) Calculer I_0 .
- b) À l'aide du changement de variable $x = (\sin \theta)^2$, montrer que pour tout $n \in \mathbb{N}$,

$$I_n - I_{n+1} = \frac{1}{2}u_n.$$

c) À l'aide d'une intégration par parties, montrer que pour tout $n \in \mathbb{N}$,

$$I_{n+1} = (2n+2)(I_n - I_{n+1}).$$

d) Déduire des questions précédentes que pour tout $n \in \mathbb{N}$, $I_n = \frac{(n!)^2}{(2n+1)!} 4^n$.