Practice Problems 1 - Solutions

NEGATIONS

- 1. Negate the following:
 - (a) * For some $x \in \mathbb{R}, x^2 = 2$

Answer: For all $x \in \mathbb{R}$, $x^2 \neq 2$.

(b) $\forall a \in \mathbb{Q}, \sqrt{a} \in \mathbb{Q}$

Answer: $\exists a \in \mathbb{Q} \text{ s.t. } \sqrt{a} \notin \mathbb{Q}$

(c) * $\forall \epsilon \in \mathbb{R}$ such that $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \in \mathbb{N}$, satisfying $n \geq N$, $1/n < \epsilon$.

Answer: $\exists \epsilon \in \mathbb{R} \text{ s.t. } \epsilon > 0 \text{ and } \forall N \in \mathbb{N} \text{ we have that } \exists n \in \mathbb{N} \text{ such that } n \geq N \text{ and } 1/n \geq \epsilon.$

(d) Between every two distinct real numbers, there is a rational number.

Answer: $\exists x, y \in \mathbb{R}$ with x < y such that $\forall z \in \mathbb{Q}$ either z < x or y < z.

SETS

- 2. For any sets A, B, C, prove that:
 - (a) $(A \cap B) \cap C = A \cap (B \cap C)$

Answer: $x \in (A \cap B) \cap C$, iff $x \in (A \cap B)$ and $x \in C$. These hold iff $x \in A$ and $x \in B$. Wich in turn hold iff $x \in B \cap C$, wich holds iff $x \in A \cap (B \cap C)$

(b) * $A \cup B = A \Leftrightarrow B \subseteq A$

Answer: (\Rightarrow) Let $x \in B$ then $x \in A \cup B$, by hypothesis $x \in A$. (\Leftarrow) We have that $A \subseteq A \cup B$. Now, if $x \in A \cup B$ and $x \in B$ then by hypothesis $x \in A$. We conclude that $A \cup B \subseteq A$.

(c) $(A \cup B)^c = A^c \cap B^c$

Answer: Let $x \in (A \cup B)^c$ then $x \notin A \cup B$, i.e. $x \notin A$ and $x \notin B$. Thus, $x \in A^c$ and $x \in B^c$; i.e. $x \in A^c \cap B^c$. This shows that $(A \cup B)^c \subseteq A^c \cap B^c$. The reversed inclusion follows by an identical proof.

- 3. * Let Q be the statement 2x > 4 and P: 10x + 2 > 15. Show that $Q \implies P$ using:
 - (a) a direct proof

Answer: 2x > 4 implies 10x > 20 therefore 10x + 2 > 15.

(b) contrapositive principle

Answer: $10x + 2 \le 15$ implies $10x \le 15$ so $2x \le 3 < 4$.

(c) contradiction

Answer: suppose not, i.e. 2x > 4 and $10x + 2 \le 15$ by the above arguments, you arrive to a contradiction.

4. * Assume B is a countable set. Let $A \subset B$ be an infinite set. Prove that A is countable.

Answer: B is countable so there exists a list b_1, b_2, \ldots Let $f(1) = \min\{n; b_n \in A\}$ and $f(m) = \min\{n; b_n \in A \text{ and } n > f(m-1)\}$. f is clearly an injective function from N to A. It is surjective, because if not the list b_1, b_2, \ldots would have not been exhaustive.

- 5. (Challenge) Let X be uncountably infinite. Let A and B be subsets of X such that their complements are countably infinite.
 - (a) Prove that A and B are uncountably infinite. Hint: $X = A \cup A^c$.

Answer: Suppose that A is countable, then there are exhaustive lists of elements of A and of A^c . Therefore, you can easily create a bijective map from the naturals to X by alternating the elements in each of the two lists. So X is countable, a contradiction (similarly one can argue that X would then be a finite union of countable sets, thus it is also countable). Similarly for B.

(b) Prove that $A \cap B \neq \emptyset$.

Answer: Suppose that $A \cap B = \emptyset$, then $A^c \cup B^c = X$, but A^c and B^c are countable, so X is a finite union of countable sets, thus countable, a contradiction.

FUNCTIONS

- 6. Let $f: S \to T$, $U_1, U_2 \subset S$ and $V_1, V_2 \subset T$.
 - (a) * Prove that $V_1 \subset V_2 \implies f^{-1}(V_1) \subset f^{-1}(V_2)$.

Answer: Let $x \in f^{-1}(V_1)$ then $\exists y \in T$ such that f(x) = y. By hypothesis $y \in V_2$, so $x \in f^{-1}(V_2)$.

- (b) Prove that $f(U_1 \cap U_2) \subset f(U_1) \cap f(U_2)$. Let $y \in f(U_1 \cap U_2)$ then there is an $x \in U_1 \cap U_2$ such that f(x) = y. We then have that $y \in f(U_1)$ and $y \in f(U_2)$.
- 7. Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Give an example of the following or show that it is impossible to do so:
 - (a) a function that is neither injective nor surjective

Answer: f(a) = x, f(b) = y, f(c) = x.

(b) a one-to-one function that is not onto

Answer: This is imposible, for it to be one-to-one each element in the domain must map to a different element in the range, since the number of elements in the domain and range are the same, it must also be onto.

(c) a bijection

Answer: f(a) = y, f(b) = x, f(c) = z.

(d) a surjection that is not one-to-one

Answer: This is imposible, for it to be onto, each element of the range must be the image of at least one element in the domain, so at 3 elements in the domain are needed, which all there are, then it is also injective.

INDUCTION

Use induction to prove the following statements:

8. * If a set A contains n elements, the number of different subsets of A is equal to 2^n .

Answer: The case base is easy of you consider $A = \emptyset$ then A contains zero elements and the power set (the set containing all subsets of A) contains 1 element (the set that contains the empty set.

Assume it holds for n = k, i.e. $|A| = k \implies |P(A)| = 2^k$. This is $P(A) = \{b_1, b_2, \dots, b_{2^k}\}$, now consider $B = A \cup z$ where $z \notin A$, then |B| = k + 1. The only extra subsets of B compared to A are the ones that include z. I.e. $b_1 \cup z, b_2 \cup z, \dots, b_{2^k} \cup z$. We then have that $|P(B)| = 2 \cdot (2^k) = 2^{k+1}$.

9. * $\sum_{i=1}^{n} i^3 = (\sum_{i=1}^{n} i)^2$ for all $n \in \mathbb{N}$

The case base is easy if n = 1, lets now assume it holds for n = k to show it holds for n = k + 1 let's start with the right-hand-side (rhs) f the k + 1 case.

$$\left(\sum_{i=1}^{k+1} i\right)^{2} = \left(\sum_{i=1}^{k} i + (k+1)\right)^{2}$$

$$= \left(\sum_{i=1}^{k} i\right)^{2} + 2(k+1)\left(\sum_{i=1}^{k} i\right) + (k+1)^{2}$$

$$= \sum_{i=1}^{k} i^{3} + 2(k+1)\frac{(k+1)(k)}{2} + (k+1)^{2}$$

$$= \sum_{i=1}^{k} i^{3} + (k+1)^{2}(k+1)$$

$$= \sum_{i=1}^{k+1} i^{3}.$$

10. $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \geq \sqrt{n}$ for all $n \in \mathbb{N}$

Answer: The base case is trivial by taking n = 1, assume now it holds for n = k and start with the left-hand-side (lhs) of the case when n = k + 1.

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{n+1}} \geq \sqrt{n} + \frac{1}{\sqrt{n+1}}$$

$$= \frac{\sqrt{n(n+1)} + 1}{\sqrt{n+1}}$$

$$\geq \frac{\sqrt{n^2} + 1}{\sqrt{n+1}}$$

$$= \sqrt{n+1}.$$