שיעור 1 בסיסים אורתוגונליים

1.1 בסיסים אורתוגונליים

הגדרה 1.1 קבוצת ווקטורים אורתוגונלית

נתון המרחב מכפלה פנימית V ונתונה הקבוצה של ווקטורים

$$\{u_1, u_2, \ldots, u_k .\}$$
.

הקבוצה נקראת אורתוגונלית אם כל שני ווקטורים שלה אורתוגונליים. כלומר:

$$\langle u_i, u_j \rangle = 0 , \qquad i \neq j .$$

הגדרה 1.2 קבוצת ווקטורים ואורתונורמלית

נתון המרחב מכפלה פנימית V ונתונה הקבוצה של ווקטורים

$$\{u_1,u_2,\ldots,u_k\}.$$

הקבוצה נקראת אורתונורמלית אם:

א) כל שני ווקטורים שלה אורתוגונליים, כלומר

$$\langle u_i, u_j \rangle = 0 , \qquad i \neq j ,$$

ב) כל ווקטור הוא ווקטור יחידה, כלומר

$$||u_i||=1.$$

דוגמה 1.1

. עם המכפלה אורתונורמלית. בדקו אם הקבוצה עם \mathbb{R}^n עם אורתונורמלית עם הסטנדרטי ותון הבסיס הסטנדרטי $\{e_1,\ldots,e_n\}$

תזכורת: נתונים שני ווקטורים
$$u=\begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}, \mathbf{v}=\begin{pmatrix}y_1\\ \vdots\\ y_n\end{pmatrix}\in\mathbb{R}^n$$
 מוגדרת מוגדרת מתונים שני ווקטורים $u=\begin{pmatrix}x_1\\ \vdots\\ y_n\end{pmatrix}$

$$(u, \mathbf{v}) = \sum_{i=1}^{n} x_i y_i = x_1 y_1 + \ldots + x_n y_n$$
.

 $:\mathbb{R}^n$ נרשום את הבסיס הסטנדרטי של

$$\left\{e_1 = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, e_2 = \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix}\right\}$$

(N

$$(e_i, e_j) = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases},$$

כלומר כל שני ווקטורים אורתוגונליים.

(2

$$||e_i|| = \sqrt{(e_i, e_i)} = 1$$
,

כלומר כל ווקטור בקבוצה הוא ווקטור יחידה.

לכן הבסיס הסטנדרטי של \mathbb{R}^n הוא קבוצה אורתונורמלי.

דוגמה 1.2

נתונה הקבוצה

$$\left\{ u_1 = \begin{pmatrix} 1+i \\ -1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} i \\ 1 \\ -i \end{pmatrix}, u_3 = \begin{pmatrix} 3+i \\ 4+3i \\ 5i \end{pmatrix} \right\}$$

. עם המ"פ הסטנדרטית ב- \mathbb{C}^3 עם המ"פ

- א) הוכיחו שהקבוצה אורתוגונלית.
- ב) מצאו את הקבוצה האורתנורומלית המתאימה לקבוצה זו.

פתרון:

(N

$$\langle u_1, u_2 \rangle = (1+i)\overline{i} - 1 \cdot 1 + 1(-\overline{i}) = (1+i)(-i) - 1 + 1(i) = -i + 1 - 1 + i = 0 \implies u_1 \perp u_2 .$$

$$\langle u_1, u_3 \rangle = (1+i)(3-i) - 1(4-3i) + 1(-5i) = 4 + 2i - 4 + 3i - 5i = 0 \implies u_1 \perp u_3 .$$

$$\langle u_2, u_3 \rangle = i(3-i) + 1(4-3i) - i(-5i) = 1 + 3i + 4 - 3i - 5 = 0 \implies u_2 \perp u_3 .$$

לכן הקבוצה אורתוגונלית.

(1

$$||u_1||^2 = \langle u_1, u_1 \rangle = (1+i)(1-i) + (-1)(-1) + 1 \cdot 1$$

$$||u_2||^2 = \langle u_2, u_2 \rangle = i(-i) + 1 \cdot 1 + (-i) \cdot i$$

$$||u_3||^2 = \langle u_3, u_3 \rangle = (3+i)(3-i) + (4+3i)(4-3i) + 5i(-5i) = 10 + 25 + 25 = 60.$$

לכן קבוצת הווקטורים

$$\left\{\frac{1}{2}u_1, \frac{1}{\sqrt{3}}u_2, \frac{1}{\sqrt{60}}u_3\right\}$$

היא קבוצה אורתונורמלית.

משפט 1.1 קבוצת אורתוגונלית בת"ל

קבוצת אורתוגונלית במרחב מכפלה פנימית שלא מכילה את ווקטור האפס היא בלתי תלויה לינארית.

הוכחה: תהי $\{u_1,\ldots,u_k\}$ קבוצה אורתוגונלית. נניח ש

$$\alpha_1 u_1 + \ldots + \alpha_k u_k = 0 .$$

1 < j < k אז לכל

$$\left\langle \sum_{i=1}^{k} \alpha_i u_i, u_j \right\rangle = \langle 0, u_j \rangle = 0.$$

מצד שני

$$\left\langle \sum_{i=1}^{k} \alpha_i u_i , u_j \right\rangle = \sum_{i=1}^{k} \alpha_i \left\langle u_i , u_j \right\rangle .$$

הקבוצה אורתוגונלית, אז עו אם אם האיבר אכן לכן לכן אם אם אם אורתוגונלית, אז או אורתוגונלית, אם אם אם אורתוגונלית, אז אורתוגונלית, אם אם אורתוגונלית, אם אם אורתוגונלית, אורתוגונלית

$$\left\langle \sum_{i=1}^{k} \alpha_i u_i \,,\, u_j \right\rangle = \alpha_j \left\langle u_j \,,\, u_j \right\rangle .$$

לכן

$$\alpha_j \langle u_j, u_j \rangle = 0$$
.

 $\langle u_j\,,\,u_j
angle
eq 0$ (נתון), אז $u_j
eq 0$

לכו בהכרח

$$\alpha_j = 0$$

 $.1 \leq j \leq k$ לכל

משפט 1.2 קבוצת אורתוגונלית היא בסיס

. $\dim(V)=n$ ש כך פנימית מכפלה מכפלה מרחב ערחב עניח א

V של מהווה בסיס של על קבוצה אורתוגונלית של ווקטורים ב-

 $\dim(V)=n$ נניח ש V מרחב מכפלה פנימית, M מניח ש $U=\{u_1,\ldots,u_n\}\in V$ קבוצה אורתוגונלית. כל קבוצה אורתוגונלית היא בת"ל, לכן הקבוצה בת"ל. בקבוצה יש M ווקטורים, לכן M של M לכן הקבוצה מהווה בססי של M

הגדרה 1.3 בסיס אורתוגונלי ובסיס אורתונורמלי

- בסיס של V המורכב מווקטורים אורתוגונליים נקרא בסיס אורתוגונלי. •
- בסיס של V המורכב מווקטורים אורתונורמליים נקרא בסיס אורתונורמלי. \bullet

דוגמה 1.3

עבור כל אחד של הקבוצות ווקטורים הבאות של \mathbb{R}^3 עם מ"פ סטנדרטית. בדקו אם הקבוצה היא בסיס אורתוגונלי, ובסיס אורתנורמלי.

$$\left\{u_1=\begin{pmatrix}1\\0\\0\end{pmatrix},u_2=\begin{pmatrix}1\\1\\0\end{pmatrix},u_3=\begin{pmatrix}1\\1\\1\end{pmatrix}\right\}$$
 (x

$$\left\{u_1=egin{pmatrix}1\\2\\2\end{pmatrix},u_2=egin{pmatrix}0\\1\\-1\end{pmatrix},u_3=egin{pmatrix}4\\-1\\-1\end{pmatrix}
ight\}$$
 (2)

פתרון:

$$\langle u_1,u_2\rangle=1\neq 0$$
 (x

לכן הקבוצה לא אורתוגונלית.

(a

$$\langle u_1, u_2 \rangle = 0$$

 $\langle u_1, u_3 \rangle = 0$
 $\langle u_2, u_3 \rangle = 0$

 \mathbb{R}^3 לכן הקבוצה בסיס של ולכן הקבוצה בח"ל ולכן ולכן אורתוגונלית, ולכן הקבוצה אורתוגונלית, ולכן הקבוצה אורתוגונלית, ולכן

$$||u_1|| = \sqrt{1+4+4} = 3$$
, $||u_2|| = \sqrt{2}$, $||u_3|| = \sqrt{18}$.

לכן הקבוצה לא בסיס אורתונורמלי.

נבנה בסיס אורתונורמלי:

$$\left\{ \frac{1}{3}u_1, \frac{1}{\sqrt{2}}u_2, \frac{1}{\sqrt{18}}u_3 \right\}$$

דוגמה 1.4

במרחב \mathbb{C}^4 עם מ"פ סטנדרטית, נתונה קבוצת ווקטורים הבאה:

$$\left\{ u_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2}i \\ \frac{1}{2} - \frac{1}{2}i \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ \frac{i}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \\ 0 \end{pmatrix}, u_3 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{-1}{2}i \\ \frac{-1}{2} + \frac{1}{2}i \end{pmatrix}, \right\}$$

בדקו אם הקבוצה אורתוגונלית ואורתונורמלית.

פתרון:

$$\langle u_1, u_2 \rangle = 0 + \frac{1}{2} \left(\frac{-i}{\sqrt{2}} \right) + \frac{1}{2} i \left(\frac{-1}{\sqrt{2}} \right) + \left(\frac{1}{2} - \frac{1}{2} i \right) \cdot 0 = \frac{-i}{\sqrt{2}} \neq 0$$

לכן הקבוצה אינה אורתוגונלית.

דוגמה 1.5

 $\mathbb{R}_3[x]$ קבעו אם הקבוצות הבאות אורתוגונליות ואורתונורמליות במרחב עם מ"פ האינטגרלית בקטע [0,1]:

$$\{1, x, x^2\}$$
 (x

$$\left\{1, x - \frac{1}{2}, x^2 - x + \frac{1}{6}\right\}$$
 (2

פתרון:

(N

$$u_1 - 1$$
, $u_2 = x$, $u_3 = x^2$.
 $\langle u_1, u_2 \rangle = \int_0^1 1 \cdot x \, dx = \left[\frac{x^2}{2} \right]_0^1 = \frac{1}{2} \neq 0$

. לכן B_1 קבוצה לא אורתוגונלית

(1

$$u_1 - 1$$
, $u_2 = x - \frac{1}{2}$, $u_3 = x^2 - x + \frac{1}{6}$.

$$\langle u_1, u_2 \rangle = \int_0^1 1 \cdot \left(x - \frac{1}{2} \right) dx = \left[\frac{x^2}{2} - \frac{x}{2} \right]_0^1 = 0$$

$$\langle u_1, u_3 \rangle = \int_0^1 1 \cdot \left(x^2 - x + \frac{1}{6} \right) dx$$

$$= \left[\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{6} \right]_0^1 = 0$$

$$\langle u_2, u_3 \rangle = \int_0^1 \left(x - \frac{1}{2} \right) \cdot \left(x^2 - x + \frac{1}{6} \right) dx = \int_0^1 \left(x^3 - x^2 + \frac{x}{6} - \frac{x^2}{2} + \frac{x}{2} - \frac{1}{12} \right) dx$$

$$= \int_0^1 \left(x^3 - \frac{3x^2}{2} + \frac{2x}{3} - \frac{1}{12} \right) dx = \left[\frac{x^4}{4} - \frac{x^3}{2} + \frac{x^2}{3} - \frac{x}{12} \right]_0^1 = \frac{1}{4} - \frac{1}{2} + \frac{1}{3} - \frac{1}{12} = 0$$

לכן הקבוצה אורתוגונלית.

$$||u_1||^2 = \langle u_1, u_1 \rangle = \int_0^1 1 \cdot 1 \, dx = [x]_0^1 = 1$$

$$||u_2||^2 = \langle u_2, u_2 \rangle = \int_0^1 \left(x - \frac{1}{2} \right)^2 dx = \int_0^1 \left(x^2 - x + \frac{1}{4} \right) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{4} \right]_0^1 = \frac{1}{3} - \frac{1}{2} + \frac{1}{4} = \frac{1}{12}.$$

$$||u_3||^2 = \langle u_3, u_3 \rangle$$

$$= \int_0^1 \left(x^2 - x + \frac{1}{6} \right)^2 dx$$

$$= \int_0^1 \left(x^4 - 2x^3 + \frac{x^2}{3} + x^2 - \frac{x}{3} + \frac{1}{36} \right) dx$$

$$= \int_0^1 \left(x^4 - 2x^3 + \frac{4x^2}{3} - \frac{x}{3} + \frac{1}{36} \right) dx$$

$$= \left[\frac{x^5}{5} - \frac{x^4}{2} + \frac{4x^3}{9} - \frac{x^2}{6} + \frac{x}{36} \right]_0^1$$

$$= \frac{1}{5} - \frac{1}{2} + \frac{4}{9} - \frac{1}{6} + \frac{1}{36}$$

$$= \frac{36}{180} - \frac{90}{180} + \frac{80}{180} - \frac{30}{180} + \frac{5}{180}$$

$$= \frac{1}{180} .$$

לסיכום:

$$||u_1|| = 1, \quad ||u_2|| = \frac{1}{12}, \quad ||u_3|| = \frac{1}{180}.$$

לכן הקבוצה אינה אורתונורמלית.

נבנה קבוצה אורתונורמלית:

$$\{u_1, \sqrt{12} \cdot u_2, \sqrt{180} \cdot u_3\}$$
.

דוגמה 1.6

נתונה הקבוצה

$$A_1 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} , \quad A_2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} , \quad A_3 = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} .$$

. במרחב $\mathbb{R}^{3 imes 3}$ עם מ"פ הסטנדרטית. בדקו אם הקבוצה אורתוגונלית ואורתונורמלית

$$\langle A_1,A_2\rangle = \operatorname{tr}\left(A_2^t\cdot A_1\right) = \operatorname{tr}\left(\begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}\right) = \operatorname{tr}\begin{pmatrix} 2 & 2 & -2 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{pmatrix} = 2 - 2 = 0 \ .$$

$$\langle A_1, A_3 \rangle = \operatorname{tr} \left(A_3^t \cdot A_1 \right) = \operatorname{tr} \left(\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \right) = \operatorname{tr} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -3 & -4 \end{pmatrix} = 1 + 3 - 4 = 0 \ .$$

$$\langle A_2,A_3\rangle = \operatorname{tr}\left(A_3^t\cdot A_2\right) = \operatorname{tr}\left(\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}\right) = \operatorname{tr}\begin{pmatrix} 2 & 0 & 0 \\ 2 & -2 & 0 \\ -2 & 2 & 0 \end{pmatrix} = 2-2=0 \ .$$

לכן הקבוצה אורתוגונלית.

$$||A_1||^2 = \langle A_1, A_1 \rangle = \operatorname{tr}\left(A_1^t \cdot A_1\right) = \operatorname{tr}\left(\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}\right) = \operatorname{tr}\begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 14 \end{pmatrix} = 20.$$

$$||A_2||^2 = \langle A_2, A_2 \rangle = \operatorname{tr} \left(A_2^t \cdot A_2 \right) = \operatorname{tr} \left(\begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right) = \operatorname{tr} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & -0 & 0 \end{pmatrix} = 4 + 4 = 8 \ .$$

$$||A_3||^2 = \langle A_3, A_3 \rangle = \operatorname{tr}\left(A_3^t \cdot A_3\right) = \operatorname{tr}\left(\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}\right) = \operatorname{tr}\begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \\ -1 & -2 & 3 \end{pmatrix} = 6 \ .$$

לכן הקבוצה לא אורתונורמלית. אבל הקבוצה הבאה

$$\left\{ \frac{1}{\|A_1\|} A_1, \frac{1}{\|A_2\|} A_2, \frac{1}{\|A_3\|} A_3 \right\} = \left\{ \frac{1}{\sqrt{20}} A_1, \frac{1}{\sqrt{8}} A_2, \frac{1}{\sqrt{6}} A_3 \right\}$$

כן קבוצה אורתונומלית.

קודם הגדרנו מושג של היטל אורתוגונלי של ווקטור על תת מרחב. ניסחנו משפט שטוען את הדבר הבא:

$$(\mathbf{v} - u_0) \perp U$$
.

. על על את הוכחנו את אבל אבל על על יע ההיטל ההיטו u_0 קוראים קיומו לווקטור על על על

נוכיח בהתחלה את קיומו של היטל בתנאי שלתת מרחב U קיים בסיס אורתונורמלי.

הגדרה 1.4 הגדרת ההיטל האורתוגונלי

נניח שV מרחב מכפלה פנימית ונניח ש $U \subseteq V$ עניח ונניח של מרחב מרחב עניח של מרחב ונניח ש

$$\{u_1,\ldots,u_k\}$$

ומוגדר $P_U(\mathbf{v})$ -ם מסומן של אורתוגונלי של האורתוגונלי ווקטור אז לכל ווקטור אז לכל האיטל האורתוגונלי של יש

$$P_U(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i .$$

. U נקרא אופרטור ההטלה האורתוגונלי על P $_U$ האופרטור

משפט 1.3 משפט ההיטל האורתוגונלי

נניח שV מרחב מכפלה פנימית, ו- $U\subseteq V$ תת מרחב נוצר סופית של

של כל ווקטור $P_U(\mathbf{v})$ ב- U על על $\mathbf{v} \in V$ הווקטור

$$v - P_U(v)$$

U -אורתוגונלי לכל ווקטור ב

כלומר

$$\langle \mathbf{v} - P_U(\mathbf{v}), u \rangle = 0$$

 $u \in U$ ולכל $\mathbf{v} \in V$

נסמן את האורתוגונליות של הווקטור $\mathbf{v}-P_U(\mathbf{v})$ ביחס לתת מרחב כך:

$$(\mathbf{v} - P_U(\mathbf{v})) \perp U$$
.

הוכחה: לפי הגדרת היטל אורתוגונלי, צריך להוכיח שווקטור

$$(\mathbf{v} - P_U(\mathbf{v})) \perp U$$
.

 $1 \leq j \leq k$ נניח ש $\{u_1, \ldots, u_k\}$ בסיס אורתוגונלי של

$$\langle \mathbf{v} - P_U(\mathbf{v}), u_j \rangle = \left\langle \mathbf{v} - \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i, u_j \right\rangle$$

$$= \langle \mathbf{v}, u_j \rangle - \left\langle \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i, u_j \right\rangle$$

$$= \langle \mathbf{v}, u_j \rangle - \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} \cdot \langle u_i, u_j \rangle$$

$$= \langle \mathbf{v}, u_j \rangle - \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} \langle u_i, u_j \rangle \delta_{ij}$$

$$= \langle \mathbf{v}, u_j \rangle - \frac{\langle \mathbf{v}, u_j \rangle}{\|u_j\|^2} \langle u_j, u_j \rangle$$

$$= \langle \mathbf{v}, u_j \rangle - \frac{\langle \mathbf{v}, u_j \rangle}{\|u_j\|^2} \cdot \|u_j\|^2$$

$$= \langle \mathbf{v}, u_j \rangle - \langle \mathbf{v}, u_j \rangle$$

$$= 0.$$

 $(\mathbf{v} - P_U(\mathbf{v})) \perp U$ הוכחנו

1.2 אופרטור הטלה האורתוגונלי

משפט 1.4 תכונות של אופרטור הטלה האורתוגונלי

 $U\subset V$ מרחב מכפלה פנימית ו- $U\subset V$ תת-מרחב של . U^\perp נניח את המשלים האורתוגונלי של ב- U^\perp

אופרטור ההטלה האורתוגונלי P_U מקיים את התכונות הבאות:

- .העתקה לינארית P_U (1
- $P_U(w)=0$ מתקיים $w\in U^\perp$, ולכל ולכל $P_U(u)=u$ מתקיים $u\in U$
 - . $\operatorname{Ker}(P_U) = U^\perp$ וגם $\operatorname{Im}(P_U) = U$ (3
 - $V=U\oplus U^{\perp}$ (4
 - $P_U \circ P_U = P_U$ (5
 - לכל $\mathbf{v} \in V$ מתקיים כי

$$(\mathbf{v} - P_U(\mathbf{v})) \in U^{\perp}$$

הוכחה:

. העתקה לינארית P_U (1

 $\mathbf{v}_1,\mathbf{v}_2\in V$ לכל

$$P_{U}(\mathbf{v}_{1} + \mathbf{v}_{2}) = \sum_{i=1}^{k} \frac{\langle \mathbf{v}_{1} + \mathbf{v}_{2}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \sum_{i=1}^{k} \frac{(\mathbf{v}_{1}, u_{i}) + (\mathbf{v}_{2}, u_{i})}{\|u_{i}\|^{2}} u_{i}$$

$$= \sum_{i=1}^{k} \frac{\langle \mathbf{v}_{1}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i} + \sum_{i=1}^{k} \frac{\langle \mathbf{v}_{2}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= P_{U}(\mathbf{v}_{1}) + P_{U}(\mathbf{v}_{2})$$

$$P_{U}(\alpha \mathbf{v}) = \sum_{i=1}^{k} \frac{\langle \alpha \mathbf{v}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \sum_{i=1}^{k} \frac{\alpha \langle \mathbf{v}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \alpha \sum_{i=1}^{k} \frac{\langle \mathbf{v}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \alpha P_{U}(\mathbf{v})$$

.לכן P_U אופרטור לינארי

כך ש α_1,\dots,α_k בסיס של $u\in U$ אז לכל u. אז לכל בסיס של $\{u_1,\dots,u_k\}$ -ע נניח ש

אז
$$.u=lpha_1u_1+\ldots+lpha_ku_k$$
 $P_U(u)=\sum^klpha_iP_U(u_i)$

 $j \leq j \leq k$ לכל

$$P_U(u_j) = \sum_{i=1}^k \frac{\langle u_j, u_i \rangle}{\|u_i\|^2} u_i$$
$$= \frac{\langle u_j, u_j \rangle}{\|u_j\|^2} u_j$$
$$= u_j.$$

לכן

$$P_U(u) = \sum_{i=1}^k \alpha_i u_i = u .$$

לכל $1 \leq i \leq k$ לכל מתקיים $w \in U^{\perp}$ לכל לכל מתקיים ש

$$P_U(w) = \sum_{i=1}^k \frac{\langle w, u_i \rangle}{\|u_i\|^2} u_i = 0$$

 $.U\subseteq \mathrm{Im}\,(P_U)$ לכן, $a=P_U(a)\in \mathrm{Im}\,(P_U)$ לפי תנאי, $a\in U$ לכל, $a\in U$

, $a\in V$ בסיס אז לכל של אורתוגונלי בסיס אורתוגונלי אם לפי לפי ההיטל אם אם לפי ההיטל אם לפי

$$P_U(a) = \sum_{i=1}^k \frac{\langle a, u_i \rangle}{\|u_i\|^2} u_i$$

 $\operatorname{Im}(P_U)\subseteq U$ לכן $a\in V$ לכל $P_U(a)\in U$ לכן לכן $P_U(a)\in\operatorname{span}\{u_1,\ldots,u_k\}$

$$\operatorname{Im}(P_U) = U$$
 לכר

 $.U^\perp\subseteq\ker(P_U)$ בסעיף בהוכחנו כי $.\ker(P_U)\subset U^\perp$ נוכיח כי

נניח ש $v \in \ker(P_U)$ נניח ש

$$P_U(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i = 0$$

 $.1 \leq i \leq k$ לכל ליכל אי
 $\langle {\bf v}, u_i \rangle = 0$ בהכרח בת"ל בת"ל בת"ל גע $\{u_1, \dots, u_k\}$ לכן .
י ${\bf v} \in U^\perp$ לכן

לכן $\dim(V) = \dim(\ker P_U) + \dim(\operatorname{Im} P_U)$ (4

$$\dim(V) = \dim\left(U^\perp\right) + \dim\left(U\right)$$

מכאן נובע כי

$$U\cap U^{\perp}=\{0\}\ .$$

ע,
$$\mathbf{v} \in V$$
 לכל (5

$$P_U(\mathbf{v}) = u \in U$$
.

לכן

$$(P_U \circ P_U)(v) = P_U(P_U(v)) = P_U(u) = u$$
,

כלומר

$$P_U \circ P_U = P_U$$
.

6) הוכחנו במשפט ?? כי

$$(\mathbf{v} - P_U(\mathbf{v})) \perp U$$

לכן

$$\mathbf{v} - P_U(\mathbf{v}) \in U^{\perp}$$
.

משפט 1.5 משפט הפיכות האורתוגונלי

נניח שV מרחב מכפלה פנימית נוצר סופית ו- $U\subset V$ תת מרחב של

$$V=U\oplus U^{\perp}$$
 (x

$$\left(U^{\perp}
ight)^{\perp}=U$$
 (2

הוכחה:

.?? הוכחנו במשפט
$$V=U\oplus U^\perp$$
 (א

(1

$$.U\subseteq \left(U^{\perp}
ight)^{\perp}$$
 נוכיח כי (1

$$u\in U$$
 נקח $u\in \left(U^\perp
ight)^\perp$ צ"ל

$$.u \in \left(U^\perp\right)^\perp \Leftarrow \langle u, \mathbf{v}
angle = 0$$
 , $\mathbf{v} \in U^\perp$ לכל

$$.ig(U^\perpig)^\perp\subseteq U$$
 צ"ל (2

נקח
$$w\in U^\perp$$
 , $u\in U$ כך א' קיימים. $\mathbf{v}\in \left(U^\perp\right)^\perp$ כך ש $\mathbf{v}=u+w$.

$$\langle u,w \rangle = 0$$
 נשים לב כי

$$\langle \mathbf{v}, w \rangle = \langle u + w, w \rangle$$
$$= \langle u, w \rangle + \langle w, w \rangle$$
$$= \langle w, w \rangle$$

$$w=0$$
 מכיוון ש $(w,w)=0$ ולכן $v\in (U^\perp)^\perp$ אז נקבל כי $v\in (u^\perp)^\perp$. לכן $v\in (u^\perp)^\perp$ ולכן $v=u\in U$ לכן הוכחנו כי $v=u\in U$.

1.3 תהליך גרם שמידט

משפט 1.6 תהליך גרם שמידט

נניח שV מרחב מכפלה פנימית ו- $U\subset V$ תת-מרחב של V. נניח שהקבוצה

$$\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k.\}$$

כך: U כל של אורתוגונלי בסיס נסמן כסים. U כל

$$\{u_1, u_2, \dots, u_k\}$$
.

ניתן למצוא את כל הווקטורים בבסיס האורתוגונלי, באמצעות התהליך גרם שמידט:

$$u_{1} = \mathbf{v}_{1}$$

$$u_{2} = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} \cdot u_{1}$$

$$u_{3} = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} \cdot u_{1} - \frac{\langle \mathbf{v}_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} \cdot u_{2}$$

$$\vdots$$

$$u_{k} = \mathbf{v}_{k} - \sum_{i=1}^{k-1} \frac{\langle \mathbf{v}_{k}, u_{i} \rangle}{\|u_{i}\|^{2}} \cdot u_{i}$$

$$\vdots$$

דוגמה 1.7

עם מכפלה פנימית סטנדרטית. $V=\mathbb{R}^4$

$$U = \operatorname{span} \left\{ \mathbf{v}_1 = \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 0\\0\\-1\\1 \end{pmatrix} \right\}$$

.U -מצאו בסיס אורתוגונלי ל

$$.V_1 = \operatorname{span}(u_1) . u_1 = \operatorname{v}_1$$
 נגדיר

$$\mathbf{v}_2 - \frac{\langle \mathbf{v}_2, u_1 \rangle}{\|u_1\|^2} \cdot u_1 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix} .$$

$$.u_2=egin{pmatrix}1\\-2\\0\\1\end{pmatrix}$$
 אפשר לבחור

$$V_2 = \operatorname{span} \left\{ u_1, u_2 \right\} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix} \right\} \ .$$

$$\mathbf{v}_{3} - P_{V_{2}}(\mathbf{v}_{3}) = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} \cdot u_{1} - \frac{\langle \mathbf{v}_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} \cdot u_{2}$$

$$= \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ -3 \\ 1 \end{pmatrix}$$

: בסיס אורתוגונלי:
$$u_3=egin{pmatrix}1\\1\\-3\\1\end{pmatrix}$$
 נגדיר

$$\left\{ \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}, \quad \begin{pmatrix} 1\\-2\\0\\1 \end{pmatrix}, \quad \begin{pmatrix} 1\\1\\-3\\1 \end{pmatrix} \right\}$$

נבנה בסיס אורתונורמלי:

$$\left\{ \frac{1}{\sqrt{2}} u_1 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \frac{1}{\sqrt{6}} u_2 = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{-2}{\sqrt{6}} \\ 0 \\ \frac{1}{\sqrt{6}} \end{pmatrix}, \quad \frac{1}{\sqrt{12}} u_3 = \begin{pmatrix} \frac{1}{\sqrt{12}} \\ \frac{1}{\sqrt{12}} \\ \frac{-3}{\sqrt{12}} \\ \frac{1}{\sqrt{12}} \end{pmatrix} \right\}$$

דוגמה 1.8

במרחב סטנדרטית נתון הבסיס בקטע [0,1]. נתון אינטגרלית פנימית מכפלה מכפלה במרחב $\mathbb{R}_2[x]$

$$\{e_1 = 1, e_2 = x, e_3 = x^2\}$$
.

מצאו בסיס אורתוגונלי.

$$.u_1 = e_1 = 1$$
 , $V_1 = \mathrm{span}(1)$

$$u_2 = e_2 - \frac{\langle e_2, u_1 \rangle}{\|u_1\|^2} u_1 = x - \frac{1}{2}$$

$$\begin{split} \langle e_2, u_1 \rangle &= \int_0^1 x \, dx = \frac{1}{2} \;, \qquad \|u_1\|^2 = \int_0^1 \, 1^2 dx = 1 \;. \\ V_2 &= \mathrm{span} \left(1, x - \frac{1}{2} \right) \;. \\ u_3 &= e_3 - \frac{\langle e_3, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle e_3, u_2 \rangle}{\|u_2\|^2} u_2 \end{split}$$

$$\langle e_3, u_1 \rangle = \int_0^1 x^2 \, dx = \frac{1}{3} \,\, , \qquad \langle e_3, u_2 \rangle = \int_0^1 x^2 \left(x - \frac{1}{2} \right) \, dx = \left[\frac{x^4}{4} - \frac{x^3}{6} \right]_0^1 = \frac{1}{12} \,\, .$$

$$||u_2||^2 = \int_0^1 \left(x - \frac{1}{2}\right)^2 dx = \int_0^1 \left(x^2 - x + \frac{1}{4}\right) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{4}\right]_0^1 = \frac{1}{12}.$$

לכן

$$u_3 = x^2 - \frac{1}{3} - u_2 = x^2 - x + \frac{1}{6}$$
.

בסיס אורתוגונלי:

$$u_1 = 1$$
, $u_2 = x - \frac{1}{2}$, $u_3 = x^2 - x + \frac{1}{6}$.

נמצא בסיס אורתונורמלי:

$$||u_1||^2 = 1$$
, $||u_2||^2 = \frac{1}{12}$,

$$||u_3||^2 = \int_0^1 \left(x^2 - x + \frac{1}{6}\right)^2 dx$$

$$= \int_0^1 \left(x^4 - 2x^3 + \frac{4}{3}x^2 - \frac{1}{3}x + \frac{1}{36}\right) dx$$

$$= \left[\frac{x^5}{5} - \frac{x^4}{2} + \frac{4}{9}x^3 - \frac{1}{6}x^2 + \frac{1}{36}x\right]_0^1$$

$$= \frac{1}{180}.$$

בסיס אורתונורמלי:

$$\{u_1, \sqrt{12}u_2, \sqrt{180}u_3\}$$
.

דוגמה 1.9

L[-1,1] ביחס למכפלה פנימית אינטגרלית בקטע בקטע $U=\mathrm{span}(1,x,x^2)$ ביחס למרחב אורתונורמלי

פתרון:
$$.\mathbf{v}_1 = 1, \mathbf{v}_2 = x, \mathbf{v}_3 = x^2$$
נסמן

$$u_1 = 1$$
, $u_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, u_1 \rangle}{\|u_1\|^2} u_1$

$$\langle \mathbf{v}_2, u_1 \rangle = \int_{-1}^1 x \, dx = \left[\frac{x^2}{2} \right]_{-1}^1 = 0$$
.

לכן

$$u_3 = \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle \mathbf{v}_3, u_2 \rangle}{\|u_2\|^2} u_2$$
.

$$||u_1||^2 = \int_{-1}^1 1 \, dx = [x]_{-1}^1 = 2$$
.

$$\langle \mathbf{v}_3, u_1 \rangle = \int_{-1}^1 x^2 dx = \left[\frac{x^3}{3} \right]_{-1}^1 = \frac{2}{3} .$$

$$\langle \mathbf{v}_3, u_2 \rangle = 0 \ .$$

$$||u_2||^2 = \int_{-1}^1 x^2 dx = \left[\frac{x^3}{3}\right]_{-1}^1 = \frac{2}{3}.$$

 $u_3 = x^2 - \frac{1}{3} \ .$

בסיס אורתוגונלי:

לכן

$$u_1 = 1$$
, $u_2 = x$, $u_3 = x^2 - \frac{1}{3}$.

נחפש בסיס אורתונורמלי:

$$||u_1||^2 = 2$$
, $||u_2||^2 = \int_{-1}^1 x^2 dx = \left[\frac{x^3}{3}\right]_{-1}^1 = \frac{2}{3}$.

$$||u_3||^2 = \int_{-1}^1 \left(x^2 - \frac{1}{3}\right)^2 dx$$

$$= \int_{-1}^1 \left(x^4 - \frac{2}{3}x^2 + \frac{1}{9}\right) dx$$

$$= \left[\frac{x^5}{5} - \frac{2}{9}x^3 + \frac{1}{9}x\right]_{-1}^1$$

$$= \frac{8}{45}.$$

בסיס אורתונורמלי:

$$\left\{ \frac{1}{\sqrt{2}} , \sqrt{\frac{3}{2}} x , \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3} \right) \right\} .$$

דוגמה 1.10

מצאו בסיס אורתונורמלי למרחב
$$U=\mathrm{span}\left\{\mathbf{v}_1=\begin{pmatrix}2\\2i\\2\end{pmatrix},\mathbf{v}_2=\begin{pmatrix}2+2i\\0\\4\end{pmatrix}\right\}$$
 ביחס למכפלה הפנימית ב- \mathbb{C}^3 -הסטנדרטית ב-

$$u_1 = \mathbf{v}_1 = \begin{pmatrix} 2\\2i\\2 \end{pmatrix} .$$

$$u_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, u_1 \rangle}{\|u_1\|^2} u_1$$

$$\langle \mathbf{v}_2, u_1 \rangle = (2+2i) \cdot 2 + 0 + 8 = 12 + 4i$$

$$\|u_1\|^2 = 12 \ .$$

$$\|u_2\|^2 = \frac{16}{9} + \frac{4}{9} + 4 + 4 + \frac{4}{9} = \frac{32}{3} \ .$$

$$u_2 = \begin{pmatrix} 2+2i \\ 0 \\ 4 \end{pmatrix} - \left(1 + \frac{1}{3}i\right) \begin{pmatrix} 2 \\ 2i \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{4i}{3} \\ \frac{2}{3} - 2i \\ 2 - \frac{2}{3}i \end{pmatrix}$$
 בסיס אורתונורמלי:
$$\frac{1}{\sqrt{12}} u_1 \ , \qquad \sqrt{\frac{3}{32}} u_2 \ .$$

1.4 *העשרה: משמעות גיאומטרית של ההיטל

 ${
m v}$ יהי U ישר במישור, ותהי ${
m v}$ נקודה כלשהי במישור שאינה על U. בגיאומטריה מוכיחים כי אפשר להוריד אנך מ- ${
m v}$ על U, ואורך אנך זה הוא המרחק הקצר ביותר בין הנקודה ${
m v}$ לנקודה כלשהי בישר. מרחק זה נקרא גם המרחק על ${
m v}$ על ${
m v}$ - ${
m v}$ על ${
m v}$ - ${
m v}$ טענה דומה גם במרחב מכפלה פנימית.

 $u_0 \in U$ בריך למצוא וקטור ער לתת-מרחב לתת-מרחב .U בריך למצוא וקטור לתת-מרחב ער אנך מוקטור י

יהי ע פייד אינו שייך ל- $U\subset V$ יהי יהי ע מרחב מכפלה פנימית ויהי ע תת-מרחב נוצר סופית של יהי ע מרחב מכפלה פנימית ויהי ע תת-מרחב נוצר סופית של יהי יV

א) על תת מרחב U ע"י התנאי הבא: ע"י התנאי הבא:

$$(\mathbf{v} - u_0) \perp U$$
.

U על v על v בין v להיטל על v בין v להיטל של v בv המרחק בין v להיטל של v

1.5 * העשרה: משפט קייום בסיס אורתוגונלז

הגדרה 1.5 קייום בסיס אורתוגונלי

לכל מרחב מכפלה פנימית V ממימד סופי קיים בסיס אורתוגונלי.

הוכחה: נניח

 $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$

בסיס של V. נגדיר סדרת מרחבים ווקטורים

 $V_1 = \operatorname{span}\left(\mathbf{v}_1\right) \subset V_2 = \operatorname{span}\left(\mathbf{v}_1, \mathbf{v}_2\right) \subset \ldots \subset V_n = \operatorname{span}\left(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\right) = V$

 $.1 \le i \le n$ לכל

נגדיר

 $u_i = \mathbf{v}_i - P_{V_{i-1}}(\mathbf{v}_i) .$

נוכיח באינדוקציה כי u_1,u_2,\ldots,u_n בסיס אורתוגונלי. V_1 בסיס אורתוגונלי של $\{u_1\}$ הקבוצה i=1 עבור $\{u_1\}$ הקבוצה הווקטורים $\{u_1,\ldots,u_i\}$ אורתוגונלית. ניח שעבור $\{u_1,\ldots,u_i\}$ לכל $\{u_1,\ldots,u_i\}$ כאשר לכל $\{u_{i+1}=v_{i+1}-P_{V_i}(v_{i+1})\}$ כי הוכחנו במשפט ?? כי

 $(\mathbf{v}_{i+1} - P_{V_i}(\mathbf{v}_{i+1})) \perp V_i$.