Parsing Techniques for Contex-Free Path Querying

Semyon Grigorev

s.v.grigoriev@spbu.ru Semen.Grigorev@jetbrains.com

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg University

April 05, 2019

Formal language constrained path querying

- Finite directed edge-laballed graph G = (V, E, L)
- The path is a word over L $\omega(p) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \dots \xrightarrow{l_{n-1}} v_n) = l_0 \cdot l_1 \cdot \dots \cdot l_{n-1}$
- The language \mathcal{L} (over L)

Formal language constrained path querying

- Finite directed edge-laballed graph G = (V, E, L)
- The path is a word over L $\omega(p) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \dots \xrightarrow{l_{n-1}} v_n) = l_0 \cdot l_1 \cdot \dots \cdot l_{n-1}$
- The language \mathcal{L} (over L)
- Reachability problem: $Q = \{(v_i, v_j) \mid \exists p = v_i \dots v_j, \omega(p) \in \mathcal{L}\}$
- Path querying problem: $Q = \{p \mid \omega(p) \in \mathcal{L}\}$
 - Single path, all paths, shortest path...

Context-Free Path Querying

- ullet L is a context-free language
- $G_{\mathcal{L}} = (N, \Sigma, R, S)$
- Reachability problem: $Q = \{(v_i, v_j) \mid \exists p = v_i \dots v_j, S \xrightarrow[G_I]{*} \omega(p)\}$
- Path querying problem: $Q = \{p \mid \omega(p) \in \mathcal{L}\}$

Example of CFPQ

Input graph

$$S \rightarrow a \ S \ b$$

 $S \rightarrow Middle$
 $Middle \rightarrow a \ b$

Query: language $\{a^nb^n \mid n > 0\}$

Paths:

$$2 \xrightarrow{a} 0 \xrightarrow{b} 3$$

$$1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0$$

$$p_1 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3$$

$$p_2 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0$$

Applications

- Graph databases querying
 Mihalis Yannakakis. "Graph-theoretic methods in database theory."
 1990.
- Static code analysis
 Thomas Reps et al. "Precise interprocedural dataflow analysis via graph reachability." 1995
- . . .

Graph databases querying

Navigation through a graph

- Are nodes A and B on the same level of hierarchy?
- Is there a path of form Upⁿ Downⁿ?
- Find all paths of form
 Upⁿ Downⁿ which start from the node A

Context-free path querying

- Sevon P., Eronen L. "Subgraph queries by context-free grammars."
 2008
- Hellings J. "Conjunctive context-free path queries." 2014
- Zhang X. et al. "Context-free path queries on RDF graphs." 2016

Static code analysis

```
int id(int u)
 v = u;
  return v;
int main()
 //taint
  int x;
  int z, y;
 //untaint
  int t;
  z = id(x);
  t = id(y);
```


Static code analysis (Language Reachability Framework)

- Thomas Reps et al. "Precise interprocedural dataflow analysis via graph reachability." 1995
- Dacong Yan et al. "Demand-driven context-sensitive alias analysis for Java." 2011
- Jakob Rehof and Manuel Fahndrich. "Type-base flow analysis: from polymorphic subtyping to CFL-reachability." 2001

Static code analysis (Language Reachability Framework)

- Thomas Reps et al. "Precise interprocedural dataflow analysis via graph reachability." 1995
- Dacong Yan et al. "Demand-driven context-sensitive alias analysis for Java." 2011
- Jakob Rehof and Manuel Fahndrich. "Type-base flow analysis: from polymorphic subtyping to CFL-reachability." 2001
- Qirun Zhang and Zhendong Su. "Context-sensitive data-dependence analysis via linear conjunctive language reachability." 2017

Parsing algorithms for CFPQ

- Structural representation of results
- Number of algorithms with different properties
- Number of theoretical results

Parsing algorithms for CFPQ

- Structural representation of results
- Number of algorithms with different properties
- Number of theoretical results
- Interconnection between different areas

 $S
ightarrow a \ S \ b$ S
ightarrow Middle $Middle
ightarrow a \ b$ Grammar

Input graph

Query result (SPPF)

Input graph

 $S
ightarrow a \ S \ b$ S
ightarrow Middle $Middle
ightarrow a \ b$ Grammar

Query result (SPPF)

Tree for p_1

11/32

Query result (SPPF)

Tree for p_1

Tree for p_2

Paths extraction

Path: $0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3$

Bar-Hillel theorem

Context-free languages are closed under intersection with regular languages

Bar-Hillel theorem

Context-free languages are closed under intersection with regular languages

Regular language

$$S \rightarrow \textit{Middle}$$

$$Middle \rightarrow a b$$

Context-free language

Bar-Hillel theorem

Context-free languages are closed under intersection with regular languages

 $S \rightarrow a S b$

S o Middle

 $Middle \rightarrow a b$

Regular language

Context-free language

$$(0, S, 3) \rightarrow (0, a, 1) (1, S, 0) (0, b, 3)$$

$$(1, S, 0) \rightarrow (1, a, 2) (2, S, 3) (3, b, 0)$$

$$(2, S, 3) \rightarrow (2, a, 0) (0, S, 0) (0, b, 3)$$

$$(2, S, 3) \rightarrow (2, Middle, 3)$$

$$(0, S, 0) \rightarrow (0, a, 1) (1, S, 3) (3, b, 0)$$

$$(1, S, 3) \rightarrow (1, a, 2) (2, S, 0) (0, b, 3)$$

$$(2, S, 0) \rightarrow (2, a, 0) (0, S, 3) (3, b, 0)$$

$$(0, Middle, 3) \rightarrow (2, a, 0) (0, b, 3)$$

Our experiments

- Generalized LR for CFPQ
 - Based on Right Nulled Generalized LR: Scott E., Johnstone A. "Right Nulled GLR Parsers"
 - Ekaterina Verbitskaia, Semyon Grigorev, and Dmitry Avdyukhin.
 "Relaxed Parsing of Regular Approximations of String-Embedded Languages" 2015

Our experiments

- Generalized LR for CFPQ
 - Based on Right Nulled Generalized LR: Scott E., Johnstone A. "Right Nulled GLR Parsers"
 - Ekaterina Verbitskaia, Semyon Grigorev, and Dmitry Avdyukhin.
 "Relaxed Parsing of Regular Approximations of String-Embedded Languages" 2015
- Generalized LL for CFPQ (GLL)
 - Based on Generalized LL: Scott E., Johnstone A. "GLL parsing"
 - Semyon Grigorev and Anastasiya Ragozina. "Context-free path querying with structural representation of result." 2017

Query language integration

How to integrate query language into a general-purpose programming language?

- Transparency
- Compositionality
- Static error checking

Query language integration

How to integrate query language into a general-purpose programming language?

- Transparency
- Compositionality
- Static error checking
- String-embedded languages
- ORMs
- Combinators

Combinators for CFPQ

- Implemented in Scala
- Based on Meerkat parser combinator library: Anastasia Izmaylova, Ali Afroozeh, and Tijs van der Storm. "Practical, general parser combinators" 2016
- Ekaterina Verbitskaia, Ilya Kirillov, Ilya Nozkin, Semyon Grigorev. "Parser Combinators for Context-Free Path Querying" 2019

Supported combinators

Combinator		Description
a ~ b		sequential parsing: a then b
a b		choice: a or b

Supported combinators

Combinator	Description
a~b	sequential parsing: a then b
a b	choice: a or b
a ?	optional parsing: a or nothing
a *	repetition of zero or more a
a +	repetition of at least one a

Supported combinators

Combinator	Description
a ~ b	sequential parsing: a then b
a b	choice: a or b
a ?	optional parsing: a or nothing
a *	repetition of zero or more a
a +	repetition of at least one a
a ^ f	apply f function to a if a is a token
a ^^	capture output of a if a is a token
a & f	apply f function to a if a is a parser
a &&	capture output of a if a is a parser

A set of functions to handle values of edges and vertices

```
def LV(labels: String*) =
  V(e => labels.forall(e.hasLabel))
def outLE(label:String) = outE(_.label() == label)
def inLE (label:String) = inE (_.label() == label)
```

Basic example

Is there a path from vertex 0 to vertex 3 which has form $a^n b^n$?

Example of generalization

```
def sameGen(brs) =
  reduceChoice(
    brs.map {case (lbr, rbr) =>
        lbr ~ syn(sameGen(brs).?) ~ rbr})
```

Example of generalization

```
def sameGen(brs) =
  reduceChoice(
    brs.map {case (lbr, rbr) =>
        lbr ~ syn(sameGen(brs).?) ~ rbr})

val query1 = syn(sameGen(List(("a", "b"))))

val query2 = syn(
  sameGen(List((p1, p2),("(",")"))) ~ p3)
```

Example of values handling

```
Actors who played in some film
In Cypher
  MATCH (m: Movie { title : 'Forrest Gump'})
        <-[:ACTS\ IN]-(a:Actor)
  RETURN a.name, a.birthplace;
In Meerkat
  val query =
    syn((
       (LV("Movie")::V( .title == "Forrest_Gump")) \sim
       inLE("ACTS IN") ~
      syn(LV("Actor") ^
             (e \Rightarrow (e.name, e.birthplace)))) \&\&)
  executeQuery(query, input)
```

Limitations

- Overhead for the regular constraints
- Not exactly clear how to compute arbitrary semantics for the paths
 - ▶ Paths can be lazily extracted, but in which order?
 - What kind of semantics can be calculated when there are cycles?

Boolean Matrix Multiplication for CFPQ

- Rustam Azimov, Semyon Grigorev. "Context-free path querying by matrix multiplication." 2017
- Semyon Grigorev, et. al. "Evaluation of the Context-Free Path Querying Algorithm Based on Matrix Multiplication" 2019

Transitive closure

- Subset multiplication, $N_1, N_2 \subseteq N$
 - ▶ $N_1 \cdot N_2 = \{A \mid \exists B \in N_1, \exists C \in N_2 \text{ such that } (A \rightarrow BC) \in P\}$
- Subset addition: set-theoretic union.
- Matrix multiplication
 - ▶ Matrix of size $|V| \times |V|$
 - Subsets of N are elements
 - $c_{i,j} = \bigcup_{k=1}^n a_{i,k} \cdot b_{k,j}$
- Transitive closure
 - $a^{cf} = a^{(1)} \cup a^{(2)} \cup \cdots$
 - $a^{(1)} = a$
 - $a^{(i)} = a^{(i-1)} \cup (a^{(i-1)} \times a^{(i-1)}), i > 2$

The algorithm

Algorithm Context-free recognizer for graphs

- 1: function CONTEXTFREEPATHQUERYING(D, G)
- $n \leftarrow$ the number of nodes in D 2:
- 3: $E \leftarrow$ the directed edge-relation from D
- $P \leftarrow$ the set of production rules in G 4:
- $T \leftarrow$ the matrix $n \times n$ in which each element is \emptyset 5:
- ▶ Matrix initialization for all $(i, x, j) \in E$ do 6:
- $T_{i,i} \leftarrow T_{i,i} \cup \{A \mid (A \rightarrow x) \in P\}$ 7:
 - while matrix T is changing do
- 8:
- $T \leftarrow T \cup (T \times T)$ > Transitive closure T^{cf} calculation 9:
- 10: return T

Boolean Matrix Multiplication for CFPQ

- A matrix for a nonterminal is a set of boolean matrices
- Matrix multiplication can be implemented efficiently by using modern harware and high-performance libraries

Performance comparison setup

We use graphs from the classical set of ontologies: skos, foaf, univ-bench, wine, pizza, etc.

Queries are classical variants of the same-generation query

$$\begin{array}{lll} \mathbf{S} \to subClassOf^{-1} \; \mathbf{S} \; subClassOf & \mathbf{S} \to \mathbf{B} \; subClassOf \\ \mathbf{S} \to type^{-1} \; \mathbf{S} \; type & \mathbf{S} \to subClassOf \\ \mathbf{S} \to subClassOf^{-1} \; subClassOf & \mathbf{B} \to subClassOf^{-1} \; \mathbf{B} \; subClassOf \\ \mathbf{S} \to type^{-1} \; type & \mathbf{B} \to subClassOf^{-1} \; subClassOf \end{array}$$

Query 1

Query 2

Performance comparison results

Nº	#V	#E	Query 1 (ms)			Query 2 (ms)	
			CYK ¹	GLL	GPGPU	GLL	GPGPU
1	144	323	1044	10	12	1	1
2	129	351	6091	19	13	1	0
3	131	397	13971	24	30	1	10
4	179	413	20981	25	15	11	9
5	337	834	82081	89	32	3	6
6	291	685	515285	255	22	66	2
7	341	711	420604	261	20	45	24
8	671	2604	3233587	697	24	29	23
9	733	2450	4075319	819	54	8	6
10	6224	11840	_	1926	82	167	38
11	5864	19600	_	6246	185	46	21
12	5368	20832	_	7014	127	393	40

¹Zhang, et al. "Context-free path queries on RDF graphs."

Performance comparison results

- Data from *Zhiwei Fan, et.al.* "Scaling-Up In-Memory Datalog Processing: Observations and Techniques." 2018.
- Graphs with names of form Gn p: n is a number of vertices, edge between two vertices exists with probability p

Graph	M4RI(sec)	GPU_N(sec)	GPGPU(sec)
G10k-0.01	1.455	0.138	47.525
G10k-0.1	1.050	0.114	395.393
G20k-0.001	11.025	1.274	-
G40k-0.001	97.841	8.393	-
G80k-0.001	1142.959	65.886	-

Directions for research: engineering part

- Develop parallel and distributed algorithms
 - ▶ Destributed GLL(GLR)-based algortihms
 - Destributed matrix multiplicatioms algorithms
 - ► Efficient implementation of sparse boolean matrices multiplication algorithms
- Adopt other parsing algorithms
 - Brzozowski's derivatives
 - ▶ Derivatives for graph querying: *Maurizio Nole and Carlo Sartiani*. "Regular path queries on massive graphs." 2016
 - Derivatives for context-free parsing: Matthew Might, David Darais, and Daniel Spiewak. "Parsing with derivatives: a functional pearl." 2011.
- Utilize other classes of languages for constraints specification
- Investigate incremental queries evaluation

Directions for research: theoretical part

- Time complexity of GLL(GLR)-based algorithms for different classes of grammars
 - ► Current result for GLL-based: $O\left(|V|^3 * \max_{v \in V} (deg^+(v))\right)$
- Theoretical lower bound for CFPQ
 - ▶ Is it possible to reduce CFPQ to Õ(BMM)?
 - ★ Our result is $O(|V|^2|N|^3(BMM(|V|) + BMU(|V|)))$
 - Õ(n^ω) solution for Dyck with one type of brackets: *Phillip G. Bradford*.
 "Efficient Exact Paths For Dyck and semi-Dyck Labeled Path Reachability." 2018.

BMM-based algorithm: the worst case

Input graph: two cycles connected via a shared node

- first cycle has $2^k + 1$ edges labeled a
- second cycle has 2^k edges labeled b

$$T_1 = T_0 \cup (T_0 \times T_0) = \left(egin{array}{cccc} \varnothing & \{A\} & \varnothing & \{B\} \ \varnothing & \varnothing & \{A\} & \varnothing \ \{A\} & \varnothing & \varnothing & \{S\} \ \{B\} & \varnothing & \varnothing & \varnothing \end{array}
ight)$$

$$T_2 = \begin{pmatrix} \varnothing & \{A\} & \varnothing & \{B\} \\ \varnothing & \varnothing & \{A\} & \varnothing \\ \{A, \mathbf{S_1}\} & \varnothing & \varnothing & \{S\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_{3} = \begin{pmatrix} \varnothing & \{A\} & \varnothing & \{B\} \\ \{S\} & \varnothing & \{A\} & \varnothing \\ \{A, S_{1}\} & \varnothing & \varnothing & \{S\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_4 = \begin{pmatrix} \varnothing & \{A\} & \varnothing & \{B\} \\ \{S\} & \varnothing & \{A\} & \{S_1\} \\ \{A, S_1\} & \varnothing & \varnothing & \{S\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_5 = \begin{pmatrix} \varnothing & \{A\} & \varnothing & \{B, S\} \\ \{S\} & \varnothing & \{A\} & \{S_1\} \\ \{A, S_1\} & \varnothing & \varnothing & \{S\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_6 = \begin{pmatrix} \{S_1\} & \{A\} & \varnothing & \{B,S\} \\ \{S\} & \varnothing & \{A\} & \{S_1\} \\ \{A,S_1\} & \varnothing & \varnothing & \{S\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_7 = \begin{pmatrix} \{S_1\} & \{A\} & \varnothing & \{B, S\} \\ \{S\} & \varnothing & \{A\} & \{S_1\} \\ \{A, S_1, \mathbf{S}\} & \varnothing & \varnothing & \{S\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_8 = \begin{pmatrix} \{S_1\} & \{A\} & \varnothing & \{B, S\} \\ \{S\} & \varnothing & \{A\} & \{S_1\} \\ \{A, S_1, S\} & \varnothing & \varnothing & \{S, \mathbf{S_1}\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_9 = \begin{pmatrix} \{S_1\} & \{A\} & \varnothing & \{B, S\} \\ \{S\} & \varnothing & \{A\} & \{S_1, \mathbf{S}\} \\ \{A, S_1, S\} & \varnothing & \varnothing & \{S, S_1\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_{10} = \begin{pmatrix} \{S_1\} & \{A\} & \varnothing & \{B, S\} \\ \{S, \mathbf{S_1}\} & \varnothing & \{A\} & \{S_1, S\} \\ \{A, S_1, S\} & \varnothing & \varnothing & \{S, S_1\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_{11} = \begin{pmatrix} \{S_1, \mathbf{S}\} & \{A\} & \varnothing & \{B, S\} \\ \{S, S_1\} & \varnothing & \{A\} & \{S_1, S\} \\ \{A, S_1, S\} & \varnothing & \varnothing & \{S, S_1\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_{12} = \begin{pmatrix} \{S_1, S\} & \{A\} & \varnothing & \{B, S, S_1\} \\ \{S, S_1\} & \varnothing & \{A\} & \{S_1, S\} \\ \{A, S_1, S\} & \varnothing & \varnothing & \{S, S_1\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_{13} = \begin{pmatrix} \{S_1, S\} & \{A\} & \varnothing & \{B, S, S_1\} \\ \{S, S_1\} & \varnothing & \{A\} & \{S_1, S\} \\ \{A, S_1, S\} & \varnothing & \varnothing & \{S, S_1\} \\ \{B\} & \varnothing & \varnothing & \varnothing \end{pmatrix}$$