Note that relievents of Vfm, Vcont, E are not functions. Rather they are like instructions that denote creatain functions. They are almost like programs. The semantics function I-I has a slightly more complex definition. It is because the definition should now spell out how we can view elements of.

Vfm, Vcont and E as appropriate functions. We define three more functions:

$$\begin{bmatrix}
-\mathbb{I} \in \left[\langle exp \rangle \rightarrow \widehat{E} \rightarrow \widehat{V}_{cons} \rightarrow \widehat{V}_{*} \right] \\
\text{cont} \in \left[\widehat{V}_{cons} \rightarrow \left[\widehat{V} \rightarrow \widehat{V}_{*} \right] \right] \\
\text{apply} \in \left[\widehat{V}_{fun} \rightarrow \left[\widehat{V} \rightarrow \widehat{V}_{cons} \rightarrow \widehat{V}_{*} \right] \right] \\
\text{get} \in \left[\widehat{E} \rightarrow \left[\langle var \rangle \rightarrow V \right] \right]$$

Here cont, apply and get provide the meaning's of elements (or necords or methodons) in V cont, V fun and E. Whenever we need to use those elements by, say, look-up and function application, we use these three functions. These three functions and I. I are defined mutually necursively.

apply (abstract, v, e, η) a R
= IeI (extend, v, a, η) R

gret (inition) v = 4(0,0) mitial value 0 assigned to v component in Vmt + Yfunt V cont get (extend, v, a, n) w = if v=w then a else get y w get Krecenu, n. v. u. e > w = if w= v then \$\psi \(\(\) else gret y w cont (negate, R) a = (\lambda i. cont R (\psi (0, -2))) int a cont (add1, e, y, R) a = (li. IeIn (add2, i, R)) int a. cont (adda, i. R) ashed prod = 4 prosts = (\lambda i'. cont R (4 < 0, u + i')) not a (mul, e, y, R) (mula, i, R) < div, e, n, R> are all interpreted similarly. cont (div, i, R) a = (\ni'. if i'= o then <1, vew > else cont R (4<0, i=i7)) ma