Задача стабилизации на основании неполной и неточной информации

Кафедра системного анализа Научный руководитель: к.ф.-м.н., доцент П. А. Точилин

> МГУ им. М.В. Ломоносова Факультет вычислительной математики и кибернетики

> > Москва 2022

Рассмотрим систему дифферинцальных уравнений с управляющими параметрами

$$\dot{x} = \mathbf{f}(x) + \mathbf{g}(x)u, \ t \geqslant 0, \ x \in \mathbb{R}^{n_x}, \ u \in \mathbb{R}^{n_u}$$

$$\mathbf{f}(\cdot) \in C^2(\Omega), \ \mathbf{f}(x) \in \mathbb{R}^{n_x}, \ \mathbf{f}(0) = 0, \ \mathbf{g}(\cdot) = C^1(\Omega), \ \mathbf{g}(x) \in \mathbb{R}^{n_x \times n_u}$$

определены в области Ω которая допускает конечную триангуляцию симплексами $\Omega^{(i)}$, $u\in\mathbb{R}^{n_u}$ — вектор управления, а \mathcal{P} — некоторая выпуклая компактная область в \mathbb{R}^{n_u} .

Более конкретно будем считать, что множество ${\mathcal P}$ является выпуклым многогранником:

$$\mathcal{P} = \{ u \in \mathbb{R}^{n_u} : Pu \leq p \}.$$

Здесь $P \in \mathbb{R}^{m \times n_u}$, $p \in \mathbb{R}^m$.

Пусть $y = (y_1, \dots, y_{n_y}) \in \mathbb{R}^{n_y}$ – вектор наблюдений $(n_y < n_x)$, который связан с координатами системы соотношением

$$y = Cx + \xi, \ C \in \mathbb{R}^{n_y \times n_x}, \ \xi \in \mathbb{R}^{n_y},$$

где ξ вектор, характеризующий погрешность при измерении y_i , то есть i-ой компоненты вектора наблюдений, матрица C фиксирована.

$$\xi \in \mathcal{R}$$
,

где \mathcal{R} - выпуклый многогранник в пространстве $\mathbb{R}^{n_y}, 0 \in \mathcal{R}$, диаметр \mathcal{R} достаточно мал.

Пусть $x(t,t_0,x_0)$ исходной решение системы Необходимо найти u(y), что после подстановки его нулевое положение равновесия будет локально асимптотически устойчивым, $\exists~\mathcal{X},$ что $0\in \mathrm{int}\mathcal{X}\subset \Omega,$

Локальная асимптотически устойчивость

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \delta < \varepsilon, \ B_{\delta}(0) \subset \mathcal{X}, \ \forall x_0 \in B_{\delta}(0), \forall \xi(t), \ t \ge 0,$$
$$\exists x(t,0,x_0)|_{u(\cdot)}:$$
$$||x(t,0,x_0)|_{u(\cdot)}|| \le \varepsilon, \ \forall t \ge 0, \ \exists \lim_{t \to +\infty} ||x(t,0,x_0)|_{u(\cdot)}|| = 0.$$

Более общая задача о поиске инвариантного \mathcal{X}_0 .

Пусть $\mathcal{X}_0\subset\Omega$ — некоторое фиксированное множество, содержащее нулевое положение равновесия. Тогда необходимо найти такое управление u=u(y), что найдётся такое множество \mathcal{X} , что $\mathcal{X}_0\subset\mathcal{X}\subset\Omega$ и для любого $x_0\in\mathcal{X}$, для любой погрешности измерений $\xi(\cdot)$, для соответствующей траектории $x(t,0,x_0)|_{u(\cdot)}$ будут выполнены следующие условия:

$$\exists t^*\geqslant 0: \ x(t,0,x_0)|_{u(\cdot)}\in\mathcal{X}, \forall t\geqslant 0, \quad \text{if} \ x(t,0,x_0)|_{u(\cdot)}\in\mathcal{X}_0, \forall t\geqslant t^*.$$

По возможности множество \mathcal{X}_0 необходимо сделать наименьшим по вложению. Этому вопросу и посвящена данная работа.

Барицентрические координаты

Рассмотрим набор из $n_x + 1$ точек находящихся в общем положении $g = \{g_1, g_2, \cdots, g_{n_x+1}\}$. Будем обозначать $\Omega = \text{conv } g_i$. Обозначим через $\alpha = (\alpha_1, \dots, \alpha_{n_x+1})$ барицентрические координаты в этом симплексе.

Составим матрицу G, в которой содержатся столбцы g_1, \ldots, g_{n_x+1} . Воспользуемся параметризацией через барицентрические координаты: для каждой точки $x\in\Omega$ найдется такой вектор $\alpha=(\alpha_1,\cdots,\alpha_{n_-+1}),$ такой, что:

$$\sum_{k=1}^{n_x+1} \alpha_k = 1, \ \alpha_k \ge 0 \ \forall k, \ G\alpha(x) = x.$$
$$\alpha(x) = Px + p.$$

Теорема Ляпунова

Положительная определенность

 $V(x):\mathbb{R}^n o\mathbb{R}$ называется положительно определенной на множестве $\Omega(\theta\in\Omega),$ если выполнены следующие два условия

- 1. $V(x) \ge 0, \ \forall y \in \Omega;$
- $2. \ V(x) = 0 \Leftrightarrow y = 0.$

Функция Ляпунова

$$\sum_{j=1}^{n} \frac{\partial V(x)}{\partial x_j} f_j(t, x) \le 0, \ \forall x \in \Omega, \ t \ge 0.$$

Теорема Ляпунова

Теорема(Об асимптотической устойчивости)

Пусть на множестве Ω существует функция Ляпунова для системы (1).

$$\sum_{j=1}^{n} \frac{\partial V(x)}{\partial x_j} f_j(t, x) \le -W(x), \ \forall x \in \Omega, \ t \ge 0,$$

где W(x) – некоторая непрерывная положительно определенная на Ω функция. Тогда нулевое решение $x(t,\theta^{n_x})=\theta^{n_x}$ является асимптотически устойчивым по Ляпунову.

Доказательство можно найти, например, в [1].

Кусочная линеаризация системы дифференциальных уравнений

Для функции $\mathbf{f}(x) + \mathbf{g}(x)u$, справедливо:

$$\begin{split} \mathbf{f}(x) + \mathbf{g}(x)u &= F^{(i)}\alpha^{(i)}(x) + B^{(i)}u + r^{(i)}(x,u) = \\ &= A^{(i)}x + B^{(i)}u + f^{(i)} + r^{(i)}(x,u) \end{split}$$

где

$$F^{(i)} = (\mathbf{f}(g_1^{(i)}), \dots, \mathbf{f}(g_{n_x+1}^{(i)})) \in \mathbb{R}^{n_x \times (n_x+1)}, \ A^{(i)} = F^{(i)}H^{(i)} \in \mathbb{R}^{n_x \times n_x}$$

$$B^{(i)} = \frac{1}{n_x+1} \sum_{k=1}^{n_x+1} \mathbf{g}(g_k), \ f^{(i)} = F^{(i)}h^{(i)} \in \mathbb{R}^{n_x}$$

$$|r_s^{(i)}(x, u)| < R_s^{(i)}, \ \forall s = 1, \dots, n_x+1$$

Diploma

Погрешность линеаризации

Тогда в новых обозначениях система принимает вид:

$$\dot{x} = A^{(i)}x + B^{(i)}u + f^{(i)} + r^{(i)}(x, u), \ x \in \Omega^{(i)}.$$

Получена итоговая оценка для s-й компоненты погрешности линеаризации:

$$|R_s^{(i)}(x)| \le \mathcal{R}_s^{(i)} = M_s^{(i)} + N_s^{(i)} \ \forall x \in \Omega$$

$$M_s^{(i)} = \max_{\xi \in \Omega^{(i)}} \rho_{max} \left(\frac{\partial^2 \mathbf{f}_s}{\partial x^2} (\xi) \right) d^{(i)}$$

Получаем, что погрешность лианеризации лежит в параллелепипеде:

$$R^{(i)}(x) \in \mathcal{Q} = [-\mathcal{R}_1^{(i)}, \mathcal{R}_1^{(i)}] \times \dots \times [-\mathcal{R}_{n_x}^{(i)}, \mathcal{R}_{n_x}^{(i)}]$$

Случай линейного управления

Будем искать управление в виде линейной функции от наблюдений в каждом симплексе $\Omega^{(i)}.$ Запишем общий вид управления:

$$u(y) = Ky = K(Cx + \xi).$$

Найдем условия на матрицу K при $x\in\Omega^{(i)}$, при которых управление удовлетворяет условиям при любых ξ :

$$KCx + K\xi \in \mathcal{P}, \ \forall x \in \Omega^{(i)}, \ \forall \xi \in \mathcal{R}$$

То матрица K удовлетворяет этому условию в том и только в том случае, если выполнена система линейных неравенств:

$$P_s^TK(Cg+\eta)\leqslant p_s,\; \forall s=1,...,m,\; \forall g$$
 – вершина $\Omega^{(i)},$ $orall \eta$ – вершина $\mathcal R$

$$\Xi^{(i)} = \{ K\xi : K \in \mathcal{K}^{(i)}, \ \xi \in \mathcal{R} \}.$$

Аффинная функция Ляпунова

Будем искать функцию Ляпунова в виде аффинной функции на каждом симплексе:

$$V(x) = (v^i)^T (H^{(i)}x + h^{(i)}), \ x \in \Omega^{(i)}$$

Производная в силу системы:

$$\frac{dV}{dt} = (v^{(i)})^T H^{(i)} (A^{(i)}x + B^{(i)}KCx + B^{(i)}K\xi + f^{(i)} + r^{(i)}(x, K(Cx + \xi)))$$

Главная формула

Линейность по x и равномерная оценка по всем возможным значениям неопределённых параметров::

$$\begin{split} \frac{dV}{dt}\Big|_{u(\cdot)} & \leqslant (v^{(i)})^T H^{(i)}(A^{(i)}g + B^{(i)}KCg + f^{(i)}) + \sum_{s=1}^{n_x+1} v_s^{(i)} \cdot S^{(i)} = \\ & = \Psi^{(i)}(g,K,v^{(i)}), \ \forall g - \text{вершина } \Omega^{(i)}. \end{split}$$

$$S^{(i)} = \max \left(\left| (H^{(i)}(B^{(i)}K\eta + r))_s \right| : \ s = 1, ..., n_x + 1, \ \eta \in \Xi^{(i)}, \right.$$

Главная теорема

Теорема

Пусть найдены некоторая матрица K, множества индексов \mathcal{J} , \mathcal{J}_0 , а также векторы $v^{(i)} \in \mathbb{R}^{n_x+1}$, $i \in \mathcal{J}$, для которых при некотором $\varepsilon > 0$ выполнены следующие условия:

- $ightharpoonup \mathcal{J}_0 \subset \mathcal{J};$
- выполнены неравенства принадлежности управлению допустимому множеству, для любого $i \in \mathcal{J};$
- ullet $\Psi^{(i)}(g,K,v^{(i)})\leqslant -arepsilon\min\{\|g\|,1\}$ для любой вершины g многогранника $\Omega^{(i)}$, любого $i\in\mathcal{J}\setminus\mathcal{J}_0$;
- lacktriangle Для любого симплекса $\Omega^{(i)}$, $i\in\mathcal{J}_0$, найдётся хотя бы одна вершина g, которая является внутренней для множества \mathcal{X}_0 ($g\in\mathcal{X}_0$).

Главная теорема (продолжение)

▶ Для любого симплекса $\Omega^{(i)}$, который имеет как внутренние, так и граничные (относительно \mathcal{X}) вершины, для любых двух таких вершин $g_1,g_2\in\Omega^{(i)}$, $g_1\in\mathcal{X}$, $g_2\in\partial\mathcal{X}$ выполнено неравенство

$$(v^{(i)})^T H^{(i)} g_1 \leqslant (v^{(i)})^T H^{(i)} g_2 - \varepsilon.$$

- ▶ Во всех вершинах внешней границы(\mathcal{X}) значения функции Ляпунова совпадают.
- ▶ Для любого симплекса $\Omega^{(i)}$, $i \in \mathcal{J}$, который имеет как внешние, так и граничные (относительно \mathcal{X}_0) вершины, для любых двух таких вершин $g_1,g_2\in\Omega^{(i)}$, $g_1\in\partial\mathcal{X}_0$, $g_2\notin\mathcal{X}_0$ выполнено неравенство

$$(v^{(i)})^T H^{(i)} g_1 \leqslant (v^{(i)})^T H^{(i)} g_2 - \varepsilon.$$

ightharpoonup Во всех вершинах внутренней границы (\mathcal{X}_0) значения функции лунова совпадают.

Главная теорема

Теорема (продолжение)

Тогда любая траектория исходной системы, замкнутой управлением u=Ky с найденной матрицей K, удовлетворяет условиям инвариантости множества \mathcal{X}_0 при любом $x_0\in\mathcal{X}$.

Алгоритм

Основная схема алгоритма построения кусочно-аффинной функции Ляпунова V(x), матрицы K, а также множеств \mathcal{X} (и \mathcal{X}_0) предполагает перебор симплексов из некоторой окрестности нулевого положения равновесия и далее проверку выполнения условий теоремы для каждой выбранной совокупности симплексов. Основная вычислительная сложность при этом состоит в поиске значений $v^{(i)}$ и матрицы K. удовлетворяющих большой системе неравенств.

$$\begin{cases} \dot{x}_1 = \frac{1}{10}(x_1-x_2)+u_1;\\ \dot{x}_2 = \frac{1}{10}(x_1+x_2)+u_2, \end{cases}$$
 где $u=K(Cx+\xi), \max_{i=1,2}\lvert u_i\rvert \leq 1, \max_{i=1,2}\lvert \xi_i\rvert \leq \frac{1}{100}, \ C=I\in\mathbb{R}^{2\times 2},$ $\varepsilon=\frac{1}{1000}, x_0=(-0.3,0.1).$
$$K=\begin{pmatrix} -2.194 & -0.023\\ -0.117 & -2.104 \end{pmatrix}.$$

Рис. 1. Пример триангуляции.

Рис. 2. Полученная функция ляпунова.

Рис. 3. Трактория системы x(y).

Рис. 4. Траектория системы y(t).

Рис. 5. Траектория системы y(x).

Рис. 6. Траектория системы y(x) и найденная инвариантная област

$$\begin{cases} \dot{x}_1 = \frac{1}{3}(x_1 - x_2 - x_1 x_2^2) + u_1; \\ \dot{x}_2 = \frac{1}{3}(2x_1 - x_2 - x_2^3) + u_2, \end{cases}$$

где
$$u=K(Cx+\xi), \, \max_{i=1,2} \lvert u_i \rvert \leq 1, \, \, \max_{i=1,2} \lvert \xi_i \rvert \leq \frac{1}{100}, \, \, C=I \in \mathbb{R}^{2 \times 2},$$

$$\varepsilon = \frac{1}{1000}, x_0 = (0.3, -0.8).$$

Найденная матрица К:

$$K = \begin{pmatrix} -2.015 & 0.153 \\ 0.394 & -2.130 \end{pmatrix}.$$

Рис. 7. Пример триангуляции.

Рис. 8. Полученная функция ляпунова.

Рис. 9. Трактория системы x(t).

Рис. 10. Траектория системы y(t).

Рис. 11. Траектория системы y(x).

Рис. 12. Траектория системы y(x) и найденная инвариантная область.

Краткие результаты

- ▶ Доказан аналог теоремы Ляпунова для поставленной задачи
- Предложен алгоритм поиска стабилизатора на основании метода покоординатного спуска
- ► На языке Python реализован алгоритм
- Приведены два примера, демонстрирующие работу алгоритма

Библиография

Точилин П.А. О построении кусочно-аффинной функции цены в задаче оптимального управления на бесконечном отрезке времени // Труды Института математики и механики УрО РАН, издательство Ин-т математики и механики (Екатеринбург), 2020. Т. 26. № 1. с. 223–238.

Атанесян А.А., Точилин П.А. Задача стабилизации системы с переключениями при помощи кусочно-линейного управления // Вестник Московского университета. Серия 15: Вычислительная математика и кибернетика, издательство Изд-во Моск. ун-та (М.), 2019. Т. 43, № 4, с. 22-32.

Барбашин Е.А. Функции Ляпунова. М.: Наука, 1970.

Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski R. R. Nonsmooth Analysis and Control Theory. Springer New York, NY, 1998.

Библиография

Демидович Б. П. Лекции по математической теории устойчивости. М.: Наука 1967.

Красовский Н. Н. Проблемы стабилизации управляемых движений // Малкин И.Г Теория устойчивости движения. Доп 4. М.: Наука, 1966.

Арутюнов А.В. Лекции по выпуклому и многозначному анализу. М.: ФИЗМАТЛИТ, 2014.

Денисов А.М., Разгулин А.В. Обыкновенные дифференциальные уравнения. М.: изд-во ВМК МГУ, 2009.

