1 Basic set operations and relations, pairs, tuples and Cartesian product \times . Theorem about the cardinality of a power set $\mathcal{P}(A)$ of a finite set A

Определение

Пусть X и Y - множества. Тогда $X \cup Y$ - объединение множеств X и Y. Это множество состоит из элементов, принадлежащих любому из множеств X или Y. Другими словами, для любого элемента a, условие $a \in X \cup Y$ выполняется тогда и только тогда, когда выполнено $a \in X$ или $a \in Y$.

Определение

Пусть X и Y - множества. Тогда $X \cap Y$ - **пересечение** множеств X и Y. Это множество состоит из элементов, лежащих одновременно в X и в Y. Другими словами, для любого элемента a, условие $a \in X \cap Y$ выполняется тогда и только тогда, когда $a \in X$ и $a \in Y$.

Определение

Пусть X и Y - множества. Тогда $X \setminus Y$ - разность множеств X и Y. Это множество состоит из элементов, принадлежащих X, но не являющихся элементами множества Y. Итак, для любого a, условие $a \in X \setminus Y$ выполняется тогда и только тогда, когда $a \in X$ истинно, а $a \in Y$ ложно (можно записать как $a \notin Y$).

Определение

Два множества X и Y называются **равными**, обозначается X = Y, тогда и только тогда, когда для любого $a, a \in X$ выполняется тогда и только тогда, когда выполнено $a \in Y$.

Определение

Два множества X и Y находятся в отношении включения, (содержится либо равно), обозначается как $X \subseteq Y$, тогда и только тогда, когда для

любого a, такого, что $a \in X$, следует, что $a \in Y$. Также введем обозначение для строгого включения: $X \subset Y$ значит, что $X \subseteq Y$ и $X \neq Y$.

Замечание

Нетрудно заметить, что для любых двух множеств X и Y, X=Y тогда и только тогда, когда $X\subseteq Y$ и $Y\subseteq X$.

Замечание

Пустое множество содержится в любом другом множестве: $\emptyset \subseteq A$. В частности: $\emptyset \subseteq \emptyset$.

Определение

Пусть a, b - два элемента. **Упорядоченная пара** (a, b) - это множество

$$(a,b) \rightleftharpoons \{\{a\},\{a,b\}\}$$

Замечание

По определению ясно, что если $a \neq b$, то $(a,b) \neq (b,a)$, потому что $\{\{a\},\{a,b\}\}\neq \{\{b\},\{a,b\}\}.$

Определение

Пусть n - натуральное число. **кортеж** длины n (n-местный кортеж), обозначается $\bar{a} = (a_1, \ldots, a_n)$ и определяется следующим образом:

- если n=1, то $(a_1) \rightleftharpoons a_1$,
- если n > 1, то $(a_1, \dots, a_n) \rightleftharpoons ((a_1, \dots, a_{n-1}), a_n)$.

Определение

Пусть $\bar{a}=(a_1,\ldots,a_n)$ - кортеж. Тогда $l(\bar{a})=n$ - длина этого кортежа.

Определение

Пусть $\bar{a}=(a_1,\ldots,a_n)$ и $\bar{b}=(b_1,\ldots,b_m)$ - два кортежа. Тогда $\bar{a} \hat{b} \rightleftharpoons (a_1,\ldots,a_n,b_1,\ldots,b_m)$ - конкатенация кортежей \bar{a} и \bar{b} .

Предложение

Ясно, что
$$l(\bar{a}\hat{b}) = l(\bar{a}) + l(\bar{b})$$

Определение

Пусть A_1, A_2, \ldots, A_n - конечная последовательность множеств. Тогда их **Декартово произведение** определяется как:

$$A_1 \times A_2 \times \ldots \times A_n \rightleftharpoons \{(a_1, a_2, \ldots, a_n) | a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n\}$$

Определение

Если все множества A_i в декартовом произведении $A_1 \times \ldots \times A_n$ равны некоторому множеству A, то Декартово произведение $A_1 \times \ldots \times A_n$ называется n-й Декартовой степенью A и обозначается A^n (A с верхним индексом - n-я степень):

$$A^n \rightleftharpoons \underbrace{A \times A \times \ldots \times A}_n$$

Замечание

Декартово произведение не ассоциативно, т.е. верно, что

$$A \times (B \times C) \neq (A \times B) \times C$$

Доказательство

Чтобы доказать неравенство, проанализируем эти два произведения. Первое состоит из пар вида

$$(a,(b,c)),$$
 где $a\in A,b\in B,c\in C$

а второе состоит из пар вида

$$((a,b),c)$$
, где $a \in A, b \in B, c \in C$

Понятно, что эти пары не могут быть равны.

Определение

Пусть A - множество. Множество $\mathcal{P}(A) \rightleftharpoons \{B|B \subseteq A\}$ называется **степенью** множества A.

Теорема

Если $A_n = \{a_1, \dots, a_n\}$ - множество из n элементов, то множество $\mathcal{P}(A_n)$ состоит из 2^n элементов.

Доказательство

Индукция по n. При n=0, $\mathcal{P}(\emptyset)=\{\emptyset\}$, т.е. оно состоит из одного элемента.

Шаг индукции. Предположим, что утверждение доказано для n-1, т.е. $\mathcal{P}(A_{n-1})$ состоит из 2^{n-1} подмножеств. Произвольное подмножество A_n будет однозначно определяться как:

- подмножество, лежащее в A_{n-1} , т.е. являющееся элементом $\mathcal{P}(A_{n-1})$
- информация о наличии a_n в нём: истина или ложь.

Поскольку существует 2^{n-1} элементов в $\mathcal{P}(A_{n-1})$, и каждое подмножество из $\mathcal{P}(A_{n-1})$ создаёт ровно два подмножества в $\mathcal{P}(A_n)$: в котором содержится a_n и то, в котором этого элемента гарантированно нет $2*2^{n-1}=2^n$ элементов в $\mathcal{P}(A_n)$.

2 Theorem: A countable union of countable sets is countable

Теорема

Для любого счётного множества счётных множеств A, их объединение $\bigcup A$ также счётно.

Доказательство

Во-первых, отметим, что $\omega \leq \bigcup A$. Необходимо показать обратное сравнение. Представим A как $A = \{B_i | i \in \omega\}$. Без ограничения общности можно предположить, что все A_i не пересекаются, т.е. при $i \neq j$,

 $A_i\cap A_j=\emptyset$. Отметим, что так как все A_i счётны, то для любого $i\in\omega$ существует биекция $f_i:A_i\to\omega$. Тогда можно составить отображение

$$f: \bigcup_{i \in \omega} A_i \to \omega$$

при $A_i \ni a \mapsto (i, f_i(a)) \in \omega^2 \approx \omega$. Это отображение инъективно, поэтому $\bigcup A \preceq \omega$, и, следовательно, $\bigcup A$ счётно.

3 Canonical normal forms for propositional formulas: CCNF, CDNF. Theorem about reduction to CCNF

Определение

Формула ϕ , находящаяся в нормальной форме (КНФ или ДНФ), находится в **совершенной** нормальной форме (СКНФ или СДНФ), тогда и только тогда, когда каждая переменная $v \in V(\phi)$ входит в любую элементарную конъюнкцию/дизъюнкции формулы ϕ (в зависимости от того, КНФ это или ДНФ) ровно один раз.

Примеры

- $(p \land \neg q) \lor (p \land q)$ находится в СДН Φ
- $(p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$ находится в СКНФ
- $(p \lor \neg q) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$ находится в КНФ, но не в СКНФ.

Теорема (о СКНФ/СДНФ)

Рассмотрим некоторую формулу ϕ . Тогда

- 1. если ϕ не является тождественно истинной, то существует такая формула ϕ' , находящаяся в СКНФ, что $\phi \equiv \phi'$.
- 2. если ϕ является выполнимой, то существует такая формула ϕ' , находящаяся в СДНФ, что $\phi \equiv \phi'$.

Доказательство

Пусть $\phi'' \equiv \phi$ - формула, находящаяся в КНФ, $\phi'' = \psi_1 \wedge \ldots \wedge \psi_n$, где ψ_i - элементарные дизъюнкции. Тогда конъюнктивная часть $K(\phi'') = \{\psi_i | 1 \leq i \leq n\}$ делится на две части: $K(\phi'') = X \cup Y$. Y состоит из таких элементарных дизъюнкций ψ_i , что некоторая переменная v входит в ψ_i вместе с её отрицанием: $v, \neg v \in D(\psi_i)$, и $X = K(\phi'') \setminus Y$. Тогда для любой элементарной дизъюнкции $\psi_i \in Y$ верно, что $\triangleright \psi_i$, и по леммам о конъюнктивной и дизъюнктивной частях формул, $X \neq \emptyset$, потому что иначе ϕ'' будет выводимой, и, следовательно, ϕ также будет выводимой. Поскольку все элементарные дизъюнкции из Y выводимы по предыдущей лемме

$$\phi'' \equiv \bigwedge_{\psi_i \in X} \psi_i$$

Поэтому, так как $\phi \lor \phi \equiv \phi$, любая переменная $v \in V(\phi)$ входит в любую элементарную дизъюнкцию ψ не более одного раза. Рассмотрим некоторую переменную $v \notin V(\psi_i)$, где $\psi_i \in X$. Если $\psi_i^1 = (\psi_i \lor v)$ и $\psi_i^2 = (\psi_i \lor \neg v)$, то

$$\psi_i \equiv \psi_i \wedge (v \vee \neg v) \equiv (\psi_i \vee v) \wedge (\psi_i \vee \neg v) = \psi_i^1 \wedge \psi_i^2$$

Заменяя элементарную дизъюнкцию ψ_i в множестве X на ψ_i^1 и ψ_i^2 , мы получим множество $X'=(X\setminus\{\psi_i\})\cup\{\psi_i^1,\psi_i^2\}$, и

$$\phi'' \equiv \bigwedge_{\psi' \in X'} \psi'$$

Применяя это для всех переменных v, в итоге мы получим СКНФ. Теорема для СДНФ доказывается аналогично.