COMP5121 Data Mining and Data Warehousing Applications

Week 9: Advanced Classification

Dr. Fengmei Jin

- Email: fengmei.jin@polyu.edu.hk
- Office: PQ747 (+852 3400 3327)
- Consultation Hours: 2.30-4.30 pm every Thursday

Outline

- □ Bayesian Belief Networks (BBN)
- ☐ Support Vector Machine (SVM)
- Neural Networks (NN)

BAYESIAN BELIEF NETWORKS (BBN)

Review of Naïve Bayesian Classifier

- \square A data tuple: $X = (x_1, x_2, ..., x_n)$
- Bayesian Theorem

Priori probability that the class Ci appears

$$P(C_i \mid X) = \frac{P(X \mid C_i) \cdot P(C_i)}{P(X)}$$

Posterior probability that X belongs to Ci after observing X

- \square The probability of *X* occurring in the class C_i :
 - Assume all attributes are independent from each other.
 - $P(X \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times \cdots \times P(x_n \mid C_i)$

Independence Assumption Can Be a Drawback!

- □ Complexity of real-world problems
 - "age" and "student" may collectively affect "income".
- Overestimation of some evidence
 - "cloth_color" and "buys_computer"
- Underfitting importance evidence
 - "income" and "buys_computer"

RID age income student credit_rating Class: buys_computer

Bayesian Belief Networks (BBN)

- ☐ An extension of Bayesian reasoning that:
 - Relaxes the independence assumption
 - Captures dependencies explicitly using a graphical structure

■ Example:

- Weather, Traffic, and Being late
 - □ "Weather" affects "traffic" (dependency)
 - ☐ "Traffic" affects "being late" (dependency)

Bayesian Belief Networks (BBN)

- ☐ Directed Acyclic Graph (DAG): model dependencies
 - Nodes: random variables
 - Edges: conditional dependency
 - \square D \rightarrow A means A depends on D
- □ Conditional Probability Tables (CPTs)
 - $A = \{0, 1\}, B = \{0, 1, 2\}, C = \{0, 1\}, D = \{0, 1\}$
 - The probability of a random variable conditioned on its 'parents'

	A=0, B=0	A=0, B=1	A=0, B=2	A=1, B=0	A=1, B=1	A=1, B=2
C=0	0.7	0.6	0.2	0.9	0.75	0.3
C=1	0.3	0.4	0.8	0.1	0.25	0.7

Bayesian Belief Networks (BBN)

- \square $D \rightarrow A$ means A depends on D
 - \blacksquare D is called the parent of A.
 - \blacksquare A is called the descendant (child) of D.

- ☐ **Property**: Given its parents, a random variable is conditionally independent of its non-descendants
 - $P(B \mid A, D) = P(B)$
 - $P(C \mid A, B, D) = P(C \mid A, B)$
 - $\blacksquare P(A \mid C, D) \neq P(A \mid D)$

Classification Using BBN

- Given an observation $X = (x_1, x_2, ..., x_n)$, We calculate $P(C_i|X)$ for each class, and find C_i with the maximum $P(C_i|X)$
- ☐ For each class, apply Bayesian Theorem:

$$P(C_i \mid X) = \frac{P(X|C_i) \cdot P(C_i)}{P(X)} \propto P(X|C_i)P(C_i)$$

- In Naïve Bayesian model, we assume $x_1, x_2, ..., x_n$ are independent given $C_i \rightarrow P(X \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times \cdots \times P(x_n \mid C_i)$
- In BBN, the relationship among $x_1, x_2, ..., x_n$ and the calculation of $P(X \mid C_i)$ refer to the DAG and CPTs for (conditional) probabilities.

income

student

credit_rating

Class: buys_computer

- \square Classify C given $A, B, D \Rightarrow$ Consider only A and B
- \square Classify A given B, C, D \Rightarrow Consider only C and D
- \square How to classify *D* given *A*, *B*, *C*?

$$P(D \mid A, B, C) = \frac{P(A, B, C \mid D) \cdot P(D)}{P(A, B, C)}$$

- In Naïve Bayes Classifier,
 - $\square P(A,B,C|D) = P(A|D) \times P(B|D) \times P(C|D)$
- In Bayesian Belief Network,

Chain rule for joint probability:

$$\begin{split} &P(A_1, A_2, A_3, ..., A_n) \\ &= P(A_1) \times P(A_2 | A_1) \times P(A_3 | A_1, A_2) \times \cdots \\ &\times P(A_n | A_1, A_2, A_3, ..., A_{n-1}) \end{split}$$

An Example

- ☐ Given a person (X) who buys a computer, and whose income is medium and credit_rating is fair, decide if X is a student.
 - X(income = medium, credit_rating = fair, buys_computer = yes)

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

An Example: Naïve Bayesian Classifier

 $P(student = yes \mid income = medium, credit_rating = fair, buys_computer = yes)$

- $\propto P(income = medium, credit_rating = fair, buys_computer = yes | student = yes)$ $\times P(student = yes)$
- = $P(income = medium \mid student = yes) \times P(credit_rating = fair \mid student = yes)$ $\times P(buys_computer = yes \mid student = yes) \times P(student = yes)$

$$=\frac{2}{7}\times\frac{4}{7}\times\frac{6}{7}\times\frac{1}{2}=\frac{24}{343}\approx 0.07$$

Similarly, $P(income = medium, credit_rating = fair, buys_computer = yes|student = no) \times$

$$P(student = no) = \frac{4}{7} \times \frac{4}{7} \times \frac{3}{7} \times \frac{1}{2} = \frac{24}{343} \approx 0.07$$

An Example: Using BBN

☐ Directed Acyclic Graph (DAG)

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

An Example: Using BBN

☐ Conditional Probability Tables (CPTs)

income (i)	student = yes	<i>student</i> = no
low	4/7	0.0
medium	2/7	4/7
high	1/7	3/7

buys_computer	i=h, c=excellent	i=h, c=fair	i=m, c=e	i=m, c=f	i=I, c=e	i=I, c=f	
yes	0.0	2/3	2/3	2/3	1/2	1.0	
no	1.0	1/3	1/3	1/3	1/2	0.0	—

An Example: Using BBN

```
P(student = yes|income = medium, credit\_rating = fair, buys\_computer = yes)
\propto P(income = medium, credit\_rating = fair, buys\_computer = yes|student = yes)
  \times P(student = yes)
= P(income = medium | student = yes) \times P(credit_rating = fair | student = yes, income = medium)
  \times P(buys\_computer = yes|student = yes, income = medium, credit\_rating = fair) \times P(student = yes)
= P(income = medium | student = yes) \times P(credit_rating = fair)
  \times P(buys\_computer = yes|income = medium, credit\_rating = fair) \times P(student = yes)
```

$$= \frac{2}{7} \times \frac{8}{14} \times \frac{2}{3} \times \frac{1}{2} = \frac{8}{147} \approx 0.054$$

Similarly, $P(income = medium, credit_rating = fair, buys_computer = yes|student = no) \times P(student = no)$

$$(no) = \frac{4}{7} \times \frac{8}{14} \times \frac{1}{3} \times \frac{1}{2} = \frac{8}{147} \approx 0.054$$

SUPPORT VECTOR MACHINES (SVM)

A Binary Classification Problem

- \square The dataset contains a set of points: $D = \{X_1, X_2, ..., X_{|D|}\}$
 - Each point X is represented as a d-dimensional vector, i.e., $X = (x_1, x_2, ..., x_d)$
 - Each point X is associated with a label y_i , where $y_i \in \{+1, -1\}$
- \square A hyperplane H can separate these points into two parts:
 - $H: W \cdot X + b = 0$ where $W = (w_1, w_2, ..., w_d)$ and $W \cdot X = w_1 x_1 + w_2 x_2 + \cdots + w_d x_d$
- \square We call H a decision boundary in classification problems.

What is a good classifier?

 \square H_1 : can't separate data at all

 \square H_2 : can separate data, but can't be generalized well

 \square H_3 : can separate data, and can be generalized well

Support Vector Machines

□ A supervised machine learning (ML) algorithm, aiming to find the best decision boundary (hyperplane) that separate data points into distinct classes

- Hyperplane: a line for 2D data; a plane for 3D data; a hyperplane for higher dimensional space
- Margin: the sum of distances between the hyperplane and the nearest data points from each class (called support vectors).
 - SVM maximizes this margin to ensure better generalization.

Why using SVM for classification?

- ☐ Better generalized on unseen data
 - Maximizes the margin between classes to ensure robust predictions
- □ Handle both linear (hyperplane) and non-linear (kernel) classification
- Robust to dimensionality and overfitting
 - Effective in high-dimensional spaces
 - Focus on critical data points (support vectors) to avoid overfitting

Support Vectors

☐ Distance between a point *X* and a hyperplane *H*:

$$d(X,H) = \frac{|W \cdot X + b|}{\|W\|}$$

$$||W|| = \sqrt{w_1^2 + w_2^2 + \dots + w_d^2}$$

☐ The points closest to the decision boundary in either class are support vectors

Support Vectors

- ☐ The sum of distances between the decision boundary and the closest data points from either class is called the margin
- ☐ The goal of SVM is to find the best decision boundary with maximum margin
 - always let the distances from the decision boundary to the support vectors to be equal

Finding the Optimal Decision Boundary

- \square Let the optimal optimal decision boundary $H: W \cdot X + b = 0$.
- \square Let two support vectors be X_1 and X_2 .

Define two hyperplanes parallel to H and passing the two support vectors

- $H_1: W \cdot X + b = 1$
 - For X_1 , $W \cdot X_1 + b = 1$
 - For points above H_1 , $W \cdot X + b \ge 1$
- $H_2: W \cdot X + b = -1$
 - For X_2 , $W \cdot X_2 + b = -1$
 - points below H_2 with $W \cdot X + b \le -1$

The margin can be calculated by:

$$m = \frac{|W \cdot X_1 + b| + |W \cdot X_2 + b|}{\|W\|} = \frac{2}{\|W\|}$$

• So, W and b can be found by maximizing $\frac{2}{\|W\|}$

Classification Using SVM

 \square Given an unseen point X_q , decide its label y_q

- \square Calculate $W \cdot X_q + b$

NEURAL NETWORKS (NN)

Neural Networks (NN)

□ A machine learning model inspired by the human brain, consisting of interconnected layers of nodes (neurons) that process data and learn patterns.

Structure of NN

- **Input Layer**: take in raw data features
- Hidden Layer(s): perform computations and learn representations through weights and bias
- Output Layer: produce final results

Classification Using NNs (I)

- ☐ Input of NN
 - \blacksquare A tensor X of size (n, d)
 - \square *n* is the number of points
 - \square d is the dimensionality of data

$$\square X = \begin{pmatrix} x_{11} & \cdots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nd} \end{pmatrix}$$

Classification Using NNs (II)

- ☐ Inside a neuron (unit)
 - Take the input from data or the output of other neurons as input
 - The output of a neuron for one point is computed as:
 - $\square w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b$
 - \square weighted by $(w_1, w_2, ..., w_d)$
 - \square The bias b is to adjust outputs
 - The weights and bias are trainable parameters

Classification Using NNs (III)

- \square Inside a hidden layer with m neurons
 - Weights: W of size (m, d)

$$\square \mathbf{W} = \begin{pmatrix} w_{11} & \cdots & w_{1d} \\ \vdots & \ddots & \vdots \\ w_{m1} & \cdots & w_{md} \end{pmatrix}$$

■ Bias: \boldsymbol{b} of size (m, 1)

$$\square \ \boldsymbol{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Classification Using NNs (IV)

- \square In the output layer with c neurons
 - \bullet : a tensor of size (n, c)
 - \Box c is the number of classes
 - \blacksquare Generate the estimated labels \widetilde{Y}
 - Calculate $Loss = f(\widetilde{Y}, Y)$, where Y is the real labels
 - □ e.g., cross-entropy for classification
 - Backpropagate the loss and adjust the trainable parameters across all layers to minimize loss
 - using gradient descent or other optimization algorithms

Some Further Discussions

- Why using NN for classification?
 - High accuracy
 - Fast evaluation speed once trained
 - Robust to noises

- □ Is NN enough for every task? No.
 - Long training time
 - Can't be generalized well
 - Highly dependent on the quality of training data
 - Not explainable

Other Advanced NNs

Convolution Neural Network (CNN)

Classification

Distrib

Probabilities Softmax Transformer Linear Add & Norm Feed Forward Add & Norm Forward N× Add & Norm $N \times$ Add & Norm Multi-Head Attention Positional Positional Encoding Encoding Output Embedding Embedding Outputs Inputs (shifted right)

Output

Recurrent NN (RNN) Unfold ht+1

Feature Extraction

Graph NN (GNN) 1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label

from neighbors

label

using aggregated information

Summary

- Bayesian Belief Networks (BBN): A probabilistic model that represents variables' dependencies using DAG and CPTs
 - Reasoning under uncertainty but computationally expensive
- □ Support Vector Machines (SVM): A supervised learning model that finds the optimal hyperplane to separate data
 - Optimization may struggle with very large datasets
- Neural Networks (NN): A machine learning model inspired by the human brain, consisting of interconnected layers of neurons that learn patterns in data
 - High accuracy, long training, "black box" model

Email: fengmei.jin@polyu.edu.hk

Office: PQ747

THANK YOU!

