Analysis II - Vorlesungs-Script

Prof. Dr. Camillo De Lellis

Basisjahr 11 Semester I

Mitschrift:

Simon Hafner

Inhaltsverzeichnis

1	Met	rik und Topologie des euklidischen Raumes	1
	1.1	Konvergenz	3
	1.2	Ein bisschen mehr Topologie	5
	1.3	Stetigkeit	6
	1.4	lineare Abbildungen	7
	1.5	Mehr über stetige Funktionen	10
	1.6		12
	1.7	Differenzierbare Funktionen	15
		1.7.1 Das Differenzial	17
		1.7.2 Richtungsableitung	17
		1.7.3 Partielle Ableitung	18
	1.8	Rechenregeln	
	1.9	Mittelwertsatz und Schrankensatz	22

1 Metrik und Topologie des euklidischen Raumes

 $\mathbb{R}^n = \{(x_1, \cdots, x_n), x \in \mathbb{R}\} \text{ In } \mathbb{R}^n$:

- Norm (Euklidische)
- Abstand (Euklidische)
- Topologie

"Abstrakte Theorie"

- Normierte Vektorräume
- Metrische Räume
- Topologische Räume

Definition 1.1. Sei $x \in \mathbb{R}^n$ $(x = (x_1, \dots, x_n), x_i \in \mathbb{R})$

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\sum_{i=1}^n x_i^2}$$

Intuitiv: ||x|| = "der Abstand zwischen x und 0"

Lemma 1.2. ||.|| erfüllt die Regeln

1.
$$||x|| \ge 0$$
 und $||x|| = 0 \iff x = 0$

2.
$$\|\lambda x\| = |\lambda| \|x\| \ \forall \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}$$

3.
$$||x + y|| \le ||x|| + ||y|| \ \forall x, y \in \mathbb{R}$$

Beweis. 1. ≥ 0 trivial

$$x = 0 \implies \sum x_i^2 = 0 \implies ||x|| = 0$$
$$x = 0 \iff x_i = 0 \forall i \iff \sum x_i^2 = 0 \iff ||x|| = 0$$

2.

$$\|\lambda x\| = \sqrt{\sum_{i=1}^{n} (\lambda x_i)^2} \sqrt{\lambda^2 (\sum x^2)} = |\lambda| \sqrt{\sum x^2} = |\lambda| \|x\|$$
$$|\lambda| = \frac{\|x\| |\lambda|}{\|x\|}$$

3.

$$\sum_{i=1}^{n} (x_i + y_i)^2 = \sum_{i=1}^{n} (x_i^2 + y_i^2 + 2x_i y_i) = ||x||^2 + ||y||^2 \underbrace{2 \sum_{i=1}^{n} (x_i^2 + y_i^2 + 2x_i y_i)}_{Skalar produkt}$$

 $\iff \underbrace{\|x+y\|^2} \le \|x\|^2 + \|y\|^2 + 2\|x\| \|y\|$

 $\iff \langle x, y \rangle \le ||x|| \, ||y||$

Satz 1.3. Cauchy-Schwartzsche Ungleichung

$$\sum_{i=1}^n x_i y_i \leq \sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}$$

Beweis. OBdA $y \neq 0$ (y = 0 trivial)

$$t \to g(t) = \sum_{i=1}^{n} (x_i + ty_i)^2$$
$$= \left(\sum_{i=1}^{n} x_i^2\right) + 2t \sum_{i=1}^{n} x_i y_i + t^2 \sum_{i=1}^{n} y_i^2$$
$$= \|x\|^2 + 2t \langle x, y \rangle + \|y\|^2 t^2$$

Sei
$$t_0 = \frac{\langle x, y \rangle}{\|y\|^2}$$
, dann $g(t_0) \geq 0$

$$0 \le g(t_0)$$

$$= ||x||^2 - 2\frac{\langle x, y \rangle^2}{||y||^2} + ||y||^2 \frac{\langle x, y \rangle^2}{||y||^4}$$

$$= ||x||^2 - \frac{\langle x, y \rangle^2}{||y||^2}$$

$$\implies \langle x, y \rangle \le ||x||^2 ||y||^2$$

$$\implies |\langle x, y \rangle| \le ||x|| ||y||$$

Definition 1.4. Ein normierter Vektorraum ist ein reeller Vektorraum V mit einer Abbildung $\|.\|:V\to\mathbb{R}$ so dass:

1.
$$||x|| \ge 0$$
 und $||x|| = 0 \iff x = 0$ (Nullvektor)

2.
$$\|\lambda x\| = |\lambda| \|x\| \ \forall \lambda \in \mathbb{R}, \ \forall x \in V$$

3.
$$||x + y|| \le ||x|| + ||y|| \ \forall x, y \in V$$

Beispiel 1.5. $V = \mathbb{R}^n$

$$||x||_p = \left(\sum |x_i|^p\right)^{\frac{1}{p}} \quad p \ge 1$$

p=2 euklidische Norm

Definition 1.6. Seien $x, y \in \mathbb{R}^n$. Die euklidische Metrik d(x, y) = ||x - y||

Lemma 1.7. 1.
$$d(x,y) \ge 0$$
 und $d(x,y) = 0 \iff x = y$

2.
$$d(x,y) = d(y,x)$$

3.
$$d(x,z) \le d(x,y) + d(y,z)$$
 (Dreiecksungleichung)

Beweis.

$$\|x-z\| \leq \underbrace{\|x-y\|}_v + \underbrace{\|y-z\|}_w \quad v+w = x-z$$

$$\|v+w\| \leq \|v\| + \|w\|$$

Definition 1.8. Ein metrischer Raum ist eine Menge X mit einer Abbildung

$$d: X \times X \to \mathbb{R} \ (x,y) \mapsto d(x,y) \in \mathbb{R}$$

so dass

1.
$$d(x,y) \ge 0$$
 und $d(x,y) = 0 \iff x = y \ \forall x, y \in X$

2.
$$d(x,y) = d(y,x) \ \forall x, y \in X$$

3.
$$d(x,z) = d(x,y) + d(y,z) \ \forall x, y, z \in X$$

Lemma 1.9. Sei (V, ||.||) ein normierter Vektorraum. Dann sind V und d(x, y) = ||x - y|| ein metrischer Raum.

Definition 1.10. Die offene Kugel mit Radius r > 0 und Mittelpunkt $x \in \mathbb{R}^n$ ist die Menge

$$K_r(x) = \{ y \in \mathbb{R}^n, d(x, y) < r \}$$

Definition 1.11. Eine Menge heisst "Umgebung" von x, wenn V eine offene Kugel mit Mittelpunkt x enthält.

Definition 1.12. Eine Menge $U \in \mathbb{R}^n$ heisst offen falls $\forall x \in U$ ist U eine Umgebung von x

$$\forall x \in U \; \exists \; \text{eine Kugel} \; K_r(x) \in U$$

Bemerkung 1.13. Eine offene Kugel ist offen.

Satz 1.14. 1. \varnothing und \mathbb{R}^n sind offen

- 2. Der Schnitt endlich vieler offener Mengen ist auch offen.
- 3. Die Vereinigung einer beliebigen Familie offener Mengen ist auch offen.

Beweis. 1. \mathbb{R}^n trivialerweise offen, auch \varnothing

2. Sei $x \in U \cap \cdots \cap U_N$

$$\forall i \in \{1, \dots, N\} \ K_r(x) \subset U_i$$

Sei $r = \min\{r_i, \ldots, r_N\}$

$$\implies K_r(x) \subset U_i \forall i \implies K_r(x) \subset U_1 \cap \cdots \cap U_N$$

3. $\{U_{\lambda}\}_{{\lambda} \in \Lambda}$. Sei $U = \bigcup_{{\lambda} \in \Lambda} U_{\lambda}$

$$x \in U \implies x \in U_{\lambda}$$
 für ein $\lambda \in \Lambda$

$$\implies \exists K_r(x) \subset U_\lambda \subset U$$

Definition 1.15. Ein topologischer Raum ist eine Menge X und eine Menge O von Teilmengen von X so dass:

- 1. $\emptyset, X \in O$
- 2. $U_1 \cap \cdots \cap_N \in O$ falls $U_i \in O$
- 3. $\bigcap_{\lambda \in \Lambda} U_{\lambda} \in O$ falls $U_i \in O$

Satz 1.16. Sei (X, d) ein metrischer Raum

$$K_r(x) = \{ y = X : d(x, y) < r \}$$

Umgebungen und offene Mengen sind wie im euklidischen Fall. $O = \{ offene Menge \}$ definiert eine Topologie.

1.1 Konvergenz

Sei
$$\{x_k\}_{k\in\mathbb{N}}$$
 $x_k\in\mathbb{R}$ $x_k=(x_{k1},\cdots,x_{kn})$

Definition 1.17. Die Folge $\{x_k\}$ konvergiert gegen $x_\infty \in \mathbb{R}^n$ falls

$$\lim_{k \to \infty} d(x_k, x_\infty) = 0$$

$$\left(\lim_{k \to \infty} \|x_k, x_\infty\| = 0\right)$$

Dann schreiben wir

$$x_{\infty} = \lim_{k \to \infty} x_k$$

Satz 1.18.

$$x_k \to x_\infty \iff x_{ki} \to x_{\infty_i} \ \forall i \in \{1, \cdots, n\}$$

Beweis.

$$||x_k - x_\infty|| = \sqrt{\sum_{i=1}^n (x_{ki} - x_{\infty_i})^2} \ge |x_{ki} - x_{k\infty}| \ge 0$$

$$\implies 0 \le \lim_{k \to \infty} |x_{ki} - x_{k\infty}| \le \lim |x_k - x_\infty|| = 0$$

$$||x_k - x_\infty|| = \sqrt{\sum_{i=1}^n \underbrace{(x_{ki} - x_{\infty_i})^2}_{\to 0}} \le \sum_{i=1}^n |x_{ki} - x_{\infty_i}|$$

$$\implies ||x_k - x_\infty|| \to 0$$

Eine alternative Formulierung: $\lim_{k \to \infty} x_k = \left(\lim_{k \to \infty} x_{k1}, \cdots, \lim_{k \to \infty} x_{kn}\right)$

Bemerkung 1.19.

$$\forall \varepsilon > 0 \exists N : ||x_k - x_\infty|| < \varepsilon \text{ falls } k \ge N$$

Für jede Umgebung U von x_{∞} fast alle $x_k \in U$.

Definition 1.20. Eine Folge $\{x_k\} \subset \mathbb{R}^n$ heisst Cauchy falls:

$$\forall \varepsilon > 0 \ \exists N : m, k \ge N \implies ||x_k - x_m|| < \varepsilon$$

Lemma 1.21. $\{x_k\} \subset \mathbb{R}^n$ konvergiert genau dann, wenn $\{x_k\}$ Cauchy ist.

Beweis.
$$\{x_k\}$$
 ist Cauchy $\Longrightarrow \left\{x_k\underbrace{i}_{\text{fixient}}\right\}$ Cauchy!

$$|x_{ki} - x_{m_i}| \le ||x_k - x_m||$$

 $\implies \{x_k\}$ ist eine Cauchyfolge $\stackrel{\text{Erstes Semester}}{\implies} x_{ki}$ konvergiert $\stackrel{\text{Lemma 2}}{\implies} x_k$ konvergiert. x_k konvergiert \implies Cauchyfolge

$$\begin{split} x_{\infty} &= \lim_{k \to \infty} x_k \ \forall \varepsilon > 0 \ \exists N : \|x_k - x_{\infty}\| < \frac{\varepsilon}{2} \ \forall k \ge N \\ k, m \ge N \ \|x_k - x_m\| \le \|x_k - x_{\infty}\| + \|x_{\infty} - x_m\| \le d(x_k, x_{\infty}) + (x_{\infty}, x_m) \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

Bemerkung 1.22. In einem metrischen Raum, Cauchy \Leftarrow Konvergenz. Aber allgemein: Cauchy $\not\Longrightarrow$ Konvergenz. Falls Cauchy \Longrightarrow Konvergenz, dann ist der metrische Raum vollständig.

Definition 1.23. Eine Folge $\{x_k\} \subset \mathbb{R}^n$ heisst beschränkt falls $||x_k||$ beschränkt ist.

Satz 1.24. 1. Eine konvergente Folge ist beschränkt

2. (Bolzano-Weierstrass) $\{x_k\}$ beschränkt $\implies \exists \{x_{k_j}\}$ die konvergiert.

Beweis. $\{x_k\}$ beschränkt \Longrightarrow

$$\{x_k\}$$
beschränkt $\Longrightarrow \{x_{k1}\}_{k\in\mathbb{N}}$ beschränkt
$$\Longrightarrow \exists x_{k_j}: x_{k_j1} \to x_1$$

Ich definiere $y_j = x_{k_j} \ y_{j1} \to x_1$

$$y_j$$
 beschränkt $\Longrightarrow \exists j_l : y_{j_l 2} \to x_2$

$$z_l := y_{j_l} \text{ und } z_{l1} \to x_1, x_{l2} \to x_2$$

 $\dots (n-2)$ Schritte. w_r Teilfolge von x_k mit $w_{ri} \to x_i$

$$w_r \to (x_1, \cdots, x_n)$$

1.2 Ein bisschen mehr Topologie

Definition 1.25. Eine Menge $G \subset \mathbb{R}^n$ heisst geschlossen falls $G^c := \mathbb{R}^n \setminus G$ eine offene Menge ist.

Bemerkung 1.26.

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

Satz 1.27. 1. \varnothing , \mathbb{R}^n sind abgeschlossen

- 2. G_1, \dots, G_N abgeschlossen $\implies G_1 \cup G_2 \cup \dots \cup G_N$ abgeschlossen
- 3. $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ abgeschlossen $\Longrightarrow \bigcap_{{\lambda}\in\Lambda} G_{\lambda}$ abgeschlossen.

Satz 1.28. $G \subset \mathbb{R}^n$ G ist abgeschlossen $\iff \forall$ jede konvergente $\{x_k\} \subset G$ gehört der Grenzwert zu G (gilt auch für metrische Räume).

Beweis. \Leftarrow Die rechte Eigenschaft gilt. Ziel: G^c ist offen. Sei $x \in G^c$: das Ziel ist eine Kugel $K_r(x) \in G^c$ zu finden. Widerspruchsbeweis: $K_{\frac{1}{j}}(x) \not\subset G^c$, $j \in \mathbb{N} \setminus \{0\}$

$$\implies \exists x_j \in K_{\frac{1}{j}}(x) \cap G \implies \{x_j\} \subset G \text{ und } x_j \to x$$

$$\{x_j\} \subset G \ x_j \to x \ x \notin G$$

 \implies d.h. G^c offen \implies falls $\{x_k\} \subset G$ und $x_k \to x$ dann $x \in G$ Widerspruch: G^c offen, aber $\exists \{x_k\} \subset G$ mit Grenzwert $x \notin G$, d.h. $x \in G^c$. Offenheit von G^c .

$$\implies \exists K_r(x) \subset G^c \implies K_r(x) \cap = \varnothing$$

d.h. $\exists N$ mit

$$||x_N - x|| < r \implies x_N \in K_r(x) \cap G$$

Beispiel 1.29. Eine offene Kugel ist nicht geschlossen.

$$K_r(x) = \{y : ||y - x|| < r\}$$

Sei $\{y_k\} \in K_r(x)$, (d.h. $||y_k - x|| < r$) mit $y_k \to y$ und ||y - x|| = r.

Definition 1.30. Sei $\overline{K_r(x)} := \{ y \in \mathbb{R}^n : ||y - x|| \le r \}.$

Übung 1.31. $\overline{K_r(x)}$ ist abgeschlossen

Definition 1.32. $x \in \mathbb{R}^n$ ist ein Randpunkt von M falls

$$\forall K_r(x) \ \exists y \in K_r(x) \cap M \ \text{und} \ \exists z \in K_r(x) \cap M^c$$

Definition 1.33. Sei M eine Menge in \mathbb{R}^n , dann ist der Rand von M

$$\partial M = \{x \in \mathbb{R}^n, \text{ Randpunkt von } M\}$$

Satz 1.34. $\partial M^c = \partial M$

- 1. $M \setminus \partial M$ ist die grösste offene Menge die in M enthalten ist.
- 2. $M \cup \partial \partial M$ ist die kleinste geschlossene Menge die M enthält.

Beweis. $M \setminus \partial M$ ist offen.

$$x \in M \setminus \partial M \implies x \in M \text{ und } \exists K_r(x) \text{ mit } K_r(x) \cap M^c = \emptyset$$

$$\implies K_r(x) \subset M$$

Sei $y \in K_r(x)$

$$\implies |y - x| = \rho < r$$

$$\implies K_{r-\rho}(y) \subset K_r(x) \subset M \implies y \in M, y \notin \partial M$$

$$K_r(x) \subset M \setminus \partial M$$

x ist beliebig $\implies M \setminus \partial M$ ist offen.

Sei $A \subset M$ eine offene Menge. Das Ziel ist $A \subset M \setminus \partial M$. Sei $x \in A$. Ziel: $(x \in M \setminus \partial M)$ $x \notin \partial M$.

$$A \text{ offen} \implies \exists K_r(x) \subset A \subset M \implies x \notin \partial M \implies A \subset M \setminus \partial M$$

1.3 Stetigkeit

Definition 1.35. Sei $f: \Omega_{\mathbb{C}\mathbb{R}^n} \to \mathbb{R}^k$. f ist stetig an der Stelle $x \in \Omega$ falls $\forall \{x_k\} \subset \Omega$ mit $x_k \to x$.

$$\lim_{k \to \infty} f(x_k) = f(x)$$

Lemma 1.36. Eine equivalente Definition:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : f(K_{\delta}(x) \cap \Omega) \subset K_{\varepsilon}(f(x))$$

Beweis. ε - $\delta \implies$ Folgendefinition. Sei $x_k \to x$. Ziel: $f(x_k) \to f(x)$

$$\forall \varepsilon > 0 \ \exists \ \text{mit} \ \underbrace{\frac{\|f(x_k) - f(x)\|}{d(f(x_k), f(x))}}_{f(x_k) \in K_{\varepsilon}(f(x))} < \varepsilon \ \forall k \geq N$$

$$\exists \delta > 0 \quad \underbrace{f(K_{\delta}(x)) \subset K_{\varepsilon}(f(x))}_{\exists \|x_k - x\| < \delta \ k \ge N}$$
$$x_k \in K_{\delta}(x) \implies f(x_k) \in K_{\varepsilon}(f(x))$$

Folgendefinition \implies $(\varepsilon$ - $\delta)$ -Defintion. Widerspruchsannahme:

$$\exists \varepsilon > 0 : f(K_{\delta}(x) \cap \Omega) \not\subset K_{\varepsilon}(f(x)) \ \forall \delta > 0$$

$$\implies \forall \delta > 0 \ \exists y_{\delta} \in K_{\delta}(x) \ \text{und} \ \|f(y_{\delta}) - f(x)\| \ge \varepsilon$$

Nehmen wir $\delta = \frac{1}{i}$ und $x_j = \frac{y_1}{i}$

$$||x_j - x|| < \frac{1}{j} \text{ (weil } x_j \in K_{\frac{1}{j}}(x)\text{)}$$

$$||f(x_j) - f(x)|| = ||f(y_{\frac{1}{i}} - f(x))|| \ge \varepsilon$$

$$x_i \to x \text{ aber } f(x_i) \not\to f(x)$$

Definition 1.37. Die allgemeine Definition der Stetigkeit für metrische Räume: Seien (X,d) und (Y,\overline{d}) zwei metrische Räume. Sei $f:X\to Y$. f ist stetig an der Stelle x falls:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{mit} \ d(y, x) < \delta \implies d(f(y), f(x)) < \varepsilon$$

$$\iff f(K\delta(x)) \subset K_{\varepsilon}(f(x))$$

Definition 1.38. Eine $f: X \to Y$ heisst stetig falls f stetig an jeder Stelle $x \in X$ ist.

Satz 1.39. Sei $f: X \to Y$ ($(X, d), (Y\overline{d})$ metrische Räume) Dann:

- 1. Die Stetigkeit in $x \iff \forall$ Umgebung U von f(x) ist $f^{-1}(U)$ eine Umgebung von x.
- 2. Stetigkeit von $f \iff f^{-1}(U)$ ist offen $\forall U$ offen.

Beweis. 1. • Stetigkeit \Longrightarrow Umgebung. U Umgebung von f(x) \Longrightarrow $\exists \delta > 0$ mit $K_{\delta}(f(x)) \subset U$

$$\implies \exists \varepsilon > 0 : f(K_{\varepsilon}(x)) \subset K_{\delta}(f(x))$$

$$\implies f^{-1}(U) \supset f^{-1}(K_{\delta}(f(x))) \supset K_{\varepsilon}(x) \implies f^{-1}(U)$$
 Umgebung von U

• Umgebung \Longrightarrow Stetigkeit. Sei $\delta > 0$ $U = K_{\delta}(f(x))$. U Umgebung von f(x). $f^{-1}(U)$ ist eine Umgebung von x.

$$\implies \exists \varepsilon > 0 : K_{\varepsilon}(X) \subset f^{-1}(U)$$

$$\implies f(K_{\varepsilon}(x)) \subset U = K_{\delta}(f(x))$$

2. • Stetigkeit \implies offen. Sei U offen $\iff \forall y \in U$ ist U eine Umgebung von y

$$f^{-1}U\ni x\implies f(x)\in U\overset{\text{Stetigkeit in }}{\Longrightarrow}^xf^{-1}(U)$$
 ist eine Umgebung von x
$$\implies f^{-1}(U) \text{ ist offen}$$

• offen \implies Stetigkeit an jedem $x \in X$. Sei $x \in X$, $\delta > 0$, $K_{\delta}(f(x))$ ist offen

$$f^{-1}(K_{\delta}(f(x)))$$
 ist offen $\Longrightarrow x \in f^{-1}(K_{\delta}(f(x)))$
 $\Longrightarrow \exists \varepsilon > 0 : K_{\varepsilon}(x) \subset f^{-1}(K_{\delta}(f(x)))$
 $f(K_{\varepsilon}(x)) \subset K_{\delta}(f(x))$

1.4 lineare Abbildungen

Definition 1.40. Eine Abbildung $L:V\to W$ (V,W Vektoren) heisst linear, falls

$$L(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 L(v_1) + \lambda_2 L(v_2) \ \forall v_1, v_2 \in V, \ \forall \lambda_1, \lambda_2 \in \mathbb{R}$$

$$L: \mathbb{R}^n \to \mathbb{R}^k \iff \exists \text{ eine Matrix } L_{ij}:$$

$$L(x) = \left(\sum_{j=1}^{n} L_{1j}x_{j}, \sum_{j=1}^{n} L_{2j}x_{j}, \cdots, \sum_{j=1}^{n} L_{kj}x_{j}\right)$$

Definition 1.41. Sei L_{ij} eine Matrix die die lineare Abbildung $L: \mathbb{R}^n \to \mathbb{R}^k$ darstellt. Die Hilbert-Schmidt Norm von L ist

$$||L||_{HS} = \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{n} L_{ij}^2}$$

Bemerkung 1.42. $\{L: (L_{ij}n \times k \text{ Matrixen}\} \sim \mathbb{R}^{nk} \|.\|_{HS}$ ist die euklidische Norm.

Bemerkung 1.43. Sei $L: \mathbb{R}^n \to \mathbb{R}^k$ eine lineare Abbildung und $x \in \mathbb{R}^n$. Dann $||L(x)|| \le ||x|| \, ||L||_{HS}$.

Korollar 1.44. Sei L wie oben, dann ist L stetig.

Beweis. Sei
$$x_k \to x$$
. Ziel $L(x_k) \to L(x)$

$$||L(x_k) - L(x)|| = ||L(x_k - x)|| \le ||x_k - x|| \, ||L||_{HS} \to 0$$

$$\implies ||L(x_k) - L(x)|| \to 0$$

$$\implies \text{Stetigkeit}$$

Beweis. Beweis von 1.36: L(x) = y

$$||L(x)||^{2} = \sum_{i=1}^{k} y_{i}^{2}$$

$$= \sum_{i=1}^{k} \left(\sum_{j=1}^{n} L_{ij} x_{j}\right)^{2} \overset{\text{Cauchy-Schwartz}}{\leq} \sum_{i=1}^{k} \left(\sum_{j=1}^{n} L_{ij}^{2}\right) \left(\sum_{j=1}^{n} x_{j}\right)^{2}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n} L_{ij}^{2} ||x||^{2} = ||x||^{2} \left(\sum_{i=1}^{k} \sum_{j=1}^{n} L_{ij}^{2}\right)$$

$$||x||^{2} ||L||_{\text{HS}}^{2} \implies ||L(x)|| \leq ||x|| ||L||_{\text{HS}}$$

Definition 1.45. Sei $L:V\to W$ eine lineare Abbildung wobei $(V,\|.\|_V)$ und $(W,\|.\|_W)$ zwei endlich-dimensionierte Vektorräume sind. Die Operatornorm von L ist:

$$\|L\|_{L(V,W)} := \sup_{\|v\|_{V} \le 1} \|L(v)\|_{W}$$

Satz 1.46. $\|.\|_{L(V,W)}$ ist eine Norm und

$$||L(v)||_W \le ||L||_{L(V,W)} ||v||_V$$

Deswegen: jede lineare Abbildung $L: V \to W$ ist stetig.

Beweis. Der Kern ist die folgende Eigenschaft:

$$||L||_{L(V,W)} < +\infty$$

Wenn das gilt dann:

1.

$$\underbrace{\|L\|_{L(V,W)}}_{\mathrm{Kern}} \ \ \mathrm{und} \ \ \|L\|_{L(V,W)} = 0 \iff L = 0$$

 \Leftarrow einfach. Sei $||L||_{L(V,W)} = 0$. Dann sei $v \in V$.

$$\begin{aligned} v &= 0 \implies L(v) = 0 \\ v &\neq 0 \ z \frac{v}{\|v_V\|} \implies \|z\|_V = 1 \\ \|L(z)\|_W &\leq \sup_{\|y\|_V \leq 1} \|L(v)\|_W = 0 \\ \implies L(z) &= 0 \implies L(v) = L\left(\|v\|_V z\right) = \|v\|_V L(z) = 0 \end{aligned}$$

2.

$$\begin{split} \|\lambda L\|_{L(V,W)} &= |\lambda| \, \|L\|_{L(V,W)} \\ \|\lambda L\|_{L(V,W)} &= \sup_{\|y\|_{V} \le 1} \|\lambda L(v)\|_{W} \\ &= \sup_{\|y\|_{V} \le 1} |\lambda| \, \|L(v)\|_{W} \\ &= |\lambda| \, \sup_{\|y\|_{V} \le 1} \|L(v)\|_{W} \\ &= |\lambda| \, \|L\|_{L(V,W)} \end{split}$$

3.

$$\begin{split} \|L + L'\|_{L(V,W)} \\ &= \sup_{\|y\|_{V} \le 1} \|(L + L')(v)\|_{L(V,W)} \\ &= \sup_{\|y\|_{V} \le 1} \|L(v) + L'(v)\|_{L(V,W)} \\ &\leq \sup_{\|y\|_{V} \le 1} (\|L(v)\|_{W} + \|L'(v)\|_{W}) \\ &\leq \sup_{\|y\|_{V} \le 1} \|L(v)\|_{W} + \sup_{\|y\|_{V} \le 1} \|L'(v)\|_{W} \\ &= \|L\|_{L(V,W)} + \|L'\|_{L(V,W)} \end{split}$$

Wenn v_1, \dots, v_n Basis für V, w_1, \dots, w_k Basis für W. Die lineare Abbildung $E_{ij}(v_i) = w_j$, $E_{ij}(v_l) = 0$ falls $l \neq i$ ist eine Basis für $L(V, W) \implies L = \sum_{i,j} \lambda_{ij} E_{ij}$

 $(V,\|.\|) \ (W,\|.\|) \ L:V\to W \ \|L\|_{L(V,W)}:=\sup_{\|v\|_{V}\le 1}\|L(v)\|_{W} \eqno(1)$

 $\begin{array}{l} \textbf{Satz 1.47.} \ \textit{Falls} \ \dim(V), \ \dim(V) < +\infty, \ \|L\|_{L(V,W)} < +\infty \ \textit{Wahr ohne Beweis} \\ \textit{in V und deswegen $L(V,W)$, } \ \|.\|_{L(V,W)} \ \forall v \in V, \ \forall L \in L(V,W) \end{array}$

$$||L(v)||_{W} \le ||L||_{L(V,W)} ||v||_{V} \tag{2}$$

Aus 2 folgt dass L stetig ist wenn $||L||_{L(V,W)} < +\infty$.

Bemerkung 1.48. $||L||_{L(V,W)}$ ist die optimale Konstante in 2.

Beweis. Falls $||v||_V = 1$

$$\iff \|L(v)\|_{W} \le \|L\|_{L(V,W)} = \sup_{\|v\|_{V} \le 1} \|L(v)\|_{W}$$

Die Ungleichung ist eine direkte Folgerung von 1

$$\|v\|_V = 0 \implies L(v) = 0 \implies \|L(v)\|_W) = 0 \implies 2$$

$$||v||_{V} > 0$$

$$\begin{split} \tilde{v} &:= \frac{v}{\|v\|_V} \implies \|\tilde{v}\|_V) \frac{\|v\|_V}{\|v\|_V} = 1 \\ & \|L(\tilde{v})\|_W \leq \|L\|_{L(V,W)} \\ & \left\| \frac{1}{\|v\|_V} L(v) \right\|_W = \frac{1}{\|v\|_V} \|L(v)\|_W \\ & \implies \frac{\|L(v)\|_W}{\|v\|_V} \leq \|L\|_{L(V,W)} \end{split}$$

Beweis. $\varepsilon - \delta$ Stetigkeit. $v, \varepsilon > 0$. Suche $\delta > 0$ mit

$$||v'-v||_V < \delta \implies ||L(v')-L(v)||_W < \varepsilon$$

Linearität von ${\cal L}$

$$\implies ||L(v') - L(v)||_W = ||L(v' - v)||_W$$

und aus 2

$$\begin{split} \|L(v'-v)\| &\leq \underbrace{\|L\|_{L(V,W)}}_{\leq \varepsilon} \underbrace{\|v'-v\|_{V}}_{\leq \varepsilon} \\ \implies \delta &= \frac{\varepsilon}{\|L\|_{L(V,W)}} \end{split}$$

 \implies Ungleichung erfüllt.

Bemerkung 1.49. $V=\mathbb{R}^n, \ \|.\|_V$ euklidische Norm. $W=\mathbb{R}^k$ mit euklidischer Norm.

$$\begin{split} \|L\|_{L(V,W)} &\leq \|L\|_{\mathrm{HS}} \\ L: \mathbb{R}^n \to \mathbb{R}^k \quad \text{linear} \\ \|L\|_{\mathrm{HS}} &= \sqrt{\sum_{i,j} L_{ij}^2} \\ \|L\|_{L(V,W)} := \sup_{\sum_{i=1}^n v_i^2 \leq 1} \sqrt{\sum_{j=1}^k \left(\sum_{i=1}^n L_{jiv_i}\right)^2} \end{split}$$

1.5 Mehr über stetige Funktionen

Regeln für stetige Funktionen

Regel 1 Seien $f: X \to Y$, $g: X \to Y$. X: topologischer Raum, metrischer Raum, normierter Vektorraum, \mathbb{R}^n V ist ein normierter Vektorraum (\mathbb{R}^k). Falls f, g stetig sind, ist auch f + g stetig.

$$V = \mathbb{R} \ fg, \, \frac{f}{g} \ (g \neq 0)$$
 stetig

$$V = \mathbb{R}$$
 $fg(x) = \sum_{i=1}^{n} f_i(x)g_i(x)$

Beweis. Im Fall X Teilmenge von \mathbb{R}^n

$$\underbrace{\left\{x^k\right\}}_{\subset X} x^k \to x \in X$$

Stetigkeit von f und $g: g(x^k) \to g(x), f(x^k) \to f(x)$.

$$g(x^{k}) = (g_{1}(x^{k}), \dots, g_{m}(x^{k}))$$

$$g(x) = (g_{1}(x), \dots, g_{m}(x))$$

$$f(x^{k}) = (f_{1}(x^{k}), \dots, f_{m}(x^{k}))$$

$$f(x) = (f_{1}(x), \dots, f_{m}(x))$$

$$(g+f)(x^{k}) = (g_{1}(x^{k}) + f_{1}(x^{k}), \dots, g_{m}(x^{k}) + f_{m}(x^{k}))$$

$$\to g_{1}(x) + f_{1}(x), \dots, g_{m}(x) + f_{m}(x) = (g+f)(x)$$

$$x^{k} \to x \in X \implies (f+g)(x^{k}) \to (f+g)(x).$$

 $\mathbf{Regel}\ \mathbf{2}\quad \mathrm{Seien}\ X,Y,Z$ topologische Räume. Seien $f:X\to Y$ und $g:Y\to Z$ stetig

$$g \circ f : \underbrace{X \to Z}_{x \mapsto g(f(x))}$$

Beweis. Sei U eine offene Menge in Z.

$$(g \circ f)^{-1}(U) = \underbrace{f^{-1}(\underline{g^{-1}(U)})}_{\text{offen}}$$

Definition 1.50. Sei $f: X \to \mathbb{R}$.

$$||f|| = \sup_{x \in X} ||f(x)||$$

 $f: X \rightarrow V, \, V, \|.\|_V$ normierter Vektorraum

$$\|f\|=\sup_{x\in X}\|f(x)\|_V$$

Bemerkung 1.51. X Menge, $V, \|.\|$ ein normierter Vektorraum.

$$F := \{ f : X \to V \} \quad \text{mit} \quad ||f||$$

Dann ist $F,\|.\|$ ist ein normierter Vektorraum.

Definition 1.52. Eine Folge von Funktionen

$$f^k: X \to V$$

konvergiert gleichmässig gegen f falls

$$||f^k - f|| \to 0$$

Bemerkung 1.53. $x \in X$

$$||f^k(x) - f(x)||_V \le ||f^k - f||$$

Folgerung f^k konvergiert gleichmässig

$$\implies f^k(x) \to f(x) \ \forall x$$

Satz 1.54. Sei X ein metrischer Raum und $f^k: X \to V$ eine Folge die gleichmässig gegen f konvergiert. Dann ist f stetig.

Beweis. Seien $x \in X$ und $\varepsilon > 0$.

Ziel $\exists \delta > 0 \text{ so dass}$

$$d(x,y) < \delta \implies ||f(x) - f(y)|| < \varepsilon$$

 $\exists N \text{ so dass}$

$$||f - f^k|| < \frac{\varepsilon}{3}$$
 falls $k \ge N$

 f^N ist stetig: $\exists \delta > 0$:

$$\begin{aligned} d(x,y) &< \delta \implies \left\| f^N(x) - f^N(y) \right\| < \frac{\varepsilon}{3} \\ d(x,y) &< \delta \\ \left\| f(x) - f(y) \right\| &= \left\| (f(x) - f^N(x)) + (f^N(x) - f^N(x)) + (f^N(y) - f(y)) \right\|_V \\ &\leq \left\| f(x) - f^N(x) \right\|_V + \left\| f^N(x) - f^N(y) \right\|_V + \left\| f^N(y) - f(y) \right\|_V \\ &< \left\| f^N - f \right\| + \frac{\varepsilon}{3} + \left\| f^N - f \right\| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \end{aligned}$$

1.6 Kompakte Menge

Definition 1.55. Eine Menge $K \subset \mathbb{R}^n$ heisst kompakt falls K abgeschlossen und beschränkt ($\iff \exists B_R(0) : K \subset B_R(0)$) ist.

Satz 1.56. Sei $k \subset \mathbb{R}^n$.

$$K \ kompakt \iff \forall \{x^j\} \subset K \ \exists x^{j_l}$$

 x^{j_l} ist eine Teilfolge, die gegen $x \in K$ konvergiert. $K \implies Sei \{x^j\}$ eine Folge

$$x^j \in K \subset B_R(0) \implies ||x^j|| < R$$

 $\exists x^{j_l} \to x \in \mathbb{R}^n$, die abgeschlossenheit von $K \implies x \in K$. Folgenkriterium \implies Abgeschlossenheit und Beschränktheit.

$$nicht\ abgeschlossen \implies \exists x^j \subset K \ mit\ x^j \to \notin K$$

$$Folgenkompaktheit \implies \exists x^{j_l} \rightarrow y \in K$$

Widerspruch (weil x und y sind in derselben Menge) Sei K nicht beschränkt.

$$\forall j \in \mathbb{N} \ B_j(0) \not\supset K$$
$$\exists x^j \in K \setminus B_j(0) \implies ||x^j|| \ge j$$

Wenn $x^{j_l} \to x$

$$||x^{j_{l}}|| \leq ||x|| + ||x^{j_{l}} - x||$$

$$||x|| \leq ||x^{j_{l}}|| + ||x - x^{j_{l}}||$$

$$|||x|| - ||x^{j_{l}}||| \leq ||x - x^{j_{l}}||$$

$$\implies ||x^{j_{l}}|| \rightarrow ||x||$$

$$||x^{j_{l}}|| = j_{l} \rightarrow +\infty$$

 $\implies Widerspruch$

Satz 1.57. $E \subset \mathbb{R}^n$

$$E \ kompakt \iff E \ folgenkompakt$$

d.h.

$$\forall \{x_k\} \subset E \ \exists \ Teilfolge \ \{x_{k_l}\} \ die gegen \ x \in E \ konvergiert$$

Definition 1.58. (Überdeckungseigenschaft) Eine Teilmenge $E \subset \mathbb{R}^n$ besitzt die Überdeckungseigenschaft falls:

• \forall Überdeckung $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ von E mit offenen Mengen \exists endliche Teilüberdeckung.

$$\{U_{\lambda}\}_{\lambda \in \Lambda}$$
 Überdeckung $\iff \bigcup_{\lambda \in \Lambda} U_{\lambda} \supset E$

Teilüberdeckung ist eine Teilfamilie von $\{U_{\lambda}\}$ die noch eine Überdeckung von E ist

Beispiel 1.59. Eine offene Kugel hat diese Eigenschaft nicht.

$$\forall x \in K_r(0) \text{ sei } K_{\frac{r-\|x\|}{2}}(x) = U_x$$

1. $\{U_x\}_{x\in K_r(0)}$ ist eine Überdeckung von $K_r(0)$.

Einfach weil $x \in U_x$! Sei U_{x_1}, \dots, U_{x_N} eine beliebige endliche Teilfamilie. Sei

$$p := \max_{i \in \{1, \cdots, N\}} ||x_i|| < r$$

 \implies falls $\|y\| \geq \frac{\|x_i\| + r}{2}$ dan
n $y \not \in U_{x_i}.$ So, wenn $\|y\| \geq \frac{p + r}{2}$ dann

$$y \notin U_{x_1} \cup \dots \cup U_{x_N} \quad \frac{p+r}{2} < r$$

falls $||y|| = \frac{p+r}{2}$, dann $y \in K_r(0)$. Mit einer geschlossenen Kugel ist das anders.

Satz 1.60. Sei $E \subset \mathbb{R}^n$

 $E \ kompakt \iff E \ hat \ die \ \ddot{U}berdeckungseigenschaft$

Beispiel 1.61. $E = \mathbb{R}^n$, $U_n = K_{n+1}(0)$.

$$E \subset \bigcup_{n \in \mathbb{N}} U_n$$

Aber $\forall N \in \mathbb{N}$

$$\mathbb{R}^n = E \not\subset \bigcup_{n=0} U_n$$

Beweis. $\exists \{x_i\} \subset E$ ohne konvergente Teilfolge in $E \implies E$ ist nicht kompakt \implies Überdeckungseigenschaft gilt nicht. Zwei Möglichkeiten:

- 1. \exists eine Teilfolge $\{y_i\} \subset E \ y_i \to y \ y \notin E$
- 2. \exists eine Teilfolge $\{y_i\} \subset E \ y_i \to +\infty$

Beim ersten ist die Menge offen.

$$U_0 := \mathbb{R}^n \setminus \underbrace{\left(\{y_1\} \cup \{y\}\right)}_{E \text{ ist abgeschlossen}}$$

Beim zweiten gilt:

$$U_0 = \mathbb{R}^n \setminus \underbrace{\{x_i\}}_{E}$$
 ist offen

$$U_n = U_0 \cup \{y_1, \cdots, y_{n-1}\} \quad n \ge 0$$

 U_n ist auch offen.

$$\bigcup_{n=0}^{\infty} U_n = \begin{cases} \mathbb{R}^n \setminus \{y\} & \text{im Fall 1} \\ \mathbb{R}^n \setminus & \text{im Fall 2} \end{cases}$$

Aber jede endliche Familie

$$U_1 \cup \cdots \cup U_n \not\supset E$$

in beiden Fällen lassen wir unendlich viele Punkte weg. E kompakt \Longrightarrow Überdeckungseigenschaft. E ist beschränkt und abgeschlossen und sei $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ eine Familie von offenen Mengen mit $E\subset\{U_{\lambda}\}_{{\lambda}\in\Lambda}$. Wir decken die Menge U mit Würfel:

$$[k_1, k_1 + 1] \times [k_2, k_2 + 1] \times \cdots \times [k_n, k_n + 1]$$

 $W_1 \cup \cdots \cup W_M$

Falls jedes $E \cap W_i$ mit einer endlischen Familie von $\{U_{\lambda}\}$ überdeckt wird, dann finde ich eine endliche Überdeckung von E wenn N gross genug ist. So, angenommen dass die Überdeckungseigenschaft nicht gilt.

$$\exists E_i := E \cap W_i :$$

- 1. $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ eine Überdeckung von E_1
- 2. keine endliche Teilfamilie deckt E_1

Teilen wir W_i in 2^n Würfel mit Seite $\frac{1}{2}$

$$\tilde{W}_1, \cdots, \tilde{W}_2$$

 $\exists E_2 := E \cap \tilde{W}_i$: so dass die beiden Eigenschaften noch gelten

Induktiv

$$E\supset E_1\supset E_2\supset\cdots$$

jede $E_i \subset W^i$ Würfel mit Seite 2^{-i+1} und die beiden Eigenschaften gelten mit E_i statt E_i .

 $\{x_k\} \subset E$. $\{x_k\}$ ist eine Cauchy-Folge. $j,k>i,\ x_k,x_j\in W$ mit Seite $w^{-i+1}\|x_j-x_k\|\leq \sqrt{n}2^{-i+1}$

$$\implies x_j \to x \in E \to x \in U \in \{U_\lambda\}_{\lambda \in \Lambda} \implies K_r(x) \supset U$$
$$x \in E, x \in E^i \ \forall i \implies x \in W^i$$
$$\implies W^i \subset B_r(x) \subset U$$

für i gross genug

$$\Longrightarrow E_i \subset U$$

 \implies wir haben eine endliche Teilüberdeckung $\{U\} \subset \{U_{\lambda}\}$ gefunden \implies Widerspruch mit den beiden Eigenschaften.

Bemerkung 1.62. f stetig $\implies f^{-1}(U)$ offen falls U offen.

Beweis. Sei $\{U_{\lambda}\}$ eine Überdeckung (mit offenen Mengen) von f(E), dann ist $\{f^{-1}(U_{\lambda})\}$ ein Überdeckung von E.

$$\exists f^{-1}(U_{\lambda_1}), \cdots, f^{-1}(U_{\lambda_N})$$
 Teilüberdeckung von E

 $U_{\lambda_i}, \cdots, U_{\lambda_N}$ ist eine Überdeckung von $f(E) \implies f(E)$ ist kompakt

Korollar 1.63. Wenn $F: E \to \mathbb{R}$ stetig ist und $E \subset \mathbb{R}^n$ kompakt ist, besitzt f ein Maximum und ein Minimum.

Beweis. $f(E) \subset \mathbb{R}$ ist kompakt.

$$s = \sup f(E) < +\infty$$

$$\exists \{x_k\} \subset f(E) \text{ mit } x_k \to s \xrightarrow{\text{abgeschlossen}} s \in s \in f(E)$$

$$\left(s - \frac{1}{k} \implies \exists x_k \in f(E) \text{ mit } x_k > s - \frac{1}{k}, x_k \le s\right)$$

 $\implies s$ ist ein Maximum.

Definition 1.64. Das Intervallschachtelungsprinzip in \mathbb{R} . Sei I_j eine Intervallschachtelung:

$$I_i = [a_i, b_i]$$

2.
$$I_0 \supset I_1 \supset \cdots \supset I_i \supset_{i+1}$$

3.
$$b_j - a_j \to 0$$

$$\implies \bigcap_{i=0}^{\infty} E_j \neq \emptyset$$

Satz 1.65. Sei E_j eine Folge von kompakten Mengen mit $E_j \supset E_{j+1} \ \forall j \ (E_0 \subset \mathbb{R}^n)$

$$\bigcap_{j=1}^{\infty} E_j \neq \varnothing \ falls \ E_j \neq \varnothing \ \forall j$$

Beweis. Sei E_j wie im Satz mit $E_j \neq \emptyset$, aber $\bigcap_{j=0}^{\infty} E_j = \emptyset$. Sei $U_j := \mathbb{R}^n \setminus E_j \implies U_j$ ist offen. $\bigcup_{j=1}^{\infty} U_j = \mathbb{R}^n \{U_j\}$ ist eine Überdeckung von E_0 . Aber $U_1 \cup \cdots \cup U_N = U_N$ (weil $U_{j+1} \supset U_j$)

$$U_N \not\supset E_N \neq \varnothing \ E_N \subset E_0$$

Keine endliche Teilfamilie von $\{U_j\}$ ist eine Überdeckung von E_0 . Widerspruch wegen Kompaktheit von E_0 .

1.7 Differenzierbare Funktionen

Erinnerung $f: \mathbb{R} \to \mathbb{R}$ heisst differenzierbar in $a \in \mathbb{R}$ falls

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

existiert. Was geschieht mit Funktionen von mehrere Variablen? Die "Tangentensteigung" hängt auch von der Richtung ab. D.h. Es gibt eine lineare Abbildung $L:\mathbb{R}^2\to\mathbb{R}$

Definition 1.66. $f:U\to\mathbb{R},\ U\subset\mathbb{R}^n$ offen, heisst differenzierbar in $a\in U,$ falls

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - Lh}{\|h\|} = 0 \tag{3}$$

wobei $L: \mathbb{R}^n \to \mathbb{R}$ eine lineare Ableitung ist.

Bemerkung 1.67. n = 1: Es gilt Lh = f'(a)h

Bemerkung 1.68. Die lineare Abbilung L in 3 ist eindeutig definiert. Annahme $L' \neq L$ erfüllt die Bedungung. Sei $v \in \mathbb{R}^n$ mit ||v|| = 1. Es gilt:

$$(L-L')(v) \stackrel{\text{linear und}}{=} \lim_{t\downarrow 0} \frac{(L-L')(tv)}{\|tv\|} \stackrel{3}{=} \stackrel{h=tv}{=} \Longrightarrow L=L'$$

Bemerkung 1.69. Wir können 3 auch anders beschreiben:

$$f(a+h) - f(a) = Lh + \underbrace{R(h)}_{\text{Restglied}}$$

Dann gilt

$$3 \iff \lim_{h \to 0} \frac{R(h)}{\|h\|} = 0 \tag{4}$$

Definition 1.70. L heisst Differential von f in a. Man schreibt d f(a). Sei nun $\{e_1, \dots, e_n\}$ die Standardbasis \mathbb{R}^n , $h = (h_1, \dots, h_n) \in \mathbb{R}^n$

$$\implies$$
 d $f(a)h = d f(a) \left(\sum_{i=1}^{k} h_i - e_i \right) = \sum_{i=1}^{n} h_i d f(a)e_i$

Definition 1.71.

$$f'(a) = (d f(a)e_1, \cdots, d f(a)e_n)$$

heisst Ableitung

Definition 1.72.

$$Tf(x,a) = f(a) + f'(a)(x-a)$$
 (Ebene (tangential))

lineare Approximation

Satz 1.73. f differentierbar in $a \implies f$ ist stetig in a Beweis.

$$|f(a+b) - f(a)| = |d f(a)h + R(h)| \le |d f(a)| + \underbrace{|R(h)|}_{\to 0}$$

Beispiel 1.74. $f(x) = Ax + b, A \in M_a(1, n, \mathbb{R}), b \in \mathbb{R}$

Behauptung 1.75. Lh := ah ist linear

$$d f(a)h = Ah, f'(a) = A$$

Beweis.

$$f(a+h) - f(a) - Lh = R(h) = 0$$

Beispiel 1.76. $f(x) := x^T A x, A = (a_{ij}) \in \operatorname{Sym}(n, \mathbb{R})$

$$f(a+h) - f(a) - \underbrace{2a^{T}Ah}_{d\ f(a)h} + \underbrace{h^{T}Ah}_{R(h)}$$

 $Lh := 2a^T Ah$ ist linear (in h), $R(h) = h^T Ah$ (= $\sum h_i a_{ik} h_l$) z.z.: $|Rh| \le \sum_{i,j=1}^h |a_{ij}| \|h\|_{\infty}^2$, d.h. $\frac{R(h)}{\|h\|} \to 0$ (falls $\|h\| \to 0$)

Ziel Wir wollen df(a)h berechnen, sei $t \in \mathbb{R}$

$$f(a+th) = f(a) + d f(a)th + R(th)$$

$$\implies d f(a)h = \lim_{t \to 0} \frac{f(a+th) - f(a)}{t}$$
(5)

Definition 1.77. $f: U \to \mathbb{R}, a \in U$. Die Richtungsableitung von f in Richtung $h \in \mathbb{R}^n$ ist der Grenzwert (falls er existiert)

$$\partial_n f(a) := \lim_{t \to 0} \frac{f(a+th) - f(a)}{t}$$

Die Ableitungen in Richtung e_1, \dots, e_n heissen partielle Ableitungen in a. Wir schreiben

$$\partial_{ei} f(a) = \partial_i f(a) = \frac{\partial f}{\partial x_i}(a) = f_{xi}(a)$$

Bemerkung 1.78. Wir haben nicht vorausgesetzt, dass f differenzierbar ist in a!

Satz 1.79. Sei f in a differenzierbar. Dann existieren die Richtungsableitungen in jede Richtung. Insbesondere existieren die aprtiellen Ableitungen. Es gelten:

$$d f(a)h = f'(a)h = \partial_n f(a) = \sum_{i=1}^n \partial_i f(a)h_i$$
 (6)

und

$$f'(a) = (\partial_1 f(a), \cdots, \partial_n f(a))$$

Beweis. Existenz der Richtungsableitung oke (Herleitung von 5)

Frage Wie berechnet man die partielle Ableitung effizient? Es gilt:

$$\partial_i f(a) = \lim_{t \to 0} \frac{f(a + t_{ei}) - f(a)}{t}, \quad a = (a_1, \dots, a_n)$$
$$g_i(x) := f(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_n)$$
$$\partial_i f(a) = \lim_{t \to 0} \frac{g(a_i + t) - f(a_i)}{t} = g'(a_i)$$

Beispiel 1.80.

$$f(x,y) := \sin(2x)e^{3y}$$
$$\partial_x f = 2e^{3y}\cos(2x)$$
$$\partial_y f = \sin(2x)e^{3y}3$$

Frage Wann folgt aus der Existenz der partiellen Ableitung (Richtungsableitung) die Differenzierbarkeit?

Beispiel 1.81.

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Es gilt: f(tx, ty) = tf(x, y), d.h. der Graph von f besteht aus Geraden durch 0, für $h = (h_1, h_2) \in \mathbb{R}^2$

$$\implies \partial_h f(0,0) = \lim_{t \to 0} \frac{f(th_1, th_2) - f(0,0)}{k} = \lim_{t \to 0} \frac{t}{t} f(h_1, h_2) = f(h_1, h_2)$$

$$\implies \partial f(0,0) = f(h_1, h_2)$$

$$\partial_{e_1} f(0,0) = f(1,0) = 0$$

$$\partial_{e_2} f(0,0) = f(0,1) = 0$$

Annahme f ist in (0,0) differenzierbar

$$\xrightarrow{\text{aus } 6} \underbrace{\partial_n f(0,0)}_{\text{=d } f(a)h=0} = \underbrace{\partial_1 f(a)}_{0} (h_1) + \underbrace{\partial_2 f(a)}_{0} (h_2) = 0$$

$$\implies d f(a) = 0$$

Test L=0

$$\frac{f(h_1, h_1) - \overbrace{f(a_0) - L(h_1, h_1)}}{\|(h_1, h_1)\|_{\infty}} = \frac{h_1^3}{2h_1^2 |h_1|} \to \pm \frac{1}{2}$$

 $\implies f$ ist in (0,0) nicht differenzierbar.

1.7.1 Das Differenzial

 $f: \Omega \to \mathbb{R}, \ \Omega \subset \mathbb{R}^n$, Umgebung von x.

$$f \text{ diff in } x \iff \exists L : \mathbb{R}^n \to \mathbb{R} \text{ linear s.d.}$$

$$\lim_{h \downarrow 0} \frac{f(x+h) - f(x) - L(h)}{\|h\|} = 0$$

$$\lim_{h \downarrow 0} G(h) = 0 \iff \forall \varepsilon > 0 \exists \delta > 0 \quad \|h\| < \delta \implies |G(h)| < \varepsilon$$

$$\iff \forall h_k = 0 \quad G(h_k) \to 0$$

$$(7)$$

Wenn f differenzierbar ist und 7 erfüllt, heisst L das Differential von f.

$$L = d f$$

 $\operatorname{d} f_x\,$ das Differential an der Stelle x

1.7.2 Richtungsableitung

 $x \in \Omega, h \in \mathbb{R}^m, g(t) = f(x + th)$ (wohldefiniert für |t| klein)

$$\partial_n f(x) = g'(0) = \lim_{t \to 0} \frac{f(x+th) - f(x)}{t}$$

1.7.3 Partielle Ableitung

 (x_1, \dots, x_n) Kond. in \mathbb{R}^n $y \in \Omega$ so dass Ω eine Umgebung von y ist

$$\frac{f}{x_i}(y) (= \partial_{x_i} f(y)) = \lim_{t \to 0} \frac{y_1, \dots, y_i + t, \dots, y_n - f(y)}{t}$$

Falls $e_i = (0, ..., 0, \underbrace{1}_{i}, 0, ..., 0)$

$$= \lim_{t \to 0} \frac{f(y + te_i) - f(y)}{t} = \partial_{e_i} f(y)$$

Satz 1.82. (Hauptkriterium der Differenzierbarkeit) Sei $f: U \to \mathbb{R}$ und U eine Umgebung von y. Falls $\frac{f}{x_1}, \dots, \frac{f}{x_n}$ in U existieren und stetig in $\underline{in}\ \underline{y}$ sind, dann ist f in y differenzierbar.

Beweis. $h = (h_1, \dots, h_n) \in \mathbb{R}^n$

$$L(h) = \sum_{i=1}^{n} \frac{f}{x_i}(y)h_i$$

Ziel L ist das Differential von f

$$Limoh \frac{f(x+h) - f(x) - L(h)}{\|h\|} = 0$$

$$f(x+h)-f(x) = f(x+(h_1, \dots, h_n)) - f(y+(h_1, \dots, h_{n-1}, 0) + f(y+(h_1, \dots, h_{n-1}, 0) - \dots + \dots$$

$$+ \dots$$
 (ite Zeile)
$$+ f(y+(k, 0, \dots, 0)) - f(y)$$
(8)

$$i \in \{1, \dots, n\}$$

$$q(t) = f(y + (h_1, \dots, h_{i-1}, th_i, 0, \dots, 0)$$

ite Zeile =
$$g_i(1) - g_i(0) = g'_i(\xi_i) \ \xi \in [0, 1]$$

$$g_i'(t) = \lim_{t \to 0} \frac{g_i(t+\varepsilon) - g_i(t)}{s}$$

$$= h_i \lim_{\varepsilon \to 0} \frac{f(y_1 + h_1, \dots, y_{i-1}, y_i + (t+\varepsilon)h_i, y_{i+1}, \dots, y_n) - f(y_1 + h_1, \dots, y_i + th_i, \dots, y_n)}{\varepsilon h_i}$$

$$= h_i \frac{f}{x_i} (y_1 + h_i, \dots, y_i + th_1, y_{i+1}, \dots, y_n)$$

ite Zeile =
$$h_i \frac{f}{x_i} (y_1 + h_1, \dots, y_{i-1} h_{i-1}, y_i + \xi_i h_i, y_{i+1}, \dots, y_n)$$

$$\zeta_i = (h_1, \dots, h_{i-1}, \xi h_i, 0, \dots, 0)$$

$$=h_i \frac{f}{x_i} (y + \zeta_i) \tag{9}$$

9 in 8:

$$f(y+h) - f(y) = \sum_{i=1}^{n} h_i \frac{f}{x_i} (y+\zeta_i)$$
 (10)

$$f(x+h) - f(x) - L(h)$$

$$= \sum_{i=1}^{n} h_i \left(\frac{f}{x_i} (y + \zeta_i) - \frac{f}{x_i} (y) \right)$$
 (11)

$$\frac{|f(x+h) - f(x) - L(h)|}{\|h\|}$$

$$\stackrel{11}{\leq} \sum_{i=1}^{n} \frac{|h_i| |\frac{f}{x_i} (y + \zeta_i) - \frac{f}{x_i} (y)|}{\|h\|}$$
(12)

Wenn $||h|| \to 0$, $||\zeta|| \to 0$. Die Stetigkeit von $\frac{f}{x_i}$ in y impliziert

$$\frac{f}{x_i}(y+\zeta_i)\to \frac{f}{x_i}$$

Die rechte Seite von $12 \to 0$ wenn $h \to 0 \implies ??$.

Definition 1.83. Der Gradient an der Stelle x_0 ist der Vektor

$$\left(\frac{f}{x_1}(x_0), \dots, \frac{f}{x_i}(x_0)\right) = \nabla f(x_0)$$

Bemerkung 1.84.

$$df|_{x_0}(h) (\partial_n f(x_0)) = \sum_{i=1}^n h_i \frac{f}{x_i}(x_0)$$
$$(\langle \nabla f(x_0), h \rangle) = \nabla f(x_0)h$$
$$|\partial_n f(x_0)| \overset{\text{Cauchy-Schwartz}}{\leq} \|\nabla f(x_0)\| \|h\|$$

Falls ||h|| = 1, dann

$$|\partial_n f(x_0)| \le ||\nabla f(x_0)||$$

Fall $\|\nabla f(x_0)\| \neq 0$, wenn wir

$$K = \frac{\nabla f(x_0)}{\|\nabla f(x_0)\|}$$

bekommen wir ||K|| = 1 und

$$\partial_K f(x_0) = \|\nabla f(x_0)\|$$

Deswegen:

$$K = \frac{\nabla f(x_0)}{\|\nabla f(x_0)\|}$$

ist die Richtung der maximalen Steigung und

$$\|\nabla f(x_0)\|$$

ist die maximale Steigung.

1.8 Rechenregeln

Satz 1.85. Sei U eine Umgebung von $x \in \mathbb{R}^n$ und $f, g : U \to \mathbb{R}$ in x differenzierbar. Dann sind f + g und fg auch differenzierbar in x und

$$d(f+g)|_x = d f|_x + d g|_x$$

$$d(fg) = f(x) dg | x + g(x) df |_x$$

Falls $f(x) \neq 0$ ist auch $\frac{1}{f}$ in x differenzierbar

$$d\left(\frac{1}{f}\right)|_{x} = -\frac{1}{(f(x))^{2}} df|_{x}$$

Korollar 1.86. $g(x) \neq 0$, dann

$$d\left(\frac{f}{g}\right)|_{x} = \frac{1}{g(x)} df|_{x} - \frac{f(x)}{g(x)^{2}} dg|_{x}$$
$$= \frac{g(x) df|_{x} - f(x) dg|_{x}}{g(x)^{2}}$$

Beweis. Das Ziel ist eine lineare Abbildung L zu finden so dass

$$\lim_{h \to 0} \frac{\frac{1}{f(x+h) - \frac{1}{f(x)} - L(h)}}{\|h\|}$$

$$L = -\frac{1}{f(x)^2} \, \mathrm{d} \, f|_x$$

$$\lim_{h \to 0} \frac{\frac{A}{f(x+h) - \frac{1}{f(x)} - \frac{1}{f(x)^2}(h) \, \mathrm{d} \, f|_x(h)}}{\|h\|} = \frac{B+C}{\|h\|}$$

$$\frac{1}{f(x+h)} - \frac{1}{f(x)} = \frac{f(x) - f(x+h)}{f(x)f(x+h)}$$

 $f(x+h) \neq 0$ falls ||h|| klein genug

$$\frac{f(x+h) - f(x) - d f|_{x}(h)}{\|h\|} \to 0$$

$$A = \left[\frac{-(-f(x) + f(x+h))}{f(x)f(x+h)} \frac{d f|_{x}(h)}{f(x)f(x+h)} \right] = C$$

$$+ \frac{-d f|_{x}(h)}{f(x)f(x+h)} + \frac{d f|_{x}(h)}{f(x)^{2}} = B$$

$$\frac{B}{\|h\|} = -\frac{1}{f(x)f(x+h)} \underbrace{\frac{f(x+h) - f(x) - d f|_{x}(h)}{\|h\|}_{\to 0}}_{\text{lim}}$$

$$\lim_{h \to 0} f(x+h) = f(x) \neq 0$$

$$\lim_{h \to 0} \frac{B}{\|h\|} = 0$$

Diff von f für $||h|| \to 0$

$$\frac{C}{\|h\|} = \underbrace{\frac{\mathrm{d} f|_x(h)}{\|h\|}}_{\text{ist beschränkt}} \frac{1}{f(x)} \underbrace{\left(\frac{1}{f(x)} - \frac{1}{f(x+h)}\right)}_{\to 0}$$

Sei $L = \operatorname{d} f|_x$ und $||L||_O$ ihre Operatornorm

$$\begin{split} |\mathrm{d}\,f|_x(h)| &= |L(h)| \leq \|K\|_O \, \|h\| \\ \Longrightarrow & \frac{|\mathrm{d}\,f|_x(h)|}{\|h\|} \leq \|L\| \end{split}$$

Definition 1.87. Eine Kurve ist eine Abbildung $\gamma:[a,b]\to\mathbb{R}^n$ (d.h. $\forall t \ \gamma(t)\in\mathbb{R}^n$

$$\gamma(t) = (\gamma_1(t), \cdots, \gamma_n(t))$$

deswegen $t \to \gamma_i(t) \in \mathbb{R}$. Die Kurve γ heisst differenzierbar wenn jede γ_i differenzierbar ist.

$$\gamma' = (\gamma'(t), \cdots, \gamma'_n(t))$$

Satz 1.88. (Kettenregel 1. Version) Sei $f: U \to \mathbb{R}$ mit U Umgebung von x und f differenzierbar in x. Sei $\gamma: [a,b] \to U$ eine differenzierbare Kurve mit $\gamma(t_0) = x$. Sei $g = f \circ \gamma$

$$g(t) = f(\gamma(t))$$

Sei g in t_0 differenzierbar. Dann

$$g'(t_0) = d|_{\gamma}(t_0)(\dot{\gamma}(t_0)) = \langle \nabla f(\gamma(t_0)), \dot{\gamma}(t_0) \rangle$$

Beweis. Das Ziel:

$$\lim_{h \to 0} \frac{g(t_0 + h) - g(t_0) - h \left[d f|_{\gamma(t_0)} (\dot{\gamma}(t_0)) \right]}{h} = 0$$

$$R(h) = g(t_0 + h) - g(t_0) - g(t_0) - h \left[d f|_{\gamma(t_0)} (\dot{\gamma}(t_0)) \right]$$
(13)

$$\lim_{h \to 0} \frac{R(h)}{h} = 0 \tag{14}$$

Neue Notation

$$14 \iff R(h) = o(h)$$
$$x_0 = \gamma(t_0)$$

Annahmen: Differenzierbarkeit von f

$$\lim_{k \to 0} \frac{f(x_0 + k) - f(x_0) - d f|_{x_0}(k)}{\|k\|} \left(= \frac{r(k)}{\|k\|} \right) = 0$$
$$(r(k) = o(\|k\|))$$

Differenzierbarkeit von γ :

$$\lim_{k \to 0} \frac{\gamma(x_0 + k) - \gamma(x_0) - \operatorname{d} h \gamma'|_{x_0}(k)}{h} \left(= \frac{p(k)}{\|k\|} \right) = 0$$

$$p(h) = o(h)$$

$$\gamma(t_0 + h) = \gamma(t_0) + k \left(= \gamma(t_0 + h) - \gamma(t_0) \right)$$

$$g(t_0 + h) - g(t_0) = f(\gamma(t_0 + h)) - g(\gamma(t_0))$$

$$= f(\gamma(t_0) - k) - f(\gamma(t_0)) = \operatorname{d} f|_{\gamma(t_0)}(k) + r(k)$$

$$= \operatorname{d} f|_{\gamma(t_0)}(\gamma(t_0 + h) - \gamma(t_0)) + r(k)$$

$$= \operatorname{d} f|_{\gamma(t_0)}(h\dot{\gamma}(t_0) + p(h)) + r(k)$$
Linearität von d f h d f|_{\gamma(t_0)}(\dot{\gamma}(t_0)) + d f|_{\gamma(t_0)}(p(h)) + r(k)
$$g(t_0 + h) - g(t_0) - h \operatorname{d} f|_{\gamma(t_0)}(\dot{\gamma}(t_0))$$

$$= f|_{\gamma(t_0)}(p(h)) + r(\gamma(t_0 + h) - \gamma(t_0)) = R(h)$$

$$|R(h)| \le \frac{L}{|f|_{\gamma(t_0)}(p(h))| + r(\gamma(t_0 + h) - \gamma(t_0))} \frac{L}{|h||}$$

$$\leq ||L|| \frac{p(h)}{||h||} + \frac{r(\gamma(t_0 + h) - \gamma(t_0))}{||h||}$$

$$\lim_{h \to 0} \frac{r(\gamma(t_0 + h) - \gamma(t_0))}{||h||}$$

Falls

Ziel

$$r(\gamma(t_0 + h) - \gamma(t_0) = 0$$

dann
$$r(0) = 0$$
. Wenn

$$r(\gamma(t_0 + h) - \gamma(t_0) \neq 0$$

$$= \frac{r(\gamma(t_0 + h) - \gamma(t_0))}{\|\gamma(t_0 + h) - \gamma(t_0)\|} \frac{\|t_0 + h) - \gamma(t_0)\|}{|h|}$$

$$\frac{r(\gamma(t_0 + h) - \gamma(t_0))}{\|\gamma(t_0 + h) - \gamma(t_0)\|} = \frac{r(k)}{\|k\|} \to 0$$

... wenn $||k|| \to 0$ und $h \to 0$. Es fehlt die Beschränktheit von

$$\frac{\|t_0 + h) - \gamma(t_0)\|}{|h|}$$

$$\frac{t_0 + h) - \gamma(t_0)}{h} - \frac{h\dot{\gamma}(t_0)}{h} = \frac{p(h)}{h}$$

$$\frac{\gamma(t_0 + h) - \gamma(t_0)}{h} = \underbrace{\dot{\gamma}(t_0)}_{\text{konstant}} + \underbrace{\frac{p(h)}{h}}_{\text{possible}}$$

Deswegen

$$\lim_{h \to 0} \frac{\|\gamma(t_0 + h) - \gamma(t_0)\|}{|h|} = \|\dot{\gamma}(t_0)\|$$

$$\implies \frac{|R(h)|}{\|h\|} \to 0$$

⇒ Differenzierbarkeit und Kettenregel!

Bemerkung 1.89. Der Gradient ist orthogonal zur Niveaumenge (Höhenlinien).

Definition 1.90. Sei $\gamma:[a,b]\to U$ eine differenzierbare Kurve, U offen. Sei $f:U\to\mathbb{R}$ differenzierbar. Wenn $f(\gamma(t))=c_0$ (c_0 hängt nicht von t ab). Dann

$$\nabla f(\gamma(t)) \perp \dot{\gamma}(t)$$

d.h.

$$\langle \nabla f(\gamma(t)), \dot{\gamma}(t) \rangle = 0$$

$$0 = g'(t) = (f(\gamma(t)))' \stackrel{\text{Kettenregel}}{=} \langle \nabla f(\gamma(t)), \dot{\gamma}(t) \rangle$$

1.9 Mittelwertsatz und Schrankensatz

 $f: [a,b] \to \mathbb{R}, \, \xi \in]a,b[$

$$f(b) - f(a) = f'(\xi)(b - a)$$

Sei nun:

 $f: U \mapsto \mathbb{R}$ differenzierbar auf U

 $x, y \in U$ so dass das Segment $[x, y] \subset U$

Was ist ein Segment? Gerade durch x und y

$$\{x + t(y - x) | t \in \mathbb{R}\}$$

$$[[x, y]] = \{x + t(y - x) | t \in [0, 1]\}$$

$$\gamma(t) := x + t(y - x)$$

$$f(y) - f(X) = (x_1 + t(y_1 - x_1), \dots, x_n + t(y_n - x_n))$$

 γ ist differenzierbar.

$$g = f \circ \gamma g(t) = f(\gamma(t))$$

$$g(1) - g(0) = g'(\tau) \quad \text{für } \tau \in]0, 1[$$

$$f(y) - f(x) = d f|_{\gamma(\tau)}(\dot{\gamma}(\tau))$$

$$\dot{\gamma}(\tau) = (\gamma'_{1}(\tau), \dots, \gamma'_{n}(\tau))$$

$$= (y_{1} - x_{1}, \dots, y_{n} - x_{n}) = y - x$$

$$\gamma(\tau) = \xi$$

$$f(y) - f(x) = d f|_{\xi}(y - x) = \partial_{y - x} f(\xi)$$
(15)

Satz 1.91. (Mittelwertsatz) U offen, $[x,y] \subset U$ und $f: U \to \mathbb{R}$ differenzierbar. Dann $\exists \xi \in]x,y[$ so das 15 gilt.

Definition 1.92. U sternförmig: wenn $0 \in U$ und $[x, 0] \subset U \ \forall x \in U$. Sternförmig mit Zentrum x_0 wenn $x_0 \in U$ $[x, x_0] \subset U \ \forall x \in U$

Satz 1.93. (Schrankensatz) Sei U eine offene Menge, die sternförmig ist und $f: U \to \mathbb{R}$ eine differenzierbare Funktion mit

$$\sup_{x \in U} \left\| \operatorname{d} f|_{x} \right\|_{O} = S < \infty \left(= \sup_{x \in U} \left\| \nabla f(x) \right\| \right)$$

Dann

$$|f(x) - f(0)| \le S ||x||$$

Wenn U konvex ist, d.h. das Segment $[x, y] \subset U \ \forall x, y \in U$, dann

$$|f(x) - f(y)| \le S \|y - x\|$$

Definition 1.94. $f: \underbrace{K}_{\in \mathbb{R}^n} \to \mathbb{R}$ heisst Lipschitz wenn $\exists L[0, +\infty[$ so dass

$$|f(y) - f(x)| \le L ||y - x|| \quad \forall x, y \in K$$

Wenn $f:(X,d)\to\mathbb{R}$ Lipschitz bedeutet die Existenz eines L so dass

$$|f(y) - f(x)| \le Ld(y - x) \ \forall x, y \in K$$