Informatique

Devoir surveillé

18 novembre 2000. Durée 1h Documents non autorisés. Portables et calculatrices interdits Ce document comprend deux pages

On peut faire l'approximation $2^{10} = 1024 \approx 10^3$

N	om	•

Exercice 1: Question de cours

 $\mathbf{Q}\ \mathbf{1}$. Énoncez le théorème de l'inégalité de Kraft.

 ${f Q}$ 2 . Donnez votre avis sur les affirmations suivantes (cochez une case par affirmation, toute réponse incorrecte sera pénalisante):

	toujours vrai	jamais vrai	parfois vrai
Un codage vérifiant l'inégalité de Kraft est préfixe			
Un codage ne vérifiant pas l'inégalité de Kraft n'est pas préfixe			
Si, pour des longueurs de mots fixées, il existe un codage décodable de manière unique, alors il existe un codage préfixe dont les mots ont ces longueurs			

Exercice 2:

 \mathbf{Q} 1. Soit x le nombre s'écrivant 2221_3 en base 3. Donnez le quotient q de la division euclidienne de x-1 par 3, exprimé en base 3 (remarque: on peut obtenir ce résultat sans aucun calcul).

 ${f Q}$ 2 . Multipliez ce quotient q par 2, en base 3.

Exercice 3 : Le NIP d'un étudiant de DEUG MIAS 1ère année s'écrit avec 7 ou 8 chiffres décimaux. S'il s'écrit sur 7 chiffres, alors il commence par un 9, sinon, il commence par 10. Montrez que tous ces NIPs s'écrivent en binaire avec le même nombre de bits. Quel est ce nombre?

Exercice 4: On définit le codage

$$\begin{array}{cccc} \mathbf{c} & : & \{a,b,c,d\} & \rightarrow & \{0,1\}^* \\ & a & \mapsto & 01 \\ & b & \mapsto & 001 \\ & c & \mapsto & 0 \\ & d & \mapsto & 000 \end{array}$$

Q 1 . Pourquoi ce codage n'est-il pas décodable de manière unique?

 ${\bf Q}$ ${\bf 2}$. En modifiant un seul mot de code, rendez-le décodable. Justifiez votre réponse.

 \mathbf{Q} 3. Avec votre nouveau codage, encodez le mot abdcdb.

Exercice 5 : Considérons un codage décodable de manière unique. Le codage obtenu en écrivant chaque mot à l'envers est-il décodable de manière unique?