SUGGESTED SOLUTIONS TO MATHEMATICS CSSA TRIAL 2003

Question 1

(a)
$$\frac{2.1^2 \times 4.5^2}{2.1^2 + 4.5^2} = \frac{89.3}{24.7}$$

$$= 3.6$$

(b)
$$128x - 16x^4 = 16x(8 - x^3)$$

 $16x(2-x)(4+2x+x^2)$

(c)
$$|2x+1| \le 5$$

$$|x+1| \le 5$$
 $|2x+1| \le 5$
 $|-2x-1| \le 5$
 $|2x \le 5-1|$
 $|-2x \le 5+1|$
 $|2x \le 4|$
 $|-2x \le 6|$

$$x \le 2$$
 $x \ge -3$

e

tan
$$\frac{\pi}{3} + \cos ec \frac{\pi}{4}$$

Using the exact triangles $\tan \frac{\pi}{3} = \sqrt{3}$

$$\cos ec \frac{\pi}{4} = \frac{1}{\sin \frac{\pi}{4}} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2}$$

$$\tan \frac{\pi}{3} + \cos ec \frac{\pi}{4} = \sqrt{3} + \sqrt{2}$$

Notice the curve passes through the y-axis at the point (0, 2) As $x \to \infty$ $y \to 0$

(a) A quadratic function has real roots when b^2 – $4ac \ge 0$.

$$x^{2} - (k+2)x + 4 = 0$$
 $a = 1; b = -k-2; c = 4$
 $(-k-2)^{2} - 4 \times 1 \times 4 \ge 0$
 $k^{2} + 4k + 4 - 16 \ge 0$
 $k^{2} + 4k - 12 \ge 0$
 $(k+6)(k-2) \ge 0$: the quadratic has r

: the quadratic has real roots when $k \le -6$ and $k \ge 2$

 \odot Point A is where L_1 intersects the y axis A (0,2)Point C is where L_2 intersects the y axis C (0, -4)

@

 Ξ Can solve equations L_1 and L_2 simultaneously or show that the point R(3, -1) satisfies L_1 and L_2 by direct substitution

x = 32x = 6Adding L_1 and L_2 Solving simultaneously Substituting x = 3 into L_1 or L_2 results in y = -1 :: R(3, -1) x-y=4x+y=2

- (ii)Line SR is parallel to the y axis and passes through the point R(3, -1): Line SR has equation x = 3
- (j.4) will also generate the answer to the gradient as -1. Using the gradient formula with two points or even $m = \frac{rise}{m}$ Line L_1 has equation x + y = 2run with the diagram

(v) Using
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 with A(0, 2), R(3, -1)

$$d = \sqrt{(3-0)^2 + (-1-2)^2}$$

$$d = \sqrt{9+9}$$

$$d = \sqrt{18} = 3\sqrt{2} \text{ units}$$

Question 2 (continued)

(vi) From above (iv) the gradient of $L_1 = 1$

Line L_2 has equation x-y=4. Using $m=\frac{-a}{t}$ or other methods it can be seen that q the gradient of line L_2 is 1.

We know from above (v) the distance of AR = $3\sqrt{2}$ units. Finding the distance of CR, using the distance formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ with C(0, -4) and R(3, -1)

$$d = \sqrt{(3-0)^2 + (-1+4)^2}$$

$$d = \sqrt{9+9}$$

$$d = \sqrt{18} = 3\sqrt{2} \text{ units.}$$

The distance of AC along the y axis is 6 units. As two sides of \triangle ARC are equal the triangle is isosceles. \triangle \triangle ARC is an isosceles, right angled triangle.

(vii) Centre (3, -1) and radius $3\sqrt{2}$ units.

The equation of the circle is $(x-3)^2 + (y+1)^2 = (3\sqrt{2})^2$ $(x-3)^2 + (y+1)^2 = 18$ Or $x^2 - 6x + y^2 + 2y - 8 = 0$

a). (i)
$$\frac{d}{dx}(\sqrt{x}) = \frac{d}{dx}\left(x^{\frac{1}{2}}\right)$$
$$= \frac{1}{2}x^{\frac{-1}{2}}$$
$$= \frac{1}{2\sqrt{x}}$$

(ii)
$$\frac{d}{dx}(x^3e^{-3x}) = (x^3)(-3e^{-3x}) + (3x^2)(e^{-3x})$$

= $3x^2e^{-3x}(1-x)$

(iii)
$$\frac{d}{dx} \left(\frac{\tan x}{2x+1} \right) = \frac{(2x+1)(\sec^2 x) - (\tan x)(2)}{(2x+1)^2}$$
$$= \frac{2x \sec^2 x + \sec^2 x - 2 \tan x}{(2x+1)^2}$$

$$= \frac{2x\sec^2 x + \sec^2 x - 2\tan x}{(2x+1)^2}$$

(b)
$$\int \frac{e^{2x}}{e^{2x} + 4} dx = \frac{1}{2} \ln(e^{2x} + 4) + C$$

<u>c</u>

$$\frac{1}{2}x + \cos 2x \ dx = \left[\frac{x^2}{4} + \frac{\sin 2x}{2}\right]_0^4$$
$$= \left[\frac{\pi^2}{4} + \frac{1}{2}\right] - (0)$$

 $\pi^2 + 32$

64

Question 3 (continued)

E

- Ξ
- In triangles PST and URT:

 PS = RU (RU = QR (given) and PS = QR, opposite sides of parallelogram PQRS.)
- = ZURT(Alternate angles are equal PS || QU) ZPST
- = ZRTU (Vertically opposite angles are equal) ZPTS
- ∴ $\triangle PTS \equiv \triangle URT$ (two angles and one side)
- Since APST = AURT, ST = TR because corresponding sides in congruent triangles are equal. (ii)
 - :: T is the midpoint of SR.

(a)
$$\sum_{k=4}^{\infty} 2k - 5 = 3 + 5 + 7 + \dots + 35$$

This represents an Arithmetic series with a = 3, l = 35 and n = 17.

Using
$$S_n = \frac{n}{2}(a+l)$$
 $S_{17} = \frac{17}{2}(3+35)$
= 323

(b) In a Geometric series,
$$T_n = ar^{n-1} so$$
:
 $ar^2 = \frac{3}{4}$

 $ar^6 = 12$

Solving simultaneously gives :
$$\frac{\text{ar}^6}{\text{ar}^2}$$
 $\frac{12}{3/4}$

$$\therefore r^4 = 16 \qquad \text{so, } r = \pm 2$$

For both
$$r = 2$$
 and $r = -2$, $a = \frac{3}{16}$

The fourteenth term of the series,
$$T_{14} = ar^{13}$$

$$= \frac{3}{16} (\pm 2)^{13}$$
$$= \pm 1536$$

The required function f(x)

$$|f(x)| dx = \text{Area under the curve between } x = 0 \text{ and } x = 6$$
$$= (\frac{1}{2} \times 4 \times 4) + (\frac{1}{2} \times 2 \times 2) = 10$$

$$= \left(\frac{1}{2} \times 4 \times 4\right) + \left(\frac{1}{2} \times 2 \times 2\right) = 10$$

(d)
$$\sqrt[3]{m} = n^3$$

 $\therefore m = n^{3x}$
 $\log m = \log n^{3x}$
 $\log m = 3x \log n$

 $x = \frac{1}{3 \log n}$

logm

Question 4 (continued)

<u>e</u>

 $\frac{d^2P}{dr}$ <0 because the function is increasing at a *decreasing* rate $\frac{dP}{dt}$ > 0 because the function is increasing

Probability of choosing two gold marbles

P(Gold, Gold) =
$$\frac{9}{20} \times \frac{8}{19} = \frac{18}{95}$$

 Ξ Probability of choosing marbles of different colour

P(marbles with different colour) = 1 - P(Same colour)

$$= 1 - \left[\left(\frac{7}{20} \times \frac{6}{19} \right) + \left(\frac{9}{20} \times \frac{8}{19} \right) + \left(\frac{4}{20} \times \frac{3}{19} \right) \right]$$

$$= \frac{127}{190}$$

(b)
$$y = 6x^2 - x^3$$

 Ξ Stationary points occur when $\frac{dy}{dx} = 0$

$$\frac{dy}{dx} = 12x - 3x^2 = 0$$
$$3x(4 - x) = 0$$

Stationary points occur when x = 0 and x = 4Stationary points are (0, 0) and (4, 32)

Question 5 (continued)

To determine nature of the stationary points we can use $\frac{d^2y}{d^2y}$ Ξ

When
$$x = 0$$
 $\frac{d^2y}{dx^2} = 12$ $\frac{d^2y}{dx^2} > 0$ (Minimum turning point at $x = 0$)

When
$$x = 4$$
 $\frac{d^2y}{dx^2} = -12$ $\frac{d^2y}{dx^2} < 0$ (Maximum turning point at $x = 4$)

Minimum turning point (0, 0), maximum turning point (4, 32)

Point of inflexion when $\frac{d^2y}{dx^2} = 0$ and concavity changes. (III)

$$\frac{d^2y}{dx^2} = 12 - 6x = 0$$

$$6x = 12$$

$$x = 2$$

Change in concavity and point of inflexion when Point of inflexion is (2, 16)

72	
2	0
4	+
×	$\frac{d^2y}{dx^2}$

(c) If
$$y = 3e^{-2x}$$
 then $\frac{dy}{dx} = -\frac{1}{2}$

If
$$y = 3e^{-2x}$$
 then $\frac{dy}{dx} = -6e^{-2x}$ and $\frac{d^2y}{dx^2} = 12e^{-2x}$
So, $2\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2y = 2(12e^{-2x}) + 3(-6e^{-2x}) - 2(3e^{-2x})$
 $= 24e^{-2x} - 18e^{-2x} - 6e^{-2x}$
 $= 0$ as required.

(a)
$$y = x \sin x$$

$$\frac{dy}{dx} = x \cos x + \sin x$$

$$When $x = \frac{\pi}{2}$
$$m_T = 1 \qquad \therefore m_N = 0$$$$

$$y = \frac{\pi}{2}$$

$$\therefore \text{ The equation of the normal at } \left(\frac{\pi}{2}, \frac{\pi}{2}\right) \text{ is } y - \frac{\pi}{2} = -1 \text{ (a)}$$

$$y - \frac{\pi}{2} = -x + \frac{\pi}{2}$$

(b) Using Simpson's rule with h = 1

 $x+y-\pi$

$$\int_{3}^{4} f(x) dx \approx \frac{h}{3} [f(0) + 4\{f(1) + f(3)\} + 2\{f(2)\} + f(4)]$$
$$\approx \frac{1}{3} [2 + 4\{3 + 35\} + 2\{12\} + 80]$$
$$\approx 86$$

Solving simultaneously to find the points of intersection between $y = x^2$ and

$$x^{2} = 3x + 4$$

 $x^{2} - 3x - 4 = 0$
 $(x + 1)(x - 4) = 0$
 $x = -1, x = 4$
 $x = -1$ and at B. $x = -1$

At A, x = -1 and at B, x = 4

(ii) Area =
$$\int_{-1}^{3} 3x + 4 \, dx - \int_{-1}^{3} x^{2} \, dx$$

= $\left[\frac{3x^{2}}{2} + 4x - \frac{x^{3}}{3}\right]_{-1}^{4}$
= $\left(\frac{3 \times 4^{2}}{2} + 4 \times 4 - \frac{4^{3}}{3}\right) - \left(\frac{3 \times -1^{2}}{2} + 4 \times -1 - \frac{-1^{3}}{3}\right)$
= $18\frac{2}{3} + 2\frac{1}{6}$
= $20\frac{5}{6}$ units² (20.83 units²)

Ouestion 6 (continued

$$= V = \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} dx = \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \cot x dx$$

$$= \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos x}{\sin x} dx$$

$$= \pi \left[\ln(\sin x) \right]_{\frac{\pi}{4}}^{\frac{\pi}{4}}$$

$$= \pi \left[\ln(\sin \frac{\pi}{4}) - \ln(\sin \frac{\pi}{4}) \right]$$

$$= \pi \left[\ln(\frac{\sqrt{3}}{2}) - \ln(\frac{1}{\sqrt{2}}) \right]$$

$$= \pi \left[\ln(\frac{\sqrt{3}}{2}) - \ln(\frac{1}{2}) \right]$$

$$= \pi \left[\ln \frac{\sqrt{6}}{2} \right] \text{ units}^{3}.$$

a)
$$\log_e \left(\frac{2x+1}{3x-7} \right) = \log_e (2x+1) - \log_e (3x-7)$$

 $\frac{dy}{dx} = \frac{2}{2x+1} - \frac{3}{3x-7}$

- **(** $x = 3t - 2 \ln(1 + t) + c$ where c is a constant Since the particle is initially 1 metre to the right of the origin, when t = 0, x = 0 $x = 3t - 2 \ln(1 + t) + 1$ $I = 3t - 2\ln(1+t) + c$
- Since 2

 Ξ

Since $\frac{2}{1+t}$ can never be 0, ν will never be 3.

(iii)
$$v = 3 - 2(l + t)^{-1}$$
 $a = \frac{dv}{dt}$
 $a = 2(l + t)^{-2}$
 $a = \frac{2}{(1 + t)^{2}}$

(c) (i) LHS =
$$(\csc^2 A - 1) \sin^2 A$$

= $(\frac{1}{\sin^2 A} - 1) \sin^2 A$
= $1 - \sin^2 A$
= $\cos^2 A$
= RHS

When t = 2 seconds,

 $a = \frac{2}{(1+2)^2} = \frac{2}{9} \text{ m/s}^2$

(ii)
$$(\csc^2 A - 1) \sin^2 A = \frac{3}{4}$$

 $\cos^2 A = \frac{3}{4}$
 $\cos A = \pm \frac{\sqrt{3}}{2}$ $-\pi \le A \le \pi$
 $A = \pm \frac{\pi}{6}, \pm \frac{5\pi}{6}$.

= 1.5 % per quarter. 6 % p.a <u>a</u>

After 1 quarter
$$A_1 = 480000(1 + \frac{1.5}{100})^1 - \$I$$

= \$487 200 - \$P

 $A_1 = $487200 - P Ξ

$$A_2 = A_1 \times (1 + \frac{1.5}{100}) - \$P.$$

$$A_2 = $480000(1.015)^2 - $P(1+1.015)$$

$$A_3 = A_2 \left(1 + \frac{1.5}{100} \right) - \$P$$

$$A_3 = $480000(1.015)^3 - $P(1+1.015+1.015^2)$$

20 years = 80 repayments.(iii)

Pattern continues....

$$A_{80} = \$480000(1.015)^{80} - \$P(1+1.015+1.015^2+1.015^3+.....1.015^{79})$$

$$A_{80} = 0$$
 (Loan repaid)

$$$480000(1.015)^{80} - $P(1+1.015+1.015^2+1.015^3....+1.015^9) =$$

$$$480000(1.015)^{80} = $P(1+1.015+1.015^2+1.015^3...+1.015)$$

$$P = \frac{\$480000(1.015)^{80}}{(1+1.015+1.015^2+1.015^3+.....1.015^{79})}$$

The denominator is the sum of a geometric series where

$$a = 1$$
 $r = 1.015$ $n = 80$: $S = \frac{1(1.015^{80} - 1.015^{-1})}{1.015 - 1}$

$$\$P = \frac{\$480000(1.015)^{\$0}}{\frac{1(1.015^{\$0} - 1)}{1.015 - 1}}$$

$$P = 10343.20$$
 (nearest cent)

Since the volume is changing at a rate proportional to the present volume, e^{-kt} can be used.

Since initial volume is 1 000 L,
$$V_0 = 1$$
 000.

V = V

and

..
$$V = 1000 e^{-kt}$$

When $t = 40$ minutes, $V = 800$ L, so: $800 = 1000 e^{-40k}$
 $0.8 = e^{-40k}$

$$00 = 1000$$

$$\ln 0.8 = \ln e^{-40k}$$

$$k = \frac{\ln 0.8}{-40} = 5.5786 \times 10^{-3}$$

When
$$t = 60$$
, $V = 1 000 e^{-60k}$

$$(k = 5.5786 \times 10^{-3})$$

$$V = 715.54175....$$
litres

$$V = 716 L$$
 (to the nearest litre)

Question 8 (continued)

(ii) When
$$V=1$$
 then

$$1\,000e^{-kt} = 1 \quad (k = 5.5786 \times 10^{-3})$$

$$e^{-kt} = 0.001$$

$$\ln e^{-kt} = \ln 0.001$$

$$\tau = \ln 0.001$$

$$=1238.2621...$$
 minutes

The storage tank will reach the last litre after 20 hours and 38 minutes.

(c) (i) A limiting sum exists as |r| < 1

$$r = \sin^2 x \qquad 0 < x < \frac{\pi}{2}$$

Note $\left|\sin^2 x\right| < 1$ does hold and a limiting sum exists.

 Ξ Using $S = \frac{a}{1-r}$ where |r| < 1

$$S = \frac{\sin^2 x}{1 - \sin^2 x}$$

$$S = \frac{\sin^2 x}{\cos^2 x}$$

$$S = \tan^2 x$$

The area of a sector is given by Ξ (a)

(Where length of arc = $r\theta$) The perimeter is given to be 375 metres. The perimeter of the sector is given by

$$\therefore 2r + r\theta = 375$$

$$\theta = \frac{375 - 2r}{r}$$

Substituting $\theta = \frac{375 - 2r}{2}$ into Area = $A = \frac{1}{2}r$

gives
$$A = \frac{1}{2}r^2(\frac{375 - 2r}{r})$$

$$A = \frac{r}{2}(375 - 2r)$$

(ii) Greatest Area occurs when $\frac{dA}{dr} = 0$ and $\frac{d^2A}{dr^2} < 0$

$$\frac{dA}{dr} = \frac{375}{2} - 2r = 0$$
 $r = 93.75$ metres

$$\frac{d^2A}{dr^2} = -2$$

As $\frac{d^2A}{dr^2} < 0$: maximum area occurs when r = 93.75 metres.

Maximum area is $A = \frac{93.75}{2}(375 - 2 \times 93.75)$ = 8789.06 m² (2 decimal places)

(iii) The maximum area is $8789.06 m^2$

Using
$$Area = \frac{1}{2}r^2\theta$$

$$8789.06 = \frac{1}{2} \times 93.75^2 \times \theta$$

$$\theta = 2$$
 radians.

$$\theta = 115^{\circ}$$
 (nearest degree)

This is the angle required to produce max area from (ii).

The maximum area found in part (ii) created with a radius of 93.75 m would not be possible with an angle less than 110°. θ is required to be 2 radians. (115° to the nearest degree).

Question 9 (continued)

and the time axis are equal. We use this to find the time taken for the journey, t_e Since both trains cover the same distance, the areas between each velocity-time graph Let t_e be the time at which the trains stop at the next station.

1 600 + 40
$$t_e$$
 - 800 = $\frac{1}{2}(20 + 5) \times 100 + \frac{1}{2} \times 100(t_e - 20)$
10 t_e = 55 minutes

 Ξ distance as the area under either velocity graph. Converting time to hours because velocity is measured in km/h we can calculate the

Distance between the two stations =
$$80 \times \frac{20}{60} + \frac{1}{2} \times 80 \times \left(\frac{55 - 20}{60}\right)$$

= 50 kilometres.

The stations are 50 kilometres apart.

(a) (i)
$$\frac{d}{dx}(x \ln x - x) = x \cdot \frac{1}{x} + 1 \cdot \ln x - 1$$

= 1 + \ln x - 1

$$= \ln x$$

$$\ln x^2 = 2 \ln x$$

as required.

(ii)
$$\ln x^2 = 2 \ln x$$

 \therefore a primitive of $2 \ln x$ is $2 (x \ln x - x) [+ a constant]$

 $y = \ln x^2$ between the line x = 5 and the x-axis from the area of the rectangle The shaded area in the diagram is found by taking the area under the curve OPQR. (iii)

 \therefore the rectangle has dimensions $5 \times \ln 25$ = $5 \ln 25$ = $5 \ln 5^2$ Area OPQR

Area OPQR: P has co-ordinates (0, ln25)

$$= 5 \ln 5^2$$

$$= 5 \ln 5^{2}$$

$$= 10 \ln 5 \text{ units}^2$$

The curve crosses the x-axis at (0, 1)

Area under the curve is found by evaluating

$$\int_{1}^{5} \ln x^{2} dx = 2[x \ln x - x]_{1}^{5}$$

$$= 2 \{5 \ln 5 - 5 - (\ln 1 - 1)\}\$$

$$= 10 \text{ In } - 8$$

Shaded area =
$$10 \ln 5 - (10 \ln 5 - 8) = 8 \text{ units}^2$$

Question 10 (continued)

) (i) $f(x) = e^{-x} \cos x \ 0 \le x \le 2\pi$

Stationary points occur when f'(x) = 0

$$f'(x) = (e^{-x})(-\sin x) + (-e^{-x})(\cos x) = 0$$

$$=-e^{-x}(\sin x+\cos x)=0$$

Stationary points occur when $\sin x = -\cos x$

when $\tan x = -1$

$$x = \frac{3\pi}{4} , \frac{7\pi}{4}$$

 Ξ To determine nature of the stationary points we can use a before and after test with the first derivative.

f(x)	х
1	$\frac{3\pi}{4} - \varepsilon$
0	$\frac{3\pi}{4}$
+	$\frac{3\pi}{4} + \varepsilon$

Minimum turning point at $x = \frac{3\pi}{4}$

f'(x)	ж
+	$\frac{7\pi}{4} - \varepsilon$
0	$\frac{7\pi}{4}$
ŧ	$\frac{7\pi}{4} + \varepsilon$

Maximum turning point at $x = \frac{7\pi}{4}$

(iii)

Question 10 (continued)

- The equation $e^{-x}\cos x \frac{1}{2}x = 0$ can be solved graphically Sketching $f(x) = e^{-x} \cos x$ and $f(x) = \frac{1}{2}x$ (iv)
- The curve and the line intersect at only one point. $e^{-x}\cos x = \frac{1}{2}x.$ As

One solution exists for the equation
$$e^{-x} \cos x - \frac{1}{2}x = 0$$
 $(0 \le x \le 2\pi)$