

Regresinė analizė

Laboratorinis darbas

Darbą atliko:

Vainius Gataveckas, Matas Gaulia, Dovydas Martinkus Duomenų Mokslas 3 kursas 2 gr.

Naudoti metodai

Darbas atliktas naudojant R, SAS ir Python.
Naudoti R paketai:
tidyverse.
janitor
car
Imtest
RcmdrMisc
lm.beta
psych
ppcor

Duomenys ir jų šaltiniai

Šalių gyventojų vidutinė gyvenimo trukmė pagal sveikatos rodiklius.

Duomenų šaltinis - Kaggle. Prieiga per internetą: https://www.kaggle.com/kumarajarshi/life-expectancy-who
Originalus šaltinis - WHO.

Atliktos analizės aprašymas

1. Naudojant R

```
library(tidyverse)
library(car)
library(janitor)
x <- read_csv("life.csv") %>% clean_names()
```

Tikslas: prognozuoti vidutinę gyvenimo trukmę šalyje pagal tam tikrus sveikatos rodiklius.

```
set.seed(100)
transform_1<- function(x) {</pre>
  x %>%
 mutate(gdp_per_capita = gdp / population) %>%
  group by (country) %>%
 fill(everything(), .direction = "up") %>%
dplyr::select(-c(1, 3), -population, -gdp, -percentage_expenditure) %>%
 drop na() %>%
 ungroup() %>%
  dplyr::select(-1)
x \leftarrow transform 1(x)
x_1 \leftarrow x % filter(year == max(year)) %>% select(-1)
# atskiri duomenys, patikrinti kaip gautas galutinis modelis progrnozuoja reikšmes
# kaikurių kovariančių priklausomybę nėra tiesinė
x_1 %>% pivot_longer(-1) %>% ggplot(aes(x=value,y=life_expectancy)) + facet_wrap(vars(name),sc
ales="free") + geom point() + geom smooth(method="lm") + theme minimal()
```



```
model <- lm(life_expectancy ~ ., data = x_1)
crPlots(model)</pre>
```


Rasta netiesinė priklausomybė tarp kai kurių kovariančių ir priklausomojo kintamojo. Kintamiesiems "gdp_per_capita", "infant_deaths", "measles", "total_expenditure" ir "under_five_deaths" pastebėta stipri dešininė asimetrija (right skewedness), todėl pasirinkta atlikti log transformaciją.

```
transform_2 <- function(x) {
    x %>%
    mutate(gdp_per_capita = log(gdp_per_capita),
    infant_deaths = log(infant_deaths + 1),
    measles = log(measles + 1),
```

```
total_expenditure = log(total_expenditure + 1),
    under_five_deaths = log(under_five_deaths + 1)
)

# transformuojamos kaikurios kovariantės
x_2 <- transform_2(x_1)
x_predict <- transform_2(x_predict)

# Kintamųjų tiesinis ryšys patikrinamas dar kartą
x_2 %>% pivot_longer(-1) %>% ggplot(aes(x=value, y=life_expectancy)) + facet_wrap(vars(name), sc ales="free") + geom_point() + geom_smooth(method="lm") + theme_minimal()
```


Modifikuoti duomenys išsaugomi faile "life_modified.csv".

```
write.csv(x_2, "life_modified.csv")
# Sukuriamas modelis
model <- lm(life_expectancy ~ ., data = x_2)</pre>
```

Modelio prielaidos

Tikrinamas liekanų normalumas, homoskadiškumas, liekanų nepriklausomumas, išskirtys plot(model)

plot(cooks.distance(model))

plot(hatvalues(model))


```
# Liekanų normalumo testas
shapiro.test(residuals(model))
##
## Shapiro-Wilk normality test
##
## W = 0.98195, p-value = 0.07493
```

```
# Homoskadiškumo testas
library(lmtest)
bptest(model)

## studentized Breusch-Pagan test
## BP = 13.511, df = 16, p-value = 0.6351

crPlots(model)
```

Tiek naudojant grafikus, tiek statistinius testus nerasta priklausomybės tarp liekanų, liekanų pasiskirstymo statistiško reikšmingo nuokrypio nuo normaliojo pasiskirstymo, išskirčių.


```
## alcohol
                                 1 631.9 631.9 91.5693 2.427e-16 ***
## hepatitis b
                                    278.4
                                           278.4 40.3488 4.305e-09
                                 1
## measles
                                 1
                                      0.2
                                             0.2
                                                  0.0300 0.8628941
                                           152.7 22.1288 7.095e-06 ***
## bmi
                                 1
                                    152.7
                                 1 238.6 238.6 34.5813 4.022e-08 ***
## under_five_deaths
                                           78.7 11.4067 0.0009967 ***
## polio
                                 1
                                    78.7
## total_expenditure
                                 1
                                    9.6
## diphtheria
                                            9.6 1.3904 0.2407448
                                 1
                                     50.6
                                            50.6 7.3376 0.0077755 **
## hiv_aids
                                 1
                                     53.1 53.1 7.6883 0.0064776
6.9 6.9 0.9952 0.3205464
## thinness_1_19_years
                                                   7.6883 0.0064776 **
## thinness_5_9_years
                                 1
                                1 766.0 766.0 110.9948 < 2.2e-16 ***
## income_composition_of_resources
## schooling
                                 1
                                     9.0 9.0 1.3108 0.2546025
                                            19.2 2.7882 0.0976592 .
## gdp per capita
                                 1
                                     19.2
## Residuals
                                116 800.5
                                            6.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Hipotezė apie reikšmingų kovariančių nebuvimą atmetama.

Modelio parinkimas

Parinkti modelį naudojama "backward/forward" pažinksninė regresija. Išrenkamas modelis su 5 kovariantėmis.

```
# Požinksninė regresija
library(RcmdrMisc)
model_2 <- stepwise(model)</pre>
##
## Direction: backward/forward
## Criterion: BIC
##
## Step: AIC=278.2
## life_expectancy ~ adult_mortality + hepatitis_b + total_expenditure +
##
      hiv_aids + income_composition_of_resources
##
                                                    RSS
##
                                    Df Sum of Sq
                                                           AIC
## <none>
                                                 863.91 278.20
## - total_expenditure
                                          37.46 901.37 278.96
                                     1
                                         11.09 852.82 281.37
## + measles
                                    1
## + schooling
                                    1
                                           8.38 855.52 281.79
## + thinness_1_19_years
                                    1
                                           8.26 855.65 281.81
                                   1
                                           6.98 856.93 282.01
## + under_five_deaths
                                   1
                                          6.83 857.08 282.04
## + gdp_per_capita
## + thinness_5_9_years
                                   1
                                          5.20 858.71 282.29
## + infant_deaths
                                    1
                                          5.00 858.90 282.32
                                    1
## - hiv_aids
                                         61.54 925.45 282.46
                                    1
## + polio
                                         2.30 861.60 282.74
## + alcohol
                                     1
                                           2.23 861.68 282.75
## + bmi
                                     1
                                           0.30 863.61 283.04
                                           0.17 863.73 283.06
## + diphtheria
                                     1
                                          89.00 952.91 286.35
## - hepatitis b
                                     1
## - adult mortality
                                     1
                                         248.42 1112.32 306.92
## - income composition of resources 1 2064.50 2928.40 435.67
```

Parametrų vertinimas ir interpretacija

```
# Koeficientai
summary(model_2)
##
## Call:
## lm(formula = life_expectancy ~ adult_mortality + hepatitis_b +
```

```
total_expenditure + hiv_aids + income_composition_of_resources,
##
##
      data = x 2)
##
## Residuals:
##
              10 Median
                              30
     Min
## -8.1512 -1.5507 0.2728 1.6248 8.3196
##
## Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)
##
                                           1.879961 24.477 < 2e-16 ***
0.003280 -6.043 1.56e-08 ***
## (Intercept)
                                 46.015816
## adult_mortality
                                 -0.019823
                                            0.009888 3.617 0.000428 ***
## hepatitis_b
                                 0.035768
## total expenditure
                                  1.383667
                                            0.589638 2.347 0.020491 *
                                 ## hiv aids
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.608 on 127 degrees of freedom
## Multiple R-squared: 0.897, Adjusted R-squared: 0.8929
## F-statistic: 221.1 on 5 and 127 DF, p-value: < 2.2e-16
 # Visų koeficientų interpretacija paprasta,
 # nes pažinksnine regresija neišrinkti transformuoti kintamieji
library(lm.beta)
# Standartizuoti koeficientai
lm.beta(model_2)
##
## Call:
## lm(formula = life_expectancy ~ adult_mortality + hepatitis_b +
      total_expenditure + hiv_aids + income_composition_of_resources,
##
##
      data = x_2
##
## Standardized Coefficients::
                                                adult mortality
##
                      (Intercept)
                                                    -0.24840840
##
                      0.00000000
##
                     hepatitis b
                                              total_expenditure
##
                      0.11222105
                                                     0.06927302
##
                        hiv_aids income_composition_of_resources
                      -0.11477877
                                                     0.64768318
# Pasikliovimo interalai
confint(model_2)
                                      2.5 %
                                                97.5 %
##
## (Intercept)
                                 42.29571386 49.73591902
                                 -0.02631364 -0.01333173
## adult mortality
## hepatitis_b
                                  0.01620110 0.05533575
                                  0.21687917 2.55045417
## total_expenditure
                                 -1.00808384 -0.20800885
## hiv aids
## income_composition_of_resources 30.08234193 37.79202074
# Kovariančių įtaka vizualizuota
library(effects)
plot(predictorEffects(model_2))
```

_mortality predictor effeptatitest_b predictor to the predictor effe

v_aids predictore effect polition_of_resources predictor effect plot

Pažinksnine regresija parinktame modelyje tarp kovariančių nėra transformuotų kintamųjų, todėl visų koeficientų interpretacija įprasta.

Suaugusių mirtingumo (tikimybė mirti tarp 15 ir 60 metų 1000 gyventojų) (stulp. adult_mortality) ir mirčių nuo ŽIV/AIDS nuo 0 iki 4 metų 1000 gimimų (stulp. hiv_aids) didėjimas neigiamai įtakoja vidutinę gyvenimo trukmę.

Imunizacijos nuo Hepatito B tarp 1 metų vaikų % (stulp. hepatitis_b),
Dalies visų vyriausybės išlaidų sveikatos apsaugai (stulp. total_expenditure) ir
HDI pagal pajamų parametrą (stulp. income_composition_of_resources) didėjimas teigiamai įtakoja vidutinę gyvenimo trukmę.

Naudojant standartizuotus krypties koeficientus, didžiausia įtaką turinti kovariantė yra HDI pagal pajamų parametrą (stulp. income_composition_of_resources θ =0.65), mažiausią - dalis visų vyriausybės išlaidų sveikatos apsaugai (stulp. total_expenditure θ =0.07).

Multikolinearumo tikrinimas

```
vars <- dplyr::select(x_2, c(adult_mortality, hepatitis_b, total_expenditure,
    hiv_aids, income_composition_of_resources, life_expectancy))
#library(psych)
#corr.test(vars)
#dalinės koreliacijos
library(ppcor)
pcor(vars)$estimate</pre>
```

```
adult_mortality hepatitis_b total_expenditure
##
## adult mortality
                                      1.00000000 0.284752689 0.031114658
## hepatitis_b
                                      0.28475269 1.000000000
                                                                  -0.007076189
                                      0.03111466 -0.007076189
                                                                  1.000000000
## total_expenditure
                                      0.30378653 -0.187990543
                                                                  0.103610440
## hiv aids
                                     0.18178399 -0.156298047 -0.086817301
## income_composition_of_resources
## life_expectancy
                                      -0.47258053 0.305618694
                                                                  0.203857631
##
                                   hiv_aids income_composition_of_resources
## adult_mortality
                                  0.3037865
                                                                 0.1817840
## hepatitis b
                                  -0.1879905
                                                                 -0.1562980
## total_expenditure
                                  0.1036104
                                                                 -0.0868173
## hiv_aids
                                  1.0000000
                                                                 0.1721392
## income_composition_of_resources 0.1721392
                                                                 1.0000000
                                  -0.2578685
## life expectancy
                                                                  0.8396372
                                 life expectancy
## adult mortality
                                      -0.4725805
## hepatitis b
                                       0.3056187
## total expenditure
                                       0.2038576
## hiv aids
                                      -0.2578685
## income composition of resources
                                       0.8396372
                                       1.0000000
## life_expectancy
# Variance inflation factor
vif(model_2)
##
                  adult_mortality
                                                     hepatitis b
##
                                                        1.186351
                         2.082698
##
                total_expenditure
                                                        hiv aids
                                                        1.794951
                         1.074114
## income_composition_of_resources
   1.703679
```

Naudojant dalinių koreliacijų matricą nerasta stiprių kovariančių tarpusavio koreliacijų. Variance inflation factor reiškmės <2.09 visoms modelyje esančioms kovariantėms.

Modelio tinkamumo analizė

```
summary(model_2)
##
## Call:
## lm(formula = life_expectancy ~ adult_mortality + hepatitis_b +
##
     total_expenditure + hiv_aids + income_composition_of_resources,
##
     data = x_2
##
## Residuals:
            1Q Median
                        3Q
    Min
## -8.1512 -1.5507 0.2728 1.6248 8.3196
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
                           46.015816    1.879961    24.477    < 2e-16 ***
## (Intercept)
                           ## adult_mortality
## hepatitis_b
                           ## total_expenditure
                           1.383667 0.589638 2.347 0.020491 *
                           ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.608 on 127 degrees of freedom
## Multiple R-squared: 0.897, Adjusted R-squared: 0.8929
## F-statistic: 221.1 on 5 and 127 DF, p-value: < 2.2e-16
```

```
\# R-squared = 0.897
  # Adj R-squared = 0.892
plot_predictions <- function(x,y) {</pre>
  predictions <- predict(x,newdata = y, interval = "prediction")</pre>
  predictions <- as_tibble(predictions) %>% mutate(n = 1:nrow(predictions))
  predictions_points <- y %>%
  mutate(pred = predictions) %>%
  unnest(pred) %>%
  dplyr::select(1,last_col(3),last_col(2),last_col(1),last_col(0)) %>%
  pivot_longer(c(1,2))
  ggplot(predictions) +
  geom_linerange(aes(x=n,ymin=lwr,ymax=upr)) +
  geom_point(data=predictions_points,aes(x=n,y=value,color=name),size = 4) +
  scale x discrete("Observation") +
  scale_y_continuous("Life Expectancy",limits = c(60,90)) +
  theme_minimal(base_size = 16) +
  scale_color_brewer("",palette = "Set1")
# Atliekamos kelios pavyzdinės prognozės
plot_predictions(model_2,x_predict)
```

Modelis paaiškina 89.7% duomenų sklaidos R² = 0.897. Modelio prognozės anksčiau nenaudotiems duomenims palyginamos su tikrosiomis vidutinės gyvenimo trukmės reikšmemis.

Rezultatai

Siekiant ištirti gyvenimo trukmės ryšį su sveikata susijusiais kriterijais naudota daugelio kintamųjų tiesinė regresija.

Pažinksnine regresija išrinktas modelis paaiškina 89.7% duomenų sklaidos (F(5,127) = 221.1, $R^2 = 0.897$, p < 0.01). Rastos 5 statistiškai reikšmingos kovariantės gyvenimo trukmės prognozavimui (pateikti standartizuoti krypties koeficientai):

Suaugusių mirtingumas (tikimybė mirti tarp 15 ir 60 metų 1000 gyventojų) (stulp. adult_mortality θ =-0.25, p<0.001)

Imunizacija nuo Hepatito B tarp 1 metų vaikų % (stulp. hepatitis_b β =0.11, p<0.001) Dalis visų vyriausybės išlaidų sveikatos apsaugai (stulp. total_expenditure β =0.07, p=0.02) Mirtys nuo ŽIV/AIDS nuo 0 iki 4 metų 1000 gimimų (stulp. hiv_aids β =-0.11, p=0.003) HDI pagal pajamų parametrą (stulp. income_composition_of_resources β =0.65, p<0.001)

2. Naudojant SAS

Naudojamas anksčiau sukurtas duomenų failas.

```
PROC IMPORT DATAFILE='/home/u45871880/life_modified.csv'

DBMS=CSV

OUT=data;

GETNAMES=YES;
```

RUN;

Patikrinamos modelio prielaidos (liekanų normalumas, nepriklausomumas, homoskedastiškumas, išskirčių nebuvimas).


```
proc univariate data=rez normal;
var liekanos;
run;
```

Tests for Normality							
Test	Sta	atistic	p Value				
Shapiro-Wilk	W	0.981952	Pr < W	0.0749			
Kolmogorov-Smirnov	D	0.060241	Pr > D	>0.1500			
Cramer-von Mises	W-Sq	0.100101	Pr > W-Sq	0.1135			
Anderson-Darling	A-Sq	0.63253	Pr > A-Sq	0.0979			

```
/* Modelio parinkimas naudojant pažinksninę regresiją*/
/* Parametrų vertinimas */

PROC REG data=data plots=none outest=summary;
MODEL life_expectancy = adult_mortality infant_deaths alcohol hepatitis_b measles bmi under_five_deaths polio total_expenditure diphtheria hiv_aids thinness_1_19_years thinness_5_9_years income_composition_of_resources schooling gdp_per_capita / stb vif cli clb pcorr2 slentry=0.05 slstay=0.05 selection=stepwise aic bic; run;

proc print data=summary; run;
```

Stepwise Selection: Step 5 Variable total_expenditure Entered: R-Square = 0.8970 and C(p) = 4.1881

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	5	7520.59056	1504.11811	221.12	<.0001			
Error	127	863.90673	6.80242					
Corrected Total	132	8384.49729						

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	46.01582	1.87996	4075.49110	599.12	<.0001
adult_mortality	-0.01982	0.00328	248.41814	36.52	<.0001
hepatitis_b	0.03577	0.00989	89.00457	13.08	0.0004
total_expenditure	1.38367	0.58964	37.45889	5.51	0.0205
hiv_aids	-0.60805	0.20216	61.53858	9.05	0.0032
income_composition_of_resources	33.93718	1.94805	2064.49803	303.49	<.0001

Bounds on condition number: 2.0827, 39.209

All variables left in the model are significant at the 0.0500 level.

No other variable met the 0.0500 significance level for entry into the model.

Summary of Stepwise Selection								
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F
1	income_composition_of_resources		1	0.8052	0.8052	107.730	541.34	<.0001
2	adult_mortality		2	0.0619	0.8671	34.4953	60.56	<.0001
3	hepatitis_b		3	0.0187	0.8857	13.8226	21.07	<.0001
4	hiv_aids		4	0.0068	0.8925	7.6163	8.04	0.0053
5	total_expenditure		5	0.0045	0.8970	4.1881	5.51	0.0205

Matome išrinktas tas pačias kovariantes kaip ir atliekant užduotį su R.

3. Naudojant Python

```
import pandas as pd
import numpy as np
from sklearn.linear model import LinearRegression
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.formula.api import ols
from scipy import stats
from scipy.stats import shapiro
import statsmodels.stats.api as sms
from statsmodels.compat import lzip
def plot for every column(model, columns):
   for c in columns:
        #fig = plt.figure(figsize=(12,8))
        #fig = sm.graphics.plot regress exog(model, c, fig=fig)
        fig = sm.graphics.plot ccpr(model, c)
        fig.tight layout(pad=1.0)
def plot ccpr(model, cols):
   plotn = 0
   rows = 4
   columns = 4
   fig, ax array = plt.subplots(rows, columns, squeeze=False)
   fig.set figheight(20)
   fig.set figwidth(25)
   for i,ax row in enumerate(ax array):
        for j,axes in enumerate(ax row):
            axes.set title(cols[plotn])
            sm.graphics.plot ccpr(model, cols[plotn], ax = axes)
            plotn = plotn + 1
   plt.show()
def plot model(df, model):
    influence = model.get influence()
   df['resid'] = model.resid
   df['fittedvalues'] = model.fittedvalues
   df['resid std'] = model.resid pearson
   df['leverage'] = influence.hat_matrix_diag
   fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(15,8))
   plt.style.use('seaborn')
    # Residual against fitted values.
   df.plot.scatter(
        x='fittedvalues', y='resid', ax=axes[0, 0]
   axes[0, 0].axhline(y=0, color='grey', linestyle='dashed')
   axes[0, 0].set xlabel('Fitted Values')
   axes[0, 0].set ylabel('Residuals')
   axes[0, 0].set title('Residuals vs Fitted')
    # ggplot
    sm.qqplot(
        df['resid'], dist=stats.t, fit=True, line='45',
```

```
ax=axes[0, 1], c='#4C72B0'
    )
    axes[0, 1].set title('Normal Q-Q')
    # The scale-location plot.
    df.plot.scatter(
        x='fittedvalues', y='resid std', ax=axes[1, 0]
    axes[1, 0].axhline(y=0, color='grey', linestyle='dashed')
    axes[1, 0].set xlabel('Fitted values')
    axes[1, 0].set ylabel('Sqrt(|standardized residuals|)')
    axes[1, 0].set title('Scale-Location')
    # Standardized residuals vs. leverage
    df.plot.scatter(
        x='leverage', y='resid std', ax=axes[1, 1]
    axes[1, 1].axhline(y=0, color='grey', linestyle='dashed')
    axes[1, 1].set xlabel('Leverage')
    axes[1, 1].set ylabel('Sqrt(|standardized residuals|)')
    axes[1, 1].set title('Residuals vs Leverage')
    plt.tight layout()
    plt.show()
d = pd.read csv("life.csv")
d = d.interpolate(method = 'zero')
d["gdp per capita"] = d["GDP"] / d["Population"]
d.columns=d.columns.str.lower().str.replace(' ','')
d.columns=d.columns.str.lower().str.replace('-','')
d.columns=d.columns.str.lower().str.replace('/','')
d.columns=d.columns.str.lower().str.replace(' ','')
d = d[d.year == max(d.year)]
d = d.drop(["country", "year", "status", "gdp", "population",
"percentageexpenditure"], axis = 1)
f = "lifeexpectancy~" + "+".join(d.columns[1:])
Not normalised data
model = ols(formula = f, data=d).fit()
model.summary()
```

0.883 Dep. Variable: lifeexpectancy R-squared: Adj. R-squared: Model: OLS 0.871 Method: Least Squares F-statistic: 78.10 Thu, 09 Dec 2021 Prob (F-statistic): 1.74e-68 Date: Time: 19:55:53 Log-Likelihood: -446.40 No. Observations: 183 AIC: 926.8 Df Residuals: 166 BIC: 981.4

Df Model: 16

Covariance Type: nonrobust


```
Normalised data
```

```
l = d.copy()
l.gdppercapita = np.log(l.gdppercapita)
l.infantdeaths = np.log(l.infantdeaths + 1)
l.measles = np.log(l.measles + 1)
l.totalexpenditure = np.log(l.totalexpenditure + 1)
l.underfivedeaths = np.log(l.underfivedeaths + 1)

model = ols(formula = f, data=l).fit()
model.summary()
```

Dep. Variable: lifeexpectancy R-squared: 0.880

Model: OLS Adj. R-squared: 0.869

Method: Least Squares F-statistic: 76.43

Time: 19:55:55 Log-Likelihood: -448.14

No. Observations: 183 AIC: 930.3

Df Residuals: 166 BIC: 984.8

Df Model: 16

Covariance Type: nonrobust

plot_model(1, model)


```
influence = model.get_influence()
df = influence.summary_frame()
df.columns
```



```
plt.figure(figsize=(15, 7))
plt.scatter(df.index, df.hat_diag)
plt.xlabel('Index')
plt.ylabel('Hat values')
plt.show()
```


shapiro(model.resid)
ShapiroResult(statistic=0.9822049140930176, pvalue=0.019718153402209282)

```
name = ["Lagrange multiplier statistic", "p-value", "f-value", "f p-value"]
test = sms.het_breuschpagan(model.resid, model.model.exog)
lzip(name, test)
[('Lagrange multiplier statistic', 29.71506816864176),
    ('p-value', 0.019537018389447873),
    ('f-value', 2.011246823587582),
```

('f p-value', 0.015021203443304109)]
table = sm.stats.anova_lm(model, typ=2) # Type 2 ANOVA DataFrame print(table)

	sum_sq	df	F	PR(>F)
adultmortality	354.229421	1.0	40.961879	1.524555e-09
infantdeaths	8.493416	1.0	0.982150	3.231111e-01
alcohol	0.360281	1.0	0.041662	8.385161e-01
hepatitisb	0.000181	1.0	0.000021	9.963541e-01
measles	0.167316	1.0	0.019348	8.895423e-01
bmi	0.177549	1.0	0.020531	8.862374e-01
underfivedeaths	12.052665	1.0	1.393729	2.394652e-01
polio	9.165519	1.0	1.059869	3.047427e-01
totalexpenditure	0.534972	1.0	0.061862	8.038838e-01
diphtheria	11.597112	1.0	1.341050	2.485122e-01
hivaids	55.870086	1.0	6.460626	1.194461e-02
thinness119years	2.804713	1.0	0.324327	5.697884e-01
thinness59years	0.376574	1.0	0.043546	8.349569e-01
incomecompositionofresources	358.288808	1.0	41.431293	1.257774e-09
schooling	6.709093	1.0	0.775817	3.796971e-01
gdppercapita	15.306888	1.0	1.770036	1.852024e-01
Residual	1435.531881	166.0	NaN	NaN