图神经网络实验

学号: 3200102555

专业班级: 计科2006

姓名: 李云帆

性别:男

Project Introduction

选题

- 了解图神经网络相关知识
- 了解如何使用MindSpore搭建并训练图神经网络

工作简介

图卷积网络(Graph Convolutional Network,GCN)是近年来逐渐流行的一种神经网络结构。 不同于只能用于网格结构(grid-based)数据的传统网络模型 LSTM 和 CNN,图卷积网络能够处理 具有广义拓扑图结构的数据,并深入发掘其特征和规律。

本实验主要介绍在下载的 Cora 和 Citeseer 数据集上使用 MindSpore 进行图卷积网络的训练。

开发环境

ModelArts Ascend Notebook 环境,MindSpore1.1.1

Technical Details

理论知识

GCN 的本质目的就是用来提取拓扑图的空间特征。图卷积神经网络主要有两类,一类是基于 空间域(spatial domain)或顶点域(vertex domain)的,另一类则是基于频域或谱域(spectral domain)的。GCN 属于频域图卷积神经网络。

算法

空间域方法直接将卷积操作定义在每个结点的连接关系上,它跟传统的卷积神经网络中的卷积 更相似一些。在这个类别中比较有代表性的方法有 Message Passing Neural Networks(MPNN), GraphSage, Diffusion Convolution Neural Networks(DCNN), PATCHY-SAN 等。

频域方法希望借助图谱的理论来实现拓扑图上的卷积操作。从整个研究的时间进程来看:首先 研究 GSP(graph signal processing)的学者定义了 graph 上的傅里叶变化(Fourier Transformation),进而定义了 graph 上的卷积,最后与深度学习结合提出了 Graph Convolutional Network(GCN)。

技术细节

- train_eval(args_opt):
 - 。 接受包含各种超参数的对象 args_opt
 - 。 首先设置随机数生成器的种子
 - 。 加载数据集的邻接矩阵,特征矩阵和标签矩阵

- 使用 get_mask() 函数将数据集分成训练, 验证和测试集
- 。 使用给定的超参数初始化GCN模型
- 将模型包装在 LossAccuracyWrapper (计算模型在验证集和测试集上的损失和准确性)和TrainNetWrapper (在训练集训练模型)中
- 。 然后, 训练模型一定数量的 epochs 并打印出各种信息

Experiment Result

References

- 1. 知乎-一文读懂图卷积GCN
- 2. Slides on class
- 3. 图神经网络实验手册