Technical Approach

Core Architecture

1. Detection Pipeline

- Fine-tuned YOLOv11 model for player detection
- Confidence-based filtering for reliable detections
- Bounding box optimization for tracking accuracy

2. Tracking Algorithm

- Multi-object tracking with persistent IDs
- Kalman filtering for motion prediction
- Adaptive frame boundary detection

3. Re-identification System

- · Appearance feature extraction using color histograms
- Cosine similarity matching for player re-entry.
- Exponential moving average for feature updates

Key Techniques Implemented

Motion Modeling: Implemented Kalman filters with constant velocity models for smooth trajectory prediction and handling temporary occlusions.

Appearance Features: Extracted HSV color histograms from player regions to create distinctive appearance signatures for re-identification.

Data Association: Used Hungarian algorithm for optimal assignment between detections and existing tracks, combining motion, appearance, and spatial cues.

Boundary Detection: Developed adaptive margin calculation based on bounding box dimensions to accurately determine frame entry/exit events.

Track Management: Implemented sophisticated track lifecycle management with configurable persistence duration for handling occlusions.

Challenges Encountered

1. Model Integration Complexity

Challenge: Integrating custom fine-tuned YOLOv11 models with tracking algorithms while maintaining real-time performance.

Solution: Optimized inference pipeline by using appropriate confidence thresholds and implementing efficient batch processing for video frames.

2. Re-identification Accuracy

Challenge: Maintaining consistent player identities when players temporarily exit and reenter the frame, especially with similar appearances.

Solution: Developed multi-modal feature matching combining appearance features (color histograms) with spatial-temporal constraints and motion prediction.

3. Frame Boundary Detection

Challenge: Accurately determining when players are truly "out of frame" versus partially occluded or at frame edges.

Solution: Implemented adaptive boundary margins based on bounding box dimensions and visibility ratio calculations to distinguish between occlusion and frame exit.

4. Tracking Persistence

Challenge: Balancing between maintaining tracks during brief occlusions and avoiding false positive re-identifications.

Solution: Implemented configurable track persistence with exponential decay for confidence scores and multi-stage matching algorithms.

5. Performance Optimization

Challenge: Processing high-resolution video in real-time while maintaining tracking accuracy.

Solution: Optimized feature extraction algorithms, implemented efficient data structures for track history, and used vectorized operations for similarity computations.

6. Google Colab Limitations

Challenge: Memory constraints and session timeouts when processing longer videos.

Solution: Implemented progressive processing with checkpoint saving, memory-efficient frame handling, and optimized data structures.

Performance Metrics

The system tracks several key performance indicators:

- **Detection Accuracy**: Confidence scores and detection consistency
- Tracking Continuity: Track length and identity preservation
- Re-identification Success: Correct player matching after re-entry
- Processing Speed: Frames per second processing capability

Future Enhancements

Deep Learning Re-ID: Integration of CNN-based appearance models

- Multi-camera Tracking: Cross-camera player association
- Real-time Processing: Optimization for live video streams
- Advanced Analytics: Player behavior pattern analysis

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

- Ultralytics team for the YOLOv11 framework
- OpenCV community for computer vision tools
- Research contributions in multi-object tracking and re-identification