Tutorial 8

- 1. Show that the following problems are in NP.
 - (a) The scheduling problem introduced in Lecture 24 (slide deck).
 - (b) Hamiltonian path problem.

Given: A directed graph G = (V, E) and special vertices s, t.

Check: Does there exists a simple path from s to t that visits every vertex exactly once.

(c) Hamiltonian cycle problem.

Given: A directed graph G = (V, E) and a special vertex u.

Check: Does there exists a simple cycle that starts and ends at u and visits every other vertex exactly once.

(d) 3-SAT problem.

Given: a CNF formula φ over variables x_1, \ldots, x_n

such that each clause has at most 3 variables.

Check: does there exists an assignment $\tilde{a} \in \{0,1\}^n$ to

 x_1, \ldots, x_n such that \tilde{a} satisfies φ .

- + Prove that 2-SAT is in P.
- (e) k-Independent set problem.

Given: A graph G = (V, E).

Check: Does there exists subset $S \subseteq V$ such that |S| = k

and for every $u, v \in S$, $(u, v) \notin E$.

- 2. State true or false.
 - (a) There exists problems that are not known to be in P and are also not known to be in NP.
 - (b) If $\Pi \in NP$ then so is $\overline{\Pi} \in NP$.
 - (c) If $\Pi \in NP$ and $\Pi' \leq_m \Pi$ then $\Pi' \in NP$.
 - (d) If $\Pi \in NP$ and $\Pi \leq_m \Pi'$ then $\Pi' \in NP$.
 - (e) If $\Pi \leq_m \Pi'$ then $\Pi' \leq \Pi$.
 - (f) If $\Pi \in P$ and $\Pi' \in NP$ then $\Pi \leq_m \Pi$.