CS3780 October 7, 2025

Supervised Learning & KNN

• Training set $S = \{(x_i, y_i)\}_{i=1}^m$ sampled i.i.d. from \mathcal{D} ; learn $h: \mathcal{X} \to \mathcal{Y}$ that approximates f on unseen x.

- k-NN (classification): for query x' pick k nearest neighbors under a similarity (e.g. Euclidean, Gaussian $e^{-\|x-x'\|^2/2}$, Laplace, cosine) and predict $\hat{y} = \arg\max_y \sum_{i \in \text{knn}(x')} \mathbf{1}(y_i = y)$.
- Weighted k-NN: weight counts by similarity; regression outputs $h(x') = \frac{\sum_{i \in \text{knn}(x')} y_i K(x_i, x')}{\sum_{i \in \text{knn}(x')} K(x_i, x')}$.
- Non-parametric, stores all of S; query cost scales with m and d. Small k ⇒ low bias/high variance, large k ⇒ smoother but biased. Struggles under the curse of dimensionality.

Decision Trees & Hypothesis Search

- Version Space: $VS = \{h \in H \mid h(x_i) = y_i \ \forall (x_i, y_i) \in S\}$; list-then-eliminate removes inconsistent hypotheses sequentially.
- IDT (top-down induction): if S pure \Rightarrow leaf; if no features \Rightarrow majority leaf; else choose split attribute A, partition $\{S_v\}$, recurse on each branch.
- Error split score: Err(S) = min(#pos, #neg), $\Delta Err = Err(S) \sum_{v} Err(S_v)$.
- Trees memorise training data when unconstrained. Control complexity via depth limits, early stopping (min gain / min samples), or post-pruning.
- Leaves output majority label along the path; structure is easy to interpret and handles categorical or numeric tests.

Bias, Variance, & Overfitting

$$\mathbb{E}[\mathrm{Err}] = \underbrace{\mathrm{Bias}^2}_{\mathrm{model \; assumptions}} + \underbrace{\mathrm{Variance}}_{\mathrm{sensitivity \; to }\; S} + \underbrace{\sigma^2}_{\mathrm{noise}}$$

- Empirical error $\hat{L}_S(h) = \frac{1}{|S|} \sum \mathbf{1}[h(x_i) \neq y_i]$; prediction error $L_{\mathcal{D}}(h) = \mathbb{P}_{(x,y) \sim \mathcal{D}}[h(x) \neq y]$.
- Overfitting: zero train error but large test error (e.g. memorising training points and guessing otherwise).
- Bias ↑ with simple hypothesis spaces (risk of underfitting); variance ↑ with overly flexible models. Choose intermediate complexity or add regularization.

Model Assessment

- k-fold cross-validation: split S into k folds S_i ; for each hyperparameter p, train $h_i = A_p(S \setminus S_i)$, compute $err_{S_i}(h_i)$, average $err_{CV}(A_p) = \frac{1}{k} \sum_i err_{S_i}(h_i)$, pick p^* with smallest error, retrain on full S.
- Binomial significance test: under $H_0: err_P(h) \ge \epsilon$, number of observed errors $K \sim \text{Binomial}(m, \epsilon)$. Compute p-value $P(K \le k)$ (or $\ge k$). Reject H_0 if $p < \alpha$ (two-sided tests split α across tails).
- Normal CI: when $mp(1-p) \geq 5$, $err_P(h) \in \left[err_S(h) \pm 1.96\sqrt{\frac{p(1-p)}{m}}\right]$ with $p \approx err_S(h)$.

- Hoeffding bound: with prob. $\geq 1 \delta$, $err_P(h) \in \left[err_S(h) \pm \sqrt{\frac{-0.5 \ln(\delta/2)}{m}}\right]$ for losses in [0,1].
- McNemar's test: compare h_1, h_2 by wins w (only h_1 correct) and losses l (only h_2 correct); under H_0 wins $\sim \text{Binomial}(w+l,0.5)$. Reject at 95% if $P(W \leq w)$ or $P(W \geq w)$ is < 0.025.

Linear Classifiers

- Hyperplane: $\{\vec{x} \mid \vec{w} \cdot \vec{x} + b = 0\}$ with normal vector \vec{w} ; classifier $h_{\vec{w},b}(x) = \text{sign}(\vec{w} \cdot x + b)$.
- Homogeneous form: append bias as extra coordinate x' = (x, 1), w' = (w, b) so $\vec{w}' \cdot \vec{x}' = \vec{w} \cdot \vec{x} + b$.
- Functional margin of (x_i, y_i) : $\gamma_i = y_i(\vec{w} \cdot x_i + b)$; geometric margin assumes $\|\vec{w}\| = 1$ so γ_i equals signed distance. Dataset margin $\gamma = \min_i \gamma_i$.
- Larger margins ⇒ easier separability and tighter generalization bounds.

Perceptron

- Batch homogeneous algorithm: start $\vec{w}^{(0)} = \vec{0}$; while some i has $y_i(\vec{w}^{(t)} \cdot x_i) \leq 0$, update $\vec{w}^{(t+1)} = \vec{w}^{(t)} + y_i x_i$. Shuffle data; stop when no errors or after max epochs.
- Convergence theorem: if $||x_i|| \leq R$ and data separable with margin γ , Perceptron makes $\leq R^2/\gamma^2$ updates (independent of unknown γ). Scaling examples or reordering does not change the bound.

Support Vector Machines

- Hard-margin SVM: $\min_{\vec{w},b} \frac{1}{2} ||\vec{w}||^2$ s.t. $y_i(\vec{w} \cdot x_i + b) \geq 1$. Maximizes geometric margin $1/||\vec{w}||$ while keeping zero training error; support vectors satisfy equality.
- Soft-margin SVM introduces slack $\xi_i \geq 0$: $\min_{\vec{w},b,\xi} \frac{1}{2} ||\vec{w}||^2 + C \sum_i \xi_i$ with constraints $y_i(\vec{w} \cdot x_i + b) \geq 1 \xi_i$. $\xi_i = 0$ correct with margin, $0 < \xi_i < 1$ inside margin, $\xi_i \geq 1$ misclassified. C trades margin size vs. training errors; only points with margin ≤ 1 influence \vec{w} .

$$\min_{\vec{w},b,\vec{\xi}} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$

s.t.
$$y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0 \quad \forall i$$

- Slack variable ξ_i measures how much (x_i, y_i) fails to achieve the margin.
 - Idea: Slack variables ξ_i capture training error.
 - For any training example (\vec{x}_i, y_i) :
 - * $\xi_i \ge 1 \iff y_i(\vec{w} \cdot \vec{x}_i + b) \le 0 \text{ (error)}$
 - * $0 < \xi_i < 1 \iff 0 < y_i(\vec{w} \cdot \vec{x}_i + b) < 1$ (correct, but within margin)
 - * $\xi_i = 0 \iff y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1 \text{ (correct)}$
 - The sum $\sum_{i} \xi_{i}$ is an upper bound on the number of training errors.

- C controls the trade-off between margin size and training error.
- Examples with margin less than or equal to 1 are support vectors.

Duality & Kernels

- Perceptron dual: represent $\vec{w} = \sum_j \alpha_j y_j x_j$; update $\alpha_i \leftarrow \alpha_i + 1$ when $y_i \sum_j \alpha_j y_j (x_j \cdot x_i) \leq 0$. Prediction $\operatorname{sign} \left(\sum_j \alpha_j y_j (x_j \cdot x) \right)$.
- SVM dual: maximize $D(\alpha) = \sum_{i} \alpha_{i} \frac{1}{2} \sum_{ij} y_{i} y_{j} \alpha_{i} \alpha_{j} (x_{i} \cdot x_{j})$ subject to $\sum_{i} y_{i} \alpha_{i} = 0, 0 \le \alpha_{i} \le C$; optimal $\vec{w} = \sum_{i} \alpha_{i} y_{i} x_{i}$ and $P^{*} = D^{*}$.
- **Kernel trick:** replace dot products by $K(x,z) = \Phi(x) \cdot \Phi(z)$ to work in high-dimensional feature spaces without explicit Φ . Common kernels: linear $x \cdot z$, polynomial $(x \cdot z + 1)^k$, RBF $e^{-\gamma \|x z\|^2}$, sigmoid $\tanh(\gamma x \cdot z + c)$.
- Valid kernel \Rightarrow Gram matrix $G_{ij} = K(x_i, x_j)$ is symmetric positive semi-definite; closure: non-negative sums, products, f(x)f(z), compositions with feature maps, and $x^{\top}Kz$ for PSD K.
- Leave-one-out for SVM: $err_{loo} \leq \#SV/m$ and for ho-

mogeneous hard-margin also $\leq R^2/(\gamma^2 m)$.

Regularized Linear Models

- ERM: choose hypothesis space \mathcal{H} and minimize empirical loss; avoid overfitting via regularization or validation.
- Bayes decision rule (0/1 loss): $h_{\text{Bayes}}(x) = \arg\max_y P(Y = y \mid X = x)$ with minimum risk $\mathbb{E}_x[1 \max_y P(Y = y \mid x)].$
- Logistic regression: $P(y_i \mid x_i, w) = \sigma(y_i w \cdot x_i),$ $\sigma(z) = 1/(1 + e^{-z}); \ \sigma(-z) = 1 - \sigma(z).$ MLE minimizes $\sum_i \ln(1 + e^{-y_i w \cdot x_i}).$ Separable data drive $||w|| \to \infty.$
- ℓ_2 -regularized logistic (MAP with $w \sim \mathcal{N}(0, \sigma^2 I)$): minimize $\frac{\lambda}{2} ||w||_2^2 + \sum_i \ln(1 + e^{-y_i w \cdot x_i})$ with $\lambda = 1/\sigma^2$.
- Linear regression: assume $Y_i \mid x_i, w \sim \mathcal{N}(w \cdot x_i, \eta^2)$; MLE \Leftrightarrow minimize $\sum_i (w \cdot x_i y_i)^2$. Prediction is $w \cdot x$.
- Ridge regression (Gaussian prior): minimize $\frac{1}{2}||w||_2^2 + C\sum_i (w \cdot x_i y_i)^2$ with $C = \sigma^2/(2\eta^2)$.
- Unified template: $\min_{w} R(w) + C \sum_{i} L(w \cdot x_{i}, y_{i})$. Examples: SVM $(R = \frac{1}{2}||w||^{2}, L = \max(0, 1 y\hat{y}))$, Perceptron $(R = 0, L = \max(0, -y\hat{y}))$, Logistic Regression $(R = \frac{1}{2}||w||^{2}, L = \ln(1 + e^{-y\hat{y}}))$, Linear Regression $(R = 0, L = (y \hat{y})^{2})$, Ridge $(R = \frac{1}{2}||w||^{2}, L = (y \hat{y})^{2})$, Lasso $(R = \lambda \sum_{j} |w_{j}|, L = (y \hat{y})^{2})$.