FIGURE 1

CGGACGCGTGGGTGCGAGGCGAAGGTGACCGGGGACCGAGCATTTCAGATCTGCTCGGTAGA $\verb|CCTGGTGCACCACCACC| \textbf{ATG} | \texttt{TTGGCTGCAAGGCTGGTGTGTCTCCGGACACTACCTTCTAGG}|$ GTTTTCCACCCAGCTTTCACCAAGGCCTCCCCTGTTGTGAAGAATTCCATCACGAAGAATCA ATGGCTGTTAACACCTAGCAGGGAATATGCCACCAAAACAAGAATTGGGATCCGGCGTGGGA GAACTGGCCAAGAACTCAAAGAGGCAGCATTGGAACCATCGATGGAAAAAATATTTAAAATT GATCAGATGGGAAGATGGTTTGTTGCTGGAGGGGCCTGCTGTTGGTCTTGGAGCATTGTGCTA CTATGGCTTGGGACTGTCTAATGAGATTGGAGCTATTGAAAAGGCTGTAATTTGGCCTCAGT ATGTCAAGGATAGAATTCATTCCACCTATATGTACTTAGCAGGGAGTATTGGTTTAACAGCT TTGTCTGCCATAGCAATCAGCAGAACGCCTGTTCTCATGAACTTCATGATGAGAGGCTCTTG GGTGACAATTGGTGTGACCTTTGCAGCCATGGTTGGAGCTGGAATGCTGGTACGATCAATAC CATATGACCAGAGCCCAGGCCCAAAGCATCTTGCTTGGTTGCTACATTCTGGTGTGATGGGT GCAGTGGTGGCTCCTCTGACAATATTAGGGGGTCCTCTTCTCATCAGAGCTGCATGGTACAC AGCTGGCATTGTGGGAGGCCTCTCCACTGTGGCCATGTGTGCGCCCAGTGAAAAGTTTCTGA ACATGGGTGCACCCCTGGGAGTGGGCCTGGGTCTCGTCTTTGTGTCCTCATTGGGATCTATG TTTCTTCCACCTACCACCGTGGCTGGTGCCACTCTTTACTCAGTGGCAATGTACGGTGGATT AGTTCTTTTCAGCATGTTCCTTCTGTATGATACCCAGAAAGTAATCAAGCGTGCAGAAGTAT CACCAATGTATGGAGTTCAAAAATATGATCCCATTAACTCGATGCTGAGTATCTACATGGAT AAGTGACTCAGCTTCTGGCTTCTCTGCTACATCAAATATCTTGTTTAATGGGGCAGATATGC ATTAAATAGTTTGTACAAGCAGCTTTCGTTGAAGTTTAGAAGATAAGAAACATGTCATCATA TTTAAATGTTCCGGTAATGTGATGCCTCAGGTCTGCCTTTTTTTCTGGAGAATAAATGCAGT AATCCTCTCCCAAATAAGCACACACATTTTCAATTCTCATGTTTGAGTGATTTTAAAATGTT TTGGTGAATGTGAAAACTAAAGTTTGTGTCATGAGAATGTAAGTCTTTTTTCTACTTTAAAA TTTAGTAGGTTCACTGAGTAACTAAAATTTAGCAAACCTGTGTTTGCATATTTTTTTGGAGT GCAGAATATTGTAATTAATGTCATAAGTGATTTTGGAGCTTTGGTAAAGGGACCAGAGAAG GAGTCACCTGCAGTCTTTTGTTTTTTAAATACTTAGAACTTAGCACTTGTGTTATTGATTA GCTGAACTTAACAAAACTGTTCATCCTGAAACAGGCACAGGTGATGCATTCTCCTGCTGTTG CTTCTCAGTGCTCTCTTTCCAATATAGATGTGGTCATGTTTGACTTGTACAGAATGTTAATC ATACAGAGAATCCTTGATGGAATTATATATGTGTGTTTTTACTTTTGAATGTTACAAAAGGAA ATAACTTTAAAACTATTCTCAAGAGAAAATATTCAAAGCATGAAATATGTTGCTTTTTCCAG AATACAAACAGTATACTCATG

FIGURE 2

MLAARLVCLRTLPSRVFHPAFTKASPVVKNSITKNQWLLTPSREYATKTRIGIRRGRTGQEL
KEAALEPSMEKIFKIDQMGRWFVAGGAAVGLGALCYYGLGLSNEIGAIEKAVIWPQYVKDRI
HSTYMYLAGSIGLTALSAIAISRTPVLMNFMMRGSWVTIGVTFAAMVGAGMLVRSIPYDQSP
GPKHLAWLLHSGVMGAVVAPLTILGGPLLIRAAWYTAGIVGGLSTVAMCAPSEKFLNMGAPL
GVGLGLVFVSSLGSMFLPPTTVAGATLYSVAMYGGLVLFSMFLLYDTQKVIKRAEVSPMYGV
OKYDPINSMLSIYMDTLNIFMRVATMLATGGNRKK

GAAGGCTGCCTCGCTGGTCCGAATTCGGTGGCGCCACGTCCGCCCGTCTCCGCCTTCTGCAT GGTCGGCACGGGGACTCGGCGGCTCTTGTCCATCTTGTCATCTTGCTACCTTGGTCTGCCCACCTC ACATCGCAGACCTTGTCAGACTCTGGCCGTACCTTGCTTTGCTCACCACCTC GCCGTGCCCTTGGTCGGCAACTCGGCCTATCAGCCGGCATCACCTCTTTCCTCTGGCCGA AGCCTTCCTTTATCGCTTTCAGATTTGGTCATCACCTCACCTCTTTATTTCCCTGTGG GTCCAGGAACTGGATTTTCTTAATTTGGTCAATTTTATATTCTTATATCAGTATTCACGGAA CTTGAAACAGGAGCTTTTGATGGAGGCCAGCAGCATATTTTATTCATGCTCCTCTTTAACTG GATTTGCATCGTGATTACTGGCTTAGCAATGGATATGCAGTGCTGATCATTCCTCTGATCA TGTCAGTACTTTTATGTCTGGCCCAGCTGAACAGAGCATGATTCTATCATTTTGGTTTTGGA ACACGATTTAAGGCCTGCTATTTACCCTGGGTTATCCTTGGATTCAACTATATCATCGGAGG CTCGGTAATCAATGAGCTTATTGGAAATCTGGTTGGACATCTTTATTTTTTCCTAATGTTCA TGCTGATCAGAATGGCGGAGGCGGGAGACACAACTGGGGCCAGGGCTTTCGACTTGGAGACC AGTGAAGGGGCGGCCTCGGGCAGCCGCTCCTCTCAAGCCACATTTCCTCCCAGTGCTGGGTG CACTTAACAACTGCGTTCTGGCTAACACTGTTGGACCTGACCCACACTGAATGTAGTCTTTC AGTACGAGACAAAGTTTCTTAAATCCCGAAGAAAAATATAAGTGTTCCACAAAGTTTCACGAT TCTCATTCAAGTCCTTACTGCTGTGAAGAACAAATACCAACTGTGCAAAATTGCAAAACTGAC TACATTTTTGGTGTCTTCTCTCTCCCTTTCGGTCTGAATAATGGGTTTTTAGGGGTCCT AARCTGCTGGCATTGAGCTGGGGCTGGGTCACCAAACCCTTCCCAAAGGACCTTATCTCTT TCTTGCACACATGCCTCTCCCACCTTTCCCAAACCTCAAATGAAAAAGTTG AAGACAGCCACGGATGAAGCGTTTCTCAGCTTTTGGAATTGCTTCGACTGACATCCGTTGTT AACCGTTTGCCACTCTTCAGATATTTTTTATAAAAAAAGTACCACTGAGTTCATGAGGGCCA TTTGCGTTTCATATGTAGCCCTACTGGCTTTGTGTAGCTGGAGTAGTTGGGTTGCTTTGTGT TAGGAGGATCCAGATCATGTTGGCTACAGGGAGATGCTCTTTTGAGAGGTCCTGGGCATTG AGGGAATAACATGATTTAAGGTTGAAATGGCTTTAGAATCATTTGGGTTTGAGGGTGTGTTA TTTTGAGTCATGAATGTACAAGCTCTGTGAATCAGACCAGCTTAAATACCCACACCTTTTTT CGTAGGTGGGCTTTTCCTATCAGAGCTTGGCTCATAACCAAATAAAGTTTTTTGAAGGCCA TGGCTTTTCACACAGTTATTTTATTTATGACGTTATCTGAAAGCAGACTGTTAGGAGCAGT ATTGAGTGGCTGTCACACTTTGAGGCAACTAAAAAGGCTTCAAACGTTTTGATCAGTTTCTT TTCAGGAAACATTGTGCTCTAACAGTATGACTATTCTTTCCCCCACTCTTAAACAGTGTGAT GTGTGTTATCCTAGGAAATGAGAGTTGGCAAACAACTTCTCATTTTGAATAGAGTTTGTGTGTACTTCTCCATATTTAATTTTATATGATAAAATAGGTGGGGAGAGTCTGAACCTTAACTGTCA ATGAAGTTATTCCTCTTAAACATGGTTAGGAAGCTGATGACGTTATTGATTTTGTCTGGATT ATGTTTCTGGAATAATTTTACCAAAACAAGCTATTTGAGTTTTGACTTGACAAGGCAAAACA TGACAGTGGATTCTCTTTACAAATGGAAAAAAAAAATCCTTATTTTGTATAAAGGACTTCCC TTTTTGTAAACTAATCCTTTTTATTGGTAAAAATTGTAAATTAAAATGTGCAACTTG

FIGURE 4

MSDIGDWFRSIPAITRYWFAATVAVPLVGKLGLISPAYLFLWPEAFLYRFQIWRPITATFYF PVGPGTGFLYLVNLYFLYQYSTRLETGAFDGRPADYLFMLLFNWICIVITGLAMDMQLLMIP LIMSVLYVWAQLNRDMIVSFWFGTRFKACYLPWVILGFNYIIGGSVINELIGNLVGHLYFFL MFRYPMDLGGRNFLSTPQFLYRWLPSRRGGVSGFGVPPASMRRAADQNGGGGRHNWGQGFRL GDQ

Transmembrane domain:

amino acids 98-116, 152-172

N-myristoylation site.

amino acids 89-95, 168-174, 176-182, 215-221, 221-227, 237-243

Glycosaminoglycan attachment site.

amino acids 218-222

FIGURE 5

GGGGCCGCGGTCTAGGGCGGCTACGTGTTGCCATAGCGACCATTTTGCATTAACTGGTTG GTAGCTTCTATCCTGGGGGCTGAGCGACTGCGGGCCAGCTCTTCCCCTACTCCCTCTCGGCT CCTTGTGGCCCAAAGGCCTAACCGGGGTCCGGCGGTCTGGCCTAGGGATCTTCCCCGTTGCC CCTTTGGGGCGGGATGGCTGCGGAAGAAGAAGACGAGGTGGAGTGGGTAGTGGAGAGCATCG CGGGGTTCCTGCGAGGCCCAGACTGGTCCATCCCCATCTTGGACTTTGTGGAACAGAAATGT GAAGTTAACTGCAAAGGAGGGCATGTGATAACTCCAGGAAGCCCAGAGCCGGTGATTTTGGT GGCCTGTGTTCCCCCTTGTTTTTGATGATGAAGAAGAAAGCAAATTGACCTATACAGAGATTC ATCAGGAATACAAAGAACTAGTTGAAAAGCTGTTAGAAGGTTACCTCAAAGAAATTGGAATT AATGAAGATCAATTTCAAGAAGCATGCACTTCTCCTCTTGCAAAGACCCATACATCACAGGC CATTTTGCAACCTGTGTTGGCAGCAGAAGATTTTACTATCTTTAAAGCAATGATGGTCCAGA AAAACATTGAAATGCAGCTGCAAGCCATTCGAATAATTCAAGAGAGAAATGGTGTATTACCT GACTGCTTAACCGATGGCTCTGATGTGGTCAGTGACCTTGAACACGAAGAGATGAAAATCCT AACAGTTATCAGAGGCTAAAACAGAAGAGCCCACAGTGCATTCCAGTGAAGCTGCAATAATG CACAAAAAGGCCTGAAGATTCCTGGCTTAGAGCATGCGAGCATTGAAGGACCAATAGCAAAC TTATCAGTACTTGGAACAGAAGAACTTCGGCAACGAGAACACTATCTCAAGCAGAAGAGAGA TAAGTTGATGTCCATGAGAAAGGATATGAGGACTAAACAGATACAAAATATGGAGCAGAAAG GAAAACCCACTGGGGAGGTAGAGGAAATGACAGAGAAACCAGAAATGACAGCAGAGGAGAAG CAAACATTACTAAAGAGGAGATTGCTTGCAGAGAAACTCAAAGAAGAAGTTATTAATAAGTA CTTACACTG

MAAEEEDEVEWVVESIAGFLRGPDWSIPILDFVEQKCEVNCKGGHVITPGSPEPVILVACVP
LVFDDEEESKLTYTEIHQEYKELVEKLLEGYLKEIGINEDQFQEACTSPLAKTHTSQAILQP
VLAAEDFTIFKAMMVQKNIEMQLQAIRIIQERNGVLPDCLTDGSDVVSDLEHEEMKILREVL
RKSKEEYDQEEERKRKKQLSEAKTEEPTVHSSEAAIMNNSQGDGEHFAHPPSEVKMHFANQS
IEPLGRKVERSETSSLPQKGLKIPGLEHASIEGPIANLSVLGTEELRQREHYLKQKRDKLMS
MRKDMRTKQIQNMEQKGKPTGEVEEMTEKPEMTAEEKOTLLKRRLLAEKLKEEVINK

N-glycosylation sites.

amino acids 224-228, 246-250, 285-289

N-myristoylation site.

amino acids 273-279

Amidation site.

amino acids 252-256

Cytosolic fatty-acid binding proteins.

amino acids 78-108

FIGURE 7

GGGCACAGCACATGTGAAGTTTTTGATGATGAAGAAGAAGAAAGTTGACCTATACAGAGAT
TCATCAGGAATACAAAGAACTAGTTGAAAAGCTGTTAGAAGGTTACCTCAAAGAAATTGGAA
TTAATGAAGATCAATTTCAAGAAGCATGCACTTCTCCTCTTGCAAAGAACCCATACATCACAG
GCCATTTTTGCAACCTGTGTTGGCAGCAGAAGATTTTACTATCTTTTAAAGCAATGATGGTCC
AGAAAAACATTGAAATGCAGCTGCAAGCCATTCGAATAATTCAAGAGAGAAATGGTGTATTA
CCTGACTGCTTAACCGATGGCTCTGATGTGGTCAGTGACCCTGAACACGAAGAGATGAAAAT
CCTGAGGGAAGTTCTTAGAAAATCAAAAGAGGAATATGACCAGGAA

TAGCTTCTCCACGTATGGACCCTAAAGGCTACTGCTGCTACTACGGGGCTAGACAGTTACTG AGTGGAATGGAAAAACAGTGCTGTAGTCATCCTGTAATATGCTCCTTGTCAACAATGTATAC ATTCCTGCTAGGTGCCATATTCATTGCTTTAAGCTCAAGTCGCATCTTACTAGTGAAGTATT CTGCCAATGAAGAAAACAAGTATGATTATCTTCCAACTACTGTGAATGTGTGCTCAGAACTG AAATTTGAAATATGCTTCCTGGAAGGAATTCTCTGATTTCATGAAGTGGTCCATTCCTGCCT TTCTTTATTTCCTGGATAACTTGATTGTCTTCTATGTCCTGTCCTATCTTCAACCAGCCATG GCTGTTATCTCTCAAATTTTAGCATTATAACAACAGCTCTTCTATTCAGGATAGTGCTGAA TGACTGCCGGGACTAAAACTTTACAGCACAACTTGGCAGGACGTGGATTTCATCACGATGCC TACAGCAAAGGAATGGACTTTTCCTGAAGCTAAATGGAACACCACAGCCAGAGTTTTCAGTC ACATCCGTCTTGGCATGGGCCATGTTCTTATTATAGTCCAGTGTTTTATTTCTTCAATGGCT AATATCTATAATGAAAAGATACTGAAGGAGGGGAACCAGCTCACTGAAAGCATCTTCATACA GAACAGCAAACTCTATTTCTTTGGCATTCTGTTTAATGGGCTGACTCTGGGCCTTCAGAGGA CTTATTTTTGTAACTGCATTCCAGGGCCTTTCAGTGGCTTTCATTCTGAAGTTCCTGGATAA TCTTTGACTTCAGGCCCTCCCTGGAATTTTTCTTGGAAGCCCCATCAGTCCTTCTCTCTATA TTTATTTATAATGCCAGCAAGCCTCAAGTTCCGGAATACGCACCTAGGCAAGAAAGGATCCG AGATCTAAGTGGCAATCTTTGGGAGCGTTCCAGTGGGGATGGAGAAGAACTAGAAAGACTTA CCAAACCCAAGAGTGATGAGTCAGATGAAGATACTTTCTAACTGGTACCCACATAGTTTGCA $\bar{\texttt{GCTCTCTTGAACCTTATTTTCACATTTTCAGTGTTTGTAATATTTATCTTTTCACTTTGATA}$ AACCAGAAATGTTTCTAAATCCTAATATTCTTTGCATATATCTAGCTACTCCCTAAATGGTT CCATCCAAGGCTTAGAGTACCCAAAGGCTAAGAAATTCTAAAGAACTGATACAGGAGTAACA ATATGAAGAATTCATTAATATCTCAGTACTTGATAAATCAGAAAGTTATATGTGCAGATTAT TTTCCTTGGCCTTCAAGCTTCCAAAAAACTTGTAATAATCATGTTAGCTATAGCTTGTATAT ACACATAGAGATCAATTTGCCAAATATTCACAATCATGTAGTTCTAGTTTACATGCCAAAGT CTTCCCTTTTTAACATTATAAAAGCTAGGTTGTCTCTTGAATTTTGAGGCCCTAGAGATAGT CTGGCCATACCATAGATTTGGGATGATGTAGTCTGTGCTAAATATTTTGCTGAAGAAGCAGT TTCTCAGACACATCTCAGAATTTTAATTTTTAGAAATTCATGGGAAATTGGATTTTTGT AATAATCTTTTGATGTTTTAAACATTGGTTCCCTAGTCACCATAGTTACCACTTGTATTTTA AGTCATTTAAACAAGCCACGGTGGGGCTTTTTTCTCCTCAGTTTGAGGAGAAAAATCTTGAT GTCATTACTCCTGAATTATTACATTTTGGAGAATAAGAGGGCATTTTATTTTATTAGTTACT AATTCAAGCTGTGACTATTGTATATCTTTCCAAGAGTTGAAATGCTGGCTTCAGAATCATAC CAGATTGTCAGTGAAGCTGATGCCTAGGAACTTTTAAAGGGATCCTTTCAAAAGGATCACTT AGCAAACACATGTTGACTTTTAACTGATGTATGAATATTAATACTCTAAAAATAGAAAGACC AGTAATATATAAGTCACTTTACAGTGCTACTTCACACTTAAAAGTGCATGGTATTTTTCATG GTATTTTGCATGCAGCCAGTTAACTCTCGTAGATAGAGAAGTCAGGTGATAGATGATATTAA AAATTAGCAAACAAAAGTGACTTGCTCAGGGTCATGCAGCTGGGTGATGATAGAAGAGTGGG CTTTAACTGGCAGGCCTGTATGTTTACAGACTACCATACTGTAAATATGAGCTTTATGGTGT CATTCTCAGAAACTTATACATTTCTGCTCTCCTTTCTCCTAAGTTTCATGCAGATGAATATA AGGTAATATATATATATATTCATTTGTGATATCCACAATAATATGACTGGCAAGAATTG GTGGAAATTTGTAATTAAAATAATTATTAAACCT

FIGURE 9

MEKQCCSHPVICSLSTMYTFLLGAIFIALSSSRILLVKYSANEENKYDYLPTTVNVCSELVK LVFCVLVSFCVLKKDHQSRNLKYASWKEFSDFMKWSIPAFLYFLDNLIVFYVLSYLQPAMAV IFSNFSIITTALLFRIVLKRRLNWIQWASLLTLFLSIVALTAGTKTLQHNLAGRGFHHDAFF SPSNSCLLFRSECPRKDNCTAKEWTFPEAKWNTTARVFSHIRLGMGHVLIIVQCFISSMANI YNEKILKEGNQLTESIFIQNSKLYFFGILFNGLTLGLQRSNRDQIKNCGFFYGHSAFSVALI FVTAFQGLSVAFILKFLDNMFHVLMAQVTTVIITTVSVLVFDFRPSLEFFLEAPSVLLSIFI YNASKPQVPEYAPRQERIRDLSGNLWERSSGDGEELERLTKPKSDESDEDTF

Transmembrane domains:

amino acids 16-36 (type II), 50-74, 147-168, 229-250, 271-293, 298-318, 328-368

N-glycosylation sites.

amino acids 128-132, 204-208, 218-222, 374-378

Glycosaminoglycan attachment site.

amino acids 402-406

N-myristoylation sites.

amino acids 257-263, 275-281, 280-286, 284-290, 317-323

FIGURE 10

FIGURE 11

GTGGCTAAGGCTGCTACGAAGCGAGCTTGGGAGGAGCAGCGGCCTGCGGGGCAGAGGAGCAT CCCGTCTACCAGGTCCCAAGCGGCGTGGCCCGCGGGTCATGGCCAAAGGAGAAGGCGCCGAG AGCGGCTCCGCGGCGGGCTGCTACCCACCAGCATCCTCCAAAGCACTGAACGCCCGGCCCA GGTGAAGAAGAACCGAAAAAGAAGAACAACAGTTGTCTGTTTGCAACAAGCTTTGCTATG CTATTGGATGTGGCTCAGGTGGGCCCTTTCTCTGCCTCCATCATCCTGTTTGTGGGCCGAGC CTGGGATGCCATCACAGACCCCCTGGTGGGCCTCTGCATCAGCAAATCCCCCTGGACCTGCC TGGGTCGCCTTATGCCCTGGATCATCTTCTCCACGCCCCTGGCCGTCATTGCCTACTTCCTC ATCTGGTTCGTGCCCGACTTCCCACACGGCCAGACCTATTGGTACCTGCTTTTCTATTGCCT CTTTGAAACAATGGTCACGTGTTTCCATGTTCCCTACTCGGCTCTCACCATGTTCATCAGCA ACCGAGCAGACTGAGCGGGATTCTGCCACCGCCTATCGGATGACTGTGGAAGTGCTGGGCAC AGTGCTGGGCACGGCGATCCAGGGACAAATCGTGGGCCAAGCAGACACGCCTTGTTTCCAGG ACTTCAATAGCTCTACAGTAGCTTCACAAAGTGCCAACCATACACATGGCACCACTTCACAC AGGGAAACGCAAAAGGCATACCTGCTGGCAGCGGGGTCATTGTCTGTATCTATATAATCTG TGCTGTCATCCTGGGCGTGCGGGAGCAGAGAACCCTATGAAGCCCAGCAGTCTG AGCCAATCGCCTACTTCCGGGGCCTACGGCTGGTCATGAGCCACGGCCCATACATCAAACTT ATTACTGGCTTCCTCTTCACCTCCTTGGCTTTCATGCTGGTGGAGGGGAACTTTGTCTTGTT TTGCACCTACACCTTGGGCTTCCGCAATGAATTCCAGAATCTACTCCTGGCCATCATGCTCT $\tt CGGCCACTTTAACCATTCCCATCTGGCAGTGGTTCTTGACCCGGTTTGGCAAGAAGACAGCT$ GTATATGTTGGGATCTCATCAGCAGTGCCATTTCTCATCTTGGTGGCCCTCATGGAGAGTAA CCTCATCATTACATATGCGGTAGCTGTGGCAGCTGGCATCAGTGTGGCAGCTGCCTTCTTAC TACCCTGGTCCATGCTGCTGATGTCATTGACGACTTCCATCTGAAGCAGCCCCACTTCCAT GGAACCGAGCCCATCTTCTCTCTTCTATGTCTTCTTCACCAAGTTTGCCTCTGGAGTGTC ACTGGGCATTTCTACCCTCAGTCTGGACTTTGCAGGGTACCAGACCCGTGGCTGCTCGCAGC CGGAACGTGTCAAGTTTACACTGAACATGCTCGTGACCATGGCTCCCATAGTTCTCATCCTG GGCCCTGCAGGCACTGAGGGCCGGGCCAGCTCTGGCTGCTCAGAAACAGACTCCACAG AGCTGGCTAGCATCCTCTAGGGCCCGCCACGTTGCCCGAAGCCACCATGCAGAAGGCCACAG AAGGGATCAGGACCTGTCTGCCGGCTTGCTGAGCAGCTGCAGGTGCTAGGAAGGGAA CTGAAGACTCAAGGAGGTGGCCCAGGACACTTGCTGTGCTCACTGTGGGGCCGGCTGCTCTG TGGCCTCCTGCCTGCCTGTGGGGCCAAGCCCTGGGGCTGCCACTGTGAATA TTAATGTTATTAATTTTCATAAAAGCTGGAAAGC

FIGURE 12

MWLRWALSLPPSSCLWAEPGMPSQTPWWASASANPPGPAWVALCPGSSSPRPWPSLPTSSG SCPTSHTARPIGTCFSIASLKQWSRVSMFPTRLSPCSSATEQTERDSATAYRMTVEVLGTVL GTAIQGQIVGQADTPCFQDFNSSTVASQSANHTHGTTSHRETQKAYLLAAGVIVCIYIICAV ILILGVREQREPYEAQQSEPIAYFRGLRLVMSHGPYIKLITGFLFTSLAFMLVEGNFVLFCT YTLGFRNEFQNLLLAIMLSATLTIPIWQWFLTRFGKKTAVYVGISSAVPFLILVALMESNLI ITYAVAVAAGISVAAAFLLPWSMLPDVIDDFHLKQPHFHGTEPIFFSFYVFFTKFASGVSLG ISTLSLDFAGYQTRGCSQPERVKFTLNMLVTMAPIVLILLGLLLFKMYPIDEERRRQNKKAL QALRDEASSSGCSETDSTELASIL

FIGURE 13

GGGAAACGCAAAAGGCATACCTGCTGGCAGCGGGGTCATTGTCTGTATCTATATATCTGT
GCTGTCATCCTGATCCTGGGCGTGCGGGAGCAGAGAGAACCCTATGAAGCCCAGCAGTCTGA
GCCAATCGCCTACTTCCGGGGCTACGGCTGGTCATGAGCCACGGCCCATACATCAAACTTA
TTACTGGCTTCCTCTTCACCTCCTTGGCTTTCATGCTGGGGAGGGGAACTTTGTCTTTT
TGCACCTACACCTTGGGCTTCCGCAATGAATTCCAGAATCTACTCCTGGCCATCATGCTCTC
GGCCACTTTAACCATTCCCATCTGGCAGTGGTTCTTGACCCGGTTTGGCAAGAAGACAGCTG
TATATGTTGGGATCTCATCAGCAGTGCCATTTCTATCTTGGCAGCTGGCCTCATTGGAAGAAGACACCTC
CTCATCATTACATATGCGGTAGCTGTGCCATTCTACTTGGCAGCTGCCTCCTTCTACT
ACCCTGGTCCATGCTGCCTGATGTCATTGACGACTTCCATCTGAAGCAGCCCCACTTCCATG
GAACCGAGCCCAT

FIGURE 14

GGGGCTTCGGCGCCAGCGGCCAGCGCTAGTCGGTCTGGTAAGGATTTACAAAAGGTGCAGGT ATGAGCAGGTCTGAAGACTAACATTTTGTGAAGTTGTAAAACAGAAAACCTGTTAGAAATGT GGTGGTTTCAGCAAGGCCTCAGTTTCCTTCCTTCAGCCCTTGTAATTTGGACATCTGCTGCT TTCATATTTTCATACATTACTGCAGTAACACTCCACCATATAGACCCGGCTTTACCTTATAT CAGTGACACTGGTACAGTAGCTCCAGAAAAATGCTTATTTGGGGCAATGCTAAATATTGCGG CAGTTTTATGCATTGCTACCATTTATGTTCGTTATAAGCAAGTTCATGCTCTGAGTCCTGAA GAGAACGTTATCATCAAATTAAACAAGGCTGGCCTTGTACTTGGAATACTGAGTTGTTTAGG ACTTTCTATTGTGGCAAACTTCCAGAAAACAACCCTTTTTGCTGCACATGTAAGTGGAGCTG TGCTTACCTTTGGTATGGGCTCATTATATGTTTGTTCAGACCATCCTTTCCTACCAAATG CAGCCCAAAATCCATGCCAAACAAGTCTTCTGGATCAGACTGTTGTTGGTTATCTGGTGTGG AGTAAGTGCACTTAGCATGCTGACTTGCTCATCAGTTTTGCACAGTGGCAATTTTGGGACTG ATTTAGAACAGAAACTCCATTGGAACCCCGAGGACAAAGGTTATGTGCTTCACATGATCACT ACTGCAGCAGAATGGTCTATGTCATTTTCCTTCTTTGGTTTTTTCCTGACTTACATTCGTGA TTTTCAGAAAATTTCTTTACGGGTGGAAGCCAATTTACATGGATTAACCCTCTATGACACTG CACCTTGCCCTATTAACAATGAACGAACACGGCTACTTTCCAGAGATATTTGATGAAAGGAT AAAATATTTCTGTAATGATTATGATTCTCAGGGATTGGGGAAAGGTTCACAGAAGTTGCTTA TTCTTCTGAAATTTTCAACCACTTAATCAAGGCTGACAGTAACACTGATGAATGCTGATA ATCAGGAAACATGAAAGAAGCCATTTGATAGATTATTCTAAAGGATATCATCAAGAAGACTA TTAAAAACACCTATGCCTATACTTTTTTTTCTCAGAAAATAAAGTCAAAAGACTATG

FIGURE 15

MWWFQQGLSFLPSALVIWTSAAFIFSYITAVTLHHIDPALPYISDTGTVAPEKCLFGAMLNI
AAVLCIATIYVRYKQVHALSPEENVIIKLNKAGLVLGILSCLGLSIVANFQKTTLFAAHVSG
AVLTFGMGSLYMFVQTILSYQMQPKIHGKQVFWIRLLLVIWCGVSALSMLTCSSVLHSGNFG
TDLEQKLHWNPEDKGYVLHMITTAAEWSMSFSFFGFFLTYIRDFQKISLRVEANLHGLTLYD
TAPCPINNERTRLLSRDI

FIGURE 16

FIGURE 17

CCCACGCGTCCGCCGCCGCTCCCGGAGTGCAAGTGAGCTTCTCGGCTGCCCCGCGGG CCGGGGTGCGGACCGACATGCGCCCGCTTCTCGGCCTCCTTCTGGTCTTCGCCGGCTGCAC AGGCTGGAGGCAGGTCGCTGTGGTTCCCCTCCGACCTGGCAGAGCTGCGGGAGCTCTCTGAG GTCCTTCGAGAGTACCGGAAGGAGCACCAGGCCTACGTGTTCCTGCTCTTCTGCGGCGCCTA CCTCTACAAACAGGGCTTTGCCATCCCGGCTCCAGCTTCCTGAATGTTTTAGCTGGTGCCT TGCTACCTGCTCCCAGTATTTTTGGCAAACAGTTGGTGGTGTCCTACTTTCCTGATAAAGT TGAGACTTTTCCCCATGACACCAAACTGGTTCTTGAACCTCTCGGCCCCAATTCTGAACATT CCCATCGTGCAGTTCTTCTCAGTTCTTATCGGTTTGATCCCATATAATTTCATCTGTGT GCAGACAGGGTCCATCCTGTCAACCCTAACCTCTCTGGATGCTCTTTTCTCCTGGGACACTG TCTTTAAGCTGTTGGCCATTGCCATGGTGGCATTAATTCCTGGAACCCTCATTAAAAAATTT AGTCAGAAACATCTGCAATTGAATGAAACAAGTACTGCTAATCATATACACAGTAGAAAAGA CACATGATCTGGATTTTCTGTTTGCCACATCCCTGGACTCAGTTGCTTATTTGTGTAATGGA TGTGGTCCTCTAAAGCCCCTCATTGTTTTTGATTGCCTTCTATAGGTGATGTGGACACTGTG CATCAATGTGCAGTGTCTTTTCAGAAAGGACACTCTGCTCTTGAAGGTGTATTACATCAGGT TTTCAAACCAGCCCTGGTGTAGCAGACACTGCAACAGATGCCTCCTAGAAAATGCTGTTTGT GGCCGGCGCGCTGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCCGGTGATTC ACAAGGTCAGGAGTTCAAGACCAGCCTGGCCAAGATGGTGAAATCCTGTCTCTAATAAAAAT ACAAAAATTAGCCAGGCGTGGTGGCAGGCACCTGTAATCCCAGCTACTCGGGAGGCTGAGGC AGGAGAATTGCTTGAACCAAGGTGGCAGAGGTTGCAGTAAGCCAAGATCACACCACTGCACT CCAGCCTGGGTGATAGAGTGAGACACTGTCTTGAC

FIGURE 18

MRPLIGLLLVFAGCTFALYLLSTRLPRGRRLGSTEEAGGRSLWFPSDLAELRELSEVLREYR
KEHQAYVFLLFCGAYLYKQGFAIPGSSFLNVLAGALFGPWLGLLLCCVLTSVGATCCYLLSS
IFGKQLVVSYFPDKVALLQRKVEENRNSLFFFLLFLRLFPMTPNWFLNLSAPILNIPIVQFF
FSVLIGLIPYNFICVQTGSILSTLTSLDALFSWDTVFKLLAIAMVALIPGTLIKKFSQKHLQ
LNETSTANHIHSRKDT

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 101-123, 189-211

N-glycosylation sites.

amino acids 172-176, 250-254

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 240-244, 261-265

N-myristoylation site.

amino acids 13-19, 104-110, 115-121, 204-210

Amidation site.

amino acids 27-31

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 4-15

Protein splicing proteins.

amino acids 25-31

Sugar transport proteins.

amino acids 162-172

FIGURE 19

CCGAGGCGGAGGAGCCCGAGGGGGCGCGCAGAATCATTGTAGTCAATCATTTT CCAGTTCTCAGCCGCTCAGTTGTGATCAAGGGACACGTGGTTTCCGAACTGCCAGCTCAGAA TAGGAAAATAACTTGGGATTTTATATTGGAAGACATGGATCTTGCTGCCAACGAGATCAGCA TCAGAGAGGCAATTGAAAAATTTATCAGACAGCTGCTGGAAAAGAATGAACCTCAGAGACC CCCCCGCAGTATCCTCCTTATAGTTGTGTATAAGGTTCTCGCAACCTTGGGATTAATCT TGCTCACTGCCTACTTTGTGATTCAACCTTTCAGCCCATTAGCACCTGAGCCAGTGCTTTCT GGAGCTCACACCTGGCGCTCACTCATCCATCACATTAGGCTGATGTCCTTGCCCATTGCCAA CAGACTTTGACCCCTGGTGGACAAACGACTGTGAGCAGAATGAGTCAGAGCCCATTCCTGCC AACTGCACTGGCTGTGCCCAGAAACACCTGAAGGTGATGCTCCTGGAAGACGCCCCAAGGAA ATTTGAGAGGCTCCATCCACTGGTGATCAAGACGGGAAAGCCCCTGTTGGAGGAAGAGATTC AGCATTTTTTGTGCCAGTACCCTGAGGCGACAGAAGGCTTCTCTGAAGGGTTTTTCGCCAAG TGGTGGCGCTGCTTTCCTGAGCGGTGGTTCCCATTTCCTTATCCATGGAGGAGACCTCTGAA CCTCTTTAAACAAGTGCTCCTTTCTTCACCCAGAACCTGTTGTGGGGAGTAAGATGCATAAG GTGCCGAAGACATTGTCAGTCTGTGGCCATGCCAATAGAGCCAGGGGATATCGGCTATGTCG ACACCACCCACTGGAAGGTCTACGTTATAGCCAGAGGGGTCCAGCCTTTGGTCATCTGCGAT ${\tt GGAACCGCTTTCTCAGAACTG}{\tt TAG}{\tt GAAATAGAACTGTGCACAGGAACAGCTTCCAGAGCCGA}$ AAACCAGGTTGAAAGGGGAAAAATAAAAACAAAAACGATGAAACTGCAAAAA

FIGURE 20

MDLAANEISIYDKLSETVDLVRQTGHQCGMSEKAIEKFIRQLLEKNEPQRPPPQYPLLIVVY
KVLATLGLILLTAYFVIQPFSPLAPEPVLSGAHTWRSLIHHIRLMSLPIAKKYMSENKGVPL
HGGDEDRPFPDFDPWWTNDCEQNESEPIPANCTGCAQKHLKVMLLEDAPRKFERLHPLVIKT
GKPLLEEEIQHFLCQYPEATEGFSEGFFAKWWRCFPERWFPFPYPWRRPLNRSQMLRELFPV
FTHLPFPKDASLNKCSFLHPEPVVGSKMHKMPDLFIIGSGEAMLQLIPPFQCRRHCQSVAMP
IEPGDIGYVDTTHWKVYVIARGVOPLVICDGTAFSEL

FIGURE 21

CCCACGCGTCCGCCCACGCGTCCGCTGAACACCTCTTCTTTGGAGTCAGCCACTGATGAGG CACCCGAATGCCCCACTTCATCGACAAACAGGTACAGCCAACCATCCCAGTTCGAAATG $GACACGTATGCTAAGAGCCACGACCTTATGTCAGGTTTCTGGAA\overline{TGC}CTGCTATGACATGCT$ TATGAGCAGTGGGCAGCGCCCAGTGGGAGCGCCCCAGAGTCGTCGGGCCTTCCAGGAGC TGGTGCTGGAACCTGCGCAGAGGCGGCGCCTGGAGGGGCTACGCTACACGCCAGTGCTG GCGCCGAGACATATTCACGCATGCGTCTGAAGCTGGTGCCCAACCATCACTTCGACCCTCAC CTCACTGCCTCTGGCAGTGACCAAAGAGGCCCAAAGTGAGCACCCCACCCGAGTTGCTGCAGG AGGACCACCTCGCGAGGACGACCTGCTCAGCTGGAGACCCCGATGGAGGCACCAGACTG GATGAGCAGCTGTGAGAAGCTGGTGCTGTCGCCGAGTGCCAGCTGTGACGGTTAGTGGCCG GGTCCCAGGGCTGCTGAGAGTACCACACAGAATGTACTTCTACGATGGCAGCACTGAGC GCGTGGAAACCGAGGAGGGCATCGGCTATGATTTCCGGCGCCCACTGGCCCAGCTGCGTGAGGTCCACCTGCGGCGTTTCAACCTGCGCCGTTCAGCACTTGAGCTCTTTTTTATCGATCAGGC CAACTACTTCCTCAACTTCCCATGCAAGGTGGGCACGACCCCAGTCTCATCTCCTAGCCAGA CTCCGAGACCCCAGCCTGGCCCCATCCCACCCCATACCCAGGTACGGAACCAGGTGTACTCG TGGCTCCTGCGCCTACGGCCCCCCTCTCAAGGCTACCTAAGCAGCCGCTCCCCCAGGAGAT GCTGCGTGCCTCAGGCCTTACCCAGAAATGGGTACAGCGTGAGATATCCAACTTCGAGTACT TGATGCAACTCAACACCATTGCGGGGCGGACCTACAATGACCTGTCTCAGTACCCTGTGTTC CCCTGGGTCCTGCAGGACTACGTGTCCCCAACCCTGGACCTCAGCAACCCAGCCGTCTTCCG GGACCTGTCTAAGCCCATCGGTGTGGTGAACCCCAAGCATGCCCAGCTCGTGAGGGAGAAGT AGGCACGCCTGGAGAGCCCTGCCGATGTGAAGGAGCTCATCCCGGAATTCTTCTACTTTCCT GACTTCCTGGAGAACCAGAACGGTTTTGACCTGGGCTGTCTCCAGCTGACCAACGAGAAGGT TCAGCAACTTTGGGCAGACTCCCTGTCAGCTGCTGAAGGAGCCACATCCAACTCGGCTCTCA GCTGAGGAAGCAGCCCATCGCCTTGCACGCCTGGACACTAACTCACCTAGCATCTTCCAGCA CCTGGACGAACTCAAGGCATTCTTCGCAGAGGTGACTGTGAGTGCCAGTGGGCTGCTGGGCA CCCACAGCTGGTTGCCCTATGACCGCAACATAAGCAACTACTTCAGCTTCAGCAAAGACCCC ACCATGGGCAGCCACAAGACGCAGCGACTGCTGAGTGGCCCGTGGGTGCCAGGCAGTGGTGT GAGTGGACAAGCACTGGCAGTGGCCCCGGATGGAAAGCTGCTATTCAGCGGTGGCCACTGGG ATGGCAGCCTGCGGGTGACTGCACTACCCCGTGGCAAGCTGTTGAGCCAGCTCAGCTGCCAC CTTGATGTAGTAACCTGCCTTGCACTGGACACCTGTGGCATCTACCTCATCTCAGGCTCCCG GCACACCACGTCCATGGTGGCGGCTCCTGCATCAGGGTGGTCTGTCAGTAGGCCTGGCAC GAAAGCCTGTACAGGTCCTGTATGGGCATGAGGTGAGCTGTGTGGCCATCAGCACT GAACTTGACATGGCTGTGTCTGGATCTGAGGATGGAACTGTGATCATACACACTGTACGCCG CGGACAGTTTGTAGCGGCACTACGGCCTCTGGGTGCCACATTCCCTGGACCTATTTTCCACC TGGCATTGGGGTCCGAAGGCCAGATTGTGGTACAGAGCTCAGCGTGGGAACGTCCTGGGGCC TGGCATTGGCTTGCACTGTATTCATCTAATGGGAAGTTGCGGGCTTCACTGCCCCT GGCAGAGCAGCCTACAGCCCTGACGGTGACAGAGGACTTTGTGTTTCTGGGCACCGCCAGT GGCCCTGCACATCTCTCCAACTAAACAACTGCTCTCCCGGCCGCCTCCTTGCCCATGAAG GTGGCCATCCGCAGTCCTCAACTAAACAACAGAGGACCACGTGCTGGTGGGCCTGAGAG TGGCAAGCTCATCGTGGTGGTCGCGGGGCAGCCCTCTGAGGTGCGCAGCCAGTTCGCGC GGAAGCTGTGGCGGTCCTCGCGGCGCATCTCCCAGGTGTCCTCGGGAGAGACGGAATACAAC CCTACTGAGGCGCGC<u>TGA</u>ACCTGGCCAGTCCGGCTGCTCGGGCCCCCCCCCGGCAGGCCTG GCCCGGGAGGCCCCGCCCAGAACTCGGCGGAACACCCCGGGGTGGGCAGCCCAGGGGGTGAGCCCACCCTCAGGGATTGGCGGGCCACCCTCAGGGATTGGCG GGCGGAAGTCCCGCCCTCGCCGGCTGAGGGCCCCTGAGGGCCAGCACTGGCGTCT

MSQFEMDTYAKSHDLMSGFWNACYDMLMSSGQRRQWERAQSRRAFQELVLEPAQRRARLEGL RYTAVLKQQATQHSMALLHWGALWRQLASPCGAWALRDTPIPRWKLSSAETYSRMRLKLVPN ${\tt HHFDPHLEASALRDNLGEVPLTPTEEASLPLAVTKEAKVSTPPELLQEDQLGEDELAELETP}$ MEAAELDEQREKLVLSAECQLVTVVAVVPGLLEVTTONVYFYDGSTERVETEEGIGYDFRRP LAOLREVHLRRFNLRRSALELFFIDQANYFLNFPCKVGTTPVSSPSQTPRPQPGPIPPHTQV RNQVYSWLLRLRPPSOGYLSSRSPOEMLRASGLTOKWVOREISNFEYLMOLNTIAGRTYNDL SQYPVFPWVLQDYVSPTLDLSNPAVFRDLSKPIGVVNPKHAQLVREKYESFEDPAGTIDKFH YGTHYSNAAGVMHYLIRVEPFTSLHVQLQSGRFDCSDRQFHSVAAAWQARLESPADVKELIP EFFYFPDFLENQNGFDLGCLQLTNEKVGDVVLPPWASSPEDFIQQHRQALESEYVSAHLHEW IDLIFGYKORGPAAEEALNVFYYCTYEGAVDLDHVTDERERKALEGIISNFGOTPCOLLKEP HPTRLSAEEAAHRLARLDTNSPSIFQHLDELKAFFAEVTVSASGLLGTHSWLPYDRNISNYF SFSKDPTMGSHKTQRLLSGPWVPGSGVSGQALAVAPDGKLLFSGGHWDGSLRVTALPRGKLL SQLSCHLDVVTCLALDTCGIYLISGSRDTTCMVWRLLHQGGLSVGLAPKPVQVLYGHGAAVS CVAISTELDMAVSGSEDGTVIIHTVRRGOFVAALRPLGATFPGPIFHLALGSEGOIVVOSSA WERPGAQVTYSLHLYSVNGKLRASLPLAEQPTALTVTEDFVLLGTAQCALHILQLNTLLPAA PPLPMKVAIRSVAVTKERSHVLVGLEDGKLIVVVAGQPSEVRSSQFARKLWRSSRRISQVSS GETEYNPTEAR

N-glycosylation site.

amino acids 677-681

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 985-989

Tyrosine kinase phosphorylation site.

amino acids 56-65, 367-376, 543-551

N-myristoylation site.

amino acids 61-67, 436-442, 604-610, 610-616, 664-670, 691-697, 706-712, 711-717, 769-775, 785-791, 802-808, 820-826, 834-840, 873-879, 912-918, 954-960

FIGURE 24

CACGGCCCACCTTGTGAACTCCTCGTGCCCAGGGCTGATGTGCGTCTTCCAGGGCTACTCAT CCAAAGGCCTAATCCAACGTTCTGTCTTCAATCTGCAAATCTATGGGGTCCTGGGGCTCTTC TGGACCCTTAACTGGGTACTGGCCCTGGGCCAATGCGTCCTCGCTGGAGCCTTTGCCTCCTT CTACTGGGCCTTCCACAAGCCCCAGGACATCCCTACCTTCCCCTTAATCTCTGCCTTCATCC GCACACTCCGTTACCACACTGGGTCATTGGCATTTGGAGCCCTCATCCTGACCCTTGTGCAG ATAGCCCGGGTCATCTTGGAGTATATTGACCACAAGCTCAGAGGAGTGCAGAACCCTGTAGC CCGCTGCATCATGTGCTGTTTCAAGTGCTGCCTCTGGTGTCTGGAAAAATTTATCAAGTTCC TAAACCGCAATGCATACATCATGATCGCCATCTACGGGAAGAATTTCTGTGTCTCAGCCAAA AATGCGTTCATGCTACTCATGCGAAACATTGTCAGGGTGGTCGTCCTGGACAAAGTCACAGA TTTTCTCCGGTCGCATCCCGGGGCTGGGTAAAGACTTTAAGAGCCCCCACCTCAACTATTAC TGGCTGCCCATCATGACCTCCATCCTGGGGGCCTATGTCATCGCCAGCGGCTTCTTCAGCGT TTTCGGCATGTGTGTGGACACGCTCTTCCTCTGCTTCCTGGAAGACCTGGAGCGGAACAACG GCTCCCTGGACCGCCCTACTACATGTCCAAGAGCCTTCTAAAGATTCTGGGCAAGAAGAAC GAGGCGCCCCGGACAACAAGAAGAGGAAGAAGTGACAGCTCCGGCCCTGATCCAGGACTGC ACCCCACCCCACCGTCCAGCCATCCAACCTCACTTCGCCTTACAGGTCTCCATTTTGTGGT AAAAAAAGGTTTTAGGCCAGGCGCGTGGCTCACGCCTGTAATCCAACACTTTGAGAGGCTG AGGCGGCGGATCACCTGAGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCTCC GTCTCTATTAAAAATACAAAAATTAGCCGAGAGTGGTGGCATGCACCTGTCATCCCAGCTAC TCGGGAGGCTGAGGCAGGAGATCGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGCCGAGA AAAGATTTTATTAAAGATATTTTGTTAACTC

FIGURE 25

RTRGRTRGGCEKVPINTSCNPTAHLVNSSCPGLMCVFQGYSSKGLIQRSVFNLQIYGVLGLF
WTLNWVLALGQCVLAGAFASFYWAFHKPQDIPTFPLISAFIRTLRYHTGSLAFGALILTLVQ
IARVILEYIDHKLRGVQNPVARCIMCCFKCCLWCLEKFIKFLNRNAYIMIAIYGKNFCVSAK
NAFMLLMRNIVRVVVLDKVTDLLLFFGKLLVVGGVGVLSFFFFSGRIPGLGKDFKSPHLNYY
WLPIMTSILGAYVIASGFFSVFGMCVDTLFLCFLEDLERNNGSLDRPYYMSKSLLKILGKKN
EAPPDNKKRKK

FIGURE 26

GAGTCTTGACCGCCGGCCGGCTCTTGGTACCTCAGCGCGAGCGCCAGGCGTCCGGCCGCCGT GGCTATGTTCGTGTCCGATTTCCGCAAAGAGTTCTACGAGGTGGTCCAGAGCCAGAGGGTCC CAGTGTGACCACGTGCAATATACGCTGGTTCCAGTTTCTGGGTGGCAAGAACTTGAAACTGC ATTTCTTGAGCATAAAGAACAGTTTCATTATTTTATTCTCATAAACTGTGGAGCTAATGTAG CCAGTCAATGTCGTCAATGTATACAACGATACCCAGATCAAATTACTCATTAAACAAGATGA TGACCTTGAAGTTCCCGCCTATGAAGACATCTTCAGGGATGAAGAGGAGGATGAAGAGCATT CAGGAAATGACAGTGATGGGTCAGAGCCTTCTGAGAAGCGCACACGGTTAGAAGAGGAGATA GTGGAGCAAACCATGCGGAGGAGGCAGCGGCGAGAGTGGGAGGCCCGGAGAAGAGACATCCT CTTTGACTACGAGCAGTATGAATATCATGGGACATCGTCAGCCATGGTGATGTTTGAGCTGG CTTGGATGCTGTCCAAGGACCTGAATGACATGCTGTGGTGGGCCCATCGTTGGACTAACAGAC CAGTGGGTGCAAGACAAGATCACTCAAATGAAATACGTGACTGATGTTGGTGTCCTGCAGCG CCACGTTTCCCGCCACAACCACCGGAACGAGGATGAGGAGAACACACTCTCCGTGGACTGCA CACGGATCTCCTTTGAGTATGACCTCCGCCTGGTGCTCTACCAGCACTGGTCCCTCCATGAC AGCCTGTGCAACACCAGCTATACCGCAGCCAGGTTCAAGCTGTGGTCTGTGCATGGACAGAA GCGGCTCCAGGAGTTCCTTGCAGACATGGGTCTTCCCCTGAAGCAGGTGAAGCAGAAGTTCC AGGCCATGGACATCTCCTTGAAGGAGAATTTGCGGGAAATGATTGAAGAGTCTGCAAATAAA TCTGGCCAGCGACGTGTCTTTGCCACCATGTCTTTGATGGAGAGCCCCGAGAAGGATGGCT CAGGGACAGATCACTTCATCCAGGCTCTGGACAGCCTCTCCAGGAGTAACCTGGACAAGCTG TACCATGGCCTGGAACTCGCCAAGAAGCAGCTGCGAGCCACCCAGCAGACCATTGCCAGCTGC CTTTGCACCAACCTCGTCATCTCCCAGGGGCCTTTCCTGTACTGCTCTCTCATGGAGGGCAC TCCAGATGTCATGCTGTTCTCTAGGCCGGCATCCCTAAGCCTGCTCAGCAAACACCTGCTCA AGTCCTTTGTGTGTCGACAAAGAACCGGCGCTGCAAACTGCTGCCCCTGGTGATGGCTGCC CCCCTGAGCATGGAGCATGGCACAGTGACCGTGGTGGGCATCCCCCCAGAGACCGACAGCTC GGACAGGAAGAACTTTTTTGGGAGGGCGTTTGAGAAGGCAGCGGAAAGCACCAGCTCCCGGA TGCTGCACAACCATTTTGACCTCTCAGTAATTGAGCTGAAAGCTGAGGATCGGAGCAAGTTT CTGGACGCACTTATTTCCCTCCTGTCCTAGGAATTTGATTCTTCCAGAATGACCTTCTTATT TATGTAACTGGCTTTCATTTAGATTGTAAGTTATGGACATGATTTGAGATGTAGAAGCCATT TTTTATTAAATAAAATGCTTATTTTAGGAAA

FIGURE 27

MFVSDFRKEFYEVVQSQRVLLFVASDVDALCACKILQALFQCDHVQYTLVPVSGWQELETAF
LEHKEQFHYFILINCGANVDLIDILQPDEDTIFFVCDSHRPVNVVNVYNDTQIKLLIKQDDD
LEVPAYEDIFRDEEEDEEHSGNDSDGSEFSEKRTRLEEEIVEQTMRRRQRREWEARRRDILF
DYEQYEYHGTSSAMVMFELAWMLSKDLNDMLWWAIVGLTDQWVQDKITQMKYVTDVGVLQRH
VSRHNHRNEDEENTLSVDCTRISFEYDLRLVLYQHWSLHDSLCNTSYTAARFKLWSVHGQKR
LQEFLADMGLPLKQVKQKFQAMDISLKENLREMIEESANKFGMKDMRVQTFSIHFGFKHKFL
ASDVVFATMSLMESPEKDGSGTDHFIQALDSLSRSNLDKLYHGLELAKKQLRATQQTIASCL
CTNLVISQGPFLYCSLMEGTPDVMLFSRPASLSLLSKHLLKSFVCSTKNRRCKLLPLVMAAP
LSMEHGTVTVVGIPPETDSSDRKNFFGRAFEKAAESTSSRMLHNHFDLSVIELKAEDRSKFL
DALISLLS

FIGURE 28

CAGGAACCCTCTCTTGGGTCTGGATTGGGACCCCTTTCCAGTACCATTTTTTCTAGTGAAC CAGCGGCTGCCAACGGTGCTGTGACTCTGAGGACCCCCTGGATCCTGCCCATGTATCCTCAG CCTCTTCCTCCGGCCGCCCCACGCCCTGCCTGAGATCAGACCCTACATTAATATCACCATC CCCCAAGGGGAGCCTGGCCCTCAGGGCAGCAAGGGTGACAAGGGGGAGATGGGCAGCCCCG GCGCCCGTGCCAGAAGCGCTTCTTCGCCTTCTCAGTGGGCCGCAAGACGGCCCTGCACAGC GGCGAGGACTTCCAGACGCTGCTCTTCGAAAGGGTCTTTGTGAACCTTGATGGGTGCTTTGA CATGGCGACCGGCCAGTTTGCTGCTCCCCTGCGTGGCATCTACTTCTTCAGCCTCAATGTGC CTACGGGGACCGCGTCTGGGTGCGGCTCTTCAAGCGCCAGCGCGAGAACGCCATCTACAGCA ACGACTTCGACACCTACATCACCTTCAGCGGCCACCTCATCAAGGCCGAGGACGACTGAGGG CCTCTGGGCCACCCTCCCGGCTGGAGAGCTCAGGTGCTGGTCCCGTCCCCTGCAGGGCTCAG TTGCACTGCTGTGAAGCAGGAAGGCCAGGGAGGTCCCCGGGGACCTGGCATTCTGGGGAGA CCCTGCTTCTTATCTTGGCTGCATCATCCCCCAGCCTATTTCTGCTCTCTTCTTCTTCTTCTAGACCTAGCCACCTATTTTACAAACTTGCAAACCTAATATTCTAGAACTTTTCCCAGCCTCAGCCCAGCCTATTTCCCAGCCTCGTAGCCC GACTCAGCAGGTCTGAGTGGGTCCAGGATTCTGTTTTCTCATATGTTCCTGGGTGATGCTG ATGGGGTCAGTCTATGAACCACACTGGAGCAACCAGGTTCTAGGACTTTCTCAATATTCTAG TGAGACAGAGTCTTGCTCTGTTGCCCAGGCTAGAGTGCAGTGGTGCAATCTCAGTTCACTGCAACCTCTGCCTCCGGGTTCAAGCGATTCTTCTGCCTCAGCCTCCCTAGTGGCTGGGATTAC GCTGGGATTACAGGTGTGAGCCACCGTGCCTGGCCAATTCCAACATTCTTAAATTCTCTCAT GTCCAGCCCAGGCGGGGAGAGATGTGTACATAGGTTTTAAAGCAGACCCAGAGCTCATGGGG GCCTGTGTTCTGGGTGTTCAGGTGCTGCTGGTCCTCCATTACCCACTGCTCCCCAAGGCTGG TGGGACGGGTCCCGGTGGCAGGGGCAGGTATCTCCTTCCCGTTCCTCATCCACCTGCCCAG TGCTCATCGTTACAGCAAACCCCAGGGGGCCTTGGCCAGGTCAAGGGTTCTGTGAGGAGAGG ACCCAGGAGTGTGGGGGCATTTGGGGGGTGAAGTGGCCCCCGAAGAATGGAACCCACACCCA TAGCTCTCCCCACAGCTGATACGGCATCCTGCGAGAAGACCTGCCCTCCTCACTGGGATCCC CCATTGGTGCTCATGCAGACTCTGGGGCTGAGGTGCCCCGGGGGGTGATCTCTGGTGCTCAC AGCCGAGGGAGCCGTGGCTCCATGGCCAGATGACGGAAACAGGGTCTGACCAAGTGCCAGGA AGACCTGTGCTATAAACCACCCTGCCTGATCCTGCCCTGACCCCGCCACGCCCTGCC

FIGURE 30

MVTAALGPVWAALLIFLLMCEIRMVELTFDRAVASGCQRCCDSEDPLDPAHVSSASSSGRPH ALPEIRPYINITILKGDKGDPGPMGLPGYMGREGPQGEPGPQGSKGDKGEMGSPGAPCQKRF FAFSVGRKTALHSGEDFQTLLFERVFVNLDGCFDMATGQFAAPLRGIYFFSLNVHSWNYKET YVHIMHNQKEAVILYAQPSERSIMQSQSVMLDLAYGDRVWVRLFKRQRENAIYSNDFDTYIT FSGHLIKAEDD

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 72-75

Clq domain proteins.

amino acids 144-178, 78-111 and 84-117

FIGURE 31

ACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCTCGGGCCCGACCCGCCAGGAAAGACTG AGGCCGCGGCCTGCCCCGGCTCCCTGCGCCGCCGCCGCCTCCCGGGACAGAAGATGTG GCTGCCCATCCGGCTGCCAGTGCAGCCAGCCACAGACAGTCTTCTGCACTGCCCGCCAGGGG ACCACGGTGCCCCGAGACGTGCCACCCGACACGGTGGGGCTGTACGTCTTTGAGAACGGCAT CACCATGCTCGACGCAGCTTTGCCGGCCTGCCGGGCCTGCAGCTCCTGGACCTGTCAC AGAACCAGATCGCCAGCCTGCCCAGCGGGGTCTTCCAGCCACCTCGCCAACCTCAGCAACCTG GACCTGACGGCCAACAGGCTGCATGAAATCACCAATGAGACCTTCCGTGGCCTGCGGCGCCT $\tt CGAGCGCCTCTACCTGGGCAAGAACCGCATCCGCCACATCCAGCCTGGTGCCTTCGACACGC$ $\tt CTGCCCGGCTGCTGCTGGACCTCAGCCACAACAGCCTCCTGGCCCTGGAGCCCGGCAT$ $\verb|CCTGGACACTGCCAACGTGGAGGCGCTGCGGCTGGTCTGGGGCTGCAGCAGCTGGACG|\\$ AGGGGCTCTTCAGCCGCTTGCGCAACCTCCACGACCTGGATGTGTCCGACAACCAGCTGGAG $\verb|CCGCATTGCCCAGCTGCCCGAGGACCTGGCCGGCCTGCCCTGCAGGAGCTGGATG| \\$ TGAGCAACCTAAGCCTGCAGGCCCTGCCTGGCGACCTCTCGGGCCTCTTCCCCCGCCTGCGG $\tt CTGCTGGCAGCTGCCCGCAACCCCTTCAACTGCGTGTGCCCCCTGAGCTGGTTTGGCCCCTG$ GGTGCGCGAGAGCCACGTCACACTGGCCAGCCCTGAGGAGACGCGCTGCCACTTCCCGCCCA AGAACGCTGGCCGGCTCCTGGAGCTTGACTACGCCGACTTTGGCTGCCCAGCCACCACC ACCACAGCCACAGTGCCCACCACGAGGCCCGTGGTGCGGGAGCCCACAGCCTTGTCTTCTAG CTGCCCCACCGACTGTAGGGCCTGTCCCCCAGCCCCAGGACTGCCCACCGTCCACCTGCCTC AATGGGGGCACATGCCACCTGGGGACACGGCACCACCTGGCGTGCTTGTGCCCCGAAGGCTT CACGGGCCTGTACTGTGAGAGCCAGATGGGGCAGGGGACACGGCCCAGCCCTACACCAGTCA CGCCGAGGCCACCACGGTCCCTGACCCTGGGCATCGAGCCGGTGAGCCCCACCTCCCTGCGC GTGGGGCTGCAGCGCTACCTCCAGGGGGGCTCCGTGCAGCTCAGGAGCCTCCGTCTCACCTA AGTACACGGTCACCCAGCTGCGGCCCAACGCCACTTACTCCGTCTGTGTCATGCCTTTGGGG CCCGGGCGGTGCCGGAGGCCGAGGCCTCCA CTCCAACCACGCCCCAGTCACCCAGGCCCGCGAGGGCAACCTGCCGCTCCTCATTGCGCCCG CCCTGGCCGCGTGCTCCTGGCCGCGCTGCGTGGGGGGCAGCCTACTGTGTGCGGCGG GGGCGGCCATGGCAGCAGCGGCTCAGGACAAAGGGCAGGTGGGGCCAGGGGCTGGGCCCCT GGAACTGGAGGGAGTGAAGGTCCCCTTGGAGCCAGGCCCGAAGGCAACAGAGGGCGGTGGAG AGGCCCTGCCCAGCGGGTCTGAGTGTGAGGTGCCACTCATGGGCTTCCCAGGGCCTGGCCTC ${\tt CAGTCACCCCTCCACGCAAAGCCCTACATC} {\color{red}{\textbf{TAA}}} {\tt GCCAGAGAGACAGGGCAGCTGGGGCCG}$ GGCTCTCAGCCAGTGAGATGGCCAGCCCCTCCTGCTGCCACACCACGTAAGTTCTCAGTCC CAACCTCGGGGATGTGTGCAGACAGGGCTGTGTGACCACAGCTGGGCCCTGTTCCCTCTGGA CCTCGGTCTCCTCATCTGTGAGATGCTGTGGCCCAGCTGACGAGCCCTAACGTCCCCAGAAC CGAGTGCCTATGAGGACAGTGTCCGCCCTGCCCTCCGCAACGTGCAGTCCCTGGGCACGGCG GGCCCTGCCATGTGCTGGTAACGCATGCCTGGGTCCTGCTGGGCTCTCCCACTCCAGGCGGA CCCTGGGGGCCAGTGAAGGAAGCTCCCGGAAAGAGCAGAGGGGAGAGCGGGTAGGCGGCTGTG TGACTCTAGTCTTGGCCCCAGGAAGCGAAGGAACAAAAGAAACTGGAAAGGAAGATGCTTTA GGAACATGTTTTGCTTTTTTAAAATATATATATTTATAAGAGATCCTTTCCCATTTATTCTG GGAAGATGTTTTCAAACTCAGAGACAAGGACTTTGGTTTTTGTAAGACAAACGATGATATG AAGGCCTTTTGTAAGAAAAAATAAAAGATGAAGTGTGAAA

FIGURE 32

MCSRVPLLLPLLLLALGPGVQGCPSGCQCSQPQTVFCTARQGTTVPRDVPPDTVGLYVFEN
GITMLDAGSFAGLPGLQLLDLSQNQIASLPSGVFQPLANLSNLDLTANRLHEITNETFRGLR
RLERLYLGKNRIRHIQPGAFDTLDRLLELKLQDNELRALPPLRLPRLLLLDLSHNSLLALEP
GILDTANVEALRLAGLGLQQLDEGLFSRLRNLHDLDVSDNQLERVPPVIRGLRGLTRLRLAG
NTRIAQLRPEDLAGLAALQELDVSNLSLQALPGDLSGLFPRLRLLAAARNPFNCVCPLSWFG
PWVRESHVTLASPEETRCHFPPKNAGRLLLELDYADFGCPATTTTATVPTTRPVVREPTALS
SSLAPTWLSPTAPATEAPSPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHLACLCPE
GFTGLYCESQMGQGTRPSPTPVTPRPPRSLTLGIEPVSPTSLRVGLQRYLQGSSVQLRSLRL
TYRNLSGPDKRLVTLRLPASLAEYTVTQLRPNATYSVCVMPLGPGRVPEGEEACGEAHTPPA
VHSNHAPVTQAREGNLPLLIAPALAAVLLAALAAVGAAYCVRRGRAMAAAAQDKGQVGPGAG
PLELEGVKVPLEPGPKATEGGGEALPSGSECEVPLMGFPGPGLQSPLHAKPYI

GAATCATCCACGCACCTGCAGCTCTGCTGAGAGAGTGCAAGCCGTGGGGGTTTTGAGCTCAT CTTCATCATTCATATGAGGAAATAAGTGGTAAAATCCTTGGAAATACA**ATG**AGACTCATCAG ATCTCAAAACCTTTGAATTCAACAAGGAGTTAAGATATTTAGATTTGTCTAATAACAGACTG TTCTTAGGATTCAGAACTCTTCCTCATTATGAAGAAGGTAGCCTGCCCATCTTAAACACAAC AAAACTGCACATTGTTTTACCAATGGACACAAATTTCTGGGTTCTTTTGCGTGATGGAATCA AGACTTCAAAAATATTAGAAATGACAAATATAGATGGCAAAAGCCAATTTGTAAGTTATGAA TTCAGATCCGAAATGTGACTTTTGGTGGTAAGGCTTATCTTGACCACAATTCATTTGACTAC TCAAATACTGTAATGAGAACTATAAAATTGGAGCATGTACATTTCAGAGTGTTTTACATTCA ACAGGATAAAATCTATTTGCTTTTGACCAAAATGGACATAGAAAACCTGACAATATCAAATG CACAMATECCACACATECTTTTCCCCAATTATCCTACCAAATTCCAATATTTAAATTTTCCC AATAATATCTTAACAGACGAGTTGTTTAAAAGAACTATCCAATTGCTACCACTTGCAAAAACCCC CATTTTGAATGCCAATAAACTGGAGACACTTCTTAGTAAAGTTGCTATTGCTAACAACACAC CCTTGGAACACCTTGGATCTGAACATCTATTACAACATAAAATGATGAAAATTGCTCA TGGCCAGAAACTGTGGTCAATATGAATCTGTCATACAATAAATTGTCTGATTCTGTCTTCAG GTGCTTGCCCAAAAGTATTCAAATACTTGACCTAAATAATAACCAAATCCAAACTGTACCTA AACAGACTATTCATCTGATGGCCTTACGAGAACTAAATATTGCATTTAATTTTCTAACTCAT CTCCCTGGATGCAGTCATTTCAGTAGACTTTCAGTTCTGAACATTGAAATGAACTTAATTCTCATCT CAGCCCATCTCTGGATTTTGTTCAGAGCTGCAGGAAGTAAAACTCTAAATGGAACAT ATGATGGTTGGATGGTCAGATTCATACACCTGTGAATACCCTTTAAACCTAAGGGGAACTAG TAAAAGACGTTCATCTCCACGAATTATCTTGCAACACAGCTCTGTTGATTGTCACCATTG GGAAAAAAAAGCATACTTGGAATGGCCCAAGGATAGGCGTAAATGTGGGCTTTTCTGGGCAA ACCTTCGAGCTGCTATTAATGTTAATGTATTAGCCACCAGAGAAATGTATGAACTGCAGACA TTCACAGAGTTAAATGAAGAGTCTCGAGGTTCTACAATCTCTCTGATGAGAACAGATTGTCT ATAAAATCCCACAGTCCTTGGGAAGTTGGGGACCACATACACTGTTGGGATGTACATTGATA CAACCTTTATGATGGCAATTTGACAATATTTATTAAAATAAAAAATGGTTATTCCCTTCATA TCAGTTTCTAGAAGGATTTCTAAGAATGTATCCTATAGAAACACCTTCACAAGTTTATAAGG TTATGGAAAAAGGTGTTCATCCCAGGATTGTTTATAATCATGAAAAATGTGGCCAGGTGC TCATGGCCACAAAATAAGGTCTAATTCAATAAATTATAGTACATTAATGTAATATAATATTA CATGCCACTAAAAAGAATAAGGTAGCTGTATATTTCCTGGTATGGAAAAAACATATTAATAT GTTATAAACTATTAGGTTGGTGCAAAACTAATTGTGGTTTTTTGCCATTGAAATGGCATTGAA ATAAAAGTGTAAAGAAATCTATACCAGATGTAGTAACAGTGGTTTGGGTCTGGGAGGTTGGA TTACAGGAGCATTTGATTTCTATGTTGTATTTCTATAATGTTTGAATTGTTTAGAATGA ATCTGTATTTCTTTTATAAGTAGAAAAAAAAATAAAGATAGTTTTTACAGCCT

FIGURE 34

MRLIRNIYIFCSIVMTAEGDAPELPEERELMTNCSNMSLRKVPADLTPATTTLDLSYNLLFQ
LQSSDFHSVSKLRVLILCHNRIQQLDLKTFEFNKELRYLDLSNNRLKSVTWYLLAGLRYLDL
SFNDFDTMPICEEAGNMSHLEILGLSGAKIQKSDFQKIAHLHLNTVFLGFRTLPHYEEGSLP
ILNTTKLHTVLPMDTNFWVLLRDGIKTSKILEMTNIDGKSQFVSYEMQRNLSLENAKTSVLL
LNKVDLLWDDLFILLQFVWHTSVEHFQIRNVTFGGKAYLDHNSFDYSNTVMRTIKLEHVHFR
VFYIQQDKIYLLTKMDIENLTISNAQMPHMLFFNYPTKFQYLNFANNILTDELFKRTTQLP
HLKTLILNGNKLETLSLVSCFANNTPLEHLDLSQNLLQHKNDENCSWPETVVNMNLSYNKLS
DSVFRCLPKSIQILDLNNNQIQTVPKETIHLMALRELNIAFNFLTDLPGCSHFSRLSVLNIE
MNFILSPSLDFVQSCQEVKTLNAGRNPFRCTCEKNFIQLETYSEVMMVGWSDSYTCEYPLN
LRGTRLKDVHLHELSCNTALLIVTIVVIMLVLGLAVAFCCLHFDLPWYLRMLGQCTQTWHRV
RKTTQEQLKRNVRFHAFISYSEHDSLWVKNELIPNLEKEDGSILICLYESYFDPGKSISENI
VSFIEKSYKSIFVLSPNFVQNEWCHYEFYFAHHNLFHENSDHIILILLEPIPFYCIPTRYHK
LKALLEKKAYLEWPKDRKKGGLFWANLRAAINVNVLATREMYELQTFTELNEESRGSTISLM
RTDCL

GAGGGAAGAAGGAAGGCGGGCCGGCCCCTGCGCCCCGCGCCCTCTGCGCCCCTGTCCGCCCCGGC CTGCTGTGCCCTGCGCCCTTGCCCCGCGCCAGCTTCTGCGCCGCAGCCCGGCGCCCCGGTGACCGTGA CTGGCAGTGACCCTGGCCGGGGTCGGAGCCCAGGGCGCAGCCCTCGAGGACCCTGATTATTACGGGCAGGAGAT AAGAGGGAGAAGTCGGCTCCGGAGCCGCCTCCACCAGGTAAACACAGCAACAAAAAAGTTATGAGAACCAAGAG CATCGAGGGAGACTCAACATCCAGGCGGCATTAATGAAAATGATTTTTATGACGGAGCGTGGTGCGCGGGAAG AAATGACCTCCAGCAGTGGATTGAAGTGGATGCTCGGCGCCTGACCAGATTCACTGGTGTCATCACTCAAGGGA GGAACTCCCTCTGGCTGAGTGACTGGGTGACATCCTATAAGGTCATGGTGAGCAATGACAGCCACACGTGGGTC ACTGTTAAGAATGGATCTGGAGACATGATATTTGAGGGAAACAGTGAGAAGGAGATCCCTGTTCTCAATGAGCT ACCCGTCCCCATGGTGGCCCGCTACATCCGCATAAACCCTCAGTCCTGGTTTGATAATGGGAGCATCTGCATGA GAATGGAGATCCTGGGCTGCCCACTGCCAGATCCTAATAATTATTATCACCGCCGGAACGAGATGACCACCACT GATGACCTGGATTTTAAGCACCACAATTATAAGGAAATGCGCCAGTTGATGAAAGTTGTGAAATGTGTCC CAATATCACCAGAATTTACAACATTGGAAAAAGCCACCAGGGCCTGAAGCTGTATGCTGTGGAGATCTCAGATC ACCCTGGGGAGCATGAAGTCGGTGAGCCCGAGTTCCACTACATCGCGGGGGCCCACGGCAATGAGGTGCTGGGC CGGGAGCTGCTGCTGCTGCTGCTGCTGTGTCAGGAGTACTTGGCCCGGAATGCGCCATCGTCCACCT GGTGGAGGAGACGCGGATTCACGTCCTCCCTCCCTCAACCCCGATGGCTACGAGAAGGCCTACGAAGGGGGGCT CGGAGCTGGAGGCTGGTCCCTGGGACGCTGGACCCACGATGGAATTGACATCAACAACAACTTTCCTGATTTA AACACGCTGCTCTGGGAGGCAGAGGATCGACAGAATGTCCCCAGGAAAGTTCCCAATCACTATATTGCAATCCC CTTTTGTGCTGGGCGCAACCTGCAGGGCGGCGAGCTGGTGGCGTATCCCTACGACCTGGTGCGGTCCCCC ACACCGCCTCATGACAGACGCCCGGAGGAGGGTGTGCCACACGGAGGACTTCCAGAAGGAGGAGGGCACTGTCA ATGGGGCCTCCTGGCACCGTCGCTGGAAGTCTGAACGATTTCAGCTACCTTCATACAAACTGCTTCGAACTG TCTGATCGTGTTCATGGAGCAGGTTCATCGTGGCATTAAAGGCTTGGTGAGAGATTCACATGGAAAAGGAATCC CAAACGCCATTATCTCCGTAGAAGGCATTAACCATGACATCCGAACAGCCAACGATGGGGATTACTGGCGCCTC CTGAACCCTGGAGAGTATGTGGTCACAGCAAAGGCCGAAGGTTTCACTGCATCCACCAAGAACTGTATGGTTGG CTATGACATGGGGGCCACAAGGTGTGACTTCACACTTAGCAAAACCAACATGGCCAGGATCCGAGAGATCATGG AGAAGTTTGGGAAGCAGCCCGTCAGCCTGCCAGCCAGGCGGCTGAAGCTGCGGGGGGCGGAAGAGACACAGCGT TGGACTCACTCACTGTTGTTTCCTCTGTAATTCAAGAAGTGCCTGGAAGAGGGTGCATTGTGAGGCAGGTCC GAGCCTGTCCGTTCAGAGCCTCTGGCTGCATAGAAAAGGATTCTGGTGCTTCCCCTGTTTGCGTGGCAGCAAGG GTTCCACGTGCATTTGCAATTTGCACAGCTAAAATTGCAGCATTTCCCCAGCTGGGCTGTCCCAAATGTTACCA TTTGAGATGCTCCCAGGCGTCCTAAGAGAATCCACCCTCTCTGGCCCTGGGACATTGCAAGCTGCTACAAATAA ATTCTGTGTTCTTTTGACAATAGCGTCATTGCCAAGTGCACATCAGTGAGCCTCTTGAATCTGTTTAGTCTCCT TGGAGCTTCTTGCACAAATTCTGGGTCCATAAACAACCCCCAAAGTCCCTGCTGATCCAGTAGCCCTGGAGGTT CCCCAGGTAGGGAGAGCCAGAGGTGCCAGCCTTCCTGAAGGGCCAGAAAATTTAGCCTGGATCTCCTCTTTTAC GATTAGGCTAAATGTAATGAAAACCTCTTAGGATTATCTGTGGAGCATCAGTTTGGGAAGAATTATTGAATTAT

FIGURE 36

MSRPGTATPALALVLLAVTLAGVGAQGAALEDPDYYGQEIWSREPYYARPEPELETFSPPLP
AGPGEEWERRPQEPRPFKRATKPKKAPKREKSAPEPPPPGKHSNKKVMRTKSSEKAANDDHS
VRVAREDVRESCPPLGLETLKITDFQLHASTVKRYGLGAHRGRLNIQAGINENDFYDGAWCA
GRNDLQQWIEVDARRLTRFTGVITQGRNSLWLSDWYTSYKVMVSNDSHTWVTVKNGSGDMIF
EGNSEKEIPVLNELPVPMVARYIRINPQSWFDNGSICMRMEILGCPLPDPNNYYHRRNEMTT
TDDLDFKHHNYKEMRQLMKVVNEMCPNITRIYNIGKSHQGLKLYAVEISDHPGEHEVGEPEF
HYIAGAHGNEVLGRELLLLLVQFVCQEYLARNARIVHLVEETRIHVLPSLNPDGYEKAYEGG
SELGGWSLGRWTHDGIDINNNFPDLNTLLWEAEDRQNVPRKVPHYIAIPEWFLSENATVAA
ETRAVIAWMEKIPFVLGGNLQGGELVVAYPYDLVRSPWKTQEHTPTPDDHVFRWLAYSYAST
HRLMTDARRRVCHTEDFQKEEGTVNGASWHTVAGSLNDFSYLHTNCFELSIYVGCDKYPHES
QLPEEWENNRESLIVFMEQVHRGIKGLVRDSHGKGIPNAIISVEGINHDIRTANDGDYWRLL
NPGEYVVTAKAEGFTASTKNCMVGYDMGATRCDFTLSKTNMARIREIMEKFGKQPVSLPARR
LKLRGRKRRQRG

FIGURE 37

CTAAGAGGACAAGATGAGGCCCGGCCTCTCATTTCTCCTAGCCCTTCTGTTCTTCCTTGGCCAAGCTGCAGGGG ATTTGGGGGATGTGGGACCTCCAATTCCCAGCCCCGGCTTCAGCTCTTTCCCAGGTGTTGACTCCAGCTCCAGC ${\tt CCGTGGACAGAGTGGAACGCTTGGAATTCACAGCTCATGTTCTTCTCAGAAGTTTGAGAAGAACTTTCTAAA}$ $\tt GTGAGGGAATATGTCCAATTAATTAGTGTGTATGAAAAGAAACTGTTAAACCTAACTGTCCGAATTGACATCAT$ GGAGAAGGATACCATTTCTTACACTGAACTGGACTTCGAGCTGATCAAGGTAGAAGTGAAGGAGATGGAAAAAC TGGTCATACAGCTGAAGGAGGTTTTGGTGGAAGCTCAGAAATTGTTGACCAGCTGGAGGTGGAGATAAGAAAT ATGACTCTCTTGGTAGAGAAGCTTGAGACACTAGACAAAAACAATGTCCTTGCCATTCGCCGAGAAATCGTGGC TCTGAAGACCAAGCTGAAAGATGTGAGGCCTCTAAAGATCAAAACACCCCTGTCGTCCACCCTCCTCCCACTC CAGGGAGCTGTGGTCATGGTGTGTGTGAACATCAGCAAACCGTCTGTGGTTCAGCTCAACTGGAGAGGGTTT ATTGAATACAGATGGGAGACTGTTGGAGTATTATAGACTGTACAACACACTGGATGATTTGCTATTGTATATAA $\tt ATGCTCGAGAGTTGCGGATCACCTATGGCCAAGGTAGTGGTACAGCAGTTTACAACAACAACATGTACGTCAAC$ ATGTACAACACCGGGAATATTGCCAGAGTTAACCTGACCACCAACACGATTGCTGTGACTCAAACTCTCCCTAA TGCTGCCTATAATAACCGCTTTTCATATGCTAATGTTGCTTGGCAAGATATTGACTTTGCTGTGGATGAGAATG GATTGTGGGTTATTTATTCAACTGAAGCCAGCACTGGTAACATGGTGATTAGTAAACTCAATGACACCACACTT CAGGTGCTAAACACTTGGTATACCAAGCAGTATAAACCATCTGCTTCTAACGCCTTCATGGTATGTGGGGTTCT GTATGCCACCCGTACTATGAACACCAGAACAGAAGAGATTTTTTACTATTATGACACAAACACAGGGAAAGAGG GCAAACTAGACATTGTAATGCATAAGATGCAGGAAAAAGTGCAGAGCATTAACTATAACCCTTTTGACCAGAAA $\tt CTTTATGTCTATAACGATGGTTACCTTCTGAATTATGATCTTTCTGTCTTGCAGAAGCCCCAG\underline{TAA}GCTGTTTA$ GGAATTAAGGAACTTAAAACTCAGTATGGCGTCTAGGGGATTCTTTGTACAGGAAATATTGCCCAATGACTAGTC GGAGCTCCTCGAGGGACCAAATCTCCAACTTTTTTTTCCCCTCACTAGCACCTGGAATGATGCTTTGTATGTGG CAGATAAGTAAATTTGGCATGCTTATATATTCTACATCTGTAAAGTGCTGAGTTTTATGGAGAGAGGCCTTTTT ATGCATTAAATTGTACATGGCAAATAAATCCCAGAAGGATCTGTAGATGAGGCACCTGCTTTTTCTTTTCTCTC AACCAGACTTACTAACCAATTCCACCCCCCACCAACCCCCTTCTACTGCCTACTTTAAAAAAATTAATAGTTTT AGACTATAAGAAAATCTGATGGCAGTGACAAAGTGCTAGCATTTATTGTTATCTAATAAAGACCTTGGAGCATA TGTGCAACTTATGAGTGTATCAGTTGTTGCATGTAATTTTTGCCTTTGTTTAAGCCTGGAACTTGTAAGAAAAT GAAAATTTAATTTTTTTTTTCTAGGACGAGCTATAGAAAAGCTATTGAGAGTATCTAGTTAATCAGTGCAGTAGT

FIGURE 38

MRPGLSFLLALLFFLGQAAGDLGDVGPPIPSPGFSSFPGVDSSSSFSSSRSGSSSSRSLGS
GGSVSQLFSNFTGSVDDRGTCQCSVSLPDTTFPVDRVERLEFTAHVLSQKFEKELSKVREYV
QLISVYEKKLLNLTVRIDIMEKDTISYTELDFELIKVEVKEMEKLVIQLKESFGGSSEIVDQ
LEVEIRNMTLLVEKLETLDKNNVLAIRREIVALKTKLKECEASKDQNTPVVHPPPTPGSCGH
GGVVNISKPSVVQLNWRGFSYLYGAWGRDYSPQHPNKGLYWVAPLNTDGRLLEYYRLYNTLD
DLLLYINARELRITYGQGSGTAVYNNNMYVNMYNTGNIARVNLTTNTIAVTQTLPNAAYNNR
FSYANVAWQDIDFAVDENGLWVIYSTEASTGNMVISKLNDTTLQVLNTWYTKQYKPSASNAF
MVCGVLYATRTMNTRTEEIFYYYDTNTGKEGKLDIVMHKMQEKVQSINYNPFDQKLYVYNDG
YLLNYDLSVLOKPO

FIGURE 39

GCTCTGAAGACCAAGCTGAAAGAGTGTGAGGCCTCTAAAGATCAAACACCCCTGTCGTCCAC
CCTCCTCCCACTCCAGGGAGCTGTGGTCATGGTGGTGTGTGAACATCAGCAAACCGTCTGT
GGTTCAGCTCAACTGGAGAGGGTTTTCTTATCTATATGGTGCTTGGGGTAGGGATTACTCTC
CCCAGCATCCAAACAAAGGNATGTATTGGGNGGCGCCATTGAATACAGATGGGAGACTGTTG
GAGTATTATAGACTGTACAACCCACTGGATGATTTGCTATTGTATATAAATGCTCGAGAGTT
GCGGATCACCTATGGCCAAGGTAGTGGTACAGCAGTTTACAACAACAACATGTACGTCAACA
TGTACAACACCGGGNATATTGCCAGAGTTAACCTGACC

FIGURE 40

TCTCGCAGATAGTAAATCTCGGAAAGGCGAGAAAGAAGCTGTCTCCATCTTGTCTGTAT CCGCTGCTCTTGTGACGTTGTGGAGATGGGGAGCGTCCTGGGGCTGTGCTCCATGGCGAGCT GGATACCATGTTTTGTGGAAGTGCCCCGTGTTTTGCTATGCCGATGCTGTCCTAGTGGAAAC AACTCCACTGTAACTAGATTGATCTATGCACTTTTCTTGCTTTGGAGTATGTGTAGCTTG TGTAATGTTGATACCAGGAATGGAAGAACAACTGAATAAGATTCCTGGATTTTGTGAGAATG AGAAAGGTGTTGTCCCTTGTAACATTTTGGTTGGCTATAAAGCTGTATATCGTTTGTGCTTT GGTTTGGCTATGTTCTATCTTCTCTCTCTTTACTAATGATCAAAGTGAAGAGTAGCAGTGA TCCTAGAGCTGCAGTGCACAATGGATTTTGGTTCTTTAAATTTGCTGCAGCAATTGCAATTA TTATTGGGGCATTCTTCATTCCAGAAGGAACTTTTACAACTGTGTGGTTTTATGTAGGCATG TACACTCATCCAGCCAGTTGTTCAGAAAACAAGGCGTTCATCAGTGTCAACATGCTCCTCTG CGTTGGTGCTTCTGTAATGTCTATACTGCCAAAAATCCAAGAATCACAACCAAGATCTGGTT TACAGTCTTCAGTAATTACAGTCTACACAATGTATTTGACATGGTCAGCTATGACCAAT GAACCAGAAACAAATTGCAACCCAAGTCTACTAAGCATAATTGGCTACAATACAACAAGCAC TGTCCCAAAGGAAGGCAGTCAGTCCAGTGGTGGCATGCTCAAGGAATTATAGGACTAATTC TCTTTTTGTTGTGTGTATTTTATTCCAGCATCCGTACTTCAAACAATAGTCAGGTTAATAAA CTGACTCTAACAAGTGATGAATCTACATTAATAGAAGATGGTGGAGCTAGAAGTGATGGATC ACTGGAGGATGGGGACGATGTTCACCGAGCTGTAGATAATGAAAGGGATGGTGTCACTTACA GTTARTCCTTCTTTCACTTCATCCTTTTCCTGGCTTCACTTTATATCATGATCACCCTTACC AACTGGTCCAGGTATGAACCCTCTCGTGAGATGAAAGCTCATGGACACCTGTCTGGGTGAA AATCTCTTCCAGTTGGATTGCATCCTGCTGTATGTTTGGACACTCGTGGACACCTTTGTTC TTACAAATCGTGATTTTGAC**TGA**GTGAGACTTCTAGCATGAAAGTCCCACTTTGATTATTGC TTATTTGAAAACAGTATTCCCAACTTTTGTAAAGTTGTGTATGTTTTTGCTTCCCATGTAAC TTCTCCAGTGTTCTGGCATGAATTAGATTTTACTGCTTGTCATTTTGTTATTTTCTTACCAA GTGCATTGATATGTGAAGTAGAATGAATTGCAGAGGAAAGTTTTATGAATATGGTGATGAGT TAGTAAAAGTGGCCATTATTGGGCTTATTCTCTGCTCTATAGTTGTGAAATGAAGAGTAAAA GCAAATGTATGGCTGCCTTTTGAAATATTTGATGTGTTGCCTGGCAGGATACTGCAAAGAAC ATGGTTTATTTAAAATTTATAAACAAGTCACTTAAATGCCAGTTGTCTGAAAAATCTTATA AGGTTTTACCCTTGATACGGAATTTACACAGGTAGGGAGTGTTTAGTGGACAATAGTGTAGG TTATGGATGGAGGTGTCGGTACTAAATTGAATAACGAGTAAATAATCTTACTTGGGTAGAGA TGGCCTTTGCCAACAAGTGAACTGTTTTTGGTTGTTTTAAACTCATGAAGTATGGGTTCAGT GGAAATGTTTGGAACTCTGAAGGATTTAGACAAGGTTTTGAAAAGGATAATCATGGGTTAGA AGGAAGTGTTTTGAAAGTCACTTTGAAAGTTAGTTTTTGGGCCCAGCACGGTAGCTCACCCTT GGTAATCCCAGCACTTTGGGAGCTTAAGTGGGTAGATTACTTGAGCCCAGGAATTCAGACCA GCTTGGCACATGGTGAACCTGTTCTATAAAAATAATCTGGCTTTGAGCATATGCCTGTGGTC CAGCACTGAGAGGCTAGTGAAGATTGCTGAGCCCAGAGCCAAAGGTTGCAGTGAGCAAGTCA AGGCAAAATTTTGACAGGGAAGGAAGTAACTGCAAAACCACTAGGCTTTAGTAGGTACTTAT ATAAAATCTAGTCCAGTTCTCTCATTTAAAAAAATGAAGACACTGAAATACAGACTTAAATA GATGTGGATTGCTGGTGTCCAGCATGACCCATAAACAGGTCAGAAGAATGATGGAATGTTTT AGAATAAACTCCTGCTTATAGTATACTACACAGTTCAAAAGATGTTTAAAATGCTTTTGTAT TTACTGCCATGTAATTGAAATATATAGATTATTGTAACCTTTCAACCTGAAAATCAAGCAGT TTATTCTGTGTGTAGACATTGTATTCCACAATTTTGAATGGCTGTGTTTTACCTCTAAATAA ATGAATTCAGAGAAAAAAAAAAAAAAA

FIGURE 41

MGSVLGLCSMASWIPCLCGSAPCLLCRCCPSGNNSTVTRLIYALFLLVGVCVACVMLIPGME
EQLNKIPGFCENEKGVVPCNILVGYKAVYRLCFGLAMFYLLLSLLMIKVKSSSDPRAAVHNG
FWFFKFAAAIAIIIGAFFIPEGTFTTVWFYVGMAGAFCFILIQLVLLIDFAHSWNESWVEKM
EEGNSRCWYAALLSATALNYLLSLVAIVLFFVYYTHPASCSENKAFISVNMLLCVGASVMSI
LPKIQESQPRSGLLQSSVITVYTMYLTWSAMTNEPETNCNPSLLSIIGYNTTSTVPKEGQSV
QWWHAQGIIGLILFLLCVFYSSIRTSNNSQVNKLTLTSDESTLIEDGGARSDGSLEDGDDVH
RAVDNERDGVTYSYSFFHFMLFLASLYIMMTLTNWSRYEPSREMKSQWTAVWVKISSSWIGI
VLYVWTLVAPLVLTNRDFD

FIGURE 42

FIGURE 43

GTTATTGTGAACTTTGTGGAGATGGGAGGTCNTGGGGCTGTTTCCATGGCGAGCTGGATAC
CANGTTTGTGTGGAAGTGCCCCGTGTTTGNTATGCCGATGCTGCTCTAGTGGAAACAANTCC
ACTGTAATTAGATNTATGCACTTTTNTTGCTTGTTGAGTANGTGTAGCTTGTTGATA
GTTGATACCAGGAATGGAAGAACAACTGAATAAGATTCCTGGATTTTGTGAGAATGAGAAAG
GTGTTGTCCCTTGTAACATTTTGGTTGGCTATAAAGCTGTATATNGTTTGTCTTTGGTTTG
GCTANGTTCTATNTTCTTCTCTCTTTACTAATGATCAAAGTGAAGAGTAGCAGTGATCCTAG
AGCTGCAGTGCACAATGGATTTTGGTTTTTAAATTTTGCTGCAGCAATTGCAATTATTATTG
GGGC

FIGURE 44

FIGURE 45

FIGURE 46

GGCAAATGTGTGTGGCTGGAGGCGAGCGCGAGGCTTTCGGCAAAGGCAGTCGAGTGTTTGCAGACCGGGGCGAG GTCGTTTCCAGCCAAGTGGACCTGATCGATGGCCCTCCTGAATTTATCACGATATTTGATTTATTAGCGATGCC CCCTGGTTTGTGTTACGCACACACACGTGCACACACAGGCTCTGGCTCGCTTCCCTCCTCGTTTCCAGCTCC TGGGCGAATCCCACATCTGTTTCAACTCTCCGCCGAGGGCGAGCAGGAGCGAGAGTGTGTCGAATCTGCGAGTG AAGAGGGACGAGGGAAAAGAAACAAAGCCACAGACGCAACTTGAGACTCCCGCATCCCAAAAGAAGCACCAGAT TGGAAGCTCGGCCTTCCTGTCGCACCACCGCCTGAAAGGCAGGTTTCAGAGGGACCGCAGGAACATCCGCCCCA ACATCATCCTGGTGCTGACGGACGACCAGGATGTGGAGCTGGGTTCCATGCAGGTGATGAACAAGACCCGGCGC ATCATGGAGCAGGGGGGGGGCACTTCATCAACGCCTTCGTGACCACACCCATGTGCTGCCCCTCACGCTCCTC CATCCTCACTGGCAAGTACGTCCACAACCACAACACCCAACAACAACAACGACGCTCCTCGCCTCCTGGC AGGCACAGCACGAGAGCCGCACCTTTGCCGTGTACCTCAATAGCACTGGCTACCGGACAGCTTTCTTCGGGAAG TATCTTAATGAATACAACGGCTCCTACGTGCCACCCGGCTGGAAGGAGTGGGTCGGACTCCTTAAAAACTCCCG CTTTTATAACTACACGCTGTGTCGGAACGGGGTGAAAGAGAAGCACGGCTCCGACTACTCCAAGGATTACCTCA CAGACCTCATCACCAATGACAGCGTGAGCTTCTTCCGCACGTCCAAGAAGATGTACCCGCACAGGCCAGTCCTC ATGGTCATCAGCCATGCAGCCCCCCACGGCCCTGAGGATTCAGCCCCACAATATTCACGCCTCTTCCCAAACGC ATCTCAGCACATCACGCCGAGCTACAACTACGCGCCCAACCCGGACAAACACTGGATCATGCGCTACACGGGGC ${\tt CCATGAAGCCCATCCACATGGAATTCACCAACATGCTCCAGCGGAAGCGCTTGCAGACCCTCATGTCGGTGACACATGTCATGTCGACACATGT$ GACTCCATGGAGACGATTTACAACATGCTGGTTGAGACGGGCGAGCTGGACAACACGTACATCGTATACACCGC CGACCACGGTTACCACATCGGCCAGTTTGGCCTGGTGAAAGGGAAATCCATGCCATATGAGTTTGACATCAGGG TCCCGTTCTACGTGAGGGGCCCCAACGTGGAAGCCGGCTGTCTGAATCCCCACATCGTCCTCAACATTGACCTG GGACACGGAGCGGCCGGTGAATCGGTTTCACTTGAAAAAGAAGATGAGGGTCTGGCGGGACTCCTTCTTGGTGG AGAGAGGCAAGCTGCTACACAAGAGAGACAATGACAAGGTGGACGCCCAGGAGGAGAACTTTCTGCCCAAGTAC CAGCGTGTGAAGGACCTGTGTCAGCGTGCTGAGTACCAGACGGCGTGTGAGCAGCTGGGACAGAAGTGGCAGTG TGTGGAGGACGCCACGGGGAAGCTGAAGCTGCATAAGTGCAAGGGCCCCATGCGGCTGGGCGGCAGCAGAGCCC TCTCCAACCTCGTGCCCAAGTACTACGGGCAGGCAGCGAGGCCTGCACCTGTGACAGCGGGGACTACAAGCTC AGCCTGGCCGGACGCCGGAAAAAACTCTTCAAGAAGAAGTACAAGGCCAGCTATGTCCGCAGTCGCTCCATCCG CTCAGTGGCCATCGAGGTGGACGGCAGGGTGTACCACGTAGGCCTGGGTGATGCCGCCCAGCCCCGAAACCTCA CCAAGCGGCACTGGCCAGGGGCCCCTGAGGACCAAGATGACAAGGATGGTGGGGACTTCAGTGGCACTGGAGGC CTTCCCGACTCCAGCCGCCAACCCCATTAAAGTGACACATCGGTGCTACATCCTAGAGAACGACACAGTCCA GTGTGACCTGGACCTGTACAAGTCCCTGCAGGCCTGGAAAGACCACAAGCTGCACATCGACCACGAGATTGAAA CCCTGCAGAACAAATTAAGAACCTGAGGGAAGTCCGAGGTCACCTGAAGAAAAAGCGGCCAGAAGAATGTGAC TGTCACAAAATCAGCTACCACACCCAGCACAAAGGCCGCCTCAAGCACAGAGGCTCCAGTCTGCATCCTTTCAG GAAGGCCTGCAAGAAGAAGAAGCTGTGGCTGTTGCGGGAGCAGAAGCGCAAGAAACTCCGCAAGCTGC TCAAGCGCCTGCAGAACAACGACACGTGCAGCATGCCAGGCCTCACGTGCTTCACCCACGACAACCAGCACTGG CAGACGGCGCCTTTCTGGACACTGGGGCCTTTCTGTGCCTGCACCAGCGCCCAACAATAACACGTACTGGTGCAT GAGGACCATCAATGAGACTCACAATTTCCTCTTCTGTGAATTTGCAACTGGCTTCCTAGAGTACTTTGATCTCA ACACAGACCCCTACCAGCTGATGAATGCAGTGAACACACTGGACAGGGATGTCCTCAACCAGCTACACGTACAG AAGCTATGAGCAATACAGGCAGTTTCAGCGTCGAAAGTGGCCAGAAATGAAGAGACCTTCTTCCAAATCACTGG GACAACTGTGGGAAGGCTGGGAAGGTTAAGAAACAACAGAGGTGGACCTCCAAAAACATAGAGGCATCACCTGA CTGCACAGGCAATGAAAAACCATGTGGGTGATTTCCAGCAGACCTGTGCTATTGGCCAGGAGGCCTGAGAAAGC AAGCACGCACTCTCAGTCAACATGACAGATTCTGGAGGATAACCAGCAGGAGCAGAGATAACTTCAGGAAGTCC ATTTTTGCCCCTGCTTTTGCTTTGGATTATACCTCACCAGCTGCACAAAATGCATTTTTTCGTATCAAAAAGTC TCCCAAGGGCGAAAGTCATTGGAATTTTTAAATCATAGGGGAAAAGCAGTCCTGTTCTAAATCCTCTTATTCTT TTGGTTTGTCACAAAGAAGGAACTAAGAAGCAGGACAGAGGCAACGTGGAGAGGCTGAAAACAGTGCAGAGACG TTTGACAATGAGTCAGTAGCACAAAAGAGATGACATTTACCTAGCACTATAAACCCTGGTTGCCTCTGAAGAAA $\tt CTGCCTTCATTGTATATATGTGACTATTTACATGTAATCAACATGGGAACTTTTAGGGGAACCTAATAAGAAATGTGAACTTATATATGTGAACTTATTAAGAAATGTGAACTTTTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTTTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTTTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTATTAGGGGAACCTAATAAGAAATGTGAACTTATAGGAAATGTGAACTTATAGGAAATGTGAACTTATAGGAAATGTGAATAAGAAATGTGAACTTATAGGAAATGTGAATAAGAAATGTGAACTTATAGGAAATGTGAATAAGAAATGTGAAATGTGAATAAGAAATGTGAATAAGAAATGTGAATAAGAAATGTGAATAAGAAATGTGAATGTGAATAAGAAATGTGAATAAGAAATTAGTGAATAAGAAATGTGAATGTAATGTGAATGTAATGTAATGTAATGTAATGTGAATGTAATGTAATGTAATGTAATGTAATGTAATGTGAATGTAATGTAATGTAATGTAATGTGAATGTAATGTAATGTAATGTAATGTAATGTAATGTAATGAATGAATGAATGAATGAATGAATGAATGAATGAATGAATGAATGAATGAATGAATGAATGAATGAATGAA$ CCCAATTTTCAGGAGTGGTGGTGTCAATAAACGCTCTGTGGCCAGTGTAAAAGAAAAA

FIGURE 47

MGPPSLVLCLLSATVFSLLGGSSAFLSHHRLKGRFQRDRRNIRPNIILVLTDDQDVELGSMQ
VMNKTRRIMEQGGAHFINAFVTTPMCCPSRSSILTGKYVHNHNTYTNNENCSSPSWQAQHES
RTFAYYLNSTGYRTAFFGKYLNEYNGSYVPPGWKEWVGLLKNSRFYNYTLCRNGVKEKHGSD
YSKDYLTDLITNDSVSFFRT5KKMYPHRPVLMVISHAAPHGEEDSAFQYSRLFPNASQHITP
SYNYAPNFDKHWIMRYTGPMKPIHMEFTNMLQRKRLQTLMSVDDSMETIYMMLVETGELDNT
YIVYTADHGYHIGQFGLVKGKSMPYEFDIRVPFYVRGPNVEAGCLNPHIVLNIDLAPTILDI
AGLDIPADMDGKSILKLLDTERPVNRFHLKKKMRVWRDSFLVERGKLLHKRDNDKVDAQEEN
FLPKYQRVKDLCQRAEYQTACEQLGQKWQCVEDATGKLKLHKCKGPMRLGGSRALSNLVPKY
YGQGSEACTCDSGDYKLSLAGRRKKLFKKKYKASYVRSRSIRSVAIEVDGRVYHVGLGDAAQ
PRNLTKRHWPGAPEDQDDKDGGDFSGTGGLPDYSAANPIKVTHRCYILENDTVQCDLDLYKS
LQAWKDHKLHIDHEIETLQNKIKNLREVRGHLKKKRPEECDCHKISYHTQHKGRIKHRGSSL
HPFRKGLQEKDKVWLLREQKRKKKLRKLLKRQNNDTCSMPGLTCFTHDNQHWQTAPFWTLG
PFCACTSANNNTYWCMRTINETHNFLFCEFATGFLEYFDLNTDPYQLMNAVNTLDRDVLNQL
HVQLMELRSCKGYKQCNPRTRNMDLDGGSYEQYRQFQRRKWPEMKRPSSKSLGQLWEEWEG

FIGURE 48

AACAAAGTTCAGTGACTGAGAGGGCTGAGCGGAGGCTGCTGAAGGGGGAGAAAGGAGTGAGGA TCGTGGGATGATCACAGGTGCTGCTGTGGCGGTCCTGCTGCTGCTGCTGCTGCCACC TGCCTTTTCCACGGACGCAGGACTGTGACGTGGAGAGCAACCGTACAGCTGCAGGGGGAAA $\verb|CCGAGTCCGCCGGGCCCAGCCTTGGCCCTTCCGGCGGGGGCCACCTGGGAATCTTTCACC| \\$ ATCACCGTCATCCTGGCCACGTATCTCATGTGCCGAATGTGGGCCTCCACCACCACCACCAC $\texttt{CGCTCGC} \underline{\textbf{TGA}} \\ \texttt{GGCTGCTGTCGCCGGTGCCTGTGGACAGCTGCCCCTGCCCTCCCATCTG} \\$ TTCCCAGGACAAGTGGACCCCATGTTTCCATGTGGAAGGATGCATCTCTGGGGTGAACGAGG GGAACAATAGACTGGGGCTTGCTCCAGCTGCATTTGCATGGCATGCCCCAGTGTACTATGGC AGCAGAGAATGGAGGAACACTGGGTCTGCAGTGCTGAAGGGTTTGGGGAGTGGAGAGCAAGG GTGCTCTTTCGGGGCTGGACAGCCCGTCTTGTGACAGTGACTCCCAGTGAGCCCCAGAAATG ACAAGCGTGTCTTGGCAGAGCCAGCACACAAGTGGATGTGAAGTGCCCGTCTTGACCTCCTC ATCAGGCTGCTGCAGGCCTCTGGCGGGCAGGGCACTGGGAGAGGCCCTGAGAATGTCCTTTT GGTTTGGAGAAGGCAGTGTGAGGCTGCACAGTCAATTCATCGGTGCCTTAGTCCAAGAAAAT

FIGURE 49

 ${\tt MLGLLGSTALVGWITGAAVAVLLLLLLATCLFHGRQDCDVERNRTAAGGNRVRRAQPWPFR} \\ {\tt RRGHLGIFHHRHPGHVSHVPNVGLHHHHPRHTPHHLHHHHPHRHPRHAR} \\$

FIGURE 50

GGCGGCTGCTGAGCTGCCTTGAGGTGCAGTGTTGGGGATCCAGAGCCATGTCGGACCTGCTA CTACTGGGCCTGATTGGGGGCCTGACTCTTTACTGCTGCTGACGCTGCTGGCCTTTGCCGG GTACTCAGGGCTACTGGCTGGGGTGGAAGTGAGTGCTGGGTCACCCCCCATCCGCAACGTCA CTGTGGCCTACAAGTTCCACATGGGGCTCTATGGTGAGACTGGGCGGCTTTTCACTGAGAGC TGCAGCATCTCCCCAAGCTCCGCTCCATCGCTGTCTACTATGACAACCCCCACATGGTGCC CCCTGATAAGTGCCGATGTGCCGTGGGCAGCATCCTGAGTGAAGGTGAGGAATCGCCCTCCC CTGAGCTCATCGACCTCTACCAGAAATTTGGCTTCAAGGTGTTCTCCTTCCCGGCACCCAGC TGTCCATCCTGCCTTGGACACCTACATCAAGGAGCGGAAGCTGTGTGCCTATCCTCGGCTGG AGATCTACCAGGAAGACCAGATCCATTTCATGTGCCCACTGGCACGGCAGGGAGACTTCTAT GTGCCTGAGATGAAGGAGACAGAGTGGAAATGGCGGGGGCTTGTGGAGGCCATTGACACCCA GGTGGATGGCACAGGAGCTGACACAATGAGTGACACGAGTTCTGTAAGCTTGGAAGTGAGCC CTGGCAGCCGGGAGACTTCAGCTGCCACACTGTCACCTGGGGCGAGCAGCCGTGGCTGGGAT GACGGTGACACCCGCAGCGAGCACAGCTACAGCGAGTCAGGTGCCAGCGGCTCCTCTTTTGA GGAGCTGGACTTGGAGGGCGAGGGCCCTTAGGGGAGTCACGGCTGGACCCTGGGACTGAGC CCCTGGGGACTACCAAGTGGCTCTGGGAGCCCACTGCCCCTGAGAAGGGCAAGGAGTAACCC ATGGCCTGCACCCTCCTGCAGTGCAGTTGCTGAGGAACTGAGCAGACTCTCCAGCAGACTCT CCAGCCCTCTTCCTCCTCTGGGGGGGGGGGGGTTCCTGAGGGACCTGACTTCCCCTGC TCCAGGCCTCTTGCTAAGCCTTCTCCTCACTGCCCTTTAGGCTCCCAGGGCCAGAGGAGCCA GGGACTATTTTCTGCACCAGCCCCCAGGGCTGCCCCCTGTTGTGTCTTTTTTTCAGACTC ACAGTGGAGCTTCCAGGACCCAGAATAAAGCCAATGATTTACTTGTTTCACCTGGAAAAAAA AAAAAAAAA

FIGURE 51

MSDLLLLGLIGGLTLLLLTLLAFAGYSGLLAGVEVSAGSPPIRNVTVAYKFHMGLYGETGR
LFTESCSISPKLRSIAVYYDNPHMVPPDKCRCAVGSILSEGEESPSPELIDLYQKFGFKVFS
FPAPSHVVTATFPYTTILSIWLATRRVHPALDTYIKERKLCAYPRLEIYQEDQIHFMCPLAR
QGDFYVPEMKETEWKWRGLVEAIDTQVDGTGADTMSDTSSVSLEVSPGSRETSAATLSPGAS
SRGWDDGDTRSEHSYSESGASGSSFEELDLEGEGPLGESRLDPGTEPLGTTKWLWEPTAPEK
GKE

FIGURE 52

FIGURE 53

MTLRPSLLPLHLLLLLLSAAVCRAEAGLETESPVRTLQVETLVEPPEPCAEPAAFGDTLHI HYTGSLVDGRIIDTSLTRDPLVIELGQKQVIPGLEQSLLDMCVGEKRRAIIPSHLAYGKRGF PPSVPADAVVQYDVELIALIRANYWLKLVKGILPLVGMAMVPALLGLIGYHLYRKANRPKVS KKKLKEEKRNKSKKK

FIGURE 54

FIGURE 55

CCGAAAGTCCCGTCCGGACCCTCCAAGTGGAGACCCTGGTGGAGCCCCAGAACCATGTGCC
GAGCCCGCTGCTTTTGGAGACACGCTTCACATACACTACACGGGAAGCTTGGTAGATGGACG
TATTATTGACACCTCCCTGACCAGAGACCCTCTGGTTATAGAACTTGGCCAAAAGCAGGTGA
TTCCAGGTCTGGAGCAGAGTCTTCTCGACATGTGTGTGGGAGAGAGCGAAGGGCAATCATT
CCTTCTCACTTGGCCTATGGAAAACGGGGATTTCCACCATCTGTCCCAGCGGATGCAGTGGT
GCAGTATGACGTGGAGCTGATTGCACTAATCCGAGCCAACTACTGGCTAAAGCTGGTGAAGG
GCATTTTGCCTCTGGTAGGGATGGCCATGGTGCCAGCCCTCCTGGGCCTCATTGGGTATCAC
CTATACAGAAAGGCCAATAGACCCAAAGTCTCCAAAAAGAAGCTCAAGGAAGAGAAACGAAA
CAAGAGCAAAAAGAAATAATAAATAAATAATTTTTAAAAAACTTAAAA

FIGURE 56

GAAAAGCGCAATACTATTGCTTCCATTGCTGCTGGTGTACTATTTTTTACAGGCTGGTGGAT TATCATAGATGCAGCTGTTATTTATCCCACCATGAAAGATTTCAACCACTCATACCATGCCT GTGGTGTTATAGCAACCATAGCCTTCCTAATGATTAATGCAGTATCGAATGGACAAGTCCGA ${\tt GGTGATAGTTACAGTGAAGGTTGTCTGGGTCAAACAGGTGCTCGCATTTGGCTTTTCGTTGG}$ $\tt TTTCATGTTGGCCTTTGGATCTCTGATTGCATCTATGTGGATTCTTTTTGGAGGTTATGTTG$ $\tt CTAAAGAAAAAGACATAGTATACCCTGGAATTGCTGTATTTTTCCAGAATGCCTTCATCTTT$ $\tt TTTGGAGGGCTGGTTTTTAAGTTTGGCCGCACTGAAGACTTATGGCAG{\color{red}{\bf TGA}}ACACATCTGAT$ $\tt TTGTAATGCCATTTTCTAAACTTATTTCTGAGTGTAGTCTCAGCTTAAAGTTGTGTAATACT$ AAAATCACGAGAACACCTAAACAACAACCAAAAATCTATTGTGGTATGCACTTGATTAACTT ATAAAATGTTAGAGGAAACTTTCACATGAATAATTTTTGTCAAATTTTATCATGGTATAATT TGTAAAAATAAAAAGAAATTACAAAAGAAATTATGGATTTGTCAATGTAAGTATTTGTCATA TCTGAGGTCCAAAACCACAATGAAAGTGCTCTGAAGATTTAATGTGTTTATTCAAATGTGGT CTCTTCTGTGTCAAATGTTAAATGAAATATAAACATTTTTTAGTTTTTAAAATATTCCGTGG ${\tt TCAAAATTCTTCCTCACTATAATTGGTATTTACCTTTTACCAAAAATTCTGTGAACATGTAAT}$ GTAACTGGCTTTTGAGGGTCTCCCAAGGGGTGAGTGGACGTGTTGGAAGAGAAGCACCAT ${\tt GGTCCAGCCACCAGGCTCCCTGTGTCCCTTCCATGGGAAGGTCTTCCGCTGTGCCTCTCATT}$ $\verb|CCAAGGGCAGGAAGATGTGACTCAGCCATGACACGTGGTTCTGGTGGGATGCACAGTCACTC|\\$ CACATCCACCACTG

FIGURE 57

MSGFLEGLRCSECIDWGEKRNTIASIAAGVLFFTGWWIIIDAAVIYPTMKDFNHSYHACGVI ATIAFLMINAVSNGQVRGDSYSEGCLGQTGARIWLFVGFMLAFGSLIASMWILFGGYVAKEK DIVYPGIAVFFQNAFIFFGGLVFKFGRTEDLWQ

FIGURE 58

FIGURE 59

TGGACGGACCTGAAAAAAATGTTTGGATTTNTAGAGGGNTTGAGATGTTCAGAATGCATGAC
TGGGGGAAAAGCGCAAATACTATTGCTTCCATTGCTGCTGGTGTANTATTTTTTACAGGCTG
GTGGATTATCATAGATGCAGNTGTTATTTATCCCACCATGAAAGATTTCAACCANTCATACC
ATGCCTGTGGTGTTATAGCAACCATAGCCTTCNTAATGATTAATGCAGTATCGAATGGACAA
GTCCGAGGTGATAGTTACAGTGAAGGTTGTTTTGGGTCAAACAGGTGCTCGCATTTGGCTTTT
CGTTGGTTTCATGTTGGCCTTTGGATCTCTGATTGCATCTATGTGGATTCTTTTTGGAGGTT
ATGTTGCTAAAGAAAAAAGACATAGTATACCCTGGAATTGNTGTATTTTTCCAGAATGCCTTC
ATCTTTTTTGGAGGGCTGGTTTTTAAGTTTTGGCCGCACTGAAGANTTATGGCAGTG

FIGURE 60

GGACACCGGGTTCCGGACCAATGCANGACGGGTGGANTGACCTGAAAAAAATGTTTGGATT
TTTAGAGGGCTTGAGATGNTCAGAATGCATTGACTGGGGGAAAAGCGCAATANTATTGCTTT
CCATTGCTGCTGGTGTACTATTTTTTACAGGGTGGTGGATTATCATAGATGCAGCTGTTATT
TATCCCACCATGAAAGATTTNAACCACTCATACCATGCCTGTGGTGTATATAGCAACCATAGC
CTTCCTAATGATTAATGCAGTATCGAATGGACAAGTCCGAGGTGATAGTTACAGTGAAGGTT
GTTTGGGTCAAACAGGTGNTCGCATTTGGCTTTTCGTTGGTTTCATGTTGGCCTTTGGATTT
CTGATTGNATTCTATGCGGATTCTTCTTGGAGGTTATGTTGCTAAAGAAAAAGACATAGTAT
ACCCTGGAATTNCTNTATTTTTCCAGAATGCC

FIGURE 61

TAGAGGGCTTGAGATGCTCAGAATGCATTGACTGGGGGGAAAAGCGCAATANTATTGCTTCC
ATTGNTGNTGGTGTANTATTTTTTTACAGGCTGGTGGATTATNATAGATGCAGCTGTTATTT
ATCCCACCATGAAAGATTTNAACCANTCATACCATGCCTGTGGTGTTATAGCAACCATAGCC
TTCCTAATGATTAATGCAGTATNGAATGGACAAGTCCGAGGTGATAGTTACAGTGAAGGTTG
TTTGGGTCAAACAGGTGNTNGCATTTGGCTTTTNGTTGGTTTCATGTTGGCCTTTGGATCTN
TGATTGCATTTATGTGGATTNTTTTTGGAGGTTATGTTGCTAAAGNAAAAGACATAGTATAC
CCTGT

FIGURE 62

GGGAGGCTGTGNCCGTTTTGTTTTNTTGGCTAAAATCGGGGAGTGAGGCGGCCCGGCGCGG
CGNGACACCGGGTTCCGGGAACCATTGCACGACGGGTGGACTGACCTGAAAAAAATGTTTG
GATTTNTAGAGGGCTTGAGATGCTCAGAATGCATTGACTGGGGGGAAAAGCGCAATACTATT
GCTTCCATTGCTGCTGGTGTACTATTTTTTACAGGCTGGTGGATTATCATAGATGCAGCTGT
TATTTATCCCACCATGAAAGATTTCAACCACTCATACCATGCCTGTGGTGTTATAGCAACCA
TAGCCTTCCTAATGATTAATGCAGTATCGAATGGACTGCTGGTGTTACAGTTACAGTGAA
GGTTGTCTGGGTCAAACAGGTGCTCGCATTTGGCTTTTCGTTGGTTTCATGTTGGCCTTTGG
ATNTCTGATTGCATCTATGTGGATTCTTTTTGGAGGGTTATTTTTTGGAGGGCTG

FIGURE 63

TCTGCAAAGTTTACTTGGGACTATTCTCTGGCAGCTCCCCGAATCCTTTCTCCGAAGATGTC AAACGGCCCCAGCGCCCCTGGTAACTGACAAGGAGGCCAGGAAGAAGGTTCTCAAACAAGC TTTTTCAGCCAACCAAGTGCCGGAGAAGCTGGATGTGGTGGTAATTGGCAGTGGCTTTTGGGGGCCTGGCTGCAGCTGCAATTCTAGCTAAAGCTGGCAAGCGAGTCCTGGTGCTGGAACAACAT ACCAAGGCAGGGGGCTGCTGTCATACCTTTGGAAAGAATGGCCTTGAATTTGACACAGGAAT CCATTACATTGGGCGTATGGAAGAGGGCAGCATTGGCCGTTTTATCTTGGACCAGATCACTG AAGGGCAGCTGGACTGGGCTCCCTGTCCTCTTTTGACATCATGGTACTGGAAGGGCCC AATGGCCGAAAGGAGTACCCCATGTACAGTGGAGAAAGCCTACATTCAGGGCCTCAAGGA GAACTTTCCACAGGAGGAGCTATCATTGACAAGTATATAAAGCTGGTTAAGGTGGTATCCA GTGGAGCCCCTCATGCCATCCTGTTGAATTCCTCCATTGCCGTGGTTCAGCTCCTCGAC AGGTGTGGGCTGCTGACTGGTTTCTCTCCATTCCTTCAAGCATCCACCAGAGCCTGGCTGA GGTCCTGCAGCAGCTGGGGGCCTCCTCTGAGCTCCAGGCAGTACTCAGCTACATCTTCCCCA CTTACGGTGTCACCCCAACCACAGTGCCTTTTCCATGCACGCCCTGCTGGTCAACCACTAC ATGAAAGGAGGCTTTTATCCCCGAGGGGGTTCCAGTGAAATTGCCTTCCACACCATCCCTGT GATTCAGCGGGCTGGGGCCCTGTCCTCACAAAGGCCACTGTGCAGAGTGTGTTGCTGGACTCAGCAGAGCCTGGGAAAGCCTGGTGAACATCTATTGC CCCATCGGAAAACCTGTGGTGTGAAGAAGCGGGGGGAGAGCTGGTGAACATCTATTGC CCCATCGTGGTCTCCAACGCAGGACTGTTCAACACCTATGAACACCTACTGCGGGGGAACGC CCGCTGCCTGCCAGGTGTGAAGCAGCAACTGGGGACGGTGCGGCCCGGCTTAGGCATGACCT CTGTTTTCATCTGCCTGCGAGGCACCAAGGAAGACCTGCATCTGCCGTCCACCAACTACTAT GTTTACTATGACACGCACATGGACCAGGCCATGGAGCGCTACGTCTCCATGCCCAGGGAAGA GGCTGCGGAACACTCCTCTTCTTTTTTTCTTTCCTTTACGATAGCCAAAGATCCGACCTGG AGGACCGATTCCCAGGCCGGTCCACATGATCATGCTCATACCCACTGCCTACGACTGGTT GAGGAGTGGCAGGCGGAGCTGAAGGGAAAGCGGGGCAGTGACTATGAGACCTTCAAAAACTC CTTTGTGGAAGCCTCTATGTCAGTGGTCCTGAAACTGTTCCCACAGCTGGAGGGGAAGGTGG AGAGTGTGACTGCAGGATCCCCACTCACCAACCAGTTCTATCTGGCTGCTCCCCGAGGTGCC TGCTACGGGCTGACCATGACCTGGGCGGCTGCACCTTGTGTGATGGCCTCCTTGAGGGC GCAGAGCCCCATCCCCAACCTCTATCTGACAGGCAGCAGTATCTTACCTGTGGACTGGTCG GGGCCTTGCAAGGTGCCCTGCTGTGCAGCAGCGCCATCCTGAACGGGAACTTGTACTACAGA CTTAAGAATCTTGATTCTAGGATCCGGGCACAGAAGAAAAAGAAT**TAG**TTCCATCAGGGAGG AGTCAGAGGAATTTCCCCATAGCTGGGGCATCTCCCTTGACTTACCCATAATGCTCTTCTG
CATTAGTTCCTTGCACGTATAAAGCACTCTAATTTTGGTTCTGATGCCTGAACAGAGGCCCTAG
TTTTAAATCACAATTCCGAATCTGGGCAATGAATGACTGCTTCAGCTGGGCCAGGTGACA
TCTTTACGCCTTTTATAACATGCCATCCCTACTAATAGGATATTTGACTTGGATAGCTTGATG TCTCATGACGAGCGGCGCTCTGCATCCCTCACCCATGCCTCCTAACTCAGTGATCAAAGCGA ATATTCCATCTGTGGATAGAACCCCTGGCAGTGTTGTCAGCTCAACCTGGTGGGTTCAGTTC TGTCCTGAGGCTTCTGCTCTCATTCATTTAGTGCTACGCTGCACAGTTCTACACTGTCAAGG GAAAAGGGAGACTAATGAGGCTTAACTCAAAACCTGGGCGTGGTTTTGGTTCCCATTCCATA GGTTTGGAGAGCTCTAGATCTCTTTTGTGCTGGGTTCAGTGGCTCTTCAGGGGACAGGAAAT CTTATCCACCAAATACACAGGGAAGGGTGATGCAGGGAAGGGTGACATCAGGAGTCAGGGCA TGGACTGGTAAGATGAATACTTTGCTGGGCTGAAGCAGGCTGCAGGGCATTCCAGCCAAGGG CACAGCAGGGGACAGTGCAGGGAGGTGTGGGGTAAGGGAAGGGAAGTCACATCAGAAAAGGGA AAGCCACGGAATGTGTGAAGCCCAGAAATGGCATTTGCAGTTAATTAGCACATGTGAGGG TTAGACAGGTAGGTGAATGCAAGGTTTGGAAAAATGACTTTTCAGTTATGTCTTTG GTATCAGACATACGAAAGGTCTCTTTGTAGTTCGTGTTAATGTAACATTAATAAATTTATTG ATTCCATTGCTTTAAAAAAAAAAAAAAA

FIGURE 64

MWLPLVLLLAVLLLAVLCKVYLGLFSGSSPNFFSEDVKRPPAPLVTDKEARKKVLKQAFSAN QVPEKLDVVVIGSGFGGLAAAAILAKAGKRVLVLEQHTKAGGCCHTFGKNGLEFDTGIHYIG RMEEGSIGRFILDQITEGQLDWAPLSSPFDIMVLEGPNGRKEYPMYSGEKAYIQGLKEKFPQ EEAIIDKYIKLVKVVSSGAPHAILLKFLPLPVVQLLDRCGLLTRFSPFLQASTQSLAEVLQQ LGASSELQAVLSYIFPTYGVTPNHSAFSMHALLVNHYMKGGFYPRGGSSEIAFHTIPVIQRA GGAVLTKATVQSVLLDSAGKACGVSVKKGHELVNIYCPIVVSNAGLFNTYEHLLPGNARCLP GVKQQLGTVRPGLGMTSVFICLRGTKEDLHLPSTNYYVYYDTDMDQAMERYVSMPREEAAEH IPLLFFAFPSAKDPTWEDRFPGRSTMIMLIPTAYEWFEEWQAELKGKRGSDYETFKNSFVEA SMSVVLKLFPQLEGKVESVTAGSPLTNQFYLAAPRGACYGADHDLGRLHPCVMASLRAQSPI PNLYLTGQDIFTCGLVGALQGALLCSSAILKRNLYSDLKNLDSRIRAQKKKN

FIGURE 65

GCAGCGGCGAGGCGGTGGTGGCTGAGTCCGTGGTGGCAGAGGCGAAGGCGACAGCTCTA GGGGTTGGCACCGGCCCCGAGAGGAGGATGCGGGTCCGGATAGGGCTGACGCTGCTGTG TGCGGTGCTGAGCTTGGCCTCGGCGTCCTCGGATGAAGAAGGCAGCCAGGATGAATCCT GTAGTTGCTGGTCAAATATTTCTTGATTCAGAAGAATCTGAATTAGAATCCTCTATTCAAGA AGAGGAAGACAGCCTCAAGAGCCAAGAGGGGGGAAAGTGTCACAGAAGATATCAGCTTTCTAG ACCGCCATTGAAGGCACAGCACATGGGGAGCCCTGCCACTTCCCTTTTCTTTTCCTAGATAA GGAGTATGATGAATGTACATCAGATGGGAGGGAAGATGGCAGACTGTGGTGTGCTACAACCT ATGACTACAAAGCAGATGAAAAGTGGGGCTTTTGTGAAACTGAAGAAGAGGCTGCTAAGAGA CGGCAGATGCAGGAAGCAGAAATGATGTATCAAACTGGAATGAAAATCCTTAATGGAAGCAA CCAAAGCCCTGGAGAGAGTGTCATATGCTCTTTTATTTGGTGATTACTTGCCACAGAATATC CAGGCAGCGAGAGATGTTTGAGAAGCTGACTGAGGAAGGCTCTCCCAAGGGACAGACTGC TCTTGGCTTTCTGTATGCCTCTGGACTTGGTGTTAATTCAAGTCAGGCAAAGGCTCTTGTAT ATTATACATTTGGAGCTCTTGGGGGCAATCTAATAGCCCACATGGTTTTGGTAAGTAGACTT TAGTGGAAGGCTAATAATATTAACATCAGAAGAATTTGTGGTTTATAGCGGCCACAACTTTT ATTCTTGTTAATGGATATAACACATGGAATCTACATGTAAATGAAAGTTGGTGGAGTCCACA ATTTTTCTTTAAAATGATTAGTTTGGCTGATTGCCCCCTAAAAAGAGAGATCTGATAAATGGC TCTTTTTAAATTTTCTCTGAGTTGGAATTGTCAGAATCATTTTTTTACATTAGATTATCATAA TTTTAAAAATTTTTCTTTAGTTTTTCAAAATTTTGTAAATGGTGGCTATAGAAAAACAACAT GAAATATTATACAATATTTTGCAACAATGCCCTAAGAATTGTTAAAATTCATGGAGTTATTT CCATTTATTCTGGTCATTTATTGCTAGTGACACTGTGCCTGCTTCCAGTAGTCTCATTTTCC CTATTTTGCTAATTTGTTACTTTTTCTTTGCTAATTTTGGAAGATTAACTCATTTTTAATAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 66

MRVRIGLTLLLCAVLLSLASASSDEEGSQDESLDSKTTLTSDESVKDHTTAGRVVAGQIFLD SEESELESSIQEEEDSLKSQEGESVTEDISFLESPNPENKDYEEPKKVRKPALTAIEGTAHG EPCHFPFLFLDKEYDECTSDGREDGRLWCATTYDYKADEKWGFCETEEEAAKRRQMQEAEMM YQTGMKILNGSNKKSQKREAYRYLQKAASMNHTKALERVSYALLFGDYLPQNIQAAREMFEK LTEEGSPKGQTALGFLYASGLGVNSSQAKALVYYTFGALGGNLIAHMVLVSRL

FIGURE 67

FIGURE 68

MACRCLSFLLMGTFLSVSQTVLAQLDALLVFPGQVAQLSCTLSPQHVTIRDYGVSWYQQRAG SAPRYLLYYRSEEDHHRPADIPDRFSAAKDEAHNACVLTISPVQPEDDADYYCSVGYGFSP

FIGURE 69

CGATGACCGCGGAGCGCACGCCGCGGCCCGGCCCTGACCCCGCCGCCGCCGCTGAGCCC CCCCCGAGGTCCGGACAGGCCGAGATGACGCCGAGCCCCTTTCTTCCTCCTGCTGCCGC GCTTGCTGCCTTTCCCACGGCCGCCGCCCGAGGCCCCAAAGATGGCGGAC AAGGTGGTCCCACGGCGGCCGCCCGAGGCCCGACGAGGTGCCAAAGATGG GGGGGACCCGCCGCTGACCATGTGGACCAAGGATGGCCGCACCATCCACAGCGGCTGGA GCCGCTTCCGCGTGCTGCCGCAGGGGCTGAAGGTGAAGCAGGTGGAGCGGGAGGATGCCGGC GTGTACGTGTGCAAGGCCACCAACGGCTTCGGCAGCCTGAGCGTCAACTACACCCTCGTCGT GCTGGATGACATTAGCCCAGGGAAGGAGAGCCTGGGGCCCGACAGCTCCTCTGGGGGTCAAG AGGACCCGCCAGCAGCAGCAGTGGGCACGACCTTTACAACAGCCTCCAAGATGAGGCGC CGGGTGATCGCACGGCCCTGGGTAGCTCGTGCGGCTCAAGTGCGTAGCCACGGGCACCA TCGGCCCGACATCACGTGGATGAAGGACGACCAGGCCTTGACGCCCCAGAGGCCGCTGAGC CCAGGAAGAAGTGGACACTGAGCCTGAAGAACCTGCGGCCGGAGGACAGCGGCAAATAC TGCTCATCACCCGTGCCCGCCAGGACGATGCGGGCATGTACATCTGCCTTGGCGCCAACACC GTGAGGAGCATGGGTCTCCGGCAGCCCCCAGCACTTACTGGGCCCAGGCCCAGTTGCTGGC ACACTCACACGTGGAGGGCAAGGTCCACCAGCACATCCACTATCAGTGCTAGACGGCACCGT CACACACACACGGATATGCTGTCTGGACGCACACACGTGCAGATATGGTATCCGGACACA ATATTGCCTGGACACACACACACACGCGTGCACAGATATGCTGTCTGGACACGCACAC GCAGATATGCTGCCTGGACACACACACATAATGCTGCCTCAACACTACACACTGCAGA TATTGCCTGGACACACACATGTGCACAGATATGCTGTGTGGACATGCACACAGTGCAGAT TGCTGTCCGGATACACACGCAGCACACATGCAGATATGCTGCCTGGGCACACACTTCGGA CACACATGCACACACAGGTGCAGATATGCTGCCTGGACACACGCAGACTGACGTGCTTTTGG TTTATATTTAAGAAATGAAGATAATATTAATAATGATGGAAGGAAGACTGGGTTGCAGGGAC

FIGURE 70

MTPSPLLLLLPPLLGAFPPAAARGPPKMADKVVPRQVARLGRTVRLQCPVEGDPPPLTM
WTKDGRTIHSGWSRFRVLPQGLKVKQVEREDAGVYVCKATNGFGSLSVNYTLVVLDDISPGK
ESLGPDSSSGGQEDPASQQWARPRFTQPSKMRRRVIARPVGSSVRLKCVASGHPRPDITWMK
DDQALTRPEAAEPRKKKWTLSLKNLRPEDSGKYTCRVSNRAGAINATYKVDVIQRTRSKPVL
TGTHPVNTTVDFGGTTSFQCKVRSDVKPVIQWLKRVEYGAEGRHNSTIDVGGQKFVVLPTGD
VWSRPDGSYLNKLLITRARQDDAGMYICLGANTMGYSFRSAFLTVLPDPKPPGPPVASSSSA
TSLPWPVVIGIPAGAVFILGTLLLWLCQAQKKPCTPAPAPPLPGHRPPGTARDRSGDKDLPS
LAALSAGPGVGLCEEHGSPAAPQHLLGPGPVAGPKLYPKLYTDIHTHTHTHSHTHSHVEGKV
HQHIHYQC

FIGURE 71

LINE ISSUE THAN CONTRACTOR OF THE CONTRACTOR OF

FIGURE 72

MVGTKAWVFSFLVLEVTSVLGROTMLTOSVRRVOPGKKNPSIFAKPADTLESPGEWTTWFNI DYPGGKGDYERLDAIRFYYGDRVCARPLRLEARTTDWTPAGSTGOVVHGSPREGFWCLNREO RPGONCSNYTVRFLCPPGSLRRDTERIWSPWSPWSKCSAACGOTGVOTRTRICLAEMVSLCS EASEEGOHCMGODCTACDLTCPMGOVNADCDACMCODFMLHGAVSLPGGAPASGAAIYLLTK TPKLLTQTDSDGRFRIPGLCPDGKSILKITKVKFAPIVLTMPKTSLKAATIKAEFVRAETPY MVMNPETKARRAGOSVSLCCKATGKPRPDKYFWYHNDTLLDPSLYKHESKLVLRKLOOHOAG EYFCKAOSDAGAVKSKVAOLIVTASDETPCNPVPESYLIRLPHDCFONATNSFYYDVGRCPV KTCAGOODNGIRCRDAVONCCGISKTEEREIOCSGYTLPTKVAKECSCORCTETRSIVRGRV SAADNGEPMRFGHVYMGNSRVSMTGYKGTFTLHVPODTERLVLTFVDRLOKFVNTTKVLPFN KKGSAVFHEIKMLRRKEPITLEAMETNIIPLGEVVGEDPMAELEIPSRSFYRONGEPYIGKV KASVTFLDPRNISTATAAOTDLNFINDEGDTFPLRTYGMFSVDFRDEVTSEPLNAGKVKVHL DSTOVKMPEHISTVKLWSLNPDTGLWEEEGDFKFENORRNKREDRTFLVGNLEIRERRLFNL DVPESRRCFVKVRAYRSERFLPSEOIOGVVISVINLEPRTGFLSNPRAWGRFDSVITGPNGA CVPAFCDDOSPDAYSAYVLASLAGEELOAVESSPKFNPNAIGVPOPYLNKLNYRRTDHEDPR VKKTAFOISMAKPRPNSAEESNGPIYAFENLRACEEAPPSAAHFRFYOIEGDRYDYNTVPFN EDDPMSWTEDYLAWWPKPMEFRACYIKVKIVGPLEVNVRSRNMGGTHRRTVGKLYGIRDVRS TRDRDQPNVSAACLEFKCSGMLYDQDRVDRTLVKVIPOGSCRRASVNPMLHEYLVNHLPLAV NNDTSEYTMLAPLDPLGHNYGIYTVTDODPRTAKEIALGRCFDGTSDGSSRIMKSNVGVALT FNCVEROVGROSAFOYLOSTPAOSPAAGTVOGRVPSRROORASRGGOROGGVVASLRFPRVA QQPLIN

FIGURE 73

CTGCAAGTTGTTAACGCCTAACACAAGTATGTTAGGCTTCCACCAAAGTCCTCAATATACCTGAATACGCAC ACCTACCCGTACGCATACATACATATGTGTATATATGTAAACTAGACAAAGATCGCAGATCATAAAGC CCCTTTGGGTTACGGTGTCCTCAGTGATGCAGCCCTACCCTTTGGTTTGGGGACATTATGATTTGTGTAAGACT CAGATTTACACGGAAGAAGGGAAAGTTTGGGATTACATGGCCTGCCAGCCGGAATCCACGGACATGACAAAATA TCTGAAAGTGAAACTCGATCCTCCGGATATTACCTGTGGAGACCCTCCTGAGACGTTCTGTGCAATGGGCAATC CCTACATGTGCAATAATGAGTGTGATGCGAGTACCCCTGAGCTGCACCCCCCTGAGCTGATGTTTGATTTT GAAGGAAGACATCCCTCCACATTTTGGCAGTCTGCCACTTGGAAGGAGTATCCCAAGCCTCTCCAGGTTAACAT CACTCTGTCTTGGAGCAAAACCATTGAGCTAACAGACAACATAGTTATTACCTTTGAATCTGGGCGTCCAGACC AAATGATCCTGGAGAAGTCTCTCGATTATGGACGAACATGGCAGCCCTATCAGTATTATGCCACAGACTGCTTA GATGCTTTTCACATGGATCCTAAATCCGTGAAGGATTTATCACAGCATACGGTCTTAGAAATCATTTGCACAGA AGAGTACTCAACAGGGTATACAACAAATAGCAAAATAATCCACTTTGAAATCAAAGACAGGTTCGCGCTTTTTTG CTGGACCTCGCCTACGCAATATGGCTTCCCTCTACGGACAGCTGGATACAACCAAGAAACTCAGAGATTTCTTT ACAGTCACAGACCTGAGGATAAGGCTGTTAAGACCAGCCGTTGGGGAAATATTTGTAGATGAGCTACACTTGGC ACGCTACTTTACGCGATCTCAGACATAAAGGTGCGAGGAAGGTGCAAGTGTAATCTCCATGCCACTGTATGTG TGTATGACAACAGCAAATTGACATGCGAATGTGAGCACAACACTACAGGTCCAGACTGTGGGGAAATGCAAGAAG AATTATCAGGGCCGACCTTGGAGTCCAGGCTCCTATCTCCCCATCCCCAAAGGCACTGCAAATACCTGTATCCC CAGTATTTCCAGTATTGGTACGAATGTCTGCGACAACGAGCTCCTGCACTGCCAGAACGGAGGGACGTGCCACA ACAACGTGCGCTGCCTGTGCCGGCCGCATACACGGGCATCCTCTGCGAGAAGCTGCGGTGCGAGGAGGCTGGC CTAAGAAGGCCTAACTGAACTAAGCCATATTTATCACCCGTGGACAGCACATCCGAGTCAAGACTGTTAATTTC TGACTCCAGAGGAGTTGGCAGCTGTTGATATTATCACTGCAAATCACATTGCCAGCTGCAGAGCATATTGTGGA TACTCTAGCGTGGTGCGCCCTAGTACGACTCCGCCCAGTGTGTGGACCAAACCAAATAGCATTCTTTGCTGTCAG GTGCATTGTGGGCATAAGGAAATCTGTTACAAGCTGCCATATTGGCCTGCTTCCGTCCCTGAATCCCTTCCAAC TGTGTAACAGCCCCTCTAAAAGCGCAAGCCAGTCATACCCCTGTATATCTTAGCAGCACTGAGTCCAGTGCGA ATTTTTCTTGAACTACTGTAATATGTAGATTTTTTGTATTATTGCCAATTTGTGTTACCAGACAATCTGTTAAT GATTTCTCTGTAAGGGCAACGAACGTGCTGGCATCAAAGAATATCAGTTTACATATAACAAGTGTAATAAGA TTCCACCAAAGGACATTCTAAATGTTTTCTTGTTGCTTTAACACTGGAAGATTTAAAGAATAAAAACTCCTGCA TTACTGATTTCTGTGTGGACTGAGTACATTCAGCTGACGAATTTAGTTCCCAGGAAGATGGATTGATGTTCACT AAAAAA

FIGURE 74

MYLSRSLSIHALWVTVSSVMQPYPLVWGHYDLCKTQIYTEEGKVWDYMACQPESTDMTKYLK VKLDPPDITCGDPPETFCAMGNPYMCNNECDASTPELAHPPELMFDFEGRHPSTFWQSATWK EYPKPLQVNITLSWSKTIELTDNIVITFESGRPDQMILEKSLDYGRTWQPYQYYATDCLDAF HMDPKSVKDLSQHTVLEIICTEEYSTGYTTNSKIIHFEIKDRFALFAGPRLRNMASLYGQLD TTKKLRDFFTVTDLRIRLRPAVGEIFVDELHLARYFYAISDIKVRGRCKCNLHATVCVYDN SKLTCECEHNTTGPDCGKCKKNYQGRPWSPGSYLPIPKGTANTCIPSISSIGTNVCDNELLH CQNGGTCHNNVRCLCPAAYTGILCEKLRCEEAGSCGSDSGQGAPPHGTPALLLLTTLLGTAS PLVF

FIGURE 75

CCCACGCGTCCGGGTGACCTGGGCCGAGCCCTCCCGGTCGGCTAAGATTGCTGAGGAGGCGG CGGGTAGCTGGCAGGCCGACTTCCGAAGGCCGCCGTCCGGGCGAGGTGTCCTCATGACTT CTCTTGTGGACCATGTCCGTGATCTTTTTTGCCTGCGTGGTACGGGTAAGGGATGGACTGCC CCTCTCAGCCTCTACTGATTTTTACCACACCCAAGATTTTTTGGAATGGAGGAGGGCTCA AGAGTTTAGCCTTGCGACTGGCCCAGTATCCAGGTCGAGGTTCTGCAGAAGGTTGTGACTTT AGTATACATTTTCTTCTTCGGGGACGTGGCCTGCATGGCTATCTGCTCCTGCCAGTGTCC AGCAGCCATGGCCTTCTGCTTCCTGGAGACCCTGTGGTGGGGAATTCACAGCTTCCTATGACA CTACCTGCATTGGCCTAGCCTCCAGGCCATACGCTTTTCTTGAGGTTTTGACAGCATCATTCAG AAAGTGAAGTGGCATTTTAACTATGTAAGTTCCTCTCAGATGGAGTGCAGCTTGGAAAAAT TCAGGAGGAGCTCAAGTTGCAGCCTCCAGCGGTTCTCACTCTGGAGGACACAGATGTGGCAA ATGGGGTGATGAATGGTCACACACCGATGCACTTGGAGCCTGCTCCTAATTTCCGAATGGAA CCAGTGACAGCCCTGGGTATCCTCTCCCTCATTCTCAACATCATGTGTGCTGCCCTGAATCT CATTCGAGGAGTTCACCTTGCAGAACATTCTTTACAGGATCCAAGGAGCTGGTTCTGCTGGT TGGACCAAACCTCGTGACCAGCCACCCCTGACCCAAATGAGGAGAGCTCTGATTCTCCCAT CCGGGAGCAGTGATGTCAAACTTCTGCTGCTGGGGAAATCTCATCAGCAGGGAGCCTGTGGA AAAGGGCATGTCAGTGAAATCTGGGAATGGCTGGATTCGGAAACATCTGCCCATGTGTATTG ATGGCAGAGCTGTTGCCCACAAGCGCCTTTTATTTAGGGTAAAATTAACAAATCCATTCTAT TCCTCTGACCCATGCTTAGTACATATGACCTTTAACCCTTACATTTATATGATTCTGGGGTT GCTTCAGAAGTGTTATTTCATGAATCATTCATATGATTTGATCCCCCAGGATTCTATTTTGT TTAATGGGCTTTTCTACTAAAAGCATAAAATACTGAGGCTGATTTAGTCAGGGCAAAACCAT TTACTTTACATATTCGTTTTCAATACTTGCTGTTCATGTTACACAAGCTTCTTACGGTTTTC TTGTAACAATAATATTTTGAGTAAATAATGGGTACATTTTAACAAACTCAGTAGTACAACC TAAACTTGTATAAAAGTGTGTAAAAATGTATAGCCATTTATATCCTATGTATAAATTAAATG AAAAG

FIGURE 76

MSVIFFACVVRVRDGLPLSASTDFYHTQDFLEWRRRLKSLALRLAQYPGRGSAEGCDFSIHF SSFGDVACMAICSCQCPAAMAFCFLETLWWEFTASYDTTCIGLASRPYAFLEFDSIIQKVKW HFNYVSSSQMECSLEKIQEELKLQPPAVLTLEDTDVANGVMNGHTPMHLEPAPNFRMEPVTA LGILSLILNIMCAALNLIRGVHLAEHSLQDPRSWFCWLDQTS

FIGURE 77

FIGURE 78

CTCAGCGGCGCTTCCTCGTAGCGAGCCTAGTGGCGGGTGTTTGCATTGAAACGTGAGCGCGA CCCGACCTTAAAGAGTGGGGAGCAAAGGGGGGGAGACAGAGCCCTTTAAAACGAGGCGGGTGGTG CCTGCCCCTTTAAGGGCGGGGGGCGTCCGGACGACTGTATCTGAGCCCCAGACTGCCCCGAGTT TCTGTCGCAGGCTGCGAGGAAAGGCCCCTAGGCTGGGTCTGGGTGCTTGGCGGCGGCGGCTT CCTCCCCGCTCGTCCTCCCCGGGCCCAGAGGCACCTCGGCTTCAGTCATGCTGAGCAGAGTA **TG**GAAGCACCTGACTACGAAGTGCTATCCGTGCGAGAACAGCTATTCCACGAGAGGATCCGC GAGTGTATTATATCAACACTTCTGTTTGCAACACTGTACATCCTCTGCCACATCTTCCTGAC CCGCTTCAAGAAGCCTGCTGAGTTCACCACAGTGGATGATGAAGATGCCACCGTCAACAAGA TTGCGCTCGAGCTGTGCACCTTTACCCTGGCAATTGCCCTGGGTGCTGTCCTGCTCCTGCCC TTCTCCATCATCAGCAATGAGGTGCTGCTCTCCCTGCCTCGGAACTACTACATCCAGTGGCT CAACGGCTCCTCATCCATGGCCTCTGGAACCTTGTTTTTCTCTTCCCCAACCTGTCCCTCA TCTTCCTCATGCCCTTTGCATATTTCTTCACTGAGTCTGAGGGCTTTGCTGGCTCCAGAAAG ${\tt GGTGTCCTGGGCCGGGTCTATGAGACAGTGGTGATGTTGATGCTCCTCACTCTGCTGGTGCT}$ AGGTATGGTGTGGGCATCAGCCATTGTGGACAAGAACAAGGCCAACAGAGAGTCACTCT CTGCTCCTGGTGTACTCCACTGGGTCTCGCCCGCATGTTCTCCGTCACTGGGAAGCTGCT AGTCAAGCCCCGGCTGCTGGAAGACCTGGAGGAGCAGCTGTACTGCTCAGCCTTTGAGGAGG GCCTGTCTGTGCTCATTGTGGCCATCCACATCCTGGAGCTGCTCATCGATGAGGCTGCCATG CCCCGAGGCATGCAGGGTACCTCCTTAGGCCAGGTCTCCTTCTCCAAGCTGGGCTCCTTTGG TGCCGTCATTCAGGTTGTACTCATCTTTTACCTAATGGTGTCCTCAGTTGTGGGCCTTCTATA GCTCTCCACTCTTCCGGAGCCTGCGGCCCAGATGGCACGACACTGCCATGACGCAGATAATT GGGAACTGTGTCTCCTGGTCCTAAGCTCAGCACTTCCTGTCTTCTCTCGAACCCTGGG ACTGCAGCTGTGCGGGCAGAGCTGATCCGGGCCTTTGGGCTGGACAGACTGCCGCTGCCCGT AGGAAAAAACTGGACACTGCCATCTGCTGCCTAGGCCTGGAGGGAAGCCCAAGGCTACTTGG ACCTCAGGACCTGGAATCTGAGAGGGTGGGTGGCAGAGGGGAGCCATCTGCACTATT GCATAATCTGAGCCAGAGTTTGGGACCAGGACCTCCTGCTTTTCCATACTTAACTGTGGCCT CAGCATGGGGTAGGGCTGGGTGACTGGGTCTAGCCCCTGATCCCAAATCTGTTTACACATCA ATCTGCCTCACTGCTGTTCTGGGCCATCCCCATAGCCATGTTTACATGATTTGATGTGCAAT CTTGCCTCTGGCCCAGCAGAGCCTAAGCACTGTGCTATCCTGGAGGGGCTTTGGACCACCTG AAAGACCAAGGGGATAGGGAGGAGGAGGCTTCAGCCATCAGCAATAAAGTTGATCCCAGGGA AAAAAA

FIGURE 79

MEAPDYEVLSVREQLFHERIRECIISTLLFATLYILCHIFLTRFKKPAEFTTVDDEDATVNK
IALELCTFTLAIALGAVLLLPFSIISNEVLLSLPRNYYIQWLNGSLIHGLWNLVFLFPNLSL
IFLMPFAYFFTESEGFAGSRKGVLGRVYETVVMLMLLTLLVLGMVWVASAIVDKNKANRESL
YDFWEYYLPYLYSCISFLGVLLLLVCTPLGLARMFSVTGKLLVKPRLLEDLEEQLYCSAFEE
AALTRRICNPTSCWLPLDMELLHRQVLALQTQRVLLEKRRKASAWQRNLGYPLAMLCLLVLT
GLSVLIVAIHILELLIDEAAMPRGMQGTSLGQVSFSKLGSFGAVIQVVLIFYLMVSSVVGFY
SSPLFRSLRPRWHDTAMTQIIGNCVCLLVLSSALPVFSRTLGLTRFDLLGDFGRFNWLGNFY
IVFLYNAAFAGLTTLCLVKTFTAAVRAELIRAFGLDRLPLPVSGFPOASRKTOHO

FIGURE 80

GGCTGCCGAGGGAAGGCCCCTTGGGTTGGTTGTTGGTTGCTTGGCGGCGGGGTTCNTCCCC GCTCGTCCTCCCCGGGCCCAGAGGCACCTCGGCTTCAGTCATGCTGAGCAGAGTATGGAAGC ACCTGACTACGAAGTGCTATCCGTGCGAGAACAGCTATTCCACGAGAGGATCCGCGAGTGTA TTATATCAACACTTCTGTTTGCAACACTGTACATCCTCTGCCACATCTTCCTGACCCGCTTC AAGAAGCCTGCTGAGTTCACCACAGTGGATGATGAAGATGCCACCG

FIGURE 81

GACCGACCTTAAAGAGTGGGAGCAAAGGGAGGACÀGAGCCTTTTAAAACGAGGCGGTGGTGC
CTGCCCTTTAAGGGCGGGGGCTCCGGACGACTGTATCTGAGCCCCAGACTGCCCCGAGTTTC
TGTCGCAGGCTGCGAGAAAGGCCCCTAGGCTGGTCTTGTTGCTGGCGGCGGGGGCTTCCT
CCCCGTTGTCNTCCCCGGGCCCAGAGGCACCTCGGCTTCAGTCATGCTGAGCAGAGTATEGA
AGCACCTGACTACGAAGTGCTATCCGTGCGAGAACAGCTATTCCACGAGAGGATCCGCGAGT
GTATTATATCAACACTTCTGTTTGCAACACTGTACATCNTCTGCCACATCTTCCTGACCCGC
TTCAAGAAGCCTGCTGAGTTCACCACAGTGGATGATGAAGATGCCACCGTCAACAAGATTGC
GCTCGAGCTGTGCACCTTTACCCTGGCAATTGCCCTGGGTGCTGCCCTTCT
CCATCATCAGCAATGAGGTGCTGCACTCCC

FIGURE 82

FIGURE 83

 ${\tt MLLWVILLVLAPVSGQFARTPRPIIFLQPPWTTVFQGERVTLTCKGFRFYSPQKTKWYHRYLGKEILRETPDNILEVQESGEYRCQAQGSPLSSPVHLDFSSEMGFPHAAQANVELLGSSDLLT$

FIGURE 84

CAGAAGAGGGGGCTAGCTAGCTGTCTCTGCGGACCAGGGAGACCCCCGGGCCCCCCGGTGT GAGGCGGCCTCACAGGGCCGGGTGGGCTGGCGAGCCGACGCGGCGGGGGAGGAGGCTGTGAG GAGTGTGTGGAACAGGACCCGGGACAGAGGAACCATGGCTCCGCAGAACCTGAGCACCTTTT GCCTGTTGCTGCTATACCTCATCGGGGCGGTGATTGCCGGACGAGATTTCTATAAGATCTTG GGGGTGCCTCGAAGTGCCTCTATAAAGGATATTAAAAAAGGCCTATAGGAAACTAGCCCTGCA GCTTCATCCCGACCGGAACCCTGATGATCCACAAGCCCAGGAGAAATTCCAGGATCTGGGTG CTGCTTATGAGGTTCTGTCAGATAGTGAGAAACGGAAACAGTACGATACTTATGGTGAAGAA GGATTAAAAGATGGTCATCAGAGCTCCCATGGAGACATTTTTTCACACTTCTTTGGGGATTT TGGTTTCATGTTTGGAGGAACCCCTCGTCAGCAAGACAGAAATATTCCAAGAGGAAGTGATA TTATTGTAGATCTAGAAGTCACTTTGGAAGAAGTATATGCAGGAAATTTTGTGGAAGTAGTT AGAAACAAACCTGTGGCAAGGCAGGCTCCTGGCAAACGGAAGTGCAATTGTCGGCAAGAGAT GCGGACCACCCAGCTGGGCCCTGGGCGCTTCCAAATGACCCAGGAGGTGGTCTGCGACGAAT GCCCTAATGTCAAACTAGTGAATGAAGAACGAACGCTGGAAGTAGAAATAGAGCCTGGGGTG AGAGACGGCATGGAGTACCCCTTTATTGGAGAAGGTGAGCCTCACGTGGATGGGGAGCCTGG TGTACACAAATGTGACAATCTCATTAGTTGAGTCACTGGTTGGCTTTGAGATGGATATTACT CACTTGGATGGTCACAAGGTACATATTTCCCGGGATAAGATCACCAGGCCAGGAGCGAAGCT ATGGAAGAAGGGGAAGGGCTCCCCAACTTTGACAACAACAATATCAAGGGCTCTTTGATAA TCACTTTTGATGTGGATTTTCCAAAAGAACAGTTAACAGAGGAAGCGAGAGAAGGTATCAAA CAGCTACTGAAACAAGGGTCAGTGCAGAAGGTATACAATGGACTGCAAGGATAT<u>TGA</u>GAGTG TCATCATGAAATGAATAAGAGGGCTTAAGAATTTGTCCATTTGCATTCGGAAAAGAATGACC AGCAAAAGGTTTACTAATACCTCTCCCTTTGGGGATTTAATGTCTGGTGCTGCCGCCTGAGT TTCAAGAATTAAAGCTGCAAGAGGACTCCAGGAGCAAAAGAAACACAATATAGAGGGTTGGA GTTGTTAGCAATTTCATTCAAAATGCCAACTGGAGAAGTCTGTTTTTAAATACATTTTGTTG TTATTTTTA

FIGURE 85

MAPQNLSTFCLLLLYLIGAVIAGRDFYKILGVPRSASIKDIKKAYRKLALQLHPDRNPDDPQ
AQEKFQDLGAAYEVLSDSEKRKQYDTYGEEGLKDGHQSSHGDIFSHFFGDFGFMFGGTPRQQ
DRNIPRGSDIIVDLEVTLEEVYAGNFVEVVRNKPVARQAPGKRKCNCRQEMRTTQLGPGRFQ
MTQEVVCDECPNVKLVNEERTLEVEIEPGVRDGMEYPFIGEGEPHVDGEPGDLRFRIKVVKH
PIFERRGDDLYTNVTISLVESLVGFEMDITHLDGHKVHISRDKITRPGAKLWKKGEGLPNFD
NNNIKGSLIITFDVDFPKEOLTEEAREGIKOLLKOGSVOKVYNGLOGY

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 254-257

Nt-dnaJ domain signature.

amino acids 67-87

Homologous region to Nt-dnaJ domain proteins.

amino acids 26-58

N-glycosylation site.

amino acids 5-9, 261-265

Tyrosine kinase phosphorylation site.

amino acids 253-260

N-myristoylation site.

amino acids 18-24, 31-37, 93-99, 215-221

Amidation site.

amino acids 164-168

FIGURE 86

TGGGACCAGGGAACCCCGGGCCCCCGGTGGAGNGCCTAACAGGCCGGTGGNTGCGACCGAA
GCGGCGGGCGGAGGAGTTTTGAGGATTTTTGGAACAGGACCCGGACAGAGGAACCATGGTT
CCGCAGAACNTGAGCACNTTTTGCCTGTTGNTGNTATACTTCATCGGGGCGGTGATTGCCGG
ACGAGATTTNTATAAGATTTTGGGGTGCCTNGAAGTGCCTTNTATAAAGGATATTAAAAAGG
CCTATAGGAAACTAGCCCTGCAGNTTTATCCCGACCGGAACCCTGATGATCCACAAGCCCAG
GAGAAATTCCAGGATTTGGGTGCTGCTTATGAGGTTNTGTCAGATAGTGAGAAACGGAAACA
GTACGATAATTATGGTGAAGAAGGATTAAAAAGATGGTNATCAGAGCCCCATGGAGACATTT
TTTCACACTTNTTTGGGGATTTTGGTTTCATGTTTTGGAGGAACCCCTNGTCAGCAAGACAGA
AATATCCAAGAG

FIGURE 87

GGCACGAGGCGGGGGCAGTCGCGGGATGCGCCCGGGAGCCACAGCCTGAGGCCCTCAGGT CTCTGCAGGTGTCGTGGAGGAACCTAGCACCTGCCATCCTCTTCCCCAATTTGCCACTTCCA GCAGCTTTAGCCCATGAGGAGGATGTGACCGGGACTGAGTCAGGAGCCCTCTGGAAGC**ATG**G AGACTGTGGTGATTGTTGCCATAGGTGTGCTGGCCACCATCTTTCTGGCTTCGTTTGCAGCC TTGGTGCTGGTTTGCAGGCAGCGCTACTGCCGGCCGCGAGACCTGCTGCAGCGCTATGATTC TAAGCCCATTGTGGACCTCATTGGTGCCATGGAGACCCAGTCTGAGCCCTCTGAGTTAGAAC TGGACGATGTCGTTATCACCAACCCCCACATTGAGGCCATTCTGGAGAATGAAGACTGGATC GAAGATGCCTCGGGTCTCATGTCCCACTGCATTGCCATCTTGAAGATTTGTCACACTCTGAC AGAGAAGCTTGTTGCCATGACAATGGGCTCTGGGGCCAAGATGAAGACTTCAGCCAGTGTCA GCGACATCATTGTGGTGGCCAAGCGGATCAGCCCCAGGGTGGATGATGTTGTGAAGTCGATG TCACCTGGTGCTGGTGACAAGGAATGCCTGCCATCTGACGGGAGGCCTGGACTGGATTGACC AGTCTCTGTCGGCTGCTGAGGAGCATTTGGAAGTCCTTCGAGAAGCAGCCCTAGCTTCTGAG CCAGATAAAGGCCTCCCAGGCCCTGAAGGCTTCCTGCAGGAGCAGTCTGCAATT**TAG**TGCCT ACAGGCCAGCAGCTAGCCATGAAGGCCCCTGCCGCCATCCCTGGATGGCTCAGCTTAGCCTT TAAAGCAGGAGATCCCCGTCAGTTTATGCCTCTTTTGCAGTTGCAAACTGTGGCTGGTGAGT GGCAGTCTAATACTACAGTTAGGGGAGATGCCATTCACTCTCTGCAAGAGGAGTATTGAAAA CTGGTGGACTGTCAGCTTTATTTAGCTCACCTAGTGTTTTCAAGAAAATTGAGCCACCGTCT AAGAAATCAAGAGGTTTCACATTAAAATTAGAATTTCTGGCCTCTCTCGATCGGTCAGAATG GGTCCCTGAGGCGTCTGGGTCTCTCCTCTCCCTTGCAGGTTTGGGTTTGAAGCTGAGGAACT

FIGURE 88

METVVIVAIGVLATIFLASFAALVLVCRQRYCRPRDLLQRYDSKPIVDLIGAMETQSEPSEL ELDDVVITNPHIEAILENEDWIEDASGLMSHCIAILKICHTLTEKLVAMTMGSGAKMKTSAS VSDIIVVAKRISPRVDDVVKSMYPPLDPKLLDARTTALLLSVSHLVLVTRNACHLTGGLDWI DQSLSAAEEHLEVLREAALASEPDKGLPGPEGFLQEQSAI

n)

C

89/330

FIGURE 89

GCTTCATTTCTCCCGACTCAGCTTCCCACCCTGGGCTTTCCGAGGTGCTTTCGCCGCTGTCC $\verb|CCACCACTGCAGCC| \textbf{ATG} | \textbf{ATCTCCTTAACGGACACGCAGAAAATTGGAATGGGATTAACAGGA|$ TTTGGAGTGTTTTTCCTGTTCTTTGGAATGATTCTCTTTTTTGACAAAGCACTACTGGCTAT TCTTCTTCCAAAAACATAAAATGAAAGCTACAGGTTTTTTTCTGGGTGGTGTATTTGTAGTC $\tt CTTATTGGTTGGCCTTTGATAGGCATGATCTTCGAAATTTATGGATTTTTTCTCTTGTTCAG$ GGGCTTCTTTCCTGTCGTTGTTGGCTTTATTAGAAGAGTGCCAGTCCTTGGATCCCTCCTAAAT TTACCTGGAATTAGATCATTTGTAGATAAAGTTGGAGAAAGCAACAATATGGTA**TAA**CAACA AGTGAATTTGAAGACTCATTTAAAATATTGTGTTATTATAAAGTCATTTGAAGAATATTCA GCACAAATTAAATTACATGAAATAGCTTGTAATGTTCTTTACAGGAGTTTAAAACGTATAG CCTACAAAGTACCAGCAGCAAATTAGCAAAGAAGCAGTGAAAACAGGCTTCTACTCAAGTGA ACTAAGAAGTCAGCAAGCAAACTGAGAGAGGTGAAATCCATGTTAATGATGCTTAAGAA ACTCTTGAAGGCTATTTGTGTTGTTTTTCCACAATGTGCGAAACTCAGCCATCCTTAGAGAA CTGTGGTGCCTGTTTCTTTTTTTTTTTTTGAAGGCTCAGGAGCATCCATAGGCATTTGCT TTTTAGAAGTGTCCACTGCAATGGCAAAAATATTTCCAGTTGCACTGTATCTCTGGAAGTGA TGCATGAATTCGATTGGATTGTGTCATTTTAAAGTATTAAAACCAAGGAAACCCCAATTTTG ATGTATGGATTACTTTTTTTTTTGNGCNCAGGGCC

FIGURE 90

MISLTDTQKIGMGLTGFGVFFLFFGMILFFDKALLAIGNVLFVAGLAFVIGLERTFRFFFQK HKMKATGFFLGGVFVVLIGWPLIGMIFEIYGFFLLFRGFFPVVVGFIRRVPVLGSLLNLPGI RSFVDKVGESNNMV

Important features:

Transmembrane domains:

amino acids 12-30 (typeII), 33-52, 69-89 and 93-109

N-myristoylation sites.

amino acids 11-16, 51-56 and 116-121

Aminoacyl-transfer RNA synthetases class-II protein.

amino acids 49-59

FIGURE 91

FIGURE 92

GGCACGAGGCTGAACCCAGCCGGCTCCATCTCAGCTTCTGGTTTCTAAGTCCATGTGCCAAA CTGTGGGTAGTTATTTATTTCTGAATAAGAGCGTCCACGCATCATGGACCTCGCGGGACTGC TGAAGTCTCAGTTCCTGTGCCACCTGGTCTTCTGCTACGTCTTTATTGCCTCAGGGCTAATC ATCAACACCATTCAGCTCTTCACTCTCCTCTCTGGCCCATTAACAAGCAGCTCTTCCGGAA GATCAACTGCAGACTGTCCTATTGCATCTCAAGCCAGCTGGTGATGCTGCTGGAGTGGTGGT GCCATCGTGGTTCTCAACCACAAGTTTGAAATTGACTTTCTGTGTGGGCTGGAGCCTGTCCGA TTATCGGCTGGATGTGGTACTTCACCGAGATGGTCTTCTGTTCGCGCAAGTGGGAGCAGGAT CGCAAGACGGTTGCCACCAGTTTGCAGCACCTCCGGGACTACCCCGAGAAGTATTTTTTCCT GATTCACTGTGAGGGCACACGGTTCACGGAGAAGAAGCATGAGATCAGCATGCAGGTGGCCC GGGCCAAGGGCTGCCTCGAGCATCACCTGTTGCCACGAACCAAGGGCTTCGCCATC ACCGTGAGGAGCTTGAGAAATGTAGTTTCAGCTGTATATGACTGTACACTCAATTTCAGAAA TTAGGAGGATCCCACTGGAAGACATCCCTGAAGACGATGACGAGTGCTCGGCCTGGCTGCAC AAGCTCTACCAGGAGAAGGATGCCTTTCAGGAGGAGTACTACAGGACGGCACCTTCCCAGA GACGCCCATGGTGCCCCCCGGCGCCCTGGACCCTCGTGAACTGGCTGTTTTGGGCCTCGC TGGTGCTCTACCCTTTCTTCCAGTTCCTGGTCAGCATGATCAGGAGCGGGTCTTCCCTGACG GACGGAAATTGACAAGGGCTCTGCCTACGGCAACTCTGACAGCAGCAGCAGAACTGAATGACT GACTCAGGGAGGTGTCACCATCCGAAGGGAACCTTGGGGAACTGGTGGCCTCTGCATATCCT CCTTAGTGGGACACGGTGACAAAGGCTGGGTGAGCCCCTGCTGGGCACGGCGGAAGTCACGA CCTCTCCAGCCAGGGAGTCTGGTCTCAAGGCCGGATGGGGAGGAAGATGTTTTGTAATCTTT TGTGTGGTGAGTGTGAACTTTGTTCTGTGATCATAGAAAGGGTATTTTAGGCTGCAGGGGAG GGCAGGGCTGGGGACCGAAGGGGACAAGTTCCCCTTTCATCCTTTGGTGCTGAGTTTTCTGT AACCCTTGGTTGCCAGAGATAAAGTGAAAAGTGCTTTAGGTGAGATGACTAAATTATGCCTC

FIGURE 93

MDLAGLLKSQFLCHLVFCYVFIASGLIINTIQLFTLLLWPINKQLFRKINCRLSYCISSQLV
MLLEWWSGTECTIFTDPRAYLKYGKENAIVVLNHKFEIDFLCGWSLSERFGLLGGSKVLAKK
ELAYVPIIGWMWYFTEMVFCSRKWEQDRKTVATSLQHLRDYPEKYFFLIHCEGTRFTEKKHE
ISMQVARAKGLPRLKHHLLPRTKGFAITVRSLRNVVSAVYDCTLNFRNNENPTLLGVLNGKK
YHADLYVRRIPLEDIPEDDDECSAWLHKLYQEKDAFQEEYYRTGTFPETPMVPPRRPWTLVN
WLFWASLVLYPFFQFLVSMIRSGSSLTLASFILVFFVASVGVRWMIGVTEIDKGSAYGNSDS
KQKLND

FIGURE 94

CTGAGGCGGCGTAGCATGGAGGGGGAGAGTACGTCGGCGGTGCTCTCGGGCTTTGTGCTCG GCGCACTCGCTTTCCAGCACCTCAACACGGACTCGGACACGGAAGGTTTTCTTCTTGGGGAA GTAAAAGGTGAAGCCAAGAACAGCATTACTGATTCCCAAATGGATGATGTTGAAGTTGTTTA TACAATTGACATTCAGAAATATATTCCATGCTATCAGCTTTTTAGCTTTTATAATTCTTCAG GCGAAGTAAATGAGCAAGCACTGAAGAAAATATTATCAAATGTCAAAAAGAATGTGGTAGGT AAACTTGCAGGAGCATTTTTCAAACCAAGACCTTGTTTTTCTGCTATTAACACCAAGTATAA TAACAGAAAGCTGCTCTACTCATCGACTGGAACATTCCTTATATAAACCTCAAAAAGGACTT TTTCACAGGGTACCTTTAGTGGTTGCCAATCTGGGCATGTCTGAACAACTGGGTTATAAAAC TGTATCAGGTTCCTGTATGTCCACTGGTTTTAGCCGAGCAGTACAAACACACAGCTCTAAAT TTTTTGAAGAAGATGGATCCTTAAAGGAGGTACATAAGATAAATGAAATGTATGCTTCATTA CAAGAGGAATTAAAGAGTATATGCAAAAAAGTGGAAGACAGTGAACAAGCAGTAGATAAACT AGTAAAGGATGTAAACAGATTAAAACGAGAAATTGAGAAAAGGAGAGGAGCACAGATTCAGG CAGCAAGAGAAGAACATCCAAAAAGACCCTCAGGAGAACATTTTTCTTTGTCAGGCATTA CGGACCTTTTTTCCAAATTCTGAATTTCTTCATTCATGTGTTATGTCTTTAAAAAATAGACA TGTTTCTAAAAGTAGCTGTAACTACAACCACCATCTCGATGTAGTAGACAATCTGACCTTAA TGGTAGAACACACTGACATTCCTGAAGCTAGTCCAGCTAGTACACCACAAATCATTAAGCAT AAAGCCTTAGACTAGATGACAGATGGCAATTCAAGAGATCTCGGTTGTTAGATACACAAGA CAAACGATCTAAAGCAAATACTGGTAGTAGCAAGATAAAGCATCCAAAATGAGCAGCC CAGAAACAGATGAAGAATTGAAAAGATGAAGGGTTTTTGGTGAATATTCACGGTCTCCTACA CTGTTTGCAGTAATACACAGATAACTCTTAGTGCATTTACTTCACAAAGTACTTTTTCAAAC ATCAGATGCTTTTATTTCCAAACCTTTTTTTCACCTTTCACTAAGTTGTTGAGGGGAAGGCT TACACAGACACATTCTTTAGAATTGGAAAAGTGAGACCAGGCACAGTGGCTCACACCTGTAA TGGGCAACGTATTGAGACCATGTCTATTAAAAAATAAAATGGAAAAGCAAGAATAGCCTTAT TTTCAAAATATGGAAAGAAATTTATATGAAAATTTATCTGAGTCATTAAAATTCTCCTTAAG TGATACTTTTTTAGAAGTACATTATGGCTAGAGTTGCCAGATAAAATGCTGGATATCATGCA

FIGURE 95

MEGESTSAVLSGFVLGALAFQHLNTDSDTEGFLLGEVKGEAKNSITDSQMDDVEVVYTIDIQ
KYIPCYQLFSFYNSSGEVNEQALKKILSNVKKNVVGWYKFRRHSDQIMTFRERLLHKNLQEH
FSNQDLVFLLLTPSIITESCSTHRLEHSLYKPQKGLFHRVPLVVANLGMSEQLGYKTVSGSC
MSTGFSRAVQTHSSKFFEEDGSLKEVHKINEMYASLQEELKSICKKVEDSEQAVDKLVKDVN
RLKREIEKRRGAQIQAAREKNIQKDPQENIFLCQALRTFFPNSEFLHSCVMSLKNRHVSKSS
CNYNHHLDVVDNLTLMVEHTDIPEASPASTPQIIKHKALDLDDRWQFKRSRLLDTQDKRSKA
NTGSSNQDKASKMSSPETDEEIEKMKGFGEYSRSPTF

FIGURE 96

CCAAGCAGCGCGCGCGCCGCCGCCGCCCACACCCTCTGCGGTCCCCGCGGCGCCTGCCACCCTTCCCT CCTTCCCCGCGTCCCCGCCTCGCCGGCCAGTCAGCTTGCCGGGTTCGCTGCCCCGCGAAACCCCGAGGTCACCA GCCCGCGCCTCTGCTTCCCTGGGCCGCGCCGCCCTCCACGCCCTCCTTCTCCCCTGGCCCGGCGCCTGGCACC GGGGACCGTTGCCTGACGCGAGGCCCAGCTCTACTTTTCGCCCCGCGTCTCCTCCGCCTGCTCGCCTCTTCCAC CAACTCCAACTCCTTCTCCCTCCAGCTCCACTCGCTAGTCCCGGACTCCGCCAGCCCTCGGCCCGCTGCCGTAG CGCGCTTCTCTGCACCCTGGCAGTGCTCAGCGCCGCGCTGCTGCCGAGCTCAAGTCGAAAAGTTGCTCGG AAGTGCGACGTCTTTACGTGTCCAAAGGCTTCAACAAGAACGATGCCCCCCTCCACGAGATCAACGGTGATCAT TTGAAGATCTGTCCCCAGGGTTCTACCTGCTCTCAAGAGATGGAGGAGGAGTACAGCCTGCAAAGTAAAGA TGATTTCAAAAGTGTGGTCAGCGAACAGTGCAATCATTTGCAAGCTGTCTTTGCTTCACGTTACAAGAAGTTTG ATGAATTCTTCAAAGAACTACTTGAAAATGCAGAGAAATCCCTGAATGATATGTTTGTGAAGACATATGGCCAT TTATACATGCAAAATTCTGAGCTATTTAAAGATCTCTTCGTAGAGTTGAAACGTTACTACGTGGTGGGAAATGT GAACCTGGAAGAAATGCTAAATGACTTCTGGGCTCGCCTCCTGGAGCGGATGTTCCGCCTGGTGAACTCCCAGT ACCACTTTACAGATGAGTATCTGGAATGTGTGAGCAAGTATACGGAGCAGCTGAAGCCCTTCGGAGATGTCCCT CGCAAATTGAAGCTCCAGGTTACTCGTGCTTTTGTAGCAGCCCGTACTTTCGCTCAAGGCTTAGCGGTTGCGGG AGATGTCGTGAGCAAGGTCTCCGTGGTAAACCCCACAGCCCAGTGTACCCATGCCCTGTTGAAGATGATCTACT GCTCCCACTGCCGGGGTCTCGTGACTGTGAAGCCATGTTACAACTACTGCTCAAACATCATGAGAGGCTGTTTG GCCAACCAAGGGGATCTCGATTTTGAATGGAACAATTTCATAGATGCTATGCTGATGGTGGCAGAGGGCTAGA GGGTCCTTTCAACATTGAATCGGTCATGGATCCCATCGATGTGAAGATTTCTGATGCTATTATGAACATGCAGG ATAATAGTGTTCAAGTGTCTCAGAAGGTTTTCCAGGGATGTGGACCCCCCAAGCCCCTCCCAGCTGGACGAATT TCTCGTTCCATCTCTGAAAGTGCCTTCAGTGCTCGCTTCAGACCACATCACCCCGAGGAACGCCCAACCACAGC AGCTGGCACTAGTTTGGACCGACTGGTTACTGATGTCAAGGAGAAACTGAAACAGGCCAAGAAATTCTGGTCCT CCCTTCCGAGCAACGTTTGCAACGATGAGAGAGGGTGCCTGCAGGAAACGGCAATGAGGATGACTGTTGGAATGGG AAAGGCAAAAGCAGGTACCTGTTTGCAGTGACAGGAAATGGATTAGCCAACCAGGGCAACAACCCAGAGGTCCA GGTTGACACCAGCAAACCAGACATACTGATCCTTCGTCAAATCATGGCTCTTCGAGTGATGACCAGCAAGATGA GGCTGTGAGTATCAGCAGTGCCCTTCAGAGTTTGACTACAATGCCACTGACCATGCTGGGAAGAGTGCCAATGA GAAAGCCGACAGTGCTGGTGTCCTGGGGCACAGGCCTACCTCCTCACTGTCTTCTGCATCTTGTTCCTGG TTATGCAGAGAGAGTGGAGATAATTCTCAAACTCTGAGAAAAAGTGTTCATCAAAAAGGTTAAAAGGCACCAGTT CGCCTTGTTTCTTACAAGCAAACCAGGGTCCCTTCTTGGCACGTAACATGTACGTATTTCTGAAATATTAAATA GCTGTACAGAAGCAGGTTTTATTTATCATGTTATCTTATTAAAAGAAAAAGCCCAAAAAGC

FIGURE 97

MARFGLPALLCTLAVLSAALLAAELKSKSCSEVRRLYVSKGFNKNDAPLHEINGDHLKICPQ
GSTCCSQEMEEKYSLQSKDDFKSVVSEQCNHLQAVFASRYKKFDEFFKELLENAEKSLNDMF
VKTYGHLYMQNSELFKDLFVELKRYYVVGNVNLEEMLNDFWARLLERMFRLVNSQYHFTDEY
LECVSKYTEQLKPFGDVPRKLKLQVTRAFVAARTFAQGLAVAGDVVSKVSVVNPTAQCTHAL
LKMIYCSHCRGLVTVKPCYNYCSNIMRGCLANQGDLDFEWNNFIDAMLMVAERLEGPFNIES
VMDPIDVKISDAIMNMQDNSVQVSQKVFQGCGPPKPLPAGRISRSISESAFSARFRPHHPEE
RPTTAAGTSLDRLVTDVKEKLKQAKKFWSSLPSNVCNDERMAAGNGNEDDCWNGKGKSRYLF
AVTGNGLANQGNNPEVQVDTSKPDILILRQIMALRVMTSKMKNAYNGNDVDFFDISDESSGE
GSGSGCEYQQCPSEFDYNATDHAGKSANEKADSAGVRPGAQAYLLTVFCILFLVMQREWR

FIGURE 98

FIGURE 99

 ${\tt MKVLISSLLLLPLMLMSMVSSSLNPGVARGHRDRGQASRRWLQEGGQECECKDWFLRaprr} \\ {\tt KFMTVSGLPKKQCPCDHFKGNVKKTRHQRHHRKPNKHSRACQQFLKQCQLRSFALPL} \\$

FIGURE 100

FIGURE 101

 ${\tt MAVLVLRLTVVLGLLVLFLTCYADDKPDKPDDKPDDSGKDPKPDFPKFLSLLGTEIIENAVE}$ ${\tt FILRSMSRSTGFMEFDDNEGKHSSK}$

FIGURE 102

GGACGCCAGCGCCTGCAGAGGCTGAGCAGGGAAAAAGCCAGTGCCCCAGCGGAAGCACAGCT CAGAGCTGGTCTGCCATGGACATCCTGGTCCCACTCCTGCAGCTGCTGGTGCTGCTTCTTAC CCTGCCCTGCACCTCATGGCTCTGCTGGGCTGCTGGCAGCCCCTGTGCAAAAGCTACTTCC CCTACCTGATGGCCGTGCTGACTCCCAAGAGCAACCGCAAGATGGAGAGCAAGAAACGGGAG CTCTTCAGCCAGATAAAGGGGCTTACAGGAGCCTCCGGGAAAGTGGCCCTACTGGAGCTGGG CTGCGGAACCGGAGCCAACTTTCAGTTCTACCCACCGGGCTGCAGGGTCACCTGCCTAGACC CAAATCCCCACTTTGAGAAGTTCCTGACAAAGAGCATGGCTGAGAACAGGCACCTCCAATAT GGAGAGTACTGAGACCGGGAGGTGTGCTCTTTTTCTGGGAGCATGTGGCAGAACCATATGGA AGCTGGGCCTTCATGTGGCAGCAAGTTTTCGAGCCCACCTGGAAACACATTGGGGATGGCTG CTGCCTCACCAGAGAGACCTGGAAGGATCTTGAGAACGCCCAGTTCTCCGAAATCCAAATGG AACGACAGCCCCCCCCTGAAGTGGCTACCTGTTGGGCCCCACATCATGGGAAAGGCTGTC AAACAATCTTTCCCAAGCTCCAAGGCACTCATTTGCTCCTCCCCAGCCTCCAATTAGAACA AGCCACCACCAGCCTATCTATCTTCCACTGAGAGGGACCTAGCAGAATGAGAGAAGACATT CATGTACCACCTACTAGTCCCTCTCCCCCAACCTCTGCCAGGGCAATCTCTAACTTCAATC CCGCCTTCGACAGTGAAAAAGCTCTACTTCTACGCTGACCCAGGGAGGAAACACTAGGACCC TGTTGTATCCTCAACTGCAAGTTTCTGGACTAGTCTCCCAACGTTTGCCTCCCAATGTTGTC CCTTTCCTTCGTTCCCATGGTAAAGCTCCTCTCGCTTTCCTCCTGAGGCTACACCCATGCGT CTCTAGGAACTGGTCACAAAAGTCATGGTGCCTGCATCCCTGCCAAGCCCCCTGACCCTCT CTCCCCACTACCACCTTCTTCCTGAGCTGGGGGCACCAGGGAGAATCAGAGATGCTGGGGAT AACCACG

FIGURE 103

MDILVPLLQLLVLLLTLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQI KGLTGASGKVALLELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVV APGEDMRQLADGSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAEPYGSWAFM WQQVFEPTWKHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKWLPVGPHIMGKAVKQSFP SSKALICSFPSLQLEQATHQPIYLPLRGT

FIGURE 104

GTGGGATTTATTTGAGTGCAAGATCGTTTTCTCAGTGGTGGTGGAAGTTGCCTCATCGCAGG CAGATGTTGGGGCTTTGTCCGAACAGCTCCCCTCTGCCAGCTTCTGTAGATAAGGGTTAAAA ACTAATATTTATATGACAGAAGAAAAAG**ATG**TCATTCCGTAAAGTAAACATCATCTTGG TCCTGGCTGTTGCTCTTCTTACTGGTTTTGCACCATAACTTCCTCAGCTTGAGCAGTTTG TTAAGGAATGAGGTTACAGATTCAGGAATTGTAGGGCCTCAACCTATAGACTTTGTCCCAAA TGCTCTCCGACATGCAGTAGATGGGAGACAAGAGGAGATTCCTGTGGTCATCTG AAGACAGGCTTGGGGGGGCCATTGCAGCTATAAACAGCATTCAGCACAACACTCGCTCCAAT GTGATTTTCTACATTGTTACTCTCAACAATACAGCAGACCATCTCCGGTCCTGGCTCAACAG AAGTAAAGGAGGATCCTGACCAGGGGGAATCCATGAAACCTTTAACCTTTGCAAGGTTCTAC TTGCCAATTCTGGTTCCCAGCGCAAAGAAGCCCATATACATGGATGATGATGTAATTGTGCA AGGTGATATTCTTGCCCTTTACAATACAGCACTGAAGCCAGGACATGCAGCTGCATTTTCAG AAGATTGTGATTCAGCCTCTACTAAAGTTGTCATCCGTGGAGCAGGAAACCAGTACAATTAC ATTGGCTATCTTGACTATAAAAAGGAAAGAATTCGTAAGCTTTCCATGAAAGCCAGCACTTG CTCATTTAATCCTGGAGTTTTTGTTGCAAACCTGACGGAATGGAAACGACAGAATATAACTA ACCAACTGGAAAAATGGATGAAACTCAATGTAGAAGAGGGACTGTATAGCAGAACCCTGGCT GGTAGCATCACAACACCTCCTCTGCTTATCGTATTTTATCAACAGCACTCTACCATCGATCC TATGTGGAATGTCCGCCACCTTGGTTCCAGTGCTGGAAAACGATATTCACCTCAGTTTGTAA AGGCTGCCAAGTTACTCCATTGGAATGGACATTTGAAGCCATGGGGAAGGACTGCTTCATAT ACTGATGTTTGGGAAAAATGGTATATTCCAGACCCAACAGGCAAATTCAACCTAATCCGAAG ${\tt ATATACCGAGATCTCAAACATAAAG} {\color{red}{\textbf{TGA}}} {\color{blue}{\textbf{AACAGAATTTGAACTGTAAGCAAGCATTTCTCAG}}$ GAAGTCCTGGAAGATAGCATGCGAAGGAAGTAACAGTTGCTAGGCTTCAATGCCTATCGGTA GCAAGCCATGGAAAAAGATGTCTCAGCTAGGTAAAGATGACAAACTGCCCTGTCTGGCAGTC AGCTTCCCAGACAGACTATAGACTATAAATATGTCTCCATCTGCCTTACCAAGTGTTTTCTT ACATTTTTC

FIGURE 105

MSFRKVNIIILVLAVALFILVLHHNFLSLSSLLRNEVTDSGIVGPQPIDFVPNALRHAVDGR
QEEIPVVIAASEDRLGGAIAAINSIQHNTRSNVIFYIVTLNNTADHLRSWLNSDSLKSIRYK
IVNFDPKLLEGKVKEDPDQGESMKPLTFARFYLPILVPSAKKAIYMDDDVIVQGDILALYNT
ALKPGHAAAFSEDCDSASTKVVIRGAGNQYNYIGYLDYKKERIRKLSMKASTCSFNPGVFVA
NLTEWKRQNITNQLEKWMKLNVEEGLYSRTLAGSITTPPLLIVFYQQHSTIDPMWNVRHLGS
SAGKRYSPQFVKAAKLLHWNGHLKPWGRTASYTDVWEKWYIPDPTGKFNLIRRYTEISNIK

FIGURE 106

FIGURE 107

CGACGCTCTAGCGGTTACCGCTGCGGGCTGGCTGGGCGTAGTGGGGCTGCCGCGCTGCCACG TCCGCATCTCCTCCATCGCCTGCAGTAAGGGCGGCCGCGGCGAGCCTTTGAGGGGAACGACT TGTCGGAGCCCTAACCAGGGGTGTCTCTGAGCCTGGTGGGATCCCCGGAGCGTCACATCACT TTCCGATCACTTCAAAGTGGTTAAAAACTAATATTTATATGACAGAAGAAAAAGATGTCATT $\verb|CCGTAAAGTAAACATCATCTTGGTCCTGGGCTGTTGCTCTTCTTACTGGTTTTGCAC| \\$ CATAACTTCCTCAGCTTGAGGCAGTTTGTTAAGGAATGAGGTTACAGATTCAGGAATTGTAG GGCCTCAACCTATAGGACTTTGTCCCAAATGCTCTCCGACATGCAGTAGATGGGAGACAAGA GGAGATTCCTGTGGTCATCGCTGCATCTGAAGACAGGCTTGGGGGGGCCATTGCAGCTATAA ACAGCATTCAGCACACACTCGCTCCAATGTGATTTTCTACATTGTTACTCTCAACAATACA GCAGACCATCTCCGGTCCTGGGCTCAACAGTGATTCCCTGAAAAGCATCAGATACAAAATTG TCAATTTTGACCCTAAACTTTTGGAAGGAAAAGTAAAGGAGGATCCTGACCAGGGGGAATCC ATGAAACCTTTAACCTTTGCAAGGTTCTACTTGCCAATTCTGGGTTCCCAGCGCAAAGAAGA CCATATACATGGATGATGTAATTGTGCAAGGTGATATTCTTGCCCTTTACAATACAGCA CTGAAGCCAGGACATGCAGCTGCATTTTCAGAAGATTGTGATTCAGCCTCTACTAAAGTTGT CATCCGTGGAGCAGGAAACCAGTACAATTACATTGGCTATCTTGACTATAAAAAGGAAAGAA TTCGTAAGCTTTCCATGAAAGCCAGCACTTGCTCATTTAATCCTGGAGTTTTTGTTGCAAAC CTGACGGAATGGAAACGACAGAATATAACTAACCAACTGGAAAAATGGATGAAACTCAATGT AGAAGAGGGACTGTATAGCAGAACCCTGGCTGGTAGCATCACAACACCTCCTCTGCTTATCG TATTTTATCAACAGCACTCTACCATCGATCCTATGTGGAATGTCCGCCACCTTGGTTCCAGT GCTGGAAAACGATATTCACCTCAGTTTGTAAAGGCTGCCAAGTTACTCCATTGGAATGGACA TTTGAAGCCATGGGGAAGGACTGCTTCATATACTGATGTTTTGGGGAAAAATGGTATATTCCA GACCCAACAGGCAAATTCAACCTAATCCGAAGATATACCGAGATCTCAAACATAAAGTGAAA CAGAATTTGAACTGTAAGCAAGCATTTCTCAGGAAGTCCTGGAAGATAGCATGCGTGGGAAG TAACAGTTGCTAGGCTTCAATGCCTATCGGTAGCAAGCCATGGAAAAAGATGTGTCAGCTAG ATGTCTCCATCTGCCTTACCAAGTGTTTTCTTACTACAATGCTGAATGACTGGAAAGAAGAA CTGATATGGCTAGTTCAGCTAGCTGGTACAGATAATTCAAAACTGCTGTTGGTTTTAATTTT AAAAAA

FIGURE 108

FIGURE 109

 ${\tt MGAAISQGALIAIVCNGLVGFLLLLWVILCWACHSRLPTLTLSLNPVPTPALAPVLRRPHH} \\ {\tt PRSPAMKAATCCSPEGPWPSLEPRT} \\$

FIGURE 110

GTTTGAATTCCTTCAACTATACCCACAGTCCAAAAGCAGACTCACTGTGTCCCAGGCTACCA GTTCCTCCAAGCAAGTCATTTCCCTTATTTAACCGATGTGTCCCTCAAACACCTGAGTGCTA CTCCCTATTTGCATCTGTTTTGATAAATGATGTTGACACCCTCCACCGAATTCTAAGTGGAA TCATGTCGGGAAGAGATACAATCCTTGGCCTGTGTATCCTCGCATTAGCCTTGTCTTTGGCC ATGATGTTTACCTTCAGATTCATCACCACCCTTCTGGTTCACATTTTCATTTCATTGGTTAT TTTGGGATTGTTTGTCTGCGGTGTTTTATGGTGGCTGTATTATGACTATACCAACGACC TCCACAGGCATCACGGCAGTGCTCGTCTTGATTTTTGTTCTCAGAAAAGAGAATAAAATT GACAGTTGAGCTTTTCCAAATCACAAATAAAGCCATCAGCAGTGCTCCCTTCCTGCTGTTCC AGCCACTGTGGACATTTGCCATCCTCATTTTCTTCTGGGTCCTCTGGGTGGCTGTGCTGCTG AGCCTGGGAACTGCAGGAGCTGCCCAGGTTATGGAAGGCGGCCAAGTGGAATATAAGCCCCT TTCGGGCATTCGGTACATGTGGTCGTACCATTTAATTGGCCTCATCTGGACTAGTGAATTCA TCCTTGCGTGCCAGCAAATGACTATAGCTGGGGCAGTGGTTACTTGTTATTTCAACAGAAGT AAAAATGATCCTCCTGATCATCCCATCCTTTCGTCTCTCCATTCTTCTTCTACCATCA AGGAACCGTTGTGAAAGGGTCATTTTTAATCTCTGTGGTGAGGATTCCGAGAATCATTGTCA TGTACATGCAAAACGCACTGAAAGAACAGCAGCATGGTGCATTGTCCAGGTACCTGTTCCGA TGCTGCTACTGCTGTTTCTGGTGTCTTTGACAAATACCTGCTCCATCTCAACCAGAATGCATA TACTACAACTGCTATTAATGGGACAGATTTCTGTACATCAGCAAAAGATGCATTCAAAATCT TGTCCAAGAACTCAAGTCACTTTACATCTATTAACTGCTTTGGAGACTTCATAATTTTTCTA GGAAAGGTGTTAGTGGTGTTTTCACTGTTTTTTGGAGGACTCATGGCTTTTAACTACAATCG ATAGTTTTTTATCTGTGTTTTGAAACTGTGCTGGATGCACTTTTTCCTGTGTTTTTGCTGTTTGAT CTGGAAACAATGATGGATCGTCAGAAAAGCCCTACTTTATGGATCAAGAATTTCTGAGTTT CGTAAAAAGGAGCAACAAATTAAACAATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGA GGAAAACATTTCCTTCTAAGAGCCATTTACAGAATAGAAGATGAGACCACTAGAGAAAAGTT AGTGAATTTTTTTTAAAAGACCTAATAAACCCTATTCTTCCTCAAAA

FIGURE 111

MSGRDTILGLCILALALSLAMMFTFRFITTLLVHIFISLVILGLLFVCGVLWWLYYDYTNDL
SIELDTERENMKCVLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPFLLFQ
PLWTFAILIFFWVLWVAVLLSLGTAGAAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFI
LACQQMTIAGAVVTCYFNRSKNDPPDHPILSSLSILFFYHQGTVVKGSFLISVVRIPRIIVM
YMQNALKEQQHGALSRYLFRCCYCCFWCLDKYLLHLNQNAYTTTAINGTDFCTSAKDAFKIL
SKNSSHFTSINCFGDFIIFLGKVLVVCFTVFGGLMAFNYNRAFQVWAVPLLLVAFFAYLVAH
SFLSVFETVLDALFLCFAVDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNARAQQDKHSLRN
EEGTELOAIVR

FIGURE 112

GTTCGATTAGCTCCTCTGAGAAGAAGAGAAAAGGTTCTTGGACCTCTCCCTGTTTCTTCCTT TGTGGTGAAAATTTTTTGAAAAAAAATTGCCTTCTTCAAACAAGGGTGTCATTCTGATATT TATGAGGACTGTTGTTCTCACTATGAAGGCATCTGTTATTGAAATGTTCCTTGTTTTTGCTGG GACTGGAGTACATTCAAACAAAGAAACGGCAAAGAAGATTAAAAGGCCCAAGTTCACTGTG CCTCAGATCAACTGCGATGTCAAAGCCGGAAAGATCATCGATCCTGAGTTCATTGTGAAATG TCCAGCAGGATGCCAAGACCCCAAATACCATGTTTATGGCACTGACGTGTATGCATCCTACT CCAGTEGETETEGCGCTCCCGTACACAGTGGTTGCTTGATAATTCAGGAGGGAAAATACTT GTTCGGAAGGTTGCTGGACAGTCTGGTTACAAAGGGACTTATTCCAACGGTGTCCAATCGTT ATCCCTACCACGATGGAGGAATCCTTTATCGTCTTAGAAAGTAAACTAAACCCAAAAGGGGTGTAA CCTACCCATCAGCTTTACATACTCATCATCAAAAGTCCAGCTGCCCAAAGCGTGTAACCT ACAAAAGCCTATCAGAGGCCACCTATTCCAGGGACAACTGCACAGCCGGTCACTCTGATGCA GCTTCTGGCTGTCACTGTAGCTGTGGCCACCCCCACCACCTTGCCAAGGCCATCCCCTTCTG CTGCTTCTACCACCAGCATCCCCAGACCACAATCAGTGGGCCACAGGAGCCAGGAGATGGAT CTCTGGTCCACTGCCACCTACACAAGCAGCCAAAACAGGCCCAGAGCTGATCCAGGTATCCA AAGGCAAGATCCTTCAGGAGCTGCCTTCCAGAAACCTGTTGGAGCGGATGTCAGCCTGGGAC TTGTTCCAAAAGAAGAATTGAGCACACAGTCTTTGGAGCCAGTATCCCTGGGAGATCCAAAC TGCAAAATTGACTTGTCGTTTTTAATTGATGGGAGCACCAGCATTGGCAAACGGCGATTCCG AATCCAGAAGCAGCTCCTGGCTGATCTTGCCCAAGCTCTTTGACATTTGCCCTAGCATCCAC TGATGGGTGTTGTCCAGTATGGAGACAACCTGCTATTAACCTCAAGAACACACCAC AATTCTCGAGATCTGAAGAACACGCTTAGAGAAAATTACTCAGAGAGGAGGACTTCTAATGT AGGTCGGGCCATCTCCTTTGTGACCAAGAACTTCTTTTCCAAAGCCAATGGAAACAGAAGCG GGGCTCCCAATGTGGTGGTGGTGGTGGATGGCTGGCCCACGGACAAAGTGGAGGAGGCT TCAAGACTTGCGAGAGACTCAGGAATCAACATTTTCTTCATCACCATTGAAGGTGCTGCTGA TGGCTTCGTCATCGACGGCTCCAGCAGTGTGGGGACGGCCAACTTCCGCACCGTCCTCCAGT TTGTGACCAACCTCACCAAAGAGTTTGAGATTTCGGACACGGACACGCGCATCGGGGCCCTG CAGTACACCTACGAACAGCGGCTGGAGTTTGGGTTCGACAAGTACAGCAGCAAGCCTGACAT CCTCAACGCCATCAAGAGGGTGGGCTACTGGAGTGGTGGCACCAGCACGGGGGCTGCCATCA ACTTCGCCCTGGAGCAGCTCTTCAAGAAGTCCAAGCCCAACAAGAGGAAGTTAATGATCCTC ATCACCGACGGGAGGTCCTACGACGACGTCCGGATCCCAGCCATGGCTGCCCATCTGAAGGG AGTGATCACCTATGCGATAGGCGTTGCCTGGGCTGCCCAAGAGGAGCTAGAAGTCATTGCCA CTCACCCCGCCAGAGACCACTCCTTCTTTGTGGACGAGTTTGACAACCTCCATCAGTATGTC CCCAGGATCATCCAGAACATTTGTACAGAGTTCAACTCACAGCCTCGGAAC**TGA**ATTCACAG CAGGCAGAGCACCAGCAAGTGCTGCTTTACTAACTGACGTGTTGGACCACCCCACCGCTTAA TGGGGCACGCACGCTGCATCAAGTCTTGGGCAGGGCATGGAGAAACAAATGTCTTGTTATTA ATAGAATGAGCCAAAAGGCTACATCATGTTGAGGGTGCTGGAGATTTTACATTTTGACAATT

FIGURE 113

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKC
PAGCQDPKYHVYGTDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSL
SLPRWRESFIVLESKPKKGVTYPSALTYSSSKSFAAQAGETTKAYQRPPIFGTTAQPVTIMQ
LLAVTVAVATPTTLPRPSPSAASTTSIPRPQSVGHRSQEMDLWSTATYTSSQNRPRADPGIQ
RQDPSGAAFQKPVGADVSLGLVPKEELSTQSLEPVSLGDPNCKIDLSFLIDGSTSIGKRFRF
IQKQLLADVAQALDIGPAGPLMGVVQYGDNPATHFNLKTHTNSRDLKTAIEKITQRGGLSNV
GRAISFVTKNFFSKANGNRSGAPNVVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAE
NEKQYVVEPNFANKAVCRTNGFYSLHVQSWFGLHKTLQPLVKRVCDTDRLACSKTCLNSADI
GFVIDGSSSVGTGNFRTVLQFVTNLTKEFEISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDI
LNAIKRVGYWSGGTSTGAAINFALEQLFKKSKPNKRKLMILITDGRSYDDVRIPAMAHLKG
VITTAIGVAWAAQEELEVIATHPARDHSFFVDEFDNLHQYYPRIIONICTEFNSOPRN

FIGURE 114

CAGGATGAACTGGTTGCAGTGGCTGCTGCTGCTGCGGGGGGCGCTGAGAGGACACGAGCTCTA TGCCTTTCCGGCTCATCCCGCTCGGCCTCCTGTGCGCGCTGCTCCTCAGCACCATGGT GCGCCAGGTCCCGACGGCTCCGCGCCAGATCCCGCCCACTACAGTTTTTCTCTGACTCTAAT TGATGCACTGGACACCTTGCTGATTTTGGGGAATGTCTCAGAATTCCAAAGAGTGGTTGAAG CGAGTGGTAGGAGGACTCCTGTCTGCTCATCTGCTCTCCAAGAAGGCTGGGGTGGAAGTAGA GGCTGGATGGCCCTGTTCCGGGCCTCTCCTGAGAATGGCTGAGGAGGCGGCCCGAAAACTCC AACCCAGGAGAGACCCCTGTCACCTGTACGGCAGGGATTGGGACCTTCATTGTTGAATTTGC CACCCTGAGCAGCCTCACTGGTGACCCGGTGTTCGAAGATGTGGCCAGAGTGGCTTTGATGC GCCTCTGGGAGAGCCGGTCAGATATCGGGCTGGTCGGCAACCACATTGATGTGCTCACTGGC AAGTGGTGGCCCAGGACGCAGGCATCGGGGCTGGCGTGGACTCCTACTTTGAGTACTTGGT GAAAGGAGCCATCCTGCTTCAGGATAAGAAGCTCATGGCCATGTTCCTAGAGTATAACAAAG CCATCCGGAACTACACCCGCTTCGATGACTGGTACCTGTGGGTTCAGATGTACAAGGGGACT GTGTCCATGCCAGTCTTCCAGTCCTTGGAGGCCTACTGGCCTGGTCTTCAGAGCCTCATTGG AGACATTGACAATGCCATGAGGACCTTCCTCAACTACTACACTGTATGGAAGCAGTTTGGGG GGCTCCCGGAATTCTACAACATTCCTCAGGGATACACAGTGGAGAAGCGAGAGGGCTACCCA CTTCGGCCAGAACTTATTGAAAGCGCAATGTACCTCTACCGTGCCACGGGGGATCCCACCCT CCTAGAACTCGGAAGAGATGCTGTGGAATCCATTGAAAAAATCAGCAAGGTGGAGTGCGGAT TTGCAACAATCAAAGATCTGCGAGACCACAAGCTGGACAACCGCATGGAGTCGTTCTTCCTG GTCCACCTTCGACGCGGTGATCACCCCCTATGGGGAGTGCATCCTGGGGGGTGCACA TCTTCAACACAGAAGCTCACCCCATCGACCTTGCCGCCCTGCACTGCTGCCAGAGGCTGAAG GAAGAGCAGTGGAGGTGGAGGACTTGATGAGGGAATTCTACTCTCAAACGGAGCAGGTC GAAATTTCAGAAAAACACTGTTAGTTCGGGGCCATGGGAACCTCCAGCAAGGCCAGGAACAC CTTCTCAGCTGCCCCAGTCAGCCCTTCACCTCCAAGTTGGCATTACTGGGACAGGTTTTCCT AATTGCTTTTGGCTATCATAAAA

FIGURE 115

MPFRLLIPLGLLCALLPQHHGAPGPDGSAPDPAHYSFSLTLIDALDTLLILGNVSEFQRVVE
VLQDSVDFDIDVNASVFETNIRVVGGLLSAHLLSKKAGVEVEAGWPCSGPLLRMAEEAARKL
LPAFQTPTGMPYGTVNLLHGVNPGETPVTCTAGIGTFIVEFATLSSLTGDPVFEDVARVALM
RLWESRSDIGLVGNHIDVLTGKWVAQDAGIGAGVDSYFEYLVKGAILLQDKKLMAMFLEYNK
AIRNYTRFDDWYLWVQMYKGTVSMPVFQSLEAYWPGLQSLIGDIDNAMRTFLNYYTVWKQFG
GLPEFYNIPQGYTVEKREGYPLRPELIESAMYLYRATGDPTLLELGRDAVESIEKISKVECG
FATIKDLRDHKLDNRMESFFLAETVKYLYLLFDPTNFIHNNGSTFDAVITPYGECILGAGGY
IFNTEAHPIDLAALHCCQRLKEEQWEVEDLMREFYSLKRSRSKFQKNTVSSGPWEPPARPGT
LFSPENHDQARERKPAKQKVPLLSCPSQPFTSKLALLGQVFLDSS

FIGURE 116

AAAGTTACATTTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTG GGCAGAAAGGAGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAGAACA GAGATGGACAGAATGCTTTATTTTGGAAAGAAACAATGTTCTAGGTCAAACTGAGTCTACCA AATGCAGACTTTCACAATGGTTCTAGAAGAAATCTGGACAAGTCTTTTCATGTGGTTTTTCT TCTGTACTCTCAACCAACATGAAGCATCTCTTGATGTGGAGCCCAGTGATCGCGCCTGGAGA AACAGTGTACTATTCTGTCGAATACCAGGGGGAGTACGAGAGCCTGTACACGAGCCACATCT GGATCCCCAGCAGCTGGTGCTCACTCACTGAAGGTCCTGAGTGTGATGTCACTGATGACATC ACGGCCACTGTGCCATACAACCTTCGTGTCAGGGCCACATTGGGCTCACAGACCTCAGCCTG GAGCATCCTGAAGCATCCCTTTAATAGAAACTCAACCATCCTTACCCGACCTGGGATGGAGA TCACCAAAGATGGCTTCCACCTGGTTATTGAGCTGGAGGACCTGGGGCCCCAGTTTGAGTTC CTTGTGGCCTACTGGAGGAGGGGGCCTGGTGCCGAGGAACATGTCAAAATGGTGAGGAGTGG GGGTATTCCAGTGCACCTAGAAACCATGGAGCCAGGGGCTGCATACTGTGAAGGCCCAGA GGAGAGGCCATTCCCCTGGTACTGGCCCTGTTTGCCTTTGTTGGCTTCATGCTGATCCTTGT GGTCGTGCCACTGTTCGTCTGGAAAATGGGCCGGCTGCTCCAGTACTCCTGTTGCCCCGTGG TGGTCCTCCCAGACACCTTGAAAATAACCAATTCACCCCAGAAGTTAATCAGCTGCAGAAGG GAGGAGGTGGATGCCTGTGCCACGGCTGTGATGTCTCCTGAGGAACTCCTCAGGGCCTGGAT CTCATAGGTTTGCGGAAGGGCCCAGGTGAAGCCGAGAACCTGGTCTGCATGACATGGAAACC ATGAGGGGACAAGTTGTGTTTCTGTTTTCCGCCACGGACAAGGGATGAGAAGTAGGAAGA GCCTGTTGTCTACAAGTCTAGAAGCAACCATCAGAGGCAGGGTGGTTTGTCTAACAGAACAC CTGGGAAAAGTGACTTCATCCCTTCGGTCCTAAGTTTTCTCATCTGTAATGGGGGAATTACC TGTTTCTGGAGAGCAGGACATAAATGTATGATGAGGAATGATCAAGGACTCTACACACTGGGT GGCTTGGAGAGCCCACTTTCCCAGAATAATCCTTGAGAGAAAAGGAATCATGGGAGCAATGG TGTTGAGTTCACTTCAAGCCCAATGCCGGTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGT AGGTGACCTGGAGGAAGGTCACAGCCACACTGAAAATGGGATGTGCATGAACACGGAGGATC TGTTGGTAAAGTACAGAATTCAGCAAATAAAAAGGGCCACCCTGGCCAAAAGCGGTAAAAAA AAAAAAAAA

FIGURE 117

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAPGE
TVYYSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAW
SILKHPFNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHVKMVRSG
GIPVHLETMEPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFVGFMLILV
VVPLFVWKMGRLLQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 230-255

N-glycosylation sites.

amino acids 40-43 and 134-137

Tissue factor proteins homology.

amino acids 92-119

Integrins alpha chain protein homology.

amino acids 232-262

FIGURE 118

FIGURE 119

 $\tt CGGACGCGTGGGCCACCTCCGGAACAAGCC{\color{red} ATG} GTGGCGGCGACGGTGGCAGCGGCGTG$ GCTGCTCCTGTGGGCTGCGCCTGCGCGCAGCAGGAGCAGGACTTCTACGACTTCAAGGCGG TCAACATCCGGGGCAAACTGGTGTCGCTGGAGAAGTACCGCGGATCGGTGTCCCTGGTGGTG AATGTGGCCAGCGAGTGCGGCTTCACAGACCAGCACTACCGAGCCCTGCAGCAGCTGCAGCG AGACCTGGGCCCCCACCACTTTAACGTGCTCGCCTTCCCCTGCAACCAGTTTGGCCAACAGG AGCCTGACAGCAACAAGGAGATTGAGAGCTTTGCCCGCCGCACCTACAGTGTCTCATTCCCC ATGTTTAGCAAGATTGCAGTCACCGGTACTGGTGCCCATCCTGCCTTCAAGTACCTGGCCCA GACTTCTGGGAAGGAGCCCACCTGGAACTTCTGGAAGTACCTAGTAGCCCCAGATGGAAAGG TGGTAGGGGCTTGGGACCCAACTGTGTCAGTGGAGGAGGTCAGACCCCAGATCACAGCGCTC $\tt GTGAGGAAGCTCATCCTACTGAAGCGAGAAGACTTA \textbf{TAA} CCACCGCGTCTCCTCCTCCACCA$ CCTCATCCCGCCCACCTGTGTGGGGGCTGACCAATGCAAACTCAAATGGTGCTTCAAAGGGAG AGACCCACTGACTCCTTCCTTTACTCTTATGCCATTGGTCCCATCATTCTTGTGGGGGAA AAATTCTAGTATTTTGATTATTTGAATCTTACAGCAACAATAGGAACTCCTGGCCAATGAG AGCTCTTGACCAGTGAATCACCAGCCGATACGAACGTCTTGCCAACAAAAATGTGTGGCAAA TAGAAGTATATCAAGCAATAATCTCCCACCCAAGGCTTCTGTAAACTGGGACCAATGATTAC CTCATAGGGCTGTTGTGAGGATTAGGATGAAATACCTGTGAAAGTGCCTAGGCAGTGCCAGC CAAATAGGAGGCATTCAATGAACATTTTTTGCATATAAACCAAAAAATAACTTGTTATCAAT AAAAACTTGCATCCAACATGAATTTCCAGCCGATGATAATCCAGGCCAAAGGTTTAGTTGTT GTTATTTCCTCTGTATTATTTTCTTCATTACAAAAGAAATGCAAGTTCATTGTAACAATCCA AACAATACCTCACGATATAAAATAAAAATGAAAGTATCCTCCTCAAAAA

FIGURE 120

MVAATVAAAWLLLWAAACAQQEQDFYDFKAVNIRGKLVSLEKYRGSVSLVVNVASECGFTDQ HYRALQQLQRDLGPHHFNVLAFPCNQFGQQEPDSNKEIESFARRTYSVSFPMFSKIAVTGTG AHPAFKYLAQTSGKEPTWNFWKYLVAPDGKVVGAWDPTVSVEEVRPQITALVRKLILLKREDL

FIGURE 121

CGGACGCGTGGGCGGGCCGGGACGCAAAGCGAGCCATGCTGTCTACGTCGGGATGC TGCGCCTGGGGAGCTGTGCGCCGGGAGCTCGGGGGTGCTGGGGGGCCCGGGCCGCCCTCTCT CGGAGTTGGCAGGAAGCCAGGTTGCAGGGTGTCCGCTTCCTCAGTTCCAGAGAGGTGGATCG CATGGTCTCCACGCCCATCGGAGGCCTCAGCTACGTTCAGGGGTGCACCAAAAAGCATCTTA ACAGCAAGACTGTGGGCCAGTGCCTGGAGACCACAGCACAGAGGGTCCCAGAACGAGGGCC TTGGTCGTCCTCCATGAAGACGTCAGGTTGACCTTTGCCCAACTCAAGGAGGAGGTGGACAA AGCTGCTTCTGGCCTCCTGAGCATTGGCCTCTGCAAAGGTGACCGGCTGGGCATGTGGGGAC CTAACTCCTATGCATGGGTGCTCATGCAGTTGGCCACCGCCCAGGCGGGCATCATTCTGGTG TCTGTGAACCCAGCCTACCAGGCTATGGAACTGGAGTATGTCCTCAAGAAGGTGGGCTGCAA GGCCCTTGTGTTCCCCAAGCAATTCAAGACCCAGCAATACTACAACGTCCTGAAGCAGATCT GTCCAGAAGTGGAGAATGCCCAGCCAGGGGCCTTGAAGAGTCAGAGGCTCCCAGATCTGACC ACAGTCATCTCGGTGGATGCCCCTTTGCCGGGGACCCTGCTCCTGGATGAAGTGGTGGCGGC TGGCAGCACACGCAGCATCTGGACCAGCTCCAATACAACCAGCAGTTCCTGTCCTGCCATG ACCCCATCAACATCCAGTTCACCTCGGGGACAACAGGCAGCCCCAAGGGGGCCACCCTCTCC CACTACAACATTGTCAACAACTCCAACATTTTAGGAGAGCGCCTGAAACTGCATGAGAAGAC ACCAGAGCAGTTGCGGATGATCCTGCCCAACCCCTGTACCATTGCCTGGGTTCCGTGGCAG GCACAATGATGTCTGATGTACGGTGCCACCCTCATCCTGGCCTCTCCCATCTTCAATGGC AAGAAGGCACTGGAGGCCATCAGCAGAGAGAGAGGCACCTTCCTGTATGGTACCCCCACGAT GTTCGTGGACATTCTGAACCAGCCAGACTTCTCCAGTTATGACATCTCGACCATGTGTGGAG GTGTCATTGCTGGGTCCCCTGCACCTCCAGAGTTGATCCGAGCCATCATCAACAAGATAAAT ATGAAGGACCTGGTGGTTGCTTATGGAACCACAGAGAACAGTCCCGTGACATTCGCGCACTT CCCTGAGGACACTGTGGAGCAGAAGGCAGAAAGCGTGGGCAGAATTATGCCTCACACGGAGG CCCGGATCATGAACATGGAGGCAGGGACGCTGGCAAAGCTGAACACGCCCGGGGAGCTGTGC ATCCGAGGGTACTGCGTCATGCTGGGCTACTGGGGTGAGCCTCAGAAGACAGAGGAAGCAGT AGATCGTGGGCCGCTCTAAGGATATGATCATCCGGGGTGGTGAGAACATCTACCCCGCAGAG CTCGAGGACTTCTTTCACACACCCGAAGGTGCAGGAAGTGCAGGTGGTGGGAGTGAAGGA CGATCGGATGGGGGAAGAGTTTGTGCCTGCATTCGGCTGAAGGACGGGGAGGAGACCACGG TGGAGGAGATAAAAGCTTTCTGCAAAGGGAAGATCTCTCACTTCAAGATTCCGAAGTACATC GTGTTTGTCACAAACTACCCCCTCACCATTTCAGGAAAGATCCAGAAATTCAAACTTCGAGA GCAGATGGAACGACATCTAAATCTG**TGA**ATAAAGCAGCAGGCCTGTCCTGGCCGGTTGGCTT GACTCTCTCTGTCAGAATGCAACCTGGCTTTATGCACCTAGATGTCCCCAGCACCCAGTTC TCCATCCCCCACATTCCCCTGTCTGTCCTTGTGATTTGGCATAAAGAGCTTCTGTTTTCTTT GAAAAAAAAAAAAAAA

FIGURE 122

MAVYVGMLRLGRLCAGSSGVLGARAALSRSWQEARLQGVRFLSSREVDRMVSTPIGGLSYVQ
GCTKKHLNSKTVGQCLETTAQRVPEREALVVLHEDVRLTFAQLKEEVDKAASGLLSIGLCKG
DRLGMWGPNSYAWVLMQLATAQAGIILVSVNPAYQAMELEYVLKKVGCKALVFPKQFKTQQY
YNVLKQICPEVENAQPGALKSQRLPDLTTVISVDAPLPGTLLLDEVVAAGSTRQHLDQLQYN
QQFLSCHDPINIQFTSGTTGSPKGATLSHYNIVNNSNILGERLKLHEKTPEQLRMILPNPLY
HCLGSVAGTMMCLMYGATLILASPIFNGKKALEAISRERGTFLYGTPTMFVDILNQPDFSSY
DISTMCGGVIAGSPAPPELIRAIINKINMKDLVVAYGTTENSPVTFAHFPEDTVEQKAESVG
RIMPHTEARIMNMEAGTLAKLNTPGELCIRGYCVMLGYWGEPQKTEEAVDQDKWYWTGDVAT
MNEQGFCKIVGRSKDMIIRGGENIYPAELEDFFHTHPKVQEVQVVGVKDDRMGEEICACIRL
KDGEETTVEEIKAFCKGKISHFKIPKYIVFVTNYPLTISGKIQKFKLREQMERHLNL

Signal Peptide:

amino acids 1-22

Transmembrane Domains:

amino acids 140-161, 213-229, 312-334

Putative AMP-binding Domain Signature:

amino acids 260-271

N-myristoylation Sites:

amino acids 19-24, 22-27, 120-125, 203-208, 268-273, 272-277, 314-319, 318-323, 379-384, 380-385, 409-413

N-glycosylation Site:

amino acids 282-285

FIGURE 123

FIGURE 124

GAGCAGGACGGAGCCATGATCTGGACTGC AGGCTGGCTGCTGCTGCTGCTTCGCGGAGGAGCGCAGGCCCTGGAGTGCTACAGCTGCG TGCAGAAAGCAGATGACGGATGCTCCCCGAACAAGATGAAGACAGTGAAGTGCGCCCGGGC GTGGACGTCTGCACCGAGGCCGTGGGGGGGGGGGGAGACCATCCACGGACAATTCTCGCTGGC ${\tt AGTGCGGGGTTGCGGTTCGGGACTCCCCGGCAAGAATGACCGCGGCCTGGATCTTCACGGGC}$ TTCTGGCGTTCATCCAGCTGCAGCAATGCGCTCAGGATCGCTGCAACGCCAAGCTCAACCTC ACCTCGCGGGCGCTCGACCCGGCAGGTAATGAGAGTGCATACCCGCCCAACGGCGTGGAGTG CTACAGCTGTGTGGGCCTGAGCCGGGAGGCGTGCCAGGGTACATCGCCGCCGGTCGTGAGCT GCTACAACGCCAGCGATCATGTCTACAAGGGCTGCTTCGACGGCAACGTCACCTTGACGGCA GCTAATGTGACTGTCCTTGCCTGTCCGGGGCTGTGTCCAGGATGAATTCTGCACTCGGGA TGGAGTAACAGGCCCAGGGTTCACGCTCAGTGGCTCCTGTTGCCAGGGGTCCCGCTGTAACT CTGACCTCCGCAACAAGACCTACTTCTCCCCTCGAATCCCACCCCTTGTCCGGCTGCCCCCT CCAGAGCCCACGACTGTGGCCTCAACCACATCTGTCACCACTTCTACCTCGGCCCCAGTGAG ACCCACATCCACCACCAAACCCATGCCAGCGCCAACCAGTCAGACTCCGAGACAGGGAGTAG AACACGAGGCCTCCCGGGATGAGGAGCCCAGGTTGACTGGAGGCGCCGCTGGCCACCAGGAC CGCAGCAATTCAGGGCAGTATCCTGCAAAAGGGGGGCCCCAGCAGCCCCATAATAAAGGCTG TGTGGCTCCCACAGCTGGATTGGCAGCCCTTCTGTTGGCCGTGGCTGCTGGTGTCCTACTG T**GA**GCTTCTCCACCTGGAAATTTCCCTCTCACCTACTTCTCTGGCCCTGGGTACCCCTCTTCT CATCACTTCCTGTTCCCACCACTGGACTGGGCTGGCCCAGCCCCTGTTTTTCCAACATTCCC CAGTATCCCCAGCTTCTGCTGCGCTGGTTTGCGGCTTTGGGGAAATAAAATACCGTTGTATAT ATTCTGCCAGGGGTGTTCTAGCTTTTTGAGGACAGCTCCTGTATCCTTCTCATCCTTGTCTC TCCGCTTGTCCTCTTGTGATGTTAGGACAGAGTGAGAGAGTCAGCTGTCACGGGGAAGGTG GGTGGGTGGGACAATGGCTCCCCACTCTAAGCACTGCCTCCCCTACTCCCCGCATCTTTGGG GAATCGGTTCCCCATATGTCTTCCTTACTAGACTGTGAGCTCCTCGAGGGGGGGCCCGGTAC CCAATTCGCCCTATAGTGAGTCGTA

FIGURE 125

MDPARKAGAQAMIWTAGWLLLLLRGGAQALECYSCVQKADDGCSPNKMKTVKCAPGVDVCT EAVGAVETIHGQFSLAVRGCGSGLPGKNDRGLDLHGLLAFIQLQQCAQDRCNAKLNLTSRAL DPAGNESAYPPNGVECYSCVGLSREACQGTSPPVVSCYNASDHVYKGCFDGNVTLTAANVTV SLPVRGCVQDEFCTRDGVTGPGFTLSGSCCQGSRCNSDLRNKTYFSPRIPPLVRLPPPEPTT VASTTSVTTSTSAPVRPTSTTKPMPAPTSQTPRQGVEHEASRDEEPRLTGGAAGHQDRSNSG QYPAKGGPQQPHNKGCVAPTAGLAALLLAVAAGVLL

FIGURE 126

 $\tt CGGGACTCGGCGGGTCCTCCTGGGAGTCTCGGAGGGGACCGGCTGTGCAGACGCC{\color{red} {\bf ATG} \\ GAGT}$ TGGTGCTGGTCTTCCTCTGCAGCCTGCTGGCCCCCATGGTCCTGGCCAGTGCAGCTGAAAAG GAGAAGGAAATGGACCCTTTTCATTATGATTACCAGACCCTGAGGATTGGGGGACTGGTGTT CGCTGTGGTCCTCTTCTCGGTTGGGATCCTCCTTATCCTAAGTCGCAGGTGCAAGTGCAGTT TCAATCAGAAGCCCCGGGCCCCAGGAGATGAGGAAGCCCAGGTGGAGAACCTCATCACCGCC AATGCAACAGAGCCCCAGAAGCAGAGAACTGAAGTGCAGCCATCAGGTGGAAGCCTCTGGAA CCTGAGGCGGCTGCTTGAACCTTTGGATGCAAATGTCGATGCTTAAGAAAACCGGCCACTTC AGCAACAGCCCTTTCCCCAGGAGAAGCCAAGAACTTGTGTGTCCCCCACCCTATCCCCTCTA ACACCATTCCTCCACCTGATGATGCAACTAACACTTGCCTCCCCACTGCAGCCTGCGGTCCT $\tt GTCTTTGTGGCTACTTGTTTGTGGATGGTATTGTTTTGTTAGTGAACTGTGGACTCGCTTT$ CCCAGGCAGGGGCTGAGCCACATGGCCATCTGCTCCTCCCTGCCCCGTGGCCCTCCATCAC CTTCTGCTCCTAGGAGGCTGCTTGTTGCCCGAGACCAGCCCCCTCCCCTGATTTAGGGATGC GTAGGGTAAGAGCACGGGCAGTGGTCTTCAGTCGTCTTGGGACCTGGGAAGGTTTGCAGCAC TTTGTCATCATTCTTCATGGACTCCTTTCACTCCTTTAACAAAACCTTGCTTCCTTATCCC ACCTGATCCCAGTCTGAAGGTCTCTTAGCAACTGGAGATACAAAGCAAGGAGCTGGTGAGCC CAGCGTTGACGTCAGGCAGGCTATGCCCTTCCGTGGTTAATTTCTTCCCAGGGGCTTCCACG AGGAGTCCCCATCTGCCCCGCCCCTTCACAGAGCGCCCGGGGATTCCAGGCCCAGGGCTTCT ACTCTGCCCCTGGGGAATGTGTCCCCTGCATATCTTCTCAGCAATAACTCCATGGGCTCTGG GACCCTACCCCTTCCAACCTTCCCTGCTTCTGAGACTTCAATCTACAGCCCAGCTCATCCAG GTTGGGGCCACCACCGGGATGGATGGAGGGGAGAGCAGAGGCCTTTGCTTCTCTCCCTACG TCCCCTTAGATGGGCAGCAGAGGCAACTCCCGCATCCTTTGCTCTGCCTGTCGGTGGTCAGA GCGGTGAGCGAGGTGGAGACTCAGCAGGCTCCGTGCAGCCCTTGGGAACAGTGAGAG GTTGAAGGTCATAACGAGAGTGGGAACTCAACCCAGATCCCGCCCCTCCTGTCCTCTGTGTT CCCGCGGAAACCAACCAAACCGTGCGCTGTGACCCATTGCTGTTCTCTGTATCGTGATCTAT CCTCAACAACAACAGAAAAAAGGAATAAAATATCCTTTGTTTCCT

FIGURE 127

MELVLVFLCSLLAPMVLASAAEKEKEMDPFHYDYQTLRIGGLVFAVVLFSVGILLILSRRCK CSFNQKPRAPGDEEAQVENLITANATEPQKQRTEVQPSGGSLWNLRRLLEPLDANVDA

FIGURE 128

FIGURE 129

 ${\tt MKIPVLPAVVLLSLLVLHSAQGATLGGPEEESTIENYASRPEAFNTPFLNIDKLRSAFKADE}$ ${\tt FLNWHALFESIKRKLPFLNWDAFPKLKGLRSATPDAQ}$

FIGURE 130

FIGURE 131

 ${\tt MGVEIAFASVILTCLSLLAAGVSQVVLLQPVPTQETGPKAMGDLSCGFAGHS}$

FIGURE 132

GGGGAATCTGCAGTAGGTCTGCCGGCGATGGAGTGGTGGGCTAGCTCGCCGCTTCGGCTCTG GCTGCTGTTGTTCCTCCTGCCCTCAGCGCCAGGAGGGCCCAGAAGGAGTCAGGTTCAAAATGGA AAGTATTTATTGACCAAATTAACAGGTCTTTGGAGAATTACGAACCATGTTCAAGTCAAAAC TGCAGCTGCTACCATGGTGTCATAGAAGAGGATCTAACTCCTTTCCGAGGAGGCATCTCCAG GAAGATGATGGCAGAGGTAGTCAGACGGAAGCTAGGGACCCACTATCAGATCACTAAGAACA GACTGTACCGGGAAAATGACTGCATGTTCCCCTCAAGGTGTAGTGGTGTTGAGCACTTTATT TTGGAAGTGATCGGGCGTCTCCCTGACATGGAGATGATCAATGTACGAGATTATCCTCA GGTTCCTAAATGGATGGAGCCTGCCATCCCAGTCTTCTCCTTCAGTAAGACATCAGAGTACC ATGATATCATGTATCCTGCTTGGACATTTTGGGAAGGGGGACCTGCTGTTTGGCCAATTTAT CCTACAGGTCTTGGACGGTGGGACCTCTTCAGAGAAGATCTGGTAAGGTCAGCAGCACAGTG GCCATGGAAAAAGAAAACTCTACAGCATATTTCCGAGGATCAAGGACAAGTCCAGAACGAG ATCCTCTCATTCTCTCTCGGAAAAACCCAAAACTTGTTGATGCAGAATACACCAAAAAC CAGGCCTGGAAATCTATGAAAGATACCTTAGGAAAGCCAGCTGCTAAGGATGTCCATCTTGT GGATCACTGCAAATACAAGTATCTGTTTAATTTTCGAGGCGTAGCTGCAAGTTTCCGGTTTA AACACCTCTTCCTGTGTGGCTCACTTGTTTTCCATGTTGGTGATGAGTGGCTAGAATTCTTC TATCCACAGCTGAAGCCATGGGTTCACTATATCCCAGTCAAAACAGATCTCTCCAATGTCCA AGAGCTGTTACAATTTGTAAAAGCAAATGATGATGTAGCTCAAGAGATTGCTGAAAGGGGAA GCCAGTTTATTAGGAACCATTTGCAGATGGATGACATCACCTGTTACTGGGAGAACCTCTTG AGTGAATACTCTAAATTCCTGTCTTATAATGTAACGAGAAGGAAAGGTTATGATCAAATTAT TCCCAAAATGTTGAAAACTGAACTA**TAG**TAGTCATCATAGGACCATAGTCCTCTTTGTGGCA ACAGATCTCAGATATCCTACGGTGAGAAGCTTACCATAAGCTTGGCTCCTATACCTTGAATA TCTGCTATCAAGCCAAATACCTGGTTTTCCTTATCATGCTGCACCCAGAGCAACTCTTGAGA AAGATTTAAAATGTGTCTAATACACTGATATGAAGCAGTTCAACTTTTTGGATGAATAAGGA CCAGAAATCGTGAGATGTGGATTTTGAACCCAACTCTACCTTTCATTTTCTTAAGACCAATC ACAGCTTGTGCCTCAGATCATCCACCTGTGTGAGTCCATCACTGTGAAATTGACTGTGTCCA TGTGATGATGCCCTTTGTCCCATTATTTGGAGCAGAAAATTCGTCATTTGGAAGTAGTACAA CTCATTGCTGGAATTGTGAAATTATTCAAGGCGTGATCTCTGTCACTTTATTTTAATGTAGG AAACCCTATGGGGTTTATGAAAAATACTTGGGGATCATTCTCTGAATGGTCTAAGGAAGCGG TAGCCATGCCATGCAATGATGTAGGAGTTCTCTTTTGTAAAACCATAAACTCTGTTACTCAG GAGGTTTCTATAATGCCACATAGAAAGAGGCCAATTGCATGAGTAATTATTGCAATTGGATT TCAGGTTCCCTTTTTGTGCCTTCATGCCCTACTTCTTAATGCCTCTCTAAAGCCAAA

FIGURE 133

MEWWASSPLRLWLLFFLLPSAQGRQKESGSKWKVFIDQINRSLENYEPCSSQNCSCYHGVIE
EDLTPFRGGISRKMMAEVVRRKLGTHYQITKNRLYRENDCMFPSRCSGVEHFILEVIGRLPD
MEMVINVRDYPQVPKWMEPAIPVFSFSKTSEYHDIMYPAWTFWEGGPAVWPIYPTGLGRWDL
FREDLVRSAAQWPWKKKNSTAYFRGSRTSPERDPLILLSRKNPKLVDAEYTKNQAWKSMKDT
LGKPAAKDVHLVDHCKYKYLFNFRGVAASFRFKHLFLCGSLVFHVGDEWLEFFYPQLKPWVH
YIPVKTDLSNVQELLQFVKANDDVAQEIAERGSQFIRNHLQMDDITCYWENLLSEYSKFLSY
NVTRRKGYDQIIPKMLKTEL

FIGURE 134

 $\texttt{CACCCTCCATTCTCGCC} \underline{\textbf{ATG}} \texttt{GCCCTGCACTGCTCCTGATCCCTGCTCGCCTCTT}$ TCATCCTGGCCTTTGGCACCGGAGTGGAGTTCGTGCGCTTTACCTCCCTTCGGCCACTTCTT CCGCAGCATCCTTGCCCCCCTGGCATGGGATCTGGGGCTCCTGCTTCTATTTGTTGGGCAGC ACAGCCTCATGGCAGCTGAAAGAGTGAAGGCATGGACATCCCGGTACTTTGGGGTCCTTCAG AGGTCACTGTATGTGGCCTGCACTGCCCTGGCCTTGCAGCTGGTGATGCGGTACTGGGAGCC CATACCCAAAGGCCCTGTGTTGTGGGAGGCTCGGGCTGAGCCATGGGCCACCTGGGTGCCGC TCCTCTGCTTTGTGCTCCATGTCATCTCCTGGCTCCTCATCTTTAGCATCCTTCTCGTCTTT GACTATGCTGAGCTCATGGGCCTCAAACAGGTATACTACCATGTGCTGGGGCTGGGCCGAGCC TCTGGCCCTGAAGTCTCCCCGGGCTCTCAGACTCTTCTCCCACCTGCGCCACCCAGTGTGTG TGGAGCTGCTGACAGTGCTGTGGGTGCCTACCCTGGGCACGGACCGTCTCCTTGCT TTCCTCCTTACCTCTACCTGGGCCTGGCTCACGGGCTTGATCAGCAAGACCTCCGCTACCT $\tt CCGGGCCCAGCTACAAAGAAAACTCCACCTGCTCTCTCGGCCCCAGGATGGGGAGGCAGAG{\bf T}$ **GA**GGAGCTCACTCTGGTTACAAGCCCTGTTCTTCCTCTCCCACTGAATTCTAAATCCTTAAC ATCCAGGCCCTGGCTGCTTCATGCCAGAGGCCCAAATCCATGGACTGAAGGAGATGCCCCTT CTACTACTTGAGACTTTATTCTCTGGGTCCAGCTCCATACCCTAAATTCTGAGTTTCAGCCA CTGAACTCCAAGGTCCACTTCTCACCAGCAAGGAAGAGTGGGGTATGGAAGTCATCTGTCCC TTCACTGTTTAGAGCATGACACTCTCCCCCTCAACAGCCTCCTGAGAAGGAAAGGATCTGCC CTGACCACTCCCCTGGCACTGTTACTTGCCTCTGCGCCTCAGGGGTCCCCTTCTGCACCGCT GGCTTCCACTCCAAGAAGGTGGACCAGGGTCTGCAAGTTCAACGGTCATAGCTGTCCCTCCA GGCCCCAACCTTGCCTCACCACTCCCGGCCCTAGTCTCTGCACCTCCTTAGGCCCTGCCTCT GGGCTCAGACCCCAACCTAGTCAAGGGGATTCTCCTGCTCTTAACTCGATGACTTGGGGCTC

FIGURE 135

MAPALLLIPAALASFILAFGTGVEFVRFTSLRPLLGGIPESGGPDARQGWLAALQDRSILAP LAWDLGLLLLFVGQHSLMAAERVKAWTSRYFGVLQRSLYVACTALALQLVMRYWEPIPKGPV LWEARAEPWATWVPLLCFVLHVISWLLIFSILLVFDYAELMGLKQVYYHVLGLGEPLALKSP RALRLFSHLRHPVCVELLTVLWVVPTLGTDRLLLAFLLTLYLGLAHGLDQQDLRYLRAQLQR KLHLLSRPQDGEAE

Signal sequence:

amino acids 1-13

Transmembrane domains:

amino acids 58-76, 99-113, 141-159, 203-222

N-myristoylation sites:

amino acids 37-43, 42-48, 229-235

FIGURE 136

CCGAGCACAGGAGATTGCCTGCGTTTAGGAGGTGGCTGCGTTGTGGGAAAAGCTATCAAGGA AGAAATTGCCAAACCATGTCTTTTTTTTTTTTTTTTCAGAGTAGTTCACAACAGATCTGAGTGT TTTAATTAAGCATGGAATACAGAAAACAACAAAAAACTTAAGCTTTAATTTCATCTGGAATT TCACGTGGTGCTCTCCGACTACTCACCCCGAGTGTAAAGAACCTTCGGCTCGCGTGCTTCTG AGCTGCTGTGGATGCCTCCGGCTCTCTGGACTGTCCTTCCGAGTAGGATGTCACTGAGATCC TCCCCACTACAATGTGATAGAACGCGTGAACTGGATGTACTTCTATGAGTATGAGCCGATTT ACAGACAAGACTTTCACTTCACACTTCGAGAGCATTCAAAACTGCTCTCATCAAAATCCATTT TTGGGGTGAAAAAAGTCTTGGTGGGGATATGAGGTTCTTACATTTTCTTATTAGGCCAAG AGGCTGAAAAGGAAGACAAAATGTTGGCATTGTCCTTAGAGGATGAACACCTTCTTTATGGT GACATAATCCGACAAGATTTTTTAGACACATATAATAACCTGACCTTGAAAACCATTATGGC TTTTCATCAATACTGGCAATTTAGTGAAGTATCTTTTAAACCTAAACCACTCAGAGAAGTTT TTCACAGGTTATCCTCTAATTGATAATTATTCCTATAGAGGATTTTACCAAAAAACCCATAT TTCTTACCAGGAGTATCCTTTCAAGGTGTTCCCTCCATACTGCAGTGGGTTGGGTTATATAA TGTCCAGAGATTTGGTGCCAAGGATCTATGAAATGATGGGTCACGTAAAACCCATCAAGTTT GAAGATGTTTATGTCGGGATCTGTTTGAATTTATAAAAGTGAACATTCATATTCCAGAAGA CAGCCCATGGCTTTTCTTCCAAGGAGATCATCACTTTTTGGCAGGTCATGCTAAGGAACACC ACATGCCATTAT**TAA**CTTCACATTCTACAAAAAGCCTAGAAGGACAGGATACCTTGTGGAAA GTGTTAAATAAAGTAGGTACTGTGGAAAATTCATGGGGAGGTCAGTGTGCTGGCTTACACTG AACTGAAACTCATGAAAAACCCAGACTGGAGACTGGAGGGTTACACTTGTGATTTATTAGTC AGGCCCTTCAAAGATGATATGTGGAGGAATTAAATATAAAGGAATTGGAGGTTTTTGCTAAA GAAATTAATAGGACCAAACAATTTGGACATGTCATTCTGTAGACTAGAATTTCTTAAAAGGG AACAATGTAGTCACTTGAAGGTTTTGTGTATATCTTATGTGGATTACCAATTTAAAAATATA TGTAGTTCTGTGTCAAAAAACTTCTTCACTGAAGTTATACTGAACAAAATTTTACCTGTTTT TGGTCATTTATAAAGTACTTCAAGATGTTGCAGTATTTCACAGTTATTATTATTTAAAATTA CTTCAACTTTGTGTTTTTAAATGTTTTGACGATTTCAATACAAGATAAAAAGGATAGTGAAT CATTCTTTACATGCAAACATTTTCCAGTTACTTAACTGATCAGTTTATTATTGATACATCAC TCCATTAATGTAAAGTCATAGGTCATTATTGCATATCAGTAATCTCTTGGACTTTGTTAAAT ATTTTACTGTGGTAATATAGAGAAGAATTAAAGCAAGAAAATCTGAAAA

FIGURE 137

MASALWTVLPSRMSLRSLKWSLLLLSLLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQD
FHFTLREHSNCSHQNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEK
EDKMLALSLEDEHLLYGDIIRQDFLDTYNNLTLKTIMAFRWVTEFCPNAKYVMKTDTDVFIN
TGNLVKYLLNLNHSEKFFTGYPLIDNYSYRGFYQKTHISYQEYPFKVFPPYCSGLGYIMSRD
LVPRIYEMMGHVKPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVCQLRRVIAAHG
FSSKEIITFWQVMLRNTTCHY

FIGURE 138

FIGURE 139

MKFTIVFAGLLGVFLAPALANYNINVNDDNNNAGSGQQSVSVNNEHNVANVDNNNGWDSWNS IWDYGNGFAATRLFQKKTCIVHKMNKEVMPSIQSLDALVKEKKLQGKGPGGPPPKGLMYSVN PNKVDDLSKFGKNIANMCRGIPTYMAEEMQEASLFFYSGTCYTTSVLWIVDISFCGDTVEN

Signal Peptide:

amino acids 1-20

N-myristoylation Sites:

amino acids 67-72, 118-123, 163-168

Flavodoxin protein homology:

amino acids 156-174

FIGURE 140

CATTTCTGAAACTAATCGTGTCAGAATTGACTTTGAAAAGCATTGCTTTTTACAGAAGTATA TTAACTTTTTAGGAGTAATTTCTAGTTTGGATTGTAATATGAAATAATTTAAAAGGGCTTCG CTCATATATAGGAAAATCGCATATGGTCCTAGTATTAAATTCTTATTGCTTACTGATTTTTT CAAGCTTATAGTTGAAATATTTTTCAGGAATTAC**ATG**AATGACAGTCTTCGAACCAATGTGT TTGTTCGATTTCAACCAGAGACTATAGCATGTGCTTGCATCTACCTTGCAGCTAGAGCACTT CAGATTCCGTTGCCAACTCGTCCCCATTGGTTTCTTCTTTTTTGGTACTACAGAAGAGGGAAAT CCAGGAAATCTGCATAGAAACACTTAGGCTTTATACCAGAAAAAAGCCAAACTATGAATTAC TGGAAAAGAAGTAGAAAAAAAAAGAAAGTAGCCTTACAAGAAGCCAAATTAAAAGCAAAGGGA TTGAATCCGGATGGAACTCCAGCCTTTCAACCCTGGGTGGATTTTCTCCAGCCTCCAAGCC ATCATCACCAAGAGAAGTAAAAGCTGAAGAGAAATCACCAATCTCCATTAATGTGAAGACAG TCAAAAAGAACCTGAGGATAGACAACAGGCTTCCAAAAGCCCTTACAATGGTGTAAGAAA GACAGCAAGAGAAGTAGAAATAGCAGAAGTGCAAGTCGAGGTCAAGAACACGATCACG TTCTAGATCACATACTCCAAGAAGACACTATAATAATAGGCGGAGTCGATCTGGAACATACA GCTCGAGATCAAGAAGCAGGTCCCGCAGTCACAGTGAAAGCCCTCGAAGACATCATAATCAT GGTTCTCCTCACCTTAAGGCCAAGCATACCAGAGATGATTTAAAAAGTTCAAACAGACATGG TCATAAAAGGAAAAATCTCGTTCTCGATCTCAGAGCAAGTCTCGGGATCACTCAGATGCAG CCAAGAACACAGGCATGAAAGGGGACATCATAGGGACAGGCGTGAACGATCTCGCTCTTT CTGACTTTCTCTTTGAGCCTGCATCAGTTCTTGGTTTTTGCCTATCTACAGTGTGATGT ATGGACTCAATCAAAAACATTAAACGCAAACTGATTAGGATTTGATTTCTTGAAACCCTCTA AAAATGCCCTAGCAGTATCTAATTAAAAACCATGGTCAGGTTCAATTGTACTTTATTATAGT TGTGTATTGTTTATTGCTATAAGAACTGGAGCGTGAATTCTGTAAAAATGTATCTTATTTTT ATACAGATAAAATTGCAGACACTGTTCTATTTAAGTGGTTATTTGTTTAAATGATGGTGAAT ACTTTCTTAACACTGGTTTGTCTGCATGTGTAAAGATTTTTTACAAGGAAATAAAATACAAAT CTTGTTTTTCTAAAAAAAAAAAAAAAAAAAAAA

FIGURE 141

MNDSLRTNVFVRFQPETIACACIYLAARALQIPLPTRPHWFLLFGTTEEEIQEICIETLRLY TRKKPNYELLEKEVEKRKVALQEAKLKAKGLNPDGTPALSTLGGFSPASKPSSPREVKAEEK SPISINVKTVKKEPEDRQQASKSPYNGVRKDSKRSRNSRSASRSRSTRSRSRSHTPRRHYN NRRSRSGTYSSRSRSRSHSESPRRHHNHGSPHLKAKHTRDDLKSSNRHGHKRKKSRSRSQ SKSRDHSDAAKKHRHERGHHRDRRERSRSFERSHKSKHHGGSRSGHGRHRR

FIGURE 142

FIGURE 143

GGCACGAGGCCTCGTGCCAAGCTTGGCACGAGGGTGCACCGCGTTCTCGCACGCGTCATGGC GGTCCTCGGAGTACAGCTGGTGACCCTGCTCACTGCCACCCTCATGCACAGGCTGGCGC CACACTGCTCCTTCGCGCCTGGCTGCTCTGTAACGGCAGTTTGTTCCGATACAAGCACCCG TCTGAGGAGGAGCTTCGGGCCTGGCGGGGAAGCCGAGGCCCAGAGGCAGGAAAGAGCGGTG GGCCAATGGCCTTAGTGAGGAGAAGCCACTGTCTGTGCCCCGAGATGCCCCGGTTCCAGCTGG AGACCTGCCCCTCACGACCGTGGATGCCCTGGTCCTGCGCTTCTTCCTGGAGTACCAGTGG TTTGTGGACTTTGCTGTGTACTCGGGCGGCGTGTACCTCTTCACAGAGGCCTACTACTACAT GCTGGGACCAGGCAAGGAGACTAACATTGCTGTTCTGGTGCCTGCTCACGGTGACCTTCT CCATCAAGATGTTCCTGACAGTGACACGGCTGTACTTCAGCGCCGAGGAGGGGGGTGAGCGCGGAGGAGACCCTCGAGCTGGGCCTGGAGCCTGGTCTGGCCAGCATGACCCAGAACTTAGAGC CACTTCTGAAGAAGCAGGGCTGGGACTGGGCGCTTCCTGTGGCCAAGCTGGCTATCCGCGTG GGACTGCCAGTGGTGGCTCTGTGCTGGCTGCCTCCTCACCTTCCCAGGCCTGCGGCTGGC CCAGACCCACCGGGACGCACTGACCATGTCGGAGGACAGACCCATGCTGCAGTTCCTCCTGC ACACCAGCTTCCTGTCTCCCCTGTTCATCCTGTGGCTCTGGACAAAGCCCATTGCACGGGAC TTCCTGCACCAGCCGCTTTGGGGAGACGCGTTTCTCCCTGCTGTCCGATTCTGCCTTCGA CTCTGGGCGCCTCTGGTTGCTGGTGGTGCCTGCTGCGGGCTGGCGGTGACCCGGCCCC ACCTGCAGGCCTACCTGTGCCTGGCCAAGGCCCGGGTGGAGCAGCTGCGAAGGGAGGCTGGC CGCATCGAAGCCCGTGAAATCCAGCAGAGGGTGGTCCGAGTCTACTGCTATGTGACCGTGGT GAGCTTGCAGTACCTGACGCCGCTCATCCTCACCCTCAACTGCACACTTCTGCTCAAGACGC TGGGAGGCTATTCCTGGGGCCTGGGCCCAGCTCCTCTACTATCCCCCGACCCATCCTCAGCC AGCGCTGCCCCATCGGCTCTGGGGAGGACGAAGTCCAGCAGACTGCAGCGCGGATTGCCGG GGCCTGGGTGGCCTGCTTACTCCCCTCTTCCTCGTGGCGTCCTGGCCTACCTCATCTGGT GGACGGCTGCCTGCCAGCTGCTCGCCAGCCTTTTCGGCCTCTACTTCCACCAGCACTTGGCA GGCTCCTAGCTGCAGACCCTCCTGGGGCCCTGAGGTCTGTTCCTGGGGCAGCGGGACA CTAGCCTGCCCCTCTGTTTGCGCCCCCGTGTCCCCAGCTGCAAGGTGGGGCCGGACTCCCC GGCGTTCCCTTCACCACAGTGCCTGACCCGCGGCCCCCCTTGGACGCCGAGTTTCTGCCTCA GAACTGTCTCTCTGGGCCCAGCAGCATGAGGGTCCCGAGGCCATTGTCTCCGAAGCGTATG TGCCAGGTTTGAGTGGCGAGGGTGATGCTGGCTGCTCTTCTGAACAAATAAAGGAGCATGCC GATTTTTAA

FIGURE 144

MAVLGVQLVVTLLTATLMHRLAPHCSFARWLLCNGSLFRYKHPSEEELRALAGKPRPRGRKE
RWANGLSEEKPLSVPRDAPFQLETCPLTTVDALVLRFFLEYQWFVDFAVYSGGVYLFTEAYY
YMLGPAKETNIAVFWCLLTVTFSIKMFLTVTRLYFSAEEGGERSVCLTFAFLFLLLAMLVQV
VREETLELGLEPGLASMTQNLEPLLKKQGWDWALPVAKLAIRVGLAVVGSVLGAFLTFPGLR
LAQTHRDALTMSEDRPMLQFLLHTSFLSPLFILWLWTKPIARDFLHQPPFGETRFSLLSDSA
FDSGRLWLLVVLCLLRLAVTRPHLQAYLCLAKARVEQLRREAGRIEAREIQQRVVRVYCYVT
VVSLQYLTPLILTLNCTLLLKTLGGYSWGLGPAPLLSPDPSSASAAPIGSGEDEVQQTAARI
AGALGGLLTPLFLRGVLAYLIWWTAACQLLASLFGLYFHQHLAGS

FIGURE 145

FIGURE 146

GGTTCCTACATCCTCATCTGAGAATCAGAGAGCATAATCTTCTTACGGGCCCGTGATTTATTAACGTGGCTT AATCTGAAGGTTCTCAGTCAAATTCTTTGTGATCTACTGATTGTGGGGGGCATGGCAAGGTTTGCTTAAAGGAGC TTGGCTGGTTTGGGCCCTTGTAGCTGACAGAAGGTGGCCAGGGAGAATGCAGCACACTGCTCGGAGAATGAAGG CGCTTCTGTTGCTGGTCTTGCCTTGGCTCAGTCCTGCTAACTACATTGACAATGTGGGCAACCTGCACTTCCTG TATTCAGAACTCTGTAAAGGTGCCTCCCACTACGGCCTGACCAAAGATAGGAAGAGGCGCTCACAAGATGGCTG GTGGACTCTGGCCGGAGCAACCGAACTAGGGCACGGCCCTTTGAGAGATCCACTATTAGAAGCAGATCATTTAA AAAAATAAATCGAGCTTTGAGTGTTCTTCGAAGGACAAAGAGCGGGAGTGCAGTTGCCAACCATGCCGACCAGG GCAGGGAAAATTCTGAAAACACCACTGCCCCTGAAGTCTTTCCAAGGTTGTACCACCTGATTCCAGATGGTGAA ATTACCAGCATCAAGATCAATCGAGTAGATCCCAGTGAAAGCCTCTCTATTAGGCTGGTGGGAGGTAGCGAAAC GAGACATCATTCTAAAGGTCAACGGGATGGACATCAGCAATGTCCCTCACAACTACGCTGTGCGTCTCCTGCGG CAGCCCTGCCAGGTGCTGTGGCTGACTGTGATGCGTGAACAGAAGTTCCGCAGCAGGAACAATGGACAGGCCCC GGATGCCTACAGACCCCGAGATGACAGCTTTCATGTGATTCTCAACAAAAGTAGCCCCGAGGAGCAGCTTGGAA TAAAACTGGTGCGCAAGGTGGATGAGCCTGGGGTTTTCATCTTCAATGTGCTGGATGGCGGTGTGGCATATCGA CATGGTCAGCTTGAGGAGAATGACCGTGTGTTAGCCATCAATGGACATGATCTTCGATATGGCAGCCCAGAAAG CTGACATCTTTCAGGAAGCCGGCTGGAACAGCAATGGCAGCTGGTCCCCAGGGCCAGGGGAGAGGAGCAACACT CCCAAGCCCCTCCATCCTACAATTACTTGTCATGAGAAGGTGGTAAATATCCAAAAAGACCCCGGTGAATCTCT GAGGAGTCATAAGCAGAGATGGAAGAATAAAAACAGGTGACATTTTGTTGAATGTGGATGGGGTCGAACTGACA GAGGTCAGCCGGAGTGAGCAGTGGCATTATTGAAAAGAACATCATCCTCGATAGTACTCAAAGCTTTGGAAGT $\tt GTGACTGGTCCCCATCCTGGGTCATGTGGCTGGAATTACCACGGTGCTTGTATAACTGTAAAGATATTGTATTA$ $\verb|TTTCATCAAATCCATTGTTGAAGGAACACCAGCA||ACAATGATGGAAGAATTAGATGTGGTGATATTCTTCTTG||$ $\tt ATTACTCTAACTATTGTTTCTTGGCCTGGCACTTTTTTA{\color{red}{TAG}} AATCAATGGTCAGAGGAAAACAGAAAAA$ AAAAATGTCAGGAAAAGTATGATCATCTAATGAAAGCCAGTTACACCTCAGAAAATATGATTCCAAAAAAATTA AAACTACTAGTTTTTTTCAGTGTGGAGGATTTCTCATTACTCTACAACATTGTTTATATTTTTTCTATTCAAT AAAAAGCCCTAAAACAACTAAAATGATTGATTTGTATACCCCACTGAATTCAAGCTGATTTAAAATTTAAAATTT ${\tt GGTATATGCTGAAGTCTGCCAAGGGTACATTATGGCCATTTTTAATTTACAGCTAAAATATTTTTTAAAATGCA}$ TTGCTGAGAAACGTTGCTTTCATCAAACAAGAATAAATATTTTTCAGAAGTTAAA

FIGURE 147

MKALLLLVLPWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDGCASLTAT
APSPEVSAAATISLMTDEPGLDNPAYVSSAEDGQPAISPVDSGRSNRTRARPFERSTIRSRS
FKKINRALSVLRRTKSGSAVANHADQGRENSENTTAPEVFPRLYHLIPDGEITSIKINRVDP
SESLSIRIVGGSETPLVHIIIQHIVRDGVIARDGRLLPGDIILKVNGMDISNVPHNYAVRLL
RQPCQVLWLTVMREQKFRSRNNGQAPDAYRPRDDSFHVILNKSSPEEQLGIKLVRKVDEPGV
FIFNVLDGGVAYRHGQLEENDRVLAINGHDLRYGSPESAAHLIQASERRVHLVVSRQVRQRS
PDIFQEAGWNSNGSWSPGPGERSNTPKPLHPTITCHEKVVNIQKDPGESLGMTVAGGASHRE
WDLPIYVISVEPGGVISRDGRIKTGDILLNVDGVETEVSRSEAVALLKRTSSSIVLKALEV
KEYEPQEDCSSPAALDSNHNMAPPSDWSPSWVMWLELPRCLYNCKDIVLRRNTAGSLGFCIV
GGYEEYNGNKPFFIKSIVEGTPAYNDGRIRCGDILLAVNGRSTSGMIHACLARLLKELKGRI
TLTIVSWPGTFL

FIGURE 148

FIGURE 149

MKILVAFLVVLTIFGIQSHGYEVFNIISPSNNGGNVQETVTIDNEKNTAIVNIHAGSCSSTT IFDYKHGYIASRVLSRRACFILKMDHQNIPPLNNLQWYIYEKQALDNMFSNKYTWVKYNPLE SLIKDVDWFLLGSPIEKLCKHIPLYKGEVVENTHNVGAGGCAKAGLLGILGISICADIHV

FIGURE 150

ATGGGGCTCCCTGGGCTGTTCTGCTTGGCCGTGCTGCCAGCAGCTTCTCCAAGGCACG GGAGGAAGAATTACCCCTGTGGTCTCCATTGCCTACAAAGTCCTGGAAGTTTTCCCCAAAG GCCGCTGGGTGCTCATAACCTGCTGTGCACCCCAGCCACCACCGCCCATCACCTATTCCCTC TGTGGAACCAAGAACATCAAGGTGGCCAAGAAGGTGGTGAAGACCCACGAGCCGGCCTCCTT CAACCTCAACGTCACACTCAAGTCCAGTCCAGACCTGCTCACCTACTTCTGCCGGGCGTCCT CCACCTCAGGTGCCCATGTGGACAGTGCCAGGCTACAGATGCACTGGGAGCTGTGGTCCAAG CCAGTGTCTGAGCTGCGGGCCAACTTCACTCTGCAGGACAGAGGGGCAGGCCCCAGGGTGGA GATGATCTGCCAGGCGTCCTCGGGCAGCCCACCTATCACCAACAGCCTGATCGGGAAGGATG AGCCAGACATCGGACTGGTTCTGGTGCCAGGCTGCAAACAACGCCAATGTCCAGCACAGCGC CCTCACAGTGGTGCCCCCAGGTGGTGACCAGAAGATGGAGGACTGGCAGGGTCCCCTGGAGA GCCCATCCTTGCCTTGCCGCTCTACAGGAGCACCCGCCGTCTGAGTGAAGAGGAGTTTGGG GGGTTCAGGATAGGGAATGGGGAGGTCAGAGGACGCAAAGCAGCCATG**TAG**AATGAACC GTCCAGAGAGCCAAGCACGGCAGAGGACTGCAGGCCATCAGCGTGCACTGTTCGTATTTGGA

FIGURE 151

MGLPGLFCLAVLAASSFSKAREEEITPVVSIAYKVLEVFPKGRWVLITCCAPQPPPPITYSL CGTKNIKVAKKVVKTHEPASFNLNVTLKSSPDLLTYFCRASSTSGAHVDSARLQMHWELWSK PVSELRANFTLQDRGAGPRVEMICQASSGSPPITNSLIGKDGQVHLQQRPCHRQPANFSFLP SQTSDWFWCQAANNANVQHSALTVVPPGGDQKMEDWQGPLESPILALPLYRSTRRLSEEEFG GFRIGNGEVRGRKAAAM

Signal Peptide:

amino acids 1-18

N-glycosylation Sites:

amino acids 86-89, 132-135, 181-184

FIGURE 152

GGTCCTTAATGGCAGCAGCCGCCGCTACCAAGATCCTTCTGTGCCTCCCGCTTCTGCTCCTG CTGTCCGGCTGGTCCCGGGCTGGGCGAGCCGACCCTCACTCTTTTGCTATGACATCACCGT CATCCCTAAGTTCAGACCTGGACCACGGTGGTGTGCGGTTCAAGGCCAGGTGGATGAAAAGA CTTTTCTTCACTATGACTGTGGCAACAAGACAGTCACACCTGTCAGTCCCCTGGGGAAGAA CTAAATGTCACAACGGCCTGGAAAGCACAGAACCCAGTACTGAGAGAGGTGGTGGACATACT TACAGAGCAACTGCGTGACATTCAGCTGGAGAATTACACACCCAAGGAACCCCTCACCCTGC AGGCAAGGATGTCTTGTGAGCAGAAAGCTGAAGGACACAGCAGTGGATCTTGGCAGTTCAGT TTCGATGGGCAGATCTTCCTCTTTTGACTCAGAGAAGAGAATGTGGACAACGGTTCATCC TGGAGCCAGAAAGATGAAAGAAGTGGGAGAATGACAAGGTTGTGGCCATGTCCTTCCATT ACTTCTCAATGGGAGACTGTATAGGATGGCTTGAGGACTTCTTGATGGGCATGGACACCC CTGGAGCCAAGTGCAGGAGCACCACTCGCCATGTCCTCAGGCACAACCCAACTCAGGGCCAC AGCCACCACCTCATCCTTTGCTGCCTCCTCATCATCCTCCCTGCTTCATCCTCCCTGGCA TCTGAGGAGAGTCCTTTAGAGTGACAGGTTAAAGCTGATACCAAAAGGCTCCTGTGAGCACG GTCTTGATCAAACTCGCCCTTCTGTCTGGCCAGCTGCCCACGACCTACGGTGTATGTCCAGT GGCCTCCAGCAGATCATGACATCATGGACCCAATAGCTCATTCACTGCCTTGATTCCTT TTGCCAACAATTTTACCAGCAGTTATACCTAACATATTATGCAATTTTCTCTTGGTGCTACC TGATGGAATTCCTGCACTTAAAGTTCTGGCTGACTAAACAAGATATATCATTTTCTTCTTC GTCAGTAAAATAATCACGTTAGACTTCAGACCTCTGGGGGATTCTTTCCGTGTCCTGAAAGAG AATTTTTAAATTAATAAGAAAAATTTATATTAATGATTGTTTCCTTTAGTAATTTAT

FIGURE 153

MAAAAATKILLCLPLLLLLSGWSRAGRADPHSLCYDITVIPKFRPGPRWCAVQGQVDEKTFL HYDCGNKTVTPVSPLGKKLNVTTAWKAQNPVLREVVDILTEQLRDIQLENYTPKEPLTLQAR MSCEQKAEGHSSGSWQFSFDGQIFLLFDSEKRMWTTVHPGARKMKEKWENDKVVAMSFHYFS MGDCIGWLEDFLMGMDSTLEPSAGAPLAMSSGTTQLRATATTLILCCLLIILPCFILPGI

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 224-246

N-glycosylation site.

amino acids 68-72, 82-86

N-myristoylation site.

amino acids 200-206, 210-216

Amidation site.

amino acids 77-81

FIGURE 154

FIGURE 155

MELIPTITSWRVLILVVALTQFWCGFLCRGFHLQNHELWLLIKREFGFYSKSQYRTWQKKLA EDSTWPPINRTDYSGDGKNGFYINGGYESHEQIPKRKLKLGGOPTEOHFWARL

FIGURE 156

GTTCTCCTTTCCGAGCCAAAATCCCAGGCGATGGTGAATTATGAACGTGCCACACCATGAAG CTCTTGTGGCAGGTAACTGTGCACCACCACACCTGGAATGCCATCCTGCTCCCGTTCGTCTA CCTCACGGCGCAAGTGTGGATTCTGTGTGCAGCCATCGCTGCTGCCGCCTCAGCCGGGCCCC AGAACTGCCCCTCCGTTTGCTCGTGCAGTAACCAGTTCAGCAAGGTGGTGTGCACGCGCCGG GGCCTCTCCGAGGTCCCGCAGGGTATTCCCTCGAACACCCGGTACCTCAACCTCATGGAGAA CAACATCCAGATGATCCAGGCCGACACCTTCCGCCACCTCCACCACCTGGAGGTCCTGCAGT TGGGCAGGACTCCATCCGGCAGATTGAGGTGGGGCCTTCAACGGCCTGGCCAGCCTCAAC ACCCTGGAGCTGTTCGACAACTGGCTGACAGTCATCCCTAGCGGGGCCTTTGAATACCTGTC CAAGCTGCGGGAGCTCTGGCTTCGCAACACCCCATCGAAAGCATCCCCTCTTACGCCTTCA ACCGGGTGCCCTCCTCATGCGCCTGGACTTGGGGGAGCTCAAGAAGCTGGAGTATATCTCT GAGGGAGCTTTTGAGGGGCTGTTCAACCTCAAGTATCTGAACTTGGGCATGTGCAACATTAA AGACATGCCCAATCTCACCCCCTGGTGGGGCTGGAGGAGCTGGAGATGTCAGGGAACCACT TCCCTGAGATCAGGCCTGGCTCCTTCCATGGCCTGAGCTCCCTCAAGAAGCTCTGGGTCATG CAACTTGGCCCACAATAACCTCTCTTCTTTGCCCCATGACCTCTTTACCCCGCTGAGGTACC TGGTGGAGTTGCATCTACACCACAACCCTTGGAACTGTGATTGTGACATTCTGTGGCTAGCC TGGTGGCTTCGAGAGTATATACCCACCAATTCCACCTGCTGTGGCCGCTGTCATGCTCCCAT GCACATGCGAGGCCGCTACCTCGTGGAGGTGGACCAGGCCTCCTTCCAGTGCTCTGCCCCCT TCATCATGGACGCACCTCGAGACCTCAACATTTCTGAGGGTCGGATGGCAGAACTTAAGTGT CGGACTCCCCTATGTCCTCCGTGAAGTGGTTGCTGCCCAATGGGACAGTGCTCAGCCACGC CTCCCGCCACCAAGGATCTCTGTCCTCAACGACGGCACCTTGAACTTTTCCCACGTGCTGC TTTCAGACACTGGGGTGTACACATGCATGGTGACCAATGTTGCAGGCAACTCCAACGCCTCG GCCTACCTCAATGTGAGCACGGCTGAGCTTAACACCTCCAACTACAGCTTCTTCACCACAGT AACAGTGGAGACCACGGAGATCTCGCCTGAGGACACACGCGAAAGTACAAGCCTGTTCCTA CCACGTCCACTGGTTACCAGCCGGCATATACCACCTCTACCACGGTGCTCATTCAGACTACC CGTGTGCCCAAGCAGGTGCCAGTACCCGCGACAGACACCACTGACAAGATGCAGACCAGCCT GGATGAAGTCATGAAGACCACCAAGATCATTGGCTGCTTTGTGGCAGTGACTCTGCTAG CTGCCGCCATGTTGATTGTCTTCTATAAACTTCGTAAGCGCACCAGCAGCGGAGTACAGTC ACAGCCGCCCGGACTGTTGAGATAATCCAGGTGGACGAAGACATCCCAGCAGCAACATCCGC AGCAGCAACAGCAGCTCCGTCCGGTGTATCAGGTGAGGGGGCAGTAGTGCTGCCCACAATTC ATGACCATATTAACTACAACACCTACAAACCAGCACATGGGGCCCACTGGACAGAAAACAGC CTGGGGAACTCTCTGCACCCCACAGTCACCACTATCTCTGAACCTTATATAATTCAGACCCA TACCAAGGACAAGGTACAGGAAACTCAAATATGACTCCCCTCCCCCAAAAAACTTATAAAAT GCAATAGAATGCACACAAAGACAGCAACTTTTGTACAGAGTGGGGAGAGACTTTTTCTTGTA CAAAAAGTCAAAACA

FIGURE 157

MKLLWQVTVHHHTWNAILLPFVYLTAQVWILCAAIAAAASAGPQNCPSVCSCSNQFSKVVCT
RRGLSEVPQGIPSNTRYLNLMENNIQMIQADTFRHLHHLEVLQLGRNSIRQIEVGAFNGLAS
LNTLELFDNWLTVIPSGAFEYLSKLRELWLRNNPIESIPSYAFNRVPSLMRLDLGELKKLEY
ISEGAFEGLFNLKYLNLGMCNIKDMPNLTPLVGLEELEMSGNHFPEIRPGSFHGLSSLKKLW
VMNSQVSLIERNAFDGLASLVELNLAHNNLSSLPHDLFTPLRYLVELHLHHNPWNCDCDILW
LAWWLREYIPTNSTCCGRCHAPMHMRGRYLVEVDQASFQCSAPFIMDAPRDLNISEGRMAEL
KCRTPPMSSVKWLLPNGTVLSHASRHPRISVLNDGTLNFSHVLLSDTGVYTCMVTNVAGNSN
ASAYLNVSTAELNTSNYSFFTTVTVETTEISPEDTTRKYKPVPTTSTGYQPAYTTSTTVLIQ
TTRVPKQVAVPATDTTDKMQTSLDEVMKTTKIIIGCFVAVTLLAAAMLIVFYKLRKRHQQRS
TVTAARTVEIIQVDEDIPAATSAAATAAPSGVSGEGAVVLPTIHDHINYNTYKPAHGAHWTE
NSLGNSLHPTVTTISEPYIIQTHTKDKVQETQI

FIGURE 158

CGCTCGGGCACCAGCCGCGAAGGATGGACTGGGTTGCTGGACGCAGTTGGGGCTCACTTTTCTTCAGCTCC TTCTCATCTCGTCCTTGCCAAGAGAGTACACAGTCATTAATGAAGCCTGCCCTGGAGCAGAGTGGAATATCATG TGTCGGGAGTGCTGTGAATATGATCAGATTGAGTGCGTCTGCCCCGGAAAGAGGGGAAGTCGTGGGTTATACCAT GCAAGAGCTGCCGAAATGGCTCATGGGGGGGTACCTTGGATGACTTCTATGTGAAGGGGTTCTACTGTGCAGAG TGCCGAGCAGGCTGGTACGGAGGAGACTGCATGCGATGTGGCCAGGTTCTGCGAGCCCCAAAGGGTCAGATTTT GTTGGAAAGCTATCCCCTAAATGCTCACTGTGAATGGACCATTCATGCTAAACCTGGGTTTGTCATCCAACTAA GATTTGTCATGTTGAGTCTGGAGTTTGACTACATGTGCCAGTATGACTATGTTGAGGTTCGTGATGGAGACAAC CGCGATGGCCAGATCATCAAGCGTGTCTGTGGCAACGAGCGCCAGCTCCTATCCAGAGCATAGGATCCTCACT CCACGTCCTCTCCACTCCGATGGCTCCAAGAATTTTGACGGTTTCCATGCCATTTATGAGGAGATCACAGCAT TCTTTTGTAACAACTCCTATGTTCTTAGTGGCAATGAGAAAAGAACTTGCCAGCAGAATGGAGAGTGGTCAGGG AAACAGCCCATCTGCATAAAAGCCTGCCGAGAACCAAAGATTTCAGACCTGGTGAGAAGGAGAGTTCTTCCGAT CCCCTACCAAGAAGCCAGCCCTTCCCTTTGGAGATCTGCCCATGGGATACCAACATCTGCATACCCAGCTCCAG TATGAGTGCATCTCACCCTTCTACCGCCGCCTGGGCAGCAGCAGGAGGACATGTCTGAGGACTGGGAGTGGAG TGGGCGGGCACCATCCTGCATCCCTATCTGCGGGAAAATTGAGAACATCACTGCTCCAAAGACCCAAGGGTTGC ${\tt GCTGGCCGTGGCAGCCATCTACAGGAGGACCAGCGGGGTGCATGACGGCAGCCTACACAAGGGAGCGTGG}$ TTCCTAGTCTGCAGCGGTGCCCTGGTGAATGAGCGCACTGTGGTGGTGGCTGCCCACTGTGTTACTGACCTGGG GAAGGTCACCATGATCAAGACAGCAGACCTGAAAGTTGTTTTTGGGGAAATTCTACCGGGATGATGACCGGGATG AGAAGACCATCCAGAGCCTACAGATTTCTGCTATCATTCTGCATCCCAACTATGACCCCATCCTGCTTGATGCT ${\tt CATGAGGACCATGGCATCCCAGTGAGTGTCACTGATAACATGTTCTGTGCCAGCTGGGAACCCACTGCCCCTTC}$ TGATATCTGCACTGCAGAGACAGGAGGCATCGCGGGCTGTGTCCTTCCCGGGACGAGCATCTCCTGAGCCACGCT GGCATCTGATGGGACTGGTCAGCTGGAGCTATGATAAAACATGCAGCCACAGGCTCTCCACTGCCTTCACCAAG $\tt GTGCTGCCTTTTAAAGACTGGATTGAAAGAAATATGAAA\underline{TGA} ACCATGCTCATGCACTCCTTGAGAAGTGTTTC$ TGTATATCCGTCTGTACGTGTGTCATTGCGTGAAGCAGTGTGGGCCTGAAGTGTGATTTGGCCTGTGAACTTGG $\tt CTGTGCCAGGGCTTCTGACTTCAGGGACAAAACTCAGTGAAGGGTGAGTAGACCTCCATTGCTGGTAGGCTGAT$ ATATACAAAACCTCTCCACTCCACTGACCTGGTGGTCTTCCCCAACTTTCAGTTATACGAATGCCATCAGCTTG ACCAGGGAAGATCTGGGCTTCATGAGGCCCCTTTTGAGGCTCTCAAGTTCTAGAGAGCTGCCTGTGGGACAGCC

FIGURE 159

MELGCWTQLGLTFLQLLLISSLPREYTVINEACPGAEWNIMCRECCEYDQIECVCPGKREVV
GYTIECCRMEENECDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWYGGD
CMRCGQVLRAPKGQILLESYPLNAHCEWTTHAKFGFVIQLRFVMLSLEFDYMCQYDYVEVRD
GDNRDGQIIKRVCGNERPAPIQSIGSSLHVLFHSDGSKNFDGFHAIYEEITACSSSPCFHDG
TCVLDKAGSYKCACLAGYTGQRCENLLEERNCSDPGGPVNGYQKITGGPGLINGRHAKIGTV
VSFFCNNSYVLSGNEKRTCQQNGEWSGKQPICIKACREPKISDLVRRRVLPMQVQSRETPLH
QLYSAAFSKQKLQSAPTKKPALPFGDLPMGYQHLHTQLQYECISPFYRRLGSSRRTCLRTGK
WSGRAPSCIPICGKIENITAPKTQGLRWPWQAAIYRRTSGVHDGSLHKGAWFLVCSGALVNE
RTVVVVAAHCVTDLGKVTMIKTADLKVVLGKFYRDDDRDEKTIQSLQISAIILHPNYDPILLD
ADIAILKLLDKARISTRVQPICLAASRDLSTSFQESHITVAGWNVLADVRSPGFKNDTLRSG
VVSVVDSLLCEEQHEDHGIPVSVTDNMFCASWEPTAPSDICTAETGGIAAVSFPGRASPEPR
WHLMGLVSWSYDKTCSHRLSTAFTKVLPFKDWIERNMK

FIGURE 160

ACCAGGCATTGTATCTTCAGTTGTCATCAAGTTCGCAATCAGATTGGAAAAGCTCAACTTGA AGCTTTCTTGCCTGCAGTGAAGCAGAGAGATAGATATTATTCACGTAATAAAAAACATGGGC TTCAACCTGACTTTCCACCTTTCCTACAAATTCCGATTACTGTTGCTGTTGACTTTGTGCCT GACAGTGGTTGGGTGGCCACCAGTAACTACTTCGTGGGTGCCATTCAAGAGATTCCTAAAG CAAAGGAGTTCATGGCTAATTTCCATAAGACCCTCATTTTGGGGAAGGGAAAAACTCTGACT AATGAAGCATCCACGAAGAAGGTAGAACTTGACAACTGTCCTTCTGTGTCTCCTTACCTCAG AGGCCAGAGCAAGCTCATTTTCAAACCAGATCTCACTTTGGAAGAGGTACAGGCAGAAAATC CCAAAGTGTCCAGAGGCCGGTATCGCCCTCAGGAATGTAAAGCTTTACAGAGGGTCGCCATC CTCGTTCCCCACCGGAACAGAGAGAGACACCTGATGTACCTGCTGGAACATCTGCATCCCTT CCTGCAGAGGCAGCTGGATTATGGCATCTACGTCATCCACCAGGCTGAAGGTAAAAAGT TTAATCGAGCCAAACTCTTGAATGTGGGCTATCTAGAAGCCCTCAAGGAAGAAATTGGGAC TGCTTTATATTCCACGATGTGGACCTGGTACCCGAGAATGACTTTAACCTTTACAAGTGTGA GGAGCATCCCAAGCATCTGGTTGGCAGGAACAGCACTGGGTACAGGTTACGTTACAGTG GATATTTTGGGGGTGTTACTGCCCTAAGCAGAGAGCAGTTTTTCAAGGTGAATGGATTCTCT AACAACTACTGGGGATGGGGAGGCGAAGACGATGACCTCAGACTCAGGGTTGAGCTCCAAAG AATGAAAATTTCCCGGCCCCTGCCTGAAGTGGGTAAATATACAATGGTCTTCCACACTAGAG ACAAAGGCAATGAGGTGAACGCAGAACGGATGAAGCTCTTACACCAAGTGTCACGAGTCTGG AGAACAGATGGGTTGAGTAGTTCTTATAAATTAGTATCTGTGGAACACAATCCTTTATA TATCAACATCACAGTGGATTTCTGGTTTGGTGCATGACCCTGGATCTTTTGGTGATGTTTTGG AAGAACTGATTCTTTGTTTGCAATAATTTTGGCCTAGAGACTTCAAATAGTAGCACACATTA AGAACCTGTTACAGCTCATTGTTGAGCTGAATTTTTCCTTTTGTATTTTCTTAGCAGAGCT CCTGGTGATGTAGAGTATAAAACAGTTGTAACAAGACAGCTTTCTTAGTCATTTTGATCATG AGGGTTAAATATTGTAATATGGATACTTGAAGGACTTTATATAAAAGGATGACTCAAAGGAT TATGGGATAAAAGGCCACAGGAAATAAGACTGCTGAATGTCTGAGAGAACCAGAGTTGTTCT CGTCCAAGGTAGAAAGGTACGAAGATACAATACTGTTATTCATTTATCCTGTACAATCATCT GTGAAGTGGTGTCAGGTGAGAAGGCGTCCACAAAAGAGGGGAAAAAGGCGACGAATCA GGACACAGTGAACTTGGGAATGAAGAGGTAGCAGGAGGGTGGAGTGTCGGCTGCAAAGGCAG CAGTAGCTGAGCTGCTGCAGGTGCTGATAGCCTTCAGGGGAGGACCTGCCCAGGTATGCCT TCCAGTGATGCCCACCAGAGAATACATTCTCTATTAGTTTTTAAAGAGTTTTTGTAAAATGA TTTTGTACAAGTAGGATATGAATTAGCAGTTTACAAGTTTACATATTAACTAATAATAATA TGTCTATCAAATACCTCTGTAGTAAAATGTGAAAAAGCAAAA

FIGURE 161

MGFNLTFHLSYKFRLLLLTLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLILGKGKT
LTNEASTKKVELDNCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRV
AILVPHRNREKHLMYLLEHLHPFLQRQQLDYGIYVIHQAEGKKFNRAKLLNVGYLEALKEEN
WDCFIFHDVDLVPENDFNLYKCEEHPKHLVVGRNSTGYRLRYSGYFGGVTALSREQFFKVNG
FSNNYWGWGGEDDDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAERMKLLHQVSR
VWRTDGLSSCSYKLVSVEHNPLYINTTVDFWFGA

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites:

amino acids 4-7, 220-223 and 335-338

Xylose isomerase proteins:

amino acids 191-201

FIGURE 162

CGTGGGCCGGGGTCGCGCAGCGGGCTGTGGGCGCCCGGAGGAGCGACCGCCGCAGTTCTC GAGCTCCAGCTGCATTCCCTCCGCGTCCGCCCCACGCTTCTCCCGCTCCGGGCCCCGCAATG CCCGGCAGGGTGGCCGCAGGCCTGTATGAACTCAATCTCACCACCGATAGCCCTGCCACCA CGGGAGCGGTGGTCACCATCTCGGCCAGCCTGGTGGCCAAGGACAACGGCAGCCTGGCCCTG CCCGCTGACGCCCACCTCTACCGCTTCCACTGGATCCACACCCCGCTGGTGCTTACTGGCAA GATGGAGAAGGGTCTCAGCTCCACCATCCGTGTGGTCGGCCACGTGCCCGGGGAATTCCCGG TCTCTGTCTGGGTCACTGCCGCTGACTGCTGGATGTGCCAGCCTGTGGCCAGGGGCTTTGTG GTCCTCCCATCACAGAGTTCCTCGTGGGGGACCTTGTTGTCACCCAGAACACTTCCCTACC GCAACTTCCTCAAGACCGCCTTGTTTCTCTACAGCTGGGACTTCGGGGACGGGACCCAGATG GTGACTGAAGACTCCGTGGTCTATTATAACTATTCCATCATCGGGACCTTCACCGTGAAGCT CAAAGTGGTGGCGGAGTGGGAAGAGGTGGAGCCGGATGCCACGAGGGCTGTGAAGCAGAAGA CCGGGGACTTCTCCGCCTCGCTGAAGCTGCAGGAAACCCTTCGAGGCATCCAAGTGTTGGGG CCCACCCTAATTCAGACCTTCCAAAAGATGACCGTGACCTTGAACTTCCTGGGGAGCCCTCC TCTGACTGTGTGCTGCGTCTCAAGCCTGAGTGCCTCCCGCTGGAGGAAGGGGAGTGCCACC CTGTGTCCGTGGCCAGCACAGCGTACAACCTGACCCACACCTTCAGGGACCCTGGGGACTAC TGCTTCAGCATCCGGGCCGAGAATATCATCAGCAAGACACATCAGTACCACAAGATCCAGGT GTGGCCTCCAGAATCCAGCCGGCTGTCTTTGCTTTCCCATGTGCTACACTTATCACTGTGA TGTTGGCCTTCATCATGTACATGACCCTGCGGAATGCCACTCAGCAAAAGGACATGGTGGAG AACCCGGAGCCACCCTCTGGGGTCAGGTGCTGCCAGATGTGCTGTGGGCCTTTCTTGCT GGAGACTCCATCTGAGTACCTGGAAATTGTTCGTGAGAACCACGGGCTGCTCCCGCCCCTCT ATAAGTCTGTCAAAACTTACACCGTGTGAGCACCCCCTCCCCACCCCATCTCAGTGTTAA CTGACTGCTGACTTGGAGTTTCCAGCAGGGTGGTGTGCACCACTGACCAGGAGGGGTTCATT TGCGTGGGGCTGTTGGCCTGGATCATCCATCTGTACAGTTCAGCCACTGCCACAAGCC CCTCCCTCTCTGTCACCCCTGACCCCAGCCATTCACCCATCTGTACAGTCCAGCCACTGACA TAAGCCCCACTCGGTTACCACCCCCTTGACCCCCTACCTTTGAAGAGGCTTCGTGCAGGACT TTGATGCTTGGGGTGTTCCGTTGTTGACTCCTAGGTGGGCCTGCCCACTGCCCATTCCT CTCATATTGGCACATCTGCTGTCCATTGGGGGTTCTCAGTTTCCTCCCCCAGACAGCCCTAC CTGTGCCAGAGAGCTAGAAAGAGGTCATAAAGGGTTAAAAATCCATAACTAAAGGTTGTAC CACACACACAGAAATATAAACACATGCGTCACATGGGCATTTCAGATGATCAGCTCTGTA TCTGGTTAAGTCGGTTGCTGGGATGCACCCTGCACTAGAGCTGAAAGGAAATTTGACCTCCA AGCAGCCCTGACAGGTTCTGGGCCCGGGCCCTCCCTTTGTGCTTTGTCTCTGCAGTTCTTGC GCCCTTTATAAGGCCATCCTAGTCCCTGCTGGCTGGCAGGGGCCTGGATGGGGGGCAGGACT AATACTGAGTGATTGCAGAGTGCTTTATAAATATCACCTTATTTTATCGAAACCCATCTGTG AAACTTTCACTGAGGAAAAGGCCTTGCAGCGGTAGAAGAGGTTGAGTCAAGGCCGGGCGCGG TGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGTGGATCACGAGATCAGGA AGCCGGCCTGCTGGTGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATG GTGCGAACCCGGGAGGCGGAGCTTGCAGTGAGCCCAGATGGCGCCACTGCACTCCAGCCTGA GTGACAGAGCGAGACTCTGTCTCCA

FIGURE 163

MAQAVWSRLGRILWLACLLPWAPAGVAAGLYELNLTTDSPATTGAVVTISASLVAKDNGSLA
LPADAHLYRFHWIHTPLVLTGKMEKGLSSTIRVVGHVPGEFPVSVWVTAADCWMCQPVARGF
VVLPITEFLVGDLVVTQNTSLPWPSSYLTKTVLKVSFLLHDPSNFLKTALFLYSWDFGDGTQ
MVTEDSVVYYNYSIIGTFTVKLKVVAEWEEVEPDATRAVKQKTGDFSASLKLQETLRGIQVL
GPTLIQTFQKMTVTLNFLGSPPLTVCWRLKPECLPLEEGECHPVSVASTAYNLTHTFRDPGD
YCFSIRAENIISKTHQYHKIQVWPSRIQPAVFAFPCATLITVMLAFIMYMTLRNATQQKDMV
ENPEPPSGVRCCCOMCGGPFLLETPSEYLETVRRNHGLLPPLYKSVKTYTV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 339-362

N-glycosylation sites.

amino acids 34-37, 58-61, 142-145, 197-200, 300-303 and 364-367

FIGURE 164

FIGURE 165

 $\verb|MALSSQIWAACLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRRDTH| FPICIFCCGCCHRSKCGMCCKT|$

FIGURE 166

CTGTCAGGAAGGACCATCTGAAGGCTGCAATTTGTTCTTAGGGAGGCAGGTGCTGGCCTGGC CTGGATCTTCCACCATGTTCCTGTTGCTGCCTTTTGATAGCCTGATTGTCAACCTTCTGGGC AGTCTCCTTTGGTATCCGCAAACTCTACATGAAAAGTCTGTTAAAAATCTTTGCGTGGGCTA CCTTGAGAATGGAGCGAGGAGCCAAGGAGAAGAACCACCAGCTTTACAAGCCCTACACCAAC GGAATCATTGCAAAGGATCCCACTTCACTAGAAGAAGAGATCAAAGAGATTCGTCGAAGTGG TAGTAGTAAGGCTCTGGACAACACTCCAGAGTTCGAGCTCTCTGACATTTTCTACTTTTGCC GGAAAGGAATGGAGACCATTATGGATGATGAGGTGACAAAGAGATTCTCAGCAGAAGAACTG GAGTCCTGGAACCTGCTGAGCAGAACCAATTATAACTTCCAGTACATCAGCCTTCGGCTCAC GGTCCTGTGGGGGTTAGGAGTGCTGATTCGGTACTGCTTTCTGCTGCCGCTCAGGATAGCAC TGGCTTTCACAGGGATTAGCCTTCTGGTGGTGGGCACAACTGTGGTGGGATACTTGCCAAAT AGCGCTGACAGCCATCATCACCTACCATGACAGGGAAAACAGACCAAGAAATGGTGGCATCT GTGTGGCCAATCATACCTCACCGATCGATGTGATCATCTTGGCCAGCGATGGCTATTATGCC ATGGTGGGTCAAGTGCACGGGGGACTCATGGGTGTGATTCAGAGAGCCATGGTGAAGGCCTG CCCACACGTCTGGTTTGAGCGCTCGGAAGTGAAGGATCGCCACCTGGTGGCTAAGAGACTGA CTGAACATGTGCAAGATAAAAGCAAGCTGCCTATCCTCATCTTCCCAGAAGGAACCTGCATC AATAATACATCGGTGATGATGTTCAAAAAGGGAAGTTTTGAAATTGGAGCCACAGTTTACCC TGTTGCTATCAAGTATGACCCTCAATTTGGCGATGCCTTCTGGAACAGCAGCAAATACGGGA TGGTGACGTACCTGCGGAATGATGACCAGCTGGGCCATTGTCTGCAGCGTGTGGTACCTG CCTCCCATGACTAGAGAGGCAGATGAAGATGCTGTCCAGTTTGCGAATAGGGTGAAATCTGC CATTGCCAGGCAGGAGGACTTGTGGACCTGCTGTGGGATGGGGGCCTGAAGAGGGAAAGG TGAAGGACACGTTCAAGGAGGAGCAGCAGAAGCTGTACAGCAAGATGATCGTGGGGAACCAC AAGGACAGGAGCCGCTCCTGAGCCTGCCTCCAGCTGGGGGCCACCGTGCGGGGTGCCAA CGGGCTCAGAGCTGGAGTTGCCGCCGCCCCCCACTGCTGTCCTTTCCAGACTCCAGGG CTCCCGGGCTGCTCTGGATCCCAGGACTCCGGCTTTCGCCGAGCCGCAGCGGGATCCCTGT GCACCCGGCGCAGCCTACCCTTGGTGGTCTAAACGGATGCTGCTGGGTGTTGCGACCCAGGA CGAGATGCCTTGTTTCTTTTACAATAAGTCGTTGGAGGAATGCCATTAAAGTGAACTCCCCA CCTTTGCACGCTGTGCGGGCTGAGTGGTTGGGGAGATGTGGCCATGGTCTTGTGCTAGAGAT GGCGGTACAAGAGTCTGTTATGCAAGCCCGTGTGCCAGGGATGTGCTGGGGGGCGGCCACCCG CTCTCCAGGAAAGGCACAGCTGAGGCACTGTGGCTGGCTTCGGCCTCAACATCGCCCCCAGC CTTGGAGCTCTGCAGACATGATAGGAAGGAAACTGTCATCTGCAGGGGCTTTCAGCAAAATG GGCCGCTGACTGGGCCATGGGGAGAACGTGTGTTCGTACTCCAGGCTAACCCTGAACTCCCC ATGTGATGCGCGCTTTGTTGAATGTGTCTCCGGTTTCCCCCATCTGTAATATGAGTCGGGGG AGGACACATCACGTTCAGTGTTTCAAGTACAGGCCCACAAAACGGGGCACGGCAGGCCTGAG TGA

FIGURE 167

MFLLLPFDSLIVNLLGISLTVLFTLLLVFIIVPAIFGVSFGIRKLYMKSLLKIFAWATLRME
RGAKEKNHQLYKPYTNGIIAKDPTSLEEEIKEIRRSGSSKALDNTPEFELSDIFYFCRKGME
TIMDDEVTKRFSAEELESWNLLSRTNYNFQYISLRLTVLWGLGVLIRYCFLLPLRIALAFTG
ISLLVVGTTVVGYLPNGRFKEFMSKHVHLMCYRICVRALTAIITYHDRENRPRNGGICVANH
TSPIDVIILASDGYYAMVGQVHGGLMGVIQRAMVKACPHVWFERSEVKDRHLVAKRLTEHVQ
DKSKLPILIFPEGTCINNTSVMMFKKGSFEIGATVYPVAIKYDPQFGDAFWNSSKYGMVTYL
LRMMTSWAIVCSVWYLPPMTREADEDAVQFANRVKSAIARQGGLVDLLWDGGLKREKVKDTF
KEEOOKLYSKMIVGNHKDRSRS

FIGURE 168

GCCCCTCGAAACCAGGACTCCAGCACCTCTGGTCCCGCCCTCACCCGGACCCCTGGCCCTCA CGTCTCCTCCAGGGATGGCGCTGGCGGCTTTGATGATCGCCCTCGGCAGCCTCGGCCTCCAC ACCTGGCAGGCCCAGGCTGTTCCCACCATCCTGCCCCTGGGCCTGGCTCCAGACACCTTTGA CGATACCTATGTGGGTTGTGCAGAGGAGGAGGAGGAGGCAGCCCCCTGCTAAAGGAGG AAATGGCCCACCATGCCTGCTGCGGGAATCCTGGGAGGCCCAGGAGACCTGGGAGGAC AAGCGTCGAGGGCTTACCTTGCCCCCTGGCTTCAAAGCCCAGAATGGAATAGCCATTATGGT CTACACCAACTCATCGAACACCTTGTACTGGGAGTTGAATCAGGCCGTGCGGACGGGCGGAG GCTCCCGGGAGCTCTACATGAGGCACTTTCCCTTCAAGGCCCTGCATTTCTACCTGATCCGG GCCCTGCAGCTGCGAGGCAGTGGGGGGCTGCAGCAGGGGACCTGGGGAGGTGGTGTTCCG AGGTGTGGGCAGCCTTCGCTTTGAACCCAAGAGGCTGGGGGACTCTGTCCGCTTGGGCCAGT TTGCCTCCAGCTCCCTGGATAAGGCAGTGGCCCACAGATTTGGGGAGAAGAGGCGGGGCTGT GTGTCTGCGCCAGGGGTGCAGCTAGGGTCACAATCTGAGGGGGCCTCCTCTCTGCCCCCCTG GAAGACTCTGCTCTTGGCCCCTGGAGAGTTCCAGCTCTCAGGGGTTGGGCCC**TGA**AAGTCCA ACATCTGCCACTTAGGAGCCCTGGGAACGGGTGACCTTCATATGACGAAGAGGCACCTCCAG CAGCCTTGAGAAGCAAGAACATGGTTCCGGACCCAGCCCTAGCAGCCTTCTCCCCAACCAGG ATGTTGGCCTGGGGAGGCCACAGCAGGGCTGAGGGAACTCTGCTATGTGATGGGGACTTCCT TGGAGTTTTATTGAGGTAGCTACGTGATTAAATGGTATTGCAGTGTGGA

FIGURE 169

MALAALMIALGSLGLHTWQAQAVPTILPLGLAPDTFDDTYVGCAEEMEEKAAPLLKEEMAHH ALLRESWEAAQETWEDKRRGLTLPPGFKAQNGIAIMVYTNSSNTLYWELNQAVRTGGGSREL YMRHFPFKALHFYLIRALQLLRGSGGCSRGPGEVVFRGVGSLRFEPKRLGDSVRLGQFASSS LDKAVAHRFGEKRRGCVSAPGVQLGSQSEGASSLPPWKTLLLAPGEFOLSGVGP

FIGURE 170

 $\tt GTGGCTTCATTTCAGTGGCTGACTTCCAGAGAGCAAT \\ \textbf{ATC} \\ \tt GCTGGTTCCCCAACATGCCTCA$ CCCTCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTG GTCGGTTCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGACTC TATTGTCTGGACCTTCAACACACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCA TAGTGACCCAAAATCGTAATAGGGAGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAG CTCAGCAAACTGAAGAAGAATGACTCAGGGATCTACTATGTGGGGATATACAGCTCATCACT CCAGCAGCCCTCCACCCAGGAGTACGTGCTGCATGTCTACGAGCCCTGTCAAAGCCTAAAG TCACCATGGGTCTGCAGAGCAATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATG GAACATGGGGAAGAGGATGTGATTTATACCTGGAAGGCCCTGGGGCAAGCAGCCAATGAGTC CCATAATGGGTCCATCCTCCCCATCTCCTGGAGATGGGGAGAAAGTGATATGACCTTCATCT GCGTTGCCAGGAACCCTGTCAGCAGAAACTTCTCAAGCCCCATCCTTGCCAGGAAGCTCTGT GAAGGTGCTGCTGATGACCCAGATTCCTCCATGGTCCTCCTGTGTCTCCTGTTGGTGCCCCT AGTACATTGAAGAGAGAGAGAGTGGACATTTGTCGGGAAACTCCTAACATATGCCCCCAT TCTGGAGAGACACAGAGTACGACAATCCCTCACACTAATAGAACAATCCTAAAGGAAGA TCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAAAGATGGAAAATCCCCACTCAC TGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAGAATGTTATCTAGACAGCAGTG CACTCCCCTAAGTCTCTGCTCA

FIGURE 171

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVT
IQPEGGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHV
YEHLSKPKVTMGLQSNKNGTCVTNLTCCMEHGEEDVIYTWKALGQAANESHNGSILPISWRW
GESDMTFICVARNPVSRNFSSPILARKLCEGAADDPDSSMVLLCLLLVPLLLSLFVLGLFLW
FLKRERQEEYIEEKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIP
KKMENPHSLLTMPDTPRLFAYENVI

FIGURE 172

CTGGTTCCCCAACATGCCTCACCCTCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCC TCTGGACCCGTGAAAGAGCTGGTCGGTTCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTC CAAAGTAAAGCAAGTTGACTCTATTGTCTGGACCTTCAACACACCCCTCTTGTCACCATAC AGCCAGAAGGGGGCACTATCATAGTGACCCAAAATCGTAATAGGGAGAGAGTAGACTTCCCA GATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAGAAGAATGACTCAGGGATCTACTATGT GGGGATATACAGCTCATCACTCCAGCAGCCCTCCACCCAGGAGTACGTGCTGCATGTCTACG AGCACCTGTCAAAGCCTAAAGTCACCATGGGTCTGCAGAGCAATAAGAATGGCACCTGTGTG ACCAATCTGACATGCTGCATGGAACATGGGGAAGAGGTGTGATTTATACCTGGAAGGCCCT GGGGCAAGCAGCCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTCCTGGAGATGGGGAG AAAGTGATATGACCTTCATCTGCGTTGCCAGGAACCCTGTCAGCAGAAACTTCTCAAGCCCC ATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCCTCCATGGTCCTCCT GTGTCTCCTGTTGGTGCCCCTCCTGCTCAGTCTCTTTGTACTGGGGCTATTTCTTTGGTTTC ACTCCTAACATATGCCCCCATTCTGGAGAGAACACAGAGTACGACAATCCCTCACACTAA TAGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAA AGATGGAAAATCCCCACTCACTGCTCACGATGCCAGACACACAAGGCTATTTGCCTATGAG

FIGURE 173

FIGURE 174

 $\label{thm:mkmlllclgltlvcvhaeeasstgrnfnvekingewhtiilasdkrekieehgnfrlfleq ihvlenslvlkvhtvrdeecselsmvadktekageysvtydgfntftipktdydnflmahli nekdgetfqlmglygrepdlssdikerfaqlceehglreniidlsnanrclqare$

FIGURE 175

FIGURE 176

MTCCEGWTSCNGFSLLVLLLLGVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMA
IPATTMSLTARKRACCNNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNA
NCEFSLKNISDIHPESFNLQWFFNDSCAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRL
IHFSVFLGLLLVGILEVLFGLSQIVIGFLGCLCGVSKRRSQIV

FIGURE 177

GTCGAATCCAAATCACTCATTGTGAAAGCTGAGCTCACAGCCGAATAAGCCACCATGAGGCT
GTCAGTGTGTCTCCTGATGGTCTCGCTGGCCCTTTGCTGCTACCAGGCCCATGCTCTTGTCT
GCCCAGCTGTTGCTTCTGAGATCACAGTCTTCTTATTCTTAAGTGACGCTGCGGTAAACCTC
CAAGTTGCCAAACTTAATCCACCTCCAGAAGCTCTTGCAGCCAAGTTGGAAGTGAAGCACTG
CACCGATCAGATATCTTTTAAGAAACGACTCTCATTGAAAAAGTCCTGGTGGAAATAGTGAA
AAAATGTGGTGTGTGACATGTAAAAATGCTCAACCTGGTTTCCAAAGTCTTTCAACGACACC
CTGATCTTCACTAAAAAATTGTAAAGGTTTCAACACGTTGCTTTAATAAATCACTTGCCCTGC

FIGURE 178

 ${\tt MRLSVCLLMVSLALCCYQAHALVCPAVASEITVFLFLSDAAVNLQVAKLNPPPEALAAKLEV}{}\\ {\tt KHCTDQISFKKRLSLKKSWWK}{}\\$

FIGURE 179

FIGURE 180

MERVTLALLLLAGLTALEANDPFANKDDPFYYDWKNLQLSGLICGGLLAIAGIAAVLSGKCK YKSSQKQHSPVPEKAIPLITPGSATTC

FIGURE 181

 ${\tt GGAGAAGAGGTTGTGTGGGACAAGCTGCTCCCGACAGAAGG{\textbf{ATG}}{\tt TCGCTGCTGAGCCTGCCCC}}$ TGGCTGGGCCTCAGACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGCTGGTTGTGGGCTC CTGGCTACTCGCCCGCATCCTGGCTTGGACCTATGCCTTCTATAACAACTGCCGCCGGCTCC AGTGTTTCCCACAGCCCCCAAAACGGAACTGGTTTTGGGGTCACCTGGGCCTGATCACTCCT ACAGAGGAGGGCTTGAAGGACTCGACCCAGATGTCGGCCACCTATTCCCAGGGCTTTACGGT ATGGCTGGGTCCCATCATCCCCTTCATCGTTTTATGCCACCCTGACACCATCCGGTCTATCA CCAATGCCTCAGCTGCCATTGCACCCAAGGATAATCTCTTCATCAGGTTCCTGAAGCCCTGG $\tt CTGGGAGAGGGATACTGCTGAGTGGGGGTGACAAGTGGAGCCGCCACCGTCGGATGCTGAC$ GCCCGCCTTCCATTTCAACATCCTGAAGTCCTATATAACGATCTTCAACAAGAGTGCAAACA TCATGCTTGACAAGTGGCAGCACCTGGCCTCAGAGGGCAGCAGTCGTCTGGACATGTTTGAG CACATCAGCCTCATGACCTTGGACAGTCTACAGAAATGCATCTTCAGCTTTGACAGCCATTG TCAGGAGAGCCCAGTGAATATTTGCCACCATCTTGGAGCTCAGTGCCCTTGTAGAGAAAA GAAGCCAGCATATCCTCCAGCACATGGACTTTCTGTATTACCTCTCCCATGACGGCGGCGC TTCCACAGGGCCTGCCGCCTGGTGCATGACTTCACAGACGCTGTCATCCGGGAGCGGCGTCG CACCCTCCCCACTCAGGGTATTGATGATTTTTTCAAAGACAAAGCCAAGTCCAAGACTTTGG ATTTCATTGATGTGCTTCTGCTGAGCAAGGATGAAGATGGGAAGGCATTGTCAGATGAGGAT ATAAGAGCAGAGGCTGACACCTTCATGTTTGGAGGCCATGACACCACGGCCAGTGGCCTCTC CTGGGTCCTGTACAACCTTGCGAGGCACCCAGAATACCAGGAGCGCTGCCGACAGGAGGTGC AAGAGCTTCTGAAGGACCGCGATCCTAAAGAGATTGAATGGGACGACCTGGCCCAGCTGCCC TTCCTGACCATGTGCGTGAAGGAGCCTGAGGTTACATCCCCCAGCTCCCTTCATCTCCCG ATGCTGCACCCAGGACATTGTTCTCCCAGATGGCCGAGTCATCCCCAAAGGCATTACCTGCC TCATCGATATTATAGGGGTCCATCACAACCCAACTGTGTGGCCGGATCCTGAGGTCTACGAC $\verb|CCCTTCCGCTTTGACCCAGAGAACAGCAAGGGGAGGTCACCTCTGGCTTTTATTCCTTTCTC|\\$ CGCAGGGCCCAGGAACTGCATCGGGCAGGCGTTCGCCATGGCGAGATGAAAGTGGTCCTGG CGTTGATGCTGCACCTTCCGGTTCCTGCCAGACCACACTGAGCCCCGCAGGAAGCTGGAA TTGATCATGCGCGCGGGGGGGGGCTTTGGCTGCGGGTGGAGCCCCTGAATGTAGGCTTGCA GTGACTTTCTGACCCATCCACCTGTTTTTTTGCAGATTGTCATGAATAAAACGGTGCTGTCAAA

FIGURE 182

MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLARILAWTYAFYNNCRRLQCFFQPPKRNWFWG
HLGLITPTEGLKDSTQMSATYSQGFTVWLGPIIPFIVLCHPDTIRSITNASAAIAPKDNLF
IRFLKPWLGEGILLSGGDKWSRHRRMLTPAFHFNILKSYITIFNKSANIMLDKWQHLASEGS
SRLDMFEHISLMTLDSLQKCIFSFDSHCQERPSEYIATILELSALVEKRSQHILQHMDFLYY
LSHDGRRFHRACRLVHDFTDAVIRERRRLPTQGIDDFFKDKAKSKTLDFIDVLLLSKDEDG
KALSDEDIRAEADTFMFGGHDTTASGLSWVLYNLARHPEYQERCRQEVQELLKDRDPKEIEW
DDLAQLPFLTMCVKESLRLHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPTVW
PDPEVYDPFRFDPENSKGRSPLAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHT
EPRRKLELIMRAEGGIWLRVEPLNYGLO

FIGURE 183

FIGURE 184

 $\label{eq:myklasccllftgflnpllslplldsreisfqlsaphedarltpeelerasllqilpemlga\\ \texttt{ERGDILRKADSSTNIFNPRGNLRKFQDFSGQDPNILLSHLLARIWKPYKKRETPDCFWKYCV}$

FIGURE 185

GAACATTTTTAGTTCCCAAGGAATGTACATCAGCCCCACGGAAGCTAGGCCACCTCTGGGAT
GGGGTTGCTGGTTTAAAACAAACGCCAGTCATCTATATAAGGACCTGACAGCCACCAGGCA
CCACCTCCGCCAGGAACTGCAGGCCCACCTGTCTGCAACCCAGCTGAGGCCATGCCCTCCCC
AGGGACCGTCTGCAGCCTCCTCCTCCTCGGCATGCTCTGGCCTGGCCATGGCCATGGCCAGGCT
CCAGCTTCCTGAGCCCTGAACACCAGAGAGTCCAGCAGAGAAAGGAGTCGAAGAAGCCACCA
GCCAAGCTGCAGCCCCGAGCTCTAGCAGGCTGGCCCCGGAAGATGGAGGTCAAGCAGA
AGGGGCAGAGGATGAACTGGAAGTCCGGTTCAACGCCCCCTTTGATGTTTGGAATCAAGCTGT
CAGGGGTTCAGTACCAGCAGCACAGCCCGGAAGATTTCTTCAGGACATCCTCTGG
GAAGAGGCCAAAGAGGCCCCAGCCGACAAGTGATCCTCTCTC
AAGTTTAGAAGCGCTCATCTGGCTTTTCGCTTCTTCGCAGCAACTCCCACGACTGTTGTA
CAAGCTCAGGAGGCGAATAAATGTTCAAACTGTA

FIGURE 186

 ${\tt MPSPGTVCSLLLLGMLWLDLAMAGSSFLSPEHQRVQQRKESKKPPAKLQPRALAGWLRPEDG} $$ {\tt GQAEGAEDELEVRFNAPFDVGIKLSGVQYQQHSQALGKFLQDILWEEAKEAPADKO} $$$

FIGURE 187

CGGCCACAGCTGGCATGCTCTGATCGCCATCCTGCTGTATGTCCTCGTCCAGTACCTC $\tt GTGAACCCCGGGGTGCTCCGCACGGACCCCAGATGTCAAGAAT \textbf{ATG} AACACGTGGCTGCTGT$ TCCTCCCCTGTTCCCGGTGCAGGTGCAGACCCTGATAGTCGTGATCATCGGGATGCTCGTG CTCCTGCTGGACTTTCTTGGCTTGGTGCACCTGGGCCAGCTGCTCATCTTCCACATCTACCT GAGTATGTCCCCCACCCTAAGCCCCCGATCCCCCCAAGGCTGGTGGTCAGAGCTGCTCATC TTACACCTCTACTTGAGTATGTCCCTAACCCTGAGCCCCCACGCCTGGGGCCAGAGTCTTT GTCCCCCGTGTGCGCATGTGTTCAGGGTCAGCCTCTCCCAGAAGTGAGATCATGGACAAAAA GGGCAAATCACAGGAAGAAATTAAATCCATGAGGACCCAGCAGGCCCAGCAAGAAGCTGAAC GACAATGGAATGGAATCTATTAGGCAAGAACAGGACATTATGAAATAAGGACAGGTGGACTT AACAACTGAAGCGAGAGCTGTGGTCTTGCTTGGTCTCACAGTGGGCACAGCGGTAGGCGGTC AGTCATGTTGCTGAACGACGGAGGGTAAACTCCCCAGCCCCAAGAAAACCTGTGTTGGAAGT AACAACAACCTCCCTGCTCCTGGCACCAGCCGTTTTGGTCATGGTGGGCCAGCTGCAAAGCG TCTTCCATTCTCTGGGCAGTGGTGGCCCCGAGGCTGTGGCCTCTCAGGGGGTTTCTGTGGAC ${\tt ACGGGCAGCAGAGTGTGTCCAGGCCAGCCCCCAAGAATGCCCTGCTCCTGACAGCTTGGCCA}$ ACCCCTGGTCAGGGCAGAGGGAGTTGGGTGGGTCAGGCTCTGGGCTCACCTCCATCTCCAGA GCATCCCCTGCCTGCAGTTGTGGCAAGAACGCCCAGCTCAGAATGAACACCCCCACCAAGA GCCTCCTTGTTCATAACCACAGGTTACCCTACAAACCACTGTCCCCACACAACCCTGGGGAT GTTTTAAAACACACCTCTAACGCATATCTTACAGTCACTGTTGTCTTGCCTGAGGGTTGA ATTTTTTTAATGAAAGTGCAATGAAAATCACTGGATTAAATCCTACGGACACAGAGCTGAA

FIGURE 188

MNTWLLFLPLFPVQVQTLIVVIIGMLVLLLDFLGLVHLGQLLIFHIYLSMSPTLSPRSPQGW VVRAAHLTPLLEYVPNPEPPTPGARVFVPRVRMCSGSASPRSEIMDKKGKSQEEIKSMRTQQ AQQEAELTPRPAGVVPGA

FIGURE 189

 ${\tt GGAGTGCAGATGGCATCCTTCGGTTCTTCCAGACAAGCTGCAAGACGCTGACC} {\bf \underline{ATG}} {\tt GCCAAG}$ ATGGAGCTCTCGAAGGCCTTCTCTGGCCAGCGGACACTCCTATCTGCCATCCTCAGCATGCT ATCACTCAGCTTCTCCACAACATCCCTGCTCAGCAACTACTGGTTTGTGGGCACACAGAAGG TGCCCAAGCCCTGTGCGAGAAAGGTCTGGCAGCCAAGTGCTTTGACATGCCAGTGTCCCTG CCGGTTCTCCTTCCGGAGCTTCCGGAGTGGCATGTGGCTATCCTGTGAGGAAACTGTGGAAG AACCAGGGGAGAGGTGCCGAAGTTTCATTGAACTTACACCACCAGCCAAGAGAGGTGAGAAA GGACTACTGGAATTTGCCACGTTGCAAGGCCCATGTCACCCCACTCTCCGATTTGGAGGGAA GCGGTTGATGGAGAAGGCTTCCCTCCCCTCCCTTGGGGCTTTGTGGCAAAAATCCTA TGGTTATCCCTGGGAACGCAGATCACCTACATCGGACTTCAATTCATCAGCTTCCTCCTGCT ACTAACAGACTTGCTACTCACTGGGAACCCTGCCTGTGGGCTCAAACTGAGCGCCTTTGCTG CTGTTTCCTCTGTCAGGTCTCCTGGGGATGGTGGCCCACATGATGTATTCACAAGTC TTCCAAGCGACTGTCAACTTGGGTCCAGAAGACTGGAGACCACATGTTTGGAATTATGGCTG GGCCTTCTACATGGCCTGGCTCTCCTTCACCTGCTGCATGGCGTCGGCTGTCACCACCTTCA ACACGTACACCAGGATGCTGGAGTTCAAGTGCAAGCATAGTAAGAGCTTCAAGGAAAAC CCGAACTGCCTACCACATCACCATCAGTGTTTCCCTCGGCGGCTGTCAAGTGCAGCCCCCAC CGTGGGTCCTTTGACCAGCTACCACCAGTATCATAATCAGCCCATCCACTCTGTCTCTGAGG AAAGAAGCAGTTAGGTCATCTGTAGAGGAAGAGCAGTGTTAGGAGTTAAGCGGGTTTGGGGA GTAGGCTTGAGCCCTACCTTACACGTCTGCTGATTATCAACATGTGCTTAAGCCAACATCCG TCTCTTGAGCATGGTTTTTAGAGGCTACGAATAAGGCTATGAATAAGGGTTATCTTTAAGTC CTAAGGGATTCCTGGGTGCCACTGCTCTTTTCCTCTACAGCTCCATCTTGTTTCACCCAC CCCACATCTCACACATCCAGAATTCCCTTCTTTACTGATAGTTTCTGTGCCAGGTTCTGGGC TAAACCATGGAGATAAAAGAAGAGTAAAATACACTTCCCGACCTTAAGGATCTGAAA

FIGURE 190

MAKMELSKAFSGQRTLLSAILSMLSLSFSTTSLLSNYWFVGTQKVPKPLCEKGLAAKCFDMP VSLDGDTNTSTQEVVQYNWETGDDRFSFRSFRSGMWLSCEETVEEPGERCRSFIELTPPAKR GEKGLLEFATLQGPCHPTLRFGGKRLMEKASLPSPPLGLCGKNPMVIPGNADHLHRTSIHQL PPATNRLATHWEPCLWAQTERLCCCFLCPVRSPGDGGPHDVFTSLPSDCQLGSRRLETTCLE LWLGLLHGLALLHLLHGVGCHHLQHVHQDGAGVQVQA

FIGURE 191

 $\texttt{AACTGGAAGGAAAGAAAGGTCAGCTTTGGCCCAG} \underline{\textbf{ATG}} \texttt{TGGTTACCCCTTGGTCTCCTG}$ TCTTTATGTCTTTCCTCTTTCTATTCTGTCATCTCCCTCACTTAAGTCTCAGGCCTGTCA GCAGCTCCTGTGGACATTGCCATCCCCTCTGGTAGCCTTCAGAGCAAACAGGACAACCTATG TTATGGATGTTTCCACCAACCAGGGTAGTGGCATGGAGCACCGTAACCATCTGTGCTTCTGT GATCTCTATGACAGAGCCACTTCTCCACCTCTGAAATGTTCCCTGCTCTGAAATCTGGCATG GTCTGTTCTCTTATTGTCAACCTCAGCACAACAGGCTGGCGCCAATGGCATTACAGAGAAAG CAATCTGTGTGGCTAGTGGGCAGATTACCATGCAAGCCCCAGGAGAAATGGAGGAGCTTTGT AGCCACCTCCCTGTCAGCCAGTATTAACATGTCCCCTTCCCCCTGCCCCGCCGTAGATTCAG GACATTCGCCCCTGTGTGCCACCAAACCAGGACTTTCCCCTTGGCTTGGCATCCCTGGCTCT CTCCTGGTACCCAGCAAGACGTCTGTTCCAGGGCAGTGTAGCATCTTTCAAGCTCCGTTACT ATGGCGATGGCCATGATGTTACAATCCCACTTGCCTGAATAATCAAGTGGGAAGGGGAAGCA GAGGGAAATGGGGCCATGTGAATGCAGCTGCTCTGTTCTCCCTACCCTGAGGAAAAACCAAA TGTTGAAGGGCACAAGAATGTAGCTGGAGAAGATTGATGAAAGTGCAGGTGTGTAAGGAA ATAGAACAGTCTGCTGGGAGTCAGACCTGGAATTCTGATTCCAAACTCTTTATTACTTTGGG AAGTCACTCAGCCTCCCCGTAGCCATCTCCAGGGTGACGGAACCCAGTGTATTACCTGCTGG AACCAAGGAAACTAACAATGTAGGTTACTAGTGAATACCCCAATGGTTTCTCCAATTATGCC CATGCCACCAAAACAATAAAACAAAATTCTCTAACACTGAAA

FIGURE 192

 ${\tt MWLPLGLLSLCLSPLPILSSPSLKSQACQQLLWTLPSPLVAFRANRTTYVMDVSTNQGSGME}\\ {\tt HRNHLCFCDLYDRATSPPLKCSLL}$

FIGURE 193

GTAGCGCGTCTTGGGTCTCCCGGCTGCCGCTGCCGCCGCCCCCGGGTCGTGGAGCCAGGAGCGACGTCA CCGCCATGCCAGGCATCAAAGCTTTGATTAGTTTGTCCTTTGGAGGAGCAATCGGACTGATGTTTTTGATGCTT ATACTGCATAGCAAGAAGATTAGTGGATGATACAGATGCTATGAGTAACGCTTGTAAGGAACTTGCCATCTTTC TTACAACGGCATTGTCGTGTCAGCTTTTGGACTCCCTATTGTATTTGCCAGAGCACATCTGATTGAGTGGGGA GCTTGTGCACTTGTTCTCACAGGAAACACAGTCATCTTTGCAACTATACTAGGCTTTTTCTTGGTCTTTGGAAG CAATGACGACTTCAGCTGGCAGCAGTGGTGAAAAGAAATTACTGAACTATTGTCAAATGGACTTCCTGTCATTT $\tt GTTGGCCATTCACGCACACAGGAGATGGGCAGTTAATGCTGAATGGTATAGCAAGCCTCTTGGGGGTATTTTA$ GGTGCTCCCTTCTCACTTTTATTGTAAGCATACTATTTTCACAGAGACTTGCTGAAGGATTAAAAGGATTTTCT CTTTTGGAAAAGCTTGACTGATTTCACACTTATCTATAGTATGCTTTTTGTGGTGTCCTGCTGAATTTAAATAT TTATGTGTTTTCCTGTTAGGTTGATTTTTTTTGGAATCAATATGCAATGTTAAACACTTTTTTAATGTAATCA TTTGCATTGGTTAGGAATTCAGAATTCCGCCGGCTCTATTACTGGTCAAGTACATCTTTTCTCTTAAAATTATT CAGACATACAGACGGTTGGCATACGTTATAGACTGTATACTCAGTGCAAATATAGCTGCATTTATACCTCAGAG GGGCCAAGTGTTAATGCCCATGCCCTCCGTTAAGGGTTGTTGGTTTTACTGGTAGACAGATGTTTTGTGGATTG GGGAAGAAATGACATTGAAATTCCAGTTTTTGAATCCTGTTTCTATTTATAAGTGAAATTTGTGATCTCCTATC AACCTTTCATGTTTTACCCTGTTAAAATGGACATACATGGAACCACTACTGATGAGGGACAGTTGTATGTTTGC ${\tt CAGAGTGCCCCTCCCTGCAAGGCCTTGCCATGATTAACAAGTAACTTGTTAGTCTTACAGATAATTCATGCA}$ TTAACAGTTTAAGATTTAGACCATGGTAATAGTAGTTCTTATTCTCTAAGGTTATATCATATGTAATTTAAAAG TATTTTTAAGACAAGTTTCCTGTATACCTCTGAACTGTTTTGATTTTGAGTTCATCATGATAGATCTGCTGTTT CCTTATAAAAGGCATTTGTTGTGTGAGTTAATGCAAAGTAGCCAAGTCCAGCTATATAGCAGCTTCAGAAACAT ACCTGACCAAAAAATTCCCAGTAACCAGGCATGATCAATTTATAGTGGTCGTTTACATCTAATAATTATCAGGA TTTATGAAGTTTATTCTCAAGAAAATGGGAATAAATTTGGGATTTGTTCAGCTTTTTTACTAAAGATGCCTAA AGCCACAGGTTTTATTGCCTAACTTAAGCCATGACTTTAGATATGAGATGACGGGAAGCAGGACGAAATATCG GCGTGTGGCTGGAGCCTTCCCACTGGAGGCTGAAAGTGGCTTGTGGTATTATATGTTCAGATTTCAAGAGGAA GGTGCAGGTACACATGAGTTAGAGAGCTGGTGAGACAGTTGGGAACTCTTTGTGCTTGTGATCTACTGGACTTT TTTTTGCAGGAAGTGCATTCTCTGGTCCTTCCCTATTTTCTGTTCTGGATGTCAGTGCAGTGCACTGCTACTG TTTTATCCACTTGGCCACAGACTTTTCTAACAGCTGCGTATTATTTCTATATACTAATTGCATTGGCAGCATT GTGTCTTTGACCTTGTATACTAGCTTGACATAGTGCTGTCTCTGATTTCTAGGCTAGTTACTTGAGATATGAAT AGATTTTAAATATCTATTTTAAAAAAAAAA

FIGURE 194

MAGIKALISLSFGGAIGLMFLMLGCALPIYNKYWPLFVLFFYILSPIPYCIARRLVDDTDAM SNACKELAIFLTTGIVVSAFGLPIVFARAHLIEWGACALVLTGNTVIFATILGFFLVFGSND DFSWQOW

FIGURE 195

FIGURE 196

MDFILLGLCYWLLRRPSGVVLCLLGACFQMLPAAPSGCPQLCRCEGRLLYCEALNLTEAPH
NLSGLLGLSLRYNSLSELRAGQFTGLMQLTWLYLDHNHICSVQGDAFQKLRRVKELTLSSNQ
ITQLPNTTFRPMPNLRSVDLSYNKLQALAPDLFHGLRKLTTLHMRANAIQFVPVRIFQDCRS
LKFLDIGYNQLKSLARNSFAGLFKLTELHLEHNDLVKVNFAHFPRLISLHSLCLRRNKVAIV
VSSLDWVWNLEKMDLSGNEIEYMEPHVFETVPHLQSLQLDSNRLTYIEPRILNSWKSLTSIT
LAGNLWDCGRNVCALASWLSNFQGRYDGNLQCASPEYAQGEDVLDAVYAFHLCEDGAEPTSG
HLLSAVTNRSDLGPPASSATTLADGGEGQHDGTFEPATVALPGGEHAENAVQIHKVVTGTMA
LIFSFLIVVLVLYVSWKCFPASLRQLRQCFVTQRRKQKQKQTMHQMAAMSAQEYYVDYKPNH
IEGALVIINEYGSCTCHQQPARECEV

FIGURE 197

FIGURE 198

MGVLGRVLLWLQLCALTQAVSKLWVPNTDFDVAANWSQNRTPCAGGAVEFPADKMVSVLVQE GHAVSDMLLPLDGELVLASGAGFGVSDVGSHLDCGAGEPAVFRDSDRFSWHDPHLWRSGDEA PGLFFVDAERVPCRHDDVFFPPSASFRVGLGPGASPVRVRSISALGRTFTRDEDLAVFLASR AGRLRFHGPGALSVGPEDCADPSGCVCGNAEAQPWICAALLQP

FIGURE 199

ATCGCATCAATTGGGAGTACCATCTTCCTCATGGGACCAGTGAAACAGCTGAAGCGAATGTT
TGAGCCTACTCGTTTGATTGCAACTATCATGGTGCTGTTGTTTTTGCACTTACCCTGTGTT
CTGCCTTTTGGTGGCATAACAAGGGACTTGCACTTATCTTCTGCATTTTGCAGTCTTTTGCA
TTGACGTGGTACAGCCTTTCCTTCATACCATTTTGCAAGGATGCTGTGAAGAAGTGTTTTTGC
CGTGTGTCTTGCATAATTCATGGCCAGTTTTATGAAGCTTTTGGAAGAACTATGGACAGAAG
CTGGTGGACAGTTTTGTAACTATCTTCGAAACCTCTGCTTTACAGACATGTGCCTTTTATCT
TGCAGCAATGTTGCTTGTGATTCGAACATTTGAGGGTTACTTTTGGAAGCAACAATACAT
TCTCGAACCTGAATGCCACAGGATGAGAAGTGGGTTCTTATCTTTGTGAGTGGAA
TCTTCCTCATGTACCTGTTTCCTCTCTGGATGTTGCCACTGAATTCCCATGAATACAAAA

FIGURE 200

 ${\tt MGPVKQLKRMFEPTRLIATIMVLLCFALTLCSAFWWHNKGLALIFCILQSLALTWYSLSFIP} \\ {\tt FARDAVKKCFAVCLA}$

FIGURE 201

CCGAGGGAGTCTCCTCCAGACCTCCCTCCCGTTGCTCCAAACTAATACGGACTGAACGGATCGCTGCGAGGGT $\texttt{AACTGATCAAGTACTTTGAAA} \underline{\textbf{ATG}} \texttt{ACTTCGAAATTTATCTTGGTGTCCTTCATACTTGCTGCACTGAGTCTTTC}$ AACCACCTTTTCTCCCAACTAGACCAGCAAAAGGTTCTACTAGTTTCTTTTGATGGATTCCGTTGGGATTACT TATATAAAGTTCCAACGCCCCATTTTCATTATATTATGAAATATGGTGTTCACGTGAAGCAAGTTACTAATGTT TTTATTACAAAAACCTACCCTAACCATTATACTTTGGTAACTGGCCTCTTTGCAGAGAATCATGGGATTGTTGC AAATGATATGTTTGATCCTATTCGGAACAAATCTTTCTCCTTGGATCACATGAATATTTATGATTCCAAGTTTT GGGAAGAGCGACCCAATATGGATCACAAACCAGAGGGCAGGACATACTAGTGGTGCAGCCATGTGGCCCGGA ACAGATGTAAAAATACATAAGCGCTTTCCTACTCATTACATGCCTTACAATGAGTCAGTTTCATTTGAAGATAG ${\tt AGTTGCCAAAATTGTTGAATGGTTTACGTCAAAAGAGCCCATAAATCTTGGTCTTCTCTATTGGGAAGACCCTG}$ ATGACATGGGCCACCATTTGGGACCTGACAGTCCGCTCATGGGGCCTGTCATTTCAGATATTGACAAGAAGTTA GGATATCTCATACAAATGCTGAAAAAGGCAAAGTTGTGGAACATCTGAACCTAATCATCACAAGTGATCATGG AATGACGCAGTGCTCTGAGGAAAGGTTAATAGAACTTGACCAGTACCTGGATAAAGACCACTATACCCTGATTG ATCAATCTCCAGTAGCAGCCATCTTGCCAAAAGAAGGTAAATTTGATGAAGCTCTATGAAGCACTAACTCACGCT CATCCTAATCTTACTGTTTACAAAAAAGAAGACGTTCCAGAAAGGTGGCATTACAAATACAACAGTCGAATTCA ACCAATCATAGCAGTGGCTGATGAAGGGTGGCACATTTTACAGAATAAGTCAGATGACTTTCTGTTAGGCAACC TCAAAAGAAGCCATGAACTCCACAGATTTGTACCCACTACTATGCCACCTCCTCAATATCACTGCCATGCCACA CAATGGATCATTCTGGAATGTCCAGGATCTGCTCAATTCAGCAATGCCAAGGGTGGTCCCTTATACACAGAGTA CTATACTCCTCCCTGGTAGTGTTAAACCAGCAGAATATGACCAAGAGGGGTCATACCCTTATTTCATAGGGGTC TCTCTTGGCAGCATTATAGTGATTGTATTTTTTTTTTTATTAAGCATTTAATTCACAGTCAAATACCTGC $\tt CTTACAAGATATGCATGCTGAAATAGCTCAACCATTATTACAAGCC\underline{TAA}TGTTACTTTGAAGTGGATTTGCATA$ TTGAAGTGGAGATTCCATAATTATGTCAGTGTTTAAAGGTTTCAAATTCTGGGAAACCAGTTCCAAACATCTGC ATCCTGCTTTATTTGGACTTGGCGCAGATAATGTATATTTTAGCAACTTTGCACTATGTAAAGTACCTTATAT ATTGCACTTTAAATTTCTCTCTGATGGGTACTTTAATTTGAAATGCACTTTATGGACAGTTATGTCTTATAAC TTGATTGAAAATGACAACTTTTTGCACCCATGTCACAGAATACTTGTTACGCATTGTTCAAACTGAAGGAAATT TCTAATAATCCCGAATAATGAACATAGAAATCTATCTCCATAAATTGAGAGAAGAAGAAGAAGGTGATAAGTGTTGA AAATTAAATGTGATAACCTTTGAACCTTGAATTTTGGAGATGTATTCCCAACAGCAGAATGCAACTGTGGGCAT TTCTTGTCTTATTTCTTCCAGAGAACGTGGTTTTCATTTTTTCCCTCAAAAGAGAGTCAAATACTGACAG ATTCGTTCTAAATATTGTTTCTGTCATAAAATTATTGTGATTTCCTGATGAGTCATATTACTGTGATTTTCA TAATAATGAAGACACCATGAATATACTTTTCTTCTATATAGTTCAGCAATGGCCTGAATAGAAGCAACCAGGCA AAATCAAATTGGATAAAAAAAAAAAAAAAAAAAA

FIGURE 202

MTSKFILVSFILAALSLSTTFSLQLDQQKVLLVSFDGFRWDYLYKVPTPHFHYIMKYGVHVK
QVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPIRNKSFSLDHMNIYDSKFWEEATPIW
ITNQRAGHTSGAAMWPGTDVKIHKRFPTHYMPYNESVSFEDRVAKIVEWFTSKEPINLGLLY
WEDPDDMGHHLGPDSPLMGPVISDIDKKLGYLIQMLKKAKLWNTLNLIITSDHGMTQCSEER
LIELDQYLDKDHYTLIDQSPVAAILPKEGKFDEVYEALTHAHPNLTVYKKEDVPERWHYKYN
SRIQPIIAVADEGWHILQNKSDDFLLGNHGYDNALADMHPIFLAHGPAFRKNFSKEAMNSTD
LYPLLCHLLNITAMPHNGSFWNVQDLLNSAMPRVVPYTQSTILLPGSVKPAEYDQEGSYPYF
IGVSLGSIIVIVFFVIFIKHLIHSQIPALQDMHAEIAOPLLOA

Signal Peptide:

amino acids 1-22

Transmembrane Domain:

amino acids 429-452

N-glycosylation sites:

amino acids 101-104, 158-161, 292-295, 329-332, 362-365, 369-372, 382-385, 389-392

Somatomedin B Domain:

amino acids 69-85

Sulfatase protein Region:

amino acids 212-241

FIGURE 203

GGATTTTTGTGATCCGCGATTCGCTCCCACGGGCGGGACCTTTGTAACTGCGGGAGGCCCAG AGAGAGGCCAAGCCCCTTGCCTTGGGTCACACAGCCAAAGGAGGCAGAGCCAGAACTCACAA AAGGTGGCTCCCGCTGAGAGGATGAGCAAGTTCTTAAGGCACTTCACGGTCGTGGGAGACGA AGCAGCCACCACCACCAGTCTCAGGCGAGGGAAGGCAGAGCTGCAGCCCTGACGTTGCC CCTGCCCCTGGCCCCGCACCCAGGGCCCCCCTTGACTTCAGGGGCATGTTGAGGAAACTGTT CAGCTCCCACAGGTTTCAGGTCATCATCTGCTTGGTGGTTCTGGATGCCCTCCTGGTGC TTGCTGAGCTCATCCTGGACCTGAAGATCATCCAGCCCGACAAGAATAACTATGCTGCCATG ATTTGTCTTCCGCCTGAGTTCTTTCACCACAAGTTTGAGATCCTGGATGCCCGTCGTGGTGG $\tt TGGTCTCATTCATCCTGGACATTGTCCTCCTGTTCCAGGAGCACCAGTTTGAGGCTCTGGGC$ $\tt CTGCTGATTCTGCTCCGGCTGTGGCGGGTGGCCCGGATCATCAATGGGATTATCATCTCAGT$ TAAGACACGTTCAGAACGGCAACTCTTAAGGTTAAAACAGATGAATGTACAATTGGCCGCCA ${\tt AGATTCAACACCTTGAGTTCAGCTGCTCTGAGAAGCCCCTGGAC{\color{red}{\bf TGA}}{\tt TGAGTTTGCTGTATC}}$ AACCTGTAAGGAGAAGCTCTCTCCGGATGGCTATGGGAATGAAAGAATCCGACTTCTACTCT CAGGCTGGCATGTTCACTGGGCTGTTTACGACAGAGAACCTGACAGTCACTGGCCAGTTA TCACTTCAGATTACAAATCACACAGAGCATCTGCCTGTTTTCAATCACAAGAGAACAAAACC AAAATCTATAAAGATATTCTGAAAATATGACAGAATTTGACAAATAAAAGCATAAACGTGTA

FIGURE 204

MATWDEKAVTRRAKVAPAERMSKFLRHFTVVGDDYHAWNINYKKWENEEEEEEEEQPPPTPV SGEEGRAAAPDVAPAPGPAPRAPLDFRGMLRKLFSSHRFQVIIICLVVLDALLVLAELILDL KIIQPDKNNYAAMVFHYMSITILVFFMMEIIFKLFVFRLSSFTTSLRSWMPVVVVVSFILDI VLLFQEHQFEALGLLILLRLWRVARIINGIIISVKTRSERQLLRLKQMNVQLAAKIQHLEFS CSEKPLD

FIGURE 205

CGGCTCGAGCTCGAGCCGAATCGGCTCGAGGGGCAGTGGAGCACCCAGCAGGCCGCCAACAT CTCTGTCTGTGCCTGTACGTGCCGGTCATCGGGGAAGCCCAGACCGAGTTCCAGTACTTTGAGCCGAAGGGGCTCCCTGCCGAGCTGAAGTCCATTTTCAAGCTCAGTGTCTTCATCCCCTCC CAGGAATTCTCCACCTACCGCCAGTGGAAGCAGAAAATTGTACAAGCTGGAGATAAGGACCT TGATGGGCAGCTAGACTTTGAAGAATTTGTCCATTATCTCCAAGATCATGAGAAGAAGCTGA GGCTGGTGTTTAAGATTTTGGACAAAAAGAATGATGGACGCATTGACGCGCAGGAGATCATG TTGTTGGTAGTGACCAGGAGACTCTGAGGATTCACGAGAGGCTTGTGGCAGGGTCCTTGGCA GGGGCCATCGCCCAGAGCAGCATCTACCCAATGGAGGTCCTGAAGACCCGGATGGCGCTGCG GAAGACAGGCCAGTACTCAGGAATGCTGGACTGCGCCAGGAGGAGGCGGG TGGCCGCCTTCTACAAAGGCTATGTCCCCAACATGCTGGGCATCATCCCCTATGCCGGCATC GACCTTGCAGTCTACGACACCTCAAGAATGCCTGGCTGCAGCACTATTCCAGTGAACAGCGC GGACCCCGGCTGTTTTGTGCTCCTGGCTGCTGCGCACATGTCCAGTACCTGTGGCCAGCTG CCAGCTACCCCCTGGCCCTAGTCAGGACCCGGATGCAGCCTCTATTGAGGGCGCT CCGGAGGTGACCATGAGCAGCCTCTTCAAACATATCCTGCGGACCGAGGGGGCCTTCGGGCT GTACAGGGGGCCCCCAACTTCATGAAGGTCATCCCAGCTGTGAGCATCAGCTACGTGG AGCGAAGACCACAGGCATTCCTTAGGGTCCAGGGTCAGCAGGCTCCGGGCTCACATGTGTAA GGACAGGACATTTTCTCCAGTGCCTGCCAATAGTGAGCTTGGAGCCTGGAGGCCGGCTTAGT TCTTCCATTTCACCCTTGCAGCCAGCTGTTGGCCACGGCCCTGCCCTCTGGTCTGCCGTGC TCCCCACTGTGGCATGAGGGCAGTGGAGCACCATGTTTGAGGGCGAAGGGCAGAGCGTTTGT GTGTTCTGGGGAGGGAAGGAAAGGTGTTGGAGGCCTTAATTATGGACTGTTGGGAAAAGGG TTTTGTCCAGAAGGACAAGCCGGACAAATGAGCGACTTCTGTGCTTCCAGAGGAAGACGAGG GAGCAGGAGCTTGGCTGACTGCTCACAGTCTGTTCTGACGCCCTGGGGGTTCCTGTCCAACC CCAGCAGGGGCGCAGCGGGCCCACCACATTCCACTTGTTCACTGCTTGGAACCTATTT AAGCCCGCCCAGTGGGATGGGAGGAGGAGGAGGAGGGGGCCTTGGGCCGCTGCAGTCACAT

FIGURE 206

MLCLCLYVPVIGEAQTEFQYFESKGLPAELKSIFKLSVFIPSQEFSTYRQWKQKIVQAGDKD
LDGQLDFEEFVHYLQDHEKKLRLVFKILDKKNDGRIDAQEIMQSLRDLGVKISEQQAEKILK
SMDKNGTMTIDWNEWRDYHLLHPVENIPEIILYWKHSTIFDVGENLTVPDEFTVEERQTGMW
WRHLVAGGGAGAVSRTCTAPLDRLKVLMQVHASRSNNMGIVGGFTQMIREGGARSLWRGNGI
NVLKIAPESAIKFMAYEQIKRLVGSDQETLRIHERLVAGSLAGAIAQSSIYPMEVLKTRMAL
RKTGQYSGMLDCARRILAREGVAAFYKGYVPNMLGIIPYAGIDLAVYETLKNAWLQHYAVNS
ADPGVFVLLACGTMSSTCGQLASYPLALVRTRMQAQASIEGAPEVTMSSLFKHILRTEGAFG
LYRGLAPNFMKVIPAVSISYVVYENLKITLGVQSR

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 284-304, 339-360, 376-394

Mitochondrial energy transfer proteins signature.

amino acids 206-215, 300-309

N-glycosylation site.

amino acids 129-133, 169-173

Elongation Factor-hand calcium-binding protein.

amino acids 54-73, 85-104, 121-140

FIGURE 207

GGAAGGCAGCGCAGCTCCACTCAGCCAGTACCCAGATACGCTGGGAACCTTCCCCAGCCAT CAATTGCACTCATCATTGGCTTTGGTATTTCAGGGAGACACTCCATCACAGTCACTGTC GCCTCAGCTGGGAACATTGGGGAGGATGGAATCCTGAGCTGCACTTTTGAACCTGACATCAA ACTTTCTGATATCGTGATACAATGGCTGAAGGAAGGTGTTTTAGGCTTGGTCCATGAGTTCA AAGAAGGCAAAGATGAGCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTTT GCTGATCAAGTGATAGTTGGCAATGCCTCTTTGCGGCTGAAAAACGTGCAACTCACAGATGC TGGCACCTACAAATGTTATATCATCACTTCTAAAGGCAAGGGGAATGCTAACCTTGAGTATA AAACTGGAGCCTTCAGCATGCCGGAAGTGAATGTGGACTATAATGCCAGCTCAGAGACCTTG CGGTGTGAGGCTCCCCGATGGTTCCCCCAGCCCACAGTGGTCTGGGCATCCCAAGTTGACCA GGGAGCCAACTTCTCGGAAGTCTCCAATACCAGCTTTGAGCTGAACTCTGAGAATGTGACCA TGAAGGTTGTGTCTGTGCTCTACAATGTTACGATCAACACACATACTCCTGTATGATTGAA AATGACATTGCCAAAGCAACAGGGGATATCAAAGTGACAGAATCGGAGATCAAAAGGCGGAG GGGCACTTCTGCCTCTCAGCCCTTACCTGATGCTAAAATAATGTGCCTTGGCCACAAAAAAG CATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTTCACCACCAGATATGACCTAG TTTTATATTTCTGGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTGAGCAAACAAGAGCA GACATATTAGAAGTTGGGAAAATAATTCATGTGAACTAGACAAGTGTGTTAAGAGTGATAAG GGGGAGTGAGAGGACAGGATAGTGCATGTTCTTTGTCTCTGAATTTTTAGTTATATGTGCTG TAATGTTGCTCTGAGGAAGCCCCTGGAAAGTCTATCCCAACATATCCACATCTTATATTCCA CAAATTAAGCTGTAGTATGTACCCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAGG GGCGGCTGCATTTTAGTAATGGGTCAAATGATTCACTTTTTATGATGCTTCCAAAGGTGCCT TGGCTTCTCTCCCAACTGACAAATGCCAAAGTTGAGAAAAATGATCATAATTTTAGCATAA ACAGAGCAGTCGGGGACACCGATTTTATAAATAAACTGAGCACCTTCTTTTTAAACAAAAAA

FIGURE 208

MASLGQILFWSIISIIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDI KLSDIVIQWLKEGVLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTD AGTYKCYIITSKGKGNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFPQPTVVWASQVD QGANFSEVSNTSFELNSENVTMKVVSVLYNVTINNTYSCMIENDIAKATGDIKVTESEIKRR SHLQLLNSKASLCVSSFFAISWALLPLSPYLMLK

FIGURE 209

GAATTTGTAGAAGACAGCGGCGTTGCCATGCGGCGCGTCTCTGGGGCAGGTGTTGGCTCTGGT GCTGGTGGCCGCTCTGTGGGGTGGCACGCAGCCGCTGCTGAAGCGGGCCTCCGCCGGCCTGC AGCGGGTTCATGAGCCGACCTGGGCCCAGCAGTTGCTACAGGAGATGAAGACCCTCTTCTTG AATACTGAGTACCTGATGCCCTTTCTCCTCAACCAGTGTGGATCCCTTCTCTATTACCTCAC CTTGGCATCGACAGATCTGACCCTGGCTGTGCCCATCTGTAACTCTCTGGCTATCATCTTCA CACTGATTGTTGGGAAGGCCCTTGGAGAAGATATTGGTGGAAAACGTAAGTTAGACTACTGC CTCCCCAGAGTGGGTGAGGACACGGCCTTTTCCCATCCTGCCCTTTCCTCTGCAGCTGTTTT GCTTCCTTGTGGCCATCAGAGTTCCCTTCCCCTGGACAGTCTGGAGAAAGACAGAGGCTGGG GTTTGGGATTGAAGACCAGACCCCATCTGAGCCCTTCCTCCAGCCCTGTACCAGCTCCTACT GGCATGGCTGAGCTCAGACCCTCCTGATTTCTGCCTATTATCCCAGGAGCAGTTGCTGGCAT GGTGCTCACCGTGATAGGAATTTCACTCTGCATCACAAGCTCAGTGAGTAAGACCCAGGGGC AACAGTCTACCCTTTGAGTGGGCCGAACCCACTTCCAGCTCTGCTGCCTCCAGGAAGCCCCT GGGCCATGAAGTGCTGGCAGTGAGCGGATGGACCTAGCACTTCCCCTCTCTGGCCTTAGCTT CCTCCTCTTTATGGGGATAACAGCTACCTCATGGATCACAATAAGAGAACAAGAGTGAAAG AGTTTTGTAACCTTCAAGTGCTGTTCAGCTGCGGGGATTTAGCACAGGAGACTCTACGCTCA CCCTCAGCAACCTTTCTGCCCCAGCAGCTCTCTTCCTGCTAACATCTCAGGCTCCCAGCCCA GCCACCATTACTGTGGCCTGATCTGGACTATCATGGTGGCAGGTTCCATGGACTGCAGAACT CCAGCTGCATGGAAAGGGCCAGCTGCAGACTTTGAGCCAGAAATGCAAACGGGAGGCCTCTG GGACTCAGTCAGAGCGCTTTGGCTGAATGAGGGGTGGAACCGAGGGAAGAAGGTGCGTCGGA AAATCCTCACTGCCAGCCCCTCTTAAACAGGTAGAGAGCTGTGAGCCCCAGCCCACCTGAC

FIGURE 210

MAASLGQVLALVLVAALWGGTQPLLKRASAGLQRVHEPTWAQQLLQEMKTLFLNTEYLMPFL LNQCGSLLYYLTLASTDLTLAVPICNSLAIIFTLIVGKALGEDIGGKRKLDYCECGTQLCGS RHTCVSSFPEPISPEWVRTRPFPILPFPLQLFCFLVAIRVPFPWTVWRKTEAGVWD

FIGURE 211

CTTCTGTAGGACAGTCACCAGGCCAGATCCAGAGCCTCTCTAGGCTCCAGCTTTCTCTGTG GAAGATGACAGCAATTATAGCAGGACCCTGCCAGGCTGTCGAAAAGATTCCGCAATAAAACT TTGCCAGTGGGAAGTACCTAGTGAAACGGCCTAAGATGCCACTTCTTCTCATGTCCCAGGCT TGAGGCCCTGTGGTCCCCATCCTTGGGAGAGTCAGCTCCAGCACCATGAAGGGCATCCTCG TTGCTGGTATCACTGCAGTGCTTGTTGCAGCTGTAGAATCTCTGAGCTGCGTGCAGTGTAAT TCATGGGAAAAATCCTGTGTCAACAGCATTGCCTCTGAATGTCCCTCACATGCCAACACCAG CTGTATCAGCTCCTCAGCCAGCTCCTCTCTAGAGACACCAGTCAGATTATACCAGAATATGT TCTGCTCAGCGGAGAACTGCAGTGAGGAGACACACATTACAGCCTTCACTGTCCACGTGTCT GCTGAAGAACACTTTCATTTTGTAAGCCAGTGCTGCCAAGGAAAGGAATGCAGCAACACCAG CGATGCCCTGGACCCTCCCTGAAGAACGTGTCCAGCAACGCAGAGTGCCCTGCTTGTTATG AATCTAATGGAACTTCCTGTCGTGGGAAGCCCTGGAAATGCTATGAAGAAGAACAGTGTGTC TTTCTAGTTGCAGAACTTAAGAATGACATTGAGTCTAAGAGTCTCGTGCTGAAAGGCTGTTC CAACGTCAGTAACGCCACCTGTCAGTTCCTGTCTGGTGAAAACAAGACTCTTGGAGGAGTCA TCCCACACGTGGGCTCCAAAGCTTCCCTCTACCTCTTGGCCCTTGCCAGCCTCCTTCTTCG GGGACTGCTGCCCTGAGGTCCTGGGGCTGCACTTTGCCCAGCACCCCATTTCTGCTTCTCTG AGGTCCAGAGCACCCCTGCGGTGCTGACACCCTCTTTCCCTGCTCTGCCCCGTTTAACTGC CCAGTAAGTGGGAGTCACAGGTCTCCAGGCAATGCCGACAGCTGCCTTGTTCTTCATTATTA

FIGURE 212

MKGILVAGITAVLVAAVESLSCVQCNSWEKSCVNSIASECPSHANTSCISSSASSSLETPVR LYQNMFCSAENCSEETHITAFTVHVSAEEHFHFVSQCCQGKECSNTSDALDPPLKNVSSNAE CPACYESNGTSCRGKPWKCYEEEQCVFLVAELKNDIESKSLVLKGCSNVSNATCQFLSGENK TLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKASLYLLALASLLLRGLLP

FIGURE 213

GGGCTTGCCTCACTGGCCACCCTCCCAACCCCAAGAGCCCAGCCCCATGGTCCCCGCCGCCG ACCCAGACTCCGACCGAAATGCAGCGGGTCAGTTTACGCTTTGGGGGCCCCATGACCCGCAG CTACCGGAGCACCGCCCGGACTGTCTTCCCCGGAAGACAAGGATAATCCTAGAGGACGAGA ATGATGCCATGGCCGACGCCGGCCTGGCTGGACCAGCGGCTGCCGAGCTCTTGGCCGCC ACGGTGTCCACCGGCTTTAGCCGGTCGTCCGCCATTAACGAGGAGGATGGGTCTTCAGAAGA GGGGGTTGTGATTAATGCCGGAAAGGATAGCACCAGCAGAGAGCTTCCCAGTGCGACTCCCA ATACAGCGGGGAGTTCCAGCACGAGGTTTATAGCCAATAGTCAGGAGCCTGAAATCAGGCTG ACTTCAAGCCTGCCGCGCTCCCCCGGGAGGTCTACTGAGGACCTGCCAGGCTCGCAGGCCAC CCTGAGCCAGTGGTCCACACCTGGGTCTACCCCGAGCCGGTGGCCGTCACCCTCACCCACAG $\verb|CCATGCCATCTCCTGAGGATCTGCGGCTGGTGCTGATGCCCTGGGGCCCGTGGCACTGCCAC| \\$ TGCAAGTCGGGCACCATGAGCCGGAGCCGGTCTGGGAAGCTGCACGGCCTTTCCGGGCGCCCT TCGAGTTGGGGCGCTGAGCCAGCTCCGCACGGAGCACAAGCCTTGCACCTATCAACAATGTC $\verb|CCTGCAACCGACTTCGGGAAGAGTGCCCCCTGGACACAAGTCTCTGTACTGACACCAACTGT|\\$ GCCTCTCAGAGCACCACCAGTACCAGGACCACCACTACCCCCTTCCCCACCATCCACCTCAG AAGCAGTCCCAGCCTGCCAGCCCTGCCCAGCCCTGGCTTTTTGGAAACGGGTCA GGATTGGCCTGGAGGATATTTGGAATAGCCTCTCTTCAGTGTTCACAGAGATGCAACCAATA GACAGAAACCAGAGGTAATGGCCACTTCATCCACATGAGGAGATGTCAGTATCTCAACCTCT CTTGCCCTTTCAATCCTAGCACCCACTAGATATTTTTAGTACAGAAAAACAAAACTGGAAAA CACAA

FIGURE 214

MVPAAGALLWVLLLNLGPRAAGAQGITQTPTEMQRVSLRFGGPMTRSYRSTARTGLPRKTRI ILEDENDAMADADRLAGPAAAELLAATVSTGFSRSSAINEEDGSSEEGVVINAGKDSTSREL PSATPNTAGSSSTRFIANSQEPEIRLTSSLPRSPGRSTEDLPGSQATLSQWSTPGSTPSRWP SPSPTAMPSPEDLRLVLMPWGPWHCHCKSGTMSRSRSGKLHGLSGRLRVGALSQLRTEHKPC TYQQCPCNRLREECPLDTSLCTDTNCASQSTTSTRTTTTPFPTIHLRSSPSLPPASPCPALA FWKRVRIGLEDIWNSLSSVFTEMQPIDRNQR

FIGURE 215

GCGGCGCTGGCGAGCGGCTCCCAGGGCGACCGTGAGCCGGTGTACCGCGACTGCGTACTGCAGTGCGAAGAGCA GTCGGGACGACTGTAAGTATGAGTGTATGTGGGTCACCGTTGGGCTCTACCTCCAGGAAGGTCACAAAGTGCCT CAGTTCCATGCCAAGTGGCCCTTCTCCCGGTTCCTGTTCTTCAAGAGCCGGCATCGGCCGTGGCCTCGTTTCT CAATGGCCTGGCCAGCCTGGTGATGCTCTGCCGCTACCGCACCTTCGTGCCAGCCTCCTCCCCCATGTACCACA CCTGTGTGGCCTTCGCCTGGGTGTCCCTCAATGCATGGTTCTGGTCCACAGTCTTCCACACCAGGGACACTGAC CTCACAGAGAAAATGGACTACTTCTGTGCCTCCACTGTCATCCTACACTCAATCTACCTGTGCTGCGTCAGGAC CGTGGGGCTGCAGCACCCAGCTGTGGTCAGTGCCTTCCGGGCTCTCCTGCTGCTCATGCTGACCGTGCACGTCT CCTACCTGAGCCTCATCCGCTTCGACTATGGCTACAACCTGGTGGCCAACGTGGCTATTGGCCTGGTCAACGTG GTGTGGTGGCTGGCCTGTGCAACCAGCGGCGCTGCCTCACGTGCGCAAGTGCGTGGTGGTGGTCTT GCTGCTGCAGGGGCTGTCCCTGCTCGAGCTGCTTGACTTCCCACCGCTCTTCTGGGTCCTGGATGCCCATGCCA TCTGGCACATCAGCACCATCCCTGTCCACGTCCTCTTTTTCAGCTTTCTGGAAGATGACAGCCTGTACCTGCTG AAGGAATCAGAGGACAAGTTCAAGCTGGACTGAAGACCTTGGAGCGAGTCTGCCCCAGTGGGGATCCTGCCCCC GCCCTGCTGGCCTCCCTTCTCCCCTCAACCCTTGAGATGATTTTCTCTTTTTCAACTTCTTGAACTTGGACATGA AGGATGTGGGCCCAGAATCATGTGGCCCAGCCCCCTGTTGGCCCTCACCAGCCTTGGAGTCTGTTCTAGGG AAGGCCTCCCAGCATCTGGGACTCGAGAGTGGGCAGCCCCTCTACCTCCTGGAGCTGAACTGGGGTGGAACTGA GTGTGTTCTTAGCTCTACCGGGAGGACAGCTGCCTGTTTCCTCCCCACCAGCCTCCTCCCCACATCCCCAGCTG GGTTCACGGCGATTCTCCCCATGGGATCTTGAGGGACCAAGCTGCTGGGATTGGGAAGGAGTTTCACCCTGACC GTTGCCCTAGCCAGGTTCCCAGGAGGCCTCACCATACTCCCTTTCAGGGCCAGGGCTCCAGCAAGCCCAGGGCA AGGATCCTGTGCTGCTGTTGAGAGCCTGCCACCGTGTGTCGGGAGTGTGGGCCAGGCTGAGTGCATAGG TGACAGGGCCGTGAGCATGGGCCTGGGTGTGTGTGAGCTCAGGCCTAGGTGCGCAGTGTGGAGACGGGTGTTGT TGCGCGTGCTGGTGGGCATGTGAGATGAGTGACTGCCGGTGAATGTGTCCACAGTTGAGAGGTTGGAGCAGGAT GAGGGAATCCTGTCACCATCAATAATCACTTGTGGAGCGCCAGCTCTGCCCAAGACGCCACCTGGGCGGACAGC CAGGAGCTCTCCATGGCCAGGCTGCCTGTGTGCATGTTCCCTGTCTGGTGCCCCTTTGCCCGCCTCCTGCAAAC GCTGCCAGCCCTTTGCCATAGCCTGATTTTGGGGAGGAGGAGGGGGGGAGTTTGAGGGAGAAGGGGAGAAGCT ACACTATGCCTGTGCCTGGTAAAGGTGACCCCTGCCATTTACCAGCAGCCCTGGCATGTTCCTGCCCCACAGG AATAGAATGGAGGGAGCTCCAGAAACTTTCCATCCCAAAGGCAGTCTCCGTGGTTGAAGCAGACTGGATTTTTG GCCTGCGCTAGCTTCTTTTGATACTGAAAACTTTTAAGGTGGGAGGGTGGCAAGGGATGTGCTTAATAAATCAA TTCCAAGCCTCAAAAAAAAAAAAAAAAAA

FIGURE 216

MAGLAARLVLLAGAAALASGSQGDREPVYRDCVLQCEEQNCSGGALNHFRSRQPIYMSLAGW
TCRDDCKYECMWVTVGLYLQEGHKVPQFHGKWPFSRFLFFQEPASAVASFLNGLASLVMLCR
YRTFVPASSPMYHTCVAFAWVSLNAWFWSTVFHTRDTDLITEKMDYFCASTVILHSIYLCCVR
TVGLQHPAVVSAFRALLLLMLTVHVSYLSLIRFDYGYNLVANVAIGLVNVVWWLAWCLWNQR
RLPHVRKCVVVVLLLQGLSLLELLDFPPLFWVLDAHAIWHISTIPVHVLFFSFLEDDSLYLL
KESEDKFKLD

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domains:

amino acids 105-123, 138-156, 169-185, 193-209, 221-240, 256-272

N-glycosylation site.

amino acids 40-44

N-myristoylation site.

amino acids 43-49

CUB domain proteins profile.

amino acids 285-302

Amiloride-sensitive sodium channels proteins.

amino acids 162-186

FIGURE 217

GGCCGCCTGGAATTGTGGGAGTTGTCTGCCACTCGGCTGCCGGAGGCCGAAGGTCCGTGA CTATGGCTCCCCAGAGCCTGCCTTCATCTAGGATGGCTCCTCTGGGCATGCTGCTTGGGCTG CTGATGGCCGCCTGCTTCACCTTCTGCCTCAGTCATCAGAACCTGAAGGAGTTTGCCCTGAC TGGATGCCGAAGTCCTGGAGGTGTTCCACCCGACGCATGAGTGGCAGGCCCTTCAGCCAGGG ACTCCAATATGAGGACAAGTTCCGAAATAATTTGAAAGGCAAAAGGCTGGATATCAACACCA ACACCTACACATCTCAGGATCTCAAGAGTGCACTGGCAAAATTCAAGGAGGGGGCAGAGATG GAGAGTTCAAAGGAAGACAAGGCAAGGCAGGCTGAGGTAAAGCGGCTCTTCCGCCCCATTGA GGAACTGAAGAAAGACTTTGATGAGCTGAATGTTGTCATTGAGACTGACATGCAGATCATGG TACGGCTGATCAACAAGTTCAATAGTTCCAGCTCCAGTTTGGAAGAGAAGATTGCTGCGCTC TTTGATCTTGAATATTATGTCCATCAGATGGACAATGCGCAGGACCTGCTTTCCTTTGGTGG TCTTCAAGTGGTGATCAATGGGCTGAACAGCACAGAGCCCCTCGTGAAGGAGTATGCTGCGT TTGTGCTGGGCGCTGCCTTTTCCAGCAACCCCAAGGTCCAGGTGGAGGCCATCGAAGGGGGA GCCCTGCAGAAGCTGCTGGTCATCCTGGCCACGGAGCAGCCGCTCACTGCAAAGAAGAAGATGT CCTGTTTGCACTGTGCTCCCTGCTGCGCCACTTCCCCTATGCCCAGCGGCAGTTCCTGAAGC TCGGGGGGCTGCAGGTCCTGAGGACCCTGGTGCAGGAGAAGGGCACGGAGGTGCTCGCCGTG CGCGTGGTCACACTGCTCTACGACCTGGTCACGGAGAAGATGTTCGCCGAGGAGGAGGAGGCTGA GCTGACCCAGGAGATGTCCCCAGAGAAGCTGCAGCAGTATCGCCAGGTACACCTCCTGCCAG GCCTGTGGGAACAGGGCTGGTGCGAGATCACGGCCCACCTCCTGGCGCTGCCCGAGCATGAT GCCCGTGAGAAGGTGCTGCAGACACTGGGCGTCCTCCTGACCACCTGCCGGGACCGCTACCG TCAGGACCCCCAGCTCGGCAGGACACTGGCCAGCCTGCAGGTGCCAGGTGCTGGCCA GCCTGGAGCTGCAGGATGGTGAGGACGAGGGCTACTTCCAGGAGCTGCTGGGCTCTGTCAAC AGCTTGCTGAAGGAGCTGAGATGAGGCCCCACACCAGGACTGGACTGGGATGCCGCTAGTGA GGCTGAGGGGTGCCAGCGTGGGTGGGCTTCTCAGGCAGGAGGACATCTTGGCAGTGCTGGCT

FIGURE 218

MAPQSLPSSRMAPLGMLLGLLMAACFTFCLSHQNLKEFALTNPEKSSTKETERKETKAEEEL
DAEVLEVFHPTHEWQALQPGQAVPAGSHVRLNLQTGEREAKLQYEDKFRNNLKGKRLDINTN
TYTSQDLKSALAKFKEGAEMESSKEDKARQAEVKRLFRPIEELKKDFDELNVVIETDMQIMV
RLINKFNSSSSSLEEKIAALFDLEYYVHQMDNAQDLLSFGGLQVVINGLNSTEPLVKEYAAF
VLGAAFSSNPKVQVEAIEGGALQKLLVILATEQPLTAKKKVLFALCSLLRHFPYAQRQFLKL
GGLQVLRTLVQEKGTEVLAVRVVTLLYDLVTEKMFAEEEAELTQEMSPEKLQQYRQVHLLPG
LWEQGWCEITAHLLALPEHDAREKVLQTLGVLLTTCRDRYRQDPQLGRTLASLQAEYQVLAS
LELQDGEDEGYFQELLGSVNSLLKELR

Important features:

Signal peptide:

amino acids 1-29

Hypothetical YJL126w/YLR351c/yhcX family protein.

amino acids 364-373

N-qlycosylation site.

amino acids 193-197, 236-240

N-myristoylation site.

amino acids 15-21, 19-25, 234-240, 251-257, 402-408, 451-457

Homologous region SLS1 protein.

amino acids 68-340

FIGURE 219

TTCGGCTTCCGTAGAGGAAGTGGCGCGGACCTTCATTTGGGGTTTCGGTTCCCCCCCTTCCC CTTCCCCGGGGTCTGGGGGTGACATTGCACCGCGCCCCTCGTGGGGTCGCGTTGCCACCCCA CGCGGACTCCCAGCTGGCGCCCCCCCCATTTGCCTGTCCTGGTCAGGCCCCCACCCCCC $\tt TTCCCACCTGACCAGCC \underline{ATG} \tt GGGGGCTGCGGTGTTTTTCGGCTGCACTTTCGTCGCGTTCGGCCTTCGGCCTTTCGGCTGCACTTTCGTCGCGTTTCGGCCTGCACTTTCGTCGCGTTTCGGCCTGCACTTTCGTCGCGTTTCGGCCTGCACTTTCGTCGCGTTTCGGCCTGCACTTTCGGCTGCACTTTCGGCTGCACTTTCGGCTGCACTTTCGGCTGCACTTTCGGCTGCACTTTCGGCTGCACTTTCGGCTGCACTTTCGGCTGCACTTTCGGCTGCACTTTCGGCTGCACTTTCGGCCTGCACTTTCGGCCTGCACTTTCGGCCTGCACTTTCGGCCTGCACTTTCGGCCTGCACTTTCGGCCTGCACTTTCGGCCTGCACTTTCGGCCTGCACTTTCGGCCTGCACTTTCGGCCTGCACTTTCGGCCTTCGGCCTGCACTTTCACTTTCACTTCACTTTCACTTCACTTCACTTTCACTTCACTTTCACTTCACTTTCACTTCACTTTCACTTCACTTCACTTTCACTTCACTTCACTTCACTTTCACTTCACTTCACTTCACTTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTCACTTTCACTTCACTTCACTTCACTTTCAC$ CCGGCCTTCGCGCTTTTCTTGATCACTGTGGCTGGGGACCCGCTTCGCGTTATCATCCTGGT CGCAGGGCATTTTTCTGGCTGGTCTCCCTGCTCCTGGCCTCTGTGGTCTGGTTCATCTTGG TCCATGTGACCGACCGGTCAGATGCCCGGCTCCAGTACGGCCTCCTGATTTTTGGTGCTGCT GTCTCTGTCCTTCTACAGGAGGTGTTCCGCTTTGCCTACTACAAGCTGCTTAAGAAGGCAGA TGAAGGGTTAGCATCGCTGAGTGAGGACGGAAGATCACCCATCTCCATCCGCCAGATGGCCT ATGTTTCTGGTCTCCTTCGGTATCATCAGTGGTGTCTTCTCTGTTATCAATATTTTGGCT GATGCACTTGGGCCAGGTGTGGTTGGGATCCATGGAGACTCACCCTATTACTTCCTGACTTC AGCCTTTCTGACAGCAGCCATTATCCTGCTCCATACCTTTTGGGGAGTTGTGTTCTTTGATG CCTGTGAGAGGGGGTACTGGGCTTTGGGCCTGGTGGTTGGGAGTCACCTACTGACATCG GGACTGACATTCCTGAACCCCTGGTATGAGGCCAGCCTGCTGCCCATCTATGCAGTCACTGT TTCCATGGGGCTCTGGGCCTTCATCACAGCTGGAGGGTCCCTCCGAAGTATTCAGCGCAGCC GGTCTACCCCACTACCTCCAGGGTTTTGCTTTGTCCTTTTGTGACCGTTAGTCTCTAAGCTT TACCAGGAGCAGCCTGGGTTCAGCCAGTCAGTGACTGGTGGGTTTGAATCTGCACTTATCCC CACCACCTGGGGACCCCCTTGTTGTGTCCAGGACTCCCCCTGTGTCAGTGCTCTGCTCTCAC CCTGCCCAAGACTCACCTCCCTTCCCCTCTGCAGGCCGACGGCAGGAGGACAGTCGGGTGAT GGTGTATTCTGCCCTGCGCATCCCACCCGAGGACTGAGGGAACCTAGGGGGGACCCCTGGGC CTGGGGTGCCCTCGTGTGTCCTCGCCCTGTATTTCTCCATCTCCAGTTCTGGACAGTGCAG GTTGCCAAGAAAAGGGACCTAGTTTAGCCATTGCCCTGGAGATGAAATTAATGGAGGCTCAA GGATAGATGAGCTCTGAGTTTCTCAGTACTCCCTCAAGACTGGACATCTTGGTCTTTTTCTC GAGGTGGGGGGGGGGGGGGGTATATTTGGAACTCTTCTAACCTCCTTGGGCTATATTTTCTC TCCTCGAGTTGCTCCTCATGGCTGGGCTCATTTCGGTCCCTTTCTCCTTGGTCCCAGACCTT GGGGGAAAGGAAGTGCATGTTTGGGAACTGCCATTACTGGAACTAATGGTTTTAACCT CCTTAACCACCAGCATCCCTCTCCCCCAAGGTGAAGTGGAGGTGCTGTGGTGAGCTGGC CACTCCAGAGCTGCAGTGCCACTGGAGGAGTCAGACTACCATGACATCGTAGGGAAGGAGGG ATCATTTTCTGCTGAGGGTGGAGTGTCCCATCCTTTTAATCAAGGTGATTGTGATTTTGACT

FIGURE 220

MGAAVFFGCTFVAFGPAFALFLITVAGDPLRVIILVAGAFFWLVSLLLASVVWFILVHVTDR SDARLQYGLLIFGAAVSVLLQEVFRFAYYKLLKKADEGLASLSEDGRSPISIRQMAYVSGLS FGIISGVFSVINILADALGPGVVGIHGDSPYYFLTSAFLTAAIILLHTFWGVVFFDACERRR YWALGLVVGSHLLTSGLTFLNPWYEASLLPIYAVTVSMGLWAFITAGGSLRSIQRSLLCKD

FIGURE 221

FIGURE 222

GACCGACCGTTCAGATGCCCGGTTCCAGTACGGCTTCCTGATTTTTGGTGCTGCTGTTTCTG
TCCTTCTACAGGAGGTGTTCCGCTTTGCCTANTACAAGCTGCTTAAGAAGGCAGATGAGGGG
TTAGCATNGCTGAGTGAGGACGGAAGATCACCCATTTCCATCCGCCAGATGGCCTATGTTTN
TGGTNTTTCCTTCGGTATCATCAGTGGTGTTTTTNTCTGTTATCAATATTTTGGNTGATGCAN
TTGGGCCAGGTGTGGTTGGGATCCATGGAGANTCACCCTATTAATTCCTGAATTCAGCCTTT
NTGACAGCAGCCATTATCCTGNTCCATACCTTTTTGGGGAGTTGTTTTTTTGATGCCTGTGA
GAGGAG

FIGURE 223

FIGURE 224

GTAAAAGAAAGTGGCCGGACCTTCATTGGGGTTTCGGTTTCCCCCTTTCCCNTTCCCGGGG
TCTGGGGGTGACATTGCACCGCGCCCNTCGTGGGGTCGCGTTGCCACCCACCGCGGACTCCC
CAGNTGGCGCGCCCCTCCCATTTGCCTGTCCTGGTCAGGCCCCACCCCCCTTCCCACCTGA
CCAGCCATGGGGCTGCGGTGTTTTTCGGGCTGCACTTTCGTCGCGTTCGGGCCCGGCCTTC
GCGCTTTTCTTGATCACTGTGGCTGGGACCCGCTTCGCGTTATCATCCTGGTCCATGGA
ATTTTTCTGGCTGGTCTCCCTGCCTCTGGCTCTGGTTCATCTTTGGTCCATGTA
CCGACCGGTCAGATGCCCGGCTCAGTACGGCCTCCTGATTTTTGGTCTGCTCTCTGTC
CTTCTACAGGAGGTGTTCCGCTTTGCCTACTACAAGCTGCTTAAGAAGGCAGATGAGGGGT
AGCATCGCTGAGTGAGGACGAAGATCACCATCTCCATCCGCCAGATGGCCTATGTTTCTG
GTCTCTCCTTCCGTATCATCAGTGGTGTCTTCTGTTATCAATATTTTGGCTGATGCACTT
GGGCCAGGTGTGGGTTGGGATCCATGGAGAC

FIGURE 225

GCCCCAGGGAGCAGTGGGTGTTATAACTCAGGCCCGGTGCCCAGAGCCCAGGAGGAGGCAG TGGCCAGGAAGGCACAGGCCTGAGAAGTCTGCGGCTGAGCTGGGAGCAAATCCCCCACCCCC TGTCTGTGCGTCCTGCACCCACATCTTTCTCTGTCCCCTCCTTGCCCTGTCTGGAGGCTGCT AGACTCCTATCTTCTGAATTCTATAGTGCCTGGGTCTCAGCGCAGTGCCGATGGTGGCCCGT CCTTGTGGTTCCTCTCTCCTGGGGAAATAAGGTGCAGCGGCCATGCTACAGCAAGACCCC CCTGGATGTGGGTGCTCTGATCACAGCCTTGCTTCTGGGGGTCACAGAGCATGTT CTCGCCAACAATGATGTTTCCTGTGACCACCCCTCTAACACCGTGCCCTCTGGGAGCAACCA GGACCTGGGAGCTGGGGCCGGGAAGACGCCCGGTCGGATGACAGCAGCAGCCGCATCATCA ATGGATCCGACTGCGATATGCACACCCAGCCGTGGCAGGCCGCGCTGTTGCTAAGGCCCAAC CAGCTCTACTGCGGGGGGGTGTTGGTGCATCCACAGTGGCTGCTCACGGCCGCCCACTGCAG GAAGAAAGTTTTCAGAGTCCGTCTCGGCCACTACTCCCTGTCACCAGTTTATGAATCTGGGC AGCAGATGTTCCAGGGGGTCAAATCCATCCCCCACCCTGGCTACTCCCACCCTGGCCACTCT AACGACCTCATGCTCATCAAACTGAACAGAAGAATTCGTCCCACTAAAGATGTCAGACCCAT CCAAGAGCCCCCAAGTGCACTTCCCTAAGGTCCTCCAGTGCTTGAATATCAGCGTGCTAAGT CAGAAAAGGTGCGAGGATGCTTACCCGAGACAGATAGATGACACCATGTTCTGCGCCGGTGA CAAAGCAGGTAGAGACTCCTGCCAGGGTGATTCTGGGGGGGCCTGTGGTCTGCAATGGCTCCC TGCAGGGACTCGTGTCCTGGGGAGATTACCCTTGTGCCCGGCCCAACAGACCGGGTGTCTAC ACGAACCTCTGCAAGTTCACCAAGTGGATCCAGGAAACCATCCAGGCCAACTCCTGAGTCAT CCCAGGACTCAGCACACCGGCATCCCCACCTGCTGCAGGGACAGCCCTGACACTCCTTTCAG ACCCTCATTCCTTCCCAGAGATGTTGAGAATGTTCATCTCTCCAGCCCCTGACCCCATGTCT CCTGGACTCAGGGTCTGCCTCCCCACATTGGGCTGACCGTGTCTCTCTAGTTGAACCCTGG GAACAATTTCCAAAACTGTCCAGGGCGGGGGTTGCGTCTCAATCTCCCTGGGGCACTTTCAT CCTCAAGCTCAGGGCCCATCCCTTCTCTGCAGCTCTGACCCAAATTTAGTCCCAGAAATAAA CTGAGAAGTGGAAAAAAAA

FIGURE 226

MATARPPWMWVLCALITALLLGVTEHVLANNDVSCDHPSNTVPSGSNQDLGAGAGEDARSDD SSSRIINGSDCDMHTQPWQAALLLRPNQLYCGAVLVHPQWLLTAAHCRKKVFRVRLGHYSLS PVYESGQQMFQGVKSIPHPGYSHPGHSNDLMLIKLNRRIRPTKDVRPINVSSHCPSAGTKCL VSGWGTTKSPQVHFPKVLQCLNISVLSQKRCEDAYPRQIDDTMFCAGDKAGRDSCQGDSGGP VVCNGSLQGLVSWGDYPCARPNRPGVYTNLCKFTKWIQETIQANS

FIGURE 227

ATGGTCAACGACCGGTGGAAGACCATGGGCGGCGCTGCCCAACTTGAGGACCGGCCGCGCA CAAGCCGCAGCGGCCGAGCTGCGGCTACGTGCTGTGCACCGTGCTGCTGGCCTGGCTGTGC TGCTGGCTGTAGCTGTCACCGGTGCCGTGCTCTTCCTGAACCACGCCCACGCGCCGGGCACG GCGCCCCACCTGTCGTCAGCACTGGGGCTGCCAGCGCCAACAGCGCCCTGGTCACTGTGGA AAGGGCGGACAGCTCGCACCTCAGCATCCTCATTGACCCGCGCTGCCCGACCTCACCGACAGCTCGCCCCGACCTGCACAGGCCTGGACAGAGCACCAGGCCTCGCTGCACAGAGCACCAGGCCTCGCAGGCCTGACAGAGCACCAGGCC CAGCCACGGCTGGTGGGCGACCAGGAGCAGGAGCTGCTGGACACGCTGGCCGACCAGCTGCC CCGGCTGCTGGCCCGAGCCTCAGAGCTGCAGACGGAGTGCATGGGGCTGCGGAAGGGGCATG GCACGCTGGGCCAGGGCCTCAGCGCCCTGCAGAGTGAGCAGGGCCGCCTCATCCAGCTTCTC CCAGGTGTACTGTGACATGCGCACGGACGGCGGCGGCTGGACGGTGTTTCAGCGCCGGGAGG ACGGCTCCGTGAACTTCTTCCGGGGCTGGGACGCGTACCGAGACGGCTTTGGCAGGCTCACC GGGGAGCACTGGCTAGGGCTCAAGAGGATCCACGCCCTGACCACACAGGCTGCCTACGAGCT GCACGTGGACCTGGAGGACTTTGAGAATGGCACGGCTATGCCCGCTACGGGAGCTTCGGCG TGGGCTTGTTCTCCGTGGACCCTGAGGAAGACGGGTACCCGCTCACCGTGGCTGACTATTCC GGCACTGCAGGCGACTCCCTGAAGCACAGGGCGTTGAGGTTCACCACCAAGGACCGTGA CAGCGACCATTCAGAGAACAACTGTGCCGCCTTCTACCGCGGTGCCTGGTGGTACCGCAACT GCCACACGTCCAACCTCAATGGGCAGTACCTGCGCGGTGCGCACGCCTCCTATGCCGACGGC CCACTCTCCAGTAGGGAGGGCCGGGCCATCCCTGACACGAAGCTCCCTGGGCCGGTGAAGT CACACATCGCCTTCTCGCCGTCCCCACCCCCTCCATTTGGCAGCTCACTGATCTCTTGCCTC CTAGCAGATCGTGGGGAATGTCAGGTCTCTCTGAGGTCAGGTCTGAGGCCAGTATCCTCCAG CCCTCCCAATGCCAACCCCCACCCGTTTCCCTGGTGCCCAGAGAACCCACCTCTCCCCCAA CCACCTCACCGGGCAAATGGGGTCGGGGGGACTGGGGCACCAGGCACCACCTGGACA TTTCTTGTTGAATCCTCCCAACACCCAGCACGCTGTCATCCCCACTCCTTGTGTGCACACA TGCAGAGGTGAGACCCGCAGGCTCCCAGGACCAGCAGCCACAAGGGCAGGGCTGGAGCCGGG TGCTAGGCTGTGTGCTCAGCAGCCTGGACCGGGGGGTTACGTCAGGCCCAGATGCAGGG CGGCTTTTCCAAGGCCTCGATGGGGGCCTCCGAAAGGGCTGGGTCAGCCTTGGGGAGCCT GCCTAGCAGCCTCTCCTCGGGCAGGAGGGGGGGGGTGGCTTCCTCCAAAGGACACCCGATGGCA GGTGCCTAGGGGGTGTGGGGTTCCGTTCTCCCTTCCCACTGAAGTTTGTGCTTAAAA AACAATAAATTTGACTTGGCACCACTGGGGGTTGGTGGGAGAGGCCGTGTGACCTGGCTCTC TGTCCCAGTGCCACCAGGTCATCCACATGCGCAG

FIGURE 228

MVNDRWKTMGGAAQLEDRPRDKPQRPSCGYVLCTVLLALAVLLAVAVTGAVLFLNHAHAPGT
APPPVVSTGAASANSALVTVERADSSHLSILIDPRCPDLTDSFARLESAQASVLQALTEHQA
QPRLVGDQEQELLDTLADQLPRLLARASELQTECMGLRKGHGTLGQGLSALQSEQGRLIQLL
SESQGHMAHLVNSVSDILDALQRDRGLGRPRNKADLQRAPARGTRPRGCATGSRPRDCLDVL
LSGQQDDGVYSVFPTHYPAGFQVYCDMRTDGGGWTVFQRREDGSVNFFRGWDAYRDGFGRLT
GEHWLGLKRIHALTTQAAYELHVDLEDFENGTAYARYGSFGVGLFSVDPEEDGYPLTVADYS
GTAGDSLLKHSGMRFTTKDRDSDHSENNCAAFYRGAWWYRNCHTSNLNGQYLRGAHASYADG
VEWSSWTGWOYSLKFSEMKIRPVREDR

FIGURE 229

GCAGTCAGAGACTTCCCCTGCCCCTCGCTGGGAAAGAACATTAGGAATGCCTTTTAGTGCCT TGCTTCCTGAACTAGCTCACAGTAGCCCGGCGGCCCAGGGCAATCCGACCACATTTCACTCT CACCGCTGTAGGAATCCAGATGCAGGCCAAGTACAGCAGCACGAGGGACATGCTGGATGATG ATGGGGACACCACCATGAGCCTGCATTCTCAAGCCTCTGCCACAACTCGGCATCCAGAGCCC CGGCGCACAGAGCACAGGGCTCCCTCTTCAACGTGGCGACCAGTGGCCCTGACCCTGCTGAC TTTGTGCTTGGTGCTGATAGGGCTGGCAGCCCTGGGGCTTTTGTTTTTCAGTACTACC AGCTCTCCAATACTGGTCAAGACACCATTTCTCAAATGGAAGAAGATTAGGAAATACGTCC CAAGAGTTGCAATCTCTTCAAGTCCAGAATATAAAGCTTGCAGGAAGTCTGCAGCATGTGGC TGAAAAACTCTGTCGTGAGCTGTATAACAAAGCTGGAGCACACAGGTGCAGCCCTTGTACAG AACAATGGAAATGGCATGGAGACAATTGCTACCAGTTCTATAAAGACAGCAAAAGTTGGGAG CCTGGAATTTGCCGCGTCTCAGAGCTACTCTGAGTTTTTCTACTCTTATTGGACAGGGCTTT TGCGCCCTGACAGTGGCAAGGCCTGGCTGTGGATGGAACCCCCTTTCACTTCTGAACTG TTCCATATTATAATAGATGTCACCAGCCCAAGAAGCAGAGACTGTGTGGCCATCCTCAATGG GATGATCTTCTCAAAGGACTGCAAAGAATTGAAGCGTTGTGTCTGTGAGAGAAGGGCAGGAA TGGTGAAGCCAGAGAGCCTCCATGTCCCCCCTGAAACATTAGGCGAAGGTGACTGATTCGCC CTCTGCAACTACAAATAGCAGAGTGAGCCAGGCGGTGCCAAAGCAAGGGCTAGTTGAGACAT TGGGAAATGGAACATAATCAGGAAAGACTATCTCTCTGACTAGTACAAAATGGGTTCTCGTG TTTCCTGTTCAGGATCACCAGCATTTCTGAGCTTGGGTTTATGCACGTATTTAACAGTCACA AGAAGTCTTATTTACATGCCACCAACCAACCTCAGAAACCCATAATGTCATCTGCCTTCTTG GCTTAGAGATAACTTTTAGCTCTCTTTCTTCTCAATGTCTAATATCACCTCCCTGTTTTCAT GTCTTCCTTACACTTGGTGGAATAAGAAACTTTTTTGAAGTAGAGGAAATACATTGAGGTAAC ATCCTTTTCTCTGACAGTCAAGTAGTCCATCAGAAATTGGCAGTCACTTCCCAGATTGTACC AGCAAATACACAAGGAATTCTTTTTTGTTTGTTTCAGTTCATACTAGTCCCCTTCCCAATCCAT CAGTAAAGACCCCATCTGCCTTGTCCATGCCGTTTCCCAACAGGGATGTCACTTGATATGAG AATCTCAAATCTCAATGCCTTATAAGCATTCCTTCCTGTGTCCATTAAGACTCTGATAATTG TCTCCCCTCCATAGGAATTTCTCCCAGGAAAGAAATATATCCCCCATCTCCGTTTCATATCAG AACTACCGTCCCCGATATTCCCTTCAGAGAGATTAAAGACCAGAAAAAAGTGAGCCTCTTCA TCTGCACCTGTAATAGTTTCAGTTCCTATTTTCTTCCATTGACCCATATTTATACCTTTCAG GTACTGAAGATTTAATAATAATAAATGTAAATACTGTGAAAAA

FIGURE 230

MQAKYSSTRDMLDDDGDTTMSLHSQASATTRHPEPRRTEHRAPSSTWRPVALTLLTLCLVLL IGLAALGLLFFQYYQLSNTGQDTISQMEERLGNTSQELQSLQVQNIKLAGSLQHVAEKLCRE LYNKAGAHRCSPCTEQWKWHGDNCYQFYKDSKSWEDCKYFCLSENSTMLKINKQEDLEFAAS QSYSEFFYSYWTGLLRPDSGKAWLWMDGTPFTSELFHIIIDVTSPRSRDCVAILNGMIFSKD CKELKRCVCERRAGMVKPESLHVPPETLGEGD

FIGURE 231

FIGURE 232

GCCGAGCGCAAGAACCCTGCGCAGCCCAGAGCAGCTGCTGGAGGGGGAATCGAGGCGCGCTC CCCGAGCCCTCCGGATCCGCCCCCTCCCGGTCCCGCCCCCTCGGAGACTCCTCTGGCTGCT TCGGTGCTGCGCCCGCAGGCCCGTGGCCGTGGCCATCTCCCTGGGCTTCACCCTGAGCCT GCTCAGCGTCACCTGGGTGGAGGGCCGTGCGGCCCAGGCCCCAACCTGGAGACTCTG AGCTGCCGCGCGCGCAACACCAACGCGGCCGCCCGGCCCAACTCGGTGCAGCCCGGAGCG GAGCGCGAGAAGCCCGGGGCGAAGGCGCCGGGGAGAATTGGGAGCCGCGCGTCTTGCC CTACCACCCTGCACAGCCCGGCCAGGCCGCCAAAAAGGCCGTCAGGACCCGCTACATCAGCA CGGAGCTGGGCATCAGGCAGAGGCTGCTGGTGGCGGTGCTGACCTCTCAGACCACGCTGCCC ACGCTGGGCGTGGACCGCACGCTGGGGCACCGCTGGAGCGTGTGGTGTTCCTGAC GGGCGCACGGGCCCGGGCCCCACCTGGCATGGCAGTGGTGACGCTGGGCGAGGAGCGAC CCATTGGACACCTGCGCGCTGCGCCACCTGCTGGAGCACGGCGACGACTTTGAC TGGTTCTTCCTGGTGCCTGACACCACCTACACCGAGGCGCACGGCCTGGCACGCCTAACTGG GAGAGCCCACCCCGGCCGCTACTGCCACGGAGGCTTTGGGGTGCTGCTGTCGCGCATGCTG CTGCAACAACTGCGCCCCCACCTGGAAGGCTGCCGCAACGACATCGTCAGTGCGCGCCCTGA CGAGTGGCTGGGTCGCATTCTCGATGCCACCGGGGTGGGCTGCACTGGTGACCACGAGG GGGTGCACTATAGCCATCTGGAGCTGAGCCCTGGGGAGCCAGTGCAGGAGGGGGACCCTCAT TTCCGAAGTGCCCTGACAGCCCACCCTGTGCGTGACCCTGTGCACATGTACCAGCTGCACAA AGCTTTCGCCCGAGCTGAACTGGAACGCACGTACCAGGAGATCCAGGAGTTACAGTGGGAGA TCCAGAATACCAGCCATCTGGCCGTTGATGGGGGACCGGGCAGCTGCTTGGCCCGTGGGTATT CCAGCACCATCCCGCCCGGCCTCCCGCTTTGAGGTGCTGCGCTGGGACTACTTCACGGAGCA GCACGCTTTCTCCTGCGCCGATGGCTCACCCCGCTGCCCACTGCGTGGGGCTGACCGGGCTG ATGTGGCCGATGTTCTGGGGACAGCTCTAGAGGAGCTGAACCGCCGCTACCACCCGGCCTTG CGGCTCCAGAAGCAGCTGGTGAATGGCTACCGACGCTTTGATCCGGCCCGGGGTATGGA ATACACGCTGGACTTGCAGCTGGAGGCACTGACCCCCCAGGGAGGCCGCCGGCCCCTCACTC GCCGAGTGCAGCTGCTCCGGCCGCTGAGCCGCGTGGAGATCTTGCCTGTGCCCTATGTCACT GAGGCCTCACGTCTCACTGTGCTGCTGCCTCTAGCTGCGGCTGAGCGTGACCTGGCCCCTGG CTTCTTGGAGGCCTTTGCCACTGCAGCACTGGAGCCTGGTGATGCTGCGGCAGCCCTGACCC TGCTGCTACTGTATGAGCCGCGCCAGGCCCAGCGCGTGGCCCATGCAGATGTCTTCGCACCT GTCAAGGCCCACGTGGCAGAGCTGGAGCGGGTTTCCCCGGTGCCCGGGTGCCATGGCTCAG TGTGCAGACAGCCGCACCCTCACCACTGCGCCTCATGGATCTACTCTCCAAGAAGCACCCGC TGGACACACTGTTCCTGCTGGCCGGGCCAGACACGGTGCTCACGCCTGACTTCCTGAACCGC TGCCGCATGCATGCCATCTCCGGCTGGCAGGCCTTCTTTCCCATGCATTTCCAAGCCTTCCA CCCAGGTGTGGCCCCACACAAGGGCCTGGGCCCCAGAGCTGGGCCGTGACACTGGCCGCT TTGATCGCCAGGCAGCCAGCGCGCTCTTCTACAACTCCGACTACGTGGCAGCCCGTGGG CGCCTGGCGGCAGCCTCAGAACAAGAAGAGGAGCTGCTGGAGAGCCTGGATGTGTACGAGCT GTTCCTCCACTTCTCCAGTCTGCATGTGCTGCGGGGGGTGGAGCCGGCGCTGCTGCAGCGCT ACCGGGCCCAGACGTGCAGCGCGAGGCTCAGTGAGGACCTGTACCACCGCTGCCTCCAGAGC GTGCTTGAGGGCCTCCGGACCCAGCTGGCCATGCTACTCTTTGAACAGGAGCAGGG CAACAGCACCTGACCCCACCCTGTCCCCGTGGGCCGTGGCCATGGCCACACCCCACCCCACTT CTCCCCCAAAACCAGAGCCACCTGCCAGCCTCGCTGGGCAGGGCTGGCCGTAGCCAGACCCC AAGCTGGCCCACTGGTCCCCTCTCTGGCTCTGTGGGTCCCTGGGCTCTGGACAAGCACTGGG GGACGTGCCCCAGAGCCACCCACTTCTCATCCCAAACCCAGTTTCCCTGCCCCCTGACGCT GCTGATTCGGGCTGTGGCCTCACGTATTTATGCAGTACAGTCTGCCTGACGCCAGCCCTGC GCATCTCCCAACTTCTCCCTTTTGGACCCTGCCGAAGCTCCCTGCCTTTAATAAACTGGCCA AGTGTGGAAAAA

FIGURE 233

MRASLLLSVLRPAGPVAVGISLGFTLSLLSVTWVEEPCGPGPPPPGDSELPPRGNTNAARRP
NSVQPGAEREKPGAGEGAGENWEPRVLPYHPAQPGQAAKKAVRTRYISTELGIRQRLLVAVL
TSQTTLPTLGVAVNRTLGHRLERVVFLTGARGRRAPPGMAVVTLGEERPIGHLHLALRHLLE
QHGDDFDWFFLVPDTTYTEAHGLARLTGHLSLASAAHLYLGRPQDFIGGEPTPGRYCHGGFG
VLLSRMLLQQLRPHLEGCRNDIVSARPDEWLGRCILDATGVGCTGDHEGVHYSHLELSEGEP
VQEGDPHFRSALTAHPVRDPVHMYQLHKAFARAELERTYQEIQELQWEIQNTSHLAVDGDRA
AAWPVGIPAPSRPASRFEVLRWDYFTEQHAFSCADGSPRCPLRGADRADVADVLGTALEELN
RRYHPALRLQKQQLVNGYRRFDPARGMEYTLDLQLEALTPQGGRRPLTRRVQLLRPLSRVEI
LPVPYVTEASRLTVLLPLAAAERDLAPGFLEAFATAALEPGDAAAALTLLLLYEPRQAQRVA
HADVFAPVKAHVAELERRFPGARVPWLSVQTAAPSPLRLMDLLSKKHPLDTLFLLAGPDTVL
TPDFFLNRCRMHAISGWQAFFPMHFQAFHPGVAPPQGPPPEIGRDTGRFDRQAASEACFYNS
DYVAARGRLAAASEQEEELLESLDVYELFLHFSSLHVLRAVEPALLQRYRAQTCSARLSEDL
YHRCLQSVLEGLGSRTOLAMLIFEOEOGNST

FIGURE 234

GCTCTGGCCGGCCGGCGATTGGTCACCGCCCGCTAGGGGACAGCCCTGGCCTCCTCTGAT TGGCAAGCGCTGGCCACCTCCCCACACCCCTTGCGAACGCTCCCCTAGTGGAGAAAAGGAGT AGCTATTAGCCAATTCGGCAGGGCCCGCTTTTTAGAAGCTTGATTTCCTTTGAAGATGAAAG ACTAGCGGAAGCTCTGCCTCTTTCCCCAGTGGGCGAGGGAACTCGGGGCGATTGGCTGGGAA CTGTATCCACCCAAATGTCACCGATTTCTTCCTATGCAGGAAATGAGCAGACCCATCAATAA GAAATTTCTCAGCCTGGCCGAAAATGGTTGGCCCCACGAAGCCACGACAACTGGAGGCAAAG AGGGTTGCTCAACGCCCCGCCTCATTGGAAAACCAAATCAGATCTGGGACCTATATAGCGTG GCGGAGGCGGGGCGATGATTGTCGCGCTCGCACCCACTGCAGCTGCGCACAGTCGCATTTCT ATCTAGCTTCTCCAGGACTGTGGTCGCCCCGTCCGCTGTGGCGGGAAAGCGGCCCCCAGAAC CGACCACACCGTGGCAAGAGGACCCAGAACCCGAGGACGAAAACTTGTATGAGAAGAACCCA GACTCCCATGGTTATGACAAGGACCCCGTTTTGGACGTCTGGAACATGCGACTTGTCTTCTT CTTTGGCGTCTCCATCATCCTGGTCCTTGGCAGCACCTTTGTGGCCTATCTGCCTGACTACA GGATGAAAGAGTGGTCCCGCCGCGAAGCTGAGAGGCTTGTGAAATACCGAGAGGCCAATGGC $\tt CTTCCCATCATGGAATCCAACTGCTTCGACCCCAGCAAGATCCAGCTGCCAGAGGATGAG{\color{red}{\bf TG}}$ CTCTTCTCAGAGCACCTAATTAAAGGGGCTGAAAGTCTGAA

FIGURE 235

MAAGLFGLSARRLLAAAATRGLPAARVRWESSFSRTVVAPSAVAGKRPPEPTTPWQEDPEPE DENLYEKNPDSHGYDKDPVLDVWNMRLVFFFGVSIILVLGSTFVAYLPDYRMKEWSRREAER LVKYREANGLPIMESNCFDPSKIOLPEDE

FIGURE 236

GGCGGCTGGGCTGTTTGGTTTGAGCGCTCGCCGTCTTTTGGCGCAGCGGCAGCGCAGGGC
TCCCGGCCGCCGCGTCCGCTGGAATCTAGCTTCTCCAGGACTGTGGTCGCCCCGTCCGCT
GTGGCGGAAAACCGACCACACCGTGGCAAAGAGACCCAGAACCCGAGGA
CGAAAACTTGTATGAGAAGAACCCAGACTCCCATGGTTATGACAAGGACCCCGTTTTTGGACG
TCTGGAACATGCGACTTGTCTTCTTTCTTTGGCGTCCTCATCATCCTGGTCCTTGGCAGCACC
TTTGTGGCCTATCTGCCTGACTACAGGATGAAAGAGTGGTCCCGCCGCGAAGCTGAGAGGCT
TGTGAAATACCGAGAGGCCAATGGCCTTCCCATCATGGAATCCAACTGCTTCGACCCCAGCA
AGATCCAG

FIGURE 237

 $\texttt{GCGGCGGCT} \underline{\textbf{ATG}} \texttt{CCGCTTGCTCTGTTCCTGTTGCTCCTGGGGCCCGGCGGCTGGTGCCT}$ TGCAGAACCCCCACGCGACAGCCTGCGGGGAGGAACTTGTCATCACCCCGCTGCCTTCCGGGG ACGTAGCCGCCACATTCCAGTTCCGCACGCGCTGGGATTCGGAGCTTCAGCGGGAAGGAGTG TCCCATTACAGGCTCTTTCCCAAAGCCCTGGGGCAGCTGATCTCCAAGTATTCTCTACGGGA GCTGCACCTGTCATTCACACAAGGCTTTTGGAGGACCCGATACTGGGGGCCACCCTTCCTGC AGGCCCCATCAGGTGCAGAGCTGTGGGTCTGGTTCCAAGACACTGTCACTGATGTGGATAAA TCTTGGAAGGAGCTCAGTAATGTCCTCTCAGGGATCTTCTGCGCCTCTCTCAACTTCATCGA CTCCACCACACACTCCCCACTGCCTCCTTCAAACCCCTGGGTCTGGCCAATGACACTG ACCACTACTTTCTGCGCTATGCTGTGCTGCCGCGGGAGGTGGTCTGCACCGAAAACCTCACC CCCTGGAAGAAGCTCTTGCCCTGTAGTTCCAAGGCAGGCCTCTCTGTGCTGCTGAAGGCAGA TCGCTTGTTCCACACCAGCTACCACTCCCAGGCAGTGCATATCCGCCCTGTTTGCAGAAATG CACGCTGTACTAGCATCTCCTGGGAGCTGAGGCAGACCCTGTCAGTTGTATTTGATGCCTTC ATCACGGGGCAGGGAAAGAAGACTGGTCCCTCTTCCGGATGTTCTCCCGAACCCTCACGGA GCCCTGCCCCTGGCTTCAGAGAGCCGAGTCTATGTGGACATCACCACCTACAACCAGGACA ACGAGACATTAGAGGTGCACCCACCCCGACCACTACATATCAGGACGTCATCCTAGGCACT CGGAAGACCTATGCCATCTATGACTTGCTTGACACCGCCATGATCAACACTCTCGAAACCT CAACATCCAGCTCAAGTGGAAGAGCCCCCAGAGAATGAGGCCCCCCAGTGCCCTTCCTGC ATGCCCAGCGGTACGTGAGTGGCTATGGGCTGCAGAAGGGGGAGCTGAGCACACTGCTGTAC AACACCCACCCATACCGGGCCTTCCCGGTGCTGCTGCTGGACACCGTACCCTGGTATCTGCG GCTGTATGTGCACCCTCACCATCACCTCCAAGGGCAAGGAGAACCAAGTTACATCC ACTACCAGCCTGCCCAGGACCGGCTGCAACCCCACCTCCTGGAGATGCTGATTCAGCTGCCG GCCAACTCAGTCACCAAGGTTTCCATCCAGTTTGAGCGGGCGCTGCTGAAGTGGACCGAGTA CACGCCAGATCCTAACCATGGCTTCTATGTCAGCCCATCTGTCCTCAGCGCCCTTGTGCCCA GCATGGTAGCAGCCAAGCCAGTGGACTGGGAAGAGAGTCCCCTCTTCAACAGCCTGTTCCCA GTCTCTGATGGCTCTAACTACTTTGTGCGGCTCTACACGGAGCCGCTGCTGGTGAACCTGCC GACACCGGACTTCAGCATGCCCTACAACGTGATCTGCCTCACGTGCACTGTGGTGGCCGTGT GCTACGGCTCCTTCTACAATCTCCTCACCCGAACCTTCCACATCGAGGAGCCCCGCACAGGT GGCCTGGCCAAGCGGCTGGCCAACCTTATCCGGCGCGCCGAGGTGTCCCCCCACTCTGATT CTTGCCCTTTCCAGCAGCTGCAGCTGCCGTTTCTCTCTGGGGAGGGGAGCCCAAGGGCTGTT TCTGCCACTTGCTCTCCTCAGAGTTGGCTTTTGAACCAAAGTGCCCTGGACCAGGTCAGGGC CTACAGCTGTGTTGTCCAGTACAGGAGCCACGAGCCAAATGTGGCATTTGAATTTGAATTTAA CTTAGAAATTCATTTCCTCACCTGTAGTGGCCACCTCTATATTGAGGTGCTCAATAAGCAAA AGTGGTCGGTGGCTGTATTGGACAGCACAGAAAAAGATTTCCATCACCACAGAAAGGTC GGCTGGCAGCACTGGCCAAGGTGATGGGGTGTGCTACACAGTGTATGTCACTGTGTAGTGGA

FIGURE 238

MPLALLVLLLLGPGGWCLAEPPRDSLREELVITPLPSGDVAATFQFRTRWDSELQREGVSHY RLFPKALGQLISKYSLRELHLSFTQGFWRTRYWGPPFLQAPSGAELWWWFQDTVTDVDKSWK ELSNVLSGIFCASLNFIDSTNTVTPTASFKPLGLANDTDHYFLRYAVLPREVVCTENLTPWK KLLPCSSKAGLSVLLKADRLFHTSYHSQAVHIRPVCRNARCTSISWELRQTLSVVFDAFITG QGKKDWSLFRMFSRTLTEPCPLASESRVYVDITTYNQDNETLEVHPPPTTTYQDVILGTRKT YAIYDLLDTAMINNSRNLNIQLKWKRPPENEAPPVPFLHAQRYVSGYGLQKGELSTLLYNTH PYRAFPVLLDTVPWYLRLYVHTLTITSKGKENKPSYIHYQPAQDRLQPHLLEMLIQLPANS VTKVSIQFERALLKWTEYTPDPNHGFYVSPSVLSALVPSMVAAKPVDWEESPLFNSLFPVSD GSNYFVRLYTEPLLVNLPTPDFSMPYNVICLTCTVVAVCYGSFYNLLTRTFHIEEPRTGGLA KRLANLIRRARGVPPL

FIGURE 239

FIGURE 240

MGSSSFLVLMVSLVLVTLVAVEGVKEGIEKAGVCPADNVRCFKSDPPQCHTDQDCLGERKCC YLHCGFKCVIPVKELEEGGNKDEDVSRPYPEPGWEAKCPGSSSTRCPOK

Signal sequence:

amino acids 1-19

N-myristoylation sites:

amino acids 23-29, 27-33, 32-38, 102-108

WAP-type 'four-disulfide core' domain signature:

amino acids 49-63

FIGURE 241

AAACTCAGCACTTGCCGGAGTGGCTCATTGTTAAGACAAAGGGTGTGCACTTCCTGGCCAGG AAACCTGAGCGGTGAGACTCCCAGCTGCCTACATCAAGGCCCCAGGACATGCAGAACCTTCC ${\tt TCTAGAACCCGACCCACCACC} \underline{{\tt ATG}} {\tt AGGTCCTGCCTGTGGAGATGCAGGCACCTGAGCCAAGG}$ CTACAGTCCCTGGCAAAGCCTAAGTCCCAGGCACCCACAAGGGCGAGGAGGACAACCATCTA ACAGCACAGAGGGCAGCATGGAAGAGCCCAGAAAAAGAGAAAACCATGGTGAACACACTGTC ACCCAGAGGGCAAGATGCAGGGATGGCCTCTGGCAGGACAGAGCCACAATCATGGAAGAGCC AGGACACAAAGACGACCCAAGGAAATGGGGGCCAGACCAGGAAGCTGACGGCCTCCAGGACG GTGTCAGAGAAGCACCAGGGCAAAGCGGCAACCACAGCCAAGACGCTCATTCCCAAAAGTCA GCACAGAATGCTGGCTCCCACAGGAGCAGTGTCAACAAGGACGAGACAGAAAGGAGTGACCA AGCCCCACGACGAGAGAAACCAAAGACTGAAGGCCGCCAACTTCAAATCTGAGCCTCGGTG GGATTTTGAGGAAAAATACAGCTTCGAAATAGGAGGCCTTCAGACGACTTGCCCTGACTCTG TGAAGATCAAAGCCTCCAAGTCGCTGTGGCTCCAGAAACTCTTTCTGCCCAACCTCACTCTC TTCCTGGACTCCAGACACTTCAACCAGAGTGAGTGGGACCGCCTGGAACACTTTGCACCACC CTTTGGCTTCATGGAGCTCAACTACTCCTTGGTGCAGAAGGTCGTGACACGCTTCCCTCCAG TGCCCCAGCAGCAGCTGCTCCTGGCCAGCCTCCCGGTGGGAGCCTCCGGTGCATCACCTGT GCCGTGGTGGGCAACGGGGGCATCCTGAACAACTCCCACATGGGCCAGGAGATAGACAGTCA CGACTACGTGTTCCGATTGAGCGGAGCTCTCATTAAAGGCTACGAACAGGATGTGGGGACTC GGACATCCTTCTACGGCTTTACCGCCTTCTCCCTGACCCAGTCACTCCTTATATTGGGCAAT CGGGGTTTCAAGAACGTGCCTCTTGGGAAGGACGTCCGCTACTTGCACTTCCTGGAAGGCAC CCGGGACTATGAGTGGCTGGAAGCACTGCTTATGAATCAGACGGTGATGTCAAAAAACCTTT TCTGGTTCAGGCACAGACCCCAGGAAGCTTTTCGGGAAGCCCTGCACATGGACAGGTACCTG TTGCTGCACCCAGACTTTCTCCGATACATGAAGAACAGGTTTCTGAGGTCTAAGACCCTGGA TGGTGCCCACTGGAGGATATACCGCCCCACCACTGGGGCCCTCCTGCTGCTCACTGCCCTTC AGCTCTGTGACCAGGTGAGTGCTTATGGCTTCATCACTGAGGGCCATGAGCGCTTTTCTGAT CACTACTATGATACATCATGGAAGCGGCTGATCTTTTACATAAACCATGACTTCAAGCTGGA GAGAGAAGTCTGGAAGCGGCTACACGATGAAGGGATAATCCGGCTGTACCAGCGTCCTGGTC CAAGGCACAGGATACAGTGGGAATCTTGAGACTCTTTGGCCATTTCCCATGGCTCAGACTAA GCTCCAAGCCCTTCAGGAGTTCCAAGGGAACACTTGAACCATGGACAAGACTCTCTCAAGAT GGCAAATGGCTAATTGAGGTTCTGAAGTTCTTCAGTACATTGCTGTAGGTCCTGAGGCCAGG GATTTTTAATTAAATGGGGTGATGGGTGGCCAATACCACAATTCCTGCTGAAAAACACTCTT CCAGTCCAAAAGCTTCTTGATACAGAAAAAAGAGCCTGGATTTACAGAAACATATAGATCTG GTTTGAATTCCAGATCGAGTTTACAGTTGTGAAATCTTGAAGGTATTACTTAACTTCACTAC AGATTGTCTAGAAGACCTTTCTAGGAGTTATCTGATTCTAGAAGGGTCTATACTTGTCCTTG TCTTTAAGCTATTTGACAACTCTACGTGTTGTAGAAAACTGATAATAATACAAATGATTGTT

FIGURE 242

MRSCLWRCRHLSQGVQWSLLLAVLVFFLFALPSFIKEPQTKPSRHQRTENIKERSLQSLAKP KSQAPTRARRTTIYAEPAPENNALNTQTQPKAHTTGDRGKEANQAPPEEQDKVPHTAQRAAW KSPEKEKTMVNTLSPRGQDAGMASGRTEAQSWKSQDTKTTQGNGGQTTKLTASRTVSEKHQG KAATTAKTLIPKSQHRMLAPTGAVSTRTRQKGVTTAVIPPKEKKPQATPPPAPFQSPTTQRN QRLKAANFKSEPRWDFEEKYSFEIGGLQTTCPDSVKIKASKSLWLQKLFLPNLTLFLDSRHF NQSEWDRLEHFAPPFGFMELNYSLVQKVVTRFPPVPQQQLLLASLPAGSLRCITCAVVGNGG ILNNSHMGQEIDSHDYVFRLSGALIKGYEQDVGTRTSFYGFTAFSLTQSLLILGNRGFKNVP LGKDVRYLHFLEGTRDYEWLEALLMNQTVMSKNLFWFRHRPQEAFREALHMDRYLLLHPDFL RYMKNRFLRSKTLDGAHWRIYRPTTGALLLLTALQLCDQVSAYGFITEGHERFSDHYYDTSW KRLIFYINHDFKLEREVWKRLHDEGIIRLYQRPGPGTAKAKN

Cytoplasmic Domain:

amino acids 1-10

Type II Transmembrane Domain:

amino acids 11-35

Lumenal catalytic Domain:

amino acids 36-600

Ribonucleotide Reductase small subunit Signature:

amino acids 481-496

N-glycosylation Sites:

amino acids 300-303, 311-314, 331-334, 375-378, 460-463

FIGURE 243

FIGURE 244

MRGPGHPLLLGLLLVLGPSPEQRVEIVPRDLRMKDKFLKHLTGPLYFSPKCSKHFHRLYHNT RDCTIPAYYKRCARLLTRLAVSPVCMEDK

FIGURE 245

GGGCTGGGCCCGCCGCAGCTCCAGCTGGCCGGCTTGGTCCTGCGGTCCCTTCTCTGGGAGG GTGGTACCTGGACCGGAATGGCTCCTGGCATCCGGGGTTTAACTGCGAGTTCTTCACCTTCT GCTGCGGGACCTGCTACCATCGGTACTGCTGCAGGGACCTGACCTTGCTTATCACCGAGAGG CAGCAGAAGCACTGCCTGGCCTTCAGCCCCAAGACCATAGCAGGCATCGCCTCAGCTGTGAT CCTCTTTGTTGCTGGTTGCCACCACCATCTGCTGCTTCCTCTGTTCCTGTTGCTACCTGT ACCGCCGGCGCCAGCAGCTCCAGAGCCCATTTGAAGGCCAGGAGATTCCAATGACAGGCATC CCAGTGCAGCCAGTATACCCATACCCCAGGACCCCAAAGCTGGCCCTGCACCCCCACAGCC TGGCTTCATGTACCCACCTAGTGGTCCTGCTCCCCAATATCCACTCTACCCAGCTGGGCCCC CAGTCTACAACCCTGCAGCTCCTCCCTATATGCCACCACAGCCCTCTTACCCGGGAGCC **TGA**GGAACCAGCCATGTCTCTGCTGCCCCTTCAGTGATGCCAACCTTGGGAGATGCCCTCAT CCTGTACCTGCATCTGGTCCTGGGGGTGGCAGGAGTCCTCCAGCCACCAGGCCCCAGACCAA GCCAAGCCCTGGGCCCTACTGGGGACAGAGCCCCAGGGAAGTGGAACAGGAGCTGAACTAGA GAGATGACAGCCTGGGTCACAGTGCCTGTTTTCAAATAGTCCCTCTGCTCCCAAGATCCCAG CCAGGAAGGCTGGGGCCCTACTGTTTGTCCCCTCTGGGCTGGGGTGGGGGGAGGAGGAGGT TCCGTCAGCAGCTGGCAGTAGCCCTCCTCTCTGGCTGCCCACTGGCCACATCTCTGGCCTG CTAGATTAAAGCTGTAAAGACAAAA

FIGURE 246

MPPAGLRRAAPLTAIALLVLGAPLVLAGEDCLWYLDRNGSWHPGFNCEFFTFCCGTCYHRYC CRDLTLLITERQQKHCLAFSPKTIAGIASAVILFVAVVATTICCFLCSCCYLYRRRQQLQSP FEGQEIPMTGIPVQPVYPYPQDPKAGPAPPQPGFMYPPSGPAPQYPLYPAGPPVYNPAAPPP YMPPQPSYPGA

Transmembrane Domains:

amino acids 10-28, 85-110

N-glycosylation Site:

amino acids 38-41

N-myristoylation Sites:

amino acids 5-10, 88-93

FIGURE 247

GGGGGAGCTAGGCCGGCGGCAGTGGTGGTGGCGCCGCGCAAGGGTGAGGGCCGCCCAGAA CCCCAGGTAGGTAGAGCAAGAAGATGGTCTTTCTGCCCCTCAAATGGTCCCTTGCAACCATG TCATTTCTACTTTCCTCACTGTTTGCTCTTTAACTGTTCCACTCCTTCATGGTGTCAGAG CACTGAAGCATCTCCAAAACGTAGTGATGGGACACCATTTCCTTGGAATAAAATACGACTTC CTGAGTACGTCATCCCAGTTCATTATGATCTCTTGATCCATGCAAACCTTACCACGCTGACC TTCTGGGGAACCACGAAAGTAGAAATCACAGCCAGTCAGCCCACCAGCACCATCATCCTGCA TAGTCACCACCTGCAGATATCTAGGGCCACCCTCAGGAAGGGACTGGAGAGAGGCTATCGGAAGACCCCTGCAGGTCCTGGAACACCCCCTCAGGAGCAAATTGCACTGCTGGCTCCCGAG CCCCTCCTTGTCGGGCTCCCGTACACAGTTGTCATTCACTATGCTGGCAATCTTTCGGAGAC CAACACAATTTGAACCCACTGCAGCTAGAATGGCCTTTCCCTGCTTTGATGAACCTGCCTTC AAAGCAAGTTTCTCAATCAAAATTAGAAGAGAGCCAAGGCACCTAGCCATCTCCAATATGCC ATTGGTGAAATCTGTGACTGTTGCTGAAGGACTCATAGAAGACCATTTTGATGTCACTGTGA AGATGAGCACCTATCTGGTGGCCTTCATCATTTCAGATTTTGAGTCTGTCAGCAAGATAACC AAGAGTGGAGTCAAGGTTTCTGTTTATGCTGTGCCAGACAAGATAAATCAAGCAGATTATGC ACTGCATGCTGCGGTCACTCTTCTAGAATTTTATGAGGATTATTTCAGCATACCGTATCCCC TACCCAAACAAGATCTTGCTGCTATTCCCGACTTTCAGTCTGGTGCTATGGAAAACTGGGGA CTGACAACATATAGAGAATCTGCTCTGTTTGTTTGATGCAGAAAAGTCTTCTGCATCAAGTAA GCTTGGCATCACAGTGACTGTGGCCCATGAACTGGCCCACCAGTGGTTTGGGAACCTGGTCA CTATGGAATGGTGGAATGATCTTTGGCTAAATGAAGGATTTGCCAAATTTATGGAGTTTGTG TCTGTCAGTGTGACCCATCCTGAACTGAAAGTTGGAGATTATTTCTTTGGCAAATGTTTTGA CGCAATGGACGTAGATGCTTTAAATTCCTCACACCCTGTGTCTACACCTGTGGAAAATCCTG CTCAGATCCGGGAGATGTTTGATGATGTTTCTTATGATAAGGGAGCTTGTATTCTGAATATG CTAAGGGAGTATCTTAGCGCTGACGCATTTAAAAGTGGTATTGTACAGTATCTCCAGAAGCA AGGGCTCTGACGGCGCCCCGGACACTGGGTACCTGTGGCATGTTCCATTGACATTCATCACCAGCAAATCCAACATGGTCCATCGATTTTTTGCTAAAAAACAAAAACAGATGTGCTCATCCTCCC AGAACAGCTGGAATGGATCAAATTTAATGTGGCATTAAGATGCTATTACGTTTACGAGTTACG AGGATGATGGAATTGGACTCATTTAATGTGCCTTTTAAAAGGAACACAACAGCAGTCAGCAGT AATGATCGGGCAAGTCTCATTAACAATGCATTTTAAGTGGTCAGCATTAGGAAGCTGTCCAT TGAAAAGGCCTTGGATTTATCCCTGTACTTGAAACATGAAACTGAAATTATGCCCGTGTTTC GAAACTCAATTCAAGGCCTTCCTCATCAGGCTGCTTAAGGGACCTCATTGATAAGCAGACATG GACAGACGAGGGCTCAGTCTCAGAGCAAATGCTGCGGAGTGAACTACTACTCCTCGCCTGTG TGCACAACTATCAGCCGTGCGTACAGAGGCTATTTCAGAAAAGTGCAAGGAATCC AATGGAAACTTGAGCCTGCCTGTCGACGTGACCTTGGCAGTGTTTGCTGTGGGGGCCCAGAG CACAGAAGGCTGGGATTTTCTTTATAGTAAATATCAGTTTTCTTTTTCTCCAGTACTGAGAAAA GCCAAATTGAATTTGCCCTCTGCAGAACCCAAAATAAGGAAAAGCTTCAATGGCTACTAGAT GAAAGCTTTAAGGGAGATAAAATAAAAACTCAGGAGTTTCCACAAATTCTTACACTCATTGG TTCTCAGCTCCGTTGTGTCCAACAGACAATTGAAACCATTGAAGAAAACATCGGTTGGATGG ATAAGAATTTTGATAAAATCAGAGTGTGGCTGCAAAGTGAAAAGCTTGAACGTATGTAAAAA CTATCCCTGTGAAAAGAATAGCTGTTAGTTTTTCATGAATGGGCTTTTTCATGAATGGGCTA TCGCTACCATGTGTTTTGTTCATCACAGGTGTTGCCCTGCAACGTAAACCCAAGTGTTGGGT

FIGURE 248

MVFLPLKWSLATMSFLLSSLLALLTVSTPSWCOSTEASPKRSDGTPFPWNKIRLPEYVIPVH YDLLIHANLTTLTFWGTTKVEITASOPTSTIILHSHHLOISRATLRKGAGERLSEEPLOVLE HPPQEQIALLAPEPLLVGLPYTVVIHYAGNLSETFHGFYKSTYRTKEGELRILASTOFEPTA ARMAFPCFDEPAFKASFSIKIRREPRHLAISNMPLVKSVTVAEGLIEDHFDVTVKMSTYLVA FIISDFESVSKITKSGVKVSVYAVPDKINOADYALDAAVTLLEFYEDYFSIPYPLPKODLAA I PDFOSGAMENWGLTTYRESALLFDAEKSSASSKLGITVTVAHELAHOWFGNLVTMEWWNDL WLNEGFAKFMEFVSVSVTHPELKVGDYFFGKCFDAMEVDALNSSHPVSTPVENPAOIREMFD DVSYDKGACILNMLREYLSADAFKSGIVOYLOKHSYKNTKNEDLWDSMASICPTDGVKGMDG FCSRSOHSSSSSHWHOEGVDVKTMMNTWTLORGFPLITITVRGRNVHMKOEHYMKGSDGAPD TGYLWHVPLTFITSKSNMVHRFLLKTKTDVLILPEEVEWIKFNVGMNGYYIVHYEDDGWDSL TGLLKGTHTAVSSNDRASLINNAFOLVSIGKLSIEKALDLSLYLKHETEIMPVFOGLNELIP MYKLMEKRDMNEVETOFKAFLIRLLRDLIDKOTWTDEGSVSEOMLRSELLLLACVHNYOPCV ORAEGYFRKWKESNGNLSLPVDVTLAVFAVGAOSTEGWDFLYSKYOFSLSSTEKSOIEFALC RTONKEKLOWLLDESFKGDKIKTOEFPOILTLIGRNPVGYPLAWOFLRKNWNKLVOKFELGS SSIAHMVMGTTNOFSTRTRLEEVKGFFSSLKENGSOLRCVOOTIETIEENIGWMDKNFDKIR VWLOSEKLERM

Signal peptide:

amino acids 1-34

N-glycosylation sites:

amino acids 70-74, 154-158, 414-418, 760-764, 901-905

 ${\tt Neutral\ zinc\ metallopeptidases,\ zinc-binding\ region\ signature:}$

amino acids 350-360

FIGURE 249

CAGCCACAGACGGGTCATGAGCGCGGTATTACTGCTGGCCCTCCTGGGGTTCATCCTCCCAC TGCCAGGAGTGCAGGCGCTGCTCTGCCAGTTTGGGACAGTTCAGCATGTGTGGAAGGTGTCC GACCTACCCCGGCAATGGACCCCTAAGAACACCAGCTGCGACAGCGGCTTGGGGTGCCAGGA CACGTTGATGCTCATTGAGAGCGGACCCCAAGTGAGCCTGGTGCTCTCCAAGGGCTGCACGG AGGCCAAGGACCAGGAGCCCCGCGTCACTGAGCACCGGATGGGCCCCGGCCTCTCCCTGATC TTGGGCCCCACAGCCCCAGCAGACCCAGGATCCTTGAGGTGCCCAGTCTGCTTGTCTATGG AAGGCTGTCTGGAGGGGACAACAGAAGAGATCTGCCCCAAGGGGACCACACTGTTATGAT CCAGCCAGGTTGCAACCTGCTCAATGGGACACAGGAAATTGGGCCCGTGGGTATGACTGAGA ACTGCAATAGGAAAGATTTTCTGACCTGTCATCGGGGGACCACCATTATGACACACGGAAAC TTGGCTCAAGAACCCACTGATTGGACCACATCGAATACCGAGATGTGCGAGGTGGGGCAGGT GTGTCAGGAGACGCTGCTCATAGATGTAGGACTCACATCAACCCTGGTGGGGACAAAAG GCTGCAGCACTGTTGGGGCTCAAAATTCCCAGAAGACCACCATCCACTCAGCCCCTCCTGGG GTGCTTGTGGCCTCCTATACCCACTTCTGCTCCTCGGACCTGTGCAATAGTGCCAGCAGCAG CAGCGTTCTGCTGAACTCCCTCCTCCAAGCTGCCCCTGTCCCAGGAGACCGGCAGTGTC CTACCTGTGTGCAGCCCCTTGGAACCTGTTCAAGTGGCTCCCCCGAATGACCTGCCCCAGG GGCGCCACTCATTGTTATGATGGGTACATTCATCTCTCAGGAGGTGGGCTGTCCACCAAAAT GAGCATTCAGGGCTGCGTGGCCCAACCTTCCAGCTTCTTGTTGAACCACACCAGACAAATCG GGGGCTGAGGGCCTGGAGTCTCTCACTTGGGGGGTGGGGCTGGCACTGGCCCCAGCGCTGTG GTGGGGAGTGGTTTGCCCTTCCTGCTAACTCTATTACCCCCACGATTCTTCACCGCTGCTGA CCACCCACACTCAACCTCCCTCTGACCTCATAACCTAATGGCCTTGGACACCAGATTCTTTC ACACTGGGGAGAGCCTGGAGCATCCGGACTTGCCCTATGGGAGAGGGGACGCTGGAGGAGTG GCTGCATGTATCTGATAATACAGACCCTGTCCTTTCA

FIGURE 250

MSAVLLLALLGFILPLPGVQALLCQFGTVQHVWKVSDLPRQWTPKNTSCDSGLGCQDTLMLI
ESGPQVSLVLSKGCTEAKDQEPRVTEHRMGPGLSLISYTFVCRQEDFCNNLVNSLPLWAPQP
PADPGSLRCPVCLSMEGCLEGTTEEICPKGTTHCYDGLLRLRGGGIFSNLRVQGCMPQPGCN
LLNGTQEIGPVGMTENCNRKDFLTCHRGTTIMTHGNLAQEPTDWTTSNTEMCEVGQVCQETL
LLIDVGLTSTLVGTKGCSTVGAQNSQKTTIHSAPPGVLVASYTHFCSSDLCNSASSSSVLIN
SLPPQAAPVPGDRQCPTCVQPLGTCSSGSPRMTCPRGATHCYDGYIHLSGGGLSTKMSIQGC
VAQPSSFLLNHTRQIGIFSAREKRDVQPPASQHEGGGAEGLESLTWGVGLALAPALWWGVVC
PSC

FIGURE 251

CAGGATGAGGGGGAATCTGGCCCTGGTGGGCGTTCTAATCAGCCTGGCCTTCCTGTCACTGCTG CCATCTGGACATCCTCAGCCGGCTGGCGATGACGCCTGCTCTGTGCAGATCCTCGTCCCTGG CCTCAAAGGGGATGCGGGAGAGAGGGGGGACAAAGGCGCCCCGGACGGCCTGGAAGAGTCG GCCCCACGGGAGAAAAAGGAGACATGGGGGACAAAGGACAGAAAGGCAGTGTGGGTCGTCAT GGAAAAATTGGTCCCATTGGCTCTAAAGGTGAGAAAGGAGATTCCGGTGACATAGGACCCCC AGATGGACAACCAGGTCTCTCAGCTGACCAGCGAGCTCAAGTTCATCAAGAATGCTGTCGCC GGTGTGCGCGAGACGGAGAGCAAGATCTACCTGCTGGTGAAGGAGGAGAAGCGCTACGCGGA CGCCCAGCTGTCCTGCCAGGGCCGCGGGGGCACGCTGAGCATGCCCAAGGACGAGGCTGCCA ATGGCCTGATGGCCGCATACCTGGCGCAAGCCGGCCTGGCCCGTGTCTTCATCGGCATCAAC GACCTGGAGAAGGAGGCGCCTTCGTGTACTCTGACCACTCCCCCATGCGGACCTTCAACAA GTGGCGCAGCGTGAGCCCAACAATGCCTACGACGAGGAGGACTGCGTGGAGATGGTGGCCT CGGGCGGCTGGAACGACGTGGCCTGCCACACCACCATGTACTTCATGTGTGAGTTTGACAAG GAGAACATGTGAGCCTCAGGCTGGGGCTGCCCATTGGGGGCCCCACATGTCCCTGCAGGGTT GGCAGGGACAGACCCAGGCCAGCCAGGCAGCCTGTCCCTCTGTGAAGGGTGGAG GCTCACTGAGTAGAGGGCTGTTGTCTAAACTGAGAAAATGGCCTATGCTTAAGAGGAAAATG AAAGTGTTCCTGGGGTGCTCTCTGAAGAAGCAGAGTTTCATTACCTGTATTGTAGCCCCA ATGTCATTATGTAATTATTACCCAGAATTGCTCTTCCATAAAGCTTGTGCCTTTGTCCAAGC

FIGURE 252

MRGNLALVGVLISLAFLSLLPSGHPQPAGDDACSVQILVPGLKGDAGEKGDKGAPGRPGRVG
PTGEKGDMGDKGQKGSVGRHGKIGPIGSKGEKGDSGDIGPPGPNGEPGLPCECSQLRKAIGE
MDNQVSQLTSELKFIKNAVAGVRETESKIYLLVKEEKRYADAQLSCQGRGGTLSMPKDEAAN
GLMAAYLAQAGLARVFIGINDLEKEGAFVYSDHSPMRTFNKWRSGEPNNAYDEEDCVEMVAS
GGWNDVACHTTMYFMCEFDKENM

FIGURE 253

AGTGACTGCAGCCTTCCTAGATCCCCTCCACTCGGTTTCTCTCTTTTGCAGGAGCACCGGCAG CACCAGTGTGTGAGGGGAGCAGCCAGCCTTGCCAGTTCCTTGATCCTGCCAGACCACC CAGCCCCGGCACAGAGCTGCTCCACAGGCACCATGAGGATCATGCTGCTATTCACAGCCAT TTCCTGGCGGGGCCGCAGCAAGAGGGATCCAGATCTCTACCAGCTGCTCCAGAGACTCTTC AAAAGCCACTCATCTCTGGAGGGATTGCTCAAAGCCCTGAGCCAGGCTAGCACAGATCCTAA GGAATCAACATCTCCCGAGAAACGTGACATGCATGACTTCTTTGTGGGACTTATGGGCAAGA GGAGCGTCCAGCCAGAGGGAAAGACAGGACCTTTCTTACCTTCAGTGAGGGTTCCTCGGCCC CTTCATCCCAATCAGCTTGGATCCACAGGAAAGTCTTCCCTGGGAACAGAGAGCCAGAGACC TTTATAAGACTCTCCTACGGATGTGAATCAAGAGAACGTCCCCAGCTTTGGCATCCTCAAGT ATCCCCGAGAGCAGAATAGGTACTCCACTTCCGGACTCCTGGACTGCATTAGGAAGACCTC TTTCCCTGTCCCAATCCCCAGGTGCGCACGCTCCTGTTACCCTTTCTCTTCCCTGTTCTTGT AACATTCTTGTGCTTTGACTCCTTCTCCATCTTTTCTACCTGACCCTGGTGTGGAAACTGCA TAGTGAATATCCCCAACCCCAATGGGCATTGACTGTAGAATACCCTAGAGTTCCTGTAGTGT CCTACATTAAAAATATAATGTCTCTCTCTATTCCTCAACAATAAAGGATTTTTGCATATGAA

FIGURE 254

 $\label{lem:main} \mbox{MRIMLLFTAILAFSLAQSFGAVCKEPQEEVVPGGGRSKRDPDLYQLLQRLFKSHSSLEGLLK} $$ ALSQASTDPKESTSPEKRDMHDFFVGLMGKRSVQPEGKTGPFLPSVRVPRPLHPNQLGSTGK $$ SSLGTEEQRPL $$ ALSQASTDPKESTSPEKRDMHDFFVGLMGKRSVQPEGKTGPFLPSVRVPRPLHPNQLGSTGK $$ ALSQASTDPKESTSPEKRDMHDFT $$ ALSQASTDPKESTSPEKRDMHDFT $$ ALSQASTDPKESTSPEKRDMHDFT $$ ALSQASTDPKESTSPEKRDMHDFT $$ ALSQASTDPKESTSPEKRDPDKSTT $$ ALSQASTDPKESTSPEKRDPDKSTT $$ ALSQASTDPKESTSPEKRDPT $$ ALSQASTDPKET $$ ALSQASTDPKET $$ ALSQASTDPKESTSPEKRDPT $$ ALSQASTDPKESTSPEKRDPT $$ ALSQASTDPKET $$ ALSQASTDPKT $$ ALSQASTDPKET $$ ALSQASTDPKT $$ ALSQASTDPKT $$ ALSQASTDPKT $$$

Important features:

Signal peptide:

amino acids 1-18

Tyrosine kinase phosphorylation site.

amino acids 36-45

N-myristoylation site.

amino acids 33-39, 59-65

Amidation site.

amino acids 90-94

Leucine zipper pattern.

amino acids 43-65

Tachykinin family signature.

amino acids 86-92

FIGURE 255

GGGCGTCTCCGGCTGCTCCTATTGAGCTGTCTGCTCGCTGTGCCCGCTGTGCCTGCTGTGCC CGCGCTGTCGCCGCTTACCGCGTCTGCTGGACGCGGGAGACGCCAGCGAGCTGGTGATTG GAGCCCTGCGGAGAGCTCAAGCGCCCAGCTCTGCCCCAGGAGCCCAGGCTGCCCCGTGAGTC ${\tt CCATAGTTGCTGCAGGAGTGGAGCC}$ ATCAGCTGCGTCCTGGGTGGTGTCATCCCCTTGGGGC TGCTGTTCCTGGTCTGCGGATCCCAAGGCTACCTCCTGCCCAACGTCACTCTCTTAGAGGAG CTGCTCAGCAAATACCAGCACAACGAGTCTCACTCCCGGGTCCGCAGAGCCATCCCCAGGGA GGACAAGGAGGAGATCCTCATGCTGCACAACAAGCTTCGGGGCCAGGTGCAGCCTCAGGCCT CCAACATGGAGTACATGGTGAGCGCCGGCCCGCCGCAGAGGCTGGCACCGGGGGTGGGGC TTGAGACAGGGTCTCACTCTGCCACTGACGCTGGAGTGCAATGGCACAATCGTCATGCCCTG AAACCT**TAG**ACTCCCGGGGTTAAGCGATCCTGCTTCAGCCTCCCAAGTAGCTGGAACTACAG GCATGCACCATGGTGCCCAGCTAGATTTTAAATATTTTGTGGAGATGGGGGTCTTGCTACGT TGCCCAGGCTGGTCTTGAACTCCTAGGCTCAAGCAATCCTCCTGCCTCAGCCTCTCAAAGTG CTAGGATTATAGGCATGAGTCACCCTGTCTGGCTCTGGCTCTGTTCTTAACATTCTGCCAAA ACAACACACGTGGGTTCCCTGTGCAGAGCCTGCCTCGTTGCCTTCATGTCACTCTTGGTAGC TCCACTGGGAACACAGCTCTCAGCCTTTCCCACCTGGAGGCAGAGTGGGGAGGGGCCCAGGG CTGGGCTTTGCTGATGCTGATCTCAGCTGTGCCACACGCTAGCTGCACCACCCTGACTTCTC GTGAGATAAGTCGAGGCTGTGAAGGGCCCGGCACAGACTGACCTGCCTCCCCAACCCCTAGG CTTTGCTAACCGGGAAAGGAGCTAACGGTGACAGAGACAGCCAAGGTCAACCCTCCCGGGT GATTGTGATGGGTGTTCCAGGTGTGGTTGGGCGATGCTGCTACTTGACCCCAAGCTCCAGTG TGGAAACTTCCTTCCTGGCTGGTTTTCCAGAACTACAGAGGAATGGACCACAGTCTTCCAGG GTCCCTCCTCGTCCACCAACCGGGAGCCTCCACCTTGGCCATCCGTCAGCTATGAATGGCTT TTTAAACAAACCCACGTCCCAGCCTGGGTAACATGGTAAAGCCCCGTCTCTACAAAAAAATC CAAGTTAGCCGGGCATGGTGGTGCGCACCTGTAGTCCCAGCTGCAGTGGGACTGAGGTGGAG GTGGAGGTGGGGGGGGGGGGGGAGGGAGGAGCCTGAGCCTGGGAAGTCGAGGCTGC AGTGAGCTGAGATTGCACCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTGTCTCAAAAA

FIGURE 256

MSCVLGGVIPLGLLFLVCGSQGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILML HNKLRGQVQPQASNMEYMVSAGSGRRGWHRGWGLGHQPALFPSQLCSPASACDGWLRVSSGR GGSRLCSVLFVCFETGSHSATDAGVQWHNRHALKP

Important features:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 27-31, 41-45

N-myristoylation site.

amino acids 126-132, 140-146

Amidation site.

amino acids 85-89

FIGURE 257

FIGURE 258

 ${\tt MGSGLPLVLLLTLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTS} \\ {\tt VTLHHARSOHHVVCNT}$

FIGURE 259

FIGURE 260

 $\verb|MIGYYLILFLMWGSSTVFCVLLIFTIAEASFSVENECLVDLCLLRICYKLSGVPNQCRVPLP| \\ |SDCSK|$

Important features:

Signal peptide:

amino acids 1-29

ħ.

123

Est.

Pak FLS

Cal

100

bele

261/330

FIGURE 261

GAGGATTTGCCACAGCAGCGGATAGAGCAGGAGGAGCACCACCGGAGCCCTTGAGACATCCTT GAGAAGAGCCACAGCATAAGAGACTGCCCTGCTTGGTGTTTTTGCAGGATGATGGTGGCCCTT CGAGGAGCTTCTGCATTGCTGGTTCTGTTCCTTGCAGCTTTTCTGCCCCCGCCGCAGTGTAC CCAGGACCCAGCCATGGTGCATTACATCTACCAGCGCTTTCGAGTCTTGGAGCAAGGGCTGG AAAAATGTACCCAAGCAACGAGGGCATACATTCAAGAATTCCAAGAGTTCTCAAAAAATATA TCTGTCATGCTGGGAAGATGTCAGACCTACACAAGTGAGTACAAGAGTGCAGTGGGTAACTT ACGAGTGCATCGTATCAGAGGACAAGACACTGGCAGAAATGTTGCTCCAAGAAGCTGAAGAA GAGAAAAAGATCCGGACTCTGCTGAATGCAAGCTGTGACAACATGCTGATGGGCATAAAGTC TTTGAAAATAGTGAAGAAGATGATGGACACACATGGCTCTTGGATGAAAGATGCTGTCTATA ACTCTCCAAAGGTGTACTTATTAATTGGATCCAGAAACAACACTGTTTGGGAATTTGCAAAC ATACGGGCATTCATGGAGGATAACACCAAGCCAGCTCCCCGGAAGCAAATCCTAACACTTTC CTGGCAGGGAACAGGCCAAGTGATCTACAAAGGTTTTCTATTTTTTCATAACCAAGCAACTT CTAATGAGATAATCAAATATAACCTGCAGAAGAGGACTGTGGAAGATCGAATGCTGCTCCCA GGAGGGGTAGGCCGAGCATTGGTTTACCAGCACTCCCCCTCAACTTACATTGACCTGGCTGT GGATGAGCATGGGCTCTGGGCCATCCACTCTGGGCCAGGCACCCATAGCCATTTGGTTCTCA CAAAGATTGAGCCGGGCACACTGGGAGTGGAGCATTCATGGGATACCCCATGCAGAAGCCAG GATGCTGAAGCCTCATTCCTCTTGTGTGGGGTTCTCTATGTGGTCTACAGTACTGGGGGCCA GGGCCCTCATCGCATCACCTGCATCTATGATCCACTGGGCACTATCAGTGAGGAGGACTTGC CCAACTTGTTCTTCCCCAAGAGACCAAGAAGTCACTCCATGATCCATTACAACCCCAGAGAT AAGCAGCTCTATGCCTGGAATGAAGGAAACCAGATCATTTACAAACTCCAGACAAAGAGAAAA GCTGCCTCTGAAGTAATGCATTACAGCTGTGAGAAAGAGCACTGTGGCTTTGGCAGCTGTTC AGTGTGTAGAAGTGGAAATACGTATGCCTCCTTTCCCAAATGTCACTGCCTTAGGTATCTTC CAAGAGCTTAGATGAGAGCATATCATCAGGAAAGTTTCAACAATGTCCATTACTCCCCCAAA CCTCCTGGCTCTCAAGGATGACCACATTCTGATACAGCCTACTTCAAGCCTTTTGTTTTACT CCCTAATATTCACCACTGGCTTTTCTCTCCCCTGGCCTTTGCTGAAGCTCTTCCCTCTTTTT CAAATGTCTATTGATATTCTCCCATTTTCACTGCCCAACTAAAATACTATTAATATTTCTTT CTTTTCTTTTCTTTTTTTGAGACAAGGTCTCACTATGTTGCCCAGGCTGGTCTCAAACTCC AGAGCTCAAGAGATCCTCCTGCCTCAGCCTCCTAAGTACCTGGGATTACAGGCATGTGCCAC CACACCTGGCTTAAAATACTATTTCTTATTGAGGTTTAACCTCTATTTCCCCTAGCCCTGTC CTTCCACTAAGCTTGGTAGATGTAATAATAAAGTGAAAATATTAACATTTGAATATCGCTTT CCAGGTGTGGAGTGTTTGCACATCATTGAATTCTCGTTTCACCTTTGTGAAACATGCACAAG TCTTTACAGCTGTCATTCTAGAGTTTAGGTGAGTAACACAATTACAAAGTGAAAGATACAGC TAGAAAATACTACAAATCCCATAGTTTTTCCATTGCCCAAGGAAGCATCAAATACGTATGTT TGTTCACCTACTCTTATAGTCAATGCGTTCATCGTTTCAGCCTAAAAATAATAGTCTGTCCC TTTAGCCAGTTTTCATGTCTGCACAAGACCTTTCAATAGGCCTTTCAAATGATAATTCCTCC AGAAAACCAGTCTAAGGGTGAGGACCCCAACTCTAGCCTCCTCTTGTCTTGCTGTCCTCTGT

FIGURE 262

MMVALRGASALLVLFLAAFLPPPQCTQDPAMVHYIYQRFRVLEQGLEKCTQATRAYIQEFQE
FSKNISVMLGRCQTYTSEYKSAVGNLALRVERAQREIDYIQYLREADECIVSEDKTLAEMLL
QEAEEEKKIRTLLNASCDNMLMGIKSLKIVKKMMDTHGSWMKDAVYNSPKVYLLIGSRNNTV
WEFANIRAFMEDNTKPAPRKQILTLSWQGTGQVIYKGFLFFHNQATSNEIIKYNLQKRTVED
RMLLPGGVGRALVYQHSPSTYIDLAVDEHGLWAIHSGPGTHSHLVLTKIEPGTLGVEHSWDT
PCRSQDAEASFLLCGVLYVVYSTGGQGPHRITCIYDPLGTISEEDLPNLFFPKRPRSHSMIH
YNPRDKQLYAWNEGNQIIYKLQTKRKLPLK

FIGURE 263

GGGCGCCGCGTACTCACTAGCTGAGGTGGCAGTGGTTCCACCAACATGGAGCTCTCGCAGA TGTCGGAGCTCATGGGGCTGTCGGTGTTGCTTGGGCTGCTGGCCCTGATGGCGACGGCGGCG AAATGGATTTCCACCTGACAAATCTTCGGGATCCAAGAAGCAGAAACAATATCAGCGGATTC GGAAGGAGAACCTCAACAACACACTTCACCCACCGCCTCCTGGCTGCAGCTCTGAAGAGC CACAGCGGGAACATATCTTGCATGGACTTTAGCAGCAATGGCAAATACCTGGCTACCTGTGC AGATGATCGCACCATCCGCATCTGGAGCACCAAGGACTTCCTGCAGCGAGAGCACCGCAGCA TGAGAGCCAACGTGGAGCTGGACCACGCCACCCTGGTGCGCTTCAGCCCTGACTGCAGAGCC TTCATCGTCTGGCTGGCCAACGGGGACACCCTCCGTGTCTTCAAGATGACCAAGCGGGAGGA TGGGGGCTACACCTTCACAGCCACCCCAGAGGACTTCCCTAAAAAGCACAAGGCGCCTGTCA TCGACATTGCCATTGCTAACACAGGGAAGTTTATCATGACTGCCTCCAGTGACACCACTGTC ACACGCTGCTGTATCTCCCTGTGGCAGATTTGTAGCCTCGTGTGGCTTCACCCCAGATGTGA AGGTTTGGGAAGTCTGCTTTGGAAAGAGGGGGAGTTCCAGGAGGTGGTGCGAGCCTTCGAA CTAAAGGGCCACTCCGCGGCTGTGCACTCGTTTGCTTTCTCCAACGACTCACGGAGGATGGC TTCTGTCTCCAAGGATGGTACATGGAAACTGTGGGACACAGATGTGGAATACAAGAAGAAGC AGGACCCTACTTGCTGAAGACAGGCCGCTTTGAAGAGGCGGCGGTGCCGCCGTGCCGC CTGGCCCTCTCCCCCAACGCCCAGGTCTTGGCCTTGGCCAGTGGCAGTAGTATTCATCTCTA CAATACCCGGCGGGCGAGAAGGAGGAGTGCTTTGAGCGGGTCCATGGCGAGTGTATCGCCA ACTTGTCCTTTGACATCACTGGCCGCTTTCTGGCCTCCTGTGGGGACCGGGCGGTGCGGCTG TTTCACAACACTCCTGGCCACCGAGCCATGGTGGAGGAGATGCAGGGCCACCTGAAGCGGGC CTCCAACGAGAGCACCCGCCAGAGGCTGCAGCAGCAGCTGACCCAGGCCCAAGAGACCCTGA AGAGCCTGGGTGCCCTGAAGAAGTGACTCTGGGAGGGCCCGGCGCAGAGGATTGAGGAGGAG GGATCTGGCCTCCTCATGGCACTGCTGCCATCTTTCCTCCCAGGTGGAAGCCTTTCAGAAGG AGTCTCCTGGTTTTCTTACTGGTGGCCCTGCTTCTTCCCATTGAAACTACTCTTGTCTACTT AGGTCTCTCTCTTGCTGGCTGTGACTCCTCCCTGACTAGTGGCCAAGGTGCTTTTCTTC CTCCCAGGCCCAGTGGGTGGAATCTGTCCCCACCTGGCACTGAGGAGAATGGTAGAGAGGAG AGGAGAGAGAGAGAATGTGATTTTTGGCCTTGTGGCAGCACATCCTCACACCCAAAGAAG TTTGTAAATGTTCCAGAACAACCTAGAGAACACCTGAGTACTAAGCAGCAGTTTTGCAAGGA TGGGAGACTGGGATAGCTTCCCATCACAGAACTGTGTTCCATCAAAAAGACACTAAGGGATT TCCTTCTGGGCCTCAGTTCTATTTGTAAGATGGAGAATAATCCTCTCTGTGAACTCCTTGCA AAGATGATATGAGGCTAAGAGAATATCAAGTCCCCAGGTCTGGAAGAAAAGTAGAAAAGAGT AGTACTATTGTCCAATGTCATGAAAGTGGTAAAAGTGGGAACCAGTGTGCTTTGAAACCAAA TTAGAAACACATTCCTTGGGAAGGCAAAGTTTTCTGGGACTTGATCATACATTTTATATGGT TGGGACTTCTCTCTGGGAGATGATATCTTGTTTAAGGAGACCTCTTTTCAGTTCATCAAG

FIGURE 264

MELSQMSELMGLSVLLGLLALMATAAVARGWLRAGEERSGRPACQKANGFPPDKSSGSKKQK
QYQRIRKEKPQQHNFTHRLLAAALKSHSGNISCMDFSSNGKYLATCADDRTIRIWSTKDFLQ
REHRSMRANVELDHATLVRFSPDCRAFIVWLANGDTLRVFKMTKREDGGYTFTATPEDFPKK
HKAPVIDIGIANTGKFIMTASSDTTVLIWSLKGQVLSTINTNQMNNTHAAVSPCGRFVASCG
FTPDVKVWEVCFGKKGEFQEVVRAFELKGHSAAVHSFAFSNDSRRMASVSKDGTWKLWDTDV
EYKKKQDPYLLKTGRFEEAAGAAPCRLALSPNAQVLALASGSSIHLYNTRRGEKEECFERVH
GECIANLSFDITGRFLASCGDRAVRLFHNTPGHRAMVEEMQGHLKRASNESTRQRLQQQLTQ
AOETLKSLGALKK

Important features:

Signal peptide:

amino acids 1-25

N-glycosylation site.

amino acids 76-80, 92-96, 231-235, 289-293, 378-382, 421-425

Beta-transducin family Trp-Asp repeat protein.

amino acids 30-47, 105-118, 107-119, 203-216, 205-217, 296-308

FIGURE 265

CAGTGTTTTGCCTTCACCCCAAGTGACCATGAGAGGTGCCACGCGAGTCTCAATCATGCTCC TCCTAGTAACTGTGTCTGACTGTGCTGTGATCACAGGGGCCTGTGAGCGGGATGTCCAGTGT GGGGCAGGCACCTGCTGTGCCATCAGCCTGTGGCTTCGAGGGCTGCGGATGTGCACCCCGCT GGGGCGGAAGGCGAGGAGTGCCACCCGGCAGCCACAAGGTCCCCTTCTTCAGGAAACGCA AGCACCACACCTGTCCTTGCCCAACCTGCTGTGCTCCAGGTTCCCGGACGGCAGGTAC CGCTGCTCCATGGACTTGAAGAACATCAATTTT**TAG**GCGCTTGCCTGGTCTCAGGATACCCA CCATCCTTTTCCTGAGCACAGCCTGGATTTTTTTTTTCTGCCATGAAACCCAGCTCCCATGAC TCTCCCAGTCCCTACACTGACTACCCTGATCTCTCTTGTCTAGTACGCACATATGCACACAG GCAGACATACCTCCCATCATGACATGGTCCCCAGGCTGGCCTGAGGATGTCACAGCTTGAGG CTGTGGTGTGAAAGGTGGCCAGCCTGGTTCTCTCCCTGCTCAGGCTGCCAGAGAGGTGGTA AATGCCAGAAAGGACATTCCCCCTCCCCTCCCCAGGTGACCTGCTCTCTTTCCTGGGCCCTG CCCCTCTCCCCACATGTATCCCTCGGTCTGAATTAGACATTCCTGGGCACAGGCTCTTGGGT GCATTGCTCAGAGTCCCAGGTCCTGACCCTCAGGCCCTTCACGTGAGGTCTGTGAGG ACCAATTTGTGGGTAGTTCATCTTCCCTCGATTGGTTAACTCCTTAGTTTCAGACCACAGAC TCAAGATTGGCTCTTCCCAGAGGGCAGCAGACACTCACCCCAAGGCAGGTGTAGGGAGCCCA GGGAGGCCAATCAGCCCCCTGAAGACTCTGGTCCCAGTCAGCCTGTGGCCTTGTGGCCTGTGA CCTGTGACCTTCTGCCAGAATTGTCATGCCTCTGAGGCCCCCTCTTACCACACTTTACCAGT TAACCACTGAAGCCCCCAATTCCCACAGCTTTTCCATTAAAATGCAAATGGTGGTGGTTCAA TCTAATCTGATATTGACATATTAGAAGGCAATTAGGGTGTTTCCTTAAACAACTCCTTTCCA AGGATCAGCCCTGAGAGCAGGTTGGTGACTTTGAGGAGGGCAGTCCTCTGTCCAGATTGGGG TGGGAGCAAGGGACAGGGCAGGGCAGGGGCTGAAAGGGGCACTGATTCAGACCAGGGAGG CAACTACACCAACATGCTGGCTTTAGAATAAAAGCACCAACTGAAAAAA

FIGURE 266

Signal peptide:

amino acids 1-19

Tyrosine kinase phosphorylation site:

amino acids 88-95

N-myristoylation sites:

amino acids 33-39, 35-41, 46-52

FIGURE 267

 $\tt AGCGCCGGGCGTCGGGGGGGTAAAAGGCCGGCAGAAGGGAGGCACTTGAGAAATGTCTTTC$ CTCCAGGACCCAAGTTTCTTCACCATGGGGATGTGGTCCATTGGTGCAGGAGCCCTGGGGGC TGCTGCCTTGGCATTGCTGCTTGCCAACACAGACGTGTTTCTGTCCAAGCCCCAGAAAGCGG CCCTGGAGTACCTGGAGGATATAGACCTGAAAACACTGGAGAAGGAACCAAGGACTTTCAAA GCAAAGGAGCTATGGGAAAAAAATGGAGCTGTGATTATGGCCGTGCGGAGGCCAGGCTGTTT CCTCTGTCGAGAGGAAGCTGCGGATCTGTCCTCCTGAAAAGCATGTTGGACCAGCTGGGCG TCCCCCTCTATGCAGTGGTAAAGGAGCACATCAGGACTGAAGTGAAGGATTTCCAGCCTTAT TTCAAAGGAGAAATCTTCCTGGATGAAAAGAAAAAGTTCTATGGTCCACAAAGGCGGAAGAT GATGTTTATGGGATTTATCCGTCTGGGAGTGTGGTACAACTTCTTCCGAGCCTGGAACGGAG GCTTCTCTGGAAACCTGGAAGGAGAAGGCTTCATCCTTGGGGGAGTTTTCGTGGTGGGATCA GGAAAGCAGGGCATTCTTCTTGAGCACCGAGAAAAAGAATTTGGAGACAAAGTAAACCTACT TTCTGTTCTGGAAGCTGCTAAGATGATCAAACCACAGACTTTGGCCTCAGAGAAAAAATGAT TGTGTGAAACTGCCCAGCTCAGGGATAACCAGGGACATTCACCTGTGTTCATGGGATGTATT GTTTCCACTCGTGTCCCTAAGGAGTGAGAAACCCATTTATACTCTACTCTCAGTATGGATTA TTAATGTATTTTAATATTCTGTTTAGGCCCACTAAGGCAAAATAGCCCCAAAACAAGACTGA CAAAAATCTGAAAAACTAATGAGGATTATTAAGCTAAAACCTGGGAAATAGGAGGCTTAAAA TTGACTGCCAGGCTGGGTGCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGG TGAGCAAGTCACTTGAGGTCGGGAGTTCGAGACCAGCCTGAGCAACATGGCGAAACCCCGTC TCTACTAAAAATACAAAAATCACCCGGGTGTGGTGGCAGCACCTGTAGTCCCAGCTACCCG GGAGGCTGAGGCAGGAGATCACTTGAACCTGGGAGGTGGAGGTTGCGGTGAGCTGAGATCA

FIGURE 268

MSFLQDPSFFTMGMWSIGAGALGAALALLLANTDVFLSKPQKAALEYLEDIDLKTLEKEPR TFKAKELWEKNGAVIMAVRRPGCFLCREEAADLSSLKSMLDQLGVPLYAVVKEHIRTEVKDF QPYFKGEIFLDEKKKFYGPQRRKMMFMGFIRLGVWYNFFRAWNGGFSGNLEGEGFILGGVFV VGSGKQGILLEHREKEFGDKVNLLSVLEAAKMIKPQTLASEKK

FIGURE 269

FIGURE 270

MAN PGLGLLLALGLPFLLARWGRAWGQIQTTSANENSTVLPSSTSSSSDGNLRPEAITAIIV VFSLLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQFSHAAEARAPQDSKETVQGCLPI

FIGURE 271

FIGURE 272

 $\verb|MTFFLSLLLLLVCEAIWRSNSGSNTLENGYFLSRNKENHSQPTQSSLEDSVTPTKAVKTTGK|\\ GIVKGRNLDSRGLILGAEAWGRGVKKNT|$

FIGURE 273

GCCAGGAATAACTAGAGGGAACAATGGGGTTATTCAGAGGTTTTTGTTTTCCTCTTAGTTCT GTGCCTGCTGCACCAGTCAAATACTTCCTTCATTAAGCTGAATAATAATGGCTTTGAAGATA TTGTCATTGTTATAGATCCTAGTGTGCCAGAAGATGAAAAATAATTGAACAAATAGAGGAT TGTATCTATATTAATTCCTGAGAATTGGAAGGAAAATCCTCAGTACAAAAGGCCAAAACATG AAAACCATAAACATGCTGATGTTATAGTTGCACCACCTACACTCCCAGGTAGAGATGAACCA TACACCAAGCAGTTCACAGAATGTGGAGAGAAAGGCGAATACATTCACTTCACCCCTGACCT TCTACTTGGAAAAAAACAAATGAATATGGACCACCAGGCAAACTGTTTGTCCATGAGTGGG CTCACCTCCGGTGGGGAGTGTTTGATGAGTACAATGAAGATCAGCCTTTCTACCGTGCTAAG TCAAAAAAATCGAAGCAACAAGGTGTTCCGCAGGTATCTCTGGTAGAAATAGAGTTTATAA GTGTCAAGGAGCAGCTGTCTTAGTAGAGCATGCAGAATTGATTCTACAACAAAACTGTATG GAAAAGATTGTCAATTCTTTCCTGATAAAGTACAAACAGAAAAAGCATCCATAATGTTTATG CAAAGTATTGATTCTGTTGTTGAATTTTGTAACGAAAAAACCCATAATCAAGAAGCTCCAAG CCTACAAAACATAAAGTGCAATTTTAGAAGTACATGGGAGGTGATTAGCAATTCTGAGGATT TTAAAAACACCATACCCATGGTGACACCACCTCCCCCCCTGTCTTCTCATTGCTGAAGATC AGTCAAAGAATTGTGTGCTTAGTTCTTGATAAGTCTGGAAGCATGGGGGGTAAGGACCGCCT AAATCGAATGAATCAAGCAGCAAAACATTTCCTGCTGCAGCTGTTGAAAATGGATCCTGG TGGGGATTGGTTCACTTTGATAGTACTACTGCCACTATTGTAAATAAGCTAATTCAAATAAAAAGC AGTGATGAAAGAAACACACTCATGGCAGGATTACCTACATATCCTCTGGGAGGAACTTCCAT CTGCTCTGGAATTAAATATGCATTTCAGGTGATTGGAGGGCTACATTCCCAACTCGATGGAT CCGAAGTACTGCTGCTGACTGATGGGGAGGATAACACTGCAAGTTCTTGTATTGATGAAGTG AAACAAAGTGGGGCCATTGTTCATTTTATTGCTTTGGGAAGAGCTGCTGATGAAGCAGTAAT AGAGATGAGCAAGATAACAGGAGGAAGTCATTTTTATGTTTCAGATGAAGCTCAGAACAATG GCCTCATTGATGCTTTTTGGGGCTCTTACATCAGGAAATACTGATCTCTCCCAGAAGTCCCTT CAGCTCGAAAGTAAGGGATTAACACTGAATAGTAATGCCTGGATGAACGACACTGTCATAAT TGATAGTACAGTGGGAAAGGACACGTTCTTTCTCATCACATGGAACAGTCTGCCTCCCAGTA TTTCTCTCTGGGATCCCAGTGGAACAATAATGGAAAATTTCACAGTGGATGCAACTTCCAAA ATGGCCTATCTCAGTATTCCAGGAACTGCAAAGGTGGGCACTTGGGCATACAATCTTCAAGC CAAAGCGAACCCAGAAACATTAACTATTACAGTAACTTCTCGAGCAGCAAATTCTTCTGTGC CTCCAATCACAGTGAATGCTAAAATGAATAAGGACGTAAACAGTTTCCCCAGCCCAATGATT GTTTACGCAGAAATTCTACAAGGATATGTACCTGTTCTTGGAGCCAATGTGACTGCTTTCAT TGAATCACAGAATGGACATACAGAAGTTTTTGGAACTTTTTGGATAATGGTGCAGGCGCTGATT CTTTCAAGAATGATGGAGTCTACTCCAGGTATTTTACAGCATATACAGAAAATGGCAGATAT AGCTTAAAAGTTCGGGCTCATGGAGGAGCAAACACTGCCAGGCTAAAATTACGGCCTCCACT GAATAGAGCCGCGTACATACCAGGCTGGGTAGTGAACGGGGAAATTGAAGCAAACCCGCCAA GACCTGAAATTGATGAGGATACTCAGACCACCTTGGAGGATTTCAGCCGAACAGCATCCGGA GGTGCATTTGTGGTATCACAAGTCCCAAGCCTTCCCTTGCCTGACCAATACCCACCAAGTCA AATCACAGACCTTGATGCCACAGTTCATGAGGATAAGATTATTCTTACATGGACAGCACCAG GAGATAATTTTGATGTTGGAAAAGTTCAACGTTATATCATAAGAATAAGTGCAAGTATTCTT GATCTAAGAGACAGTTTTGATGATGCTCTTCAAGTAAATACTACTGATCTGTCACCAAAGGA GGCCAACTCCAAGGAAAGCTTTGCATTTAAACCAGAAAATATCTCAGAAGAAAATGCAACCC ACATATTTATTGCCATTAAAAGTATAGATAAAAGCAATTTGACATCAAAAGTATCCAACAT GCACAAGTAACTTTGTTTATCCCTCAAGCAAATCCTGATGACATTGATCCTACACCTACTCC TACTCCTACTCCTACTCCTGATAAAAGTCATAATTCTGGAGTTAATATTTCTACGCTGGTAT TGTCTGTGATTGGGTCTGTTGTAATTGTTAACTTTATTTTAAGTACCACCATT**TGA**ACCTTA ACGAAGAAAAAATCTTCAAGTAGACCTAGAAGAGAGTTTTAAAAAAACAAAACAATGTAAGT AAAGGATATTTCTGAATCTTAAAATTCATCCCATGTGTGATCATAAACTCATAAAAATAATT TTAAGATGTCGGAAAAGGATACTTTGATTAAATAAAAACACTCATGGATATGTAAAAACTGT

FIGURE 274

MGLFRGFVFLLVLCLLHQSNTSFIKLNNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTTASTY
LFEATEKRFFFKNVSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTEC
GEKGEYIHFTPDLLLGKKQNEYGPPGKLFVHEWAHLRWGVFDEYNEDQPFYRAKSKKIEATR
CSAGISGRNRVYKCQGGSCLSRACRIDSTTKLYGKDCQFFPDKVQTEKASIMFMQSIDSVVE
FCNEKTHNQEAPSLQNIKCNFFSTWEVISNSEDFKNTIPMVTPPPPPPVFSLLKISQRIVCLV
LDKSGSMGGKDRLNRMNQAAKHFLLQTVENGSWVGMVHFDSTATIVNKLIQIKSSDERNTLM
AGLPTYPLGGTSICSGIKYAFQVIGELHSQLDGSEVLLLTDGEDNTASSCIDEVKQSGAIVH
FIALGRAADEAVIEMSKITGGSHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGLT
LNSNAWMNDTVIIDSTVGKDTFFLITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPG
TAKVGTWAYNLQAKANPETLTITVTSRAANSSVPPITVNAKMNKDVNSFPSPMIVYAEILQG
YVPVLGANVTAFIESQNGHTEVLELLDNGAGADSFKNDGVYSRYFTAYTENGRYSLKVRAQV
PSLPLPDQYPPSQITDLDATVHEDKIILTWTAPGDNFDVGKVQRYIIRISASILDLRDSFDD
ALQVNTTDLSPKEANSKESFAFKPENISEENATHIFIAIKSIDKSNLTSKVSNIAQVTLFIP

Signal peptide:

amino acids 1-21

Putative transmembrane domains:

amino acids 284-300, 617-633

Leucine zipper pattern.

amino acids 469-491, 476-498

N-qlycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592, 628-632, 811-815, 832-836, 837-841, 852-856, 896-900

FIGURE 275

CTCCTTAGGTGGAAACCCTGGGAGTAGAGTACTGACAGCAAAGACCGGGAAAGACCATACGTCCCCG GCAGCCTGAAGCGGCAGATCGCACAGCTCAAGGAGGAGCTGCAGGAGAGGAGTGAGCAGCTCAGGAA CCTTACCCGCCACCCCGAGGAGAAGCCTGTGAGGAAGGACAAGCGGGATGAGTTGGTGGAAGCCATT GAATCAGCCTTGGAGACCCTGAACAATCCTGCAGAGAACAGCCCCAATCACCGTCCTTGAACAGGGCCT CTGATTTCATAGAAGGGATCTACCGAACAGAAAGGGACAAAGGGACATTCTATGAGCTCACCTTCAAAAGGGGACCACAAAACACGAATTCAAACGGCTCATCTTATTTCGACCATTCAGCCCCATCATGAAAGTG CTTCGCAAACAGAAACAGAAGACAAGTAGCAAAAAAAACATGAACTCCCAGAGAAGGATTGTGGGAGA CACTITITCTTCCTTTTGCAATTACTGAAAGTGCTCGCAACAGAGAAAGACTTCCATTAAGGACGACAAAAGAATTGGACTGCTCAGAAGGACTCCCATTTTTAC TAGCATGAAAGGCAAGCATATTTCTCCTCATATGAATGAGCCTATCAGCAGGGCTCTAGTTTCTAGG AATGCTAAAATATCAGAAGGCAGGAGAGAGAGATAGGCTTATTATGATACTAGTGAGTACATTAAGTA AAATAAAATGGACCAGAAAAGAAAAGAAACCATAAATATCGTGTCATATTTTCCCCAAGATTAACCA AAATAAATIGACCAGAAAAAAAAAAATATICIGICATTITICTATAAAAA AAAATAATCGCTTATCTTTTTGGTTGCCTTTAAACAGTCCCGTTTTTTCTTTATTAAAAA GCACTTTTTTCCCTTGTAACAAGAGA GCACAGTTTTTTCCCTTGCAGTATAAGTCTGCTTATTTAATACCACTTTGCAAGCCTTACAAGAGA GCACAGTTGCCTTACATTTTTTATATTTTTTAAGAAGAATACTTTGAGATCGATTATAGAAGACTTTCA GTTCAAAGCATCAAATTGATGCCATATCCAAGGACATGCCAAATGCTGATTCTGTCAGGCACTGAAT GTCAGGCATTGAGACATAGGGAAGGAATGGTTTGTACTAATACAGACGTACAGATACTTTCTCTGAA GAGTATTTTCGAAGAGGAGCAACTGAACACTGGAGGAAAAGAAAATGACACTTTCTGCTTTACAGAA AAGGAAACTCATTCAGACTGGTGATATCGTGATGTACCTAAAAGTCAGAAACCACATTTTCTCCTCA AGGCCATGAATGGAAGGTGGTATTGCACAGCTAATAAAATATGATTTGTGGATATGAA

FIGURE 276

MMMVRRGLLAWISRVVVLLVLLCCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQ
EWEEQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFL
HSQVDKAEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIES
ALETLNNPAENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKHEFKRLILFRPFSPI
MKVKNEKLNMANTLINVIVPLAKRVDKFRQFMQNFREMCIEQDGRVHLTVVYFGKEEINEVK
GILENTSKAANFRNFTFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCR
LNTQPGKKVFYPVLFSQYNPGIIYGHHDAVPPLEQQLVIKKETGFWRDFGFGMTCQYRSDFI
NIGGFDLDIKGWGGEDVHLYRKYLHSNLIVVRTPVRGLFHLWHEKRCMDELTPEQYKMCMQS
KAMNEASHGOLGMLVFRHEIEAHLRKOKOKTSSKKT

FIGURE 277

GAAAGA**ATG**TTGTGGCTGCTCTTTTTTCTGGTGACTGCCATTCATGCTGAACTCTGTCAACC AGGTGCAGAAAATGCTTTTAAAGTGAGACTTAGTATCAGAACAGCTCTGGGAGATAAAGCAT ATGCCTGGGATACCAATGAAGAATACCTCTTCAAAGCGATGGTAGCTTTCTCCATGAGAAAA GTTCCCAACAGAAACAGAAATTTCCCATGTCCTACTTTGCAATGTAACCCAGAGGGT ATCATTCTGGTTTGTGGTTACAGACCCTTCAAAAAATCACACCCTTCCTGCTGTTGAGGTGC CTGGAATTTTTAAAAATCCCTTCCACACTTGCACCACCCATGGACCCATCTGTGCCCATCTG GATTATTATATTTGGTGTGATATTTTGCATCATCATAGTTGCAATTGCACTACTGATTTTAT CAGGGATCTGGCAACGTAGAAGAAGAACAAAGAACCATCTGAAGTGGATGACGCTGAAGAT AAGTGTGAAAACATGATCACAATTGAAAATGGCATCCCCTCTGATCCCCTGGACATGAAGGG GGGCATATTAATGATGCCTTCATGACAGAGGATGAGAGGCTCACCCCTCTCTGAAGGGCTGT TGTTCTGCTTCCTCAAGAAATTAAACATTTGTTTCTGTGTGACTGCTGAGCATCCTGAAATA CCAAGAGCAGATCATATTTTTGTTTCACCATTCTTCTTTTGTAATAATTTTGAATGTGCT TGAAAGTGAAAAGCAATCAATTATACCCACCAACACCCACTGAAATCATAAGCTATTCACGAC TCAAAATATTCTAAAATATTTTCTGACAGTATAGTGTATAAATGTGGTCATGTGGTATTTG TAGTTATTGATTTAAGCATTTTTAGAAATAAGATCAGGCATATGTATATATTTTCACACTTC AAAGACCTAAGGAAAAATTATCCAGTGGAGAATACATATAATATGGTGTAGAAATCAT TGAAAATGGATCCTTTTTGACGATCACTTATATCACTCTGTATATGACTAAGTAAACAAAAG TGAGAAGTAATTATTGTAAATGGATGGATAAAAATGGAATTACTCATATACAGGGTGGAATT TTATCCTGTTATCACACCAACAGTTGATTATATATTTTCTGAATATCAGCCCCTAATAGGAC AATTCTATTTGTTGACCATTTCTACAATTTGTAAAAGTCCAATCTGTGCTAACTTAATAAAG

FIGURE 278

MLWLLFFLVTAIHAELCQPGAENAFKVRLSIRTALGDKAYAWDTNEEYLFKAMVÁFSMRKVP NREATEISHVLLCNVTQRVSFWFVVTDPSKNHTLPAVEVQSAIRMNKNRINNAFFLNDQTLE FLKIPSTLAPPMDPSVPIWIIIFGVIFCIIIVAIALLILSGIWQRRRKNKEPSEVDDAEDKC ENMITIENGIPSDPLDMKGGILMMPS

FIGURE 279

AACTCAAACTCCTCTCTGGGAAAACGCGGTGCTTGCTCCTCCCGGAGTGGCCTTGGCAGG GTGTTGGAGCCCTCGGTCTGCCCCGTCCGGTCTCTGGGGCCAAGGCTGGGTTTCCCTCATGT ATGGCAAGAGCTCTACTCGTGCGGTGCTTCTTCTCCTTTGGCATACAGCTCACAGCTCTTTGG CCTATAGCAGCTGTGGAAATTTATACCTCCCGGGTGCTGGAGGCTGTTAATGGGACAGATGC TCGGTTAAAATGCACTTTCTCCAGCTTTGCCCCTGTGGGTGATGCTCTAACAGTGACCTGGA ATTTTCGTCCTCTAGACGGGGGACCTGAGCAGTTTGTATTCTACTACCACATAGATCCCTTC CAACCCATGAGTGGGCGGTTTAAGGACCGGGTGTCTTGGGATGGGAATCCTGAGCGGTACGA TGCCTCCATCCTTCTCTGGAAACTGCAGTTCGACGACAATGGGACATACACCTGCCAGGTGA AGAACCCACCTGATGTTGATGGGGTGATAGGGGAGATCCGGCTCAGCGTCGTGCACACTGTA CGCTTCTCTGAGATCCACTTCCTGGCTCTGGCCATTGGCTCTGCCTGTGCACTGATGATCAT AATAGTAATTGTAGTGGTCCTCTTCCAGCATTACCGGAAAAAGCGATGGGCCGAAAGAGCTC ATAAAGTGGTGGAGATAAAATCAAAAGAAGAGGAAAGGCTCAACCAAGAGAAAAAGGTCTCT GTTTATTTAGAAGACACAGACTAACAATTTTAGATGGAAGCTGAGATGATTTCCAAGAACAA GAACCCTAGTATTTCTTGAAGTTAATGGAAACTTTTCTTTGGCTTTTCCAGTTGTGACCCGT TTTCCAACCAGTTCTGCAGCATATTAGATTCTAGACAAGCAACACCCCTCTGGAGCCAGCAC AGTGCTCCTCCATATCACCAGTCATACACACCCTCATTATTAAGGTCTTATTTAATTTCAGA GTGTAAATTTTTCAAGTGCTCATTAGGTTTTATAAACAAGAAGCTACATTTTTGCCCCTTAA GACACTACTTACAGTGTTATGACTTGTATACACATATATTGGTATCAAAGGGGATAAAAGCC AATTTGTCTGTTACATTTCCTTTCACGTATTTCTTTTAGCAGCACTTCTGCTACTAAAGTTA ATGTGTTTACTCTCTTCCCACATTCTCAATTAAAAGGTGAGCTAAGCCTCCTCGGTG TTTGTCG

FIGURE 280

MYGKSSTRAVLLLIGIQLTALWPIAAVEIYTSRVLEAVNGTDARLKCTFSSFAPVGDALTVT WNFRPLDGGPEQFVFYYHIDPFQPMSGRFKDRVSWDGNPERYDASILLWKLQFDDNGTYTCQ VKNPPDVDGVIGEIRLSVVHTVRFSEIHFLALAIGSACALMIIIVIVVVLFQHYRKKRWAER AHKVVEIKSKEEERLNQEKKVSVYLEDTD

FIGURE 281

FIGURE 282

 ${\tt MKFLAVLVLLGVSIFLVSAQNPTTAAPADTYPATGPADDEAPDAETTAAATTATTAAPTTAT}$ ${\tt TAASTTARKDIPVLPKWVGDLPNGRVCP}$

FIGURE 283

GGACTCTGAAGGTCCCAAGCAGCTGCTGAGGCCCCCAAGGAAGTGGTTCCAACCTTGGACCC
CTAGGGGTCTGGATTTGCTGGTTAACAAGATAACCTGAGGGCAGGACCCCATAGGGGAATGC
TACCTCCTGCCCTTCCACCTGCCCTGGTGTTCACGGTGGCCTGGTCCCTCCTTGCCGAGAGA
GTGTCCTGGGTCAGGGACGCAGAGACGCTCACAGACTCCAGCCCTTTGTTACCGAGAGGAC
ACTTGGCAAGGTCCAGCAGTGTCCGGAGTCCACACACAGACTGGCGGCAGGGCAGGAGGGG
GACAGTTCTGTTGTTGGTTGGACAGTAAGAGGGTCTTGGCCAGTCACGGGTGGGGGC
GCAAACTCCATAAAGAACACAGAGGGTCTGGGCCCCGGCCACAGAGTCATCTGCCCAGCTCCT
CTGCTTGCTGGCCAGTGGGAGTGCCACGAGGTCTTGTCCCAGTAAAACACCAGGCTGG
ATTTGCCTGCGGGCCATGGTCCCTGTCTAGGGCAGAATTCTCAACCTTCTTGCTCTCAGGA
CCCCAAAGAGCTTTCATTGATCTATTGATTTTTACCACATTAGCAATTAAAACTGAGAAAT
GGGCCGGCCACGGCTGGCCACACACTGGTGAACCTTGTTCTACAAAAA
TACAAAAAATTAGCACGCACAGTGGTGCACTGGCCACAGTTGCCCAGTTGCTCACAGAC
TCCAGGAAAATCGCTTGAACCCAGGAGGGCGGACGTTGCCCAGTTACTCGGGAGGCCGAGCTGGC
GCAGGAAAATCGCTTGAACCCAGGAGGGCGGACGTTGCCCAGGATCGCCCCCTGAT
TCCAGCCTGGGGACAAAAGATGAGACTCCAGCTTCTCACACA
TCCAGCCTGGGGACAAAAACTTGAGAACTCCAGCTTCTCACACA

FIGURE 284

 ${\tt MLPPALPPALVFTVAWSLLAERVSWVRDAEDAHRLQPFVTERTLGKVQRWSGVHTQTGGRAG}\\ {\tt GGQFCCAWLDSKRVLASPGWGAANSIKNQRVWAPATESSAQLLCCWPVGVARGGALCQ}\\$

FIGURE 285

FIGURE 286

MPVPALCLLWALAMVTRPASAAPMGGPELAQHEELTLLFHGTLQLGQALNGVYRTTEGRLTK ARNSLGLYGRTIELLGQEVSRGRDAAQELRASLLETQMEEDILQLQAEATAEVLGEVAQAQK VLRDSVQRLEVQLRSAWLGPAYREFEVLKAHADKQSHILWALTGHVQRQRREMVAQQHRLRQ IQERLHTAALPA

FIGURE 287

GGCAACATGGCTCAGCAGGCTTGCCCCAGAGCCATGGCAAAGAATGGACTTGTAATTTGCAT CCTGGTGATCACCTTACTCCTGGACCAGACCACCAGCCACACCACAGATTAAAAGCCAGGA AGCACAGCAAACGTCGAGTGAGAGACAAGGATGGAGATCTGAAGACTCAAATTGAAAAGCTC TAAAGTTCACAAGAAATGCTACCTTGCTTCAGAAGGTTTGAAGCATTTCCATGAGGCCAATG AAGACTGCATTTCCAAAGGAGGAATCCTGGTTATCCCCAGGAACTCCGACGAAATCAACGCC CTCCAAGACTATGGTAAAAGGAGCCTGCCAGGTGTCAATGACTTTTGGCTGGGCATCAATGA CATGGTCACGGAAGGCAAGTTTGTTGACGTCAACGGAATCGCTATCTCCTCCACCTGGG ACCGTGCACAGCCTAACGGTGGCAAGCGAGAAAACTGTGTCCTGTTCTCCCAATCAGCTCAG GGCAAGTGGAGTGATGAGGCCTGTCGCAGCAGCAAGAGATACATATGCGAGTTCACCATCCC TAAATAGTCTTTCTCCAATGTGTCCTCCAAGCAAGATTCATCATAACTTATAGGTTCATGA TCTCTAAGATCAAGTAAAAATCATAATTTTTACTTATTAAAAAATTGCAACACAAGATCAAT GTCCATAGCAATATGATAGCATCAGCCAATTTTGCTAACACATTTCTTTGGGATTTTGCCCT TCCTGGGGTATAGGGGATCAGAAATATTGATCCATGTGCACGCAGATAAAATGGCTTCTGCT TTCCCTTGGAAGTTTAGCGTATGTTTGACTAACAAAAATTCCCTACATCAGAGACTCTAGGT GCTATATAATCCAAAAACTTTTCAGCCTGTTGCTCATTCTGTCCCATGCTGGCAATAATACC TTGTCAGCCCATTACCCTTATTTTGAATTGCTCCATCTCCTGGTGGGACTTGTATCTTGTCT TACCCTTTTTTGGAAGTTTCCAGCCGCAATTTGAAATGAAATGACAAGGTGTATATTTGAT CAATTTCATTCCCACCATTGCATTACAACCTCTAACTTAAATGGGTAACCCTAAGGCATAT AGCATCCTTACTCTCACCTTTTATGAGATTGAGAGTGGACTTACATTTCCTTTTTTACATTT TCGTATATTTATTTTTTTAGCCATCATTATATGTTTAAGTCTATTATGGGCAACCAATCTT TGGAAGCTGAAAACTGAATTTAAAGAATGCTATCTTGGAAAATTGCATACGTCTGTGCAATT TTTTATTCTGCCTAGTGCTATTCTGCTTGTTTAACTAGATTGTACAAAATAACTTCATTGCT TAATATCAAATTACAAAGTTTAGACTTGGAGGGAAATGGGCTTTTTAGAAGCAAACAATTTT AAATATATTTTGTTCTTCAAATAAATAGTGTTTAAACATTGAATGTGTTTTGTGAACAATAT CCCACTTTGCAAACTTTAACTACACATGCTTGGAATTAAGTTTTAGCTGTTTTCATTGCTCA

FIGURE 288

MAQQACPRAMAKNGLVICILVITLLLDQTTSHTSRLKARKHSKRRVRDKDGDLKTQIEKLWT
EVNALKEIQALQTVCLRGTKVHKKCYLASEGLKHFHEANEDCISKGGILVIPRNSDEINALQ
DYGKRSLPGVNDFWLGINDMVTEGKFVDVNGIAISFLNWDRAQPNGGKRENCVLFSQSAQGK
WSDEACRSSKRYICEFTIPK

FIGURE 289

FIGURE 290

 ${\tt MKLAALLGLCVALSCSSAAAFLVGSAKPVAQPVAALESAAEAGAGTLANPLGTLNPLKLLLS} \\ {\tt SLGIPVNHLIEGSQKCVAELGPQAVGAVKALKALLGALTVFG}$

FIGURE 291

TGAAGGACTTTTCCAGGACCCAAGGCCACACTGGAAGTCTTGCAGCTGAAGGGAGGCACT GCACAGGTGTGGCTGGTACCCGGCTTGGCCCCAGTCCTCAGTCGCCAGAGACCCCAGCCCC TCAGAACCAGACCAGCAGGTAGTGCAGGCTCCCAGGGAAGAAGAAGAAGATGAGCAGGAGG CCAGCGAGGAGGAGGCCGGTGAGGAAGAGACCTGGCTGATGGCCAGCAGCAGCAGCTT GCCAAGGAGACTTCAAACTTCGGATTCAGCCTGCTGCGAAAGATCTCCATGAGGCACGATGG CAGGGCCGACTGAAACCCAGATCAAGAGAGGGCTCCACTTGCAGGCCCTGAAGCCCACCAAG CCCGGGCTCCTGCCTTCTCTAAGGGACTCAGAGAGCCCTCTCCCGCAACCTGGAACT GGGCCTCTCACAGGGGAGTTTTGCCTTCATCCACAAGGATTTTGATGTCAAAGAGACTTTCT TCAATTTATCCAAGAGGTATTTTGATACAGAGTGCGTGCCTATGAATTTTCGCAATGCCTCA CAGGCCAAAAGGCTCATGAATCATTACATTAACAAAGAGACTCGGGGGAAAATTCCCAAACT GTTTGATGAGATTAATCCTGAAACCAAATTAATTCTTGTGGATTACATCTTGTTCAAAGGGA AATGGTTGACCCCATTTGACCCTGTCTTCACCGAAGTCGACACTTTCCACCTGGACAAGTAC AAGACCATTAAGGTGCCCATGATGTACGGTGCAGGCAAGTTTGCCTCCACCTTTGACAAGAA TTTTCGTTGTCATGTCCTCAAACTGCCCTACCAAGGAAATGCCACCATGCTGGTGGTCCTCA TGGAGAAAATGGGTGACCACCTCGCCCTTGAAGACTACCTGACCACAGACTTGGTGGAGACA GAAGTATGAGATGCATGAGCTGCTTAGGCAGATGGGAATCAGAAGAATCTTCTCACCCTTTG CTGACCTTAGTGAACTCTCAGCTACTGGAAGAATCTCCAAGTATCCAGGGTTTTACGAAGA ACAGTGATTGAAGTTGATGAAAGGGGCACTGAGGCAGTGGCAGGAATCTTGTCAGAAATTAC TGCTTATTCCATGCCTCCTGTCATCAAAGTGGACCGGCCATTTCATTTCATGATCTATGAAG AAACCTCTGGAATGCTTCTGTTTCTGGGCAGGGTGGTGAATCCGACTCTCCTATAATTCAGG TACCAGCAATGGATGGCAGGGGAGAGTGTTCCTTTTGTTCTTAACTAGTTTAGGGTGTTCTC AAATAAATACAGTAGTCCCCACTTATCTGAGGGGGATACATTCAAAGACCCCCAGCAGATGC AAAGTTTAATTTATAAATTAGGCACAGTAAGAGATTAACAATAATAACAACATTAAGTAAAA TGAGTTACTTGAACGCAAGCACTGCAATACCATAACAGTCAAACTGATTATAGAGAAGGCTA CTAAGTGACTCATGGGCGAGGAGCATAGACAGTGTGGAGACATTGGGCAAGGGGAGAATTCA CATCCTGGGTGGGACAGAGCAGGACGATGCAAGATTCCATCCCACTACTCAGAATGGCATGC TGCTTAAGACTTTTAGATTGTTTATTTCTGGAATTTTTCATTTAATGTTTTTGGACCATGGT TGACCATGGTTAACTGAGACTGCAGAAAGCAAAACCATGGATAAGGGAGGACTACTACAAAA

FIGURE 292

MKVVPSLLLSVLLAQVWLVPGLAPSPQSPETPAPQNQTSRVVQAPREEEEDEQEASEEKAGE
EEKAWLMASRQQLAKETSNFGFSLLRKISMRHDGNMVFSPFGMSLAMTGLMLGATGPTETQI
KRGLHLQALKPTKPGLLPSLFKGLRETLSRNLELGLSQGSFAFIHKDFDVKETFFNLSKRYF
DTECVPMNFRNASQAKRIMNHYINKETRGKIPKLFDEINPETKLILVDYILFKGKWLTPFDP
VFTEVDTFHLDKYKTIKVPMMYGAGKFASTFDKNFRCHVLKLPYQGNATMLVVLMEKMGDHL
ALEDYLTTDLVETWLRNMKTRNMEVFFPKFKLDQKYEMHELLRQMGIRRIFSPFADLSELSA
TGRNLQVSRVLRRTVIEVDERGTEAVAGILSEITAYSMPPVIKVDRPFHFMIYEETSGMLLF
LGRVVNPTLL

FIGURE 293

FIGURE 294

MRRLLLVTSLVVVLLWEAGAVPAPKVPIKMQVKHWPSEQDPEKAWGARVVEPPEKDDQLVVL FPVQKPKLLTTEEKPRGQGRGPILPGTKAWMETEDTLGRVLSPEPDHDSLYHPPPEEDQGEE RPRLWVMPNHQVLLGPEEDQDHIYHPQ

FIGURE 295

 $\mathtt{TACCCAAGGAAAGTGCAGCTGAGACTCAGACAAGATTACA$ TGGACCTGTTCTTCGTCTCCATCTCTGCCCAGAAGCTGCAAGGAAATCAAAGACGAATGTCC TAGTGCATTTGATGGCCTGTATTTTCTCCGCACTGAGAATGGTGTTATCTACCAGACCTTCT GTGACATGACCTCTGGGGGTGGCGGCTGGACCCTGGTGGCCAGCGTGCATGAGAATGACATG CGTGGGAAGTGCACGGTGGGCGATCGCTGGTCCAGTCAGCAGGGCAGCAAAGCAGACTACCC AGAGGGGACGCCAACTACAACACCTTTGGATCTGCAGAGGCGGCCACGAGGG ATGACTACAAGAACCCTGGCTACTACGACATCCAGGCCAAGGACCTGGGCATCTGGCACGTG CCCAATAAGTCCCCCATGCAGCACTGGAGAAACAGCTCCCTGCTGAGGTACCGCACGGACAC TGGCTTCCTCCAGACACTGGGACATAATCTGTTTGGCATCTACCAGAAATATCCAGTGAAAT ATGGAGAAGGAAAGTGTTGGACTGACAACGGCCCGGTGATCCCTGTGGTCTATGATTTTGGC GACGCCCAGAAACAGCATCTTATTACTCACCCTATGGCCAGCGGGAATTCACTGCGGGATT TCACCGGATGTAACACTGAGCATCACTGCATTGGTGGAGGAGGATACTTTCCAGAGGCCAGT CCCCAGCAGTGTGGAGATTTTTCTGGTTTTGATTGGAGTGGATATGGAACTCATGTTGGTTA CAGCAGCAGCCGTGAGATAACTGAGGCAGCTGTGCTTCTATTCTATCGT**TGA**GAGTTTTGTG GGAGGGAACCCAGACCTCTCCTCCCAACCATGAGATCCCAAGGATGGAGAACAACTTACCCA GTAGCTAGAATGTTAATGGCAGAAGAGAAAACAATAAATCATATTGACTCAAGAAAAAAA

FIGURE 296

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTEN GVIYQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANYNTFG SAEAATSDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLGHNLFGI YQKYPVKYGEGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVQFRVFNNERAAN ALCAGMRVTGCNTEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSSREITEAAVLL FYR

FIGURE 297

GCGGAGCCGGCCGGCTGCGCAGAGGAGCCGCTCTCGCCGCCGCCACCTCGGCTGGGAGCC CACGAGGCTGCCGCATCCTGCCCTCGGAACATGGGACTCGGCGCGCGAGGTGCTTGGGCCG CGCTGCTCCTGGGGACGCTGCAGGTGCTAGCGCTGCTGGGGGCCCCCATGAAAGCGCAGCC ATGGCGGCATCTGCAAACATAGAGAATTCTGGGCTTCCACACACTCCAGTGCTAACTCAAC AGAGACTCTCCAACATGTGCCTTCTGACCATACAAATGAAACTTCCAACAGTACTGTGAAAAC CACCAACTTCAGTTGCCTCAGACTCCAGTAATACAACGGTCACCACCATGAAACCTACAGCG GCATCTAATACAACAACACCAGGGATGGTCTCAACAAATATGACTTCTACCACCTTAAAGTC TACACCCAAAACAACAAGTGTTTCACAGAACACATCTCAGATATCAACATCCACAATGACCG TAACCCACAATAGTTCAGTGACATCTGCTGCTTCATCAGTAACAATCACAACAACTATGCAT TCTGAAGCAAAGAAAGGATCAAAATTTGATACTGGGAGCTTTGTTGGTGGTATTGTATTAAC GCTGGGAGTTTTATCTATTCTTTACATTGGATGCAAAATGTATTACTCAAGAAGAGGCATTC GGTATCGAACCATGGATGAACATGATGCCATCATTTAAGGAAATCCATGGACCAAGGATGGA ATACAGATTGATGCTGCCCTATCAATTAATTTTGGTTTATTAATAGTTTAAAAACAATATTCT CTTTTTGAAATAGTATAAACAGGCCATGCATATAATGTACAGTGTATTACGTAAATATGTA AAGATTCTTCAAGGTAACAAGGGTTTGGGGTTTTGAAATAAACATCTGGATCTTATAGACCGT GGGGTGGGGGCATTGGTCACATATGACCAGTAATTGAAAGACGTCATCACTGAAAGACAGAA TGCCATCTGGGCATACAAATAAGAAGTTTGTCACAGCACTCAGGATTTTGGGTATCTTTTGT AGCTCACATAAAGAACTTCAGTGCTTTTCAGAGCTGGATATATCTTAATTACTAATGCCACA TGCTTTAAACTGTAGTAGTTGGTCTAGAAACAAAATACTCC

FIGURE 298

MGLGARGAWAALLLGTLQVLALLGAAHESAAMAASANIENSGLPHNSSANSTETLQHVPSDH TNETSNSTVKPPTSVASDSSNTTVTTMKPTAASNTTTPGMVSTNMTSTTLKSTPKTTSVSQN TSQISTSTMTVTHNSSVTSAASSVTITTTMHSEAKKGSKFDTGSFVGGIVLTLGVLSILYIG CKMYYSRRGIRYRTIDEHDAII

FIGURE 299

CAGCCGGGTCCCAAGCCTGTGCCTGAGCCTGAGCCTGAGCCGGGCCGGGAGCCGG TCGCGGGGCTCCGGCTGTGGGACCGCTGGGCCCCCAGCGATGCCACCCTGTGGGGAGGC CTTCTTCGGCTTGGCTCCTTGCTCAGCCTGTCGTGCCTGGCGCTTTCCGTGCTGCTGCTGGC ATAAAGAAAATTCTGGGCATATTTATAATAAGAACATATCTCAGAAAGATTGTGATTGCCTT CATGTTGTGGAGCCCATGCCTGTGCGGGGGCCTGATGTAGAAGCATACTGTCTACGCTGTGA ATGCAAATATGAAGAAGAAGCTCTGTCACAATCAAGGTTACCATTATAATTTATCTCTCCA TTTTGGGCCTTCTACTTCTGTACATGGTATATCTTACTCTGGTTGAGCCCATACTGAAGAGG CGCCTCTTTGGACATGCACAGTTGATACAGAGTGATGATGATATTGGGGGATCACCAGCCTTT TGCAAATGCACACGATGTGCTAGCCCGCTCCCGCAGTCGAGCCAACGTGCTGAACAAGGTAG CTGGAAAGAACTGACTGGGTTTTGCTGGGTTTCATTTAATACCTTGTTGATTTCACCAACT ATAATAGAGACATTTTTAAAAGCACACAGCTCAAAGTCAGCCAATAAGTCTTTTCCTATTTG TGACTTTACTAATAAAATAAATCTGCCTGTAAATTATCTTGAAGTCCTTTACCTGGAACA AGCACTCTCTTTTCACCACATAGTTTTAACTTGACTTCAAGATAATTTTCAGGGTTTTTG AACAACTTTTTCAAGTCACTTTACTAAACAAACTTTTGTAAATAGACCTTACCTTCTATTT TCGAGTTTCATTTATATTTTGCAGTGTAGCCAGCCTCATCAAAGAGCTGACTTACTCATTTG ACTTTTGCACTGACTGTATTATCTGGGTATCTGCTGTGTCTGCACTTCATGGTAAACGGGAT CTAAAATGCCTGGTGGCTTTTCACAAAAAGCAGATTTTCTTCATGTACTGTGATGTCTGATG CAATGCATCCTAGAACAAACTGGCCATTTGCTAGTTTACTCTAAAGACTAAACATAGTCTTG GTGTGTGTGTCTTACTCATCTTCTAGTACCTTTAAGGACAAATCCTAAGGACTTGGACACT TGCAATAAAGAAATTTTATTTTAAACCCAAGCCTCCCTGGATTGATAATATATACACATTTG TCAGCATTTCCGGTCGTGGTGAGAGGCAGCTGTTTGAGCTCCAATATGTGCAGCTTTGAACT AGGGCTGGGGTTGTGGGTGCCTCTTCTGAAAGGTCTAACCATTATTGGATAACTGGCTTTTT TCTTCCTATGTCCTCTTTGGAATGTAACAATAAAAATAATTTTTGAAACATCAA

FIGURE 300

MATLWGGLLRLGSLLSLSCLALSVLLLAQLSDAAKNFEDVRCKCICPPYKENSGHIYNKNIS QKDCDCLHVVEPMPVRGPDVEAYCLRCECKYEERSSVTIKVTIIIYLSILGLLLLYMVYLTL VEPILKRRLFGHAQLIQSDDDIGDHQPFANAHDVLARSRSRANVLNKVEYAQQRWKLQVQEQ RKSVFDRHVVLS

FIGURE 301

FIGURE 302

 $\verb|MAYSTVQRVALASGLVLALSLLLPKAFLSRGKRQEPPPTPEGKLGRFPPMMHHHQAPSDGQT| \\ PGARFQRSHLAEAFAKAKGSGGGAGGGGSGRGLMGQIIPIYGFGIFLYILYILFKVSRIILI \\ ILHQ \\$

FIGURE 303

CGGCTCGAGTGCAGCTGTGGGGAGATTTCAGTGCATTGCCTCCCCTGGGTGCTCTTCATCTT GGATTTGAAAGTTGAGAGCAGCATGTTTTGCCCACTGAAACTCATCCTGCTGCCAGTGTTAC TGGATTATTCCTTGGGCCTGAATGACTTGAATGTTTCCCCGCCTGAGCTAACAGTCCATGTG GGTGATTCAGCTCTGATGGGATGTGTTTTCCAGAGCACAGAGACAAATGTATATTCAAGAT AGACTGGACTCTGTCACCAGGAGAGCACGCCAAGGACGAATATGTGCTATACTATTACTCCA ATCTCAGTGTGCCTATTGGGCGCTTCCAGAACCGCGTACACTTGATGGGGGACATCTTATGC AATGATGGCTCTCCTCCCAAGATGTGCAAGAGGCTGACCAGGGAACCTATATCTGTGA AATCCGCCTCAAAGGGGAGAGCCAGGTGTTCAAGAAGGCGGTGGTACTGCATGTGCTTCCAG AGGAGCCCAAAGAGCTCATGCTCCATGTGGGTGGATTCAGATGGGATGTGTTTTTCCAG AGCACAGAAGTGAAACACGTGACCAAGGTAGAATGGATATTTTCAGGACGGCGCGCAAAGGA GGAGATTGTATTTCGTTACTACCACAAACTCAGGATGTCTGTGGAGTACTCCCAGAGCTGGG GCCACTTCCAGAATCGTGTGAACCTGGTGGGGGACATTTTCCGCAATGACGGTTCCATCATG CTTCAAGGAGTGAGGGAGTCAGATGGAGGAAACTACACCTGCAGTATCCACCTAGGGAACCT GGTGTTCAAGAAAACCATTGTGCTGCATGTCAGCCCGGAAGAGCCTCGAACACTGGTGACCC CGGCAGCCCTGAGGCCTCTGGTCTTGGGTGGTAATCAGTTGGTGATCATTGTGGGAATTGTC TGTGCCACAATCCTGCTGCTCCCTGTTCTGATATTGATCGTGAAGAAGACCTGTGGAAATAA GAGTTCAGTGAATTCTACAGTCTTGGTGAAGAACACGAAGAAGACTAATCCAGAGATAAAAG AAAAACCCTGCCATTTTGAAAGATGTGAAGGGGGAGAAACACATTTACTCCCCCAATAATTGTA CGGGAGGTGATCGAGGAAGAAGAACCAAGTGAAAAATCAGAGGCCACCTACATGACCATGCA CCCAGTTTGGCCTTCTCTGAGGTCAGATCGGAACAACTCACTTGAAAAAAAGTCAGGTGGGG GAATGCCAAAAACACAGCAAGCCTTT**TGA**GAAGAATGGAGAGTCCCTTCATCTCAGCAGCGG TGGAGACTCTCTCTGTGTGTGTCCTGGGCCACTCTACCAGTGATTTCAGACTCCCGCTCTC CCAGCTGTCCTCCTGTCTCATTGTTTGGTCAATACACTGAAGATGGAGAATTTGGAGCCTGG CAGAGAGACTGGACAGCTCTGGAGGAACAGGCCTGCTGAGGGGAGGGGAGCATGGACTTGGC CTCTGGAGTGGGACACTGGCCTGGGAACCAGGCTGAGTGGCCTCAAACCCCCCGTT GGATCAGACCCTCCTGTGGGCAGGGTTCTTAGTGGATGAGTTACTGGGAAGAATCAGAGATA AAAACCAACCCAAATCAA

FIGURE 304

MFCPLKLILLPVLLDYSLGLNDLNVSPPELTVHVGDSALMGCVFQSTEDKCIFKIDWTLSPG
EHAKDEYVLYYYSNLSVPIGRFQNRVHLMGDILCNDGSLLLQDVQEADQGTYICEIRLKGES
QVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVEWIFSGRRAKEEIVFRYY
HKLRMSVEYSQSWGHFQNRVNLVGDIFRNDGSIMLQGVRESDGGNYTCSIHLGNLVFKKTIV
LHVSPEEPRTLVTPAALRPLVLGGNQLVIIVGIVCATILLLPVLILIVKKTCGNKSSVNSTV
LVKNTKKTNPEIKEKPCHFERCEGEKHIYSPIIVREVIEEEEPSEKSEATYMTMHPVWPSLR
SDRNNSLEKKSGGGMPKTOOAF

FIGURE 305

CTATGAAGAAGCTTCCTGGAAAACAATAAGCAAAGGAAAACAAATGTGTCCCATCTCACATG GTTCTACCCTACTAAAGACAGGAAGATCATAAACTGACAGATACTGAAATTGTAAGAGTTGG AAACTACATTTTGCAAAGTCATTGAACTCTGAGCTCAGTTGCAGTACTCGGGAAGCC**ATG**CA GGATGAAGATGGATACATCACCTTAAATATTAAAACTCGGAAACCAGCTCTCGTCTCGTTG GCCCTGCATCCTCCTGGTGGCGTGTGATGGCTTTGATTCTGCTGATCCTGTGCGTGGGG ATGGTTGTCGGGCTGGTGGCTCTGGGGATTTGGTCTGTCATGCAGCGCAATTACCTACAAGA TGAGAATGAAAATCGCACAGGAACTCTGCAACAATTAGCAAAGCGCTTCTGTCAATATGTGG TAAAACAATCAGAACTAAAGGGCACTTTCAAAGGTCATAAATGCAGCCCCTGTGACAAAC TGGAGATATTATGGAGATAGCTGCTATGGGTTCTTCAGGCACAACTTAACATGGGAAGAGAG TAAGCAGTACTGCACTGACATGAATGCTACTCTCCTGAAGATTGACAACCGGAACATTGTGG AGTACATCAAAGCCAGGACTCATTTAATTCGTTGGGTCGGATTATCTCGCCAGAAGTCGAAT GAGGTCTGGAAGTGGGAGGATGGCTCGGTTATCTCAGAAAATATGTTTGAGTTTTTGGAAGA TGGAAAAGGAAATATGAATTGTGCTTATTTTCATAATGGGAAAATGCACCCTACCTTCTGTG AGAACAAACATTATTTAATGTGTGAGAGGAAGGCTGGCATGACCAAGGTGGACCAACTACCT TAATGCAAAGAGGTGGACAGGATAACACAGATAAGGGCTTTATTGTACAATAAAAGATATGT ATGAATGCATCAGTAGCTGAAAAAAAAAAAAAAA

FIGURE 306

MQDEDGYITLNIKTRKPALVSVGPASSSWWRVMALILLILCVGMVVGLVALGIWSVMQRNYL QDENENRTGTLQQLAKRFCQYVVKQSELKGTFKGHKCSPCDTNWRYYGDSCYGFFRHNLTWE ESKQYCTDMNATLLKIDNRNIVEYIKARTHLIRWVGLSRQKSNEVWKWEDGSVISENMFEFL EDGKGNMNCAYFHNGKMHPTFCENKHYLMCERKAGMTKVDQLP

FIGURE 307

CCCACGCGTCCGCGCAGTCGCCCAGTTCTGCCTCCGCCTGCCAGTCTCGCCCGCGATCCCGG CCCGGGGCTGTGGCGTCGACTCCGACCCAGGCAGCCAGCAGCCCGCGCGGGAGCCGGACCGC CGCCGGAGGACCCCGACGCATGCTGAGCCCCCTCCTTTGCTGAAGCCCGAGTGCGGAGAA GCCCGGGCAAACGCAGGCTAAGGAGACCAAAGCGGCGAAGTCGCGAGACAGCGGACAAGCAG CGTCGTGGCCATGCCGCCTATCGCCAGCTCGCTCATCCGTCAGAAGAGGCAAGCCCGCG AGCGCGAGAAATCCAACGCCTGCAAGTGTGTCAGCAGCCCCAGCAAAGGCAAGACCAGCTGC GACAAAAACAAGTTAAATGTCTTTTCCCGGGTCAAACTCTTCGGCTCCAAGAAGAGGGCGCAG AAGAAGACCAGAGCCTCAGCTTAAGGGTATAGTTACCAAGCTATACAGCCGACAAGGCTACC ACTTGCAGCTGCAGGCGGATGGAACCATTGATGGCACCAAAGATGAGGACAGCACTTACACT CTGTTTAACCTCATCCCTGTGGGTCTGCGAGTGGTGGCTATCCAAGGAGTTCAAACCAAGCT GTACTTGGCAATGAACAGTGAGGGATACTTGTACACCTCGGAACTTTTCACACCTGAGTGCA AATTCAAAGAATCAGTGTTTGAAAATTATTATGTGACATATTCATCAATGATATACCGTCAG CAGCAGTCAGGCCGAGGGTGGTATCTGGGTCTGAACAAGAAGAAGAGAGATCATGAAAGGCAA CCATGTGAAGAAGAACAAGCCTGCAGCTCATTTTCTGCCTAAACCACTGAAAGTGGCCATGT ACAAGGAGCCATCACTGCACGATCTCACGGAGTTCTCCCGATCTGGAAGCGGGACCCCAACC AAGAGCAGAAGTGTCTCTGGCGTGCTGAACGGAGGCAAATCCATGAGCCACAATGAATCAAC $\texttt{G}\underline{\textbf{TAG}} \texttt{CCAGTGAGGGCAAAAGAAGGGCTCTGTAACAGAACCTTACCTCCAGGTGCTGTTGAAT}$ CAGAGTTCACTATTCTATCTGCCATTAGACCTTCTTATCATCCATACTAAAGC

FIGURE 308

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA28498

><subunit 1 of 1, 245 aa, 1 stop

><MW: 27564, pI: 10.18, NX(S/T): 1

MAAAIASSLIRQKRQAREREKSNACKCVSSPSKGKTSCDKNKLNVFSRVKLFGSKKRRRRR EPQLKGIVTKLYSRQGYHLQLQADGTIDGTKDEDSTYTLFNLIPVGLRVVAIQGVQTKLYLA MNSEGYLYTSELFTPECKFKESVFENYYVTYSSMIYRQQQSGRGWYLGLNKEGEIMKGNHVK KNKPAAHFI,PKPLKVAMYKEPSLHDLTEFSRSGSGTPTKSRSVSGVLNGGKSMSHNEST

N-glycosylation site.

amino acids 242-246

Glycosaminoglycan attachment site.

amino acids 165-169, 218-222

Tyrosine kinase phosphorylation site.

amino acids 93-100

N-myristoylation site.

amino acids 87-93, 231-237

ATP/GTP-binding site motif A (P-loop).

amino acids 231-239

HBGF/FGF family proteins

amino acids 78-94, 102-153

FIGURE 309

CCAGGATGGAGCTGGGGCCTGTATAGCCATATTATTGTTCTATGCTACTAGACATGGGGGGG ACTTGGTGAAAAAGGTATTATCCAGCCAGAGGGTCTGGGAGCCCTGTCTTACTGAACCTGGG CAACCTGGATATTCTGAGACATATTTTGGGGGGGATTTCAGTGAAAAAAGTGGGGGGATCCCCT CCCCAGTAGGGGTGGGATGAGCGAATATTCCCAAAGCTAAAGTCCCACACCCTGTAGATTAC AAGAGTGGATTTGGCAGGAGTGTGCCCCAAAATACAGTGGAAAGGTGCCTGAAGATATTTAA GAGAGGAGGGAAAGGGGACGTTTTCAATAGGAGGCAAAACTCGAGGGTGGGATCCACTGAGG AGTACATAGGCTGCTGGATCTGGTGGAGCCAGCACTGGGCCCACGGGTGGTAACTGGCTGCT CGAGTCGGGGCCTGAGCGTCAAGAGCATGCCCTAGTGAGCGGGCTCCTCTGGGGGAGCCCAG $\tt CGCGCTCCGGGCGCCTGCCGGTTTGGGGGTGTCTCCTCCCGGGGCGCT{\bf ATG}CGGCGCTGGC{\bf CT}{\bf CT}{\bf CC}{\bf CC}{\bf$ CGCAGCGGCGCGTGTGTCCCCGCGGCACCAAGTCCCTTTGCCAGAAGCAGCTCCTCATCCTG GCTCAAAGGCATCGTCACCAAACTGTTCTGCCGCCAGGGTTTCTACCTCCAGGCGAATCCCG ACGGAAGCATCCAGGGCACCCCAGAGGATACCAGCTCCTTCACCCACTTCAACCTGATCCCT GTGGGCCTCCGTGTGGTCACCATCCAGAGCGCCAAGCTGGGTCACTACATGGCCATGAATGC TGAGGGACTGCTCTACAGTTCGCCGCATTTCACAGCTGAGTGTCGCTTTAAGGAGTGTGTCT TTGAGAATTACTACGTCCTGTACGCCTCTGCTCTACCGCCAGCGTCGTTCTGGCCGGGCC TGGTACCTCGGCCTGGACAAGGAGGGCCAGGTCATGAAGGGAAACCGAGTTAAGAAGACCAA GGCAGCTGCCCACTTCTGCCCAAGCTCCTGGAGGTGGCCATGTACCAGGAGCCTTCTCTCC $\texttt{ACAGTGTCCCCGAGGCCTCCCCTTCCAGTCCCCCTGCCCCC} \underline{\textbf{TGA}} \texttt{AATGTAGTCCCTGGACTG}$ GAGGTTCCCTGCACTCCCAGTGAGCCAGCCACCACCACCACCACCTGT

FIGURE 310

MAALASSLIRQKREVREPGGSRPVSAQRRVCPRGTKSLCQKQLLILLSKVRLCGGRPARPDR GPEPQLKGIVTKLFCRQGFYLQANPDGSIQGTPEDTSSFTHFNLIPVGLRVVTIQSAKLGHY MAMNAEGLLYSSPHFTAECRFKECVFENYYVLYASALYRQRRSGRAWYLGLDKEGQVMKGNR VKKTKAAAHFLPKLLEVAMYQEPSLHSVPEASPSSPPAP

Tyrosine kinase phosphorylation site:

amino acids 199-207

N-myristoylation sites:

amino acids 54-60, 89-95, 131-137

HBGF/FGF family signature:

amino acids 131-155

FIGURE 311

FIGURE 312

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA28503

><subunit 1 of 1, 247 aa, 1 stop

><MW: 27702, pI: 10.36, NX(S/T): 2

MAAAIASGLIRQKRQAREQHWDRPSASRRRSSPSKNRGLCNGNLVDIFSKVRIFGLKKRRLR RQDPQLKGIVTRLYCRQGYYLQMHPDGALDGTKDDSTNSTLFNLIPVGLRVVAIQGVKTGLY IAMNGEGYLYPSELFTPECKFKESVFENYYVIYSSMLYRQQESGRAWFLGLNKEGQAMKGNR VKKTKPAAHFLPKPLEVAMYREPSLHDVGETVPKPGVTPSKSTSASAIMNGGKPVNKSKTT

N-qlycosylation site.

amino acids 100-104, 242-246

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 28-32, 29-33

Tyrosine kinase phosphorylation site.

amino acids 199-207

N-myristoylation site.

amino acids 38-44, 89-95, 118-124, 122-128, 222-228

HBGF/FGF family proteins.

amino acids 104-155, 171-198

FIGURE 313

ACGAAGCTTTTTCTTGTGAGCCCTGGATCTTAACACAAATGTGTATATGTGCACACAGGGAGCATTCAAGAATG CTCCCCACCCCCAAAAAAAAGGATGATTGGAAATGAAGAACCGAGGATTCACAAAGAAAAAAGTATGTTCATTT TTCTCTATAAAGGAGAAAGTGAGCCAAGGAGATATTTTTGGAATGAAAGTTTGGGGCTTTTTTAGTAAAGTAA AGAACTGGTGTGGTGTTTTCCTTTTCTTTTTGAATTTCCCACAAGAGGAGAGAATTAATAATACATCTGC CAGTTGGATTTGTGCCTATGTTGACTAAAATTGACGGATAATTGCAGTTGGATTTTTCTTCATCAACCTCCTTT $\tt TTTTTAAATTTTTATTCCTTTTGGTATCAAGATCATGCGTTTTCTCTTGTTCTTAACCACCTGGATTTCCATCT$ GGATGTTGCTGTGATCAGTCTGAAATACAACTGTTTGAATTCCAGAAGGACCAACACCAGATAAATTATGAATG TTGAACAAGATGACCTTACATCCACAGCAGATAATGATAGGTCCTAGGTTTAACAGGGCCCTATTTGACCCCCT GCTTGTGGTGCTGCTGCTCTTCAACTTCTTGTGGTGGCTGGTCTGGTGCGGGCTCAGACCTGCCCTTCTGTGT GCTCCTGCAGCAACCAGTTCAGCAAGGTGATTTGTGTTTCGGAAAAACCTGCGTGAGGTTCCGGATGGCATCTCC ACCAACACACGGCTGCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTTCAAGCACTTGAG GCACTTGGAAATCCTACAGTTGAGTAGGAACCATATCAGAACCATTGAAATTGGGGCTTTCAATGGTCTGGCGA ACCTCAACACTCTGGAACTCTTTGACAATCGTCTTACTACCATCCCGAATGGAGCTTTTGTATACTTGTCTAAA CTGAAGGAGCTCTGGTTGCGAAACAACCCCATTGAAAGCATCCCTTCTTATGCTTTTAACAGAATTCCTTCTTT GCGCCGACTAGACTTAGGGGAATTGAAAAGACTTTCATACATCTCAGAAGGTGCCTTTGAAGGTCTGTCCAACT TGAGGTATTTGAACCTTGCCATGTGCAACCTTCGGGAAATCCCTAACCTCACACCGCTCATAAAACTAGATGAG $\tt CTGGATCTTTCTGGGAATCATTTATCTGCCATCAGGCCTGGCTCTTTCCAGGGTTTGATGCACCTTCAAAAACT$ GTGGATGATACAGTCCCAGATTCAAGTGATTGAACGGAATGCCTTTGACAACCTTCAGTCACTAGTGGAGATCA ACCTGGCACACAATAATCTAACATTACTGCCTCATGACCTCTTCACTCCCTTGCATCATCTAGAGCGGATACAT TTACATCACAACCCTTGGAACTGTAACTGTGACATACTGTGGCTCAGCTGGTGGATAAAAGACATGGCCCCCTC GAACACAGCTTGTTGTGCCCGGTGTAACACTCCTCCCAATCTAAAGGGGAGGTACATTGGAGAGCTCGACCAGA ATTACTTCACATGCTATGCTCCGGTGATTGTGGAGCCCCCTGCAGACCTCAATGTCACTGAAGGCATGGCAGCT GAGCTGAAATGTCGGGCCTCCACATCCCTGACATCTGTATCTTGGATTACTCCAAATGGAACAGTCATGACACA TGGGGCGTACAAAGTGCGGATAGCTGTGCTCAGTGATGGTACGTTAAATTTCACAAATGTAACTGTGCAAGATA CAGGCATGTACACATGTATGGTGAGTAATTCCGTTGGGAATACTACTGCTTCAGCCACCCTGAATGTTACTGCA GCAACCACTACTCCTTTCCTCTTACTTTTCAACCGTCACAGTAGAGACTATGGAACCGTCTCAGGATGAGGCACG GACCACAGATAACAATGTGGGTCCCACTCCAGTGGTCGACTGGGAGACCACCAATGTGACCACCTCTCTCACAC CACAGAGCACAAGGTCGACAGAGAAAACCTTCACCATCCCAGTGACTGATATAAACAGTGGGATCCCAGGAATT GATGAGGTCATGAAGACTACCAAAATCATCATTGGGTGTTTTGTGGCCATCACACTCATGGCTGCAGTGATGCT GGTCATTTCTACAAGATGAGGAAGCAGCACCATCGGCAAAACCATCACGCCCCAACAAGGACTGTTGAAATTA TTAATGTGGATGATGAGATTACGGGAGACACCCATGGAAAGCCACCTGCCCATGCCTGCTATCGAGCATGAG CACCTAAATCACTATAACTCATACAAATCTCCCTTCAACCACACACACAGTTAACACAATAAATTCAATACA CAGTTCAGTGCATGAACCGTTATTGATCCGAATGAACTCTAAAGACAATGTACAAGAGACTCAAATCTAAAACA TTTACAGAGTTACAAAAAACAATCAAAAAAAAAAAAGACAGTTTATTAAAAATGACACAAATGACTGGGCTAA TGATCTAAAGCAGACAAAAA

FIGURE 314

MLNKMTLHPQQIMIGPRFNRALFDPLLVVLLALQLLVVAGLVRAQTCPSVCSCSNQFSKVIC VRKNLREVPDGISTNTRLLNLHENQIQIIKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA NLNTLELFDNRLTTIPNGAFVYLSKLKELWLRNNPIESIPSYAFNRIPSLRRLDLGELKRLS YISEGAFEGLSNLRYLNLAMCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL WMIQSQIQVIERNAFDNLQSLVEINLAHNNLTLLPHDLFTPLHHLERIHLHHNPWNCNCDIL WLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLNVTEGMAAE LKCRASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTVQDTGMYTCMVSNSVGN TTASATLNVTAATTTPFSYFSTVTVETMEPSQDEARTTDNNVGPTPVVDWETTNVTTSLTPQ STRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFVAITLMAAVMLVIFYKMRKQHHRQN HHAPTRTVEIINVDDEITGDTPMESHLPMPAIEHEHLNHYNSYKSPFNHTTTVNTINSIHSS VHEPLLIRMNSKDNVOETOI

Signal sequence:

amino acids 1-44

Transmembrane domain:

amino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438, 442-446, 488-492, 606-610

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 183-187

Casein kinase II phosphorylation site.

amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243, 391-397, 422-428, 433-439, 531-537

FIGURE 315

GGCTGCAGCCACCTCGCGCGCACCCCGAGGCGCCCCAGCTCGCCCGAGGTCCGTCGGA GGCGCCCGGCCCCGGAGCCAAGCAGCAACTGAGCGGGGAAGCGCCCGCGTCCGGGGATC GGGATGTCCCTCCTCTCTCTCTTGCTAGTTTCCTACTATGTTGGAACCTTGGGGACTCA CACTGAGATCAAGAGGGGGGGGGAAAAGGTCACTTTGCCCTGCCACCATCAACTGGGGC TTCCAGAAAAAGACACTCTGGATATTGAATGGCTGCTCACCGATAATGAAGGGAACCAAAAA GTGGTGATCACTTACTCCAGTCGTCATGTCTACAATAACTTGACTGAGGAACAGAAGGGCCG AGTGGCCTTTGCTTCCAATTTCCTGGCAGGAGATGCCTCCTTGCAGATTGAACCTCTGAAGC CCAGTGATGAGGCCGGTACACCTGTAAGGTTAAGAATTCAGGGCCGCTACGTGTGGAGCCAT GTCATCTTAAAAGTCTTAGTGAGACCATCCAAGCCCAAGTGTGAGTTGGAAGGAGGAGCTGAC AGAAGGAAGTGACCTGACTTTGCAGTGTGAGTCATCCTCTGGCACAGAGCCCATTGTGTATT ACTGGCAGCGAATCCGAGAGAAGAGGGAGAGGATGAACGTCTGCCTCCCAAATCTAGGATT GACTACAACCACCTGGACGAGTTCTGCTGCAGAATCTTACCATGTCCTACTCTGGACTGTA CCAGTGCACAGCAGCAACGAAGCTGGGAAGGAAAGCTGTGTGGGGGGGAAACTGTACAGT ATGTACAAAGCATCGGCATGGTTGCAGGAGCAGTGACAGGCATAGTGGCTGGAGCCCTGCTG GAGACCTAATGAAATTCGAGAAGATGCTGAAGCTCCAAAAGCCCGTCTTGTGAAACCCAGCT CCTCTTCCTCAGGCTCTCGGAGCTCACGCTCTGGTTCTTCCTCCACTCGCTCCACAGCAAAT TTCTCGTCATTGGAGCTCAAGTCACCAGCCACACAGATGAGAGGTCATCTAAGTAGCA GTGAGCATTGCACGGAACAGATTCAGATGAGCATTTTCCTTATACAATACCAAACAAGCAAA AGGATGTAAGCTGATTCATCTGTAAAAAGGCATCTTATTGTGCCTTTAGACCAGAGTAAGGG AAAGCAGGAGTCCAAATCTATTTGTTGACCAGGACCTGTGGTGAGAAGGTTGGGGAAAGGTG AGGTGAATATACCTAAAACTTTTAATGTGGGATATTTTGTATCAGTGCTTTGATTCACAATT TTCAAGAGGAAATGGGATGCTGTTTGTAAATTTTCTATGCATTTCTGCAAACTTATTGGATT ATTAGTTATTCAGACAGTCAAGCAGAACCCACAGCCTTATTACACCTGTCTACACCATGTAC TGAGCTAACCACTTCTAAGAAACTCCAAAAAAGGAAACATGTGTCTTCTATTCTGACTTAAC TTCATTTGTCATAAGGTTTGGATATTAATTTCAAGGGGAGTTGAAATAGTGGGAGATGGAGA AGAGTGAATGAGTTTCTCCCACTCTATACTAATCTCACTATTTGTATTGAGCCCAAAATAAC TATGAAAGGAGACAAAAATTTGTGACAAAGGATTGTGAAGAGCTTTCCATCTTCATGATGTT ATGAGGATTGTTGACAAACATTAGAAATATATAATGGAGCAATTGTGGATTTCCCCTCAAAT CAGATGCCTCTAAGGACTTTCCTGCTAGATATTTCTGGAAGGAGAAAATACAACATGTCATT TATCAACGTCCTTAGAAAGAATTCTTCTAGAGAAAAAGGGATCTAGGAATGCTGAAAGATTA CCCAACATACCATTATAGTCTCTTCTTTCTGAGAAAATGTGAAACCAGAATTGCAAGACTGG TGGTGCCAGGCACCTGTAGGAAAATCCAGCAGGTGGAGGTTGCAGTGAGCCGAGATTATGCC ATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

FIGURE 316

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45419

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41281, pI: 8.33, NX(S/T): 3

MSLLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQKV
VITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYVWSHV
ILKVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLPPKSRID
YNHPGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVTGIVAGALLI
FLLVWLLIRRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSSGSRSSRSGSSSTRSTANS
ASRSQRTLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTKAETTPSMIPSQSRAFQTV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 232-251

FIGURE 317

CGCGAGGCGCGGGAGCCTGGGACCAGGAGCGAGAGCCGCCTACCTGCAGCCGCCGCCCACGGCACGGCAGCCA CCATGCGCTCCTGCTGCTTCCTGCTCCTGTGCGGAGTAGTGGATTTCGCCAGAAGTTTGAGTATCACTACT CCTGAAGAGATGATTGAAAAAGCCAAAGGGGAAACTGCCTATCTGCCATGCAAATTTACGCTTAGTCCCGAAGA ${\tt CCAGGGACCGCTGGACATCGAGTGGCTGATATCACCAGCTGATAATCAGAAGGTGGATCAAGTGATTATTTTAT}$ ATTCTGGAGACAAAATTTATGATGACTACTATCCAGATCTGAAAGGCCGAGTACATTTTACGAGTAATGATCTC AAATCTGGTGATGCATCAATAAATGTAACGAATTTACAACTGTCAGATATTGGCACATATCAGTGCAAAGTGAA ${\tt AAAAGCTCCTGGTGTTGCAAATAAGAAGATTCATCTGGTAGTTCTTGTTAAGCCTTCAGGTGCGAGATGTTACG}$ TTGATGGATCTGAAGAAATTGGAAGTGACTTTAAGATAAAATGTGAACCAAAAGAAGGTTCACTTCCATTACAG TATGAGTGGCAAAAATTGTCTGACTCACAGAAAATGCCCACTTCATGGTTAGCAGAAATGACTTCATCTGTTAT ATCTGTAAAAAATGCCTCTTCTGAGTACTCTGGGACATACAGCTGTACAGTCAGAAACAGAGTGGGCTCTGATC AGTGCCTGTTGCGTCTAAACGTTGTCCCTCCTTCAAATAAAGCTGGACTAATTGCAGGAGCCATTATAGGAACT TTGCTTGCTCTAGCGCTCATTGGTCTTATCATCTTTTGCTGTCGTAAAAAGCGCAGAGAAAAAAATATGAAAA GGAAGTTCATCACGATATCAGGGAAGATGTGCCACCTCCAAAGAGCCGTACGTCCACTGCCAGAAGCTACATCG GCAGTAATCATTCATCCCTGGGGTCCATGTCTCCTTCCAACATGGAAGGATATTCCAAGACTCAGTATAACCAA GTACCAAGTGAAGACTTTGAACGCACTCCTCAGAGTCCGACTCTCCCACCTGCTAAGTTCAAGTACCCTTACAA GACTGATGGAATTACAGTTGTATAAATATGGACTACTGAAGAATCTGAAGTATTGTATTATTTGACTTTATTT AGGCCTCTAGTAAAGACTTAAATGTTTTTTAAAAAAAGCACAAGGCACAGAGATTAGAGCAGCTGTAAGAACAC ATCTACTTTATGCAATGGCATTAGACATGTAAGTCAGATGTCATGTCAAAATTAGTACGAGCCAAATTCTTTGT TAAAAAACCCTATGTATAGTGACACTGATAGTTAAAAGATGTTTTATTATTATTTTCAATAACTACCACTAACAA ATTTTTAACTTTTCATATGCATATTCTGATATGTGGTCTTTTAGGAAAAGTATGGTTAATAGTTGATTTTTCAA AGGAAATTTTAAAATTCTTACGTTCTGTTTAATGTTTTTGCTATTTAGTTAAATACATTGAAGGGAAATACCCG TTCTTTTCCCCTTTTATGCACACAACAGAAACACGCGTTGTCATGCCTCAAACTATTTTTTATTTGCAACTACA TAAAGTAAATTCTCAAAGGTGCTAGAACAAATCGTCCACTTCTACAGTGTTCTCGTATCCAACAGAGTTGATGC ACAATATAAAATACTCAAGTCCAATATTAAAAACTTAGGCACTTGACTAACTTTAATAAAATTTCTCAAACTA TATCAATATCTAAAGTGCATATATTTTTTAAGAAAGATTATTCTCAATAACTTCTATAAAAATAAGTTTGATGG TTTGGCCCATCTAACTTCACTACTATTAGTAAGAACTTTTAACTTTTAATGTGTAGTAAGGTTTATTCTACCTT TTTCTCAACATGACACCAACAACAACAAAAACGAAGTTAGTGAGGTGCTAACATGTGAGGATTAATCCAGTGAT TCCGGTCACAATGCATTCCAGGAGGAGGTACCCATGTCACTGGAATTGGGCGATATGGTTTATTTTTTTCTTCCC TGATTTGGATAACCAAATGGAACAGGAGGAGGATAGTGATTCTGATGGCCATTCCCTCGATACATTCCTGGCTT TTTTCTGGGCAAAGGGTGCCACATTGGAAGAGGTGGAAATATAAGTTCTGAAATCTGTAGGGAAGAGAACACAT TAAGTTAATTCAAAGGAAAAAATCATCATCTATGTTCCAGATTTCTCATTAAAGACAAAGTTACCCACAACACT GAGATCACATCTAAGTGACACTCCTATTGTCAGGTCTAAATACATTAAAAAACCTCATGTGTAATAGGCGTATAA TGTATAACAGGTGACCAATGTTTTCTGAATGCATAAAGAAATGAATAAACTCAAACACAGTACTTCCTAAACAA CTTCAACCAAAAAGACCAAAACATGGAACGAATGGAAGCTTGTAAGGACATGCTTGTTTTAGTCCAGTGGTTT CCACAGCTGGCTAAGCCAGGAGTCACTTGGAGGCTTTTAAATACAAAACATTGGAGCTGGAGGCCATTATCCTT AGCAAACTAATGCAGAAACAGAAAATCAACTACCGCATGTTCTCACTTATAAGTGGGAGGTAATGATAAGAACT GAAAAGATAACTATTGAGTACTGCCTTCACACCTGGGTGATGAAATAATATGTACAACAAATCCCTGTGACACA AAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 318

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA82361

><subunit 1 of 1, 352 aa, 1 stop ><MW: 38938, pI: 7.86, NX(S/T): 3

MALLLCFVLLCGVVDFARSLSITTPEEMIEKAKGETAYLPCKFTLSPEDQGPLDIEWLISPA
DNQKVDQVIILYSGDKIYDDYYPDLKGRVHFTSNDLKSGDASINVTNLQLSDIGTYQCKVKK
APGVANKKIHLVVLVKPSGARCYVDGSEEIGSDFKIKCEPKEGSLPLQYEWQKLSDSQKMPT
SWLAEMTSSVISVKNASSEYSGTYSCTVRNRVGSDQCLLRLNVVPPSNKAGLIAGAIIGTLL
ALALIGLIIFCCRKKRREEKYEKEVHHDIREDVPPPKSRTSTARSYIGSNHSSLGSMSPSNM
EGYSKTQYNQVPSEDFERTPQSPTLPPAKFKYPYKTDGITVV

Signal sequence.

amino acids 1-19

Transmembrane domain:

amino acids 236-257

N-glycosylation sites.

amino acids 106-110, 201-205, 298-302

Tyrosine kinase phosphorylation sites.

amino acids 31-39, 78-85, 262-270

N-myristoylation sites.

amino acids 116-122, 208-214, 219-225, 237-243, 241-247, 245-251, 296-302

Myelin P0 protein.

amino acids 96-125

FIGURE 319

CTCAAGCATCACTTACAGGACCAGAGGGACAAGACATGACTGTGATGAGGAGCTGCTTTCGC CAATTTAACACCAAGAAGAATTGAGGCTGCTTGGGAGGAAGGCCAGGAGGAACACGAGACTG ${\tt AGAG} \pmb{\textbf{ATG}} \texttt{AATTTTCAACAGAGGCTGCAAAGCCTGTGGACTTTAGCCAGACCCTTCTGCCCTC}$ CTTTGCTGGCGACAGCCTCTCAAATGCAGATGGTTGTGCTCCCTTGCCTGGGTTTTACCCTG CTTCTCTGGAGCCAGGTATCAGGGGCCCAGGGCCAAGAATTCCACTTTGGGCCCTGCCAAGT GAAGGGGGTTGTTCCCCAGAAACTGTGGGAAGCCTTCTGGGCTGTGAAAGACACTATGCAAG CTCAGGATAACATCACGAGTGCCCGGCTGCTGCAGCAGGAGGTTCTGCAGAACGTCTCGGAT GCTGAGAGCTGTTACCTTGTCCACACCCTGCTGGAGTTCTACTTGAAAACTGTTTTCAAAAA CCACCACAATAGAACAGTTGAAGTCAGGACTCTGAAGTCATTCTCTACTCTGGCCAACAACT TTGTTCTCATCGTGTCACAACTGCAACCCAGTCAAGAAAATGAGATGTTTTCCATCAGAGAC AGTGCACACGGCGGTTTCTGCTATTCCGGAGAGCATTCAAACAGTTGGACGTAGAAGCAGC TCTGACCAAAGCCCTTGGGGAAGTGGACATTCTTCTGACCTGGATGCAGAAATTCTACAAGC TCTGAATGTCTAGACCAGGACCTCCCTCCCCTGGCACTGGTTTGTTCCCTGTGTCATTTCA AACAGTCTCCCTTCCTATGCTGTTCACTGGACACTTCACGCCCTTGGCCATGGGTCCCATTC TTGGCCCAGGATTATTGTCAAAGAAGTCATTCTTTAAGCAGCGCCAGTGACAGTCAGGGAAG AATTAATGTCAGTATTTCAACTGAAGTTCTATTTATTTGTGAGACTGTAAGTTACATGAAGG CAGCAGAATATTGTGCCCCATGCTTCTTTACCCCTCACAATCCTTGCCACAGTGTGGGGCAG GTTAAAAAACAGAGAGGGATGCTTGGATGTAAAACTGAACTTCAGAGCATGAAAATCACACT TAAACGATAAAATGTGGATTAAAGTGCCCAGCACAAAGCAGATCCTCAATAAACATTTCATT TATCCTAGTCATTCTTCCCTAATCTTCCACTTGAGTGTCAAGCTGACCTTGCTGATGGTGAC ATTGCACCTGGATGTACTATCCAATCTGTGATGACATTCCCTGCTAATAAAAGACAACATAA СТССААААААААААААААААААААААА

FIGURE 320

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA88002

><subunit 1 of 1, 206 aa, 1 stop

><MW: 23799, pI: 9.12, NX(S/T): 3

MNFQQRLQSLWTLARPFCPPLLATASQMQMVVLPCLGFTLLLWSQVSGAQGQEFHFGPCQVK GVVPQKLWEAFWAVKDTMQAQDNITSARLLQQEVLQNVSDAESCYLVHTLLEFYLKTVFKNH HNRTVEVRTLKSFSTLANNFVLIVSQLQPSQENEMFSIRDSAHRRFLLFRRAFKQLDVEAAL TKALGEVDILLTWMQKFYKL

Signal sequence:

amino acids 1-42

N-glycosylation sites.

amino acids 85-89, 99-103, 126-130

FIGURE 321

FIGURE 322

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA92282

><subunit 1 of 1, 177 aa, 1 stop

><MW: 20452, pI: 8.00, NX(S/T): 2

MKLQCVSLWLLGTILILCSVDNHGLRRCLISTDMHHIEESFQEIKRAIQAKDTFPNVTILST LETLQIIKPLDVCCVTKNLLAFYVDRVFKDHQEPNPKILRKISSIANSFLYMQKTLRQCQEQ ROCHCROBATNATRVIHDNYDOLEVHAAAIKSLGELDVFLAWINKNHEVMFSA

Signal sequence:

amino acids 1-18

N-glycosylation sites.

amino acids 56-60, 135-139

 $\mathtt{cAMP-}$ and $\mathtt{cGMP-} \mathtt{dependent}$ protein kinase phosphorylation site.

amino acids 102-106

N-myristoylation site.

amino acids 24-30

Actinin-type actin-binding domain signature 1.

amino acids 159-169

FIGURE 323

CCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACTTGGCTTCGTTAG AACGCGGCTACAATTAATACATAACCTTATGTATCATACACATACGATTTAGGTGACACTAT AGAATAACATCCACTTTGCCTTTCTCCCACAGGTGTCCACTCCCAGGTCCAACTGCACCTC ${\tt GGTTCTATCGATAATCTCAGCACCAGCCACTCAGAGCAGGGCACG} {\color{red} {\bf ATG}} {\tt TTGGGGGGCCCGCCT}$ CAGGCTCTGGGTCTGTGCAGCGTCTGCAGCATGAGCGTCCTCAGAGCCTATCCCA ATGCCTCCCCACTGCTCGGCTCCAGCTGGGGTGGCCTGATCCACCTGTACACAGCCACAGCC AGGAACAGCTACCACCTGCAGATCCACAGAATGGCCATGTGGATGGCGCACCCCATCAGAC CATCTACAGTGCCCTGATGATCAGATCAGAGGATGCTGGCTTTTGTGGTGATTACAGGTGTGA TGAGCAGAAGATACCTCTGCATGGATTTCAGAGGCAACATTTTTTGGATCACACTATTTTCGAC CCGGAGAACTGCAGGTTCCAACACCAGACGCTGGAAAACGGGTACGACGTCTACCACTCTCC TCAGTATCACTTCCTGGTCAGTCTGGGCCGGGCGAAGAGAGCCTTCCTGCCAGGCATGAACC CACCCCGTACTCCCAGTTCCTGTCCCGGAGGAACGAGATCCCCCTAATTCACTTCAACACC CCCATACCACGGCGCACACCCGGAGCGCCGAGGACGACTCGGAGCGGGACCCCCTGAACGT GCTGAAGCCCCGGGCCCGGATGACCCCGGCCCCCGCCTCTTTCACAGGAGCTCCCGAGCG CCGAGGACAACAGCCCGATGGCCAGTGACCCATTAGGGGTGGTCAGGGGCGGTCGAGTGAAC ACGCACGCTGGGGGAACGGCCCGGAAGGCTGCCGCCCCTTCGCCAAGTTCATCTAGGGTCG CTGG

FIGURE 324

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA142238

><subunit 1 of 1, 251 aa, 1 stop

><MW: 27954, pI: 9.22, NX(S/T): 1

MLGARLRLWVCALCSVCSMSVLRAYPNASPLLGSSWGGLIHLYTATARNSYHLQIHKNGHVD GAPHQTIYSALMIRSEDAGFVVITGVMSRRYLCMDFRGNIFGSHYFDPENCRFQHQTLENGY DVYHSPQYHFLVSLGRAKRAFLPGMNPPPYSQFLSRRNEIPLIHFNTPIPRRHTRSAEDDSE RDPLNVLKPRARMTPAPASCSQELPSAEDNSPMASDPLGVVRGGRVNTHAGGTGPEGCRPFA KFI

Important features of the protein:

Signal peptide:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 175-179

N-myristoylation site.

amino acids 33-39, 100-106, 225-231, 229-235

HBGF/FGF family proteins

amino acids 73-124

FIGURE 325

GGAAAAGGTACCCGCGAGAGACAGCCAGCAGTTCTGTGGAGCAGCGGTGGCCGGCTAGGATG GGCTGTCTCTGGGGTCTGGCCCCTTTTCTTCTTCTGCTGGGAGGTTGGGGTCTCTGG GAGCTCTGCAGGCCCCAGCACCCGCAGAGCAGACACTGCGATGACAACGGACGACACAGAAG TGCCCGCTATGACTCTAGCACCGGGCCACGCCGCTCTGGAAACTCAAACGCTGAGCGCTGAG ACCTCTTCTAGGGCCTCAACCCCAGCCGGCCCCATTCCAGAAGCAGAGCCAGGGGAGCCAA GAGAATTTCCCCTGCAAGAGAGCCAGGAGTTTCACAAAAACATCTCCCAACTTCATGGTGC TGATCGCCACCTCCGTGGAGACATCAGCCGCCAGTGGCAGCCCCGAGGGAGCTGGAATGACC ACAGTTCAGACCATCACAGGCAGTGATCCCGAGGAAGCCATCTTTGACACCCTTTGCACCGA TGACAGCTCTGAAGAGGCAAAGACACTCACAATGGACATATTGACATTGGCTCACACCTCCA CAGAAGCTAAGGGCCTGTCCTCAGAGAGCAGTGCCTCTTCCGACGGCCCCCATCCAGTCATC ACCCCGTCACGGGCCTCAGAGAGCAGCGCCTCTTCCGACGGCCCCCATCCAGTCATCACCCC GTCACGGGCCTCAGAGAGCAGCGCCTCTTCCGACGGCCCCCATCCAGTCATCACCCCGTCAT GGTCCCCGGGATCTGATGTCACTCTCCTCGCTGAAGCCCTGGTGACTGTCACAAACATCGAG GTTATTAATTGCAGCATCACAGAAATAGAAACAACAACTTCCAGCATCCCTGGGGCCTCAGA CATAGATCTCATCCCCACGGAAGGGGTGAAGGCCTCGTCCACCTCCGATCCACCAGCTCTGC CTGACTCCACTGAAGCAAAACCACACATCACTGAGGTCACAGCCTCTGCCGAGACCCTGTCC ACAGCCGGCACCACAGAGTCAGCTGCACCTCATGCCACGGTTGGGACCCCACTCCCCACTAA CAGCGCCACAGAAAGAGAAGTGACAGCACCCGGGGCCCACGACCCTCAGTGGAGCTCTGGTCA CAGTTAGCAGGAATCCCCTGGAAGAAACCTCAGCCCTCTGTTGAGACACCAAGTTACGTC AAAGTCTCAGGAGCAGCTCCGGTCTCCATAGAGGCTGGGTCAGCAGTGGGCAAAACAACTTC CTTTGCTGGGAGCTCTGCTTCCTCCTACAGCCCCTCGGAAGCCGCCCTCAAGAACTTCACCC CTTCAGAGACACCGACCATGGACATCGCAACCAAGGGGCCCTTCCCCACCAGCAGGGACCCT CTTCCTTCTGTCCCTCCGACTACAACCAACAGCAGCCGAGGGACGAACAGCACCTTAGCCAA GATCACAACCTCAGCGAAGACCACGATGAAGCCCCAACAGCCACGCCCACGACTGCCCGGAC GAGGCCGACCACAGACGTGAGTGCAGGTGAAAATGGAGGTTTCCTCCTCCTGCGGCTGAGTG TGGCTTCCCCGGAAGACCTCACTGACCCCAGAGTGGCAGAAAGGCTGATGCAGCAGCTCCAC CGGGAACTCCACGCCCCACGCGCTCACTTCCAGGTCTCCTTACTGCGTGTCAGGAGAGGCTA ACGGACATCAGCTGCAGCCAGGCATGTCCCGTATGCCAAAAGAGGGTGCTGCCCCTAGCCTG GGCCCCACCGACAGACTGCAGCTGCGTTACTGTGCTGAGAGGTTACCCAGAAGGTTCCCATG AAGGGCAGCATGTCCAAGCCCCTAACCCCAGATGTGGCAACAGGACCCTCGCTCACATCCAC CGGAGTGTATGTATGGGGAGGGGCTTCACCTGTTCCCAGAGGTGTCCTTGGACTCACCTTGG CACATGTTCTGTGTTTCAGTAAAGAGAGACCTGATCACCCATCTGTGTGCTTCCATCCTGCA TTAAAATTCACTCAGTGTGGCCCAAAAAAA

FIGURE 326

MGCLWGLALPLFFFCWEVGVSGSSAGPSTRRADTAMTTDDTEVPAMTLAPGHAALETQTLSA
ETSSRASTPAGPIPEAETRGAKRISPARETRSFTKTSPNFMVLIATSVETSAASGSPEGAGM
TTVQTITGSDPEEAIFDTLCTDDSSEEAKTLTMDILTLAHTSTEAKGLSSESSASSDGPHPV
ITPSRASESSASSDGPHPVITPSRASESSASSDGPHPVITPSWSPGSDVTLLAEALVTVTNI
EVINCSITEIETTTSSIPGASDIDLIPTEGVKASSTSDPPALPDSTEAKPHITEVTASAETL
STAGTTESAAPHATVGTPLPTNSATEREVTAPGATTLSGALVTVSRNPLEETSALSVETPSY
VKVSGAAPVSIEAGSAVGKTTSFAGSSASSYSPSEAALKNFTPSETPTMDIATKGPFPTSRD
PLPSVPPTTTNSSRGTNSTLAKITTSAKTTMKPOOPRPRLPGRGRPOT

N-glycosylation sites:

amino acids 252-256, 445-449, 451-455

 ${\tt cAMP-and}\ {\tt cGMP-dependent}\ {\tt protein}\ {\tt kinase}\ {\tt phosphorylation}\ {\tt site}.$

amino acids 84-90

Casein kinase II phosphorylation sites.

amino acids 37-41, 108-112, 131-135, 133-137, 148-152, 165-169, 246-250, 254-258, 256-260, 269-273, 283-287, 333-337, 335-339, 404-408, 414-418, 431-435

N-myristoylation sites.

amino acids 2-8, 19-25, 117-123, 121-127, 232-238, 278-284, 314-320, 349-355, 386-392, 397-403, 449-455

ATP/GTP-binding site motif A (P-loop).

amino acids 385-393

FIGURE 327

GCGGAGCATCCGCTGCGGTCCTCGCCGAGACCCCCGCGGGATTCGCCGGTCCTTCCCGCGG GCGCGACAGAGCTGTCCTCGCACCTGGATGGCAGCAGGGGGCGCCGGGGTCCTCTCGACGCCA CTTGACTTACACTTTGGTAATAATTTGCTTCCTGACACTAAGGCTGTCTGCTAGTCAGAATT GCCTCAAAAAGAGTCTAGAAGATGTTGTCATTGACATCCAGTCATCTCTTTCTAAGGGAATC AGAGGCAATGAGCCCGTATATACTTCAACTCAAGAAGACTGCATTAATTCTTGCTGTTCAAC AAAAAACATATCAGGGGACAAAGCATGTAACTTGATGATCTTCGACACTCGAAAAACAGCTA GACAACCCAACTGCTACCTATTTTCTGTCCCAACGAGGAAGCCTGTCCATTGAAACCAGCA AAAGGACTTATGAGTTACAGGATAATTACAGATTTTCCATCTTTGACCAGAAATTTGCCAAG CCAAGAGTTACCCCAGGAAGATTCTCTCTTACATGGCCAATTTTCACAAGCAGTCACTCCCC TAGCCCATCATCACACAGATTATTCAAAGCCCACCGATATCTCATGGAGAGACACACTTTCT GCTCCTTGCTTATAAGGAAAAAGGCCATTCTCAGAGTTCACAATTTTCCTCTGATCAAGAAA TAGCTCATCTGCTGCCTGAAAATGTGAGTGCGCTCCCAGCTACGGTGGCAGTTGCTTCTCCA CATACCACCTCGGCTACTCCAAAGCCCGCCACCCTTCTACCCACCAATGCTTCAGTGACACC TTCTGGGACTTCCCAGCCACAGCTGGCCACCACAGCTCCACCTGTAACCACTGTCACTTCTC AGCCTCCCACGACCCTCATTTCTACAGGTTTTTACACGGGCTGCGGCTACACTCCAAGCAATG GCTACAACAGCAGTTCTGACTACCACCTTTCAGGCACCTACGGACTCGAAAGGCAGCTTAGA AACCATACCGTTTACAGAAATCTCCAACTTAACTTTGAACACAGGGAATGTGTATAACCCTA CTGCACTTTCTATGTCAAATGTGGAGTCTTCCACTATGAATAAAACTGCTTCCTGGGAAGGT AGGGAGGCCAGTCCAGGCAGTTCCTCCCAGGGCAGTGTTCCAGAAAATCAGTACGGCCTTCC ATTTGAAAAATGGCTTCTTATCGGGTCCCTGCTCTTTTGGTGTCCTGTTCCTGGTGATAGGCC TCGTCCTCCTGGGTAGAATCCTTTCGGAATCACTCCGCAGGAAACGTTACTCAAGACTGGAT TATTTGATCAATGGGATCTATGTGGACATC<u>TAA</u>GGATGGAACTCGGTGTCTCTTAATTCATT TAGTAACCAGAAGCCCAAATGCAATGAGTTTCTGCTGACTTGCTAGTCTTAGCAGGAGGTTG GCTCTGTTGCCCAGGCTGGAGTGCAGTAGCACGATCTCGGCTCTCACCGCAACCTCCGTCTC CTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCTAAGTATCTGGGATTACAGGCATGTGCCA CCACACCTGGGTGATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGTCAGGCTG GTCTCAAACTCCTGACCTAGTGATCCACCCTCCTCGGCCTCCCAAAGTGCTGGGATTACAGG CATGAGCCACCACAGCTGGCCCCCTTCTGTTTTATGTTTTGGTTTTTTGAGAAGGAATGAAGTG GGAACCAAATTAGGTAATTTTGGGTAATCTGTCTCTAAAATATTAGCTAAAAACAAAGCTCT ATGTAAAGTATAAAGTATAATTGCCATATAAATTTCAAAATTCAACTGGCTTTTATGCAAA GAAACAGGTTAGGACATCTAGGTTCCAATTCATTCACATTCTTGGTTCCAGATAAAATCAAC TGTTTATATCAATTTCTAATGGATTTGCTTTTCTTTTTATATGGATTCCTTTAAAACTTATT CCAGATGTAGTTCCTTCCAATTAAATATTTGAATAATCTTTTGTTACTCAA

FIGURE 328

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45410

><subunit 1 of 1, 431 aa, 1 stop

><MW: 46810, pI: 6.45, NX(S/T): 6

MFFGGEGSLTYTLVIICFLTLRLSASQNCLKKSLEDVVIDIQSSLSKGIRGNEPVYTSTQED
CINSCCSTKNISGDKACNLMIFDTRKTARQPNCYLFFCPNEEACPLKPAKGLMSYRIITDFP
SLTRNLPSQELPQEDSLLHGQFSQAVTPLAHHHTDYSKPTDISWRDTLSQKFGSSDHLEKLF
KMDEASAQLLAYKEKGHSQSSQFSSDQEIAHLLPENVSALPATVAVASPHTTSATPKPATLL
PTNASVTPSGTSQPQLATTAPPVTTVTSQPPTTLISTVFTRAAATLQAMATTAVLTTTFQAP
TDSKGSLETIPFTEISNLTLNTGNYYNPTALSMSNVESSTMKKTASWEGREASPGSSSQGSV
PENQYGLPFEKWLLIGSLLFGVLFLVIGLVLLGRILSESLRKKYYSRLDVLINGTYVDT

Signal sequence.

amino acids 1-25

Transmembrane domain.

amino acids 384-405

N-glycosylation sites.

amino acids 72-76, 222-226, 251-255, 327-331, 352-356

cAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 415-419

Tyrosine kinase phosphorylation site.

amino acids 50-57

N-myristoylation sites.

amino acids 4-10, 48-54, 315-321

FIGURE 329

CTCCCACGGTGTCCAGCGCCCAGAATGCGGCTTCTGGTCCTGCTATGGGGTTGCCTGCTGCT CCCAGGTTATGAAGCCCTGGAGGGCCCAGAGGAAATCAGCGGGTTCGAAGGGGACACTGTGT CCCTGCAGTGCACCTACAGGGAAGAGCTGAGGGACCACCGGAAGTACTGGTGCAGGAAGGGT GGGATCCTCTCTCTCGCTGCTCTGGCACCATCTATGCAGAAGAAGAAGACCAGGAGACAAT GAAGGGCAGGGTGTCCATCCGTGACAGCCGCCAGGAGCTCTCGCTCATTGTGACCCTGTGGA ACCTCACCCTGCAAGACGCTGGGGGAGTACTGGTGTGGGGTCGAAAAACGGGGCCCCGATGAG TCTTTACTGATCTCTGTTCGTCTTTCCAGGACCCTGCTGTCCTCCCCTCCCCTTCTCCCAC CTTCCAGCCTCTGGCTACAACACGCCTGCAGCCCAAGGCAAAAGCTCAGCAAACCCAGCCCC CAGGATTGACTTCTCCTGGGCTCTACCCGGCAGCCACCACAGCCAAGCAGGGGAAGACAGGG GCTGAGGCCCCTCCATTGCCAGGGACTTCCCAGTACGGCACGAAAGGACTTCTCAGTACAC AGGAACCTCTCCTCACCCAGCGACCTCTCCTCCTGCAGGGAGCTCCCGCCCCCCATGCAGC TGGACTCCACCTCAGCAGAGGACACCAGTCCAGCTCTCAGCAGTGGCAGCTCTAAGCCCAGG GTGTCCATCCCGATGGTCCGCATACTGGCCCCAGTCCTGGTGCTGCTGAGCCTTCTGTCAGC CGCAGGCCTGATCGCCTTCTGCAGCCACCTGCTCCTGTGGAGAAAGGAAGCTCAACAGGCCA CGGAGACACAGAGGAACGAGAAGTTCTGGCTCTCACGCTTGACTGCGGAGGAAAAGGAAGCC CCTTCCCAGGCCCCTGAGGGGGACGTGATCTCGATGCCTCCCCTCCACACATCTGAGGAGGA $\tt GCTGGGCTTCTCGAAGTTTGTCTCAGCG\underline{TAG} GGCAGGAGGCCCTCCTGGCCAGGCCAGCAGT$ GAAGCAGTATGGCTGGATCAGCACCGATTCCCGAAAGCTTTCCACCTCAGCCTCAGAG TCCAGCTGCCCGGACTCCAGGGCTCTCCCCACCCTCCCAGGCTCTCCTCTTGCATGTTCCA GCCTGACCTAGAAGCGTTTGTCAGCCCTGGAGCCCAGAGCGGTGGCCTTGCTCTTCCGGCTG GAGACTGGGACATCCCTGATAGGTTCACATCCCTGGGCAGAGTACCAGGCTGCTGACCCTCA GCAGGCCAGACAAGGCTCAGTGGATCTGGTCTGAGTTTCAATCTGCCAGGAACTCCTGGGC TGGCGTCCTCAGACTTAGTCCCACGGTCTCCTGCATCAGCTGGTGATGAAGAGGAGCATGCT GGGGTGAGACTGGGATTCTGGCTTCTCTTTGAACCACCTGCATCCAGCCCTTCAGGAAGCCT GTGAAAAACGTGATTCCTGGCCCCACCAAGACCCACAAAACCATCTCTGGGCTTGGTGCAG GACTCTGAATTCTAACAATGCCCAGTGACTGTCGCACTTGAGTTTGAGGGCCAGTGGGCCTG ATGAACGCTCACACCCCTTCAGCTTAGAGTCTGCATTTGGGCTGTGACGTCTCCACCTGCCC CAATAGATCTGCTCTGTCTGCGACACCAGATCCACGTGGGGACTCCCCTGAGGCCTGCTAAG TCCAGGCCTTGGTCAGGTCAGGTGCACATTGCAGGATAAGCCCAGGACCGGCACAGAAGTGG TTGCCTTTNCCATTTGCCCTCCTGGNCCATGCCTTCTTGCCTTTGGAAAAAATGATGAAGA AAACCTTGGCTCCTTCCTTGTCTGGAAAGGGTTACTTGCCTATGGGTTCTGGTGGCTAGAGA GAAAAGTAGAAAACCAGAGTGCACGTAGGTGTCTAACACAGAGGAGAGTAGGAACAGGGCGG ATACCTGAAGGTGACTCCGAGTCCAGCCCCTGGAGAAGGGGTCGGGGGTGGTAAAGTA GCACAACTACTATTTTTTTTTTTTCCATTATTATTGTTTTTTAAGACAGAATCTCGTGCT GCTGCCCAGGCTGGAGTGCAGTGGCACGATCTGCAAACTCCGCCTCCTGGGTTCAAGTGATT CTTCTGCCTCAGCCTCCCGAGTAGCTGGGATTACAGGCACCACCACCACCACCTGGCTAATT TTTGTACTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGAC CTCAAATGAGCCTCCTGCTTCAGTCTCCCAAATTGCCGGGATTACAGGCATGAGCCACTGTG TCTGGCCCTATTTCCTTTAAAAAGTGAAATTAAGAGTTGTTCAGTATGCAAAACTTGGAAAG ATGGAGGAGAAAAAGGAAGGAAAAAAAATGTCACCCATAGTCTCACCAGAGACTATCAT TATTTCGTTTTGTTGTACTTCCTTCCACTCTTTTCTTCTTCACATAATTTGCCGGTGTTCTT TTTACAGAGCAATTATCTTGTATATACAACTTTGTATCCTGCCTTTTCCACCTTATCGTTCC GCTGCATAAAAAAAAAAAAAA

FIGURE 330

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44196

<subunit 1 of 1, 332 aa, 1 stop

<MW: 36143, pI: 5.89, NX(S/T): 1

MRLLVLLWGCLLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSRCS
GTIYAEEEGQETMKGRVSIRDSRQELSLIVTLWNLTLQDAGEYWCGVEKRGPDESLLISLFV
FPGPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAEAPPLPG
TSQYGHERTSQYTGTSPHPATSPPAGSSRPPMQLDSTSAEDTSPALSSGSSKPRVSIPMVRI
LAPVLVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLSRLTAEEKEAPSQAPEGD
VISMPPLHTSEEELGFSKFVSA

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 248-269

N-glycosylation site.

amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain.

amino acids 104-113

Ig like V-type domain:

amino acids 13-128