IDES (SIG en la Web)

MARINA ÁLVAREZ ALONSO

marina.alvarez@upm.es

UPM

Programa

Modulo 1. Introducción

- Tema 1.1. Introducción a las IDE (SIG en la web)
- Tema 1.2. Construcción de los Modelos espaciales de datos
- Tema 1.3. Medida de la componente temática de los datos espaciales

Modulo 2. Representación de la Información Geográfica

- Tema 2.1. Construcción de los Modelos de representación
- Tema 2.2. Formatos de estructuras de datos espaciales
- Tema 2.3. Captura de datos espaciales
- Tema 2.4. Análisis Espacial

Modulo 3. Publicación de la Información espacial

- Tema 3.1. Definiciones, componentes y marco legal de las IDE
- Tema 3.2. Tecnologías XML
- Tema 3.3. Servicios Web de una IDE
- Tema 3.4. Clientes IDE
- Tema 3.5 Aplicaciones con estándares IDE
- Modulo 4. Construcción de un servicio web

Tema 1.2. Construcción de los Modelos espaciales de datos

- 1. Introducción
- 2. La Información Geográfica
- 3. Los datos espaciales
- 4. Construcción del Modelo del espacio
 - 1. Modelo Vector
 - 2. Modelo Raster
 - 3. Modelos compuestos
- 5. Modelos Digitales del Terreno
- 6. Bibliografía

Componentes de los SIG (Tema 1.1)

- . Datos
- . Personal cualificado: Equipo humano
- . Organización
- . Hardware
- . Internet
- . Aplicaciones finales Internet
- . Software

Datos

- -70% del coste total de un proyecto SIG
- -Componente crucial.

Si cargas basura se obtendrá... Basura!

Preguntas:

¿Qué es la Información geográfica?

¿Que son los datos espaciales?

¿Cómo se representan en un SIG?

Datos SIG

Tema 1.2. Construcción de los Modelos espaciales de datos

- 1. Introducción
- 2. La Información Geográfica
- 3. Los datos espaciales
- 4. Construcción del Modelo del espacio
 - 1. Modelo Vector
 - 2. Modelo Raster
 - 3. Modelos compuestos
- 5. Modelos Digitales del Terreno
- 6. Bibliografía

- El mundo real es continuo e infinitamente complejo
 - Particularidad: carácter espacial de los elementos-I. G.
- La I.G. es uno de los tipos de información más importantes por:
 - Riqueza de contenidos
 - Aprovechamiento económico
 - Valor geopolítico
- Su verdadero valor está en:
 - Capacidad de mostrar la realidad

Definición de I.G.

Es la referida a entidades geográficas (unidades de observación) o fenómenos que ocurren sobre la corteza terrestre o en sus proximidades, de los cuales es:

Relevante el conocimiento de su posición referida a un sistema vinculado con la Tierra

Características

- Voluminosa
- Fractal
- Borrosa
- Dinámica
- Multiforme

- La I.G. es voluminosa
 - Procedencia y contenido dispar (urbana, catastral, geológica, cartográfica, militar, censal, ...)
 - El volumen crece con: (escala)²
 - Nº de coordenadas

	España	1 provincia	1 hoja
1:200.000	8.000.000	150.000	2000
1:25.000	800.000.000	15.000.000	200.000

- España tiene 50 provincias y 4135 hojas de MTN25
- Unidad de trabajo: aprox. (100.000) coordenadas
- Nº potencial de datos en los trabajos de campo puede ser infinito

- La I.G. es fractal
 - Los fractales fueron descubiertos por Mandelbrôt
 - Fractal de fractus : interrumpido o irregular
 - Dimensión fractal D: mide el grado de irregularidades
 - D es fraccionario: 1 < D < 2

- La I.G. es fractal
 - La representación de la realidad depende de la escala del mapa: un mismo objeto varia sus dimensiones topológicas si se representa en mapas distintos

- No es igual a escala 1:25.000 que a escala 1:2.000.000

- La toponimia es fractal
 - Toponimia estudia el origen y significado de los nombres de lugar
 - Relación directa con la cartografía
 - Alberto Porlan, 1999 ("Los nombres de Europa")
 - Saint Quentin
 Sain Aubin
 - Quintana
 Sant Ibañez
 - Quintanilla Santo Venia

• La I.G. es borrosa

- ¿Dónde acaba un bosque y un cultivo?
- ¿Dónde acaba un río y comienza el mar?
- ¿Cuál es el límite de una ciudad y de un término municipal?
- ¿Qué pasa con las vías de comunicación?

- La I.G. es dinámica
 - Cambios en el tiempo
 - Mapas de usos del suelo
 - Cambios en el espacio
 - Crecimiento urbano
 - Divisiones administrativas (20 cambios al año)
 - Obras hidráulicas
 - Crecimiento demográfico (6% año)
 - Cambios temáticos
 - Rotación de cultivos
 - Corrección de errores

- La I.G. es multiforme
 - La representación de los objetos geográficos varía con la escala del mapa
 - ¿Qué es una ciudad?

• ¿Un punto? 1:1.000.000

• ¿Un polígono? 1:50.000

Superficie_ciudad Superficie_total <<< 1

 $\frac{\text{Superficie_ciudad}}{\text{Superficie total}} \approx 1$

- Depende de:
 - Del fin perseguido
 - De las consultas a responder

Tema 1.2. Construcción de los Modelos espaciales de datos

- 1. Introducción
- 2. La Información Geográfica
- 3. Los datos espaciales
- 4. Construcción del Modelo del espacio
 - 1. Modelo Vector
 - 2. Modelo Raster
 - 3. Modelos compuestos
- 5. Modelos Digitales del Terreno
- 6. Bibliografía

• El tratamiento de la I.G. implica:

 Abstracción: elección de determinadas unidades de observación geográfica.

 Estudio y análisis: de las unidades de observación seleccionadas.

Unidades de observación (entidades geográficas)

"Fenómenos de interés para el mundo real que no pueden ser subdivididos en fenómenos del mismo tipo, pero pueden formar clases" (Moe Llering)

Características:

- Identidad propia
- Extensión espacial relativamente bien definida

Clasificación (The american cartographer, nº 11, vol 15)

- Naturales, ej Subdivisión por usos del suelo
- Artificiales, Creadas por el hombre. ej Unidades administrativas

Estudio de la I.G.

Siglo XX

50's- Adaptación de métodos estadísticos (Geoestadistica)

60's- Construcción de modelos matemáticos y nuevos métodos de investigación

Matriz de Berry

1964. Berry se dio cuenta:

- Limitaciones al trabajar con mapas analógicos
- Especial naturaleza de la IG
 - Mundo real (información continua)
 - Información geográfica (información discreta)

Estableció la Matriz de Berry:

- Ordenación de los datos para la realización de análisis regional
- Antecedente conceptual de los SIG

Matriz de Berry.

Conecta los elementos geográficos con sus atributos:

- Posibilidad de tratar cuantitativamente la información temática asociada los entes geográficos
- 1º. No considera el eje del tiempo.
- 2º.Introducción del eje del tiempo

Contraria a las BD actuales

Figura 2.1. La matriz geográfica de Berry. A) Matriz de lugares y atributos. B) Introducción del eje del tiempo en la matriz geográfica

Matriz de Dangermond

1983.

Información sobre

atributos de lugares en
←no M.B si→ Localización

momentos temporales

←si M.D si→ de los lugares

Conclusión. Descomposición de los datos geográficos en 3 componentes que responden a las preguntas:

- ¿Dónde?
- ¿Qué?
- Cuándo?

 ©Marina Álvarez

Hoy se acepta que todo fenómeno de interés:

Se localiza en algún lugar (c. espacial)

Ha sucedido en algún momento (c. temporal)

Tiene asociada alguna medida del mismo (c. temática)

Componentes

Espacial

- Geometría (localización)
 - Posición, forma, tamaño, orientación
- Topología (relaciones espaciales)
 - Deducible de la geometría

Temática

- Atributo o variable temática
 - Contenida en: códigos, nombre, atributos

Temporal

Tiempo

Tema 1.2. Construcción de los Modelos espaciales de datos

- 1. Introducción
- 2. La Información Geográfica
- 3. Los datos espaciales
- 4. Construcción del Modelo de datos espacial
 - 1. Modelo Vector
 - 2. Modelo Raster
 - 3. Modelos compuestos
- 5. Modelos Digitales del Terreno
- 6. Bibliografía

Definición de SIG (Tema 1.1)

Gira alrededor de, Tema 1.1:

- 1. Existencia de un interés por conocer "CIERTO ASPECTO" del mundo real
- 2. Voluntad de influir en el aspecto estudiado: "DECISIÓN" y "CONTROL"
- 3. Intento de explicarlo mediante un "MODELO"
- 4. "MEDIDA" del conjunto de variables que constituyen el modelo

29

4. Construcción de los modelos de datos

• Cada uno de los componentes de los datos espaciales (Espacial, Temático y Temporal) juega un determinado papel en un SIG.

- Sinton (1979) establece que:
 - Uno servirá de control
 - Otro deberá ser fijo
 - El tercero se medirá constituyendo la componente principal del estudio

4. Construcción de los modelos de datos

Se estudia el concepto de:

- 1. CONTROL, de las componentes espacial o temática, como generador del MODELO, Tema 1.2
- 2. MEDIDA de la componente temática como parte fundamental del desarrollo del MODELO, Tema 1.3

4. Construcción de los modelos de datos

En definitiva el proceso total implica:

- 1. Localizar, Tema 1.2
- Representar los elementos por objetos geométricos y los objetos por primitivas topológicas. (Modelos espaciales de datos)
- 2. Definir Relaciones, Tema 2.1
- Espaciales métricas entre objetos, Estructuras cartográficas.
- Topológicas entre objetos, Estructuras topológicas.

Del estudio de ambos se obtienen los:

MODELOS DE REPRESENTACION: Espacios metrico-topologícos. Tema 2.1

4.1

Modelos de datos espaciales

4.1. Modelado del Espacio

- Dos formas de Modelos de datos espaciales:
 - -1. El espacio como control, Modelo Raster
 - Basado en superficie.
 - -2. Los atributos como control, Modelo Vector
 - Basado en entidades u objetos.

Modelos raster

1. Modelos raster

- El espacio como control, el atributo libre
- El concepto objeto no es relevante en este enfoque.
- Unidades artificiales: celdas de igual tamaño y forma

- · Cada punto en el espacio es asociado a varios atributos
- Proceso de individualización de elementos:
 - 1º localización
 - 2° propiedades

- Conceptos principales:
 - El marco de trabajo (framework) espacial es un espacio particionado- rejilla.

1 celda = 1 valor de:

Altitud

Reflectancia

. . .

- Existen funciones sobre los campos:
 - f: Spatial Framework \rightarrow Attribute Domain
- Existen operaciones sobre los campos. Por ejemplo adición, composición, etc.

1.1. Formas de la malla

Regulares: malla cuadrada de filas y columnas equidistantes (URG)

- Polígonos: valores asignados a teselas poligonales

En este modelo no es importante diferenciar las estructuras:

- Cartográficas. Definen la forma y posición de los objetos, Tema 1.2.
- Topológicas. Definen la conectividad o las relaciones de contigüidad entre los objetos, Tema 2.1.

Debido a que la topología esta implícita en la estructura del modelo.

1. Modelo Ráster

Objeto Geometrico-Píxel

• El objeto geometrico elemental que compone la rejilla. Cuanto más pequeño sea el tamaño del píxel, mayor exactitud tendrá la representación digital del mapa.

SPOT 10 m

SPOT 5 m

SPOT 2,5 m

- Escala en un mapa ráster:
 - No existe pero es imprescindible conocer la equivalencia de la longitud del píxel en unidades del terreno

1. Modelo Ráster

- Origen de coordenadas (0,0)
 - Depende del software SIG utilizado, en la esquina superior izquierda
 - El motivo de establecer este origen, deriva de la manera de trabajar que siguen muchos de los equipos utilizados en la captura y tratamiento de datos ráster (escáneres, sensores espaciales, impresoras, etc.).

Tipología

En función de cómo se realice el control:

1. Control espacial basado en puntos

2. Control espacial basado en superficie

3. Control espacial mediante relaciones

1. Control basado en puntos

1. Punto central

2. Puntos al azar en una malla

1.1. Control en punto central

- Muestreo sistemático en una malla
- En cada punto se mide el atributo.

1.2. Control basado en superficie

Valor extremo Máximo o mínimo valor de la celda

Total Suma de cantidad en la celda

Tipo predominante Clase más común en la celda

Presencia/ausencia Resultado binario para una clase

Porcentaje de cobertura Porcentaje de la celda ocupado por la clase

Precedencia de tipo Clase de mayor rango en la celda

1.3. Control espacial mediante relaciones

El control no se realiza sobre la componente espacial directamente, El control se realiza sobre:

- •relaciones definidas entre objetos
- determinados puntos del espacio (n-uplas).

OJO: Da lugar a 2 modelos vector:

- Modelos de Transporte
- Modelos Digitales del Terreno (MDT):

TIN(Triangulated Irregular Network):

1. Modelos de Transporte:

- Se estudian atributos relacionados con el flujo entre distintos puntos.
- El control del espacio se realiza estableciendo parejas de puntos (A,E), (B,E),(C,E),(D,E), etc.

2. Modelos TIN (Triangulated Irregular Network): en los que un conjunto de tres puntos representa la superficie del terreno.

Clasificación de los modelos raster

En función del origen de la información:

- 1. Espectrales: proceden de satélites de teledetección
- Z. Temáticos: resultado de análisis sobre los anteriores
- Otros:

Ortofotos, Fotografías aéreas, Fotografías de edificios

Visualización

- Monobanda (1 capa)
 - Monocromáticos
 - Escala de grises o rampas de color
 - Color map
- Multibanda (varias capas)
 - Composición RGA

1. Modelo Ráster

Modelo Ráster		
or ormación existencia o la cies s, provoca		
o la		

Otros Inconvenientes

- Alto coste

- Los nombres no se ven en las imágenes

Los atributos como control

El espacio libre, definido como un conjunto discreto de objetos (entidades o elementos geométricos) con una identificación única.

- Proceso de individualización de elementos:
 - 1° propiedades,
 - 2º localización

En este modelo es importante diferenciar las estructuras:

- Cartográficas. Definen la forma y posición de los objetos, Tema 1.2.
- Topológicas. Definen la conectividad o las relaciones de contigüidad entre los objetos, Tema 2.1.

Tipos de Objetos Espaciales

Simples elementos geométricos

- -puntos
- líneas
- -polígonos

Representan elementos en función de la escala

Tipologías de modelos vector

En función del tipo de objetos:

- 1. Modelo de Objetos aislados
 - 1. Categoría
 - 2. Múltiples categorías
- 1. Modelo de Objetos agregados
- 2. Modelo de Objetos conectados

1. Modelo de Objetos aislados

1. Una categoría binaria que diferencia el objeto del vacio

Ejemplo:

Un conjunto de manzanas de una ciudad.

No se especifica la relación de vecindad existente entre ellos.

Subyace en la mayoría de los programas CAD

1. Tipo de Objetos aislados

2. Múltiples categorías, División regular de una variable continua

Ejemplo:

Un mapa de Isolíneas

En una división sistemática de un atributo continuo, aparecen objetos aislados correspondientes a un determinado valor.

No se especifica la relación existente entre ellos.

- 2. Tipo de Objetos geográficos agregados
- Son un conjunto de objetos, punto, línea y polígono, pertenecientes a una clase.
- La escala es determinante en su elección
 - Ej. Entidad: casa de un familiar

1:100.000- Objeto punto

1:10.000- Objeto área

3. Tipo de Objetos geográficos conectados

Añade la idea de vecindad entre objetos o relaciones topológicas.

• Red: Los objetos lineales se conectan entre sí y forman una topología.

• Cobertura: topología formada por una clasificación exhaustiva de los objetos conectados entre si.

Estructuras cartográficas del modelo vector

Representación de los elementos espaciales:

- Mediante la codificación explícita del límite o perímetro que separa el elemento de su entorno.
- Las líneas que definen esta frontera se representan vectorialmente mediante las coordenadas de los puntos o vértices que delimitan los segmentos rectos que las forman.

Modelo Vector		
Ventajas	Inconvenientes	
 Necesita menos espacio de almacenamiento Representación de entidades geográficas lineales y puntuales más precisa Medida de distancias, superficies y volúmenes con alto grado de precisión Soporta descripción topológica de entidades, permitiendo el análisis de redes Fácil transformación de coordenadas y cambio de datum Soporta actualización, búsqueda y generalización de entidades 	 Análisis espacial más lento Consumo alto de recursos en visualización e impresión Complejidad en la estructura de los datos Mayor consumo de medios y tiempo en la captura 	

©Marina Álvarez

Modelos compuestos

3. Modelos Compuestos

Consideraciones sobre los Modelos de datos

- •No existe un único o "correcto" modelo de datos para cada problema.
- •Muchas veces será necesario combinar modelos de datos (puntuales, continuos y discretos) para agregar información al problema estudiado, Modelos Compuestos.
- •La necesidad de combinar diferentes modelos de datos y tener un sólido conocimiento de las diferentes técnicas se deriva de la propia naturaleza del espacio geográfico.

3. Modelos compuestos

- ·Las medidas directas son raras en los SIG.
- •Se combinan distintos criterios

•1. Modelo de coropletas:

- 1°. Mediante una medida de los atributos se define un conjunto de regiones: A, B, C
- 2º. Empleandoo las regiones como control, se mide de forma continua el atributo en todos los puntos del área de estudio

· 2. Segmentación Dinámica

El control del espacio se realiza en una serie de puntos kilométricos de una carretera.

Tema 1.2. Construcción de los Modelos espaciales de datos

- 1. Introducción
- 2. La Información Geográfica
- 3. Los datos espaciales
- 4. Construcción del Modelo del espacio
 - 1. Modelo Vector
 - 2. Modelo Raster
 - 3. Modelos compuestos
- 5. Modelos Digitales del Terreno
- 6. Bibliografía

Modelo de datos numéricos que describe la distribución espacial de una característica cuantitativa y continua del territorio.

- La unidad básica de información en un Modelo Digital:
 - el punto,
 - definido por una terna de coordenadas (x, y, z).

- Tipos de MDT
 - Modelo Digital de Elevación (MDE)
 - Modelos de Triángulos Irregulares (TIN)
 - Modelos de Mallas Regulares (MDR)

- Modelo Digital de Elevación (MDE)
 - cuando lo que se representa es la distribución espacial de la altitud de la superficie del terreno.

- Modelos de Triángulos Irregulares (TIN)
 - Una red de triángulos irregulares (TIN) a partir de los datos originales obtenidos en el terreno.
 - Es un modelo vector

Modelos de Mallas Regulares

- Una rejilla, formada por la repetición de formas geométricas (rectángulos, cuadrados, triángulos o hexágonos) de las cuales se conoce la altitud de sus nodos.
- Es un Modelo raster
- Se llama también GRID

Tema 1.2. Construcción de los Modelos espaciales de datos

- 1. Introducción
- 2. La Información Geográfica
- 3. Los datos espaciales
- 4. Construcción del Modelo del espacio
 - 1. Modelo Vector
 - 2. Modelo Raster
 - 3. Modelos compuestos
- 5. Modelos Digitales del Terreno
- 6. Bibliografía

- Exploring geographic information systems, Nicholas Chrisman
- Información geográfica y sistemas de información geográfica, J.A.Cebrian 1992
- http://faculty.washington.edu/chrisman/g460/beyst.
 html
- "SIG: Sistemas de Información Geográfica" J. Gutierrez Puebla, M. Goula

- "Exploring Geographic Information Systems", N. Chrisman
- http://faculty.washington.edu/chrisman/g460/beyst.html
- "Sistemas de Información Geográfica", J. Bosque Sendra
- "Principles of Geographic Information Systems" P.Barrough y R. McDonell
- "Geographic Information Systems and Science", P.A. Longley et alt
- "Introducción al diseño de BD relacionales" G.A. Jackson
- "Una intriducción a los sistemas de BD" C.J. Date
- "Information modelling: The express Way", D.Schenk et alt
- "Spatial Databases, Atour", S.Shekkar y S.Chaula, Prentice Hall
 2003

- "Computer graphics principles and practice", J. Foley et alt
- "Digital image processing", R.C. González et alt
- "Coding information theory", R.W. Hamming
- "Data compression: The complete reference" D.
 Salomon
- "Fundamentals of three-dimensional computer graphics", A. Watt

• ISO: http://www.isotc211.org/

Standards of ISO Technical Committee 211: http://www.fgdc.gov/ppt/ (Tutorial)

ISO 19101 - Reference model

ISO 19107 - Spatial schema

ISO 19115 – Metadata

OpenGis Consorsium (OGC):

http://www.opengeospatial.org/specs/?page=abstract (OPENGIS AbstractModel)
http://www.opengeospatial.org/specs/?page=specs (OpenGIS FeatureGeometry, OGC SQL)

- The SDI Cookbook: http://redgeomatica.rediris.es/metadatos/publica/recetario/html/
- Digital Geospatial Information Working Group (DGIWG): https://www.dgiwg.org/dgiwg/index.htm
- Federal Geographic Data Comitee (FGDC): http://www.fgdc.gov/
- Esri: http://www.esri-es.com/index.asp?pagina=170

¿Alguna pregunta?

Gracias por su atención