TBM Professional Data Science Capstone Project

SpaceX landing

Pasha Bayramli 25.4.2022

OUTLINE

- Executive Summary
- Introduction
- Methodology
 - Data collection and data wrangling
 - EDA and Interactive visual analytics methodology
 - Predictive analysis methodology
- Results
 - Visualization Charts
 - Dashboard
 - EDA with SQL
 - Predictive analysis (Classification)
- Discussion
 - ► Findings & Implications
- Conclusion

Executive Summary

- Main object: obtain data, analyze, visualize and predict the possibility of case study upon successful
 first launch landing of SpaceX rockets on different launch locations, boosters, payload mass, and etc.
 data types.
- The data used in this analysis is obtained from SpaceX API and filtered/cleaned upon necessary data types.
- Data manipulation is done via Pandas data-frames and SQL
- After manipulation data was explained by visual means through matplotlib, plotly dashboard tools
- Normalization of data and creation of dummy columns were made to further predictive analysis
 mainly through sklearn ML packages. Models were trained and tested in order to obtain accuracy
 and further evaluation
- Eventually, successful landing possibilities were found via three ML models such as logistic regression, support vector machine and decision tree.
- Successful landing possibility, practically, is the same for all models: 0.833 (1.0 is the highest confidence of successful landing)

Introduction

• In the capstone project, the prediction of first stage landing of the Falcon 9 space rocket will be done. Main purpose of the whole project is to reduce the company costs by predicting successful first landing which allows the company to reuse the rocket itself for further launches leading to a enormous cost savings for the company. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

SEPTEMBER 2013 HARD IMPACT ON OCEAN

Methodology

Data collection and data wrangling

- Create get request
 Retrieve requested content and filter by already created functions
- Normalize data
 Create
 corresponding
 columns and
 append data into
 the one dataframe

Data filtering and manipulation

Octoorse Falcon 9 booster

Replace missing values with mean value with payload mass

Save data-frame

Data wrangling

• Create outcome column as "Class" • Save the dataset

	FlightNumber	r C	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	
0	1	03	006- 3-24	Falcon 1	20.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	N
1	2	203	007- 3-21	Falcon 1	NaN	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	N
2	4	1 20	008- 9-28	Falcon 1	165.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	N
3	5	07	009- 7-13	Falcon 1	200.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Ν
4	6		010- 6-04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	

	FlightNumb	er	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	: 5
4		6	2010- 06-04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	C) B
5		8	2012- 05-22	Falcon 9	525.0	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	C) B
6		10	2013- 03-01	Falcon 9	677.0	ISS	CCSFS SLC 40	None None	1	False	False	False	None	1.0	C) B
7	/	11	2013- 09-29	Falcon 9	500.0	РО	VAFB SLC 4E	False Ocean	1	False	False	False	None	1.0	C) B
8	1	12	2013- 12-03	Falcon 9	3170.0	GTO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	C) B

rsion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	Class
con 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	0
con 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	0
con 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	0
con 9	500.000000	РО	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.632093	0
con 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	0

Methodology

EDA and Interactive visual analytics methodology

 Payload Mass vs Flight • Depending on the data number visualization done Create pie chart • Launch site vs Flight earlier determine showing Launch sites Create charts number features for prediction Visualize Define Extract years out of and success rates to understand • Launch site vs Payload models launch features for Create date column · Create Payload vs relationships Create dummies Orbit. mass Group success rate by further dashboards Success rate each success yearly Launch sites, Landing • Bar chart: success rate of success launch year launch sites with trend analysis Pads, and Serial vs Orbit type (group by) rates booster version numbers • Orbit type vs Flight information number • Turn each column into float type • Orbit type vs Payload

Methodology

Predictive analysis methodology

EDA with visualization

Payload mass, kg vs Flight number

Launch site vs Flight number

EDA with visualization

Launch site vs Paylaod mass, kg

Orbit vs Flight number

EDA with visualization

Success rate vs Years

Results EDA with SQL

 Names of unique launch sites

launch_site
CCAFS LC-40
CCAFS SLC-40
KSC LC-39A
VAFB SLC-4E

 Total payload mass of NASA (CRS)'s boosters

total_mass_nasa_crs_kg 45596 Launch sites beginning with "CCA"

	DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landingoutcome
	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
Ŷ,	2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

 Average payload mass carried by booster version F9 v
 1.1

average_mass_f9_v1_1_kg

 First successful landing date with ground pad outcome

first_successfull_landing

 Booster versions with success in drone ship and payload mass 4000-6000 kg

booster_version	landing_outcome
F9 FT B1022	Success (drone ship)
F9 FT B1026	Success (drone ship)
F9 FT B1021.2	Success (drone ship)
F9 FT B1031.2	Success (drone ship)

EDA with SQL

 Total number of successful and failed missions

success_count	failure_count
100	1

 Boosters with maximum payload mass (15600 kg)

max_pm_boosters
F9 B5 B1048.4
F9 B5 B1048.5
F9 B5 B1049.4
F9 B5 B1049.5
F9 B5 B1049.7
F9 B5 B1051.3
F9 B5 B1051.4
F9 B5 B1051.6
F9 B5 B1056.4
F9 B5 B1058.3
F9 B5 B1060.2
F9 B5 B1060.3

 Failed cases with drone ship outcome in 2015

booster_version	launch_site	landing_outcome
F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

 Failure (drone ship) or Success (ground pad))
 between the date 2010-06-04 and 2017-03-20

landingoutcome	COUNT
Success (ground pad)	9
Failure (drone ship)	5

Interactive map with Folium

Nasa Johnson Space center

Launch sites with names shown

Interactive map with Folium

Launch site – each success and failure cases

Marking successfull (green) and failure (red) launches

Lat: 28.57889 Long: -80.65454 Lat: 28.57889 Long: -80.65454

Leaflet | Data by @ OpenStreetMap, under ODbL

Interactive map with Folium

Distance to the coastline from the closest launch site

Plotly Dash dashboard

Launch site details: CCAFS LC-40

- Success rate
- Payload mass distribution vs success rates along booster version categories

Plotly Dash dashboard

Launch site details: VAFB SLC-4E

- Success rate
- Payload mass distribution vs success rates along booster version categories

Plotly Dash dashboard

Launch site details: KSC LC-39A

- Success rate
- Payload mass distribution vs success rates along booster version categories

Plotly Dash dashboard

Launch site details: CCAFS SLC-40

- Success rate
- Payload mass distribution vs success rates along booster version categories

Predictive analysis (classification)

Training and testing data shapes

Training and testing data shapes

Train set: (72, 83) (72, 1) Test set: (18, 83) (18, 1)

Normalized data with dummies (categorical data)

	FlightNumber	PayloadMass	Flights	Block	ReusedCount	Orbit_ES- L1	Orbit_GEO	Orbit_GTO	Orbit_HEO	Orbit_ISS	 Serial_B1058	Serial_B1059	Seri
0	1.0	6104.959412	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	
1	2.0	525.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	
2	3.0	677.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	 0.0	0.0	
3	4.0	500.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	
4	5.0	3170.000000	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	 0.0	0.0	

5 rows × 83 columns

- Logistic regression model:
- tuning parameters and accuracy
- Testing data accuracy

```
Logistic regression model details with grid search parameters
tuned hpyerparameters :(best parameters) {'C': 0.01, 'penalty': '12', 'solver': 'lbfgs'}
best score, i.e. accuracy: 0.8464285714285713
Logistic regression test data accuracy: 0.8333333333333334
                                      Confusion Matrix
                       did not land
                                                                     - 10
                     True labels
                                                      12
                               did not land
                                                      land
                                        Predicted labels
```

- Support vector machine model
- tuning parameters and accuracy
- Testing data accuracy

```
Support vector machine model details with grid search parameters tuned hpyerparameters :(best parameters) {'C': 1.0, 'gamma': 0.03162277660168379, 'kernel': 'sigmoid'} accuracy: 0.8482142857142856
Support vector machine model test data accuracy: 0.83333333333333333
```


- Decision tree model
- tuning parameters and accuracy
- Testing data accuracy

```
Decision tree model details with grid search parameters
tuned hpyerparameters :(best parameters) {'criterion': 'gini', 'max_depth': 16, 'max_features': 'auto', 'min_samples_leaf':
1, 'min_samples_split': 10, 'splitter': 'random'}
accuracy : 0.8767857142857143
Decision tree model test data accuracy: 0.833333333333333
```


- K nearest neighbours model
- tuning parameters and accuracy
- Testing data accuracy

```
K nearest neighbors model details with grid search parameters
tuned hpyerparameters :(best parameters) {'algorithm': 'auto', 'n_neighbors': 10, 'p': 1}
accuracy: 0.8482142857142858
K nearest neighbors model test data accuracy: 0.83333333333333334
                                   Confusion Matrix
                                                                 - 10
                  True labels
                                                   12
                            did not land
                                                  land
                                    Predicted labels
```

Discussion

Visualization tools:

- payload mass vs flight number: We see that as the flight number increases, the first stage is more likely to land successfully. The payload mass is also important; it seems the more massive the payload, the less likely the first stage will return.
- as flight number increases there is high probability that landing would be succesfull, especially after FN = 35.
- CCAFS SLC 40 booster has high probability of successfull landing after flight number around 75
- VAFB SLC 4E has high probability of successfull landing overall, specifically after 20
- overall all launch sites have successfull landing with payload masses higher than 8000 kg. Especially VAFB SLC 4E site has exact payload mass around 9500 kg that always landed successfully
- success rate vs orbit: orbits ES-L1, GTO, LEO, MEO has highest success rate, slight decrease in PO orbit.
- orbit vs Flight number: overall doesn't have significant correlation
- orbit vs payload mass: this correlation doesn't have a big story line except regardless of orbit type, successful landing is observed with payload masses over 8000 kg
- success rate vs years: mainly success rate is in increasing tendency after 2013 till 2020

Dashboard:

• according to the launch site success rates: highest rate is observed in KSC LC-39A (76.9%) followed by CCAFS LC-40 (73.1%)

Discussion

Site locations with Folium mapping:

- launches already conducted are distributed into two regions: 10 for the locations in California state, 46 for state Florida
- according to the visual data Launch site KSC LC-39a has more successfull launches than any other ones.

Prediction models:

- practically all models have same test data accuracy (0.833) and same confusion matrix distribution.
 However best grid search cv tuning best scores are held by Decision tree model (0.876).
- The other two models: svm and logistic regression have almost tuning accuracy around 0.84.

Conclusion

- Successful landing possibilities were found via three ML models such as logistic regression, support vector machine and decision tree.
- Successful landing possibility, practically, is the same for all models: 0.833 (1.0 is the highest confidence of successful landing).

ML model name	Tuned best hyper parameters for Grid Search CV	Tuning accuracy's best score	Test data accuracy
Logistic Regression	{'C': 0.01, 'penalty': 'l2', 'solver': 'lbfgs'}	0.8464	0.8333
Support Vector Machine	{'C': 1.0, 'gamma': 0.03162277660168379, 'kernel': 'sigmoid'}	0.8482	0.8333
Decision Tree	{'criterion': 'gini', 'max_depth': 16, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 10, 'splitter': 'random'}	<mark>0.8767</mark>	0.8333