Student Name: Mahmud Omer ID: 19660

Week2_hw2

Machine Learning - Supervised Learning Linear Regression using Normal Equation

https://hc.labnet.sfbu.edu/~henry/sfbu/course/data_science/algorithm/slide/exercise_algorithm.html

Q28: Jupyter: Training Linear Models

Importing files from local disc to google Colab

Setting up:

Modifying original code in linear regression using Normal equation:


```
import numpy as np
    import pandas as pd
    #X = 2 * np.random.rand(100, 1)
    y = 4 + 3 * X + np.random.randn(100, 1)
    from google.colab import files
   uploaded = files.upload()
    import io
    abalone = pd.read_csv(
        io.BytesIO(uploaded['abalone_train.csv']),
        names=["Length", "Diameter", "Height", "Whole weight", "Shucked weight",
               "Viscera weight", "Shell weight", "Age"])
    # X1 is
    # 0
               0.435
        1
                0.585
                0.655
        . . . . .
    X1 = abalone["Length"]
    # X2 is
      array([0.435, 0.585, ...., 0.45])
    X2 = np.array(X1)
    # X is
    # array([[0.435],
             [0.585],
              [0.655],
               . . . .
              [0.53],
              [0.395],
               [0.45]])
    X = X2.reshape(-1, 1)
    y1 = abalone["Height"]
    y2 = np.array(y1)
    y = y2.reshape(-1, 1)
    Choose Files No file chosen
                                     Cancel upload
```

Uploading csv file from local drive to google colab and testing the code

```
Choose Files abalone_train.csv

• abalone_train.csv(text/csv) - 145915 bytes, last modified: 2/5/2023 - 100% done
Saving abalone_train.csv to abalone_train.csv
```

```
(7] X_b = np.c_[np.ones((3320, 1)), X] # add x0 = 1 to each instance
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
```

Updating code by changing 100 to 3320

```
[7] X_b = np.c_[np.ones((3320, 1)), X] # add x0 = 1 to each instance
     theta\_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
[ ] theta_best
     array([[4.21509616],
            [2.77011339]])
[ ] X_new = np.array([[0], [2]])
    X_{new_b} = np.c_{np.ones((2, 1)), X_{new}} \# add x0 = 1 to each instance
    y_predict = X_new_b.dot(theta_best)
    y_predict
     array([[4.21509616],
            [9.75532293]])
plt.plot(X_new, y_predict, "r-")
     plt.plot(X, y, "b.")
     plt.axis([0, 2, 0, 15])
     plt.show()
      12
      10
       8
       2
            0.25 0.50 0.75 1.00 1.25 1.50 1.75
```

We can also update the code by specifying the number of rows as follows to solve the initially generated error.

End of code running successfully, showing code is working as desired

Google slides and GitHub links

 $\frac{https://docs.google.com/presentation/d/1CAznmiCZUZ8I4RJ0WW1k1NIIWfW5ahN8WRBblzhybp0/editors.period to the following state of the foll$

https://github.com/momer22/Machine-Learning---Supervised-Learning---Linear-Regression-using-Normal-Equation