Elongation invariance Another property defined by Selten [1] considers extensions to the sample space. Specifically a given score may be considered to operate on both Δ_n and Δ_{n+1} . Then a distribution $p \in \Delta_n$ can be mapped by an 'elongation function' to a distribution $\theta(p) \in \Delta_{n+1}$ by adding zero as the nth component. So $\theta(p) = (p_1, ...p_n, 0)$. Then a score is 'elongation invariant' if $S_i(\theta(p)) = S_i(p)$.

Bibliography

[1] R. Selten. Axiomatic characterization of the quadratic scoring rule. Experimental Economics, 1:43–62, 1998.