

${\rm ELE1717}$ - sistemas digitais - Problema 02 - Implementação

Grupo 01

Líder	Matricula	Nome
	20210072172	ALBERTHO SIZINEY COSTA
	20200001005	ELIAS GURGEL DE OLIVEIRA
	20210072299	LUCAS BATISTA DA FONSECA
•	20180151241	MARCELO FERREIRA MOTA JÚNIOR

Grupo 01

Líder	Matricula	Nome
•	20200150168	ALLYSSON DE ANDRADE SILVA
	20170138246	ALYSSON FERREIRA DA SILVA
	20200150195	LUCAS AUGUSTO MACIEL DA SILVA
	20200150220	MARCOS FELIPE FERNANDES TEIXEIRA

Grupo 01

Líder	Matricula	Nome				
•	20200000993	ANNY BEATRIZ PINHEIRO FERNANDES				
	20190154022	ARTHUR FELIPE RODRIGUES COSTA				
	20170117907	ISAAC DE LYRA JUNIOR				
	20180152122	RODRIGO DE LIMA SANTANA				
	20160159144	WESLEY BRITO DA SILVA				

Grupo 01

Líder	Matricula	Nome
	20200150177	ANA BEATRIZ MARINHO NEVES
	20180010074	GABRIEL CAVALHEIRO FRANCISCO
•	20210072270	JOAO MATHEUS BERNARDO RESENDE
	20210072430	STHEFANIA FERNANDES SILVA

Universidade Federal do Rio Grande do Norte Centro de Tecnologia - CT

Departamento de Engenharia Elétrica - DEE

Disciplina: ELE1717 - Sistemas Digitais Período: 2020.2
Aluno: Problema: 02

1- Projete um circuito integrado para um sistema digital que implemente uma unidade central de processamento (CPU) de uso geral com 16 instruções. A CPU deverá possuir um projeto RTL cuja a estrutura básica está de acordo com a Figura 1 e com a descrição do seu conjunto de instruções apresentada na Tabela 1.

Figura 1: Estrutura básica do projeto RTL de uma CPU de uso geral

Oper.	Classe	Opcode	4bits	4bits	4bits	Descrição	Carry	ULA
HLT	Controle	0000	-	-	-	$PC_{k+1}=PC_k$		
LDR	Dados	0001	A	addr[74]	addr[30]	$Reg[A] \le Mem_D[addr]$		
STR	Dados	0010	A	addr[74]	addr[30]	$Mem_D[addr] \le Reg[A]$		
MOV	Dados	0011	-	В	С	$Reg[B] \le Reg[C]$		
ADD	ULA	0100	A	В	С	Reg[A] < = Reg[B] + Reg[C]	•	•
SUB	ULA	0101	A	В	С	Reg[A] < = Reg[B] - Reg[C]	•	•
AND	ULA	0110	A	В	С	$Reg[A] \le Reg[B]$ AND $Reg[C]$	•	•
OR	ULA	0111	A	В	С	$Reg[A] \le Reg[B] OR Reg[C]$	•	•
NOT	ULA	1000	A	-	С	$Reg[A] \le NOT Reg[C]$	•	•
XOR	ULA	1001	A	В	С	$Reg[A] \le Reg[B] XOR Reg[C]$	•	•
CMP	ULA	1010	A	В	С	Reg[A] < =CMP(Reg[B], Reg[C])	•	•
JMP	Salto	1011	-	value[74]	value[30]	PC_{k+1} =value		
JNC	Salto	1100	-	value[74]	value[30]	PC_{k+1} =value, if carry=0		
JC	Salto	1101	-	value[74]	value[30]	PC_{k+1} =value, if carry=1		
JNZ	Salto	1110	-	value[74]	value[30]	PC_{k+1} =value, if ULA $\neq 0$		
JZ	Salto	1111	-	value[74]	value[30]	PC_{k+1} =value, if ULA=0		

Tabela 1: Conjunto de instruções da CPU de uso geral.

Funcionamento do sistema:

O circuito integrado deverá ser capaz, de forma autônoma, executar um conjunto de rotinas pré-definas na memória de instrução. Cada elemento da memória de instrução pode receber um dado de 16 bits referente a uma das 16 instruções (ver Tabela 1) disponíveis. As rotinas pré-definidas pelo usuário que serão carregadas na memória de instrução pode movimentar ou manipular dados de 8 bits. A manipulação sempre corre sobre dados salvos em um banco de registradores, já a movimentação ocorre sobre dados salvos no banco de registradores ou na memória de dados. Os dados iniciais utilizados pelas rotinas pré-definidas podem ser salvos pelo usuário na memória de dados. O registrador PC aponta para o endereço da memória de instrução que deverá ser lido, enquanto o registrador IR recebe o conteúdo do dado, proveniente da memória de instrução, que se encontra no endereço apontado pelo registrador PC. O bloco controlador é quem controla o endereçamento da memória de dados e do banco de registradores. O multiplexador (MUX) e a unidade lógica aritmética (ULA) são blocos puramente combinacionais. Por fim, o banco de registradores tem sua entrada conectada ao MUX e suas saídas conectadas a ULA e a memória de dados.

Para comprovar o correto funcionamento do circuito integrado deve-se elaborar dois códigos fontes para serem executados (individualmente):

- 1 Desenvolva um código fonte para implementar um conversor que transforme um número binário de 8 bits em um número decimal (padrão ASCII para cada digito).
- 2 Desenvolva um código fonte para multiplicar dois números inteiros de 8 bits (resultado 16 bits).

É importante no projeto:

- Na semana de projeto é importante estudar projeto RTL, máquinas de estado (MDE) de alto nível, memórias, arquitetura de computadores e Assembly;
- O projeto será realizado através da especificação de uma MDE de alto nível, do projeto RTL estruturado (blocos de controle e de dados);
- Na semana de projeto não é necessário elaborar qualquer código fonte;
- O relatório do projeto deverá conter todos as especificações realizadas de tal forma que permita o leitor implementar o projeto;

É importante na implementação:

- Na semana de implementação é importante estudar MDE e memórias em VHDL, além disso, implementação de laços em Assembly;
- A implementação consiste no desenvolvimento de todos os códigos fonte necessários;
- O relatório da implementação deverá conter os diagramas do projeto corrigidos, se necessário for, e as indicações de correções realizadas no projeto;
- Para comprovar o funcionamento podem ser elaboradas simulações, as quais devem estar detalhadas no relatório e em vídeo;

Referências:

- 1. Livros de VHDL e sistemas digitais;
- 2. Livros de arquitetura de computadores;