Cartesian closed categories

Mario Román

<2018-07-01 Sun 11:30>

A cartesian closed category \mathbb{C} can be defined as a category having a right adjoint of the unique functor to the terminal category $*: \mathbb{C} \to 1$, a right adjoint of the diagonal functor $\Delta \colon \mathbb{C} \to \mathbb{C} \times \mathbb{C}$, and a right adjoint of $-\times A \colon \mathbb{C} \to \mathbb{C}$ for each $A \in \mathbb{C}$. These three adjoints correspond to the existence of a terminal object, binary products and exponentials.

These three rules match the three introduction rules for the simply typed lambda calculus. We interpret C as a context Γ and each morphism $a \colon C \to A$ as a term $\Gamma \vdash a \colon A$.

$$\frac{}{\Gamma \vdash *:1} \quad \frac{\Gamma \vdash a : A \quad \Gamma \vdash b : B}{\Gamma \vdash a, b : A \times B} \quad \frac{\Gamma, a : A \vdash b : B}{\Gamma \vdash (\lambda a.b) : A \to B}$$

Now, we should discuss if β -equivalence corresponds to the equality between morphisms.