A Glance at Computational Complexity

TOWARDS FEASIBLE AND EFFICIENT COMPUTATION

Notations

- $\mathbb{N} := \{0,1,2,3,...\}.$
- The unary string $\underbrace{111\cdots 1}_{n \text{ times}}$ is denoted by 1^n .
- For a TM M, define M(x) := the output of M on input x.
- For a language L, define its indicator function $\mathbf{1}_L(x) \coloneqq \begin{cases} 1, & \text{if } x \in L; \\ 0, & \text{if } x \notin L. \end{cases}$
- ▶ L· J means binary representation(or encoding)
 - ▶ e.g.∟ M 」 ,∟ *i* ച,∟ φ ച.

The notion of complexity

If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is.

John von Neumann

Running time

- Let $T: \mathbb{N} \to \mathbb{N}$ be a function.
- We say \mathbb{M} computes f in T(n) time if for all input x, its computation requires are most T(|x|) steps.
- ▶ Definition. T is time constructable if $T(n) \ge n$ and there is a TM \mathbb{M} that computes the function $1^n \mapsto L(n) \supseteq n$ in time T(n).
 - ▶ Motivation: we often need a timer when doing simulation.
 - ▶ Common time functions such as cn, n^2 , 2^n are time-constructable.

Universal Turing machine, revisited

- \blacktriangleright We assume that T(n) is time constructable.
- ▶ Theorem. if f is computable in time T(n) by a TM \mathbb{M} using alphabet Γ , then it is computable in $4 \log |\Gamma| T(n)$ time by a TM $\widetilde{\mathbb{M}}$ using alphabet $\{0,1, \triangleleft, \square\}$.
 - ► The alphabet does not matter.
- ▶ Theorem.A k-tape TM with running time T(n) can be simulated by a single-tape TM within $O(T(n)^2)$ time.
 - ▶ The number of tapes does not matter.
- ► Theorem. There exists a universal TM \mathbb{U} such that $\mathbb{U}(\alpha, x)$ halts within $c_{\alpha}T^2$ steps if \mathbb{M}_{α} halts within T steps.
 - $ightharpoonup c_{\alpha}$ is a constant depending on \mathbb{M}_{α} .
 - lacktriangle More efficient emulation: $c_{lpha}T\log T$. (Hennie and Stearns [HS66])

Does computational model matters?

- ► **Church-Turing thesis**: When it comes to *computability*, it suffices to study Turing machines.
- ► The intrinsic complexity of problems should not depend on specific computational model.
- ▶ **Cobham-Edmonds thesis**: Every physically realizable computation model can be simulated by a TM with polynomial overread.
- Summary: About Turing machines
 - ▶ The alphabet can be reduced to $\{0,1, \triangleleft, \square\}$.
 - ▶ The number of tapes does not matter.
 - UTM is efficient.

Time and space resources: The class P and PSPACE

- ▶ The class DTIME(T(n))
 - A language L is in $\mathbf{DTIME}(T(n))$ iff there exists a TM \mathbb{M} that runs in cT(n) time and decides L.
- $\mathbf{P} \coloneqq \bigcup_{i=1}^{\infty} \mathbf{DTIME}(n^i), \mathbf{EXP} \coloneqq \bigcup_{i=1}^{\infty} \mathbf{DTIME}(2^{n^i}).$
 - ▶ Why not define **EXP** as $\bigcup_{i=1}^{\infty} \mathbf{DTIME}(2^{in})$?
- ▶ The class SPACE(S(n))
 - ▶ A language L is in SPACE(S(n)) iff there exists a TM M that runs in cS(n) space (number of locations ever visited on the word tapes) and decides L.
- ▶ PSPACE $:= \bigcup_{i=1}^{\infty} SPACE(n^i)$.
- ightharpoonup P \subseteq PSPACE.

P, NP and P vs. NP

Still open.

P vs. NP: Proving vs. Verifying

- ▶ Definition.A language L is in **NP** if there exists a polynomial $p: \mathbb{N} \to \mathbb{N}$ and a **P-time TM** \mathbb{V} such that the following conditions hold:
 - ▶ Completeness: $\forall x \in L$, $\exists y \in \{0,1\}^{p(|x|)}$ such that $\mathbb{V}(x,y) = 1$.
 - **Soundness**: $\forall x \notin L$, $\mathbb{V}(x,y) = 0$ holds for all y.
 - ▶ \mathbb{V} is called verifier, and y with $\mathbb{V}(x,y) = 1$ is called the certificate of x.
- Motivation: NP languages can be efficiently verified.
- ▶ Clearly, $P \subseteq NP \subseteq EXP$.
- P vs. NP: Is checking the correctness of a proof harder than presenting a proof?

I don't believe that the equality P = NP will turn out to be helpful even if it is proved, because such a proof will almost surely be nonconstructive.

Donald Knuth

Donald Knuth

Examples of NP languages

- **SUBSET-SUM**: Given n numbers A_1, \ldots, A_n and a number T, decide if there is a subset of the numbers that sums up to T.
 - ▶ The certificate is the list of members in such a subset.
- **VERTEX-COVER:** Given a graph G and $k \in \mathbb{N}$, decides whether G has a vertex cover of size k.
 - ▶ Vertex cover: a subset of vertices that 'covers' all edges.
 - \triangleright The certificate is a vertex cover of size k.
- ▶ **SAT**: SAT $:= \{ \vdash \phi \mathrel{\lrcorner} : \phi \text{ is a satisfiable CNF} \}$.
 - ► Conjunction Normal Form
 - The certificate is the satisfying assignment.
- **.....**

Karp-Reduction and NP-completeness

- Definition. Language L is polynomial-time Karp reducible to a language L' if there is a polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that for every $x \in \{0,1\}^*$, $x \in L$ if and only if $f(x) \in L'$.
 - ▶ Denoted by $L \leq_K L'$.
- ▶ A language L is NP-hard if $L' \leq_K L$ for all $L' \in NP$.
- ▶ A language L is NP-complete if $L \in \mathbb{NP}$ and L is NP-hard.
- Theorem. SAT is NP-complete.
 - Proof idea: the computation of the verifier can be formulated by a polynomial-size CNF.
- ▶ In fact, **SUBSET-SUM, VERTEX-COVER** are NP-complete as well.

NP-completeness and P vs. NP

Nondeterministic Turing Machine

- ▶ An NDTM (Nondeterministic Turing Machine) has two transition functions δ_0 , δ_1 and a special state denoted by q_{accept} .
- Nondeterminism provides the power of guessing.
- An NDTM \mathcal{N} accepts x, denoted by $\mathcal{N}(x) = 1$, if there exists some sequence of choices that makes \mathcal{N} reach q_{accept} on the input x.
 - ▶ Otherwise \mathcal{N} refuses x, denoted by $\mathcal{N}(x) = 0$.
- We say that \mathcal{N} runs in T(n) time if for every input x and every sequence of nondeterministic choices, \mathcal{N} reaches either q_{halt} or q_{accept} within T(|x|) steps.
- \blacktriangleright The class **NTIME**(T(n)).
- ► Theorem. $NP = \bigcup_{i=1}^{\infty} NTIME(n^i)$.

In the face of hardness

The philosophers have only interpreted the world, in various ways; the point is to change it.

Karl Marx

What can we do, if the world is so tough?

- ▶ We solve a problem in the following sense:
 - give the exact answer;
 - solve all cases;
 - use the same algorithm for all cases(uniformity);
- ► Relaxing the requirements
 - ▶ Allow errors on some instances(use the power of randomness)?
 - ► Give approximate answers(usually for counting problems)?
 - ► Not for all cases(average-case complexity)?
 - Choose different algorithms depending on the input(non-uniformity)?

The power of randomness

▶ Definition. A language L is in BPP(Bounded-error Probabilistic Polynomial Time) if there exists a P-time TM \mathbb{M} and a polynomial p such that

$$\Pr_{r \in_{p} \{0,1\}^{p(|x|)}} (\mathbb{M}(x,r) = \mathbf{1}_{L}(x)) \ge \frac{2}{3} \text{ for all } x \in \{0,1\}^{*}.$$

- ► Example: Primality test
 - ▶ **PRIMES** := { $\bot p \rfloor : p \text{ is a prime}$ }.
 - ► Lehmann primality test → **PRIMES** ∈ BPP
 - One-sided error primality test: Miller-Rabin primality test
 - Deterministic primality test[PRIMES is in P. Manindra Agrawal, Neeraj Kayal, Nitin Saxena]
- ightharpoonup Clearly, $P \subseteq BPP$
- ightharpoonup BPP = P?: the power of randomness is unknown.

Undirected Connectivity: the accidental tourist sees it all

- Let G = (V, E) be a undirected graph, and $s, t \in V$
- ls there a path from s to t in G?
- ▶ UPATH $:= \{\langle G, s, t \rangle : \text{there is a path from } s \text{ to } t\}.$
- Naive BFS: linear time, $\Omega(|V|)$ space.
- The random walk algorithm
 - ► Start a simple random walk from *s*;
 - ▶ If the random walk reaches t within 6|V||E| steps, output **True**.
 - $ightharpoonup O(\log |V|)$ space.
 - ▶ One-sided error, success with probability $\geq \frac{2}{3}$.

Lehmann primality test*

- ► Input: Odd integer N
- $\alpha_1, \alpha_2, ..., \alpha_k \in_p \{1, 2, 3, ..., N-1\}$
- If $gcd(\alpha_i, N) > 1$, output **COMPOSITE**
- $\qquad \qquad \textbf{Compute } \beta_i \coloneqq \alpha_i^{\frac{N-1}{2}} \bmod N$
- If $(\beta_1, \beta_2, ..., \beta_k) = (\pm 1, \pm 1, ..., \pm 1)$ but not all β_i equal to 1
 - Output PRIME
- Output **COMPOSITE**

We study the mapping

$$f: \mathbb{Z}_N^* \to \mathbb{Z}_N^*, x \mapsto x^{\frac{N-1}{2}}.$$

If
$$N$$
 is a prime, $f(x) \in \{-1,1\}$ and
$$\Pr_{a \in_{\mathcal{D}} \mathbb{Z}_N^*} (f(a) = 1) = \frac{1}{2}.$$

- \blacktriangleright If N is a composite number, then exactly one of the following happens:
 - $\Pr_{a \in_{\mathcal{D}} \mathbb{Z}_{N}^{*}} (f(a) \notin \{-1,1\}) \ge \frac{1}{2}.$
 - $f(x) = 1, \forall x \in \mathbb{Z}_N^*$.
- Lehmann primality test errs with probability $\leq \frac{1}{2k}$.
- Tow-sided error.

Approximation: an example

- \blacktriangleright Minimum Vertex Cover of graph G.
- An approximation algorithm $\mathcal{A}(G)$:
 - ightharpoonup Start with $S = \emptyset$.
 - \blacktriangleright Whenever an edge (u, v) is not covered, we join u, v into S.
- ▶ Define the approximation ratio $\alpha(\mathcal{A}) := \max_{G} \frac{\mathcal{A}(G)}{\text{MVC}(G)}$.
- ► Theorem. $\alpha(A) \leq 2$.
- Further studies in complexity: the hardness of approximation.

Average-case complexity

- ▶ Motivation: We may assume that the input obeys some (simple) distribution if solving the problem on all cases are way too hard.
- ▶ Definition. A distributional problem is a pair $\langle L, \mathcal{D} \rangle$, where
 - ► *L* is a language;
 - $\triangleright \mathcal{D} = \{\mathcal{D}_n\}$ is a sequence of distributions;
 - $\triangleright \mathcal{D}_n$ is a distribution over $\{0,1\}^n$.
- ► The class distP.
- $\blacktriangleright \langle L, \mathcal{D} \rangle \in \text{sampNP if } L \in \text{NP and } \mathcal{D} \text{ is a P-samplable.}$

The average-case version P vs. NP

- \triangleright samp**NP** ⊆ dist**P**?
 - Are NP-hard problems hard only in the worst cases, but easy most of the time?
 - Or, can we sample hard instances efficiently?
- ► Which world do we live in ? [Impagliazzo's five worlds]
 - \triangleright Algorithmica: P = NP.
 - ▶ Heuistica: $P \neq NP$ but samp $NP \subseteq distP$.

Emm... I think we definitely live in Algorithmica or Heuisitca.

Non-uniform model: Circuit Complexity

- Definition. Circuit family
 - Motivation: design an algorithms for input with fixed length.
 - ▶ The size of a circuit C, denoted by |C|, is the number of gates in C.
 - An S(n)-size circuit family is a sequence of circuits $\{C_n\}$, where C_n has n inputs, and $|C_n| \leq S(n)$ for every n.
- ▶ $\{C_n\}$ accepts language L if $1_L(x) = C_{|x|}(x)$ for all $x \in \{0,1\}^*$.
 - For any unary language *U*, there exists some circuit accepting it.
 - Not all unary languages are **decidable**.
 - ▶ The function $1^n \mapsto C_n$ can be uncomputable.

A circuit of size 6 with 3 inputs.

Non-uniformity is stronger than randomness

- \blacktriangleright The class **SIZE**(S(n)).
- $ightharpoonup P_{\text{poly}} \coloneqq \bigcup_{i=1}^{\infty} \text{SIZE}(n^i).$
- ► Theorem. BPP \subseteq P_{/poly}.
 - ▶ Proof idea: for each input length, devise a circuit according to the good random string.

Epilogue

Don't think twice, it's alright. **Bob Dylan**

Intuition and concepts constitute... the elements of all our knowledge, so that neither concepts without an intuition in some way corresponding to them, nor intuition without concepts, can yield knowledge.

"

IMMANUEL KANT

Great idea: Definitions say it all.

We success when we are at the right level of abstraction.

The end of the tour

- ► The central question: What makes some problems computationally hard and others easy?
 - ▶ We don't know much about it...
 - Our major success in complexity theory is classifying, just like the periodic table in chemistry.
 - Progresses are rare in terms of the essence of 'complexity'.
- Why are these 'natural and intuitive' questions so hard?
 - ► These questions reflect the raw and chaotic reality of life.

Thanks for listening ©