

ESERCITAZIONI DI CHIMICA

7. EQUILIBRI GASSOSI ED ETEROGENEI

LEGGE DI AZIONE DI MASSA

AD UNA DATA TEMPERATURA, IN UNA REAZIONE CHIMICA ALL'EQUILIBRIO, IL RAPPORTO TRA IL PRODOTTO DELLE CONCENTRAZIONI DEI PRODOTTI ELEVATE AL PROPRIO COEFFICIENTE STECHIOMETRICO E IL PRODOTTO DELLE CONCENTRAZIONI DEI REAGENTI ELEVATE AL PROPRIO COEFFICIENTE STECHIOMETRICO, È UN VALORE COSTANTE:

$$aA + bB \leftrightarrow cC + dD$$
 $K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$

QUANDO LA REAZIONE AVVIENE IN FASE GASSOSA, LA COSTANTE DI EQUILIBRIO PUÒ ESSERE ESPRESSA IN TERMINI DI PRESSIONI PARZIALI. LA COSTANTE CHE SI OTTIENE È:

$$K_p = \frac{p_C^c \cdot p_D^d}{p_A^a \cdot p_B^b}$$

$$K_p = K_c \cdot (R \cdot T)^{\Delta \nu}$$

$$\Delta v = c + d - a - b$$

ES 7.1] Calcolare K_c e K_p per l'equilibrio $CO_{(g)} + H_{2(g)} \leftrightarrow CH_{4(g)} + H_2O_{(g)}$ a 1200 K, sapendo che all'equilibrio: $[CO] = 0.3000 \text{ M}, [H_2] = 0.8000 \text{ M}, [CH_4] = 0.7660 \text{ M},$ $[H_2O] = 0.7760 M.$

$$K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \qquad K_p = \frac{p_C^c \cdot p_D^d}{p_A^a \cdot p_B^b} \qquad K_p = K_c \cdot (R \cdot T)^{\Delta \nu} \qquad \Delta \nu = c + d - a - b$$

$$K_p = \frac{p_C^c \cdot p_D^d}{p_A^a \cdot p_B^b}$$

$$K_p = K_c \cdot (R \cdot T)^{\Delta \nu} \quad \Delta \nu$$

$$\Delta v = c + d - a - b$$

ES 7.2] In un recipiente viene introdotto PCl_5 a 0.480 atm e 25.0 °C. Sapendo che $PCl_{5(g)} \leftrightarrow PCl_{3(g)} + Cl_{2(g)}$, con $K_c = 1.00 \cdot 10^{-6}$, calcolare le molarità di tutte le specie all'equilibrio.

ES 7.3] Per la reazione $A_{(g)} \leftrightarrow B_{(g)} + C_{(g)}$ vale $K_c = 0.344$ M. Sapendo che all'equilibrio sono presenti 0.340 mol di B e C in 0.890 L, calcolare la molarità di A all'inizio della reazione e al raggiungimento dell'equilibrio.

ES 7.4] Calcolare K_p e K_c per l'equilibrio $Br_{2(g)} \leftrightarrow 2Br_{(g)}$, a partire da $6.30 \cdot 10^{-3}$ mol di Br_2 in 2.80 L. Per riscaldamento a 1798 K si raggiunge l'equilibrio e la pressione totale del sistema risulta di 0.449 atm.

ES 7.5] La K_p dell'equilibrio $FeO_{(s)} + H_{2(g)} \leftrightarrow Fe_{(s)} + H_2O_{(g)}$ vale 0.658 a 1023 K. Calcolare il rapporto molare finale H_2/H_2O , se all'inizio si ha il 29.0 %V di H_2O .

ES 7.6] In un recipiente di volume costante, vengono introdotti: H_2O 0.10 M, CO 0.15 M, H_2 0.20 M e CO_2 0.25 M. Dopo riscaldamento a 400 °C, si instaura l'equilibrio $H_2O_{(g)} + CO_{(g)} \leftrightarrow H_{2(g)} + CO_{2(g)}$, con K_c = 12.01. Calcolare la %mol di H_2O che ha reagito.

ES 7.7] In un reattore si introducono 1.20 mol FeO, 1.50 mol Fe, 1.60 mol CO e 0.400 mol CO₂, e si instaura l'equilibrio FeO_(s) + CO_(g) \leftrightarrow Fe_(s) + CO_{2(g)} a 1000 °C. Calcolare la massa di Fe presente all'equilibrio, dove la miscela gassosa è costituita da 72.7% CO e 27.3% CO₂.

ES 7.8] Quando la reazione $COCl_{2(g)} \leftrightarrow CO_{(g)} + Cl_{2(g)}$ è all'equilibrio in un recipiente a volume costante, la pressione totale è di 3.0 atm, $T = 720~^{\circ}C$ e $K_p = 9.0$ atm. Partendo da 2.0 mol di $COCl_2$ e 0.50 mol di Cl_2 , calcolare la densità del miscuglio gassoso finale.

$$p_i = x_i \cdot p_{TOT}$$

ES 7.9] A 400 °C, la K_p per l'equilibrio $SO_{2(g)} + O_{2(g)} \leftrightarrow SO_{3(g)}$ vale 8.0 atm⁻¹. Calcolare la %V di SO_2 all'equilibrio se, alla pressione di 5.0 atm, il rapporto $p_{SO3}/p_{SO2} = 2$.

POLITECNICO DI TORINO

ESERCIZI/11

ES 7.10] Calcolare la K_c per la reazione $H_2S_{(g)}\leftrightarrow H_{2(g)}+S_{2(g)}$, se la miscela è costituita da 1.00 mol di H_2S , 0.200 mol di H_2 e 0.800 mol di S_2 in un recipiente da 2.00 L.

M 2-01 · 09'I

ES 7.11] Calcolare la massa di NH_4Cl che può dissociarsi, in un recipiente da 10.0 L, secondo l'equilibrio $NH_4Cl_{(s)} \leftrightarrow HCl_{(g)} + NH_{3(g)}$ ($K_c = 3.60 \cdot 10^{-3} \, M^2$).

3 1.2£

ES 7.12] Calcolare la pressione totale in un recipiente da 10.0 L a 85.0 °C, in cui vengono introdotte 0.815 mol di N_2O_4 e si raggiunge l'equilibrio $N_2O_{4(g)} \leftrightarrow NO_{2(g)}$ ($K_n=0.170$ atm).

m16 93.2

ES 7.13] Calcolare la massa di CO_2 che si forma, in un recipiente da 10.0 L a 427 °C, da 10.0 g di $CaCO_3$, secondo l'equilibrio $CaCO_{3(s)} \leftrightarrow CaO_{(s)} + CO_{2(g)}$ ($K_p = 0.100$ atm).

g 997.0

POLITECNICO DI TORINO

Esercizi/12

ES 7.14] Si introducono in un recipiente, da 5.70 L ed a 1018 K, 0.200 mol di CO_2 e 3.00 · 10⁻² mol di H_2 . Quando l'equilibrio $CO_{2(g)} + H_{2(g)} \leftrightarrow CO_{(g)} + H_2O_{(g)}$ è raggiunto, vale $p_{CO} = 0.315$ atm. Calcolare K_p e K_c .

0.304 (entrambe)

ES 7.15] Calcolare le moli di N_2 presenti in un recipiente da 10.0 L a 400 °C, insieme a 0.25 mol di H_2 e 0.30 mol di N_3 , quando vige l'equilibrio $N_{2(g)} + H_{2(g)} \leftrightarrow NH_{3(g)}$ (con $K_p = 0.32$ atm⁻²).

lom **e2.0**

ES 7.16] Si introducono in un recipiente (5.0 L) 2.0 mol di NO, 2.0 mol di O_2 e 2.0 mol di NO_2 . Quando l'equilibrio $NO_{(g)} + O_{2(g)} \leftrightarrow NO_{2(g)}$ è raggiunto, sono scomparse 0.30 mol di O_2 . Calcolare la K_c .

1-M 01

ES 7.17] Calcolare la massa di N_2 affinché in un recipiente da 15.0 L, insieme a 7.00 mol di H_2 e 8.00 mol di NH_3 , si realizzi l'equilibrio $N_{2(g)} + H_{2(g)} \leftrightarrow NH_{3(g)}$ ($K_c = 12.9 \text{ M}^{-2}$).

g 2.19

POLITECNICO DI TORINO

Esercizi/13

ES 7.18] La fotosintesi può essere rappresentata dalla reazione $6CO_{2(g)} + 6H_2O_{(l)} \leftrightarrow C_6H_{12}O_{6(s)} + 6O_{2(g)}$, con $\Delta H^\circ = 2801$ kJ mol⁻¹. In che direzione si sposta l'equilibrio se: A) Aumenta la pressione parziale di CO_2 ; B) Si allontana l'ossigeno dalla miscela; C) Si allontana il glucosio dalla miscela; D) Si aggiunge acqua; E) Si aggiunge un catalizzatore; F) Diminuisce la temperatura; G) Si aumenta l'esposizione della pianta alla luce solare.

A) Destra; B) Destra; C) Invariato; D) Invariato; E) Invariato; E) Invariato; E) Destra (E) Destra; C) Destra

ES 7.19] I gusci delle uova sono composti principalmente da carbonato di calcio, che si forma dalla reazione $\operatorname{Ca^{2+}}_{(aq)} + \operatorname{CO_3^{2-}}_{(aq)} \leftrightarrow \operatorname{CaCO_{3(s)}}$. Gli ioni carbonato sono forniti dall'anidride carbonica che si forma dal metabolismo. Spiegare perché i gusci delle uova sono più sottili d'estate quando la velocità di respirazione delle galline è maggiore. Ipotizzare inoltre un possibile rimedio.

L'aumento della velocità di respirazione comporta una più rapida eliminazione della ${\rm CO_2}$ dall'organismo, quindi diminuisce la quantità di ioni carbonato e si forma meno carbonato di calcio. Si può ovviare facendo abbassare la temperatura dell'ambiente oppure dando da bere alle galline dell'acqua gassata.

ESERCIZI DI RIEPILOGO

ES 7.20] Rispondere ai seguenti quesiti:

18- Alla temperatura di 570°C la reazione di equilibrio

una pressione totale di equilibrio di 2,0 atm.

 $CoCl_2(s) + H_2(g) \leftrightarrow Co(s) + 2HCl(g)$ presenta una costante Kp pari a 13,57 atm. Calcolare la pressione parziale (in atm.) di H_2 ad

Risp:

19- In un volume di 5,00 L sono introdotte:

7,6 moli di H₂

0,5 moli di I2

0,1 moli di HI

Alla temperatura di 300° si instaura il seguente equilibrio (K = 99.8):

 $H_2(g) + I_2(g) \Leftrightarrow 2 HI(g).$

Calcolare la percentuale di H2 che ha reagito.

Risp:

12- Indicare che cosa accade quando, a temperatura costante, viene aumentata la pressione nel seguente sistema in equilibrio:

 N_2O_4 (gas incolore) \leftrightarrow 2 NO_2 (gas rosso-bruno)

1) spostamento dell'equilibrio verso destra

2) aumento della dissociazione di N2O4 (g)

3) non accade nulla

4) aumento della concentrazione di N2O4 (g)

5) aumento dell'intensità del colore rosso-bruno della miscela

Risp:

11- Si consideri la reazione:

 $ZnO(s) + CO(g) \Leftrightarrow Zn(g) + CO_2(g)$

All'equilibrio sono presenti:

1) 1 fase solida

2) 1 fase solida e 1 fase gassosa

3) 1 fase solida e 2 fasi gassose

4) 1 fase solida e 3 fasi gassose

5) 1 fase gassosa

Risp:

2;%92.9;4; extra £2.0