

CP8319/CPS824 Lecture 13

Instructor: Nariman Farsad

* Some of the slides in this deck are adopted from courses offered David Silver, Emma Brunskill, and Sergey Levine.

Today's Agenda

1. Review of Previous Lectures

2. Finish Value Function Approximation Policy Evaluation

3. Value Function Approximation for Control

Value Function Approximation

- So far we have represented value function by a lookup table
 - Every state s has an entry v(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with *function approximation*

$$v^{\pi}(s) \approx \hat{v}(s; \mathbf{w})$$

or $Q^{\pi} \approx \hat{Q}(s, a; \mathbf{w})$

- Generalize from seen states to unseen states
- Update parameter w using MC or TD learning

Types of Value Function Approximation

Value Function Approx. By Stochastic Gradient Descent

- Goal: Find the parameter vector \mathbf{w} that minimizes the loss between a true value function $v^{\pi}(s)$ and its approximation $\hat{v}(s;\mathbf{w})$ as represented with a particular function/model class parameterized by \mathbf{w} .
- Generally, use mean squared error and define the loss as

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(v^{\pi}(s) - \hat{v}(s; \mathbf{w}) \right)^{2} \right]$$

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \mathbb{E}_{\pi} \left[\left(v^{\pi}(s) - \hat{v}(s; \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{v}(s; \mathbf{w}) \right]$$

• Stochastic gradient descent (SGD) samples the gradient:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (v^{\pi}(s) - \hat{v}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(s; \mathbf{w})$$

• Expected update is equal to full gradient update

Feature Vectors

The state is represented by a feature vector

$$\mathbf{x}(s) = \begin{pmatrix} x_1(s) \\ \vdots \\ x_n(s) \end{pmatrix}$$

- For example:
 - Distance of a robot from "landmarks"
 - Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation With Oracle

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features:

$$\widehat{v}(s; \mathbf{w}) = \sum_{j=0}^{n} x_j(s) w_j = \mathbf{x}(s)^T \mathbf{w}$$

Objective function is:

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(v^{\pi}(s) - \hat{v}(s; \mathbf{w}) \right)^{2} \right]$$

Update rule is:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (v^{\pi}(s) - \hat{v}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(s; \mathbf{w})$$
$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (v^{\pi}(s) - \hat{v}(s; \mathbf{w})) \mathbf{x}(s)$$

MC Linear VFA for Policy Evaluation

```
1: Initialize \mathbf{w} = \mathbf{0}, k = 1
 2: loop
        Sample k-th episode (s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \ldots, s_{k,L_k}) given \pi
 3:
       for t = 1, \ldots, L_k do
 4:
            if First visit to (s) in episode k then
 5:
               G_t(s) = \sum_{j=t}^{L_k} r_{k,j}
 6:
               Update weights:
                         \mathbf{w} \leftarrow \mathbf{w} + \alpha (G_t(s) - \mathbf{x}(s)^T \mathbf{w}) \mathbf{x}(s)
           end if
 8:
        end for
 9:
      k = k + 1
10:
11: end loop
```

Today's Agenda

1. Review of Previous Lectures

2. Finish Value Function Approximation Policy Evaluation

3. Value Function Approximation for Control

Recall: Temporal Difference Learning w/ Lookup Table

- Uses bootstrapping and sampling to approximate $v^{\pi}(s)$
- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $v^{\pi}(s_t)$ toward estimated return $r_t + \gamma v^{\pi}(s_{t+1})$

$$v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha([r_t + \gamma v^{\pi}(s_{t+1})] - v^{\pi}(s_t))$$

- $r_t + \gamma v^{\pi}(s_{t+1})$ is called the <u>TD target</u>
- $\delta_t = r_t + \gamma v^{\pi}(s_{t+1}) v^{\pi}(s_t)$ is called the <u>TD error</u>
- a biased estimate of the true value $v^{\pi}(s)$
- Represent value for each state with a separate table entry

Temporal Difference (TD(0)) Learning with VFA

- In value function approximation, the target is $r + \gamma \hat{v}^{\pi}(s'; \mathbf{w})$, a biased and approximated estimate of the true value $v^{\pi}(s)$
- Can reduce doing TD(0) learning with value function approximation to supervised learning on a set of data pairs:

$$\langle s_1, r_1 + \gamma \hat{v}^{\pi}(s_2; \mathbf{w}) \rangle, \langle s_2, r_2 + \gamma \hat{v}^{\pi}(s_3; \mathbf{w}) \rangle, \dots$$

Find weights to minimize mean squared error:

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(r_j + \gamma \hat{v}^{\pi}(s_{j+1}; \mathbf{w}) - \hat{v}(s_j; \mathbf{w}) \right)^2 \right]$$
$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(r_j + \gamma \mathbf{x}(s_{j+1})^T \mathbf{w} - \mathbf{x}(s_j)^T \mathbf{w} \right) \mathbf{x}(s_j)$$

Therefore, we are suing 3 forms of approximation, what are they?

TD(0) Linear VFA for Policy Evaluation

- 1: Initialize $\mathbf{w} = \mathbf{0}$, k = 1
- 2: **loop**
- 3: Sample tuple (s_k, a_k, r_k, s_{k+1}) given π
- 4: Update weights:

$$\mathbf{w} = \mathbf{w} + \alpha (\mathbf{r} + \gamma \mathbf{x} (\mathbf{s}')^T \mathbf{w} - \mathbf{x} (\mathbf{s})^T \mathbf{w}) \mathbf{x} (\mathbf{s})$$

- 5: k = k + 1
- 6: end loop

TD(0) Linear VFA for Policy Evaluation Example

Recall MC update: $\alpha(G_t - \mathbf{x}(s)^T \mathbf{w}) \mathbf{x}(s)$ Two actions:

- a_1 goes to 7 (solid line)
- a_2 goes to 1-6 with 1/6 probability (dashed line)

Observe $(s_1, a_1, 0, s_7)$

Assume $\mathbf{w}_0 = [1,1,1,1,1,1,1]$, $\alpha = 0.5$, $\gamma = 0.9$ What is \mathbf{w}_1 after the first SGD update?

TD(0) Linear VFA for Policy Evaluation Example

Recall MC update: $\alpha(G_t - \mathbf{x}(s)^T \mathbf{w}) \mathbf{x}(s)$ Two actions:

- a_1 goes to 7 (solid line)
- a_2 goes to 1-6 with 1/6 probability (dashed line)

Observe $(s_1, a_1, 0, s_7)$

Assume $\mathbf{w}_0 = [1,1,1,1,1,1,1]$, $\alpha = 0.5$, $\gamma = 0.9$ What is \mathbf{w}_1 after the first SGD update?

Convergence Rates for Linear Value Function Approximation for Policy Evaluation

- Does TD or MC converge faster to a fixed point?
- Not (to my knowledge) definitively understood
- Practically TD learning often converges faster to its fixed value function approximation point

Today's Agenda

1. Review of Previous Lectures

2. Finish Value Function Approximation Policy Evaluation

3. Value Function Approximation for Control

Control using Value Function Approximation

- Use value function approximation to represent state-action values $\hat{Q}^{\pi}(s, a; \mathbf{w}) \approx Q^{\pi}(s, a)$
- Control using value function approximation involves repeating these steps:
 - Approximate policy evaluation using value function approximation of $\hat{Q}^{\pi}(s, a; \mathbf{w})$
 - Perform ϵ -greedy policy improvement
- Can be unstable. Involves intersection of the following:
 - Function approximation
 - Bootstrapping
 - Sampling
 - Off-policy learning (which can cause problems as we will see)

State Action VFA with an Oracle

Approximate the action-value function:

$$\widehat{Q}^{\pi}(s, a; \mathbf{w}) \approx Q^{\pi}(s, a)$$

■ Minimise mean-squared error between approximate action-value function $\hat{Q}^{\pi}(s,a;\mathbf{w})$ and the true action-value function $Q^{\pi}(s,a)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(Q^{\pi}(s, a) - \widehat{Q}(s, a; \mathbf{w}) \right)^{2} \right]$$

Use stochastic gradient descent to find a local minimum with the update rule

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(Q^{\pi}(s, a) - \hat{Q}(s, a; \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

Linear State Action VFA with an Oracle

Use features to represent both the state and action:

$$\mathbf{x}(s,a) = \begin{pmatrix} x_1(s,a) \\ \vdots \\ x_n(s,a) \end{pmatrix}$$

Represent state-action value function with a weighted linear combination of features

$$\widehat{Q}(s, a; \mathbf{w}) = \sum_{j=0}^{n} x_j(s, a) w_j = \mathbf{x}(s, a)^T \mathbf{w}$$

Use stochastic gradient descent to find a local minimum with the update rule

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(Q^{\pi}(s, a) - \hat{Q}(s, a; \mathbf{w}) \right) \mathbf{x}(s, a)$$

Model-Free Control Approaches Using VFA

- In practice, there is no oracle
- In Monte Carlo methods, use a return G_t from the episode as a substitute target

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(\mathbf{G_t} - \hat{Q}(s, a; \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

• For SARSA use a TD target $r + \gamma \hat{Q}(s', a'; \mathbf{w})$ which leverages the current VFA

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(\mathbf{r} + \gamma \hat{Q}(\mathbf{s}', a'; \mathbf{w}) - \hat{Q}(\mathbf{s}, a; \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{Q}(\mathbf{s}, a; \mathbf{w})$$

• For Q-learning use a TD target $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w})$ which leverages the max of the current VFA

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(r + \gamma \max_{a'} \widehat{Q}(s', a'; \mathbf{w}) - \widehat{Q}(s, a; \mathbf{w}) \right) \nabla_{\mathbf{w}} \widehat{Q}(s, a; \mathbf{w})$$

Convergence of TD Methods with VFA

- Informally, updates involve doing an (approximate) Bellman backup followed by best trying to fit underlying value function to a particular feature representation
- Bellman operators are contractions, but value function approximation fitting can be an expansion
- Convergence is not guaranteed

Challenges of Off Policy Control: Baird Example

- Behavior policy and target policy are not identical
- Value can diverge

Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	X
Sarsa	\checkmark	(\checkmark)	X
Q-learning	\checkmark	X	×
Gradient Q-learning	✓	✓	Х

 (\checkmark) = chatters around near-optimal value function