Lecture 12 Quantitative Political Science

Prof. Bisbee

Vanderbilt University

Lecture Date: 2023/10/10

Slides Updated: 2023-10-09

Agenda

- 1. Small Sample Significance Tests
- 2. Degrees of Freedom
- 3. Review of Inference with One Variable

Small Sample Significance Tests

- What happens with n is small?
- ullet Start as before, Y_1,Y_2,\ldots,Y_n are a random sample drawn from Normal population with $ar{Y}$ and S_U^2 as before
- ullet Want construct CI for μ when $VAR(Y_i)=\sigma^2$ is unknown and n is small
- ullet Since n is small, we can't rely on the CLT to assume that $ar{Y} \sim \mathcal{N}(\mu, \sigma^2)$

Small Samples

- Assume: $Y \sim \mathcal{N}(\mu, \sigma^2)$
- Theorem: Linear combination of independent, Normally-distributed RVs is itself Normally distributed
 - See Chapter 6 for proof if interested (Fang!)
- ullet "Linear combination": sum of products of RVs and scalars: $\sum_i^J a_i Y_i$
- ullet $ar{Y}$ is one such linear combination where a_i s are $rac{1}{n}$
- ullet Thus, if we assume $Y \sim \mathcal{N}(\mu, \sigma^2)$, then $ar{Y}$ is too

Small Samples

ullet Given that each Y_i is itself a random variable, we can standardize each just like before

$$Z_i = rac{Y_i - \mu}{\sigma}$$

Consider the sum of squares of this quantity

$$\sum Z_i^2 = \sum_i \left(rac{Y_i - \mu}{\sigma}
ight)^2$$

- This sum of squares takes on a chi-squared (χ^2) distribution with n degrees of freedom
- NB: any sum of squares of a normally distributed RV will take on this distribution

Chi-Squared Distributions

Degrees of Freedom

- "Degrees of Freedom": number of independent pieces of information on which the statistic is based
 - \circ Pieces of information you have (n) minus the number you need to generate the statistic
 - \circ I.e., to calculate $ar{Y}$ from n=3 observations, we calculate $ar{Y}=rac{Y_1+Y_2+Y_3}{3}$
 - Contrast with the sample standard deviation (unbiased)

Student's t-distribution

- Thus far, we have been focused on a Normal distribution
 - CLT gave us a pass to rely on the normal for inference
- ullet But in practice, we actually rely on something called the **Student's** t-distribution
- ullet Defined as $T=rac{Z}{\sqrt{W/
 u}}$
 - $\circ~$ Standard normal RV Z over square root of χ^2 RV W divided by its degrees of freedom u
- Similar to the Normal:

$$\circ$$
 Gnarly formula: $f(y)=rac{\Gamma\left[rac{
u+1}{2}
ight]}{\Gamma\left[rac{
u}{2}
ight]}*rac{1}{\sqrt{
u\pi\left(1+rac{y^2}{
u}
ight)^{rac{
u+1}{2}}}$

- Symmetric around 0
- But..."fatter tails"

Putting it together

- So we have a distribution with known quantities for the sum of squared standardized RVs
- However, as always, we don't know σ
- ullet Recall that we proposed $S_u^2 = rac{1}{n-1} \sum_i (Y_i ar{Y})^2$
- ullet Turns out that $rac{(n-1)S_u^2}{\sigma^2}\sim \chi_{n-1}^2$ (call this χ^2 -RV W)

$$egin{aligned} W &= rac{(n-1)S_u^2}{\sigma^2} \ &= rac{(n-1)rac{1}{n-1}\sum_i(Y_i - ar{Y})^2}{\sigma^2} \ &= rac{1}{\sigma^2}\sum_i(Y_i - ar{Y})^2 \end{aligned}$$

$$ullet$$
 Since $\sum_i \left(rac{Y_i-\mu}{\sigma}
ight)^2 \sim \chi^2_{n-1}$, $W \sim \chi^2_{n-1}$

Putting it together

- Remember, we've been using $\frac{\bar{Y}-\mu}{S_u/\sqrt{n}}$ to calculate our test statistics
- But look at this more closely...this is equivalent to $\frac{Z}{\sqrt{W/\nu}}!$

$$egin{aligned} rac{ar{Y}-\mu}{S_u/\sqrt{n}} &= \sqrt{n}rac{ar{Y}-\mu}{S_u} \ &= rac{\sqrt{n}(ar{Y}-\mu)}{rac{S_U}{\sigma}} \ &= rac{rac{(ar{Y}-\mu)}{\sigma/\sqrt{n}}}{\sqrt{rac{(n-1)S_U^2}{\sigma^2}/(n-1)}} \ &= rac{Z}{\sqrt{W/
u}} \end{aligned}$$

Small Sample Inference

- These findings allow us to construct $100(1-\alpha)\%$ CIs around estimates of μ drawn from **small** samples of a Normally distributed population
- For example:

$$P(-t_{lpha/2,
u} \leq T \leq t_{lpha/2,
u}) = 1-lpha$$
 $Pigg(-t_{lpha/2,
u} \leq rac{ar{Y}-\mu}{S_U/\sqrt{n}} \leq t_{lpha/2,
u}igg) = 1-lpha$ $Pigg(-t_{lpha/2,
u}rac{S_U}{\sqrt{n}} - ar{Y} \leq -\mu \leq t_{lpha/2,
u}rac{S_U}{\sqrt{n}} + ar{Y}igg) = 1-lpha$ $Pigg(t_{lpha/2,
u}rac{S_U}{\sqrt{n}} + ar{Y} \geq \mu \geq t_{lpha/2,
u}rac{S_U}{\sqrt{n}} - ar{Y}igg) = 1-lpha$

Small Sample Inference

- Note that the CI here is VERY similar to that we used earlier
 - \circ Instead of $ar{Y}\pm z_{lpha/2}rac{S_U}{\sqrt{n}}$ we use $ar{Y}\pm t_{lpha/2,
 u}rac{S_U}{\sqrt{n}}$
- Also, hypothesis testing is almost identical
 - $\circ H_0$: $\mu = \mu_0$
 - $\circ~H_A$: $\mu
 eq \mu_0$ (two-tailed) or $\mu > \mu_0$ or $\mu < \mu_0$ (one-tailed)
 - \circ Test stat: $T=rac{ar{Y}-\mu}{S_U/\sqrt{n}}$
 - \circ RR: $|t|>t_{lpha/2,
 u}$

Difference in Means

- ullet $\mu_1-\mu_2$ style tests are very similar as well
 - \circ Recall in the large-\$n\$ case, the test statistic was $Z=rac{ar{y}_1-ar{y}_2-0}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}}$
- Here, we make an additional assumption that $\sigma_1^2=\sigma_2^2$. We do this for two reasons:
 - 1. With small n, it is hard to get good estimates of σ^2 (remember it takes lots of n for the consistency of S_U^2 to kick in)
 - 2. It's a minor sin: we are already assuming Y_1 and Y_2 are Normal!
- ullet We can then calculate the "s-squared pooled" as $s_p^2=rac{(n_1-1)S_{U1}^2+(n_2-1)S_{U2}^2}{n_1+n_2-2}$
- ullet And the test statistic then becomes $T=rac{ar{y}_1-ar{y}_2-0}{s_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}}$

Conclusion

- ullet To conduct small n inference, we have been piling up the assumptions
- What if the underlying random variables are not Normal?
 - Statisticians test sensitivity by sampling from known nonnormal distributions
 - Moderate departures from normality have little effect on the probability distribution of the test statistic
 - (But beware!)
- Note that the t is indistinguishable from the Normal at high DF, a t-test is indistinguishable from a z-test at most sample sizes we typically deal with
 - $\circ~$ Thus, we are always claiming to be running t-tests when in fact we might as well be running z-tests

End of first half

- Recap of assumptions:
- 1. Random sample: yields independent and identically distributed observations
 - \circ Assures us that $ar{Y}$ is unbiased estimator of μ
- 2. Large enough n: buys us three assumptions!
 - \circ **CLT:** with large enough n, sampling distribution for $ar{Y}$ is Normal
 - \circ Consistency: with large enough n, variance of estimator goes to zero
 - Slutzky's Theorem: Ratio of function that converges to standard Normal over a function that converges to 1 will itself converge to standard Normal
- 3. If n is small, then need $Y \sim \mathcal{N}(\mu, \sigma^2)$