Votre rapport doit suivre les directives de l'énoncé.

1. Introduction (optionnelle)

 Mise en contexte/description général de code/ décrire l'objectif du travail avec les différentes étapes nécessaires pour le réaliser.

2. Montage de l'architecture et entrainement du modèle

2.1 Ensemble de données

 Description de l'ensemble des données avec les proportions (Nombre d'images par classe pour chacune des catégories : entrainement et validation).

2.2 Traitement de données

Décrire le traitement effectué.

2.3 Paramètres et Hyperparamètres

- o L'optimiseur utilisé avec les paramètres associés à cet optimiseur.
- o La taille du lot (batch size) d'entrainement.
- o Le nombre d'époques (number of Epochs) et l'arrêt précoce s'il y a lieu.

2.4 Architecture

- O Décrire l'architecture de votre Autoencodeur :
 - Le nombre de couches utilisées avec le type les paramètres de chaque couche
 - Dropout : Oui/Non?
 - Le type des fonctions d'activations.

2.5 Affichage des résultats d'entrainement

- Le temps total d'entraînement en minutes.
- L'erreur minimale commise lors de l'entrainement (Minimum Loss) sur les données d'entrainement et de validation.
- o Inclure une figure qui relate la courbe de perte.

2.6 Justification du choix de l'architecture

- Discuter le processus que vous avez suivi pour achever les meilleurs résultats possibles.
- Justifier vos choix de paramètres, d'hyperparamètres, d'architecture et de traitement de données en indiquant les facteurs ayant contribué à l'amélioration del'entrainement. Fournir un texte bien soutenu et pas une discussion superficielle/générique.

3. Évaluation du Modèle

- Afficher les résultats de l'évaluation :
 - Inclure une image de chaque classe et montrer sa forme originale et reconstruite
 - Le résultat de l'entrainement du SVM-Linéaire sur le embedding (Accuracy)
 - Le résultat de l'entrainement du SVM-Linéaire directement sur les données de test (Accuracy)
 - Visualiser le embedding en deux dimensions dans un scatter plot.
- Analyser et discuter les résultats de l'évaluation du modèle :
 - La fidélité de la reconstruction
 - La séparation des classes dans le scatter plot
 - Les résultats de classification du SVM (appliqué sur le embedding et sur les données de test originaux).

4. Conclusion

• Conclure votre rapport en discutant, d'une façon générale, les problèmes rencontrés ainsi que les démarches possibles qui peuvent considérés pour améliorer votre modèle.