CS 542 Stats RL: Homework 2

October 1, 2024

Submission deadline: Oct 16 (Wednesday) before class.

1. We used (the V-function variant of) the following result when proving the simulation lemma: for any $f \in \mathbb{R}^{S \times A}$ and any $\pi : S \to \Delta(A)$,

$$\mathbb{E}_{s \sim d_0}[f(s, \pi)] - J(\pi) = \frac{1}{1 - \gamma} \mathbb{E}_{d^{\pi}}[f - \mathcal{T}^{\pi} f]. \tag{1}$$

Note that if $f=Q^\pi$, then $\mathbb{E}_{s\sim d_0}[f(s,\pi)]=\mathbb{E}_{s\sim d_0}[Q(s,\pi)]=J(\pi)$, so an interpretation is that if we treat f as an approximation to Q^π and use it to estimate $J(\pi)$, the error can be written as the Bellman error of f — that is, how much it violates the Bellman equation satisfied by Q^π — on d^π .

Now we know that we can also obtain $J(\pi)$ via $J(\pi) = \frac{1}{1-\gamma}\mathbb{E}_{(s,a)\sim d^{\pi}}[R(s,a)]$. One can now ask an analogous question: if we use an arbitrary distribution $d\in\mathbb{R}^{\mathcal{S}\times\mathcal{A}}$ as an approximation of d^{π} to form an estimate of $J(\pi)$ as $\frac{1}{1-\gamma}\mathbb{E}_d[R]$, can we also express the error as the violation of d w.r.t. the Bellman flow equation satisfied by d^{π} ? The answer is yes, which is the following identity you are asked to prove: for any $d\in\Delta(\mathcal{S}\times\mathcal{A})$, Γ

$$\frac{1}{1-\gamma} \mathbb{E}_d[R] - J(\pi) = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim d,s'\sim P(\cdot|s,a)} [Q^{\pi}(s,a) - \gamma Q^{\pi}(s',\pi)] - \mathbb{E}_{s\sim d_0} [Q^{\pi}(s,\pi)]. \tag{2}$$

The RHS can be viewed as the Bellman flow error $d - \gamma (P^{\pi})^{\top} d - d_0 \times \pi^{2}$ "tested" on Q^{π} as a discriminator.

¹The bound still holds when d is not a valid distribution, and we just need to change $\mathbb{E}_d[\cdot]$ to be the dot product between d and the function inside.

²Here P^{π} is the state-action transition matrix: $P^{\pi}(s',a'|s,a) = P(s'|s,a) \times \pi(a'|s')$, and $d_0 \times \pi$ is the joint distribution $s \sim d_0$, $a \sim \pi(\cdot|s)$.

2. Recall that in value iteration we have $f_k = \mathcal{T}f_{k-1}$ for $k = 1, 2, \dots, K$, with an arbitrary initialization of f_0 . For simplicity let's take $f_0 \equiv 0$.

Now imagine that we are running some approximate version of value iteration where $f_k \approx \mathcal{T} f_{k-1}$ (i.e., we expect $f_k - \mathcal{T} f_{k-1}$ to be small for all k) and output a non-stationary policy $\widehat{\pi}$: $a_1 \sim \pi_{f_K}$, $a_2 \sim \pi_{f_{K-1}}$, ..., $a_{K+1} \sim \pi_{f_0}$, and $a_{K+2:\infty}$ are decided arbitrarily We will also write this as $\widehat{\pi} = \widehat{\pi}_{1:\infty}$ with $\widehat{\pi}_t = \pi_{f_{K-t+1}}$ for $t \leq K+1$, i.e., $\widehat{\pi}_t$ refers to the t-th "slice" of $\widehat{\pi}$ which is a stationary policy that maps $\mathcal S$ to $\mathcal A$. Given an initial distribution $d_0 \in \Delta(\mathcal S)$, let $J(\pi) := \mathbb E[\sum_{t=1}^\infty \gamma^{t-1} r_t | \pi, s_1 \sim d_0]$. (Note that this definition applies

to non-stationary π .) **Show that** for any (possibly non-stationary) π ,

$$J(\pi) - J(\widehat{\pi}) \le \sum_{t=1}^{K} \gamma^{t-1} \left(\mathbb{E}_{d_t^{\pi}} [\mathcal{T} f_{K-t} - f_{K-t+1}] + \mathbb{E}_{d_t^{\widehat{\pi}}} [f_{K-t+1} - \mathcal{T} f_{K-t}] \right) + \gamma^K V_{\text{max}}.$$
(3)

Here $d_t^{\pi} \in \Delta(\mathcal{S} \times \mathcal{A})$ is the t-step state-action distribution induced by starting from d_0 and executing π , and is well-defined for non-stationary policies. The terms in the form of $\mathbb{E}_{\mu}[f]$ are the shorthand for $\mathbb{E}_{(s,a)\sim\mu}[f(s,a)]$.

In addition, derive the following as a direct corollary of Eq. (3): Now consider the scenario where we are given an arbitrary function $f \in \mathbb{R}^{S \times A}$ and output a stationary policy $\overline{\pi_f}$. Show that

$$J(\pi) - J(\pi_f) \le \frac{1}{1 - \gamma} (\mathbb{E}_{d^{\pi}}[\mathcal{T}f - f] + \mathbb{E}_{d^{\pi_f}}[f - \mathcal{T}f]). \tag{4}$$

By "direct corollary" you are asked to invoke Eq. (3) with a specific choice of K and $f_{1:K}$.

Hint 1: You may find the following lemma useful (you need to prove it before using it): for any $\pi = \pi_{1:\infty}$,

$$\mathbb{E}_{s \sim d_0}[f_K(s, \pi_1)] - J(\pi) = \left(\sum_{t=1}^K \gamma^{t-1} \mathbb{E}_{d_t^{\pi}}[f_{K-t+1} - \mathcal{T}^{\pi_{t+1}} f_{K-t}]\right) - \mathbb{E}[\sum_{t=K+1}^\infty \gamma^{t-1} r_t | \pi, d_0]. \tag{5}$$

Hint 2: Eq. (4) is proved in note3, which you can use as a hint. It relies on Eq. (1) (which is analogous to Eq. (5)), and its V-function variant is what we used to prove the simulation lemma.

Remark In the class we showed that the Bellman error $||f - Tf||_{\infty}$ can control $||f - Q^{\star}||_{\infty}$ up to a factor of horizon $1/(1-\gamma)$, which then controls the suboptimality of π_f with another $2/(1-\gamma)$ factor. Put together, we have

$$||V^* - V^{\pi_f}||_{\infty} \le \frac{2||f - \mathcal{T}f||_{\infty}}{(1 - \gamma)^2}.$$

It turns out this is loose by a factor of horizon $1/(1-\gamma)$, and Eq. (4) gives this improved result.

In addition, although we consider the infinite-horizon setting here, it is not difficult to see that the result easily extends to the finite-horizon setting.

³Note that this " \approx " is not a "hard" assumption but rather to provide intuition. In fact, the sequence of functions $f_{1:K}$ can be anything.

⁴Even when VI is exact, outputting such a non-stationary policy actually yields *better* guarantees (see note1). It is also easier to analyze in some scenarios.

3. In the class we went through two different analyses in the tabular case to provide guarantees on $\|V_M^\star - V_M^{\pi_{\widehat{M}}}\|_{\infty}$: either by bounding $\max_{\pi} \|V_M^\pi - V_{\widehat{M}}^\pi\|_{\infty}$ (Sec 2.1 and 2.2 of note3) or by bounding $\|Q_M^\star - Q_{\widehat{M}}^\star\|_{\infty}$ (Sec 2.3). In the former, we bound the concentration of rewards and transitions separately; in the latter, we bound the concentration of empirical Bellman update $r + \gamma V_M^\star(s')$ as a whole.

Here, you are asked to still take the first route, but without separately controlling the concentration of rewards and transitions. Instead, control the concentration of $r + \gamma V_M^\pi(s')$ for all π . In the analysis we did in the class, what showed up through the simulation lemma is the average of $r + \gamma V_M^\pi(s')$ over the dataset, where Hoeffding's inequality is not applicable (why?). Think about how to replace V_M^π with V_M^π here.

Once you obtain the bound, compare it to the results in Sec 2.2 of note3. They should only differ in minor ways (i.e., logarithmic terms). If you are seeing a substantial improvement (especially a \sqrt{S}), your concentration analysis is likely missing something important.

$$\frac{1}{1-\lambda}\mathbb{E}_{(S,A)\sim d, S'\sim P(\cdot|S,A)}\left[Q^{\pi}(S,A)-\gamma Q^{\pi}(S',\pi)\right]-\mathbb{E}_{S\sim d_{\sigma}}\left[Q^{\pi}(S,\pi)\right]$$

$$=\frac{1}{1-7}\mathbb{E}_{(S,\alpha)\sim d,S'\sim P(\cdot|S,\alpha)}\Big[Q^{\pi}(S,\alpha)+R(S)-R(S)-PQ^{\pi}(S',\pi)\Big]-\mathbb{E}_{S\sim d_{\sigma}}\Big[Q^{\pi}(S,\pi)\Big]$$

=
$$\mathbb{E}_{s \sim d_0} \left[f(s, \pi) - \gamma^n f(s, \pi) + \gamma^n f(s, \pi) - Q^n(s, \pi) \right]$$

$$\frac{2}{0}$$

$$\int (\pi) - J(\hat{\pi}) = \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t,1} | k_{1}| \pi, s_{1} \sim d_{0}\right] - \mathbb{E}\left[\sum_{t=1}^{k} \gamma^{t,1} | k_{1}| \hat{\pi}_{t}, s_{1} \sim d_{0}\right]$$

$$\leq \sum_{t=1}^{k} \gamma^{t,1} \left(\mathbb{E}_{d_{1}^{2}} R(s, a) - \mathbb{E}_{d_{1}^{2}} R(s, a)\right) + \gamma^{k} V_{max}$$

$$\leq \sum_{t=1}^{k} \gamma^{t,1} \left(\mathbb{E}_{d_{1}^{2}} R(s, a) + \mathbb{E}_{d_{1}^{2}} [\sigma \langle P(\cdot | s, a), V_{f_{k+1}} \rangle - f_{k-1,1}] - \mathbb{E}_{d_{1}^{2}} R(s, a)\right) + \gamma^{k} V_{max}$$

$$= \sum_{t=1}^{k} \gamma^{t,1} \left(\mathbb{E}_{d_{1}^{2}} \left(\gamma^{t} f_{k-1} - f_{k-1,1}\right) + \mathbb{E}_{d_{1}^{2}} \left(\gamma^{t} f_{k-1,1} - \gamma^{t} f_{k-1}\right) + \gamma^{k} V_{max}$$

$$\left(\sum_{t=1}^{K} \gamma^{t 1} \mathbb{E}_{d_{1}^{2}} \left[f_{k-t+1} - \gamma^{2} \pi_{t+1} f_{k-t} \right] \right) - \mathbb{E} \left[\sum_{t=k+1}^{\infty} \gamma^{t 1} r_{t} | \pi, d_{0} \right]$$

$$= \left(\mathbb{E}_{d_{1}^{2}} \left[f_{k} - R(s, a) - \gamma f_{k+1} t s_{0} \pi_{k} \right] + \gamma \mathbb{E}_{d_{1}^{2}} \left[f_{k+1} - R(s, a) - \gamma f_{k+1} (s_{0}, \pi_{s}) \right] + \cdots \right) - ()$$

$$=\mathbb{E}_{s\sim d_{0}}\left[f_{K}(s,\pi_{1})\right]-\mathbb{E}\left[\sum_{t=1}^{\infty}\delta^{t}|Y_{t}|\pi_{1},s\sim d_{0}\right]=\mathbb{E}_{s\sim d_{0}}\left[f_{K}(s,\pi_{1})\right]-J(\pi)$$

Proof: (1)
$$\mathbb{E}_{s\sim d}$$
, $[f(s,x)] - J(\pi) = \frac{1}{1-r} \mathbb{E}_{d^n}[f - 7^n f]$

$$J(\pi)-J(\pi_f) = \sqrt{\chi(S_0)} - \sqrt{\chi(S_0)} \leq \sqrt{\chi(S_0)} - f(S_0, \pi_f) + f(S_0, \pi_f) - \sqrt{\chi(S_0)}$$
by (1)
$$= \frac{1}{1-f} \left(\mathbb{E}_{J^{\infty}} \left[\gamma_f - f \right] + \mathbb{E}_{J^{\infty}} \left[f - \gamma_f \right] \right) \quad \text{hote: } \gamma^{\infty} f \in \gamma_f \text{ and } \gamma^{\infty} f = \gamma_f$$