CSC 226

Algorithms and Data Structures: II Rich Little rlittle@uvic.ca

Two basic facts about trees

- Let T be a connected graph with no cycles, that is a tree.
 - What happens if we add a new edge to T, without adding a new vertex?

 What happens if we remove an edge from T, without removing any vertices?

Two fundamental properties of minimum spanning trees

Cycle property

Cut property

Cycle property

Theorem – Cycle Property:

Let C be any cycle in a weighted graph G with distinct edge weights. Let e be the "heaviest" edge in the cycle. Then the minimum spanning tree for G does not contain e.

Proof. (Cycle property)

- Assume that all edges in the graph are of distinct weight
- We proof by contradiction: the MST T for G does not contain edge e
- Assume e does belong to MST T. Then deleting e from T disconnects T into two trees, T_1 and T_2 .
- Consider cycle C. C consists of some vertices that belong to T_1 and the other vertices of C belong to T_2 .
- There is an edge in C, say f, that connects a vertex from T_1 to a vertex T_2 .
- Merge T_1 and T_2 using f to spanning tree T^* . The new tree, T^* , is lighter than T. A contradiction.

Cycle property

Cut Property

Theorem – Cut Property:

Let X be any proper subset of vertices in a weighted graph G = (V, E), and let e be the lightest edge that has exactly one endpoint in X. Then, the minimum spanning tree T for G must contain e.

Proof (Cut property)

- Assume that all edges in the graph are of distinct weight
- We prove by contradiction: MST T for G contains edge e
- Assume it does not
- Add e to T creating cycle C
- Consider edge f in C that has exactly one endpoint in X
- Create spanning tree T^* by replacing e with f, but T^* is lighter than T. Contradiction.

Cut Property

Prim's Algorithm Correctness

Initialize tree with single chosen vertex

Cut property

- Grow tree by finding lightest edge not yet in tree and expanding the tree, and connect it to tree; repeat until all vertices are in the tree
- Example of greedy algorithm

Prim's Correctness Proof

- **Theorem:** If G = (V, E) is a connected, weighted graph with distinct edge weights, then Prim's algorithm correctly finds the MST for G.
- Proof: Let T be the MST for G. Let S be the spanning tree created by Prim's algorithm. We want to show that T = S.
- We will use induction on the number of edges added to S.
- That is, we show that for every edge e that Prim's adds to S, then e must be in T.

Prim's Correctness Proof

- Base case: When m=1, or after 1 edge has been added to S. Let v_0 denote the starting vertex. Let $e_1 = \{v_0, v_1\}$ be that edge.
- At this point $S = (\{v_0, v_1\}, \{\{v_0, v_1\}\})$. Thus, by Prim, e_1 is the lightest edge incident upon v_0 .
- Let $X = \{v_0\}$ be a cut of graph G = (V, E). By the cut property the minimum weight edge from X to V X must be in the MST T. That edge is e_1 , thus $e_1 \in T$.

Prim's Correctness Proof

• Induction: Let m = k and let

$$S = (\{v_0, v_1, \dots, v_k\}, \{e_1, e_2, \dots, e_k\})$$

be the current state of the tree built by Prim's algorithm after k iterations.

- Assume that $e_1, e_2, ..., e_k$ are all in T, the MST for G.
- Now, run the next iteration of Prim's, adding vertex v_{k+1} and edge e_{k+1} , i.e. let m = k + 1.
- Let $X = \{v_0, v_1, ..., v_k\}$ be a cut of the vertex set V, in G. By the cut property, the lightest edge from X to V-X must be in the MST for G. That edge is e_{k+1} , by Prim's which chooses the lightest edge out of $\{v_0, v_1, ..., v_k\}$ which does not create a cycle.
- Therefore, e_{k+1} is in T and we are done. Every edge that Prim's adds to tree S is in the minimum spanning tree T and Prim's adds exactly n-1 edges.

Pseudocode: Prim's Algorithm

Algorithm PrimJarníkMST(*G*):

Input: A weighted connected graph G with n vertices and m edges

Output: an MST T for G

Data structures: Array D; Priority Queue Q; and tree T

Pick an arbitrary vertex v in G

$$D[v] \leftarrow 0$$

for each vertex $u \neq v$ **do**

$$D[u] \leftarrow +\infty$$

for each vertex u do

Add ((u, null), D[u]) to Q // including v; here D[u] is the key

while Q is not empty do

$$(u, e) \leftarrow Q.removeMin()$$

Add vertex u and edge e to T

for each vertex z adjacent to u such that z is in Q do

if
$$w((u,z)) < D[z]$$
 then

 $D[z] \leftarrow w((u,z))$

Change z entry in Q to ((z, (u, z)), D[z])

return T

D:distance vector, maintains reachable vertices

Q: a priority queue for the edges according to values in D

a	b	С	d	e	f	g	h	i	j
O	3	9	+∞	+∞	6	+∞	+∞	$+\infty$	

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	$+\infty$	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	$+\infty$
0	3	9	9	2	4	+∞	+∞	+∞	$+\infty$

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	$+\infty$
0	3	9	9	2	4	+∞	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	$+\infty$
0	3	9	9	2	4	+∞	+∞	+∞	$+\infty$

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	$+\infty$	+∞	+∞
0	3	9	8	2	2	9	$+\infty$	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	$+\infty$	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞

4	

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞

4	

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	$+\infty$	6	+∞	$+\infty$	$+\infty$	$+\infty$
0	3	9	9	2	4	+∞	+∞	+∞	$+\infty$
0	3	9	8	2	2	9	+∞	+∞	$+\infty$
0	3	9	8	2	2	9	9	+∞	+∞
0	3	8	8	2	2	7	9	+∞	10

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	$+\infty$	+∞	+∞
0	3	9	9	2	4	+∞	$+\infty$	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	9	8	2	2	9	9	+∞	+∞
0	3	8	8	2	2	7	9	+∞	10

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	$+\infty$	+∞
0	3	9	9	2	4	+∞	+∞	$+\infty$	+∞
0	3	9	8	2	2	9	+∞	$+\infty$	+∞
0	3	9	8	2	2	9	9	$+\infty$	+∞
0	3	8	8	2	2	7	9	$+\infty$	10

a	b	С	d	c e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	9	8	2	2	9	9	+∞	+∞
0	3	8	8	2	2	7	9	+∞	10
0	3	8	8	2	2	7	5	4	10

a	b	С	d	c e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	$+\infty$	+∞	+∞
0	3	9	8	2	2	9	9	$+\infty$	+∞
0	3	8	8	2	2	7	9	+∞	10
0	3	8	8	2	2	7	5	4	10

a	b	c	d	c e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	9	8	2	2	9	9	+∞	+∞
0	3	8	8	2	2	7	9	+∞	10
0	3	8	8	2	2	7	5	4	10

Prim-Jarník-Dijkstra h a g 0 a $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ 9 8 $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$

	9 g 5 h 3 j Prim-Jarník-Dijkstra												
a	b 4	2¢	8	e	f 18	g	h	i	j				
0 a	3	9	$+\infty$	$+\infty$	6	+∞	+∞	+∞	+∞				
0	3 9	9 9	9 8	/2	4	+∞	+∞	+∞	+∞				
0	3	9	8 c	2	2	9	+∞	+∞	+∞				
0	3	9	8	2	2	9	9	+∞	+∞				
0	3	8	8	2	2	7	9	+∞	10				
0	3	8	8	2	2	7	1	4	4				
0	3	8	8	2	2	7	1	4	4				
0	3	8	8	2	2	7	1	4	3				
0	3	8	8	2	2	7	1	4	3				

		9 2 e	g 9 7	1 1 5 1 9	1 3	j P	'rim-	Jarn	ík-Di	jkstra
a	b 4	² C	81	19/	f 18	g	h	i	j	
0 a	3	9	+∞	$+\infty$	6	+∞	+∞	+∞	+∞	
0	3 9	9 9	9 8	/2	4	+∞	+∞	+∞	+∞	
0	3	9	80	2	2	9	+∞	+∞	+∞	
0	3	9	8	2	2	9	9	+∞	+∞	
0	3	8	8	2	2	7	9	+∞	10	
0	3	8	8	2	2	7	1	4	4	
0	3	8	8	2	2	7	1	4	4	
0	3	8	8	2	2	7	1	4	3	
0	3	8	8	2	2	7	1	4	3	

Pseudocode: Prim's Algorithm

Algorithm PrimJarníkMST(*G*):

Input: A weighted connected graph G with n vertices and m edges

Output: an MST T for G

Data structures: Array D; Priority Queue Q; and tree T

Pick an arbitrary vertex v in G

$$D[v] \leftarrow 0$$

for each vertex $u \neq v$ **do**

$$D[u] \leftarrow +\infty$$

for each vertex u do

Add ((u, null), D[u]) to Q // including v; here D[u] is the key

while Q is not empty do

$$(u, e) \leftarrow Q.removeMin()$$

Add vertex u and edge e to T

for each vertex z adjacent to u such that z is in Q do

if
$$w((u,z)) < D[z]$$
 then

 $D[z] \leftarrow w((u,z))$

Change z entry in Q to ((z, (u, z)), D[z])

return T

D:distance vector, maintains reachable vertices

Q: a priority queue for the edges according to values in D

Prim-Jarník Time Complexity

Theorem. The Prim-Jarník algorithm constructs a minimum spanning tree for a connected weighted graph G = (V, E) with n vertices and m edges in $O(m \log n)$ time.

Prim's algorithm: eager implementation

```
public class PrimMST {
 private Edge[] edgeTo;
                                     // shortest edge from tree to vertex
 private double[] distTo;
                                     // distTo[w] = edgeTo[w].weight()
 private boolean[] marked;
                                     // true if v in mst
 private IndexMinPQ<Edge> pq;
                                     // eligible crossing edges
  public PrimMST(WeightedGraph G) {
     edgeTo = new Edge[G.V()];
     distTo = new double[G.V()];
     marked = new boolean[G.V()];
    for(int v = 0; v < G.V(); v++)
        distTo[v] = Double.POSITIVE_INFINITY;
     pq = new IndexMinPQ<Double>(G.V());
     distTo[0] = 0.0;
     pq.insert(0, 0.0);
     while(!pq.isEmpty())
         visit(G, pq.delMin());
```

assume G is connected

repeatedly delete the min weight edge e = v-w from PQ

Prim's algorithm: eager implementation

```
private void visit(WeightedGraph G, int v) {
  marked[v] = true;
 for (Edge e : G.adj(v)) {
   int w = e.other(v);
   if (marked[w]) continue;
   if (e.weight() < distTo[w]) {</pre>
       edgeTo[w] = e;
       distTo[w] = e.weight();
       if (pq.contains(w)) pq.changeKey(w, distTo[w]);
       else pq.insert(w, distTo[w]);
public Iterable<Edge> edges(){
  Queue<Edge> mst = new Queue<Edge>();
 for (int v = 0; v < edgeTo.length; <math>v++)
    Edge e = edgeTo[v];
   if (e!= null) {
     mst.enqueue(e);
  return mst; }
```

add v to T

for each edge e = v-w, add to PQ if w not already in T

add edge e to tree

Update distance to w or Insert distance to w

Create the mst