Deep learning as a feature extractor

Convolution Neural Network (CNN)

- Hierarchy of representations with increasing level of abstraction
- Each stage is a kind of trainable feature transform
- Image recognition: Pixel →edge → texture → part → object

What does the convolution learn

Learning patterns

Higher layer captures higher-level

concepts

Layer 1

Have you ever seen this creature before?

Can you guess whether it is land or water animal?

You can transfer your knowledge in the past

Myth: you can't do deep learning unless you have a million labelled examples for your problem.

Reality:

- You can transfer learned representations from a related task
- You can train on a nearby surrogate objective for which it is easy to generate labels

Transfer learning (basics)

- We know networks captures good representations
- Can we use it for other tasks?
- Use trained networks to initialize a new network for a different task.
- Re-train the network using SGD on new data.

For CV tasks, we call the pre-trained network backbones

Transfer learning idea

Instead of training a deep network from scratch for your task, you can

- Take a network trained on a different domain for a different source task
- Adapt (fine-tune) it for your domain and your target task

This lecture will talk about how to do this.

Variations:

- Different domain, same task
- Different domain, different task

 A model is trained on large dataset Ex ImageNet

2. Replace the top layers with target task

Trained using SGD

3A. Train only the layer that is replaced (freezed weights)

3B. Train all layers (unfreezed weights)

Benefits to transfer learning

- Higher start
- 2. Higher slope (converge faster)
- 3. Higher asymptote (if small data)

Layers

Lower layers: more general

Higher layers: more specific

Layer 1

Domains

Similar domain can transfer easier Fine-tuning (adaptation) is crucial

Aircraft images
Different from ImageNet

Natural images Similar to ImageNet

Transfer learning in speech recognition

Assamese and Bengali language

Assamese

Bengali	WER
No pre-training (10 hr Bengali)	71.8%
No pre-training (60 hr Bengali)	64.5%
Transfer learning (10 hr Assamese -> 10 hr Bengali)	66.0%
Transfer learning (60 hr Assamese -> 10 hr Bengali)	64.6%
+ Adaptation	63.7%
Transfer learning (60 hr Bengali -> 10 hr Bengali)	61.6%

Closer domain is better

- Pre-train on 60 hours of data, and adapt on languages with 10 hours of data
- Numbers in blue is for 10->10 hours (baseline)

		Pretrain on			
		Bengali	Assamese	Lao	Turkish
Adapt to	Bengali	66.0	63.8	65.1	64.2
	Assamese	61.2	65.2	62.9	62.1
	Lao	59.8	60.1	62.3	60.0
	Turkish	61.8	63.1	63.3	63.9

- Transfer learning always improves performance.
- Similar languages perform better on transfer learning

Language Identification for data selection

- Train a classifier (LID) on source languages to predict the language given input frames
- Compute posteriors of the target language data using that classifier
- The best language for the target language should have the highest average posterior score

Predicting the best language

		Pretrain on			
		Bengali	Assamese	Lao	Turkish
Adapt to	Bengali	66.0	63.8	65.1	64.2
	Assamese	61.2	65.2	62.9	62.1
	Lao	59.8	60.1	62.3	60.0
	Turkish	61.8	63.1	63.3	63.9

		Language prediction score			
		Bengali	Assamese	Lao	Turkish
Input frames	Bengali	0.57	0.21	0.09	0.13
	Assamese	0.21	0.57	0.11	0.11
	Lao	0.08	0.11	0.71	0.10
	Turkish	0.13	0.12	0.10	0.65

The LID scores correspond to the best language to use most of the time.

Which task to transfer?

TASKONOMY Home API Live Demo Pretrained Task Bank Paper Dataset Team

Image to upload:

Choose File No file chosen

Surface Normals

Vanishing Points

Scene Classification

Top 5 prediction: home_office office television_room computer_room office_cubicles

Image Reshading

Unsupervised 2.5D Segm.

3D Keypoints

2D Texture Edges

Room Layout

3D Occlusion Edges

Adaptation tricks

Triangle learning rate

At the start some of the model is randomly initialized. Cannot trust the gradient

Discriminative fine-tuning

Instead of using the same learning rate for all layers of the model, discriminative fine-tuning allows us to tune each layer with different learning rates.

- Layers that are closer to inputs → large learning rate
- Layers that are closer to outputs → small learning rate

Advance adaptation ideas

- Chain-taw
 - Freeze the old layers, train the new weights for a bit
- 1. fine-tunes any new layers.
- 2. fine-tunes each layer individually of base model starting from the first to the last.
- 3. the entire model is trained with all layers.

2. fine-tunes each layer individually of base model starting from the first to the last.

2. fine-tunes each layer individually of base model starting from the first to the last.

2. fine-tunes each layer individually of base model starting from the first to the last.

3. the entire model is trained with all layers.

Lab

Housing price prediction

Structured vs unstructured data

A combination of non deep learning method (XGBoost) + Deep learning XGBoost - good for tabular data

Deep learning - good for unstructured data

Structured vs unstructured data

Let's play with XGBoost base model first

https://colab.research.google.com/drive/1N41w5A1mZ5f2bP VeS7gVO8e6laUmt1 ?usp=sharing

Transfer learning for housing price prediction

Resnet-34

Conv layers

avg pool

Classification layer (1000)

Conv layers

avg pool

Dense 5 Cheap or expensive house?

Summary

You can transfer knowledge from other dataset to help reduce the amount of training data.

More sophisticated fine tuning techniques exist:

Chain-taw, ULMfit, etc. See NVIDIA workshop for more details

https://youtu.be/I8oqxp0up34?t=4410