CHAPTER 3

The Simplex Method and Sensitivity Analysis

 $(x_1, x_2) = (3, 1)$

M1: S, = 24-(6x3+4x1) = 2 tono/day

M2: $S_2 = 6 - (1x3 + 2x1) = 1 \text{ ton/doy}$

5, = x, + x2 - 800 = 500+600-800 = 300 lb

 $10X_1 - 3X_2 \ge -5 = -10X_1 + 3X_2 \le 5$

Thus, -10x, +3x2 + 5, =5 0

Also, $10X_1 - 3X_2 \ge -5 = 10X_1 - 3X_2 - S_2 = -5$

Thus, -10×1+3×2+52 =5

1 and 2 are the same

Xij = number of units of product 4

LP model

MAXIMIZE Z = 10(X11+X12)+15(X21+X22) Subject to

 $|(X_{11}+X_{21})-(X_{12}+X_{22})| \leq 5$

X11 + X21 ≤ 200

X/2 + X22 \le 250

Xij ≥o for alli¢j

Equation form:

 $|(X_{11}+X_{21})-(X_{12}+X_{22})| \leq 5$

 $X_{11} + X_{21} - X_{12} - X_{21} \leq 5$

X11 + X21 - X12 - X22 3-5

Moximize Z = 10 X11 + 10 X12 + 15 X21 + 15 X21

Subject to

 $X_{11} + X_{21} - X_{12} - X_{22} + S_1$ = 5

- X11 - X21 + X12 + X22 + S2

X11 + X21 = 200

X,+ X22 + Sy = 250

Xij 20 for all i and j

Si ≥0 for all i

continued.

7=max { | x,-x2+3x3|, |-x, +3x2-x3| }

Hence

|x1-x2+3x3| ≤ y

 $\left|-x_1+3x_2-x_3\right| \leq \gamma$

LP model:

minimize Z=y

Subject to

 $x_1 - x_2 + 3x_3 \leq y$

 $x_1 - x_2 + 3x_3 \geq -y$

 $-x_1+3x_2-x_3 \leq \gamma$

 $-x_1 + 3x_2 - x_3 \ge -y$

X,, X2, X3, 720

Equation form:

Minimize Z= 4

Subject to

 $-y+x_1-x_2+3x_3+5_1$

-y-x,+x2-3x3 +S2

 $-y-x_1+3x_2-x_3+s_3$

-4+x1-3x2+x3

 $x_{1}, x_{2}, x_{3}, y, s_{1}, s_{2}, s_{3}, s_{4} \ge 0$

 $\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \iff \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & \text{if } \\ \sum_{i=1}^{n} a_{ij} x_{j} \geq b_{i} & \text{if } \end{cases}$

From @, for i=1,2,..., m, we have

 $\underbrace{\sum_{i=1}^{n}a_{ij}x_{j}} \geq b_{i} \Leftrightarrow \underbrace{\sum_{i=1}^{n}\left(\sum_{j=1}^{n}a_{ij}x_{j}\right)} \geq \underbrace{\sum_{i=1}^{n}b_{i}}.$

 $\Leftrightarrow \frac{\mathcal{Z}}{\mathcal{Z}}(\tilde{\mathcal{Z}}a_{ij})x_{j} \geq \tilde{\mathcal{Z}}b_{i}$

Thus, @ and @ are equivalent to

£ 1; x; ≤ bi, i=1, z, ..., m

 $\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij}\right) x_{j} \geq \sum_{i=1}^{n} b_{i}$

2 = \$173.35 $X_1 = 900, X_2 = 0, X_3^+ = 2516$

(a) $X_j = \#units$ of product j perday, j=1,2 2 $X_3^{\dagger} = unused minules of machine time / day | X_3^{\dagger} = machine overtime per day inminutes$

Maximize $z = 6x, +7.5x_2 - .5x_3$ Subject to $10x_1 + 12x_2 + x_3^{+} - x_3^{-} = 2500$ $150 \le x_1 \le 200$ $x_2 \le 45$ $x_1, x_2 \ge 0$ $x_3^{+}, x_3^{-} \ge 0$

TORA getimum Solution:

X, = 200 units/day X2 = 45 units/day X3 = overtime minutes = 40 minutes/day 2 = \$1517.50

(b) Overtime at \$1.50/min spields x=0, which means no overtime is needed

 $X_j = \# \text{ funits of products 1, 2, and 3}$ Maximize $2 = 2 \times 1 + 5 \times 2 + 3 \times 3 - 15 \times 1 - 10 \times 5$ Subsoit 5

Subject 6 $2 \times_1 + \times_2 + 2 \times_3 + \times_4^7 - \times_7^7 = 80$ $\times_1 + \times_2 + 2 \times_3 + \times_5^7 - \times_5^7 = 65$ all variable, ≥ 0

Solution: Z = \$325 Xz = 65 units, X4 = 15

All other variables = 0

Formulation 1:

Maximize $Z = -2X_1 + 3X_2 - 3X_2 - 2X_3 + 2X_3$ Subject to $4X_1 - X_2^{\dagger} + X_2^{\dagger} - 5X_3^{\dagger} + 5X_3^{\dagger} = 10$ $2X_1 + 3X_2^{\dagger} - 3X_2^{\dagger} + 2X_3^{\dagger} - 2X_3^{\dagger} = 12$ All variables ≥ 0

Optimum solution:

 $X_{1} = 0$ $X_{2}^{+} = 6.75^{-}$ $X_{2}^{-} = 0$ $X_{3}^{+} = 0$ $X_{3}^{-} = 3.23$ $X_{3}^{-} = 3.23$ $X_{3}^{-} = 3.23$

Formulation 2:

Maximize Z = -2X, +3X2 - 2X3 - W Subject to

 $4x_1 - x_2^{+} - 5x_3^{+} + 6w = 10$ $2x_1 + 3x_2^{+} + 2x_3^{+} - 5w = 12$ all variables ≥ 0

Optimiem solution:

 $X_1 = 0$ $X_2^{\dagger} = 9.38$ W = 3.23 $X_2 = 9.38 - 3.23 = 6.15$ $X_3^{\dagger} = 0$ $X_3 = 6 - 3.23 = -3.23$ $X_3 = 3.23$ $X_3 = 3.23$

continued

(a)

Equation form:

Maximize $Z = 2X_1 + 3X_2$ Subject to $X_1 + 3X_2$

 $X_1 + 3X_2 + X_3 = 6$ $3X_1 + 2X_2 + X_4 = 6$ $X_1, X_2, X_{3,2} X_4 \ge 0$

(6) Basic (x, xe) (Point B):

X, +3x2 = 6 3X, +2x2 = 6 Solution: (X, x2) = (6, 12), Z = 6 7 Basic(X, X3)(Point E):

 $x_1 + x_3 = 6$ $3x_1 = 6$ Solution: $(x_1, x_3) = (2, 4), Z = 4$ Basic $(x_1, x_4)(Point C)$:

 $\frac{x_1}{x_1} = 6$ $3x_1 + xy = 6$ Solution: $(X_1, X_2) = (6, -12)$

Solution: (X1, X4) = (6,-12) Unique but infeasible

Bacic (X2, X2) (Point A):

Solutions (X2, X3) = (39-3) Umique but infeaselle

Basic (Xz, XY) (Point D):

 $3x_2 = 6$ $2x_2 + x_4 = 6$

Solution: (x2, x4) = (2,2), 2=6

Bacic (X3, X4) (Point F):

 $X_3 = 6$ $X_4 = 6$

Solution: (X3, X4) = (6,6), Z = 0

(c) Optimum solution occurs at B: $(X_1, X_2) = (\frac{6}{7}, \frac{12}{7})$ with $Z = 6\frac{7}{7}$

(e) from the graph in (d), we have

 $A: X_2 = 3, X_3 = -3$

C: X, = 6, Xy = -12

(a) Maximize $Z = 2X_1 - 4X_2 + 5X_3 - 6X_4$ Subject G

 $X_1 + 4X_2 - 2X_3 + 8X_9 + X_5 = 2$ $-X_1 + 2X_2 + 3X_3 + 4X_9 + X_6 = 1$ $X_{13} \times 2_{23} \times 3_{3} \times 4_{3} \times 5_{3} \times 6_{3} = 0$

Combination	Solution	Status z
XisXi	0,1/2	Feasible -2
X, , X3	8,3	Fasible 31
X, y Xy	0,1/4	Feasible -3/2
x,, x5	-1, 3	Infosible _
×, > ×6	2,3	Feasible 4
X_2, X_3	1/2 9 0	Feasible -2
x_2, x_4	1/2,0	Feasible -2
X_2, X_S	1/2,0	Feasible -2
X2, X6	1/2,0	Feasible -2
x3, Xy	0,44	Feasible -3/2
×3, ×5	1/3,8/3	Feasible 5/3
X3, X6	-1,4	Infeasible -
×4,×5	1/4,0	Fearible -3/2
×4,×6	1/4 > 0	Fearible -3/2
X5,X6	1,5	Feeith 0

Optimum Solution:

 $X_1 = 8$, $X_2 = 6$, $X_3 = 3$, $X_V = 0$ Z = 31

continued.

continued

(b) Minimize
$$Z = X_1 + 2X_2 - 3X_3 - 2X_4$$

Subject to

$$X_1 + 2X_2 - 3X_3 + X_4 = 4$$

 $X_1 + 2X_2 + X_3 + 2X_4 = 4$
 $X_1, X_2, X_3, X_4 \ge 0$

Combination	Solution	Status	Z
. x, x	infinity	of Solutions	
x_1, x_3	4,0	Feasible	
x_1, x_4	4,0	Feasible	4
X2 , X3	2,0	Feasible	4
Xz, Xy	2,0	Feasible	4
X ₃ , X _Y	-솩, 뜩	Infeasible	_

alternative optima:

<u>×, </u>	x, x ₂	×3	Χy	Z
4	0	0	0	4
0	2	0	0	4

maximize $Z = X_1 + X_2$ Subject to

$$X_1 + 2Y_2 + X_3 = 6$$

 $2X_1 + X_2 - X_4 = 16$
 $X_1, X_2, X_3, X_4 \ge 0$

_(am bination	Solution	Status
	X ₁ , X ₂	26/3,-4/3	Infeasible
	X13 X3	8,-2	Infeasible
	XID XY	6, -4	Infeasible
	X_2 , X_3	16, -26	Infeasible
1 4	X ₂ , X _y	3, -13	Infeasible
	×3, ×4	6, -16	Infeasible

Maximize $Z = 2x_1 + 3x_2^2 - 3x_2^2 + 5x_3$ Subject to

$$(x_2, x_2)$$
:
 $7x_2^- - 7x_2^+ = 4$
 $x_2^- - x_2^+ = 10$

Since $(7x_2 - 7x_2^+)$ and $(x_2^- - x_2^+)$ are dependent, it is impossible for x_2^- and x_2^+ to be basic simultaneously. This means that at least x_2^- and x_3^+ must be nonbasic at zero level; thus making it impossible for x_2^- and x_2^+ to assume positive values simultaneously in any basic solution.

maximize Z = X, + 3 Xz Subject to

$$x_1 + x_2 + x_3 = 2$$
 $-x_1 + x_2 + x_4 = 4$
 x_1 unrestricted
 $x_2, x_3 \ge 0$

Combination	Solution	Status	Z
×,, ×2	-1, 3	Feasible	[8]
×1, ×3	-4,6	Fearible	-4
×1.XV	2, 6	Fearible	2
X2, X3	2- و 4	Infeasible	
X ₂ , X4	2, 2	Feasible	6
X3, X4	2, 4	Feasible	٥
· ·		6	,

Optimum: $X_1 = -1$, $X_2 = 3$, Z = 8(c) $X_2 = 3$

Set 3.3a

Extreme Point	Basic	Nonbasic
A	5,,5,	X, , X2
В	X,,5	x_{i}, S_{i}
C	X_1 , X_2	2,25

Extreme po	int Basic	Nonbasic
A	5,,52,53,54	XXXX
B	x,,52,53,54	S, xz
C	X, , X, , 53,54	<i>5,</i> , <i>5</i> ₂

- (a) (A, B) adjacent, hence can be on a simplex path. Remaining pairs cannot be on a simplex path because they are not adjacent.
- (b) (i) Yes, because connects adjacent extreme points
 - (ii) No, because C and I are not adjacent.
 - (iii) No, lecause de path returns to a previous extreme point.

Extreme Paint	Basic	Nembasic
Α	5, 52, 53, 54	XIJ XZJX 3
В	S1, X1, S3, S4	52, X2, 53
C	X2, 52, 53,54	5,, X,,X3
D	S, , 52, X3,54	x_1, x_2, S_3
E	x,, x2,53,54	5,, 52, 43
F	X2, S2, X3, 54	x1,5,5
G	5,, x,, x3, Sy	52, X2,53
H	5, 1 X, 1 X2 1X3	52, 53, 54
I	x, , x2 , x3,53	5, , 5, 54
Ī	x,, S,, X,, X3	S1, S3, Sq

- (a) \times_3 enters at value 1 $Z = 0 + 3 \times 1 = 3$
- (b) \times , enters at value 1 $Z = 0 + 5 \times 1 = 5$
- (c) X_2 enters at value 1 $Z = 0 + 7 \times 1 = 7$
- (d) The broken arbitarily between X_1, X_2 , and X_3 Entering value = 1 Z = 0 + |X| = 1

	•							
Basic	z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	s_2	S 3	S 4	Sol
Z	1	-5	-4	0	0	0	0	0
\mathbf{s}_1	0	6	4	1	0	0	0	24
s_2	0	1	2	0.	1	0	0	6
S ₃	0	-1	1	0	0	1	0	1
S ₄	0	0	1	0	0	0	1	2
Z	1	0	6	0	5	0	. 0	30
s_1	0	0	-8	1	-6	0	0	-12
\mathbf{x}_1	0	1	2	0	1	0	0	6
S 3	0	0	3	0	1	1	0	7
S4	0	0	11	0.	0	0	1	2

(a)

,								7
Basic	x 1	x2	х3	х4	sx5	sx6	sx7	Solution
z	-2.00	-1.00	3.00	-5.00	0.00	0.00	0.00	0100
1)sx5 2)sx6	1.00	2.00	2.00	4.00	1.00	0.00	0.00	40,00
3)sx7	4.00	-2.00	1.00 1.00	2.00 -1.00	0.00 0.00	1.00 0.00	0.00 1.00	8.00 10.00
z	3.00	-3.50	5.50	0.00	0.00	2.50	0.00	20.00
1)sx5	-3.00	4.00	0.00	0.00	1.00	-2.00	0.00	24,00
2)x4 3)sx7	1.00 5.00	-0.50 -2.50	0.50 1.50	1.00 0.00	0.00	0.50	0.00	4.00
	3.00	-2.30				0.50	1.00	14.00
z	0.38	0.00	5.50	0.00	0.88	0.75	0.00	41.00
1)x2	-0.75	1.00	0.00	0.00	0.25	-0.50	0.00	6,00
2)x4 3)sx7	0.62 3.12	0.00	0.50 1.50	1.00 0.00	0.12 0.62	0.25 -0.75	0.00	7.00 29.00
(b) Basic) x1	x2	x3	x4	sx5	sx6	sx7	Solution
2	*8.00	-6.00	-3.00	2.00	0.00	0.00	0.00	0.00
1)sx5	1.00	2.00	2.00	4.00	1.00	0.00	0.00	40.00
2)sx6	2.00	-1.00	1.00	2.00	0.00	1.00	0.00	8.00 10.00
3)sx7	4.00	-2.00	1.00	-1.00	0.00	0.00	1.00	10.00
2	0.00	-10.00	-1.00	0.00	0.00	0.00	2.00	20.00
1)sx5	0.00	2.50	1.75	4.25	1.00	0.00	-0.25	37.00
2)sx6	0.00	0.00	0.50	2.50 -0.25	0.00	1.00	-0.50 0.25	3.00 2.50
3)x1	1.00	-0.50	0.25	-0.25	0.00	5.00		1

17.00

1.70 2.50 0.60

0.70 0.50 0.60

1.00 0.00 0.00

0.00 0.00 1.00

(c) Basic	×1	x2	x3	×4	sx5	sx6	sx7	Solution
z	-3.00	1.00	-3.00	-4.00	0.00	0.00	0.00	0.00
1)sx5 2)sx6 3)sx7	1.00 2.00 4.00	2.00 -1.00 -2.00	2.00 1.00 1.00	4.00 2.00 -1.00	1.00 0.00 0.00	0.00 1.00 0.00	0.00 0.00 1.00	40.00 8.00 10.00
z	1.00	-1.00	-1.00	0.00	0.00	2.00	0.00	16,00
1)sx5 2)x4 3)sx7	-3.00 1.00 5.00	4.00 -0.50 -2.50	0.00 0.50 1.50	0.00 1.00 0.00	1.00 0.00 0.00	-2.00 0.50 0.50	0.00 0.00 1.00	24.00 4.00 14.00
z	0.25	0.00	-1.00	0.00	0.25	1.50	0.00	22.00
1)x2 2)x4 3)sx7	-0.75 0.62 3.12	1.00 0.00 0.00	0.00 0.50 1.50	0.00 1.00 0.00	0.25 0.12 0.62	-0.50 0.25 -0.75	0.00 0.00 1.00	6.00 7.00 29.00
z	1.50	0.00	0.00	2.00	0.50	2.00	0.00	36.00
1)x2 2)x3 3)sx7	-0.75 1.25 1.25	1.00 0.00 0.00	0.00 1.00 0.00	0.00 2.00 -3.00	0.25 0.25 0.25	-0.50 0.50 -1.50	0.00 0.00 1.00	6.00 14.00 8.00

4.00

0.00

0.00 1.00 0.00 1.00

170.00

(d) Basic	*1	x2	x 3	*4	sx5	sx6	sx7	Solution
Z	-5.00	4.00	-6.00	8.00	0.00	0.00	0.00	0.00
1)sx5 2)sx6 3)sx7	1.00 2.00 4.00	2.00 -1.00 -2.00	2.00 1.00 1.00	4.00 2.00 -1.00	1.00 0.00 0.00	0.00 1.00 0.00	0.60 0.00 1.00	40:00 8:00 10:00
z	-13.00	8.00	-10.00	0.00	0.00	-4.00	0.00	-32.00
1)sx5 2)x4 3)sx7	-3.00 1.00 5.00	4.00 -0.50 -2.50	0.00 0.50 1.50	0.00 1.00 0.00	1.00 0.00 0.00	-2.00 0.50 0.50	0.00 0.00 1.00	24.00 4.00 14.00
2	-7.00	0.00	-10.00	0.00	-2.00	0.00	0.00	-80.00
1)x2 2)x4 3)sx7	-0.75 0.62 3.12	1.00 0.00 0.00	0.00 0.50 1.50	0.00 1.00 0.00	0.25 0.12 0.62	-0.50 0.25 -0.75	0.00 0.00 1.00	6.00 7.00 29.00

	Ratios						
Basic	\mathbf{x}_1	$\mathbf{x_2}$	X3	X4			
X5	4/1	4/2		(4/5)			
\mathbf{x}_{6}	8/5			8/6			
X7.	3/2	3/3		3/3			
X8			0/1				
Value	1.5	1	0	0.8			
Leaving var	X7	X7	X.8	X5			

(a) Nonbasic X, will improve solution.

 $X_1 = \frac{4}{5} = .8$, $X_3 = 8 - 6x.8 = 3.6$, $X_4 = 3 - 3x.8 = .6$ $X_2 = 0$, $Z = .8 \times 1 = .8$

(b) x, remains nonbasic at zoo. Current solution, x2 = 4, x3 = 8, x4 = 3, Z = 0 is optimum

Basic solutions consist of one variable each. Thus,

$$X_1 = 90/1 = 90$$
, $Z = 5\times90 = 450$
 $X_2 = 90/3 = 30$, $Z = -6\times30 = -180$

$$x_3 = 90/5 = 18$$
, $Z = 3x/8 = 54$

$$x_y = 90/6 = 15$$
, $Z = -5x15 = -75$

$$X_5 = 90/3 = 30$$
, $Z = 12 \times 30 = 360$

Optimum solution:

(4) Basic: (Xg, X3, X1) = (12,6,0), Z = 620 Nonbasic: (Xz, X4, X5, X6, X7) = (0,0,0,0,0)

(b) X2, X5, X6 willimprove solution.

 X_2 enters: $X_2 = \min(\frac{12}{3}, \frac{6}{1}, -) = 4$. Thus, X_3 leaves, $\Delta Z = 4 \times 5 = 20$

2

 X_S enters: $X_S = min(-, \frac{6}{1}, \frac{0}{6}) = 0$. Thus,

 $\Delta Z = 1 \times 0 = 0 (x, leaves)$

X6 contero: X6 = min (-, -, -). Thus, no leaving variable and X6 can

be increased to so. DZ=+00

(C) X4 can improve solution.

X4 enters: X4 = min(-, 6, -) = 2. Thus, X3 leaves. Δz = -4x2 = -8

(d) As shown in (b), X_5 cannot change Z because it enters the Solution a level zero. X_7 cannot change Z either because its objective equation Coefficient = 0. $\Delta Z = 0 \times min(\frac{12}{5}, \frac{6}{3}, -) = 0$

(a) Maximize Z= 3x, +6x2:

Xz is the first entering variable.

Resulting path is A = G > F > E.

(b) Maximize Z = 4x, + xz:

Entering variable x, = (min intercept with)

$$X_1 = min(2,3,5) = 2$$
 at B
 $\Delta Z = 4 \times 2 = 8$

(c) Maximize $Z = X_1 + 4X_2$: Entering variable $X_2 = \begin{pmatrix} min & intercept \\ cirth & X_2 - a xis \end{pmatrix}$ $X_2 = min (1, 2, 4) = 1$ $\Delta Z = 4 \times 1 = 4$

(a) X, will enter first and the ilerations will follow the path A→B→C→D

(b) X2 enters first and the ilerations will follow the path A→E→D

(c) The most-regative criterion requires more ilerations (4 20.3). This criterion is only a kewistic, and although it does not guarantel the smallest number of

iterations, computational experience demonstrates short, on the average, the most-regative criterion is more efficient.

(d) Iterations are identical, with should appear with an opposite sign

Optimum tableau:									
Basic	\mathbf{x}_1	\mathbf{x}_2	s_1	s_2	S 3	S ₄			
Ź.	0	0	3 4	1/2	0	0	21		
	1	0	1/4	-1/2	. 0	0 .	3		
\mathbf{x}_2	0	1	-1/8	3/4	0	0	3/2		
s_3	0	0	3/8	-5/4	1	0	5/2		
S ₄	.0	0	1/8	-3/4	0	1	1/2		

If s, enters, its value = min {3 , -5/2 , 1/2 } = 4 New Z = 2! - 3/4 × 4 = 18 If szenters, its value = min {-, 3/2 , -, -} = 2 New Z = 2! - Y2 × 2 = 20. The second best Z is associated with Szentenip the basic solution

Not easily extendable because the third beat toletion may not be an adjacent Corner point of the current optimum point.

X, = number of purses per day
X2 = number of bago per day
X3 = number of backpacks per day

Maximize $Z = 24X_1 + 22X_2 + 45X_3$ Subject to

 $2x_1 + x_2 + 3x_3 \le 42$ $2x_1 + x_2 + 2x_3 \le 40$ $x_1 + 5x_2 + x_3 \le 45$ $x_1, x_2, x_3 \ge 0$

TORA's optimum Solution:

X,=0, X2 = 36, X3 = Z, Z= \$882 Status of resources:

Resource Slack Status

Seather O Scarce

Sewing O Scarce

Finishing 25 abundant

8

From TORA Iterations module, 2 Click [All Iterations], then go to the optimal iteration and click any of the associated nontainic variables (X4, 5X6, 5X7, 5X8). Now, chick [Next Iteration] to produce the new iteration in which the selected variable becomes basic. The associated value of 2 will deteriorate.

Solution, follows the next-best Solution, follows the procedure in Froblem 1. First, let X4 enter the basic solution and record the associated value of Z. Next, click View/Modify Input Data and re-solve the problem to produce the same optimum tableau that was used before X4 was entered into the basic solution. Now, enter 5X6 into the basic solution and record the associated value of Z. Repeat the percedure of 5X7 and 5X8. You will get the following results:

Entering variable	Z
X4	2.63
SX6	1.00
SX7	6.40
<u> </u>	1.90

The next best solution is associated with entering SX7 into the basic Solution. Associated values of the ranables are

 $X_1 = 1.6$

X2 = 0

×3=1.6

 $X_4 = 0$

Z=6.40

			•					
Iteration	Basic	<i>x</i> ₁	x ₂	<i>x</i> ₃	R,	R ₂	X 4	Solution
0 (starting)	z	-4 + 7M	-1 + 4M	М	Ó	0	0	9М
x ₁ enters	Ř,	3	1	0	1	0	0	3
R ₁ leaves	R ₂	. 4	3	-1	0	1	0	6
	X4	1	.2	0	0.	0	1	4
1	z	0	$\frac{1+5M}{3}$	-М	$\frac{4-7M}{3}$	0	0	4 + 2M
x_2 enters	x_i	1	1/3	0	1/3	0	0	1
R ₂ leaves	R ₂	0	5/3	·1	-4/3	1	0	2
	x4	0	5/3	. 0	-1/3	0	.1	3
2	z	0	0	1/5	8/5 — M	1/5 - M	0	18/5
x ₃ enters	х,	1	0	1/5	-3/5	1/5	0	3/5
x4 leaves	x ₂	0	1	-3/5	-4/5 .	3/5	0	6/5
	x4	0	0	1	1	-1	1	1
3	z	0	0	0	7/5 M	-M	-1/5	17/5
(optimum)	х,	1	0	0	2/5	0	1/5	2/5
,	x2	0 .	1	0	-1/5	0	3/5	9/5
	x _a	0	0	1	1	-1.	1	1

M=1:

Optimin Solution: X,=0, X2=2, XR4=1

Solution is infeasible because XR4 is positive. The reason M=1 produces an infeasible solution is that it does not play the role of a penally relative to the objective conficients of the real variables, X, and X2. Using M=1 makes XR4 more attractive than X, from the standpoint of minimizate. M=10:

Optimism solution: X,= .4, Xz=1.8, Z=3.4

The solution is feasible because it does not include artificials at positive level. M=10 is relatively much larger than the Objective Coefficients of X, and X2, and hence properly plays the role of a penalty.

M=1000:

If produces the optimum dolution as with M=10. The conclusion is shat it suffices to elect M reasonably larger than the objective coefficients of the real variables. Actually, M=1000 in an "over kill" in this case, and relacting such huge values could result in adverse round off error.

(a) Minimize $Z = 4x_1 + x_2 + M(R_1 + R_2 + R_3)$.
Subject to

 $3x_1 + x_2 + R_1 = 3$ $4x_1 + 3x_2 - S_2 + R_2 = 6$ $x_1 + 2x_2 - S_3 + R_3 = 4$ $x_1, x_2, x_2, x_3, x_1, x_2, x_3 \ge 0$

Basic	×ı	Χz	ح	Sз	RI	Rz	R	ł
Z	-4	-1			(M)	(-M)		0
R	3	1			(I)		-	3
RZ	4	3	-1			\bigcirc		6
R ₃	1	2		-1			(1)	4
_ Z	-4+8M	-1+6M	-M	-M	0	0	0	10 M
R_1	3	. 1			ſ			3
Re	4	3	-1		•	1		6
R3	1	ર		-1			1	4

(b) Minimize $Z = 4x_1 + x_2 + M R_1$ Subject to

3x, + x2 4x1 +3x2 +52 XI + ZXZ Basic x 53 Sz Z (FM) \bigcirc 3 R_1 3 3 Sz 6 4 R3 2 -4+3M -1+ M Z 0 BM R, 3 1 3 52 4 6 3 R3 2 4 1

(c) Minimize $Z = 4x_1 + x_2 + M(R_1 + R_2)$ Subject to $3x_1 + x_2 + R_1 = 3$ $4x_1 + 3x_2 + R_2 = 6$ $x_1 + 2x_3 + s_3 = 9$

Basic	¥į	Χz	R,	R.	<i>5</i> 3	1.
Z	-4	-1	(EM)	(M)	0	0
R ₁ R ₂	3	1	0			3
Rz	4	3		\mathbf{O}	•	6
<u>S3</u>	i	_2			1 '	4
	-4+7M	-1+yM	0	0	0	9 M
R ₁	3	1	1			3
K.	4	3		(6
33	1				l	4

continued.

(d) M	laximiz 0 · · ·	e Z= 4	$X_1 + X_2$	-M(K	2, +Ri)		
S	ubject i							
	3 X, +	<i>X</i> 2	+ 1	ا ک	=	3	•	
	4 X, +	3X2 -	J ₂ .	+ R	- 23 + ع - 23	6		
Basic		X ₂	5≥	RI	R ₂	7 53	1	
Z	-4	-1	0	(H)	M	6	0	
R,	3	1.		0			3	
Rz	4	3	-1				6	
53	- 1	2 .	•			ı	4	
Z	-4-7M	-1-4M	М	0	0	0	-9M	
RI	3	1		1			3	
R ₂	4	3	-1		1		6	
53	1	2				ı	4	
(a) Max	ximize	2 = 5X	+ 6 Xz	-MR	<u> </u>		A	
sul	yect to					L	-	_
	-2×,	+3Xz +2Xz	+(R)	.5-	= 3 = 5	(i) (3)		
	6 x,	+7X2	7	- U3 + S	= 5 5 ₄ = 3	(4)		
Z-	(5-2 M) x1 - (6	(+3M)	X ₂ =	- 3M			
(b) Ma	ximize	Z=2.	x, -7x	_M(R,+R	2+R5)	
Sul	yect to				-		(1)	
		Xz		_	ند	= 3 = 10		
	4K,+5 6K,+7)	X ₂ - S	2 +	R ₂	S.,	= 3		
	9x, + 8x	رة – ي	S		+ Rs	= 5	3	
		M)X-(-		u) X ₂ +			1	
1		z = 3x				3		
	bjeit to		•			_		
	X ₁ +2	X ₂	+5,			.	(3)	
	6 X1 +7		•	+ 52		,	4)	
	4 X, +8	PX2 - 55	5		+ Rs =	:5	5)	
Z-((3-4M) X, - (6	5-8M) X2- A	455 =	5M		
(d) M	nimize:	$Z = 4x_1 +$	6X2+M	(R,+R,	+ R _r)			
Suly	ict to				•			
	-2x, +		4	$\cdot R_{l}$		= 3	(1)	
	$4X_1 +$	5 X2	S ₂	+R	2	= 10	(2)	
	4X, +	8 X2	-22		+K5	= 5 (ردي	
Z-	(4-6	M)-(6	-16M)	W-sx	5 ₂ - M	S ₅ = 1	8M	
		. Z = 3	X, +2	X _Z +M	1(R,+	Rs)		
Subje				_	_	g = 1		
		+ 3X2 +8X2 -			5 = 3 7 = 7			
Z-		1)X1 - (

								171 779 779 7
-	Basic	Х,	X,	×3	52	R,	R	•
	3	-2 -3M	-3 +4M	-SM	M	0	0	-17M
Ø	Ri	ŧ	(ı	0	1	0	7
	Rz	2	-5	1 ,	-1	0	ı	10
	ż	0	-8 -7M -2	- <u>M</u>	-) - <u>M</u>	0.	1 3M	16 -2M
J	R,	0	[7/2]	1/2	1/2	ı	-1/2	Ž
	X,	1	-5/2	1/2	-1/2	0	1/2	5
	3	0	Ø	50/7	1/7	16/7 +M	-//7 +M	102
11	X٤	0	1	1/7	1/7	47	-1/7	4/7
	X,	1	0	6/7	-1/7	5/7	1/7	45/7
	V-14-00						- /	- 12

	Basic	×ı	Χz	<i>Y</i> ₃	5,	R,	R	so/a
	3	-2 +3M	-3 -4M	5 +2M	-M	0	`0	IT M
0	R,	1	1	1	0	1	0	7
	RL	2,	<i>-</i> 5	1	-1	ø	1	10 .
1	3	0	-8 +7M/2	6 +11/2	-1 +N/2	0.	1 3M/2	MS
I	$ R_1 $	O	7/2	1/2	1/2	1	-1/2	2
	X	1	-5/2	1/2	-1/z	0	1/2	5
	8	0	0	50/7	1/7	147 -M	-1/7 -M	102
I	Χz	0	I	1/7	47	2/	7 -1/7	4/7
-	X)	ı	0	6/7	-1/7	5/	7 1/2	45/7
A	3	0	-50	0	-7	-12	- ,	-14
עו	X 3	0	7	1	I	z	-1	4
-	×ı	1	-6	0	-1	-1	1	3

continued.

continued.

(b)

	(c)			•				٠.
	Beri	Х,	Χı	X3	$\mathcal{S}_{\mathbf{L}}$	R,	L,	Sels
	3	-1	-2	-1	0	m	M	_
	R,	1	I	J	0	- 1	0	9
0	Rz	2	-5	1	-1 , .	0	1	10
	8	-1 -3 M	-2 '	-2M	m	0	O	-17M
-	R,	ì	1		0	1	0	7
1	Ri	2	-5	1.	-1	0	}	10
	3		-9/2 7M/2	-1/2 - M/2	-1/2 -M/2	0	1/2 +3M/2	5 m
II.	Ř,	Ø	7/2	1/2	1/2	1	-1/2	2
	X,	1	-5/2	1/2	-1/2	0	1/2	5
	ъ	0	0	1/7	1/7	4/7 +M	-1/7 +M	ड्ड
W	Χ'n	o	ı	1/7	1/7	24	-14	4/7
	×,	1	0	617	-1/7	5/7	47	誓
_	(d)							area an
ı	Basic	X,	YL	X 3	s,	R_l	Rz	JAS
	З	-4	8	-3	0	-M		, 0
o	R,	1	1	1	0	i	0	7
	Rz	2	-5	1 .	-1	0	1	10
	z	-4 +3m	8' -4m	-3 +2M	-m	0	6	17M
I	0	1	,	1	0	1	σ	7
	Ru	2	-5	1	- /	o	1	10
-	3	0	-2	-1	-2		2	20
	-		+7M/2					+2.M
T	4	O .	1/2	1/2	1/	2 1	-1/2	2
_	×ı	1	-5/2	1/2	-1/	120		5
,	3	0	O	-5/7	-12/	/7 -m	147 -M	等
M		0	1	1/7	17.	٦/.	-1/-	417
	1 1/2	1	,	- 47	1/7	3/7	' / ງ	717

In the first iteration, we must 6 substitute out the starting Solution variables, x_3 and x_4 , in the z-equation, exactly as we do with the artificial variables

,	Basic	×	Xz	×3	Χų	Solution
	Z	-2	-4	-4)	3	
0	×3	- 1	ı	<u>()</u>	0	4
	X4	1	4	0	①	8
	Z	-1	-12	0	0	-8
I	×з	1	. 1		0	4
	Xy	1	4	0	1	8
	Z	2	0	0	3	16
I	×3	3/4	0	1	-1/4	2
_	Χz	1/4		0	1/4	2

after adding surplus 5, and 5, 5 substitute out \times_3 in the Z-equation

	Basic	×,	×χz	رچ	ړک	X ₃	Xy.	Solution
	Z	-3	-۷	0	0	<u>3</u>	o	
0	×₃	J	4	-1	0	0	O	7
	X4	2	1	0	-1	0	1	10
	Z	٥	10	-3	0	0	0	21
1	X ₃	1	4	-1	0	1	0	7
_	Xy	2		0	-/	0	1	10
	Z	-5/2	. 0	-1/2	0	-5/2	0	7/2
I	Χz	1/4	1	-1/4	0	1/4	0	7/4
	X4	7/4	0	1/4	-1	-1/4	1	33/4

Both X3 and R (the starting Solution variables) must be substituted out in the Z-equation

· ·	Basic) x,	XL	×3	R	Solution
	3	-1	-5	E 3	(F)	-
0	×3 R	2	2 -1	0,	ů	3 4
	3	2-2m	1+M	0	0	9-4M
1	Хз	1	2	1	0	3
	R	2	-1	0	1	4
_	3	0	2	0	-1+M	5
I	×β	8	5/2	1	-1/2	1
	Х,	1	-1/2	Ø	1/2	2

Maximize Z = 2x1+5x2-MR, subject to

 $3X_{1} + 2X_{2} - S_{1} + R_{1} = 6$ $2X_{1} + X_{2} + S_{2} = 2$ $X_{1}, X_{2}, S_{1}, R_{1}, S_{2} \ge 0$

Basic	X,	Χz	5,	R	. Se	1
Z	-2	-5	0	M		-
R,	3	2	-1	I	0	6
S2	2	1 :	0	. 0	1	2
Z	-2-3M	-5-2M	M	0	0	-6M
RI	3	2	-1	· 1	0	6
52	2	1	O	0	1	2
Z	0	-4-M/2	M	0	1+3M/2	-2 +3M
R	0	1/2	-1	1	- 3/z	3
×,	1	1/2	0	0	1/2	١
Z	8+M	. 0	M	0	StzM	10 -2M
R,	-1	0	-1	1	- Z	2
XZ	2	<u> </u>	6	0		2

The 2-row shows that the solution is optimal (all nonbasic coefficients in the Z-row are ≥ 0). However, the solution is infeasible because the artificial variety R, assumes a positive value thaving a positive value for the artificial variety R, is the parke as regarding the constraint 3x, +2x, ≥ 6 as 3x, +2x, ≤ 6 , which violates the constraints of the original model.

In Phase I, we always	(c) Phase I is the same as in (a)
minimize the sum of the artificial variables because the sum represents	Phase II:
variables because the sum represents	Buic X, X2 X3 S2 Set 2
a measure of infeasibility in	· Constitution of the cons
the problem	X2 0 1 1/7 1/7 4/7
(a) Mimmige P = R, 2	x, 1 0 6/7 -1/7 45/7
(b) Minimige r = R1+R2+R1-	3 0 0 1/7 1/7 53/7
(c) Minumize r = R5	XL 0 1 1/7 1/7 4/7
(d) Minimize r = R1 + R2 + R5	X ₁ 1 0 6/7 - 17 45/9
(e) Minimge r= R,+R-	(d) Phase I is the same as in (a)
(a) Phase 1: Basic X1 X2 X3 S2 R1 R2	Phase II:
Bosic X ₁ X ₂ X ₃ S ₂ R ₁ R ₂	
R, 1 1 0 1 0 7	Baric X1 X2 X3 X4 Sola Z -4 8 -3 0 0
R2 2 -5 1 -1 0 1 10	X2 0 1 1/7 1/7 4/7
A 3 -4 2 -1 0 0 17	×1 1 0 6/7 -1/7 45/7
R ₁ 1 1 0 1 0 7 R ₂ 2 -5 1 -1 0 1 10	2 0 0 -5/7 -12/7 211/7
	X2 0 1 1/7 1/7 4/7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
-5/2 1/2 -1/2 0 1/2 5	X ₁ 1 0 6/7 -1/7 45/7
10000-1-10	Minimize $r = R_1$
X2 0 1 1/7 1/7 2/7 - 1/7 4/7	Subject to
Record V V -1/7 5/7 1/7 45/7	$3x_1+2x_2-5_1+R_1 = 6$
Basic x_1 x_2 x_3 5 $50/5$ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2X_1 + X_2 + S_2 = 2$
X ₂ 0 1 1/7 1/7 4/7	$X_1, X_2, S_1, R_1, S_2 \ge 0$
l 🛶 🗼 . l	Solution of Phase I by TORA
1 7 7 7 48 7	yields r=2, which indicates.
3 0 0 50/7 1/7 102/7	that the problem has no feasible
E XL 0 1 1/7 1/7 4/7	space
x, 1 0 6/7 - 1/7 45/7	Minumize Z = Rz
(b) Phase I is the same as in (a)	Subject to
Basic X1 X2 X3 52 50 0	$2x_1 + x_2 + x_3 + 5$, = 2
	$3X_1 + 4X_2 + 2X_3 - 5_2 + R_2 = 8$
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	$X_1, X_2, X_3, S_2, S_2, R_2 \ge 0$
3 0 0 50/7 1/7 45/7	Phase I Optimal solution:
H X2 0 1 1/7 1/7 4/7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
y x, 1 0 6/7 -1/7 45/7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X_2 2 1 1 0 1 0 2 R_2 -5 0 -2 -1 -4 1 0
1 X3 0 7 1 1 4 X1 1 -6 0 -1 3	
continued	R2 = 0 is basic in the Phase I Solwhim continued
3-	14

(b)

Phase I (continued): R2 leaves, x1 enters (also x3, s2, and s1 are candidates for the entering variable).

		x1	x2	x 3	s2	s1	R2	Sol
	r	-5	0	-2	-1	-4	0	0
	x2	2	1	1	0	1	0	2
_F	₹2	-5	0	-2	-1	-4	1	0
	r	0	0	0	0	0	-1	
	x2	0	1	1/5	-2/5	-3/5	2/5	2
	x1	1	0	2/5	1/5	4/5	-1/5	0 -

Drop R2-column.

Phase II:

		x1	x2	x 3	s2	s1	Sol.
Г							
L	<u>Z</u>	-2	-2	4	0	0	0
	x2	0	1	1/5	-2/5	-3/5	2
_	x1	1	0	2/5	1/5	4/5	0
	Z	0	0	-14/5	-2/5	2/5	4
	x2	0	1	1/5	-2/5	-3/5	2
	x1	1	0	2/5	1/5	4/5	0
	z	7	0	0	1	6	4
	x2	-1/2	1	0	-1/2	-1	2
_	х3	5/2	0	1	1/2	2	0

Optimum solution:

$$x_1 = 0, x_2 = 2, x_3 = 0, z = 4$$

Phase I:

6

	x1	x2	x 3	R1	R2	R3	Sol
r	-10	0	-4	-8	0	0	0
x2	2	1	1	1	0	0	2
R2	-5	0	-2	-3	1	0	0
_R3	-5	0	-2	-4	0	1	0
r	0	0	1	-2	-2	0	0
x2	0	1	1/5	-1/5	2/5	0	2
x1	1	0	2/5	3/5	-1/5	0	0
R3	0	0	0	-1	-1	1	0

Remove R1- and R2 columns, which gives

	x1	x2	x3	R3	Sol
<u> </u>	0	0	1	0	0
x2	0	1	1/5	0	2
x1	1	0	2/5	0	0
R3	0	0	0	1	0

The R3-row is R3 = 0, which is redundant. Hence the R3-row and R3-column can be dropped from the tableau with no consequences.

Phase II:

	x1	x2	x3	Sol
Z	-3	-2	-3	0
x2	0	1	1/5	2
_x1	1	00	2/5	0
Z	0	0	-7/5	4
x2	0	1	1/5	2
x1	1	0	2/5	0
Z	7/2	0	0	4
x2	-1/2	1	0	2
x1	5/2	0	1	О

Optimum solution:

$$x_1 = 0$$
, $x_2 = 2$, $x_3 = 0$, $z = 4$

a positive value, the value of the objective function at the end of Phase I must necessarily become positive. This follows because these variables have nonzero z-row coefficients in the optimal Phase I tableau. A positive objective value at the end of Phase I means that Phase I solution is infeasible. Since Phase II was the same constraints as in Phase I, it follows that Phase II must have $X_1 = X_2 = X_4 = X_5 = 0$ as well.

Phase II:

Basic	X ₂	R	50/2
Z	(2)	0	0
Χz	(0	2
R	0	. 1	O
Z	0	Ø	4
X2	1	0	2
R	O		0

Optimim Solution:

$$X_1 = 0$$
 $X_2 = 2$ $X_3 = X_y = X_T = 0$
 $Z = 4$

- SX	1+0	6X2 - 8	2×3 +	Xy		= -5	
-		- 5X	,-	+X	5	=-8	
2×1	+ 5	X2-	4 ×3		+×6	= 9	
X,	Χz	×з	ХУ	×5-	X6	R	
0	0	0	0	0	0	-)	
-5	6	-2	1	0	0	-1	-5
1	~3	-5	Ø	1	Ō		-8
2	5	-4	0	0	ı	0	9
-1	3	5	0	-1	٥	0	8
-6	9	3	1	-1	0	0	3
-1	3	5	0	-1	0	ı	8
2	5	-4	0	0	1	0	9

Phase I problem:

mirimize r = R Subject to

$$-6x_1 + 9x_2 + 3x_3 + x_4 - x_5 = 3$$

$$-x_1 + 3x_2 + 5x_3 - x_5 + R = 8$$

$$2x_1 + 5x_2 - 4x_3 + x_6 = 9$$

all variables ≥ 0

The logic of the procedure is as follows:
In the R-column, enter -1 for any constraint with negative RHS

and o for all other constraints.

Next, use the R-column as a privat column and select the privat element as the one corresponding to the most negative RHS. This persedure will always require one artificial variable regardless of the number of constraints.

(6) Three iterations: In iteration 2, degeneracy is removed because basic SXS = 0 corresponds to a negative constaint coefficient in the entering variable column (x2).

(c) In part (a), solution encounters 2 degenerate basic solution at the same corner point. In part (b), only one basis delution was encountered.

	Basic	X,	X ₂	Х3	S,	S.	S,	Salution
	3	-1	-z	-3	Ó	Ø.	b	o
o	s,	1	2.	[3]	ı	0	0	10
	52	1	ŀ	-, O	0	1	0	5
	Sz	-1	D		0	0	1	, ,
	3	0	0	0	1	Ø	0	10
I	×3	1/3	2/3	ı	1/3	0	0	10/3
	25	1		0	0	1	0	5
	ಿತ	1	0	b	Ò	0	1	1
	3	0	0	0)	0	0	10
A	Хз	-1/3	0	1	1/3	-2/3	0	0
I	Xz	1	ı	0	0	1	0	5
-	ડ્યુ		0	0	O	ö	0	1
	3	0.	0	٥	1	0	O	10
	<i>x</i> ₃	0	0	1	1/3	-2/3	1/3	1/3
邚	ΧŁ	0	1	0	0		-1	4
	×ι	J	0	0	0	0	- 1	1
	з	o	0	o	1	0	0	10
V	×3	0	2/3	١	1/3	0	-1/3	3
	52	0	i	0	6	ı	~1	4
	×,	l	6	0	ø	0	ı	1 .

Three alternative facic optima:

$$(x_1,x_2,x_3) = \begin{cases} (0,0,10/3) \\ (0,5,0) \\ (1,4,1/3) \end{cases}$$

The associated nonbasic alternative optima are

$$\widehat{X}_1 = \lambda_3$$

$$\widehat{X}_2 = 5\lambda_2 + 4\lambda_3$$

$$\widehat{X}_3 = 10/3\lambda_1 + 1/3\lambda_3$$

where

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

 $0 \le \lambda_i \le 1, i = 1, 2, 3$

Basic	×,	Xz	×з	2,	5,	2
	-2	-1	3	0	O	0
S	ı	-1	[5]	1	O	10
S ₂	2	-1	3	0	1 .	40
Z	-7/5	2/5	0	3/2	0	6
X3	T.	-115	1	1/5	0	2
<u>S2</u>	7/5	-2/5	0	-3/5	1	34
Z	0	~1	7	2	0	20
×ı	1	1	S	1	0	10
Sz	B		-7	-2	1	20
Z	0	0	o	0	1	40
Χı	1	0	-2	-1	0	30
×2	0		-7	-2	1	20

ophima. However, because all
skin constraint coefficients are
negative (in general, <0), none
Cen yield an alternative (corner point) basic
solution.

	B.	I						3
	Nic	×ı	Xz	X ₃	S,	Sz	Ş	301 0.
	8	-3	-1	0	0	•	Ø	0
٨	Sı	1	2	0	1.	0	0	5
0	52		1	-1	0	1	0	2
	Sz	7	3	-5	0	0	j,	20
	3	0	2	-3	. 0	3	0	6
K.	Sı	Ð	J	П	1	-1	0	3
7	X,	,	1	-7	0	1	Ø	2
,	Sz	٥	-4	ż	0	-7	1	6
	3	0	5	٥	3	0	0	15
Ŋ	Хз	0	1	1	1	-/	٥	3
	X,	1	2	0	1	0	0	5
	53	0	-6	0	-2	-5	İ	0

The optimism colution is degenerate fecause 53 is basic and equal to zno. Also, it has alternative nonfassic solutions be cause 52 has a zero coefficient, in the Z-row and all its constraint coefficients are ≤ 0 .

Baric	×,	X ₂	S,	Sz	, L
Z	-2	-/	0	0	6
S,	1	-1	1	0	10
Są	· Z	. 0	o	1	40
Z	0	~3	2	0	20
X,	1		1	ø	10
S.ª	0	2	-2	1	20
Z	0	D	1/1/	3/2	50
×,	ı	0	0	1/2	20
XZ	0	1 .	71	1/2	10
	unbou	nded _	1		l

(b) Objective value is unbounded because each unit increase in X2 increases Z by 10

Solution coefficients of a variable are ≤ 0 , then ite solution apace is unbounded in the direction of that variable. A more "fool proof" way of accomplishing this task is to solve a sequence of LPS in which the objective function is Maximize $Z = X_j$, j = 1, 2, ..., n Subject to the constraints of the problem. For the unbounded variables, $Z = \infty$.

 X_1 = number of units of T1 X_2 = number of units of T2 X_3 = number of units of T3

Constraints:

 $3X_{1} + 5X_{2} + 6X_{3} \leq 1000$ $5X_{1} + 3X_{2} + 4X_{3} \leq 1200$ $X_{1} + X_{2} + X_{3} \geq 500$ $X_{1}, X_{2}, X_{3} \geq 0$

We can use Place I to see whether the problem has a feasible solution; that is,

minimize $r = R_3$ subject to $3X_1 + 5X_2 + 6X_3 + S_1 = 1000$ $5X_1 + 3X_2 + 4X_3 + S_2 = 1200$ $X_1 + X_2 + X_3 = S_3 + R_3 = 500$ $X_1, X_2, X_3, S_1, S_2, S_3, R_3 \ge 0$

Optimum Solution from TORA: R3= r= 225 units

This is interpreted as a deficiency of 225 units. The most Hat can be produced is 500-225 = 275 units

							No.
Basic	×,	XZ	x ₃	S,	Sį	R,	Sola
	-3	-2	-3				
	-3M	-4M	−sM	М	٥	0	-8 M
5,	2		1	0	1	0	2
R	3	4	2	-1	0	İ	8
	-1		-1		2		
Z	+5M	0	45 M	M	+4M	0	4
-X2	2	1	I	0	. 1	0	2
Ri	-5	0	-2	-1	-4	1	0

Because R, = 0 in the optimal tableau, the problem has a feasible solution. The optimum solution is

X=0, X=2, Z=4

Note that in the first iteration, R, could have been used as the leaving variable, in which can it would not be basic in the optimum iteration.

X_=Nbr. units of product A
Xz=Nbr. units of product B
Maximize Z = 2x, + 3xz
S.L.

 $3x_1 + 2x_2 \le 8$ (M1) $3x_1 + 6x_2 \le 18$ (M2)

1 ×1, ×2 ≥0		MI	M2	Z
B	A= (4,0)		12	8
C MI Optimum	B=(0,4)	_	24	12
6 (2,2), Z=10	C = (0,3)	6		9
	D= (6,0)	12		/2
WS	/			

(a) MI at
$$C = 2(0) + 2(3) = 6$$

MI at $D = 2(6) + 2(0) = 12$
Z at $C = 2(0) + 3(3) = 9$
Z at $D = 2(6) + 3(0) = 12$
Dual price = $\frac{12-9}{6} = \frac{4}{50}$ (be an interpretable range = $(6 \le MI \le 12)$)
M2 at $A = 3(4) + 6(0) = 12$
M2 at $A = 3(0) + 6(4) = 24$
Z at $A = 2(4) + 3(0) = 8$
Z at $A = 2(0) + 3(4) = 12$
Dual price = $\frac{12-8}{24-12} = \frac{4}{5} \cdot 33 / 4$ unit
Range: $12 \le M2 \le 24$

- (b) Dual price = \$.50/unit volid in the range 6 ≤ MI ≤ 12 Increase in revenue = .5×4 = \$2.00 Increase in cost = .3×4 = \$1.20 Cost < Revenue - purchase recommended
- (c) Dual price = \$.33/write valid m'

 The range 12 ≤ M2 ≤ 24

 Purchase price / unit < .33
- (d) Dual puce = \$.33/unit valid m'

 *b. large 12 ≤ M2 ≤ 24. M2 ii

 vicreased from 18 to 23 units

 Increase in perence

 = 5 × · 33 = \$1.65

New optimum revenue = 10+1.65=\$11.65

 X_1 = daily number of type 1 fat X_2 = daily number of type 2 fat X_3 = daily number of type 2 fat X_4 = X_5 =

(a) Optimum
occurs at B:

X1 = 100 Type 1 hats

X2 = 200 Type 2 hats

E = \$1800

×,, x,≥∪

(b) A = (0,200), C = (150,200)

	Capacity	Z `
A	2×0+ /×200 = 200	8×0+5×200 = 1000
c	2×150 +1×200 = 500	8 x 150 + 5 x Zoo = 2 ZOU

Worth/capacity unit = 2200-1000 500-200 = \$4 -per type 2 hat

Range: (200, 500)

(c) Dual price = 0 in the range (100, 0)

Thus, change from X, \le 150 to X, \le 120

has no effect on optimum Z.

(d) Let d = demand lamit for type 2 hat

 $\frac{Q}{D(150,100)} \frac{Z}{100} = 1700 $F(0,400) \frac{400}{8(0)} = $(400) = 2000

Dual price = 2000-1700 = \$1.00 400-100 Range (100, 400) Maximum increase in demand limit for type 2 hat = 400-200 = 200 hats

(a)
$$\frac{3}{6} \le \frac{CA}{CB} \le \frac{2}{2}$$
, or $.5 \le \frac{CB}{CB} \le 1$ or $1 \le \frac{CB}{CA} \le 2$

(b) Maximize Z = 2xp + 3xB

$$C_{B}=3: 3x.5 \leq C_{A} \leq 3x1$$

 $1.5 \leq C_{A} \leq 3$

CA=2: 2x.5 < CB < 2x2

$$1 \le c_8 \le 4$$

(c) $\frac{CA}{Ca} = \frac{5}{4} = 1.25$, which falls outside the range . 5 = $\frac{CA}{CB}$ = 1. Ophimum Solution changes and must be computed anew. New Solution: X=4, XB=0, Z= \$20.

(d) Case 1: Z = 5 XA + 3 XB G=5 falls outside de range (1.5,3), hence the optimum changes . New Optimum in XA=4, X8=0, Z=120.

Case 2: Z = 2 X + 4 KB G= 4 fallo mi oh range (1, 4), hence optimum is unchanged at Xq=Xg=2,

Z=2(z)+4(a)=12 $\frac{1}{2} \leq \frac{G}{G} \leq \frac{6}{4}$, or

$$5 \le \frac{C_1}{C_2} \le 1.5$$
 or $\frac{2}{3} \le \frac{C_2}{C_1} \le 2$

(b) Given C, = 5, then $5(\frac{2}{3}) \le C_2 \le 5(2), \text{ or } \frac{10}{3} \le C_2 \le 10$

(c) $\frac{C_1}{C_2} = \frac{5}{3} = 1.67$, which falls outside He range $.5 \le \frac{G}{C_2} \le 1.5$. Hence the solution changes

 $(a) \quad \frac{o}{i} \leq \frac{c_i}{c_s} \leq \frac{z}{i}, \text{ or }$ $0 \le \frac{c_1}{c_2} \le 2$

(b) $\frac{C_1}{c_2} = 1$, which falls in the range 0 = 9 = 2. Hence, ife solution is unchanged.

Feasibility conditions?

$$X_2 = 100 + \frac{1}{2}D_1 - \frac{1}{4}D_2$$

$$x_3 = 230 + \frac{1}{2}D_2$$

$$X_6 = 20 - 2D_1 + D_2 + D_3$$

$$X_2 = 100 + \frac{1}{2}(8) - \frac{1}{4}(40) = 94 > 0$$

$$X_3 = 230 + \frac{1}{2}(40) = 250 > 0$$

$$X_6 = 20 - 2(8) + 40 - 10 = 34 > 0$$

Dual prices:

$$D_2 = 440 - 460 = -20$$

$$X_2 = 100 + \frac{1}{2}(30) - \frac{1}{4}(-20) = 120 > 0$$

$$x_3 = 230 + \frac{1}{2}(-20) = 220 > 0$$

(4) Overtime cost
$$\frac{50}{60} = *.83$$
/min

Revenue (dual price) for operation ! is \$1/min.

Cost & Revenue => advantageous

(b) Duel price for operation 2 = \$2/min volid in the range - 20 ≤ D ≤ 400 Uz = 120 minutes Revenue increase = 120 x2 = 240 Cost increase = 2 (\$55) = 110 Revenue > cost => accept.

(c) No, resource 3 is already abundant. This is the reason its dual price = 0

(d) Dual price for operation 1 is \$1/min, valid in the range - 200 \le D, \le 10

$$Cost = \frac{10}{6} \times 40 = 6.67$$

Not recommended.

$$X_{j} = units of product i = 1, 2, 3$$

Maximize Z= 20X, +50Xz+35X3

$$-.5X_1 + .5X_2 + .5X_3 \leq 0$$

$$2x_1 + 4x_2 + 3x_3 \le 240$$

$$X_1 = X_2 = 40, X_3 = 0$$

	ж,	XZ	×3	S,		23	
Z	6	٥	10/3	20/3	O	35/3	2.800
Χz	0	6	5/6	2/3	0	1/6	40
Sz.	1	٥	116	4/3	1 .		35
×,	Ò		-1/6	-4/3	0	1/6	40

(b) Z + 10/3 x3 + 20/3 S, + 0 S2 + 35/3 S3 = 2800

Dual-price for naw material = 35/3 /16

$$X_2 = 40 + D_3/6$$

 $S_2 = 35 - D_3/6$ $\Rightarrow -240 \le D_3 \le 2/0$

en solution:

$$X_1 = 40 + \frac{120}{6} = 60$$
 units

$$X_2 = 40 + \frac{120}{6} = 60$$
 units

3-23

(c) Dual price = 0, -35 ≤ D2 < 0 ±107875 = ±7.5 a Change has no effect on the Solution

Xj = units of productj, j= 1,2,3,

4

Maximize Z = 4.5x, + 5x2 + 4x3 5.4.

10x, +5x2+6x3 = 600 $6x_1 + 8x_2 + 9x_3 \le 600$ 8x, +10x2+12x3 \ 600 X, , x 2 , X 3 2 0

(a) Solution: Z = \$325 $X_1 = 50, X_2 = 20, X_3 = 0$

(b) Optimum tableau

	×,	ΧŁ	×3	5,	5,	وک ي	
Z	0	0	2	-083	0	.458	325
X,	1	0	0	-167	0	083	50
Si		0	6	.067	ı	833	140
Xz	σ	1	1.2	/33	0	./67	20

Z+2x3+.0835, +052+.45853 = 325

Dual prices:

Process 1: \$.083/min

2: \$0/min 3 : \$.458/min

Process > Process 1.

(C) Process 1: 60x.083 = \$4.98

3: 60x.458 = \$27.48

X, = Nbr. of practical courses X2 = Nbr. of humanistic courses

Maximize Z = 1500x, +1000 Xz

(1) $X_1 + X_2 + S_1 = 30$

 $-S_2 = 10$ (5)

 $X_2 - S_3 = 10$ (3)

X, 1/2, 5, ,5,,53 70

(a) Solution:

Z = \$40,000

X, = 20 courses

X2 = 10 Courses

(b) From Tora,

Z+15005,+052+50053 = 40,000

S, is a slock, Sz and Sz are surplus

Deal prices:

constraint 1: \$ 1500 /course

Constraint 2 : \$0/min limit course Constraint 3: -\$500/min limit course

Dual price for constraint I equals the revenue per practical course. Hence, an additional course must necessarily be of the practical type.

(C) From TORA,

 $S_z = 10 + D_1 \ge 0$ $X_1 = 20 + D_1 \ge 0$ $-10 \le D_1 < \infty$

Thus, It dual price of \$1500 for constraint I is valid for any number of courses = 30-10 = 20.

(d) Dual price = - \$500. To determine the range when it apphies, we have for TORA

S = 10 - D3 =07 x, = 20-D3 20 \ -10 \ D3 \ 10 $X_2 = 10 + D_3 \ge 0$

A unit increase in lower limit on humanistic course offering (i.e. from 10 to 11) decreases nevenue by \$500

X, = Radio minutes

Xz=TV minutes

X3 = Newspaper ads

Maximile Z = X, +50 x2 + 5 x3

s.t. 15x, +300x2 + 50x3 \(10000 (1)

(5) X3 > 5

(3)≤ 400

(4)-x, +2x2

 $X_1, X_2, X_3 \geq 0$ Solution: Z = 1561.36

X, = 59.09 min, X2 = 29.55 min, X3 = 5 ods

continued.

(b) 5,53,54 = blacks approxiated with constraints 1, 3, and 4 Sz = Surplus associated with constraint Z From TORA's optimum tableau: 59.091 +.006D, -. 303D2 --909Da ≥0 340.909-.006D,+.303D2 + D3 +.909D4=0 29.545+.003D,-152D2 +.045D430 Constraint Dual Price RHS RangeT (250, 66250) -2.879* (0, 2000) 0 (59.09,00) 1.3636 (-375, 65)* Negative because Sz in a surplus ramable + These results are taken from TORA output. They differ from these computed from the given Di- Conditions because of roundoff croor Conclusions: 1. Increasing the lower limit on oh number of newspaper ads is not advantageous because the associated 2. Increasing the upper limit on radio minutes is not warranted because its dual price is zero (the current limit is already.

abundant).

(c) Dual price = .158/budget \$ volid in the range 250 \$ \$ 66250.

50% budget in crease = \$5000, or budget will be increased to 15,000.

Encrease in Z = .158 × 5000 = 790

(4) $X_1 = Nbr. Shirts / week$ $X_2 = Nbr. blowson / week$ Maximize $Z = 8X_1 + 12X_2$ S.t. $20X_1 + 60X_2 \le 25 \times 60 \times 40 = 60,000$ $70X_1 + 60X_2 \le 35 \times 60 \times 40 = 84,000$ $12X_1 + 4X_2 \le 5 \times 60 \times 40 = 12,000$ $X_1, X_2 > 0$

Set 2.30

Set 3.30

Set 3.40

Set 3.40

Set 2.30

Set 3.40

Set 3

(c) Breakeven wages are \$7.20/hr for cutting and \$4.80 for sewing

(a) $X_1 = unit_0 f$ solution A $X_2 = unit_0 f$ solution B $Maximize Z = 8X_1 + 10X_2$ $S.t. \quad .5X_1 + .5X_2 \le 150 \qquad (1)$ $.6X_1 + .4X_2 \le 145 \qquad (2)$

 $30 \le X_1 \le 150$ (3) $40 \le X_2 \le 200$ (4) Solution: $Z = {}^{4}2800$

 $X_1 = 100 \text{ units}, X_2 = 200 \text{ units}$ (b) Define $S_1, S_2, S_3, S_4 = \text{slacks in constraints}, Z_3, 4$ $S_5, S_6 = \text{surplus variables associated}$

25, S6 = surplus variables associated with the love bounds of constraints 3 and 4.

From TORA's optimum tafliau: Z+165,+05z+05z+25z+05z+05z=2800

Conolting: $S_{z} = 70 + 2D_{1} - D_{2} - D_{5} \ge 0$ $S_{z} = 5 - 1.2D_{1} + D_{2} + .2D_{4} \ge 0$ $S_{3} = 50 - 2D_{1} + D_{3} + D_{4} \ge 0$ $X_{1} = 100 + 2D_{1} - D_{4} \ge 0$ $X_{2} = 200 + D_{4} \ge 0$ $S_{3} = 160 + D_{4} - D_{6} \ge 0$

continued.

Constraint	Dual price	RHS-range
1	16	(115, 154.17.
2	0	(140,00)
3 (upper)	0	(100,00)
3 (lower)	0	(-00,100)
4 (upper)	2	(175, 270)
H(lowa)	0	(-00,200)
Increase a	i raw mater	ial I and in

advantageous because their dual prices (16 and 2) are positive.

(c) Increase in revenue /unit = \$16 Increase in cost/unit = \$20 Not recommended!

(d) Qual price for raw material 2 is zero because it is abundant. No increase is warrented.

X = Nbr. DiGi-1 X2 = Nbr. DiGi-Z Si=Idle minutes for station i, i=1,2,3 The objective is to minimize S,+Sz+Sz. To express the objective function in terms of X, and X, consider $6x_1 + 4x_2 + 5_1 = .9x480 = 432$ 5x, + 4x2 +52 = .86x480 = 412.8 4x, +6x2 +53 = . 88x480 = 422.4

Thus, 5,+5+5= 1267.2-15x,-14x2 Maximize Z= 15X1+14X2 5.7.

= 4326x, + 4x2+51 5x, + 4x2 +52 = 412.8 $+S_3 = 472.4$ 4x, + 6x2 $X_1, X_2, X_3, X_5, X_5 \geq 0$

I represents the total used time in the three stations in minutes. Solution: Z=1241.28 minutes $X_1 = 45.12 \text{ units}, X_2 = 40.32 \text{ units}$

Utilizatin = 124,28 x 100 = 97.95 % cont

(b) From TORA, Z+1.75, +052+1.253 = 1241.28 Conditions: $X_1 = .3D_1 - .2D_3 + 45.12 \ge 0$ $S_2 = -.7D_1 + D_2 - .2D_3 + 25.92 \ge 0$ $X_2 = -2D_1 + .3D_3 + 40.32 \ge 0$ Station Dual Price RYSKange 281.6,469.03 2 386.88,00 3 288, 552

1% decrease in maintenance time is equivalent to D, = Dz = D3 = 4.8 minutes. This is equivalent to having Daily minutes

436.8 417.6

All three daily minutes fall within the allowable ranges. Thus Increase in utilized time I day 4.8 x 1.7 = 8.16 minutes 48 x0 =0 4.8x1.2 = 5.76

(c) D, = ·9 (600-480) = 108 min $D_2 = .86(600 - 480) = 103.2$ D3 = .88 (600-480) = 105.6

From the conditions in (b) x, = .3x 108 - .2 × 105.6 + 45.12 = 56.4 S2 = -. 7x 108 + 103.2 -. Zx 105.6 + 25.9= 32.4

X2 = -. 2 x /08 +. 3 x /05.6 + 40.32 = 50.4 Solution is fearible. Hence dual prices remain applicable and the net utilization is micreased by 1.7×108 + 0×103.2 + 1.2×105.6 = 310.32 minutes. Because station 2 has zero dual price, its capacity need not be increased. The associated cost Shus equals 1.5 (600-480+0+1.5 (600-480) = \$360.

The proposal can be improved by recommending that Station 2 time remain unchanged.

X, = Nbr. purses / day	10
X2 = Nbr. bags /day	-
X3 = Nbr. backpacks/day	
Maximize Z = 24x, +22x2 + 45 x3	
1 3.F.	
$2X_1 + X_2 + 3X_3 \leq 42$	
$2x_1 + x_2 + 2x_3 \le 40$	
$\frac{X_1 + SX_2 + X_3}{2} \leq 45$	
$X_1, X_2, X_3 \geq 0$	
Solution: Z = #882, X1=0, X2 = Z, X3 = 30	6
Letting 5, , 5, , 53 be the slacks in	
constraints 1, 2, and 3, we get	
Z+20x, + S, +2152+053 = 882	
Conditions:	
$X_3 = 2 + D_1 - D_2 \geq 0$	
$X_2 = 36 - 2D_1 + 3D_2 \ge 0$	
$S_3 = 2S - SD_2 + D_3 \geq 0$	
Resource Dualprice RHS Ranges	
Seather 1 (40,60)	•
Sewing 21 (28, 42)	
Finishing 0 (20,00)	,
(a) Available leather = 45 ft falls in d	4
RHS range. Solution remains feasible.	
D, = 45-42 = 3. New solution:	
X,=0	
x ₂ = 36-2x3 = 30	
X3 = Z+3 = 5	1
$Z = 882 + 1 \times D$, = $882 + 1 \times 3 = 885	
(6) Available leather = 41 ft falls in the	
KHS range and the Solution remains	
Jeauble. D, = 41 - 42 = -1	
$X_2 = 36 - (2x - 1) = 38$	
$X_3 = 2 - 1 = 1$	
Z = 882 + (x-1) = 881	.
(c) Severy Lours = 38 falls within the RH	2
range. Dz = 38-40 = - Z. Dualpru =	51
$X_2 = 36 + 3x - z = 30$	
$x_3 = 2 - (-z) = 4$	
Z = 882 + (21x - 2) = \$840	
	. 1

(d) Sewing hours = 46 hours fallo outsich the RHS range. Thus, the current optimum basic solution is infamille. To obtain the new solution, either solve the problem anew or use the algorithms in chapter 4.

(e) Finishing hours = 15, which falls outside the RHS range, Hence, resolve the problem

(f) Sewing hours = 50, which falls in the RHS range. D3 = 50-45 = 5. Solwhon remains unchanged because dual price is zero and D3 does not appear in the expression for X2 or X3.

(d) Dual price = \$21/hr, which is higher than the cost of an additional worker per hour. Hiring is recommended.

X. = Nbr. model 1 units

 $X_1 = Nb_1$ model 1 units $X_2 = Nbr$. model 2 units $Maximize z = 3X_1 + 4X_2$ S.f. $2X_1 + 3X_2 \le 1200$ $2X_1 + X_2 \le 1000$ $4X_2 \le 800$ $X_1, X_2 \ge 0$ Solution: z = \$1750 $X_1 = 450, X_2 = 100$

(a) S, = 0 ⇒ Resistors scarce S2=0 ⇒ Capacitors scarce S3=400 ⇒ Chips abundant

(b) $Z + \frac{5}{4}S_1 + \frac{1}{4}S_2 = 1750$

Resource	Dual price
Resistors	\$ 1.25 / recistor
Capacitors	\$.25/capacitor
Chips	\$ 0/chip

(C) Conditions:

 $X_1 = 450 - \frac{1}{4}D_1 + \frac{3}{4}D_2 \ge 0$ $S_3 = 400 - 2D_1 + 2D_2 + D_3 \ge 0$ $X_2 = 100 + \frac{1}{2}D_1 - \frac{1}{2}D_2 \ge 0$ Feasibity ranges:

450 - :25 D, 20 } - 200 < P, < 200 100 + .5 D, 20 } - 200 < P, < 200

continued..

continued.

 $450 + .75D_2 \ge 0$ $400 + 2D_2 \ge 0$ => $-200 \le D_2 \le 200$ $100 - .5D_2 \ge 0$

 $400+D_3 \ge 0 \implies -400 \le D_3 < \infty$ (d) $D_1 = 1300 - 1200 = 100 \text{ in the allowable range } -200 \le D_1 \le 200$. $\Delta Z = 100 \times 1.25 = 7/25$ $X_1 = 450 - .25 \times 100 = 425$ $X_2 = 100 + .5 \times 100 = 150$

 $X_2 = 100 + .5 \times 100 = 150$ New $Z = 1750 + \Delta Z = $^{\frac{1}{2}} 1875$

(e) D₃ = 350 - 800 = -450, which falls outside allowable range -400 ≤ D₃. Thus, basic dolution and dual price charge and the problem must be solved anew.

(f) $-200 \le D_z \le 200$, dealpria = .25. Thus, $-200 \times .25 \le \Delta Z \le 200 \times .5$ $-50 \le \Delta Z \le 50$ \$ 1700 \le Z \le \$ 1800

 $450 - .75 \times 200 \le X_1 \le 450 + .75 \times 200$ $100 - \frac{1}{2}(-200) \le X_2 \le 100 - \frac{1}{2}(+200)$

(9) Cost of punchasing 500 additional resistors = 500×.40 = \$200
D, = 500 resistors

Dual price of \$1.25 is valid in -200 ≤ D, ≤ 200. Thus, for observate 200 resistors alone, HiDec will get an additional revenue of 200 × 1.25 = \$250, which is more than the cost of all 500 resistors. Accept.

From Example 3.6-2, we have for the TOYCO model

 $-200 \le D_1 \le 10$ $-20 \le D_2 \le 400$ $-20 \le D_3 < \infty$

(9) D, = 8, Dz = 40, D3 = -10

All Di, i=1, 2, 3 fall within the feasibility ranges. Thus continue

r, = $\frac{8}{10}$, $r_2 = \frac{40}{400}$, $r_3 = \frac{-10}{-20}$ $r_1 + r_2 + r_3 = .8 + .1 + .5 = 1.4 > 1$ Hence, no conclusion can be made about the feasibility of the new RHS (438,500,410). Frob lem 1(a) shows that these new values do pro-duce a feasible solution.

(b) D,=30, Dz=-20, Dz=-40.

Because D, and Dz fall outside the
given feasibility ranges, the 100%

rule cannot be applied in this case.

(a) From TORA, $X_1 = 2 + \frac{2}{3}D_1 + \frac{1}{3}D_2 \ge 0$

 $X_2 = 2 - \frac{1}{3}D_1 + \frac{2}{3}D_2 \ge 0$

Feasibility rangeo: -3 ≤ D, ≤ 6 -3 ≤ D, ≤ 6

(b) $D_1 = D_2 = \triangle > 0$. Thus $X_1 = 2 + \triangle/3 > 0$ for all $\triangle > 0$ $X_2 = 2 + \triangle/3 > 0$

 $\chi_2 = 2 + 2/3$ 100% rule for $0 < \Delta \le 3$:

 $r_1 = r_2 = \frac{\Delta}{6} \le \frac{3}{6} \Rightarrow r_1 + r_2 < 1$, which confirms feasibility for 0 < D < 3

100 % rule for $3 < \Delta \le 6$: $\Gamma_1 = \Gamma_2 = \frac{\Delta}{6} \Rightarrow \frac{3}{6} \le \Gamma_1, \Gamma_2 \le \frac{6}{6}$ $\Gamma_1 + \Gamma_2 \ge 1 \Rightarrow \text{cannot confirm feasibily}.$

100 % rule for △>6:

 \triangle is outside $-3 \le D$, $D_z \le 6$. Thus, the rule is not applicable.

	,
From Section 3.6.3, we have the	1
following optimality conditions for	
Le TOYCO model:	
X,: 4-4d2+3d3-d, ≥0	
xy: 1+ 1/2 d2 ≥0	
X5: 2- 1/4 d2+ 1/2 d3 ≥0	٠
(i) $Z = 2x_1 + x_2 + 4x_3$	
$d_1 = 2-3 = -1$, $d_2 = 1-2 = -1$, $d_3 = 4-$	S=-1
$x_1: 4-\frac{1}{4}(-1)+\frac{3}{2}(-1)-(-1)=3.75$	0
X4: 1+ (-1) = .5 >0	
x5:2-4(-1)+1(-1)=1.75>0	
Conclusion: Solution is unchange	d
$(ii) Z = 3X_1 + 6X_2 + X_3$ $d = 3 - 3 - 0 \text{of} -6 \text{of} 1 = 3 - 4 = 6$	-),
$d_1 = 3-3 = 0, d_2 = 6-2 = 4, d_3 = 1-5$ $x_1: 4-\frac{1}{4}(4) + \frac{3}{2}(4) - (0) = -3 < 0$	=-4
Conclusion: solution changes	
(iii) $Z = 8x_1 + 3x_2 + 9x_3$	
$d_1 = 8-3=5, d_2 = 3-2=1, d_3 = 9-5$	= 4
$X_i: 4-\frac{1}{4}(i)+\frac{3}{2}(4)-(5)=4.75$	0
x4: 1+1(1) = 1.5 >0	
$X_5: 2 - \frac{1}{4}(1) + \frac{1}{2}(4) = 3.75 > 0$	1
Conclusion: Solution is unchange	
I see all married III	

X, = Nbr. cars of	A	
X = Nbr. cans of X = Nbr. cans of X3 = Nbr. cans	QAZ	
V - Nbr. cano	A BK	
Maximize Z = 8	20 X, +70X, +	60 XZ
-		_
XI+XZ+	X3 5 500	€ Si
1 -	≥ 100	$\neq S_2$
ì		
4x, -2x2	-6 ^3 \times 0	∠ S ₃
X, , X2	.×. ≥0	
1 712727	, , , , , , , , , , , , , , , , , , , ,	

TORA optionum tableau.

Basic	x,	Xz	Х3				Solution
Z		0	10	73,33	0	1.67	36666.67
X ₂		<u> </u>	7				333.33
x,	•	0	0	•33	0	.17	166.67
Sz		O ²	Ö	.33	1	-17	66.67

(a) Z = 4366.67X, = 166.67, X2 = 333.33, X3 = 0

(b) Reduced cost for X3 = 10 cents. Price Should be increased by more shan 10 cents/can

(c) $d_1 = d_2 = d_3 = -5$ cents From the optimum tableaug reduced costs: x3: 10+d2-d3=10-5-(-5)=10>0 S,: 73.33 +. 67 dz +. 33 d, = 73.33+.67(-5)+.33(-5)=68.33>0

S3: 1.67-.17d2+.17d,=1.67-.17(-5)+.17(-5)

conclusion: Solution is unchanged.

(a) Available carpenter Lours on a 10-day period = 4 x 10 x 8 = 320 X, = Nbr. chains assembled in 10 days X2 = Nbr. tables assembled in 10 days Maximize Z = 50x, + 135 Xz

.5 x, +2x2 < 320 $4 = \frac{x_1}{x_2} \le 6 \Rightarrow \begin{cases} x_1 - 4x_2 \ge 0 \\ x_1 - 6x_2 \le 0 \end{cases}$ X,, X2 30

Solution: Z = \$27,840, X, = 384, X, = 64 (b) Optimum tableau:

27840 6.5

64 384 1.2 128 Optimality conditions:

5,: 87+1.2d, +.2d2 >0 S3: 6.5 +.4d, -.1d2 ≥0 For d, = -5, d2 = -13.5: S,: 87+1.2(-5)+.2(-13.5) = 78.3>0 S3: 6.5+.4(-5)-.1 (-135)= 5.85>0 Solution remains The same (c) d,= 25-50 = -25, d2= 120-135=-15 5: 87+1.7(-25)+.2(-15) = 58.5>0 53:6.5+4(-25)-1(-15) = -2 < 0

continued.

Solution changes

(a) x, = Amt. of personal loan (\$) X2 = Amt. Of car loan (4)

Maximize $Z = .14(X_1 - .03X_1) + .12(X_2 - .02X_2)$ - · 03 X, - · 02 X2

= .1058x, + .0976x2

5.4.

X, + X2 = 200,000

 $\frac{X_2}{X} \ge 2 \text{ or } 2X_1 - X_2 \le 0$ X, , X2 >0

Solution: Z = \$20,067

 $X_1 = {}^{\#}66,667, X_2 = {}^{\#}/33,333$

Rate Greturn = 20,067 x 100 = 10.03/

(b) Optimum tableau:

	X,	Χz	Sı	چ.	Solution
Z	0	σ	- /003		20066.67
X_2	0	1	. 6667	3333	/33333.33
×,	1	0	.3333	•3333	66666.67

Optimality conditions:

S,: . 1003 + . 333d, + . 6667 d2 >0

 S_2 : .0027 +.3333d, -.3333d2 ≥ 0

New x,- dijective coefficient = .14(1-.04)-.04

New Xz - objective coefficient = . 12 (1-.03)-.03

d,= .0944-.1058 = -.0114

 $d_2 = .0864 - .0976 = -.0112$

S;: · 1003 + · 3333 (- · 0114) + · 6667 (- · 0112)

=·08907 >0

Sz: .0027 +.3333 (-.0114) -. 3333 (-.0112) = .00267 >0

Solution does not change

(a) Xi = Non of units of motor i, i=12,34 Maximize $Z = 60X_1 + 40X_2 + 25X_3 + 30X_4$

5.t. 8x1+5x2+4x3+6x4 X, £500, X2 £500, X3 £800, X4 £750

X1, X2, X3, X4 ≥0

Solution: Z= \$59,375, X=500, x,=500, x3=375 puis per case of sauce remains

(b) Optimality constitions (from TORA):

 $X_4: 7.5 + 1.5 d_3 - d_4 \ge 0$

S,: 6.25 + .25 d3 ≥0

Sz: 10-2d3+d, 20

S3: 8.75-1.25 d3+d2 ≥0

From 53, 8.75+d2>0 => -8.75 \le d2 <00 Thus, price of type 2 motor can be reduced by at most \$8.75 without Causing a solution change.

(C) $d_1 = -15$, $d_2 = -10$, $d_3 = -6.25$, $d_4 = -7.5$ Solution remains the same because $x_4: 7.5+1.5(-6.25)-(-7.5)=5.625>0$

S,: 6.25 +.25(-6.25) = 4.6875 >0

52: 10-2(-6.25)+(-15)=75 >0

53: 8.75 - 1.25(-6.25) + (-10) = 6.5625 >0

(d) Reduced cost for Xy = 7.5. Increase

price of type 4 motor by more than \$7.50.

(9) X, = Case of juice / day

X2 = Cases of sauce / day x3 = cases of paste/day

Maximize $Z = 21X_1 + 9X_2 + 12X_3$

5.4. $(1 \times 24) \times 1 + (\frac{1}{2} \times 24) \times 2 + (\frac{3}{4} \times 24) \times 3 \le 60,000$ X, \$2000, X2 = 5000, X3 = 6000

X1, X2, X3 20

Solution: Z = \$51,000

 $X_1 = 2000, X_2 = 1000, X_3 = 0$

(b) From TORA, optimally conditions gwen dz:

X2:1.5+1.5d2≥0 => d2≥-1

S,:.75 +.083 d, >0 => d2 = -9

Sz: 3-2d2 >0 => d2 5/5

Thus, -1 = d2 = 1.5, or

9-1 & price/case of same & 9+1.5 Solution mix remains the same if the

between \$ 8 and \$ 10.50.

(4) X, = Nbr. regular cabinets /day

X= Nbr. deluxe Cabinets /day

Maximize Z = 100 X, + 140 X2

5+. 5x. + X. \leq 180

$$5x_1 + x_2 \le 180$$

 $x_1 \le 200$
 $x_2 \le 150$

Solution: Z = \$31,200 $X_1 = 200$ regular

$$X_2 = 80$$
 delaxe

(b) From TORA, optimality conditions:

Solution remains the same

(a) For the original TOYCO model,

TORA gives (also see Section 3.6.3)

-00 < d < 4 2 < 1 < 2 < 1

 $-\infty < d_1 \le 4, -2 \le d_2 \le 8, -8/3 \le d_3 < \infty$

(ii) Original Z = 3x,+2x2+5x3 Now Z = 3x,+6x2+x3

i	di	21c-	Vi.	r.
1	0		4	0/4=0
2	4		8	4/8 = 1/2
3	-4	-8/3		$-4/-\frac{8}{3} = 3/2$

The 100% rule is nonconclusive in The 100% rule is nonconclusive in this case. The solution in Problem 1 (ii) Shows that the tolution will change

(iii) Original Z=3x,+2x2+5X3 New Z=8x,+3x2+9X3

$$r_1 + r_2 + r_3 = \frac{5}{4} + \frac{1}{8} = \frac{11}{8} > 1$$
 continued

7 The 100% rule is nonconclusive. Yet Problem 1 (iii) Show that the solution remains unchanged.

The two cases demonstrate that the 100% rule is too weak to be effective in decision making, and that it is more reliable to utilize the simultaneous optimality conditions given in Section 3.6.3.

(b) $-30 \le d_1 < \infty$, $-140 \le d_2 \le 60$ New $Z = 80 \times_1 + 80 \times_2$

Original $Z = 100X_1 + 140X_2$

 $\gamma_1 + \gamma_2 = \frac{2}{3} + \frac{3}{7} = \frac{23}{21} > 1$

The 100% rule is nonconclusive. Yet, Problem 7(6) shows that the Solution remains unchanged. See file solver 3.6e-1. XIs in ch3 Files

Dual prices for years 1,2,3, and 4 are
0,0,0,2.89. Thus, for year 4, one
(Howard) additional dollars in creases Z
by \$2.89 thousand. It is worthwhile to
increase the funding for year 4.

See file to	ra 3.6e-2.+x	t C
Constraint		
1	5.36	(0,00)
Z	-3.73	(-00,6000)
3	-1.13	(-00, 6800)
4 5	-1.07	(-00,33642)
3	-1-00	(-0,53628.73)

(a) Constraint 1: X,+Xz+Xy+J ≤ 10,000 Dual price = \$5.36/mivested \$ Rate freturn = 536%

(b) Constraint 2: \$1000 spendon pleasure

.5x, +.6x2-x3 +.4x4+1.065y-y=1000

Dual price = -3.73/pleasure \$
Range = (-0, 6000)

Spending \$1000 at end of year 1

reduces total return by \$3,730.

See file tora 3.6e-3.txt in ch3 Files					
Quarter	Dual price	Range			
1	1.2488	·6647, 2·5806			
Z	1.2443	-6580, 2.6122			
3	1.1945	2646,1.1245			
4_	1-0200	2553,00			
5	1.0000	-4.8366,00			

(a) An additional & available at the start of quarter 1 is worth \$1.24888 at the end of 4 quarters. Similarly, an additional dollar at the stook of preciods 2,3, and 4 is worth \$1.2443, \$1.1945, \$nd \$1.02, respectively. The dual price for quarter 4 (= \$1.02) shows that all we can do with the money then is to invest it at 2% for the greater.

We can use the dust price to determine

the rate of return for each quarter - namely, quarter 1: $1.2488 = 1.2243(1+i) \implies i_1 = .02$ quarter 2: 1.2243 = 1.1945 (1+i) => i2 = .025 quarter3: 1.1945 = 1.02 (1+1) => quarter 4: 1.02 = 1.0 (1+14) => (b) The dual price associated with the upper bound on B3 (UB-X10) is 4. 149. It represents the networth per dollar borrowed in period 3. also, an extra dollar in period 3 is worth \$1.1945 at the end of the Rougon However, if that dollar is borrowed, it must be repaid as \$1.025 in the next quarter. The nepayment is equivalent to forgoing making 2% in interest. Thus, the networth of borrowing in period 3 $1.1945 - 1.025 \times 1.02 = .149$

This result is consistent with the deal price for the upper bound on By

onstraint	Current RMS	Min RHS	Max RHS	Dual Price
(=)	2.0000	0.0000	infinity	2.1756
(=)	2,0000	-0.1667	infinity	2.0173
(=)	2,5000	-0.3472	infinity	1,8647
(=)	2.5000	-0.5767	infinity	1.7296
(≑)	3.0000	-0.8248	infinity	1.6044
(=)	3.5000	-1.1331	infinity	1.4356
(=)	3.5000	-6.1137	infinity	1.335
(=)	4.0000	-11.4678	infinity	1,242
(=)	4.0000	-20.6663	infinity	1.155
0 6=N	5.0000	-32,5201	infinity	1,0750

The deal price provides the worth per additional \$ at the end of year 10.

Annual rate of return:

Period 1: 2.1756 = 2.0173(1+i₁) \Rightarrow i₁ = .0785

Period 2: 2.0173 = 1.8647(1+i₂) \Rightarrow i₂ = .0818

Period 3: 1.8647=1.7296(1+i₃) \Rightarrow i₃ = .0781

Period 4: 1.7296 = 1.6044(1+i₄) \Rightarrow i₄ = .0780

etc...

10

See file tora 3.6e-5. txt in Ch3files

The dual price for constraint 1

XIA + XIB = 100,000

is \$5.10. Thus, each invested \$ is

worth \$5.10 at the end of the investment

hougin. Range (0,00)

Dual pice for the constraint $X_1 + X_2 + X_3 + X_4 \leq 500$ is \$2.35 per \$ invested, range $(0, \infty)$ The gambler should bet the largest amount possible

See file tora 3.6e-7. txt in chastiles 7

For, $X_{W1} + X_{W2} + X_{W3} \ge 1500$, the

dual price is \$11.4, range (800,00)

One extra wrench automatically requires the production of two chirels, thus leading to the following changes:

Cost of one wrench using subcont. = \$3.00

Cost of 2 chisels using subcont. = 2x \$4.20

Total = \$11.40

Xw, ≤ 550, dual price = -\$1, range (-0, 1250). If regular time capacity for wrenches is increased by 1 unit, one less whench will be produced by subcontractor, which paves \$3-\$2 = \$1. Similar interpretations can be given for the remaining dual prices

Machine	Capacity	Dual price	Range
7			(253,33,570)
Z	380	12	(333.33, 750)

The company should pay less than \$2/hr for machine I and less than \$12/hr for machine 2.

See file tora 3.60-9. txt in Ch3 Files

Constraint 2x, +3x2 +5x3 \le 4000

Corresponds to raw material A. Its dual

price in \$10.27/16. For a purchase

price of \$12/16, acquisition of adoltional

raw material A is not recommended.

(b) Constraint 4x, +2x2+7x3 \le 6000

is associated with raw material B. 265

dual price is \$0/16. Resource B is

abready abundant. Thus, no additional

purchase is recommended.

(a) See file	e tora3.6e-10.txt
Constraint	Dual price
l	Ø
2	<i>0</i>
<i>3</i>	-400
4	-750
S	0
6	o
7	

Constraints 3 and 4 have negative dual price. These correspond respectively to the third specification for alloy A and She first specification for alloy B. Changes in these specifications affects profit adversely (b) for the one constraints, the dual prices are \$90, \$110, and \$30 per additional ton of ones 1, 2, and 3, respectively. These are the maximum prices the company should pay.