Practice Problems 5 - Solutions: Compact Sets

LIMIT POINTS

1. Show that if $x_n \to x$, with $x_n \neq x$ for all but finitely many elements in the sequence, then x is a limit point of $\{x_n | n \in \mathbb{N}\}$.

Answer: Take any open set O_x containing x, since the sequence converges, there exists N such that the sequence is contained in O_x from N on. Furthermore, since $x_n = x$ for only finitely many elements, let n^* be the largest index for which $x_n = x$ (it is a finite set, so the largest index exists) and let $N^* = max\{N, n^*\}$, we conclude that $n \geq N^*$ implies $x_n \in O_x$ and $x_n \neq x$. Thus x is a limit point of $\{x_n | n \in \mathbb{N}\}$.

2. * Show that if A is the set of limit points of a real sequence x_n , then $a \in A$ implies there exists a subsequence of x_n that converges to a.

Answer: Let a be a limit point of A and for n = 1 define $r_1 = 1$, so that $B(a, r_1)$ intersects the sequence in a point different than a choose one such element of the intersection and call it a_1 . Note that $a_1 = x_{m_1}$ for some $m_1 \in \mathbb{N}$ let $r_1^* = \min_{n \leq m_1} |x_n - a|$. Now define $r_2 = \min\{1/2, r_1^*\}$, then $B(a, r_2)$ intersects the sequence at a point different than a and with a sub-index greater than x_m , choose one such element, x_{m_2} and call it a_2 . Recursively define $r_{n-1}^* = \min_{n \leq m_{n-1}} |x_n - a|$ for all n > 1 and $r_n = \min\{1/n, r_{n-1}^*\}$ to define a_n . Since the radius are shrinking to 0 this sequence indeed converges to a and because we are making sure the sub-indexes taken are always larger than the previous one, this is indeed a sub-sequence.

USEFUL EXAMPLES

3. Find an open cover of the following sets that has not finite sub-cover to show they are not compact:

(a)
$$A = [-1, 0) \cap (0, 1]$$

Answer: For each $a \in A$ construct $B(a, r_a)$ where $r_a = |a|/2 > 0$. We then have that $\{B(a, r_a) : a \in A\}$ is an open cover because $a \in B(a, r_a)$, however, if it had a finite subcover, say $\{B(b, r_b) : b \in B\}$ where B is a finite subset of A. Then we can find $b^* = \arg\min_{b \in B} \{|b|\}$, but then any element in A with $|a| < |b^*|/2$ is not covered by $\{B(b, r_b) : b \in B\}$.

(b) $B = [0, \infty)$.

Answer: Consider the collection of open intervals $\{(n-1,n): n \in \mathbb{N}\}$. it is an open cover of B but if it had a finite sub-cover, there will be an interval associated with the maximum index n, say n^* , then all elements in B greater than n^* would not be covered.

(c) $C = [3, 4] \cap \mathbb{Q}$.

Answer: Consider the collection of open balls $B(x, r_x)$ where $r_x = |x - \pi|/2$. This is clearly an open cover, because there is an open ball for each element in the set, but fails to contain a finite sub-cover. If it had one, choose the smallest radius (which exists since there are only finitely many), say r_{x^*} then we know that $B(\pi, r_{x^*})$ contains elements in C that are not contained in the finite sub-cover; a contradiction.

4. * Provide an example of a closed set with infinitely many elements but containing no open sets

Answer: Consider the set $\{n\}_{n\in\mathbb{N}}$. In \mathbb{R}^n . It clearly contains no open sets, but for its complement, it is fairly easy to construct an open ball around any of its points, just by taking positive radii sufficiently small.

- 5. Let A = [-1,0) and B = (0,1] argue whether the following are compact, convex or connected.
 - (a) * $A \cup B$

Answer: $X = A \cup B = [-1, 1] \setminus \{0\}$ it is not compact because it is not closed (for example take any sequence in X that converges to 0); it is not convex because the convex combination of any two points, one in A and one in B will contain 0 which is not in X. It is also not connected, A and B provide the desired partition.

- (b) A + B (this is defined as $x \in A + B$ if x = a + b for some $a \in A$ and $b \in B$) **Answer:** A + B = [-1, 1], so it is compact, convex and connected
- (c) $A \cap B$

Answer: $A \cap B = \emptyset$, then it is vacuously true that it is compact, convex and connected.

COMPACT SETS

6. Show that in a metric space, a set A is compact iff it is sequentially compact. This is, any sequence in A has a convergent subsequence with limit in A.

Answer: (\Rightarrow) Let $\{x_n\}\subseteq A$ be an arbitrary sequence in A. If the sequence has finitely many different elements, at least one must be repeated along the sequence infinitely many times, so we can construct a constant subsequence equal to that element for all n_k , so it will converge. Suppose instead that the sequence has infinitely many elements, and let $\epsilon > 0$. Construct the following open cover of X: $\{B(a,\epsilon): a \in A\}$. From compactness it must contain a finite subcover $\{B(c,\epsilon): a \in C\}$ for C a finite subset of A. Since the sequence has infinite elements, it must be the case that at least one of the elements of the finite sub-cover, say c^* has infinitely many elements of the sequence. Choose one element in that open set, and repeat the process with $\epsilon/2$ and focusing on the elements of the resulting finite sub-cover that intersect c^* , because the open sets intersecting c^* are finite, at least one must contain infinitely many elements, say c^{**} , and choose a second element with a larger index than the previous chosen elements. We can define recursively

a subsequence of $\{x_n\}$ that converges since each time we are considering balls with smaller radii.

- (\Leftarrow) Claim: A must be bounded. Suppose not, then for every $N \in \mathbb{N}$ there exists $a \in A$ such that ||a|| > N, then construct a sequence choosing one such element for every $N \in \mathbb{N}$ it cannot converge because for any possible limit x, N > x eventually. Claim: A is closed. Suppose not, then there must be a sequence in the set that converges to a limit outside the set, a contradiction.
- 7. Let $\{x_n\}$ be a convergent sequence in X with limit x, and $A = \{x \in X; x \in \{x_n\}\} \cup x$. Show that A is compact.

Answer: Consider any open cover of X, it must contain an open set U_x containing x. because the sequence converges to x, after some threshold all the elements are contained in that open set. Thus, at most only the first N elements of the sequence are outside U_x . By considering the sub-cover that includes U_x and the finite open sets that contain the first N elements, we create a finite sub-cover.

8. Give and example of an infinite collection of compact sets whose union is bounded, but not compact.

Answer: Note that singletons (sets with a single element) are closed in \mathbb{R}^n , also they are bounded, so they are compact. Thus, consider the set $\{1/n : n \in \mathbb{N}\}$; it is a collection of compact sets whose union is bounded (by 1), but it is not closed, so it is not compact.

9. Consider \mathbb{R} with the usual metric. Let $C = \left\{ \frac{n}{n^2+1} : n = 0, 1, 2, \dots \right\}$. Show that C is compact using the definition of open covers.

Answer: Take any open cover, of C, since $0 \in C$ there must be an open set containing it. Since $x_n = n/(n^2 + 1) \to 0$ such open set contains all but finitely many elements of C. Then the union of this open set and the at most finite open sets containing the first N elements not already contained in the neighborhood of 0 form a finite sub-cover.

10. * (Challenge) Show that a compact set in a Hausdorff space must be closed (A Hausdorff space is one where the Topology has the nice property that if $x \neq y$ there exist disjoint open sets O_x , O_y such that $x \in O_x$ and $y \in O_y$). Hint: Note that in \mathbb{R}^n if you take two distinct point, you can always build open balls around them that do not intersect.

Answer: Let K be that compact set, we will show that K^c is open. Let $y \in K^c$ since this is a hausdorff space, for any element $x \in K$ there exist disjoint open sets that contain x and y: $O_x, O_{y,x}$ respectively. Note that the collection of open sets $\{O_x\}$ is an open cover of K, so there exists a finite subcover $\{O_{x^*}\}$ for finitely many x^* points. For each of them we have an open set around y, namely O_{y,x^*} , so its intersection (since it is finite) is also open, call it O_y . note that because $\{O_{x^*}\}$ is a cover of K, and each of them disjoint from O_y , then $O_y \subset K^c$. Therefore K^c is open.