Question Number	Answer		Mark
21(a)(i)	Use of $V_{\text{grav}} = -\frac{GM}{r}$	(1)	
	$V_{\rm grav} = (-) 5.53 \times 10^7 ({\rm Jkg^{-1}})$	(1)	2
	Example of calculation		
	$V_{\text{grav}} = -\frac{6.67 \times 10^{-11} \text{N m}^2 \text{kg}^{-2} \times 5.98 \times 10^{24} \text{kg}}{\left(6.36 \times 10^6 + 8.5 \times 10^5\right) \text{m}} = -5.532 \times 10^7 \text{J kg}^{-1}$		
21(a)(ii)	Use of $\Delta V \times m$	(1)	
	$\Delta E_{grav} = 3.7 \times 10^{10} \mathrm{J}$	(1)	2
	Example of calculation		
	$\Delta E_{\text{grav}} = (-5.53 - (-6.27)) \times 10^7 \text{J kg}^{-1} \times 4990 \text{kg} = 3.69 \times 10^{10} \text{J}$		
21(b)	Equate $F = \frac{GMm}{r^2}$ with $F = m\omega^2 r$	(1)	
	Substitute for ω using $\omega = \frac{2\pi}{T}$	(1)	
	Use of $T^2 = \frac{4\pi^2 r^3}{GM}$	(1)	
	T = 6090 s Or T = 1.69 hours	(1)	
	Number of orbits in 1 day = 14.2, so claim is not valid	(1)	
	OR		
	Equate $F = \frac{GMm}{r^2}$ with $F = \frac{mv^2}{r}$	(1)	
	Substitute for v using $v = \frac{2\pi r}{T}$	(1)	
	Use of $T^2 = \frac{4\pi^2 r^3}{GM}$	(1)	
	T = 6090 s Or T = 1.69 hours	(1)	
	Number of orbits in 1 day = 14.2 , so claim is not valid	(1)	5
	Example of calculation		
	$\frac{GMm}{r^2} = m\omega^2 r$		
	$\therefore T = 2\pi \times \sqrt{\frac{r^3}{GM}} = 2\pi \times \sqrt{\frac{(6.36 \times 10^6 \text{ m} + 8.5 \times 10^5 \text{ m})^3}{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 5.98 \times 10^{24} \text{ kg}}} = 6091 \text{ s}$		
	$\therefore T = \frac{6090 \text{ s}}{(60 \times 60) \text{ s hour}^{-1}} = 1.69 \text{ hours}$		
	Number of orbits in 1 day = $\frac{24 \text{ hours}}{1.69 \text{ hours}} = 14.2$		