Предпосылки

Предпосылка 1 (IID). Случайные величины $X_1, X_2, ..., X_n$ независимы и одинаково распределены.

Предпосылка 2 (Density). У величины X_i есть функция плотности $f_{\theta}(x)$.

Предпосылка 3 (Identifiability). Если $\theta \neq \theta'$, то законы распределения f_{θ} и $f_{\theta'}$ отличаются.

Предпосылка 4 (Support). *Носитель* Supp f_{θ} не зависит от θ . Носителем называют замыкание множества, на котором функция плотности положительна.

Предпосылка 5 (Interior). Истинное θ_T является внутренней точкой множества всех возможных значений неизвестного параметра Θ .

Предпосылка 6 (Differentiable-k). Плотность $f_{\theta}(x)$ дифференциируема по θ как минимум k раз.

Предпосылка 7 (Uniqueness). Условие первого порядка $\ell'(\theta) = 0$ имеет единственное решение.

Предпосылка 8 (Interchange). Интеграл $I = \int_{\mathbb{R}} f_{\theta}(x) dx$ дважды дифференцируем по θ и вторая производная может быть найдена путём смены порядка интегрирования и дифференцирования.

Предпосылка 9 (Bound). Существует функция M(x), такая что $\mathbf{E}_T(M(X_i)) < \infty$ и $|\partial^3 \ln f_\theta(x)/\partial \theta^3| \le M(x)$ для всех x и всех θ из некоторой открытой окрестности настоящего θ_T .

Теоремы

Теорема 1. Если выполнены условия [IID], [Density], [Identifiability], [Support], [Interior], [Differentiable-1], [Uniqueness], то последовательность оценок максимального правдоподобия $(\hat{\theta}_n)$ состоятельная.

Teopeмa 2. Если выполнены условия [IID], [Density], [Identifiability], [Support], [Interior], [Differentiable-2], [Interchange], то

$$\operatorname{Var}(\hat{\theta}_n) \ge \frac{(d\operatorname{E}(\hat{\theta}_n)/d\theta)^2}{I_F}$$

Теорема 3. Если выполнены условия [IID], [Density], [Identifiability], [Support], [Interior], [Differentiable-3], [Interchange], [Bound], то оценки асимптотически нормальны

$$\sqrt{I_F}(\hat{\theta}_n - \theta_T) \to \mathcal{N}(0; 1)$$

и, в частности, асимптотически эффективны:

$$\lim_{n\to\infty} \operatorname{Var}(\hat{\theta}_n) I_F = 1$$

Теорема 4. Если выполнены условия [IID], [Density], [Identifiability], [Support], [Interior], [Differentiable-3], [Interchange], [Bound], (need to check multivariate case), $\theta=(\theta_a,\theta_b)$, то при верной H_0 : $\theta_a=0$ статистики LR, LM, W асимптотически распределены как $\chi^2_{p_a}$.

Фабулы доказательств

Хи-квадрат распределение для статистики Вальда следует из асимптотической нормальности оценок.

Асимптотическая эквивалентность трёх статистик доказывается с помощью квадратичной аппроксимации рядом Тейлора.

А для квадратичной по θ логарифмической функции правдоподобия LR, LM, W статистики в точности эквивалентны, это просто манипуляции с параболой на уровне 9-го класса.

Формальные доказательства

Источники мудрости

- [Mar13] Ryan Martin. *Likelihood and Maximum Likelihood Estimation*. 2013. URL: https://www2.stat.duke.edu/~sayan/SAMSI/lec/411notes03.pdf.
- [Woo17] Simon N Wood. *Generalized additive models: an introduction with R.* CRC press, 2017. Шикарное приложение про максимальное правдоподобие и AIC.