INTEL 8086 - Pin Diagram

S6: Logic 0.

S5: Indicates condition of IF flag bits.

S4-S3: Indicate which segment is accessed during current bus cycle:

S4 S3		Function	
0	0	Extra segment	
0	1	Stack segment	
1	0	Code or no segment	
1	1	Data segment	

MAX { MIN }

0,0: Whole word (16-bits)

0,1: High byte to/from odd address

1,0: Low byte to/from even address

1,1: No selection

Bus High Enable/S7

Enables most significant data bits $D_{15} - D_8$ during read or write operation.

S₇: Always 1.

Maximum Mode Pins

Minimum Mode- Pin Details

Maximum Mode - Pin Details

000: INTA

001: read I/O port

010: write I/O port

011: halt

100: code access

101: read memory

110: write memory

111: none -passive

RCET

Maximum Mode - Pin Details

Lock Output

Used to lock peripherals off the system

Activated by using the LOCK: prefix on any instruction

Maximum Mode - Pin Details

QS1 QS0

00: Queue is idle

01: First byte of opcode

10: Queue is empty

11: Subsequent byte of

opcode

Minimum Mode 8086 System

13

Minimum Mode 8086 System

'Read' Cycle timing Diagram for Minimum Mode

'Write' Cycle timing Diagram for Minimum Mode

Maximum Mode 8086 System

Maximum Mode 8086 System

Maximum Mode 8086 System

- Here, either a numeric coprocessor of the type 8087 or another processor is interfaced with 8086.
- The Memory, Address Bus, Data Buses are shared resources between the two processors.
- The control signals for Maximum mode of operation are generated by the Bus Controller chip 8788.
- The three status outputs S0*, S1*, S2* from the processor are input to 8788.
- The outputs of the bus controller are the Control Signals, namely DEN, DT/R*, IORC*, IOWTC*, MWTC*, MRDC*, ALE etc.

Memory Read timing in Maximum Mode

<u>52</u>	<u>51</u>	<u>50</u>	Function
0	0	0	Interrupt acknowledge I/O read
0	1	1	I/O write Halt
1	0	1	Opcode fetch Memory read Memory write
1	1	1	Passive

TABLE 8–6 Bus control functions generated by the bus controller (8288) using \$\overline{S2}\$, \$\overline{S1}\$, and \$\overline{SO}\$

Memory Write timing in Maximum Mode

<u>52</u>	S1	<u>50</u>	Function
0	0	0	Interrupt acknowledge
0	1	0	I/O write
0 1	1 0	1 0	Halt Opcode fetch
1	0 1	1 0	Memory read Memory write
1	1	1	Passive

TABLE 8–6 Bus control functions generated by the bus controller (8288) using \$\overline{S2}\$, \$\overline{S1}\$, and \$\overline{SO}\$

Memory Banking

Interface 8086 to 6116 Static RAM

8086 Control Signals

- 1. ALE
- **2. BHE**
- 3. M/IO
- 4. DT/R
- 5. RD
- **6. WR**
- 7. DEN