Assignment #1 - Logic Discrete Mathematics

Anders Kalhauge

Fall 2019

1 Equivalence laws

In digital electronics the following gates implements logical statements:

Write a diagram for each of the laws of equivalence, ie.:

$$(a \wedge b) \wedge c \equiv a \wedge (b \wedge c)$$

2 Nand

The simplest logic circuit to create is a nand gate. It has the following trush table and is equivalent to $\neg(a \land b)$:

a	b	$\neg (a \wedge b)$
f	f	t
f	t	t
t	f	t
t	t	f

Nand has the special property, that any other binar operator can be build from NAND, here the NAND gate is shown and the implementation of not:

Build the operators and, or, xor, and implies with NAND gates alone.

Hand in

In groups on Peergrade by Wednesday September 4th at 08:30

http://logic.ly