

EJEMPLO STATIS – DUAL

Datos del programa RStudio Data(jv73)

http://pbil.univ-lyon1.fr/R/pdf/pps047.pdf

La famosa tesis de Jean Verneaux (1973), parte de los datos revisados por el autor están disponible por data(JV73) en la biblioteca ADE4.

El objeto es una lista de 6 componentes, **morpho, phychi, poi, xy, contorno y fac.riv.** Originalmente había 111 estaciones repartidas a lo largo de 12 ríos. Se eliminan algunas estaciones colocadas en los embalses del Alto Doubs y que no están relacionados con el problema planteado.

El componente **morpho** proporciona información para 6 variables morfológicas. Las Variables retenidos para la descripción simplemente se recodificaron para estandarizar las amplitudes de variación y hacer que las distribuciones sean más aceptables. Las variables pueden tomar valores entre o y 9

Repères géomorphologiques											
Nom	Code	Unités	Raison	Classe 0	Classe 9						
Altitude	Alt	m	e = 50	< 150	> 1350						
Distance à la source	Das	km	r = 2.5	< 0.4	> 810						
Pente	Pen	0/00	r = 2	< 0.1	> 25.6						
Section mouillée	Smm	m2	r=3	< 0.05	> 328						
Débit moyen	Qmm	m3/s	r = 2	< 0.2	> 510.2						
Vitesse (Qmm/Smm)	Vme	m/s	e = 0.1	< 0.1	> 0.9						

El componente **phychi** proporciona información sobre 12 variables físico-químicas

Paramètres physiques et chimiques											
Nom	Code	Unités	Raison	Classe 0	Classe 9						
Température	Tmm	°C	e = 2	< 8	> 24						
Conductivité	Con	μs/cm	e = 75	< 50	> 650						
pH	pН		e = 0.4	< 6	> 9.2						
Dureté	Dur	mg/l Ca	e = 15	< 10	> 130						
Chlorures	CI-	mg/l	e = 3	< 3	> 27						
Sulfates	SO4	mg/l	e = 10	< 10	> 90						
Phosphates	P04	mg/l	r = 2	< 0.005	> 1.280						
Nitrates	NO3-	mg/l	r = 2	< 0.05	> 12.8						
Azote nitreux et ammoniacal	N	mg/l N	r = 2	< 0.004	> 1.024						
Oxygène dissous	02%		e = 5	< 60	> 100						
Oxydabilité	OXY		e = 2	< 1	> 17						
Demande Biologique en Oxygène	DBO	mg/l	e = 2	< 1	> 17						

En ambos casos, las clases se definen mediante secuencias aritméticas de razón o secuencias de patrones geométricos dependiendo del caso (transformaciones lineales o logarítmicas).

conductivité \rightarrow 50+(0:8)*75 = 50 125 200 275 350 425 500 575 650 nitrates \rightarrow 0.05*2^(0:8) = 0.05 0.10 0.20 0.40 0.80 1.60 3.20 6.40 12.80

El componente **fac.riv** es un factor que divide las 92 estaciones en clases definidas por los ríos muestreados. Hay 12 modalidades respectivamente

Table 1. The 12 studied rivers of the Doubs river system. 117 sampling sites - S = springs

Watercourse	River site (code)	Length (km)	Altitude (m)	Drainage area (km²)
Doubs	S 1-29	453	940-172	7700
Drugeon	\$30-35	33	930-805	185
Dessoubre	S36-40	29	600-387	560
Allaine	S41-48	34	605-350	230
Audeux	S49-53	25	560-280	230
Cusancin	S54-57	9	325-280	360
Loue	S58-74	122	543-197	1900
Lison	S75-79	25	410-293	290
Furieuse	\$80-88	18	575-251	100
Cuisance	S89-96	34	375-205	180
Doulonnes	597-99	7	254-210	20
Clauge	S100-105	29	260-195	135

Se eliminan las especies con no más de 4 presencias (umbral del 5%). Quedan 19 taxones. El componente **poi** da la abundancia de cada especie en cada estación en forma de nota de abundancia definida para cada especie, entera, entre o (ausencia de la especie) y 5 (máxima abundancia). Las variables del componente son:

1	Chb	Chabot commun	Cottus gobio	Cottidae
2	Tru	Truite fario	Salmo trutta fario	Salmonidae
3	Vai	Vairon	Phoxinus phoxinus	Cyprinidae
4	Loc	Loche franche	Barbatula barbatula	Balitoridae
5	Omb	Ombre commun	Thymallus thymallus	Salmonidae
6	Bla	Blageon	Telestes souffia	Cyprinidae
7	Hot	Hotu	Chondrostoma nasus	Cyprinidae
8	Tox	Toxostome	Chondrostoma toxostoma	Cyprinidae
9	Van	Vandoise	Leuciscus leuciscus	Cyprinidae
10	Che	Chevaine	Leuciscus cephalus	Cyprinidae
11	Bar	Barbeau fluviatile	Barbus barbus	Cyprinidae
12	Lot	Lote	Lota lota	Lotidae
13	Spi	Spirlin	Alburnoides bipunctatus	Cyprinidae
14	Gou	Goujon	Gobio gobio	Cyprinidae
15	Bro	Brochet	Esox lucius	Esocidae
16	Per	Perche	Perca fluviatilis	Percidae
17	Tan	Tanche	Tinca tinca	Cyprinidae
18	Gar	Gardon	Rutilus rutilus	Cyprinidae
19	Lam	Lamproie	Lampetra planeri	petromizonidae

Finalmente, los componentes **xy** y **contour** son información elemental que se puede utilizar para obtener Mapas simplificados de este tipo

s.label(jv73\$xy,cont=jv73\$contour,incl=F,clab=0.75)

Variables MORPHO

K= 12 estaciones ríos

J= 6 mismas variables morfológicas en cada k-tabla

I= <u>diferentes individuos</u>, puntos de muestreo en

cada k tabla

Total de individuos por cada k-tabla

Allaine	Audeux Cl	auge	Cuisance	Cusancin	Dessoubre
8	5	6	8	4	5
Doubs I	Doulonnes	Drug	geon Furie	euse Lise	on Loue
16	3	6	5 9	5	17

4	Α	В	С	D	E	F	G	Н
1	river	Alt	Das	Pen	Smm	Qmm	Vme	
2	Doubs	6	0	9	4	3	3	
3	Doubs	6	2	5	5	3	2	
4	Doubs	6	4	6	5	4	4	
5	Doubs	5	5	6	5	4	3	
6	Doubs	5	5	6	6	4	1	
7	Doubs	5	5	7	6	5	2	
8	Doubs	5	6	5	5	3	2	
9	Doubs	5	6	4	6	5	3	
10	Doubs	4	7	7	5	6	9	
11	Doubs	3	7	6	6	7	9	
12	Doubs	3	7	5	6	7	9	
13	Doubs	3	7	5	6	7	9	
14	Doubs	2	7	4	6	7	9	
15	Doubs	2	7	3	6	7	7	
16	Doubs	2	7	5	6	7	6	
17	Doubs	2	7	3	7	7	5	
18	Drugeon	6	3	8	3	1	2	
19	Drugeon	5	4	6	4	2	2	
20	Drugeon	5	4	6	4	3	3	
21	Drugeon	5	5	5	5	3	2	
22	Drugeon	5	5	5	4	2	2	
23	Drugeon	5	5	4	5	4	2	

Se coloca en las columnas las variables (mismos para todas las k-tablas)

Ordenamos los datos según la variable que forma la tercera dimensión-vía, en este caso es RIVER

data("jv73")

#---- Abre los objetos en K tablas para poder hacer el STATIS. ktab1 = ktab.within(wpca)

#---- Aplica componentes principales
wpca = withinpca(jv73\$morpho, jv73\$fac.riv, scannf = F)

statis1 = statis(ktab1, scannf = F)

Realiza el análisis STATIS

Activamos los datos

Identifica la ubicación de cada k-tabla en el set de datos. En este ejemplo no se procede a estandarizar los datos (tienen una misma unidad escala de medición).

Es elección del usuario si hace un preprocesamiento de los datos o no.

similares)

tablas que presentan

estructuras similares

STATIS-DUAL

Fuerte correlación directa entre la Distancia a la fuente y Sección húmeda $(4 \ agudo < a \ 90^\circ)$

d = 0.5

Alt Pen

Vme elocidad presenta una

débil con Pendiente

orrelación nula con la

Altitud ($\angle recto = 90^{\circ}$) y

Rows (compromise)

Eigenvalues

Smm

Qmm

Compromiso, indica las condiciones morfológicas promedio, entre los 12 ríos del sector de Doubs

Altamente correlacionadas de manera directa la Altitud con la Pendiente ($\angle agudo < a 90^\circ$). A su vez tienen alta correlacion indirecta con Smm y Das $(\angle obtuso \cong 180^{\circ})$

> Omm - Caudal promedio presenta correlación no tan fuerte con Smm y Das $(\angle agudo < a 90^{\circ}),$ pero una correlación indirecta con Alt $(\angle obtuso > a 90^\circ)$

Interestructure K-tablas que más aportan con información para construir la matriz consenso (pesos altos) y a su vez son las tablas que son mejor representadas por la matriz consenso (cos2 altos)

Se grafican los pesos y el cos² de cada k-tabla

Revisemos cada gráfico de forma independiente

d = 0.4

Interestructura, indica las k- Interestructure tablas que presentan estructuras similares (condiciones morfológicas similares)

Los dos primeros ejes explican el mayor porcentaje de varianza retenida

Se identifican 3 grupos de ríos con diferentes condiciones morfolágicas

La variable Das es la que contribuye con mayor información para el Eje 1 ($pequeño = 0^{\circ} con el eje$) en el compromiso

La variable Vme es la que contribuye con mayor información para el Eje 2 (\$\infty\$ pequeño - menor con el eje) en el compromiso

condiciones indica las condiciones promedio, entre los 12 ríos del sector de Doubs

Altamente correlacionadas de manera directa la Altitud con la Pendiente ($\angle agudo < a 90^\circ$). A su vez tienen alta correlacion indirecta con Smm y Das ($\angle obtuso \cong 180^\circ$)

Qmm - Caudal promedio presenta correlación no tan fuerte con Smm y Das ($agudo < a 90^\circ$), pero una correlación indirecta con Alt ($buso > a 90^\circ$)

Typological value

K-tablas que más aportan con información para construir la matriz consenso (pesos altos) y a su vez son las tablas que son mejor representadas por la matriz consenso (cos2 altos)

Se grafican los pesos y el cos² de cada k-tabla

Tables weights

24 statis1\$RV#coeficientes de correlación vectorial RV

	Allaine	Audeux	Clauge	Cuisance	Cusancin	Dessoubre	Doubs	Doulonnes	Drugeon	Furieuse	Lison I	Loue
Allaine	1	0.5812049	0.7379119	0.3148163	0.6035597	0.8414477	<mark>0.9701249</mark>	<mark>0.7605072</mark>	0.8261278	0.5903878	<mark>0.9623051</mark>	0.8681515
Audeux	0.5812049	1	0.6915493	0.7759032	0.8839702	0.8144722	0.6936732	0.4185647	0.8441073	0.8595906	0.5753194	0.7899633
Clauge	0.7379119	0.6915493	1	0.5016178	0.5974867	<mark>0.7749384</mark>	<mark>0.7802918</mark>	<mark>0.8587229</mark>	0.7572572	0.6852457	<mark>0.7448754</mark>	0.7516928
Cuisance	0.3148163	0.7759032	0.5016178	1	0.8020712	0.6719073	0.4423468	0.272498	0.7059673	0.8485246	0.3262452	0.6331175
Cusancin	0.6035597	0.8839702	0.5974867	0.8020712	1	0.896626	0.6841567	0.4252236	0.9131937	0.8258322	0.5850504	0.8689781
Dessoubre	0.8414477	0.8144722	0.7749384	0.6719073	0.896626	1	0.8905839	0.7265778	0.9705206	0.8244516	0.8169692	0.9807961
Doubs	0.9701249	0.6936732	0.7802918	0.4423468	0.6841567	0.8905839	1	0.7720142	0.8979621	0.6711741	<mark>0.9497225</mark>	0.9219576
Doulonnes	0.7605072	0.4185647	0.8587229	0.272498	0.4252236	0.7265778	0.7720142	1	0.674489	0.4840889	0.7820518	0.747512
Drugeon	0.8261278	0.8441073	0.7572572	0.7059673	0.9131937	0.9705206	0.8979621	0.674489	1	0.8338839	0.8042001	0.9707049
Furieuse	0.5903878	0.8595906	0.6852457	0.8485246	0.8258322	0.8244516	0.6711741	0.4840889	0.8338839	1	0.6062578	0.774676
Lison	0.9623051	0.5753194	0.7448754	0.3262452	0.5850504	0.8169692	0.9497225	0.7820518	0.8042001	0.6062578	1	0.8482602
Loue	0.8681515	0.7899633	0.7516928	0.6331175	0.8689781	0.9807961	0.9219576	0.747512	0.9707049	0.774676	0.8482602	1

Valores altos de coeficientes Vectoriales – RV indican similaridades entre los ríos

26 statis1\$RV.tabw#pesos para las k-tablas

> statis1\$RV.tabw#pesos para las k-tablas

Allaine Clauge Dessoubre Doubs Doulonnes Drugeon **Furieuse** Audeux Cuisance Cusancin Lison Loue 0.3063759 0.2820936 0.2852359 <mark>0.3209102</mark> 0.2862952 0.3222845

Los ríos cuya condición morfológica aportan mayor información para construir el compromiso son: Dessoubre, Drugeon y Loue, seguido por Doubs.

25 statis1\$cos2#coseno2

> statis1\$cos2#coseno2

Loue Dessoubre **Doubs** Allaine Audeux Clauge Cuisance Cusancin Doulonnes **Furieuse** Lison 0.9785696 0.9246224 0.7479999 0.975626 0.8536306 0.8541873 <mark>0.9740983</mark>

Dessoubre, doubs, Drugeon y Loue son los ríos cuya condición morfológica está mejor representada por el compromiso

27 statis1\$RV.eig#valores propios para la inter-estructura

statis1\$RV.eig#valores propios para la inter-estructura													
Valores Propios	9.19905347	1.58167176	0.51610082	0.24572522	0.2068712	0.09405044	0.06089725	0.04777212	0.02802827	0.01071219	0.00652862	0.00258865	12
% Varianza	0.76658779	0.13180598	0.0430084	0.0204771	0.01723927	0.00783754	0.00507477	0.00398101	0.00233569	0.00089268	0.00054405	0.00021572	
% Varianza Acumulada	76.7%	89.8%	94.1%	96.2%	97.9%	98.7%	99.2%	99.6%	99.8%	99.9%	100.0%	100.0%	

En la inter-estructura los 2 primeros componentes explican un 89.8% de la varianza

28 statis1\$C.eig#valores propios para el compromiso

statis1\$C.eig#valores pr	opios para el co	ompromiso					
Valores Propios	2.8502509	0.936407	0.3018903	0.2695722	0.1411931	0.1205098	4.6198233
% Varianza	61.7%	20.3%	6.5%	5.8%	3.1%	2.6%	
% Varianza Acumulada	61.7%	82.0%	88.5%	94.3%	97.4%	100.0%	

En el compromiso los 2 primeros componentes explican un 82.0% de varianza

kplot(statis1)

Intraestructura,
proyecta la
información de
cada k-tabla
sobre la
información del
compromiso

Para la interpretación, nos basamos en el compromiso

Allaine: Los puntos de muestreo (35, 34, 33 y 32) se carcterizan por tener altos valores (por encima del valor promedio) en Velocidad (Vme) y Caudal Promeddio (Qmm) en toda la región Doubs, mientras que en los puntos de muestreo (28 y 29) ocurrió lo contrario, son los que presentaron los valores más bajos (por debajo del promedio) en Vme y Qmm (puntos con características opuestas). El punto 35 además, presenta altos valores (por encima del promedio) en Distancia a la fuente (Das) y Sección Húmeda (Smm).

El punto 30 posee altos valores (por encima del promedio) en Altitud y Pendiente. El punto 31 contiene valores alrededor del promedio.

Este análisis se debe realizar para cada río (k-tabla)

