An End-to-end Tree based approach for Instance **Segmentation**KV Manohar¹ Yusuke Niitani²

¹kvmanohar22@gmail.com ²niitani@preferred.jp

¹Department of Mathematics, IIT Kharagpur ²Preferred Networks Inc., Japan

1. Problem Statement

Estimate energies of regions in an hierarchical region tree using Convolutional Tree-LSTM leveraging the tree-structured network topology.

- 1. Estimate low level contours and orientations [1]
- 2. Obtain closed set of regions using Watershed Transform
- 3. Construct Ultrametric Contour Map (UCM)
- 4. Construct Hierarchical Region Tree [2]
- 5. Estimate energies of regions using Conv-LSTM
- 6. Top-down traversal yields optimal tree-cut

2. Processing Hierarchical Region Tree

- (a) Representation of initial closed set of regions as an Hierarchical Region Tree.
- (b)-(e) Process each region at each level starting from the bottom all the way to the top of the tree.

3. Model Architecture Legend Input features at tree level k Recurrent connections through levels Watershed Transform Network Hierarchical Region Tree Convolutional LSTM Convolutions + FC Low-level Contours Closed set of regions Input Image

4. Tree-cuts

Left: Hierarchical region tree. Middle: Simple horizontal tree cut **Right:** Non-linear cut. Image credits [3]

6. Conclusions

- We proposed an unique approach for bottom-up instance segmentation.
- Our method produces comparative results with good trade-off between accuracy and processing time.
- We would like to further investigate an end-to-end network predicting contours in tandem with the estimation of energies.

7. References

- [1] K.K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool. Convolutional oriented boundaries. In European Conference on Computer Vision (ECCV), 2016.
- [2] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping. In *Computer* Vision and Pattern Recognition, 2014.
- [3] T. Pham, T.-T. Do, N. Sünderhauf, and I. Reid. Scene-Cut: Joint Geometric and Object Segmentation for Indoor Scenes. In 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.

5. Experiments

Comparison of Jaccard Index (IoU)

Method	N	std	Plane	Cycle	Bird	Boat	Bottle	Bus	Car	Cat	Chair	Cow	Table	Dog	Global
MCG	100	0	70.2	38.8	73.6	67.7	55.3	68.5	50.6	82.4	54.4	78.1	67.7	77.7	63.7
Ours	51	32	68	15.2	64.7	58	26.3	73.3	50.9	73.2	11.1	41.5	26.2	58.4	47.8
	36	21	68.5	16.3	63.9	56.1	24.5	72.6	50.5	73.8	11	42	27.6	58.9	47.9
Ours	23	12	69.6	14.9	67.6	57.3	34.5	72	57.2	77.3	10.2	48.8	29.2	64.8	50.7
	14	6	68.2	15.5	65.4	56.3	30.8	73	53.8	77	11.7	46.8	34.3	67	50.6

Run-time comparison (in sec)

Method	Segmentation	Generation	Total
MCG [2]	24.4 ± 3.6	9.9 ± 3.5	34.3 ± 6.2
SCG [2]	3.2 ± 0.4	1.5 ± 0.5	4.7 ± 0.7
SceneCut [3]	0.79	3.76	4.55
Ours	0.79	0.06	0.85

