Topological completeness of S4

Shashank Pathak

Department of Mathematics IISER Bhopal

Supervisors: Dr. Sujata Ghosh & Dr. Kashyap Rajeevsarathy

9 December, 2020

Outline

- 1 The Basic Modal Language
- 2 The Kripke Semantics
- 3 Kripke Completeness
- 4 Topological Semantics
- 5 Topological completeness of S4

The Basic Modal Language

Formal Languages can be thought of as formalizations of languages. They are tools used to give a formal description.

Formal Languages can be thought of as formalizations of languages. They are tools used to give a formal description.

Advantages:

■ Processes can be mechanized and the language can be handled by a computer (Automation).

Formal Languages can be thought of as formalizations of languages. They are tools used to give a formal description.

Advantages:

- Processes can be mechanized and the language can be handled by a computer (Automation).
- Using the language, we get tools to study the objects being described (Model Theory).

Formal Languages can be thought of as formalizations of languages. They are tools used to give a formal description.

Advantages:

- Processes can be mechanized and the language can be handled by a computer (Automation).
- Using the language, we get tools to study the objects being described (Model Theory).

We will first study a formal language which is called the basic modal language.

The general Modal language helps us to formalize concepts of necessity possibility, knowledge - belief, obligation - permission - prohibition, and time.1

¹Blackburn, Rijke and Venema: Modal Logic (2001)

□ → ⟨♂ → ⟨≧ → ⟨≧ → ⟨ ≧ → ⟨ ≧ → ⟨ ≥ → |

The general Modal language helps us to formalize concepts of necessity possibility, knowledge - belief, obligation - permission - prohibition, and time.1

We see how the 'alphabets' and 'sentences' look like.

¹Blackburn, Rijke and Venema: Modal Logic (2001)

□ → ⟨♂ → ⟨≧ → ⟨≧ → ⟨ ≧ → ⟨ ≧ → ⟨ ≥ → |

The general Modal language helps us to formalize concepts of necessity possibility, knowledge - belief, obligation - permission - prohibition, and time.1

We see how the 'alphabets' and 'sentences' look like.

'Alphabets' or the set of symbols:

propositional variables: p, q, r, \ldots

The general Modal language helps us to formalize concepts of necessity possibility, knowledge - belief, obligation - permission - prohibition, and time.1

We see how the 'alphabets' and 'sentences' look like.

- propositional variables: p, q, r, \ldots
- logical symbols: \bot , \land , \neg ,

The general Modal language helps us to formalize concepts of necessity possibility, knowledge - belief, obligation - permission - prohibition, and time.1

We see how the 'alphabets' and 'sentences' look like.

- propositional variables: p, q, r, \ldots
- logical symbols: \bot , \land , \neg ,
- modal operator: ◊,

The general Modal language helps us to formalize concepts of necessity possibility, knowledge - belief, obligation - permission - prohibition, and time.1

We see how the 'alphabets' and 'sentences' look like.

- propositional variables: p, q, r, \ldots
- logical symbols: \bot, \land, \neg ,
- modal operator: ◊,
- parantheses: (,).

The general Modal language helps us to formalize concepts of necessity - possibility, knowledge - belief, obligation - permission - prohibition, and time.¹

We see how the 'alphabets' and 'sentences' look like.

- **propositional** variables: p, q, r, \ldots
- logical symbols: \bot , \land , \neg ,
- modal operator: ◊,
- parantheses: (,).

$$S = \mathsf{Set} \ \mathsf{of} \ \mathsf{symbols} = \{p, q, r, \dots, \bot, \land, \neg, \diamondsuit, (,)\}$$

¹Blackburn, Rijke and Venema: Modal Logic (2001) ←□ → ←□ → ← ≧ → ← ≧ → → ≧

'Sentences' are called well formed formulas or simply, formulas.

'Sentences' are called well formed formulas or simply, formulas.

Formulas are special finite sequences (or strings) on the set of symbols.

Definition (Formulas)

I Every propositional variable is a formula.

- 1 Every propositional variable is a formula.
- $2 \perp$ is a formula.

- 1 Every propositional variable is a formula.
- $2 \perp$ is a formula.
- \blacksquare If φ is a formula, then $\neg \varphi$ is a formula.

- 1 Every propositional variable is a formula.
- $2 \perp$ is a formula.
- If φ is a formula, then $\neg \varphi$ is a formula.
- **4** If both φ and ψ are formulas, then $(\varphi \wedge \psi)$ is a formula.

- 1 Every propositional variable is a formula.
- $\mathbf{2} \perp$ is a formula.
- **3** If φ is a formula, then $\neg \varphi$ is a formula.
- 4 If both φ and ψ are formulas, then $(\varphi \wedge \psi)$ is a formula.
- **5** If φ is a formula, then $\Diamond \varphi$ is a formula.

- 1 Every propositional variable is a formula.
- \perp is a formula.
- **3** If φ is a formula, then $\neg \varphi$ is a formula.
- 4 If both φ and ψ are formulas, then $(\varphi \wedge \psi)$ is a formula.
- **5** If φ is a formula, then $\Diamond \varphi$ is a formula.
- 6 Nothing else is a formula.

Definition (Formulas)

- 1 Every propositional variable is a formula.
- $\mathbf{2} \perp$ is a formula.
- If φ is a formula, then $\neg \varphi$ is a formula.
- 4 If both φ and ψ are formulas, then $(\varphi \wedge \psi)$ is a formula.
- **5** If φ is a formula, then $\Diamond \varphi$ is a formula.
- 6 Nothing else is a formula.

Examples

Some formulas: $p, \neg r, \lozenge \neg \bot, \neg (\bot \land (\lozenge p \land r)), \neg \neg \lozenge \neg q$.

Definition (Formulas)

- 1 Every propositional variable is a formula.
- $2 \perp$ is a formula.
- **3** If φ is a formula, then $\neg \varphi$ is a formula.
- 4 If both φ and ψ are formulas, then $(\varphi \wedge \psi)$ is a formula.
- **5** If φ is a formula, then $\Diamond \varphi$ is a formula.
- 6 Nothing else is a formula.

Examples

Some formulas: p, $\neg r$, $\Diamond \neg \bot$, $\neg (\bot \land (\Diamond p \land r))$, $\neg \neg \Diamond \neg q$. Some strings which are not formulas: $\bot \neg$, $pq \land \neg$), $\neg \neg \bot \land$.

- $(\varphi \vee \psi) := \neg (\neg \varphi \wedge \neg \psi),$
- $(\varphi \to \psi) := (\neg \varphi \lor \psi),$

- $(\varphi \vee \psi) := \neg (\neg \varphi \wedge \neg \psi),$
- $(\varphi \to \psi) := (\neg \varphi \lor \psi),$
- $(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)),$

- $(\varphi \vee \psi) := \neg (\neg \varphi \wedge \neg \psi),$
- $(\varphi \to \psi) := (\neg \varphi \lor \psi),$
- $(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)),$
- $\top := \neg \bot$

- $(\varphi \vee \psi) := \neg (\neg \varphi \wedge \neg \psi),$
- $(\varphi \to \psi) := (\neg \varphi \lor \psi),$
- $(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)),$
- \blacksquare $\top := \neg \bot$,

Abbreviations

- $(\varphi \vee \psi) := \neg (\neg \varphi \wedge \neg \psi),$
- $(\varphi \to \psi) := (\neg \varphi \lor \psi),$
- $(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)),$
- $\top := \neg \bot$

Writing parentheses is skipped, if the context is clear. For example, we may write $p \to \Box q$ instead of $(p \to \Box q)$.

The Kripke Semantics

We want our sentences to convey some facts.

We want our sentences to convey some facts.

Facts about what?

We want our sentences to convey some facts.

Facts about what?

Frames and Models!

We want our sentences to convey some facts.

Facts about what?

Frames and Models!

Definition (Frames)

A frame for the basic modal language is a pair $\mathfrak{F}=(W,R)$, where

We want our sentences to convey some facts.

Facts about what?

Frames and Models!

Definition (Frames)

A frame for the basic modal language is a pair $\mathfrak{F} = (W, R)$, where

W is a non-empty set,

The Basic Modal Language: Kripke Semantics

We want our sentences to convey some facts.

Facts about what?

Frames and Models!

Definition (Frames)

A frame for the basic modal language is a pair $\mathfrak{F} = (W, R)$, where

- W is a non-empty set,

The Basic Modal Language: Kripke Semantics

We want our sentences to convey some facts.

Facts about what?

Frames and Models!

Definition (Frames)

A frame for the basic modal language is a pair $\mathfrak{F} = (W, R)$, where

- W is a non-empty set,
- $\mathbf{2}$ R is a binary relation on W.

Elements of W are also called the states of W.

The Basic Modal Language: Kripke Semantics

We want our sentences to convey some facts.

Facts about what?

Frames and Models!

Definition (Frames)

A frame for the basic modal language is a pair $\mathfrak{F}=(W,R)$, where

- \blacksquare W is a non-empty set,

Elements of W are also called the states of W.

Examples

 (\mathbb{N}, \leq) , $(\{x\}, \{(x, x)\})$ and $(\{x\}, \emptyset)$ are all examples of frames.

Let $\boldsymbol{\Phi}$ denote the set of propositional variables, i.e.

$$\Phi = \{p, q, r, \ldots\}.$$

Let Φ denote the set of propositional variables, i.e.

$$\Phi = \{p, q, r, \ldots\}.$$

Definition (Models)

A model \mathfrak{M} is a tuple (\mathfrak{F}, V) , where

Let Φ denote the set of propositional variables, i.e.

$$\Phi = \{p, q, r, \ldots\}.$$

Definition (Models)

A model \mathfrak{M} is a tuple (\mathfrak{F}, V) , where

- $\mathfrak{F} = (W, R)$ is a frame,
- ${f 2}$ V is a function from ${f \Phi}$ to the powerset of W (denoted by ${\cal P}(W)$).

Let Φ denote the set of propositional variables, i.e.

$$\Phi = \{p, q, r, \ldots\}.$$

Definition (Models)

A model \mathfrak{M} is a tuple (\mathfrak{F}, V) , where

- $\mathfrak{F} = (W, R)$ is a frame,
- **2** V is a function from Φ to the powerset of W (denoted by $\mathcal{P}(W)$).

For a model $\mathfrak{M}=(\mathfrak{F},V)$, \mathfrak{F} is called the <u>underlying</u> frame and V is said to be a <u>valuation</u> on \mathfrak{F} .

Let Φ denote the set of propositional variables, i.e.

$$\Phi = \{p, q, r, \ldots\}.$$

Definition (Models)

A model \mathfrak{M} is a tuple (\mathfrak{F}, V) , where

- $\mathfrak{F} = (W, R)$ is a frame,
- **2** V is a function from Φ to the powerset of W (denoted by $\mathcal{P}(W)$).

For a model $\mathfrak{M}=(\mathfrak{F},V)$, \mathfrak{F} is called the <u>underlying</u> frame and V is said to be a <u>valuation</u> on \mathfrak{F} .

For a propositional variable p, $V(p) \subseteq W$. V(p) should be thought of as points in W where p is 'true'.

Models: Example

Consider the frame $\mathfrak{F} = (W, R)$, where

$$W = \{1, 2, 3, 4\} \text{ and } R = \{(1, 2), (2, 3), (3, 4), (4, 2)\}.$$

Models: Example

Consider the frame $\mathfrak{F} = (W, R)$, where

$$W = \{1, 2, 3, 4\}$$
 and $R = \{(1, 2), (2, 3), (3, 4), (4, 2)\}.$

Figure: Two models based on the same frame ${\mathfrak F}$

The Inventory

We have

1 the things which we want to talk about (frames and models) and

The Inventory

We have

- 1 the things which we want to talk about (frames and models) and
- 2 the language.

The Inventory

We have

- 1 the things which we want to talk about (frames and models) and
- 2 the language.

How do we talk about them?

Recall that the set of propositional variables (p, q, r, ...) is denoted by Φ .

Recall that the set of propositional variables (p, q, r, ...) is denoted by Φ .

Definition (Truth)

Let w be a state in a model $\mathfrak{M} = (W, R, V)$.

Recall that the set of propositional variables (p, q, r, ...) is denoted by Φ .

Definition (Truth)

Recall that the set of propositional variables (p, q, r, ...) is denoted by Φ .

Definition (Truth)

Let w be a state in a model $\mathfrak{M}=(W,R,V)$. Then we inductively define the notion of a formula φ being satisfied (or true) in \mathfrak{M} at a state w as follows:

Recall that the set of propositional variables (p, q, r, ...) is denoted by Φ .

Definition (Truth)

- **11** \mathfrak{M} , $w \models p$ iff $w \in V(p)$, where $p \in \Phi$,

Recall that the set of propositional variables (p, q, r, ...) is denoted by Φ .

Definition (Truth)

- 1 \mathfrak{M} , $w \models p$ iff $w \in V(p)$, where $p \in \Phi$,
- $2 \mathfrak{M}, w \models \bot \text{ never,}$
- 3 $\mathfrak{M}, w \models \neg \varphi$ iff it's not the case that $\mathfrak{M}, w \models \varphi$ (denoted by $\mathfrak{M}, w \nvDash \varphi$),

Recall that the set of propositional variables (p, q, r, ...) is denoted by Φ .

Definition (Truth)

- 1 \mathfrak{M} , $w \models p$ iff $w \in V(p)$, where $p \in \Phi$,
- $2 \mathfrak{M}, w \models \bot \text{ never,}$
- 3 $\mathfrak{M}, w \models \neg \varphi$ iff it's not the case that $\mathfrak{M}, w \models \varphi$ (denoted by $\mathfrak{M}, w \nvDash \varphi$),
- $\mathfrak{M}, w \vDash (\varphi \land \psi)$ iff both $\mathfrak{M}, w \vDash \varphi$ and $\mathfrak{M}, w \vDash \psi$ hold, and

Recall that the set of propositional variables (p, q, r, ...) is denoted by Φ .

Definition (Truth)

- 1 \mathfrak{M} , $w \models p$ iff $w \in V(p)$, where $p \in \Phi$,
- $2 \mathfrak{M}, w \models \bot \text{ never,}$
- 3 $\mathfrak{M}, w \models \neg \varphi$ iff it's not the case that $\mathfrak{M}, w \models \varphi$ (denoted by $\mathfrak{M}, w \nvDash \varphi$),
- $\mathfrak{M}, w \vDash (\varphi \land \psi)$ iff both $\mathfrak{M}, w \vDash \varphi$ and $\mathfrak{M}, w \vDash \psi$ hold, and
- **5** $\mathfrak{M}, w \models \Diamond \varphi$ iff there exists a $v \in W$ such that Rwv and $\mathfrak{M}, v \models \varphi$.

Figure: The model ${\mathfrak M}$

Figure: The model ${\mathfrak M}$

Here we have:

 $1 \mathfrak{M}, 4 \vDash p,$

Figure: The model ${\mathfrak M}$

1
$$\mathfrak{M}, 4 \models p$$
,

$$\ \ \, 2 \ \, \mathfrak{M}, 1 \nvDash \bot, \ldots, \mathfrak{M}, 4 \nvDash \bot, \\$$

Figure: The model ${\mathfrak M}$

- 1 \mathfrak{M} , $4 \models p$,
- $2 \mathfrak{M}, 1 \nvDash \bot, \ldots, \mathfrak{M}, 4 \nvDash \bot,$
- $\mathfrak{M}, 1 \vDash \neg r,$

Figure: The model ${\mathfrak M}$

$$\ \ \, 2 \ \, \mathfrak{M}, 1 \nvDash \bot, \ldots, \mathfrak{M}, 4 \nvDash \bot, \\$$

$$\mathfrak{M}, 1 \vDash \neg r, \mathfrak{M}, 4 \vDash \neg q,$$

Figure: The model ${\mathfrak M}$

- 1 \mathfrak{M} , $4 \models p$,
- $\ \ \, 2 \ \, \mathfrak{M}, 1 \nvDash \bot, \ldots, \mathfrak{M}, 4 \nvDash \bot, \\$
- $\mathfrak{M}, 1 \vDash \neg r, \mathfrak{M}, 4 \vDash \neg q,$
- $\mathfrak{M}, 2 \vDash (p \land q),$

Figure: The model $\mathfrak M$

1
$$\mathfrak{M}, 4 \models p$$
,

$$2 \mathfrak{M}, 1 \nvDash \bot, \ldots, \mathfrak{M}, 4 \nvDash \bot,$$

$$\mathfrak{M}, 1 \vDash \neg r, \, \mathfrak{M}, 4 \vDash \neg q,$$

$$\mathfrak{M}, 2 \vDash (p \land q),$$

$$\mathfrak{M}, 4 \vDash (\neg q \land p),$$

Figure: The model $\mathfrak M$

- 1 \mathfrak{M} , $4 \models p$,
- $2 \mathfrak{M}, 1 \nvDash \bot, \ldots, \mathfrak{M}, 4 \nvDash \bot,$
- $\mathfrak{M}, 1 \vDash \neg r, \, \mathfrak{M}, 4 \vDash \neg q,$
- $\mathfrak{M}, 2 \vDash (p \land q),$ $\mathfrak{M}, 4 \vDash (\neg q \land p),$
- $\mathfrak{M}, 1 \vDash \Diamond q,$

Figure: The model $\mathfrak M$

- 1 \mathfrak{M} , $4 \models p$,
- $2 \mathfrak{M}, 1 \nvDash \bot, \ldots, \mathfrak{M}, 4 \nvDash \bot,$
- $\mathfrak{M}, 1 \vDash \neg r, \, \mathfrak{M}, 4 \vDash \neg q,$
- $\mathfrak{M}, 2 \vDash (p \land q),$ $\mathfrak{M}, 4 \vDash (\neg q \land p),$
- $5 \mathfrak{M}, 1 \vDash \Diamond q, \, \mathfrak{M}, 3 \vDash \Diamond p$

Figure: The model $\mathfrak M$

- 1 \mathfrak{M} , $4 \models p$,
- $2 \mathfrak{M}, 1 \nvDash \bot, \ldots, \mathfrak{M}, 4 \nvDash \bot,$
- $\mathfrak{M}, 1 \vDash \neg r, \, \mathfrak{M}, 4 \vDash \neg q,$
- $\mathfrak{M}, 2 \vDash (p \land q),$ $\mathfrak{M}, 4 \vDash (\neg q \land p),$
- $\mathfrak{M}, 1 \vDash \Diamond q, \, \mathfrak{M}, 3 \vDash \Diamond p \text{ and } \\ \mathfrak{M}, 2 \vDash \Diamond \neg r.$

Figure: The model \mathfrak{M}

Here we have:

- $2 \mathfrak{M}, 1 \nvDash \bot, \ldots, \mathfrak{M}, 4 \nvDash \bot,$
- $\mathfrak{M}, 1 \vDash \neg r, \, \mathfrak{M}, 4 \vDash \neg q,$
- $\mathfrak{M}, 2 \vDash (p \land q),$ $\mathfrak{M}, 4 \vDash (\neg q \land p),$
- $\mathfrak{M}, 1 \vDash \Diamond q, \, \mathfrak{M}, 3 \vDash \Diamond p \text{ and } \\ \mathfrak{M}, 2 \vDash \Diamond \neg r.$

Now we are able to express facts about the models using the formal language.

Unravelling the abbreviations

What would \mathfrak{M} , $w \models (\varphi \lor \psi)$ or \mathfrak{M} , $w \models \Box \varphi$ mean?

Unravelling the abbreviations

What would \mathfrak{M} , $w \models (\varphi \lor \psi)$ or \mathfrak{M} , $w \models \Box \varphi$ mean?

$$\begin{split} \mathfrak{M}, w \vDash (\varphi \lor \psi) &\Leftrightarrow \mathfrak{M}, w \vDash \neg (\neg \varphi \land \neg \psi) \\ &\Leftrightarrow \text{it's not that } \mathfrak{M}, w \vDash (\neg \varphi \land \neg \psi) \\ &\Leftrightarrow \text{it's not that both } \mathfrak{M}, w \vDash \neg \varphi \text{ and } \mathfrak{M}, w \vDash \neg \psi \\ &\Leftrightarrow \text{atleast one of } \mathfrak{M}, w \vDash \neg \varphi \text{ or } \mathfrak{M}, w \vDash \neg \psi \text{ doesn't hold} \\ &\Leftrightarrow \mathfrak{M}, w \vDash \varphi \text{ or } \mathfrak{M}, w \vDash \psi. \end{split}$$

Unravelling the abbreviations (Cont'd)

Similarly we get the following:

Unravelling the abbreviations (Cont'd)

Similarly we get the following:

1
$$\mathfrak{M}, w \vDash (\varphi \to \psi)$$
 iff if $\mathfrak{M}, w \vDash \varphi$ then $\mathfrak{M}, w \vDash \psi$,

Unravelling the abbreviations (Cont'd)

Similarly we get the following:

- **2** \mathfrak{M} , $w \models (\varphi \leftrightarrow \psi)$ iff both \mathfrak{M} , $w \models \varphi$, \mathfrak{M} , $w \models \psi$ or \mathfrak{M} , $w \not\models \varphi$, \mathfrak{M} , $w \not\models \psi$ hold,

Unravelling the abbreviations (Cont'd)

Similarly we get the following:

- **2** \mathfrak{M} , $w \models (\varphi \leftrightarrow \psi)$ iff both \mathfrak{M} , $w \models \varphi$, \mathfrak{M} , $w \models \psi$ or \mathfrak{M} , $w \not\models \varphi$, \mathfrak{M} , $w \not\models \psi$ hold,
- $\mathfrak{M}, w \models \top$ always.

Unravelling the abbreviations: \Box

For $\Box \varphi$ we have:

$$\mathfrak{M}, \mathbf{w} \vDash \Box \varphi$$

$$\Leftrightarrow \mathfrak{M}, w \vDash \neg \Diamond \neg \varphi$$

$$\Leftrightarrow \mathfrak{M}, \mathbf{w} \nvDash \Diamond \neg \varphi$$

- \Leftrightarrow it's not the case that there exists a $v \in W$ such that Rwv and $\mathfrak{M}, v \models \neg \varphi$
- \Leftrightarrow it's not the case that there exists a $v \in W$ such that Rwv and $\mathfrak{M}, v \nvDash \varphi$
- \Leftrightarrow for each $v \in W$, if Rwv holds, then $\mathfrak{M}, v \vDash \varphi$.

Unravelling the abbreviations: \Box

For $\Box \varphi$ we have:

$$\mathfrak{M}, \mathbf{w} \vDash \Box \varphi$$

$$\Leftrightarrow \mathfrak{M}, w \vDash \neg \Diamond \neg \varphi$$

$$\Leftrightarrow \mathfrak{M}, \mathbf{w} \nvDash \Diamond \neg \varphi$$

- \Leftrightarrow it's not the case that there exists a $v \in W$ such that Rwv and $\mathfrak{M}, v \models \neg \varphi$
- \Leftrightarrow it's not the case that there exists a $v \in W$ such that Rwv and $\mathfrak{M}, v \nvDash \varphi$
- \Leftrightarrow for each $v \in W$, if Rwv holds, then $\mathfrak{M}, v \models \varphi$.

Thus, $\mathfrak{M}, w \models \Diamond \varphi$ means that φ is true at atleast one '*R*-neighbor' of w,

Unravelling the abbreviations: \Box

For $\Box \varphi$ we have:

$$\mathfrak{M}, \mathbf{w} \vDash \Box \varphi$$

$$\Leftrightarrow \mathfrak{M}, w \vDash \neg \Diamond \neg \varphi$$

$$\Leftrightarrow \mathfrak{M}, \mathbf{w} \nvDash \Diamond \neg \varphi$$

- \Leftrightarrow it's not the case that there exists a $v \in W$ such that Rwv and $\mathfrak{M}, v \models \neg \varphi$
- \Leftrightarrow it's not the case that there exists a $v \in W$ such that Rwv and $\mathfrak{M}, v \nvDash \varphi$
- \Leftrightarrow for each $v \in W$, if Rwv holds, then $\mathfrak{M}, v \models \varphi$.

Thus, $\mathfrak{M}, w \models \Diamond \varphi$ means that φ is true at atleast one 'R-neighbor' of w, wherease, $\mathfrak{M}, w \models \Box \varphi$ means φ is true at all 'R-neighbors' of w.

Note that here the underlying frame has infinite branching, and an infinitely long branch. Here we have:

Figure: The model $\mathfrak M$

Figure: The model $\mathfrak M$

Note that here the underlying frame has infinite branching, and an infinitely long branch. Here we have:

 $\mathfrak{M}, 0 \nvDash z$, for any propositional variable z,

Figure: The model \mathfrak{M}

Note that here the underlying frame has infinite branching, and an infinitely long branch. Here we have:

- $\mathfrak{M}, 0 \nvDash z$, for any propositional variable z,
- $2 \mathfrak{M}, 1 \nvDash \Diamond \top$,

Figure: The model \mathfrak{M}

Note that here the underlying frame has infinite branching, and an infinitely long branch. Here we have:

1 $\mathfrak{M}, 0 \nvDash z$, for any propositional variable z,

$$2 \mathfrak{M}, 1 \nvDash \Diamond \top$$
,

$$\mathfrak{M}, 6 \vDash (p \rightarrow s),$$

Figure: The model \mathfrak{M}

Note that here the underlying frame has infinite branching, and an infinitely long branch. Here we have:

- 1 $\mathfrak{M}, 0 \nvDash z$, for any propositional variable z,
- $2 \mathfrak{M}, 1 \nvDash \Diamond \top$,
- $\mathfrak{M}, 6 \vDash (p \to s), \\ \mathfrak{M}, 2 \vDash (r \to s),$

Figure: The model $\mathfrak M$

Note that here the underlying frame has infinite branching, and an infinitely long branch. Here we have:

1 $\mathfrak{M}, 0 \nvDash z$, for any propositional variable z,

$$2 \mathfrak{M}, 1 \nvDash \Diamond \top$$
,

$$\mathfrak{M}, 6 \vDash (p \to s), \\ \mathfrak{M}, 2 \vDash (r \to s),$$

$$\mathbf{4} \ \mathfrak{M}, -2 \vDash (p \leftrightarrow s),$$

Figure: The model $\mathfrak M$

Note that here the underlying frame has infinite branching, and an infinitely long branch. Here we have:

1 $\mathfrak{M}, 0 \nvDash z$, for any propositional variable z,

$$2 \mathfrak{M}, 1 \nvDash \Diamond \top$$
,

$$\mathfrak{M}, 6 \vDash (p \to s), \\ \mathfrak{M}, 2 \vDash (r \to s),$$

$$\mathfrak{M}, -2 \vDash (p \leftrightarrow s),$$

$$\mathfrak{M}, 0 \vDash \Box p,$$

Figure: The model $\mathfrak M$

Note that here the underlying frame has infinite branching, and an infinitely long branch. Here we have:

- $\mathfrak{M}, 0 \nvDash z$, for any propositional variable z,
- $2 \mathfrak{M}, 1 \nvDash \Diamond \top$,
- $\mathfrak{M}, 6 \vDash (p \to s), \\ \mathfrak{M}, 2 \vDash (r \to s),$
- $4 \mathfrak{M}, -2 \vDash (p \leftrightarrow s),$
- **5** \mathfrak{M} , $0 \models \Box \rho$, \mathfrak{M} , $0 \models \Diamond \Box r$

Figure: The model ${\mathfrak M}$

Note that here the underlying frame has infinite branching, and an infinitely long branch. Here we have:

- 1 $\mathfrak{M}, 0 \nvDash z$, for any propositional variable z,
- $2 \mathfrak{M}, 1 \nvDash \Diamond \top$,
- $\mathfrak{M}, 6 \vDash (p \to s), \\ \mathfrak{M}, 2 \vDash (r \to s),$
- $4 \mathfrak{M}, -2 \vDash (p \leftrightarrow s),$
- 5 $\mathfrak{M}, 0 \vDash \Box p, \mathfrak{M}, 0 \vDash \Diamond \Box r$ and $\mathfrak{M}, 1 \vDash \Box \bot$.

Definition (Validity)

A formula φ is valid on a frame $\mathfrak{F} = (W, R)$ (notation $\mathfrak{F} \models \varphi$) if for all models \mathfrak{M} based on \mathfrak{F} , we have $\mathfrak{M}, w \models \varphi$ for all states $w \in W$.

Definition (Validity)

A formula φ is valid on a frame $\mathfrak{F} = (W, R)$ (notation $\mathfrak{F} \models \varphi$) if for all models \mathfrak{M} based on \mathfrak{F} , we have $\mathfrak{M}, w \models \varphi$ for all states $w \in W$.

For a class of frames F, we say that φ is valid on F (notation: $F \models \varphi$), if φ is valid on each frame contained in F.

Definition (Validity)

A formula φ is valid on a frame $\mathfrak{F} = (W, R)$ (notation $\mathfrak{F} \models \varphi$) if for all models \mathfrak{M} based on \mathfrak{F} , we have $\mathfrak{M}, w \models \varphi$ for all states $w \in W$.

For a class of frames F, we say that φ is valid on F (notation: $F \models \varphi$), if φ is valid on each frame contained in F.

For a class of frames F,

$$\Lambda_{\mathsf{F}} = \{ \varphi \text{ is a formula } | \mathsf{F} \vDash \varphi \}.$$

Definition (Validity)

A formula φ is valid on a frame $\mathfrak{F} = (W, R)$ (notation $\mathfrak{F} \models \varphi$) if for all models \mathfrak{M} based on \mathfrak{F} , we have $\mathfrak{M}, w \models \varphi$ for all states $w \in W$.

For a class of frames F, we say that φ is valid on F (notation: $F \models \varphi$), if φ is valid on each frame contained in F.

For a class of frames F,

$$\Lambda_{\mathsf{F}} = \{ \varphi \text{ is a formula } | \mathsf{F} \vDash \varphi \}.$$

Example

It can be checked that $p \to \Diamond p$ is valid on the class of all reflexive frames.

Kripke Completeness

Uniform Substitution

Definition (Substitution instance)

A formula φ is said to be a substitution instance of a formula ψ , if φ can be obtained from ψ by uniformly substituting formulas for propositional variables.

Uniform Substitution

Definition (Substitution instance)

A formula φ is said to be a substitution instance of a formula ψ , if φ can be obtained from ψ by uniformly substituting formulas for propositional variables.

Example

The formula

$$((\Box r \lor t) \land (\neg u \to \Box v)) \lor s$$

is a substitution instance of

$$((p \land q) \lor s),$$

as $((\Box r \lor t) \land (\neg u \to \Box v)) \lor s$ can be obtained from $((p \land q) \lor s)$ by uniformly substituting $\Box r \lor t$ for $p, \neg u \to \Box v$ for q and s for s.

Propositional formulas are modal formulas which don't have an occurrence of \Diamond (or \Box).

Propositional tautologies are propositional formulas which are valid on every frame.

²Enderton: A Mathematical Introduction to Logic (2001) $\rightarrow 4000$ $\rightarrow 4000$ $\rightarrow 4000$ $\rightarrow 4000$ $\rightarrow 4000$ $\rightarrow 4000$

Propositional formulas are modal formulas which don't have an occurrence of \Diamond (or \Box).

Propositional tautologies are propositional formulas which are valid on every frame.

Remark

Propositional tautologies actually are formulas which are 'tautologies' (always true under any interpretation) in a language called Sentential Language.

²Enderton: A Mathematical Introduction to Logic (2001) A Mathematical Introduction to Logic (2001)

Propositional formulas are modal formulas which don't have an occurrence of \Diamond (or \Box).

Propositional tautologies are propositional formulas which are valid on every frame.

Remark

Propositional tautologies actually are formulas which are 'tautologies' (always true under any interpretation) in a language called Sentential Language.

The Basic Modal Language is an extension of the Sentential Language.

²Enderton: A Mathematical Introduction to Logic (2001) $\rightarrow 49 \rightarrow 42 \rightarrow 42 \rightarrow 24$

Propositional formulas are modal formulas which don't have an occurrence of \Diamond (or \Box).

Propositional tautologies are propositional formulas which are valid on every frame.

Remark

Propositional tautologies actually are formulas which are 'tautologies' (always true under any interpretation) in a language called Sentential Language.

The Basic Modal Language is an extension of the Sentential Language.

Examples

The formulas $p \lor \neg p$, $p \leftrightarrow \neg \neg p$, $(p \to q) \leftrightarrow (\neg q \to \neg p)$ are all examples of propositional tautologies.

²Enderton: A Mathematical Introduction to Logic (2001) A Mathematical Introduction to Logic (2001)

Definition (Normal Modal Logics)

A normal modal logic (or normal logic) Λ is a set of modal formulas that contains:

all propositional tautologies,

Definition (Normal Modal Logics)

A normal modal logic (or normal logic) Λ is a set of modal formulas that contains:

- all propositional tautologies,
- \blacksquare (K) $\Box(p o q) o (\Box p o \Box q)$ and

Definition (Normal Modal Logics)

A normal modal logic (or normal logic) Λ is a set of modal formulas that contains:

- all propositional tautologies,
- lacksquare (K) $\Box(p o q) o (\Box p o \Box q)$ and

Definition (Normal Modal Logics)

A normal modal logic (or normal logic) Λ is a set of modal formulas that contains:

- all propositional tautologies,
- \blacksquare (K) $\Box(p o q) o (\Box p o \Box q)$ and

and is closed under

■ modus ponens (i.e., if $\varphi \in \Lambda$ and $\varphi \to \psi \in \Lambda$, then $\psi \in \Lambda$),

Definition (Normal Modal Logics)

A normal modal logic (or normal logic) Λ is a set of modal formulas that contains:

- all propositional tautologies,
- \blacksquare (K) $\Box(p o q) o (\Box p o \Box q)$ and
- (Dual) $\Diamond p \leftrightarrow \neg \Box \neg p$,

and is closed under

- modus ponens (i.e., if $\varphi \in \Lambda$ and $\varphi \to \psi \in \Lambda$, then $\psi \in \Lambda$),
- uniform substitution (i.e., if φ belongs to Λ , then so do all of its substitution instances), and

Definition (Normal Modal Logics)

A normal modal logic (or normal logic) Λ is a set of modal formulas that contains:

- all propositional tautologies,
- \blacksquare (K) $\Box(p o q) o (\Box p o \Box q)$ and
- (Dual) $\Diamond p \leftrightarrow \neg \Box \neg p$,

and is closed under

- modus ponens (i.e., if $\varphi \in \Lambda$ and $\varphi \to \psi \in \Lambda$, then $\psi \in \Lambda$),
- uniform substitution (i.e., if φ belongs to Λ , then so do all of its substitution instances), and
- generalization (i.e., if $\varphi \in \Lambda$, then $\Box \varphi \in \Lambda$).

Definition (Normal Modal Logics)

A normal modal logic (or normal logic) Λ is a set of modal formulas that contains:

- all propositional tautologies,
- lacksquare (K) $\Box(p o q) o (\Box p o \Box q)$ and
- (Dual) $\Diamond p \leftrightarrow \neg \Box \neg p$,

and is closed under

- modus ponens (i.e., if $\varphi \in \Lambda$ and $\varphi \to \psi \in \Lambda$, then $\psi \in \Lambda$),
- uniform substitution (i.e., if φ belongs to Λ , then so do all of its substitution instances), and
- generalization (i.e., if $\varphi \in \Lambda$, then $\Box \varphi \in \Lambda$).

If $\varphi \in \Lambda$, we say φ is a theorem of Λ (notation: $\vdash_{\Lambda} \varphi$).

Examples

■ The set of all modal formulas is a normal logic.

Examples

- The set of all modal formulas is a normal logic.
- If F is a class of frames, then Λ_F is a normal logic.

Examples

- The set of all modal formulas is a normal logic.
- If F is a class of frames, then Λ_F is a normal logic.

It can be proved that if $\{\Lambda_i \mid i \in I\}$ is a collection of normal logics, then $\cap_{i \in I} \Lambda_i$ is also a normal logic.

Examples

- The set of all modal formulas is a normal logic.
- If F is a class of frames, then Λ_F is a normal logic.

It can be proved that if $\{\Lambda_i \mid i \in I\}$ is a collection of normal logics, then $\bigcap_{i \in I} \Lambda_i$ is also a normal logic.

Thus, we have a smallest normal logic. We call it **K**.

Normal Modal Logics: Examples

Examples

- The set of all modal formulas is a normal logic.
- If F is a class of frames, then Λ_F is a normal logic.

It can be proved that if $\{\Lambda_i \mid i \in I\}$ is a collection of normal logics, then $\cap_{i \in I} \Lambda_i$ is also a normal logic.

Thus, we have a smallest normal logic. We call it **K**.

For a collection of modal formulas Γ , the smallest normal logic containing Γ is denoted by $K\Gamma$, which is the intersection of all normal logics which contain Γ .

This is called 'from the top down' approach.

Consider the following construction:

■ $C_0 := \{ \text{Propositional tautologies} \} \cup \{ (K) \} \cup \{ (\text{Dual}) \} \cup \Gamma.$

Consider the following construction:

- $C_0 := \{ \text{Propositional tautologies} \} \cup \{ (K) \} \cup \{ (\text{Dual}) \} \cup \Gamma.$
- For each $n \in \mathbb{N}$, $C_n := C_{n-1} \cup \{\text{all modal formulas that can be obtained by applying the rules of modus ponens, uniform substitution and generalization on <math>C_{n-1}\}$.

Consider the following construction:

- $C_0 := \{ \text{Propositional tautologies} \} \cup \{ (K) \} \cup \{ (\text{Dual}) \} \cup \Gamma.$
- For each $n \in \mathbb{N}$, $C_n := C_{n-1} \cup \{\text{all modal formulas that can be obtained by applying the rules of modus ponens, uniform substitution and generalization on <math>C_{n-1}\}$.

It can be proved that

$$\mathbf{K}\Gamma = \bigcup_{0}^{\infty} C_{n}$$
.

Consider the following construction:

- $C_0 := \{ \text{Propositional tautologies} \} \cup \{ (K) \} \cup \{ (\text{Dual}) \} \cup \Gamma.$
- For each $n \in \mathbb{N}$, $C_n := C_{n-1} \cup \{\text{all modal formulas that can be obtained by applying the rules of modus ponens, uniform substitution and generalization on <math>C_{n-1}\}$.

It can be proved that

$$\mathbf{K}\Gamma = \bigcup_{0}^{\infty} C_{n}$$
.

Thus, the theorems of $K\Gamma$ are exactly the formulas which can be obtained from C_0 by applying the rules a finite number of times.

Consider the following construction:

- $C_0 := \{ \text{Propositional tautologies} \} \cup \{ (K) \} \cup \{ (\text{Dual}) \} \cup \Gamma.$
- For each $n \in \mathbb{N}$, $C_n := C_{n-1} \cup \{\text{all modal formulas that can be obtained by applying the rules of modus ponens, uniform substitution and generalization on <math>C_{n-1}\}$.

It can be proved that

K
$$\Gamma = \bigcup_{0}^{\infty} C_{n}$$
.

Thus, the theorems of $K\Gamma$ are exactly the formulas which can be obtained from C_0 by applying the rules a finite number of times.

How does this help?

Soundness and Completeness

How can we relate normal logics to frames?

Soundness and Completeness

How can we relate normal logics to frames?

Definition (Soundness)

A normal logic Λ is said to be sound with respect to a class of frames F, if every theorem of Λ is valid on F, i.e.

$$\vdash_{\Lambda} \varphi \Rightarrow \mathsf{F} \vDash \varphi.$$

Soundness and Completeness

How can we relate normal logics to frames?

Definition (Soundness)

A normal logic Λ is said to be sound with respect to a class of frames F, if every theorem of Λ is valid on F, i.e.

$$\vdash_{\Lambda} \varphi \Rightarrow \mathsf{F} \vDash \varphi.$$

Remark

Thus, if Λ is sound with respect to F, then

$$\Lambda \subseteq \Lambda_{F}$$
.

Example

The logic ${\bf K}$ is sound with respect to the class of all frames.

Example

The logic \mathbf{K} is sound with respect to the class of all frames.

Key steps:

- Propositional tautologies, (K) and (Dual) are valid on the class of all frames.
- The property of being valid on the class of all frames is preserved under the rules of modus ponens, uniform substitution and generalization.

Definition (Completeness)

A normal logic Λ is said to be complete with respect to a class of frames F, if every formula that is valid on F, is theorem of Λ , i.e.

$$\mathsf{F} \vDash \varphi \Rightarrow \vdash_{\Lambda} \varphi.$$

Definition (Completeness)

A normal logic Λ is said to be complete with respect to a class of frames F, if every formula that is valid on F, is theorem of Λ , i.e.

$$\mathsf{F} \vDash \varphi \Rightarrow \vdash_{\Lambda} \varphi.$$

Remark

Thus, if Λ is complete with respect to F, then

$$\Lambda_{\mathsf{F}} \subseteq \Lambda$$
.

Thus, if a normal logic Λ is sound and complete with respect to a class of frames F, then we have,

$$\Lambda = \Lambda_F.$$

Thus, if a normal logic Λ is sound and complete with respect to a class of frames F, then we have,

$$\Lambda = \Lambda_F.$$

How does this help?

Thus, if a normal logic Λ is sound and complete with respect to a class of frames F, then we have,

$$\Lambda = \Lambda_F$$
.

How does this help?

Some axioms:

- $(4) \quad \Diamond \Diamond p \rightarrow \Diamond p$
- (T) $p \rightarrow \Diamond p$
- (B) $p \rightarrow \Box \Diamond p$
- (D) $\Box p \rightarrow \Diamond p$

It is customary to call KT, KB, KT4 and KT4B as T, B, S4 and S5 respectively.

K	the class of all frames
K4	the class of transitive frames
Т	the class of reflexive frames
В	the class of symmetric frames
KD	the class of right-unbounded frames
S4	the class of reflexive, transitive frames
S5	the class of frames whose relation is an equivalence relation

Table: Some soundness and completeness results

Topological Semantics

Why move onto topology?

S4 has been defined to be the smallest normal logic containing the following axioms:

(T)
$$p \rightarrow \Diamond p$$
,

4)
$$\Diamond \Diamond p \rightarrow \Diamond p$$
.

Why move onto topology?

S4 has been defined to be the smallest normal logic containing the following axioms:

(T)
$$p \rightarrow \Diamond p$$
,

$$(4) \quad \Diamond \Diamond p \rightarrow \Diamond p.$$

Also, for an arbitrary subset Y of a topological space (X, τ) , the following properties hold for the closure operator:

- $Y \subseteq Cl(Y)$, and
- \blacksquare CI(CI(Y)) \subseteq CI(Y).

Why move onto topology?

S4 has been defined to be the smallest normal logic containing the following axioms:

(T)
$$p \rightarrow \Diamond p$$
,

$$(4) \quad \Diamond \Diamond p \rightarrow \Diamond p.$$

Also, for an arbitrary subset Y of a topological space (X, τ) , the following properties hold for the closure operator:

- $Y \subseteq Cl(Y)$, and
- \blacksquare CI(CI(Y)) \subseteq CI(Y).

We will see that in the topological semantics, \Diamond and \Box correspond to the closure and interior operators respectively.

Instead of frames and models, we will use the basic modal language to describe topological spaces.³

³Aiello, Pratt-Hartmann, van Bentham: Handbook of Spatial Logics (2007)

Instead of frames and models, we will use the basic modal language to describe topological spaces. 3

- Frames will be replaced with topological spaces.
- Models will be replaced with topo-models.

³Aiello, Pratt-Hartmann, van Bentham: Handbook of Spatial Logics (2007)

Instead of frames and models, we will use the basic modal language to describe topological spaces. 3

- Frames will be replaced with topological spaces.
- Models will be replaced with topo-models.

Let Φ denote the set of propositional variables (p, q, r, \ldots) .

³Aiello, Pratt-Hartmann, van Bentham: Handbook of Spatial Logics (2007)

Instead of frames and models, we will use the basic modal language to describe topological spaces. $^{\rm 3}$

- Frames will be replaced with topological spaces.
- Models will be replaced with topo-models.

Let Φ denote the set of propositional variables (p, q, r, \ldots) .

Definition (Topo-models)

A topo-model is a 3-tuple (X, τ, v) , where (X, τ) is a topological space and v is a function from Φ to $\mathcal{P}(X)$. Here v is said to be a valuation on X.

³Aiello, Pratt-Hartmann, van Bentham: Handbook of Spatial Logics (2007)

Topo-models: An Example

Figure: A topo-model based on $\ensuremath{\mathbb{R}}^2$

Definition (Basic Topological Semantics)

Definition (Basic Topological Semantics)

Truth of modal formulas is defined inductively at points x of X in a topo-model $M = (X, \tau, v)$:

1 $M, x \models p$ iff $x \in v(p)$, for each proposition variable p,

Definition (Basic Topological Semantics)

- 1 $M, x \models p$ iff $x \in v(p)$, for each proposition variable p,
- **2** $M, x \models \neg \varphi$ iff it's not the case that $M, x \models \varphi$,

Definition (Basic Topological Semantics)

- 1 $M, x \models p$ iff $x \in v(p)$, for each proposition variable p,
- **2** $M, x \vDash \neg \varphi$ iff it's not the case that $M, x \vDash \varphi$,
- **3** $M, x \vDash (\varphi \land \psi)$ iff both $M, x \vDash \varphi$ and $M, x \vDash \psi$ hold,

Definition (Basic Topological Semantics)

- **1** $M, x \models p$ iff $x \in v(p)$, for each proposition variable p,
- 2 $M, x \vDash \neg \varphi$ iff it's not the case that $M, x \vDash \varphi$,
- **3** $M, x \vDash (\varphi \land \psi)$ iff both $M, x \vDash \varphi$ and $M, x \vDash \psi$ hold,
- 4 $M, x \models \Diamond \varphi$ iff for each $U \in \tau$ containing x, there exists a $y \in U$ such that $M, y \models \varphi$.

Definition (Basic Topological Semantics)

Truth of modal formulas is defined inductively at points x of X in a topo-model $M = (X, \tau, v)$:

- **1** $M, x \models p$ iff $x \in v(p)$, for each proposition variable p,
- 2 $M, x \vDash \neg \varphi$ iff it's not the case that $M, x \vDash \varphi$,
- **3** $M, x \vDash (\varphi \land \psi)$ iff both $M, x \vDash \varphi$ and $M, x \vDash \psi$ hold,
- 4 $M, x \models \Diamond \varphi$ iff for each $U \in \tau$ containing x, there exists a $y \in U$ such that $M, y \models \varphi$.

Remark

For any point x, if $M, x \models \varphi$, then $M, x \models \Diamond \varphi$.

An Example

Figure: A topo-model based on $\ensuremath{\mathbb{R}}^2$

An Example

Figure: A topo-model based on \mathbb{R}^2

An Example

Figure: A topo-model based on \mathbb{R}^2

♦ as the Closure

Let $M=(X,\tau,\nu)$ be a topomodel. For a formula φ , let $[[\varphi]]$ denote all the points at which φ is true, i.e.

$$[[\varphi]] = \{ x \in X \mid M, x \vDash \varphi \}.$$

Then, $y \in [[\lozenge \varphi]]$

- \Leftrightarrow for each $U \in \tau$ containing y, there exists some $z \in U$ such that $M, z \models \varphi$
- \Leftrightarrow for each $U \in \tau$ containing y, there exists some $z \in U$ such that $z \in [[\varphi]]$
- \Leftrightarrow for each $U \in \tau$ containing y, $U \cap [[\varphi]] \neq \emptyset$
- $\Leftrightarrow y \in \mathsf{Closure} \ \mathsf{of} \ [[\varphi]].$

Unravelling the Abbreviations

It can be checked that

- $M, x \vDash (\varphi \lor \psi)$ iff $M, x \vDash \varphi$ holds or $M, x \vDash \psi$ holds,
- $M, x \vDash (\varphi \rightarrow \psi)$ iff if $M, x \vDash \varphi$ holds, then $M, x \vDash \psi$ holds, and
- $M, x \vDash (\varphi \leftrightarrow \psi)$ iff either both $M, x \vDash \varphi$ and $M, x \vDash \psi$ hold, or both $M, x \nvDash \varphi$ and $M, x \nvDash \psi$ hold.

Unravelling the Abbreviations (Cont'd)

Also, $M, x \models \Box \varphi$

$$\Leftrightarrow M, x \vDash \neg \Diamond \neg \varphi$$

$$\Leftrightarrow M, x \nvDash \Diamond \neg \varphi$$

 \Leftrightarrow it's not the case that for each $U \in \tau$ containing x, there exists a $y \in U$ such that $M, y \models \neg \varphi$

 \Leftrightarrow there exists some $U_0 \in \tau$ containing x, such that for each $z \in U_0$, we have $M, z \nvDash \neg \varphi$

 \Leftrightarrow there exists some $U_0 \in \tau$ containing x, such that for each $z \in U_0$, we have $M, z \models \varphi$.

☐ as the Interior

It can be checked that for a formula φ , we have

$$[[\Box\varphi]] = \text{ Interior of } [[\varphi]].$$

Also, we have the following:

$$[[\neg \varphi]] = [[\varphi]]^{c}$$
$$[[\varphi \land \psi]] = [[\varphi]] \cap [[\psi]]$$
$$[[\varphi \lor \psi]] = [[\varphi]] \cup [[\psi]]$$

Talking about spaces: An Example

Figure: A spoon in \mathbb{R}^2

Validity

Definition (Validity)

A formula φ is valid on a topological space (X, τ) if φ is true at every point on every topo-model based on (X, τ) (notation: $(X, \tau) \models \varphi$).

A formula φ is valid on a class of topological spaces S if φ is valid on every member of S.

Validity: An Example

Example

The formula (Dual) given by

$$\Diamond p \leftrightarrow \neg \Box \neg p$$

which is just the abbreviation of

$$\Diamond p \leftrightarrow \neg \neg \Diamond \neg \neg p$$

is valid on the class of topological spaces, as, for any topo-model,

- $M, x \models \Diamond p \text{ iff } x \in [[\Diamond p]] \text{ iff } x \in Cl([[p]]),$
- $M, x \models \neg\neg \Diamond \neg\neg p \text{ iff } x \in [[\neg\neg \Diamond \neg\neg p]] \text{ iff } x \in Cl([[p]]^{c \ c})^{c \ c}.$

Topological completeness of S4

Topological Soundess and Completeness

Definition (Topological Soundness)

A normal logic Λ is said to be sound with respect to a class of topological spaces S, if every theorem of Λ is valid on S, i.e.

$$\vdash_{\Lambda} \varphi \Rightarrow \mathsf{S} \vDash \varphi.$$

Definition (Topological Completeness)

A normal logic Λ is said to be complete with respect to a class of topological spaces S, if every formula that is valid on S, is theorem of Λ , i.e.

$$\mathsf{S} \vDash \varphi \Rightarrow \vdash_{\Lambda} \varphi.$$

Soundness of S4

Theorem

S4 is sound with respect to the class of all topological spaces.

Soundness of S4

Theorem

S4 is sound with respect to the class of all topological spaces.

Key steps

$$\begin{array}{ll} (\mathsf{K}) & \Box(p \to q) \to (\Box p \to \Box q), \\ (\mathsf{Dual}) & \Diamond p \leftrightarrow \neg \Box \neg p, \\ (\mathsf{T}) & p \to \Diamond p, \\ (4) & \Diamond \Diamond p \to \Diamond p. \end{array}$$

and propositional validities are valid on the class of all topological spaces.

Soundness of **S4** (Cont'd)

Key steps (Cont'd)

- The property of being valid on the class of all topological spaces is preserved under the rules of modus ponens, uniform substitution and generalisation, i.e., on the class of all topological spaces
 - **I** if φ is valid and $\varphi \to \psi$ is valid, then ψ is valid (modus ponens),
 - 2 if φ is valid and ψ is a substitution instance of φ , then ψ is valid (uniform substitution), and
 - \blacksquare if φ is valid, then $\square \varphi$ is valid (generalisation).

Soundness of **S4** (Cont'd)

Key steps (Cont'd)

- The property of being valid on the class of all topological spaces is preserved under the rules of modus ponens, uniform substitution and generalisation, i.e., on the class of all topological spaces
 - **1** if φ is valid and $\varphi \to \psi$ is valid, then ψ is valid (modus ponens),
 - 2 if φ is valid and ψ is a substitution instance of φ , then ψ is valid (uniform substitution), and
 - \blacksquare if φ is valid, then $\square \varphi$ is valid (generalisation).

Hence, every theorem of **S4** is valid on the class of topological spaces.

Remark

An equivalent definition of completeness is the following:

A normal logic Λ is complete with respect to a class of frames F, if every formula which is not in Λ , is not valid on F,

Remark

An equivalent definition of completeness is the following:

A normal logic Λ is complete with respect to a class of frames F, if every formula which is not in Λ , is not valid on F,

i.e., if $\varphi \notin \Lambda$, then there exists a model $\mathfrak M$ based on a frame in F and a state x in the model, such that $\mathfrak M, x \not\models \varphi$.

Remark

An equivalent definition of completeness is the following:

A normal logic Λ is complete with respect to a class of frames F, if every formula which is not in Λ , is not valid on F,

i.e., if $\varphi \notin \Lambda$, then there exists a model $\mathfrak M$ based on a frame in F and a state x in the model, such that $\mathfrak M, x \nvDash \varphi$.

Similarly, a normal logic Λ is complete with respect to a class of topological spaces S, if every formula which is not in Λ , is not valid on S,

Remark

An equivalent definition of completeness is the following:

A normal logic Λ is complete with respect to a class of frames F, if every formula which is not in Λ , is not valid on F,

i.e., if $\varphi \notin \Lambda$, then there exists a model $\mathfrak M$ based on a frame in F and a state x in the model, such that $\mathfrak M, x \nvDash \varphi$.

Similarly, a normal logic Λ is complete with respect to a class of topological spaces S, if every formula which is not in Λ , is not valid on S,

i.e., if $\varphi \notin \Lambda$, then there exists a topo-model $M = (X, \tau, \nu)$ based on a topological space $(X, \tau) \in S$ and an $x \in X$ such that $M, x \not\vDash \varphi$.

It is known that **S4** is complete with respect to the class of reflexive, transitive frames (often called **S4**-frames).

It is known that **S4** is complete with respect to the class of reflexive, transitive frames (often called **S4**-frames).

Assume that $\varphi \notin \mathbf{S4}$.

It is known that **S4** is complete with respect to the class of reflexive, transitive frames (often called **S4**-frames).

Assume that $\varphi \notin \mathbf{S4}$.

Then by the previous remark, there is some model \mathfrak{M} based on an **S4**-frame (X, R), and an $x_0 \in X$, such that $\mathfrak{M}, x_0 \nvDash \varphi$.

It is known that **S4** is complete with respect to the class of reflexive, transitive frames (often called **S4**-frames).

Assume that $\varphi \notin \mathbf{S4}$.

Then by the previous remark, there is some model \mathfrak{M} based on an **S4**-frame (X, R), and an $x_0 \in X$, such that $\mathfrak{M}, x_0 \not\vDash \varphi$.

Using the model $\mathfrak{M}=(X,R,v)$, a topo-model $M=(X,\tau_R,v)$ will be constructed, such that for all formulas ψ ,

$$\{x \in X \mid M, x \vDash \psi\} = \{x \in X \mid \mathfrak{M}, x \vDash \psi\}.$$

It is known that **S4** is complete with respect to the class of reflexive, transitive frames (often called **S4**-frames).

Assume that $\varphi \notin \mathbf{S4}$.

Then by the previous remark, there is some model \mathfrak{M} based on an **S4**-frame (X, R), and an $x_0 \in X$, such that $\mathfrak{M}, x_0 \not\vDash \varphi$.

Using the model $\mathfrak{M}=(X,R,v)$, a topo-model $M=(X,\tau_R,v)$ will be constructed, such that for all formulas ψ ,

$$\{x \in X \mid M, x \vDash \psi\} = \{x \in X \mid \mathfrak{M}, x \vDash \psi\}.$$

Consequently, $M, x_0 \nvDash \varphi$.

Upsets

Definition (Upsets)

Let (X, R) be an **S4**-frame. A subset A of X is called an upset if for each $x, y \in X$, if $x \in A$ and Rxy holds, then $y \in A$.

Upsets

Definition (Upsets)

Let (X, R) be an **S4**-frame. A subset A of X is called an upset if for each $x, y \in X$, if $x \in A$ and Rxy holds, then $y \in A$.

Upsets are subsets which are closed with respect to the relation R.

Upsets: Examples

Figure: All the upsets (except \emptyset) of an **S4**-frame

Completeness of S4

Proposition

Let (X, R) be an **S4**-frame. Then, for

$$\tau_R = \{ A \subseteq X \mid A \text{ is an upset} \},$$

 (X, τ_R) forms a topological space.

Completeness of S4

Proposition

Let (X, R) be an **S4**-frame. Then, for

$$\tau_R = \{ A \subseteq X \mid A \text{ is an upset} \},$$

 (X, τ_R) forms a topological space.

Lemma

Let $\mathfrak{M}=(X,R,v)$ be a model based on an **S4**-frame. Let M be the topomodel (X,τ_R,v) . Then for all modal formulas φ and all $x\in X$ we have

$$\mathfrak{M}, x \vDash \varphi \text{ iff } M, x \vDash \varphi.$$

Completeness of **S4** (Cont'd)

Corollary

S4 is complete with respect to the class of all topological spaces.

Completeness of S4 (Cont'd)

Corollary

S4 is complete with respect to the class of all topological spaces.

Steps

- For $\varphi \notin \mathbf{S4}$, there is a model \mathfrak{M} based on an $\mathbf{S4}$ -frame (X, R), and $x_0 \in X$ such that $\mathfrak{M}, x_0 \nvDash \varphi$.
- For the topo-model $M = (X, \tau_R, v)$, the previous lemma guarantees that $M, x_0 \nvDash \varphi$.

Thus,

 $\textbf{S4} = \{ \text{Formulas that are valid on the class of all topological spaces} \}.$

Goals for the even semester

McKinsey-Tarski Theorem: S4 is the logic of dense-in-itself, seperable metric-spaces.⁴

Many topological properties are not expressible in the basic modal language.

For example, we are not able to distinguish between the class of all topological spaces and the class of all dense-in-itself seperable metric spaces, only by looking at their corresponding modal logics which is **S4**.

Study more expressive modal languages and interpretations which could capture these different properties of the spaces.

⁴McKinsey and Tarski: The Algebra of Topology, Annals of Mathematics (1944). ₹

References

- Blackburn, P., de Rijke, M. and Venema, Y. (2001). *Modal Logic*. Cambridge University Press.
- Enderton H. (2001). A Mathematical Introduction to Logic. Academic Press.
- Aiello, M., Pratt-Hartmann, I., van Bentham, J. (2007). *Handbook of Spatial Logics*. Springer Netherlands.
- McKinsey, J. and Tarski, A. (1944). *The Algebra of Topology*. Annals of Mathematics. 45:141-191

Thank you!