Complete the following tasks. Show your work where applicable. Some answers have been provided. Assemble your work into one PDF document and upload the PDF back into our CatCourses page.

- 1. (Bayes Rules! exercise 2.4) Edward is trying to prove to Bella that vampires exist. Bella thinks there is a 0.05 probability that vampires exist. She also believes that the probability that someone can sparkle like a diamond if vampires exist is 0.7, and the probability that someone can sparkle like a diamond if vampires don't exist is 0.03. Edward then goes into a meadow and shows Bella that he can sparkle like a diamond. Given that Edward sparkled like a diamond, what is the probability that vampires exist?
- 2. (Bayes Rules! exercise 2.10) A recent study of 415,000 Californian public middle school and high school students found that 8.5% live in rural areas and 91.5% in urban areas. Further, 10% of students in rural areas and 10.5% of students in urban areas identified as Lesbian, Gay, Bisexual, Transgender, or Queer (LGBTQ). Consider one student from the study.
 - (a) What's the probability they identify as LGBTQ?
 - (b) If they identify as LGBTQ, what's the probability that they live in a rural area?
 - (c) If they do not identify as LGBTQ, what's the probability that they live in a rural area?
- 3. A tattoo enthusiast website¹ claims that
 - 47% of Millennials have tattoos
 - 36% of Generation X have tattoos
 - 13% of Boomers have tattoos

whereas the population proportions are 22%, 20%, and 22% for those generations respectively.² Compute the probability that a person is a Millennial given that they have tattoos. (For homework brevity, let us assume that no one in other age groups have tattoos.)

4. A contractor is has hired a team of engineers to build a prototype contraption of a balloon detection sensory machine. Let W be the presence of a weather balloon, and let T be the event that the device claims that a flying object is a weather balloon. Suppose that we know that 32 percent of flying objects are weather balloons. The team says that the specificity of the device is

$$P(T^c|W^c) = 0.98$$

What must the sensitivity P(T|W) be so that the value of P(W|T) is greater than 95 percent?

 $^{^{1}} Source: \ https://www.reddit.com/r/todayilearned/comments/dwy925/til_47_of_millennials_ages_18_to_29_have_tattoos/$

²Source: https://www.statista.com/statistics/797321/us-population-by-generation/

5. (Bayes Rules! exercise 2.11) A student applies for six equally competitive data science internships. They have the following prior model for their chances of getting into any given internship, π

π	0.3	0.4	0.5	Total
$f(\pi)$	0.25	0.60	0.15	1

- (a) Let Y be the number of internship offers that the student gets. Specify the model for the dependence of Y on π and the corresponding pmf, $f(y|\pi)$.
- (b) The student got some pretty amazing news. They were offered four of the six internships! How likely would this be if $\pi = 0.3$?
- (c) Construct the posterior model of π in light of the student's internship news.
- 6. (Bayes Rules! exercise 2.18) Lactose intolerance is an inability to digest milk, often resulting in an upset stomach. A lab tech wants to learn more about the proportion of adults who are lactose intolerant, π . Their prior model for π is:

π	0.4	0.5	0.6	0.7	Total
$f(\pi)$	0.1	0.2	0.44	0.26	1

The lab tech surveys a random sample of 80 adults and 47 are lactose intolerant. Use simulation to approximate the posterior model of π . Simulate data for 10,000 people.

- 7. (Bayes Rules! exercise 3.11) A university wants to know what proportion of students are regular bike riders, π , so that they can install an appropriate number of bike racks. Since the university is in sunny Southern California, staff think that π has a mean of 1 in 4 students, and a mode of $\frac{5}{22}$.
 - (a) Specify and plot a Beta model that reflects the staff's prior ideas about π .
 - (b) Among 50 surveyed students, 15 are regular bike riders. What is the posterior model for π ?
 - (c) What is the mean, mode, and standard deviation of the posterior model?
- 8. (Bayes Rules! exercise 3.12) A 2017 Pew Research survey found that 10.2% of LGBT adults in the U.S. were married to a same-sex spouse. Now it's the 2020s, and Bayard guesses that π , the percent of LGBT adults in the U.S. who are married to a same-sex spouse, has most likely increased to about 15% but could reasonably range from 10% to 25%.
 - (a) Identify and plot a Beta model that reflects Bayard's prior ideas about π .
 - (b) Bayard wants to update his prior, so he randomly selects 90 US LGBT adults and 30 of them are married to a same-sex partner. What is the posterior model for π ?
 - (c) Calculate the posterior mean, mode, and standard deviation of π .

Here are some of the answers. Note that answers may slightly vary depending on when and where rounding took place, and due to randomization in code.

- 1. 0.5512
- 2. (a) 0.1046
 - (b) 0.0813
 - (c) 0.0854
- 3. 0.5069
- 4. P(T|W) > 0.8075
- 5. (a)
 - (b) 0.0595
 - (c)
- 6.
- 7.
- 8.