SYDNEY GRAMMAR SCHOOL

NAME							
MATHS N	MASTE	R	_				
				CA	NDIDA	TE NU	MBE

2024 Trial HSC Examination

Form VI Mathematics Extension 2

Tuesday 13th August 2024 8:40am

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Attempt all questions.
- Write using black pen.
- Calculators approved by NESA may be used.
- A loose reference sheet is provided separate to this paper.

Total Marks: 100

Section I (10 marks) Questions 1-10

- This section is multiple-choice. Each question is worth 1 mark.
- Record your answers on the provided answer sheet.

Section II (90 marks) Questions 11-16

- Relevant mathematical reasoning and calculations are required.
- Start each question in a new booklet.

Collection

- Your name and master should only be written on this page.
- Write your candidate number on this page, on each booklet and on the multiple choice sheet.
- If you use multiple booklets for a question, place them inside the first booklet for the question.
- Arrange your solutions in order.

Checklist

- Reference sheet
- Multiple-choice answer sheet
- 6 booklets per boy
- Candidature: 77 pupils

Writer: PC

Section I

Questions in this section are multiple-choice.

Record the single best answer for each question on the provided answer sheet.

- 1. In the Argand diagram, the complex number z lies in the second quadrant. In which quadrant does the complex number $i\overline{z}$ lie?
 - (A) first
 - (B) second
 - (C) third
 - (D) fourth
- 2. Given $\underline{u} = \underline{i} + 2\underline{j}$, $\underline{v} = \underline{j} + 3\underline{k}$, what is the projection of \underline{u} onto \underline{v} ?
 - (A) $\frac{1}{5}(\underline{i}+2\underline{j})$
 - (B) $\frac{1}{5}(\underline{j} + 3\underline{k})$
 - (C) $\frac{7}{10}(\underline{i} + 2\underline{j})$
 - (D) $\frac{7}{10}(j+3k)$
- 3. A particle is moving in Simple Harmonic Motion with amplitude 3 metres. Its speed is 4 metres per second when the particle is 1 metre from the centre of motion. What is the period of the motion?
 - (A) $\frac{\pi}{2}$
 - (B) $\frac{\pi}{\sqrt{2}}$
 - (C) $\sqrt{2}\pi$
 - (D) 2π
- 4. Consider the identity: $\frac{8}{(x+1)(x-1)^2} \equiv \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$.

Which of the following are the correct values of A, B and C?

- (A) A = 2, B = -2, C = 4
- (B) A = 2, B = -2, C = -4
- (C) A = -2, B = 2, C = 4
- (D) A = -2, B = 2, C = -4

- 5. Let $\overrightarrow{OP} = \frac{1}{2}(\sqrt{2}i j + k)$, and α , β and γ be the angles that \overrightarrow{OP} makes with the positive x, y and z-axes respectively. What is the value of $\alpha + \beta + \gamma$?
 - (A) 45°
 - (B) 165°
 - (C) 180°
 - (D) 225°

6.

Two masses are attached to a light inextensible string which is looped over a smooth pulley as shown in the diagram. The larger mass is on a smooth incline of 30° to the horizontal, and the smaller mass $(M \, \text{kg})$ hangs freely. The masses are stationary and at equilibrium, and the magnitude of the acceleration due to gravity is $g \, \text{m/s}^2$. What is the magnitude, in Newtons, of the normal reaction force N, on the larger mass?

- (A) $N = \frac{\sqrt{3}}{2}Mg$
- (B) N = Mg
- (C) $N = \sqrt{3}Mg$
- (D) N = 2Mg
- 7. Given that |z|=2, what is the greatest possible value of Arg (z+4i)?
 - (A) $\frac{\pi}{6}$
 - (B) $\frac{\pi}{3}$
 - (C) $\frac{2\pi}{3}$
 - (D) $\frac{5\pi}{6}$

- 8. A single die is rolled and the uppermost face noted. Let p represent the statement "the uppermost face is divisible by 3" and let q represent the statement "the uppermost face is divisible by 6". Considering the implication $p \Rightarrow q$, which of the following is correct?
 - (A) The negation is true and the converse is true.
 - (B) The negation is true and the converse is false.
 - (C) The negation is false and the converse is true.
 - (D) The negation is false and the converse is false.
- 9. If w is the complex root of $z^5 = 1$ with smallest positive argument, which of the following is false?
 - (A) $\operatorname{Re}(w+w^3) < 0$
 - (B) $Im(w + w^3) > 0$
 - (C) $Re(w + w^4) > 0$
 - (D) $\text{Im}(w + w^4) < 0$
- 10. Given that x and y are real numbers, which of the following is a true statement?
 - (A) $\forall y$, $\exists x$ such that $x^2 y^2 = x$
 - (B) $\forall y$, $\exists x$ such that $x^2 y^2 = y$
 - (C) $\forall y$, $\exists x$ such that $x^2 + y^2 = x$
 - (D) $\forall y$, $\exists x$ such that $x^2 + y^2 = y$

End of Section I

The paper continues in the next section

Section II

This section consists of long-answer questions.

Marks may be awarded for reasoning and calculations.

Marks may be lost for poor setting out or poor logic.

Start each question in a new booklet.

QUESTION ELEVEN	(15 marks)	Start a new answer booklet.	Marks
-----------------	-------------	-----------------------------	-------

- (a) Consider two complex numbers z = a + 2i and w = 1 ai, where a is real.
 - (i) Find zw in the form x + iy.
 - (ii) Find z aw in modulus-argument form.
 - (iii) Show that $(\overline{w})^2 + 2w$ is real.
- (b) Find the indefinite integrals:

(i)
$$\int \frac{e^x}{1 + e^{2x}} dx$$

(ii)
$$\int \sin^4 x \sin 2x \, dx$$

- (c) Sketch the region in the complex plane where the inequalities Re(z) < 1, Re(z) < Im(z), and $-\frac{\pi}{2} < \text{Arg}(z+1) < \frac{\pi}{4}$ all hold simultaneously.
- (d) A particle moving along the x-axis has acceleration a, velocity v and displacement x at time t. Initially, x = 0 and v = 2.

(i) If
$$v = x^2 + 1$$
, find a when $x = 3$.

(ii) If
$$a = x^2 + 1$$
, find v when $x = 3$.

(e) Consider the complex numbers u, v and z, such that u=2i, |v|=3 and z=uv. Find the exact value of |z-v|.

QUESTION TWELVE (

(15 marks)

Start a new answer booklet.

Marks

(a)

Let O, A and B be points in the complex plane representing the numbers 0, 6 + 2i and z. If $\triangle OAB$ is equilateral, with vertices in anti-clockwise order, determine the exact value of z in the form x + iy.

- (b) (i) Use the substitution $t = \tan \frac{x}{2}$ to show that $\int_0^{\frac{\pi}{2}} \frac{dx}{1 + \cos x + \sin x} = \ln 2$.
 - (ii) Hence use the substitution $x = \frac{\pi}{2} u$, to find the exact value of $\int_0^{\frac{\pi}{2}} \frac{x dx}{1 + \cos x + \sin x}.$
- (c) Given $z^4 2z^3 + 9z^2 6z + 18 = 0$ has $1 + i\sqrt{5}$ as a root, find all the roots.
- (d) Consider the line l with equation $\underline{x} = \begin{bmatrix} 7 \\ 4 \\ 13 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 7 \\ 10 \end{bmatrix}$ and the sphere S with equation $\boxed{3}$ $\begin{vmatrix} x \begin{bmatrix} 3 \\ -1 \\ 2 \end{vmatrix} \end{vmatrix} = 3$. Show that l touches S and find the point of contact Q.
- (e) Prove, using contraposition, that $\forall x, y \in \mathbf{Z}$, if $x^2(y+3)$ is even, then x is even or y is odd.

QUESTION THIRTEEN (15 marks) Start a new answer booklet. Marks

(a) Use integration by parts twice to find
$$\int x^3 (\log x)^2 dx$$
.

(b) Show that
$$(\cos \theta + i \sin \theta)^n (\sin \theta + i \cos \theta)^n = e^{\frac{ni\pi}{2}}$$
.

(c) (i) Show that
$$\frac{2}{(x+1)(x^2+1)} \equiv \frac{1}{x+1} - \frac{x-1}{x^2+1}$$
.

(ii) Let
$$I_n = \int_0^1 \frac{2x^n}{(x+1)(x^2+1)} dx$$
.

(a) Show that
$$I_0 = \frac{1}{2} \log 2 + \frac{\pi}{4}$$
.

- (β) By considering $I_0 + I_2$, or otherwise, find the exact value of I_2 .
- (d) (i) Give an example of positive integers m, n and p, where p is prime, such that $(2m+3)^2=n^2+p$.
 - (ii) Use proof by contradiction to show that if p is prime and n is a positive integer, then no positive integer m exists such that $(5m+3)^2 = n^2 + p$.

QUESTION FOURTEEN (15 marks) Start a new answer booklet.

Marks

- (a) Consider a typical point $R(1-2\lambda, 2+2\lambda, 3-\lambda)$ on the line l: $\underline{r} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} -2 \\ 2 \\ -1 \end{bmatrix}$, and a typical point $Z(0,0,\mu)$ on the z-axis, where λ and μ are non-zero parameters.
 - (i) Show that \overrightarrow{RZ} is perpendicular to the z-axis when $\mu + \lambda = 3$.
 - (ii) Find the values of μ and λ such that \overrightarrow{RZ} is perpendicular to both l and the z-axis.
 - (iii) Hence find the shortest distance between l and the z-axis.
- (b) (i) Show that $a^3 b^3 = (a b)(a^2 + ab + b^2)$.
 - (ii) Hence, or otherwise, show that for positive integers a and b, $(a^7+b^7)(a^2+b^2) \ge (a^5+b^5)(a^4+b^4).$

In the diagram, A, B and C lie on the positive x, y and z-axes respectively, and let $\overrightarrow{OA} = 4\underline{a}$, $\overrightarrow{OB} = 4\underline{b}$, $\overrightarrow{OC} = 4\underline{c}$, $\overrightarrow{AP} = \frac{1}{4}\overrightarrow{AB}$, $\overrightarrow{BQ} = \frac{1}{4}\overrightarrow{BC}$ and $\overrightarrow{CR} = \frac{1}{4}\overrightarrow{CA}$.

- (i) Show that $\overrightarrow{PQ} = -3\underline{a} + 2\underline{b} + \underline{c}$.
- (ii) It can also be shown that $\overrightarrow{QR} = -3\underline{b} + 2\underline{c} + \underline{a}$ (**do not** prove this). Show that $\overrightarrow{PQ} \cdot \overrightarrow{QR} = -3|\underline{a}|^2 6|\underline{b}|^2 + 2|\underline{c}|^2$.
- (iii) Given $|\underline{a}| = 2$ and $|\underline{b}| = 1$, show that if $\triangle PQR$ is right angled at Q, then it is also isosceles.

QUESTION FIFTEEN (15 marks) Start a new answer booklet.

Marks

1

2

(a) A projectile of unit mass is launched vertically upwards from the origin with an initial velocity of $\sqrt{3}\,g\,\mathrm{m/s}$, where $g\,\mathrm{m/s^2}$ is the acceleration due to gravity. The projectile experiences a resistive force of magnitude $\frac{v^2}{g}$ Newtons, where $v\,\mathrm{m/s}$ is the velocity of the particle after t seconds. The acceleration of the projectile is given by

$$\ddot{x} = -g - \frac{v^2}{g}.$$

- (i) Show that $v = g \tan\left(\frac{\pi}{3} t\right)$.
- (ii) Find an expression for the displacement x metres in terms of g and t.
- (iii) Show that the maximum height achieved by the particle is $g \ln 2$ metres.
- (iv) Derive an expression for x in terms of v^2 and show that this equation confirms the maximum height found in part (iii).
- (b) Consider the sequence of numbers: $1, -1, -5, -7, 1, 23, \dots$

These numbers can be generated using the recurrence relation

$$T_{n+2} = 2T_{n+1} - 3T_n$$
, for $n \ge 1$ with $T_1 = 1$ and $T_2 = -1$.

- (i) Use the recurrence relation to find T_7 .
- (ii) Show that the formula $T_n = \frac{\left(1 + i\sqrt{2}\right)^n + \left(1 i\sqrt{2}\right)^n}{2}$ generates T_1 and T_2 .
- (iii) Use Mathematical Induction to prove the formula for T_n in part (ii) works for all positive integers n.
- (iv) Show that the formula for T_n in part (ii) is equivalent to

$$T_n = \left(\sqrt{3}\right)^n \cos\left(n \tan^{-1} \sqrt{2}\right).$$

QUESTION SIXTEEN (15 marks)

15 marks) Start a new answer booklet.

Marks

(a) (i) Using a suitable trigonometric substitution, or otherwise, show that

3

$$\int_0^1 \sqrt{x - x^2} \, dx = \frac{\pi}{8}.$$

(ii) Given the integral $I_n = \int_0^1 x^{n+\frac{1}{2}} \sqrt{1-x} \, dx$, for integers $n \ge 0$, show that

2

$$I_n = \frac{2n+1}{2n+4} \ I_{n-1}.$$

(iii) Show that for integers $n \geq 0$:

3

$$\int_0^1 x^n \sqrt{x - x^2} \, dx = \frac{(2n+1)! \, \pi}{2^{2n+2} \, (n+2)! \, n!}.$$

- (b) (i) Using de Moivre's Theorem, or otherwise, show that $\frac{\sin 2k\theta}{\sin \theta \cos \theta}$, where k is a positive integer, can always be expressed as a polynomial in $\sin^2 \theta$.
 - (ii) Obtain the polynomial in $\sin^2\theta$ corresponding to $\frac{\sin 8\theta}{\sin\theta\cos\theta}$, and hence solve the equation: $z^6 6z^4 + 10z^2 4 = 0$.

——— END OF PAPER ————

(1)

B

C

(8)

$$3 \quad n^{2} = n^{2} \left(a^{2} - (x-c)^{2} \right)$$

$$4^{2} = n^{2} \left(3^{2} - (1)^{2} \right)$$

$$h^{2} = 2$$

 $n = \sqrt{2}$ $T = \sqrt{2}\pi = \sqrt{2}\pi$

Negation: PA~q Tive ~ (P⇒q) Converse: q => p True as 6 is divis by 3.

P >> 9

is false (3 yppermost)

(5) x=651 (5)=450 B=651(-1)=1200 y= 65 (= 60°, α+β+y= 225°

9 TM(W+W+)=0

(10) $\forall y, \exists x : x^2 - y^2 = x$ $(x - \frac{1}{2})^2 = y^2 + \frac{1}{4}$ eus 2 4 y , so always solutions Not the case for the others

Overall DBCADCCADA

Section II	
	(c) Re(3) 21, le(3) < Im(3)
(a) z=a+2i, w=1-ai.	I data to the I
	at least 2 21 Im
(1) zw = (a+2i)(1-ai)	at least 2 21 Im boundary ines 1 at least 2 dotted dots
$= a - a^2 \hat{a} + 2\hat{a} + 2a$	at least 2 21 Im boundary boundary hollow
$= 3a + (2-a^2)i$	
	-1
(1) $3-aw = a+2i-a(1-ai)$	correct & Coordinates not
= a+2i-a+a2i	correct / Coordinates ed
$= (a^2 + 2)i$	(J V V - 1 T
= (a2+2) CB 2 V	
	(d) t=0, x=0, v=2
(III) $(\bar{w})^2 + 2\omega = (1+ai)^2 + 2(1-ai)$	A22
$=1+2ai-a^2+2-2ai$	$(1) v = x^2 + 1 \alpha = v \cdot \frac{dv}{dx}$
= 3-a2 (Real)	$= (n^2+1)(2\kappa) \sqrt{2\kappa}$
(b) n n	$x=3 \Rightarrow \alpha = (3^2+1)(2\times3)$
(1) $\int \frac{e}{1 + e^{2n}} dn = \int \frac{e}{1 + (e^{2n})^2} dn$	= 60 V
	4(1.2)
= tar (ex) + c/	(1) a = oft (tv2) = 22+1
	をv2= まれ3+2+6/
(u)	t=0 x=0, v= 2 => c=2
$\int \sin^4 x \sin^2 x dx = \int \sin^4 x \left(2 \sin x \cos x \right) dx$	$v^2 = \frac{2}{3}x^3 + 2x + 4$ positive
	(0 × 17,2) = v= /3x3+2x+9/ Conly
= 2/sin x cos x dx	$n=3 \Rightarrow v=\sqrt{\frac{2}{3}(3)^3}+2(3)+4 = \sqrt{28}$
= \$500°x +C	
	(e) <u>(e)</u>
	0R = 2i, v =3, 8=uv
$ \xi - v = v u - 1 $ $= 3 -1 + 2i $	1 (3)
> 35	
- 3/3	= 145 or 315 V

(a) $\overrightarrow{B} = cis \frac{\pi}{3} \overrightarrow{OA}$	Using sum and product of roots
(a) OB = c15 \$ OA	α+β+1+is+1-is=2 αβ(1+is)(1-is)=18
A A	$\alpha + \beta = 2 \qquad \alpha \beta (1+5) = 18$
o de	$\alpha+\beta+1+\lambda (s+1-\lambda (s+2)) = 18$ $\alpha+\beta=2 \qquad \alpha\beta(1+\lambda (s)) = 18$ $\alpha=-\beta \qquad \alpha\beta=3 \qquad 2$ $\beta=3 \qquad 2$ $\beta=3 \qquad 2$
$z = 0\vec{B} = (\frac{1}{2} + \frac{13}{2}i)(6 + 2i)$	both
= 3+1 +3/31-13	From D ad D 2=-3 = d==13i, B=+Bi
= (3-13) + (1+353) i	Rosh, 1±15i, ±13i
2.41	
(b) (1) $t = t \ln \frac{\pi}{2} \Rightarrow \pi = t \ln^{-1}(2t)$, $d\pi = \frac{20t}{1+t^{-1}}$ $\pi = 0, t = 0$	(d) 1: $\zeta = \begin{pmatrix} 7 \\ 4 \\ 13 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 7 \\ 19 \end{pmatrix}$, S: $\left \zeta - \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \right = 3$
$I = \int_{0}^{1} \frac{2dt}{1+t^{2}+1-t^{2}+2t} \sqrt{x=\frac{\pi}{2}, t=1}$	sub 1 who s
Jo 186 11-6 726	$(7+2\lambda-3)^2+(4+7\lambda+1)^2+(13+10\lambda-2)^2=9$
= J dt = [ln/1+4] = ln2/	$\frac{(7+2\lambda-3)^2+(4+7\lambda+1)^2+(13+10\lambda-2)^2=9}{(4+7\lambda)^2+(5+7\lambda)^2+(11+10\lambda)^2=9}$
	16+161+42+25+701+492+121+2201+1002=9
(11) $x = \frac{\pi}{2} - u \Rightarrow dx = -du , x = 0, u = \frac{\pi}{2}$	$153\lambda^{2} + 306\lambda + 153 = 0$
x=E, U=O	$-\lambda^2 + 2\lambda + 1 = 0$
I= = (\frac{\xi - u)(-du)}{\xi + \cos(\xi - u) + \sin(\xi - u)}	$(\lambda+1)^{2}=0$, $\lambda=-1$
•	one solution, touches at Q: (7+2(-1), 4+7(-1), 13+10(-1)
= J + snu + (w) u	& Q 15 (5,-3,3)
1.00	
$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{du}{1 + \cos u + \sin u} - \frac{1}{2} \sqrt{\frac{1}{2}}$	
	(e) RTP Yny EZ, if x2(y+3) is even,
$\therefore 2I = \frac{\pi}{2} \ln 2 (from (1))$	then niseven or y is old,
	Contrapositive: RTP If n is odd and y is even
I= = = L V	then n' (y+3) is not ever (ie add)/
	let n=2k+1, y=2l, k, l ∈ Z
(e) z4-2z3+9z2-6z+18=0, Root: 1455i	The n2 (y+3) = (26+1)2 (2L+3)
Since the coefficiels are real, complex	=(412+4k+1)(21 +3)
roots come u conjugate pairs, herce 1-55i	=862/+1262+9k/+126+21+3
is also a root. Let the olders be d, B.	= 2(4k21+6k2+2k1+6k+1+1) +1
	which is odd.
	Here proven
	· · · · · · · · · · · · · · · · · · ·

	1 Inom
(13) (a) $I = \int x^3 (\log n)^2 dx$ Let $u = (\log n)^2$, $v = x^3$ $u' = 2\log n \left(\frac{1}{n}\right), v = \frac{1}{2}n^4$	$T_0 = \int_0^1 \left(\frac{1}{n+1} - \frac{2}{n^2+1} + \frac{1}{n^2+1} \right) dt \left(\frac{1}{n} \right)$
	=[In n+1 - the n+1 + + + + + + + + + + + + + + + + + +
$T = \frac{1}{4}x^{4} (\log x)^{2} - \frac{1}{2} \int x^{3} \log x dx$ $Ld \ U = \log x, \ V' = x^{3}$ $U' = \frac{1}{2}x^{4}, \ V = \frac{1}{4}x^{4}$	$= h2 - \frac{1}{2}h2 + \frac{\pi}{4} - (0 - \frac{1}{2}(0) + 0)$ $= \frac{1}{2}h2 + \frac{\pi}{4}.$
Let U=logn, V'= n3	= \frac{1}{2} + \frac{1}{4}.
$U=\frac{1}{2}$, $V=\frac{1}{4}x^4$	
	(B) $I_0 + I_2 = \int_0^1 \frac{2(1+x^2)}{(x+1)(x^2+1)} dx$
$I = \frac{1}{4} x^4 (\log n)^2 - \frac{1}{2} (\frac{1}{4} n^4 \log n - \frac{1}{4} \int n^3 dn)$	6
$= \frac{1}{4} x^4 (\log x)^2 - \frac{1}{8} x^4 \log x + \frac{1}{32} x^4 + C$	= [2h/x+1]o
= 32x4 [8(logn)2-4logn+1]+C	= 242-0
	= 2 ln 2
(b) etp (619+15119)"(sin0+1019)"= e 2	$: I_2 = 2 \ln 2 - (\frac{1}{2} \ln 2 + \frac{\pi}{4})$
<u> </u>	= 3h2-4.
LHS = (6)9+isno)(sho+ico19)	
= [cologia + i w o + i si o - supero] -	(d) (1) (2m+3) = n2+p true for
= 47	m=2, n=6, p=13 or equivalent
=(e ⁱ) ⁿ = e ⁿⁱ = ew	V
= e = ew	(11) Assume 3 m & Z+: (5m+3)2=n2+P,
	when it zt, p is print.
(c) (1) RTP $\frac{2}{(\lambda+1)(\lambda^2+1)} = \frac{1}{\lambda+1} = \frac{\lambda-1}{\lambda^2+1}$	
	So p= (5m+3) = n2
RUI = x2+1-(x-1)(x+1)	= (5m+3+n)(5m+3-n)
$(n+1)(n^3+1)$	If p is prime, (5m+3-n) =1 (the smaller
$= \frac{n^2+1-n^2+1}{(n+1)(n^2+1)}$ Show	So Sm + 2 = n
	V
$= \frac{2}{(\chi+1)(\chi^2+1)} = \chi \chi \chi \chi$	And $p = (5m + 3 + n) = (5m + 3 + 5m + 2)$
(X+1)(n2+1)	=5(2m+1)
(10) $I_{\Lambda} = \int_{0}^{1} \frac{2\pi^{\Lambda}}{(\pi + 1)(\pi^{2} + 1)} d\pi$	which is not prine.
(141) (141)	there a contendiction
(d) $I_0 = \int_0^1 \frac{2}{(x+1)(x^2+1)} dx$: 3 no m & Z+ : (5m+3) = n2+p
J C 70	

AND ADDRESS OF THE PARTY OF THE	
14 λ : $C = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix}$, $R(1-2\lambda, 2+2\lambda, 3-\lambda)$ $Z(0, 0, \mu)$	(c) $\overrightarrow{OA} = 40$ $\overrightarrow{OB} = 45$
(1) $RZ \cdot z - \alpha us = \begin{pmatrix} -1+7\lambda \\ -2-2\lambda \\ \mu - 3 + \lambda \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0$	B 9 9
$(\mu \stackrel{\downarrow}{\downarrow} 0) \stackrel{\downarrow}{\downarrow} \mu (\mu \stackrel{\downarrow}{\downarrow} 3 + \lambda) = 0 \Rightarrow \mu + \lambda = 3 \bigcirc$	$\overrightarrow{AP} = \frac{1}{4}\overrightarrow{AB}, \overrightarrow{BQ} = \frac{1}{4}\overrightarrow{BC}, \overrightarrow{CR} = \frac{1}{4}\overrightarrow{CA}$
(11) $R^{-2} = \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix} = 2 - 4\lambda - 4 - 4\lambda - 11 + 3 - \lambda = 0$	(1) $\overrightarrow{AP} = \frac{1}{4}(4b-4a) = b-a$
y - μ - 9 x = -1 (DV	0P = 0A + AP = 4a+2-a = 3a+6
$() + (2) \Rightarrow -8\lambda = 2 \Rightarrow \lambda = -\frac{13}{4} \mu = \frac{13}{4}$	BQ = 4(4c-4b) = 5-b
(b) (1) (4) (4)	$ \frac{\partial \vec{Q}}{\partial \vec{Q}} = \frac{\partial \vec{Q}}{\partial \vec{Q}} + \frac{\partial \vec{Q}}{\partial \vec{Q}} = \frac{\partial \vec{Q}}{\partial \vec{Q}} + \partial$
(III) R is $(1-2(-\frac{1}{4}), 2+2(-\frac{1}{4}), 3-(-\frac{1}{4}))$	= -3a +2b +C
$u \left(\frac{3}{2}, \frac{3}{2}, \frac{13}{4}\right), Z(0, 0, \frac{13}{4})$	- 34120 12
Shorlest Distance = \((\frac{2}{2})^2 + (\frac{2}{2})^2 + 0^2	(11) Gren QR = -36 +2 = +a
$= \frac{3}{\sqrt{2}} \text{ ar } \frac{3\sqrt{2}}{2} \text{ vaits}$	Pa · ad = (-3a+2b+c) · (-3b+2c+a)
	= 9 a.b -6a.c-3 a 2-6 2 2+4b.c
(b) (1) RTP a3-b3=(a-b)(a2+ab+b2)	+2a.b.3b.c+2 c 2+ a.c.
$pus = a^3 + a^2b + ab^2 - a^2b - ab^2 - b^3$ $= a^3 - b^3$	= -3(a12-6(b)2+2(c)2 since
	0.6=0.6=0.6=0
= LMS	(axis perpendiular).
(11) RTP (a7+67)(a2+62) 7, (a5+65)(a4+64)	
9 31 27 0 19 < 4 4 < 6	$\Rightarrow 0 = -3(2)^{2} - 6(1)^{2} + 2(2)^{2}$ $\Rightarrow 18 = 2(2)^{2} \Rightarrow 2 ^{2} = 9 \Rightarrow 2 = 3$
LUS-RUS = a+ab+ab+b-(a+ab+ab+ba)	⇒ 18=2 c 2=> c 2=4 => c =3
$= a^{7}b^{2} - a^{4}b^{5} + a^{5}b^{4} + a^{2}b^{7}$	So $a = \begin{pmatrix} 2 \\ 8 \end{pmatrix}, b = \begin{pmatrix} 6 \\ 6 \end{pmatrix}, c = \begin{pmatrix} 8 \\ 3 \end{pmatrix}$
$= a^4b^2(a^3-b^3) + a^2b^4(a^3-b^3)$ $= (a^3+3)a^3+b^2(a^3+b^2)$	
$= (a^{3}b^{3})a^{3}b^{2}(a^{2}-b^{2})$ $= (a-b)(a^{3}+ab+b^{2})a^{3}b^{2}(a+b)(a-b)$	$\vec{R}\vec{S} = \begin{pmatrix} -6 \\ \frac{1}{3} \end{pmatrix}$, $ \vec{R}\vec{S} ^2 = 36 + 4 + 9 = 49$
$= a^{2}b^{2}(a-b)^{2}(a+b)(a^{2}+ab+b^{2})$	QR = (-3), QR 2=4+9+36=49
> o for a b E Z + Some	: 1001 = 1000 = 7 Apple 1505colus.

(1) $\frac{15}{4}$ (a) $\frac{1}{-9} \frac{v^2}{9}$ $t=0, n=0, v=\sqrt{3}g$ $\frac{n}{2} = -g - \frac{v^2}{9}$ (1) $\frac{dv}{dt} = -\frac{g^2 + v^2}{9}$	So $z = \frac{9}{2} \ln \left(\frac{4g^2}{g^2 + v^2} \right)$ and $v = 0 \Rightarrow x = \frac{9}{2} \ln 4 = \frac{9}{2} \ln 2^2 = g \ln 2$ (b) $1, -1, -5, -7, 1, 23, \cdots$ $T_{n+1} = 2T_{n+1} - 3T_n$, $T_1 = 1, T_2 = -1$
$t = -g \int \frac{1}{g^2 + v^2} dv$ $= -\tan^2\left(\frac{v}{g}\right) + c_1.$	(1) $T_7 = 2T_6 - 3T_5$ = $2 \times 23 - 3 \times 1$
t=0, v=13g => (=+153= == == == == == == == == == == == == =	= 43 (max) (max)
ten 1(3) = 3-6 v = g +en (3-6)	(11) Tn = { ((1+ist2)" + (1-ist2)") T1 = { ((1+ist2)" + (1-ist2)") = 1 }
(11) 2= 59 th (\$-t) at = 95 sin (\$-t) at Gs(\$-t)	T=====================================
= g /n/ tos (3-t) + c2 V	= \(\frac{1}{2} \left(-2 \right) = -1 \\ \left(\text{w} \right) \(\text{Tr} \left(\text{o} \right) \)
t=0, x=0 => cz=-gh/w引=-gh(な)	(111) In (11), we have shown the result is true when n=1 ad n=2.
= 942	
: x=g ln[2 ws(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Assume it is true for n=k ad n=k+2 try to show it is true for n=k+2
(111) v=0 in (1) => t= \frac{1}{3} then in (2) 7	
= g ln 2600 = g ln 2 Max height.	u Assume Tr = 2 ((1+ist) + (1-ist)) and Try = 2 ((1+ist) + (1-ist) + (1-ist)
(IV) v. dv = - 92+ v2	RTP Tetz = 2 ((1+ist) 142+ (1-ist) 142)
$x = \int \frac{-gv}{g^2 + v^2} dv$	Now Tk+2 = 2 Tk+1 - 3 Tk
$= -\frac{9}{2}\ln g^2+v^2 + C_3 $	= 2×2((1+iv2)*++(1-iv2)*+1)
x=0, v= \(\bar{3}g => C3 = \frac{9}{2} \text{ In 4g}^2	-3×2 ((1+1/2) + (1-1/2))

= 1/13) (265 10)

(B) Cosn (tri J2))

(6) (a) I= 5 Jn-22 dn Let x-2= 2500	(11) In= 5 x 1-x dx integral 120.
(1) $dz = \frac{1}{2} \log \theta d\theta$	
$I = \int_0^1 \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} (x-\frac{\pi}{2})^2 dx \qquad \begin{cases} x=0, \theta=-\frac{\pi}{2} \end{cases}$	Let $u = x^{n+\frac{1}{2}}$, $v' = (1-x)^{\frac{1}{2}}$ $u' = (n+\frac{1}{2})x^{n-\frac{1}{2}}$, $v = -\frac{2}{3}(1-x)^{\frac{3}{2}}$
$\{x=1, \theta=\frac{\pi}{2}\}$	u'=(n+を)2000 1-2 (1-2)=
= 1 1 + 4 5 w 2 2 600 do	Λ
	In=[-== x^++2(1-x)] += (n+2) (1-x) = x^-2/dn
= 4 5 costo do (No mention	
a su lichalle	$= [0-0] + \frac{2n+1}{3} \int_{0}^{1} \sqrt{1-x(1-n)} x^{n-\frac{1}{2}} dx$
= 18 J# (1+6029) d9	
	$=\frac{2n+1}{3}\left(\int_{0}^{1}\sqrt{1-n}\left(n^{n-\frac{1}{2}}-2n^{n+\frac{1}{2}}\right)dn\right)$
= \$ [0 + tsin 29] T	
	3 In = (2n+1) (In-1 - In)
= 18 (至+0-(-至+0))	(2n+4) In = (2n+1) In-1
= # _ V	$I_{n} = \frac{2n+1}{2n+4} I_{n-1}$
(OR)	
	(11) $\int_{0}^{1} x^{n} \sqrt{n-x^{2}} dx = \int_{0}^{1} x^{n+\frac{1}{2}} \sqrt{1-x} dx = I_{n}$
$I=\int \sqrt{n-n^2} dn$ Let $n=sin^2\theta$	T
dx = 254961919	$= \frac{(2n+1)}{(2n+4)} \cdot \frac{2(n-1)+1}{2(n-1)+4} \times I_{n-2} \cdot \left(\frac{1}{2} \cdot \frac{1}{8} \cdot \frac{1}{8} \cdot \frac{1}{1}\right)$
I= 1 / Shi 9 (1-51) 25h 9609 d9 / N=0, 0=0	(2n+4) 2(n-1)+4°
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- (2n+1)(2n-1)(2n-3) ··· 5 × 3 × 8 I ···
$=\int_{0}^{\infty} 2(\sin\theta\cos\theta)^{2}d\theta$	(2n+4)(2n+2)(2n) 8 × 6 4×2 (2n+4)(2n+2)(2n) 8 × 6 4×2 (need to be
1	"Kneed hown shown
= 1 5 sin 20 do	$= \frac{(2n+1)(2n-1)(2n-3)\cdots 5\times 3}{2^{n+2}(n+2)!} \times \frac{(2n)(2n-2)\cdots 4\times 2}{2^n} \times \frac{\pi}{2^n}$
/ ·	2 ⁿ⁺² (n+2)! 2 ⁿ n!
= 45 (1-6449) 19	
Ţ	= (2n+1)(2n)(2n-1)(2n-2) 5×4×3×2×TT
$= \frac{1}{4} \left[0 - \frac{1}{4} \sin 40 \right]_{0}^{\frac{\pi}{4}}$	$= \frac{(2n+1)(2n)(2n-1)(2n-2)\cdots 5\times 4\times 3\times 2\times 17}{2^{2n+2}(n+2)!}$
= 4[=-0-(0-0)]	= (2n+1)! TT
= 1	22n+2 (n+2)! n!
× ·	*

(Continued)	
(6) (11) (OR)	Hence sindless is a polynomial in sin20.
Using Mathematical Induction	
(arthre only here)	(11) For k=4 Sin 80 = (8) (1-52)3-(8) (1-52)252
RTP $I_n = (2n+1)! T$	+(8/5)(1-52)(52)2-(9/7)(52)3
22n+2 (n+2)! n!	. V
11 -	= 8(1-352+364-56) - 56 (52-254+56)
Base Case: Io= 1: # = #	+ 56 (54-56) - 856
	= 8-245+2454-856-5652+11254-5656
Assume Ix = (2k+1)! IT	+5654-5656-856
22k+2 (k+2)! k!	
/	$= -2(64s^6 - 96s^4 + 40s^2 - 4)$
Try to show Ikt = (2K+3)! IT	
22K+4 (K+3)! (K+1)!	For 36-68+1032-4=0, 6+ 3=2500=25
Relatively straightforward using the	S- 645 - 965 + 405 - 4=0
recurrence relation I Htt = (2(k+1)+1) Interest (2(k+1)+4)	= su80=0, but sin0+0, 600+0)
(2(k+1) + 4) \/	· /V
	2. 80 = kT , k≠4n, n ∈ Z J
(b) Let c= ws , s=sin0	0 = km
(1) By de Moire (c+is) = 652k0+ i sin2k0	Let k=-3,-2,-1, 1, 2, 3
Abo	$\theta = -\frac{3\pi}{8}, -\frac{\pi}{4}, -\frac{\pi}{8}, \frac{\pi}{8}, \frac{3\pi}{4}, \frac{3\pi}{8}$
(c+is)2k = c2k + (2k) 2k-1 is - (2k) 2k-2 = -	
(2k) c2k-3 is3 + · · ·	So z = 2 sin(-3#), 2 sin(-#), 2 sin(-#),
Egonting Imaginary parts.	25in(=), 25in(=), 25in(==)
	2 -
sinzko = (2k) 2k-1 - (2k) 2k-3 3 + (3k) 2k-3 5 - 5	2 So 3 = ± 25/18, ± √2, ± 25/18 V
	8
5012KD = (2k) 2k-2 (2k) 2k-4 2 (2k) 2k-6 4 - 000	Q
$= \binom{2k}{1} \binom{1-s^2}{1} - \binom{2k}{3} \binom{1-s^2}{5^2} + \binom{2k}{5^2} \binom{1-s^2}{5^4} + \binom{2k}{5^2} \binom{1-s^2}{5^2} \binom{1-s^2}{5^2} \binom{1-s^2}{5^2} + \binom{1-s^2}{5^2} \binom{1-s^2}{5^2} + \binom{1-s^2}{5^2} 1-s$	