Consistency Models

Сорокин Дмитрий БПМИ203

Что такое диффузионные модели?

- Итеративно искажаем изображение, всего Т итераций
- Получаем понятное распределение
- Обучаем модель удалять шум:
 получаем изображение шага t-1 из t
- Модель умеет определять шум добавленный на этапе (t-1) -> t

В итоге умеем превращать шум в изображение

One-step генеративные модели

- Сразу обучаются находить исходное распределение (condition-sample)
- Экономим ресурсы, но жертвуем качеством

Consistency models мотивация

One-step модели

Важная особенность

Метод должен быть самосогласованным (self-consistent)

Аппроксимируем исходное распределение

Pretrained diffusion + ODE

$$d\mathbf{x}_t = \boldsymbol{\mu}(\mathbf{x}_t, t) dt + \sigma(t) d\mathbf{w}_t,$$

$$\mathbf{dx}_t = \left[\boldsymbol{\mu}(\mathbf{x}_t, t) - \frac{1}{2} \sigma(t)^2 \nabla \log p_t(\mathbf{x}_t) \right] \mathbf{d}t.$$

$$\boldsymbol{\mu}(\mathbf{x}, t) = \mathbf{0} \text{ and } \sigma(t) = \sqrt{2t}.$$

$$s_{\boldsymbol{\phi}}(\mathbf{x}, t) \approx \nabla \log p_t(\mathbf{x})$$

$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = -t\boldsymbol{s}_{\boldsymbol{\phi}}(\mathbf{x}_t, t).$$

Идейно:

- С помощью SDE генерируем шум для какого то временного отрезка
- Начинаем решать ODE и аппроксимируем неизвестное распределение скор-функцией
- Вспоминаем, что решаем задачу с гауссовым распределением и сокращаем уравнение
- Генерируем шум и получаем траекторию data-noise
- Решаем ODE в обратном порядке и получаем аппроксимацию нашего распределения

Consistency model

• Определение

$$\{\mathbf{x}_t\}_{t\in[\epsilon,T]}$$
 $\mathbf{f}: (\mathbf{x}_t,t)\mapsto \mathbf{x}_{\epsilon}.$ $\mathbf{f}(\mathbf{x}_t,t)=\mathbf{f}(\mathbf{x}_{t'},t') \text{ for all } t,t'\in[\epsilon,T].$

• Параметризация

1)
$$f_{\boldsymbol{\theta}}(\mathbf{x},t) = \begin{cases} \mathbf{x} & t = \epsilon \\ F_{\boldsymbol{\theta}}(\mathbf{x},t) & t \in (\epsilon,T] \end{cases}$$
. 2) $f_{\boldsymbol{\theta}}(\mathbf{x},t) = c_{\mathrm{skip}}(t)\mathbf{x} + c_{\mathrm{out}}(t)F_{\boldsymbol{\theta}}(\mathbf{x},t),$ *c - просто индикаторные функции

• Семплирование

Теперь можем сгенерировать случайный шум нормальным распределением N(0, T*T*I), применить функцию f(X, T) и получить желаемый результат

Consistency model

Такой подход позволяет применить "процедуру замены" подобно тому как это устроено для диффузионных моделей и решать zero-shot задачи!

Algorithm 1 Multistep Consistency Sampling

```
Input: Consistency model f_{\theta}(\cdot, \cdot), sequence of time points \tau_1 > \tau_2 > \cdots > \tau_{N-1}, initial noise \hat{\mathbf{x}}_T \mathbf{x} \leftarrow f_{\theta}(\hat{\mathbf{x}}_T, T) for n=1 to N-1 do Sample \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \hat{\mathbf{x}}_{\tau_n} \leftarrow \mathbf{x} + \sqrt{\tau_n^2 - \epsilon^2} \mathbf{z} \mathbf{x} \leftarrow f_{\theta}(\hat{\mathbf{x}}_{\tau_n}, \tau_n) end for Output: \mathbf{x}
```

Distillation / Isolation

Дистилляция:

- Берем предобученную скор функцию и следуем обычному пайплайну
- Аппроксимируем х' на текущем шаге из предыдущих шагов
- Считаем х на текущем шаге
- Считаем лосс как dst(x, x')
- Обновляем градиент
- Повторяем до сходимости

Изоляция:

 Можем оценить скор функцию следующей по одной из математических лемм

$$\nabla \log p_t(\mathbf{x}_t) = -\mathbb{E}\left[\frac{\mathbf{x}_t - \mathbf{x}}{t^2} \mid \mathbf{x}_t\right],$$

- Теперь можем ничего не аппроксимировать а считать х' напрямую, используя лишь консистентую функцию предыдущего шага
- Дальше все как при дистилляции
- Повторяем до сходимости

Эксперименты

synthetic data construction for distillation.

METHOD	NFE (↓)	FID (↓)	IS (†
Diffusion + Samplers			
DDIM (Song et al., 2020)	50	4.67	
DDIM (Song et al., 2020)	20	6.84	
DDIM (Song et al., 2020)	10	8.23	
DPM-solver-2 (Lu et al., 2022)	10	5.94	
DPM-solver-fast (Lu et al., 2022)	10	4.70	
3-DEIS (Zhang & Chen, 2022)	10	4.17	
Diffusion + Distillation			
Knowledge Distillation* (Luhman & Luhman, 2021)	1	9.36	
DFNO* (Zheng et al., 2022)	1	4.12	
1-Rectified Flow (+distill)* (Liu et al., 2022)	1	6.18	9.0
2-Rectified Flow (+distill)* (Liu et al., 2022)	1	4.85	9.0
3-Rectified Flow (+distill)* (Liu et al., 2022)	1	5.21	8.7
PD (Salimans & Ho, 2022)	1	8.34	8.6
CD	1	3.55	9.4
PD (Salimans & Ho, 2022)	2	5.58	9.0
CD	2	2.93	9.7
Direct Generation			
BigGAN (Brock et al., 2019)	1	14.7	9.2
Diffusion GAN (Xiao et al., 2022)	1	14.6	8.9
AutoGAN (Gong et al., 2019)	1	12.4	8.5
E2GAN (Tian et al., 2020)	1	11.3	8.5
ViTGAN (Lee et al., 2021)	1	6.66	9.3
TransGAN (Jiang et al., 2021)	1	9.26	9.0
StyleGAN2-ADA (Karras et al., 2020)	1	2.92	9.8
StyleGAN-XL (Sauer et al., 2022)	1	1.85	
Score SDE (Song et al., 2021)	2000	2.20	9.8
DDPM (Ho et al., 2020)	1000	3.17	9.4
LSGM (Vahdat et al., 2021)	147	2.10	
PFGM (Xu et al., 2022)	110	2.35	9.6
EDM (Karras et al., 2022)	35	2.04	9.8
1-Rectified Flow (Liu et al., 2022)	1	378	1.1
Glow (Kingma & Dhariwal, 2018)	1	48.9	3.9
Residual Flow (Chen et al., 2019)	1	46.4	
GLFlow (Xiao et al., 2019)	1	44.6	
DenseFlow (Grcić et al., 2021)	1	34.9	
DC-VAE (Parmar et al., 2021)	1	17.9	8.2
СТ	1	8.70	8.4
CT	2	5.83	8.8

Table 1: Sample quality on CIFAR-10. *Methods that require Table 2: Sample quality on ImageNet 64 × 64, and LSUN Bedroom & Cat 256 × 256. †Distillation techniques.

METHOD	NFE (\lambda)	FID (↓)	Prec. (†)	Rec. (†)
ImageNet 64 × 64				
PD [†] (Salimans & Ho, 2022)	1	15.39	0.59	0.62
DFNO [†] (Zheng et al., 2022)	1	8.35		
CD^{\dagger}	1	6.20	0.68	0.63
PD [†] (Salimans & Ho, 2022)	2	8.95	0.63	0.65
CD^{\dagger}	2	4.70	0.69	0.64
ADM (Dhariwal & Nichol, 2021)	250	2.07	0.74	0.63
EDM (Karras et al., 2022)	79	2.44	0.71	0.67
BigGAN-deep (Brock et al., 2019)	1	4.06	0.79	0.48
CT	1	13.0	0.71	0.47
CT	2	11.1	0.69	0.56
LSUN Bedroom 256 × 256				
PD [†] (Salimans & Ho, 2022)	1	16.92	0.47	0.27
PD [†] (Salimans & Ho, 2022)	2	8.47	0.56	0.39
CD [†]	1	7.80	0.66	0.34
CD [†]	2	5.22	0.68	0.39
DDPM (Ho et al., 2020)	1000	4.89	0.60	0.45
ADM (Dhariwal & Nichol, 2021)	1000	1.90	0.66	0.51
EDM (Karras et al., 2022)	79	3.57	0.66	0.45
PGGAN (Karras et al., 2018)	1	8.34		
PG-SWGAN (Wu et al., 2019)	1	8.0		
TDPM (GAN) (Zheng et al., 2023)	1	5.24		
StyleGAN2 (Karras et al., 2020)	1	2.35	0.59	0.48
CT	1	16.0	0.60	0.17
CT	2	7.85	0.68	0.33
LSUN Cat 256 × 256				
PD [†] (Salimans & Ho, 2022)	1	29.6	0.51	0.25
PD [†] (Salimans & Ho, 2022)	2	15.5	0.59	0.36
CD [†]	1	11.0	0.65	0.36
CD [†]	2	8.84	0.66	0.40
DDPM (Ho et al., 2020)	1000	17.1	0.53	0.48
ADM (Dhariwal & Nichol, 2021)	1000	5.57	0.63	0.52
EDM (Karras et al., 2022)	79	6.69	0.70	0.43
PGGAN (Karras et al., 2018)	1	37.5		
StyleGAN2 (Karras et al., 2020)	1	7.25	0.58	0.43
CT	1	20.7	0.56	0.23
CT	2	11.7	0.63	0.36

- Среди дистилляций над диффузиями показывает лучший результат
- В основном лучше one-step методов, но проигрывает некоторым ганам
- Лучше дистилляций, но как отдельный метод отстает от конкурентов
- Результаты схожи с предыдущим датасетом
- Такая же картина

Zero-shot результаты

(a) Left: The gray-scale image. Middle: Colorized images. Right: The ground-truth image.

(b) Left: The downsampled image (32 \times 32). Middle: Full resolution images (256 \times 256). Right: The ground-truth image (256 \times 256).

(c) Left: A stroke input provided by users. Right: Stroke-guided image generation.

Вывод

- Неплохо справляется с широким спектром задач
- Превосходит аналогичные методы
- Хуже генерирует изображения, чем ГАНы
- Может справляться с zero-shot задачами, но едва ли лучше чем диффузии