Causal Inference

Nahomi Ichino

26 June 2023

Randomized experiments

How can we learn the average causal effect from an experiment?

Randomized experiments vs observational studies

Randomized experiments

Review: Core elements of a randomized experiment

- You have a treatment.
- You randomly assign treatment to units.
- ➤ You compare the outcomes for the units that were assigned to treatment to outcomes for those that were not.

What can you learn from an experiment?

The average causal effect of the treatment T on an outcome Y for the units that you have in your study.

- ➤ You have to clearly define what the treatment means and what it means to not have the treatment.
- ► The units in your study might or might not be representative of a larger population.

What do we mean by "T causes Y"?

- ▶ We're going to take the counterfactual approach.
- "T causes Y" is a claim about what didn't happen.
 - "If T had not occurred, then Y would not have occurred."
 - "With T, the probability of Y is higher than would be without T."
- "T causes Y" requires a context
 - Matches cause flame but require oxygen.
 - Small classrooms improve test scores but require experienced teachers and funding.
- "T causes Y" doesn't mean "W does not cause Y."

How can we learn the average causal effect from an experiment?

We have 12 units

8/33

$Y_i(1)$, the outcome each unit would have if treated

true average of Y(1) = 5.25

$Y_i(0)$, the outcome each unit would have if not treated

true average of Y(0) = 4.75

Each unit has both $Y_i(1)$ and $Y_i(0)$

7 5 3 3 6 4 2 3

 5
 8
 6
 5
 5
 8
 5
 4

 3
 7
 6
 5
 2
 7
 6
 5

true average of Y(1) = 5.25

true average of Y(0) = 4.75

So each unit has a treatment effect $\tau_i = Y_i(1) - Y_i(0)$

true average treatment effect = 0.5

The causal effect of treatment is $\tau_i = Y_i(1) - Y_i(0)$

- 1. Each individual unit *i* has its own causal effect τ_i .
- 2. But we can't measure the individual-level causal effect, because we can't observe both $Y_i(1)$ and $Y_i(0)$ at the same time. This is known as the fundamental problem of causal inference.

Let's go back to the $Y_i(1)$

7	5	3	3
5	8	6	5
3	7	6	5

We can take a random sample of these $Y_i(1)$

average Y(1) of sample #1 = 5

We can take another random sample of these $Y_i(1)$

average Y(1) of sample #2 = 5.5

And another!

average Y(1) of sample #3 = 5.67

Let's get back to the $Y_i(0)$

true average of Y(0) = 4.75

And we can take a random sample of these $Y_i(0)$

average Y(0) of sample #1 = 4.83

A random assignment

7

(3)

4

2

〔5〕

(

5

4

(3)

(7)

(5

(6

average Y(1) of sample #1 = 5

average Y(0) of sample #1 = 4.83

Put them together

5 - 4.83 = 0.17

A different random assignment

 7
 4
 2
 3

 5
 8
 6
 5

 2
 7
 6
 5

$$5.5 - 4.5 = 1$$

Randomization is powerful

- ► Randomization creates groups that are similar except that one will receive the treatment and the other will not.
- ▶ So when we compare the two groups after one has received treatment, we can attribute the difference to (1) the effect of the treatment and (2) chance.
- ▶ Without randomization, it's hard to tell whether differences in the outcome are due to (1) treatment or (2) some other factor correlated with it.

Let's be more precise about randomization

- It doesn't mean haphazard or having no control!
- Randomization means that every observation has a known probability of assignment to experimental conditions between 0 and 1.
 - No unit in the experimental sample is assigned to treatment with certainty (probability = 1) or to control with certainty (probability = 0).

Core assumptions

We need to make sure we don't violate two core assumptions behind our theoretical infrastructure as we design our randomized experiments:

- Excludability.
- Stable unit treatment value assumption (SUTVA).

Core assumption 1: SUTVA, part 1

- No interference A subject's potential outcome reflects only whether that subject receives the treatment himself/herself. It is not affected by how treatments happen to be allocated to other subjects.
 - A classic violation is the case of vaccines and their spillover effects.
 - Say I am in the control condition (no vaccine). If whether I get sick $(Y_i(0))$ depends on other people's treatment status (whether they take the vaccine), it's like I have two different $Y_i(0)$!

Core assumption 1: SUTVA, part 2

2. No hidden variations of the treatment

- Say treatment is taking a vaccine, but there are two kinds of vaccines and they have different ingredients.
- An example of a violation is when whether I get sick when I take the vaccine $(Y_i(1))$ depends on which vaccine I take. We would have two different $Y_i(1)$!

Core assumption 2: Excludability

- ► Treatment assignment has no effect on outcomes except through its effect on whether treatment was received.
 - Important to define receiving treatment precisely.
 - ► Treatment and control groups should be treated the same, except for the actual treatment.

Randomized experiments vs observational studies

Different types of studies

- Randomized studies
 - Randomize treatment, then go measure outcomes.
 - We can attribute differences in outcomes to the treatment (plus noise).
- Observational studies
 - Treatment is not randomly assigned. It is observed, but not manipulated.
 - Differences might be due to underlying differences (selection bias) or the treatment (plus noise). It's often very hard to tell.

What is the advantage of randomization?

- If the intervention is randomized, then who receives or doesn't receive the intervention is not related to the characteristics of the potential recipients.
- With randomization, those who were randomly selected to not receive the intervention are good stand-ins for the counterfactuals for those who were randomly selected to receive the treatment, and vice versa.
- ▶ This is not assured in observational studies.

Internal validity

- Randomized studies have high internal validity confidence that we have learned the causal effect of a treatment on an outcome.
- ► An advantage over observational studies that have to invoke other strong assumptions to make the same claim.

Generalizability

- ► The finding from a particular study in one particular place and at one particular time may not hold in other settings (i.e., not have external validity).
- ▶ This is a general concern for observational studies as well, not just a concern for randomized studies.
 - ► EGAP's Metaketa Initiative works to accumulate knowledge by pre-planning a meta-analysis of multiple studies that have high internal validity due to randomization.