## In-Lab Group Activity for Week 8: Curve Fitting and Norms

**Spring 2022** 

Name:

Cole first

**Bardin** last

**Problem 1: Norms**: 1-norm, 2-norm and  $\infty$ -norm, orthogonality Consider these four vectors from  $\mathbb{R}^5$ .

$$\vec{\mathbf{a}} = \begin{bmatrix} -3 \\ -2 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\vec{\mathbf{b}} = \begin{bmatrix} 2\\0\\2\\2\\2\\2 \end{bmatrix}$$

$$\vec{\mathbf{c}} = \begin{bmatrix} 0 \\ 0 \\ 4 \\ 0 \\ 0 \end{bmatrix}$$

$$\vec{\mathbf{d}} = \begin{bmatrix} 2\\3\\1\\-1\\1 \end{bmatrix}$$

- **a.** Which of these vectors has the largest  $\infty$ -norm?
- $\vec{a}$

 $\vec{a}$ 

 $\vec{\mathbf{b}}$ 

Ď

- $\vec{\mathbf{d}}$

- **b.** Which of these vectors in  $\mathbb{R}^5$  has the smallest **1-norm**?

- đ

- **c.** Do all the vectors have the same **2-norm** as  $\vec{a}$ ?
- Yes

No

**d.** Which of these vectors is orthogonal to  $\vec{\mathbf{a}}$ ? Use the 2-norm.

- $\vec{\mathbf{a}}$
- $\vec{\mathbf{b}}$
- $\vec{\mathbf{c}}$
- $\vec{\mathbf{d}}$

- **e.** What is the angle  $\theta$  (in degrees) between vectors  $\vec{a}$  and  $\vec{b}$ ? Use the 2-norm.
  - **i.** 0
- ii. 45
- iii. 60
- iv. 90
- **v.** 120

- **f.** Find the <u>cosine</u> of the angle  $\theta$  between vectors  $\vec{a}$  and  $\vec{c}$ .
  - Use the 2-norm.  $\mathbf{i.} 0$
- ii.  $\frac{1}{2}$  iii.  $\frac{1}{3}$

**Problem 2: Curve Fitting:** Six data points have these x-values and y-values: 
$$\vec{\mathbf{x}} = \begin{bmatrix} -2 \\ -1 \\ 1 \\ 2 \\ 5 \end{bmatrix}$$
 and  $\vec{\mathbf{y}} = \begin{bmatrix} -4 \\ 0 \\ 2 \\ 0 \\ -18 \end{bmatrix}$ 

**a.** Record the design matrix D you would use to find the best-fit <u>line</u>:  $y = \beta_0 + \beta_1 x$   $D = [\vec{1} \ \vec{x}] =$ 





- **b.** The product  $D^TD$  for your design matrix is:  $D^TD = \begin{bmatrix} c & 0 \\ 0 & 60 \end{bmatrix}$ . What is the value of c? c =
- **c.** Find the inverse of  $D^TD$ and place it in the adjacent box.

The inverse of 
$$D^TD$$
 is:
$$(D^TD)^{-1} = \begin{bmatrix} 1/6 & 0\\ 0 & 1/60 \end{bmatrix}$$

**d.** Solve the normal equation  $(D^TD)\vec{\beta} = D^T\vec{y}$  to find the vector  $\vec{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$  with the best-fit parameters for the line.

Here's 
$$D^T \vec{\mathbf{y}} = \begin{bmatrix} -48 \\ 60 \end{bmatrix}$$
 for free! Use it!

Parameter vector 
$$\vec{\beta} = (D^T D)^{-1} D^T \vec{y}$$
.

$$\vec{\beta} = \begin{bmatrix} -8 \\ 1 \end{bmatrix}$$

e. It can be shown that the best-fit line gives the estimates

e. It can be shown that the best-fit line gives the estimate 
$$\vec{\mathbf{y}}_{est} = D\vec{\boldsymbol{\beta}} = \begin{bmatrix} -13 \\ -10 \\ -9 \\ -7 \\ -6 \\ -15 \end{bmatrix}$$
. i. Find the error vector:  $\vec{\mathbf{y}} - \vec{\mathbf{y}}_{est}$ .

Error
i. vector:  $\begin{bmatrix} -15 \\ 6 \\ 9 \\ 6 \end{bmatrix}$ 

ii. Then give the missing value k for the RMSE =  $\sqrt{\frac{\vec{e}^T \vec{e}}{N}}$ 



ii. RMSE =  $\sqrt{k}$  where 114

**f.** Let's start over and try a **parabolic** fit. Record the new design matrix D you would use to find the best-fit **parabola**:  $y = \beta_0 + \beta_1 x + \beta_2 x^2$ 

Parabolic design matrix D:

$$\begin{bmatrix} 1 & -5 & 25 \\ 1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 5 & 25 \end{bmatrix}$$

Best parabola is:

$$\vec{\beta} = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}.$$