Model order reduction of deep structured state-space models: A system-theoretic approach

Marco Forgione, Manas Mejari, and Dario Piga

¹IDSIA Dalle Molle Institute for Artificial Intelligence SUPSI-USI, Lugano, Switzerland

April 15, 2024

1/16

DSIA) LRU reduction

Deep structured state-space models

Growing interest within the machine-learning community. They dominate long-range sequence learning where Transformers suffer the $\mathcal{O}(N^2)$ scaling.

- Interconnection of linear dynamical systems with static non-linearities (and Normalization layers, skip connection, ...)
- The architecture should ring a bell to sysid researchers.

(IDSIA) LRU reduction 2/16

Deep structured state-space models

Growing interest within the machine-learning community. They dominate long-range sequence learning where Transformers suffer the $\mathcal{O}(N^2)$ scaling.

- Interconnection of linear dynamical systems with static non-linearities (and Normalization layers, skip connection, ...)
- The architecture should ring a bell to sysid researchers.

The classic block-oriented modeling framework.

E.W. Bai, F. Giri Block-oriented nonlinear system identification. Springer, 2010

(IDSIA)

The dynoNet architecture

LTI blocks for deep learning also in our 2021 dynoNet architecture

dynoNet architecture

Python code


```
 \begin{aligned} & \text{G1} = \text{LinearMimo} \left(1, \ 4, \ \ldots\right) \ \# \ a \ \textit{SIMO} \ \ tf \\ & \text{F} = \text{StaticNonLin} \left(4, \ 3, \ \ldots\right) \ \# \ a \ \textit{static NN} \\ & \text{G2} = \text{LinearMimo} \left(3, \ 1, \ \ldots\right) \ \# \ a \ \textit{MISO} \ \ tf \\ & \text{G3} = \text{LinearSiso} \left(1, \ 1, \ \ldots\right) \ \# \ a \ \textit{SISO} \ \ tf \\ & \text{def model} \left(\text{in\_data}\right) : \\ & \text{y1} = \text{G1} \left(\text{in\_data}\right) : \\ & \text{z1} = \text{F(y1)} \\ & \text{y2} = \text{G2} \left(\text{z1}\right) \\ & \text{out} = \text{y2} + \text{G3} \left(\text{in\_data}\right) \end{aligned}
```


M. Forgione and D.Piga. dynoNet: A Neural Network architecture for learning dynamical systems. International Journal of Adaptive Control and Signal Processing, 2021

The dynoNet architecture

LTI blocks for deep learning also in our 2021 dynoNet architecture

dynoNet architecture

Python code


```
G1 = LinearMimo(1, 4, ...) # a SIMO tf
F = StaticNonLin(4, 3, ...) # a static NN
G2 = LinearMimo(3, 1, ...) # a MISO tf
G3 = LinearSiso(1, 1, ...) # a SISO tf

def model(in_data):
    y1 = G1(in_data)
    z1 = F(y1)
    y2 = G2(z1)
    out = y2 + G3(in_data)
```


M. Forgione and D.Piga. dynoNet: A Neural Network architecture for learning dynamical systems. International Journal of Adaptive Control and Signal Processing, 2021

Differentiable transfer functions are now also in the torchaudio library.

https://pytorch.org/audio/main/generated/torchaudio.functional.lfilter.html

Deep Structured State-Space Model Architecture

- Architecture with normalization layers, skip connections, (dropout).
- State-space parameterization of the linear dynamical system

Focus on making the LTI system learning fast and well-posed.

A. Gu, K. Goel, C. Ré. Efficiently Modeling Long Sequences with Structured State Spaces. ICLR, 2022

Our idea: bring in model order reduction to simplify these architectures!

(IDSIA) LRU reduction 4 / 16

Deep Structured State-Space Model Architecture

- Architecture with normalization layers, skip connections, (dropout).
- State-space parameterization of the linear dynamical system

Focus on making the LTI system learning fast and well-posed.

A. Gu, K. Goel, C. Ré. Efficiently Modeling Long Sequences with Structured State Spaces. ICLR, 2022

Our idea: bring in model order reduction to simplify these architectures!

(IDSIA) LRU reduction 4 / 16

Deep Linear Recurrent Units

We consider the deep LRU architecture recently introduced by DeepMind:

A. Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. ICML, 2023

- Discrete-time, MIMO LTI system
- Complex diagonal state-transition matrix A_D :

$$A_D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_{n_x})$$

- Stable parameterization with $|\lambda_i| < 1$
- Implementation with either:
 - $ightharpoonup \mathcal{O}(N)$ sequential ops (standard recursion)
 - lacktriangleright N parallel jobs, $\mathcal{O}(\log N)$ ops each (parallel scan)
- SOTA on long-range sequences

Our idea: further exploit the diagonal structure for model order reduction.

Deep Linear Recurrent Units

We consider the deep LRU architecture recently introduced by DeepMind:

A. Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. ICML, 2023

- Discrete-time, MIMO LTI system
- Complex diagonal state-transition matrix A_D :

$$A_D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_{n_x})$$

- ullet Stable parameterization with $|\lambda_i| < 1$
- Implementation with either:
 - $ightharpoonup \mathcal{O}(N)$ sequential ops (standard recursion)
 - lacktriangleright N parallel jobs, $\mathcal{O}(\log N)$ ops each (parallel scan)
- SOTA on long-range sequences

Our idea: further exploit the diagonal structure for model order reduction.

Consider a LTI state-space system partitioned as:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(k),$$
$$y(k) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + Du(k),$$

Reduction is often applied to systems in

- ullet Modal form (A diagonal, states sorted from slowest to fastest)
- Balanced form (states sorted for decreasing Hankel singular values)

The states x_2 can be removed by:

- Truncation \Rightarrow keep (A_{11}, B_1, C_1, D)
- Singular perturbation \Rightarrow solve for $x_2(k) = x_2(k-1)$

We tested all combinations: MT, MSP, BT, BSP.

(IDSIA) LRU reduction 6 / 16

Consider a LTI state-space system partitioned as:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(k),$$
$$y(k) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + Du(k),$$

Reduction is often applied to systems in

- ullet Modal form (A diagonal, states sorted from slowest to fastest)
- Balanced form (states sorted for decreasing Hankel singular values)

The states x_2 can be removed by:

- Truncation \Rightarrow keep (A_{11}, B_1, C_1, D)
- Singular perturbation \Rightarrow solve for $x_2(k) = x_2(k-1)$

We tested all combinations: MT, MSP, BT, BSP

(IDSIA) LRU reduction 6/16

Consider a LTI state-space system partitioned as:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(k),$$
$$y(k) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + Du(k),$$

Reduction is often applied to systems in

- ullet Modal form (A diagonal, states sorted from slowest to fastest)
- Balanced form (states sorted for decreasing Hankel singular values)

The states x_2 can be removed by:

- Truncation \Rightarrow keep (A_{11}, B_1, C_1, D)
- Singular perturbation \Rightarrow solve for $x_2(k) = x_2(k-1)$

We tested all combinations: MT, MSP, BT, BSP.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ Q ○

(IDSIA) LRU reduction 6 / 16

- Modal reduction is almost directly applicable to the LRU, which is already in modal (diagonal) form.
 - Sort system (A_D, B, C, D) for decreasing eigenvalues magnitude
 - Eliminate fastest modes
- Balanced reduction techniques require a three-step procedure:
 - **1** Balance (A_D, B, C, D) to a non-diagonal (A_b, B_b, C_d, D)
 - ② Reduce (A_b, B_b, C_b, D) to a non-diagonal (A_r, B_r, C_r, D)
 - 3 Diagonalize (A_r, B_r, C_r, D) to fit the LRU structure

Regularization

Regularization introduced to enhance the MOR:

$$\hat{\theta} = \arg\min_{\theta \in \Theta} \frac{1}{N} \sum_{k=1}^{N} (y_k - \hat{y}_k(\theta))^2 + \gamma \mathcal{R}(\theta),$$

Modal ℓ_1

$$\mathcal{R}(\theta) = \sum_{j=1}^{n_x} |\lambda_j|$$

- Push some modes λ_j towards 0
- Tailored for modal reduction MT/MSP

Hankel nuclear norm (HNN)

$$\mathcal{R}(\theta) = \sum_{j=1}^{n_x} \sigma_j$$

- Push some HSV σ_i towards 0
- Tailored for balanced reduction BT/BSP
- Modal ℓ_1 efficient (λ_i are on the diagonal of A_D)
- ullet HNN also efficient exploiting diagonal A_D structure. . .

8/16

DSIA) LRU reduction

Regularization

Regularization introduced to enhance the MOR:

$$\hat{\theta} = \arg\min_{\theta \in \Theta} \frac{1}{N} \sum_{k=1}^{N} (y_k - \hat{y}_k(\theta))^2 + \gamma \mathcal{R}(\theta),$$

Modal ℓ_1

$$\mathcal{R}(\theta) = \sum_{j=1}^{n_x} |\lambda_j|$$

- Push some modes λ_j towards 0
- Tailored for modal reduction MT/MSP

Hankel nuclear norm (HNN)

$$\mathcal{R}(\theta) = \sum_{j=1}^{n_x} \sigma_j$$

- Push some HSV σ_i towards 0
- Tailored for balanced reduction BT/BSP
- Modal ℓ_1 efficient $(\lambda_j$ are on the diagonal of $A_D)$
- ullet HNN also efficient exploiting diagonal A_D structure. . .

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

8/16

(IDSIA) LRU reduction

Hankel nuclear norm minimization

- The HNN $\sum_{j=1}^{n_x} \sigma_j$ is a convex approximation to the McMillan degree of a linear system G (minimium realization order).
- The choice of HNN regularization is further motivated by the bound:

$$\|G - G_r\|_{\infty} \le 2 \sum_{j=r+1}^{n_x} \sigma_j,$$

valid when G_r is obtained with balanced reduction methods BT/BSP

If we push some HSVs of G towards zero, we can then then find an (almost) equivalent reduced G_r with balanced reduction methods!

(IDSIA)

Hankel nuclear norm minimization

- The HNN $\sum_{j=1}^{n_x} \sigma_j$ is a convex approximation to the McMillan degree of a linear system G (minimium realization order).
- The choice of HNN regularization is further motivated by the bound:

$$\|G - G_r\|_{\infty} \le 2 \sum_{j=r+1}^{n_x} \sigma_j,$$

valid when G_r is obtained with balanced reduction methods BT/BSP

If we push some HSVs of G towards zero, we can then then find an (almost) equivalent reduced G_r with balanced reduction methods!

(IDSIA) LRU reduction 9 / 16

Example

Experiments on the F16 ground vibration benchmark.

Deep LRU with:

- $n_{\rm lavers} = 6$ layers
- $n_x = 100$ states per layer
- $d_{\rm model} = 50$ units per layer
- Layer Normalization
- MLP non-linearity

https://github.com/forgi86/lru-reduction

(IDSIA) LRU reduction 10 / 16

Nominal results

Training repeated with:

- No regularization
- Modal ℓ_1 regularization
- Hankel norm regularization.

Results on test set FullMSine_Level6_Validation

			NRMSE			NRMSE			NRMSE
No reg.									
	85.4								0.254

In line with literature. Regularization has a large effect on the LTI blocks!

(IDSIA) LRU reduction 11 / 16

Nominal results

Training repeated with:

- No regularization
- Modal ℓ_1 regularization
- Hankel norm regularization.

Results on test set FullMSine_Level6_Validation:

Regularization	Channel 1			Channel 2			Channel 3		
	fit	RMSE	NRMSE	fit	RMSE	NRMSE	fit	RMSE	NRMSE
No reg.	86.5	0.180	0.134	90.0	0.167	0.099	76.2	0.368	0.237
Modal ℓ_1	85.4	0.195	0.145	89.8	0.171	0.102	74.5	0.395	0.254
Hankel norm	85.8	0.190	0.142	89.0	0.185	0.110	75.5	0.379	0.245

In line with literature. Regularization has a large effect on the LTI blocks!

No regularization: eigenvalues magnitude (top) and HSV (bottom)

Modal ℓ_1 regularization: eigenvalues magnitude (top) and HSV (bottom)

No regularization: eigenvalues magnitude (top) and HSV (bottom)

HNN regularization: eigenvalues magnitude (top) and HSV (bottom)

(IDSIA) LRU reduction 13/16

Performance of all regularizers/model order reduction techniques assessed.

	Tr	Truncation Method				
Regularization Method	ВТ	BSP	МТ	MSP		
No Regularization Modal ℓ_1 Hankel nuclear norm	28 56 89	43 73 91	3 0 18	35 91 76		

Table: Number of states eliminated s.t. performance decrease is less than 1%

- Best results with Hankel nuclear norm + balanced singular perturbation and modal ℓ_1 + modal singular perturbation
- Without regularization, MOR is significantly less effective

(IDSIA) LRU reduction 14/16

Conclusions & future research

Preliminary efforts to improve deep SSMs with System Theoretic tools. MOR + tailor-made regularization to reduce state dimensionality.

Future research:

- More extensive simulations (e.g., effect of the regularization strength)
- Other model order reduction (e.g., Kyrilov-based) and regularizers
- Reduction also of layers and channels
- Application to other models where LTI blocks are key, e.g.
 - Koopman-based
 - dynoNet
 - Other deep SSMs

(IDSIA)

Conclusions & future research

Preliminary efforts to improve deep SSMs with System Theoretic tools. MOR + tailor-made regularization to reduce state dimensionality.

Future research:

- More extensive simulations (e.g., effect of the regularization strength)
- Other model order reduction (e.g., Kyrilov-based) and regularizers
- Reduction also of layers and channels
- Application to other models where LTI blocks are key, e.g.
 - Koopman-based
 - dynoNet
 - Other deep SSMs

Thank you. Questions?

marco.forgione@idsia.ch