Université de Béjaia
Faculté des sciences de la nature et de la vie
Département des TCSN
Première année LMD

Examen de mathématiques (semestre 1)

Durée : 2 Heures

Exercice n°1(04.5pts)

Soit $g(x) = x\sqrt{x}$:

1°/ Donner le domaine de définition de g.

 2° / Étudier la dérivabilité de g.

3°/ Soit $f(x) = (1-x)\sqrt{1-x^2}$.

a/ Déterminer l'ensemble de définition de f.

b/ Étudier la dérivabilité de f.

Exercice n°2(05.5pts)

1°/ Déterminer les réels a, b et c tels que :

$$\frac{1}{(1+e^x)^2} = a + \frac{be^x}{1+e^x} + \frac{ce^x}{(1+e^x)^2}$$

Puis calculer

$$\int \frac{1}{(1+e^x)^2} dx$$

 $2^{\circ}/ \text{ Calculer }: \int \frac{e^x}{(1+e^x)^3} dx \text{ et } \int \frac{xe^x}{(1+e^x)^3} dx$

Exercice n°3(05pts)

Une urne contient 2 boules blanches et 4 noires.

- $1^{\circ}/$ On tire simultanément 4 boules de l'urne, calculer la probabilité de l'évenement A :"obtenir une seule boule blanche".
- $2^{\circ}/$ On tire 4 boules successivement et sans remise. Calculer P(A); Calculer la probabilité des évenements B: "n'obtenir aucune boule blanche"; C: "obtenir au moins une boule blanche".
- 3°/ On tire 4 boules successivement et avec remise. Calculer P(A), P(B) et P(C).

Exercice n°4: Application du cours (05pts)

Sur une autoroute où la vitesse est limité à 80km/h, un radar a mesuré la vitesse de tous les véhicules pendant une journée. En supposant que les vitesses recueillis soient distribuées selon une loi normale avec une moyenne de 72km/h et un écart-type de 8km/h;

- 1°/ Quelle est la proportion (pourcentage) de conducteur qui devront payer une amende (contravention) pour excès de vitesse?
- 2° / Sachant qu'en plus de l'amende, un excès de plus de 30km/h implique un retrait de permis de conduire, quelle est la proportion des conducteurs qui vont se faire retirer le permis parmi ceux qui vont avoir une amende?

Intégrale F(t) de la Loi Normale Centrée Réduite $\mathbb{N}(0; 1)$.

$$F(t) = P(X \le t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \text{ et } F(-t) = 1 - F(t).$$

			~ ~ ~ ~	0.00	0.04	0.05	0.06	0.07	0.08	0.09
t	0.00	0.01	0.02	0.03	0.04	0.5199	0.5239	0.5279	<u> </u>	0.5359
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	1	0.5636	0.5675	0.5714	0.5753
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.6026	0.6064	0.6103	0.6141
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6406	0.6443	0.6480	0.6517
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	1	0.6808	0.6844	0.6879
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.0000	0.7190	0.7224
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7486	0.7517	0.7549
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454			0.7852
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.8106	0.8133
0.8	0.7881	0.7910	0:7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8365	0.8389
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340		0.8621
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8830
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.9015
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9013 0.9177
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319 0.9441
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633 0.9706
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3		0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5		0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6		0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7			0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8			0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	4	0.9981
2.9	1	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985		0.9986
3.0		 	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	•	0.9990
3.1	0.9990		0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	· 1	1
3.2			0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	Ŀ	1
3.3			3			1	0.9996	0.9996		
3.4			0.9997	0.9997			0.9997	0.9997	1	1
3.5							0.9998	0.9998	1	
3.6						1	0.9999	0.9999	ł	
ì		1	1			1	0.9999	0.9999	į.	
3.7	· • • • • • • •		1		1	,	0.9999	0.9999	0.9999	į
3.8				1	1			1.0000	1.0000	1.0000
3.9) 1.000C	, 1.0000	1.0000	1.000		1				

Utilisation

On lit les décimales dans les lignes, et les centièmes en colonnes.

Par exemple, la valeur de F(1.65) se trouve à l'intersection de la ligne 1.6 et de la colonne 0.05

⁻ on trouve F(1.65) = 0.9505, à 10^{-4} près. Pour les valeurs négatives de t, on utilise la relation F(-t) = 1 - F(t).

