VE320 Intro to Semiconductor Devices Summer 2022 — Problem Set 4

JOINT INSTITUTE 交大窓面根学院

June 28, 2022

Exercise 4.1

GaAs, at T=300 K, is uniformly doped with acceptor impurity atoms to a concentration of $N_a=2\times 10^{16}$ cm⁻³. Assume an excess carrier lifetime of 5×10^{-7} s.

Determine the electron-hole recombination rate if the excess electron concentration is $\delta n = 5 \times 10^{14} \ \mathrm{cm}^{-3}$.

Answer:

$$p_o = N_a = 2 \times 10^{16} \text{ cm}^{-3}$$

 $n_o = \frac{n_i^2}{p_o} = \frac{(1.8 \times 10^6)^2}{2 \times 10^{16}} = 1.62 \times 10^{-4} \text{ cm}^{-3}$
 $R' = \frac{\delta n}{\tau_{n0}} = \frac{5 \times 10^{14}}{5 \times 10^{-7}} = 10^{21} \text{ cm}^{-3} \text{ s}^{-1}$

Exercise 4.2

Consider an infinitely large, homogeneous n-type semiconductor with a zero applied electric field. Assume that, for t < 0, the semiconductor is in thermal equilibrium and that, for $t \ge 0$, a uniform generation rate exists in the crystal.

- (a) Calculate the excess carrier concentration as a function of time assuming the condition of low injection.
- (b) Consider n-type silicon at T=300 K doped to $N_d=5\times 10^{16}$ cm⁻³. Assume that $g'=5\times 10^{21}$ cm⁻³ s⁻¹ and let $\tau_{p0}=10^{-7}$ s.

Determine $\delta p(t)$ at (i) t = 0, (ii) $t = 10^{-7}$ s, (iii) $t = 5 \times 10^{-7}$ s, and (iv) $t \to \infty$.

Answer:

(a) The condition of a uniform generation rate and a homogeneous semiconductor again implies that $\partial^2(\delta p)/\partial x^2 = \partial(\delta p)/\partial x = 0$. The equation, for this case, reduces to

$$g' - \frac{\delta p}{\tau_{p0}} = \frac{d(\delta p)}{dt}$$

The solution to this differential equation is

$$\delta p(t) = g' \tau_{p0} \left(1 - e^{-t/\tau_{p0}} \right)$$

(b)
$$\delta p(t) = g' \tau_{po} \left(1 - e^{-t/\tau_{po}} \right) = (5 \times 10^{21}) \left(10^{-7} \right) \left(1 - e^{-t/\tau_{p0}} \right) = 5 \times 10^{14} \left(1 - e^{-t/\tau_p} \right)$$

(i) $\delta p(0) = 5 \times 10^{14} \left(1 - e^{-0} \right) = 0$
(ii) $\delta p(10^{-7}) = 5 \times 10^{14} \left(1 - e^{-1/1} \right) = 3.16 \times 10^{14} \text{ cm}^{-3}$
(iii) $\delta p(5 \times 10^{-7}) = 5 \times 10^{14} \left(1 - e^{-5/1} \right) = 4.966 \times 10^{14} \text{ cm}^{-3}$
(iv) $\delta p(\infty) = 5 \times 10^{14} \left(1 - e^{-\infty} \right) = 5 \times 10^{14} \text{ cm}^{-3}$

Exercise 4.3

Consider a silicon sample at T=300 K that is uniformly doped with acceptor impurity atoms at a concentration of $N_a=10^{16}$ cm⁻³. At t=0, a light source is turned on generating excess carriers uniformly throughout the sample at a rate of $g'=8\times 10^{20}$ cm⁻³ s⁻¹. Assume the minority carrier lifetime is $\tau_{n0}=5\times 10^{-7}$ s, and assume mobility values of $\mu_n=900$ cm²/V·s and $\mu_p=380$ cm²/V·s.

- (a) Determine the conductivity of the silicon as a function of time for $t \geq 0$.
- (b) What is the value of conductivity at (i)t = 0 and $(ii) t = \infty$?

Answer:

(a)

$$p_o = N_a = 10^{16} \text{ cm}^{-3}$$

$$n_o = \frac{n_i^2}{p_o} = \frac{(1.5 \times 10^{10})^2}{10^{16}} = 2.25 \times 10^4 \text{ cm}^{-3}$$

$$\sigma = e\mu_n (n_o + \delta n) + e\mu_p (p_o + \delta p)$$

$$\cong e\mu_p p_o + e (\mu_n + \mu_p) \delta n$$

$$\text{Now } \delta n = \delta p = g' \tau_{n0} (1 - e^{-t/\tau_{n0}})$$

$$= (8 \times 10^{20}) (5 \times 10^{-7}) (1 - e^{-t/\tau_{n0}})$$

$$= 4 \times 10^{14} (1 - e^{-t/\tau_{n0}}) \text{ cm}^{-3}$$

$$\sigma = (1.6 \times 10^{-19}) (380) (10^{16})$$

$$+ (1.6 \times 10^{-19}) (900 + 380)$$

$$\times (4 \times 10^{14}) (1 - e^{-t/\tau_{n0}})$$

$$\sigma = 0.608 + 0.0819 (1 - e^{-t/\tau_{n0}}) (\Omega - \text{cm})^{-1}$$

(i)
$$\sigma(0) = 0.608(\Omega - \text{cm})^{-1}$$

(ii)
$$\sigma(\infty) = 0.690(\Omega - cm)^{-1}$$

Exercise 4.4

A p-type gallium arsenide semiconductor at $T=300~\rm K$ is doped at $N_a=10^{16}~\rm cm^{-3}$. The excess carrier concentration varies linearly from $10^{14}~\rm cm^{-3}$ to zero over a distance of $50\mu\rm m$. Plot the position of the quasi-Fermi levels with respect to the intrinsic Fermi level versus distance.

Answer:

Quasi-Fermi level for minority carrier electrons:

$$E_{Fn} - E_{Fi} = kT \ln \left(\frac{n_o + \delta n}{n_i} \right)$$

 $n_o = \frac{n_i^2}{p_o} = \frac{(1.8 \times 10^6)^2}{10^{16}} = 3.24 \times 10^{-4} \text{ cm}^{-3}$

We have

$$\delta n = \left(10^{14}\right) \left(\frac{x}{50}\right)$$

Then

$$E_{Fn} - E_{Fi} = kT \ln \left[\frac{3.24 \times 10^{-4} + (10^{14}x/50)}{1.8 \times 10^6} \right]$$

We find

$x(\mu m)$	$(E_{Fn} - E_{Fi}) (eV)$
0	-0.581
1	+0.361
2	+0.379
10	+0.420
20	+0.438
50	+0.462

Quasi-Fermi level for holes: we have

$$E_{Fi} - E_{Fp} = kT \ln \left(\frac{p_o + \delta p}{n_i} \right)$$

We have $p_o = 10^{16} \text{ cm}^{-3}$ and $\delta n = \delta p$. We find

$x(\mu m)$	$(E_{Fi} - E_{Fp}) (eV)$
0	+0.58115
50	+0.58140

Exercise 4.5

In a GaAs material at T=300 K, the doping concentrations are $N_d=8\times 10^{15}$ cm⁻³ and $N_a=2\times 10^{15}$ cm⁻³. The thermal equilibrium recombination rate is $R_o=4\times 10^4$ cm⁻³ s⁻¹.

- 1. A uniform generation rate for excess carriers results in an excess carrier recombination rate of $R' = 2 \times 10^{21} \text{ cm}^{-3} \text{ s}^{-1}$. What is the steady-state excess carrier concentration?
- 2. What in the excess carrier lifetime?

Answer:

$$n_o = N_d - N_a = 8 \times 10^{15} - 2 \times 10^{15}$$

$$= 6 \times 10^{15} \text{ cm}^{-3}$$

$$p_o = \frac{n_i^2}{n_o} = \frac{(1.8 \times 10^6)^2}{6 \times 10^{15}} = 5.4 \times 10^{-4} \text{ cm}^{-3}$$

$$R_o = \frac{p_o}{\tau_{p0}} \Rightarrow 4 \times 10^4 = \frac{5.4 \times 10^{-4}}{\tau_{p0}}$$

SO

$$\tau_{p0} = 1.35 \times 10^{-8} \text{ s}$$

(1)
$$\delta p = g' \tau_{p0} = (2 \times 10^{21}) (1.35 \times 10^{-8})$$

$$= 2.7 \times 10^{13} \text{ cm}^{-3}$$

(2)
$$\tau = \tau_{p0} = 1.35 \times 10^{-8} \text{ s}$$

Exercise 4.6

Consider a bar of n-type silicon that is uniformly doped to a value of $N_{\rm d}=2\times10^{16}$ cm⁻³ at T=300 K.

The applied electric field is zero.

A light source is incident on the end of the semiconductor (x = 0).

The steady-state concentration of excess carriers generated at x=0 is $\Delta n(0)=\Delta p(0)=3\times 10^{14}~\rm cm^{-3}$.

Assume the following parameters: $\mu_{\rm n}=1100~{\rm cm^2/Vs}, \mu_{\rm p}=500~{\rm cm^2/Vs}, \tau_{\rm n0}=2\times 10^{-6}~{\rm s}, {\rm and}~\tau_{\rm p0}=8\times 10^{-7}~{\rm s}.$

Neglecting surface effects

- (a) Determine the steady-state excess electron and hole concentrations as a function of distance into the semiconductor from the surface (x = 0).
- (b) Calculate the steady-state hole diffusion current density as a function of distance into the surface from the surface (x = 0).

Answer:

(a) It's *n*-type semiconductor, so we choose τ_{p0} and D_P in (a).

$$\delta n(x) = \delta p(x) = \delta n(0)e^{-\frac{x}{L_p}} = \delta n(0)e^{-\frac{x}{\sqrt{D_p\tau_p}}} = 3 \times 10^{14}e^{\frac{-x}{3.22 \times 10^{-3}}} \text{ cm}^{-3}$$

(b)
$$J_p = -eD_p \frac{dp}{dx} = -eD_p \frac{d(\delta p)}{dx} = 0.193 \times e^{-\frac{x}{3.22 \times 10^{-3}}} \text{A/cm}^2$$

Reference

1. Neamen, Donald A. Semiconductor physics and devices: basic principles. McGrawhill, 2003.