NOT MEASUREMENT SENSITIVE

MIL-STD-2301A
5 June 1998
SUPERSEDING
ON 1 OCTOBER 1998
MIL-STD-2301
18 June 1993

# **DEPARTMENT OF DEFENSE**INTERFACE STANDARD

COMPUTER GRAPHICS METAFILE (CGM)
IMPLEMENTATION STANDARD
FOR THE
NATIONAL IMAGERY TRANSMISSION FORMAT STANDARD



AMSC N/A AREA IPSC

#### **FOREWORD**

- 1. This standard is approved for use by all Departments and Agencies of the Department of Defense (DOD).
- 2. The National Imagery Transmission Format Standard (NITFS) is the standard for formatting digital imagery and imagery-related products and exchanging them among the DOD, other members of the Intelligence Community (IC), as defined by Executive Order 12333, and other departments and agencies of the United States Government
- 3. The NITFS Technical Board (NTB) developed this standard based upon currently available technical information.
- 4. The DOD and other IC members are committed to interoperability of systems used for formatting, transmitting, receiving, and processing imagery and imagery-related information. This standard describes a Computer Graphics Metafile (CGM) implementation and establishes its application within the NITFS.
- 5. As depicted on the cover, MIL-STD-2301A will supersede MIL-STD-2301, Computer Graphics Metafile (CGM) Implementation Standard for the National Imagery Transmission Format Standard, 18 June 1993, on 1 October 1998. The 1 October 1998 supersession date coincides with the date on which MIL-STD-2500B, National Imagery Transmission Format Version 2.1 for the National Imagery Transmission Format Standard, 22 August 1997 will supersede MIL-STD-2500A, National Imagery Transmission Format (Version 2.0) for the National Imagery Transmission Format Standard, 12 October 1994.
- 6. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to National Imagery and Mapping Agency, NIMA/SES, 12310 Sunrise Valley Drive, Reston, VA 20191-3449, Attention: NTB Chair, by using the Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

| TABLE      |                                                        | PAGE |
|------------|--------------------------------------------------------|------|
| 1.         | SCOPE                                                  | 1    |
| 1.1        | Scope                                                  |      |
| 1.2        | Purpose                                                |      |
| 1.3        | Applicability                                          |      |
| 2.         | APPLICABLE DOCUMENTS                                   | 1    |
| 2.1        | General                                                |      |
| 2.2        | Government documents                                   |      |
| 2.2.1      | Specifications, standards, and handbooks               |      |
| 2.2.2      | Other Government documents, drawings, and publications |      |
| 2.3        | Non-Government publications                            |      |
| 2.4        | Order of precedence                                    |      |
| <b>2.+</b> | Order of precedence                                    | 2    |
| 3.         | DEFINITIONS                                            |      |
| 3.1        | Acronyms used in this standard                         |      |
| 3.2        | Character                                              |      |
| 3.3        | Commands                                               |      |
| 3.4        | Computer Graphics Metafile (CGM)                       |      |
| 3.5        | Elements                                               |      |
| 3.6        | Integer parameters                                     |      |
| 3.7        | Virtual Device Coordinates (VDC) space                 | 4    |
| 4.         | GENERAL REQIREMENTS                                    | 4    |
| 4.1        | CGM commands                                           | 4    |
| 4.2        | CGM binary encoding                                    |      |
| 4.3        | CGM element flow                                       |      |
| 5.         | DETAILED REQUIREMENTS                                  | 7    |
| 5.1        | Interface requirements                                 |      |
| 5.1.1      | CGM interface input requirements                       |      |
| 5.1.1.1    | Delimiter elements                                     |      |
| 5.1.1.1.1  | Begin Metafile element input                           |      |
| 5.1.1.1.2  | Begin Picture element input                            |      |
| 5.1.1.1.3  | Begin Picture Body element input                       |      |
| 5.1.1.1.4  | End Picture element input                              |      |
| 5.1.1.1.5  | End Metafile element input                             |      |
| 5.1.1.2    | Metafile Descriptor elements                           |      |
| 5.1.1.2.1  | Metafile Version element input                         |      |
| 5.1.1.2.2  | Metafile Description element input                     |      |
| 5.1.1.2.3  | Metafile Element List element input                    |      |
| 5.1.1.2.4  | Font List element input                                |      |
| 5.1.1.3    | Picture Descriptor elements                            |      |
| 5.1.1.3.1  | Color Selection Mode element input                     |      |
| 5.1.1.3.2  | Edge Width Specification Mode element input            |      |
| 5.1.1.3.3  | Line Width Specification Mode element input            |      |
| 5.1.1.3.4  | VDC Extent element input                               |      |
| 5.1.1.4    | Attribute elements                                     |      |
| 5.1.1.4.1  | Text Color element input                               |      |
| 5.1.1.4.2  | Character Height element input                         |      |
| 5.1.1.4.3  | Text Font Index element input                          |      |
| 5.1.1.4.4  | Character Orientation element input                    | 14   |
|            |                                                        | ***  |

| TABLE       |                                                            | PAGE |
|-------------|------------------------------------------------------------|------|
| 5.1.1.4.5   | Fill Color element input                                   |      |
| 5.1.1.4.6   | Interior Style element input                               |      |
| 5.1.1.4.6.1 | Hatch Index Input                                          |      |
| 5.1.1.4.7   | Edge Visibility element input                              |      |
| 5.1.1.4.8   | Edge Width element input                                   |      |
| 5.1.1.4.9   | Edge Type element input                                    |      |
| 5.1.1.4.10  | Edge Color element input                                   |      |
| 5.1.1.4.11  | Line Width element input                                   |      |
| 5.1.1.4.12  | Line Type element input                                    |      |
| 5.1.1.4.13  | Line Color element input                                   |      |
| 5.1.1.5     | Graphical Primitive elements                               |      |
| 5.1.1.5.1   | Text element input                                         |      |
| 5.1.1.5.2   | Polygon element input                                      |      |
| 5.1.1.5.2.1 | Polygon Set element input                                  |      |
| 5.1.1.5.3   | Ellipse element input                                      |      |
| 5.1.1.5.4   | Polyline element input                                     |      |
| 5.1.1.5.5   | Elliptical Arc element input                               |      |
| 5.1.1.5.6   | Elliptical Arc Close element input                         |      |
| 5.1.1.5.7   | Rectangle element input                                    |      |
| 5.1.1.5.8   | Circle element input                                       |      |
| 5.1.1.5.9   | Circular Arc Center element input                          |      |
| 5.1.1.5.10  | Circular Arc Center Close element input                    |      |
| 5.1.1.6     | Control elements                                           |      |
| 5.1.1.6.1   | Auxiliary Color                                            |      |
| 5.1.1.6.2   | Transparency                                               |      |
| 5.1.1.7     | CGM binary encoding                                        |      |
| 5.1.1.7.1   | CGM binary encoding for input                              |      |
| 5.1.2       | CGM interface output requirements                          |      |
| 5.1.2.1     | Delimiter elements                                         |      |
| 5.1.2.1.1   | Begin Metafile element output                              |      |
| 5.1.2.1.2   | Begin Picture element output                               |      |
| 5.1.2.1.3   | Begin Picture Body element output                          |      |
| 5.1.2.1.4   | End Picture element output                                 |      |
| 5.1.2.1.5   | End Metafile element output                                |      |
| 5.1.2.2     | Metafile Descriptor elements                               |      |
| 5.1.2.2.1   | Metafile Version element output                            |      |
| 5.1.2.2.2   | Metafile Description element output                        |      |
| 5.1.2.2.3   | Metafile Element List element output                       |      |
| 5.1.2.2.4   | Font List element output                                   |      |
| 5.1.2.3     | Picture Descriptor elements                                |      |
| 5.1.2.3.1   | Color Selection Mode element output                        |      |
| 5.1.2.3.2   | Edge Width Specification Mode element output               |      |
| 5.1.2.3.3   | Line Width Specification Mode element output.              |      |
| 5.1.2.3.4   | VDC Extent element output                                  |      |
| 5.1.2.4     | Attribute elements                                         |      |
| 5.1.2.4.1   | Text Color element output  Character Height element output |      |
| 5.1.2.4.2   | Character Height element output                            |      |
| 5.1.2.4.3   | Text Font Index element output                             |      |
| 5.1.2.4.4   | Character Orientation element output                       |      |
| 5.1.2.4.5   | Fill Color element output                                  |      |
| 5.1.2.4.6   | Interior Style element output                              |      |
| 5.1.2.4.6.1 | Hatch Index Output                                         |      |

| TABLE       |                                                          | PAGE |
|-------------|----------------------------------------------------------|------|
| 5.1.2.4.7   | Edge Visibility element output                           | 32   |
| 5.1.2.4.8   | Edge Width element output                                | 32   |
| 5.1.2.4.9   | Edge Type element output                                 |      |
| 5.1.2.4.10  | Edge Color element output                                |      |
| 5.1.2.4.11  | Line Width element output                                |      |
| 5.1.2.4.12  | Line Type element output                                 | 33   |
| 5.1.2.4.13  | Line Color element output                                | 33   |
| 5.1.2.5     | Graphical Primitive elements                             |      |
| 5.1.2.5.1   | Text element output                                      |      |
| 5.1.2.5.2   | Polygon element output                                   |      |
| 5.1.2.5.2.1 | Polygon Set element output                               |      |
| 5.1.2.5.3   | Ellipse element output                                   |      |
| 5.1.2.5.4   | Polyline element output                                  |      |
| 5.1.2.5.5   | Elliptical Arc element output                            |      |
| 5.1.2.5.6   | Elliptical Arc Close element output                      |      |
| 5.1.2.5.7   | Rectangle element output                                 |      |
| 5.1.2.5.8   | Circle element output                                    |      |
| 5.1.2.5.9   | Circular Arc Center element output                       |      |
| 5.1.2.5.10  | Circular Arc Center Close element output                 |      |
| 5.1.2.6     | Control elements                                         |      |
| 5.1.2.6.1   | Auxiliary Color                                          |      |
| 5.1.2.6.2   | Transparency                                             |      |
| 5.1.2.7     | CGM binary encoding                                      |      |
| 5.1.2.7.1   | CGM binary encoding for output                           |      |
| 5.2         | Functional requirements                                  |      |
| 5.2.1       | CGM element position requirements                        |      |
| 5.2.1.1     | CGM element position input requirements                  |      |
| 5.2.1.1.1   | Begin Metafile element position for input                |      |
| 5.2.1.1.2   | Begin Picture element position for input                 |      |
| 5.2.1.1.3   | Begin Picture Body element position for input            |      |
| 5.2.1.1.4   | End Picture element position for input                   |      |
| 5.2.1.1.5   | End Metafile element position for input                  |      |
| 5.2.1.1.6   | Metafile Descriptor elements position for input          |      |
| 5.2.1.1.7   | Picture Descriptor elements position for input           |      |
| 5.2.1.1.8   | Attribute elements position for input                    | 42   |
| 5.2.1.1.9   | Graphical Primitive elements position for input          |      |
| 5.2.1.2     | CGM element position output requirements                 |      |
| 5.2.1.2.1   | Begin Metafile element position for output               |      |
| 5.2.1.2.2   | Begin Picture element position for output                |      |
| 5.2.1.2.3   | Begin Picture Body element position for output           |      |
| 5.2.1.2.4   | End Picture element position for output                  |      |
| 5.2.1.2.5   | End Metafile element position for output                 | 42   |
| 5.2.1.2.6   | Metafile Descriptor elements position for output         |      |
| 5.2.1.2.7   | Picture Descriptor elements position for output          |      |
| 5.2.1.2.8   | Attribute elements position for output                   |      |
| 5.2.1.2.9   | Graphical Primitive elements position for output         | 43   |
| 5.2.2       | CGM element functional requirements                      |      |
| 5.2.2.1     | CGM element functional input requirements                |      |
| 5.2.2.1.1   | CGM input required elements                              |      |
| 5.2.2.1.2   | Metafile Description element contents required for input | 43   |
|             |                                                          |      |

| TABLE      |                                                                                                                          | PAGE |
|------------|--------------------------------------------------------------------------------------------------------------------------|------|
| 5.2.2.1.3  | Length of parameter strings required for input for the Begin Metafile, Begin Picture,                                    |      |
|            | and Metafile Description elements                                                                                        | 43   |
| 5.2.2.1.4  | Length of parameter strings required for input for the Font List element                                                 |      |
| 5.2.2.1.5  | Number of Begin Picture elements and Begin Picture Body elements required for input                                      |      |
| 5.2.2.1.6  | End Picture element required for input                                                                                   |      |
| 5.2.2.1.7  | VDC Extent element required for input                                                                                    |      |
| 5.2.2.1.8  | Edge Width Specification Mode element for input                                                                          |      |
| 5.2.2.1.9  | Line Width Specification Mode element for input                                                                          |      |
| 5.2.2.1.10 | Color Selection Mode element required for input                                                                          |      |
| 5.2.2.1.11 | Character Orientation element required for input                                                                         |      |
| 5.2.2.1.12 | Font List number required for input                                                                                      |      |
| 5.2.2.1.13 | Font names for input                                                                                                     |      |
| 5.2.2.1.14 | Text Font Index required for input                                                                                       |      |
| 5.2.2.1.15 | Edge widths for input                                                                                                    |      |
| 5.2.2.1.16 | Line widths for input                                                                                                    |      |
| 5.2.2.1.17 | Edge types required for input                                                                                            |      |
| 5.2.2.1.18 | Line types required for input                                                                                            |      |
| 5.2.2.1.19 | Interior styles required for input                                                                                       |      |
| 5.2.2.1.20 | Text element requirements for input                                                                                      |      |
| 5.2.2.1.21 | Character Height requirements for input                                                                                  |      |
| 5.2.2.1.22 | Polyline element requirements for input                                                                                  |      |
| 5.2.2.1.23 | Polygon element requirements for input                                                                                   |      |
| 5.2.2.1.24 | Input and interpret in sequential order                                                                                  |      |
| 5.2.2.1.25 | Input Text element                                                                                                       |      |
| 5.2.2.1.26 | Input Polygon and Polygon Set element                                                                                    |      |
| 5.2.2.1.27 | Input Ellipse element                                                                                                    |      |
| 5.2.2.1.28 | Input Polyline element                                                                                                   |      |
| 5.2.2.1.29 | Input Elliptical Arc element                                                                                             |      |
| 5.2.2.1.30 | Input Elliptical Closed Arc element                                                                                      |      |
| 5.2.2.1.31 | Input Rectangle element                                                                                                  |      |
| 5.2.2.1.32 | Input Circle element                                                                                                     |      |
| 5.2.2.1.33 | Input Circular Arc Center element                                                                                        |      |
| 5.2.2.1.34 | Input Circular Arc Center Close element                                                                                  |      |
| 5.2.2.1.35 | Auxiliary Color for input                                                                                                |      |
| 5.2.2.1.36 | Transparency for input                                                                                                   |      |
| 5.2.2.1.37 | CGM element defaults for input                                                                                           |      |
| 5.2.2.1.38 | Default colors for unsupported text                                                                                      |      |
| 5.2.2.1.39 | CGM element substitution                                                                                                 |      |
| 5.2.2.1.40 | CGM error messages                                                                                                       | 48   |
| 5.2.2.2    | CGM element functional output requirements                                                                               |      |
| 5.2.2.2.1  | CGM output required elements                                                                                             | 48   |
| 5.2.2.2.2  | Metafile Description element contents required for output                                                                | 48   |
| 5.2.2.2.3  | Length of parameter strings required for output for the Begin Metafile, Begin Picture, and Metafile Description elements | 48   |
| 5.2.2.2.4  | Length of parameter strings required for output for the Font List element                                                |      |
| 5.2.2.2.5  | Number of Begin Picture elements and Begin Picture Body elements required for output                                     | 48   |
| 5.2.2.2.6  | End Picture element required for output                                                                                  |      |
| 5.2.2.2.7  | Edge Width Specification Mode element for output                                                                         |      |
| 5.2.2.2.8  | Line Width Specification Mode element for output                                                                         |      |
| 5.2.2.2.9  | Color Selection Mode element required for output                                                                         |      |
| 5.2.2.2.10 | Character Orientation element required for output                                                                        |      |
| 5.2.2.2.11 | Font List number required for output                                                                                     |      |
|            |                                                                                                                          |      |

| TABLE         |                                                         | PAGE |
|---------------|---------------------------------------------------------|------|
| 5.2.2.2.12    | Font names for output                                   | 49   |
| 5.2.2.2.13    | Text Font Index required for output                     | 50   |
| 5.2.2.2.14    | Edge widths for output                                  | 50   |
| 5.2.2.2.15    | Line widths for output.                                 | 50   |
| 5.2.2.2.16    | Edge types required for output                          | 50   |
| 5.2.2.2.17    | Line types required for output                          | 50   |
| 5.2.2.2.18    | Interior styles required for output                     | 50   |
| 5.2.2.2.19    | Text element requirements for output                    | 50   |
| 5.2.2.2.20    | Character Height requirements for output                | 50   |
| 5.2.2.2.21    | Polyline element requirements for output                | 50   |
| 5.2.2.2.22    | Polygon and Polygon Set element requirements for output | 50   |
| 5.2.2.2.23    | Generate and output sequential order                    | 50   |
| 5.2.2.2.24    | Output Text element                                     | 50   |
| 5.2.2.2.25    | Output Polygon and Polygon Set element                  | 51   |
| 5.2.2.2.26    | Output Ellipse element                                  | 51   |
| 5.2.2.2.27    | Output Polyline element                                 |      |
| 5.2.2.2.28    | Output Elliptical Arc element                           | 51   |
| 5.2.2.2.29    | Output Elliptical Arc Close element                     | 52   |
| 5.2.2.2.30    | Output Rectangle element                                | 52   |
| 5.2.2.2.31    | Output Circle element                                   | 52   |
| 5.2.2.2.32    | Output Circular Arc Center element                      |      |
| 5.2.2.2.33    | Output Circular Arc Center Close element                |      |
| 5.2.2.2.34    | Auxiliary Color for output                              | 53   |
| 5.2.2.2.35    | Transparency for output                                 |      |
| 5.2.2.2.36    | CGM element defaults for output                         | 53   |
| 5.2.2.2.37    | Degeneracy                                              | 53   |
| 6.            | NOTES                                                   | 53   |
| 6.1           | CGM example Metafiles                                   |      |
| 6.1.1         | Polygon example                                         |      |
| 6.1.1.1       | Polygon Set example                                     | 55   |
| 6.1.2         | Text example                                            | 57   |
| 6.1.3         | Ellipse example                                         |      |
| 6.1.4         | Polyline example                                        |      |
| 6.1.5         | Elliptical Arc example                                  |      |
| 6.1.6         | Elliptical Arc example                                  |      |
| 6.2           | Color to gray scale conversion                          |      |
| 6.3           | Subject term (key word) listing                         |      |
| 6.4           | Changes from previous issue                             | 63   |
| <u>FIGURE</u> |                                                         |      |
| 1.            | Integer parameters                                      | 4    |
| 2.            | Small VDC Extent input                                  | 13   |
| 3.            | Large VDC Extent input                                  |      |
| 4.            | Small VDC Extent output                                 |      |
| 5.            | Large VDC Extent output                                 |      |
| 6.            | Elliptical Arc orientation                              |      |
| <u>TABLE</u>  |                                                         |      |
| I.            | Short form of CGM command                               | 5    |
| II.           | Long form of CGM command                                | 6    |
| III.          | Begin Metafile padded, short form input                 | 7    |
|               |                                                         |      |

| TABLE     |                                                  | PAGE |
|-----------|--------------------------------------------------|------|
| IV.       | Begin Metafile nonpadded, short form input       |      |
| V.        | Begin Metafile padded, long form input           | 7    |
| VI.       | Begin Metafile nonpadded, long form input        | 8    |
| VII.      | Begin Picture padded, short form input           | 8    |
| VIII.     | Begin Picture nonpadded, short form input        | 8    |
| IX.       | Begin Picture padded, long form input            | 8    |
| X.        | Begin Picture nonpadded, long form input         | 8    |
| XI.       | Begin Picture Body input                         |      |
| XII.      | End Picture input                                | 9    |
| XIII.     | End Metafile input                               |      |
| XIV.      | Metafile Version input                           | 9    |
| XV.       | Metafile Description padded, short form input    | 9    |
| XVI.      | Metafile Description nonpadded, short form input |      |
| XVII.     | Metafile Description padded, long form input     |      |
| XVIII.    | Metafile Description nonpadded, long form input  | 10   |
| XIX.      | Metafile Element List input                      |      |
| XX.       | Font List padded, short form input               |      |
| XXI.      | Font List nonpadded, short form input            |      |
| XXII.     | Font List padded, long form input                |      |
| XXIII.    | Font List nonpadded, long form input             |      |
| XXIV.     | Color Selection Mode input                       |      |
| XXV.      | Edge Width Specification Mode input              |      |
| XXVI.     | Line Width Specification Mode input              |      |
| XXVII.    | VDC Extent input                                 |      |
| XXVIII.   | Text Color input                                 |      |
| XXIX.     | Character Height input                           |      |
| XXX.      | Text Font Index input                            |      |
| XXXI.     | Character Orientation input                      |      |
| XXXII.    | Fill Color input                                 |      |
| XXXIII.   | Interior Style input                             |      |
| XXXIII(A) | Hatch Index input                                |      |
| XXXIV.    | Edge Visibility input                            |      |
| XXXV.     | Edge Width input                                 |      |
| XXXVI.    | Edge Type input                                  |      |
| XXXVII.   | Edge Color input                                 |      |
| XXXVIII.  | Line Width input                                 |      |
| XXXIX.    | Line Type input                                  |      |
| XL.       | Line Color input                                 |      |
| XLI.      | Text padded, short form input                    |      |
| XLII.     | Text nonpadded, short form input                 |      |
| XLIII.    | Text padded, long form input                     |      |
| XLIV.     | Text nonpadded, long form input                  |      |
| XLV.      | Polygon short form input                         |      |
| XLVI.     | Polygon long form input                          |      |
| XLVII.    | Polygon short form input                         |      |
| XLVIII.   | Polygon Set long form input                      |      |
| XLIX.     | Ellipse input                                    |      |
| L.        | Polyline short form input                        |      |
| LI.       | Polyline long form input                         |      |
| LII.      | Elliptical Arc input                             |      |
| LIII.     | Elliptical Arc Close input                       |      |
| LIV.      | Rectangle input                                  |      |
| · ·       | recember input.                                  |      |

| TABLE    | P                                                 | AGE |
|----------|---------------------------------------------------|-----|
| LV.      | Circle input                                      | 22  |
| LVI.     | Circular Arc Center input                         | 23  |
| LVII.    | Circular Arc Center Close input                   | 23  |
| LVIII.   | Auxiliary Color input                             | 24  |
| LIX.     | Transparency input                                | 24  |
| LX.      | Begin Metafile padded, short form output          |     |
| LXI.     | Begin Metafile nonpadded, short form output       |     |
| LXII.    | Begin Metafile padded, long form output           |     |
| LXIII.   | Begin Metafile nonpadded, long form output        |     |
| LXIV.    | Begin Picture padded, short form output           |     |
| LXV.     | Begin Picture nonpadded, short form output        |     |
| LXVI.    | Begin Picture padded, long form output            |     |
| LXVII.   | Begin Picture nonpadded, long form output         |     |
| LXVIII.  | Begin Picture Body output                         |     |
| LXIX.    | End Picture output                                |     |
| LXX.     | End Metafile output                               |     |
| LXXI.    | Metafile Version output                           |     |
| LXXII.   | Metafile Description padded, short form output    |     |
| LXXIII.  | Metafile Description nonpadded, short form output |     |
| LXXIV.   | Metafile Description padded, long form output     |     |
| LXXV.    | Metafile Description nonpadded, long form output  |     |
| LXXVI.   | Metafile Element List output                      |     |
| LXXVII.  | Font List padded, short form output               |     |
| LXXVIII. | Font List nonpadded, short form output            |     |
| LXXIX.   | Font List padded, long form output                |     |
| LXXX.    | Font List padded, long form output                |     |
| LXXXI.   | Color Selection Mode output                       |     |
| LXXXII.  | Edge Width Specification Mode output              |     |
| LXXXIII. | Line Width Specification Mode output              |     |
| LXXXIV.  | VDC Extent output                                 |     |
| LXXXV.   | Text Color output                                 |     |
| LXXXVI.  | Character Height output                           |     |
| LXXXVII. |                                                   |     |
| LXXXVII. | Text Font Index output                            |     |
| LXXXIX.  | Character Orientation output                      |     |
|          | Fill Color output                                 |     |
| XC.      | Interior Style output                             |     |
| XC(A)    | Hatch Index output                                |     |
| XCI.     | Edge Visibility output                            |     |
| XCII.    | Edge Width output                                 |     |
| XCIII.   | Edge Type output                                  |     |
| XCIV.    | Edge Color output                                 |     |
| XCV.     | Line Width output                                 |     |
| XCVI.    | Line Type output                                  |     |
| XCVII.   | Line Color output                                 |     |
| XCVIII.  | Text padded, short form output                    |     |
| XCIX.    | Text nonpadded, short form output                 |     |
| C.       | Text padded, long form output                     |     |
| CI.      | Text nonpadded, long form output                  |     |
| CII.     | Polygon short form output                         |     |
| CIII.    | Polygon long form output                          |     |
| CIV.     | Polygon Set short form output                     |     |
| CV.      | Polygon Set long form output                      | 36  |

| TABLE   |                                  | PAGE |
|---------|----------------------------------|------|
| CVI.    | Ellipse output                   | 37   |
| CVII.   | Polyline short form output       |      |
| CVIII.  | Polyline long form output        |      |
| CIX.    | Elliptical Arc output            |      |
| CX.     | Elliptical Arc output            |      |
| CXI.    | Rectangle output                 |      |
| CXII.   | Circle output                    |      |
| CXIII.  | Circular Arc Center output       | 40   |
| CXIV.   | Circular Arc Center Close output | 41   |
| CXV.    | Auxiliary Color input            | 41   |
| CXVI.   | Transparency Color input         | 41   |
| CXVII.  | CGM element defaults for input   | 47   |
| CXVIII. | CGM element defaults for output  | 53   |
| CXIX.   | Polygon example                  |      |
| CXX.    | Polygon Set example              | 55   |
| CXXI.   | Text example                     | 57   |
| CXXII.  | Ellipse example                  | 58   |
| CXXIII. | Polyline example                 | 59   |
| CXXIV   | Arc example                      | 61   |
| CXXV.   | Arc Closed example               | 62   |
|         |                                  |      |

#### 1. SCOPE

- 1.1 <u>Scope</u>. This standard establishes the requirements necessary to implement Computer Graphics Metafiles (CGMs) used for the representation of symbol graphics in the National Imagery Transmission Format Standard (NITFS).
- 1.2 <u>Purpose</u>. This standard provides technical detail of CGM commands, formats, and implementation used for the CGM implementation for NITFS.
- 1.3 Applicability. This standard is applicable to the Department of Defense (DOD), other Intelligence Community (IC) members, and other US Government departments and agencies. This standard defines the subset of commands (correlated with the minimum implementation subset of commands specified in MIL-D-28003) applicable for graphic annotation of imagery within the NITFS. It is mandatory for all Secondary Imagery Dissemination Systems (SIDS) in accordance with the memorandum by the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence, ASD(C³I), Subject: National Imagery Transmission Format Standard (NITFS), 12 August 1991. This directive will be implemented in accordance with the National Imagery and Mapping Agency (NIMA) N0105-98, National Imagery Transmission Format Standard (NITFS) Standards Compliance and Interoperability Test and Evaluation Program Plan (supersedes Joint Interoperability and Engineering Organization (JIEO) Circular 9008), and NIMA NNPP 1.0, The National Imagery Transmission Format Standard Five Year Program Plan. New equipment and systems, those undergoing major modification, or those capable of rehabilitation will conform to this standard.

#### 2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3, 4, and 5 of this standard. This section does not include documents cited in other sections of this standard or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements documents cited in sections 3, 4, and 5 of this standard, whether or not they are listed.

## 2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issue of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in this solicitation.

## **STANDARDS**

## **FEDERAL**

FED-STD-1037B - Telecommunications: Glossary of Telecommunication Terms, 3 June 1991.

## FEDERAL INFORMATION PROCESSING STANDARDS (FIPS)

FIPS PUB 128-2 - Computer Graphics Metafile (CGM) [adaptation of American National Standards Institute/International Organization for Standardization (ANSI/ISO) 8632.1-4:1992[1994].

## **MILITARY**

MIL-STD-2500A - National Imagery Transmission Format (Version 2.0) for the National Imagery Transmission Format Standard 12 October 1994.

MIL-STD-2500B - National Imagery Transmission Format Version 2.1 for the National

Imagery Transmission Format Standard, 22 August 1997.

MIL-D-28003A - Military Representation for Communication of Illustration Data: CGM

Application Profile, 15 November 1991.

(Unless otherwise indicated, copies of the above standards, and handbooks are available from the Standardization Documents Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

(Copies of Federal Information Processing Standards (FIPS) are available to Department of Defense activities from the Standardization Documents Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094. Others must request copies of FIPS from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161-2171.)

2.2.2 Other Government documents, drawings, and publications. The following other Government documents, drawings, and publications form a part of this document to the extent specified herein. Unless otherwise specified, the issues are those cited in the solicitation.

## NATIONAL IMAGERY AND MAPPING AGENCY PUBLICATIONS

NIMA N105-97 - National Imagery Transmission Format Standard (NITFS) Standards

Compliance and Interoperability Test and Evaluation Program Plan

(supersedes JIEO Circular 9008).

NIMA NNPP-97 - The National Imagery Transmission Format Standard Program Plan.

(Copies of NIMA documents can be obtained from the web at http://www.nima.mil.)

2.3 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of the documents which are DOD adopted are those listed in the issue of the DODISS cited in the solicitation. Unless otherwise specified, the issues of documents not listed in the DODISS are the issues of the documents cited in the solicitation.

# AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI X3.4 - 1986 - American National Standard Code for Information Interchange (ASCII), 1986.

(Application for copies should be addressed to the American National Standards Institute, 1430 Broadway, New York, NY 10018-3308.)

<u>2.4 Order of precedence</u>. In the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

## 3. DEFINITIONS

3.1 Acronyms used in this standard. The acronyms used in this standard are defined as follows.

a. ANSI American National Standards Institute

b. ASCII American Standard Code for Information Interchange

c. ASD(C<sup>3</sup>I) Assistant Secretary of Defense for Command, Control, Communications and

Intelligence

| d. CGM    | Computer Graphics Metafile                                    |
|-----------|---------------------------------------------------------------|
| e. DISA   | Defense Information Systems Agency                            |
| f. DOD    | Department of Defense                                         |
| g. DODISS | Department of Defense Index of Specifications and Standards   |
| h. FIPS   | Federal Information Processing Standard                       |
| i. IC     | Intelligence Community                                        |
| j. ISO    | International Organization for Standardization                |
| k. JIEO   | Joint Interoperability and Engineering Organization           |
| 1. LSB    | Least Significant Bit                                         |
| m. MOA    | Memoranda of Agreement                                        |
| n. MSB    | Most Significant Bit                                          |
| o. NIMA   | National Imagery and Mapping Agency                           |
| p. NITF   | National Imagery Transmission Format                          |
| q. NITFS  | National Imagery Transmission Format Standard                 |
| r. NTB    | National Imagery Transmission Format Standard Technical Board |
| s. RGB    | Red, Green, Blue                                              |
| t. SIDS   | Secondary Imagery Dissemination System                        |
| u. VDC    | Virtual Device Coordinates                                    |

- 3.2 <u>Character</u>. 1. A letter, digit, or other symbol that is used as part of the organization, control, or representation of data. 2. One of the units of an alphabet. Note: For MIL-STD-2301A, a character (UT-1 ISO 4873, 1-octet coded Universal Multiple-Octet Coded Character Set (UCS), Basic Latin and Latin-1 Supplement) is constraint to Basic Latin (0020-007E) and Latin-1 Supplement (00A0-00FF). The unsigned integer value of 0 (null) is also an allowed character value.
- 3.3 <u>Commands</u>. For MIL-STD-2301A, commands are CGM statements that denote a state to act upon when CGM is read sequentially. The words "command" and "element" are used synonymously throughout MIL-STD-2301A.
- 3.4 <u>Computer Graphics Metafile (CGM)</u>. CGM is a set of basic elements for a computer graphics data interface usable by many graphics-producing systems and applications.
- 3.5 <u>Elements</u>. For MIL-STD-2301A, elements are CGM statements that denote a state to act upon when the CGM is sequentially read. The words "command" and "element" are synonymously used in MIL-STD-2301A.

3.6 <u>Integer parameters</u>. For MIL-STD-2301A, all integer parameters are 16-bit two's complement signed integers except where specified. Each 16-bit word is numbered from most significant bit to least significant bit using 15 to zero (as illustrated on figure 1). When a 16-bit two's complement integer is used as a parameter in a CGM metafile, the high order byte of the integer is represented as the 8 most significant bits. That is, bits 15 through 8. Bits 7 through zero represent the low order byte of the integer. Note: This is also known as the "Big-Endian" or "Network Byte Order" representation for 16-bit integers.

|                      | BITS   | BITS   |               |  |  |  |  |  |  |  |
|----------------------|--------|--------|---------------|--|--|--|--|--|--|--|
|                      | 15 8   | 7 0    |               |  |  |  |  |  |  |  |
|                      |        |        |               |  |  |  |  |  |  |  |
|                      |        |        |               |  |  |  |  |  |  |  |
| HIGH ORDER LOW ORDER |        |        |               |  |  |  |  |  |  |  |
| 16-BIT WORD 1        | 16-BIT | WORD 2 | 16-BIT WORD 3 |  |  |  |  |  |  |  |

FIGURE 1. Integer parameters.

3.7 <u>Virtual Device Coordinates (VDC) space</u>. The VDC space defines a coordinate system that is overlaid onto an image to which CGM elements are referenced.

## 4. GENERAL REQUIREMENTS

- 4.1 <u>CGM commands</u>. The CGM implementation for NITFS is a subset of the Federal Information Processing Standard FIPS PUB 128 and complies with the specifications established in FIPS PUB 128. The CGM structure is explained fully in the FIPS PUB 128 document. The following describes the required CGM commands that the CGM implementation for NITFS must support for input interpretation and output generation and are grouped by element class. All CGM commands used in this subset are listed by element class along with their encoding in the CGM Interface Input Requirements and CGM Interface Output Requirements sections of this document. When CGM commands are encountered that are beyond the minimally compliant CGM implementation listed below, the interpreter is responsible for interpreting, discarding, or substituting for these commands.
  - a. Metafile Delimiter Elements
    BEGIN METAFILE
    BEGIN PICTURE
    BEGIN PICTURE BODY
    END PICTURE
    END METAFILE
  - b. Metafile Descriptor Elements
     METAFILE VERSION (version = 1)
     METAFILE ELEMENT LIST
     METAFILE DESCRIPTION
     FONT LIST
  - c. Metafile Picture Descriptor Elements

    COLOR SELECTION MODE (1 = direct)

    EDGE WIDTH SPECIFICATION MODE

    (0 = absolute)

    LINE WIDTH SPECIFICATION MODE

    (0 = absolute)

    VDC EXTENT

d. Metafile Graphical Primitives with Associated Attributes

Text Primitive Element with Attributes

TEXT COLOR

CHARACTER HEIGHT

TEXT FONT INDEX

CHARACTER ORIENTATION

**TEXT** 

Filled-Area Primitive Elements with Attributes

FILL COLOR

INTERIOR STYLE (1= solid, 3=hatch, or 4 = empty)

EDGE VISIBILITY (0=off, 1 = on)

EDGE WIDTH

EDGE TYPE (1=solid, 2=dashed, 3=dot, 4=dash-dot, 5=dash-dot-dot)

EDGE COLOR

**POLYGON** 

POLYGON SET

**ELLIPSE** 

ELLIPTICAL ARC CLOSE

RECTANGLE

CIRCLE

CIRCULAR ARC CENTER CLOSE

Line Primitive Elements with Attributes

LINE WIDTH

LINE TYPE (1=solid, 2=dashed, 3=dot, 4=dash-dot, 5=dash-dot-dot)

LINE COLOR

POLYLINE

ELLIPTICAL ARC

CIRCULAR ARC CENTER

e. Metafile Control Elements

TRANSPARENCY

AUXILIARY COLOR

4.2 <u>CGM binary encoding</u>. CGM commands in the CGM implementation for NITFS are encoded using the binary encoding method described in the FIPS PUB 128. Metafile elements will be represented in the binary encoding in either short-form commands or long-form commands. For short-form and long-form commands, the 4 most significant bits (MSB) identify the element class in which the command belongs (for example, Delimiter Elements, Descriptor Elements) and the fifth through eleventh bits identify the element ID (for example, BEGIN METAFILE, END METAFILE). For the short-form command, the five least significant bits (LSB) specify the length, in bytes, of the parameter list. This form is used to specify parameter lists that are less than 31 LONG. For the long-form command, the 5 LSB are set to the binary value "11111" (decimal 31). In this case, the next 2 bytes are interpreted as a signed positive integer containing the length of the parameter list. For short-form and long-form commands, the first byte of a string parameter specifies the length of the string. If necessary, parameters are padded with a trailing null byte (0) to ensure that all subsequent commands begin on a 16-bit word boundary. Note, the trailing null byte is not included in the parameter list length. In the figures contained in this standard, all numbers are decimal unless preceded by "0x" indicating hexadecimal notation.

TABLE I. Short form of CGM command.

| MSB |                          |    |    |    |    |   |   |   |   |       |           |        |   |   | LSB |
|-----|--------------------------|----|----|----|----|---|---|---|---|-------|-----------|--------|---|---|-----|
| 15  | 14                       | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5     | 4         | 3      | 2 | 1 | 0   |
|     | element class element id |    |    |    |    |   |   |   |   | param | eter list | length |   |   |     |
|     | Parameters               |    |    |    |    |   |   |   |   |       |           |        |   |   |     |
|     |                          |    |    |    |    |   |   | • |   |       |           |        |   |   |     |
|     |                          |    |    |    |    |   |   | • |   |       |           |        |   |   |     |

# TABLE II. Long form of CGM command.

| MSB |                          |    |    |    |    |   | _ |   |   |   |    |   |   |   | LSB |
|-----|--------------------------|----|----|----|----|---|---|---|---|---|----|---|---|---|-----|
| 15  | 14                       | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4  | 3 | 2 | 1 | 0   |
|     | element class element id |    |    |    |    |   |   |   |   |   | 31 |   |   |   |     |
|     | parameter list length    |    |    |    |    |   |   |   |   |   |    |   |   |   |     |
|     | Parameters               |    |    |    |    |   |   |   |   |   |    |   |   |   |     |
|     | ·                        |    |    |    |    |   |   |   |   |   |    |   |   |   |     |
|     |                          |    |    | •  |    |   |   |   |   |   |    |   |   |   |     |

4.3 <u>CGM element flow</u>. The following sequence of commands is used to describe all CGM graphics required for the CGM implementation for NITFS. The following flow diagram displays all the CGM commands for the NITFS implementation that could be contained in a metafile. The commands enclosed in brackets are optional within a given metafile and are used only when needed to describe the desired graphical symbol. Commands following the BEGIN PICTURE BODY command may be repeated to describe multiple graphics within the same metafile. The commands are executed in sequential order.

#### **BEGIN METAFILE**

METAFILE VERSION METAFILE ELEMENT LIST METAFILE DESCRIPTION [FONT LIST]

#### **BEGIN PICTURE**

COLOR SELECTION MODE [EDGE WIDTH SPECIFICATION MODE] [LINE WIDTH SPECIFICATION MODE] VDC EXTENT

## **BEGIN PICTURE BODY**

[TRANSPARANCY]
[AUXILLIARY COLOR]
[TEXT COLOR]
[CHARACTER HEIGHT]
[TEXT FONT INDEX]
[CHARACTER ORIENTATION]
[TEXT]
[FILL COLOR]
[INTERIOR STYLE]
[EDGE VISIBILITY]
[EDGE WIDTH]
[EDGE TYPE]
[EDGE COLOR]
[POLYGON]

[ELLIPSE]

[ELLIPTICAL ARC CLOSE]

[RECTANGLE]

[CIRCLE]

[CIRCULAR ARC CENTER CLOSE]

[LINE WIDTH]
[LINE TYPE]
[LINE COLOR]

[POLYLINE]

[ELLIPTICAL ARC]

## [CIRCULAR ARC CENTER]

## **END PICTURE**

#### END METAFILE

Default elements as identified in TABLE CXVIII CGM element defaults for output, may optionally be included in a CGM file. If the default element(s) are included, they can only contain those values as identified in tables CXVIII.

## 5. DETAILED REQUIREMENTS

5.1 Interface requirements. The following subsections list the required CGM commands along with the binary encoding method as described in the FIPS PUB 128 document. The words "command" and "element" are used synonymously throughout this document.

## 5.1.1 CGM interface input requirements.

- 5.1.1.1 <u>Delimiter elements</u>. The Delimiter elements define boundaries for significant structures within the metafile.
- 5.1.1.1.1 Begin Metafile element input. The CGM implementation for NITFS shall provide the capability to input and interpret the Begin Metafile element using the following formats. The Begin Metafile element name is represented using the character string C1, C2, ... Cn with length n.

TABLE III. Begin Metafile padded, short form input.

| MSB |    |    |         |         | 22 111, |   |   | - F | ., |   |   |        |           |        | LSB |
|-----|----|----|---------|---------|---------|---|---|-----|----|---|---|--------|-----------|--------|-----|
| 15  | 14 | 13 | 12      | 11      | 10      | 9 | 8 | 7   | 6  | 5 | 4 | 3      | 2         | 1      | 0   |
|     | 0  |    |         |         |         |   | 1 |     |    |   |   | parame | eter list | length |     |
|     |    | le | ength = | n (evei | n)      |   |   |     |    |   | C | C1     |           |        |     |
|     |    |    |         | 22      |         |   |   |     |    |   |   | •      |           |        |     |
|     |    |    |         |         |         |   |   |     |    |   |   | •      |           |        |     |
|     |    |    | C       | n       |         |   |   |     |    |   | ( | 0      |           |        |     |

TABLE IV. Begin Metafile nonpadded, short form input.

| MSB |    |    |         |        | _  | - |   | - |   |   |   |       |           |        | LSB |
|-----|----|----|---------|--------|----|---|---|---|---|---|---|-------|-----------|--------|-----|
| 15  | 14 | 13 | 12      | 11     | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3     | 2         | 1      | 0   |
|     | 0  | )  |         |        |    |   | 1 |   |   |   |   | param | eter list | length |     |
|     |    | 1  | ength = | n (odd | l) |   |   |   |   |   |   | C1    |           |        |     |
|     |    |    | C       | 22     |    |   |   |   |   |   |   | •     |           |        |     |
|     |    |    |         |        |    |   |   |   |   |   |   |       |           |        |     |
|     |    |    | C(r     | n-1)   | ·- |   |   |   |   |   | C | n     |           |        |     |

TABLE V. Begin Metafile padded, long form input.

|    |    |        |            |    |                     |                         |                                 |                                          |                                             |                                             |                                             |                                                |                                                       | LSB                                                 |                                                                                                                                                |
|----|----|--------|------------|----|---------------------|-------------------------|---------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 | 13 | 12     | 11         | 10 | 9                   | 8                       | 7                               | 6                                        | 5                                           | 4                                           | 3                                           | 2                                              | 1                                                     | 0                                                   |                                                                                                                                                |
| (  | )  |        |            |    |                     | 1                       |                                 |                                          |                                             |                                             |                                             | 31                                             |                                                       |                                                     | = 0x003F                                                                                                                                       |
|    |    |        |            |    | par                 | ameter                  | list le                         | ngth                                     |                                             |                                             |                                             |                                                |                                                       |                                                     |                                                                                                                                                |
|    | le | ngth = | n (ever    | n) |                     |                         |                                 |                                          |                                             | C                                           | C1                                          |                                                |                                                       |                                                     |                                                                                                                                                |
|    |    | C      | 22         |    |                     |                         |                                 |                                          |                                             |                                             | :                                           |                                                |                                                       |                                                     |                                                                                                                                                |
|    |    |        |            |    |                     |                         |                                 |                                          |                                             |                                             | •                                           |                                                |                                                       |                                                     |                                                                                                                                                |
|    |    | C      | 'n         |    |                     |                         |                                 |                                          |                                             | (                                           | 0                                           |                                                |                                                       |                                                     |                                                                                                                                                |
|    | 14 | 0      | 0 length = | 0  | 0 length = n (even) | 0 par length = n (even) | 0 1 parameter length = n (even) | 0 1 parameter list len length = n (even) | 0 1 parameter list length length = n (even) | 0 1 parameter list length length = n (even) | 0 1 parameter list length length = n (even) | 0 1 parameter list length length = n (even) C1 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0 1 31  parameter list length  length = n (even) C1 | 14     13     12     11     10     9     8     7     6     5     4     3     2     1     0       parameter list length       length = n (even) |

| 3.60      | _         |                |          |          | TABL    | E VI.    | Begin         | Metafile                | e nonpa     | added, l | long for | rm inp | out.        |            | 1.00          |            |          |
|-----------|-----------|----------------|----------|----------|---------|----------|---------------|-------------------------|-------------|----------|----------|--------|-------------|------------|---------------|------------|----------|
| MSI<br>15 |           | 13             | 12       | 11       | 10      | 9        | 8             | 7                       | 6           | 5        | 4        | 3      | 2           | 1          | LSB<br>0      |            |          |
| 13        |           | $\frac{13}{0}$ | 12       | 11       | 10      | 7        | 1             |                         | - 0         |          | 4        | 3      | 31          | 1          | 0             |            | = 0x003F |
|           |           | <u> </u>       |          | <u> </u> |         | para     |               | · list len              | gth         |          |          |        | 31          |            |               |            | - 0X0031 |
|           |           | 1              |          | n (odd   | l)      | •        |               |                         |             |          | C        | 1      |             |            |               |            |          |
|           |           |                | C        | 22       |         |          |               |                         |             |          | :        |        |             |            |               |            |          |
|           |           |                | C(1      | n-1)     |         |          |               |                         |             |          | Cı       | 1      |             |            |               |            |          |
|           |           | t and in       | nterpret | the Be   | gin Pic | ture ele | ement         | The Cousing the Cn with | e follo     | wing fo  |          |        |             |            |               |            |          |
|           | MOD       |                |          |          | TAB     | BLE VI   | I. <u>Beg</u> | in Pictu                | re pad      | ded, sho | ort form | inpu   | <u>t</u> .  |            |               |            | I CD     |
|           | MSB<br>15 | 14             | 13       | 12       | 11      | 10       | 9             | 8                       | 7           | 6        | 5        | _      | 1           | 3          | 2             | 1          | LSB<br>0 |
| Ī         | 13        | 0              |          | 12       | - 11    | 10       |               | 3                       |             | - 0      |          |        |             |            | ter list      |            |          |
|           |           |                | le       | ength =  | n (ever | 1)       |               |                         |             |          |          | ı      | C1          |            |               |            |          |
|           |           |                |          | C        | 2       |          |               |                         |             |          |          |        | :           |            |               |            |          |
| Ì         |           |                |          | C        | n       |          |               |                         |             |          |          |        | 0           |            |               |            |          |
| [         | MSB<br>15 | 14             | 13       | 12       | 11      | 10       | 9             | Picture  8 3            | 7           | 6        | 5        | _      | 1           | 3<br>arame | 2<br>ter list | 1<br>lengt | LSB<br>0 |
|           |           |                | 1        | ength =  |         | l)       |               |                         |             |          |          |        | C1          |            |               |            |          |
|           |           |                |          | C        | 2       |          |               |                         |             |          |          |        | :           |            |               |            |          |
| [         |           |                |          | C(r      | ı-1)    |          |               |                         |             |          |          |        | Cn          |            |               |            |          |
| MSI       |           | 10             | 10       | 4.4      |         |          | _             | in Pictu                | _           |          |          | _      |             | 4          | LSB           |            |          |
| 15        | 14        | 13             | 12       | 11       | 10      | 9        | 3             | 7                       | 6           | 5        | 4        | 3      | 31          | 1          | 0             |            | = 0x007F |
|           |           | 0              |          |          |         | para     |               | · list len              | gth         |          |          |        | 31          |            |               |            | - 0X0071 |
|           |           | 16             | ength =  | n (eve   | n)      | F        |               |                         | <u> </u>    |          | C        | 1      |             |            |               |            |          |
|           |           |                | (        | C2       |         |          |               |                         |             |          | :        |        |             |            |               |            |          |
|           |           |                | (        | Cn       |         |          |               |                         |             |          | 0        |        |             |            |               |            |          |
|           |           |                |          |          | TAB     | LE X.    | Begin         | Picture                 | nonpa       | dded, lo | ong forr | n inpu | <u>ıt</u> . |            |               |            |          |
| MSI       |           |                |          |          | 4.0     |          |               | _                       |             | _        |          | _      |             |            | LSB           |            |          |
| 15        |           | 13<br>0        | 12       | 11       | 10      | 9        | 8             | 7                       | 6           | 5        | 4        | 3      | 2<br>31     | 1          | 0             |            | = 0x007F |
|           |           | U              |          | <u> </u> |         | nar      |               | · list len              | gt <b>h</b> |          |          |        | 31          |            |               |            | = UXUU/F |
|           |           | 1              | ength =  | n (odd   | l)      | pari     |               | 1150 1011               | 0***        |          | C        | 1      |             |            |               |            |          |
|           |           |                |          | C2       |         |          |               |                         |             |          | •        |        |             |            |               |            |          |

5.1.1.1.3 <u>Begin Picture Body element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Begin Picture Body element using the following format.

Cn

C(n-1)

| TABLE XI. | Begin | <u>Picture</u> | Body | <u>input.</u> |
|-----------|-------|----------------|------|---------------|
|           |       |                |      |               |

| MSB |    |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | (  | )  |    |    |    |   | 4 |   |   |   |   |   | 0 |   |     | = 0x0080 |

5.1.1.1.4 <u>End Picture element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the End Picture element using the following format.

| TO A DI TO SZIT | T 1 D'     | • .      |
|-----------------|------------|----------|
| TABLE XII.      | End Pictur | e inniif |
|                 |            |          |

| MSB |    |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | (  | )  |    |    |    |   | 5 |   |   |   |   |   | 0 |   |     | = 0x00A0 |

5.1.1.1.5 End Metafile element input. The CGM implementation for NITFS shall provide the capability to input and interpret the End Metafile element using the following format.

## TABLE XIII. End Metafile input.

| MSB |    |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | (  | )  |    |    |    |   | 2 |   |   |   |   |   | 0 |   |     | = 0x0040 |

5.1.1.2 <u>Metafile Descriptor elements</u>. The Metafile Descriptor elements describe the functional content, default conditions, and characteristics of the Metafile.

5.1.1.2.1 <u>Metafile Version element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Metafile Version element (version 1) using the following format.

## TABLE XIV. Metafile Version input.

| MSB |    |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 1  |    |    |    |    |   | 1 |   |   |   |   |   | 2 |   |     | = 0x1022 |
|     |    |    |    |    |    |   |   | 1 |   |   |   |   |   |   |     | = 0x0001 |

5.1.1.2.2 <u>Metafile Description element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Metafile Description element using the following formats. The Metafile Description element name is represented using the character string C1, C2, ... Cn with length n.

# TABLE XV. Metafile Description padded, short form input.

| MSB |    |    |         |         |    |   |   |   |   |   |   |       |           |        | LSB |
|-----|----|----|---------|---------|----|---|---|---|---|---|---|-------|-----------|--------|-----|
| 15  | 14 | 13 | 12      | 11      | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3     | 2         | 1      | 0   |
|     | 1  |    |         |         |    |   | 2 |   |   |   |   | param | eter list | length |     |
|     |    | le | ength = | n (ever | 1) |   |   |   |   |   | ( | C1    |           |        |     |
|     |    |    | C       | 22      |    |   |   |   |   |   |   | •     |           |        |     |
|     |    |    |         |         |    |   |   |   |   |   |   | •     |           |        |     |
|     |    |    | C       | 'n      |    |   |   |   |   |   |   | 0     |           |        |     |

# TABLE XVI. Metafile Description nonpadded, short form input.

LSB

**MSB** 

| 15 | 14 | 13 | 12      | 11     | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3      | 2         | 1      | 0 |
|----|----|----|---------|--------|----|---|---|---|---|---|---|--------|-----------|--------|---|
|    | 1  |    |         |        |    |   | 2 |   |   |   |   | parame | eter list | length |   |
|    |    | L  | ength = | n (odd | .) |   |   |   |   |   | C | C1     |           |        |   |
|    |    |    | С       | 2      |    |   |   |   |   |   |   | •      |           |        |   |
|    |    |    |         |        |    |   |   |   |   |   |   | •      |           |        |   |
|    |    |    | C(n     | ı-1)   |    |   |   |   |   |   | C | Cn     |           |        |   |

| TABLE XVII. | Metafile Description | padded, long | form input. |
|-------------|----------------------|--------------|-------------|
|             |                      |              |             |

| MSB |      |                   |    |    |       |                |          | _        | -         | _      | ,       |         |         |            | LSB |         |
|-----|------|-------------------|----|----|-------|----------------|----------|----------|-----------|--------|---------|---------|---------|------------|-----|---------|
| 15  | 14   | 13                | 12 | 11 | 10    | 9              | 8        | 7        | 6         | 5      | 4       | 3       | 2       | 1          | 0   |         |
|     | 1    | -                 |    |    |       |                | 2        |          |           |        |         |         | 31      |            |     | =0x105F |
|     |      |                   |    |    |       | par            | ameter   | list lei | ngth      |        |         |         |         |            |     |         |
|     |      | length = n (even) |    |    |       |                |          |          |           |        |         |         |         |            |     |         |
|     | C2 : |                   |    |    |       |                |          |          |           |        |         |         |         |            |     |         |
|     |      |                   |    |    |       |                |          |          |           |        |         | •       |         |            |     |         |
|     |      |                   | (  | Cn |       |                |          |          |           |        | (       | 0       |         |            |     |         |
| MSB |      |                   |    | TA | BLE X | VIII. <u>1</u> | Metafile | e Desci  | ription 1 | nonpad | ded, lo | ng fori | n input | <u>t</u> . | LSB |         |

= 0x105F

| MSB |                       |    |         |        |    |   |   |   |   |   |   |    |    |   | LSB |
|-----|-----------------------|----|---------|--------|----|---|---|---|---|---|---|----|----|---|-----|
| 15  | 14                    | 13 | 12      | 11     | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3  | 2  | 1 | 0   |
|     | 1                     |    |         |        |    |   | 2 |   |   |   |   |    | 31 |   |     |
|     | parameter list length |    |         |        |    |   |   |   |   |   |   |    |    |   |     |
|     |                       | 16 | ength = | n (odo | 1) |   |   |   |   |   | C | C1 |    |   |     |
|     |                       |    | (       | 72     |    |   |   |   |   |   |   | •  |    |   |     |

C(n-1)

5.1.1.2.3 <u>Metafile Element List element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Metafile Element List command using the following format. The metafile elements are chosen from specified CGM command subsets. When the second parameter is one, the metafile element is "Drawing Plus Control Set."

Cn

| TARIF XIX | Metafile Element List input.       |
|-----------|------------------------------------|
| LADILLALA | Triciallic Pacificili Lasi IIIDul. |

| MSB |    |    |    |    |    |   |   |   |   |   | • |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 1  |    |    |    |    |   | 2 |   |   |   |   |   | 6 |   |     | = 0x1166 |
|     |    |    |    |    |    |   |   | 1 |   |   |   |   |   |   |     | = 0x0001 |
|     |    |    |    |    |    |   | - | 1 |   |   |   |   |   |   |     | = 0xFFFF |
|     |    |    |    |    |    |   |   | 1 |   |   |   |   |   |   |     | = 0x0001 |

5.1.1.2.4 Font List element input. The CGM implementation for NITFS shall provide the capability to input and interpret the Font List element using the following formats. The first font name defined in the list is of length x with the font name given as the character string C1, C2, ... Cx assigned to index 1. The last font name defined in the list is of length z with the font name given as the character string C1, C2, ... Cz and assigned to index N. Selection of named fonts is accomplished with the Text Font Index element.

TABLE XX. Font List padded, short form input.

| MSB |    |    |       |       |    |    |    |   |   |   |   |                       |   |   | LSB |  |  |  |  |
|-----|----|----|-------|-------|----|----|----|---|---|---|---|-----------------------|---|---|-----|--|--|--|--|
| 15  | 14 | 13 | 12    | 11    | 10 | 9  | 8  | 7 | 6 | 5 | 4 | 3                     | 2 | 1 | 0   |  |  |  |  |
|     | 1  |    |       |       |    |    | 13 |   |   |   |   | parameter list length |   |   |     |  |  |  |  |
|     |    |    | lengt | h = x |    |    | C1 |   |   |   |   |                       |   |   |     |  |  |  |  |
|     |    |    | C     | 22    |    | C1 |    |   |   |   |   |                       |   |   |     |  |  |  |  |
|     |    |    | C(x   | κ-1)  |    |    |    |   |   |   | ( | Cx                    |   |   |     |  |  |  |  |
|     |    |    | lengt | h = z |    |    |    |   |   |   | ( | C2                    |   |   |     |  |  |  |  |
|     |    |    | C     | C1    |    |    |    |   |   |   |   | :                     |   |   |     |  |  |  |  |
|     |    |    | C     | Zz    | •  |    | •  |   |   | • | ( | 0                     |   |   |     |  |  |  |  |

|          |                                                                   |    |    |    |    | <u> </u> |    | mp arara | or, Direct |   | 11000 |        |           |        |     |
|----------|-------------------------------------------------------------------|----|----|----|----|----------|----|----------|------------|---|-------|--------|-----------|--------|-----|
| MSB      |                                                                   |    |    |    |    |          |    |          |            |   |       |        |           |        | LSB |
| 15       | 14                                                                | 13 | 12 | 11 | 10 | 9        | 8  | 7        | 6          | 5 | 4     | 3      | 2         | 1      | 0   |
|          | 1                                                                 |    |    |    |    |          | 13 |          |            |   |       | param  | eter list | length |     |
|          | $\begin{array}{c c} length = x & C1 \\ \hline C2 & . \end{array}$ |    |    |    |    |          |    |          |            |   |       |        |           |        |     |
|          | C2 :                                                              |    |    |    |    |          |    |          |            |   |       |        |           |        |     |
| : C(x-1) |                                                                   |    |    |    |    |          |    |          |            |   |       |        |           |        |     |
|          |                                                                   |    | C  | Cx |    |          |    |          |            |   | Leng  | th = z |           |        |     |
|          |                                                                   |    | C  | C1 |    |          |    |          |            |   |       | C2     |           |        |     |
| . Cz     |                                                                   |    |    |    |    |          |    |          |            |   |       |        |           |        |     |
|          |                                                                   |    |    |    |    |          |    |          |            |   |       |        |           |        |     |

# TABLE XXII. Font List padded, long form input.

|     |               |    |       |                        |    |     |        |         |      |   | B |         |    |   |     |         |
|-----|---------------|----|-------|------------------------|----|-----|--------|---------|------|---|---|---------|----|---|-----|---------|
| MSB |               |    |       |                        |    |     |        |         |      |   |   |         |    |   | LSB |         |
| 15  | 14            | 13 | 12    | 11                     | 10 | 9   | 8      | 7       | 6    | 5 | 4 | 3       | 2  | 1 | 0   | _       |
|     | 1             |    |       |                        |    |     | 13     |         |      |   |   |         | 31 |   |     | =0x11BF |
|     |               |    |       |                        |    | par | ameter | list le | ngth |   |   |         |    |   |     |         |
|     | length = x C1 |    |       |                        |    |     |        |         |      |   |   |         |    |   |     |         |
|     | C2 .          |    |       |                        |    |     |        |         |      |   |   |         |    |   |     |         |
|     |               |    | C     | x-1)                   |    |     |        |         |      |   | ( | ·<br>Cx |    |   |     |         |
|     |               |    |       |                        |    |     |        |         |      |   |   |         |    |   |     |         |
|     |               |    | lengt | th = z                 |    |     |        |         |      |   | ( | C1      |    |   |     |         |
|     |               |    | C     | C2                     |    |     |        |         |      |   |   |         |    |   |     |         |
|     |               |    |       |                        |    |     |        |         |      |   |   | •       |    |   |     |         |
|     |               |    |       | $\mathbb{C}\mathbf{z}$ |    |     |        |         |      |   | ( | 0       |    |   |     |         |

# TABLE XXIII. Font List nonpadded, long form input.

1BF

| MSB   |                                                               |    |       |        |    |     |        |         |      |   |   |            |    |   | LSB |        |
|-------|---------------------------------------------------------------|----|-------|--------|----|-----|--------|---------|------|---|---|------------|----|---|-----|--------|
| 15    | 14                                                            | 13 | 12    | 11     | 10 | 9   | 8      | 7       | 6    | 5 | 4 | 3          | 2  | 1 | 0   |        |
|       | 1                                                             |    |       |        |    |     | 13     |         |      |   |   |            | 31 |   |     | = 0x11 |
|       |                                                               |    |       |        |    | pai | ameter | list le | ngth |   |   |            |    |   |     |        |
|       |                                                               |    | lengt | th = n |    |     |        |         |      |   | C | <b>C</b> 1 |    |   |     |        |
|       | C2 :                                                          |    |       |        |    |     |        |         |      |   |   |            |    |   |     |        |
|       | . C(x-1)                                                      |    |       |        |    |     |        |         |      |   |   |            |    |   |     |        |
|       | $\begin{array}{c c} \cdot & & \\ Cx & Length = z \end{array}$ |    |       |        |    |     |        |         |      |   |   |            |    |   |     |        |
| C1 C2 |                                                               |    |       |        |    |     |        |         |      |   |   |            |    |   |     |        |
|       |                                                               |    |       | :      |    |     |        |         |      |   | C | Cz         |    |   |     |        |

5.1.1.3 <u>Picture Descriptor elements</u>. The Picture Descriptor elements set the interpretation modes of the attribute elements.

5.1.1.3.1 <u>Color Selection Mode element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Color Selection Mode element using the following format.

# TABLE XXIV. Color Selection Mode input.

| MSB |    |    |    |    |    |   |   |   |   |   | • | - |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 2  | 2  |    |    |    |   | 2 |   |   |   |   |   | 2 |   |     | = 0x2042 |
|     |    |    |    |    |    |   |   | 1 |   |   |   |   |   |   |     | = 0x0001 |

5.1.1.3.2 <u>Edge Width Specification Mode element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Edge Width Specification Mode element using the following format. Edge width is specified in "absolute mode," which indicates that the width is specified in source pixels. This command is used to support filled-area primitives.

|     |    |    |    |    | TAB | LE XX | KV. <u>Ed</u> | lge Wio | lth Spe | cificati | on Mod | de inpu | <u>t.</u> |   |     |          |
|-----|----|----|----|----|-----|-------|---------------|---------|---------|----------|--------|---------|-----------|---|-----|----------|
| MSB |    |    |    |    |     |       |               |         |         |          |        |         |           |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10  | 9     | 8             | 7       | 6       | 5        | 4      | 3       | 2         | 1 | 0   | _        |
|     | 2  | 2  |    |    | 5 2 |       |               |         |         |          |        |         |           |   |     |          |
|     |    |    |    |    |     |       | (             | 0       |         |          |        |         |           |   |     | = 0x0000 |

5.1.1.3.3 <u>Line Width Specification Mode element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Line Width Specification Mode element using the following format. Line width is specified in "absolute mode," which indicates that the width is specified in pixels. This command is used to support the line primitive.

|     |    |    |    |    | TAB | LE XX | VI. <u>L</u> i | ine Wi | dth Spe | cificati | ion Mo | de inpu | ı <u>t.</u> |   |     |          |
|-----|----|----|----|----|-----|-------|----------------|--------|---------|----------|--------|---------|-------------|---|-----|----------|
| MSB |    |    |    |    |     |       |                |        |         |          |        | _       |             |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10  | 9     | 8              | 7      | 6       | 5        | 4      | 3       | 2           | 1 | 0   |          |
|     | 2  | 2  |    |    |     |       | 3              |        |         |          |        |         | 2           |   |     | = 0x2062 |
|     |    |    |    |    |     |       | (              | )      |         |          |        |         |             |   |     | = 0x0000 |

5.1.1.3.4 <u>VDC Extent element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the VDC Extent element using the following format.

|     |    |    |    |    |    | TA | ABLE X | XXVII      | . VDC | Extent | input. |   |   |   |     |          |
|-----|----|----|----|----|----|----|--------|------------|-------|--------|--------|---|---|---|-----|----------|
| MSB |    |    |    |    |    |    |        |            |       |        |        |   |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9  | 8      | 7          | 6     | 5      | 4      | 3 | 2 | 1 | 0   | _        |
|     | 2  | 2  |    |    |    |    | 6      |            |       |        |        |   | 8 |   |     | = 0x20C8 |
|     |    |    |    |    |    |    | X      | (1         |       |        |        |   |   |   |     |          |
|     |    |    |    |    |    |    | Y      | <b>′</b> 1 |       |        |        |   |   |   |     |          |
|     | X2 |    |    |    |    |    |        |            |       |        |        |   |   |   |     |          |
|     |    |    |    |    |    |    | Y      | 72         |       |        |        |   |   |   |     |          |

This element (illustrated on figures 2 and 3) defines the rectangular extent and orientation of the VDC space (the direction of the positive X and positive Y axes). The extent and orientation of VDC space is indicated by giving the coordinates of lower left hand and upper right hand corners of the VDC extent. The VDC extent space is a one-to-one map from the VDC extent to the source coordinates. The VDC extent origin (0,0) is mapped onto the source at the row and column location given by the SLOC field in the Symbol Subheader for a given image. The Symbol Subheader and the SLOC field are defined in the MIL-STD-2500B document. Note that X1 and X2 cannot be equal, and Y1 and Y2 cannot be equal. Note that the proper Character Orientation element must be present to ensure that CGM text is right side up for a given VDC Extent element. The VDC extent defines the positive 90-degree angle to be the right angle from the positive X-axis to the positive Y-axis.



FIGURE 2. Small VDC extent input.



FIGURE 3. Large VDC extent input.

- 5.1.1.4 <u>Attribute elements</u>. Attribute elements are used to describe the appearance of the Graphical Primitive elements.
- 5.1.1.4.1 <u>Text Color element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Text Color element using the following format. The Text Color element is used to support the text primitives. Red, Green, and Blue (RGB) values are specified using a single byte, and the last byte of the command shall be a null byte.

|     |     |    |    |    |    | T | ABLE : | XXVII | I. <u>Text</u> | Color | input. |     |   |   |     |          |
|-----|-----|----|----|----|----|---|--------|-------|----------------|-------|--------|-----|---|---|-----|----------|
| MSB |     |    |    |    |    |   |        |       |                |       |        |     |   |   | LSB |          |
| 15  | 14  | 13 | 12 | 11 | 10 | 9 | 8      | 7     | 6              | 5     | 4      | 3   | 2 | 1 | 0   | _        |
|     | 5   | 5  |    |    |    |   | 14     |       |                |       |        |     | 3 |   |     | = 0x51C3 |
|     | RED |    |    |    |    |   |        |       |                |       | GRI    | EEN |   |   |     |          |
|     |     |    | BL | UE |    |   |        |       |                |       | (      | )   |   |   |     |          |

5.1.1.4.2 <u>Character Height element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Character Height element using the following format. Variable character heights, as measured from baseline to capline, shall be supported. The font, if given, is specified by the Font List and Text Font Index elements.

|     |    |    |    |    |    | TAE | BLE XX | KIX. <u>C</u> | <u>haracte</u> | r Heig | <u>ht inpu</u> | <u>t</u> . |   |   |     |          |
|-----|----|----|----|----|----|-----|--------|---------------|----------------|--------|----------------|------------|---|---|-----|----------|
| MSB |    |    |    |    |    |     |        |               |                | _      | _              |            |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9   | 8      | 7             | 6              | 5      | 4              | 3          | 2 | 1 | 0   |          |
|     | 5  | 5  |    |    |    |     | 15     |               |                |        |                |            | 2 |   |     | = 0x51E2 |
|     |    |    |    |    |    | CHA | RACTI  | ER_HE         | IGHT           |        |                |            |   | • | •   |          |

5.1.1.4.3 <u>Text Font Index element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Text Font Index element using the following format. The Text\_Font\_Index parameter is the index into the Font List array created from the Font List element for selection of a particular font.

|     |    |    |    |    |    | TA  | BLE X | XX. <u>T</u> | ext Fo | nt Inde | x input |   |   |   |     |          |
|-----|----|----|----|----|----|-----|-------|--------------|--------|---------|---------|---|---|---|-----|----------|
| MSB |    |    |    |    |    |     |       |              |        |         | -       |   |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9   | 8     | 7            | 6      | 5       | 4       | 3 | 2 | 1 | 0   |          |
|     | 5  | 5  |    |    |    |     | 10    |              |        |         |         |   | 2 |   |     | = 0x5142 |
|     |    |    |    |    |    | TEX | T_FO  | NT_IN        | DEX    |         |         |   |   |   |     |          |

- 5.1.1.4.4 <u>Character Orientation element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Character Orientation element using the following format. This command defines the orientation and skew of the character body in subsequent text elements. Since the VDC Extent element is used to establish the direction of the positive X and positive Y axis, the character orientation must be present to ensure that text characters are always upright from left to right when the VDC Extent element defines Y increasing down or X increasing left. The following four cases apply to the Character Orientation element for each possible VDC extent orientation:
  - a. VDC Extent element with X increasing right and Y increasing up (X1 < X2 and Y1 < Y2). Character Orientation element not required or Y=1 and X=1 when Character Orientation present.
  - b. VDC Extent element with X increasing right and Y increasing down (X1<X2 and Y1>Y2).
     Character Orientation element required with Y=-1 and X=1.
  - c. VDC Extent element with X increasing left and Y increasing up (X1>X2 and Y1<Y2). Character Orientation element required with Y=1 and X=-1.
  - d. VDC Extent element with X increasing left and Y increasing down (X1>X2 and Y1>Y2).
     Character Orientation element required with Y=-1 and X=-1.

# TABLE XXXI. Character Orientation input.

| MSB |    |    |    |    |    |   |    |   |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|----|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 5  | 5  |    |    |    |   | 16 |   |   |   |   |   | 8 |   |     | = 0x5208 |
|     |    |    |    |    |    |   | (  | ) |   |   |   |   |   |   |     | = 0x0000 |
|     |    |    |    |    |    |   | ,  | Y |   |   |   |   |   |   |     |          |
|     |    |    |    |    |    |   | 2  | X |   |   |   |   |   |   |     |          |
|     |    |    |    |    |    |   | (  | ) |   |   |   |   |   |   |     | = 0x0000 |

5.1.1.4.5 <u>Fill Color element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Fill Color element using the following format. The Fill Color command is used to support the filled-area primitives. RGB values are each specified using a single byte, and the last byte of the command shall be a null byte.

## TABLE XXXII. Fill Color input.

| MSB  |    |    |    |    |    |   |    |   |   |   |    |     |   |   | LSB |          |
|------|----|----|----|----|----|---|----|---|---|---|----|-----|---|---|-----|----------|
| 15   | 14 | 13 | 12 | 11 | 10 | 9 | 8  | 7 | 6 | 5 | 4  | 3   | 2 | 1 | 0   |          |
|      | 4  | 5  |    |    |    |   | 23 |   |   |   |    |     | 3 |   |     | = 0x52E3 |
|      |    |    | RI | ED |    |   |    |   |   |   | GR | EEN |   |   |     |          |
| BLUE |    |    |    |    |    |   |    |   |   |   | (  | 0   |   |   |     |          |

5.1.1.4.6 <u>Interior Style element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Interior Style element using the following format. Filled-area primitives must support the Interior Style parameter for solid (1), hatch (3) and empty (4).

## TABLE XXXIII. Interior Style input.

| MSB |    |    |    |    |    |     |       |       |    |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|-----|-------|-------|----|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9   | 8     | 7     | 6  | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 4  | 5  |    |    |    |     | 22    |       |    |   |   |   | 2 |   |     | = 0x52C2 |
|     |    |    |    |    |    | IN' | TERIO | R_STY | LE |   |   |   |   |   |     |          |

5.1.1.4.6.1 <u>Hatch Index input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Hatch Index element using the following format. The Hatch Index command is used to support the primitive filled-area styles: horizontal (1), vertical (2), positive slope (3), negative slope (4), horizontal/vertical crosshatch (5) and positive/negative slope cross (6).

## TABLE XXXIII(A). Hatch Index input.

| MSB |    |    |    |    |    |   |      |      |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|------|------|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7    | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 4  | 5  |    |    |    |   | 24   |      |   |   |   |   | 2 |   |     | = 0x5302 |
|     |    |    |    |    |    |   | ATCH | INDE | X |   |   |   |   |   |     |          |

5.1.1.4.7 Edge Visibility element input. The CGM implementation for NITFS shall provide the capability to input and interpret the Edge Visibility element using the following format. The edge visibility command (0 = off, 1 = on).

## TABLE XXXIV. Edge Visibility input.

| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |         | LSB |   |   |   |   |   |   |   |    |   |    |    |    |    |    | MSB |
|---------------------------------------|---------|-----|---|---|---|---|---|---|---|----|---|----|----|----|----|----|-----|
|                                       |         | 0   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9 | 10 | 11 | 12 | 13 | 14 | 15  |
| 5 30 2 = 0x.                          | =0x52C2 |     |   | 2 |   |   |   |   |   | 30 |   |    |    |    | 5  | 4  |     |
| EDGE_VISIBILITY                       |         |     |   |   |   |   |   |   |   |    |   |    |    |    |    |    |     |

5.1.1.4.8 Edge Width element input. The CGM implementation for NITFS shall provide the capability to input and interpret the Edge Width element using the following format. Variable edge widths are supported for use in filled-area primitives.

|     |    |    |    |    |    | TA | ABLE 2 | XXXV | . Edge | Width | input. |   |   |   |     |          |
|-----|----|----|----|----|----|----|--------|------|--------|-------|--------|---|---|---|-----|----------|
| MSB |    |    |    |    |    |    |        |      |        |       | •      |   |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9  | 8      | 7    | 6      | 5     | 4      | 3 | 2 | 1 | 0   |          |
|     | 4  | 5  |    |    |    |    | 28     |      |        |       |        |   | 2 |   |     | = 0x5382 |
|     |    |    |    |    |    | I  | EDGE_  | WIDT | H      |       |        |   |   |   |     |          |

5.1.1.4.9 Edge Type element input. The CGM implementation for NITFS shall provide the capability to input and interpret the Edge Type element using the following format. The Edge\_Type parameter can be solid (1), dashed (2), dotted (3), dash-dot (4), and dash-dot-dot (5).

|     |    |    |    |    |    | TA | ABLE : | XXXV | I. Edge | е Туре | input. |   |   |   |     |          |
|-----|----|----|----|----|----|----|--------|------|---------|--------|--------|---|---|---|-----|----------|
| MSB |    |    |    |    |    |    |        |      |         |        |        |   |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9  | 8      | 7    | 6       | 5      | 4      | 3 | 2 | 1 | 0   |          |
|     | 4  | 5  |    |    |    |    | 27     |      |         |        |        |   | 2 |   |     | = 0x5362 |
|     |    |    |    |    |    | E  | EDGE_  | WIDT | H       |        |        |   |   |   |     |          |

5.1.1.4.10 Edge Color element input. The CGM implementation for NITFS shall provide the capability to input and interpret the Edge Color element using the following format. Edge Color is supported for use in filled-area primitives. RGB values are each specified using a single byte, and the last byte of the command shall be a null byte.

TABLE YYYVII Edge Color input

|     |    |           |    |    |    | 17 |    | 1/1/1 V I | i. <u>Lug</u> i | COIOI | mput. |   |   |   |     |         |
|-----|----|-----------|----|----|----|----|----|-----------|-----------------|-------|-------|---|---|---|-----|---------|
| MSB |    |           |    |    |    |    |    |           |                 |       |       |   |   |   | LSB |         |
| 15  | 14 | 13        | 12 | 11 | 10 | 9  | 8  | 7         | 6               | 5     | 4     | 3 | 2 | 1 | 0   |         |
|     | 4  | 5         |    |    |    |    | 29 |           |                 |       |       |   | 3 |   |     | =0x53A3 |
|     |    | RED GREEN |    |    |    |    |    |           |                 |       |       |   |   |   |     |         |
|     |    |           | BL | UE |    |    |    |           |                 |       | (     | 0 |   |   |     |         |

5.1.1.4.11 <u>Line Width element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Line Width element using the following format. Variable line widths are supported for use by line primitives.

|     |    |    |    |    |    | TA | BLE X | XXVI  | II. Line | e Widtl | h input. |   |   |   |     |          |
|-----|----|----|----|----|----|----|-------|-------|----------|---------|----------|---|---|---|-----|----------|
| MSB |    |    |    |    |    |    |       |       |          |         | _        |   |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9  | 8     | 7     | 6        | 5       | 4        | 3 | 2 | 1 | 0   |          |
|     | 4  | 5  |    |    |    |    | 3     |       |          |         |          |   | 2 |   |     | = 0x5362 |
|     |    |    |    |    |    | ]  | LINE_ | WIDTI | I        |         |          |   |   |   |     |          |

5.1.1.4.12 <u>Line Type element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Line Type element using the following format. The Line\_Type parameter can be solid (1), dashed (2), dotted (3), dash-dot (4), and dash-dot-dot (5).

|     |    |    |    |    |    | T. | ABLE | XXXIX | K. <u>Line</u> | <u>Type</u> | <u>input</u> . |   |   |   |     |          |
|-----|----|----|----|----|----|----|------|-------|----------------|-------------|----------------|---|---|---|-----|----------|
| MSB |    |    |    |    |    |    |      |       |                |             |                |   |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9  | 8    | 7     | 6              | 5           | 4              | 3 | 2 | 1 | 0   | _        |
|     | 4  | 5  |    |    |    |    | 2    |       |                |             |                |   | 2 |   |     | = 0x5042 |
|     |    |    |    |    |    |    | LINE | _TYPE |                |             |                |   |   |   |     |          |

5.1.1.4.13 <u>Line Color element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Line Color element using the following format. Line colors are supported for use by the line primitive. RGB values are each specified using a single byte, and the last byte of the command shall be a null byte.

## TABLE XL. Line Color input.

| MSB |    |    |    |    |    |   |   |   |   |   |    |     |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|----|-----|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4  | 3   | 2 | 1 | 0   |          |
|     | 4  | 5  |    |    |    |   | 4 |   |   |   |    |     | 3 |   |     | = 0x5383 |
|     |    |    | RI | ED |    |   |   |   |   |   | GR | EEN |   |   |     |          |
|     |    |    | BL | UE |    |   |   |   |   |   | (  | 0   |   |   |     |          |

5.1.1.5 <u>Graphical Primitive elements</u>. The Graphical Primitive elements describe the visual components of a picture as contained in the CGM.

5.1.1.5.1 <u>Text element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Text element using the following formats. The X and Y parameters give the coordinates of the lower left hand corner of the text string. The flag parameter is an integer (1) indicating that this is the final text in the string. The length parameter is an unsigned byte containing the number of characters in the string. Finally, the text is given as a character string C1, C2, ... Cn with length n. If necessary, the last byte is padded with a zero so that the next command begins on a word boundary.

TABLE XLI. Text padded, short form input.

| MSB |    |    |         |       |    |   |   |   |   |   |   |       |          |         | LSB |          |
|-----|----|----|---------|-------|----|---|---|---|---|---|---|-------|----------|---------|-----|----------|
| 15  | 14 | 13 | 12      | 11    | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3     | 2        | 1       | 0   |          |
|     | ۷  | 4  |         |       |    |   | 4 |   |   |   |   | param | eter lis | t lengt | h   |          |
|     |    |    |         |       |    |   | 2 | X |   |   |   |       |          |         |     |          |
|     |    |    |         |       |    |   | 1 | Y |   |   |   |       |          |         |     |          |
|     |    |    |         |       |    |   |   | 1 |   |   |   |       |          |         |     | = 0x0001 |
|     |    | 10 | ength = | n(eve | n) |   |   |   |   |   | ( | C1    |          |         |     |          |
|     |    |    | C       | 22    |    |   |   |   |   |   |   | :     |          |         |     |          |
|     |    |    | C       | Cn    |    |   |   |   |   |   |   | 0     |          |         |     |          |

# TABLE XLII. Text nonpadded, short form input.

| MSB |    |    |         |         |    |   |   |   |   |   |   |        |          |         | LSB |          |
|-----|----|----|---------|---------|----|---|---|---|---|---|---|--------|----------|---------|-----|----------|
| 15  | 14 | 13 | 12      | 11      | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3      | 2        | 1       | 0   | _        |
|     | 2  | 1  |         |         |    |   | 4 |   |   |   |   | parame | eter lis | t lengt | h   |          |
|     |    |    |         |         |    |   | Σ | X |   |   |   |        |          |         |     |          |
|     |    |    |         |         |    |   |   | Y |   |   |   |        |          |         |     |          |
|     |    |    |         |         |    |   | ] | 1 |   |   |   |        |          |         |     | = 0x0001 |
|     |    | 1  | ength = | = n(odd | .) |   |   |   |   |   | ( | C1     |          |         |     |          |
|     |    |    | C       | 22      |    |   |   |   |   |   |   |        |          |         |     |          |
|     |    |    | C(r     | n-1)    |    |   |   |   |   |   |   | ·      |          |         |     |          |
|     |    |    | C(1     | 1-1)    |    |   |   |   |   |   |   | 'n     |          |         |     |          |

## TABLE XLIII. Text padded, long form input.

| MSB |    |    |         |        |    |     |        |          |      |   |   |    |    |   | LSB |          |
|-----|----|----|---------|--------|----|-----|--------|----------|------|---|---|----|----|---|-----|----------|
| 15  | 14 | 13 | 12      | 11     | 10 | 9   | 8      | 7        | 6    | 5 | 4 | 3  | 2  | 1 | 0   | _        |
|     | 2  | 1  |         |        |    |     | 4      |          |      |   |   |    | 31 |   |     | = 0x409F |
|     |    |    |         |        |    | par | ameter | list ler | ngth |   |   |    |    |   |     |          |
|     |    |    |         |        |    |     | 2      | X        |      |   |   |    |    |   |     |          |
|     |    |    |         |        |    |     | •      | Y        |      |   |   |    |    |   |     |          |
|     |    |    |         |        |    |     |        | 1        |      |   |   |    |    |   |     | = 0x0001 |
|     |    | 1  | ength = | n(ever | n) |     |        |          |      |   | ( | C1 |    |   |     |          |
|     |    |    | C       | 22     |    |     |        |          |      |   |   | •  |    |   |     |          |
|     |    |    | (       | Cn     |    |     |        |          |      |   |   | 0  |    |   |     |          |
|     |    |    |         |        |    |     |        |          |      |   |   |    |    |   |     | 4        |



5.1.1.5.2 <u>Polygon element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Polygon element using the following format. The polygon parameters consist of a list of pairs of coordinates indicating the vertices of a polygon. The first vertex (Vertex1X, Vertex1Y) is connected to the last (Vertex(N)X, Vertex(N)Y) to close the polygon. Polygons are not "clipped" to the image boundary; therefore, some coordinates may specify off-image or off-screen locations, including negative locations. Note, the parameter list length is given as the total number of bytes for all vertex parameters (4N).

|     |    |    |    |    | TABL | E XLV | 7. Poly | gon sho | rt form | input. |    |         |           |         |     |
|-----|----|----|----|----|------|-------|---------|---------|---------|--------|----|---------|-----------|---------|-----|
| MSB |    |    |    |    |      |       |         |         |         |        |    |         |           |         | LSB |
| 15  | 14 | 13 | 12 | 11 | 10   | 9     | 8       | 7       | 6       | 5      | 4  | 3       | 2         | 1       | 0   |
|     | 4  |    |    |    |      |       | 7       |         |         |        | pa | aramete | r list le | ngth (4 | N)  |
|     |    |    |    |    |      |       | Vert    | ex1X    |         |        |    |         |           |         |     |
|     |    |    |    |    |      |       | Vert    | ex1Y    |         |        |    |         |           |         |     |
|     |    |    |    |    |      |       | Vert    | ex2X    |         |        |    |         |           |         |     |
|     |    |    |    |    |      |       | Vert    | ex2Y    |         |        |    |         |           |         |     |
|     |    |    |    |    |      |       |         |         |         |        |    |         |           |         |     |
|     |    |    |    |    |      |       |         | •       |         |        |    |         |           |         |     |
|     |    |    |    |    |      |       | Verte   | x(N)X   |         |        |    |         |           |         |     |
|     |    |    |    |    |      |       | Verte   | x(N)Y   |         |        |    |         |           |         |     |
|     |    |    |    | •  |      |       |         |         |         |        |    |         |           |         |     |

|     |    |    |    |    |    | TAB   | LE XI     | VI. <u>Po</u> | olygon l | ong for | rm inpu | <u>ıt</u> . |    |   |     |          |
|-----|----|----|----|----|----|-------|-----------|---------------|----------|---------|---------|-------------|----|---|-----|----------|
| MSB |    |    |    |    |    |       |           |               |          |         |         |             |    |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9     | 8         | 7             | 6        | 5       | 4       | 3           | 2  | 1 | 0   |          |
|     | 4  | 1  |    |    |    |       | 7         |               |          |         |         |             | 31 |   |     | = 0x40FF |
|     |    |    |    |    |    | Paran | neter lis | st lengt      | th (4N)  |         |         |             |    |   |     |          |
|     |    |    |    |    |    |       | Vert      | ex1X          |          |         |         |             |    |   |     |          |
|     |    |    |    |    |    |       | Vert      | ex1Y          |          |         |         |             |    |   |     |          |
|     |    |    |    |    |    |       | Vert      | ex2X          |          |         |         |             |    |   |     |          |
|     |    |    |    |    |    |       | Vert      | ex2Y          |          |         |         |             |    |   |     |          |
|     |    |    |    |    |    |       |           |               |          |         |         |             |    |   |     |          |
|     |    |    |    |    |    |       | Verte     | x(N)X         |          |         |         |             |    |   |     |          |
|     |    |    |    |    |    |       |           | x(N)Y         |          |         |         |             |    |   |     |          |

5.1.1.5.2.1 Polygon Set element input. The CGM implementation for NITFS shall provide the capability to input and interpret the Polygon Set element using the following format. The polygon set parameters consist of a list of pairs of coordinates indicating the vertices of each polygon in the polygon set along with the Edge\_Out\_Flag indicating the edge visibility and whether the vertex is the last (closure) vertex of the specific polygon in the set. The first vertex of the first polygon (Vertex\_11X, Vertex\_11Y, Edge\_Out\_Flag\_11) is connected to the last Vertex\_1(N)X, Vertex\_1(N)Y, Edge\_OutFlag\_1(N)) vertex in the first polygon followed by the vertices of each successive polygon in like manner. Polygon Sets are not "clipped" to the image boundary; therefore, some coordinates may specify off-image or off-screen locations, including negative locations. The Edge\_Out\_Flag parameter can be Invisible (0), Visible (1), Close Invisible (2), or Close Visible(2). Note, the parameter list length

is given as the total number of bytes for all vertex parameters (6N).

# TABLE XLVII. Polygon short form input.

| MSB |    |          |    |    |    |     |         |         |      |   |    |         |            |         | LSB |
|-----|----|----------|----|----|----|-----|---------|---------|------|---|----|---------|------------|---------|-----|
| 15  | 14 | 13       | 12 | 11 | 10 | 9   | 8       | 7       | 6    | 5 | 4  | 3       | 2          | 1       | 0   |
|     | 4  | <u>.</u> |    |    |    |     | 8       |         |      |   | pa | ıramete | r list leı | ngth (6 | N)  |
|     |    |          |    |    |    |     | Verte   | x_11X   |      |   |    |         |            |         |     |
|     |    |          |    |    |    |     | Verte   | x_11Y   |      |   |    |         |            |         |     |
|     |    |          |    |    |    | E   | dge_Ou  | t_Flag_ | 11   |   |    |         |            |         |     |
|     |    |          |    |    |    |     | Verte   | x_12X   |      |   |    |         |            |         |     |
|     |    |          |    |    |    |     | Verte   | x_12Y   |      |   |    |         |            |         |     |
|     |    |          |    |    |    | E   | dge_Ou  | t_Flag_ | 12   |   |    |         |            |         |     |
|     |    |          |    |    |    |     |         | <br> -  |      |   |    |         |            |         |     |
|     |    |          |    |    |    | ,   | Vertex_ | (n)(N)X | ζ    |   |    |         |            |         |     |
|     |    |          |    |    |    | ,   | Vertex_ | (n)(N)Y | 7    |   |    |         |            |         |     |
|     |    |          |    |    |    | Edg | e_Out_  | Flag_(n | )(N) |   |    |         |            |         |     |

411F

|     |    |    |    |    | 7  | ΓABLE | E XLVI           | II. <u>Pol</u>         | ygon Se        | et long | form i | nput. |    |   |     |
|-----|----|----|----|----|----|-------|------------------|------------------------|----------------|---------|--------|-------|----|---|-----|
| MSB |    |    |    |    |    |       |                  | _                      |                |         |        |       | _  |   | LSB |
| 15  | 14 | 13 | 12 | 11 | 10 | 9     | 8                | 7                      | 6              | 5       | 4      | 3     | 2  | 1 | 0   |
|     |    | 4  |    |    |    |       | 8                |                        | 1 (6)1)        |         |        |       | 31 |   |     |
|     |    |    |    |    |    | paran | neter lis        |                        | h (6N)         |         |        |       |    |   |     |
|     |    |    |    |    |    |       |                  | x_11X                  |                |         |        |       |    |   |     |
|     |    |    |    |    |    | E é   | Verte:<br>lge_Ou | x_11Y                  | 11             |         |        |       |    |   |     |
|     |    |    |    |    |    | EC    |                  | <u>t_гаад</u><br>x_12Y | _11            |         |        |       |    |   |     |
|     |    |    |    |    |    |       | V CI IC.         | . 121                  |                |         |        |       |    |   |     |
|     |    |    |    |    |    |       |                  |                        |                |         |        |       |    |   |     |
|     |    |    |    |    |    |       | Vertex           |                        |                |         |        |       |    |   |     |
|     |    |    |    |    |    |       | Vertex           |                        |                |         |        |       |    |   |     |
|     |    |    |    |    |    | Edg   | ge_Out           |                        | l(N)           |         |        |       |    |   |     |
|     |    |    |    |    |    |       |                  | x_21X                  |                |         |        |       |    |   |     |
|     |    |    |    |    |    | Εć    |                  | x_21Y                  | 21             |         |        |       |    |   |     |
|     |    |    |    |    |    | EC    | lge_Ou           | ırıag_<br>x_22X        | _21            |         |        |       |    |   |     |
|     |    |    |    |    |    |       |                  | x_22Y<br>x_22Y         |                |         |        |       |    |   |     |
|     |    |    |    |    |    | Ed    | lge_Ou           |                        | 22             |         |        |       |    |   |     |
|     |    |    |    |    |    |       | . <u>50_</u> 0 u |                        |                |         |        |       |    |   |     |
|     |    |    |    |    |    |       | <b>T.</b> ,      |                        | 7              |         |        |       |    |   |     |
|     |    |    |    |    |    |       | Vertex           |                        |                |         |        |       |    |   |     |
|     |    |    |    |    |    |       | Vertex<br>ge_Out |                        |                |         |        |       |    |   |     |
|     |    |    |    |    |    | Euş   | ge_Out           | _riag                  | 2(I <b>V</b> ) |         |        |       |    |   |     |
|     |    |    |    |    |    |       |                  |                        |                |         |        |       |    |   |     |
|     |    |    |    |    |    |       |                  | $\frac{1}{2}$ (n)1X    |                |         |        |       |    |   |     |
|     |    |    |    |    |    |       |                  | (n)1Y                  |                |         |        |       |    |   |     |
|     |    |    |    |    |    | Edg   | ge_Out           |                        |                |         |        |       |    |   |     |
|     |    |    |    |    |    |       |                  | (n)2X                  |                |         |        |       |    |   |     |
|     |    |    |    |    |    | Е.1   |                  | (n)2Y                  |                |         |        |       |    |   |     |
|     |    |    |    |    |    | Edg   | ge_Out           | _riag_                 | (n)2           |         |        |       |    |   |     |
|     |    |    |    |    |    |       |                  | -                      |                |         |        |       |    |   |     |
|     |    |    |    |    |    |       | Vertex_          |                        |                |         |        |       |    |   |     |
|     |    |    |    |    |    |       | Vertex_          |                        |                |         |        |       |    |   |     |
|     |    |    |    |    |    | Edge  | e_Out_           | Flag_(1                | n)(N)          |         |        |       |    |   |     |

5.1.1.5.3 Ellipse element input. The CGM implementation for NITFS shall provide the capability to input and interpret the Ellipse element using the following format. The ellipse parameters consist of a list of three pairs of coordinates. The first pair, CenterX and CenterY, gives the location of the center of the ellipse. The other two pairs, End1X, End1Y, and End2X, End2Y, specify the end points of the first and second conjugate diameters. The ellipse interior will be as specified by the Interior Style command, and the edge width, type, and color will be as specified in the Edge Width, Edge Type, and Edge Color commands, respectively.

|     |    |    |    |    |    |   | TABL | E XLI | X. <u>Elli</u> | pse in | out. |   |    |   |     |          |
|-----|----|----|----|----|----|---|------|-------|----------------|--------|------|---|----|---|-----|----------|
| MSB |    |    |    |    |    |   |      |       |                |        |      |   |    |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7     | 6              | 5      | 4    | 3 | 2  | 1 | 0   |          |
|     | 4  | 1  |    |    |    |   | 8    |       |                |        |      |   | 31 |   |     | = 0x422C |
|     |    |    |    |    |    |   | Cen  | terX  |                |        |      |   |    |   |     |          |
|     |    |    |    |    |    |   | Cen  | terY  |                |        |      |   |    |   |     |          |
|     |    |    |    |    |    |   | Edi  | n1X   |                |        |      |   |    |   |     |          |
|     |    |    |    |    |    |   | End  | d1Y   |                |        |      |   |    |   |     |          |
|     |    |    |    |    |    |   | End  | d2X   |                |        |      |   |    |   |     |          |
|     |    |    |    |    |    |   | End  | d2Y   |                |        |      |   |    |   |     |          |

5.1.1.5.4 <u>Polyline element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Polyline element using the following format. The polyline parameters consist of a list of pairs of coordinates indicating the vertices of a polyline (Vertex1X, Vertex1Y) to (Vertex(N)X, Vertex(N)Y). The line width, type, and color are specified by the Line Width, Line Type, and Line Color commands, respectively. Polylines are not "clipped" to the image boundary. Therefore, some coordinates may specify off-image or off-screen locations, including negative locations. Note, the parameter list length is given as the total number of bytes for all vertex parameters (4N).

|     |                   |    |    |    | TAE | BLE L. | Polylin | ne short | form ir | <u>ıput</u> . |    |        |           |          |     |
|-----|-------------------|----|----|----|-----|--------|---------|----------|---------|---------------|----|--------|-----------|----------|-----|
| MSB |                   |    |    |    |     |        | •       |          |         | •             |    |        |           |          | LSB |
| 15  | 14                | 13 | 12 | 11 | 10  | 9      | 8       | 7        | 6       | 5             | 4  | 3      | 2         | 1        | 0   |
|     | 4                 | ļ  |    |    |     |        | 1       |          |         |               | pa | ramete | r list le | ngth (4) | N)  |
|     | Vertex 1 Y        |    |    |    |     |        |         |          |         |               |    |        |           |          |     |
|     | Vertex1Y          |    |    |    |     |        |         |          |         |               |    |        |           |          |     |
|     | Vertex1Y Vertex2X |    |    |    |     |        |         |          |         |               |    |        |           |          |     |
|     |                   |    |    |    |     |        | Vert    | ex2Y     |         |               |    |        |           |          |     |
|     |                   |    |    |    |     |        |         |          |         |               |    |        |           |          |     |
|     |                   |    |    |    |     |        |         | •        |         |               |    |        |           |          |     |
|     |                   |    |    |    |     |        | Verte   | x(N)X    |         |               |    |        |           |          |     |
|     |                   | •  |    |    | •   | •      | Verte   | x(N)Y    | •       | •             |    | •      |           | •        |     |

|    |    |         |    |    |       |                       | V C11                                                                                                                                                                           | (LA(11))                                |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                  |                                                                     |                                                                       |                                                                         |                                              |
|----|----|---------|----|----|-------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|
|    |    |         |    |    | TA    | BLE L                 | I. <u>Poly</u>                                                                                                                                                                  | line loi                                | ng forn                                                                                                                         | n input.                                                                                                                                                                           |                                                                                                                                                  |                                                                     |                                                                       |                                                                         |                                              |
|    |    |         |    |    |       |                       |                                                                                                                                                                                 |                                         | _                                                                                                                               | _                                                                                                                                                                                  |                                                                                                                                                  |                                                                     |                                                                       | LSB                                                                     |                                              |
| 14 | 13 | 12      | 11 | 10 | 9     | 8                     | 7                                                                                                                                                                               | 6                                       | 5                                                                                                                               | 4                                                                                                                                                                                  | 3                                                                                                                                                | 2                                                                   | 1                                                                     | 0                                                                       |                                              |
| 4  |    |         |    |    |       | 1                     |                                                                                                                                                                                 |                                         |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                  | 31                                                                  |                                                                       |                                                                         | = 0x403F                                     |
|    |    |         |    |    | Param | eter lis              | t lengt                                                                                                                                                                         | h (4N)                                  |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                  |                                                                     |                                                                       |                                                                         |                                              |
|    |    |         |    |    |       | Verte                 | ex1X                                                                                                                                                                            |                                         |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                  |                                                                     |                                                                       |                                                                         |                                              |
|    |    |         |    |    |       | Verte                 | ex1Y                                                                                                                                                                            |                                         |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                  |                                                                     |                                                                       |                                                                         |                                              |
|    |    |         |    |    |       | Verte                 | ex2X                                                                                                                                                                            |                                         |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                  |                                                                     |                                                                       |                                                                         |                                              |
|    |    |         |    |    |       | Verte                 | ex2Y                                                                                                                                                                            |                                         |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                  |                                                                     |                                                                       |                                                                         |                                              |
|    |    |         |    |    |       |                       |                                                                                                                                                                                 |                                         |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                  |                                                                     |                                                                       |                                                                         |                                              |
|    |    |         |    |    |       | Verte                 | v(N)X                                                                                                                                                                           |                                         |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                  |                                                                     |                                                                       |                                                                         |                                              |
|    |    |         |    |    |       |                       |                                                                                                                                                                                 |                                         |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                  |                                                                     |                                                                       |                                                                         |                                              |
|    |    | 14 13 4 |    |    |       | 14 13 12 11 10 9<br>4 | 14         13         12         11         10         9         8           4         1         Parameter list           Verte           Verte           Verte           Verte | TABLE LI. Poly  14 13 12 11 10 9 8 7  4 | TABLE LI. Polyline lor  14 13 12 11 10 9 8 7 6 4 1 Parameter list length (4N) Vertex1X Vertex1Y Vertex2X Vertex2Y  : Vertex(N)X | 14     13     12     11     10     9     8     7     6     5       Parameter list length (4N)       Vertex1X       Vertex1Y       Vertex2X       Vertex2Y       :       Vertex(N)X | TABLE LI. Polyline long form input.  14 13 12 11 10 9 8 7 6 5 4 4 1 Parameter list length (4N) Vertex1X Vertex1Y Vertex2X Vertex2Y  : Vertex(N)X | TABLE LI. Polyline long form input.  14 13 12 11 10 9 8 7 6 5 4 3 4 | TABLE LI. Polyline long form input.  14 13 12 11 10 9 8 7 6 5 4 3 2 4 | TABLE LI. Polyline long form input.  14 13 12 11 10 9 8 7 6 5 4 3 2 1 4 | TABLE LI. Polyline long form input.  LSB  14 |

5.1.1.5.5 Elliptical Arc element input. The CGM implementation for NITFS shall provide the capability to input and interpret the Elliptical Arc element using the following format. A conjugate diameter pair of an ellipse is a pair of diameters of the ellipse such that a tangent to the ellipse at each endpoint is parallel to the other diameter. The centerpoint (CenterX, CenterY) specifies the center of an ellipse. The conjugate diameter endpoints (End1X, End1Y, and End2X, End2Y) include one endpoint from each conjugate diameter; together with the centerpoint they define the two conjugate diameters of the ellipse. StartVectorX and StartVectorY define a start vector, and EndVectorX and EndVectorY define an end vector. The tails of these vectors are placed on the centerpoint. A start ray and end ray are derived from the start and end vectors. The start and end rays are the semi-infinite lines from the centerpoint in the direction of the start and end vectors respectively. The define arc begins at the intersection of the ellipse and the end ray in the direction defined as follows. A "conjugate radius" is defined to be half of a conjugate diameter. Letting the centerpoint be labeled M, the first conjugate diameter endpoint P<sub>1</sub>, and the second conjugate diameter endpoint P<sub>2</sub>, then the line segments M-P<sub>1</sub> and M-P<sub>2</sub> define two conjugate radii, referred to in what follows as the first conjugate radius and the second conjugate radius respectively. The conjugate radii meet at M and define two angles: the sum of the two angles is 360 degrees, one angle is less than 180 degrees and the other is greater than 180 degrees. The drawing direction of the elliptical arc is the direction from the first conjugate radius to the second conjugate radius through the smaller of these two angles. Valid values of the three specifying points of the ellipse are those which yield three distinct points. The specified ellipse is non-degenerate if and only if the three points are non-colinear. Valid values of the vector components are those which produce vectors of non-zero length. If the start ray and end ray are coincident, it is ambiguous whether the defined arc is null (zero arc length) or the entire ellipse. The arc width, type and color are specified by the Line Width, Line Type and Line Color commands, respectively.

|     |    |    |    |    |    | Т | ABLE   | LII. <u>E</u> | Elliptica | l Arc i | nput. |   |    |   |     |          |
|-----|----|----|----|----|----|---|--------|---------------|-----------|---------|-------|---|----|---|-----|----------|
| MSB |    |    |    |    |    |   |        |               |           |         |       |   |    |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8      | 7             | 6         | 5       | 4     | 3 | 2  | 1 | 0   | _        |
|     | ۷  | 1  |    |    |    |   | 18     |               |           |         |       |   | 20 |   |     | = 0x4254 |
|     |    |    |    |    |    |   | Cen    | terX          |           |         |       |   |    |   |     |          |
|     |    |    |    |    |    |   | Cen    | terY          |           |         |       |   |    |   |     |          |
|     |    |    |    |    |    |   | End    | 11X           |           |         |       |   |    |   |     |          |
|     |    |    |    |    |    |   | End    | 11Y           |           |         |       |   |    |   |     |          |
|     |    |    |    |    |    |   | Enc    | 12X           |           |         |       |   |    |   |     |          |
|     |    |    |    |    |    |   | End    | d2Y           |           |         |       |   |    |   |     |          |
|     |    |    |    |    |    |   | StartV | ectorX        |           |         |       |   |    |   |     |          |
|     |    |    |    |    |    |   | StartV | ectorY        | -         |         |       |   |    |   |     |          |
|     | •  |    |    |    |    |   | End V  | ectorX        |           |         | •     |   | •  | • | •   |          |
|     |    |    |    |    |    |   | EndV   | ectorY        |           |         |       |   |    |   |     |          |

5.1.1.5.6 Elliptical Arc Close element input. The CGM implementation for NITFS shall provide the capability to input and interpret the Elliptical Arc Close element using the following format. A conjugate diameter pair of an ellipse is a pair of diameters of the ellipse such that the tangent to the ellipse at each endpoint is parallel to the other diameter. The centerpoint (CenterX, CenterY) specifies the center of an ellipse. The conjugate diameter endpoints (End1X, End1Y, and End2X, End2Y) include one endpoint from each conjugate diameter; together with the centerpoint they define the two conjugate diameters of the ellipse. StartVectorX and StartVectorY define a start vector, and EndVectorX and EndVectorY define an end vector. The tails of these vectors are placed on the centerpoint. A start ray and end ray are derived from the start and end vectors. The start and end rays are the semi-infinite lines from the centerpoint in the direction of the start and end vectors, respectively. The define arc begins at the intersection of the ellipse and the end ray in the direction defined as follows. A "conjugate radius" is defined to be half of a conjugate diameter. Letting the centerpoint be labeled M, the first conjugate diameter endpoint P<sub>1</sub>, and the second conjugate diameter endpoint P<sub>2</sub>, then the line segments M-P<sub>1</sub> and M-P<sub>2</sub> define two conjugate radii, referred to in what follows as the first conjugate radius and the second conjugate radius, respectively. The conjugate radii meet at M and define two angles; the sum of the two angles is 360 degrees, one angle is less than 180 degrees and the other is greater that 180 degrees. The drawing direction of the elliptical arc is the direction from the first conjugate radius to the second conjugate radius through the smaller of these two angles. Valid values of the three specifying points of the ellipse are those which yield three distinct points. The specified ellipse is non-degenerate if and only if the three points are non-colinear. Valid values of the

vector components are those which produce vectors of non-zero length. If the start ray and end ray are coincident, it is ambiguous whether the defined arc is null (zero arc length) or the entire ellipse. The last parameter, Close Type, specifies how the arc is closed (0=pie or 1=chord). If the close type is chord, a line is drawn between the endpoints of the arc. If the close type is pie, a line is drawn from the beginning of the arc to the centerpoint of the ellipse and then to the end of the arc. The interior of the arc will be specified by the Interior Style command, and the edge width, type and color will be specified in the Edge Width, Edge Type, and Edge Color commands, respectively.

|     |    |    |    |    |    | TAB | LE LII | I. Elli | ptical A | rc Clo | se inpu | <u>ıt</u> . |    |   |     |          |
|-----|----|----|----|----|----|-----|--------|---------|----------|--------|---------|-------------|----|---|-----|----------|
| MSB |    |    |    |    |    |     |        |         |          |        |         |             |    |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9   | 8      | 7       | 6        | 5      | 4       | 3           | 2  | 1 | 0   |          |
|     | 4  | 1  |    |    |    |     | 19     |         |          |        |         |             | 22 |   |     | = 0x4276 |
|     |    |    |    |    |    |     | Cen    | terX    |          |        |         |             |    |   |     |          |
|     |    |    |    |    |    |     | Cen    | terY    |          |        |         |             |    |   |     |          |
|     |    |    |    |    |    |     | Enc    | 11X     |          |        |         |             |    |   |     |          |
|     |    |    |    |    |    |     | Enc    | 11Y     |          |        |         |             |    |   |     |          |
|     |    |    |    |    |    |     | Enc    | 12X     |          |        |         |             |    |   |     |          |
|     |    |    |    |    |    |     | Enc    | 12Y     |          |        |         |             |    |   |     |          |
|     |    |    |    |    |    |     | StartV | ectorX  |          |        |         |             |    |   |     |          |
|     |    |    |    |    |    |     | StartV | ectorY  |          |        |         |             |    |   |     |          |
|     |    |    |    |    |    |     | End V  | ectorX  |          |        |         |             |    |   |     |          |
|     |    |    |    |    |    |     | EndV   | ectorY  |          |        |         |             |    |   |     |          |
|     |    |    |    |    |    |     | Close  | Туре    |          |        |         |             |    |   |     |          |
|     |    |    |    |    |    |     |        |         |          |        |         |             |    |   |     |          |

5.1.1.5.7 <u>Rectangle element input.</u> The CGM implementation for NITFS shall provide the capability to input and interpret the Rectangle element using the following format. The rectangle is defined by two distinct points that are diagonal opposite corners of the rectangle where the rectangle is oriented parallel to the VDC axes. The interior of the rectangle will be as specified by the Interior Style command, and the edge width, type and color will be as specified in the Edge Width, Edge Type, and Edge Color commands, respectively.

|     |    |    |    |    |    |   | TABL | E LIV. | Recta | ngle in | put. |   |   |   |     |          |
|-----|----|----|----|----|----|---|------|--------|-------|---------|------|---|---|---|-----|----------|
| MSB |    |    |    |    |    |   |      |        |       |         | _    |   |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7      | 6     | 5       | 4    | 3 | 2 | 1 | 0   |          |
|     | 4  | 1  |    |    |    |   | 11   |        |       |         |      |   | 8 |   |     | = 0x4168 |
|     |    |    |    |    |    |   | Corn | er1X   |       |         |      |   |   |   |     |          |
|     |    |    |    |    |    |   | Corn | er1Y   |       |         |      |   |   |   |     |          |
|     |    |    |    |    |    |   | Corn | er2X   |       |         |      |   |   |   |     |          |
|     | •  |    |    |    |    | • | Corn | er2Y   |       |         |      |   |   | • |     |          |

5.1.1.5.8 <u>Circle element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Circle element using the following format. The first two parameters, CenterX and CenterY, give the location of the center of the circle. The next parameter, Radius, specifies the radius of the circle. Only nonnegative values are valid for the radius. The interior of the circle will be specified by the Interior Style command, and the edge width, type and color will be as specified in the Edge Width, Edge Type, and Edge Color commands, respectively.

|     |    |    |    |    |    |   | TAE | BLE L | 7. Circ | le inpu | <u>t</u> . |   |   |   |     |          |
|-----|----|----|----|----|----|---|-----|-------|---------|---------|------------|---|---|---|-----|----------|
| MSB |    |    |    |    |    |   |     |       |         |         |            |   |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8   | 7     | 6       | 5       | 4          | 3 | 2 | 1 | 0   |          |
|     | 4  | ļ  |    |    |    |   | 12  |       |         |         |            |   | 6 |   |     | = 0x4186 |
|     |    |    |    |    |    |   | Cen | terX  |         |         |            |   |   |   |     |          |
|     |    |    |    |    |    |   | Cen | terY  |         |         |            |   |   |   |     |          |
|     | •  |    |    |    |    |   | Rac | dius  |         |         |            |   |   |   |     |          |

5.1.1.5.9 <u>Circular Arc Center element input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Circular Arc Center element using the following format. The specified radius (Radius) and centerpoint (CenterX, CenterY) define a circle. StartVectorX and StartVectorY define a start vector, and EndVectorX and EndVectorY define an end vector. The tails of these vectors are placed on the centerpoint. The start ray and end ray are derived from the start and end vectors. The start and end rays are the semi-infinite lines from the centerpoint in the direction of the start and end vectors respectively. The arc is drawn from the intersection of the circle and the start ray to the intersection of the circle, and the end ray in the positive angular direction, as defined by the VDC Extent. Valid values of the vector components are those which produce distinct vectors on non-zero length. The arc width, type and color are specified by the Line Width, Line Type and Line Color commands, respectively.

|     |    |    |    |    |    | TAB | LE LV | 'I. <u>Cir</u> | <u>cular A</u> | rc Cen | ter inpu | <u>ıt</u> . |    |   |     |          |
|-----|----|----|----|----|----|-----|-------|----------------|----------------|--------|----------|-------------|----|---|-----|----------|
| MSB |    |    |    |    |    |     |       |                |                |        |          |             |    |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9   | 8     | 7              | 6              | 5      | 4        | 3           | 2  | 1 | 0   |          |
|     | ۷  | 1  |    |    |    |     | 15    |                |                |        |          |             | 14 |   |     | = 0x41EE |
|     |    |    |    |    |    |     | Cen   | terX           |                |        |          |             |    |   |     |          |
|     |    |    |    |    |    |     | Cen   | terY           |                |        |          |             |    |   |     |          |
|     |    |    |    |    |    |     | Sta   | ırtX           |                |        |          |             |    |   |     |          |
|     |    |    |    |    |    |     | Sta   | ırtY           |                |        |          |             |    |   |     |          |
|     |    |    |    |    |    |     | En    | ιdΧ            |                |        |          |             |    |   |     |          |
|     |    |    |    |    |    |     | En    | ıdΥ            |                |        |          |             |    |   |     |          |
|     |    |    |    |    |    |     | Ra    | dius           |                |        |          |             |    |   |     | ]        |

5.1.1.5.10 Circular Arc Center Close element input. The CGM implementation for NITFS shall provide the capability to input and interpret the Circular Arc Center Close element using the following format. The specified radius (Radius) and centerpoint (CenterX, CenterY) define a circle. StartVectorX and StartVectorY define a start vector, and EndVectorX and EndVectorY define an end vector. The tails of these vectors are placed on the centerpoint. The start ray and end ray are derived from the start and end vectors. The start and end rays are the semi-infinite lines from the centerpoint in the direction of the start and end vectors, respectively. The arc is drawn from the intersection of the circle and the start ray to the intersection of the circle and the end ray in the positive angular direction, as defined by the VDC Extent. The last parameter, CloseType, specifies how the arc is closed (0=pie or 1=chord). If the close type is chord, a line is drawn between the endpoints of the arc. If the close type is pie, a line is drawn from the starting point through the computed arc center to the ending point. Valid values of the vector components are those which produce distinct vectors of non-zero length. The interior of this element will be as specified by the Interior Style command, and the edge width, type and color will be specified in the Edge Width, Edge Type and Edge Color commands, respectively.

|     |    |    |    |    | T  | ABLE | LVII. | Circul | ar Arc | Center | Close | input. |    |   |     |          |
|-----|----|----|----|----|----|------|-------|--------|--------|--------|-------|--------|----|---|-----|----------|
| MSB |    |    |    |    |    |      |       |        |        |        |       |        |    |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9    | 8     | 7      | 6      | 5      | 4     | 3      | 2  | 1 | 0   | _        |
|     | 2  | 1  |    |    |    |      | 16    |        |        |        |       |        | 16 |   |     | = 0x4210 |
|     |    |    |    |    |    |      | Cen   | ıterX  |        |        |       |        |    |   |     |          |
|     |    |    |    |    |    |      | Cen   | terY   |        |        |       |        |    |   |     |          |
|     |    |    |    |    |    |      | Sta   | artX   |        |        |       |        |    |   |     |          |
|     |    |    |    |    |    |      | Sta   | artY   |        |        |       |        |    |   |     |          |
|     |    |    |    |    |    |      | En    | ıdX    |        |        |       |        |    |   |     |          |
|     |    |    |    |    |    |      | En    | ıdY    |        |        |       |        |    |   |     |          |
|     |    |    |    |    |    |      | Ra    | dius   |        |        |       |        |    |   |     |          |
|     |    |    |    |    |    |      | Close | e Type |        |        |       |        |    |   |     |          |

5.1.1.6 <u>Control elements</u>. The following control elements are used to describe the visual effects of auxiliary color and transparency.

5.1.1.6.1 <u>Auxiliary Color</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Auxiliary Color element using the following format. The Auxiliary Color element is used in

conjunction with the LINE TYPE, EDGE TYPE, and TEXT. Th Red Green, and Blue (RGB) values are specified using a single byte. The last byte of the command shall be a null byte.

| MSB |    |    |    |    |    |   |   |   |   |   |     |     |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|-----|-----|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4   | 3   | 2 | 1 | 0   |          |
|     | 3  | 3  |    |    |    |   | 3 |   |   |   |     |     | 3 |   |     | = 0x3063 |
|     |    |    | RI | ED |    |   |   |   |   |   | GRI | EEN |   |   |     |          |
|     |    |    | BL | UE |    |   |   |   |   |   | (   | )   |   |   |     |          |

5.1.1.6.2 <u>Transparency</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the Transparency element using the following format. The TRANSPARENCY parameter can be off (0) or on (1).

TABLE LIX. Transparency input.

| MSB |    |    |    |    |    |    |       |      |    |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|----|-------|------|----|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9  | 8     | 7    | 6  | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 3  | 3  |    |    |    |    | 4     |      |    |   |   |   | 2 |   |     | = 0x3082 |
|     |    |    |    |    |    | TR | ANSP. | AREN | CY |   |   |   |   |   |     |          |

- 5.1.1.7 <u>CGM binary encoding</u>. The CGM elements are represented in the binary encoding format as described in the FIPS PUB 128 document.
- 5.1.1.7.1 <u>CGM binary encoding for input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret the CGM elements in the binary encoding format.
  - 5.1.2 CGM interface output requirements.

**MSB** 

- 5.1.2.1 <u>Delimiter elements</u>. The Delimiter elements define boundaries for significant structures within the metafile.
- 5.1.2.1.1 Begin Metafile element output. The CGM implementation for NITFS shall provide the capability to generate and output the Begin Metafile element with the following formats. The Begin Metafile element name is represented using the character string C1, C2, ... Cn with length n.

TABLE LX. Begin Metafile padded, short form output.

| MSB |    |    |         |         |    |   |   |   |   |   |   |       |           |        | LSB |
|-----|----|----|---------|---------|----|---|---|---|---|---|---|-------|-----------|--------|-----|
| 15  | 14 | 13 | 12      | 11      | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3     | 2         | 1      | 0   |
|     | 0  |    |         |         |    |   | 1 |   |   |   |   | param | eter list | length |     |
|     |    | le | ength = | n (ever | 1) |   |   |   |   |   | ( | C1    |           |        |     |
|     |    |    | С       | 22      |    |   |   |   |   |   |   |       |           |        |     |
|     |    |    |         |         |    |   |   |   |   |   |   |       |           |        |     |
|     |    |    | C       | 'n      |    |   |   |   |   |   |   | 0     |           |        |     |

TABLE LXI. Begin Metafile nonpadded, short form output.

LSB

| 15 | 14 | 13 | 12      | 11     | 10 | 9 | 8 | 7                     | 6 | 5 | 4  | 3   | 2 | 1 | 0 |  |  |  |
|----|----|----|---------|--------|----|---|---|-----------------------|---|---|----|-----|---|---|---|--|--|--|
|    | 0  |    |         |        |    |   | 1 | parameter list length |   |   |    |     |   |   |   |  |  |  |
|    |    | 1  | ength = | n (odd | )  |   |   |                       |   | C | C1 |     |   |   |   |  |  |  |
|    |    |    | C       | 2      |    |   |   |                       |   |   |    |     |   |   |   |  |  |  |
|    |    |    | C(n     | . 1)   |    |   |   |                       |   |   | 'n |     |   |   |   |  |  |  |
|    |    |    | C(I     | 1-1)   |    |   |   |                       |   |   |    | /II |   |   |   |  |  |  |

|          |           |         |         |                               | TABL                                                                 | E LXI                               | I. <u>Beg</u>                      | in Meta                        | file pa            | dded, lo   | ong fori   | n outp | <u>ut</u> .                        |             |                 |       |          |
|----------|-----------|---------|---------|-------------------------------|----------------------------------------------------------------------|-------------------------------------|------------------------------------|--------------------------------|--------------------|------------|------------|--------|------------------------------------|-------------|-----------------|-------|----------|
| MS       |           |         |         |                               |                                                                      |                                     |                                    | _                              |                    |            |            | _      |                                    |             | LSB             |       |          |
| 15       |           | 13      | 12      | 11                            | 10                                                                   | 9                                   | 8                                  | 7                              | 6                  | 5          | 4          | 3      | 31                                 | 1           | 0               | 1     | = 0x003F |
|          |           | 0       |         |                               |                                                                      | par                                 |                                    | · list len                     | eth                |            |            |        | 31                                 |             |                 |       | – UXUUSF |
|          |           | le      | ngth =  | n (eve                        | n)                                                                   | F                                   |                                    |                                | 5                  |            | С          | 1      |                                    |             |                 |       |          |
|          |           |         | C       | 22                            |                                                                      |                                     |                                    |                                |                    |            | -          |        |                                    |             |                 |       |          |
|          |           |         | C       | 'n                            |                                                                      |                                     |                                    |                                |                    |            | C          | )      |                                    |             |                 |       |          |
|          | _         |         |         | Т                             | ABLE                                                                 | LXIII.                              | <u>Begir</u>                       | n Metafil                      | e nonj             | oadded.    | long f     | orm oı | utput.                             |             |                 |       |          |
| MS<br>15 |           | 13      | 12      | 11                            | 10                                                                   | 9                                   | 8                                  | 7                              | 6                  | 5          | 4          | 3      | 2                                  | 1           | LSB<br>0        |       |          |
| 13       |           | 0       | 12      | 11                            | 10                                                                   | 9                                   | 1                                  | /                              | 0                  | 3          | 4          | 3      | 31                                 | 1           | 0               | 7     | = 0x003F |
|          |           |         |         |                               |                                                                      | par                                 | ameter                             | · list leng                    | gth                |            |            |        |                                    |             |                 |       | 0.10001  |
|          |           | 10      | ength = |                               | d)                                                                   |                                     |                                    |                                |                    |            | С          | 1      |                                    |             |                 |       |          |
|          |           |         | C       | 22                            |                                                                      |                                     |                                    |                                |                    |            | -          |        |                                    |             |                 |       |          |
|          |           |         | C(r     | n-1)                          |                                                                      |                                     |                                    |                                |                    |            | C          | n      |                                    |             |                 |       |          |
|          |           | rate an | d outpu | it the B                      | Begin Pi<br>eter stri                                                | cture e<br>ng C1,                   | lement<br>C2,                      | The Cot with the Cn with       | e follo<br>n lengt | wing fo    | ormats.    | The I  | Begin I                            |             |                 |       |          |
|          | MSB       |         |         |                               | TABL                                                                 | E LXI                               | V. <u>Be</u>                       | gin Pictu                      | ire pad            | lded, sł   | ort fori   | n outr | out.                               |             |                 |       |          |
|          |           |         |         |                               |                                                                      |                                     |                                    | _                              | -                  |            |            | ar our | <del></del> -                      |             |                 |       | LSB      |
| •        | 15        | 14      | 13      | 12                            | 11                                                                   | 10                                  | 9                                  | 8                              | 7                  | 6          | 5          |        | 4                                  | 3           | 2               | 1     | LSB<br>0 |
|          |           | 14      |         |                               |                                                                      | -                                   | 9                                  | _                              | _                  |            |            |        | 4<br>pa                            |             | 2<br>ter list l |       | 0        |
|          |           |         |         | ngth =                        | n (ever                                                              | -                                   | 9                                  | 8                              | _                  |            |            |        | 4                                  |             |                 |       | 0        |
|          |           |         |         | ngth =                        | n (ever                                                              | -                                   | 9                                  | 8                              | _                  |            |            |        | 4 pa                               |             |                 |       | 0        |
|          |           |         |         | ngth =                        | n (ever                                                              | -                                   | 9                                  | 8                              | _                  |            |            |        | 4<br>pa                            |             |                 |       | 0        |
|          |           |         |         | ength =<br>C                  | n (ever                                                              | 1)                                  |                                    | 8                              | 7                  | 6          | 5          |        | 4 pa                               |             |                 |       | 0        |
|          | 15<br>MSB | 0       | le      | ngth =<br>C                   | n (ever                                                              | LXV.                                | Begir                              | 8<br>3                         | 7 nonpa            | 6          | 5 short fo | erm ou | pa C1 0                            | iramet      | ter list        | engtl | LSB      |
|          | 15        | 14      | le      | ength =<br>C                  | n (ever                                                              | 1)                                  |                                    | 8<br>3<br>n Picture            | 7                  | 6          | 5          | erm ou | 4 pa C1 0 tput.                    | aramet      | ter list        | ength | LSB 0    |
|          | 15<br>MSB | 0       | le 13   | ngth = C                      | n (ever                                                              | 10                                  | Begir                              | 8<br>3                         | 7 nonpa            | 6          | 5 short fo | erm ou | 4 pa C1 0 tput. 4 pa               | aramet      | ter list        | ength | LSB 0    |
|          | 15<br>MSB | 14      | le 13   | ength = C C T 12 ength =      | n (ever                                                              | 10                                  | Begir                              | 8<br>3<br>n Picture            | 7 nonpa            | 6          | 5 short fo | erm ou | 4 pa C1 0 tput.                    | aramet      | ter list        | ength | LSB 0    |
|          | 15<br>MSB | 14      | le 13   | ength =  C  C  12  ength =    | n (ever<br>22<br>Cn<br>TABLE<br>11                                   | 10                                  | Begir                              | 8<br>3<br>n Picture            | 7 nonpa            | 6          | 5 short fo | erm ou | 4 pa C1 0 tput. 4 pa               | aramet      | ter list        | ength | LSB 0    |
|          | 15<br>MSB | 14      | le 13   | ength =  C  C  12  ength =    | n (ever<br>22<br>Cn<br>TABLE<br>11<br>= n (odd<br>22<br>n-1)         | 10                                  | Begin<br>9                         | 8 3  Picture  8 3              | nonpa              | added,     | short fo   | orm ou | 4 pa C1 pa C1 pa C1 pa C1 pa C1 cn | aramet      | ter list        | ength | LSB 0    |
| MS       | MSB 15    | 14      | le 13   | ength =  C  C  12  ength =    | n (ever<br>22<br>Cn<br>TABLE<br>11<br>= n (odd<br>22<br>n-1)         | 10                                  | Begin<br>9                         | 8<br>3<br>n Picture            | nonpa              | added,     | short fo   | orm ou | 4 pa C1 pa C1 pa C1 pa C1 pa C1 cn | aramet      | 2 ter list      | ength | LSB 0    |
| MS: 15   | MSB 15    | 14      | le 13   | ength =  C  C  12  ength =    | n (ever<br>22<br>Cn<br>TABLE<br>11<br>= n (odd<br>22<br>n-1)         | 10                                  | <u>Begir</u><br>9<br>VI. <u>Be</u> | 8 3  Picture  8 3              | nonpa              | added,     | short fo   | orm ou | 4 pa C1 pa C1 pa C1 pa C1 pa C1 cn | aramet      | ter list        | ength | LSB 0    |
|          | MSB<br>15 | 14 0    | 13 lo   | ength = C C 12 ength = C C(r  | n (ever<br>C2<br>Cn<br>TABLE<br>11<br>= n (odd<br>C2<br>n-1)         | 10<br>1 LXV.<br>10<br>10<br>1 E LXV | 9 VI. <u>Be</u> 8 3                | 8 3 n Picture 8 3 gin Pictur 7 | nonpa 7            | 6 added, s | short fo   | orm ou | 4 pa C1 0 tput. 4 pa C1 C1 Cn      | 3<br>Iramet | 2 ter list      | ength | LSB 0    |
|          | MSB<br>15 | 14<br>0 | 13 le   | ength = C  12  ength = C  C(r | n (ever<br>22<br>Cn<br>TABLE<br>11<br>= n (odd<br>22<br>n-1)<br>TABL | 10<br>1 LXV.<br>10<br>10<br>1 E LXV | 9 VI. <u>Be</u> 8 3                | 8 3 n Picture 8 3              | nonpa 7            | 6 added, s | short fo   | orm ou | 4 pa C1 0 tput. 4 pa C1 Cn uut.    | 3<br>Iramet | 2 ter list      | ength | LSB 0    |
|          | MSB<br>15 | 14<br>0 | 13  12  | ength = C  12  ength = C  C(r | n (ever<br>22<br>Cn<br>TABLE<br>11<br>= n (odd<br>22<br>n-1)<br>TABL | 10<br>1 LXV.<br>10<br>10<br>1 E LXV | 9 VI. <u>Be</u> 8 3                | 8 3 n Picture 8 3 gin Pictur 7 | nonpa 7            | 6 added, s | short fo   | orm ou | 4 pa C1 0 tput. 4 pa C1 Cn uut.    | 3<br>Iramet | 2 ter list      | ength | LSB 0    |

0

Cn

TABLE LXVII. Begin Picture nonpadded, long form output

| MSB |    |    |         |        |    |      | _      |          |      | - |   |    | •  |   | LSB |          |
|-----|----|----|---------|--------|----|------|--------|----------|------|---|---|----|----|---|-----|----------|
| 15  | 14 | 13 | 12      | 11     | 10 | 9    | 8      | 7        | 6    | 5 | 4 | 3  | 2  | 1 | 0   |          |
|     | 0  |    |         |        |    |      | 3      |          |      |   |   |    | 31 |   |     | = 0x007F |
|     |    |    |         |        |    | para | ameter | list ler | ngth |   |   |    |    |   |     |          |
|     |    | le | ength = | n (odd | d) |      |        |          |      |   | ( | C1 |    |   |     |          |
|     |    |    | C       | 22     |    |      |        |          |      |   |   |    |    |   |     |          |
|     |    |    | C(r     | n-1)   |    |      |        |          |      |   | ( | 'n |    |   |     |          |

5.1.2.1.3 <u>Begin Picture Body element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Begin Picture Body element using the following format.

TABLE LXVIII. Begin Picture Body output.

| MSB |    |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | (  | )  |    |    |    |   | 4 |   |   |   |   |   | 0 |   |     | = 0x0080 |

5.1.2.1.4 End Picture element output. The CGM implementation for NITFS shall provide the capability to generate and output the End Picture element using the following format.

TABLE LXIX. End Picture output.

| MSB |    |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | (  | )  |    |    |    |   | 5 |   |   |   |   |   | 0 |   |     | = 0x00A0 |

5.1.2.1.5 End Metafile element output. The CGM implementation for NITFS shall provide the capability to generate and output the End Metafile element using the following format.

TABLE LXX. End Metafile output.

| MSB |    |    |    |    |    |   |   | _ |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | (  | 0  |    |    |    |   | 2 |   |   |   |   |   | 0 |   |     | = 0x0040 |

5.1.2.2 <u>Metafile Descriptor elements</u>. The Metafile Descriptor elements describe the functional content, default conditions, and characteristics of the Metafile.

5.1.2.2.1 <u>Metafile Version element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Metafile Version element (version 1) using the following format.

TABLE LXXI. Metafile Version output.

| MSB |    |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 1  |    |    |    |    |   | 1 |   |   |   |   |   | 2 |   |     | = 0x1022 |
|     | •  | •  |    |    |    |   |   | 1 |   |   |   |   |   | • | •   | = 0x0001 |

5.1.2.2.2 <u>Metafile Description element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Metafile Description element using the following formats. The Metafile Description element name is represented using the character string C1, C2, ... Cn with length n.

TABLE LXXII. Metafile Description padded, short form output.

| MSB |    |    |         |        |    |   |   |   |   |   |   |       |           |        | LSB |
|-----|----|----|---------|--------|----|---|---|---|---|---|---|-------|-----------|--------|-----|
| 15  | 14 | 13 | 12      | 11     | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3     | 2         | 1      | 0   |
|     | 1  |    |         |        |    |   | 2 |   |   |   |   | param | eter list | length |     |
|     |    | L  | ength = | n (eve | n) |   |   |   |   |   | C | C1    |           |        |     |
|     |    |    | C       | 22     |    |   |   |   |   |   |   |       |           |        |     |
|     |    |    |         |        |    |   |   |   |   |   |   | -     |           |        |     |
|     |    |    | C       | n      |    |   |   |   |   |   | ( | 0     |           |        |     |



5.1.2.2.3 <u>Metafile Element List element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Metafile Element List element using the following format. The subset of commands from which metafile elements are chosen is specified by the CGM defined as "Drawing Plus Control Set" when the second parameter is one.

|     |          |    |    |    | T  | ABLE | LXXV | I. Me | tafile E | lement | List or | itput.   |          |          |     |  |
|-----|----------|----|----|----|----|------|------|-------|----------|--------|---------|----------|----------|----------|-----|--|
| MSB |          |    |    |    |    |      |      |       |          |        |         | _        |          |          | LSB |  |
| 15  | 14       | 13 | 12 | 11 | 10 | 9    | 8    | 7     | 6        | 5      | 4       | 3        | 2        | 1        | 0   |  |
|     | 1 11 6 : |    |    |    |    |      |      |       |          |        |         |          |          | = 0x1166 |     |  |
|     |          |    |    |    |    |      |      |       |          |        |         | = 0x0001 |          |          |     |  |
|     | -1       |    |    |    |    |      |      |       |          |        |         |          | = 0xFFFF |          |     |  |
|     |          |    |    |    |    |      |      |       |          |        |         |          |          | = 0x0001 |     |  |

5.1.2.2.4 Font List element output. The CGM implementation for NITFS shall provide the capability to generate and output the Font List element using the following formats. The first font name defined in the list is of length x with the font name given as the character string C1, C2, Cx and assigned to index 1. The last font name defined in the list is of length z with the font name given as the character string C1, C2, ... Cz and assigned to index N. Named fonts are selected by using the Text Font Index element.

|     |     |     |      |                     |                       |        |              | MIL-S7   | TD-230  | 1A       |           |        |             |       |          |        |          |
|-----|-----|-----|------|---------------------|-----------------------|--------|--------------|----------|---------|----------|-----------|--------|-------------|-------|----------|--------|----------|
|     |     |     |      |                     | TAB                   | LE LX  | XVII.        | Font Li  | st padd | led, sho | ort form  | outpu  | <u>ıt</u> . |       |          |        |          |
|     | MSB | 1.4 | 10   | 10                  |                       |        |              |          | •       |          |           | -      |             | 2     | 2        |        | LSB      |
|     | 15  | 14  | 13   | 12                  | 11                    | 10     | 9            | 13       | 7       | 6        | 5         | 4      |             | 3     | 2        | 1      | 0        |
|     |     | 1   |      | long                | th = x                |        |              | 13       |         |          |           |        | C1          | ırame | ter list | lengti | n        |
|     |     |     |      |                     | $\frac{m-x}{2}$       |        |              |          |         |          |           |        |             |       |          |        |          |
|     |     |     |      |                     |                       |        |              |          |         |          |           |        |             |       |          |        |          |
|     |     |     |      |                     | $\frac{x-1)}{th = z}$ |        |              |          |         |          |           |        | Cx<br>C1    |       |          |        |          |
|     |     |     |      |                     | C2                    |        |              |          |         |          |           |        | CI          |       |          |        |          |
|     |     |     |      |                     |                       |        |              |          |         |          |           |        |             |       |          |        |          |
|     |     |     |      |                     | Cz                    |        |              |          |         |          |           |        | 0           |       |          |        |          |
|     |     |     |      |                     | TABLE                 | E LXX  | VIII. F      | ont List | nonpa   | dded. s  | short for | m out  | put.        |       |          |        |          |
|     | MSB |     |      |                     |                       |        | _            |          |         | ,        |           |        |             |       |          |        | LSB      |
|     | 15  | 14  | 13   | 12                  | 11                    | 10     | 9            | 8        | 7       | 6        | 5         | 4      |             | 3     | 2        | 1      | 0        |
|     |     | 1   | 1    |                     |                       |        |              | 13       |         |          |           |        |             | arame | ter list | lengtl | 1        |
|     |     |     |      |                     | th = x                |        |              |          |         |          |           |        | C1          |       |          |        |          |
|     |     |     |      | (                   | C2                    |        |              |          |         |          |           |        |             |       |          |        |          |
|     |     |     |      |                     | :                     |        |              |          |         |          |           |        | C(x-1)      |       |          |        |          |
|     |     |     |      |                     |                       |        |              |          |         |          |           | Le     | ength:      | = z   |          |        |          |
|     |     |     |      | (                   | <u>.</u>              |        |              |          |         |          |           |        | C2          |       |          |        |          |
|     |     |     |      |                     |                       |        |              |          |         |          |           |        | Cz          |       |          |        |          |
| ļ   |     |     |      |                     |                       |        |              |          |         |          |           |        |             |       |          |        | <u> </u> |
|     |     |     |      |                     | TAE                   | BLE LX | XXIX.        | Font Li  | st padd | ed, lon  | g form    | output | <u>t</u> .  |       |          |        |          |
| MS] |     |     |      |                     | 4.0                   |        |              | _        |         | _        |           | _      | _           |       | LSE      | 3      |          |
| 15  |     | 13  | 12   | 11                  | 10                    | 9      | 8<br>13      | 7        | 6       | 5        | 4         | 3      | 31          | 1     | 0        |        | = 0x11B  |
|     |     | 1   |      |                     |                       | nar    |              | list len | oth.    |          |           |        | 31          |       |          |        | = 0X11B  |
|     |     |     | leng | gth = x             |                       | Par    | ameter       |          | 5111    |          | C1        |        |             |       |          |        |          |
|     |     |     |      | C2                  |                       |        |              |          |         |          |           |        |             |       |          |        |          |
|     |     |     | C    | (x-1)               |                       |        |              |          |         |          | Cx        |        |             |       |          |        |          |
|     |     |     |      | c(x-1)<br>c(th = z) |                       |        |              |          |         |          | C1        |        |             |       |          |        |          |
|     |     |     |      | C2                  |                       |        |              |          |         |          |           | •      |             |       |          |        |          |
|     |     |     |      | Cz                  |                       |        |              |          |         |          | 0         |        |             |       |          |        |          |
|     |     |     |      | CZ                  |                       |        |              |          |         |          | U         |        |             |       |          |        |          |
|     |     |     |      |                     | TABI                  | LE LXX | XX. <u>F</u> | ont List | nonpad  | lded, lo | ong forn  | outp   | ut.         |       |          |        |          |
| MS  |     |     |      |                     |                       |        |              |          | _       |          |           | _      |             |       | LSE      | 3      |          |
| 15  |     | 13  | 12   | 11                  | 10                    | 9      | 8            | 7        | 6       | 5        | 4         | 3      | 2           | 1     | 0        |        |          |
|     |     | 1   |      |                     |                       |        | 13           | . 1: 1 - | 41-     |          |           |        | 31          |       |          |        | =0x11B   |
|     |     |     | lono | gth = n             |                       | par    | ameter       | list len | gtn     |          | C1        |        |             |       |          |        |          |
|     |     |     | ieng | ;u1 – 11            |                       |        |              | 1        |         |          | CI        |        |             |       |          |        |          |

C(x-1)

Length = z

C2 Cz

C2

Cx

C1

- 5.1.2.3 <u>Picture Descriptor elements</u>. The Picture Descriptor Elements set the interpretation modes of the attribute elements.
- 5.1.2.3.1 <u>Color Selection Mode element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Color Selection Mode element using the following format.

| MSB |    |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 2  | 2  |    |    |    |   | 2 |   |   |   |   |   | 2 |   |     | = 0x2042 |
|     |    |    |    |    |    |   |   | 1 |   |   |   |   |   |   |     | =0x0001  |

5.1.2.3.2 <u>Edge Width Specification Mode element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Edge Width Specification Mode element using the following format. Edge width is specified in "absolute mode," which indicates that the width is specified in pixels. This command is used to support filled-area primitives.

TABLE LXXXII. Edge Width Specification Mode output.

| MSB |    |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 2  | 2  |    |    |    |   | 5 |   |   |   |   |   | 2 |   |     | = 0x20A2 |
|     |    |    |    |    |    |   | ( | ) |   |   |   |   |   |   |     | =0x0000  |

5.1.2.3.3 <u>Line Width Specification Mode element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Line Width Specification Mode element using the following format. Line width is specified in "absolute mode," which indicates that the width is specified in pixels. This command is used to support the Polyline primitive.

TABLE LXXXIII. Line Width Specification Mode output.

| MSB |    |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 2  | 2  |    |    |    |   | 3 |   |   |   |   |   | 2 |   |     | = 0x2062 |
|     |    |    |    |    |    |   | ( | ) |   |   |   |   |   |   |     | =0x0000  |

5.1.2.3.4 <u>VDC Extent element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the VDC Extent element using the following format.

### TABLE LXXXIV. VDC Extent output.

| MSB |    |    |    |    |    |   |   |            |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|---|------------|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7          | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 2  | 2  |    |    |    |   | 6 |            |   |   |   |   | 8 |   |     | = 0x20C8 |
|     |    |    |    |    |    |   | Х | <b>K</b> 1 |   |   |   |   |   |   |     |          |
|     |    |    |    |    |    |   | Y | 1          |   |   |   |   |   |   |     |          |
|     |    |    |    |    |    |   | Х | (2         |   |   |   |   |   |   |     |          |
|     |    |    |    |    |    |   | Y | 72         |   |   |   |   |   |   |     |          |

This element (illustrated on figures 4 and 5) defines the rectangular extent of the VDC space and the orientation of VDC space (the direction of the positive X and positive Y axes). The extent and orientation of VDC space is indicated by giving the coordinates of lower left hand and upper right hand corners of the VDC extent. The VDC extent space is a one-to-one map from the VDC extent to the source coordinates. The VDC extent origin (0,0) is mapped onto the source at the row and column location given by the SLOC field in the Symbol Subheader for a given image. The Symbol Subheader and the SLOC field are defined in the MIL-STD-2500 document. Note that X1 and X2 cannot be equal, and Y1 and Y2 cannot be equal. Note that the proper Character Orientation element must be present to ensure that CGM text is orientated right side up for a given VDC Extent element.



FIGURE 4. Small VDC extent output.



FIGURE 5. Large VDC extent output.

- 5.1.2.4 <u>Attribute elements</u>. The Attribute elements are used to describe the appearance of the Graphical Primitive elements. Full color may be specified for the Elements dealing with color. Color items for receiving systems unable to support full color must be mapped to colors they are able to support.
- 5.1.2.4.1 <u>Text Color element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Text Color element using the following format. The Text Color element is used to support the text primitives. RGB values are each specified using a single byte, and the last byte of the command shall be a null byte.

|     |           |    |    |    |    | TA | BLE L | XXXV | . Text | Color | output. |   |   |   |     |          |
|-----|-----------|----|----|----|----|----|-------|------|--------|-------|---------|---|---|---|-----|----------|
| MSB |           |    |    |    |    |    |       |      |        |       |         |   |   |   | LSB |          |
| 15  | 14        | 13 | 12 | 11 | 10 | 9  | 8     | 7    | 6      | 5     | 4       | 3 | 2 | 1 | 0   |          |
|     | 5         | 5  |    |    |    |    | 14    |      |        |       |         |   | 3 |   |     | = 0x51C3 |
|     | RED GREEN |    |    |    |    |    |       |      |        |       |         |   |   |   |     |          |
|     |           |    | BL | UE |    |    |       |      |        |       | (       | ) |   |   |     |          |

5.1.2.4.2 <u>Character Height element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Character Height element using the following format. As measured from baseline to capline, variable character heights shall be supported. If given, the font is specified by the Font List and Text Font Index elements.

|     |    |    |    |    |    | TABL | E LXX | XVI.  | Charact | er Hei | ght out | put.     |   |   |     |         |
|-----|----|----|----|----|----|------|-------|-------|---------|--------|---------|----------|---|---|-----|---------|
| MSB |    |    |    |    |    |      |       |       |         |        | -       | <u> </u> |   |   | LSB |         |
| 15  | 14 | 13 | 12 | 11 | 10 | 9    | 8     | 7     | 6       | 5      | 4       | 3        | 2 | 1 | 0   |         |
|     | 4  | 5  |    |    |    |      | 15    |       |         |        |         |          | 2 |   |     | =0x51E2 |
|     |    |    |    |    |    | CHA  | RACTI | ER_HE | IGHT    |        |         |          |   |   |     |         |

5.1.2.4.3 <u>Text Font Index element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Text Font Index element using the following format. The Text\_Font\_Index parameter is the index into the Font List array created from the Font List element for selection of a particular font.

|   |            |    |    |    |    |    | TABL | E LXX | XVII. | Text F | ont Inc | lex out | put. |   |   |     |          |
|---|------------|----|----|----|----|----|------|-------|-------|--------|---------|---------|------|---|---|-----|----------|
| N | <b>MSB</b> |    |    |    |    |    |      |       |       |        |         |         | -    |   |   | LSB |          |
|   | 15         | 14 | 13 | 12 | 11 | 10 | 9    | 8     | 7     | 6      | 5       | 4       | 3    | 2 | 1 | 0   |          |
|   |            | 5  | 5  |    |    |    |      | 10    |       |        |         |         |      | 2 |   |     | = 0x5142 |
|   |            |    |    |    |    |    | TEX  | T_FO  | NT_IN | DEX    |         |         |      |   |   |     |          |

- 5.1.2.4.4 <u>Character Orientation element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Character Orientation element using the following format. This command defines the orientation and skew of the character body in subsequent text elements. Since the VDC Extent element is used to establish the direction of the positive X and positive Y axis, the character orientation must be present to ensure that text characters are always upright from left to right when the VDC Extent element defines Y increasing down or X increasing left. The following four cases apply to the Character Orientation element for each possible VDC extent orientation.
  - a. VDC Extent element with X increasing right and Y increasing up (X1<X2 and Y1<Y2).

    Character Orientation element not required or Y=1 and X=1 when Character Orientation present.
  - b. VDC Extent element with X increasing right and Y increasing down (X1<X2 and Y1>Y2). Character Orientation element required with Y=-1 and X=1.
  - c. VDC Extent element with X increasing left and Y increasing up (X1>X2 and Y1<Y2). Character Orientation element required with Y=1 and X=-1.
  - d. VDC Extent element with X increasing left and Y increasing down (X1>X2 and Y1>Y2).
     Character Orientation element required with Y=-1 and X=-1.

|    | TA | BLE L | XXXV | III. <u>C</u> | naracte | r Orien | tation o | output. |   |   |     |          |
|----|----|-------|------|---------------|---------|---------|----------|---------|---|---|-----|----------|
|    |    |       |      |               |         |         |          |         |   |   | LSB |          |
| 11 | 10 | 9     | 8    | 7             | 6       | 5       | 4        | 3       | 2 | 1 | 0   | _        |
|    |    |       | 16   |               |         |         |          |         | 8 |   |     | = 0x5208 |
|    |    |       | (    | 0             |         |         |          |         |   |   |     | = 0x0000 |

|          | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |          |
|----------|----|----|----|----|----|----|---|----|---|---|---|---|---|---|---|---|----------|
|          |    | 4  | 5  |    |    |    |   | 16 |   |   |   |   |   | 8 |   |   | = 0x5208 |
|          |    |    |    |    |    |    |   | (  | 0 |   |   |   |   |   |   |   | = 0x0000 |
|          |    |    |    |    |    |    |   | 1  | Y |   |   |   |   |   |   |   |          |
|          |    |    |    |    |    |    |   | 2  | X |   |   |   |   |   |   |   |          |
|          |    |    |    |    |    |    |   | (  | 0 |   |   |   |   |   |   |   | = 0x0000 |
| <u> </u> |    |    |    |    |    |    |   |    |   |   |   |   |   |   |   |   |          |

**MSB** 

5.1.2.4.5 Fill Color element output. Provide the capability to generate and output the Fill Color element using the following format. The Fill Color command is used to support the filled-area primitives. RGB values are each specified using a single byte, and the last byte of the command shall be a null byte.

TABLE LXXXIX. Fill Color output. **MSB** LSB 15 14 0 5 23 3 = 0x52E3**RED GREEN BLUE** 0

5.1.2.4.6 <u>Interior Style element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Interior Style element using the following format. Filled-area primitives must support the Interior\_Style parameter for solid (1), hatch (3) and empty (4).

|     |    |    |    |    |    | T  | ABLE  | XC. <u>I</u> 1 | nterior | Style o | utput. |   |   |   |     |         |
|-----|----|----|----|----|----|----|-------|----------------|---------|---------|--------|---|---|---|-----|---------|
| MSB |    |    |    |    |    |    |       |                |         |         |        |   |   |   | LSB |         |
| 15  | 14 | 13 | 12 | 11 | 10 | 9  | 8     | 7              | 6       | 5       | 4      | 3 | 2 | 1 | 0   | _       |
|     | 4  | 5  |    |    |    |    | 22    |                |         |         |        |   | 2 |   |     | =0x52C2 |
|     |    |    |    |    |    | IN | ΓERIO | R_STY          | 'LE     |         |        |   |   |   |     |         |

5.1.2.4.6.1 Hatch Index output. The CGM implementation for NITFS shall provide the capability to generate and output the Hatch Index element using the following format. The Hatch Index command is used to support the primitive filled-area styles: horizontal (1), vertical (2), positive slope (3), negative slope (4), horizontal/vertical crosshatch (5) and positive/negative slope cross (6).

TABLE XC(A). Hatch Index Output.

| MSB |    |    |    |    |    |   |      |       |   |   |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|------|-------|---|---|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7     | 6 | 5 | 4 | 3 | 2 | 1 | 0   |          |
|     | 4  | 5  |    |    |    |   | 24   |       |   |   |   |   | 2 |   |     | = 0x5302 |
|     |    |    |    |    |    | Н | ATCH | _INDE | X |   |   |   |   |   |     |          |

5.1.2.4.7 Edge Visibility element output. The CGM implementation for NITFS shall provide the capability to generate and output the Edge Visibility element using the following format. The edge visibility command (0=off, 1=on) is supported for use in filled-area primitives.



5.1.2.4.8 Edge Width element output. The CGM implementation for NITFS shall provide the capability to generate and output the Edge Width element using the following format. Variable edge widths are supported for use in filled-area primitives.

# TABLE XCII. Edge Width output.

| MSB |    |    |    |    |    |   |       |      |   |          |   |   |   |   | LSB |          |
|-----|----|----|----|----|----|---|-------|------|---|----------|---|---|---|---|-----|----------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8     | 7    | 6 | 5        | 4 | 3 | 2 | 1 | 0   |          |
|     | 4  | 5  |    |    |    |   | 28    |      |   |          |   |   | 2 |   |     | = 0x5382 |
|     |    |    | •  |    | •  | H | EDGE_ | WIDT | Н | <u> </u> |   |   |   |   | •   |          |

5.1.2.4.9 <u>Edge Type element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Edge Type element using the following format. The Edge\_Type parameter can be solid (1), dashed (2), dotted (3), dash-dot (4), and dash-dot-dot (5).

|     |    |    |    |    |    | T | ABLE | XCIII. | Edge ' | Туре о | utput. |   |   |   |     |          |
|-----|----|----|----|----|----|---|------|--------|--------|--------|--------|---|---|---|-----|----------|
| MSB |    |    |    |    |    |   |      |        |        |        |        |   |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7      | 6      | 5      | 4      | 3 | 2 | 1 | 0   |          |
|     | 5  | 5  |    |    |    |   | 27   |        |        |        |        |   | 2 |   |     | = 0x5362 |
|     |    |    |    |    |    |   | EDGE | _TYPE  | 3      |        |        |   |   |   |     |          |

5.1.2.4.10 Edge Color element output. The CGM implementation for NITFS shall provide the capability to generate and output the Edge Color element using the following format. Edge color is supported for use in filled-area primitives. RGB values are each specified using a single byte, and the last byte of the command shall be a null byte.

|     |    |    |    |    |    | T | ABLE | XCIV. | Edge ( | Color o | output. |     |   |   |     |         |
|-----|----|----|----|----|----|---|------|-------|--------|---------|---------|-----|---|---|-----|---------|
| MSB |    |    |    |    |    |   |      |       | _      |         | _       |     |   |   | LSB |         |
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7     | 6      | 5       | 4       | 3   | 2 | 1 | 0   |         |
|     | 5  | 5  |    |    |    |   | 29   |       |        |         |         |     | 3 |   |     | =0x53A3 |
|     |    |    | RI | ED |    |   |      |       |        |         | GR      | EEN |   |   |     |         |
|     |    |    | BL | UE | •  |   |      |       |        |         |         | )   | • | • |     |         |

5.1.2.4.11 <u>Line Width element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Line Width element using the following format. Variable line widths are supported for use by line primitives.

|     |    |    |    |    |    | T | ABLE  | XCV.  | Line W | Vidth o | utput. |   |   |   |     |          |
|-----|----|----|----|----|----|---|-------|-------|--------|---------|--------|---|---|---|-----|----------|
| MSB |    |    |    |    |    |   |       |       |        |         |        |   |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8     | 7     | 6      | 5       | 4      | 3 | 2 | 1 | 0   | _        |
|     | 4  | 5  |    |    |    |   | 3     |       |        |         |        |   | 2 |   |     | = 0x5062 |
|     |    |    |    |    |    | ] | LINE_ | WIDTI | I      |         |        |   |   |   |     |          |

5.1.2.4.12 <u>Line Type element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Line Type element using the following format. The Line\_Type parameter can be solid (1), dashed (2), dotted (3), dash-dot (4), and dash-dot-dot (5).

|     |    |    |    |    |    | T | ABLE | XCVI. | Line ' | Гуре о | utput. |   |   |   |     |          |
|-----|----|----|----|----|----|---|------|-------|--------|--------|--------|---|---|---|-----|----------|
| MSB |    |    |    |    |    |   |      |       |        |        |        |   |   |   | LSB |          |
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7     | 6      | 5      | 4      | 3 | 2 | 1 | 0   |          |
|     | 5  | 5  |    |    |    |   | 2    |       |        |        |        |   | 2 |   |     | = 0x5042 |
|     |    |    |    |    |    |   | LINE | TYPE  |        |        |        |   |   |   |     |          |

5.1.2.4.13 <u>Line Color element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Line Color element using the following format. Line colors are supported for use by the line primitive. RGB values are each specified using a single byte, and the last byte of the command shall be a null byte.

# TABLE XCVII. Line Color output.

|   | MSB |    |    |    |    |    |   |    |   |   |   |    |     |   |   | LSB |          |
|---|-----|----|----|----|----|----|---|----|---|---|---|----|-----|---|---|-----|----------|
|   | 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8  | 7 | 6 | 5 | 4  | 3   | 2 | 1 | 0   |          |
| Ī |     |    | 5  |    |    |    |   | 48 |   |   |   |    |     | 3 |   |     | = 0x5083 |
|   |     |    |    | R  | ED |    |   |    |   |   |   | GR | EEN |   |   |     |          |
|   |     |    |    | BL | UE |    |   |    |   |   |   |    | 0   |   |   |     |          |

5.1.2.5 <u>Graphical Primitive elements</u>. The Graphical Primitive elements describe the visual components of a picture in the CGM.

5.1.2.5.1 <u>Text element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Text element using the following formats. The X and Y parameters give the coordinates of the lower left hand corner of the text string. The flag parameter is an integer (1) indicating that this is the final text in the string. The length parameter is an unsigned byte containing the number of characters in the string. Finally, the text is given as a character string C1, C2, ... Cn with length n. If necessary, the last byte is padded with a zero so that the next command begins on a word boundary.

TABLE XCVIII. Text padded, short form output.

| MSB |    |    |         |       |    |   |   |   |   |   |   |        |          |         | LSB |        |
|-----|----|----|---------|-------|----|---|---|---|---|---|---|--------|----------|---------|-----|--------|
| 15  | 14 | 13 | 12      | 11    | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3      | 2        | 1       | 0   |        |
|     | 4  |    |         |       |    |   | 4 |   |   |   |   | parame | eter lis | t lengt | th  |        |
|     |    |    |         |       |    |   | 2 | X |   |   |   |        |          |         |     |        |
|     |    |    |         |       |    |   | , | Y |   |   |   |        |          |         |     |        |
|     |    |    |         |       |    |   |   | 1 |   |   |   |        |          |         |     | 0x0001 |
|     |    | le | ength = | n(eve | n) |   |   |   |   |   | ( | C1     |          |         |     |        |
|     |    |    | C       | 22    |    |   |   |   |   |   |   | -      |          |         |     |        |
|     |    |    |         | 'n    |    |   |   |   |   |   |   | 0      |          |         |     |        |
|     |    |    |         | ·11   |    |   |   |   |   |   |   | U      |          |         |     |        |

TABLE XCIX. Text nonpadded, short form output.

| MSB |    |    |         |        |    |   |   |   |   |   |   |            |          |         | LSB |        |
|-----|----|----|---------|--------|----|---|---|---|---|---|---|------------|----------|---------|-----|--------|
| 15  | 14 | 13 | 12      | 11     | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3          | 2        | 1       | 0   | _      |
|     | 4  | 1  |         |        |    |   | 4 |   |   |   |   | param      | eter lis | t lengt | h   |        |
|     |    |    |         |        |    |   | 2 | X |   |   |   |            |          |         |     |        |
|     |    |    |         |        |    |   | , | Y |   |   |   |            |          |         |     |        |
|     |    |    |         |        |    |   |   | 1 |   |   |   |            |          |         |     | 0x0001 |
|     |    | 10 | ength = | n (odo | d) |   |   |   |   |   | ( | C1         |          |         |     |        |
|     |    |    | C       | 22     |    |   |   |   |   |   |   |            |          |         |     |        |
|     |    |    | C(ı     | n-1)   |    |   |   |   |   |   |   | Cn         |          |         |     |        |
|     |    |    | C(1     | 11/    |    |   |   |   |   |   |   | <b>-11</b> |          |         |     |        |

TABLE C. Text padded, long form output.

I CD

| MSB |    |    |        |        |    |     |        |         |      |   |   |    |    |   | LSB |        |
|-----|----|----|--------|--------|----|-----|--------|---------|------|---|---|----|----|---|-----|--------|
| 15  | 14 | 13 | 12     | 11     | 10 | 9   | 8      | 7       | 6    | 5 | 4 | 3  | 2  | 1 | 0   |        |
|     | 4  |    |        |        |    |     | 4      |         |      |   |   |    | 31 |   |     | 0x409F |
|     |    |    |        |        |    | par | ameter | list le | ngth |   |   |    |    |   |     |        |
|     |    |    |        |        |    |     | 3      | X       |      |   |   |    |    |   |     |        |
|     |    |    |        |        |    |     | •      | Y       |      |   |   |    |    |   |     |        |
|     |    |    |        |        |    |     |        | 1       |      |   |   |    |    |   |     | 0x0001 |
|     |    | le | ngth = | n (eve | n) |     |        |         |      |   | ( | C1 |    |   |     |        |
|     |    |    | C      | 22     |    |     |        |         |      |   |   |    |    |   |     |        |
|     |    |    | (      | Cn     |    |     |        |         |      |   |   | 0  |    |   |     |        |
|     |    |    |        | /11    |    |     |        |         |      |   |   |    |    |   |     |        |

MCD

### TABLE CI. <u>Text nonpadded</u>, long form output.

| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  4 4 3 12 11 10 9 8 7 6 5 4 3 2 1 0  parameter list length |        | $^{\mathrm{SB}}$ | L |   |    |    |   |   |     |          |        |     |    |        |         |    |    | MSB |
|--------------------------------------------------------------------------------------------------|--------|------------------|---|---|----|----|---|---|-----|----------|--------|-----|----|--------|---------|----|----|-----|
|                                                                                                  |        | )                |   | 1 | 2  | 3  | 4 | 5 | 6   | 7        | 8      | 9   | 10 | 11     | 12      | 13 | 14 | 15  |
| parameter list length                                                                            | 0x409F |                  |   |   | 31 |    |   |   |     |          | 4      |     |    |        |         | 1  | 4  |     |
| V                                                                                                |        |                  |   |   |    |    |   |   | gth | list ler | ameter | par |    |        |         |    |    |     |
| X                                                                                                |        |                  |   |   |    |    |   |   |     | X        | 2      |     |    |        |         |    |    |     |
| Y                                                                                                |        |                  |   |   |    |    |   |   |     | Y        | 7      |     |    |        |         |    |    |     |
| 1 0x0                                                                                            | 0x0001 |                  |   |   |    |    |   |   |     | 1        |        |     |    |        |         |    |    |     |
| length = n (odd) C1                                                                              |        |                  |   |   |    | 1  | C |   |     |          |        |     | d) | n (odo | ength = | le |    |     |
| C2                                                                                               |        |                  |   |   |    |    |   |   |     |          |        |     |    | C2     | C       |    |    |     |
| C(n-1) Cn                                                                                        |        | _                |   |   |    | 'n | C |   |     |          |        |     |    | n-1)   | C(r     |    |    |     |

5.1.2.5.2 <u>Polygon element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Polygon element using the following format. The polygon parameters consist of a list of pairs of coordinates indicating the vertices of a polygon. The first vertex (Vertex1X, Vertex1Y) is connected to the last (Vertex(N)X, Vertex(N)Y) to close the polygon. Polygons are not "clipped" to the image boundary. Therefore, some coordinates may specify off-image or off-screen locations, including negative locations. Note, the parameter list length is given as the total number of bytes for all vertex parameters (4N).

| TABLE CII. Poly | gon short | form | output. |
|-----------------|-----------|------|---------|
|-----------------|-----------|------|---------|

| MSB |    |    |    |    |    |   |       |                       |   |   |    |         |            |         | LSB |
|-----|----|----|----|----|----|---|-------|-----------------------|---|---|----|---------|------------|---------|-----|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8     | 7                     | 6 | 5 | 4  | 3       | 2          | 1       | 0   |
|     | 1  |    |    |    |    |   | 7     |                       |   |   | pa | aramete | er list le | ngth (4 | ·N) |
|     |    |    |    |    |    |   | Vert  | ex1X                  |   |   |    |         |            |         |     |
|     |    |    |    |    |    |   | Vert  | ex1Y                  |   |   |    |         |            |         |     |
|     |    |    |    |    |    |   | Vert  | ex2X                  |   |   |    |         |            |         |     |
|     |    |    |    |    |    |   | Vert  | ex2Y                  |   |   |    |         |            |         |     |
|     |    |    |    |    |    |   |       | -                     |   |   |    |         |            |         |     |
|     |    |    |    |    |    |   | Vanta | (NI)V                 |   |   |    |         |            |         |     |
|     |    |    |    |    |    |   |       | $\frac{x(N)X}{x(N)X}$ |   |   |    |         |            |         |     |
|     |    |    |    |    |    |   | verte | x(N)Y                 |   |   |    |         |            |         |     |

TABLE CIII. Polygon long form output.

| MSB |    |    |    |    |    |       |          |          |        |   |   |   |    |   | LSB |        |
|-----|----|----|----|----|----|-------|----------|----------|--------|---|---|---|----|---|-----|--------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9     | 8        | 7        | 6      | 5 | 4 | 3 | 2  | 1 | 0   |        |
|     | 4  | ļ. |    |    |    |       | 7        |          |        |   |   |   | 31 |   |     | 0x40FF |
|     |    |    |    |    |    | Param | eter lis | st lengt | h (4N) |   |   |   |    |   |     |        |
|     |    |    |    |    |    |       | Vert     | ex1X     |        |   |   |   |    |   |     |        |
|     |    |    |    |    |    |       | Vert     | ex1Y     |        |   |   |   |    |   |     |        |
|     |    |    |    |    |    |       | Vert     | ex2X     |        |   |   |   |    |   |     |        |
|     |    |    |    |    |    |       | Vert     | ex2Y     |        |   |   |   |    |   |     |        |
|     |    |    |    |    |    |       |          |          |        |   |   |   |    |   |     |        |
|     |    |    |    |    |    |       | Vanta    | (NI)V    |        |   |   |   |    |   |     |        |
|     |    |    |    |    |    |       |          | x(N)X    |        |   |   |   |    |   |     |        |
|     |    |    |    |    |    |       | Verte    | x(N)Y    |        |   |   |   |    |   |     |        |

5.1.2.5.2.1 Polygon Set element output. The CGM implementation for NITFS shall provide the capability to generate and output the Polygon Set element using the following format. The polygon set parameters consist of a list of pairs of coordinates indicating the vertices of each polygon in the polygon set along with the Edge\_Out\_Flag indicating the edge visibility and whether the vertex is the last (closure) vertex of the specific polygon in the set. The first vertex of the first polygon (Vertex\_11X, Vertex\_11Y, Edge\_Out\_Flag\_11) is connected to the last (Vertex\_1(N)X, Vertex\_1(N)Y, Edge\_Out\_Flag\_1(N)) vertex in the first polygon followed by the vertices of each successive polygon in like manner. Polygon Sets are not "clipped" to the image boundary; therefore, some coordinates may specify off-image or off-screen locations, including negative locations. The Edge\_Out\_Flag parameter can be Invisible (0), Visible (1), Close Invisible (2), or Close Visible (3). Note, the

parameter list length is given as the total number of bytes for all vertex parameters (6N).

# TABLE CIV. Polygon Set short form output.

|     |    |    |    |    |    | 01  | OL) SO  | I DOL BII | 011 10111 | 1 outpu | <u>-</u> • |         |            |         |     |
|-----|----|----|----|----|----|-----|---------|-----------|-----------|---------|------------|---------|------------|---------|-----|
| MSB |    |    |    |    |    |     |         |           |           |         |            |         |            |         | LSB |
| 15  | 14 | 13 | 12 | 11 | 10 | 9   | 8       | 7         | 6         | 5       | 4          | 3       | 2          | 1       | 0   |
|     | 1  |    |    |    |    |     | 8       |           |           |         | pa         | aramete | r list lei | ngth (6 | N)  |
|     |    |    |    |    |    |     | Verte   | x_11X     |           |         |            |         |            |         |     |
|     |    |    |    |    |    |     | Verte   | x_11Y     |           |         |            |         |            |         |     |
|     |    |    |    |    |    | Ec  | lge_Ou  | t_Flag_   | 11        |         |            |         |            |         |     |
|     |    |    |    |    |    |     | Verte   | x_12X     |           |         |            |         |            |         |     |
|     |    |    |    |    |    |     | Verte   | x_12Y     |           |         |            |         |            |         |     |
|     |    |    |    |    |    | Ec  | lge_Ou  | t_Flag_   | 12        |         |            |         |            |         |     |
|     |    |    |    |    |    |     |         | 1         |           |         |            |         |            |         |     |
|     |    |    |    |    |    |     |         |           |           |         |            |         |            |         |     |
|     |    |    |    |    |    |     | Vertex_ | (n)(N)    | ζ         |         |            |         |            |         |     |
|     |    |    |    |    |    | 7   | Vertex_ | (n)(N)    | 7         |         |            |         |            |         |     |
|     |    | •  |    |    | •  | Edg | e_Out_  | Flag_(n   | )(N)      |         | •          |         |            |         |     |

#### TABLE CV. Polygon Set long form output

|     |                                 |    |    |    |    | TABL  | E CV.  | Polyge                     | <u>on Set l</u> | ong fo | rm out | out. |    |   |     |        |
|-----|---------------------------------|----|----|----|----|-------|--------|----------------------------|-----------------|--------|--------|------|----|---|-----|--------|
| MSB |                                 |    |    |    |    |       |        |                            |                 |        | -      |      |    |   | LSB |        |
| 15  |                                 | 13 | 12 | 11 | 10 | 9     | 8      | 7                          | 6               | 5      | 4      | 3    | 2  | 1 | 0   | 1      |
|     | 4                               | 1  |    |    |    |       | 7      |                            |                 |        |        |      | 31 |   |     | = 4111 |
|     |                                 |    |    |    |    | paran |        | st lengt                   | h (6N)          |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | x_11X                      |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | x_11Y                      |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    | Ed    |        | t_Flag_                    | _11             |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | x_12X                      |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | x_12Y                      |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    | Ed    | lge_Ou | t_Flag_                    | _12             |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        |                            |                 |        |        |      |    |   |     |        |
|     | Vertex_1(N)X                    |    |    |    |    |       |        |                            |                 |        |        |      |    |   |     |        |
|     | Vertex_1(N)Y                    |    |    |    |    |       |        |                            |                 |        |        |      |    |   |     |        |
|     | Vertex_1(N)Y Edge_Out_Flag_1(N) |    |    |    |    |       |        |                            |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | x_21X                      |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | x_21Y                      |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    | Ed    |        | t_Flag_                    | _21             |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | x_22X                      |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       | Verte  | x_22Y                      |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    | Ed    | lge_Ou | t_Flag_                    | _22             |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        |                            |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       | Vontor |                            | 7               |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | $_{-2(N)}^{N}$             |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | 2(1 <b>\) 1</b><br>_Flag_2 |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    | Eug   | ge_Out | _1 lag                     | 2(11)           |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        |                            |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | $x_n(n)1X$                 |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | (n)1Y                      |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | _Flag_                     |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       | Vertex | $x_n(n)2X$                 |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        |                            |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    |       |        | (n)2Y                      |                 |        |        |      |    |   |     |        |
|     |                                 |    |    |    |    | Edg   | ge_Out | _Flag_                     | (n)2            |        |        |      |    |   |     |        |

| TABLE CV. | Polygon Se | et long form | output - | Continued |
|-----------|------------|--------------|----------|-----------|
| INDLE CV. | TOLVEOUR   | it iong ionn | Output - | Commucu.  |

| MSB |    |    |    |    |    |      |         |         |       |   |   |   |    |   | LSB |       |
|-----|----|----|----|----|----|------|---------|---------|-------|---|---|---|----|---|-----|-------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9    | 8       | 7       | 6     | 5 | 4 | 3 | 2  | 1 | 0   |       |
|     | 4  | 1  |    |    |    |      | 7       |         |       |   |   |   | 31 |   |     | =411F |
|     |    |    |    |    |    |      |         |         |       |   |   |   |    |   |     |       |
|     |    |    |    |    |    | 1    | /ertex_ | (n)(N)  | X     |   |   |   |    |   |     |       |
|     |    |    |    |    |    | 7    | /ertex_ | (n)(N)  | Y     |   |   |   |    |   |     |       |
|     |    |    |    |    |    | Edge | e_Out_  | Flag_(ı | n)(N) |   |   |   |    |   |     |       |

5.1.2.5.3 Ellipse element output. The CGM implementation for NITFS shall provide the capability to generate and output the Ellipse element using the following format. The ellipse parameters consist of a list of three pairs of coordinates. The first pair, CenterX and CenterY, give the location of the center of the ellipse. The other two pairs, End1X, End1Y, and End2X, End2Y, specify the end points of the first and second conjugate diameters. The ellipse interior will be as specified by the Interior Style command, and the edge width, type, and color will be as specified in the Edge Width, Edge Type, and Edge Color commands respectively.

TABLE CVI. Ellipse output.

| MSB |    |    |    |    |    |   |     |       |   |   |   |   |    |   | LSB |        |
|-----|----|----|----|----|----|---|-----|-------|---|---|---|---|----|---|-----|--------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8   | 7     | 6 | 5 | 4 | 3 | 2  | 1 | 0   |        |
|     | 4  | 1  |    |    |    |   | 17  |       |   |   |   |   | 12 |   |     | 0x422C |
|     |    |    |    |    |    |   | Cen | terX  |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | Cen | ter Y |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | End | 11X   |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | End | 11Y   |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | Enc | 12X   |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | End | 12Y   |   |   |   |   |    |   |     |        |

5.1.2.5.4 <u>Polyline element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Polyline element using the following format. The polyline parameters consist of a list of pairs of coordinates indicating the vertices of a polyline (Vertex1X, Vertex1Y) to (Vertex(N)X, Vertex(N)Y). The line width, type, and color are specified by the Line Width, Line Type, and Line Color commands, respectively. Polylines are not "clipped" to the image boundary. Therefore, some coordinates may specify off-image or off-screen locations, including negative locations. Note, the parameter list length is given as the total number of bytes for all vertex parameters (4N).

TABLE CVII. Polyline short form output.

| MSB |    |    |    |    |    |   |       |       |   |   |    |        |           |         | LSB |
|-----|----|----|----|----|----|---|-------|-------|---|---|----|--------|-----------|---------|-----|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8     | 7     | 6 | 5 | 4  | 3      | 2         | 1       | 0   |
|     | 4  |    |    |    |    |   | 1     |       |   |   | pa | ramete | r list le | ngth (4 | N)  |
|     |    |    |    |    |    |   | Vert  | ex1X  |   |   |    |        |           |         |     |
|     |    |    |    |    |    |   | Vert  | ex1Y  |   |   |    |        |           |         |     |
|     |    |    |    |    |    |   | Vert  | ex2X  |   |   |    |        |           |         |     |
|     |    |    |    |    |    |   | Vert  | ex2Y  |   |   |    |        |           |         |     |
|     |    |    |    |    |    |   |       | •     |   |   |    |        |           |         |     |
|     |    |    |    |    |    |   | Verte | x(N)X |   |   |    |        |           |         |     |
|     |    |    |    |    |    |   |       |       |   |   |    |        |           |         |     |
|     |    |    |    |    |    |   | verte | x(N)Y |   |   |    |        |           |         |     |

| TABLE CVIII. | Polyline lone | form | Output |
|--------------|---------------|------|--------|
|              |               |      |        |

|    |    |         |    |    |       |                       |                                                                                                                                                                                                             | ,                                                                                                                                                                                                                      |                                                                                                                                                    | TIT O GIED                                                                                                                                                                               | <u></u> .                                                                                                                                                       |                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                                   |        |
|----|----|---------|----|----|-------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|    |    |         |    |    |       |                       |                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                          | LSB                                                                                                                                                                               |        |
| 14 | 13 | 12      | 11 | 10 | 9     | 8                     | 7                                                                                                                                                                                                           | 6                                                                                                                                                                                                                      | 5                                                                                                                                                  | 4                                                                                                                                                                                        | 3                                                                                                                                                               | 2                                                                                  | 1                                                                                                                                                                                                        | 0                                                                                                                                                                                 | _      |
| ۷  | 1  |         |    |    |       | 1                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                 | 31                                                                                 |                                                                                                                                                                                                          |                                                                                                                                                                                   | 0x403F |
|    |    |         |    |    | param | eter lis              | st lengt                                                                                                                                                                                                    | h (4N)                                                                                                                                                                                                                 |                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                                   |        |
|    |    |         |    |    |       | Vert                  | ex1X                                                                                                                                                                                                        |                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                                   |        |
|    |    |         |    |    |       | Vert                  | ex1Y                                                                                                                                                                                                        |                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                                   |        |
|    |    |         |    |    |       | Vert                  | ex2X                                                                                                                                                                                                        |                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                                   |        |
|    |    |         |    |    |       | Vert                  | ex2Y                                                                                                                                                                                                        |                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                                   |        |
|    |    |         |    |    |       |                       |                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                                   |        |
|    |    |         |    |    |       | <b>T</b> 74 -         | (NT) XZ                                                                                                                                                                                                     |                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                                   | •      |
|    |    |         |    |    |       |                       |                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                                   |        |
|    |    |         |    |    |       | Verte                 | x(N)Y                                                                                                                                                                                                       |                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                                   |        |
|    |    | 14 13 4 |    |    |       | 14 13 12 11 10 9<br>4 | 14         13         12         11         10         9         8           4         1         parameter list           Vert           Vert           Vert           Vert           Verte           Verte | 14         13         12         11         10         9         8         7           4         parameter list lengt           Vertex1X           Vertex1Y           Vertex2X           Vertex2Y           Vertex(N)X | 14     13     12     11     10     9     8     7     6       4     1       parameter list length (4N)       Vertex1X       Vertex1Y       Vertex2X | 14     13     12     11     10     9     8     7     6     5       4     1       parameter list length (4N)       Vertex1X       Vertex1Y       Vertex2X       Vertex2Y       Vertex(N)X | 14     13     12     11     10     9     8     7     6     5     4       parameter list length (4N)       Vertex1X       Vertex1Y       Vertex2X       Vertex2Y | 4 1 parameter list length (4N)  Vertex1X  Vertex1Y  Vertex2X  Vertex2Y  Vertex(N)X | 14     13     12     11     10     9     8     7     6     5     4     3     2       4     1     1     31       Parameter list length (4N)       Vertex1X       Vertex2Y       Vertex2Y       Vertex(N)X | 14     13     12     11     10     9     8     7     6     5     4     3     2     1       Parameter list length (4N)       Vertex1X       Vertex1Y       Vertex2X       Vertex2Y | LSB    |

5.1.2.5.5 Elliptical Arc element output. The CGM implementation for NITFS shall provide the capability to generate and output the Elliptical Arc element using the following format. A conjugate diameter pair of an ellipse is a pair of diameters of the ellipse such that a tangent to the ellipse at each endpoint is parallel to the other diameter. The centerpoint (CenterX, CenterY) specifies the center of an ellipse. The conjugate diameter endpoints (End1X, End1Y, and End2X, End2Y) include one endpoint from each conjugate diameter. Together with the centerpoint, they define the two conjugate diameters of the ellipse. StartVectorX and StartVectorY define a start vector, and EndVectorX and EndVectorY define an end vector. The tails of these vectors are placed on the centerpoint. A start ray and end ray are derived from the start and end vectors. The start and end rays are the semi-infinite lines from the centerpoint in the direction of the start and end vectors, respectively. The define arc begins at the intersection of the ellipse and the end ray in the direction defined as follows. A "conjugate radius" is defined to be half of a conjugate diameter. Letting the centerpoint be labeled M, the first conjugate diameter endpoint P<sub>1</sub>, and the second conjugate diameter endpoint P<sub>2</sub>, then the line segments M-P<sub>1</sub> and M-P<sub>2</sub> define two conjugate radii, referred to in what follows as the first conjugate radius and the second conjugate radius, respectively. The conjugate radii meet at M and define two angles: the sum of the two angles is 360 degrees, one angle is less than 180 degrees and the other is greater than 180 degrees. The drawing direction of the elliptical arc is less than 180 degrees and the other is greater than 180 degrees. The drawing direction of the elliptical arc is the direction from the first conjugate radius to the second conjugate radius through the smaller of these two angles. Valid values of the three specifying points of the ellipse are those which yield three distinct points. The specified ellipse is non-degenerate if and only if the three points are non-colinear. Valid values of the vector components are those which produce vectors of non-zero length. If the start ray and end ray are coincident, it is ambiguous whether the defined arc is null (zero arc length) or the entire ellipse. The arc width, type and color are specified by the Line Width, Line Type, and Line Color commands, respectively.

TABLE CIX. Elliptical Arc output.

| MSB |    |    |    |    |    |   |        |        |   |   |   |   |    |   | LSB |        |
|-----|----|----|----|----|----|---|--------|--------|---|---|---|---|----|---|-----|--------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8      | 7      | 6 | 5 | 4 | 3 | 2  | 1 | 0   |        |
|     | 4  | 1  |    |    |    |   | 18     |        |   |   |   |   | 20 |   |     | 0x4254 |
|     |    |    |    |    |    |   | Cen    | ıterX  |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | Cen    | terY   |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | En     | d1X    |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | Enc    | d1Y    |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | Enc    | d2X    |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | Enc    | d2Y    |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | StartV | ectorX |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | StartV | entorY | 7 |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | EndV   | ectorX |   |   |   |   |    |   |     |        |
|     |    |    |    |    |    |   | EndV   | ectorY | - |   |   |   |    |   |     |        |

5.1.2.5.6 Elliptical Arc Close element output. The CGM implementation for NITFS shall provide the capability to generate and output the Elliptical Arc Close element using the following format. A conjugate diameter pair of an ellipse is a pair of diameters of the ellipse such that a tangent to the ellipse at each endpoint is

parallel to the other diameter. The centerpoint (CenterX, CenterY) specifies the center of an ellipse. The conjugate diameter endpoints (End1X, End1Y, and End2X, End2Y) include one endpoint from each conjugate diameter. Together with the centerpoint, they define the two conjugate diameters of the ellipse. StartVectorX and StartVectorY define a start vector, and EndVectorX and EndVectorY define an end vector. The tails of these vectors are placed on the centerpoint. A start ray and end ray are derived from the start and end vectors. The start and end rays are the semi-infinite lines from the centerpoint in the direction of the start and end vectors, respectively. The define arc begins at the intersection of the ellipse and the end ray in the direction defined as follows. A "conjugate radius" is defined to be half of a conjugate diameter. Letting the centerpoint be labeled M, the first conjugate diameter endpoint P<sub>1</sub>, and the second conjugate diameter endpoint P<sub>2</sub>, then the line segments M-P<sub>1</sub> and M-P<sub>2</sub> define two conjugate radii, referred to in what follows as the first conjugate radius and the second conjugate radius, respectively. The conjugate radii meet at M and define two angles: the sum of the two angles is 360 degrees, one angle is less than 180 degrees and the other is greater than 180 degrees. The drawing direction of the elliptical arc is the direction from the first conjugate radius to the second conjugate radius through the smaller of these two angles. Valid values of the three specifying points of the ellipse are those which yield three distinct points. The specified ellipse is non-degenerate if and only if the three points are non-colinear. Valid values of the vector components are those which produce vectors of non-zero length. If the start ray and end ray are coincident, it is ambiguous whether the defined arc is null (zero arc length) or the entire ellipse. The last parameter, Close Type, specifies how the arc is closed (0=pie or 1=chord). If the close type is chord, a line is drawn between the endpoints of the arc. If the close type is pie, a line is drawn from the beginning of the arc to the centerpoint of the ellipse and then to the end of the arc. The interior of the arc will be as specified by the Interior Style command, and the edge width, type and color will be specified in the Edge Width, Edge Type, and Edge Color commands, respectively.

|            |            |    |    |    |    | T | ABLE   | CX. <u>E</u> | lliptica | l Arc o | utput. |   |    |   |     |        |
|------------|------------|----|----|----|----|---|--------|--------------|----------|---------|--------|---|----|---|-----|--------|
| MSB        |            |    |    |    |    |   |        |              |          |         |        |   |    |   | LSB |        |
| 15         | 14         | 13 | 12 | 11 | 10 | 9 | 8      | 7            | 6        | 5       | 4      | 3 | 2  | 1 | 0   |        |
|            | 4          | 1  |    |    |    |   | 19     |              |          |         |        |   | 22 |   |     | 0x4276 |
|            |            |    |    |    |    |   | Cen    | terX         |          |         |        |   |    |   |     |        |
|            |            |    |    |    |    |   | Cen    | terY         |          |         |        |   |    |   |     |        |
|            |            |    |    |    |    |   | End    | d1X          |          |         |        |   |    |   |     |        |
|            | End1Y      |    |    |    |    |   |        |              |          |         |        |   |    |   |     |        |
|            | End2X      |    |    |    |    |   |        |              |          |         |        |   |    |   |     |        |
|            | End2Y      |    |    |    |    |   |        |              |          |         |        |   |    |   |     |        |
|            |            |    |    |    |    |   | StartV | ectorX       |          |         |        |   |    |   |     |        |
|            |            |    |    |    |    |   | StartV | entorY       |          |         |        |   |    |   |     |        |
|            | EndVectorX |    |    |    |    |   |        |              |          |         |        |   |    |   |     |        |
| EndVectorY |            |    |    |    |    |   |        |              |          |         |        |   |    |   |     |        |
|            |            |    |    |    |    |   | Close  | Туре         |          |         |        |   |    |   |     |        |

5.1.2.5.7 <u>Rectangle element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Rectangle element using the following format. The rectangle is defined by two distinct points that are diagonally opposite corners of the rectangle where the rectangle is oriented parallel to the VDC axes. The interior of the rectangle will be as specified in the Interior Style command, and the edge width, type and color will be specified in the Edge Width, Edge Type, and Edge Color commands, respectively.

|     |          |    |    |    |    | , | TABLI | E CXI. | Rectar | <u>ıgle ou</u> | <u>tput</u> . |   |   |   |     |        |
|-----|----------|----|----|----|----|---|-------|--------|--------|----------------|---------------|---|---|---|-----|--------|
| MSB |          |    |    |    |    |   |       |        |        |                |               |   |   |   | LSB |        |
| 15  | 14       | 13 | 12 | 11 | 10 | 9 | 8     | 7      | 6      | 5              | 4             | 3 | 2 | 1 | 0   |        |
|     | 2        | 1  |    |    |    |   | 11    |        |        |                |               |   | 8 |   |     | 0x4168 |
|     |          |    |    |    |    |   | Corr  | er1X   |        |                |               |   |   |   |     |        |
|     |          |    |    |    |    |   | Corr  | er1Y   |        |                |               |   |   |   |     |        |
|     |          |    |    |    |    |   | Corr  | er2X   |        |                |               |   |   |   |     |        |
|     | Corner2Y |    |    |    |    |   |       |        |        |                |               |   |   |   |     |        |

5.1.2.5.8 <u>Circle element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Circle element using the following format. The first two parameters, CenterX and

CenterY, give the location of the center of the circle. Only non-negative values are valid for the radius. The interior of the circle will be as specified in the Interior Style command, and the edge width, type and color will be specified in the Edge Width, Edge Type, and Edge Color commands, respectively.

|        |         |    |    |    |      |   | TABL | LE CX | II. <u>Circ</u> | le outp | out. |   |   |        |     |  |
|--------|---------|----|----|----|------|---|------|-------|-----------------|---------|------|---|---|--------|-----|--|
| MSB    |         |    |    |    |      |   |      |       |                 | •       |      |   |   |        | LSB |  |
| 15     | 14      | 13 | 12 | 11 | 10   | 9 | 8    | 7     | 6               | 5       | 4    | 3 | 2 | 1      | 0   |  |
|        | ۷       | 1  |    |    | 12 6 |   |      |       |                 |         |      |   |   | 0x4186 |     |  |
|        |         |    |    |    |      |   | Cen  | terX  |                 |         |      |   |   |        |     |  |
|        | CenterY |    |    |    |      |   |      |       |                 |         |      |   |   |        |     |  |
| Radius |         |    |    |    |      |   |      |       |                 |         |      |   |   |        |     |  |

5.1.2.5.9 <u>Circular Arc Center element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Circular Arc Center element using the following format. The specified radius (Radius) and centerpoint (CenterX, CenterY) define a circle. StartVectorX and StartVectorY define a start vector, and EndVectorX and EndVectorY define an end vector. The tails of these vectors are placed on the centerpoint. The start ray and end ray are derived from the start and end vectors. The start and end rays are the semi-infinite lines from the centerpoint in the direction of the start and end vectors, respectively. The arc is drawn from the intersection of the circle and the start ray to the intersection of the circle and the end ray in the positive angular direction, as defined by the VDC Extent. Valid values of the vector components are those which produce distinct vectors of non-zero length. The arc width, type and color are specified by the Line Width, Line Type, and Line Color commands, respectively.

|     |    |    |    |    |    | TABL | E CXI | II. <u>Cir</u> | cular A | rc Cen | ter out | <u>out</u> . |    |   |     |        |
|-----|----|----|----|----|----|------|-------|----------------|---------|--------|---------|--------------|----|---|-----|--------|
| MSB |    |    |    |    |    |      |       |                |         |        |         |              |    |   | LSB |        |
| 15  | 14 | 13 | 12 | 11 | 10 | 9    | 8     | 7              | 6       | 5      | 4       | 3            | 2  | 1 | 0   |        |
|     | ۷  | 1  |    |    |    |      | 15    |                |         |        |         |              | 14 |   |     | 0x41EE |
|     |    |    |    |    |    |      | Cen   | terX           |         |        |         |              |    |   |     |        |
|     |    |    |    |    |    |      | Cen   | terY           |         |        |         |              |    |   |     |        |
|     |    |    |    |    |    |      | Sta   | ırtX           |         |        |         |              |    |   |     |        |
|     |    |    |    |    |    |      | Sta   | ırtY           |         |        |         |              |    |   |     |        |
|     |    |    |    |    |    |      | En    | ιdΧ            |         |        |         |              |    |   |     |        |
|     |    |    |    |    |    |      | En    | ιdΥ            |         |        |         |              |    |   |     |        |
|     |    |    |    |    |    |      | Rac   | dius           |         |        |         |              |    |   |     |        |

5.1.2.5.10 <u>Circular Arc Center Close element output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Circular Arc Center Close element using the following format. The specified radius (Radius) and centerpoint (CenterX, CenterY) define a circle. StartVectorX and StartVectorY define a start vector, and EndVectorX and EndVectorY define an end vector. The tails of these vectors are placed on the centerpoint. The start ray and end ray are derived from the start and end vectors. The start and end rays are the semi-infinite lines from the centerpoint in the direction of the start and end vectors, respectively. The arc is drawn from the intersection of the circle and the start ray to the intersection of the circle and the end ray in the positive angular direction, as defined by the VDC Extent. The last parameter, CloseType, specifies how the arc is closed (0=pie or 1=chord). If the close type is chord, a line is drawn between the endpoints of the arc. If the close type is pie, a line is drawn from the starting point through the computed arc center to the ending point. Valid values of the vector components are those which produce distinct vectors of non-zero length. The interior of this element will be as specified by the Interior Style command, and the edge width, type and color will be specified in the Edge Width, Edge Type, and Edge Color commands, respectively.

### TABLE CXIV. Circular Arc Center Close output.

|     |    |    |    |    |    |   | ·     | <u> </u> |   |   | CIODE C | · crep cre |    |   |     |        |
|-----|----|----|----|----|----|---|-------|----------|---|---|---------|------------|----|---|-----|--------|
| MSB |    |    |    |    |    |   |       |          |   |   |         |            |    |   | LSB |        |
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8     | 7        | 6 | 5 | 4       | 3          | 2  | 1 | 0   | _      |
|     | 4  | 1  |    |    |    |   | 16    |          |   |   |         |            | 16 |   |     | 0x4210 |
|     |    |    |    |    |    |   | Cen   | terX     |   |   |         |            |    |   |     |        |
|     |    |    |    |    |    |   | Cen   | terY     |   |   |         |            |    |   |     |        |
|     |    |    |    |    |    |   | Sta   | ırtX     |   |   |         |            |    |   |     | ]      |
|     |    |    |    |    |    |   | Sta   | ırtY     |   |   |         |            |    |   |     | ]      |
|     |    |    |    |    |    |   | En    | ıdX      |   |   |         |            |    |   |     | ]      |
|     |    |    |    |    |    |   | En    | ıdΥ      |   |   |         |            |    |   |     | ]      |
|     |    |    |    |    |    |   | Ra    | dius     |   |   |         |            |    |   |     | ]      |
|     |    |    |    |    |    |   | Close | Туре     |   |   |         |            |    |   |     | 1      |
|     |    |    |    |    |    |   |       |          |   |   |         |            |    |   |     | -      |

- 5.1.2.6 <u>Control elements</u>. The following control elements are used to describe the visual effects of auxiliary color and transparency.
- 5.1.2.6.1 <u>Auxiliary Color</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Auxiliary Color element using the following format. The Auxiliary Color element is used in conjunction with the LINE TYPE, EDGE TYPE, and TEXT. The Red, Green, and Blue (RGB) values are specified using a single byte. The last byte of the command shall be a null byte.

# TABLE CXV. Auxiliary Color input.

| MSB |    |    |    |    |    |   |   |   |   |   |    |     |   |   | LSB |        |
|-----|----|----|----|----|----|---|---|---|---|---|----|-----|---|---|-----|--------|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4  | 3   | 2 | 1 | 0   |        |
|     | 3  | 3  |    |    |    |   | 3 |   |   |   |    |     | 3 |   |     | 0x3063 |
|     |    |    | RI | ED |    |   |   |   |   |   | GR | EEN |   |   |     | ]      |
|     |    |    | BL | UE |    |   |   |   |   |   | (  | 0   |   |   |     | ]      |

5.1.2.6.2 <u>Transparency</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Transparency element using the following format. The TRANSPARENCY parameter can be off (0) or on (1).

# TABLE CXVI. Transparency input.

| MSB |              |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |        |
|-----|--------------|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|--------|
| 15  | 14           | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |        |
|     | 3            | 3  |    |    |    |   | 4 |   |   |   |   |   | 2 |   |     | 0x3082 |
|     | TRANSPARENCY |    |    |    |    |   |   |   |   |   |   |   |   |   |     |        |

- 5.1.2.7 <u>CGM binary encoding</u>. The CGM elements are represented in the binary encoding format as described in the FIPS PUB 128 document.
- 5.1.2.7.1 <u>CGM binary encoding for output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the CGM elements in the binary encoding format.
- 5.2 <u>Functional requirements</u>. The CGM implementation for NITFS complies with the specifications established in FIPS PUB 128. The following requirements establish the element position and functional requirements for the CGM implementation for NITFS. The words "command" and "element" are used synonymously throughout this document.
  - 5.2.1 CGM element position requirements.
  - 5.2.1.1 CGM element position input requirements.
- 5.2.1.1.1 <u>Begin Metafile element position for input</u>. The CGM implementation for NITFS shall interpret the Begin Metafile element as the first command in the metafile.

- 5.2.1.1.2 <u>Begin Picture element position for input</u>. The CGM implementation for NITFS shall interpret the Begin Picture element after all Metafile Descriptor elements in the metafile.
- 5.2.1.1.3 <u>Begin Picture Body element position for input</u>. The CGM implementation for NITFS shall interpret the Begin Picture Body element after each Begin Picture element and its associated Picture Descriptor elements.
- 5.2.1.1.4 End Picture element position for input. The CGM implementation for NITFS shall interpret the End Picture element after any Begin Picture Body element and its associated Attribute and Graphical Primitive elements.
- 5.2.1.1.5 End Metafile element position for input. The CGM implementation for NITFS shall interpret the End Metafile element as the last element in the metafile.
- 5.2.1.1.6 <u>Metafile Descriptor elements position for input</u>. The CGM implementation for NITFS shall interpret all Metafile Descriptor elements after the Begin Metafile element and before any Begin Picture elements. The Metafile Version element, the Metafile Element List element and the Metafile Description element shall be the first three metafile descriptor elements in that order.
- 5.2.1.1.7 <u>Picture Descriptor elements position for input</u>. The CGM implementation for NITFS shall interpret all Picture Descriptor elements after the Begin Picture element and before the Begin Picture Body element.
- 5.2.1.1.8 <u>Attribute elements position for input</u>. The CGM implementation for NITFS shall interpret any Attribute Element after the Begin Picture Body element and before the Graphical Primitive element to which it applies.
- 5.2.1.1.9 <u>Graphical Primitive elements position for input</u>. The CGM implementation for NITFS shall interpret any Graphical Primitive elements after the Begin Picture Body element and any associated Attribute elements for that Graphical Primitive element and before the End Picture element.
  - 5.2.1.2 <u>CGM element position output requirements</u>.
- 5.2.1.2.1 <u>Begin Metafile element position for output</u>. The CGM implementation for NITFS shall generate the Begin Metafile element as the first command in the metafile.
- 5.2.1.2.2 <u>Begin Picture element position for output</u>. The CGM implementation for NITFS shall generate the Begin Picture element after all Metafile Descriptor elements in the metafile.
- 5.2.1.2.3 <u>Begin Picture Body element position for output</u>. The CGM implementation for NITFS shall generate the Begin Picture Body element after each Begin Picture element and its associated Picture Descriptor elements.
- 5.2.1.2.4 End Picture element position for output. The CGM implementation for NITFS shall generate the End Picture element after any Begin Picture Body element and its associated Attribute and Graphical Primitive elements.
- 5.2.1.2.5 <u>End Metafile element position for output</u>. The CGM implementation for NITFS shall generate the End Metafile element as the last element in the metafile.
- 5.2.1.2.6 <u>Metafile Descriptor elements position for output</u>. The CGM implementation for NITFS shall generate all Metafile Descriptor elements after the Begin Metafile element and before any Begin Picture elements. The Metafile Version element, the Metafile Element List element, and the Metafile Description element shall be the first three metafile descriptor elements in that order.

- 5.2.1.2.7 <u>Picture Descriptor elements position for output</u>. The CGM implementation for NITFS shall generate all Picture Descriptor elements after the Begin Picture element and before the Begin Picture Body element.
- 5.2.1.2.8 <u>Attribute elements position for output</u>. The CGM implementation for NITFS shall generate any Attribute Element after the Begin Picture Body element and before the Graphical Primitive element to which it applies.
- 5.2.1.2.9 <u>Graphical Primitive elements position for output</u>. The CGM implementation for NITFS shall generate any Graphical Primitive elements after the Begin Picture Body element and any associated Attribute elements for that Graphical Primitive element and before the End Picture element.
  - 5.2.2 CGM element functional requirements.
  - 5.2.2.1 CGM element functional input requirements.
- 5.2.2.1.1 <u>CGM input required elements</u>. The following CGM elements are required for each CGM that the CGM implementation for NITFS inputs and interprets:
  - a. Begin Metafile
  - b. Metafile Version
  - c. Metafile Element List
  - d. Metafile Description
  - e. Begin Picture
  - f. Color Selection Mode
  - g. VDC Extent
  - h. Begin Picture Body
  - i. End Picture
  - i. End Metafile.
- 5.2.2.1.2 <u>Metafile Description element contents required for input</u>. The CGM implementation for NITFS shall be able to input and interpret the Metafile Description element that contains the following substring:

NITF/CGM-APP-2.0 for CGM placed in NITF2.0 and/or NITF2.1 files.

And additionally, for NITF2.1 files only:

NITF/CGM;ProfileEd:2301-2/Source:producer;Date:YYYYMMDD"

Where '*producer*' is the application name and release/version of the application producing or modifying the CGM. The date shall reflect the creation date or more recent date of modification.

- 5.2.2.1.3 <u>Length of parameter strings required for input for the Begin Metafile, Begin Picture, and Metafile Description elements</u>. The CGM implementation for NITFS shall be able to input and interpret the Begin Metafile, Begin Picture, and Metafile Description elements with parameter strings of at least 1024 characters.
- 5.2.2.1.4 <u>Length of parameter strings required for input for the Font List element</u>. The CGM implementation for NITFS shall be able to input and interpret the Font List element with parameter strings of at least 1024 characters.

- 5.2.2.1.5 <u>Number of Begin Picture elements and Begin Picture Body elements required for input</u>. The CGM implementation for NITFS shall be able to input and interpret one Begin Picture element with only one corresponding Begin Picture Body element.
- 5.2.2.1.6 End Picture element required for input. The CGM implementation for NITFS shall be able to input and interpret a CGM where an End Picture element occurs for each Begin Picture element.
- 5.2.2.1.7 <u>VDC Extent element required for input</u>. The CGM implementation for NITFS shall provide the capability to input and interpret a CGM where the VDC extent origin maps to the row and column given in the SLOC field in the National Imagery Transmission Format (NITF) symbol subheader and the VDC extent space maps one-to-one to the source coordinates.
- 5.2.2.1.8 Edge Width Specification Mode element for input. The CGM implementation for NITFS shall be able to input and interpret a CGM where the Edge Width Specification Mode element occurs before any filled-area primitive element. The representation of edge widths shall be centered (within plus or minus one pixel) on the ideal mathematically-defined edge of the area.
- 5.2.2.1.9 <u>Line Width Specification Mode element for input</u>. The CGM implementation for NITFS shall be able to input and interpret a CGM where the Line Width Specification Mode element occurs before any line primitive element. The representation of line widths shall be centered (within plus or minus one pixel) on the ideal mathematically-defined center of the line.
- 5.2.2.1.10 <u>Color Selection Mode element required for input</u>. The CGM implementation for NITFS shall be able to input and interpret a CGM where the Color Selection Mode element occurs before any graphics primitive.
- 5.2.2.1.11 <u>Character Orientation element required for input</u>. The CGM implementation for NITFS shall be able to input and interpret a CGM where the character orientation element occurs before the Text Primitive element to ensure that the text is displayed upright and left to right.
- 5.2.2.1.12 <u>Font List number required for input</u>. The CGM implementation for NITFS shall be able to input and interpret at least 32 font name entries in the Font List element.
- 5.2.2.1.13 Font names for input. The CGM implementation for NITFS shall use a system font for any unsupported font name specified in the Font List element. The substituted system fonts shall have similar visual and metric characteristics to the font specified in the metafile.
- 5.2.2.1.14 <u>Text Font Index required for input</u>. The CGM implementation for NITFS shall be able to input and interpret a Text Font Index element with index n when the Font List element has been interpreted with the number of fonts at least n.
- 5.2.2.1.15 Edge widths for input. The CGM implementation for NITFS shall be able to substitute default system edge widths for any unsupported edge widths from the Edge Width element.
- 5.2.2.1.16 <u>Line widths for input</u>. The CGM implementation for NITFS shall be able to substitute default system line widths for any unsupported line widths from the Line Width element.
- 5.2.2.1.17 <u>Edge types required for input</u>. The CGM implementation for NITFS shall be able to substitute solid edge type for any unsupported edge type from the Edge Type element.
- 5.2.2.1.18 <u>Line types required for input</u>. The CGM implementation for NITFS shall be able to substitute solid line type for any unsupported line type from the Line Type element.
- 5.2.2.1.19 <u>Interior styles required for input</u>. The CGM implementation for NITFS shall be able to substitute empty interior style for any unsupported interior style from the Interior Style element.
- 5.2.2.1.20 <u>Text element requirements for input</u>. The CGM implementation for NITFS shall be able to input and interpret the Text element with text string parameter length at least 254 characters.

- 5.2.2.1.21 <u>Character Height requirements for input</u>. The CGM implementation for NITFS shall be able to substitute default system text heights for any unsupported character height in the Character Height element. The implementation shall at least support character heights within the range of 6 through 72, although not all values within the range need to be supported for each font. When receiving an unsupported character height, the substituted height shall be the next lowest supported value for the font.
- 5.2.2.1.22 <u>Polyline element requirements for input</u>. The CGM implementation for NITFS shall be able to input and interpret the Polyline element with at least 4096 vertices.
- 5.2.2.1.23 <u>Polygon and Polygon Set element requirements for input</u>. The CGM implementation for NITFS shall be able to input and interpret the Polygon and Polygon Set element with at least 4096 vertices.
- 5.2.2.1.24 <u>Input and interpret in sequential order</u>. The CGM implementation for NITFS shall be able to interpret the CGM elements in the sequential order from which they are input from the metafile.
- 5.2.2.1.25 <u>Input Text element</u>. The CGM implementation for NITFS shall be able to input and interpret the Text element using the following attributes.
  - a. Text Color
  - b. Character Height
  - c. Text Font Index
  - d. Character Orientation
- 5.2.2.1.26 <u>Input Polygon and Polygon Set element</u>. The CGM implementation for NITFS shall be able to input and interpret the Polygon element using the following attributes.
  - a. Fill Color
  - b. Interior Style
  - c. Edge Visibility
  - d. Edge Width
  - e. Edge Type
  - f. Edge Color
- 5.2.2.1.27 <u>Input Ellipse element</u>. The CGM implementation for NITFS shall be able to input and interpret the Ellipse element using the following attributes.
  - a. Fill Color
  - b. Interior Style
  - c. Edge Visibility
  - d. Edge Width
  - e. Edge Type
  - f. Edge Color
- 5.2.2.1.28 <u>Input Polyline element</u>. The CGM implementation for NITFS shall be able to input and interpret the Polyline element using the following attributes.

- a. Line Width
- b. Line Type
- c. Line Color
- 5.2.2.1.29 <u>Input Elliptical Arc element</u>. The CGM implementation for NITFS shall be able to input and interpret the Elliptical Arc element using the following attributes.
  - a. Line Width
  - b. Line Type
  - c. Line Color
- 5.2.2.1.30 <u>Input Elliptical Closed Arc element</u>. The CGM implementation for NITFS shall be able to input and interpret the Elliptical Arc Close element using the following attributes.
  - a. Fill Color
  - b. Interior Style
  - c. Edge Visibility
  - d. Edge Width
  - e. Edge Type
  - f. Edge Color
- 5.2.2.1.31 <u>Input Rectangle element</u>. The CGM implementation for NITFS shall be able to input and interpret the Rectangle element using the following attributes.
  - a. Fill Color
  - b. Interior Style
  - c. Edge Visibility
  - d. Edge Width
  - e. Edge Type
  - f. Edge Color
- 5.2.2.1.32 <u>Input Circle element</u>. The CGM implementation for NITFS shall be able to input and interpret the Circle element using the following attributes.
  - a. Fill Color
  - b. Interior Style
  - c. Edge Visibility
  - d. Edge Width
  - e. Edge Type
  - f. Edge Color
- 5.2.2.1.33 <u>Input Circular Arc Center element</u>. The CGM implementation for NITFS shall be able to input and interpret the Circular Arc Center element using the following attributes.
  - a. Line Width

- b. Line Type
- c. Line Color
- 5.2.2.1.34 <u>Input Circular Arc Center Close element</u>. The CGM implementation for NITFS shall be able to input and interpret the Circular Arc Center Close element using the following attributes.
  - a. Fill Color
  - b. Interior Style
  - c. Edge Visibility
  - d. Edge Width
  - e. Edge Type
  - f. Edge Color
- 5.2.2.1.35 <u>Auxiliary Color for input</u>. The CGM implementation for NITFS shall be able to input and interpret the Auxiliary Color element when used in conjunction with EDGE TYPE, LINE TYPE, and TEXT.
- 5.2.2.1.36 <u>Transparency for input</u>. The CGM implementation for NITFS shall be able to input and interpret the Transparency element when used in conjunction with EDGE TYPE, LINE TYPE, and TEXT.
- 5.2.2.1.37 CGM element defaults for input. The CGM implementation for NITFS shall assume all CGM default values as stated in the Part 3 Binary Encoding in the FIPS PUB 128 for each CGM that the CGM implementation inputs and interprets when these elements are not expressly included in the CGM unless otherwise specified in this document. The CGM element defaults for input include, but are not limited to those listed in table CXVII.

TABLE CXVII. CGM element defaults for input.

| VDC TYPE:                   | 16 BIT INTEGER                     |
|-----------------------------|------------------------------------|
| INTEGER PRECISION:          | 16 BIT INTEGER                     |
| INDEX PRECISION:            | 16 BIT INTEGER                     |
| COLOR PRECISION:            | 8 BIT INTEGER                      |
| TRANSPARENCY:               | ON                                 |
| LINE TYPE:                  | 1 (SOLID)                          |
| TEXT PRECISION:             | STRING                             |
| CHARACTER EXPANSION FACTOR: | 1.0                                |
| CHARACTER SPACING:          | 0.0                                |
| CHARACTER ORIENTATION:      | 0, 1, 1, 0                         |
| TEXT PATH:                  | RIGHT                              |
| TEXT ALIGNMENT:             | NORMAL HORIZONTAL, NORMAL VERTICAL |
| INTERIOR STYLE:             | HOLLOW (EMPTY)                     |
| EDGE TYPE:                  | SOLID                              |
| EDGE VISIBILITY:            | OFF                                |
| LINE COLOR:                 | DEVICE-DEPENDENT FOREGROUND COLOR  |
| EDGE COLOR:                 | DEVICE-DEPENDENT FOREGROUND COLOR  |
| FILL COLOR:                 | DEVICE-DEPENDENT FOREGROUND COLOR  |
| TEXT COLOR:                 | DEVICE-DEPENDENT FOREGROUND COLOR  |
| BACKGROUND COLOR:           | NONE (THIS IS NITF SPECIFIC)       |
| COLOR VALUE EXTENT:         | 0,0,0 - 255,255,255                |
| VDC INTEGER PRECISION:      | 16 BIT INTEGER                     |
| TEXT FONT INDEX:            | 1                                  |
| HATCH INDEX                 | Horizontal (1)                     |

- 5.2.2.1.38 <u>Default colors for unsupported text</u>. The CGM implementation for NITFS shall substitute available system colors for unsupported colors specified in the Text Color element, Fill Color element, Edge Color element, and the Line Color element.
- 5.2.2.1.39 <u>CGM element substitution</u>. The CGM implementation for NITFS shall report or substitute for any CGM element and associated parameters not supported in the CGM implementation for NITFS and continue to interpret the next element supported in the CGM implementation for the NITFS.
- 5.2.2.1.40 <u>CGM error messages</u>. The CGM implementation for NITFS should report errors encountered during the input and interpretation of the CGM.
  - 5.2.2.2 CGM element functional output requirements.
- 5.2.2.2.1 <u>CGM output required elements</u>. The following CGM elements are required for each CGM that the CGM implementation for NITFS generates and outputs:
  - a. Begin Metafile
  - b. Metafile Version
  - c. Metafile Element List
  - d. Metafile Description
  - e. Begin Picture
  - f. Color Selection Mode
  - g. VDC Extent
  - h. Begin Picture Body
  - i. End Picture
  - j. End Metafile
- 5.2.2.2.2 <u>Metafile Description element contents required for output</u>. The CGM implementation for NITFS shall generate and output the Metafile Description element that contains the following substring:

NITF/CGM-APP-2.0 for CGM placed in NITF2.0 and/or NITF 2.1 files.

And additionally, for NITF 2.1 files only:

NITF/CGM;ProfileEd:2301-2/Source:producer;Date:YYYYMMDD

Where 'producer' is the application name and release/version of the application producing or modifying the CGM. The date shall reflect the creation date or more recent date of modification.

- 5.2.2.2.3 <u>Length of parameter strings required for output for the Begin Metafile, Begin Picture, and Metafile Description elements</u>. The CGM implementation for NITFS shall generate and output the Begin Metafile, Begin Picture, and Metafile Description elements with parameter strings not to exceed 1024 characters.
- 5.2.2.2.4 <u>Length of parameter strings required for output for the Font List element</u>. The CGM implementation for NITFS shall generate and output the Font List element with parameter strings not to exceed 1024 characters.
- 5.2.2.2.5 <u>Number of Begin Picture elements and Begin Picture Body elements required for output</u>. The CGM implementation for NITFS shall generate and output only one Begin Picture element with only on Begin Picture Body element.

- 5.2.2.2.6 End Picture element required for output. Exactly one End Picture element is required for each Begin Picture element for each CGM that the CGM implementation for NITFS generates and outputs.
- 5.2.2.2.7 Edge Width Specification Mode element for output. The Edge Width Specification Mode element is required when any filled-area primitive element is present for each CGM that the CGM implementation for NITFS generates and outputs. The representation of edge widths shall be centered (within plus or minus one pixel) on the ideal mathematically-defined edge of the area.
- 5.2.2.2.8 <u>Line Width Specification Mode element for output</u>. The Line Width Specification Mode element is required when any line primitive element is present for each CGM that the CGM implementation for NITFS generates and outputs. The representation of line widths shall be centered (within plus or minus one pixel) on the ideal mathematically-defined center of the line.
- 5.2.2.2.9 <u>Color Selection Mode element required for output</u>. The Color Selection Mode element is required for each CGM that the CGM implementation for NITFS generates and outputs.
- 5.2.2.2.10 Character Orientation element required for output. The character orientation element is required for the Text Primitive element when the VDC Extent element parameters are given as X1 > X2 or Y1 > Y2. This ensures that the text is displayed upright and left to right for each CGM that the CGM implementation for NITFS generates and outputs.
- 5.2.2.2.11 <u>Font List number required for output</u>. The CGM implementation for NITFS shall provide the capability to generate and output, at most, 32 font name entries in the Font List element.
- 5.2.2.2.12 <u>Font names for output</u>. The CGM implementation for NITFS shall limit the font name in the Font List element to the following list. The HERSHEY fonts are specified in NBS SP 424 while TIMES, COURIER and HELVETICA fonts are registered trademarks of Allied Corporation which owns the copyright.
  - a. HERSHEY/CARTOGRAPHIC\_ROMAN
  - b. HERSHEY/CARTOGRAPHIC GREEK
  - c. HERSHEY/SIMPLEX ROMAN
  - d. HERSHEY/SIMPLEX\_GREEK
  - e. HERSHEY/SIMPLEX\_SCRIPT
  - f. HERSHEY/COMPLEX\_ROMAN
  - g. HERSHEY/COMPLEX\_GREEK
  - h. HERSHEY/COMPLEX\_SCRIPT
  - i. HERSHEY/COMPLEX\_ITALIC
  - j. HERSHEY/COMPLEX\_CYRILLIC
  - k. HERSHEY/DUPLEX\_ROMAN
  - 1. HERSHEY/TRIPLEX\_ROMAN
  - m. HERSHEY/TRIPLEX\_ITALIC
  - n. HERSHEY/GOTHIC\_GERMAN
  - o. HERSHEY/GOTHIC\_ENGLISH
  - p. HERSHEY/GOTHIC\_ITALIAN
  - q. TIMES\_ROMAN
  - r. TIMES\_ITALIC

- s. TIMES BOLD
- t. TIMES\_BOLD\_ITALIC
- u. HELVETICA
- v. HELVETICA\_OBLIQUE
- w. HELVETICA\_BOLD
- x. HELVETICA\_BOLD\_OBLIQUE
- y. COURIER
- z. COURIER BOLD
- aa. COURIER\_ITALIC
- ab. COURIER\_BOLD\_ITALIC
- 5.2.2.2.13 <u>Text Font Index required for output</u>. The index of every Text Font Index element shall be less than or equal to (≤) the number of fonts specified in the Font List element for any CGM implementation generated for NITFS. The Font List element is required for each CGM that contains a Text Font Index element.
- 5.2.2.2.14 Edge widths for output. The CGM implementation for NITFS shall provide the capability to generate and output edge widths of two, four, or six, and optionally, of 1 through 100 for the Edge Width element.
- 5.2.2.2.15 <u>Line widths for output</u>. The CGM implementation for NITFS shall provide the capability to generate and output line widths of two, four, or six, and optionally, of 1 through 100 for the Line Width element.
- 5.2.2.2.16 Edge types required for output. The CGM implementation for NITFS shall generate and output edge types of solid (1), dashed (2), dotted (3), dash-dot (4), and dash-dot-dot (5), to the Edge Type element.
- 5.2.2.2.17 <u>Line types required for output</u>. The CGM implementation for NITFS shall generate and output line types of solid (1), dashed (2), dotted (3), dash-dot (4), and dash-dot-dot (5), to the Line Type element.
- 5.2.2.2.18 <u>Interior styles required for output</u>. The CGM implementation for NITFS shall generate and output interior styles of solid (1), hatch (3), empty (4), to the Interior Style element.
- 5.2.2.2.19 <u>Text element requirements for output</u>. The CGM implementation for NITFS shall generate and output the Text element with text string parameter not to exceed 254 characters.
- 5.2.2.2.0 <u>Character Height requirements for output</u>. The CGM implementation for NITFS shall generate and output the Character Height element with a value no less than 6. There is no constraint on the upper limit value. (Note: interpret implementations must at least support the range of 6 through 72.)
- 5.2.2.2.21 <u>Polyline element requirements for output</u>. The CGM implementation for NITFS shall generate and output the Polyline element with at least two and no more than 4096 vertices.
- 5.2.2.2.2 <u>Polygon and Polygon Set element requirements for output</u>. The CGM implementation for NITFS shall generate and output the Polygon element with at least three vertices and no more than 4096 vertices.
- 5.2.2.2.3 <u>Generate and output sequential order</u>. The CGM implementation for NITFS shall generate and output CGM elements in the sequential order intended for interpretation.
- 5.2.2.2.4 Output Text element. The CGM implementation for NITFS shall generate and output the Text element using the following attributes. The following attributes must be stated before the first use of the Text element but need not be restated for subsequent occurrences unless a different attribute value is required.

- a. Text Color
- b. Character Height
- c. Text Font Index
- d. Character Orientation
- 5.2.2.2.5 Output Polygon and Polygon Set element. The CGM implementation for NITFS shall generate and output the Polygon element using the following attributes. The following attributes must be stated before the first use of the Polygon element but need not be restated for subsequent occurrences unless a different attribute value is required.
  - a. Fill Color
  - b. Interior Style
  - c. Edge Visibility
  - d. Edge Width
  - e. Edge Type
  - f. Edge Color
- 5.2.2.2.6 <u>Output Ellipse element</u>. The CGM implementation for NITFS shall generate and output the Ellipse element using the following attributes. The following attributes must be stated before the first use of the Ellipse element but need not be restated for subsequent occurrences unless a different attribute value is required.
  - a. Fill Color
  - b. Interior Style
  - c. Edge Visibility
  - d. Edge Width
  - e. Edge Type
  - f. Edge Color
- 5.2.2.2.7 <u>Output Polyline element</u>. The CGM implementation for NITFS shall generate and output the Polyline element using the following attributes. The following attributes must be stated before the first use of the Polyline element but need not be restated for subsequent occurrences unless a different attribute value is required.
  - a. Line Width
  - b. Line Type
  - c. Line Color
- 5.2.2.2.28 <u>Output Elliptical Arc element</u>. The CGM implementation for NITFS shall generate and output the Elliptical Arc element using the following attributes. The following attributes must be stated before the first use of the Elliptical Arc element but need not be restated for subsequent occurrence unless a different attribute value is required.
  - a. Line Width
  - b. Line Type
  - c. Line Color

| 5.2.2.2.9 Output Elliptical Arc Close element. The CGM implementation for NITFS shall generate and                   |
|----------------------------------------------------------------------------------------------------------------------|
| output the Elliptical Arc Close element using the following attributes. The following attributes must be stated      |
| before the first use of the Elliptical Arc Close element but need not be restated for subsequent occurrence unless a |
| different attribute value is required.                                                                               |

- a. Fill Color
- b. Interior Style
- c. Edge Visibility
- d. Edge Width
- e. Edge Type
- f. Edge Color

5.2.2.2.30 <u>Output Rectangle element</u>. The CGM implementation for NITFS shall generate and output the Rectangle element using the following attributes. The following attributes must be stated before the first use of the Rectangle element but need not be restated for subsequent occurrences unless a different attribute value is required.

- a. Fill Color
- b. Interior Style
- c. Edge Visibility
- d. Edge Width
- e. Edge Type
- f. Edge Color

5.2.2.2.31 <u>Output Circle element</u>. The CGM implementation for NITFS shall generate and output the Circle element using the following attributes. The following attributes must be stated before the first use of the Circle element but need not be restated for subsequent occurrences unless a different attribute value is required.

- a. Fill Color
- b. Interior Style
- c. Edge Visibility
- d. Edge Width
- e. Edge Type
- f. Edge Color

5.2.2.2.32 <u>Output Circular Arc Center element</u>. The CGM implementation for NITFS shall generate and output the Circular Arc Center element using the following attributes. The following attributes must be stated before the first use of the Circular Arc Center element but need not be restated for subsequent occurrences unless a different attribute value is required.

- a. Line Width
- b. Line Type
- c. Line Color

- 5.2.2.2.33 <u>Output Circular Arc Center Close element</u>. The CGM implementation for NITFS shall generate and output the Circular Arc Center Close element using the following attributes. The following attributes must be stated before the first use of the Circular Arc Center Close element but need not be restated for subsequent occurrences unless a different attribute value is required.
  - a. Fill Color
  - b. Interior Style
  - c. Edge Visibility
  - d. Edge Width
  - e. Edge Type
  - f. Edge Color
- 5.2.2.34 <u>Auxiliary Color for output</u>. The CGM implementation for NITFS shall provide the capability to generate and output the Auxiliary Color element in support of EDGE TYPE, LINE TYPE, and TEXT.
- 5.2.2.2.35 Transparency for output. The CGM implementation for NITFS shall provide the capability to generate and output the Transparency element as either (1 = on) or (0 = off) in support of EDGE TYPE, LINE TYPE, and TEXT.
- 5.2.2.2.36 <u>CGM</u> element defaults for output. The CGM implementation for NITFS shall assume all CGM default values as stated in the Part 3 Binary Encoding in the FIPS PUB 128 for each CGM that the CGM implementation generates and outputs unless otherwise specified in this document. The CGM element defaults for output include, but are not limited to, those in table CXVIII. Since this standard only specifies a single value or option, these elements, although permitted, never need to appear in a CGM.

TABLE CXVIII. CGM element defaults for output.

| VDC TYPE:                   | 16 BIT INTEGER                     |
|-----------------------------|------------------------------------|
| INTEGER PRECISION:          | 16 BIT INTEGER                     |
| INDEX PRECISION:            | 16 BIT INTEGER                     |
| COLOR PRECISION:            | 8 BIT INTEGER                      |
| TRANSPARENCY:               | ON                                 |
| TEXT PRECISION:             | STRING                             |
| CHARACTER EXPANSION FACTOR: | 1.0                                |
| CHARACTER SPACING:          | 0.0                                |
| TEXT PATH:                  | RIGHT                              |
| TEXT ALIGNMENT:             | NORMAL HORIZONTAL, NORMAL VERTICAL |
| BACKGROUND COLOR:           | NONE (THIS IS NITF SPECIFIC)       |
| COLOR VALUE EXTENT:         | 0,0,0 - 255,255,255                |
| VDC INTEGER PRECISION:      | 16 BIT INTEGER                     |

5.2.2.2.37 <u>Degeneracy</u>. The CGM implementation for NITFS is precluded from generating and outputting degenerate CGM elements.

#### 6. NOTES

(This section contains general or explanatory information that may be helpful but is not mandatory).

- 6.1 <u>CGM example Metafiles</u>. The following examples illustrate complete CGM metafiles compatible with the CGM implementation for NITFS.
- 6.1.1 <u>Polygon example</u>. The following example represents a white filled polygon with three vertices at (4,5), (6,7), and (8,9) relative to the VDC Extent origin.

TABLE CXIX. Polygon example.

| CGM ELEMENT                        | HEX VALUES       |
|------------------------------------|------------------|
| BEGIN METAFILE ("POLYGON")         | 0x0028           |
| BEGIN METALIEE (TOETGOIN)          | 0x0750           |
|                                    | 0x4F4C           |
|                                    | 0x5947           |
|                                    | 0x4F4E           |
| METAFILE VERSION (1)               | 0x1022           |
| WETTH IEE VERSION (1)              | 0x0001           |
| METAFILE DESCRIPTION ("POLYGON")   | 0x1048           |
| WEITH IED DESCRIPTION (TODITION)   | 0x0750           |
|                                    | 0x4F4C           |
|                                    | 0x5947           |
|                                    | 0x4F4E           |
| METAFILE ELEMENT LIST              | 0x1166           |
| WETTH THE ELECTION CO.             | 0x0001           |
|                                    | 0xFFFF           |
|                                    | 0x0001           |
| CGM ELEMENT                        | HEX VALUES       |
| BEGIN PICTURE ("POLYGON")          | 0x0068           |
| BEGINTIETORE (TOETGOIN)            | 0x0750           |
|                                    | 0x4F4C           |
|                                    | 0x5947           |
|                                    | 0x4F4E           |
| COLOR SELECTION MODES (DIRECT = 1) | 0x2042           |
| COLOR SELECTION MODES (DIRECT = 1) | 0x0001           |
| VDC EXTENT                         | 0x20C8           |
|                                    | 0x0000           |
|                                    | 0x7FFF           |
|                                    | 0x7FFF           |
|                                    | 0x0000           |
| BEGIN PICTURE BODY                 | 0x0080           |
| FILL COLOR (255,255,255)           | 0x52E3           |
| TED CODOR (255,255,255)            | 0xFFFF           |
|                                    | 0xFF00           |
| INTERIOR STYLE (SOLID=1)           | 0x52C2           |
| TITLE (SOLID-1)                    | 0x0001           |
| POLYGON (4,5 6,7 8,9)              | 0x40FF           |
| 1 02 1 001 (4,5 0,7 0,7)           | 0x000C           |
|                                    | 0x000C           |
|                                    | 0x0004<br>0x0005 |
|                                    | 0x0006           |
|                                    | 0x0006<br>0x0007 |
|                                    |                  |
|                                    | 0x0008           |
| END DICTUDE                        | 0x0009           |
| END PICTURE END METAFILE           | 0x00A0           |
|                                    | 0x0040           |

6.1.1.1 <u>Polygon Set example</u>. The following example represents a polygon set which includes a red filled polygon and two smaller polygons that are transparent. The three polygons are relative to the VDC Extent origin.

TABLE CXX. Polygon Set example.

| TABLE CXX. Po                        | lygon Set example. |
|--------------------------------------|--------------------|
| CGM ELEMENT                          | HEX VALUES         |
| BEGIN METAFILE ("POLYGON SET")       | 0X002C             |
|                                      | 0X0B50             |
|                                      | 0X4F4C             |
|                                      | 0X5947             |
|                                      | 0X4F4E             |
|                                      | 0X2053             |
|                                      | 0X4554             |
| METAFILE VERSION (1)                 | 0X1022             |
|                                      | 0X0001             |
| METAFILE DESCRIPTION ("POLYGON SET") | 0X104C             |
|                                      | 0X0B50             |
|                                      | 0X4F4C             |
|                                      | 0X5947             |
|                                      | 0X4F4E             |
|                                      | 0X2053             |
|                                      | 0X4554             |
| METAFILE ELEMENT LIST                | 0X1166             |
|                                      | 0X0001             |
|                                      | 0XFFFF             |
|                                      | 0X0001             |
| BEGIN PICTURE ("POLYGON SET")        | 0X006C             |
|                                      | 0X0B50             |
|                                      | 0X4F4C             |
|                                      | 0X5947             |
|                                      | 0X4F4E             |
|                                      | 0X2053             |
|                                      | 0X4554             |
| COLOR SELECTION MODES (DIRECT = 1)   | 0X2042             |
|                                      | 0X0001             |
| EDGE WIDTH SPECIFICATION MODE        | 0X20A2             |
|                                      | 0X0000             |
| CGM ELEMENT                          | HEX VALUES         |
| VDC EXTENT                           | 0X20C8             |
|                                      | 0X0000             |
|                                      | 0X7FFF             |
|                                      | 0X7FFF             |
|                                      | 0X0000             |
| BEGIN PICTURE BODY                   | 0X0080             |
| FILL COLOR (RED)                     | 0X52E3             |
|                                      | 0XFF00             |
|                                      | 0X0000             |
| INTERIOR STYLE (SOLID=1)             | 0X52C2             |
|                                      | 0X0001             |
| EDGE VISIBILITY (ON)                 | 0X53C2             |
|                                      | 0X0001             |

TABLE CXX. Polygon Set example.

|                           | <u> </u> | olygon Set example. |
|---------------------------|----------|---------------------|
| EDGE WIDTH (7)            |          | 0X5382              |
|                           |          | 0X0007              |
| EDGE TYPE (DASHED)        |          | 0X5362              |
|                           |          | 0X0002              |
| EDGE COLOR (BLUE)         |          | 0X53A3              |
|                           |          | 0X0000              |
|                           |          | 0XFF00              |
| CGM ELEMENT               |          | HEX VALUES          |
| POLYGON SET               |          | 0X411F              |
| 0,0 1000,0 1000,1000,     | 0,1000   | 0X0048              |
| 250,250 350,250, 350,350, | 250,350  | 0X0000              |
| 550,550 650,550 650,650   | 550,650  | 0X0000              |
| 330,330 030,330 030,030   | 330,030  | 0X0001              |
|                           |          | 0X03E8              |
|                           |          | 0X0000              |
|                           |          | 0X0001              |
|                           |          | 0X03E8              |
|                           |          | 0X03E8              |
|                           |          | 0X0001              |
|                           |          | 0X0001<br>0X0000    |
|                           |          | 0X03E8              |
|                           |          | 0X0002              |
|                           |          | 0X00FA              |
|                           |          | 0X00FA              |
|                           |          |                     |
|                           |          | 0X0001              |
|                           |          | 0X015E              |
|                           |          | 0X00FA              |
|                           |          | 0X0001              |
|                           |          | 0X015E              |
|                           |          | 0X015E              |
|                           |          | 0X0001              |
|                           |          | 0X00FA              |
|                           |          | 0X015E              |
|                           |          | 0X0002              |
|                           |          | 0X0226              |
|                           |          | 0X0226              |
|                           |          | 0X0001              |
|                           |          | 0X028A              |
|                           |          | 0X0226              |
|                           |          | 0X0001              |
|                           |          | 0X028A              |
|                           |          | 0X028A              |
|                           |          | 0X0001              |
|                           |          | 0X0226              |
|                           |          | 0X028A              |
|                           |          | 0X0002              |
| END PICTURE               |          | 0X00A0              |
| END METAFILE              |          | 0X0040              |

6.1.2 <u>Text example</u>. The following CGM example represents a label with text "test" with white characters 14 pixels high starting at location (10,20) relative to VDC Extent origin. the font list consists of two fonts (Helvetica and Courier). The text uses Courier.

TABLE CXXI. Text example.

| CGM ELEMENT                                          | HEX VALUES         |
|------------------------------------------------------|--------------------|
| BEGIN METAFILE ("TEXT")                              | 0x0025             |
| BEON WETATILE (TEXT)                                 | 0x0454             |
|                                                      | 0x4558             |
|                                                      | 0x4336 $0x5400$    |
| METAEILE VEDSION (1)                                 | 0x1022             |
| METAFILE VERSION (1)                                 | $0x1022 \\ 0x0001$ |
| METARILE DECOMPTION ("TEVT")                         | 0x1045             |
| METAFILE DESCRIPTION ("TEXT")                        |                    |
|                                                      | 0x0454<br>0x4558   |
|                                                      | 0x4538 $0x5400$    |
| METARILE ELEMENT LICT                                |                    |
| METAFILE ELEMENT LIST                                | 0x1166             |
|                                                      | 0x0001             |
|                                                      | 0xFFFF             |
| TONE LIGHT (HILL I III III III III III III III III I | 0x0001             |
| FONT LIST ("Helvetica," "Courier")                   | 0x11B2             |
|                                                      | 0x0948             |
|                                                      | 0x656C             |
|                                                      | 0x7665             |
|                                                      | 0x7469             |
|                                                      | 0x6361             |
|                                                      | 0x0743             |
|                                                      | 0x6F75             |
|                                                      | 0x7269             |
|                                                      | 0x6572             |
| BEGIN PICTURE ("TEXT")                               | 0x0065             |
|                                                      | 0x0454             |
|                                                      | 0x4558             |
|                                                      | 0x5400             |
| COLOR SELECTION MODES (DIRECT = 1)                   | 0x2042             |
|                                                      | 0x0001             |
| VDC EXTENT                                           | 0x20C8             |
|                                                      | 0x0000             |
|                                                      | 0x7FFF             |
|                                                      | 0x7FFF             |
|                                                      | 0x0000             |
| BEGIN PICTURE BODY                                   | 0x0080             |
| TEXT COLOR (255,255,255)                             | 0x51C3             |
|                                                      | 0xFFFF             |
|                                                      | 0xFF00             |
| CHARACTER HEIGHT (14)                                | 0x51E2             |
| • *                                                  | 0x000E             |
| TEXT FONT INDEX (2=Courier)                          | 0x5142             |
| ` '                                                  | 0x0002             |
| CHARACTER ORIENTATION                                | 0x5208             |
|                                                      | 0x0000             |
|                                                      | 0xFFFF             |
|                                                      | 0x0001             |
|                                                      | 0x0000             |

TABLE CXXI. <u>Text example</u> – Continued.

| CGM ELEMENT             | HEX VALUES |
|-------------------------|------------|
| TEXT (10,20,1,4,"test") | 0x408B     |
|                         | 0x000A     |
|                         | 0x0014     |
|                         | 0x0001     |
|                         | 0x0474     |
|                         | 0x6573     |
|                         | 0x7400     |
| END PICTURE             | 0x00A0     |
| END METAFILE            | 0x0040     |

6.1.3 Ellipse example. The following CGM example represents an empty ellipse with a four-pixel wide visible white edge, a center at location (10,20), with conjugate endpoints at locations (20,20) and (10,30) relative to VDC Extent origin.

TABLE CXXII. Ellipse example.

| COMELEMENT                         |            |
|------------------------------------|------------|
| CGM ELEMENT                        | HEX VALUES |
| BEGIN METAFILE ("ELLIPSE")         | 0x0028     |
|                                    | 0x0745     |
|                                    | 0x4C4C     |
|                                    | 0x4950     |
|                                    | 0x5345     |
| METAFILE VERSION (1)               | 0x1022     |
|                                    | 0x0001     |
| METAFILE DESCRIPTION ("ELLIPSE")   | 0x1048     |
|                                    | 0x0745     |
|                                    | 0x4C4C     |
|                                    | 0x4950     |
|                                    | 0x5345     |
| METAFILE ELEMENT LIST              | 0x1166     |
|                                    | 0x0001     |
|                                    | 0xFFFF     |
|                                    | 0x0001     |
| BEGIN PICTURE ("ELLIPSE")          | 0x0068     |
|                                    | 0x0745     |
|                                    | 0x4C4C     |
|                                    | 0x4950     |
|                                    | 0x5345     |
| COLOR SELECTION MODES (DIRECT = 1) | 0x2042     |
|                                    | 0x0001     |
| EDGES WIDTH SPECIFICATION MODE     | 0x20A2     |
| (ABSOLUTE=0)                       | 0x0000     |
| VDC EXTENT                         | 0x20C8     |
|                                    | 0x0000     |
|                                    | 0x7FFF     |
|                                    | 0x7FFF     |
|                                    | 0x0000     |
| BEGIN PICTURE BODY                 | 0x0080     |
| EDGE COLOR (255,255,255)           | 0x52A3     |
| (,,,                               | 0xFFFF     |
|                                    | 0xFF00     |
| EDGE VISIBILITY (on)               | 0x53C2     |
| Laboration, (on)                   | 0x0001     |
|                                    | 0.10001    |

TABLE CXXII. Ellipse example - Continued.

| CGM ELEMENT                 | HEX VALUES |
|-----------------------------|------------|
| EDGE WIDTH (4)              | 0x5382     |
|                             | 0x0004     |
| EDGE TYPE (1=solid)         | 0x5362     |
|                             | 0x0001     |
| INTERIOR STYLE (EMPTY)      | 0x52C2     |
|                             | 0x0004     |
| ELLIPSE (10,20 20,20 10,30) | 0x422C     |
|                             | 0x000A     |
|                             | 0x0014     |
|                             | 0x0014     |
|                             | 0x0014     |
|                             | 0x000A     |
|                             | 0x001E     |
| END PICTURE                 | 0x00A0     |
| END METAFILE                | 0x0040     |

6.1.4 <u>Polyline example</u>. The following CGM example represents a three-segment open RED polyline drawn with a six-pixel wide dashed line. The vertices are at (2,2), (4,6), (3,4), and (0,6) relative to VDC Extent origin.

TABLE CXXIII. Polyline example.

| CGM ELEMENT                                | HEX VALUES |
|--------------------------------------------|------------|
| BEGIN METAFILE ("POLYLINE")                | 0x0029     |
|                                            | 0x0850     |
|                                            | 0x4F4C     |
|                                            | 0x594C     |
|                                            | 0x494E     |
|                                            | 0x4500     |
| METAFILE VERSION (1)                       | 0x1022     |
|                                            | 0x0001     |
| METAFILE DESCRIPTION ("POLYLINE")          | 0x1049     |
|                                            | 0x0850     |
|                                            | 0x4F4C     |
|                                            | 0x594C     |
|                                            | 0x494E     |
|                                            | 0x4500     |
| METAFILE ELEMENT LIST                      | 0x1166     |
|                                            | 0x0001     |
|                                            | 0xFFFF     |
|                                            | 0x0001     |
| BEGIN PICTURE ("POLYLINE")                 | 0x0069     |
|                                            | 0x0850     |
|                                            | 0x4F4C     |
|                                            | 0x594C     |
|                                            | 0x494E     |
|                                            | 0x4500     |
| COLOR SELECTION MODE (DIRECT = 1)          | 0x2042     |
|                                            | 0x0001     |
| LINE WIDTH SPECIFICATION MODE (ABSOLUTE=0) | 0x2062     |
|                                            | 0x0000     |

TABLE CXXIII. Polyline example - Continued.

| CGM ELEMENT                | HEX VALUES |
|----------------------------|------------|
| VDC EXTENT                 | 0x20C8     |
|                            | 0x0000     |
|                            | 0x7FFF     |
|                            | 0x7FFF     |
|                            | 0x0000     |
| BEGIN PICTURE BODY         | 0x0080     |
| LINE COLOR (255,0,0)       | 0x5083     |
|                            | 0xFF00     |
|                            | 0x0000     |
| LINE TYPE (DASH=2)         | 0x5042     |
|                            | 0x0002     |
| LINE WIDTH (6)             | 0x5062     |
|                            | 0x0006     |
| POLYLINE (2,2 4,6 3,4 0,6) | 0x403F     |
|                            | 0x0010     |
|                            | 0x0002     |
|                            | 0x0002     |
|                            | 0x0004     |
|                            | 0x0006     |
|                            | 0x0003     |
|                            | 0x0004     |
|                            | 0x0000     |
|                            | 0x0006     |
| END PICTURE                | 0x00A0     |
| END METAFILE               | 0x0040     |

6.1.5 <u>Elliptical Arc example</u>. The following CGM example represents a blue elliptical arc that is four pixels wide. Figure 6 demonstrates pictorially the Elliptical Arc parameters and the relationship between conjugate diameter endpoints and start and stop vectors.

TABLE CXXIV. Arc example.

| CGM ELEMENT                        | HEX VALUES |
|------------------------------------|------------|
| BEGIN METAFILE ("ARC")             | 0x0024     |
| , ,                                | 0x0341     |
|                                    | 0x5243     |
| METAFILE VERSION (1)               | 0x1022     |
|                                    | 0x0001     |
| METAFILE DESCRIPTION ("ARC")       | 0x1048     |
|                                    | 0x0341     |
|                                    | 0x5243     |
| METAFILE ELEMENT LIST              | 0x1166     |
|                                    | 0x0001     |
|                                    | 0xFFFF     |
|                                    | 0x0001     |
| BEGIN PICTURE ("ARC")              | 0x0068     |
|                                    | 0x0341     |
|                                    | 0x5243     |
| COLOR SELECTION MODES (DIRECT = 1) | 0x2042     |
|                                    | 0x0001     |
| VDC EXTENT                         | 0x20C8     |
|                                    | 0x0000     |
|                                    | 0x7FFF     |
|                                    | 0x7FFF     |
|                                    | 0x0000     |
| BEGIN PICTURE BODY                 | 0x0080     |
| LINE WIDTH (4)                     | 0x5062     |
|                                    | 0x0006     |
| LINE COLOR (0,0,255)               | 0x5083     |
|                                    | 0x0000     |
|                                    | 0xFF00     |
| LINE TYPE (1=solid)                | 0x5042     |
|                                    | 0x0001     |
| ELLIPTICAL ARC                     | 0x4254     |
| (10,10 10,5 20,10, 15,5 5,5)       | 0x0014     |
|                                    | 0x000A     |
|                                    | 0x000A     |
|                                    | 0x000A     |
|                                    | 0x0005     |
|                                    | 0x0014     |
|                                    | 0x000A     |
|                                    | 0x000F     |
|                                    | 0x0005     |
|                                    | 0x0005     |
| END DICTUDE                        | 0x0005     |
| END PICTURE                        | 0x00A0     |
| END METAFILE                       | 0x0040     |



FIGURE 6. Eliptical Arc orientatopm.

6.1.6 Elliptical Arc example. The following CGM example represents an elliptical arc close that is red and filled with pie closure.

TABLE CXXV. Arc Closed example.

| CGM ELEMENT                       | HEX VALUES |
|-----------------------------------|------------|
| BEGIN METAFILE ("ARCCLOSE")       | 0x0024     |
| , ,                               | 0x0841     |
|                                   | 0x5243     |
|                                   | 0x434C     |
|                                   | 0x4F53     |
|                                   | 0x4500     |
| METAFILE VERSION (1)              | 0x1022     |
|                                   | 0x0001     |
| METAFILE DESCRIPTION ("ARC")      | 0x1048     |
|                                   | 0x0841     |
|                                   | 0x5243     |
|                                   | 0x434C     |
|                                   | 0x4F53     |
|                                   | 0x4500     |
| METAFILE ELEMENT LIST             | 0x1166     |
|                                   | 0x0001     |
|                                   | 0xFFFF     |
|                                   | 0x0001     |
| BEGIN PICTURE ("ARC")             | 0x0068     |
|                                   | 0x0841     |
|                                   | 0x5243     |
|                                   | 0x434C     |
|                                   | 0x4F53     |
|                                   | 0x4500     |
| COLOR SELECTION MODE (DIRECT = 1) | 0x2042     |
|                                   | 0x0001     |
| VDC EXTENT                        | 0x20C8     |
|                                   | 0x0000     |
|                                   | 0x7FFF     |
|                                   | 0x7FFF     |
|                                   | 0x0000     |
| BEGIN PICTURE BODY                | 0x0080     |

TABLE CXXV. Arc Closed example – Continued.

| CGM ELEMENT                  | HEX VALUES |
|------------------------------|------------|
| INTERIOR STYLE               | 0x5062     |
|                              | 0x0006     |
| FILL COLOR (255,0,0)         | 0x5083     |
|                              | 0x0000     |
|                              | 0xFF00     |
| EDGE VISIBILITY (on)         | 0x53C2     |
|                              | 0x0001     |
| ELLIPTICAL ARC CLOSE         | 0x4276     |
| (10,10 10,5 20,10, 15,5 5,5) | 0x000A     |
|                              | 0x000A     |
|                              | 0x000A     |
|                              | 0x0005     |
|                              | 0x0014     |
|                              | 0x000A     |
|                              | 0x000F     |
|                              | 0x0005     |
|                              | 0x0005     |
|                              | 0x0005     |
|                              | 0x0000     |
| END PICTURE                  | 0x00A0     |
| END METAFILE                 | 0x0040     |

6.2 <u>Color to gray scale conversion</u>. Full color may be specified for Attribute Elements dealing with color. Color items for receiving systems unable to support full color must be mapped to colors they are able to support.

For eight-bit gray scale systems:

For one bit black and white systems:

pixel value<sub>1</sub> = 1 (white), if pixel value<sub>8</sub> > 127  
0 (black), if pixel value<sub>8</sub> 
$$\leq$$
 127

6.3 Subject term (key word) listing.

Image
Picture
Secondary Imagery Dissemination System
SIDS
Symbol(s)

- 6.4 <u>Changes from previous issue</u>. Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extent of the changes. The following is a list of features that have been added to the NITFS CGM implementation as described in this document.
  - a. New Metafile Description

This revised standard defines a new metafile descriptor (NITF/CGM;ProfileED:2301-2/Source:producer;Date:YYYYMMDD) to align it with the international standard upon which this standard is based. For legacy purposes, the previous metafile (NITF/CGM-APP-2.0) may

continue to be used when the content of the metafile does not contain features which have been added or modified by this revised standard. NITF 2.0 formatted files will not use the new descriptor nor the modified/add features of this standard. NITF 2.1 formatted files should use the new descriptor and may exercise the new/modified features. However, the old descriptor may also appear in NITF 2.1 files for example when re-using existing CGM's produced under the previous version of this standard.

# b. Changed features

Edge Visibility of (0=off, 1=on) vice )1=on).

Edge Width of 1 through 100 vice 2, 4, 6.

Line Width of 1 through 100 vice 2, 4, 6.

Edge Types of Solid, Dashed, Dotted, Dot-dashed and Dot-dot-dashed vice Solid and Dashed.

Line Types of Solid, Dashed, Dotted, Dot-dashed and Dot-dot-dashed vice Solid and Dashed.

Font Sizes of 6 through 72 vice 10 through 38.

Interior Styles of Solid, Hatch and Empty vice Solid and Empty.

Transparency of (0=off, 1=on) vice (1=on).

Character Set Basic Latin (0020-007E), Latin-1 Supplement (00A0-00FF) and null 0x00 vice Basic Latin (0020-007E).

Default Elements may optionally be included vice not including.

# c. Additional features

**Auxiliary Color** 

Polygon sets

# CONCLUDING MATERIAL

Agent:

Preparing activity: Custodians: Army - CR Misc - MP

Navy - OM Air Force - 02

Other - NS Not applicable

Review activities:

(Project IPSC-0500) OASD - DO, IR, SE

Army – AC, AC1, AC2, CR5, PT,

TM1, TM3

Navy – AS, CG, CH, EC, MC, NC,

ND, TD

Air Force - 11, 13, 16, 17, 19,

29, 33, 90, 93 DLA - DH

Misc - DC3, DC4, DI, US

Civil agency coordinating activities:

USDA – AFS, APS

DOC - NIST

DOE

**EPA** 

GPO

HHS - NIH

DOI – BLM, GES, MIN

DOT – CGCT, OST

# STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

# **INSTRUCTIONS**

- 1. The preparing activity must complete blocks 1,2, 3, and 8. In block 1, both the document number and revision letter should be given.
- 2. The submitter of this form must complete blocks 4, 5, 6, and 7.
- 3. The preparing activity must provide a reply within 30 days from receipt of the form.

| NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements. |                                  |                                                                              |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------|---------------------|
| LDECOMMEND A QUANCE                                                                                                                                                                                                                                                                                              | 1. DOCUMENT NUMBER MIL-STD-2301A | 2. DOCUMENT DATE (YYMMDD) 980605                                             |                     |
| I RECOMMEND A CHANGE:  3. DOCUMENT TITLE                                                                                                                                                                                                                                                                         | WIL-01D-2301A                    | 300003                                                                       |                     |
| Computer Graphics Metafile (CGI Standard                                                                                                                                                                                                                                                                         | M) Implementation Sta            | ndard for the National Imagery T                                             | ransmission Format  |
| 4. NATURE OF CHANGE (Identify paragraph                                                                                                                                                                                                                                                                          | h number and include proposed    | d rewrite, if possible. Attach extra sheets as n                             | eeded.)             |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
| 5. REASON FOR RECOMMENDATION                                                                                                                                                                                                                                                                                     |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                  |                                  |                                                                              |                     |
| 6. SUBMITTER                                                                                                                                                                                                                                                                                                     |                                  | L ODGANIZATION                                                               |                     |
| a. NAME (Last, First, Middle Initial)                                                                                                                                                                                                                                                                            |                                  | b. ORGANIZATION                                                              |                     |
| c. ADDRESS (Include Zip Code)                                                                                                                                                                                                                                                                                    |                                  | d. TELEPHONE (Include Area Code)                                             | 7. DATE SUBMITTED   |
|                                                                                                                                                                                                                                                                                                                  |                                  | (1) Commercial                                                               | (YYMMDD)            |
|                                                                                                                                                                                                                                                                                                                  |                                  | (2) AUTOVON (If applicable)                                                  |                     |
| 8. PREPARING ACTIVITY                                                                                                                                                                                                                                                                                            |                                  |                                                                              |                     |
| National Imagery and Mapping Aga. NAME                                                                                                                                                                                                                                                                           | gency                            | b. TELEPHONE (Include Area Code)                                             |                     |
| Danny Rajan                                                                                                                                                                                                                                                                                                      |                                  | (1) Commercial (703) 262-4416                                                | (2) AUTOVON         |
| c. ADDRESS (Include Zip Code)                                                                                                                                                                                                                                                                                    |                                  | IE VOIL DO NOT DECEIVE A DE                                                  | DI V WITHIN 45 DAVE |
| MS P-24                                                                                                                                                                                                                                                                                                          |                                  | IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT:                       |                     |
| 12310 Sunrise Valley Drive                                                                                                                                                                                                                                                                                       |                                  | Defense Quality and Standardization Office                                   | oh VA 22041 2466    |
| Reston, VA 20191-3449                                                                                                                                                                                                                                                                                            |                                  | 5203 Leesburg Pike, Suite 1403, Falls Chur<br>Telephone (703) 756-2340 AUTOV | CN 289-2340         |
| DD Form 1426. OCT 89                                                                                                                                                                                                                                                                                             | Previous e                       | ditions are obsolete.                                                        | 198/290             |