Physics-informed neural networks

What is a PINN

NN constraints by physical laws
 Instead of fitting the input-output relationship empirically, the PINN learning is guided by physics.

Utilize the NN's representation power (a universal function approximator)

 Derivatives of u(x,t) w.r.t x and t can be calculated analytically because u(x,t) is exact!

Example of solving PDEs: Diffusion equation

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}$$
1st order derivative in time t
2nd order derivatives in space x

1 initial condition
2 boundary conditions

 \longrightarrow GOAL: solve for u(x,t)

Need to give boundary and initial conditions to properly find a unique surface u(x,t)

Example of solving PDEs: Diffusion equation

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}$$
 1st order derivative in time t 2nd order derivatives in space x

1 initial condition 2 boundary conditions

 \longrightarrow GOAL: solve for u(x,t)

Need to give boundary and initial conditions to properly find a unique surface u(x,t)

Example of solving PDEs: Diffusion equation

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}$$

Initial condition: u(t = 0, x) = f(x)Boundary conditions: u(t, x = -1) = u(t, x = 1) = 0

 \longrightarrow GOAL: solve for u(x,t)

Need to give boundary and initial conditions to properly find a unique surface u(x,t)

Solve it numerically

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}$$
 Initial condition: $u(t = 0, x) = f(x)$
Boundary conditions: $u(t, x = -1) = u(t, x = 1) = 0$

What do we need if we want to find u(x,t) with a NN?

1. Learn u empirically with data

NN can fit any smooth and continuous functions!

Give some sample data points and fit the surface u(x,t)

2. Learn u with physics equation + ICs + BCs

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}$$

Initial condition: u(t = 0, x) = f(x)

Boundary conditions: u(t, x = -1) = u(t, x = 1) = 0

Learn u empirically

Training data (ground truth):

input: t_i, x_i , i = 1 ... Noutput: u_i , i = 1 ... N

NN Prediction:

input: t_i, x_i , i = 1 ... Noutput: $u_{pred}(t_i, x_i)$, i = 1 ... N

What would be the loss function?

Data loss:

minimize
$$\frac{1}{N} \sum_{i}^{N} \left| u_i - u_{pred}(t_i, x_i) \right|^2$$

GOAL: Find NN that minimizes the difference between groud truth and prediction (the loss function)

Problems of empirical learning

- NN will need lots of u training data to well approximate u(x,t).
- The learnt u(x,t) cannot be generalized to new t and x domains!

Problems of empirical learning

- NN will need lots of u training data to well approximate u(x,t).
- The learnt u(x,t) cannot be generalized to new t and x domains!
- Can we use physical constraints to reduce the training data needed to make NN approximate u(x,t)?
- Can we use physical constraints to help NN generalize to new t and x domains?

Learn u with physics equation + ICs + BCs

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}$$
 (1) Initial condition: $u(t = 0, x) = f(x)$ (2) Boundary conditions: $u(t, x = -1) = u(t, x = 1) = 0$

$$\longrightarrow$$
 GOAL: solve for $u(x,t)$

Mathematically, the information we need to get u(x,t) is (1) ICs + (2) BCs + (3) physics equation.

Instead of traditional numerical solver, can we use a NN to predict u(x,t) using (1), (2), (3)?

Learn u with physics equation + ICs + BCs

Use NN to search for a surface that satisfies (1) ICs + (2) BCs + (3) physics equation.

- 1. Initial NN(x,t) = u(x,t). x,t are inputs, u is output
- 2. For a NN, all derivatives of u w.r.t x and t can be calculated analytically because u(x,t) is exact!
- 3. We can calculate $\frac{\partial u}{\partial t}$, $\frac{\partial^2 u}{\partial x^2}$
- 4. In the cost function, minimize $\left[\frac{\partial u}{\partial t} a \frac{\partial^2 u}{\partial x^2}\right]^2$

Turn the problem into an optimization problem!

Physics-informed NN

Training data (ground truth):

What would be the loss function?

minimize
$$\frac{1}{N} \sum_{i}^{N} |u_{0}^{i} - u_{pred}(t = 0, x_{i})|^{2}$$
 (1) IC minimize
$$\frac{1}{M} \sum_{j}^{M} |u_{lb}^{j} - u_{pred}(t_{j}, x = -1)|^{2}$$
 (2) BC
$$+ \frac{1}{M} \sum_{j}^{M} |u_{ub}^{j} - u_{pred}(t_{j}, x = 1)|^{2}$$

GOAL: Find NN that minimizes the loss function

Physics-informed NN

Q: How to incorporate physics equation in the loss function?

(3)
$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} \longrightarrow \frac{\partial u}{\partial t} - a \frac{\partial^2 u}{\partial x^2} = 0$$

Recall: NN(x,t) = u(x,t) is a smooth, analytical function $\frac{\partial u}{\partial t}$, $\frac{\partial^2 u}{\partial x^2}$ can be directly calculated at the collocation points.

What would be the loss function?

Equation loss:

minimize
$$\frac{1}{N_f} \sum_{k=1}^{N_f} \left| \frac{\partial u_{pred}^k}{\partial t} - a \frac{\partial^2 u_{pred}^k}{\partial x^2} \right|^2$$
 (3) Eqn

GOAL: Find NN that minimizes the loss function \rightarrow solving for u(x,t) satisfying (1) ICs + (2) BCs + (3) Eqn

Physics-informed NN

Given a partial differential equation of a general form:

$$u_t + \mathcal{N}[u] = 0, \ x \in \Omega, \ t \in [0, T]$$

where $\mathcal{N}[\cdot]$ is a nonlinear differential operator. Define equation residue f as

$$f := u_t + \mathcal{N}[u]$$

(MSE: mean squared error) Cost function:

$$MSE = MSE_u + MSE_f,$$

Data loss

$\frac{1}{N_u} \sum_{i=1}^{N_u} |u(t_u^i, x_u^i) - u^i|^2 \qquad \frac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2$ Data points

Equation loss

$$\frac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2$$
Collocation points

Q: Wouldn't $\frac{\partial u}{\partial x}$ be poorly approximated between the collocation points that are far apart?

Drawbacks:

- 1. Truncation error: Δx needs to be sufficiently small
- 2. If we calculate derivatives of u(x,t) w.r.t. e_1,e_2,e_3 e_n , it requires O(n) evaluations

Q: Wouldn't $\frac{\partial u}{\partial x}$ be poorly approximated between the collocation points that are far apart?

Automatic differentiation: differentiate NN output with respect to their input coordinates.

e.g.
$$NN(x) = u = \sigma(w_2\sigma(w_1x + b_1) + b_2),$$

$$\frac{\partial u}{\partial x} = u = \frac{\partial u}{\partial x}$$

Q: Wouldn't $\frac{\partial u}{\partial x}$ be poorly approximated between the collocation points that are far apart? Collocation **Data points** points (1)Χ (2)

PINN: searches for a curve that satisfies

$$\frac{\partial u(x_i)}{\partial t} - a \frac{\partial^2 u(x_i)}{\partial x^2} \approx 0 \text{ at the collocation pts}$$

$$\begin{array}{c} \text{Collocation points} \\ \text{Truth} \\ \text{solution} \\ x_i & x_{i+1} & x_{i+2} & x_{i+3} \end{array}$$

Automatic differentiation: differentiate NN output with respect to their input coordinates.

e.g. NN(x) =
$$u = \sigma(w_2\sigma(w_1x + b_1) + b_2)$$
,
$$\frac{\partial u}{\partial x} = \sigma'(z_2)w_2\sigma'(z_1)w_1$$

Comparison

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}$$
 (1) Initial condition: $u(t = 0, x) = f(x)$ (2) Boundary conditions: $u(t, x = -1) = u(t, x = 1) = 0$

Finite-difference methods: Starting with IC, calculate discretized spatial derivative, updating the solution with a discretized timestep.

PINN:

Search for a surface that satisfies physics constraints (equation + ICs + BCs).

Pause and Ponder

1. What would happen if we tune the weights between eqn and data loss?

$$MSE = \alpha MSE_u + \gamma MSE_f$$
Data loss Equation loss

2. What would happen to PINN if we use ReLU activation function?