(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-304333

(43)公開日 平成10年(1998)11月13日

Z

(51) Int.Cl.⁶

識別記号

H04N 7/167 H04L 9/14

FΙ

H04N 7/167

H04L 9/00 641

審査請求 未請求 請求項の数8 OL (全17頁)

(21)出願番号

特願平10-43111

(22)出顧日

平成10年(1998) 2月25日

(31) 優先権主張番号 特願平9-46529

(32)優先日

平 9 (1997) 2 月28日

(33)優先権主張国

日本 (JP)

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72) 発明者 館林 誠

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 原田 俊治

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 中島 司朗

デジタル著作物の著作権保護のための暗号技術利用プロトコルを複数から選択して使用する情報 (54) 【発明の名称】 機器

(57)【要約】

【課題】 認証機器、証明機器の組み合わせによって、 認証処理・証明処理が正当に行えないという不合理の発 生を防止する。

【解決手段】 認証機器及び証明機器は自機の機種情報 を互いに相手側に通知する。認証機器は、相手側から通 知された証明機器側の機種情報に対応する認証方法を決 定して、決定した認証方法に対応するチャレンジデータ を作成して相手側に送信する。証明機器は、相手側から 通知された認証機器側の機種情報に対応する証明方法を 決定して、相手側からチャレンジデータが送信されると 相手側から通知された認証機器側の機種情報に対応する 証明方法を決定する。そして決定した証明方法を用いて チャレンジデータに対して証明処理を行い、レスポンス データを作成して相手側に送信する。認証機器は相手側 からレスポンスデータが返信されて来ると、そのレスポ ンスデータの認証を行う。

BY EXPRESS MAIL NO. EL776051240US Attorney Docket No. KOIK-T0343

【特許請求の範囲】

【請求項1】 複数の情報機器からなり、複数の暗号技術利用プロトコルの利用が可能な通信システムにおいて各情報機器は、

自機の機種が複数の暗号技術利用プロトコルのうちどれ とどれを利用することができる機種であるかを示す機種 情報を通信すべき相手側情報機器に通知する通知手段 レ

相手側情報機器から機種情報が通知されると、通知された機種情報と自機の機種情報との組み合わせから情報機器間で用いるべき何れか一つの暗号技術利用プロトコルを決定する決定手段と、

前記自機の機種情報に対応する1以上のプロトコルに基づいて相手側機器と通信する1以上のプロトコル対応通信部を有し、その中の一つに決定された暗号技術利用プロトコルを用いて通信を行わせる通信手段とを備えることを特徴とする通信システム。

【請求項2】 前記通信システムにはn種(nは2以上の整数)の機種が存在し、

前記決定手段はn種の機種から任意の2種を選んだnC2個の機種情報の組み合わせと、各組み合わせにおいて用いるべき暗号技術利用プロトコルを示すプロトコル対応情報を対応づけたテーブルを記憶するテーブル記憶部と、n種の機種のうち、自機に合致するものの機種情報を記憶する機種情報記憶部と、

相手側機器から機種情報が通知されると、テーブル記憶部が記憶しているテーブルにおいて機種情報記憶部が記憶している機種情報と、相手側機器から通知された機種情報との組み合わせに対応づけられたプロトコル対応情報が示す暗号技術利用プロトコルを前記一のプロトコルと決定する決定部とを備え、

前記1以上のプロトコル対応通信部は、

決定部が決定した暗号技術利用プロトコルを用いて通信 を行うことを特徴とする請求項1記載の通信システム。

【請求項3】 前記暗号技術利用プロトコルは、相手側 認証プロトコルであり、

前記通信システムにおける何れか一つの情報機器に備えられたプロトコル対応通信部は決定部が決定した相手側認証プロトコルにより相手側機器に正当性を証明させ、その証明結果に基づいて相手側機器が正当な情報機器であるか否かを判定する認証部と、

正当な情報機器であると判定された場合のみ、保護対象となるデータを相手側情報機器に送信する送信部とを備えることを特徴とする請求項2記載の通信システム。

【請求項4】 前記テーブル記憶部は、

nC2個の機種情報の組み合わせにおいて用いるべき相手 側認証プロトコルを対応づけたテーブルを複数種別記憶 しており、

複数のテーブルのうち第1のテーブルには、

機種情報の組み合わせにおいて用いるべき相手側認証プ

ロトコルとして安全性が高い相手側認証プロトコルを特 定するプロトコル対応情報が記述され、

第2のテーブルには、

機種情報の組み合わせにおいて用いるべき相手側認証プロトコルとして処理速度が高い相手側認証プロトコルを 特定するプロトコル対応情報が記述されており、

前記情報機器に備えられた決定手段はこれから行うべき 通信における安全性及び処理速度の何れか一方を考慮し て、テーブル記憶部が記憶しているテーブルのうち一つ を選択すると共に、どのテーブルを選択したかを相手側 に通知する選択部を備え、

前記決定部は、

テーブル記憶部に記憶されているテーブルのうち、選択部が選択して、相手側に通知したテーブルにおける相手側認証プロトコルを決定することを特徴とする請求項3記載の通信システム。

【請求項5】 複数の相手側認証プロトコルには複数のチャレンジ・レスポンス型認証プロトコルがあり、複数のチャレンジ・レスポンス型認証プロトコルには公開鍵暗号利用のチャレンジ・レスポンス型認証プロトコルと、秘密鍵暗号利用のチャレンジ・レスポンス型認証プロトコルとがあり、

前記第1種別のテーブルには、

安全性が高いチャレンジ・レスポンス型認証プロトコル として公開鍵暗号利用のチャレンジ・レスポンス型認証 プロトコルを示すプロトコル対応情報が記述され、

前記第2種別のテーブルには、

処理速度が早いチャレンジ・レスポンス型認証プロトコルとして秘密鍵暗号利用のチャレンジ・レスポンス型認証プロトコルを示すプロトコル対応情報が記述されており、

前記1以上のプロトコル対応通信部には、

公開鍵暗号利用のチャレンジ・レスポンス型認証プロトコルに基づいて通信するものと、秘密鍵暗号利用のチャレンジ・レスポンス型認証プロトコルに基づいて通信するものが存在することを特徴とする請求項4記載の通信システム。

【請求項6】 公開鍵暗号利用のチャレンジ・レスポンス型認証プロトコルに基づいて通信するプロトコル対応通信部における認証部は、

乱数をチャレンジデータとして生成して相手側に送信す るチャレンジデータ作成部と、

相手側からレスポンスデータが返信されてくると、その レスポンスデータを所定の公開鍵データに基づいて復号 する復号部と、

復号部による復号結果に基づいて、相手側機器の正当性を判定する判定部とをを備え、

秘密鍵暗号利用のチャレンジ・レスポンス型認証プロトコルとに基づいて通信するプロトコル対応通信部における認証部は乱数をチャレンジデータとして生成して相手

側に送信するチャレンジデータ作成部と、

相手側からレスポンスデータが返信されてくると、その レスポンスデータを所定の秘密鍵データに基づいて復号 する復号部と、

復号部による復号結果に基づいて、相手側機器の正当性 を判定する判定部とを備えることを特徴とする請求項5 記載の通信システム。

【請求項7】 複数の相手側認証プロトコルには複数のチャレンジ・レスポンス型認証プロトコルがあり、複数の相手側認証プロトコルには公開鍵暗号利用のチャレンジ・レスポンス型認証プロトコルと、秘密鍵暗号利用のチャレンジ・レスポンス型認証プロトコルとがあるを備えることを特徴とする請求項3記載の通信システム。

【請求項8】 複数の相手側認証プロトコルには、 一方向認証方法時系列認証方式があることを特徴とする 請求項3記載の通信システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、通信リンクで結合された複数の機器においてディジタルデータを通信する際に、その通信リンク上のディジタルデータを保護するために暗号技術を利用した通信システムに関する。

[0002]

【従来の技術】映画等の映像著作物は、ディジタル化され、情報圧縮された状態で利用されることが主流になる傾向にある。デジタル化・圧縮化された映像著作物は、画質の劣化が殆どなく、視聴者は、常に最高の画質にて映像著作物を鑑賞することができる。またアナログ状態の映像著作物は、ダビングを何度も繰り返すとその画質が著しく劣化するのに対し、デジタル化された映像著作物は、ダビングを何度繰り返しても画質の劣化が生じない。

【0003】見方を変えると、デジタル化された映像著作物は不法なデッドコピーや不正改変がアナログ状態のそれと比べてすこぶる容易であり、著作権侵害行為に対して無防備な状態にさらされているといえる。デッドコピー及び不正な改変が行われ、再配布されると著作権者は多大な打撃を被る。それ故に、映像著作物の著作権者は、映像著作物のデジタル化に慎重な態度を示している。これらの背景から、映像著作物のデジタル化においては、映像著作物の著作権をその侵害行為から防御するかが大きな論点とされている。

【0004】ここでデッドコピーは、映像著作物を記録した記録媒体を再生する映像再生装置と、再生された映像著作物を入力してこれを記録媒体に記録する情報記録装置とを接続することによりなされる。また不正改変行為は、映像著作物を記録した記録媒体を再生する映像再生装置と、再生された映像著作物を入力してこれを一旦ハードディスクに蓄積し、後日これを編集する映像編集

装置とを接続することによりなされる。

【0005】これらの侵害行為を抑止するには、映像著作物を再生する側の映像再生装置が、情報記録装置及びディジタル情報複製装置を始めとする不正な機器への流出するのを防ぐしかない。不正機器への流出を防ぐには、映像再生装置が通信リンクに接続された際、通信リンクを介して映像再生装置と接続された相手側機器の正当性を確認すればよい。

【0006】相手側の正当性を確認する技術の最も代表的なものは相手認証技術を用いる技術である。これは基本的にはデータを送出する機器が受信する機器の正当性を認証し、正当な受信機器であることが確認できたときのみにデータを送信することによりデータが不正な機器に受信されることを避ける。この場合の受信機器のように自らの正当性を証明する側を証明機器と呼び、またこの場合の送信機器のように相手の正当性を確認する側を認証機器と呼ぶ。

【0007】前述の光ディスク記録再生に関わる機器のような場合、光ディスク関連機器の間で著作権保護のために一定の基準が設けられる。この時、ある機器はこの基準を満たすものであるかどうかが問題となる。従って「正当性を認証する」とは「所定の規格に準拠することかどうかを判別する」という意味となる。従来の技術の一例として国際標準規格ISO/IEC9798-2に記載される暗号技術を用いた一方向認証方法がある。この認証方法に明機器が証明鍵と呼ばれる秘密のデータを持つことを、その鍵自身を知らせることなく認証機器に対して証明することを基本としている。そのためにまず認証機器があるデータを選びこれを証明機器に対して投げかける。この行為をチャレンジと呼び、上記規格において投げかけられるデータは64bitと規定されている(このデータをチャレンジデータと呼ぶ。)。

【0008】一方、証明機器は暗号変換アルゴリズムと 前記証明鍵とを保有しており、両者を用いて前記チャレ ンジデータを暗号化する。この暗号化は、たとえ暗号値 及びチャレンジデータの両者を用いても、前記証明鍵が 導出できないことが保証されている。このように暗号化 されたデータをレスポンスとして認証機器に対して返 す。このレスポンスを受信した認証機器は前記暗号変換 に対応する復号変換アルゴリズムと検証鍵を有してい る。そして、レスポンスデータを前記検証鍵を用いて自 己の持つ復号変換アルゴリズムによって復号する。復号 後、復号結果をチャレンジデータと比較し、前記復号結 果がチャレンジデータと一致すれば受信側機器は相手側 が正規の証明鍵を持つものと判断し、証明機器の正当性 を認証する。一方向認証は一方の側がその正当性を他方 に証明した時点で終了するが、上記手順を認証機器と証 明機器を入れ替えて再度行うことにより、更に相手側の 正当性を確認してもよい(これは双方向認証と呼ばれ る。)。

【0009】認証技術において用いられる暗号変換には 秘密鍵暗号変換と公開鍵暗号変換がある。レスボンスデータ作成と、レスポンスデータの検証のために鍵を用いるものとする。そしてレスポンスデータの作成のために 用いる鍵を証明鍵と呼び、レスポンスデータの検証のために用いる鍵を検証鍵と呼ぶものとする。この場合秘密 鍵暗号変換では、上記の証明鍵と検証鍵とは共通のもので良い。そのため、秘密鍵暗号変換を用いる場合検証 鍵、証明鍵の何れか一方の漏洩は許されない。

【0010】公開鍵暗号変換は、上記証明鍵と検証鍵は 異なるものを用いる。このため証明鍵は秘密にしておか ねばならないが、検証鍵は秘密にする必要がない(秘密 にしておかねばならない鍵を秘密鍵といい、秘密にする 必要がない鍵を公開鍵という。)。秘密鍵暗号変換をコ ンピュータのソフトウェアによって実現する場合、処理 時間が短くできるという利点がある。またハードウェア で実現する場合にはハードウェア量が少なくなるという 利点がある。一方、証明鍵のみならず検証鍵も秘密でな ければならないというのは欠点でもある。いま仮に証明 機器の証明鍵を別のものに取り替えるものとしよう。こ のとき認証機器にある検証鍵も同時に取り替える必要が ある。ところが証明機器の変更された証明鍵に対応する 検証鍵を通信リンクを介して伝送することはできない。 なぜならば通信リンク上のデータは不正にコピーされる という前提に立っており、その秘密性は守られないから である。従って証明機器の証明鍵を取り替えることは困 難となる。つまり、全システムが同じ種類の秘密(証明 鍵または検証鍵)を持つことになる。従ってもし万一こ の秘密が破られると全システムの秘密が破られることに なる。

【0011】一方、公開鍵暗号変換には通常大量の計算 量が必要となり、一般のコンピュータのソフトウェアで 実現するためには処理時間がかかることはよく知られて いる。またこれを専用のハードウェアで実現する場合は 必要となるハードウェア量が多くなる。これらのことは 公開鍵暗号変換の短所である。公開鍵暗号変換を用いた チャレンジレスポンス型の認証方法を用いる場合、レス ポンスデータの検証を行う検証鍵は秘密にする必要はな く、これが公開されていたとしても認証方法の安全性が 保たれるという長所がある。仮に証明機器の証明鍵を取 り替えるものとした場合、変更された証明鍵に対応する 検証鍵は証明機器から通信リンクを介して認証機器に送 ればよい。このように公開鍵暗号変換を用いたチャレン ジレスポンス型の認証方法は秘密鍵暗号利用の方法に比 べ証明鍵を変更できる柔軟性に優れている(以上の理由 により、秘密鍵、公開鍵を証明及び検証に用いた認証方 法は、秘密鍵のみを証明及び検証に用いた認証方法より も安全性が高いものとする。)。

【0012】また同じ公開鍵暗号利用の認証方法にして も、認証方法の安全性の高さと計算機を用いて実現する 場合の処理時間あるいは専用ハードウェアで実現する場合のハードウェア規模とは背反の関係にあり、さまざまな選択の可能性がある。このように公開鍵暗号利用、秘密鍵暗号利用を始め、認証方法、証明方法が複数登場しており、その何れを選択すれば良いかという選択の幅が広がっているので、映像記録装置、映像再生装置等、映像著作物関連製品の新製品を開発する際、その新製品のハードウェア規模、処理速度にとって最適な認証方法、証明方法をその新製品に実装させることができる。

[0013]

【発明が解決しようとする課題】ところで新製品を開発する際、どの認証方法、証明方法を選択するかという自由度が増していることは、新製品をこれから開発しようとするメーカーにとって歓迎すべきことであるが、認証・証明しようとする機器の組み合わせによっては、その認証・証明が正当に行えないという不合理が発生してしまう。

【0014】例えば公開鍵暗号利用の認証方法を有する認証機器と、秘密鍵暗号利用の認証方法を有する証明機器との組み合わせで用いる場合、これらの2つの機器は、相手側の正当性を判断できない。また、認証機器及び証明機器が互いに秘密鍵暗号利用の認証方法を行う場合でも、それを実現するソフトウェアやハードウェアのバージョン等が異なる場合、これらの2つの機器は、相手側の正当性を判断できない。

【0015】このような事態を避けるには、多くのバージョンのチャレンジ・レスポンス型認証プロトコルを実行できる実行能力を両機器に与えればよい。例えば認証機器側に公開鍵暗号利用の第1の認証方法を実現するハードウェアと秘密鍵暗号利用の第2認証方法を実現するハードウェアとを設けておくものとする。このように設けると、証明機器側が秘密鍵暗号利用の第2証明方法のみを具備している場合でも、これらの両機器は認証、証明を行えることになる。

【0016】しかし認証機器及び証明機器が互いに複数の認証方法及び複数の証明方法を実行できる実行能力を有している場合、両機器が安全性の低い認証処理、証明処理を自動的に行ってしまい、認証機器及び証明機器が互いに安全性の高い認証方法、証明方法のアルゴリズムを有していても、それらが活用されずに終わってしまう場合がある。例えば証明機器が公開鍵暗号利用の第1の証明方法と秘密鍵暗号利用の第2証明方法とを有する場合、認証機器及び証明機器が安全性の低い、秘密鍵暗号利用の第2認証、証明方法で認証処理をおこなってしまい、安全性が高い公開鍵暗号利用の認証方法、証明方法が生かされない場合がある。

【0017】以上、相手側認証技術を対象に絞って説明してきたが、この問題点は相手側認証技術に限って発生するものではなく、保護すべき映像著作物を複数の機器間において送受信する必要があり、その著作権や秘密性

を保護するための暗号技術利用プロトコルが複数利用できる場合、送信側-受信側機器が用いている暗号技術利用プロトコルのバージョンが違っているため送信側において暗号化された映像著作物が正当に復号されなかったり、受信側が備えていない暗号技術利用プロトコルで送信側が映像著作物を暗号化して送信しようとしてしまうことがある。

【0018】つまり、暗号技術利用プロトコルが複数存在することが招く「通信不能状態」は相手側認証技術に限って発生するものではなく、複数の暗号技術利用プロトコルの利用が可能な通信システムでは普遍的に発生するものといえる。本発明の目的は、複数の暗号技術利用プロトコルの利用が可能な通信システムにおいて、個々のプロトコルを有効に利用することができる通信システムを提供することである。

[0019]

【課題を解決するための手段】上記目的は、複数の情報機器からなり、複数の暗号技術利用プロトコルの利用が可能な通信システムにおいて、各情報機器が自機の機種が複数の暗号技術利用プロトコルのうちどれとどれを利用することができる機種であるかを示す機種情報を通信すべき相手側情報機器に通知する通知手段と、相手側情報機器から機種情報との組み合わせから情報機器間で用いるべき何れか一つの暗号技術利用プロトコルを決定する決定手段と、前記自機の機種情報に対応する1以上のプロトコルに基づいて相手側機器と通信する1以上のプロトコル対応通信部を有し、その中から決定された暗号技術利用プロトコルを用いて通信を行う通信手段とを備えることにより達成される。

[0020]

【発明の実施の形態】以降、情報機器の実施形態として、2機の情報機器をそれぞれ認証機器-証明機器とし、これら認証機器-証明機器から構成された相手側認証システムについて説明する。本システムにおける認証機器の一例として、デジタル衛星放送にて送信された映像著作物を受信する受信装置を用いる。証明機器の一例として、映像著作物を映像記録用の光ディスクであるDVD-RAMに記録するビデオディスクレコーダを用いる。これらの機器を接続する通信リンクの一例として、所定のバス規格に準拠しており、MPEG規格に規定されたストリームデータを高速に伝送することができるAVバス107を用いる。不正機器として映像編集機能を具備したパーソナルコンピュータを考える。

【0021】図1は、相手側認証システムにおける認証機器-証明機器間の接続態様を示す図である。認証機器101と証明機器104とをAVバス107で接続することは正当行為であるが、認証機器101とパーソナルコンピュータ108とを接続することは著作権を侵害する恐れが有る行為(不正行為とよぶ)であるものとする。

何故なら、パーソナルコンピュータ108に映像編集を 実現するソフトウェアがインストールされている場合、 デジタル衛星放送にて送信された映像著作物がパーソナ ルコンピュータ108へと流出すれば、このソフトウェ アの映像編集機能が悪用されて映像著作物が不正に改変 されてしまうからである。

【0022】図2は、複数の認証機器と、複数の証明機器との間の任意の接続態様を示す図である。認証機器101から認証機器103までの何れかと、証明機器104から証明機器106までの何れかとをAVバス107と接続する行為は正当行為であるが、図2においてはパーソナルコンピュータ108と接続される可能性があることは否めない。

【0023】パーソナルコンピュータ108への映像著作物の流出を避けるため、認証機器101~認証機器103はAVバス107により何等かの機器に接続された際、その相手側の正当性を認証するものとする。認証機器101は、メーカーA社が開発した受信装置の上位機種であり、多くの公開鍵暗号利用アルゴリズム、秘密鍵暗号利用アルゴリズムの実現が可能であるものとする。公開鍵暗号利用認証アルゴリズムPublic_ver.2.6、Public_ver.1.3、秘密鍵暗号利用認証アルゴリズムSecret_ver.2.0、Secret_ver.1.0による相手側認証が可能であり、多くのタイプの映像記録装置を認証できるものとする。これらの公開鍵暗号利用認証アルゴリズム、秘密鍵暗号利用認証アルゴリズム、秘密鍵暗号利用認証アルゴリズムのうちアルゴリズム、秘密鍵暗号利用認証アルゴリズムのうちアルゴリズムPublic_ver.2.6はその実現に複雑なハードウェアを要するもののその安全性が最も高いものとする。

【0024】認証機器102は、メーカーA社が開発した受信装置の普及機種であり、認証機器101程ではないが、相当数の公開鍵暗号利用アルゴリズム、秘密鍵暗号利用アルゴリズムの実現が可能であるものとする。公開鍵暗号利用アルゴリズムPublic_ver.1.3、秘密鍵暗号利用アルゴリズムSecret_ver.2.0、Secret_ver.1.3、Secret_ver.1.0による相手側認証が可能であるが、安全性が最も高い公開鍵暗号利用アルゴリズムPublic_ver.2.6での認証は不可能である。

【0025】認証機器103は、メーカーA社が開発した受信装置の低価格機種である。ハードウェアの簡略化を追究したため、多くの証明機器との互換性を度外視しているという側面がある。秘密鍵暗号利用アルゴリズムSecret_ver.2.0, Secret_ver.1.3が可能であり、安全性が高い公開鍵暗号利用アルゴリズムはサポートされていない。

【0026】証明機器104は、メーカーA社が開発した映像記録装置の上位機種であり、多くの公開鍵暗号利用アルゴリズム、秘密鍵暗号利用アルゴリズムの実現が可能である。公開鍵暗号利用アルゴリズムPublic_ver. 2.6、Public_ver.1.3、秘密鍵暗号利用アルゴリズムSecret_ver.2.0、Secret_ver.1.3による相手側証明が可能

であり、多くのタイプの受信装置に対して自機の正当性 を証明できる。

【0027】証明機器105は、メーカーA社が開発し た映像記録装置の普及機種であり、公開鍵暗号利用アル ゴリズム、秘密鍵暗号利用アルゴリズムをそれぞれ一バ ージョンずつサポートしているものとする。公開鍵暗号 利用アルゴリズムPublic_ver.1.3による相手側証明と、 秘密鍵暗号利用アルゴリズムSecret ver.2.0による相手 側証明のみが可能であり、安全性が最も高い公開鍵暗号 利用アルゴリズムPublic_ver.2.6での相手側証明は不可 能である。相手側認証プロトコルの選択の余地は狭い。 【0028】証明機器106は、メーカーA社が開発し た映像記録装置の携帯型機種である。ハードウェアの簡 略化を追究したため、Secret_ver.1.3による相手側証明 のみが可能であり、相手側証明に関しては貧弱という感 がある。以上のように認証機器101~証明機器106 のチャレンジ・レスポンス型認証プロトコルの実行能力 は機器間で違いがある。図2に示した認証機器101~ 証明機器106にはチャレンジ・レスポンス型認証プロ トコルの実行能力の差違を示す機種コードが付されてい る。機種コードとは、自機の機種が複数の暗号技術利用 プロトコルのうちどれとどれを実行することができる機 種であるかを示すコードである。

【0029】図3(a)は、図2に示す相手側認証システムにおいてどのような機種コードが存在するかを示す図である。図3(a)において相手側認証システム内の機種には、公開鍵暗号利用アルゴリズムPublic_ver.2.6、Public_ver.1.3、秘密鍵暗号利用アルゴリズムSecret_ver.2.0、Secret_ver.1.3、Secret_ver.1.0の実行能力を有するもの(タイプ1)、公開鍵暗号利用アルゴリズムPublic_ver.1.3、秘密鍵暗号利用アルゴリズムSecret_ver.2.0、Secret_ver.1.3、Secret_ver.1.0の実行能力を有するもの(タイプ2)、秘密鍵暗号利用アルゴリズムSecret_ver.2.0、Secret_ver.1.3の実行能力を有するもの(タイプ3)の三種が存在する。

【0030】図3(b)は、図2に示す認証機器101~証明機器106に、図3(a)に示す機種コードのうち、どの機種コードが付されているかを示す。次にこれらの公開鍵暗号利用アルゴリズム、秘密鍵暗号利用アルゴリズムがどのような内容であるかを図4(a)、図4(b)、図4(c)を参照しながら説明する。

【0031】図4(a)は Secret_Ver1.0,1.3がどのような手順であるかを示す。Secret_Ver1.0では、認証機器は乱数rを発生し、これを検証鍵k1を用いて暗号化して得られたE(k1,r)をチャレンジデータChaとして証明機器に送信する。一方、証明機器は証明鍵k1を保有しており、前記チャレンジデータを復号して得られたD(k1,Cha)をレスポンスデータResとして認証機器に対して返す。このレスポンスデータを受信した認証機器はレスポンスデータResをチャレンジデータChaと比較し、前記チ

ャレンジデータChaがレスポンスデータResと一致すれば 送信側機器は相手側が正規の証明鍵を持つものと判断 し、証明機器の正当性を認証する。

【0032】図4 (b) はSecret_Ver2.0がどのような 手順であるかを示す。Secret_Ver2.0では、認証機器は 乱数rを発生し、これをチャレンジデータChaとして証明 機器に送信する。一方、証明機器は証明鍵klを保有して おり、前記チャレンジデータを暗号化して得られたE(k 1,Cha)をレスポンスデータResとして認証機器に対して 返す。このレスポンスデータResを受信した認証機器は レスポンスデータResを復号して得られたD(k1,Res)をチ ャレンジデータChaと比較し、復号結果がチャレンジデ ータChaと一致すれば受信側機器は相手側が正規の証明 鍵を持つものと判断し、証明機器の正当性を認証する。 【0033】図4(c)に公開鍵暗号利用アルゴリズム Public_ver.1.3、公開鍵暗号利用アルゴリズムPublic_v er.2.6がどのような手順であるかを示す。Public_Ver1. 3、2.6では、認証機器は乱数rを発生し、これをチャレ ンジデータChaとして証明機器に送信する。一方、証明 機器は秘密鍵k1を保有しており、前記チャレンジデータ を暗号化して得られたE(k1,Cha)をレスポンスデータRes として認証機器に対して返す。このレスポンスデータRe sを受信した認証機器はレスポンスデータResを公開鍵k2 を用いて復号する。この復号結果D(k2,Res)とチャレン ジデータChaとを比較し、前記復号結果がチャレンジデ ータと一致すれば受信側機器は相手側が正規の証明鍵を 持つものと判断し、証明機器の正当性を認証する。

【0034】図5は認証機器101及び証明機器104の内部構成を示す図である。本図を参照しながら先ず認証機器101の構成について説明する。認証機器101は図5に示すように認証機器タイプ情報格納部4と、認証モジュール群8と、認証側AVインターフェィス11と、認証方式選択部12と、認証方式テーブル保持部13と、認証側側御部14と、CSチューナー41と、TSデコーダー42と、AVデコーダー43とからなる。

【0035】認証機器タイプ情報格納部 4 は、機種コードを格納した不揮発性メモリである。認証機器 101 は、公開鍵暗号利用アルゴリズムPublic_ver.2.6、Public_ver.1.3、秘密鍵暗号利用アルゴリズムSecret_ver.2.0、Secret_ver.1.3、Secret_ver.1.0の実行が可能なので、図3(b)を参照すれば認証機器 101はタイプ1に属することがわかる。よって認証機器 101の認証機器タイプ情報格納部 4 にはタイプ1が格納されている。

【0036】認証モジュール群8は、図3(a)に示した相手側認証を実現する認証モジュールPublic_ver.2.6、Public_ver.1.3、Secret_ver.2.0、Secret_ver.1.3、Secret_ver.1.3は、公開の検証鍵k2を記憶するフラッシュメモリと、公開鍵検証アルゴリズムを実現す

るゲートロジックを有するハードウェアとからなる。 尚、フラッシュメモリに記憶されているため、認証モジュールPublic_ver.2.6、Public_ver.1.3が記憶する公開 の検証鍵k2は後日書き換えることができる。

【0037】認証モジュールSecret_ver.2.0、Secret_ver.1.3、Secret_ver.1.0は、秘密の検証鍵klを記憶した不揮発性メモリと、秘密鍵暗号の復号アルゴリズムを実現するゲートロジックを有するハードウェアとからなる。認証方式テーブル保持部13は、認証機器側の機種情報及び証明機器側の機種情報の組み合わせに対応づけて、その組み合わせにおいて用いることができるチャレンジ・レスボンス型認証プロトコルを記述したテーブルを複数保持する。この複数のテーブルには、安全性優先テーブル、スピード優先テーブルといった種別が存在する。

【0038】図6は、認証方式テーブル保持部13が保持している安全性優先テーブルの一例を表形式で表した図である。本図を参照すれば認証機器種『タイプ1』,証明機器種『タイプ4』の組み合わせには、『公開鍵暗号利用アルゴリズムPublic_ver.2.6』が対応づけられ、認証機器種『タイプ1』,証明機器種『タイプ5』の組み合わせには、『公開鍵暗号利用アルゴリズムPublic_ver.1.3』が対応づけられていることがわかる。認証機器101が複数チャレンジ・レスポンス型認証プロトコルについての認証方式アルゴリズムを有していることは既に述べたが、これらのうち安全性優先テーブルは、複数のチャレンジ・レスポンス型認証プロトコルにおいて安全性が高いものを記述している。

【0039】図7は、認証方式テーブル保持部13が保持しているスピード優先テーブルの一例を表形式で表現した図である。本図を参照すれば認証機器種『タイプ1』,証明機器種『タイプ1』,証明機器種『タイプ5』の組み合わせには『秘密鍵暗号利用アルゴリズムSecret_ver.2.0』が対応づけられ、認証機器種『タイプ1』,証明機器種『タイプ5』の組み合わせにも『秘密鍵暗号利用アルゴリズムSecret_ver.2.0』が対応づけられている。これは、スピード優先テーブルには、複数の相手側認証プロトコルにおいて処理速度が最も早いものが記述されていることを意味する。

【0040】認証機器102~証明機器106は、認証機器101における方式テーブル13と同一のものを備えている(証明機器104において認証機器101と同一の方式テーブル13が設けられているのは、全ての認証機器、証明機器において方式テーブル13が設けられていることを例示している。)。認証機器101~証明機器106における複数のテーブルは、認証機器101~証明機器106の方式テーブル13において共通のシリアルナンバーによって管理されている。

【0041】複数の認証機器、複数の証明機器において 複数テーブルを共通のシリアルナンバーにて管理してい るのは、これから相手側認証を行う際、どのテーブルを 用いるかをその相手側に知らせるためである。尚本実施 形態において、あるパージョンにおけるチャレンジ・レ スポンス型認証プロトコルの実行能力を有するか否か は、そのパージョンにおける認証モジュールを実装して いるか否かにより一義的に定まるものとしている。それ ぞれの認証モジュールが他のパージョンにおけるチャレ ンジ・レスポンス型認証プロトコルの実行能力を有する 場合は、自機が実装している認証モジュールが実行対象 としている全パージョンのチャレンジ・レスポンス型認 証プロトコルを考慮して、認証方式テーブル13を記載 すべきである。

【0042】認証方式選択部12は、AVバス107を通じて認証側AVインターフェイス11が証明機器104側の機種タイプ情報を受信すると、その受信した証明機器タイプと、認証機器タイプ情報格納部4に格納されている認証機器タイプとからなる組み合わせを用いて認証方式テーブル保持部13が保持している複数のテーブルうち方式テーブルナンバーにより特定されるものから認証方式アルゴリズムを検索する。当該組み合わせに合致する認証アルゴリズムが存在すれば、その名称を読み出する共に、認証モジュール群8内の複数の認証方式モジュールのうち、読み出された認証アルゴリズムに合致するものを起動する。

【0043】ここで認証機器101が証明機器側からタイプ4の機種情報を受信したとすると、認証機器101はタイプ1なので、タイプ1ータイプ4の組み合わせより、安全性優先テーブルから公開鍵暗号利用アルゴリズムPublic_ver.2.6での相手側認証が最適であるとの判断を行う。また認証機器101が証明機器側からタイプ5の機種情報を受信したとすると、タイプ1ータイプ5の組み合わせより、安全性優先テーブルから公開鍵暗号利用アルゴリズムPublic_ver.1.3での相手側認証が最適であるとの判断を行う。

【0044】CSチューナー41は、デジタル衛星放送の放送局が送信した搬送波をCSアンテナが受信するとこれを復調し、MPEGストリーム規格に規定されたトランスポートパケットを得てTSデコーダ42に出力する。TSデコーダ42は、CSチューナー41が出力したトランスポートパケットをMPEG規格に規定されたエレメンタリィストリームに変換する。

【0045】AVデコーダ43は、TSデコーダー42が出力したエレメンタリィストリームをAV信号に復号する。認証側AVインターフェィス11は、認証モジュール群8における認証方式モジュールの何れかを用いて相手側認証を行った結果、相手側が正当な機器と判定された場合のみ、TSデコーダー42が出力したMPEGストリームをAVバス107を介して証明機器104に送信する。不正な機器の恐れがある場合は、TSデコーダー42が出力したMPEGストリームをAVバス107に送信しない。

【0046】<証明機器104>次に証明機器104の構成について説明する。証明機器104は、方式テーブル13と、証明機器タイプ情報格納部24と、証明モジュール群28と、証明側AVインターフェィス31と、証明方式選択部32と、証明側制御部33と、AVデコーダ44と、信号処理部45と、ドライブ機構46とからなる。

【0047】証明機器タイプ情報格納部24は、本証明 機器におけるチャレンジ・レスポンス型認証プロトコル の実行形態がどのタイプに属するかを示す情報が格納さ れている。図3(a)においてチャレンジ・レスポンス 型認証プロトコルの実行形態には、証明機器104のよ うに公開鍵暗号利用アルゴリズムPublic_ver.2.6、Publ ic_ver.1.3、秘密鍵暗号利用アルゴリズムSecret_ver. 1.3、Secret_ver.2.0を実装しているもの(タイプ4)、 証明機器105のように公開鍵暗号利用アルゴリズムPu blic ver.1.3、秘密鍵暗号利用アルゴリズムSecret_ve r.2.0を実装しているもの(タイプ5)、証明機器106 のように秘密鍵暗号利用アルゴリズムSecret_ver.1.3を 実装しているもの (タイプ6) の三種が存在し、証明機 器104はタイプ4の形態にて証明方式を実装している ので、証明機器104の証明機器タイプ情報格納部24 にはタイプ4が格納されている。

【0048】証明モジュール群28は、図3(a)に示した相手側証明を実現する証明モジュールPublic_ver. 2.6、Public_ver.1.3、Secret_ver.2.0、Secret_ver.1.3からなる。証明モジュールPublic_ver.2.6、Public_ver.1.3は、秘密の証明鍵k1を有する記憶素子と、前記公開鍵署名作成アルゴリズムを実現するゲートロジックを有するハードウェアとからなる。

【0049】証明モジュールSecret_ver.2.0、Secret_ver.1.3は、秘密の証明鍵k1を有する記憶素子と、前記秘密鍵暗号の暗号アルゴリズムを実現するゲートロジックを有するハードウェアとからなる。証明方式選択部32は、AVバス107を介して受信した認証機器タイプと、自機が証明機器タイプ情報格納部24にて保持している証明機器タイプとから図3(a)に示す証明方式選択テーブルに記載された一つの証明方式アルゴリズムを特定し、証明モジュール群28においてアルゴリズムに対応する証明方式モジュールを起動する。

【0050】ここで認証機器側からタイプ1の機種情報を受信したとすると、証明機器104はタイプ4なので、タイプ4ータイプ1の組み合わせより、安全性優先テーブルから公開鍵暗号利用アルゴリズムPublic_ver.2.6にて相手側証明方法アルゴリズムを行うべきとの判断を行う。また認証機器側からタイプ2の機種情報を受信したとすると、証明機器104はタイプ4なので、タイプ4ータイプ2の組み合わせより、安全性優先テーブルから秘密鍵暗号利用アルゴリズムSecret_ver.2.0での相手側証明方法アルゴリズムを行うべきとの判断を行う。

【0051】証明側AVインターフェィス31は、証明モジュール群28による相手側認証により自機が正当な証明機器であることが認証機器に認められ、AVバス107を介して認証機器からMPEGストリームが転送されてくると、MPEGストリームを受信して信号処理部45に出力する。

(a) Vデコーダ部44は、外部から入力されてくるビデオ信号やオーディオ信号に対して所定の処理を施し、MPEGストリームに変換して信号処理部45に出力する。【0052】信号処理部45は、AVデコーダー44から出力されたMPEGストリーム或は証明側AVインターフェィス31が出力したMPEGストリームに増幅、波形整形、二値化、復調、エラー訂正などの処理を施して、ドライブ機構46に出力する。ドライブ機構46は、DVD-RAMをセットする基台と、光ピックアップとを備え、光ピームの強度を増加させて、DVD-RAM内部の情報層表面のランドを相変化させることにより信号処理部45が出力したMPEGストリームをDVD-RAMに書き込む。

【0053】認証側制御部14及び証明側制御部33は、(c)PUと、認証機器101-証明機器104間でチャレンジ・レスポンス型認証プロトコル行う制御プログラムとからなる。図8、図9は、認証側制御部14及び証明側制御部33が有する制御プログラムの処理内容を示すフローチャートである。本図はまたフローチャートの各ステップにおいてどのような通信シーケンスが、認証側AVインターフェィス31間で行われるかをも規定している。

【0054】認証機器が起動されると、ステップS25において認証側制御部14は方式テーブルナンバーNxを証明機器104に送信する。ここで方式テーブルナンバーNxは、方式テーブル13が保持している複数テーブルのうち、安全性優先テーブルを指示しているものとする。送信後、ステップS1において認証方式選択部12に認証機器タイプTxの読み取りを行わせ、ステップS2においてAVバス107を介して認証開始信号及び認証機器タイプTxを送出をするよう認証側AVインターフェィス11を制御する。これにより認証機器タイプ情報格納部4に格納されている認証機器タイプ1が送出される。認証側AVインターフェィス11が認証機器タイプTxを送出すると、ステップS3において認証側制御部14は証明機器タイプTyの受信待ち状態となる。

【0055】一方証明機器が起動されると、ステップS26において方式テーブルナンバーNxの受信待ちとなり、方式テーブルナンバーNxを受信すると、証明側制御部33はステップS4において証明方式選択部32に証明機器タイプTyの読み取りを行わせ、ステップS5において認証開始信号及び認証機器タイプTxの受信待ち状態となる。ステップS5の受信待ち状態において、認証側AVインターフェィス11から認証機器タイプTxが送信されると、ステップS6に移行して証明機器タイプTyを認

証機器側に送出する。これにより証明機器タイプ情報格納部24に格納されている証明機器タイプ4が証明側AVインターフェィス31及びAVバス107を介して認証機器101に対して送出される。

【0056】送信後、ステップS7において証明方式選択部32はテーブル方式ナンバーHxに対応づけられた安全性優先テーブルから受信した認証機器タイプTxと証明機器タイプTyとに対応づけられた証明方式Hyを選択し、ステップS13において証明方式Hyに相当する証明方式モジュールHyが公開鍵暗号利用アルゴリズムPublic_ver.2.6、公開鍵暗号利用アルゴリズムPublic_ver.1.3ならステップS17がYesとなりステップS8に移行して、チャレンジデータchaの受信待ちとなる。

【0057】証明側AVインターフェイス31が送信した 証明機器タイプTyを認証側AVインターフェィス11が受 信すると、ステップS3において証明機器タイプTyの受 信待ちを行っていた認証側制御部14は、この情報を認 証方式選択部12に対して送出してステップS9に移行 する。ステップS9において認証方式選択部12は、ス テップS25において送信した方式テーブルナンバーNx に対応する安全性優先テーブルから、認証機器タイプTx と受信した証明機器タイプTyとに対応づけられた認証方 式Hxを選択する。認証機器タイプ及び証明機器タイプが それぞれタイプ1、タイプ4であるため認証方式選択部1 2により公開鍵暗号利用アルゴリズムPublic_ver.2.6が 選択される。選択後、ステップS10において認証方式 Hx側の認証モジュールHxとして公開鍵暗号利用アルゴリ ズムPublic_ver.2.6の認証方式モジュールを起動する。 【0058】公開鍵暗号利用アルゴリズムPublic_ver. 2.6の認証方式モジュールが起動されると、ステップS 16がYesとなり、ステップS11において160ビット長 の乱数Rndを生成し、これをチャレンジデータChaとして 証明機器側に送信する。これにより発生された乱数はチ ャレンジデータとして認証側AVインターフェィス11を 介し証明機器104に伝送される。伝送後、ステップS 12においてレスポンスデータResの受信待ちとなる。 【0059】ステップS8においてチャレンジデータの

【0059】ステップS8においてチャレンジデータの受信待ち状態となっていた証明側制御部33は、証明方法アルゴリズム側AVインターフェィス31がチャレンジデータを受信すると、ステップS14に移行する。ステップS14において公開鍵暗号利用アルゴリズムPublic_ver.2.6の認証方式モジュールは、チャレンジデータChaを一方の入力とし、秘密の証明鍵k1を他方の入力として、公開鍵署名アルゴリズムによる署名データ(k1,Cha)を作成する。

【0060】作成された署名データは、レスポンスデータRESとして証明側AVインターフェィス31を介して認証機器101に伝送される。証明機器から送信されてきたレスボンスデータRESを認証側AVインターフェィス1

1が受信すると、ステップS12がYes(受信した)となりステップS15に移行する。ステップS15では、公開鍵暗号利用アルゴリズムPublic_ver.2.6の認証方式モジュールにレスポンスデータの複号化を行わせ、復号結果D(k2,Res)とチャレンジデータChaとの一致判定を行うことにより証明機器側が正当なものであるかを判断させる。一致判定されれば証明機器は正当なものであると判断する。不一致と判定されれば証明機器を正当なものではないと判断する。

【0061】以上の説明はチャレンジ・レスボンス型認証プロトコルを安全性優先テーブルから特定したが、次にチャレンジ・レスポンス型認証プロトコルをスピード優先テーブルから特定する場合について説明する。スピード優先テーブルにおいて、タイプ1ータイプ4の組み合わせには、秘密鍵暗号利用アルゴリズムSecret_ver.2.0の認証方式モジュール、証明方式モジュールが対応づけられておりステップS10、ステップS13においてこれらが起動されたとする。

【0062】ステップS13において起動された証明方式モジュールが秘密鍵暗号利用アルゴリズムSecret_ver.2.0ならステップS17がNoとなるがステップS33がYesとなりステップS28に移行して、チャレンジデータchaの受信待ちとなる。また、秘密鍵暗号利用アルゴリズムSecret_ver.2.0の認証方式モジュールが起動されると、ステップS16がNoとなり、ステップS32がYesとなってステップS27に移行する。ステップS27において64ビット長の乱数Rndを生成し、これをチャレンジデータChaとして証明機器側に送信する。これにより発生された乱数はチャレンジデータとして認証側AVインターフェィス11を介し証明機器104に伝送される。伝送後、ステップS29においてレスポンスデータResの受信待ちとなる。

【0063】ステップS28においてチャレンジデータの受信待ち状態となっていた証明側制御部33は、AVインターフェィス31がチャレンジデータを受信すると、ステップS30に移行する。ステップS30において証明側制御部33は秘密鍵暗号利用アルゴリズムSecret_ver.2.0の証明モジュールに、チャレンジデータChaを一方の入力とし、秘密の証明鍵k1を他方の入力として、秘密鍵署名アルゴリズムによる署名データ(k1,Cha)を作成させる。

【0064】作成された署名データは、レスポンスデータとして証明側AVインターフェィス31を介して認証機器101に伝送される。これにより符号化結果がチャレンジデータRESとして送信されることになる。証明機器から送信されてきたレスポンスデータを認証側AVインターフェィス11が受信すると、ステップS29がYes(受信した)となりステップS31に移行する。ステップS31では、秘密鍵暗号利用アルゴリズムSecret_ver.2.0の認証方式モジュールにレスポンスデータの複号

化を行わせ、復号結果D(k1,Res)とチャレンジデータCha との一致判定を行うことにより証明機器側が正当なもの であるかを判断する。

【0065】以上の説明はチャレンジ・レスポンス型認証プロトコルをスピード優先テーブルから特定したが、最後にチャレンジ・レスポンス型認証プロトコルとして秘密鍵暗号利用アルゴリズムSecret_ver.1.3が特定された場合について説明する。方式テーブル13が保持しているテーブルにおいて、タイプ1-タイプ4の組み合わせには、秘密鍵暗号利用アルゴリズムSecret_ver.1.3の認証方式モジュール、証明方式モジュールが対応づけられておりステップS10、ステップS13においてこれらが起動されたとする。

【0066】ステップS13において起動された証明方式モジュールが秘密鍵暗号利用アルゴリズムSecret_ver.1.3ならステップS17、ステップS33がNoとなるがステップS19がYesとなりステップS21に移行して、チャレンジデータchaの受信待ちとなる。また、秘密鍵暗号利用アルゴリズムSecret_ver.1.3の認証方式モジュールが起動されると、ステップS16、ステップS32がNoとなり、ステップS18がYesとなってステップS20に移行する。ステップS18がYesとなってステップS20に移行する。ステップS20において64ビット長の乱数Rndを生成し、これを秘密鍵k1を用いて暗号化して得たE(k1,Rnd)をチャレンジデータChaとして証明機器側に送信する。チャレンジデータは認証側AVインターフェィス11を介し証明機器104に伝送される。伝送後、ステップS23においてレスポンスデータResの受信待ちとなる。

【0067】ステップS21においてチャレンジデータの受信待ち状態となっていた証明側制御部33は、証明方法アルゴリズム側AVインターフェィス31がチャレンジデータを受信すると、ステップS22に移行する。ステップS22において秘密鍵暗号利用アルゴリズムSecret_ver.1.3の認証方式モジュールは、チャレンジデータChaを一方の入力とし、秘密の証明鍵k1を他方の入力として、秘密鍵署名アルゴリズムによりD(k1,Cha)の復号を行わせ、その結果をレスポンスデータRESとして証明側AVインターフェィス31を介して認証機器101に伝送する。これにより復号結果がチャレンジデータRESとして送信されることになる。

【0068】証明機器から送信されてきたレスポンスデータを認証側AVインターフェィス11が受信すると、ステップS23がYes(受信した)となりステップS24に移行する。ステップS24では、秘密鍵暗号利用アルゴリズムSecret_ver.1.0の認証方式モジュールにレスポンスデータRESと乱数rとの一致判定を行わせることにより証明機器側が正当なものであるかを判断する。

【0069】以上のように本実施例によれば、認証機器 応用び証明機器の双方において複数バージョンの認証方 式モジュール、複数の証明方式モジュールが利用可能で

ある場合に、相手側機器がどのようなタイプであるかに よって、相手側認証に用いるべき認証方式モジュール、 証明方式モジュールを決定するので、相手側認証が正当 に行なえることが保証される。

【0070】このように認証機器の持ちうる認証方式と証明機器の持ちうる証明方式にかならず共通の方式があるようになっているため、認証機器と証明機器がどのような組み合わせであっても必ず機器認証が可能となる。安全性を優先したテーブルを設けているので、認証機器に備えられた複数バージョンの認証方式モジュール、証明機器に備えられた複数バージョンの証明方式モジュールのうち、最も安全性が高いものを相手側認証に必ず利用することができる。

【0071】安全性優先テーブルとは別に、スピードを優先したテーブルを設けているので、認証機器に備えられた複数パージョンの認証方式モジュール、証明機器に備えられた複数パージョンの証明方式モジュールのうち、最も高速なものを相手側認証に利用することもできる。尚、本実施形態においては、認証機器及び証明機器に認証方式テーブル保持部13を設けて、自機が用いる認証方法、証明方法を選択するようにしたが、一方側のみ方式選択のためのテーブルを設けて、その一方側に認証方法及び証明方法を決定する決定権を与えても良い(認証方法及び証明方法の組みを決定する決定権は、チ

(認証方法及び証明方法の組みを決定する決定権は、チャレンジ・レスポンス型認証プロトコルを決定する決定権と同義となる。)。

【0072】この場合、決定権を有する側の機器は、相 手側から機種情報を通知されると、相手側から通知され た機種情報と自機の機種情報との組み合わせから認証方 法一証明方法を決定する。決定後、両機では、そのプロ トコルに対応する側の認証モジュール、証明モジュール を起動して、相手側の正当性を認証する。また、本実施 形態においては(a)V機器間の接続用に規格が規定さ れたコネクタや通信ケーブルを一例にして説明を行った が、機器間の接続を行うものであればコンピュータ・バ ス等の通信リンクを用いて良いことはいうまでもない。 【0073】更に、チャレンジ・レスポンス型認証プロ トコルではない相手側認証プロトコルに応用してもよ い。チャレンジ・レスポンス型認証プロトコルではない 相手側認証プロトコルとしては、一方向認証方法時系列 方式がある。この方式は、認証機器、証明機器にそれぞ れカウンタレジスタが備えられており、その初期値とし て『1』が設定されている。認証機器がリクエスト信号 を証明機器に送信すると、証明機器はその設定値『1』 を秘密鍵k1を用いて暗号化してその結果であるE(k1,1) を認証機器に送信する。

【0074】送信されたE(k1,1)を受信すると、認証機器はE(k1,1)を秘密鍵k1を用いて復号して、その値と、自機のカウンタレジスタの値との一致判定を行う。両方の値が一致していれば、認証機器はカウンタレジスタの

値をインクリメントして、『2』すると共に証明機器に相手側認証が正常に行われた旨を通知する。正常判定が通知されると、証明機器がカウンタレジスタを『2』にインクリメントする。このように認証機器 — 証明機器のカウンタレジスタの値が『2』になったところで、上記の手順を同様に繰り返す。

[0075]

【発明の効果】複数の情報機器からなり、複数の暗号技 術利用プロトコルの利用が可能な通信システムにおい て、各情報機器が自機の機種が複数の暗号技術利用プロ トコルのうちどれとどれを利用することができる機種で あるかを示す機種情報を通信すべき相手側情報機器に通 知する通知手段と、相手側情報機器から機種情報が通知 されると、通知された機種情報と自機の機種情報との組 み合わせから情報機器間で用いるべき何れか一つの暗号 技術利用プロトコルを決定する決定手段と、前記自機の 機種情報に対応する1以上のプロトコルに基づいて相手 側機器と通信する1以上のプロトコル対応通信部を有 し、その中から決定された暗号技術利用プロトコルを用 いて通信を行う通信手段とを備えることにより達成され る本通信システムにおいて各情報機器は通信を行う際、 自機の機種情報と相手側の機種情報の組み合わせに応じ て用いるべき暗号技術利用プロトコルを選択するので、 処理能力やハードウェア規模が違うために暗号技術利用 プロトコルの実行能力が機器間で異なっている場合で も、通信が行えることが保証される。

【0076】例えば、自機が複数の暗号技術利用プロトコルを実行でき、相手側の情報機器が一種類の暗号技術利用プロトコルしか実行できず、暗号技術利用プロトコルの実行能力のギャップが大きい場合、複数の暗号技術利用プロトコルのうち、相手側が実行可能な一種類の暗号技術利用プロトコルを決定手段は決定するので、暗号技術利用プロトコルの実行能力のギャップの大小にかかわらず、通信が行えることが保証される。このように通信の実行が保証されるため、暗号技術利用プロトコルの実行能力のギャップが招く「通信不能状態」を未然に回避することができる。

【0077】ここで通信システムにはn種(nは2以上の整数)の機種が存在する場合、決定手段は、n種の機種から任意の2種を選んだn C2個の機種情報の組み合わせと、各組み合わせにおいて用いるべき暗号技術利用プロトコルを示すプロトコル対応情報を対応づけたテーブルを記憶するテーブル記憶部と、n種の機種情報記憶部と、相手側機器から機種情報が通知されると、テーブル記憶部が記憶している大型でである。有機に合致するものの機種情報が通知されると、テーブル記憶部が記憶している機種情報と、相手側機器から通知された機種情報との組み合わせに対応づけられたプロトコル対応情報が示す暗号技術利用プロトコルを前記一のプロトコルと決定する決定部とを備え、前記1以上のプロトコル対応

通信部は決定部が決定した暗号技術利用プロトコルを用いて通信を行うように構成してもよい。

【0078】この構成によれば自機及び相手側に複数の暗号技術利用プロトコルを実行できる実行能力がある場合、複数の暗号技術利用プロトコルのうち最適なものがその2つの情報機器の機種情報の組み合わせに対応づけられてテーブルに記載されていれば、2つの情報機器は、テーブルに記載された最適な暗号技術利用プロトコルを用いて通信することができる。このようにテーブルの記載次第で、2つの情報機器がどのような組み合わせであっても、その2つの情報機器にとって最適な暗号技術利用プロトコルを活用することができる。

【0079】ここで暗号技術利用プロトコルは、相手側認証プロトコルであり、前記プロトコル対応通信部は、決定部が決定した相手側認証プロトコルにより相手側機器に正当性を証明させ、その証明結果に基づいて相手側機器が正当な情報機器であるか否かを判定する認証部と、正当な情報機器であると判定された場合のみ、保護対象となるデータを相手側情報機器に送信する送信部とを備えるように構成することができる。

【0080】本構成によれば、デジタル化された映像著 作物等、不正機器の不正行為から保護すべき保護対象デ ータの送信能力が自機にあり、相手側の正当性確認等の 責任が自機側に転嫁されている場合、その保護対象デー 夕の送信を相手側の正当性を確認してから行うので、著 作権侵害行為等を未然に防止することができる。ここで 前記テーブル記憶部は、nC2個の機種情報の組み合わせ において用いるべき相手側認証プロトコルを対応づけた テーブルを複数種別記憶しており、複数のテーブルのう ち第1のテーブルには、機種情報の組み合わせにおいて 用いるべき相手側認証プロトコルとして安全性が高い相 手側認証プロトコルを特定するプロトコル対応情報が記 述され、第2のテーブルには、機種情報の組み合わせに おいて用いるべき相手側認証プロトコルとして処理速度 が高い相手側認証プロトコルを特定するプロトコル対応 情報が記述されており、前記決定手段は、これから行う べき通信における安全性及び処理速度の何れか一方を考 慮して、テーブル記憶部が記憶しているテーブルのうち 一つを選択すると共に、どのテーブルを選択したかを相 手側に通知する選択部を備え、前記決定部は、テーブル 記憶部に記憶されているテーブルのうち、選択部が選択 して、相手側に通知したテーブルにおける相手側認証プ ロトコルを決定するように構成することができる。

【0081】この構成によれば自機及び相手側に複数の暗号技術利用プロトコルを実行できる実行能力がある場合、複数の暗号技術利用プロトコルのうち安全性が最も高いもの、処理速度が最も早いものをその2つの情報機器の機種情報の組み合わせに対応づけられてテーブルに記載しておけば、2つの情報機器は、より安全性が高い暗号技術利用プロトコル、或は、処理速度が早い暗号技

術利用プロトコルを用いて通信することができる。この ようにテーブルの記載次第で、2つの情報機器がどのよ うな組み合わせであっても、その2つの情報機器にとっ て最適な暗号技術利用プロトコルを利用させることがで きる。

【0082】ここで複数の相手側認証プロトコルには複 数のチャレンジ・レスポンス型認証プロトコルがあり、 複数のチャレンジ・レスポンス型認証プロトコルには公 開鍵暗号利用のチャレンジ・レスポンス型認証プロトコ ルと、秘密鍵暗号利用のチャレンジ・レスポンス型認証 プロトコルとがあり、前記第1種別のテーブルには、安 全性が高いチャレンジ・レスポンス型認証プロトコルと して公開鍵暗号利用のチャレンジ・レスポンス型認証プ ロトコルを示すプロトコル対応情報が記述され、前記第 2種別のテーブルには、処理速度が早いチャレンジ・レ スポンス型認証プロトコルとして秘密鍵暗号利用のチャ レンジ・レスポンス型認証プロトコルを示すプロトコル 対応情報が記述されており、前記1以上のプロトコル対 応通信部には、公開鍵暗号利用のチャレンジ・レスポン ス型認証プロトコルに基づいて通信するものと、秘密鍵 暗号利用のチャレンジ・レスボンス型認証プロトコルに 基づいて通信するものが存在するように構成することが できる。

【0083】このように構成それば、自機が膨大な規模 のハードウェアソフトウェアとを実装することにより公 開鍵暗号利用のチャレンジレスポンス型認証プロトコル との実行能力を有している場合、その旨をテーブルに記 載しておけば、公開鍵暗号利用のチャレンレスボンス型 認証プロトコルとの実行能力が認証機器、証明機器の双 方に存在する場合に公開鍵暗号利用プロトコルのための ハードウェア・ソフトウェアを最大限に活用することが できる。

【図面の簡単な説明】

【図1】認証機器-証明機器間の接続態様を示す図であ

【図2】複数の認証機器と、複数の証明機器との間の任 意の接続態様を示す図である。

【図3】(a)図2に示す相手側認証システムにおいて どのような機種コードが存在するかを示す図である。

(b) 図2に示す認証機器101~証明機器106に、 図3 (a) に示す機種コードのうち、どの機種コードが 付されているかを示す図である。

【図4】(a)~(c)公開鍵暗号利用アルゴリズム、 秘密鍵暗号利用アルゴリズムがどのような内容であるか を示す図である。

【図5】本実施形態における機器認証システムの内部構 成を示す図である。

【図6】認証方式テーブル保持部13が保持している安 全性優先テーブルの一例を表形式で表した図である。

【図7】認証方式テーブル保持部13が保持しているス ヒード優先テーブルの一例を表形式で表現した図であ

【図8】認証側制御部14及び証明側制御部33が有す る制御プログラムの処理内容を示すフローチャートであ

【図9】認証側制御部14及び証明側制御部33が有す る制御プログラムの処理内容を示すフローチャートであ る。

【符号の説明】

- 認証機器タイプ情報格納部 4
- 認証モジュール群 8
- 認証側AVインターフェィス 1 1
- 認証方式選択部 1 2
- 13 認証方式テーブル保持部
- 認証側制御部 14
- 証明機器タイプ情報格納部 24
- 28 証明モジュール群
- 3 1 証明側AVインターフェイス
- 証明方式選択部 3 2
- 3 3 証明側制御部
- CSチューナー 4 1
- TSデコーダー 4 2
- 43 AVデコーダー AVデコーダー
- 4 5 信号処理部

44

- 46 ドライブ機構
- 101 認証機器
- 102 認証機器
- 認証機器 103
- 104 証明機器
- 1.05 証明機器
- 証明機器 106
- 107 AVバス
- パーソナルコンピュータ 108

【図1】

【図2】

【図6】

安全性優先テーブル

r——1	Type: 1	Type:2	Type:3
Type:4 Type:5 Type:6	Public_ver. 2.6 Public_ver. 1.3 Secret_ver. 1.3	Secret_ver. 2.0 Public_ver. 1.3 Secret_ver. 1.3	Secret_ver. 2.0 Secret_ver. 2.0 Secret_ver. 1.3

【図5】

【図7】

スピード優先テーブル

	Type:1	Type:2	Type:3
Type:4	Secret_ver. 2.0	Secret_ver. 2.0	Secret_ver. 2.0 Secret_ver. 2.0 Secret_ver. 1.3
Type:5	Secret_ver. 2.0	Secret_ver. 2.0	
Type:6	Secret_ver. 1.3	Secret_ver. 1.3	

【図8】

▼77. •••.

[図9]

