Análisis Exploratorio de los Datos RECURSOS SANITARIOS: Facilities

Alicia Perdices Guerra 21 de mayo, 2021

Contents

- 1.ANÁLISIS EXPLORATORIO POR PAISES.
 - 1.1 EN RELACIÓN CON LOS RECURSOS SANITARIOS
 - * 1.1.1 Análisis Descriptivo
 - * 1.1.2 Visualización y Distribución de la variable "Value"
 - · Facilities
 - * 1.1.3 Normalidad de la variable "Value"
 - · Facilities

1.ANÁLISIS EXPLORATORIO POR PAISES

Se procede en primer lugar a cargar todos los archivos para poder realizar el análisis.

```
recursos_tec<-read.csv("C:/temp/RecursosTecnicos_hospitalarios_clean.csv",sep= ",")
tecnologia<-read.csv("C:/temp/TecnologiaMedica_clean.csv",sep= ",")
camas_t<-read.csv("C:/temp/TiposCamasHospitalarias_clean.csv",sep= ",")</pre>
```

1.1.- EN RELACIÓN CON LOS RECURSOS SANITARIOS

• 1.1.1 Análisis Descriptivo

Se procede a realizar el análisis descriptivo:

summary(recursos_tec)

```
GEO
##
         TIME
                                                              FACILITY
##
  Min.
           :2010
                   Austria :
                              60
                                   Day care places altogether
                                                                  :310
  1st Qu.:2012
                   Belgium :
                              60
                                   Geriatric day care places
                                                                  :310
##
   Median:2014
                   Bulgaria:
                              60
                                   Oncological day care place
                                                                  :310
##
  Mean
           :2014
                   Croatia :
                              60
                                   Operation theatres in hospital:310
   3rd Qu.:2017
                   Cyprus :
                                   Psychiatric day care place
                                                                  :310
                   Czechia: 60
##
   Max.
           :2019
                                   Surgical day care places
                                                                  :310
##
                   (Other) :1500
##
       UNTT
                      Value
                                  Value_imp
   Number: 1860
                                  Mode :logical
##
                  Min. :
##
                  1st Qu.: 313
                                  FALSE:830
                  Median: 1133
                                  TRUE: 1030
##
                        : 2700
##
                  Mean
##
                  3rd Qu.: 2341
##
                        :77297
                  Max.
```

summary(tecnologia)

```
## TIME GEO UNIT
## Min. :2010 Albania : 450 Inhabitants per ... :5250
## 1st Qu.:2012 Austria : 450 Number :5250
```

```
Median:2014
                   Belgium :
                              450
                                    Per hundred thousand inhabitants:5250
##
   Mean
           :2014
                   Bulgaria:
                              450
   3rd Qu.:2017
                   Croatia:
                              450
  Max.
           :2019
##
                   Cyprus :
                              450
##
                   (Other) :13050
##
                                FACILITY
  Angiography units
                                     :3150
## Computed Tomography Scanners
                                     :3150
## Gamma cameras
                                     :3150
## Lithotriptors
                                     :3150
   Magnetic Resonance Imaging Units:3150
##
##
##
                                                  ICHA_HP
                                                                  Value
##
  Hospitals
                                                      :5250
                                                                              0
                                                              Min.
   Hospitals and providers of ambulatory health care:5250
                                                              1st Qu.:
                                                                              1
##
   Providers of ambulatory health care
                                                      :5250
                                                              Median :
                                                                             24
##
                                                              Mean
                                                                        205383
##
                                                              3rd Qu.:
                                                                         85973
                                                                     :46773054
##
                                                              Max.
##
##
   Value_imp
  Mode :logical
##
##
   FALSE: 8745
  TRUE :7005
##
##
##
##
##
summary(camas_t)
                                                                  UNIT
##
         TIME
                         GEO
##
           :2010
                   Albania: 150
                                   Inhabitants per ...
                                                                     :1950
   1st Qu.:2012
##
                   Austria: 150
                                   Number
                                                                     :1950
  Median:2014
                   Belgium : 150
                                   Per hundred thousand inhabitants:1950
  Mean
           :2014
                   Bulgaria: 150
##
   3rd Qu.:2017
                   Croatia: 150
##
          :2019
##
   Max.
                   Cyprus : 150
##
                   (Other) :4950
##
                                             FACILITY
                                                             Value
## Available beds in hospitals (HP.1)
                                                 :1170
                                                         Min.
                                                                       0.0
## Curative care beds in hospitals (HP.1)
                                                         1st Qu.:
                                                                     127.8
                                                 :1170
## Long-term care beds in hospitals (HP.1)
                                                 :1170
                                                         Median :
                                                                     460.3
   Other beds in hospitals (HP.1)
                                                         Mean :
                                                                   31582.1
                                                 :1170
##
   Rehabilitative care beds in hospitals (HP.1):1170
                                                         3rd Qu.:
                                                                    5023.0
##
                                                         Max.
                                                                :2711756.0
##
  Value_imp
##
##
  Mode :logical
  FALSE: 4246
## TRUE :1604
##
##
##
```

##

Se filta el dataframe para que la variable GEO aparezcan solo los paises objeto de estudio. (Para cada archivo relacionado con los Recursos Sanitarios (Facilities) y unificamos la información en una variable, recursos). Además se selecciona la información relevante de las variables FACILITY, ICHA_HP(Lugar de uso del recurso tecnológico) y UNIT (Se selecciona "Number" y no ratio ya que no todos los archivos tienen la información de número de recursos tecnológicos por 100000 habitantes)

```
#En relación con las Facilities
#Recursos Tecnológicos
#----
recursos_tec_paises<-filter(recursos_tec,(GEO!="European Union - 27 countries (from 2020)")&
                           +(GEO!="European Union - 28 countries (2013-2020)")&
                           +(GEO!="European Union - 27 countries (2007-2013)")&
                           +(GEO!="European Union - 15 countries (1995-2004)")&
                           +(GEO!="Euro area - 12 countries (2001-2006)")&
                           +(GEO!="Euro area - 19 countries (from 2015)")&
                           +(GEO!="Euro area - 18 countries (2014)")&
                           +(GEO!="Euro area - 12 countries (2001-2006)"))
#Se selecciona todo lo relacionado con el tipo
#de recurso tecnológico de la variable FACILITY.
recursos tec paises ot<-
  filter(recursos_tec_paises,FACILITY=="Operation theatres in hospital")
recursos_tec_paises_s<-
  filter(recursos_tec_paises,FACILITY=="Surgical day care places")
recursos_tec_paises_p<-
  filter(recursos_tec_paises, FACILITY == "Psychiatric day care place")
recursos_tec_paises_o<-
  filter(recursos_tec_paises,FACILITY=="Oncological day care place")
recursos_tec_paises_g<-
  filter(recursos_tec_paises,FACILITY=="Geriatric day care places")
#Tecnología Médica
tecnologia_paises<-filter(tecnologia,(GEO!="European Union - 27 countries (from 2020)")&
                           +(GEO!="European Union - 28 countries (2013-2020)")&
                           +(GEO!="European Union - 27 countries (2007-2013)")&
                           +(GEO!="European Union - 15 countries (1995-2004)")&
                           +(GEO!="Euro area - 12 countries (2001-2006)")&
                           +(GEO!="Euro area - 19 countries (from 2015)")&
                           +(GEO!="Euro area - 18 countries (2014)")&
                           +(GEO!="Euro area - 12 countries (2001-2006)"))
```

```
#Se selecciona todo lo relacionado con el tipo
#de tecnología médica de la variable FACILITY.
tecnologia_paises_cts<-
  filter(tecnologia_paises, FACILITY == "Computed Tomography Scanners")
tecnologia_paises_gc<-
  filter(tecnologia_paises,FACILITY=="Gamma cameras")
tecnologia_paises_1<-
  filter(tecnologia_paises,FACILITY=="Lithotriptors")
tecnologia_paises_mr<-
  filter(tecnologia_paises,FACILITY=="Magnetic Resonance Imaging Units")
tecnologia_paises_a<-
  filter(tecnologia_paises,FACILITY=="Angiography units")
tecnologia_paises_cts<-filter(tecnologia_paises_cts,UNIT=="Number")
tecnologia_paises_cts<-filter(tecnologia_paises_cts,ICHA_HP=="Hospitals and providers of ambulatory hea
tecnologia_paises_gc<-filter(tecnologia_paises_gc,UNIT=="Number")</pre>
tecnologia_paises_gc<-filter(tecnologia_paises_gc,ICHA_HP=="Hospitals and providers of ambulatory healt
tecnologia_paises_l<-filter(tecnologia_paises_l,UNIT=="Number")</pre>
tecnologia_paises_1<-filter(tecnologia_paises_1,ICHA_HP=="Hospitals and providers of ambulatory health
tecnologia_paises_mr<-filter(tecnologia_paises_mr,UNIT=="Number")</pre>
tecnologia_paises_mr<-filter(tecnologia_paises_mr,ICHA_HP=="Hospitals and providers of ambulatory healt
tecnologia_paises_a<-filter(tecnologia_paises_a,UNIT=="Number")
tecnologia_paises_a<-filter(tecnologia_paises_a,ICHA_HP=="Hospitals and providers of ambulatory health
#Camas Disponibles
#-----
camas_t_paises<-filter(camas_t,(GEO!="European Union - 27 countries (from 2020)")&
                            +(GEO!="European Union - 28 countries (2013-2020)")&
                            +(GEO!="European Union - 27 countries (2007-2013)")&
                            +(GEO!="European Union - 15 countries (1995-2004)")&
                            +(GEO!="Euro area - 12 countries (2001-2006)")&
                            +(GEO!="Euro area - 19 countries (from 2015)")&
                            +(GEO!="Euro area - 18 countries (2014)")&
                            +(GEO!="Euro area - 12 countries (2001-2006)"))
#Se selecciona todo lo relacionado con el tipo
#de camas en hospitales de la variable FACILITY.
camas_t_paises_ca<-
  filter(camas_t_paises,FACILITY=="Available beds in hospitals (HP.1)")
# Se selecciona la unidad: "Number"
```

```
camas_t_paises_ca<-filter(camas_t_paises_ca,UNIT=="Number")</pre>
nrow(camas_t_paises_ca)
## [1] 370
Tenemos 3 Dataframes (No se unifican debido a la estructura de cada uno (Diferentes filas):
#Recursos Tecnologicos
#=========
year<-(recursos_tec_paises_ot$TIME)#Columna Year</pre>
GEO<-(recursos_tec_paises_ot$GEO) #Columna Paises
recursos_tec_df=data.frame("TIME"=year,"Pais"=GEO,
                      "Operation theatres in hospital"=
                        recursos_tec_paises_ot$Value,
                      "Surgical_day_care_places"=
                        recursos_tec_paises_s$Value,
                      "Psychiatric_day_care_place"=
                        recursos_tec_paises_p$Value,
                      "Oncological_day_care_place"=
                        recursos_tec_paises_o$Value,
                      "Geriatric_day_care_places"=
                        recursos_tec_paises_g$Value)
head(recursos_tec_df)
##
     TIME
                                                         Pais
## 1 2010
                                                      Belgium
## 2 2010
                                                     Bulgaria
## 3 2010
                                                      Czechia
## 4 2010
## 5 2010 Germany (until 1990 former territory of the FRG)
## 6 2010
##
     Operation_theatres_in_hospital Surgical_day_care_places
## 1
## 2
                                 1220
                                                           2039
## 3
                                  996
                                                            996
## 4
                                 1220
                                                           2039
## 5
                                 1220
                                                             47
## 6
                                                            349
                                 132
##
     Psychiatric_day_care_place Oncological_day_care_place
## 1
                            2279
                                                         1362
## 2
                             917
                                                         1362
## 3
                            2279
                                                          996
## 4
                            3068
                                                         1362
## 5
                           15496
                                                          910
## 6
                            2279
                                                          910
##
     Geriatric_day_care_places
## 1
                            568
## 2
                           1839
## 3
                            996
## 4
                           1839
## 5
                           1839
```

#Tecnología Médica #=======

6

568

```
year<-(tecnologia_paises_cts$TIME)#Columna Year</pre>
GEO<-(tecnologia_paises_cts$GEO)#Columna Paises
tecnologia_medica_df=data.frame("TIME"=year, "Pais"=GEO,
                      "Computed_Tomography_Scanners"=
                        tecnologia_paises_cts$Value,
                      "Gamma cameras"=
                        tecnologia_paises_gc$Value,
                      "Lithotriptors"=
                       tecnologia_paises_1$Value,
                      "Magnetic_Resonance_Imaging_Units"=
                        tecnologia_paises_mr$Value,
                      "Angiography_units"=
                       tecnologia_paises_a$Value)
head(tecnologia_medica_df)
##
     TIME
                                                        Pais
## 1 2010
                                                     Belgium
## 2 2010
                                                    Bulgaria
## 3 2010
                                                     Czechia
## 4 2010
                                                     Denmark
## 5 2010 Germany (until 1990 former territory of the FRG)
     Computed_Tomography_Scanners Gamma_cameras Lithotriptors
## 1
                               152
                                              152
                                                            116
## 2
                               224
                                              20
                                                             66
## 3
                               152
                                              122
                                                             32
## 4
                               153
                                              94
                                                             32
## 5
                              2643
                                              122
                                                           2211
## 6
##
     Magnetic_Resonance_Imaging_Units Angiography_units
## 1
                                   116
## 2
                                    31
                                                       73
## 3
                                    66
                                                       79
                                                       79
## 4
                                    66
## 5
                                  2211
                                                     2211
## 6
                                                        8
                                    11
#Camas Disponibles
#========
camas_disponibles_df=camas_t_paises_ca
head(camas disponibles df)
##
                                                         GEO
                                                               UNIT
     TIME
## 1 2010
                                                     Belgium Number
## 2 2010
                                                    Bulgaria Number
## 3 2010
                                                     Czechia Number
## 4 2010
                                                     Denmark Number
## 5 2010 Germany (until 1990 former territory of the FRG) Number
## 6 2010
                                                     Estonia Number
##
                                FACILITY
                                          Value Value_imp
## 1 Available beds in hospitals (HP.1)
                                          66645
                                                     FALSE
## 2 Available beds in hospitals (HP.1)
                                          48934
                                                     FALSE
## 3 Available beds in hospitals (HP.1)
                                          76413
                                                     FALSE
                                                     FALSE
## 4 Available beds in hospitals (HP.1)
                                          19405
```

Se reescalan los datos:

```
#Recursos Tecnológicos
recursos_tec_df["Operation_theatres_in_hospital_norm"]<-</pre>
  rescale(recursos_tec_paises_ot$Value, to=c(0,1))
recursos_tec_df["Surgical_day_care_places_norm"] <-
  rescale(recursos_tec_paises_s$Value, to=c(0,1))
recursos_tec_df["Psychiatric_day_care_place_norm"] <-</pre>
  rescale(recursos tec paises p$Value, to=c(0,1))
recursos_tec_df["Oncological_day_care_place_norm"]<-</pre>
  rescale(recursos_tec_paises_o$Value, to=c(0,1))
recursos_tec_df["Geriatric_day_care_places_norm"]<-</pre>
  rescale(recursos_tec_paises_g$Value, to=c(0,1))
#Tecnología Médica
#=======
tecnologia_medica_df["Computed_Tomography_Scanners_norm"] <-
  rescale(tecnologia_paises_cts$Value, to=c(0,1))
tecnologia_medica_df["Gamma_cameras_norm"]<-</pre>
  rescale(tecnologia_paises_gc$Value, to=c(0,1))
tecnologia_medica_df["Lithotriptors_norm"] <-
  rescale(tecnologia_paises_l$Value, to=c(0,1))
tecnologia_medica_df["Magnetic_Resonance_Imaging_Units_norm"] <-
  rescale(tecnologia_paises_mr$Value, to=c(0,1))
tecnologia_medica_df["Angiography_units_norm"]<-</pre>
  rescale(tecnologia_paises_a$Value, to=c(0,1))
#Camas Disponibles
#========
camas_disponibles_df["Value_norm"]<-</pre>
    rescale(camas_disponibles_df$Value, to=c(0,1))
```

• 1.1.2 Visualización y Distribución de la variable "Value"

Se visualiza la variable "Value" en función de TIME, y los distintos tipos de Facilities Sanitarias.

```
scale_y_continuous(limit=c(0,100000))+
  ggtitle("Quirófanos")+
  theme (plot.title = element_text(size=rel(0.5), hjust = 0.5))
#Gráfica de barras del número de salas de Cirugía hospitalaria diaria
plot2=ggplot(data=recursos_tec_df)+
  geom col(aes(x=TIME,y=Surgical day care places))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale y continuous(limit=c(0,100000))+
  ggtitle("Cirugía \n Hospitalaria diaria")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Consultas de Psiquiatría por Años"
plot3=ggplot(data=recursos_tec_df)+
  geom_col(aes(x=TIME,y=Psychiatric_day_care_place))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,200000))+
  ggtitle("S.Consultas \n Psiquiatría")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Salas de consultas Oncológicas
#por Años.
plot4=ggplot(data=recursos_tec_df)+
  geom col(aes(x=TIME,y=Oncological day care place))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,300000))+
  ggtitle("S. Consultas \n Oncología")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Salas de Cuidados Geriátricos
#por Años
plot5=ggplot(data=recursos_tec_df)+
  geom_col(aes(x=TIME,y=Geriatric_day_care_places))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("S.Cuidados \n Geriátricos")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Escáners (Tomógrafos)
plot6=ggplot(data=tecnologia_medica_df)+
  geom_col(aes(x=TIME,y=Computed_Tomography_Scanners))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale y continuous(limit=c(0,100000))+
  ggtitle("Escáners \n Tomógrafos")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Cámaras Gamma
plot7=ggplot(data=tecnologia_medica_df)+
  geom_col(aes(x=TIME,y=Gamma_cameras))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Cámaras\n Gamma")+
```

```
theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número Litotriptores
plot8=ggplot(data=tecnologia_medica_df)+
  geom_col(aes(x=TIME,y=Lithotriptors))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Litotriptores")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Unidades de Resonancia Magnética
plot9=ggplot(data=tecnologia_medica_df)+
  geom_col(aes(x=TIME,y=Magnetic_Resonance_Imaging_Units))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Resonancia \n Magnética")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Unidades de Angiógrafía
plot10=ggplot(data=tecnologia_medica_df)+
  geom_col(aes(x=TIME,y=Angiography_units))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Unidades \n Angiógrafía")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Camas Hospitalarias Disponibles.
plot11=ggplot(data=camas_disponibles_df)+
  geom_col(aes(x=TIME,y=Value))+
 theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,4000000))+
  ggtitle("Camas \n Disponibles")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#GRÁFICAS DE PUNTOS
#========
##Gráfica de puntos del número de Quirófanos por Países.""
plot12=ggplot(data=recursos_tec_df)+
  geom point(aes(x=Pais,y=Operation theatres in hospital))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("Quirofanos")+
  theme (plot.title = element_text(size=rel(0.5),hjust=0.5))
#Gráfica de puntos del número del número de salas de Ciruqía hospitalaria diaria
#por Países" "
plot13=ggplot(data=recursos_tec_df)+
  geom_point(aes(x=Pais,y=Surgical_day_care_places))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale y continuous(limit=c(0,20000))+
  ggtitle("S.Cirugía \n Hospitalaria Diaria")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
```

```
#Gráfica de puntos del número Consultas de Psiquiatría por Países"
plot14=ggplot(data=recursos_tec_df)+
  geom_point(aes(x=Pais,y=Psychiatric_day_care_place))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,30000))+
  ggtitle("S.Consulta \n Psiquiatría")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Salas de consultas Oncológicas
#por Países.
plot15=ggplot(data=recursos_tec_df)+
  geom_point(aes(x=Pais,y=Oncological_day_care_place))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("S.Consultas \n Oncológicas")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Salas de Cuidados Geriátricos
#por Paises.
plot16=ggplot(data=recursos_tec_df)+
  geom_point(aes(x=Pais,y=Geriatric_day_care_places))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("S.Cuidados \n Geriátricos")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Escáners (Tomógrafos) por Países.
plot17=ggplot(data=tecnologia_medica_df)+
  geom_point(aes(x=Pais,y=Computed_Tomography_Scanners))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("Escáners")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Cámaras Gamma por Países.
plot18=ggplot(data=tecnologia_medica_df)+
  geom_point(aes(x=Pais,y=Gamma_cameras))+
  theme(axis.text.x = element text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("Cámaras Gamma")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número Litotriptores y Países
plot19=ggplot(data=tecnologia_medica_df)+
  geom_point(aes(x=Pais,y=Lithotriptors))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("Litotriptores")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Unidades de Resonancia Magnética
plot20=ggplot(data=tecnologia_medica_df)+
  geom_point(aes(x=Pais,y=Magnetic_Resonance_Imaging_Units))+
```

```
theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("Unidades\n R.Magnética")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Unidades de Angiógrafía y Países
plot21=ggplot(data=tecnologia_medica_df)+
  geom point(aes(x=Pais,y=Angiography units))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("Unidades\n Angiografía")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Camas Hospitalarias Disponibles y Países
plot22=ggplot(data=camas_disponibles_df)+
  geom_point(aes(x=GEO,y=Value))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,1000000))+
  ggtitle("Camas\n Disponibles")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
grid.arrange(plot1,plot12,widths=c(1,3), ncol=2)
```


grid.arrange(plot2,plot13,widths=c(1,3), ncol=2)

grid.arrange(plot3,plot14,widths=c(1,3), ncol=2)

grid.arrange(plot4,plot15,widths=c(1,3), ncol=2)

grid.arrange(plot5,plot16,widths=c(1,3), ncol=2)

grid.arrange(plot6,plot17,widths=c(1,3), ncol=2)

grid.arrange(plot7,plot18,widths=c(1,3), ncol=2)

grid.arrange(plot8,plot19,widths=c(1,3), ncol=2)

grid.arrange(plot9,plot20,widths=c(1,3), ncol=2)

grid.arrange(plot10,plot21,widths=c(1,3), ncol=2)

grid.arrange(plot11,plot22,widths=c(1,3), ncol=2)

Se obtienen los 5 países con mayor número de Recursos Sanitarios (Facilities), por años y en cómputo global.

• Operation_theatres_in_hospital

```
#Para "Operation_theatres_in_hospital"
#Se filtra por Año
y_2010<-filter(recursos_tec_df, TIME==2010)</pre>
y_2011<-filter(recursos_tec_df, TIME==2011)</pre>
y_2012<-filter(recursos_tec_df, TIME==2012)</pre>
y_2013<-filter(recursos_tec_df, TIME==2013)</pre>
y 2014<-filter(recursos tec df, TIME==2014)
y_2015<-filter(recursos_tec_df, TIME==2015)</pre>
y_2016<-filter(recursos_tec_df, TIME==2016)</pre>
y_2017<-filter(recursos_tec_df, TIME==2017)</pre>
y_2018<-filter(recursos_tec_df, TIME==2018)</pre>
y_2019<-filter(recursos_tec_df, TIME==2019)</pre>
#Se ordena por "Operation_theatres_in_hospital"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$0peration_theatres_in_hospital)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Operation_theatres_in_hospital)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$0peration_theatres_in_hospital)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Operation_theatres_in_hospital)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$0peration_theatres_in_hospital)),]
```

Table 1: Países con mayor Número de Quirofanos en 2010

	País	Quirofanos
10	France	11337
12	Italy	6088
31	Turkey	5206
9	Spain	4120
28	United Kingdom	3739

Table 2: Países con mayor Número de Quirofanos en 2011

	País	Quirofanos
10	France	11337
12	Italy	6092
31	Turkey	5206
9	Spain	4202
28	United Kingdom	3636

Table 3: Países con mayor Número de Quirofanos en 2012

	País	Quirofanos
10	France	11337
12	Italy	6118
31	Turkey	5697
9	Spain	4267
28	United Kingdom	3684

Table 4: Países con mayor Número de Quirofanos en 2013

	País	Quirofanos
10	France	11505
12	Italy	6078
31	Turkey	5526
9	Spain	4307
28	United Kingdom	3776

Table 5: Países con mayor Número de Quirofanos en 2014

	País	Quirofanos
10	France	11337
12	Italy	6095
31	Turkey	5682
9	Spain	4352
28	United Kingdom	3800

Table 6: Países con mayor Número de Quirofanos en 2015

	País	Quirofanos
10	France	10991
12	Italy	6173
31	Turkey	5809
9	Spain	4421
28	United Kingdom	3824

Table 7: Países con mayor Número de Quirofanos en 2016

	País	Quirofanos
10	France	10788
12	Italy	6139
31	Turkey	6126
9	Spain	4448
28	United Kingdom	3826

Table 8: Países con mayor Número de Quirofanos en 2017

	País	Quirofanos
10	France	10774
31	Turkey	6403
12	Italy	6191
9	Spain	4533
28	United Kingdom	3824

Table 9: Países con mayor Número de Quirofanos en 2018

	País	Quirofanos
10	France	10777
31	Turkey	6658
12	Italy	6164
9	Spain	4573
28	United Kingdom	3824

Table 10: Países con mayor Número de Quirofanos en 2019

	País	Quirofanos
10	France	10777
31	Turkey	6403
12	Italy	6164
9	Spain	4533
28	United Kingdom	3824

A continuación, se aprupa toda la información (Quirófanos) por paises en una tabla:

```
al<-group_by(recursos_tec_df,Pais) #Se agrupa por paises

#Se selecciona las variables Pais y Operation_theatres_in_hospital

a2<-select(a1,Pais:Operation_theatres_in_hospital)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Operation_theatres_in_hospital)/10))

## `summarise()` ungrouping output (override with `.groups` argument)

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)],

col.names = c("País","Quirofanos"),
```

Table 11: Países con la mayor media Quirófanos en 2010-2019

	D /	O : C
	País	Quirofanos
9	France	11096.0
14	Italy	6130.2
30	Turkey	5871.6
28	Spain	4375.6
31	United Kingdom	3775.7

• Surgical_day_care_places

```
#Para "Surgical_day_care_places"
#Se filtra por Año
y 2010<-filter(recursos tec df, TIME==2010)
y 2011<-filter(recursos tec df, TIME==2011)
y_2012<-filter(recursos_tec_df, TIME==2012)</pre>
y_2013<-filter(recursos_tec_df, TIME==2013)</pre>
y_2014<-filter(recursos_tec_df, TIME==2014)</pre>
y_2015<-filter(recursos_tec_df, TIME==2015)</pre>
y_2016<-filter(recursos_tec_df, TIME==2016)</pre>
y_2017<-filter(recursos_tec_df, TIME==2017)</pre>
y_2018<-filter(recursos_tec_df, TIME==2018)</pre>
y_2019<-filter(recursos_tec_df, TIME==2019)</pre>
#Se ordena por "Surgical_day_care_places"
recursos tec 5paises 2010<-y 2010[with(y 2010, order(-y 2010$Surgical day care places)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Surgical_day_care_places)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Surgical_day_care_places)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Surgical_day_care_places)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Surgical_day_care_places)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Surgical_day_care_places)),]</pre>
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Surgical_day_care_places)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Surgical_day_care_places)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Surgical_day_care_places)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Surgical_day_care_places)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:S. Quirúrqicas) de los 5 Paises con un mayor número de ellas.
kable(recursos_tec_5paises_2010[0:5,c(2,4)], col.names = c("Pais", "S Cirugía"),
      caption = "Países con mayor Número de Salas Quirúrgicas en 2010")
```

Table 12: Países con mayor Número de Salas Quirúrgicas en 2010

	País	S Cirugía
10	France	13346

	País	S Cirugía
12	Italy	7841
9	Spain	2562
1	Belgium	2039
2	Bulgaria	2039

Table 13: Países con mayor Número de Salas Quirúrgicas en 2011

	País	S Cirugía
10	France	14110
12	Italy	8013
9	Spain	2838
1	Belgium	2177
2	Bulgaria	2177

Table 14: Países con mayor Número de Salas Quirúrgicas en 2012

	País	S Cirugía
10	France	15272
12	Italy	8139
9	Spain	3008
1	Belgium	2247
2	Bulgaria	2247

Table 15: Países con mayor Número de Salas Quirúrgicas en 2013

	País	S Cirugía
10	France	15856
12	Italy	8102
9	Spain	2892
1	Belgium	2788
2	Bulgaria	2788

Table 16: Países con mayor Número de Salas Quirúrgicas en 2014

	País	S Cirugía
10	France	16334
12	Italy	7877
1	Belgium	3118
2	Bulgaria	2855
4	Denmark	2855

Table 17: Países con mayor Número de Salas Quirúrgicas en 2015

	País	S Cirugía
10	France	17147
12	Italy	8197
1	Belgium	3243
2	Bulgaria	3225
4	Denmark	3225

Table 18: Países con mayor Número de Salas Quirúrgicas en 2016

	País	S Cirugía
10	France	17953
12	Italy	8234
1	Belgium	3291
9	Spain	3154
25	Slovakia	2775

Table 19: Países con mayor Número de Salas Quirúrgicas en 2017

	País	S Cirugía
10	France	18353
12	Italy	8172
1	Belgium	3479
9	Spain	3207
25	Slovakia	2815

Table 20: Países con mayor Número de Salas Quirúrgicas en 2018

	País	S Cirugía
10	France	18837
12	Italy	8353
1	Belgium	3587
4	Denmark	3309
9	Spain	3309

Table 21: Países con mayor Número de Salas Quirúrgicas en 2019

	País	S Cirugía
10	France	18353
12	Italy	8234
1	Belgium	3479
9	Spain	3207
25	Slovakia	2815

A continuación, se aprupa toda la información (Salas Quirúrgicas) por paises en una tabla:

```
a1<-group_by(recursos_tec_df,Pais) #Se agrupa por paises

#Se selecciona las variables Pais y Surgical_day_care_places

a2<-select(a1,Pais:Surgical_day_care_places)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Surgical_day_care_places)/10))
```

Table 22: Países con la mayor media en Salas Quirúrgicas en 2010-2019

	País	S Cirugía
9	France	16556.1
14	Italy	8116.2
28	Spain	3025.7
2	Belgium	2944.8
26	Slovakia	2462.8

• Psychiatric_day_care_place

```
#Para "Psychiatric_day_care_place"
#Se filtra por Año
y_2010<-filter(recursos_tec_df, TIME==2010)</pre>
y_2011<-filter(recursos_tec_df, TIME==2011)</pre>
y_2012<-filter(recursos_tec_df, TIME==2012)</pre>
y 2013<-filter(recursos tec df, TIME==2013)
y_2014<-filter(recursos_tec_df, TIME==2014)</pre>
y_2015<-filter(recursos_tec_df, TIME==2015)</pre>
y_2016<-filter(recursos_tec_df, TIME==2016)</pre>
y_2017<-filter(recursos_tec_df, TIME==2017)</pre>
y_2018<-filter(recursos_tec_df, TIME==2018)</pre>
y_2019<-filter(recursos_tec_df, TIME==2019)</pre>
#Se ordena por "Psychiatric_day_care_place"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Psychiatric_day_care_place)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Psychiatric_day_care_place)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Psychiatric_day_care_place)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Psychiatric_day_care_place)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Psychiatric_day_care_place)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Psychiatric_day_care_place)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Psychiatric_day_care_place)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Psychiatric_day_care_place)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018*Psychiatric_day_care_place)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Psychiatric_day_care_place)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:S.Psiquiatría) de los 5 Paises con un mayor número de ellas.
kable(recursos_tec_5paises_2010[0:5,c(2,5)], col.names = c("País", "S.Psiquiatría"),
      caption = "Países con mayor Número de Salas de Psiquiatría en 2010")
```

Table 23: Países con mayor Número de Salas de Psiquiatría en 2010

	País	S.Psiquiatría
10	France	28285
5	Germany (until 1990 former territory of the FRG)	15496
4	Denmark	3068
9	Spain	3068
15	Lithuania	3068

Table 24: Países con mayor Número de Salas de Psiquiatría en 2011

	País	S.Psiquiatría
10	France	28424

	País	S.Psiquiatría
5	Germany (until 1990 former territory of the FRG)	15457
4	Denmark	3366
9	Spain	3366
15	Lithuania	3366

Table 25: Países con mayor Número de Salas de Psiquiatría en 2012

	País	S.Psiquiatría
10	France	28871
5	Germany (until 1990 former territory of the FRG)	16773
4	Denmark	3848
9	Spain	3848
15	Lithuania	3848

Table 26: Países con mayor Número de Salas de Psiquiatría en 2013

	País	S.Psiquiatría
10	France	29065
5	Germany (until 1990 former territory of the FRG)	17686
4	Denmark	3942
9	Spain	3942
15	Lithuania	3942

Table 27: Países con mayor Número de Salas de Psiquiatría en 2014

	País	S.Psiquiatría
10	France	29245
5	Germany (until 1990 former territory of the FRG)	18753
9	Spain	4018
1	Belgium	1174
3	Czechia	1174

Table 28: Países con mayor Número de Salas de Psiquiatría en 2015

	País	S.Psiquiatría
10	France	29357
5	Germany (until 1990 former territory of the FRG)	19464
9	Spain	4171
1	Belgium	2473
3	Czechia	2473

Table 29: Países con mayor Número de Salas de Psiquiatría en 2016

	País	S.Psiquiatría
10	France	29657
5	Germany (until 1990 former territory of the FRG)	19909
9	Spain	4366
1	Belgium	2550
4	Denmark	2550

Table 30: Países con mayor Número de Salas de Psiquiatría en 2017

	País	S.Psiquiatría
10	France	29512
5	Germany (until 1990 former territory of the FRG)	21044
9	Spain	4381
1	Belgium	2656
4	Denmark	2656

Table 31: Países con mayor Número de Salas de Psiquiatría en 2018

	País	S.Psiquiatría
10	France	29610
5	Germany (until 1990 former territory of the FRG)	19909
9	Spain	4592
1	Belgium	2653
11	Croatia	1308

Table 32: Países con mayor Número de Salas de Psiquiatría en 2019

	País	S.Psiquiatría
10	France	29610
5	Germany (until 1990 former territory of the FRG)	19909
9	Spain	4381
1	Belgium	2653
11	Croatia	1308

A continuación, se aprupa toda la información (Salas de Psiquiatría) por paises en una tabla:

Table 33: Países con la mayor media en Salas de Psiquiatría en 2010-2019

	País	S Psiquiatría
9	France	29163.6
10	Germany (until 1990 former territory of the FRG)	18440.0
28	Spain	4013.3
1	Austria	2534.3
7	Denmark	2534.3

• Oncological_day_care_place

```
y_2018<-filter(recursos_tec_df, TIME==2018)</pre>
y_2019<-filter(recursos_tec_df, TIME==2019)</pre>
#Se ordena por "Oncological_day_care_place"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$0ncological_day_care_place)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$0ncological_day_care_place)),]
recursos tec 5paises 2012<-y 2012[with(y 2012, order(-y 2012$0ncological day care place)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$0ncological_day_care_place)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Oncological_day_care_place)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Oncological_day_care_place)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Oncological_day_care_place)),]
recursos tec 5paises 2017<-y 2017[with(y 2017, order(-y 2017$0ncological day care place)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$0ncological_day_care_place)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$0ncological_day_care_place)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:S.Oncología) de los 5 Paises con un mayor número de ellas.
kable(recursos_tec_5paises_2010[0:5,c(2,6)], col.names = c("Pais", "S.Oncología"),
      caption = "Países con mayor Número de Salas de Oncología en 2010")
```

Table 34: Países con mayor Número de Salas de Oncología en 2010

	País	S.Oncología
9	Spain	6410
10	France	6052
12	Italy	3097
1	Belgium	1362
2	Bulgaria	1362

Table 35: Países con mayor Número de Salas de Oncología en 2011

	País	S.Oncología
9	Spain	6957
10	France	6052
12	Italy	3056
1	Belgium	1460
2	Bulgaria	1460

Table 36: Países con mayor Número de Salas de Oncología en 2012

	País	S.Oncología
9	Spain	7352
10	France	6052
12	Italy	2818
1	Belgium	1501
2	Bulgaria	1501

Table 37: Países con mayor Número de Salas de Oncología en 2013

	País	S.Oncología
9	Spain	7644
10	France	5710
12	Italy	2768
1	Belgium	1319
2	Bulgaria	1319

Table 38: Países con mayor Número de Salas de Oncología en 2014

	País	S.Oncología
9	Spain	7951
10	France	6052
12	Italy	2715
1	Belgium	1448
3	Czechia	976

Table 39: Países con mayor Número de Salas de Oncología en 2015

	País	S.Oncología
9	Spain	8323
10	France	6273
12	Italy	2666
1	Belgium	1527
2	Bulgaria	962

Table 40: Países con mayor Número de Salas de Oncología en 2016

	País	S.Oncología
9	Spain	8520
10	France	6560
12	Italy	2552
1	Belgium	1493
2	Bulgaria	1493

Table 41: Países con mayor Número de Salas de Oncología en 2017

	País	S.Oncología
9	Spain	8701
10	France	6672
12	Italy	2286
1	Belgium	1514
2	Bulgaria	1514

Table 42: Países con mayor Número de Salas de Oncología en 2018

	País	S.Oncología
9	Spain	9257
10	France	6977
12	Italy	2211
1	Belgium	1611
2	Bulgaria	1611

Table 43: Países con mayor Número de Salas de Oncología en 2019

	País	S.Oncología
9	Spain	8701
10	France	6672
12	Italy	2286
2	Bulgaria	1611
1	Belgium	1514

A continuación, se aprupa toda la información (Salas de Oncología) por paises en una tabla:

Table 44: Países con la mayor media en Salas de Oncología en 2010-2019

	País	S Oncología
28	Spain	7981.6
9	France	6307.2
14	Italy	2645.5
2	Belgium	1474.9
3	Bulgaria	1376.1

• Geriatric_day_care_places

```
#Para "Geriatric day care places"
#Se filtra por Año
y_2010<-filter(recursos_tec_df, TIME==2010)</pre>
y_2011<-filter(recursos_tec_df, TIME==2011)</pre>
y_2012<-filter(recursos_tec_df, TIME==2012)</pre>
y_2013<-filter(recursos_tec_df, TIME==2013)</pre>
y_2014<-filter(recursos_tec_df, TIME==2014)</pre>
y_2015<-filter(recursos_tec_df, TIME==2015)</pre>
y_2016<-filter(recursos_tec_df, TIME==2016)</pre>
y_2017<-filter(recursos_tec_df, TIME==2017)</pre>
y_2018<-filter(recursos_tec_df, TIME==2018)</pre>
y_2019<-filter(recursos_tec_df, TIME==2019)</pre>
#Se ordena por "Geriatric_day_care_places"
recursos tec 5paises 2010<-y 2010[with(y 2010, order(-y 2010$Geriatric day care places)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Geriatric_day_care_places)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Geriatric_day_care_places)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Geriatric_day_care_places)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Geriatric_day_care_places)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Geriatric_day_care_places)),]
```

Table 45: Países con mayor Número de Salas de Geriatría en 2010

	País	S.Geriatría
9	Spain	2280
2	Bulgaria	1839
4	Denmark	1839
5	Germany (until 1990 former territory of the FRG)	1839
7	Ireland	1839

Table 46: Países con mayor Número de Salas de Geriatría en 2011

	País	S.Geriatría
9	Spain	2297
2	Bulgaria	1949
4	Denmark	1949
5	Germany (until 1990 former territory of the FRG)	1949
8	Greece	1949

Table 47: Países con mayor Número de Salas de Geriatría en 2012

	País	S.Geriatría
9	Spain	2329
2	Bulgaria	2013
4	Denmark	2013
5	Germany (until 1990 former territory of the FRG)	2013
8	Greece	2013

Table 48: Países con mayor Número de Salas de Geriatría en 2013

	País	S.Geriatría
9	Spain	2363
2	Bulgaria	2097
4	Denmark	2097
5	Germany (until 1990 former territory of the FRG)	2097
8	Greece	2097

Table 49: Países con mayor Número de Salas de Geriatría en 2014

	País	S.Geriatría
9	Spain	2335
2	Bulgaria	2195
4	Denmark	2195
5	Germany (until 1990 former territory of the FRG)	2195
14	Latvia	2195

Table 50: Países con mayor Número de Salas de Geriatría en 2015

	País	S.Geriatría
5	Germany (until 1990 former territory of the FRG)	2368
2	Bulgaria	2330
4	Denmark	2330
9	Spain	2330
14	Latvia	2330

Table 51: Países con mayor Número de Salas de Geriatría en 2016

	País	S.Geriatría
5	Germany (until 1990 former territory of the FRG)	2397
4	Denmark	2341
9	Spain	2341
14	Latvia	2341
15	Lithuania	2341

Table 52: Países con mayor Número de Salas de Geriatría en 2017

	País	S.Geriatría
5	Germany (until 1990 former territory of the FRG)	2495
4	Denmark	2331
9	Spain	2331
14	Latvia	2331
15	Lithuania	2331

Table 53: Países con mayor Número de Salas de Geriatría en 2018

	País	S.Geriatría
5	Germany (until 1990 former territory of the FRG)	2397
9	Spain	2325
8	Greece	1334
2	Bulgaria	1133
3	Czechia	866

Table 54: Países con mayor Número de Salas de Geriatría en 2019

	País	S.Geriatría
5	Germany (until 1990 former territory of the FRG)	2397
9	Spain	2331
10	France	633
2	Bulgaria	578
3	Czechia	578

A continuación, se aprupa toda la información (Salas de Geriatría) por paises en una tabla:

col.names = c("País", "S Geriatría"),

```
a1<-group_by(recursos_tec_df,Pais) #Se agrupa por paises

#Se selecciona las variables Pais y Geriatric_day_care_places
a2<-select(a1,Pais:Geriatric_day_care_places)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.
a3<-(summarize(a2,suma=sum(Geriatric_day_care_places)/10))

## `summarise()` ungrouping output (override with `.groups` argument)
a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.
a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la información
kable(a5[0:5,c(1,2)],
```

Table 55: Países con la mayor media en Salas de Geriatría en 2010-2019

	País	S Geriatría
28	Spain	2326.2
10	Germany (until 1990 former territory of the FRG)	2214.7
1	Austria	1832.5
7	Denmark	1832.5
12	Hungary	1832.5

• Computed_Tomography_Scanners

```
#Para "Computed_Tomography_Scanners"
#Se filtra por Año
y_2010<-filter(tecnologia_medica_df, TIME==2010)</pre>
y_2011<-filter(tecnologia_medica_df, TIME==2011)</pre>
y 2012<-filter(tecnologia medica df, TIME==2012)
y_2013<-filter(tecnologia_medica_df, TIME==2013)</pre>
y_2014<-filter(tecnologia_medica_df, TIME==2014)
y_2015<-filter(tecnologia_medica_df, TIME==2015)</pre>
y_2016<-filter(tecnologia_medica_df, TIME==2016)</pre>
y 2017<-filter(tecnologia medica df, TIME==2017)
y 2018<-filter(tecnologia medica df, TIME==2018)
y_2019<-filter(tecnologia_medica_df, TIME==2019)
#Se ordena por "Computed_Tomography_Scanners"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013*Computed_Tomography_Scanners)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014*Computed_Tomography_Scanners)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015*Computed_Tomography_Scanners)),]
recursos tec 5paises 2016<-y 2016[with(y 2016, order(-y 2016$Computed Tomography Scanners)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018*Computed_Tomography_Scanners)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Computed_Tomography_Scanners)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:Escáners) de los 5 Paises con un mayor número de ellos.
kable(recursos_tec_5paises_2010[0:5,c(2,3)], col.names = c("País","Escáners"),
      caption = "Países con mayor Número de Escáners en 2010")
```

Table 56: Países con mayor Número de Escáners en 2010

	País	Escáners
5	Germany (until 1990 former territory of the FRG)	2643
12	Italy	1907
35	Turkey	904
10	France	766
9	Spain	743

Table 57: Países con mayor Número de Escáners en 2011

	País	Escáners
5	Germany (until 1990 former territory of the FRG)	2688
12	Italy	1937
35	Turkey	974
10	France	816
9	Spain	778

Table 58: Países con mayor Número de Escáners en 2012

	País	Escáners
5	Germany (until 1990 former territory of the FRG)	2735
12	Italy	1982
35	Turkey	1017
10	France	883
9	Spain	804

Table 59: Países con mayor Número de Escáners en 2013

	País	Escáners
5	Germany (until 1990 former territory of the FRG)	2719
12	Italy	1994
35	Turkey	1058
10	France	953
9	Spain	820

Table 60: Países con mayor Número de Escáners en 2014

	País	Escáners
5	Germany (until 1990 former territory of the FRG)	2862
12	Italy	2000
35	Turkey	1071
10	France	1016
9	Spain	818

Table 61: Países con mayor Número de Escáners en 2015

	País	Escáners
5	Germany (until 1990 former territory of the FRG)	2866
12	Italy	2023
35	Turkey	1119
10	France	1103
9	Spain	837

Table 62: Países con mayor Número de Escáners en 2016

	País	Escáners
5	Germany (until 1990 former territory of the FRG)	2896
12	Italy	2079
35	Turkey	1152
10	France	1131
9	Spain	851

Table 63: Países con mayor Número de Escáners en 2017

	País	Escáners
5	Germany (until 1990 former territory of the FRG)	2904
12	Italy	2093
35	Turkey	1186
10	France	1161
9	Spain	869

Table 64: Países con mayor Número de Escáners en 2018

	País	Escáners
5	Germany (until 1990 former territory of the FRG)	2896
12	Italy	2122
35	Turkey	1211
10	France	1184
9	Spain	895

Table 65: Países con mayor Número de Escáners en 2019

	País	Escáners
5	Germany (until 1990 former territory of the FRG)	2896
12	Italy	2093
10	France	1222
35	Turkey	1186
9	Spain	869

A continuación, se aprupa toda la información (Escáners) por paises en una tabla:

```
a1<-group_by(tecnologia_medica_df,Pais)#Se agrupa por paises

#Se selectiona las variables Pais y Computed_Tomography_Scanners

a2<-select(a1,Pais:Computed_Tomography_Scanners)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Computed_Tomography_Scanners)/10))
```

Table 66: Países con la mayor media en Escáners en 2010-2019

	País	Escáners
12	Germany (until 1990 former territory of the FRG)	2810.5
17	Italy	2023.0
34	Turkey	1087.8
11	France	1023.5
31	Spain	828.4

• Gamma_cameras

```
#Para "Gamma_cameras"
#Se filtra por Año
y_2010<-filter(tecnologia_medica_df, TIME==2010)</pre>
y_2011<-filter(tecnologia_medica_df, TIME==2011)</pre>
y_2012<-filter(tecnologia_medica_df, TIME==2012)</pre>
y 2013<-filter(tecnologia medica df, TIME==2013)
y_2014<-filter(tecnologia_medica_df, TIME==2014)
y_2015<-filter(tecnologia_medica_df, TIME==2015)</pre>
y_2016<-filter(tecnologia_medica_df, TIME==2016)</pre>
y_2017<-filter(tecnologia_medica_df, TIME==2017)</pre>
y_2018<-filter(tecnologia_medica_df, TIME==2018)
y_2019<-filter(tecnologia_medica_df, TIME==2019)
#Se ordena por "Gamma_cameras"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Gamma_cameras)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Gamma_cameras)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Gamma_cameras)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Gamma_cameras)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Gamma_cameras)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Gamma_cameras)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Gamma_cameras)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Gamma_cameras)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Gamma_cameras)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Gamma_cameras)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:Cámaras Gamma) de los 5 Paises con un mayor número de ellos.
kable(recursos_tec_5paises_2010[0:5,c(2,4)], col.names = c("País","C. Gamma"),
     caption = "Países con mayor Número de C. Gamma en 2010")
```

Table 67: Países con mayor Número de C. Gamma en 2010

	País	C. Gamma
12	Italy	688
10	France	334
9	Spain	280
19	Netherlands	179
35	Turkey	171

Table 68: Países con mayor Número de C. Gamma en 2011

	País	C. Gamma
12	Italy	680

	País	C. Gamma
10	France	345
9	Spain	286
19	Netherlands	179
35	Turkey	172

Table 69: Países con mayor Número de C. Gamma en 2012

	País	C. Gamma
12	Italy	635
10	France	379
9	Spain	291
35	Turkey	218
19	Netherlands	174

Table 70: Países con mayor Número de C. Gamma en 2013

	País	C. Gamma
12	Italy	583
10	France	382
9	Spain	298
1	Belgium	256
35	Turkey	252

Table 71: Países con mayor Número de C. Gamma en 2014

	País	C. Gamma
12	Italy	555
10	France	381
9	Spain	301
35	Turkey	260
1	Belgium	244

Table 72: Países con mayor Número de C. Gamma en 2015

País	C. Gamma
Italy	508
France	456
Spain	304
Turkey	274
Belgium	266
	Italy France Spain Turkey

Table 73: Países con mayor Número de C. Gamma en 2016

	País	C. Gamma
12	Italy	479
10	France	462
9	Spain	304
35	Turkey	292
1	Belgium	271

Table 74: Países con mayor Número de C. Gamma en 2017

	País	C. Gamma
12	Italy	492
10	France	469
9	Spain	297
35	Turkey	293
1	Belgium	271

Table 75: Países con mayor Número de C. Gamma en 2018

	País	C. Gamma
10	France	466
12	Italy	465
9	Spain	309
35	Turkey	299
8	Greece	144

Table 76: Países con mayor Número de C. Gamma en 2019

	País	C. Gamma
12	Italy	479
10	France	462
9	Spain	304
35	Turkey	293
21	Poland	149

A continuación, se aprupa toda la información (C. Gamma) por paises en una tabla:

```
a1<-group_by(tecnologia_medica_df,Pais) #Se agrupa por paises

#Se selectiona las variables Pais y Gamma_cameras

a2<-select(a1,Pais:Gamma_cameras)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Gamma_cameras)/10))

## `summarise()` ungrouping output (override with `.groups` argument)

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)],

col.names = c("País", "C. Gamma"),

caption = "Países con la mayor media en C. Gamma en 2010-2019")
```

Table 77: Países con la mayor media en C. Gamma en 2010-2019

	País	C. Gamma
17	Italy	556.4
11	France	413.6
31	Spain	297.4
34	Turkey	252.4
3	Belgium	204.5

• Lithotriptors

```
y_2018<-filter(tecnologia_medica_df, TIME==2018)
y_2019<-filter(tecnologia_medica_df, TIME==2019)
#Se ordena por "Lithotriptors"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Lithotriptors)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Lithotriptors)),]
recursos tec 5paises 2012<-y 2012[with(y 2012, order(-y 2012$Lithotriptors)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Lithotriptors)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Lithotriptors)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Lithotriptors)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Lithotriptors)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Lithotriptors)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Lithotriptors)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Lithotriptors)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:Litotriptores) de los 5 Paises con un mayor número de ellos.
kable(recursos_tec_5paises_2010[0:5,c(2,5)],
      col.names = c("País","Lithotriptors"),
      caption = "Países con mayor Número de Lithotriptors en 2010")
```

Table 78: Países con mayor Número de Lithotriptors en 2010

	País	Lithotriptors
5	Germany (until 1990 former territory of the FRG)	2211
35	Turkey	208
21	Poland	169
1	Belgium	116
9	Spain	80

Table 79: Países con mayor Número de Lithotriptors en 2011

	País	Lithotriptors
35	Turkey	249
21	Poland	169
1	Belgium	118
2	Bulgaria	84
4	Denmark	84

Table 80: Países con mayor Número de Lithotriptors en 2012

	País	Lithotriptors
35	Turkey	267
21	Poland	191
1	Belgium	118
9	Spain	85
2	Bulgaria	63

Table 81: Países con mayor Número de Lithotriptors en 2013

	País	Lithotriptors
35	Turkey	279
21	Poland	189
1	Belgium	121
9	Spain	85
2	Bulgaria	66

Table 82: Países con mayor Número de Lithotriptors en 2014

	País	Lithotriptors
35	Turkey	307
21	Poland	189
1	Belgium	132
9	Spain	89
2	Bulgaria	60

Table 83: Países con mayor Número de Lithotriptors en 2015

	País	Lithotriptors
35	Turkey	350
21	Poland	192
1	Belgium	132
9	Spain	87
2	Bulgaria	70

Table 84: Países con mayor Número de Lithotriptors en 2016

	País	Lithotriptors
5	Germany (until 1990 former territory of the FRG)	2840
12	Italy	1722
10	France	904
35	Turkey	307
21	Poland	189

Table 85: Países con mayor Número de Lithotriptors en 2017

	País	Lithotriptors
5	Germany (until 1990 former territory of the FRG)	2896
12	Italy	1735
10	France	950
35	Turkey	307
1	Belgium	271

Table 86: Países con mayor Número de Lithotriptors en 2018

	País	Lithotriptors
5	Germany (until 1990 former territory of the FRG)	2896
12	Italy	1736
10	France	989
30	Switzerland	332
35	Turkey	307

Table 87: Países con mayor Número de Lithotriptors en 2019

	País	Lithotriptors
5	Germany (until 1990 former territory of the FRG)	2896
12	Italy	1736
10	France	1034

	País	Lithotriptors
30	Switzerland	332
35	Turkey	307

A continuación, se aprupa toda la información (Lithotriptors) por paises en una tabla:

```
al<-group_by(tecnologia_medica_df,Pais) #Se agrupa por paises

#Se selecciona las variables Pais y Lithotriptors

a2<-select(a1,Pais:Lithotriptors)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Lithotriptors)/10))

## `summarise()` ungrouping output (override with `.groups` argument)

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la informacion

kable(a5[0:5,c(1,2)],

col.names = c("País", "Lithotriptors"),

caption = "Países con la mayor media en Lithotriptors en 2010-2019")
```

Table 88: Países con la mayor media en Lithotriptors en 2010-2019

	País	Lithotriptors
12	Germany (until 1990 former territory of the FRG)	1408.2
17	Italy	711.5
11	France	406.3
34	Turkey	288.8
25	Poland	185.5

• Magnetic_Resonance_Imaging_Units

Table 89: Países con mayor Número de unidades en R. Magnética en $2010\,$

	País	R.Magnética
5	Germany (until 1990 former territory of the FRG)	2211
12	Italy	1332
35	Turkey	678
9	Spain	558
10	France	451

Table 90: Países con mayor Número de unidades en R. Magnética en 2011

	País	R.Magnética
5	Germany (until 1990 former territory of the FRG)	2317
12	Italy	1435
35	Turkey	709
9	Spain	643
10	France	489

Table 91: Países con mayor Número de unidades en R. Magnética en 2012

	País	R.Magnética
5	Germany (until 1990 former territory of the FRG)	2305
12	Italy	1466
35	Turkey	720
9	Spain	691
10	France	566

Table 92: Países con mayor Número de unidades en R. Magnética en 2013

	País	R.Magnética
5	Germany (until 1990 former territory of the FRG)	2332
12	Italy	1518
35	Turkey	751
9	Spain	715
10	France	618

Table 93: Países con mayor Número de unidades en R. Magnética en $2014\,$

	País	R.Magnética
5	Germany (until 1990 former territory of the FRG)	2470
12	Italy	1592
35	Turkey	757
9	Spain	721
10	France	720

Table 94: Países con mayor Número de unidades en R. Magnética en
 $2015\,$

	País	R.Magnética
5	Germany (until 1990 former territory of the FRG)	2747
12	Italy	1715
10	France	836
35	Turkey	794

	País	R.Magnética
9	Spain	736

Table 95: Países con mayor Número de unidades en R. Magnética en $2016\,$

	País	R.Magnética
5	Germany (until 1990 former territory of the FRG)	2840
12	Italy	1722
10	France	904
35	Turkey	836
9	Spain	748

Table 96: Países con mayor Número de unidades en R. Magnética en
 $2017\,$

	País	R.Magnética
5	Germany (until 1990 former territory of the FRG)	2869
12	Italy	1735
10	France	950
35	Turkey	884
9	Spain	763

Table 97: Países con mayor Número de unidades en R. Magnética en 2018

	País	R.Magnética
5	Germany (until 1990 former territory of the FRG)	2840
12	Italy	1736
10	France	989
35	Turkey	915
9	Spain	805

Table 98: Países con mayor Número de unidades en R. Magnética en 2019

	País	R.Magnética
5	Germany (until 1990 former territory of the FRG)	2840
12	Italy	1735
10	France	1034
35	Turkey	884
9	Spain	763

A continuación, se aprupa toda la información (R.Magnética) por paises en una tabla:

```
a1<-group_by(tecnologia_medica_df,Pais) #Se agrupa por paises

#Se selectiona las variables Pais y Magnetic_Resonance_Imaging_Units

a2<-select(a1,Pais:Magnetic_Resonance_Imaging_Units)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Magnetic_Resonance_Imaging_Units)/10))

## `summarise()` ungrouping output (override with `.groups` argument)

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la informacion

kable(a5[0:5,c(1,2)],

col.names = c("País", "R.Magnética"),

caption = "Países con la mayor media en unidades en R.Magnética en 2010-2019")
```

Table 99: Países con la mayor media en unidades en R. Magnética en 2010-2019

	País	R.Magnética
12	Germany (until 1990 former territory of the FRG)	2577.1
17	Italy	1598.6
34	Turkey	792.8
11	France	755.7
31	Spain	714.3

• Angiography_units

```
y_2017<-filter(tecnologia_medica_df, TIME==2017)</pre>
y_2018<-filter(tecnologia_medica_df, TIME==2018)
y_2019<-filter(tecnologia_medica_df, TIME==2019)
#Se ordena por "Angiography_units"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Angiography_units)),]
recursos tec 5paises 2011<-y 2011[with(y 2011, order(-y 2011$Angiography units)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Angiography_units)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Angiography_units)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Angiography_units)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Angiography_units)),]
recursos tec 5paises 2016<-y 2016[with(y 2016, order(-y 2016$Angiography units)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Angiography_units)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Angiography_units)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Angiography_units)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities: U. Angiografía) de los 5 Paises con un mayor número de ellos.
kable(recursos_tec_5paises_2010[0:5,c(2,7)],
      col.names = c("País", "U.Angiografía"),
      caption = "Países con mayor Número de unidades en Angiografía en 2010")
```

Table 100: Países con mayor Número de unidades en Angiografía en 2010

	País	U.Angiografía
5	Germany (until 1990 former territory of the FRG)	2211
12	Italy	723
21	Poland	332
35	Turkey	264
9	Spain	239

Table 101: Países con mayor Número de unidades en Angiografía en 2011

	País	U.Angiografía
12	Italy	759
21	Poland	394
35	Turkey	320
9	Spain	249
30	Switzerland	216

Table 102: Países con mayor Número de unidades en Angiografía en 2012

	País	U.Angiografía
12	Italy	797
21	Poland	429
35	Turkey	344
9	Spain	264
30	Switzerland	221

Table 103: Países con mayor Número de unidades en Angiografía en 2013

	País	U.Angiografía
12	Italy	807
21	Poland	404
35	Turkey	354
9	Spain	262
30	Switzerland	234

Table 104: Países con mayor Número de unidades en Angiografía en $2014\,$

	País	U.Angiometría
12	Italy	838
21	Poland	427
35	Turkey	363
9	Spain	259
30	Switzerland	247

Table 105: Países con mayor Número de unidades en Angiografía en 2015

	País	U.Angiografía
12	Italy	834

	País	U.Angiografía
21	Poland	468
35	Turkey	406
9	Spain	267
30	Switzerland	234

Table 106: Países con mayor Número de unidades en Angiografía en $2016\,$

	País	R.Magnética
5	Germany (until 1990 former territory of the FRG)	2840
10	France	904
12	Italy	834
21	Poland	427
35	Turkey	363

Table 107: Países con mayor Número de unidades en Angiografía en $2017\,$

	País	U.Angiografía
5	Germany (until 1990 former territory of the FRG)	2896
10	France	950
12	Italy	834
21	Poland	427
35	Turkey	363

Table 108: Países con mayor Número de unidades en Angiografía en $2018\,$

	País	U.Angiografía
5	Germany (until 1990 former territory of the FRG)	2896
10	France	989
12	Italy	834
21	Poland	427
35	Turkey	363

Table 109: Países con mayor Número de unidades en Angiografía en 2019

	País	U.Angiografía
5	Germany (until 1990 former territory of the FRG)	2896
10	France	1034
12	Italy	834
21	Poland	427
35	Turkey	363

A continuación, se aprupa toda la información (R.Magnética) por paises en una tabla:

```
a1<-group_by(tecnologia_medica_df,Pais) #Se agrupa por paises

#Se selecciona las variables Pais y Angiography_units

a2<-select(a1,Pais:Angiography_units)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Angiography_units)/10))

## `summarise()` ungrouping output (override with `.groups` argument)

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)],

col.names = c("País", "U. Angiografía"),

caption = "Países con la mayor media en unidades en Angiografía en 2010-2019")
```

Table 110: Países con la mayor media en unidades en Angiografía en 2010-2019

	País	U. Angiografía
12	Germany (until 1990 former territory of the FRG)	1416.6
17	Italy	809.4
11	France	433.9
25	Poland	416.2
34	Turkey	350.3

• Camas Disponibles_ Value

```
y_2012<-filter(camas_disponibles_df, TIME==2012)</pre>
y_2013<-filter(camas_disponibles_df, TIME==2013)</pre>
y_2014<-filter(camas_disponibles_df, TIME==2014)</pre>
y_2015<-filter(camas_disponibles_df, TIME==2015)</pre>
y_2016<-filter(camas_disponibles_df, TIME==2016)</pre>
y_2017<-filter(camas_disponibles_df, TIME==2017)</pre>
y_2018<-filter(camas_disponibles_df, TIME==2018)</pre>
y 2019<-filter(camas disponibles df, TIME==2019)
#Se ordena por "Camas Disponibles_Value"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Value)),]
recursos tec 5paises 2011<-y 2011[with(y 2011, order(-y 2011$Value)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Value)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Value)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Value)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Value)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Value)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Value)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Value)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Value)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:Camas Disponibles) de los 5 Paises con un mayor número de ellas.
kable(recursos_tec_5paises_2010[0:5,c(2,5)],
      col.names = c("País","Camas"),
      caption = "Países con mayor Número de Camas Disponibles en 2010")
```

Table 111: Países con mayor Número de Camas Disponibles en 2010

	País	Camas
5	Germany (until 1990 former territory of the FRG)	674473
10	France	416710
21	Poland	251456
12	Italy	215980
37	Turkey	200239

Table 112: Países con mayor Número de Camas Disponibles en 2011

	País	Camas
5	Germany (until 1990 former territory of the FRG)	672573
10	France	414204
21	Poland	252281
12	Italy	208854
37	Turkey	194504

Table 113: Países con mayor Número de Camas Disponibles en 2012

	País	Camas
5	Germany (until 1990 former territory of the FRG)	670443
10	France	414840
21	Poland	252352
12	Italy	203723
37	Turkey	200072

Table 114: Países con mayor Número de Camas Disponibles en 2013

	País	Camas
5	Germany (until 1990 former territory of the FRG)	667560
10	France	413206
21	Poland	251383
37	Turkey	202031
12	Italy	199474

Table 115: Países con mayor Número de Camas Disponibles en 2014

	País	Camas
5	Germany (until 1990 former territory of the FRG)	666337
10	France	410921
21	Poland	251904
37	Turkey	206836
12	Italy	195189

Table 116: Países con mayor Número de Camas Disponibles en 2015

	País	Camas
5	Germany (until 1990 former territory of the FRG)	664364
10	France	408245
21	Poland	252029

	País	Camas
37	Turkey	209648
12	Italy	194065

Table 117: Países con mayor Número de Camas Disponibles en 2016

	País	Camas
5	Germany (until 1990 former territory of the FRG)	663941
10	France	404248
21	Poland	252136
37	Turkey	217771
12	Italy	192315

Table 118: Países con mayor Número de Camas Disponibles en 2017

	País	Camas
5	Germany (until 1990 former territory of the FRG)	661448
10	France	399865
21	Poland	251537
37	Turkey	225863
12	Italy	192548

Table 119: Países con mayor Número de Camas Disponibles en 2018

	País	Camas
5	Germany (until 1990 former territory of the FRG)	663941
10	France	395670
21	Poland	248239
37	Turkey	231913
12	Italy	189753

Table 120: Países con mayor Número de Camas Disponibles en 2019

	País	Camas
5	Germany (until 1990 former territory of the FRG)	663941
10	France	399865
21	Poland	251537
37	Turkey	225863
12	Italy	192315

A continuación, se aprupa toda la información (Camas Disponibles) por paises en una tabla:

```
a1<-group_by(camas_disponibles_df,GEO) #Se agrupa por paises

#Se selectiona las variables Pais y Camas Disponibles

a2<-select(a1,GEO:Value)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Value)/10))

## `summarise()` ungrouping output (override with `.groups` argument)

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)],

col.names = c("País", "Camas Disponibles"),

caption = "Países con la mayor media en Camas Disponibles en 2010-2019")
```

Table 121: Países con la mayor media en Camas Disponibles en 2010-2019

	País	Camas Disponibles
12	Germany (until 1990 former territory of the FRG)	666902.1
11	France	407777.4
27	Poland	251485.4
36	Turkey	211474.0
17	Italy	198421.6

• 1.1.3 Normalidad de la variable "Value"

Se comprueba con métodos visuales si la variable tiene una distribución normal.

QUIRÓFANOS

```
par(mfrow=c(1,2))
plot(density(recursos_tec_df$Operation_theatres_in_hospital_norm) ,main="Density")
qqnorm(recursos_tec_df$Operation_theatres_in_hospital_norm)
qqline(recursos_tec_df$Operation_theatres_in_hospital_norm)
```


Para estudiar si una muestra proviene de una población con distribución normal, se disponen de tres herramientas:

- Histograma o Densidad
- Gráficos cuantil cuantil (QQplot)
- Pruebas de hipótesis.

Si en la prueba de Densidad se observa sesgo hacia uno de los lados de la gráfica, sería indicio de que la muestra no proviene de una población normal. Si por otra parte, sí se observa simetría, **NO** se garantiza que la muestra provenga de una población normal. En estos casos sería necesario utilizar otras herramientas como **QQplot y pruebas de hipótesis**.

En la gráfica Densidad de la variable "Operation_theatres_in_hospital_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico. Si se tuviese una muestra distribuída normalmente, se esperaría que los puntos del gráfico quantil quantil estuviesen perfectamente alineados con la línea de referencia, y observamos que para este caso, "Operation_theatres_in_hospital_norm" no se alinea. Confirmaría los resultados del gráfico de densidad.

Por otro lado, se realizan las pruebas de hipótesis:

- \$h_0: La muestra proviene de una población normal.
- \$h 1: La muestra NO proviene de una población normal.

Se aplica la prueba Shapiro-Wilk:

shapiro.test(recursos_tec_df\$Operation_theatres_in_hospital_norm)

##

Shapiro-Wilk normality test

```
##
## data: recursos_tec_df$Operation_theatres_in_hospital_norm
## W = 0.65768, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

SALAS DE CIRUGÍA

```
par(mfrow=c(1,2))
plot(density(recursos_tec_df$Surgical_day_care_places_norm) ,main="Density")
qqnorm(recursos_tec_df$Surgical_day_care_places_norm)
qqline(recursos_tec_df$Surgical_day_care_places_norm)
```


En la gráfica Densidad de la variable "Surgical_day_care_places_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Surgical_day_care_places_norm".

Tras aplicar la prueba Shapiro-Wilk:

```
shapiro.test(recursos_tec_df$Surgical_day_care_places_norm)

##
## Shapiro-Wilk normality test
##
## data: recursos_tec_df$Surgical_day_care_places_norm
## W = 0.58393, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por

lo que se rechaza la hipótesis nula y asumimos No normalidad en la muestra.

SALAS PSIQUIÁTRICAS

```
par(mfrow=c(1,2))
plot(density(recursos_tec_df$Psychiatric_day_care_place_norm) ,main="Density")
qqnorm(recursos_tec_df$Psychiatric_day_care_place_norm)
qqline(recursos_tec_df$Psychiatric_day_care_place_norm)
```


En la gráfica Densidad de la variable "Psychiatric_day_care_place_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Psychiatric_day_care_place_norm".

Tras aplicar la prueba Shapiro-Wilk:

```
shapiro.test(recursos_tec_df$Psychiatric_day_care_place_norm)

##

## Shapiro-Wilk normality test

##

## data: recursos_tec_df$Psychiatric_day_care_place_norm

## W = 0.45965, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

CONSULTAS ONCOLÓGICAS

```
par(mfrow=c(1,2))
plot(density(recursos_tec_df$Oncological_day_care_place_norm) ,main="Density")
qqnorm(recursos_tec_df$Oncological_day_care_place_norm)
qqline(recursos_tec_df$Oncological_day_care_place_norm)
```


En la gráfica Densidad de la variable "Oncological_day_care_place_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Oncological_day_care_place_norm".

Tras aplicar la prueba Shapiro-Wilk:

```
shapiro.test(recursos_tec_df$Oncological_day_care_place_norm)

##

## Shapiro-Wilk normality test

##

## data: recursos_tec_df$Oncological_day_care_place_norm

## W = 0.60077, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

CONSULTAS GERIÁTRICAS

```
par(mfrow=c(1,2))
plot(density(recursos_tec_df$Geriatric_day_care_places_norm) ,main="Density")
qqnorm(recursos_tec_df$Geriatric_day_care_places_norm)
qqline(recursos_tec_df$Geriatric_day_care_places_norm)
```


En la gráfica Densidad de la variable "Geriatric_day_care_places_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Geriatric_day_care_places_norm".

Tras aplicar la prueba Shapiro-Wilk:

```
shapiro.test(recursos_tec_df$Geriatric_day_care_places_norm)

##

## Shapiro-Wilk normality test

##

## data: recursos_tec_df$Geriatric_day_care_places_norm

## W = 0.81538, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

ESCÁNERS

```
par(mfrow=c(1,2))
plot(density(tecnologia_medica_df$Computed_Tomography_Scanners_norm) ,main="Density")
qqnorm(tecnologia_medica_df$Computed_Tomography_Scanners_norm)
qqline(tecnologia_medica_df$Computed_Tomography_Scanners_norm)
```


En la gráfica Densidad de la variable "Computed_Tomography_Scanners_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Computed_Tomography_Scanners_norm".

Tras aplicar la prueba Shapiro-Wilk:

```
shapiro.test(tecnologia_medica_df$Computed_Tomography_Scanners_norm)

##

## Shapiro-Wilk normality test

##

## data: tecnologia_medica_df$Computed_Tomography_Scanners_norm

## W = 0.59363, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

CÁMARAS GAMMA

```
par(mfrow=c(1,2))
plot(density(tecnologia_medica_df$Gamma_cameras_norm) ,main="Density")
qqnorm(tecnologia_medica_df$Gamma_cameras_norm)
qqline(tecnologia_medica_df$Gamma_cameras_norm)
```


En la gráfica Densidad de la variable "Gamma_cameras_norm" , se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Gamma_cameras_norm".

Tras aplicar la prueba Shapiro-Wilk:

```
shapiro.test(tecnologia_medica_df$Gamma_cameras_norm)

##
## Shapiro-Wilk normality test
##
## data: tecnologia_medica_df$Gamma_cameras_norm
## W = 0.71992, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

LITOTRIPTORES

```
par(mfrow=c(1,2))
plot(density(tecnologia_medica_df$Lithotriptors_norm) ,main="Density")
qqnorm(tecnologia_medica_df$Lithotriptors_norm)
qqline(tecnologia_medica_df$Lithotriptors_norm)
```


En la gráfica Densidad de la variable "Lithotriptors_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Lithotriptors_norm".

Tras aplicar la prueba Shapiro-Wilk:

```
shapiro.test(tecnologia_medica_df$Lithotriptors_norm)
```

```
##
## Shapiro-Wilk normality test
##
## data: tecnologia_medica_df$Lithotriptors_norm
## W = 0.2844, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

UNIDADES DE RESONANCIA MAGNÉTICA

```
par(mfrow=c(1,2))
plot(density(tecnologia_medica_df$Magnetic_Resonance_Imaging_Units_norm) ,main="Density")
qqnorm(tecnologia_medica_df$Magnetic_Resonance_Imaging_Units_norm)
qqline(tecnologia_medica_df$Magnetic_Resonance_Imaging_Units_norm)
```


En la gráfica Densidad de la variable "Magnetic_Resonance_Imaging_Units", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Magnetic_Resonance_Imaging_Units".

Tras aplicar la prueba Shapiro-Wilk:

```
shapiro.test(tecnologia_medica_df$Magnetic_Resonance_Imaging_Units_norm)

##

## Shapiro-Wilk normality test

##

## data: tecnologia_medica_df$Magnetic_Resonance_Imaging_Units_norm

## W = 0.51976, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

UNIDADES DE ANGIOGRAFÍA

```
par(mfrow=c(1,2))
plot(density(tecnologia_medica_df$Angiography_units_norm) ,main="Density")
qqnorm(tecnologia_medica_df$Angiography_units_norm)
qqline(tecnologia_medica_df$Angiography_units_norm)
```


En la gráfica Densidad de la variable "Angiography_units", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Angiography_units".

Tras aplicar la prueba Shapiro-Wilk:

```
shapiro.test(tecnologia_medica_df$Angiography_units_norm)

##
## Shapiro-Wilk normality test
##
## data: tecnologia_medica_df$Angiography_units_norm
## W = 0.38649, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

CAMAS DISPONIBLES

```
par(mfrow=c(1,2))
plot(density(camas_disponibles_df$Value_norm) ,main="Density")
qqnorm(camas_disponibles_df$Value_norm)
qqline(camas_disponibles_df$Value_norm)
```


En la gráfica Densidad de la variable "Value_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Value_norm".

Tras aplicar la prueba Shapiro-Wilk:

```
shapiro.test(camas_disponibles_df$Value_norm)

##
## Shapiro-Wilk normality test
##
## data: camas_disponibles_df$Value_norm
## W = 0.59891, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.