2017 Fall - Math 355 - Homework 10

Due: Friday, November 17 in class.¹

Unless specified otherwise, you must always show your work and justify your answers.

- (1) Let V be a vector space and let $f: V \to V$ be a linear. Suppose $\vec{v}, \vec{w} \in V$ are two nonzero vectors. Suppose there exist scalars λ, μ such that $f(\vec{v}) = \lambda \vec{v}$, $f(\vec{w}) = \mu \vec{w}$. Show that if $\lambda \neq \mu$ than \vec{v} and \vec{w} are linearly independent.
- (2) Let $V = M_{2\times 2}(\mathbb{C})$ be the complex vector space of two-by-two matrices with complex entries. If $A \in V$ is a matrix, its transpose A^t is defined as follows.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad A^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

Consider the linear map $\tau: V \to V$ defined by $\tau(A) = A + A^{t,2}$

- (a) What are $\dim_{\mathbb{C}} \ker \tau$, $\dim_{\mathbb{C}} \operatorname{Im} \tau$?
- (b) Is $V = \ker \tau \oplus \operatorname{Im} \tau$? Why, why not?³
- (3) Consider the matrix

$$A = \begin{pmatrix} -2 & -2 & -9 \\ -1 & 1 & -3 \\ 1 & 1 & 4 \end{pmatrix}$$

which we view as representing a linear map f in the standard basis.⁴

- (a) Is A diagonalizable over \mathbb{R} ?
- (b) Is A diagonalizable over \mathbb{C} ?
- (c) If A is diagonalizable, find a basis \mathbb{B} (of \mathbb{R}^3 or \mathbb{C}^3) consisting of eigenvectors for A.
- (d) Compute $\operatorname{Rep}_{\mathbb{B}} f$.

 $^{^1{\}rm This}$ file was last updated at 15:05 on Friday $10^{\rm th}$ November, 2017.

²Notice that $(A+B)^t = A^t + B^t$ for any $A, B \in V$. Also, $(\alpha B)^t = \alpha B^t$ for $B \in V$, $\alpha \in \mathbb{R}$.

³A matrix in ker τ is called *antisymmetric*.

⁴To simply the computations we point out that 1 is a root of the characteristic polynomial of A.