,(1), מטלה חורת ההסתברות - 01 מטלה

2024 באוקטובר 31

שאלה 1

. הטענות הטענות או נפריך או בדיד, נוכיח הסתברות מרחב (Ω, \mathbb{P}) היי

'סעיף א

$$\mathbb{.P}(A\cup B)=\mathbb{P}(B)$$
 מתקיים $B\subseteq \Omega$ לכל אז $\mathbb{P}(A)=0$ מקיימת $A\subseteq \Omega$ שאם נוכיה נוכיה נוכיה

$$\mathbb{P}(B)=\mathbb{P}(D\cup(A\cap B))=\mathbb{P}(D)+\mathbb{P}(A\cap B)$$
 נקבל נקבל קבל היא זרה באיחוד ל- $B\setminus A$ היא זרה באיחוד ל- $B\setminus A\cap B$ הוכחה. נבחין כי $A\cap B \setminus B$ היא זרה באיחוד ל- $B\setminus B \setminus A\cap B$ בל ל- $B\setminus A\cap B$ ולכן מתכונות פונקציית הסתברות נקבל החברות נקבל היא אבל ל- $B\setminus B$

לכן ונקבל בטענה נשתמש $\mathbb{P}(D) = \mathbb{P}(B)$ לכן

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \cup (B \setminus A)) = \mathbb{P}(A) + \mathbb{P}(D) = 0 + \mathbb{P}(B)$$

וקיבלנו כי השוויון אכן מתקיים.

'סעיף ב

 $\mathbb{P}(A) \leq \mathbb{P}(B)$ אז $A \subseteq B$ נוכיח שאם

הוכחה. למעשה תכונה זו הוכחה בהרצאה, נעתיק את ההוכחה:

- בלבד. $\mathbb{P}(\emptyset)=0$ בסיק כי סתירה, נסיק כי שר לכן אילו $\mathbb{P}(\emptyset)\neq0$ נקבל איחוד של קבוצות הוא דר, לכן אילו $\mathbb{P}(\emptyset)=\mathbb{P}(\emptyset)=\sum_{i=1}^\infty\mathbb{P}(\emptyset)$ בלבד. 1.
 - ונקבל ונקבל בסיגמא־אדיטיביות ונקבל i>n לכל לכל גדיר (גדיר 2.

$$\mathbb{P}(\bigcup_{i\in I}A_i) = \mathbb{P}(\bigcup_{i\in \mathbb{N}}A_i) = \sum_{i\in \mathbb{N}}\mathbb{P}(A_i) = \sum_{i\in I}\mathbb{P}(A_i)$$

 $\mathbb{P}(D)=\mathbb{P}(A)+\mathbb{P}(B\setminus A)\geq \mathbb{P}(A)$ נשתמש בתכונה 2 על $B,B\setminus A$, אלו הן קבוצות זרות כמובן, אם נגדיר ($B\setminus A$) נשתמש בתכונה 2 על $B,B\setminus A$, אלו הן קבוצות זרות כמובן. B

'סעיף ג

 $\mathbb{P}(A) \lneq \mathbb{P}(B)$ אז $A \subsetneq B$ כי הטענה הטענה נסתור נסתור

 \mathbb{P}_p את את $p(1)=p(2)=rac{1}{2}, p(3)=0$ ונבחן את פתרון נגדיר $\Omega=[3]$ ונבחן

אם נגדיר $\mathbb{P}(A)=\mathbb{P}(B)=rac{1}{2}$ אבל $A\subsetneq B$ נקבל $A=\{1\}, B=\{1,3\}$ אם נגדיר אם נגדיר

'סעיף ד

 $\mathbb{P}(A\cap B)\geq \mathbb{P}(A)+\mathbb{P}(B)-1$ מתקיים $A,B\subseteq \Omega$ נוכיח שלכל

, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ נקבל נקברות הסתברות פונקציית מתכונות מתכונות

לאחר החלפת אגפים נקבל

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B) \ge \mathbb{P}(A) + \mathbb{P}(B) - 1$$

 $A\cup B$ ובפרט עבור $X\in\mathcal{F}$ לכל לכל $1>\mathbb{P}(X)$ שכן מתקיים

'סעיף ה

 $\mathbb{P}(A\triangle B)=\mathbb{P}(A)+\mathbb{P}(B)-2\mathbb{P}(A\cap B)$ נוכיח כי מתקיים

, $A\triangle B=(A\cup B)\setminus (A\cap B)=(A\cup B)\cap (A\cap B)^C$ כם הוילה נבחין נבחים. נשתמש בשוויון מהסעיף הקודם ונקבל נעתמש

$$\mathbb{P}(A \triangle B) = \mathbb{P}((A \cup B) \cap (A \cap B)^{C})
= \mathbb{P}(A \cup B) + \mathbb{P}((A \cap B)^{C}) - \mathbb{P}((A \cup B) \cup (A \cap B)^{C})
= \mathbb{P}(A \cup B) + \mathbb{P}(\Omega \setminus (A \cap B)) - \mathbb{P}(\Omega)
= \mathbb{P}(A \cup B) + \mathbb{P}(\Omega) - \mathbb{P}(A \cap B) - 1
= \mathbb{P}(A) + \mathbb{P}(B) - 2\mathbb{P}(A \cap B)$$
(1)

. בוצות, מדה־מורגן שנובעת אינובער א $A\cup B\cup (A\cap B)^C=A\cup B\cup A^C\cup B^C=\Omega$ שנובעת מדה־מורגן כאשר כאשר כאשר כאשר המעבר (1)

שאלה 2

. $\mathbb{P}(\{n\})=3\mathbb{P}(\{n+1\})$ המקיימת $\Omega=\mathbb{N}$ על יחידה הסתברות פונקציית פונקציית מקיימת מידה על

 $p(n)=2\cdot rac{1}{3^n}$ על־ידי $p:\mathbb{N} o [0,1]$ נגדיר נגדיר הסתברות, פונקציית פונקציית פונקציית נגדיר

נקבל מנוסחת סכום סדרה הנדסית ש \mathbb{P}_p ולכן זוהי פונקציית הסתברות נקודתית והיא משרה שרה $\sum_{n=1}^\infty p(n)=1$ המקיימת את נקבל מנוסחת סכום סדרה הנדסית שלכל הפחות פונקציה אחת כזו.

. מטענה את המקיימות הסתברות פונקציות שרי \mathbb{P}, \mathbb{P}' שתי שרי היטות, נניח להוכחת להוכחת שרי פונקציות שרי שרי שרי הטענה.

נקבל נקבל מסיגמא־אדיטיביות בקבל . $\mathbb{P}(\{n\})=3^{1-n}\mathbb{P}(\{1\})$ כי נקבל על מסיגמא־אדיטיביות באינדוקציה על מ

$$1 = \mathbb{P}(\mathbb{N}) = \mathbb{P}(\bigcup_{n \in \mathbb{N}} \{n\}) = \sum_{n \in \mathbb{N}} \mathbb{P}(\{n\}) = \sum_{n=1}^{\infty} \mathbb{P}(\{1\}) 3^{1-n} = \mathbb{P}(\{1\}) \sum_{n=1}^{\infty} 3^{1-n} = \mathbb{P}(\{1\}) \cdot \frac{1}{1 - \frac{1}{3}}$$

ולכן נסיק $\frac{2}{3}$ ($\{1\}$) וממהלך זה נוכל גם להסיק על־ידי סעיף ב' בתנאים שקולים לפונקציית הסתברות בדידה שקיימות פונקציות הסתברות ולכן נסיק $\mathbb{P}(\{1\})=\frac{2}{3}$ וממהלך זה נוכל גם להסיק על־ידי סעיף ב' בתנאים על־ידי p=p' ובהתאם להגדרה הרקורסיבית נקבל p=p' אבל קיבלנו אם כך ש־p=p' ובהתאם להגדרה הרקורסיבית נקבל p=p' אבל קיבלנו אם כך ש־p=p' ובהתאם להגדרה הרקורסיבית הסתברות יחידה המקיימת את תנאי הטענה.

נקבל $\mathbb{P}(\mathbb{N})=1$ נקבל ואת $\mathbb{P}(3\mathbb{N})$ ואת ואת $\mathbb{P}(\mathbb{N})=1$ נקבל

$$\mathbb{P}(3\mathbb{N}) = \sum_{n \in 3\mathbb{N}} \mathbb{P}(\{n\}) = \sum_{n=1}^{\infty} p(3n) = \sum_{n=1}^{\infty} 2 \cdot \frac{1}{3^{3n}} = \sum_{n=1}^{\infty} 2 \cdot \frac{1}{9^n} = \frac{1}{4}$$

שאלה 3

מטעמי קריאות ולאור דרישת שמירת סדר מופע השאלות, שאלות 1 עד 7 בחלק השני של המטלה תאוגדנה כסעיפים א' עד ז' בשאלה זו. (Ω,\mathbb{P}) לכל סיטואציה בסעיפים הבאים.

'סעיף א

'סעיף ב

מטילים שתי קוביות הוגנות, לכן $\Omega=[6]^2$ ו- $\Omega=[6]^2$ ונחשב את ההסתברות שסכום התוצאות הוא לפחות 7. נגדיר את המאורע $A=\bigcup_{i\in[6]}A_i$ ונקבל $A=\bigcup_{i\in[6]}A_i$ עבור $A=\{(i,n)\in\Omega\mid i+n\geq7\}$ ונפרק אותו למקרים, נגדיר לכן לכן

$$\mathbb{P}(A) = \mathbb{P}(\bigcup_{i \in [6]} A_i) = \sum_{i=1}^{6} \mathbb{P}(A_i) = \sum_{i=1}^{6} \frac{i}{6^2} = \frac{1}{6^2} \cdot \frac{6 \cdot 7}{2}$$

'סעיף ג

נתונה קבוצה של עשרה חודשי לידה ולכן נקבע $\Omega=[12]^{10}$, ונתון כי ההסתברות היא אחידה. נחשב את הסבירות ששני אנשים לפחות נולדו $B=\{(x_i)\in\{x_i\}\in\{x_i\}$ באותו חודש. המאורע הוא $A=\{(x_i)\in\{x_i\}\}$ באותו חודש. המאורע הוא $A=\{(x_i)\in\{x_i\}\}$ בי אנשים שחוגגים ביחד חודש הולדת. משיקולים קומבינטוריים נקבל $|B|=\frac{12!}{2!}$ המאורע שאין שני אנשים שחוגגים ביחד חודש הולדת. משיקולים קומבינטוריים נקבל $|B|=\frac{12!}{2!}$. $\mathbb{P}(A)=1-\mathbb{P}(B)=1-\frac{12!}{2\cdot12^{10}}$

'סעיף ד

חידת התפוזים