0.1 Gram-Schmidt 正交化方法和正交补空间

设 V 为 n 维内积空间,则由命题??可知,任一 n 阶正定实对称矩阵(正定 Hermite 矩阵)H 都能成为 V 的某 组基的 Gram 矩阵. 特别地, 取 $H = I_n$, 则存在 V 的一组基 $\{f_1, f_2, \dots, f_n\}$, 使得它的 Gram 矩阵就是单位矩阵 I_n , 即 $\{f_1, f_2, \dots, f_n\}$ 是 V 的一组标准正交基. 由命题??我们也可以具体地构造出一组标准正交基, 以下不妨设 V 是 欧氏空间. 首先, 任取 V 的一组基 $\{e_1,e_2,\cdots,e_n\}$, 设其 Gram 矩阵为 G, 则 G 是正定实对称矩阵. 其次, 通过对称 初等变换法可将 G 化为单位矩阵 I_n , 即存在 n 阶非异实矩阵 $C = (c_{ij})$, 使得 $C'GC = I_n$. 最后, 令

$$(f_1, f_2, \dots, f_n) = (e_1, e_2, \dots, e_n)C,$$

即 $f_j = \sum_{i=1}^n c_{ij}e_i$,则 $\{f_1, f_2, \cdots, f_n\}$ 是 V 的一组基,并且它的 Gram 矩阵就是 $C'GC = I_n$. 从上述过程不难看出,因 为当 $n \ge 2$ 时, 过渡矩阵 C 有无穷多种选法, 所以可构造出 V 的无穷多组标准正交基.

从几何的层面上看, 上述构造标准正交基的代数方法虽然简单, 但缺乏几何直观和意义. 然而, Gram - Schmidt 方法却是一个从几何直观入手的向量组的正交化方法, 具有重要的几何意义.Gram - Schmidt 方法粗略地说就是, 如果前 k-1 个向量 v_1, \dots, v_{k-1} 已经两两正交, 那么只要将第 k 个向量 u_k 减去其在 v_1, \dots, v_{k-1} 张成子空间上 的正交投影, 即可得到与 v_1, \dots, v_{k-1} 都正交的向量 v_k . 特别地, 若 $\{u_1, u_2, \dots, u_n\}$ 是欧氏空间V的一组基, 则通 过 Gram - Schmidt 方法可得到一组正交基 $\{v_1, v_2, \cdots, v_n\}$, 再将每个基向量标准化, 即可得到 V 的一组标准正交 基 $\{w_1, w_2, \cdots, w_n\}$. 这 3 组基之间的关系为

$$(u_1, u_2, \cdots, u_n) = (v_1, v_2, \cdots, v_n)B = (w_1, w_2, \cdots, w_n)C,$$

其中 B 是主对角元全为 1 的上三角矩阵,C 是主对角元全为正实数的上三角矩阵, 设 $A = G(u_1, u_2, \cdots, u_n), D =$ $G(v_1, v_2, \cdots, v_n)$ 分别是对应的 Gram 矩阵,则 A 是正定实对称矩阵,D 是正定对角矩阵,由命题?? 可得 A 的如下 分解:

$$A = B'DB = C'C$$

这就是命题?? 中关于正定实对称矩阵 A 的两种分解, 再由命题?? 后面的注可知上述两种分解的唯一性. 因此, 基 $\{u_1, u_2, \cdots, u_n\}$ 的 Gram 矩阵的分解 A = B'DB ——对应于通过 Gram - Schmidt 方法得到的正交基 $\{v_1, v_2, \cdots, v_n\}$, 而 Gram 矩阵的 Cholesky 分解 A = C'C 则一一对应于通过 Gram - Schmidt 正交化和标准化得到的标准正交基 $\{w_1, w_2, \cdots, w_n\}.$

除了求标准正交基之外,Gram - Schmidt方法还有许多其他的应用. 设V是内积空间,u是V中的向量, $\{w_1, \cdots, w_k\}$ 是子空间 W 的一组标准正交基, 则由 Gram - Schmidt 方法可知 $v = u - \sum_{i=1}^{\kappa} (u, w_i)w_i$ 与 w_1, \dots, w_k 正交. 令

$$w = \sum_{i=1}^{k} (u, w_i) w_i$$
, 则 $u = v + w$ 且 $(v, w) = 0$, 于是 $||u||^2 = ||v||^2 + ||w||^2$. 由此可得

(1) Bessel 不等式: $\|u\|^2 \ge \|w\|^2 = \sum_{i=1}^k |(u, w_i)|^2$; (2) 向量 u 到子空间 W 的距离为 $\|v\|$, 即 $\min_{x \in W} \|u - x\| = \|v\|$. 例题 **0.1** 设 $V = \mathbb{R}[x]_n$ 为次数小于等于 n 的实系数多项式构成的欧氏空间, 对任意的 f(x), g(x), 其内积定义为 $(f(x),g(x)) = \int_{-1}^{1} f(x)g(x)dx$ (参考例题??(5)). 设 $u_0(x) = 1, u_k(x) = \frac{d^k}{dx^k}[(x^2-1)^k] \quad (k \geq 1), m_k = \sqrt{\frac{2^{k+1}k!(2k)!}{(2k+1)!!}}$ $(k \ge 0)$. 求证: 从基 $\{1, x, \cdots, x^n\}$ 出发, 由 Gram - Schmidt 正交化方法得到的标准正交基为 $\left\{\frac{u_k(x)}{m_k}, 0 \le k \le n\right\}$, 称之为 Legendre 多项式.

证明 证法一: 由 Gram - Schmidt 正交化方法, 从 $1,x,x^2,x^3$ 可得标准正交基中前 4 个基向量分别为 $w_0(x)$ = $\frac{1}{\sqrt{2}}, w_1(x) = \sqrt{\frac{3}{2}}x, w_2(x) = \sqrt{\frac{5}{8}}(3x^2 - 1), w_3(x) = \sqrt{\frac{7}{8}}(5x^3 - 3x),$ 读者不难验证这就是 Legendre 多项式的前 4 个多项式. 不过这样的计算很难推广到一般的情形, 但我们可以通过验证 $\{u_k(x)\}$ 是一组正交基以及 Cholesky 分 解与 Gram - Schmidt 正交化和标准化之间的一一对应来证明结论.

首先注意到, 对任意的 j < k, 有 $\frac{\mathrm{d}^j}{\mathrm{d}x^j}[(x^2-1)^k]\Big|_{x=+1}=0$, 故由分部积分可得

$$(u_k(x), x^j) = \int_{-1}^1 \frac{\mathrm{d}^k}{\mathrm{d}x^k} [(x^2 - 1)^k] x^j \mathrm{d}x = -j \int_{-1}^1 \frac{\mathrm{d}^{k-1}}{\mathrm{d}x^{k-1}} [(x^2 - 1)^k] x^{j-1} \mathrm{d}x.$$

不断做下去可知, 当 j < k 时, $(u_k(x), x^j) = 0$; $(u_k(x), x^k) = (-1)^k k! \int_{-1}^1 (x^2 - 1)^k dx$. 注意到 $u_k(x)$ 是一个 k 次多项式且首项系数为 $2k(2k-1)\cdots(k+1)$, 由上述结果并且经过进一步的计算可知,

$$||u_k(x)||^2 = \frac{2^{k+1}k!(2k)!}{(2k+1)!!}, \quad (u_k(x), u_l(x)) = 0 \ (k > l),$$

因此 $\left\{\frac{u_k(x)}{m_k}, 0 \le k \le n\right\}$ 是 V 的一组标准正交基. 设从基 $\{1, x, \cdots, x^n\}$ 到基 $\left\{\frac{u_k(x)}{m_k}, 0 \le k \le n\right\}$ 的过渡矩阵为 P, 基 $\{1, x, \cdots, x^n\}$ 的 Gram 矩阵为 A, 则 P 是一个主对角元全大于零的上三角矩阵,且由命题??可得 $I_{n+1} = P'AP$, 从而 $A = (P^{-1})'P^{-1}$ 是 Cholesky 分解. 由 Cholesky 分解的唯一性以及它与 Gram - Schmidt 正交化和标准化之间的一一对应可知, $\left\{\frac{u_k(x)}{m_k}, 0 \le k \le n\right\}$ 就是从基 $\{1, x, \cdots, x^n\}$ 出发由 Gram - Schmidt 正交化方法得到的标准正交基.

证法二:设 V_k 是由次数小于等于 k 的实系数多项式构成的子空间, $w_k(x) = \frac{u_k(x)}{m_k} (0 \le k \le n)$, 同证法 1 的计算可知这是一组两两正交的单位向量.

下面用归纳法来证明结论. 当 k=0 时结论显然成立, 假设从 $1,x,\cdots,x^k$ 出发, 经过 Gram - Schmidt 正交化方法得到 V_k 的一组标准正交基为 $w_0(x),w_1(x),\cdots,w_k(x)$.

解 本题即求 $\min_{f(x) \in V} \|e^x - f(x)\|^2$. 由例题 0.1 可知,V 的一组标准正交基为 $w_0(x) = \frac{1}{\sqrt{2}}$, $w_1(x) = \sqrt{\frac{3}{2}}x$, $w_2(x) = \sqrt{\frac{5}{8}}(3x^2-1)$, $w_3(x) = \sqrt{\frac{7}{8}}(5x^3-3x)$,经计算可得 $(e^x, w_0(x)) = \frac{\sqrt{2}}{2}(e-e^{-1})$, $(e^x, w_1(x)) = \sqrt{6}e^{-1}$, $(e^x, w_2(x)) = \frac{\sqrt{10}}{2}(e-e^{-1})$, $(e^x, w_3(x)) = \frac{\sqrt{14}}{2}(37e^{-1} - 5e)$. 因此,由 Gram - Schmidt 方法的几何意义可得

$$\begin{split} \min_{f(x) \in V} \|e^x - f(x)\|^2 &= \|e^x - \sum_{i=0}^3 (e^x, w_i(x))w_i(x)\|^2 \\ &= \|e^x - \frac{1}{2}(e - e^{-1}) - 3e^{-1}x - \frac{5}{4}(e - 7e^{-1})(3x^2 - 1) - \frac{7}{4}(37e^{-1} - 5e)(5x^3 - 3x)\|^2 \\ &\approx 0.00002228887. \end{split}$$

命题 0.1

设 V 是 n 维欧氏空间,A 是 m 阶半正定实对称矩阵且 $\mathbf{r}(A)=r\leq n$, 求证: 必存在 V 上的向量组 $\{\alpha_1,\alpha_2,\cdots,\alpha_m\}$, 使得其 Gram 矩阵就是 A.

证明 因为 A 是秩为 r 的 m 阶半正定阵, 故由命题??可知, 存在 $r \times m$ 实矩阵 T, 使得 A = T'T. 取 V 的一组标准正交基 $\{e_1, e_2, \cdots, e_n\}$, 令

$$(\alpha_1, \alpha_2, \cdots, \alpha_m) = (e_1, e_2, \cdots, e_r)T,$$

则由推论??即得

$$G(\alpha_1, \alpha_2, \cdots, \alpha_m) = T'G(e_1, e_2, \cdots, e_r)T = T'T = A.$$

命题 0.2

对任意内积空间 V, 证明: 若用 Gram-Schmidt 方法将线性无关的向量组 u_1, u_2, \cdots, u_m 变成正交向量组 v_1, v_2, \cdots, v_m , 则这两组向量的 Gram 矩阵的行列式值不变, 即

$$|G(u_1, u_2, \dots, u_m)| = |G(v_1, v_2, \dots, v_m)| = ||v_1||^2 ||v_2||^2 \cdots ||v_m||^2.$$

证明 由 Gram-Schmidt 正交化过程可得

$$(u_1, u_2, \cdots, u_m) = (v_1, v_2, \cdots, v_m)B$$

其中B是一个主对角元全为1的上三角矩阵,再由命题0.1的证明过程可得

$$G(u_1, u_2, \cdots, u_m) = B'G(v_1, v_2, \cdots, v_m)B.$$

注意到 $G(v_1, v_2, \dots, v_m)$ 是主对角元分别为 $||v_1||^2, ||v_2||^2, \dots, ||v_m||^2$ 的对角矩阵, 故上式两边同取行列式即得结论.

命题 0.3

对任意内积空间 V, 证明下列不等式:

$$0 \le |G(u_1, u_2, \cdots, u_m)| \le ||u_1||^2 ||u_2||^2 \cdots ||u_m||^2$$

后一个等号成立的充要条件是 u_i 两两正交或者某个 $u_i = 0$.

证明 (i) 对实内积空间:

证法一: 由命题??可知 $G(u_1,u_2,\cdots,u_m)$ 是一个半正定实对称矩阵, 故由命题??(2) 可知 $|G(u_1,u_2,\cdots,u_m)| \ge 0$. 对第二个不等式, 我们分情况讨论. 若 $G(u_1,u_2,\cdots,u_m)$ 是非正定的半正定阵, 则 $0 = |G(u_1,u_2,\cdots,u_m)| \le \|u_1\|^2 \|u_2\|^2 \cdots \|u_m\|^2$, 并且等号成立的充要条件是某个 $u_i = 0$. 若 $G(u_1,u_2,\cdots,u_m)$ 是正定阵, 则由命题??可知 u_1,u_2,\cdots,u_m 线性无关. 由 Gram-Schmidt 正交化过程可得

$$v_i = u_i - \sum_{j=1}^{i-1} \frac{(u_i, v_j)}{\|v_j\|^2} v_j.$$

再由勾股定理可得 $\|u_i\|^2 = \|v_i\|^2 + \sum_{i=1}^{i-1} \frac{(u_i, v_j)^2}{\|v_j\|^2} \ge \|v_i\|^2 > 0$. 最后由命题 0.2可得

$$|G(u_1, u_2, \cdots, u_m)| = ||v_1||^2 ||v_2||^2 \cdots ||v_m||^2 \le ||u_1||^2 ||u_2||^2 \cdots ||u_m||^2$$

等号成立当且仅当 $||v_i||^2 = ||u_i||^2 (1 \le i \le m)$, 这也当且仅当 $v_i = u_i (1 \le i \le m)$, 从而当且仅当 u_i 两两正交.

证法二: 由命题??可知 $G(u_1,u_2,\cdots,u_m)$ 是一个半正定实对称矩阵, 故再由命题??立得.

(ii) 对复内积空间: 由命题??可知 $G(u_1, u_2, \cdots, u_m)$ 是一个半正定 Hermite 阵, 故由 (i) 同理可证.

命题 0.4

(1) 设 $A = (a_{ij})$ 是 n 阶实矩阵, 证明下列 Hadamard 不等式:

$$|A|^2 \le \prod_{j=1}^n \sum_{i=1}^n a_{ij}^2.$$

(2) 设 $A = (a_{ij})$ 是 n 阶复矩阵, 证明下列 Hadamard 不等式:

$$|\det A|^2 \le \prod_{j=1}^n \sum_{i=1}^n |a_{ij}|^2.$$

证明 (1)证法一:设 u_1, u_2, \cdots, u_n 是 A 的 n 个列向量,则 G = A'A 可以看成是 u_1, u_2, \cdots, u_n 在 \mathbb{R}^n 的标准内积下

的 Gram 矩阵. 由命题 0.3可得

$$|A|^2 = |A'A| = |G| \le \prod_{j=1}^n ||u_j||^2 = \prod_{j=1}^n \sum_{i=1}^n a_{ij}^2.$$

证法二:由命题??(2) 可知 A'A 是半正定阵, 并且主对角元为 $\sum_{i=1}^{n} a_{ij}^{2} (1 \le j \le n)$. 故再由命题??立得.

(2) 设 u_1, u_2, \cdots, u_n 是 A 的 n 个列向量,则 $G = A'\overline{A}$ 可以看成是 u_1, u_2, \cdots, u_n 在 \mathbb{C}^n 的标准内积下的 Gram 矩阵. 由命题 0.3及命题??可得

$$|\det A|^2 = |A| |\overline{|A|} = |A'| |\overline{A}| = |A'\overline{A}| = |G| \le \prod_{j=1}^n ||u_j||^2 = \prod_{j=1}^n \sum_{i=1}^n a_{ij}^2.$$

推论 0.1

若 n 阶实矩阵 $A = (a_{ij})$ 满足 $|a_{ij}| \le M(1 \le i, j \le n)$, 则 $|A| \le M^n \cdot n^{\frac{n}{2}}$.

证明 由命题 0.4可得

$$|A|^2 \le \prod_{j=1}^n \sum_{i=1}^n a_{ij}^2 \le \prod_{j=1}^n M^2 n \le M^{2n} n^n.$$

故 $|A| \leq M^n \cdot n^{\frac{n}{2}}$.

命题 0.5

设 U_1, U_2, U 是n维内积空间V的子空间, 求证:

- (1) $(U^{\perp})^{\perp} = U$;
- (2) $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp};$
- (3) $(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp};$
- (4) $V^{\perp} = \mathbf{0}, \mathbf{0}^{\perp} = V.$

证明

- (1) 因为 $V = U^{\perp} \oplus (U^{\perp})^{\perp}$, 故 $\dim(U^{\perp})^{\perp} = n \dim U^{\perp} = \dim U$. 另一方面, 显然有 $U \subseteq (U^{\perp})^{\perp}$, 因此 $(U^{\perp})^{\perp} = U$.
- (2) 任取 $\alpha \in (U_1 + U_2)^{\perp}$, 则 $(\alpha, U_1 + 0) = (\alpha, 0 + U_2) = 0$, 故 $(U_1 + U_2)^{\perp} \subseteq U_1^{\perp}$, $(U_1 + U_2)^{\perp} \subseteq U_2^{\perp}$, 于是 $(U_1 + U_2)^{\perp} \subseteq U_1^{\perp} \cap U_2^{\perp}$. 反之, 对任一 $\alpha \in U_1^{\perp} \cap U_2^{\perp}$. $\beta \in U_1 + U_2$, 记 $\beta = \beta_1 + \beta_2$, 其中 $\beta_1 \in U_1$, $\beta_2 \in U_2$, 则

$$(\alpha, \beta) = (\alpha, \beta_1 + \beta_2) = (\alpha, \beta_1) + (\alpha, \beta_2) = 0,$$

故 $\alpha \in (U_1 + U_2)^{\perp}$, 于是 $U_1^{\perp} \cap U_2^{\perp} \subseteq (U_1 + U_2)^{\perp}$. 因此 $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$.

- (3) \pm (1) $\not D$ (2), $\uparrow a$ ($U_1^{\perp} + U_2^{\perp}$) $^{\perp} = (U_1^{\perp})^{\perp} \cap (U_2^{\perp})^{\perp} = U_1 \cap U_2$.
- (4) 显然成立.

命题 0.6

设S是n维内积空间V的子集,证明:

- (1) $S^{\perp} = \{\alpha \in V \mid (\alpha, S) = 0\}$ 是 V 的子空间;
- (2) 设由 S 生成的子空间 (由 S 中所有向量张成的子空间) 为 U, 则 $S^{\perp} = U^{\perp}$. 进而、 $(S^{\perp})^{\perp} = U$.

(1) 显然成立, 下证明 (2). 设 S 生成的子空间为 U, 显然 $U \subseteq S$, 从而一方面有 $U^{\perp} \subseteq S^{\perp}$. 另一方面, 对任一 $v \in S^{\perp}$, $u \in U$, 将 u 表示为 S 中向量的线性组合, $u = a_1x_1 + \cdots + a_kx_k$, 其中 $x_i \in S$. 由 $(x_i, v) = 0$ 可得 (u, v) = 0, 于是 $v \in U^{\perp}$, 从而 $S^{\perp} \subseteq U^{\perp}$, 因此 $S^{\perp} = U^{\perp}$. 最后由命题 0.5(1) 可知 $(S^{\perp})^{\perp} = (U^{\perp})^{\perp} = U$.

4

命题 0.7

设 $A \to m \times n$ 实矩阵, 齐次线性方程组 Ax = 0 的解空间为 U, 求 U^{\perp} 适合的线性方程组.

解 设 A 的秩为 r, 则解空间 U 是 \mathbb{R}^n (取标准内积) 的 n-r 维子空间. 取 U 的一组基 $\eta_1, \dots, \eta_{n-r}$, 令 $B=(\eta_1,\dots,\eta_{n-r})$ 为 $n\times(n-r)$ 实矩阵, 则由命题 0.6(2)的证明可得

 $U^{\perp} = (L(\eta_1, \dots, \eta_{n-r}))^{\perp} = \{\eta_1, \dots, \eta_{n-r}\}^{\perp} = \{x \in \mathbb{R}^n | (\eta_i, x) = \eta_i x = 0, 1 \le i \le n - r\} = \{x \in \mathbb{R}^n | B' x = 0\}$ 故 U^{\perp} 就是线性方程组 B' x = 0 的解空间, 即 U^{\perp} 适合的线性方程组为 B' x = 0.

推论 0.2

设 A 为 $m \times n$ 实矩阵, $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$ 为 A 的列分块, 齐次线性方程组 Ax = O 的解空间为 U, 任取 U 的一组基 $\{\eta_1, \eta_2, \dots, \eta_{n-r}\}$, 令 $B = (\eta_1, \eta_2, \dots, \eta_{n-r})$, 则在 $\mathbb{R}^n(\mathbb{R}^n(\mathbb{R}^n))$ 中, 就有

$$(L(\alpha_1, \dots, \alpha_n))^{\perp} = \{\alpha_1, \dots, \alpha_n\}^{\perp} = \{\boldsymbol{x} \in \mathbb{R}^n | (\alpha_i, \boldsymbol{x}) = \alpha_i \boldsymbol{x} = 0, 1 \le i \le n\}$$
$$= \{\boldsymbol{x} \in \mathbb{R}^n | A\boldsymbol{x} = 0\} = L(\eta_1, \dots, \eta_{n-r}) = U$$
 (1)

$$U^{\perp} = (L(\eta_{1}, \dots, \eta_{n-r}))^{\perp} = \{\eta_{1}, \dots, \eta_{n-r}\}^{\perp}$$

$$= \{x \in \mathbb{R}^{n} | (\eta_{i}, x) = \eta_{i}x = 0, 1 \le i \le n - r\} = \{x \in \mathbb{R}^{n} | \mathbf{B}'x = 0\}$$
(2)

因此 U^{\perp} 就是线性方程组 B'x=0 的解空间, 即 U^{\perp} 适合的线性方程组为 B'x=0.

证明 (1)式由命题 0.7同理可证,(2)可由命题 0.7直接得到.

命题 0.8

设 $A \rightarrow m \times n$ 实矩阵, 求证: 非齐次线性方程组 $Ax = \beta$ 有解的充要条件是向量 β 属于齐次线性方程组 A'y = 0 解空间的正交补空间.

证明 设 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$ 为列分块, $U = L(\alpha_1, \alpha_2, \dots, \alpha_n)$ 为 \mathbb{R}^m (取标准内积) 的子空间,则 $Ax = \beta$ 有解当且仅当 $\beta \in U$. 另一方面,由推论 0.2可知 A'y = 0 的解空间即为 $\{y \in \mathbb{R}^m \mid (\alpha_i, y) = 0, 1 \le i \le n\} = U^{\perp}$,注意到 $U = (U^{\perp})^{\perp}$,故结论得证.

命题 0.9

设V为n阶实矩阵全体构成的欧氏空间(取Frobenius内积), V_1 , V_2 分别为n阶实对称矩阵全体和n阶实反对称矩阵全体构成的子空间, 求证:

$$V = V_1 \perp V_2$$

证明 一方面, 由命题??可知 $V = V_1 \oplus V_2$. 另一方面, 对任意的 $A \in V_1, B \in V_2$, 由迹的交换性可得

$$(A, \boldsymbol{B}) = \operatorname{tr}(A\boldsymbol{B}') = -\operatorname{tr}(A\boldsymbol{B}) = -\operatorname{tr}(B\boldsymbol{A}) = -\operatorname{tr}(B\boldsymbol{A}') = -(B, \boldsymbol{A}) = -(A, \boldsymbol{B})$$

于是 (A, B) = 0, 从而 $V_1 \perp V_2$, 因此 $V = V_1 \perp V_2$.