3d Rotation with Quaternions

Jason Miller

Why Calculating Rotation in 3d is Valuable:

- Physics Simulations.
- 3d Animation.
- Mathematical Modeling.
- And MUCH MORE!

Why Calculating Rotation in 3d is Valuable:

- Physics Simulations.
- 3d Animation.
- Mathematical Modeling.
- And MUCH MORE!

- Rotation Around Axes.
- Gimbals.
- Orthonormal Matricies.

Why They Fail: Rotation Around Axis

What We Want

Complex Numbers

Complex Number Angles

Complex Numbers

Complex Numbers

$$c_0(1)+c_1i$$

Complex Numbers

$$c_0(1)+c_1i$$

$$c_0(1) + c_1 i + c_2 j + c_3 k$$

Complex Numbers

$$c_0(1) + c_1 i$$

$$i^2 = -1$$

$$c_0(1) + c_1 i + c_2 j + c_3 k$$

Complex Numbers

$$c_0(1) + c_1 i$$

$$i^2 = -1$$

$$c_0(1) + c_1 i + c_2 j + c_3 k$$

$$j^2 = j^2 = k^2 = -1$$

Complex Numbers

$$c_0(1) + c_1 i$$

$$c_0(1) + c_1 i + c_2 j + c_3 k$$

$$i^2 = -1$$

$$j^2 = j^2 = k^2 = -1$$

The product of any 2 different complex parts gives the third and any two different complex parts **anti-commute**.

Complex Numbers

$$c_0(1) + c_1 i$$

$$c_0(1) + c_1 i + c_2 j + c_3 k$$

$$i^2 = -1$$

$$j^2 = j^2 = k^2 = -1$$

The product of any 2 different complex parts gives the third and any two different complex parts **anti-commute**.

$$i * j = -j * i = k$$

Times Tables

*	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	-i	-1

But What About Rotation

 $i * \mathbb{H}$

But What About Rotation

The Big Idea

Rotation!

$$(\cos\theta(1) + \sin\theta i) * \mathbb{H} * (\cos\theta(1) + \sin\theta i)$$

3d Rotation

$$(\cos\frac{\theta}{2}(1) + \sin\frac{\theta}{2}\overrightarrow{v}) * \mathbb{H} * (\cos\frac{-\theta}{2}(1) + \sin\frac{-\theta}{2}\overrightarrow{v})$$

References

Images:

- https://upload.wikimedia.org/wikipedia/commons/thumb/5/51 /Euler_AxisAngle.png/220px-Euler_AxisAngle.png
- https://cdn.kastatic.org/ka-perseusimages/d24dd08a0ea7aaeeaa90d84f642e12998df3ffe7.svg

Work Cited:

- J. M. Chappel, A. Iqbal, J. G. Hartnett, and D. Abbott, The Vector Algebra War: A Historial Perspective arXiv, 2015
- J. B. Kuipers. Quaternions and Rotation Sequences.
 Princeton University Press, 1999.

