A quick review of probability theory

longhuan@sjtu.edu.cn

Outline

- Events and probability
- Bayes' rule
- Discrete random variables and expectation
- Moments and derivations

Definition of Probability

- Experiment: toss a coin twice
- Sample space: possible outcomes of an experiment
 - Ω ={HH, HT,TH,TT}
- Event: a subset of possible outcomes.
 - $A = \{HH\}, B = \{HT, TH\}$
- Probability of an event: an number assigned to an event Pr(A)
 - Axiom 1: $Pr(A) \ge 0$
 - Axiom 2: $Pr(\Omega) = 1$
 - Axiom 3: For every sequence of disjoint events $Pr(U_i A_i) = \sum_i Pr(A_i)$

Set notations

- $E_1 \cap E_2$ is the event that both E_1 and E_2 happen.
- $E_1 \cup E_2$ for the event that at least one of E_1 and E_2 happen.
- $E_1 E_2$ for the occurrence of an event that is in E_1 but not in E_2 .
- \overline{E} stands for ΩE .

Lemma: for any two events E_1 and E_2 :

$$Pr(E_1 \cup E_2) = Pr(E_1) + Pr(E_2) - Pr(E_1 \cap E_2)$$

Proof. (Inclusion-exclusion principle)

Union Bound

Lemma: For any finite or countably infinite sequence of events $E_1, E_2, ...$

$$Pr\left(\bigcup_{i\geq 1} E_i\right) \leq \sum_{i\geq 1} \Pr(E_i).$$

Proof.

Independence

Two events A and B are independent in case

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

• A set of events $\{A_1, A_2, ..., A_k\}$ are

相互独立

mutually independent iff for any subset

$$I \subseteq [1, k]$$

相互独立和两两独立是不一样 的,相互独立可以推出两两独 立,但是两两独立不能推出相 互独立

$$\Pr\left(\bigcap_{i\in I}A_i\right) = \prod_{i\in I}\Pr(A_i)$$

Independence

Consider the experiment of tossing a coin twice

- Example I.
 - $-A = \{HT, HH\}, B = \{HT\}$
 - Will event A independent from event B?
- Example II.
 - $-A = \{HT\}, B = \{TH\}$
 - Will event A independent from event B?
- Disjoint ≠ Independence
- If A is independent from B, B is independent from C, will A be independent from C?

Application1: Identify polynomials

$$(x+1)(x-2)(x+3)(x-4)(x+5)(x-6)$$
? = $x^6 - 7x^3 + 25$

• Generally F(x)? = G(x)

Probabilistic algorithm

- Assume Max(Deg(G(x)), Deg(F(x))) = d
- Algorithm
 - Choose an integer r uniformly at random in the range $\{1, \dots, 100d\}$
 - Compute F(r) and G(r)
 - If F(r) = G(r) output Yes; otherwise, output No.

此算法输出No表示两个多项式一定不相等,但是输出Yes不能说明两个多项式一定相等

Analysis

- E: The event that the algorithm fails.
- The algorithm may fail iff
 - $-F(x) \neq G(x)$ and F(r) = G(r)
 - r is the solution of H(x) = F(x) G(x) = 0.
 - -H(x) has at most d solutions.
- $\Pr(E) \leq rac{d}{100d} = rac{1}{100}$ H(x)的次数是d,所以做多有d个解,即使这d个解都在1~100d范围之内,概率最多也是1/100,如果有的解比100d大,那么概率只会更小
- Idea: If it keep returning (Yes), we repeat the algorithm for *k* times.
 - The updated algorithm will fail iff every E_i fails for $1 \le i \le k$.

For i = 1 to k do

- Choose an integer r uniformly at random in the range $\{1, \dots, 100d\}$
- Compute F(r) and G(r)
- If F(r) = G(r) return Yes; otherwise stop and output No.

•
$$\Pr(E) = \Pr(E_1 \cap E_2 \cap \cdots \cap E_k)$$

$$= \Pr(E_1) \cdot \Pr(E_2) \cdot \cdots \cdot \Pr(E_k)$$

$$\leq \left(\frac{1}{100}\right)^k$$

Conditioning

• If E and F are events with Pr(F) > 0, the conditional probability of E given F is

$$\Pr(E|F) = \frac{\Pr(E \cap F)}{\Pr(F)}$$

If E and F are independent

$$\frac{\Pr(E|F)}{\Pr(F)} = \frac{\Pr(E \cap F)}{\Pr(F)} = \frac{\Pr(E)\Pr(F)}{\Pr(F)} = \frac{\Pr(E)}{\Pr(F)}$$

Application

Example: Drug test

	Women	Men
Success	200	1800
Failure	1800	200

```
A = {Patient is a Women}
```

$$B = \{Drug fails\}$$

$$Pr(B|A) = ?$$

$$Pr(A|B) = ?$$

Application 2: Monty Hall problem

 Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

Behind door 1	Behind door 2	Behind door 3	Result if staying at door #1	Result if switching to the door offered
Car	Goat	Goat	Wins car	Wins goat
Goat	Car	Goat	Wins goat	Wins car
Goat	Goat	Car	Wins goat	Wins car

Tuesday boy problem

 "I have two children. One is a boy born on a Tuesday. What is the probability I have two boys?"

```
<BTU, girl> 7
<girl, BTU> 7
<BTU, boy> 7
<boy, BTU> 7-1= 6 数 (7+6)/(7+7+7+6)=13/27
```

Drug Evaluation

	Women		М	en
	Drug I	Drug II	Drug I	Drug II
Success	200	10	19	1000
Failure	1800	190	1	1000

Simpson's Paradox: View I

解决方法:或者让数据样本尽量数目一致,或者为数据量小的样本增加额外权重

	Women		М	len
	Drug I	Drug II	Drug I	Drug II
Success	200	10	19	1000
Failure	1800	190	1_	1000

Drug II is better than Drug I

A = {Using Drug I}
B = {Using Drug II}

C = {Drug succeeds}

 $Pr(C|A) = 219/2020 \sim 10\%$

 $Pr(C|B)=1010/2200 \sim 50\%$

Simpson's Paradox: View II

	Women		М	en
	Drug I	Drug II	Drug I	Drug II
Success	200	10	19	1000
Failure	1800	190	1	1000

Drug I is better than Drug II

Female Patient

 $A = \{Using Drug I\}$

 $B = \{Using Drug II\}$

C = {Drug succeeds}

 $Pr(C|A) \sim 10\%$

 $Pr(C|B) \sim 5\%$

Male Patient

 $A = \{Using Drug I\}$

B = {Using Drug II}

 $C = \{Drug succeeds\}$

 $Pr(C|A) \sim 100\%$

 $Pr(C|B) \sim 50\%$

Another version: Berkeley gender bias case (1973)

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

Donartmont	Men		Women	
Department	Applicants	Admitted	Applicants	Admitted
A	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	272	6%	341	7%

A real-life example from a medical study comparing the success rates of two treatments for kidney stones.

	Treatment A	Treatment B
Small Stones	Group 1 93% (81/87)	Group 2 87% (234/270)
Large Stones	Group 3 73% (192/263)	Group 4 69% (55/80)
Both	78% (273/350)	83% (289/350)

Law of total probability

• Let $E_1, E_2, ..., E_n$ be mutually disjoint events in the sample space Ω , and let

$$\bigcup_{i=1}^n E_i = \Omega$$
, then

$$Pr(B) = \sum_{i=1}^{n} Pr(B \cap E_i)$$
$$= \sum_{i=1}^{n} Pr(B|E_i) Pr(E_i)$$

Conditional Independence

Event A and B are conditionally independent given C in case

$$Pr(A \cap B|C) = Pr(A|C) \cdot Pr(B|C)$$

Or equivalently,

$$Pr(A|B \cap C) = Pr(A|C)$$

由上面的式子利用条件概率公式展 开化简得到 Example: There are three events: A, B, C

$$-\Pr(A) = \Pr(B) = \Pr(C) = \frac{1}{5}$$

$$-\Pr(A \cap C) = \Pr(B \cap C) = \frac{1}{25}, \Pr(A \cap B) = \frac{1}{10}$$

$$-\Pr(A \cap B \cap C) = \frac{1}{125}$$

- Whether A, B are conditionally independent given C?
- Whether A, B are independent?

- Example: There are three events: A, B, C
 - $-\Pr(A) = \Pr(B) = \Pr(C) = \frac{1}{5}$
 - $-\Pr(A \cap C) = \Pr(B \cap C) = \frac{1}{25}, \Pr(A \cap B) = \frac{1}{10}$
 - $-\Pr(A \cap B \cap C) = \frac{1}{125}$
 - Whether A, B are conditionally independent given C? Yes
 - Whether A, B are independent? No
- A and B are independent
 - \neq A and B are conditionally independent

Outline

- Events and probability
- Bayes' rule
- Discrete random variables and expectation
- Moments and derivations

Bayes' Rule

• Given two events A and B and suppose that Pr(A) > 0. Then

$$\Pr(B \mid A) = \frac{\Pr(AB)}{\Pr(A)} = \frac{\Pr(A \mid B) \Pr(B)}{\Pr(A)}$$

Example:

Pr(W R)	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

R: It is a rainy day

W: The grass is wet

Pr(R|W) = ?

$$Pr(R) = 0.8$$

Bayes' Rule

	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

R: It rains

W: The grass is wet

Information

Bayes' Rule

	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

R: It rains

W: The grass is wet

Bayes' Rule: More Complicated

Suppose that $B_1, B_2, \dots B_k$ form a partition of S:

$$B_i \mid B_j = \emptyset; \quad \bigcup_i B_i = S$$

Suppose that Pr(Bi) > 0 and Pr(A) > 0. Then

$$Pr(B_i \mid A) = \frac{Pr(A \mid B_i) Pr(B_i)}{Pr(A)}$$

Bayes' Rule: More Complicated

Suppose that $B_1, B_2, \dots B_k$ form a partition of S:

$$B_i \mid B_j = \varnothing; \quad \bigcup_i B_i = S$$

Suppose that Pr(Bi) > 0 and Pr(A) > 0. Then

$$Pr(B_i | A) = \frac{Pr(A | B_i) Pr(B_i)}{Pr(A)}$$
$$= \frac{Pr(A | B_i) Pr(B_i)}{\sum_{j=1}^{k} Pr(AB_j)}$$

Bayes' Rule: More Complicated

Suppose that $B_1, B_2, \dots B_k$ form a partition of S:

$$B_i \mid B_j = \varnothing; \quad \bigcup_i B_i = S$$

Suppose that Pr(Bi) > 0 and Pr(A) > 0. Then

$$Pr(B_i | A) = \frac{Pr(A | B_i) Pr(B_i)}{Pr(A)}$$

$$= \frac{Pr(A | B_i) Pr(B_i)}{\sum_{j=1}^{k} Pr(AB_j)}$$

$$= \frac{Pr(A | B_i) Pr(B_i)}{\sum_{j=1}^{k} Pr(B_j) Pr(A | B_j)}$$

In all

Assume that $E_1, E_2, ..., E_n$ are mutually disjoint sets such that $\bigcup_{i=1}^n E_i = E$, then

$$\Pr(E_j|B) = \frac{\Pr(E_j \cap B)}{\Pr(B)}$$

$$= \frac{\Pr(B|E_j)\Pr(E_j)}{\sum_{i=0}^n \Pr(B|E_i)\Pr(E_i)}$$

Example

 E_i : the i^{th} coin is the biased one.

B: HHT

$$\Pr(B|E_1) = \Pr(B|E_2)$$

$$= \left(\frac{2}{3}\right) \cdot \left(\frac{1}{2}\right) \cdot \left(\frac{1}{2}\right) = \frac{1}{6}$$

$$\Pr(B|E_3) = \left(\frac{1}{2}\right) \cdot \left(\frac{1}{2}\right) \cdot \left(\frac{1}{3}\right) = \frac{1}{12}$$

$$\Pr(E_i) = \frac{1}{3}$$

- We have three coins
 - Two of them: fair
 - The other one: Pr(H) = 2/3
- Flip them we get: HHT
- Problem: What is the probability that the first coin is the biased one?

A More Complicated Example

R It rains

W The grass is wet

U People bring umbrella

A More Complicated Example

R It rains

W The grass is wet

U People bring umbrella

Pr(UW|R)=Pr(U|R)Pr(W|R)

 $Pr(UW| \neg R) = Pr(U| \neg R)Pr(W| \neg R)$

A More Complicated Example

W The grass is wet

U People bring umbrella

$$Pr(UW|R)=Pr(U|R)Pr(W|R)$$

$$Pr(UW| \neg R) = Pr(U| \neg R)Pr(W| \neg R)$$

Pr(W R)	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

Pr(U R)	R	$\neg R$
U	0.9	0.2
$\neg U$	0.1	0.8

Outline

- Events and probability
- Bayes' rule
- Discrete random variables and expectation
- Moments and derivations
- The probabilistic method

Random Variable and Distribution

 A random variable X is a numerical outcomes of a random experiment

$$X:\Omega\to R$$

- The distribution of a random variable is the collection of possible outcomes along with their probabilities:
 - Discrete case:

$$\Pr(X = a) = \sum_{s \in \Omega, X(s) = a} \Pr(s)$$

Random Variable: Example

- Let S be the set of all sequences of two rolls of a die. Let X be the sum of the number of dots on the three rolls.
- The event X = 4 corresponds to the set of basic *events* $\{(1,3), (2,2), (3,1)\}$. Hence

$$\Pr(X=4) = \frac{3}{36} = \frac{1}{12}$$

Independent random variable

 Two random variables X and Y are independent if and only if

$$Pr((X = x) \cap (Y = y)) = Pr(X = x) \cdot Pr(Y = y)$$

Expectation

- A basic characteristic of a random variable is expectation.
- The expectation of a random variable is a weighted average of the values it assumes, where each value is weighted by the probability that the variable assumes that value.

Expectation

• A random variable $X \sim Pr(X = x)$. Then, its expectation is

$$E[X] = \sum_{x} x \Pr(X = x)$$

• In an empirical sample, $x_1, x_2, ..., x_N$,

$$E[X] = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Examples

☐ The expectation of the random variable X representing the sum of two dice is

$$E(X) = \frac{1}{36} \cdot 2 + \frac{2}{36} \cdot 3 + \frac{3}{36} \cdot 4 + \dots + \frac{1}{36} \cdot 12 = 7$$

Examples

☐ The expectation of the random variable X representing the sum of two dice is

$$E(X) = \frac{1}{36} \cdot 2 + \frac{2}{36} \cdot 3 + \frac{3}{36} \cdot 4 + \dots + \frac{1}{36} \cdot 12 = 7$$

□ A random variable X that takes on the value 2^{i} with probability $1/2^{i}$ for i=1,2,...

$$E(X) = \sum_{i=1}^{\infty} \frac{1}{2^i} 2^i = \sum_{i=1}^{\infty} 1 = \infty$$

Linearity of expectations

• Expectation of sum of random variables E(X) + E(Y) = E(X + Y)

Proof.

Generally: For any finite collection of discrete random variables $X_1, X_2, ..., X_n$ with finite expectations.

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Example

Solution:

Let
$$X = X_1 + X_2$$

where X_i represents the outcome of dice i for i = 1,2. Then

$$E(X_i) = \frac{1}{6} \sum_{j=1}^{6} j = \frac{7}{2}$$

$$E(X) = E(X_1) + E(X_2) = 7$$

Lemma

For any constant c and discrete random variable X

$$E[cX] = c \cdot E[X]$$

Proof.

$$E[cX] = \sum_{j} j \cdot \Pr(cX = j)$$

$$= c\sum_{j} (j/c) \cdot \Pr(X = j/c)$$

$$= c\sum_{k} k \cdot \Pr(X = k)$$

$$= c \cdot E[X]$$

Variance

• The **variance** of a random variable X is the expectation of (X - E[X])2:

$$Var(X) = E((X - E[X])^{2})$$

$$= E(X^{2} + E[X]^{2} - 2XE[X])$$

$$= E(X^{2} - E[X]^{2})$$

$$= E[X^{2}] - E[X]^{2}$$

Bernoulli Distribution

- The outcome of an experiment can either be success (i.e., 1) and failure (i.e., 0).
- Pr(X = 1) = p, Pr(X = 0) = 1 p
- E[X] = p, Var(X) = p(1-p)

Binomial Distribution

- Consider a sequence of n independent coin flips. What is the distribution of the number of heads in the entire sequence?
- n draws of a Bernoulli distribution. X stands for the number of successes in these experiments.
- Random variable X stands for the number of times that experiments are successful.

$$Pr(X = x) = p_{\theta}(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x} & x = 1, 2, ..., n \\ 0 & \text{otherwise} \end{cases}$$

• E[X] = np (by linearity), Var(X) = np(1-p)

Geometric Distribution

- Suppose that we flip a coin until it lands on heads. What is the distribution of the number of flips?
- A geometric random variable X with parameter p is given by the following probability distribution on n=1,2,....:

$$\Pr(X = n) = (1 - p)^{n-1}p$$

Memoryless

 Geometric random variables are said to be memoryless: the probability that you will reach your first success n trials from now is independent of the number of failures you have experienced.

• Formally, $Pr(X = n + k \mid X > k) = Pr(X = n)$

Proof.

$$\Pr(X = n + k \mid X > k) = \frac{\Pr((X = n + k) \cap (X > k))}{\Pr(X > k)}$$

$$= \frac{\Pr(X = n + k)}{\Pr(X > k)}$$

$$= \frac{(1 - p)^{n + k - 1} p}{\sum_{i = k}^{\infty} (1 - p)^{i} p}$$

$$= \frac{(1 - p)^{n + k - 1} p}{(1 - p)^{k}}$$

$$= (1 - p)^{n - 1} p$$

$$= \Pr(X = n).$$

Expectation

- Method 1: make use of the definitions.
- Method 2:

$$E[X] = p \cdot 1 + (1 - p) \cdot (E[X] + 1)$$

$$p \cdot E[X] = 1$$

$$E[X] = 1/p$$

几何分布的方差: (1-p)/p^{2}

Application: Coupon Collector's Problem

- Each box of cereal contain one of n different coupons.
- Once you obtain one of every type of coupon, you can send in for a prize.
- Coupons are distributed independently and uniformly at random from the n possibilities.
- Question: How many boxes of cereal must you buy before you obtain at least one of every type of coupon?

Solution

- Let X be the number of boxes bought until at least one of every type of coupon is obtained.
- X_i is the number of boxes bought while you had exactly i-1
 different coupons. Xi表示现在已经收集到(i-1)个不同的彩券, 还需要买 多少包零食可以收集到一张新的彩券
- Clearly, X=∑_{1≤i≤n}X_i
- · X_i is a geometric random variable: 从几何分布的定义出发
 - When exactly i-1 coupons have been found, the probability of obtaining a new coupon is $p_i = 1 \frac{i-1}{n}$

$$- E[X_i] = \frac{1}{p_i} = \frac{n}{n-i+1}$$

By the linearity of expectations, we have

$$\begin{aligned} \mathsf{E}[\mathsf{X}] &= \mathsf{E}[\sum_{1 \leq i \leq n} \mathsf{X}_i] = \sum_{1 \leq i \leq n} \mathsf{E}[\mathsf{X}_i] = \sum_{1 \leq i \leq n} \frac{n}{n - i + 1} = \mathsf{n} \cdot \sum_{1 \leq i \leq n} \left(\frac{1}{i}\right) \\ &= \frac{n \cdot \ln n + \Theta(n)}{(\mathsf{Where} \ \sum_{1 \leq i \leq n} \left(\frac{1}{i}\right) = \mathsf{H}(\mathsf{n}) \ \textit{harmonic number}) \end{aligned}$$

Outline

- Events and probability
- Bayes' rule
- Discrete random variables and expectation
- Moments and derivations

Markov's Inequality

• Let X be a random variable that assumes only nonnegative values. Then for all a>0

$$\Pr(X \ge a) \le \frac{E[X]}{a}$$

Proof.

Example

- Bound the probability of obtaining more than $\frac{3n}{4}$ heads in a sequence of n fair coin flips. Let $X_i = 1$ if the i^{th} coin flip is head, otherwise, $X_i = 0$.
 - Let $X = \sum_{1 \le i \le n} X_i$. It follows that $E[X] = \frac{n}{2}$

$$-\Pr\left(X \ge \frac{3n}{4}\right) \le \frac{E[X]}{\frac{3n}{4}} = 2/3$$

Chebyshev's Inequality

• For any a > 0,

$$\Pr(|X - E(X)| \ge a) \le \frac{Var[X]}{a^2}$$

• Proof.

Example: Coupon Collector's Problem

Recall: $E[X] = n \cdot Hn$

By Markov's inequality:

$$\Pr(X \ge 2n \cdot Hn) \le 1/2$$

By Chebyshev's inequality, this can be improved to

$$\Pr(X \ge 2n \cdot Hn) \le O\left(\frac{1}{(\ln n)^2}\right)$$