Résumé de Cours d'Analyse, chapitre IV, année 2023: Convergence dominée.

1 Sous ensembles négligeables de $\mathbb R$

Définition Soit A un sous ensemble de \mathbb{R} , on dit que A est négligeable (ou de mesure nulle) si et seulement si A est mesurable et

$$\int 1_A d\lambda = \lambda(A) = 0.$$

Propriétés

- 1. Tout singleton $\{a\}, a \in \mathbb{R}$, est négligeable.
- 2. Soit A un ensemble négligeable et soit E un ensemble mesurable tel que $E \subset A$ alors E est négligeable (croissance de la mesure de Lebesgue λ).
- 3. Toute union dénombrable d'ensembles négligeables est négligeable (σ -additivité de λ). Ainsi l'ensemble des rationnels est négligeable.
- 4. Il existe des ensembles non dénombrables qui sont négligeables (l'ensemble triadique de Cantor par exemple.)

Définition On dira qu'une propriété est vraie presque partout (on écrit p.p.) si elle est vraie sauf sur un ensemble négligeable.

Exemples

- 1. Toute fonction en escalier est continue presque partout, toute fonction continue par morceaux est continue presque partout.
- 2. Toute fonction Riemann intégrable est continue presque partout (exercice plus difficile).
- 3. Soit $f : \mathbb{R} \to \mathbb{R}$ on dit que f est nulle presque partout, f = 0 p.p., si l'ensemble $\{x \in \mathbb{R}, f(x) \neq 0\}$ est négligeable. Ainsi la fonction $1_{\mathbb{Q}} = 0$ p.p.
- 4. Soit $f, g : \mathbb{R} \to \mathbb{R}$ telles que f = g p.p., ainsi f g = 0 p.p. et donc l'ensemble $\{x \in \mathbb{R}, f(x) \neq g(x)\}$ est négligeable.

Proposition 1 Soit A un sous ensemble de \mathbb{R} , négligeable alors pour toute fonction f mesurable de \mathbb{R} vers \mathbb{R} , on a:

$$\int |f| \, 1_A \, d\lambda = 0$$

et donc si f est intégrable,

$$\int f \, 1_A \, d\lambda = 0.$$

Démonstration Posons $A_n = \{x \in A, |f(x)| \leq n\}$. Ainsi $A_n \subset A_{n+1} \subset A$ donc $\lambda(A_n) = 0$ pour tout n. De plus la suite 1_{A_n} est croissante positive, de limite simple 1_A . Donc en multipliant par |f|, on en déduit que la suite $|f|1_{A_n}$ est croissante positive, de limite simple $|f|1_A$. Or $|f|1_{A_n} \leq n \, 1_{A_n}$ donc par croissance de l'intégrale,

$$\int |f| 1_{A_n} d\lambda \le \int n 1_{A_n} = n\lambda(A_n) = 0.$$

Donc par application du théorème de convergence monotone:

$$\int |f| 1_A d\lambda = \lim_{n \to +\infty} \int |f| 1_{A_n} d\lambda = 0.$$

Si la fonction f est intégrable, alors par l'inégalité triangulaire

$$|\int f 1_A d\lambda| \le \int |f| 1_A d\lambda = 0$$

ce qui implique bien que

$$\int f 1_A \, d\lambda = 0.$$

Remarque On a supposé ici que la fonction |f| ne prend pas de valeur infinie. Supposons

que l'ensemble E des réels sur lequel f prend des valeurs infinies est négligeable:

$$E = \{x \in \mathbb{R}, |f(x)| = +\infty\} \text{ et } \lambda(E) = 0.$$

Soit la suite f_n définie comme $f_n = n \, 1_E$. Alors pour tout $n \in \mathbb{N}$, $\int f_n \, d\lambda = n\lambda(E) = 0$.

La suite (f_n) est croissante, positive et tend simplement vers f donc par le théorème de convergence monotone:

$$0 = \lim_{n \to +\infty} \int f_n \, d\lambda = \int f \, 1_E \, d\lambda.$$

Ainsi la proposition s'applique aussi si la fonction f prend des valeurs infinies.

Proposition 2 Soit f une fonction mesurable de \mathbb{R} , si f = 0 p.p. alors

$$\int f \, d\lambda = 0.$$

Démonstration Soit $A = \{x \in \mathbb{R}, f(x) \neq 0\}$, ainsi $\lambda(A) = 0$ et f est nulle sur $\mathbb{R} \setminus A$ donc on a d'après la proposition 1:

$$\int |f| \, d\lambda = \int |f| 1_A \, d\lambda + \int |f| 1_{\mathbb{R} \setminus A} \, d\lambda = 0.$$

Ainsi $\int f^+ + f^- d\lambda = 0$ donc f est intégrable et $\int f d\lambda = 0$.

Remarque. La réciproque de la proposition 2 est fausse, en effet

$$\int 1_{[0,1]} - 1_{]1,2]} \, d\lambda = 0$$

alors que la fonction $1_{[0,1]} - 1_{]1,2]}$ n'est clairement pas nulle. Cependant on peut quand même écrire une certaine "réciproque":

Proposition 3 Soit f une fonction mesurable de \mathbb{R} telle que $\int |f| d\lambda = 0$ alors f = 0 p.p.

Démonstration Posons $\forall n \in \mathbb{N}^*, E_n = \{x \in \mathbb{R}, |f(x)| \geq \frac{1}{n}\}.$ Alors

$$\frac{1}{n} \, 1_{E_n} \le |f|$$

et donc par croissance de l'intégrale

$$\int \frac{1}{n} 1_{E_n} d\lambda \le \int |f| d\lambda.$$

Comme $\int |f| d\lambda = 0$ alors pour tout $n \ge 1$:

$$\int \frac{1}{n} 1_{E_n} d\lambda = \frac{1}{n} \lambda(E_n) = 0.$$

Or

$$\bigcup_{n>1} E_n = E = \{x \in \mathbb{R}, |f(x)| \neq 0\}$$

donc E est un ensemble négligeable comme union dénombrable d'ensembles négligeables: la fonction f est donc nulle presque partout.

2 Théorème de convergence dominée

Enoncé du théorème de convergence dominée(TCD):

Soit (f_n) une suite de fonctions mesurables. On suppose que:

- 1. La suite (f_n) converge simplement vers f presque partout.
- 2. Il existe une fonction positive g intégrable telle que pour presque tout $x \in \mathbb{R}$ on ait:

$$\forall n \in \mathbb{N}, \mid f_n(x) \mid \leq q(x).$$

Alors

f et f_n sont intégrables pour chaque entier $n \in \mathbb{N}$, et

$$\int_{\mathbb{R}} |f_n - f| d\lambda \to 0$$

et donc

$$\lim_{n\to\infty} \int_{\mathbb{R}} f_n d\lambda = \int_{\mathbb{R}} f d\lambda.$$

3 Corollaires du Théorème de convergence dominée

Enoncé du théorème de continuité d'intégrales à paramètres:

Soit I un intervalle de \mathbb{R} , B un sous ensemble mesurable de \mathbb{R} . Soit $h:I\times B\mapsto \mathbb{R}$ telle que:

- 1. Pour tout $x \in I$ la fonction $t \mapsto h(x,t)$ est mesurable sur B.
- 2. Pour presque tout $t \in B$ $x \mapsto h(x,t)$ est continue sur I.
- 3. Il existe une fonction g intégrable sur B et positive telle que pour presque tout $t \in B$ on ait:

$$|h(x,t)| \le g(t)$$

Alors $\forall x \in I, t \mapsto h(x,t)$ est intégrable sur B et l'application

$$x \mapsto \int_B h(x,t) \, d\lambda(t)$$

est bien définie $\forall x \in I$ et est continue sur I.

Enoncé du théorème de dérivation d'intégrales à paramètres:

Soit I un intervalle de \mathbb{R} , B un sous ensemble mesurable de \mathbb{R} . Soit $h:I\times B\mapsto \mathbb{R}$ telle que:

- 1. $\forall x \in I, t \mapsto h(x, t)$ est intégrable sur B.
- 2. Pour presque tout $t \in B$, $x \mapsto h(x,t)$ est dérivable sur I.
- 3. Il existe une fonction g intégrable sur B et positive telle que pour tout $x \in I$ et pour presque tout $t \in B$ on ait:

$$\left|\frac{\partial h}{\partial x}(x,t)\right| \le g(t)$$

Alors $H: x \mapsto \int_B h(x,t) d\lambda(t)$ est bien définie et dérivable $\forall x \in I$ et

$$H'(x) = \int_{B} \frac{\partial h}{\partial x}(x, t) d\lambda(t).$$

4 Exemple: la transformée de Laplace de fonctions mesurables