Ejercicio 1. Se recomienda hacer la equivalencia de subred y de VLAN. Ponga ejemplos en el que esto no ocurra, es decir:

- a.- Dos redes albergadas en una única VLAN
- b.- Una única red albergada en dos VLANs

Ejercicio 2. Implementaciones de STP permiten ejecutar una instancia de STP por cada VLAN definida de forma independiente. Este hecho se puede usar para balancear o compartir carga de tráfico entre interfaces redundantes basándonos en la Prioridad del puerto. Explique este proceso.

Ejercicio 3. Los routers Rx_a y Rx_B de la figura están configurados para ejecutar **NAT dinámico Overload** de manera que las direcciones **inside local** en las Redes de Servicios A y B son transformadas a un único **inside Global** que coincide con la IP de su interfaz F0/1. La red está configurada con total conectividad. Cada PC está equipado con dos tarjetas de red. Cada tarjeta dispone de un interfaz de red conectado a dos VLANs según indica la figura. Los Default-Gateway de PC1 y PC2 son los interfaces VLAN11 y VLAN12 de Rx_A y Rx_B respectivamente.

- 1. Asigne direcciones IP y máscaras a todos los interfaces que considere
- 2. ¿Qué ocurriría si PC1 hiciera ping a la dirección INSIDE GLOBAL de PC2? ¿Y si lo hiciera a su INSIDE LOCAL?
- 3. Repita el paso anterior
 - a. Desactivando previamente el interfaz de VLAN1 de PC1
 - b. Desactivando previamente el interfaz de VLAN1 de PC2
 - c. Desactivando previamente los interfaces de VLAN1 de PC1 y PC2

Ejercicio 4. La figura del ejercicio corresponde a una red corporativa geográficamente localizada en un único edificio. El direccionamiento asignado es público y corresponde a la red 200.0.0/24. Se han hecho subredes.

- 1. Asigne el tipo y la capacidad de los interfaces.
- 2. ¿Qué estación es candidata a servir al administrador de la red? ¿Por qué?
- 3. Asigne direcciones de redes, máscaras e IPs allá donde sea necesario.
- 4. Asigne IPs de gestión allá donde sea necesario
- 5. Suponiendo que el sistema arranca y todas las tablas ARPs y tablas CAM están vacías. Después de un cierto tiempo, todos los PCs han establecido comunicación con todos los demás.
 - 1. ¿Cuántas direcciones MAC tendrá registradas SWC en su tabla CAM? Suponga los dos casos con VTP pruning y sin VTP prunning.
 - 2. ¿Cuántas direcciones habrá en la tabla ARP de PC1? ¿Cuáles?
- 6. Asigne prioridades a los switches para garantizar que SWA sea el RB.
- 7. Indique, según STP, los diferentes tipos de puertos y marque con una "X" los bloqueados.
- 8. Indique los campos RB Id. Root Path Cost, Sender Bridge ID, Port ID de las BPDUs que envía SWA a SWB por todos sus puertos, así como las que envía SWB a SWC y SWD.
- 9. Considerando que se ejecuta una instancia de STP por VLAN (PVSTP), asigne prioridades a puertos en SWA para conseguir balanceo basado en VLANs
- 10. La VLAN 10 corresponde al servicio de VoIP. ¿ Qué mecanismo ofrece 802.1q para conseguir mejor QoS para el servicio ofrecido a través de esta VLAN?

.

~~ v