Санкт-Петербургский национальный исследовательский университет

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3215</u>	К работе допущен
Студент <u>Барсуков М.А.</u>	Работа выполнена
Преподаватель Хвастунов Н.Н.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.04

Исследование равноускоренного

вращательного движения (маятник Обербека)

1. Цель работы.

- Проверка основного закона динамики вращения, связывающего угловое ускорение вращающегося тела с моментами действующих сил.
- Проверка зависимости момента инерции от положения масс относительно оси вращения.

2. Рабочие формулы и исходные данные.

- 1) Основной закон динамики вращения: $I_{\rm E} = M M_{\rm TD}$
 - I момент инерции крестовины с утяжелителем;
 - ξ угловое ускорение крестовины;
 - М момент силы натяжения нити;
 - $M_{\text{тр}}$ момент силы трения в оси крестовины.
- 2) Второй закон Ньютона: ma = mg T
 - m масса груза, создающего натяжение нити;
 - а ускорение груза, создающего натяжение нити;
 - ускорение свободного падения;
 - Т сила натяжения нити.
- 3) Зависимость пройденного пути h от времени t при постоянном ускорении: $h = \frac{at^2}{2}$

$$(a = \frac{2h}{t^2})$$

- h путь, пройденный телом, которое создает натяжение нити;
- t время, за которое был пройден h.
- 4) Связь между угловым ускорением крестовины и линейным ускорением груза: $\mathcal{E} = \frac{2a}{d}$ d диаметр ступицы;
- 5) Осевой момент силы для силы натяжения нити: $M = \frac{Td}{2}$
- 6) Из определения момента инерции и т. Штейнера: $I = I_0^2 + 4m_{yr}R^2$
 - I_0 сумма моментов инерции стержней крестовины с утяжелителями, момента инерции ступицы и собственных центральных моментов инерции утяжелителей;
 - R расстояние между осью вращения и центром утяжелителя;
 - m_{yr} масса утяжелителя;
 - I коэффициент наклонной зависимости M(ε).

3. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	[0,01; 60] c	0,005 c
2	Линейка	Измерительный	[0,700] мм	0,5 мм

	Параметры установки					
1.	Масса каретки	$(47,0 \pm 0,5) \; \Gamma$				
2.	Масса шайбы	$(220,0\pm0,5)\ \Gamma$				
3.	Масса грузов на крестовине	$(408,0\pm0,5)\ \Gamma$				
4.	Расстояние от оси до первой риски	$(57,0 \pm 0,5)$ mm				
5.	Расстояние между рисками	$(25,0\pm0,2)\ { m MM}$				
6.	Диаметр ступицы	$(46,0 \pm 0,5)$ mm				
7.	Диаметр груза на крестовине	$(40,0 \pm 0,5) \text{ mm}$				
8.	Высота груза на крестовине	$(40.0 \pm 0.5) \text{ mm}$				
9.	Расстояние, проходимое грузом (h)	$(700,0\pm0,1)$ mm				

4. Схема установки

Рис. 1. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 1. В состав установки входят:

- 1. Основание
- 2. Рукоятка сцепления крестовин
- 3. Устройства принудительного трения
- 4. Поперечина
- 5. Груз крестовины
- 6. Трубчатая направляющая
- 7. Передняя крестовина
- 8. Задняя крестовина
- 9. Шайбы каретки
- 10. Каретка
- 11. Система передних стоек

5. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Масса груза,		Положение утяжелителей					
Г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
	4,79	5,73	6,96	7,08	8,4	9,66	
$m_1 = 0.27$	4,59	5,71	6,71	7,68	8,28	9,13	
$111_1 - 0,27$	4,68	5,6	6,23	7,3	8,27	9,59	
	4,69	5,68	6,63	7,35	8,32	9,46	
	3,75	3,82	4,41	5,39	6,04	6,92	
$m_2 = 0.49$	3,31	3,95	4,34	5,26	5,58	6,85	
1112 = 0,49	3,68	4,14	4,8	5,18	5,79	6,91	
	3,58	3,97	4,52	5,28	5,80	6,89	
	3,09	3,22	3,88	4,48	5,26	5,79	
$m_3 = 0.71$	2,64	2,97	3,69	4,23	4,81	5,52	
1113 – 0,71	2,77	3,23	3,68	4,27	5	5,25	
	2,83	3,14	3,75	4,33	5,02	5,52	
m = 0.02	2,29	2,83	3,23	3,75	4,21	4,86	
	2,43	2,9	3,23	3,82	4,6	4,62	
$m_4 = 0.93$	2,44	2,79	3,16	4,08	4,35	4,66	
	2,39	2,84	3,21	3,88	4,39	4,71	

Таблица 1. Результаты прямых измерений

6. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

$$a = \frac{2h}{t^2} = \frac{2 * 0.7}{4.69^2} = 0.06 \left[\frac{M}{c^2} \right]$$

$$\varepsilon = \frac{2a}{d} = \frac{2 * 0.06}{0.046} = 2.61 \left[\frac{paa}{c^2} \right]$$

$$M = \frac{md}{2} (g - a) = \frac{0.22 * 0.046}{2} (9.81 - 0.06) = 0.06 [H \cdot M]$$

		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
m_1	t_{cp}	4,69	5,68	6,63	7,35	8,32	9,46
	a	0,06	0,04	0,03	0,03	0,02	0,02
	ε	2,1	1,89	1,38	1,13	0,88	0,68
	M	0,06	0,06	0,06	0,06	0,06	0,06
m_2	t_{cp}	3,58	3,97	4,52	5,28	5,80	6,89
	a	0,11	0,09	0,07	0,05	0,04	0,03
	ε	4,75	3,86	2,98	2,19	1,81	1,28
	M	0,11	0,11	0,11	0,11	0,11	0,11
m ₃	t_{cp}	2,83	3,14	3,75	4,33	5,02	5,52
	а	0,17	0,14	0,10	0,07	0,06	0,05
	ε	7,58	6,17	4,33	3,25	2,41	2,00
	M	0,16	0,16	0,16	0,16	0,16	0,16

m ₄	t_{cp}	2,39	2,84	3,21	3,88	4,39	4,71
	а	0,25	0,17	0,14	0,09	0,07	0,06
	ε	10,69	7,55	5,92	4,04	3,16	2,74
	M	0,20	0,21	0,21	0,21	0,21	0,21

Tаблица 2. Pезультаты вычисления a, M, \mathcal{E}

$$\begin{split} M &= M_{\rm Tp} + I\epsilon \\ \overline{M} &= \frac{M_1 + M_2 + M_3 + M_4}{4} = \frac{0,06 + 0,11 + 0,16 + 0,20}{4} = 0,13 \ {\rm H\cdot M} \\ \overline{\epsilon} &= \frac{\epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4}{4} = \frac{2,77 + 4,75 + 7,58 + 10,69}{4} = 6,45 \ {\rm pag} \backslash c^2 \\ I_1 &= \frac{\sum (\epsilon_i - \overline{\epsilon})(M_i - \overline{M})}{\sum (\epsilon_i - \overline{\epsilon})^2} = \frac{\sum (\epsilon_i - 6,45)(M_i - 0,13)}{\sum (\epsilon_i - 6,45)^2} = 0,02 \ {\rm Kf\cdot M}^2 \\ M_{\rm Tp} &= \overline{M} - I_1 * \overline{\epsilon} = 0,13 - 0,02 * 6,45 = 0,02 \ {\rm H\cdot M} \end{split}$$

	$\mathbf{M} = \mathbf{M}_{\mathrm{Tp}} + \mathbf{I}\boldsymbol{\varepsilon}$					
	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
I	0,02	0,02	0,03	0,05	0,07	0,07
\mathbf{M}_{TP}	0,02	0,01	0,01	0,00	0,00	0,01
M _{cp}	0,13214	0,13275	0,13319	0,13358	0,13380	0,13393
Еср	6,44725	4,86730	3,65381	2,64995	2,06571	1,67469

Tаблица 3. Pезультаты вычисления I и M_{mp}

$$\bar{I} = I_0 + 4m_{\rm yt}R^2$$

$$\bar{I} = \frac{I_1 + I_2 + I_3 + I_4 + I_5 + I_6}{6} = \frac{0,02 + 0,02 + 0,03 + 0,05 + 0,07 + 0,07}{6} = 0,043 \; \rm kg \cdot m^2$$

Риска	R	\mathbb{R}^2	I
1	0,077	0,005929	0,02
2	0,102	0,010404	0,02
3	0,127	0,016129	0,03
4	0,152	0,023104	0,05
5	0,177	0,031329	0,07
6	0,202	0,040804	0,07
Среднее:	0,1395	0,0213	0,043

Tаблица 4. Pезультаты вычисления R^2 и I

По данным таблицы из формулы (6) по МНК получаем:

$$\overline{R^2} = \frac{R_1^2 + R_2^2 + R_3^2 + R_4^2 + R_5^2 + R_6^2}{6} = 0,0213 \text{ m}^2$$

$$m_{\text{yT}} = \frac{\sum \left(R^2_{i} - \overline{R^2}\right)(I_i - \overline{I})}{\sum \left(R^2_{i} - \overline{R^2}\right)^2} = \frac{\sum (R^2_{i} - 0,0213)(I_i - 0,043)}{\sum (R^2_{i} - 0,0213)^2} = 0,643 \text{ kg}$$

$$I_0 = I - 4 * m_{\text{yT}}R^2 = 0,043 - 4 * 0,643 * 0,0213^2 = 0,0418 \text{ kg} \cdot \text{m}^2$$

- 7. Расчет погрешностей измерений (для прямых и косвенных измерений).
- 1) Времени t:

$$\bar{t} = 4,68 \text{ c.}$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2} = 0,0578 \text{ (c)}$$

Доверительная вероятность: $\alpha = 0.95$, N = 3

Коэффициент Стьюдента: 4,30

Доверительный интервал: $\Delta t' = t_{\alpha,N} \cdot S_{\bar{t}} = 0,2487$ (c)

Абсолютная погрешность:

$$\delta_{\bar{t}} = \frac{\Delta_{\bar{t}}}{\bar{t}} * 100\% = \frac{0,2487}{4,68} * 100\% = 5\%$$

2) Ускорения а (для положения утяжелителей на 1 риске и массы m_1):

$$a = \frac{2h}{t^2}; \bar{a} = 0.06 \text{m/c}^2; h = 70.0 \pm 0.1 \text{mm}; t = 4.68 \pm 0.10 \text{c}.$$

$$\Delta_a = \sqrt{\left(\frac{2}{t^2} * \Delta_h\right)^2 + \left(\frac{6 * h}{t^3} * \Delta_t\right)^2} = \sqrt{\left(\frac{2}{4.68^2} * 0.001\right)^2 + \left(\frac{6 * 0.7}{4.68^3} * 0.2\right)^2} = 0.008 \text{m/c}^2$$

$$\delta_a = \frac{\Delta_a}{\bar{a}} * 100\% = \frac{0.008}{0.06} * 100\% = 13\%$$

3) Момента силы натяжения нити М (для положения утяжелителей на 1 риске и массы m_1): $M=md/2(g-a); \overline{M}=0.13 \text{ H}*\text{м}; m=220.0\pm0.5 \text{г}$

$$\begin{split} \Delta_{\mathrm{M}} &= \sqrt{\left(\frac{md}{2}*\Delta_{a}\right)^{2} + \left(\frac{d}{2}(\mathrm{g}-\mathrm{a})\Delta_{m}\right)^{2} + \left(\frac{m}{2}(g-a)\Delta_{d}\right)^{2}} \\ &= \sqrt{(0.22*0.046/2*0.008)^{2} + (0.046/2*9.74*0.001)^{2} + (0.22/2*9.74*0.001)^{2}} \\ &= 0.001\mathrm{H}\cdot\mathrm{m} \\ \delta_{\mathrm{M}} &= \frac{\Delta_{\mathrm{M}}}{\mathrm{M}}*100\% = \frac{0.001}{0.13}*100\% = 0.8\% \end{split}$$

4) Углового ускорения крестовины E (для положения утяжелителей на 1 риске и массы m₁):

$$\varepsilon = \frac{2a}{d}$$
; $\overline{\varepsilon} = 2,61$; $a = 0.07 \pm 0.01$ m/ c^2 ; $d = 0.046 \pm 0.001$ m

$$\Delta_{\varepsilon} = \sqrt{\left(\frac{2}{d} * \Delta_{a}\right)^{2} + \left(\frac{4a}{d^{2}} \Delta_{d}\right)^{2}} = \sqrt{(2/0.046 * 0.01)^{2} + (4 * 0.06/0.046^{2} * 0.001)^{2}} = 0.36$$

$$\delta_{\varepsilon} = \frac{\Delta_{\varepsilon}}{\overline{\varepsilon}} * 100\% = \frac{0.36}{2.61} * 100\% = 13\%$$

8. Графики

$$M = 0.02 + 0.02 \varepsilon$$

$$I = 0.0418 + 2.56R^2$$

9. Окончательные результаты

$$ar{t}=4,68\pm0,25\ {\rm c.}$$
; $\delta_{ar{t}}=5\%$; $\alpha=0,95$ $a=(0,06\pm0,008)\ {\rm m/c^2}$; $\delta_a=13\%$; $\alpha=0,95$ $\epsilon=2,61\pm0,36\ {\rm pag/c^2}$; $\delta_\epsilon=13\%$; $\alpha=0,95$ $M=(0,13\pm0,001)\ {\rm H*m}$; $\delta_M=0,8\%$; $\alpha=0,95$

10. Выводы и анализ результатов работы.

Таким образом, нам удалось исследовать зависимости момента силы натяжения нити от углового ускорения и момента инерции от положения масс относительно оси вращения. Согласно нашим расчётам, зависимости в самом деле получились линейные: $M(\varepsilon) = M_{\rm Tp} + I\varepsilon = 0.02 + 0.02$ ε ; $I(R^2) = I_0 + 4m_{\rm yr}*R^2 = 0.0418 + 2.56R^2$. Графики линейных зависимостей представлены в пункте 8. Тем самым мы подтвердили основной закон динамики вращательного движения и теорему Штейнера, что и являлось главной целью данной лабораторной работы. Следовательно, проверка основного закона динамики вращения была успешной.