

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Analiza wariancji ANOVA

Statystyka

Dr inż. Janusz Majewski Katedra Informatyki

Literatura

 Prezentacja wykorzystuje fragmenty książki: Amir D. Aczel "Statystyka w zarządzaniu", PWN, 2007

ANOVA – analiza wariancji

"Wszystkim ludziom żyjącym dziś, dnia 17 czerwca 1579, wiadomym czynimy, że z Bożej Łaski i w imieniu Jej Królewskiej Mości Królowej Anglii oraz Jej spadkobierców obejmuję w posiadanie na zawsze to królestwo, którego król oraz lud dobrowolnie zrzekają się swoich praw i tytułów do ziemi na rzecz Jej Królewskiej Mości, które to królestwo zostało przeze mnie nazwane i ma być przez wszystkich zwane pod nazwą **Nova Albion**".

Francis Drake

- W lecie 1936 roku na wzgórzach otaczających Point San Quentin i zatokę San Francisco natrafiono na mosiężną płytę z przytoczonym wyżej napisem...
- W dzienniku okrętowym, który Sir Francis Drake prowadził w czasie swoich podróży dookoła świata, pisze on o dopłynięciu w roku 1579 do bezpiecznego miejsca na lądzie w celu poddania statku remontowi, którym to lądem było wybrzeże północnej Kalifornii. Wspomina też o pozostawieniu na nabrzeżu płyty upamiętniającej to wydarzenie...

Metoda analizy wariancji, w ogólnym przypadku, pozwala na sprawdzanie czy pewne czynniki wywierają wpływ na kształtowanie się średnich wartości badanych cech mierzalnych (o charakterze ilościowym). Jeśli uwzględnimy jeden czynnik – zadanie sprowadzi się do porównania kilku średnich.

Mamy k grup obserwacji o charakterze ilościowym. W każdej i-tej grupie dysponujemy próbką zawierającą n_i obserwacji. Zakładamy, że obserwacje w każdej grupie maja rozkład normalny lub zbliżony do normalnego, zaś wariancje we wszystkich grupach są równe i wynoszą σ^2 (σ^2 nie jest znane).

Grupa	1	2	 i	•••	k	Wszystkie
Liczba obserwacji	n_1	n_2	 n_i		n_k	$N = \sum_{i=1}^{k} n_i$
Wartości obserwacji	$\begin{array}{c c} y_{11} \\ y_{12} \\ \vdots \\ y_{1n_1} \end{array}$	$egin{array}{c} y_{21} \\ y_{22} \\ \vdots \\ y_{2n_2} \end{array}$	 $egin{array}{c} \mathcal{Y}_{i1} \ \mathcal{Y}_{i2} \ dots \ \mathcal{Y}_{in_k} \end{array}$		$egin{array}{c} y_{k1} \ y_{k2} \ dots \ y_{kn_k} \end{array}$	
Suma wartości	T_1	T_2	 $T_i = \sum_{j=1}^{n_i} y_{ij}$		T_k	$T = \sum_{i=1}^{k} T_i$
Średnia wartości	$\overline{y_1}$	$\overline{y_2}$	 $\overline{y_i} = T_i/n_i$	•••	$\overline{\mathcal{y}_k}$	$\overline{y} = T/N$
Suma kwadratów <i>y</i> ²	S_1	S_2	 $S_i = \sum_{j=1}^{n_i} y_{ij}^2$		S_k	$S = \sum_{i=1}^{k} S_i$

 $y_{ij} - j$ -ta obserwacja w i-tej grupie

MODEL ADDYTYWNY: $y_{ij} = \mu_i + \varepsilon_{ij}$

 μ_i – prawdziwa średnia w *i*-tej grupie

 ε_{ij} – składnik losowy z zerową wartością średnią i stałą wariancją σ^2

Hipotezy w analizie wariancji w klasyfikacji pojedynczej

 H_0 : $\mu_1 = \mu_2 = ... = \mu_i = ... = \mu_k$

H₁: nie wszystkie średnie grupowe są równe

MODEL ADDYTYWNY: $y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$

 μ – wartość niezależna od grupy

 α_i – wartość "charakterystyczna" dla danej grupy, odpowiedzialna za różnice systematyczne pomiędzy grupami.

 ε_{ij} – składnik losowy z zerową wartością średnią i stałą wariancją σ^2

Podział μ_i na $\mu + \alpha_i$ jest tak dokonany, aby

$$\sum_{i=1}^k \alpha_i = 0$$

Istota ANOVA – przykład

Rysunek 9.5. Odchylenia wyników obserwacji trójkątów, kwadratów i kółek od średnich z prób oraz odchylenia średnich z prób od średniej ogólnej

Podstawowa zasada ANOVA głosi, że gdy średnie w populacjach nie są sobie równe, to "przeciętne" odchylenie losowe (błąd) jest stosunkowo mały w porównaniu z "przeciętnym" odchyleniem zabiegowym.

$$\sum_{ij} (y_{ij} - \bar{y})^2 = \sum_{ij} (y_{ij} - \bar{y})^2 + \sum_{ij} (y_{ij} - \bar{y})^2$$

$$SK = SKWG + SKMG$$

Całkowita suma kwadratów

$$SK = \sum_{i_{ij}} (y_{ij} - \bar{y})^2 = S - \frac{T^2}{N}$$

Suma kwadratów wewnątrzgrupowa

$$SKWG = \sum_{i_{ii}} (y_{ij} - \overline{y_i})^2 = S - \sum_{i} \frac{T_i^2}{n_i}$$

Suma kwadratów międzygrupowa

$$SKMG = \sum_{i_{ij}} (y_{ij} - \bar{y})^2 = \sum_{i} \frac{T_i^2}{n_i} - \frac{T^2}{N}$$

Jeśli hipoteza zerowa jest prawdziwa (czyli wszystkie średnie grupowe są równe), to istnieją trzy nieobciążone estymatory tej samej wartości σ^2 (σ^2 -wariancja identyczna we wszystkich grupach)

$$S_T^2 = \frac{SK}{N-1}$$
 $S_W^2 = \frac{SKWG}{N-k}$ $S_M^2 = \frac{SKMG}{k-1}$

Jeśli hipoteza zerowa nie jest prawdziwa, to S_W^2 jest nadal nieobciążonym estymatorem σ^2 , zaś S_M^2 wzrasta. Gdy S_M^2 znacznie przewyższa S_W^2 , H_o trzeba odrzucić.

$$F = \frac{S_M^2}{S_W^2}$$
 H_o trzeba odrzucić, gdy $F \ge F_{(N-k)}^{(k-1)}$

Źródło zmienności	Suma kwadratów	Liczba stopni swobody	Średni kwadrat	Stosunek wariancji
Miedzy grupami	SKMG	k-1	$S_M^2 = \frac{SKMG}{k-1}$	$F = \frac{S_M^2}{S_W^2}$
Wewnątrz grup	SKWG	N-k	$S_W^2 = \frac{SKWG}{N - k}$	
Całkowita	SK	N-1		

Gdy odrzucimy H_o można testować istotność różnicy miedzy dwiema wybranymi średnimi $\overline{y_a}:\overline{y_b}$ stosując test t:

$$t = \frac{\overline{y_a} - \overline{y_b}}{S_w \sqrt{\frac{1}{n_a} + \frac{1}{n_b}}}$$
 (różnica jest istotna, gdy $|t| \ge t_{(N-k)}$)

lub dla przypadku równolicznych grup $(n_1 = n_2 = ... = n_k = n)$ obliczyć najmniejsza istotna różnicę miedzy średnimi

$$D = \underset{\propto}{} t_{(N-k)} \, s_w \, \sqrt{\frac{2}{n}}$$

<u>Przykład:</u> Czas krzepnięcia osocza krwi mierzono 4 metodami. Osocze pobrano od dziesięciu pacjentów i poddano czterem testom

Metoda	1	2	3	4
	9,1	10,0	10,0	10,9
	8,9	10,2	9,9	11,1
	8,4	9,8	9,8	12,2
	12,8	11,6	12,9	14,4
Ocena w	8,7	9,5	11,2	9,8
minutach	9,2	9,2	9,9	12,0
	7,6	8,6	8,5	8,5
	8,6	10,3	9,8	10,9
	8,9	9,4	9,2	10,4
	7,9	8,5	8,2	10,0
T_i	90,1	97,1	99,4	110,2
T_i^2	8118,01	9428,41	9880,36	12144,04
$\overline{\overline{y_i}}$	9,01	9,71	9,94	11,02

N=40;
$$T=396,0$$
; $S=4021,84$

$$\frac{T^2}{N} = 3936,256$$

$$\sum_{i} \frac{T_i^2}{n_i} = 3957,082$$

Źródło zmienności	Suma kwadratów	Liczba stopni swobody	Średni kwadrat	Stosunek wariancji	Istotność
Miedzy grupami	20,826	3	6,924	3,85	TAK dla α=0,025
Wewnątrz grup	64,758	36	1,799		u 5,625
Całkowita	85,584	39		-	

$$_{0,025}F_{(36)}^{(3)}=3,51$$

$$n = 10$$

$$_{0,05}$$
 $t_{(36)} = 2,029$

$$D = 2,029 \cdot \sqrt{1,799} \cdot \sqrt{\frac{2}{10}} = 1,22$$

Dla α =0,05 istotne są różnice miedzy

metodą 1 a metodą 4 oraz

metodą 2 a metodą 4 (ledwie, ledwie)

Dla uzyskania odpowiedzi na pytanie: czy wynik metody 4 istotnie odbiega od średniego wyniku metod 1, 2 i 3 należy zastosować badanie istotności kontrastu liniowego.

Dla uzyskania odpowiedzi na pytanie: czy wynik metody 4 istotnie odbiega od średniego wyniku metod 1, 2 i 3 należy zastosować badanie istotności kontrastu liniowego.

Kontrast liniowy określamy jako:

$$L = \sum \lambda_i \, \bar{y}_i$$

gdzie: $\sum \lambda_i = 0$ i testujemy używając zwykłego testu t przy k(n-1) stopniach swobody

$$t = \frac{L}{s_W \sqrt{\frac{\sum \lambda_i^2}{n}}}$$

Możemy też wykorzystać metodę analizy wariancji w schemacie:

Źródło zmienności	Suma kwadratów	Liczba stopni swobody	Średni kwadrat	Stosunek wariancji
Względem kontrastu <i>L</i>	$\frac{L^2}{\frac{1}{n}\sum \lambda_i^2}$	1	$S_1^2 = \frac{L^2}{\frac{1}{n} \sum \lambda_i^2}$	$F_1 = \frac{S_1^2}{S_W^2}$
Względem innych kontrastów	$SKMG - \frac{L^2}{\frac{1}{n}\sum \lambda_i^2}$	k – 2	$S_A^2 = \frac{L^2}{\frac{1}{n}\sum \lambda_i^2}$ $k - 2$	$F_2 = \frac{S_A^2}{S_W^2}$
Wewnątrz grup	SKWG	k(n – 1)	$S_W^2 = \frac{SKWG}{k(n-1)}$	
Całkowita	SK	nk – 1		

<u>Przykład c.d.:</u> Chcemy sprawdzić, czy średnia dla metody 4 odbiega istotnie od średnich dla pozostałych metod badania czasu krzepnięcia osocza krwi. Konstruujemy kontrast liniowy:

$$L = 3\bar{y}_4 - \bar{y}_1 - \bar{y}_2 - \bar{y}_3$$

Mamy:

$$L = 4,40$$

Źródło zmienności	Suma kwadratów	Liczba stopni swobody	Średni kwadrat	Stosunek wariancji
Względem kontrastu <i>L</i>	3,667	1	3,667	2,04
Względem innych kontrastów	17,159	2	8,579	4,77
Wewnątrz grup	64,758	36	1,799	
Całkowita	85,584	39		

$$_{0,05}F_{(36)}^{(1)} = 4,13$$

$$_{0,05}F_{(36)}^{(2)} = 3,29$$

Kontrast nie jest istotny, inne kontrasty są istotne. Jakie? Dlaczego?

Porównanie kilku wariancji (test Bartletta)

Przyjmujemy oznaczanie takie same , jak przy porównywaniu średnich z k grup. Testujemy hipotezę zerową mówiąca że wariancje w każdej z grup są identyczne.

$$H_0: \ \sigma_1^2 = \ldots = \sigma_k^2 = \ldots = \sigma_k^2$$

 H_1 : nie wszystkie wariancje są identyczne

Zakłada się, że próba została pobrana z populacji <u>o rozkładzie normalnym</u>.

Porównanie kilku wariancji (test Bartletta)

Zakłada się, że próba została pobrana z populacji <u>o rozkładzie normalnym</u>. Obliczamy:

$$s_i^2 = \frac{\sum_{j=1}^{n_i} y_{ij}^2 - \frac{(\sum_{j=1}^{n_i} y_{ij})^2}{n_i}}{n_i - 1} \qquad C = 1 + \frac{1}{3(k-1)} \left[\sum_{i=1}^k \frac{1}{n_i - 1} - \frac{1}{N-k} \right]$$
$$\widetilde{s_i^2} = \frac{\sum_{i=1}^k (n_i - 1) s_i^2}{N-k} \qquad \chi^2 = \frac{M}{C}$$

$$M = (N - k) \ln \widetilde{s^2} - \sum_{i=1}^{k} (n_i - 1) \ln s_i^2$$

Jeśli $\chi^2 \geq \alpha \chi^2_{(k-1)}$ to hipotezę o równości wszystkich wariancji odrzucamy.

Porównanie kilku wariancji (test Bartletta)

<u>Przykład (c.d.)</u> Badamy równość wariancji w grupach odpowiadających poszczególnym metodom oznaczania części krzepnięcia osocza. Mamy:

$$\widetilde{s^2} = 1,799$$

$$M = 2,9007$$

$$C = 1,0462$$

$$\chi^2 = 2,7726$$

$$_{0,05}\chi_3^2 = 7,815$$

$$\chi^2 < \chi_{krvt}^2$$

Wiec nie ma podstaw do odrzucenia hipotezy o równości wariancji w grupach i można było zastosować metodę analizy wariancji.

Brak efektu kolumn						
ktu	:y	5	5	5		
3rak efektu	wierszy	5	5	5		
Bra	>	5	5	5		

Efekt kolumn					
ktu	:	4	5	6	
Brak efektu	wierszy	4	5	6	
Bra	>	4	5	6	

Brak efektu					
	kolu	mn			
rszy	\text{\frac{1}{2}}{2} 4 4 4 4				
Efekt wierszy	5	5	5		
Efek	6	6	6		

rszy	Efekt kolum			
wie	4	5	6	
Efekt wierszy	5	6	7	
3	6	7	8	

1	Efekt				
rsz\	kolumn				
wie	4 5		6		
Efekt wierszy	5	16	7		
Э	6	7	8		

Efekt interakcji

Wiersze\Kolumny	1	2	•••	j	•••	С	Suma
1			T I I		•	 	R_1
2			 			 	R_2
:			y_{ij1}	${oldsymbol y}_{ije}$,	,	Y	•
i			,	${oldsymbol{\mathcal{Y}}}_{ijp}$,	y_{ijn}		R_i
:			ī 	T_{ij} , $S_{i,j}$,		 	• •
r			 			 	R_r
Suma	\mathcal{C}_1	C_2	•••	C_j		C_c	Т

$$T_{ij} = \sum_{p=1}^{w} y_{ijp} \qquad C_{j} = \sum_{i=1}^{r} T_{ij} \qquad R_{i} = \sum_{j=1}^{c} T_{ij}$$

$$T = \sum_{i=1}^{r} R_{i} = \sum_{j=1}^{c} C_{j} = \sum_{i,j} T_{ij} = \sum_{i,j,p} y_{ijp} \qquad S_{ij} = \sum_{p=1}^{n} y^{2}_{ijp}$$

$$N = r \cdot c \cdot n \qquad S = \sum_{i,j,p} y^{2}_{ijp} \qquad \bar{y} = \frac{T}{N}$$

Przyjęty model addytywny:

$$y_{ijp} = \mu + \alpha_i + \beta_i + \gamma_{ij} + \varepsilon_{ijp}$$

 y_{ijp} — p-ta obserwacja w i-tym wierszu i j-tej kolumnie

 μ — wartość stała

 $lpha_i$ — odpowiedzialna za różnice pomiędzy wierszami

 eta_i — odpowiedzialna za równice pomiędzy kolumnami

 γ_{ij} — odpowiedzialna za interakcję

 $arepsilon_{ijp}$ — składnik losowy z zerową wartością średnią o i stałą wariancją σ^2

H_o: (1) brak efektu wierszy

- (2) brak efektu kolumn
- (3) brak efektu interakcji

SK = SKMW + SKMK + SKI + SKR

SK – Całkowita suma kwadratów odchyleń od średniej ogólnej

SKMW – Suma kwadratów odchyleń średnich wierszy od średniej ogólnej

SKMK – Suma kwadratów odchyleń średnich kolumn od średniej ogólnej

SKI – Suma kwadratów odchyleń średnich z kratek od wartości oczekiwanej wyjaśnionej efektami wierszy i kolumn

SKR – Resztowa suma kwadratów (odchyleń obserwacji wewnątrz kratki tabeli od średniej dla danej kratki)

$$SK = S - \frac{T^2}{N}$$

$$SKMW = \frac{\sum_{i} R_i^2}{nc} - \frac{T^2}{N}$$

$$SKMK = \frac{\sum_{j} C_j^2}{nr} - \frac{T^2}{N}$$

$$SKI = \frac{\sum_{ij} T_{ij}^2}{n} - \frac{T^2}{N} - (SKMW + SKMK)$$
$$SKR = SK - (SKMW + SKMK + SKI)$$

Źródło zmienności	Suma kwadratów	Liczba stopni swobody	Średni kwadrat	Stosunek wariancji
Miedzy wierszami	SKMW	r-1	$S_R^2 = \frac{SKMW}{r-1}$	$F_R = \frac{S_R^2}{S_0^2}$
Miedzy kolumnami	SKMK	c-1	$S_C^2 = \frac{SKMK}{c-1}$	$F_C = \frac{S_C^2}{S_0^2}$
Interakcja	SKI	(r-1)(c-1)	$S_I^2 = \frac{SKI}{(r-1)(c-1)}$	$F_I = \frac{S_I^2}{S_0^2}$
Reszta	SKR	N-rc	$S_0^2 = \frac{SKR}{N - rc}$	
Całkowita	SK	N-1		

<u>Przykład</u>: Fragment danych z poprzedniego przykładu. Rozważmy 3 metody i trzech pacjentów, zakładamy, że osocze pobrane od każdego z pacjentów badano każdą metoda trzykrotnie.

$$r=3$$
 $c=3$ $n=3$ $N=27$

Pacjenci\Metody	2	3	4	Sumy	
8	$T_{11} = 30,9$	29,4	32,7		
	10,2	9,9	11,3		
	10,5	9,5	10,7	$R_1 = 93,0$	
	10,2	10,0	10,7		
	$S_{11} = 318,33$	288,26	356,67		
9	28,2	27,6	31,2		
	9,6	9,1	10,3	$R_2 = 87,0$	
	9,0	9,1	10,7		
	9,6	9,4	10,2		
	265,32	253,98	324,62		
10	25,2	24,6	30,0		
	9,0	8,6	9,8	$R_3 = 80,1$	
	8,1	8,0	10,1		
	8,4	8,4	10,1		
	217,17	217,17	300,06		
Sumy	$C_1 = 93,0$	$C_2 = 81,6$	$C_3 = 93,9$	T=260,1	

Zmienność	Suma kwadratów	Liczba stopni swobody	Średni kwadrat	Stosunek wariancji	Istotność
Miedzy pajentami	9,26	2	4,63	52,08	TAK α=0,001
Miedzy metodami	9,14	2	4,57	51,41	TAK α=0,001
Interakcja	0,74	4	0,185	2,08	NIE
Reszta	1,60	18	0,0889		
Całkowita	20,74	26			

Niektórzy autorzy [Blalock] polecają (ja też!) rozpocząć testowanie od ilorazu wariancji F_I. Przy braku podstaw do odrzucenia hipotezy o nieistotności interakcji zalecają oni sumę kwadratów interakcji dodać do składnika resztowego zmieniając odpowiednio liczbę stopni swobody

i użyć tak zmodyfikowanego średniego kwadratu resztowego jako mianownika stosunków wariancji dla efektów głównych.

Np. Między pacjentami
$$F_R = \frac{S_R^2}{(S_0')^2} = \frac{4,63}{0,1064} = 43,53$$
 zamiast *52,08*

(co i tak daje w naszym przypadku bardzo wysoką istotność...)

Gdyby zaś interakcja była istotna, można obliczyć wartość:

$$d_{ij} = \overline{y_{ij}} - \overline{y_i} - \overline{y_j} + \overline{y},$$

która stanowi odchylenie średniej w polu tabeli od wartości spodziewanej dla braku interakcji i ten sposób zorientować się, gdzie jest "źródło" interakcji.