USAJMO 2010 - Problems and Solutions

VISHAL RAMAN

May 13, 2018

§1 Problems

Problem 1.1 (USAJMO 2010/1). A permutation of the set of positive integers $[n] = \{1, 2, ..., n\}$ is a sequence $(a_1, a_2, ..., a_n)$ such that each element of [n] appears precisely one time as a term of the sequence. Let P(n) be the number of permutations of [n] for which ka_k is a perfect square for all $1 \le k \le n$. Find with proof the smallest n such that P(n) is a multiple of 2010.

Problem 1.2 (USAJMO 2010/2). Let n > 1 be an integer. Find, with proof, all sequences $x_1, x_2, ..., x_{n-1}$ of positive integers with the following three properties:

- (a) $x_1 < x_2 < \dots < x_{n-1}$;
- (b) $x_i + x_{n-i} = 2n$ for all i = 1, 2, ..., n-1;
- (c) given any two indices i and j (not necessarily distinct) for which $x_i + x_j < 2n$, there is an index k such that $x_i + x_j = x_k$.

Problem 1.3 (USAJMO 2010/3). Let AXYZB be a convex pentagon inscribed in a semicircle of diameter AB. Denote by P, Q, R, S the feet of the perpendiculars from Y onto lines AX, BX, AZ, BZ respectively. Prove that the acute angle formed by lines PQ and RS is half the size of $\angle XOZ$, where O is the midpoint of segment AB.

Problem 1.4 (USAJMO 2010/4). A triangle is called a parabolic triangle if its vertices lie on a parabola $y = x^2$. Prove that for every nonnegative integer n, there is an odd number m and a parabolic triangle with vertices at three distinct points with integer coordinates with area $(2^n m)^2$.

Problem 1.5 (USAJMO 2010/5). Two permutations $a_1, a_2, ..., a_{2010}$ and $b_1, b_2, ..., b_{2010}$ of the numbers 1, 2, ..., 2010 are said to intersect if $a_k = b_k$ for some value of k in the range $1 \le k \le 2010$. Show that there exist 1006 permutations of the numbers 1, 2, ..., 2010 such that any other such permutation is guaranteed to intersect at least one of these 1006 permutations.

Problem 1.6 (USAJMO 2010/6). Let ABC be a triangle with $\angle A = 90^{\circ}$. Points D and E lie on sides AC and AB, respectively, such that $\angle ABD = \angle DBC$ and $\angle ACE = \angle ECB$. Segments BD and CE meet at I. Determine whether or not it is possible for segments AB, AC, BI, ID, CI, IE to all have integer lengths.

§2 Solutions

Problem 1 (USAJMO 2010/1)

A permutation of the set of positive integers $[n] = \{1, 2, ..., n\}$ is a sequence $(a_1, a_2, ..., a_n)$ such that each element of [n] appears precisely one time as a term of the sequence. Let P(n) be the number of permutations of [n] for which ka_k is a perfect square for all $1 \le k \le n$. Find with proof the smallest n such that P(n) is a multiple of 2010.

Proof. We claim the smallest such n is $n = 67^2 = 4489$. Call a permutation $(a_1, a_2, ..., a_n)$ square if it satisfies the condition ka_k is a perfect square for all $k \in [n]$. We will define the sequence $O = (o_1, o_2, ..., o_n)$ so that $o_k = k$. We will first show that 2010|P(4489), and we will then show that n = 4489 is the smallest such permutation that satisfies this condition.

Note that O is square as $ko_k = k^2$ for all $k \in [n]$. Now, Take any two perfect squares $a^2, b^2 \in [4489]$. Since $a^2o_{b^2} = a^2b^2$ and vice versa, are perfect squares, we can obtain another square permutation of n by swapping o_{a^2} and o_{b^2} . Since there are 67 perfect squares in [4489], we can obtain 67! square permutations by permuting the perfect square elements of O. Thus, 67!|P(n) and since $2010 = 2 \cdot 3 \cdot 5 \cdot 67|67!$, 2010|P(n).

The next largest set of elements that can be swapped are in the form $2k^2 \in [n]$ - if $2c^2, 2d^2 \in [n]$, then $2c^2o_{2d^2} = 2^2c^2d^2$ is a perfect square. However, in order to obtain the multiple of 67 in 2010, $n \ge 2(67)^2 > 67^2$. Therefore n = 4489 is the smallest such n so that P(n) is a multiple of 2010.

The second solution is more elegant, rigorously creating all the permutation groups of [n] through the notion of an equivalence relation (based on "mavropnevma", from Art of Problem Solving).

Proof. Use all the definitions from the first part of the above proof. Define on [n] the relation k l if and only if k l is a perfect square (is clearly satisfies the reflexive, symmetric, and transitive properties).

A permutation $(a_1, a_2, ..., a_n)$ is square if and only if it a_k k. Suppose [n] has p equivalence classes, $C_1, C_2, ..., C_p$. Over each of those equivalence classes, we can permute the elements a_k to keep the square condition. Therefore, we have

$$P(n) = \prod_{n=1}^{p} |C_n|!.$$

For $n = 67^2 = 4489$, $C_1 = 67$, which means $|C_1|! = 67! | P(n)$, and 2010 = 2 * 3 * 5 * 67 | 67! | <math>P(n). n = 4489 is the smallest such solution as $|C_1|$ is clearly the smallest equivalence class, and n = 4489 is the smallest n so that $67 | C_1$. Therefore, 4489 is the smallest such n so that 2010 | P(n).

Problem 2 (USAJMO 2010/2)

Let n > 1 be an integer. Find, with proof, all sequences $x_1, x_2, ..., x_{n-1}$ of positive integers with the following three properties:

- (a) $x_1 < x_2 < \dots < x_{n-1}$;
- (b) $x_i + x_{n-i} = 2n$ for all i = 1, 2, ..., n-1;
- (c) given any two indices i and j (not necessarily distinct) for which $x_i + x_j < 2n$, there is an index k such that $x_i + x_j = x_k$.

Proof. Firstly, $x_1 + x_{n-1} = 2n$, so $x_{n-1} = 2n - x_1$. Since $x_{n-2} < x_{n-1}$, we must have $x_1 + x_{n-2} < x_1 + x_{n-1} < 2n$. Thus, there must exist an index k such that $x_1 + x_{n-2} = x_k$. However, $x_{n-2} > x_{n-3} > \dots > x_2 > x_1$. Therefore, the only possible index for k to be is k = n - 1, so $x_1 + x_{n-2} = x_{n-1} = 2n - x_1$, which means $x_{n-2} = 2n - 2x_1$.

Now, consider $x_1 + x_{n-3}$. Since $x_{n-3} < x_{n-1}$, $x_1 + x_{n-3} < 2n$ which means there exists an index k_1 so that $x_1 + x_{n-3} = x_{k_1}$. k_1 cannot be n-1, as this would imply that $x_{n-3} = x_{n-2}$, but x_{n-3} must be less than x_{n-2} . This only leaves $k_1 = n-2$, which means $x_1 + x_{n-3} = x_{n-2}$. It follows that $x_{n-3} = 2n - 3x_1$.

Note that this argument can be repeated for all x_{n-m} , where $1 \le m \le n-1$. In particular, $x_{n-m} = 2n - mx_1$. If we take m = n-1, then we have $x_{n-(n-1)} = x_1 = 2n - (n-1)x_1$. Solving for x_1 gives $x_1 = 2$. This generates the sequence 2, 4, 6, 8, ..., 2n-2.

This satisfies the 3 conditions as

- (a) $2 < 4 < 6 < \dots < 2n 2$;
- (b) $x_i + x_{n-i} = 2i + (2n 2i) = 2n;$
- (c) If $x_i + x_j < 2n$ for some i, j < n 1. then since the sequence contains all the even numbers less than 2n, there exists an index k so that $x_i + x_j = x_k$.

Problem 3 (USAJMO 2010/3)

Let AXYZB be a convex pentagon inscribed in a semicircle of diameter AB. Denote by P, Q, R, S the feet of the perpendiculars from Y onto lines AX, BX, AZ, BZ respectively. Prove that the acute angle formed by lines PQ and RS is half the size of $\angle XOZ$, where O is the midpoint of segment AB.

Proof. Let \angle denote directed angles (mod 180°).

Let T be the altitude from Y onto AB. Note that $PQ \cap SR = T$, since PQ and SR are Simson lines from Y.

Firstly, $\angle YTA = \angle YPA = 90^o$, which implies YTAP is cyclic. Similarly, $\angle YTB = \angle YSB = 90^o$, so YSBT is cyclic.

Then
$$\angle XOZ = \angle XOY + \angle YOZ = 2(\angle XAZ + \angle YBZ) = 2(\angle PAY + \angle YBS) = 2(\angle PTY + \angle YTS) = 2\angle PTS$$
, as desired. \Box

Problem 4 (USAJMO 2010/4)

A triangle is called a parabolic triangle if its vertices lie on a parabola $y = x^2$. Prove that for every nonnegative integer n, there is an odd number m and a parabolic triangle with vertices at three distinct points with integer coordinates with area $(2^n m)^2$.

Proof. Let A(a,b,c) denote the area of a parabolic triangle with coordinates $(a,a^2),(b,b^2)$, and (c,c^2) . We have

$$A(a,b,c) = \frac{1}{2} \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} = \frac{1}{2} |(a-b)(b-c)(c-a)|.$$

Note that $A(ka, kb, kc) = k^3 A(a, b, c)$. Then, if $A(a, b, c) = (2^n m)^2$, $A(4a, 4b, 4c) = 4^3 (2^n m)^2 = (2^{n+3} m)^2$. Therefore, it suffices to show that we have parabolic triangles when n = 0, 1, 2.

For the n = 0 case, $A(0, 1, -1) = \frac{1}{2}|(0 - 1)(1 - (-1))(-1 - 0)| = 1 = (2^0 \cdot 1)^2$. For the n = 1 case, $A(0, 8, 9) = \frac{1}{2}|(0 - 8)(8 - 9)(9 - 81)| = 36 = (2^1 \cdot 3)^2$. Finally, for the n = 2 case, $A(0, 40, 50) = \frac{1}{2}|(0 - 40)(40 - 50)(50 - 0)| = 10000 = (2^2 \cdot 25)^2$.

By induction, there exists an odd number m so that for all $n \in \mathbb{Z}^+$, there exists a parabolic triangle with area $(2^n m)^2$.

Problem 5 (USAJMO 2010/5)

Two permutations $a_1, a_2, ..., a_{2010}$ and $b_1, b_2, ..., b_{2010}$ of the numbers 1, 2, ..., 2010 are said to intersect if $a_k = b_k$ for some value of k in the range $1 \le k \le 2010$. Show that there exist 1006 permutations of the numbers 1, 2, ..., 2010 such that any other such permutation is guaranteed to intersect at least one of these 1006 permutations.

Proof. Consider the 1006 permutations

```
P_1 = (1, 2, 3, ..., 1005, 1006, 1007, 1008, ..., 2009, 2010);
P_2 = (1006, 1, 2, ..., 1004, 1005, 1007, 1008, ..., 2009, 2010);
P_3 = (1005, 1006, 1, ..., 1003, 1004, 1007, 1008, ..., 2009, 2010);
...
P_{1006} = (2, 3, 4, ..., 1006, 1, 1007, 1008, ..., 2009, 2010);
```

formed by cycling through the first 1006 natural numbers and leaving the next 1004 numbers in the same position.

Let $P_i(j)$ denote the j-th element of P_i . Suppose there existed a permutation $X = (x_1, x_2, ..., x_{2010})$ that didn't intersect with any of $P_1, P_2, ..., P_{2010}$. Take $n \in [1, 1006] \cap \mathbb{Z}$. Now, suppose $x_i = n$ for some $i \in [1, 1006] \cap \mathbb{Z}$. If i = n, then $P_1(i) = x_i$, which means X and P_i intersect. If i > n, then $P_{i-n+1}(i) = x_i$, which means X and $P_{i-n+1}(i) = x_i$ and $P_$

Problem 6 (USAJMO 2010/6)

Let ABC be a triangle with $\angle A = 90^{\circ}$. Points D and E lie on sides AC and AB, respectively, such that $\angle ABD = \angle DBC$ and $\angle ACE = \angle ECB$. Segments BD and CE meet at I. Determine whether or not it is possible for segments AB, AC, BI, ID, CI, IE to all have integer lengths.

Proof. Let $\angle ABE = \theta$. Since CI is an angle bisector, $\angle ECB = \theta$, and $\angle A = 90^{\circ}$, so $\angle B = 90^{\circ} - 2\theta$. Since BI is an angle bisector, $\angle IBC = 45^{\circ} - \theta$, which means $\angle BIC = 180^{\circ} - (45^{\circ} - \theta) - (\theta) = 135^{\circ}$. Therefore, by the Law of Cosines,

$$BC^2 = BI^2 + CI^2 - 2(BI)(CI)\cos 135^\circ = BI^2 + CI^2 + (BI)(CI)\sqrt{2},$$

which has no solutions in positive integers. Thus, it is impossible for AB, AC, BI, ID, CI, IE to all have integer lengths.