Formale Grundlagen der Informatik II 1. Hausübung

Fachbereich Mathematik
Prof. Dr. Martin Otto

SoSe 2015 3. Juni 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

Aufgabe H1 (AL-Spezifikationen)

(12 Punkte)

- (a) Geben Sie für jedes $n \in \mathbb{N}$ eine aussagenlogische Formel $\varphi(x_0, \ldots, x_n, y_0, \ldots, y_n, z_0, \ldots, z_n)$, die genau dann wahr ist, wenn die Summe der in \bar{x} und \bar{y} kodierten Binärzahlen gleich der in \bar{z} kodierten Binärzahl ist. Dabei kodiere \bar{x} die Zahl $\sum_i x_i 2^i$.
 - (Hinweis: Für ein transparentes Vorgehen per Induktion über n überlege man sich zunächst geeignete Hilfsformeln.)
- (b) Gibt es möglicherweise unendliche aussagenlogische Formelmengen $\Phi_1, \Phi_2, \Phi_3 \subseteq AL(\mathcal{V})$ mit $\mathcal{V} = \{p_1, p_2, \ldots\}$ derart, dass für Belegungen $\mathfrak I$ gilt
 - i. $\mathfrak{I} \models \Phi_1$ genau dann, wenn \mathfrak{I} höchstens zwei Variablen mit 1 belegt,
 - ii. $\mathfrak{I} \models \Phi_2$ genau dann, wenn \mathfrak{I} genau zwei Variablen mit 1 belegt, und
 - iii. $\mathfrak{I}\models\Phi_3$ genau dann, wenn $\mathfrak I$ mindestens zwei Variablen mit 1 belegt.

Aufgabe H2 (Vollständige Systeme von Junktoren)

(12 Punkte)

Für jede der folgenden Junktorenmengen beweisen oder widerlegen Sie, dass sie vollständige Systeme von Junktoren sind.

- (a) $\{\neg, \rightarrow\}$
- (b) $\{\to, 0\}$
- (c) {↔}
- (d) $\{\land,\lor\}$

Aufgabe H3 (Resolution)

(12 Punkte)

(a) Überprüfen Sie mit Hilfe der Resolutionsmethode, ob die folgende Formel unerfüllbar ist:

$$(q \lor s) \land (p \lor \neg s) \land (p \lor \neg q \lor r \lor s) \land (q \to (r \to s)) \land (r \lor s) \land ((p \land s) \to r) \land (\neg p \lor \neg r)$$

(b) Weisen Sie mit Hilfe der Resolutionsmethode die folgende Folgerungsbeziehung nach:

$$(p \lor \neg q \lor r) \land (\neg p \lor q \lor r) \models (\neg p \land q \land r) \lor (\neg p \land \neg q) \lor (\neg p \rightarrow 0)$$

(c) Bestimmen Sie das minimale Modell der folgenden Horn-Formelmenge:

$$H_0 = \{(p \land t) \rightarrow s, \quad r, \quad (q \land r) \rightarrow s, \quad t \rightarrow p, \quad t\}$$

1

Aufgabe H4 (Untere Schranken für Formelgrößen)

Für $n \ge 1$ sei

$$\varphi_n(p_1,\ldots,p_{2n}) := \bigwedge_{i=1}^n \neg (p_{2i-1} \longleftrightarrow p_{2i})$$

(siehe Beispiel 3.9 im Skript). Zeigen Sie, dass

- (a) φ_n genau 2^n verschiedene Modelle hat;
- (b) φ_n äquivalent zu einer Formel in KNF ist, welche 2n Konjunktionsglieder besitzt;
- (a) jede zu φ_n äquivalente Formel in DNF mindestens 2^n Disjunktionsglieder hat.

Aufgabe H5 (Folgerungen aus dem Kompaktheitssatz)

(12 Punkte)

(a) Für — möglicherweise unendliche — Formelmengen Φ und Ψ schreiben wir

$$\bigwedge \Phi \models \bigvee \Psi$$
,

wenn jede Interpretation, die alle Formeln $\varphi \in \Phi$ wahr macht, auch mindestens eine Formel $\psi \in \Psi$ wahr macht. Zeigen Sie, dass $\bigwedge \Phi \models \bigvee \Psi$ impliziert, dass es endliche Teilmengen $\Phi_0 \subseteq \Phi$ und $\Psi_0 \subseteq \Psi$ gibt, so dass $\bigwedge \Phi_0 \models \bigvee \Psi_0$.

(b) Sei $\mathcal{V} = \{p_1, p_2, p_3, \ldots\}$. Eine Interpretation $\mathfrak{I}: \mathcal{V} \to \mathbb{B}$ kann aufgefasst werden als die unendliche Bit-Sequenz $\mathfrak{I}(p_1)\mathfrak{I}(p_2)\mathfrak{I}(p_3)\ldots$

P sei irgendeine Teilmenge aller solchen Sequenzen, so dass sowohl P als auch das Komplement \overline{P} durch (unendliche) AL-Formelmengen spezifiziert werden können, in dem Sinne, dass

$$P = \{\mathfrak{I} : \mathfrak{I} \models \Phi\}$$

$$\overline{P} = \{ \mathfrak{I} : \mathfrak{I} \models \Psi \}$$

für geeignete $\Phi, \Psi \subseteq AL(\mathcal{V})$.

Zeigen Sie, dass dann sowohl P als auch \overline{P} jeweils schon durch eine einzelne AL-Formel spezifiziert werden können (und also nur von endlichen Abschnitten der Sequenzen abhängen können).

Aufgabe H6 (Sequenzenkalkül)

(12 Punkte)

Finden Sie mittels Beweissuche im Sequenzenkalkül \mathcal{SK} für folgende Formeln bzw. Sequenzen entweder eine Herleitung oder eine nicht-erfüllende Belegung.

- (a) $\vdash (p \land q) \lor \neg (q \lor r) \lor r \lor \neg p$
- (b) $p, q \lor r \vdash (p \land q) \lor (p \land r)$
- (c) $\vdash \neg (\neg (p \land q) \land r) \lor (q \land r)$

Aufgabe H7

(12 Punkte)

Zeigen Sie semantisch, dass die folgenden Regeln korrekt sind.

(a)
$$\frac{\Gamma, \phi \vdash \Delta}{\Gamma \vdash \Delta, \neg \phi}$$

(b)
$$\frac{\Gamma \vdash (\phi \to \psi) \to \phi, \Delta}{\Gamma \vdash \phi, \Delta}$$

(c)
$$\frac{\Gamma \vdash \Delta, \phi \qquad \Gamma, \psi \vdash \Delta}{\Gamma, \phi \to \psi \vdash \Delta}$$