

WHAT IS CLAIMED IS:

A wireless communication system con	nprising:
a plurality of access points, each access poi	nt having at least one
omnidirectional antenna forming a substantially uniform cov	verage area around the
access point; and	

a plurality of subscriber units each subscriber unit having at least one directional antenna forming a directional coverage area, each subscriber unit communicating with a particular access point through transmissions between the subscriber unit directional antenna and the omnidirectional antenna for the particular access point.

- 2. A wireless communication system as in claim 1 further comprising a routing network interconnecting the plurality of access points.
- 3. A wireless communication system as in claim 2 wherein the routing network comprises a distributed network of distribution points.
- 4. A wireless communication system as in claim 3 wherein at least one distribution/point is in the same location as one access point.
- 5. A wireless communication system as in claim 2 wherein at least one access point is in wireless communication with the routing network through at least one backhaul antenna.
- 6. A wireless communication system as in claim 1 wherein transmissions between the subscriber unit and the access point comprise packetized information.
- 7. A wireless communication system as in claim 1 wherein the subscriber unit is a terminal network controller comprising at least one interface, each interface providing access to the wireless communication system.

1	8. A wireless communication system as in claim 7 wherein the
2	terminal network controller further comprises a routing switch routing information
3	packets to and from the at least one interface.
1	9. A wireless communication system as in claim 1 wherein the
2	directional antenna comprises a plurality of antenna/patches, the subscriber unit
3	selecting at least one antenna patch as the directional antenna.
1	10. A wireless communication system as in claim 1 wherein the
2	directional antenna is operative to be positioned/to optimize transmissions between
3	the subscriber unit and the particular access point.
1	11. A wireless communication system as in claim 1 further
2	comprising:
3	a plurality of access points, each access point having at least one
4	directional antenna forming a coverage sector around a portion of the access point;
5	and /
6	a plurality of subscriber units, each subscriber unit having at least one
7	omnidirectional antenna forming a substantially uniform coverage area around the
8	subscriber unit, each subscriber unit communicating with a particular access point
9	through transmissions between the subscriber unit omnidirectional antenna and the
10	directional antenna for the particular access point.
1	12. A wireless communication system as in claim 11 wherein at
2	least one access point has both at least one omnidirectional antenna and at least one
3	directional antenna.
1	13. A wireless communication system as in claim 11 wherein
2	access points transmit from omnidirectional antennas at a first frequency and from
3	directional antennas at/a second frequency different than the first frequency.
	A method of wireless communication comprising:
	va i a meinoa oi witeless communication comprising'

2	transmitting downlink information in a substantially uniform coverage
3	area around each of a plurality of access points
4	receiving the downlink information at a subscriber unit;
5	transmitting uplink information in a focused coverage area from the
6	subscriber unit; and
7	receiving the uplink information at one of the access points.
	/-
1	15. A method of wireless communication as in claim 14 wherein
2	transmitting in the substantially uniform coverage area around each of the access
3	points comprises transmitting from an omnidirectional antenna and receiving the
4	uplink information comprises receiving at the omnidirectional antenna.
1	16. A method of wireless communication as in claim 14 wherein
2	transmitting in a focused coverage area comprises transmitting from a directional
3	antenna and receiving the downlink/information comprises receiving at the
4	directional antenna.
1	17. A method of wireless communication as in claim 16 further
2	comprising selecting at least one of a plurality of antenna patches to form the
3	directional antenna.
1	18. A method of wireless communication as in claim 16 further
2	comprising aiming the directional antenna to improve receiving the downlink
3	information.
1	19. A method of wireless communication as in claim 14 wherein
2	downlink information and uplink information comprises packetized information.
_	
1	20. A method of wireless communication as in claim 14 further
2	comprising routing information between the plurality of access points.
1	21. A method of wireless communication as in claim 20 wherein

routing information comprises:

2

3

	/
3	receiving the information in a distribution point;
4	sending the information to an access point in communication with the
5	distribution point if the information /s destined for a subscriber unit in
6	communication with the access point;
7	otherwise, forwarding the information to another distribution point in
8	communication with the distribution point.
1	22. A method of wireless communication as in claim 20 wherein
2	routing information comprises transmitting the information between each access point
3	and one of a plurality of distribution points.
1	23. A method ϕ f wireless communication as in claim 22 wherein
2	transmitting the information comprises wireless transmission.
1	24. A method of wireless communication as in claim 22 wherein
2	at least one access point is in the same location as at least one distribution point.
1	25. A method of wireless communication as in claim 14 further
2	comprising routing the downlink information to one of a plurality of interfaces at the
3	subscriber unit.
1	26. A method of wireless communication as in claim 14 further
2	comprising:
3	transmitting downlink information in a focused coverage area around
4	each of a plurality of access points
5	receiving the downlink information at a subscriber unit;
6	transmitting uplink information from a substantially uniform coverage
7	area around the subscriber unit; and
8	refeiving the uplink information at one of the access points.
1	27. A method of wireless communication as in claim 26 wherein
2	at least one access point both transmits downlink information in a focused coverage

area and transmits downlink information in a substantially uniform coverage area.

derif denji	
[i]	
Į.	. \
Ĺij	N
ſIJ	Ν
122	Ι,
=:=	1
ļ.L	
8	
ij	
ij	
£.J	
Ĺij	
[]	
[]	

28. A method of wireless communication as in claim 26 wherein
downlink information transmitted in the substantially uniform coverage area is
transmitted at a first frequency and downlink information transmitted in the focused
coverage area is transmitted at a second frequency different than the first frequency.
29. A wireless communication system comprising:
a plurality of access points, each access point transmitting and
receiving information packets, each information packet transmitted over a
substantially uniform coverage area around the access point;
a network of distribution points in communication with the access
points, the distribution points routing information packets between the access points;
and
a plurality of subscriber units, each subscriber unit transmitting and
receiving information packets each subscriber unit transmitting information packets
over a focused directional coverage area.
. 30. A wireless communication system for communicating with a
plurality of subscriber units, the system comprising:
a plurality of access points, each access point having an
omnidirectional antenna; and
a plurality of subscriber units, each subscriber unit having a
directional antenna;
wherein each access point forms a communication link with at least
one subscriber unit by transmitting information packets between the access point
omnidirectional antenna and the subscriber unit directional antenna.
<i>,</i>
31. A method of communicating comprising:
establishing a plurality of access points, each access point having an
omnidirectional antenna;
transmitting information packets in a uniform coverage area around
each access point; and

6 A 7 receiving information packets at each access point, the received information points transmitted from a directional antenna in each of a plurality of subscriber units.