• Saturated Enhancement Load:

- > Both bodies tied to ground
 - $For M_1: V_{SR1} = 0$
 - For M_2 : $V_{SB2} = V_o$
- $> M_2$ is enhancement mode
 - V_{TN02} positive
- \rightarrow M_2 is also diode-connected
 - Always operates in saturation
- $\succ M_2$ has a floating body effect problem: V_o is a variable and V_{TN2} will continuously change with a change in V_o

Circuit Schematic

- \triangleright Solution of this equation would give $V_{o,max}$
- ightharpoonup Once $V_{o,max}$ is obtained, the best bias point would be at $V_0 = V_{o,max}/2$
- \triangleright Before doing ac analysis, let's investigate M_2 :

ac Midband Equivalent of M 2

Simplified Equivalent

- ➤ Thus, the *complete equivalent*:
- > By inspection:

$$A_{v} = \frac{V_{o}}{V_{i}} = -g_{m1} (r_{01} || R_{eff})$$

$$= -\frac{g_{m1}}{g_{m2} + g_{mb2} + g_{01} + g_{02}}$$

Complete Equivalent

➤ Now, in general,

$$(g_{m2} + g_{mb2}) >> (g_{01} + g_{02})$$

$$\Rightarrow A_{v} \approx -\frac{g_{m1}}{g_{m2} + g_{mb2}} = -\frac{g_{m1}}{g_{m2} \left(1 + \chi_{2}\right)}$$

$$\chi_2 = \frac{\gamma}{2\sqrt{2\phi_F + V_{0Q}}}$$

 $V_{00} = Quiescent DC output voltage$

Now, if M_2 can be put in its *separate island*, then S_2 and B_2 can be *connected together*

$$\Rightarrow v_{sb2} = 0 \Rightarrow g_{mb2}v_{sb2} = 0$$

$$\Rightarrow A_{v} \approx -\frac{g_{m1}}{g_{m2}} = -\sqrt{\frac{(W/L)_{1}}{(W/L)_{2}}}$$

$$ightharpoonup R_0 = (g_{m2} + g_{mb2} + g_{01} + g_{02})^{-1}$$

> Insights:

- V_o doesn't go all the way to V_{DD}
 - ⇒ Full rail-to-rail swing can't be achieved
- When V_o falls below ΔV of M_1 , it leaves the saturation region, and enters non-saturation region
 - \Rightarrow Distortion will set in at the output
- Even for a moderate voltage gain of 10, the ratio of the aspect ratios of M_1 and M_2 has to be 100!
- All these problems coupled together make this circuit highly unattractive for practical use

• Depletion Load:

- $ightharpoonup M_2$ is depletion mode, having negative V_{TN0} (denoted by V_{TD0})
- > Back bias of M_2 : $V_{SR2} = V_0$
- \succ With V_o , V_{TD2} changes
- \triangleright Maximum V_o desired = V_{DD}
- This is also the maximum back bias of M₂

Circuit Schematic

- $> M_2$ has GS short $\Rightarrow V_{GS2} = 0$
- Free with $V_o = V_{SB2}(max) = V_{DD}$, V_{TD2} should remain negative with a cushion of at least 100 mV
 - $\Rightarrow V_{TD2}$ with $V_{SB2} = V_{DD}$ should be -100 mV
 - $\Rightarrow V_{TD0}$ should be chosen based on this
- \triangleright Now, $V_{DS2}(min) = V_{DD} V_o(max) = 0$
- \triangleright Under this condition, $V_{GS2} V_{TD2} = \Delta V_2 = 100$
 - $\Rightarrow M_2$ is in the linear region (since $V_{DS2} < \Delta V_2$)