Algebra a diskrétna matematika Úlohy na precvičenie 4. týždeň

Označenie: K_n je úplný graf rádu n, $K_{m,n}$ je úplný bipartitný graf rádu m+n, C_n a P_n je kružnica a cesta rádu n (t.j. na n vrcholoch). Pod grafom rozumieme obyčajný graf bez slučiek a násobných hrán.

Úloha 1. Určte počet všetkých grafov na 4 a 5 vrcholoch až na izomorfizmus. Koľko z nich je súvislých? Koľko z nich je stromov?

Úloha 2. Obrázok znázorňuje dva izomorfné grafy. Nájdite príslušný izomorfizmus. Jedná sa o bipartitný graf?

Úloha 3. Koľko kružníc obsahujú grafy K_4 ; K_5 ; $K_{3,3}$; $K_{3,4}$?

Úloha 4. Aké sú rôzne dĺžky kružníc v Petersenovom grafe? Koľko päťuholíkov obsahuje?

Úloha 5. Pokúste sa o rôzne "čo najsymetrickejšie" zovšeobecnenia Petersenovho grafu, aby výsledný graf bol pravidelný stupňa 3.

Úloha 6. Nájdite všetky samokomplementárne grafy na 3, 4, 5 a 6 vrcholoch.

Úloha 7. Ukážte, že ak existuje samokoplementárny graf na n vrcholoch, tak n dáva po delení 4 zvyšok 0 alebo 1.

Úloha 8. Nájdite aspoň jeden samokomplementárny graf na 8 a 9 vrcholoch.

Úloha 9. Určte množinu všetkých vzialeností v grafoch $C_n, K_n, K_{m,n}, P_n$.

Úloha 10. Pokúste sa zostrojiť pravidelný graf stupňa 3 a obvodu 6 na čo najmenšom počte vrcholov.

Úloha 11. Laplaceova matica grafu je matica D - A, kde A je matica susednosti grafu a D je diagonálna matica pozostávajúca zo stupňov vrcholov. Ukážte, že $\det(D - A) = 0$.

Úloha 12. Pre daný graf nájdite maticu susednosti A. Čo reprezentuje matica A^2 ?

Úloha 13. Nech M je matica susednosti Petersenovho grafu. Ukážte, že $M^2 + M - 2I = J$, kde J je matica pozostávajúca zo samých jednotiek.

Úloha 14. Ukážte, že pre rovinný graf s n vrcholmi, h hranami, o oblasťami a c komponentami súvislosti platí n - h + o = 1 + c.

Úloha 15. Použitím Eulerovho vzorca ukážte, že grafy K_5 a $K_{3,3}$ nie sú rovinné. To isté pre Petersenov graf.

Úloha 16. Ukážte, že v každom grafe s aspoň dvoma vrcholmi musia existovať 2 vrcholy rovnakého stupňa.

Úloha 17.* Ukážte, že pre ľubovoľné $n \ge 4$, ktoré po delení číslom 4 dáva zvyšok 0 alebo 1, existuje samokomplementárny graf rádu n.

Úloha 18.* Aký najväčší rád n má graf priemeru 2 s maximálnym stupňom vrchola d=4?

Úloha 19.* Odvoď
te horný odhad pre najväčší počet vrcholov grafu

- (a) priemeru 2 a maximálneho stupňa d,
- (b) priemeru k a maximálneho stupňa d.

Úloha 20.* Nájdite (pokiaľ možno netriviálny) dolný odhad počtu vrcholov pravidelného grafu stupňa 3 a daného obvodu $g \geq 3$.