Neural Network Based Hyperparameter Optimization for Random Forest Models

- DESIGN PRESENTATION -

INTRODUCTION

What are HYPERPARAMETERS in Machine Learning?

IMPORTANCE OF HYPERPARAMETER OPTIMIZATION

- Control the training process and model complexity
- Minimize the Loss Function
- (Improve model performance and Ensure reliable predictions
- Reduce overfitting and underfitting

LITERATURE REVIEW

Exhaustive search through all possible combinations of hyperparameters

Grid Search

Samples hyperparameters randomly from a defined space

Random Search

Bayesian Optimization

Uses probabilistic models to predict hyperparameter combinations iteratively

Genetic Algorithms

Evolves hyperparameters over generations using mutation and selection mechanisms

RESEARCH PROBLEM

Grid Search

- Computationally expensive
- Infeasible for large search spaces

Bayesian Optimization

- Need good understanding about the probabilistic model
- Struggles with large search spaces

Random Search

- More efficient than grid search but unreliable
- Struggles with complex models and large parameter spaces

Genetic Algorithms

- Computationally intensive
- Requires careful tuning of evolutionary parameters

OBJECTIVES

Design a neural network-based meta-learning model to

Predict optimal hyperparameters for Random Forest models

Minimize computational cost and Achieve higher accuracy

Compare with traditional approaches like grid search

METHODOLOGY

Select datasets to create the meta dataset

Define hyperparameter grid with selected hyperparameters

Evaluate hyperparameter combinations using traditional methods

Create a meta-dataset with dataset characteristics and accuracy

Design a neural network to predict accuracy for hyperparameters

Train the neural network on the meta-dataset

Predict hyperparameters for new datasets using the trained model

USED DATASETS

10 Binary Classification Datasets

Dataset	No. of rows	No. of features	Class imbalance ratio	
Heart Disease	1025	13	1.0541	
Titanic Survival	712	9	1.4722	
Diabetes Diagnosis	768	8	1.8657	
BankNote Authentication	1348	4	1.2098	
Water Quality	7999	20	7.7708	
Wine	1359	11	1.1234	
Age Prediction	3524	5	1.0000	
Gender Classification	3233	7	1.2296	
Brain Stroke	4981	11	9.0847	
AIDS Classification	5000	18	2.1666	

RESULTS & DISCUSSION

Considered Hyperparameters

- n_estimators
- max_depth
- max_features
- min_samples_split

Dataset Characteristics

- number of samples
- number of features
- class imbalance ratio
- number of categorical features
- number of numerical features

RESULTS & DISCUSSION Ctd.

Dataset	Grid Search		Bayesian Optimization		NN based approach	
	Accuracy	Time(s)	Accuracy	Time(s)	Accuracy	Time(s)
Liver disease	0.9749	87.21	1.0000	6.91	0.9875	13.26
Diabetes classification	0.9695	260.98	0.9993	22.46	0.9878	13.43
Patient treatment	0.9456	149.61	1.0000	15.35	0.9924	12.19
Loan prediction	0.9613	54.21	1.0000	5.52	0.9688	10.82

RESULTS & DISCUSSION Ctd.

Strengths:

- Balances accuracy and computational efficiency.
- Generalizability: Pre-trained model can be applied across datasets.
- Practical use for real-time predictions with minimal computational cost.

Limitations:

- Marginally slower than Bayesian Optimization in some cases.
- Relatively lower accuracy than Bayesian Optimization.
- Requires an initial meta-dataset and training phase.

CONCLUSION

Proposed a Neural Network-based meta-learning method for hyperparameter optimization for Random Forest models

Demonstrated competitive accuracy and efficiency across datasets

The method offers a practical alternative for scenarios where traditional methods are computationally prohibitive

Future Work:

- Expand the meta-dataset with more diverse datasets
- Improve the model architecture to achieve higher accuracy and efficiency