MATH-329 Nonlinear optimization Homework 3: Constrained optimization

Alix Pelletier 346750 Vlad Burca 344876 Ismail Bouhaj 326480

11/2023

Part 1: Projections to cones and stopping criteria in constrained optimization.

Question 1

Since Q is non-empty, Let $x_0 \in Q$. Then by definition of the minimizer, we have:

$$\min_{x \in Q} \frac{1}{2} \|x - z\|^2 \le \frac{1}{2} \|x_0 - z\|^2$$

Inspired by this, let us define the space $Q' \subseteq Q$ as the intersection of Q with the closed ball $\bar{B}(\|x_0 - z\|, z)$ of center z and radius $\|x_0 - z\|$:

$$Q' = Q \cap \bar{B}(||x_0 - z||, z)$$

We have $Q' \neq \emptyset$ since $x_0 \in Q'$. Moreover, Q' is closed since it is the intersection of two closed sets. Finally, Q' is bounded since it is contained in the closed ball $\bar{B}(\|x_0 - z\|, z)$. Therefore, Q' is compact. By Weierstrass, the function $f(x) = \frac{1}{2}\|x - z\|^2$ attains its minimum on Q'. So the set:

$$\operatorname{Proj}_{Q'}(z) = \left\{ x \in Q' : \frac{1}{2} \|x - z\|^2 = \min_{y \in Q'} \frac{1}{2} \|y - z\|^2 \right\}$$

is well-defined and non-empty.

We want to show that $\operatorname{Proj}_{Q'}(z) = \operatorname{Proj}_Q(z)$. Let $x \in Q \setminus Q'$. Then:

$$||x-z|| > ||x_0-z|| \implies$$

$$\frac{1}{2}||x-z||^2 > \frac{1}{2}||x_0 - z||^2 \ge \min_{y \in Q'} \frac{1}{2}||y-z||^2$$

So the minimizer of $\frac{1}{2}||y-z||^2$ on Q' is also the minimizer of $\frac{1}{2}||y-z||^2$ on Q. Therefore, $\operatorname{Proj}_{Q'}(z) = \operatorname{Proj}_Q(z)$.

Question 2

Let $\mathcal{E} := \mathbb{R}$; $S := \{-1, 1\}$; z := 0. Then clearly S is closed (union of 2 singletons). Moreover, we have:

$$\frac{1}{2}\|z-s\|^2 = \frac{1}{2}\|s\|^2 = \frac{1}{2} \text{ for all } s \in S \implies$$

$$\mathrm{Proj}_S(z) = \{1, -1\}$$

Question 3

$$\mathbf{Proj}_C(z) = \{0\} \implies z \in C^{\circ}$$
:

Assume $\operatorname{Proj}_C(z) = \{0\}$. This implies the point in C closest to z is the origin. So for any $x \in C$:

$$\frac{1}{2}||x - z||^2 \ge \frac{1}{2}||0 - z||^2$$
$$||x||^2 - 2\langle x, z \rangle + ||z||^2 \ge ||z||^2$$
$$||x||^2 - 2\langle x, z \rangle \ge 0$$

Now if $\langle x, z \rangle > 0$, for some x then we have:

$$\lambda := \frac{\langle x, z \rangle}{\|z\|^2} > 0 \implies \lambda x \in C$$

But then, plugging λx in the inequality above, we get:

$$\begin{split} \lambda^2 \|x\|^2 - 2\lambda \langle x, z \rangle &\geq 0 \iff \\ \left(\frac{\langle x, z \rangle}{\|z\|^2}\right)^2 \|x\|^2 - 2\frac{\langle x, z \rangle}{\|z\|^2} \langle x, z \rangle &\geq 0 \iff \\ -\frac{\langle x, z \rangle^2}{\|x\|^2} &\geq 0 \end{split}$$

Which is clearly a contradiction. Therefore, we must have $\langle x, z \rangle \leq 0$ for all $x \in C$. This implies $z \in C^{\circ}$, by definition.

$$z \in C^{\circ} \implies \mathbf{Proj}_{C}(z) = \{0\}$$
:

Assume $z \in C^{\circ}$. We want to show that for all $x \in C \setminus \{0\}$ we have:

$$\frac{1}{2}||x-z||^2 > \frac{1}{2}||0-z||^2$$

By the above calculations this is equivalent to showing that for all $x \in C \setminus \{0\}$ we have:

$$||x||^2 - 2\langle x, z \rangle > 0$$

But this is true since $z \in C^{\circ}$, so $\langle x, z \rangle \leq 0$ for all $x \in C$ and $x \neq 0$. Therefore, we have:

$$\operatorname{Proj}_C(z) = \{0\}$$

Question 4

We know from class that $x^* \in S$ is a stationary point of f if and only if $-\nabla f(x^*) \in (T_{x^*}S)^{\circ}$. By Question 3, this is equivalent to:

$$\text{Proj}_{T_{x^*}S}(-\nabla f(x^*)) = \{0\}$$

Question 5

(a)
$$v \in \mathbf{Proj}_C(z) \implies \langle v, z - v \rangle = 0$$
:

Let:

$$g: \mathcal{E} \to \mathbb{R}$$

$$x \mapsto \frac{1}{2} ||x - z||^2$$

Then g is differentiable and for $h \in \mathbb{R}$ and $v \in \mathcal{E}$ we have:

$$g(x + hv) = \frac{1}{2} ||x + hv - z||^2 = \frac{1}{2} ||x - z||^2 + h\langle v, x - z \rangle + \frac{h^2}{2} ||v||^2$$
$$= g(x) + h\langle v, x - z \rangle + O(h^2) \implies$$
$$\nabla g(x) = x - z$$

If $v \in \operatorname{Proj}_C(z)$ then v is a stationary point of g (as v is a global minimum of g). Therefore, we have:

$$\langle \nabla g(v), w \rangle \ge 0, \quad \forall \ w \in T_v C$$

 $\langle v - z, w \rangle \ge 0, \quad \forall \ w \in T_v C$

It is clear that if we show that $v, -v \in T_vC$ we are done. But this is true since $v \in C$ and C is a cone.

Let
$$\left((1-\frac{1}{n})v\right)_{n\in\mathbb{N}^*}\subseteq C$$
, $\left((1+\frac{1}{n})v\right)_{n\in\mathbb{N}^*}\subseteq C$ then:

$$\lim_{n \to \infty} \left((1 - \frac{1}{n})v \right) = v, \quad \lim_{n \to \infty} \left((1 + \frac{1}{n})v \right) = v$$

and:

$$\lim_{n \to \infty} \left(\frac{(1 - \frac{1}{n})v - v}{\frac{1}{n}} \right) = \lim_{n \to \infty} \left(\frac{-\frac{1}{n}v}{\frac{1}{n}} \right) = -v$$

$$\lim_{n \to \infty} \left(\frac{(1 + \frac{1}{n})v - v}{\frac{1}{n}} \right) = \lim_{n \to \infty} \left(\frac{\frac{1}{n}v}{\frac{1}{n}} \right) = v$$

Therefore, by the definition of the tangent cone $v, -v \in T_vC$. So we have:

$$\langle v - z, v \rangle \ge 0$$

 $\langle v - z, -v \rangle \ge 0 \implies$
 $-\langle v - z, v \rangle \ge 0$

So we have:

$$\langle v, z - v \rangle = 0$$

(b)
$$v_1, v_2 \in \mathbf{Proj}_C(z) \implies ||v_1|| = ||v_2||$$
:

By part (a), we have:

$$\langle v_1, z - v_1 \rangle = 0 \implies ||v_1||^2 = \langle v_1, v_1 \rangle = \langle v_1, z \rangle$$
$$\langle v_2, z - v_2 \rangle = 0 \implies ||v_2||^2 = \langle v_2, v_2 \rangle = \langle v_2, z \rangle$$

Since both are minimizers of $\frac{1}{2}||x-z||^2$, we have:

$$\frac{1}{2} \|v_1 - z\|^2 = \frac{1}{2} \|v_2 - z\|^2 \implies$$

$$\|v_1\|^2 - 2\langle v_1, z \rangle + \|z\|^2 = \|v_2\|^2 - 2\langle v_2, z \rangle + \|z\|^2 \implies$$

$$\|v_1\|^2 = \|v_2\|^2 \implies \|v_1\| = \|v_2\|$$

Question 6

We present an example where the function $q(x) = \|\operatorname{Proj}_{T_x S}(-\nabla f(x))\|$ is discontinuous on the set S. Consider the following:

Function f and Set S:

- Function f: Define $f: \mathbb{R} \to \mathbb{R}$ as $f(x) = -x^2$. Its gradient is $\nabla f(x) = f'(x) = -2x$.
- Set S: Define $S := [0, 1] \subseteq \mathbb{R}$.

First, let's compute T_xS for all $x \in S$. We have:

- $x \in (1,0)$. Then x is in the interior of S and $T_xS = \mathbb{R}$, by example 7.10. from the lecture notes.
- x = 0. Then 0 is on the boundary of S and $T_0S = [0, +\infty)$, by example 7.11. from the lecture notes (we can see 0 as the boundary for the half-space $x \ge 0$ and locally around 0 the two spaces are the same. We conclude by the fact that the tangent cone is a local property, as any sequence $x_k \to 0^+$ will be contained in (0,1), for k big enough).
- x = 1. Then 1 is on the boundary of S and $T_1S = (-\infty, 0]$ (same reasoning as above, but with the half space $x \le 1$).

Now, let's compute $\operatorname{Proj}_{T_xS}(-\nabla f(x))$ for all $x \in S$. We have:

• $x \in (0,1)$. Then $\operatorname{Proj}_{T_xS}(-\nabla f(x)) = \{-\nabla f(x)\}$, since $T_xS = \mathbb{R}$. So:

$$q(x) = ||2x|| = 2x$$

• x = 0. Then $\text{Proj}_{T_0 S}(-\nabla f(0)) = \{0\}$, since $T_0 S = [0, +\infty)$ and -f'(0) = 0. So:

$$q(0) = ||0|| = 0$$

• x = 1. Then $\text{Proj}_{T_1S}(-\nabla f(1)) = \{0\}$, since $T_1S = (-\infty, 0]$ and -f'(1) = 2. So:

$$q(1) = ||0|| = 0$$

So:

$$q(x) = \begin{cases} 2x & \text{if } x \in [0, 1) \\ 0 & \text{if } x = 1 \end{cases}$$

Clearly, q is not continuous at x = 1.

Question 7

By example 7.14. from the lecture notes, we have:

$$T_x S = \{ v \in \mathbb{R} : \langle v, x \rangle = 0 \}, \quad \forall \ x \in S$$

For all $x = (x_1, x_2) \in S$, let $x^{\perp} = (x_2, -x_1) \in S$, then it is clear that:

$$\langle x, x^{\perp} \rangle = 0 \implies x^{\perp} \in T_x S$$

Moreover, by a simple argument over the dimensionality of T_xS and span (x^{\perp}) , we have:

$$T_x S = \operatorname{span}(x^{\perp})$$

Since T_xS is a sub-vector space of \mathbb{R}^2 , of dimension 1 ($\{x^{\perp}\}$ is an orthogonal basis), we have:

$$\mathrm{Proj}_{T_xS}(-\nabla f(x)) = \mathrm{Proj}_{\mathrm{span}(x^\perp)}(-\nabla f(x)) = \left\{\frac{\langle -\nabla f(x), x^\perp \rangle}{\|x^\perp\|^2} x^\perp \right\} = \left\{-\langle \nabla f(x), x^\perp \rangle x^\perp \right\}$$

So:

$$q(x) = \| -\langle \nabla f(x), x^{\perp} \rangle x^{\perp} \| = \| -\langle \nabla f(x), (x_2, -x_1) \rangle (x_2, -x_1) \| = |\langle \nabla f(x), (x_2, -x_1) \rangle|$$

Which is clearly a continuous map as it is a composition of continuous maps (∇f is continuous by assumption).

Question 8

Consider $\mathcal{E} = \mathbb{R}^n$ with a continuously differentiable function $h : \mathbb{R}^n \to \mathbb{R}^p$ and $S = \{x \in \mathbb{R}^n : h(x) = 0\}$, assuming LICQ holds for all x in S.

(a) T_xS ?

From the lecture notes, we have that if LICQ holds for $x \in S$ then:

$$T_x S = F_x S = \{ v \in \mathcal{E} : \langle \nabla h_i(x), v \rangle = 0; \forall i \in \{1, 2, \dots, p\} \}$$

(b)

Let $H(x) \in \mathbb{R}^{p \times n}$ such that:

$$H(x) = \begin{pmatrix} \nabla h_1(x)^T \\ \nabla h_2(x)^T \\ \vdots \\ \nabla h_p(x)^T \end{pmatrix}$$

Then we can rewrite T_xS as:

$$T_x S = \{ v \in \mathcal{E} : H(x)v = 0 \} = \ker H(x)$$

As T_xS is a sub-vector space of \mathcal{E} of dimension n-p (since all the lines of H(x) are linearly independent), we know that the projection of $z \in \mathcal{E}$ exists and is unique.

By SVD, there exist $V \in \mathbb{R}^{n \times n}$ and $U \in \mathbb{R}^{p \times p}$ orthogonal matrices and $D \in \mathbb{R}^{p \times n}$ such that:

$$UH(x)V^T = D$$

$$D = \begin{pmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & O_{p \times (n-p)} \\ & & & \sigma_p & \end{pmatrix}$$

where $\sigma_1, \ldots, \sigma_p$ are the singular values of H(x).

Then, since U and V are orthogonal, we have:

$$v \in T_x S \iff H(x)v = 0 \iff UH(x)V^T V v = 0 \iff DV v = 0 \iff Vv \in \ker D$$

and, as V is orthogonal, we have:

$$\frac{1}{2}||z - v||^2 = \frac{1}{2}||Vz - Vv||^2$$

So, we have:

$$\operatorname{Proj}_{T,S}(z) = \operatorname{Proj}_{\ker D}(Vz)$$

Part 2: A Frank-Wolfe algorithm

Question 1

Question 2

To demonstrate that the minimization problem may have multiple solutions, consider the following example:

- Set S: Let S be a line segment in \mathbb{R}^2 defined as $S = \{(1, y) : 0 \le y \le 1\}$.
- Linear Function: Consider a linear function $\langle w, x \rangle$ with w = (0, 0). For any $x \in S$, we have $\langle w, x \rangle = 0$.

In this case, every point in S minimizes the function $\langle w, x \rangle$ as the value is zero for all $x \in S$. Hence, the problem has multiple solutions, with every point in the set S being a solution.

Question 3

Why is the Restriction $0 \le \eta_k \le 1$ Important?

- 1. **Feasibility**: The feasible set S is assumed to be convex. By convexity, for any $x, y \in S$ and $\lambda \in [0,1]$, the convex combination $(1-\lambda)x + \lambda y$ is also in S. In the algorithm, both x_k and $s(x_k)$ are in S, so for η_k in [0,1], the updated point $(1-\eta_k)x_k + \eta_k s(x_k)$ remains within S.
- 2. Convergence: The step size η_k controls the magnitude of the move towards the direction of minimization. Values of η_k outside the interval [0, 1] can lead to overshooting or even divergence. Specifically, $\eta_k > 1$ may cause the algorithm to take excessively large steps, while negative values of η_k would reverse the direction of the update, both hindering convergence.
- 3. Controlled Progress: The interval [0,1] allows for dynamic adjustment of η_k to control the algorithm's progress. Smaller values of η_k can be used for cautious steps near the optimal solution, enhancing stability and precision.
- 4. Balance Between Exploration and Exploitation: η_k balances exploration of the feasible set S and exploitation towards the minimizer of the linearized function. $\eta_k = 0$ implies no movement (pure exploitation), while $\eta_k = 1$ means moving entirely towards the new direction (pure exploration). Intermediate values facilitate a balanced approach.

In conclusion, the restriction $0 \le \eta_k \le 1$ in the Frank-Wolfe algorithm is essential for ensuring feasibility, convergence, controlled progress, and a balanced approach between exploration and exploitation.

Question 4

We analyze four key inequalities (B1) to (B4) arising in the Frank-Wolfe algorithm under the assumptions that f is convex and continuously differentiable, and its gradient ∇f is L-Lipschitz continuous.

Inequality Analysis

(B1)
$$f(x_{k+1}) - f(x_k) \le \nabla f(x_k)^{\top} (x_{k+1} - x_k) + \frac{L}{2} ||x_{k+1} - x_k||^2$$

This inequality stems from the first-order Taylor expansion and the Lipschitz continuity of ∇f , bounding the error of the linear approximation.

(B2)
$$\leq \eta_k \nabla f(x_k)^{\top} (s(x_k) - x_k) + \frac{L}{2} \eta_k^2 d_S^2$$

Using the update formula $x_{k+1} = (1 - \eta_k)x_k + \eta_k s(x_k)$ and the definition of d_S , the diameter of S, this inequality bounds the change in f in terms of the diameter of S and step size η_k .

(B3)
$$\leq \eta_k \nabla f(x_k)^{\mathsf{T}} (x^* - x_k) + \frac{L}{2} \eta_k^2 d_S^2$$

Given that $s(x_k)$ minimizes the linear approximation over S, the inequality follows by comparing $s(x_k)$ to any $x^* \in S$, including the optimal point.

(B4)
$$\leq \eta_k(f(x^*) - f(x_k)) + \frac{L}{2}\eta_k^2 d_S^2$$

This follows from the convexity of f, which implies $f(x^*) - f(x_k) \ge \nabla f(x_k)^\top (x^* - x_k)$. Substituting this into (B3) yields (B4).

Question 5

Given $x_0 \in S$, let x_1 be produced by the Frank-Wolfe algorithm with $\eta_0 = \frac{2}{0+2} = 1$. We show that $f(x_1) - f(x^*) \leq \frac{L}{2} d_S^2$, where L is the Lipschitz constant of ∇f and d_S is the diameter of S.

Proof

- 1. The update rule for x_{k+1} in the Frank-Wolfe algorithm is $x_{k+1} = (1 \eta_k)x_k + \eta_k s(x_k)$. For k = 0, this becomes $x_1 = s(x_0)$.
- 2. By the L-Lipschitz continuity of ∇f , we have

$$f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{L}{2} ||y - x||^2$$
 for all $x, y \in S$.

3. Setting $x = x_1$ and $y = x^*$, we get

$$f(x^*) \le f(x_1) + \nabla f(x_1)^\top (x^* - x_1) + \frac{L}{2} ||x^* - x_1||^2.$$

4. Rearranging, we obtain

$$f(x_1) - f(x^*) \ge -\nabla f(x_1)^{\top} (x^* - x_1) - \frac{L}{2} ||x^* - x_1||^2.$$

5. Since x_1 and x^* are in S and $||x^* - x_1||^2 \le d_S^2$, we have

$$f(x_1) - f(x^*) \le \frac{L}{2} d_S^2.$$

Thus, after the first iteration with $\eta_0 = 1$, the function value at x_1 is within $\frac{L}{2}d_S^2$ of the optimal value $f(x^*)$.

Question 6

We prove that for the Frank-Wolfe algorithm with step sizes $\eta_k = \frac{2}{k+2}$, the inequality $f(x_k) - f(x^*) \le \frac{2Ld_S^2}{k+2}$ holds for all $k \ge 1$.

Proof by Induction

Base Case (k = 1)

From the previous analysis, we have $f(x_1) - f(x^*) \leq \frac{Ld_S^2}{2}$, which satisfies the inequality for k = 1, as $\frac{2Ld_S^2}{1+2} = \frac{Ld_S^2}{2}$.

Inductive Step

Assume the inequality holds for some $k \geq 1$:

$$f(x_k) - f(x^*) \le \frac{2Ld_S^2}{k+2}$$

We need to show it holds for k + 1:

$$f(x_{k+1}) - f(x^*) \le \frac{2Ld_S^2}{k+3}$$

Using the inequality (B4) from the algorithm:

$$f(x_{k+1}) - f(x_k) \le \eta_k(f(x^*) - f(x_k)) + \frac{L}{2}\eta_k^2 d_S^2$$

where $\eta_k = \frac{2}{k+2}$. Substituting and rearranging gives:

$$f(x_{k+1}) - f(x^*) \le \left(1 - \frac{2}{k+2}\right) \frac{2Ld_S^2}{k+2} + \frac{L}{2} \left(\frac{2}{k+2}\right)^2 d_S^2$$

$$= \frac{kLd_S^2}{(k+2)^2} + \frac{2Ld_S^2}{(k+2)^2}$$

$$= \frac{(k+2)Ld_S^2}{(k+2)^2}$$

$$= \frac{Ld_S^2}{k+2}$$

Using $\frac{2}{k+2} \le \frac{2}{k+3}$, we get:

$$f(x_{k+1}) - f(x^*) \le \frac{2Ld_S^2}{k+3}$$

Thus, by induction, the inequality holds for all $k \geq 1$.

Question 7

We show that the simplex $\Delta_n = \{x \in \mathbb{R}^n | x_1, \dots, x_n \geq 0 \text{ and } x_1 + \dots + x_n = 1\}$ is convex, compact, and non-empty.

Convexity

A set is convex if for any two points in the set, the line segment between them is also in the set. For $x, y \in \Delta_n$ and $\lambda \in [0, 1]$, consider $z = (1 - \lambda)x + \lambda y$. Since $x_i, y_i \ge 0$, each component $z_i = (1 - \lambda)x_i + \lambda y_i \ge 0$. Also, $\sum_{i=1}^n z_i = (1 - \lambda)\sum_{i=1}^n x_i + \lambda \sum_{i=1}^n y_i = 1$. Hence, $z \in \Delta_n$, proving convexity.

Compactness

A set is compact if it is closed and bounded. Δ_n is closed as it contains all its limit points. It is bounded because for all $x \in \Delta_n$, $0 \le x_i \le 1$ and $\sum_{i=1}^n x_i = 1$. Therefore, Δ_n is compact.

Non-emptiness

 Δ_n is non-empty as it contains at least the point x = (1, 0, ..., 0), which satisfies $x_i \ge 0$ and $\sum_{i=1}^n x_i = 1$.

In conclusion, the simplex Δ_n is convex, compact, and non-empty.

Question 8

Minimization Problem on the Simplex Δ_n

Given a vector $w \in \mathbb{R}^n$, we consider the problem of minimizing $\langle w, x \rangle$ subject to $x \in \Delta_n$, where Δ_n is the simplex in \mathbb{R}^n .

Minimum of the Problem

The problem is formulated as:

minimize $\langle w, x \rangle$ subject to $x \in \Delta_n$.

Strategy to Attain the Smallest Value

To minimize $\langle w, x \rangle$, we allocate the entire weight to the component of x corresponding to the smallest component of w. Let $i^* = \arg\min_i w_i$. The minimizing vector x is such that $x_{i^*} = 1$ and $x_i = 0$ for all $i \neq i^*$.

Computational Complexity

The computational complexity of finding this solution is O(n), as it requires a linear scan to find the minimum component of the vector w. The minimizing x is then directly obtained from the index of this minimum component.

Question 9

Given the optimization problem $\min_{x \in \Delta_n} f(x)$ with $f(x) = \frac{1}{2} ||Ax - b||^2$, we analyze whether this problem always has a solution and if the solution is unique.

Existence of a Solution

- Convexity of f(x): The function $f(x) = \frac{1}{2} ||Ax b||^2$ is convex as it is the composition of a convex function (norm squared) with an affine function.
- Convexity and Compactness of Δ_n : The simplex Δ_n is convex and compact.
- Existence of Solution: A convex function over a compact convex set attains its minimum. Hence, the problem always has at least one solution.

Uniqueness of the Solution

- Strict Convexity: Strict convexity is necessary for uniqueness. The function f(x) is strictly convex if the matrix A has full column rank. However, with m < n, A cannot have full column rank.
- Multiple Solutions: When A does not have full column rank, there can be multiple minimizers of f(x), due to directions in which A is not injective.

In conclusion, the optimization problem always has a solution, but it does not always have a unique solution due to the potential rank deficiency of A.

Given the optimization problem $\min_{x \in \Delta_n} f(x)$ with $f(x) = \frac{1}{2} ||Ax - b||^2$, we analyze whether this problem always has a solution and if the solution is unique.

Existence of a Solution

- Convexity of f(x): The function $f(x) = \frac{1}{2} ||Ax b||^2$ is convex as it is the composition of a convex function (norm squared) with an affine function.
- Convexity and Compactness of Δ_n : The simplex Δ_n is convex and compact.
- Existence of Solution: A convex function over a compact convex set attains its minimum. Hence, the problem always has at least one solution.

Uniqueness of the Solution

- Strict Convexity: Strict convexity is necessary for uniqueness. The function f(x) is strictly convex if the matrix A has full column rank. However, with m < n, A cannot have full column rank.
- Multiple Solutions: When A does not have full column rank, there can be multiple minimizers of f(x), due to directions in which A is not injective.

In conclusion, the optimization problem always has a solution, but it does not always have a unique solution due to the potential rank deficiency of A.

Question 10

Gradient of the Function for Frank-Wolfe Algorithm

We derive the gradient of the function $f(x) = \frac{1}{2} ||Ax - b||^2$ for applying the Frank-Wolfe algorithm to the problem $\min_{x \in \Delta_n} f(x)$.

The function f(x) is given by:

$$f(x) = \frac{1}{2} ||Ax - b||^2 = \frac{1}{2} (Ax - b)^{\top} (Ax - b).$$

Differentiating f(x) with respect to x using matrix calculus, we obtain the gradient of f(x):

$$\nabla f(x) = A^{\top} (Ax - b).$$

This gradient represents the direction of the steepest ascent at any point x for the function f(x) and is essential for determining the search direction in each iteration of the Frank-Wolfe algorithm.

Question 11

We analyze the line-search function $g(\eta) = f((1 - \eta)x + \eta y)$ where $x, y \in \Delta_n$ and $f(x) = \frac{1}{2}||Ax - b||^2$ to determine the optimal values of $\eta \in [0, 1]$.

Expression for $g(\eta)$

$$g(\eta) = \frac{1}{2} ||A((1 - \eta)x + \eta y) - b||^2$$

Optimal Value of η

To find the optimal η , we differentiate $g(\eta)$ with respect to η and set the derivative to zero:

$$g'(\eta) = \frac{d}{d\eta} \frac{1}{2} ||A((1-\eta)x + \eta y) - b||^2$$

$$= (A((1 - \eta)x + \eta y) - b)^{\mathsf{T}}A(y - x)$$

Setting $g'(\eta) = 0$ gives:

$$(A((1-\eta)x + \eta y) - b)^{\mathsf{T}}A(y-x) = 0$$

Solving this equation for η gives the optimal value.

Closed-Form Formula

A closed-form expression for η depends on the specific structure of A, b, x, and y. Without additional assumptions, the exact solution might be complex or not directly obtainable.

Question 12

Question 13

Question 14

 $\mathbf{1}$

(4):

$$\min_{x \in \mathbb{R}^n} f(x), \quad \text{where} \quad f(x) = \max_{i=1,\dots,N} f_i(x).$$

(5):

$$\min_{(x,y)\in S} y, \quad \text{where} \quad S = \{(x,y) \in \mathbb{R}^n \times \mathbb{R} \mid f_i(x) - y \le 0, \ i = 1,\dots, N\}.$$

To establish the equivalence in optimal value between problems (4) and (5), we proceed as follows:

For any $x \in \mathbb{R}^n$, define $y_x = \max_{i=1,...,N} f_i(x)$. Clearly, $y_x \geq f_i(x)$ for all i, which implies $(x, y_x) \in S$. This means for every feasible x in problem (4), there is a corresponding feasible (x, y_x) in problem (5) with the same objective value. Conversely, for any feasible (x, y) in problem (5), since $f_i(x) \leq y$ for all i, it follows that $\max_{i=1,...,N} f_i(x) \leq y$. Therefore, the optimal value of x in problem (4) cannot exceed the optimal value of (x, y) in problem (5). This establishes that problems (4) and (5) have the same optimal value.

 $\mathbf{2}$

The KKT conditions for problem (5) involve:

- Primal feasibility: $f_i(x) y \le 0$ for all i.
- Dual feasibility: $\lambda_i \geq 0$ for all i.
- Complementary slackness: $\lambda_i(f_i(x) y) = 0$ for all i.
- Stationarity: The gradient of the Lagrangian with respect to x and y is zero.

The Lagrangian for problem (5) is:

$$\mathcal{L}(x, y, \lambda) = y + \sum_{i=1}^{N} \lambda_i (f_i(x) - y).$$

The stationarity condition then yields:

$$\nabla_x \mathcal{L}(x, y, \lambda) = \sum_{i=1}^N \lambda_i \nabla f_i(x) = 0,$$

$$\nabla_y \mathcal{L}(x, y, \lambda) = 1 - \sum_{i=1}^N \lambda_i = 0.$$

3. Example of Functions f_1, \ldots, f_N Where LICQ does not Hold

Consider the functions $f_1(x) = x^2$ and $f_2(x) = (x-1)^2$ for $x \in \mathbb{R}$ (here N = 2). At the point x = 0.5, both f_1 and f_2 are active, and their gradients are equal $(\nabla f_1(0.5) = \nabla f_2(0.5))$. Thus, the gradients of the active constraints are not linearly independent, violating the Linear Independence Constraint Qualification (LICQ).

The Mangasarian-Fromovitz Constraint Qualification (MFCQ) requires the existence of a direction where all the inequality constraints are strictly decreasing. For problem (5), the constraint is $f_i(x) - y \leq 0$. By increasing y slightly (while keeping x constant), we strictly decrease $f_i(x) - y$ for all i. Therefore, MFCQ is always satisfied for any feasible point in problem (5), as there is always a direction (increasing y) that strictly reduces all the constraints.