Hybrid Neural Networks in Nuclear Fusion Transport Modelling

Master Thesis
Faculty of Physics, LMU

Author:

Daniel SCHAEFER

Supervisors:

Prof. Dr. Frank JENKO

Prof. Dr. Hartmut ZOHM

Dr. Jonathan CITRIN

Karel VAN DE PLASSCHE

Outline

The Big Picture: Integrated Modelling

Comparison of model execution speeds

Calculation of tokamak radial profile of turbulent transport coefficients:

Model type	CPU time [s]
Nonlinear global (adiabatic electrons)	10^{10}
High-fidelity Gyrokinetic	10^{8}
Reduced Model	10^{2}
Neural Network	10^{-3}
Requirements for real-time control	$\mathcal{O}(10^{-3})$

Previous Work - QualiKiz

• Quasi-linear gyrokinetic turbulent transport solver for tokamaks^[1]

- computes:
 - turbulent heat fluxes
 - particle (including impurity) fluxes and D+V transport coefficients
 - angular momentum fluxes
- coupled in integrated modelling platforms such as CRONOS and JETTO. Validated against experiments, e.g. A. Ho Nucl. Fusion 2019

Previous Work - QualiKiz

Training Data

Inputs:

Quantity	Ra	ang	е	# points
Wavenumber (ion + electron scale) $[k_{\theta}\rho_{s}]$	0.1	-	36	18
Ion temperature gradient $[R/L_{T_i}]$	1	-	14	12
Electron temperature gradient [R/L _T]	0	-	14	12
Density gradient [R/L _n]	-5	-	6	12
Magnetic pitch angle [q]	0.66	-	15	10
Magnetic pitch angle shear [ŝ]	-1	-	5	10
Normalized radius [r/R]	0.03	_	0.33	8
Temperature ratio [T/T _e]	0.25	-	2.5	7
Collisionally [v*]	10-5	_	1	6
Impurity content [Z _{eff}]	1	-	3	5
Total	^	1.3	MCPU	3.10 ⁸

Outputs:

- ion heat flux
- electron heat flux
- electron particle fluxes
- ion particle fluxes
- diffusivity
- convective terms

 Fully connected feed forward neural networks were used to perform a regression of this training data

 Typically 2-3 layers of 30-128 nodes each

Neural network regression of pre-generated Qualikiz calculation database for fast surrogate modelling

- 4D (Input) Proof-of-concept^[1]
 - Concept validation faster-than-realtime simulation for ITER
- 10D Extension^[2]
 - Achieved a good neural network fit for QuaLiKiz heat and particle transport
 - <1 ms predictions for profiles of transport coefficients
 - Integrated in real-time capable tokamak simulation suite RAPTOR and JETTO integrated modelling suite

Cost Function

$$C = C_{good} + \lambda_{regu}C_{regu} + \lambda_{stable}C_{stable}$$

- Sharp instability thresholds
 - Only include unstable points in "goodness" part of Cost Function

$$C_{good} = \begin{cases} \frac{1}{n} \sum_{i=1}^{n} (QLK_i - NN_i)^2, & \text{if } QLK_i \neq 0\\ 0, & \text{if } QLK_i = 0 \end{cases}$$

- Matching thresholds for all transport channels
- train on q_{i,ITG}, q_{e,ITG}/q_{i,ITG}, Γ_{e,ITG}/q_{i,ITG} etc. and multiply the output of the networks
 - Clip negative heat-flux to zero
- No spurious positive flux in stable region
 - Punish positive predictions with extra Cost Function term

$$C_{stab} = \begin{cases} 0, & \text{if } QLK_i \neq 0 \\ \frac{1}{n} \sum_{i=1}^{n} (NN_i - c_{stab}), & \text{if } QLK_i = 0 \end{cases}$$

- Enforce Smoothness
 - Punish model complexity using L2 Cost Function

$$C_{regu} = \sum_{i=1}^{k} w_i^2$$

Thesis Objective/Research Problem

Eliminate "Pop-back" via alternative approach

 solve pop-back problem in a more elegant manner using prior physical knowledge of system (Critical Gradient Model)

<u>Advantages:</u>

- Avoid direct regression
- (not yet tested) very smooth outputs
 - important for Newton solvers for implicit (fast)
 PDE solution of the transport equations

Strategy

- Remove additional Cost function terms, custom pre-/post-processing etc.
- Replace pure Universal Function Approximator (fully-connected neural network/black-box) approach with the ability to insert prior domain knowledge.

• Non-global hybridization technique needed.

Previously none were available.

Reduced Dataset used

Inputs:

Quantity	Range	# points
Wavenumber (ion + electron scale) $[k_{\theta}\rho_{s}]$	0.1 - 36	18
Ion temperature gradient [R/L,]	1 - 14	12
Electron temperature gradient [R/L _T]	0 - 14	12
Density gradient [R/L _n]	-5 - 6	12
Magnetic pitch angle [q]	0.66 - 15	10
Magnetic pitch angle shear [ŝ]	-1 - 5	10
Normalized radius [r/R]	0.03 - 0.33	8
Temperature ratio [T _i /T _e]	0.25 - 2.5	7
Collisionaliy [v*]	10-5 - 1	6
Impurity content [Z _{eff}]	1 - 3	5
Total	~1.3 MCPU	lh 3.10 ⁸

Output:

Electron Heat Flux (ETG Mode)

Extracting Domain Knowledge

- Problem type: regression.
- Software exists (Qualikiz) that performs simulations.
- There are 7 inputs.
 - $(I_1, \dots, I_7) \in Inputs$
- I_7 (ATE) has additional physical significance.
 - Will be injected separately from rest.
- There is 1 output.

Extracting Domain Knowledge

• Expected relationship is known: Critical Gradient Model

$$f(x) = c_1 \cdot \theta(x - c_2) \cdot (x - c_2)^{c_3}$$

 $-\theta$ is the Heaviside function

$$\theta(x-a) = \begin{cases} 0 & \text{if } x < a \\ 1 & \text{if } x > a \end{cases}$$
 $(x \geqslant 0)$

- $-x = \mathbf{ATE}$ (electron heat flux Wm^{-2} in the electron temperature gradient (ETG) mode)
- $-c_1 = \text{amplitude factor}$
- $-c_2$ = threshold where the output flux stops being non-zero
- $-c_3$ = polynomial coefficient describing behaviour of non-zero output flux components

Critical Gradient Model

•
$$I_1, \dots, I_7 \in \mathbb{R}^{I_1, \dots, I_7}$$

(Input space)

•
$$c_1 = g(I_1, ..., I_6)$$

•
$$c_2 = h(I_1, ..., I_6)$$

•
$$c_3 = i(I_1, ..., I_6)$$

•
$$x = I_7$$
 (ATE)

•
$$f(x) = f^*(I_1, ..., I_7) \in \mathbb{R}^1$$

$$f(x) = c_1 \cdot \theta(x - c_2) \cdot (x - c_2)^{c_3}$$

(Output space)

Aim

- Numerically find approximation of $f(x) \in \mathbb{R}^{I_1, \dots, I_7}$
- Whilst also optimizing/finding simultaneously for
 - $c_1 = g(I_1, ..., I_6) \in \mathbb{R}^{I_1, ..., I_6}$
 - $c_2 = h(I_1, ..., I_6) \in \mathbb{R}^{I_1, ..., I_6}$
 - $c_3 = i(I_1, \dots, I_6) \in \mathbb{R}^{I_1, \dots, I_6}$
- Whilst performing multi-variable optimization

New approach needed

METRIC	QuaLiKiz-LF	QuaLiKiz-NN
Relative mis-prediction of instability critical threshold	0.054	0.057
Absolute mis-prediction of ETG critical threshold [R/LTe]	0.357	0.379
Absolute median R/Lte level below R/LTe critical threshold where popback occurs	0	4.075
Fraction of R/L _{Te} slices with pop- back occurring	0	0.023
Wobble (related to second derivative and over-fitting) in unstable region	0.019	0.020

Discussion

Numerical results from QualiKiz-NN-accelerated model:

- "Pop-back" eliminated (by definition) due to CGM constraint.
- Same RMS achieved as State-Of-The-Art Qualikiz-NN^[1].
- CGM provides automatic high level of regularization (smoothness) may be advantageous when deployed in RAPTOR^[2] plasma simulation due to implicit PDE solver therein, which needs smooth gradients of transport fluxes.
 - To be tested in future work.

Discussion:

<u>Developed Hybridization Technique:</u>

- Method Advantages:
 - Physics/Black-Box hybridization capability
 - Transferability
 - Human Interpretable
 - Parameter Extraction
 - "Dial-A-Uncertainty"

Discussion

<u>Developed Hybridization Technique:</u>

- Method Disadvantages:
 - Loss of Universality

Conclusion

- Qualikiz-NN works but added extra term to Cost Function to mitigate "Pop-back" issues
- QualiKiz-LF extends QualiKiz-NN and solves "Pop-back"
 - Similar/slightly better Critical Threshold Matching
 - Zero Pop-back
 - (Not yet tested) very smooth outputs important for Newton solvers for implicit (fast) PDE solution of transport equations
- New Method developed:
 - Physics/Black-Box Hybridisation Capability

Outlook

- Qualikiz-LF was 7D (Inputs) and ETG mode only
- Next Steps:
 - Include all modes (ITG, TEM, ETG)
 - Go from 7D to 9D inputs
 - More sensitivity tests
 - Expanded testing tools/processes within Machine Learning pipeline
 - Plug into Integrated Modelling Suite

Acknowledgements

Jonathan Citrin, DIFFER

Karel van de Plassche, DIFFER

Frank Jenko, IPP

Hartmut Zohm, IPP

Sources

Slide 3:

Courtesy of J. Citrin (DIFFER), image by ITER (www.iter.org)

Slide 4:

 T. D. Rognlien, Understanding of edge plasmas in magnetic fusion energy devices, Plasma Physics and Controlled Fusion, 47(5A):A283, 2005 http://stacks.iop.org/0741-3335/47/i=5A/a=020

Slide 9:

K.L. van de Plassche (Transport Task Force 2018)
 http://www.psft.eu/ttf2018/repository/ password: ttf_2018

Sources

Slides 11 - 13:

• K.L. van de Plassche et al. TTF 2018 Seville poster

Code used in this thesis can be accesses at:

www.github.com/Dan-Schaefer/IPP-Neural-Networks

Results

Results

Layer (type)	Output		Param #	Connected to
6D_INPUTS (InputLayer)	(None,		0	
hidden1_branch1 (Dense)	(None,	30)	210	6D_INPUTS[0][0]
hidden2_branch1 (Dense)	(None,	30)	930	hidden1_branch1[0][0]
theta_branch1 (Dense)	(None,	1)	31	hidden2_branch1[0][0]
hidden1_branch3 (Dense)	(None,	30)	210	6D_INPUTS[0][0]
theta_branch1_feeder (Dense)	(None,	1)	2	theta_branch1[0][0]
Ate_INPUT (InputLayer)	(None,	1)	0	
hidden2_branch3 (Dense)	(None,	30)	930	hidden1_branch3[0][0]
hidden1_branch4 (Dense)	(None,	30)	210	6D_INPUTS[0][0]
Addition_Operator (Add)	(None,	1)	0	theta_branch1_feeder[0][0] Ate_INPUT[0][0]
c_3_branch3 (Dense)	(None,	1)	31	hidden2_branch3[0][0]
hidden2_branch4 (Dense)	(None,	30)	930	hidden1_branch4[0][0]
TR (Dense)	(None,	1)	2	Addition_Operator[0][0]
Power_Operator (Lambda)	(None,	1)	0	Addition_Operator[0][0] c_3_branch3[0][0]
m_branch4 (Dense)	(None,	1)	31	hidden2_branch4[0][0]
Multiplication_Operator_1 (Mult	(None,	1)	0	TR[0][0] Power_Operator[0][0]
Multiplication_Operator_2 (Mult	(None,	1)	0	<pre>m_branch4[0][0] Multiplication_Operator_1[0][0]</pre>
Output_Layer (Dense)	(None,	1)	2	Multiplication_Operator_2[0][0]
Total params: 3,519 Trainable params: 3,515 Non-trainable params: 4				

QuaLiKiz – reduced model artefacts

• Due to occasional QuaLiKiz eigenvalue solver failure, the computed outputs in our dataset will not always be correct, i.e. there is a degree of uncertainty with regard to the data used for training.

Previous Work - QualiKiz

Approximations:

- Axis-symmetry
- Gyrokinetic
- Adiabatic invariance
- Local
- Quasi-linear approximation
- Electrostatic

- Collisions
- Shifted circle geometry
- Gaussian eigenfunctions
- Strong ballooning
- Strongly passing and strongly trapped
- Small Mach number

SOURCE: www.qualikiz.com

Species (Electron + Ion)

Filename	Full name	Units	Definition	
An	Logarithmic density gradient	-	$An_s \equiv -\frac{R_0}{n_s} \frac{\mathrm{d}n_s}{\mathrm{d}r}$	
At	Logarithmic temperature gradient	-	$At_s \equiv -\frac{R_0}{T_s} \frac{\mathrm{d}T_s}{\mathrm{d}r}$	
Т	Temperature	keV	_	
anis	Temperature anisotropy	-	$\left(\frac{T_{\perp}}{T_{\parallel}}\right)_{LFS}$	
danisdr	Radial gradient of temperature anisotropy	-	-	

Electrons

Filename	Full name	Units	Definition
n	Density	10 ¹⁹ m ⁻³	
typee	Electron type	-	

The electron type can be:

typee	effect
1	Active electrons
2	Adiabatic electrons
3	Passing at ion scales

<u>lons</u>

Filename	Full name	Units	Definition
normni	Normalized density	-	$\frac{n_i}{n_e}$
Ai	lon mass	proton masses	-
Zi	lon change	е	-
typei	lon type	-	-

The ion type can be:

typei	effect
1	Active ions
2	Adiabatic ions
3	Tracer (i.e. for heavy impurities). Note: ninorm input is arbitrary for this case
4	Tracer in dispersion relation, but include the impact on Zeff and collisionality. Note: ninorm has to obey quasineutrality in this case

Geometry

Filename	Full name	Units	Definition
х	Midplane-averaged minor radius of flux surface, normalized by midplane-averaged minor radius of last-closed-flux- surface.	-	$\frac{r}{a} = \frac{r}{R_{\min}} = \frac{r_{\min} + r_{\inf}}{r_{\max, \text{LCFS}} + r_{\max, \text{CFS}}}$
Ro	Midplane-averaged major radius of flux surface. Can include Shafranov shift.	m	$\frac{R_{\rm out} + R_{\rm in}}{2}$
rho	Normalized toroidal flux coordinate. Only used in QuaLiKiz to set the non-rotation region when using rot_flag=2	-	-
Во	Magnetic field at magnetic axis	Т	-
R0	Midplane-averaged major radius of last-closed-flux-surface.	m	$\frac{R_{\rm out,LCFS} + R_{\rm in,LCFS}}{2}$
Rmin	Midplane-averaged minor radius of last-closed-flux-surface.	m	$\frac{r_{\text{out,LCFS}} + r_{\text{in,LCFS}}}{2}$
q	Safety factor	-	-
smag	Magnetic shear	-	$r\frac{q'}{q}$
alpha	MHD alpha	-	$\alpha_{MHD} \equiv q^2 \sum_s \beta_s \left(\frac{R}{L_{T_s}} + \frac{R}{L_{n_s}} \right)$

Output - Fluxes

All output files have the structure (flux name)(species [i|e])(mode [|ETG|ITG|TEM])_(style [GB|SI|cm])

Filename	Full name (units refer to SI outputs only)	phys_meth	Definition
pf	Particle flux [m^-2 s^-1]	0	Γ_s
ef	Heat flux [W m^-2]	0	q_s
vf	Angular momentum flux [kg s^-2]	0	Π_s
df	Particle diffusivity [m^2/s]	1	D_s
vt	Particle thermodiffusion [m/s]	1	$V_{P,s}^{th}$
vr	Particle rotodiffusion [m/s]	1	$V_{P,s}^{rot}$
VC	Particle pure convective term [m/s]	1	$V_{P,s}^{th}$
chie	Heat conductivity [m^2/s]	2	χ_s
ven	Heat thermodiffusion [m/s]	2	$V_{H,s}^n$
ver	Heat rotodiffusion [m/s]	2	$V_{H,s}^{rot}$
vec	Heat pure convective term [m/s]	2	$V^c_{H,s}$