X射线衍射仪精确测定点阵常数的研究

沧州师范专科学校物理系 王洪信

摘要 X 射线衍射测定晶体点阵常数是基本的实验方法. 用普通 X 射线衍射仪粉末法测定硅点阵常数,比较了不同测试方法和计算方法,以定点扫描三点 抛物线法定峰、 $\cos^2\theta$ 外推法计算结果最佳.

0 引言

X 射线衍射仪粉末法测定晶体点阵常数是迅速发展的常用实验方法. 但是由于不可避免的系统误差,使此法迄今还不完善,测定的点阵常数没达到所期望的程度. Klug 等总结了前人的工作⁽²⁾,结论为用普通衍射仪单边扫描加外推仅达 $1/5 \times 10^4$ 的精确度. 陶琨等人提出了多种测试方案^(3,4),并采用实验的方法消除一些系统误差⁽³⁾,提高了普通衍射仪一般方法的准确度. 本工作采用不同的测试方案与计算方法交叉对比优选,确定较好的测试方法,为完善衍射仪法提供一参考途径. 由于 Desliattes 等⁽²⁾,用 X 射线/光学干涉仪法直接测量得出了 $a_{ii}=5.4310652\pm0.000017$ Å,并求得高准确度的 $\lambda_{cu}K_{a1}=1.5405981$ Å. 为衍射仪粉末法测硅点阵常数的工作进展提供了标准.

1 测试原理(3.4.5)

根据晶体中某一晶面族(hkl)的衍射角 θ ,满足布拉格方程: $2d\sin\theta = \lambda$,可由此求此晶面族的面间距 d_{kkl} ,然后根据晶面间距与点阵常数的关系,求得点阵常数a.对于立方晶系有: $a=d\sqrt{h^2+k^2+l^2}=d\sqrt{N}$ $N=h^2+k^2+l^2$ 由布拉格方程得:

$$a = \frac{\lambda}{2d\sin\theta} \sqrt{h^2 + k^2 + l^2} = \frac{\lambda}{2d\sin\theta} \sqrt{N}$$

还可求得: $\Delta d/d = \operatorname{ctg}\theta \Delta \theta$,对立方晶系有 $\Delta a/a = \Delta d/d = -\operatorname{ctg}\theta \Delta \theta$,可见点阵常数 a 的偏差 Δa 与 $\operatorname{ctg}\theta$ 成正比、与 $\Delta \theta$ 成正比. 所以要精确测定点阵常数必须适当选择衍射角 θ 减小 $\Delta \theta$ 才能使 Δa 最小,然后外推至 $\theta = 90^{\circ}$ 处时 $\Delta a = 0$,即可求得真实的 a. 在各种可外推消除的误差中,均与 $\cos^2\theta$ 或 $\operatorname{ctg}^2\theta$ 成正比,故可以选用 $\cos^2\theta$ 做为外推函数.

测试方法采用连续扫描法和定点扫描法. 定峰位常用方法有重心法、峰值法、积分强度中心法,本工作采用峰值法. 连续扫描用半宽高峰值法定峰,其定峰迅速,直观性强,缺点是受记录系统影响大,主观性强,精确度低. 定点扫描定峰采用三点抛物线法,其受记录系统影响较小,主观因素亦少,且可经洛仑兹一偏振因子校正,精确度高.

2 测试参数与测试结果(3.4)

日本理学电机 4503A 衍射仪,经仔细调整机器,0°误差小于 0.01°. X 射线管管压

35 kV, 管电流 15 mA. 取用角 3°, 发散狭缝 1°, 接收狭缝 0.3 mm, 计数器高压 0.8 kV. 连续扫描采用半高宽法定峰, 扫描速度为 1°/min. 定点扫描采用定点定时计数, 计数时间 20~40s, 每点连续记三次求平均. 采取正、反向定点求平均, 可消除齿轮啮合误差及定点角度误差. 然后经洛仑兹-偏振因子修正定出峰值.

定点扫描抛物线法采用 $\cos^2\theta$ 外推、最小乘法选择最佳外推曲线,采用科亨最小二乘法与 $50^\circ \sim 70^\circ$ 衍射峰 $\cos^2\theta$ 外推法计算. 连续扫描用 $\cos^2\theta$ 外推法和衍射线计算. 并将各种法加以比较.

计算法→ 测试法↓	cos²θ 外推法	科亨最小二乘法	50~70°衍射 cos²θ 外推法	衍射线对法
抛物线法	5.430 954±0.000 030	5.431 002±0.000 071	5.430 888±0.000 042	
连续扫描法	5.430 933±0.000 160	_	5.430857 ± 0.000646	5.430433±0.000262

表 1 测试结果比较(各测量值校正到 25℃,单位,从)

2.1 测量结果的精确度和准确度的估计与比较

抛物线 $\cos^2\theta$ 外推法精确度为 $1/2\times10^5$. 科亨最小二乘法测量值比 $\cos^2\theta$ 外推法大,其精确度为 $1/8\times10^4$. 而 $50^\circ\sim70^\circ$ 衍射线 $\cos^2\theta$ 外推法精确度为 1/1. 3×10^5 . 可见前者精确度较高,后者次之,中间最低.

连续扫描 cos²θ 外推法精确度为:1/3.4×10⁴, 衍射线对法的精确度为1/2×10⁴, 显然 比抛物线法相差一个数量级.可见用抛物线法测量的α值最佳.

2.2 误差消除情况(4.6)

本实验对抛物线法大部分误差可用外推或计算消除. 仅有垂直发散不可外推部分尚未消除. 其他误差可忽略,对于连续扫描,除了上述不可消除的误差外,尚有齿轮啮合误差、2:1 联动误差、洛仑兹偏振误差、记录系统误差不可消除.

3 结论

用普通衍射仪粉末法精确测定点阵常数,采用经洛仑兹—偏振因子校正的抛物线拟合定峰法,计算方法以 cos²θ 外推为好. 方法是可行的,结果是可靠的.

参考 文献

- 1 Klug H P, Alrxander L E. X-Ray Diffranction Procedurdsfor Polycrystalline and Amorphous Matreials 2nd. ed. 1974
 - 2 Deslattres R D. Henis A. Phys Rev Lett, 1973, 31,972
 - 3 陶琨. 清华大学学报,1980, 20(2)
 - 4 梁敬魁.物理通讯,1980(3)
 - 5 南京大学. 粉晶 X 射线分析. 北京. 地质出版社,1981
 - 6 天津大学金相教研室. 理化检验,1979(2)