

İçerik

- Sayı sistemleri
 - Binary, Octal, Decimal, Hexadecimal
- Operatörler
 - · Aritmetik operatörler
 - Mantıksal (Logic) operatörler
 - Bitwise operatörler

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

2

İkili (Binary) Sayı Sistemi

- İkili sayı sisteminde sadece 0 ve 1 rakamları kullanılır.
 - İki sayısı «10» şeklinde ifade edilir.
 - Ondalık sayı sisteminde olduğu gibi toplamın iki olması durumunda bir sonraki haneye aktarılır.
- İkili sayı sistemindeki sayıların yazımı **genellikle** ondalık sisteme göre daha uzundur.
 - Bunun temel nedeni ikilik sistemde her hanenin onluk sisteme göre daha az bilgi ifade edebilmesidir.
 - Bundan dolayı ikilik sistemdeki hanelere bit adı verilir.

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

3

Sekizlik (Octal) Sayı Sistemi

- Sekizlik sayı sisteminde sayılar sadece 8 rakam kullanılarak ifade edilir.
 - 0, 1, 2, 3, 4, 5, 6 ve 7
- Sekizlik sayı sisteminde her hane ikilik sayı sistemindeki 3-biti ifade eder. (2³ = 8)
- Sekizli sayı sistemi 12-bit, 24-bit ve 36-bit yapısındaki .eşitli işlemcilerde kullanılmıştır.
 - Örnek: PDP-8, ICL 1900 ve IBM mainframe

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü

4

Ondalık (Decimal) Sayı Sistemi

- Ondalık sayı sistemi
 - · Hindu Arabic, Arabic olarak ta bilinir.
 - 10 farklı rakam kullanılır.
 - 0, 1, 2, 3, 4, 5, 6, 7, 8 ve 9
- Kesirli sayıların gösterimi için nokta işareti kullanılır.
- Ondalık sayı sisteminde 543.21 sayısı
 - $(5 \times 10^2) + (4 \times 10^1) + (3 \times 10^0) + (2 \times 10^{-1}) + (1 \times 10^{-2})$ şeklinde değerlendirilir.

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

Onaltılık (Hexadecimal) Sayı Sistemi

- Onaltılık sayı sisteminde sayıların ifade edilmesi için 16 değere ihtiyaç vardır.
 - Bunun için 10 rakam ve 6 harften yararlanılır.
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - A, B, C, D, E ve F
- Hanelerin kullanımı ondalık sayı sistemi ile aynıdır.
- Ondalık sayı sisteminde 256,058 sayısı
 - İkilik sayı sisteminde «11 1110 1000 0011 1010»
 - Sekizlik sayı sisteminde «764072»
 - Onaltılık sayı sisteminde «3E83A» şeklinde yazılır.

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

Sayı Sistemleri Arasında Geçiş

- Matematiksel olarak sayı sistemleri arasındaki geçiş çarpma ve bölme işlemleri ile yapılır.
 - Ondalık sayı sisteminde başka sayı sistemine geçerken bölme
 - Diğer sayı sistemlerinden Ondalık sisteme geçerken çarpma

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

Sayı Sistemleri Arasında Geçiş

- İkilik, sekizlik ve onaltılık sayı sistemleri arasındaki geçişler daha pratik şekillerde yapılabilir.
- Sekizlik sistemdeki her hane, ikilik sistemdeki üç haneye karşılık gelir.
 - 1 000 010 111 100 011
 - 173
- Onaltılık sistemdeki her hane, ikilik sistemde dört haneye karşılık gelir.
 - 1000 0101 1110 0011
 - A09C

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

Aritmetik Operatörler

- Toplama (+)
- Çıkarma ()
- Çarpma (*)
- Bölme (/)
- Mod (mod)

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

9

İlişkisel Operatörler

- Büyüktür (>)
- Küçüktür (<)
- Büyük eşit (>=)
- Küçük eşit (<=)
- Eşit (=)
- Eğit değil (≠)

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü

10

Mantıksal Operatörler

- Mantiksal AND (AND)
- Mantiksal OR (OR)
- Mantiksal Negation (NOT)

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

11

Bitwise Operatörler

- AND (&)
- OR (|)
- Exclusive OR (XOR)
- Shift
 - Sol (<<)
 - Sağ (>>)
- Rotate
 - Sol / Sağ

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

12

AND Operatörü

 AND operatörü her iki bit değerinin 1 olması durumunda 1 değerini sonuca taşır.

Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

- A sayısının 60, B sayısının 13 olması durumunda
 - A = 0011 1100
 - B = 0000 1101
- A & B = ?
 - 0000 1100

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

13

OR Operatörü

А	В	A B
0	0	0
0	1	1
1	0	1
1	1	1

- OR operatörü iki bit değerinden birinin 1 olması durumunda 1 değerini sonuca taşır.
- A sayısının 60, B sayısının 13 olması durumunda
 - A = 0011 1100
 - B = 0000 1101
- A | B = ?
 - 0011 1101

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü

14

XOR Operatörü

- XOR operatörü her iki bit değerinin aynı olması durumunda 0, farklı olması durumunda 1 üretir.
- A sayısının 60, B sayısının 13 olması durumunda
 - A = 0011 1100
 - B = 0000 1101
- A XOR B = ?
 - 0011 0001

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

A XOR B

0

1

1

0

1

15

SHIFT Operatörü

- A sayısı halen 60 değerine sahip ©
 - 0011 1100
- Sola doğru shift işlemi iki kere gerçekleştirildiğinde
 - A << 2
 - · 240 1111 0000
- Sağa doğru shift işlemi üç kere gerçekleştirildiğinde
 - A >> 3
 - 7 0000 0111

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü

16

Bilgisayarda Sayı Sistemi – I

- Günümüz bilgisayarları ikili sayı sistemini kullanır.
- Dolayısıyla bilgisayarda işlem görecek veya saklanacak tüm bilgiler "bit"ler ile ifade edilir.
 - · tam sayılar
 - · kesirli sayılar
 - harfler /karakter
 - · resimler, videolar vb.

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü

18

Bilgisayarda Sayı Sistemi — II * Neden ondalık sayı sistemi değil ? * ENIAC ondalık sistemi kullanıyordu! * Daha fazla sinyal seviyesi ihtiyacı hassasiyet problemi yaratır. * Toplama, çarpma vb. işlemlerin gerçekleştirilmesi zorlaşır. * İkili sistemde bilginin aktarımı daha kolay! * parazit, gürültülere karşı daha dayanıklı **Tildiz Teknik Oniversitesi - Bilgisayar Mahendisliği Bolama **All.2020**

Bilginin Eşlenmesi – I · Herhangi bir veri tipinin bellekte tutulması için bir eşleme MATRIX of PIXELS (mapping) işlemi yapılmalı · Aynı veri tipi için farklı eşleme yapıları bulunabilir. · Örnek: • ASCI - American Standard Code for Information Interchange • EBCDIC - Extended Binary Coded Decimal Interchange Code • UTF - Unicode Transformation **Format** Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 20 4.11.2020

Bilginin Eşlenmesi – II

1. Sistem	2. Sistem		
101	000		
011	001		
111	010		
000	011 100		
110			
010	101		
001	110		
100	111		
	101 011 111 000 110 010		

- Örneğin 0-7 arasındaki sayıları temsil edecek bir eşleme oluşturulması
- Hangi sistem daha iyi ?
 - Test etmek için aritmetik işlemleri deneyebilirsiniz

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

21

Bilginin Eşlenmesi – III

- Küçük ve büyük harfler
- · Noktalama işaretleri
- · Matematiksel ifadeler
- Rakamlar
- Kontrol karakterleri

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü

22

Bilginin Eşlenmesi – IV

- Negatif Sayılar
 - · 1's complement
 - En yüksek anlamlı bit (Most Significant Bit, MSB) işaret (sign) biti olarak kullanılır.
 - 0 : pozitif sayı
 - 1 : negatif sayı
 - Sayının ikilik sistemdeki yazımının her bitin 1'e göre tersi alınır.
 - 11:00001011
 - · -11:1111 0100
 - 2's complement
 - 1'e göre ters alma işleminde sıfır için iki farklı değer üretilir. 2'ye göre ters alma işleminde ise bu problem yoktur.
 - 1'e göre ters alma işleminden sonra sayıya 1 eklenir.

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

23

Bilginin Eşlenmesi – V

- Kesirli sayılar
 - IEEE Standard 754Floating Point Numbers
 - Single/Double precision
- Her iki formatta kullanılan yöntem benzerdir.
 - Kesirli sayının ifade edilmesi için kullanılacak 32-bit veya 64-bit uzunluğundaki alan **Sign**, **Exponent** ve **Mantissa** olarak adlandırılan 3 parçaya bölünür.

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü

24

Bilginin Eşlenmesi – V

- · İşaret (Sign) Bit
 - 0 pozitif bir sayıyı, 1 ise negatif bir sayıyı ifade eder.
- Üs (Exponent) Bit'leri
 - Hem pozitfi hem de negatif üs bilgisinin ifade edilebilmesi için biased notation adı verilen yöntem kullanılır. IEEE standardında single precision için bu değer 127, double precision için ise 1023'tür.
- Ondalıklı (Mantissa) bitler
 - Normalizasyon yapılmış olarak saklanır.
 - İkili sistemde yapılan normalizasyon bir bit kazandıracaktır!

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 4.11.2020

25

Bit, Byte, Word, vb.

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü

26

Bellek Organizasyonu

- İşlemciler aritmetik lojik işlemleri farklı boyutlardaki bilgiler üzerinde gerçekleştirebilir.
 - İşlemcinin tek seferde işleyebildiği bilgi boyutu bit cinsinden ifade edilir.
 - 16-bit, 32-bit, 64-bit
 - Zaman zaman adres yolu ile veri yolu birbirinden farklı boyutta olan işlemcilerde olabilir.
- Günümüzde birçok kişisel bilgisayar 64-bit üzerinde işlem yapar.
 - 32-bit üzerinde işlem yapan bilgisayarların bellek adresleme kapasitesi 4GB ile sınırlıdır.

27

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü

4.11.2020

Little Endian / Big Endian

- Endian verinin belleğe yerleşiminin nasıl yapılacağını belirler.
- 0x0001020304050607

00							
a	a+1	a+2	a+3	a+4	a+5	a+6	a+7

BIG ENDIAN

LITTLE ENDIAN

	06						
а	a+1	a+2	a+3	a+4	a+5	a+6	a+7

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü

28