431 Class 08

thomaselove.github.io/431

2021-09-16

Today's Agenda

- Building Visualizations to Compare Two Distributions
 - Confidence Intervals for a Difference between Means
- Building Visualizations to Compare > 2 Distributions

Today's R Packages

```
library(broom) # for tidying up output
library(janitor)
library(knitr)
library(magrittr)
library(naniar)
library(patchwork)
library(readxl) # new today, read in .xls or .xlsx files
library(tidyverse)
theme_set(theme_bw())
```

Today's Data

Today, we'll use an Excel file (.xls, rather than .csv) to import the dm1000 data.

```
dm1000 <- read_excel("data/dm_1000.xls") %>%
  clean_names() %>%
  mutate(across(where(is.character), as_factor)) %>%
  mutate(subject = as.character(subject))
```

• There are also functions called read_xls() and read_xlsx() available in the readxl package.

The dm1000 tibble

```
# A tibble: 1,000 x 17
  subject age insurance n_income ht wt
                                           sbp
  <chr> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <
1 M-0001 55 Medicaid 29853 1.63 103.
                                          145
2 M-0002 52 Commercial 31248 1.75 112. 151
3 M-0003 69 Medicare 23362 1.65 74.9 127
4 M-0004 57 Medicaid 26033 1.63 81.4 125
5 M-0005 68 Medicare 85374 1.69 92.6 120
6 M-0006 56 Medicaid 31273 1.71 54.6 127
7 M-0007 54 Commercial 25445 1.68 81.6 114
8 M-0008 45 Medicare 67526 1.69 80.6 166
9 M-0009 61 Medicare 15203 1.91 86.7 111
10 M-0010 63 Medicaid 17628 1.86 123. 146
# ... with 990 more rows, and 10 more variables:
   dbp <dbl>, a1c <dbl>, ldl <dbl>, tobacco <fct>,
#
#
   statin <dbl>, eye exam <dbl>,
   race ethnicity <fct>, sex <fct>, county <fct>,
```

Comparing Two Distributions

LDL cholesterol and statin prescription?

```
dm1000 %>% filter(complete.cases(ldl, statin)) %>%
  ggplot(data = ., aes(x = ldl, fill = factor(statin))) +
  geom_histogram(bins = 15, col = "white") +
  facet_grid(statin ~ ., labeller = "label_both") +
  guides(fill = "none")
```


Faceting

It's very useful to split data into groups and plot each group separately to make comparisons across the groups. We can then draw those subplots side by side.

We have two main tools: facet_wrap() and facet_grid()

- facet_wrap(~ grp1) to obtain plots within each grp1 arranged into horizontal subpanels and wrapping around, like words on a page.
- facet_grid(grp1 ~ .) to obtain plots within each grp1 arranged vertically (vertical subpanels)
- facet_grid(grp1 ~ grp2) to obtain plots within each combination of grp1 and grp2 with vertical and horizontal subpanels.

Using facet_wrap()

```
dm1000 %>% filter(complete.cases(ldl, statin)) %>%
  ggplot(data = ., aes(x = ldl, fill = factor(statin))) +
  geom_histogram(binwidth = 10, col = "white") +
  facet_wrap(~ statin, labeller = "label_both") +
  guides(fill = "none")
```


Using facet_grid()

```
dm1000 %>% filter(complete.cases(ldl, statin)) %>%
   ggplot(data = ., aes(x = ldl, fill = factor(statin))) +
   geom_histogram(binwidth = 10, col = "white") +
   facet_grid(statin ~ ., labeller = "label_both") +
   guides(fill = "none")
```


Using facet_grid() with two groupings

```
dm1000 %>% filter(complete.cases(ldl, statin)) %>%
  ggplot(data = ., aes(x = ldl, fill = factor(statin))) +
  geom_histogram(binwidth = 10, col = "white") +
  facet_grid(statin ~ residence, labeller = "label_both") +
  guides(fill = "none")
```


Comparison of densities (ignores relative frequency)

```
dm1000 %>% filter(complete.cases(ldl, statin)) %>%
  ggplot(data = ., aes(x = ldl, fill = factor(statin))) +
  geom_density(alpha = 0.5) +
  scale_fill_viridis_d() +
  labs(fill = "Statin")
```


Numerical Summaries comparing Two Groups

statin	n	min	med	max	mean	sd
0	176	34	102	243	106.22	36.05
1	646	25	92	241	99.22	37.21

• What is the difference in mean(LDL) between the two samples?

Using favstats to compare LDL by Statin group

```
dm1000 %$%
  mosaic::favstats(ldl ~ statin)
  statin min Q1 median Q3 max
                                              sd
                                   mean
                                                   n
       0 34 82 102 126 243 106.22159 36.04619 176
       1 25 71 92 122 241 99.22136 37.20972 646
  missing
      66
     112
We would have obtained the same result with:
mosaic::favstats(ldl ~ statin, data = dm1000)
```

Comparison Boxplot with Violins (LDL and statin)

Here's a first attempt...

```
dm1000 %>% filter(complete.cases(ldl, statin)) %>%
   ggplot(data = ., aes(x = factor(statin), y = ldl)) +
   geom_violin() +
   geom_boxplot(aes(fill = factor(statin)), width = 0.3) +
   labs(x = "Statin prescription (0 = no, 1 = yes)",
        y = "LDL in mg/dl", fill = "Statin")
```


Try 2: Boxplot with Violins for LDL and statin

```
dm1000 %>% filter(complete.cases(ldl, statin)) %>%
   ggplot(data = ., aes(x = factor(statin), y = ldl)) +
   geom_violin(aes(fill = factor(statin))) +
   geom_boxplot(width = 0.3, outlier.size = 3) +
   coord_flip() +
   guides(fill = "none") +
   labs(x = "Statin prescription (0 = no, 1 = yes)",
        y = "LDL in mg/dl")
```


Setting Up Third Try

```
dm for boxplot <- dm1000 %>%
 filter(complete.cases(statin, ldl)) %>%
 mutate(statin f = fct recode(factor(statin),
                              "No Statin" = "0".
                              "Statin" = "1")) %>%
 select(subject, ldl, statin f, statin)
head(dm_for_boxplot, 3) # print first three rows
# A tibble: 3 x 4
 subject ldl statin f statin
 <chr> <dbl> <fct> <dbl>
```

1 M-0001 221 Statin 2 M-0002 116 No Statin

3 M-0003 52 Statin

Third Try on Boxplot for LDL by Statin Use

95% confidence interval for difference between population mean LDL WITH statin and population mean LDL WITHOUT statin

If we are willing to assume that LDL follows a Normal distribution in each statin group, then we can use the following linear model with one predictor.

```
m2 <- lm(ldl ~ statin, data = dm1000)
tidy(m2, conf.int = TRUE, conf.level = 0.95) %>%
  select(term, estimate, conf.low, conf.high) %>%
  kable(digits = 3)
```

term	estimate	conf.low	conf.high
(Intercept)	106.222	100.752	111.691
statin	-7.000	-13.170	-0.831

Alternative Approach to get same result

estimate	conf.low	conf.high
7	0.831	13.17

95% confidence interval for difference between population mean LDL WITH statin and population mean LDL WITHOUT statin

If we are not willing to assume a Normal distribution for LDL in either the statin or the "no statin" group, then we could use a bootstrap approach.

```
Mean Difference 0.025 0.975
-7.0002287 -12.9555578 -0.9043361
```

The bootdif function (from Love-boost.R)

```
`bootdif` <-
 function(y, g, conf.level=0.95, B.reps = 2000) {
    lowq = (1 - conf.level)/2
    g <- as.factor(g)</pre>
    a <- attr(Hmisc::smean.cl.boot(y[g==levels(g)[1]],
                           B=B.reps, reps=TRUE), 'reps')
    b <- attr(Hmisc::smean.cl.boot(y[g==levels(g)[2]],
                           B=B.reps, reps=TRUE), 'reps')
    meandif <- diff(tapply(y, g, mean, na.rm=TRUE))</pre>
    a.b <- quantile(b-a, c(lowq,1-lowq))
    res <- c(meandif, a.b)
    names(res) <- c('Mean Difference',lowq, 1-lowq)</pre>
    res
```

95% confidence intervals for $\mu_{NoStatin} - \mu_{Statin}$

Approach	Estimate	95% CI	Normality Assumption?
linear model		(0.83, 13.17)	
bootstrap	7.00	(0.90, 12.96)	No

Assumptions these intervals share:

- random samples from the populations of interest
- independent samples (samples aren't paired or matched)

Additional assumptions for linear model:

- Normal distribution in each group (statin and "no statin")
- variance in each group (statin and "no statin") is equal

Comparing Multiple (more than 2) Batches of Data

Stratify the subjects by primary insurance?

```
dm1000 %>% count(insurance) %>%
  mutate(pct = 100*n/sum(n)) %>%
  kable(digits = 1)
```

insurance	n	pct
Medicaid	330	33.0
Commercial	196	19.6
Medicare	432	43.2
Uninsured	42	4.2

Let's look at n_income

Compare n_income by insurance: Boxplot?

```
ggplot(dm1000, aes(x = insurance, y = n_income)) +
  geom_boxplot()
```

Warning: Removed 28 rows containing non-finite values (stat_boxplot).

Build a better boxplot?

What am I doing in each line of this code?

```
dm1000 %>% filter(complete.cases(insurance, n_income)) %>%
  ggplot(data = ., aes(x = insurance, y = n income/1000)) +
  geom violin(aes(fill = insurance)) +
  geom boxplot(width = 0.3, outlier.size = 2) +
  guides(fill = "none") +
  coord flip() +
  scale_fill_viridis_d(alpha = 0.5) +
  labs(y = "Neighborhood Income (in $1000s)",
       x = "Primary Insurance Category",
       title = "dm1000 Income by Insurance Type")
```

Result on next slide...

How does n_income vary by insurance in dm1000?

Faceted Histograms of n_income by insurance

```
ggplot(data = dm1000, aes(x = n_income)) +
  geom_histogram(binwidth = 2500) +
  facet_wrap(~ insurance)
```

Warning: Removed 28 rows containing non-finite values (stat_bin).

Improving the Histograms (result)

Improving the Histograms (code)

```
dm1000 %>% filter(complete.cases(n_income, insurance)) %>%
ggplot(data = ., aes(x = n_income, fill = insurance)) +
  geom_histogram(binwidth = 2500, col = "navy") +
  scale_x_continuous(
    breaks = c(5000, 25000, 50000, 75000, 100000)) +
  guides(fill = "none") +
  facet_wrap(~ insurance) +
  labs(title = "Neighborhood Income, in $")
```

Comparing Densities of n_income by insurance

```
dm1000 %>% filter(complete.cases(n_income, insurance)) %>%
   ggplot(data = ., aes(x = n_income, fill = insurance)) +
   geom_density() +
   scale_fill_viridis_d(alpha = 0.3)
```


Using a Ridgeline Plot to Compare Densities

Picking joint bandwidth of 5030

Sample Summaries of n_income

```
dm1000 %$% mosaic::favstats(n income ~ insurance)
   insurance min
                       Q1
                           median
                                        Q3
                                              max
   Medicaid 7876 21528.5 28965.0 40986.00 102258
 Commercial 2279 24767.0 37748.0 46736.00 125150
   Medicare 3787 21883.5 29797.5 44062.75 117161
3
  Uninsured 11121 24678.0 30328.0 44743.00 129549
     mean
                sd
                     n missing
1 33150.74 16814.04 315
                            15
2 40715.02 21713.97 194
3 33883.50 17529.58 422
                            10
4 37874.73 24962.68 41
```

Comparing the Means of n_income

```
m1 <- lm(n_income ~ insurance, data = dm1000)
tidy(m1) %>% select(term, estimate) %>% kable(digits = 2)
```

term	estimate
(Intercept)	33150.74
insuranceCommercial	7564.28
insuranceMedicare	732.76
insuranceUninsured	4724.00

• What is m1's estimated n_income for each of the insurance groups?

m1: Estimated n_income for each insurance

Estimated n_income
33150.74 + 7564.28 = 40715.02
33150.74 + 732.76 = 33883.50
33150.74 + 4724.00 = 37874.74
33150.74

m1: Estimated n_income for each insurance

Insurance	m1 est.	Sample mean(n_income)
Commercial	40715.0	40715.0
Medicare	33883.5	33883.5
Uninsured	37874.7	33874.7
Medicaid	33150.7	33150.7

Model m1 coefficients

```
tidy(m1, conf.int = TRUE, conf.level = 0.95) %>%
  select(term, estimate, conf.low, conf.high) %>%
  kable(digits = 2)
```

term	estimate	conf.low	conf.high
(Intercept)	33150.74	31096.68	35204.80
insuranceCommercial	7564.28	4237.15	10891.42
insuranceMedicare	732.76	-1981.74	3447.27
in surance Unin sured	4724.00	-1328.66	10776.65

• 95% CI for pop. mean n_income among adults with Medicaid is (31097, 35205)

Model m1 coefficients

```
tidy(m1, conf.int = TRUE, conf.level = 0.95) %>%
  select(term, estimate, conf.low, conf.high) %>%
  kable(digits = 2)
```

term	estimate	conf.low	conf.high
(Intercept)	33150.74	31096.68	35204.80
insuranceCommercial	7564.28	4237.15	10891.42
insuranceMedicare	732.76	-1981.74	3447.27
in surance Unin sured	4724.00	-1328.66	10776.65

- 95% CI for Commercial Medicaid is (4237, 10891)
- What about Medicare Medicaid or Uninsured Medicaid?

Comparing n_income across insurance groups

```
mosaic::favstats(n_income ~ insurance, data = dm1000)
   insurance min
                       Q1
                           median
                                        03
                                              max
    Medicaid 7876 21528.5 28965.0 40986.00 102258
2 Commercial 2279 24767.0 37748.0 46736.00 125150
    Medicare 3787 21883.5 29797.5 44062.75 117161
3
  Uninsured 11121 24678.0 30328.0 44743.00 129549
                sd
                     n missing
     mean
1 33150.74 16814.04 315
                            15
2 40715.02 21713.97 194
3 33883.50 17529.58 422
                           10
4 37874.73 24962.68 41
```

- Does a comparison of means make sense here?
- Would it give us the same conclusions as comparing medians?

Replot on logarithmic (base 10) scale?

Code for plot on previous slide

```
dm1000 %>% filter(complete.cases(insurance, n_income)) %>%
 ggplot(data = ., aes(x = insurance, y = n_income)) +
 geom violin(aes(fill = insurance)) +
 geom boxplot(width = 0.3, outlier.size = 2) +
 guides(fill = "none") +
 coord_flip() +
 scale_fill_viridis_d(alpha = 0.5) +
  scale_y_continuous(trans = "log10") +
 labs(y = "Neighborhood Income (in $, log10 scale)",
       x = "Primary Insurance Category",
      title = "dm1000 Income by Insurance Type")
```

• Could also use scale_y_log10()

Does which logarithmic scale you pick matter?

Ridgeline Plot of Densities on Log Scale

Next Up

- Favorite Movies activity
- Correlation, Association and Scatterplots