Advanced applications of simulation

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

Overview

- Simulation for Business Planning
- Monte Carlo Integration
- Simulation for Power Analysis
- Portfolio Simulation

Simulation for business planning

Corn Farm

Corn farm

Business profitability

Business profitability

Let's practice!

STATISTICAL SIMULATION IN PYTHON

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

Definite integration

$$\int_{1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{1}^{2} = \frac{7}{3} \approx 2.3333$$

- Calculate overall area.
- Randomly sample points in the area.
- Multiply the fraction of the points below the curve by overall area.

•
$$f(x) = x^2$$

- Calculate overall area.
- Randomly sample points in the area.
- Multiply the fraction of the points below the curve by overall area.

Calculate Overall Area

- $\int_1^2 x^2 dx$
- $ullet x_{min}=1, x_{max}=2$
- $\min(0, f_{min}(x)) = 0, f_{max}(x) = 4$
- Overall Area = 4

- Calculate overall area.
- Randomly sample points in the area.
- Multiply the fraction of the points below the curve by overall area.

Random Sampling

- Calculate overall area.
- Randomly sample points in the area.
- Multiply the fraction of the points below the curve by overall area.

Fraction of Area

- Overall Area \times fraction = 2.303
- Actual Answer = 2.333

Let's practice!

STATISTICAL SIMULATION IN PYTHON

Simulation for power analysis

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

What is power?

- What Is Power? Statistics Teacher
- power = P(rejecting Null|true alternative)
- Probability of detecting an effect if it exists.
- Depends on sample size, α and effect size.
- Typically 80% power recommended for lpha=0.05.

News media website

Treatment: Faster Loading Time

Effect Size: 10%

Power: 80%

Sig Level: 0.05

Sample Size: ?

Simulation for power analysis

Let's practice!

STATISTICAL SIMULATION IN PYTHON

Applications in Finance

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

Applications in Finance

- Option & Instrument Pricing
- Project Finance
- Portfolio Evaluation

Portfolio Simulation

Portfolio Simulation

Let's practice!

STATISTICAL SIMULATION IN PYTHON

Wrap up statistical simulation in Python

Tushar ShankerData Scientist

Simulation concepts covered

- Basics of Random Variables
- Simulation for Probability
- Data Generating Process
- Resampling Methods
- Monte Carlo Integration

Real-World applications designed

- eCommerce Ad Simulation
- Website Design for Donation
- Corn Production
- Portfolio Simulation

Thank You & Good Luck!

STATISTICAL SIMULATION IN PYTHON

