Disclaimer I wrote this to my best knowledge, however, no guarantees are given whatsoever.
Sources If not noted differently, the source is the lecture slides and/or the accompanying book.

1 Approximate Retrieval **Nearest-Neighbor** Find $x^* = \operatorname{argmin}_{x \in X} d(x,y)$ given $S, y \in S, X \subseteq S$.

Near-Duplicate detection Find all $x, x' \in X$ with $d(x, x') \le \epsilon$.

1.1 k-Shingling Documents (or videos) as set of k-shingles (a. k. a. k-grams). k-shingles

consecutive appearance of k chars/words. Binary shingle matrix $M \in \{0,1\}^{C_x N}$ where $M_{i,j} = 1$ iff document j contains

shingle i, N documents, C k-shingles. 1.2 Distance functions

Def. $d: S \times S \to \mathbb{R}$ is distance function iff pos. definite except d(x,x) = 0 $(d(x,x')>0 \iff x\neq x')$, symmetric (d(x,x')=d(x',x)) and triangle inequality holds $(d(x,x'') \le d(x,x') + d(x',x''))$.

 L_r -norm $d_r(x,y) = ||x-y||_r = (\sum_i |x_i - y_i|^r)^{1/r}$. L_2 is Euclidean.

Cosine $\operatorname{Sim}_c(A,B) = \frac{A \cdot B}{||A|| \cdot ||B||}, \ d_c(A,B) = \frac{\arccos(\operatorname{Sim}_c(A,B))}{\pi}.$

Jaccard sim., d. $\operatorname{Sim}_J(A,B) = \frac{|A \cap B|}{|A \cup B|}, d_J(A,B) = 1 - \operatorname{Sim}_J(A,B).$

1.3 LSH - local sensitive hashing Key Idea: Similiar documents have similiar hash.

Note: Trivial for exact duplicates (hash-collision \rightarrow candidate pair).

Min-hash $h_{\pi}(C)$ Hash is the min (i.e. first) non-zero permutated row index: $h_{\pi}(C) = \min_{i,C(i)=1} \pi(i)$, bin. vec. C, rand. perm. π . Note: $\Pr_{\pi}[h_{\pi}(C_1) = h_{\pi}(C_2)] = \operatorname{Sim}_J(C_1, C_2) \text{ if } \pi \in_{\text{u.a.r.}} S_{|C|}.$

Min-hash signature matrix $M_S \in [N]^{n \times C}$ with $M_S(i,c) = h_i(C_c)$ given n

hash-fns h_i drawn randomly from a universal hash family. **Pseudo permutation** h_{π} with $\pi(i) = (a \cdot i + b) \mod p \mod N$, N number

of shingles, $p \ge N$ prime and $a,b \in_{\text{u.a.r.}} [p]$ with $a \ne 0$. Use as universal hash family. Only store a and b. Much more efficient.

Compute Min-hash signature matix M_S For column $c \in [C]$, row $r \in [N]$ with $C_c(r) = 1$, $M_S(i,c) \leftarrow \min\{h_i(C_c), M_S(i,c)\}$ for all h_i .

Implicit kernel trick Map $x \in \mathbb{R}^d \to \phi(x) \in \mathbb{R}^D \to z(x) \in \mathbb{R}^m$, $d \ll D, m \ll D$. (d_1,d_2,p_1,p_2) -sensitivity of a hash family $F = \{h_1,...,h_n\}: \forall x,y \in S: d(x,y) \leq$ $d_1 \Longrightarrow P[h(x) = h(y)] \ge p_1 \text{ and } d(x,y) \ge d_2 \Longrightarrow P[h(x) = h(y)] \le p_2.$ r-way AND $h = [h_1,...,h_r], h(x) = h(y) \Leftrightarrow \forall i \ h_i(x) = h_i(y) \text{ is } (d_1,d_2,p_1^r,p_2^r)$

sensitive *b*-way **OR** $h = [h_1, ..., h_b], \ h(x) = h(y) \Leftrightarrow \exists i \ h_i(x) = h_i(y) \ \text{is} \ (d_1, d_2, 1 - (1 - d_1)) = h_i(y)$

 $(p_1)^b, 1-(1-p_2)^b$)-sensitive. **Banding as boosting** Reduce FP/FN by b-way OR after r-way AND. Group sig. matrix into b bands of r rows. CP match in at least one band (check by

Tradeoff FP/FN Favor FP (work) over FN (wrong). Filter FP by checking signature matrix, shingles or even whole documents.

2 Supervised Learning

Linear classifier $y_i = \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}_i)$ assuming \boldsymbol{w} goes through origin. **Homogeneous transform** $\tilde{\boldsymbol{x}} = [\boldsymbol{x}, 1]; \tilde{\boldsymbol{w}} = [\boldsymbol{w}, b], \text{ now } \boldsymbol{w} \text{ passes origin.}$

hashing). Result is $(d_1, d_2, 1 - (1 - p_1^r)^b, 1 - (1 - p_2^r)^b)$ -sensitive.

Kernels $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is an inner product in high-dim. lin. space, i.e.

 $k(x,x') = \langle \phi(x), \phi(x') \rangle$. **Convex function** $f: S \to \mathbb{R}$ is convex iff $\forall x, x' \in S, \lambda \in [0,1], \lambda f(x) + (1 - 1)$

 $\lambda f(x') \ge f(\lambda x + (1-\lambda)x')$, i. e. every segment lies above function. Equiv. bounded by linear fn. at every point.

H-strongly convex f H-strongly convex iff $f(x') \ge f(x) + \nabla f(x)^T (x'-x) + \nabla f(x)^T (x'-x) = 0$ $\frac{H}{2}||x'-x||_2^2$, i. e. bounded by quadratic fn (at every point).

2.1 Support vector machine (SVM)

SVM primal

Quadratic $\min_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i} \xi_i$, s. t. $\forall i : \boldsymbol{y}_i \boldsymbol{w}^T x_i \ge 1 - \xi_i$, slack C.

Hinge loss $\min_{\boldsymbol{w}} \lambda \boldsymbol{w}^T \boldsymbol{w} + \sum_{i} \max(0, 1 - y_i \boldsymbol{w}^T \boldsymbol{x}_i)$ with $\lambda = \frac{1}{C}$.

Norm-constrained $\min_{\boldsymbol{w}} \sum_{i} \max(0,1-y_i \boldsymbol{w}^T \boldsymbol{x}_i) \text{ s.t. } ||\boldsymbol{w}||_2 \leq \frac{1}{\sqrt{\lambda}}.$

Lagrangian dual $\max_{\alpha} \sum_{i} \alpha_{i} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}, \ \alpha_{i} \in [0,C].$ Apply kernel trick: $\max_{\alpha} \sum_{i} \alpha_i + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(\boldsymbol{x}_i, \boldsymbol{x}_j), \alpha_i \in [0, C]$, prediction becomes $y = \operatorname{sgn}(\sum_{i=1}^{n} \alpha_i y_i k(x_i, \bar{x})).$

2.2 Convex Programming

Convex program $\min_{\boldsymbol{x}} f(\boldsymbol{x})$, s. t. $\boldsymbol{x} \in S$, f convex.

Online convex program (OCP) $\min_{\boldsymbol{w}} \sum_{t=1}^{T} f_t(\boldsymbol{w})$, s. t. $\boldsymbol{w} \in S$.

General regularized form $\min_{\boldsymbol{w}} \sum_{i=1}^{n} l(\boldsymbol{w}; \boldsymbol{x}_{i}, y_{i}) + \lambda R(\boldsymbol{w})$, where l is a (convex) loss function and R is the (convex) regularizer.

General norm-constrained form $\min_{\boldsymbol{w}} \sum_{i=1}^{n} l(\boldsymbol{w}; \boldsymbol{x}_i, y_i)$, s. t. $\boldsymbol{w} \in S_{\lambda}$, l is loss and S_{λ} some (norm-)constraint. Note: This is an OCP. **Solving OCP** Feasible set $S \subseteq \mathbb{R}^d$ and start pt. $\mathbf{w}_0 \in S$, OCP (as above). Round $t \in [T]$: pick feasible pt. w_t , get convex fn. f_t , incur $l_t = f_t(w_t)$. Regret

 $R_T = (\sum_{t=1}^{T} \hat{l}_t) - \min_{\boldsymbol{w} \in S} \sum_{t=1}^{T} f_t(\boldsymbol{w}).$ **Online SVM** $||w||_2 \le \frac{1}{\lambda}$ (norm-constr.). For new pt. x_t classify $y_t =$ $\operatorname{sgn}(\boldsymbol{w}_t^T \boldsymbol{x}_t)$, incur $l_t = \max(0, 1 - y_t \boldsymbol{w}_t^T \boldsymbol{x}_t)$, update \boldsymbol{w}_t (see later). Best $L^* = \min_{\boldsymbol{w}} \sum_{t=1}^{T} \max(0, 1 - y_t \boldsymbol{w}^T \boldsymbol{x}_t)$, regret $R_t = \sum_{t=1}^{T} l_t - L^*$.

Online proj. gradient descent (OPGD) $\ \ \mathrm{Update}\ \mathrm{for\ online\ SVM:}$ $\boldsymbol{w}_{t+1} = \operatorname{Proj}_{S}(\boldsymbol{w}_{t} - \eta_{t} \nabla f_{t}(\boldsymbol{w}_{t})) \text{ with } \operatorname{Proj}_{S}(\boldsymbol{w}) = \operatorname{argmin}_{\boldsymbol{w}' \in S} ||\boldsymbol{w}' - \boldsymbol{w}||_{2}, \text{ gives}$ regret bound $\frac{R_T}{T} \le \frac{1}{\sqrt{T}} (||\boldsymbol{w}_0 - \boldsymbol{w}^*||_2^2 + ||\nabla f||_2^2).$

For *H*-strongly convex finset $\eta_t = \frac{1}{Ht}$ gives $R_t \leq \frac{||\nabla f||^2}{2H}(1 + \log T)$. Stochastic PGD (SGD) Online-to-batch. Compute $\tilde{\boldsymbol{w}} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_t$. If data i. i. d.: exp. $error\ (risk)\ \mathbb{E}[L(\tilde{\boldsymbol{w}})] \leq L(\boldsymbol{w}^*) + R_T/T$, $L(\boldsymbol{w}^*)$ is best error (risk)

possible. $\textbf{PEGASOS} \quad \mathrm{OPGD} \ \mathrm{w/} \ \mathrm{mini\mbox{-}batches} \ \mathrm{on} \ \mathrm{strongly} \ \mathrm{convex} \ \mathrm{SVM} \ \mathrm{form}.$ $\min_{w} \sum_{t=1}^{T} g_t(\boldsymbol{w}), \text{ s.t. } ||\boldsymbol{w}||_2 \leq \frac{1}{\sqrt{t}}, g_t(\boldsymbol{w}) = \frac{\lambda}{2} ||\boldsymbol{w}||_2^2 + f_t(\boldsymbol{w}).$

 g_t is λ -strongly convex, $\nabla g_t(\mathbf{w}) = \lambda \mathbf{w} + \nabla f_t(\mathbf{w})$. Performance ϵ -accurate sol. with prob. $\geq 1 - \delta$ in runtime $O^*(\frac{d \cdot \log \frac{1}{\delta}}{\lambda \epsilon})$. **ADAGrad** Adapt to geometry. *Mahalanobis norm* $||w||_G = ||Gw||_2$.

 $\mathbf{w}_{t+1} = \operatorname{argmin}_{\mathbf{w} \in S} ||\mathbf{w} - (\mathbf{w}_t - \eta \mathbf{G}_t^{-1} \nabla f_t(\mathbf{w}))||_{\mathbf{G}_t}. \text{ Min. regret with } G_t = (\sum_{\tau=1}^t \nabla f_\tau(\mathbf{w}_\tau) \nabla f_\tau(\mathbf{w}_\tau)^T)^{1/2}. \text{ Easily inv'able matrix with } G_t = \operatorname{diag}(...).$ $R_t \in O(\frac{||\mathbf{w}^*||_{\infty}}{\sqrt{T}}\sqrt{d})$, even better for sparse data.

ADAM Add 'momentum' term: $\mathbf{w}_{t+1} = \mathbf{w}_t - \mu \bar{g}_t$, $g_t = \nabla f_t(\mathbf{w})$, $\bar{g}_t = \nabla f_t(\mathbf{w})$ $(1-\beta)g_t+\beta \bar{g}_{t-1}, \bar{g}_0=0$. Helps for dense gradients. **Parallel SGD (PSGD)** Randomly partition to k (indep.) machines. Comp.

 $\boldsymbol{w} = \frac{1}{k} \sum_{i=1}^{k} \boldsymbol{w}_i$. $\mathbb{E}[\text{err}] \in O(\epsilon(\frac{1}{k\sqrt{\lambda}} + 1))$ if $T \in \Omega(\frac{\log \frac{k\lambda}{\epsilon}}{\epsilon})$. Suitable for MapReduce cluster, multi. passes possible. $\textbf{Hogwild!} \quad \text{Shared mem., no sync., sparse data. } [\dots]$

Where $\phi(x)$ corresponds to a kernel $k(x,x') = \phi(x)^T \phi(x')$. Random fourier features !TODO!

Nyström features !TODO! 3 Pool-based active Learning (semi-supervised)

Uncertainty sampl. $U_t(x) = U(x|x_{1:t-1}, y_{1:t-1})$, request y_t for $x_t = \operatorname{argmax}_x U_t(x)$ SVM: $x_t = \operatorname{argmin}_{x_i} |\boldsymbol{w}^T \boldsymbol{x}_i|$, i.e. $U_t(\boldsymbol{x}) = \frac{1}{|\boldsymbol{w}_t^T \boldsymbol{x}_i|}$.

Sub-linear time w/ LSH $|w^T x_i|$ small if \angle_{w,x_i} close to π . Hash hyperplane: $h_{\boldsymbol{u},\boldsymbol{v}}(\boldsymbol{a},\boldsymbol{b}) = [h_{\boldsymbol{u}}(\boldsymbol{a}),h_{\boldsymbol{v}}(\boldsymbol{b})] = [\operatorname{sgn}(\boldsymbol{u}^T\boldsymbol{a}),\operatorname{sgn}(\boldsymbol{v}^T\boldsymbol{b})].$ LSH hash family: $h_H(z) = h_{u,v}(z,z)$ if z datapoint, $h_H(z) = h_{u,v}(z,-z)$ if z query

 $\frac{1}{4} - \frac{1}{\pi^2} \left(\angle_{\boldsymbol{x}, \boldsymbol{w}} - \frac{pi}{2} \right)^2$.

Hash all unlabeled. Loop: Hash $oldsymbol{w}$, req. labels for hash-coll., update. **Informativeness** Metric of "information" gainable; ≠ uncertainty.

Version Space $V(D) = \{ \boldsymbol{w} \mid \forall (\boldsymbol{x}, y) \in D \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}) = y \}$

Relevant version space given unlabeled pool $U = \{x'_1, ..., x'_n\}$. $\tilde{\mathcal{V}}(D; U) = \{h: a_1, ..., a_n\}$

 $U \rightarrow \{\pm 1\} \mid \exists \boldsymbol{w} \in \mathcal{V}(D) \ \forall \boldsymbol{x} \in U \ \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}) = h(\boldsymbol{x}) \}.$ **Generalized binary search** Init $D \leftarrow \{\}$. While $|\tilde{\mathcal{V}}(D;U)| > 1$, comp. $v^{\pm}(x) =$

hyperplane. $\Pr[h_H(\boldsymbol{w}) = h_H(\boldsymbol{x})] = \Pr[h_{\boldsymbol{u}}(\boldsymbol{w}) = h_{\boldsymbol{u}}(\boldsymbol{x})] \Pr[h_{\boldsymbol{v}}(-\boldsymbol{w}) = h_{\boldsymbol{v}}(\boldsymbol{x})] =$

 $|\tilde{\mathcal{V}}(D \cup \{(x,\pm)\};U)|$, label of $\operatorname{argmin}_{r} \max\{v^{-}(x),v^{+}(x)\}$. **Approx.** $|\mathcal{V}|$ Margins of SVM $m^{\pm}(x)$ for labels $\{+,-\}, \forall x$. Max-min $\max_x \min\{x\}$

4 Model-based clustering - Unsupervised learning

or ratio $\max_x \min\{\frac{m^+(x)}{m^-(x)}, \frac{m^-(x)}{m^+(x)}\}.$

k-means problem $\min_{\mu} L(\mu) \text{ with } L(\mu) = \sum_{i=1}^{N} \min_{j} ||\boldsymbol{x}_{i} - \mu_{j}||_{2}^{2} \text{ and } cluster$ centers $\mu = \mu_1,...,\mu_k$. Non-convex! NP-hard in general!

LLoyd's Init $\mu^{(0)}$ (somehow). Assign all \boldsymbol{x}_i to closest center $z_i \leftarrow \operatorname{argmin}_{j \in [k]} || \boldsymbol{x}_i|$ $\mu_j^{(t-1)}||_2^2,~\textit{Update}$ to mean: $\mu_j^{(t)} \leftarrow \frac{1}{n_j} \sum_{i:z_i=j} \pmb{x}_i.$ Always converge to local

Online k-means Init μ somehow. For $t \in [n]$ find $z = \operatorname{argmin}_{i} ||\mu_{j} - x_{t}||_{2}$, set $\mu_c \leftarrow \mu_c + \eta_t(\boldsymbol{x}_t - \mu_c)$. For local optimum: $\sum_t \eta_t = \infty \land \sum_t \eta_t^2 < \infty$ suffices, e.g. $\eta_t = \frac{c}{t}$.

Weighted rep. C $L_k(\mu;C) = \sum_{(w,x) \in C} w \cdot \min_j ||\mu_j - x||_2^2$.

 $(k,\!\epsilon)\text{-}\mathbf{coreset}\quad \text{iff } \forall \mu\!:\!(1\!-\!\epsilon)L_k(\mu;\!D)\!\leq\!L_k(\mu;\!C)\!\leq\!(1\!+\!\epsilon)L_k(\mu;\!D).$

 D^2 -sampling Sample prob. $p(x) = \frac{d(x,B)^2}{\sum_{x' \in X} d(x',B)^2}$.

 $\mbox{\bf Merge coresets} \quad \mbox{union of } (k, \epsilon)\mbox{-coreset is also } (k, \epsilon)\mbox{-coreset}.$ Data Mining Summary for exam use. HS 2016, ©Tim Taubner. Creative Commons 2.0 📾 🕱 🔾

Compress a (k,δ) -coreset of a (k,ϵ) -coreset is a $(k,\epsilon+\delta+\epsilon\delta)$ -coreset.

Mapreduce k-means Construct (k,ϵ) -coreset C, solve k-means (w/many)restarts) on coreset. (Repeat.) Near-optimal solution.

5 k-armed bandits as recommender systems

k-armed bandit k arms. T rounds, pick $i_t \in [k]$, sample $y_t \in P_i$. Max. $\sum_{t=1}^{T} y_t$.

Regret μ_i mean of P_i , $\mu^* = \max_i \mu_i$. Regret $r_t = \mu^* - \mu_{i_t}$, $R_T = \sum_{t=1}^T r_t$.

 ϵ -greedy Explore u.a.r. prob. ϵ_t , exploit with prob. $1-\epsilon_t$): choose $\operatorname{argmax}_i \hat{\mu}_i$. Suitable $\epsilon_t \in O(1/t)$ gives $R_T \in O(k \log T)$. Clearly unoptimal.

 $\begin{aligned} \textbf{UCB1} \quad \text{Init } \hat{\mu}_i \leftarrow 0; \text{ try all arms. Round } t \in (k+1)...T \colon UCB(i) \leftarrow \hat{\mu}_i + \sqrt{\frac{2 \log t}{n_i}}, \\ i_t \leftarrow \text{argmax}_i UCB(i), \text{ obs. } y_t. \text{ Upd. } n_{i_t} \leftarrow n_{i_t} + 1, \hat{\mu}_{i_t} \leftarrow \hat{\mu}_{i_t} + \frac{y_t - \hat{\mu}_{i_t}}{n_{i_t}}. \end{aligned}$

contextual bandits Round t: Obs. $context \ \boldsymbol{z}_t \in \mathcal{Z}; recommend \ \boldsymbol{x}_t \in \mathcal{A}_t.$ Reward $y_t = f(\boldsymbol{x}_t, \boldsymbol{z}_t) + \epsilon_t. \ r_t = \max_{\boldsymbol{x}} f(\boldsymbol{x}, \boldsymbol{z}_t) - f(\boldsymbol{x}_t, \boldsymbol{z}_t).$ Often $f(\boldsymbol{x}, \boldsymbol{z}) = \boldsymbol{w}_{\boldsymbol{x}}^T \boldsymbol{z}.$

LinUCB Estimate $\hat{\boldsymbol{w}}_i = \operatorname{argmin}_{\boldsymbol{w}} \sum_{t=1}^m (y_t - \boldsymbol{w}^T \boldsymbol{z}_t) + ||\boldsymbol{w}||_2^2$. Closed form: $\hat{\boldsymbol{w}}_i = M_i^{-1} D_i^T y_i, \ M_i = D_i^T D_i + I, \ D_i = [z_1|...|z_m], y_i = (y_1|...|y_m)^T$. Confidence: $\Pr\left[|\hat{\boldsymbol{w}}_i^T \boldsymbol{z}_t - \boldsymbol{w}_i^T \boldsymbol{z}_t| \le \alpha \sqrt{\boldsymbol{z}_t^T M_i^{-1} \boldsymbol{z}_t}\right] \ge 1 - \delta \text{ if } \alpha = 1 + \sqrt{\ln(2/\delta)/2}$.

Hybrid Model $y_t = \boldsymbol{w}_i^T \boldsymbol{z}_t + \boldsymbol{\beta}^T \phi(\boldsymbol{x}_i, \boldsymbol{z}_t) + \epsilon_t$ captures sep. and shared effects.

Rejection Sampling Evaluate bandit: For $t \in \mathbb{N}$ read log $(\boldsymbol{x}_1^{(t)}, ..., \boldsymbol{x}_k^{(t)}, \boldsymbol{z}_t, a_t, y_t)$. Pick a_t' by algo. If $a_t' = a_t$ feed y_t to algo., else ignore line. Stop after T feedbacks.

6 Submodularity