PATENT SPECIFICATION

1 526 398 (11)

(21) Application No. 52917/74

(22) Filed 6 Dec. 1974

(23) Complete Specification Filed 5 Dec. 1975

(44) Complete Specification Published 27 Sep. 1978 C08J 3/24

(51) INT. CL.²

(52) Index at Acceptance

C3P D9A7 D9B11 D9D7D1

B5A 1G1 1G3X 1G5A 1G5E 2D1X 2L 1R130 1R314C12 1R314C1C 1R429X 1R439E 20T17

(72) Inventors: Peter Swarbrick William John Green

Charles Maillefer

PATENTS ACT 1949

SPECIFICATION NO 1526398

The following amendments were allowed under Section 29 on 14 May 1979

Page 1, line 17 after has insert in practice

Page 1, line 22 after machine insert having in succession a premixing zone, a homogenising zone of the kind in which the material to be extruded is forced over the flight of the extruder screw from a converging groove to another groove not otherwise communicating with the converging groove and a metering zone

Page 1, line 25 delete and insert in the mixing and homogenising zones and then

Page 1, line 26 after polymer insert in the metering zone

Page 2 delete lines 23 to 29 insert BICC Limited. The homogenising zone is described and claimed in the Applicant Maillefer S.A's British Patent No 964428.

Page 5 delete lines 12 to 21

Page 5 for claims 2 to 11 read 1 to 10

Page 5, line 37 delete or Claim 2

Page 5, line 40 delete any one of the preceding claims insert Claim 1 or Claim 2

Page 5, line 47 for 4 read 3

Page 5, line 51 for 4 and 6 read 3 and 5

Page 5, line 54 for 4 and 6-7 read 3 and 5-6

Page 5, line 65 for 10 read 9

Page 6 for claims 12 to 16 read 11 to 15

Page 6, line 14 for 14 read 13

THE PATENT OFFICE 11 June 1979

Bas 55296/7

amounts of water should not normally be present, and in particular: cases a shearth operation may he necessary

ERRATUM

Slip No 2

SPECIFICATION NO 1526398

15 dolote B. F. TARBOX insert R. F. TARBOX

PATENT SPECIFICATION

1 526 398 (11)

(21) Application No. 52917/74 (23) Complete Specification Filed 5 Dec. 1975

(22) Filed 6 Dec. 1974

(44) Complete Specification Published 27 Sep. 1978

(51) INT. CL.² C08J 3/24

(52) Index at Acceptance

C3P D9A7 D9B11 D9D7D1 B5A 1G1 1G3X 1G5A 1G5E 2D1X 2L 1R130 1R314C12 1R314C1C 1R429X 1R439E 20T17

(72) Inventors: Peter Swarbrick William John Green Charles Maillefer

(54) MANUFACTURE OF EXTRUDED PRODUCTS

(71) We, BICC LIMITED (formerly British Insulated Callender's Cables Limited), a British Company of 21 Bloomsbury Street, London WC1B 3QN, and ETABLISSEMENTS MAILLEFER S.A., a Swiss Body Corporate of CH-1024 Ecublens, Lausanne, Switzerland, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to

5 be performed, to be particularly described in and by the following statement:-

This invention relates to the manufacture of extruded products, especially but not exclusively electric cables and pipes, that are of carbon-chain polymers cross-linked by the use of hydrolysable unsaturated silane. Such products are formed by first reacting the polymer with the hydrolysable unsaturated silane in the presence of a free-radical generator, such as a peroxide, and afterwards 10 exposing the grafted material to the effects of moisture and a silanol condensation catalyst. Suitable reagents have been described in the specification of British Patent No. 1286460. It is now known, however, that the process is applicable to a variety of polymers other than polyethylene and the modified polyethylenes referred to in that specification, for example chlorinated polyethylenes and a wide range of olefin copolymers can be processed, and in the practice of the 15 present invention the reaction conditions set forth need not in all cases be strictly adhered to.

Hitherto the manufacture of extruded products by the hydrolysable unsaturated silane cross-linking technique has been a three-stage process: first the grafted polymer is prepared, secondly it is shaped, and thirdly the shaped article is cured. Usually the catalyst is incorporated in the second stage, although it has been suggested that it could be introduced before or during the

grafting reaction.

In accordance with the invention, a method of making a cross-linked extruded product comprises: metering into a screw extrusion machine polymer capable of being cross-linked by the use of hydrolysable unsaturated silane together with compounding ingredients comprising a hydrolysable unsaturated silane, a free-radical generator and a silanol condensation catalyst; 25 blending the compounding ingredients with the polymer in the barrel of the said extruder and raising the temperature sufficiently to effect grafting of silane groups to the polymer, the amount of free-radical generator being sufficiently low (having regard to the other materials present and to other relevant conditions) to limit direct free-radical cross-linking to a level that will not prevent extrusion of the material; extruding the reaction mixture from the said extruder through an 30 extrusion die to form an elongate shaped product; and cross-linking the grafted polymer in the shaped product by the action of moisture. The scrupulous exclusion of moisture from the materials fed to the extruder is not required, but, as in conventional extrusion processes, large amounts of water should not normally be present, and in particular cases a specific drying operation may be necessary. If required, cross-linking can be effected at a temperature below the

softening point of the grafted polymer so as to avoid a risk of distortion.

Other compounding ingredients may be added, for example antioxidants, fillers and pigments. For processing of olefin polymers, the preferred compounding ingredients are vinyl tri-methoxy silane, a peroxide that decomposes rapidly at the grafting temperature, and dibutyl tin dilaurate, but in suitable circumstances any of the alternative reagents listed in the said British Specification No. 1286460 may be used. Preferred peroxides are dicumyl peroxide and 1,3 bis (tertbutyl peroxy isopropyl) benzene (sold under the trademark Perkadox 14).

Preferably, the polymer and at least some of the compounding ingredients are metered into and premixed in the hopper of the extruder. Suitable apparatus is commercially available, for example from Colortronic Reinhard & Co. K-G of 6382 Friedrichsdorf/Taunus 2, Otto-Hahn-Strasse 18-20,

45 German Federal Republic, and comprises a hopper with a central powered screw mixer and a

5

10

25

35

45

	number of digitally controlled metering devices; for metering solid materials, a rotor having a series of metering chambers filled from above and discharging downwards at a separate station is controlled to rotate, usually discontinuously, at the required rate, whereas for liquids an adjustable diaphragm metering pump is used.	-
•	If the number of compounding ingredients required makes it necessary, or if desired, suitable compounding ingredients may be pre-mixed with the polymer or with each other and metered as a mixture; for example peroxide may be fed as a masterbatch, or as a costing as a mixture.	5
1	polymer or filler; the condensation catalyst may usually be dissolved in a liquid silane and metered as a solution; and some fillers that are difficult to disperse, notably conductive carbon black, may be better predispersed in the polymer or some of it. Provided that satisfactory mixing can be achieved, it may be desirable not to add certain ingredients, mostly liquids, to the top of the	10
1.	extruder hopper, but to inject them to the base of the hopper or direct to the throat of the extruder. This applies in particular to ingredients that evolve unpleasant vapour and/or cause the material to stick to the hopper equipment, notably many of the silanes. The extruder itself has a single barrel with at least one screw extending from end to end of it;	15
	including intermediate sections without helical flights (as for example in two stage vented extruders), and the use of intermeshing screws over part or of all of the length is not excluded. On the other hand the use of two or more screws in series is outside the score of this or blights are	
20	the same barrel and are directly mechanically coupled to each other, rigidly or otherwise; in this connection attention is drawn to copending British Application No. 39606/75 of the Applicant BICC Limited. The extruder will ordinarily need to provide a premising zone a homeosistic	20
25	in the Application Maillefer S.A's British Patent No. 964428, in which the material to be extruded is forced over the flight of the extruder screw from a converging groove to another groove, not otherwise communicating with the converging groove one advantage of this arrangement, hot	25
30	referred to are present, the grafting reaction will normally take place in the metering zone.	30
35	temperature, as in the known three-stage silane grafting technique. The method of the invention avoids the need for two high-temperature processing steps and for	
33	in a very short period compared with vulcanising and chemical cross-linking methods that involve high-temperature treatment of the extruded product under pressure to effect executive.	35
40	observed in the conventional three-step hydrolysable unsaturated silane technique; this may perhaps be associated with the elimination of ungrafted polymer conventionally used to masterbatch the catalyst.	40
45	Example 1	45
· 50	Polyethylene with a density of 0.918 and a melt flow index of 2, sold by Imperial Chemical Industries Ltd., under the trademark Alkathene and reference No. WIG47 was fed to the hopper mixer of an extrusion machine together with the following metered amounts of additives (expressed in parts by weight per hundred parts of the polyethylene (phr):	
50	Carbon black MB 2.5 Dicumyl peroxide 0.1 (added as Perkadox BC40 which is 40% active peroxide but	50
55	calculated on the basis of the actual peroxide content.) Vinyl trimethoxy silane (VTMOS) Polymerised trimethyl dihydro-quinoline (sold under the trademark Flectol H) 0.5	55
60	Dibutyl tin dilaurate (DBDTL) The extruder screw had an overall length: diameter ratio of about 30:1 and provided a feed zone with a length of about 8 diameters in which the cross section of the passage slowly decreases, followed by a homogenising zone of the kind subject of British Potent No. 064428 conversions.	60
65	about six diameters in which, after an initial expansion, the material is forced over the flight of the screw from a rapidly-converging blind passage into a very slowly converging passage. This is followed by a slightly converging zone of about six diameters and finally a metering zone of uniform cross-section occupying the last ten diameters of the length of the screw.	
-	The section of the length of the sciew.	65

5	The barrel of the extruder was mention homogenising zones and part of the the remainder of its length, includin wire. To ensure good draw-down, cross-head than would be the case for the insulation produced had the	e slightly co g a cross-he a higher o r extrusion	onverging ad by whi legree of of ordina	section t ich the ex vacuum ry therm	hat follow ktruded m is neede oplastic p	vs it, and aterial w d at the olyethyl	d at 230°C for vas applied to a e point of the ene.	:
10	at 90°C: Gel content Ultimate tensile strength Elongation at break Hot-set at 150°C and 0.2	_				77% 13 MN 270%	J/m²	1
	extension set	ишчин .				35% 5%		
15	Example 2 This was similar to Example 1 exlevel was reduced to 0.08 phr. Typic Gel content	ccept that to al propertie	he peroxi s of the i	de was a sulation	dded in 9 product	8% activ were: 71%	ve form and its	1
20	Ultimate tensile strength Elongation at break Hot set at 150°C and 0.2 extension					12 MN 350% 110%	N/m²	2
25	set Examples 3-7 Example 3 was similar to Example to Example 3 was similar to Example	of additiona	al polyeth	vlene.		+5% nd carb		2:
	Examples 4-7 were similar to Exweight of an alternative catalyst as f T86; Example 6, Stanclere T186 Advastab being trademarks and the Typical properties of the insulation	kample 3 e: ollows: Exa ; and Exan naterials be	xcept that imple 4, d ing availa	it the Di libutyltin Advastab ble on th	dimaleat T36 (the e open mag	e; Examp e words arket).	ole 5, Stanclere	3
30	Example Example	3	4	5	6	7		ر
	Gel content	73	70	70	68	69	%	
	Ultimate Tensile Strength	16	15	17	14	15	MN/m²	3
35	Elongation at Break	380	530	580	380	440	.%	<i>J</i> .
•	Hot Set 150°C and 0.2 MN/m ² :	· · · · · · · · · · · · · · · · · · ·						
	Elongation	60	70	95 nil	70 nil	85 nil	% %	
40	Set	nil	nil	1111	1111			4
45	Example 8 This was similar to Example 3 exceeding Typical properties of the insulation Gel content Ultimate Tensile strength Elongation at break Hot set: elongation set	n produced			was reduc	65% 15 Mi 530% 110% -5%		4.
50	Examples 10-12 These were similar to Example Examples 10 and 12, and carbon bla to 2.5 phr in Example 11, the pero under the trademark Perkadox SB. Typical properties of the insulation	ick omitted xide in Exa	in Exam imple 12	ple 12 an being ad	d the VT	as raised MOS con	tent was raised	5
55	Example	10	11	····	12			5
	Gel Content	81	79	 }	78			
	Ultimate Tensile Strength	16	14		14		MN/m ²	
60	Elongation at Break	350	260		300		%	6
	Hot Set 150°C and 0.2 MN/m ²	330	200	,	200			
	elongation	55	25		35		%	
65	set	nil	:	5	-2.5		%	6.

elongation

set

65

63

21/2.

70

21/2

%

65

	This was similar to Example 11 except that the dicumyl peroxide was replaced by 0.25 phr of 1,3 bis (tert. butyl peroxy isopropyl) benzene, added as Perkadox 14/96, which has an activity of about 96% and that the insulation was cured for 6 hours in water at 100°C. Typical properties of	
5	the extruded material were as follows: Tensile Strength Elongation at Break Gel Content 13.6 MN/m² 215% 84%	5
10	WHAT WE CLAIM IS:	10
15 20	1. A method of making a cross-linked extruded product comprising: metering into a screw extrusion machine a polymer capable of being cross-linked by the use of hydrolysable unsaturated silane together with compounding ingredients comprising a hydrolysable unsaturated silane, a free-radical generator and a silanol condensation catalyst; blending the compounding ingredients with the polymer in the barrel of the said extruder and then raising the temperature sufficiently to effect grafting of silane groups to the polymer, the amount of free-radical generator being sufficiently low to limit direct free-radical cross-linking to a level that will not prevent extrusion of the material; extruding the reaction mixture from the said extruder through an extrusion die to form an elongate shaped product; and cross-linking the grafted polymer in the shaped product by the action of moisture.	15 20
25	2. A method of making a cross-linked extruded product comprising: metering into a screw extrusion machine having in succession a premixing zone, a homogenising zone of the kind in which the material to be extruded is forced over the flight of the extruder screw from a converging groove to another groove not otherwise communicating with the converging groove and a metering zone a polymer capable of being cross-linked by the use of a hydrolysable unsaturated silane	25
30	together with compounding ingredients comprising a hydrolysable unsaturated silane, a free-radical generator and a silanol condensation catalyst; blending the compounding ingredients with the polymer in the barrel of the said extruder in the mixing and homogenising zones and then raising the temperature sufficiently to effect grafting of silane groups to the polymer in the metering zone, the amount of free-radical generator being sufficiently low to limit free-radical cross-linking to a level that will not prevent extrusion of the material; extruding the reaction mixture from the	30
35	said extruder through an extrusion die to form an elongate shaped product; and cross-linking the grafted polymer in the shaped product by the action of moisture.	35
1	3. A method as claimed in Claim 1 or Claim 2 in which the cross-linking is effected at a temperature below the softening point of the grafted polymer.	
40	4. A method as claimed in any one of the preceding claims in which the polymer and at least some of the compounding ingredients are metered into and premixed in the hopper of the extruder.	40
45	5. A method as claimed in any one of the preceding claims in which at least one compounding ingredient is metered as a mixture with the polymer or with another compounding ingredient.	45
	6. A method as claimed in any one of claims 1-4 in which the free-radical generator is a peroxide which is metered as a masterbatch with the polymer or as a coating on particles of polymer or filler.	
50	7. A method as claimed in any one of claims 1-4 and 6 in which a filler is metered as a predispersed mixture with the polymer or some of it.	50
55	8. A method as claimed in any one of claims 1-4 and 6-7 in which the condensation catalyst is metered as a solution in a liquid silane.	55
	9. A method as claimed in any one of the preceding claims in which at least one liquid compounding ingredient is injected to the base of the hopper of the extruder or injected direct into the throat of the extruder.	
60	10. A method as claimed in any one of the preceding claims in which the polymer is polyethylene and the compounding ingredients comprise vinyl trimethoxy silane, a peroxide, and dibutyltin dilaurate.	60
65	11. A method as claimed in Claim 10 in which the peroxide is dicumyl peroxide.	65

	12. A method as claimed in any preceding claim in which the extrusion machine has a single screw.	
5	13. A method of making a cross-linked extruded product substantially as described with reference to the Examples considered collectively.	5
	14. A method of making a cross-linked extruded product substantially as described with reference to any one of the numbered Examples.	J
10	15. A cross-linked extruded product made by the method claimed in any one of the preceding claims.	10
	16. An electric cable with cross-linked insulation made by the method claimed in any one of claims 1-14.	
15	B.F. TARBOX,	15

ent for the Applican 38 Wood Lane, London W12 7DX

Printed for Her Majesty's Stationery Office, by Croydon Printing Company Limited, Croydon, Surrey, 1978.

Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.