

Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization

Yi-Chen Li liyc@lamda.nju.edu.cn LAMDA, Nanjing University

November 30, 2022

Authors and Institutes

Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization

Paul Barde*†
Québec AI institute (Mila)

McGill University bardepau@mila.quebec

Joelle Pineau[‡] Québec AI institute (Mila) McGill University Facebook AI Research Julien Roy*†
Ouébec Al institute (Mila)

Polytechnique Montréal julien.roy@mila.quebec

Christopher Pal[‡] Québec AI institute (Mila) Polytechnique Montréal Element AI Wonseok Jeon*

Québec AI institute (Mila) McGill University jeonwons@mila.quebec

Derek Nowrouzezahrai Québec AI institute (Mila) McGill University

Barde P, Roy J, Jeon W, et al. Adversarial soft advantage fitting: Imitation learning without policy optimization[C]. Advances in Neural Information Processing Systems, 2020, 33: 12334-12344.

- 4 ロ ト 4 団 ト 4 珪 ト 4 珪 ト - 珪 - 釣 Q ()

Preliminaries

Motivation

Method

Experiments

Preliminaries

Motivation

Method

Experiments

Preliminaries I

- Consider a T-horizon γ -discounted MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{P}_0, \gamma, r, T \rangle$, where
 - S is the state space;
 - A is the action space;
 - $\mathcal{P}(s'|s,a) \in [0,1]$ is the transition dynamics;
 - $\mathcal{P}_0(s_0)$ is the initial state distribution;
 - $\gamma \in [0,1]$ is the discount factor;
 - $r(s,a) \in \mathbb{R}$ with r being bounded is the reward function;
 - $T \in \mathbb{N} \cup \{\infty\}$ is the horizon length.

We suppose that S and A are both finite, and $T < \infty$ for $\gamma = 1$.

• For any trajectory $\tau = (s_0, a_0, s_1, a_1, \dots, s_{T-1}, a_{T-1}, s_T)$, define its probability $P_{\pi}(\tau)$ of being sampled on \mathcal{M} as

$$P_{\pi}(\tau) \triangleq \mathcal{P}_0(s_0) \prod_{t=0}^{T-1} \pi(a_t|s_t) \mathcal{P}(s_{t+1}|s_t, a_t).$$

Preliminaries II

• For any policy π , we define its occupancy measure $\rho^{\pi}: \mathcal{S} \times \mathcal{A} \to [0,1]$ as

$$\rho^{\pi}(s, a) = \frac{1}{Z(\gamma, T)} \sum_{t=0}^{T-1} \gamma^{t} \left(\sum_{\tau: (s_{t}, a_{t}) = (s, a)} P_{\pi}(\tau) \right) = \frac{1}{Z(\gamma, T)} \sum_{t=0}^{T-1} \gamma^{t} \Pr(s_{t} = s) \pi(a|s),$$

where $Z(\gamma, T) = \sum_{t}^{T-1} \gamma^{t}$.

 The expected sum of discounted rewards can be expressed in term of the occupancy measure as

$$J_{\pi}[r(s,a)] \triangleq \mathbb{E}_{\tau \sim P_{\pi}} \left[\sum_{t=0}^{T-1} \gamma^{t} r(s_{t}, a_{t}) \right] = Z(\gamma, T) \mathbb{E}_{(s,a) \sim \rho^{\pi}} [r(s,a)].$$

Preliminaries III

• By properly regularizing the learned reward function r, (Ho & Ermon, 2016) associated the maximum entropy IRL problem with GAN, thus getting GAIL's objective:

$$\min_{\pi} \max_{D} \mathbb{E}_{(s,a) \sim \rho^{\pi_E}} \left[\log \left(D(s,a) \right) \right] + \mathbb{E}_{(s,a) \sim \rho^{\pi}} \left[\log \left(1 - D(s,a) \right) \right],$$

which is equivalent to the following Jensen-Shannon divergence minimization problem,

$$\min_{\pi} D_{\mathsf{JS}}(\rho_{\pi}, \rho_{\pi_E}).$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣۹@

Preliminaries

Motivation

Method

Experiments

Motivation

- GAIL performs not well in practice.
 - 1 The min-max optimization procedure of GAIL is brittle and unstable;
 - 2 The RL process is sample-inefficient and tricky.
- Can we instead imitate the expert without adversarial training and RL policy optimization?

Preliminaries

Motivation

Method

Experiments

Method I

Consider the following new objective

$$\min_{\pi_G} \max_{\tilde{\pi}} L(\tilde{\pi}, \pi_G) := \mathbb{E}_{\tau \sim P_{\pi_E}} \left[\log D_{\tilde{\pi}, \pi_G}(\tau) \right] + \mathbb{E}_{\tau \sim P_{\pi_G}} \left[\log (1 - D_{\tilde{\pi}, \pi_G}(\tau)) \right], \tag{1}$$

with the structured discriminator:

$$D_{\tilde{\pi},\pi_G}(x) = \frac{P_{\tilde{\pi}}(\tau)}{P_{\tilde{\pi}}(\tau) + P_{\pi_G}(\tau)} = \frac{q_{\tilde{\pi}}(\tau)}{q_{\tilde{\pi}}(\tau) + q_{\pi_G}(\tau)}.$$

Here $q_{\pi}(\tau) = \prod_{t=0}^{T-1} \pi(a_t|s_t)$.

Lemma 1.

For any stationary policy π , there is an one-to-one correspondence between π and q_{π} on \mathcal{M} .

Proof: For any trajectory $\tau=(s_0,a_0,s_1,a_1,\ldots,s_{T-1},a_{T-1},s_T)$, we have that $P_\pi(\tau)=q_\pi\times \xi(\tau)$, with

$$\xi(\tau) := \mathcal{P}_0(s_0) \prod_{t=0}^{T-1} \mathcal{P}(s_{t+1}|s_t, a_t).$$

Method II

Since $\xi(\tau)$ is solely determined by the MDP \mathcal{M} , there is an one-to-one correspondence between q_{π} and P_{π} . And from the definition of ρ^{π} , we know that ρ^{π} can be computed directly from P_{π} . From Theorem 2 of (Syed et al., 2008), we know that ρ^{π} and π is one-to-one corresponded. Thus concluding the proof.

Theorem 1.

The optimal $\tilde{\pi}^* = \arg\max_{\tilde{\pi}} L(\tilde{\pi}, \pi_G)$ for any π_G in Eq. (1) is such that $q_{\tilde{\pi}^*} = q_{\pi_E}$, and using $\tilde{\pi}^*$ as the generator policy $\tilde{\pi}^*$ minimizes $L(\tilde{\pi}^*, \pi_G)$, i.e,

$$\tilde{\pi}^* \in \operatorname*{arg\,min}_{\pi_G} \max_{\tilde{\pi}} L(\tilde{\pi}, \pi_G) = \operatorname*{arg\,min}_{\pi_G} L(\tilde{\pi}^*, \pi_G).$$

Proof: Theorem 1 states that given $L(\tilde{\pi}, \pi_G)$ defined in Eq. (1):

- a $\tilde{\pi}^* = \arg \max_{\tilde{\pi}} L(\tilde{\pi}, \pi_G)$ satisfies $q_{\tilde{\pi}^*} = q_{\pi_E}$;
- $\bullet \quad \pi_G^* = \tilde{\pi}^* \in \arg\min_{\pi_G} L(\tilde{\pi}^*, \pi_G).$

We will give the corresponding proofs of (a) and (b) below.

Method III

a By expanding Eq. (1), we have that

$$\arg \max_{\tilde{\pi}} L(\tilde{\pi}, \pi_G) = \arg \max_{\tilde{\pi}} \sum_{\tau_i} P_{\pi_E}(\tau_i) \log D_{\tilde{\pi}, \pi_G}(\tau_i) + P_{\pi_G}(\tau_i) \log(1 - D_{\tilde{\pi}, \pi_G}(\tau_i))$$

$$= \arg \max_{\tilde{\pi}} \sum_{\tau_i} \xi(\tau_i) \left(q_{\pi_E}(\tau_i) \log D_{\tilde{\pi}, \pi_G}(\tau_i) + q_{\pi_G}(\tau_i) \log(1 - D_{\tilde{\pi}, \pi_G}(\tau_i)) \right)$$

$$= \arg \max_{\tilde{\pi}} \sum_{\tau_i} L_i(\tau_i).$$

From Proposition 1 of (Goodfellow et al., 2014), we get

$$D_{\bar{\pi},\pi_G}^* = \operatorname*{arg\,max}_{D_{\bar{\pi},\pi_G}} L_i(\tau_i) = \frac{q_{\pi_E}(\tau_i)}{q_{\pi_E}(\tau_i) + q_{\pi_G}(\tau_i)}.$$

Thus from the definition and monotonicity of $D^*_{\tilde{\pi},\pi_G}$, we get $q_{\tilde{\pi}^*}=q_{\pi_E}$. Then by using Lemma 1, we conclude that $\tilde{\pi}^*=\pi_E$.

4 D > 4 A > 4 B > 4 B > B 9 9 0

Method IV

6 we use the conclusion from (a), and get

$$\begin{split} \pi_G^* &= \operatorname*{arg\,min}_{\pi_G} L(\tilde{\pi}^*, \pi_G) \\ &= \operatorname*{arg\,min}_{\pi_G} \mathbb{E}_{\tau \sim P_{\pi_E}} \left[\log \frac{P_{\pi_E}(\tau)}{P_{\pi_E}(\tau) + P_{\pi_G}(\tau)} \right] + \mathbb{E}_{\tau \sim P_{\pi_G}} \left[\log \frac{P_{\pi_G}(\tau)}{P_{\pi_E}(\tau) + P_{\pi_G}(\tau)} \right] \\ &= \operatorname*{arg\,min}_{\pi_G} - \log 4 + 2D_{\mathsf{JS}}(P_{\pi_E} \| P_{\pi_G}) \\ &= \pi_E. \end{split}$$

Conclude the proof.

Method V

From Theorem 1, we find that optimizing the inner $\tilde{\pi}$ will give us the optimal outer π_G . We thus get ASAF, a new imitation learning algorithm with pseudocode shown in Algorithm 1.

Algorithm 1 ASAF

Require: expert trajectories
$$\mathcal{D}_E = \{\tau_i^{(E)}\}_{i=1}^{N_E}$$
 randomly initialize $\tilde{\pi}$ and set $\pi_G \leftarrow \tilde{\pi}$ for steps $m=0$ to M do Collect trajectories $\mathcal{D}_G = \{\tau_i^{(G)}\}_{i=1}^{N_G}$ using π_G Update $\tilde{\pi}$ by minimizing Eq. (2) $\pi_G \leftarrow \tilde{\pi}$ end for

$$\mathcal{L}_{BCE}(\mathcal{D}_{E}, \mathcal{D}_{G}, \tilde{\pi}) \approx -\frac{1}{n_{E}} \sum_{i=1}^{n_{E}} \log D_{\tilde{\pi}, \pi_{G}}(\tau_{i}^{(E)}) - \frac{1}{n_{G}} \sum_{i=1}^{n_{G}} \log \left(1 - D_{\tilde{\pi}, \pi_{G}}(\tau_{i}^{(G)})\right), \quad (2)$$

Method VI

where $au_i^{(E)} \sim \mathcal{D}_E$, $au_i^{(G)} \sim \mathcal{D}_G$ and

$$D_{\tilde{\pi},\pi_G}(\tau) = \frac{\prod_{i=1}^{T-1} \tilde{\pi}(a_t|s_t)}{\prod_{i=1}^{T-1} \tilde{\pi}(a_t|s_t) + \prod_{i=1}^{T-1} \pi_G(a_t|s_t)}.$$
 (3)

Remark: ASAF uses the full-length trajectory, which may be sample-inefficient. The authors also considered using a window size of w or even transition-wise variants, and named them ASAF-w and ASAF-v1, respectively.

(ロ) (回) (目) (目) (目) (の)

Preliminaries

Motivation

Method

Experiments

Experiments I

Figure 1: Results on classic control and Box2D tasks for 10 expert demonstrations. First row contains discrete actions environments, second row corresponds to continuous control.

Experiments II

Figure 2: Results on MuJoCo tasks for 25 expert demonstrations.

Preliminaries

Motivation

Method

Experiments

Discussion

Model learning

$$D_{\tilde{\mathcal{P}},\mathcal{P}_G}(\tau) = \frac{\tilde{\mathcal{P}}(s_0) \prod_{i=1}^{T-1} \tilde{\mathcal{P}}(a_t|s_t)}{\prod_{i=1}^{T-1} \tilde{\mathcal{P}}(a_t|s_t) + \prod_{i=1}^{T-1} \mathcal{P}_G(a_t|s_t)}.$$

- Reduction to transition-wise scenario: The author also discussed a novel transition-wise objective (connected to (Fu et al., 2017)), which is only suit for discrete action space.
- We can use any policy to sample fake trajectories.

The End

Thanks! Q & A

References

- [1] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforcement learning. *CoRR*, abs/1710.11248, 2017.
- [2] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems, 2014.
- [3] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In *Advances in Neural Information Processing Systems*, volume 29, pp. 4565–4573, Barcelona, Spain, 2016.
- [4] Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using linear programming. In *International conference on Machine learning*, pp. 1032–1039, 2008.