UNIVERSIDAD MAYOR DE SAN ANDRES FACULTAD DE CIENCIAS PURAS Y NATURALES CARRERA DE INFORMÁTICA

Examen Parcial - Pregunta 2

Nombres:	EDUARDO MEDRANO AYARDE	CI: 6989411
Materia:	Inteligencia Artificial (INF-354)	
Docente:	M.Sc. Moises Martin Silva Choque	
Fecha:	26 de julio de 2020	

1. Realice un proceso completo de análisis usando pipeline

1.1. Descripción del Dataset

Para el caso de estudio usando Pipeline, se hizo uso del dataset Haberman, del siguiente enlace https://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival, el cual describe, sobre la evolución y supervivencia de mujeres que hayan sido operadas, para tratar el cáncer de mama, las columnas del dataset son los siguientes:

- Edad: Edad de las mujeres, cuando fueron sometidas a la operación.
- Año de intervención quirúrgica: restando 2000-1900, la columna muestra el año en el que se realizaron la operación.
- Ganglios: Es un número entero, el cual nos señala, cuantos ganglios cancerosos fueron detectados.
- Supervivencia: 1 si sobrevivió más de 5 años después de la operación,
 2 si murió entre los 5 años.

Para resolver el problema, se efectuó los siguientes procedimientos

- El dataset fue divido en X_train y Y_train, donde el primero representa a la edad, año de operación y ganglios cancerosos, el segundo hace referencia a la supervivencia de las mujeres.
- Ambas matrices la primera matriz fue normalizada y estandarizada, posterior a esto se volvió a fraccionar en la matriz de entrenamiento y la de prueba, donde el porcentaje es 80 y 20.
- Las pruebas fueron realizadas usando pipeline en conjunto con la regresión logística y una prueba singular con la regresión logística, esto con el objetivo de comparar los resultados.

Todo el análisis anterior, está desarrollado bajo el siguiente código:

```
import numpy as np
   import pandas as pd
   from sklearn import preprocessing as pre
   from sklearn import linear_model as lm
   from sklearn.preprocessing import Normalizer as nm
   from sklearn.preprocessing import StandardScaler as sc
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import StandardScaler
   from sklearn.pipeline import Pipeline
   from sklearn.svm import SVC
   from sklearn.linear_model import LogisticRegression
11
12
   # cargamos el dataset
   dato = pd.read_csv("haberman.csv")
15
   aux = np.array(dato[['edad', 'year', 'auxilia']])
   norm = nm().fit(X=aux).fit_transform(X=aux)
17
   standar = sc().fit(X=norm).fit_transform(X=norm)
18
   aux2 = np.array(dato[['supervivencia']])
   norm2 = nm().fit(X=aux2).fit_transform(X=aux2)
   X_train, X_test, y_train, y_test = train_test_split(standar,
   aux2,
22
   test_size=0.2,
   random_state=0
24
25
   pipe = Pipeline([('scaler', StandardScaler()),
   ('svc', LogisticRegression(random_state=42))])
   doge = lm.LogisticRegression(random_state=42)
28
   doge.fit(X_train, y_train)
   print("Resultados obtenidos con la regresión logistica ",
```

```
doge.score(X_test, y_test))
   print ("Predición de esperanza de vida de una mujer con cancer usando pipeline
   , bajo las siguientes caracteristicas\nedad=30\nAño de Operación = 1960 ",
33
   "Ganglios cancerosos encontrados = 23 \nResultado = ", doge.predict([[30, 60, 23]
34
   pipe.fit(X_train, y_train)
35
   print("Resultados obtenidos con la regresión logistica usando pipeline",
   pipe.score(X_test, y_test))
   print ("Predición de esperanza de vida de una mujer con cancer usando pipeline,
38
    bajo las siguientes caracteristicas\nedad=30\nAño de Operación = 1960 ",
39
   "Ganglios cancerosos encontrados = 23 \nResultado = ", pipe.predict([[30, 60, 23]
40
```

De donde se obtiene los siguientes resultados:

Figura 1: Resultados Obtenidos del Dataset Haberman, usando Pipeline

Se puede ver que en ambos casos se obtuvo un resultado cerca de 0.61, y una predicción correcta.