CS1026 – Digital Logic Design Boolean Algebra II

Alistair Morris 1

¹Distributed Systems Group Trinity College Dublin

January 25, 2016

Today's Overview

- 1 The Lab this week
- 2 More minimisation..
- 3 Sum of Products (SOP) Example
- 4 But what about POS?

Lab 1 [Brown, 2012]

- Design an XOR using only NAND gates
- $F(A,B) = A \oplus B$
- Questions?

We must use one of the two standard forms:

- Standard Sum of Products (SOP)
- Standard Product of Sums (POS)

The Lab this week

Standard Sum of Products (SOP) [Ciletti, 2003] I

In standard or canonical SOP form:

- All the variables present in each product term.
- E.g F(A, B) = A + B

Standard Sum of Products (SOP) [Ciletti, 2003] II

Step 1

■ Write the Truth table to see all the possible values

Inp	ut	Output	
Α	В	F(A,B)=A+B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Table: F(A, B)

Step 2

■ Write the full product term for all the possible combinations

$$\begin{split} F(A,B) &= F(0,0).A.B + F(0,1).AB + F(1,0).A.B + F(1,1).A.B \\ &= 0.A.B + 1.AB + 1.A.B + 1.A.B \\ &= 1.AB + 1.A.B + 1.A.B \implies \text{Canonical or Standard Form} \end{split}$$

Standard Sum of Products (SOP) [Ciletti, 2003] IV

Some hints:

- A standard product or "min-term" denotes a product of all independent input variables for a function
- lacktriangle This corresponds to a row of the truth table with output of 1
- E.g. A.B denotes a min term in the above example.

Truth table to min-terms example I

Step 1 – Understand the problem

- Write out an expression for the function that is true, when 2 out of 3 inputs are true.
- Output is false for all other input combinations.

Truth table to min-terms example II

Step 2 – Develop a truth table for the function

Χ	Υ	Z	Mid-terms	Mid-term Designators	F
0	0	0	X'.Y'.Z'	m_0	$F(0,0,0) = F_0 = 0$
0	0	1	X'.Y'.Z	m_1	$F(0,0,1)=F_1=0$
0	1	0	X'.Y.Z'	m_2	$F(0,1,0)=F_2=0$
0	1	1	X'.Y.Z	m_3	$F(0,1,1)=F_3=1$
1	0	0	X.Y'.Z'	m_4	$F(1,0,0)=F_4=0$
1	0	1	X.Y'.Z	m_5	$F(1,0,1) = F_5 = 1$
1	1	0	X.Y.Z'	m_6	$F(1,1,0) = F_6 = 1$
1	1	1	X.Y.Z	m_7	$F(1,1,1) = F_7 = 0$

Truth table to min-terms example III

By the way:

- The min-term subscript corresponds to the binary of the input.
- All three independent input variables present in min-term.
- When input is 1, the variable appears in the Min-term
 - Otherwise the variable is complemented in the min-term

Truth table to min-terms example IV

Step 3 – Write the algebraic function equivalent to the truth table

- If the output function (F) is 1 for the min-term
 - Then the value appears in the algebraic form of the expression

$$F(X, Y, Z) = F_{0}.m_{0} + F_{1}.m_{1} + F_{2}.m_{2} + F_{3}.m_{3} + F_{4}.m_{4} + F_{5}.m_{5} + F_{6}.m_{6} + F_{7}.m_{7}$$

$$= \sum_{i=0}^{7} (F_{i}.m_{i})$$

$$= 0.m_{0} + 0.m_{1} + 0.m_{2} + 1.m_{3} + 0.m_{4} + 1.m_{5} + 1.m_{6} + 0.m_{7}$$

$$= m_{3} + m_{5} + m_{6}$$
(2)

Truth table to min-terms example V

Using \sum we can say:

- $F(X, Y, Z) = \sum m(3, 5, 6)$
 - Explicit Compact Min-term form
- $F(X, Y, Z) = \sum (3, 5, 6)$
 - Implicit Compact Min-term form

Also we find the complement of F:

- $F(X, Y, Z) = \sum m(0, 1, 2, 4, 7)$
 - Explicit Compact Min-term form
- $F(X, Y, Z) = \sum (0, 1, 2, 4, 7)$
 - Implicit Compact Min-term form

Obtaining the Standard Products of Sum (POS) I

POS is not used as much

■ However the POS form is more efficient than SOP

Note

- All three independent variables are present..
 - .. in either complemented or uncomplemented form.

Obtaining the Standard Products of Sum (POS) II

For each pattern..

- If the independent variable value is 0, it is un-complemented
- If 1, it is complemented in the max-term which is the OR of all independent variables.

Example

The Lab this week

$$X = 1, Y = 1, Z = 0$$

$$M_6 = X' + Y' + Z'$$

Each max-term will result in the output for that term being zero.

Obtaining the Standard Products of Sum (POS) III

Another exciting example..

.. In the tutorial next week ;-)

That's it (for now)

Thanks.. Any Questions?

You can ask later at:

morrisa5@scss.tcd.ie

Useful links

- Notes/Slides: bitbucket.com/morrisa5/DLD
- LinkedIn: ie.linkedin.com/in/alistair-morris-9712b247

References (Homework) I

Brown, F. M. (2012).

Boolean reasoning: the logic of Boolean equations.

Springer Science & Business Media.

Ciletti, M. D. (2003).

Advanced digital design with the Verilog HDL, volume 2. Prentice Hall.