Essentials of Analytical Geometry and Linear Algebra I, Class #10

Innopolis University, November 2020

- 1. Find the foci, latus rectum, vertices and directrices of the following parabola: $y^2 + 4x 2y + 3 = 0$.
- 2. Find the equations of the tangent and normal to the parabola $y^2 = 4(x-1)$ at (5,4).
- 3. An equilateral triangle is inscribed in the parabola $y^2 = 4ax$ one of whose vertices is at the vertex of the parabola. Find its side.
- 4. Find the equation of the ellipse whose foci are (4,0) and (-4,0) and e=1/3
- 5. Find the eccentricity, foci and the length of the latus rectum of the ellipse $9x^2 + 4y^2 = 36$
- 6. Find the equation of the normal to the ellipse $3x^2 + 2y^2 = 5$ at (-1,1).
- 7. The equation $25(x^2 6x + 9) + 16y^2 = 400$ represents an ellipse. Find the centre and foci of the ellipse. How should the axis be transformed so that the ellipse is represented by the equation $\frac{x^2}{25} + \frac{y^2}{16} = 1$?
- 8. Find the locus of the poles with respect to the ellipse of the tangents to the parabola $y^2 = 4px$.

Essentials of Analytical Geometry and Linear Algebra I, HW #10

Innopolis University, November 2020

- 1. Find the equation of the parabola with the following foci and directrices
 - (a) (1,2): x+y-2=0,
 - (b) (1,-1): x-y=0,
 - (c) (0,0): x-2y+2=0
- 2. Find the foci, latus rectum, vertices and directrices of the following parabolas: $y^2-4x+2y-3=0,$ $y^2-8x-9=0.$
- 3. Find the condition that the straight line lx + my + n = 0 is a tangent to the parabola.
- 4. Find the equation of the ellipse whose foci, directrix and eccentricity are given below:
 - (a) Focus is (1,2), directrix is 2x 3y + 6 = 0 and eccentricity is 2/3
 - (b) Focus is (0,0), directrix is 3x + 4y 1 = 0 and eccentricity is 5/6
 - (c) Focus is (1, -2), directrix is 3x 2y + 1 = 0 and eccentricity is $1/\sqrt{2}$
- 5. Find the equation of the ellipse whose foci are (3,0) and (-3,0) and $e=\sqrt{\frac{3}{8}}$
- 6. Find the eccentricity, foci and the length of the latus rectum of the ellipse
 - (a) $3x^2 + 4y^2 12x 8y + 4 = 0$,
 - (b) $25x^2 + 9y^2 150x 90y + 225 = 0$
- 7. Find the equation of the tangent to the ellipse $x^2 + 2y^2 = 6$ at (2, -1).
- 8. Find the angle subtended by a focal chord of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passing through an end of the minor axis at the centre of the ellipse.
- 9. Find the locus of the point of intersection of normals at two points on an ellipse which are extremities of conjugate diameters.