5XCCO Biopotential and Neural Interface Circuits

Amplifiers and Filters

Pieter Harpe

Outline

- Amplifier types
 - Transimpedance Amplifiers
 - Transconductance Amplifiers
 - Voltage Amplifiers
- Advanced Amplifier Techniques
- G_m-C Filters

Basics

- You should be familiar with:
 - Differential pair
 - Current mirror
 - Common-mode, differential-mode
 - Common-mode feedback
 - Open-loop, closed-loop, stability, phase margin
- Recommended literature:
 - Razavi "Design of Analog CMOS Integrated Circuits"
 - Sansen "Analog Design Essentials"
 - Sarpeshkar "Ultra Low Power Bioelectronics"

Amplifier types

Voltage amplifier

Transconductance amplifier

$$V_{in+} = G_{m} \cdot V_{in}$$

$$V_{in-} = I_{out} = I_{out}$$

Current amplifier

$$I_{\text{out}} = A \cdot I_{\text{in}}$$

$$I_{\text{in-}}$$

Transimpedance amplifier

$$V_{out} = Z \cdot I_{in}$$

$$I_{in+} \qquad + \qquad V_{out}$$

$$I_{in-} \qquad - \qquad V_{out}$$

Amplifier types

Amplifier type	Input	Output
Voltage	V	V
Transconductance	V	1
Transimpedance	I	V
Current	I	l

Photodiodes

• Photon generates electron/hole pair in PN junction \rightarrow Current created with the help of bias voltage $V_{\rm R}$

Transimpedance Amplifier (TIA)

- Input I → Output V
- Many sensors have a current output
 - Photodiode (image sensors)
 - Microphone (cochlear implant)
 - (Some) ultrasound transducers

$$v_{out}/i_{in} \approx -R_f/(1 + s C R_f)$$

$$v_{out}/i_{in} \approx R_f / (1 + s C R_f / A)$$

TIA increases BW by a factor A, and sets sensor bias voltage precisely

Exercise 1: TIA

a) Show that the two transfer functions as given on the previous slide (repeated here for convenience) are correct for the given circuits.

$$v_{out}/i_{in} \approx -R_f/(1 + s C R_f)$$

$$v_{out}/i_{in} \approx R_f / (1 + s C R_f / A)$$

Transconductance Amplifier

- OTA: Operational Transconductance Amplifier
- Input V → Output I
- G_m : $i_{out} = G_m v_{in}$

$$i_{out} = i_{+} - i_{-}; v_{in} = v_{+} - v_{-}$$
 $i_{+} = g_{m} \cdot v_{+}; i_{-} = g_{m} \cdot v_{-}$
 $i_{out} = g_{m} \cdot v_{+} - g_{m} \cdot v_{-} = g_{m} \cdot v_{in}$
 $g_{m} = K_{s} / \Phi_{t} \cdot 1/2 I_{B}$
 $i_{out} / v_{in} = G_{m} = K_{s} / \Phi_{t} \cdot 1/2 I_{B}$

Exercise 2: OTA Noise

Consider the OTA also discussed on the previous slide.

a) Express the input-referred noise power spectral density as function of the bias current I_B (and other parameters). You may assume that only the two input transistors are critical for the overall noise, that those transistors are biased in sub-threshold, and that for each transistor $V_{gn}^2(f) = kT / 9I_{DS}$ holds.

b) Assume that we need an OTA which has a total input-referred noise power of $2\mu V_{rms}$ in a bandwidth of 10kHz. How should we set I_{B} ?

Common-Source (CS) Voltage Amplifier (VA)

• Gain:

$$A = -g_{m1} \cdot (r_{o1} // r_{o2})$$

• Input-referred noise:

$$V_n^2(f) = \{I_{n1}^2(f) + I_{n2}^2(f)\} / g_{m1}^2$$

Inverter-Based Voltage Amplifier

• Gain:

$$A = -(g_{m1} + g_{m2}) \cdot (r_{o1} // r_{o2})$$

• Input-referred noise:

$$V_n^2(f) = \{I_{n1}^2(f) + I_{n2}^2(f)\} / (g_{m1} + g_{m2})^2$$

More gain (about 2x) and lower input-referred noise power spectral density (about 4x) compared to CS VA

Exercise 3: CS VA versus INV VA

Assume that the bias current for the circuits below is set to $1\mu A$ and assume that all transistors are biased in sub-threshold.

- a) For the CS VA, what will be the input-referred noise power spectral density?
- b) For the INV VA, what will be the input-referred noise power spectral density?

Low-Voltage Analog Design

- Each transistor needs a certain $V_{DSAT} \rightarrow$
 - Minimize number of stacked transistors
 - Use sub-threshold biasing (lower V_{DSAT})
- Use cascaded stages rather than cascoded transistors to increase gain
- Increase DC gain by positive feedback

Positive Feedback Loops

- $V_{out} = A_0 \cdot (V_+ V_-)$; what is the closed-loop gain $A_{cl} = V_{out}/V_{in}$?
 - (1): negative feedback, non-inverting amplifier, $|A_{cl}| < A_0$
 - (2): negative feedback, inverting amplifier, $|A_{cl}| < A_0$
 - (3): positive feedback, non-inverting amplifier, $|A_{cl}| > A_0$

Positive Feedback to Enhance Gain

Example for $R_2 = 5R_1$

Open-loop gain A_0 (log)

- $A_{cl} = V_{out}/V_{in} = A_0 R_2 / [R_1 + R_2 A_0 R_1]$
- Only stable when $R_1 + R_2 A_0 R_1 > 0$
- Gain can be $> A_0!$

A_0	A _{cl}
A ₀ < 1	A _{cl} < 1
$A_0 = 1$	$A_{cl} = 1$
A ₀ > 1	$A_{cl} > A_0$

Exercise 4: Positive Feedback to Enhance Gain

a) For the circuit below, assume that the amplifier's open-loop gain is 20x and that $R_2 = 1M\Omega$. What should the value of R_1 be to reach a closed-loop gain of 100x?

Positive Feedback to Enhance Zin

- $V_{out} = R_2 / R_1 \cdot V_{in}$
- What is the input impedance?
- $Z_{in} \approx 2R_1$ (differential)
- With positive feedback, Z_{in} can be increased to infinity (theory)

$$I_{in} = I_{R1} + I_{Rx}$$

$$I_{R1} = 0.5V_{in} / R_1$$

$$I_{Rx} = (0.5V_{in} - 0.5V_{out}) / R_{x}$$

For
$$Z_{in} = \infty$$
, $I_{in} = 0$:

$$0.5V_{in} / R_1 + (0.5V_{in} - 0.5V_{out}) / R_x = 0$$

Since
$$V_{out} = R_2 / R_1 V_{in}$$
, this leads to:

$$R_x = R_2 - R_1$$

Exercise 5: Positive Feedback to Enhance Zin

For the circuit below, assume that the amplifier's open-loop gain is infinite and that $R_1 = 1M\Omega$. For questions a) and b), you may assume R_x is not yet present.

- a) What should the value of R_2 be, to get a closed-loop gain of 100x?
- b) What is the differential input impedance of the circuit?

c) If we add R_x , and if R_x is chosen equal to R_2 , what will the differential input impedance then be?

Capacitively-Coupled Amplifiers

- Gain: R₂ / R₁
 - R₂ and R₁ contribute
 in-band noise (4kTR)

- Gain: C₁ / C₂
 - Does not work for DC signals
 - Bias resistor (R_b) needed
 - Most of the noise of R_b
 is out of band

Chopping Amplifier (1)

- Input is a DC (or low-frequency) signal
- Amplifier with 1/f noise and offset

Chopping Amplifier (2)

Filters

- Passive RLC filters
 - Large L and C values for low frequencies → Cannot be integrated in an IC
- Opamp-RC
 - Overdesigned GBW needed → Power hungry
- Switched capacitor
 - Opamps and f_{switch} far beyond bandwidth \rightarrow Power hungry
- Mosfet-RC
 - Transistors are non-linear → Filter will have poor linearity
- G_m-C filters
 - Open-loop G_m stages → Power-efficient, modest linearity

G_m-C Filters

- Basic stage: G_m + C,
 acts as integrator:
 - H(s) = $1/s\tau$, with $\tau = C/G_m$
 - $V_{out}(s) = 1 / s\tau \cdot V_{in}(s)$
 - $V_{out}(s) = 1 / s\tau \cdot (V_{in}^+(s) V_{in}^-(s))$

- How to synthesize: 1st order filter example
 - $V_{out}(s) / V_{in}(s) = 1 / (s\tau + 1)$
 - $V_{out}(s)(s\tau + 1) = V_{in}(s)$
 - $V_{out}(s) s\tau = V_{in}(s) V_{out}(s)$
 - $V_{out}(s) = 1 / s\tau \cdot (V_{in}(s) V_{out}(s))$

2nd Order G_m-C Filter

•
$$V_{out}(s) / V_{in}(s) = 1 / (\tau_1 \tau_2 s^2 + \tau_1 s + 1)$$

•
$$V_{out}(s) \cdot (\tau_1 \tau_2 s^2 + \tau_1 s + 1) = V_{in}(s)$$

•
$$V_{out}(s) \cdot \tau_1 s(\tau_2 s + 1) = V_{in}(s) - V_{out}(s)$$

•
$$V_{out}(s) \cdot (\tau_2 s + 1) = 1 / s\tau_1 (V_{in}(s) - V_{out}(s))$$

•
$$V_{out}(s) \cdot \tau_2 s = 1 / s \tau_1 (V_{in}(s) - V_{out}(s)) - V_{out}(s)$$

•
$$V_{out}(s) = 1 / s\tau_2 \{1 / s\tau_1 (V_{in}(s) - V_{out}(s)) - V_{out}(s)\}$$

Higher-Order G_m-C Filters

• Either use:

- Concatenation of 1st and 2nd order stages
- Apply element replacement synthesis method: $\{R, L, C\}$ is replaced by its equivalent in G_m -C

e.g.:
$$V_{out}(s) / V_{in}(s) = 1 / (s\tau + 1)$$

Noise in G_m-C Filters

• Before:

- RC filter, S&H: $P_{noise} = kT / C$
- G_m/C filter: $P_{noise} \propto kT/C$
- Approach:
 - Size the capacitors based on the noise requirement
 - Determine G_m 's to reach the proper $\tau = C / G_m$
 - Calculate I_{BIAS} currents for each G_m stage

Exercise 6: First-Order G_m-C filter

We would like to design a first-order G_m -C low-pass filter with a cut-off frequency of 2kHz. It is already given that C = 100 fF.

- a) What is the circuit topology that we need for this filter?
- b) What is the required value of G_m ?
- c) Assuming we use the OTA given below, and assuming it is biased in sub-threshold, what is thus the required bias current I_R?

Summary

- Amplifiers
- Positive feedback to increase gain or input impedance
- Chopping amplifiers
- G_m-C filters

Solution 1: TIA

a)

First circuit:

- KCL: $i_{in} + V_{out} sC + (V_{out} V_B) / R_f = 0$
- When determining the transfer function from source i_{in} to output V_{out} , you may set the other sources to 0, so $V_B = 0V$.
- $i_{in} + v_{out} sC + v_{out} / R_f = 0$
- $v_{out} / i_{in} = -R_f / (1 + s C R_f)$

Second circuit:

- Amplifier equation: $V_{out} = A (V_+ V_-) = A (V_B V_-)$
- KCL: $i_{in} + V_{-} sC + (V_{-} V_{out}) / R_f = 0$
- Combining the above equations and setting V_B to 0V as before:
- $v_{-} = -v_{out} / A$
- $i_{in} v_{out} sC / A v_{out} (1 / A + 1) / R_f = 0$
- $v_{out} / i_{in} \approx R_f / (1 + s C R_f / A)$

Solution 2: OTA Noise

- a) Each of the two input transistors has a gate noise of $V_{gn}^2(f) = kT / 9I_{DS}$. Together, that gives a total IRN of $V_{in,n}^2(f) = 2kT / 9I_{DS}$. $I_{DS} = \frac{1}{2}I_{B}$, so the overall IRN as function of I_{B} is $V_{in,n}^2(f) = 4kT / 9I_{B}$.
- b) $2\mu V_{rms}$ means a total noise power of $4pV^2$ in the 10kHz BW. This is equivalent to a PSD of $V_{in,n}^2(f) = 4pV^2 / 10kHz = 0.4fV^2/Hz$. So: $0.4fV^2/Hz = 4kT / 9I_B$, which results in an I_B of $4.6\mu A$.

Solution 3: CS VA versus INV VA

Assume that the bias current for the circuits below is set to $1\mu A$ and assume that all transistors are biased in sub-threshold.

- a) $V_n^2(f) = \{I_{n1}^2(f) + I_{n2}^2(f)\} / g_{m1}^2$. $I_{n1}^2(f) = I_{n2}^2(f) = 2qI_D$, with $I_D = 1\mu A$. We can estimate g_{m1} by e.g.: $g_{m1} \approx 25I_D = 25\mu A/V$. Solving this gives: $V_n^2(f) \approx 1fV^2/Hz$.
- b) $V_n^2(f) = \{I_{n1}^2(f) + I_{n2}^2(f)\} / (g_{m1} + g_{m2})^2$ The values are the same as before and $g_{m2} = g_{m1}$. Solving this gives: $V_n^2(f) \approx 0.26 f V^2 / Hz$.

Solution 4: Positive Feedback to Enhance Gain

a) Amplifier equation: $V_{out} = AV_{+}$, where A = 20. KCL: $(V_{+} - V_{in}) / R_{1} + (V_{+} - V_{out}) / R_{2} = 0$, where $R_{2} = 1M\Omega$. Final goal: $V_{out} = 100V_{in}$.

Combining the equations gives:

```
V_{+} = 0.05V_{out}
V_{in} = 0.01V_{out}
(0.05V_{out} - 0.01V_{out}) / R_{1} + (0.05V_{out} - V_{out}) / 1M\Omega = 0
0.04 / R_{1} = 0.95 / 1M\Omega \rightarrow R_{1} = 42k\Omega.
```

Solution 5: Positive Feedback to Enhance Zin

- a) $R_2 = 100M\Omega$, because the closed-loop gain is R_2/R_1 .
- b) $2R_1 = 2M\Omega$.
- c) Analyzing single-ended:

$$i_{in} = i_{R1} + i_{Rx} = 0.5v_{in} / R_1 + (0.5v_{in} - 0.5v_{out}) / R_x.$$
 $v_{out} = 100 v_{in}.$
 $R_x = R_2 = 100R_1.$
 $Z_{in.diff} = 2Z_{in.single-ended} = v_{in} / i_{in}.$

Combining the equations gives:

$$i_{in} = 0.5v_{in} / R_1 - 49.5v_{in} / R_x = v_{in} (0.5 / R_1 - 0.495 / R_1) = 0.005 v_{in} / R_1$$

 $Z_{in,diff} = v_{in} / i_{in} = 1 / (0.005 / R_1) = 200R_1 = 200M\Omega$.

Solution 6: First-Order G_m-C filter

We would like to design a first-order G_m -C low-pass filter with a cut-off frequency of 2kHz. It is already given that C = 100 fF.

a) Topology as shown in figure The equation for it is $V_{out}(s) / V_{in}(s) = 1 / (s\tau + 1)$ where $\tau = C / G_m$

- b) 2kHz cut-off frequency, so $\tau = 1 / 2\pi f = 80\mu s$. Since C = 100fF, that implies G_m must be 100fF/80 μ s = 1.26nA/V.
- c) For this OTA, the G_m is approximately $12.5I_B$. So $I_B = 0.1nA$.