3.6 5 Show that no proper subgroup of S_4 contains both (1,2,3,4) and (1,2).

Pf. Suppose $H \leq S_4$ with the permutations (1 2 3 4) and (1 2)

$$\left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right), \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{array}\right)$$

Their product would yield

$$\left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{array}\right) = S_4$$

Therefore, H is not a proper subgroup of S_4 by contradiction

9 A rigid motion of a cube can be thought of either as a permutation of its eight vertices or as a permutation of its six sides. Find a rigid motion of the cube that has order 3, and express the permutation that represents it in both ways, as a permutation on eight elements and as a permutation on six elements.

10 Show that the following matrices form a subgroup of $GL_2(\mathbb{C})$ isomorphic to D_4 :

$$\pm \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right], \pm \left[\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right], \pm \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right], \pm \left[\begin{array}{cc} 0 & i \\ -i & 0 \end{array}\right]$$

15 (a) Show that $A_4 = \{ \sigma \in S_4 \mid \sigma = \tau^2 \text{ for some } \tau \in S_4 \}$

$$\Box$$

(b) Show that $A_5 = \{ \sigma \in S_5 \mid \sigma = \tau^2 \text{ for some } \tau \in S_5 \}$

$$\Box$$

(c) Show that $A_6 = \{ \sigma \in S_6 \mid \sigma = \tau^2 \text{ for some } \tau \in S_6 \}$

$$\Box$$

(d) What can you say about A_n if n > 6? Pf.**17** For any elements $\sigma, \tau \in S_n$, show that $\sigma \tau \sigma^{-1} \tau^{-1} \in A_n$. Pf.**21** Find the center of the dihedral group D_n . Hint: Consider two cases, depending on whether n is odd or even. Pf.24 Show that the product of two transpositions is one of (i) the identity; (ii) a 3-cycle; (iii) a product of two (nondisjoint) 3-cycles. Deduce that every element of A_n can be written as a product of 3-cycles. Pf. 3.7 **4** Let G be an abelian group, and let n be any positive integer. Show that the function $\phi: G \to G$ defined by $\phi(x) = x^n$ is a homomorphism. Pf.**6** Define $\phi: \mathbb{C}^{\times} \to \mathbb{R}^{\times}$ by $\phi(a+bi) = a^2 + bi$, for all $a+bi \in \mathbb{C}^{\times}$. Show that ϕ is a homomorphism. Pf.7 **b** $\phi : \mathbb{R} \to \mathrm{GL}_2(\mathbb{R})$ defined by $\phi(a) = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ Pf. $\mathbf{d} \ \phi : \mathrm{GL}_2(\mathbb{R}) \to \mathbb{R}^{\times} \text{ defined by } \phi \left(\left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \right) = ab$ Pf.

10 Let G be the group of affine functions from \mathbb{R} into \mathbb{R} , as defined in Exercise 10 of Section 3.1. Define $\phi: G \to \mathbb{R}^{\times}$ as follows: for any function $f_{m,b} \in G$, let $\phi(f_{m,b}) = m$. Prove that ϕ is a group homomorphism, and find its kernel and image.

		Pf.	
	14	Recall that the center of a group G is $\{x \in G \mid xh = gx \text{ for all } g \in G\}$. Prove that the conformal subgroup.	enter
		Pf.	
	18	Let the dihedral group D_n be given by elements a of order n and b of order 2 , where $ba = a$. Show that any subgroup of $\langle a \rangle$ is normal in D_n .	$a^{-1}b$.
		Pf.	
3.8	4	For each of the subgroups $\{e, a^2\}$ and $\{e, b\}$ of D_4 , list all left and right cosets.	
		Pf.	
	9	Let G be a finite group, and let n be a divisor of $ G $ Show that if H is the only subgroup G of order n , then H must be normal in G .	up of
		Pf.	
	12	Let H and K be normal subgroups of G such that $H \cap K = \langle e \rangle$. Show that $hk = kh$ for $h \in H$ and $k \in K$.	or all
		Pf.	
	18	Compute the factor group $(\mathbb{Z}_6 \times \mathbb{Z}_4)/\langle (3,2) \rangle$.	
		Pf.	
	19	Show that $(\mathbb{Z} \times \mathbb{Z})/\langle (0,1) \rangle$ is an infinite cyclic group.	
		Pf.	
	23	a . Show that G is a subgroup of $GL_2((\mathbb{Z}_5)$.	
		Pf.	

b. Show that the subset N of all matrices in G of the form $\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix}$, with $c \in \mathbb{Z}_5$, is a normal subgroup of G.

Pf.	
c . Show that the factor group G/N is cyclic of order 4.	
Pf.	