Particle spectrograph

Wave operator and propagator

$\sigma_{1^-\alpha}^{\#1}$ $\sigma_{1^-\alpha}^{\#2}$ $\tau_{1^-\alpha}^{\#1}$ $\tau_{1^-\alpha}^{\#2}$	0 0 0	0 0 0	0 0 0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)} - \frac{\sqrt{2}(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))} 0 - \frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$-\frac{\sqrt{2}(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))} \frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))} 0 \frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0 0 0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))} - \frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))} 0 \frac{2k^2(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$ au_1^{\#1} = \sigma_1^{\#1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1} \qquad 0$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2} \qquad 0$	$0 \frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$0 - \frac{\sqrt{2} (t_1 - 2t_3)}{(1 + 2k^2)(3t_1t_3 + 2k^2r_5(t_1))}$	0 0	$0 \frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1))}$
$\sigma_1^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1} -$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2} =$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	$\sigma_{1}^{#1} + \alpha \beta = 0$	$\sigma_{1}^{\#2} + \alpha \beta - \frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\tau_{1}^{\#1} + \alpha \beta \frac{i \sqrt{2} k}{t_1 + k^2 t_1}$	$\sigma_{1}^{\#1} +^{\alpha}$ 0	$\sigma_{1}^{\#2} +^{\alpha}$ 0	$t_1^{\#1} +^{\alpha} = 0$	$\tau_{1}^{\#2} +^{\alpha}$ 0

_	$\omega_{1^{+}lphaeta}^{\#1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1^{-}\ lpha}^{$ #2}	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1}\dagger^lpha$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ i k $(t_1 - 2t_3)$
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}\bar{i}k(t_1-2t_3)$	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0
$f_{0}^{#2}$	0	0	0
$f_{0}^{\#1}$	$-i\sqrt{2}kt_3$	$2 k^2 t_3$	0
$\omega_{0^+}^{\#1}$	<i>t</i> ³	$i\sqrt{2} kt_3$	0
	$\omega_{0}^{\#1}\dagger$	$f_0^{\#1}$ †	$f_0^{#2} \uparrow$

0

0

<u>t</u>1 2

Quadratic (free) action $S_{F} = \begin{cases} \int \partial u = 0 & u = 0 \\ \int \partial u = 0 & u = 0 \\ \int \partial u = 0 & u = 0 \\ \int \partial u = 0 & u = 0 \\ \partial u = 0 & u = 0 \end{cases} $ $= \int \partial u = 0 \\ \partial u = 0 \\ \partial u = 0 \end{cases} $ $= \int \int \int \int \int \int \int \int \int \partial u = 0 \\ \partial u = 0 \\ \partial u = 0 \end{cases} $ $= \int \int \int \int \int \int \int \partial u = 0 \\ \partial u = 0 \\ \partial u = 0 $ $= \int \int \partial u = 0 \\ \partial u = 0 \\ \partial u = 0 $ $= \int \partial u = 0 \\ \partial u = 0 $ $= \int \partial u = 0 \\ \partial u = 0 $ $= \int \partial u = 0 \\ \partial u = 0 $ $= \int \partial u = 0 \\ \partial u = 0 $ $= \int \partial u = 0 \\ \partial u = 0 $ $= \int \partial u = 0 \\ \partial u = 0 $ $= \int \partial u = 0 \\ \partial u = 0 $ $= \int \partial u = 0 \\ \partial u = 0 $ $= \int \partial u = 0 $ $= \partial u = 0 $ $= \int \partial u =$
$6r_5\partial_{lpha}\omega_{\lambda}^{}_{}\partial^{}_{}\omega_{eta}^{}_{} + 4r_2\sigma^{}_{}\omega_{eta}^{} + 4r_2\sigma^{}_{}\omega_{eta}^{}$

luge generators	Multiplicities	1	1	3	6
Source constraints/gauge generators	SO(3) irreps	$t_0^{*2} = 0$	$\tau_0^{\#1} - 2 i k \sigma_0^{\#1} = 0$	$t_1^{\#^2\alpha} + 2ik \ \sigma_1^{\#^2\alpha} == 0$ 3	-#1α ο
$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	C	0	$\frac{2}{t_1}$	
$ au_2^{\#1} \qquad \sigma_2^{\#1} = \sigma_{\chi}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	4 k ²	$(1+2k^2)^2t_1$	0	
$\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$	$\sigma_{2}^{\#1} + \alpha \beta \left(\frac{2}{(1+2k^2)^2 t_1} \right) - \frac{2i\sqrt{2}k}{(1+2k^2)^2 t_1}$	$_{\tau}$ #1 + $\alpha\beta$ $2i\sqrt{2}k$ $4k^2$	$(1+2k^2)^2 t_1 = (1+2k^2)^2 t_1$	$\sigma_{2}^{\#1} + \alpha \beta \chi$ 0 0	

2	16	$\omega_{2}^{\#1}$			>		0	t ₁	7
$\tau_{2+}^{\#1}\alpha\beta$ - 2 ik $\sigma_{2+}^{\#1}\alpha\beta$ == 0 5	nts:	#1	$\omega_2^{"}$ ÷ $_{\alpha\beta}$ $_{\beta}$ $_{\beta}$ † $_{\alpha\beta}$ $_{\alpha\beta}$ $_{\alpha\beta}$	$\frac{i k t_1}{}$	$\sqrt{2}$,	$k^2 t_1$	d	0
$2ik\sigma_2^{\#}$	Fotal constraints:	#1	$\omega_2^{"} \dot{\bar{\tau}}_{\alpha\beta}$	$\overline{1}$	2		$\frac{2\sqrt{2}}{\sqrt{2}}$	Ċ	0
$\tau_2^{\#1}\alpha\beta$ -	Total co		•	$'''$ #1 + $\alpha\beta$	w ₂ + 1	4.1 AB	$f_{2}^{*1} + ^{up}$	$\#1$, $\alpha\beta\chi$	ω ₂ - Τ · ··
$\sigma_{0}^{\#1}$	· C)	c	>	0)	$\frac{1}{\sqrt{2} r_{2-t_1}}$	T ₂ 7, v	
$t_{0}^{#2}$)	0)	0)	0		
${\mathfrak l}_{0}^{\#1}$	i √2 k	$(1+2k^2)^2t_3$	2 k ²	$(1+2k^2)^2t_3$	0		0		
$\sigma_{0}^{\#1}$		$(1+2k^2)^2t_3$		$(1+2k^2)^2t_3$	0)	0		
	# <u>1</u>	+0	r#1 +	1 +0,	τ ^{#2} +		$\sigma_{0}^{\#1}$ \dagger	_	

 $\omega_2^{#1} + \alpha_\beta f_2^{#1} = \omega_2^{#1} = \alpha_{\beta\chi}$

 $t_1^{\#1}\alpha^{\beta} + ik \ \sigma_1^{\#2}\alpha^{\beta} == 0$

Massive and massless spectra

Massive particle

Pole residue:
$$\frac{\frac{6t_{1}t_{3}(t_{1}+t_{3})\cdot 3r_{5}(t_{1}^{2}+2t_{3}^{2})}{2r_{5}(t_{1}+t_{3})(-3t_{1}t_{3}+r_{5}(t_{1}+t_{3}))} > \frac{1}{2r_{5}t_{1}+2r_{5}t_{3}}}$$
Polarisations:
$$\frac{3}{2r_{5}t_{1}+2r_{5}t_{3}} > 0$$
Spin:
$$\frac{1}{2r_{5}t_{1}+2r_{5}t_{3}} > 0$$
Parity: Odd

Massive particle						
Pole residue:	$-\frac{1}{r_2} > 0$					
Polarisations:	1					
Square mass:	$\frac{t_1}{r_2} > 0$					
Spin:	0					
Parity:	Odd					

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0 \&\& 0 < t_3 < -t_1$