INTEGER-ANTIMAGIC SPECTRA OF COMPLETE BIPARTITE GRAPHS AND COMPLETE BIPARTITE GRAPHS WITH A DELETED EDGE

WAI CHEE SHIU AND RICHARD M. LOW

ABSTRACT. Let A be a non-trivial abelian group. A connected simple graph G=(V,E) is A-antimagic if there exists an edge labeling $f:E(G)\to A\setminus\{0\}$ such that the induced vertex labeling $f^+:V(G)\to A$, defined by $f^+(v)=\sum_{uv\in E(G)}f(uv)$, is injective. The integer-antimagic spectrum of a graph G is the set $IAM(G)=\{k\mid G \text{ is } \mathbb{Z}_k\text{-antimagic and }k\geq 2\}$. In this article, we determine the integer-antimagic spectra of complete bipartite graphs and complete bipartite graphs with a deleted edge.

1. Introduction

Let G be a connected simple graph. For any non-trivial abelian group A (written additively), let $A^* = A \setminus \{0\}$, where 0 is the additive identity of A. Let a function $f: E(G) \to A^*$ be an edge labeling of G and $f^+: V(G) \to A$ be its induced labeling, which is defined by $f^+(v) = \sum_{uv \in E(G)} f(uv)$. If there exists a labeling f whose induced map on V(G) is a constant map, we say that f is an A-magic labeling of G and that G is an A-magic graph. The corresponding constant m is called an A-magic value.

If there exists an edge labeling f of G whose induced labeling f^+ on V(G) is injective, then we say that f is an A-antimagic labeling of G and that G is an A-antimagic graph. The integer-antimagic spectrum of a graph G is the set

 $IAM(G) = \{k \mid G \text{ is } \mathbb{Z}_{k}\text{-antimagic and } k \geq 2\}.$

The first author was partially supported by Faculty Research Grant, Hong Kong Baptist University.

The concept of the A-antimagicness property for a graph G (introduced in [1]) naturally arises as a variation of the A-magic labeling problem (where the induced vertex labeling is a constant map). For some classes of graphs, the integer-antimagic spectra have been determined [1,2,7,8]. An antimagic labeling of G (where the edges of G are labeled distinctly with $1,2,\ldots,|E(G)|$) is a particular type of $\mathbb Z$ -antimagic labeling. Readers interested in antimagic labelings can find many papers within the literature. In this paper, we determine the integer-antimagic spectra of $K_{m,n}$ and $K_{m,n} - \{e\}$.

A labeling matrix for a labeling f of a graph G is a matrix whose rows and columns are indexed by the vertices of G and the (u, v)-entry is f(uv) if $uv \in E$, and is * otherwise. In particular, if f is an A-magic labeling of G, then a labeling matrix of f is called an A-magic labeling matrix of G. Thus, G is A-magic if and only if there exists a labeling $f: E(G) \to A^*$ such that the row sums (as well as the column sums) of the labeling matrix for f are a constant value m, where entries with * will be treated as 0. Similarly, if f is an A-antimagic labeling of G, then a labeling matrix of f is called an A-antimagic labeling matrix of G. Thus, G is G-antimagic if and only if there exists a labeling G-matrix for G-matrix fo

For the complete bipartite graph $K_{m,n}$ (where $n,m \geq 1$) and a suitable indexing of its vertices, a labeling matrix for any edge labeling is of the form

$$\begin{pmatrix} \bigstar_m & L \\ L^T & \bigstar_n \end{pmatrix},$$

where \bigstar_r is a square matrix of order r (with all entries being *) and L is an $m \times n$ matrix whose entries are elements of A^* . So, in order to find an A-antimagic labeling of $K_{m,n}$, we need to find an $m \times n$ matrix L such that the row sums together with the column sums are distinct.

Notation. [a,b] denotes the set of integers between a and b inclusive. Similarly, $[a,\infty)$ denotes the set of integers greater than or equal to a. For multi-sets S and T, we say that $S \equiv T \pmod{k}$ if and only if the sets S and T are equal, after reducing modulo k.

Example 1.1. Consider the graph $K_{3,4}$. Let

$$L = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{pmatrix}.$$

Then, the row sums of L are 10, 14, 18 and the column sums of L are 6, 9, 12, 15. Clearly,

$$\begin{pmatrix} \bigstar_3 & L \\ L^T & \bigstar_4 \end{pmatrix} = \begin{pmatrix} * & * & * & 1 & 2 & 3 & 4 \\ * & * & * & 2 & 3 & 4 & 5 \\ * & * & * & 3 & 4 & 5 & 6 \\ \hline 1 & 2 & 3 & * & * & * & * \\ 2 & 3 & 4 & * & * & * & * \\ 3 & 4 & 5 & * & * & * & * \\ 4 & 5 & 6 & * & * & * & * \end{pmatrix}.$$

So, $K_{3,4}$ is \mathbb{Z} -antimagic. Moreover, if all of the sums are taken in \mathbb{Z}_7 , then we see that the row sums (as well as the column sums) of the above matrix are distinct. So, $K_{3,4}$ is also \mathbb{Z}_7 -antimagic. Note that this matrix is not a \mathbb{Z}_8 -antimagic labeling matrix of $K_{3,4}$. Later, we establish that $IAM(G)(K_{3,4}) = [7, \infty)$.

Example 1.2. Let $L = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$. The row and column sums of L are 2, 3, 4 and 5. Hence, $K_{2,2}$ is \mathbb{Z}_k -antimagic for $k \geq 4$ (and also \mathbb{Z} -antimagic).

2. Some useful results

In this section, we list a few known results and new lemmas. These will be used to establish the integer-antimagic spectra of $K_{m,n}$ and $K_{m,n} - \{e\}$.

Lemma 2.1 ([1, Lemma 1]). Let $m \ge 0$. A graph G of order 4m + 2 is not \mathbb{Z}_{4m+2} -antimagic.

Theorem 2.2 ([1, Theorem 6]). For odd $n \geq 5$, $K_{1,n-1}$ is \mathbb{Z}_k -antimagic for all $k \geq n$. For even $n \geq 4$, $K_{1,n-1}$ is \mathbb{Z}_k -antimagic for all $k \geq n+2$; but not \mathbb{Z}_n -antimagic nor \mathbb{Z}_{n+1} -antimagic.

Clearly, $K_{1,1} \cong P_2$ is not \mathbb{Z}_k -antimagic, for all $k \geq 2$. Also, $K_{1,2} \cong P_3$ is \mathbb{Z}_k -antimagic, for all $k \geq 3$, since one merely labels the two edges of $K_{1,2}$ with 1 and 2. Thus, we only consider $K_{m,n}$, for $m, n \geq 2$.

Theorem 2.3 ([5, Theorem 1]). Suppose that A is a non-trivial abelian group, and m, n are even (≥ 2) . Then, $K_{m,n}$ has an A-magic labeling with magic value 0.

Theorem 2.4 ([5, Theorem 3]). Suppose m is odd, with $m \geq 3$ and $n \geq 2$. For any abelian group A where $|A| \geq 3$, $K_{m,n}$ has an A-magic labeling with magic value 0.

Corollary 2.5. Suppose A is an abelian group of order at least 3. There is an A-magic labeling for $K_{m,n}$ with magic value 0, where $m \geq 2$ and $n \geq 2$.

Proof. This follows immediately from Theorems 2.3 and 2.4. \Box

We now focus our attention on \mathbb{Z}_k -antimagic labelings of $K_{m,n}$. For a fixed non-trivial abelian group A, let $M_{m,n}$ be an $m \times n$ matrix such that

$$\begin{pmatrix} \bigstar_m & M_{m,n} \\ M_{m,n}^T & \bigstar_n \end{pmatrix}$$

is an A-magic labeling matrix (for $K_{m,n}$) with magic value 0. That is, the row and column sums of $M_{m,n}$ are zero, under the operation of A.

For $n, m \geq 3$ and a fixed $k \geq m + n$, we want to find an $m \times n$ matrix L (whose entries are in \mathbb{Z}_k^*) with distinct row and column sums, modulo k. Consider a matrix of the form

$$L = \begin{pmatrix} & & & & r_1 \\ & M_{m-1,n-1} & & \vdots \\ & & & \vdots \\ \hline c_1 & c_2 & \cdots & c_{n-1} & b \end{pmatrix}. \tag{2.1}$$

Then, the row and column sums of L are $r_1, \ldots, r_{m-1}, b + \sum_{j=1}^{n-1} c_j$ and $c_1, \ldots, c_{n-1}, b + \sum_{i=1}^{m-1} r_i$, respectively. Thus, we need to find elements $r_1, \ldots, r_{m-1}, c_1, \ldots, c_{n-1}, b$ in \mathbb{Z}_k^* such that $r_1, \ldots, r_{m-1}, b + \sum_{j=1}^{n-1} c_j; c_1, \ldots, c_{n-1}, b + \sum_{i=1}^{m-1} r_i$ are distinct.

Lemma 2.6. Let $x, y \in \mathbb{Z}_k$ and $x \neq 0$. If x = y + a, then there exists an element $b \in \mathbb{Z}_k^*$ such that x + b = 0 and y + b = -a.

Proof. Let b=-x. Since $x \neq 0$, we have that $b \in \mathbb{Z}_k^*$. Clearly, x+b=0 and y+b=-a.

Lemma 2.7. Suppose $m, n \geq 3$ and $k \geq m+n$. If there exists a set of m+n-2 integers $\{r_1, \ldots, r_{m-1}, c_1, \ldots, c_{m-1}\} \equiv [1, m+n-2] \pmod{k}$ such that $\sum_{j=1}^{n-1} c_j \not\equiv 0 \pmod{k}$ and $\sum_{j=1}^{n-1} c_j - \sum_{i=1}^{m-1} r_i \equiv 1 \pmod{k}$, then $K_{m,n}$ is \mathbb{Z}_k -antimagic.

Proof. Using Lemma 2.6, let $a=1, \ x=\sum_{j=1}^{n-1}c_j\not\equiv 0\pmod k$, and $y=\sum_{i=1}^{m-1}r_i\equiv 1\pmod k$. Then, there is an element $b\in\mathbb{Z}_k^*$ such that

$$\left\{b + \sum_{j=1}^{n-1} c_j, b + \sum_{i=1}^{m-1} r_i\right\} = \{-1, 0\} \text{ in } \mathbb{Z}_k.$$

Thus

$$\{r_1, \dots, r_{m-1}, b + \sum_{j=1}^{n-1} c_j, c_1, \dots, c_{n-1}, b + \sum_{i=1}^{m-1} r_i\} \equiv [-1, m+n-2] \text{ in } \mathbb{Z}_k.$$
Hence, $K_{m,n}$ is \mathbb{Z}_k -antimagic.

3. Integer-antimagic spectrum of $K_{m,n}$

In this section, we prove the following theorem.

Theorem 3.1. For $m, n \geq 2$,

$$IAM(K_{m,n}) = \begin{cases} [m+n,\infty), & \text{if } m+n \not\equiv 2 \pmod{4}; \\ [m+n+1,\infty), & \text{if } m+n \equiv 2 \pmod{4}. \end{cases}$$

From Example 1.2 or [1], we know that $K_{2,2} \cong C_4$ is \mathbb{Z}_k -antimagic, for $k \geq 4$. So without loss of generality, we assume that $n \geq 3$.

3.1. m = 2.

In this subsection, we do not construct L as described in Eq. (2.1).

1. Suppose n=4r, where $r\geq 1$. Consider the $2\times 4r$ matrix L_0 in Figure 1. We swap the entries in the second column of L_0 to obtain the matrix L in Figure 2. Hence, the set of row and column sums of L is $[-2r-1,2r+1]\setminus\{0\}$. This implies that $K_{2,4r}$ is \mathbb{Z}_k -antimagic, for $k\geq 4r+3$. Note that $K_{2,4r}$ is not \mathbb{Z}_{4r+2} -antimagic (by Lemma 2.1).

Column nos.	1	2	 $2\tau - 1$	2r	2r + 1	2r + 2	 4r - 1	41	Row sum
7	1	1	 1	1	-1	-1	 -1	-1	0
$L_0 =$	$1 \\ -2r - 1$	-27	 -3	-2	2	3	 2r	2r + 1	0
Column sum									

FIGURE 1

Column nos.	1	2		2r - 1	2τ	2r + 1	2r + 2	 4r - 1	4r	Row sum
L =	1	-2τ	,	1	1	-1	-1	 -1	-1	-2r - 1
	-2r - 1	1		-3	-2	2	3	 2r	2r + 1	2r + 1
Column sum										

FIGURE 2

Note. To save space, we will omit the "Column nos.", "Column sum" and "Row sum" headings on subsequent matrices within this paper.

2. Suppose n=4r+2, where $r\geq 1$. Consider the $2\times (4r+2)$ matrix L_0 in Figure 3.

FIGURE 3

We change the first entry of the (r+1)-st column from 1 to -r to obtain the matrix L in Figure 4.

	1	 T	r+1	r+2	 2r + 1	2r + 2	2r + 3	 4r + 1	4r + 2	- 1
1 -	1	 1	-r	1	 1	-1	-1	 -1	-1	-r - 1
L=	$\frac{1}{-2r-2}$	 -r - 3	-r - 2	-r - 1	 -2	2	3	 2r + 1	2r + 2	0
	-2r - 1	 -r - 2	-2r - 2	-r	 1	1	2	 2r	2r + 1	

FIGURE 4

Hence, the set of row and column sums of L is [-2r-2, 2r+1]. This implies that $K_{2,4r+2}$ is \mathbb{Z}_k -antimagic, for $k \geq 4r+4$.

3. Suppose n=2s+1, where $s\geq 1$. Consider the $2\times (2s+1)$ matrix L in Figure 5. The set of row and column sums of L is [-s-1,s+1]. This implies that $K_{2,2s+1}$ is \mathbb{Z}_k -antimagic, for $k\geq 2s+3$ (where $s\geq 1$).

FIGURE 5

3.2. $m \geq 3$.

In this subsection, we construct L as described in Eq. (2.1).

- 1. One of m and n is odd and the other is even. Without loss of generality, we assume m=2i+1 and n=2j, where $i\geq 1$ and $j\geq 2$. Let b=-1 and let the sequences $(c_1,c_2,\ldots,c_{2j-5},c_{2j-4},c_{2j-3},c_{2j-2};c_{2j-1})=(2,-2,\ldots,j-1,-j+1,j,-j;1)$ and $(r_1,r_2,\ldots,r_{2i-3},r_{2i-2},r_{2i-1},r_{2i})=(j+1,-j-1,\ldots,j+i-1,-j-i+1,j+i,-j-i)$. The set of row and column sums is [-i-j,i+j]. Hence, IAM $(K_{2i+1,2j})=[2i+2j+1,\infty)$.
- 2. Both m and n are even and $m+n\equiv 2\pmod 4$. That is, m=2i and n=2j with $i,j\geq 2$ and i+j is odd. Let b=-(i+j) and let the sequences

$$(c_1, c_2, \ldots, c_{2j-3}, c_{2j-2}; c_{2j-1}) = (2, -2, \ldots, j, -j; j+i+1)$$
 and $(r_1, r_2, \ldots, r_{2i-3}, r_{2i-2}; r_{2i-1}) = (j+1, -j-1, \ldots, j+i-1, -j-i+1; j+i).$ The set of row and column sums is $[-i-j+1, i+j+1] \setminus \{-1\}$. Hence, $K_{2i,2j}$ is \mathbb{Z}_k -antimagic for $k \geq 2i+2j+1$. Note that in this case, $K_{m,n}$ is not \mathbb{Z}_{m+n} -antimagic (by Lemma 2.1).

3. Both m and n are even and $m+n\equiv 0\pmod 4$. That is, m=2i and n=2j with $i,j\geq 2$ and i+j is even. When $k\geq 2i+2j+1$, the labeling defined above (in Case 2) shows that $K_{2i,2j}$ is \mathbb{Z}_k -antimagic.

So, the remaining case is when k = 2i+2j. First, note that if i+j=4, then i = j = 2. It is easy to see that

$$L = \begin{pmatrix} & & & 3 \\ M_{3,3} & & -2 \\ & & 1 \\ \hline -3 & 2 & -1 & 2 \end{pmatrix}$$

can be used to construct a \mathbb{Z}_8 -antimagic labeling matrix of $K_{4,4}$. Now, let $i+j\neq 4$. In particular, $i+j\geq 6$. Our aim is to choose distinct $c_1,\ldots,c_{2j-1},r_1,\ldots,r_{2i-1}$ from $[1,i+j]\cup[-i-j+1,-2]\equiv[1,2i+2j-2]$ (mod 2i+2j) such that they satisfy the hypothesis of Lemma 2.7. We let $c_1=1,\,c_2=i+j-1,\,c_3=(i+j)/2+1,\,r_1=i+j,\,r_2=-i-j+1,\,r_3=-(i+j)/2-1$. They are distinct, since $i+j\neq 4$. We choose the remaining c_s (an even number of them) and r_t (an even number of them) from $[2,i+j-2]\cup[-i-j+2,-2]\setminus\{(i+j)/2+1,-(i+j)/2-1\}$ so that each c_s,c_s' (and each r_t,r_t') pair add up to 0, (mod 2i+2j). Thus, $\sum_{p=1}^{2j-1}c_p=c_1+c_2+c_3=3(i+j)/2+1\not\equiv 0$, (mod 2i+2j), and $\sum_{r=1}^{2i-1}r_q=r_1+r_2+r_3=-(i+j)/2$, (mod 2i+2j). Then,

$$\sum_{p=1}^{2j-1} c_p - \sum_{q=1}^{2i-1} r_q = 2(i+j) + 1 \equiv 1, \pmod{2i+2j}.$$

Hence by Lemma 2.7, $K_{2i,2j}$ is \mathbb{Z}_{2i+2j} -antimagic, for $i+j\neq 4$.

4. Both m and n are odd and $m+n\equiv 2\pmod 4$. That is, m=2i+1 and n=2j+1 with $i,j\geq 1$ and i+j is even. Without loss of generality, we assume $j\geq i\geq 1$.

Suppose j = 1 = i. Then,

$$L = \begin{pmatrix} 1 & -2 & 2 \\ -1 & 2 & -3 \\ -1 & 3 & -2 \end{pmatrix}$$

can be used to construct a \mathbb{Z}_k -antimagic labeling matrix of $K_{3,3}$ for $k \geq 7$. Note that $K_{3,3}$ is not \mathbb{Z}_6 -antimagic (by Lemma 2.1).

Now, suppose $j \ge 2$. Let b = -2 and let the sequences $(c_1, c_2, c_3, c_4; c_5, c_6, \ldots, c_{2j-1}, c_{2j}) = (1, 2, i+j, -j-i-1; 3, -3, \ldots, j, -j)$

and

 $(r_1, r_2; r_3, r_4 \dots, r_{2i-1}, r_{2i}) = (j+i+1, -j-i; j+1, -j-1, \dots, j+i-1, -j-i+1)$. The set of row and column sums is $[-i-j-1, i+j+1] \setminus \{-2\}$. Hence, $K_{2i+1,2j+1}$ is \mathbb{Z}_k -antimagic, for $k \geq 2i+2j+3$. Note that in this case, $K_{m,n}$ is not \mathbb{Z}_{m+n} -antimagic (by Lemma 2.1).

5. Both m and n are odd and $m+n\equiv 0\pmod 4$. That is, m=2i+1 and n=2j+1 with $i,j\geq 1$ and i+j is odd. Without loss of generality, we assume $j>i\geq 1$. When $k\geq 2i+2j+3$, the labeling defined above (in Case 4) shows that $K_{2i+1,2j+1}$ is \mathbb{Z}_k -antimagic.

So, the remaining case is when k = 2i + 2j + 2. First, note that if i + j = 3, then i = 1 and j = 2. Then,

$$L = \begin{pmatrix} M_{2,4} & 2 \\ -4 & -2 & 3 & 1 & 1 \end{pmatrix}$$

can be used to construct a \mathbb{Z}_8 -antimagic labeling matrix of $K_{3,5}$. Now, let $i+j\neq 3$. In particular, $i+j\geq 5$. Our aim is to choose distinct $c_1,\ldots,c_{2j},r_1,\ldots,r_{2i}$ from $[1,i+j+1]\cup[-i-j,-2]\equiv[1,2i+2j]$ (mod 2i+2j+2) such that they satisfy the hypothesis of Lemma 2.7. We let $c_1=1,\,c_2=(i+j-1)/2,\,c_3=i+j,\,c_4=-i-j+1,\,r_1=-(i+j-1)/2,\,r_2=i+j-1,\,r_3=-i-j,\,r_4=i+j+1$. They are distinct, since $i+j\neq 3$. We choose the remaining c_s (an even number of them) and r_t (an even number of them) from $[2,i+j-2]\cup[-i-j+2,-2]\setminus\{(i+j-1)/2,-(i+j-1)/2\}$ so that each c_s,c_s' (and each r_t,r_t') pair add up to 0, (mod 2i+2j+2). Thus, $\sum_{p=1}^{2j}c_p=c_1+c_2+c_3+c_4=2+(i+j-1)/2\not\equiv 0$ (mod 2i+2j+2) and $\sum_{q=1}^{2i}r_q=r_1+r_2+r_3+r_4=i+j-(i+j-1)/2\pmod{2i+2j+2}$). Then,

$$\sum_{p=1}^{2j} c_p - \sum_{q=1}^{2i} r_q = 1, \pmod{2i+2j+2}.$$

Hence, by Lemma 2.7, $K_{2i+1,2j+1}$ is $\mathbb{Z}_{2i+2j+2}$ -antimagic, for $i+j\neq 3$. Therefore, we have established Theorem 3.1.

FIGURE 6. $K_{3,3}$ is \mathbb{Z}_k -antimagic, for $k \geq 7$.

4. Integer-antimagic spectrum of $K_{m,n}-\{e\}$

Let $K_{m,n} - \{e\}$ denote the graph obtained from $K_{m,n}$ by deleting a single edge. The *null set* of a graph G, denoted by N(G), is the set of numbers $k \in \mathbb{N}$, where G has a \mathbb{Z}_k -magic labeling with magic-value 0 (by convention, $\mathbb{Z}_1 = \mathbb{Z}$). The null sets of some graphs have been established in [3–6]. The following lemmas were proved in [6] and will be used for this section of the paper.

Lemma 4.1 ([6, Corollary 3.4]). $N(K_{r,s} - \{e\}) = \mathbb{N} \setminus \{2\}$ for $r \geq s \geq 5$.

Lemma 4.2 ([6, Corollary 3.8]). $N(K_{r,3} - \{e\}) = \mathbb{N} \setminus \{2,3\}$, for $r \geq 3$.

Lemma 4.3 ([6, Theorem 3.10]). $N(K_{r,4} - \{e\}) = \mathbb{N} \setminus \{2\}$ for $r \geq 4$.

Lemma 4.4 ([6, Corollary 3.6]). For $r \geq 3$, $N(K_{r,2} - \{e\}) = \emptyset$.

For the sake of consistency in this paper, we will apply Lemmas 4.1-4.4 for $s \ge r \ge 3$. By using the above lemmas and applying the constructions of Section 3 to $K_{m,n} - \{e\}$ for $n \ge m \ge 4$, we see that $K_{m,n} - \{e\}$ is \mathbb{Z}_k -antimagic for $k \ge m+n$ if $m+n \not\equiv 2 \pmod 4$; and for $k \ge m+n+1$ if $m+n \equiv 2 \pmod 4$. However, Lemma 4.4 indicates that new constructions (different from those found in Section 3) must be used, when m=3 and 2.

4.1. m=3.

In this subsection, we do not construct L as described in Eq. (2.1). For $K_{3,n} - \{e\}$, consider a labeling matrix L of the form

$$L = \begin{pmatrix} * & b & c_3 & c_4 & c_5 & \cdots & c_{n-1} & c_n \\ \hline l_{21} & l_{22} & & & & B \\ \hline l_{31} & l_{32} & & & & B \end{pmatrix},$$

where B is a $2 \times (n-2)$ matrix. Now, we have to choose B and the values of the other entries so that the row and column sums of L are distinct (in a non-trivial abelian group). Typically, we will choose $B = M_{2,n-2}$. In this case, c_p represents the p-th column sum of L, $3 \le p \le n$.

- 1. n=2j, where $j \geq 2$. Let $\{c_p \mid 5 \leq p \leq 2j\} = [-j-1, j+1] \setminus \{0,1,-1,2,-2,3,-3\}$, b=-2, $c_3=1$, $c_4=3$, $l_{21}=2$, $l_{22}=-2$, $l_{31}=-3$ and $l_{32}=1$. The first and second column sums are -1 and -3, respectively. The row sums are 2, 0 and -2. Hence, the set of row and column sums of L is [-j-1, j+1]. Thus, $K_{3,2j}-\{e\}$ is \mathbb{Z}_k -antimagic, for $k \geq 2j+3=n+3$.
- 2. n = 2j + 1, where $j \ge 1$ and j is odd. Then, $n + 3 \equiv 2 \pmod{4}$. Let $\{c_p \mid 4 \le p \le 2j + 1\} = [-j 2, j + 2] \setminus \{0, 1, -1, 2, -2, 3, -3\}, \ b = 1, c_3 = -2, \ l_{21} = 1, \ l_{22} = 2, \ l_{31} = -1 \ \text{and} \ l_{32} = -2$. The first and second column sums are 0 and 1, respectively. The row sums are -1, 3 and -3. Hence, the set of row and column sums of L is $[-j 2, j + 2] \setminus \{2\}$. Thus, $K_{3,2j+1} \{e\}$ is \mathbb{Z}_k -antimagic, for $k \ge 2j + 5 = n + 4$. By Lemma 2.1, $K_{3,n} \{e\}$ is not \mathbb{Z}_{n+3} -antimagic. Hence, IAM $(K_{3,n} \{e\}) = [n+4,\infty)$.
- 3. n=4s+1, where $s\geq 1$. This corresponds to Case 2, where $j\geq 1$ and j is even. Note that the labeling described in Case 2 provides a \mathbb{Z}_k -antimagic labeling of $K_{3,4s+1}$, for $k\geq 4s+5$. Thus, we need to construct a \mathbb{Z}_{4s+4} -antimagic labeling of $K_{3,4s+1}$. Let $\{c_p\mid 6\leq p\leq 4s+1\}=[-2s,2s]\setminus\{0,\pm(s+1),\pm(s+2)\}$ and let b=2s+2, $c_3=2s+1,$ $c_4=s+1,$ $c_5=s+2,$ $l_{21}=2s+2,$ $l_{22}=s,$ $l_{31}=s+1$ and $l_{32}=s+2.$ Namely,

$$L = \begin{pmatrix} * & 2s+2 & 2s+1 & s+1 & s+2 & c_6 \cdots & c_{4s} & c_{4s+1} \\ \hline 2s+2 & s & & & & \\ s+1 & s+2 & & & & \\ \end{pmatrix}$$

The set of column sums of L is

$$[-2s, 2s] \setminus \{0, \pm (s+1),$$

$$\pm(s+2)\} \cup \{3s+3,4s+4,2s+1,s+1,s+2\} \equiv [-2s,2s+1] \setminus \{-s-2\},$$

 $\pmod{4s+4}$. The set of row sums of L is

$${6s+6, 3s+2, 2s+3} \equiv {2s+2, -s-2, -2s-1} \pmod{4s+4}.$$

Combining these two sets, we obtain [-2s-1, 2s+2]. Thus, $K_{3,4s+1}-\{e\}$ is \mathbb{Z}_{4s+4} -antimagic. Hence, $\mathrm{IAM}(K_{3,n}-\{e\})=[n+3,\infty)$.

4.2. m=2.

In this subsection, we do not construct L as described in Eq. (2.1).

1. Suppose n = 2r, where $r \ge 1$.

When r=1, we see that $K_{2,2}-\{e\}\cong P_4$, which is \mathbb{Z}_k -antimagic, for $k\geq 4$ (see [1]).

When r = 2, let

$$L = \begin{pmatrix} * & 2 & 2 & -2 \\ 1 & -2 & 1 & -1 \end{pmatrix}.$$

Hence $K_{2,4} - \{e\}$ is \mathbb{Z}_k -antimagic, for $k \geq 7$. Note that $K_{2,4} - \{e\}$ is not \mathbb{Z}_6 -antimagic (by Lemma 2.1).

When $r \geq 3$, let L be as described in Figure 7.

FIGURE 7

The set of row and column sums is $[-r, r+2] \setminus \{-1\}$. Hence, $K_{2,2r} - \{e\}$ is \mathbb{Z}_k -antimagic for $k \geq 2r + 3$.

When r=2s is even, the discussion above (and Lemma 2.1) show that $IAM(K_{2,4s})=[4s+3,\infty)$, for $s\geq 1$. Hence, the remaining case which needs to be resolved is when r=2s+1 and k=4s+4, where $s\geq 1$.

When s = 1, let

Hence, $K_{2,6} - \{e\}$ is \mathbb{Z}_8 -antimagic.

When s=2, let

Hence, $K_{2,10} - \{e\}$ is \mathbb{Z}_{12} -antimagic.

When s = 3, let L be as described in Figure 8.

FIGURE 8

Hence, $K_{2,14} - \{e\}$ is \mathbb{Z}_{16} -antimagic.

When $s \geq 4$, let L_0 be as described in Figure 9.

FIGURE 9

Changing the (1, 3s+5)-th entry from -s to -2, we obtain L as described in Figure 10.

FIGURE 10

The set of row and column sums of L is [-2s-3,2s], mod 4s+4. Hence, $K_{2,4s+2}-\{e\}$ is \mathbb{Z}_{4s+4} -antimagic.

2. Suppose n = 2r + 1, where $r \ge 1$.

When r = 1, let

$$L = \begin{pmatrix} * & 1 & 2 \\ 1 & 3 & -2 \end{pmatrix}.$$

Hence, $K_{2,3} - \{e\}$ is \mathbb{Z}_k -antimagic, for $k \geq 5$.

When $r \geq 2$, let L_0 be as described in Figure 11.

FIGURE 11

Changing the (1, 2r)-th entry from -2 to -1, we obtain L as described in Figure 12.

FIGURE 12

The set of row and column sums of L is [-r-1, r+1], mod 2r+3. Hence, $K_{2,2r+1} - \{e\}$ is \mathbb{Z}_k -antimagic for $k \geq 2r+3$.

Combining the discussion above, we have established the following theorem.

Theorem 4.5. For $m, n \geq 2$,

$$IAM(K_{m,n} - \{e\}) = \begin{cases} [m+n, \infty), & \text{if } m+n \not\equiv 2 \pmod{4}; \\ [m+n+1, \infty), & \text{if } m+n \equiv 2 \pmod{4}. \end{cases}$$

FIGURE 13. $K_{2,4} - \{e\}$ is \mathbb{Z}_k -antimagic, for $k \geq 7$.

REFERENCES

- W.H. Chan, R.M. Low and W.C. Shiu, Group-antimagic labelings of graphs, Congr. Numer., 217 (2013), 21-31.
- [2] D. Roberts and R.M. Low, Group-antimagic labelings of multi-cyclic graphs, preprint, 2014.
- [3] E. Salehi, Zero-sum magic graphs and their null sets, Ars Combin., 82 (2007), 41-53.
- [4] E. Salehi, On zero-sum magic graphs and their null sets, Bulletin of the Institute of Mathematics, Academia Sinica, 3 (2008), 255-264.
- [5] W.C. Shiu and R.M. Low, Group magicness of complete n-partite graphs, J. Combin. Math. Combin. Comput., 58 (2006), 129-134.
- [6] W.C. Shiu and R.M. Low, Group-magic labelings of graphs with deleted edges, Australas. J. Combin., 57 (2013), 3-19.
- [7] W.C. Shiu and R.M. Low, The integer-antimagic spectra of dumbbell graphs, preprint, 2014.
- [8] W.C. Shiu, P.K. Sun and R.M. Low, Integer-antimagic spectra of tadpole and lollipop graphs, preprint, 2015.
- [9] T-M. Wang and C-C. Hsiao, On anti-magic labeling for graph products, *Discrete Math.*, 308 (2008), 3624-3633.
- [10] T-M. Wang, C-C. Hsiao and S-M. Lee, A note on edge-graceful spectra for the square of paths, Discrete Math., 308 (2008), 5878-5885.

Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Hong Kong, China.

E-mail address: wcshiu@hkbu.edu.hk

DEPARTMENT OF MATHEMATICS, SAN JOSE STATE UNIVERSITY, SAN JOSE, CA 95192, USA.

E-mail address: richard.low@sjsu.edu