2 (a) Fig. 2.1 shows a liquid in a cylindrical container.

Fig. 2.1

The cross-sectional area of the container is A. The height of the column of liquid is h and the density of the liquid is ρ .

Show that the pressure p due to the liquid on the base of the cylinder is given by

$$p = \rho g h$$
.

(b) The variation with height *h* of the total pressure *P* on the base of the cylinder in **(a)** is shown in Fig. 2.2.

Fig. 2.2

(i)	Explain why	the line of	he graph ir	r Fig. 2.2 does	s not pass th	hrough the	origin (0,0).
-----	-------------	-------------	-------------	-----------------	---------------	------------	---------------

 	 	 	 	•
			[1	1

density =
$$kg m^{-3} [2]$$

[Total: 6]