

Séries temporelles : Modèles et Applications

Dernière mise à jour : 16/022022

Code	HE	HNE	ECTS
MS-71	30	30	2

Responsable Module	Sifi Sami
Enseignants – Amel Hedhili, Nehla Debbabi, Hedi Riahi Intervenants	
Unité pédagogique	Mathématiques
Unité d'enseignement	Intelligence des affaires
Prérequis 1	TICPST0028, ST-02
Niveaux et Options	4ERP-BI / 4CERP-BI / 4DS

Objectif du module²:

Le module à pour objectif d'initier l'étudiant à la conception, construction, modélisation et prédiction d'une série temporelle.

Mode d'évaluation³:

La moyenne de ce module est calculée comme suit :

• Contrôle continue : 20% (comptes rendus TP)

• Examen: 80%

Acquis d'apprentissage :

à la validation de ce module l'étudiant sera capable de: À la fin de ce module, l'étudiant sera capable de :

	, , , , , , , , , , , , , , , , , , ,	•
AA1	Décrire et Analyser les dynamiques internes d'une série temporelle, au moyen d'outils graphiques et statistiques.	4
AA2	Choisir les composantes mathématiques adéquates pour reconstruire la dynamique originale d'une série temporelle.	2

AA3	Choisir le modèle adéquat pour l'évolution moyenne d'une série temporelle.	2-4-5	
AA4	Expliquer le concept de stationnarité d'une série temporelle.	2	
AA5	Expliquer et appliquer les étapes nécessaires pour stationnariser une série temporelle.	3-4-6	
AA6	Appliquer la classe des modèles autorégressifs pour la modélisation et la prédiction d'une série temporelle.	3-5-6	

^{*: (1:} Mémoriser, 2: Comprendre, 3: Appliquer, 4: Analyser, 5: Evaluer, 6: Créer).

Contenu détaillé⁴

Analyse Graphique d'une série temporelle

- Construction d'une série temporelle
- Analyse graphique d'une série temporelle : stationnarité, Tendance, saisonnalité, comportement cyclique, changement structurel, détection des aberrances...

Situation(s) d'apprentissage	Cours /TP
Durée	3
Rendu(s)	TP

Analyse statistique d'une série temporelle

- Décomposition paramétrique d'une série temporelle
- Fonction d'autocorrélation
- Fonction de corrélation croisée

Situation(s) d'apprentissage	Cours/TP.
Durée	6h
Rendu(s)	TP

Ajustement d'une série temporelle

- Modèles linéaires pour l'ajustement d'une série temporelle

- Modèles à changements structurels : détection des points de ruptures

Situation(s) d'apprentissage	Cours/TP.
Durée	9H
Rendu(s)	TP

Stationnarité d'une série temporelle

- Test de stationnarité : Dickey-Fuller
- Stationnarisation d'une série temporelle

Situation(s) d'apprentissage	Cours/TP.
Durée	6H
Rendu(s)	TP

Modélisation ARMA

Condition de stationnarité d'un modèle ARMA :

Opérateur de retard Polynôme caractéristique

- Méthode de Box and Jenkins pour la construction d'un modèle ARMA
- Modèle SARIMA : Seasonnal ARIMA

Situation(s) d'apprentissage	Cours/TP.
Durée	6H
Rendu(s)	TP

Evaluation⁶:

Evaluation:

	Oral assessment	Written exam/ MCQ	Report/ Homewo rk	Presenta tion	TP	Project
AA1			X		X	
AA2			X		X	
AA3			X		X	
AA4			X		X	X
AA5			X		X	

AA6			X		X	X
-----	--	--	---	--	---	---

Références⁷:

Textbook :	Time Series Analysis and Its Applications : With R Examples, Springer, 2017. Robert H. Shumway, David S. Stoffer (ISBN-10: 3319524518)
Références bibliographiques :	Time Series Analysis With Applications in R, Springer, 2010. Jonathan D. Cryer, Kung-Sik Chan. (ISBN-10: 0387759581)