Proves d'accés a la Universitat. Curs 2006-2007

Tecnologia industrial

Sèrie 2

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Resposta ben contestada, 0,5 punts; resposta mal contestada, -0,16 punts; resposta no contestada, 0 punts.]

Qüestió 1

Una resistència està feta amb fil de constantà de diàmetre 0,5 mm, de llargada 1,2 m i de resistivitat 0,491 $\mu\Omega$ ·m. Quin és el valor d'aquesta resistència?

- a) 3Ω
- b) $7,5 \Omega$
- c) $9,5 \Omega$
- d) 12,5 Ω

Qüestió 2

Els autobusos d'una línia de transport fan el recorregut d'anar i tornar en 30 min. Si la línia disposa de 6 autobusos en servei i cada un té una capacitat nominal de 55 passatgers, quina és la capacitat nominal de transport en passatgers per hora?

- a) 660
- **b)** 110
- **c)** 330
- **d)** 165

Qüestió 3

Un model de desenvolupament afirma que el desenvolupament comporta el consum de més recursos per persona i l'accés de més persones a aquests recursos. Aquest model de desenvolupament és sostenible?

- a) Sí: el consum genera la riquesa necessària per a garantir la sostenibilitat.
- **b)** Sí: els recursos, o són il·limitats (pel que fa al nombre de persones que hi tenen accés) o la riquesa en genera de nous.
- c) Sí: només cal esperar que tothom tingui accés als mateixos recursos.
- d) No: molts recursos són limitats i no és clar que es puguin substituir per altres. A més, s'ha de considerar l'impacte irreversible i nociu produït pel consum massiu de certs recursos.

Qüestió 4

Una bàscula de bany té una precisió de ± 0,5 kg. Una persona es pesa quatre vegades consecutives i obté aquestes lectures: 68,5 kg, 68,8 kg, 68,2 kg i 68,5 kg. Es pot prendre 68,5 kg, amb el marge d'incertesa corresponent, com a resultat de la pesada?

- a) Sí, perquè és el valor més repetit.
- b) Sí, perquè és la mitjana de les lectures.
- c) Sí, perquè coincideix amb la primera lectura.
- d) Sí, perquè la xifra decimal coincideix amb la precisió de la bàscula.

Qüestió 5

L'Incoloy és un aliatge de composició: 33 % Ni (níquel), 44 % Fe (ferro), 20 % Cr (crom) i 3 % d'altres components. Quina quantitat, en kg, de cadascun dels tres components principals hi ha en 325 kg d'aliatge?

	Ni	Fe	Cr
a)	99	132	62,5
b)	97,5	146,3	81,3
c)	107,3	143	65
d)	115,5	154	70

Exercici 2

[2,5 punts]

Una fresadora disposa d'una pantalla de protecció per a evitar que en condicions normals es pugui accedir a la zona de treball quan està en marxa. La màquina s'atura si s'enretira aquesta pantalla i abans no s'ha premut el botó que dóna permís per a fer-ho sense que la màquina s'aturi. Si es prem el botó d'emergència, la màquina s'atura sempre. Utilitzant les variables d'estat:

pantalla a lloc
$$p = \begin{cases} 1 & \text{si} \\ 0 & \text{no} \end{cases}$$
; botó de permís $b = \begin{cases} 1 & \text{premut} \\ 0 & \text{no premut} \end{cases}$; botó d'emergència $e = \begin{cases} 1 & \text{premut} \\ 0 & \text{no premut} \end{cases}$; màquina s'atura $a = \begin{cases} 1 & \text{si} \\ 0 & \text{no} \end{cases}$

a) Escriviu la taula de veritat del sistema.

[1 punt]

- b) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la. [1 punt]
- c) Dibuixeu l'esquema de portes lògiques equivalent.

[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

Una estufa elèctrica té un commutador de 3 posicions per a seleccionar la potència que subministra. En la figura es mostra el circuit elèctric d'aquesta estufa, format per dues resistències elèctriques de valors R_1 = 27 Ω i R_2 = 54 Ω i alimentat a U = 230 V. En funció de la posició del commutador, el terminal A es connecta a 0, 1 o 2 resistències. Determineu, per a la posició 2 del commutador:

a) La resistència equivalent R_{eq} del circuit. [0,5 punts]

b) El corrent / consumit per l'estufa. [0,5 punts]

c) La potència P subministrada per l'estufa. [0,5 punts]

Si el preu del kW·h és *p* = 0,087 €/(kW·h), determineu:

d) El cost econòmic c de mantenir l'estufa encesa durant t = 2 h. [1 punt]

Exercici 4

[2,5 punts]

En un motor de corrent continu, el parell motor Γ i la velocitat angular ω de l'eix estan relacionats amb la tensió d'alimentació U i el corrent consumit I per les expressions:

$$\Gamma = cI$$
; $\omega = \frac{U - IR}{c}$ amb $c = 0.06 \text{ Nm/A}$, $R = 4 \Omega$

Si aquest motor s'alimenta a U = 36 V:

- a) Determineu l'expressió que relaciona la potència mecànica P que proporciona aquest motor amb la velocitat angular ω (expressió sense I). [0,5 punts]
- **b)** Dibuixeu, de manera aproximada i indicant les escales, la corba potència mecànica P en funció de la velocitat angular ω per a $0 \le \omega \le 600$ rad/s. [1 punt]
- c) Calculeu l'energia elèctrica E, en W·h, que consumeix el motor si funciona contínuament durant t = 3 h girant a $\omega = 360$ rad/s. [1 punt]

OPCIÓ B

Exercici 3

[2,5 punts]

Un semàfor de massa m = 45 kg està suspès mitjançant dos cables de la mateixa secció tal com s'indica en la figura. Si es negligeix la massa dels cables, determineu:

a) Els angles φ_1 i φ_2 indicats. [1 punt]

b) Les forces F_1 i F_2 que suporten els cables O_1S i O_2S , respectivament. [1 punt]

c) La relació de tensions normals σ_1/σ_2 a les quals estan sotmesos els cables. [0,5 punts]

Exercici 4

[2,5 punts]

En una planta d'aprofitament de biomassa es reben cada dia $m=70\cdot 10^3$ kg de residus vegetals que tenen un poder calorífic mitjà p=11,5 MJ/kg. La planta produeix electricitat amb un rendiment $\eta_{\rm elec}=0,29$ i la resta d'energia s'aprofita amb un rendiment $\eta_{\rm termic}=0,75$ per a escalfar aigua. La calor específica de l'aigua és $c_{\rm e}=4,18$ J/(g °C) i la temperatura s'incrementa en $\Delta t=35$ °C. Determineu:

a) L'energia elèctrica $E_{\text{elèc}}$, en MW·h, produïda en un dia i la potència elèctrica $P_{\text{elèc}}$ mitjana. [1 punt]

b) La quantitat d'aigua m_{aiqua} , en kg, escalfada en un dia. [1 punt]

c) El cabal mitjà q, en l/s, d'aigua escalfada. [0,5 punts]

Proves d'accés a la Universitat. Curs 2006-2007

Tecnologia industrial

Sèrie 1

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Resposta ben contestada, 0,5 punts; resposta mal contestada, -0,16 punts; resposta no contestada, 0 punts.]

Qüestió 1

Una fàbrica de rajoles fabrica un model de mides 310 mm \times 610 mm \times 9 mm. Si se sap que 6 rajoles tenen un pes de 204,2 N, quina és la densitat mitjana ρ del material de què són fetes les rajoles? ($g = 10 \text{ m/s}^2$)

- a) 2 · 103 kg/m3
- b) 12 · 103 kg/m3
- c) 19,6 · 103 kg/m³
- **d**) $117 \cdot 10^3 \text{ kg/m}^3$

Qüestió 2

En una màquina eina de control numèric es realitzen sobre cada peça tres operacions simultànies. La durada de les operacions és t_1 = 8 s, t_2 = 16 s i t_3 = 20 s, i el temps necessari per a canviar de peça és t_c = 5 s. Quin és el nombre màxim de peces que es poden mecanitzar per hora?

- **a)** 73
- **b**) 144
- c) 150
- **d)** 180

Qüestió 3

Un tècnic d'una empresa proposa la reestructuració d'una línia de producció amb l'únic argument d'augmentar el nombre d'unitats produïdes per hora. És suficient aquest argument per a justificar el canvi?

- a) Sí, ja que el canvi comportaria augmentar els beneficis de l'empresa.
- b) Sí, ja que el canvi comportaria disminuir l'impacte ambiental per unitat produïda.
- c) Sí, ja que augmentar la producció és sempre un avanç tecnològic.
- d) No; cal aportar altres elements de judici: inversions, amortitzacions, seguretat, qualitat...

Qüestió 4

Si s'especifica que el diàmetre d'un eix ha de ser $(27 \pm 0,2)$ mm, cal donar per bons tots els eixos de diàmetre

- a) inferior a 27,2 mm.
- b) superior a 26,8 mm.
- c) superior a 27,2 mm o inferior a 26,8 mm.
- d) comprès entre 26,8 mm i 27,2 mm.

Qüestió 5

La tensió de ruptura d'un aliatge ferro-níquel és σ = 480 MPa. Quina és la força axial màxima que es pot aplicar a una barra massissa de 15 mm de diàmetre sense que es trenqui?

- a) 26,99 kN
- b) 84,82 kN
- c) 11,31 kN
- d) 339,3 kN

Exercici 2

[2,5 punts]

En un magatzem de perfils d'alumini fan un descompte del 20 % a tots els clients habituals, i també als clients no habituals que compren només perfils sencers per un valor superior a 200 €. Utilitzant les variables d'estat:

client habitual
$$c = \begin{cases} 1 & \text{si} \\ 0 & \text{no} \end{cases}$$
; compra superior a $200 \in v = \begin{cases} 1 & \text{si} \\ 0 & \text{no} \end{cases}$;

cal tallar perfils
$$t = \begin{cases} 1 & \text{si} \\ 0 & \text{no} \end{cases}$$
; descompte $d = \begin{cases} 1 & \text{si} \\ 0 & \text{no} \end{cases}$

a) Escriviu la taula de veritat del procés de descompte.

[1 punt]

- b) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la. [1 punt]
- c) Dibuixeu l'esquema de portes lògiques equivalent.

[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

La taula de massa m = 15 kg està articulada en el punt O i es manté en repòs mitjançant el tub PQ de secció resistent s = 12,5 mm². Determineu:

a) L'angle φ del tub PQ. [0,5 punts]

b) La força T que fa el tub PQ. [0,5 punts]

c) Les forces vertical F_{ν} i horitzontal F_{h} en l'articulació O. [1 punt]

d) La tensió normal σ del tub PQ a causa de la força que fa. [0,5 punts]

Exercici 4

[2,5 punts]

Un escalfador, que funciona amb gas natural de poder calorífic $p_{\rm c}$ = 61 MJ/kg, pot arribar a donar un cabal q = 13,8 l/min i elevar la temperatura de l'aigua Δt = 25 °C. La calor específica de l'aigua és $c_{\rm e}$ = 4,18 J/(g °C). Determineu, en aquestes condicions de funcionament:

a) La potència útil P. [1 punt]

b) El rendiment η si el consum del combustible és q_{com} = 0,51 g/s. [1 punt]

c) El temps t i el combustible m necessaris per a escalfar 25 °C un volum d'aigua V = 150 l. [0,5 punts]

OPCIÓ B

Exercici 3

[2,5 punts]

Un calefactor elèctric disposa d'una resistència i d'un interruptor en sèrie que, accionat per un sensor de temperatura, obre el circuit quan s'arriba a la temperatura fixada. Aquest calefactor s'alimenta a U = 230 V i té una potència P = 2000 W. La resistència està formada per fil de nicrom de diàmetre d = 0,4 mm i resistivitat ρ = 10-6 Ω m. Determineu:

a) El valor R de la resistència.

[0,5 punts]

b) La llargada L del fil de la resistència.

[1 punt]

c) El consum E si s'utilitza durant 1,5 h de manera que, per a mantenir la temperatura, l'interruptor funciona cíclicament amb una cadència de 30 s obert i 90 s tancat. [1 punt]

Exercici 4

[2,5 punts]

El parell motor Γ i la velocitat angular ω de l'eix d'un motor de corrent continu estan relacionats amb la tensió d'alimentació U i el corrent consumit I per les expressions:

$$\Gamma = c I$$
; $\omega = \frac{U - IR}{c}$

Un trepant elèctric alimentat a U = 12 V té un motor d'aquestes característiques, l'eix del qual gira com a màxim a ω = 200 rad/s. Aquest motor té una constant de parell c = 0,06 Nm/A i una resistència de l'induït R = 4 Ω .

- a) Dibuixeu, de manera aproximada i indicant les escales, la corba corrent d'alimentació I en funció de la velocitat de gir ω de l'eix. [1 punt]
- **b)** Determineu el parell màxim $\Gamma_{\rm m}$ que és capaç de proporcionar aquest motor i a quina velocitat ω es produeix. [0,75 punts]
- c) Calculeu l'energia elèctrica E, en W·h, que consumeix el motor si funciona contínuament durant t = 4 min a una velocitat $\omega = 120$ rad/s. [0,75 punts]

