עוצמה של קבוצות

- .1 אם חחייע ועל. $f:A \rightarrow B$ אם קיימת $A \approx B$ חחייע ועל.
- ל-ים [A] העוצמה של קבוצה , A מסומנת מסומנת [A] היא מחלקת השקילות [A] ביחס ל- ... = ...
 - $|A| = |B| \Leftrightarrow A \approx B$.3
 - |A|=n נסמן, $Approx\{1,\cdots,n\}$.4
 - . אינסופית A אחרת, $\left|A\right|=n$ טבעי כך טבעי n אינסופית אם סופית A .5
 - היא מוכלת שהיא (וכל הבוצה שהיא אינסופית. הקבוצה אינסופית שהיא מוכלת בה) היא אינסופית. אינסופית. אינסופית.
 - . $|\mathbf{N}| = \aleph_0$: סימון.
 - $|\mathbf{N} \times \mathbf{N}| = \aleph_0$, $|\mathbf{Z}| = \aleph_0$.8
 - |A|<|B| : נסמן, $|A|\neq |B|$ ו- $|A|\leq |B|$ ו- $|A|\leq |B|$, נסמן, $|A|\leq |B|$ אם יש $|A|\leq |B|$
 - . בין עוצמות מוגדר היטב, והוא רפלקסיבי וטרנזיטיבי. ≤ 10
 - . $|A| \le |B|$ אז $A \subseteq B$ אז .11
 - . $|A| \leq \aleph_0$ קבוצה A היא בת-מניה אם .12
 - .13 כל תת-קבוצה של קבוצה בת-מניה היא בת-מניה.
 - .וכל קבוצה סופית הן בנות-מניה. $\mathbf{N}, \mathbf{Z}, \varnothing$: דוגמא
 - על. $f:B \to A$ יש פונקציה $|A| \le |B|$.15
 - .16 איחוד סופי או בן-מניה של קבוצות בנות-מניה הוא בן-מניה.
- וייא (זייא אינסופית: לכל קבוצה אינסופית: לכל קבוצה אינסופית: לכל קבוצה אינסופית: לכל קבוצה אינסופית: $|A-\{a\}|=|A|$, $a\in A$ (מוכלת ממש), כך ש-|B|=|A|. למעשה, לכל אוכל $B\subset A$ (מוכלת ממש), כך ש-

עוצמות (המשך)

- .18 משפט קנטור-ברנשטיין: \geq בין עוצמות הוא אנטי-סימטרי.
 - . $|\mathbf{Q}| = \aleph_0$: מסקנה
 - |A| < |P(A)|: משפט קנטור: לכל קבוצה A, מתקיים: 21
 - .22 מסקנה: יש אינסוף עוצמות אינסופיות שונות.
- 123. משפט (ללא הוכחה, דורש למת צורן): היחס בין עוצמות הוא מלא, ז"א לכל שתי קבוצות (ללא הוכחה, דורש למת צורן): היחס ווא מתקיים או $|B| \leq |A|$ או $|A| \leq |B|$ או A,B
 - . $|\mathbf{R}|=\aleph=\mathbf{c}$:עוצמת הרצף.

$$\left| \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right| = \aleph .25$$

- $|(a,b)| = |(0,1)| = \aleph$: מתקיים a < b ממשיים מספרים שני מספרים.26
- $|(a,b)| = |[a,b]| = |(a,b]| = |[a,b]| = \aleph$ מתקיים a < b ממשיים מספרים לכל שני מספרים.27

פעולות חשבוניות על עוצמות

. $\kappa+\lambda=\left|A\cup B\right|:$ אז אזרות, אז $\left|A\right|=\kappa,\left|B\right|=\lambda$ אם אם $\kappa,\lambda:$ הגדרה הגדרה עוצמות. אם אם אם אם $\left|A\right|=\kappa$

$$0 + \aleph_0 = n + \aleph_0 = \aleph_0 + \aleph_0 = \aleph_0$$
 .29

$$\aleph + \aleph = \aleph$$
 .30

- . $\kappa + \lambda = \lambda + \kappa$: עבור מתקיים עוצמות, עבור κ, λ עוצמות הוא חילופי 31.
 - . $\kappa \cdot \lambda = |A \times B|$ אז: $|A| = \kappa, |B| = \lambda$ עוצמות. אם κ, λ אז: 32.
 - . א $_0^k = \aleph_0^{}:$ טבעי מתקיים א ולכל א $\aleph_0 \cdot \aleph_0 = \aleph_0^{}$.33
 - $. \aleph \cdot \aleph = \aleph .34$

.
$$A^B = \{f \mid f: B \rightarrow A\}$$
 : סימון .35

.
$$\kappa^{\lambda}=\left|A^{B}\right|$$
 אז: $\left|A\right|=\kappa,\left|B\right|=\lambda$ עוצמות. אם κ,λ אז: 36

.
$$|P(A)| = |\{0,1\}^A|$$
 לכל קבוצה א מתקיים. A

$$|P(A)| = 2^{|A|}$$
 : מסקנה.

$$\kappa < 2^{\kappa}$$
 מתקיים. א לכל עוצמה 39.

$$. \aleph_0 < \aleph :$$
 ולכן, $\aleph = 2^{\aleph_0}$.40

41. הפעולות של חיבור וכפל עוצמות מקיימות קיבוץ, חילוף ופילוג.

. 42 תכונות של חזקות של עוצמות

$$.(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu} . \aleph$$

$$\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$$
 . ב.

$$.\left(\kappa^{\lambda}\right)^{\mu}=\kappa^{\lambda\cdot\mu}.\lambda$$

.
$$\kappa^{\mu} \leq \lambda^{\mu}$$
 אז $\kappa \leq \lambda$ סד. ד. אם

$$\kappa^{\lambda} \leq \kappa^{\mu}$$
 אז $0 < \lambda \leq \mu$ ה. אם

$$\kappa^0 = 1$$
, $1^{\kappa} = 1$.

$$0^\kappa=0$$
 אז , $0<\kappa$ אז .ז

. $\kappa + \lambda = \kappa \cdot \lambda = \max\{\kappa, \lambda\}$: או א אינסופיות, אז או א א הוכחה): אם א או ללא הוכחה). אם 3

$$\kappa^{\lambda} = 2^{\lambda}$$
 אינסופית, אז $2 \le \kappa \le 2^{\lambda}$ אם .44

.
$$\left|\mathbf{R}^{\mathrm{N}}\right|=\aleph^{\aleph_{0}}=\aleph$$
 , $\aleph_{0}^{\aleph_{0}}=2^{\aleph_{0}}=\aleph=\aleph^{\aleph_{0}}$: דוגמאות. 45