Machine learning I: RNN

Introducción

Los pensamientos son persistentes

- Uno de los problemas de las redes neuronales tradicionales es que **no pueden** emular esta persistencia
- Problema: Intentar clasificar la acción de cada fotograma en una película → No está claro como una red tradicional puede meter la información de los primeros fotogramas de la película para clasificar los siguientes.

RNN: Aplicaciones

Grabación de audio -> Texto

Estilo musical > Melodía

"Esta película no tiene nada especial" →

AGCAAACGTGAATCGGA → AGCAAACGTGAATCGGA ¿Qué parte de esta secuencia es una proteína?

Хотели как лучше, а получилось как всегда → Lo intentamos hacer bien pero salió como siempre

Todos estos problemas pueden ser tratados como problemas de aprendizaje supervisado

Ejemplo: NER

Reconocimiento de entidades nombradas (NER)

x <t></t>	Cristiano	Ronaldo	Sabotea	La	Fiesta	De	Cumpleaños	De	Lionel	Messi	T _x =10
y <t></t>	1	1	0	0	0	0	0	0	1	1	T _y =10

Represent	tando	pala	bras:
-----------	-------	------	-------

	г а	I
	aaron	
	cristiano	
	fiesta	
	•	
	messi	
$\langle UNK \rangle$		
•		

	۔ د			_		
C T	is	ti	an	O		
		[0]				
		0				
		•				
		1				
		•				
		•				
		0				

One-Hot $x \rightarrow y$

Master Universitario Oficial **Data Science**

Ejemplo: NER

- ¿Cómo construir un modelo para hacer un mapping x > y?
- · Podemos intentar usar una red neuronal clásica

Problemas:

Ejemplo: NER

- ¿Cómo construir un modelo para hacer un mapping x > y?
- · Podemos intentar usar una red neuronal clásica

Problemas:

- Inputs y outputs pueden tener tamaños distintos para distintas muestras.
- No comparte características aprendidas en distintas posiciones del texto.

RNN

· Si leemos de izquierda a derecha:

RNN

• Si leemos de izquierda a derecha:

RNN

• Si leemos de izquierda a derecha:

- · El empleado dijo "Paloma García es clienta nuestra"
- · El empleado dijo "Paloma o gorrión, no me gusta ninguno"

RNN: Forward Propagation

RNN: Backward Propagation

$$\mathcal{L}^{\langle t \rangle}(\hat{y}^{\langle t \rangle}, y^{\langle t \rangle}) = -y^{\langle t \rangle} \log \hat{y}^{\langle t \rangle} - (1 - y^{\langle t \rangle}) \log (1 - \hat{y}^{\langle t \rangle})$$

$$\mathcal{L}^{\langle t \rangle}(\hat{y}, y) = \sum_{t=1}^{T_{t}} \mathcal{L}^{\langle t \rangle}(\hat{y}^{\langle t \rangle}, y^{\langle t \rangle})$$

Backward Propagation en el tiempo

- Uno de los problemas más importantes en NLP
- ¿Cómo modelizar el lenguaje con una RNN?

Comencemos por definir qué es un modelo lingüístico.

Supongamos que estamos haciendo un sistema de reconocimiento del habla:

Elena no quiere salir con Juan.

- Uno de los problemas más importantes en NLP
- ¿Cómo modelizar el lenguaje con una RNN?

Comencemos por definir qué es un modelo lingüístico. Supongamos que estamos haciendo un sistema de reconocimiento del habla:

Elena no quiere salir con Juan. El enano quiere salir con Juan.

- Uno de los problemas más importantes en NLP
- ¿Cómo modelizar el lenguaje con una RNN?

Comencemos por definir qué es un modelo lingüístico.

Supongamos que estamos haciendo un sistema de reconocimiento del habla:

Elena no quiere salir con Juan.

El enano quiere salir con Juan.

Un modelo lingüístico nos diría cual de estas dos frases es más probable:

P(Elena no quiere salir con Juan.) = 6×10^{-3}

P(El enano quiere salir con Juan) = 6×10^{-5}

¿Cómo se construye un modelo lingüístico?

• Set de entrenamiento: Necesitamos un corpus muy grande (un set muy grande de frases en la lengua a modelar)

En el máster de Data Science aprendemos mucho<EOS>

Lo primero es tokenizar:

- Creamos un vocabulario tal y como hemos visto previamente
- Mapeamos cada palabra con un vector one-hot
- Viene bien tener en nuestro vocabulario también el signo de parada (".") que llamaremos <EOS>

¿Cómo se construye un modelo lingüístico?

• Set de entrenamiento: Necesitamos un corpus muy grande (un set muy grande de frases en la lengua a modelar)

En el máster de Data Science aprendemos mucho<EOS>

$$y^{<1}y^{<2}$$
 $y^{<3}$ $y^{<4}$ $y^{<5}$ $y^{<6}$ $y^{<7}$ $y^{<7}$

Lo primero es tokenizar:

- Creamos un vocabulario tal y como hemos visto previamente
- Mapeamos cada palabra con un vector one-hot
- Viene bien tener en nuestro vocabulario también el signo de parada (".") que llamaremos <EOS>
- Si hay alguna palabra que no tenemos en nuestro vocabulario, conviene tener un token apropiado <UNK>

- Una vez que ya hemos *tokenizado* las frases de nuestro training set, vamos a construir una RNN para ver cual es la probabilidad de una frase concreta.
- $x^{< t>} = y^{< t-1>}$

- Una vez que ya hemos *tokenizado* las frases de nuestro training set, vamos a construir una RNN para ver cual es la probabilidad de una frase concreta.
- $x^{<t>} = y^{<t-1>}$

En el máster de Data Science aprendemos mucho<EOS>

- Una vez que ya hemos *tokenizado* las frases de nuestro training set, vamos a construir una RNN para ver cual es la probabilidad de una frase concreta.
- $x^{<t>} = y^{<t-1>}$

En el máster de Data Science aprendemos mucho<EOS>

En el máster de Data Science aprendemos mucho<EOS>

$$\mathcal{L}(\hat{y}^{}, y^{}) = -\sum_{i} y_{i}^{} \log \hat{y}_{i}^{}$$

$$\mathcal{L} = \sum_{i} \mathcal{L}^{}(\hat{y}^{}, y^{})$$

Asi que dada una frase

Su probabilidad será:

$$P(y^{<1>})P(y^{<2>}|y^{<1>})P(y^{<3>}|y^{<1>}y^{<2>})$$

Muestreando secuencias nuevas

- · Modelo lingüístico → Modela la probabilidad de cualquier secuencia de palabras.
- Podemos samplear este modelo lingüístico para generar secuencias nuevas.

Modelo lingüístico a nivel de caracteres

Mismo concepto pero el vocabulario en lugar der ser:

Vocabulario: [a, aaron, ..., casa,, merienda,.., zulu]

Va a ser:

con el apovo del

CSIC

Vocabulario: [a,b,c,d,...,A,B,C,D,...,0,1,2,3...]

RNN bidireccional

- Long Short Term Memory (LSTM)
- Te permiten conectar información muy lejana

El **niño**, que salió del colegio a las cinco y su...., **come** filetes.

Nací en **Polonia**, crecí en el seno de...., hablo **polaco**.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- La clave es la celda de estado (C) que atraviesa de lado a lado el nodo
- La LSTM puede quitar o poner información a esa celda de estado de manera regulada por estructuras llamadas puertas
- La sigmoide saca números entre 0 y 1:
 - O no deja pasar información
 - 1 deja pasar la información

- El primer paso es decidir con qué información nos vamos a quedar y con qué información no: puerta de olvido
- \triangleright Mira a los valores de h_{t-1} y x_t y le asigna un 0 o un 1 a cada valor en C_{t-1} : si sale un 0 olvidar, si sale un 1 guardar.

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- · Ahora nos toca decidir que nueva información guardar en C
- Esto tiene dos pasos:
 - Primero una sigmoide que llamamos "puerta de input" que decide qué valores hay que actualizar
 - Después un tanh que crea un nuevo conjunto de valores Ct que pueden ser añadidos a C
- Luego los combinamos para actualizar el estado C

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

· Aquí podemos ver como se actualiza C

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

• Finalmente decidimos el output: estará basado en (una versión filtrada de) C y una capa con una *sigmoide* que nos indicará que valores de C vamos a sacar por el output

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Resumiendo

- Para que se pueden usar las redes neuronales recurrentes (RNN)
- · Hemos visto a grandes rasgos como es el forward propagation y el backward propagation de una RNN
- · Las RNN tienen problemas para recordar dependencias a largo plazo
- · La solución para este problema son las LSTM
- Como funciona un LSTM

Práctica

https://github.com/laramaktub/LSTM Master

