· It is a technique of decomposing a sequential process into suboperations, with each subprocess being executed in a special dedicated segment that operates consumently with all other segments.

It can be visualized as a collection of processing Segments theough which binary information flows.

· Each segment performs partial processing by the way the task is partitioned.

· The result obtained from the computation in each segment is teansfered to the vext segment in the pipeline.

· The final result is obtained after the data have passed through all segments.

Example- Ai * Bi + Ci , for i=1 to 7.

The suboperation performed in each segment of the pipeline are as follows-

> $R_1 \leftarrow A_i$, $R_2 \leftarrow B_i$ Input A_i and B_i R3 - R1 * R2 , R4 - C Multiply and Input Ci Add Ci to the product R5 ← R3 + R4

Clock lulse Segment 3 Segment 1 Segment 2 R5 R1 R2 R4 R3 1 AI B, 2 A_2 AXB, CI B2 A3 3 C2 A2 × B2 Вз AIX BI + CI A2 * B2 + C2 4 Au By 43 × B3 C_3 Content of A3 * B3 + C3 Cy A4 * B4 A5 5 B5 A4 * B4 + C4 Cs B5 A5 X B6 6 A6 As * Bs + C5 A6 * B6 CG B7 i. B6 + C6 $C_{\mathcal{I}}$ A7 + B7 + C7 * The general structure of four segment pipeline is as shown.

- · The segments are seg separated by register hi that hold the indeemediate result between the stages.
- The behaviour of the pipeline can be illustrated by space line diagram. This shows the segment utilization as function of time.
- · The space time diagram for four segment pipeline wither six task is as shown

Segment 1	1 1	2	3	4	5	· 6	7	.8 9	•
	Ti	T ₂	73	T4	Ts	T ₆	-		,
2		Ti	T ₂	T ₃	T4	75	T ₆		
3			T,	T ₂	T3	Tu	T _S	TG	
4				T,	T ₂	Т3	T4	T ₅	T ₆

fig:- Space tine diagram for pipeline

· Ripeline Speed Up

- -> Let n be number af task to be performed.
- \rightarrow Let k be the f s number of segment pipeline with clock time tp.
- -> Therefore, the first task T, requires line = k × tp
- \rightarrow Now, remaining (n-1) task = (n-1) * tp
 - 80, to complete n task with K segment pipeline = K + (n-1) clock eycles
- → for Non-lipelined

Time required to complete each lask = ton
Time required to complete on task = nx ton

Speed Up =
$$\frac{n \times tn}{K + (n-1) tp}$$

$$(Speed Up)_{man} = \frac{tn}{tp}$$

eg A non-pipelined system takes 50 n3 to process a task. The same task process in six segment pipeline with clock cycle of 10 ns. Determine speed

up satio of pipeline for 100 dooks.
80br: -
$$tn = 50 \text{ ns}$$

 $k = 6$
 $tp = 10 \text{ ns}$

Speed
$$Up = \frac{n \times tn}{(K+n-1) tp}$$

$$= \frac{100 \times 20}{(6 + 100 - 1) 10}$$

$$(Speed Up)_{max} = \frac{tn}{tp}$$

The arithmetic epecation $(A_i + B_i) * (C_i + P_i)$ 41

a) Specify the pipeline configuration.
b) hist the content of all registers of in the pipeline for i = 1 to 6.

Solon:- Ai Bi Ci Pi

					-				
Clock Pulse		Segme	nt 1		Segn	ent2	Segment 3		
	RI	R2	R3 `	R4	RS	R6	R		
1	A ₁	BI	9	\mathcal{D}_1	-	_	-		
2	.A ₂	B2	C2	D_2	A, XB,	C1 * D1	- ,		
3	A ₃	BB	Ca	D3	A2 × B2	C2 * O2	(A+xB)+(G+Q		
4	Aq	~84	Cu	Dy	A2 * B3		(A2 + B2) + (C2 + D)		
5	As	BS	Co	D5	Ay * By	C4 * 04	(A3 * B3) + (G*B3)		
G	A ₆	B6	C6	D6	As * Bs	C5 * D5	AuxB4) + (C4 x D)		
7	**				A6 * B6	C6 * B	(A*&)+(G*Q*		
8	-	- ·	· _		_		46* B6)+ (C*D)		

Draw a space time diagram for sign segment pipeline showing the time it takes to process eight task.

Soln:

						,		1		1		1
Segment	1	2	3	4	5	6	7	B	9	10	1/	12
1	T,	T ₂	T3	T4	Ts	T ₆	T ₇	Tg				
2		Tı	T ₂	T ₃	Ty	Ts	T ₆	T ₇	Tg			
3			Ti	T ₂	Тз	T4	T ₅	T ₆	77	Tg		
4				Т,	T ₂	Тз	Tu	Ts	T ₆	T _F	Tg.	
5					Tı	T ₂	Тз	T4	T ₅	T ₆	77	Tg
6				L.	Q.	T ₁ .	T2	Ta	Tu	Tg	T_{ϵ}	T#