Linear Algebra I: Problem Set II

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains the solutions to the problem set II of Linear Algebra I 2015 at Courant Institute of Mathematical Sciences.

Question 1.

Solution.

Question 2.

Solution. Let A and B be square matrices. Assume that AB is invertible.

Question 3.

Solution. Let A be a square matrix. From the matrix multiplication rule, we have

$$(AA^T)_{ii} = \sum_k a_{ik} b_{ki},$$

where a_{ik} denotes the (i,k)th entry of the matrix A and b_{ki} denotes the (k,i)th entry of the matrix A^T . By definition of transpose, it follows that $a_{ik} = b_{ki}$, and we obtain

$$(AA^T)_{ii} = \sum_k a_{ik}^2.$$

Therefore, by definition of trace, we have

$$\operatorname{tr}(AA^T) = \sum_{i,k} a_{ik}^2.$$

Since $a_{ik}^2 \geq 0$ for all i, k, it follows that

$$\operatorname{tr}(AA^T) \geq 0.$$

Question 4.

Solution.

Question 5.

Solution.

Question 6.

Solution. We are given that $\det(A) = \det(A^T)$. Let λ be an eigenvalue of A. It follows that $\det(A - \lambda I) = 0$. Since $\det(A) = \det(A^T)$, we have

$$det(A - \lambda I) = det((A - \lambda I)^T)
= det(A^T - \lambda I).$$

Hence, $\det(A^T - \lambda I) = 0$ holds as well. Therefore, λ is an eigenvalue of A^T . Since λ was an arbitrary eigenvalue of A, we have shown that any eigenvalue of λ of A is also an eigenvalue of A^T .