2. Rechnen mit Zweipolen (2 LE)

Aufgabe 2.1

Konstruieren Sie für 3 gegebene Widerstände die Widerstandsgeraden. Benutzen Sie dazu einen Spannungsbereich von 0 ... 1 V. Der entsprechende Strombereich ist selbst zu wählen. R_1 = 400 Ω , R_2 = 800 Ω , R_3 = 500 Ω .

Aufgabe 2.2

Ein Freileitungsseil aus Kupfer besteht aus n = 37 einzelnen Leitern mit je d = 2,03 mm Durchmesser. Der spezifische Widerstand des Materials beträgt ρ = 17,6 · 10⁻⁹ Ω m.

Wie groß ist der Widerstand R des Seils je km Leitungslänge? [Ergebnis: $R = 147 \text{ m}\Omega$]

Aufgabe 2.3

Eine Kupferleitung mit dem Querschnitt 10 mm² soll durch eine widerstandsgleiche Aluminiumleitung ersetzt werden ($\varrho_{Cu} = 0.018 \ \Omega \cdot mm^2/m$; $\varrho_{Al} = 0.028 \ \Omega \cdot mm^2/m$).

Welchen Querschnitt muss die Aluminiumleitung erhalten?

[Ergebnis: $A_{AI} = 15,6 \text{ mm}^2$]

Aufgabe 2.4

An einem 400 m langen Kupferdraht mit einem Querschnitt von A = 50 mm² liegt eine Spannung von U = 2 V an (ϱ_{Cu} = 0,018 Ω ·mm²/m; α_{Cu} = 4,0 · 10-3 K-1).

Berechnen Sie für eine Drahttemperatur von 20 °C und 50 °C den Strom I.

[Ergebnis: $I_{20^{\circ}C} = 13,89 \text{ A und } I_{50^{\circ}C} = 12,42 \text{ A}$]

Aufgabe 2.5

Erwärmt man einen Leiter von ϑ_1 = 20 °C auf ϑ_2 = 60 °C, so nimmt sein Widerstand um p = 0,62 % zu.

Wie groß ist der Temperaturkoeffizient α_{20} des Leitermaterials?

[Ergebnis: $\alpha = 1.55 \cdot 10^{-4} \text{ K}^{-1}$]

Aufgabe 2.6

Eine Halogenlampe hat bei direktem Anschluss an einer Steckdose die elektrischen Werte: 230 V, 1000 W.

Die Halogenlampe wird jetzt über eine 50 m lange Verlängerungsleitung an die Steckdose angeschlossen ($\rho_{Cu} = 0.018 \ \Omega \cdot mm^2/m$; A = 1,5 mm²).

Berechnen Sie den von der Halogenlampe aufgenommenen Strom und die aufgenommene Leistung. [Ergebnis: $I_L = 4,25 \text{ A} \text{ und } P_L = 956 \text{ W}$]

Aufgabe 2.7

An den Klemmen eines linearen Zweipols werden bei Leerlauf und Belastung mit R_V = 1,2 k Ω die Spannungen U₀ = 21 V bzw. U₁ = 18 V gemessen.

Wie groß ist der Innenwiderstand der Spannungsquelle?

[Ergebnis: $R_i = 200 \Omega$]

Aufgabe 2.8

Eine Quelle liefert bei U_1 = 10 V den Strom I_1 = 0,08 A, bei U_2 = 8 V den Strom I_2 = 0,24 A und bei U_3 = 5 V den Strom I_3 = 0,48 A.

Berechnen Sie den Innenwiderstand, die Leerlaufspannung und den Kurzschlussstrom.

[Ergebnis: $R_i = 12.5 \Omega$; $U_0 = 11 V$; $I_K = 0.88 A$]

Aufgabe 2.9

Eine Spannungsquelle hat die Kenngrößen: $U_0 = 10 \text{ V}$; $R_i = 1 \Omega$;

Die Spannungsquelle wird mit einem Widerstand $R_V = 5 \Omega$ belastet.

Zeichnen Sie die Kennlinie der Spannungsquelle und die Widerstandsgerade von R_V . Ermitteln Sie den Arbeitspunkt und geben Sie die Klemmenspannung U_1 und den Strom I an.

[Ergebnis: $U_1 = 8.3 \text{ V und } I = 1.7 \text{ A}$]

Aufgabe 2.10

Eine Diode (siehe Kennlinie) wird an einer linearen Quelle mit der Leerlaufspannung U_0 = 4,8 V betrieben.

Wie groß muss der Innenwiderstand der Quelle sein, damit ein Strom von 0,5 A fließt? [Ergebnis: $R_i = 7,5 \Omega$]