

基于 Databend 的 TiDB 数据归档实践

主讲人: 冯光普

2022.10

冯光普

- 多点DMALL数据库负责人
 - MySQL / TiDB / Redis / MongoDB
 - ▶数据库平台
 - ► DB中间件,双活架构
- 更早,阿里巴巴数据库AliSQL团队

目录

CONTENTS

> 为什么选择 Databend 归档 TiDB

一 归档工具、归档流程、实践效果

」 归档实践总结,未来展望

为什么选择 Databend 归档 TiDB

TiDB 数据归档,why?

TiDB透明水平扩展

- 研发无感:数据增加,架构保持不变

TiDB基本无限容量

- 循环增强: 更多的数据 -> 更多的分析需求 -> 更多的数据

TiDB扩缩容便捷

- DBA友好: 加节点即扩容, 自动rebalance

3/3

延迟 C

在线实例>

PD	TiDB
3/3	9/9
TiKV	TiFlash

监控和告警

查看监控 >

21/21

查看 57 条告警 >

运行诊断 >

- 24个存储节点 - 60TB数据

选 Databend 归档 TiDB,why? 🥏 Databend

基于对象存储,成本低

- SSD块设备的1/10
- 按实际用量付费

在线查询

- 无须从冷备中恢复
- 可接受的查询性能

支持大单表

- TB级别
- 分批持续归档

兼容TiDB

- MySQL协议
- 数据类型兼容

Databend 归档 TiDB

归档工具、归档流程、实践效果

理想的归档工具

pt-archiver的问题

- bulk模式下 (load file) ,遇到JSON字段特殊字符,处理有异常
- 串行方式执行SELECT-INSERT-DELETE, 难以发挥目标端性能
- 批量数据量太多,可能导致TiDB故障,或TiCDC延迟
- 批量数据量太少,Databend中会产生大量snapshot,归档越来越慢

保护源端,可自适应调整执行速率

源端读取 目标端写入 解耦

发挥目的端性能

归档工具 (安全+高效)

目标:最大化赋能DBA、研发

研发提归档工单

业务审批

DBA审批

归档任务

自动授权

查询归档数据

- 全自动流程
- 24小时安全运行
- 研发自助捞归档数据

从TiDB到Databend

类型转换

- Databend数据类型更少

索引处理

- Databend表无主键、二级索引

NULL

- Databend表字段默认NOT NULL

函数

- 不完全与MySQL对应

类型映射

TINYINT	
SMALLINT	
MEDIUMINT	BIGINT
INT	
BIGINT	

YEAR	STRING
TIME	
DATE	DATE
DATETIME	DATETIME
TIMESTAMP	DATETIME

FLOAT	
DOUBLE [PRECISION], REAL	
DECIMAL(M,D), NUMERIC(M,D)	
BIT(M)	
CHAR(M)	
BINARY(M)	STRING
VARCHAR(M), VARBINARY(M)	
ENUM('value1','value2',)	
SET('value1','value2',)	
BLOB, TEXT	
ΓΙΝΥΒLOB, ΤΙΝΥΤΕΧΤ	
MEDIUMBLOB, MEDIUMTEXT	
LONGBLOB, LONGTEXT	
JSON	

实践效果-性能

Databend insert 性能测试(单个并发,每写入100MB耗时-秒)

单个并发归档速率: 16MB/s(16K rows/s, 1KB/row), ~ 1.3TB/day

实践效果-压缩

数据仅供参考,结论: TiDB 和 Databend 均有较好的数据压缩效果

实践效果-降本98%

数据从 TiKV 归档到 Databend 后,存储成本: (1/3) * (60%) * (1/10) = 2%

归档实践总结,未来展望

归档实践总结

归档场景下 Databend 优势

- 降本显著: 基于对象存储,冷数据存储成本降低98%

- 云中立: 支持AWS、Azure、GCP、阿里云、腾讯云、华为云、青云、火山引擎

- 研发友好: MySQL协议兼容、可在线查询、统计分析性能好

- 运维无忧: 无限空间、高可靠、免维护、迁移便捷

对 Databend 未来展望

与MySQL生态,更好地连接

- 兼容性: SQL语法、数据类型、内置function

- 工具: dump / restore 等ETL、甚至准实时DTS/DRC

- 社区: TP + AP、融合、共建

THANKS!