

Chapitre IV – Les fonctions trigonométriques

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES
I – Sinus et cosinus
1. Définition
2. Périodicité
3. Formules de trigonométrie
4. Résolution d'équations
5. Fonctions réciproques
II – Étude des fonctions trigonométriques
1. Dérivée
2. Signe et variations
3. Limite
4. Valeurs remarquables
5. Représentation graphique

I – Sinus et cosinus

1. Définition

Dans tout le cours, le plan sera muni d'un repère orthonormé $(O, \overrightarrow{i}; \overrightarrow{j})$. Il sera également muni d'un cercle $\mathscr C$ appelé **cercle trigonométrique** de centre O et de rayon 1 orienté dans le sens inverse des aiguilles d'une montre (c'est le **sens direct**) :

À RETENIR 💡

Cosinus et sinus

Soit M un point quelconque situé sur le cercle $\mathscr C$ faisant un angle x avec l'axe des abscisses. Les coordonnées de M sont :

- L'abscisse de M appelée **cosinus** est notée cos(x).
- L'ordonnée de M appelée **sinus** est notée $\sin(x)$.
- Pour tout $x \in \mathbb{R}$, on a $-1 \le \cos(x) \le 1$ et $-1 \le \sin(x) \le 1$.

2. Périodicité

Les fonctions sinus et cosinus sont périodiques de période 2π .

À RETENIR 🕴

Périodicité

Ainsi pour tout x réel et k entier relatif :

- $--\cos(x) = \cos(x + 2k\pi)$
- $--\sin(x) = \sin(x + 2k\pi)$

À LIRE 👀

Concrètement, cela signifie que $cos(x) = cos(x + 2\pi) = cos(x + 4\pi) = \cdots = cos(x + 4\pi)$ $2k\pi$) et idem pour $\sin(x)$.

3. Formules de trigonométrie

À RETENIR 🕴

Formules

On a les relations suivantes pour tout $x \in \mathbb{R}$:

- cos(-x) = cos(x) (la fonction cosinus est **paire**)
- $--\sin(-x) = -\sin(x)$ (la fonction sinus est **impaire**)
- $--\cos(\pi + x) = -\cos(x)$
- $--\sin(\pi+x) = -\sin(x)$
- $--\cos(\pi-x) = -\cos(x)$
- $--\sin(\pi-x) = \sin(x)$
- $--\cos\left(\frac{\pi}{2}+x\right)=-\sin(x)$
- $-\sin\left(\frac{\pi}{2} + x\right) = \cos(x)$
- $-\cos\left(\frac{\pi}{2} x\right) = \sin(x)$ $-\sin\left(\frac{\pi}{2} x\right) = \cos(x)$
- $--\cos(x+y) = \cos(x) \times \cos(y) \sin(x) \times \sin(y)$
- $\sin(x + y) = \sin(x) \times \cos(y) + \cos(x) \times \sin(y)$ $\cos(x)^2 + \sin(x)^2 = 1$

ÀLIRE 00

Retrouver les formules

Il n'est aucunement demandé de mémoriser ces formules (sauf les trois dernières). Cependant, il doit être possible de les retrouver à l'aide du cercle trigonométrique. Ainsi, prenons l'exemple de $\cos(x+\pi)$:

On remarque que l'ordonnée reste la même (le sinus est le même). Cependant, on a bien une abscisse opposée. On a retrouvé la formule $cos(x + \pi) = -cos(x)$.

4. Résolution d'équations

Il est possible de résoudre des équations incluant des sinus et des cosinus.

Résolution d'équations

À RETENIR 👂

Soient *x* et *y* deux réels. On a les relations suivantes :

$$-\cos(x) = \cos(y) \iff \text{il existe } k \in \mathbb{Z} \text{ tel que} \begin{cases} y = x + 2k\pi \\ \text{ou} \\ y = -x + 2k\pi \end{cases}$$
$$-\sin(x) = \sin(y) \iff \text{il existe } k \in \mathbb{Z} \text{ tel que} \begin{cases} y = x + 2k\pi \\ \text{ou} \\ y = x + 2k\pi \end{cases}$$

Comme précédemment, ces formules peuvent se retrouver à l'aide du cercle trigonométrique.

5. Fonctions réciproques

À RETENIR 💡

Définition

Soient x et $y \in \mathbb{R}$, on admettra qu'il existe une **fonction réciproque** à cos (notée arccos) et une **fonction réciproque** à sin (notée arcsin). On a les relations suivantes pour tout $x \in [0; 2\pi]$ et $y \in [-1; 1]$:

```
--\cos(x) = y \iff x = \arccos(y)--\sin(x) = y \iff x = \sin(y)
```

Cela signifie qu'à tout $x \in [0; 2\pi]$, la fonction arccos y associe son **antécédent** y par rapport à cos (pareil pour arcsin avec sin).

```
Exemple \cos(0) = 1, \arccos(1) = 0 et \sin(\frac{\pi}{2}) = 1, \arcsin(1) = \frac{\pi}{2}.
```

Ces fonctions (accessibles depuis la calculatrice) peuvent également être utilisées pour résoudre certains types d'équations.

II - Étude des fonctions trigonométriques

1. Dérivée

À RETENIR 🕴

Dérivée d'une composée

Soit une fonction u dérivable sur un intervalle I, on a pour tout x appartenant à cet intervalle :

- $--\cos'(u(x)) = -u'(x)\sin(u(x))$
- $--\sin'(u(x)) = u'(x)\cos(u(x))$

À RETENIR 💡

Dérivée

Ainsi, si pour tout $x \in I$ on a u(x) = x, on trouve :

- $--\cos'(x) = -\sin(x)$
- $--\sin'(x) = \cos(x)$

2. Signe et variations

L'étude du signe des dérivées des fonctions trigonométriques permet d'obtenir les variations de celles-ci. Nous allons donc voir le signe et les variations de ces fonctions.

À RETENIR 🕴

Signe et variation de la fonction cosinus

x	$-\pi$		0		π
$x \mapsto \cos'(x)$	0	+	0	-	0
$x \mapsto \cos(x)$	-1		l		-1

Veuillez noter que ce tableau est périodique de période 2π .

3. Limite

Les fonctions trigonométriques ont pour particularité de **ne pas admettre de limite** en $\pm \infty$. Ceci provenant du fait que ces fonctions sont périodiques et que leur valeur oscille entre -1 et 1.

4. Valeurs remarquables

À RETENIR 🕴

Valeurs remarquables

Voici un tableau regroupant quelques valeurs remarquables de sinus et de cosinus :

Valeur de x (à $2k\pi$ près, $k \in \mathbb{Z}$)	Valeur de $cos(x)$	Valeur de $sin(x)$
0	1	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	0	1
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$
$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
π	-1	0

5. Représentation graphique

À l'aide de toutes les informations et valeurs données précédemment, il est possible d'établir une représentation graphique de la fonction cosinus :

De même pour la fonction sinus :

On remarque sur ces graphiques plusieurs propriétés données : parité, signe, périodicité, etc.