Chapter 6 Inner Product Spaces

Definition. Inner Product Let V be a vector space over F. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted $\langle x, y \rangle$, such that for all $x, y, z \in VE$ and all $c \in F$,

- 1. $\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$
- 2. $\langle cx, y \rangle = c \langle x, y \rangle$
- 3. $\overline{\langle x, y \rangle} = \langle y, x \rangle$
- 4. $\langle x, x \rangle > 0$ if $x \neq 0$

First two condition requires inner product be linear in the first component. Also

$$\langle \sum_{i} a_i v_i, y \rangle = \sum_{i} a_i \langle v_i, y \rangle$$

Definition. Conjugate Transpose or Adjoint of a Matrix Let $A \in M_{m \times n}(F)$, the conjugate transpose or adjoint of A is an $n \times m$ matrix A^* such that $(A^*)_{ij} = \overline{A_{ji}}$ for all i, j. For $F = \mathbb{R}$, $A^* = A^T$

Definition. Inner Product Definition Example

1. Standard Inner Product on F^n For $x = (a_1, a_2, \dots, a_n)$ and $y = (b_1, b_2, \dots, b_n)$ in F^n , the standard inner product on F^n is given by

$$\langle x, y \rangle = \sum_{i=1}^{n} a_i \bar{b}_i$$

2. Inner Product for Real-valued Continuous Functions on [0,1] Let V = C([0,1]), $f,g \in V$, define

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

3. Frobenius Inner Product for Matrices Let $V = M_{n \times n}(F)$, $A, B \in V$, then

$$\langle A, B \rangle = B^*A = \sum_{i=1}^n (B^*A)_{ii}$$

Definition. Inner Product Space A vector space over F endowed with a specific inner product is called an inner product space. If F = C, V is a complex inner product space; if $F = \mathbb{R}$, then V is a real inner product space

Theorem. 6.1 Properties From Inner Product Conditions Let V be an inner product space. Then for $x, y, z \in V$ and $c \in F$, the following statements are true

1.
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

2.
$$\langle x, cy \rangle = \overline{c} \langle x, y \rangle$$

3.
$$\langle x, 0 \rangle = \langle 0, x \rangle = 0$$

4.
$$\langle x, x \rangle = 0$$
 if and only if $x = 0$

5. If
$$\langle x, y \rangle = \langle x, z \rangle$$
 for all $x \in V$, then $y = z$

The inner product is conjugate linear in the second argument

Definition. Norm/Length Let V be an inner product space. For $x \in V$, define norm or length of x by

$$||x|| = \sqrt{\langle x, x \rangle}$$

Definition. 6.2 Properties of Norm Let V be an inner product space over F. Then for all $x, y \in V$ and $c \in F$, the following statements are true

1.
$$||cx|| = |c| \cdot ||x||$$

- 2. ||x|| = 0 if and only if x = 0. In any case, $||x|| \ge 0$
- 3. Cauchy-Schwarz Inequality $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$
- 4. Triangular Inequality $||x + y|| \le ||x|| + ||y||$

Definition. Angle For $F = \mathbb{R}$, $x, y \neq 0$, and θ be angle between x and y

$$\cos \theta = \frac{\langle x, y \rangle}{\|x\| \|y\|} \qquad \theta = \cos^{-1} \left(\frac{\langle x, y \rangle}{\|x\| \|y\|} \right)$$

Note

$$\left| \frac{\langle x, y \rangle}{\|x\| \|y\|} \right| \le 1$$

So valid input to arccos function

Definition. Orthogonal Vectors Let V be an inner product space. Vectors x and y in V are orthogonal (perpendicular) if $\langle x, y \rangle = 0$.

Definition. Orthogonal Sets and Orthonormal Sets A subset S of V is orthogonal if any two distinct vectors in S are orthogonal. A vector x in V is a unit vector if ||x|| = 1. A subset S of V is orthonormal if S is orthogonal and consists entirely of unit vectors.

- 1. $S = \{v_1, v_2, \dots\}$, then S is orthonormal if and only if $\langle v_i, v_j \rangle = \delta_{ij}$
- 2. We can **normalize** an orthogonal set S, by multiplying 1/||x|| for each $x \in S$

Definition. Orthonormal Set Property Let V be inner product space and $S = \{s_1, s_2, \dots\} \subseteq V$ be an orthonormal set. Let $v \in span(S)$, then $v = a_1s_1 + \dots + a_ks_k$. Then

$$\langle v, s_j \rangle = a_j$$

by

$$\langle v, s_j \rangle = \langle \sum_i a_i s_i, s_j \rangle = \sum_i a_i \langle s_i, s_j \rangle = \sum_i a_i \delta_{ij} = a_j$$