Computer Organization and Architecture

Chapter 6 Computer Arithmetic

Arithmetic & Logic Unit

- Does the calculations
- Everything else in the computer is there to service this unit
- Handles integers
- May handle floating point (real) numbers
- May be separate FPU (maths coprocessor)
- May be on chip separate FPU (486DX +)

ALU Inputs and Outputs

Integer Representation

- Only have 0 & 1 to represent everything
- Positive numbers stored in binary
 -e.g. 41=00101001
- No minus sign
- No period
- Sign-Magnitude
- Two's compliment

Sign-Magnitude

- Left most bit is sign bit
- 0 means positive
- 1 means negative
- \bullet +18 = 00010010
- -18 = 10010010
- Problems
 - Need to consider both sign and magnitude in arithmetic
 - —Two representations of zero (+0 and -0)

Two's Compliment

- \bullet +3 = 00000011
- \bullet +2 = 00000010
- \bullet +1 = 00000001
- \bullet +0 = 00000000
- -1 = 111111111
- -2 = 111111110
- -3 = 111111101

Benefits

- One representation of zero
- Arithmetic works easily (see later)
- Negating is fairly easy
 - -3 = 00000011
 - —Boolean complement gives 11111100
 - —Add 1 to LSB 11111101

Negation Special Case 1

- 0 =
- 0000000
- Bitwise not 11111111
- Add 1 to LSB +1
- Result 1 00000000
- Overflow is ignored, so:
- - 0 = 0 $\sqrt{ }$

Negation Special Case 2

- \bullet -128 = 10000000
- bitwise not 01111111
- Add 1 to LSB +1
- Result 10000000
- So:
- \bullet -(-128) = -128 X
- Monitor MSB (sign bit)
- It should change during negation

Range of Numbers

8 bit 2s compliment

```
-+127 = 011111111 = 2^7 - 1
--128 = 10000000 = -2^7
```

16 bit 2s compliment

```
-+32767 = 0111111111111111111111 = 2^{15} - 1
```

Conversion Between Lengths

- Positive number pack with leading zeros
- \bullet +18 = 00010010
- \bullet +18 = 00000000 00010010
- Negative numbers pack with leading ones
- \bullet -18 = 10010010
- \bullet -18 = 11111111 10010010
- i.e. pack with MSB (sign bit)

Addition and Subtraction

- Normal binary addition
- Monitor sign bit for overflow
- Take twos compliment of substahend and add to minuend

$$-i.e. a - b = a + (-b)$$

So we only need addition and complement circuits

Hardware for Addition and Subtraction

Multiplication

- Complex
- Work out partial product for each digit
- Take care with place value (column)
- Add partial products

Multiplication Example

- 1011 Multiplicand (11 dec)
- x 1101 Multiplier (13 dec)
- 1011 Partial products
- 0000 Note: if multiplier bit is 1 copy
- 1011 multiplicand (place value)
- 1011 otherwise zero
- 10001111 Product (143 dec)
- Note: need double length result

Unsigned Binary Multiplication

Execution of Example

C	A	Q	M	Initial Values
0	0000	1101	1011	
0	1011	1101	1011	Add First
	0101	1110	1011	Shift Cycle
0	0010	1111	1011	Shift } Second Cycle
0	1101	1111	1011	Add } Third
	0110	1111	1011	Shift Cycle
1	0001	1111	1011	Add } Fourth Shift Scycle
0	1000	1111	1011	

Flowchart for Unsigned Binary Multiplication

Multiplying Negative Numbers

- This does not work!
- Solution 1
 - Convert to positive if required
 - —Multiply as above
 - —If signs were different, negate answer
- Solution 2
 - -Booth's algorithm

Booth's Algorithm

Example of Booth's Algorithm

A	Q	Q ₋₁	M	Initial Values
0000	0011	0	0111	
1001	0011	0	0111	A A - M First Shift Cycle
1100	1001	1	0111	
1110	0100	1	0111	Shift Second Cycle
0101	0100	1	0111	A A + M Third Shift Cycle
0010	1010	0	0111	
0001	0101	0	0111	Shift } Fourth Cycle

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

Flowchart for Unsigned Binary Division

Real Numbers

- Numbers with fractions
- Could be done in pure binary

$$-1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$$

- Where is the binary point?
- Fixed?
 - —Very limited
- Moving?
 - —How do you show where it is?

Floating Point

- +/- .significand x 2^{exponent}
- Misnomer
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

Floating Point Examples

(a) Format

(b) Examples

Signs for Floating Point

- Mantissa is stored in 2s compliment
- Exponent is in excess or biased notation
 - -e.g. Excess (bias) 128 means
 - -8 bit exponent field
 - —Pure value range 0-255
 - -Subtract 128 to get correct value
 - -Range -128 to +127

Normalization

- FP numbers are usually normalized
- i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- Since it is always 1 there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- e.g. 3.123×10^3)

FP Ranges

- For a 32 bit number
 - —8 bit exponent
 - $-+/-2^{256}\approx 1.5 \times 10^{77}$
- Accuracy
 - —The effect of changing lsb of mantissa
 - -23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
 - —About 6 decimal places

Expressible Numbers

IEEE 754

- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results

IEEE 754 Formats

(a) Single format

(b) Double format

FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP Addition & Subtraction Flowchart

FP Arithmetic x/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

Required Reading

- Stallings Chapter 9
- IEEE 754 on IEEE Web site