Last day we saw that given two posets, (A, \prec_A) and (B, \prec_B) , we can define the product ordering on $A \times B$ as:

- $(a,b) \prec_{prod} (c,d)$ if and only if $a \prec_A c$ and $b \prec_B d$.
- 1. [8 points] Prove that \prec_{prod} is transitive. (Hint: we know that both \prec_A and \prec_B are transitive because they are partial orders).
- 2. [6 points] Let $A = B = \{2, 4, 6\}$, and let $\prec_A = \prec_B = \leq$ when defining \prec_{prod} .
 - (a) Is (4,6) a maximal element under \prec_{prod} ? Explain.
 - (b) Is (4,6) a maximum element? Explain.
- 3. [6 points] Let $A = B = \{2, 4, 6\}$, and let $\prec_A = \prec_B = \ll$ (divisibility ordering) when defining \prec_{prod} .
 - (a) Is (4,6) a maximal element under \prec_{prod} ? Explain.
 - (b) Is (4,6) a maximum element? Explain.