EXPERIMENT NO. 3

Aim: To determine the strength of copper in the given copper sulphate (CuSO₄.5H₂O) solution Provided hypo solution (N/50) iodometrically.

Apparatus: Burette, pipette, conical flask, beakers and funnel etc.

Chemicals required: CuSO₄.5H₂O solution, Hypo solution (Na₂S₂O₃), K₂Cr₂O₇ solution, H₂SO₄, KI, NaHCO₃, Acidic Acid and Starch.

Indicator - Starch (Internal indicator)

End Point - Blue to colourless

Theory: This Experiment comes under the iodometric titration which is used in the analysis of alloys, ores etc.

When an excess of KI is added to CuSO₄ solution then iodine is liberated. This liberated iodine is then treated against standard hypo solution using starch indicator near the end point.

Reactions involved:

CuSO₄.5H2O +4KI 2CuI₂ +
$$2K_2SO_4$$
 + $5H_2O$
2CuI₂ Cu₂I₂ + I₂
2Na₂S₂O₃ + I₂ Na₂S₄O₆ + 2NaI
(Hypo sol.) (sodium tetrathionate)

Ionic Reactions -

$$2Cu^{2+} + 2I^{-}Cu_{2}^{2+} + I_{2} + 2e$$

 $2S_{2}O_{3}^{2-} + I_{2} + 2e^{-}S_{4}O_{6}^{2-} + 2I^{-}$

Procedure:

Ist Titration – Standardization of hypo sol. By $K_2Cr_2O_7$ ($K_2Cr_2O_7$ Vs Hypo solution)

- 1. 50 ml of Hypo solution is filled in the burette.
- 2. 10 ml of K₂Cr₂O₇ is pipetted out in the conical flask.
- 3. 5 ml H₂SO₄ and 1 gm. Kl is added to it.
- 4. The flask is covered with filter paper, and now kept in dark for 5 minutes. In dark to liberate lodine, till the dark colour appear.
- 5. Now add 1 pinch of NaHCO₃ and titrated with the Hypo solution. 6. Add to 2-3 drop of starch is solution changes its colour to dark blue.

- 7. Again, titrate the solution with hypo solution, till the solution changes its colour to deep blue or light green.
- 8. Repeat to get three concordant readings.

IInd Titration - (Copper solution Vs Hypo solution)

- 1. 50 ml of Hypo solution is filled in the burette.
- 2. 10 ml of Copper solution is pipetted out in the conical flask.
- 3. Added Na₂CO₃ solution drop by drop till faint ppt forms. After that added acetic acid until ppt just dissolves.
- 4. Add 1gm. of KI in the conical flask.
- 5. The flask is covered now and kept in dark for 5 minutes.
- 6. Now hypo solution run in the conical flask.
- 7. When solution changes colour to pale yellow,
- 8. Now add 2ml of starch solution, this will form deep blue iodoform starch complex.
- 9. Again, titrate it with hypo solution until colour changes to milky white, which is the end point.
- 10. Repeat to get three concordant readings.

Observations:

1. K₂Cr₂O₇ Vs Hypo solution

Solution in burette – Hypo

Solution in flask - K₂Cr₂O₇

End Point – Blue to colourless.

Indicator - Starch

Observation Table:

Serial No.	Burette Reading		Volume (ml)
	Initial	Final	
1	0	4.2	4.2
2	4.2	8.4	4.2

2. Hypo solution Vs Copper Solution

Solution in burette – Hypo

Solution in flask - CuSO₄

End Point – Dark blue to milky White.

Indicator – Starch

Observation Table:

Serial No.	Burette Reading		Volume (ml)
	Initial	Final	
1	0	10.1	10.1
2	10.1	19.4	9.3
3	19.4	28.4	9.3

Calculations:

1. Standardization of hypo solution (Hypo Solution Vs K₂Cr₂O₇)

$$N_{HYPO} V_{HYPO} = N_{K2Cr2O7} V_{K2Cr2O7}$$

 $N_{HYPO} 4.2 = 1/50 \times 10$
 $N_{HYPO} = 0.047 \text{ N}$

2. Hypo solution Vs Copper Solution

$$N_{Cu} V_{Cu} = N_{Hypo} V_{Hypo}$$

 $N_{Cu} = (0.047 \times 9.3) / 10$
 $N_{Cu} = 0.043 N$

Strength of $Cu = N_{Cu} X Eq. Wt. Of Cu$

= 0.043 X 63.5 = 2.730 g/L

Result:

The strength of Cu = 2.730 g/L

Applications:

- 1. It is used to determine the amount of various nutrients present in a particular food item.
- 2. It is used in the innovation of medical sciences.

Precautions:

- 1. Wash the apparatus before use.
- 2. Rinse the burette with the solution to be filled in it.
- 3. For the measurement of coloured solution measure the upper meniscus and for the lower meniscus for the colourless solution.

Structure:

Starch - Amylose

