END TERM EXAMINATION

SECOND SEMESTER [B.TECH] MAY- JUNE 2018 Subject: Applied Mathematics-II

Paper Code: ETMA-102

(Batch 2013 onwards)

Time: 3 Hours

Q5

Maximum Marks: 75

Note: Attempt five questions in all including Q.No1 which is compulsory. Select one question from each unit. Use of scientific calculator is

allowed.

If $x = r \sin\theta \cos\varphi$, $y = r \sin\theta \sin\varphi$, $z = r \cos\theta$, find $\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)}$

Form a partial differential equation by eliminating the function f from the (4)Alation $f(x + y + z, x^2 + y^2 + z^2) = 0$.

(4)Find the inverse Laplace transform of $\frac{se^{\frac{7}{2}+\pi e}}{s^2+\pi^2}$

Evaluate the following integral by changing the order of integration in $\frac{s^2+\pi^2}{a^2a-x}$

 $\int_0^a \int_{\frac{x^2}{2}}^{2a-x} xy dy dx.$ (4)

 (e^{t}) Evaluate $L(t^2 e^t sin 4t)$ if $\nabla \varphi = (y^2 - 2xyz^3)\hat{\imath} + (3 + 2xy - x^2z^3)\hat{\jmath} + (6z^3 - 3x^2yz^2)\hat{k}$, find φ . (5)

(b) Expand sin (xy) in powers of (x-1) and $(y-\frac{\pi}{2})$, up to and including second

(a) Show that the volume of the greatest rectangular parallel piped that can be Q3 inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is $\frac{8}{3\sqrt{3}}abc$. (6.5)

(6)(b) Solve the partial differential equation $(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx.$

UNIT-II

(a) If L[f(t)] = f(s), then prove that $L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} f(s)ds$, provided integral exist. (6.5) Q4 Hence evaluate $L\left[\frac{sinat}{t}\right]$

(b) Evaluate $L^{-1}\left(\frac{s}{s^4+s^2+1}\right)$. (6)

(a) Using Laplace transform, solve (6,5)Using Laplace transform, solve $\frac{d^3x}{dt^3} - 2\frac{d^2x}{dt^2} - 5\frac{dx}{dt} = 0$, given that x = 0, $\frac{dx}{dt} = 0$ and x = 1 at $t = \frac{\pi}{8}$.

Using convolution theorem, evaluate $L^{-1}\left(\frac{s^2}{c^4-a^4}\right)$.

(6)

(4)

UNIT-III (a) Determine analytic function f(z) u +iv in terms of z, if $v = \log(x^2 + y^2) + x - 2y$.

(6.5)

(6)

Under the transformation $w = \frac{1}{2}|z \neq 0$, find the image of |z - 2i| = 2.

17 4 4 4 420

Q7 (a) If $f(\alpha) = \int_{c}^{3z^{2} + 7z + 1} dz$, where C is the circle $x^{2} + y^{2} = 4$, find the value of f(3), f'(1-i) and f''(1-i).

(b) Prove that if a > 0, then $\int_{0}^{\infty} \frac{1}{x^{4} + a^{4}} dx = \frac{\pi\sqrt{2}}{4a^{3}}$ (6)

UNIT-IV

(a) A fluid motion is given by $\vec{v} = (y+z)\hat{j} + (x+y)\hat{k}$. Is this motion is irrotational? If so find the velocity potential. Is the motion possible for incompressible fluid? (6.5)

Apply Stoke's theorem to evaluate $\int_{C} [(x+y)dx + (2x-z)dy + (y+z)dz]$ where C is the boundary of the triangle with vertices (2,0,0), (0,3,0) and (0,0.6). (6)

- Q9 (a) Use Divergence theorem to evaluate $\iint_s \vec{F} \, \hat{n} ds$, where $\vec{F} = x^3 \, \hat{l} + y^3 \hat{j} + z^3 \, \hat{k}$ and s is the surface of the sphere $x^2 + y^2 + z^2 = a^2$. (6.5)
 - (b) Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$.