

Assignment -1 (03-08-2022)

Programme	B.Tech. (All Branches)	Semester	Fall 2022-2023
Course Name	Discrete Mathematics And Graph Theory	Course Code	MAT2002
Faculty Name	Dr. Navneet Kumar Verma	Slot / Class No	A21+A22+A23
Submission date	03-08-2022	Max. Marks	10

Answer ALL the Questions

Q. No. Question Description

Each question is of equal marks

- 1. The function $f: R \to R$ defined as $f(x) = 2x + 3 \ \forall \ x \in R$ is both one-to-one onto functions.
- 2. Let $f,g,: R \to R$ is defined by f(x) = 2x + 1, $g(x) = \frac{x}{3} \forall x \in R$. Then verify that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 3. Prove by the principle of mathematical induction the inequality $(a+1)^n \ge 1 + na$, for a > -1 & $n \ge 2$
- 4. Prove using mathematical induction that $1.2 + 2.3 + ---- + n.(n+1) = \frac{n(n+1)(n+2)}{3}$, where n is positive integer.
- 5. Fibonacci number F_n , are defined by $F_0=0, F_1=1, F_n=F_{n-1}+F_{n-2}$ for all $n\geq 2$ let the sequence of number G_n be defined by $G_1=1, G_2=3, \& G_n=G_{n-1}+G_{n-2}+1$ for all $n\geq 3$ prove, using induction, that $G_n=2F_n-1 \ \forall \ n\geq 1$.
- 6. Show using mathematical induction, that any positive integer n greater than or equal to 2 is either a prime or a product of prime.