Session 11: Optimality conditions

Optimization and Computational Linear Algebra for Data Science

Contents

- 1. Unconstrained optimization
- 2. Constrained optimization and Lagrange multipliers
- 3. Convex constrained optimization problems

Unconstrained optimization

Questions about the video?

- Global minimizer ⇒ local minimizer ⇒ critical point.
- **Critical point + positive definite Hessian** ⇒ local minimizer.

Hessian at a critical point

The eigenvalues of the Hessian at x are

3.
$$\begin{cases} \lambda_1 = 2 \\ \lambda_2 = 1 \end{cases}$$

Hessian at a critical point

ht Hy (a) h

The eigenvalues of the Hessian at \boldsymbol{x} are

3.
$$\begin{cases} \lambda_1 = 1 & \mathbf{V_1} \\ \lambda_2 = 3 & \mathbf{V_2} \end{cases}$$

$$4. \begin{cases} \lambda_1 = 1 \\ \lambda_2 = -1 \end{cases}$$

Hessian at a critical point

The eigenvalues of the Hessian at \boldsymbol{x} are

3.
$$\lambda_1 = 1$$

4.
$$\begin{cases} \lambda_1 = -1 \\ \lambda_2 = -1 \end{cases}$$

Constrained optimization

General formulation

Constrained optimization problems take the form:

minimize subject to
$$\begin{array}{c} f(x) \\ g_i(x) \leq 0, \\ h_i(x) = 0, \end{array} \begin{array}{c} i = 1, \ldots, m \\ i = 1, \ldots, p, \end{array}$$

with variable $x \in \mathbb{R}^n$.

Example: minimize
$$x^T A x$$
) $f(x)$ $h(x) = ||x||^2 - 1$.

sobject to $||x||^2 = 1$) $||x||^2 - 1 = 0$

Constrained optimization 8/18

Feasible points

Definition

A point $x \in \mathbb{R}^n$ is *feasible* if it satisfies all the constraints: $g_1(x) \leq 0, \ldots, g_m(x) \leq 0$ and $h_1(x) = 0, \ldots, h_p(x) = 0$.

set of flavible points.

fearable set!

Question

If x is a solution to

minimize f(x)subject to

$$g_i(x) \le 0, \quad i = 1, \dots, m$$

 $h_i(x) = 0, \quad i = 1, \dots, p,$

do we have $\nabla f(x) = 0$?

Unfortunately not in general: ex: minimizing $f(x)=x^2$ sobject to $2+1 \le 0$

minimizer is $x^4 = -1$

however 2 (xx) = -2

fearle set

Constrained optimization

10/18

Consider minimize f(a) subject to g(a) <0 (x) det 2 be a solution of (4) (provided it exists) Fearible set F Two cases: 2 is strictly inside of F: g(a) <0 2 x lies on the bounday of F 9<0 g(x) = 0. Constrained optimization

In that case there exists 8>0 such Case 1: B(x, 8) C F × that 2 | ll2'-21 €8} . Then, for all a & B(a, 8) we have 2°64, houce \$\(\psi\) (\frac{1}{a}) because a solution to (x) -> x is a local minimizer of f (a) = 0Constrained optimization 11/18

g(a)=0, "the constraint is active at x" Casel: Recall that the quadient is orthogonal to the contour line. Claim: There exists some 200 f going trough a such that $\nabla f(x) = -\lambda \nabla g(x)$ Suppose not, then there (f>f(a) 7f(a) exists 2 EF such that f(2) < f(2) contradiction 9>0

$$\lambda = 0$$
 if $g(a) < 0$

Constrained optimization

Theorem

quadients of active ineq. constraints

If x is a solution and if $\nabla h_1(x), \dots, \nabla h_p(x), \{ \nabla g_i(x) \mid g_i(x) = 0 \}$ are linearly independent, then there exists $\lambda_1, \ldots, \lambda_m \geq 0$ and $\nu_1, \dots, \nu_p \in \mathbb{R}$ such that:

$$\nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0.$$

Moreover, for all $i \in \{1, ..., m\}$, if $g_i(x) < 0$ then $\lambda_i = 0$.

$$|h_{i}(x)| = 0 \iff h_{i}(x) \le 0$$

$$|h(x)| = |h|^{2} = 1$$

$$|h(x)| = |h|^{2} - 1$$

$$|h|^{2} - 1$$

Example

Minimize $\langle x, u \rangle = \cancel{\downarrow}(x)$ subject to $||x||^2 = 1$. Let $u \in \mathbb{R}^n$ be a non-zero vector.

det x be a solution (assuming it exists) $h(a) = ||x||^2 - 1 = 0$

By the theorem, there exists & GR such that

$$\nabla f(\omega) + \lambda \nabla h(\omega) = 0$$

$$\omega + \frac{\lambda}{2} = 0$$

. $\lambda \neq 0$ because $u \neq 0$, hence $\alpha = -\frac{1}{2\lambda}u$. Since $\|\alpha\| = 1$, $1 = \|\alpha\| = \frac{1}{2\|\lambda\|}\|u\|$ $\Rightarrow \|\lambda\| = \frac{1}{2}\|\|u\|\| \Rightarrow \lambda = \pm \frac{1}{2}\|\|u\|\|$ onstrained optimization

$$\rightarrow |\lambda| = \frac{1}{2} \|u\| \rightarrow \lambda = \pm \frac{1}{2} \|u\|$$

Constrained optimization

Example

Let $u \in \mathbb{R}^n$ be a non-zero vector.

Minimize
$$\langle x, u \rangle$$
 subject to $||x||^2 = 1$.

if
$$n$$
 is a solution of (x)

$$\langle \frac{u}{||u||}, u \rangle = \frac{\langle u, u \rangle}{||u||}$$

$$\alpha = -\frac{u}{\|u\|}$$

$$f\left(\frac{u}{|u|}\right) = |u| > -|u| = f\left(\frac{u}{|u|}\right)$$

Convex constrained optimization

General formulation

We say that the constrained optimization problem

minimize
$$f(x)$$

subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p,$

is convex when f, g_1, \ldots, g_m are convex and h_1, \ldots, h_p are affine.

$$h_i(a) = (a_i, 2) + b_i$$

for some $a_i \in \mathbb{R}^n$
 $b_i \in \mathbb{R}$.

minimize llAx-y112

8. 7. Wall²-1² (O.

Karush-Kuhn-Tucker Theorem

Theorem (KKT)

Assume that the problem is convex and that there exists a feasible point x_0 such that $g_i(x_0)<0$ for all i

Then x is a solution if and only if x is feasible and there exists

$$L_{v,\lambda}(\alpha) = f(\alpha) + \sum_{i=1}^{m} \lambda_i g_i(\alpha) + \sum_{i=1}^{p} v_i h_i(\alpha)$$

Lyzis convex as a sum of convex functions.

Convex constrained optimizati

Example: Ridge regression

Example: Ridge regression

$ \begin{array}{c c} \text{minimize} & \ Ax-y\ ^2 \\ \text{subject to} & \ x\ ^2 \leq r^2. \end{array} $

Example

Let $u, v \in \mathbb{R}^n$ such that ||v|| = 1. Solve:

(=)
$$2, \lambda$$
 are solutions to
$$\begin{cases} 2x - 2u + \lambda v = 0 \\ (x, v) = 0 \end{cases}$$

Example

det's solve
$$\begin{cases}
2n - 2u + \lambda \tau = 0 \\
(n, \tau) = 0
\end{cases}$$

$$\begin{cases}
2(3(5)) - 2(4(5) + \lambda ||\tau||^{2} = 0 \\
2n - 2u + \lambda \tau = 0 \\
(n, \tau) = 0
\end{cases}$$

$$(=) \begin{cases} \lambda = 2\langle u, \sigma \rangle \\ 2 = u - \langle u, \sigma \rangle \sigma \end{cases}$$

Span(t)

Convex constrained optimization

Questions?

Questions?

$$f, g: R \rightarrow R$$

$$\frac{d}{dt} \left(f(g(t)) - f'(g(t)) \cdot g'(t) \right)$$