LaPIS Diagnostic Test Workbook - Mathematics

Name : Kavinraja S

Class: 7

Section : A

School : AKV Public School

Login ID : AKV108

Kavinraja S's Performance Report

Score: 4/40 Percentage: 10.0%

Kavinraja S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
				ipal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures $___^{\circ}$.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
$\underline{Question:\ 3}$
The addition of straight angle and right angle is angle.
$\underline{Answer:}$
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Mensuration

Topics to be Improved		
Perimeter Perimeter of triangle		
Area	Area of rectangle	

.....

Hi, here in this video you will learn **Perimeter**

Question: 4

Highlight the perimeter in the given image.

\boldsymbol{A}	ne	211	01	n.
\mathbf{H}	เมอ	TU)	e:	

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 5

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____ Question: 6 Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft. Answer: Perimeter = ____ | Breadth = ____ Shape of the floor is _____ and its perimeter formula is _____. Given: floor perimeter = _____, and breadth = _____. Therefore, length of the rectangular floor is ______. Hi, here in this video you will learn **Area** Question: 7 Find which of the shaded portion in the given shape represent it's area. Answer: Given figure is ______ in shape. Area is the _____ (inside/ outside/ boundary) of a shape. Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

The garden is in	shape.		
Length of garden is as	nd breadth of gar	den is	
Formula for area of the shape	=		
The area of garden $=$. x =	$ __ cm^2 $	
Question: 9			
Shade the possible dimension	of the door whose	e area is $500 m^2$	
$\boxed{50 \ m \ \times \ 10 \ m}$	25 m × 25 m	$\boxed{25 \ m \ \times \ 20 \ m}$	$\boxed{ 30 \ m \ \times \ 20 \ m }$

$\underline{Answer:}$

Door is _____ in shape. Area of the _____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25 \text{m} \times 25 \text{m}$			
$25\text{m} \times 20\text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved			
Arithmetic mean, mode and median Mean, Median and Mode			
Chance of probability Basis of probability, Sample space in probability			
Range	Finding the range		

Hi, here in this video you will learn Mean, Median, Mode

$Question: \ 10$	
Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67,	24, 19 and 98.
$\underline{Answer:}$	
Mode is the number that occurs (frequently / rarely) in a given list Arranging the data in ascending order:	of observations.
occurs most number of times. Then, mode of the given data is	
Question: 11	

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

......

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____ of a data.

Question: 12

Marks scored	100	90	80	70
Number of students	$oxed{4}$	5	2	1

$Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.
Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation =, number of observation = Therefore, mean = Arrange the data in ascending order : Here, median =, mode =
Hi, here in this video you will learn Basics of probability
Question: 13
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 14
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
Question: 15
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have

Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1)
Hi, here in this video you will learn Basics of probability
Question: 16
Which of the following contains list of all possible outcomes.
Probability Sample space Sure events Impossible events
$\underline{Answer:}$
Probability is the measure of (chance /number) of an events happenings. Sample space consists of (possible/ impossible) outcomes. Sure events always (occurs/don't occurs). Impossible events (occurs/ don't occurs). Therefore, contains list of possible outcomes.
Question: 17
Write the possible outcomes while spinning the given wheel.
0 10 250 100 5 25 1 500
$\underline{Answer:}$
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are ₹0, ₹10,
Question: 18
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls

A bag contains __ _____ and ____ balls. If one of the ball is blue in colour, then other ball can be _____ or ____ If one of the ball is green in colour, then other ball can be ______ or _____. If one of the ball is red in colour, then other ball can be ______ or _____. Therefore, if two balls are taken out then possible outcomes are blue + ______, ______+ ______, ______+ ______,

Hi, here in this video you will learn Range

Question: 19

Answer:

The difference between highest value and lowest value is _____.

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}$, $Lowest value = \underline{\hspace{1cm}}$.

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$

Question: 20

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20+51$$
 $\frac{-38-51}{2}$ $51+38$

$$\frac{-38-51}{2}$$

$$51 + 38$$

.....

.....

......

$$\frac{51+20}{2}$$

Answer:

Arranging the data in ascending order, _____

In the given data,

 $Highest value = \underline{\hspace{1cm}}$, $Lowest value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Question: 21

Find the range of first 10 multiple of 5.

Answer:

First 10 multiple of 5 =

Therefore,

 $Highest\ value = \underline{\hspace{1cm}},\ Lowest\ value = \underline{\hspace{1cm}},\ Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

Geometry

Topics to be Improved				
Faces vertex and edges	Idenfication of faces, edges and vertices			
Types of triangle	Basics of types of triangle (sides)			
Lines of symmetry for regular polygons	Identification of lines of symmetry			
Transversal angle made by transversal	Basics of Transversal angle			
Angle sum property of triangle	Angle sum property of triangle			
Right angle triangle and pythagoras property	Basics of Pythagoras property			
Related angles	Basic of angles			
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles			
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle			

 Hi , here in this video you will learn $\operatorname{\mathbf{Basics}}$ of $\operatorname{\mathbf{3D}}$ $\operatorname{\mathbf{model}}$

Question: 22	
A point at which two or more lines segments meet is called	(Vertex/ edges/ faces).
Answer:	
has two end point (line/line segment/ray).	
Ais a point where two or more line segments meet(Vertex/	edges/ faces).
Mark the vertices in the diagram,	

Question: 23 Mark and find the number of vertices, edges and faces in a cube.
Answer:
Mark the vertex, edges and faces in a cube.
Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.
Question: 24 How many vertices, edges and faces does dices have?
Answer:
The shape of dice is Dices have vertices, edges and faces.

Hi,	here in	this vio	deo vou	will learn	Types	of tria	angle
,	11010 111	CIII VI		***************************************	- J P 00	01 0110	

Question:	25

Polygon with three sides is called as ______.

Answer:

A polygon is a simple $___$ (open / closed) curve made up of only line segments.

......

Polygon with three sides is called ______.

Draw a diagram of polygon with three sides:

Question: 26

Identify the types of triangles.

Answer:

Triangle has _____ sides.

- Triangle with all sides are equal is called ______ triangle.
- Triangle with two sides of equal length is called _____ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 27

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft, then the possible length of third side of park can be ______.

.....

Answer:

The shape of the park is $___$.

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is ______.

The possible length of third side is _____

Hi, here in this video you will learn Symmerty		
Question: 28		
Line of symmetry is divides any shape into (one / two)identical) halves.	(identical / non	
Answer:		
Lines of symmetry is a line that divides any shape into (equal Symmetrical image have (identical / non identical) parts. Therefore, line of symmetry is dividing the shape into halves.	/ unequal) halves.	
Question: 29		
How many lines of symmetry does square have?		
Answer:		
Square have sides.		
All sides of square are and all angles are		
Mark the lines of symmetry.		
Therefore, square has lines of symmetry.		
Question: 30		
Classify the following based on the symmetry. Letter S, scalene triangle, Letter K, Rhombus, Number 8, and circle	e .	
Answer:		
Lines of symmetry is a line that divides the shape into (equal The letter S is (symmetrical / asymmetrical) and have	, – ,	
symmetry. Scalene triangle is(symmetrical / asymmetrical) and have symmetry.	lines of	
The letter K is (symmetrical / asymmetrical) and have	lines of	
symmetry. Rhombus is(symmetrical / asymmetrical) and havesymmetry.	lines of	

Cat is	(symmetrical / asymmetrical) an	d have lines of sy	mmetry.
Stars is	$_{-}$ (symmetrical / asymmetrical) ϵ	and have lines of s	symmetry.

.....

Hi, here in this video you will learn Basics of Transversal angle

Question: 31

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

 $\underline{Question:~32}$

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Corresponding angles
\angle a and \angle e, \angle b and \angle f,

......

......

Question: 33

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Angle sum property

Question: 34

Sum of the angles of triangle is ______.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n= number of sides Triangle has _____ sides. Sum of the angles of triangle = $(___-2) \times 180^{\circ} = __$

Question: 35

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _______ In $\triangle ABC$, Sum of the angles = $\angle A + \angle B + \angle C =$ _____ = _____ = _____ In $\triangle PQR$, Sum of the angles = _____ = ____ = ____ = ____ In $\triangle XYZ$, Sum of the angles = _____ = ____ = ____ = ____ = ____ = ____ Therefore, the triangles that satisfy the angle sum property are = ______

Question: 36

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is ______ Let's consider the angles of triangle be 8x, ____ and ____ We know sum of the angles of a triangle is ____ Therefore, 8x+ ____ + ___ = 180° . The value of x= _____ The angles of the triangle are _____

Hi, here in this video you will learn Pythagoras property

Question: 37

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that ______.

Question: 38

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$

Therefore, hypotenuse of the triangle is _____.

Question: 39

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = $\underline{\hspace{1cm}}$, length of diagonal = $\underline{\hspace{1cm}}$

Therefore,	diagonal	of the	rectangle:	is	

Hi, here in this video you will learn Related Angles

Question: 40

(i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .

.....

(ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A ______ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a _____ (straight / perpendicular) line. The measure of the angle formed is ____ °and it is called ____ angles.

......

Question: 41

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC =$ ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$
= 30° + \(\ldots \) + \(\ldots \)
= \(\ldots \)

Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 42

Find the complementary angles in the given diagram.

Answer

Two angles are said be complementary if sum of their angles is equal to
$\angle AOB = $, and its complement angle is
$\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.
$\angle COD = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.
$\angle DOE = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Criteria of congruence

Question: 43

Circle the groups that contain congruent images.

Answer:

Two geometrical shapes are said to be congruent if they are _____ (identical/non-identical) in shapes and size.

Example: Square and Rectangle are _____ (congruent/not congruent).

<u>Question: 44</u>

If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $___$ (SSS/ASA/SAS) criteria .

Answer:

Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria $\underline{\hspace{1cm}}$ (2/ 3/ 5) angles and $\underline{\hspace{1cm}}$ (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

......

Question: 45

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 46

Find the greatest distance to reach C from A in the given diagram.

......

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

 $Side AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 47

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 48

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____

2. The difference of the two sides of a triangle is _	than the third side of the					
triangle. Therefore, the third side should be	(less/ greater) than sum of other two sides.					
Here, difference of the two sides = Therefore, the length of the third side is greater						
Therefore, length of the third side is greater than	but less than					

Number system

Topics to be Improved					
Fractions	Division of fraction, Multiplication of fractions				
Introduction to rational numbers	Basics of rational numbers				
Exponents	Solving exponents				
Operations on rational numbers	Division of rational numbers, Subtraction of rational numbers				
Positive and negative rational numbers	Identification of positive rational numbers				
Law of Exponents	Law of Exponents				
Decimals	Multiplication and division of decimals				
Integers	Basics of integers				

Hi, here in this video you will learn Division on fractions

Question: 49

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5 \frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 50

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

Question: 51

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{\hspace{1cm}} = \frac{12}{40} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Then the answer is _____

Hi, here in this video you will learn Basics of rational numbers

Question: 52

The numbers in the diagram represents_____.

Answer:

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are numbers.	
The combination of these circles are called	
$\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are Combination of all three circles are called as	numbers.
Question: 53	
Shade the correct form of rational numbers.	
$ \boxed{ \begin{array}{c} \frac{p}{q} \\ \end{array} } \boxed{ \begin{array}{c} \frac{1}{q} \\ \end{array} }$	p+q
Answer:	
Rational number can be expressed as, where	both numerator and denominator are
(integer/ not a integer),	
denominator is equal to(zero/ one/ any integ	ger other than zero).
Question: 54	
Circle the number which is not a rational number. $\frac{-5}{-8}$ $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$	
Answer:	
Rational number can be expressed as, where both nu	merator and denominator are
(integer/ not a integer),denominator is equal t	to (zero/ one/ any integer
other than zero). Here, is/are rational number and	is/aro not a rational number
is/are rational number and	
Hi, here in this video you will learn Exponents a	nd power
Question: 55	
Find the exponential form of 1000.	
Answer:	
(Exponents/Base) tells us how many times a	number should be multiplied by itself
to get the desired result.	The state of the s
Exponents is also called as (Base / Power).	
1000 can be written as = $10 \times$	
10 is raised to the power of $\underline{\hspace{1cm}} = (10)^{-}$	_
Question: 56	

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ × ___ = ___.

.....

Question: 57

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Multiplication on fractions

Question: 58

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\square} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to $___$ (zero/one). Therefore, 2 can be written as $___$ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \frac{2}{\square} = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question:	59
Q WCGGGGG	σ

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls
$$=$$
 \times $=$ $=$ $=$

Question: 60

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} =$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn Operation on rational numbers

Question: 61

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 62

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 63

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\Box} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 64

Segregate positive and negative rational number.

Answer:

•	If both the numerator and the denominator of a rational number are	
	(positive/negative), then it is positive rational number.	

•	If either the numerator and the denominator of a rational number are negative,	then	it is
	(positive/negative) rational number.		

In the given circle, positive rational numbers are	and negative rational numbers are
 .	
Question: 65	

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \Box$ and this _____ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 66

The product of a positive rational number and a negative rational number is ______rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers: _____

Examples for negative rational numbers:

Positive rational number \times Negative rational number = ____ \times ___ = ___ and this is ____ rational number

Hi, here in this video you will learn Law of exponents

Question: 67

$(x)^0$ is equal to
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.
In $(x)^0$ base =
$Power = \underline{\hspace{1cm}}$
Any number or variable with power zero is equal to Therefore, $(x)^0$ equal to
Question: 68
i. $a^m \times a^n = \underline{\hspace{1cm}}$ ii. $a^m \div a^n = \underline{\hspace{1cm}}$
Answer:
Multiplication of two numbers with same base with different power, their exponents are
(added/ subtracted) Division of two numbers with same base with different power, their exponents are (added/ subtracted).
Question: 69
Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$
a+n+x bmy 1 $ab+mn+xy$ 0 anx $b+m+y$
Answer:
Any number with power zero is equal to (One/ Zero). Any number with power one is equal to (same/ different) number.
$(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{0} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$

Hi, here in this video you will learn **Operation on rational numbers**

Question: 70

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{}{} =$$

Question: 71

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box A =

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$

Question: 72

Find the missing values in the given figure.

$$= \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$$

Answer:

One litre = $\underline{\hspace{1cm}}$ ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given: $1 = \frac{7}{10} +$ _____
Transposing $\frac{7}{10}$ to other sides, 1 _____ $\frac{7}{10} =$ ______
Therefore, result is ______.

Hi,	here i	n this	video y	you wi	ll learı	n Bas	ics of	decir	nals			
Que	estion:	7 3 .										
Shac	le 0.4 pa	rt of the	e given	shape.								
Ans	wer:											
0.4 c This	can be ex fraction	media with the control	as ents	pa	rts out	of		l parts				
Que	estion:	<u>74</u> .										
Solve	e the fol	lowing.										
(i)	0.4×1	1.2										
(ii)	$0.48 \times$	1.2										
\underline{Ans}	wer:											
(i)	The nu Total o	lication ımber of ligits aft	digits a er decir	after de nal poi	cimal p	oint in e produ	0.4 is _ act of tw	o num	and 1.2 bers is	2 is		is
(ii)	The nu Total o	lication ımber of ligits aft	digits a er decir	after de nal poi	cimal p	oint in e produ	0.48 is a	o num	$_{-}$ and 1 bers is	.2 is	·	is
Que	estion:	75										
One											x contains 1	
\underline{Ans}	wer:											
		tains one cho										

(i)	Total digits after decimal point in decimal number $=$
(ii)	Divide the two numbers assuming there is no decimal point

$$\frac{2010}{15} =$$

.....

(iii)	Place the decimal point after	digits	counting	from	the	right	in	the	quotient	after
	division.									

Then the cost of one chocolate is _____.

The cost of 15 chocolates = cost of one chocolate \times ____ = __ x ___ = ___

Hi, here in this video you will learn Basics of integers

Question: 76

Highlight the ring that contains whole numbers.

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are _____ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

Question: 77

Colour the frame of the box which contains the number 1, 4 and -10 $\,$

Negative numbers

Naturals numbers

Answer:

Whole number consists of 0,1,2,3,4,... Negative number consists of _______ Natural numbers consists of ______. Integers consists of ______.

Now, 1, 4, -10 are in
Question:~78
State whether the statement is true or false. Every positive number is an integer.
<u>Answer:</u>
Positive numbers are Integers consists of
Therefore, positive numbers are (in/not in) integers.

Comparing Quantities

Topics to be Improved				
Conversion of fraction into percentage	Conversion of fraction into percentage			
Simple interest	Calculation of simple interest			
Profit and loss	Prediction of loss and profit			
Percentage	Basic of percentage			
Equivalent ratios	Basic of proportion			

Hi,	here	in	this	video	you	will	learn	Converting	fraction	into
per	cent	age	е							

Question:	79
-----------	----

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

Question: 80

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %. Therefore, correct conversion form is _____

Question: 81

Find the percentage of shaded part of square.

4			
A	กรบ	ver	۰

The square shape is divided into parts.	
Number of shaded part of square is	
Shaded part of square in fraction is	
To Convert into percentage , x 100)
Hi, here in this video you will learn Simple Interest	

Question:	82				_				_			_	
Question.	O Z		•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•

Match the following.

	Column A				
i	Principle(P)				
ii	Amount (A)				
iii	Rate (R)				
iv	Time period (T)				

Column B					
a	Interest calculated based on this				
b	Total sum you borrow				
С	Number of years				
d	Total sum with interest				

|--|

Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is
Question:~83
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.

$\underline{Answer:}$

Given:			
		, Time period = or calculating interest is	
	= _		 •
Ougation, 81			
		1950 T: 1.1	
_	on Rs.5000 for 3 years is Rs.	1350. Find the rate of interest.	
Answer:			
$Interest = \underline{\hspace{1cm}}$	$\underline{\hspace{1cm}}$, Time period = $\underline{\hspace{1cm}}$, Principal =	·
Data of interest -	x 100		
rate of interest =	Principal x		
Substituting values	in the formula,		
	x 100		
Rate of interest =	Principal x		
Rate of interest = _	•		
Therefore, the rate	of interest is	%	
Hi, here in this	video you will learn Pro	ofit and Loss	
			面線樂館
Question: 85			
Anu bought a book price of a book is _		. Here, cost price of a book is $_$	and selling
Answer:			
The price that is pa		Is is price and the price ϵ	at which goods are
Therefore, cost pric	$e ext{ of a book} = \underline{\qquad}, ext{ selling}$	g price of a book $=$	
Question: 86			
	or ₹50 to play cricket. After o	one week, you sold that bat for $\mathbf{\xi}$	
$\underline{Answer:}$			
In loss, selling price Cost price of a bat	ce cost price. (<, > cost price. (<, >, =, selling price of a (greater / smaller)	=)	
Question: 87			
~	rt phone for Rs.19,499 and af selling price of the phone.	ter one week she sold her phone a	at a loss of

Answer:	
Cost price of a smart phone = $ _{ } $, loss = $ _{ } $	
Loss =	
Hi, here in this video you will learn Basics of percentage	
Question: 88	
2% can be written as	
Answer:	
Percentages are numerators of fractions with denominator	
$2\% = \frac{\square}{\square}$	
<i>Question:</i> 89	
Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?	
Answer:	
Arun attended LaPIS test for marks. He got marks.	
75 % can be written in fraction form ———	
Then the mark scored by Arun = Total mark \times 75% = \times =	
Then the mark scored by Arun — Total mark × 75% — × —	
Question: 90	
There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.	
Answer:	
There are apples in a basket. Number of rotten apples are	
Fraction form of rotten apples in a basket =	
Convert it into a percent= x% =	

Hi, here in this video you will learn Basics of proportion	
Question: 91	
If a:b and c:d are equivalent ratio, then it can be expressed as	
Answer:	
A (proportion / ratio) is used to express (one/two) equivalent rat Standard form to express proportion is	ios.
Question: 92	
Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equi	ivalent?
	-
A P	
В	
Answer:	
Shaded part of $A = $, Unshaded part of $A = $ Ratio of shaded to unshaded parts of A is Fractional form = Shaded part of $B = $, Unshaded part of $B = $ Ratio of shaded to unshaded parts of B is Fractional form = Fraction form of A (equal/ not equal) to Fraction form of B .	
Question: 93	
If a: b:: c: d is proportion, shade the correct expression $\boxed{a = \frac{bc}{d}} \boxed{c = \frac{ad}{b}} \boxed{ad=cd}$	
$\underline{Answer:}$	
Two equivalent ratio which are proportion, it can be written as a : b :: c : d or = (in fraction) . First and fourth term are called and second and third term are called In proportion, product of extreme terms is (equal to/ not equal to) product terms.	

Therefore, a \times d = ____, then a = ____ and c = ____

Algebra

Topics to be Improved				
subtraction of algebraic expressions	subtraction of algebraic expressions			
Basics of simple equation	Formating of simple equation, Solving of simple equation			
Terms of an expression	Identification of terms in an expression			
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			

Hi,	here in	this	video	you	will	learn	Subtraction	on	expression
-----	---------	------	-------	-----	------	------------------------	-------------	----	------------

Question: 94	

Find the sum of two expressions a + b + c and b + c + d

$\underline{Answer:}$

The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) terms.
The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$.
The answer is

$Question:\ 95$

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

(i) Number of boys in school A = _____,

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is _____ + ___ = ____

(ii) Number of boys in school B = _____,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$

Question: 96

Solve the following:

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Hi, here in this video you will learn Solving an equation using application

Question: 97

......

Box B contains _____ times the number of chocolates in Box A

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 98

Write the equation for the following statement.

Subtracting four times of m from 4 is n

	Subtracting	Four times g four times of m fr	of m = om 4 =	
The equation is				
Question: 99				
Compare the given t Sum of $2a$ and 9				
Answer:				
Therefore, sum of $2a$	and 9 Add 9	Product of a are the product of a are to the product of a	and $2 = \underline{}$ and 2	
Hi, here in this value and the end of the en				
		$ \begin{array}{ccc} 16r & 54c^4 \\ 12 & x \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Answer: In algebraic expression——.	on, variables are r	represented by	and Con	stant is a
	Terms	Constants	Variables	
Question: 101				

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The terms in the expression 4xy is/are _____

The terms in the expression 12a + b + 1 is/are _____

The terms in the expression 7m + 0 is/are _____.

Question: 102

Shade the outline of circle that contains the term of the given expression.

$$6m^2 - 7mn + nl$$

.....

.....

.....

Answer:

In algebraic expression, $___$ (variables/ terms) are connected together with operations of addition.

Here, _____, are the terms of the given expression.

Hi, here in this video you will learn **Types of expression**

Question: 103

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 104

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

1. The terms in expression $8x^2$		
Here, expression has	term and it is a	
2. The terms in expression $7xy$		
, •	term and it is a	
3. The terms in expression $7m$		
Here, expression has term	m and it is a	
Question: 105		
	expression. (Monomial/Binomial/Tri	
Answer:	, , ,	,
The terms in expression $5m^2 + m$ -	⊥ ∩ are	
	terms and it is called a	expression.
Hi, here in this video you wi	ill learn Solving an equation	
Question: 106		
If $©=5$, then $5 © +5 = $		
Answer:		
The value of the given smiley © is		=
Question: 107		
Which of the following number can 2) $7 + 3 = -4$	n be placed in the box to make the equ	nation correct (-2, -1, 0, 1,
Answer:		
	4 Substitute the values (2, 1, 0, 1, 2)	in the circle
The given equation is $7 = +3 = -4$ $7 \times = +3 = = -4$	4 Substitute the values $(-2, -1, 0, 1, 2)$	in the circle,
7×+3 =		
$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$ $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$		
7×+3 =		
	that can be placed in a box to make the	ne equation correct.
Question: 108		
Arrange the terms in the descending		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{4} \qquad \frac{1}{2}x$	
Answer:		

The given expression are	
The value of x is	
substituting value of x	

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: $__$, $__$, $__$, $__$, $__$. Their respective algebraic terms are $__$, $__$, $__$, $__$, $__$.