1. Шпорцы к экзу по диффурам by Rexhaif

1.1. Автономные системы. Основные свойства автономных систем. Положения равновесия.

Автономные системы: Сиситема обыкновенных ДУ называется автономной, когда переменная t явно не входит в систему. $\dot{x} = \frac{dx}{dt} = f(x)$; (1). Иначе, в координатном виде: $\frac{dx_i}{dt} = f_i(x_1, \dots, x_n), i = \overline{1, n}.$

Свойства автономных систем: 1. Если $x = \varphi(t)$ - решение системы (1), то $\forall C : x =$ $\varphi(t+C)$ - тоже решение системы. Док-во: $\frac{d\varphi(t+C)}{dt} = \frac{d\varphi(t+C)}{d(t+C)} = f(\varphi(t+C)).$

- 2. Две фазовые траектории либо не имеют общих точек, либо совпадают. Док-во: Пусть ρ_1, ρ_2 - фазовые траектории. Им отвечает интервал решения $x = \varphi(t), \dots, x =$ $\psi(x)$. И пусть $\varphi(t_1) = x_0 = \psi(t_2)$ (есть общая точка). Рассмотрим вектор-функцию $x = \psi(t + (t_2 - t_1)) = X(t)$. В силу св-ва (1) это тоже решение, притом: $X(t_1) = \varphi(t_1) \Rightarrow$ $X(t) = \varphi(t) \Rightarrow \varphi(t) = \psi(t + (t_2 - t_1))$, т.е кривые совпадают.
- 3. Фазовая траектория, отличная от точки, есть гладкая кривая. Док-во: Пусть $X^0 =$ $\varphi(t_0) = \frac{d\varphi(t_0)}{dt}$. Этот вектор - касательная и в каждой точке он не равен нулю. ЧТД. Положение равновесия: Точка $a \in \mathbb{R}^4$ называется точкой равновесия авт. системы, если $f(a) = 0(\dot{x}(a) = 0)$.

1.2. Классификация стем.

гладкая кривая (цикл). 3. Точка.

Теорема: Если фаз. траектория решения $x = \varphi(t)$ есть гладская замкн. кривая, то это решение есть периодическая ф-я t с периодом T > 0. NEED SOME PROOFS FOR THAT SHIT, BUT I'M TOO LAZY.

1.3. Групповые свойства решений автономной системы уравнений.

Пусть $x(t,x^0)|_{t=0} = x^0$ - решение системы (1), т.е $x^0 \neq 0$ - нач. условие для системы (1). Тогда $x(t_1+t_2,x^0)=x(t_2;x(t_1,x^0))=$ $x(t_1, x(t_2, x^0)).$

Док-во: Пусть вект. функции: $\varphi_1(t) =$ $x(t, x(t_1, x^0)); \varphi_2(t) = x(t + t_1, x^0)$ - это решение для системы 1. При t = 0: $\varphi_1(0) = x(t_1, x^0); \varphi_2(0) = x(t_1, x^0).$ T.e $\varphi_1(0) = \varphi_2(0)$. В силу теор. о единственности $\varphi_1(t) = \varphi_2(t) \forall t$. Отсюда следует оба уравнения из условия. Из предыдущег оследует: $x(-t, x(t, x^0)) = x_0$.

1.4. Структура решений автономной системы в окрестности неособой точки.

Дано: $\frac{dx}{dt} = f(x)$ в нек-й окрестности точки V точки a; $f(a) \neq 0$. Фазовые траектории в окрестности V будут кривыми и гладкой заменой переменных их можно сделать пря-

Теорема о выпрямлении: пусть $f(a) \neq 0$. Тогда в малой окрестности точки a систему (1) путем гладкой замены переменных **фазовых** можно привести к виду: (2) $\frac{dy_1}{dt} = 0$; $\frac{dy_2}{dt} = 0$ **траекторий автономных си-** $0; \dots; \frac{dy_n}{dt} = 1$. Траектории для (2) - прямые линии: $y_1 = C_1; \dots; y_n = t + C_n$.

Док-во: Т.к $f(a) \neq 0$ - без огр. общн. го-Всякая фазовая траектория принадлежит к ворим, что : $f_n(a) \neq 0$. Пров. гиперплоск. одному из трех типов(классов): 1. Гладкая $P: x_n = a_n$. Её точки имеют вид: (ξ, a_n) . кривая без самопересечений. 2. Замкнутая Пусть: $x = \varphi(t, \xi)$ - решение (1), такое, что того, чтобы ф-я u(x) была перв. интег. устойчивым, если оно устойчиво по Ляпу-

 $\varphi(0,\xi) = (\xi,a_n)$ - нач. точка лежит на P. Формула: $x = \varphi(t, \xi)$ - и дает искомую замену. Обознач. $y_1 = \xi_1; \dots; y_n = t$. В новых переменных траектории будут прямыми линиями, т.к из опред. решения имеем, что ξ_1,\dots,ξ_{n-1} лежат вдоль траектории $x=arphi(t,\xi^0)$ и её уравн. в перем. y им. вид: $y_1 = \xi_1^0; \dots; y_n = t.$

1.5. Производная в силу системы. Геометрическая интерпретация.

Дано : $\frac{d\vec{x}}{dt} = \vec{f}(\vec{x},t)$ (1). Пусть в области $G\subset \mathbb{R}^{n+1}$ ф-я $ec{f}$ непр. дифф. по всем ар-

Конструкция : Рассм. произв. ф-ю u = (t, \vec{x}) . Пусть $\vec{x} = \vec{\varphi}(t)$ - решение сист. (1) \Rightarrow Вдоль реш. системы имеем $u(t, \vec{\varphi}(t)) =$ $\mathbb{W}(t)$. Дифференцируем $\mathbb{W}(t)$ по t: $\frac{d\mathbb{W}}{dt}$ $\left(\frac{\partial u(x,t)}{\partial t} + \sum_{j=1}^{n} \frac{\partial u(t,\vec{x})}{\partial x_{j}} \cdot \frac{dx_{j}}{dt}\right)\big|_{\vec{x} = \vec{\varphi}(t)} = \frac{\partial u(t,\vec{x})}{\partial t} +$ $\sum_{j=1}^n rac{\partial u(t,\vec{x})}{\partial x_j} \cdot f_j(t,\vec{x})|_{\vec{x}=ec{arphi}(t)}$ (2). Полученное в (2) выражение - производной ф-ии u в силу системы (1). Обозн. \dot{u} или $\frac{du}{dt}$.

Геом. интерпретация : Пусть u(x) - гладкая и $\nabla u(x) \neq 0$ в уч. обл. $D. \Rightarrow$ ур-е u(x) = 0 опр. гладкую поверхность S, а вектор $\nabla u(x)$ ортогонален к S в точке х и направлен в сторону возр. ф-ии u(x). Если $\dot{u}(x) < 0$, то участок ф-ии f(x) образует прямой или тупой угол с вектором $\nabla u(x)$.

1.6. Первые интегралы. Теорема о первых интегралах. Независимые интегралы.

Определение: Ф-я u(x) называется первым интегралом автономной системы (1) если она постоянна вдоль каждой траектории $0 \le t \le \infty$ этой системы.

системы (1) необх. и достаточно, чтобы она удовл. соотн в области D: $\sum_{j=1}^{n} \frac{\partial u(x)}{\partial x_{j}}$ $f_i(x) = 0 \ (\#)$

Док-во (1) : Пусть u(x) - непр. интегрируемо в обл. D. $x = \varphi(t)$ - решение системы (1) \Rightarrow $\mathbb{W}(t) = u(\varphi(t))$ - постоянна $\forall t \Rightarrow \dot{u}(x) = 0$ в D. Обратно: Пусть # - в области $D\Rightarrow$ пусть $x=\varphi(t)$ - решение для $(1) \Rightarrow \frac{d}{dt}u(\varphi(t)) = \sum_{j=1}^{n} \frac{\partial u(x)}{\partial x_j} f_j(x)|_{x=\varphi(t)} = 0$ $\Rightarrow u(\varphi(t))$ - не зависит от $t \Rightarrow$ - явл. первым интегралом. ЧТД.

(2) Теорема о независимых интегралы: Пусть т. а не есть положение равновесия. Тогда в её некоторой окрестности $\exists n-1$ независимых интегралов первых интегралов $u_1(x), \ldots, u_{n-1}(x)$ и любой иной первый интеграл выражается через них.

Док-во (2) : Пусть окр. a дост. мала $\Rightarrow \exists$ окр. V точки y = 0 и гладкая обратимая замена $x = \varphi(y)$ приводящая систему к виду $\frac{dy_1}{dt} = 0; \dots; \frac{dy_n}{dt} = 1$. Полученная система имеет n-1 незав. первых интегралов $u_1(y) = y_1; \dots; u_{n-1}(y) = y_{n-1}$ и всякий иной первый интеграл выражается через них.

1.7. Устойчивость положения Ляпунову. равновесия по Асимптотическая устойчивость.

Устойчивость по Ляпунову: Положение равновесия а называется устойчивым по Ляпунову, если:

- 1. $\exists \delta_0 > 0$, такое, что если $|x^0 a| < \delta_0$, то решение $x(t, x_0)$ - существует и единств. при $0 < t < \infty$.
- **2**. $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0$, такое, что если $|x^0 - a| \le \delta$, то $|x(t, x^0) - a| \le \varepsilon$, при всех

Асимптотическая устойчивость: Поло-(1) Теорема опервых интегралах : Для жение равновесия a назыв. асимптотически нову и если $\lim_{t\to +\infty} x(t,x^0)=a$, при доста- 1.9. Анализ плоской фазовой си- 1.11. Функции Ляпунова. Лемточно малом $|x^0 - a|$.

Проще: Если точку сдвинуть из положения равновесия, то она будет стремиться туда вернуться.

1.8. Линейные автономные системы. Структура общего решения в случае различных корней. Случай вещественной матрицы.

(1) Вид :
$$\begin{cases} \frac{dy_1}{dt} = a_{11}y_1 + \ldots + a_{1n}y_n \\ \ldots \\ \frac{dy_n}{dt} = a_{n1}y_1 + \ldots + a_{nn}y_n \end{cases}$$

Собственные значения: Вектор $e \neq 0$ назыв. собств. вектором матрицы A(в нашем случае - матрицы из a_{ij}), если $Ae = \lambda e$. Притом λ - назыв. собств. значением матрицы и $det(A-\lambda E)=0$. Если собственные значения матрицы A различны, то существует невырожд. матрица T, приводящая матрицу A к диагональному виду.

 $\lambda_1, \ldots, \lambda_n$ - собств. значения матрицы $A \Rightarrow$ - собств. вектор матрицы A.

Случай вещественной матрицы : Пусть $\alpha < 0$: Устойчивый фокус. $\xi_1 =$ $Ae = \lambda e \Rightarrow \vec{A}\vec{e} = \vec{\lambda}\vec{e}; \vec{A} = A \Rightarrow A\vec{e} = \vec{\lambda}\vec{e}.$ центр, направление зависит от знака β . вектор тоже веществ. и решение берем как кручивается. $x = e^{\lambda t} \vec{e}$.

стемы. Разбор различных случаев. Вещественные корни.

Дано :
$$\begin{cases} \dot{x}_1 = a_{11}x_1 + \dots \\ \dot{x}_1 = a_{21}x_1 + \dots \end{cases}$$
 , λ_1, λ_2 - собств

Корни вещественны, различны, не нулевые : $\Rightarrow x(t) = C_1 e^{\lambda_1 t} \vec{e}_1 + C_2 e^{\lambda_2 t} \vec{e}_2$. \vec{e}_i - базис на плоскости. Пусть ξ_1, ξ_2 - коорд. вектора x в базисе \vec{e}_1, \vec{e}_2 . $\xi_1 = C_1 e^{\lambda_1 t}; \xi_2 = C_2 e^{\lambda_2 t}$. $\lambda_1 < 0, \lambda_2 < 0$: Узел. При $C_1 = C_2 = 0$ точка покоя (0, 0). Траектории направлены

 $\lambda_1 > 0, \lambda_2 > 0$: Устойчивый узел. Траектории направлены из центра.

 $\lambda_1 > 0, \lambda_2 < 0$: Седло. Траектории образуют гиперболы во всех четвертях. В нижних четвертях направлены вниз, в верхних -

1.10. Анализ плоской фазовой системы. Разбор различных случаев. Комплексные корни.

Случай различных корней : Пусть Оба корня чисто мнимые : Центр. $\xi_1 = \rho_0 cos(\beta t + \psi); \xi_2 = \rho_0 sin(\beta t + \psi), \rho_0 =$ всякое решение уравнения $\frac{dy}{dt} = A\dot{x}$ имеет $2\sqrt{a^2+b^2}$. Фазовые траектории - эллипсы, вид: $x(t) = C_1 e^{\lambda_1 t} \vec{e}_1 + \ldots + C_n e^{\lambda_n t} \vec{e}_n$, где \vec{e}_i направление зависит от знака $\beta:\beta>0$ против часовой.

A - вещ. λ - вещ. e - собств. вектор. $\Rightarrow \vec{\lambda}$ - $\rho_0 e^{\alpha t} cos(\beta t + \psi)$; $\xi_2 = \rho_0 e^{\alpha t} sin(\beta t + \psi)$. собств. знач. с собств. вектором \vec{e} . Док-во: Траектории - спирали, закручивающиеся в

ЧТД. Если λ - вещ. собств. знач. \Rightarrow собств. $\alpha > 0$: Неустойчивый фокус. Спираль рас-

ма об оценке квадратичной формы.

Положительно и отрицательно определенные ф-ии: Пусть есть $x \in \mathbb{R}^4$, $V(a) \in$ C(V). Ф-я V(x) называется положительно определенной в области V, если есть т. a, такая что в её окрестности $V(x) > 0 \forall x \in U(a)$ и V(a) = 0. И отрицательн определенной иначе.

Функция Ляпунова : Положительно определенная в окр. точки a функция V(x)называется ф-ей Ляпунова системы $\dot{x} =$ f(x) (1), если $\dot{V}(x) \leq 0, \forall x \in V. \ \dot{V}(x)$ производная в силу системы (1). $\dot{V}(x) =$ $\sum_{j} \frac{\partial V}{\partial x_{j}} f_{j}(x) \leq 0.$

Лемма о квадр. форме : Если A - веществ. симм. матрица (n x n) $\Rightarrow \forall x \in \mathbb{R}^4$ верно: $\alpha |x|^2 \le |(Ax, x)| \le \beta |x|^2$, где $\alpha =$ $min(A); \beta = max(A).$

Док-во : Приведем A к диаг. виду с помощью орт. преобразования матрицей T, т.е $T^{-1}AT = \mathcal{L}$ - диаг. матрица с элементами $\lambda_1, \ldots, \lambda_n$. Сделаем замену $x = TY \Rightarrow$ в силу ортогональности (Ax, x) = (ATY, TY) = $(T^{-1}ATY, y) = (T^{-1}ATY, Y) = (\mathcal{L}Y, Y) =$ $\sum_{i=1}^n \lambda_i y_i$, так что $\alpha |x|^2 = |(Ax,x)| = \beta |x|^2$. Т.к ортогон. преобр. сохраняет длину вектора то |x| = |y|. Лемма доказана.

1.12. Теорема Ляпунова устойчивости.

Теорема: Если в некоторой окрестности Vполож. равнов. а существует ф-я Ляпунова V(x) - то это положение устойчиво по Ляпунову.

Док-во : Пусть a = 0. Выберем $\varepsilon > 0$, такой, что шар $K_{\varepsilon}:|x|\leq \varepsilon$ лежит в окрестности V точки a. Пусть S_{ε} - сфера, $|x|=\varepsilon$ - гран. шара K_{ε} . S_{ε} - замкнутое, огр. мн-во. Ф-я V(x) - непрерывн. и V(x) > 0 на $S_{\varepsilon} \Rightarrow$

 $min_{x \in S_{\epsilon}}V(x) = k > 0$. Paccm. $\text{Шар } K_{\delta}: |x| \leq$ δ , содержащийся в V. Т.к V(0)=0, то $\delta>0$ можно выбрать настолько малым, что бы выполнялось неравенство $V(x) < k, x \in K_{\delta}$. в силу непр. ф-ии V(x). Покажем, что если $|x^0| < \delta$, то $|x(t,x^0)| < \varepsilon$ при $0 < t < \infty$. Тем самым теорема будет доказана. Т.к V(x) < 0в V и $V(x^0) < k$, то V(x) < k при t > 0 вдоль фазовой траектории $x = x(t, x^0) \Rightarrow$ фазовая траектория начинается в шаре K_{δ} и не может пересечь границы шара $K_{\varepsilon} \Rightarrow V(x) > k$ на S_{ε} и V(x) < k на траектории. ЧТД.

1.13. Теорема Ляпунова асимптотической устойчивости.

Теорема : Пусть в нек. окр. V положения равн. a сущ. ф-я Ляпунова V(x) такая что $\dot{V}(x)$ - отриц. опр. в $V \Rightarrow$ полож. равн. aасимпт. устойчиво.

Док-во : Выберем шары $K_{\varepsilon}, K_{\delta}$ как в пред. теор. По Ляпунову если $|x^0| \leq \delta \Rightarrow$ $|x(t,x^0)| \leq \varepsilon$ при $t \geq 0$. Рассм. ф-ю W(t) = $V(x(t,x^0))$ при $t\geq 0$. Т.к $\dot{V}(x)\leq 0\Rightarrow \phi$ я W(t) невозраст. $\Rightarrow \exists \lim_{t\to\infty} W(t) = A$. При этом A > 0 поскольку V(x) > 0. Если $A=0 \Rightarrow \lim_{t\to\infty} x(t,x^0)=0$ т.к V(x)>0при $x \neq 0$. V(0) = 0 след. теорема доказана. Для случая A > 0 доказать через противоречие.

1.14. Теорема Четаева о неустойчивости.

Теорема : Пусть a - пол. равн. V - окр-ть пол. равн. V_1 - область в V и V_1 имеет т.a своей границей. Тогда если в V_1 $\begin{cases} V(x) > 0 \\ \dot{V}(x) > 0 \end{cases}$

и V(x) = 0 в тех. гран. точках области V_1 , которые лежат внутри области $V \Rightarrow$ положение равновесия x = a неустойчиво.

Док-во : Пусть $x^0 \in V$, ρ - фаз. траект. вы-

ходящая из $x^0 \Rightarrow \rho = x(t, x^0)$. Покажем, что **1.16. Устойчивость по линейно**траектория ρ не может пересечь часть границы области V_1 , которая лежит в V. Рассм. ф-ю V(x) вдоль ρ . $W(t) = V(x(t, x^0))$. Т.к W(0) > 0; $W'(t) = \dot{V}(x) > 0$. Пока ρ содерж. в V_1 , то W(t) > 0, пока ρ содерж. в V_1 и не может пересечь часть границы V_1 , на которой $V(x) = 0 \Rightarrow$ траектория должна покинуть V_1 , т.к V_1 содержит точки, сколь угодно близкие к $a \Rightarrow$ это положение равновесия неустойчиво. ЧТД.

1.15. Теорема о устойчивости положения равновесия линейной системы.

Дано: система (1) $\frac{dx}{dt} = Ax, A \leftrightarrow [n \times n]$ Теорема: Положение равн. системы (1) асимптотически устойчиво ⇔ веществ. части всех собств. значений матрицы A - отрицательные.

Док-во : Пусть $\lambda_1, \ldots, \lambda_n$ - собств. знач. и $Re\lambda_i \leq -\alpha < 0 \forall j = \overline{1,n}$. Пост. фю ляпунова V(x). Пусть $\exists \varepsilon > 0 : B_{\varepsilon} =$ $(b_{ij}): |b_{ij}| \leq \varepsilon$. Подставим это и x = T(y)в (1): $\frac{dy}{dt} = (\mathcal{L} + B_{\varepsilon})y$ (2). Ф-ю Ляпунова возьмем в виде: $V(x) = \sum_{i=1}^{n} |y_i|^2 =$ (y, \vec{y}) . Эта ф-я положительно определена в любой окр. y = 0. Имеем: V(x) = $\frac{d}{dt}(y,\vec{y}) = (\frac{dy}{dt},\vec{y}) + (y,\frac{d\vec{y}}{dt}) = ((\mathcal{L} + \vec{\mathcal{L}})y,\vec{y}) +$ $[(B_{\varepsilon}y,\vec{y})+(y,\vec{B_{\varepsilon}}\vec{y})]$. Первое из слагаемых равн: $\sum_{i=1}^n (\lambda_i + \vec{\lambda_i}) |y_i|^2 = 2 \sum_{i=1}^n Re \lambda_i |y_i|^2 \le -2\alpha \sum |y_i|^2$, т.к $Re \lambda_i \le -\alpha$. Далее, т.к $|b_{ij}| \le \varepsilon \Rightarrow |(B_{\varepsilon}y, \vec{y})| \le \sum |b_{jk}| \cdot |y_j| \cdot |y_k| \le \varepsilon \sum |y_j| \cdot |y_k| = \sum (\sum |y_i|^2) = n\varepsilon \sum |y_j|^2,$ т.к $(\sum |y_i|)^2 \le n \sum |y_i|^2$. Такая же оценка для второго слагаемого $\Rightarrow V(x) \leq -2(\alpha$ на ⇒ положение равновесия асимпт. устойчиво. ЧТД.

му приближению. Теорема об устойчивости по лин. прибл.

Дано: $\frac{dx}{dt} = f(x)$ (1). a - положение равновесия. f(a) = 0. $a \in V$; $f \in C^2(V)$. Разложим f(x) по ф. тейлора: f(x) = f'(a)(x-a) + g(x), где f'(a) - якобиан в т.а. Кроме того $|g(x)| \le$ $C|x-a|^2$. Отбрасыв. g(x) получим лин. систему (2) $\frac{dy}{dt} = Ay; y = x - a; A = f'(a).$

Теорема: Пусть $f(x) \in C^2(V), V = U(a)$. Если веществ. части всех собств. значений f'(a) - отрицательны, то положение aасимпт. устойчиво. Кроме того: $|x(t,x^0)|$ $a| \leq Ce^{-\alpha t}|x^0 - a|$; $0 \leq t < \infty$.

Док-во : $a = 0 \Rightarrow \frac{dx}{dt} = A(x) + g(x); |g(x)| \le$ $C_1|x|^2$. Для док-ва построим полож. опр. в окр т.a ф-ю Ляпунова. Пусть $x = Ty \Rightarrow$ $\frac{dy}{dt} = (\mathcal{L} + B_{\varepsilon})y + h(y)$, где $h(y) = T^{-1}g(Ty)$. Φ -ю Ляпунова возьмем в виде V(x) = $\sum |y_i|^2 = (y, \vec{y})$. Аналогично пред. теор. $\dot{V}(x) = [((\mathcal{L} + B_{\varepsilon})y, \vec{y}) + (y, (\vec{\mathcal{V}} + \vec{B}_{\varepsilon})\vec{y})] +$ $[(h(y), \vec{y}) + (y, h(y))] + A_1 + A_2$. A_1 - произв. в силу системы $\frac{dy}{dt} = (\mathcal{L} + B_{\varepsilon})y \Rightarrow$ справедлива оценка из пред. теор: $A_1 \leq \rho |x|^2$. $|A_2| \leq 2|y||h(y)| \leq C_3|x|^2$ Таким образом $\dot{V}(x) \leq -|x|^2 \cdot (\rho - C_3|x|)$. Выберем окр. $W \subset$ V, такую что $|x|<rac{
ho}{2C_2}$, тогда $\dot{V}(x)\leq -rac{
ho}{2}|x|^2$ \Rightarrow ф-я $\dot{V}(x)$ отриц. опред. в W и след. положение а асимпт. устойчиво. ЧТД.

1.17. Устойчивость произвольных решений автономных систем. Устойчивость нулевых решений неавтономных систем.

 $narepsilon)\sum |y_i|^2 = -2(lpha-narepsilon)V(x)$. Выберем arepsilon : Дано : Система (1) $\frac{dx}{dt}=f(t,x); f\in C^2(\sigma),$ $0<\overline{\varepsilon}<\frac{a}{r}\Rightarrow \dot{V}(x)$ - отрицательно определеет решение X(t) = 0. Для неавтономных систем формулировки те же, что и для авто- БЕЗ ДОКАЗАТЕЛЬСТВА.

Устойчивость решений авт. систем : Дана система (2) $\frac{dx}{dt} = g(x)$. Сделаем подстановку $x(t) = \varphi(t) + y(t) \Rightarrow \frac{dy}{dt} = g(\varphi(t) + y(y))$ - (3). Решение $\varphi(t)$ системы (2) назыв. устойчивым по Ляпунову (асимпт.) если таковым является нулевое решение y(t) = 0 для системы (3).

1.18. Функции Ляпунова для неавтономных систем. Теорема Ляпунова об устойчивости по линейному приближению для неавтономных систем.

Ф-ии Ляпунова для неавтономных си**стем** : Ф-я V(t,x) называется ф-ей Ляпунова для неавтоновной системы (1) если: 1) Эта ф-я определена и непр. дифф. при $x \in \mathbb{R}, t \geq 0.$ 2) V(t,0) = 0 при $t \geq 0.$ $3)\exists W(x)$ б положительно определенная в области Σ , такая что $V(t,x) \geq W(x)$ при всех $x \in \Sigma, t \ge 0$. 4) $\dot{V}(t, x) \le 0 \forall x \in \Sigma, t \ge 0$.

Теорема : Рассм. систему: $\frac{dx}{dt} = Ax +$ f(t,x) (1). Пусть A - матрица, веществ. части собств. значений которой отрицательны. f(t,x) - непр. дифф. при $|x| < p_1, t \geq 0$ и $f(t,x) = o(|x|), |x| \to 0$. Тогда нулевое решение системы (1) асимпт. устойчиво и справ. оценка: $|x(t)| \leq C|x(0)|e^{\alpha t}, t \geq 0$, где $\alpha > 0, C > 0$ если |x(0)| дост. мало. ДАНО 1.19. Классификация дифференциальных уравнений с частными производными. Связь первых интегралов и линейных уравнений. Характеристики. Теорема об общем решении линейного однородного уравнения. Примеры.

Классификация - Линейные уравнения: Ур-е называется линейным если неизв. ф-я u(x) и $\frac{du}{dx_i}$ входят линейно. Общий вид: $\sum_{j=1}^{n} u_j(x) \frac{du}{dx_j} + b(x)u = f(x)$ (1).

Классификация - Квазилинейные: Уре называется квазилинейным если частные $\frac{du}{dx_i}$ пр-е входят линейно. Общий вид: $\sum_{j=1}^{n} a_j(x, u) \frac{du}{dx_j} = b(x, u).$

Связь первых интегралов и линейных **уравнений**: Рассм. систему (a): $\frac{dx}{dt} = f(x)$. По теор. первых интегралов - гладкая ф-я $u(x_1,\ldots,x_n)$ тогда и только тогда является первым интегралом системы (a), когда uудовл. ур-ю с частн. производными первого порядка $\sum_{j=1}^{n} f_j(x) \frac{du}{dx_j} = 0$ (b).

Теорема об общем решении : Пусть Vдост. малая окрестность точки $a \Rightarrow b$ обл. V всякое решение ур-я (b) имеет вид u(x) = $F(u_1(x),...,u_{n-1}(x))$, где $u_i(x)$ - незав. первые интегралы, а F - произвольная гладк.

Характеристики для лин. систем : Система (а) назыв. характеристической для (b). Фазовые траектории для (a) назыв. характеристиками для (b). Пример: $y\frac{dz}{dx}$ $x\frac{dz}{dy}=0$. Ур-е характеристик - $\frac{dx}{y}=\frac{dy}{-x}=$ $dt \Rightarrow$ характеристика - окружность $x^2 + y^2 =$

в частных производных первого порядка. Характеристическая система для таких уравнений. Общий вид решения квазилинейных уравнений.

Дано : Квазилинейное ур-е
$$\sum_{j=1}^{n} a_j(x,u) \frac{du}{dx_j} = b(x,u)$$
 - (1). Её характеристическая система: $\begin{cases} \frac{dx_1}{dt} = a_1(x,u); \dots; \frac{dx_n}{dt} = a_n(x,u) \\ \frac{du}{dt} = b(x,u) \end{cases}$ Общий вид решения : Гладкая ф-я

n независисмых первых интегралов u_i :

 $u(x) = F(u_1(x), \dots, u_n(x)).$

1.21. Характеристики квазилинейных уравнений и интегральные поверхности решений. Структура интегральной поверхности решения. Примеры.

Кваз. Ур-е для трехмерного пр-ва : (1) $a(x,y,z)\frac{\partial z}{\partial x} + b(x,y,z)\frac{\partial z}{\partial y} = c(x,y,z)$. Koэфф. (1) задают в \mathbb{R}^3 векторное поле $\vec{l}(p) =$ (a(p),b(p),c(p)): p = (x,y,z). График решения - поверхность z = z(x, y, z) в пр-ве (х, у, z) называется интегральной поверхностью ур-я (1).

Теорема о характеристиках : Если интег. поверхность содержит точку $p_0 = (x_0, y_0, z_0)$ то она содержит и характеристику, проходящую через эту точку.

Док-во : Рассм. систему
$$\begin{cases} \frac{dx}{dt} = a(x,y,z) \\ \frac{dy}{dt} = b(x,y,z) \end{cases}$$

где $z = \varphi(x,y)$. Поставим задачу Коши: $x(0) = x_0, y(0) = y_0$. И пусть x(t), y(t) решения этой задачи \Rightarrow кривая $\mathcal{G}: x = \text{NEED PROOFS, BUT i'm LAZY:c}$

шения касаются $\rho \Rightarrow$ решение может $\frac{\partial \varphi}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial \varphi}{\partial y} \cdot \frac{dy}{c} = a \frac{\partial \varphi}{\partial x} + b \frac{\partial \varphi}{\partial y} = C$, т.к φ существовать ли быть не единственным. - решение ЧТД. **1.20. Квазилинейные уравнения** на инт. поверхности. Действительно $\frac{dz}{dt} =$ шения касаются $ho \Rightarrow$ решение может не

Пример : $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = C, a^2 + b^2 \neq 0$. Характеристики: $\frac{dx}{dt} = a$; $\frac{dy}{dt} = b$; $\frac{dz}{dt} = c \Rightarrow x = at + x_0$; $y = bt + y_0$; $z = ct + z_0$.

ур-е 1.22. Задача Коши для линейных уравнений в частных производных для двух независимых переменных. Определение характеристической системы. Теорема о существовании и единственности построения решения задачи Коши. Схема решения задачи Коши.

> Задача Коши : Имеем систему (1): $a(x,y)\frac{\partial z}{\partial x} + b(x,y)\frac{\partial z}{\partial y} + c(x,y)z = f(x,y)$. Пусть на пов-ти (x, y) задана кривая $\rho : x = \varphi(s); y = \psi(s).s \in I = (s_1, s_2).$ Φ -ии φ, ψ - непр. дифф. при $s \in I$, и $(\varphi'(s), \psi'(s)) \neq (0,0), s \in I$. Зададим на ρ значение ф-ии z: (2) $Z|_{\rho} = h(s) =$ $z(\varphi(s),\psi(s)),s\in I.\ h(s)$ - непр. дифф при $s \in I$. Итого требуется найти решение системы (1), удовл условиям (2). Решение центр. поверхность, проходящая через кривую $x = \psi(s), y = \psi(s), z = h(s).$

Характ. система: Характерист. системой

для (1) наз. систему
$$\begin{cases} \frac{dx}{dt} = a(x,y) \\ \frac{dy}{dt} = b(x,y) \end{cases}$$
 , a eë

фаз. траектории - характеристиками.

Теорема о существ. и единственности : Пусть кривая ρ - не касается хар-к. Тогда задача коши однозначно разрешима в некоторой окрестности кривой ρ .

1.23. Задача Коши для линейных уравнений в частных производных с любым числом независимых переменных. Определение характеристической системы для этого случая. Теорема о существовании и единственности решения для задачи Коши.

Дано : (1) $\sum_{j=1}^n a_j \frac{\partial u}{\partial x_j} + c(x) U = f(x), x =$ (x_1,\ldots,x_n) . Данные коши ставятся в виде поверхности размерности (n-1).

Харк. система : Система вида $\frac{dx}{dt}$ = $a(x), a(x) = (a_1(x), \dots, a_n(x))$ называется характеристической для (1)

Теорема : Пусть поверхность ρ не касается характеристик, тогда задача коши для такой системы однозначно разрешима в не-й окрестности ρ

PROOFS ALSO REQUIRED:c

1.24. Задача Коши для квазилинейных уравнений в частных производных первого порядка. Теорема о существовании и единственности решения задачи Коши для квазилинейного уравнения. Примеры решения уравнений.

Задача Коши : $a(x,y,z)\frac{\partial z}{\partial x} + b(x,y,z)\frac{\partial z}{\partial y} =$ $x(t); y = y(t); z = z(t) = \varphi(x(t), y(t))$ - лежит Схема решения???? : Если хар-ки ре- c(x, y, z) - (1). Рассм. харк. сист. для (1): РИМ СТР.60 ЛЕКЦИЙ

 $\frac{dx}{dt} = a(x, y, z); \frac{dy}{dt} = b(x, y, z); \frac{dz}{dt} = c(x, y, z)$ - (2). Задача Коши ставится так жеб как и для линейного ур-я, т.е $\exists \rho$ на плскости (x, у), $Z|_{\rho} = h(s)$ - (3). Так же, мы предполагаем, что $a, b, c \in C_1(D), a^2 + b^2 \neq 0$ в D.

Теорема : Пусть кривая ρ не касается проекций характеристик на плоскость (x,y). Тогда задача коши (1), (3) однозначно разрешима в нек. окрестности кривой ρ . PROOOOOFS:c

Пример: (1): $\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$: c > 0. (2): $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$. $u|_{t=0} = f(x)$. (1) имеет решение $\frac{dt}{1} = \frac{dx}{c} = \frac{du}{t} \Rightarrow C_1 = u$; $F(x - ct, u) = 0 \Rightarrow u = g(x - ct) \Rightarrow u_{t=0} = g(x) = f(x) \Rightarrow$

u = f(x - ct) - бегущая волна. u = f(x - ut), и = скорость волны.

1.25. Примеры построения частных решений линейных нелинейных уравнений в частных производных. Уравнения Хопфа, Бюргерса, Кортевега-де-Фриза, синус-Гордона.

Уравнение Хопфа : $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$: $-cf' + ff' = 0 \Rightarrow f'(-c+f) = 0 \Rightarrow f-const, f(\xi) =$ f(x-ct)-const.

Уравнение Sin-Gordon : $u_{tt} - u_{xx} =$ sin(u); $(1+c^2)f'' + sin(f) = 0$ - уравнение колебаний маятника.

НУЖНО БОЛЬШЕ ПРИМЕРОВ - СМОТ-

висимости решения О.Д.У. первого порядка от параметров. Теорема о дифференцируемости решения того же уравнения по параметру.

Теорема (а): Рассм. задачу коши для одного ур-я (1) $\frac{dx}{dt} = f(t, x, \mu); x(t_0, \mu) = x_0.$

1.26. Теорема о непрерывной за- G - область в пр-ве (t, x, μ) . Если ф-ии ды, что и для сущ. решения без μ , получим $f(x,t,\mu); \frac{\partial f}{\partial x}(t,x,\mu)$ непрерывны в области Gпо совокуп. переменных, то решение задаче коши (1) $x(t,\mu)$ непрерывно по совокуп. пе-

ременных в области
$$\begin{cases} |t-t_0| \leq \delta \\ |\mu-\mu_0| \leq \delta_1 \end{cases}$$
 .

Док-во (а): Сведем задачу коши к экв. интегральному ур-ю (2) $x(t,\mu) = x_0 + \in_{\tau_0}^t$ $f(\tau, x(\tau, \mu), \mu)d\tau$. В символической форме x=A(x). Далее, применяя к (2) те же методок-во теоремы.

Теорема (b) : Пусть в G f имеет непр. продолжение до порядка $\rho \geq 1$ включительно по параметрам $t, x, \mu \Rightarrow$ решение $x(t, \mu)$ имеет ρ непр. продолж. по параметрам t, μ .