

CSE 473: Pattern Recognition

Syntactic Pattern Recognition

Capability of String Grammar

- able to represent 1D pattern
- difficult to classify patterns like these:

Capability of String Grammar

- These structure contains
 - information in both direction
 - hierarchical structure

Capability of String Grammar

- These structure contains
 - information in both direction
 - hierarchical structure

Solution: Higher Order Grammar

Higher Order Grammar: Tree Grammar

- Information is stored in
 - nodes: as primitives or sub-structures
 - edges: relation between primitives or sub-structures

 Allows hierarchical decomposition of a complex structure

Primitives

Black region

White region

O Gray region

Tree Traversal and Representation

- Many methodologies
 - DFS, BFS, . . .

Tree Traversal and Representation

- Many methodologies
 - DFS, BFS, . . .

Tree Traversal and Representation

- Many methodologies
 - DFS, BFS, . . .

Tree Grammar

- A tree grammar G_T is defined as
 - $G_T = \{V, r, P, S\}$
 - where
 - *P* = set of productions involving trees
 - $V = V_T \cup V_N$
 - S= starting or root trees, T_V
 - r = rank of a node

Tree Grammar

- Rank of a node
 - r(a) = 2
 - r(b) = 3

 Therefore, this is outdegree of a node

Productions of Tree Grammar

 Preserve the same structure but replace some terminal and/or non-terminals

Productions of Tree Grammar

• Expansive form:

•
$$X \rightarrow xX_1 \dots X_n$$

Derivation in a Tree Grammar

• A derivation $T_{\alpha} \stackrel{a}{\Rightarrow} T_{\beta}$ means:

Derivation in a Tree Grammar

• A derivation $T_{\alpha} \stackrel{a}{\Longrightarrow} T_{\beta}$ means:

The production rule applied:

Language of A Tree Grammar

$$L(T_G) = \{ T \mid T \in T_{V_T} \cap T_i \Longrightarrow T \quad T_i \in S \}$$

- Formal grammars allow
 - no error
 - no ambiguity
 - no structural deformation

- Formal grammars allow
 - no error
 - no ambiguity
 - no structural deformation
- In formal grammar,

$$L(G_1) \cap L(G_2) = \phi$$

Often this may be unrealistic

Stochastic grammar is defined as

$$G_{s} = \{V_{N}, V_{T}, P_{s}, S_{s}\}$$

• The Production P_s is of the form

$$\alpha_i \overset{p_{ij}}{\longrightarrow} \beta_j$$

Stochastic grammar is defined as

$$G_{s} = \{V_{N}, V_{T}, P_{s}, S_{s}\}$$

• The Production P_s is of the form

$$lpha_i \overset{p_{ij}}{ o} eta_j$$

because, there are multiple probabilistic consequents

Proper Stochastic Grammar

$$lpha_i \overset{p_{ij}}{ o} eta_j$$

A stochastic grammar is proper if

$$\alpha_i \in V_N$$

$$\beta_i \in (V_T \cup V_N)^+$$

• There exist n_i no. of β_i so that

$$\sum_{j=1}^{n_i} p_{ij} = 1$$

Characteristic Stochastic Grammar

- A stochastic grammar is a characteristic grammar
 - when probabilities are removed from the productions

that is,
$$\alpha_i \overset{p_{ij}}{\to} \beta_i$$
 replaces $\alpha_i \to \beta_j$

Classification of Stochastic Grammars

- A stochastic grammar is classified based on its corresponding characteristic grammar:
 - Type 0
 - Type 1
 - Type 2
 - Type 3

Let there are m production rules, pⁱ, 1 <= i <= m

we need to derive:

$$S \Longrightarrow x$$

in a number of *n* steps

$$S = \alpha_0 \Rightarrow \alpha_1 \Rightarrow \alpha_2 \cdots \Rightarrow \alpha_n = x$$

Let there are m production rules, pⁱ, 1 <= i <= m

we need to derive:

$$S \Longrightarrow x$$

in a number of *n* steps

$$S = \alpha_0 \stackrel{t_{0,1}}{\Longrightarrow} \alpha_1 \stackrel{t_{1,2}}{\Longrightarrow} \alpha_2 \cdots \stackrel{t_{n-1,n}}{\Longrightarrow} \alpha_n = x$$

where, t_{ii} is a production rule applied in the step

$$lpha_i \stackrel{t_{i,j}}{\Longrightarrow} lpha_j$$

The probability of generating

$$S = \alpha_0 \Longrightarrow \alpha_1 \Longrightarrow \alpha_2 \cdots \Longrightarrow \alpha_n = x$$

is

$$P(t_{0,1} \cap t_{1,2} \cap \cdots \cap t_{n-1,n})$$

The probability of generating

$$S = \alpha_0 \Longrightarrow^{t_{0,1}} \alpha_1 \Longrightarrow^{t_{1,2}} \alpha_2 \cdots \Longrightarrow^{t_{n-1,n}} \alpha_n = x$$

is

$$P(t_{0,1} \cap t_{1,2} \cap \dots \cap t_{n-1,n})$$

$$= P(t_{0,1}, t_{1,2}, \dots, t_{n-2,n-1}, t_{n-1,n})$$

$$= P(t_{n-1,n}, t_{n-2,n-1}, \dots, t_{1,2}, t_{0,1})$$

$$\begin{split} &P(t_{n-1,n},t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\\ &=P(t_{n-1,n}\mid t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\times P(t_{n-2,n-1},\cdots,t_{1,2},t_{0,1}) \end{split}$$

$$\begin{split} &P(t_{n-1,n},t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\\ &=P(t_{n-1,n}\mid t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\times P(t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\\ &=P(t_{n-1,n})\times P(t_{n-2,n-1},\cdots,t_{1,2},t_{0,1}) \end{split}$$

 Assumes that the probability of applying the next production is independent of previously applied productions

$$\begin{split} &P(t_{n-1,n},t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\\ &=P(t_{n-1,n}\mid t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\times P(t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\\ &=P(t_{n-1,n})\times P(t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\\ &=P(t_{n-1,n})\times P(t_{n-2,n-1})\times P(t_{n-3,n-2},\cdots,t_{1,2},t_{0,1}) \end{split}$$

Applying the same approach

$$\begin{split} &P(t_{n-1,n},t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\\ &=P(t_{n-1,n}\mid t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\times P(t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\\ &=P(t_{n-1,n})\times P(t_{n-2,n-1},\cdots,t_{1,2},t_{0,1})\\ &=P(t_{n-1,n})\times P(t_{n-2,n-1})\times P(t_{n-3,n-2},\cdots,t_{1,2},t_{0,1})\\ &=\prod_{n=1}^{n}P(t_{q-1,q}) \end{split}$$

Stochastic Language

A stochastic language is of the form

$$L(G_s) = \{(x, p(x) | x \in V_T^+, S_s \stackrel{p_j}{\Longrightarrow} x, j = 1, 2, \dots k, \text{ and } p(x) = \sum_{j=1}^k p_j \}$$

Syntactic Pattern Recognition using Graph Theory

Graphical Approaches to SyntPR

- Graphical alternatives to represent structures or relational information
- Natural extensions of higher dimensional grammars

Graphical Description of Patterns

Graph Representation

- A graph G = {N,R} is an ordered pair represented using:
 - a set of nodes (vertices), N,
 - a set of edges (arcs), $R \subset N \times N$

Graph Representation

- A sub-graph $G_s = \{N_s, R_s\}$ is itself a graph, where
 - $N_s \subseteq N$
 - $R_s \subseteq R$, however, R_s consists of edgese that connects only the nodes in N_s .

Graph Representation

- A graph is connected if there is a path between all pairs of its nodes.
- A graph is complete if there is an edge between all pairs of its nodes.

Other definitions related to Graph

- In *directional graphs* (digraphs), edges have directional significance, i.e., $(a,b) \in R$ means there is an edge from node a to node b.
- When the direction of edges in a graph is not important, i.e., specification of either (a,b) or $(b,a) \in R$ is acceptable, the graph is an *undirected graph*.

Other definitions related to Graph

 A relational graph represents a particular relation graphically using arrows to show this relation between the elements as a directed graph.

Classification Task by Comparing Relational Graph Descriptions

Naïve approach:

- Represent each class as a prototypical relational graph
- Convert unknown pattern to relational graph
- Compare with the library of prototypes

Classification Task by Comparing Relational Graph Descriptions

- The observed data rarely matches a stored relational representation "exactly",
- We need other approaches
 - graph similarity should be measured.

Classification Task by Comparing Relational Graph Descriptions

- One approach is to check whether the observed data match a "portion" of a relational model.
 - Case 1: Any relation not present in both graphs is a failure.
 - Case 2: Any single match of a relation is a success.
 - A realistic strategy is somewhere in between these extremes.

Comparing Relational Graph Descriptions

- We define some terms for graph similarity
 - Use graph homomorphism and/or isomorphism

Graph Homomorphism

- ▶ Consider two graphs $G_1 = \{N_1, R_1\}$ and $G_2 = \{N_2, R_2\}$.
- ▶ A *homomorphism* from G_1 to G_2 is a function f from N_1 to N_2 :

such that

$$(v_1, w_1) \in R_1 \Rightarrow (f(v_1), f(w_1)) \in R_2$$

Graph Isomorphism

- A stricter term
- A stricter test is that of isomorphism, where f is required to be 1:1 and onto:

$$(v_1, w_1) \in R_1 \Leftrightarrow (f(v_1), f(w_1)) \in R_2$$

Isomorphism simply states that relabeling of nodes yields the same graph structure.

Graph Isomorphism Test: Adjaceny Matrix

- A digraph G with p nodes can be converted to an adjacency matrix:
 - Number each node by an index {1,..., p}.
 - Represent the existence or absence of an edge as

$$\mathsf{Adj}(i,j) = \begin{cases} 1 & \text{if } G \text{ contains an edge from node } i \text{ to node } j, \\ 0 & \text{otherwise.} \end{cases}$$

- Given two graphs G₁ and G₂ each with p nodes, to determine isomorphism:
 - Label the nodes of each graph with labels 1,..., p.
 - Form the adjacency matrices M_1 and M_2 for both graphs.
 - ▶ If $M_1 = M_2$, G_1 and G_2 are isomorphic.
 - ▶ Otherwise, consider all the p! possible labelings on G_2 .

	а	b	С	d
а	0	1	0	1
b	1	0	1	0
С	0	1	0	1
d	1	0	1	0

	a'	b'	c'	ď
a'	0	1	1	0
b'	1	0	0	1
c'	1	0	0	1
a' b' c'	0	1	1	0

$$f(a') = a''$$

$$f(b') = d''$$

$$f(c') = b''$$

$$f(d') = c''$$

	а	b	С	d
а	0	1	0	1
b	1	0	1	0
С	0	1	0	1
d	1	0	1	0

- Computationally expensive
- Allows only exact measure, not realistic
 - Many relations may not be observed in practical examples

Graph Isomorphism Test: Quick Reject

- Check for following properties
 - Number of nodes
 - Number of edges

Graph Isomorphism Test: Quick Reject

- These are useful, too:
 - in-degree i of a node
 - out-degree j of a node
 - degree k of a node (for undirected graph)
 - closed path of length I

Alternate Graph Isomorphism Test: Sub-isomorphism

- ▶ G_1 and G_2 are called *subisomorphic* if a subgraph of G_1 is isomorphic to a subgraph of G_2 .
- Clearly, this is a less restrictive structural match than that of isomorphism.

Alternate Graph Isomorphism Test: Sub-isomorphism

- ▶ G_1 and G_2 are called *subisomorphic* if a subgraph of G_1 is isomorphic to a subgraph of G_2 .
- Clearly, this is a less restrictive structural match than that of isomorphism.
 - However, determining subisomorphism is also computationally expensive.

- ► To allow structural deformations, numerous extensions to graph matching have been proposed.
 - Extract features from graphs G_1 and G_2 to form feature vectors x_1 and x_2 , respectively, and use statistical pattern recognition techniques to compare x_1 and x_2 .
 - Use a matching metric as the minimum number of transformations necessary to transform G_1 into G_2 .

- Common transformations include:
 - Node insertion,
 - Node deletion,
 - Node splitting,
 - Node merging,
 - Edge insertion,
 - Edge deletion.

- Common transformations include:
 - Node insertion,
 - Node deletion,
 - Node splitting,
 - Node merging,
 - Edge insertion,
 - Edge deletion.
- Computation is still high
- Difficult to design a suitable distance measure to distinguish structural deformations

- ▶ An attributed graph $G = \{N, P, R\}$ is a 3-tuple where
 - N is a set of nodes,
 - P is a set of properties of these nodes.
 - R is a set of relations between nodes.

Let $p_q^i(n)$ denote the value of the q'th property of node n of graph G_i .

• Nodes $n_1 \in N_1$ and $n_2 \in N_2$ are said to form an assignment (n_1, n_2) if $p_a^1(n_1) \sim p_a^2(n_2)$

where " \sim " denotes similarity.

- Let $\underline{r_j^i(n_x,n_y)}$ denote the j'th relation involving nodes $n_x,n_y\in N_i$.
- ► Two assignments (n₁, n₂) and (n'₁, n'₂) are considered compatible if

$$r_j^1(n_1, n_1') \sim r_j^2(n_2, n_2') \quad \forall j.$$

- Let $\underline{r_j^i(n_x,n_y)}$ denote the j'th relation involving nodes $n_x,n_y\in N_i$.
- Two assignments (n₁, n₂) and (n'₁, n'₂) are considered compatible if

$$r_j^1(n_1, n_1') \sim r_j^2(n_2, n_2') \quad \forall j.$$

- Let $\underline{r_j^i(n_x,n_y)}$ denote the j'th relation involving nodes $n_x,n_y\in N_i$.
- ► Two assignments (n₁, n₂) and (n'₁, n'₂) are considered compatible if

$$r_j^1(n_1, n_1') \sim r_j^2(n_2, n_2') \quad \forall j.$$

► Two attributed graphs G₁ and G₂ are isomorphic if there exists a set of 1:1 assignments of nodes in G₁ to nodes in G₂ such that all assignments are compatible.

A strategy for measuring the similarity between two attributed graphs is to find node pairings using the cliques of a match graph.

- ▶ A *match graph* is formed from two graphs G_1 and G_2 as follows:
 - ▶ Nodes of the match graph are assignments from G_1 to G_2 .
 - An edge in the match graph exists between two nodes if the corresponding assignments are compatible.
- A clique of a graph is a totally connected subgraph.
- A maximal clique is not included in any other clique.

Approaches in Matching Through Attributed Graph

- Find
 - the attributed graphs from the patterns
 - the match graphs from the attributed graph
 - the maximum clique from the match graph
 - the similarity

Input:

- X: an initial clique (possibly empty)
- Y: the graph

Output:

The set of all maximal cliques

```
Procedure clique (X, Y)

Form Y – X;

If a node y in Y – X is connected to all nodes of X,

Then return cliques (X U {y}, Y) U cliques (X, Y-{y})

Else return X

End
```

```
Procedure clique (X, Y)

Form Y – X;

If a node y in Y – X is connected to all nodes of X,

Then return cliques (X U {y}, Y) U cliques (X, Y-{y})

Else return X

End
```



```
Procedure clique (X, Y)

Form Y - X;

If a node y in Y - X is connected to all nodes of X,

Then return cliques (X U {y}, Y) U cliques (X, Y-{y})

Else return X

End

Find clique (d, Y)?
```



```
Procedure clique (X, Y)

Form Y – X;

If a node y in Y – X is connected to all nodes of X,

Then return cliques (X U {y}, Y) U cliques (X, Y-{y})

Else return X
```


clique
$$(d, Y) = clique (\{d, b\}, Y) \cup clique (d, \{a, c, d\})$$

```
Procedure clique (X, Y)

Form Y – X;

If a node y in Y – X is connected to all nodes of X,

Then return cliques (X U {y}, Y) U cliques (X, Y-{y})

Else return X
```



```
Procedure clique (X, Y)

Form Y - X;

If a node y in Y - X is connected to all nodes of X,

Then return cliques (X \cup \{y\}, Y) \cup cliques (X, Y - \{y\})

Else return X
```



```
Procedure clique (X, Y)

Form Y – X;

If a node y in Y – X is connected to all nodes of X,

Then return cliques (X U {y}, Y) U cliques (X, Y-{y})

Else return X
```



```
Procedure clique (X, Y)

Form Y – X;

If a node y in Y – X is connected to all nodes of X,

Then return cliques (X U {y}, Y) U cliques (X, Y-{y})

Else return X
```



```
Procedure clique (X, Y)

Form Y – X;

If a node y in Y – X is connected to all nodes of X,

Then return cliques (X U {y}, Y) U cliques (X, Y-{y})

Else return X
```


clique (d, Y) = clique (
$$\{d, b\}$$
, Y) U

clique (d, $\{a, c, d\}$)

clique ($\{d, b\}$, Y) = $\{d, b, c\}$ U $\{d, b\}$

= $\{d, b, c\}$

```
Procedure clique (X, Y)

Form Y – X;

If a node y in Y – X is connected to all nodes of X,

Then return cliques (X U {y}, Y) U cliques (X, Y-{y})

Else return X
```


clique
$$(d, Y) = \{d, b, c\} \cup \{d, b\} \cup clique (d, \{a, c, d\})$$

```
Procedure clique (X, Y)

Form Y - X;

If a node y in Y - X is connected to all nodes of X,

Then return cliques (X \cup \{y\}, Y) \cup cliques (X, Y - \{y\})

Else return X
```



```
clique (d, Y) = {d, b, c} U {d, b} U
clique (d, {a, c, d})
clique (d, {a, c, d})
= clique ({d, c}, {a, c, d})
U clique (d, {a, d})
```

```
Procedure clique (X, Y)

Form Y – X;

If a node y in Y – X is connected to all nodes of X,

Then return cliques (X U {y}, Y) U cliques (X, Y-{y})

Else return X
```



```
Procedure clique (X, Y)

Form Y – X;

If a node y in Y – X is connected to all nodes of X,

Then return cliques (X U {y}, Y) U cliques (X, Y-{y})

Else return X
```


clique
$$(d, Y) = \{d, b, c\} \cup \{d, b\}$$

 $\cup \{d, c\} \cup \{d\}$

```
Procedure clique (X, Y)

Form Y - X;

If a node y in Y - X is connected to all nodes of X,

Then return cliques (X \cup \{y\}, Y) \cup cliques (X, Y-\{y\})

Else return X

End

The maximal clique is = \{d, b, c\}
```


Find Attributed Graph for all patterns

- Horizontal line
- ♦ Vertical line

Relation: —— connected

Find Attributed Graph for all patterns

- Horizontal line
- ♦ Vertical line

Relation: —— connected

Find Matched Graph between AGI₁ and AG_u

Find Matched Graph between AGI_1 and AG_u

Find all assignments between AGI_1 and AG_{ij} :

Find Matched Graph between AGI₁ and AG_u

Find all assignments between AGI_1 and AG_{II}

Find Matched Graph between AGI₁ and AG_u

Connect the compatible assignments

Find Matched Graph between AGI₁ and AG_u

Find Matched Graph between AGI_1 and AG_u

Visual Representation

Find Matched Graph between AGI₁ and AG_u

Find Matched Graph between AGI₁ and AG₁,

Find all assignments between AGI_2 and AG_{ii} :