

REASSOCIATION VIRTUELLE DE FRAGMENTS OSSEUX

LA PROBLEMATIQUE : améliorer la gestion des Restes Humains Fragmentaires en situation DVI

CONTEXTE DVI

Identification de victimes de catastrophes de masse

OBJECTIF DE RECHERCHE:

Fragments osseux nombreux en cas d'accident aérien, explosion

Analyses génétiques destructrices et chères

MDCT-scan intégré au protocole DVI

Réassociation physique des fragments utilisée comme outil d'identification

A partir des modèles obtenus par MDCT-scan, développer une méthode de réassociation virtuelle des fragments osseux

- → diminuer le nombre de prélèvement génétique
 - → favoriser l'analyse anthropologique.

TRAVAIL PRELIMINAIRE : REVUE DE LITTÉRATURE SUR LES METHODES DE RE-ASSOCIATION VIRTUELLE

1) Acquisition des fragments Paramètres MDCT-scan établis (1,25mm/0,8mm) Automatic Placing Seeds technique avec Mimics® 2) Segmentation 3) Post-processing et modélisation CloudCompare® **CODAGE?** 4) Extraction des surfaces fracturées Analyse de rugosité avec CloudCompare® + seuillage 5) Choix des fragments appariés Par l'opérateur Recalage des surfaces fracturées par l'opérateur (N-points registration) + ICP 6) Recalage des fragments + Recalage des fragments sur les surfaces fracturées par ICP

Distance moyenne entre l'os reconstruit et l'os intact

7) Validation de la reconstruction

Matériel et Méthodes : Méthode de ré-association virtuelle (CloudCompare®)

Choix des surfaces complémentaires par l'opérateur

Analyse de rugosité

Extraction des surfaces fracturées (seuil de rugosité)

Recalage automatique (ICP)

Recalage automatique (ICP)

Recalage par landmarks choisis par l'opérateur

.DICOM

.STL

MATERIAL AND METHODS: for 12 porcin femurs

.DICOM

.STL

VIRTUAL RECONSTRUCTION

MDCT-scan Segmentation

Fragmentation Blunt Force Trauma

RECONSTRUCTION

.DICOM

.STL

MDCT scan Segmentation

INTACT BONE

.DICOM .STL

FRAGMENTED BONE

.DICOM .STL

VIRTUAL RECONSTRUCTION

.STL

PHYSICAL RECONSTRUCTION

.DICOM .STL

OBJECTIFS DU STAGE

ETAPES OPERATEUR-DEPENDANTES REDUITES A:

☐ La sélection des surfaces appariés

 □ La sélection des landmarks sur les surfaces fracturées
 (à automatiser par la suite)

RECHERCHE BIBLIOGRAPHIQUE ET PREMIERES ETAPES DE CODAGE:

- ☐ Création d'un nuage de points (10 000 points/ point size = 5)
- □ Roughness analysis (Heat Kernel =5 / Point size =5)

☐ Extraction des surfaces fracturées par seuillage (Roughness value > 1,00)

☐ Recalage des surfaces fracturées (N-points) + ICP

- □ Recalage des surfaces des fragments sur les surfaces fracturées (Apply transformation + ICP)
- ☐ Validation par calcul de distance entre nuages de points

