CS 722 Spring 2012 Homework Assignment #1 Solutions

- 1. Consider the DTM that decides $\{0^{2^n} \mid n \ge 0\}$ we studied in class (Example 3.7 in the book). Give the transition sequence on the input 000000.
 - "_" denotes the blank symbol.
 - $q_1000000 I -$
 - $_{q_2}00000 I-$
 - $_xq_30000 \vdash$
 - _x0q₄000 |-
 - _x0xq₃00 l–
 - _x0x0q₄0 |-
 - $_{x}0x0xq_{3}$ |-
 - $_{x}0x0q_{5}x \vdash$
 - _x0xq50x l-
 - $_x0q_5x0x \vdash$
 - $_{xq_{5}0x0x} |_{-}$
 - $_{q_5}x0x0x |$
 - q5_x0x0x l-
 - $_{q_2}x0x0x -$
 - $_xq_20x0x =$
 - $_xxq_3x0x \vdash$
 - $_xxxq_30x \vdash$
 - $_{xxx0q_{4}}$ x |--
 - $_xxx0xq_4$ _ |-
 - _xxx0x_q_{reject}_
- 2. Consider the DTM algorithm that decides $\{0^k1^k \mid k \ge 0\}$ we studied in class $(M_1 \text{ in } \S7.1 \text{ of the book})$. Design an actual 1-tape DTM implementing this algorithm and give its state-transition diagram.

The following is one example DTM implementing the algorithm.

"_" denotes the blank symbol. $\Sigma = \{0, 1\}, \Gamma = \{0, 1, x, _\}$. The start state is q_0 . "_" is used to cross off 0 and "x" is used to cross off 1. For brevity of the diagram, the state q_{reject} and all transitions leading to q_{reject} are omitted; any transition $\delta(q, s)$ not shown in the diagram is understood to be $\delta(q, s) = (q_{reject}, s, R)$.

The DTM crosses off the first 0 and enters q_1 , and stays in q_1 by reading the remaining 0s and the x's representing the 1's already crossed off in the previous steps. Then it crosses off the first 1 and enters q_2 , and stays in q_2 by reading the remaining 1's. The DTM enters q_3 upon reading "_", and moves the head back until it reads "_", upon which it reenters q_0 and repeats the process. If the input is $0^k 1^k$, the DTM will reach the configuration $_k^k q_0 x^k$ and enter q_4 leading to q_{accept} . The checking for an occurrence of 0 after a 1 is incorporated into the first scan.

3. Consider the NTM defined by Σ = { 0 }, Γ = { 0, a_1, a_2, _ } ("_" denotes the blank symbol), Q = { q_0, q_{accept}}, and

$$\begin{split} \delta(q_0, 0) &= \{\; (q_0, a_1, R), (q_0, a_2, R), (q_{accept}, 0, R) \; \} \\ \delta(q_0, _) &= \{\; (q_{accept}, _, R) \; \} \end{split}$$

Given an input string 0^n , $n \ge 0$, this NTM nondeterministically writes a string $x \in \{a_1, a_2\}^*$ such that $0 \le |x| \le n$. Give the computation tree of configurations starting with q_000 at the root.

"_" denotes the blank symbol.

4. Give a RAM program to compute the function $f(m, n) = m + (m+1) + \cdots + (n-1) + n$, where m, n are integers such that $m \le n$, initially given on the input tape.

The following is one example RAM program.

read
$$r_1$$
; // read m read r_2 ; // read n

```
r_3 = r_1 + 1; // r_3 = m + 1
while (r_2-r_3 \ge 0)
    r_1 = r_1 + r_3;
    r_3 = r_3 + 1;
write r_1;
                    // r_1 = m
      Read 1
                    // r_2 = n
      Read 2
      Load 1
      Add = 1
                    // r_3 = r_1 + 1
      Store 3
loop: Load 3
      Sub 2
                    // if r_3-r_2 > 0 then jump to "out"
      Jgtz out
      Load 1
      Add 3
                    // r_1 = r_1 + r_3
      Store 1
      Load 3
      Add = 1
                    // r_3 = r_3 + 1
      Store 3
      Jump loop
out:
                    // write r_1
      Write 1
      Halt
```

5. This question concerns the simulation of RAMs by the 5-tape DTM's described in class. Consider the simulation process of the following RAM instruction stream:

```
Load = 2, Store 3, Load = 3, Store 2, Load = 4, Store 1, Load 2, Mult 1, Add 3, Store 4
```

Show the contents of tape 1 (simulating the RAM memory) and tape 2 (simulating the accumulator r_0) after the execution of each instruction.

For brevity, integers in unary notation on the tape are abbreviated by decimal notation.

```
tape 1: empty
tape 2: 2

Store 3

tape 1: ##3#2##
tape 2: 2

Load =3

tape 1: ##3#2##
tape 2: 3

Store 2

tape 1: ##3#2##2#3##
tape 2: 3

Load =4
```

tape 1: ##3#2##2#3##

tape 2: 4

Store 1

tape 1: ##3#2##2#3##1#4##

tape 2: 4

Load 2

tape 1: ##3#2##2#3##1#4##

tape 2: 3

Mult 1

tape 1: ##3#2##2#3##1#4##

tape 2: 12

Add 3

tape 1: ##3#2##2#3##1#4##

tape 2: 14

Store 4

tape 1: ##3#2##2#3##1#4##4#14##

tape 2: 14