PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07K 7/06, 7/08, 14/47, C12N 5/10, 15/10, 15/11, 15/12, G01N 33/566

(11) International Publication Number: WO 99/25730

(43) International Publication Date: 27 May 1999 (27.05.99)

(21) International Application Number: PCT/US98/24396

(22) International Filing Date: 16 November 1998 (16.11.98)

(30) Priority Data:

08/971,244 16 November 1997 (16.11.97)

(71) Applicant: TULARIK INC. [US/US]; Two Corporate Drive, South San Francisco, CA 94080 (US).

(72) Inventors: COHEN, Lucie; Tularik Inc., Two Corporate Drive, South San Francisco, CA 94080 (US). BAEUERLE, Patrick; Turalik Inc., Two Corporate Drive, South San Francisco, CA 94080 (US).

(74) Agent: OSMAN, Richard, Aron; Science & Technology Law Group, 75 Denise Drive, Hillsborough, CA 94010 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: IKAP PROTEINS, NUCLEIC ACIDS AND METHODS

(57) Abstract

The invention provides methods and compositions relating to IKAP proteins which regulate cellular signal transduction and transcriptional activation, and related nucleic acids. The polypeptides may be produced recombinantly from transformed host cells from the disclosed IKAP encoding nucleic acids or purified from human cells. The invention provides isolated IKAP hybridization probes and primers capable of specifically hybridizing with the disclosed IKAP genes, IKAP—specific binding agents such as specific antibodies, and methods of making and using the subject compositions in diagnosis, therapy and in the biopharmaceutical industry.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albenia	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

IKAP Proteins, Nucleic Acids and Methods

INTRODUCTION

Field of the Invention

5

10

15

20

25

30

The field of this invention is proteins involved in cell signal transduction.

Background

Cytokines trigger changes in gene expression by modifying the activity of otherwise latent transcription factors (Hill and Treisman, 1995). Nuclear factor kB (NF-kB) is a prominent example of how such an external stimulus is converted into an active transcription factor (Verma et al., 1995). The NF-kB system is composed of homo- and heterodimers of members of the Rel family of related transcription factors that control the expression of numerous immune and inflammatory response genes as well as important viral genes (Lenardo and Baltimore, 1989; Baeuerle and Henkel, 1994). The activity of NF-κB transcription factors is regulated by their subcellular localization (Verma et al., 1995). In most cell types, NF-κB is present as a heterodimer comprising of a 50 kDa and a 65 kDa subunit. This heterodimer is sequestered in the cytoplasm in association with IκBα a member of the IkB family of inhibitory proteins (Finco and Baldwin, 1995; Thanos and Maniatis, 1995; Verma et al., 1995). IκBα masks the nuclear localization signal of NF-κB and thereby prevents NF-kB nuclear translocation. Conversion of NF-kB into an active transcription factor that translocates into the nucleus and binds to cognate DNA sequences requires the phosphorylation and subsequent ubiquitin-dependent degradation of $I\kappa B\alpha$ in the 26s proteasome. Signal-induced phosphorylation of $I\kappa B\alpha$ occurs at serines 32 and 36. Mutation of one or both of these serines renders IκBα resistant to ubiquitination and proteolytic degradation (Chen et al., 1995); DiDonato, 1996 #370, Roff, 1996 #397.

The pleiotropic cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1) are among the physiological inducers of IkB phosphorylation and subsequent NF-kB activation (Osborn et al., 1989; Beg et al., 1993). Although TNF and IL-1 initiate signaling cascades leading to NF-kB activation via distinct families of cell-surface receptors (Smith et al., 1994; Dinarello, 1996), both pathways utilize members of the TNF receptor-associated factor (TRAF) family of adaptor proteins as signal transducers (Rothe et al., 1995; Hsu et al., 1996;

Cao et al., 1996b). TRAF proteins were originally found to associate directly with the cytoplasmic domains of several members of the TNF receptor family including the 75 kDa TNF receptor (TNFR2). CD40. CD30, and the lymphotoxin-β receptor (Rothe et al., 1994; Hu et al., 1994; Cheng et al., 1995: Mosialos et al., 1995: Song and Donner. 1995: Sato et al., 1995: Lee et al., 1996; Gedrich et al., 1996; Ansieau et al., 1996). In addition. TRAF proteins are recruited indirectly to the 55 kDa TNF receptor (TNFR1) by the adaptor protein TRADD (Hsu et al., 1996). Activation of NF-κB by TNF requires TRAF2 (Rothe et al., 1995: Hsu et al., 1996). TRAF5 has also been implicated in NF-κB activation by members of the TNF receptor family (Nakano et al., 1996); Ishida, 1996 #240. In contrast, TRAF6 participates in NF-κB activation by IL-1 (Cao et al., 1996b). Upon IL-1 treatment. TRAF6 associates with IRAK, a serine-threonine kinase that binds to the IL-1 receptor complex (Cao et al., 1996a); Huang, 1997 #400.

The NF-kB-inducing kinase (NIK) is a member of the MAP kinase kinase kinase (MAP3K) family that was identified as a TRAF2-interacting protein (Malinin et al., 1997). NIK activates NF-kB when overexpressed, and kinase-inactive mutants of NIK comprising its TRAF2-interacting C-terminal domain (NIK(624-947)) or lacking two crucial lysine residues in its kinase domain (NIK_(KK429-430AA)) behave as dominant-negative inhibitors that suppress TNF-, IL-1-, and TRAF2-induced NF-kB activation (Malinin et al., 1997). Recently, NIK was found to associate with additional members of the TRAF family. including TRAF5 and TRAF6. Catalytically inactive mutants of NIK also inhibited TRAF5and TRAF6-induced NF-kB activation, thus providing a unifying concept for NIK as a common mediator in the NF-kB signaling cascades triggered by TNF and IL-1 downstream of TRAFs. Recently two NIK-interacting protein designated characterized as novel human kinase IkB Kinases, IKK- α and IKK- β have been reported (Woronicz et al., 1997: Mercurio et al. 1997; Maniatis, 1997). Catalytically inactive mutants of IKK suppress NF-κB activation induced by TNF and IL-1 stimulation as well as by TRAF and NIK overexpression; transiently expressed IKK associates with endogenous IκBα complex; and IKK phosphorylates $I\kappa B\alpha$ on serines 32 and 36.

Relevant Literature

Ansieau. S., et al. (1996). Proc. Natl. Acad. Sci. USA 93, 14053-14058.
 Baeuerle, P. A., and Henkel, T. (1994). Annu. Rev. Immunol. 12, 141-179.

5

10

15

20

Beg, A. A., et al. (1993). Mol. Cell. Biol. 13, 3301-3310.

Cao. Z., Henzel, W. J., and Gao, X. (1996a). Science 271, 1128-1131.

Cao. Z., et al. (1996b).. Nature 383, 443-446.

Chen, Z., et al., (1995). Genes Dev. 9, 1586-1597.

Cheng. G., et al. (1995). Science 267, 1494-1498.

5 Connelly, M. A., and Marcu, K. B. (1995). Cell. Mol. Biol. Res. 41, 537-549.

Dinarello, C. A. (1996). Biologic basis for interleukin-1 in disease. Blood 87, 2095-2147.

Fields. S., and Song. O.-k. (1989). Nature 340, 245-246.

Finco, T. S., and Baldwin, A. S. (1995). Immunity 3, 263-272.

Gedrich, R. W., et al. (1996). J. Biol. Chem. 271, 12852-12858.

10 Hill, C. S., and Treisman, R. (1995). Cell 80, 199-211.

Hsu, H., Shu, H.-B., Pan, M.-P., and Goeddel, D. V. (1996). Cell 84, 299-308.

Hu, H. M., et al. (1994). J. Biol. Chem. 269, 30069-30072.

Lee, S. Y., et al. (1996). Proc. Natl. Acad. Sci. USA 93, 9699-9703.

Lenardo, M., and Baltimore, D. (1989). Cell 58, 227-229.

15 Malinin, N. L., et al., (1997). Nature 385, 540-544.

Maniatis (1997) Science 278, 818.

Mercurio et al.(1997) Science 278, 860.

Mock et al. (1995). Genomics 27, 348-351.

Mosialos, G., et al. (1995). Cell 80, 389-399.

20 Nakano, H., et al. (1996). J. Biol. Chem. 271, 14661-14664.

Osborn, L., et al.. (1989). Proc. Natl. Acad. Sci. USA 86, 2336-2340.

Rothe, M., Sarma, V., Dixit, V. M., and Goeddel, D. V. (1995). Science 269, 1424-1427.

Rothe, M., Wong, S. C., Henzel, W. J., and Goeddel, D. V. (1994). Cell 78, 681-692.

Sato, T., Irie, S., and Reed, J. C. (1995). FEBS Lett. 358, 113-118.

25 Schindler, U., and Baichwal, V. R. (1994). Mol. Cell. Biol. 14, 5820-5831.

Smith, C. A., Farrah, T., and Goodwin, R. G. (1994). Cell 76, 959-962.

Song, H. Y., and Donner, D. B. (1995). Biochem. J. 809, 825-829.

Thanos. D., and Maniatis, T. (1995). Cell 80, 529-532.

Woronicz et al., (1997) Science 278, 866.

30 Verma, I. M., et al. (1995). Genes Dev. 9, 2723-2735.

SUMMARY OF THE INVENTION

The invention provides methods and compositions relating to isolated IKAP polypeptides, related nucleic acids, polypeptide domains thereof having IKAP-specific structure and activity and modulators of IKAP function, particularly NIK binding activity. IKAP polypeptides can regulate NFkB activation and hence provide important regulators of cell function. The polypeptides may be produced recombinantly from transformed host cells from the subject IKAP polypeptide encoding nucleic acids or purified from mammalian cells. The invention provides isolated IKAP hybridization probes and primers capable of specifically hybridizing with the disclosed IKAP gene, IKAP-specific binding agents such as specific antibodies, and methods of making and using the subject compositions in diagnosis (e.g. genetic hybridization screens for IKAP transcripts), therapy (e.g. IKAP inhibitors to inhibit TNF signal transduction) and in the biopharmaceutical industry (e.g. as immunogens, reagents for isolating other transcriptional regulators, reagents for screening chemical libraries for lead pharmacological agents, etc.).

BRIEF DESCRIPTION OF THE FIGURE

Fig. 1. IKAP polypeptides activate NFkB.

DETAILED DESCRIPTION OF THE INVENTION

The nucleotide sequence of a natural cDNA encoding a human IKAP polypeptide is shown as SEQ ID NO:1, and the full conceptual translate is shown as SEQ ID NO:2. The IKAP polypeptides of the invention include one or more functional domains of SEQ ID NO:2, which domains comprise at least 8, preferably at least 16, more preferably at least 32, most preferably at least 64 contiguous residues of SEQ ID NO:2 and have human IKAP-specific amino acid sequence and activity. IKAP domain specific activities include NIK-binding or binding inhibitory activity, NFkB-binding or binding inhibitory activity and IKAP specific immunogenicity and/or antigenicity.

IKAP-specific activity or function may be determined by convenient *in vitro*. cell-based, or *in vivo* assays: e.g. *in vitro* binding assays, cell culture assays, in animals (e.g. gene therapy, transgenics, etc.), etc. Binding assays encompass any assay where the molecular interaction of an IKAP polypeptide with a binding target is evaluated. The binding target may be a natural intracellular binding target such as an IKAP binding target, a IKAP

5

10

15

20

25

regulating protein or other regulator that directly modulates IKAP activity or its localization; or non-natural binding target such a specific immune protein such as an antibody, or an IKAP specific agent such as those identified in screening assays such as described below. IKAP-binding specificity may assayed by binding equilibrium constants (usually at least about $10^7 \,\mathrm{M}^{-1}$, preferably at least about $10^8 \,\mathrm{M}^{-1}$, more preferably at least about $10^9 \,\mathrm{M}^{-1}$), by NFkB reporter expression, by the ability of the subject polypeptide to function as negative mutants in IKAP-expressing cells, to elicit IKAP specific antibody in a heterologous host (e.g. a rodent or rabbit), etc.

For example, deletion mutagenesis is used to defined functional IKAP domains which activate NFkB expression or function as dominant/negative mutants in IKAP-mediated NFkB activation assays. See, e.g. Table 1.

Table 1. Exemplary IKAP deletion mutants defining IKAP functional domains.

5

10

25

30

	Mutant	Sequence	NFκB	Dom/Neg
	ΔΝ1	SEQ ID NO:2, residues 42-1332	+	-
15	ΔΝ2	SEQ ID NO:2, residues 142-1332	+	-
	ΔΝ3	SEQ ID NO:2, residues 242-1332	+	-
	ΔΝ4	SEQ ID NO:2, residues 342-1332	+	-
	ΔΝ5	SEQ ID NO:2. residues 442-1332	+	-
	$\Delta C1$	SEQ ID NO:2. residues 1-923	•	+
20	ΔC2	SEQ ID NO:2, residues 1-441	-	
	ΔC3	SEQ ID NO:2, residues 1-241	•	
	ΔC4	SEQ ID NO:2, residues 1-241	-	

In a particular embodiment, the subject domains provide IKAP-specific antigens and/or immunogens, especially when coupled to carrier proteins. For example, peptides corresponding to IKAP- and human IKAP-specific domains are covalently coupled to keyhole limpet antigen (KLH) and the conjugate is emulsified in Freunds complete adjuvant. Laboratory rabbits are immunized according to conventional protocol and bled. The presence of IKAP-specific antibodies is assayed by solid phase immunosorbant assays using immobilized IKAP polypeptides of SEQ ID NO:2, see, e.g. Table 2.

Table 2. Immunogenic IKAP polypeptides eliciting IKAP-specific rabbit polyclonal antibody: IKAP polypeptide-KLH conjugates immunized per protocol described above.

	IKAP Polypeptide Sequence	Immunogenicity
	SEQ ID NO:2, residues 1-10	+++
	SEQ ID NO:2, residues 29-41	+++
5 .	SEQ ID NO:2, residues 75-87	+++
	SEQ ID NO:2, residues 92-109	+++
	SEQ ID NO:2, residues 132-141	+++
	SEQ ID NO:2, residues 192-205	+++
	SEQ ID NO:2, residues 258-269	+++
10	SEQ ID NO:2, residues 295-311	+++
	SEQ ID NO:2, residues 316-330	+++
	SEQ ID NO:2, residues 373-382	+++
	SEQ ID NO:2, residues 403-422	+++
	SEQ ID NO:2, residues 474-485	+++
15	SEQ ID NO:2, residues 561-576	+++
	SEQ ID NO:2, residues 683-697	+++
	SEQ ID NO:2, residues 768-777	+++
	SEQ ID NO:2, residues 798-813	+++
	SEQ ID NO:2, residues 882-894	+++
20	SEQ ID NO:2, residues 934-946	+++
	SEQ ID NO:2, residues 1054-1067	+++
	SEQ ID NO:2, residues 1181-1192	+++
	SEQ ID NO:2, residues 1273-1282	+++
	SEQ ID NO:2, residues 1283-1294	+++
25	SEQ ID NO:2, residues 1295-1312	+++
	SEQ ID NO:2, residues 1313-1332	+++

The claimed IKAP polypeptides are isolated or pure: an "isolated" polypeptide is unaccompanied by at least some of the material with which it is associated in its natural state, preferably constituting at least about 0.5%, and more preferably at least about 5% by weight of the total polypeptide in a given sample and a pure polypeptide constitutes at least

about 90%, and preferably at least about 99% by weight of the total polypeptide in a given sample. The IKAP polypeptides and polypeptide domains may be synthesized, produced by recombinant technology, or purified from mammalian, preferably human cells. A wide variety of molecular and biochemical methods are available for biochemical synthesis, molecular expression and purification of the subject compositions, see e.g. Molecular Cloning. A Laboratory Manual (Sambrook, et al. Cold Spring Harbor Laboratory). Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY) or that are otherwise known in the art.

The invention provides binding agents specific to IKAP polypeptides, preferably the claimed IKAP polypeptides, including substrates, agonists, antagonists, natural intracellular binding targets, etc., methods of identifying and making such agents, and their use in diagnosis, therapy and pharmaceutical development. For example, specific binding agents are useful in a variety of diagnostic and therapeutic applications, especially where disease or disease prognosis is associated with improper utilization of a pathway involving the subject proteins, e.g. NF-kB activation. Novel IKAP-specific binding agents include IKAP-specific receptors, such as somatically recombined polypeptide receptors like specific antibodies or T-cell antigen receptors (see, e.g Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory) and other natural intracellular binding agents identified with assays such as one-, two- and three-hybrid screens, non-natural intracellular binding agents identified in screens of chemical libraries such as described below, etc. Agents of particular interest modulate IKAP function, e.g. IKAP-dependent transcriptional activation.

Accordingly, the invention provides methods for modulating signal transduction involving NFkB in a cell comprising the step of modulating IKAP activity. The cell may reside in culture or in situ, i.e. within the natural host. For diagnostic uses, the inhibitors or other IKAP binding agents are frequently labeled, such as with fluorescent, radioactive, chemiluminescent, or other easily detectable molecules, either conjugated directly to the binding agent or conjugated to a probe specific for the binding agent. Exemplary inhibitors include nucleic acids encoding dominant/negative mutant forms of IKAP, as described above, etc.

The amino acid sequences of the disclosed IKAP polypeptides are used to back-translate IKAP polypeptide-encoding nucleic acids optimized for selected expression systems (Holler et al. (1993) Gene 136, 323-328; Martin et al. (1995) Gene 154, 150-166) or

5

10

15

20

25

used to generate degenerate oligonucleotide primers and probes for use in the isolation of natural IKAP-encoding nucleic acid sequences ("GCG" software. Genetics Computer Group, Inc. Madison WI). IKAP-encoding nucleic acids used in IKAP-expression vectors and incorporated into recombinant host cells, e.g. for expression and screening, transgenic animals, e.g. for functional studies such as the efficacy of candidate drugs for disease associated with IKAP-modulated cell function, etc.

The invention also provides nucleic acid hybridization probes and replication / amplification primers having a IKAP cDNA specific sequence comprising at least 12, preferably at least 24, more preferably at least 36 and most preferably at least contiguous 96 bases of a strand of SEQ ID NO:1 sufficient to specifically hybridize with a second nucleic acid comprising the complementary strand of SEQ ID NO:1. Demonstrating specific hybridization generally requires stringent conditions, for example, hybridizing in a buffer comprising 30% formamide in 5 x SSPE (0.18 M NaCl. 0.01 M NaPO₄, pH7.7, 0.001 M EDTA) buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE; preferably hybridizing in a buffer comprising 50% formamide in 5 x SSPE buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE buffer at 42°C.

Table 3. Exemplary IKAP nucleic acids which hybridize with a strand of SEQ ID NO:1 under Conditions I and/or II.

20	IKAP Nucleic Acids	<u>Hybridization</u>
	SEQ ID NO:1, nucleotides 1-47	+
	SEQ ID NO:1, nucleotides 58-99	+
	SEQ ID NO:1, nucleotides 95-138	+
	SEQ ID NO:1, nucleotides 181-220	+
25	SEQ ID NO:1, nucleotides 261-299	+
	SEQ ID NO:1, nucleotides 274-315	+
	SEQ ID NO:1, nucleotides 351-389	+
	SEQ ID NO:1, nucleotides 450-593	+
	SEQ ID NO:1, nucleotides 524-546	+
30	SEQ ID NO:1, nucleotides 561-608	+
	SEQ ID NO:1, nucleotides 689-727	+

5

10

SEQ ID NO:1, nucleotides 808-837	+
SEQ ID NO:1, nucleotides 938-1001	+
SEQ ID NO:1, nucleotides 1205-1254	+
SEQ ID NO:1, nucleotides 1855-1907	+
SEQ ID NO:1, nucleotides 2910-2953	+
SEQ ID NO:1. nucleotides 3967-3999	+

The subject nucleic acids are of synthetic/non-natural sequences and/or are isolated, i.e. unaccompanied by at least some of the material with which it is associated in its natural state. preferably constituting at least about 0.5%, preferably at least about 5% by weight of total nucleic acid present in a given fraction, and usually recombinant, meaning they comprise a non-natural sequence or a natural sequence joined to nucleotide(s) other than that which it is joined to on a natural chromosome. Recombinant nucleic acids comprising the nucleotide sequence of SEQ ID NO:1, or requisite fragments thereof, contain such sequence or fragment at a terminus, immediately flanked by (i.e. contiguous with) a sequence other than that which it is joined to on a natural chromosome, or flanked by a native flanking region fewer than 10 kb, preferably fewer than 2 kb, preferably fewer than 500 bp, which is at a terminus or is immediately flanked by a sequence other than that which it is joined to on a natural chromosome. While the nucleic acids are usually RNA or DNA, it is often advantageous to use nucleic acids comprising other bases or nucleotide analogs to provide modified stability, etc.

The subject nucleic acids find a wide variety of applications including use as translatable transcripts, hybridization probes, PCR primers, diagnostic nucleic acids, etc.: use in detecting the presence of IKAP genes and gene transcripts and in detecting or amplifying nucleic acids encoding additional IKAP homologs and structural analogs. In diagnosis, IKAP hybridization probes find use in identifying wild-type and mutant IKAP alleles in clinical and laboratory samples. Mutant alleles are used to generate allele-specific oligonucleotide (ASO) probes for high-throughput clinical diagnoses. In therapy, therapeutic IKAP nucleic acids are used to modulate cellular expression or intracellular concentration or availability of active IKAP.

The invention provides efficient methods of identifying agents, compounds or lead compounds for agents active at the level of a IKAP modulatable cellular function.

5

10

15

20

25

Generally, these screening methods involve assaying for compounds which modulate IKAP interaction with a natural IKAP binding target, such as NIK A wide variety of assays for binding agents are provided including labeled *in vitro* protein-protein binding assays, immunoassays, cell based assays, etc. The methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds. Identified reagents find use in the pharmaceutical industries for animal and human trials: for example, the reagents may be derivatized and rescreened in *in vitro* and *in vivo* assays to optimize activity and minimize toxicity for pharmaceutical development.

In vitro binding assays employ a mixture of components including an IKAP polypeptide, which may be part of a fusion product with another peptide or polypeptide, e.g. a tag for detection or anchoring, etc. The assay mixtures comprise a natural intracellular IKAP binding target. While native full-length binding targets may be used, it is frequently preferred to use portions (e.g. peptides) thereof so long as the portion provides binding affinity and avidity to the subject IKAP polypeptide conveniently measurable in the assay. The assay mixture also comprises a candidate pharmacological agent. Candidate agents encompass numerous chemical classes, though typically they are organic compounds: preferably small organic compounds and are obtained from a wide variety of sources including libraries of synthetic or natural compounds. A variety of other reagents may also be included in the mixture. These include reagents like salts, buffers, neutral proteins, e.g. albumin, detergents, protease inhibitors, nuclease inhibitors, antimicrobial agents, etc. may be used.

The resultant mixture is incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the IKAP polypeptide specifically binds the cellular binding target, portion or analog with a reference binding affinity. The mixture components can be added in any order that provides for the requisite bindings and incubations may be performed at any temperature which facilitates optimal binding. Incubation periods are likewise selected for optimal binding but also minimized to facilitate rapid, high-throughput screening.

After incubation, the agent-biased binding between the IKAP polypeptide and one or more binding targets is detected by any convenient way. A difference in the binding affinity of the IKAP polypeptide to the target in the absence of the agent as compared with the binding affinity in the presence of the agent indicates that the agent modulates the

5

10

15

20

25

binding of the IKAP polypeptide to the IKAP binding target. Analogously, in the cell-based assay also described below, a difference in IKAP-dependent transcriptional activation in the presence and absence of an agent indicates the agent modulates IKAP function. A difference, as used herein, is statistically significant and preferably represents at least a 50%, more preferably at least a 90% difference.

The following experimental section and examples are offered by way of illustration and not by way of limitation.

5

10 -

15

20

25

30

EXAMPLES

1. Protocol for Cell-Based IKAP-NIK Interaction assay

IKAP has been identified as a NIK-interacting protein by coprecipitation assay: 293 cells are transfected with mammalian expression vectors encoding Flag-tagged NIK and Myc-tagged IKAP respectively. After 48 hours, cells are collected, washed twice with phosphate-buffered saline and lysed for 30 min at 4 $^{\circ}$ C in 0.5 ml of lysis buffer (50 mM HEPES pH 7.6, 100 mM NaCl, 1 % NP-40, 1 mM EDTA, 10 % glycerol) containing phosphatase and protease inhibitors. Cellular debris are removed by centrifugation at 10,000 x g for 10 min twice. The NaCl concentration of the cell lysates is increased to 250 mM. The cell lysates are incubated for 1 hour on ice with 1 μ g of anti-Flag monoclonal antibody or control mouse IgG1 antibody, and an additional hour at 4 $^{\circ}$ C with 15 μ l of protein G-agarose beads. The beads are then collected, and washed four times with 1 ml of lysis buffer containing 250 mM NaCl. The bound proteins are eluted. fractionated by SDS-PAGE and analyzed by western blotting using anti-Myc or anti-Flag polyclonal antibodies. The immunoblot is developed with horseradish peroxidase-coupled goat anti-rabbit immunoglobin as secondary antibody and visualized using the Enhanced Chemoluminescence (ECL) Detection System.

2. Protocol for Cell-Based NF-kB Reporter Assay

IKAP can trans-activate NF-kB reporter constructs when overexpressed in 293 cells or HeLa cells. 293 cells are transfected using the calcium phosphate precipitation method with a plasmid encoding a 6 NF-kB-luciferase reporter construct and various amounts of expression vector encoding IKAP. After 36-48 hours, cells are left untreated or treated with IL-1 (10-50 ng/ml) or TNF (50-100 ng) for 6 hours prior to harvest. Cells are

lysed and luciferase activity measured using the luciferase assay kit (Promega). The luciferase activity in each transfection is normalized by co-transfecting a pRSV- β gal control vector.

- 3. Protocol for high throughput in vitro IKAP-NIK binding assay.
- 5 A. Reagents:

10

15

20

- Neutralite Avidin: 20 µg/ml in PBS.
- Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
- <u>Assay Buffer</u>: 100 mM KCl. 20 mM HEPES pH 7.6. 1 mM MgCl₂, 1% glycerol, 0.5% NP-40, 50 mM β-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors.
- ³³P IKAP polypeptide 10x stock: 10⁻⁸ 10⁻⁶M "cold" IKAP supplemented with 200,000-250,000 cpm of labeled IKAP (Beckman counter). Place in the 4°C microfridge during screening.
- Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVO₃ (Sigma # S-6508) in 10 ml of PBS.
 - -NIK: 10^{-7} 10^{-5} M biotinvlated NIK in PBS.
- B. Preparation of assay plates:
 - Coat with 120 µl of stock N-Avidin per well overnight at 4°C.
 - Wash 2 times with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2 times with 200 µl PBS.
- C. Assay:
 - Add 40 µl assay buffer/well.
 - Add 10 µl compound or extract.
 - Add 10 μ l ³³P-IKAP (20-25,000 cpm/0.1-10 pmoles/well =10⁻⁹- 10⁻⁷ M final conc).
 - Shake at 25°C for 15 minutes.
 - Incubate additional 45 minutes at 25°C.
 - Add 40 µM biotinylated NIK (0.1-10 pmoles/40 ul in assay buffer)
- Incubate 1 hour at room temperature.

- Stop the reaction by washing 4 times with 200 µM PBS.
- Add 150 µM scintillation cocktail.
- Count in Topcount.

5

10

- D. Controls for all assays (located on each plate):
 - a. Non-specific binding
 - b. Soluble (non-biotinylated NIK) at 80% inhibition.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

WHAT IS CLAIMED IS:

1. An isolated polypeptide comprising SEQ ID NO:2 or a fragment thereof selected from the group consisting of: residues 1-10, 29-41, 75-87, 92-109, 132-141, 192-205, 258-269, 295-311, 316-330, 373-382, 403-422, 474-485, 561-576, 683-697, 768-777, 798-813, 1054-1067, 1181-1192, 1273-1282, 1283-1294, 1295-1312 and 1313-1332, wherein said domain has an IKAP activity selected from at least one of: a NIK-binding or binding inhibitory activity, an NFkB activating or inhibitory activity and an IKAP-specific immunogenicity and/or antigenicity.

- 2. A recombinant nucleic acid comprising a coding region encoding a polypeptide according to claim 1 flanked by fewer than 2 kb of native flanking sequence.
- 3. A recombinant nucleic acid comprising a strand of SEQ ID NO:1 or of a fragment selected from the group consisting of nucleotides 1-47, 58-99, 95-138, 181-220, 261-299, 274-315, 351-389, 450-593, 524-546, 561-608, 689-727, 808-837 and 2910-2953, wherein the strand is flanked by fewer than 2 kb of native flanking sequence.
- 4. A cell comprising a nucleic acid according to claim 2 or 3.
- 5. A method of making an isolated polypeptide according to claim 1, said method comprising steps: introducing a recombinant nucleic acid encoding a polypeptide according to claim 1 into a host cell or cellular extract, incubating said host cell or extract under conditions whereby said nucleic acid is expressed as a transcript and said transcript is expressed as a translation product.

25

30

5

10

15

6. A method of screening for an agent which modulates the interaction of an IKAP polypeptide to a binding target, said method comprising the steps of:

incubating a mixture comprising:

an isolated polypeptide according to claim 1, a binding target of said polypeptide, and

a candidate agent:

under conditions whereby, but for the presence of said agent, said polypeptide specifically binds said binding target at a reference affinity:

detecting the binding affinity of said polypeptide to said binding target to determine an agent-biased affinity, wherein a difference between the agent-biased affinity and the reference affinity indicates that said agent modulates the binding of said polypeptide to said binding target.

7. A method for modulating signal transduction in a cell, said method comprising the step of contacting the cell with an agent which modulates IKAP activity, wherein the agent is a nucleic acid according to claim 2 or 3.

PCT/US98/24396

FIG. 1

1/1

SEQUENCE LISTING

	SEQUENCE LISTING
	(1) GENERAL INFORMATION:
	(i) APPLICANT: Cohen, Lucy
	Baeuerle, Patrick
	(ii) TITLE OF INVENTION: IKAP Proteins, Nucleic Acids and Methods
5	(iii) NUMBER OF SEQUENCES: 2
	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: SCIENCE & TECHNOLOGY LAW GROUP
	(B) STREET: 75 DENISE DRIVE
	(C) CITY: HILLSBOROUGH
10	(D) STATE: CALIFORNIA
	(E) COUNTRY: USA
	(F) ZIP: 94010
	(V) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Floppy disk
15	(B) COMPUTER: IBM PC compatible
	(C) OPERATING SYSTEM: PC-DOS/MS-DOS
	(D) SOFTWARE: PatentIn Release #1.0, Version #1.30
	(vi) CURRENT APPLICATION DATA:
	(A) APPLICATION NUMBER:
20	(B) FILING DATE:
	(C) CLASSIFICATION:
	(viii) ATTORNEY/AGENT INFORMATION:
	(A) NAME: OSMAN, RICHARD A
	(B) REGISTRATION NUMBER: 36,627
25	(C) REFERENCE/DOCKET NUMBER: T97-011
	(ix) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE: (650) 343-4341
	(B) TELEFAX: (650) 343-4342
30	(2) INFORMATION FOR SEQ ID NO:1:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 3999 base pairs
	(B) TYPE: nucleic acid
2.5	(C) STRANDEDNESS: double
35	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: cDNA
	(ix) FEATURE:
	(A) NAME/KEY: CDS
10	(B) LOCATION: 13996
40	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
	ATG CGA AAT CTG AAA TTA TTT CGG ACC CTG GAG TTC AGG GAT ATT CAA 48
	Met Arg Asn Leu Lys Leu Phe Arg Thr Leu Glu Phe Arg Asp Ile Gln
45	1 5 10 15
+3	GGT CCA GGG AAT CCT CAG TGC TTC TCT CTC CGA ACT GAA CAG GGG ACG 96
	Gly Pro Gly Asn Pro Gln Cys Phe Ser Leu Arg Thr Glu Gln Gly Thr
	20 25 30
	GTG CTC ATT GGT TCA GAA CAT GGC CTG ATA GAA GTA GAC CCT GTC TCA 144
50	Val Leu Ile Gly Ser Glu His Gly Leu Ile Glu Val Asp Pro Val Ser
50	35 40 45
	AGA GAA GTG AAA AAT GAA GTT TCT TTG GTG GCA GAA GGC TTT CTT CCA 192
	Arg Glu Val Lys Asn Glu Val Ser Leu Val Ala Glu Gly Phe Leu Pro
	50 55 60
5 5	GAG GAT GGA AGT GGC CGC ATT GTT GGT GTT CAG GAC TTG CTG GAT CAG
55	Glu Asp Gly Ser Gly Arg Ile Val Gly Val Gln Asp Leu Leu Asp Gln
	65 70 75 80

	GAG	TCT	GTG	TGT	GTG	GCC	ACA	GCC	TCT	GGA	GAC	GTC	ATA	CTC	TGC	AGT	288
	Glu	Ser	Val	Cys	Val 85	Ala	Thr	Ala	Ser	Gly 90	Asp	Val	Ile	Leu	Cys 95	Ser	
	CTC	AGC	ACA	CAA	CAG	CTG	GAG	TGT	GTT	GGG	AGT	GTA	GCC	AGT	GGT	ATC	336
5	Leu	Ser	Thr	Gln 100	Gln	Leu	Glu	Cys	Val	Gly	Ser	Val	Ala	Ser 110	Gly	Ile	
J	TCT	GTT	ATG		TGG	AGT	CCT	GAC		GAG	CTG	GTG	CTT		GCC	ACA	384
								Asp 120									
	GGT	CAA		ACC	CTG	ATT	ATG	ATG	ACA	AAA	GAT	TTT		CCA	ATC	CTG	432
10	Gly	Gln 130	Gln	Thr	Leu	Ile	Met 135	Met	Thr	Lys	Asp	Phe 140	Glu	Pro	Ile	Leu	
	GAG		CAG	ATC	CAT	CAG		GAT	ттт	GGT	GAA		AAG	ффф	ATC	ACT	480
								Asp									
	145					150	-	-			155					160	
15	GTT	GGA	TGG	GGT	AGG	AAG	GAG	ACA	CAG	TTC	CAT	GGA	TCA	GAA	GGC	AGA	528
	Val	Gly	Trp	Gly	Arg 165	Lys	Glu	Thr	Gln	Phe 170	His	Gly	Ser	Glu	Gly 175	Arg	
	CAA	GCA	GCT	TTT	CAG	ATG	CAA	ATG	CAT	GAG	TCT	GCT	TTG	CCC	TGG	GAT	576
20								Met									
	GAC	CAT	AGA	CCA	CAA	GTT	ACC	TGG	CGG	GGG	GAT	GGA	CAG	ΔŤŤ	TTT	GCT	624
	Asp	His	Arg	Pro	Gln	Val	Thr	Trp	Arg	Gly	Asp	Gly	Gln	Phe	Phe	Ala	
			195					200				-	205				
	GTG	AGT	GTT	GTT	TGC	CCA	GAA	ACA	GGG	GCT	CGG	AAG	GTC	AGA	GTG	TGG	672
25	Val	Ser 210	Val	Val	Cys	Pro	Glu 215	Thr	Gly	Ala	Arg	Lys 220	Val	Arg	Val	Trp	
								TCA									720
	Asn	Arg	Glu	Phe	Ala	Leu	Gln	Ser	Thr	Ser	Glu	Pro	Val	Ala	Gly	Leu	
	225					230					235					240	
30								CCC									768
					245			Pro		250					255		
								GAT									816
35				260				Asp	265					270			
								CTT									864
			275					Leu 280					285				
40								GCA									912
40		290					295	Ala				300					
								AAA									960
	305					310		Lys			315					320	
45	CAG	CTC	TGG	ACT	GTT	GGA	AAC	TAT	CAC	TGG	TAT	CTC	AAG	CAA	AGT	TTA	1008
					325			Tyr		330					335		
								AGC									1056
50	Ser	Phe	Ser	Thr 340	Cys	Gly	Lys	Ser	Lys 345	Ile	Val	Ser	Leu	Met 350	Trp	Asp	
	CCT	GTG	ACC	CCA	TAC	CGG	CTG	CAT	GTT	CTC	TGT	CAG	GGC	TGG	CAT	TAC	1104
	Pro	Val	Thr 355	Pro	Tyr	Arg	Leu	His 360	Val	Leu	Cys	Gln	Gly 365	Trp	His	Tyr	
	CTC	GCC	$\mathbf{T}\mathbf{A}\mathbf{T}$	GAT	TGG	CAC	TGG	ACG	ACT	GAC	CGG	AGC	GTG	GGA	GAT	TAA	1152
55	Leu	Ala 370	Tyr	Asp	Trp	His	Trp 375	Thr	Thr	Asp	Arg	Ser 380	Val	Gly	Asp	Asn	

				TTG													1200
	Ser	Ser	Asp	Leu	Ser	Asn	Val	Ala	Val	Ile	Asp	Gly	Asn	Arg	Val	Leu	
	385					390					395					400	
				TTC													1248
5	Val	Thr	Val	Phe		GIN	Thr	Vai	Val		Pro	Pro	Met	Cys		Tyr	
5	(T 7) 7)	ame	CTC	TTC	405	CAC	CCM	cmc.	2 2 00	410	~~~	202	mma		415	G1.G	1006
				Phe													1296
	GIII	neu	neu	420	FIO	1113	FIO	var	425	GIII	val	THE	PHE	430	Ala	urz	
	CCT	CAA	AAG	AGT	AAT	GAC	CTT	GCT		CTA	GAT	GCC	AGT		CAG	Αጥጥ	1344
10				Ser													~~ * *
			435			_		440					445				
	TCT	GTT	TAT	AAA	TGT	GGT	GAT	TGT	CCA	AGT	GCT	GAC	CCT	ACA	GTG	AAA	1392
	Ser	Val	Tyr	Lys	Cys	Gly	Asp	Cys	Pro	Ser	Ala	Asp	Pro	Thr	Val	Lys	
1.5		450					455					460					
15	CTG	GGA	GCT	GTG	GGT	GGA	AGT	GGA	TTT	AAA	GTT	TGC	CTT	AGA	ACT	CCT	1440
	465	GTA	Ala	Val	GIY	470	Ser	GIY	Phe	Lys		Cys	Leu	Arg	Thr		
		ጥጥር	GAA	AAG	AGA		2 2 2	א יויי	CAC	നനന	475	70.70.00	አአጥ	C 2 2	CAT	480	1488
	His	Leu	Glu	Lys	Ara	Tvr	Lvs	TIP	Gln	Dhe	Clu	AAI	AAI	Glu	Acn	Gln	1400
20					485	-1-	_,_	***	9111	490	GIU	Maii	ASII	Gru	495	Gili	
	GAT	GTA	AAC	CCG	CTG	AAA	CTA	GGC	CTT		ACT	TGG	ATT	GAA		GAC	1536
	Asp	Val	Asn	Pro	Leu	Lys	Leu	Gly	Leu	Leu	Thr	Trp	Ile	Glu	Glu	Asp	
				500					505					510			
25	GTC	TTC	CTG	GCT	GTA	AGC	CAC	AGT	GAG	TTC	AGC	CCC	CGG	TCT	GTC	ATT	1584
25	Val	Phe		Ala	Val	Ser	His		Glu	Phe	Ser	Pro		Ser	Val	Ile	
	~~~	~	515	) Cm	001	o om		520	~ ~ ~				525				
				ACT													1632
	UTP	530	Leu	Thr	ALG	Ald	535	Ser	GIU	Mec	Asp	540	GIU	HIS	GIA	GIN	
30	CTC		GTC	AGT	TCA	тст		GCG	GTG	GAT	GGG		מידים	ΔΨΟ	ΔСΤ	СТА	1680
				Ser													1000
	545					550				•	555					560	
				TCC													1728
~ =	Суѕ	Cys	Asn	Ser		Thr	Lys	Ser	Val	Val	Leu	Gln	Leu	Ala	Asp	Gly	
35	a		-		565					570					575		
	CAG	ATA	TTT	AAG	TAC	CTT	TGG	GAG	TCA	CCT	TCT	CTG	GCT	ATT	AAA	CCA	1776
	GTII	TTE	Pile	Lys 580	TYL	reu	Trp	GIU		Pro	Ser	Leu	Ala		Lys	Pro	
	TGG	AAG	AAC	TCT	GGT	GGA	بلاشتان	CCT	585	ccc	முருமு	CCT	መአመ	590	TCC.	ACC.	1824
40	Trp	Lys	Asn	Ser	Glv	Glv	Phe	Pro	Val	Ara	Phe	Pro	ጥላታም	Pro	Cvs	Thr	1024
	-	-	595			2		600	•	**** 9		0	605	110	Cys		
	CAG	ACC	GAA	TTG	GCC	ATG	ATT	GGA	GAA	GAG	GAA	TGT		CTT	GGT	CTG	1872
	Gln	Thr	Glu	Leu	Ala	Met	Ile	Gly	Glu	Glu	Glu	Cys	Val	Leu	Gly	Leu	
		610					615					620					
45	ACT	GAC	AGG	TGT	CGC	TTT	TTC	ATC	AAT	GAC	ATT	GAG	GTT	GCG	TCA	AAT	1920
		Asp	Arg	Cys	Arg		Phe	Ile	Asn	Asp		Glu	Val	Ala	Ser		
	625	A.C.C.	TC N	anman.	CCA	630	m 2 m	a	~~~		635					640	1000
	Tle	Thr	Ser	TTT Phe	Δla	Val	TAT	DAT.	GAG	T"I"I	TTA	TTG	TTG	ACA	ACC	CAT	1968
50	440	****		1116	645	Val	171	ASD	GIU	650	Leu	Leu	ren	unr	655	HIS	
	TCC	CAT	ACC	TGC		TGT	TTT	TGC	CTG		GAT	GCT	тсъ	மும்ம		ACA	2016
	Ser	His	Thr	Cys	Gln	Cys	Phe	Cys	Leu	Ara	Asp	Ala	Ser	Phe	Lvs	Thr	
				660					665					670			
	TTA	CAG	GCC	GGC	CTG	AGC	AGC	AAT	CAT	GTG	TCC	CAT	GGG	GAA	GTT	CTG	2064
55	Leu	Gln	Ala	Gly	Leu	Ser	Ser	Asn	His	Val	Ser	His	Gly	Glu	Val	Leu	
			675					680					685				

690 695 700  ACA AAG CTT GTA TTA CAG ATG CCA AGG GGA AAC TTA GAA GTT GTT C. Thr Lys Leu Val Leu Gln Met Pro Arg Gly Asn Leu Glu Val Val H.  705 710 715 725  CAT CGA GCC CTG GTT TTA GCT CAG ATT CGG AAG TGG TTG GAC AAA C' His Arg Ala Leu Val Leu Ala Gln Ile Arg Lys Trp Leu Asp Lys Leu 725 730 735  ATG TTT AAA GAG GCA TTT GAA TGC ATG AGA AAG CTG AGA ATC AAT C'	is 20 TT 2208 eu TC 2256
CAT CGA GCC CTG GTT TTA GCT CAG ATT CGG AAG TGG TTG GAC AAA C His Arg Ala Leu Val Leu Ala Gln Ile Arg Lys Trp Leu Asp Lys L 725 730 735	TT 2208 eu TC 2256
725 730 735	TC 2256
10 Met Phe Lys Glu Ala Phe Glu Cys Met Arg Lys Leu Arg Ile Asn Lo	
740 745 750  AAT CCG ATT TAT GAT CAT AAC CCT AAG GTG TTT CTT GGA AAT GTG G	
Asn Pro Ile Tyr Asp His Asn Pro Lys Val Phe Leu Gly Asn Val Gl 755 760 765 ACC TTC ATT AAA CAG ATA GAT TCT GTG AAT CAT ATT AAC TTG TTT TT	
Thr Phe Ile Lys Gln Ile Asp Ser Val Asn His Ile Asn Leu Phe Pl 770 775 780	he
ACA GAA TTG AAA GAA GAA GAT GTC ACG AAG ACC ATG TAC CCT GCA CC Thr Glu Leu Lys Glu Glu Asp Val Thr Lys Thr Met Tyr Pro Ala P: 790 795 80	CA 2400 ro 00
GTT ACC AGC AGT GTC TAC CTG TCC AGG GAT CCT GAC GGG AAT AAA A Val Thr Ser Ser Val Tyr Leu Ser Arg Asp Pro Asp Gly Asn Lys I 805 810 815	TA 2448 le
GAC CTT GTC TGC GAT GCT ATG AGA GCA GTC ATG GAG AGC ATA AAT CC Asp Leu Val Cys Asp Ala Met Arg Ala Val Met Glu Ser Ile Asn Pr	
820 825 830 CAT AAA TAC TGC CTA TCC ATA CTT ACA TCT CAT GTA AAG AAG ACA AG His Lys Tyr Cys Leu Ser Ile Leu Thr Ser His Val Lys Lys Thr Th	
835 840 845  CCA GAA CTG GAA ATT GTA CTG CAA AAA GTA CAC GAG CTT CAA GGA AA  Pro Glu Leu Glu Ile Val Leu Gln Lys Val His Glu Leu Gln Gly As	
850 855 860 GCT CCC TCT GAT CCT GAT GCT GTG AGT GCT GAA GAG GCC TTG AAA TA	AT 2640
Ala Pro Ser Asp Pro Asp Ala Val Ser Ala Glu Glu Ala Leu Lys Ty 865 870 875 88 TTG CTG CAT CTG GTA GAT GTT AAT GAA TTA TAT GAT CAT TCT CTT GC	30
Leu Leu His Leu Val Asp Val Asn Glu Leu Tyr Asp His Ser Leu G 885 890 895 ACC TAT GAC TTT GAT TTG GTC CTC ATG GTA GCT GAG AAG TCA CAG AA	ly
Thr Tyr Asp Phe Asp Leu Val Leu Met Val Ala Glu Lys Ser Gln Ly 900 905 910	γs
GAT CCC AAA GAA TAT CTT CCA TTT CTT AAT ACA CTT AAG AAA ATG GA Asp Pro Lys Glu Tyr Leu Pro Phe Leu Asn Thr Leu Lys Lys Met Gl 915 920 925	AA 2784 lu
ACT AAT TAT CAG CGG TTT ACT ATA GAC AAA TAC TTG AAA CGA TAT GA Thr Asn Tyr Gln Arg Phe Thr Ile Asp Lys Tyr Leu Lys Arg Tyr Gl 930 935 940	AA 2832 lu
AAA GCC ATT GGC CAC CTC AGC AAA TGT GGA CCT GAG TAC TTC CCA GA Lys Ala Ile Gly His Leu Ser Lys Cys Gly Pro Glu Tyr Phe Pro G	lu
TGC TTA AAC TTG ATA AAA GAT AAA AAC TTG TAT AAC GAA GCT CTG AA Cys Leu Asn Leu Ile Lys Asp Lys Asn Leu Tyr Asn Glu Ala Leu Ly	60 AG 2928 Ys
965 970 975  TTA TAT TCA CCA AGC TCA CAA CAG TAC CAG GAT ATC AGC ATT GCT TA  Leu Tyr Ser Pro Ser Ser Gln Gln Tyr Gln Asp Ile Ser Ile Ala Ty  980 985 990	AT 2976 yr

	ccc	CNG	CAC	CTC	ልጥር	CAG	GAG	CAC	አሞር	TAT	CZC	CCX		CCC	CTIC	አመረ	2024
										Tyr							3024
	O. T. J	014	995					1000		- 3	O_Lu	-10	1005		200	Hec	
	TTT	GCC	CGT	TGC	GGT	GCC	CAC	GAG	AAA	GCT	CTC	TCA	GCC	TTT	CTC	ACA	3072
	Phe	Ala	Arg	Cys	Gly	Ala	His	Glu	Lys	Ala	Leu	Ser	Ala	Phe	Leu	Thr	
5		1010					1015					1020					
										GTG							3120
			Asn	Trp	Lys			Leu	Cys	Val			Gln	Leu	Asn		
	1025		CAC	CAC	CTTC	1030		cmc	ccc	AGA	1035		003	CC3	330	1040	2160
10										Arg							3168
10	1111	د پر	1100	O	1045		OTA	nea	GTY	1050		rea	мта	Gry	1055		
	GTT	GAG	CAG	AGG	AAG	CAC	ATT	GAT	GCG	GCC		GTT	TTG	GAA			3216
										Ala							
				1060	)				1065	5				1070	)		
15										TTG							3264
	Ala	Gln			Glu	Glu	Ala			Leu	Leu	Leu			Ala	Ala	
			107				ama	1080					1085				2246
										AAA							3312
20	Trp	1090		Ala	Leu	Arg	1095		TYL	Lys	ıyr	1100		Leu	Asp	IIe	
20	ATA			AAC	GTA	AAG			ATT	TTA	GAA			AAA	AAT	ጥልጥ	3360
										Leu							3300
	1105	5				1110	)				1115	5				1120	
	ATG	GCA	TTT	CTG	GAC	TCT	CAG	ACA	GCC	ACA	TTC	AGT	CGC	CAC	AAG	AAA	3408
25	Met	Ala	Phe	Leu			Gln	Thr	Ala	Thr		Ser	Arg	His			
					1125					1130					1135		
										GAG							3456
	Arg	neu	Leu	114(		Arg	GIU	Leu	1145	Glu	GIU	ALA	GIU	1150		GIA	
30	CTG	GAT	GAT			CCC	CAC	GGG		GAG	TCA	GAC	CTC			GAA	3504
• •										Glu							
			115					1160				-	1165				
										ATG							3552
25	Thr			Val	Val	Ser			Glu	Met	Ser		_	Tyr	Ser	His	
35	<b>3.00</b>	1170		3.00	2002	ma s	1175			maa		1180				~~~	7.600
										TCC Ser							3600
	1185		Ser	Arg	TTG	1190		Arg	Ser	261	1195		Arg	Arg	Lys	1200	
			AAG	AAG	CAC			AAA	GAA	GGC			СТС	GAG	GAC		3648
40.										Gly							• • • •
					1209			-		1210					1215		
										GTG							3696
	Ala	Leu	Leu			Leu	Ser	Glu		Val	Gln	Asn	Thr	Glu	Asn	Leu	
45		C 3 m	~~ ~ ~	1220		~~~	3	-	1225					1230			2744
45	AAA	ACD	GAA	Unl	TAC	CAT	ATT	TTA	AAG	GTA	CTC	TTT	CTC	TTT	GAG	TTT	3744
	nys	ASD	1235		тĀт	UIS	116	1240		Val	Leu	Pue	1245		GIU	Pne	
	GAT	GAA			AGG	GAA	тта		-	GCC	ششل	GAA			СТС	CAG	3792
	Asp	Glu	Gln	Gly	Arg	Glu	Leu	Gln	Lvs	Ala	Phe	Glu	Asn	Thr	Leu	Gln	J
50	-	1250		- 4	- 2		1255					1260					
	TTG	ATG	GAA	AGG	TCA	CTT	CCA	GAA	ATT	TGG	ACT	CTT	ACT	TAC	CAG	CAG	3840
	Leu	Met	Glu	Arg	Ser	Leu	Pro	Glu	Ile	${\tt Trp}$	Thr	Leu	Thr	Tyr	Gln	Gln	
	1265		~~-			1270					1275					1280	
55	AAT	TCA	GCT	ACC	CCG	GTT	CTA	GGT	CCC	AAT	TCT	ACT	GCA	AAT	AGT	ATC	3888
55	ASN	ser	ATA	Thr			Leu	GIA	Pro	Asn		Thr	Ala	Asn			
					1285	,				1290	j				1295	•	

	ATG	GCA	TCT	TAT	CAG	CAA	CAG	AAG	ACT	TCG	GTT	CCT	GTT	CTT	GAT	GCT	3936
	Met	Ala	Ser	Tyr	Gln	Gln	Gln	Lys	Thr	Ser	Val	Pro	Val	Leu	Asp	Ala	
				1300					130					1310			
											AGA						3984
	Glu	Leu	Phe	Ile	Pro	Pro	Lys	Ile	Asn	Arg	Arg	Thr	Gln	Trp	Lys	Leu	
5			131	5				1320	)				1325	5			
	AGC	CTG	CTA	GAC	TGA												3999
	Ser	Leu	Leu	Asp													
		1330	0														
10	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO:2	:								
			(i):	SEQUI	ENCE	CHAI	RACTI	ERIS	rics	:							
								32 ar			is						
				(B)	TYI	PE: 8	amino	ac:	id								
				(D)	TOI	POLO	3Y: .	linea	ar								
15	(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:																
										QID	NO:2	2:					
	Met										Glu		Arg	Asp	Ile	Gln	
	1				5			_		10			-	-	15		
	Gly	Pro	Gly	Asn	Pro	Gln	Cys	Phe	Ser	Leu	Arg	Thr	Glu	Gln		Thr	
20	-		_	20			-		25	-				30			
	Val	Leu	Ile	Gly	Ser	Glu	His	Glv	Leu	Ile	Glu	Val	Asp	Pro	Val.	Ser	
			35	-				40					45				
	Arq	Glu	Val	Lys	Asn	Glu	Val	Ser	Leu	Va1	Ala	Glu		Phe	Len	Pro	
	_	50		-			5 <b>5</b>					60	3				
25	Glu	Asp	Gly	Ser	Gly	Arg	Ile	Val	Glv	Va 1	Gln		Leu	Leu	Asp	Gln	
	65	-	-		-	70			1		75					80	
	Glu	Ser	Val	Cys	Val	Ala	Thr	Ala	Ser	Glv	Asp	Val	Tle	Len	Cvs		
				-	85					90					95	~~	
	Leu	Ser	Thr	Gln	Gln	Leu	Glu	Cvs	Va]		Ser	va 1	Ala	Ser		Tle	
30				100					105	1				110			
	Ser	Val	Met	Ser	Trp	Ser	Pro	Äsp		Glu	Leu	Val	Leu		Ala	Thr	
			115		•			120					125				
	Gly	Gln	Gln	Thr	Leu	Ile	Met		Thr	Lvs	Asp	Phe		Pro	Ile	Leu	
	-	130					135			-1-	-101	140					
35	Glu	Gln	Gln	Ile	His	Gln		Asp	Phe	Glv	Glu		Lvs	Phe	Ile	Thr	
	145					150					155		-, -			160	
	Val	Gly	Trp	Glv	Arq		Glu	Thr	Gln	Phe	His	Glv	Ser	Glu	Glv		2
		-	•	-	165	-				170		1			175	9	
	Gln	Ala	Ala	Phe	Gln	Met	Gln	Met	His		Ser	Ala	Leu	Pro		Asp	
40				180					185					190			
	Asp	His	Arg	Pro	Gln	Val	Thr	Trp		Glv	Asp	Glv	Gln		Phe	Ala	
	-		195					200	3	2	7,00	~ <b></b> .,	205				
	Val	Ser	Val	Val	Cvs	Pro	Glu		Glv	Ala	Arg	Lvs		Ara	Val	ጥተኮ	
		210			•		215		1			220	V CL 1	9			
45	Asn	Arq	Glu	Phe	Ala	Leu		Ser	Thr	Ser	Glu		va 1	Δla	Gly	I.e.ii	
	225	-				230					235	110	Vai	niu	923	240	
		Pro	Ala	Leu	Ala		Lvs	Pro	Ser	Glv	Ser	T.em	Tla	Δla	Ser		
	•				245		-,0			250	261	пец	116	ALG	255	1111	
	Gln	azA	Lvs	Pro		Gln	Gln	Aen	Tla		Phe	Dhe	Clu	Tare		Gly	
50		- · · · <b>L</b> ·		260		·	0	nop	265	VAL	LIIC	FIIC	Giu		Vali	GIŞ	
	Leu	Leu	His	_	Hic	Phe	ጥ ከጉ~	T. 211		Dha	Leu	7	7 ~ <del>-</del>	270	175.1	Live	
			275	1		*	* * * * *	280	110	· E 116	neu	πλz		GIU	val	nys	
	Val	Asn		Leu	Leu	ריית	Aen		λαν	Se-	Ser	77-7	285	77-	τ7± 1	λκα	
		290				1	295	n.a	vah	het	2et	300	Ten	wrd	val	ur A	
55	Leu		Asp	Leu	G] n	Ara		Tare	Ser	Ser	Ile	200	T	mh~	Cvc	V= 1	
	305					310		פענה	⊃GŢ.	26T		r.o	гÃ2	TILL	CYS		
						210					315					320	

					325					Trp 330	_				335	
	Ser	Phe	Ser	Thr 340	Cys	Gly	Lys	Ser	Lys 345	Ile	Val	Ser	Leu	Met 350	Trp	Asp
5	Pro	Val	Thr 355	Pro	Tyr	Arg	Leu	His 360	Val	Leu	Cys	Gln	Gly 365	Trp	His	Тут
	Leu	Ala 370	Tyr	Asp	Trp	His	Trp 375	Thr	Thr	Asp	Arg	Ser 380	Val	Gly	Asp	Asn
	Ser 385	Ser	Asp	Leu	Ser	Asn 390	Val	Ala	Val	Ile	Asp 395	Gly	Asn	Arg	Val	Leu 400
10	Val	Thr	Val	Phe	Arg 405	Gln	Thr	Val	Val	Pro 410	Pro	Pro	Met	Cys	Thr 415	Tyr
	Gln	Leu	Leu	Phe 420	Pro	His	Pro	Val	Asn 425	Gln	Val	Thr	Phe	Leu 430	Ala	His
15	Pro	Gln	Lys 435	Ser	Asn	Asp	Leu	Ala 440	Val	Leu	Asp	Ala	Ser 445	Asn	Gln	Ile
		450					455			Ser		460				_
	465					470				Lys	475					480
20					485					Phe 490					495	
				500		*			505	Leu				510		
25			515					520		Phe			525			
		530					535			Met		540				
	545					550				Asp	555					560
30					565					Val 570					575	
				580					585	Pro				590	_	
35			595					600		Arg			605			
		610					615			Glu		620				
40	625					630				Asp	635					640
40					645					Phe 650					655	
				660					665					670		Thr
45			675					680		Val			685			
		690					695			Val		700				
50	705					710				Gly	715					720
50					725					Arg 730					735	
				740			,		745					750		Leu
55			755					760		Val			765			
	Thr	Phe	Ile	Lys	Gln	Ile	Asp	Ser	Val	Asn	His	Ile	Asn	Leu	Phe	Phe

		770					775					780				
	785					790					795		Tyr			800
					805					810			Gly		815	
5	Asp	Leu	Val	Cys 820	Asp	Ala	Met	Arg	Ala 825	Val	Met	Glu	Ser	Ile 830	Asn	Pro
	His	Lys	Tyr 835	Cys	Leu	Ser	Ile	Leu 840	Thr	Ser	His	Val	Lys 845	Lys	Thr	Thr
10		850					855		_			860	Leu		_	
,	865					870					875		Ala			880
٠					885					890			His		895	
15				900					905				Lys	910		
			915					920					Lys 925			
20		930					935					940	Lys			
	945					950					955		Tyr			960
25					965					970			Glu Ser		975	
				980					985				Ala	990		
			995					1000	)				1005 Ala	5		
30		1010	)				1015	5				1020				
	1025	5				1030	)				1035	5	Ala			1040
35					1045	·				1050	)		Leu		1055	i
				1060	)				1065	5			Glu	1070	)	
			1075	5				1080	)				1085 Arg	5		
40		1090	)				1095	5				1100				
	1105	5				1110	)				1115	5	Arg			1120
45	Arg				1125	,				1130	)				1135	,
				1140	}				1145	5			Leu	1150	)	
	Thr		1155	i				1160	)				1165	i		
50		1170	)				1175	5				1180				
	1185 Glu	i				1190	)				1195	<b>i</b>				1200
55	Ala				1205					1210	)				1215	i
				1220	ı				1225					1230		

	Lys	Asp	Glu	Val	Tyr	His	Ile	Leu	Lys	Val	Leu	Phe	Leu	Phe	Glu	Phe
			123	5				1240	)				1245	5		
	Asp	Glu	Gln	Gly	Arg	Glu	Leu	Gln	Lys	Ala	Phe	Glu	Asp	Thr	Leu	Gln
		1250	)				125	5				1260	)			
	Leu	Met	Glu	Arg	Ser	Leu	Pro	Glu	Ile	Trp	Thr	Leu	Thr	Tyr	Gln	Gln
5	126	5				1270	)				1275	5				1280
	Asn	Ser	Ala	Thr	Pro	Val	Leu	Gly	Pro	Asn	Ser	Thr	Ala	Asn	Ser	Ile
					128	5				1290	)				1295	5
	Met	Ala	Ser	Tyr	Gln	Gln	Gln	Lys	Thr	Ser	Val	Pro	Val	Leu	Asp	Ala
				1300	)				1305	5			•	1310	)	
10	Glu	Leu	Phe	Ile	Pro	Pro	Lys	Ile	Asn	Arg	Arg	Thr	Gln	Trp	Lys	Leu
			131	5				1320	)				1325	5		
	Ser	Leu	Leu	Asp												
		1330	)													

# INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/24396

A. CLASSIFICATION OF SUBJECT MATTER										
IPC(6) :Please See Extra Sheet.										
US CL: Please See Extra Sheet.  According to International Patent Classification (IPC) or to both national classification and IPC										
B. FIELDS SEARCHED										
Minimum documentation searched (classification system follow	ed by classification symbols)									
·	•	,								
U.S. : 530/300, 350; 435/6, 7.1, 7.21, 69.1, 320.1, 325, 25	2.3, 254.11; 436/501; 536, 23.1, 23.5, 24	.5								
Documentation searched other than minimum documentation to the	ne extent that such documents are included	in the fields searched								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched										
Flectronic data base consulted during the international search (	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)									
APS, MEDLINE, CAPLUS, EMBASE, WPIDS, GENBANK	·	, ,								
search terms: ikap, I cohen, p baeuerle										
C. DOCUMENTS CONSIDERED TO BE RELEVANT										
Category* Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.								
X Database GenBank, National Libra	ary of Medicine. Bethesda.	2, 4								
Maryland USA, Accession Number										
Y yn60b07.rl Homo sapiens cDNA clor	•	1, 5								
	,	, -								
X Database GenBank, National Libra	ary of Medicine, Bethesda,	2, 4								
Maryland USA, Accession Number	¥ ·									
yx54c03.rl Homo sapiens cDNA clone 265540 5'. 10 January 1996. 1, 5										
Database Genbank, National Library of Medicine, Bethesda, 2, 4										
- Maryland USA, Accession Number H15327, HILLIER et al.,										
Y ym28d08.rl Homo sapiens cDNA clo	1, 5									
·										
	1									
	1									
X Further documents are listed in the continuation of Box	C. See patent family annex.									
Special categories of cited documents:	"T" later document published after the inte									
"A" document defining the general state of the art which is not considered to be of particular relevance	the principle or theory underlying the									
*E* earlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be consider									
"L" document which may throw doubts on priority claim(s) or which is	when the document is taken alone									
cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive	claimed invention cannot be								
*O* document referring to an oral disclosure, use, exhibition or other means	combined with one or more other such	documents, such combination								
*P* document published prior to the international filing date but later than the priority date claimed	being obvious to a person skilled in the "&" document member of the same patent									
Date of the actual completion of the international search	Date of mailing of the international sea	rch report								
4000										
01 FEBRUARY 1999 16 FEB 1999										
Name and mailing address of the ISA/US	Authorized officer									
Commissioner of Patents and Trademarks Box PCT										
Washington, D.C. 20231	CLAIRÉ M. KAUFMAN FOR									
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196									

# INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/24396

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
57		
[	Database GenBank, National Library of Medicine, Bethesda,	2, 4
-	Maryland USA, Accession Number AA478901,HILLIER et al.,	
7	zv20c02.rl Soares NhHMPu S1 Homo sapiens cDNA clone 754178	1, 5
	5'. 08 August 1997.	
	Database GenBank, National Library of Medicine, Bethesda,	2, 4
	Maryland USA, Accession Number AA324126, HILLIER et al.,	
	EST27019 Cerebellum II Homo sapiens cDNA 5' end. 20 April	1, 5
	1997.	
7	WO 94/01548 A2 (MEDICAL RESEARCH COUNCIL) 20	1, 5
	January 1994, see entire document, especially claims 15 and 16,	
	and page 10 line 37 through page 11 line 15.	
1		1