

Marker-based FastSLAM on the AlphaBot2 Autonomous Systems Project 2023/2024

J. Pessoa

J. Gonçalves

M. Ribeiro ist196446 T. Nogueira ist1100029

Group 27

Instituto Superior Técnico

Presentation Overview

- 1 Introduction and Motivation
 - What is SLAM?
 - Major Paradigms
- 2 EKF-SLAM vs. FastSLAM
- 3 Our Project
 - Hardware
 - Marker-based FastSLAM
- 4 Work Plan
- 5 References
- 6 Questions
- 7 Thank You!

Introduction and Motivation

What is SLAM?

- Simultaneous localization and mapping, or in short, SLAM.
- Key enabling technology of mobile robot navigation.
- Perception challenge.
 - Navigation in unknown environments.
 - Simultaneous tasks:
 - Map acquisition;
 - Self-localization using the map.

Figure: VR/AR device (Quest 3)

Figure: Vacuum cleaning robot

Figure: Autonomous drone

Figure: Space rover (Curiosity)

Inputs:

- Robot's controls: $U_T = \{u_1, u_2, ..., u_T\}$
- Environment observations: $Z_T = \{z_1, z_2, ..., z_T\}$

Outputs:

- Map of features: m
- Sequence of locations (path): $X_T = \{x_0, x_1, ..., x_T\}$

$$p(X_T,m|Z_T,U_T)$$

What is SLAM? Problem statement

"The SLAM problem is recovering a model of the world, m, and the sequence of robot locations, X_T , from the odometry and measurement data." [1]

Major Paradigms

Extended Kalman Filter (EKF).

- First approach to solve the SLAM problem probabilistically.
- Linearizes around the current estimate to handle the non-linear nature of robot dynamics and measurements.

Particle Filter.

- Utilizes a particle filter to represent the posterior distribution of the map and robot pose.
- Each particle represents a hypothesis of the map and robot trajectory.
- In FastSLAM, each particle is updated through EKF, enhancing map accuracy and computational efficiency.
- Graph-based Optimization.
 - Forms graphs with nodes as poses or landmarks, and edges as constraints.
 - Optimizes node configuration to minimize mapping errors.

EKF-SLAM vs. FastSLAM

Table: Comparison of EKF-SLAM with FastSLAM

Method	Pros	Cons
EKF-SLAM	Good for smaller maps	Struggles with many landmarks
	Easier implementation	Prone to linearization errors
	Real-time updates	Needs careful tuning
FastSLAM	Scales well	Risk of particle depletion
	Landmark-independent scalability	Dependent on #particle
	Handles noise well	Implementation complexity

Our Project

Hardware

Hardware

Figure: AlphaBot2

Marker-based FastSLAM

- AlphaBot2 can only implement visual SLAM algorithms due to its available sensors.
- Visual SLAM is poised to be key in advancing low-cost robotic systems.
- To gather measurement data:
 - Artificial landmarks as fiducial markers (ArUco);
 - Additional environment feature extraction.

Figure: Example of marker images (ArUco)

Marker-based FastSLAM

- ArUco markers are binary squares with unique white patterns on black backgrounds for identification.
- Serving as **fiducial markers**, they provide reference points in the imaged scene.
- They determine the pose (position and orientation) of the camera relative to the markers.

Marker-based FastSLAM

21/30

The markers' IDs and poses are detected and processed in real-time, supporting robust and **stable** interaction with the environment.

Figure: Example of feature extraction from a road using ORB

- Feature extraction involves identifying important parts, or features of an image or dataset that are relevant for solving computational tasks like mapping, localization, navigation...
- It detects points, lines, or areas in an image, these could be edges, corners, or specific textures.
- We then convert these points or areas into a mathematical form which help to match and track features across various images.

Work Plan

Table: Planning table

Period	Objective	
22-25 Apr	Define scope, review relevant literature, and outline the project	
29-10 May	Explain the algorithms in detail and process robot sensor data	
13-17 May	Validate the algorithms in a micro-simulator with synthetic data	
20-24 May	Confirm the SLAM algorithm with sensor data from the real-world	
27-31 May	Conduct comparative experiments and analyze the results	

Note: Subject to change!

References

- [1] B. Siciliano and O. Khatib, *Springer Handbook of Robotics*. Springer, 2016, ch. 46.
- [2] S. Thrun, W. Burgard, and D. Fox, *Probabilistic Robotics*. MIT Press, 2005, ch. 10.
- [3] H. Durrant-Whyte and T. Bailey, "Simultaneous Localization and Mapping: Part I," *IEEE Robot. Autom. Mag.*, 2006, tutorial.
- [4] T. Bailey and H. Durrant-Whyte, "Simultaneous Localisation and Mapping: Part II," *IEEE Robot. Autom. Mag.*, 2006, tutorial.

- [5] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem," in AAAI National Conf. on Artificial Intelligence, 2002.
- [6] M. Montemerlo and S. Thrun, "Simultaneous Localization and Mapping with Unknown Data Association Using FastSLAM," in *IEEE Int. Conf. Robot. Autom.*, 2003.
- [7] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, "A Tutorial on Graph-Based SLAM," in *IEEE Trans. Intell. Transp. Syst.*, 2007.
- [8] R. Munoz-Salinas and R. Medina-Carnicer, "Ucoslam: Simultaneous localization and mapping by fusion of keypoints and squared planar markers," 2019.

Questions

Thank You!