

Application No. 10/542,217
Amendment dated February 14, 2008
Reply to Office Action of November 14, 2007

Docket No.: SAE-0036

APPENDIX B

HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH

• **QUICK SEARCH:** [\[advanced\]](#)
 Author: Keyword(s):
 Year: Vol: Page:

A [more recent version](#) of this article appeared on July 3, 2003

Papers In Press, published online ahead of print April 30, 2003
J. Biol. Chem., 10.1074/jbc.M302648200
 Submitted on March 14, 2003
 Revised on April 28, 2003
 Accepted on April 30, 2003

Identification of p2y9/GPR23 as a novel G protein-coupled receptor for Lysophosphatidic acid, structurally distant from the Edg family

Kyoko Noguchi, Satoshi Ishii, and Takao Shimizu

Biochemistry and Molecular Biology, The University of Tokyo, Tokyo 113-0033

Corresponding Author: mame@m.u-tokyo.ac.jp

Lysophosphatidic acid (LPA) is a bioactive lipid mediator with diverse physiological and pathological actions on many types of cells. LPA has been widely considered to elicit its biological functions through three types of G protein-coupled receptors, Edg (endothelial cell differentiation gene) 2/LPA1/Vzg (ventricular zone gene) 1, Edg4/LPA2 and Edg7/LPA3. We identified an orphan G protein-coupled receptor, p2y9/GPR23, as the fourth LPA receptor (LPA4). Membrane fractions of RH7777 cells transiently expressing p2y9/GPR23 displayed a specific binding for 1-oleoyl-LPA with a K_d value of around 45 nM. Competition binding and reporter gene assays showed that p2y9/GPR23 preferred structural analogs of LPA with a rank order of 1-oleoyl- > 1-stearoyl- > 1-palmitoyl- > 1-myristoyl- > 1-alkyl- > 1-alkenyl-LPA. In Chinese hamster ovary cells expressing p2y9/GPR23, 1-oleoyl-LPA induced an increase in $[Ca^{2+}]_i$ and stimulated adenylyl cyclase activity. Quantitative Real time-PCR demonstrated that mRNA of p2y9/GPR23 was significantly abundant in ovary compared to other tissues. Interestingly, p2y9/GPR23 shares only 20-24% amino acid identities with Edg2, Edg4 and Edg7, and phylogenetic analysis also shows that p2y9/GPR23 is far distant from the Edg family. These facts suggest that p2y9/GPR23 has evolved from different ancestor sequences from the Edg family.

This Article

[Full Text \(Accepted Manuscript\)](#)

[All Versions of this Article:](#)
278/28/25600 most recent
M302648200v1

[Alert me when this article is cited](#)

[Alert me if a correction is posted](#)

Services

[Email this article to a friend](#)

[Similar articles in this journal](#)

[Similar articles in PubMed](#)

[Alert me to new issues of the journal](#)

[Download to citation manager](#)

[reprints & permissions](#)

Citing Articles

[Citing Articles via HighWire](#)

[Citing Articles via Google Scholar](#)

Google Scholar

[Articles by Noguchi, K.](#)

[Articles by Shimizu, T.](#)

[Search for Related Content](#)

PubMed

[PubMed Citation](#)

[Articles by Noguchi, K.](#)

[Articles by Shimizu, T.](#)

This article has been cited by other articles:

[Home page](#)

C. Zhao, M. J. Fernandes, G. D. Prestwich, M. Turgeon, J. Di Battista, T. Clair, P. E. Poubelle, and S. G. Bourgoin

Regulation of Lysophosphatidic Acid Receptor Expression and Function in Human Synoviocytes: Implications for Rheumatoid Arthritis?

Mol. Pharmacol., February 1, 2008; 73(2): 587 - 600.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

J. Chen, A. R. Baydoun, R. Xu, L. Deng, X. Liu, W. Zhu, L. Shi, X. Cong, S. Hu, and X. Chen

Lysophosphatidic Acid Protects Mesenchymal Stem Cells Against Hypoxia and Serum Deprivation-Induced Apoptosis

Stem Cells, January 1, 2008; 26(1): 135 - 145.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

F.-T. Lin, Y.-J. Lai, N. Makarova, G. Tigyi, and W.-C. Lin

The Lysophosphatidic Acid 2 Receptor Mediates Down-regulation of Siva-1 to Promote Cell Survival

J. Biol. Chem., December 28, 2007; 282(52): 37759 - 37769.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

K. Hama, J. Aoki, A. Inoue, T. Endo, T. Amano, R. Motoki, M. Kanai, X. Ye, J. Chun, N. Matsuki, et al.

Embryo Spacing and Implantation Timing Are Differentially Regulated by LPA3-Mediated Lysophosphatidic Acid Signaling in Mice

Biol Reprod, December 1, 2007; 77(6): 954 - 959.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

M. M. Murph, J. Hurst-Kennedy, V. Newton, D. N. Brindley, and H. Radhakrishna

Lysophosphatidic Acid Decreases the Nuclear Localization and Cellular Abundance of the p53 Tumor Suppressor in A549 Lung Carcinoma Cells

Mol. Cancer Res., November 1, 2007; 5(11): 1201 - 1211.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

K. M. Kassel, N. A. Schulte, S. M. Parker, A. D. Lanik, and M. L. Toews

Lysophosphatidic Acid Decreases Epidermal Growth Factor Receptor Binding in Airway Epithelial Cells

J. Pharmacol. Exp. Ther., October 1, 2007; 323(1): 109 - 118.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

Y.-J. Lai, W.-C. Lin, and F.-T. Lin

PTPL1/FAP-1 Negatively Regulates TRIP6 Function in Lysophosphatidic Acid-induced Cell Migration

J. Biol. Chem., August 17, 2007; 282(33): 24381 - 24387.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

C. E. Horak, J. H. Lee, A. G. Elkahloun, M. Boissan, S. Dumont, T. K. Maga, S. Arnaud-Dabernat, D. Palmieri, W. G. Stetler-Stevenson, M.-L. Lacombe, et al.

Nm23-H1 Suppresses Tumor Cell Motility by Down-regulating the Lysophosphatidic Acid Receptor EDG2

Cancer Res., August 1, 2007; 67(15): 7238 - 7246.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

Y. Zhao, D. He, J. Zhao, L. Wang, A. R. Leff, E. Wm. Spannhake, S. Georas, and V. Natarajan

Lysophosphatidic Acid Induces Interleukin-13 (IL-13) Receptor α 2 Expression and Inhibits IL-13 Signaling in Primary Human Bronchial Epithelial Cells

J. Biol. Chem., April 6, 2007; 282(14): 10172 - 10179.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

K. Yanagida, S. Ishii, F. Hamano, K. Noguchi, and T. Shimizu
LPA4/p2y9/GPR23 Mediates Rho-dependent Morphological Changes in a Rat Neuronal Cell Line

J. Biol. Chem., February 23, 2007; 282(8): 5814 - 5824.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

C.-W. Lee, R. Rivera, A. E. Dubin, and J. Chun

LPA4/GPR23 Is a Lysophosphatidic Acid (LPA) Receptor Utilizing Gs-, Gq/Gi-mediated Calcium Signaling and G12/13-mediated Rho Activation

J. Biol. Chem., February 16, 2007; 282(7): 4310 - 4317.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

S. Choi, M. Lee, A. L. Shiu, S. J. Yo, and G. W. Aponte

Identification of a protein hydrolysate responsive G protein-coupled receptor in enterocytes

Am J Physiol Gastrointest Liver Physiol, January 1, 2007; 292(1): G98 - G112.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

D.-J. Jun, J.-H. Lee, B.-H. Choi, T.-K. Koh, D.-C. Ha, M.-W. Jeong, and K.-T. Kim

Sphingosine-1-Phosphate Modulates Both Lipolysis and Leptin Production in Differentiated Rat White Adipocytes

Endocrinology, December 1, 2006; 147(12): 5835 - 5844.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

S. Rieken, S. Herroeder, A. Sassmann, B. Wallenwein, A. Moers, S. Offermanns, and N. Wettschureck

Lysophospholipids Control Integrin-dependent Adhesion in Splenic B Cells through Gi and G12/G13 Family G-proteins but Not through Gq/G11

J. Biol. Chem., December 1, 2006; 281(48): 36985 - 36992.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

M. Murph, T. Tanaka, S. Liu, and G. B. Mills

Of Spiders and Crabs: The Emergence of Lysophospholipids and Their Metabolic Pathways as Targets for Therapy in Cancer.

Clin. Cancer Res., November 15, 2006; 12(22): 6598 - 6602.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

Z. Zhang, Z. Liu, and K. E. Meier

Lysophosphatidic acid as a mediator for proinflammatory agonists in a human corneal epithelial cell line

Am J Physiol Cell Physiol, November 1, 2006; 291(5): C1089 - C1098.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

R. Guo, E. A. Kasbohm, P. Arora, C. J. Sample, B. Baban, N. Sud, P. Sivashanmugam, N. H. Moniri, and Y. Daaka

Expression and Function of Lysophosphatidic Acid LPA1 Receptor in Prostate Cancer Cells

Endocrinology, October 1, 2006; 147(10): 4883 - 4892.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

M. P. Abbracchio, G. Burnstock, J.-M. Boeynaems, E. A. Barnard, J. L. Boyer, C. Kennedy, G. E. Knight, M. Fumagalli, C. Gachet, K. A. Jacobson, et al.

International Union of Pharmacology LVIII: Update on the P2Y G Protein-Coupled Nucleotide Receptors: From Molecular

Mechanisms and Pathophysiology to Therapy

Pharmacol. Rev., September 1, 2006; 58(3): 281 - 341.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

M. Tanaka, S. Okudaira, Y. Kishi, R. Ohkawa, S. Iseki, M. Ota, S. Noji, Y. Yatomi, J. Aoki, and H. Arai

Autotaxin Stabilizes Blood Vessels and Is Required for Embryonic Vasculature by Producing Lysophosphatidic Acid

J. Biol. Chem., September 1, 2006; 281(35): 25822 - 25830.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

C.-W. Lee, R. Rivera, S. Gardell, A. E. Dubin, and J. Chun

GPR92 as a New G12/13- and Gq-coupled Lysophosphatidic Acid

Receptor That Increases cAMP, LPA5

J. Biol. Chem., August 18, 2006; 281(33): 23589 - 23597.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

D. L. Baker, Y. Fujiwara, K. R. Pigg, R. Tsukahara, S. Kobayashi, H. Murofushi, A. Uchiyama, K. Murakami-Murofushi, E. Koh, R. W. Bandle, et al.

Carba Analogs of Cyclic Phosphatidic Acid Are Selective Inhibitors of Autotaxin and Cancer Cell Invasion and Metastasis

J. Biol. Chem., August 11, 2006; 281(32): 22786 - 22793.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

K. Kotarsky, A. Boketoft, J. Bristulf, N. E. Nilsson, A. Norberg, S. Hansson, C. Owman, R. Sillard, L. M. F. Leeb-Lundberg, and B. Olde Lysophosphatidic Acid Binds to and Activates GPR92, a G Protein-Coupled Receptor Highly Expressed in Gastrointestinal Lymphocytes

J. Pharmacol. Exp. Ther., August 1, 2006; 318(2): 619 - 628.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

C. L. Sayas, A. Ariaens, B. Ponsioen, and W. H. Moolenaar
GSK-3 Is Activated by the Tyrosine Kinase Pyk2 during LPA1-mediated Neurite Retraction

Mol. Biol. Cell, April 1, 2006; 17(4): 1834 - 1844.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

K. S. Park, H.-Y. Lee, M.-K. Kim, E. H. Shin, S. H. Jo, S. D. Kim, D.-S. Im, and Y.-S. Bae

Lysophosphatidylserine Stimulates L2071 Mouse Fibroblast Chemotactic Migration via a Process Involving Pertussis Toxin-Sensitive Trimeric G-Proteins

Mol. Pharmacol., March 1, 2006; 69(3): 1066 - 1073.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

T. Tsukahara, R. Tsukahara, S. Yasuda, N. Makarova, W. J. Valentine, P. Allison, H. Yuan, D. L. Baker, Z. Li, R. Bittman, et al.
Different Residues Mediate Recognition of 1-O-Oleyl Lysophosphatidic Acid and Rosiglitazone in the Ligand Binding Domain of Peroxisome Proliferator-activated Receptor {gamma}

J. Biol. Chem., February 10, 2006; 281(6): 3398 - 3407.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

M. Rahaman, R. W. Costello, K. E. Belmonte, S. S. Gendy, and M.-T. Walsh
Neutrophil Sphingosine 1-Phosphate and Lysophosphatidic Acid Receptors in Pneumonia

Am. J. Respir. Cell Mol. Biol., February 1, 2006; 34(2): 233 - 241.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

J. Rubenfeld, J. Guo, N. Sookrung, R. Chen, W. Chaicumpa, V. Casolari, Y. Zhao, V. Natarajan, and S. Georas
Lysophosphatidic acid enhances interleukin-13 gene expression and promoter activity in T cells

Am J Physiol Lung Cell Mol Physiol, January 1, 2006; 290(1): L66 - L74.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

N. M. Urs, K. T. Jones, P. D. Salo, J. E. Severin, J. Trejo, and H. Radhakrishna

A requirement for membrane cholesterol in the {beta}-arrestin- and clathrin-dependent endocytosis of LPA1 lysophosphatidic acid receptors

J. Cell Sci., November 15, 2005; 118(22): 5291 - 5304.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

D. A. Lin and J. A. Boyce

IL-4 Regulates MEK Expression Required for Lysophosphatidic Acid-Mediated Chemokine Generation by Human Mast Cells

J. Immunol., October 15, 2005; 175(8): 5430 - 5438.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

[—](#)

A. A. Maghazachi
Insights into Seven and Single Transmembrane-Spanning Domain Receptors and Their Signaling Pathways in Human Natural Killer Cells

Pharmacol. Rev., September 1, 2005; 57(3): 339 - 357.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

[—](#)

W. T. Wu, C.-N. Chen, C. I. Lin, J. H. Chen, and H. Lee
Lysophospholipids Enhance Matrix Metalloproteinase-2 Expression in Human Endothelial Cells

Endocrinology, August 1, 2005; 146(8): 3387 - 3400.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

[—](#)

M. Yang, W. W. Zhong, N. Srivastava, A. Slavin, J. Yang, T. Hoey, and S. An
G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the β -catenin pathway

PNAS, April 26, 2005; 102(17): 6027 - 6032.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

[—](#)

S. Ishii, Y. Kihara, and T. Shimizu
Identification of T Cell Death-associated Gene 8 (TDAG8) as a Novel Acid Sensing G-protein-coupled Receptor

J. Biol. Chem., March 11, 2005; 280(10): 9083 - 9087.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

[—](#)

K. Itagaki, K. B. Kannan, and C. J. Hauser
Lysophosphatidic acid triggers calcium entry through a non-store-operated pathway in human neutrophils

J. Leukoc. Biol., February 1, 2005; 77(2): 181 - 189.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[Home page](#)

[—](#)

S. Bagga, K. S. Price, D. A. Lin, D. S. Friend, K. F. Austen, and J. A. Boyce
Lysophosphatidic acid accelerates the development of human mast cells

Blood, December 15, 2004; 104(13): 4080 - 4087.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

N. Murakami, T. Yokomizo, T. Okuno, and T. Shimizu
G2A Is a Proton-sensing G-protein-coupled Receptor Antagonized by Lysophosphatidylcholine
J. Biol. Chem., October 8, 2004; 279(41): 42484 - 42491.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

R. Cummings, Y. Zhao, D. Jacoby, E. W. Spannhake, M. Ohba, J. G. N. Garcia, T. Watkins, D. He, B. Saatian, and V. Natarajan
Protein Kinase C δ Mediates Lysophosphatidic Acid-induced NF- κ B Activation and Interleukin-8 Secretion in Human Bronchial Epithelial Cells
J. Biol. Chem., September 24, 2004; 279(39): 41085 - 41094.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

B. Anliker and J. Chun
Lysophospholipid G Protein-coupled Receptors
J. Biol. Chem., May 14, 2004; 279(20): 20555 - 20558.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

K. Hama, J. Aoki, M. Fukaya, Y. Kishi, T. Sakai, R. Suzuki, H. Ohta, T. Yamori, M. Watanabe, J. Chun, et al.
Lysophosphatidic Acid and Autotaxin Stimulate Cell Motility of Neoplastic and Non-neoplastic Cells through LPA1
J. Biol. Chem., April 23, 2004; 279(17): 17634 - 17639.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

C. Zhang, D. L. Baker, S. Yasuda, N. Makarova, L. Balazs, L. R. Johnson, G. K. Marathe, T. M. McIntyre, Y. Xu, G. D. Prestwich, et al.
Lysophosphatidic Acid Induces Neointima Formation Through PPAR γ Activation
J. Exp. Med., March 15, 2004; 199(6): 763 - 774.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

Home
page

J. Xu, Y.-J. Lai, W.-C. Lin, and F.-T. Lin
TRIP6 Enhances Lysophosphatidic Acid-induced Cell Migration by Interacting with the Lysophosphatidic Acid 2 Receptor
J. Biol. Chem., March 12, 2004; 279(11): 10459 - 10468.
[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

D.-S. Im

Discovery of new G protein-coupled receptors for lipid mediators

J. Lipid Res., March 1, 2004; 45(3): 410 - 418.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

T. Yamada, K. Sato, M. Komachi, E. Malchinkhuu, M. Tobo, T. Kimura, A. Kuwabara, Y. Yanagita, T. Ikeya, Y. Tanahashi, *et al.*

Lysophosphatidic Acid (LPA) in Malignant Ascites Stimulates Motility of Human Pancreatic Cancer Cells through LPA1

J. Biol. Chem., February 20, 2004; 279(8): 6595 - 6605.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

H. Ohta, K. Sato, N. Murata, A. Damirin, E. Malchinkhuu, J. Kon, T. Kimura, M. Tobo, Y. Yamazaki, T. Watanabe, *et al.*

Ki16425, a Subtype-Selective Antagonist for EDG-Family Lysophosphatidic Acid Receptors

Mol. Pharmacol., October 1, 2003; 64(4): 994 - 1005.

[\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#)

[HOME](#) [HELP](#) [FEEDBACK](#) [SUBSCRIPTIONS](#) [ARCHIVE](#) [SEARCH](#)

[All ASBMB Journals](#)

[Molecular and Cellular Proteomics](#)

[Journal of Lipid Research](#)

[ASBMB Today](#)

Copyright © 2003 by the American Society for Biochemistry and Molecular Biology.