



# **Today's focus**

- Practical 1
  - Due 17 February 2020 at 23:59
  - Questions?
- Genetic Algorithms
  - Explanation
  - Example
- Practical 2
  - Check the online guide



#### **Genetic Algorithm**

- Genetic algorithm (GA) is a stochastic based searching algorithm.
- Good for optimisation as well finding the best state out of a large number of different states.
- Sequence of events:
  - 1. Define fitness function f(n).
  - 2. Evaluate each member of the N-sized population with f(n).
  - 3. Choose best *n* from population. Discard *N-n* members.
  - 4. Repopulate by crossing over.
  - 5. Induce random mutation to keep population fresh.
- Some applications don't require mutations depending on uncertainty of the data.



### **Genetic Algorithm (GA)**

- Can get stuck in local minima/maxima.
- Mutation rates are difficult to refine and fine tune.
- Can take a very long time to find the solution, if the initial population is very far from the optimal state.
- Can potentially use some form of simulated annealing to adjust how the population mutates and regrows.
  - Choose initial mutation rate as very high.
  - As time goes by, decrease mutation rate.



- This is an arbitrary example meant to give you a simple binary example
  of how crossover works. This example does not represent any particular
  problem and is entirely random.
- Given a set of 4 binary strings, use GAs to create three generations for the problem. Use the following rules while solving.
  - Each string has 8 genes (g1 g8).
  - Population size of 4.
  - Use 50/50 crossover.
  - Fitness function is given as  $f = 3g_1 2g_2 + 1g_3 4g_4 + 2g_5 + 2g_6 10g_7 + 5g_8$
  - Higher fitness is better.
  - Use the best two string to repopulate the population.
  - Thus the best two solutions stay, and the worst two gets replaced.
  - There is no mutation in this example.



$$f = 3g_1 - 2g_2 + 1g_3 - 4g_4 + 2g_5 + 2g_6 - 10g_7 + 5g_8$$

#### First generation:

$$a = [1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1]; f = -6$$
 $b = [0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1]; f = 8$ 
 $c = [1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0]; f = 3$ 
 $d = [1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0]; f = -9$ 

#### Second generation:

$$a = [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0]; f = 3$$
 $b = [0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1]; f = 8$ 
 $c = [1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0]; f = 3$ 
 $d = [1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1]; f = 8$ 



$$f = 3g_1 - 2g_2 + 1g_3 - 4g_4 + 2g_5 + 2g_6 - 10g_7 + 5g_8$$

#### Second generation:

$$a = [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0]; f = 3$$
 $b = [0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1]; f = 8$ 
 $c = [1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0]; f = 3$ 
 $d = [1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1]; f = 8$ 

#### Third generation:

$$a = [0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1]; f = 8$$
 $b = [0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1]; f = 8$ 
 $c = [1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1]; f = 8$ 
 $d = [1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1]; f = 8$ 



This example shows the main problem with GAs.

If the gene pool becomes stagnant, the new chromosomes being created will have a similar fitness values to the parents. The solution to this is mutation and a larger population, or implementing mutations.



#### **Practical 2**

- 81 genes per string ('R', 'P' or 'S')
- History =  $[x_{t-2}, y_{t-2}, x_{t-1}, y_{t-1}]$



Fig. 1 A reduced example only considering the history of the last move.

## **Practical 3**

|           | RR | RP | RS | PR | PP           | PS | SR | SP | SS |
|-----------|----|----|----|----|--------------|----|----|----|----|
| Parent 1  | P  | s  | R  | R  | s            | R  | R  | s  | R  |
|           |    |    |    |    |              |    |    |    |    |
| Parent 2  | s  | s  | P  | R  | R            | s  | s  | R  | P  |
| _         |    |    |    |    |              |    |    |    |    |
|           |    |    |    |    |              |    |    |    |    |
| Reproduce | P  | s  | R  | R  | S            | S  | s  | R  | P  |
|           |    |    |    |    | and the same |    |    |    |    |
| Mutate    | P  | R  | R  | R  | s            | s  | s  | R  | P  |

Fig. 1 An example of the evolution step performed by the GA.



## **Practical 2**

- Check the guide online.
- Preliminary due date 24 February 2020 : 23h59.

