Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

2.3 QUICKSORT

- quicksort
- selection
- duplicate keys
- system sorts

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

- Sort population by age.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge array.
- Small number of key values.

```
Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54
  key
```

Duplicate keys: stop on equal keys

Our partitioning subroutine stops both scans on equal keys.

Q. Why not continue scans on equal keys?

Quicksort quiz 2

What is the result of partitioning the following array (skip over equal keys)?

D. *I don't know.*

B.

Quicksort quiz 3

What is the result of partitioning the following array (stop on equal keys)?

D. I don't know.

Partitioning an array with all equal keys

Duplicate keys: partitioning strategies

Bad. Don't stop scans on equal keys.

[$\sim \frac{1}{2} N^2$ compares when all keys equal]

BAABABBCCC

AAAAAAAAAA

Good. Stop scans on equal keys.

[$\sim N \lg N$ compares when all keys equal]

BAABABCCBCB

A A A A A A A A A A A

Better. Put all equal keys in place. How?

[$\sim N$ compares when all keys equal]

AAABBBBBCCC

AAAAAAAAA

DUTCH NATIONAL FLAG PROBLEM

Problem. [Edsger Dijkstra] Given an array of *N* buckets, each containing a red, white, or blue pebble, sort them by color.

Operations allowed.

- swap(i,j): swap the pebble in bucket i with the pebble in bucket j.
- *color*(*i*): color of pebble in bucket *i*.

Requirements.

- Exactly *N* calls to *color*().
- At most *N* calls to *swap*().
- Constant extra space.

3-way partitioning

Goal. Partition array into three parts so that:

- Entries between 1t and gt equal to the partition item.
- No larger entries to left of 1t.
- No smaller entries to right of gt.

Dutch national flag problem. [Edsger Dijkstra]

- Conventional wisdom until mid 1990s: not worth doing.
- Now incorporated into C library qsort() and Java 6 system sort.

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

invariant

Dijkstra's 3-way partitioning: trace

3-way quicksort: Java implementation

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo) return;</pre>
   int lt = lo, qt = hi;
   Comparable v = a[lo];
   int i = 10;
   while (i <= gt)</pre>
      int cmp = a[i].compareTo(v);
      if (cmp < 0) exch(a, 1t++, i++);
      else if (cmp > 0) exch(a, i, gt--);
      else
                          i++;
                                             before
   sort(a, lo, lt - 1);
                                                  10
                                                                           hi
   sort(a, gt + 1, hi);
                                                         =V
                                             during
                                                   <V
                                                                        >V
}
                                                        1t
                                                                    gt
                                              after
                                                     <V
                                                                       >V
                                                              =V
                                                  10
                                                         ٦t
                                                                           hi
                                                                   gt
```

3-way quicksort: visual trace

Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the i^{th} one occurs x_i times, any compare-based sorting algorithm must use at least

$$\lg\left(\frac{N!}{x_1!\;x_2!\cdots x_n!}\right) \sim -\sum_{i=1}^n x_i \lg\frac{x_i}{N} \qquad \qquad \underset{\text{linear when only a constant number of distinct keys}}{N \lg N \text{ when all distinct;}}$$
 compares in the worst case.

Proposition. [Sedgewick-Bentley 1997]

proportional to lower bound

Quicksort with 3-way partitioning is entropy-optimal.

Pf. [beyond scope of course]

Bottom line. Quicksort with 3-way partitioning reduces running time from linearithmic to linear in broad class of applications.

Sorting summary

	inplace?	stable?	best	average	worst	remarks
selection	~		½ N ²	½ N ²	½ N ²	N exchanges
insertion	~	✓	N	½ N ²	½ N ²	use for small N or partially ordered
shell	✓		$N \log_3 N$?	$c N^{3/2}$	tight code; subquadratic
merge		✓	½ N lg N	$N \lg N$	N lg N	$N \log N$ guarantee; stable
timsort		✓	N	N lg N	N lg N	improves mergesort when preexisting order
quick	~		N lg N	2 <i>N</i> ln <i>N</i>	½ N ²	$N \log N$ probabilistic guarantee; fastest in practice
3-way quick	~		N	2 <i>N</i> ln <i>N</i>	½ N ²	improves quicksort when duplicate keys
?	~	✓	N	$N \lg N$	N lg N	holy sorting grail