Introduction to Statistics (MAT 283)

Dipti Dubey

Department of Mathematics Shiv Nadar University

Table of Contents

PRODUCT MOMENTS OF BIVARIATE RANDOM VARIABLE

CONDITIONAL EXPECTATION AND VARIANCE

EXAMPLE: Let the random variables X and Y have the joint pmf

$$f(x,y) = \begin{cases} \frac{1}{4} & \text{if } (x,y) = \{(0,1), (0,-1), (1,0), (-1,0)\} \\ 0 & \text{otherwise,} \end{cases}$$

What is the covariance of X and Y? Are the random variables X and Y independent?

	Y=-1	Y=0	Y=1	P(X=x)	
X= -1	0	$\frac{1}{4}$	0	$\frac{1}{4}$	
X= 0	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{2}{4}$	
X= 1	0	$\frac{1}{4}$	0	$\frac{1}{4}$	
P(Y=y)	$\frac{1}{4}$	<u>2</u> 4	$\frac{1}{4}$		

Theorem: Let X and Y be any two random variables and let a and b be any two real numbers. Then

$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y).$$

Theorem: Let X and Y be any two random variables and let a and b be any two real numbers. Then

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y).$$

Proof

$$Var(aX + bY) = E([aX + bY - E(aX + bY)]^{2})$$

$$= E([aX + bY - aE(X) - bE(Y)]^{2})$$

$$= E([a(X - E(X)) + b(Y - E(Y))]^{2})$$

$$= E(a^{2}(X - E(X))^{2} + b^{2}(Y - E(Y))^{2} + 2ab(X - E(X))(Y - E(Y)))$$

$$= a^{2}E([X - E(X)]^{2}) + b^{2}E([Y - E(Y)]^{2}) + 2ab E[(X - E(X))(Y - E(Y))]$$

$$= a^{2}Var(X) + b^{2}Var(Y) + 2ab Cov(X, Y).$$

• In case of three random variables X, Y, Z, we have

$$Var(X + Y + Z) = Var(X) + Var(Y) + Var(Z)$$
$$+ 2Cov(X, Y) + 2Cov(Y, Z) + 2Cov(Z, X)$$

The functional dependency of the random variable Y on the random variable X can be obtained by examining the correlation coefficient.

CORRELATION COEFFICIENT:

Let X and Y be two random variables with variances σ_X^2 and σ_Y^2 , respectively. Let the covariance of X and Y be Cov(X,Y). Then the correlation coefficient ρ between X and Y is given by

$$\rho = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Theorem: If X and Y are independent, the correlation coefficient between X and Y is zero.

• The converse of this theorem is not true. If the correlation coefficient of X and Y is zero, then X and Y are said to be uncorrelated.

LEMMA: If X^* and Y^* are the standardizations of the random variables X and Y, respectively, the correlation coefficient between X^* and Y^* is equal to the correlation coefficient between X and Y.

Theorem: For any random variables X and Y , the correlation coefficient ρ satisfies

$$-1 \le \rho \le 1$$
,

and $\rho=1$ or $\rho=-1$ implies that the random variable Y=aX+b where a and b are arbitrary real constants with $a\neq 0$.

Proof: Let μ_X be the mean of X and μ_Y be the mean of Y, and σ_X^2 and σ_Y^2 be the variances of X and Y, respectively. Further, let

$$X^* = \frac{X - \mu_X}{\sigma_X}$$
 and $Y^* = \frac{Y - \mu_Y}{\sigma_Y}$

be the standardization of X and Y , respectively. Then

$$\mu_{X^*}=0$$
 and $\sigma_X^2=1$

$$\mu_{Y^*}=0$$
 and $\sigma_Y^2=1$.

Thus

$$0 \leq Var(X^* - Y^*) = Var(X^*) + Var(Y^*) - 2Cov(X^*, Y^*)$$

$$= \sigma_{X^*}^2 + \sigma_{Y^*}^2 - 2\rho^* \sigma_{X^*} \sigma_{Y^*}$$

$$= 1 + 1 - 2\rho^*$$

$$= 2 - 2\rho \qquad \text{(By above Lemma } \rho = \rho^*\text{)}$$

$$= 2(1 - \rho)$$

$$\implies 1 - \rho \geq 0$$
or $\rho \leq 1$

Further,

$$0 \leq Var(X^* + Y^*) = Var(X^*) + Var(Y^*) + 2Cov(X^*, Y^*)$$

$$= \sigma_{X^*}^2 + \sigma_{Y^*}^2 + 2\rho^* \sigma_{X^*} \sigma_{Y^*}$$

$$= 1 + 1 + 2\rho^*$$

$$= 2 + 2\rho \qquad \text{(By above Lemma } \rho = \rho^*\text{)}$$

$$= 2(1 + \rho)$$

$$\implies 1 + \rho \geq 0$$
or $\rho \geq -1$

Now, we show that if $\rho=1$ or $\rho=-1$, then Y and X are related through an affine transformation. Consider the case $\rho=1$, then

$$Var(X^*-Y^*)=0.$$

But if the variance of a random variable is 0, then all the probability mass is concentrated at a point (that is, the distribution of the corresponding random variable is degenerate). Thus $Var(X^*-Y^*)=0$ implies (X^*-Y^*) takes only one value. But $E(X^*-Y^*)=0$. Thus we get

$$X^* - Y^* = 0$$
 or $X^* = Y^*$.

Hence

$$\frac{X - \mu_X}{\sigma_X} = \frac{Y - \mu_Y}{\sigma_Y}$$

Solving Y in terms of X we get,

$$Y = aX + b$$

where $a = \frac{\sigma_Y}{\sigma_X}$ and $b = \mu_Y - a\mu_X$.

Solving Y in terms of X we get,

$$Y = aX + b$$

where $a = \frac{\sigma_Y}{\sigma_X}$ and $b = \mu_Y - a\mu_X$.

Thus if $\rho=1$, then Y is a linear in X. Similarly, we can show for the case $\rho=-1$, the random variables X and Y are linearly related. This completes the proof of the theorem.

MOMENT GENERATING FUNCTION:

Let X and Y be two random variables with joint pdf or pmf f. A real valued function $M: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$M(s,t) = E(e^{sX+tY})$$

is called the joint moment generating function of X and Y if this expected value exists for all s is some interval -h < s < h and for all t is some interval -k < t < k for some positive h and k.

MOMENT GENERATING FUNCTION:

Let X and Y be two random variables with joint pdf or pmf f. A real valued function $M: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$M(s,t) = E(e^{sX+tY})$$

is called the joint moment generating function of X and Y if this expected value exists for all s is some interval -h < s < h and for all t is some interval -k < t < k for some positive h and k.

Note that

$$M(s,0) = E(e^{sX})$$

$$M(0,t) = E(e^{tY}).$$

Further,

$$E(X^k) = \frac{\partial^k M(s,t)}{\partial s^k}\Big|_{(0,0)},$$

$$E(Y^k) = \frac{\partial^k M(s,t)}{\partial t^k}\Big|_{(0,0)},$$

for k = 1, 2, 3, ...; and

$$E(XY) = \frac{\partial^2 M(s,t)}{\partial s \partial t} \Big|_{(0,0)}.$$

EXAMPLE: Let the random variables X and Y have the joint pdf

$$f(x,y) = \begin{cases} e^{-y} & \text{for} \quad 0 < x < y < \infty \\ 0 & \text{otherwise,} \end{cases}$$

then find the joint moment generating function of X and Y.

EXAMPLE: If the joint moment generating function of the random variables X and Y is

$$M(s,t) = e^{(s+3t+2s^2+18t^2+12st)}$$

what is the covariance of X and Y?

Theorem: If *X* and *Y* are independent then

$$M_{aX+bY}(t) = M_X(at)M_Y(bt)$$

where a and b are real numbers.

Theorem: If *X* and *Y* are independent then

$$M_{aX+bY}(t) = M_X(at)M_Y(bt)$$

where a and b are real numbers.

Proof: Let W = aX + bY. Then

$$M_{aX+bY}(t) = M_W(t)$$

$$= E(e^{tW})$$

$$= E(e^{t(aX+bY)})$$

$$= E(e^{taX}e^{tbY})$$

$$= E(e^{taX})Ee^{tbY}$$

$$= M_X(at)M_Y(bt).$$

Table of Contents

PRODUCT MOMENTS OF BIVARIATE RANDOM VARIABLE

CONDITIONAL EXPECTATION AND VARIANCE

Recall, let X and Y be any two random variables with joint pdf (or pmf) f and marginals f_X and f_Y . The conditional probability density function (or pmf) g of X, given (the event) Y = y, is defined as

$$g(x|y) = \frac{f(x,y)}{f_Y(y)},$$

provided $f_Y(y) > 0$.

Recall, let X and Y be any two random variables with joint pdf (or pmf) f and marginals f_X and f_Y . The conditional probability density function (or pmf) g of X, given (the event) Y = y, is defined as

$$g(x|y) = \frac{f(x,y)}{f_Y(y)},$$

provided $f_Y(y) > 0$.

Similarly, the conditional probability density function (or pmf) h of Y, given (the event) X = x, is defined as

$$h(y|x) = \frac{f(x,y)}{f_X(x)},$$

provided $f_X(x) > 0$.

CONDITIONAL EXPECTED VALUE (or mean):

The conditional mean of X given Y = y is defined as

$$\mu_{X|y} = E(X|y) = \begin{cases} \sum_{x \in R_X} x \, g(x|y) & \text{if X is discrete} \\ \\ \int_{-\infty}^{\infty} x \, g(x|y) dx & \text{if X is continuous} \end{cases}$$

CONDITIONAL EXPECTED VALUE (or mean):

The conditional mean of X given Y = y is defined as

$$\mu_{X|y} = E(X|y) = \begin{cases} \sum_{x \in R_X} x \ g(x|y) & \text{if X is discrete} \\ \\ \int_{-\infty}^{\infty} x \ g(x|y) dx & \text{if X is continuous} \end{cases}$$

and the conditional mean of Y given X = x is defined as

$$\mu_{Y|x} = E(Y|x) = \begin{cases} \sum_{y \in R_Y} y \ h(y|x) & \text{if Y is discrete} \\ \int_{-\infty}^{\infty} y \ h(y|x) dy & \text{if Y is continuous.} \end{cases}$$

EXAMPLE: A fair coin is tossed two times; let X denote the number of heads on the first toss and Y the total number of heads. Sample space of this random experiment is

$$\Omega = \{HH, HT, TH, TT\}.$$

The joint PMF f of X and Y is as given in the following table:

	Y=0	Y=1	Y=2	P(X=x)
X= 0	$\frac{1}{4}$	$\frac{1}{4}$	0	<u>2</u> 4
X= 1	0	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{2}{4}$
P(Y=y)	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{1}{4}$	

Then find the conditional mean of X and Y.