EdX and its Members use cookies and other tracking technologies for performance, analytics, and marketing purposes. By using this website, you accept this use. Learn more about these technologies in the <u>Privacy Policy</u>.

×

Course > Week 3 > Project... > p1_sea...

p1_search_q1_dfs

Question 1 (3 points): Finding a Fixed Food Dot using Depth First Search

In searchAgents.py, you'll find a fully implemented SearchAgent, which plans out a path through Pacman's world and then executes that path step-by-step. The search algorithms for formulating a plan are not implemented -- that's your job. As you work through the following questions, you might find it useful to refer to the object glossary (the second to last tab in the navigation bar above).

First, test that the SearchAgent is working correctly by running:

python pacman.py -l tinyMaze -p SearchAgent -a fn=tinyMazeSearch

The command above tells the SearchAgent to use tinyMazeSearch as its search algorithm, which is implemented in search.py. Pacman should navigate the maze successfully.

100 1 40/3

Now it's time to write full-fledged generic search functions to help Pacman plan routes! For your reference, the general search algorithm from lecture is as follows:

https:

```
function Graph-Search(problem, fringe, strategy) return a solution, or failure

closed ← an empty set

fringe ← Insert(make-node(initial-state[problem]), fringe)

loop do

if fringe is empty then return failure

node ← remove-front(fringe, strategy)

if goal-test(problem, state[node]) then return node

if state[node] is not in closed then

add state[node] to closed

for child-node in expand(state[node], problem) do

fringe ← insert(child-node, fringe)

end

end
```

Important note: Remember that a search node must contain not only a state but also the information necessary to reconstruct the path (plan) which gets to that state.

Important note: All of your search functions need to return a list of *actions* that will lead the agent from the start to the goal. These actions all have to be legal moves (valid directions, no moving through walls).

Important note: Make sure to **use** the Stack, Queue and PriorityQueue data structures provided to you in util.py! These data structure implementations have particular properties which are required for compatibility with the autograder.

Hint: Algorithms for DFS, BFS, UCS, and A* are very similar and derive from the general search algorithm pseudocode above. They differ only in the details of how the fringe is managed. So, concentrate on getting DFS right and the rest should be relatively straightforward. Indeed, one possible implementation requires only a single generic search method which is configured with an algorithm-specific queuing strategy. (Your implementation need *not* be of this form to receive full credit).

L88.1x-4%2F

Implement the depth-first search (DFS) algorithm in the depthFirstSearch function in search.py. To make your algorithm *complete*, write the graph search version of DFS, which avoids expanding any already visited states.

Your code should quickly find a solution for:

```
python pacman.py -l tinyMaze -p SearchAgent
```

```
python pacman.py -l mediumMaze -p SearchAgent
```

https

python pacman.py -l bigMaze -z .5 -p SearchAgent

The Pacman board will show an overlay of the states explored, and the order in which they were explored (brighter red means earlier exploration). Is the exploration order what you would have expected? Does Pacman actually go to all the explored squares on his way to the goal?

Hint: If you use a Stack as your data structure, the solution found by your DFS algorithm for mediumMaze should have a length of 130 (provided you push successors onto the fringe in the order provided by getSuccessors; you might get 246 if you push them in the reverse order). Is this a least cost solution? If not, think about what depth-first search is doing wrong.

© All Rights Reserved