Misura della caratteristica I-V di due diodi a giunzione p-n

Cristina Caprioglio, Luca Morelli

Primo turno, tavolo 3

Sommario

Lo mettiamo? Lei non lo menziona

1 Scopo della prova

La prova consisteva nella misura delle caratteristiche I-V di due diodi a giunzione p-n, uno al silicio e uno al germanio. Abbiamo inoltre realizzato dei fit su ROOT in modo da ricavare i parametri fisici corrente inversa " I_0 " e " ηV_T ", rispettivamente la corrente inversa e il prodotto tra il fattore di idealità e l'equivalente della temperatura in volt.

2 Procedura

Per prima cosa abbiamo eseguito la calibrazione della tensione misurata con l'oscilloscopio, mettendola in relazione con quella data dal multimetro. Per fare ciò abbiamo collegato l'oscilloscopio al punto C e abbiamo cortocircuitato i punti A-B e abbiamo preso 10 misure tra i 50 e i 760 mV. Abbiamo prima preso il valore dell'oscilloscopio e poi quello del multimetro. Spostando poi il potenziometro fuori dal circuito abbiamo regolato la resistenza a $500\,\Omega$, per poi reinserirlo e mettere anche tra i punti A e B il diodo, prima al silicio e poi al germanio, con il catodo nel punto A. Dopo aver spostato l'oscilloscopio nel punto D abbiamo effettuato 16 misure per il silicio e 23 per il germanio, agendo sul potenziometro per variare la tensione e leggendo poi la corrente dal multimetro. Infine, abbiamo riportato i dati su dei grafici con scala semi-logaritmica ed eseguito i fit per ottenere i parametri ricercati.

3 Materiali utilizzati

• Potenziometro da 1 $k\Omega$

• Diodo p-n: AAZ15/OA47 Germanio

• Diodo p-n: 1N914A/1N4446/1N4148 Silicio

• Cavetti

• Cacciavite

• Cavi a doppia banana

• Breadboard

4 Strumentazione

• Alimentatore a bassa tensione

• Oscilloscopio ISO-TECH, ISR 622 20MHz

• Multimetro digitale ISO-TECH, IDM 105

5 Misurazioni

La tabella di seguito riporta i valori relativi a fondo scala, risoluzione e precisione dei vari strumenti:

		Fondo scala	Risoluzione	Precisione
	Oscilloscopio (mV)	10	2	3%
		50	10	3%
		100	20	3%
		200	40	3%
	Multimetro (mV)	400	0.1	0.3% + 2d
		$4 \cdot 10^3$	1	0.1% + 2d
	Multimetro (mA)	4 - 400	10^{-3}	0.4% + 2d

Tabella 1: Dati forniti dai data sheet della strumentazione utilizzata

Per il calcolo degli errori relativi alle misure effettuate con l'oscilloscopio si è usata la seguente formula:

$$\sigma = \sqrt{(\sigma_L)^2 + (\sigma_Z)^2 + (\sigma_C)^2} \tag{1}$$

 $\sigma_C = (misura * 0.03)$ è l'errore del costruttore.

$$\sigma_L = \sigma_Z = \frac{fondo\ scala}{5} \cdot \#tacchette\ apprezzabili$$

 σ_Z è l'errore sullo zero, il fondo scala vale 10 mV e il numero di tacchette apprezzabili 1. σ_L è l'errore sulla lettura e il fondo scala varia in base alla misura, mentre il numero di tacchette apprezzabili é stato considerato 1 per tutte le misure con eccezion fatta per quelle relative a 550, 570 e

apprezzabili e stato considerato i per tutte le inisure con eccezion latta per quelle relative 620 mV nella misura della caratteristica del silicio, dove ne abbiamo considerate $\frac{1}{2}$.

5.1 Calibrazione dell'oscilloscopio

Tensione oscilloscopio (mV)	Fondo scala oscillos. (mV)	Tensione multimetro (mV)	Fondo scala mult. (mV)
50 ± 2.1	10	48.20 ± 0.34	400
130 ± 6.4	50	123.40 ± 0.57	400
210 ± 8.1	50	202.6 ± 0.81	400
280 ± 13	100	268.8 ± 1	400
360 ± 15	100	349.3 ± 1.2	400
440 ± 17	100	428 ± 2.4	4.10^{3}
520 ± 19	100	505 ± 2.5	4.10^{3}
600 ± 27	200	571 ± 2.6	4.10^{3}
680 ± 29	200	654 ± 2.7	4.10^{3}
760 ± 30	200	734 ± 2.7	4.10^{3}

Tabella 2: Punti sperimentali della calibrazione dell'oscilloscopio

5.2 Silicio

Tensione oscilloscopio (mV)	Fondo scala (mV)	Corrente multimetro (mA)	Fondo scala (mA)
420 ± 16	100	0.016 ± 0.002	4
440 ± 17	100	0.025 ± 0.002	4
460 ± 17	100	0.038 ± 0.002	4
500 ± 18	100	0.082 ± 0.002	4
520 ± 19	100	0.121 ± 0.002	4
540 ± 19	100	0.185 ± 0.003	4
550 ± 19	100	0.213 ± 0.003	4
560 ± 20	100	0.284 ± 0.003	4
570 ± 20	100	0.297 ± 0.003	4
580 ± 20	100	0.350 ± 0.004	4
600 ± 27	200	0.602 ± 0.004	4
620 ± 27	200	0.738 ± 0.005	4
640 ± 28	200	1.207 ± 0.007	4
680 ± 29	200	2.238 ± 0.010	4
720 ± 29	200	2.615 ± 0.012	4
760 ± 30	200	3.701 ± 0.017	4

Tabella 3: Punti acquisiti per la caratteristica I-V del Silicio

5.3 Germanio

Tensione oscilloscopio (mV)	Fondo scala (mV)	Corrente multimetro (mA)	Fondo scala (mA)
70 ± 5.5	50	0.014 ± 0.002	4
80 ± 5.6	50	0.020 ± 0.002	4
90 ± 5.8	50	0.026 ± 0.002	4
100 ± 5.9	50	0.034 ± 0.002	4
110 ± 6.1	50	0.045 ± 0.002	4
120 ± 6.2	50	0.056 ± 0.002	4
130 ± 6.4	50	0.071 ± 0.002	4
140 ± 6.6	50	0.089 ± 0.002	4
150 ± 6.8	50	0.109 ± 0.002	4
160 ± 7.0	50	0.134 ± 0.003	4
170 ± 7.2	50	0.162 ± 0.003	4
180 ± 7.4	50	0.200 ± 0.003	4
190 ± 7.7	50	0.244 ± 0.003	4
200 ± 7.9	50	0.305 ± 0.003	4
210 ± 8.1	50	0.323 ± 0.003	4
220 ± 8.3	50	0.441 ± 0.004	4
230 ± 8.6	50	0.451 ± 0.004	4
240 ± 8.8	50	0.537 ± 0.004	4
250 ± 9.1	50	0.712 ± 0.005	4
260 ± 9.3	50	0.730 ± 0.005	4
270 ± 9.6	50	0.850 ± 0.005	4
280 ± 9.8	50	0.990 ± 0.006	4
290 ± 10	50	1.118 ± 0.006	4

Tabella 4: Punti acquisiti per la caratteristica I-V del Germanio

6 Risultati

${\bf 6.1}\quad {\bf Calibrazione~dell'oscilloscopio}$

 asd

Figura 1: Retta di calibrazione delle tensioni dell'oscilloscopio

6.2 Silicio

 asd

Figura 2: Caratteristicsa I-V del diodo al Silicio: a sinistra sono riportati i punti nel range utilizzato per effettuare il fit esponenziale mentre a destra sono riportati tutti i punti sperimentali in scala semilogaritmica con fit lineare

6.3 Germanio

asd

Figura 3: Caratteristicsa I-V del diodo al Germanio: a sinistra sono riportati i punti nel range utilizzato per effettuare il fit esponenziale mentre a destra sono riportati tutti i punti sperimentali in scala semilogaritmica con fit lineare

Conclusioni