Röntgenfluoreszcencia analízis (XRF)

A mérés végzője: Görgei Anna Mária, Márton Tamás, Haffner Domonkos

A mérés ideje: 2018. 03. 05.

A mérés leadásának ideje: 2017. 02.

Hétfő délelőtti csoport

1. Bevezetés

A röntgenfluoreszcencia analízis egy széles körben elterjedt elemmeghatározási módszer, mely roncsolásmentes vizsgálatot tesz lehetővé. Az analízis lényege, hogy gamma-fotonokkal besugározzuk a meghatározandó anyagot, mely egy atom egy belső elektronját eltávolítva egy magasabb energiaállapotba ugrik. Az atom alapállapotba való visszaugrása egy magasabb energiaállapotban lévő elektron legerjesztődésével történik, mely az adott energiaszint-különbségnek megfelelő röntgenfoton kibocsájtásával jár. A keletkezett foton vagy elhagyja az atomot, vagy abban az esetben, ha az energiája megfelelően nagy, kiütheti egy külső elektronhéjon lévő elektront. Ez az Auger-jelenség. A kibocsájtott röntgenfoton energiája jellemző a kibocsájtó atomra, mely a "karakterisztikus röntgensugárzás" elnevezést eredményezi. Az energia függ attól, hogy milyen főkvantumszámú állapotok közötti átmenet következtében jött létre a foton. Ezen kívül azt is figyelembe kell venni, hogy több elektronhéjjal rendelkező nagyobb atommagok esetén az elektronok nem az atom teljes töltését érzékelik, hanem csupán egy effektív értéket. A röntgenfoton energiáját megadó formula ekkor:

$$E_X = -E_0(\frac{1}{m^2} - \frac{1}{n^2})Z_{eff}^2$$

Ez a leárnyékolás jelensége, ahol a képletben szereplő mennyiségek:

- $E_0 = 13,6 \text{ eV} \text{a hidrogénatom ionizációs energiája}$
- Z_{eff} az effektív töltés
- n a kezdeti pálya főkvantumszáma
- m a végállapot főkvantumszáma

Az n=1, úgynevezett K-, n=2 az úgynevezett L-, n=3 pedig az M héjakat jelöli. Attól függően, hogy a karakterisztikus röntgenfotonok melyik átmenet során keletkeztek, a következőképp jelöljük őket:

• n=1 esete:

$$K_{\alpha}: L \longrightarrow K$$

 $K_{\beta}: M \longrightarrow K$

• n=2 esete:

$$L_{\alpha}: M \longrightarrow L$$

 $L_{\beta}: N \longrightarrow L$

2. RFA – mérési berendezés

A mérési berendezés Amptek XRF volt. Ennek legfontosabb részei:

- röntgengenerátor
- besugárzási kamra
- detektor
- jelfeldolgozó egység.

A mérőeszköz részletes leírása megtalálható a következő weboldalon: http://atomfizika.elte.hu/muszerek/Amptek/20160630/Manual/Amptek 1 7.pdf.

1. ábra Mérőberendezés

3. Mérőeszköz beállításai:

A mérőeszköz beállításai minden mérési adatsor végén megtalálható.

CLCK=80; 20MHz/80MHz

TPEA=9.600; Peaking Time

GAIF=0.9364; Fine Gain

GAIN=41.571; Total Gain (Analog * Fine)

RESL=204; Detector Reset Lockout

TFLA=0.200; Flat Top

TPFA=100; Fast Channel Peaking Time

PURE=ON; PUR Interval On/Off

RTDE=OFF; RTD On/Off

MCAS=NORM; MCA Source

MCAC=1024; MCA/MCS Channels

SOFF=OFF; Set Spectrum Offset

AINP=POS; Analog Input Pos/Neg

INOF=DEF; Input Offset

GAIA=18; Analog Gain Index

CUSP=0; Non-Trapezoidal Shaping

PDMD=NORM; Peak Detect Mode (Min/Max)

THSL=0.976; Slow Threshold

TLLD=OFF; LLD Threshold

THFA=41.43; Fast Threshold

DACO=SHAPED; DAC Output

DACF=50; DAC Offset

RTDS=0.0; RTD Sensitivity

RTDT=0.00; RTD Threshold

BLRM=1; BLR Mode

BLRD=3; BLR Down Correction

BLRU=0; BLR Up Correction

GATE=OFF; Gate Control

AUO1=SCA8; AUX_OUT Selection

PRET=600.0; Preset Time

PRER=OFF; Preset Real Time

PREC=OFF; Preset Counts

PRCL=1; Preset Counts Low Threshold

PRCH=8191; Preset Counts High Threshold

HVSE=-110; HV Set

TECS=220; TEC Set

PAPS=ON; Preamp 8.5/5 (N/A)

SCOE=FA; Scope Trigger Edge

SCOT=12; Scope Trigger Position

SCOG=1; Digital Scope Gain

MCSL=1; MCS Low Threshold

MCSH=8191; MCS High Threshold

MCST=0.01; MCS Timebase

AUO2=ICR; AUX_OUT2 Selection

TPMO=OFF; Test Pulser On/Off

GPED=RI; G.P. Counter Edge

GPIN=AUX1; G.P. Counter Input

GPME=ON; G.P. Counter Uses MCA_EN?

GPGA=ON; G.P. Counter Uses GATE?

GPMC=ON; G.P. Counter Cleared With MCA Counters?

MCAE=OFF; MCA/MCS Enable

BOOT=ON; Turn Supplies On/Off At Power Up

Device Type: DP5

Serial Number: 15519

Firmware: 6.09 Build: 4

FPGA: 6.15

Fast Count: 173577

Slow Count: 175032

GP Count: 0

Accumulation Time: 600.000000

Real Time: 600.314000

Dead Time:

HV Volt: -111V

TEC Temp: 220K

Board Temp: 37°C

4. A vizsgált anyagok:

- Cu és Sn a kalibrációs méréshez
- Kevert minta, mely a következő anyagokat tartalmazza: Vas, Molibdén, Stroncium, Szelén, Réz, Vanádium, Kálcium
- Aranygyűrű
- Tiszta falevélből készült anyagocska
- Ólommal szennyezett falevélből készült anyagocska

5. Kalibráció

Tudjuk, hogy a beütésszámot a csatornaszám függvényében méri a program. Ahhoz, hogy energiákról tudjunk beszélni, kalibrációs mérést kell végezni. Ezt Cu és Sn spektrumának felvételével tettük meg, melyek K_{α} vonalait vettük fel a spektrumban. Egyenesillesztéssel már át lehet konvertálni a csatornaszámot energiaértékre. Az adatokat a mérőprogram egy .mca kiterjesztésű file-ba mentette. Ezt meg kellett szerkesztenünk a láb- és fejléc eltávolításával, majd be kellett írnunk az 1024-e számot, mely a felbontást jellemezte. Alulra bevágtuk a kalibrációs értéket, majd elmentettük .spm kiterjesztéssel. A kiértékelő programmal ezt a file-t nyitottuk meg. Ez a program Gauss-görbét illeszt, leválasztja a háttérzajt és az eredményt, mely a terület értékét, a csatornaszámot, az energia értékét, illetve ezek hibáját jelenti, egy .pea kiterjesztésű file-ba menti. A következő táblázat a két elem adatait tartalmazza:

vonal	Csatornaszám	Csatornaszám hibája	E [keV]	ΔE [eV]
Cu K _a	261	$\pm 0,037$	8,047	$\pm 1,13$
Sn K _α	818	±5,22	25,270	±2,82

vonal	σ	T	ΔΤ	sT	ΔsT
Cu K _a	2,03	4303	±72	4312	±94
Sn K _α	5,22	7733	±34	7907	±131

A kalibrációs egyenes egyenlete:

$$E[x] = (30, 0755*x - 8,9194) eV$$

A kalibráció után ábrázolható az energia függvényében a beütésszám.

6.A felvett spektrum és vizsgálata

6.1 Szórás és felbontóképesség

A felvett spektrumokat egy kiértékelő programba töltjük be, ahol pl. a falevél spektrumán meghatározzuk manuálisan, hogy milyen elemek találhatóak benne, majd a kiértékelő program pontosabb kiértékelést végez. Ezek után egy kimeneti file-ba írja a csúcs indexét, csatornaszámát hibával, szórását, görbe alatti területét hibával, energiáját hibával és a korrigált területét hibával.

A felbontóképességet a vas K_α energiáját kell vizsgálnunk.

Ennél a csúcsnál a szórás nagysága σ =1,86. Ehhez a félértékszélességre van szükség:

$$\Delta E = 2.36 * \sigma * m.$$

Itt m a kalibrációs egyenes meredeksége: m=30,0755eV. A fentiek alapján:

$$\Delta E = 2,36*1,86*30,0755eV = 132,0194 eV.$$

6.2 A tiszta és szennyezett falevél:

Vonal típusa	E _{irodalmi} [keV]	Emért tiszta [eV]	ΔE _{mért} tiszta	E _{mért} piszkos	$\Delta E_{m\acute{e}rt}$
(elem: ólom)			[eV]	[eV]	piszkos [eV]
L_{α}	10,549	10569,13	2,20	10565,66	2,45
L_{β}	12,611	12637,25	2,25	12641,47	2,58

A program által illesztett Gauss-görbe paraméterei:

	Tiszta		Piszkos		
	L_{α}	L_{β}	L_{α}	L_{β}	
σ	2,38	2,54	2,45	2,58	

A kiértékelő program által kiszámított területek arányával az ismeretlen mennyiségű, eredetileg a levélben található ólom mennyiségek kiszámítható. Ehhez természetesen szükség van a szennyezett falevél eredeti ólomtartalmára, mely m = 250 µg.

A kiértékelő program által számított paraméterek:

Vonal ólom)	típusa	(elem:	T _{tiszta} (darab)	T _{piszkos} (darab)
L_{α}			3302 ± 89	5484 ± 97
L_{β}			3366 ± 74	5457 ± 89

A területek arányából meghatározható az ismeretlen Pb mennyisége:

$$\frac{T^t}{T^p} = \frac{Mt_t}{(M+m)t_p}$$

M az ismeretlen tömeg, m a hozzáadott ismert tömeg, t_i pedig a mérési idő. A tömeg hibája pedig:

$$\Delta M = M\left(\left|\frac{\Delta T_i^t}{T_i^t}\right| + \max\left|\frac{\Delta T_i^t}{T_i^t}, \frac{\Delta T_i^p}{T_i^p}\right|\right)$$

A mérés ideje a piszkos levél esetében 61,81s, a tiszta esetében 600s volt. Így az eredmény:

$$M_{\alpha} = (16,53 \pm 0,99) \mu g$$

$$M_{\beta} = (16,96 \pm 0,83) \ \mu g$$

$$M_{\text{átlag}} = (16,75 \pm 0,91) \ \mu g$$

A mért csatornaszámokból az energiát a kalibrációs egyenest felhasználva határoztuk meg itt is.

6.3 A kevert minta összetétele

A mért adatok alapján kapott energia-beütésszám grafikonról leolvasva és a kiértékelő program segítségével is a következő hét elem volt beazonosítható: kalcium, vanádium, vas, réz, szelén, stroncium, molibdén. A táblázatokban E az energia, σ a kiértékelő program által illesztett Gauss görbe paramétere, T a görbe alatti terület, sT a teljes terület.

elem	elem		Csatornaszám	E _{irodalmi}	E _{mért} [eV]	$\Delta E_{m\acute{e}rt} [eV]$
			hibája	[keV]		
kalcium	K_{α}	120	±0.048	3.691	3730.97	± 1.49
	K_{β}	131	±0.107	4.012	4054.87	±3.30
vanádium	K_{α}	161	±0.043	4.952	4987.14	±1.33
	K_{β}	177	±0.106	5.427	5463.67	±3.25
vas	K_{α}	208	±0.026	6.403	6432.72	±0.81
	K_{β}	229	± 0.073	7.057	7087.08	±2.25
réz	K_{α}	261	±0.037	8.047	8070.69	±1.13
	K_{β}	289	±0.105	8.904	8926.96	±3.24
szelén	K_{α}	364	±0.034	11.221	11227.53	±1.04
	K_{β}	406	±0.108	12.495	12529.91	±3.33
stroncium	K_{α}	459	±0.036	14.164	14151.13	±1.11
	K_{β}	514	±0.124	15.834	15836.69	±3.81
molibdén	K_{α}	566	±0.050	17.478	17443.81	±1.53
	K_{β}	636	±0.162	19.607	19594.91	±4.99

elem		σ	T	ΔT	sT	ΔsT
kalcium	K_{α}	1.44	1801	±46	1815	±62
	K_{β}	1.44	320	±22	322	±23
vanádium	K_{α}	1.60	3870	±100	3877	±99
	K_{β}	1.83	747	±38	825	±46
vas	K_{α}	1.86	8561	±95	8602	±133
	K_{β}	1.97	1630	±49	1647	±60
réz	K_{α}	2.07	6288	±90	6297	±115
	K_{β}	2.00	1100	±49	1128	±54
szelén	K_{α}	2.41	9414	±104	9447	±140
	K_{β}	3.07	2109	±62	2151	±69
stroncium	K_{α}	2.81	12181	±124	12206	±159
	K_{β}	2.86	1865	±69	1903	±71
molibdén	K_{α}	3.41	11429	±142	11453	±159
	K_{β}	2.71	1573	±81	1632	±90

6.4 A gyűrű

A különböző elemekhez tartozó energiát ebben az esetben is az energia-beütésszám grafikon alapján határoztuk meg a kiértékelő program segítségével.

Az arany L_{α} és L_{β} vonalai voltak megtalálhatóak a mért energiák alapján.

elem		Csatornaszám	Csatornaszám hibája	E _{irodalmi} [KeV]	E _{mért} [eV]	$\Delta E_{m\acute{e}rt}$ [eV]
arany	L_{α}	315	± 0.012	9.711	9730.94	± 1.49
	Lβ	335	±0.248	11.439	10338.88	±3.30

elem		σ	T	ΔΤ	sT	ΔsT
arany	L_{α}	2.41	23714	±166	23774	±221
	Lβ	3.07	758	±77	877	±56

6.5 Moseley-törvény

A Moseley-törvény szerint a karakterisztikus röntgen-fotonok energiáját a :

$$E = A(Z - B)^2$$

Egyenlet írja le, A és B paramétereket kell meghatároznunk minden átmenetre, Z a rendszám. Mivel nem túl sok pontunk volt ezért gyököt vontunk az egyenletből, így:

$$\sqrt{E} = \sqrt{A} * Z - \sqrt{A} * B$$

egyenletet kaptunk, tehát

$$y = m * x + b$$

alakú egyeneseket illeszthettünk.

Az illesztett egyenesek egyenletei:

$$K_{\alpha}: y = 3,25x - 4,22$$

$$K_{\beta}: y = 3.50x - 6.63$$

$$L_{\alpha}: y = 1{,}38x - 10{,}47$$

$$L_{\beta}: y = 3,58x - 181,50$$

Ahol a számolt paraméterek:

Átmenet	A [eV]	В
K_{α}	$10,525 \pm 8,742 \cdot 10^{-5}$	$1,2985 \pm 8,804 \cdot 10^{-2}$
K_{β}	$12,25 \pm 5,873 \cdot 10^{-5}$	$18,9428 \pm 6,819 \cdot 10^{-1}$
L_{α}	1,9044	7,5869
L_{eta}	12,186	50,6983

Ahol a hibákat az ismert módszerrel számoltuk. A mérésünk során az L_{α} és az L_{β} illesztéshez csak két mért adatunk volt, ezekre egyértelműen illeszthető egyenes, ezért a hibák nagyságára vonatkozóan nem tudunk becslést adni.

7. Összegzés:

Ezen labormérés alkalmával megismertünk egy teljesen roncsolás mentesen működő anyagvizsgálati módszert, melynek segítségével tetszőleges mintának meg tudjuk mondani az alkotóelemeit valamint azoknak arányait is.

Nagy segítség lehet ezen eljárás mind a gyorsasága mind a pontossága miatt például nehézfémszennyezés esetén, egy idegen környezet talajminta vizsgálatánál (idegen bolygó).

A mérésünk során igazoltuk a Moseley-törvényt az anyag rendszáma és a karakterisztikus röntgensugárzás energiája között teremt kapcsolatot.

8. Hivatkozások:

http://atomfizika.elte.hu/kornyfizlab/docs/rfa-hu.htm

http://wigner.elte.hu/koltai/labor/parts/modern9.pdf

http://atomfizika.elte.hu/muszerek/Amptek/20160630/Manual/Amptek 1 7.pdf

http://atomfizika.elte.hu/muszerek/Amptek/Documentation/Leirasba/felertek.pdf