Московский физико-технический институт

Лабораторная работа

Дифракция света на периодических структурах (саморепродукция)

выполнили студенты 653 группы ФФКЭ Карпова Татьяна Агафонов Владислав

1 Цель работы:

Изучение явления саморепродукции и применение его к измерению параметров периодических структур.

2 В работе используются:

- лазер
- кассета с сетками
- мира
- короткофокусная линза с микрометрическим винтом
- экран
- линейка

3 Теоретические положения

При дифракции на предмете с периодической структурой наблюдается явление саморепродукции: на некотором расстоянии от предмета вдоль направления распространения волны появляется изображение, которое потом периодически повторяется.

Представим волну за периодическим объектом в виде суммы плоских волн разных направлений. Отдельные слагаемые плоские волны называют пространственными гармониками. Вдоль пути распространения волнового фронта на некотором расстоянии z_0 от предмета существует плоскость, где разность фазовых набегов любых пространственных гармоник (плоских волн идущих под углом θ т к оси распространения), входящих в состав суперпозиции, кратна 2T В этой плоскости фазовые соотношения между всеми плоскими волнами, входящими в состав суперпозиции, такие же, что и в предметной плоскости. Поэтому в результате интерференции этих волн возникает изображение, тождественное исходному периодическому объекту. Все сказанное справедливо для любого расстояния z_n , кратного z_0 . Для решетки с периодом d.

$$z_n = \frac{2d^2}{\lambda}n\tag{1}$$

Суть эксперимента по саморепродукции состоит в том, что дифрагированная на периодическом транспаранте (решетка, сетка) плоская монохроматическая волна лазера (лазерный пучок) воспроизводит изображение транспаранта без каких-либо оптических элементов.

Рис. 1: Дифракция лучей на сетке и возникновение саморепродуцированного изображения

4 Схема установки

Рис. 2: Схема лабораторной установки

5 Ход работы

5.1 Определение периода решёток по их пространственному спектру

Измерим расстояние между соседними дифракционными максимумами и рассчитаем период каждой решётки:

$$d = \frac{\lambda L}{r},\tag{2}$$

где x - расстояние между соседними максимумами, L - расстояние между решёткой и экраном, λ - длина волны лазера. Результаты занесём в таблицу 1.

Таблица 1: Периоды решёток, метод 1

Номер решётки	1	2	3	4	5
d, mm	0.020	0.030	0.058	0.118	0.168

5.2 Определение периода решёток по изображению, увеличенного с помощью линзы

Определим размеры клеток, полученных с помощью линзы, на экране (рассматриваем геометрическое изображение решётки) (D). Расстояние от линзы до сетки a, от линзы до экрана b, тогда период сетки считается по формуле

$$d = D\frac{a}{b} \tag{3}$$

Результаты измерения периода занесём в таблицу 2.

Таблица 2: Периоды решёток, метод 2

Номер решётки	1	2	3	4
d, mm	0.028	0.054	0.132	0.156

5.3 Исследование эффекта саморепродукции с помощью сеток

1. Найдём координаты z_n плоскостей саморепродукции, построим график $z_n = f(n)$, коэффициенту наклона графика k определим период решётки:

$$d = \sqrt{\frac{k\lambda}{2}} \tag{4}$$

2. Сведём результаты измерения периодов решёток тремя методами в единую таблицу 4 Видим, что значения периодов, полученные при исследовании эффекта саморепродукции, отличаются в меньшую сторону примерно в 1,5 раза.

Рис. 3: Зависимость z(n), решётка 2

Рис. 4: Зависимость z(n), решётка 3

Рис. 5: Зависимость z(n), решётка 4

Рис. 6: Зависимость z(n), решётка 5

5.4 Исследование миры

Установив миру на место кассеты, измерим период одного элемента сначала по саморепродукции, затем по увеличенному изображению и, наконец, по спектру. В таблицу 5 занесём эти результаты для миры с периодами 25 и 20.

Рис. 7: Зависимость z(n), мира 20

Рис. 8: Зависимость z(n), мира 25

Непосредственно нами было проведено измерение миры-20, значения получились с меньшим разбросом.

Таблица 3: Периоды решёток, метод 3

Номер решётки	1	2	3	4
d, mm	0.023	0.041	0.080	0.115

Таблица 4: Сравнение значений периодов, полученных разными способами

Номер решётки	1	2	3	4
d, mm	0.030	0.058	0.118	0.168
d, mm	0.028	0.054	0.132	0.156
d, mm	0.023	0.041	0.080	0.115

6 Вывод

В работе изучено явление саморепродукции и его применение к измерению периодов решеток. Параметры данных периодических структур измерены двумя дополнительными методами (по спектру и по увеличенному изображению через линзу). Дополнительные методы измерения дали совпадающие по порядку результаты, а методом саморепродукции результаты уменьшены в 1,5 раза по сравнению с дополнительными измерениями. Результаты измерений и их сравнение представлены в таблицах выше.

Также исследованы параметры элементов миры аналогичными методами. Результаты совпали по порядку величины.

Таблица 5: Сравнение значений периодов мир, полученных разными способами

	Мира 20	Мира 25
Спектр	0.053	0.039
Линза	0.047	0.07
Саморепродукция	0.036	0.013