

QCM de mathématiques

QCM de révisions (Arnaud)

Répondre en cochant la ou les cases correspondant à des assertions vraies (et seulement celles-ci).

Logique

Quest	ion 1
Soit l'	équation $E: x^n = 27$.
	[Faux] E a une unique solution réelle quel que soit $n \geqslant 1$.
	[Vrai] E a au moins une solution réelle quel que soit $n \ge 1$.
	[Faux] E a n solutions réelles quel que soit $n \geqslant 1$.
	[Vrai] E a au moins n solutions complexes quel que soit $n \ge 1$.
	[Vrai] E a exactement n solutions complexes quel que soit $n \ge 1$.
Quest	ion 2
	$: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2 + 1.$
	[Faux] f est injective.
	[Vrai] f n'est pas injective.
	[Faux] f est surjective.
	[Vrai] f n'est pas surjective.
	[Vrai] La restriction de $f, f_{ }: [1,2] \rightarrow [2,5]$ est bijective.
Quest	ion 3
Soit f	$: \mathbb{C} \to \mathbb{C}, z \mapsto z^2 + 1.$
	[Faux] f est injective.
	[Vrai] f n'est pas injective.
	[Vrai] f est surjective.
	[Faux] f n'est pas surjective.

Question 4

Pour $x, y \in \mathbb{R}$ et z = x + iy, on pose $e^z = e^x \times e^{iy} = e^{x+iy}$.

 $\hfill \square$ [Vrai] La restriction de $f,\,f_{|}:[1,2]\to[2,5]$ est bijective.

\square [Vrai] $ e^z = e^x$.
$\Box [\text{Faux}] \ e^z = \sqrt{x^2 + y^2}.$
\square [Vrai] Arg $e^z = y$.
$\Box \text{ [Faux] Arg } e^z = x + y.$
\square [Faux] La fonction $f: \mathbb{C} \to \mathbb{C}, z \mapsto e^z$ est injective.
Question 5
Par quoi peut on compléter les pointillés pour que les deux assertions suivantes soient
vraies : $z \in \mathbb{C} \ z = \overline{z} \dots z \in \mathbb{R} \ ; \ z \in \mathbb{C} \ z^3 = -1 \dots z = -1$
$\square \text{ [Faux]} \iff \text{et} \iff .$
$\square \text{ [Faux]} \iff \text{et} \iff .$
$\square \text{ [Faux]} \implies \text{et} \implies.$
\square [Vrai] \iff et \iff .
Question 6 Soit la suite $(x_n)_{n\in\mathbb{N}^*}$ définie par $x_n = \frac{(-1)^n}{n}$.
$\square \text{ [Faux] } \exists N > 0 \forall n \in \mathbb{N}^* (n \geqslant N \implies x_n \geqslant 0).$
$\square \text{ [Faux] } \exists r > 0 \forall n \in \mathbb{N}^* \qquad (n \geqslant r) \longrightarrow x_n \geqslant 0).$ $\square \text{ [Faux] } \exists \varepsilon > 0 \forall n \in \mathbb{N}^* \qquad x_n \leqslant \varepsilon.$
$\square \text{ [Vrai] } \forall N \in \mathbb{N}^* \exists n \geqslant N \qquad x_n < 0.$
$\square \text{ [Faux] } \exists n \in \mathbb{N}^* \qquad x_n = 0.$
$\square \text{ [Vrai] } \exists n \in \mathbb{N} \qquad x_n = 0.$ $\square \text{ [Vrai] } \forall \varepsilon > 0 \exists N \in \mathbb{N}^* \forall n \in \mathbb{N}^* (n \geqslant N \implies x_n \leqslant \varepsilon).$
$\square [V1ai] \forall \varepsilon > 0 \exists i \forall \in \mathbb{N} \forall n \in \mathbb{N} (n \geqslant i \forall n = 1).$
Question 7
Soit E un ensemble, $A, B \subset E$, soit $A\Delta B = (A \cup B) \setminus (A \cap B)$. Les assertions suivantes
sont-elles vraies quels que soient A et B inclus dans E ?
$\square \text{ [Vrai] } A\Delta B = (A \setminus B) \cup (B \setminus A).$
$\Box [\text{Faux}] \ A\Delta B = (E \setminus A) \cap (E \setminus B).$
\square [Faux] Si $B \subset A$ alors $A\Delta B = A$.
\square [Vrai] Si E est un ensemble fini, $\operatorname{Card}(A\Delta B) \leqslant \operatorname{Card} A + \operatorname{Card} B$.
\square [Faux] Si E est un ensemble fini, $\operatorname{Card}(A\Delta B) < \operatorname{Card} A + \operatorname{Card} B$.
Question 8
Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0=1$ puis pour $n\geqslant 1$ $x_n=\frac{x_{n-1}}{n}$.
\square [Vrai] $\forall n \in \mathbb{N}$ $x_n > 0$.
\square [Vrai] $\forall n \in \mathbb{N}$ $x_{n+1} \leqslant x_n$.
$\square \text{ [Faux] } \exists N \in \mathbb{N} \exists c \in \mathbb{R} \forall n \in \mathbb{N} \qquad (n \geqslant N \implies x_n = c).$
\square [Faux] $\forall n \in \mathbb{N}$ $x_n \geqslant \frac{1}{2} \frac{1}{n!}$.

\square [Faux] $\forall n \in \mathbb{N}$ $x_n \leqslant \frac{1}{2} \frac{1}{n!}$.
 Question 9 On lance de façon aléatoire deux dés identiques à 6 faces (numérotées de 1 à 6). On ne tient pas compte de l'ordre, par exemple le tirage 1 puis 5 est le même que 5 puis 1, mais les tirages 3 puis 3, et 3 puis 4 sont distincts. □ [Faux] Il y a 36 tirages distincts possibles. □ [Vrai] Il y a 30 tirages distincts possibles. □ [Faux] Il y a 21 tirages distincts possibles. □ [Vrai] La somme des deux chiffres a strictement plus de chances d'être 7 que 2. □ [Faux] La somme des deux chiffres a strictement plus de chances d'être ≥ 11 que ≤ 3.
Question 10
Soit E un ensemble fini de cardinal n , soit $A \subset E$ un ensemble à p éléments, et $B \subset E$ un ensemble à q éléments. On note $S = \{(a,b) \in A \times B \mid a \neq b\}$ et $T = \{(I,b) \text{ avec } I \subset A \mid \text{Card } I = r \text{ et } b \in B\}$. \square [Faux] Si $A \cap B = \emptyset$ alors Card $S = p + q$. \square [Vrai] Si $A \cap B = \emptyset$ alors Card $S = pq$. \square [Faux] Si $A \subset B$ alors $S = \emptyset$. \square [Faux] Card $T = C_p^p \times r$. \square [Vrai] Card $T = C_p^r \times q$.
Arithmétique
Question 11
Les propositions suivantes sont-elles vraies quels que soient $\ell \geqslant 2$ et p_1, \ldots, p_ℓ des nombres premiers > 2 ?
\square [Faux] $p_1p_2 \dots p_\ell$ est un nombre premier.
\square [Faux] Le carré de p_1 est un nombre premier.
\square [Faux] $p_1 p_2 \dots p_\ell + 1$ est un nombre premier.
\square [Vrai] $\prod_{i=1}^{\ell} p_i$ est un nombre impair.
\square [Faux] $\sum_{i=1}^{\ell} p_i$ est un nombre impair.
Question 12
\square [Vrai] Soit $n \in \mathbb{N}$ un entier, alors $(n+1)(n+2)(n+3)(n+4)$ est divisible par 24.
\square [Faux] Soit $n \ge 6$ un entier pair alors $\frac{n}{2}$ est impair.
\square [Vrai] La somme et le produit de deux nombres pairs est un nombre pair.
\square [Faux] $a b$ et $a' b'$ \Longrightarrow $aa' bb'$.
\square [Faux] $a b$ et $a' b' \implies a + a' b + b'$.

Questi	ion 13
	[Vrai] Le pgcd de 924, 441 et 504 est 21.
	[Faux] 627 et 308 sont premiers entre eux.
	[Faux] Si $p \ge 3$ est premier, alors $p!$ est premier.
	[Vrai] Soit $n \ge 2$ alors n et $n + 1$ sont premiers entre eux.
	[Vrai] Soit $n \ge 2$ un entier, le pgcd de $\{in^i \text{ pour } i = 1, \dots, 100\}$ est n .
Questi	ion 14
	$a, b, c \geqslant 1$ des entiers.
	[Vrai] $ab = \operatorname{pgcd}(a, b) \times \operatorname{ppcm}(a, b)$.
	[Faux] $abc = \operatorname{pgcd}(a, b, c) \times \operatorname{ppcm}(a, b, c)$.
	[Vrai] $ppcm(a, b, c)$ est divisible par c .
	[Faux] $ppcm(1932, 345) = 19320.$
	[Faux] $ppcm(5, 10, 15) = 15.$
Questi	ion 15
	[Faux] Soit $a, b, c \ge 1$ des entiers. Si $a bc$ et a ne divise pas b alors $a c$.
	[Vrai] Sachant que 7 divise 86419746×111 alors 7 divise 86419746 .
	[Vrai] Si $a = bq + r$ est la division euclidienne de a par b alors $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, r)$.
	[Vrai] Il existe $u, v \in \mathbb{Z}$ tels que $195u + 2380v = 5$.
	[Faux] Sachant qu'il existe u, v tels que $2431u+65520v=39$ alors $pgcd(2431,65520)=30$
	99.
Questi	ion 16
	[Vrai] $\exists P \in \mathbb{Z}[X] \forall x \in \mathbb{R} \qquad P(x) > 0.$
	[Faux] $\forall P \in \mathbb{Z}[X] \exists x \in \mathbb{R} \qquad P(x) < 1.$
	[Vrai] $\forall P \in \mathbb{Q}[X]$ $x \in \mathbb{Q} \implies P(x) \in \mathbb{Q}$.
	[Vrai] $\forall P \in \mathbb{C}[X]$ de degré $\geqslant 1 \exists z \in \mathbb{C} \qquad P(z) = 0.$
	[Faux] Tout polynôme de degré 2 ne s'annulant pas, prend uniquement des valeurs
	positives.
Questi	ion 17
Soit P ,	$Q \in \mathbb{C}[X]$ des polynômes non nuls $P = \sum_{i=0}^{n} a_i X^i$, soit $I_P = \{i \in \mathbb{N} \mid a_i \neq 0\}$, soit $I_P = \{i \in \mathbb{N}$
	[Vrai] $val(-X^7 + X^3 + 7X^2) = 2$.
	$[Vrai] val(P+Q) \geqslant val(P).$
	[Vrai] $\operatorname{val}(P \times Q) \geqslant \operatorname{val}(P) + \operatorname{val}(Q)$.
	[Faux] $\operatorname{val}(k.P) = k \cdot \operatorname{val}(P)$ où $k \in \mathbb{N}^*$.

	[Vrai] Si $Q P$ alors $val(P/Q) = val(P) - val(Q)$.
Ques	[Vrai] $X^4 + X^3 - X^2 - X$ est divisible par $X(X - 1)$. [Faux] Le reste la division euclidienne de $X^3 + X^2 + 3$ par $X - 1$ est $X + 4$. [Vrai] Le quotient de $X^5 + 2X^3 + X^2 + 2X + 1$ par $X^2 + 1$ est $X^3 + X + 1$. [Vrai] $X - 1$ divise $X^n - 1$ pour $n \ge 1$. [Faux] $X + 1$ divise $X^n + 1$ pour $n \ge 1$.
Ques	[Vrai] Soit $P \in \mathbb{C}[X]$. $X - a$ divise P ssi $P(a) = 0$. [Vrai] Soit $P \in \mathbb{R}[X]$ de degré impair. Il existe $x \in \mathbb{R}$ tel que $P(x) = 0$. [Vrai] Soit $P \in \mathbb{R}[X]$, les racines de P^2 sont d'ordre au moins 2. [Faux] Soit $P \in \mathbb{R}[X]$, x est racine simple ssi $P(x) = 0$. [Faux] Un polynôme $P \in \mathbb{C}[X]$ de degré n a n racines réelles.
Ques	Find 20 [Faux] X^4+1 est irréductible dans $\mathbb{R}[X]$. [Vrai] X^2+7 est irréductible dans $\mathbb{Q}[X]$. [Faux] X^2+7 est irréductible dans $\mathbb{C}[X]$. [Faux] Dans $\mathbb{Z}[X]$, $\operatorname{pgcd}(X(X-1)^2(X^2+1), X^2(X-1)(X^2-1)) = X(X-1)$. [Vrai] Dans $\mathbb{Z}[X]$, $\operatorname{pgcd}(X^4+X^3+X^2+X, X^3-X^2-X+1) = X+1$.
	tion 21 (Réel et rationnels) $[\text{Vrai}] \ (x \in \mathbb{Q} \text{ et } y \in \mathbb{Q}) \implies x + y \in \mathbb{Q}$ $[\text{Faux}] \ (x \in \mathbb{R} \setminus \mathbb{Q} \text{ et } y \in \mathbb{R} \setminus \mathbb{Q}) \implies x + y \in \mathbb{R} \setminus \mathbb{Q}$ $[\text{Vrai}] \ \forall x \in \mathbb{R} \setminus \mathbb{Q} \forall y \in \mathbb{R} \setminus \mathbb{Q} x < y \implies (\exists z \in \mathbb{Q} x < z < y)$
-	tion 22 A, B, C des parties de \mathbb{R} [Faux] Si sup A existe alors max A existe. [Vrai] Si max A existe alors sup A existe. [Vrai] Pour A, B majorées et $C \subset A \cap B$ alors sup $C \leq \sup A$ et sup $C \leq \sup B$. [Faux] Si $A = \left\{ \frac{(-1)^n}{n} + 1 \mid n \in \mathbb{N}^* \right\}$ alors inf $A = 0$ et sup $A = 1$.

\square [Vrai] Si $B = \left\{ \frac{E(x)}{x} \mid x > 0 \right\}$ alors inf $B = 0$ et sup $B = 1$.
Question 23 (Limites de suites) $ \Box \text{ [Vrai] Si } u_n = n \sin(\frac{1}{n}) \text{ alors } (u_n) \text{ tend vers } 1. $ $ \Box \text{ [Faux] Si } u_n = \ln(\ln(n)) \text{ alors } (u_n) \text{ a une limite finie.} $ $ \Box \text{ [Faux] } u_n = \frac{(\ln n)^2}{\sqrt{n}} \text{ alors } (u_n) \text{ tend vers } +\infty. $ $ \Box \text{ [Faux] } u_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} \text{ alors } (u_n) \text{ diverge.} $ $ \Box \text{ [Vrai] } u_n = \sin(n), \text{ il existe une sous-suite de } (u_n) \text{ convergente.} $
Question 24 (Suites définies par récurrence) Soit $f(x) = 2x(1-x)$ et la suite définie par $u_0 \in [0,1]$ et $u_{n+1} = f(u_n)$. \square [Vrai] $\forall n \in \mathbb{N}$ $u_n \in [0,1]$. \square [Faux] Quelque soit u_0 dans $[0,1]$, (u_n) est monotone. \square [Faux] Si (u_n) converge vers ℓ alors $\ell = 0$ ou $\ell = 1$. \square [Vrai] Si (u_n) converge vers ℓ alors $\ell = 0$ ou $\ell = \frac{1}{2}$. \square [Vrai] $u_0 \in]0,1[$ alors (u_n) ne converge pas vers 0.
 Question 25 (Fonctions continues) □ [Faux] La somme, le produit et le quotient de deux fonctions continues est continue. □ [Vrai] La fonction √√x ln x est prolongeable par continuité en 0. □ [Faux] Il existe a, b ≥ 0 tels que fonction définie par f(x) = -e^x si x < 0 et f(x) = ax² + b si x ≥ 0 soit continue. □ [Faux] Toute fonction impaire de ℝ dans ℝ est continue en 0. □ [Faux] La fonction √(x)/x) est prolongeable par continuité en 0.
 Question 26 (Théorème des valeurs intermédiaires, fonctions bornées) □ [Vrai] La méthode de dichotomie est basée sur le théorème des valeurs intermédiaires. □ [Faux] Tout polynôme de degré ≥ 3 a au moins une racine réelle. □ [Faux] La fonction f(x) = 1/(x^3(x^2+1)) admet au moins une racine réelle dans] - 1, +1[. □ [Vrai] Pour f: ℝ⁺ → ℝ continue admettant une limite finie en +∞, f est bornée. □ [Faux] Pour f: ℝ⁺ → ℝ continue admettant une limite finie qui vaut f(0) en +∞ alors f est bornée et atteint ses bornes.
Question 27 (Dérivation) $\square [Faux] \text{ La fonction } f(x) = 1/x \text{ est décroissante sur } \mathbb{R}^*.$ $\square [Vrai] \text{ La fonction } f(x) = x \sin \frac{1}{x} \text{ est continue et dérivable en 0.}$ $\square [Vrai] \text{ La fonction définie par } x \mapsto 0 \text{ si } x \in \mathbb{Q} \text{ et } x \mapsto x^2 \text{ si } x \notin \mathbb{Q} \text{ est dérivable en 0.}$

\square [Vrai] Si $f(x) = P(x)e^x$ avec P un polynôme alors pour tout $n \in \mathbb{N}$ il existe un polynôme Q_n tel que $f^{(n)}(x) = Q_n(x)e^x$.
$\square \text{ [Faux] Si } f(x) = \sqrt{x} \ln x \text{ si } x \in \mathbb{R}^* \text{ et } f(0) = 0 \text{ alors } f \text{ est dérivable en } 0.$
Question 28 (Théorème de Rolle et des accroissements finis)
\square [Faux] Si f est dérivable sur $[a,b]$ avec $f(a)=f(b)$ il existe un unique $c\in]a,b[$ tel que $f'(c)=0$.
\square [Vrai] Si f est une fonction continue sur $[a,b]$ et dérivable sur $]a,b[$ et $f'(x)$ tend vers ℓ quand x tend vers a alors f est dérivable en a et $f'(a) = \ell$.
\square [Faux] Soit $f(x) = \ln x$ si $x > 0$ et $f(0) = 0$. Pour $x > 0$ il existe $c \in]0, x[$ tel que $\ln x = \frac{x}{c}$.
\square [Vrai] Si f est dérivable sur \mathbb{R} et $\lim f(x) = +1$ quand $x \to +\infty$ et $\lim f(x) = +1$ quand $x \to -\infty$ alors il existe $c \in \mathbb{R}$ tel que $f'(c) = 0$.
$\Box [\text{Vrai}] \ \forall x > 0 \ e^x \leqslant xe^x + 1.$
Question 29 (Fonctions usuelles)
\square [Vrai] $\forall n \in \mathbb{N}$ $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$.
$\square [\text{Vrai}] \ \forall x \in \mathbb{R} \ \text{ch} \ x \geqslant \text{sh} \ x.$
\square [Vrai] $\frac{\operatorname{ch} x}{\operatorname{sh} x}$ tend vers 1 quand x tend vers $+\infty$.
$\Box \text{ [Vrai] } \text{ch } 2x = 1 + 2 \text{ sh}^2 x.$
$\Box [\text{Faux}] \ \text{th}(a+b) = \frac{\text{th } a + \text{th } b}{1 - \text{th } a + \text{th } b}.$
Question 30 (Fonctions réciproques)
\square [Faux] Un fonction continue $\mathbb{R} \longrightarrow \mathbb{R}$ strictement décroissante est bijective.
\square [Vrai] Si f est une fonction continue bijective croissante alors f^{-1} est croissante.
\square [Faux] Si f est une fonction continue bijective ne s'annulant jamais alors $(\frac{1}{f})^{-1} = f$.