Produktivitätsmodell "Waldhackschnitzel-Transport"

Teil A: Grundlagen

Renato Lemm Fritz Frutig Dario Pedolin Oliver Thees (Leitung)

FE Waldressourcen und Waldmanagement Gruppe "Forstliche Produktionssysteme" Eidg. Forschungsanstalt WSL 01. Juni 2018

Das Produktivitätsmodell "Waldhackschnitzel-Transport" ist Teil einer Sammlung von Produktivitätsmodellen der Holzernte, welche von der Eidg. Forschungsanstalt WSL entwickelt wurden und unter dem Namen "HeProMo" auf dem Internet zur Verfügung gestellt werden (http://www.waldwissen.net). Das Modell umfasst den Transport von Hackschnitzeln in Mulden vom Hackort zum Verbraucher. DerTeil A des Dokumentes beschreibt das Modell für den Transport von Waldhackschnitzeln. Der Teil B "Analyse der Datensätze und Diskussion der Modellierung" fehlt hier, weil keine Datensätze ausgewertet wurden.

Bearbeiter	Datum	Kommentar	
R. Lemm	28.08.2015		
F. Frutig	25.02.2016	Grundlegende Überarbeitung	
F. Frutig	24.08.2016	Schlussredaktion	
R.Lemm	08.11.2016	Korrekturen	
14.10.2018 Korrektul		Korrekturen	
F. Frutig	10.01.2019	Schlussredaktion	

Inhaltsübersicht

Gru	ndlage	en	4
	1.1	Entstehung und Verwendung	4
	1.2	Beurteilung und besondere Schwierigkeiten	
2.	Proc	duktionssystem - Beschreibung	4
	2.1	Produktionsprozess	4
	2.2	Input/Output-Zustand	4
		2.2.1 Input	4
		2.2.2 Output	
	2.3	Arbeitsbedingungen	
		2.3.1 Technik und Personal	4
		2.3.2 Gelände und Erschliessung	5
	2.4	Berechneter Output	5
3.	Proc	duktionssystem – mathematische Darstellung	5
	3.1	Systemübersicht und Einflussgrössen	5
	3.2	Modell zur Bestimmung der Produktivität	
4.	Zeit	system	9
5.	Bere	echnung von Zeitbedarf und Kosten	9
	5.1	Zeitbedarf	9
	5.2	Kosten	
	5.3	Energieinhalt der Hackschnitzel	
	5.4	Berechnungsbeispiel für den Transport von Hackschnitzeln	12
6.	Lite	raturverzeichnis	13
7.	Beu	rteilung der Qualität des Modells "Waldhackschnitzel-Transport"	14

Hinweis

Im Handel und im Transport von Energieholz in Form von Waldhackschnitzeln werden die Volumina in Schüttraummetern angegeben. Für die Umrechnung von fester Holzmasse (m³) in Schüttraummeter (Srm) wird der Faktor 2.8 verwendet (Schweizer Handelsgebräuche für Rohholz, Ausgabe 2010). 1 m³ entspricht also 2.8 Srm.

Grundlagen

1.1 Entstehung und Verwendung

Die Grundlagen für die Herleitung des Modells "Waldhackschnitzel-Transport" beruhen weitgehend auf den Vorarbeiten von Hässig (2007). Das Produktivitätsmodell beruht nicht auf der statistischen Auswertung eines Datensatzes, sondern auf Daten aus der Literatur sowie aus einer kleinen Umfrage bei einigen Transportunternehmungen. Bei den berechneten Zeitaufwänden bzw. Produktivitäten handelt es sich um produktive Arbeitszeiten (PSH₁₅=MAS gemäss Zeitsystem Kap. 4).

1.2 Beurteilung und besondere Schwierigkeiten

Die Datengrundlage ist wenig umfangreich, allerdings ist der Transport von Hackschnitzeln mit Lastwagen eine recht einheitliche Arbeit mit relativ geringen Streuungen in der Produktivität. Wichtige Einflussgrössen sind die Fahrdistanz und die Fahrgeschwindigkeit auf den unterschiedlichen Strassenkategorien.

2. Produktionssystem - Beschreibung

2.1 Produktionsprozess

Das betrachtete System umfasst den Transport von Hackschnitzeln vom Hackort zum Verbraucher sowie das Entladen beim Verbraucher (Abb. 1). Das Beladen erfolgt gleichzeitig mit dem Prozess Hacken, indem die Hackschnitzel in einen Behälter geblasen oder über ein Förderband eingetragen werden. Die Produktivität der Prozesse Fällen, Rücken und Hacken kann mit separaten HeProMo-Modellen geschätzt werden.

Abbildung 1: Integration des Produktionsprozesses "Transportieren" in die Logistikkette vom Wald zum Verbraucher.

2.2 Input/Output-Zustand

2.2.1 Input

• Die Hackschnitzel liegen in Mulden (Containern), diese sind entweder am Boden abgestellt oder befinden sich auf einem Transportfahrzeug.

2.2.2 Output

Die Hackschnitzel sind zum Verbraucher transportiert und dort (in den Bunker) abgeladen.

2.3 Arbeitsbedingungen

2.3.1 Technik und Personal

1 Lastwagen mit Hakengerät und 1-3 Mulden oder 1 Schüttgut-Lastwagen jeweils mit einem Fahrer. Über lange Distanzen wird oft mit einem Anhängerzug für Wechselmulden gefahren, dieser Fall ist in der Schweiz jedoch eher selten und wird vom Modell nicht abgedeckt.

2.3.2 Gelände und Erschliessung

Lastwagenbefahrbare Waldstrasse

2.4 Berechneter Output

Produktivität in Srm pro PSH₁₅ (produktive Abeitszeit)

3. Produktionssystem – mathematische Darstellung

3.1 Systemübersicht und Einflussgrössen

Abbildung 2: Einflussgrössen auf die Produktivität und die Kosten beim Transport von Waldhackschnitzeln. Grün = Eingangsgrössen; rot = Ergebnisse.

Ladegewicht und Ladevolumen von Transportfahrzeugen für Waldhackschnitzel

Hinweis:

Im allgemeinen Sprachgebrauch wird die Masse eines Objekts auch als Gewicht bezeichnet. Korrekt wäre Kilopond kp für Gewicht und Kilogramm kg für Masse. Wir werden im Folgenden, weil allgemein verständlicher, kg auch für Gewichte verwenden.

Tabelle 1: Ladekapazität von Transportfahrzeugen für den Transport von Waldhackschnitzeln.

Transportfahrzeug	Vor- und Nachteile ¹	Gesamtgewicht [t]	Nutzlast [t]	Muldeninhalt [Srm]
4-Achs-LKW mit Hakengerät ²	Hohe Leistung; für Ferntransport nur bedingt geeignet; Einsatz mehrerer	32	15-16	36-40
5-Achs-LKW mit Hakengerät ²	Mulden verringert Standzeiten des Hackers; hoher Organisationsaufwand bei Shuttleverkehr (Muldenwechsel)	40	22	40-46
Schlepper mit land- wirtschaftlichem Kippanhänger	Nutzung eigener Fahrzeuge möglich; geringer Organisationsaufwand, geringere Ansprüche an Wegebreite und Wendemöglichkeiten; nicht für Ferntransport geeignet; häufiger Anhängerwechsel erhöht Standzeiten des Hackers	20-24	14-20	24-30
Transport mit Schubboden- LKW/Sattelauflieger (walking floor)	Hohes Fassungsvermögen; besonders geeignet für Ferntransporte; Abladen in niedrigen Gebäuden möglich (kein Kippen)	40	25-27	55- 80 ²

¹ LWF/Bayerische Forstverwaltung, Merkblatt 10: Bereitstellung von Waldhackschnitzeln, 2016

Tabelle 2: Gewicht einiger Holzarten bei verschiedenen Wassergehalten. Für Nadelholz werden die Werte von Fichte angenommen, für Laubholz diejenigen von Buche. Werte in kg Trockenmasse pro m³ bzw. Srm, ohne Berücksichtigung von Trockenschwund (Raumdichte nach Kollmann 1981). Der Umrechnungsfaktor von fester Holzmasse (m³) in Hackschnitzel (Srm) ist 2.8.

	Spezifisches Gewicht		•	es Gewicht	Spezifisches Gewicht absolut trocken	
	waldfrisch Wassergehalt 55%		vorgetrocknet Wassergehalt 35%		Wassergehalt 0%	
	[kg/m³]	[kg/Srm]	[kg/m ³]	[kg/Srm]	[kg/m ³]	[kg/Srm]
Fichte	840.6	300.2	583.4	208.4	379.0	135.4
Kiefer	955.8	341.4	663.4	236.9	431.0	153.9
Buche	1237.2	441.9	859.1	306.8	558.0	199.3
Eiche	1266.0	452.1	879.1	314.0	571.0	203.9
Pappel	783.0	279.6	543.5	194.1	353.0	126.1
Ndh (Fi)	840.6	300.2	583.4	208.4	379.0	135.4
Lbh (Bu)	1237.2	441.9	859.1	306.8	558.0	199.3

Holz mit einem Wassergehalt von 55% = waldfrisch

Holz mit einem Wassergehalt von 35% = 1 bis 2 Jahre vorgetrocknet

² www.amstutzholzenergie.ch, www.baumgartner-holzenergie.ch

3.2 Modell zur Bestimmung der Produktivität

Zur Bestimmung der Produktivität beim Hackschnitzeltransport wird in folgenden Schritten vorgegangen:

1. Transportfahrzeug bzw. Muldeninhalt wählen (Tab. 1)

Hinweis: Auch mit waldfrischem Holz und vollen Mulden wird das zulässige Gesamtgewicht der Transportfahrzeuge aufgrund der relativ geringen Lagerungsdichte der Hackschnitzel kaum je überschritten. Das Ladungsgewicht kann anhand des spezifischen Gewichtes (Tab. 2) abgeschätzt werden:

Ladungsgewicht [t] = Muldeninhalt [Srm] x Spezifisches Gewicht [kg/Srm]/1000

2. Zeit Lastfahrt [Min./Mulde]

Fahrzeit [Min.] = Distanz [km] / Fahrgeschwindigkeit V [km/60 Min] x 60

Waldstrasse:

$$Fahrzeit[Min.] = Distanz[in km] \times 3.00$$

Annahme:
$$V = (20 \frac{km}{h})$$

Haupt- und Nebenstrassen inner- und ausserorts:

$$Fahrzeit[Min.] = Distanz[in km] \times 1.50$$

Annahme:
$$V = \left(40 \frac{km}{h}\right)$$

Autobahn:

Fahrzeit [Min.] = Distanz [in km]
$$\times$$
 0.86

Annahme:
$$V = (70 \frac{km}{h})$$

Zeit Lastfahrt = Fahrzeit (Waldstrassen + Haupt-/Nebenstrassen + Autobahn)

3. Zeit Leerfahrt[Min./Mulde]

 $Zeit\ Leerfahrt = 0.95 \times Zeit\ Lastfahrt\ (Schätzung)$

4. Zeit Beladen (Hacken in Mulde) bzw. Aufnehmen beladene Mulde [Min./Mulde]:

Falls direkt in eine Mulde auf dem Transportfahrzeug gehackt wird: Zeit Beladen(in Mulde hacken) =
$$\frac{1}{Prod_{RundHolz}}$$
 oder $\frac{1}{Prod_{RestHolz}}$

Falls eine beladene Mulde aufgenommen wird (Haken- oder Kettengerät): Zeit Muldenwechsel (leere Mulde abstellen und volle Mulde aufnehmen)

= 10 Min./Mulde (Schätzung)

sonst

 $Prod_{RundHolz} = 0.2848 \times MotorleistungHacker^{1.0276}$ (siehe Modell Hacker)

Zeitbedarf fürs Hacken pro Srm

 $PMH_{15\ Hacken\ RundHolz} = 1/Prod_{RundHolz}$

Zuschlag für Warte – und Umsetzzeiten $t_{indirekte\ Arbeit}$:

 $t_{indirekte\ Arbeit} = 1/2 \times PMH_{15_Hacken_RundHolz}$

$$PMH_{15_Gesamt_RundHolz} = \frac{1}{Prod_{RundHolz}} + \frac{0.5}{Prod_{RundHolz}} = \frac{1.5}{Prod_{RundHolz}}$$

 $PMH_{15_Gesamt_RestHolz} = \frac{1}{0.2848 \times MotorleistungHacker^{1.0276}}$

 $Prod_{RestHolz} = 0.5177 \times MotorleistungHacker^{0.8486}$ (siehe Modell Hacker)

Zeitbedarf fürs Hacken pro Srm

 $PMH_{15_Hacken_RestHolz} = 1/Prod_{RestHolz}$

Zuschlag für Warte – und Umsetzzeiten $t_{indirekte\ Arbeit}$:

 $t_{indirekte\ Arbeit} = 1/2 \times PMH_{15_Hacken_RestHolz}$

 $PMH_{15_Gesamt_RestHolz} = \frac{1}{Prod_{RestHolz}} + \frac{0.5}{Prod_{RestHolz}} = \frac{1.5}{Prod_{RestHolz}}$

 $PMH_{15_Gesamt_RestHolz} = \frac{1}{0.5177 \times MotorleistungHacker^{0.8486}}$

MotorleistungHacker: Motorleistung des Hackers in [kW]

 $Prod_{RundHolz}$: $Produktivität für das Hacken eines Srm Energierundholzes in <math>\left[\frac{Srm}{PMH_{15}}\right]$

 $Prod_{RestHolz}$: $Produktivität für das Hacken eines Srm Waldrestholzes in <math>\begin{bmatrix} Srm \\ PMH_{15} \end{bmatrix}$

 $PMH_{15_Hacken_RundHolz}:$ Zeitbedarf für das Hacken eines Srm Energierundholz in $[PMH_{15}]$ "

 $PMH_{15_Hacken_RestHolz}: Zeitbedarf \ f\"{u}r\ das\ Hacken\ eines\ Srm\ Waldrestholz\ in\ [PMH_{15}]$

 $t_{indirekte\ Arbeit}$: Zeiten für Warten und Umsetzen in [PMH₁₅]

frei wählbar; Defaultwert $\frac{1}{2}$ der reinen Hackerzeiten.

Anzahl Zyklen siehe unter 7

5. Zeit Entladen [Min./Mulde]

Zeit Entladen = 15 Min. (Schätzung)

Weitere Zeiten, wie z.B. Wartezeiten beim Entladen sind im Faktor Findir enthalten.

6. Produktivität pro Fahrzyklus (Hin – und Rückfahrt)

Produktivität pro Fahrt $\left[\frac{Srm}{PMH_{15}}\right] =$

Menge Hackschnitzel pro Fahrt [Srm]

Zeit (Beladen + Lastfahrt + Entladen + Leerfahrt) [Min./Mulde]
60

7. Zeitaufwand Transport

 $\textit{Anzahl Zyklen } = \frac{\textit{HackschnitzelmengeTotal [Srm]}}{\textit{Hackschnitzelmenge pro Fahrt [Srm]}} \; \textit{(auf ganze Zahl gerundet)}$

$$Produktive \ Arbeitszeit \ Transport \ [PMH_{15}] = \frac{Anzahl \ Zyklen}{Produktivit \"{a}t \ pro \ Fahrt \ [\frac{Srm}{PMH_{15}}]}$$

Die produktive Arbeitszeit [PMH₁₅] muss noch mit verschiedenen Faktoren erhöht werden, um die effektiv geleistete Arbeitsplatzzeit zu erhalten, welche für die Berechnung der Kosten massgebend ist (siehe Kap. 5.1).

4. Zeitsystem

Abbildung 3: Verwendetes Zeitsystem (Björheden et al. 1995, Heinimann 1997; verändert).

Die in Abbildung 3 aufgeführten Zeiten können grundsätzlich für das Produktionssystem als Ganzes sowie für die beteiligten Produktionsfaktoren (Maschinen, Personal) ermittelt werden. Je nachdem spricht man zum Beispiel von der System-, von der Maschinen- oder von der Personalarbeitszeit. In Anlehnung an die Originalgrundlagen wurden die Abkürzungen von den englischen Begriffen abgeleitet (Tabelle 4).

Tabelle 4: Übersicht über die verwendeten Zeitbegriffe.

	Arbeitsplatzzeit				
		Nicht Arbeitszeit Arbeitszeit (work time		e)	
Betrachtetes Objekt		(non work time)			
	workplace	n on w ork	work	indirect	p roductive
System (system hour)	WPSH	NWSH	WSH	ISH	PSH
Maschine (machine hour)	WPMH	NWMH	WMH	IMH	PMH ₁₅ =MAS
Personal (p ersonal h our)	WPPH	NWPH	WPH	IPH	PPH

5. Berechnung von Zeitbedarf und Kosten

5.1 Zeitbedarf

Die **produktive Arbeitszeit PMH**₁₅ (siehe Kap. 3.2, Punkt 7) muss um die nachstehend aufgeführten Faktoren erhöht werden, um die Zeit zu erhalten, welche für die Kostenberechnung massgebend ist.

$$WSH (Arbeitszeit) = PMH_{15} \times F_{indir}$$

 F_{indir} berücksichtigt die unvermeidbaren Verlustzeiten > 15 Min.

(wie Umsetz-, $R\ddot{u}st-und\ Wartezeiten$)

 $F_{indir} = frei \ wählbar; im \ Modell \ ist \ als \ Defaultwert \ 1.1 \ gesetzt$

WPSH (**Arbeitsplatzzeit**) wird beim Transport nicht separat ausgewiesen, da Weg- und Pausenzeiten mit dem Kostenansatz des LKW verrechnet werden.

$$F_{St\"{o}r} = 1 + \frac{St\"{o}rzeiten > 15\,Min}{Arbeitszeit\,WSH}$$

 $F_{St\"{o}r} = frei\ w\"{a}hlbar, im\ Modell\ ist\ als\ Defaultwert\ 1.0\ gesetzt$

Da grössere Störungen schwer vorhersehbar sind, wird hier kein Zeitzuschlag für Störungen berechnet. Das Risiko von Unterbrüchen durch Störungen kann direkt bei den Kosten als prozentualer Zuschlag berücksichtigt werden.

5.2 Kosten

Transportkosten = PMH₁₅ x Kostenansatz LKW inkl. Fahrer

Wichtiger Hinweis:

In der Praxis wird mit einem einzigen Kostenansatz für LKW inkl. Fahrer gerechnet. Alle übrigen bezahlten Zeiten (indirekte Zeiten, bezahlte Weg- und Pausenzeiten) sind in der Regel darin eingeschlossen. Folglich müssen wir in unserer Kostenberechnung die Kostenansätze auf die produktive Arbeitszeit PMH₁₅ anwenden und **nicht** auf die Arbeitsplatzzeit WPSH wie bei den anderen Produktivitätsmodellen.

Tabelle 5: Kostenansätze für LKW mit Hakengerät, inkl. Fahrer.

LKW	[CHF/PMH ₁₅]*
4-Achs-Hakengerät	170 - 220
5-Achs-Hakengerät	190 - 250

^{*} Kostenrahmen aufgrund einer Internetrecherche, Werte verschiedener Transportunternehmungen. Die Kostenansätze enthalten die LSVA sowie 8% Mehrwertsteuer. Einzelne Transportunternehmungen verrechnen für lange Fahrdistanzen zusätzlich LSVA von rund 2.00 CHF/km. Die Verrechnung von Wartezeiten wird unterschiedlich gehandhabt: einzelne Transportunternehmungen verrechnen den gleichen Kostenansatz wie beim Transport, andere einen leicht reduzierten.

5.3 Energieinhalt der Hackschnitzel

Hackschnitzel werden häufig über den Energieinhalt abgerechnet. Für Erlösschätzungen können die Werte in Tabelle 3 verwendet werden.

Tabelle 3: Energieinhalt für verschiedene Holzarten und drei unterschiedliche Trocknungsgrade (Kollmann 1981).

	waldfrisch Wassergehalt 55%		_	trocknet ehalt 35%	absolut trocken Wassergehalt 0%	
Holzarten	[kWh/m ³]	[kWh/Srm]	[kWh/m ³]	[kWh/Srm]	[kWh/m ³]	[kWh/Srm]
Fichte	1656	662	1832	733	1971	788
Kiefer	1883	753	2083	833	2241	896
Buche	2326	930	2586	1034	2790	1116
Eiche	2380	952	2646	1058	2855	1142
Pappel	1472	589	1636	654	1765	706
Ndh (Fi)	1656	662	1832	733	1971	788
Lbh (Bu)	2326	930	2586	1034	2790	1116

5.4 Berechnungsbeispiel für den Transport von Hackschnitzeln

Annahmen: Transport mit 4-Achs-Hakengerät und Mulde von 40 Srm; Hackschnitzel aus waldfrischem Nadel- und Laub-Restholz; Fahrdistanzen: Waldstrasse 10 km, inner-/ausserorts 5 km, Autobahn 5 km. Grün = Eingangsgrössen, rot = berechnete Grössen.

Berechnungsergebnisse

Fahrzeug 4-Achs LKW]
	Wert	Einheit	Bemerkungen
Nutzlast Transportfahrzeug NL _t	22	t	
Ladevolumen Mulde NL _V	40	Srm	
Hackgutart: Restholz, waldfrisch			Wassergehalt 55%
Fi	100	Anteil in %	
Fö	0	Anteil in %	
Bu	0	Anteil in %	
Ei	0	Anteil in %	
Spezifisches Gewicht (Wassergehalt)	208.4	kg/Srm	\$
Distanz auf Waldstrasse	10	km	
Distanz inner- /ausserorts	5	km	
Distanz auf Autobahn	5	km	
Energieinhalt Hackschnitzel	662.0	kWh/Srm	
Ladungsgewicht	8.3	t	
Ladevolumen Mulde NLV	40.0	Srm	
Energieinhalt Hackschnitzel pro Fahrt	26480	kWh/Fahrt	
Hack_Menge pro Fahtzyklus	40.0	Srm	
Dauer der Lastfahrt	41.8	min	
Dauer Lerfahrt	39.7	min	
Dauer Entladen	15.0	min	
Dauer Aufziehen (Muldenwechsel)	10.0	min	
Dauer Transport Waldhackschnitzel	106.5	min	Produktive Arbeitszeit
Produktivität	22.5	Srm/MAS	
Kostenansatz Fahrzeug + Fahrer	200	CHF/MAS	
Kosten	9.8	CHF/Srm	
Kosten pro Fahrt	390.5	CHF/Fahrt	
Kosten pro Srm	9.76	CHF/Srm	
Kosten pro kWh	0.0147	CHF/kWh	

WPSH (Arbeitsplatzzeit) wird beim Transport nicht separat ausgewiesen, da Weg- und Pausenzeiten mit dem Kostenansatz des LKW verrechnet werden. Hingegen wird die Arbeitszeit berechnet also die produktive Arbeitszeit mal den Faktor für indirekte Arbeitszeiten (unvermeidbare Verlustzeiten>15 Min).

6. Literaturverzeichnis

Björheden, R., Apel, K., Shiba, M., Thompson, M. (1995): IUFRO forest work study nomenclature. Swedish University of Agricultural Science. Dept. of Operational Efficiency, Garpenberg.

Hässig, J. (2007): Produktivität und Kosten beim Transport von Rundholz, Industrieholz, Energieholz und Hackschnitzeln. Interne Berechnungen, unveröffentlicht. Eidg. Forschungsanstalt WSL. Excel-Tabelle.

Kanzian, C., Holzleitner, F., Stampfer, K. und Ashton, S, 2009: Regional energy wood logistics—optimizing local fuel supply. Silva Fennica 43(1). 113-128.

Kollmann, F. (1982): Technologie des Holzes und der Holzwerkstoffe. Band 1, 2. Auflage, Springer Verlag, Berlin, Heidelberg, New York.

7. Beurteilung der Qualität des Modells "Waldhackschnitzel-Transport"

Kriterien	Bewertung			Bemerkungen
Datengrundlage aus den Jahren	2007			ergänzt mit neueren Daten aus Literatur und Internet
Technische Aktualität (Verfahren)	aktuell	teilw.veraltet	veraltet	
Umfang der Datengrundlage	gross	mittel	klein	Untersuchung Hässig (2007), kleine Umfrage bei Transportunternehmern
Anwendbarkeit auf CH-Verhältnisse	gut	mittel	schlecht	
Dokumentation der Anwendung	gut	mittel	gering	
Modell anhand der Grundlagendaten überprüft	ja	nein		
Detaillierungsgrad des Modells	gut	mittel		

Gesamturteil:

Beurteilung durch: R. Lemm, F. Frutig

Datum: 08. Dezember 2018