Problem 3.3.8

Let *S* and *T* be nonempty bounded subsets of \mathbb{R} with $S \subseteq T$. Prove that $\inf T \leq \inf S \leq \sup S \leq \sup T$.

Definitions

The following definitions will be used

Maximum: If m is an upper bound of S and $m \in S$, then m is called the maximum of S.

Minimum: If m is a lower bound of S and $m \in S$, then m is called the minimum of S.

Supremum: If S is bounded above the least upper bound of S is called its Supremum iff

a. $m \ge s$ for all $s \in S$ and,

b. if m' < m, then there exists $s' \in S$ such that s' > m'.

Infimum: If S is bounded below the greatest upper bound of S is called its Infimum iff

a. $m \le s$ for all $s \in S$ and,

b. if m' > m, then there exists $s' \in S$ such that s' < m'.

Assumptions

We define the statement above as $p \Rightarrow q$, where p and q are,

p: S and T be nonempty bounded subsets of \mathbb{R} with $S \subseteq T$

$$q: (\inf T \le \inf S) \land (\inf S \le \sup S) \land (\sup S \le \sup T)$$

We also define $\sim q$ as,

$$\sim q: (\inf T > \inf S) \vee (\inf S > \sup S) \vee (\sup S > \sup T)$$

The structure of the proof will be as follows

$$(p \Rightarrow q) \Leftrightarrow [(p \land \sim q) \Rightarrow c]$$

Because of the nature of $\sim q$, this proof will be done in the following three cases,

- (1) $p \wedge (\inf T > \inf S) \Rightarrow c$
- (2) $p \land (\inf S > \sup S) \Rightarrow c$
- (3) $p \land (\sup S > \sup T) \Rightarrow c$

Proof:

Statement 1

(1)
$$p \wedge (\inf T > \inf S) \Rightarrow c$$

Here the contradiction will lie within the hypothesis (see page 30).

Let $\inf T = m$, $\inf S = q$ and assume $[p \land (\inf T > \inf S)] \Rightarrow c$ to be true.

Part (b) of the definition of infimum for inf S, states that if m' > m, then there exists $s' \in S$ such that s' < m'. So any element in $s' \in S$ must be larger than m. The same logic applies to T, in that any $t' \in T$ must be greater than q.

Now because we assumed that $(\inf T > \inf S)$ to be true or that (q > m) the logic above implies that there exists an $s \in S$ such that $s < t \in T$.

Further, this means that some element in S does not exist in T.

In conjunction with p, this is a contradiction, as T must contain all of the elements in S for $S \subseteq T$ to be true as was assumed.

Statement 2

(2)
$$p \land (\inf S > \sup S) \Rightarrow c$$

The contradiction lies in $(\inf S > \sup S)$, because by definition $(\inf S \le \sup S)$ is true.

Statement 3

(3)
$$p \land (\sup S > \sup T) \Rightarrow c$$

Similar to the logic of the first statement the contradiction lies in the hypothesis.

Let $\sup T = m$, $\sup S = q$ and assume $[p \land (\sup S > \sup T)] \Rightarrow c$ to be true.

Part (b) of the definition of infimum for $\sup S$, states that if m' < m, then there exists $s' \in S$ such that s' > m'. So any element in $s' \in S$ must be smaller than m. The same logic applies to T, in that any $t' \in T$ must be smaller than q.

Now because we assumed that $(\sup S > \sup T)$ to be true or that (m > q) the logic above implies that there exists an $s \in S$ such that $s > t \in T$.

Further, this means that some element in S does not exist in T.

In conjunction with p, this is a contradiction, as T must contain all of the elements in S for $S \subseteq T$ to be true as was assumed.

Conclusion

Thus by the contradiction of all three cases, our original statement, $(p \Rightarrow q)$ is true.