Midterms Revision Guide

30.003 Probability and Statistics, Term 4 $2019\,$

Wei Min Cher

05 Jan 2020

Contents

1	W1:	Probability and Statistics	4
	1.1	Definitions	4
	1.2	Frequency	4
	1.3	Range and mean	4
	1.4	Variance and standard deviation	4
	1.5	Median	5
	1.6	Percentile	5
	1.7	Sample space and events	5
	1.8	Sample Space vs Population	5
	1.9	Set Theory	6
	1.10	De Morgan's Laws	6
	1.11	Axiom of Probability	6
	1.12	Properties of Probability	6
	1.13	Equally likely outcomes	6
2	$\mathbf{W1}$:	: Counting Technique	7
	2.1	Finding probability	7
	2.2	Tuple	7
	2.3	Permutation	7
	2.4	Combination	7
3	W2:	: Conditional Probability	8
	3.1	Law of Total Probability	8
	3.2	Bayes' Theorem	8
	3.3	Independence of Random Variables	9
		3.3.1 Multiplication Rule	9
		3.3.2 Independence of several events	9

4	W2	: Discrete Random Variable	10		
	4.1	Probability Mass Function (PMF) for Discrete RV	10		
	4.2	Bernoulli RV	10		
	4.3	Bernoulli process	10		
	4.4	Binomial distribution	10		
	4.5	Geometric distribution	10		
	4.6	Poisson distribution	11		
	4.7	Cumulative Distribution Function (CDF) $\dots \dots \dots \dots \dots \dots \dots \dots \dots$	11		
5	W3	: Expectation	12		
	5.1	Expected Value	12		
	5.2	Variance	12		
	5.3	Expected Value and Variance of Discrete PMFs	12		
		5.3.1 Bernoulli RV	12		
		5.3.2 Binomial RV	12		
		5.3.3 Geometric RV	13		
		5.3.4 Poisson RV	13		
6	W 3:	W3: Continuous Random Variable			
	6.1	Probability Density Function (PDF) for Continuous RV $\ \ldots \ \ldots \ \ldots \ \ldots$	13		
	6.2	Uniform Distribution	13		
	6.3	Exponential Distribution	13		
	6.4	Normal/Gaussian Distribution	13		
	6.5	Cumulative Distribution Function (CDF) $\dots \dots \dots$	13		
		6.5.1 Obtaining PDF from CDF	14		
	6.6	Expected Value	14		
	6.7	Variance	14		
	6.8	Expected Value and Variance of Continuous PDFs	14		
		6.8.1 Uniform RV	14		
		6.8.2 Exponential RV	14		
7	W4	: Useful Distributions	15		
	7.1	Poisson Approximation of Binomial Distributions	15		
	7.2	Relationship between Poisson and Exponential Distributions	15		
	7.3	Memoryless Property of Exponential Distribution	15		
	7.4	Standard Normal Distribution	16		
		7.4.1 z_{α} Notation	16		
	7.5	Standardizing A Normal Distribution	16		

8	W4:	Joint Probability Distribution	17
	8.1	Joint Probability Mass Function	17
	8.2	Marginal Probability Mass Function	17
	8.3	Joint Probability Density Function	17
	8.4	Marginal Probability Density Function	18
	8.5	Multiple Random Variables	18
	8.6	Independence of Random Variables	18
9	W5:	Conditional Distribution	19
	9.1	Conditional Probability Mass Function	19
	9.2	Conditional Probability Density Function	19
	9.3	Conditional Distribution	19
	9.4	Conditional Expectation	19
	9.5	Conditional Mean	19
	9.6	Conditional Variance	20
	9.7	Law of Total Expectation	20
	9.8	Covariance	20
	9.9	Correlation	21
10	W5:	Central Limit Theorem	21
	10.1	Linear Combination of One RV	21
	10.2	Linear Combination of Two RVs	21
	10.3	Linear Combination of Multiple RVs $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$.	22
	10.4	Linear Combination of Independent and Identically Distributed RVs $\ \ldots \ \ldots \ \ldots \ \ldots$	22
	10.5	Linear Combination of Normal RVs	22
	10.6	Sample Mean	22
	10.7	Central Limit Theorem	23

1 W1: Probability and Statistics

1.1 Definitions

• Population: well defined collection of objects

• Sample: subset of population selected in certain manner

• Variable: any characteristic whose value may change from one object to another in population

• Probability: properties of populations known, question regarding sample taken from population are investigated (deductive reasoning)

• Statistics: characteristics of sample known from experiments, conclusions regarding population are made (inductive reasoning)

1.2 Frequency

• Frequency: number of times value occurs in data set

• Relative frequency: fraction or proportion of times the value occurs

1.3 Range and mean

• Range: difference between largest and smallest sample values

• Mean: average of all values

• Population mean is denoted by μ

• Sample mean is denoted by \bar{x} , where

$$\bar{x} = \frac{\sum x_i}{n}$$
, and n denoting the number of data points

1.4 Variance and standard deviation

• Variance: measures variability of data set

• Population variance is denoted by σ^2 , where

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
, and N denoting the size of the population

4

• Sample variance is denoted by s^2 , where

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$
, and n denoting the size of the sample

• Standard deviation is denoted as σ for population variance and s for sample variance, and is calculated either by:

$$\sigma = \sqrt{\sigma^2}$$
, or $s = \sqrt{s^2}$

where σ^2 is the population variance and s^2 is the sample variance

• Shortcut to calculate population variance:

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} x_i^2 - \mu^2$$

1.5 Median

• Median: the middle value in a data set

1.6 Percentile

- value below which a given percentage of observations falls
- data set is ordered as $x_1' \le x_2' \le \cdots \le x_n'$, where x_1' and x_n' are the smallest and largest data values respectively
- x_i' corresponds to the $\frac{100(i-0.5)}{n}$ th percentile

1.7 Sample space and events

- Sample space: the set of all possible outcomes of an experiment
 - 1. Collectively exhaustive
 - 2. Mutually exclusive
- ullet Event: collection of outcomes contained in sample space Ω
 - 1. Simple event: exactly one outcome
 - 2. Compound event: > 1 outcome

1.8 Sample Space vs Population

- Sample space: contains mutually exclusive events
- Population: events can repeat many times

1.9 Set Theory

- Null event, \varnothing : event with no outcome
- Events A and B are mutually exclusive/disjoint if $A \cap B = \emptyset$

1.10 De Morgan's Laws

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$
$$A \cup B = A + B - A \cap B$$

1.11 Axiom of Probability

- 1. For any event A, $P(A) \leq 0$.
- 2. $P(\Omega) = 1$
- 3. Any infinite collection of mutually exclusive/disjoint events $A_1, A_2, A_3, \dots, A_n$ satisfies

$$P(A_1 \cup A_2 \cup A_3 \cup \ldots \cup A_n) = \sum_{i=1}^{\infty} P(A_i)$$

1.12 Properties of Probability

- For any event A, $P(A) + P(A^c) = 1$.
- $P(\Omega) = P(A \cup A^c) = P(A) + P(A^c)$ \therefore A and A^c are disjoint
- For any event A, $P(A) \leq 1$.
- For a null event \emptyset , $P(\emptyset) = 0$
 - \circ Does \mathbf{NOT} suggest $A=\varnothing$
- Similarly, P(A) = 1 does **NOT** suggest $A = \Omega$

1.13 Equally likely outcomes

 $P(\text{equally likely event}) = \frac{1}{n}$, where n is the number of equally likely events

2 W1: Counting Technique

2.1 Finding probability

• Computing probability → counting

$$P(A) = \frac{N(A)}{N}$$

 \circ where N(A) is the number of outcomes for event A, and N is the number of outcomes in the sample space

2.2 Tuple

- \bullet Group of k elements: k-tuple
- The 1st element is selected in n_1 ways; the 2nd element is selected in n_2 ways; the kth element is selected in n_k ways; such that the elements are selected independently.

2.3 Permutation

- Ordered subset
- Number of permutations of size k formed from n objects:

$$P_{k,n} = \frac{n!}{(n-k)!}$$

2.4 Combination

- Unordered subset of a group
- Number of combinations of size k formed from n objects:

$$\binom{n}{k}$$
 or $C_{k,n} = \frac{P_{k,n}}{k!} = \frac{n!}{k!(n-k)!}$

• Disregards the different outcomes due to order

3 W2: Conditional Probability

• Probability of event A given that event B has occurred: P(A|B)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

3.1 Law of Total Probability

• Let A_1, A_2, \ldots, A_k be mutually exclusive and exhaustive events. For any other event B,

$$P(B) = \sum_{i=1}^{k} P(B \mid A_i) P(A_i)$$

3.2 Bayes' Theorem

$$P(A_j \mid B) = \frac{P(A_j \cap B)}{P(B)}$$

$$= \frac{P(B \cap A_j)}{P(B)}$$

$$= \frac{P(B \mid A_j)P(A_j)}{\sum_{i=1}^k P(B \mid A_i)P(A_i)}$$

3.3 Independence of Random Variables

- Independence: occurrence/non-occurrence of one event has no bearing on the chance that the other will occur
 - $\circ P(A \mid B) = P(A)$: A and B are independent
 - $\circ P(A \mid B) \neq P(A)$: A and B are not independent
- Independence of A and B also implies $P(B \mid A) = P(B)$ if P(A) > 0

3.3.1 Multiplication Rule

• A and B are independent iff. $P(A \cap B) = P(A)P(B)$

3.3.2 Independence of several events

$$P(A_{i1} \cap A_{i2} \cap ... \cap A_{ik}) = P(A_{i1})P(A_{i2})...P(A_{ik})$$

4 W2: Discrete Random Variable

4.1 Probability Mass Function (PMF) for Discrete RV

 \bullet For any pmf, $p(x) \leq 0$ and $\sum_{\text{all possible x}} p(x) = 1$

4.2 Bernoulli RV

• pmf of any Bernoulli RV:

$$p(x;\alpha) = \begin{cases} 1 - \alpha, & \text{if } x = 0 \\ \alpha, & \text{if } x = 1 \\ 0, & \text{otherwise} \end{cases}$$

• α is a parameter, where $0 < \alpha < 1$

4.3 Bernoulli process

• A process with repeated independent trials

• 2 outcomes: 1 (success), 0 (failure)

• Success rate of trials is the same

4.4 Binomial distribution

• pmf of binomial RV:

$$p(x; n, p) = \begin{cases} C_{x,n} p^x (1-p)^{n-x}, & x = 0, 1, \dots, n \\ 0, & \text{otherwise} \end{cases}$$

 \circ where n is the number of trials, and p is the success rate of each trial

4.5 Geometric distribution

 \bullet Probability distribution of number of Bernoulli trials X needed to get 1 success

• If X = x, x - 1 failures followed by success

• pmf of geometric RV:

$$p(x) = \begin{cases} p(1-p)^{x-1}, & x = 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

 $\circ\,$ where p is the success rate of each trial

4.6 Poisson distribution

- Used to model the number of occurrences of events in a time interval, where the average occurrence is $\boldsymbol{\lambda}$
- pmf of Poisson RV:

$$p(x;\lambda) = \begin{cases} \frac{\lambda^x e^{-\lambda}}{x!}, & x = 0, 1, \dots \\ 0, & \text{otherwise} \end{cases}$$

 $\circ\,$ where λ is the parameter of Poisson distribution

4.7 Cumulative Distribution Function (CDF)

• CDF F(x) of discrete RV X with pmf p(x):

$$F(x) = P(X \le x) = \sum_{y:y \le x} p(y)$$

- F(x) is the probability that the observed value is at most x
- Graph of F(x) for discrete RV X is the linear combination of step functions, such that

$$\lim_{x \to -\infty} F(x) = 0$$
 and $\lim_{x \to \infty} F(x) = 1$

5 W3: Expectation

5.1 Expected Value

• Expected value E(X)

$$E(X) = \mu_x = \sum_{x \in D} x \cdot p(x)$$
, provided that $\sum_{x \in D} |x| \cdot p(x) < \infty$

• Expected value of a function E[h(X)]

$$E[h(X)] = \mu_{h(x)} = \sum_{x \in D} h(x) \cdot p(x)$$

• Expected value of a linear function aX + b

$$E(aX + b) = aE(X) + b$$

5.2 Variance

• Variance V(X)

$$V(X) = \sum_{x \in D} (x - \mu)^2 p(x) = E[(X - \mu)^2]$$
, provided that the expectation exists \mathbf{OR}

Population variance,
$$\sigma^2 = V(X) = E(X^2) - [E(X)]^2$$

• Variance of a function V[h(X)]

$$V[h(X)] = \sum_{x \in D} \{h(x) - [E(X)]\}^2 \cdot p(x)$$

• Variance of a linear function aX + b

$$V(aX + b) = a^{2}V(X)$$
$$\sigma_{aX+b} = |a|\sigma_{x}$$

5.3 Expected Value and Variance of Discrete PMFs

5.3.1 Bernoulli RV

- Expected value E(X) = p
- Variance V(X) = p(1-p)

5.3.2 Binomial RV

- Expected value E(X) = np
- Variance V(X) = np(1-p)

5.3.3 Geometric RV

- Expected value $E(X) = \frac{1}{p}$
- Variance $V(X) = \frac{1-p}{p^2}$

5.3.4 Poisson RV

- Expected value $E(X) = \lambda$
- Variance $V(X) = \lambda$

6 W3: Continuous Random Variable

6.1 Probability Density Function (PDF) for Continuous RV

• Probability described by the probability density function (pdf), measured between an interval

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

6.2 Uniform Distribution

$$pdf f(x; a, b) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

6.3 Exponential Distribution

$$pdf f(x; \lambda) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

6.4 Normal/Gaussian Distribution

pdf
$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

6.5 Cumulative Distribution Function (CDF)

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u)du$$

13

- Capital F means CDF, while small F means PDF
- For any a: P(x > a) = 1 F(a)
- Between a and b: $P(a \le X \le b) = F(b) F(a)$

6.5.1 Obtaining PDF from CDF

$$f(x) = F'(x)$$

• The PDF is the derivative of the CDF.

6.6 Expected Value

• Expected value E(X)

$$E(X) = \mu_x = \sum_{x \in D} x \cdot p(x)$$
, provided that $\int_{\infty}^{\infty} |x| \cdot p(x) < \infty$

• Expected value of a function E[h(X)]

$$E[h(X)] = \mu_{h(x)} = \int_{-\infty}^{\infty} h(x)f(x)dx$$

• Expected value of a linear function aX + b

$$E(aX + b) = aE(X) + b$$

6.7 Variance

• Variance V(X)

$$V(X) = \mu_X^2 = E[(X - \mu)^2]$$
$$= E(X^2) - [E(X)]^2$$

• Variance of a linear function aX + b

$$V(aX + b) = a^{2}V(X)$$
$$\sigma_{aX+b} = |a|\sigma_{x}$$

6.8 Expected Value and Variance of Continuous PDFs

6.8.1 Uniform RV

- Expected value $E(X) = \frac{1}{2}(a+b)$
- Variance $V(X) = \frac{1}{12}(b-a)^2$

6.8.2 Exponential RV

- Expected value $E(X) = \frac{1}{\lambda_E}$
- Variance $V(X) = \frac{1}{\lambda^2}$

7 W4: Useful Distributions

7.1 Poisson Approximation of Binomial Distributions

For any binomial distribution where n is large and p is small, such that np > 0,

$$b(x; n, p) \approx p(x; \lambda)$$
, where $\lambda = np$

• Approximation can be safely applied if n > 50 and np < 5

7.2 Relationship between Poisson and Exponential Distributions

- Poisson distribution: Often used to model the number of occurrence of events in a time interval
- Exponential distribution: Often used to model the elapsed time between two successive events

Let X_1, X_2, \ldots be the time when the 1st, 2nd, ... event occur.

The probability of waiting not more than t for the first event is $P(X_1 \le t)$.

Deriving via Poisson Distribution

$$P(X_1 \le t) = 1 - P(X_1 > t)$$

$$= 1 - P(\text{no event in } [0, t])$$

$$= 1 - \frac{\lambda^0 e^{-\lambda}}{0!}$$

$$= 1 - e^{-\lambda}$$

$$= 1 - e^{-\alpha t}, \text{ where } \lambda = \alpha t$$

Deriving via Exponential Distribution

$$P(X_1 \le t) = 1 - P(X_1 > t)$$

$$= 1 - \int_t^\infty \alpha e^{-\alpha x} dx$$

$$= 1 - \left[\frac{\alpha}{-\alpha} e^{-\alpha x} \right]_t^\infty$$

$$= 1 - e^{-\alpha t}$$

The rate of occurrence α in the Poisson distribution is the parameter of the exponential distribution.

7.3 Memoryless Property of Exponential Distribution

- Distribution of waiting time until a certain event does not depend on how much time has elapsed
- e.g. P(bulb can last for 600 h) = P(bulb can last for 900 h | bulb can last for 300 h)

7.4 Standard Normal Distribution

- Parameters: mean $\mu = 0$, variance $\sigma^2 = 1$
- Abbreviated $Z \sim N(0, 1)$
- pdf of Z:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \quad -\infty < z < \infty$$

• cdf of Z:

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} f(u) \ du$$

- Result can be found using standard normal table

7.4.1 z_{α} Notation

- Denotes value on the z axis for which α of the area under the z curve lies to the **RIGHT** of z_{α}
- $100(1-\alpha)$ th percentile of the standard normal distribution

7.5 Standardizing A Normal Distribution

- Normal RV: $X \sim N(\mu, \sigma^2)$
- Standard Normal RV: $Z = \frac{X \mu}{\sigma}$
- Similarly,

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right)$$
$$= \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

8 W4: Joint Probability Distribution

8.1 Joint Probability Mass Function

The joint probability mass function p(x, y) is defined for each pair of numbers (x, y) by

$$p(x,y) = P(X = x \text{ and } Y = y)$$

It must satisfy the following conditions:

- 1. $p(x,y) \ge 0$
- 2. $\sum_{x} \sum_{y} p(x, y) = 1$

The probability $P[(X, Y) \in A]$ is obtained by summing the joint pmf over pairs in A:

$$P[(X,Y) \in A] = \sum_{(x,y)} \sum_{\in A} p(x,y)$$

8.2 Marginal Probability Mass Function

The marginal probability mass function of x, $p_X(x)$ is given by

$$p_X(x) = \sum_{y:p(x,y)>0} p(x,y)$$
 for each possible value of x .

Similarly, the marginal probability mass function of y, $p_X(x)$ is given by

$$p_Y(y) = \sum_{x:p(x,y)>0} p(x,y)$$
 for each possible value of y.

- The word "marginal" indicates that the pmf is obtained from the joint probability distribution.
- We can obtain the marginal pmf from the joint pmf, however the reverse is not always true.

8.3 Joint Probability Density Function

The joint probability density function f(x, y) for two different RV is satisfies two conditions:

- 1. $f(x,y) \ge 0$
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \ dx \ dy = 1$

For any two dimensional set A, where $a \le x \le b$, $c \le y \le d$,

$$P[(X,Y) \in A] = \iint_A f(x,y) \, dx \, dy$$
$$= \int_a^b \int_c^d f(x,y) \, dx \, dy$$

• $P[(X,Y] \in A]$ is the volume beneath the surface above the region A

8.4 Marginal Probability Density Function

The marginal probability density function of X and Y, denoted by $f_X(x)$ and $f_Y(y)$ respectively, are

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy, \quad -\infty < x < \infty$$
$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx, \quad -\infty < y < \infty$$

- Marginal pdf of X is the pdf of X
- The word "marginal" indicates that the pdf is obtained from the joint probability distribution.
- We can obtain the marginal pdf from the joint pdf, however the reverse is not always true.

8.5 Multiple Random Variables

If X_1, X_2, \dots, X_n are all discrete RVs, the joint pmf of the variables is

$$p(x_1, x_2, \dots, x_n) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

If X_1, X_2, \ldots, X_n are all continuous RVs, the joint pdf of the variables with intervals $[a_1, b_1], \ldots, [a_n, b_n]$ is

$$P(a_1 \le X_1 \le b_1, a_2 \le X_2 \le b_2, \dots, a_n \le X_n \le b_n)$$

$$= \int_{a_1}^{b_1} \int_{a_2}^{b_2} \dots \int_{a_n}^{b_n} f(x_1, x_2, \dots, x_n) \ dx_n \dots dx_2 \ dx_1$$

8.6 Independence of Random Variables

Two RVs X and Y are said to be independent if for every pair of x and y values:

$$p(x,y) = p_X(x) \cdot p_Y(y) \quad \text{for discrete RV}$$

$$f(x,y) = f_X(x) \cdot f_Y(y) \quad \text{for continuous RV}$$

If the above is not satisfied for all (x, y), then X and Y are dependent.

9 W5: Conditional Distribution

9.1 Conditional Probability Mass Function

Let X and Y be two discrete RVs with pmf p(x, y).

For any value x for which p(x) > 0, the conditional probability mass function of Y given that X = x is

$$p_{Y|X}(y \mid x) = \frac{p(x,y)}{p_X(x)}$$

where $p_X(x)$ is the marginal pmf of X.

9.2 Conditional Probability Density Function

Let X and Y be two continuous RVs with pdf f(x, y). For any value x for which f(x) > 0, the conditional probability density function of Y given that X = x is

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$$

where $f_X(x)$ is the marginal pdf of X.

9.3 Conditional Distribution

• The summation of the conditional pmf or pdf over the entire sample space is 1.

$$\sum_y p_{Y|X}(y\mid x) = 1 \quad \text{for discrete RVs X and Y}$$

$$\int_{-\infty}^\infty f_{Y|X}(y\mid x) dy = 1 \quad \text{for continuous RVs X and Y}$$

9.4 Conditional Expectation

Let X and Y be jointly distributed RVs with pmf p(x, y) or pdf f(x, y). The expected value of a function h(X, Y), denoted by E[h(X, Y)] or $\mu_{h(X, Y)}$ is given by

$$E[(h(X,Y)] = \begin{cases} & \sum_{x} \sum_{y} h(x,y) p(x,y) & \text{for discrete RVs X and Y} \\ & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f(x,y) & \text{for continuous RVs X and Y} \end{cases}$$

9.5 Conditional Mean

Let X and Y be jointly distributed RVs with pmf p(x,y) or pdf f(x,y). The conditional mean of Y, given that X = x, denoted by $\mu_{Y|x}$ is given by

$$\mu_{Y|x} = E(Y \mid x) = \begin{cases} & \sum_{y} yp(y \mid x) & \text{for discrete RVs X and Y} \\ & \sum_{y} h(y)f(y \mid x)dy & \text{for continuous RVs X and Y} \end{cases}$$

9.6 Conditional Variance

Let X and Y be jointly distributed RVs with pmf p(x,y) or pdf f(x,y). The conditional mean of Y, given that X=x. denoted by $\sigma^2_{Y|x}$ is given by

$$\sigma_{Y|x}^2 = E\{[Y - E(Y \mid x)]^2\}$$

= $E(Y^2 \mid x) - [E(Y \mid x)]^2$

9.7 Law of Total Expectation

If X is a RV, and Y is a RV in the same probability space, then

$$E\left[E(X\mid Y)\right] = E(X)$$

i.e. expected value of the conditional expected value of X given Y is the = expected value of X

9.8 Covariance

The covariance between two variables X and Y, denoted by $\sigma_{X,Y}$ is given by

$$\begin{split} \sigma_{X,Y} &= K(X,Y) = E[(X-\mu_x)(Y-\mu_y)] \\ &= \left\{ \begin{array}{ll} \sum_x \sum_y (x-\mu_x)(y-\mu_y) \ p(x,y) & \text{for discrete RVs X and Y} \\ \int_x \int_y (x-\mu_x)(y-\mu_y) \ f(x,y) \ dx \ dy & \text{for continuous RVs X and Y} \end{array} \right. \end{split}$$

- Shortcut formula: K(X,Y) = E(XY) E(X)E(Y)
- Value of covariance:
 - o Positive $\sigma_{X,Y}$: positive linear relationship between X and Y
 - o Near-zero $\sigma_{X,Y}$: no linear relationship between X and Y
 - Negative $\sigma_{X,Y}$: negative linear relationship between X and Y

9.9 Correlation

• Correlation coefficient $\rho_{X,Y}$: measure of degree of linear relationship between two RVs X and Y

$$\rho_{X,Y} = \widetilde{K}(X,Y) = \frac{K(X,Y)}{\sigma_X \sigma_Y}$$

- \circ It is always true that $-1 \le \rho_{X,Y} \le 1$
- If X and Y, then $\rho_{X,Y} = 0$
 - $\circ\,$ BUT $\rho_{X,Y}$ does not imply independence between X and Y
- Measure of linear relationship:
 - $\circ |\rho| = 1$: Strong linear relationship between X and Y
 - $\circ |\rho| \neq 1$: Not completely linear relationship between X and Y; could be strong non-linear relationship
 - $\circ \rho = 0$: X and Y are uncorrelated

10 W5: Central Limit Theorem

10.1 Linear Combination of One RV

For a linear combination of one RV X, denoted by aX + b, the mean and variance are as follows:

- Mean, E(aX + b) = aE(X) + b
- Variance, $V(aX + b) = a^2 E(X)$

10.2 Linear Combination of Two RVs

For a linear combination of two RVs X and Y, where W = aX + bY, the mean and variance are as follows:

	X, Y independent	X, Y dependent
Mean, $E(W)$	aE(X) + bE(Y)	
Variance, $V(W)$	$a^2V(X) + b^2V(Y)$	$\boxed{a^2V(X) + b^2V(Y) + 2abK(X,Y)}$

10.3 Linear Combination of Multiple RVs

For a linear combination of multiple RVs X_1, X_2, \ldots, X_n , where $W = \sum_{i=1}^n a_i x_i$, the mean and variance are as follows:

	RVs independent	RVs dependent	
Mean, $E(W)$		$\sum_{i=1}^{n} a_i E(X_i)$	
Variance, $V(W)$	$\sum_{i=1}^{n} a_i^2 V(X_i)$	$\sum_{i=1}^{n} a_i^2 V(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} a_i a_j K(X_i, X_j)$	

10.4 Linear Combination of Independent and Identically Distributed RVs

For a linear combination of independent and identically distributed (iid) RVs X_1, X_2, \dots, X_n where $W = \sum_{i=1}^n X_i$ with mean μ and variance σ^2 , the mean and variance are as follows:

• Mean,
$$E(W) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} \mu = n\mu$$

• Variance,
$$V(W) = \sum_{i=1}^{n} V(X_i) = \sum_{i=1}^{n} \sigma^2 = n\sigma^2$$

10.5 Linear Combination of Normal RVs

For two normal RVs X and Y, where $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$, the linear combination W = X + Y is also a normal RV with mean $\mu_X + \mu_Y$ and variance $\sigma_X^2 + \sigma_Y^2$, i.e.

$$W \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

22

10.6 Sample Mean

Let X_1, X_2, \dots, X_n be iid RVs with mean μ and variance σ^2 .

The sample mean \overline{X} can be calculated using the formula $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

The mean and variance of \overline{X} is as follows:

• Mean,
$$E(\overline{X}) = \mu$$

• Variance,
$$V(\overline{X}) = \frac{\sigma^2}{n}$$

10.7 Central Limit Theorem

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . The sample mean \overline{X} can be calculated using the formula $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

For a sufficiently large n, i.e. $\mathbf{n} \leq \mathbf{30}$, \overline{X} has approximately a normal distribution with mean $E(\overline{X})$ and variance $V(\overline{X})$ as follows:

- Mean, $E(\overline{X}) = \mu$
- Variance, $V(\overline{X}) = \frac{\sigma^2}{n}$

If the distribution is close to a normal pdf, a small n yields a good approximation to a normal distribution.