Appunti di Analisi Matematica

Gabriel Rovesti

21 aprile 2025

Indice

1	Ele	menti introduttivi	Ę				
	1.1	Numeri razionali	1				
	1.2	Numeri reali	6				
	1.3	Numeri complessi	7				
	1.4	Principio di induzione	8				
2	Fun	nzioni	11				
	2.1	Definizioni fondamentali	11				
	2.2	Composizione e invertibilità	11				
	2.3	Proprietà delle funzioni	12				
	2.4	Funzioni elementari	12				
3	Limiti di funzioni di una variabile reale						
	3.1	Topologia della retta reale	13				
	3.2	Limiti	13				
	3.3	Confronto tra infiniti e infinitesimi	15				
4	Successioni 17						
	4.1	Definizioni e proprietà	17				
	4.2	Sottosuccessioni e criterio di Cauchy	18				
5	Funzioni continue di una variabile reale						
	5.1	Definizioni e proprietà	19				
	5.2	Teoremi fondamentali	19				
6	Calcolo differenziale per funzioni di una variabile reale						
	6.1	Definizione di derivata	21				
	6.2		22				
	6.3		22				
	6.4		23				
	6.5	Formula di Taylor	24				
7	Serie numeriche						
	7.1	Definizioni e proprietà	27				
	7.2	Serie geometrica	27				
	7.3	Criteri di convergenza	28				
	7.4	Convergenza assoluta	31				
8	Cal	colo integrale per funzioni di una variabile reale	33				
	8.1	Integrale di Cauchy-Riemann	33				
	8.2		33				
	8.3	Proprietà dell'integrale	34				

4 IN	DICE
--------	------

	8.5	Calcolo dell'integrale	36			
9	Equazioni differenziali del primo ordine					
	9.1	Introduzione	39			
	9.2	Equazioni a variabili separabili	39			
	9.3	Equazioni lineari del primo ordine	40			
	9.4	Equazioni lineari del secondo ordine a coefficienti costanti	40			
10 Cenni su alcune generalizzazioni dell'Analisi						
_0		Calcolo differenziale in più variabili	41			

Elementi introduttivi

1.1 Numeri razionali

Definizione 1.1. I numeri razionali formano l'insieme \mathbb{Q} definito come:

$$\mathbb{Q} = \left\{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \right\}$$
 (1.1)

Proprietà 1.2 (Proprietà di densità dei razionali). Dati due numeri razionali $a, b \in \mathbb{Q}$ con a < b, esiste sempre un numero razionale $c \in \mathbb{Q}$ tale che a < c < b.

Dimostrazione. Dato $a, b \in \mathbb{Q}$ con a < b, possiamo considerare $c = \frac{a+b}{2}$. Poiché \mathbb{Q} è chiuso rispetto alle operazioni di somma e divisione per un numero intero non nullo, abbiamo che $c \in \mathbb{Q}$. Inoltre, è immediato verificare che a < c < b, infatti:

$$a < c \iff a < \frac{a+b}{2} \iff 2a < a+b \iff a < b$$
 (1.2)

$$c < b \iff \frac{a+b}{2} < b \iff a+b < 2b \iff a < b$$
 (1.3)

Entrambe le disuguaglianze sono vere per ipotesi, quindi a < c < b.

Teorema 1.3 (Irrazionalità di $\sqrt{2}$). Non esiste alcun numero razionale $r \in \mathbb{Q}$ tale che $r^2 = 2$.

Dimostrazione. Procediamo per assurdo. Supponiamo che esista $r \in \mathbb{Q}$ tale che $r^2 = 2$. Allora esitono $p, q \in \mathbb{Z}$ con $q \neq 0$ e $\mathrm{MCD}(p,q) = 1$ (ovvero p e q sono coprimi) tali che $r = \frac{p}{q}$.

Sostituendo otteniamo:

$$\left(\frac{p}{q}\right)^2 = 2 \iff \frac{p^2}{q^2} = 2 \iff p^2 = 2q^2 \tag{1.4}$$

Da $p^2=2q^2$ deduciamo che p^2 è pari, e quindi anche p è pari (poiché il quadrato di un numero dispari è sempre dispari). Quindi esiste $k\in\mathbb{Z}$ tale che p=2k.

Sostituendo:

$$(2k)^2 = 2q^2 \iff 4k^2 = 2q^2 \iff 2k^2 = q^2$$
 (1.5)

Quindi q^2 è pari, e di conseguenza anche q è pari. Ma questo contraddice l'ipotesi che p e q siano coprimi (poiché avrebbero 2 come divisore comune).

Questa contraddizione dimostra che non può esistere un numero razionale il cui quadrato è 2. $\hfill\Box$

1.2 Numeri reali

Definizione 1.4. I numeri reali formano l'insieme \mathbb{R} , che può essere definito come il completamento metrico di \mathbb{Q} rispetto alla distanza euclidea.

Teorema 1.5 (Teorema di completezza). Ogni sottoinsieme non vuoto di \mathbb{R} superiormente limitato ammette un estremo superiore in \mathbb{R} .

Definizione 1.6. Un intervallo in \mathbb{R} è un sottoinsieme di \mathbb{R} della forma:

- Intervallo chiuso: $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$
- Intervallo aperto: $(a,b) = \{x \in \mathbb{R} : a < x < b\}$
- Intervallo semiaperto a destra: $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$
- Intervallo semiaperto a sinistra: $(a, b] = \{x \in \mathbb{R} : a < x \le b\}$

Definizione 1.7. La retta reale estesa si ottiene aggiungendo a \mathbb{R} i simboli $-\infty$ e $+\infty$, e viene indicata con $\mathbb{R} \cup \{-\infty, +\infty\}$ o $\overline{\mathbb{R}}$.

Definizione 1.8. Il modulo o valore assoluto di un numero reale $x \in \mathbb{R}$ è definito come:

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}$$
 (1.6)

Proprietà 1.9 (Disuguaglianza triangolare). Per ogni $x, y \in \mathbb{R}$ vale:

$$|x+y| \le |x| + |y| \tag{1.7}$$

Dimostrazione. Abbiamo:

$$-(|x| + |y|) \le x + y \le |x| + |y| \tag{1.8}$$

Da cui segue immediatamente che $|x + y| \le |x| + |y|$.

Definizione 1.10. *Un insieme* $A \subseteq \mathbb{R}$ *si dice:*

- Limitato superiormente se esiste $M \in \mathbb{R}$ tale che $x \leq M$ per ogni $x \in A$. In tal caso M si dice maggiorante di A.
- Limitato inferiormente se esiste $m \in \mathbb{R}$ tale che $m \leq x$ per ogni $x \in A$. In tal caso m si dice minorante di A.
- Limitato se è sia limitato superiormente che inferiormente.

Definizione 1.11. Dato un insieme $A \subseteq \mathbb{R}$:

- Si dice massimo di A, e si indica con $\max A$, un elemento $M \in A$ tale che $x \leq M$ per ogni $x \in A$.
- Si dice minimo di A, e si indica con $\min A$, un elemento $m \in A$ tale che $m \le x$ per ogni $x \in A$.

Definizione 1.12. Dato un insieme $A \subseteq \mathbb{R}$:

- Si dice estremo superiore di A, e si indica con sup A, il più piccolo dei maggioranti di A.
- Si dice estremo inferiore di A, e si indica con inf A, il più grande dei minoranti di A.

Teorema 1.13 (Caratterizzazione dell'estremo superiore). Sia $A \subseteq \mathbb{R}$ un insieme non vuoto limitato superiormente. Un numero $\alpha \in \mathbb{R}$ è l'estremo superiore di A se e solo se:

- 1. $x \leq \alpha$ per ogni $x \in A$ (cioè α è un maggiorante di A)
- 2. Per ogni $\varepsilon > 0$ esiste $x \in A$ tale che $x > \alpha \varepsilon$ (cioè α è il più piccolo maggiorante)

Proprietà 1.14 (Proprietà di Archimede). Per ogni numero reale $x \in \mathbb{R}$, esiste un numero naturale $n \in \mathbb{N}$ tale che n > x.

Teorema 1.15 (Densità di \mathbb{Q} in \mathbb{R}). Per ogni $x, y \in \mathbb{R}$ con x < y, esiste un numero razionale $q \in \mathbb{Q}$ tale che x < q < y.

1.3 Numeri complessi

Definizione 1.16. L'unità immaginaria, indicata con i, è definita come la radice quadrata di -1, cioè un numero tale che $i^2 = -1$.

Definizione 1.17. Un numero complesso è un'espressione della forma z = a + bi dove $a, b \in \mathbb{R}$. L'insieme dei numeri complessi è indicato con \mathbb{C} .

Definizione 1.18. Dato un numero complesso z = a + bi:

- a è detto parte reale di z e si denota con $\Re(z)$
- b è detta parte immaginaria di z e si denota con $\Im(z)$
- Il modulo di z è definito come $|z| = \sqrt{a^2 + b^2}$
- Il coniugato di z è definito come $\overline{z} = a bi$

Definizione 1.19. Dati due numeri complessi $z_1 = a_1 + b_1$ i e $z_2 = a_2 + b_2$ i, si definiscono:

- Somma: $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$
- Sottrazione: $z_1 z_2 = (a_1 a_2) + (b_1 b_2)i$
- Moltiplicazione: $z_1 \cdot z_2 = (a_1a_2 b_1b_2) + (a_1b_2 + a_2b_1)i$
- Divisione: $\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 a_1 b_2}{a_2^2 + b_2^2} i$ (per $z_2 \neq 0$)

Definizione 1.20 (Forma trigonometrica). Ogni numero complesso $z = a + bi \neq 0$ può essere scritto nella forma trigonometrica:

$$z = |z|(\cos\theta + i\sin\theta) \tag{1.9}$$

dove θ è l'argomento di z, ovvero l'angolo che il vettore (a,b) forma con l'asse reale positivo.

Teorema 1.21 (Moltiplicazione in forma trigonometrica). Dati due numeri complessi $z_1 = |z_1|(\cos\theta_1 + i\sin\theta_1)$ e $z_2 = |z_2|(\cos\theta_2 + i\sin\theta_2)$, il loro prodotto è:

$$z_1 \cdot z_2 = |z_1||z_2|[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)] \tag{1.10}$$

Dimostrazione.

$$z_1 \cdot z_2 = |z_1|(\cos \theta_1 + i\sin \theta_1) \cdot |z_2|(\cos \theta_2 + i\sin \theta_2) \tag{1.11}$$

$$= |z_1||z_2|[(\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2) + i(\cos\theta_1\sin\theta_2 + \sin\theta_1\cos\theta_2)] \tag{1.12}$$

$$= |z_1||z_2|[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)] \tag{1.13}$$

dove abbiamo usato le formule di addizione del seno e del coseno.

Teorema 1.22 (Divisione in forma trigonometrica). Dati due numeri complessi $z_1 = |z_1|(\cos \theta_1 + i\sin \theta_1)$ e $z_2 = |z_2|(\cos \theta_2 + i\sin \theta_2)$ con $z_2 \neq 0$, il loro quoziente è:

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} [\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)]$$
 (1.14)

Teorema 1.23 (Formula di De Moivre). Per ogni $\theta \in \mathbb{R}$ e $n \in \mathbb{Z}$:

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \tag{1.15}$$

Dimostrazione. La dimostrazione procede per induzione su n.

Base: Per n=1 l'uguaglianza è banalmente verificata.

Passo induttivo: Supponiamo che la formula sia vera per un certo $n \ge 1$, cioè:

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \tag{1.16}$$

Dobbiamo dimostrare che vale anche per n + 1:

$$(\cos\theta + i\sin\theta)^{n+1} = (\cos\theta + i\sin\theta)^n \cdot (\cos\theta + i\sin\theta) \tag{1.17}$$

$$= [\cos(n\theta) + i\sin(n\theta)] \cdot (\cos\theta + i\sin\theta) \tag{1.18}$$

$$= \cos(n\theta)\cos\theta - \sin(n\theta)\sin\theta + i[\sin(n\theta)\cos\theta + \cos(n\theta)\sin\theta]$$
 (1.19)

$$= \cos(n\theta + \theta) + i\sin(n\theta + \theta) \tag{1.20}$$

$$= \cos((n+1)\theta) + i\sin((n+1)\theta) \tag{1.21}$$

Quindi la formula è valida per ogni $n \in \mathbb{N}$. Per n = 0 si verifica facilmente che entrambi i membri sono uguali a 1. Per n < 0, si utilizza la relazione:

$$(\cos\theta + i\sin\theta)^{-n} = \frac{1}{(\cos\theta + i\sin\theta)^n} = \frac{1}{\cos(n\theta) + i\sin(n\theta)} = \cos(-n\theta) + i\sin(-n\theta) \quad (1.22)$$

completando così la dimostrazione.

Definizione 1.24 (Esponenziale complesso). Per ogni $z = a + bi \in \mathbb{C}$, l'esponenziale complesso è definito come:

$$e^z = e^a(\cos b + i\sin b) \tag{1.23}$$

Teorema 1.25 (Calcolo delle radici n-esime). Le radici n-esime di un numero complesso $z = |z|(\cos \theta + i \sin \theta)$ sono date da:

$$z_k = \sqrt[n]{|z|} \left[\cos\left(\frac{\theta + 2\pi k}{n}\right) + i\sin\left(\frac{\theta + 2\pi k}{n}\right) \right], \quad k = 0, 1, \dots, n - 1$$
 (1.24)

1.4 Principio di induzione

Teorema 1.26 (Principio di induzione matematica - Prima forma). Sia P(n) una proprietà relativa ai numeri naturali. Se:

- 1. P(1) è vera (base dell'induzione)
- 2. Per ogni $k \in \mathbb{N}$, se P(k) è vera allora anche P(k+1) è vera (passo induttivo)

Allora P(n) è vera per ogni $n \in \mathbb{N}$.

Teorema 1.27 (Principio di induzione matematica - Seconda forma). Sia P(n) una proprietà relativa ai numeri naturali. Se:

1. P(1) è vera (base dell'induzione)

2. Per ogni $k \in \mathbb{N}$, se P(j) è vera per ogni $j \leq k$, allora anche P(k+1) è vera (passo induttivo) Allora P(n) è vera per ogni $n \in \mathbb{N}$.

Teorema 1.28 (Formula della somma dei primi n numeri interi positivi). Per ogni $n \in \mathbb{N}$:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \tag{1.25}$$

Dimostrazione. Dimostriamo la formula per induzione su n.

Base: Per n = 1 abbiamo:

$$\sum_{i=1}^{1} i = 1 = \frac{1 \cdot (1+1)}{2} = \frac{2}{2} = 1 \tag{1.26}$$

Quindi la formula è vera per n = 1.

Passo induttivo: Supponiamo che la formula sia vera per un certo $k \in \mathbb{N}$, cioè:

$$\sum_{i=1}^{k} i = \frac{k(k+1)}{2} \tag{1.27}$$

Dobbiamo dimostrare che è vera anche per n = k + 1:

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$
 (1.28)

$$=\frac{k(k+1)}{2} + (k+1) \tag{1.29}$$

$$= (k+1)\left(\frac{k}{2} + 1\right) \tag{1.30}$$

$$= (k+1)\frac{k+2}{2} \tag{1.31}$$

$$=\frac{(k+1)(k+2)}{2}\tag{1.32}$$

$$=\frac{(k+1)((k+1)+1)}{2} \tag{1.33}$$

Quindi la formula è valida per ogni $n \in \mathbb{N}$.

Definizione 1.29. Il fattoriale di un numero naturale n, indicato con n!, è definito ricorsivamente come:

$$n! = \begin{cases} 1, & \text{se } n = 0\\ n \cdot (n-1)!, & \text{se } n \ge 1 \end{cases}$$
 (1.34)

Definizione 1.30. I coefficienti binomiali sono definiti come:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}, \quad 0 \le k \le n \tag{1.35}$$

Teorema 1.31 (Formula del binomio di Newton). Per ogni $a, b \in \mathbb{R}$ $e \ n \in \mathbb{N}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 (1.36)

Dimostrazione. Dimostriamo la formula per induzione su n.

Base: Per n = 1 abbiamo:

$$(a+b)^{1} = a+b = {1 \choose 0}a^{1}b^{0} + {1 \choose 1}a^{0}b^{1} = a+b$$
 (1.37)

Quindi la formula è vera per n = 1.

Passo induttivo: Supponiamo che la formula sia vera per un certo $n \in \mathbb{N}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 (1.38)

Dimostriamo che è vera per n + 1:

$$(a+b)^{n+1} = (a+b) \cdot (a+b)^n \tag{1.39}$$

$$= (a+b) \cdot \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \tag{1.40}$$

$$= a \cdot \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k + b \cdot \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$$
 (1.41)

$$= \sum_{k=0}^{n} \binom{n}{k} a^{n+1-k} b^k + \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k+1}$$
(1.42)

$$= \sum_{k=0}^{n} \binom{n}{k} a^{n+1-k} b^k + \sum_{k=1}^{n+1} \binom{n}{k-1} a^{n+1-k} b^k$$
 (1.43)

$$= \binom{n}{0}a^{n+1}b^0 + \sum_{k=1}^n \binom{n}{k}a^{n+1-k}b^k + \sum_{k=1}^n \binom{n}{k-1}a^{n+1-k}b^k + \binom{n}{n}a^0b^{n+1}$$
 (1.44)

$$= a^{n+1} + \sum_{k=1}^{n} \left(\binom{n}{k} + \binom{n}{k-1} \right) a^{n+1-k} b^k + b^{n+1}$$
(1.45)

$$=a^{n+1} + \sum_{k=1}^{n} \binom{n+1}{k} a^{n+1-k} b^k + b^{n+1}$$
(1.46)

$$= \binom{n+1}{0}a^{n+1}b^0 + \sum_{k=1}^n \binom{n+1}{k}a^{n+1-k}b^k + \binom{n+1}{n+1}a^0b^{n+1}$$
 (1.47)

$$=\sum_{k=0}^{n+1} \binom{n+1}{k} a^{n+1-k} b^k \tag{1.48}$$

Nell'ultima parte abbiamo usato la relazione $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$, che è la ben nota relazione ricorsiva per i coefficienti binomiali.

Quindi la formula è valida per ogni $n \in \mathbb{N}$.

Funzioni

2.1 Definizioni fondamentali

Definizione 2.1. Una funzione f da un insieme A a un insieme B, indicata con $f: A \to B$, è una relazione che associa a ogni elemento $x \in A$ uno e un solo elemento $y \in B$, indicato con f(x).

Definizione 2.2. Il grafico di una funzione $f: A \to B$ è l'insieme di tutte le coppie ordinate (x, f(x)) dove $x \in A$:

$$Graf(f) = \{(x, f(x)) : x \in A\}$$

$$(2.1)$$

Definizione 2.3. Data una funzione $f:A\to B$ e un sottoinsieme $E\subseteq A$, l'immagine di E mediante f è:

$$f(E) = \{ f(x) : x \in E \}$$
 (2.2)

Analogamente, dato un sottoinsieme $F \subseteq B$, la controimmagine di F mediante f è:

$$f^{-1}(F) = \{x \in A : f(x) \in F\}$$
(2.3)

2.2 Composizione e invertibilità

Definizione 2.4. Date due funzioni $f: A \to B$ e $g: B \to C$, la composizione di g con f è la funzione $g \circ f: A \to C$ definita da:

$$(g \circ f)(x) = g(f(x))$$
 per ogni $x \in A$ (2.4)

Definizione 2.5. Una funzione $f: A \to B$ si dice iniettiva se per ogni $x_1, x_2 \in A$ con $x_1 \neq x_2$ si ha $f(x_1) \neq f(x_2)$.

Definizione 2.6. Una funzione $f: A \to B$ si dice suriettiva se per ogni $y \in B$ esiste almeno un $x \in A$ tale che f(x) = y.

Definizione 2.7. Una funzione $f: A \to B$ si dice biiettiva se è sia iniettiva che suriettiva.

Definizione 2.8. Se $f: A \to B$ è biiettiva, allora esiste ed è unica la funzione inversa $f^{-1}: B \to A$ definita da:

$$f^{-1}(y) = x \iff f(x) = y \tag{2.5}$$

2.3 Proprietà delle funzioni

Definizione 2.9. Data una funzione $f: A \to \mathbb{R}$ con $A \subseteq \mathbb{R}$, si dice:

- Funzione pari se per ogni $x \in A$ si ha $-x \in A$ e f(-x) = f(x)
- Funzione dispari se per ogni $x \in A$ si ha $-x \in A$ e f(-x) = -f(x)

Definizione 2.10. *Una funzione* $f: A \to \mathbb{R}$ *con* $A \subseteq \mathbb{R}$ *si dice:*

- Crescente se per ogni $x_1, x_2 \in A$ con $x_1 < x_2$ si ha $f(x_1) < f(x_2)$
- Decrescente se per ogni $x_1, x_2 \in A$ con $x_1 < x_2$ si ha $f(x_1) > f(x_2)$
- Monotona se è crescente o decrescente

Definizione 2.11. Una funzione $f: A \to \mathbb{R}$ con $A \subseteq \mathbb{R}$ si dice periodica se esiste un numero T > 0 tale che per ogni $x \in A$ si ha $x + T \in A$ e f(x + T) = f(x). Il più piccolo valore positivo di T per cui vale questa proprietà è detto periodo di f.

2.4 Funzioni elementari

Definizione 2.12 (Funzioni trigonometriche). Le principali funzioni trigonometriche sono:

$$\sin: \mathbb{R} \to [-1, 1], \quad \sin(x) = \sin(x) \tag{2.6}$$

$$\cos: \mathbb{R} \to [-1, 1], \quad \cos(x) = \cos(x) \tag{2.7}$$

$$\tan: \mathbb{R} \setminus \{(2k+1)\pi/2 : k \in \mathbb{Z}\} \to \mathbb{R}, \quad \tan(x) = \frac{\sin(x)}{\cos(x)}$$
 (2.8)

$$\cot: \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\} \to \mathbb{R}, \quad \cot(x) = \frac{\cos(x)}{\sin(x)}$$
 (2.9)

Definizione 2.13 (Funzioni trigonometriche inverse). Le principali funzioni trigonometriche inverse sono:

$$\arcsin: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad \arcsin(y) = x \iff \sin(x) = y$$
 (2.10)

$$\arccos: [-1,1] \to [0,\pi], \quad \arccos(y) = x \iff \cos(x) = y$$
 (2.11)

$$\arctan: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \quad \arctan(y) = x \iff \tan(x) = y$$
 (2.12)

$$arccot: \mathbb{R} \to (0, \pi), \quad arccot(y) = x \iff \cot(x) = y$$
 (2.13)

Definizione 2.14 (Funzioni iperboliche). Le principali funzioni iperboliche sono:

$$\sinh: \mathbb{R} \to \mathbb{R}, \quad \sinh(x) = \frac{e^x - e^{-x}}{2}$$
 (2.14)

$$\cosh : \mathbb{R} \to [1, +\infty), \quad \cosh(x) = \frac{e^x + e^{-x}}{2}$$
(2.15)

$$\tanh : \mathbb{R} \to (-1, 1), \quad \tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 (2.16)

Definizione 2.15 (Funzioni iperboliche inverse). Le principali funzioni iperboliche inverse sono:

$$arcsinh: \mathbb{R} \to \mathbb{R}, \quad arcsinh(y) = \ln(y + \sqrt{y^2 + 1})$$
 (2.17)

$$arccosh: [1, +\infty) \rightarrow [0, +\infty), \quad arccosh(y) = \ln(y + \sqrt{y^2 - 1})$$
 (2.18)

$$arctanh: (-1,1) \to \mathbb{R}, \quad arctanh(y) = \frac{1}{2} \ln \left(\frac{1+y}{1-y} \right)$$
 (2.19)

Limiti di funzioni di una variabile reale

3.1 Topologia della retta reale

Definizione 3.1. Dato $x_0 \in \mathbb{R}$ e r > 0, l'intorno sferico (o semplicemente intorno) di centro x_0 e raggio r è l'insieme:

$$I_r(x_0) = \{ x \in \mathbb{R} : |x - x_0| < r \} = (x_0 - r, x_0 + r)$$
(3.1)

Proprietà 3.2. L'intersezione di due intorni di uno stesso punto è ancora un intorno di quel punto.

Proprietà 3.3 (Proprietà di separazione). Dati due punti distinti $x_1, x_2 \in \mathbb{R}$, esistono due intorni I_1 di x_1 e I_2 di x_2 tali che $I_1 \cap I_2 = \emptyset$.

Definizione 3.4. Sia $A \subseteq \mathbb{R}$ e sia $x_0 \in \mathbb{R}$. Si dice che x_0 è:

- Punto di accumulazione per A se per ogni r > 0 l'insieme $(x_0 r, x_0 + r) \cap (A \setminus \{x_0\})$ è non vuoto.
- Punto isolato di A se $x_0 \in A$ e esiste r > 0 tale che $(x_0 r, x_0 + r) \cap A = \{x_0\}$.

3.2 Limiti

Definizione 3.5. Sia $f: A \to \mathbb{R}$ una funzione definita su un sottoinsieme $A \subseteq \mathbb{R}$, e sia x_0 un punto di accumulazione per A. Si dice che f ha limite $L \in \mathbb{R}$ per x che tende a x_0 , e si scrive:

$$\lim_{x \to x_0} f(x) = L \tag{3.2}$$

se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in A$ con $0 < |x - x_0| < \delta$ si ha $|f(x) - L| < \varepsilon$.

Teorema 3.6 (Teorema di unicità del limite). Sia $f: A \to \mathbb{R}$ una funzione e sia x_0 un punto di accumulazione per A. Se esistono $L_1, L_2 \in \mathbb{R}$ tali che $\lim_{x\to x_0} f(x) = L_1$ e $\lim_{x\to x_0} f(x) = L_2$, allora $L_1 = L_2$.

Dimostrazione. Procediamo per assurdo. Supponiamo che $L_1 \neq L_2$ e sia $\varepsilon = \frac{|L_1 - L_2|}{3} > 0$. Per la definizione di limite, esistono $\delta_1, \delta_2 > 0$ tali che:

per ogni
$$x \in A$$
 con $0 < |x - x_0| < \delta_1$ si ha $|f(x) - L_1| < \varepsilon$ (3.3)

per ogni
$$x \in A$$
 con $0 < |x - x_0| < \delta_2$ si ha $|f(x) - L_2| < \varepsilon$ (3.4)

Sia $\delta = \min\{\delta_1, \delta_2\}$. Per ogni $x \in A$ con $0 < |x - x_0| < \delta$ valgono entrambe le disuguaglianze precedenti. Usando la disuguaglianza triangolare otteniamo:

$$|L_1 - L_2| = |L_1 - f(x) + f(x) - L_2|$$
(3.5)

$$\leq |L_1 - f(x)| + |f(x) - L_2|$$
 (3.6)

$$<\varepsilon+\varepsilon$$
 (3.7)

$$=\frac{2|L_1-L_2|}{3}\tag{3.8}$$

Quindi $|L_1 - L_2| < \frac{2|L_1 - L_2|}{3}$, che è una contraddizione poiché $|L_1 - L_2| > 0$. Pertanto deve essere $L_1 = L_2$.

Definizione 3.7. Sia $f: A \to \mathbb{R}$ una funzione e sia x_0 un punto di accumulazione per A. Si definiscono:

- Limite destro: $\lim_{x \to x_0^+} f(x) = L$ se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in A$ con $x_0 < x < x_0 + \delta$ si ha $|f(x) L| < \varepsilon$.
- Limite sinistro: $\lim_{x\to x_0^-} f(x) = L$ se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in A$ con $x_0 \delta < x < x_0$ si ha $|f(x) L| < \varepsilon$.

Teorema 3.8. Sia $f: A \to \mathbb{R}$ una funzione e sia x_0 un punto di accumulazione per A. Allora $\lim_{x \to x_0} f(x) = L$ se e solo se $\lim_{x \to x_0^+} f(x) = L$ e $\lim_{x \to x_0^-} f(x) = L$.

Teorema 3.9 (Teorema della permanenza del segno). Sia $f: A \to \mathbb{R}$ una funzione e sia x_0 un punto di accumulazione per A. Se $\lim_{x\to x_0} f(x) = L$ e L > 0 (risp. L < 0), allora esiste $\delta > 0$ tale che per ogni $x \in A$ con $0 < |x - x_0| < \delta$ si ha f(x) > 0 (risp. f(x) < 0).

Dimostrazione. Sia $\varepsilon = \frac{L}{2} > 0$ (assumendo L > 0). Per la definizione di limite, esiste $\delta > 0$ tale che per ogni $x \in A$ con $0 < |x - x_0| < \delta$ si ha $|f(x) - L| < \varepsilon = \frac{L}{2}$. Quindi:

$$|f(x) - L| < \frac{L}{2} \iff -\frac{L}{2} < f(x) - L < \frac{L}{2} \iff \frac{L}{2} < f(x) < \frac{3L}{2}$$

$$(3.9)$$

In particolare, $f(x) > \frac{L}{2} > 0$ per ogni $x \in A$ con $0 < |x - x_0| < \delta$. Il caso L < 0 si dimostra in modo analogo.

Teorema 3.10 (Teorema del confronto). Siano $f, g, h : A \to \mathbb{R}$ tre funzioni e sia x_0 un punto di accumulazione per A. Se esiste $\delta > 0$ tale che per ogni $x \in A$ con $0 < |x - x_0| < \delta$ si ha $f(x) \le g(x) \le h(x)$, e se $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$, allora anche $\lim_{x \to x_0} g(x) = L$.

Teorema 3.11 (Teorema dei due carabinieri). Siano $f, g, h : A \to \mathbb{R}$ tre funzioni e sia x_0 un punto di accumulazione per A. Se esiste $\delta > 0$ tale che per ogni $x \in A$ con $0 < |x - x_0| < \delta$ si $ha f(x) \le g(x) \le h(x)$, e se $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = L$, allora anche $\lim_{x\to x_0} g(x) = L$.

Dimostrazione. Sia $\varepsilon > 0$. Poiché $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$, esistono $\delta_1, \delta_2 > 0$ tali che:

per ogni
$$x \in A$$
 con $0 < |x - x_0| < \delta_1$ si ha $|f(x) - L| < \varepsilon$ (3.10)

per ogni
$$x \in A$$
 con $0 < |x - x_0| < \delta_2$ si ha $|h(x) - L| < \varepsilon$ (3.11)

Sia δ_3 il δ dell'ipotesi e sia $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Per ogni $x \in A$ con $0 < |x - x_0| < \delta$ valgono tutte le disuguaglianze precedenti. Quindi:

$$f(x) < L + \varepsilon \tag{3.12}$$

$$h(x) > L - \varepsilon \tag{3.13}$$

Poiché $f(x) \leq g(x) \leq h(x)$, abbiamo:

$$L - \varepsilon < f(x) \le g(x) \le h(x) < L + \varepsilon \tag{3.14}$$

Quindi $|g(x) - L| < \varepsilon$ per ogni $x \in A$ con $0 < |x - x_0| < \delta$, il che prova che $\lim_{x \to x_0} g(x) = L$.

Teorema 3.12 (Limite fondamentale).

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{3.15}$$

Teorema 3.13 (Algebra dei limiti). Siano $f, g: A \to \mathbb{R}$ due funzioni e sia x_0 un punto di accumulazione per A. Se $\lim_{x\to x_0} f(x) = L$ e $\lim_{x\to x_0} g(x) = M$, allora:

$$\lim_{x \to x_0} [f(x) + g(x)] = L + M \tag{3.16}$$

$$\lim_{x \to x_0} [f(x) \cdot g(x)] = L \cdot M \tag{3.17}$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{L}{M} \quad se \ M \neq 0 \tag{3.18}$$

Definizione 3.14 (Numero di Nepero). Il numero di Nepero, denotato con e, è definito come:

$$e = \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x \tag{3.19}$$

3.3 Confronto tra infiniti e infinitesimi

Definizione 3.15. Siano $f, g : A \to \mathbb{R}$ due funzioni e sia x_0 un punto di accumulazione per A. Si dice che:

- $f \ e$ un infinitesimo rispetto a $g \ per \ x \to x_0$ se $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$. Si scrive f(x) = o(g(x)) per $x \to x_0$.
- f e g sono infinitesimi dello stesso ordine per $x \to x_0$ se $\lim_{x \to x_0} \frac{f(x)}{g(x)} = c \neq 0$.
- $f \ \ \dot{e} \ \ un \ \ infinito \ \ rispetto \ \ a \ g \ \ per \ x \to x_0 \ \ se \ \lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty.$

Teorema 3.16 (Principio di sostituzione degli infinitesimi). Siano $f, g, h : A \to \mathbb{R}$ tre funzioni e sia x_0 un punto di accumulazione per A. Se $f(x) \sim g(x)$ per $x \to x_0$ (cioè $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$) e se esiste $\lim_{x \to x_0} \frac{h(x)}{g(x)} = L$, allora esiste anche $\lim_{x \to x_0} \frac{h(x)}{f(x)} = L$.

Dimostrazione. Osserviamo che:

$$\frac{h(x)}{f(x)} = \frac{h(x)}{g(x)} \cdot \frac{g(x)}{f(x)} \tag{3.20}$$

Per ipotesi, $\lim_{x\to x_0} \frac{h(x)}{g(x)} = L$ e $\lim_{x\to x_0} \frac{f(x)}{g(x)} = 1$, quindi $\lim_{x\to x_0} \frac{g(x)}{f(x)} = 1$. Per il teorema sul limite del prodotto:

$$\lim_{x \to x_0} \frac{h(x)}{f(x)} = \lim_{x \to x_0} \frac{h(x)}{g(x)} \cdot \lim_{x \to x_0} \frac{g(x)}{f(x)} = L \cdot 1 = L$$
(3.21)

Successioni

4.1 Definizioni e proprietà

Definizione 4.1. Una successione di numeri reali è una funzione $a : \mathbb{N} \to \mathbb{R}$ che associa ad ogni numero naturale n un numero reale a_n . Si indica con $(a_n)_{n\in\mathbb{N}}$ o semplicemente (a_n) .

Definizione 4.2. Una successione (a_n) si dice:

- Convergente a $L \in \mathbb{R}$ se $\lim_{n\to\infty} a_n = L$, cioè se per ogni $\varepsilon > 0$ esiste $n_0 \in \mathbb{N}$ tale che per ogni $n > n_0$ si ha $|a_n L| < \varepsilon$.
- Divergente $a + \infty$ se $\lim_{n \to \infty} a_n = +\infty$, cioè se per ogni M > 0 esiste $n_0 \in \mathbb{N}$ tale che per ogni $n > n_0$ si ha $a_n > M$.
- Divergente $a \infty$ se $\lim_{n \to \infty} a_n = -\infty$, cioè se per ogni M < 0 esiste $n_0 \in \mathbb{N}$ tale che per ogni $n > n_0$ si ha $a_n < M$.
- Indeterminata se non è né convergente né divergente.

Teorema 4.3. Se una successione (a_n) è convergente, allora è limitata, cioè esiste M > 0 tale che $|a_n| \leq M$ per ogni $n \in \mathbb{N}$.

Teorema 4.4 (Teorema della permanenza del segno). Se $\lim_{n\to\infty} a_n = L$ e L > 0 (risp. L < 0), allora esiste $n_0 \in \mathbb{N}$ tale che per ogni $n > n_0$ si ha $a_n > 0$ (risp. $a_n < 0$).

Teorema 4.5 (Teorema del confronto). Siano (a_n) , (b_n) e (c_n) tre successioni tali che $a_n \le b_n \le c_n$ per ogni n maggiore di un certo n_0 . Se $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, allora anche $\lim_{n\to\infty} b_n = L$.

Teorema 4.6 (Teorema dei due carabinieri). Siano (a_n) , (b_n) e (c_n) tre successioni tali che $a_n \leq b_n \leq c_n$ per ogni n maggiore di un certo n_0 . Se $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, allora anche $\lim_{n\to\infty} b_n = L$.

Teorema 4.7 (Teorema delle successioni monotone). $Sia(a_n)$ una successione monotona, cioè crescente o decrescente.

- Se (a_n) è crescente ed è superiormente limitata, allora è convergente e $\lim_{n\to\infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$
- Se (a_n) è decrescente ed è inferiormente limitata, allora è convergente e $\lim_{n\to\infty} a_n = \inf\{a_n : n\in\mathbb{N}\}.$

4.2 Sottosuccessioni e criterio di Cauchy

Definizione 4.8. Data una successione (a_n) , una sottosuccessione è una successione (a_{n_k}) dove (n_k) è una successione strettamente crescente di indici.

Teorema 4.9 (Teorema di Bolzano-Weierstrass). Ogni successione limitata ammette una sotto-successione convergente.

Teorema 4.10 (Caratterizzazione del limite mediante sottosuccessioni). Una successione (a_n) converge a L se e solo se ogni sua sottosuccessione converge a L.

Definizione 4.11 (Successione di Cauchy). Una successione (a_n) si dice di Cauchy se per ogni $\varepsilon > 0$ esiste $n_0 \in \mathbb{N}$ tale che per ogni $n, m > n_0$ si ha $|a_n - a_m| < \varepsilon$.

Teorema 4.12 (Criterio di Cauchy). Una successione è convergente se e solo se è di Cauchy.

Teorema 4.13 (Caratterizzazione del limite di funzioni mediante successioni). Sia $f: A \to \mathbb{R}$ una funzione e sia x_0 un punto di accumulazione per A. Allora $\lim_{x\to x_0} f(x) = L$ se e solo se per ogni successione (x_n) di elementi di $A \setminus \{x_0\}$ che converge a x_0 si ha $\lim_{n\to\infty} f(x_n) = L$.

Funzioni continue di una variabile reale

5.1 Definizioni e proprietà

Definizione 5.1. Una funzione $f: A \to \mathbb{R}$ si dice continua in un punto $x_0 \in A$ se:

$$\lim_{x \to x_0} f(x) = f(x_0) \tag{5.1}$$

La funzione f si dice continua su A se è continua in ogni punto di A.

Teorema 5.2. Siano $f, g: A \to \mathbb{R}$ due funzioni continue in $x_0 \in A$. Allora:

- 1. f + g è continua in x_0
- 2. $f \cdot g \ e$ continua in x_0
- 3. $\frac{f}{g}$ è continua in x_0 se $g(x_0) \neq 0$

Teorema 5.3. Se $f: A \to B$ è continua in $x_0 \in A$ e $g: B \to \mathbb{R}$ è continua in $f(x_0)$, allora la funzione composta $g \circ f: A \to \mathbb{R}$ è continua in x_0 .

5.2 Teoremi fondamentali

Teorema 5.4 (Teorema di Weierstrass). Sia $f : [a, b] \to \mathbb{R}$ una funzione continua su un intervallo chiuso e limitato [a, b]. Allora f ammette massimo e minimo assoluti, cioè esistono $x_1, x_2 \in [a, b]$ tali che per ogni $x \in [a, b]$ si ha:

$$f(x_1) \le f(x) \le f(x_2) \tag{5.2}$$

Dimostrazione. Dimostriamo l'esistenza del massimo assoluto (per il minimo la dimostrazione è analoga).

Poiché f è continua su [a,b], l'insieme $f([a,b])=\{f(x):x\in [a,b]\}$ è limitato. Sia $M=\sup f([a,b])$.

Per definizione di estremo superiore, per ogni $n \in \mathbb{N}$ esiste $x_n \in [a, b]$ tale che:

$$M - \frac{1}{n} < f(x_n) \le M \tag{5.3}$$

Abbiamo così costruito una successione (x_n) di elementi di [a,b]. Poiché [a,b] è compatto, per il teorema di Bolzano-Weierstrass esiste una sottosuccessione (x_{n_k}) che converge a un punto $x_0 \in [a,b]$.

Per la continuità di f, abbiamo:

$$\lim_{k \to \infty} f(x_{n_k}) = f(x_0) \tag{5.4}$$

D'altra parte, per costruzione:

$$\lim_{k \to \infty} f(x_{n_k}) = \lim_{k \to \infty} \left(M - \frac{1}{n_k} \right) = M \tag{5.5}$$

Quindi $f(x_0) = M$, il che prova che M è il valore massimo di f e che è raggiunto nel punto $x_0 \in [a, b]$.

Teorema 5.5 (Teorema di Bolzano o degli zeri). Sia $f : [a, b] \to \mathbb{R}$ una funzione continua su un intervallo chiuso e limitato [a, b]. Se $f(a) \cdot f(b) < 0$, allora esiste almeno un punto $c \in (a, b)$ tale che f(c) = 0.

Dimostrazione. Senza perdere di generalità, supponiamo che f(a) < 0 e f(b) > 0.

Definiamo la successione di intervalli $[a_n, b_n]$ nel modo seguente:

- $[a_1, b_1] = [a, b]$
- Per $n \ge 1$, sia $c_n = \frac{a_n + b_n}{2}$ il punto medio dell'intervallo $[a_n, b_n]$.
 - Se $f(c_n) = 0$, allora abbiamo trovato il punto cercato e la dimostrazione termina.
 - Se $f(c_n) < 0$, poniamo $a_{n+1} = c_n$ e $b_{n+1} = b_n$.
 - Se $f(c_n) > 0$, poniamo $a_{n+1} = a_n$ e $b_{n+1} = c_n$.

Osserviamo che per costruzione:

- $a < a_n < b_n < b$ per ogni $n \in \mathbb{N}$
- $f(a_n) < 0$ e $f(b_n) > 0$ per ogni $n \in \mathbb{N}$
- $b_n a_n = \frac{b-a}{2n-1}$ per ogni $n \in \mathbb{N}$

Quindi $\lim_{n\to\infty}(b_n-a_n)=0$, il che implica che le successioni (a_n) e (b_n) convergono allo stesso limite $c\in[a,b]$.

Poiché f è continua, abbiamo:

$$\lim_{n \to \infty} f(a_n) = f(c) \tag{5.6}$$

$$\lim_{n \to \infty} f(b_n) = f(c) \tag{5.7}$$

Ma sappiamo che $f(a_n) < 0$ e $f(b_n) > 0$ per ogni $n \in \mathbb{N}$, quindi per il teorema della permanenza del segno dovremmo avere $f(c) \leq 0$ e $f(c) \geq 0$, il che è possibile solo se f(c) = 0. \square

Teorema 5.6 (Teorema dei valori intermedi). Sia $f:[a,b] \to \mathbb{R}$ una funzione continua su un intervallo chiuso e limitato [a,b]. Se $f(a) \neq f(b)$, allora per ogni valore y compreso tra f(a) e f(b) esiste almeno un punto $c \in (a,b)$ tale che f(c) = y.

Dimostrazione. Senza perdere di generalità, supponiamo che f(a) < f(b) e sia $y \in (f(a), f(b))$. Consideriamo la funzione $g: [a, b] \to \mathbb{R}$ definita da g(x) = f(x) - y. Allora:

$$g(a) = f(a) - y < 0 (5.8)$$

$$g(b) = f(b) - y > 0 (5.9)$$

Quindi $g(a) \cdot g(b) < 0$. Poiché g è continua (in quanto differenza di funzioni continue), per il teorema di Bolzano esiste $c \in (a, b)$ tale che g(c) = 0, cioè f(c) = y.

Teorema 5.7 (Continuità dell'inversa). Sia $f:[a,b] \to \mathbb{R}$ una funzione continua e strettamente monotona. Allora la funzione inversa $f^{-1}:f([a,b]) \to [a,b]$ è continua.

Calcolo differenziale per funzioni di una variabile reale

6.1 Definizione di derivata

Definizione 6.1. Sia $f:(a,b) \to \mathbb{R}$ una funzione e sia $x_0 \in (a,b)$. La derivata di f in x_0 , indicata con $f'(x_0)$, è il limite (se esiste finito):

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
(6.1)

Teorema 6.2. Se una funzione $f:(a,b) \to \mathbb{R}$ è derivabile in $x_0 \in (a,b)$, allora è anche continua in x_0 .

Dimostrazione. Dobbiamo dimostrare che $\lim_{x\to x_0} f(x) = f(x_0)$.

Osserviamo che:

$$\lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) \right]$$
(6.2)

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} (x - x_0)$$
 (6.3)

$$= f'(x_0) \cdot 0 \tag{6.4}$$

$$=0 (6.5)$$

Quindi $\lim_{x\to x_0} f(x) - f(x_0) = 0$, cioè $\lim_{x\to x_0} f(x) = f(x_0)$, il che dimostra la continuità di f in x_0 .

Definizione 6.3. Sia $f:(a,b) \to \mathbb{R}$ una funzione e sia $x_0 \in (a,b)$. Si definiscono:

- Derivata destra: $f'_+(x_0) = \lim_{h \to 0^+} \frac{f(x_0+h) f(x_0)}{h}$
- Derivata sinistra: $f'_{-}(x_0) = \lim_{h \to 0^-} \frac{f(x_0+h) f(x_0)}{h}$

Teorema 6.4. Una funzione $f:(a,b) \to \mathbb{R}$ è derivabile in $x_0 \in (a,b)$ se e solo se esistono finite le derivate destra e sinistra in x_0 e sono uguali, cioè:

$$f'_{+}(x_0) = f'_{-}(x_0) \tag{6.6}$$

In tal caso, $f'(x_0) = f'_{+}(x_0) = f'_{-}(x_0)$.

6.2 Regole di derivazione

Teorema 6.5. Siano $f, g:(a,b) \to \mathbb{R}$ due funzioni derivabili in $x_0 \in (a,b)$ e sia $c \in \mathbb{R}$ una costante. Allora:

- 1. f + g è derivabile in x_0 e $(f + g)'(x_0) = f'(x_0) + g'(x_0)$
- 2. $c \cdot f$ è derivabile in x_0 e $(c \cdot f)'(x_0) = c \cdot f'(x_0)$
- 3. $f \cdot g \in derivabile in x_0 \in (f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$
- 4. Se $g(x_0) \neq 0$, allora $\frac{f}{g}$ è derivabile in x_0 e $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) f(x_0) \cdot g'(x_0)}{[g(x_0)]^2}$

Teorema 6.6 (Derivata della funzione composta). Siano $f:(a,b) \to \mathbb{R}$ e $g:I \to \mathbb{R}$ due funzioni tali che $f((a,b)) \subseteq I$. Se f è derivabile in $x_0 \in (a,b)$ e g è derivabile in $f(x_0)$, allora la funzione composta $g \circ f$ è derivabile in x_0 e:

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0) \tag{6.7}$$

Teorema 6.7 (Derivata della funzione inversa). Sia $f:(a,b)\to\mathbb{R}$ una funzione strettamente monotona e derivabile in $x_0\in(a,b)$ con $f'(x_0)\neq0$. Allora la funzione inversa f^{-1} è derivabile in $y_0=f(x_0)$ e:

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} \tag{6.8}$$

6.3 Teoremi fondamentali del calcolo differenziale

Teorema 6.8 (Teorema di Fermat). Sia $f:(a,b) \to \mathbb{R}$ una funzione derivabile in $x_0 \in (a,b)$. Se x_0 è un punto di massimo o minimo relativo per f, allora $f'(x_0) = 0$.

Dimostrazione. Supponiamo che x_0 sia un punto di massimo relativo per f (il caso del minimo è analogo). Allora esiste $\delta > 0$ tale che per ogni $x \in (a,b)$ con $|x-x_0| < \delta$ si ha $f(x) \leq f(x_0)$.

Consideriamo i rapporti incrementali:

$$\frac{f(x_0 + h) - f(x_0)}{h} \tag{6.9}$$

Se h > 0 è abbastanza piccolo, allora $f(x_0 + h) \le f(x_0)$, quindi:

$$\frac{f(x_0+h)-f(x_0)}{h} \le 0 \tag{6.10}$$

Passando al limite per $h \to 0^+$, otteniamo $f'_+(x_0) \le 0$.

Analogamente, se h < 0 è abbastanza piccolo in valore assoluto, allora $f(x_0 + h) \leq f(x_0)$, quindi:

$$\frac{f(x_0 + h) - f(x_0)}{h} \ge 0 \tag{6.11}$$

Passando al limite per $h \to 0^-$, otteniamo $f'_-(x_0) \ge 0$.

Poiché f è derivabile in x_0 , si ha $f'_+(x_0) = f'_-(x_0) = f'(x_0)$. Dalle disuguaglianze precedenti, concludiamo che $f'(x_0) = 0$.

Teorema 6.9 (Teorema di Rolle). Sia $f:[a,b] \to \mathbb{R}$ una funzione continua su [a,b] e derivabile in (a,b). Se f(a) = f(b), allora esiste almeno un punto $c \in (a,b)$ tale che f'(c) = 0.

Dimostrazione. Se f è costante su [a, b], allora f'(x) = 0 per ogni $x \in (a, b)$ e la tesi è banalmente verificata.

Supponiamo quindi che f non sia costante su [a,b]. Poiché f è continua su [a,b], per il teorema di Weierstrass essa ammette massimo e minimo assoluti. Dato che f(a) = f(b) e f non è costante, almeno uno tra massimo e minimo deve essere assunto in un punto interno a (a,b).

Sia $c \in (a, b)$ un punto in cui f assume un massimo o un minimo relativo. Per il teorema di Fermat, si ha f'(c) = 0.

Teorema 6.10 (Teorema di Lagrange). Sia $f:[a,b] \to \mathbb{R}$ una funzione continua su [a,b] e derivabile in (a,b). Allora esiste almeno un punto $c \in (a,b)$ tale che:

$$f'(c) = \frac{f(b) - f(a)}{b - a} \tag{6.12}$$

Teorema 6.11 (Teorema di Cauchy). Siano $f, g : [a, b] \to \mathbb{R}$ due funzioni continue su [a, b] e derivabili in (a, b). Se $g'(x) \neq 0$ per ogni $x \in (a, b)$, allora esiste almeno un punto $c \in (a, b)$ tale che:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} \tag{6.13}$$

Teorema 6.12 (Teorema di De L'Hôpital). Siano $f, g:(a,b) \to \mathbb{R}$ due funzioni derivabili, con $g'(x) \neq 0$ per ogni $x \in (a,b)$. Supponiamo che $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ oppure $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = \pm \infty$ (forma indeterminata). Se esiste $\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = L$, allora:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = L \tag{6.14}$$

6.4 Studio di funzione

Teorema 6.13 (Legame tra monotonia e derivata prima). Sia $f:(a,b) \to \mathbb{R}$ una funzione derivabile.

- 1. Se f'(x) > 0 per ogni $x \in (a,b)$, allora f è strettamente crescente su (a,b).
- 2. Se f'(x) < 0 per ogni $x \in (a,b)$, allora f è strettamente decrescente su (a,b).

Dimostrazione. Dimostriamo il punto 1 (il punto 2 è analogo). Siano $x_1, x_2 \in (a, b)$ con $x_1 < x_2$. Per il teorema di Lagrange, esiste $c \in (x_1, x_2)$ tale che:

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \tag{6.15}$$

Poiché f'(c) > 0 per ipotesi e $x_2 - x_1 > 0$, si ha:

$$f(x_2) - f(x_1) = f'(c) \cdot (x_2 - x_1) > 0 \tag{6.16}$$

Quindi $f(x_2) > f(x_1)$, il che dimostra che f è strettamente crescente.

Definizione 6.14. Sia $f:(a,b)\to\mathbb{R}$ una funzione. Si dice che f è:

• Convessa su (a,b) se per ogni $x_1, x_2 \in (a,b)$ e per ogni $t \in [0,1]$ si ha:

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2) \tag{6.17}$$

• Concava su (a,b) se per ogni $x_1,x_2 \in (a,b)$ e per ogni $t \in [0,1]$ si ha:

$$f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2) \tag{6.18}$$

Teorema 6.15 (Legame tra convessità e derivata seconda). Sia $f:(a,b) \to \mathbb{R}$ una funzione due volte derivabile.

- 1. Se f''(x) > 0 per ogni $x \in (a,b)$, allora f è strettamente convessa su (a,b).
- 2. Se f''(x) < 0 per ogni $x \in (a,b)$, allora f è strettamente concava su (a,b).

Definizione 6.16. Un punto $x_0 \in (a,b)$ si dice punto di flesso per una funzione $f:(a,b) \to \mathbb{R}$ se f è derivabile in x_0 e se f passa da concava a convessa o viceversa in x_0 .

Teorema 6.17 (Legame tra punti di flesso e derivata seconda). Se $f:(a,b) \to \mathbb{R}$ è due volte derivabile in $x_0 \in (a,b)$ e $f''(x_0) = 0$, e se f'' cambia segno in x_0 , allora x_0 è un punto di flesso per f.

6.5 Formula di Taylor

Teorema 6.18 (Polinomio di Taylor). Sia $f:(a,b)\to\mathbb{R}$ una funzione n+1 volte derivabile in un punto $x_0\in(a,b)$. Allora, per ogni $x\in(a,b)$, si ha:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x, x_0)$$
(6.19)

dove $R_n(x,x_0)$ è il resto di Lagrange:

$$R_n(x,x_0) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$$
(6.20)

 $con \xi un punto compreso tra x_0 e x.$

Teorema 6.19 (Formula di Taylor con il resto di Peano). Sia $f:(a,b) \to \mathbb{R}$ una funzione n+1 volte derivabile in un punto $x_0 \in (a,b)$. Allora, per ogni $x \in (a,b)$, si ha:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$
(6.21)

dove $o((x-x_0)^n)$ è un infinitesimo di ordine superiore a $(x-x_0)^n$ per $x \to x_0$.

Dimostrazione. Per induzione su n.

Base: Per n = 0, la formula diventa:

$$f(x) = f(x_0) + o(1) (6.22)$$

che è vera per la definizione di continuità (che segue dalla derivabilità).

Passo induttivo: Supponiamo che la formula sia vera per un certo $n \geq 0$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$
(6.23)

Sia $\varphi(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$. Allora:

$$\varphi(x) = o((x - x_0)^n) \tag{6.24}$$

e $\varphi(x_0) = \varphi'(x_0) = \dots = \varphi^{(n)}(x_0) = 0.$

Consideriamo:

$$\frac{\varphi(x)}{(x-x_0)^n} = \frac{o((x-x_0)^n)}{(x-x_0)^n} = o(1)$$
(6.25)

Per la regola di de l'Hôpital, applicata n volte:

$$\lim_{x \to x_0} \frac{\varphi(x)}{(x - x_0)^n} = \frac{1}{n!} \lim_{x \to x_0} \varphi^{(n)}(x) = \frac{\varphi^{(n)}(x_0)}{n!} = 0$$
 (6.26)

Derivando φ otteniamo:

$$\varphi'(x) = f'(x) - \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{(k-1)!} (x - x_0)^{k-1} = f'(x) - \sum_{j=0}^{n-1} \frac{f^{(j+1)}(x_0)}{j!} (x - x_0)^j$$
 (6.27)

Per l'ipotesi induttiva applicata a f':

$$f'(x) = \sum_{j=0}^{n} \frac{f^{(j+1)}(x_0)}{j!} (x - x_0)^j + o((x - x_0)^n)$$
(6.28)

Quindi:

$$\varphi'(x) = \frac{f^{(n+1)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n)$$
(6.29)

Integrando da x_0 a x:

$$\varphi(x) = \frac{f^{(n+1)}(x_0)}{(n+1)!} (x - x_0)^{n+1} + o((x - x_0)^{n+1})$$
(6.30)

Sostituendo:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \varphi(x)$$
(6.31)

$$= \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(x_0)}{(n+1)!} (x - x_0)^{n+1} + o((x - x_0)^{n+1})$$
 (6.32)

$$= \sum_{k=0}^{n+1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^{n+1})$$
(6.33)

completando così la dimostrazione.

Esempio 6.20 (Sviluppi di Taylor per funzioni elementari).

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$$
 (6.34)

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2k+1})$$
(6.35)

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2k})$$
(6.36)

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{k+1} \frac{x^k}{k} + o(x^k) \quad per |x| < 1$$
(6.37)

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2k+1}) \quad per |x| < 1$$
 (6.38)

26CAPITOLO 6.	. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIA	BILE REALE

Serie numeriche

7.1 Definizioni e proprietà

Definizione 7.1. Data una successione (a_n) di numeri reali, si definisce la successione delle somme parziali (S_n) come:

$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n \tag{7.1}$$

La serie associata a (a_n) è la successione (S_n) e si denota con $\sum_{n=1}^{\infty} a_n$.

Definizione 7.2. Una serie $\sum_{n=1}^{\infty} a_n$ si dice:

- Convergente se esiste ed è finito $\lim_{n\to\infty} S_n = S$. In tal caso, S si dice somma della serie.
- Divergente $a + \infty$ se $\lim_{n \to \infty} S_n = +\infty$.
- Divergente $a \infty$ se $\lim_{n \to \infty} S_n = -\infty$.
- Indeterminata se $\lim_{n\to\infty} S_n$ non esiste.

Definizione 7.3. Data una serie $\sum_{n=1}^{\infty} a_n$ con somme parziali (S_n) , si definisce il resto n-esimo come:

$$R_n = S - S_n = \sum_{k=n+1}^{\infty} a_k \tag{7.2}$$

dove S è la somma della serie (se convergente).

7.2 Serie geometrica

Teorema 7.4 (Serie geometrica). La serie geometrica $\sum_{n=0}^{\infty} q^n$ è:

- Convergente a $\frac{1}{1-q}$ se |q| < 1.
- Divergente se $|q| \ge 1$.

Continuazione della dimostrazione del Teorema sulla serie geometrica. Le somme parziali della serie geometrica sono:

$$S_n = \sum_{k=0}^n q^k = 1 + q + q^2 + \dots + q^n$$
 (7.3)

Moltiplicando entrambi i membri per q otteniamo:

$$q \cdot S_n = q + q^2 + q^3 + \dots + q^{n+1} \tag{7.4}$$

Sottraendo membro a membro:

$$S_n - q \cdot S_n = 1 - q^{n+1} \tag{7.5}$$

$$S_n(1-q) = 1 - q^{n+1} (7.6)$$

$$S_n = \frac{1 - q^{n+1}}{1 - q} \tag{7.7}$$

Se |q| < 1, allora $\lim_{n \to \infty} q^{n+1} = 0$, quindi:

$$\lim_{n \to \infty} S_n = \frac{1}{1 - q} \tag{7.8}$$

Se q=1, allora $S_n=n+1\to\infty$ per $n\to\infty$, quindi la serie diverge.

Se q > 1, allora $q^{n+1} \to \infty$ per $n \to \infty$, quindi la serie diverge. Se q = -1, allora $S_n = \frac{1 - (-1)^{n+1}}{2}$ che non ha limite per $n \to \infty$, quindi la serie è indetermi-

Se q<-1, allora $|q^{n+1}|\to\infty$ per $n\to\infty$ e q^{n+1} cambia di segno ad ogni incremento di n, quindi la serie è indeterminata.

7.3Criteri di convergenza

Teorema 7.5 (Condizione necessaria per la convergenza). Se la serie $\sum_{n=1}^{\infty} a_n$ è convergente, allora $\lim_{n\to\infty} a_n = 0$.

Dimostrazione. Sia $S = \lim_{n \to \infty} S_n$ la somma della serie. Allora:

$$a_n = S_n - S_{n-1} (7.9)$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) \tag{7.10}$$

$$= \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} \tag{7.11}$$

$$= S - S \tag{7.12}$$

$$=0 (7.13)$$

Teorema 7.6 (Serie armonica). La serie armonica $\sum_{n=1}^{\infty} \frac{1}{n}$ è divergente.

Dimostrazione. Consideriamo le somme parziali:

$$S_n = \sum_{k=1}^n \frac{1}{k} \tag{7.14}$$

$$S_{2^m} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{2^m} \tag{7.15}$$

Raggruppiamo i termini:

$$S_{2m} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots$$
 (7.16)

$$=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\ldots+\frac{1}{2^3}\right)+\ldots+\left(\frac{1}{2^{m-1}+1}+\ldots+\frac{1}{2^m}\right)$$
(7.17)

Per ogni gruppo $\left(\frac{1}{2^{k-1}+1}+\ldots+\frac{1}{2^k}\right)$ con $k\geq 2$, abbiamo 2^{k-1} termini, ciascuno maggiore o uguale a $\frac{1}{2^k}$. Quindi:

$$\frac{1}{2^{k-1}+1} + \ldots + \frac{1}{2^k} \ge 2^{k-1} \cdot \frac{1}{2^k} \tag{7.18}$$

$$=\frac{2^{k-1}}{2^k}\tag{7.19}$$

$$=\frac{1}{2}$$
 (7.20)

Pertanto:

$$S_{2^m} \ge 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}$$
 (7.21)

$$= 1 + (m-1) \cdot \frac{1}{2} \tag{7.22}$$

$$=1+\frac{m-1}{2} (7.23)$$

Poiché $\lim_{m\to\infty} \left(1+\frac{m-1}{2}\right) = \infty$, la serie armonica diverge.

Teorema 7.7 (Criterio del confronto). Siano $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ due serie a termini non negativi.

- 1. Se $0 \le a_n \le b_n$ per ogni n sufficientemente grande e $\sum_{n=1}^{\infty} b_n$ è convergente, allora anche $\sum_{n=1}^{\infty} a_n$ è convergente.
- 2. Se $0 \le b_n \le a_n$ per ogni n sufficientemente grande e $\sum_{n=1}^{\infty} b_n$ è divergente, allora anche $\sum_{n=1}^{\infty} a_n$ è divergente.

Teorema 7.8 (Criterio asintotico del confronto). Siano $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ due serie a termini positivi. Se esiste $\lim_{n\to\infty} \frac{a_n}{b_n} = L$ con $0 < L < \infty$, allora le due serie hanno lo stesso carattere, cioè o convergono entrambe o divergono entrambe.

Teorema 7.9 (Criterio del rapporto). Sia $\sum_{n=1}^{\infty} a_n$ una serie a termini positivi. Se esiste $\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$, allora:

- 1. Se $\rho < 1$, la serie è convergente.
- 2. Se $\rho > 1$ o $\rho = \infty$, la serie è divergente.
- 3. Se $\rho = 1$, il criterio non è conclusivo.

Dimostrazione. Supponiamo che $\rho < 1$ e scegliamo q tale che $\rho < q < 1$. Per la definizione di limite, esiste $n_0 \in \mathbb{N}$ tale che per ogni $n \geq n_0$ si ha $\frac{a_{n+1}}{a_n} < q$.

Da ciò segue che:

$$a_{n_0+1} < q \cdot a_{n_0} \tag{7.24}$$

$$a_{n_0+2} < q \cdot a_{n_0+1} < q^2 \cdot a_{n_0} \tag{7.25}$$

$$a_{n_0+3} < q \cdot a_{n_0+2} < q^3 \cdot a_{n_0} \tag{7.26}$$

$$\vdots (7.27)$$

In generale, per ogni $k \geq 1$:

$$a_{n_0+k} < q^k \cdot a_{n_0} \tag{7.28}$$

Quindi:

$$\sum_{n=n_0+1}^{\infty} a_n = \sum_{k=1}^{\infty} a_{n_0+k} \tag{7.29}$$

$$<\sum_{k=1}^{\infty} q^k \cdot a_{n_0} \tag{7.30}$$

$$= a_{n_0} \cdot \sum_{k=1}^{\infty} q^k \tag{7.31}$$

$$=a_{n_0} \cdot \frac{q}{1-q} \tag{7.32}$$

Poiché la somma è finita, la serie $\sum_{n=n_0+1}^{\infty} a_n$ è convergente, e quindi anche la serie originale $\sum_{n=1}^{\infty} a_n$ è convergente.

Il caso $\rho > 1$ si dimostra analogamente, osservando che se $\rho > 1$ allora a_n non tende a 0 per $n \to \infty$, il che viola la condizione necessaria per la convergenza.

Teorema 7.10 (Criterio della radice). Sia $\sum_{n=1}^{\infty} a_n$ una serie a termini positivi. Se esiste $\rho = \lim_{n \to \infty} \sqrt[n]{a_n}$, allora:

- 1. Se $\rho < 1$, la serie è convergente.
- 2. Se $\rho > 1$ o $\rho = \infty$, la serie è divergente.
- 3. Se $\rho = 1$, il criterio non è conclusivo.

Dimostrazione. La dimostrazione è analoga a quella del criterio del rapporto. Se $\rho < 1$, scegliamo q tale che $\rho < q < 1$. Esiste $n_0 \in \mathbb{N}$ tale che per ogni $n \geq n_0$ si ha $\sqrt[n]{a_n} < q$, cioè $a_n < q^n$. Quindi:

$$\sum_{n=n_0}^{\infty} a_n < \sum_{n=n_0}^{\infty} q^n \tag{7.33}$$

$$=q^{n_0} \cdot \sum_{k=0}^{\infty} q^k \tag{7.34}$$

$$=q^{n_0} \cdot \frac{1}{1-q} \tag{7.35}$$

Poiché la somma è finita, la serie $\sum_{n=n_0}^{\infty} a_n$ è convergente, e quindi anche la serie originale $\sum_{n=1}^{\infty} a_n$ è convergente.

Il caso $\rho > 1$ si dimostra analogamente, osservando che se $\rho > 1$ allora a_n non tende a 0 per $n \to \infty$.

Teorema 7.11 (Criterio di Leibniz per le serie a segni alterni). Sia $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ una serie a segni alterni, con (a_n) successione di termini positivi. Se:

- 1. (a_n) è monotona decrescente, cioè $a_n \ge a_{n+1}$ per ogni $n \in \mathbb{N}$
- 2. $\lim_{n\to\infty} a_n = 0$

Allora la serie è convergente.

7.4 Convergenza assoluta

Definizione 7.12. Una serie $\sum_{n=1}^{\infty} a_n$ si dice assolutamente convergente se la serie dei valori assoluti $\sum_{n=1}^{\infty} |a_n|$ è convergente.

Teorema 7.13. Se una serie è assolutamente convergente, allora è anche convergente.

Dimostrazione. Sia $\sum_{n=1}^{\infty}a_n$ una serie assolutamente convergente. Definiamo:

$$a_n^+ = \max\{a_n, 0\} \tag{7.36}$$

$$a_n^- = \max\{-a_n, 0\} \tag{7.37}$$

Allora $a_n = a_n^+ - a_n^-$ e $|a_n| = a_n^+ + a_n^-$. Poiché $0 \le a_n^+ \le |a_n|$ e $0 \le a_n^- \le |a_n|$, e $\sum_{n=1}^{\infty} |a_n|$ è convergente, per il criterio del confronto anche $\sum_{n=1}^{\infty} a_n^+$ e $\sum_{n=1}^{\infty} a_n^-$ sono convergenti. Quindi:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n^+ - a_n^-)$$
 (7.38)

$$=\sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^- \tag{7.39}$$

Poiché entrambe le serie a destra sono convergenti, anche $\sum_{n=1}^{\infty} a_n$ è convergente. \Box

Calcolo integrale per funzioni di una variabile reale

8.1 Integrale di Cauchy-Riemann

Definizione 8.1. Una partizione di un intervallo [a,b] è un insieme finito di punti $P = \{x_0, x_1, \ldots, x_n\}$ tali che $a = x_0 < x_1 < \ldots < x_n = b$.

Definizione 8.2. L'ampiezza di una partizione $P = \{x_0, x_1, \dots, x_n\}$ è il massimo tra le lunghezze dei sottointervalli:

$$|P| = \max_{i=1,\dots,n} (x_i - x_{i-1}) \tag{8.1}$$

Definizione 8.3. Una partizione puntata di un intervallo [a,b] è una coppia (P,ξ) dove $P = \{x_0, x_1, \ldots, x_n\}$ è una partizione di [a,b] e $\xi = (\xi_1, \ldots, \xi_n)$ è una n-upla di punti tali che $\xi_i \in [x_{i-1}, x_i]$ per ogni $i = 1, \ldots, n$.

Definizione 8.4. Data una funzione $f:[a,b] \to \mathbb{R}$ e una partizione puntata (P,ξ) di [a,b], la somma di Cauchy (o somma di Riemann) associata è:

$$S(f, P, \xi) = \sum_{i=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1})$$
(8.2)

Definizione 8.5. Una funzione $f:[a,b] \to \mathbb{R}$ si dice integrabile secondo Cauchy-Riemann se esiste un numero $I \in \mathbb{R}$ tale che per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni partizione puntata (P,ξ) con $|P| < \delta$ si ha:

$$|S(f, P, \xi) - I| < \varepsilon \tag{8.3}$$

Il numero I si chiama integrale di f su [a,b] e si indica con $\int_a^b f(x) dx$.

8.2 Classi di funzioni integrabili

Teorema 8.6. Ogni funzione continua $f:[a,b] \to \mathbb{R}$ è integrabile secondo Cauchy-Riemann.

Teorema 8.7. Ogni funzione monotona $f:[a,b] \to \mathbb{R}$ è integrabile secondo Cauchy-Riemann.

Teorema 8.8. Ogni funzione limitata $f:[a,b] \to \mathbb{R}$ che è continua tranne che in un numero finito di punti è integrabile secondo Cauchy-Riemann.

8.3 Proprietà dell'integrale

Teorema 8.9 (Linearità dell'integrale). Siano $f, g : [a, b] \to \mathbb{R}$ due funzioni integrabili e sia $c \in \mathbb{R}$. Allora:

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
 (8.4)

$$\int_{a}^{b} c \cdot f(x) dx = c \cdot \int_{a}^{b} f(x) dx \tag{8.5}$$

Teorema 8.10 (Additività rispetto all'intervallo). Sia $f : [a, c] \to \mathbb{R}$ una funzione integrabile, con a < b < c. Allora f è integrabile anche sugli intervalli [a, b] e [b, c], e:

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$
 (8.6)

Teorema 8.11 (Monotonia dell'integrale). Siano $f, g : [a, b] \to \mathbb{R}$ due funzioni integrabili tali che $f(x) \leq g(x)$ per ogni $x \in [a, b]$. Allora:

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx \tag{8.7}$$

Teorema 8.12 (Integrabilità del modulo). Se $f:[a,b] \to \mathbb{R}$ è integrabile, allora anche $|f|:[a,b] \to \mathbb{R}$ è integrabile.

Teorema 8.13 (Teorema della media integrale). Sia $f:[a,b]\to\mathbb{R}$ una funzione continua. Allora esiste un punto $c\in[a,b]$ tale che:

$$\int_{a}^{b} f(x) dx = f(c) \cdot (b - a) \tag{8.8}$$

Dimostrazione. Poiché f è continua su [a,b], per il teorema di Weierstrass esistono $m,M\in\mathbb{R}$ tali che $m\leq f(x)\leq M$ per ogni $x\in[a,b]$, dove $m=\min_{x\in[a,b]}f(x)$ e $M=\max_{x\in[a,b]}f(x)$.

Per la monotonia dell'integrale:

$$m \cdot (b-a) = \int_{a}^{b} m \, dx \le \int_{a}^{b} f(x) \, dx \le \int_{a}^{b} M \, dx = M \cdot (b-a)$$
 (8.9)

Quindi:

$$m \le \frac{1}{b-a} \int_a^b f(x) \, dx \le M \tag{8.10}$$

Poniamo $\mu = \frac{1}{b-a} \int_a^b f(x) dx$. Per il teorema dei valori intermedi, esiste $c \in [a, b]$ tale che $f(c) = \mu$, cioè:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx \tag{8.11}$$

Da cui:

$$\int_{c}^{b} f(x) \, dx = f(c) \cdot (b - a) \tag{8.12}$$

8.4 Calcolo dell'integrale

Definizione 8.14. Una funzione $F:[a,b] \to \mathbb{R}$ si dice primitiva di $f:[a,b] \to \mathbb{R}$ se $F \in derivabile$ in (a,b) e F'(x) = f(x) per ogni $x \in (a,b)$.

Teorema 8.15. Se F_1 e F_2 sono due primitive della stessa funzione f su un intervallo [a,b], allora esiste una costante $C \in \mathbb{R}$ tale che $F_2(x) = F_1(x) + C$ per ogni $x \in [a,b]$.

Dimostrazione. Sia $\varphi(x) = F_2(x) - F_1(x)$. Allora $\varphi'(x) = F_2'(x) - F_1'(x) = f(x) - f(x) = 0$ per ogni $x \in (a, b)$.

Per il teorema di Lagrange, se $x_1, x_2 \in [a, b]$ con $x_1 < x_2$, esiste $c \in (x_1, x_2)$ tale che:

$$\varphi(x_2) - \varphi(x_1) = \varphi'(c) \cdot (x_2 - x_1) = 0 \cdot (x_2 - x_1) = 0$$
(8.13)

Quindi $\varphi(x_2) = \varphi(x_1)$ per ogni $x_1, x_2 \in [a, b]$, il che significa che φ è costante su [a, b], cioè esiste $C \in \mathbb{R}$ tale che $\varphi(x) = C$ per ogni $x \in [a, b]$.

Pertanto,
$$F_2(x) = F_1(x) + C$$
 per ogni $x \in [a, b]$.

Teorema 8.16 (Teorema fondamentale del calcolo - Prima forma). Sia $f:[a,b] \to \mathbb{R}$ una funzione continua e sia F una sua primitiva. Allora:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
 (8.14)

Dimostrazione. Sia $P = \{x_0, x_1, \dots, x_n\}$ una partizione di [a, b] con $a = x_0 < x_1 < \dots < x_n = b$. Per il teorema della media integrale, per ogni $i = 1, \dots, n$ esiste $\xi_i \in [x_{i-1}, x_i]$ tale che:

$$\int_{x_{i-1}}^{x_i} f(x) dx = f(\xi_i) \cdot (x_i - x_{i-1})$$
(8.15)

Quindi:

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(x) dx$$
 (8.16)

$$= \sum_{i=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1})$$
 (8.17)

D'altra parte, per il teorema di Lagrange, per ogni $i = 1, \ldots, n$ esiste $\eta_i \in (x_{i-1}, x_i)$ tale che:

$$F(x_i) - F(x_{i-1}) = F'(\eta_i) \cdot (x_i - x_{i-1}) = f(\eta_i) \cdot (x_i - x_{i-1})$$
(8.18)

Sommando su tutti gli intervalli:

$$F(b) - F(a) = \sum_{i=1}^{n} [F(x_i) - F(x_{i-1})]$$
(8.19)

$$= \sum_{i=1}^{n} f(\eta_i) \cdot (x_i - x_{i-1})$$
 (8.20)

Poiché f è continua, per $|P| \to 0$ si ha:

$$\lim_{|P|\to 0} \sum_{i=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1}) = \lim_{|P|\to 0} \sum_{i=1}^{n} f(\eta_i) \cdot (x_i - x_{i-1})$$
(8.21)

Quindi:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
 (8.22)

Definizione 8.17 (Funzione integrale). Sia $f:[a,b] \to \mathbb{R}$ una funzione integrabile. La funzione integrale di f è la funzione $F:[a,b] \to \mathbb{R}$ definita da:

$$F(x) = \int_{a}^{x} f(t) dt \tag{8.23}$$

Teorema 8.18 (Teorema fondamentale del calcolo - Seconda forma). Sia $f:[a,b] \to \mathbb{R}$ una funzione continua e sia F la sua funzione integrale. Allora F è derivabile in (a,b) e F'(x) = f(x) per ogni $x \in (a,b)$.

8.5 Metodi di integrazione

Teorema 8.19 (Integrazione per parti). Siano $u, v : [a, b] \to \mathbb{R}$ due funzioni derivabili con derivate continue. Allora:

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx$$
(8.24)

 $dove [u(x)v(x)]_a^b = u(b)v(b) - u(a)v(a).$

Teorema 8.20 (Integrazione per sostituzione). Sia $f : [a,b] \to \mathbb{R}$ una funzione continua e sia $\varphi : [\alpha,\beta] \to [a,b]$ una funzione derivabile con derivata continua, tale che $\varphi(\alpha) = a$ e $\varphi(\beta) = b$. Allora:

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt$$
 (8.25)

8.6 Integrali generalizzati

Definizione 8.21. Sia $f:[a,+\infty)\to\mathbb{R}$ una funzione localmente integrabile, cioè integrabile su ogni intervallo [a,c] con c>a. Si definisce l'integrale improprio di prima specie di f come:

$$\int_{a}^{+\infty} f(x) dx = \lim_{c \to +\infty} \int_{a}^{c} f(x) dx$$
 (8.26)

se tale limite esiste finito.

Definizione 8.22. Sia $f:(a,b] \to \mathbb{R}$ una funzione localmente integrabile, cioè integrabile su ogni intervallo [c,b] con c>a. Si definisce l'integrale improprio di seconda specie di f come:

$$\int_{a}^{b} f(x) dx = \lim_{c \to a^{+}} \int_{a}^{b} f(x) dx$$
 (8.27)

se tale limite esiste finito.

Definizione 8.23. Un integrale improprio si dice assolutamente convergente se l'integrale improprio del valore assoluto della funzione è convergente.

Teorema 8.24. Se un integrale improprio è assolutamente convergente, allora è anche convergente.

Teorema 8.25 (Integrabilità di $\frac{1}{t^{\alpha}}$). Sia $\alpha > 0$. Allora:

- 1. L'integrale $\int_1^{+\infty} \frac{1}{t^{\alpha}} dt$ converge se e solo se $\alpha > 1$.
- 2. L'integrale $\int_0^1 \frac{1}{t^{\alpha}} dt$ converge se e solo se $\alpha < 1$.

Dimostrazione. Per il primo punto, calcoliamo:

$$\int_{1}^{c} \frac{1}{t^{\alpha}} dt = \int_{1}^{c} t^{-\alpha} dt \tag{8.28}$$

$$= \left[\frac{t^{-\alpha+1}}{-\alpha+1}\right]_1^c \tag{8.29}$$

$$= \frac{c^{-\alpha+1} - 1}{-\alpha+1} \tag{8.30}$$

$$= \frac{1 - c^{-\alpha + 1}}{\alpha - 1} \tag{8.31}$$

Se $\alpha > 1$, allora $-\alpha + 1 < 0$ e $\lim_{c \to +\infty} c^{-\alpha + 1} = 0$. Quindi:

$$\lim_{c \to +\infty} \int_{1}^{c} \frac{1}{t^{\alpha}} dt = \frac{1}{\alpha - 1}$$
 (8.32)

Se $\alpha \leq 1$, allora $-\alpha + 1 \geq 0$ e $\lim_{c \to +\infty} c^{-\alpha+1} = +\infty$ (se $\alpha < 1$) o $\lim_{c \to +\infty} c^{-\alpha+1} = 1$ (se $\alpha = 1$). In entrambi i casi, l'integrale diverge.

La dimostrazione del secondo punto è analoga.

Teorema 8.26 (Criterio del confronto per integrali impropri). Siano $f, g : [a, +\infty) \to \mathbb{R}$ due funzioni tali che $0 \le f(x) \le g(x)$ per ogni $x \ge a$.

- 1. Se $\int_a^{+\infty} g(x) dx$ converge, allora anche $\int_a^{+\infty} f(x) dx$ converge.
- 2. Se $\int_a^{+\infty} f(x) dx$ diverge, allora anche $\int_a^{+\infty} g(x) dx$ diverge.

Teorema 8.27 (Criterio asintotico del confronto per integrali impropri). Siano $f, g : [a, +\infty) \to \mathbb{R}$ due funzioni tali che f(x), g(x) > 0 per ogni $x \ge a$. Se esiste $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = L$ con $0 < L < +\infty$, allora gli integrali $\int_a^{+\infty} f(x) dx$ e $\int_a^{+\infty} g(x) dx$ hanno lo stesso carattere, cioè o convergono entrambi o divergono entrambi.

Teorema 8.28 (Criterio integrale per le serie). Sia $f:[1,+\infty)\to\mathbb{R}$ una funzione continua e decrescente tale che $f(n)=a_n$ per ogni $n\in\mathbb{N}$. Allora la serie $\sum_{n=1}^{\infty}a_n$ e l'integrale $\int_1^{+\infty}f(x)\,dx$ hanno lo stesso carattere, cioè o convergono entrambi o divergono entrambi.

Equazioni differenziali del primo ordine

9.1 Introduzione

Definizione 9.1. Un'equazione differenziale ordinaria del primo ordine è un'equazione del tipo:

$$y' = f(x, y) \tag{9.1}$$

dove $f: D \to \mathbb{R}$ è una funzione definita su un dominio $D \subseteq \mathbb{R}^2$.

Definizione 9.2. Una soluzione dell'equazione differenziale y' = f(x, y) su un intervallo I è una funzione derivabile $\varphi : I \to \mathbb{R}$ tale che:

- 1. Per ogni $x \in I$, il punto $(x, \varphi(x))$ appartiene al dominio D di f.
- 2. Per ogni $x \in I$, si ha $\varphi'(x) = f(x, \varphi(x))$.

Definizione 9.3. Si chiama problema di Cauchy il problema di trovare una soluzione $\varphi: I \to \mathbb{R}$ dell'equazione differenziale y' = f(x,y) che soddisfi la condizione iniziale $\varphi(x_0) = y_0$, dove $(x_0, y_0) \in D$ è un punto fissato.

9.2 Equazioni a variabili separabili

Definizione 9.4. Un'equazione differenziale del tipo:

$$y' = g(x) \cdot h(y) \tag{9.2}$$

dove $g: I \to \mathbb{R}$ e $h: J \to \mathbb{R}$ sono funzioni continue, si dice a variabili separabili.

Teorema 9.5. Le soluzioni di un'equazione a variabili separabili $y' = g(x) \cdot h(y)$ sono:

- 1. Le funzioni costanti $y(x) \equiv c$ dove c è tale che h(c) = 0.
- 2. Le funzioni $\varphi: I \to \mathbb{R}$ che soddisfano:

$$\int \frac{1}{h(y)} dy = \int g(x) dx + C \tag{9.3}$$

 $dove\ C\ \grave{e}\ una\ costante\ arbitraria.$

9.3 Equazioni lineari del primo ordine

Definizione 9.6. Un'equazione differenziale del tipo:

$$y' + a(x) \cdot y = b(x) \tag{9.4}$$

dove $a, b: I \to \mathbb{R}$ sono funzioni continue, si dice lineare del primo ordine.

Teorema 9.7. Le soluzioni dell'equazione lineare del primo ordine $y' + a(x) \cdot y = b(x)$ sono le funzioni:

$$y(x) = e^{-A(x)} \left(\int b(x)e^{A(x)} dx + C \right)$$
 (9.5)

dove $A(x) = \int a(x) dx$ è una primitiva di a(x) e C è una costante arbitraria.

9.4 Equazioni lineari del secondo ordine a coefficienti costanti

Definizione 9.8. Un'equazione differenziale del tipo:

$$ay'' + by' + cy = 0 (9.6)$$

dove $a, b, c \in \mathbb{R}$ sono costanti con $a \neq 0$, si dice lineare del secondo ordine a coefficienti costanti omogenea.

Teorema 9.9. Le soluzioni dell'equazione lineare del secondo ordine a coefficienti costanti omogenea ay'' + by' + cy = 0 dipendono dalle radici del polinomio caratteristico $P(r) = ar^2 + br + c$:

1. Se P(r) ha due radici reali e distinte $r_1 \neq r_2$, le soluzioni sono:

$$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x} (9.7)$$

dove $C_1, C_2 \in \mathbb{R}$ sono costanti arbitrarie.

2. Se P(r) ha una radice reale doppia $r_1 = r_2 = r$, le soluzioni sono:

$$y(x) = (C_1 + C_2 x)e^{rx} (9.8)$$

dove $C_1, C_2 \in \mathbb{R}$ sono costanti arbitrarie.

3. Se P(r) ha due radici complesse coniugate $r_{1,2} = \alpha \pm i\beta$ con $\beta \neq 0$, le soluzioni sono:

$$y(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x)) \tag{9.9}$$

dove $C_1, C_2 \in \mathbb{R}$ sono costanti arbitrarie.

Cenni su alcune generalizzazioni dell'Analisi

10.1 Calcolo differenziale in più variabili

Definizione 10.1. Lo spazio \mathbb{R}^n è l'insieme delle n-uple ordinate di numeri reali:

$$\mathbb{R}^{n} = \{(x_{1}, x_{2}, \dots, x_{n}) : x_{i} \in \mathbb{R} \text{ per ogni } i = 1, 2, \dots, n\}$$
(10.1)

Definizione 10.2. La norma euclidea di un vettore $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ è:

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
 (10.2)

Definizione 10.3. Siano $A \subseteq \mathbb{R}^n$ un insieme aperto, $f : A \to \mathbb{R}$ una funzione e $x_0 \in A$. Si dice che f ha limite $L \in \mathbb{R}$ per x che tende a x_0 , e si scrive:

$$\lim_{x \to x_0} f(x) = L \tag{10.3}$$

se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in A$ con $0 < ||x - x_0|| < \delta$ si ha $|f(x) - L| < \varepsilon$.

Definizione 10.4. Siano $A \subseteq \mathbb{R}^n$ un insieme aperto, $f : A \to \mathbb{R}$ una funzione e $x_0 \in A$. Si dice che f è continua in x_0 se:

$$\lim_{x \to x_0} f(x) = f(x_0) \tag{10.4}$$

Definizione 10.5. Siano $A \subseteq \mathbb{R}^n$ un insieme aperto, $f: A \to \mathbb{R}$ una funzione $e \ x_0 = (x_0^1, x_0^2, \dots, x_0^n) \in A$. La derivata parziale di f rispetto alla i-esima variabile nel punto x_0 , indicata con $\frac{\partial f}{\partial x_i}(x_0)$, è il limite (se esiste):

$$\frac{\partial f}{\partial x_i}(x_0) = \lim_{h \to 0} \frac{f(x_0^1, \dots, x_0^{i-1}, x_0^i + h, x_0^{i+1}, \dots, x_0^n) - f(x_0)}{h}$$
(10.5)

Definizione 10.6. Siano $A \subseteq \mathbb{R}^n$ un insieme aperto $e f : A \to \mathbb{R}$ una funzione. Il gradiente di f nel punto $x_0 \in A$, indicato con $\nabla f(x_0)$, è il vettore delle derivate parziali:

$$\nabla f(x_0) = \left(\frac{\partial f}{\partial x_1}(x_0), \frac{\partial f}{\partial x_2}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0)\right)$$
(10.6)