

# 2025 年数理经济学笔记

授课: 杨佳楠老师

作者:徐靖 组织:PKU

时间: Febuary 27, 2025

声明:请勿用于个人学习外其他用途!



## 目录

| 第1章 | Multi-Variable Unconstrained Optimization | 1 |
|-----|-------------------------------------------|---|
| 1.1 | First Order Condition                     | 1 |
| 1.2 | Convex Optimization                       | 1 |
| 1.3 | Numerical Optimization                    | 2 |
|     | 1.3.1 Bisection Method                    | 2 |

## 第1章 Multi-Variable Unconstrained Optimization

## Keywords

- □ First Order Condition 一阶条件
- □ Bisection Method 二分法
- Secant Method 割线法

- False Position Method 假位法
- □ Newton's Method 牛顿法

## 1.1 First Order Condition

An Unconstrained Optimization Problem is:

$$\min_{x \in \mathbb{R}^n} f(x)$$

## 定义 1.1

First Order Condition (FOC):  $\nabla f(x^*) = 0$ .

- $x^*$  is a stationary point (驻点) of f.
- It is necessary but not sufficient.

**global minimum**:  $f(x^*) \leq f(x)$  for all  $x \in \mathbb{R}^n$ .

**local minimum**:  $f(x^*) \le f(x)$  for all  $x \in B(x^*, \epsilon)$  for some  $\epsilon > 0$ .

## 命题 1.1

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a continuously differentiable function, and  $\nabla f(x^*) = 0$ . If  $\nabla^2 f(x^*)$  is:

- ullet positive definite, then  $x^*$  is a local minimum.
- negative definite, then  $x^*$  is a local maximum.
- indefinite, then  $x^*$  is a **saddle point**. (鞍点)

## 1.2 Convex Optimization

## 定义 1.2 (Convex Function)

A function  $f: \mathbb{R}^n \to \mathbb{R}$  is convex if for all  $x, y \in \mathbb{R}^n$  and  $\lambda \in [0, 1]$ :

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

## 定理 1.1

A twice continuously differentiable function  $f: \mathbb{R}^n \to \mathbb{R}$  is convex if and only if its Hessian matrix  $\nabla^2 f(x)$  is positive semidefinite for all  $x \in \mathbb{R}^n$ .

#### 命题 1.2

Let f be differentiable. Then f is (strictly) convex if and only if:

$$f(y) - f(x)(>) \ge \nabla f(x) \cdot (y - x)$$

for all  $x, y \in \mathbb{R}^n$ .

## 定理 1.2 (Minimum/maximum Characterization)

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a convex (concave) function. Then  $x^*$  is a local minimum (maximum) if and only if:

$$\nabla f(x^*) = 0$$

- If f is strictly **convex**, then  $x^*$  is a global minimum.
- If f is strictly **concave**, then  $x^*$  is a global maximum.

## $\Diamond$

## 1.3 Numerical Optimization

#### 1.3.1 Bisection Method

## 定义 1.3 (Bisection Method)

A simple, robust method for finding roots of continuous functions on bounded intervals

- Start with an interval [a, b] such that f(a)f(b) < 0.
- Compute the midpoint  $c = \frac{a+b}{2}$ , and evaluate f(c).
- ullet Replace a or b with c based on the sign of f(c).
- Iterate until desired precision.



## 定义 1.4 (Convergence Rate and Order 收敛速度和阶)

For iteration  $x_n$  approaching the root r, the convergence rate C and order  $\rho$  are defined as:

$$\lim_{n \to \infty} \frac{|x_{n+1} - r|}{|x_n - r|^{\rho}} = C$$

- Linear convergence:  $\rho = 1, C < 1$ .
- Quadratic convergence:  $\rho = 2, C < 1$ .
- Superlinear convergence:  $\rho > 1, C < 1$ .

| Method          | Definition                         | Rate                              | Order |
|-----------------|------------------------------------|-----------------------------------|-------|
| Bisection       | Iteratively bisects an interval    | Linear ( $C=0.5$ )                | 1     |
| Disection       | and selects a subinterval          |                                   |       |
| Secant          | Root approximation via secant line | Superlinear ( $C \approx 1.618$ ) | 1.618 |
| Secant          | through two points                 |                                   |       |
| False Position  | Bisection variant with             | Linear                            | 1     |
| raise rosition  | linear interpolation updates       |                                   |       |
| Newton-Raphson  | Derivative-based iterative         | Quadratic ( $C \propto f''$ )     | 2     |
| Newton-Kapiison | root-finding                       |                                   |       |
| Gradient method | Function minimization via          | Linear $(C \propto \kappa)$       | 1     |
| Gradient method | negative gradient direction        | Linear (O & h)                    | 1     |

表 1.1: Compact Comparison of Numerical Methods

#### 定义 1.5 (Methods)

#### **Secant Method:**

- Compute the secant line through  $(x_0, f(x_0))$  and  $(x_1, f(x_1))$ .
- ullet Find the intersection with the x-axis to get the next approximation  $x_2$ .
- Iterate until convergence.

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$
(1.1)



图 1.1: Secant Method



图 1.2: False Position Method

#### **False Position Method:**

- Similar to the secant method, but always keeps the interval [a, b] such that f(a)f(b) < 0.
- Update a or b based on the sign of f(c).
- Iterate until convergence.

$$\begin{split} c &= \frac{af(b) - bf(a)}{f(b) - f(a)}, \\ [a,b] &\leftarrow [a,c] \quad \text{if} \quad f(a)f(c) < 0, \\ [a,b] &\leftarrow [c,b] \quad \text{if} \quad f(b)f(c) < 0. \end{split}$$



笔记 若初始值足够接近根且函数光滑,则 Secant Method 收敛速度优于 False Position Method,但可能因迭代点跳出根的邻域而发散. False Position Method 保证收敛,但多一个异号的初始条件且速度较慢.

## 定义 1.6 (Newton-Raphson Method)

- Start with an initial guess  $x_0$ .
- Compute the next approximation using the formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• Iterate until convergence.

问题 1.1 为什么牛顿法是二阶收敛的?

解对 f(x) 在  $x_n$  处做泰勒展开, 对于 f(r) = 0:

$$f(r) = f(x_n) + f'(x_n)(r - x_n) + \frac{f''(x_n)}{2}(r - x_n)^2 + O((x - x_n)^3)$$

带入牛顿法迭代公式  $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ :

$$x_{n+1} - r = (x_n - r)^2 \cdot \frac{f''(x_n)}{2f'(x_n)}$$

筆记 牛顿法初期可能出问题,如果不满足足够接近根的假设.

牛顿法可以很好地应用到多变量上, 但过程中 Hessian 矩阵的逆矩阵计算量较大, 并且他是一个 local method. 例题 1.1 将牛顿法应用到求解二次可微函数的极值问题, 可以求解 first order condition:

$$x_{n+1} = x_n - [\nabla^2 f(x_n)]^{-1} \nabla f(x_n)$$

## 定义 1.7 (Gradient Method)

- Start with an initial guess  $x_0$  and error tolerance  $\epsilon$ .
- $\bullet \ \ \text{Iterate until } \|x_{n+1}-x_n\|<\epsilon :$ 
  - Compute the gradient  $\nabla f(x_n)$ .
  - Define  $\phi(t) = f(x_n t\nabla f(x_n))$ .
  - ullet Find the minimum of  $\phi(t)$  using a one-variable optimization method (e.g., bisection, secant, or Newton's method).
  - Defint  $x_{n+1} = x_n t^* \nabla f(x_n)$ .

