# **Exploratory Data Analysis on Real Estate Dataset**

#### Introduction

Real Estate price prediction is a dataset originally compiled for regression analysis, linear regression, multiple regression, and predictive tasks. The dataset consists of purchase date, age of property, location, house price of unit area, and distance to nearest station.

The dataset is obtained from Kaggle (https://www.kaggle.com/quantbruce/real-estate-price-prediction) by bruce.

First five rows of dataset

|   | No | Transaction date | Age  | Distance from<br>nearest MRT<br>station | No. of convenience stores | Latitude | Longitude | Price/Area |
|---|----|------------------|------|-----------------------------------------|---------------------------|----------|-----------|------------|
| 0 | 1  | 2012.917         | 32.0 | 84.87882                                | 10                        | 24.98298 | 121.54024 | 37.9       |
| 1 | 2  | 2012.917         | 19.5 | 306.59470                               | 9                         | 24.98034 | 121.53951 | 42.2       |
| 2 | 3  | 2013.583         | 13.3 | 561.98450                               | 5                         | 24.98746 | 121.54391 | 47.3       |
| 3 | 4  | 2013.500         | 13.3 | 561.98450                               | 5                         | 24.98746 | 121.54391 | 54.8       |
| 4 | 5  | 2012.833         | 5.0  | 390.56840                               | 5                         | 24.97937 | 121.54245 | 43.1       |

There are 414 rows and 8 columns in dataset.

# **Descriptive statistics**

Descriptive statistics are those that summarizes the dataset and provide some quick insights.

Summary table

|       | No         | Transaction<br>date | Age        | Distance<br>from<br>nearest<br>MRT station | No. of convenience stores | Latitude   | Longitude  |
|-------|------------|---------------------|------------|--------------------------------------------|---------------------------|------------|------------|
| count | 414.000000 | 414.000000          | 414.000000 | 414.000000                                 | 414.000000                | 414.000000 | 414.000000 |
| mean  | 207.500000 | 2013.148971         | 17.712560  | 1083.885689                                | 4.094203                  | 24.969030  | 121.533361 |
| std   | 119.655756 | 0.281967            | 11.392485  | 1262.109595                                | 2.945562                  | 0.012410   | 0.015347   |
| min   | 1.000000   | 2012.667000         | 0.000000   | 23.382840                                  | 0.000000                  | 24.932070  | 121.473530 |
| 25%   | 104.250000 | 2012.917000         | 9.025000   | 289.324800                                 | 1.000000                  | 24.963000  | 121.528085 |
| 50%   | 207.500000 | 2013.167000         | 16.100000  | 492.231300                                 | 4.000000                  | 24.971100  | 121.538630 |
| 75%   | 310.750000 | 2013.417000         | 28.150000  | 1454.279000                                | 6.000000                  | 24.977455  | 121.543305 |
| max   | 414.000000 | 2013.583000         | 43.800000  | 6488.021000                                | 10.000000                 | 25.014590  | 121.566270 |
| 4     |            |                     |            |                                            |                           |            | •          |

The mean price of unit area of house is \$ 37.98K

## **Data Cleaning**

Data Cleaning is the process of converting the raw data into the form which aids in the process of analysis.

Data Cleaning methodology is as follows:-

- 1. Changing column names.
- 2. Handling missing values.
- 3. Feature Engineering
- 4. Dropping Irrelevent attributes.
- 5. Dropping Duplicate rows.

### 1. Changing column names

In dataset, with each column name some additional information is also associated signifying its role in prediction analytics. In this step of data cleaning column names are changed to appropriate ones.

|   | No | Transaction date | Age  | Distance from<br>nearest MRT<br>station | No. of convenience stores | Latitude | Longitude | Price/Area |
|---|----|------------------|------|-----------------------------------------|---------------------------|----------|-----------|------------|
| 0 | 1  | 2012.917         | 32.0 | 84.87882                                | 10                        | 24.98298 | 121.54024 | 37.9       |
| 1 | 2  | 2012.917         | 19.5 | 306.59470                               | 9                         | 24.98034 | 121.53951 | 42.2       |
| 2 | 3  | 2013.583         | 13.3 | 561.98450                               | 5                         | 24.98746 | 121.54391 | 47.3       |
| 3 | 4  | 2013.500         | 13.3 | 561.98450                               | 5                         | 24.98746 | 121.54391 | 54.8       |
| 4 | 5  | 2012.833         | 5.0  | 390.56840                               | 5                         | 24.97937 | 121.54245 | 43.1       |

## 2. Handling missing values

Looking for missing values in the dataset

| No                                | 0 |
|-----------------------------------|---|
| Transaction date                  | 0 |
| Age                               | 0 |
| Distance from nearest MRT station | 0 |
| No. of convenience stores         | 0 |
| Latitude                          | 0 |
| Longitude                         | 0 |
| Price/Area                        | 0 |
| dtyne: int61                      |   |

dtype: int64

<matplotlib.axes.\_subplots.AxesSubplot at 0xe0946b0>



There are no missing values in dataset. But there are some observations in which Age is numbered as 0. Since Age of 0 doesn't make sense, we will remove those rows.

|   | No | Transaction<br>date | Age  | Distance from<br>nearest MRT<br>station | No. of convenience stores | Latitude | Longitude | Price/Area |
|---|----|---------------------|------|-----------------------------------------|---------------------------|----------|-----------|------------|
| 0 | 1  | 2012.917            | 32.0 | 84.87882                                | 10                        | 24.98298 | 121.54024 | 37.9       |
| 1 | 2  | 2012.917            | 19.5 | 306.59470                               | 9                         | 24.98034 | 121.53951 | 42.2       |
| 2 | 3  | 2013.583            | 13.3 | 561.98450                               | 5                         | 24.98746 | 121.54391 | 47.3       |
| 3 | 4  | 2013.500            | 13.3 | 561.98450                               | 5                         | 24.98746 | 121.54391 | 54.8       |
| 4 | 5  | 2012.833            | 5.0  | 390.56840                               | 5                         | 24.97937 | 121.54245 | 43.1       |

### 3. Feature Engineering

Adding new feature Year in dataset

|   | No | Transaction date | Age  | Distance from<br>nearest MRT<br>station | No. of convenience stores | Latitude | Longitude | Price/Area |
|---|----|------------------|------|-----------------------------------------|---------------------------|----------|-----------|------------|
| 0 | 1  | 2012.917         | 32.0 | 84.87882                                | 10                        | 24.98298 | 121.54024 | 37.9       |
| 1 | 2  | 2012.917         | 19.5 | 306.59470                               | 9                         | 24.98034 | 121.53951 | 42.2       |
| 2 | 3  | 2013.583         | 13.3 | 561.98450                               | 5                         | 24.98746 | 121.54391 | 47.3       |
| 3 | 4  | 2013.500         | 13.3 | 561.98450                               | 5                         | 24.98746 | 121.54391 | 54.8       |
| 4 | 5  | 2012.833         | 5.0  | 390.56840                               | 5                         | 24.97937 | 121.54245 | 43.1       |

## 4. Dropping irrelevent attributes

Dropping irrelevent features like 'No' and 'Transaction date' which do not help in analysis.

|   | Age  | Distance from nearest MRT station | No. of convenience stores | Latitude | Longitude | Price/Area | Year |
|---|------|-----------------------------------|---------------------------|----------|-----------|------------|------|
| 0 | 32.0 | 84.87882                          | 10                        | 24.98298 | 121.54024 | 37.9       | 2012 |
| 1 | 19.5 | 306.59470                         | 9                         | 24.98034 | 121.53951 | 42.2       | 2012 |
| 2 | 13.3 | 561.98450                         | 5                         | 24.98746 | 121.54391 | 47.3       | 2013 |
| 3 | 13.3 | 561.98450                         | 5                         | 24.98746 | 121.54391 | 54.8       | 2013 |
| 4 | 5.0  | 390.56840                         | 5                         | 24.97937 | 121.54245 | 43.1       | 2012 |

## 5. Dropping Duplicate rows

Removing duplicate rows from dataset which have same Age, Distance from nearest MRT station, No. of convenience stores and Year.

After removing duplicate rows there are 364 rows and 7 columns in dataset

# **Exploratory Data Analysis**

First five rows of dataset

|   | Age  | Distance from<br>nearest MRT station | No. of convenience stores | Latitude | Longitude | Price/Area | Year | Range  |
|---|------|--------------------------------------|---------------------------|----------|-----------|------------|------|--------|
| 0 | 32.0 | 84.87882                             | 10                        | 24.98298 | 121.54024 | 37.9       | 2012 | 100.0  |
| 1 | 19.5 | 306.59470                            | 9                         | 24.98034 | 121.53951 | 42.2       | 2012 | 400.0  |
| 2 | 13.3 | 561.98450                            | 5                         | 24.98746 | 121.54391 | 47.3       | 2013 | 600.0  |
| 3 | 5.0  | 390.56840                            | 5                         | 24.97937 | 121.54245 | 43.1       | 2012 | 400.0  |
| 4 | 7.1  | 2175.03000                           | 3                         | 24.96305 | 121.51254 | 32.1       | 2012 | 2200.0 |

Distribution of features
Text(0.5, 0.98, 'Distribution of Features')

Distribution of Features



The distribution of age shows that in dataset the observations having Age between 20 to 30 is quite less. The distribution of Distance from nearest MRT station is skewed. The distribution of No. of convenient stores and Price / Area is quite normal.

Average price of unit Area for houses <matplotlib.legend.Legend at 0xfa24db0>



The above plot shows that the average price of unit area of the property has got increased in year 2013 from year 2012.

Top 5 Positions having largest Price/Area in year 2012

|   | Latitude | Longitude | Year | Price/Area |
|---|----------|-----------|------|------------|
| 0 | 24.95836 | 121.53756 | 2012 | 57.8       |
| 1 | 24.97528 | 121.54541 | 2012 | 57.4       |
| 2 | 24.98085 | 121.54391 | 2012 | 56.2       |
| 3 | 24.98419 | 121.54243 | 2012 | 55.1       |
| 4 | 24.98343 | 121.53762 | 2012 | 54.4       |

Top 5 Positions having largest Price/Area in year 2013

|   | Latitude | Longitude | Year | Price/Area |
|---|----------|-----------|------|------------|
| 0 | 24.97460 | 121.53046 | 2013 | 117.5      |
| 1 | 24.97703 | 121.54265 | 2013 | 78.3       |
| 2 | 24.97071 | 121.54069 | 2013 | 78.0       |
| 3 | 24.96756 | 121.54230 | 2013 | 67.7       |
| 4 | 24.97345 | 121.54093 | 2013 | 63.3       |

Both years do not intersect at any Location. In 2012 Location having Latitude and Longitude (24.95836, 121.53756) is having highest Price/Area. In 2013 Location having Latitude and Longitude (24.97460, 121.53046) is having highest Price/Area.

Bottom 5 Positions having smallest Price/Area in year 2012

|   | Latitude | Longitude | Year | Price/Area |  |
|---|----------|-----------|------|------------|--|
| 0 | 24.94297 | 121.50342 | 2012 | 15.0       |  |
| 1 | 24.94235 | 121.50357 | 2012 | 14.7       |  |
| 2 | 24.94960 | 121.53018 | 2012 | 13.8       |  |
| 3 | 24.94968 | 121.53009 | 2012 | 13.7       |  |
| 4 | 24 94925 | 121 49542 | 2012 | 13.2       |  |

Bottom 5 Positions having smallest Price/Area in year 2013

|   | Latitude | Longitude | Year | Price/Area |
|---|----------|-----------|------|------------|
| 0 | 24.93885 | 121.50383 | 2013 | 13.0       |
| 1 | 24.94935 | 121.53046 | 2013 | 12.8       |
| 2 | 24.94375 | 121.47883 | 2013 | 12.2       |
| 3 | 24.95719 | 121.47353 | 2013 | 11.2       |
| 4 | 24.96172 | 121.53812 | 2013 | 7.6        |

Both years do not intersect at any Location. In 2012 Location having Latitude and Longitude (24.94925, 121.49542) is having smallest Price/Area. In 2013 Location having Latitude and Longitude (24.96172, 121.53812) is having smallest Price/Area.

#### Relationship between Distance from nearest MRT station and Average Price/Area

Creating new feature Range that represents the distance of nearest MRT station in steps of 100.





From the above plot it can be inferred that with every 100m increase in distance to nearest MRT station Price/Value decreases. But there are also some special cases where average Price/Value is also large for larger distance like for 3100m to 4100m.

Text(0.5, 1.0, 'Regression Plot between Range(meters) and Price/Area')



The plot shows that there is the negative relationship between Range and Price per unit area.

Null Hypothesis: There is no relationship between Range(meters) and Price/Area

#### Alternative Hypothesis: There is relationship between Range(meters) and Price/Area

Pearson Coefficient is -0.6659938696879494 and p-value is 5.24529447678651 3e-48

Since the p-value is smaller than 0.005 there is strong certainity in the result that there is negative relationship between Range(meters) and Price/Area. So we reject the null hypothesis in support of alternative hypothesis.

### Relationship between Age and Price/Area

Text(0.5, 1.0, 'Regression Plot between Age and Price/Area')



From the above plot, it looks like there is very weak relationship between Age and Price/Area.

### Null Hypothesis: There is no relationship between Age and Price/Area

### Alternative Hypothesis: There is relationship between Age and Price/Area

Pearson Coefficient is -0.11688301554897951 and p-value is 0.0257498105934 06287

Since the p-value is greater than 0.05 we reject the null hypothesis. There is weak negative relationship between Age and Price/Area.

#### Relationship between No. of Convenient Stores and Price/Area

Text(0.5, 1.0, 'Regression Plot between No. of convenience stores and Price/Area')



The above plot indicates that as the no. of convenient stores increases, Price/Area increases. This plot also shows one location which has highest Price/Area and having only one convenient store near it. So, it is a outlier.

Text(0.5, 1.0, 'Regression Plot between No. of convenience stores and Pric e/Area(Without outlier)')



Null Hypothesis: There is no relationship between No. of convenience stores and Price/Area

#### Alternative Hypothesis: There is relationship between No. of convenience stores and Price/Area

Pearson Coefficient is 0.6479529669719892 and p-value is 1.347929851316750 4e-44

The p-value is below 0.05 level of significance, so the null hypothesis is rejected in support of alternative hypothesis and there is a positive relationship between no. of convenient stores and price/area.

## Relationship between Year and Price/Area

Text(0.5, 1.0, 'Regression Plot between No. of Year and Price/Area')



From the above plot, it can be concluded that difference between the median values of two years are not quite different. And the boxes of two box plots overlap with each other a lot. So, it cannot be a good predictor for predicting Price/Area.

#### Null Hypothesis: There is no relationship between Year and Price/Area

#### Alternative Hypothesis: There is relationship between Year and Price/Area

F\_onewayResult(statistic=4.135171703023447, pvalue=0.0427317734039113)

According to the results of ANOVA(Analysis of Variance), the p value is smaller than 0.05 so we reject the null hypothesis in support of alternative hypothesis. The value of F-statistic is 4.135 which signifies a very weak relationship between both variables.

#### Conclusions and future work

The analysis significantly shows a relationship of Distance of nearest MRT station, Age, Year, No. of convenience stores with Price/Area.

The analysis can be extended by analysing the price values at different latitudes and longitudes, through spatial analysis by collecting more data.