Fasta format: >1-line AA sequence (1 or more lines)

>gi|22547186|ref|NP_004160.3| serine hydroxymethyltransferase, cytosolic isoform 1 [Homo sapiens]
MTMPVNGAHKDADLWSSHDKMLAQPLKDSDVEVYNIIKKESNRQRVGLELIASENFASRAVLEALGSCLN
NKYSEGYPGQRYYGGTEFIDELETLCQKRALQAYKLDPQCWGVNVQPYSGSPANFAVYTALVEPHGRIMG
LDLPDGGHLTHGFMTDKKKISATSIFFESMPYKVNPDTGYINYDQLEENARLFHPKLIIAGTSCYSRNLE
YARLRKIADENGAYLMADMAHISGLVAAGVVPSPFEHCHVVTTTTHKTLRGCRAGMIFYRKGVKSVDPKT
GKEILYNLESLINSAVFPGLQGGPHNHAIAGVAVALKQAMTLEFKVYQHQVVANCRALSEALTELGYKIV
TGGSDNHLILVDLRSKGTDGGRAEKVLEACSIACNKNTCPGDRSALRPSGLRLGTPALTSRGLLEKDFQK
VAHFIHRGIELTLQIQSDTGVRATLKEFKERLAGDKYQAAVQALREEVESFASLFPLPGLPDF

Most proteins are modular

Domains: structural, functional, folding and evolutionary units (30-700 a.a.; 100 a.a. on average)

Analysis and prediction: domain – not whole protein – level

Proteins are modular

Domains: structural, functional, folding and evolutionary units

>gi|156104876|ref|NP_002010.2| vascular endothelial growth factor receptor 1 isoform 1 precursor [Homo sapiens] 5T89

MVSYWDTGVLLCALLSCLLLTGSSSGSKLKDPELSLKGTQHIMQAGQTLHLQCRG EAAHKWSLPEMVSKESERLSITKSACGRNGKQFCSTLTLNTAQANHTGFYSCKYL AVPTSKKKETESAIYIFISDTGRPFVEMYSEIPEIIHMTEGRELVIPCRVTSPNI TVTLKKFPLDTLIPDGKRIIWDSRKGFIISNATYKEIGLLTCEATVNGHLYKTNY LTHROTNTIIDVOISTPRPVKLLRGHTLVLNCTATTPLNTRVOMTWSYPDEKNKR ASVRRRIDQSNSHANIFYSVLTIDKMQNKDKGLYTCRVRSGPSFKSVNTSVHIYD KAFITVKHRKQQVLETVAGKRSYRLSMKVKAFPSPEVVWLKDGLPATEKSARYLT RGYSLIIKDVTEEDAGNYTILLSIKQSNVFKNLTATLIVNVKPQIYEKAVSSFPD PALYPLGSRQILTCTAYGIPQPTIKWFWHPCNHNHSEARCDFCSNNEESFILDAD SNMGNRIESITORMAIIEGKNKMASTLVVADSRISGIYICIASNKVGTVGRNISF YITDVPNGFHVNLEKMPTEGEDLKLSCTVNKFLYRDVTWILLRTVNNRTMHYSIS KOKMAITKEHSITLNLTIMNVSLODSGTYACRARNVYTGEEILOKKEITIRDOEA PYLLRNLSDHTVAISSSTTLDCHANGVPEPQITWFKNNHKIQQEPGIILGPGSST LFIERVTEEDEGVYHCKATNQKGSVESSAYLTVQGTSDKSNLELITLTCTCVAAT LFWLLLTLFIRKMKRSSSEIKTDYLSIIMDPDEVPLDEQCERLPYDASKWEFARE RLKLGKSLGRGAFGKVVQASAFGIKKSPTCRTVAVKMLKEGATASEYKALMTELK ILTHIGHHLNVVNLLGACTKQGGPLMVIVEYCKYGNLSNYLKSKRDLFFLNKDAA LHMEPKKEKMEPGLEQGKKPRLDSVTSSESFASSGFQEDKSLSDVEEEEDSDGFY KEPITMEDLISYSFQVARGMEFLSSRKCIHRDLAARNILLSENNVVKICDFGLAR DIYKNPDYVRKGDTRLPLKWMAPESIFDKIYSTKSDVWSYGVLLWEIFSLGGSPY PGVQMDEDFCSRLREGMRMRAPEYSTPEIYQIMLDCWHRDPKERPRFAELVEKLG DLLQANVQQDGKDYIPINAILTGNSGFTYSTPAFSEDFFKESISAPKFNSGSSDD VRYVNAFKFMSLERIKTFEELLPNATSMFDDYQGDSSTLLASPMLKRFTWTDSKP KASLKIDLRVTSKSKESGLSDVSRPSFCHSSCGHVSEGKRRFTYDHAELERKIAC **CSPPPDYNSVVLYSTPPI**

- 1) Save Fasta sequence
- 2) Run BLAST
 - Parameters:
 - Max target sequences (5000)
 - Organism
 - Expect threshold
 - Filter low-complexity regions

Program output

1.) Conserved domains (CDD)& Active/binding sites

Identify protein domains

- 3D structure (Blast vs. PDB)
- CDD (NCBI)
- Pfam: pfam.sanger.ac.uk
- SMART: smart.embl-heidelberg.de
- Superfamily: supfam.cs.bris.ac.uk/SUPERFAMILY/

• ...

Domain prediction: CDD

- 5 Immunoglobulin (Ig)-like domains
- Protein tyrosine kinase catalytic domain

LC Ig Ig Ig Ig LC TK

Domain prediction: Pfam

- 6 Ig-like domains (+1 below threshold)
- Protein tyrosine kinase (TK) catalytic domain
- Domain of unknown function (below threshold)

Domain prediction: SMART

- 7 Ig-like domains
- Protein tyrosine kinase (TK) catalytic domain
- Signal peptide (SP)
- Low complexity region (LC)

Domain prediction: Superfamily

- 7 Ig-like domains
- Protein tyrosine kinase (TK) catalytic domain

Ig Ig Ig Ig Ig TK

Map predicted domains on your sequence

>gi|156104876|ref|NP_002010.2| vascular endothelial growth factor receptor 1 isoform 1 precursor [Homo sapiens] MVSYWDTGVL LCALLSCLLL TGSSSGSKLK DPELSLKGTQ HIMQAGQTLH LQCRGEAAHK WSLPEMVSKE SERLSITKSA CGRNGKOFCS TLTLNTAQAN HTGFYSCKYL AVPTSKKKET ESAIYIFISD TGRPFVEMYS EIPEIIHMTE GRELVIPCRV TSPNITVTLK KFPLDTLIPD GKRIIWDSRK GFIISNATYK EIGLLTCEAT VNGHLYKTNY LTHRQTNTII DVQISTPRPV KLLRGHTLVL NCTATTPLNT RVOMTWSYPD EKNKRASVRR RIDOSNSHAN IFYSVLTIDK MONKDKGLYT CRVRSGPSFK SVNTSVHIYD KAFITVKHRK QQVLETVAGK RSYRLSMKVK AFPSPEVVWL KDGLPATEKS ARYLTRGYSL IIKDVTEEDA GNYTILLSIK QSNVFKNLTA TLIVNVKPOI YEKAVSSFPD PALYPLGSRO ILTCTAYGIP OPTIKWFWHP CNHNHSEARC DFCSNNEESF ILDADSNMGN RIESITORMA IIEGKNKMAS TLVVADSRIS GIYICIASNK VGTVGRNISF YITDVPNGFH VNLEKMPTEG EDLKLSCTVN KFLYRDVTWI LLRTVNNRTM HYSISKOKMA ITKEHSITLN LTIMNVSLOD SGTYACRARN VYTGEEILOK KEITIRDOEA PYLLRNLSDH TVAISSSTTL DCHANGVPEP QITWFKNNHK IQQEPGIILG PGSSTLFIER VTEEDEGVYH CKATNOKGSV ESSAYLTVOG TSDKSNLELI TLTCTCVAAT LFWLLLTLFI RKMKRSSSEI KTDYLSIIMD PDEVPLDEOC ERLPYDASKW EFARERLKLG KSLGRGAFGK VVQASAFGIK KSPTCRTVAV KMLKEGATAS EYKALMTELK ILTHIGHHLN VVNLLGACTK QGGPLMVIVE YCKYGNLSNY LKSKRDLFFL NKDAALHMEP KKEKMEPGLE QGKKPRLDSV TSSESFASSG FOEDKSLSDV EEEEDSDGFY KEPITMEDLI SYSFOVARGM EFLSSRKCIH RDLAARNILL SENNVVKICD FGLARDIYKN PDYVRKGDTR LPLKWMAPES IFDKIYSTKS DVWSYGVLLW EIFSLGGSPY PGVQMDEDFC SRLREGMRMR APEYSTPEIY QIMLDCWHRD PKERPRFAEL VEKLGDLLOA NVOODGKDYI PINAILTGNS GFTYSTPAFS EDFFKESISA PKFNSGSSDD VRYVNAFKFM SLERIKTFEE LLPNATSMFD DYQGDSSTLL ASPMLKRFTW TDSKPKASLK IDLRVTSKSK ESGLSDVSRP SFCHSSCGHV SEGKRRFTYD HAELERKIAC CSPPPDYNSV VLYSTPPI

Divide your sequence into potential domain fragments

>gi|156104876|ref|NP_002010.2| VEGFR-1 [Homo sapiens]

WYSYWDTGVLLCALLSCILLTGSSGSKLKDPELSLKGTQHIMQAGQTLHLQCRGEAAHKWSLPEMVSKESERLSITKSACGRNGKQFCSTLTLNTAQANHTGFYSCKYLAVPTSKKKETESAIYIFISDTGRPFVEM
YSEIPEIIHMTEGRELVIPCRVTSPNITVTLKKFPLDTLIPDGKRIIWDSRKGFIISNATYKEIGLLTCEATVNGHLYKTNYLTHRQTNTIIDVQISTPRPVKLLRGHTLVLNCTATTPLNTRVQMTWSYPDEKNKRA
SVRRRIDQSNSHANIFYSVLTIDKMQNKDKGLYTCRVRSGPSFKSVNTSVHIYDKAFITVKHRKQQVLETVAGKRSYRLSMKVKAFPSPEVVWLKDGLPATEKSARYLTRGYSLIIKDVTEEDAGNYTILLSIKQSNV
FKNLTATLIVNVKPQIYEKAVSSFPDPALYPLGSRQILTCTAYGIPQPTIKWFWHPCNHNHSEARCDFCSNNEESFILDADSNMGNRIESITQRMAIIEGKNKMASTLVVADSRISGIYICTASNKVGTVGRNISFYI
TDVPNGFHVNLEKMPTEGEDLKLSCTVNKFLYRDVTWILLRTVNNRTMHYSISKQKMAITKEHSITLNLTIMNVSLQDSGTYACRARNVYTGEEILQKKEITIRDQEAPYLLRNLSDHTVAISSSTTLDCHANGVPEP
QITWFKNNHKIQQEPGIILGPGSSTLFIERVTEEDEGVYHCKATNQKGSVESSAYLTVQGTSDKSNLELITLTCTCVAATLFWLLLTLFIRNKRSSSEIKTDYLSIIMDPDEVPLDEQCERLPYDASKWEFARERLK
LGKSLGRGAFGKVVQASAFGIKKSPTCRTVAVKMLKEGATASEYKALMTELKILTHIGHHLNVVNLLGACTKQGGPLMVIVEYCKYGNLSNYLKSKRDLFFLNKDAALHMEPKKEKMEPGLEGGKKPRLDSVTSSESF
ASSGFQEDKSLSDVEEEEDSDGFYKEPITMEDLISYSFQVARGMEFLSSRKCIHRDLAARNILLSENNVVKICDFGLARDIYKNPDYVRKGDTRLPLKWMAPESIFDKIYSTKSDVWSYGVLLWEIFSLGGSPYPGVQ
MDEDFCSRLREGMRMRAPEYSTPEIYQIMLDCWHRDPKERPRFAELVEKLGDLLQANVQQDGKDVIPINAILTGNSGFTYSTPAFSEDFFKESISAPKFNSGSSDDVRYVNAFKFMSLERIKTFEELLPNATSMFDDY
OGDSSTLLASPMLKRFTNTDSKPKASLKIDLRVTSKSKESGLSDVSRPSFCHSSCGHVSEGKRRFTYDHAELERKIACCSPPPDYNSVVLYSTPPI

>Ig-like-1	>Ig-like-2
LLLTGSSSGSK	AIYIFISDTGR
LKDPELSLKGT	PFVEMYSEIPE
QHIMQAGQTLH	IIHMTEGRELV
LQCRGEAAHKW	IPCRVTSPNIT
SLPEMVSKESE	VTLKKFPLDTL
RLSITKSACGR	IPDGKRIIWDS
NGKQFCSTLTL	RKGFIISNATY
NTAQANHTGFY	KEIGLLTCEAT
SCKYLAVPTSK	VNGHLYKTNYL
KKETESAIYIF	THRQTNTIIDV
ISDTGRPFVEM	QISTPRPVKLL
YSEIPEIIHMT	R

∍Ig-like-3	>Ig-like-4
CTNYLTHRQTN	TSVHIYDKAFI
TIIDVQISTPR	TVKHRKQQVLE
PVKLLRGHTLV	TVAGKRSYRLS
NCTATTPLNT	MKVKAFPSPEV
RVQMTWSYPDE	VWLKDGLPATE
(NKRASVRRRI	KSARYLTRGYS
QSNSHANIFY	LIIKDVTEEDA
SVLTIDKMQNK	GNYTILLSIKQ
KGLYTCRVRS	SNVFKNLTATL
SPSFKSVNTSV	IVNVKPQIYEK
ITYDKAFITVK	AVSSFPDPALY
IRKQQVLETVA	P
3	

>Ig-like-5
ATLIVNVKPQI
YEKAVSSFPDP
ALYPLGSRQIL
TCTAYGIPQPT
IKWFWHPCNHN
HSEARCDFCSN
NEESFILDADS
NMGNRIESITQ
RMAIIEGKNKM
ASTLVVADSRI
SGIYICIASNK
VGTVGRNISFY
ITDVPNGFHVN
LEKMPTEGEDL

>Ig-like-6	>Ig-like-7
ISFYITDVPNG	ITIRDQEAPYL
FHVNLEKMPTE	LRNLSDHTVAI
GEDLKLSCTVN	SSSTTLDCHAN
KFLYRDVTWIL	GVPEPQITWFK
LRTVNNRTMHY	NNHKIQQEPGI
SISKQKMAITK	ILGPGSSTLFI
EHSITLNLTIM	ERVTEEDEGVY
NVSLQDSGTYA	HCKATNQKGSV
CRARNVYTGEE	ESSAYLTVQGT
ILQKKEITIRD	SDKSNLE
QEAPYL	

>TK **DEOCERLPYDASKWEFARERLKLGK** SLGRGAFGKVVQASAFGIKKSPTCR **TVAVKMLKEGATASEYKALMTELKI** LTHIGHHLNVVNLLGACTKQGGPLM VIVEYCKYGNLSNYLKSKRDLFFLN **KDAALHMEPKKEKMEPGLEQGKKPR** LDSVTSSESFASSGFQEDKSLSDVE **EEEDSDGFYKEPITMEDLISYSFQV** ARGMEFLSSRKCIHRDLAARNILLS **ENNVVKICDFGLARDIYKNPDYVRK GDTRLPLKWMAPESIFDKIYSTKSD** VWSYGVLLWEIFSLGGSPYPGVQMD **EDFCSRLREGMRMRAPEYSTPEIYO IMLDCWHRDPKERPRFAELVEKLGD** LLQANVQQDGKDYIPINA

Analyse each fragment separately

>Ig-like-1	>Ig-like-2	>Ig-like-3	>Ig-like-4	>Ig-like-5	>Ig-like-6	>Ig-like-7	>TK
LLLTGSSSGSK	AIYIFISDTGR	KTNYLTHRQTN	TSVHIYDKAFI	ATLIVNVKPQI	ISFYITDVPNG	ITIRDQEAPYL	DEQCERLPYDASKWEFARERLKLGK
LKDPELSLKGT	PFVEMYSEIPE	TIIDVQISTPR	TVKHRKQQVLE	YEKAVSSFPDP	FHVNLEKMPTE	LRNLSDHTVAI	SLGRGAFGKVVQASAFGIKKSPTCR
QHIMQAGQTLH	IIHMTEGRELV	PVKLLRGHTLV	TVAGKRSYRLS	ALYPLGSRQIL	GEDLKLSCTVN	SSSTTLDCHAN	TVAVKMLKEGATASEYKALMTELKI
LQCRGEAAHKW	IPCRVTSPNIT	LNCTATTPLNT	MKVKAFPSPEV	TCTAYGIPQPT	KFLYRDVTWIL	GVPEPQITWFK	LTHIGHHLNVVNLLGACTKQGGPLM
SLPEMVSKESE	VTLKKFPLDTL	RVQMTWSYPDE	VWLKDGLPATE	IKWFWHPCNHN	LRTVNNRTMHY	NNHKIQQEPGI	VIVEYCKYGNLSNYLKSKRDLFFLN
RLSITKSACGR	IPDGKRIIWDS	KNKRASVRRRI	KSARYLTRGYS	HSEARCDFCSN	SISKQKMAITK	ILGPGSSTLFI	KDAALHMEPKKEKMEPGLEQGKKPR
NGKQFCSTLTL	RKGFIISNATY	DQSNSHANIFY	LIIKDVTEEDA	NEESFILDADS	EHSITLNLTIM	ERVTEEDEGVY	LDSVTSSESFASSGFQEDKSLSDVE
NTAQANHTGFY	KEIGLLTCEAT	SVLTIDKMQNK	GNYTILLSIKQ	NMGNRIESITQ	NVSLQDSGTYA	HCKATNQKGSV	EEEDSDGFYKEPITMEDLISYSFQV
SCKYLAVPTSK	VNGHLYKTNYL	DKGLYTCRVRS	SNVFKNLTATL	RMAIIEGKNKM	CRARNVYTGEE	ESSAYLTVQGT	ARGMEFLSSRKCIHRDLAARNILLS
KKETESAIYIF	THRQTNTIIDV	GPSFKSVNTSV	IVNVKPQIYEK	ASTLVVADSRI	ILQKKEITIRD	SDKSNLE	ENNVVKICDFGLARDIYKNPDYVRK
ISDTGRPFVEM	QISTPRPVKLL	HIYDKAFITVK	AVSSFPDPALY	SGIYICIASNK	QEAPYL		GDTRLPLKWMAPESIFDKIYSTKSD
YSEIPEIIHMT	R	HRKQQVLETVA	P	VGTVGRNISFY			VWSYGVLLWEIFSLGGSPYPGVQMD
		G		ITDVPNGFHVN			EDFCSRLREGMRMRAPEYSTPEIYQ
				LEKMPTEGEDL			IMLDCWHRDPKERPRFAELVEKLGD
							LLQANVQQDGKDYIPINA

Analyse inter-domain sequences (domain: ~ 30 a.a.)

>Inter-domain-region
ITLTCTCVAATLFWLLLTLFIRKMKRSSSEIKTDYLSIIM
DPDEVPLDEQCERLPYDASKWEFARERLKLGKSLGRGAFG
KVVQASA

>C-ter-region

DCWHRDPKERPRFAELVEKLGDLLQANVQQDGKDYIPINAILTGNSGFTYST PAFSEDFFKESISAPKFNSGSSDDVRYVNAFKFMSLERIKTFEELLPNATSM FDDYQGDSSTLLASPMLKRFTWTDSKPKASLKIDLRVTSKSKESGLSDVSRP SFCHSSCGHVSEGKRRFTYDHAELERKIACCSPPPDYNSVVLYSTPPI

Analyse each fragment separately

>Ig-like-1 LLLTGSSSGSK LKDPELSLKGT QHIMQAGQTLH LQCRGEAAHKW SLPEMVSKESE RLSITKSACGR NGKQFCSTLTL NTAOANHTGFY	>Ig-like-2 AIYIFISDTGR PFVEMYSEIPE IIHMTEGRELV IPCRVTSPNIT VTLKKFPLDTL IPDGKRIIWDS RKGFIISNATY KEIGLLTCEAT	>Ig-like-3 KTNYLTHRQTN TIIDVQISTPR PVKLLRGHTLV LNCTATTPLNT RVQMTWSYPDE KNKRASVRRRI DQSNSHANIFY SVLTIDKMONK	>Ig-like-4 TSVHIYDKAFI TVKHRKQQVLE TVAGKRSYRLS MKVKAFPSPEV VWLKDGLPATE KSARYLTRGYS LIIKDVTEEDA GNYTILLSIKO	>Ig-like-5 ATLIVNVKPQI YEKAVSSFPDP ALYPLGSRQIL TCTAYGIPQPT IKWFWHPCNHN HSEARCDFCSN NEESFILDADS NMGNRIESITO	>Ig-like-6 ISFYITDVPNG FHVNLEKMPTE GEDLKLSCTVN KFLYRDVTWIL LRTVNNRTMHY SISKQKMAITK EHSITLNLTIM NVSLODSGTYA	>Ig-like-7 ITIRDQEAPYL LRNLSDHTVAI SSSTTLDCHAN GVPEPQITWFK NNHKIQQEPGI ILGPGSSTLFI ERVTEEDEGVY HCKATNOKGSV	>TK DEQCERLPYDASKWEFARERLKLGK SLGRGAFGKVVQASAFGIKKSPTCR TVAVKMLKEGATASEYKALMTELKI LTHIGHHLNVVNLLGACTKQGGPLM VIVEYCKYGNLSNYLKSKRDLFFLN KDAALHMEPKKEKMEPGLEQGKKPR LDSVTSSESFASSGFQEDKSLSDVE EEEDSDGFYKEPITMEDLISYSFOV
NTAQANHTGFY SCKYLAVPTSK	KEIGLLTCEAT VNGHLYKTNYL	SVLTIDKMQNK DKGLYTCRVRS	GNYTILLSIKQ SNVFKNLTATL	NMGNRIESITQ RMAIIEGKNKM	NVSLQDSGTYA CRARNVYTGEE	HCKATNQKGSV ESSAYLTVQGT	EEEDSDGFYKEPITMEDLISYSFQV ARGMEFLSSRKCIHRDLAARNILLS
KKETESAIYIF	THRQTNTIIDV	GPSFKSVNTSV	IVNVKPQIYEK	ASTLVVADSRI	ILQKKEITIRD	SDKSNLE	ENNVVKICDFGLARDIYKNPDYVRK
<u>ISD</u> TGRPFVEM YSEIPEIIHMT	QISTPRPVKLL R	<u>HIYD</u> KAFITVK HRKQQVLETVA	AVSSFPDPALY P	SGIYICIASNK VGTVGRNISFY	QEAPYL		GDTRLPLKWMAPESIFDKIYSTKSD VWSYGVLLWEIFSLGGSPYPGVQMD
		G		ITDVPNGFHVN LEKMPTEGEDL			EDFCSRLREGMRMRAPEYSTPEIYQ IMLDCWHRDPKERPRFAELVEKLGD
				LLMII ILOLDE			LLQANVQQDGKDYIPINA

Analyse inter-domain sequences (domain: ~ 30 a.a.)

>Inter-domain-region
ITLTCTCVAATLFWLLLTLFIRKMKRSSSEIKTDYLSIIM
DPDEVPLDEQCERLPYDASKWEFARERLKLGKSLGRGAFG
KVVQASA

>C-ter-region

DCWHRDPKERPRFAELVEKLGDLLQANVQQDGKDYIPINAILTGNSGFTYST PAFSEDFFKESISAPKFNSGSSDDVRYVNAFKFMSLERIKTFEELLPNATSM FDDYQGDSSTLLASPMLKRFTWTDSKPKASLKIDLRVTSKSKESGLSDVSRP SFCHSSCGHVSEGKRRFTYDHAELERKIACCSPPPDYNSVVLYSTPPI

PSIPRED

bioinf.cs.ucl.ac.uk/psipred/

Prediction of:

- Secondary structure (also: www.compbio.dundee.ac.uk/www-jpred/)
- Trans-membrane regions (also: www.cbs.dtu.dk/services/TMHMM/)
- Disorder (also: dis.embl.de/)
- Domains
- Function
- 3D structure (homology modelling, fold recognition)

- 1) Save Fasta sequence: Ig-like 3, 4, 5
- 2) Run BLAST
 - Save Sequences of hits in Fasta format
 - Save pair-wise alignments
 - COBALT Multiple Alignment
 - O Nb. of sequences
 - Alignment quality

2.) Graphic view of matched sequences

Distribution of Blast Hits on the Query Sequence

3.) List of matched sequences

Description → pair-wise alignment

Query cover → %age of input sequence matched

E-value → probability that the matched sequence is not homologous

Max ident → % of sequence identity of the longest fragment

Accession → page with protein description

- 4.) Alignments of matched sequences to Query
 - 4.1) 'Easy' Results: clear homology

4.2) 'Difficult' Results: homology?

Homologous or **Not-homologous?**

- 1.) % Sequence Identity (%_ID)
- 2.) Expect value (E-value)
- 3.) Conservation of key-residues
 - e.g., in Ig-like domains: cysteines, tryptophane

Homologous or **Not-homologous?**

1.) % Sequence Identity (%_ID)

> 30 %

Homologous or **Not-homologous?**

2.) Expect value (E-value):

Number of matches (with a certain score) "expected to be found merely by chance"

Homologous or **Not-homologous?**

- 1.) % Sequence Identity (%_ID)
- 2.) Expect value (E-value)
- 3.) Conservation of key-residues
 - MSA
 - Literature
 - 3D-Structures

Pair-wise sequence comparison methods do not recognize "keyresidues" for protein structure/function

All positions of the alignment are the same and have the same weight on the computed parameters (i.e., %_ID, E-value, etc.)

Multiple sequence alignments (MSA)

- More informative than pair-wise alignments
- Different positions have different conservation
- May allow to recognize "key-residues" for protein structure/function
- Input sequences:
 - O Relatively high number
 - Similar enough to produce correct alignments (eliminate 'outliers', i.e., < 20 %_ID)
 - Different enough to distinguish between conserved and variable positions (make non-redundant, i.e., eliminate > 80 %_ID)

'High-quality' MSA

Dps proteins

H.pylori	В	1JI4	Q	ΑI	A	Ι	v :	LF	M	K	V H	N	F	I W	N	v	ĸ	3 T	D	F	FN	υ	H I	KA	T	Е	EI	Y	E	E F	A	D	4 F	D	D I	LA	Е	R :	I	V Q]	L	Е	D	Y	K Y	L	\mathbf{L}	A	K -	· L	Q	K	s I	W
H.hepaticus	В		Q	ΑI	A	Α	V	FY	v	K	V H	N	F	I W	N	V	K	3 M	D	F :	Y P	т	H I	KA	T	E	ΕI	Y	E	K Y	A	D	/ F	D	D 1	V A	E	R 1	V J	L Q	1	L	S	D	Y	E Y	F	V	G I	E -	· L	Q	K Z	A I	W
V.cholerae	В	3IQ1	L	Αl	I Y	Q	V	F Y	M	N S	r B	G	Y	I W	N	Ι (2 6	3 K	E	F I	FE	L	н	AK	F	Е	ΕI	Y	T :	DΙ	Q	L	ΚI	D	E I	LA	Е	R :	IJ	L T	1	v	D	G	F	SI	L	I	R I	E -	· Q	E	K I	LΨ	W
S.degradans	В		L	ΑI	S	Y	V :	L Y	L	K :	ГН	N	F	ΙW	N	V	Г	3 P	М	F (T 9	L	H	н м	ſF	м	D Q	Y	T :	ΕÆ	W	T Z	AL	D	T :	I A	Е	R :	I	R T	1	L	Е	G	Q	ET:	L	I	ΕV	v -	. н	E	K l	I A	W
L.pneumophila	В		L	ΑI	Т	Y	A :	L Y	L	K :	ΓQ	N	Y	ΙW	Н	v	Г	3 P	Q	F I	K S	L	Н	ΕL	F	E	M Q	Y	K	ΕI	A	E	A V	D	Q:	I A	Е	R :	I	RI	1	A	K	D	N I	мм	I	V	A I	Α -	. н	E	K Z	АН	W
B.anthracis	В	1JIG	v	Αl	ı w	N	v :	L Y	v	K	L H	N	Y	ı w	Y	v	r	3 P	н	F I	F T	L	н	EΚ	F	E	E F	Y	N :	E A	G	T :	ΥI	D	E 1	L A	Е	R :	I 1	L A	1	v	N	D	Y	s A	L	H :	T I	г –	· L	E	Q I	v	w
B.anthracis	В	1JI5	v	ΑI	w	s	v :	L F	T	K	LH	N	F	I W	Y	v	K	3 P	Q	F I	FT	L	H I	EK	F	Е	E L	Y	T :	E S	A	T I	1 I	D	Е:	I A	E	R :	I	L A]	СМ	K	D	Y	Е М	м	Y	T	E -	· L	E	K	A I	W
S.aureus	В	2D5K	v	Αl	ı w	т	v	AY	T	K	LH	N	F	I W	Y	v	K	3 P	И	F I	FS	L	н	v k	F	Е	ЕL	Y	N :	E P	s	Q	y v	D	E I	LA	E	R :	I	L A	1	s	Q	D	F	r n	I	Q	T !	s -	· v	D	K	H I	W
S.epidermidis	В		V	A 1	ı w	т	V	AY	T	K	L H	N	F	I W	Y	V	K	3 P	И	F I	FS	L	H	r k	F	E	ΕL	Y	N	ΕÆ	S	Q	y V	D	D	L A	Е	R.	I	L A	1	S	K	D	F	s K	I	Q	T S	s -	. V	D	KE	H E	W
B.subtilis	В	2CHP	L	S	ı w	F	L :	L Y	S	K	L H	IR.	F	I W	Y	v i	K	3 P	н	F I	FT	L	H I	EΚ	F	Е	ΕL	Y	D :	H A	A	Е :	r v	D	T :	I A	Е	R I	L	LΑ	1	v	N	D	Y	ΚQ	I	I	E I	E -	٠ ٧	E	κÇ	2 V	W
S.pyogenes	В	2WLA	v	ΑI	L	s	V .	A A	S	I,	v H	Q	V I	I W	Y	м	R G	3 P	G	F I	L Y	L	H I	PK	м	D	ΕL	L	D	SI	N	A	1 L	D	ΕÌ	M S	Е	R I	L :	ΙТ	1	v	Е	v	Y.	L Y	L	K	T I	E -	· A	E	K 3	r I	W
L.monocytogenes	В	2IY4	v	Αl	ΙL	N	V I	FT	v	K :	I H	Q	1	ı W	Y	м	R G	3 H	N	F I	F T	L	н	EΚ	м	D	D L	Y	S	E F	G	E (2 M	D	E١	V A	Е	R I	L I	L A	1	v	G	T	L	E L :	L	K	A s	s -	· I	D	K	I	w
O.oeni	В		I	ΑI	I	S	Q:	L K	v	N	V Ç	Q	T	I W	Y	M	R G	3 E	И	F I	FR	L	Н 1	PΙ	м	D	ЕУ	G	D	QI	S	E	2 I	D	Q:	I A	Е	R I	L:	ΙA	1	v	D	Q	F	K Y	L	K	D	E -	T	D	K 1	1 I	W
E.coli	В	1F33	v	I	2 F	Ι	D :	L S	L	Ι:	ГК	Q	A	I W	N	M	R G	3 A	N	F:	I A	v	H I	ЕМ	1 L	D	G F	R	T .	AΙ	I	D	ı I	D	Tì	M A	E	R	A١	V Q	1	A	D	R	Y.	AI	V	S	R I	D -	· L	D	K	7 L	W
S.enterica	В		V	I	2 F	Ι	D :	L S	L	I :	r K	Q	А	I W	N	м	R G	3 A	N	F:	I A	V	H I	ЕМ	ı L	D	G F	R	Т.	AΙ	T	DI	I	D	т 1	M A	E	R	A	V Q	1	A	D	R.	Y.	A V	V	S	R I	D -	· L	D	KE	E	W
B.melitensis	В	3GE4	L	A 2	A T	Ι	D :	L A	L	I :	r K	Q	А	I W	И	L	K	3 P	Q	F:	I A	V	H	Е М	ı L	D	G F	R	A	ΕI	D	D	I V	D	T :	I A	E	R Z	A١	V Q	1	I	Е	R	Y	G D	V	S	R S	S -	· L	D	K	A L	W

Bacterioferritins

S.enterica	В		L G	N I	L	V Z	I	N	QY	FI	Н	AF	М	FK	N	WG	LT	R	L N	7 d	ΙE	YH	E	SII	E	МK	H	D	KY	I	E B	II.	F	DI	L R	L	L - E	LAD	- E	EG	HID
E.coli	В	2HTN	L G	N I	L	V Z	A I	N (Q Y	F I	н	ΑF	м	FΚ	N	WG	LK	R	ιи	D 7	ΙE	Y H	E	SII	E	мк	H I	D	R Y	1	E B	I	F	DΙ	LΑ	L	L - D	L R D	- E	E G	H I D
Y.pestis	В		L G	N I	L	V Z	I	N	Q Y	FI	н	ΑF	M.	F K	N	WG	LM	R	L N	D F	Œ	ΥH	ΙE	SII	E	мк	H	D	KЧ	I	E B	I	F	DI	LA	LE	L - S	L V D	- E	EΕ	H I D
C.B.pennsylvanicus	В		L S	DI	L	V Z	A V	N	Q Y	FI	Н	SE	I	FN	N	WG	LE	R	L N	K	EΕ	ΥÇ) E	CVI	E	L D	H	D	LY	A	KB	II	F	DI	L S	LE	F - H	LKD	- E	EΚ	H I D
A.vinelandii	В	1SOF	L G	N I	L	I 2	I	N (Q Y	FI	н	A F	M	ΥE	D	W G	LE	K	L G	K	ΙE	YH	E	SII	E	мк	H I	D	КL	1	KB	I	F	DΙ	L K	L	Q - A	LES	- E	ΕD	нір
M.capsulatus	В		LT	N	L	T 2	I	и	Q Y	FI	Н	ΑF	M.	F K	N	WG	F G	K	L N	E F	ΙE	YK	E	SII	E	мĸ	H	D	R L	I	E B	I	F	DI	Q L	LE	Q - Q	L E S	- E	EΕ	H V D
S.alaskensis	В		LK	N I	L	T 2	I	N	Q Y	WI	н	ΥF	M.	L D	N	WG	V A	R	LΑ	н	E	R E	E	SII	E	мк	H	D	ΚL	A	D B	I	F	DI	LA	LE	E - E	L E S	- E	ЕН	H V D
H.baltica	В		LK	N I	L	T 2	I	N	Q Y	FI	Н	SE	М	LK	D	WG	V S	V	L A	E F	Œ	YK	E	SIE	E	M Q	H	D	wL	I	D B	II	F	DI	L K	LE	H - D	LEN	- E	EΕ	H V D
B.melitensis	В		L F	L	L	G 2	A V	N	Q Y	WI	Н	ΥF	L	LN	D	WG	YT	R	L A	KF	Œ	R E	E	SIE	E	мн	H	D	KL	I	D B	I.	EF	DI	LK	G I	Y - D	LAD	- E	E G	H I D
Bradyrhizobium sp.	В		L R	S	L	T 2	I	и	Q Y	WI	Н	ΥF	L	L N	N	WG	LI	E	M A	K 7	7 W	R K	E	SIE	Е	мЕ	H	D	KF	T :	D B	I	F	DI	LA	A	I - G	M K D	- E	ЕН	H I D
P.aeruginosa	В		LT	G	L	A 2	A R	D	Q Y	F I	ΕН	SE	M.	ΥE	D	WG	FS	K	LY	E F	R L	N H	ΙE	MEE	Е	ΤQ	H	D	AL	L :	R B	I	L	DI	L K	LE	R - H	LAD	T E	ΕD	нач
R.palustris	В		L R	GI	L	T 2	I	S	Q Y	WI	Н	ΥF	L	LΑ	N	WG	LK	D	M A	K	7 W	RK	E	SIE	E	мЕ	H	D	LL	T :	D B	I	EF	DI	L A	A	M - G	MKD	- E	ЕН	нгр
P.fluorescens	В		LT	G	L	A 2	A R	D	Q Y	F	7 Н	SE	M.	ΥE	D	WG	FT	K	LY	E F	RI	N H	ΙE	MEE	E	A A	H	D	AL	M	R B	II	м	DI	L R	L	Y - K	LHD	TE	ΕD	нтч
M.capsulatus	В		L A	G	L	A 2	I	D	Q Y	F	Н	Al	ı M	Y R	D	WG	FH	V	LY	E F	ΙT	АН	Œ	M Q E	Е	Q A	H	S	ΑL	I	R B	I	F	DI	L G	V	н – а	L D D	TE	E D	H C L
I.loihiensis	В		LA	F	L	T S	S I	D	Q Y	T 8	В	SE	Q	ΥE	D	M G	LM	K	LY	E E	RI	N H	ΙE	IDI	E	R G	H	D	LL	I	R B	II	F	DI	LK	LE	H - N	L K D	T E	ΕD	нач
M.bovis	В		LT	S	L	T 2	I	N	Q Y	FI	Н	SE	м	Q D	N	WG	FT	E	L A	AI	ΙT	R A	E	SFI	E	M R	H I	E	ΕI	T :	D B	II	L	DI	LA	I	Y - D	V A D	- E	EΕ	HID

Multiple sequence alignment methods

Get sequences to align:

putative homologs detected from a Blast search (saved as text)

Align all sequences in a dataset to:

- one another
 - O ClustalW, T-Coffee: www.ebi.ac.uk -> tools -> sequence analysis

Clustal programs

ClustalW2:

- Input sequences
- Multiple Sequence Alignment Options: Aligned vs. Input
- Output (%-age sequence identity)
- Alignment:
 - 1. Sequences with very different length
 - 2. Outliers (<20% sequence identity)
 - 3. Redundant (>80 % sequence identity)

Multiple sequence alignment methods

Edit/Visualize MSA:

- ClustalW/Omega: www.ebi.org
- ClustalX: www.clustal.org; clustalx-2.1-win.msi

• **JalView:** http://www.jalview.org/download.html

• **BioEdit:** http://www.mbio.ncsu.edu/BioEdit/bioedit.html

• **WebLogo:** http://weblogo.berkeley.edu/logo.cgi

ClustalW

Input:

- Load sequences
- Step 3: Set your Multiple Sequence Alignment Options (Input vs. Aligned)

Output:

- Alignments
- Results Summary: file.output (%ages of sequence identity)

ClustalX

Font

File: load sequences

Alignment:

do complete alignment

output format options: Clustal vs. Fasta; Input vs. Aligned

Trees: draw tree

Colors

Quality:

- Show low-scoring segments
- Show exceptional residues

Bioedit

Graphic view

- Residues per row
- Characters in tiles
- Blocks of ten residues
- Sequences in color
- Outline: similar, identical
- Id/Sim shading
- Id/Sim shading with color table
- Threshold for shading

'High-quality' MSA

At the basis of a number of structure/function prediction methods:

- domains
- natively unfolded regions
- TM regions
- solvent accessibility
- secondary structures
- 3D-structures

Homologous or **Not-homologous?**

- 1.) % Sequence Identity (%_ID)
- 2.) Expect value (E-value)
- 3.) Conservation of key-residues
 - MSA
 - Literature
 - 3D-Structures

Homologous or **Not-homologous?**

- 1.) % Sequence Identity (%_ID)
- 2.) Expect value (E-value)
- 3.) Conservation of key-residues
 - MSA
 - Literature
 - 3D-Structures

PDB: Protein Data Bank

www.rcsb.org

PDB Identifier (PDB ID):

4 characters: 1st = number; 2nd, 3rd and 4th = letter or number (e.g., 1VFB)

Citation

Molecule description

Chains, residue numbers

Source

Domain annotation (SCOP)

PDB: Protein Data Bank

www.rcsb.org

Method

- X-ray crystallography vs. NMR
- Resolution values

Image - View in 3D

- Mouse options
- Display options: Style (cartoon; backbone; CPK; ball and stick);

Color (secondary structure); Surface (solvent accessible);

Background; Rotation; S-S bonds; Hydrogen bonds; Export

image; etc.

PDB: Protein Data Bank

www.rcsb.org

Display files

- Fasta sequence (3 chains)
- PDB file:
 - O ATOM: 3rd, atom type; 4th, residue type; 5th, chain name; 6th, residue number; 7th, 8th, 9th: x, y, z co-ordinates; 10th, occupancy; 11th, B-factor
 - 0 TER
 - O HETATM

PDB: Protein Data Bank

www.rcsb.org

Download files

- Fasta sequence
- PDB file (text)
- Biological Assembly

Sequence

Secondary structure (DSSP)

PDB: Protein Data Bank

www.rcsb.org

SHMT: 1KKJ

- Asymmetric unit vs. Biological assembly (Jmol)
- Ligands and pockets

PDBsum

www.ebi.ac.uk/pdbsum/

1VFB

- Protein chains: A, B, C
- Secondary structure, loops, disulfide bonds, catalytic residues, residue conservation

1KKJ

- Protein domains; catalytic residues, PDB sites, contacts to ligands;
- Ligands (ligplot); Clefts (Jmol); Tunnels

Protein annotation databases

Uniprot

www.uniprot.org

Search in

Protein attributes

Protein existence

General annotation

Function; Catalytic activity; Subcellular location; ...

Sequence annotation

Amino acid modifications; Variants; ...

Protein annotation databases

Uniprot

www.uniprot.org

Cross-references

- 3D structure DBs;
- Protein-protein interactions
 - IntAct: interaction detection method
 - o STRING: confidence; evidence; experiments

Pairwise methods:

Blast (Fasta; Ssearch)

Profile-based methods:

Psi-Blast (HMMs: SAM-TXX; HMMER)

Profile-profile methods

Pairwise methods: Blast (Fasta; Ssearch)

http://blast.ncbi.nlm.nih.gov/

(... and mirrors everywhere)

The **Query** sequence is compared

to **each** sequence in a database

Pair-wise sequence comparison methods do not recognize "keyresidues" for protein structure/function

All positions of the alignment are the same and have the same weight on the computed parameters (i.e., %_ID, E-value, etc.)

How do we overcome this problem?

Structure analysis: best answer / time-consuming, not easy to automatize

Profile-based sequence comparison methods use MSA

Profile-based SCM attempt to recognize "key-residues"

Exploit information contained in multiple sequence alignments (i.e., residue conservation in different family members)...

Profile-based SCM attempt to recognize "key-residues"

Exploit information contained in multiple sequence alignments (i.e., residue conservation in different family members) to build a PROFILE

```
Query
        0.2
       0.2
                         0.2
       0.0
       0.0 0.2
       0.0
       0.0
                   0.2
       0.0
       0.0
       0.0
                            0.4
                      0.2 0.2
       0.0
                0.2
                      0.2
       0.0
                                                           0.2
             0.2
                      0.2
       0.0
                                                           0.6
       0.0
                         0.2
       0.0
                0.2
       0.0
       0.0
                   0.2
       0.0
       0.0
       0.0
                            0.2
       0.0
       0.0
             0.2
       0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.2
  gaps
```

Consensus vs. PROFILE

POS PROBE CONSENSUS	s	S								PR	OFIL	E_										
A	A	Α (С	D	Ε	F	G	H	I	K	L	M	N	P	Q	R	S	T	v	W	Y	+/-
1 E G V L V 3 2 L L S P L 2 3 V V V V V V 4 K E A T A 6 5 A P L P P 6 6 G G G G G G G 7 7 S S Q E D 4 8 S S T P S 4 9 V L V A V 5 10 K R R S R R 0 11 M L I I I I 0 12 S S T S S 4 13 C C C C C C C C C C C C C C C C C C C	2266744500431045112322126023	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2 2 1 1 1 4 0 1 2 6 5 2 3 3 1 2 2 3 2 3 0 1 0 0 5 2	-25077211325545640651242409-33	4 -1 -2 -6 1 5 7 2 -1 1 2 2 -5 3 3 4 5 -3 1 1 3 3 -1 8 -1 2	0 3 2 2 5 5 7 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	4 0 2 4 4 2 5 7 7 4 1 0 3 5 5 2 1 8 8 6 9 9 3 4 4 6 6 1 3 1 2	-1 -1 -3 1 0 -1 -2 2 -3 -1 -1 3 -1 0 0 0 -1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0	3 3 11 0 1 -3 -2 0 7 -2 11 0 3 -2 -1 0 0 -2 4 2 6 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1 -1 -2 5 0 0 2 2 2 -2 8 -1 2 -5 7 1 2 1 -3 2 -4 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 6 8 -2 2 -4 -3 -3 7 -3 11 -3 -8 -3 -2 -3 -3 -2 -1 -1 -1 -2 0 3 10 10 10 10 10 10 10 10 10 10 10 10 10	4 5 6 0 0 2 2 3 3 6 6 2 2 -1 1 -1 1 -1 1 -1 2 10 -1 1 · · ·	1 -1 -2 3 0 4 4 4 2 -1 3 -2 3 -3 3 4 4 4 4 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2	1 3 1 3 8 3 3 7 1 3 4 4 3 3 7 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	1 0 -2 3 2 2 6 0 -1 3 -1 -6 5 1 1 4 -3 1 -4 1 0 1 2 2 2 4 0 1 1 2 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2	-2 -1 -2 1 0 -3 1 1 -3 7 -2 1 0 -3 3 -3 1 1 -1 -1 -2 -1 -2 -1	1 3 0 3 2 6 6 6 10 0 5 5 - 2 2 1 2 7 4 7 7 9 6 1 1 1 - 2 8 8 8 2 1 2 3 3 0 1 - 1 2	2 1 2 6 2 4 2 6 2 1 1 6 3 1 4 6 3 7 7 1 2 2 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1	64 415 03 22 -1 010 -2 9 0 0 2 2 2 3 -1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	-6 1 -9 -6 -5 -11 -6 -2 -5 7 -3 0 -13 2 -6 -3 -6 7 7 -2 1 -3 -3 -3 -5 3 -6 -1 -1	-2 -1 -4 -4 -7 -5 -4 -1 -5 -1 -5 -4 -4 -6 7 -2 8 -3 -2 -2 -1 -2 -3 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	99999999999999444444449999
48 S G N S S 4 49 S S N Y S 2	4		3	5 2	3 1	-4 1	7 2	0	-2 0	2	-4 -2	-3 -2	6 5	3	1 -1	0	10	3	0 -1	-2 3	-4 1	9

Pairwise methods: Blast, Fasta, Ssearch

The **Query** sequence is compared to **each** sequence in a database

Profile-based methods: Psi-Blast, HMMs

The **Query** sequence is compared to each sequence in a database

The best matches are used to build a **Profile**The **Profile** is compared to **each** sequence in a database

Profile-profile methods: Psi-Blast, HMMs

The **Query** sequence is compared to each sequence in a database

The best matches are used to build a **Profile**The **Profile** is compared to the **Profiles** built from each sequence in a database

PDB40D sequence database:

sequences of protein domains (D) of known structure (PDB) with sequence identity < 40%

Number of homologues detected:

"true positives" (TP)

Number of non-homologues detected:

"false positives" (FP)

Homologues vs. non-homologues:

Structural Classification Of Proteins (SCOP) database

Pairwise methods

Profile-based methods

Profile-based methods: Psi-Blast

Blast, Psi-Blast: http://blast.ncbi.nlm.nih.gov/

(... and mirrors everywhere)

The **Query** sequence is compared to **each** sequence in a database

The best matches are used to build a **Profile**

The **Profile** is compared to **each** sequence in a database

Profile-based methods: HMMs

SAM-TXX: http://compbio.soe.ucsc.edu/sam.html

HMMER: http://hmmer.janelia.org/

The **Query** sequence is compared to **each** sequence in a database

The best matches are used to build a **hidden Markov model**

The **hidden Markov model** is compared to **each** sequence in a database

Profile-profile methods: HMMs

HHPred: http://toolkit.tuebingen.mpg.de/hhpred

The **Query** sequence is compared to each sequence in a database

The best matches are used to build a **Profile/HMM**

The **Profile/HMM** is compared to the **Profiles/HMM** built from each sequence in a database

Pairwise methods Query sequence vs. (Blast) each DB sequence **Profile (built from the Profile-based methods** query sequence) vs. (Psi-Blast, HMMs) each DB sequence **Profile (built from the** query sequence) vs. **Profile-profile (HMM-**Profile built for each HMM) methods **DB** sequence

Pairwise methods Query sequence vs. (Blast) each DB sequence **Profile (built from the Profile-based methods** query sequence) vs. (Psi-Blast, HMMs) each DB sequence **Profile (built from the** query sequence) vs. **Profile-profile (HMM-**Profile built for each **HMM**) methods **DB** sequence

Profile-based _____ methods (Psi-Blast, HMMs)

Profile (built from the query sequence) vs. each DB sequence

DB sequence SAM-T08: http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html

Job: http://compbio.soe.ucsc.edu/SAM_T08/results/target08-query-1288251773-1086/summary.html

Metaserver:

- Homology detection
- Secondary Structure Prediction
- Residue-Residue Contact Prediction
- Top-5 models

"CASP format"

Profile-profile (HMM-HMM) methods Profile/HMM (built from the query sequence) vs. Profile/HMM built for each DB sequence

HHpred: http://toolkit.tuebingen.mpg.de/hhpred

Job: http://toolkit.tuebingen.mpg.de/hhpred/results/2645863

- Several methods
- Different strategies (sequencesequence, profile-sequence, profileprofile)
- Similar inputs and outputs
- Different popularity and userfriendliness
- Different ability to recognize distant homologues in performance tests
- BLAST (sequence-sequence)
- PSI-BLAST, SAM-T08 (profile/HMM-sequence)
- HHpred (profile-profile/HMM-HMM)

What are they for?

Homology detection

Assignment/Prediction of Structural/Functional properties

- Detection of a template structure for the whole protein or parts of it
- Prediction of protein function and/or functional residues
- Prediction of protein architecture (domains, unfolded or transmembrane regions, etc.)
- Prediction of promoter regions

How accurate are prediction methods?

For a 3D protein model:

Prediction accuracy: similarity with the real data

similarity with the real 3Dstructure

Accuracy evaluation: comparison of the prediction with the real data

comparison of the model with the real 3D-structure

If we know the answer (e.g., the real 3D-structure) in advance, can our evaluation be reliable?

We need BLIND TESTS!!!!!!!

How accurate are prediction methods?

Two types of evaluations

Human-based

Human predictions &
Fully automated methods

CASP
every two years since 1994
CASP9 in 2010

Fully automated

Fully automated methods

CAFASP (with CASP)

Livebench, EVA (continuous)

Dramatic performance improvements!!!

CASP, CAFASP RESULTS

Reliable picture of the performance of several prediction methods

Special issues of the Journal:

Proteins: Structure, Function and Bioinformatics

- CASP10 in 2012, special issue in 2013
- CASP9 in 2010, special issue in 2011
- CASP8 in 2008, special issue in 2009
- CASP7 in 2006, special issue in 2007
- CASP6 in 2004, special issue in 2005
- CASP5 in 2002, special issue in 2003
- CASP4 in 2000, special issue in 2001
- CASP3 in 1998, special issue in 1999
- CASP2 in 1996, special issue in 1997
- CASP1 in 1994, special issue in 1995

CAPRI: Critical Assessment of Predicted Interactions

• Performance of protein-protein interaction (docking) methods

Special issues of the Journal:

Proteins: Structure, Function and Bioinformatics

CAPRI4: current issue

(http://onlinelibrary.wiley.com/doi/10.1002/prot.v78:15/issuetoc)

Template-based: Homology modelling

Most accurate => preferred whenever applicable

Procedure:

- Identify template: protein of known structure homologus to the target (sequence comparison methods).
- Produce correct alignment (multiple sequence alignments). Crucial step: errors are inherited in the model.
- Identify structurally conserved and variable regions
- Replace mutated a.a. in the conserved regions (rotamers)
- Model variable regions: 1) alternative templates; 2) loop DBs
- Assess reliability: map conserved regions and loops

Template-based: Fold recognition

Less accurate => second choice or as a complement to homology modelling

Procedure like homology modelling, except:

• Identify template: protein of known structure homologus to the target (fold recognition methods).

Fold recognition methods: sequence to fold comparisons

- Target sequence modelled in each structure of a fold representative library (threading): 1D -> 3D
- Structures of a fold library described by sequences of structural properties rather than a.a. are compared by SCM to a target sequence described by a sequence of predicted structural properties: 3D -> 1D

New fold: fragment-based

Least accurate => only when all else has failed!

Rational basis:

• Small protein fragments assume a discrete and finite number of conformations

Procedure:

- Target sequence is broken into smaller fragments (e.g., 9 and 3 a.a.)
- Fragment sequences are used to identify structural fragments with identical sequences => several conformations retrieved for each fragment
- Structural fragments (each with many alternative conformations) are combined together to reconstruct the protein fold -> attempt to simulate the folding process

How accurate are prediction methods? - Template-based Fragment-based Category pair-wise SC methods profile-based (Blast, Fasta) SC methods (PSI-Blast, HMMs) Programs FR methods (3D-PSSM, Threader) Fragment-based methods (Rosetta) Metaservers (Meta-BASIC, 3D_Jury, Genesilico, Pcons, Bioinbgu, Robetta) Target Nb Best GDT_TS %_ID best template CM FR Best GDT_TS vs.%_ID best template %_ID %_ID T277 GDT_TS

How accurate are prediction methods?

Human experts perform better than automated methods

What is the purpose of the model?

Procedure to choose

Required Accuracy Vs. Time available

Consider experimental (X-ray, NMR, EM) structure determination!

What is the purpose of the model?

Biological applications of protein structure prediction methods

High accuracy 3D model:

drug design; docking

General model at the fold level:

function prediction

Topology / Globular vs. Natively unfolded:

engineer insoluble proteins into smaller and soluble portions

What is the purpose of the model?

Biological applications of protein structure prediction methods

How do we proceed?

- Fully automated methods and <u>Model DBs</u>
 - O Modeller/ModBase
 - O Swiss-Model/Swiss-Model Repository
 - 3D-Jury, 3D-shotgun, Pcons, Pmodeller (Genesilico, Meta-BASIC) (CM, FR)
 - O Robetta (FR, NF)
- Semi-automated: produce the alignment, use program to build the model (transform the alignment in 3D coordinates)
 - O Modeller
- Manual

Secondary structure prediction methods

Tools for prediction of:

- Domains
- Disordered regions
- Trans-membrane regions
- Secondary structure elements