Pontificia Universidad Javeriana

Taller Analisis Numerico

Profesora

Eddy Herrera Daza

Integrantes

Diego Arroyo arroyodiego@javeriana.edu.co git: DiegoArroyoG

Santiago Caro santiago.caro@javeriana.edu.co git: SantiagoCaroDuque

Nicolas Lopez lopezn.i@javeriana.edu.co git: NicolasLopezFer

7 de septiembre de 2019

1. Tabla de Contenidos

1.	Tabla de Contenidos	1
2.	Introducción	2
3.	Punto 2	2
	3.1. Diseño	2
	3.1.1. Valores de entrada	2
	3.1.2. Valores de salida	2
	3.2. Algoritmo	2
4.	Punto 5	3
	4.1. Diseño	3
	4.1.1. Valores de entrada	3
	4.1.2. Valores de salida	3
	4.2. Algoritmo	3
5.	Punto 6	4
	5.1. Diseño	4
	5.1.1. Valores de entrada	4
	5.1.2. Valores de salida	4
	5.2. Algoritmo	4
6.	Punto 7	5
	6.1. Diseño	5
	6.1.1. Valores de entrada	5
	6.1.2. Valores de salida	5
	6.2. Algoritmo	5

2. Introducción

En este taller se van a tratar temas referentes a la interpolacion, en general, el problema de la interpolacion consiste en determinar una aproximacion f(x) en un punto x_i del dominio de f(x), a partir del conjunto (x_i, y_i) de valores conocidos o en sus vecindades.

Adicionalmente, en la resolución del taller hicimos uso nuevamente de Python.

3. Punto 2

Con base en 3 puntos (0,10),(1,15),(2.5), se debe contruir un polinomio con dos restricciones, la primera es que debe ser de grado 3 y la segunda y su tangente en $x_i = 1$. En este punto se hará un reconocimiento de la libreria de codigo abierto "ScyPy".

3.1. Diseño

3.1.1. Valores de entrada

x: Puntos en X. y: Puntos en Y.

3.1.2. Valores de salida

f : Polinomio resutado de interpolar.

3.2. Algoritmo

Algorithm 1 Punto 2.

- 1: **procedure** Punto 2(x, y)
- 2: $f \leftarrow interpolate.CubicSpline(x, y)$
- 3: end procedure

4. Punto 5

A partir de las coordenadas dadas se interpolara por splines cubicos una mano.

4.1. Diseño

4.1.1. Valores de entrada

```
x: Puntos en X. y: Puntos en Y.
```

4.1.2. Valores de salida

 lag_pol : Polinomio interpolado.

4.2. Algoritmo

Algorithm 2 Punto 5.

```
1: procedure PUNTO 5(x, y)

2: lag_pol \leftarrow lagrange(x[i:j], y[i:j])

3: xe \leftarrow np.linspace(min(x[i:j]), max(x[i:j]))

4: ye \leftarrow lag_pol(xe)

5: plt.plot(xe, ye)

6: end procedure
```

5. Punto 6

Con base a la funcion tan(x) evaluada en 10 puntos, se debe encontrar el valor " δ " utilizando la particion de la forma $x_i = \delta k$, tal que, el valor " δ " sea el numero que minimice el error.

5.1. Diseño

5.1.1. Valores de entrada

5.1.2. Valores de salida

 δ : Numero que minimiza el error.

5.2. Algoritmo

Algorithm 3 Punto 6.

```
1: procedure Punto 6
       ini \leftarrow -1,4
 3:
       step \leftarrow 0.8
       xs \leftarrow numpy.arange(ini, ini + (step * 10), step)
        f \leftarrow agrange(xs, func(xs))
 5:
 6:
       while tan(x) - f(0) > 10e - 2 do
            xs \leftarrow numpy.arange(ini, ini + (step * 10), step)
 7:
 8:
            f \leftarrow lagrange(xs, func(xs))
            step - = 0.06
 9:
       end while
10:
       step + = 0.06
11:
       xs \leftarrow numpy.arange(ini, ini + (step * 10), 0, 1)
12:
       return step
13:
14: end procedure
```

6. Punto 7

Con base a la funcion e^x evaluada entre [0.1] se debe denterminar el tamaño de los pasos para producir un error por debajo de 10e - 5 a traves del metodo de langrange.

6.1. Diseño

6.1.1. Valores de entrada

6.1.2. Valores de salida

 δ : Numero que minimiza el erro.

6.2. Algoritmo

Algorithm 4 Punto 7.

```
1: procedure Punto 7
 2:
        ini \leftarrow 1
        x \leftarrow numpy.arange(0, 1, ini)
        y \leftarrow e^x
 4:
        f \leftarrow lagrange(x, y)
 5:
        while tan(x) - f(0) > 10e - 2 do
 6:
 7:
            ini-=1
            x \leftarrow numpy.arange(0, 1, ini)
 8:
 9:
            y \leftarrow e^x
            f \leftarrow lagrange(x, y)
10:
        end while
11:
        return ini
12:
13: end procedure
```