Standard X-ray Diffraction Powder Patterns

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services:

THE INSTITUTE FOR BASIC STANDARDS . . . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area:

—Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics²—Radio Standards Laboratory,² which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Reference

ence Data.

THE INSTITUTE FOR MATERIALS RESEARCH . . . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of materials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce. This Institute is organized primarily by technical fields:

—Analytical Chemistry—Metallurgy—Reactor Radiations—Polymers—Inorganic Materials—Cry-

ogenics²—Office of Standard Reference Materials.

THE INSTITUTE FOR APPLIED TECHNOLOGY . . . provides technical services to promote the use of available technology and to facilitate technological innovation in industry and government. The

principal elements of this Institute are:

—Building Research—Electronic Instrumentation—Technical Analysis—Center for Computer Sciences and Technology—Textile and Apparel Technology Center—Office of Weights and Measures—Office of Engineering Standards Services—Office of Invention and Innovation—Office of Vehicle Systems Research—Clearinghouse for Federal Scientific and Technical Information³—Materials Evaluation Laboratory—NBS/GSA Testing Laboratory.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C., 20234.

² Located at Boulder, Colorado, 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

UNITED STATES DEPARTMENT OF COMMERCE

C. R. Smith, Secretary

NATIONAL BUREAU OF STANDARDS . A. V. Astin, Director

Standard X-ray Diffraction Powder Patterns

H. E. Swanson, H. F. McMurdie, M. C. Morris, and E. H. Evans

National Bureau of Standards Monograph 25-Section 6

Issued June 1968

Library of Congress Catalog Card Number: 53-61386

Contents

Introduction	Page	Potassium Manganese(II)	Page
Reference Intensity Values		Trifluoride, KMnF ₃	45
		Potassium Nickel(II) Sulfate,	43
Standard x-ray powder patterns:			46
Ammonium Cobalt(II) Trichloride,	5	$K_2 \operatorname{Ni}_2 (SO_4)_3 \dots \dots$	40
NH ₄ CoCl ₃	5	Potassium Sodium Sulfate,	48
Ammonium Nickel(II) Trichloride,	6	K ₆₇ Na _{1,33} SO ₄	40
NH ₄ NiCl ₃	6	Potassium Sodium Sulfate,	
Bis (o-dodecacarborane),	-	KNaSO ₄	50
C ₄ B ₂₀ H ₂₂	7	Potassium Sodium Sulfate	
Cadmium Sulfate Hydrate,	_	(aphthitalite), K ₃ Na(SO ₄) ₂	52
3CdSO ₄ •8H ₂ O	8	Potassium Zinc Sulfate,	
Cadmium Sulfate Monohydrate,	1.0	$K_2 Zn_2 (SO_4)_3 \dots$	54
CdSO ₄ ·H ₂ O	10	Rhodium Vanadium 1:3, RhV ₃	56
Cesium Cobalt(II) Trichloride,		Rubidium Cobalt(II) Trichloride,	
CsCoCl ₃	11	RbCoCl ₃	57
Cesium Nickel(II) Trichloride,		Rubidium Nickel(II) Trichloride,	
CsNiCl ₃	12	RbNiCl ₃	58
Cesium Strontium Trichloride,		Sodium Calcium Sulfate	
CsSrCl ₃	13	(glauberite), Na ₂ Ca(SO ₄) ₂	59
Chromium Iridium 3:1, Cr ₃ Ir	14	Sodium Cobalt(II) Sulfate	
Chromium Rhodium 3:1, Cr ₃ Rh	15	Tetrahydrate, Na ₂ Co(SO ₄) ₂ ·4H ₂ O	61
Gold Niobium 1:3, AuNb ₃	16	Sodium Magnesium Sulfate	
Gold Titanium 1:3, AuTi ₃	17	Tetrahydrate, bloedite,	
Gold Vanadium 1:3, AuV ₃	18	$Na_2 Mg (SO_4)_2 \cdot 4H_2 O \dots$	63
Iridium Niobium 1:3, IrNb3	19	Sodium Manganese(II) Trifluoride,	
Iridium Titanium 1:3, IrTi3	20	NaMnF ₃	65
Iridium Vanadium 1:3, IrV3	21	Sodium Mercury(II) Trichloride	
Lithium Niobate, LiNbO3	22	Dihydrate, NaHgCl ₃ · 2H ₂ O	66
Lithium Sodium Sulfate,		Sodium Nickel(II) Sulfate	
LiNaSO ₄	24	Tetrahydrate, Na2Ni(SO ₄) ₂ ·4H ₂ O	68
Lithium Sulfate, Li ₂ SO ₄	26	Sodium Oxalate, Na ₂ C ₂ O ₄	70
Molybdenum Osmium 3:1, Mo ₃ Os	28	Sodium Zinc Sulfate Tetrahydrate,	
2-Naphthylamine, N-phenyl-,		$Na_2Zn(SO_4)_2 \cdot 4H_2O$	72
$C_{1 \in H_{1 3}} N \dots$	29	Sodium Zinc Trifluoride, NaZnF3	74
Niobium Osmium 3:1, Nb ₃ Os	30	Strontium Indium Hydroxide,	
Niobium Platinum 3:1, Nb ₃ Pt	31	$\operatorname{Sr}_{3}\operatorname{In}_{2}\left(\operatorname{OH}\right)_{1}$	76
Palladium Vanadium 1:3, PdV ₃	32	Strontium Scandium Oxide	
Platinum Titanium 1:3, PtTi ₃	33	Hexahydrate, $Sr_3Sc_2O_6 \cdot 6H_2O$	78
Platinum Vanadium 1:3, PtV ₃	34	Ytterbium Oxide, Yb ₂ O ₃	80
Potassium Cobalt(II) Sulfate,	J.	Calculated powder patterns (cubic):	
K ₂ Co ₂ (SO ₄) ₃	35	Aluminum Nickel, AlNi	82
Potassium Cobalt(II) Trifluoride,	33	Gold Magnesium, AuMg	83
KCoF ₃	37	Mercury Magnesium, HgMg	84
Potassium Copper(II) Trifluoride,	3,		
	38	Osmium Titanium, OsTi	85
KCuF ₃ Potassium Iron(II) Trifluoride,	20	Ruthenium Titanium, RuTi	86
	39	Silver Gadolinium, AgGd	87
KFeF ₃ Magnaging Culfata	39	Cumulative index to Circular 539,	
Potassium Magnesium Sulfate	40	Volumes 1, 2, 3, 4, 5, 6, 7, 8, 9,	
(langbeinite), K ₂ Mg ₂ (SO ₄) ₃	40	10, and Monograph 25, Sections 1,	0.0
Potassium Magnesium Trifluoride,	42	2, 3, 4, 5, and 6	89
KMgF ₃ Management (TI) Cultiple	42	Cumulative mineral index	97
Potassium Manganese(II) Sulfate			
(manganolangbeinite),	4.2	*A mineral name in parentheses indicates a sy	nthetic
$K_2 Mn_3 (SO_4)_3 \dots$	43	sample.	

Errata

Monograph 25, Section 6

Circular 539

Vol. 2, p. 32; The space group should be Pbma, from the reference: Byström, Arkiv Kemi Mineral. Geol. 25A, 1-26 (1947).

Vol. 9, p. 3: The corrected hkl values are: 214(d = 1.404), 131(d = 1.1382), 042(d = 1.0175), and $2 \cdot 1 \cdot 10(d = 0.9976)$.

Monograph 25

Sec. 1, p. 35; The space group should be P2₁3, from the reference Bokii and Tsinober, Tr. Inst. Kristallogr. Akad. Nauk SSSR 9, 239-250 (1954). Sec. 3, p. 5; Insert a new line of data:

> 242,341 1.7427 < 2

Sec. 3, p. 45; Line 21 of the table should have the indices 201, 222.

Sec. 5, p. 19; The title should be CsCdCl₃. Also, the line at d = 1.4200 should have the index 1.1.12.

Sec. 5, p. 20; The title should be CsCdCl₃.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Information on ten volumes in this series listed as follows is available from Mr. Howard E. Swanson, Room A221, Materials Building, National Bureau of Standards, Washington, D. C., 20234:

NBS Circular 539, Volume 1, Standard X-ray Diffraction Powder Patterns (Data for 54 substances).

NBS Circular 539, Volume 2, Standard X-ray Diffraction Powder Patterns (Data for 30 substances).

NBS Circular 539, Volume 3, Standard X-ray Diffraction Powder Patterns (Data for 34 substances).

NBS Circular 539, Volume 4, Standard X-ray Diffraction Powder Patterns (Data for 42 substances).

NBS Circular 539, Volume 5, Standard X-ray Diffraction Powder Patterns (Data for 45 substances). NBS Circular 539, Volume 6, Standard X-ray Diffraction Powder Patterns (Data for 44 substances). NBS Circular 539, Volume 7, Standard X-ray Diffraction Powder Patterns (Data for 53 substances).

NBS Circular 539, Volume 8, Standard X-ray Diffraction Powder Patterns (Data for 61 substances).

NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 43 substances).

NBS Circular 539, Volume 10, Standard X-ray Diffraction Powder Patterns (Data for 40 substances).

The following five volumes in this series are available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D. C., 20402, as follows:

NBS Monograph 25, Section 1, Standard X-ray Diffraction Powder Patterns (Data for 46 substances) 40 cents.

NBS Monograph 25, Section 2, Standard X-ray Diffraction Powder Patterns (Data for 37 substances)

NBS Monograph 25, Section 3, Standard X-ray Diffraction Powder Patterns (Data for 51 substances)

NBS Monograph 25, Section 4, Standard X-ray Diffraction Powder Patterns (Data for 103 substances)

NBS Monograph 25, Section 5, Standard X-ray Diffraction Powder Patterns (Data for 60 substances) 55 cents.

Send orders with remittance for the above five Monographs to Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402. Remittance from foreign countries should include an additional one-fourth of the purchase price for postage.

Those wishing to be notified of future issues should send mailing address to the Government Printing Office.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 6.-Data for 60 substances

Howard E. Swanson, Howard F. McMurdie, Marlene C. Morris, and Eloise H. Evansl

Standard x-ray diffraction powder patterns are presented for 60 substances. Fifty-four of these patterns represent experimental data and 6 are calculated. The experimental x-ray powder diffraction patterns are made with a Geiger counter x-ray diffractometer, using samples of high purity. All d-values were assigned Miller indices determined by comparison with theoretical interplanar spacings and from consideration of space group extinctions. The densities and lattice constants were calculated, and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were obtained from published crystal structure data. The reported peak height intensities for calculated patterns were converted from integrated intensities.

Reference intensity values based upon the strongest line of corundum (113) in a 50 weight percent

mixture are given for 98 materials.

Keywords: standard, x-ray diffraction, powder-patterns, crystal, structure, measurements, lattice, constants, reference-intensities

INTRODUCTION

The X-ray Powder Diffraction File (1967) 2 is a compilation of diffraction patterns, gathered from many sources and produced under the auspices of the Joint Committee on Chemical Analysis by Powder Diffraction Standards.³ The File is used for the identification of unknown crystalline materials by matching d-spacings and intensity meas-Under the partial sponsorship of the Joint Committee, a program at the National Bureau of Standards contributes new data for this File. Our work also aids in the evaluation and revision of published x-ray data and in the development of diffraction techniques. This report presents data for 60 compounds, 54 experimental and 6 calculated patterns. This compilation is the sixteenth of the series of "Standard X-ray Diffraction Powder Patterns."4

Experimental Powder Patterns

Powder Diffraction File Cards. Under this heading are given the Powder Diffraction File card numbers and the literature reference for each card. Cards listed through the 1966 index to the Powder Diffraction File are included.

¹Research Associate at the National Bureau of Standards sponsored by the Joint Committee on Powder Diffraction Standards.

 $^2\mathrm{Dates}$ in brackets indicate the literature references at the end of each section of this paper.

³ This committee is sponsored jointly by the American Society for Testing and Materials, the American Crystalographic Association, The (British) Institute of Physics, and The National Association of Corrosion Engineers. Financial support is also provided by the National Bureau of Standards.

⁴See previous page for listing of other published volumes.

Additional published patterns. Literature references for patterns that have not been published as Powder Diffraction File cards are listed.

NBS sample. Many of the samples used to make NBS patterns were special preparations of high purity obtained from a variety of sources or prepared in small quantities in our laboratory. Treating the sample by appropriate annealing, recrystallizing, or heating in hydrothermal bombs improved the definition of most of the patterns.

Unless otherwise noted, the spectrographic analyses were done at NBS after preparation of the sample was completed. The limit of detection for the alkali elements was 0.05 weight percent for the spectrographic analyses. A check of phase purity was usually provided by the x-ray pattern itself, when it was indexed by comparison with theoretical d-values. A microscopic inspection for phase purity was also made on the nonopaque materials during the refractive index determination. The latter was done by grain-immersion methods in white light, with oils standardized in sodium light, in the range 1.40 to 2.1.

The names of the sample colors were selected from the ISCC-NBS Centroid Color Charts (1965).

Structural data. The assignment of hkl's and the refinement of lattice constants were obtained by using a computer program developed by Evans, Appleman and Handwerker (1963). Cell refinement was based only upon 2θ -values which could be indexed without ambiguity. The number of significant figures reported for d-values varies slightly with the symmetry and crystallinity of each sample. Lattice constant errors are based on least-squares refinement of the variance-covariance matrix derived from the unweighted $\Delta\theta$ residuals.

Published unit cell data in kX units and data given in angstrom units prior to 1947 were converted to angstrom units using the factor 1.00202 as recommended by an international conference of crystallographers reported in J. Sci. Instr. (1947).

The space groups are listed with both the Schoenflies and short Hermann-Mauguin symbols as well as the space group numbers given in the International Tables for X-ray Crystallography (1952).

Orthorhombic cell dimensions are presented according to the Dana convention b>a>c (Dana System of Mineralogy, 1944).

The densities calculated from the NBS lattice constants are expressed in grams per cubic centimeter and are computed from the Avogadro number (6.02252×10^{23}) and from atomic weights based on carbon 12 (Chem. Eng. News, 1961).

Intensity measurements. At least three patterns for intensity measurements were prepared to check Samples that gave satisfactory reproducibility. intensity patterns usually had an average particlesize smaller than 10 μ (Alexander et al., 1948). In order to avoid the orientation effects which occur when samples are packed or pressed, a sample holder was made that had an extended rectangular cavity opened on its top face and at one end. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see fig. 1). The powdered sample was then drifted into the end opening while the holder was held in a vertical position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample surface could be exposed to the x-ray beam (as shown in fig. 2). To powders that did not flow readily, or were prone to orient excessively, approximately 50 volume percent of finely ground silica-gel was added as a diluent. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentages of the intensity of the strongest line.

Interplanar spacings. Specimens for the interplanar spacing patterns were prepared by packing into a shallow holder a sample containing approximately 5 wt. percent tungsten powder that served as an internal standard. When tungsten lines were found to interfere, 25 percent silver was used in place of tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used for the regions between the peaks of the standard. For low values of 2θ , the pattern peak was measured in the center, at a place averaging about 75 percent of the peak height. For higher values of 2θ , where α_1 and α_2 peaks were resolved, the α , peak was measured in the same way. The internal standard correction appropriate to each region was then applied to the measurement of 2θ . The new internal standard lattice constants used were 3.16504 A for tungsten and 4.08625 A for silver at 25°C, as determined by Swanson, Morris, and Evans (1966). These changes increase d-values by a factor of 1.00004 when compared to the d-values obtained with the older standard samples. All of the NBS patterns, unless otherwise noted, are made on a diffractometer at 25°C using filtered copper radiation (Ka_1) , having the wavelength 1.5405 A. A curved lithium fluoride crystal monochromator was used in the preparation of some patterns.

Figure 1

Figure 2

Since some substances are not readily available for experimental work, calculated powder patterns were made. These were based on published crystal structure data, using a FORTRAN program developed by Smith (1963).

Lorentz-polarization corrections are included. No corrections were made for temperature factors or absorption factors. Scattering factor values without ionization were taken from table 3.3.1A of the International Tables (1962a) for the following elements: beryllium, boron, calcium, cobalt, hydrogen, magnesium, nitrogen, oxygen, phosphorus, selenium, silver, and sulfur. All other scattering factor values used were taken from table 3.3.1B, International Tables (1962b).

Intensity calculations were based upon copper wavelength, 1.5405 Å. The integrated intensities printed out from the computer program were converted to peak height values by means of a graph from Swanson, Morris, Stinchfield, and Evans (1962). The peak height intensities are tabulated as percentages of the peak intensity of the strongest line. Peak height intensities from 0.1 to 0.9 were recorded as < 1; data with peak height intensities < 0.1 were omitted. When adjacent 2θ values were nearly equal, resolution of individual peaks in the powder pattern would be unlikely. In that case, only one angle and its d-spacing are listed, with multiple hkl's and with the sum of the intensities of the peaks involved.

Literature references for calculated patterns are compiled at the end of that section.

The authors are indebted to J. H. deGroot for the preparation of many samples used, and to S. J. Carmel for his assistance on the work particularly in performing intensity measurements.

REFERENCES

Alexander, L., Klug, H.P., and Kummer, E. (1948). Statistical factors affecting the intensity of x-rays diffracted by crystalline powders, J. Appl. Phys. 19, No. 8, 742-753. Dana's System of Mineralogy (1944). I, 6 (John Wiley & Sons,

New York, 7th ed.).

Evans, H. T. Jr., Appleman, D. E., and Handwerker, D. S. (1963). The least-squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method, (abs.) Am. Crystal. Assoc. Annual Meeting, Cambridge, Mass. Program 42-43.

lndex to the X-ray Powder Diffraction File (1965). American Society for Testing and Materials, 1916 Race Street, Philadelphia, Pa. 19103.

International Tables for X-ray Crystallography, I (1952). (The Kynoch Press, Birmingham, England).

Ibid. (1962a). III 202-209. lbid. (1962b). III 210-212.

International Union of Pure and Applied Chemistry, (1961). Chem. Eng. News Nov. 20, 43.

ISCC-NBS Centroid Color Charts, Standard Sample No. 2106, obtained from the Office of Standard Reference Materials, Room B328, Chemistry Building, National Bureau of Standards, Washington, D. C. 20234. \$3.00 per set.

Smith, D. K. (1963). A FORTRAN program for calculating xray powder diffraction patterns, UCRL-7196, University of California, Lawrence Radiation Laboratory, Liver-

more, California. Swanson, H. E., Morris, M. C., and Evans, E. H. (1966). Standard X-ray Diffraction Powder Patterns, Natl. Bur. Std. U.S. Monograph 25, Sec. 4, 3.

Swanson, H. E., Morris, M. C., Stinchfield, R. P., and Evans, E. H. (1962). Standard X-ray Diffraction Powder Patterns, Natl. Bur. Std. U.S. Monograph 25, Sec. 1, 3.

The conversion factor for kX units to angstrom units (1947). J. Sci. Instr. 24, 27.

REFERENCE INTENSITY VALUES

The format of the first Powder Diffraction Cards issued by the Joint Committee had a space for a reference intensity in which NaCl was used. However this original attempt to establish absolute values started by the Dow Chemical Co. was not continued.

In 1961 de Wolff in Holland proposed that a variation of this idea be reconsidered as a help in evaluating mixtures. We expressed a desire to cooperate in the development of this project. After several reference materials were examined in both Delft and NBS labs, $\alpha A1_2O_3$ was chosen as an internal standard to be mixed 1:1 by weight. Corundum was picked partly because of its chemical stability and freedom from shape orientation in sample preparation and partly because of its availability in approximately one micron particle size (Linde "A", Union Carbide Corp., East Chicago, Ind.). The 1:1 mixture is mounted in our regular inten-

sity sample holder (illust. p. 2) and it is necessary to run only the portion of the x-ray pattern that includes the strongest line of each compound; corundum (113), d= 2.085 Å, was used. The direct ratio of the heights of the two lines is then reported as 1/I corundum. In a few instances the strongest line of one of the materials may fall on a line of the other. In this case the second strongest line is measured, and based upon previous knowledge of the relative peak heights, a correction is made thus enabling one to reconstruct the value for the strongest line.

In this report we are listing $38 \, l/I_{corundum}$ values for some samples we have worked with in the past. Data reported from July 1965 has the I/l corundum value included in the text for each compound. We expect to continue measuring this value for new data submitted to the Powder Diffraction File.

I/I corundum Values for Some Previously Reported Powder Patterns

Ammonium Bromide, NH ₄ Br (cubic)	6.0
Ammonium Chloride, NH ₄ Cl (cubic)	5.8
Ammonium Iodide, NH ₄ I (cubic)	6.1
Ammonium Nitrate, NH ₄ NO ₃ (orthorhombic)	1.5
Ammonium Sulfate, (NH ₄) ₂ SO ₄ (orthorhomibc)	1.8
Barium Carbonate, BaCO ₃ (orthorhombic)	4.2
Barium Sulfate, BaSO ₄ (orthorhombic)	2.6
Cadmium, Cd (hexagonal)	2.0
Cadmium Carbonate, CdCO ₃ (trigonal)	4.7
Cadmium Chloride, CdCl ₂ (trigonal)	4.2
Cadmium Oxide, CdO (cubic)	8.6
Calcium Fluoride, CaF ₂ (cubic)	2.4
Cesium Bromide, CsBr (cubic)	8.7
Chromium Oxide, Cr ₂ O ₃ (trigonal)	1.8
Copper Chloride, CuCl (cubic)	2.0
Copper Carbonate, basic, Cu ₂ (OH) ₂ CO ₃ (monoclinic)	0.6
Copper Oxide, CuO (monoclinic)	1.9
Iron Oxide, alpha, Fe ₂ O ₃ (trigonal)	2.6
Lead Bromide, PbBr ₂ (orthorhombic)	2.1
Lead Fluoride, alpha, PbF2 (orthorhombic)	4.2
Lead Iodide, PbI ₂ (trigonal)	4.2
Lead Oxide, yellow, PbO (orthorhombic)	6.6
Lead Sulfate, PbSO ₄ (orthorhombic)	3.5
Lithium Fluoride, LiF (cubic)	1.3
Magnesium Oxide, MgO (cubic)	2.4
Magnesium Fluoride, MgF ₃ (tetragonal)	0.4
Molybdenum Oxide, MoO ₃ (orthorhombic)	3.0
Potassium Bromide, KBr (cubic)	5.5
Potassium Chloride, KCl (cubic)	3.9
Potassium Iodide, KI (cubic)	4.2
Potassium Nitrate, KNO ₃ (orthorhombic)	1.4
Silver Bromide, AgBr (cubic)	5.6
Silver Oxide, Ag2O (cubic)	5.6
Sodium Chloride, NaCl (cubic)	3.8
Sodium Sulfate, Na ₂ SO ₄ (orthorhombic)	1.5
Strontium Nitrate, SrNO ₃ (cubic)	3.2
Strontium Sulfate, SrSO ₄ (orthorhombic)	1.8
Zing Ovido ZnO (hovagonal)	1 5

Ammonium Cobalt(II) Trichloride, NH₄CoCl₃ (hexagonal)

Sample source

The sample was prepared at NBS by heating co-precipitated NH₄Cl and CoCl₂ to about 500°C in a sealed glass tube. The material readily hydrates in moist air.

Major impurities

0.001-0.01% each: Al, Ca, Cu, and V.

0.01 -0.1 % each: Fe,Ni,Si,and W.

Color

Light blue

Optical data

Uniaxial (+), $N_e=1.765$, $N_o=1.680$.

Structure

Isostructural with RbCoCl3.

Space group

 $D_{6\,h}^4-P6_3$ /mmc(194),Z=2 By comparison of the powder pattern with that of RbCoCl $_3$.

Lattice constants

	$a(\mathring{A})$	c(Å)
NBS, sample at 25°C	6.967 ±.001	6.010 ±.001

Density

(calculated) 2.410 g/cm3 at 25° C.

Reference intensity

 $I/I_{corundum} = 2.4$

Internal standard W, a = 3.16504 Å	
$CuK\alpha_1 \lambda = 1.5405 \text{ Å}$; temp. 25 °C	

d (Å)	I	hkl	2θ(°)
6.04	100	100	14.64
4.255	3	101	20.86
3.482	8	110	25.56
3.004	7	002	29.71
2.696	46	201,102	33.20
2.281	18	210	39.47
2.276	14	112	39.57
2.129	7	211,202	42.41
2.013	1	300	45.00
1.908	<1	301,103	47.63
1.817	5	212	50.15
1.742	13	220	52.48
1.673	9	310,302	54.84
1.669	7	203	54.96
1.612	<1	311	57.08
1.508	3	400,222	61.44
1.502	4	004	61.69
1.4625	4	401,312	63.56
1.4581	3	104	63.78
1.3844	3	320	67.61
1.3488	2	321,402	69.65
1.3449	2	204	69.88
1.3164	<1	410	71.62
1.2550	<1	214	75.72
1.2037	2	304	79.57
1.1391	1	323	85.09
1.1377	2	224	85.22
1.0834	1	510,332	90.63
1.0662	2	511,422	92.51
1.0183	<1	324	98.30
1.0056	<1	600	99.99

The sample was made at NBS by heating NiCl₂ and NH₄Cl together at 300°C for 72 hours in a sealed glass tube. The NiCl₂ had been obtained by dehydrating NiCl₂. 2H₂O in a stream of dry HCl at 150°C. NH₄NiCl₃ is hygroscopic.

Major impurities

0.001-0.01% each: Fe

0.01 -0.1 % each: Cu

Color

Pale orange yellow.

Optical data

Uniaxial (+) $N_0=1.720$, $N_e=1.89$ Pleochroism with the stronger absorption perpendicular to \underline{c} .

Structure

Isostructural with RbCoCl₃ and other similar ABX₃ compounds.

Space group

 $D_{6\,h}^{4}$ -P63/mmc (194) Z=2. By comparison of the powder pattern with that of RbCoCl₃.

Lattice constants

	a(Å)	c(Å)
NBS, sample at 25° C	6.9216 ±.0004	5.915 ±.001

Density

(calculated) 2.478 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.7$

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C			
d (Å)	I	hkl	2θ(°)
5.98	100	100	14.80
4.211	6	101	21.08
3.459	9	110	25.73
2.998	2	200	29.77
2.957	6	002	30.20
2.675	43	201	33.47
2.266	8	210	39.74
2.249	11	112	40.05
2.104	17	202	42.94
1.998	2	300	45.34
1.894	1	301	47.98
1.799	5	212	50.70
1.731	10	220	52.84
1.663	7	310	55.19
1.656	7	302	55.44
1.601	1	311	57.51
1.4931	3	222	62.11
1.4790	2	004	62.77
1.4527	2	401	64.04
1.4495	3	312	64.20
1.4353 1.3753 1.3366 1.3081 1.2774	3 2 1 1	104 320 402 410 411	64.91 68.12 70.38 72.15 74.17
1.1961	2	412	80.18
1.1933	2	403	80.40
1.1752	1	501	81.90
1.1239	2	224	86.52
1.1124	2	421	87.64
1.0763	1	510	91.39
1.0745	1	332	91.59
1.0578	1	422	93.46

The sample was obtained from Rohm and Haas Chemical Division of the Redstone Arsenal, Huntsville, Alabama. Treating the sample by the usual methods failed to improve the quality of the pattern.

Color

Colorless

Optical data

Biaxial (-), $N_{\alpha}=1.646$, $N_{\beta}=1.681$, $N_{\gamma}=1.683$ 2V is small.

Structure

Determined by Hall et al.[1965].

Space group

 $C_{2h}^{5}-P_{21}/n$ (14), Z=2 [Hall et al., 1965]

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Hall et al.				
[1965]-	7.014 ±.001	9.862 ±.001	12.360 ±.002	90°31′ ±2′
NBS, sample				
25°C	7.016 ±.002	9.867 ±.003	12.376 ±.004	90°29′ ±2′

Density

(calculated) 1.110 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.5$ (based upon double peak 012,111)

References

Hall,L.H.,A.Perloff,F.A.Mauer,and S.Block, (1965). Crystal and molecular structure of C₄ B₂₀H₂₂, Bis (o-dodecacarborane), J. Chem. Phys. 43, No. 11, 3911-3917.

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
7.71 6.12 6.08 5.72 5.23 5.19	71 } 90 { 36 }100 {	011 101 101 110 012 111	11.47 14.46 14.56 15.49 16.93 17.08	
4.94 4.58 3.85 3.810 3.509	8 13 2 1	020 021 022,121 013 200	17.95 19.36 23.08 23.33 25.36	
3.177	1	031	28.06	
2.981	1	130	29.95	
2.925	2	212	30.54	
2.900	2	032, 131	30.80	
2.861	1	220	31.24	
2.788	1	221	32.08	
2.730	1	114	32.78	
2.622	1	024	34.17	
2.571	3	033,213	34.86	
2.449	1	124	36.66	
2.418	1	041, 133	37.15	
2.398	2	230, 015	37.48	
2.356	2	231, 223	38.16	
2.340	1	223, 105	38.43	
2.310	2	204	38.95	
2.286	2	141,141	39.38	
2.278	2	115,310	39.52	
2.253	1	034	39.98	
2.239	<1	232,311	40.24	
2.212	1	025	40.76	
2.176	1	$ \begin{array}{r} 142 \\ \overline{1}34 \\ 134, \overline{3}12 \\ 043, \overline{1}25 \\ \overline{3}21 \end{array} $	41.47	
2.151	<1		41.96	
2.141	<1		42.17	
2.117	<1		42.68	
2.085	<1		43.37	
2.042	<1	303	44.31	

143,303

44.63

2.029

<1

The sample was obtained from Johnson, Mathey & Co.Ltd. High humidity is necessary to prevent formation of the monohydrate.

Major impurities

None over 0.001%.

Color

Colorless

Optical data

Biaxial (-) 2V, large. $N_{\alpha}=1.552$, $N_{\beta}=1.561$, $N_{\gamma}=1.569$.

Structure

Determined by Lipson [1936].

Space group

 C_{3h}^{6} -C2/c(15), Z=4, Egartner et al. [1932].

Additional patterns

1.PDF card 12-0458[Inst. Physics, Cardiff]. 2.PDF card 13-0525 [Shrier].

Density

(calculated) 3.090 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.0$

References

Egartner, L., F. Halla and E. Schwarz (1932).

Das Raumgitter des Cadmiumsulfats, CdSO₄.

8/3H₂O, Z. Krist. 83,422-425.

8/3H₂O, Z. Krist. 83,422-425. Lipson, H. (1936). The crystal structure of 3CdSO₄ · 8H₂O, Proc.Roy.Soc.(London) Ser. A 156, 462-470.

Internal	standard Ag	a = 4.08625 Å	
CuK _a ,	$\lambda = 1.5405$	A: temp, 25 °C	

Cui	$CuKa_1 \land = 1.5405 A$; temp. 25 °C				
d (Å)	I	hkl	2θ(°)		
7.36	18	200	12.02		
6.88	100	Ī11	12.86		
6.34	65	111	13.96		
5.94	70	020	14.89		
5.02	11	021	17.65		
4.691	10	002	18.90		
4.621	16	220	19.19		
4.525	48	310	19.60		
4.329	41	112	20.50		
4.281	40	$\overline{2}21,\overline{3}11$	20.73		
4.213	7	202	21.07		
4.057	15	112	21.89		
4.021	35	221	22.09		
3.745	65	202	23.74		
3.682	9	022	24.15		
3.672	7	<u>4</u> 00	24.22		
3.590	88	Ī31	24.78		
3.505	37	<u>1</u> 31	25.39		
3.467	7	312	25.67		
3.434	19	222	25.92		
3.169	36	222	28.13		
3.125	23	420	28.54		
3.090	53	402	28.87		
3.066	13	$\frac{1}{4}21$	29.10		
3.000	45	331	29.75		
2.974	13	040	30.02		
2.919	4	132	30.60		
2.894	45	113	30.87		
2.851	5	<u>5</u> 10	31.35		
2.827	10	511	31.62		

-continued

Lattice constants

	a(Å)	$b(\mathring{A})$	c(Å)	β(°)
Egartner,* et al. [1932] Lipson* [1936] NBS, sample at 25 °C	14.78	11.65 11.87 11.902 ±.001	9.44 9.44 9.468 ±.001	98° 97.31° 97°22′ ±1′

^{*}Values as published

d (Å)	I	hkl	2θ(°)	d (Å)	I	hkl	2θ(°)
2.757	26	240	32.45	1.7178	6	444	53.28
2.743	24	$\bar{4}$ 22	32.62	1.6958	9	461,642	54.03
2.729	23	$\overline{3}13,402$	32.79	1.6874	7	821	54.32
2.696	5	223	33.20			154	
2.680	3	$\frac{241}{3}$ 332	33.41	1.6774	3		54.67
2.000	J	241,332	33.41	1.6695	5	462	54.95
2.641	8	511	33.92	1.6642	13	$\frac{3}{3}$ 35,135	55.14
2.614	16	241	34.27	1.6578	14	714,171	55.37
2.585	3	512	34.67	1.6404	1	802	56.01
2.514	10	042	35.69	1.6281	4	911 , 354	56.47
2.480	6	422	36.19	1.6168	9	823 , 910	56.90
2.465	2	<u>1</u> 33	36.41	1.6055	5	370	57.34
2.447	2	600	36.69	1.5968	6	172	57.68
2.429	10	242	36.97	1.5948	7	$604,\overline{3}71$	57.76
2.385	23	133	37.69			245,045	58.02
2.349	23	150,004	38.29	1.5883	2		
2.549	23	130,004	30.23	1.5838	1	534,444	58.20
2.329	15	242	38.63	1.5766	1	7 51	58.49
2.325	16	$\frac{1}{2}$ 04	38.70	1.5642	2	006, 116	59.00
2.313	20	512,440	38.91	1.5489	7	335,644,+	59.64
2.289	14	$\bar{1}51, \bar{3}33$	39.32	1	7	804	59.80
2.263	26	620,621	39.80	1.5452		_	
2.203	2.0	0207022	33.00	1.5382	13	553,625,+	60.10
2.234	23	531 , 114	40.33	1.5210	9	733	60.85
2.202	3	441,532	40.95	1.5178	7	931,913,+	60.99
2.194	4	314	41.11	1.5109	5	406	61.30
2.185	4	024	41.29	1.5008	1	662,372,+	61.76
2.165	7	224	41.69	1.4964	1	824,173	61.96
2.140	14	622,350	42.19	1.4918	2	206	62.17
2.120	15	$\bar{2}43,\bar{1}52$	42.60			155	
2.099	23	423	43.05	1.4818	2		62,64
2.084	3	152	43.38	1.4777	2	173	62.83
	3	710,602	43.80	1.4681	2	10.0.0,571	63.29
2.065	3	710,602	43.80	1.4644	4	426,753	63.47
1.985	63	712,533,+	45.67	1.4543	5	373	63.96
1.947	4	- 623	46.60	1.4505	4	752,516	64.15
1.935	7	443,514	46.91	1.4473	3	226	64.31
1.889	16	641,261,+	48.12	1.4437	3	464,336	64.49
1.871	2	404,115	48.62	1.4399	2	571	64.68
		1-0	10.00				
1.860	6	153,731	48.92	1.4363	2	10 • 2 • 1,842	64.86
1.843	4	044,551	49.41	1.4324	1	136	65.06
1.835	7	800,713	49.63	1.4304	1	572,662	65.16
1.828	8	_ 062	49.85	1.4273	2	316, 933	65.32
1.813	13	315,115	50.29	1.4182	2	914,082	65.79
1.791	14	443,225	50.94	1 4146		10.2.2	65.98
1.763	3	821	51.80	1.4146	2		
1.753	6	820,262	52.13	1.4054	3	644,373	66.47
1.747	13	244	52.33	1.4026	5	282,606	66.62
		244 461	52.76	1.3899	2	246,932	67.31
1.734	2	401	52.76	1.3790	1	572,480	67.91

The sample was crystallized at NBS from an aqueous solution at 95° C. The starting material ($3\text{CaSO}_4 \cdot 8\text{H}_2\text{O}$) was obtained from Johnson, Matthey & Co.,Ltd.

CdSO₄ •H₂O is also obtained from CdSO₄ or 3CdSO₄ •8H₂O with prolonged exposure to air of about 50% relative humidity.

Major impurities

none over 0.001%.

Color

Colorless.

Optical data

Biaxial(-) $N_{\alpha}=1.582$, $N_{\beta}=1.624$, $N_{\gamma}=1.642$, 2V is medium large.

Space group

 $C_{2h}^{6}-P2_{1}/n$ (14), Z=4 [Perloff, 1968].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Perloff [1968] NBS,	7.64	7.46	7.62	115°30′
sample at 25 ℃-	7.632 ±.002	7.459 ±.002	7.622 ±.001	115°26′ ±1′

Density

(calculated) 3.839 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.2$

References

Perloff, A. [1968]. Private communication

Internal standard W, a = 3.16504 \mathring{A} CuK α_1 λ = 1.5405 \mathring{A} ; temp. 25 $^{\circ}$ C			
d (Å)	I	hkl	2θ(°)
6.46	3	101	13.69
5.066	12	110,011	17.49
4.881	65	111	18.16
4.075	3	101	21.79
3.729	24	020	23.84
3.574	100	111	24.89
3.448	8	200,002	25.82
3.388	6	211,112	26.28
3.279	17	120,021	27.17
3.226	46	121,202	27.63
3.128	13	210,012	28.51
2.961	4	212	30.16
2.753	3	121	32.50
2.663	6	221,122	33.63
2.531	36	220,301,+	35.44
2.504	5	211,112	35.83
2.440	9	222	36.81
2.397	28	311,113	37.49
2.319	13	131	38.79
2.166	2	221,122	41.67
2.150	2	303	41.99
2.122	11	131	42.56
2.091	6	123	43.23
2.066	11	313	43.79
2.038	5	202	44.42
2.015	2	230,032	44.94
1.964	4	212	46.17
1.943	3	301,103	46.72
1.902	4	402,204	47.79
1.879	7	311,113	48.40
1.863 1.842 1.814 1.787	7 5 2 5 7	040,323 412,214 411,132,+ 222 331,133	48.84 49.44 50.24 51.07 51.53
1.722	10	400,123,+	53.13
1.693	9	422,224,+	54.12
1.676	4	014	54.72
1.639	12	240,042	56.07
1.625	4	333	56.58
1.612 1.575 1.563 1.530	3 4 3	404 414,232 420,024 331,133	57.10 58.54 59.06 60.45

 $\bar{4}32,\bar{2}34$

61.35

1.510

The sample was prepared at NBS by heating co-precipitated CsCl and CoCl2 to about 500 °C in a sealed glass tube.

Major impurities

0.01 -0.1 % each: K, Na, Rb, and Si.

0.1 -1.0 % each: Ni.

Color

Unground - dark blue. Ground - very light blue.

Optical data

Uniaxial (+) $N_0 = 1.696$, $N_0 = 1.772$

Structure

Isostructural with RbCoCl₃ [Seifert, 1960] and other similar ABX3 compounds.

Space group $D_{6h}^4 - P 6_3 / mmc$ (194) Z=2 by analogy with RbCoCl₃.

Lattice constants

	a(Å)	c(Å)
Seifert (1960) NBS, sample at 25 °C	7.194 7.203 ±.001	6.033 6.032 ±.002

Density

(calculated) 3.654 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.8$

References

Seifert, H.J. (1960), Über die Systeme Alkalimetallchlorid/kobalt(II) - chlorid. Z. Anorg. Allgem. Chem. 307, 137-144.

Internal standar	d W, a = 3.16504 Å
$CuK\alpha_1$ $\lambda = 1.540$	05 Å; temp. 25 °C

d (Å)	I	hkl	2θ(°)
6.25	9	100	14.15
4.337	55	101	20.46
3.607	60	110	24.66
3.122	9	200	28.57
3.018	21	002	29.57
2.773	100	201	32.26
2.714	24	102	32.97
2.360	1	210	38.10
2.312	1	112	38.92
2.195	23	211	41.08
2.168	31	202	41.62
2.080	14	300	43.47
1.966	2	301	46.12
1.914	6	103	47.47
1.858	16	212	48.98
1.800	20	220	50.66
1.729	<1	310	52.90
1.712	<1	302	53.47
1.690	12	203	54.24
1.663	8	311	55.17
1.559	1	400	59.20
1.546	9	222	59.78
1.530	1	213	60.46
1.510	10	401	61.34
1.501	7	312	61.75
1.431	1	320	65.14
1.392	9	321,114	67.20
1.3857	4	402	67.54
1.3609	5	410	68.94
1.3282	<1	411	70.89
1.3118	1	313	71.91
1.2933	1	322	73.11
1.2321	1	403	77.37
1.2213	<1	501,304	78.20
1.2006	<1	330	79.81
1.1659 1.1570 1.1530 1.1254 1.1016	1 10 <1 1	323 421,224 502 205 511	82.70 83.48 83.83 86.38 88.73
1.0982	3	422	89.07
1.0505	2	512	94.32
1.0397	4	600	95.61
1.0171	3	423	98.45
1.0111	3	431	99.25

The sample was prepared at NBS by heating co-precipitated CsCl and NiCl₂ at about 500 °C in a sealed glass tube. The material was hygroscopic.

Major impurities

0.01 -0.1 % each: Al, Rb, Si, and Sn.

0.1 -1.0 % each: K and Na.

Color

Unground - medium reddish brown.
Ground - medium orange.

Optical data

Uniaxial (+), N =1.711, N =1.812.

Structure

Isostructural with RbCoCl₃ [Seifert,1960] Also isostructural with other similar ABX₃ compounds.

Space group

 $D_{6h}^4 - P6_3 / mmc$ (194), Z=2 [Tishchenko, 1955].

Lattice constants

	a(Å)	c(Å)
Tishchenko [1955]Asmussen and Soling	7.18	5.93
[1956]NBS, sample at 25°C	7.1695 7.1700	11.87 5.941
	±.0003	

Density

(calculated) 3.741 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 4.0$

References

Allamangy, P. (1960). Synthèses de fluorures de deux métaux par réactions entre le gaz HF et des chlorures cristallisés, Bull. Soc. Chim. France 1960, 1099.

Asmussen, P. and H. Soling, (1956).Magneto chemische Untersuchungen an Nickel (II) Verbindungen vom Typus Me(I)-Hal,Ni(II)-Hal, Z. Anorg. Allgem. Chem. 283,1.

Tishchenko, G.N. (1955). Electron diffraction investigation of the structure of CsNiCl₃, Tr.Inst.Kristallogr., Akad.Nauk SSSR 1955, 93.

Internal	standard Ag, $a = 4.08625 \text{ Å}$
CuKa,	$\lambda = 1.5405 \text{ Å; temp. } 25 ^{\circ}\text{C}$

7 .0.				
d (Å)	I	hkl	2θ(°)	
6.22	9	100	14.23	
4.291	58	101	20.68	
3.584	66	110	24.82	
3.103	8	200	28.75	
2.969	19	002	30.07	
2.752	100	201	32.51	
2.680	18	102	33.41	
2.347	<1	210	38.31	
2.287	1	112	39.36	
2.183	12	211	41.32	
2.147	29	202	42.05	
2.070 1.955	11	300	43.68	
1.955	1 5	301 103	46.40 48.19	
1.8415	13	212	49.45	
1.6415	13	212	49,45	
1.7924	20	220	50.90	
1.7222	<2	310	53.13	
1.6982	2	302	53.95	
1.6692	9	203	54.96	
1.6543	6	311	55.50	
1.5525	1	400	59.49	
1.5347	5	222	60.25	
1.5134	3	213	61.19	
1.5021	8	401	61.70	
1.4903	4	312	62.24	
1.4244	<2	320	65.47	
1.3857	4	321	67.54	
1.3755	5	402	68.11	
1.3551	3	410	69.28	
1.3214	<3	411	71.31	
1.2992	<3	313	72.72	
1.2847	<3	322	73.67	
1.2218	3 <3	403 304	78.16 79.34	
1.2066 1.1953	<3	330	80.24	
T. T. 2.2.2	\3	330	00.24	
1.1512	4	421	83.99	
1.1438	4	224	84.66	
1.0958	<3	511	89.32	
1.0915	3	422	89.77	
1.0441	<3	512	95.08	
1.0347	<3	600	96.22	
1.0093	3	423	99.48	
Additional pa	Additional patterns			

Additional patterns

PDF card 16-0109 [Allamangy, 1960].

Cesium Strontium Trichloride, CsSrCl₃ (tetragonal)

Sample source

The sample was prepared at NBS by melting a mixture of molar amounts of CsCl and SrCl₂ at about 900 °C. The material was hygroscopic.

Major impurities

0.001-0.01% each: Ba, Ca, Fe, Li, Mg, Ni, and Si

0.01 -0.1 % each: Al, Na, and Rb

0.1 -1.0 % each: K

Color

Colorless

Optical data

Almost isotropic, №1.572. The crystals showed polysynthetic twinning.

Structure

Tetragonal distorted perovskite. Isostructural with CsPbCl₃.

Space group

 $C_{4\ v}^{1}$ -P4mm (99) Z=1, by analogy with the CsPbCl₃ powder pattern.

Lattice constants

	a(Å)	c(Å)
NBS, sample at 25°C	5.593 ±0.001	5.628 ±0.001

Internal standard W, a = 3.16504 Å $CuK\alpha_1$ λ = 1.5405 Å; temp. 25 °C

d (Å)	I	hkl	2θ(°)
3.96	100	101,110	22.42
3.237	27	111	27.53
2.813	38	002	31.78
2.796	52	200	31.98
2.287	51	211,112	39.37
1.984	28	202	45.68
1.978	23	220	45.83
1.779	8	103	51.32
1.769	11	301,310	51.62
1.618	8	222	56.86
1.501	10	213	61.75
1.497	12	312,321	61.93
1.407	3	004	66.36
1.398	5	400	66.88
1.357	<2	401,410+	69.16
1.3253	4	114	71.07
1.3219	7	303	71.28
1.3180	8	411,330	71.52
1.2566	2	204	75.61
1.2519	<2	402,420	75.94
1.2213	<2	421	78.20
1.1957	3	323	80.21
1.1940	2	332	80.35
1.1464	<2	224	84.42
1.1429	3	422	84.74
1.1035	<2	105	88.53
1.1011	<2	314,413	88.78
1.0970	3	431,510	89.20

Density

(calculated) 3.083 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.4$

Chromium Iridium 3:1, Cr₃Ir (cubic)

 $d(\mathring{A})$

3.309

2.3404

2.0937

1.9106

1.6554

1.4805

1.2978

1.2506

1.1700

1.1031

1.0466

1.0216

0.9979

.9556

.9180

.8693

.8546

.8275 .8028

Sample source

Sample was prepared by R. M. Waterstrat at NBS by arc-melting.

Major impurities

0.001-0.01% each: Au, Cu, Pd, and V.

0.01 -0.1 % each: Fe, Pb, Pt, and Rh.

Color

Metallic dark grey. Opaque.

Structure

A-15 " β -W"type [Knapton, 1958-9].

Space group

 $O_h^3 - Pm3n$ (223), Z=2 [Knapton, 1958-9].

Lattice constants

	a(Å)
Knapton, [1958-9]NBS, sample at 25°C	4.682 4.6810 ±.0001

References

Knapton, A. G. (1958-9). An X-ray survey of certain transition - metal systems for sigma phases, J. Inst. Metals 87, 28-32.

Internal standard W, a = 3.16504 Å

 $CuK\alpha_1 \lambda = 1.5405 \text{ Å; temp. } 25 \text{ °C}$

hkl

110

200

210

211

220

310

320

321

400

411

420

421

332

422

510

520

521

440

530

2θ(°)

26.92

38.43

43.17

47.55

55.46

62.70

72.81

76.03

82.35

88.58

94.77

97.87

101.04

107.42

114.08

124.77

128.65

137.14

147.25

Ι

78

54

37

100

10

12

44

9

7

11

4

9

4 14

6

11

5

Density (calculated) 11.273 g/cm³ at 25° C.

Reference intensity

I/I corundum =2.1

 $d(\check{A})$

3.304

2.337

2.090

1.909

1.652

1.4775

1.3491

1.2960

1.2489

1.1683

1.1016

1.0450 1.0197

0.9963

.9538

.9166

.8677

.8532

.8261

.8015

Sample source

The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was annealed at 1200 °C for three days.

Major impurities

0.001-0.01% each: Au, Cu, Ni, Pb, and Sn.

0.01 -0.1 % each: Fe, Ir, Pt, and V.

Color

Metallic dark grey and opaque.

Structure

Al5 type"β-W"[Greenfield and Beck, 1956].

Space group

 O_h^3 -Pm3n (223), Z=2 [ibid.].

Lattice constants

	a(Å)
Greenfield and Beck, [1956] NBS, sample at 25 °C	4.656 4.6731 ±.0001

Additional patterns

1. Greenfield and Beck [1956].

Density

(calculated) 8.425 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.4$

References

Greenfield, P. and P.A. Beck (1956). Intermediate phases in binary systems of certain transition elements, Trans. AIME 206, 265-276.

Internal standard W, a = 3.16504 Å

 $CuK\alpha_1$ $\lambda = 1.5405 \text{ Å; temp. 25 °C}$

hkl

110

200

210

211

220

310

222

320

321

400

411

420

421

332

422

510

520

521

440

530

20(°)

26.96

38.49

43.25

47.60

55.60

62.84

69.63

72.93

76.16

82.49

88.73

94.97

98.11

101.27

107.72

114.36

125.16

129.05

137.62

147.88

Ι

23

57

82

4

4

3

17

38

13

<1

10

10

9

<1

<1

11

14

10

<1

100

 $d(\mathring{A})$

3.678

2.601

2.327

2.125

1.840

1.6455

1.5021

1,4429

1.3908

1.3005

1.2262

1.1632

1.1355

1.1093

1.0620

1.0202

0.9661

.9499

.9197

.8921

.8670

.8552

.8438

Sample source

The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was annealed at 800 °C for one hour.

Major impurities

0.001-0.01% each: Cu, Ir, Mo, Os, Pd, Rh, Si, V.

0.01 -0.1 % each: Cr and Fe.

0.1 -1.0 % each:Pt.

Color

Metallic dark grey and opaque.

Structure

Al5 type "B-W" [Wood and Matthias, 1956].

Space group

 $O_h^3 - Pm3n$ (223), Z=2 [ibid.]

Lattice constants

		a(Å)
Wood and Matthia NBS, sample at 2	s [1956] 5 °C	5.21 5.2024 ±0.0001

Internal standard W, a = 3.16504 Å

 $CuK\alpha_1$ $\lambda = 1.5405 \text{ Å; temp. 25 °C}$

hkl

110

200

210

211

220

310

222

320

400

411

420

421

332

422

510

520

521

440

530

600

610

611

- 321

2θ(°)

24.18

34.45

38.66

42.51

49.49

55.82

61.70

64.53

67.26

72.64

77.83

82.93

85.43

87.95

92.98

98.05

105.74

108.37

113.75

119.40

125.36 128.48

131.80

Ι

18

50

73

4

5

2

12

40

12

3

9

9

7

1

2

7

10

6

5

3

12

<1

100

(calculated) 11.219 g/cm³ at 25° C.

Reference intensity

Density

 $I/I_{corundum} = 2.2.$

Additional patterns

1. PDF card 11-19 [Wood and Matthias, 1956].

References

Wood, E. A. and B. T. Matthias (1956). The crystal structure of Nb3Au and V3Au, Acta Cryst. 9, 534.

 $d(\mathring{A})$

3.604

2.549

2.281

2.082

1.802

1.6117

1.4710

1.4135

1.3625

1.2746

1.2015

1.1397

1.1123

1.0870

1.0406

0.9997

.9465

.9307

.9011

.8742

.8496

.8380

.8269

.8058

.7865

Sample source

The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was annealed at 800 °C for one hour.

Major impurities

0.001-0.01% each: Al, Cu, In, Ni, Rh, and Si.

0.01 -0.1 % each: Fe, Pd, and Pt.

0.1 -1.0 % each: v

Color

Metallic dark grey and opaque.

Structure

Al5 type "\$-W" [Duwez and Jordan, 1952]

Space group

 $O_h^3 - Pm3n$ (223), Z=2 [ibid.]

Lattice constants

	a(Å)
Duwez and Jordan [1952]NBS, sample at 25 °C	5.096 5.0974 ±0.0001

1.PDF card 7-352 [Duwez and Jordan, 1952].

Internal standard Ag, a = 4.08625 Å

 CuK_{α} , $\lambda = 1.5405$ Å; temp. 25 °C

hkl

110

200

210

211

220

310

222

320

321

400

411

420

421

332

422

510

520

521

440

530

600

610

611

620

541

2θ(°)

24.68

35.18

39.48

43.43

50.62

57.10

63.15

66.04

68.85

74.36

79.74

85.04

87.65

90.24

95.50

100.80

108.93 111.71

117.47

123.54

130.09

133.60

137.35

145.81

156.69

I

90

47

26

12

16

<1

43

4

8

8

4

9

3

9

3

6

5

8

1

16

2

4

11

11

100

Density

(calculated) 8.542 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.1$

Additional patterns

References

Duwez,P. and C.B. Jordan (1952). The crystal structure of Ti₃Au and Ti₃Pt, Acta Cryst. 5, 213-214.

The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was annealed at 800 °C for one hour.

Major impurities

0.001-0.01% each: Ag, Cu, Ni, Si, Sn, Ti.

0.01 -0.1 % each: Cr, Fe, and Pt.

0.1 -1.0 % each:Pd.

Color

Metallic dark grey and opaque.

Structure

Al5 type "\$-W" [Wood and Matthias, 1956].

Space group

 O_h^3 -Pm3n (223), Z=2 [ibid.]

Lattice constants

	a(Å)
Wood and Matthias [1956] Köster and Nordskog [1960] NBS, sample at 25 °C	4.88 ±0.01 4.88 4.8813 ±0.0001

Density

(calculated) 9.987 g/cm3 at 25° C.

Reference intensity

I/I corundum = 2.1

Interna	l standard W, a = 3.16504 Å	
CuKa ₁	$\lambda = 1.5405 \text{ Å; temp. } 25 \text{ °C}$	

d (Å)	I	hkl	2θ(°)
3.4515	85	110	25.79
2.4402	53	200	36.80
2.1831	31	210	41.32
1.9930	100	211	45.47
1.7260	10	220	53.01
1.5435	11	310	59.87
1.3535	4	320	69.37
1.3046	33	321	72.37
1.2204	12	400	78.27
1.1506	6	411	84.05
1.0916	8	420	89.76
1.0652	2	421	92.62
1.0407	6	332	95.48
0.9966	3	422	101.23
•9575	6	510	107.12
•9065	5	520	116.35
.8912	9	521	119.60
.8629	5	440	126.41
.8371	3	530	133.90
.8136	5	600	142.42
.7918	8	611	153.20

Additional patterns

1. PDF card 11-20 [Wood and Matthias, 1956].

References

Köster, W. and H. Nordskog (1960). Das Zweistoffsystem Gold-Vanadium, Z. Metallk. 51, 501-502.

Wood, E. A. and B. T. Matthias (1956). The crystal structures of Nb₃Au and V₃Au, Acta Cryst. 9, 534.

The sample was prepared by R. M. Waterstrat at NBS by arc-melting and it was annealed at 2000 °C for three hours.

Major impurities

0.001-0.01% each:Al,Cr,Cu,Pd,Rd,Si and V.

0.01 -0.1 % each: Fe and Pt.

Color

Metallic dark grey and opaque.

Structure

Al5 "β-W"type [Geller, Matthias and Goldstein, 1955]. Solid solution range found from 21.5 to 28.5 At. % Ir [Giesson and Grant, 1964].

Space group

 O_h^3 -Pm3n (223),Z=2 [Geller, Matthias and Goldstein,1955].

Lattice constants

	a(Å)
Geller et al. [1955] Knapton [1958-9] Giesson and Grant [1964] NBS, sample at 25°C	5.131 5.139 5.138 5.1333 ±.0001

Density

(calculated) 11.561 g/cm3 at 25° C.

Reference intensity

 $I/I_{corundum} = 2.8.$

	$CuK\alpha_1 \lambda = 1.5405 \text{ Å; temp. 25 °C}$				
	d (Å)	I	hkl	<i>2θ</i> (°)	
	3.632	18	110	24.49	
	2.566	46	200	34.93	
	2.296	68	210	39.20	
	2.096	100	211	43.11	
	1.8147	4	220	50.23	
	1.6236	5	310	56.64	
	1.4820	2	222	62.63	
-	1.4238	13	320	65.50	
	1.3716	49	321	68.33	
	1.2832	13	400	73.78	
	1.2097	3	411	79.10	
	1.1478	3	420	84.31	
	1.1198	11	421	86.92	
1	1.0943	10	332	89.48	
	1.0478	<1	422	94.63	
١	1.0067	3	510	99.83	
	0.9532	12	520	107.82	
	.9370	17	521	110.57	
	.9075	9	440	116.16	
	.8804	2	530	122.07	

Internal standard W, a = 3.16504 Å

References

.8556

.8439

.8327

.8117

.7921

8

4

21

<1

2

Geller, S., B. T. Matthias and R.Goldstein (1955). Some new intermetallic compounds with the "β-Wolfram" structure, J. Am. Chem. Soc. 77,1502-4.

600

610

611

620

541

128.39

131.76 135.33

143.23

153.03

Knapton, A. G. (1958-9). An X-ray survey of certain transition - metal systems for sigma phases, J. Inst. Metals 87, 28-32.

Giessen, B.C., and N.J.Grant (1964). Constitution diagrams Nb-Rh and Nb-Ir. Technical Report No. WADD TR 60-132, Part III, 223-279.

The sample was prepared at NBS by R. M. Waterstrat by arc-melting.

Major impurities

0.001-0.01% each:Al, Cr, Cu, Pd, Si, V.

0.01 -0.1 % each: Au, Fe, Mo, Pt, and Rh.

Color

Metallic dark grey and opaque.

Structure

Al5 type "β-W" [Geller, 1956].

Space group

 $O_h^3 - Pm3n$ (223), Z=2 [Geller, 1956].

Lattice constants

	a(Å)
Nevitt, [1958] Matthias et al., [1961] NBS, sample at 25 °C	5.0101 ±.0004 5.009 5.0087 ±.0001

Density

(calculated) 8.877 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.1$

Additional patterns

1. PDF card 10-298 [Nevitt, 1958].

	Internal standard Ag, a = 4.08625 \mathring{A} CuK α_1 $^{\lambda}$ = 1.5405 \mathring{A} ; temp. 25 $^{\circ}$ C			
d (Å)	I	hkl	2θ(°)	
3.542	87	110	25.12	
2.504	47	200	35.83	
2.240	27	210	40.22	
2.046	100	211	44.24	
1.7713	10	220	51.55	
1.5840	13	310	58.19	
1.3891	4	320	67.35	
1.3387	35	321	70.25	
1.2524	6	- 400	75.91	
1.1806	6	411	81.45	
1.1200	8	420	86.90	
1.0931	1	421	89.60	
1.0680	8	332	92.31	
1.0222	3	422	97.79	
0.9822	8	510	103.29	
.9301	2	520	111.82	
.9143	8	521	114.79	
.8854	8	440	120.91	
.8590	5	530	127.46	
.8348	4	600	134.63	
.8126	12	611	142.85	
.7919	1	620	153.13	

References

Geller, S.(1956). A set of effective coordination number (12) radii for the β -Wolfram structure elements, Acta Cryst. 9, 885-889.

Matthias, B.T., V.B. Compton and E. Corenzwit (1961). Some new superconducting compounds, J. Phys. Chem. Solids 19, Nos. 1-2, 130-133.

Nevitt, M.V. (1958). Atomic size effects in Cr₃O-type structure, Trans. AIME 212, 350.

The sample was prepared by R. M. Waterstrat at NBS by arc-melting.

Major impurities

0.001-0.01% each:Ag, Au, Cr, Cu, Rh, Si, Sn, Ti.

0.01 -0.1 % each: Fe, Pd, and Pt.

0.1 -1.0 % each:

Color

Metallic dark grey. Opaque.

Structure

Al5 type "β-W" [Nevitt, 1958].

Space group

 $O_h^3 - Pm3n$ (223), Z=2 [ibid.]

Lattice constants

	a(Å)
Nevitt, [1958] Matthias et al., [1961] NBS, sample at 25 °C	4.7854 4.795 4.7876 ±.0001

Density

(calculated) 10.441g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.5.$

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C

d (Å)	I	hkl	2θ(°)
3.386	78	110	26.30
2.395	50	200	37.52
2.142	31	210	42.16
1.956	100	211	46.39
1.6929	12	220	54.13
1.5143	15	310	61.15
1.3819	1	222	67.75
1.3277	5	320	70.92
1.2793	44	321	74.04
1.1971	8	400	80.10
1.1285	8	411	86.09
1.0705	11	420	92.03
1.0448	4	421	94.99
1.0208	10	332	97.97
0.9772	4	422	104.04
.9390	10	510	110.23
.8890	4	520	120.09
.8741	20	521	123.58
.8463	9	440	131.04
.8210	6	530	139.49
.0210	,	330	±37,47
.7979	14	600	149.73
.7871	2	610	156.24

Additional patterns

1. PDF card 10-295 [Nevitt, 1958].

References

Matthias, B.T., V.B.Compton and E.Corenzwit (1961). Some new superconducting compounds, J.Phys. Chem. Solids.19, Nos.1-2, 130-133.

Nevitt, M. V. (1958). Atomic size effects in Cr₃O-type structures, Trans.AIME 212, 350-355.

The LiNbO₃ was obtained from CIBA, Rare Metals Division, Summit, N.J. The sample was recrystallized at NBS by W.S. Brower. It was pulled from a melt and then annealed in oxygen at 1100° C for 10 hours.

Major impurities

0.001-0.01% each: Ba, Na, Mo.

Color

Colorless

Optical data

Uniaxial (-). N > 2.00.

Structure

Determined by Bailey [1952].

Space group

 C_{3}^{6} ,-R3 (161), Z=6, [ibid.].

Lattice constants

	a(Å)	c(Å)
Zachariasen [1928]	5.12*	13.84*
Bailey [1952]	5.147	13.856
Lapickij and Simanov		
[1955]	5.150*	13.816*
Abrahams et al.[1966] at		
23° C	5.14829	13.8631
	±.00002	
NBS, sample at 25° C	5.1494	13.8620
	±.0001	±.0005

^{*} from kX

Density

(calculated) 4.627 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 8.0$

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
u (A)		nkı	20(3)	
3.754	100	012	23.68	
2.739	38	104	32.67	
2.576	21	110	34.79	
2.311	3	006	38.93	
2.249	9	113	40.05	
2.124	10	202	42.51	
1.876	15	024	48.47	
1.720	21	116	53.21	
1.674	1	211	54.80	
1.638	12	122	56.11	
1.615	6	018	56.96	
1.515	11	214	61.10	
1.487	9	300	62.41	
1.441	1	125	64.63	
1.3682	4	208	68.52	
1.3238	4	1.0.10	71.16	
1.2872	2	220	73.51	
1.2504	3	306	76.05	
1.2403	1	223	76.78	
1.2321	1	131	77.39	
1.2178	4	312 -	78.47	
1.2080	5	128	79.23	
1.1775	1	0 • 2 • 10	81.71	
1.1652	2	134	82.76	
1.1553	1	0.0.12	83.63	
1.1294	<1	315	86.00	
1.1246	3	226	86.46	
1.1008	2	042	88.81	
1.0708	4	2 • 1 • 10	92.00	
1.0615	1	404	93.04	
1.0539	3	1.1.12	93.92	
1.0123	2	232	99.09	
1.0069	3	318	99.81	
0.9879	1	229	102.46	
.9814	3	324	103.42	
0724	2	410	104.62	
.9734 .9667	2 1	0 • 1 • 14	105.65	
.9523	<1	413	107.97	
* JJ2J				

110.47

113.17

048

1.3.10

.9376

.9228

1	Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C					
d (Å)	I	hkl	2θ(°)			
.9121 .9050	1 2	3 • 0 • 12 2 • 0 • 14	115.23 116.66			
.8968 .8846	4	416 502	118.38 121.08			
.8688	2	238 4 • 0 • 10	121.91			
.8637 .8598	2 2 3	054 2•2•12	124.88			
.8598 .8583 .8537	2 2	330 1•2•14	127.24 127.65 128.92			
.8504	2	1.0.16	129.86			
.8412 .8366	1	241 422	132.60 134.06			
.8231 .8190	2 2	3 • 2 • 10 244	138.71 140.28			
.8075 .8063	2	1.3.13,0.2.16	145.05			
.8045 .7956	1 2	336 152	145.64 146.46 150.99			
.7930 .7804	2 4	508 514	152.48 161.52			
			1			

Additional patterns

1.PDF card 9-186. [Lapickij and Simanov, 1955].

References

Abrahams, S.C., J.M. Reddy, and J.L. Bernstein (1966). Ferroelectric lithium niobate. 3. Single crystal x-ray diffraction study at 24° C, J. Phys. Chem. Solids 27, 997-1012.

Bailey, P., Thesis, Bristol (1952). Quoted by Megaw, H.D. (1954). Ferroelectricity and crystal structure. II, Acta Cryst.7, 187-194.

Lapickij, A. V. and Ju. P. Simanov (1955). Lithium metaniobate and metatantalate, Z. Fiz. Khim. SSSR 29, 1201-1203.

Zachariasen, W.H. (1928). The crystal structure of the sesquioxides and compounds of the type ABO₃, Skrifter Norske Videnskaps-Akad. Oslo I. Mat.-Naturv.Kl. 1928 No.4.

2.151

2.071

2.012

1.989

1.976

1.909

1.891

1.834

1.804

1.780

1.756

1.720

1.694

1.653

1.644

1.630

1.602

1.568

17

1

8

1

15

18

7

6

1

4

4

4

3

3

5

<1

3

3

Sample source

The sample was prepared by melting equal molecular amounts of $\text{Li}_2\,\text{SO}_4$ and $\text{Na}_2\,\text{SO}_4$ together and annealing at 500 °C overnight.

Major impurities

0.001-0.01% each: Fe, Mg, Ni

0.1 -1.0 % each: A1

Color

Colorless

Optical data

Uniaxial (+), $N_0=1.491$, $N_e=1.495$.

Structure

Determined by Morosin and Smith [1967].

Space group

 $C_{3 \text{ v}}^4$ -P31c (159), Z=6 [Hilmy,1953].

Lattice constants

	a(Å)	$c(\mathring{A})$
Cavalca and Nardelli		
(1952)	7.613	9.80
	±.004	±.03
Hilmy (1953)	7.64	9.76
Morosin and Smith (1967)-	7.6270	9.8579
	±.0007	±.0010
NBS, sample at 25 °C	7.6355	9.861
	±.0002	±.001

Density

(calculated) 2.521 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.5$

Inte	Internal standard Ag, a = 4.08625 Å						
Cu	$1K\alpha_1$ $\lambda =$	1.5405 Å; temp. 2	25 °C				
d (Å)	I	hkl	2θ(°)				
6.62	2	100	13.37				
5.494	5	101	16.12				
4.932	1	002	17.97				
3.912	74	102	22.48				
3.814	100	110	23.30				
3.307	4	200	26.94				
3.136	3	201	28.44				
3.020	39	112	29.55				
2.944	39	103	30.33				
2.744	78	202	32.60				
2.499	1	210	35.90				
2.465	8	004	36.41				
2.437	8	211	37.06				
2.332	5	203	38.58				
2.310	5	104	38.95				
2.228	12	212	40.45				
2.205	6	300	40.90				

301

114

302

213

204

220

105

310

311

222

214

312

205

400

006,304

401

313

402

41.97

43.67

45.02

45.57

45.89

47.58

48.07

49.66

50.56

51.27

52.04

53.22

54.08

55.53

55.87

56.39

57.48

58.83

Internal standard Ag, a = 4.08625 \mathring{A} CuK α_1 $^{\lambda}$ = 1.5405 \mathring{A} ; temp. 25 $^{\circ}$ C				
d (Å)	I	hkl	2θ(°)	
1.4499	5	322	64.18	
1.4430	11	410	64.52	
1.3846	5	412	67.60	
1.3781	6	107,323	67.96	
1.3735	7	216,404	68.22	
1.3427	2	315	70.01	
1.3222	1	500	71.26	
1.3176	1	306	71.55	
1.2960	2 1	207	72.93	
1.2925	1	324	73.16	
1.2775	1	502	74.16	
1.2722	5	330	74.52	
1.2494	2	420	76.12	
1.2454	3	226,414	76.41	
1.2323	3	008,332	77.37	
1.2274	1	217,503	77.74	
1.2245	1	316	77.99	
1.2113	4	108,422	78.97	
1.2023	1	325	79.68	
1.1869	1	307	80.93	
1.1790	<1	511	81.58	
1.1656	3	406,504	82.72	
1.1548	2	208,512	83.67	
1.1306	1	334	85.89	
1.1171	4	317,513	87.18	
1.1146	1	326,424	87.43	
1.1052	1	218	88.36	
1.1025	1	600	88.64	
1.0985	<1	505	89.04	
1.0953	1	601	89.35	
1.0845	1	416	90.51	
1.0808	1	109,431	90.90	
1.0720	1	407	91.86	

Additional patterns 1.Hilmy [1953].

References

Cavalca, L. and M.Nardelli (1952). Sistema ternario: Na₂SO₄ -Li₂SO₄ -H₂O a 27.0° ed a 45.6°, Gazz.Chim.Ital.82,394-405.

Hilmy, M.E. (1953). Structural crystallographic relation between sodium sulfate and potassium sulfate and some other synthetic sulfate minerals, Am.Mineralogist 38, 118-135.

Morosin, B. and D.L. Smith (1967). The crystal structure of lithium sodium sulfate, Acta Cryst. 22, 906-910.

The sample was prepared by heating Fisher reagent $\text{Li}_2\,\text{SO}_4\,\cdot\text{H}_2\,\text{O}$ for 24 hours at 600 °C.

Major impurities

0.1 -1.0 % each: Na

Color

Colorless

Optical data

Biaxial (-), $N_{\alpha} = 1.468$, $N_{\beta} = 1.472$, $N_{\gamma} = 1.475$, 2V is large.

Structure

Determined by Albright [1932].

Space group

 $C_{2h}^5 - P2_1/a$ (14). Z=4.

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Albright [1932] NBS,	8.27*	4.96*	8.46*	107°54′
sample at 25°C-	8.24 1 4 ±.0004	4.9533 ±.0003	8.474 ±.001	107°58.8′ ±0.3′

^{*}from kX

Density

(calculated) 2.219 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.7$

References

Albright, J.G. (1932). The crystal structure of lithium sulfate, Z.Krist. 84,150-158. Forland, T., and J. Krogh-Moe, (1957). The structure of the high temperature modification of lithium sulfate, Acta Chem. Scand.11,565-567.

Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-513.

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
4.225 4.193 4.048 4.030 3.999	11 9 }100 100	011 110 201 002 111	21.01 21.17 21.94 22.04 22.21	
3.919	47	200	22.67	
3.490	22	111	25.50	
3.382	10	202	26.33	
3.177	28	112	28.06	
3.163	41	201	28.19	
3.139	12	211	28.41	
3.074	5	210	29.02	
2.792	10	212	32.03	
2.691	5	112	33.27	
2.665	3	211	33.60	
2.628	8	203	34.09	
2.479	22	020	36.21	
2.402	10	311	37.40	
2.361	6	013,120	38.08	
2.319	9	213	38.79	
2.211	2	121	40.77	
2.111	3	022,113	42.81	
2.094	4	220	43.16	
2.025	2	402	44.71	
2.015	2	004	44.94	
1.997 1.952 1.947 1.912	1 12 9 1	222 203 114 214 411	45.38 46.47 46.62 47.52 47.84	
1.884	4	403	48.26	
1.875	5	412	48.52	
1.866	2	014	48.75	
1.839	1	321	49.53	
1.823	3	410,023	50.00	
1.816	2	213	50.19	
1.803	2	312,223	50.59	
1.789	1	322	50.99	
1.781	3	401	51.24	
1.778	2	314	51.35	
1.744	1	222	52.43	

114

123

205

 $\overline{3}23$

53.59

53.98

54.37

55.05

1.709

1.697

1.686

1.667

1

2

		· · · · · · · · · · · · · · · · · · ·				T	
d (Å)	I	hkl	2θ(°)	d (Å)	I	hkl	<i>2θ</i> (°)
1.617	1	031	56.88	1.2147	1	605	78.71
1.616	1	130	56.94	1.2009	1	622,141	79.79
1.603	3	Ī31,204	57.44	1.1947	1	611	80.29
1.595	2	$\bar{2}15, \bar{1}15$	57.74	1.1917	<1	414	80.53
1.582	1	$\frac{1}{4}$ 21,402	58.29	1.1876	2	516	80.87
				1.10/0			00.07
1.565	2	422,131	58.96	1.1861	1	$\bar{1}42,225$	80.99
1.553	1	313,511	59.45	1.1801	3	615,315	81.49
1.533	3	315,015,+	60.32	1.1652	1	317,206	82.76
1.529	4	231,032	60.52	1.1620	1	531,407	83.04
1.525	3	322,214	60.66	1.1605	1	117,426	83.17
1.510	1	3 24	61.33	1.1547	1	142	83.68
1.507	1	412	61.48	1.1535	1	035,241	83.79
1.499	1	$\bar{4}_{23}$	61.83	1.1498	1	234	84.12
1.4947	4	510	62.04	1.1421	<1	432	84.82
1.4910	4	4 05	62.21	1.1383	1	713	85.17
				112555	_		
1.4830	3	2 32	62.58	1.1290	1	341,711	86.04
1.4677	1	132,124	63.31	1.1266	1	<u>6</u> 06	86.27
1.4638	1	231	63.50	1.1169	<1	342	87.20
1.4463	1	421	64.36	1.1064	<1	435,135	88.24
1.4256	2	Ī33	65.41	1.1027	1	621	88.62
1.4160	2	- 514	65.91	1.1012	<1	<u>-</u> 534	88.77
1.4116	2	2 06	66.14	1.0982	<1	616	89.07
1.4067	2	033	66.40	1.0922	1	531,710	89.69
1.3974	3	233,511	66.90	1.0906	1	625,405	89.86
1.3921	2	403,332	67.19	1.0853	1	343	90.42
				1.0033	_	3.3	20112
1.3735	1	602	68.22	1.0818	1	523	90.80
1.3653	1	323,521	68.69	1.0685	1	_ 144	92.25
1.3570	<1	60 <u>1</u> ,216	69.17	1.0657	1	$\frac{7}{2}$ 15,415	92.57
1.3503	1	<u>6</u> 03	69.56	1.0631	1	$\frac{7}{2}$ 22, $\frac{2}{2}$ 44	92.86
1.3432	2	006	69.98	1.0574	1	723,208	93.51
1.3344	<1	5 23	70.51	1.0545	1	226	93.85
1.3096	1	<u></u> 611	72.05	1.0485	<1	631	94.55
1.3067	2	600	72.24	1.0456	<1	243,235,+	94.89
1.2937	1	604	73.08	1.0414	1	711	95.40
1.2913	<1	234	73.24	1.0355	1	408,532,+	96.12
1.2836	1	512	73.75	1.0277	<1	802,436	97.09
1.2796	2	432	74.02	1.0239	1	_ 144_	97.57
1.2771	2	125,034,+	74.19	1.0183	<1	118,634	98.30
1.2693	<1	524,416	74.72	1.0128	<1	804	99.02
1.2624	1	430	75.20	1.0088	<1	716,527	99.53
1.2553	<1	521	75.70	1.0071	<1	<u>8</u> 13	99.78
1.2479	1	334	76.23	0.9889	<1	542	102.32
1.2307	1	601	77.49	.9873	1	541,018	102.55
1.2229	1	140,134	78.08	.9855	<1	434	102.81
1.2183	1	ī41	78.43	.9822	1	712,345,+	103.30

Polymorphism

Above 575° Li₂SO₄ is cubic. [Forland and Krogh-Moe,1957]

Additional patterns

1.PDF card 1-0443 [Hanawalt et al., 1938]

The sample was $\mbox{ prepared at NBS by R. M.}$ Waterstrat by $\mbox{ arc-melting and it was annealed at 2000 °C for two days.}$

Major impurities

0.001-0.01% each: Al, Au, Co, Cr, Cu, Nb, Si, Sn, V, and Zr.

0.01 -0.1 % each: Fe, Ir, and Rh.

Color

Metallic dark grey and opaque.

Structure

Al5 type " β -W" [Raub, 1954].

Space group

 $O_h^3 - Pm3n$ (223), Z=2 [ibid.].

Lattice constants

	a(Å)
Raub, [1954] NBS, sample at 25 °C	4.973* 4.9689 ±.0001

^{*}from kX

Density

(calculated) 12.940 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.5$

Internal standard W, a = 3.16504 Å

CuK α_1 λ = 1.5405 Å; temp. 25 °C

$CuKa_1 \lambda = 1.5405 A$; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
3.513	14	110	25.33	
2.483	50	200	36.14	
2.222	81	210	40.56	
2.028	100	211	44.64	
1.758	3	220	51.98	
1.5712	4	310	58.71	
1.4342	3	222	64.97	
1.3778	17	320	67.98	
1.3277	49	321	70.92	
1.2420	15	400	76.66	
1.1711	2	411	82.25	
1.1110	12	420	87.78	
1.0844	14	421	90.52	
1.0595	11	332	93.27	
1.0142	1	422	98.83	
0.9745	3	510	104.45	
.9226	14	520	113.21	
.9072	18	521	116.22	
.8783	11	440	122.55	
.8522	<1	530	129.34	
.8282	11	600	136.87	
.8169	4	610	141.10	
.8061	22	611	145.71	
.7856	<1	620	157.30	

References

Raub E. (1954).Die Legierungen der Platinmetalle mit Molybdän, Z. Metallk. 45,23.

The sample was supplied by F.J.Linnig at NBS.

Color

Colorless.

Optical data

Biaxial (-) $N_{\alpha}=1.636$, $N_{\beta}=1.82$, $N_{\gamma}=1.92$ 2v= 65° [McCrone, 1951]

Structure

Orthorhombic [ibid.].

Space group

Not determined. Z=8 [ibid.].

Lattice constants

	a(Å)	b(Å)	c(Å)
McCrone [1951] NBS, sample	17.45	18.25	7.52
at 25°C	17.303 ±.002	18.183 ±.004	7.518 ±.002

Density

(calculated) 1.232 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.1$

Additional patterns

1.PDF card 5-0254 [McCrone, 1951].

References

McCrone, W.C.(1951). N-Phenyl-2-naphthyla-mine, Anal. Chem. 23, 1884.

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C

d (Å)	I	hkl	2θ(°)
12.49	<3	110	7.07
9.07	39	020	9.74
8.66	7	200	10.20
6.894	<3	101	12.83
6.449	12	111	13.72
6.267	9	220	14.12
5.497	28	310,121	16.11
4.815	100	221	18.41
4.572	7	301	19.40
4.544	11	131,040	19.52
4.327	58	400	20.51
4.143	72	231	21.43
3.907 3.797	15 24	420 141	22.74 23.41
3.669	30	102,411	24.24
3.003	30	102,411	24.24
3.556	5	150	25.02
3.475	11	022	25.61
3.459	10	500	25.73
3.401	4 15	510 151	26.18 27.70
3.218	12	121	27.70
3.193	14	032	27.92
3.140	16	501,132	28.40 28.79
3.098 2.971	20 9	511 521	30.05
2.883	9	600	30.99
2.855	4	142	31.30
2.790	<3	531 621	32.05 34.73
2.581	<3 <3	171	36.94
2.382	<3	352	37.74
			00.70
2.359	<3 <3	062,461 262	38.12 39.54
2.277	<3	080,612+	39.54
2.139	<3	072	42.22
2.090	<3	660	43.26
2.006	<3	253,190	45.15
1.952	<3 <3	840,091 481,353	46.47 46.69
1.944	<3	163	47.28
1.881	<3	613,920+	48.34
1.859	<3	850,114	48.95
1.843	<3	382,581	49.41
1.825	<3	921	49.94
1.794	<3	034,173	50.84
1.733	<3	842,2.10.1	52.79

The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was annealed at 1600 $^{\circ}\text{C}$ for five days.

Major impurities

0.001-0.01% each: Ag, Au, Cu, Ir, Pd, Si, Sn, V

0.01 -0.1 % each: Cr, and Pt.

Color

Metallic dark grey and opaque

Structure

Al5 type " β -W" [Geller et al., 1955].

Space group

 $O_h^3 - Pm3n$ (223), Z=2 [ibid.].

Lattice constants

	a(Å)
Geller, et al., [1955] NBS, sample at 25 °C	5.121 ±.002 5.1348 ±.0001

Density

(calculated) 11.502 g/cm3 at 25° C.

Reference intensity

 $I/I_{corundum} = 4.7$

Internal standard Ag, a = 4.08625 \mathring{A} CuK α_1 λ = 1.5405 \mathring{A} ; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
3.632	23	110	24.49	
2.568	50	200	34.91	
2.297	78	210	39.18	
2.097	100	211	43.09	
1.816	4	220	50.20	
1.625	6	310	56.60	
1.4826	2	222	62.60	
1.4240	13	320	65.49	
1.3721	40	321	68.30	
1.2836	12	400	73.75	
1.2104	2	411	79.04	
1.1483	10	420	84.25	
1.1206	9	421	86.84	
1.0950	7	332	89.41	
1.0479	1	422	94.62	
1.0270	<1	430	97.18	
1.0070	3	510	99.80	
0.9534	9	520	107.78	
.9374	13	521	110.50	
.9077	7	440	116.11	
.8807	2	530	122.00	
.8679	<1	531	125.12	
.8559	7	600	128.31	
.8442	3	610	131.69	
.8330	15	611	135.25	
.8119	1	620	143.13	
.7923		541	152.91	

References

Geller,S., B.T. Matthias, and R. Goldstein
 (1955). Some new intermetallic compounds
 with the "β-Wolfram" structure, J. Am.
 Chem. Soc. 77, 1502-1504.

The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was annealed at 1600 °C for five days.

Major impurities

0.001-0.01% each: Al, Cu, Ir, Pd, and Si.

0.01 -0.1 % each: Au, Cr, Fe, Os, Rh, and V.

Color

Metallic dark grey and opaque.

Structure

Al5 type "\$-W" [Geller et al., 1955].

Space group

 $O_h^3 - Pm3n$ (223), Z=2 [ibid.]

Lattice constants

	a(Å)
Geller et al., [1955]Greenfield and Beck [1956]NBS, sample at 25 °C	5.153 5.11 5.1524 ±0.0001

Density

(calculated) 11.503 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 4.9$

Additional patterns

1. PDF card 8-371[Greenfield and Beck, 1956]

Interna	l standard W, a = 3.16504 $\mathring{\rm A}$	
$CuKa_1$	λ = 1.5405 Å; temp. 25 °C	

	Cuku ₁ x = 1.0400 X, temp. 25 C			
	d (Å)	I	hkl	<i>2</i> θ(°)
	3.642	14	110	24.42
	2.575	42	200	34.81
	2.304	64	210	39.07
	2.102	100	211	42.99
	1.823	5	220	50.00
i	1.629	6	310	56.42
	1.488	3	222	62.35
	1.4289	16	320	65.24
	1.3765	55	321	68.05
	1.2886	16	400	73.42
	1.2144	4	411	78.73
	1.1522	16	420	83.90
1	1.1244	14	421	86.48
ı	1.0983	13	332	89.06
	1.0518	2	422	94.16
ı				
	1.0105	6	510	99.32
	0.9568	16	520	107.22
1	.9408	23	521	109.91
ı	.9110	14	440	115.26
Į	.8838	3	530	121.26
	.8588	13	600	127.50
	.8470	7	610	130.84
	.8358	31	611	134.30
	.8146	1	620	142.01
	.7950	3	541	151.33
I				

References

Geller,S.,B. T. Matthias, and R. Goldstein
 (1955). Some new intermetallic compounds
 with the "β-Wolfram" structure, J. Am.
 Chem. Soc. 77, 1502-1504.

Greenfield, P. and P.A.Beck (1956). Intermediate phases in binary systems of certain transition elements, Trans. AIME 206, 265-276.

 $d(\tilde{A})$

3.414

2.4124

2.1582

1.9697

1.7066

1.5255

1.3926

1.3384

1.2895

1.2065

1.1373

1.0790

1.0528

1.0288

0.9848

.9463

.8960

.8809

.8530

.8276

.8042

.7933

.7828

Sample source

The sample was prepared by R. M. Waterstrat at NBS by arc-melting and it was annealed at 1100 $^{\circ}\mathrm{C}$ for two weeks.

Major impurities

0.001-0.01% each: Ni, Rh and Ru.

0.01 -0.1 % each: Cr,Fe,Mo,Pt,Si, and Ti.

Color

Metallic dark grey and opaque

Structure

A-15 type" β -W", isomorphous with CoV $_3$ and NiV $_3$ [Köster and Haehl, 1958].

Space group

 $O_h^3 - Pm3n$ (223), Z=2 [ibid.]

Lattice constants

	a(Å)
Köster and Haehl [1958]NBS, sample at 25°C	4.81 4.8254 ±.0001

Additional patterns

1. Köster and Haehl [1958]

References

Köster, W. and W.-D.Haehl (1958). Das Zweistoffsystem Palladium-Vanadin, Z.Metallk. 49, 647-649.

Internal standard W, a = 3.16504 Å

 $CuK\alpha_1 \lambda = 1.5405 \text{ Å; temp. 25 °C}$

hkl

110

200

210

211

220

310

222

320

321

400

411

420

421

332

422

510

520

521

440

530

600

610

611

20(°)

26.08

37.24

41.82

46.04

53.66

60.65

67.16

70.27

73.36

79.35

85.26

91.10

94.05

96.96

102.92

108.97

118.55

121.94

129.12

137.09

146.55

152.32

159.46

I

17

45

76

4

4

2

14

45

15

3

13

12

12

2

5

14

19

14

3

12

4

25

100

Density

(calculated) 7.662 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.2$

The sample was prepared by R. M. Waterstrat at NBS by arc-melting.

Major impurities

0.001-0.01% each:A1, Cr, Cu and Si.

0.01 -0.1 % each: Fe and Pd.

Color

Metallic dark grey and opaque.

Structure

Al5 type "\$-W" [Duwez and Jordan, 1952].

Space group

 O_h^3 -Pm3n (223), Z=2 [ibid.]

Lattice constants

	a(Å)
Duwez and Jordan [1952]Nishimura and Hiramatsu [1957] NBS, sample at 25 °C	5.031 5.024 5.0327 ±0.0001

Density

(calculated) 8.826 g/cm3 at 25° C.

Reference intensity

 $I/I_{conundum} = 2.7.$

Additional patterns

1. PDF card 7-353 [Duwez and Jordan, 1952].

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C			
d (Å)	I	hkl	2θ(°)
3.559	90	110	25.04
2.516	46	200	35.65
2.250	27	210	40.03
2.055	100	211	44.02
1.7791	11	220	51.31
1.5910	15	310	57.91
1.4531	<1	222	64.02
1.3955	4	320	67.00
1.3449	42	321	69.88
1.2581	7	400	75.50
1.1861	8	411	80.99
1.1253	10	420	86.39
1.0981	3	421	89.09
1.0729	9	332	91.76
1.0272	2	422	97.15
0.9871 .9346 .9188 .8895 .8631	7 3 12 5	510 520 521 440 530	102.58 111.01 113.93 119.97 126.37
.8389	7	600	133.33
.8274	<1	610	137.15
.8164	16	611	141.27
.7957	2	620	150.92

References

Duwez, P., and C.B. Jordan (1952). The crystal structure of Ti₃ Au and Ti₃ Pt, Acta Cryst. 5, 213-214.

Nishimura, H. and T. Hiramatsu (1957). On the corrosion resistance of titanium alloys (2nd report) The equilibrium diagram of the titanium - platinum system, Nippon Kinzoku Gakkaishi 21,469-474.

The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was annealed at 800 $^{\circ}\text{C}$ for one hour.

Major impurities

0.001-0.01% each: Ag, Au, Cr, Cu, Ir, Si, and Sn.

0.01 -0.1 % each: Fe, Pd, and Ti.

Color

Metallic dark grey and opaque.

Structure

Al5 type "B-W" [Greenfield and Beck, 1956].

Space group

 $O_h^3 - Pm3n$ (223), Z=2 [ibid.]

Lattice constants

	a(Å)
Greenfield and Beck, [1956] Matthias et al., [1961] NBS, sample at 25 °C	4.808 4.814 4.8166 ±0.0001

Density

(calculated) 10.340 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.4$

Additional patterns

1. PDF card 8-434[Greenfield and Beck, 1956]

Internal standard W, a = 3.16504 Å CuKα, λ = 1.5405 Å; temp. 25 °C				
Cur	$CuKa_1 = 1.5405 \text{ A}$; temp. 25			
d (Å)	I	hkl	<i>2</i> θ(°)	
3.407	60	110	26.13	
2.409	46	200	37.30	
2.154	29	210	41.90	
1.967	100	211	46.11	
1.7027	10	220	53.79	
1.5233 1.3359 1.2875 1.2043 1.1354	13 5 8 8	310 320 321 400 411	60.75 70.42 73.49 79.52 85.44	
1.0771	4	420	91.31	
1.0510	4	421	94.26	
1.0271	13	332	97.17	
0.9833	5	422	103.13	
.9446	12	510	109.25	
.8944	5	520	118.90	
.8794	19	521	122.31	
.8515	10	440	129.54	
.8260	8	530	137.64	
.8028	14	600	147.27	
.7918	2	610	153.19	
.7813	25	611	160.68	

References

Greenfield, P. and P.A. Beck (1956). Intermediate phases in binary systems of certain transition elements, Trans. AIME 206, 265-276.

Matthias, B.T., V.B. Compton and E. Corenzwit (1961). Some new superconducting compounds, J. Phys. Chem. Solids 19, Nos. 1-2, 130-133.

The sample was prepared at NBS by melting $K_2 SO_4$ and $CoSO_4$ together at approximately 600° C.

Major impurities

0.001-0.01% each: Al, and Na.

Color

Deep purple

Optical data

Isotropic. N=1.608.

Structure

Isostructural with K₂ Mg₂ (SO₄)₃, langbeinite. [Gattow and Zemann, 1958]

Space group

 $T^4 - P2_1 3$ (198), Z=4 [ibid.]

Lattice constants

	a(Å)
Gattow and Zemann (1958)	9.929 ±.004
NBS, sample at 25 °C	9.9313 ±.0001

Density

(calculated) 3.283 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.0$

References

Gattow, G. and J.Zemann (1958). Über Doppel-sulfate vom Langbeinit-Typ, $A_2^{+}B_2^{2+}$ (SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-40.

Internal standard W, a = 3	.16504 Å
$CuK\alpha_1 \lambda = 1.5405 \text{ Å; temp}$	o. 25 °C

d (\mathring{A})	I	hkl	<i>2θ</i> (°)
5.74	14	111	15.42
4.442	14	210	19.97
4.057	16	211	21.89
3.312	6	221	26.90
3.142	100	310	28.38
2.996	24	311	29.80
2.756	10	320	32.46
2.654	58	321	33.74
2.409	6	410	37.30
2.278	3	331	39.52
2.222	1	420	40.57
2.167	2	421	41.65
2.118	4	332	42.65
2.027	17	422	44.67
1.987	5	430	45.62
1.948	18	510	46.58
1.912	4	511	47.50
1.845	10	520	49.34
1.814	2	521	50.25
1.756	1	440	52.04
1.728	12	522	52.95
1.703	3	530	53.78
1.678	1	531	54.64
1.656	1	600	55.45
1.633	3	610	56.30
1.611	21	611	57.12
1.571	6	620	58.73
1.551	6	621	59.54
1.533	5	541	60.33
1.515	<1	533	61.13
1.498	2	622	61.88
1.481	6	630	62.69
1.465	9	631	63.44
1.4334	4	444	65.01
1.4188	4	632	65.76
1.4046 1.3910 1.3772 1.3642 1.3515	2 1 2 6	710 711 640 720 721	66.51 67.25 68.01 68.75 69.49
1.3274	2	642	70.94
1.3155	2	722	71.68
1.3040	2	730	72.41
1.2931	7	731	73.12
1.2716	1	650	74.56

d (Å)	I	hkl	2θ(°)
1.2614 1.2321 1.2228 1.2134 1.2044	3 5 2 1	651 810 811 733 820	75.27 77.39 78.09 78.81 79.51
1.1954 1.1869 1.1703 1.1627 1.1546	9 1 4 2	821 653 822 830 831	80.23 80.93 82.32 82.98 83.69
1.1468 1.1394 1.1318 1.1246 1.1102	5 1 3 4 1	751 662 832 752 840	84.39 85.07 85.77 86.46 87.86
1.1035 1.0966 1.0904 1.0840 1.0773	2 2 3 2 2	841 910 911 842 920	88.53 89.24 89.90 90.58 91.28
1.0710 1.0589 1.0528 1.0472 1.0412	2 2 7 2 5	921 664 922 930 931	91.98 93.34 94.05 94.71 95.43
1.0300 1.0243 1.0135 1.0087 1.0031	1 1 <1 <1 4	852 932 844 940 941	96.80 97.52 98.93 99.57 100.32
0.9984 .9933 .9883 .9835 .9739	1 1 3 3 2	933 10.0.0 10.1.0 10.1.1 10.2.0	100.98 101.69 102.40 103.10 104.54
.9692 .9647 .9602 .9555	2 5 2 1 2	10·2·1 950 951 10·2·2 10·3·0	105.26 105.96 106.67 107.44 108.14
.9470 .9344 .9302 .9263	2 2 1 <1 1	10·3·1 10·3·2 871 953 10·4·0	108.85 111.04 111.79 112.52 113.26

d (Å)	I	hkl	2θ(°)
.9181 .9142 .9067 .9028 .8992	2 <1 2 1	10.4.1 10.3.3 10.4.2 962 11.1.0	114.06 114.81 116.32 117.11 117.88
.8954 .8884 .8847 .8779	1 3 2 <1 2	11.1.1 11.2.0 11.2.1 880 11.2.2	118.68 120.23 121.06 122.66 123.50
.8710	1	11.3.0	124.34
.8676	1	11.3.1	125.19
.8645	3	10.4.4	126.00
.8611	2	964	126.88
.8579	5	11.3.2	127.74
.8515	2	10.6.0	129.53
.8484	1	11.4.0	130.43
.8454	2	11.4.1	131.33
.8423	1	11.3.3	132.25
.8393	1	10.6.2	133.20
.8364	1	11.4.2	134.12
.8334	2	965	135.09
.8276	1	12.0.0	137.09
.8247	4	12.1.0	138.12
.8220	3	12.1.1	139.12
.8192	3	11.5.1	140.20
.8163	2	12.2.0	141.31
.8136	2	12.2.1	142.43
.8109	2	11.5.2	143.58
.8055	2	12.2.2	145.98
.8029	3	12.3.0	147.23
.8002	3	12.3.1	148.53
.7977	2	11.5.3	149.85
.7926	1	12.3.2	152.71
.7901	1	11.6.1	154.28
.7851	1 3	12•4•0	157.66
.7827		12•4•1	159.56

The sample prepared at NBS was a washed precipitate obtained from a mixture of KF and CoCl₂ solutions.

Major impurities

0.001-0.01% each: Ca,Cs,Cu,Fe,Na,Pb,Rb,Si,and V.

0.01 -0.1 % each: Al, Mn, Ni, and Sr.

Color

Medium purplish pink.

Optical data

Isotropic N=1.468

Structure

Cubic perovskite [Rüdorff et al,1959] and [Okazaki et al, 1959]. KCoF₃ has been reported to have a doubled cell [Martin et al. 1956]; however, we found no evidence for this.

Space group

 $O_h^1 - Pm3m(221)$ Z=1. [Rüdorff et al.,1959]

Lattice constants

	a(Å)
Rüdorff et al. [1959]	4.062 4.069 ±.001 4.071 4.0708 ±.0001

Density

(calculated) 3.816 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.4$

Polymorphism

Below 78°K. KCoF₃ is distorted to a tetragol cell.[Okazaki and Suemune, 1961].

Additional patterns

1. PDF card 1-949, [Dow Chemical Co.]

Interna	l standard W, a = 3.16504 Å
CuKa ₁	$\lambda = 1.5405 \text{ Å}$; temp. 25 °C

d (Å)	I	hkl	2θ(°)
4.071	26	100	21.81
2.879	100	110	31.04
2.349	14	111	38.28
2.0351	72	200	44.48
1.8202	12	210	50.07
1.6623	36	211	55.21
1.4393	30	220	64.71
1.3564	4	300	69.20
1.2869	12	310	73.53
1.2278	<1	311	77.71
1.1750	8	222	81.92
1.1290	<1	320	86.04
1.0879	11	321	90.15
1.0177	3	400	98.37
0.9874	2	410	102.53
.9596	5	411	106.77
.9340	<1	331	111.11
.9103	8	420	115.59
.8884	2	421	120.23
.8678	3	332	125.15
.8309	5	422	135.93
.8141	<1	500	142.20
.7983	7	510	149.54

References

Knox, K. (1961). Perovskite-like fluorides I.Structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃, and KZnF₃. Crystal field effects in the series and in KCrF₃ and KCuF₃, Acta Cryst. 14, 583.

Martin, R.L., R.S. Nyholm and N.C. Stephenson (1956). Antiferromagnetism in complex fluorides with perovskite structures, Chem. Ind. London 1956, 83.

Okazaki, A., and Y.Suemune (1961). The crystal structures of KMnF₃, KFeF₃, KNiF₃ and KCuF₃ above and below their Néel temperatures, J.Phys.Soc. Japan 16, 671.

Okazaki, A., Y. Suemune and T. Fuchikami (1959). The crystal structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KCuF₃, J. Phys. Soc. Japan 14, 1823.

Rüdorff, W., J. Kändler, G. Lincke and D. Babel (1959). Über Doppelfluoride von Nickel und Kobalt, Angew. Chem. 71, 672.

The sample was precipitated at NBS by adding $CuCl_2$ to an excess of KF in solution.

Major impurities

0.001-0.01% each: Ca,Co,Cs,Fe,Mg,Mn,Pb, Rb,Sn and Sr. 0.01 -0.1% each: Al,Na,Si and V.

Color

Very pale blue.

Optical data

Crystals averaged 5μ in size and appeared almost isotropic; N= 1.516.

Structure

Tetragonal distorted perovskite type [Edward and Peacock,1959]. KCuF $_3$ is reported to have a superstructure [Okazaki and Suemune,1961], but Knox [1961] found no evidence detectable in a powder pattern and it was not seen in the present study. In the superstructure cell $a=\sqrt{2a_0}$ and $c=2c_0$, where a_0 and c_0 are the constants for the simple cell.

Space group

 $C_{4 \text{ v}}^{1}$ -P4mm (99) [Edward and Peacock, 1959] Z=1.

Lattice constants

	a(Å)	c(Å)
Edward and Peacock [1959]- Hoppe [1959] Okazaki et al. [1959] Knox [1961] NBS, sample at 25°C	4.14	3.92 3.92 3.926 3.922 3.9260 ±.0009

Density

(calculated) 3.934 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.8$

Interna	l standard W, a = 3.16504	Å
CuKa ₁	λ = 1.5405 Å; temp. 25 °C	7

Cuka ₁ ~ - 1.5405 A, temp. 25 C				
d (Å)	I	hkl	2θ(°)	
4.15	27	100	21.41	
3.93	13	001	22.60	
2.933	55	110	30.45	
2.853	100	101	31.33	
2.349	11	111	38.28	
2.073	65	200	43.63	
1.963	29	002	46.20	
1.854	6	210	49.10	
1.832	6	201	49.73	
1.775	5	102 ′	51.45	
1.676	32	211	54.72	
1.631	16	112	56.36	
1.465	13	220	63.46	
1.424	24	202	65.47	
1.381	2	300	67.82	
1.372	2	221	68.28	
1.347	4	212	69.77	
1.3101	8	310,003	72.02	
1.3028	7	301	72.49	
1.2477	5	103	76.26	
1.1738	8	222	82.02	
1.1066	1	203	88.22	
1.1026	5	321	88.63	
1.0896	5	312	89.97	
1.0688	5	213	92.22	
1.0357	3	400	96.09	

References

Edward, A.J. and R.D. Peacock, (1959). The structures of potassium trifluorocuprate II and potassium trifluorochromate II, J. Chem. Soc. 1959, 4126-4127.

Hoppe, R., (1959). Untersuchungen an tärnaren Fluoriden, Angew. Chem. 71, 457.

Knox, K. (1961). Perovskite-like fluorides. I.Structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KZnF₃. Crystal field effects in the series and in KCrF₃ and KCuF₃. Acta Cryst. 14, 583-585.

Okazaki, A. and Y. Suemune (1961). The crystal structure of KCuF₃, J. Phys. Soc. Japan. 16 176-183.

Okazaki, A., Y. Suemune and T.Fuchikami (1959). The crystal structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KCuF₃, J.Phys.Soc. Japan 14 1823-1824.

The sample was precipitated at NBS by mixing solutions of $FeCl_2$ and KF. The material was washed, then heated to about 400 °C. in vacuum.

Major impurities

0.001-0.01% each: Al.

0.01 -0.1 % each: Na and Si.

Color

Light yellowish brown.

Optical data

Isotropic, N= 1.438.

Structure

Cubic perovskite [Okazaki and Suemune, 1961]. KFeF₃ has been reported to be only pseudo-cubic at room temperature [Martin et al., 1956]. It is reported as rhombohedral at 78 °K. [Okazaki et al., 1959]. We found no departure from cubic symmetry at 25 °C.

Space group

 $O_h^1 - Pm3m$ (221) Z=1.

Lattice constants

	a(Å)
Okazaki et al. [1959] Martin et al. [1960] Hirakawa et al. [1960] Okazaki et al. [1961] Knox [1961] NBS, sample at 25°C	4.122 4.11 4.122 4.121 4.120 4.1205 ±.0001

Density

(calculated) 3.606 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.7.$

Internal standard W, a = 3.16504	Å
$CuK\alpha_1 \lambda = 1.5405 \text{ Å; temp. 25} \circ CuK\alpha_1 \lambda = 1.5405 Å; temp$	2

d (Å)	I	hkl	2θ(°)
4.124	30	100	21.53
2.915	100	110	30.64
2.380	13	111	37.77
2.061	67	200	43.89
1.843	12	210	49.40
2,013			
1.6822	32	211	54.50
1.4564	30	220	63.86
1.3733	6	300	68.23
1.3029	13	310	72.48
1.2426	<1	311	76.61
1.1894	6	222	80.72
1.1431	1	320	84.73
1.1015	9	321	88.74
1.0303	4	400	96.77
0.9995	1	410	100.82
.9713	5	411	104.94
.9454	<1	331	109.13
.9215	6	420	113.42
.8991	1	421	117.89
.8784	2	332	122.54
.8410	6	422	132.65
.8241	<1	500	138.33
.8081	8	510	144.80

References

Hirakawa, K., K. Hirakawa and T. Hashimoto (1960). Magnetic properties of potassium iron group fluorides KMF₃, J. Phys. Soc. Japan 15, 2063-8.

Knox, K. (1961).Perovskite-like fluorides.
I. Structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KZnF₃. Crystal field effects in the series and in KCrF₃ and KCuF₃, Acta Cryst. 14, 583-585.

Martin, R.L., R.S. Nyholm and N.C. Stephenson (1956). Antiferromagnetism in complex fluorides with perovskite structures, Chem. Ind. (London). 1956, 83-85.

Okazaki, A., Y. Suemune and T. Fuchikami (1959)
The crystal structures of KMnF₃, KFeF₃,
KCoF₃, KNiF₃ and KCuF₃. J. Phys. Soc.
Japan 14, 1823-4.

Okazaki, A., and Y. Suemune (1961). The crystal structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KCuF₃ above and below their Néel temperatures. J. Phys. Soc. Japan 16, 671-675.

The sample was prepared at NBS by melting $K_8\,SO_4$ and $MgSO_4$ together at about 1000 °C. The material was somewhat hygroscopic.

Major impurities

0.001-0.01% each: Cs, Rb, Si, and Sr.

0.01 -0.1 % each: Ca, Fe, and Na.

Color

Colorless.

Optical data

Isotropic; N=1.536.

Structure

Determined by Zemann and Zemann [1957]. There are many other double sulfates of the langbeinite-type [Gattow and Zemann 1958].

Space group

 T^4-P2_13 (198), Z=4 [Gossner and Koch, 1931].

Lattice constants

	a(Å)
Gossner and Koch [1931]Gattow and Zemann [1958]NBS, sample at 25°C	9.98* 9.920 9.9211 ±.0001

*from kX

Density

(calculated) 2.823 g/cm³ at 25° C.

Reference intensity

 $1/I_{corundum} = 2.5.$

Additional patterns

1. PDF card 17-740 [Morey et al., 1964].

Internal standard W, a = 3.16504 \mathring{A} CuK α_1 λ = 1.5405 \mathring{A} ; temp. 25 $^{\circ}$ C				
d (Å)	I	hkl	2θ(°)	
5.730	4	111	15.45	
4.051	25	211	21.92	
3.505	2	220	25.39	
3.308	4	221	26.93	
3.137	100	310	28.43	
2.992	15	311	29.84	
2.864	2	222	31.20	
2.753	15	320	32.49	
2.651	35	321	33.78	
2.481	2	400	36.18	
2.405	12	410	37.36	
2.338	1	411	38.47	
2.277	4	331	39.55	
2.220	2	420	40.60	
2.165	4	421	41.69	
2.115	4	332	42.71	
2.025	7	422	44.71	
1.984	2	430	45.70	
1.946	9	510	46.63	
1.909	1	511	47.58	
1.842	6	520	49.43	
1.811	2	521	50.33	
1.727	6	522	52.96	
1.702	2	530	53.81	
1.677	1	531	54.68	
1.653	1	600	55.55	
1.631	3	610	56.35	
1.609	12	611	57.19	
1.569	3	620	58.80	
1.549	4	621	59.62	
1.531	2	541	60.42	
1.513	1	533	61.19	
1.496	1	622	61.99	
1.479	6	630	62.76	
1.463	3	631	63.53	
1.432	1	444	65.06	
1.417	2	632	65.85	
1.403	1	710	66.58	
1.376	2	640	68.07	
1.363	1	720	68.83	
1.350	4	721	69.56	
1.326	2	642		

71.77

72.51

73.20

722

730

731

1

1.314

1.302

1.292

		 	
d (Å)	I	hkl	2θ(°)
1.271	2	650	74.62
1.2597	2	732	75.39
1.2303	1	810	77.52
1.2213	1	811	78.20
1.2121	1	733	78.91
1.2033	1	820	79.60
1.1943	2	821	80.32
1.1859	1	653	81.01
1.1695	1	822	82.39
1.1609	<1	830	83.13
1.1532	2	831	83.81
1.1458	1	751	84.48
1.1310	<1	832	85.85
1.1233	1	752	86.58
1.1094	<1	840	87.94
1.1024	1	841	88.65
1.0958	1	910	89.32
1.0890	2	911	90.03
1.0826	2	842	90.71
1.0760	1	920	91.43
1.0700	1	921	92.09
1.0577	1	664	93.48
1.0516	2	922	94.19
1.0458	1	930	94.87
1.0400	<1	931	95.57
1.0290	1	852	96.93
1.0232	1	932	97.67
1.0127	1	844	99.03
1.0073	1	940	99.76
1.0020	1	941	100.47
0.9971	1	933	101.15
.9921	1	10.0.0	101.86
.9872	1	10.1.0	102.57
.9824	1	10.1.1	103.27
.9728	1	10.2.0	104.71
.9682	2	10.2.1	105.41
.9637	1	950	106.12
.9591	1	951	106.86
.9546	1	10.2.2	107.58
.9503	1	10.3.0	108.30
.9458	1	10.3.1	109.05
.9333	<1	10.3.2	111.23
.9291	1	871	111.99
.9251	<1	953	112.73
.9211	1	10.4.0	113.48

References

Gattow, G. and J.Zemann (1958). Über Doppel-sulfate vom Langbeinit-Typ, $A_2^{\dagger} B_2^{2+} (SO_4)_3$,

d (Å)	I	hkl	2θ(°)
.9172	1	10 • 4 • 1	114.24
.9131	<1	10.3.3	115.03
.9058	1	10.4.2	116.51
.9019	<1	962	117.31
.8981	1	11.1.0	118.10
.8947	<1	11 · 1 · 1	118.84
.8874	1	11.2.0	120.45
.8838	1	11.2.1	121.28
.8769	1	880	122.89
.8735	2	11.2.2	123.72
.8702	<1	11.3.0	124.55
.8668	1	11.3.1	125.40
.8635	<1	10 • 4 • 4	126.25
.8603	<1	964	127.09
.8570	2	11.3.2	127.99
.8507	<1	10.6.0	129.75
.8476	1	11.4.0	130.66
.8445	1	11.4.1	131.60
.8415	1	11.3.3	132.50
.8355	1	11.4.2	134.41
.8326	1	965	135.38
.8239	1	12.1.0	138.43
.8210	1	12.1.1	139.49
.8183	1	11.5.1	140.54
.8155	1	12.2.0	141.63
.8127	1	12 • 2 • 1	142.78
.8101	1	11.5.2	143.92
.8047	1	12.2.2	146.34
.8021	1	12.3.0	147.61
.7995	1	12.3.1	148.92
.7969	1	11.5.3	150.29
.7918	2	12.3.2	153.22
.7892	1	11.6.1	154.82
.7843	1	12.4.0	158.30
.7818	1	12.4.1	160.24
.7794	1	12.3.3	162.37

Z. Anorg. Allgem. Chem. 293, 233-240. Gossner, B. and I. Koch (1931). Über das Kristallgitter von Langbeinit, Northupit und Hanksit, Z. Krist. 80, 455-464.

Morey, G. W., J. J. Rowe and R.O. Fournier (1964). The system K_2Mg_2 (SO₄)₃ (langbeinite) - K_2Ca_2 (SO₄)₃ (calcium-langbeinite), J. Inorg. Nucl. Chem. 26, 53-58.

Zemann, A., and J. Zemann (1957). Die Kristallstruktur von Langbeinit, K₂Mg₂ (SO₄)₃ Acta Cryst. 10, 409-413.

The sample was made at NBS by adding HF to a slurry of $K_2\,CO_3$ and $MgCO_3$ and evaporating to dryness. The pattern was sharpened by heating the sample to the melting point.

Major impurities

0.001-0.01% each: Al, Ca, Pt, Rb and Sr.

0.01 -0.1 % each: Na, Pb and Si.

Color

Colorless

Optical data

Isotropic N = 1.404

Structure

Cubic perovskite [van Arkel,1925]. KMgF₃ has been reported to be monoclinic and to have a doubled cell. [Ludekens and Welch, 1952] and [Náray-Szabó, 1947]. We found no evidence to confirm the double cell.

Space group

 O_h^1 -Pm3m (221). Z=1.[van Arkel, 1925].

Lattice constants

	a(Å)
van Arkel [1925] Brisi [1952] de Vries and Roy [1953] Klasens et al. [1953] Remy and Hansen [1956] NBS, sample at 25°C	4.01 3.982 3.98 4.00 3.973 3.9889 ±.001

Density

(calculated) 3.150 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 0.9$

Additional patterns

1. PDF card 3-1060 [Remy and Hansen, 1956];

2. Brisi (1952).

d (Å)	7	bb1	20
Cuk	$\langle \alpha_1 \lambda = 1$.5405 Å; temp. 25	°C
Inte	rnal stan	dard W, a = 3.1650	04 A

Gara ₁ × = 1:0100 H, temp. 20 G				
d (Å)	I	hkl	<i>2</i> θ(°)	
3.988	2	100	22.27	
2.819	94	110	31.71	
2.302	83	111	39.09	
1.9943	100	200	45.44	
1.7842	1	210	51.15	
1.6284	24	211	56.46	
1.4101	36	220	66.22	
1.3298	<1	300	70.79	
1.2614	6	310	75.27	
1.2028	8	311	79.64	
1.1516	8	222	83.96	
1.0661	8	321	92.52	
0.9972	2	400	101.14	
.9403	2	330	110.00	
.9150	2	331	114.66	
.8920	10	420	119.43	
.8505	1	332	129.83	
.8142	3	422	142.16	
.7823	4	510	159.89	

References

Brisi, C. (1952). Sulla struttura cristallina dei composti KCdF₃ e KCaF₃, Ann. Chim. Rome 42,356.

deVries, R. C. and R. Roy (1953). Fluoride models for oxide systems of dielectric interest, J. Am. Chem. Soc. 75, 2479.

Klasens, H. A., P. Zalm and F. O. Huysman (1953). The manganese emission in ABF₃ compounds, Philips Res. Rept. **8**,441.

Ludekens, W. L. and A. J. E. Welch (1952).

Reactions between metal oxides and fluorides; some new double-fluoride structures of type ABF₃, Acta Cryst. 5, 841.

Náray-Szabó, I. (1947). The perovskite structure family, Muegyet. Kozlemen. No. 1, 30.

Remy, H. and F. Hansen (1956). Röntgenographische Untersuchung des Systems KF-MgF2, Z.Anorg. Allgem. Chem, 283, 277.

van Arkel, A. E. (1925). Kristalstructuur
van magnesium fluoride en andere verbindingen van hetzelfde kristaltype,
Physica, 5, 166.

Prepared at NBS by melting $K_2 \, SO_4$ and MnSO₄ together and annealing at about 500° for 15 hours.

Major impurities

0.001-0.01% each: Al, Ca, Fe, Mg, Mo, Rb, Sb, Sn

Color

Pale pink.

Optical data

Isotropic. N=1.576.

Space group

 $T^4 - P2_1 3$ (198), Z=4 [Bellanca, 1947].

Structure

Isostructural with K₂ Mg₂ (SO₄)₃, langbeinite. [Gattow and Zemann, 1958].

Lattice constants

	a(Å)
Bellanca [1947]	10.034*
Gattow and Zemann [1958]	10.114
	±.004
NBS, sample at 25°C	10.1143
*from kX	±.0001

Density

(calculated) 3.057 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.1$

Additional patterns

1.PDF 18-1036, Kohler and Franke, Mineralogisches Institut, Freie Universität Berlin, Germany.

2.Bellanca, [1947].

References

Bellanca, A. (1947). Sulla simmetria della manganolangbeinite, Atti Accad. Nazl. Lincei Rend. Classe Sci. Fis. Mat. Nat. 2, 451-455.

Gattow, G. and J.Zemann (1958). Über Doppel-sulfate vom Langbeinit-typ, $A_2^+B_2^{2+}(SO_4)_3$, Z. Anorg. Allgem. Chem. 293, 233-40.

Internal standard Ag, $a = 4.08625 \stackrel{\circ}{A}$				
CuK_{α_1} $\lambda = 1.5405$ Å; temp. 25 °C				
d (Å)	I	hkl	<i>2θ</i> (°)	
5.839	10	111	15.16	
4.521	8	210	19.62	
4.128	14	211	21.51	
3.372	4	221	26.41	
3.198	100	310	27.87	
3.047	17	311	29.29	
2.806	8	320	31.87	
2.702	50	321	33.12	
2.453	4	410	36.60	
2.385	<2	411	37.69	
2.320	2	331	38.78	
2.260	<2	420	39.85	
2.208	2	421	40.84	
2.156	3	332	41.86	
2.064	13	422	43.82	
2.024	2	430	44.74	
1.984	13	510	45.69	
1.947	3	511	46.62	
1.878	8	520	48.42	
1.846	2	521	49.31	
1.761 1.734 1.7092 1.6854 1.6625	7 3 <2 <2 <2 2	522 530 531 600 610	51.89 52.74 53.57 54.39 55.20	
1.6401	15	611	56.02	
1.5994	5	620	57.58	
1.5793	4	621	58.38	
1.5606	4	541	59.15	
1.5421	<2	533	59.93	
1.5249	<2	622	60.68	
1.5076	4	630	61.46	
1.4912	4	631	62.20	
1.4596	2	444	63.70	
1.4451	2	632	64.42	
1.4302	2	710	65.17	
1.4165	<2	711	65.88	
1.4029	<2	640	66.60	
1.3892	2	720	67.35	
1.3765	4	721	68.05	

	,						
d (Å)	I	hkl	2θ(°)	d (Å)	I	hkl	20(°)
1.3517	2	642	69.48	. 9643	<2	10.3.1	106.02
1.3397	2	722	70.19	.9515	<2	10.3.2	108.10
1.3277	<2	730	70.92	.9472	<2	871	108.81
1.3168	2	731	71.60	.9432	<2	953	109.50
1.2949	<2	650	73.00	.9390	<2	10.4.0	110.23
1.2343	`~	030	/3.00	.,,,,,	`~	10.4.0	110.23
1.2843	<2	732	73.70	.9351	<2	10.4.1	110.92
1.2646	<2	800	75.05	.9311	<2	10.3.3	111.63
1.2547	<2	810		.9234	<2	10.3.3	
	1		75.74	i			113.06
1.2453	<2	811	76.42	.9197	<2	962	113.76
1.2360	<2	733	77.10	•9158	<2	11.1.0	114.51
1.2265	<2	820	77.81	.9119	< 2	11.1.1	115.27
1.2177	<2	821	78.48	.9047	<2	11.2.0	116.72
1.2090	<2	653	79.15	.9011	<2	11.2.1	117.47
1.1920	2	822	1 1	.8940	<2	880	118.98
	<2		80.51				
1.1835	<2	830	81.21	.8906	<2	11.2.2	119.73
1.1757	3	831	81.86	.8872	<2	11.3.0	120.50
1.1682	<2	751	82.50	.8839	<2	11.3.1	121.26
1.1530	<2	832	83.83	.8802	<2	10.4.4	122.10
1.1455	<2	752	84.51	.8769	<2	964	122.90
1.1312	<2	840	85.83	.8739	2	11.3.2	123.63
1.1312	\ \Z	640	05.05	.0739		11.2.5	123.03
1.1238	<2	841	86.53	.8673	<2	10.6.0	125.27
1.1170	<2	910	87.19	.8642	<2	11.4.0	126.08
1.1101	2	911	87.87	.8610	<2	11.4.1	126.92
1.1034	<2	842	88.54	.8579	<2	11.3.3	127.76
1.0973	<2	920	89.17	.8518	<2	11.4.2	129.46
	-	320	03.17	1 .05-0			
1.0905	2	921	89.87	.8488	<2	965	130.30
1.0785	<2	664	91.15	.8428	<2	12.0.0	132.09
1.0720	3	922	91.86	.8399	<2	12.1.0	132.99
1.0660	2	930	92.53	.8371	<2	12.1.1	133.90
1.0603	<2	931	93.18	.8343	<2	11.5.1	134.81
	_				_		
1.0490	<2	852	94.49	.8314	<2	12•2•0	135.78
1.0431	<2	932	95.19	.8286	<2	12.2.1	136.74
1.0323	<2	844	96.52	.8258	<2	11•5•2	137.72
1.0268	<2	940	97.20	.8203	<2	12.2.2	139.75
1.0218	2	941	97.85	.8177	<2	12.3.0	140.77
				0150	-2	1 2 2 1	147.05
1.0164	<2	933	98.54	.8150	<2	12.3.1	141.85
1.0116	<2	10.0.0	99.18	.8124	<2	11.5.3	142.91
1.0064	2	10.1.0	99.87	.8072	<2	12.3.2	145.19
1.0016	<2	10.1.1	100.53	.8047	<2	11.6.1	146.37
0.9917	<2	10.2.0	101.92	.7996	<2	12•4•0	148.86
.9870	2	10 • 2 • 1	102.60	.7971	2	12•4•1	150.19
.9825	<2	950	103.25	.7922	<2	991	152.96
.9825	<2	951	103.97	.7898	<2	12.4.2	154.45
	<2	10 • 2 • 2	104.63	.7874	<2	10.4.2	156.07
.9733	<2	10 • 3 • 0	105.33	.7850	2	11.6.3	157.76
.9687	\2	TO + 2 + 0		. 7850	2	TT.0.2	137.70
				<u> </u>			

The sample was precipitated at NBS by adding MnCl₂ solution to an excess of KF in solution.

Major impurities

0.001-0.01% each: Si, Al, Ca, Co, Cu, Fe, Mg.

0.01 -0.1 % each: Na.

Color

Very pale pink.

Optical data

N≃1.45. The sample was too fine-grained for accurate index measurements.

Structure

Cubic perovskite [Simanov, Batsanova, and Kovba, 1957].

Space group

 O_h^1 -Pm3m (221), Z=1 [Knox, 1961].

Lattice constants

	a(Å)
Simanov et al.(1957)	4.186 4.19 4.182 4.190 4.1890 ±.0001

Density

(calculated) 3.412 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.1.$

Polymorphism

Below about -90 °C, KMnF₃ is a tetragonal distorted perovskite. [Okazaki & Suemune 1961].

Internal	l standard W,	a = 3.1650	04 A
$CuKa_1$	$\lambda = 1.5405 \text{ Å};$	temp. 25	°C
_ 0			

d (Å)	I	hkl	2θ(°)
4.191	27	100	21.18
2.962	100	110	30.14
2.419	13	111	37.13
2.096	64	200	43.13
1.874	9	210	48.54
1.711	30	211	53.52
1.4813	24	220	62.66
1.3966	3	300	66.94
1.3246	11	310	71.11
1.2630	1	311	75.16
1.2091	6	222	79.14
1.1619	1	320	83.05
1.1196	8	321	86.94
1.0472	3	400	94.71
1.0159	2	410	98.61
0.9873	4	411	102.55
.9610	1	331	106.55
.9366	6	420	110.64
.9142	1	421	114.82
.8931	3	332	119.18
.8551	4	422	128.53
.8377	ĺ	500	133.68
.8215	4	510	139.31
	and the same of th	None with the tables and a second of the tables and the second of the se	

References

Hoppe, R., W. Liebe and W. Dähne (1961). Über Fluoromanganate der Alkalimetalle, Z. Anorg. Allgem. Chem. 307,276.

Knox,K.(1961). Perovskite-like fluorides. I.Structures of KMnF₃,KFeF₃,KCoF₃,KNiF₃ and KZnF₃. Crystal field effects in the series and in KCrF₃ & KCuF₃.Acta Cryst. 14, 583.

Okazaki, A. and Y. Suemune (1961). The Crystal structure of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KCuF₃ above and below their Néel temperatures, J. Phys. Soc. Japan 16, No. 4, 671-5.

Simanov, Yu. P., L. P. Batsanova, and L.M. Kovba (1957).X-ray investigation of the binary fluorides of bivalent manganese. Russ. J.Inorg. Chem. 2,207.(Trans. from Zh. Neorgan. Khim. 2, 2410-5).

Prepared at NBS by heating a mixture of NiSO₄ and K_2 SO₄ at 750 °C. The sample was cooled slowly, ground, and annealed at 550 °C for half an hour.

Major impurities

0.001-0.01% each: Al, Ca, Fe, Mg, Na, Rb, and Si.

Color

light greenish yellow

Optical data

Isotropic. N=1.620

Structure

Isostructural with K₂Mg₂ (SO₄)₃, langbeinite.[Gattow and Zemann, 1958].

Space group

 $T^{4}-P2_{1}3$ (198), Z=4 [ibid.]

Lattice constants

	a(Å)
Sattow and Zemann [1958] NBS, sample at 25°C	9.838 ±.008 9.8436 ±.0001

Density (calculated) 3.369 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.1.$

Internal standard W, a = 3.	16504 Å
$CuK\alpha_1 \lambda = 1.5405 \text{ Å; temp}$. 25 °C

d (Å)	I	hkl	20(°)
5.69	14	111	15.55
4.407	11	210	20.13
4.020	10	211	22.09
3.284	4	221	27.13
3.114	100	310	28.64
2.968	16	311	30.08
2.845	1	222	31.42
2.732	9	320	32.75
2.631	57	321	34.04
2.388	6	410	37.63
2.322	1	411	38.74
2.259	3	331	39.87
2.201	2	420	40.96
2.149	3	421	42.01
2.099	4	332	43.05
2.008	15	422	45.12
1.969	4	430	46.05
1.931	14	510	47.02
1.895	3	511	47.97
1.828	10	520	49.84
1.798 1.714 1.688 1.664 1.641	2 9 3 1	521 522 530 531 600	50.74 53.41 54.28 55.14 55.98
1.618 1.5968 1.5565 1.5375 1.5190	4 17 5 5	610 611 620 621 541	56.84 57.68 59.32 60.13 60.94
1.5010	1	533	61.75
1.4841	1	622	62.53
1.4673	7	630	63.33
1.4513	6	631	64.11
1.4211	2	444	65.64
1.4063	3	632	66.42
1.3921	3	710	67.19
1.3780	1	711	67.97
1.3651	2	640	68.70
1.3518	3	720	69.47
1.3396	4	721	70.20
1.3153	2	642	71.69
1.3037	2	722	72.43
1.2926	1	730	73.15
1.2815	4	731	73.89

Interna.	l standard W, a = 3.16504 Å	
CuKa ₁	$\lambda = 1.5405 \text{ Å; temp. } 25 \text{ °C}$	

$CuKa_1 \lambda = 1.5405 A$; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
1.2604	2	650	75.34	
1.2501	2	732	76.07	
1.2209	2	810	78.23	
1.2116	1	811	78.95	
1.2026	1	733	79.66	
1.1937	2	820	80.37	
1.1852	1	821	81.07	
1.1765 1.1600	1	653	81.79	
1.1521	2 1	822 830	83.21 83.91	
1.1521	_	830	03.91	
1.1443	3	831	84.62	
1.1368	2	751	85.31	
1.1214 1.1146	1 3	832	86.76	
1.1146	2	752 841	87.43 89.53	
1.0930	2	041	09.33	
1.0873	1	910	90.21	
1.0805	2	911	90.94	
1.0740	1	842	91.64	
1.0677	1	920	92.34	
1.0614	2	921	93.05	
1.0493	1	664	94.45	
1.0433	3	922	95.17	
1.0376	1 1	930	95.86	
1.0319 1.0208	2	931 852	96.56 97.87	
1.0200	2	852	97.87	
1.0154	2	932	98.68	
1.0048	1	844	100.10	
0.9995 .9944	1	940 941	100.82 101.54	
.9894	1	933	101.34	
. 5054		333	102.23	
.9844	<1	10.0.0	102.97	
.9795	3	10.1.0	103.70	
.9747 .9653	2	10.1.1	104.42 105.87	
.9607	2	10.2.0 10.2.1	106.60	
, 300 /	-	10.2.1	100.00	
.9560	2	950	107.35	
.9515	1	951	108.09	
.9472	1 1	10.2.2	108.82	
.9428	1	10.3.0	109.57	
.9386	1	10.3.1	110.30	
.9259	1	10.3.2	112.58	
.9218	1	871	113.35	
.9178 .9139	1 1	953 10.4.0	114.11	
.9139	2	10.4.1	114.88	
72202		23,1,2		

Interna	l sta	ndard	W,	a = 3.	1650)4 Å
$CuKa_1$	λ =	1.5405	å;	temp.	25	°C

$CuK\alpha_1 \lambda = 1.5405 \text{ A}$; temp. 25 °C					
d (\mathring{A})	I	hkl	2θ(°)		
0.9062 .8985 .8950 .8912 .8876	1 2 1 2	10.3.3 10.4.2 962 11.1.0 11.1.1	116.42 118.02 118.78 119.61 120.41		
.8804 .8769 .8702 .8667 .8632	2 1 1 2 1	11.2.0 11.2.1 880 11.2.2 11.3.0	122.07 122.90 124.54 125.43 126.32		
.8600 .8568 .8536 .8504	2 1 1 2 1	11.3.1 10.4.4 964 11.3.2 10.6.0	127.17 128.05 128.93 129.86 131.71		
.8410 .8380 .8349 .8290	1 2 1 1	11.4.0 11.4.1 11.3.3 11.4.2 965	132.65 133.62 134.60 136.60 137.61		
.8203 .8175 .8146 .8119 .8091	1 2 2 2 1	12.0.0 12.1.0 12.1.1 11.5.1 12.2.0	139.76 140.85 142.00 143.13 144.34		
.8064 .8037 .7984 .7958 .7932	2 1 1 3 1	12.2.1 11.5.2 12.2.2 12.3.0 12.3.1	145.56 146.81 149.47 150.88 152.36		
.7907 .7856 .7831	2 2 2	11.5.3 12.3.2 11.6.1	153.91 157.32 159.22		

References

Gattow, G. and J.Zemann (1958). Über Doppelsulfate vom Langbeinit-Typ, $A_z^{\dagger}B_z^{z^{+}}(SO_4)_3$, Z. Anorg. Allgem. Chem. 293, 233-240.

The sample was prepared at NBS by melting $K_2\,SO_4$ and $Na_2\,SO_4$ in stoichiometric proportions.

Major impurities

0.001-0.01% each: Al, and Ba.

0.1 -1.0 % each: Ca.

Color

Colorless.

Optical data

Uniaxial (+), $N_0 = 1.488$, $N_e = 1.499$.

Structure

There is a range of isomorphous phases from about $K_3 \text{Na}(SO_4)_2$ to $K\text{Na}_3 (SO_4)_2$ [Bredig,1942]. The structure of the series was determined by Gossner [1928].

Space group

 $D_{3d}^{3} - P\overline{3}m1$ (164), Z=2. [Gossner, 1928].

Lattice constants

	a(Å)	c(Å)
NBS, sample at 25 °C	5.5515 ±.0003	7.0434 ±.0004

Density

(calculated) 2.489 g/cm³ at 25° C.

Internal standard W, a = 3.16504 Å CuK a_1 λ = 1.5405 Å; temp. 25 °C					
d (Å)	I	hkl	20(°)		
4.802	7	100	18.46		
3.967	64	101	22.39		
3.521	17	002	25.27		
2.841	80	102	31.46		
2.778	100	110	32.20		
2.584	10	111	34.69		
2.404	7	200	37.37		
2.349	12	003	38.29		
2.276	7	201	39.57		
2.181	<1	112	41.37		
2.110	4	103	42.83		
1.985	45	202	45.66		
1.817	<1	210	50.16		
1.793	3	113	50.88		
1.761	6	004,211	51.88		
1.680	1	203	54.58		
1.654	1	104	55.52		
1.615	18	212	56.96		
1.603	15	300	57.44		
1.563	1	301	59.06		
1.486	11	114	62.42		
1.458	2	302	63.78		
1.437	2	213	64.84		
1.420	4	204	65.68		
1.408	1	005	66.31		
1.388	10	220	67.41		
1.351	3	105	69.50		
1.334	<1	310	70.56		
1.323	<1	303	71.21		
1.310	1	311	72.03		
1.291	<1	222	73.28		
1.2643	2	214	75.07		
1.2566	<1	115	75.61		
1.2469	6	312	76.30		
1.2150	<1	205	78.68		
1.1948	1	223			

4

2

4

<1

1.1852 1.1742

1.1593

1.1405

304,401

006

313

106

81.07

81.99

83.27

84.96

Internal standard W, $a = 3.16504 \mathring{A}$ $CuK\alpha_1 \lambda = 1.5405 \mathring{A}$; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
1.1374	4	402	85.25	
1.1132	2	215	87.56	
1.1030	<1	320	88.58	
1.0897	4	224,321	89.96	
1.0814	<1	116	90.84	
1.0700	<1	403	92.08	
1.0628	<1	314	92.89	
1.0544	3	206	93.84	
1.0524	4	322	94.09	
1.0493	5	410	94.46	
1.0055	<1	412	100.00	
0.9985	<1	323	100.96	
.9926	<1	404	101.79	
.9861	3	216	102.73	
.9682	1	315	105.41	
.9348	<1	324	110.97	
.9276	1	502	112.28	
.9252	1	330	112.70	
.9012	2	414,421	117.45	
.8799	2	422	122.18	

References

Bredig,M.A.(1942). Isomorphism and allotropy in compounds of the type $A_2 \times O_4$, J. Phys. Chem. 46, 754-764.

Gossner, B. (1928). Ueber die Kristallstruktur von Glaserit und Kaliumsulpat, Neues Jahrb. Mineral. B-Bd 57A, 89-116.

The sample was prepared at NBS by melting equimolar proportions of $Na_2\,SO_4$ and $K_2\,SO_4$ then annealing overnight at 600°C.

Major impurities

0.001-0.01% each: Al, Be

0.1 -1.0 % each: ca

Color

Colorless.

Optical data

Uniaxial (+), N_O=1.490, N_e=1.494.

Structure

Described by Bellanca, (1943). An isomorphous series exists from $K_3 \text{ Na} (SO_4)_2$ to $KNa_3 (SO_4)_2$.

Space group

 $D_{3d}^3 - P3m1$ (164), Z=2 [ibid.].

Lattice constants

	a(Å)	c(Å)
Hilmy (1953) Bellanca (1943)* NBS, sample at 25°C	5.64 5.654 5.6075 ±.0001	7.1781

^{*}From kX. Natural mineral, composition uncertain.

Density

(calculated) 2.687 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.6$

Interna	l standard W, a = 3.16504 Å
CuKa,	$\lambda = 1.5405 \text{ Å; temp. 25 °C}$

d (\mathring{A})	I	hkl	<i>2</i> θ(°)
4.857	9	100	18.25
4.026	49	101	22.06
3.593	19	002	24.76
2.889	71	102	30.93
2.804	100	110	31.89
2.614	6	111	34.28
2.431	7	200	36.95
2.393	13	003	37.55
2.302	10	201	39.10
2.147	3	103	42.05
2.011	42	202	45.05
1.835	2	210	49.64
1.8198	4	113	50.08
1.7944	4	004	50.84
1.7784	1	211	51.33
1.7039	2	203	53.75
1.6831	2	104	54.47
1.6340	11	212	56.25
1.6184	11	300	56.84
1.5791	2	301	58.39
1.5116	7	114	61.27
1.4758	1	302	62.92
1.4562	1	213	63.87
1.4431	4	204	64.52
1.4018	8	220	66.66
1.3767	2	105	68.04
1.3409	1	303	70.12
1.3238	1	311	71.16
1.3059	2	222	72.29
1.2833	2	214	73.77
1.2611 1.2360 1.2138 1.2095 1.2019	4 1 1 2	312 205 400 223 304	75.29 77.10 78.78 79.11 79.71
1.1737	1	313	82.03
1.1616	1	106	83.07
1.1501	2	402	84.09
1.1310	2	215	85.85
1.1050	2	224	88.38

Internal standard W, a = 3.16504 Å
$CuK\alpha_1 \lambda = 1.5405 \text{ Å; temp. 25 °C}$

$\operatorname{Cuk}\alpha_1 \wedge = 1.5405 \text{ A}$; temp. 25 °C			
d (Å)	I	hkl	2θ(°)
1.0771 1.0732 1.0641 1.0598 1.0482	2 3 3 4 1	314 206 322 410 411	91.30 91.73 92.75 93.23 94.58
1.0163 1.0102 1.0056 1.0024 0.9824	<1 1 1 2 1	412 323 404 216 315	98.56 99.37 99.98 100.42 103.27
.9691 .9464 .9446 .9376 .9349	1 1 2 2	413 324 207 502 330	105.27 108.95 109.26 110.48 110.97
.9271 .9124 .8950 .8944 .8891	1 2 1 1 2	405,331 414 217 316 422	112.37 115.18 118.76 118.85 120.06
.8801 .8545 .8522 .8475	2 2 2 <1 1	325 118 406 512 208	122.14 128.68 129.32 130.70 132.46
.8289 .8171 .8094 .8061	1 1 1	334 424 600 218	136.64 141.02 144.23 145.70

Additional patterns

- 1.PDF card 6-0461 [Winchell et al., 1951]*
- 2.PDF card 6-0429 [Winchell et al., 1951]*
- 3.Bredig [1942]*
 * Composition indefinite.

References

Bellanca, A., (1943). Sulla struttura della aftitalite, Periodico Mineral. (Rome) 14, 67-98.

Bredig, M.A., (1942). Isomorphism and allotropy in compounds of the type A₂ XO₄, J. Phys.Chem.46, 754-764.

Hilmy, M.E., (1953). Structural crystallographic relation between sodium sulfate and potassium sulfate and some other synthetic sulfate minerals, Am. Mineralogist 38,118-135.

Winchell, H. and R.J. Benoit, (1951). Taylorite, mascagnite, aphthitalite, lecontite, and oxammite from guano, Am. Mineralogist 36,590-602.

The sample was prepared at NBS by melting $K_2 \, \mathrm{SO}_4$ and $\mathrm{Na}_2 \, \mathrm{SO}_4$ together in stoichiometric proportions and annealing the product at 700 °C for 72 hours. The material is also called glaserite.

Major impurities

0.001-0.01% each: Al, and Ba

0.01 -0.1 % each: ca

Color

Colorless.

Optical data

Uniaxial (+) $N_0 = 1.494, N_e = 1.499$.

Structure

Determined by Gossner [1928]. There is a range of isomorphous phases from about $K_3 \text{Na}(SO_4)_2$ to KNa₃(SO₄)₂ [Bredig, 1942].

Space group

 $D_{3d}^{3} - P\overline{3}m1$ (164), Z=1 [Gossner, 1928].

Lattice constants

	a(Å)	c(Å)
Gossner (1928) Hilmy (1953) Yanat'eva et al. (1963) NBS, sample at 25 °C	5.65 5.66 5.662 5.6769 ±.0003	7.3 7.33 7.297 7.3331 ±.0004

Density

(calculated) 2.697 g/cm3 at 25° C.

Reference intensity

 $I/I_{corundum} = 1.6$

Internal standard W, a = 3.16504 Å			
Cuk	$\langle \alpha_1 \lambda = 1$.5405 A; temp. 25	°C
d (Å)	I	hkl	20(°)
7.32	2	001	12.08
4.921	9	100	18.01
4.088	28	101	21.72
3.666	21	002	24.26
2.940	76	102	30.38
2.839	100	110	31.48
2.646	3	111	33.85
2.458	10	200	36.52
2.443	16	003	36.76
2.330	14	201	38.61
2.189	3	103	41.20
2.042	44	202	44.33
1.852	5	113	49.14
1.833	4	004	49.70
1.733	2	203	52.79
1.717	2	104	53.30
1.657	11	212	55.41
1.638	9	300	56.09
1.600	2	301	57.57
1.540	6	114	60.01
1.497	1	302	61.95
1.479	2	213	62.78
1.469	5	204	63.24
1.4667	4	005	63.36
1.4194	10	220	65.73
1.4054	4	105	66.47
1.3608	1	303	68.95
1.3233	1	222	71.19
1.3048	2	214	72.36
1.2778	5	312	74.14
1.2598	2	205	75.38
1.2275	2	223	77.73
1.2221	2	006,304	78.14
1.1909	1	313	80.60
1.1861	1	106	80.99
1.1654	2	402	82.74
1.1512	3	215	83.99
1.1225	2	116,224	86.66
1.0941	2	206,314	89.50
1.0783	2	322	91.18
1.0729	3	410	91.77
1.0246	1	107	97.48
1.0211	3	216,404	97.93
0.9637	1	207	106.12

Additional patterns

- 1.PDF card 1-0978 [Hanawalt et al., 1938].
- 2.PDF card 3-0723 [Bredig, 1942].
- 3.PDF card 6-0429 [Winchell and Benoit].
- 4.PDF card 6-0461 [Winchell and Benoit].
- 5. Yanat'eva et al. [1963].

References

- Bredig, M.A. (1942). Isomorphism and allotropy in compounds of the type $A_2 \times O_4$, J. Phys. Chem. 46,754-764.
- Gossner, B. (1928). Ueber die Kristallstruktur Von Glaserit und Kaliumsulfat, Neues Jahrb. Mineral. B-Bd 57A, 89-116.
- Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-513.
- Hilmy, M. E. (1953). Structural crystallographic relation between sodium sulfate and potassium sulfate and some other synthetic sulfate minerals, Am. Mineralogist 38,118-135.
- Winchell, H. and R.J. Benoit (1951). Taylorite, mascagnite, aphthitalite, lecontite, and oxammite from guano, Am. Mineralogist 36,590-602.
- Yanat'eva,O.K.,V.T.Orlova, and V.G.Kuznetsov (1963). The glaserite phase in the K₂SO₄-Na₂SO₄-H₂O system, Russ.J.Inorg. Chem. 8, 910-915 (Trans. from Zh. Neorg. Khim. 8, 1756-1766.)

d (Å)

5.734

Sample source

The sample was prepared at NBS by melting $K_2 \, SO_4$ and $ZnSO_4$ together, grinding the product and remelting.

Major impurities

0.001-0.01% each: Ca,Cs,Fe,Mg,Rb, and Ti.

0.01 -0.1 % each: Al.

Color

Colorless.

Optical data

Isotropic N=1.592.

Structure

Isostructural with $K_2 Mg_2 (SO_4)_3$ (langbein-ite) [Gattow and Zemann, 1958].

Space group

 $T^4 - P2_1 3$ (198), Z=4 [ibid.].

Lattice constants

	a(Å)
Sattow and Zemann [1958] NBS, sample at 25°C	9.925 ±.006 9.9247 ±.0001

Density

(calculated) 3.376 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.7$

References

Gattow, G. and J.Zemann (1958). Über Doppel-sulfate vom Langbeinit-Typ, $A_2^+B_2^{2+}$ (SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-240.

Internal	standard Ag,	a = 4.08625	$\overset{\circ}{A}$
CuK_{α_1}	$\lambda = 1.5405 \text{ Å;}$	temp. 25 °C	3

hkl

111

2θ(°)

15.44

I

15

4.433 4.048 3.307 3.136	15 14 10 14 100	210 211 221 310	20.01 21.94 26.94 28.44
2.992	14	311	29.84
2.864	1	222	31.20
2.752	8	320	32.51
2.654	55	321	33.74
2.407	3	410	37.33
2.340	1	411	38.44
2.277	2	331	39.54
2.219	1	420	40.62
2.165	2	421	41.68
2.116	3	332	42.69
2.025	15	422	44.71
1.985	4	430	45.66
1.947	13	510	46.62
1.911	3	511	47.55
1.843	8	520	49.42
1.812	2	521	50.30
1.754	1	440	52.09
1.728	7	522	52.94
1.702	3	530	53.82
1.678	2	531	54.64
1.654	1	600	55.51
1.632	2	610	56.33
1.609	12	611	57.19
1.569	4	620	58.79
1.550	4	621	59.59
1.531	4	541	60.39
1.513	1	533	61.20
1.497	1	622	61.95
1.480	5	630	62.73
1.464	4	631	63.51
1.433	2	444	65.02
1.418	3	632	65.79
1.404	2	710	66.57
1.390	1	711	67.29
1.377	1	640	68.03
1.3635 1.3508 1.3266 1.3149 1.3034	1 2 1 1	720 721 642 722 730	68.79 69.53 70.99 71.72 72.45

		•	
d (Å)	I	hkl	2θ(°)
1.2925	2	731	73.16
1.2708	1	650	74.62
1.2607	2	732	75.32
1.2310	1	810	77.47
1.2217	<1	811	78.17
1.2126	1	733	78.87
1.2037	1	820	79.57
1.1951	1	821	80.26
1.1862	<1	653	80.98
1.1696	1	822	82.38
1.1617	<1	830	83.06
1.1538	2	831	83.76
1.1461	2	751	84.45
1.1309	<1	832	85.86
1.1237	1	752	86.54
1.1028	<1 <1 1 1 <1 <1	841	88.61
1.0958		910	89.32
1.0893		911	90.00
1.0830		842	90.67
1.0767		920	91.35
1.0703	<1	921	92.05
1.0580	<1	664	93.44
1.0520	2	922	94.14
1.0461	2	930	94.83
1.0404	<1	931	95.52
1.0293 1.0236 1.0130 1.0079 1.0026	1 <1 <1 1	852 932 844 940 941	96.89 97.61 98.99 99.67 100.39
0.9975	<1 <1 <2 <1 <1 <1 <1	933	101.10
.9926		10.0.0	101.79
.9876		10.1.0	102.51
.9829		10.1.1	103.19
.9734		10.2.0	104.62
.9684 .9640 .9595 .9550	1 1 1 1	10 · 2 · 1 950 951 10 · 2 · 2 10 · 3 · 0	105.38 106.08 106.79 107.52 108.22
.9462	<1	10·3·1	108.98
.9336	1	10·3·2	111.18
.9296	<1	871	111.91
.9253	1	953	112.69
.9215	<1	10·4·0	113.41

d (Å)	I	hkl	2θ(∘)
.9175	2	10·4·1	114.18
.9137	1	10·3·3	114.91
.9061	1	10·4·2	116.43
.9024	<1	962	117.21
.8986	<1	11·1·0	117.99
.8949	2	11.1.1	118.79
.8877	1	11.2.0	120.39
.8842	1	11.2.1	121.19
.8771	<1	880	122.84
.8738	1	11.2.2	123.65
.8705	<1	11.3.0	124.46
.8671	<1	11.3.1	125.31
.8638	1	10.4.4	126.17
.8606	1	964	127.02
.8574	2	11.3.2	127.88
.8511	<1	10.6.0	129.66
.8479	1	11.4.0	130.59
.8449	<1	11.4.1	131.48
.8417	1	11.3.3	132.44
.8358	<1	11.4.2	134.31
.8328 .8270 .8241 .8214 .8186	<1 <1 <1 1	965 12·0·0 12·1·0 12·1·1 11·5·1	135.32 137.29 138.33 139.36 140.43
.8158	<1	12.2.0	141.51
.8131	1	12.2.1	142.63
.8104	<1	11.5.2	143.78
.8050	<1	12.2.2	146.23
.8023	1	12.3.0	147.48
.7998	1	12·3·1	148.76
.7971	1	11·5·3	150.17
.7920	<1	12·3·2	153.07
.7896	1	11·6·1	154.58
.7846	<1	12·4·0	158.05
.7821	1	12•4•1	159.99

Rhodium Vanadium 1:3, RhV₃ (cubic)

Sample source

The sample was prepared by R. M. Waterstrat at NBS by arc-melting and it was annealed at $1100\,$ °C for two weeks.

Major impurities

0.001-0.01% each: Ag, Cu, Ir, Ni, Pb, and Si.

0.01 -0.1 % each: Cr, Fe, and Ti.

Color

Metallic dark grey and opaque.

Structure

A-15 type"β-W"[Greenfield and Beck, 1956]

Space group

 $O_h^3 - Pm3n$, Z=2 [ibid.]

Lattice constants

	a(Å)
Greenfield and Beck [1956] NBS, sample at 25 °C	4.767 4.7852 ±.0001

Internal standard W, a = 3.16504 Å					
Cuk	$CuKa_1 \lambda = 1.5405 \text{ Å}$; temp. 25 °C				
d (Å)	I	hkl	2θ(°)		
3.381	34	110	26.34		
2.393	50	200	37.55		
2.141	64	210	42.18		
1.9540	100	211	46.43		
1.6920	6	220	54.16		
1.5136	6	310	61.18		
1.3819	2	222	67.75		
1.3267	11	320	70.98		
1.2790	42	321	74.06		
1.1964	10	400	80.15		
1.1279	4	330	86.14		
1.0700	11	420	92.09		
1.0443	8	421	95.05		
1.0203	9	332	98.04		
0.9769	3	422	104.09		
.9385	4	510	110.32		
.8886	10	520	120.18		
.8736	13	521	123.69		
.8458	10	440	131.20		

Additional patterns

.8207

.7975

.7867

3

12

3

1. PDF card 8-339[Greenfield and Beck, 1956]

530

600

610

139.62

149.95

156.54

Density

(calculated) 7.751g/cm³ at 25° C.

Reference intensity

I/I = 1.8

References

Greenfield, P. and P. A. Beck, (1956). Intermediate phases in binary systems of certain transition elements, Trans. AIME 206, 265-76.

The sample was prepared at NBS by heating co-precipitated RbCl and CoCl₂ in a sealed glass tube at 500 °C. The salt is moderately hygroscopic.

Major impurities

0.001-0.01% each: Ca, Cr, Cu, Fe and Sn.

0.01 -0.1 % each: Al, Na and Si.

0.1 -1.0 % each:Cs,K and Ni.

Color

Unground-strong blue; ground-pale blue.

Optical data

Uniaxial (+), $N_e = 1.740$, $N_o = 1.668$

Structure

Determined by Engberg and Soling(1963). Isostructural with $CsCoCl_3$ and other similar ABX $_3$ compounds.

Space group

 $D_{6h}^4-P6_3/mmc$ (194), Z=2 [Engberg and Soling, 1963].

Lattice constants

	a(Å)	$c(\mathring{A})$
Engberg and Soling [1963] NBS, sample at 25 °C	6.999 7.0013 ±.0004	5.996 6.002 ±.001

Density

(calculated) 3.268 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 4.3$

Internal standard W, a = 3.16504	Å
$CuK\alpha_1 \lambda = 1.5405 \text{ Å; temp. 25} ^{\circ}$	\Box

1			
d (Å)) I hkl		2θ(°)
6.066	31	100	14.59
4.269	27	101	20.79
3.502	48	110	25.41
3.031	15	200	29.44
3.000	25	002	29.75
2.707	100	201	33.06
2.292	4	210	39.27
2.134	31	202	42.32
2.022	11	300	44.78
1.901	8	103	47.81
1.822	11	212	50.02
1.7505	22	220	52.21
1.6811	8	310	54.54
1.6698	11	203	54.94
1.6197	4	311	56.79
1.5122	7	222	61.24
1.5001	5	004	61.79
1.4696	12	401,312	63.22
1.3911	2	320	67.24
1.3792	1	114	67.90
1.3534	5	321,402	69.38
1.3229	7	410	71.22
1.2923	<1	411	73.17
1.2879	1	313	73.46
1.2620	2	322	75.23
 1.2079	4	403	79.24
1.1670	2	330	82.60
1.1392	4	224	85.08
1.1254	6	421	86.38
1.0702	2	422	92.06
1.0104	3	600	99.34

References

Engberg, Å. and H. Soling, (1963). The crystal structure of RbCoCl₃, Acta Cryst.16 A27.

The sample was prepared at NBS by heating co-precipitated RbCl and NiCl₂ in a sealed glass tube at 500 °C. The salt is moderately hygroscopic.

Major impurities

0.001-0.01% each:Al, Ba and Si.

0.01 -0.1 % each:Cs.

0.1 -1.0 % each:K and Na.

Color

Unground - Medium reddish brown.
Ground - Brownish orange.

Optical data

Uniaxial positive N =1.693, N =1.796. Weak pleochroism with the stronger absorption perpendicular to c.

Structure

Isostructural with $RbCoCl_3$ and similar ABX_3 compounds.

Space group

 $D_{6h}^4 - P6_3 / mmc$ (194), Z=2 by analogy with CsNiCl₃

Lattice constants

	a(Å)	c(Å)
Allamagny[1960]NBS, sample at 25 °C	6.95 6.9534 ±.0004	11.777 5.906 ±.001

No lines were found at NBS that would require the double "c" cell constant reported by Allamagny [1960].

Density

(calculated) 3.365 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.3$

Internal standard W, a = 3.16504 Å				
$CuKa_1 \lambda = 1.5405 \text{ Å; temp. 25 °C}$				
d (Å)	I	hkl	2θ(°)	
6.02	22	100	14.71	
4.217	17	101	21.05	
3.477	42	110	25.60	
3.008	10	200	29.67	
2.952	15	002	30.25	
2.684	100	201	33.36	
2.276	1	210	39.57	
2.123	8	211	42.55	
2.109	32	202	42.84	
2.0073	9	300	45.13	
1.8030	13	212	50.58	
1.7384	26	220	52.60	
1.6704	6	310	54.92	
1.6472	13	203	55.76	
1.6075	5	311	57.26	
1.5051	7	400	61.56	
1.4984	7	222	61.87	
1.4588	12	401	63.74	
1.3815	2	320	67.77	
1.3452	3	321	69.86	
1.3416	3	402	70.08	
1.3139	7	410	71.78	
1.1590	1	105,330	83.30	
1.1174	6	421	87.15	

Additional patterns

1. PDF card 16-110 [Allamagny, 1960].

References

Allamagny, P. (1960). Synthèses de fluorures de deux métaux par réactions entre le gaz HF et des chlorures cristallisés, Bull. Soc. Chim. France 1960, 1099.

The sample was prepared at NBS by reaction of CaCl2 and Na2 SO4 in solution at 80 °C. Gypsum is formed as an intermediate product. The glauberite obtained when the reaction is continued for several hours was washed with alcohol.

Major impurities

0.001-0.01% each: Al, Cu, Fe, Ni, and Si.

0.01 -0.1 % each: Sr.

Color

Colorless.

Optical data

Biaxial (-), $N_{\alpha}=1.511$, $N_{\beta}=1.530$, $N_{\gamma}=1.532$ 2V is small. Tabular-shaped crystals.

Structure

Determined by Cocco et al. [1965].

Space group

 $C_{2h}^6 - C_2/c$ (15), Z=4, [Pardillo, 1934].

(calculated) 2.782 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 0.8.$

Internal standard W, a = 3.1	6504 Å
$CuK\alpha_1 \lambda = 1.5405 \text{ Å}$; temp.	25 °C

$CuK\alpha_1 \lambda = 1.5405 \text{ Å}; \text{ temp. } 25 \text{ °C}$				
d (Å)	d (\mathring{A}) I hkl		<i>2θ</i> (°)	
6.214	22	110	14.24	
4.689	18	200	18.91	
4.381	47	111	20.25	
4.148	12	020	21.40	
3.945	47	002	22.52	
3.792	17	202,112	23.44	
3.175	74	221	28.08	
3.126	100	311	28.53	
3.110	80	220	28.68	
3.008	35	112	29.67	
2.926	15	310	30.53	
2.861	49	022	31.24	
2.808	65	222	31.84	
2.677	62	113,221	33.44	
2.579	1	202	34.76	
2.475	27	311	36.27	
2.466	12	402	36.40	
2.435	8	131	36.88	
2.346	19	400	38.33	
2.319	3	223	38.85	
2.223	2	023	40.55	
2.191	7	222	41.17	
2.140	14	331	42.19	
2.122	8	422	42.57	
2.102	6	132	42.99	
2.074 2.036 2.006 1.997 1.975 1.958 1.908 1.897	16 19 38 20 62 13 14	040,330 114 041 314 133,004 512 404 240,224	43.61 44.46 45.15 45.37 45.90 46.33 47.63 47.91	
1.858	3	513	48.99	
	11	042,421	49.61	

Lattice constants

	$a(\stackrel{\circ}{A})$	$b(\mathring{A})$	c(Å)	β (°)
Pardillo [1935]	10.01*	8.21*	8.43*	112°11′
Corazza and Sabelli [1965]	10.158	8.333	8.551	112°20′
Klebtsova and Borisob [1966]	10.30	8.32	8.60	112°
Araki and Zoltai [1967]	10.129	8.306	8.533	112°11.4′
	±.002	±.002	±.002	±0.6′
NBS, sample at 25°C (synthetic)	10.134	8.297	8.532	112°12.7′
	±.001	±.001	±.001	±0.5′

^{*}from kX

d (Å)	I	hkl	2θ(°)
1.830	9	510	49.77
1.799	12	223	50.70
1.777	21	133	51.38
1.747	3	402	52.33
1.688	4	602,514	54.28
1.671	6	134,332 315 115 531 204	54.89
1.656	3		55.44
1.6316	13		56.34
1.6231	14		56.66
1.6150	11		56.97
1.6111	10	422	57.12
1.5793	2	151	58.38
1.5632	7	622,600	59.04
1.5530	1	440,530	59.47
1.5296	3	623	60.47
1.5140 1.5047 1.4865 1.4767 1.4662	2 1 1 2	443,425 224 244 025,152 512,350	61.16 61.58 62.42 62.88 63.38
1.4607	2	352,333	63.65
1.4421	10	335	64.57
1.4389	7	243	64.73
1.4310	5	153,044	65.13
1.4265	7	135	65.36
1.4142	4	206	66.00
1.4048	1	423	66.50
1.3975	<1	351	66.89
1.3830	<1	060	67.69
1.3583	1	116,714	69.09
1.3364	4	442,535	70.39
1.3318	8	261	70.67
1.3248	<1	516	71.10
1.3161	3	006	71.64
1.3123	2	532	71.88
1.3014	6	154,352	72.58
1.2975	5	135	72.83
1.2952	2	513,641+	72.98
1.2814	2	732,552	73.90
1.2796	3	445	74.02
1.2752	3	715	74.32
1.2741	3	244	74.39
1.2641	<1	336	75.08
1.2547	2	026	75.74
1.2388	4	263	76.89

d (Å)	I	hkl	2θ(°)
1.2311	3	424	77.46
1.2271	2	116	77.76
1.2156	<1	626	78.64
1.2057	4	730,317	79.41
1.1850	<1	533	81.08
1.1795 1.1754 1.1625 1.1579 1.1476	7 <1 2 1	641 155 427,117 227,446 514	81.54 81.89 82.99 83.40 84.32
1.1421	<1	172	84.82
1.1317	3	136,245	85.78
1.1277	3	335	86.16
1.1155	1	913,337	87.34
1.1125	1	172	87.63
1.1002	<1	155	88.87
1.0951	1	444	89.39
1.0887	2	027,354	90.06
1. 0 675	2	316	92.36

Additional patterns

PDF card 2-0556 [Imperial Chemical Industries, Northwich, England]; Corazza and Sabelli [1965]; Rassonskaya and Semendyaeva [1961].

References

Araki, T., and T.Zoltai (1967). Refinement of the crystal structure of a glauberite Am. Mineralogist 52, 1272-1277.

Cocco, G., E. Corazza, and C.Sabelli (1965) The crystal structure of glauberite, CaNa₂ (SO₄)₂, Z.Krist. 122, 175-184.

Corazza, C. and C. Sabelli (1965). Dati diffrattometrici sulla glauberite, Atti Accad. Nazl. Lincei Rend. Classe Sci. Fis. Mat. Nat. 38, 233-236.

Klebtsova, R.F., and S. V.Borisob (1966)
Crystalline structure of glauberite. Zh.
Strukt. Khim. 7, 892-4.

Pardillo, F. (1934). Nueva investigacion de la estructura cristalina de la glauberita, Mem. acad. ciènc. arts 25 No. 1.

Rassonskaya, I.S. and N.K. Semendyaeva (1961)
Phase transformations of sodium and calcium sulphates and their double salts,
Russ.J.Inorg.Chem.6, 891-895.(Trans.from
Zh.Neorgan.Khim. 6, 1745-1753.

The sample was prepared at NBS by crystallization from an aqueous solution of its components at room temperature.

Major impurities

0.001-0.01% each: Al, Fe, Mn, Si, and Sr.

0.01 -0.1 % each: Ca, Mg, and Ni.

Color

Light purplish pink.

Optical data

Biaxial(-) $N_{\alpha}=1.512$, $N_{\beta}\cong 1.517$, $N_{\gamma}=1.520$; 2V is large.

Structure

Isostructural with $Na_2 Mg (SO_4)_2 \cdot 4H_2 O$ (bloedite) [Giglio, 1958].

Space group

 $C_{2h}^{5}-P_{21}/a$ (14), Z=2 [ibid].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	11.104 ±.001	8.249 ±.001	5.541 ±.001	100°21.6′ ±.5′

Density

(calculated) 2.455 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.4$

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
6.58	13	110	13.45	
5.453	16	200,001	16.24	
4.553	79	210,011	19.48	
4.440	14	<u>1</u> 11	19.98	
4.259	39	201	20.84	
4.128	2	020 111 120 $\overline{2}11$ 201	21.51	
3.990	16		22.26	
3.857	3		23.04	
3.786	16		23.48	
3.552	2		25.05	
3.329	28	-310	26.76	
3.288	100	220,021	27.10	
3.257	54	211,121	27.36	
3.078	8	311	28.98	
2.963	12	221	30.13	
2.731	12	400,320	32.76	
2.726	14	002	32.83	
2.692	15	221	33.25	
2.667	11	130	33.57	
2.639	25	401	33.94	
2.622	7	112	34.17	
2.586	12	012,321	34.66	
2.512	1	411,212	35.71	
2.456	2	230,031	36.56	
2.436	4	131	36.86	
2.428	4	$ \begin{array}{c} 112 \\ 131 \\ 321 \\ \hline{2}31 \\ \overline{3}12 \end{array} $	36.99	
2.356	4		38.17	
2.319	4		38.80	
2.311	6		38.94	
2.302	8		39.10	
2.296	10	122	39.21	
2.280	15	202	39.49	
2.277	16	420	39.55	
2.199	1	411,212	41.00	
2.174	7	231	41.51	
2.162	5	122	41.74	
2.130	6	402	42.40	
2.113	8	510	42.76	
2.097	3	511	43.10	
2.063	3	412,040	43.84	
2.027	22	140	44.66	
1.996	3	421,222	45.41	
1.963	9	331	46.20	
1.958	7	312	46.33	

Ī32

46.52

1.950

d (Å)	I	hkl	2θ(°)			
1.937	9	430,032	46.87			
1.932	6	520,240	47.00			
1.919	4	521	47.34			
1.903	1	431,232	47.75			
1.893	2	422	48.03			
1.865 1.857 1.826 1.816 1.810	8 2 2 2 2 2	132 241 203 003 322	48.79 49.00 49.90 50.18 50.36			
1.807	4	$ \begin{array}{r} $	50.46			
1.802	4		50.60			
1.783	9		51.18			
1.777	7		51.37			
1.755	2		52.07			
1.735	1	412,521	52.72			
1.718	3	313	53.27			
1.703	3	531	53.79			
1.671	9	621	54.89			
1.666	8	620	55.08			
1.658	8	602	55.38			
1.645	2	440,042	55.84			
1.640	2	601	56.02			
1.631	3	150,422	56.35			
1.625	2	612,332,+	56.58			
1.609	2	611	57.22			
1.605	4	123	57.36			
1.600	3	142	57.55			
1.570	4	531	58.78			
1.563	2	342	59.03			
1.551	7	151,532	59.56			
1.545	4	512	59.82			
1.537	6	423	60.17			
1.533	7	710,133	60.33			
1.530	5	441,242	60.47			
1.522	6	631,223	60.82			
1.518	4	630	61.00			
1.502	4	350	61.68			
1.499	3	540	61.83			
1.495	3	313	62.02			
1.491	2	432	62.20			
1.482	2	442	62.65			

References

Giglio, M. (1958). Die Kristallstruktur von Na₂Zn(SO₄)₂·4H₂O(Zn-Blödit), Acta Cryst. 11, 789-794.

Natural mineral from Soda Lake, Calif. National Museum No. 93869.

*also known as astrakhanite.

Major impurities

0.001-0.01% each: Al, K, Mo, Ni, and Ti.

0.01 -0.1 % each: Ca, Co, Fe, Si, and Sr.

Color

Colorless.

Optical data

Biaxial(-), N α =1.484, N β \cong 1.488, N γ =1.492. 2V is large.

Structure

Determined by Rumanova and Malitskaya [1959]. There are a number of isostructural hydrated double sulfates, [Giglio, 1958].

Space group

 $C_{2h}^{5}-P2_{1}/a$ (14), Z=2 [Lauro, 1940].

Density

(calculated) 2.218 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.0.$

Interna	l standard W, a = 3.16504 Å	
CuKa ₁	$\lambda = 1.5405 \text{ Å}$; temp. 25 °C	

d (Å)	I	hkl	2θ(°)		
5.463 4.555 4.442 4.281 4.126	2 94 5 29 10	200 210,011 111 201 020	16.21 19.47 19.97 20.73 21.52		
3.981 3.860 3.800 3.333 3.289	9 6 25 21 95	111 120 211 310 220,021	22.31 23.02 23.39 26.72 27.09		
3.252 3.091 3.055 2.971 2.732 2.724	100 4 3 40 } 40	121,211 311 121 221 400,320 002	27.40 28.86 29.21 30.05 32.75 32.85		
2.687 2.667 2.651 2.644 2.623	} 14 } 38 2	221 130 401 311, 202 112	33.32 33.57 33.78 33.88 34.16		
2.586 2.518 2.454 2.420 2.314	22 3 4 2 11	012 212 230,031 112 231,321	34.65 35.62 36.58 37.11 38.89		
2.297 2.276 2.271 2.194	12 } 19 6	122 420,401 022,202 330,411	39.18 39.56 39.65 41.10		

Lattice constants

	$a(\stackrel{\circ}{A})$	$b(\mathring{A})$	$c(\mathring{A})$	β (°)
Lauro [1940]Rumanova and Malitskaya [1959] NBS, sample at 25°C	11.06* 11.05 11.128 ±.001	8.16	5.50	100°39′ 100°40′ 100°51.9′ ±0.8′

^{*}from kX

	т	1	
d (Å)	I	hkl	2θ(°)
2.170	15	231	41.58
2.157	5	122	41.84
2.141	8	402	42.17
2.113	9	510 511	42.75
2.103	1	211	42.96
2.080	3	322	43.46
2.062	4	040	43.88
2.025	30	140	44.71
1.992	7	421	45.49
1.988)	222	45.58
1.959	15	_ 331	46.30
1.951	5	Ī32,312	46.50
1.937	} 16	430	46.86
1.933	_	032	46.97
1.921	14	Ī41	47.27
1.907	} 5	<u>4</u> 31	47.64
1.901	5	422	47.81
1.876	3	141	48.48
1.858	10	511,241	48.99
1.834	5	601	49.67
1.812	4	332	50.31
1.803	3	<u>1</u> 13	50.59
1.790	10	<u>6</u> 11	50.97
1.785	} 11	213	51.13
1.779)	610	51.30
1.753	5	341,431	52.14
1.732	4	521	52.82
1.723	2	313	53.12
1.711	1	530	53.52
1.706	3	531	53.69
1.700	<1	113	53.87
1.685	1	<u>1</u> 23	54.39
1.676	10	<u>6</u> 21	54.73
1.665	12	620 , 6 02	55.11
1.661	10	023	55.26
1.644	1	042	55.88
1.631	3	150,413	56.35
1.6252	1	$\overline{2}42,422$	56.58
1.6200	1	$332,\overline{3}23$	56.78
1.6053	1	611	57.35
1.6012	6	123,213	57.51
1.5988	3	142	57.60
1.5671	5	531,342	58.88
1.5501	7	151	59.59
1.5419	5	423	59.94
1.5278	3	441	60.55
1.5181	10	630,223	60.98
1.4994	7	540	61.82

Additional patterns

- 1.PDF card 4-0549 [Michigan Alkali Co., Wy-andotte, Mich.].
- 2.Druzhinin et al. [1961].

References

Druzhinin, I. G., B. Imanakunov and V.G. Kuznetsov (1961). Physicochemical properties of nickel astrakhanite, Russ. J. Inorg. Chem. 6 1302-4. (Trans. from Zh. Neorgan. Khim. 6 2576-82).

Giglio, M. (1958). Die Kristallstruktur von Na₂ Zn (SO₄)₂·4H₂ O (Zn-Blödit), Acta Cryst. 11, 789-794.

Lauro, C. (1940). Ricerche Röntgenografiche sulla bloedite, Periodico Mineral. Rome 11, 89-98.

Rumanova, I. M., and G.I. Malitskaya (1959). Revision of the structure of astrakhanite by weighted phase projection methods, Soviet-Phys.Cryst. 4,481-95 (Trans. from Kristallografiya 4, 501-515).

The sample was precipitated at NBS by adding $MnCl_2$ to an excess of NaF in solution.

Major impurities

0.001-0.01% each: Co, Cs, Fe, K, and Mg.

0.01 -0.1 % each: Al, Ba, Ca, and Si.

Color

Very pale pink.

Optical data

Almost isotropic, N=1.425. Perfect cubes about 10μ in size.

Structure

Orthorhombic distorted perovskite [Simanov, Batsanova, and Kovba, 1957]. Assumed to be isostructural with CaZrO₃.

Space group

 D_{2h}^{16} -Pnma (62), Z=4 by analogy with $CaZrO_3$

Internal standard W, a = 3.16504 Å $CuKa_1 \lambda = 1.5405 \text{ Å}$; temp. 25 °C			
d (Å)	I	hkl	2θ(°)
4.00	96	101	22.23
3.571	4	111	24.91
2.876	28	200	31.07
2.826	100	121	31.63
2.776	20	002	32.22
2.553	4	201	35.12
2.500	9	102	35.89
2.433	10	211	36.92
2.405	19	031	37.36
2.386	12	112	37.66
2.282	1	022	39.45
2.219	8	131	40.63
2.152	8	221	41.94
2.121	2	122	42.58
1.997	60	202	45.37
1.956	2	230	46.38
1.938	3	212	46.85
1.843	2	231	49.40
1.823	2	132	49.97
1.811	13	301	50.34
1.788	28	141	51.03
1.7666	8	311	51.70
1.7612	8	103	51.87

Lattice constants

	a(Å)	b(Å)	c(Å)
Simanov [1957] NBS, sample 25°C-		8.000 8.0045	11.136 5.5509*
	±.0004	±.0008	±.0004

*
Smaller cell indexed all NBS powder lines

Density

(calculated) 3.508 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.5$

Additional patterns

1.Simanov et al. [1957].

References

Simanov, Yu.P., L.P. Batsanova, and L.M. Kovba, (1957). X-ray investigation of the binary fluorides of bivalent manganese, Russ. J. Inorg. Chem. 2, 207-215. (Trans. from Zh. Neorg. Khim. 2 No.10, 2410-2415).

	Zh. Neor	g. Khim	. 2 No.10, 2410	-2415).
	1.7193	<2	113	53.23
1	1.6499	23	321	55.66
1	1.6426	19	240	55.93
1	1.6229	17	042	56.67
	1.6119	33	123	57.09
1				
	1.5565	2	203	59.32
	1.5384	<2	051	60.09
	1.4981	2	331	61.88
1	1.4696	2	133	63.22
ſ	1.4669	2	322	63.35
1				
1	1.4371	4	400	64.82
1	1.4133	15	242	66.05
1	1.3911	2	401	67.24
1	1.3873	2	004	67.45
1	1.3566	3	332,251	69.19
١				
ı	1.3525	3	420	69.43
ı	1.3481	3	152	69.69
1	1.3431	7	341	69.99
1	1.3303	<2	114	70.76
1	1.3222	2	143	71.26
1				
1	1.3112	2	024	71.95
1	1.2763	3	402	74.24
	1.2650	12	161,430	75.02
	1 2626	0	2.22	
	1.2630	9	323	75.16
	1.2497	5	204	76.10
1	1.2160	5	422	78.61

The sample was prepared at NBS by crystallization from an aqueous solution of equal molecular amounts of NaCl and $HgCl_2$.

Major impurities

0.001-0.01% each: Fe.

0.01 -0.1 % each: Al.

Color

Colorless.

Optical data

Biaxial(+), N $_{\!\alpha}\!=\!1.634$, N $_{\!\beta}\!=\!1.652$, N $_{\!\gamma}\!=\!1.680$, 2V is large.

Structure

Determined by Malčič [1959].

Space group

 D_{2h}^{16} -Pnam (62), Z=4, [Ninković, 1957].

Lattice constants

	a(Å)	$b(\mathring{A})$	c(Å)
Ninković [1957]	9.372	18.71	4.037
	±.003	±.02	±.002
NBS, sample at 25 °C	9.3803	18.732	4.0301
	±.0005	±.001	±.0004

Density

(calculated) 3.433 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.3$

Additional patterns

1.Ninković [1957].

Internal standard W, a = 3.16504 Å CuK $_{\alpha_1}$ λ = 1.5405 Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
9.36 8.39 6.62 5.199 4.681			9.44 10.54 13.36 17.04 18.94	
4.551	18	210	19.49	
4.193	14	220,140	21.17	
3.943	24	011	22.53	
3.749	59	230	23.71	
3.633	19	111	24.48	
3.479	62	150	25.58	
3.444	80	121	25.85	
3.387	51	031	26.29	
3.315	9	240	26.87	
3.186	14	131	27.98	
3.121	6	060	28.58	
3.085	2	310	28.92	
3.058	42	201	29.18	
3.016	51	211	29.59	
2.963	44	320,160	30.13	
2.906	56	221,141	30.74	
2.797	4	330	31.97	
2.745	38	231,051	32.59	
2.634	11	151	34.00	
2.600	46	340,260	34.47	
2.572	20	170	34.85	
2.559	16	241	35.03	
2.449	40	311	36.66	
2.401	6	350	37.42	
2.386	5	321,161	37.67	
2.344	6	400,080	38.37	
2.324	27	270	38.71	
2.297	3	331	39.18	
2.272	8	180	39.64	
2.229	14	071	40.44	
2.208	16	360	40.83	

2.195

2.169

2.095

2.062

39

9

4

46

430

171

440,280

351

41.08

41.61

43.14

43.86

			•				
d (Å)	I	hkl	2θ(°)	d (Å)	I	hkl	2θ(°)
2.031	16	370,190	44.57	1.3979	7	660	66.87
2.027	16	401	44.67	1.3900	2	2 • 12 • 1	67.30
2.015	26	002	44.95	1.3832	4	292	67.68
1.988	13	450	45.60	1.3755	11	581,4.10.1	68.11
1.979	46	181	45.81	1.3723	15	462,382,+	68.29
1.959	13	112	46.30	1.3689	4	512	68.48
1.937	3	361	46.86	1.3576	6	1.10.2	69.13
1.928	9	122,431	47.10	1.3563	7	0 • 13 • 1	69.21
1.902	11	290	47.77	1.3402	2	013	70.16
1.874	24	460,380,+	48.53	1.3381	3	0 • 14 • 0	70.29
1.860	17	441,281	48.93	1.3274	5	472,720,+	70.94
1.850	24	042,091,+	49.22	1.3245	4	1.14.0	71.12
1.840	10	520	49.50	1.3169	6	591,2.10.2,+	71.59
1.815	2	371,191,+	50.22	1.3136	5	392,033	71.80
1.797	3	530	50.77	1.3039	2	3.13.0,4.11.1	72.42
1.774	9	232	51.46	1.2884	7	213,1.11.2,+	73.43
1.763	6	470	51.81	1.2797	4	671,482,+	74.01
1.741	11	540,2.10.0	52.51	1.2647	4	233,053	75.04
1.722	3	242	53.14	1.2603	9	721	75.35
1.700	19	461,381	53.90	1.2535	3	2•11•2,153	75.83
1.687	4	312	54.32	1.2448	2	243,3.13.1	76.45
1.675	26	1.11.0	54.76	1.2376	4	1.15.0,681	76.98
1.666	8	322,162	55.08	1.2347	5	602	77.19
1.616	4	471	56.94	1.2304	6	3 • 14 • 0	77.51
1.608	1	560,3.10.0	57.26	1.2278	6	4.13.0	77.71
1.592	18	342,262,+	57.86	1.2069	2	2 • 15 • 0	79.32
1.561	5	0 • 12 • 0	59.13	1.2034	3	5.11.1	79.59
1.548	11	551	59.66	1.2004	5	6.10.0,5.12.0	79.83
1.537	1	570	60.15	1.1982	4	770	80.01
1.523	8	412,272	60.78	1.1936	7	691,343,+	80.38
1.508	3	422,182	61.43	1.1844	2	582,4.10.2	81.13
1.4888	6	362	62.31	1.1833	1	1.15.1	81.22
1.4830	14	640	62.58	1.1725	5	800,353	82.13
1.4638	5	580,4.10.0	63.50	1.1707	3	0.16.0,810	82.29
1.4531	4	611,442	64.02	1.1629	1	1.13.2,780,+	82.96
1.4435	2	650	64.50	1.1599	1	3 • 15 • 0	83.22
1.4385	8	1.12.1	64.75	1.1559	4	183,2.15.1	83.57
1.4312	4	372,192	65.12	1.1522	3	830	83.90
1.4194	6	631	65.73	1.1488	2	662,771	84.21
1.4016	5	3.11.1	66.67	1.1369	1	840,2.13.2,+	85.30

References

Malčič, S. S.(1959). Die Kristallstruktur des Natriumtrichloromercurat(II) - Dihydrats, Bull. Inst. Nucl. Sci. "Boris Kidrich" (Belgrade) [9], 115-122. Ninković, D.V. (1957). Die Elementarzelle und die Raumgruppe von Natrium Quecksilber (II) Chlorid-Dihydrat, Bull. Inst. Nucl. Sci. "Boris Kidrich" (Belgrade). 7, 81-82.

Sample source

The sample was prepared at NBS by crystallization from an aqueous solution of its components at room temperature.

Major impurities

0.001-0.01% each: Al,Ca,Co,Fe,K,Si,and Sr

0.01 -0.1 % each: Mg

Color

Very light green.

Optical data

Biaxial(-) $N_{\alpha}=1.518$, $N_{\beta}=1.520$, $N_{\gamma}=1.522$, 2V is large.

Structure

Isostructural with $Na_2Mg(SO_4)_2 \cdot 4H_2O$ (bloedite) [Giglio,1958].

Space group

 $C_{2h}^{5}-P_{21}/a$ (14), Z=2 [ibid].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	11.045 ±.001	8.193 ±.001	5.535 ±.001	100°29.9′ ±0.5′

Density

(calculated) 2.487 g/cm³ at 25° C.

Reference intensity

 $I/I_{conundum} = 1.5$

Internal standard W, a = 3.16504 Å
$CuKa_1 \lambda = 1.5405 \text{ Å; temp. 25 °C}$

d (Å)	I	hkl	<i>2θ</i> (°)
6.53	9	110	13.54
5.430	9	001,200	16.31
4.523	62	011,210	19.61
4.433	13	<u>1</u> 11	20.01
4.249	25	201	20.89
4.099	2	020	21.66
3.976	14	111	22.34
3.834	3	120	23.18
3.773	13	211	23.56
3.538	3	201	25.15
3.309 3.270 3.243 3.236 3.066	27 100 } 55 7	310 021,220 211 <u>1</u> 21 311	26.92 27.25 27.48 27.54 29.10
3.043	2	121	29.32
2.951	13	221	30.26
2.713	17	400,320	32.99
2.677	20	221	33.45
2.647	13	130	33.84
2.628	31	401	34.08
2.582	17	012	34.71
2.506	2	212	35.80
2.441	3	031,230	36.78
2.420	7	112	37.12
2.342 2.306 2.298 2.290 2.271 2.266	3 7 1 13 } 21	131 321 312,231 122 202,401 022	38.41 39.03 39.16 39.31 39.65 39.75
2.214	1	222	40.71
2.190	2	212	41.18
2.180	4	330	41.38
2.161	} 13 9 10 4 2	231	41.76
2.155		122	41.88
2.124		402	42.53
2.099		510	43.05
2.087		511	43.31
2.068		322	43.73
2.049	4	040	44.16
2.012	17	140	45.01
1.987	6	222	45.61
1.950	17	331,312	46.52
1.927	16	032,430	47.13

d (Å)	I	hkl	2θ(°)
1.908	7	$\bar{1}41,\bar{5}21$	47.61
1.893 1.887	<1 4	$\frac{4}{4}$ 31	48.02 48.18
1.867	2	141	48.74
1.857	9	132	49.02
1.852	9	511	49.15
1.846	7 1	241 512 502	49.33
1.824 1.819	3	512,203 601	49.96 50.10
1.813	4	003	50.27
	_		30127
1.803	9	322	50.58
1.777	} 13	611	51.38
1.772	1	241,013	51.52
1.768 1.747	4 3	402,610	51.64 52.33
1./4/	3	232,431	52.33
1.741	1	341	52.51
1.725	3	521	53.05
1.716	4	313	53.35
1.700	5	113,530	53.88
1.693	5	531	54.11
1.663	13	<u>-</u> 621	55.20
1.658	11	023	55.35
1.655	} 12	620 , 403	55.48
1.651)	602,341	55.60
1.636	5	042,440	56.19
1.632	3	601	56.34
1.620	5	413,150,+	56.76
1.616	3	332, 242,+	56.93
1.600	6	123,611	57.55
1.593	2	142	57.85
1.569	4	051,250	58.81
1.564	,	Ī51	59.01
1.560	7	531	59.17
1.556	7	342	59.33
1.542	13	151,711	59.95
1.537	10	512	60.16
1.533	8	$\frac{312}{423,622}$	60.32
1.5285	7	251, 133	60.52
1.5208	13	242,441	60.86
1.5167	6	223, 233	61.04
1.5082	5	630	61.42
1.4927	8	350	62.13
1.4903	5	540,313	62.24
1.4841	9	<u>4</u> 32	62.53
1.4750	3	442	62.96

_				
	d (Å)	I	hkl	2θ(°)
	1.4662	2	133	63.38
ı	1.4507	2	720	64.14
ı	1.4451	3	712	64.42
	1.4385	4	523	64.75
İ	1.4336	3	342	65.00
	1.4152	2	4 33	65.95
ı	1.4095	3	1 52	66.25
ı	1.4037	3	711,052	66.56
1	1.4000	3	_ 631	66.76
l	1.3955	3	6 13,403	67.00
	1.3614	1	$\overline{2}43,\overline{2}14$	68.91
١	1.3602		004,641,+	68.98
	1.3568	6	532,640	69.18
	1.3486	6	730	69.66
	7 0006		500 440	70.06
ı	1.3386	3 1	623,442	70.26
l	1.3288	Т	252,451	70.85
١	1.3246 1.3212	6	333,061,+ 161,423	71.11 71.32
	T.32TZ	,	101,423	/1.32
	1.3076	2	550,161,+	72.18
	1.3053	} 2	$\overline{8}21,\overline{5}51$	72.33
	1.2868	2	443	73.53
	1.2756	3	641	74.29
L				

Additional patterns

- 1.PDF card 14-659 [Kuznetsov and Imanakun-ov].
- 2.Druzhinin et al.[1961].

References

Druzhinin, I. G., B. Imanakunov, and V. G. Kuznetsov (1961). Physicochemical properties of nickel astrakhanite, Russ. J. Inorg. Chem. 6, 1302-1304. (Trans. from Zh. Neorg. Khim. 6, 2576-2582).

Giglio, M. (1958). Die Kristallstruktur von Na₂Zn(SO₄)₂·4H₂O(Zn-Blödit), Acta Cryst. 11, 789-794.

Sample source				
NBS standard sample No. 40d. was used.	Inte	ernal star	dard W , $a = 3.16$	504 Å
Assay indicated 99.9 % sodium oxalate.				
	$CuKa_1 \lambda = 1.5405 \text{ Å; temp. } 25 \text{ °C}$			5 °C
Color Colorless.	d (Å)	I	hkl	2θ(°)
COTOTIESS.	5.202	24	200	17.03
Structure	4.686	6	110	18.92
	3.700	5	210	24.03
Determined by Jeffrey and Parry, [1954].	3.474	7	001	25.62
	2.965	9	<u>2</u> 01	30.11
Space group		}		
$C_{2h}^{\epsilon} - P2_{1}/a$ (14), Z=2 [ibid.].	2.895	34	011,310	30.86
	2.825	100	īii	31.64
	2.759	9	111	32.42
Density	2.625	10	020	34.13
(calculated) 2.339 g/cm³ at 25° C.	2.600	56	400	34.47
Reference intensity	2.485	8	211	36.12
$I/I_{corundum} = 1.1$	2.330	44	410	38.60
	2.276	2	, 311	39.57
	2.176	17	311	41.46
	2.139	7	401	42.22
Additional patterns				
1.PDF card 14-0758 [Hanawalt et al., 1938]	2.097	<1	021,320	43.09
	2.067	2	Ī21	43.75
	2.041	17	121	44.34
	2.030	7	401	44.60
	1.979	2	411	45.80
	1 055		221	46.12
	1.966	7		46.13
References	1.922	14	221 411	47.25
Hanawalt, J.D., H.W. Rinn, and L.K. Frevel	1.894	<1 5	411	47.99
(1938). Chemical analysis by x-ray dif-	1.849	11	321	
fraction, Ind. Eng. Chem. Anal. Ed. 10,	1.820	1 1	321	50.07
457-512.	1.768	8	321	51.65
Jeffrey, G.A., and G.S. Parry (1954). The	1.737	6	002	52.66
crystal structure of sodium oxalate, J. Am. Chem. Soc. 76 , 5283-5286.	1.728	9	511,130	52.94
Am. Chem. 500. 70, 5283-5286.	1.675	4	$\frac{1}{2}$ 02	54.74
	1.659	23	230,421	55.31
				,

-continued

Lattice constants

	a(Å)	b(Å)	c(Å)	β(°)
Jeffrey and Parry [1954]	10.35	5.26	3.46	92°54′
	±.02	±.02	±.02	±6′
NBS, sample at 25 °C	10.420	5.2552	3.4799	93°6.0′
	±.001	±.0004	±.0003	±.5′

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å ; temp. 25 °C					
d (Å)	I	hkl	2θ(°)		
1.646	6	610	55.79		
1.622	3	202	56.68		
1.617	2	112	56.88		
1.586	1	601	58.10		
1.563	6	031,330	59.04		
1.552 1.519 1.508 1.502 1.482	1 4 1 1	131 601,611 231 521 402	59.52 60.94 61.42 61.71 62.65		
1.460	2	312	63.66		
1.453	3	521,430	64.02		
1.448	3	620	64.28		
1.439	2	331	64.70		
1.4304	4	710	65.16		
1.4267 1.4131 1.4101 1.3478 1.3152 1.3034 1.2908 1.2740 1.2624 1.2428	3 3 2 1 1 2 <1 1 2	$ 122, \overline{4}12 \\ 331, \overline{2}22 \\ 402 \\ \overline{7}11 \\ 621 \\ 140 \\ \overline{4}22 \\ 240 \\ 810, \overline{6}02, + \\ 422 $	65.35 66.06 66.22 69.71 71.70 72.45 73.27 74.40 75.20 76.60		
1.2403	1	801	76.78		
1.2323	3	630	77.37		
1.2291	2	041,340	77.61		
1.2192	<1	132	78.36		
1.2111	1	232	78.99		
1.2074	1	811	79.28		
1.1941	2	721	80.34		
1.1905	2	241,232	80.63		
1.1763	1	332,631	81.81		
1.1728	<1	440	82.11		
1.1657	2	612,820,+ 341 332 622 712,730	82.72		
1.1516	1		83.96		
1.1485	2		84.24		
1.1377	1		85.22		
1.1334	2		85.62		
1.1314	2	432,013,+	85.81		
1.1195	1	441	86.95		

Sample source

The sample was prepared at NBS by crystallization from a solution of its components at room temperature.

Major impurities

0.001-0.01% each: Fe,Mg,Ni,and Si.

0.01 -0.1 % each: Al and Ca.

Color

Colorless

Optical data

Biaxial (-)N $_{\alpha}$ =1.507, N $_{\beta}$ =1.512, N $_{\gamma}$ =1.516, 2V is large. Tabularly shaped crystals.

Structure

Isostructural with $Na_2 Mg(SO_4)_2 \cdot 4H_2O$ (bloedite) [Giglio, 1958].

Space group

 $C_{2h}^{5}-P2_{1}/a$ (14), Z=2 [ibid.]

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Giglio [1958] NBS, sample at	11.05	8.23	5.54	100°35′
	±0.02	±0.02	±0.01	±05′
25°C	11.080	8.256	5.534	100°11.7′
	±0.001	±0.001	±0.001	±0.6′

Density

(calculated) 2.503 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.4$

		dard W, a = 3.165	
	$(a_1 \ \lambda = 1)$.5405 Å; temp. 25	°C
d (Å)	I	hkl	2θ(°)
6.57	16	110	13.46
5.450	20	200,001	16.25
4.546	66	210,011	19.51
4.436	18	111	20.00
4.247	36	201	20.90
4.128	1	020	21.51
3.994	18	111	22.24
3.857	2	120	23.04
3.779	13	211	23.52
3.553	3	201	25.04
3.327 3.289 3.263 3.248 3.069	38 100 48 8	$ \begin{array}{c} 310 \\ 220,021 \\ 211 \\ \overline{1}21 \\ \overline{3}11 \end{array} $	26.77 27.09 27.31 27.44 29.07
2.961	7	221	30.16
2.728	10	320,400	32.80
2.691	15	221	33.26
2.669	10	130	33.55
2.631	24	401,202	34.04
2.584	10	410,012	34.68
2.509	1	321,411	35.76
2.456	2	230,031	36.55
2.426	4	112	37.02
2.357	3	131	38.15
2.319	3	$ \begin{array}{r} 321 \\ \overline{2}31 \\ \overline{1}22 \\ 401,202 \\ 420,022 \end{array} $	38.80
2.311	4		38.94
2.294	10		39.23
2.279	12		39.50
2.273	12		39.62
2.216	1	421,222	40.67
2.176	5	231	41.47
2.163	4	122	41.72
2.123	7	402	42.54
2.114	8	331	42.74
2.109	7	510	42.85
2.092	3	511	43.21
2.065	3	040	43.81
2.029	6	140	44.62
1.996	3	421,222	45.39
1.963	9	331	46.21
1.958	3	312	46.33
1.935	6	032	46.91
1.930	5	240,041	47.04
1.914	4	521	47.46

Internal standard W, a = 3.16504 \mathring{A} CuK α_1 λ = 1.5405 \mathring{A} ; temp. 25 $^{\circ}$ C				
d (Å)	I	hkl	2θ(°)	
1.902	1	$ \begin{array}{r} \overline{4}31, \overline{2}32 \\ \overline{4}22 \\ \hline 132 \\ \underline{511} \\ \overline{2}41 \end{array} $	47.78	
1.889	3		48.13	
1.866	7		48.77	
1.862	5		48.87	
1.856	5		49.03	
1.824	3	601	49.97	
1.818	2	600	50.13	
1.811	3	322	50.33	
1.805	4	332	50.52	
1.800	4	113	50.67	
1.784	5	241	51.17	
1.779	7	213	51.32	
1.756	<1	431,232	52.05	
1.734	1	521	52.75	
1.714	3	313	53.40	
1.710	3	530	53.56	
1.704	2	522,113	53.74	
1.700	2	531	53.90	
1.668	7	621	55.01	
1.663	6	620,341+	55.18	
1.652	4	$\overline{6}02, \overline{1}42+$ 601 150,422 $\overline{4}41, \overline{2}42$ 611	55.58	
1.639	2		56.06	
1.632	3		56.32	
1.623	3		56.67	
1.608	3		57.26	
1.576	2	151	58.53	
1.570	3	531	58.78	
1.552	4	151	59.50	

References

Giglio, M. (1958). Die Kristallstruktur von Na₂ Zn (SO₄)₂·4H₂O (Zn-Blodit), Acta Cryst. 11, 789-794.

Sample source

The sample was prepared at NBS by adding a solution of $\rm ZnCl_2$ to a concentrated solution of NaF. The precipitate was washed and annealed at 500 °C.

Major impurities

0.001-0.01% each: Al,Mg, Mn, Mo, Si, Sr

0.01 -0.1 % each: Ba, Ca, and Fe.

Color

Colorless.

Optical data

Almost isotropic, №1.440.

Structure

Orthorhombic, distorted perovskite [Rüdorff et al., 1959] Isostructural with CaZnO_3 and NaMnF_3 .

Space group

 $D_{2h}^{1.6}$ -Pnma (62)Z=4. [Rüdorff et al., 1959].

Lattice constants

	a(Å)	b(Å)	c(Å)
Rüdorff et al. (1959) Tutov et al.	5.569	7.756	5.40
(1966) NBS, sample	5.56	7.74	5.40
at 25°C	5.5873 ±.0003	7.775 ±.001	5.4150 ±.0002

Density

(calculated) 4.104 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.0.$

Internal standard W, a = 3	3.16504 Å
$CuK\alpha_1 \lambda = 1.5405 \text{ Å; tem}$	p. 25 °C

d (Å)	I	hkl	2θ(°)
3.885	100	101,020	22.87
3.477	2	111	25.60
2.793	23	200	32.02
2.748	80	121	32.55
2.707	16	002	33.06
2.483	1	201	36.14
2.437	6	102	36.85
2.366	4	211	38.00
2.338	10	031	38.47
2.326	6	112	38.67
2.223	1	022	40.54
2.157	3	131	41.84
2.094	2	221	43.16
2.066	1	122	43.78
1.944	50	202,040	46.69
1.900 1.887 1.793 1.762 1.739	1 1 10 24	230 212 231 301 222,141	47.83 48.19 50.88 51.85 52.57
1.718	6	311,103	53.27
1.677	<1	113	54.67
1.604	14	321	57.38
1.596	12	240	57.70
1.571	22	123	58.72
1.517 1.494 1.457 1.431 1.428	1 <1 1 1	203 051 331 133 322	61.04 62.05 63.83 65.13 65.29
1.3966	2	400	66.94
1.3744	8	410,242	68.17
1.3534	2	004	69.38
1.3144	2	420	71.75
1.3049	4	341	72.35
1.2784	2	313,024	74.10
1.2414	1	402	76.70
1.2294	5	323,430,+	77.59
1.2182	2	204	78.44
1.1825	1	422	81.29
1.1755	<1	260	81.88
1.1691	<1	062	82.42
1.1661	<1	351	82.68
1.1627	1	224	82.98
1.1530	<1	153	83.83

Internal standard W, $a = 3.16504 \text{ Å}$ $CuK\alpha_1 \lambda = 1.5405 \text{ Å}$; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
1.1342	1	440	85.55	
1.1198	<1	432	86.92	
1.1107	1	044	87.81	
1.0945	1	501	89.46	
1.0839	1	511	90.57	
1.0784	1	343,262	91.16	
1.0627	1	423	92.91	
1.0532	1	521,115	94.00	
1.0461	2	442	94.84	
1.0437	2	361	95.13	
			55125	
1.0347	2	163	96.22	
1.0322	2	244,270	96.53	
1.0256	2	125	97.36	
.9720	<1	404,080	104.82	
.9535	<1	541	107.76	
.9500	1	503	108.33	
.9429	2	424,181	109.55	
.9361	1	305,064	110.74	
.9228	1	523	113.16	
.9176	1	601	114.15	
.9162	1	363	114.42	
.9144	1	082	114.77	
07.00	_	007 101		

325,434

182,006

115.61

117.15

.9102

.9026

2

Polymorphism

NaZnF₃ is reported to occur in two polymorphic forms [Schmitz-DuMont and Bornefeld, 1956] with an inversion at 683 °C. The lower form is tetragonal, but was not observed at NBS.

References

Rüdorff, W., J. Kandler, B. Lincke and D. Babel (1959). Über Doppelfluoride von Nickel und Kobalt, Angew. Chem. 71, 672.

Schmitz-DuMont,O. and H.Bornefeld (1956). Die Systemreihe Alkalifluorid/Zinkfluorid, Z.Anorg. Allgem. Chem. 287,120-137.

Tutov, A.G. and P.P. Syrnikov (1966). The synthesis and x-ray study of single crystals of NaZnF₃ type, Abstract, Acta Cryst. 21, A272.

Sample source

The sample was prepared by Jun Ito.

Major impurities

NaOH was used in the preparation. Since it was not practical to wash the sample, 1-5% remained in the sample and appeared as a separate carbonate phase in the powder pattern.

Color

Yellowish white

Structure

Isostructural with other hydrogarnets [Ito and Frondel, 1967].

Space group

 O_h^{10} -Ia3d (230), Z=8. [Flint et al., 1941].

Lattice constants

	a(Å)
Ito and Frondel,[1967]NBS, sample at 25 °C	13.53 13.5222 ±.0001

Density

(calculated) 3.742 g/cm³ at 25° C.

Additional patterns

1.Ito and Frondel [1967].

References

Flint, E.P., H.F. McMurdie, and L.S. Wells (1941). Hydrothermal and x-ray studies of the garnet-hydrogarnet series, J.Res. Nat. 26, 13-33.

Ito,J. and C. Frondel (1967). New synthetic hydrogarnets, Am. Mineralogist 52, 1105-1109.

Internal standard W, a = 3.165	04 Å
$CuK\alpha_1 \ \lambda = 1.5405 \ A; temp. 25$	°C

d (Å)	I	hkl	<i>2θ</i> (°)
5.521	65	211	16.04
4.784	85	220	18.53
3.613	39	321	24.62
3.379	65	400	26.35
3.025	51	420	29.50
2.759	100	422	32.42
2.652	8	431	33.77
2.468	40	521	36.37
2.390	7	440	37.60
2.194	36	611	41.10
2.139	18	620	42.22
1.993	8	631	45.47
1.875	18	640	48.51
1.840	15	721	49.49
1.807	74	642	50.47
1.717	10	732	53.30
1.689	13	800	54.25
1.617	4	653	56.91
1.593	9	822	57.83
1.531	2	752	60.41
1.5116	28	840	61.27
1.4754	11	842	62.94
1.4578	8	921	63.79
1.4413	23	664	64.61
1.4254	1	851	65.42
1.3946	6	932	67.05
1.3801	5	844	67.85
1.3660	1	941	68.65
1.3389	3	10·1·1	70.24
1.3262	10	10·2·0	71.01
1.3132	1	943	71.81
1.2896	8	10·3·1	73.35
1.2557	13	10·4·0	75.67
1.2453	4	10·3·3	76.42
1.2345	27	10·4·2	77.21
1.2044	8	11·2·1	79.51
1.1951	12	880	80.26
1.1683	4	11·3·2	82.49
1.1596	3	10·6·0	83.25
1.1350	1	965	85.47

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
1.1268	10	12.0.0	86.25	
1.1115	3	12.2.0	87.73	
1.1041	4	11.5.2	88.47	
1.0966	24	12.2.2	89.24	
1.0757	2	11.6.1	91.46	
1.0690	2	12.4.0	92.20	
1.0496	4	11.6.3	94.42	
1.0431	4	10.8.2	95.19	
1.0252	3	13.2.1	97.41	
1.0078	6	12.6.0	99.69	
0.9969	11	12.6.2	101.18	
.9760	5	888	104.22	
.9709	1	13.4.3	105.00	
.9611	2	14.1.1	106.54	
.9561	5	14.2.0	107.34	
.9421	4	14.3.1	109.68	
.9375	6	12.8.0	110.49	
.9287	4	14.4.0	112.08	
.9200	19	14.4.2	113.70	
.9076	2	14.5.1	116.13	
.9035	1	12.8.4	116.98	
.8916	4	15.2.1	119.52	
.8766	2	15.3.2	122.96	
.8657	4	12.10.0	125.69	
.8621	2	14.7.1	126.61	
.8587	15	14.6.4	127.54	
.8485	4	15.5.2	130.39	
.8452	4	16.0.0	131.38	
.8323	3	16.2.2	135.47	
.8230	3	15.6.3	138.76	
.8200	8	16.4.0	139.89	
.8139	5	16.4.2	142.30	
.8110	4	15.7.2	143.51	
.8081	7	12.10.6	144.80	
.7996	2	15.6.5	148.84	
.7886	2	17 • 2 • 1	155.24	
.7859	4	16 • 6 • 2	157.08	

2θ(°)

16.19

18.70

24.83

26.59

29.81

31.25

32.71

34.09

36.70

37.95

41.50

42.63

43.71 45.90

46.94

47.97

49.00

49.99

50.98

53.84

54.77

55.64

57.49 59.27

61.01

61.87 63.60 64.42 65.26 66.07

67.74 69.37 70.98 71.79 72.57

74.14 76.50 77.25 78.04 78.83

80.34 81.12 83.42 86.48 87.22

Sample source Internal standard W, a = 3.16504 Å The sample was prepared by Jun Ito. $CuK\alpha_1$ $\lambda = 1.5405 \text{ Å; temp. } 25 \text{ °C}$ Major impurities d(A)Ι hkl 0.01 -0.1 % each: Al, Ca, Fe 5.470 100 211 0.1 -1.0 % each: Si 4.741 4 220 80 3.583 321 greater than 1%: Na* 3.349 51 400 *NaOH was used in the preparation. Since 2.994 100 420 it was not practical to wash the sample, 1-5% remained in the sample and appeared 2.860 3 332 as a separate carbonate phase in the 2.735 41 422 powder pattern. 2.628 11 431 2.447 72 521 2.369 2 440 Color 2.174 65 611 Yellowish white 2.119 1 620 2.069 3 541 1.975 5 631 Structure 1.934 10 444 Isostructural with other hydrogarnets [Ito and Frondel, 1967]. 1.895 543 3 1.857 31 640 Space group 1.823 23 721 O_h^{10} -Ia3d (230), Z=8[Flint et al., 1941]. 1.790 39 642 1.701 11 732 11 800 1.675 1.650 3 741 1.602 2 653 1.558 2 831 Lattice constants 1.517 752 3 $a(\mathring{A})$ 1,498 840

Ito and Frondel,[1967]NBS, sample at 25 °C	13.39 13.4007	1.498 1.462 1.4450 1.4285	7 5 6	842 921 664	
	±.0002	1.4129	2	851	
		1.3821	5	932	
Donaite		1.3535	1	941	
Density		1.3267	3	10.1.1	
(calculated) 3.074 g/cm³ at 25° C.		1.3137	1	10.2.0	
		1.3015	3	943	
		1.2778	6	10.3.1	
		1.2442	8	10.4.0	
		1.2339	3	10.3.3	
		1.2234	5	10 • 4 • 2	
		1.2131	2	954	
		1.1941	6	11.2.1	
		1.1846	3	880	
Additional nattowns		1.1576	4	11 • 3 • 2	
Additional patterns		1.1244	2	965	
1.Ito and Frondel [1967].		1.1167	8	12.0.0	
	78				

Internal standard W, a = 3.16504 \mathring{A} CuK α_1 λ = 1.5405 \mathring{A} ; temp. 25 $^{\circ}$ C				
d (Å)	I	hkl	2θ(°)	
1.1094 1.1015 1.0940 1.0869 1.0659 1.0401 1.0278 1.0159	1 1 5 2 5 3 2 1	11·4·3 12·2·0 11·5·2 12·2·2 11·6·1 11·6·3 12·5·1 13·2·1 12·4·4	87.94 88.74 89.51 90.25 92.54 95.56 97.08 98.61 99.36	
.9934 .9879 .9824 .9672	14 3 2 1 1	12·6·0 13·3·2 12·6·2 13·4·1 888 14·1·1	100.92 101.67 102.47 103.27 105.57 107.95	
.9337 .9292 .9204 .9118 .8994	3 1 1 7 3	14·3·1 12·8·0 14·4·0 14·4·2 14·5·1	111.17 111.98 113.63 115.29 117.84	
.8837 .8686 .8579 .8510	3 1 2 2	15·2·1 15·3·2 12·10·0 14·6·4	121.30 124.93 127.75 129.68	

References

Flint, E.P., H.F. McMurdie, and L.S. Wells (1941). Hydrothermal and x-ray studies of the garnet-hydrogarnet series, J.Res. Nat. 26, 13-33.

Ito, J. and C. Frondel (1967). New synthetic hydrogarnets, Am. Mineralogist 52, 1105-1109.

d (\mathring{A})

Sample source

The sample was obtained from Prof. F. H. Spedding, Iowa State College, Ames, Iowa. It was heated to 1400°C and then held at 1300°C for 48 hours.

Major impurities

0.001-0.01% each: Cu,Fe,Mg,Pb,Ti,V,and Zr

0.01 -0.1 % each: Al, Ca, Sb

Color

Colorless

Structure

Mn₂O₃ type [Pauling and Shappell 1930].

Space group

 T_h^7 -Ia3 (206), Z=16 [ibid.]

Lattice constants

	a(Å)
Goldschmidt et al. [1925] Bommer [1939]	10.41**
Brauer and Gradinger [1954] Templeton and Dauben [1954]	5.219* 10.439
Staritzky [1956]NBS, sample at 25°C	10.435 10.4342
	±0.0001

^{*}from kx

(calculated) 9.216 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 6.9$

Internal standard W, a = 3.16504	Å
$CuK\alpha_1 \lambda = 1.5405 \text{ Å; temp. } 25 \text{ °}$	С

hkl

2θ(°)

Ι

5.20	2	200	17.02
4.25	10	211	20.87 29.65
3.010	100	222	
2.788 2.608	33	321 400	32.08 34.35
2.608	33	400	34.35
2.460	5 1	411 420	36.50 38.56
2.333 2.225	4	332	40.51
	1	422	42.40
2.130 2.047	8	431	44.21
2.047	0	431	44.21
1.9049	2	521	47.70
1.8446	34	440	49.36
1.7895	2	433	50.99
1.7390	1 4	600 611	52.58
1.6929	4	PIT	54.13
1.6499	1	620	55.66
1.6101	4	541	57.16
1.5734	24	622	58.62
1.5391	5	631	60.06
1.5063	5	444	61.51
1.4758	2	543	62.92
1.4471	1	640	64.32
1.4192	2	721	65.74
1.3946	1	642	67.05
1.3254	2	732	71.06
1.3045	4	800	72.38
1.2843	3	811	73.70
1.2656	2	820	74.98
1.2472	2 2 1	653	76.28
1.2296	1	822	77.57
1.2130	4	831	78.84
1.1972	5	662	80.09
1.1814	1	752	81.38
1.1665	4	840	82.65
1.1525	1	833	83.88
1.1384	1	842	85.16
1.1251	2	921	86.41
1.1123	1	664	87.65
1.0999	2	851	88.90
1.0763	2	932	91.39

^{**}from Fe=1.934

1.0650 4 844 92.64 1.0541 1 941 93.89 1.0436 1 10.0.0 95.13 1.0332 1 10.1.1 96.41 1.0232 2 10.2.0 97.66 1.0136 1 943 98.91 1.0042 2 10.2.2 100.18 0.9949 1 10.3.1 101.47 .9774 1 871 104.01 .9688 2 10.4.0 105.32 .9606 1 10.3.3 106.62 .9526 1 10.4.2 107.91 .9447 1 954 109.24 .9297 1 11.2.1 111.89 .9023 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 18.82 .8882 1 11.4.1 120.27 .8635 1 12.0.0 124.71 .8757 1 12.0.0 127.80 .8520 <th>d (Å)</th> <th>I</th> <th>hkl</th> <th>2θ(°)</th>	d (Å)	I	hkl	2θ(°)
1.0436 1 10.00 95.13 1.0332 1 10.1.1 96.41 1.0232 2 10.2.0 97.66 1.0136 1 943 98.91 1.0042 2 10.2.2 100.18 0.9949 1 10.3.1 101.47 .974 1 871 104.01 .9688 2 10.4.0 105.32 .9606 1 10.3.3 106.62 .9526 1 10.4.2 107.91 .9447 1 954 109.24 .9297 1 11.2.1 111.89 .9223 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 965 123.18 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8463 <th></th> <th></th> <th></th> <th></th>				
1.0332 1 10.1.1 96.41 1.0136 1 943 98.91 1.0042 2 10.2.2 100.18 0.9949 1 10.3.1 101.47 .9774 1 871 104.01 .9688 2 10.4.0 105.32 .9606 1 10.3.3 106.62 .9526 1 10.4.2 107.91 .9447 1 954 109.24 .9297 1 11.2.1 111.89 .9223 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8695 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8463 2 12.2.2 131.06 .846				
1.0232 2 10.2.0 97.66 1.0136 1 943 98.91 1.0042 2 10.2.2 100.18 0.9949 1 10.3.1 101.47 .9774 1 871 104.01 .9688 2 10.4.0 105.32 .9606 1 10.3.3 106.62 .9526 1 10.4.2 107.91 .9447 1 954 109.24 .9297 1 11.2.1 111.89 .9223 1 880 113.27 .9082 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8408 1 12.3.1 132.72 .8540				
1.0042 2 10.2.2 100.18 0.9949 1 10.3.1 101.47 .9774 1 871 104.01 .9688 2 10.4.0 105.32 .9606 1 10.3.3 106.62 .9526 1 10.4.2 107.91 .9447 1 954 109.24 .9297 1 11.2.1 111.89 .9223 1 880 113.27 .9082 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 965 123.18 .8695 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8463 2 12.2.2 131.06 .8463 2 12.2.2 131.06 .8408<				
0.9949 1 10.3.1 101.47 .9688 2 10.4.0 105.32 .9606 1 10.3.3 106.62 .9526 1 10.4.2 107.91 .9447 1 954 109.24 .9297 1 11.2.1 111.89 .9223 1 880 113.27 .9082 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8695 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 136.23 .8499 1 12.4.0 138.07 .8				
.9774 1 871 104.01 .9688 2 10.4.0 105.32 .9606 1 10.3.3 106.62 .9526 1 10.4.2 107.91 .9447 1 954 109.24 .9297 1 11.2.1 111.89 .9223 1 880 113.27 .9082 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8463 2 12.2.2 131.06 .8463 1 12.3.1 136.23 .8301 1 11.6.1 136.23 .8249<				
.9688 2 10.4.0 105.32 .9606 1 10.3.3 106.62 .9526 1 10.4.2 107.91 .9447 1 954 109.24 .9297 1 11.2.1 111.89 .9223 1 880 113.27 .9082 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8463 2 12.2.2 131.06 .8463 1 12.3.1 136.23 .8498 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .80				
.9606 1 10.3.3 106.62 .9526 1 10.4.2 107.91 .9447 1 954 109.24 .9297 1 11.2.1 111.89 .9223 1 880 113.27 .9082 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8635 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 131.06 .8463 2 12.2.2 131.06 .8408 1 12.3.1 136.23 .8301 1 12.3.3 139.95 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .80				
.9526 1 10.4.2 107.91 .9447 1 954 109.24 .9297 1 11.2.1 111.89 .9223 1 880 113.27 .9082 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 < 965 123.18 .8635 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8148 2 12.4.2 141.93 .8050 1 10.8.2 146.21 .800	.5000		10.4.0	103.32
.9447 1 954 109.24 .9297 1 11.2.1 111.89 .9223 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 <td< th=""><th></th><th></th><th></th><th></th></td<>				
.9297 1 11.2.1 111.89 .9223 1 880 113.27 .9082 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 <td< th=""><th></th><th></th><th></th><th></th></td<>				
.9223 1 880 113.27 .9082 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 965 123.18 .8577 1 12.0.0 124.71 .8520 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 136.23 .8301 1 11.6.1 136.23 .8301 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 1 10.6.6 151.03 .7				
.9082 1 10.4.4 116.02 .9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66 <th></th> <th></th> <th></th> <th></th>				
.9014 1 11.3.2 117.41 .8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8695 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66 <th>.9223</th> <th>1</th> <th>880</th> <th>113.27</th>	.9223	1	880	113.27
.8948 1 10.6.0 118.82 .8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8635 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66	.9082	1	10.4.4	116.02
.8882 1 11.4.1 120.27 .8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8695 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 13.2.1 153.70 .7865 1 12.4.4 156.66	.9014	1	11.3.2	117.41
.8819 2 10.6.2 121.71 .8757 <1 965 123.18 .8695 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.8757 <1 965 123.18 .8695 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8468 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.8695 1 12.0.0 124.71 .8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66	.8819	2	10.6.2	121.71
.8635 1 12.1.1 126.23 .8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66		<1		123.18
.8577 1 12.2.0 127.80 .8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.8520 1 11.5.2 129.40 .8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.8463 2 12.2.2 131.06 .8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.8408 1 12.3.1 132.72 .8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66	.8520	1	11.5.2	129.40
.8301 1 11.6.1 136.23 .8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.8249 1 12.4.0 138.07 .8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.8198 1 12.3.3 139.95 .8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.8148 2 12.4.2 141.93 .8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.8098 1 11.6.3 144.02 .8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.8050 1 10.8.2 146.21 .8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.8002 1 12.5.1 148.54 .7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66	1			
.7995 <1 10.6.6 151.03 .7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66		1		
.7910 1 13.2.1 153.70 .7865 1 12.4.4 156.66				
.7865 1 12.4.4 156.66	• / 995	1	10.0.0	131.03
.7820 1 12.5.3 160.08				
	.7820	1	12.5.3	160.08

Additional patterns

- PDF card 6-0371. [Div. Applied Physics Polytechnic Inst. of Brooklyn, N.Y. 1955], Fert [1962].
- 2.Staritzky [1956].

References

Bommer, H. (1939). Die Gitterkonstanten der C-Formen der Oxyde der Seltenen Erd-Metalle, Z. Anorg. Allgem. Chem. 241, 273-280.

Brauer, G. and H. Gradinger (1954). Über heterotype Mischphasen bei Seltenerdoxyden, I., Z. Anorg. Allgem. Chem. 276, 209-226.

Fert, A. [1962]. Structure de quelques oxydes de terre rares, Bull. Soc. Franc. Mineral. Crist. 85, 267-270.

Goldschmidt, V.M., T. Barth, and F. Ulrich (1925). Geochemische Verteilungsgesetze, der Element IV- Zur Krystallstruktur der Oxyde der Seltenen Erdmetalle, Skrifter Norske Videnskaps-Akad. Oslo I.Mat. Naturv. Kl. 1925, No.5.,1-24.

Pauling, L. and M.D. Shappell (1930). The crystal structure of bixbyite and the C-modification of the sesquioxides, Z. Krist. 75, 128-142.

Staritzky, E. (1956). Yttrium sesquioxide Y_2O_3 , Dysprosium sesquioxide Dy_2O_3 , Erbium sesquioxide Er_2O_3 , Ytterbium sesquioxide Yb_2O_3 , Anal Chem. 28, 2023.

Templeton, D.H. and C.H. Dauben (1954). Lattice parameters of some rare earth compounds and a set of crystal radii, J.Am. Chem. Soc. 76, 5237-5239.

CALCULATED POWDER PATTERNS

Aluminum Nickel, AlNi (cubic)

Structure

Becker and Ebert [1923]. Isostructural with CsI and CsCl. Atoms are in special positions:

A1: 0 0 0 Ni: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Space group

 $O_h^1 - Pm3m$ (221). Z=1 [ibid.].

Lattice constants

	a(Å)
Becker and Ebert (1923) Bradley and Taylor (1937) Guseva (1951)	2.83 2.887* 2.886*

^{*}from kX

The constant used was a=2.887

Density

(calculated) 5.913 g/cm³ at 25° C.

Calculated Pattern CuK α_1 $\lambda = 1.5405$ Å

d(Å)	$I\begin{pmatrix} Peak \\ height \end{pmatrix}$	hkl	20(°)
2.89	27	100	30.95
2.04	100	110	44.33
1.667	5	111	55.04
1.444	13	200	64.50
1.291	5	210	73.25
1.179	22	211	81.61
1.021	7	220	97.98
0.962	2	300	106.3
.913	10	310	115.1
.870	1	311	124.5
.833	3	222	135.1
.801	2	320	148.3

Additional patterns

1.PDF 2-1261 (Bradley and Taylor, 1937).

References

Becker, K. and E.Ebert (1923).Röntgenspektroskopie an Metallverbindungen, Z.Physik 16,165-169.

Bradley, A.T. and A.Taylor(1937). An x-ray analysis of the nickel-aluminium system, Proc. Roy. Soc.(London) Ser.A 159,56-72.

Guseva, L. N. (1951). On the nature of the β -phase in the nickel-aluminum system, Akad. Nauk SSSR, Doklady 77 , 415-418.

Brauer and Haucke (1936). Isostructural with CsCl; atoms in special positions:

Au: 0 0 0 Mg: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Space group

Oh-Pm3m (221). Z=1. (ibid.).

Lattice constants

		a(Å)
Brauer and Haucke	(1936)	3.266*

*from kX, for the composition at 48.7 atomic percent Mg.

Density

10.55 g/cm³, calculated using the lattice constant $a_0 = 3.266$ Å, and 50-50 atomic percents.

Calculated Pattern CuK α_1 λ = 1.5405 Å

$d(\mathring{A})$	$I\begin{pmatrix} Peak \\ height \end{pmatrix}$	hkl	20 (°)
3.27	82	100	27.28
2.31	100	110	38.97
1.886	20	111	48.22
1.633	15	200	56.29
1.461	24	210	63.65
1.333	28	211	70.58
1.155	9	220	83.68
1.089	11	300	90.07
1.033	12	310	96.45
0.985	7	311	102.9
.943	4	222	109.6
.906	7	320	116.5
.873	20	321	123.9
.816	3	400	141.2
.792	15	410	153.0

Additional patterns

1. PDF card 4-0796[Brauer and Haucke, 1936].

References

Brauer, G. and W. Haucke (1936). Kristallstruktur der intermetallischen Phasen MgAu und MgHg, Z.Physik. Chem. B33, 304-310.

Brauer and Haucke (1936). Isostructural with CsCl; atoms in special positions:

Hg: 0 0 0 Mg: $\frac{1}{2}$ $\frac{1}{2}$

Space group

 O_h^1 -Pm3m (221). Z=1. (ibid.).

Lattice constants

	a(Å)
Brauer and Haucke (1936)	3.449*

*from kX, for the composition at 50.8 atomic percent Mg.

Density

9.102 g/cm³, calculated using the lattice constant $a_0 = 3.449$ Å, and 50-50 atomic percents.

Additional patterns

1. PDF card 4-0775[Brauer and Haucke, 1936].

Calculated Pattern CuK a_1 λ = 1.5405 Å

0 WIN N = 1.0400 H			
d(Å)	$I\begin{pmatrix} Peak \\ height \end{pmatrix}$	hkl	20 (°)
3.45	80	100	25.81
2.44	100	110	36.82
1.991	20	111	45.51
1.724	15	200	53.06
1.542	25	210	59.92
1.408	28	211	66.33
1.219	8	220	78.35
1.150	11	300	84.13
1.091	11	310	89.86
1.040	6	311	95.58
0.996	3	222	101.4
.957	6	320	107.3
.922	16	321	113.4
.862	2	400	126.6
.837	10	410	134.1
.813	11	411	142.7
.791	6	331	153.5

References

Brauer, G. and W. Haucke (1936). Kristall-struktur der intermetallischen Phasen MgAu und MgHg, Z.Physik. Chem. B33, 304-310.

Laves and Wallbaum [1939]. Isostructural with CsCl; atoms in special positions:

Os: 0 0 0 Ti: ½ ½ ½

Space group

 O_h^1 -Pm3m (221). Z=1. (ibid.).

Lattice constants

		a(Å)
Jordan	(1955)	3.07
Dwight	(1959)	3.07

Density

(calculated) 13.66 g/cm³

Additional patterns

1. PDF 18-944 [Dwight, private comm.]

Calculated Pattern CuK α_1 $\lambda = 1.5405$ Å

d(Å)	$I\begin{pmatrix} Peak \\ height \end{pmatrix}$	hkl	20 (°)
3.07	50	100	29.1
2.17	100	110	41.6
1.77	12	111	51.5
1.54	14	200	60.2
1.37	14	210	68.2
1.25	26	211	75.8
1.09	8	220	90.4
1.02	7	300	97.6
0.971	12	310	105.0
.926	5	311	112.6
.886	4	222	120.7
.851	4	320	129.5
.820	21	321	139.7

References

Dwight, A. E. (1959). CsCl-type equiatomic phases in binary alloys of transition elements, Trans. AIME 215, 283-286.

Jordan, C. B. (1955). Crystal structure of TiRu and TiOs, J. Metals 7, 832-833.

Laves, F. and H. J. Wallbaum (1939). Zur Kristallchemie von Titan-Legierungen, Naturwissenschaften 27, 674-675.

Laves and Wallbaum (1939). Isostructural with CsCl; atoms in special positions:

Ru: 0 0 0 Ti: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Space group

 O_h^1 -Pm3m (221). Z=1. (ibid.).

Lattice constants

		a(Å)
Jordan	(1955)	3.06
Dwight	(1959)	3.070

The constant used was $a_0 = 3.06 \text{ Å}$.

Density

8.63 g/cm³ (calculated from $a_0 = 3.06 \text{ Å}$).

Additional patterns

1. PDF 18-1144 [Dwight, private comm.]

Calculated Pattern CuK a_1 λ = 1.5405 Å

d(Å)	$I\begin{pmatrix} Peak \\ height \end{pmatrix}$	hkl	20(°)
3.06	19	100	29.2
2.16	100	110	41.7
1.77	4	111	51.7
1.53	14	200	60.4
1.37	5	210	68.5
1.25 1.08 1.02 0.968 .923	24 7 2 11 2	211 220 300 310 311	76.1 90.8 98.1 105.5 113.2
.883 .849 .818	3 2 20	222 320 321	121.4 130.3 140.7

References

Dwight, A. E. (1959). CsCl-type equiatomic phases in binary alloys of transition elements, Trans. AIME 215, 283-286.

Jordan, C. B. (1955). Crystal structure of TiRu and TiOs, J. Metals 7, 832-833.

Laves, F. and H. J. Wallbaum (1939). Zur Kristallchemie von Titan-Legierungen, Naturwissenschaften 27, 674-675.

Dwight [1959]. Isostructural with CsCl; atoms in special positions:

Ag: 0 0 0 Gd: 글 글 글 글

Space group

 O_h^1 -Pm3m (221) Z=1. (ibid.).

Lattice constants

	a(Å)
Dwight (1959) Iandelli (1960) Baenziger and Moriarty (1961) Gschneidner (1965)	3.66 3.653 3.6476 3.6491

The constant used was $a_0 = 3.6483$ Å, the average of the last two values.

Density

9.065 g/cm³ (calculated from $a_0 = 3.6483 \text{Å}$.)

Calculated Pattern CuK α_1 λ = 1.5405 Å

$d(\mathring{A})$	$I\begin{pmatrix} Peak \\ height \end{pmatrix}$	hkl	20(°)
3.648	3	100	24.38
2.580	100	110	34.74
2.106	<1	111	42.90
1.824	15	200	49.95
1.632	1	210	56.34
	_		30.34
1.489	28	211	62.28
1.290	8	220	73.33
1.216	<1	300	78.60
1.154	11	310	83.77
1.100	<1	311	88.89
1.053	3	222	94.00
1.012	<1	320	99.14
0.9750	13	321	104.36
.9121	2	400	115.24
.8848	<1	410	121.03
.8599	9	411	127.20
.8370	<1	331	133.93
.8158	6	420	141.53
.7961	<1	421	150.70

References

Baenziger, N.J. and J.L. Moriarty, Jr. (1961). Gadolinium and dysprosium intermetallic phases. II. Laves phases and other structure types, Acta Cryst. 14 948-950.

Dwight, A. E. (1959). CsCl-type equiatomic phases in binary alloys of transition elements, Trans. AIME 215, 283-286.

Gschneidner, K.A. Jr. (1965). Crystal Structures of some equiatomic gadolinium compounds, Acta Cryst. 18, 1082-1083.

Iandelli, A.(1960). Su alcuni composti intermetallici e semimetallici del Gadolinio, Atti Accad. Nazl. Lincei Rend. Classe Sci. Fis. Mat. Nat. 29, 62-69.

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, 3, 4, 5, and 6⁵

	Vol. or		V	701. or	
	sec.	Page		sec.	Page
Aluminum, Al	1	11	Ammonium iron sulfate dodecahydrate,		
Aluminum antimony, AlSb	4	72	NH ₄ Fe(SO ₄) ₂ ·12H ₂ O	6	10
Aluminum calcium sulfate hydrate (ettring-			Ammonium manganese(II) trifluoride, NH4MnF3	5m	8
ite), Al ₂ O ₃ ·6CaO·3SO ₃ ·31H ₂ O	8	3	Ammonium mercury(II) trichloride, NH4HgCl,	5m	9
Aluminum chloride hexahydrate (chlor-			Ammonium metavanadate, NH ₄ VO ₃	8	9
aluminite), AlCl ₃ ·6H ₂ O	7	3	Ammonium nickel (II) trichloride, NH4NiCl3	6m	6
Aluminum fluosilicate, topaz, Al ₂ SiO ₄ (F,OH) ₂	1m	4	Ammonium nitrate (ammonia-niter), NH ₄ NO ₃	7	4
Aluminum metaphosphate, Al(PO ₃),	2m	3	Ammonium oxalate monohydrate (oxammite),		_
Aluminum nickel, AlNi	6m	82	(NH ₄) ₂ C ₂ O ₄ ·H ₂ O	7	5
Aluminum orthophosphate (berlinite), AlPO			Ammonium perchlorate, NH ₄ ClO ₄ (ortho-	•	U
(trigonal)	10	3	rhombic)	7	6
Aluminum orthophosphate, AlPO, (ortho-			Ammonium perrhenate, NH ₄ ReO ₄	9	7
rhombic)	10	4	Ammonium phosphomolybdate tetrahydrate,	J	•
Aluminum oxide, (corundum), alpha Al,O,	9	3		8	10
Aluminum oxide monohydrate (böhmite), alpha	Ü	Ŭ	(NH ₄) ₃ PO ₄ (MoO ₃) ₁₂ ·4H ₂ O	0	10
Al ₂ O ₃ ·H ₂ O · · · · · · · · · · · · · · · · · · ·	3	38		0	0
Aluminum oxide monohydrate, diaspore, beta	· ·	30	(revised)	9	8
Al ₂ O ₃ ·H ₂ O	3	41	Ammonium zirconium fluoride, (NH ₄) ₃ ZrF ₇	6	14
Aluminum silicate (mullite) 3A1 ₂ O ₃ ·2SiO ₂	3m	3	Antimony, Sb	3	14
Ammonium aluminum sulfate dodecahydrate	0111	3	Antimony(III) fluoride, SbF ₃	2m	4
(teschermigite), NH ₄ Al(SO ₄) ₂ ·12H ₂ O	6	3	Antimony(III) iodide, SbI ₃	6	16
Ammonium azide, NH ₄ N ₁ ,	9	4	Antimony(III) oxide (senarmontite), Sb ₂ O ₃		
Ammonium bicarbonate (teschemacherite),	3	7	(cubic)	3	31
(NH ₄)HCO ₃	9	5	Antimony(III) oxide, valentinite, Sb ₂ O ₃		
Ammonium bromide, NH ₄ Br	2		(orthorhombic)	10	6
		49	Antimony(IV) oxide (cervantite), Sb ₂ O ₄	10	8
Ammonium bromoosmate, (NH ₄) ₂ OsBr ₆	3	71	Antimony(V) oxide, Sb ₂ O ₅	10	10
Ammonium bromoplatinate, (NH ₄),PtBr ₆	9	6	Antimony scandium, SbSc	4m	44
Ammonium bromoselenate, (NH ₄) ₂ SeBr ₆	8	4	Antimony selenide, Sb ₂ Se ₃	3m	7
Ammonium bromotellurate, (NH ₄) ₂ TeBr ₆	8	5	Antimony (III) sulfide (stibnite), Sb ₂ S ₃	5	6
Ammonium cadmium trichloride, NH ₄ CdCl ₃	5m	6	Antimony telluride, Sb ₂ Te ₃	3m	8
Ammonium chloride (sal-ammoniac), NH ₄ Cl	1	59	Antimony terbium, SbTb	5m	61
Ammonium chloroiridate, (NH ₄), IrCl ₅	8	6	Antimony thorium, SbTh	4m	44
Ammonium chloroosmate, (NH ₄) ₂ OsCl ₆	1m	6	Antimony thulium, SbTm	4m	45
Ammonium chloropalladate, (NH ₄) ₂ PdCl ₆	8	7	Antimony ytterbium, SbYb	4m	45
Ammonium chloropalladite, (NH ₄) ₂ PdCl ₄	6	6	Antimony yttrium, SbY	4m	46
Ammonium chloroplatinate, (NH ₄), PtCl ₆	5	3	Arsenic, As	3	6
Ammonium chlorostannate (NH ₄) ₂ SnCl ₆	5	4	Arsenic(III) iodide, AsI,	6	17
Ammonium chlorotellurate, (NH ₄) ₂ TeCl ₆	8	8	Arsenic trioxide (arsenolite), As ₂ O ₃ (cubic)	1	51
Ammonium chromium sulfate dodecahydrate,			Arsenic trioxide, claudetite, As ₂ O ₃ (mono-		
NH ₄ Cr(SO ₄) ₂ ·12H ₂ O	6	7	clinic)	3m	9
Ammonium cobalt (II) trichloride, NH ₄ CoCl ₃	6m	5	Barium, Ba	4	7
Ammonium dihydrogen phosphate, NH ₄ H ₂ PO ₄	4	64	Barium aluminum oxide, BaAl ₂ O ₄	5m	11
Ammonium fluoberyllate, (NH ₄), BeF ₄	3m	5	Barium arsenate, Ba ₃ (AsO ₄) ₂	2m	6
Ammonium fluoborate, NH ₄ BF ₄	3m	6	Barium boron oxide, high form, BaB ₂ O ₄	4m	4
Ammonium fluogermanate, (NH ₄), GeF ₆	6	8	Barium boron oxide, BaB ₄ O ₇	4m	6
Ammonium fluosilicate (cryptohalite),			Barium bromide monohydrate, BaBr ₂ ·H ₂ O	3m	10
$(NH_4)_2SiF_6$	5	5	Barium carbonate (witherite), BaCO, (ortho-		
Ammonium gallium sulfate dodecahydrate,			rhombic)	2	54
NH ₄ Ga(SO ₄) ₂ · 12H ₂ O	6	9	Barium carbonate, BaCO ₃ (cubic) at 1075 °C	10	11
Ammonium iodide, NH ₄ I	4	56	Barium fluoride, BaF ₂	1	70
			Barium fluosilicate, BaSiF ₆	4m	7
			Barium molybdate, BaMoO ₄	7	7
Further work on this program is in progress, and	d it is an	tic-	Barium nitrate (nitrobarite), Ba(NO ₃) ₂	1	81
ipated that additional sections will be issued. The			Barium perchlorate trihydrate, Ba(ClO ₄) ₂ ·3H ₂ O	2m	7
cumulative index here is not necessarily the conclu-			Barium peroxide, BaO ₂	6	18
the project.			Barium selenide, BaSe	5m	61
m-Monograph 25.			Barium stannate, BaSnO ₃	3m	11
A mineral name in () indicates a synthetic samp	le.		Barium sulfate (barite), BaSO ₄	3	65
			Darrum surface (Darrie), DasO ₄	3	00

v	ol. or		v	ol. or	
	sec.	Page		sec.	Page
Barium sulfide, BaS	7	8	Calcium carbonate (aragonite), CaCO, (or-		
Barium titanate, BaTiO,	3	45	thorhombic)	3	53
Barium tungstate, BaWO4	7	9	Calcium carbonate (calcite) CaCO, (hexagonal)	2	51
Barium zirconate, BaZrO ₃	5	8	Calcium chromate, CaCrO ₄	7	13
Beryllium aluminum oxide (chrysoberyl),			Calcium chromium germanate, Ca ₃ Cr ₂ (GeO ₄) ₃	10	16
BeAl ₂ O ₄	9	10	Calcium chromium silicate (uvarovite),		
Beryllium aluminum silicate, beryl,			$\operatorname{Ca_3Cr_2(SiO_4)_3}$	10	17
$\operatorname{Be}_{3}\operatorname{Al}_{2}(\operatorname{SiO}_{3})_{6}$	9	13	Calcium fluoride (fluorite), CaF ₂	1	69
Beryllium chromium oxide, BeCr ₂ O ₄	10	12	Calcium fluoride phosphate (fluorapatite),		
Beryllium cobalt, BeCo	5m	62	$\operatorname{Ca}_{5}\operatorname{F}(\operatorname{PO}_{4})_{3}\ldots$	3m	22
Beryllium germanate, Be ₂ GeO ₄	10	13	Calcium formate, Ca(HCO ₂) ₂	8	16
Beryllium orthosilicate, phenacite, BeSi ₂ O ₄	8	11	Calcium gallium germanate, Ca ₃ Ga ₂ (GeO ₄) ₃	10	18
Beryllium oxide (bromellite), BeO	1 5m	36 62	Calcium hydroxide (portlandite), Ca(OH),	1	58
Bis (o-dodecacarborane), $C_4B_{20}H_{22}$	5m 6m	7	Calcium iron germanate, Ca ₃ Fe ₂ (GeO ₄) ₃	10	19
Bismuth, Bi	3	20	Calcium iron silicate (andradite),	0	99
Bismuth cerium, BiCe	4m	46	Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22
Bismuth dysprosium, BiDy	4m	47	Calcium magnesium silicate (diopside), CaMg(SiO ₃),	5m	17
Bismuth erbium, BiEr	4m	47	Calcium molybdate (powellite), CaMoO ₄	5m 6	17 22
Bismuth fluoride, BiF ₃	1m	7	Calcium nitrate, Ca (NO ₃) ₂	7	14
Bismuth holmium, BiHo	4m	48	Calcium oxide, CaO	1	43
Bismuth(III) iodide, BiI,	6	20	Calcium selenide, CaSe	5m	64
Bismuth lanthanum, BiLa	4m	48	Calcium sulfate (anhydrite), CaSO.	4	65
Bismuth neodymium, BiNd	4m	49	Calcium sulfide (oldhamite), CaS	7	15
Bismuth orthophosphate, BiPO ₄ (monoclinic)	3m	11	Calcium telluride, CaTe	4m	50
Bismuth orthophosphate, BiPO ₄ (trigonal)	3m	13	Calcium tungstate, scheelite, CaWO	6	23
Bismuth orthovanadate, low form, BiVO ₄			Carbon, diamond, C	2	5
(tetragonal)	3m	14	Cerium, antimony CeSb	4m	40
Bismuth orthovanadate, high form, BiVO ₄			Cerium arsenate, CeAsO ₄	4m	8
(monoclinic)	3m	14	Cerium arsenide, CeAs	4m	51
Bismuth oxybromide, BiOBr	8	14	Cerium(III) chloride, CeCl ₃	1m	8
Bismuth oxychloride (bismoclite), BiOCl	4	54	Cerium(III) fluoride, CeF,	8	17
Bismuth oxylodide, BiOI	9	16	Cerium magnesium, CeMg	5m	65
Bismuth praseodymium, BiPr	4m	49	Cerium magnesium nitrate 24-hydrate,		
Bismuth sulfide (bismuthinite), Bi ₂ S ₃ (revised)	5m	13	$\operatorname{Ce_2Mg_3(NO_3)_{12}} \cdot 24\operatorname{H_2O} \dots$	10	20
Bismuth telluride, BiTe	4m	50	Cerium niobium titanium oxide (eschynite),		
Bismuth telluride (tellurobismuthite), Bi,Te,	3m	16	CeNbTiO ₆	3m	24
Bismuth trioxide (bismite), alpha Bi ₂ O ₃ Cadmium, Cd	3	16	Cerium nitride, CeN	4m	51
Cadmium bromide, CdBr,	3 9	10 17	Cerium(IV) oxide (cerianite), CeO,	1	56
Cadmium carbonate (otavite), CdCO,	7	11	Cerium phosphide, CeP	4m	52
Cadmium cerium, CdCe	5m	63	Cerium(III) vanadate, CeVO ₄	1m	9
Cadmium chloride, CdCl ₂	9	18	Cerium zinc, CeZn	5m	65
Cadmium chromite, CdCr ₂ O ₄	5m	16	CsAl(SO ₄),·12H ₂ O	6	25
Cadmium cyanide, Cd(CN),	2m	8	Cesium bromate, CsBrO ₃	8	18
Cadmium lanthanum, CdLa	5m	63	Cesium bromide, CsBr	3	49
Cadmium molybdate, CdMoO ₄	6	21	Cesium bromoosmate(IV), Cs ₂ OsBr ₆	2m	10
Cadmium oxide, CdO	2	27	Cesium bromoplatinate, Cs ₂ PtBr ₆	8	19
Cadmium perchlorate hexahydrate,			Cesium bromoselenate, Cs, SeBr,	8	20
Cd(ClO ₄),·6H,O	3m	19	Cesium bromotellurate, Cs. TeBr.	9	24
Cadmium praseodymium, CdPr	5m	64	Cesium cadmium trichloride, CsCdCl,		
Cadmium selenide, CdSe (hexagonal)	7	12	(hexagonal)	5m	19
Cadmium sulfate, CdSO ₄	3m	20	Cesium calcium trichloride, CsCaCl,	5m	21
Cadmium sulfate hydrate, 3CdSO ₄ ·8H ₂ O · · · · ·	6m	8	Cesium chlorate, CsClO,	8	20
Cadmium sulfate monohydrate, CdSO ₄ ·H ₂ O	6m	10	Cesium chloride, CsCl	2	44
Cadmium sulfide (greenockite), CdS	4	15	Cesium chloroosmate(IV), Cs ₂ OsCl ₆	2m	11
Cadmium telluride, CdTe	3m	21	Cesium chloroplatinate, Cs ₂ PtCl ₆	5	14
Cadmium tungstate, CdWO ₄	2m	8	Cesium chlorostannate, Cs ₂ SnCl ₆	5	16
tri-Calcium aluminate, 3CaO·Al ₂ O ₃	5	10	Cesium chromate, Cs ₂ CrO ₄	3m	25
Calcium aluminate, 12CaO·7A1,O ₁	9 10	20 15	Cesium chromium sulfate dodecahydrate,	_	0.1
Calcium bromide hexahydrate, Ca ₃ A ₁₂ (GeO ₄),	10 8	15 15	CsCr(SO ₄) ₂ ·12H ₂ O	8 6m	21 11
Carorum bromide nevanyurate, Cabi, on,	0	15	Cesium cobalt (II) trichloride, CsCoCl ₃	6m 5m	22
			Cesium copper(II) trichloride, CsCuCl, Cesium dichloroiodide, CsICl,	5m 3	50
m-Monograph 25.			Cesium fluoantimonate, CsSbF ₆	4m	9
A mineral name in () indicates a synthetic sample			Cesium fluodattinonate, CSBF ₄	8	22
, , , , , , , , , , , , , , , , , , ,			Contain travolorate, Contain t	J	

Ţ	ol. or			Vol. or	
	sec.	Page		sec.	Page
Cesium fluogermanate, Cs ₂ GeF ₆	5	17	Dysprosium arsenide, DyAs	4m	53
Cesium fluoplatinate, Cs ₂ PtF ₆	6	27	Dysprosium gallium oxide, Dy,Ga,(GaO,),	2m	15
Cesium fluoride, CsF	3m	26	Dysprosium nitride, DyN	4m	53
Cesium fluosilicate, Cs ₂ SiF ₆	5	19	Dysprosium sesquioxide, Dy ₂ O ₃	9	30
Cesium gallium sulfate dodecahydrate,			Dysprosium telluride, DyTe	4m	54
$CsGa(SO_4)_2 \cdot 12H_2O \dots$	8	23	Dysprosium vanadate, DyVO ₄	4m	15
Cesium iodide, CsI	4	47	Erbium antimony, ErSb	4m	41
Cesium iron sulfate dodecahydrate,			Erbium arsenate, ErAsO ₄	3m	31
CsFe(SO ₄) ₂ ·12H ₂ O	6	28	Erbium arsenide, ErAs	4m	54
Cesium lead(II) trichloride, CsPbCl,			Erbium gallium oxide, Er, Ga, (GaO,),	1m	12
(tetragonal)	5m	24	Erbium manganite, ErMnO,	2m	16
Cesium nickel (II) trichloride, CsNiCl,	6m	12	Erbium nitride, ErN	4m	55
Cesium nitrate, CsNO ₃	9	25	Erbium phosphate, ErPO4	9	31
Cesium perchlorate, CsClO ₄ , (orthorhombic)	1m	10	Erbium sesquioxide, Er ₂ O ₃	8	25
Cesium strontium trichloride, CsSrCl ₃	6m	13	Erbium telluride, ErTe	4m	55
Cesium sulfate Cs,SO.	7	17	Erbium vanadate, ErVO	5m	29
Cesium vanadium sulfate dodecahydrate,			Europium arsenate, EuAsO	3m	32
CsV(SO ₄) ₂ ·12H ₂ O	1m	11	Europium(III) chloride, EuCl ₃	1m	13
Chromium, Cr.	_ 5	20	Europium gallium oxide, Eu, Ga, (GaO ₂),	2m	17
Chromium(III) fluoride trihydrate, CrF, 3H,O	5m	25	Europium nitride, EuN	4m	56
Chromium iridium 3:1, Cr ₃ Ir	6m	14	Europium oxide, EuO	4m	56
Chromium orthophosphate, alpha, CrPO	2m	12	Europium oxychloride, EuOCl	1m	13
Chromium orthophosphate, beta, CrPO ₄	9	26	Europium(III) vanadate, EuVO ₄	4m	16
Chromium(III) oxide, Cr ₂ O ₃	5	22	Gadolinium antimony, GdSb	4m	42
Chromium rhodium 3:1, Cr,Rh	6m	15	Gadolinium arsenate, GdAsO ₄	4m	17
Chromium silicide, Cr,Si	6	29	Gadolinium arsenide, GdAs	4m	57
Cobalt, Co (cubic)	4m	10	Gadolinium fluoride, GdF,	1m	14
Cobalt aluminum oxide, CoAl,O.	9	27	Gadolinium gallium oxide, Gd,Ga,(GaO,),	2m	18
Cobalt argonida (akutta midita). Co Ag	5m	26	Gadolinium indium, GdIn	5m	67
Cobalt arsenide (skutterudite), CoAs, Cobalt(II) carbonate (spherocobaltite),	10	21	Gadolinium nitride, GdN	4m	57
CoCO,	10	24	Gadolinium oxide, Gd ₂ O ₃	1m	16 17
Cobalt diarsenide, CoAs, (revised)	10 4m	10	Gadolinium vanadate, GdVO ₄	1m 5m	30
Cobalt fluosilicate hexahydrate,	4111	10	Gallium, Ga		9
CoSiF ₆ ·6H ₂ O	3m	27	Gallium arsenide, GaAs		33
Cobalt gallate, CoGa,O4	10	27	Gallium antimonide, GaSb		30
Cobalt germanate, Co ₂ GeO ₄	10	27	Gallium oxide, alpha, Ga,O,	4	25
Cobalt iodide, CoI,	4m	52	Gallium phosphate (~quartz type), GaPO ₄	8	27
Cobalt iron arsenide (safflorite), CoFeAs	10	28	Germanium, Ge	1	18
Cobalt mercury thiocyanate, Co[Hg(CNS)]	2m	13	Germanium dioxide, GeO, (hexagonal)	•	10
Cobalt(II) oxide, CoO	9	28	(low form)	1	51
Cobalt(II, III) oxide, Co ₃ O ₄	9	29	Germanium dioxide, GeO ₂ (tetragonal)	•	0.1
Cobalt perchlorate hexahydrate,			(high form)	8	28
Co(ClO ₄) ₂ ·6H ₂ O	3m	28	Germanium iodide, GeI ₂		58
Cobalt silicate, Co ₂ SiO ₄ (orthorhombic)	4m	11	Germanium(IV) iodide, GeI,		25
Cobalt sulfate, beta, CoSO ₄	2m	14	Gold, Au		33
Cobalt titanate, CoTiO,	4m	13	Gold antimony 1:2 (aurostibite), AuSb ₂		18
Cobalt tungstate, CoWO4	4m	13	Gold dysprosium, AuDy		66
Copper, Cu	1	15	Gold(I) cyanide, AuCN		33
Copper antimony oxide, CuSb ₂ O ₆	5m	27	Gold holmium, AuHo		68
Copper(I) bromide, CuBr	4	36	Gold magnesium, AuMg		83
Copper carbonate, basic, azurite,			Gold niobium 1:3, AuNb ₃		16
CU ₃ (OH) ₂ (CO ₃),	10	30	Gold tin, 1:1 AuSn	7	19
Copper carbonate, basic, (malachite),			Gold titanium 1:3, AuTi,		17
CU ₂ (OH),CO,	10	31	Gold vanadium 1:3, AuV ₃		18
Copper(I) chloride (mantokite), CuCl	10	35	Hafnium, Hf	3	18
Copper(I) iodide (marchite), CuI	4	38	Holmium arsenate, HoAsO ₄	3m	34
Copper (I) oxide (cuprite), Cu ₂ O	2	23	Holmium ethylsulfate nonahydrate,		
Copper Sulfate (chalcoayenite) Cuso	1	49	$Ho[(C_2H_5)SO_4]_3 \cdot 9H_2O \cdot \cdot \cdot \cdot$		18
Copper sulfate (chalcocyanite), CuSO ₄	3m	29	Holmium nitride, HoN	4m	58
Copper(II) sulfide (covellite), CuS	4 4m	13	Holmium selenide, HoSe		59
Dysprosium antimony, DySb	4m	41	Holmium sesquioxide, Ho ₂ O ₃		32
Dy optostum arsenate, Dy AsO4	3m	30	Holmium vanadate, HoVO4		18
m-Monograph 25.			Indium, In		12
A mineral name in () indicates a synthetic sample			Indium antimony, InSb		73
m () moreates a synthetic sample			Indium arsenide, InAs	3m	35

Sec. Page Company	V	o1. or			Vol. or	
Indian phosphate, InPO		sec.	Page		sec.	Page
Indianal Continuity 1.5 28		5			1m	
Indiam I					6m	
Iridium ficioside, IrO,					6m	
Iridium alloside, IrO,					7	
Iridium inobium 1:3, 17Nb,		4			1m	
Indium uttanium 1:3, IrTi,		4m			8	34
Indium vanadum 13, IrV,		6m	19			
Iron arsenide, FeAs		6m			4m	21
Iron arsenide FeAs	Iridium vanadium 1:3, IrV ₃	6m	21		3m	
Iron tromide, FeBr,	Iron, alpha Fe	4			6m	
Into normide, FeBr.		1m	19		4m	22
Iron icidide, FeI_	Iron arsenide (loellingite), FeAs ₂	10	34			
		4m	59		2m	20
Iron sulfide (pyrite), FeS, 5 29	Iron iodide, FeI ₂	4m	60		1m	25
Lanthanum arsenate, LaAsO, 3m 36 Lutetium gallium oxide, Lu, Ga, (GaO ₂), 2m 23 Lanthanum arsenate, LaAsO, 4m 60 Lutetium mirride, LuNnO, 2m 62 2m 23 Lanthanum broate, LaBO, 1m 20 Lutetium oxide, Lu,O, 1m 27 Lanthanum chloride, LaC1, 1m 20 Lanthanum garesium, LaMe 5m 69 Lanthanum magnesium, LaMe 5m 69 Lanthanum magnesium, LaMe 5m 69 Lanthanum magnesium, LaMe 6m	Iron(II,III) oxide (magnetite), Fe ₃ O ₄	5m	31		2m	20
Lanthanum arsenide, LaAs	Iron sulfide (pyrite), FeS_2	5	29		5m	
Lanthanum broate, LaAS	Lanthanum antimony, LaSb	4m	42		2m	
Lanthanum horate, LaBO, 1m 20 Lanthanum fuloride, LaCi, 1m 20 Lanthanum fuloride, LaCi, 1m 20 Lanthanum magnesium, LaMg 5m 69 Lanthanum magnesium, LaMg 5m 69 Lanthanum magnesium intrate 24-hydrate, Lanthanum minobium titanium oxide, LaNbTiO, 3m 37 Lanthanum minobium titanium oxide, LaNbTiO, 3m 37 Lanthanum oxide, LaQo, 3m 33 Lanthanum oxide, LaPo, 5m 69 Lanthanum oxide, LaBe, 5m 69 Lanthanum oxide, LaPo, 5m 69 Lanthanum oxide, LaPo, 1m 22 Lanthanum selenide, LaSe. 4m 61 Lanthanum siler, LaZn 5m 70 Lead romide, PbB,O, 1m 3m 41 Lanthanum siler, LaSe, 4m 61 Lanthanum	Lanthanum arsenate, LaAsO ₄	3m	36		2m	
Lanthanum thoride, LaCi,	Lanthanum arsenide, LaAs	4m	60		4m	62
Lanthanum magnesium. LaMg 5m 69 Magnesium aluminate (spinel), MgAl, O. 2 35 Lanthanum magnesium nitrate 24-hydrate, La,Mg,(NO,),, 2+H,O. 1m 22 Lanthanum nitride, LaN 10 4m 61 Lanthanum nitride, LaN 10 4m 61 Lanthanum nitride, LaN 10 4m 61 Lanthanum oxide, LaQ, 3 33 Lanthanum oxide, LaQ, 3 33 Lanthanum oxide, LaQ, 3 33 Lanthanum oxide, LaP, 5m 69 Lanthanum phosphide, LaP 5m 69 Lanthanum selenide, LaSe 4m 61 Lanthanum zinc, LaZn 5m 70 Lanthanum zinc, LaZn 5m 70 Lead boron oxide, PbBQ, 4m 19 Lead boron oxide, PbBQ, 4m 19 Lead boron oxide, PbBQ, 2 4m 19 Lead boronide, PbB, 0, 2 4m 19 Lead dornate, Pb(HCO,), 8 30 Lead fluoride, alpha PbF, (orthorhombic) 5 31 Lead fluoride, beta PbF, (cubic) 5 33 Lead monoxide (litharge), PbO (red) tetragonal (orthorhombic) 4 22 Lead monoxide (minium), PbQ, 8 34 Lead orthorhombic) 5 34 Lead monoxide (minium), PbQ, 8 34 Lead orthorhombic) 6 3 34 Lead orthorhombic) 7 32 Lead orthorhombic) 8 32 Lead monoxide (minium), PbQ, 8 34 Lead sulfate (anglesite), PbSQ, 3 67 Lead sulfate (calustalite), PbSS 5 8 34 Le	Lanthanum borate, LaBO,	1m	20		1m	27
Lanthanum magnesium, LaMg Lanthanum magnesium, LaMg Lanthanum magnesium nitrate 24-hydrate, La_Mg_(NO_1), 24H_O Lanthanum mitrate 24-hydrate, La_Mg_(NO_1), 22H_O Lanthanum nitrate, LaN Lanthanum nitrate, LaN Lanthanum oxide, LaNbTIQ Lanthanum oxide, LaQ, Lanthanum oxide, LaQ, Lanthanum oxide, LaQ, Lanthanum oxychloride, LaOC 7 Lanthanum oxychloride, LaP 5m 6m Lanthanum selenide, LaSe 4m Lanthanum selenide, LaSe 4m Lanthanum selenide, LaSe 4m Lanthanum side, LaP 5m 70 Lead bromide, PBLQ, 4m 19 Lead bromide, PBLQ, 4m 19 Lead bromide, PBLS, Lead chronate (cernissite), PbCQ, 20 Lead bromide, PBLS, Lead cloride (cotunnite), PbCl, 21 Lead fluoride, alpha PBF, (orthorhombie) 5m Lead fluoride, beta PBF, (cubic) 5m Clead fluoride, beta PBF, (cubic) 5m Clead monoxide (massicot), PbC (yellow) 6rd (cotunnite), PbC, (cubic) 5m Clead monoxide (minium), PbQ, 8m 3d Lead monoxide (minium), PbQ, 8m 3d Lead onoxide (minium), PbQ, 8m 3d Lead onoxide (minium), PbQ, 8m 3d Lead sulfate (auglestite), PbSQ 3d Magnesium sulfate fluoride (humite), 3d Magnesium sulfate fluoride (hum	Lanthanum chloride, LaCl,	1m	20		5m	37
Lanthanum magnesium, LaMg Lanthanum magnesium mittrate 24-hydrate, La_Mg_i(NO_i)_2-24H_iO Lanthanum mittrate 24-hydrate, La_Mg_i(NO_i)_2-24H_iO Lanthanum mittrate, Lanthanum mittrate, Lanthanum mittrate, Lanthanum mittrate, Lanthanum mittrate, Lanthanum oxide, Lanthanum boxphide, Lanthanum boxphide, LaP Lanthanum selenide, LaSe 4m 61 Magnesium aluminum silicate (dov cordierite), Mg,A,[SiQ ₄), (rothorhombic) 4m 62 Magnesium aluminum silicate (hyrote-ordierite), Mg,A,[SiQ ₄), (rothorhombic big ordierite), Mg,A,[SiQ ₄), (rothorhombic big ordierite), Mg,BQ, (rothorhombic big ordierite), Mg,CQ, 7 28 Magnesium selenide, LaSe 4m Magnesium selenide, Mg,SQ, (rothorhombic big ordierite), Mg,CQ, 7 23 Magnesium fluoride (sellatite), Mg,CQ, 1 37 Magnesium selenide, Mg,SQ, (rothorhombic) 4m Magnesiu		7	21	Magnesium, Mg	1	10
Lanthanum magnesium nitrate 24-hydrate, La,Mg,(NO,), 24H,O,O. 1m 22		5m	69	Magnesium aluminate (spinel), MgAl ₂ O ₄	2	35
Lankhanum nibnium titanium oxide, LaNbTiQ, am 4m 224 Lanthanum nibnium titanium oxide, LaNbTiQ, am 4m 61 Lanthanum oxide, La,Q, am 3m						
Lanthanum nitoride LaN 4m 61 61 61 61 61 61 61 6		1m	22	$Mg_3Al_2(SiO_4)_3$	4m	24
Lanthanum nitride, LaN				Magnesium aluminum silicate (low cordi-		
Lanthanum oxychloride, LaOCl. 7 7 22 Lanthanum oxychloride, LaOCl. 7 7 22 Lanthanum phosphide, LaP 5m 69 Lanthanum selenide, LaSe 4m 61 Lanthanum zinc, LaZn 5m 70 Lead, Pb. 1 34 Lead bromide, PbB,O, 4m 19 Lead bromide, PbB,O, 4m 19 Lead bromide, PbB,O, 2 2 Lead carbonate (cerrussite), PbCO, 2 2 Lead carbonate (cerrussite), PbCO, 2 2 Lead carbonate (cerrussite), PbCO, 3 8 Lead fluoride, elaPb F, (cubic) 5 31 Lead fluoride, beta PbF, (cubic) 5 31 Lead fluoride, beta PbF, (cubic) 5 34 Lead molybdate (wilfenite), PbMOO, 7 7 Lead molybdate (wilfenite), PbMOO, 7 7 Lead monoxide (litharge), PbO (red) tetragonal (cutarte, PbKO), 8 32 Lead (III) oxide (minium), Pb,O, 8 32 Lead (III) oxide (minium), Pb,O, 8 33 Lead selenide (clausthalite), PbSe 5 34 Lead sulfide (galena), PbS 2 18 Lead sulfide (galena), PbS 2 18 Lead sulfide (galena), PbS 2 18 Lead tungstate (stolzite), PbWO, (tetragonal) (revised) 5 34 Lead tungstate (stolzite), PbWO, (tetragonal) 67 Lead moritate, PbTNO, 5 34 Lead tungstate (stolzite), PbWO, (tetragonal) (revised) 5 34 Lithium arsenate, Li,ASO, 2m 19 Manganese bromide (MBFs, 4m 20 Magnesium sulficate fluoride (humite), 2m 20 Magnesium sulficate (galexite), MaCO, 7 30 Magnesium tungstate, MgWO, 11 Magnesium sulficate (galexite), MaCO, 7 30 Magnesium sulficate (galexite), MaCO, 7 30 Magnesium sulficate (galexite), MaCO, 7 30 Magnesium sulficate (galexite), MaCO, 9 36 Lithium fluoride, LiCl 1 1 62 Magnesium sulficate (forsterite), MgCO, 7					1m	28
Lanthanum poksphide, LaP			_			
Lanthanum phosphide, LaP				erite), Mg,Al,Si,O,, (hexagonal)	1m	29
Lanthanum selenide, LaSe				Magnesium ammonium phosphate hexahy-		
Lead Nome Lead				drate (struvite), $MgNH_4PO_4 \cdot 6H_9O \cdot \cdot \cdot \cdot \cdot$	3m	41
Lead, Pb. 1 34 Magnesium bromide, MgBy. 4m 66 62 Lead boron oxide, PbB,O, 4m 19 Magnesium chromite (magnesite), MgCO, 7 28 Lead boronotale, PbBr, 2 47 MgCr,O. 9 34 Lead chronide (cotunnite), PbCO, 2 56 Magnesium chromite (picrochromite), 9 34 Lead floroide (cotunnite), PbCO, 2 45 Magnesium gallate, MgGa,O. 10 36 Lead fluoride, alpha PbF, (orthorhombic) 5 31 Magnesium germanate, Mg,GeO, (orthorhombic) 10 38 Lead fluoride, alpha PbF, (orthorhombic) 5 31 Magnesium germanate, Mg,GeO, (orthorhombic) 10 38 Lead monoxide (wifenite), PbMoO, 7 23 Magnesium oxide (periclase), MgO (Pol,O), 6 30 Lead monoxide (wifenite), PbMoO, 7 23 Magnesium selenide, MgSe. 5m 70 (orthorhombic) 2 32 Magnesium selenide, MgSe. 5m 70 (bad monoxide (massicot), PbO (yellow) (orthorhombic)					4m	
Lead boron oxide, PbB ₂ O, 4m 19 Magnesium carbonate (magneshte), MgCO, 7 28 Lead carbonate (cerrussite), PbCO ₃ 2 56 Magnesium chromite (picrochromite), BGC ₁ , 2 45 Magnesium chromite (picrochromite), MgCC ₂ O ₄ 9 34 Lead chloride (cotunnite), PbCO ₃ 2 45 Magnesium gallate, MgCa ₂ O ₄ 10 36 Lead fluoride (matlockite), PbFCl 1 76 Magnesium gallate, MgCa ₂ O ₄ (cubic) 10 37 Lead fluoride, elapha PbF ₂ (cubic) 5 31 Magnesium germanate, Mg,GeO ₄ (crubic) 10 37 Lead fluoride, beta PbF ₂ (cubic) 5 33 Thombic) 10 Magnesium germanate, Mg,GeO ₄ (crubic) 10 37 Magnesium sermanate, Mg,GeO ₄ (crubic) 10 38 Magnesium sermanate, Mg,GeO ₄ (crubic) 10 37 Magnesium sermanate, Mg,GeO ₄ (crubic) 10 38 Magnes				Magnesium bromide, MgBr ₂	4m	62
Lead bromide, PbEr,					7	28
Lead carbonate (cerrussite), PbCO ₂ , 2 45 Lead chloride (cotunnite), PbCI ₂ , 2 45 Lead chloride (cotunnite), PbCI ₃ , 8 30 Lead fluoride (matlockite), PbFCI ₄ , 1 76 Lead fluoride, alpha PbF ₂ (cothorhombic). 5 31 Lead fluoride, alpha PbF ₂ (cothorhombic). 5 31 Lead fluoride, beta PbF ₂ (cubic). 5 33 Lead fluoride, beta PbF ₂ (cothorhombic). 5 31 Lead fluoride, beta PbF ₂ (cothorhombic). 5 33 Lead monoxide (matlockite), PbMOO ₄ . 7 23 Lead molybdate (wulfenite), PbMOO ₄ . 7 23 Magnesium germanate, Mg,GeO ₄ (orthorhombic). 6 30 Lead molybdate (wulfenite), PbMOO ₄ . 7 23 Magnesium hydroxide (brucite), Mg(OH) ₂ , 6 30 Lead monoxide (litharge), PbO (red) tetragonal. 6 30 Lead monoxide (massicot), PbO (yellow) (orthorhombic). 2 32 Lead nitrate, Pb(NO ₄), 5 36 Lead nitrate, Pb(NO ₄), 5 36 Lead ophosphate hydrate, Pb ₄ (PO ₄),OH. 8 32 Lead phosphate hydrate, Pb ₄ (PO ₄),OH. 8 32 Lead gelenide (clausthalite), PbSe 5 38 Lead sulfide (galena), PbS 2 18 Lead sulfide (galena), PbS 2 18 Lead titanate, PbTiO ₅ . 5 36 Lead titanate, PbTiO ₅ . 5 37 Lead titanate, PbTiO ₅ . 5 37 Lead titanate, Li,ASO ₄ . 2m 19 Lead titanate, Li,ASO ₄ . 2m 19 Lithium barium trifluoride, LiBaF ₅ . 5m 35 Magnesse aluminate (galaxite), MnFe ₂ O ₄ . 9 35 Lithium barium trifluoride, LiBaF ₅ . 5m 35 Magnesse eslenide, MnSe. 10 Magnesse elloride, MnSe. 10 Magnesse elloride, MnSe. 10 Magneselloride, MnSe. 10 Magneselloride, MnSe. 10 Magneselloride, MnSe. 10 Magneselloride, Magneselloride, MnSe. 10 Magnesellide, MnSe. 10 Magneselloride, MnSe. 10 Magnes						
Lead chloride (cotunnite), PbCl,					9	34
Lead fluoride (matlockite), PbFCl 1 76 Lead fluoride, alpha PbF, (cubic) 5 31 Lead fluoride, beta PbF, (cubic) 5 33 Lead fluoride, beta PbF, (cubic) 5 34 Lead molybdate (wilfenite), PbMOQ, 7 23 Lead monoxide (litharge), PbO (red) tetragonal (orthorhombic) 5 36 Lead monoxide (massicot), PbO (yellow) (orthorhombic) 5 36 Lead nitrate, Pb(NOQ), 5 36 Lead phosphate hydrate, Pb, (POQ), OH 8 33 Lead phosphate hydrate, Pb, (POQ), OH 8 33 Lead sulfate (anglesite), PbSO 3 4 Lead sulfide (galena), PbS 2 18 Lead tungstate (stolzite), PbWO, (tetragonal) (revised) 5 35 Lithium barium trifluoride, LiBaF, 5 35 Lithium chloride, LiCl 1 1 62 Manganesium germanate, Mg, GeOQ, (orthorhombic) 10 38 Magnesium wild (periclase), MgO 1 37 Magnesium woxide (periclase), MgO 1 37 Magnesium silicate, enstatite, MgSiOQ, 6 32 Magnesium silicate, enstatite, MgSiOQ, 6 32 Magnesium silicate fluoride (norbergite), Mg_SiOQ, MgF_2, 10 39 Magnesium silicate fluoride (norbergite), Mg_SiOQ, Mg_SiOQ, MgF_2, 10 39 Magnesium silicate fluoride (norbergite), Mg_SiOQ,					4	33
Lead fluoride (matlockite), PbFCl 1 76 Magnesium germanate, Mg, GeO, (cuthc) 10 37 Lead fluoride, alpha PbF, (cuthcrhombic) 5 31 Magnesium germanate, Mg, GeO, (orthombic) 10 38 Lead(II) iodide, PbI, (cubic) 5 34 Magnesium de principal de la Magnesium de principal de la Magnesium de la Magnesium de la Magnesium oxide (periclase), MgO 1 37 Lead monoxide (litharge), PbO (red) tetragonal 1 2 30 Magnesium silicate (forsterite), Mg, GiO, 6 32 Lead monoxide (massicot), PbO (yellow) Magnesium silicate fluoride (northombic) 2 32 Magnesium silicate (forsterite), Mg, SiO, 6 32 Lead monoxide (manium), Pb, O, 1 5 36 Magnesium silicate fluoride (northometric), Mg, SiO, 1 83 Lead monoxide (minium), Pb, O, 1 5 36 Magnesium silicate fluoride (northometric), Mg, SiO, MgF, 10 39 Lead oxybromide, Pb, O, Br, 5 32 Magnesium silicate fluoride (northometric), Mg, SiO, MgF, 1 10 39 Lead oxybromide, Pb, O, DBr, 5 38 Magnesium sulfate heptahydrate (epsomite), Lead selenide (clausthalite), PbSe 5 38 Magnesium sulfate heptahydrate (epsomite), Lead sulfate (anglesite), PbSO, 3 67 Magnesium tin, Mg, Sn 5 41 Lead titanate, PbTiO, 5 39 Magnesium tin, Mg, Sn 5 41 Lead titanate, PbTiO, 5 39 Magnesium tin, Mg, Sn 5 41 Lead titnium arsenate, Li, AsO, 2m 19 Manganese aluminate (galaxite), MnAl, O, 9 35 Lithium barium trifluoride, LiBaF, 5m 35 Manganese (II) carbonate (rhodochrosite), MnCO, 7 32 Lithium chloride, LiCl 1 62 Manganese ferrite (jacobsite), MnFe, O, 9 36 Lithium chloride, LiCl 1 62 Manganese iodide, MnI, 4 m 63 Lithium chloride, LiCl 1 62 Manganese (III) oxide (manganosite), MnO, 5 45 Manganese selenide, MnSe, 10 41					10	36
Lead fluoride, alpha PbF2 (cubic) 5 31 Magnesium germanate, Mg,GeO4, (orthoble) 38 Lead fluoride, beta PbF2 (cubic) 5 33 rhombic) 10 38 Lead molybdate (wulfenite), PbMoO4 7 23 Magnesium bydroxide (brucite), Mg(OH)2 6 30 Lead monoxide (litharge), PbO (red) tetragonal 2 30 Magnesium selenide, MgSe 5m 70 Lead monoxide (massicot), PbO (yellow) Magnesium silicate, enstatite, MgSiO4 1 83 Lead nitrate, Pb(NO4) 5 36 Magnesium silicate fluoride (norbergite) 1 83 Lead nitrate, Pb(NO4) 5 36 Mg,SiO4*MgF2 10 39 Lead (II, III) oxide (minium), Pb4O4 8 32 Magnesium silicate fluoride (norbergite) 1 39 Lead phosphate hydrate, Pb4(PO4)APH 8 32 Magnesium silicate fluoride (humite) 1 30 Lead selenide (clausthalite), PbSe 5 38 MgSO4*TH4O 7 30 Lead sulfide (galena), PbS 2 18 Magnesium tin, Mg2Sn 5					10	37
Lead fluoride, beta PbF ₂ (cubic)				Magnesium germanate, Mg ₂ GeO ₄ (ortho-		
Lead(II) iodide, PbI,	Lead fluoride, beta PhF. (cubic)			,	10	38
Lead molybdate (wulfenite), PbMoO. 7 23 Magnesium oxide (periclase), MgO 1 37 Lead monoxide (litharge), PbO (red) tetragonal 2 30 Magnesium selenide, MgSe 5m 70 Lead monoxide (massicot), PbO (yellow) (orthorhombic) 2 32 Magnesium silicate (forsterite), Mg,SiO4 1 83 Lead nitrate, Pb(NO,1), 5 36 Mg,SiO4, MgF2 10 39 Lead (II, III) oxide (minium), Pb3O4 8 32 Magnesium silicate fluoride (horbergite), 10 39 Lead oxybromide, Pb,O2Br2 5m 32 3Mg,SiO4, MgF2 1m 30 Lead phosphate hydrate, Pb4(PO4)3OH 8 33 Magnesium sulfate heptahydrate (epsomite), 1m 30 Lead selenide (clausthalite), Pb8O 3 67 Magnesium sulfide, MgS 7 31 Lead sulfide (galena), PbS 2 18 Magnesium sulfide, MgS 7 31 Lead titnanate, PbTiO3 5 36 Magnesium sulfide, MgS 7 31 Lead tungstate (stolzite), PbWO4 (tetragonal) 6mg <	Lead(II) iodide PbI			Magnesium hydroxide (brucite), Mg(OH) ₂	6	30
Lead monoxide (litharge), PbO (red) tetragonal 2 30 Magnesium selenide, MgSe 5m 70 70 70 70 70 70 70 70				Magnesium oxide (periclase), MgO	1	37
onal 2 30 Magnesium silicate, enstatite, MgSiO, 6 32 Magnesium silicate (forsterite), Mg,SiO, 1 83 (orthorhombic) 2 32 Magnesium silicate fluoride (norbergite), Lead nitrate, Pb(NO,), 5 36 Mg,SiO, MgF2 10 39 Lead(II, III) oxide (minium), Pb,O, 8 32 Magnesium silicate fluoride (humite), Lead oxybromide, Pb,O,Br2 5m 32 3Mg,SiO, MgF2 1m 30 Lead phosphate hydrate, Pb,(PO,),OH 8 33 Magnesium sulfate heptahydrate (epsomite), Lead selenide (clausthalite), PbSe 5 38 MgSO, TH_O 7 30 Lead sulfate (anglesite), PbSO, 3 67 Magnesium sulfide, MgS 7 7 31 Lead sulfide (galena), PbS 2 18 Magnesium tin, Mg,Sn 5 41 Lead titanate, PbTiO, 5 39 Magnesium titanate (geikielite), MgTiO, 5 43 Lead tungstate (stolzite), PbWO, (tetragonal) (revised) 5m 34 Manganese aluminate (galaxite), MnAl_O, 9 35 Lithium arsenate, Li,ASO, 2m 19 Manganese bromide, MnBr2 4m 63 Lithium bromide, LiBr 4 30 MnCO, 7 32 Lithium bromide, LiBr 4 30 MnCO, 7 32 Lithium chloride, LiCl 1 62 Manganese (II) carbonate (rhodochrosite), MnFe_O, 9 36 Lithium fluoride, LiF 1 61 Manganese (III) oxide (manganosite), MnFe_O, 9 37 Manganese selenide, MnSe 10 41		•	20	Magnesium selenide, MgSe	5m	70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	30	Magnesium silicate, enstatite, MgSiO ₃	6	32
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lead monoxide (massicot), PbO (vellow)	_		Magnesium silicate (forsterite), Mg ₂ SiO ₄	1	83
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	32	Magnesium silicate fluoride (norbergite),		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Mg,SiO₄⋅MgF₂	10	39
Lead oxybromide, $Pb_3O_2Br_2$ 5m32 $3Mg_2SiO_4\cdot MgF_2$ 1m30Lead phosphate hydrate, $Pb_3(PO_4)_3OH$ 833Magnesium sulfate heptahydrate (epsomite),Lead selenide (clausthalite), $PbSe$ 538 $MgSO_4\cdot 7H_2O$ 730Lead sulfate (anglesite), $PbSO_4$ 367Magnesium sulfide, MgS 731Lead sulfide (galena), PbS 218Magnesium tin, Mg_2Sn 541Lead titanate, $PbTiO_3$ 539Magnesium titanate (geikielite), $MgTiO_3$ 543Lead tungstate (stolzite), $PbWO_4$ (tetragonal)5m34Manganesium tungstate, $MgWO_4$ 184(revised)5m34Manganese aluminate (galaxite), $MnAl_2O_4$ 935Lithium arsenate, Li_3AsO_4 2m19Manganese bromide, MBr_2 4m63Lithium bromide, $LiBr$ 430 $MnCO_4$ 732Lithium chloride, $LiCl$ 162 $Manganese$ (II) carbonate (rhodochrosite),732Lithium fluoride, $LiCl$ 162 $Manganese$ ferrite (jacobsite), $MnFe_2O_4$ 936Lithium iodate, $LiIO_3$ 726 $Manganese$ (II) oxide (manganosite), MnO_3 937 $m-Monograph 25$ $Manganese$ selenide, $MnSe$ 1041				Magnesium silicate fluoride (humite),		
Lead phosphate hydrate, Pb, (PO4), OH 8 33 Magnesium sulfate heptahydrate (epsomite), Lead selenide (clausthalite), PbSe 5 38 MgSO ₄ ·7H ₂ O				3Mg ₂ SiO ₄ ⋅MgF ₂	1m	30
Lead selenide (clausthalite), PbSe						
Lead sulfate (anglesite), PbSO4367Magnesium sulfide, MgS731Lead sulfide (galena), PbS218Magnesium tin, Mg2Sn541Lead titanate, PbTiO3539Magnesium titanate (geikielite), MgTiO3543Lead tungstate (stolzite), PbWO4 (tetragonal)Magnesium tungstate, MgWO4184(revised)5m34Manganese aluminate (galaxite), MnAl2O4935Lithium arsenate, Li3ASO42m19Manganese bromide, MnBr24m63Lithium bromide, LiBr430MnCO3732Lithium chloride, LiCl162Manganese ferrite (jacobsite), MnFe2O4936Lithium fluoride, Li F161Manganese iodide, MnI24m63Lithium iodate, LiIO3726Manganese (II) oxide (manganosite), MnO545Manganese (III) oxide (partridgeite), Mn2O3937m-Monograph 25.Manganese selenide, MnSe1041				MgSO4.7H2O	7	30
Lead sulfide (galena), PbS218Magnesium tin, Mg_2Sn 541Lead titanate, PbTiO3539Magnesium titanate (geikielite), $MgTiO_3$ 543Lead tungstate (stolzite), PbWO4 (tetragonal)Magnesium tungstate, $MgWO_4$ 184(revised)5m34Manganese aluminate (galaxite), $MnAl_2O_4$ 935Lithium arsenate, Li_3AsO_4 2m19Manganese bromide, $MnBr_2$ 4m63Lithium barium trifluoride, $LiBaF_3$ 5m35Manganese(II) carbonate (rhodochrosite),Lithium bromide, $LiBr$ 430 $MnCO_3$ 732Lithium chloride, $LiCl$ 162Manganese ferrite (jacobsite), $MnFe_2O_4$ 936Lithium fluoride, LiF 161Manganese iodide, MnI_2 4m63Lithium iodate, $LiIO_3$ 726Manganese(II) oxide (manganosite), $MnOO_3$ 937 $M-Monograph 25$ Manganese selenide, $MnSe$ 1041					7	31
Lead titanate, PbTiO ₃				Magnesium tin, Mg ₂ Sn	5	41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					5	43
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_			1	84
Lithium arsenate, Li $_3$ AsO $_4$. 2m 19 Manganese bromide, MnBr $_2$. 4m 63 Lithium barium trifluoride, LiBaF $_3$. 5m 35 Manganese(II) carbonate (rhodochrosite), Lithium bromide, LiBr 4 30 MnCO $_3$. 7 32 Lithium chloride, LiCl 1 62 Manganese ferrite (jacobsite), MnFe $_2$ O $_4$. 9 36 Lithium fluoride, LiF. 1 61 Manganese iodide, MnI $_2$. 4m 63 Lithium iodate, LiIO $_3$. 7 26 Manganese(II) oxide (manganosite), MnO $_3$. 9 37 Manganese selenide, MnSe. 10 41		5m	34		9	35
Lithium barium trifluoride, LiBaF, 5m 35 Manganese(II) carbonate (rhodochrosite), Lithium bromide, LiBr 4 30 MnCO $_1$ 7 32 Lithium chloride, LiCl 1 62 Manganese ferrite (jacobsite), MnFe $_2$ O $_4$ 9 36 Lithium fluoride, LiF 1 61 Manganese iodide, MnI $_2$ 4m 63 Lithium iodate, LiIO $_3$ 7 26 Manganese(II) oxide (manganosite), MnO 5 45 Manganese(III) oxide (partridgeite), Mn $_2$ O $_3$ 9 37 Manganese selenide, MnSe 10 41					4m	63
Lithium bromide, LiBr 4 30 MnCO $_3$ 7 32 Lithium chloride, LiCl 1 62 Manganese ferrite (jacobsite), MnFe $_2$ O $_4$ 9 36 Lithium fluoride, LiF 1 61 Manganese iodide, MnI $_2$ 4m 63 Lithium iodate, LiIO $_3$ 7 26 Manganese(II) oxide (manganosite), MnO 5 45 Manganese(III) oxide (partridgeite), Mn $_2$ O $_3$ 9 37 Manganese selenide, MnSe 10 41						
Lithium chloride, LiCl					7	32
Lithium fluoride, Li F. 1 61 Manganese iodide, MnI ₂ 4m 63 Lithium iodate, LiIO, 7 26 Manganese(II) oxide (manganosite), MnO 5 45 Manganese(III) oxide (partridgeite), Mn ₂ O ₃ 9 37 m-Monograph 25. Manganese selenide, MnSe 10 41						
Lithium iodate, LiIO,						
m-Monograph 25. Manganese (III) oxide (partridgeite), Mn ₂ O ₃ 9 37 Manganese selenide, MnSe 10 41						
m-Monograph 25. Manganese selenide, MnSe	,					
	m-Monograph 25.			- "		

Vo	1. or			Vol. or	
	sec.	Page		sec.	Page
Manganese(II) tungstate (huebnerite), MnWO.	2m	24	Plutonium phosphide, PuP	4m	65
Mercury magnesium, HgMg	6m	84	Plutonium telluride, PuTe	4m	66
Mercury(I) bromide, Hg, Br,	7	33	Potassium acid phthalate,		
Mercury(I) chloride (calomel), Hg ₂ Cl ₂	1	72	$C_6H_4(COOH)(COOK)$	4m	30
Mercury(II) chloride, HgCl ₂	1	73	(alum), KAl(SO₄)₂·12H₂O	6	36
Mercury(II) cyanide, Hg(CN) ₂	6	35	Potassium borohydride, KBH4		44
Mercury(II) fluoride, HgF ₂	2m	25	Potassium bromate, KBrO,		38
Mercury(I) iodide, HgI	4	49	Potassium bromide, KBr		66
Mercury(II) iodide, HgI ₂	1	74	Potassium bromoplatinate, K, PtBr,		40
Mercury(II) oxide (montroydite) HgO (revised)	9	39	Potassium bromoselenate, K ₂ SeBr ₆		41
Mercury(II) selenide (tiemannite), HgSe	7	35	Potassium cadmium trichloride, KCdCl,		38
Mercury(II) sulfide (cinnabar), HgS (hex-			Potassium chlorate, KClO,		42
agonal)	4	17	Potassium chloride (sylvite), KCl		65
Mercury(II) sulfide (metacinnabar), HgS			Potassium chloroplatinate, K ₂ PtCl ₆		49
(cubic)	4	21	Potassium chlororhenate, K ₂ ReCl ₆		28
Metaboric acid, HBO ₂ (cubic)	4m	27	Potassium chlororuthenate(IV), K ₂ RuCl ₆		46
Molybdenum, Mo	1	20	Potassium chlorostannate, K, SnCl,	6	38
Molybdenum disulfide (molybdenite), MoS ₂	5	47	Potassium chromium sulfate dodecahydrate,		
Molybdenum osmium 3:1, Mo ₃ Os	6m	28	$KCr(SO_4)_7 \cdot 12H_2O$	6	39
Molybdenum trioxide (molybdite), MoO,	3	30	Potassium cobalt (II) sulfate, K,Co,(SO ₄),		35
2-Naphthylamine, n-phenyl-, C ₁₆ H ₁₃ N	6m	29	Potassium cobalt (II) trifluoride, KCoF ₃		37
Neodymium antimony, NdSb	4m	43	Potassium cobaltinitrite, K ₃ Co(NO ₂) ₆		45
Neodynium arsenate, NdAsO ₄	4m	28	Potassium copper (II) trifluoride, KCuF ₃		38
Neodymium arsenide, NdAs	4m	64	Potassium cyanate, KCNO		39
Neodymium borate, NdBO,	1m	32	Potassium cyanide, KCN		77
Neodymium chloride, NdCl ₃	1m	33	Potassium dihydrogen arsenate, KH ₂ AsO ₄		38
Neodymium ethylsulfate nonahydrate,			Potassium dihydrogen phosphate, KH ₂ PO ₄		69
$Nd(C_2H_5)SO_4$, $9H_2O$	9	41	Potassium fluogermanate, K ₂ GeF ₆		41
Neodymium fluoride, NdF,	8	36	Potassium fluoplatinate, K ₂ PtF ₆	6	42
Neodymium gallium oxide, Nd ₃ Ga ₂ (GaO ₄) ₃	1m	34	Potassium fluoride, KF	1	64
Neodymium oxide, Nd ₂ O ₃	4	26	Potassium fluosilicate (hieratite), K ₂ SiF ₆	5	50
Neodymium oxychloride, NdOCl	8	37	Potassium fluotitanate, K ₂ TiF ₆	7	40
Neodymium selenide, NdSe	5m	71	Potassium heptafluozirconate, K_3ZrF_7		46
Neodymium vanadate, NdVO4	4m	30	Potassium hydroxide, KOH at 300 °C	4m	66
Neptunium nitride, NpN	4m	64	Potassium hydroxy-chlororuthenate,		
Nickel, Ni	1	13	K ₄ Ru ₂ Cl ₁₀ O·H,O	10	47
Nickel aluminate, NiAl ₂ O ₄	9	42	Potassium iodide, KI		68
Nickel arsenic 1:2 (rammelsbergite), NiAs ₂	10	42	Potassium iron (II) trifluoride, KFeF,		39
Nickel arsenic sulfide (gersdorffite), NiAsS	1m	35	Potassium lithium sulfate, KLiSO ₄	3m	43
Nickel(II) carbonate, NiCO ₃ (trigonal)	1m	36	Potassium magnesium sulfate (langbeinite),		
Nickel ferrite (trevorite), NiFe ₂ O ₄	10	44	K ₂ Mg ₂ (SO ₄) ₃		40
Nickel fluosilicate hexahydrate, NiSiF ₆ ·6H ₂ O	8	38	Potassium magnesium trifluoride, KMgF,	6m	42
Nickel gallate, NiGa ₂ O ₄	10	45	Potassium manganese (II) sulfate	0	40
Nickel germanate, Ni ₂ GeO ₄	9	43	(manganolangbeinite), $K_2Mn_2(SO_4)_3$		43
Nickel(II) oxide (bunsenite), NiO	1	47	Potassium manganese (II) trifluoride, KMnF,	6m	45
Nickel sulfate, NiSO,	2m	26	Potassium nickel (II) sulfate, K ₂ Ni ₂ (SO ₄) ₃		46
Nickel sulfate hexahydrate (retgersite),			Potassium nitrate (niter), KNO,	. 3	58
NiSO ₄ ·6H ₂ O	7	36	Potassium nitroso chlororuthenate,	Om	20
Nickel sulfide, millerite, NiS	1m	37	K ₂ RuCl ₆ NO		29
Nickel tungstate, NiWO4	2m	27	Potassium perchlorate, KClO ₄		43 44
Niobium osmium 3:1, Nb ₃ Os	6m	30	Potassium perchromate, K ₁ CrO ₄		41
Niobium platinum 3:1, Nb ₃ Pt	6m	31	Potassium permanganate, KMnO ₄		42
Niobium silicide, NbSi ₂	8	39	Potassium permanganate, KMnO ₄	8	41
Osmium, Os	4	8	Potassium phosphomolybdate tetrahydrate,	O	41
Osmium titanium, OsTi	6m	85		Q	43
Palladium, Pd	1	21	$K_2PO_4(MoO_3)_{12} \cdot 4H_2O$ Potassium sodium sulfate, $K_{.67}Na_{1.35}SO_4$		48
Palladium hydride, PdH _{0.706}	5m	72			
Palladium oxide, PdO	4	27	Potassium sodium sulfate, KNaSO ₄	6m	50
Palladium vanadium 1:3, PdV ₃	6m	32	Potassium sodium sulfate (aphthitalite),	6m	52
Platinum, Pt	1	31	K ₃ Na (SO ₄) ₂		62
Platinum titanium 1:3, PtTi ₃	6m	33	Potassium sulfate (arcanite), K ₂ SO ₄		
Platinum vanadium 1:3, PtV ₃	6m	34	Potassium thiocyanate, KCNS	8	44
Plutonium arsenide, PuAs	4m	65	Potassium zinc decavanadate 16 hydrate,	3m	45
			K ₂ Zn ₂ V ₁₀ O ₂₈ ·16H ₂ O		51
m-Monograph 25.			Potassium zinc sulfate, $K_2Zn_2(SO_4)_3$		54
A mineral name in () indicates a synthetic sample.			Totassium zine surrate, K ₂ zin ₂ (SO ₄) ₃	OIII	0 T

Vo	ol. or			Vol. or	
Progoodymium ontimony Dach	sec.	Page	011 A	sec.	Page
Praseodymium antimony, PrSbPraseodymium arsenate, PrAsO ₄	4m	43	Silver, Ag	_ 1	23
Praseodymium arsenide, PrAs	4m 4m	32 67	Silver antimony sulfide, AgSbS ₂ (cubic)	5m	48
Praseodymium chloride, PrCl ₃	1m	39	Silver antimony sulfide (miargyrite), AgSbS, (monoclinic)	5m	40
Praseodymium fluoride, PrF ₃	5	52	Silver antimony sulfide (pyrargyrite), Ag,SbS,	5m	49
Praseodymium oxychloride, PrOCl	9	47	(trigonal)	5m	51
Praseodymium sulfide, PrS	4m	67	Silver antimony telluride, AgSbTe,	3m	47
Praseodymium vanadate, PrVO4	5m	40	Silver arsenate, Ag, AsO4	5	56
Praseodymium zinc, PrZn	5m	72	Silver bromate, AgBrO,	5	57
Rhenium, Re	2	13	Silver bromide (bromyrite), AgBr	4	46
Rhodium, Rh	3	9	Silver carbonate, Ag ₂ CO ₃	1m	44
Rhodium vanadium 1:3, RhV,	6m	56	Silver chlorate, AgClO,	7	44
Rubidium aluminum sulfate dodecahydrate,	_		Silver chloride, (cerargyrite), AgCl	4	44
RbAl(SO ₄) ₂ ·12H ₂ O	6	44	Silver dysprosium, AgDy	5m	66
Rubidium amide, RbNH ₂ Rubidium bromate, RbBrO ₁	5m	73	Silver erbium, AgEr	5m	67
Rubidium bromide, RbBr	8 7	45	Silver gadolinium, AgGd		87
Rubidium bromotellurate, Rb, TeBr,	8	43 46	Silver holmium, AgHo	5m	68
Rubidium cadmium trichloride, high form,	0	40	Silver iodide (iodyrite), AgI (hexagonal)	8	51
RbCdCl ₃ (tetragonal)	5m	43	Silver iodide, gamma, AgI (cubic)	9 7	48 45
Rubidium cadmium trichloride, low form,	0111	10	Silver neodymium, AgNd	5m	71
RbCdCl, (orthorhombic)	5m	41	Silver nitrate, AgNO ₃	5	59
Rubidium chlorate, RbClO ₃	8	47	Silver nitrite, AgNO ₂	5	60
Rubidium chloride, RbCl	4	41	Silver oxide, Ag ₂ O	1m	45
Rubidium chloroplatinate, Rb ₂ PtCl ₆	5	53	Silver(II) oxynitrate, Ag,O,NO,	4	61
Rubidium chlorostannate, Rb ₂ SnCl ₆	6	46	Silver periodate, AgIO	9	49
Rubidium chlorotellurate, Rb, TeCl,	8	48	Silver perrhenate, AgReO	8	53
Rubidium chromatc, Rb ₂ CrO ₄	3m	46	Silver phosphate, Ag ₃ PO ₄	5	62
Rubidium chromium sulfate dodecahydrate,			Silver samarium, AgSm	5m	73
$RbCr(SO_4)_2 \cdot 12H_2O$	6	47	Silver selenate, Ag ₂ SeO ₄	2m	32
Rubidium cobalt (II) trichloride, RbCoCl ₃	6m	57	Silver subfluoride, Ag, F	5m	53
Rubidium fluoplatinate, Rb ₂ PtF ₆	6	48	Silver sulfate, Ag ₂ SO ₄	7	46
Rubidum fluosilicate, Rb ₂ SiF ₆	6	49	Silver sulfide (argentite), Ag,S	10	51
Rubidium iodide, RbI	4	43	Silver terbium, AgTb	5m	74
Rubidium manganese(II) trifluoride, RbMnF,	5m	44	Silver thulium, AgTm	5m	74
Rubidium nickel (II) trichloride, RbNiCl ₃	6m	58	Silver yttrium, AgY	5m	75
Rubidium nitrate, RbNO ₃ (trigonal)	5m	45	Sodium acid fluoride, NaHF,	5	63
Rubidium perchlorate, RbClO ₄	2m 2m	30 31	Sodium borohydride, NaBH,	9 5	51 65
Rubidium sulfate, Rb ₂ SO ₄	8	48	Sodium bromide, NaBr	3	47
Ruthenium, Ru	4	5	Sodium calcium sulfate (glauberite),	J	71
Ruthenium titanium, RuTi	6m	86	Na ₂ Ca(SO ₄) ₂	6m	59
Samarium arsenate, SmAsO	4m	33	Sodium carbonate monohydrate (thermonatrite),		
Samarium arsenide, SmAs	4m	68	Na ₂ CO ₃ ·H ₂ O	8	54
Samarium chloride, SmCl,	1m	40	Sodium chlorate, NaClO,	3	51
Samarium fluoride, SmF,	1m	41	Sodium chloride (halite), NaCl	2	41
Samarium gallium oxide, Sm, Ga, (GaO,),	1m	42	Sodium cobalt (II) sulfate tetrahydrate,		
Samarium oxide, Sm ₂ O ₃ (cubic)	4m	34	$Na_2Co(SO_4)_2 \cdot 4H_2O$	6m	61
Samarium oxychloride, SmOCl	1m	43	Sodium cyanate, NaCNO	2m	33
Samarium vanadate, SmVO ₄	5m	47	Sodium cyanide, NaCN (cubic)	1	78
Scandium arsenate, ScAsO ₄	4m	35	Sodium cyanide, NaCN (orthorhombic) at 6 ° C	1	79
Scandium arsenide, ScAs	4m	68	Sodium fluoride (villiaumite), NaF	1	63
Scandium oxide, Sc ₂ O ₃	3	27	Sodium hexametaphosphate hexahydrate,	_	
Scandium phosphate, ScPO ₄	8	50	Na ₆ P ₆ O ₁₈ ·6H ₂ O	5m	54
Selenium, Se	5	54	Sodium hydroxide, NaOH at 300 ° C	4m	69
Selenium dioxide (selenolite), SeO,	1	53	Sodium iodate, NaIO,	7	47
Silicon, Si	2	6	Sodium iodide, NaI Sodium magnesium aluminum boron hydroxy	4	31
(hexagonal)	2	24		3m	47
Silicon dioxide (alpha or low cristobalite),	3	24	silicate, dravite, NaMg, Al ₆ B ₃ Si ₆ O ₂₇ (OH) ₄ Sodium magnesium sulfate tetrahydrate,	3m	47
SiO ₂ (tetragonal) (revised)	10	48	bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	6m	63
Silicon dioxide (beta or high cristobalite),	10	10	Sodium manganese (II) trifluoride, NaMn F_3	6m	65
SiO, (cubic)	1	42	Sodium mercury (II) trichloride dihydrate,	J.II	- 00
			NaHgCl ₃ ·2H ₂ O	6m	66
m-Monograph 25.			Sodium molybdate, Na ₂ MoO ₄	1m	46
A mineral name in () indicates a synthetic sample.			•		

	Vol. or			Vol. or	
	sec.	Page		sec.	Page
Sodium nickel (II) sulfate tetrahydrate,		00	Terbium telluride, TbTe		77
Na ₂ Ni(SO ₄) ₂ ·4H ₂ O	6m	68	Terbium vanadate, TbVO.	5m	56
Sodium nitrate (soda-niter), NaNO ₃ Sodium nitrite, NaNO ₂	6 4	50 62	Thallium aluminum sulfate dodecahydrate,	c	E 2
Sodium orthotungstate(IV) dihydrate,	4	02	$TlAl(SO_4)_2 \cdot 12H_2O \dots$ Thallium(I) arsenate, $Tl_3AsO_4 \dots$	6 2m	53 37
Na ₂ WO ₄ ·2H ₂ O	2m	33	Thallium(I) bromate, TlBrO ₃		60
Sodium oxalate, Na ₂ C ₂ O ₄	6m	70	Thallium bromide, TlBr		57
Sodium perchlorate, NaClO ₄ (orthorhombic)	7	49	Thallium(I) chlorate, TlClO ₃		61
Sodium periodate, NaIO ₄	7	48	Thallium(I) chloride, TlCl		51
Sodium sulfate (thenardite), Na ₂ SO ₄	2	59	Thallium chloroplatinate, Tl ₂ PtCl ₆		70
Sodium sulfite, Na ₂ SO ₃	.3	60	Thallium chlorostannate, Tl ₂ SnCl ₆		54
Sodium tetrametaphosphate tetrahydrate,			Thallium chromate, Tl ₂ CrO ₄	3m	54
alpha, Na ₄ P ₄ O ₁₂ ·4H ₂ O (monoclinic)	10	52	Thallium chromium sulfate dodecahydrate,		
Sodium tetrametaphosphate tetrahydrate, beta,	2m	25	TlCr(SO ₄) ₂ ·12H ₂ O	6 6	55
Na ₄ P ₄ O _{1,2} ·4H ₂ O (triclinic)	3m	35 49	Thallium fluosilicate, Tl ₂ SiF ₆	O	56
Sodium trimetaphosphate, na ₁ , ₁ , ₂ ,	O.I.I	10	TlGa(SO ₄),·12H ₂ O	6	57
Na ₃ P ₃ O ₅ ·H ₂ O	3m	50	Thallium(I) iodate, TIIO,	8	62
Sodium tungstate, Na, WO,	1m	47	Thallium(I) iodide, TlI (orthorhombic)		53
Sodium zinc sulfate tetrahydrate,			Thallium(I) nitrate, TlNO,		58
$Na_2Zn(SO_4)_2 \cdot 4H_2O \dots$	6m	72	Thallium(III) oxide, Tl,O,	2	28
Sodium zinc trifluoride, NaZnF ₃	6m	74	Thallium(I) percholorate, TlClO ₄	2m	38
Strontium arsenate, $Sr_3(AsO_4)_2$	2m	36	Thallium(I) phosphate, Tl,PO,	7	58
Strontium boron oxide, SrB ₂ O ₄	3m	53	Thallium(III) phosphate, TlPO4		59
Strontium boron oxide, SrB ₄ O ₇	4m	36	Thallium(I) sulfate, Tl ₂ SO ₄		59
Strontium bromide hexahydrate, SrBr ₂ ·6H ₂ O	4	60 5.0	Thallium(I) thiocyanate, TlCNS		63 48
Strontium carbonate (strontianite), SrCO ₃	3 4	56 40	Thallium(I) tungstate, Tl,WO		70
Strontium chloride, SrCl ₂ Strontium chloride hexahydrate, SrCl ₂ ·6H ₂ O	4	58	Thorium oxide (thorianite), ThO ₂		57
Strontium fluoride, SrF ₂	5	56 67	Thulium arsenate, TmAsO ₄		56
Strontium formate, Sr (CHO ₂) ₂	8	55	Thulium arsenide, TmAs		71
Strontium formate dihydrate, Sr(CHO ₂) ₂ ·2H ₂ O	U	30	Thulium nitride, TmN		71
(orthorhombic)	8	56	Thulium sesquioxide, Tm ₂ O ₃		58
Strontium indium hydroxide, $Sr_3In_2(OH)_{12}$	6m	76	Thulium telluride, TmTe		72
Strontium iodide hexahydrate, SrI ₂ ·6H ₂ O	8	58	Thulium vanadate, TmVO	5m	57
Strontium molybdate, SrMoO ₄	7	50	Tin, alpha, Sn (cubic)		12
Strontium nitrate, Sr(NO ₃) ₂	1	80	Tin, beta, Sn (tetragonal)	1	24
Strontium oxide, SrO	5	68	Tin arsenide, SnAs	4m	37
Strontium peroxide, SrO ₂	6	52	Tin(II) fluoride, SnF ₂		51
Strontium scandium oxide hexahydrate,	O	70	Tin(IV) iodide, SnI. Tin(II) oxide, SnO		71 28
Sr ₃ Sc ₂ O ₆ ·6H ₂ O	6m	78	Tin(II) oxide, ShO		54
Strontium sulfate (celestite), SrSO ₄ Strontium sulfide, SrS	2 7	61 52	Tin(II) telluride, SnTe		61
Strontium telluride, SrTe	4m	69	Titanium, Ti		1
Strontium titanate, SrTiO,	3	44	Titanium dioxide (anatase), TiO ₂ (tetragonal)	1	46
Strontium tungstate, SrWO ₄	7	53	Titanium dioxide, brookite, TiO, (ortho-	_	
Strontium zirconate, SrZrO ₃	9	51	rhombic)	3m	57
Sulfamic acid, NH ₃ SO ₃	7	54	Titanium dioxide (rutile), TiO, (tetragonal)	1	44
Sulfur, S (orthorhombic)	9	54	Titanium(III) oxide, TiO _{1.515}		59
Tantalum, Ta	1	29	Titanium silicide, Ti, Si,		64
Tantalum Silicide, TaSi 2	8	59	Titanium sulfide, TiS ₂		72
Tellurium, Te	1	26	Tungsten, W		28
Tellurium(IV) oxide (paratellurite), TeO, (tetragonal)	7	56	Tungsten sulfide (tungstenite), WS ₂		65 33
Tellurium(IV) oxide, paratellurite, TeO ₂	•	50	Uranium oxide, UO		78
(tetragonal)	10	55	Uranium selenide, USe		78
Tellurium(IV) oxide, tellurite, TeO, (ortho-			Uranium telluride, UTe		73
rhombic)	9	57	Urea, CO(NH ₂) ₂		61
Terbium arsenate, TbAsO ₄	3m	54	Vanadium(V) oxide, V,O,	8	66
Terbium arsenide, TbAs	5m	75	Ytterbium arsenate, YbAsO ₄		38
Terbium nitride, TbN	4m	70	Ytterbium arsenide, YbAs	4m	73
Terbium phosphide, TbP	5m	76	Ytterbium gallium oxide, Yb, Ga, (GaO,),		49
Terbium selenide, TbSe	5m	76	Ytterbium nitride, YbN	4m	74
Terbium sulfide, TbS	5m	77	Ytterbium oxide, Yb ₂ O ₃		80
m Monograph 05			Ytterbium selenide, YbSe		79 79
m-Monograph 25. A mineral name in () indicates a synthetic sample	e.		Total Dium terrunde, 101e	5m	19

	Vol. or		,	Vol. or	
	sec.	Page		sec.	Page
Ytterbium(III) vanadate, YbVO ₄	5m	58	Zinc iodide, ZnI ₂	9	60
Yttrium arsenate, YAsO ₄	2m	39	Zinc orthosilicate (willemite), Zn ₂ SiO ₄	7	62
Yttrium arsenide, YAs	4m	74	Zinc oxide (zincite), ZnO	2	25
Yttrium gallium oxide, Y ₃ Ga ₂ (GaO ₄) ₃	1m	50	Zinc pyrosilicate hydrate, hemimorphite,		
Yttrium oxide, Y ₂ O ₃	3	28	$Zn_4(OH)_2Si_2O_7 \cdot H_2O \dots$	2	62
Yttrium oxychloride, YOCl	1m	51	Zinc selenide, ZnSe	3	23
Yttrium phosphate (xenotime), YPO ₄	8	67	Zinc sulfate (zinkosite), ZnSO ₄	7	64
Yttrium sulfide, YS	5m	80	Zinc sulfate heptahydrate (goslarite),		
Yttrium telluride, YTe	4m	75	ZnSO ₄ ·7H ₂ O	8	71
Yttrium vanadate, YVO4	5m	59	Zinc sulfide (wurtzite), alpha ZnS (hexag-		
Zinc, Zn	1	16	onal)	2	1.4
Zinc aluminate (gahnite), ZnAl ₂ O ₄	2	38	Zinc sulfide (sphalerite), beta ZnS (cubic)	2	16
Zinc antimony oxide, ZnSb ₂ O ₄	4m	39	Zinc telluride, ZnTe	3m	58
Zinc borate, ZnB ₂ O ₄	1	83	Zinc tungstate (sanmartinite), ZnWO4	2m	.40
Zinc carbonate, smithsonite, ZnCO ₃	8	69	Zirconium, alpha, Zr	2	11
Zinc cyanide, Zn(CN),	5	73	Zirconium dihydride, ZrH,	5m	60
Zinc fluoride, ZnF ₂	6	60	Zirconium iodate, Zr(IO ₃) ₄	1m	51
Zinc fluosilicate hexahydrate, ZnSiF ₆ ·6H ₂ O	8	70	Zirconium nitride, ZrN	5m	80
Zinc germanate, Zn ₂ GeO ₄	10	56	Zirconium oxide, ZrO	5m	81
			Zirconium phosphide, ZrP	4m	75
m-Monograph 25.			Zirconium silicate, zircon, ZrSiO4	4	68
A mineral name in () indicates a synthetic sample	e.		Zirconium sulfate tetrahydrate, Zr(SO ₄) ₂ ·4H ₂ O	7	66

CUMULATIVE MINERAL INDEX

	Vol. or			Vol. or	
	sec	Page		sec.	Page
Alabandite, MnS	4	11	Cerussite, PbCO ₃	2	56
Alum, KAl(SO ₄) ₂ ·12H ₂ O · · · · · · · · · · · · · · · · · · ·	6	36	Cervantite, Sb ₂ O ₄	10	8
Ammonia-niter, NH ₄ NO ₃	7	4	Chalcocyanite, CuSO	3m	29
Anatase, TiO ₂	1	46	Chloraluminite, AlCl ₃ ·6H ₂ O	7	3
Andradite, Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22	Chrysoberyl, BeAl ₂ O ₄		10
Anglesite, PbSO ₄	3	67	Cinnabar, HgS	4	17
Anhydrite, CaSO ₄	4	65	*Claudetite, As ₂ O ₃	3m	9
Aphthitalite, $K_3Na(SO_4)_2$	6m	52	Clausthalite, PbSe	5	38
Aragonite, CaCO ₃	3	53	Cordierite, Mg ₂ A1 ₄ Si ₅ O ₁₄ (orthorhombic)	1m	28
Argentite, Ag ₂ S	10	51	Cordierite, Mg, Al, Si, O, (hexagonal)	1m	29
Arcanite, K ₂ SO ₄	3	62	Corundum, Al ₂ O ₃		3
Arsenolite, As ₂ O ₃	1	51	Cotunnite, PbCl ₂	2	45
Aurostibite, AuSb,	7	18	Covellite, CuS		13
*Azurite, $Cu_3(OH)_2(CO_3)$,	10	30	Cristobalite, (alpha or low) SiO ₂ (revised)	10	48
Barite, BaSO ₄	3	65	Cristobalite, (beta or high) SiO ₂	1	42
Berlinite, AlPO ₄	10	3	Cryptohalite, $(NH_4)_2SiF_6$		5
*Beryl, Be ₃ Al ₂ (SiO ₃) ₆	9	13	Cuprite, Cu ₂ O	2	23
Bismite, (alpha) Bi ₂ O ₃	3m	17	*Diamond, C	2	5
Bismoclite, BiOCl	4	54	*Diaspore, Al ₂ O ₃ ·H ₂ O	3	41
Bismuthinite, Bi ₂ S ₃ (revised)	5m	13	Diopside, CaMg(SiO ₃) ₂	5m	17
*Bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	6m	63	*Dravite, NaMg, Al ₆ B, Si ₆ O ₂₇ (OH) ₄	3m	47
Böhmite, Al,O,·H,O	3	38	*Enstatite, MgSiO,		32
Bromellite, BeO	1	.36	Epsomite, MgSO ₄ ·7H ₂ O		30
Bromyrite, AgBr	4	46	Eschynite, CeNbTiO ₆		24
*Brookite, TiO ₂	3m	57	Ettringite, Al ₂ O ₃ ·6CaO·3SO ₃ ·31H ₂ O		3
Brucite, Mg(OH) ₂	6	30	Fluorapatite, $Ca_5 F(PO_4)_3 \dots$		22
Bunsenite, NiO	1	47	Fluorite, CaF ₂		69
Calcite, CaCO ₃	2	51	Forsterite, Mg ₂ SiO ₄		83
Calomel, Hg ₂ Cl ₂	1	72	Galaxite, MnAl,O4		35
Cassiterite, SnO ₂	1	54	Galena, PbS		18
Celestite, SrSO ₄	2	61	Gahnite, ZnAl ₂ O ₄		38
Cerargyrite, AgCl	4	44	Geikielite, MgTiO ₃		43
Cerianite, CeO ₂	1	56	Gersdorffite, NiAsS		35
***			Glauberite, Na ₂ Ca(SO ₄) ₂		59
* Natural mineral.			Goslarite, ZnSO ₄ ·7H ₂ O		71
m-Monograph 25.			Greenockite, CdS	4	15

CUMULATIVE MINERAL INDEX— Continued

v	ol. or			Vol. or	
	sec.	Page		sec.	Page
Halite, NaCl	2	41	Rammelsbergite, NiAs ₂	10	42
*Hemimorphite, Zn ₄ (OH),Si ₂ O ₂ ·H ₂ O	2	62	Retgersite, NiSO ₄ ·6H ₂ O	7	36
Hieratite, K ₂ SiF ₆	5	50	Rhodochrosite, MnCO,	7	32
Huebnerite, MnWO ₄	2m	24	Rutile, TiO ₂		44
Humite, $3Mg_2SiO_4 \cdot MgF_2 \cdot \dots$	1m	30	Safflorite, CoFeAs ₄		28
Iodyrite, AgI	8	51	Sal-ammoniac, NH ₄ Cl	1	59
Jacobsite, MnFe ₂ O ₄	9	36	Sanmartinite, ZnWO ₄		40
Langbeinite, $K_2Mg_2(SO_4)_3$	6m	40	*Scheelite, CaWO ₄	6	23
Litharge, PbO (red)	2	30	Selenolite, SeO ₂	1	53
Lithiphosphate, Li ₃ PO ₄	4m	21	Sellaite, MgF,	4	33
Loellingite, FeAs,	10	34	Senarmontite, Sb ₂ O ₃	3	31
Magnesite, MgCO ₃	7	28	Skutterudite, CoAs,	10	21
Magnetite, Fe ₃ O ₄	5m	31	*Smithsonite, ZnCO ₃		69
Malachite, Cu ₂ (OH) ₂ CO ₃	10	31	Soda-niter, NaNO,		50
Manganolangbeinite, K ₂ Mn ₂ (SO ₄) ₃	6m	43	Sphalerite, ZnS		16
Manganosite, MnO	5	45	Spherocobaltite, CoCO ₃	10	24
Marshite, CuI	4	38	Spinel, MgAl ₂ O ₄	2	35
Mascagnite, (NH ₄) ₂ SO ₄ (revised)	9	8	Stibnite, Sb ₂ S ₃	5	6
Massicot, PbO (yellow)	2	32	Stolzite, PbWO (revised)	5m	.34
Matlockite, PbFCl	1	76	Strontianite, SrCO ₃		56
Metacinnabar, HgS	4	21	Struvite, MgNH ₄ PO ₄ ·6H ₂ O		41
Miargyrite, AgSbS ₂	5m	49	Sylvite, KCl		65
*Millerite, NiS	1m	37	*Tellurite, TeO ₂	9	57
Minium, Pb ₃ O ₄	8	32	Tellurobismuthite, Bi ₂ Te ₃	3m	16
Molybdenite, MoS,	5	47	Tenorite, CuO		49
Molybdite, MoO ₃	3	30	Teschemacherite, NH ₄ HCO ₃	9	5
Montroydite, HgO (revised)	9	39	Teschermigite, NH ₄ Al(SO ₄) ₂ ·12H ₂ O	6	3
Mullite, 3Al ₂ O ₃ ·2SiO ₂	3m	3	Thenardite, Na ₂ SO ₄	2	59
Nantokite, CuCl			Thermonatrite, Na ₂ CO ₃ ·H ₂ O	8	54
· · · · · · · · · · · · · · · · · · ·	4	35	Thermonautic, Na ₂ CO ₃ Ni ₂ C	_	57
Niter, KNO, Nitrobarite, Ba(NO ₃) ₂	3 1	58 81	Tiemannite, HgSe	7	35
	10	39	*Topaz, Al ₂ SiO ₄ (F,OH) ₂		4
Norbergite, Mg ₂ SiO ₄ ·MgF ₂ Oldhamite, CaS	7		Trevorite, NiFe ₂ O ₄		44
Otavite, CdCO ₃	7	15	Tungstenite, WS_2		65
Overmite (NH) CO HO	7	11 5	Uraninite, UO ₂		33
Oxammite, (NH ₄) ₂ C ₂ O ₄ ·H ₂ O		_	Uvaravita Ca Cr (SiO)	10	33 17
*Paratellurite, TeO,	10	55 50	Uvarovite, Ca ₃ Cr ₂ (SiO ₄) ₃	10	6
Paratellurite, TeO ₂	7	56	*Valentinite, Sb ₂ O ₃		63
Partridgeite, Mn,O,	9	37	Villiaumite, NaF		62
Periclase, MgO	1	37	Willemite, Zn ₂ SiO ₄		
*Phenacite, Be ₂ SiO ₄	8	11	Wilferite, BaCO ₃		54
Picrochromite, MgCr ₂ O ₄	9	34	Wulfenite, PbMoO ₄	7	23
Portlandite, Ca(OH) ₂	1	58	Wurtzite, ZnS		14
Powellite, CaMoO ₄	6	22	Xenotime, YPO ₄		67
Pyrite, FeS ₂	5	29	Zincite, ZnO		25
Pyrope, Mg ₃ Al ₂ (SiO ₄) ₃	4m	24	Zinkosite, ZnSO ₄	7	64
*Quartz, SiO ₂ (alpha or low)	.3	24	*Zircon, ZrSiO ₄	4	68

^{*}Natural mineral.

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

• Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$5.00; foreign, \$6.00*.

Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$2.25; foreign, \$2.75*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$2.75; foreign, \$3.50*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$1.50; foreign, \$2.25*.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse U.S. Department of Commerce Springfield, Virginia 22151

Order NBS publications from:
Superintendent of Documents
Government Printing Office
Washington, D.C. 20402

^{*}Difference in price is due to extra cost of foreign mailing.

U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

OFFICIAL BUSINESS