End-Sem Solution

PAGE No.

Let Mb = Burn-out mass.				
16.9				
icle mess				
restrict				

PAGE No.

			1			
Q2	Payload &	f satellit	e mass =	700 kg		
	Stage	Ms	Mp	ML	Mo	R
	fourth	2200	1200	700	4100	1.41
	Third	1400	7000	4100	12500	2-27
	Second	8200	40000	12500	60700	2-93
	First	25000	140000	60700	225700	2.63
		Ri	Is:	ui=	g. Is: In (R	(;)
	Fourth		304	1024.6		
	Third	2.27	293	2356	31	mls
	Second	2-93	292	3079.	36	
	Fiast	2.63	264	2504	33	
	Total BU &	y the ve	hicle =	8964.6	67 m/s	
	Though of	first st	age, F=	4800 k	N	
			cle Mo=			
	Initial a	celevatio	n, a =	F - Mo.g	4.54	
				Mo		
			las 1	1.45 m	1/32	
			h		<u>'</u>	
					36-31	0
	m 800	-6=4A		or EalX 8	31-5/ = 2 9(-5)	X= 04 =>
			2/64 26	8 = X	M- Sp. Ab.	
					z *5	

PAGE No.

(Q.3) P,=6 MPa = 60 bas; SG of propellant = 1.75 => noisnegas mumilgo) su insp= 1750 kg/mant Nozzle optimum expansion at 20 km altitude. P_2 (at 20km) = 101325 · exp $\left(\frac{-h}{8435}\right)$ I h in meter } P2 = 9461.78 Pa Burn rate, & = 4.5 x P1 = 15.37 mm/s = 15.37 x103 m/s Burning surface area, Ab = 1 m2 dumin of loge Mass flow rate, m = 80 Ab 8 = 26.89 kg/s Throat area, m'Ato= 101009 m2 and bas to dand another Characteristic velocity, ct = P. At _ 2008.2 m/s grante) relited on the propellant gets consumed. Nozzle area expansion ratio, (for k = 1.2) At At (k+1) /k-1 (P2) /k (k+1) [1- (P2) k-1] At = 191.61 x 4.62 x 103 x 2.69 = 20 x 163 = 1 A2 : 8 = 50 R= Ru KRTI Ti = 3876.31 K mw-2 \ k+1/k-1 MW=19 2 k Ru Ti Gas jet velocity, 1/2 = V2 = 3661.97 m/s

	PAGE No. / DATE / /
	$P = 101325 \exp\left(-\frac{h}{8435}\right)$
	⇒ h (for optimum expansion) = 6050.94 m
	Best strategy for engine cooling => Film cooling +
	Regenerative cooling
	Preferred atomization technique > Shear co-axial atomizer or Swirt- coaxial atomizer
The second second	