(x) exist and be = L ying limit on both sides does not exist Hence proved

Happiness is a by product of an effort to make someone else happy

passing through the points P(2,4) and P(1) x3) A great man's courage to fulfill his vision comes from passion

Q6 b)

Definition 9.1. Let $\tilde{u} = u_1 i + u_2 j$ be any unit vector. Then the **directional derivative** of f(x, y) at (x_0, y_0) in the direction of \tilde{u} is

at
$$(x_0, y_0)$$
 in the direction of \tilde{u} is
$$D_{\tilde{u}}(x_0, y_0) = \lim_{s \to 0} \frac{f(x_0 + su_1, y_0 + su_2) - f(x_0, y_0)}{s}$$

We can replace $\tilde{u} = u_1 \tilde{i} + u_2 \tilde{j}$ by $\tilde{u} = \cos \theta i + \sin \theta j$, and obtain $D_{\tilde{u}}(x_0, y_0) = \lim_{s \to 0} \frac{f(x_0 + s \cos \theta, y_0 + s \sin \theta) - f(x_0, y_0)}{s}$

Q6 c)

Geometrical Interpretation The equation z = f(x, y) represents a surface S in space. If $z_0 = f(x_0, y_0)$, then the point $P(x_0, y_0, z_0)$ lies on S. The vertical plane that passes through P and $P_0(x_0, y_0)$ parallel to \tilde{u} intersects S in a curve C (Figure 14.28). The rate of change of f in the direction of \tilde{u} is the slope of the tangent to C at P in the right-handed system formed by the vectors \tilde{u} and k.

1 mark

FIGURE 14.28 The slope of the trace curve C at P_0 is $\lim_{Q \to P}$ slope (PQ); this is the directional derivative

$$\left(\frac{df}{ds}\right)_{\mathbf{u},P_0}=D_{\mathbf{u}}f|_{P_0}.$$

When $\tilde{u}=i$, the directional derivative at P_0 is $\frac{\partial f}{\partial x}$ evaluated at (x_0,y_0) . When $\tilde{u}=j$, the directional derivative at P_0 is $\frac{\partial f}{\partial y}$ evaluated at (x_0,y_0) .

Diagram was not required

Consider the function $g: [a,b] \rightarrow \mathbb{R}$ defined by $g(x) = e^{-x} f(x) - (0.5)$ g is differentiable on (a,b) $g(c_1) = e^{-c_1} f(c_1) = 0$ $g(c_2) = e^{-c_2} f(c_2) = 0$ $g(c_3) = e^{-c_3} f(c_3) = 0$ as f(c1)=0 as f(c2)=0 asf(c3)=0 Applying Rolle's theorem on (c, c2)

Separately, J d, € (c1, (2) and d2 € (c2, (3)) s.t. g'(d1)=0 2 g'(d2)=0 [C1<d1<c2<d2<4] Now, g'(x)= -e f(x) + e f(x) g"(x) = f(x) + f"(x) - 2f'(x) = x as f' and f and e are continuous on [d, d2] and g differentiable on (d, , dz) as

f' and e differentiable on (d, , dz)

1 mark g'(d1) = g'(d2) = 0 30, using Rolle's theorem

Frequence (did) s.t g" (e1) = 0 so f(e)+f"(e)-2f(e)=0

0.5 mark for this