

Agenda

- Aim of Phase 2 System-level Design
- Product architecture what is it?
- Modular and integral architecture
- Implications of product architecture
- Role of the product architecture team
- 4-step method for establishing the product architecture
- Key outcomes

EBU5608

2

Phase 2 – System-level design

- This definition and decomposition can be clearer for physical products, but still relevant for software etc
 - Think about the use of classes, subsystems and interfaces in **Java** program development, for example

EBU5608

Product Architecture

- Product Architecture can be described as:
 - "the scheme by which the functional elements of the product are arranged into physical chunks and by which the chunks interact"
 - Functional individual operations and transformations that contribute to its overall performance
 - Physical parts, components and subassemblies that implement the product's functions

EBU5608

6

Modular architecture

- There are three main types of modular architecture:
 - Slot-modular (the most common type)
 - Each of the interfaces between chunks in a slot-modular architecture is of a different type from the others – therefore the various chunks in the product cannot be interchanged

18

Modular architecture

- There are three types of modular architecture:
 - 3. Sectional-modular
 - All interfaces are of the same type, there is no single element to which all the other chunks attach
 - The assembly is built up by connecting the chunks to each other via identical interfaces

EBU5608

20

Implications of product architecture

- There are **implications** to the decisions you make about product architecture
- Product change
 - Modular chunks allow changes to be made to a few isolated functional elements of the product without necessarily affecting the design of other chunks
 - Motives for change include upgrades, add-ons, adaptation, wear, consumption, flexibility in use, reuse

EBU5608

Implications of product architecture (cont.)

Product variety

- Variety refers to the range of product models the firm can produce within a particular time period in response to market demand
- Products built around modular product architectures can be more easily varied without adding tremendous complexity to the manufacturing system
 - e.g. mobile phone handset design, portable audio

EBU5608 27

Implications of product architecture – product variety example

- Sony is a major consumer and commercial electronics manufacturer
- Sony sells **54 models** of portable audio equipment in the UK, including
 - MP3
 - Personal CD, minidisc & tape
 - Portable CD+radio
 - Portable radio
- Uses modular architecture and flexible manufacturing techniques to
 - o Introduce new models
 - Meet changes in demand

EBU5608

28

Implications of product architecture (cont.)

Component standardisation

- The use of the same component or chunk in multiple products
- If a chunk implements only one or a few widely useful functional elements, then the chunk can be standardised and used in several different products
- Example standard batteries

EBU5608 29

Implications of product architecture (cont.)

Product performance

- How well a product implements its intended functions
- Product performance characteristics include speed, efficiency, life, accuracy and noise

Manufacturability

 The product architecture also directly affects the ability of the team to design each chunk to be produced at low cost

EBU5608

30

Role of Product Architecture Team

- The architecture should be established by a crossfunctional effort by the development team as it will have implications for
 - subsequent product development activities, and
 - the manufacturing and marketing of the completed product

Summary

- The architecture of a product is therefore the scheme by which the functional elements of the product are arranged into physical chunks and by which the chunks interact.
- Two main types of architecture
 - Modular (slot, bus, sectional) in which each chunk implements one or a few functions entirely and the interactions between chunks are well defined.
 - Integral, in which functional elements are implemented by multiple chunks, or a chunk may implement many functions, and the interactions between chunks are poorly defined.
- Implications of product architecture: product change, variety, performance, manufacturability, components standardisation, product development management

EBU5608

34

The 4 step method

- Ulrich and Eppinger recommend a 4-step method for establishing the product architecture
 - Step 1 Create a **schematic** of the product
 - Step 2 **Cluster** the elements of the schematic
 - Step 3 Create a rough geometric layout
 - Step 4 Identify the fundamental and incidental interactions

35

EBU5608

Step 1 – Create a schematic of the product

- A schematic is a diagram representing the team's understanding of the component elements of the product
 - An example can be seen in a later slide
- o At the **end** of **Phase 1** Concept Development
 - some of the elements in the schematic are physical concepts
 - some correspond to critical components
 - but some are still only described functionally

Step 1 – Create a schematic of the product

- The schematic should reflect the **best understanding** of the state of the product, it does not have to contain every detail
- More **detailed** functional elements are finalised later in Phase 2
- A good guideline is for there to be no more than
 30 elements in the schematic
- Usually more than one alternative schematic is developed and the team spend time selecting the most appropriate

EBU5608

38

Step 2 – Cluster the elements of the schematic

- This step requires assigning and/or clustering each of the elements of the schematic to a chunk
- An **example** of this clustering can be seen in the next slide

EBU5608 40

- When deciding where to set the clusters, the following factors should be considered:
- Geometric integration and precision
 - Assigning elements to the same chunk allows a single individual or group to control the physical relationships among the elements
 - Elements requiring precise location or close geometric integration can often be best designed if they are part of the same chunk
 - o e.g. paper handling in a printer

Function sharing

- When a single physical component can implement several functional elements of the product, these functional elements are best clustered together
- For example, an integrated control panel on a car

EBU5608

44

- Capabilities of vendors
 - A trusted vendor may have specific capabilities related to a project
 - To best take advantage of such capabilities a team may choose to cluster those elements about which the vendor has expertise into one chunk

EBU5608

- Similarity of design or production technology
 - When two or more functional elements are likely to be implemented using the same design and/or production technology, then incorporating these elements into the same chunk may allow for more economical design and/or production
 - A common strategy, for example, is to combine all functions that are likely to involve electronics in the same chunk. This allows the possibility of implementing all of these functions within a single circuit board

EBU5608

46

- Localisation of change
 - When a team expects there to be a great deal of change in an element, it makes sense to isolate that element into its own modular chunk
 - In that way, any necessary changes to the element can be carried out without disrupting any of the other chunks

Accommodating variety

- Elements should be clustered together to enable the firm to vary the product in ways that will have value for customers
- Example a power supply needs to handle different mains supplies in different countries

230V 50Hz

120V 60Hz

100V 60Hz

120V 50Hz

EBU5608 48

49

Setting the clusters

Enabling standardisation

- If a set of elements will be useful in other products, they should be clustered together into a single chunk
- This allows the **physical elements** of the chunk to be produced in **higher quantities**
- Example cartridge in ink jet printer

EBU5608

Step 3 - Create a rough geometric layout

- A geometric layout can be created in 2 or 3 dimensions or as physical models
 - an example can be found on a later slide
- Creating a geometric layout forces the team to consider
 - whether the geometric interfaces among the chunks are feasible and
 - to work out the basic dimensional relationships among the chunks

EBU5608

50

Step 3 - Create a rough geometric layout

- In some cases, the team may discover that the clustering derived in step 2 is **not** geometrically feasible
- If this happens, some of the elements have to be reassigned to other chunks

Step 4 - Identify the fundamental and incidental interactions

- It is most likely that a different person or group will be assigned to design each chunk
- Because the chunks interact with one another in both planned and unintended ways, these different groups will have to coordinate their activities and exchange information
- To manage this coordination process better, the team should identify the known interactions between chunks during the system-level design phase

EBU5608

Step 4 - Identify the fundamental and incidental interactions

- o There are two categories of interaction
 - Fundamental
 - Those which correspond to the lines on the schematic that connect the chunks to one another
 - These are the **fundamental** interactions of the systems operation

EBU5608

54

Step 4 - Identify the fundamental and incidental interactions

Incidental

- Those that arise because of
 - the particular physical implementation of functional elements, or
 - because of the geometric arrangement of the chunks
- An incidental interaction graph is used to document this type of interaction, see next slide

Summary

- 4-step method for establishing the product architecture
 - Step 1 Create a **schematic** of the product
 - Step 2 **Cluster** the elements of the schematic
 - Step 3 Create a rough geometric layout
 - Step 4 Identify the fundamental and incidental interactions

EBU5608

58

Reading

- Core Textbook (Ulrich & Eppinger, 7th Edition)
 - Chapter 10. Product Architecture.

EBU5608

50

References

1. Product Design and Development, Karl T Ulrich and Steven D Eppinger, 7th Edition, 2020, McGraw-Hill, chapter 10.

