# Run LLMs locally on your Ubuntu machine with integrated AMD-GPU

Thomas Bley 2025

### Why run LLMs locally?

#### Pros:

- Privacy
- Security
- Cost control
- Control over models used
- Consistent quality of answers

#### Cons:

- Not as scalable as the cloud providers
- Not suitable for big models

### Requirements

- Integrated AMD GPU
  - supported by Kernel builtin Vulkan API driver (RADV)
  - Ryzen 7 PRO 7840U (10 TOPs)
  - Ryzen AI 9 HX 370 (50 TOPs)
  - Ryzen Al Max+ 395 (50 TOPs)
- Ram: min. 32 GB
- OS: Ubuntu 22.04+
- Kernel with GTT support (e.g. v6.8)
- Connect your laptop to a charger

## Integrated NPUs and GTT

- Unified memory: memory shared between CPU and GPU/NPU
- Graphics translation table (GTT): allows the graphics card direct memory access (DMA) to the host system memory



# Setup Radeontop, Kernel

- Install radeontop
  - apt-get install radeontop
- Configure GTT in /etc/default/grub
  - GRUB\_CMDLINE\_LINUX\_DEFAULT="amd\_iommu=off ttm.pages\_limit=6291456" (24 GB VRAM represented in KiB divided by 4)
- Update grub: sudo update-grub2
- Reboot

### Check setup

#### Run radeontop, check GTT size:

```
Graphics pipe
                             0,83%
              Event Engine
                             0,00%
Vertex Grouper + Tesselator
         Texture Addresser
                             0.00%
             Texture Cache
                             0.00%
             Shader Export
                             0,00%
Sequencer Instruction Cache
                             0,00%
       Shader Interpolator
                             0,00%
    Shader Memory Exchange
                             0,00%
            Scan Converter
                             0,00%
        Primitive Assembly
                             0.00%
               Depth Block
                             0,00%
               Color Block
                             0,00%
            Clip Rectangle
                            2,50%
          237M / 926M VRAM 25,59%
          49M / 24563M GTT 0,20%
 0,75G / 0,80G Memory Clock 93,33%
 0,80G / 2,70G Shader Clock 29,63%
```

### Setup Llama.cpp

- Download llama.cpp with Vulkan support
  - e.g. llama-b6585-bin-ubuntu-vulkan-x64.zip
- Extract the archive
  - e.g. unzip llama-b6585-bin-ubuntu-vulkan-x64.zip
- Start llama-cpp server
  - ./llama-server hf <modelname> <params>
- Open your browser with: http://127.0.0.1:8080

### Start Llama.cpp with GPT-OSS

- Start llama-cpp server and download GPT-OSS 20b
  - ./llama-server -hf unsloth/gpt-oss-20b-GGUF:F16 \
     --jinja -ngl 99 --threads -1 --parallel 4 --ctx-size 16384 \
     --temp 1.0 --top-p 1.0 --top-k 0 --no-mmap
     --kv-unified --n\_predict 4096 \
     --chat-template-kwargs '{"reasoning effort": "low"}'
- Open your browser with: http://127.0.0.1:8080

### Start Llama.cpp with Qwen3

- Start llama-cpp server and download Qwen3
  - ./llama-server -hf unsloth/Qwen3-4B-GGUF:UD-Q4\_K\_XL \
     --jinja -ngl 99 --threads -1 --parallel 4 --ctx-size 262144 \
     --temp 0.7 --top-p 0.8 --top-k 20 --presence-penalty 1.0 --no-mmap \
     --kv-unified --cache-type-k q4\_0 --cache-type-v q4\_0 \
     --n\_predict 4096
- Open your browser with: http://127.0.0.1:8080
- Add "Inothink" to your prompt to disable thinking

# **Testing GPT-OSS**

#### Curl:

```
time curl -s http://127.0.0.1:8080/v1/chat/completions \
-H "Content-Type: application/json" -H "Authorization: Bearer no-key" \
-d '{
"model": "unsloth_gpt-oss-20b-GGUF_gpt-oss-20b-F16.gguf", "stream": false,
"messages": [{
    "role": "user", "content": "When was Beethoven born?"
}]}' | jq .
```

# Testing Qwen3

#### Curl:

```
time curl -s http://127.0.0.1:8080/v1/chat/completions \
-H "Content-Type: application/json" -H "Authorization: Bearer no-key" \
-d '{
"model": "unsloth_Qwen3-4B-GGUF_Qwen3-4B-UD-Q4_K_XL.gguf", "stream": false,
"messages": [{
    "role": "user", "content": "When was Beethoven born? /nothink"
}]}' | jq .
```

```
{
  "choices": [
      {
          "finish_reason": "stop",
          "index": 0,
          "message": {
                "role": "assistant",
                "content": "Ludwig van Beethoven was born on **December 16, 1770**."
```

#### Demo

#### llama.cpp

How can I help you today?

8 unsloth\_gpt-oss-20b-GGUF\_gpt-oss-20b-F16.gguf ctx: 4,096

Run\_LLMs\_Locally\_2025\_ThomasBley.pdf x

199.45 KB

Write an abstract for the conference talk attached, max. 200 words.

Press Enter to send, Shift + Enter for new line

#### Abstract

Large language models (LLMs) are increasingly used in enterprise and research, but cloud deployment raises privacy, security, and cost concerns. This talk demonstrates how to run state-of-the-art open-source LLMs locally on a single Ubuntu laptop equipped with an integrated AMD GPU. Using the built-in RADV Vulkan driver and the Graphics Translation Table (GTT) for unified memory, users can leverage the full GPU compute power without a discrete card. We describe the hardware prerequisites —a recent Ryzen processor with ≥32 GB RAM, Ubuntu 22.04+, and a kernel supporting GTT—and walk through enabling GTT, installing radeontop, and configuring the kernel command line. The session then covers setting up the Vulkan-enabled llama.cpp server, downloading models such as GPT-OSS 20B and Qwen3-4B, and tuning parameters for optimal performance. Live demonstrations with curl-based API calls showcase response times and answer quality, and we discuss how GTT memory sharing eliminates the need for large VRAM. Attendees will leave with a reproducible recipe for deploying secure, cost-effective LLMs on commodity hardware, enabling privacy-preserving AI workflows in both research and industry.

6 2 2 6

Context: 2695/4096 (66%) Output: 1197/ $\infty$  18.8 tokens/sec

#### Resources

- AMD Strix Halo Llama.cpp Toolboxes
- GLM 4.5-Air-106B and Qwen3-235B on AMD "Strix Halo" AI Ryzen MAX+ 395
- AMD Ryzen AI Max 395: GTT Memory Step-by-Step Instructions
- Wikipedia: Graphics Translation Table (GTT)
- unsloth: gpt-oss: How to Run & Fine-tune
- unsloth: Qwen3: How to Run & Fine-tune
- ViceVoice Text-to-Speech on Framework Desktop with Strix Halo

#### Thank You for listening!

Questions?

Slides:

github.com/thomas-0816/talks/