第8次作业题

1. $\forall x \in (2, +\infty)$, 定义 $f(x) = \ln x$. 求证: 函数 f 在 $(2, +\infty)$ 上一致连续.

证明: 方法 1. $\forall x \in (2,+\infty)$, 我们有 $|f'(x)|=\frac{1}{x}<2$. 于是 $\forall x,y\in (2,+\infty)$, 由 Lagrange 中值定理可知, 存在 ξ 介于 x,y 之间使得

$$|\ln x - \ln y| = \frac{1}{\xi}|x - y| < \frac{1}{2}|x - y|.$$

从而, $\forall \varepsilon>0$, 若令 $\delta=2\varepsilon$, 则 $\forall x,y>2$, 当 $|x-y|<\delta$ 时, 我们有

$$|\ln x - \ln y| < \frac{1}{2}|x - y| < \varepsilon.$$

故所证结论成立.

方法 2. $\forall \varepsilon > 0$, 令 $\delta = 2\varepsilon$, 则 $\forall x, y > 2$, 当 $|x - y| < \delta$ 时, 若 $x \geqslant y$, 则

$$|\ln x - \ln y| = \ln \frac{x}{y} = \ln \left(1 + \frac{x - y}{y}\right) \leqslant \frac{x - y}{y} \leqslant \frac{1}{2}|x - y| < \varepsilon,$$

若 x < y, 则 $|\ln x - \ln y| = \ln \frac{y}{x} \leqslant \frac{y-x}{x} \leqslant \frac{1}{2}|x-y| < \varepsilon$. 故所证结论成立.

2. $\forall x \in (0, +\infty)$, 令 $f(x) = \ln x$. 求证: 函数 f 在 $(0, +\infty)$ 上非一致连续.

证明: $\forall n \geqslant 1$, 定义 $x_n = \frac{2}{n}$, $y_n = \frac{1}{n}$, 则

$$\lim_{n \to \infty} (x_n - y_n) = \lim_{n \to \infty} \frac{1}{n} = 0, \lim_{n \to \infty} (f(x_n) - f(y_n)) = \log 2,$$

因此 f 在 $(0,+\infty)$ 上非一致连续.