# **Programmer's Guide**

# JETI Software Development Kit jeti\_radio\_ex.dll

**Version 4.x** 



JETI Technische Instrumente GmbH Tatzendpromenade 2

**D-07745** Jena

Tel.: +49-3641-225680 Fax: +49-3641-225681

e-mail: sales@jeti.com internet: www.jeti.com

# **Table of contents**

| 1 JETI SDK Overview            |            | 3  |
|--------------------------------|------------|----|
| 2 Introduction                 |            |    |
| 2 Introduction                 | •••••      | 4  |
| 2.1 How to COMMUNICATE 4       |            |    |
| 3 Function Reference           |            | 5  |
| 3.1 JETI_GetRadioExDLLVersion  | 6          |    |
|                                | 0          |    |
| 3.2 JETI_GETNUMRADIOEX 7       |            |    |
| 3.3 JETI_GETSERIALRADIOEX 8    |            |    |
| 3.4 JETI_OPENRADIOEX 9         |            |    |
| 3.5 JETI_CLOSERADIOEX 10       |            |    |
| 3.6 JETI_MeasureEx 11          |            |    |
| 3.7 JETI_PrepareMeasureEx 12   |            |    |
| 3.8 JETI_MeasureStatusEx 13    |            |    |
| 3.9 JETI_MeasureBreakEx 14     |            |    |
| 3.10 JETI_SpecRadEx15          |            |    |
| 3.11 JETI SAVESPECRADSPCEX     | <u> 16</u> |    |
| 3.12 JETI SAVESPECRADCSVEX     | 17         |    |
| 3.13 JETI RADIOEX 18           |            |    |
|                                |            |    |
| 3.15 JETI CHROMXYEX 20         |            |    |
| 3.16 JETI CHROMXY10Ex 21       |            |    |
| 3.17 JETI CHROMUVEX22          |            |    |
| 3.18 JETI CHROMXYZEX 23        |            |    |
| 3.19 JETI DWLPEEx 24           |            |    |
| 3.20 JETI CCTEx 25             |            |    |
| 3.21 JETI DuvEx 26             |            |    |
| 3.22 JETI CRIEx 27             |            |    |
| 3.23 JETI RADIOTINTEX 28       |            |    |
| _                              |            |    |
|                                |            |    |
|                                |            |    |
| 4 Examples                     |            | 31 |
| 4.1 C EXAMPLES 31              |            |    |
| 4.2 LabVIEW Examples 31        |            |    |
| 4.3 VISUALBASIC / VBA EXAMPLES | 31         |    |
|                                |            |    |
| Appendix A                     |            |    |
|                                |            |    |
| 5 Service                      |            | 33 |

### 1 JETI SDK Overview

The JETI Software Development Kit provides a complete software solution for interfacing spectrometric and radiometric devices from JETI Technische Instrumente GmbH. No firmware command expertise is required. Instead, a simple, high-level Application Program Interface (API) is used to provide complete connectivity. The API is provided in the form of several Windows Dynamic Link Libraries (DLL). The libraries can be used by any programming language that can handle DLL's such C/C++, VisualBasic, or LabVIEW. To get access to the functions the needed DLL files have to be copied to the Windows System Folder or to the working directory of the calling application.

The following DLLs are available:

- jeti\_spectro.dll / jeti\_spectro64.dll
  - o provides a set of functions for simple spectrometric measurement
- jeti\_spectro\_ex.dll / jeti\_spectro\_ex64.dll
  - o a set of functions like jeti\_spectro.dll, but with more options to control the measurement
- jeti\_radio.dll / jeti\_radio64.dll
  - provides a set of functions for simple radiometric measurement, including calculation of colorimetric values (e.g. xy- and u'v'-values, CCT, CRI,...)
- jeti radio ex.dll / jeti radio ex64.dll
  - a set of functions like jeti\_radio.dll, but with more options to control the measurement and calculations
- jeti\_core.dll / jeti\_core64.dll
  - o a set of functions to fully control the device and perform custom measurement sequences

Please note that this documentation describes only the functions provided by the jeti\_radio\_ex.dll. For description of the other DLL's please refer to the corresponding documents.

### 2 Introduction

The jeti\_radio\_ex API is provided in the form of a Windows Dynamic Link Library (DLL). The interface DLL communicates with the device via the provided device driver and the basic driver DLL jeti\_core.dll. JETI Technische Instrumente GmbH offers two versions of the DLL. The first version is for 32bit Windows operating systems (Windows 7/8/8.1/10).

The second version is for real 64 bit programs under the 64 bit versions of Windows 7/8/8.1/10. There are no differences in the functionality between the two versions.

### 2.1 How to communicate

To get access to the functions you have to copy the files jeti\_radio\_ex.dll and jeti\_core.dll to the working directory of your application, or to the windows\system32 directory.

In general, the user initiates communication with the target device(s) by making a call to JETI\_GetNumRadioEx. This call will return the number of target devices. This number is then used as a range when calling JETI\_GetSerialRadioEx to build a list of device serial numbers.

To access a device, it must first be opened by a call to <code>JETI\_OpenRadioEx</code> using an index determined from the call to <code>JETI\_GetNumRadioEx</code>. The <code>JETI\_OpenRadioEx</code> function will return a handle to the device that is used in all subsequent accesses. When <code>I/O</code> operations are complete, the device is closed by a call to <code>JETI\_CloseRadioEx</code>.

In case of a fatal communication error (error code 0xFF) JETI\_HardReset (from jeti\_core.dll) could be used to reset the device and resume the communication. For more information see the function description of JETI\_HardReset in 'JETI SDK Programmer's Guide jeti\_core.dll' and the Appendix A.

# 3 Function Reference

# Convention for calling : \_\_stdcall

| Type                     | Size in Bit     | Minimum                 | Maximum            |
|--------------------------|-----------------|-------------------------|--------------------|
| DWORD                    | 32              | 0                       | 2 <sup>32</sup> -1 |
| (unsigned long)          |                 |                         |                    |
| DWORD_PTR                |                 |                         |                    |
| (unsigned long integer)  | 32 (32bit DLLs) | 0                       | 2 <sup>32</sup> -1 |
| (unsigned long long)     | 64 (64bit DLLs) | 0                       | 2 <sup>64</sup> -1 |
| WORD                     | 16              | 0                       | 65535              |
| (unsigned short integer) |                 |                         |                    |
| FLOAT                    | 32              | -3.40282E+38            | 3.40282E+38        |
| (IEEE standard)          |                 |                         |                    |
| BOOL                     | 32              | <b>-2</b> <sup>21</sup> | 2 <sup>31</sup> -1 |
| (integer)                |                 |                         |                    |

# ${\bf 3.1\ JETI\_GetRadioExDLLVersion}$

This function returns the current version number of the jeti\_radio\_ex DLL.

### **Prototype**

DWORD JETI\_GetRadioExDLLVersion (WORD \*wMajorVersion, WORD \*wMinorVersion, WORD \*wBuildNumber)

### **Parameters**

Input

| прис          |        |                            |              |
|---------------|--------|----------------------------|--------------|
| Name          | Туре   | Description                | Call         |
| wMajorVersion | WORD * | address of a WORD          | By reference |
|               |        | variable that will contain |              |
|               |        | the major version          |              |
| wMinorVersion | WORD * | address of a WORD          | By reference |
|               |        | variable that will contain |              |
|               |        | the minor version          |              |
| wBuildNumber  | WORD * | address of a WORD          | By reference |
|               |        | variable that will contain |              |
|               |        | the build number           |              |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.2 JETI\_GetNumRadioEx

This function returns the number of JETI devices connected to the PC or to the LAN.

# **Prototype**

DWORD JETI\_GetNumRadioEx (DWORD \*dwNumDevices)

### **Parameters**

### Input

| Name         | Туре    | Description                                                         | Call         |
|--------------|---------|---------------------------------------------------------------------|--------------|
| dwNumDevices | DWORD * | address of a DWORD variable that will contain the number of devices | By reference |
|              |         | connected                                                           |              |

| Notarii Valao |      |                                |  |
|---------------|------|--------------------------------|--|
| Type          |      | Description                    |  |
| DWORD         | 0x00 | JETI_SUCCESS                   |  |
|               | 0x   | see Appendix A for error codes |  |

# 3.3 JETI\_GetSerialRadioEx

This function returns the serial numbers for the device specified by an index passed in dwDeviceNum. The index for the first device is 0 and the last device is the value returned by  $JETI\_GetNumRadioEx - 1$ .

### **Prototype**

DWORD JETI\_GetSerialRadioEx (DWORD dwDeviceNum, char \*cBoardSerialNr, char \*cSpecSerialNr, char \*cDeviceSerialNr)

### **Parameters**

### Input

| Name            | Туре   | Description              | Call         |
|-----------------|--------|--------------------------|--------------|
| dwDeviceNum     | DWORD  | index of the device for  | By value     |
|                 |        | which the serial         |              |
|                 |        | numbers are desired      |              |
| cBoardSerialNr  | char * | address of a string that | By reference |
|                 |        | will contain the         | -            |
|                 |        | electronics serial       |              |
|                 |        | number                   |              |
| cSpecSerialNr   | char * | address of a string that | By reference |
|                 |        | will contain the         |              |
|                 |        | spectrometer serial      |              |
|                 |        | number                   |              |
| cDeviceSerialNr | char * | address of a string that | By reference |
|                 |        | will contain the device  | -            |
|                 |        | serial number            |              |

| Туре  | Description |                                |  |
|-------|-------------|--------------------------------|--|
| DWORD | 0x00        | JETI_SUCCESS                   |  |
|       | 0x          | see Appendix A for error codes |  |

# 3.4 JETI\_OpenRadioEx

Opens a device (using device number returned by *JETI\_GetNumRadioEx*) and returns a handle which will be used for subsequent accesses.

### **Prototype**

DWORD JETI\_OpenRadioEx (DWORD dwDeviceNum, DWORD\_PTR \*dwDevice)

### **Parameters**

### Input

| Name        | Туре        | Description                                                         | Call         |
|-------------|-------------|---------------------------------------------------------------------|--------------|
| dwDeviceNum | DWORD       | Device index. 0 for first device, 1 for second,                     | By value     |
|             |             | etc.                                                                |              |
| dwDevice    | DWORD_PTR * | Pointer to a variable where the handle to the device will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.5 JETI\_CloseRadioEx

Closes an open device using the handle provided by <code>JETI\_OpenRadioEx</code>.

### **Prototype**

DWORD JETI\_CloseRadioEx (DWORD\_PTR dwDevice)

### **Parameters**

### Input

| Name     | Туре      | Description           | Call     |
|----------|-----------|-----------------------|----------|
| dwDevice | DWORD_PTR | Handle to a device to | By value |
|          |           | close as returned by  |          |
|          |           | JETI OpenRadioEx      |          |

| Notalli Valac |    |                                |  |
|---------------|----|--------------------------------|--|
| Туре          |    | Description                    |  |
| DWORD 0x00 J  |    | JETI_SUCCESS                   |  |
|               | 0x | see Appendix A for error codes |  |

### 3.6 JETI\_MeasureEx

Starts a radiometric measurement.

The integration time will be determined automatically if fTint is set to zero (0). Otherwise the integration time in milliseconds will be used.

To perform an average measurement with up to 10000 measurements set the wAver to the appropriate value, otherwise set the value to 1.

All further calculations will be performed using the wavelength resolution as specified by the dwStep value. A value of 1 or 5 nm is allowed.

#### NOTE:

The function will return *immediately*. Before any other DLL-function call the function *JETI MeasureStatusEx* must be used to check if the measurement has finished.

Please note that a measurement could take several seconds up to 2 minutes, depending on the intensity of the light source to measure. If averaging is used, the time increases proportional with the count.

### **Prototype**

DWORD JETI\_MeasureEx (DWORD\_PTR dwDevice, float fTint, WORD wAver, DWORD dwStep)

#### **Parameters**

#### Input

| Name     | Type      | Description                       | Call     |
|----------|-----------|-----------------------------------|----------|
| dwDevice | DWORD_PTR | Handle to a device as returned by | By value |
|          |           | JETI_OpenRadioEx                  |          |
| fTint    | float     | Integration time in [ms]          | By value |
|          |           | for the measurement               |          |
|          |           | (up to 60000).                    |          |
|          |           | Set this value to 0 for           |          |
|          |           | adaption.                         |          |
| wAver    | WORD      | Count of scans for                | By value |
|          |           | averaging.                        | -        |
|          |           | Set this value to 1 for no        |          |
|          |           | averaging                         |          |
| dwStep   | DWORD     | wavelength step in [nm]           | By value |
|          |           | for further calculations          |          |

| Туре  | Description       |                                |
|-------|-------------------|--------------------------------|
| DWORD | 0x00 JETI_SUCCESS |                                |
|       | 0x                | see Appendix A for error codes |

### 3.7 JETI\_PrepareMeasureEx

Prepares a radiometric measurement.

The integration time will be determined automatically if fTint is set to zero (0). Otherwise the integration time in milliseconds will be used.

To perform an average measurement with up to 10000 measurements set the wAver to the appropriate value, otherwise set the value to 1.

All further calculations will be performed using the wavelength resolution as specified by the dwStep value. A value of 1 or 5 nm is allowed.

It will not start the measurement.

#### NOTE:

The function will return *immediately.* Before any other DLL-function call the function JETI\_MeasureStatusEx must be used to check if the measurement has started by an external trigger.

Please note that a measurement could take several seconds up to 2 minutes, depending on the intensity of the light source to measure. If averaging is used, the time increases proportional with the count.

### **Prototype**

DWORD JETI\_PrepareMeasureEx (DWORD\_PTR dwDevice, float fTint, WORD wAver, DWORD dwStep)

#### **Parameters**

#### Input

| Name     | Type      | Description                                                                                   | Call     |
|----------|-----------|-----------------------------------------------------------------------------------------------|----------|
| dwDevice | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx                                         | By value |
| fTint    | float     | Integration time in [ms] for the measurement (up to 60000). Set this value to 0 for adaption. | By value |
| wAver    | WORD      | Count of scans for averaging. Set this value to 1 for no averaging                            | By value |
| dwStep   | DWORD     | wavelength step in [nm] for further calculations                                              | By value |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

### 3.8 JETI\_MeasureStatusEx

Returns the status of a measurement started with *JETI\_MeasureEx*. A measurement has finished if the boStatus variable is FALSE (0). If the measurement is already in progress the variable boStatus returns TRUE (1).

If a measurement was initiated with automatic adaption of integration time and the measurement could not be performed because of overexposure boStatus will be switched to FALSE (0) and the function will return an error code 0x20.

NOTE:

A function to get a measuring result should not be called until the *JETI\_MeasureStatusEx* returns that the measurement has finished.

### **Prototype**

DWORD JETI\_MeasureStatusEx (DWORD\_PTR dwDevice, BOOL \*boStatus)

### **Parameters**

#### Input

| Name     | Type      | Description                                                                                    | Call         |
|----------|-----------|------------------------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx                                          | By value     |
| boStatus | BOOL*     | Pointer to a variable where the status will be stored TRUE (1) – in progress FALSE (0) – ready | By reference |

| TOTALLI TALAG |      |                                |  |
|---------------|------|--------------------------------|--|
| Type          |      | Description                    |  |
| DWORD         | 0x00 | JETI_SUCCESS                   |  |
|               | 0x   | see Appendix A for error codes |  |

# 3.9 JETI\_MeasureBreakEx

This function cancels an initiated measurement.

# **Prototype**

DWORD JETI\_MeasureBreakEx (DWORD\_PTR dwDevice)

### **Parameters**

### Input

| Name     | Type      | Description                                           | Call     |
|----------|-----------|-------------------------------------------------------|----------|
| dwDevice | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx | By value |

| Туре  | Description                       |  |
|-------|-----------------------------------|--|
| DWORD | 0x00 JETI_SUCCESS                 |  |
|       | 0x see Appendix A for error codes |  |

### 3.10 JETI\_SpecRadEx

Returns the spectral radiance per wavelength. The wavelength range in [nm] is specified by dwBeg and dwEnd. The wavelength step was specified by the function JETI MeasureEx.

Please note that the array for the values must provide enough space for at least the count of calculated values! The count of values can be obtained by subtract the start wavelength (dwBeg) from the end wavelength (dwEnd), divide the result by the wavelength step and increase the result by 1:

$$count = \frac{dwEnd - dwBeg}{dwStep} + 1$$

The unit of the values depends on the used measuring head. By default it's as follows:

| Measuring Head              | Description                | Unit                        |
|-----------------------------|----------------------------|-----------------------------|
| none                        | spectral radiance          | $W/sr \times m^2 \times nm$ |
| cosine corrector head-piece | spectral irradiance        | $W/m^2 \times nm$           |
| integrating sphere          | spectral radiant flux      | W/nm                        |
| tube                        | spectral radiant intensity | $W/sr \times nm$            |

### **Prototype**

DWORD JETI SpecRadEx (DWORD PTR dwDevice, DWORD dwBeq, DWORD dwEnd, FLOAT \*fSprad)

### **Parameters**

#### Input

| Name     | Type      | Description              | Call         |
|----------|-----------|--------------------------|--------------|
| dwDevice | DWORD_PTR | Handle to a device as    | By value     |
|          |           | returned by              |              |
|          |           | JETI_OpenRadioEx         |              |
| dwBeg    | DWORD     | start wavelength in [nm] | By value     |
| dwEnd    | DWORD     | end wavelength in [nm]   | By value     |
| fSprad   | FLOAT *   | Pointer to an array      | By reference |
|          |           | where the spectral       |              |
|          |           | radiance values will be  |              |
|          |           | stored                   |              |
|          |           | (the array must          |              |
|          |           | provide space for at     |              |
|          |           | least 81 values)         |              |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.11 JETI\_SaveSpecRadSPCEx

Writes the spectral radiance per wavelength to a SPC-file. The wavelength range in [nm] is specified by dwBeg and dwEnd. The wavelength step was specified by the function JETI\_MeasureEx.

The unit of the values depends on the used measuring head. By default it's as follows:

| Measuring Head              | Description                | Unit                        |
|-----------------------------|----------------------------|-----------------------------|
| none                        | spectral radiance          | $W/sr \times m^2 \times nm$ |
| cosine corrector head-piece | spectral irradiance        | $W/m^2 \times nm$           |
| integrating sphere          | spectral radiant flux      | W/nm                        |
| tube                        | spectral radiant intensity | $W/sr \times nm$            |

### **Prototype**

DWORD JETI\_SaveSpecRadSPCEx (DWORD\_PTR dwDevice, DWORD dwBeg, DWORD dwEnd, char \*cPathName, char \*cOperator, char \*cMemo)

### **Parameters**

Input

| Name      | Туре      | Description              | Call         |
|-----------|-----------|--------------------------|--------------|
| dwDevice  | DWORD_PTR | Handle to a device as    | By value     |
|           |           | returned by              |              |
|           |           | JETI_OpenRadioEx         |              |
| dwBeg     | DWORD     | start wavelength in [nm] | By value     |
| dwEnd     | DWORD     | end wavelength in [nm]   | By value     |
| cPathName | char *    | String (up to 255        | By reference |
|           |           | character) with file     |              |
|           |           | name and directory to    |              |
|           |           | save the file (file      |              |
|           |           | extension should be      |              |
|           |           | .SPC)                    |              |
| cOperator | char *    | String (up to 63         | By reference |
|           |           | character) with          | -            |
|           |           | operator's name          |              |
| cMemo     | char *    | String (up to 129        | By Reference |
|           |           | character) with a        |              |
|           |           | measurement              |              |
|           |           | description              |              |

| Туре  | Description                       |              |
|-------|-----------------------------------|--------------|
| DWORD | 0x00                              | JETI_SUCCESS |
|       | 0x see Appendix A for error codes |              |

# 3.12 JETI\_SaveSpecRadCSVEx

Writes the spectral radiance per wavelength to a CSV-file. The wavelength range in [nm] is specified by dwBeg and dwEnd. The wavelength step was specified by the function JETI\_MeasureEx.

The unit of the values depends on the used measuring head. By default it's as follows:

| Measuring Head              | Description                | Unit                           |
|-----------------------------|----------------------------|--------------------------------|
| none                        | spectral radiance          | W/                             |
|                             |                            | $\int sr \times m^2 \times nm$ |
| cosine corrector head-piece | spectral irradiance        | W/                             |
|                             |                            | $/m^2 \times nm$               |
| integrating sphere          | spectral radiant flux      | W/                             |
|                             |                            | /nm                            |
| tube                        | spectral radiant intensity | W/                             |
|                             |                            | $/sr \times nm$                |

### **Prototype**

DWORD JETI\_SaveSpecRadCSVEx (DWORD\_PTR dwDevice, DWORD dwBeg, DWORD dwEnd, char \*cPathName, char \*cOperator, char \*cMemo)

### **Parameters**

Input

| Name      | Type      | Description              | Call         |
|-----------|-----------|--------------------------|--------------|
| dwDevice  | DWORD_PTR | Handle to a device as    | By value     |
|           |           | returned by              |              |
|           |           | JETI_OpenRadioEx         |              |
| dwBeg     | DWORD     | start wavelength in [nm] | By value     |
| dwEnd     | DWORD     | end wavelength in [nm]   | By value     |
| cPathName | char *    | String (up to 255        | By reference |
|           |           | character) with file     |              |
|           |           | name and directory to    |              |
|           |           | save the file (file      |              |
|           |           | extension should         |              |
|           |           | be .CSV)                 |              |
| cOperator | char *    | String (up to 63         | By reference |
|           |           | character) with          |              |
|           |           | operator's name          |              |
| cMemo     | char *    | String (up to 129        | By Reference |
|           |           | character) with a        |              |
|           |           | measurement              |              |
|           |           | description              |              |

| Туре  | Description                       |              |
|-------|-----------------------------------|--------------|
| DWORD | 0x00                              | JETI_SUCCESS |
|       | 0x see Appendix A for error codes |              |

# 3.13 JETI\_RadioEx

Returns the radiometric value determined by the last measure. The wavelength range in [nm] is specified by dwBeg and dwEnd. The wavelength step was specified by the function JETI\_MeasureEx.

The unit of the value depends on the used measuring head. By default it's as follows:

| Measuring Head              | Description       | Unit              |
|-----------------------------|-------------------|-------------------|
| none                        | radiance          | $W/sr \times m^2$ |
| cosine corrector head-piece | irradiance        | $W/m^2$           |
| integrating sphere          | radiant flux      | W                 |
| tube                        | radiant intensity | W/sr              |

### **Prototype**

DWORD JETI\_Radio (DWORD\_PTR dwDevice, DWORD dwBeg, DWORD dwEnd, FLOAT \*fRadio)

### **Parameters**

#### Input

| Name     | Туре      | Description                                                      | Call         |
|----------|-----------|------------------------------------------------------------------|--------------|
| dwDevice | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx            | By value     |
| dwBeg    | DWORD     | start wavelength in [nm]                                         | By value     |
| dwEnd    | DWORD     | end wavelength in [nm]                                           | By value     |
| fRadio   | FLOAT *   | Pointer to a variable where the radiometric value will be stored | By reference |

| Type  | Description                       |              |
|-------|-----------------------------------|--------------|
| DWORD | 0x00                              | JETI_SUCCESS |
|       | 0x see Appendix A for error codes |              |

# 3.14JETI\_PhotoEx

Returns the photometric value determined by the last measure. The wavelength range for calculation is 380...780 nm. The wavelength step was specified by the function JETI\_MeasureEx.

The unit of the value depends on the used measuring head. By default it's as follows:

| Measuring Head              | Description        | Unit             |
|-----------------------------|--------------------|------------------|
| none                        | luminance          | $\frac{cd}{m^2}$ |
| cosine corrector head-piece | illuminance        | lx               |
| integrating sphere          | luminous flux      | lm               |
| tube                        | luminous intensity | cd               |

### **Prototype**

DWORD JETI\_Photo (DWORD\_PTR dwDevice, FLOAT \*fPhoto)

### **Parameters**

### Input

| IIIput   |           |                                                                  |              |
|----------|-----------|------------------------------------------------------------------|--------------|
| Name     | Type      | Description                                                      | Call         |
| dwDevice | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx            | By value     |
| fPhoto   | FLOAT *   | Pointer to a variable where the photometric value will be stored | By reference |

| Туре  | Description                       |  |
|-------|-----------------------------------|--|
| DWORD | 0x00 JETI_SUCCESS                 |  |
|       | 0x see Appendix A for error codes |  |

# 3.15 JETI\_ChromxyEx

Returns the CIE-1931 chromaticity coordinates x and y determined by the last measure. The calculation is based on a 2° observer, and the wavelength range for calculation is 380...780 nm.

### **Prototype**

DWORD JETI\_ChromxyEx ( DWORD\_PTR dwDevice, FLOAT \*fChromx, FLOAT \*fChromy)

### **Parameters**

### Input

| Name     | Туре      | Description                                            | Call         |
|----------|-----------|--------------------------------------------------------|--------------|
| dwDevice | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx  | By value     |
| fChromx  | FLOAT *   | Pointer to a variable where the x-value will be stored | By reference |
| fChromy  | FLOAT *   | Pointer to a variable where the y-value will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.16 JETI\_Chromxy10Ex

Returns the CIE-1931 chromaticity coordinates x and y determined by the last measure. The calculation is based on a 10° observer, and the wavelength range for calculation is 380...780 nm.

### **Prototype**

DWORD JETI\_Chromxy10Ex ( DWORD\_PTR dwDevice, FLOAT \*fChromx10, FLOAT \*fChromy10)

### **Parameters**

### Input

| Name      | Type      | Description                                            | Call         |
|-----------|-----------|--------------------------------------------------------|--------------|
| dwDevice  | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx  | By value     |
| fChromx10 | FLOAT *   | Pointer to a variable where the x-value will be stored | By reference |
| fChromy10 | FLOAT *   | Pointer to a variable where the y-value will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.17 JETI\_ChromuvEx

Returns the CIE-1976 chromaticity coordinates u' and v' determined by the last measure. The calculation is based on a 2° observer, and the wavelength range for calculation is 380...780 nm.

### **Prototype**

DWORD JETI\_ChromuvEx (DWORD\_PTR dwDevice, FLOAT \*fChromu, FLOAT \*fChromv)

### **Parameters**

### Input

| Name     | Туре      | Description                                             | Call         |
|----------|-----------|---------------------------------------------------------|--------------|
| dwDevice | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx   | By value     |
| fChromu  | FLOAT *   | Pointer to a variable where the u'-value will be stored | By reference |
| fChromv  | FLOAT *   | Pointer to a variable where the v'-value will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# ${\bf 3.18\,JETI\_ChromXYZEx}$

Returns the tristimulus XYZ determined by the last measure. The calculation is based on a 2° observer, and the wavelength range for calculation is 380...780 nm.

### **Prototype**

DWORD JETI\_ChromXYZEx (DWORD\_PTR dwDevice, FLOAT \*fX, FLOAT \*fY, FLOAT \*fZ)

### **Parameters**

### Input

| Name     | Туре      | Description             | Call         |
|----------|-----------|-------------------------|--------------|
| dwDevice | DWORD_PTR | Handle to a device as   | By value     |
|          |           | returned by             |              |
|          |           | JETI_OpenRadioEx        |              |
| fX       | FLOAT *   | pointer to a variable   | By reference |
|          |           | where the tristimulus X |              |
|          |           | will be stored          |              |
| fY       | FLOAT *   | pointer to a variable   | By reference |
|          |           | where the tristimulus Y |              |
|          |           | will be stored          |              |
| fZ       | FLOAT *   | pointer to a variable   | By reference |
|          |           | where the tristimulus Z |              |
|          |           | will be stored          |              |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.19 JETI\_DWLPEEx

Returns the dominant wavelength (DWL) and color purity (PE) determined by the last measure. The calculation is based on a 2° observer, and the wavelength range for calculation is 380...780 nm. The unit for the dominant wavelength is [nm].

The unit for the color purity is [%] (percent).

### **Prototype**

DWORD JETI\_DWLPEEx (DWORD\_PTR dwDevice, FLOAT \*fDWL, FLOAT \*fPE)

#### **Parameters**

### Input

| Name     | Туре      | Description                                                        | Call         |
|----------|-----------|--------------------------------------------------------------------|--------------|
| dwDevice | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx              | By value     |
| fDWL     | FLOAT *   | Pointer to a variable where the dominant wavelength will be stored | By reference |
| fPE      | FLOAT *   | Pointer to a variable where the color purity will be stored        | By reference |

| Туре  | Description                       |              |
|-------|-----------------------------------|--------------|
| DWORD | 0x00                              | JETI_SUCCESS |
|       | 0x see Appendix A for error codes |              |

# 3.20 JETI\_CCTEx

Returns the correlated color temperature (CCT) determined by the last measure. The wavelength range for calculation is 380...780 nm.

### **Prototype**

DWORD JETI\_CCTEx (DWORD\_PTR dwDevice, float \*fCCT)

### **Parameters**

### Input

| Name     | Туре      | Description                                                                       | Call         |
|----------|-----------|-----------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx                             | By value     |
| fCCT     | float *   | Pointer to a variable where the correlated color temperature value will be stored | By reference |

| Туре  | Description       |                                |
|-------|-------------------|--------------------------------|
| DWORD | 0x00 JETI SUCCESS |                                |
|       | 0x                | see Appendix A for error codes |

# 3.21 JETI\_DuvEx

Returns the  $\Delta uv$  for the correlated color temperature (CCT) determined by the last measure. The wavelength range for calculation is 380...780 nm.

### **Prototype**

DWORD JETI\_DuvEx (DWORD\_PTR dwDevice, FLOAT \*fDuv)

### **Parameters**

### Input

| Name     | Type      | Description              | Call         |
|----------|-----------|--------------------------|--------------|
| dwDevice | DWORD_PTR | Handle to a device as    | By value     |
|          |           | returned by              |              |
|          |           | JETI_OpenRadioEx         |              |
| fDuv     | FLOAT *   | pointer to a variable    | By reference |
|          |           | where the Δuv value will |              |
|          |           | be stored                |              |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

### 3.22 JETI\_CRIEx

Returns the color rendering indices according to CIE 13.3-1995 publication and the color rendering index of the JIS color sample determined by the last measure.

The color temperature of the reference source is specified by fCCT. To use the same CCT as calculated, set fCCT to zero (0).

The function returns an array of 17 values containing the different CRI-values.

The first value (index 0) contains the chromaticity difference (DC) between the lamp to be tested and the reference illuminant. If DC is greater than 0.0054 the resulting color rendering indices may become less accurate.

The second value (index 1) contains the general color rendering index which is the arithmetical mean of eight special color rendering indices for the CIE-1974 test-color samples Nos. 1...8.

Value number three (index 2) to value number 17 (index 16) contains the special color rendering indices.

### **Prototype**

DWORD JETI\_CRIEx (DWORD\_PTR dwDevice, float fCCT, float \*fCRI)

#### **Parameters**

#### Input

| Name     | Type      | Description               | Call         |
|----------|-----------|---------------------------|--------------|
| dwDevice | DWORD_PTR | Handle to a device as     | By value     |
|          |           | returned by               |              |
|          |           | JETI_OpenRadioEx          |              |
| fCCT     | float     | color temperature of the  | By value     |
|          |           | reference light source in |              |
|          |           | [K]                       |              |
| fCRI     | float *   | Pointer to an array       | By reference |
|          |           | where the CRI-values      |              |
|          |           | will be stored            |              |
|          |           | (the array must provide   |              |
|          |           | space for at least 17     |              |
|          |           | values)                   |              |

| Туре  |      | Description                    |
|-------|------|--------------------------------|
| DWORD | 0x00 | JETI_SUCCESS                   |
|       | 0x   | see Appendix A for error codes |

# ${\bf 3.23\,JETI\_RadioTintEx}$

This function gets the last used integration time.

### **Prototype**

DWORD JETI\_RadioTintEx (DWORD\_PTR dwDevice, float \*fTint)

### **Parameters**

### Input

| Name     | Type      | Description                                                       | Call         |
|----------|-----------|-------------------------------------------------------------------|--------------|
| dwDevice | DWORD_PTR | Handle to a device as returned by Fehler: Referenz nicht gefunden | By value     |
| fTint    | float *   | Pointer to a variable where the integration time will be stored   | By reference |

| Туре  |      | Description                    |
|-------|------|--------------------------------|
| DWORD | 0x00 | JETI_SUCCESS                   |
|       | 0x   | see Appendix A for error codes |

# 3.24 JETI\_SetMeasDistEx

This function sets the measuring distance which is used to calculate the values in intensity measuring mode.

### **Prototype**

DWORD JETI\_SetMeasDistEx (DWORD\_PTR dwDevice, DWORD dwDistance)

### **Parameters**

#### Input

| IIIpat     |           |                                                       |          |
|------------|-----------|-------------------------------------------------------|----------|
| Name       | Type      | Description                                           | Call     |
| dwDevice   | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx | By value |
| dwDistance | DWORD     | the measuring distance in [mm]                        | By value |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.25 JETI\_GetMeasDistEx

This function gets the measuring distance which is used to calculate the values in intensity measuring mode.

### **Prototype**

DWORD JETI\_GetMeasDistEx (DWORD\_PTR dwDevice, DWORD \*dwDistance)

### **Parameters**

### Input

| Name       | Туре      | Description                                                               | Call     |
|------------|-----------|---------------------------------------------------------------------------|----------|
| dwDevice   | DWORD_PTR | Handle to a device as returned by<br>JETI_OpenRadioEx                     | By value |
| dwDistance | DWORD *   | pointer to a variable where the measuring distance in [mm] will be stored | By value |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

### 4 Examples

To help starting development the SDK includes several examples.

### 4.1 C Examples

### **RadioSample**

This sample demonstrates the basic usage of the jeti\_radio DLL.

### **SyncSample**

The SyncSample demonstrates the use of special functions to synchronize the measurements integration time with the frequency of pulsed light sources and pulsed monitor back-lights.

### **TriggerSample**

This sample demonstrates the handle of measurements initiated by an external trigger event.

### 4.2 LabVIEW Examples

These samples demonstrate the basic usage of the DLLs within a LabVIEW program.

### 4.3 VisualBasic / VBA Examples

These sample demonstrate the usage of the jeti\_radio DLL within a VBA macro inside an excel spreadsheet.

# **Appendix A**

#### Error codes and their description:

| Error code   | #define                    | Description                               |
|--------------|----------------------------|-------------------------------------------|
| 0x00         | JETI_SUCCESS               | no error occured                          |
| 0x02         | JETI_ERROR_OPEN_PORT       | could not open COM-port                   |
| 0x03         | JETI_ERROR_PORT_SETTING    | could not set COM-port settings           |
| 0x04         | JETI_ERROR_BUFFER_SIZE     | could not set buffer size of COM-port     |
| 0x05         | JETI_ERROR_PURGE           | could not purge buffers of COM-port       |
| 0x06         | JETI_ERROR_TIMEOUT_SETTING | could not set COM-port timeout            |
| 0x07         | JETI_ERROR_SEND            | could not send to device                  |
| 0x08         | JETI_TIMEOUT               | communication timeout error               |
| 0x0A         | JETI_ERROR_RECEIVE         | could not receive from device             |
| 0x0B         | JETI_ERROR_NAK             | command not supported or invalid argument |
| 0x0C         | JETI_ERROR_CONVERT         | could not convert received data           |
| 0x0D         | JETI_ERROR_PARAMETER       | invalid argument                          |
| 0x0E         | JETI_BUSY                  | device busy                               |
| 0x11         | JETI_CHECKSUM_ERROR        | invalid checksum of received data         |
| 0x12         | JETI_INVALID_STEPWIDTH     | invalid step width                        |
| 0x13         | JETI_INVALID_NUMBER        | invalid device number                     |
| 0x14         | JETI_NOT_CONNECTED         | device not connected                      |
| 0x15         | JETI_INVALID_HANDLE        | invalid device handle                     |
| 0x16         | JETI_INVALID_CALIB         | invalid calibration file number           |
| 0x17         | JETI_CALIB_NOT_READ        | calibration data not read                 |
| 0x20         | JETI_OVEREXPOSURE          | measurement failed due to overexposure    |
| 0x22         | JETI_MEASURE_FAIL          | measurement failed due to other reasons   |
| 0x23         | JETI_ADAPTION_FAIL         | adaption failed                           |
| 0x80         | JETI_DLL_ERROR             | internal DLL error                        |
| 0xFF         | JETI_FATAL_ERROR           | fatal communication error                 |
| 0x27100x2AFC |                            | Windows sockets error codes               |

If a fatal communication error occurs (error code 0xFF) there are several ways to solve the problem.

- 1) Call JETI\_HardReset (from jeti\_core) to perform a device hardware reset. The effect of this function is the same as disconnecting then reconnecting the device from USB. This will work only if the device uses an FTDI USB-to-serial converter and was opened with direct access to the FTDI driver (opened with JETI\_GetNumRadioEx and JETI\_OpenRadioEx) instead of using the VCP (virtual com port) driver (JETI\_OpenCOMDevice and/or JETI\_SetComSearch). Please note that all custom settings (e.g. integration time, function,...) will be set to default values and have to be repeated.
- Closing the device with JETI\_CloseRadioEx will also perform a hardware reset if a fatal communication error occurred on a device with FTDI USB-to-Serial converter. After closing the device it should be possible to reopen the device with JETI\_GetNumRadioEx and JETI\_OpenRadioEx.
- 3) If a JETI device with FTDI USB-to-Serial converter was opened using VCP driver (e.g. by using JETI\_OpenCOMDevice) or by using other connections (like RS232, bluetooth,...) a fatal communication error can only be resolved by closing the device with JETI\_CloseRadioEx and manually reset the device.

### 5 Service

In case of any questions or technical problems please contact:

JETI Technische Instrumente GmbH Tatzendpromenade 2 D-07745 Jena Tel. +49 3641 225 680

Fax +49 3641 225 681 e-mail: sales@jeti.com Internet: www.jeti.com

Copyright (c) 2016 JETI Technische Instrumente GmbH. All rights reserved.

Software and operating instruction are delivered with respect to the License agreement and can be used only in accordance with this License agreement

The hard and software as well as the operating instruction are subject to change without notice. JETI Technische Instrumente GmbH assumes no liability or responsibility for inaccuracies and errors in the operating instruction.

It is not allowed to copy this documentation or parts of it without previous written permission by JETI Technische Instrumente GmbH.

September 23, 2016