CSE 105: Discrete Mathematics

Course Evaluation

Topic	Marks
Attendance	05
Individual Presentations	05
Group Assignments	05
Class Tests (3)	15
Mid term	30
Final	40

Course Materials

Text Book:

- "Discrete Mathematics and Its Application", Kenneth H. Rosen, 7th Edition, McGraw-Hill.
- •Lecture notes

Reference Materials:

- "Schaum's Outlines Discrete Mathematics", Seymore Lipschutz & Marc Lipson, 3rd Edition, McGraw-Hill.
- http://en.wikiversity.org/wiki/Introductory_Discrete_Mathematics_for_Computer_Science

Course Contents

No	Topic	Exams/Quiz
Lectures 1-2	Introduction to Discrete Mathematics+ Propositional Logic	
Lectures 3-4	Propositional Logic and Introduction to Set	
Lectures 5-6	Quiz-1 + Set	Quiz-1
Lectures 7-8	Function	
Lectures 9-10	Quiz-2 + Algorithm	Quiz-2
Lectures 11-12	Midterm Exam	
Lectures 13-14	Induction + Discrete Probability	GA-1
Lectures 15-16	Counting	Presentations
Lectures 17-18	Quiz-3+Relation	Quiz-3
Lectures 19-20	Number Theory	GA-2
Lectures 21-22	Quiz-4+Graph-Tree	Quiz-4
Lectures 23-24	Graph-Tree	Presentations
	Final Exam	

Discrete mathematics

Discrete mathematics

- study of mathematical structures and objects that are fundamentally discrete rather than continuous.
- Examples of objects with discrete values are
- integers, graphs, or statements in logic.
- Discrete mathematics and computer science.
- Concepts from discrete mathematics are useful for describing objects and problems in computer algorithms and programming languages. These have applications in cryptography, automated theorem proving, and software development.

Logic

- Logic defines a formal language for representing knowledge and for making logical inference
- •It helps us to understand how to construct a valid argument

Logic defines:

- Syntax of statements
- The meaning of statements
- The rules of logical inference (manipulation)

Propositional logic

The simplest logic

- Definition:
- A proposition is a statement that is either true or false.
- Examples:
- Airport is located in the North Part of Dhaka City.
- (T)
- -5 + 2 = 8.
- (F)
- It is raining today.
- (either T or F)

Propositional logic

Examples (cont.):

- How are you?
- a question is not a proposition
- -x + 5 = 3
- since x is not specified, neither true nor false
- 2 is a prime number.
- (T)
- She is very talented.
- since she is not specified, neither true nor false
- There are other life forms on other planets in the universe.
- either T or F

Composite Statements

 More complex propositional statements can be built from elementary statements using logical connectives.

Example:

- Proposition A: It rains outside
- Proposition B: We will see a movie
- A new (combined) proposition:

If it rains outside then we will see a movie

Composite Statements

 More complex propositional statements can be built from elementary statements using logical connectives.

- Logical connectives:
- Negation
- Conjunction
- Disjunction
- Exclusive or
- Implication
- Biconditional

Logical connectives: Negation

Definition: Let p be a proposition. The statement "It is not the case that p." is another proposition, called the negation of p. The negation of p is denoted by ¬ p and read as "not p."

Example:

Airport is located in the North Part of Dhaka City.

 It is not the case that Airport is located in the North Part of Dhaka City.

Other examples:

- $-5 + 2 \neq 8$.
- 10 is not a prime number.
- It is not the case that buses stop running at 9:00pm.

Logical connectives: Negation

Negate the following propositions:

- It is raining today.
- It is not raining today.
- 2 is a prime number.
- 2 is not a prime number
- There are other life forms on other planets in the universe.
- It is not the case that there are other life forms on other planets in the universe.

Logical connectives: Negation

A truth table displays the relationships between truth values (T or F) of different propositions.

P	¬p
T	F
F	Т

Rows: all possible values of elementary proposition

Logical connectives: Conjunction

Definition: Let p and q be propositions. The proposition "p and q" denoted by $p \land q$, is true when both p and q are true and is false otherwise. The proposition $p \land q$ is called the conjunction of p and q.

Examples:

- It is raining today and 2 is a prime number.
- -2 is a prime number and $5 + 2 \neq 8$.
- 13 is a perfect square and 9 is prime.

Logical connectives: Disjunction

Definition: Let p and q be propositions. The proposition "p or q" denoted by $p \lor q$, is false when both p and q are false and is true otherwise. The proposition $p \lor q$ is called the disjunction of p or q.

Examples:

- It is raining today or 2 is a prime number.
- -2 is a prime number or $5 + 2 \neq 8$.
- 13 is a perfect square or 9 is a prime.

Truth Tables

- Conjunction and disjunction
 - Four different combinations of values for p and q

р	q	p ^ q	p∨q
F	F		
F	Т		
Т	F		
Т	Т		

Rows: all possible combinations of values for elementary propositions: 2ⁿ values

Truth Tables

- Conjunction and disjunction
 - Four different combinations of values for p and q

р	q	p ∧ q	p∨q
F	F	F	
F	Т	F	
Т	F	F	
Т	Т	Т	

Truth Tables

- Conjunction and disjunction
 - Four different combinations of values for p and q

р	q	p ^ q	p∨q
F	F	F	F
F	Т	F	Т
Т	F	F	Т
Т	Т	Т	Т

NB: p v q (the or is used inclusively, i.e., p v q is true when either p or q or both are true).

Exclusive or

Definition: Let p and q be propositions. The proposition "p exclusive or q" denoted by p q, is true when exactly one of p and q is true and it is false otherwise.

р	q	p⊕q
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Definition: Let p and q be propositions. The proposition "p implies q" denoted by $p \rightarrow q$ is called implication. It is false when p is true and q is false and is true otherwise.

In $p \rightarrow q$, p is called the **hypothesis** and q is called the **conclusion**.

р	q	$p \rightarrow q$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

- $p \rightarrow q$ is read in a variety of equivalent ways:
- if p then q
- p only if q
- p is sufficient for q
- q whenever p

Examples:

- if Germany won 2010 world cup then 2 is a prime.
- If F then T? T
- if today is Monday then 2 * 3 = 8.
- T → F? F

The converse of $p \rightarrow q$ is $q \rightarrow p$.

- The contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- The inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$

Examples:

- If it jams, the traffic moves slowly.
- p: it jams
- q: traffic moves slowly.
 - $p \rightarrow q$

The converse:

If the traffic moves slowly then it jams.

• $q \rightarrow p$

The contrapositive:

- If the traffic does not move slowly then it does not jams.
- ¬q → ¬p

The inverse:

- If it does not jams the traffic moves quickly.
- ¬p → ¬q

Biconditional

Definition: Let p and q be propositions. The biconditional p \leftrightarrow q (read p if and only if q), is true when p and q have the same truth values and is false otherwise.

р	q	p ↔ q
F	F	Т
F	Т	F
Т	F	F
Т	Т	Т

Note: two truth values always agree.

Example: Construct a truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	¬р	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg p \leftrightarrow q$	$(p \to q) \land (\neg p \\ \leftrightarrow q)$
F	F				
F	Т				
Т	F				
Т	Т				

Example: Construct a truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	¬р	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg p \leftrightarrow q$	$(p \to q) \land (\neg p \\ \leftrightarrow q)$
F	F	Т			
F	Т	Т			
Т	F	F			
Т	Т	F			

Example: Construct a truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	¬р	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg p \leftrightarrow q$	$(p \to q) \land (\neg p \\ \leftrightarrow q)$
F	F	Т	Т		
F	Т	Т	Т		
Т	F	F	F		
Т	Т	F	Т		

Example: Construct a truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	¬р	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg p \leftrightarrow q$	$(p \to q) \land (\neg p \\ \leftrightarrow q)$
F	F	Т	Т	F	
F	Т	Т	Т	Т	
Т	F	F	F	Т	
Т	Т	F	Т	F	

Example: Construct a truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	¬р	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg p \leftrightarrow q$	$(p \to q) \land (\neg p \leftrightarrow q)$
F	F	Т	Т	F	F
F	Т	Т	Т	Т	Т
Т	F	F	F	Т	F
Т	Т	F	Т	F	F

Computer Representation of True and False

We need to encode two values True and False:

- Computers represents data and programs using 0s and 1s
- Logical truth values True and False
- A bit is sufficient to represent two possible values:
- 0 (False) or 1(True)
- A variable that takes on values 0 or 1 is called a Boolean variable.
- Definition: A bit string is a sequence of zero or more bits.
 The length of this string is the number of bits in the string.

Bitwise operation

• T and F replaced with 1 and 0

р	q	p ^ q	$\mathbf{p} \lor \mathbf{q}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

р	¬р
0	1
1	0

Bitwise operation

T and F replaced with 1 and 0

Applications of propositional logic

- Translation of English sentences
 - Inference and reasoning:
 - new true propositions are inferred from existing ones
 - Used in Artificial Intelligence:
 - Builds programs that act intelligently
 - Programs often rely on symbolic manipulations
 - Design of logic circuit

Translation

Assume a sentence:

If you are older than 13 or you are with your parents then you can attend a PG-13 movie.

Parse:

 If (you are older than 13 or you are with your parents) then (you can attend a PG-13 movie)

Atomic (elementary) propositions:

- A= you are older than 13
- B= you are with your parents
- C=you can attend a PG-13 movie
- Translation: A ∨ B → C

Application of Inference

Assume we know the following sentences are true:

If you are older than 13 or you are with your parents then you can attend a PG-13 movie. You are older than 13.

Translation:

- If (you are older than 13 or you are with your parents) then (you can attend a PG-13 movie). (You are older than 13).
- A= you are older than 13
- B= you are with your parents
- C=you can attend a PG-13 movie
- (A \vee B \rightarrow C), A
- $(A \lor B \rightarrow C) \land A \text{ is true}$
- With the help of the logic we can infer the following statement (proposition):
- You can attend a PG-13 movie or C is True

Tautology and Contradiction

Some propositions are interesting since their values in the truth table are always the same

Definitions:

- A compound proposition that is always true for all possible truth values of the propositions is called a tautology.
- A compound proposition that is always false is called a contradiction.
- A proposition that is neither a tautology nor contradiction is called a **contingency**.

Example: p v ¬p is a tautology.

p ∧ ¬p is a **contradiction**.

р	¬р	p ∨ ¬ p	p ∧ ¬ p
1	0	1	0
0	1	1	0

Equivalence

How do we determine that two propositions are equivalent?

Their truth values in the truth table are the same.

Example: p → q is equivalent to ¬q → ¬p (contrapositive)

р	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
F	F	Т	Т
F	Т	Т	Т
Т	F	F	F
Т	Т	Т	Т

Equivalent statements are important for logical reasoning since they can be substituted and can help us to make a logical argument.

Logical Equivalence

Definition: The propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautology (alternately, if they have the same truth table). The notation $p \le q$ denotes p and q are logically equivalent.

р	q	$p \rightarrow q$	¬q →¬p	$(p \to q) \Longleftrightarrow (\neg q \to \neg p)$
F	F	Т	Т	Т
F	Т	Т	Т	Т
Т	F	F	F	Т
Т	Т	Т	Т	Т

Important Logical Equivalence

Double negation

$$- \neg (\neg p) <=> p$$

Commutative

$$-p \vee q <=> q \vee p$$

$$-p \wedge q \ll p$$

Associative

$$-(p \vee q) \vee r <=> p \vee (q \vee r)$$

$$-(p \land q) \land r \le p \land (q \land r)$$

Important Logical Equivalence

Distributive

$$-p \lor (q \land r) <=> (p \lor q) \land (p \lor r)$$

 $-p \land (q \lor r) <=> (p \land q) \lor (p \land r)$

De Morgan

Other useful equivalences

$$-p \lor \neg p <=> T$$
 $-p \land \neg p <=> F$
 $-p \rightarrow q <=> (¬p \lor q)$

Showing Logical Equivalence

Show $(p \land q) \rightarrow p$ is a tautology

In other words ((p \land q) \rightarrow p <=> T)

$$(p \land q) \rightarrow p \rightleftharpoons \neg(p \land q) \lor p$$
 Useful $\Longleftrightarrow [\neg p \lor \neg q] \lor p$ DeMorgan $\Longleftrightarrow [\neg q \lor \neg p] \lor p$ Commutative $\Longleftrightarrow \neg q \lor [\neg p \lor p]$ Associative $\Longleftrightarrow \neg q \lor [T]$ Useful $\Longleftrightarrow T$ Domination

You can also use truth table to show this

Thank You