

Introduction to single-cell multi-omics analysis

Advanced Topics in Single Cell Omics SciLifeLab-SIB Summer School 2021

Emma Dann
PhD @ Sanger Institute & EBI (Cambridge UK)
ed6@sanger.ac.uk

What is single-cell multi-omics?

Joint analysis of two (or more!) datasets of measurements of different molecules from single-cells

What is single-cell multi-omics?

Unmatched assays

Matched assays

What is single-cell multi-omics?

Zhu, Preissl & Ren Single-cell multimodal omics: the power of many, Nat Methods (2020)

scATAC-seq: chromatin accessibility

Minnoye et al. 2021 Chromatin accessibility profiling methods. Nat Rev Methods Primer

scATAC-seq: chromatin accessibility

Minnoye et al. 2021 Chromatin accessibility profiling methods. Nat Rev Methods Primer

10X Genomics Multiome (scRNA+scATAC)

CITE-seq: mRNA expression and surface proteins

What does the data look like?

Common multi-omic analysis goals

A. Verifying consensus across modalities

B. Co-embedding in meaningful latent space

C. Reconstructing missing/noisy data

D. Identifying statistical relationships between features

Common multi-omic analysis goals

A. Verifying consensus across modalities

B. Co-embedding in meaningful latent s

C. Reconstructing missing/noisy data

D. Identifying statistical relationships between features

Raw data (fragments.tsv.gz)

hg19_chr1	16205	16281	TTATGTCGTCTCAAAC-1	1
hg19_chr1	17124	17503	TGAGCCGGTATACGCT-1	1
hg19_chr1	235668	235711	CTTAATCCAAATAGTG-1	1
hg19_chr1	237712	237828	TCCGACTTCTTACGGA-1	1
hg19_chr1	237713	237792	TAGTCCCGTTAACTCG-1	1
hg19_chr1	237716	237782	GCCATAAGTGATCAGG-1	1
hg19_chr1	237716	237789	CCAATGATCCATCGAA-1	1
hg19_chr1	237721	237756	TGCGTAACAGGTGGTA-1	1
hg19_chr1	237722	237793	CCCAGAGCAAAGCTTC-1	1
hg19_chr1	237736	237782	GACCTTCTCACTGATG-1	3
hg19_chr1	521557	521596	AGATTCGGTTCTCGAA-1	1
hg19_chr1	521575	521611	TCACCACGTCCGTGCA-1	2
hg19_chr1	526022	526082	TGATGCAAGCCGCTGT-1	1
hg19_chr1	540966	541013	GTAGACTTCGTGGAAG-1	1
hg19_chr1	563390	563788	ACTGCAATCGTCCCAT-1	1
hg19_chr1	565288	565342	TCTCTGGTCCTGAAAC-1	2
hg19_chr1	565293	565322	TGAGCCGGTATACGCT-1	2

Tabular data

Raw data (fragments.tsv.gz)

hg19_chr1	16205	16281	TTATGTCGTCTCAAAC-1	1
hg19_chr1	17124	17503	TGAGCCGGTATACGCT-1	1
hg19_chr1	235668	235711	CTTAATCCAAATAGTG-1	1
hg19_chr1	237712	237828	TCCGACTTCTTACGGA-1	1
hg19_chr1	237713	237792	TAGTCCCGTTAACTCG-1	1
hg19_chr1	237716	237782	GCCATAAGTGATCAGG-1	1
hg19_chr1	237716	237789	CCAATGATCCATCGAA-1	1
hg19_chr1	237721	237756	TGCGTAACAGGTGGTA-1	1
hg19_chr1	237722	237793	CCCAGAGCAAAGCTTC-1	1
hg19_chr1	237736	237782	GACCTTCTCACTGATG-1	3
hg19_chr1	521557	521596	AGATTCGGTTCTCGAA-1	1
hg19_chr1	521575	521611	TCACCACGTCCGTGCA-1	2
hg19_chr1	526022	526082	TGATGCAAGCCGCTGT-1	1
hg19_chr1	540966	541013	GTAGACTTCGTGGAAG-1	1
hg19_chr1	563390	563788	ACTGCAATCGTCCCAT-1	1
hg19_chr1	565288	565342	TCTCTGGTCCTGAAAC-1	2
hg19_chr1	565293	565322	TGAGCCGGTATACGCT-1	2

- Peak calling on pseudo-bulk profiles (MACS2)
 - Pseudo-bulk on first pass clustering on genomic bins
- Using known annotations for enhancers (e.g. in Drosophila genome)
- Other scATAC-specific feature extraction methods (BROCKMAN, scRegSeg)

Tabular data

Tabular data

- extreme sparsity
- > 100k features
- Practically binary (most values are 1 or 0)

- extreme sparsity
- > 100k features
- Practically binary (most values are 1 or 0)

Tabular data

Adaptations of models used in text processing for topic extraction

- Latent Semantic Indexing
- Latent Dirichlet Allocation (cisTopic)

Reduced dimensions

Bravo-Gonzales et al. (2019) cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data

Any questions?

Common multi-omic analysis goals

A. Verifying consensus across modalities

B. Co-embedding in meaningful latent space (integration)

C. Reconstructing missing/noisy data

D. Identifying statistical relationships between features

Defining the integration axis

Defining the integration axis

Batch correction, mapping to reference atlas

Multi Omics Factor Analysis (MOFA2)

$$\mathbf{Y}^m = \mathbf{Z}\mathbf{W}^{mT}$$

Argelaguet, Velten et al. Mol Sys Biol 2018 Argelaguet, Arnol, Bredikhin et al. Genome Biology 2020

Argelaguet, Velten et al. Mol Sys Biol 2018 Argelaguet, Arnol, Bredikhin et al. Genome Biology 2020

Weighted Nearest Neighbor (WNN) analysis

Hao, Hao et al. Cell 2021

- Transform data to gene-level features (e.g. count ATAC fragments over gene bodies)
- Apply horizontal integration methods used for batch correction (Seurat CCA, LIGER)

- Transform data to gene-level features (e.g. count ATAC fragments over gene bodies)
- Apply horizontal integration methods used for batch correction (Seurat CCA, LIGER)

Horizontal integration (features as anchors

Integration with unpaired features (in order of appearance on bioRxiv)

- MATCHER (Welch et al. 2017)
- MMD-MA (Liu et al. 2019)
- SCIM (Stark et al. 2020)
- UnionCom (Cao et al. 2020)
- Cross-modality autoencoders (Yang et al. 2021)
- SCOT (Demetci et al. 2020)
- BABEL (Wu et al. 2020)
- bindSC (Dou et al. 2020)
- MultiMAP (Jain et al. 2021)
- UINMF (Kriebel et al. 2021)
- MultiVI (Ashuach et al. 2021)
- ..

Integration with unpaired features (in order of appearance on bioRxiv)

- MATCHER (Welch et al. 2017)
- MMD-MA (Liu et al. 2019)
- SCIM (Stark et al. 2020)
- UnionCom (Cao et al. 2020)
- Cross-modality autoencoders (Yang et al. 2021)
- SCOT (Demetci et al. 2020)
- BABEL (Wu et al. 2020)
- bindSC (Dou et al. 2020)
- MultiMAP (Jain et al. 2021)
- UINMF (Kriehel et al. 2021)
- MultiVI
- ..

Limitations: assumption that cells lie on the same latent manifold

Any questions?

Except for: which integration method is the best

Outcome: co-embedding in joint latent space

Common multi-omic analysis goals

A. Verifying consensus across modalities

B. Co-embedding in meaningful latent space

C. Reconstructing missing/noisy data

D. Identifying statistical relationships between features

$$X_g^{RNA} = f(X_p^{ATAC})$$

Impute expression for scATAC cells as average of K-nearest neighbors

- Impute expression for scATAC cells as average of K-nearest neighbors
- Optimal matching of RNA and ATAC cells
 - Seurat anchors
 - Minimum-Cost Maximum-Flow bipartite graph matching (Stark et al. 2020 https://github.com/ratschlab/scim)
 - OptMatch (Kartha et al. 2021 -https://github.com/buenrostrolab/stimATA
 C analyses code

- Subsample (to representative or optimally matched cells)
- (Over)clustering
- Aggregate over KNN graph neighbourhoods
 - MetaCell (Baran et al. 2018 -<u>https://github.com/tanaylab/metacell</u>)
 - Milo (Dann et al. 2020 https://github.com/MarioniLab/miloR)

Common multi-omic analysis goals

A. Verifying consensus across modalities

B. Co-embedding in meaningful latent space

C. Reconstructing missing/noisy data

D. Identifying statistical relationships between features

Finding statistical relationships between features

Feature selection

- Which genes? E.g. HVGs, marker genes, dynamic genes in pseudotime, ...
- Which accessibility features? Should I aggregate peaks e.g. by TF motifs or genomic locus?
- Which feature pairs?

Finding statistical relationships between features

Downstream interpretation of peak-gene links

- Validation: Which peaks do we expect to be enriched in links? →
 Transcription Start Sites, enrichment in motifs for variable TFs
- Which genes show most regulatory elements linked?
- Pruning GRN inference links (e.g. SCENIC, CellOracle)
- Interpretation of GWAS hits

Limitations: assuming molecular changes are simultaneous

Deriver Demain of Open Regulatory Childhau

Ma et al. (2020), Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin, Cell

Limitations: focus on positive regulation

Domke et al. (2020) A human cell atlas of fetal chromatin accessibility

Repressor factors: expression of a gene closes chromatin

Silencer elements: accessibility of the locus silences a gene (allowing repressor TFs to bind?)

Take home messages

• There is no state-of-the-art in multi-omics analysis: new technology keeps coming and shifts the priority of data analysis

 "Integration" is not the end, it's the beginning: cases that break the assumptions for co-embedding are possibly the most interesting

Group project

Group 1: diagonal integration of unmatched scRNA-seq and scATAC-seq dataset

Group 2: vertical integration of matched scMultiomie dataset

Trevino et al. (2021) Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution

Questions?