Wine Quality Data Analysis

Sarah

Wine Quality

The following code will evaluate the basic descriptive statistics of the Wine Quality variable of interest/ variable to be tested in the machine learning algorithms.

```
#import and view dataset
 library(readxl)
 llbrary(readxl)
winequalityred <- read_excel("C:/Users/sarah/Desktop/info8000/winequalityred.xlsx",
    col_types = c("numeric", "numeric", "numeric",
        "numeric", "numeric",
        "numeric", "numeric",
        "numeric", "numeric",
        "numeric", "numeric",
        "numeric", "numeric",</pre>
 QualityMax<-max(winequalityred$quality)
 QualityMin<-min(winequalityred$quality)
QualityAverage<-mean(winequalityred$quality)
 QualityMedian<-median(winequalityred$quality)
 QualityMax
 ## [1] 8
 QualityMin
 ## [1] 3
 QualityAverage
 ## [1] 5.636023
 QualityMedian
 ## [1] 6
 QualityMode <- names(which.max(table(winequalityred$quality)))
 QualityMode
 ## [1] "5"
 Quality Standard Deviation <- sd(winequality red \$quality)
 {\tt QualityStandardDeviation}
 ## [1] 0.8075694
 #as was stated in the UCI machine learning respository, there aren't many extreme values (very good/very bad wines). most of
 the wines are "Normal".
##Wine Quality Distribution Graph
 library(ggplot2)
 ## Warning: package 'ggplot2' was built under R version 3.5.3
 ggplot(data=winequalityred, aes(x=quality)) +
      geom_histogram(binwidth=1, color='black', fill='white') +
      coord_cartesian(xlim=c(0,10)) +
      geom_vline(xintercept = QualityMedian, linetype='longdash', alpha=.5) +
geom_vline(xintercept = QualityAverage, linetype=1, color='green', alpha=.5) +
      xlab("Wine Quality") +
ylab("Number of Observations")
```



```
#fixedac
 fixedacMax<-max(winequalityred$fixedacidity)
fixedacMin<-min(winequalityred$fixedacidity)</pre>
 fixedacAverage<-mean(winequalityred$fixedacidity)
fixedacMedian<-median(winequalityred$fixedacidity)</pre>
 fixedacMax
 ## [1] 15.9
 fixedacMin
 ## [1] 4.6
 fixedacAverage
 ## [1] 8.319637
 fixedacMedian
 ## [1] 7.9
  fixedacMode <- names(which.max(table(winequalityred$fixedacidity)))</pre>
  fixedacMode
 ## [1] "7.2"
 \verb|fixedacStandardDeviation| <- sd(winequalityred\$fixedacidity)|\\
 {\tt fixedacStandardDeviation}
 ## [1] 1.741096
#Fixed Acidity Distribution
  ggplot(data=winequalityred, aes(x=fixedacidity)) +
      geom_histogram(binwidth=1, color='black', fill='white') +
coord_cartesian(xlim=c(0,16)) +
      geom_vline(xintercept = fixedacMedian, linetype='longdash', alpha=.5) +
geom_vline(xintercept = fixedacAverage, linetype=1, color='red', alpha=.5) +
       xlab("Fixed Acidity") +
       ylab("Number of Observations")
    400
Number of Observations
    100 -
                                                           Fixed Acidity
#Volatile Acidity
  volatileacMax<-max(winequalityred$volatileacidity)</pre>
 volatileacMin<-min(winequalityred$volatileacidity)
volatileacAverage<-mean(winequalityred$volatileacidity)</pre>
  volatileacMedian<-median(winequalityred$volatileacidity)
 volatileacMax
 ## [1] 1.58
 volatileacMin
 ## [1] 0.12
 volatileacAverage
 ## [1] 0.5278205
 volatileacMedian
```

[1] 0.52

```
volatileacMode <- names(which.max(table(winequalityred$volatileacidity)))</pre>
  volatileacMode
 ## [1] "0.6"
  volatileacStandardDeviation <- sd(winequalityred$volatileacidity)</pre>
 volatileacStandardDeviation
 ## [1] 0.1790597
##Volatile Acidity Distribution
 ggplot(data=winequalityred, aes(x=volatileacidity)) +
  geom_histogram(binwidth=.1, color='black', fill='white') +
      geom_vline(xintercept = volatileacAverage, linetype='longdash', alpha=.5) + geom_vline(xintercept = volatileacAverage, linetype=1, color='red', alpha=.5) + xlab("Volatile Acidity") +
       ylab("Number of Observations")
    300
Number of Observations
                                             0.5
                                                         Volatile Acidity
#Citric Acid
 citricMax<-max(winequalityred$citricacid)
 citricMin<-min(winequalityred$citricacid)
 citricAverage<-mean(winequalityred$citricacid)
citricMedian<-median(winequalityred$citricacid)</pre>
 citricMax
 ## [1] 1
 citricMin
 ## [1] 0
 citricAverage
 ## [1] 0.2709756
 citricMedian
 ## [1] 0.26
 citricMode <- names(which.max(table(winequalityred$citricacid)))</pre>
 citricMode
 ## [1] "0"
```

Citric acid distribution

citricStandardDeviation

[1] 0.1948011

citricStandardDeviation <- sd(winequalityred\$citricacid)</pre>

```
ggplot(data=winequalityred, aes(x=citricacid)) +
   geom_histogram(binwidth=.1, color='black', fill='white') +
   coord_cartesian(xlim=c(0,1)) +
   geom_vline(xintercept = citricMedian, linetype='longdash', alpha=.5) +
   geom_vline(xintercept = citricAverage, linetype=1, color='red', alpha=.5) +
   xlab("Citric Acid") +
   ylab("Number of Observations")
```


#Residual Sugar

```
sugarMax<-max(winequalityred$residualsugar)
sugarMin<-min(winequalityred$residualsugar)
sugarAverage<-mean(winequalityred$residualsugar)
sugarMedian<-median(winequalityred$residualsugar)
sugarMax</pre>
```

[1] 15.5

sugarMin

[1] 0.9

sugarAverage

[1] 2.538806

sugarMedian

[1] 2.2

 $sugarMode \gets names(which.max(table(winequalityred\$residualsugar))) \\ sugarMode$

[1] "2"

 $sugar Standard Deviation <- sd(winequality red\$residual sugar) \\ sugar Standard Deviation$

[1] 1.409928

#sugar distribution

```
ggplot(data=winequalityred, aes(x=residualsugar)) +
   geom_histogram(binwidth=.5, color='black', fill='white') +
   coord_cartesian(xlim=c(0,16)) +
   geom_vline(xintercept = sugarMedian, linetype='longdash', alpha=.5) +
   geom_vline(xintercept = sugarAverage, linetype=1, color='red', alpha=.5) +
   xlab("Residual Sugar") +
   ylab("Number of Observations")
```


[1] 14

```
chloridesMax<-max(winequalityred$chlorides)</pre>
     chloridesMin<-min(winequalityred$chlorides)
   chloridesAverage<-mean(winequalityred$chlorides)
chloridesMedian<-median(winequalityred$chlorides)
    chloridesMax
    ## [1] 0.611
    chloridesMin
    ## [1] 0.012
   chloridesAverage
    ## [1] 0.08746654
    chloridesMedian
    ## [1] 0.079
    chloridesMode <- names(which.max(table(winequalityred$chlorides)))</pre>
    chloridesMode
    ## [1] "0.08"
    chloridesStandardDeviation <- sd(winequalityred$chlorides)</pre>
    {\tt chloridesStandardDeviation}
    ## [1] 0.0470653
##Chlorides Distribution
    ggplot(data=winequalityred, aes(x=chlorides)) +
  geom_histogram(binwidth=.01, color='black', fill='white') +
                   coord_cartesian(xlim=c(0,.7)) +
                  geom_vline(xintercept = chloridesMedian, linetype='longdash', alpha=.5) +
geom_vline(xintercept = chloridesAverage, linetype=1, color='red', alpha=.5) +
                  xlab("Chlorides") +
ylab("Number of Observations")
           400
 Number of Observations
            100
                                                                                                                                                                                                                                                                                              0.6
                                                                                                                      0.2
                                   0.0
                                                                                                                                                                         Chlorides
#Free SO2
    free sulfur dioxide \texttt{Maxc-max} (win equality red\$free sulfur dioxide) free sulfur dioxide \texttt{Minc-min} (win equality red\$free sulfur dioxide) free sulfur dioxide \texttt{Averagec-mean} (win equality red\$free sulfur dioxide)
    \begin{tabular}{ll} \hline \end{tabular} \hline \end{tabular} \end{tabul
    freesulfurdioxideMax
    ## [1] 72
    freesulfurdioxideMin
    ## [1] 1
    freesulfurdioxideAverage
    ## [1] 15.87492
    freesulfurdioxideMedian
```

freesulfurdioxideMode <- names(which.max(table(winequalityred\$freesulfurdioxide)))
freesulfurdioxideMode</pre>

[1] "6"

freesulfurdioxideStandardDeviation <- sd(winequalityred\$freesulfurdioxide)
freesulfurdioxideStandardDeviation</pre>

[1] 10.46016

##Free SO2 Distribution

```
ggplot(data=winequalityred, aes(x=freesulfurdioxide)) +
   geom_histogram(binwidth=2, color='black', fill='white') +
   coord_cartesian(xlim=c(0,75)) +
   geom_vline(xintercept = freesulfurdioxideMedian, linetype='longdash', alpha=.5) +
   geom_vline(xintercept = freesulfurdioxideAverage, linetype=1, color='red', alpha=.5) +
   xlab("Free Sulfur Dioxide") +
   ylab("Number of Observations")
```


#Total SO2

totalsulfurdioxideMax<-max(winequalityred\$totalsulfurdioxide)
totalsulfurdioxideMin<-min(winequalityred\$totalsulfurdioxide)
totalsulfurdioxideAverage<-mean(winequalityred\$totalsulfurdioxide)
totalsulfurdioxideMedian<-median(winequalityred\$totalsulfurdioxide)
totalsulfurdioxideMax

[1] 289

totalsulfurdioxideMin

[1] 6

totalsulfurdioxideAverage

[1] 46.46779

 ${\tt total sulfur dioxide Median}$

[1] 38

[1] "28"

 $total sulfur dioxide Standard Deviation <- sd(winequality red\$total sulfur dioxide) \\total sulfur dioxide Standard Deviation$

[1] 32.89532

##Total Sulfur Dioxide Distribution

```
ggplot(data=winequalityred, aes(x=totalsulfurdioxide)) +
  geom_histogram(binwidth=10, color='black', fill='white') +
  coord_cartesian(xlim=c(0,300)) +
  geom_vline(xintercept = totalsulfurdioxideMedian, linetype='longdash', alpha=.5) +
  geom_vline(xintercept = totalsulfurdioxideAverage, linetype=1, color='red', alpha=.5) +
  xlab("Total Sulfur Dioxide") +
  ylab("Number of Observations")
```


#Density

```
densityMax<-max(winequalityred$density)
densityMin<-min(winequalityred$density)
densityAverage<-mean(winequalityred$density)
densityMedian<-median(winequalityred$density)
densityMedian</pre>
```

[1] 1.00369

densityMin

[1] 0.99007

densityAverage

[1] 0.9967467

 ${\tt densityMedian}$

[1] 0.99675

 $\label{lem:densityMode} \mbox{ densityMode $\mbox{-} names(which.max(table(winequalityred\$density))) } \\ \mbox{ densityMode}$

[1] "0.9972"

 $\label{thm:density} density Standard Deviation <- sd(winequality red \$density) \\ density Standard Deviation$

[1] 0.001887334

##Density Distribution

```
ggplot(data=winequalityred, aes(x=density)) +
  geom_histogram(binwidth=.001, color='black', fill='white') +
  coord_cartesian(xlim=c(.99,1.005)) +
  geom_vline(xintercept = densityMedian, linetype='longdash', alpha=.5) +
  geom_vline(xintercept = densityMedian, linetype=1, color='red', alpha=.5) +
  xlab("Density") +
  ylab("Number of Observations")
```



```
#PH
 pHMax<-max(winequalityred$pH)
 pHMin<-min(winequalityred$pH)
pHAverage<-mean(winequalityred$pH)
pHMedian<-median(winequalityred$pH)
 pHMax
 ## [1] 4.01
 pHMin
 ## [1] 2.74
 pHAverage
 ## [1] 3.311113
 pHMedian
 ## [1] 3.31
 pHMode <- names(which.max(table(winequalityred$pH)))</pre>
 ## [1] "3.3"
 pHStandardDeviation <- sd(winequalityred$pH)
 pHStandardDeviation
 ## [1] 0.1543865
#pH Distribution
 ggplot(data=winequalityred, aes(x=pH)) +
  geom_histogram(binwidth=.1, color='black', fill='white') +
       geom_nistogram(olinwintn=.1, color= black , fill= white ) +
coord_cartesian(xlim=c(2.5,4.5)) +
geom_vline(xintercept = pHMedian, linetype='longdash', alpha=.5) +
geom_vline(xintercept = pHAverage, linetype=1, color='red', alpha=.5) +
xlab("pH") +
ylab("Number of Observations")
    400
Number of Observations
    100 -
                                             3.0
                                                                                                          4.0
              2.5
#Sulfates
 sulphatesMax<-max(winequalityred$sulphates)
sulphatesMin<-min(winequalityred$sulphates)
sulphatesAverage<-mean(winequalityred$sulphates)</pre>
 {\tt sulphatesMedian(-median(winequalityred\$sulphates)}
 sulphatesMax
 ## [1] 2
 sulphatesMin
 ## [1] 0.33
 sulphatesAverage
 ## [1] 0.6581488
 sulphatesMedian
```

[1] 0.62

```
sulphatesMode <- names(which.max(table(winequalityred$sulphates)))
sulphatesMode

## [1] "0.6"</pre>
```

sulphatesStandardDeviation

sulphatesStandardDeviation <- sd(winequalityred\$sulphates)</pre>

[1] 0.169507

##Sulphates Distribution

```
ggplot(data=winequalityred, aes(x=sulphates)) +
   geom_histogram(binwidth=.1, color='black', fill='white') +
   coord_cartesian(xlim=c(0,2)) +
   geom_vline(xintercept = sulphatesMedian, linetype='longdash', alpha=.5) +
   geom_vline(xintercept = sulphatesAverage, linetype=1, color='red', alpha=.5) +
   xlab("Sulphates") +
   ylab("Number of Observations")
```


#Alcohol

```
alcoholMax<-max(winequalityred$alcohol)
alcoholMin<-min(winequalityred$alcohol)
alcoholAverage<-mean(winequalityred$alcohol)
alcoholMedian<-median(winequalityred$alcohol)
alcoholMax
```

[1] 14.9

alcoholMin

[1] 8.4

alcoholAverage

[1] 10.42298

 ${\tt alcoholMedian}$

[1] 10.2

 ${\tt alcoholMode} \, \leftarrow \, {\tt names(which.max(table(winequalityred\$alcohol)))} \\ {\tt alcoholMode}$

[1] "9.5"

alcoholStandardDeviation <- sd(winequalityred\$alcohol)
alcoholStandardDeviation</pre>

[1] 1.065668

##Alcohol Distribution

```
ggplot(data=winequalityred, aes(x=alcohol)) +
    geom_histogram(binwidth=.5, color='black', fill='white') +
    coord_cartesian(xlim=c(8,15)) +
    geom_vline(xintercept = alcoholMedian, linetype='longdash', alpha=.5) +
    geom_vline(xintercept = alcoholAverage, linetype=1, color='red', alpha=.5) +
    xlab("Alcohol") +
    ylab("Number of Observations")
```


##Variable Correlations

```
wine.cor = cor(winequalityred)
library("Hmisc")
```

Warning: package 'Hmisc' was built under R version 3.5.3

Loading required package: lattice

Loading required package: survival

Loading required package: Formula

Warning: package 'Formula' was built under R version 3.5.2

##
Attaching package: 'Hmisc'

The following objects are masked from 'package:base': format.pval, units

wine.rcorr = rcorr(as.matrix(winequalityred))
wine.coeff = wine.rcorr\$r
wine.p = wine.rcorr\$P library(corrplot)

Warning: package 'corrplot' was built under R version 3.5.3

corrplot 0.84 loaded

cex.before <- par("cex") par(cex = 0.7) corrplot(wine.cor)

	fixedacidity	volatileacidity	citricacid	residualsugar	chlorides	freesulfurdioxide	totalsulfurdioxide	density	చ	sulphates	alcohol	quality
fixedacidity	1	-0.3	0.7	0.1	0.1	-0.2	-0.1	0.7	-0.7	0.2	-0.1	0.1
volatileacidity	-0.3	1	-0.6	0	0.1	0	0.1	0	0.2	-0.3	-0.2	-0.4
citricacid	0.7	-0.6	1	0.1	0.2	-0.1	0	0.4	-0.5	0.3	0.1	0.2
residualsugar	0.1	0	0.1	1	0.1	0.2	0.2	0.4	-0.1	0	0	0
chlorides	0.1	0.1	0.2	0.1	1	0	0	0.2	-0.3	0.4	-0.2	-0.1
freesulfurdioxide	-0.2	0	-0.1	0.2	0	1	0.7	0	0.1	0.1	-0.1	-0.1
totalsulfurdioxide	-0.1	0.1	0	0.2	0	0.7	1	0.1	-0.1	0	-0.2	-0.2
density	0.7	0	0.4	0.4	0.2	0	0.1	1	-0.3	0.1	-0.5	-0.2
pH	-0.7	0.2	-0.5	-0.1	-0.3	0.1	-0.1	-0.3	1	-0.2	0.2	-0.1
sulphates	0.2	-0.3	0.3	0	0.4	0.1	0	0.1	-0.2	1	0.1	0.3
alcohol	-0.1	-0.2	0.1	0	-0.2	-0.1	-0.2	-0.5	0.2	0.1	1	0.5
quality	0.1	-0.4	0.2	0	-0.1	-0.1	-0.2	-0.2	-0.1	0.3	0.5	1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8									3 1			

#correlation cont'd

library(knitr)

Warning: package 'knitr' was built under R version 3.5.3

kable(wine.cor, caption = "wine quality feature correlations")

wine quality feature correlations

	fixedacidity	volatileacidity	citricacid	residualsugar	chlorides	freesulfurdioxide	totalsulfurdioxide	density	pН	sulphates	alcohol	
fixedacidity	1.0000000	-0.2561309	0.6717034	0.1147767	0.0937052	-0.1537942	-0.1131814	0.6680473	-0.6829782	0.1830057	-0.0616683	0.1
volatileacidity	-0.2561309	1.0000000	-0.5524957	0.0019179	0.0612978	-0.0105038	0.0764700	0.0220262	0.2349373	-0.2609867	-0.2022880	-0.5
citricacid	0.6717034	-0.5524957	1.0000000	0.1435772	0.2038229	-0.0609781	0.0355330	0.3649472	-0.5419041	0.3127700	0.1099032	0.2
residualsugar	0.1147767	0.0019179	0.1435772	1.0000000	0.0556095	0.1870490	0.2030279	0.3552834	-0.0856524	0.0055271	0.0420754	0.0
chlorides	0.0937052	0.0612978	0.2038229	0.0556095	1.0000000	0.0055621	0.0474005	0.2006323	-0.2650261	0.3712605	-0.2211405	-0.1
freesulfurdioxide	-0.1537942	-0.0105038	-0.0609781	0.1870490	0.0055621	1.0000000	0.6676665	-0.0219458	0.0703775	0.0516576	-0.0694084	-0.0
totalsulfurdioxide	-0.1131814	0.0764700	0.0355330	0.2030279	0.0474005	0.6676665	1.0000000	0.0712695	-0.0664946	0.0429468	-0.2056539	-0.1
density	0.6680473	0.0220262	0.3649472	0.3552834	0.2006323	-0.0219458	0.0712695	1.0000000	-0.3416993	0.1485064	-0.4961798	-0.1
pH	-0.6829782	0.2349373	-0.5419041	-0.0856524	-0.2650261	0.0703775	-0.0664946	-0.3416993	1.0000000	-0.1966476	0.2056325	-0.0
sulphates	0.1830057	-0.2609867	0.3127700	0.0055271	0.3712605	0.0516576	0.0429468	0.1485064	-0.1966476	1.0000000	0.0935948	0.2
alcohol	-0.0616683	-0.2022880	0.1099032	0.0420754	-0.2211405	-0.0694084	-0.2056539	-0.4961798	0.2056325	0.0935948	1.0000000	0.4
quality	0.1240516	-0.3905578	0.2263725	0.0137316	-0.1289066	-0.0506561	-0.1851003	-0.1749192	-0.0577314	0.2513971	0.4761663	1.0