EECS 376: Foundations of Computer Science Cook Levin Theorem Building Blocks

1 Understanding The Tableau

A tableau represents the computational history of a Turing machine on a given input. Each row in the tableau corresponds to a configuration—a "snapshot"—of the TM's executation at a particular step. In each configuration,

- The contents of the tape are shown in order from the leftmost cell.
- The active state is inserted directly to the left of the symbol where the tape head is positioned.
- \bullet Each row is bordered by # symbols to mark the beginning and end of the tape.

Consider the following Turing machine M_{pal} that decides the language $L_{pal} = \{s \in \{a,b\}^* : s \text{ is a palindrome}\}$, where q_0 is the start state. Given the input s = ``abba'', complete the tableau on the right to show the step-by-step computational history of this TM as M_{pal} processes s.

11			1.	1.			1	11
#	q_0	a	b	b	a	1	 1	#
#	1					1	 \perp	#
#	上	b	q_1	b	a	上	 \perp	#
#	上	b				1	 \perp	#
#	上	b	b	a	q_1	上	 \perp	#
#	上	b	b				 \perp	#
#	上	b	q_4	b		1	 \perp	#
#	上	q_4	b				 \perp	#
#				b	1	上	 \perp	#
#	1	q_0	b	b	1	1	 \perp	#
#	1	1			1	1	 \perp	#
#	1	1			Τ	1	 Τ	#
#	1	1			1	1	 \perp	#
#	1	q_4	Τ	1	1	1	 1	#
#	T	1	q_0	Т	1	1	 Τ	#
#	1				1	1	 Т	#

2 Identifying Valid Windows

Recall from lecture that one critical ingredient in the proof of the Cook-Levin theorem is to specify which contents of the 2×3 "windows" of the verifier's computation tableau are valid.

A 2×3 "window" is valid if it represents a configuration that could appear in a legitimate tableau, essentially ensuring the proper execution of the Turing machine. Determine whether each of the following is a valid window in the tableau of M_{pal} for any input.

(a)	a	#	b
(a)	a	#	b

(c)	a	q_1	b
(c)	a	b	q_5

(e)	a	a	a
(e)	a	a	q_4

(m)	b	q_3	a
(g)	q_4	b	1

(b)	q_2	a	b
(p)	a	q_2	b

(d)	a	a	q_3
(u)	a	a	b

(f)		b	q_2
(1)	1	q_5	b

(h)	a	a	a
(11)	b	b	a

3 From Tableau to Boolean Formulas

A key part in the Cook Levin Theorem proof is to convert the constraints on the tableau into Boolean formulas. We will derive some of them here.

First, for some symbol $s \in S = \Gamma \cup Q \cup \{\#\}$, we define the variable

$$t_{i,j,s} = \begin{cases} T & \text{if cell } (i,j) \text{ on the tableau contains symbol } s \\ F & \text{otherwise} \end{cases}$$

Since we are only interested in efficient verifiers, we consider tableau of size $n^k \times n^k$ for some constant k.

(b)	Derive a Boolean formula that evaluates to true if and only if every cell on the tableau contains exactly one symbol in S. Hint: For each cell (i, j) ensure (1) at least one $t_{i,j,s}$ is true and (2) no more than one $t_{i,j,s}$ is true.
. ,	Now consider the first row of the tableau. Derive a Boolean formula that evaluates to be true if and only if all of the constraints below are met:
	 The first cell contains the '#' symbol. The second cell contains 'q₀'.
	• The next n cells contains the string $x_1x_2x_n$. You may assume all $x_i \in \Sigma$. • Immediately following x , the next cell contains the '\$' symbol.
	 For the (n + 4)-th up to the (n^k - 1)-th cell: The cells contain a certificate string over the alphabet Σ, followed by '⊥' symbols in any remaining cells up to the (n^k - 1)-th cell. The n^k-th cell contains the symbol '#'.