Theoretical Galaxy Formation

Edinburgh School of Extragalactic Astronomy I Evan Jones (he/him) | PhD Student evan.jones@ed.ac.uk

Bibliography

- Galaxy Evolution (PHYS11070)
- Galaxy Formation and Evolution (<u>Mo, van den</u> <u>Bosch & White 2010</u>, MvW)
- Galaxy Dynamics (<u>Binney & Tremaine 2008</u>) Chapter 9

What I'll Cover

morphology x

Evolution"x

What I'll Cover

• Perturbations in dark matter grow when baryons can't

Later on in time, baryons catch up

For baryons to keep getting denser, cooling must be effective

Collapse

Uniform Uniform

Collapsing Uniform

Collapsing Collapsing

Collapse

Dark Matter

- Grow from matter-radiation equality (z~5700)
- Not effected by radiation pressure
- Can only get so dense before virialising

Baryons

- Grow from surface of last scattering (z~1100)
- Silk Damping stops collapse of structures smaller than a galaxy
- Can get dense enough to form stars

A question of energy

• Baryons falling into a halo will gain energy

Hot gas can't collapse.

• Is this an issue?

Can gas radiate away GPE?

The Cooling Function, Λ

Radiation Processes in Astrophysics (PHYS11067) / MvW Appendix B for more

Summary

- Dark matter collapses into structures, then baryons fall in once they stop interacting so strongly with photons.
- If the baryons can radiate away the gravitational energy they gain, they will keep collapsing until they are able to form stars, and we create a galaxy.
- If they can't then you end up with a big cloud of hot gas that doesn't do anything.
- What next? Read the first chapter of Mo, van den Bosch & White; take Galaxy Evolution.