2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Problem 5

You found a ciphertext **Y=46**. It is encrypted by the **RSA cryptosystem** with parameter **N=91** and (public) encryption key **E=29**. What is the plaintext X?

Ronald Linn Rivest (1947-)

Adi Shamir (1952-)

Leonard Adleman (1945-)

https://en.wikipedia.org/wiki/Ron_Rivest https://en.wikipedia.org/wiki/Adi_Shamir https://en.wikipedia.org/wiki/Leonard_Adleman 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Problem 5

RSA cryptosystem

```
Parameter N=91 (Public) Encryption Key E=29 Ciphertext Y=46
```

- Figure 3. Given a plaintext X, the ciphertext Y is calculated by $Y \equiv X^E \pmod{N}$.
- > We need to solve $46 \equiv X^{29} \pmod{91}$.

Problem 5

- \rightarrow Factorize N=P×Q. 91=7×13
- \rightarrow Calculate (P-1) \times (Q-1). $6\times12=72$
- > Calculate **mult inverse** D of E=29 (mod 72). $5\times29\equiv1\pmod{72}$
- ➤ Decryption key D=5. Calculate Y^D (mod N). $46^5 \equiv 37 \pmod{91}$

Answer The plaintext is
$$X=37$$
. (Confirm $37^{29} \equiv 46 \pmod{91}$.)

Problem 5

A possible attack to RSA

- (1) (Difficult) Factorize $N=P\times Q$.
- (2) (Easy by Euclidean Algorithm) Calculate the mult inverse D of E (mod (P-1)(Q-1)).
- (3) (Easy) Calculate Y^D (mod N).

Ronald Linn Rivest (1947-)

(1952-)

Adi Shamir Leonard Adleman (1945-)