

Problem F Basic Text Search Engine

Time Limit: 3 seconds Memory Limit: 512 Megabytes

Problem description

You are asked to build an application to search for documents by an input query (q) from the dataset (D). Note that the text search problem is not an exact search problem. You can understand that the system will try to find out the text closest to the input query.

The system will build a dictionary from the available words in the dataset (array of documents).

For example:

The dataset defined as:

D = {"I love music", "computer can play music", "music is just music", "computer can do everything", "I love you"};

We will be able to harvest a dictionary of words.

vocab = {"I", "love", "music", "computer", "can", "play", "is", "just", "do", "everything",
"you"}.

The words that appear first in the dataset are also first in the vocab.

Usually, search engines see the documents as vectors. The process of converting documents into vectors is called vectorization. The vector space is determined by the vocab. The below table illustrates the result of the vectorization process.

	I	Love	music	computer	can	play	is	just	do	everything	you
D[1]	1	1	1	0	0	0	0	0	0	0	0
D[2]	0	0	1	1	1	1	0	0	0	0	0
D[3]	0	0	2	0	0	0	1	1	0	0	0
D[4]	0	0	0	1	1	0	0	0	1	1	0
D[5]	1	1	0	0	0	0	0	0	0	0	1

The elements of the vector represent the number of occurrences of the corresponding words in the vocab. The same treatment also be applied to the input query.

In order to compute the similarity of 2 given documents A and B, we can use the Cosine similarity as:

$$sim(A,B) = \frac{\sum_{i=1}^{|vocab|} A_i B_i}{\sqrt{\sum_{i=1}^{|vocab|} A_i^2} \sqrt{\sum_{i=1}^{|vocab|} B_i^2}}$$

Hackathon Contest 2021 – Online Programming Part FPT University February 27th, 2021

Where |vocab| denotes the size of the vocab.

The search engine has to rank the documents by their similarities to the input query. The system displays the document with higher similarity first. If 2 documents have same similarity degree, the first appear in the dataset will be displayed first.

Input

The first line is the input query.

Second line is the number d of documents in the dataset – where d is an integer value and $0 < d \le 1000$.

Other lines are the documents in the dataset.

Output

Every output lines in format: document (similarity). Where similarity is a decimal value which has an absolute or relative error of less than 10^{-2}

Example:

Input	Output
I love dog	I love music (0.81)
5	I love you (0.81)
I love music	music is just music (0.00)
computer can play music	computer can do everything (0.00)
music is just music	computer can play music (0.00)
computer can do everything	
I love you	

Input	Output
music computer music music	music is just music (0.77)
5	computer can play music (0.63)
I love music	I love music (0.54)
computer can play music	computer can do everything (0.15)
music is just music	I love you (0.00)
computer can do everything	, , ,
I love you	

Hackathon Contest 2021 – Online Programming Part FPT University February 27th, 2021

Input	Output
nothing here	I love music (0.00)
5	computer can play music (0.00)
I love music	music is just music (0.00)
computer can play music	computer can do everything (0.00)
music is just music	I love you (0.00)
computer can do everything	
I love you	

Hackathon Contest 2021 – Online Programming Part FPT University February 27th, 2021

A relax page, open to next page for the next challenge in your journey to the TOP.