```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn import metrics
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
import warnings
warnings.filterwarnings('ignore')
```

In [3]: Quality = pd.read_csv('WineQT.csv')

In [4]: Quality

Out[4]:

		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
	0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4
	1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8
	2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8
	3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8
	4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4
	•••											
1	138	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0
1	139	6.8	0.620	0.08	1.9	0.068	28.0	38.0	0.99651	3.42	0.82	9.5
1	140	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5
1	141	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2
1	142	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2

1143 rows × 13 columns

◀

In [5]: Quality.head()

Out[5]:			olatile acidity	citric r acid	esidual sugar	chlorides	free sulfur dioxide	tota sulfu dioxide	r de	ensity	pH s	ulphates	alcohol	qua
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0	.9978 3	3.51	0.56	9.4	
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0	.9968 3	3.20	0.68	9.8	
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0	.9970 3	.26	0.65	9.8	
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0	.9980 3	3.16	0.58	9.8	
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0 0	.9978 3	3.51	0.56	9.4	
4														•
In [6]:	Qual	ity.ta	il()											
Out[6]:	C		.,				•	ree 1	total					
		fixed acidit			residua I suga	chioria		fur sı	ılfur xide	density	y pŀ	l sulphate	es alco	hol
	1138	6.	3 0.51	0 0.13	3 2.	3 0.0	76 2	9.0	40.0	0.9957	4 3.42	2 0.7	5 1	1.0
	1139	6.	8 0.62	0.0	3 1.	.9 0.0	68 2	8.0	38.0	0.9965	1 3.42	2 0.8	2	9.5
	1140	6.	2 0.60	0.08	3 2.	0.0	90 3	2.0	44.0	0.9949	3.45	5 0.5	8 1	0.5
	1141	5.	9 0.55	0 0.10) 2	.2 0.0	62 3	9.0	51.0	0.9951	2 3.52	2 0.7	6 1	11.2
	1142	5.	9 0.64	5 0.17	2 2.	0.0	75 3	2.0	44.0	0.9954	7 3.57	7 0.7	1 1	10.2
4														•
In [7]:	Quality.sample(5)													
Out[7]:		fixed acidity	volatile acidity		residual sugar	chioride	fre s sulfi dioxid	ur sul		density	рН	sulphates	alcoh	ol (
	894	7.2	0.57	0.05	2.3	0.08	1 16	.0 3	6.0	0.99564	3.38	0.60	10).3
	815	10.0	0.35	0.47	2.0	0.06	1 6	.0 1	1.0	0.99585	3.23	0.52	12	2.0
	832	6.5	0.88	0.03	5.6	0.07	9 23	.0 4	7.0	0.99572	3.58	0.50	11	.2
	79	10.1	0.31	0.44	2.3	0.08	0 22	.0 4	6.0	0.99880	3.32	0.67	9	9.7
	172	7.3	0.66	0.00	2.0	0.08	4 6	.0 2	3.0	0.99830	3.61	0.96	g	9.9
4														•
In [9]:	Qual	ity.sh	ape											
Out[9]:	(1143	3, 13)												
In [10]:	Qual	ity.de	scribe()										

Out[10]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	
count	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	11
mean	8.311111	0.531339	0.268364	2.532152	0.086933	15.615486	45.914698	
std	1.747595	0.179633	0.196686	1.355917	0.047267	10.250486	32.782130	
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	
25%	7.100000	0.392500	0.090000	1.900000	0.070000	7.000000	21.000000	
50%	7.900000	0.520000	0.250000	2.200000	0.079000	13.000000	37.000000	
75 %	9.100000	0.640000	0.420000	2.600000	0.090000	21.000000	61.000000	
max	15.900000	1.580000	1.000000	15.500000	0.611000	68.000000	289.000000	

 \blacktriangleleft

In [11]: Quality.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1143 entries, 0 to 1142
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1143 non-null	float64
1	volatile acidity	1143 non-null	float64
2	citric acid	1143 non-null	float64
3	residual sugar	1143 non-null	float64
4	chlorides	1143 non-null	float64
5	free sulfur dioxide	1143 non-null	float64
6	total sulfur dioxide	1143 non-null	float64
7	density	1143 non-null	float64
8	рН	1143 non-null	float64
9	sulphates	1143 non-null	float64
10	alcohol	1143 non-null	float64
11	quality	1143 non-null	int64
12	Id	1143 non-null	int64

dtypes: float64(11), int64(2)

memory usage: 116.2 KB

In [12]:

Quality.isnull()

Out[12]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False
•••			•••								
1138	False	False	False	False	False	False	False	False	False	False	False
1139	False	False	False	False	False	False	False	False	False	False	False
1140	False	False	False	False	False	False	False	False	False	False	False
1141	False	False	False	False	False	False	False	False	False	False	False
1142	False	False	False	False	False	False	False	False	False	False	False

1143 rows × 13 columns

```
In [13]:
         Quality.sum()
         fixed acidity
                                    9499.600000
Out[13]:
         volatile acidity
                                     607.320000
         citric acid
                                     306.740000
         residual sugar
                                    2894.250000
         chlorides
                                      99.364000
         free sulfur dioxide
                                   17848.500000
         total sulfur dioxide
                                   52480.500000
         density
                                    1139.262860
                                    3784.490000
         рΗ
         sulphates
                                     751.760000
         alcohol
                                   11935.333333
         quality
                                    6466.000000
         Ιd
                                  920080.000000
         dtype: float64
         Quality1 = pd.get_dummies(Quality,drop_first=True)
In [14]:
         Quality1
In [15]:
```

Out[15]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4
•••	•••	•••		•••			•••	•••	•••		
1138	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0
1139	6.8	0.620	0.08	1.9	0.068	28.0	38.0	0.99651	3.42	0.82	9.5
1140	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5
1141	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2
1142	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2

1143 rows × 13 columns

```
In [16]:
         Quality1.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1143 entries, 0 to 1142
         Data columns (total 13 columns):
          #
              Column
                                     Non-Null Count Dtype
         - - -
                                     -----
                                                     ----
          0
              fixed acidity
                                                     float64
                                     1143 non-null
          1
              volatile acidity
                                     1143 non-null
                                                     float64
              citric acid
                                                     float64
          2
                                     1143 non-null
          3
              residual sugar
                                     1143 non-null
                                                     float64
          4
              chlorides
                                     1143 non-null
                                                     float64
          5
              free sulfur dioxide
                                     1143 non-null
                                                     float64
          6
              total sulfur dioxide
                                     1143 non-null
                                                     float64
          7
              density
                                     1143 non-null
                                                     float64
          8
                                     1143 non-null
                                                     float64
              рН
          9
                                     1143 non-null
                                                     float64
              sulphates
          10
              alcohol
                                     1143 non-null
                                                     float64
          11
              quality
                                     1143 non-null
                                                     int64
          12 Id
                                     1143 non-null
                                                     int64
         dtypes: float64(11), int64(2)
         memory usage: 116.2 KB
In [19]:
         for col in Quality1.columns:
              if Quality1[col].isnull().sum() > 0:
                  Quality1[col] = Quality1[col].fillna(Quality1[col].mean())
```

Out[19]:

Quality1.isnull().sum().sum()

```
In [20]: Quality1.hist(bins=15, figsize=(8, 8))
   plt.show()
```



```
In [24]: plt.figure(figsize=(12, 12))
    sb.heatmap(Quality1.corr() > 0.7, annot=True, cbar=False)
    plt.show()
```



```
In [23]: plt.bar(Quality1['quality'], Quality1['alcohol'])
  plt.xlabel('quality')
  plt.ylabel('alcohol')
  plt.show()
```



```
Quality = Quality1.drop('total sulfur dioxide', axis=1)
In [26]:
          Quality['best quality'] = [1 if x > 5 else 0 for x in Quality.quality]
In [27]:
          Quality.replace({'white': 1, 'red': 0}, inplace=True)
In [28]:
          features = Quality.drop(['quality', 'best quality'], axis=1)
In [29]:
          target = Quality['best quality']
          xtrain, xtest, ytrain, ytest = train_test_split(features, target, test_size=0.2, rando
In [31]:
          xtrain.shape
In [34]:
          (914, 11)
Out[34]:
In [33]:
          xtest.shape
         (229, 11)
Out[33]:
In [35]:
          ytrain.shape
         (914,)
Out[35]:
In [36]:
          ytest.shape
          (229,)
Out[36]:
In [39]:
          xtest
```

Out[39]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	density	рН	sulphates	alcohol	ld
471	7.2	0.57	0.06	1.6	0.076	9.0	0.99720	3.36	0.70	9.6	662
192	11.5	0.18	0.51	4.0	0.104	4.0	0.99960	3.28	0.97	10.1	269
1035	6.5	0.90	0.00	1.6	0.052	9.0	0.99467	3.50	0.63	10.9	1455
476	8.2	0.73	0.21	1.7	0.074	5.0	0.99680	3.20	0.52	9.5	671
512	8.4	0.56	0.04	2.0	0.082	10.0	0.99760	3.22	0.44	9.6	720
•••											
281	7.7	0.69	0.05	2.7	0.075	15.0	0.99740	3.26	0.61	9.1	404
176	7.1	0.60	0.00	1.8	0.074	16.0	0.99720	3.47	0.70	9.9	251
537	8.3	0.65	0.10	2.9	0.089	17.0	0.99803	3.29	0.55	9.5	753
1043	7.3	0.48	0.32	2.1	0.062	31.0	0.99728	3.30	0.65	10.0	1466
801	8.5	0.28	0.35	1.7	0.061	6.0	0.99524	3.30	0.74	11.8	1134

229 rows × 11 columns

```
In [40]:
         ytest
         471
                 1
Out[40]:
         192
                 1
         1035
                 1
         476
                 0
         512
                 0
         281
                 0
         176
                 1
         537
                 0
         1043
                 1
         801
         Name: best quality, Length: 229, dtype: int64
In [41]:
         norm = MinMaxScaler()
         xtrain = norm.fit_transform(xtrain)
         xtest = norm.transform(xtest)
         models = [LogisticRegression(),SVC(kernel='rbf')]
In [50]:
         for i in range(2):
          models[i].fit(xtrain, ytrain)
          print(f'models[i] : ')
          print('Training Accuracy : ', metrics.roc_auc_score(ytrain, models[i].predict(xtrain)
          print('Validation Accuracy : ', metrics.roc_auc_score(
          ytest, models[i].predict(xtest)))
          print()
```

```
models[i] :
```

Training Accuracy : 0.7546950559364851 Validation Accuracy : 0.7255154639175256

models[i] :

Training Accuracy : 0.7648213641284736 Validation Accuracy : 0.7358247422680412

	precision	recall	f1-score	support
0 1	0.68 0.79	0.72 0.75	0.70 0.77	97 132
accuracy macro avg weighted avg	0.73 0.74	0.74 0.74	0.74 0.73 0.74	229 229 229

```
In [52]: metrics.plot_confusion_matrix(models[1], xtest, ytest)
   plt.show()
```



```
In [68]: for a in range(len(Quality1.corr().columns)):
    for b in range(a):
        if abs(Quality.corr().iloc[a,b]) >0.7:
              name = Quality.corr().columns[a]
              print(name)
```

best quality

WineQualityPrediction	n
-----------------------	---

In []:		
In []:		