Emperical Rule of Normof Distribution

som this within the first of the entire data will be available

Within the become standard deviation to sight of left is around 35% of the entire Data felling in these region

Within the third Standard devication to right P left around 99.770 of the entire Data falling in this region.

Mis 1's called 68-95-99.7% Rule
are called Emperical Rule

It with the help of Q-Q Plot we can check whether the Distribution is Normal or noto

Standard Normal Dutribution

Kels take variable K = quassian Distribution (45)
then we transfer on ke to

7 = 3ND [M=0, 0=1]

1. 11.

Marie Commence of the Commence	Why? we do SND
	Age (gears) weight (Kg) Height (cm) 24 72 150 160 32 84 165 33 92 170 different 34 87 150 A value also 28 83 180 differ very high **We will try to Scale Calculation take then the entropy and
	is called Standaziation. Twe will do so to bring the value im same scale so, that our calculation will be easy. I there scaling waxax Standardization [120, 0=17]
	For this we will apply 2-5core = Ci-ll In each table. The value will be transformed the or In range of [-3 to 3]

Normalization In mormalisation we give the range we try to mormalise the value into lower scale ? higher scale. 1) Min Man Bealer [0-1] 10=[1,2,3,4,5] Rocaled = 10-10mm * may - Longing $7 = \frac{1-1}{5-1} = 0$ 0.50 For k = 2 1/4 = 0.25 with the help of min-may 7=3-1 2 2/4 20.50 Bealer we will transfor the value in range [Obt for rest Deep dearming

This technique. 7 = 5-1 = 4/4 = 1 Normalization

Frequese Scaling ? O Normalization

By Blandard 12ation # In Deep Learning [we Min man Scater] # 3N Machine Cearminy [we Standard Scaler If when Inputs are image use yim max

Loy Normal Distribution Salanteg Deagon Lower Richer Worth Normal Distribution [Right-Side Skewed Wealth Distribution 08 Comments on videos weginer t - Big Corononerat Shorter Common ant if we have never - Medical -mode 9. What is the Relationship of Mega, median, Mode?

For Right Skewed Distribution means median > Mode For Laft Skewed Distribution mean < median < Mo Log Normal DM+ribution I the log moronal DISTribution then exponent of J, x exp(x) has a log mormal Distribution Ant log exp(r) Lonly for Right - Skewed M Fig

K= log Normal Distributed - (Ftg 0) It if we plot try O p apply the log and as a output it we get normal Distribution then we can say trato, is day normal Distribution. = exp(vc) = ed:- No. of Baysman Scoree high, marks in Class room. Problem Statement Q. Lets a Variable 1C = 71,2,3,4,5,6,7 with mean (Mz4) & Sterndard deviation o=1 & What is the Percentage of score that feel above 4.25? The of score 2-Score = Ki-ll = 4.25-4 = 0.25 CLIBER OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF TH

