<u>Kuratowski gráfok síkbarajzolhatósága</u>, soros bővítés, *Kuratowski-tétel* könnyű iránya. Síkbarajzolt gráf duálisa, a duális paraméterei. Vágás, elvágó él, soros élek. *Kör-vágás dualitása*, különféle élek duálisai. Whitney két tétele, Whitney operációk.

- Kuratowski gráfok síkbarajzolhatósága, soros bővítés, Kuratowski-tétel könnyű iránya.
 - (6) A K_5 és $K_{3,3}$ gráfok egyike sem síkbarajzolható.

Biz: A K_5 gráf egyszerű, de nem teljesül (3), hiszen $|E(K_5)| = {5 \choose 2} = 10 \nleq 9 = 3 \cdot 5 - 6$. Ezért K_5 nem síkbarajzolható. A $K_{3,3}$ gráf egyszerű és C_3 -mentes, de nem teljesül rá (4), u.i. $|E(K_{3,3})| = 9 \nleq 8 = 2 \cdot 6 - 4$. Ezrét $K_{3,3}$ nem síkbarajzolható. \square

Megj: Könnyen látható, hogy ha G síkbarajzolható, akkor G + e tóruszra rajzolható bármely e él behúzása esetén. Nem nehéz látni, hogy K_6 is tóruszra rajzolható. Sőt: még K_7 is az, de K_8 már nem.

***Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése. Élösszehúzás: az él törlése és két végpontjának azonosítása. Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Megf: Az éltörlés, csúcstörlés, élfelosztás, élösszehúzás operációk mindegyike megőrzi a gráf síkbarajzolható tulajdonságát.

Köv:

- (1) Top. K_5 top. $K_{3,3}$ nem síkbarajzolható.
- (2) Ha G síkbarajzolható, akkor G-nek nincs se topologikus K_5 , se topologikus $K_{3,3}$ részgráfja.
- *** $\mathbf{Kuratowski}$ tétele: (G síkbarajzolható) \iff (G-nek nincs se topologikus K_5 , se topologikus $K_{3,3}$ részgráfja) Példa: Petersen-gráf
- Síkbarajzolt gráf duálisa, a duális paraméterei. Vágás, elvágó él, soros élek. *Kör-vágás dualitása*, különféle élek duálisai.

Def: A G síkba rajzolt gráf duálisa a G^* gráf, ha G^* csúcsai G tartományainak, G^* élei G éleinek felelnek meg. Az $uv \in E(G)$ élnek megfelelő duális él az uv él által határolt két tartománynak megfelelő duális csúcsokat köti össze.

Megf: (1) A síkbarajzolt G gráf G^* duálisa síkbarajzolható. (n^*, e^*, t^*, k^*) (2) $n^* = t, e^* = e, k^* = 1$. (3) Ha v az i-dik laphoz tartozó duális csőcs, akkor $d_{G^*}(v) = l_i$.

Köv: KFL a duálisra $\sum_{i=1}^{t} l_i = \sum_{v \in V(G^*)} d_{G^*}(v) = 2e^* = 2e$.

Def: A $Q \subseteq E(G)$ élhalmaz a G gráf vágása, ha G - Q szétesik (több komponense van, mint G-nek), de $Q' \subseteq Q$ esetén G - Q' nem esik szét. Elvágó él: egyélű vágás. Soros élek: kétélű vágás.

Kör-vágás dualitása: Tegyük fel, hogy G^* a G síkbarajzolt gráf duálisa. Ekkor (C a G köre) \iff (C^* a G^* vágása) ill. (Q a G vágása) \iff (Q^* a G^* köre).

Köv: Hurokél duálisa elvágó él, soros élpáré párhuzamos élpár.

• Whitney két tétele, Whitney operációk.

Whitney tétele: Tegyük fel, hogy G^* a G síkbarajzolt gráf duálisa. Ekkor H pontosan akkor duálisa a G egy alkalmas síkbarajzolásának, ha H előáll G^* -ból a fenti Whitney-operációk alkalmas egymásutánjával.

Def: A $\varphi: E(G) \to E(H)$ kölcsönös egyenértékű leképezés kör-vágás dualitás G és H között, ha C pontosan akkor G köre, ha $\varphi(C)H$ vágása.

Whitney másik tétele: Tegyük fel, hogy G és H között kör-vágás dualitás van. Ekkor G síkbarajzolható, és H a G egy alkalmas síkbarajzolásának duálisa.

Megj: Egy G gráf által leírt villamos hálózat viselkedését az Ohm-él Kirchhoff-törvények írják le. Ezek a G gráf éleire, köreire és vágásaira vonatkoznak. Ha G és H közt kör-vágás dualitás van, akkor H-n elkészíthető az előző hálózat duálisa. Az eredeti hálózat megoldásában ha az I és U értékeket felcsréljük, az utóbbi hálózat megoldását kapjuk. Whitney másik tétele miatt ez a különös szimmetria csak síkbarajzolható gráfok által leírt hálózatokon lehetséges.