Тема: «Полиномиальная интерполяция. Интерполяция кубическими сплайнами»

Любая непрерывная функция на замкнутом интервале может быть хорошо приближена некоторым полиномом.

Пусть функция f(x) задана таблицей. Построим интерполяционный многочлен $L_n(x)$ степень которого не больше n и выполняются условия: $L_n(x) = y_i, i = 0, 1, ..., n$. Будем искать $L_n(x)$ в виде:

$$L_n(x) = p_0(x)y_0 + p_1(x)y_1 + \ldots + p_n(x)y_n = \sum_{i=1}^n p_i(x)y_i,$$

где $p_i(x)$ — многочлен степени, т. е. $p_i(x)$ только в одной точке отличен от нуля при i=j, а в остальных точках он обращается в нуль. Следовательно, все эти точки являются для него корнями:

$$p_i(x) = c(x - x_0)(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n);$$

 $_{\text{при}} x = x_{i}$

$$p_i(x_i) = c(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n);$$

$$c = [(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)]^{-1};$$

подставим с в формулу $p_i(x)$

получим:

$$p_i(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_n)}{(x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)},$$

отсюда

$$L_n(x) = \sum_{i=0}^n \frac{(x-x_0)(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n)}{(x_i-x_0)(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_n)} y_i.$$

Это и есть интерполяционный многочлен Лагранжа. По исходной таблице формула позволяет весьма просто составить внешний вид многочлена.

Задания:

- 1) Для заданной функции $f(x) = \frac{1}{1+25x^2}$ построить на отрезке [-1, 1] ее график вместе с графиком интерполяционного полинома Лагранжа для различных значений n:
- а) с равноотстоящими узлами;
- б) с чебышевскими узлами.
- 2) Исследовать (по графикам) отклонение ИП от исходной функции для функций $f(x) = \frac{1}{1+25x^2}$ на отрезке [-1, 1].

При большом количестве узлов интерполяции сильно возрастает степень интерполяционного многочлена. Этого можно избежать, разбив отрезок интерполяции на несколько частей. При этом в точках стыка будет разрывна первая производная интерполяционных многочленов. В этом случае пользуются особым видом кусочно-полиномиальной интерполяцией - интерполяцией сплайнами.

Определение. Функция $S_m(x)$ называется интерполяционным сплайном порядка m для функции f(x), заданной таблицей

x	x_0	x_1	 x_n
y	y_0	y_1	 y_n

если:

- 1) на каждом отрезке $[x_i; x_{i+1}]$ (i = 0, 1, ..., n-1) S(x) является многочленом порядка m;
- 2) S(x) и ее производные до (m-1)-го порядка включительно непрерывны на $[x_0; x_n];$
- 3) $S(x_i) = y_i$ (i = 0, 1, ..., n) непосредственно условие интерполяции.

Можно доказать, что эти условия достаточны для существования сплайна порядка $m \ (m \ge 2)$, но не гарантируют его единственности.

Пример 4.7. Построить кубический сплайн для функции y = f(x), заданной таблицей

x_i	-1	0	1	2
y_i	1/2	1	2	4

с дополнительными условиями: S''(-1) = S(2) = 0. Найти с помощью S(x) значение функции y = f(x) при x = 0,3. (Заметим, что в основу таблицы положена функция $y = 2^x$).

Учитывая, что $c_0 = c_3 = 0$, систему (4.52) сведем всего к двум уравнениям:

$$\begin{cases} 4c_1 + c_2 = \frac{3}{2}; \\ c_1 + 4c_2 = 3. \end{cases}$$

Ее рещение (будем в этом простейшем примере вести решение в простых дробях):

$$c_1 = \frac{1}{5}$$
; $c_2 = \frac{7}{10}$.

Далее находим по (4.51) значение коэффициентов d_i :

$$d_1 = \frac{1}{15}$$
; $d_2 = \frac{1}{6}$; $d_3 = -\frac{7}{30}$.

Теперь по формулам (4.48) находим коэффициенты b_i :

$$b_1 = \frac{19}{30}$$
; $b_2 = \frac{23}{15}$; $b_3 = \frac{67}{30}$.

Поскольку значения коэффициентов a_i — значения функции из таблицы (см. (4.42)), то сплайн построен:

$$S(x) = \begin{cases} P_1(x) = 1 + \frac{19}{30}x + \frac{1}{5}x^2 + \frac{1}{15}x^3, & x \in [-1; \ 0]; \\ P_2(x) = 2 + \frac{23}{15}(x-1) + \frac{7}{10}(x-1)^2 + \frac{1}{6}(x-1)^3, & x \in [0; \ 1]; \\ P_3(x) = 4 + \frac{67}{30}(x-2) - \frac{7}{30}(x-2)^3, & x \in [1; \ 2]. \end{cases}$$

Нетрудно проверить, что условия непрерывности S(x), S'(x), S''(x) в точках x = 0 и x = 1 выполнены.

Для нахождения значения интерполирующей функции в заданной точке x = 0.3 замстим, что $0.3 \in [0; 1]$, и поэтому используем многочлен $P_2(x)$: $P_2(0.3) \approx 1.2125$. Отметим для сопоставления с той же точностью значение функции, положенной в основу данного примера: $2^{0.3} = 1.2311$.

Задания:

- 1) Для заданной функции $f(x) = \frac{1}{1+25x^2}$ построить на отрезке [-1, 1] ее график вместе с графиком кубического сплайна для различных значений п. Исследовать (по графикам) отклонение кубического сплайна от исходной функции.
- 2) Построить кубический сплайн для функции, заданной таблицей. Результат интерполирования проверить путем вычисления значений сплайна в узловых точках. Построить график кубического сплайна и отобразить на нем узловые точки:

X	2	3	5	7
f(x)	4	-2	6	-3