Causal inference of mediation mechanism

Part II: 因果中介與實例

黄彦棕

中央研究院統計科學研究所

David P MacKinnon Tyler J VanderWeele

DAG: Directed Acyclic Graph

I. Recap

Genetic association studies

$$S \longrightarrow Y$$

Genetic association studies

VS.

$$S_0 \longrightarrow Y$$

Association vs. causation

Potential outcome

No confounding -> exchangeability

• $Y(s_1) \perp S$

• $Y(s_0) \perp S$

If no confounding, association=causation

II. Definition

History of Mediation Analysis

- First proposed by Baron and Kenny (1986) in psychology literature; canonical reference in social sciences
- Mediation in causal inference: (Robins and Greenland 1992; Pearl 2001)
 - Counterfactual; assumptions for identifiability
- Recent work on causal mediation model
 - VanderWeele and Vansteelandt (2010) and Imai et al. (2010)

Hypothetical intervention steps

- Hypothetical intervention steps:
 - Intervene and set SNPs to s_0

- Hypothetical intervention steps
 - Observe the counterfactual outcome alcohol consumption behavior, $M(s_0)$

- Hypothetical intervention steps
 - Return to the pre-intervention state

- Hypothetical intervention steps
 - Intervene to set alcohol consumption behavior to $M(s_0)$...

- Hypothetical intervention steps
 - ... and intervene to set SNP to s_1

Hypothetical intervention steps

– Observe $Y(s_1, M(s_0))$: the counterfactual outcome, liver cancer risk Y under intervention s_1 and $M(s_0)$

$$S_1 \longrightarrow M(s_0) \longrightarrow Y(s_1, M(s_0))$$

How can this be possible?

- Hypothetical intervention steps
 - Observe $Y(s_1, M(s_0))$: the counterfactual outcome, liver cancer risk Y under intervention s_1 and $M(s_0)$

$$S_1 \longrightarrow M(S_0) \longrightarrow Y(S_1, M(S_1))$$

– It takes years for genetics to affect drinking behavior $M(s_0)$, and the time lag makes $Y(s_1, M(s_0))$ identifiable.

20

- Hypothetical intervention steps
 - Following similar steps, we can obtain $Y(s_0, M(s_1))$

– the counterfactual outcome, liver cancer risk Y under intervention for SNP, s_0 and that for alcohol consumption behavior, $M(s_1)$

- Hypothetical intervention steps
 - Following similar steps, we can obtain $Y(s_1, M(s_1))$

– the counterfactual outcome, liver cancer risk Y under intervention for SNP, s_1 and that for alcohol consumption behavior, $M(s_1)$

- Hypothetical intervention steps
 - Following similar steps, we can obtain $Y(s_0, M(s_0))$

– the counterfactual outcome, liver cancer risk Y under intervention for SNP, s_0 and that for alcohol consumption behavior, $M(s_0)$

Natural indirect effect

•
$$NIE = \mathbb{E}[Y(s_1, M(s_1))] - \mathbb{E}[Y(s_1, M(s_0))]$$

Natural indirect effect

•
$$NIE = \mathbb{E}[Y(s_1, M(s_1))] - \mathbb{E}[Y(s_1, M(s_0))]$$

Natural Indirect Effect

• NIE=The effect of SNP (S) on outcome (Y=Liver cancer risk) mediated through mediator (M=alcohol consumption).

Natural direct effect

•
$$NDE = \mathbb{E}[Y(s_1, M(s_0))] - \mathbb{E}[Y(s_0, M(s_0))]$$

Natural Direct Effect

 NDE=The effect of SNP (S) on outcome (Y=Liver cancer risk) through mechanisms not involving alcohol drinking.

Total Effect

Total Effect=NDE+NIE

Total effect: effect decomposition

- TE = NDE + NIE
- $TE = \mathbb{E}[Y(s_1, M(s_0))] \mathbb{E}[Y(s_0, M(s_0))]$ $+ \mathbb{E}[Y(s_1, M(s_1))] - \mathbb{E}[Y(s_1, M(s_0))]$ $= \mathbb{E}[Y(s_1, M(s_1))] - \mathbb{E}[Y(s_0, M(s_0))]$

Total effect: effect decomposition

$$TE = \mathbb{E}[Y(s_1, M(s_1))] - \mathbb{E}[Y(s_0, M(s_0))]$$

Total effect: effect decomposition

$$TE = \mathbb{E}[Y(s_1, M(s_1))] - \mathbb{E}[Y(s_0, M(s_0))]$$

Total effect

$$TE = \mathbb{E}[Y(s_1)] - \mathbb{E}[Y(s_0)]$$

$$S_1 \longrightarrow Y(S_1)$$

$$S_0 \longrightarrow Y(S_0)$$

Controlled direct effect

• $CDE = \mathbb{E}[Y(s_1, m)] - \mathbb{E}[Y(s_0, m)]$

III. Assumptions

Assumption A1

 $Y(s,m) \perp S|X$

- no unmeasured confounding for the S effect of exposure (S) on the outcome (Y);

Assumption A2

 $Y(s,m) \perp M|(S,X)$

- no unmeasured confounding for the S effect of mediator (M) on the outcome (Y) after controlling for exposure (S);

Assumption A3

 $M(s) \perp S|X$

no unmeasured
 confounding for the
 effect of exposure (S)
 on mediator (M);

Assumption A4

 $Y(s,m) \perp M(s^*)|X$

-there is no downstream effect of S exposure (S) that can confound mediatoroutcome (M-Y) relation

IV. Mediation analysis

Two regression models for mediation analysis

• A model for the mediator, [M|S, X] $M_i = \alpha_X^T X_i + \alpha_S S_i + \epsilon_{Mi}$

• Another model for the outcome, [Y|S, M, X]

$$Y_i = \boldsymbol{\beta}_X^T \boldsymbol{X}_i + \beta_S S_i + \beta_M M_i + \epsilon_{Yi}$$

• $\epsilon_{Mi} \sim N(0, \sigma_M^2)$ and $\sigma_{Yi}^2 \sim N(0, \sigma_Y^2)$

Two regression models for mediation analysis

• A model for the mediator, [M|S]

$$M_i = \alpha_0 + \alpha_S S_i + \epsilon_{Mi}$$

• Another model for the outcome, [Y|S,M]

$$Y_i = \beta_0 + \beta_S S_i + \beta_M M_i + \epsilon_{Yi}$$

Natural direct effect

•
$$NDE = \mathbb{E}[Y(s_1, M(s_0))] - \mathbb{E}[Y(s_0, M(s_0))]$$

= $\beta_S(s_1 - s_0)$

Natural indirect effect

•
$$NIE = \mathbb{E}[Y(s_1, M(s_1))] - \mathbb{E}[Y(s_1, M(s_0))]$$

= $\alpha_S \beta_M(s_1 - s_0)$

Proof

$$E[Y(s_a, M(s_b))]$$

$$= \int y f_{Y(s_a, M(s_b))}(y) dy$$

$$= \int y \int f_{Y(s_a, m)|M(s_b)}(y|m) f_{M(s_b)}(m) dm dy$$

$$= \int y \int f_{Y(s_a, m)}(y) f_{M(s_b)}(m) dm dy$$

$$= \int y \int f_{Y(s_a, m)|S}(y|s_a) f_{M(s_b)}(m) dm dy$$

$$= \int y \int f_{Y(s_a, m)|S,M}(y|s_a, m) f_{M(s_b)}(m) dm dy$$

$$= \int y \int f_{Y|S,M}(y|s_a, m) f_{M(s_b)}(m) dm dy$$

$$= \int y \int f_{Y|S,M}(y|s_a, m) f_{M(s_b)|S}(m|s_b) dm dy$$

$$= \int y \int f_{Y|S,M}(y|s_a, m) f_{M(s_b)|S}(m|s_b) dm dy$$

$$= \int y \int f_{Y|S,M}(y|s_a, m) f_{M|S}(m|s_b) dm dy$$

$$= \int \{\int y f_{Y|S,M}(y|s_a, m) dy \} f_{M|S}(m|s_b) dm$$

$$= \int E[Y|S = s_a, M = m] f_{M|S}(m|s_b) dm$$

V. Examples

Gene -> alcohol -> liver cancer

	Relative risk	95% confidence interval	P-value
Direct effect	1.38	(0.98, 1.95)	0.07
Indirect effect	0.70	(0.61, 0.82)	<0.001
Total effect	1.02	(0.84, 1.25)	0.83

Liu J et al. *CEBP* 2016, 25:693-699.

PM2.5 -> liver function -> liver cancer

	Relative risk	95% confidence interval	P-value
Direct effect	1.28	(0.88, 1.92)	0.14
Indirect effect	1.21	(1.06, 1.41)	0.005
Total effect	1.23	(1.02, 1.48)	0.03

Pan WC et al. *JNCI* 2016, 108:djv341.

HCV -> HBV -> liver cancer

	Relative risk	95% confidence interval	P-value
Direct effect	2.50	(1.70, 3.60)	<0.001
Indirect effect	0.75	(0.67, 0.84)	<0.001
Total effect	1.72	(1.18, 2.50)	0.005

Huang YT et al. Epidemiology 2016, 27:14-20.

HCV -> HBV -> death

	Relative risk	95% confidence interval	P-value
Direct effect	1.78	(1.06, 3.00)	0.03
Indirect effect	0.78	(0.69, 0.87)	<0.001
Total effect	1.27	(0.59, 2.74)	0.55

Huang YT et al. European Journal of Epidemiology 2016, 31:625-633.

HCV infection is a systematic disease

HCV -> liver cancer -> death

HCV is a systematic disease

HCV is a systematic disease

	Men, age ≤ 55		Women, age ≤ 55	
Mediating disease	FDR of	Proportion of	FDR of	Proportion of
- Wediating disease	mediation test	mediation (%)	mediation test	mediation (%)
Cirrhosis	<0.001	52.8	<0.001	40.1
Liver cancer and cholangiocarcinoma	<0.001	36.2	<0.001	41.1
Other disorders of liver	0.031	30.5	0.005	29.6
Type II diabetes mellitus	<0.001	28	0.018	8.5
Renal disease (nephritis, nephrotic	<0.001	26.3	<0.001	15.1
syndrome, and nephrosis)	10.004	25	10.001	25.0
All neoplasms	<0.001	25	<0.001	35.8
Septicemia	0.001	20.6	<0.001	17.7
All neoplasms (excluded liver cancer)	<0.001	20.1	<0.001	23.4
Intra-abdominal infection	<0.001	17.3	0.655	-
All blood/immune diseases	<0.001	15.9	<0.001	12.9
Diseases of gallbladder	0.008	14.2	0.033	10.7
Infectious intestinal diseases	0.026	14	0.797	0.1
Congestive heart failure	0.047	10.3	0.671	1.4
Heart disease	0.027	9.2	0.712	0.1
Trachea, bronchial and lung cancers	0.468	-	0.05	7.4

軍事政權 -> 政變 -> 民主化

• 非軍事政權:君主專政、政黨專政、個人專政

military vs. non-military

military vs. non-military

Joint work with 中研院政治所 吳文欽

Summary

- Causal mediation is defined under the counterfactual framework.
- Total effect can be decomposed into natural direct and indirect effects.
- A set of exchangeability assumptions is required for identifiability of causal mediation.
- Causal mediation analyses can be used for investigating causal mechanism.
- It may also be useful for policy making.

THANK YOU VERY MUCH.