Name: ______ MATH 101 Summer 2022 HW 11: Due 06/15

"It is strange that only extraordinary men make the discoveries, which later appear so easy and simple."

- Georg C. Lichtenberg

Problem 1. (10pt) Write the following exponential functions in the form $y = Ab^x$:

(a)
$$y = -3(2^{3x})$$

(b)
$$f(x) = 4\left(\frac{5}{7}\right)^{-x}$$

(c)
$$g(x) = -6(5^{1-3x})$$

(d)
$$h(x) = 9\left(\frac{3}{2}\right)^{2x-1}$$

Problem 2. (10pt) Write the following exponential functions in the form $y = Ab^{-x}$:

- (a) $y = 6(2^x)$
- (b) $f(x) = -7\left(\frac{1}{3}\right)^x$
- (c) $g(x) = 5\left(\frac{1}{6}\right)^{2x}$
- (d) $h(x) = 3^{3x+1}$

Problem 3. (10pt) Find an integer n so that each of the following logarithms are between n and n+1, i.e. estimate the logarithm without the use of a calculator. Be sure to show all your work.

- (a) $\log_2(11)$
- (b) $\log_3(187)$
- (c) $\log_{1/2}(5)$
- (d) $\log_5(\frac{1}{20})$

Problem 4. (10pt) For each of the following, either express the given exponential equation in terms of logarithms or express the given logarithmic equation in terms of exponentials:

- (a) $5^x = 9$
- (b) $\log_3(x) = 4$
- (c) $2^3 = x$
- (d) $\log_7(2) = x$

Problem 5. (10pt) Showing all your work, compute the following exactly:

- (a) $\log_2(64)$
- (b) $\log_3\left(\frac{1}{27}\right)$
- (c) ln(1)
- (d) $\log_{2/3}\left(\frac{3}{2}\right)$
- (e) $\log_8(8)$

Problem 6. (10pt) For each of the following, express the given logarithm in terms of \log_b for the given base b:

- (a) $\log_5(25)$, b = 2
- (b) $\log_7(64)$, b = 8
- (c) $\log_3(10)$, b = e
- (d) $\log_{20}(6)$, b = 6

Problem 7. (10pt) Express each of the following logarithms in terms of $\log x$, $\log y$, $\log z$, and a constant term:

- (a) $\log_2(x^2y)$
- (b) $\log_7\left(\frac{xy^2}{z^3}\right)$
- (c) $\ln\left(\frac{xz^{-1}}{\sqrt[3]{y}}\right)$
- (d) $\log_5(25x\sqrt{y})$

Problem 8. (10pt) Express each of the following logarithms in terms of a single logarithm involving no negative powers:

- (a) $\log_2(x) 5\log_2(y)$
- (b) $-\frac{1}{2} (6 \log_3(x) \log_3(y))$
- (c) $5\ln(x^2) 2\ln\left(\frac{1}{y}\right)$
- (d) $\log_6(x) 5\log(y) + 2$

Problem 9. (10pt) Showing all your work, solve the following equation:

$$15^x + 10 = 20$$

Problem 10. (10pt) Showing all your work, solve the following equation:

$$6(2^{3x}) - 2 = 34$$