

Universidade do Minho

DEPARTAMENTO DE INFORMÁTICA

Tecnologias e Aplicações Chinese MNIST Autoencoder

Jorge Mota (A85272)

 $July\ 22,\ 2021$

Contents

1	Introdução	3
2	Dataset 2.1 Preparação do dataset	4 5
3	Concrete Autoencoder 3.1 Arquitetura	7
4	Variational Autoencoder 4.1 Arquitetura	10
5	Conclusão	12

Introdução

Este projeto consiste no desenvolvimento de redes generativas num contexto à escolha do aluno, e foi escolhido o desenvolvimento de autoencoders para caracteres chineses.

Autoencoders são tipos de redes neurais que aprendem a codificar de forma eficiente conjuntos de dados, usamos autoencoders concretos e variacionais, o primeiro extrai features discretas que constitui um espaço latente de vetores fixos ao invés do segundo, que compõe misturas de distribuições.

O dataset escolhido para este projeto foi o MNIST chinês, que incluí conjunto de figuras com números chineses escrito à mão.

Figure 1.1: Pré-visualização do dataset

Dataset

O principal caso de estudo é o dataset utilizado para treinar a rede neural, e para isto utilizei o chinese MNIST dataset, que contém cerca de $15^{\circ}000$ imagens de números escritos à mão. Existem 15 classes que descrevem númerações desde 0 até 10 e ainda 4 simbolos extra para numerar o 100, o $1^{\circ}000$, o $10^{\circ}000$ e o $100^{\circ}000^{\circ}000$.

	value	character	code
0	0	零	1
1	1	_	2
2	2	=	3
3	3	Ξ	4
4	4	四	5
5	5	五	6
6	6	六	7
7	7	t	8
8	8	八	9
9	9	九	10
10	10	+	11
11	100	百	12
12	1000	千	13
13	10000	万	14
14	100000000	亿	15

Figure 2.1: Legenda do dataset

Como podemos reparar imediatamente este dataset é bastante mais complexo que o MNIST tradicional, nao só por ter poucas mais classes, mas porque alguns simbolos têm carateristicas muito especificas e dificeis de codificar para todas as alternativas do dataset, olhemos por exemplo para o simbolo do 0:

Figure 2.2: Variações de 0's

2.1 Preparação do dataset

Para preparar os dados para treino, compus um script (prepare.py) para dividir o dataset de forma justa para ter um $train\ set$ e um $validation\ set$ usado no treinamento com uma proporção de 70% e 30% respetivamente.

O produto do script de preparação separou o dataset na diretoria chinese_mnist/ por train_images e val_images, em que cada uma destas diretorias tem pastas que identificam a label do conjunto de imagens que elas contêm (embora as labels não sejam utilizadas no treino da rede).

Concrete Autoencoder

Figure 3.1: Autoencoder (Encoder e Decoder)

3.1 Arquitetura

O encoder desta rede é composto por três blocos convolucionais (Conv2D com função de ativação e BatchNormalization) de 64, 48 e 32 filtros. Em comparação com testes anteriores de redes para este dataset reduzi a quantidade de filtros convolucionais de 224 para 144, mantendo a fiabilidade dos resultados no mesmo patamar. A função de loss para esta rede é simplesmente a loss de reconstrução da imagem.

Como isto é um autoencoder concreto, a camada de código têm um espaço latente de tamanho 64 que dá um dominio grande o suficiente para captar os detalhes principais de cada tipo de caracter.

3.2 Treinamento

Para treinar esta rede, como é um tipo de aprendizagem não supervisionada, não há necessidade de passar a label ao processo de treinamento .

Foram realizados alguns treinos com cerca de 20 e 25 epochs e o dataset de treino for agrupado em 8 batches.

Como podemos notar pelas dimenções de cada imagem do dataset 64 de altura e comprimento é relativamente grande para ser processado, mas tive que manter esta componente desta maneira devido à perda de alguns detalhes importantes nmos caracteres quando se realiza um redimencionamento das imagens.

3.3 Resultados

Os resultados foram bastante satisfatórios, visto que não só a rede **reconstrói** a imagem codificada, como também elimina algum ruído da imagem original e **alisa** os traços mais significativos.

Figure 3.2: Original vs Reconstruida

Apesar de os resultados em geral reconstruírem bastante bem a imagem original, há ainda alguns simbolos (nomeadamente o '0') que expõem a limitação da rede de reconstruír de forma precisa todos os traços do caracter:

Figure 3.3: Original vs Reconstruida

Figure 3.4: Amostragem de reconstruções do dataset

Variational Autoencoder

Figure 4.1: Autoencoder (Encoder e Decoder)

4.1 Arquitetura

Um autoencoder variacional, é uma rede semelhante à primeira, mas que em vez de codificar de forma concreta num vetor fixo o espaço latente, mapeia a imagem para um vetor de distribuições, o decoder vai receber uma amostragem dessas distruibuições como se fosse o vetor latente como na primeira rede.

Figure 4.2: VAE latent space distributions

4.2 Treinamento

Foram realizados alguns treinos com cerca de 25 e 40 epochs e o dataset de treino for agrupado em 64 batches.

Para poder treinar esta rede, foi preciso especificar um procedimento novo manualmente devido à incapacidade de aplicar *backpropagation* à distribuição pela amostragem, por isso utilizou-se uma função *loss* que associa a *loss* de reconstrução e a divergência de KL.

4.3 Resultados

Os resultados foram aceitávelmente positivos, com o autoencoder a reconstruir os caracteres com alguma imprecisão, ainda assim nota-se que o autoencoder codifica boas propriedades e que as distribuições fazem o seu trabalho.

Figure 4.3: Original vs Reconstruida

Figure 4.4: Amostragem de reconstruções do dataset

Conclusão

O objetivo deste trabalho incluía explorar a natureza de modelos generativos, e para isso foi desenvolvido tanto um autoencoder concreto para a aproximação da função identidade na codificação das imagens do dataset utilizado, como também feito um autoencoder variacional que é um dos tipos de redes usadas hoje em dia para modelos generativos complexos.

Os objetivos do trabalho foram cumpridos com sucesso e as implementações funcionam de acordo com o que era esperado, para trabalho futuro o autoencoder variacional seria convertido para um autoencoder variacional condicional, para poder especificar a classe no decoder e obter as variantes para essa classe.