

f https://www.facebook.com/Abdelhamid3bac f

❖ سلسلة تمارين حول القسمة الإقليدية للشعب الأدبية ❖ آداب وفلسفة ❖ لغات أجنبية ❖

﴿ دورة 2008 - الموضوع الأول ﴾

a = 1428 و b = 2006 و عددان طبیعیان حیث: a = a

1) أ- عين باقي القسمة الإقليدية للعدد a على 9.

 $b\equiv -1$ [9] بے۔ بین أن:

جـ- هل العددان a و b متوافقان بتردید 9؟ برر إجابتك.

 $(2 - a + b^2)$ على 9 أ- ما هو باقي قسمة العدد

.3 على ($a+b^2$) على 3.

﴿ دورة 2008 - الموضوع الثاني ﴾

.7 أحسب باقي قسمة كل من 3^2 ، 3^3 ، 3^4 و 3^6 على 3^6

2) عين باقي قسمة كل من 3^{6n} و 3^{6n+4} على 7 حيث n عدد طبيعي غير معدوم.

- استنتج باقي قسمة 3²⁰⁰⁸ على 7.

من 7 مين أن العدد $4+3^{6n+4}-2\times 3^{6n}+4$ يقبل القسمة على 7 من (3

n أجل كل عدد طبيعي

﴿ دورة 2009 - الموضوع الأول ﴾

a = 25: ليكن العدد الطبيعي a حيث

 $a \equiv 1$ [3] أ- تحقق أن: $a \equiv 1$

.3 ي- استنتج باقي القسمة الإقليدية للعدد: $4+2a^2+3$ على

 $a^{360} - 5 \equiv 2 [3]$ ج- بين أن:

2) أ- أدرس حسب قيم العدد الطبيعي n، بواقي قسمة العدد 5^n على 3

 $.5^n+a^2\equiv 0$ [3] بين قيم العدد الطبيعي n بحيث:

﴿ دورة 2009 - الموضوع الثاني ﴾

أدرس تبعا لقيم العدد الطبيعي n، بواقي القسمة الإقليدية للعدد 7^n على أدرس

2) عين باقي القسمة الإقليدية للعدد 2008¹⁴³⁰ + 1429²⁰⁰⁹ على 9.

9 يين أن العدد $A = 7^{3n} + 7^{3n+1} + 7^{3n+2} + 6$ يين أن العدد (3

من أجل كل عدد طبيعي n.

﴿ دورة 2010 - الموضوع الأول ﴾

a=2010 و a=2010 و عددان طبیعیان حیث: a=2010

- .7 مين باقي القسمة الإقليدية لكل من العددين a و b على a.
- .7 على (a+2b) على القسمة الإقليدية للعدد
 - $.b^3 \equiv 6 \ [7]$ و $a^3 \equiv 1 \ [7]$ و أن:
 - $a^3 + b^3 \equiv 0$ [7] د- استنتج أن:
- $n+2010^3\equiv 1431$ [7] أوجد الأعداد الطبيعية n التي تحقق: n
 - الأصغر من أو تساوي n الأصغر من أو تساوي n

﴿ دورة 2010 - الموضوع الثاني ﴾

في كل من الأسئلة الآتية، اختر الإجابة الصحيحة من بين الإجابات الثلاث المقترحة، مع التعليل.

1) باقي القسمة الإقليدية للعدد (203–) على 5 هو:

عدد صحيح، إذا كان باقي القسمة الإقليدية للعدد x على 7 هو 5، فإن x

باقي القسمة الإقليدية للعدد 2x + 5 على 7 هو:

أ) 0 (أ

﴿ دورة 2011 - الموضوع الأول ﴾

b=2124 و a=619 و عيث: a=619 و عتبر العددين الطبيعيين و a=619

- بین أن العددین a و b متوافقان بتردید (1)
 - $-2124 \equiv -1$ [5] أ- بين أن: (2 -1

ب- استنتج باقي القسمة الإقليدية لكل من العددين 2124⁷²⁰ و 619⁷²¹ على 5.

 $-2124^{2n} \equiv 1$ [5] فإن: (5] عدد طبيعي n، فإن: (5) عدد أجل كل عدد طبيعي

د- عين قيم العدد الطبيعي n حتى يكون:

 $2124^{4n} + 619^{4n+1} + n \equiv 0 [5]$

﴿ دورة 2011 - الموضوع الثاني ﴾

a هو a أعداد صحيحة بحيث باقي القسمة الإقليدية للعدد a على a هو a باقي القسمة الإقليدية للعدد a على a هو a على a هو a على a هو a على a هو a هو a هو a

 a^2-b^2 و a imes b عين باقي القسمة الإقليدية على 7 لكل من العددين a imes b

 $c^{2n}\equiv 1$ [7] : من أجل كل عدد طبيعي 1 (2) أ- أثبت أنه من أجل

f https://www.facebook.com/Abdelhamid3bac

❖ سلسلة تمارين حول القسمة الإقليدية للشعب الأدبية ❖ آداب وفلسفة ❖ لغات أجنبية ❖

ب- عين الأعداد الطبيعية n، الأصغر من 25، بحيث: $1434^{2n} + n \equiv 0$ [7]

﴿ دورة 2013 - الموضوع الثاني ﴾

 $.b\equiv 6\,[7]$ و $a\equiv 2\,[7]$ و عددان صحيحان حيث: $a\equiv a$

- .7 عين باقى القسمة الإقليدية للعدد a+b على 7.
- ملى $a^2 + 3b^2$ على القسمة الإقليدية للعدد $a^2 + 3b^2$ على 7.
 - $b \equiv -1$ [7] :أ- تحقق أن (3

ب- استنتج باقي القسمة الإقليدية لكل من العددين b^{2013} و b^{1434} على 7.

 $(a+b)^n + n \equiv 0$ [7] عين الأعداد الطبيعية n بحيث: (4

﴿ دورة 2014 - الموضوع الأول ﴾

- 1) عين باقي القسمة الإقليدية للعدد 28 على العدد 9.
- $\cdot 10^k \equiv 1 \ [9] : k$ بین أنه من أجل كل عدد طبیعي (2
- $.4 \times 10^4 + 3 \times 10^3 + 2 \times 10^2 + 28 \equiv 1$ [9] استنج أن: (3
 - $-2^3 \equiv -1$ [9] أ- تحقق أن: -1 [9] (4)

 $.2^{6n}+n-1\equiv 0$ [9] بحيث: n عين الأعداد الطبيعية

﴿ دورة 2014 - الموضوع الثاني ﴾

عين الاقتراح الصحيح من بين الاقتراحات الثلاث في كل حالة من الحالات الخمس مع التبرير.

عدد قواسم العدد 1435 هو:

- أ) 8 ب) 5
- على 8 هو: $a\equiv -1$ [8] إذا كان: $a\equiv -1$ إذا كان
- أ) 1- ب) 7 جي 6
 - 3) العددان 1435 و 2014 متوافقان بترديد:
- أ) 2 (أ

يان: $y \equiv 2$ [5] و $x \equiv 2$ [5] غان: (4

- $x^9 + y^9 \equiv 3 [5]$ (1
- $x^9 + y^9 \equiv 2 [5]$ (2)
- $x^9 + y^9 \equiv 4 [5]$ (=

ب- تحقق أن: [7] $6 \equiv 8$ ثم استنتج باقي القسمة الإقليدية لكل من العددين 48^{2010} و 48^{2010} على 7.

﴿ دورة 2012 - الموضوع الأول ﴾

أذكر في كل حالة من الحالات الآتية إن كانت العبارة المقترحة صحيحة أو خاطئة مع التعليل.

n = 3n' + 5 و n' عددان طبیعیان حیث: n' عددان n'

باقی قسمة n علی 3 هو 5.

 2 باقي القسمة الإقليدية للعدد 2012 على 7 هو 4.

 $(2012 = 3 \times 670 + 2)$ (لاحظ أن:

 $n\equiv 2~[11]$ عدد صحيح حيث: n~(3)

باقى القسمة الإقليدية للعدد $2n^2-9$ على 11 هو 10.

﴿ دورة 2012 - الموضوع الثاني ﴾

a و d عددان طبیعیان بحیث:

 $a-b\equiv 5\ [11]$, $a+b\equiv 7\ [11]$

.11 أ- عين باقي القسمة الإقليدية للعدد a^2-b^2 على العدد 11.

 $.2b \equiv 2$ [11] و $2a \equiv 1$ [11] بين أن:

 $.b\equiv 1\,[11]$ و $a\equiv 6\,[11]$ ثم استنتج أن:

 $a^5 \equiv -1[11]$ أ- أثبت أن: (2

 $a^{10k} \equiv 1 \; [11] \; : k$ بـ- استنتج أنه من أجل كل عدد طبيعي

3) أ- تحقق أن: 2 + 2011 × 10 = 2012.

ب- عين باقي القسمة الإقليدية للعدد a^{2012} على العدد 11.

﴿ دورة 2013 - الموضوع الأول ﴾

- 1) هل العددان 2013 و 718 متوافقان بترديد 7؟
 - $^{-}$ 2) أ- عين باقي القسمة الإقليدية للعدد $^{-}$ 4 على $^{-}$

 $4^{6n}-1\equiv 0$ [7] n عدد طبیعی n: $n=4^{6n}$

3) أ- عين باقي القسمة الإقليدية لكل من العددين 2013 و 718 على 7.

 $3 imes 718^{6n} + 2013$ العدد، العدد کل عدد طبیعي، العدد، من أجل كل عدد البیعي، العدد

يقبل القسمة على 7.

-1 أ- تحقق أن: [7] -1 = 1434.

f https://www.facebook.com/Abdelhamid3bac

❖ سلسلة تمارين حول القسمة الإقليدية للشعب الأدبية ❖ آداب وفلسفة ❖ لغات أجنبية ❖

﴿ دورة 2016 - الموضوع الثاني ﴾

- 1) أ- عين باقي القسمة الإقليدية للعدد 4^3 على 9.
- $4^{3k}\equiv 1\ [9]:$ ب- استنتج أنه من أجل كل عدد طبيعي
- 4^n بواقي القسمة الإقليدية للعدد n بواقي القسمة الإقليدية للعدد n على 9 على 9
 - د- عين باقي القسمة الإقليدية للعدد 2015²⁰¹⁶ على 9.
 - 2 اً- بین أنه من أجل كل عدد طبیعي $n:[9]:=8^{2n}$
- ب- عين الأعداد الطبيعية n بحيث يكون العدد $1+4^n+4^n$ مضاعفا الحد و الحد n

﴿ دورة 2017 - الموضوع الأول – الدورة العادية ﴾

نعتبر الأعداد الطبيعية a ، d و c حيث:

.c = 1954 , b = 1437 , a = 2016

- .5 على b ، a على أعين باقي القسمة الإقليدية لكل من الأعداد b ، a على b
- b^4 و $a \times b \times c$ ، a+b+c و $a \times b \times c$ ، a+b+c و $a \times b \times c$. $a \times b \times c$
 - $.b^{4n}\equiv 1\ [5]$ ، n عدد طبیعي $b^{4n}\equiv 1$ (3) أ- تحقق أنه من أجل كل عدد $b^{2016}-1$ يقبل القسمة على 5.
 - $c \equiv -1$ [5] أ- تحقق أن: (4

 $c^{1438} + c^{2017} \equiv 0 \ [5]$ بين أن:

﴿ دورة 2017 - الموضوع الثاني – الدورة العادية ﴾

a و c ثلاثة أعداد طبيعية حيث:

.c=2017 , b=1966 , $a\equiv -5$ [7]

- .7 عين باقي القسمة الإقليدية لكل من الأعداد b ،a و a على b .
 - $b \equiv -1$ [7] تحقق أن: (2
- .7 يقبل القسمة على $b^{2017} + 3 \times c^{1438} 2$ يقبل القسمة على (3
 - $.2^{3k}\equiv 1\ [7]\; .$ کل عدد طبیعی k تحقق أنه من أجل كل عدد المبيعي (4

ثم استنتج أن:

 $2^{3k+2} \equiv 4 [7]$, $2^{3k+1} \equiv 2 [7]$

مين قيم العدد الطبيعي n حتى يكون 2^n+2^n قابلا للقسمة على 7.

(5) لدينا [6] 21 \equiv 27 إذن:

 $9 \equiv 7 [3]$ (\Rightarrow $9 \equiv 7 [2]$ (\Rightarrow $9 \equiv 7 [6]$ (\Rightarrow

﴿ دورة 2015 - الموضوع الأول ﴾

عين الاقتراح الصحيح الوحيد مع التعليل، من بين الاقتراحات الثلاث في كل حالة من الحالات الأربع الآتية:

- :فإن $a \equiv -1$ [5] عددا صحيحا حيث (1 كان $a \equiv -1$
- $a \equiv 99 [5]$ ($\Rightarrow a \equiv 6 [5]$ ($\Rightarrow a \equiv 2 [5]$ ($\Rightarrow a \equiv$
 - 2) باقي القسمة الإقليدية للعدد 99– على 7 هو:
 - $1 \leftarrow 6 \leftarrow -1$
- 3) من أجل كل عدد طبيعي n، العدد 10^n-1 يقبل القسمة على: $\frac{3}{1}$
 - 4) مجموع كل ثلاثة أعداد طبيعية متعاقبة هو دوما:
 - أ) عدد زوجي
 - ب) مضاعف للعدد 3
 - ج) مضاعف للعدد 4

﴿ دورة 2015 - الموضوع الثاني ﴾

 $.b\equiv -6$ [7] و $a\equiv 13$ [7] عددان صحيحان يحققان: $a\equiv a$

- a عين باقي القسمة الإقليدية على 7 لكل من العددين a
- بين أن العددين a^3+1 و a^3-1 يقبلان القسمة على a^3+1
 - $.b \equiv 1436 \, [7]$ و $a \equiv 2015 \, [7]$.(3)

ب- عين باقي القسمة الإقليدية على 7 للعدد 1436³ + 2015.

.2015³ + 1436³ - 1962³ + 1 $\equiv 0$ [7] أن: إ-- استنتج

﴿ دورة 2016 - الموضوع الأول ﴾

- 1) عين باقي القسمة الإقليدية لكل من الأعداد 2⁰، 2¹، 2²، 2³ و 2⁴ على
 - ين أنه من أجل كل عدد طبيعي n يكون: [5] $1 \equiv 2^{4n}$.
 - ب- استنتج باقي القسمة الإقليدية للعدد 2²⁰¹⁶ على العدد 5.
 - .22016 + 2 + $n \equiv 0$ [5] عين قيم العدد الطبيعي n بحيث يكون: (3

🎁 https://www.facebook.com/Abdelhamid3bac 🚹

على 13،

❖ سلسلة تمارين حول القسمة الإقليدية للشعب الأدبية ❖ آداب وفلسفة ❖ لغات أجنبية ❖

﴿ دورة 2017 - الموضوع الأول – الدورة الاستثنائية ﴾

- أ- عين باقي القسمة الإقليدية لكل من الأعداد 4، 4² و 4³ على 9.
 - $4^{3n} \equiv 1 \ [9]$ ، من أجل كل عدد طبيعي n، [9]
 - $4^{3n+1} \equiv 4$ [9] (9) عدد طبیعی من أجل كل عدد أبه من أجل كل عدد استنتج
 - $.2020^{1438} \equiv 4 [9]$ تحقق أن: (2
- $^{\circ}$ بين أن العدد $^{\circ}$ 1995 + $^{\circ}$ 2010 $^{\circ}$ $^{\circ}$ يقبل القسمة على 9.

﴿ دورة 2017 - الموضوع الثاني – الدورة الاستثنائية ﴾

 $.b \equiv -1$ [13] و $a \equiv 14$ [13] و معددان صحیحان حیث: $a \equiv a$

- 1) أ- بين أن باقي القسمة الإقليدية للعددين a و b على 13 هو 1 و 1 على الترتيب.
- $2a+b^2$ و a-b ، a+b و a-b و a-b و a-b و a-b على 13.
 - .13 يين أن العدد $a^{1438} + b^{2017}$ يقبل القسمة على 13.
 - $.b^{2017} + n + 1438 \equiv 0$ [13] عين الأعداد الطبيعية n بحيث: (3

﴿ دورة 2018 - الموضوع الأول ﴾

- درس حسب قيم العدد الطبيعي n بواقي قسمة 2^n على 5. 1
 - .2018 = 4a + 2 عين العدد الطبيعي a بحيث يكون: (2
- رين أن العدد $5-2017^8+2017^8$ يقبل القسمة على 5. 3
 - 4) أ- تحقق أنه من أجل كل عدد طبيعي n:

$$(-3)^n \equiv 2^n [5]$$
 , $12^n \equiv 2^n [5]$

 $-12^n + (-3)^n - 4 \equiv 0$ [5] بيث: n بحيث: العدد الطبيعي العدد الطبيعي

﴿ دورة 2018 - الموضوع الثاني ﴾

a = 4b + 6 و a = 4b + 6 عددان طبیعیان غیر معدومین حیث:

- 4 عين باقي القسمة الإقليدية للعدد 2
 - بين أن a و b متوافقان بترديد 3.
 - b = 489 نضع: (3
 - $a \equiv -1$ [13] :أ- تحقق أن
- ب- استنتج باقي القسمة الإقليدية للعدد $a^{2018} + 40^{2968}$ على 13.

ج- عين قيم العدد الطبيعي n حتى يكون العدد $a^{2n}+n+3$ قابلا للقسمة

جميع الحقوق محفوظيّ ــ BAC ــ

