Let a_1, \dots, a_k be a list of intergers. Define the function f that maps a list of k integers to an integer by the rule $f(x_1, \dots, x_k) = a_1x_1 + \dots + a_kx_k$. Let R be the range of the function f. Prove:

- For all $m, n \in R$ we have $m + n \in R$. Suppose m, n are arbitrary integers in the range R. We must show that m + n is in the range R. By definition, m, n have representations in the set of the list of integers of length k such that $m = f(m_1, \dots, m_k)$ and $n = f(n_1, \dots, n_k)$. Therefore m + n can be rewritten as: $m + n = f(m_1, \dots, m_k) + f(n_1, \dots, n_k) = a_1 m_1 + \dots + a_k m_k + a_1 n_1 + \dots + a_k n_k = a_1 (m_1 + n_1) \cdots a_k (m_k + n_k)$. Since the integers are closed under addition and multiplication then the list $(m_1 + n_1, \dots, m_k + n_k)$ is a valid list of k integers, which has been shown above defines m + n, then $m + n \in R$.
- For all $n \in R$ and $c \in Z$ we have $cn \in R$. Suppose n, c are arbitrary integers, and $n \in R$. By definition of being in the range of R there exist a list (n_1, \dots, n_k) such that $n = f(n_1, \dots, n_k) = a_1n_1 + \dots + a_kn_k$. Therefore multiplying n by c yields: $cn = c(a_1n_1 + \dots + a_kn_k) = ca_1n_1 + \dots + ca_kn_k$. Since the integers are closed under multiplication, then (cn_1, \dots, cn_2) is a valid list of k integers. Therefore f is defined over that list, and as shown above that is the representation of cn, therefore $cn \in R$.