S_N1 Displacement At sp³ Centers

from chapter(s)	in the recommended tex

A. Introduction

B. Types Of Nucleophilic Substitutions

Negatively Charged Nucleophiles

$$N_3^-$$
 + MeI = MeN₃ + I⁻ 2 AcO⁻ + CI = AcO OAc + 2 CI⁻

Neutral Nucleophiles

$$Et_3N + MeI = Et_3N + MeI = Et_3N + CI$$

$$2 Te + CI$$

$$CI = Te + CI$$

$$CI$$
 + S = S + CI BnBr + PPh₃ = BnPPh₃ + Br

$$Et_2NH + 1 MeI = Et_2NMe + HI$$
 Ph
 $SH + CI$
 Ph

$$Ph \underbrace{CI} \quad + \quad HO \underbrace{O} \quad + \quad HCI \\ \qquad \qquad Me_3O^+ \quad + \quad I^- \quad = \quad Me_2O \quad + \quad MeI$$

Charges On Leaving Groups

$$CI$$
 + $N=N+=N^-$ = N_3 + CI^- MeI + NaSCN = MeSCN + NaI

$$N^{+}Ph_{3}$$
 + NC^{-} = $N^{+}Ph$ + Lil = N^{-} + Lil^{+}

$$LiO \longrightarrow S^{+} CI^{-} = O \longrightarrow + LiCI$$

(intramolecular)

$$Ph_3P^+Me\ Cl^- + NaSEt = PPh_3 + MeSEt + NaCl$$

C. S_N1

Introduction Into The Key Steps

group replaces another.

nucleophile with first order kinetics.

mesylate

benzyl carbocation and ⁻OMs

is the rate

tosylate

allyl carbocation and O⁻Ts

allyl carbocation and hydrogen phosphate

an allyl carbocation and hydrogen phosphate

carbocation and hydroxide

carbocation and water

<u>better</u> <u>right</u> <u>left</u> true.

protonated intermediate

carbocation intermediate

protonated intermediate

carbocation intermediate

Carbocations can

<u>cations</u>

<u>racemic</u>,

 sp^2

flat and the nucleophile can

product

two intermediates.

one intermediates.

S_N1 reaction of bromide with allyl chloride involves one

carbocation intermediate

product and HCI

b
$$\begin{array}{c|cccc}
O & CI \\
P & P \\
O & P \\
P & P \\$$

carbocation intermediate

protonated amine

Kinetics Of $S_N \mathbf{1}$

protonated intermediate

carbocation

reaction progress

rate is proportional to

[^tBuOH]

rate =

k [†BuOH]

at the same rate the

Carbocation Stability

Rates of $S_N 1$ reactions tend to <u>increase</u>

least stable most stable

$$\nearrow$$
 Br \bigcirc Br \bigcirc Br

fastest slowest

fastest slowest

towards from the

greater than that from hyperconjugation in Et⁺. *more* stable than many other primary carbocations.

Stereochemistry And $S_N \mathbf{1}$

$$^{\dagger}Bu$$
 \longrightarrow $^{\bullet}OH$ \xrightarrow{HCN} $^{\bullet}Bu$ \longrightarrow $^{\bullet}CN$

circle if optically active

circle if optically active

circle if optically active

