1. Изображение объекта. Виды изображений.

Изображение (описание) объекта — отображение объекта на воспринимающие органы (рецепторы) распознающей системы. Если воспринимающие органы фиксированы, то объект и его изображение отождествляются. Виды изображений: 1) объект в виде n-мерного вектора (вектор признаков) $X = (x_1, ..., x_n)$. Н-р, набор технич-х хар-к машины, м/б бинарным. 2) объект в виде лингвистической структуры. Н-р, текст на естественном языке.

2. Образ (класс).

Пусть задано разбиение множества всех изображений на непересекающиеся подмножества. Каждое такое подмножество назовём классом или образом. Объекты, относящиеся к одному и тому же образу, образуют класс эквивалентности. Иногда под образом понимают множество, элементы которого обладают свойствами рефлексивности и симметричности, но не транзитивности (т.е. отношением толерантности) (для элементов на границе классов).

3. Задача распознавания образов.

Задача распознавания образов заключается в отнесении некоторого объекта из исходного множества к одному из т классов :

Х (описание объекта)=> распознающая процедура => класс (образ).

4. Обучающая последовательность.

Пусть из выделенных классов выбрано множество объектов, на основе которого будет осуществляться построение распознающей процедуры. Назовём его обучающей последовательностью $x^1, x^2, ..., x^n$.

5. Задача обучения распознаванию образов.

Задача обучения распознаванию образов — по данной обучающей последовательности с использованием некоторого устройства (конструктора) получить распознающую процедуру, которая осуществляла бы правильную классификацию для любого объекта из исходного множества, включая и не вошедшие в эту ОП.

6. Задача обучения с учителем.

Задача обучения с учителем – задача распознавания образов, в которой для каждого объекта из обучающей последовательности известен класс, к которому он относится (т.е. дана маркированная ОП).

7. Задача обучения без учителя.

Задача обучения без учителя (задача сомообучения) — задача распознавания образов, в которой для образов из обучающей последовательности не известны классы, к которым они относятся (т.е. дана немаркированная $O\Pi$).

8. Решающая функция.

9.Примеры задач распознавания.

1. Тестирование комбинационных схем (КС-схема, состоящая из элементов, реализующих основные логические функции).

.

Её работу можно описать так:

Пусть в схеме есть дефект (элемент х не работает). Тогда опишем её набором:

Задача диагностики КС заключается в том, чтобы фиксируя сигналы на входе и выходе схемы, определить, является ли схема исправной, или она имеет данный дефект. Вектор x=(x1,x2,x3,x4,y) размерности n=5, кол-во классов m=2.

2. Контроль состояния ядерного реактора.

.

Изображение: X=x01,...,x31 — вектор в евклидовом пространстве. Имеются два класса: w1-множество значений вектора X, соответств-X нормальному состоянию реактора, w2- -//- аномальному состоянию. Задача состоит в определении к какому классу относится объект X.

- 3. Распознавание символов. Изображение символа проецируется на светочувствительную сетчатку. Степень затемненности элемента сетчатки можно измерять. Каждому начертанию символа ставится в соответствие вектор $X = (x_1, ..., x_n)$, компоненты которого отражают степень затемненности. *Класс* множество векторов, соответствующих различным начертаниям одного и того же символа. Классов столько же сколько символов. SP C дан вектор $C = (x_1^*, ..., x_n^*)$, РП должна решить какой символ спроецирован.
- 4. Выбор адекватного алгоритма для решения задачи. Имеется некоторое множество задач определенного типа. Предложено m различных эвристических алгоритмов A_1, \dots, A_m для их решения. Множество задач можно разбить на m классов w_1, \dots, w_m . Класс w_i подмножество задач, которое решается алгоритмом A_i наилучшим в некотором смысле образом. Изображение- описание конкретной задачи. 3P- дана конкретная задача, распознающая процедура должна решить какой алгоритм будет решать ее наилучшим образом.
- **10. Общая характеристика простейших методов распознавания (сравнение с эталоном).** Группа наиболее ранних методов, когда класс задаётся характерным представителем (эталоном). Классифицируемый объект относится р*аспознающей процедурой* к тому классу, с эталоном которого он согласуется наилучшим образом относительно какой либо характеристики.

11. Метод совмещения с эталоном.

Для каждого класса выбирается эталон (характерный представитель класса). *Распознающая процедура*: анализируемый объект сравнивается с эталонами классов и относится к тому классу, с эталоном которого он согласуется наилучшим образом. Иногда требуется просто совпадение с эталоном.

12. Метод зондов.

Метод зондов предназначен для распознавания печатных символов. Имеется начертательное поле, в котором расположена система тонкопроводящих зондов. На него накладывается символ-объединение зондов-вырабатывается определенный код символа. Система зондов расположена так, что различным очертаниям одного и того же символа соответствует один и тот же бинарный код. + в том, что зр решается просто. - в сложности построения таких зондов.

13. Квазитопологический метод.

Квазитопологический метод предназначен для распознавания символов. Каждому символу поставлен в соответствие граф в качестве эталона этого символа. РП: к одному классу относятся все очертания символов, графы которых гомеоморфны, то есть могут быть получены друг из друга с помощью взаимооднозначного непрерывного отображения. -: один и тот же граф может соответствовать нескольким символам.

14. Достоинства и недостатки простейших методов распознавания.

- + простота распознающец процедуры, быстродействие;
- проблема определения эталонов, узкая специализация эталонов.

15. Классификация по единственному эталону каждого класса.

В обуч послед-ть входит по одному представителю (эталону) каждого класса. Определим расстояние м-у вектором признаков и эталоном $Z_{\rm i}$

$$Di = ||x - zi|| = \sqrt{(x - z_i)^T (x - z_i)}$$

PII: $x \rightarrow wi$ i=[arg min $D(z_i,x)$] $x \in wi$

относит О-т х к тому из классов, расстояние до которого мин.

Если расстояния одинаковы, то решение выносится произвольно

16. Классификация по множеству эталонов каждого класса.

Классификация по мн-ву эталонов. В обуч пос-ть входит $N_i >= 1$ представителей $Z_{i,...,}^1 Z_i^N$ каждого класса. Найдем расстояние м-у вектором X и классами w

$$D_{i} = \min_{l=1}^{N} ||x - z_{i}^{l}|| = \min_{l=1}^{N} \sqrt{(x - z_{i}^{l})^{T} (x - z_{i}^{l})}$$

PII: $x \rightarrow wi$ i=[arg min $D(z_i,x)$] $x \in wi$

относит О-т х к тому из классов, расстояние до которого мин.

17. Правило ближайшего соседа.

Пусть есть ОП Z1,...,ZN, причём для каждого вектора Zj известна его принадлежность к одному из классов W1,...,Wm. Пусть D(Zj,x) – нек-я мера близости векторов Zj и x

q-БС-правило (q≥1-фиксированное целое число): вычисляется q ближайших соседей x и x относится к тому классу wi, к которому относится большинство из q ближайших соседей.

18. Достоинства и недостатки методов, основанных на близости описаний.

+ простота реализации. - необходимость хранения всей ОП, отсутствие гарантии правильного распознавания, невозможность оценки качества РП.

19. Меры сходства изображений, используемые для выявления классов (кластеров).

В качестве меры между образами х и z можно использовать: 1) евклидово расстояние: $D = \|x - z\|$. 2)

неметрическая функция сходства
$$S(x,z) = \frac{x \cdot z}{\|x\| \|z\|}$$
 - косинус угла между векторами x и z, достигающий

максимума, когда их направления совпадают. 3) мера Танмото - отношение количества совпадающих к количеству различных признаков двух образов.

20. Подходы к построению процедуры классификации (кластеризации).

задание набора правил, основывающихся на использовании выбранной меры сходства для отнесения образов к одному из кластеров.

Эвристический подход Образ относится к тому кластеру, с центром которого он близок в большей степени. При таком подходе хорошо использовать евклидово расстояние, что связано с естественностью его интерпретации как меры близости.

Подход, основанный на использовании показателя качества, связан с разработкой процедур, которые обеспечат минимизацию или максимизацию выбранного показателя качества. Одним из наиболее популярных показателей качества является сумма квадратов ошибки

$$J = \sum_{j=1}^{N_c} \sum_{x \in S_j} \|x - m_j\|^2 \longrightarrow \min$$
 где N_c — число кластеров, S_j — множество образов, относящихся к j-му

кластеру, а
$$m_j = \frac{1}{N_j} \sum_{x \in S} x$$
 — вектор выборочных средних значений для множества Sj; Nj количество

образов, входящих в множество Sj. Показатель качества опр-т общую сумму квадратов отклонений харк всех образов, входящих в .некоторый кластер, от соответствующих средних значений по кластеру.

21. Простой эвристический алгоритм определения кластеров.

Шо. Пусть задано множество N образов {X1,...,XN}. Пусть центр первого кластера Z1 совпадает с любым из заданных образов и определена произвольная неотрицательная пороговая величина Т. Будем считать, что Z1=X1. Ш1. Вычислим расстояние D21 между образом X2 и центром кластера Z1 по формуле евклидового расстояния. Если это расстояние больше значения пороговой величины Т), то новым центром кластера становится Z2=X2. В противном случае образ X2 включается в кластер, центром которого является Z1. Пусть Z2— центр нового кластера. Ш3. Вычислим расстояния D31 и D32 от образа X3 до центров кластеров Z1 и Z2. Если оба расстояния оказываются больше порога T, то учреждается новый центр кластера Z3=X3. В противном случае образ X3 зачисляется в тот кластер, чей центр к нему ближе. Шт. Подобным же образом расстояния от каждого нового образа до каждого известного центра кластера вычисляются и сравниваются с пороговой величиной T, если все эти расстояния превосходят значение порога T, учреждается новый центр кластера. В противном случае образ зачисляется в кластер с самым близким к нему центром. Результаты описанной процедуры определяются выбором первого центра кластера, порядком осмотра образов, значением пороговой величины T, геометрическими хар-ми данных.

22. Эвристический алгоритм максиминного расстояния.

ШО. Пусть задано множество N образов {X1,...,XN}. Ш1. Один из заданных образов произвольным образом назначается центром первого кластера Z1. Возьмем Z1=X1. Ш2. Затем отыскивается образ, отстоящий от образа X1 на наибольшее расстояние. Он назначается центром кластера Z2. Ш3. Вычисляются расстояния между всеми остальными образами выборки и центрами кластеров Z1 и Z2. В каждой паре этих расстояний выделяется минимальное. После этого выделяется максимальное из этих минимальных расстояний. Если последнее составляет значительную часть расстояния между центрами кластеров z1 и z2 (по меньшей мере, половину этого расстояния), то соответствующий образ назначается центром кластера Z3. В противном случае выполнение алгоритма прекращается. Шт. В общем случае подобная процедура повторяется до тех пор, пока на каком-либо шаге не будет получено максимальное расстояние, для которого условие, определяющее выделение нового кластера, не выполняется. Оставшиеся образы относятся к тому кластеру, центр которого для них ближайший.

23. Алгоритм К внутригрупповых средних.

Ш1. Выбираются K исходных центров кластеров Z1(1),...,Zk(1). Этот выбор производится произвольно. Ш2. Заданное множество образов $\{x\}$ распределяется по K кластерам по следующему правилу: $x \in S_j(k)$, если $||x-z_j(k)|| < ||x-z_i(k)||$ для всех i=1,2,...,K, $i\neq j$, где $S_j(k)$ —множество образов, входящих в кластер с центром $z_j(k)$. В случае равенства решение принимается произвольным образом. Ш 3. На основе пред-го шага определяются новые центры кластеров $z_j(k+1)$, j=1,2,...,K, исходя из условия, что сумма квадратов расстояний между всеми образами, принадлежащими множеству $S_j(K)$, и новым центром кластера должна быть минимальной. Т. е. новые центры кластеров $z_j(k+1)$ выбираются таким

образом, чтобы минимизировать показатель качества
$$J_j = \sum_{x \in S_j(k)} x - z_j(k+1) \|^2$$
, $j = 1, 2, ..., K$

Новые центры кластеров определяются как
$$z_j(k+1) = \frac{1}{N_j} \sum_{x \in S_j(k)} x, j = 1, 2, ..., K$$

где Nj—число выборочных образов, входящих в множество Sj(k).

<u>Ш 4.</u> Проверяется равенство $z_j(k+1) = z_j(k)$ при j=1, 2, ..., K, которое является условием сходимости алгоритма, и при его достижении выполнение алгоритма заканчивается. В противном случае алгоритм повторяется от шага 2. Качество работы алгоритмов, основанных на вычислении K внутригрупповых средних, зависит от числа выбираемых центров кластеров, от выбора исходных центров кластеров, от последовательности осмотра образов и от геом-х особенностей данных.

24. Алгоритм ISODATA.

 $\{x_1, x_2, ..., x_N\}$ – исходный набор образов. Ш1: Задаются параметры, определяющие процесс кластеризации:

K—необходимое число кластеров; Q_N —параметр, с которым сравнивается количество выборочных образов, вошедших в кластер; Q_s — параметр, характеризующий среднеквадратичное отклонение; Q_c — параметр, характеризующий компактность; L— максимальное количество пар центров кластеров, которые можно объединить; J — допустимое число циклов итерации. Ш2: заданные N образов распределяются по кластерам, соответствующим выбранным исходным центрам, по правилу

x∈ Sj, если ||x - zj|| < ||x - zi||, i=1,2, ..., N_c ; i≠ j, где

Sj-подмножество образов выборки, включённых в кластер с центром Zj. Ш3: ликвидируются подмножества образов, в состав которых входит менее Q_N элементов, т. е. если для некоторого j выполняется условие $N_j < Q_N$, то подмножество S_j исключается из рассмотрения и значение N_c уменьшается на 1. Ш4: каждый центр кластера z_j , $j=1, 2, ..., N_c$, локализуется и корректируется посредством приравнивания его выборочному среднему, найденному по соответствующему подмножеству S_j , т. е. $z_j = \frac{1}{N_i} \sum_{r \in S_i} x$,

j=1..Nс, где N_j —число объектов, вошедших в подмножество S_j . Ш5: вычисляется среднее расстояние D_j между объектами, входящими в подмножество S_j , и соответствующим центром кластера по формуле $\overline{D}_j = \frac{1}{N_j} \sum_{x \in S_j} \|x - Z_j\|$, j = 1..Nc Ш6: вычисляется обобщённое среднее расстояние между объектами, находящимися в отдельных кластерах, и соответствующими центрами кластеров по ф-ле $\overline{D} = \frac{1}{N} \sum_{j=1}^{N_c} N_j \overline{D}_j$ Ш7: а) если текущий цикл итерации – последний, то задается $Q_c = 0$, переход к шагу

11. б) Если условие $N_c \le K/2$ выполняется, то переход к шагу 8. в) Если текущий цикл итерации имеет четный порядковый номер или выполняется условие $N_c \ge K/2$, то переход к шагу 11; в противном случае процесс итерации продолжается. Ш8: для каждого подмножества выборочных образов с помощью соотношения $\sigma_{ij} = \sqrt{\frac{1}{Nj}(x_{ik}-z_{ij})^2}$, i=1..n, j=1..Nс вычисляется вектор среднеквадратичного отклонения

Ш9: в каждом векторе среднеквадратичного отклонения σ_j , $j=1, 2, ..., N_c$, отыскивается максимальная компонента σ_{jmax} . Ш10: Если для любого σ_{jmax} , $j=1, 2, ..., N_c$, выполняются условия $\sigma_{jmax} > Q_s$, и а) $\overline{D}_j > \overline{D}$ и Nj>2(QN+1), или б) N $_j < K/2$, то кластер с центром z_j ликвидируется, а значение N_c увеличивается на 1. Для определения центра кластера z_j+ к компоненте вектора z_j , соот-й макс-й компоненте вектора σ_j , прибавляется заданная величина γ_j ; центр кластера z_j опред-я вычитанием этой же величины γ_j из той же самой компоненты вектора z_j . В качестве величины γ_j можно выбрать некоторую долю значения макс-й среднеквадратичной компоненты σ_{jmax} , т. е. положить $\gamma_j = k\sigma_{jmax}$, где $0 < k \le 1$. При выборе γ_j следуег руковод-я в основном тем, чтобы ее величина была достаточно большой для различения разницы в расстояниях от произвольного образа до новых двух центров кластеров, но достаточно малой, чтобы общая структура кластеризации существенно не изменилась. Если расщепление происходит на этом шаге, надо перейти к шагу 2, в противном случае продолжать выполнение алгоритма. Ш11: вычисляются расстояния D_{ij} между всеми парами центров кластеров:

 D_{ij} =I| z_i - z_j ||, i=1, 2, ..., N_c -1; j=i+1, 2, ..., N_c . Ш12: Расстояния D_{ij} сравниваются с параметром Q_c . Те L расстояний, которые оказались меньше Q_c , ранжируются в порядке возрастания:

 $[D_{i1j1}, D_{i2j2}, ..., D_{iLjL}]$ причем $D_{iLjL} < D_{i2j2} < ... < D_{iLjL}$. a L—максимальное число пар центров кластеров, которые можно объединить. Следующий шаг осуществляет процесс слияния кластеров. Ш13: кластеры с центрами z_{il} и z_{jl} , i=1, 2, ..., L, объединяются (при усл, что в текущем цикле итерации процедура слияния не прим-ь ни к тому, ни к др-у кластеру), причем новый центр кластера опр-я по формуле

$$z *_{l} = \frac{1}{N_{i_{l}} + N_{j_{l}}} [N_{i_{l}}(Z_{i_{l}}) + N_{j_{l}}(Z_{j_{l}})]$$

Центры кластеров z_{il} и z_{jl} ликвидируются и значение N_c уменьшается на 1.

Ш14: если текущий цикл итерации—послед-й, то выполнение алг-ма прекращ-ся. В противном случае следует возврат-я либо к ш1, если по предписанию польз-ля меняется к-л из параметров, определяющих процесс кластеризации, либо к ш2, если в очередном цикле итерации параметры процесса должны остаться неизменными. Завершением цикла итерации считается каждый переход к ш1 или 2.

25. Достоинства и недостатки алгоритмов обучения без учителя.

- необходимость проведения обширных экспериментов, трудность применения к данным сложной структуры. +простота реализации, применение эвристических подходов.

26. Изображающие числа и базис.

<u>Базис</u> - таблица, которая представляет все возможные комбинации значений истинности некоторого набора элементов A, B, C, Для n элементов A_1 , ..., A_n базис содержит n строк и 2^n колонок. Различных базисов существует (2^n)!. Тогда базис для одного элемента: #A=0 1; для двух элементов A и B: 0 1 2 3 #A = 0 1 0 1 #B = 0 0 1 1. Строки базиса наз-ся изображающими числами соответствующих элементов и обозн-ся приписыванием слева от элемента знака #. Операции над изображающих чисел слагаемых: #(A + B) = #A + #B, причем сложение #A,#B выпол-я поразрядно без переносов в высшие разряды по правилу 0+0=0, 0+1=1+0=1, 1+1=1. 2) изображающее число конъюнкции двух элементов опред-я как произведение ич сомножителей: #(A•B)=(#A)•(#B), причем перемножение #A, #B выпол-я поразрядно по правилу 0•0=0, 0•1=1•0=0, 1•1=1. 3) ич отрицания A получается из ич A заменой в каждом разряде 0 на 1 и 1 на 0.

27. Восстановление булевой функции по изображающему числу.

<u>ЛНФ</u>: пусть имеется мн-во, состоящее из n элементов A_l , ..., A_n . Произведение вида A_l •A2_... A_{n-l} • A_{n-j} составленное из элементов A_l , или их отрицаний A_j и содержащее n сомножителей, наз-ся элементарным произведением. Из n элементов можно составить 2^n различных элементарных произведений. Изображающее число каждого элементарного произведения имеет только одну единицу в одном из 2^n разрядов. СДНФ булевой функции — сумма элементарных произведений. Чтобы по данному изображающему числу восстановить булеву функцию в СДНФ, нужно суммировать элементарные произведения, изображающие числа которых имеют единицы в тех же разрядах, что и изображающее число булевой функции. $\underline{KH\Phi}$ Элементарными суммами для n элементов A_l , ..., A_n наз-ся суммы вида $A_1+A_2+...A_{n-1}+A_n$, составленные из элементов A_l или их отрицаний A_j и содержащее n слагаемых. Из n элементов можно составить 2^n элементарных сумм. Ичисла элементарных сумм содержат только один 0 в одном из 2^n разрядов. Кнф булевой функции представляет собой произведение элементарных сумм. Для того, чтобы написать булеву функцию, соответствующую данному изображающему числу в КНФ, необходимо перемножить элементарные суммы, изображающие числа которых имеют те же 0, что и изображающее число булевой функции.

28. Зависимость и независимость булевых функций..

Каждая булева функция может иметь два значения истинности, n булевых функций могут образовывать 2^n комбинаций значений истинности. n булевых функций $f_1(A,B,C,...)$, ..., $f_n(A,B,C,...)$ независимы, если в совокупности при всех возможных значениях аргументов A,B,C,... они могут принимать 2^n комбинаций значений истинности. Для проверки независимости функций $f_1(A,B,C,...)$, ..., $f_n(A,B,C,...)$ необходимо по отношению к базису b[A,B,C,...] вычислить их изображающие числа $\#f_1(A,B,C,...)$ и проверить, образуют ли столбцы этого набора 2^n чисел $0,1,...,2^n$ -1; если 2^n чисел имеется, то функции независимы, в противном случае — зависимы.

29. Нахождение явного вида логической зависимости.

Чтобы найти явную форму логической связи зависимых функций $f_1(A,B,C..)...f_n(A,B,C..)$ в виде $F(f_1...f_n)=I$ нужно:

1. В базисе b[A,B,C...] выписываются $\#f_1$... $\#f_n$ и определяют какие числа отсутствуют в наборе столбцов. Столбцы набора $\#f_1$ (A,B,C..)... $\#f_n$ (A,B,C..) представляют собой комбинации значений истинности функций f_1 ... f_n , при которых соответствующие элементарные произведения истинны. Т.к. #(F=I)=#F=> столбцы указывают номера колонок в $b[f_1...f_n]$, совпадающие с номерами разрядов $\#F(f_1...f_n)$ на которых F истинна. => в соответствующих разрядах $\#F(f_1...f_n)$ должны быть единицы, а в остальных – нули

30. Отыскание решений логического уравнения.

<u>Логическое уравнение</u> - алгебраическое уравнение, элементами которого являются логические числа и операции. Примером <u>булева уравнения</u> с одним неизвестным может служить соотношение $X \cdot (A+B) = A \cdot B \cdot C$, где X — некоторая булева функция, зависящая от A, B, C, которую требуется найти, так чтобы в результате подстановки X(A, B, C) в данное уравнение оно обращалось в тавтологию.

31. Техника решения логических уравнений с помощью булевых матриц.

Прямоугольная матрица называется булевой, если элементы ее — числа 0 и 1. Операции над булевыми матрицами: 1) Произведение булевых матриц $||C_{ij}|| = ||a_{ik}||^* ||b_{kj}||$ опр-ся по правилам обыкновенного матричного умножения, т. е. $C_{ij} = \sum_k a_{ik} \cdot b_{kj}$, с той только разницей, что операция суммирования произведений элементов строк и столбцов заменяется логическим сложением. 2) Соотношение импликации: $||a_{ij}|| - > ||b_{ij}||$, справедливо для двух булевых матриц: $||a_{ij}|| u ||b_{ij}||$, если нет і и ј таких, что $||a_{ij}|| = 1 u ||b_{ij}|| = 0.$ 3). Транспонированной матрицей по отношению к $||a_{ij}||$ наз-т матрицу $||b_{ij}|| = ||a_{ji}||$, получаемую из матрицы $||a_{ij}||$ при перемене местами строк и столбцов. Для решения логического уравнения нужно: 1) тоже самое проделать с другой частью уравнения. 3) полученные матрицы построчно сравниваем между собой, и если элементы в столбцах совпадают, то вносим в таблицу результатов соответствующие значения неизвестных, по отношению к базису коэффициентов.

32. Две задачи о замене переменных в булевых функциях. (везде ||||).

А, В, С, ... — элементарные высказывания и совершается замена переменных A = A(A', B', C', ...), B = B(A', B', C', ...), C = C(A', B', C', ...), ...

1 <u>задача:</u> предположим, что задана нек-я функция F_1 (A, B, C, ...) и совершается преобразование вида: A, B, C, ... - элементарные высказывания заменяются на A = A(A', B', C', ...), B = B(A', B', C', ...), C = C(A', B', C', ...), ..., (*), где A', B', C', ... - новые переменные. Требуется найти функцию $G_1(A', B', C', ...)$ = $F_1[A(A', B', C', ...)]$, B(A', B', C', ...), B(A', B', C', ...), C', ... - C', ... -

не всегда и, кроме того, может быть неоднозначным. Решается исходя из: $|F_{ki}| * |R_{ii}| = |G_{ki}|$; $|F_{ki}| = |G_{ki}| * |R_{ii}|$;

33. Прямая и обратная логические задачи распознавания.

Пусть вектор признаков подлежащего классификации объекта является бинарным, каждую компоненту которого можно рассматривать как пропозициональную переменную $A_1, ..., A_n$. Пусть имеется m классов. Каждому классу поставим в соответствие величину — индикатор класса $\Omega_1, ..., \Omega_m$ - тоже — пропозициональная переменная, принимающая значение 1, если соответствующий класс имеет место, и 0, если нет. Замечания: в нашей постановке не предполагается, что классы не могут иметь место одновременно. Пусть имеются нек-е заранее известные ограничения, наложенные на значения признаков A1, ..., An; на индикаторы $\Omega_1, ..., \Omega_m$; и на признаки, и на индикаторы классов (совместные ограничения). Причём ограничения определённого типа заданы в виде булевых уравнений. Для ограничений типа :

1.
$$\Phi_{i}(A_{1},...A_{n})=1(\Phi_{i}^{-1}(A_{1},...A_{n})=\Phi_{i}^{-2}A_{1},...A_{n})), i=1..1$$
 (*)
2. $\Psi_{j}(\Omega_{1},...,\Omega_{m})=1(\Psi_{j}^{1}(\Omega_{1},...,\Omega_{m})=\Psi_{j}^{2}(\Omega_{1},...,\Omega_{m})), j=1..p$
 $\Theta_{k}(A_{1,...,}A_{n},\Omega_{1,...,}\Omega_{m})=1(\Theta_{k}^{1}(A_{1,...,}A_{n},\Omega_{1,...,}\Omega_{m})=$
3. $=\Theta_{k}^{2}(A_{1,...,}A_{n},\Omega_{1,...,}\Omega_{m})), k=1..q$

Где все функции -правильно построенные высказывания от пропозиц-х переменных. Пусть получена некоторая информация об объекте—о этих переменных- в виде логического уравнения, которую можно записать в виде:

$$G(A1,...,An)=1.(**)$$

 $|R_{ii}|=|R_{ij}|^T$

В частности м/б просто известны значения признаков A1,...,An. Прямая задача распоз-я: Какой вывод можно сделать о классах w1,....,wm (точнее об их индикаторах) на основании инфо в (*) и (**)? Или: какое истинное высказывание о классах, обозначенных как $F(\Omega 1,...,\Omega m)=1$, можно сделать в

предположении истинности формулы (**) при условии выполнения ограничений (*)? Задача распознавания: найти такую функцию (правильно построенную формулу), которая является логическим следствием $G(A_1,...,A_n)$ при условии (*), т.е. $G(A_1,...,A_n)$ = $F(\Omega_1,...,\Omega_\mu)$. Обратная зр: определить множество неизвестных посылок $G(A_1,...,A_n)$, из к-х следуют нек-е данные выводы $F(\Omega_1,...,\Omega_\mu)$ при ограничениях (*).

34. Пример логической задачи распознавания.

Пусть объект характ-ся единственным бинарным признаком A1 (n=1). $m=2: w1, w2=>\Omega1, \Omega2$. Априорная информация (система (*)):

- классы не могут иметь место одновременно: $\Omega 1$ =не $\Omega 2$.
- значение признака однозначно определяет класс : $A1=\Omega 1$. Пусть об объекте известно: $A1=0 \Leftrightarrow$ не A1=1(**), $G\equiv$ не A1. Тогда система (***) имеет вид :

(не не A1UF(Ω 1, Ω 2))=1& Ω 1 \equiv не Ω 2& A1= Ω 1. => F(Ω 1, Ω 2)=не A1(из1), F(Ω 1, Ω 2)=не Ω 1 (из 3)=> F(Ω 1, Ω 2)= Ω 2.

35.Алгоритм вычисления оценок (АВО).

Пусть множество объектов $\{\omega\}$ подразделено на классы Ω_i , $i=l,\ldots,m$, и для описания объектов используются признаки x_j , $j=l,\ldots,N$. Все объекты описываются одним и тем же набором признаков. Алгоритм распознавания сравнивает описание распознаваемого объекта с описаниями всех объектов и принимает решение о том, к какому классу отнести объект. Классификация основана на вычислении степени похожести (оценки) распознаваемого объекта на объекты, принадлежность которых к классам известна. Эта процедура включает в себя два этапа: сначала подсчитывается оценка для каждого объекта, а затем полученые оценки используются для получения суммарных оценок по каждому из классов Ω_i . *Решающим правилом* является отнесение распознаваемого объекта к классу, которому соответствует максимальная оценка, либо эта оценка превышает оценки всех остальных не менее чем на определенную пороговую величину, либо отношение соответствующей оценки к сумме оценок всех остальных классов не менее пороговой величины.

36.Осн. идеи, лежащие в осн. ABO. Сущность алгебраического подхода. Рассмотрим полный набор признаков $x = \{x_1, ..., x_N\}$ и выделим систему подмн-в мн-ва признаков (систему опорных мн-в алгоритма) $S_1, ..., S_I$. В ABO обычно рассмат-ся либо все подмн-ва мн-ва признаков фиксированной длины k, k = 2, ..., N - I, либо вообще все подмн-ва мн-ва признаков. Удалим произвольный поднабор признаков из строк $\omega_1, \omega_2, ..., \omega_{\text{rm}}, \omega'$ и обозначим полученные строки $S_{\omega_1}, S_{\omega_2}, ..., S_{\omega_{\text{rm}}}, S_{\omega'}$. Правило близости, позвол-е оценить похожесть строки $S_{\omega'}$, соответс-й распознаваемому объекту ω' , и строки $S_{\omega k}$, соответс-й произв-му объекту исх-й таблицы, состоит в следующем. Пусть «усеченные» строки содержат q первых признаков, т. е. $S_{wk} = (\alpha_1, ..., \alpha_q)$ и $S_{\omega'} = (\beta_1, ..., \beta_q)$, и заданы пороги $\varepsilon_1, \varepsilon_2, ..., \varepsilon_{\varphi}$ δ . Строки $S_{\omega k}$ считаются похожими, если выпол-ся не менее чем δ неравенств вида $|\alpha_j - \beta_j| < \varepsilon_j$, j = 1, ..., q. Величины $\varepsilon_1, \varepsilon_2, ..., \varepsilon_{\varphi}$ δ входят в качестве параметров в ABO. Рассм-м процедуру вычисления оценок по подмножеству S_1 . Проверяется близость строки $S_{\omega'}$, со строками S_{ω_1} , S_{ω_2} ,..., S_{ω_1} ,-,, принадлежащими объектам класса Ω_1 . Число строк этого класса, близких по выбранному критерию классиф-й строке $S_{\omega'}$, обозн-ся $\Gamma_{S_1}(\omega', \Omega_1)$; последняя величина представляет собой оценку строки ω' для класса Ω_1 по опорному множеству S_1 . Аналогичным образом вычисляются оценки для остальных классов: $\Gamma_{S_1}(\omega', \Omega_1), ..., \Gamma_{S_1}(\omega', \Omega_m)$

Применение подобной процедуры ко всем остальным опорным множествам алгоритма позволяет получить систему оценок $\Gamma_{S2}(\omega', \Omega_1), ..., \Gamma_{Sk}(\omega', \Omega_1), ..., \Gamma_{Sk}(\omega', \Omega_n)$.

$$\Gamma(\omega', \Omega_1) = \Gamma_{S1}(\omega', \Omega_1) + \Gamma_{S2}(\omega', \Omega_1) + \dots + \Gamma_{Sk}(\omega', \Omega_1) = \sum_{si \in Sa} \Gamma_{si}(\omega, \Omega_1)$$

.....

$$\Gamma(\omega', \Omega \mathbf{m}) = \Gamma_{S1}(\omega', \Omega \mathbf{m}) + \Gamma_{S2}(\omega', \Omega \mathbf{m}) + ... + \Gamma_{Sk}(\omega', \Omega \mathbf{m}) = \sum_{si \in Sa} \Gamma_{Si}(\omega, \Omega_m)$$

Величины $\Gamma(\omega', \Omega_1),...,\Gamma(\omega', \Omega_m)$ представляют собой оценки строки ω' для соответствующих классов по системе опорных множеств алгоритма S_A . Реш-е правило может принимать разл-е формы, в частности распозн-й объект м/б отнесен к классу, кот-у соответ-т макс-я оценка, либо эта оценка будет превышать оценки всех ост-х классов не меньше чем на опред-ю пороговую величину n1, либо значение отношения

соответ-й оценки к сумме оценок для всех остальных классов будет не менее значения порога n2 и т. д. Параметры типа n1 и n2 также включаются в ABO.

37. Перцептрон и его математическая модель.

Перцептрон-устройство, моделирующее работу человеческого мозга. Состоит из : a) $S_1, ..., S_n$ рецепторы (воспринимают сигналы из окруж-й среды).

б) $A_1, ..., A_n - A$ -элементы (каждый из них соединён с группой s-элементов, воспринимая их сигналы, выраб-т вых-й сигнал, если общее воздействие s-э превосходит нек-й заданный порог). в) R-э (воспринимает сигнал от A-э, выраб-т вых-й сигнал, кот-й явл-ся линейной комбинацией a-э).

$$R_{i} = \sum_{j=1}^{k} w_{j} y_{j}$$
 Обучение перц-на свод-ся к установлению таких

значений wi, при кот-х маркир-я ОП правильно классиф-ся перц-м. Замечание:

различ-е модели перц-в отлич-ся друг от друга: 1)восприним-й способн-ю S-э.

2)св-ми А-э. 3)системами соедин-я элементов. 4)кол-м слоёв элем-в. 5)проц-ми обучения перцепторна. Матмодель перц-на: S-э поставим в соответ-е вектор $\mathbf{x}=(\mathbf{x}1,...,\mathbf{x}n);$ А-э –вектор $\mathbf{y}=(\mathbf{y}_1,...,\mathbf{y}n1).$ $\mathbf{y}=(\mathbf{y}_1,...,\mathbf{y}n1)^{\mathrm{T}}=\phi(\mathbf{x})=(\phi 1(\mathbf{x}),...,\phi n1(\mathbf{x}))^{\mathrm{T}}.$

Решение об отнесении x к одному из классов принимается так: 1) если $\sum_{i=1}^{n_1}$ wiyi(в матр виде w^Ty)>0⇔ $\sum_{i=1}^{n_1}$ wi ϕ i(x)>0=>x принадл-т W_1 . 2)если <0⇔<0=>x прин-т w2. Геометричес-я интерпрет-я: если $x \in X^n$, то $w^T\phi(x)$ =0-определяет разделяющую гиперповерхность в пространстве X. Если X лежит по одну сторону раздел-й гиперпов-ти, то $x \in w1$, и наоборот. $x \in X^{n_1}$ ⇔ $y \in Y^{n_1}$, то w^Ty =0-ур-е плоскости, проход-й ч/з начало координат. Тогда решение: 2 полупрост-ва (для w1 и w2), простр-во Y^{n_1} – спрямляющее пространство.

38. Алгоритм обучения перцептрона.

 $y=(y^1,...,y^N)$ -векторы из спрямляющего пр-во Y принадлежащие w_1 или w_2 Задачи обучения перцептрона: на данной обуч. Посл. найти $w=(w_1,...,w_k)$ с помощью которой данная обуч. посл. Y классифицируется безошибочно.

Алг.: на k-м шаге:

если $y(k) \in w_1$ и $w^T(k)y(k) \le 0$, то w(k+1)=w(k)+cy(k) если $y(k) \in w_2$ и $w^T(k)y(k) \ge 0$, то w(k+1)=w(k)-cy(k) иначе w(k+1)=w(k)

с -корректирующее приращение

Останов. когда вся обуч. последовательность распознана правильно при неизменном в-ре весов. Замечания:1) приведенный алгоритм реализует принцип подкрепления и наказания.

2) при построении модели предполагалось, что распрямляющая плоскость проходит через 0, но реально м-т оказ-ся иначе. Это испрвляется путем ввода доп. координаты у=(y1,y2,...yn1,1).

3) преобразуем обуч. посл-ть Y в
$$\overline{Y} = (\overline{y^1},...,\overline{y^N})$$
 , где $\overline{y}^i = \begin{cases} \underline{y^i,y^i \in \omega_1} \\ -\underline{y^i,y^i \in \omega_2} \end{cases}$

тогда алгоритм проще: если \overline{y} (k) \in w₁ и w^T(k) \overline{y} (k)<=0, то w(k+1)=w(k)+c \overline{y} (k) иначе w(k+1)=w(k)

39. Сходимость алгоритма обучения перцентрона. Теорема Новикова.

Выпуклой оболочкой мн-ва наз-ся наименьшее вып-е мн-во, содержащее данное множество. Выпуклая оболочка-U-е всех выпуклых множеств, содержащих данное множество. Выпук-й оболоч-й конечного мн-ва точек будет выпуклый многогранник (п-мерный симплекс), содерж-й все эти точки, вершины котго совпадают с нек-ми (возможно со всеми) точками исходного мн-ва. Точки ОП м\б разделены перцептроном на классы w1 и w2, если в спрямл-м прост-ве существует раздел-я гиперплоскость, т.е. \exists W,

что wTỹi> ρ 0>0 для любого i=1..N. **Теорема Новикова:** пусть 1)имеется ∞ преобраз-я ОП $\widetilde{Y}=\{\widetilde{y}^1,...,\widetilde{y}^i,...\}$, элементы кот-й относятся как к классу w_1 , так и w_2 . 2)в СП Y \exists разд-я гиперплоскость, т.е. \exists такой един-й век-р $|w^*|=1$, что $w^{*T}\widetilde{y}^i > \rho_0 \partial n \forall i$. 3) величина $D<\infty$ (конечна). Тогда при нач. в-ре w(1)=0 и корр. прир. C=1 алгоритм обучения перцептрона сходится, причем число

исправлений вектора весов
$$k \leftarrow \left[\frac{D^2}{\rho_0^2}\right]$$

40. Итеративные процедуры распознавания на основе градиентных методов: минимизация одной функции.

Z=(Z1,...,Zn) — вектор признаков. Даны 2 класса: W1 и W2 (m=2). Функ-я $f(\alpha,Z)>0$, если $Z\in W1$, <0- $Z\in W2$, $\alpha=(\alpha1,...,\alpha k)$ -вектор нек-х параметров. ОП $Z=(Z^1,...,Z^N)$. Найти вектор α^* , для кот-го Δ : $f(\alpha^*,Z^i)>0$, если $Z^i\in W1$, для i=1..N; <0- $Z^i\in W2$ для i=1..N. Возможна ситуация: \exists одна функция $\Phi(\alpha;Z^1,...,Z^N)$ такая, что $\Phi(\alpha^*;Z^1,...,Z^N)$ =minпо $\Phi(\alpha;Z^1,...,Z^N)$ $\Leftrightarrow \Delta$. Алгоритм поиска min одной функции: $\alpha(K)$ -значение вектора α на к-том шаге работы алгоритма. $\alpha(K+1)=\alpha(K)$ -сgrad $\alpha(K)$ 0. Его сходимость зависит от вида функции $\alpha(K)$ 1, величины шага с. Далее решить задачу мин-и с помощью подходящей модификации метода град-го спуска, т.е. решить задачу Δ .

41. Итеративные процедуры распознавания на основе градиентных методов: совместная минимизация нескольких функций.

Пусть изображение хар-ся вектором признаков Z=(Z1,...,Zn). Рассмотрим случай 2-х классов W1 и W2 (m=2). Предположим, что \exists функ-я $f(\alpha,Z)>0$, если Z€W1, <0- Z€W2, где α =(α 1,..., α k)-вектор нек-х параметров. ОП $Z=(Z^1,...,Z^N)$, элементы кот-й как из w1, так из w2. Найти вектор α^* , для кот-го Δ : $f(\alpha^*,Z^i)>0$, если Z^i €W1, для i=1..N; <0- Z^i €W2 для i=1..N. Возможна ситуация: \exists N функций $F(\alpha,Z^i)$ Z^i), i=1..N, таких что каждая из них достигает минимума в т. α^* , так что $F(\alpha^*, Z^i)$ =min $F(\alpha, Z^i)$ для всех i=1..N тогда и только тогда, когда выполнено Δ . Предположим, что $F(\alpha, Z^i)$, i=1..N со св-ми: 1) они непрерывны и дифф-мы по α1,...,αk; 2) имеют каждая единственный минимум (но не обяз-но единств-ю тчк минимума). Тогда используем понятие градиента для отыскания тчк экстремума функции. Нужно определить стратегию применения алгоритмов град-го спуска к набору функций $F(\alpha, Z^i)$, i=1..N. Стратегия1: провести град-й спуск для $F(\alpha, Z^1)$, начав с нек-й тчк $\alpha 0 =>$ получили тчк мин-ма этой функ. $\alpha 1$ (далее эта тчк начальная)=> для $F(\alpha, Z^2)$, не выходя из области наим-го зн-я $F(\alpha, Z^1)$ =>тчк совместного экстремума для $F(\alpha, Z^1)$, $F(\alpha, Z^2)$ и т.д. => αN -1(т. мин всех предыдущих функций)=> $F(\alpha, z^{N}) => \alpha^{*}$ -решение. Стратегия2: провести град-й спуск для $F(\alpha, z^{1})$, начав с нек-й тчк $\alpha(0) => \beta$ вектор $\alpha(1)$ ->grad $F(\alpha, Z^2),...,\alpha(N-1)$ ->grad $F(\alpha, Z^N)$ => $\alpha(N)$ -> $\alpha(0)$ (в качестве нач тчк), если не все grad=0. Схема-стоп, когда найдена т. α^* , в кот-й grad $F(\alpha^*, z^i) = 0$ для всех i = 1..N. -: отыскание точки α^* не гарантировано, даже если она \exists . Но для нек-х видов функ-и F применение этих стратегий оказывается успешным.

42. Алгоритм обучения перцептрона как реализация спецстратегии совместной минимизации неск-х функций с помощью градиентных методов.

Установим соответствия: $Z=(Z1,...,Zn)=>\tilde{y}=(\tilde{y}_1,...,\tilde{y}_n|);$ $\alpha=(\alpha1,...,\alpha k)=>(k=n)$ W=(W1,...,Wn1,Wn1+1); $f(\alpha,Z)\Leftrightarrow W^T\tilde{y}.$ ОП $Z=\{z^1,...,z^N\}=>Y=\tilde{y}=(\tilde{y}^1,...,\tilde{y}^N).$ Задача заключается в отыскании такого набора значений w^* , для кот-го w^{*T} $\tilde{y}^i>0, \ i=1,...,N$ (**). Рассмотрим функции: $F(w^T,\tilde{y}^i)=1/2(|w^T,\tilde{y}^i|-w^T,\tilde{y}^i)=1/2(|\sum_{j=1}^{n^{1+1}}Wj,\tilde{y}^i|-\sum_{j=1}^{n^{1+1}}Wj,\tilde{y}^i|$

43. Физическая интерпретация метода потенциальных функции.

Пусть нужно разделить два класса ω_1 и ω_2 Выборочные образы, представлены векторами или точками в n-мерном пространстве образов. Если ввести аналогию м/у точками, представл-ми выборочные образы, и нек-м источником энергии, то в любой из этих точек потенциал достигает макс-го значения и быстро уменьшается при переходе во всякую точку, отстоящую от точки, предст-й выборочный образ x_k . На основе этой аналогии можно допустить существование эквипотенциальных контуров, которые

описываются потенциальной функцией $K(x, x_k)$. Можно считать, что кластер, образ-й выбор-ми образами, принадл-ми классу ω₁, образует «плато», причем выб-е образы размещаются на вершинах некй группы холмов. Подобную геометрическую интерпретацию можно ввести и для образов класса ω2. Эти два «плато» разделены «долиной», в кот-й, как считается, потенциал падает до нуля. На основе таких интуитивных доводов создан метод потенциальных функций, позвол-й при проведении классификации определять решающие функции.

44. Кумулятивный потенциал. Алгоритм итеративного вычисления кумулятивного потенциала.

В начале этапа обучения исходное значение к. п. $K_0(x)$ полагается=0. При предъявлении первого образа x_I из обуч. выборки значение к. п. просто = зн-ию потенц. ф-ии для выбороч. образа x_I . Потенциал предполагается положительным для образов, принадлежащих классу ω_1 , и отрицательным для образов, принадлежащих классу ω2.

Ha k+1 mare
$$K_{k+1}(x) = K_k(x) + r_{k+1}K(x, x_{k+1})$$

где коэфф-ты r_{k+l} при корректирующем члене опр-ся соотношениями

$$r_{k+1} = \begin{cases} 0 & npu \, x_{k+1} \in \omega_1 u & K_k(x_{k+1}) > 0 \\ 0 & npu \, x_{k+1} \in \omega_2 u & K_k(x_{k+1}) < 0 \\ 1 & npu \, x_{k+1} \in \omega_1 u & K_k(x_{k+1}) \le 0 \\ -1 & npu \, x_{k+1} \in \omega_2 u & K_k(x_{k+1}) \ge 0 \end{cases}$$

45. Теоремы о сходимости обучения классификации методом потенциальных функций.

Теорема 1. (О свойствах сходимости алгоритма.) Пусть векторы образов х удовлетворяют в пространстве образов следующим условиям.

1. Потенциальная функция

$$K(x,x_j) = \sum_{i=1}^{\infty} \lambda_i^2 \varphi_i(x) \varphi_i(x_j)$$

ограничена для $x \in T_1 \cup T_2$.

2. Существует решающая функция, представимая в виде

$$d(x) = \sum_{i=1}^{m} c_i \boldsymbol{\varphi}_i(x), \qquad (*)$$

такая, что
$$d(x) \begin{cases} >\varepsilon, x \in \omega_1, \\ <-\varepsilon, x \in \omega_2, \end{cases}$$
 (**)

3. Обучающая выборка образов обладает следующими статическими свойствами: (а) в обучающей последовательности выборочные образы появляются независимо; (б) если на k-м шаге алгоритма обучения решающая функция $d_k(x)$ не обеспечивает правильной классификации всех образов $x_1, x_2, ..., x_k$, то с положительной вероятностью будет предъявлен образ x_{k+1} , корректирующий ошибку.

Tогда с вероятностью 1 можно определить конечное число шагов R, таких, что кумулятивный потенциал

$$K_R(x) \begin{cases} > 0, x \in \omega_1, \\ < 0, x \in \omega_2. \end{cases}$$

Другими словами, последовательная аппроксимация решающей функции $d_k(x)$ с вероятностью 1 сходится к решающей функции d(x) за конечное число предъявлений образов обучающей выборки. Это означает, что разделение классов ω_1 и ω_2 осуществляется за конечное число шагов с вероятностью 1.

Теорема (условия прекращения выполн-я алгоритма): пусть процесс обучения прекращ-ся, если после осущест-я k коррекций неправильной классификации при предъявлении L_0 следующих выборочных образов никакие коррекции больше не производятся. T.e. процесс обучения прекращается после предъявления L_k выборочных образов, где L_k определяется выражением $L_k=L_0+k$. Общее число предъявлений образов, необх-е для прекращения работы алгоритма, увел-тся на 1 после каждой коррекции неправильной классификации. Задача заключ-ся в определении числа контрольных выборочных образов L_0 , необходимых для обеспечения заданного качества процедуры обучения. Обозначим через $P_{L_k}(e)$ вероятность совершения ошибки после предъявления системе L_k выборочных образов. Тогда для любых $\varepsilon > 0$ и $\delta > 0$ вероятность того, что $P_{L_k}(e) < \varepsilon$, будет больше, чем 1- δ , если $L_0 > \frac{\log \varepsilon \delta}{\log(1-\varepsilon)}$.

Отметим, что выбор числа контр-ных выборочных образов зависит только от заданных значений ϵ и δ , харак-х качество обуч-й процедуры. Выбор величины L_0 не зависит от свойств классов ω_1 и ω_2 и статистических харак-к образов.

46. Достоинства и недостатки распознающих процедур перцептронного типа.

- +: возможность обучения при опред-х условиях безошибочной классификации объектов; универсальность; ОП м\б в достаточной степени произвольной; результат обучения не зависит от начального состояния перц-на.
- -: для решения сложных 3P может потреб-ся перцептрон с большим числом элементов; длина ОП может оказаться очень большой; для сложных задач невозможно проверить условия, при кот-х 3P с помошью перцептрона разрешена, а также усл-я сходимости АОП, которые описаны в тh Новикова.

47. Элементы задачи решения.

Введем в рассм-е след. Элементы задачи принятия решения:

 $\Omega = \{w1,...,wm\}$ -конечное множество m состояний природы(ситуаций)

D={d1,...,dp} – конечное множество р возможных решений (действий)

L(di,wj) — ф-я потерь, кот. интерпретируется след. обр.: потери от принятия решения di, когда реализуется состояние wj.

X=(x1,...,xn) – в-р признаков. Б. Считать что он явл. реализ-ей сист. СВ X=(X1,...,Xn), которая для состояния природы wj характеризуется:

- Плотностью вероятности p(x/wj), если X сист. абс. непр. CB
- Законом распределения (набором вероятностей) P(x/wj)=P(X=x/wj), если X сист дискретных CB. Пусть P(wj) вероятность появления состояния природы wj и пусть P(wj/x) условная вероятность появления состояния природы wj при условии, что будет наблюдаться значение случ вектора X=x.

$$P(w_{j}|_{X=X}) = \begin{cases} \frac{p(x|w_{j})*P(w_{j})}{p(x)}, ecnu_{X} - CAHCB \\ \frac{P(X=x|w_{j})*P(w_{j})}{P(X=x)}, ecnu_{X} - CACB \end{cases}$$

$$p(x) = \sum_{j=1}^{m} p(x/w_{j})*P(w_{j})$$

$$P(x) = \sum_{j=1}^{m} P(X=x/w_{j})*P(w_{j})$$

Введем вел-ну

$$R(d_i/X=x) = \sum_{j=1}^m L(d_i,w_j)P(w_j\mid_{X=x})$$
 - усл-е мат. ожидание потерь от принятия реш-я di при усл-и, что $X=x$

-усл. риск

Введем в рассм-е функцию d(x) – каждому в-ру x ставит в соотв-е некот реш-е из мн-ва реш-й D.

$$R(d(x)|_{X=x}) = \sum_{j=1}^m L(d_i, w_j) P(w_j|_{X=x})$$
 -усл. мат. ожид-е потерь при усл-и, что исп. реш. ф-я $\operatorname{d}(x)$

Безусловное мат ожид-е потерь при использовании решающего правила d(x) есть

$$R(d) = \begin{cases} \sum_{x} R(d(x)|_{X=x}) P(X=x), ecnu_X - C \square C B \\ \int_{x} R(d(x)|_{X=x}) p(x) dx, ecnu_X - C A H C B \end{cases}$$

R(d) назыв. общим риском.

49. Постановка байесовской задачи решения. Оптимальное решающее правило. Связь с задачей распознавания.

Такое решающее правило называется байесовским решающим правилом, а соответствующее минимальное значение общего риска R(dopt) – байесовским риском.

Задача распознавания образов получается, если между элементами множества Ω и D установим взаимооднозначное соответствие

Решение di заключается в отнесении объекта, имеющего изображение x к одному из классов w_1 , w_2 ,..., w_m . (в этом случае p=m)

50. Классификация с минимальной вероятностью ошибки.

Рассм частный случай байесовской процедуры распознавания, когда потери от принятия любого неверного решения одинаковы (любое неверное решение одинаково нежелательно). В этом случае потери можно представить в виде

$$L(d_i = w_i, w_j) = \begin{cases} 0, & w_i = w_j \\ 1, & w_i \neq w_j \end{cases}$$

Для заданной L байесовское решающее правило будет обеспечивать минимальную вероятность ошибки классификации.

51. Минимаксное решающее правило.

$$d_{opt}(x) = w_{opt}(x) =$$

$$= \arg\min_{R} \left(d_i = \underbrace{w_i}_{w_i = w_1, w_m} / X = x \right) =$$

$$= \arg\min_{w_i = w_1, w_m} \left[1 - P(w_i / X = x) \right] =$$

$$= \arg\max_{w_i = w_i, w_i} P(w_i / X = x)$$

52. Процедура Неймана-Пирсона.

f(x) - 3P, H_0 : $x \in w_1$ или f(x). g(x) - 3P, H_1 : $x \in w_2$ или g(x). Если в результате проведения наблюдения $\frac{g(x)}{f(x)} > c$, то H_0 отвергаем, т.е. $x \to w_2$ (в случае X-C ДСВ); Если $\frac{1}{n} \sum_{i=1}^n (x_i - a_0) \ge \frac{S_\alpha}{\sqrt{n}}$, то гипотезу H_0 отвергаем, т.е. $x \to w_2$ (в случае X-C НСВ).

54. Обучение байесовской процедуры распознавания: оценка неизвестных параметров.

1) вид любого УЗР известен, но ЗР содержат неизвестные параметры. Тогда это параметр-я задача обучения, решение кот-й сводится к оценке неизвестных параметров с помощью статист-х методов (максимального правдоподобия, метод моментов). 2) вид УЗР неизвестен. Обучение: а) представление неизвестного ЗР в виде ряда разложения по системе определённых функций с последующим определением по данным наблюдения оценок коэф-в ряда, отбрасывания ряда. б) минимизация общего риска: $R(d) \rightarrow \widetilde{R}(d)$ решается заданием $\widetilde{R}(d) \rightarrow \min$

55. Оценка неизвестной плотности вероятности по априорной информации.

Если плотность распределения CB неизвестна, то, согласно принципу максимума энтропии следует выбирать такую плотность распределения, которая обеспечивает максимизацию энтропии CB с учетом всех известных ограничений. Энтропия совокупности образов с плотностью распред-я p(x):

 $H = \int_{x} p(x) \ln p(x) dx$ под p(x) имеется в виду p(x|wi). Априорная информация об CB задается в виде:

 $\int_{x} p(x)dx = 1$ (1a) и $\int_{x} b_{k}(x)p(x)dx = a_{k}$, k = 1,...Q (16) Задача состоит в том, чтобы задать такое

распределение p(x), чтобы величина энтропии при условиях (1a) и (1б) была максим-й. Используя

множители Лагранжа $\lambda_{0},...\lambda_{0}$ построимфункцию $H_{1} = \int_{x} p(x) [\ln p(x) - \sum_{k=0}^{O} \lambda_{k} b_{k}(x)] dx - \sum_{k=0}^{O} \lambda_{k} a_{k}$, где

a0=1, b0(x)=1 для всех образов x. Взяв частные производные от функции H1 по плотности

распределения p(x) имеем: $\frac{\partial H_1}{\partial p(x)} = -\int_x \{ [\ln p(x) - \sum_{k=0}^{Q} \lambda_k b_k(x)] + 1 \} dx$ приравняв подынтегральное

выражение 0 и выразив p(x) получим: $p(x) = \exp[\sum_{k=0}^{Q} \lambda_k b_k(x) - 1]$ Здесь параметры $\lambda_0, \dots, \lambda_D$ следует

выбирать так, чтобы они соответствовали априорной информации об образах х, содержащейся в соотношениях (1a) и (1б). Равномерное распределение. Выбираем, когда известно, что СВ отлична от нуля только в конечном интервале. Нормальное распределение. Выбираем, когда известно, что СВ может принимать любое действительное значение.

56. Оценка неизвестной плотности вероятности с использованием экспериментальных данных.

При неизвестном типе распределения CB требуется оценить плотность распределения. Пусть p'(x) — оценка плотности вероятности p(x), причем под p(x) принимаем p(x|wi). Найдём такую оценку, которая обеспечила бы минимизацию среднеквадратичной ошибки R, определяемой как

$$R = \int_{x} u(x)[p(x) - p'(x)]^2 dx$$
, где $u(x)$ – весовая функция (1). Разложим оценки $p'(x)$ в ряд:

$$p'(x) = \sum_{j=1}^{m} c_{j} \varphi_{j}(x)$$
 (2) сj – коэффициенты, подлежащие определению, $\{\varphi_{j}(x)\}$ – множество заданных

базисных функций, m – число членов разложения. (2)- >(1): $R = \int_x u(x)[p(x) - \sum_{j=1}^m c_j \boldsymbol{\varphi}_j(x)]^2 dx$ Найти

такие коэффициенты сј, которые обеспечат миним-ю интеграла вероятности ошибки. Необходимое

условие минимальности :
$$\frac{\partial R}{\partial c_k} = 0, k = 1,...m$$
 $\sum_{j=1}^m c_j \int_x u(x) \boldsymbol{\varphi}_j(x) \boldsymbol{\varphi}_k(x) dx = \int_x u(x) \boldsymbol{\varphi}_k(x) p(x) dx$ (3)

Правая часть – мат. ожидание функции $u(x)\phi k(x)$. Матожидание аппроксимируем выборочным средним:

$$\int\limits_{x}\!\! u(x)\boldsymbol{\varphi_{\!\scriptscriptstyle k}}(x)p(x)dx \approx \frac{1}{N}\sum_{i=1}^{N}\!\! u(x_{i})\boldsymbol{\varphi_{\!\scriptscriptstyle k}}(x_{i}) \,\, \text{Подставим в (3):} \,\, \sum_{j=1}^{m}\!\! c_{j}\int\limits_{x}\!\! u(x)\boldsymbol{\varphi_{\!\scriptscriptstyle j}}(x)\boldsymbol{\varphi_{\!\scriptscriptstyle k}}(x)dx =$$

 $\frac{1}{N}\sum_{i=1}^{N}u(x_{i})$ $\mathbf{\varphi}_{k}(x_{i})$ (4) Если базисные функции $\{\phi(\mathbf{x})\}$ выбраны так, что они ортогональны весовой

функции u(x), то из определения ортогональности :
$$| \mathcal{U}(x) |_{k}(x) p(x) dx = \begin{cases} A_{k}, j = k \\ 0, j \neq k \end{cases}$$
 (5). (5) в (4)

 $c_k = \frac{1}{NA_k} \sum_{i=1}^N u(x_i) \pmb{\varphi}_k(x_i), k = 1, 2, ... m$ Если базисные функции ортонормированны, то Ak=1 для всех k.

Кроме того, т.к. члены u(xi) не зависят от k, и одинаковы для всех коэффициентов, то их можно исключить из аппроксимирующего выражения. Результирующая формула для коэффициентов

следующая: $c_k = \frac{1}{N} \sum_{i=1}^N \pmb{\varphi}_k(x), k = 1,..., m$, где N- количество элементов в выборке. После вычисления

коэффициентов можно вычислить оценку плотности распределения по формуле (2). <u>Замеч1:</u> качество аппроксимации с помощью выбранной системы базисных функций зависит от числа m членов разложения. <u>2:</u> Выбор базисных функций сильно влияет на простоту решения. При отсутствии априорных сведений о характере плотности распределения p(x) базисные функции в первую очередь должны выбираться исходя из простоты реализации.

57. Правило ближайшего соседа как пример непараметрического метода распознавания: оценка вероятности ошибки классификации.

Вероятность ошибки классификации БС - правила не более чем вдвое больше минимальной вероятности ошибки классификации, обеспечиваемой байесовским решающим правилом:

$$P_e^* \le P_e \le P_e^* (2 - \frac{m}{m-1} P_e^*) \le 2P_e^*$$

58. Основы МГУА: опорные функции, обуч-я и провроверочная послед-ти, крит. селекции, схема. Главной характеристикой алгоритмов МГУА является вид элементарной функции у: линейный полином $y_i = a_0 + a_1 x_i + a_2 x_k$.

сокращенный полином второй степени $y_i = a_0 + a_1 x_j + a_2 x_k + a_3 x_j x_k$.

квадратичный элементарный полином $y_i = a_0 + a_1 x_j + a_2 x_k + a_3 x_j x_k + a_4 x_j^2 + a_5 x_k^2$ элементарный полином смешанного вида $z_i = a_0 + a_1 x_j + a_2 y_k + a_3 x_j y_k$.

Вся выборка делится на обучающую и проверочную: $N_{\text{выб}} = N_{\text{обуч}} + N_{\text{пров}}$. Вх-й вектор имеет размерность N: ($X = (x_1, \dots, x_N)$). 1-ый ряд - на основе обучающей последовательности строятся частные описания от всех попарных комбинаций исходных аргументов, приближающие по методу наим-х квадратов выходную переменную: $y_1 = f_1(x_1, x_2), y_2 = f_2(x_1, x_3), \dots, y_k = f_k(x_{n-1}, x_n)$. Из этих моделей выбир-ся нек-е число лучших по критерию селекции (используя проверочную послед-ть). 2-ой ряд - полученные переменные принимаются в качестве аргументов второго ряда, и снова строятся все частные описания от двух аргументов: $x_1 = \varphi_1(y_1, y_2), x_2 = \varphi_2(y_1, y_3), \dots, x_1 = \varphi_1(y_{x_1-1}, y_{x_2})$. Из них по критерию селекции отбирается F2 лучших моделей в качестве переменных следующего ряда и т.д. Критерий остановки МГУА: ряды наращиваются до тех пор, пока снижается значение критерия селекции. Заключительный этап состоит в восстановлении искомой функции по полученным промежуточным функциям. **Критерии селекции:**

1) критерий регулярности (точности)
$$\vec{\varepsilon}^2 = \frac{1}{N_{np}} \cdot \sum_{i=1}^{N_{np}} (y_i - y_i^*)^2 \ \vec{\Delta}_{np}^2 = \frac{\sum_{i=1}^{N_{np}} (y_i - y_i^*(x))^2}{\sum_{i=1}^{N_{np}} (y_i - y_i^*)^2}$$

2) критерий несмещенности. Всю выборку делим на две части R=R1+R2. Первый эксперимент: R1-обучающая выборка, R2-проверочная; определяем выходы модели уі*, i=1..R. Второй эксперимент: R2-обучающая выборка, R1-проверочная; определяем выходы модели уі**, i=1..R и сравниваем. Критерий несмещенности: $n_{\scriptscriptstyle CM} = \frac{1}{N} \cdot \sum_{i=1}^R (y_i^* - y_i^{**})^2$ Процесс селекции осуществляется до тех пор, пока этот критерий не перестанет уменьшаться, т.е. до достижения условия $n_{\scriptscriptstyle CM}^2 \to \min$.

59. Применение МГУА для решения задач распознавания.

Задачу РО будем решать с помощью выявления некот-го инвариантного св-ва для совокупности изображений, объединяемых в один класс. Т.е. данное свойство для образов из одного класса примерно одинаково, а для образов из различных классов имеет отличающ-ся значения. Пусть инвариантным сввом образов класса будет нек-я фун-я f(X). Инвариантность - значит, что функ-я остается почти одинаковой для всей совокупности образов одного класса, т. е. $f(X) \cong C_1$ для класса V1;

 $f(X) \cong C_2$ для класса V2 и т. д. Функ-ю f(X) можно представить как поверх-ть в многомерном простр-ве, построенную так, что образам разных классов соответствуют несвязные отрезки на оси f. Всегда можно построить такую поверхность. В качестве такой функции можно использовать полином

Колмогорова-Габора:
$$f(x) = a_0 + \sum_{i=1}^n a_i x_i + \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j + \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n a_{ijk} x_i x_j x_k + \dots$$

Здесь \mathcal{X}_i , \mathcal{X}_j , \mathcal{X}_k - признаки. Решающее правило, основанное на построенной функции, в случае

двух классов записывается так:
$$\begin{cases} X \in V \text{ если } f(X) \neq \overline{f(X)} | \not = X \neq \overline{f(X)} \rangle \\ X \in V \text{ если } f(X) \neq \overline{f(X)} | \not = X \neq \overline{f(X)} \rangle \end{cases} \text{ где } \overline{f_1(X)} \text{ и } \overline{f_2(X)} \text{ -}$$

средняя высота поверхности над изображениями первого и второго классов. Если же классов больше двух, то решающее правило принимает вид $X \in V_k$, где $k = \arg\min_j \left| f(X) - \overline{f_j(X)} \right|$.

60. Достоинства и недостатки стохастического подхода в распознаванию образов.

+: универсальность, простота реализации процедур распознавания, проверяемость предположений о обучающей послед-ти с помощью методов матстатистики. -: для достаточно хорошей оцекни ЗР ССВ X может понадобиться большая обучающая послед-ть (особенно при рассмотрении большого кол-ва вводимых признаков).

61. Постановка задачи распознавания лингвистических образов.

Пусть изображение объекта представляет собой цепочки в нек-м алфавите V_T и всего имеется m возможных образов. Тогда каждый из этих образов представляет собой нек-й язык L(Gi) над алфавитом V_T , порождаемый грам-й Gi= $\{V_N^i, V_T, Pi, Si\}$, i=1..m. Задача классиф-и заключается в определении принадлежности любой цепочки х одному из языков L1,...,Lm. Процедуоа классиф-и: $x \Rightarrow w_i \Leftrightarrow x \in L_i = L(G_i)$

62. Три способа решения задачи распознавания лингвистических образов.

1) сопоставление вх-й цепочки х с эталонными цепочками z1,...,zm, zi \in L(Gi), i=1..m. Цепочка х относится к тому классу wi, с эталоном zi кот-го х согласуется наилучшим образом по критерию меры близости м\у цепочками D(x,zi) (применить правило ближ-го соседа по критерию расстояния). +: быстрота и эффективность. -: потеря части информации о языке, проблема с выбором эталона и меры близости. 2) классиф-я вх цепочки х с помощью определённого для каждого языка набора синтаксических правил. Цепочка $x \rightarrow w_i$, если х не противоречит его набору синтакс-х правил S_i . +: простота алгоритма. -: если язык достаточно сложный, то кол-во синтаксических правил м\б чрезмерно большим (проблема в построении этих правил). 3) Классиф-я вх цепочки х с помощью синтаксического анализа (грам-го разбора). Проверяемая цепочка $x \rightarrow w_i$, для соответствующей грам-ки которого Gi грам-й разбор х оказался успешным.

63. Задача восстановления грамматики по обучающей выборке.

Пусть имеется нек-й алфавит символов V_T ; нек-я последовательность цепочек в этом алфавите $St=\{x_1,\ldots,x_t\}$ — выборка. В St содержаться цепочки двух видов: 1) цепочки из языка $L(G^*)$ нек-й грам-ки G^* , т.е. $St^+ \subset L(G^*)$ или $St^+ = L(G^*) \cap St \subset L(G^*)$; 2) цепочки из дополнения к этому языку, т.е. $St^- \subset V_T^* \setminus L(G^*)$ или $St^- = V_T^* \setminus L(G^*) \cap St \subset V_T^* \setminus L(G^*)$. Определим $St+1=St \cup \{Xt+1\}$. Пусть A — алгоритм, формирующий для каждого St грам-ку Gt, в кот-й выводимы все цепочки из St^+ (гам-ка допускает St^+) и не выводимы все цепочки из St^- (грам-ка отвергает St^-), т.е. $St^+ \subseteq L(Gt)$, $St \cap L(Gt) = \emptyset$. Пусть Γ — мн-во грам-к, кот-е может сформировать алгоритм A и пусть $Gt \in \Gamma$. $SB\Gamma$ G^* назовём разрешимой, если существует алгоритм A, формир-й за конечное число шагов такую грам-ку $G \in \Gamma$, что $L(G) = L(G^*)$, т.е. существует такое t^* , что для всех $t > t^*$ грам-ка $Gt \sim G^*$.

64. Информаторное представление задачи восстановления грамматики.

ЗВГ G* дана в информативном представлении (или язык $L(G^*)$ дан в информаторном представлении), если St= St⁺ U St⁻, St⁻ ≠Ø и для любого x∈ $L(G^*)$ существует такое t⁻, что x∈ St при t≥t⁻, а для любого y∈ $V_t^* \setminus L(G^*)$ существует t⁻: при t≥t⁻ y∈ St⁻.

65. Текстуальное представление задачи восстановления грамматики.

Задача $B\Gamma$ G^* дана в текстуальном представлении (или язык $L(G^*)$ дан в текстуальном представлении), если $St=St^+$ и для любого $x\in L(G^*)$ существует такое t^* , $x\in St^+$.

66. Теорема о разрешимости для информаторного представления.

Тh.: пусть Γ – мн-во разрешимых грамматик. Тогда при информаторном представлении ЗВГ разрешима для $\forall G^* \in \Gamma$. Док-во: пусть A перечисляет Γ в порядке $G^1, ..., G^K, ...$ Пусть G^K – первая из грамматик, эквная G^* . На любом шаге t алгоритм A выбирает в качестве Gt первую грам-ку в послед-ти $G^1, ..., G^K, ...,$ кот-я допускает St^+ и отвергает St^- . Пусть G^i (i < k) – первая такая грам-ка, т.е. A полагает $Gt = G^i$. Т.к. i < k, то G^i не эквив-на G^* , поэтому с увеличением t (ростом числа цепочек в St) в St найдётся цепочка St0 ошибочно допускаемая или ошибочно отвергаемая грам-кой St0. Тогда St1 будет отброшена и выбрана следующая допуст-я выборкой грам-ка St3. На нек-м шаге St5 будет выбрана грам-ка St6. Т.к. St6 со St7, то в дальнейшем (при St7) она никогда не будет отброшена. Это означает, что St8 решена.

67. Теорема о неразрешимости для текстуального представления.

 $\mathit{Th.:}$ пусть Γ -мн-во грамматик, содержащее все грамматики, порождающие все конечные языки и грамку, порожд-т ∞ язык. Тогда при текстуальном представлении $3B\Gamma$ не разрешима для произвольной грамматики из мн-ва Γ .

Док-во: пусть G^* и G' порождают конечные языки и $L(G^*)CL(G')$. Пусть алгоритм A перечисляет Γ в порядке: ...,G',..., G^* ,... Тогда для любого $St=St^+$ имеем $St\subseteq L(G^*)CL(G')$ для любого конечного t, т.е. G' всегда в качестве допустимой грам-ки. Т.к. $L(G^*)$ конечен, то для нек-го t нельзя построить St+1, т.е. G' принимается алгоритмом A в качестве грам-ки, эквив-й G^* , хотя условие $L(G')=L(G^*)$ не выполнено. В этом случае A разрешает $3B\Gamma$, порождающей ∞ язык. Пусть теперь A перечисляет Γ так: по данной конечной выборке St строит грам-ку G', порожд-ю конечный язык L(G')=St; здесь A разрешает задачу восстановления любой грам-ки $G^* \in \Gamma$, порожд-й конечный язык. Возьмём в качестве G^* , порожд-ю ∞ язык. Тогда число цепочек в St с ростом t неограниченно растёт, но для любого конечного t существует грам-ка G'' с конечным языком L(G''), кот-я отыскивается алгоритмом A. Т.к. таких грамматик бесконечно много, алгоритм A не разрешает $B\Gamma$ G^* .

68. Два класса алгоритмов восстановления грамматики.

Существует 2 класса таких алгоритмов: 1) алгоритмы восстановления грамматики индукцией (напр, алгоритм Фельдмана); 2) восстановление перечислением.

69. Алгоритм Фельдмана.

Параметры работы алгоритма: *k*-длина правой части остаточного правила;

 $S_t^+ = \{x_1, ..., x_{\tau}\}$.Замечание: список цепочек в S_t^+ отсортирован по убыванию длины. 1) Формирование основы грамматики.

Введем в рассмотрение множество $I^0 = \{x \mid x \in S_t^+, |x| = n\}$, где n- длина самой длинной цепочки в S_t^+ . На данном этапе формируем мн-ва продукций P^0 и нетерминалов V_N^0 по следующему правилу:

$$P^{0} = \emptyset$$
, $V_{N}^{0} = \{S\}$; Для каждой цепочки $a_{1}...a_{n} \in I^{0}$:

$$\begin{array}{c} P^0 = P^0 \cup \{S \rightarrow a_1A_1, A_1 \rightarrow a_2A_2, ..., A_{n-k-1} \rightarrow a_{n-k}A_{n-k}, \\ A_{n-k} \rightarrow a_{n-k+1} ... a_n\} \end{array} \cup \{A_1, A_2, ..., A_{n-k}\} \ .$$

Продукции вида $A_{n-k} \longrightarrow a_{n-k+1}...a_n$ наз-ся *остаточными правилами*. Длина остаточного правила равна k. 2) *Дополнение грамматики (до нерекурсивной)* .На данном этапе формируем мн-ва продукций P^1 и нетерминалов V_N^1 по правилу: $P^1 = \emptyset$, $V_N^1 = \emptyset$,

Для каждой цепочки $a_1...a_l$ є $S_t^+ \setminus I^0$:

если
$$\exists 0 и $\exists A' \in V_N^1 \cup V_N^0$ такие, что $S \overset{+}{\underset{P^0 \cup P^1}{\Longrightarrow}} a_1 ... a_p A'$, то $\begin{cases} P^l = P^l \cup \{A' \rightarrow a_{p+1} A_{p+1}, A_{p+1} \rightarrow a_{p+2} A_{p+2}, ..., a_{p+1} A_{p+1}, A_{p+1} \rightarrow a_{p+2} A_{p+2}, ..., a_{p+2} A_{p+2}, ..., a_{p+2} A_{$$$

$$V_N^1 = V_N^1 \cup \{A_{p+1}, A_{p+2}, ..., A_{l-1}\}$$

иначе

$$P^{1} = P^{1} \cup \{S \rightarrow a_{1}A_{1}, A_{1} \rightarrow a_{2}A_{2}, ..., a_{n}\}$$

$$A_{l-2} \rightarrow a_{l-1}A_{l-1}, A_{l-1} \rightarrow a_{l}$$

$$V_N^1 = V_N^1 \cup \{A_1, A_2, ..., A_{l-1}\}$$
.

После первых двух этапов работы алгоритма получаем грамматику

$$G^0 = \langle V_N = V_N^0 \cup V_N^1, V_T, P = P^0 \cup P^1, S \rangle$$
 кот-я порождает только те цепочки, которые входят в S_t^+ .3)

Получение рекурсивной автоматной грамматики. Для каждого остаточного правила $A \longrightarrow a_1...a_k \in P$:

если
$$\exists A' \in V_N \setminus \{A \in V_N : A \to \ a_1...a_k \in P\}$$
 такой, что $A' \stackrel{+}{\Longrightarrow} a_1...a_k$, то:

a)
$$P = P \setminus \{A \rightarrow a_1...a_k\}$$
, b) $V_N = V_N \setminus \{A\}$,

c) во всех продукциях из P заменяем A на A'. 4) Объединение эквивалентных нетерминалов. Для

каждой пары нетерминалов
$$A_i$$
, $A_j \in V_N$: если $\{x \mid A_i \xrightarrow{p} x\} = \{x \mid A_j \xrightarrow{p} x\}$, то:

а) $V_N = V_N \setminus \{A_i\}$, b) во всех продукциях из P заменяем на Aj на Ai.

70. Требования к вектору признаков.

1°) ВП не должен содержать компонент, кот-е для данного набора объектов не определены; 2°) не должен содержать признаков, кот-е для всех рассматриваемых объектов принимают одно и тоже значение; 3°) не должен содержать компонент, кот-е не могут быть измерены (получены); 4°) -\\-, кот-е статистически или функционально зависимына всём мн-ве объектов; 5°) желательно, чтобы компоненты в ВП для объектов из одного класса были близки, а из разных - сильно отличались; 6°) кол-во компонент (п) д\б как можно меньше. Замечание: выполнение 6° способствует выполнению 1°-4°.

71. Среднеквадратичные расстояния м\у различными типами объектов в евклидовом пространстве.

 $D^2(a,b) = \sum_{k=1}^{n} (a_k - b_k)$ - расстояние м\у различными типами объектов в евклид-м простр-ве. Пусть есть

тчк х в ЕП и мн-во точек $\{a^i\}_{i=1}^k$. Расстояние м\у ними : $\sum_{k=1}^n (x_k - a_k^i)$

Среднеквадратичное расст-е м\у x и $\{a^i\}_{i=1}^k$:

 $D^2(x, \{a^i\}_{i=1}^k) = \frac{1}{k} \sum_{i=1}^k \sum_{k=1}^n (x_k - a_k^i)^2$ Среднекв-е внутримножеств-е расстояние :

$$D^{2}(a^{j},\{a^{i}\}_{i=1}^{k}) = \frac{1}{k-1} \sum_{i=1,i\neq j}^{k} \sum_{k=1}^{n} (a_{k}^{j} - a_{k}^{i})^{2}, i \neq j \qquad D^{2}(\{a^{j}\}_{j=1}^{k},\{a^{i}\}_{i=1}^{k}) = \frac{1}{k} \sum_{j=1}^{k} D^{2}(a^{j},\{a^{i}\}_{i=1,i\neq j}^{k}) = \\ 0, i = j \qquad \frac{1}{k(k-1)} \sum_{j=1}^{k} \sum_{k=1}^{k} (a_{k}^{j} - a_{k}^{i})^{2}$$

м $\{a^i\}_{i=1}^{ka}$ и $\{b^i\}_{i=1}^{kb}$. Среднеквадрат-е расст-е м\у ними:

72. Преобразование детерминированного вектора признаков, минимизирующее внутриклассовое расстояние.

$$\begin{split} &D_p^2 = D^2(\{z_p^i\}_{j=1}^{Np}, \{z_p^i\}_{i=1}^{Np}) \Longrightarrow D_p^* = \\ &2\sum_{k=1}^n (\sigma_{pk}^*)^2 = 2\sum_{k=1}^n w_{kk}^2 (\sigma_{pk})^2 \longrightarrow \min \end{split} \text{ при ограничениях: } \sum_{k=1}^n w_{kk} = 1 \text{ и } W_{kk} > \geq 0, \text{ k=1,n.} \end{split}$$

73. Способы учета изменения межклассовых расстояний при минимизации внутриклассовых расстояний.

1) внутриклассовое расстояние должно быть <=A, а межклассовое >=B; Но для такой задачи решения может не оказаться. 2) перейти от диагональной матрицы преобраз-я к матрице общего вида. 3) перейти от нелинейного к линейному виду.

74. Сравнение стохастических признаков на основе "апостериорных" вероятностей.

Имеется m классов: $\Omega=\{w1,...,wm\}$. Известны $\{p(wi)\}_{i=1}^{m}\}$. Изображение: x=(x1,...,xn) <= X=(X1,...,Xn) (ССВ), для каждой из CB известны условные законы распределения этой CB, при условии реализации каждого из классов w1,...,wm; т.е. P(Xk=xk/wi)-D(B, p(Xk/wi)-AHCB) (для i=1...m). Выделим один из признаков Xk. $\Delta 1$ -U-е всех интервалов, на кот-х отличен от 0 ровно один из условных 3P для CB Xk. $\Delta 2$ -V- два V3P V3P V3P V4В V3P V4В V4В

любого разумного правила для вынесения решения справедливо: если реализуется событие $\{Xk \in \Delta l\}$, то выносится решение об отнесении объекта к одному из l классов. $P(Xk \in \Delta l) = Pkl = \sum_{i=1}^{m} P(Xk \in \Delta l/wi) P(wi)$. $P(Xk \in \Delta l/wi) = 1$) \sum по $Xk \in \Delta l$ $P(Xk = xk/wi) - \mathcal{L}CB$; 2) \int по Δl Pk (Xk/wi) - AHCB. Рассмотрим CB: $Yk(\mathcal{L}CB)$: 1 2 ...1...m

- Р : Pk1 Pk2....Pkm (это 3P). Вычислим матожидание: $Mk=M(Yk)=\sum_{i=1}^{m}1*Pkl$. Возьмём другой признак: Xh. Для него сделаем всё то же, что и для Xk. Yh(ДСВ): 1 2 ...1...m
- Р : Ph1 Ph2....Phm (это 3P), Mh=M(Yh)= $\sum_{i=1}^{m}$ l*Phl. CB Yk можно трактовать как нек-й неопределённости классификации при классиф-и по признаку Xk. CB Yh -\\- при классиф-и только по признаку Xh. Введённые матожидания Mk и Mh меры неопр-ти соответственно при классиф-и по признаку Xk и Xk. Процедура сравнения: если Mk<Mh=> Xk полезнее, чем Xh, т.е. Xk>Xh.

75. Сравнение стохастических признаков на основе их условных матожиданий и условных дисперсий.

Имеется m классов: Ω ={w1,...,wp}, {p(wi)}_{i=1}^p}. Изображение явл-ся реализацией системы CB: x=(x1,... xn)<=X=(X1,...,Xn), для кот-х известны их условные матожидание и дисперсия. M[Xj/wij]=mij; D[Xj/wij]= σ_{ij}^2 (i=1..p, j=1..n). Выделим признак Xj. Введём две CB:

μj: m1j, m2j,..., mpj | $δj: σ1j^2, σ2j^2,..., σpj^2$ p: p(w1), p(w2),..., p(wp) | p: p(w1), p(w2),..., p(wp)

 $M[\mu j] = \sum_{i=1}^{p} mij P(wi) = Mj$, $M[\delta j] = \sum_{i=1}^{p} \sigma_{ij}^{2} P(wi) = Dj$. $\sigma_{ij}^{2} - \text{нек-я}$ мера рассеяния CB Xj вокруг величины mij, поэтому, если $\sigma_{ij}^{2} - \text{мала}$, то это интерпрет-ся как малая изменчивость признака Xj внутри класса wi; если это имеет место для всех классов, то это означает малую изменчивость признака Xj для всех классов. Если σ_{ij}^{2} мала для всех i, то Dj — тоже мала. Если Dj — большая, то для каких-то i признак Xj сильно изменяется для всех классов. Dj — показатель внутриклассовой изменчивости. Если Xj>Xk, Dj<Dk=>Xj — полезнее. Ориен-сь на Dj можно удовлетв-ть 5° частично. D[μ j]=M[(μ j-Mj)²]= $\sum_{i=1}^{p}$ (mij-Mj)²P(wi)=DJ — показывает меру рассеяния возможных значений mij вокруг Mj. Если DJ — мала, то CB Xj будет принимать значения, близкие к Mj для различных классов, т.е. признак Xj будет обладать малой межклассовой изменчивостью. Если Xj>Xk, DJ>DK=>Xj — предпочтит-е (удовл-ет 2-ю часть 5°). Рассмотрим показатель: Kj=Dj/DJ. Если Xj>Xk, Kj>Kk=>Xj — полезнее.