Análise Sintática (Parser)

Jacqueline Midlej

Analisador sintático (parser)

- Determina a estrutura sintática de um programa a partir dos tokens e lexemas produzidos pelo analisador léxico
- Produz uma representação dessa estrutura, em forma de árvore:
 - árvore gramatical
 - árvore sintática abstrata

Estrutura do compilador - Detalhada

Analisador sintático

 Recebe uma seqüência de tokens do analisador léxico e determina se a string (código fonte) pode ser gerada através da gramática da linguagem fonte

- É esperado ainda que ele reporte erros
- Seja capaz de se recuperar de erros comuns, continuando a processar a entrada

Erros reportados na análise léxica (passo anterior)

- Variáveis com caracteres especiais, iniciada por números....
 - Dado que a construção de nomes de variáveis apenas permite: letras seguidos de letras ou números
- Números mal formados: 10.1.1
- O que não é detectado como erro?

Erros reportados na análise léxica (passo anterior)

- Variáveis com caracteres especiais, iniciada por números....
 - Dado que a construção de nomes de variáveis apenas permite: letras seguidos de letras ou números
- Números mal formados: 10.1.1
- O que não é detectado como erro?
 - fi (a+b==0) then
 - fi é lido com o tk_id (nome de variável)
 - a + + b
 - tokens: tk_id, tk_soma, tk_soma, tk_id

Erros reportados na análise léxica (passo anterior)

- Variáveis com caracteres especiais, iniciada por números....
 - Dado que a construção de nomes de variáveis apenas permite: letras seguidos de letras ou números
- Números mal formados: 10.1.1
- O que não é detectado como erro?
 - fi (a+b==0) then
 - fi é lido com o tk_id (nome de variável)
 - a + + b
 - tokens: tk_id, tk_soma, tk_soma, tk_id

Todos
detectados
nessa etapa
de análise
sintática

Erros reportados na análise sintática

- Palavras-chave/reservadas na ordem correta
- Operações com nro correto de operandos
- sub-rotinas chamadas com parâmetros corretos
- parênteses balanceados
- etc

Tratamento de erros

- Considerações gerais:
 - Linguagens de programação não são projetadas com tratamento de erros em mente
 - A especificação da linguagem não descreve como o compilador deve responder a erros
 - Tarefa delegada ao projetista do compilador
- Erros sintáticos são mais frequentes
- Erros sintáticos são mais fáceis de detectar que erros semânticos e lógicos

Tratamento de erros

Metas de um tratador de erros:

- Ser rápido
- Relatar erros com clareza e precisão
 - Posição no programa fonte (linha e coluna)
 - Natureza do erro
- Detectar erros o mais cedo possível
 - Alguns erros só são detectáveis muito depois de terem ocorrido
 - A natureza exata do erro pode ser obscura

Tratamento de erros

Metas de um tratador de erros:

- Recuperar-se de um erro e prosseguir
- Tentar adivinhar a intenção do programador
- Evitar introdução de erros espúrios (falsos)
 - O Pode ser necessário inibir mensagens de erro detectados em proximidade na entrada

Mecanismos sofisticados de recuperação de erro raramente valem a pena o esforço de programação

Método de desespero

- Método mais simples de todos
- Ao encontrar um erro o parser descarta tokens da entrada até encontrar um token de sincronização normalmente delimitadores (ponto-e-vírgula, end, etc)
- Com frequência pula uma parte considerável da entrada sem verificá-la

Recuperação de frases

- Ao encontrar um erro o parser realiza uma correção local na entrada restante
- Substituição de um prefixo da entrada restante com uma cadeia que permita ao parser prosseguir

Exemplos:

- Substituir uma vírgula por um ponto-e-vírgula
- Remover um ponto-e-vírgula estranho
- Inserir um ponto-e-vírgula ausente
- Problemático quando o erro é detectado após a ocorrência

Produções de erro

- Exige uma ideia prévia dos erros que podem ser encontrados com frequência
- Aumenta-se a gramática da linguagem com produções que geram construções ilegais
- Usa-se essa gramática aumentada para a construção do parser
- Ao utilizar uma produção de erro, o parser gera diagnósticos precisos e realiza correções apropriadas

Correção global

- Idealmente o compilador realizaria um mínimo de correções ao processar uma entrada ilegal
- Existem algoritmos para escolher uma sequência mínima de mudanças de modo a obter uma correção global de menor custo
- O programa correto mais próximo pode não ser o que o programador tinha em mente
- Método de interesse apenas teórico por ser custoso de implementar

Gramática

- ERs são boas para definir a estrutura léxica de maneira declarativa

- Não são poderosas o suficiente para conseguir definir declarativamente a estrutura sintática de linguagens de programação

- Usaremos gramática para esse caso

Gramática

- ERs são boas para definir a estrutura léxica de maneira declarativa

- Não são poderosas o suficiente para conseguir definir declarativamente a estrutura sintática de linguagens de programação

Expressão regular número = dígito dígito * dígito = 0 | 1 | 2 | | 9 Gramática equivalente número → dígitos dígitos → dígitos dígito | dígito

 $digito \to 0 | 1 | 2 | ... | 9$

- Usaremos gramática para esse caso

- Seja o exemplo de uma ER:

 $expr \rightarrow ab(c|d)e$

- Seja o exemplo de uma ER:

 $expr \rightarrow ab(c|d)e$

Vamos dar nomes a partes da ER?

- Seja o exemplo de uma ER:

$$\operatorname{expr} o \operatorname{ab}(c|d)e ===> \operatorname{aux} o c \mid d$$
 $\operatorname{expr} o \operatorname{a} \operatorname{b} \operatorname{aux} \operatorname{e}$

- Outro exemplo:

```
digits → [0-9]+
sum → (digits '+')* digits
```

- Outro exemplo:

```
digits \rightarrow [0-9]+
sum \rightarrow (digits '+')* digits
```

- Implementação: O analisador léxico substitui os nomes das ERs antes de traduzir para um autômato finito
- sum $\rightarrow ([0-9]+'+') * [0-9]+$

- Outro exemplo:

```
digits → [0-9]+
sum → (digits '+')* digits
```

- Implementação: O analisador léxico substitui os nomes das ERs antes de traduzir para um autômato finito
- sum $\rightarrow ([0-9]+'+') * [0-9]+$

- Outro exemplo:

```
digits → [0-9]+
sum → (digits '+')* digits
```

- sum reconhece: 10, 10 + 2, 123 + 1 + 35

É possível usar a mesma ideia para definir uma linguagem para expressões que tenham parênteses balanceados?

(1+(245+2))

É possível usar a mesma idéia para definir uma linguagem para expressões que tenham parênteses balanceados?

$$(1+(245+2))$$

Tentativa:

```
digits \rightarrow [0-9]+
sum \rightarrow expr '+' expr
expr \rightarrow '(' sum ')' | digits
```

- digits = [0-9]+sum = expr "+" expr
 - expr = "(" sum ")" | digits
- · O analisador léxico substituiria sum em expr:
 - expr = "(" expr "+" expr ")" | digits
- Depois substituiria expr no próprio expr:
 - expr = "(" "(" expr "+" expr ")" | digits "+" expr ")" |
 digits
 O que está ocorrendo aqui?

- Nomes não acrescentam a ERs o poder de expressar recursão.
- É isso que precisamos para expressar a recursão mútua entre sum e expr

A gramática traz isso!

Parser - Algoritmos

- Algoritmos para reconhecer a estrutura sintática.
- Algoritmos para processar a entrada e checar reconhecimento pela gramática que descreve as regras sintáticas

- Backtracking

Custoso!

- LL - Preditivo - não tem recursão!

Pode precisar reescrever a gramática

Faz derivação da gramática de maneira mais eficiente!

- Método iterativo, ou seja, não recursivo

- Tenta prever a estrutura sintática da entrada usando um ou mais tokens lookahead

- Método obsoleto, porém útil como estudo de caso: método simples com uma pilha de estados e símbolos explicitamente gerenciada

Significado de LL(k)

- O primeiro L significa leitura da entrada da esquerda para a direita (left to right)

- O segundo L significa construir uma derivação mais à esquerda (leftmost)

O k significa o tamanho do lookahead (nro de tokens usados para tomar decisões durante a análise sintática)

- Para que seja possível obter um parser LL(k) a gramática precisa:
 - Não ser ambígua;
 - Não ter recursão a esquerda

- Para que seja possível obter um parser LL(k) a gramática precisa:
 - Não ser ambígua;
 - Não ter recursão a esquerda

- Para que seja possível obter um parser LL(k) a **gramática precisa:**
 - Não ser ambígua;
 - Não ter recursão a esquerda

- Transformação para recursão à direita. Regra geral:

$$\begin{pmatrix} X \to X \ \gamma_2 \\ X \to \alpha_2 \end{pmatrix} \Longrightarrow \begin{pmatrix} X \to \alpha_2 \ X' \\ X' \to \gamma_2 \ X' \\ X' \to \end{pmatrix}$$

LL(k)

- Transformação para recursão à direita. Regra geral:

$$\begin{pmatrix} X \to X & \gamma_1 \\ X \to X & \gamma_2 \\ X \to \alpha_1 \\ X \to \alpha_2 \end{pmatrix} \Longrightarrow \begin{pmatrix} X \to \alpha_1 & X' \\ X \to \alpha_2 & X' \\ X' \to \gamma_1 & X' \\ X' \to \gamma_2 & X' \\ X' \to \end{pmatrix}$$

LL(k)

LL(k)

	id	+	*	()	\$
E	E → T E'			E → T E'		
E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \epsilon$	T' → * F T'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$\mathbf{F} \rightarrow (\mathbf{E})$		

Tabela de parser - Algoritmo:

	id	+	*	()	\$
E	E → T E'			$E \rightarrow T E'$		
E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \epsilon$	T' → * F T'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$\mathbf{F} \to (\mathbf{E})$		

- Algoritmo:
- 1. Inicia pilha com símbolo inicial: E

	id	+	*	()	\$
E	E → T E'			$E \to T E'$		
E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \epsilon$	T' → * F T'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$F \rightarrow (E)$		

- Algoritmo:
- 1. Inicia pilha com símbolo inicial: E
- 2. Baseado no símbolo da entrada e símbolo do topo da pilha, aplica regra da tabela.
 - Ex: se símbolo da entrada é id, símbolo do topo da pilha é E, então: desempilha topo (E) e empilha parte direita da regra (do fim para começo E' T)

Se não há transição na tabela, reportar erro! Encerra programa! (Ou tratamento de erro)

	id	+	*	()	\$
Е	E → T E'			$\mathbf{E} \to \mathbf{T} \mathbf{E}'$		
E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \epsilon$	T' → * F T'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$F \rightarrow (E)$		

- Algoritmo:
- 1. Inicia pilha com símbolo inicial: E
- 2. Baseado no símbolo da entrada e símbolo do topo da pilha, aplica regra da tabela.
- 3. Se topo da pilha igual ao símbolo da entrada, desempilha e consome entrada

	id	+	*	()	\$
E	E → T E'			$E \to T E'$		
E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		Τ' → ε	T' → * F T'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$F \rightarrow (E)$		

- Algoritmo:
- 1. Inicia pilha com símbolo inicial: E
- 2. Baseado no símbolo da entrada e símbolo do topo da pilha, aplica regra da tabela.
- 3. Se topo da pilha igual ao símbolo da entrada, desempilha e consome entrada
- Repetir passos 2 e 3 até final da entrada (\$)

	id	+	*	()	\$
E	$E \rightarrow T E'$			$E \to T E'$		
E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \epsilon$	T' → * F T'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$\mathbf{F} \rightarrow (\mathbf{E})$		

- Algoritmo:
- 1. Inicia pilha com símbolo inicial: E
- 2. Baseado no símbolo da entrada e símbolo do topo da pilha, aplica regra da tabela.
- 3. Se topo da pilha igual ao símbolo da entrada, desempilha e consome entrada
- Repetir passos 2 e 3 até final da entrada (\$)

	id	+	*	()	\$
E	$E \rightarrow T E'$			$E \to T E'$		
E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \epsilon$	T' → * F T'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$\mathbf{F} \rightarrow (\mathbf{E})$		

		id	+	*	()	\$
	Е	$\mathbf{E} \to \mathbf{T} \mathbf{E}'$			$E \rightarrow T E'$		
E	Ξ'		E' →+T E'			Ε' → ε	$E' \rightarrow \epsilon$
•	T	$T \rightarrow F T'$			$T \rightarrow F T'$		
	Γ'		Τ' → ε	T' → * F T'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
	F	$\mathbf{F} \rightarrow \mathbf{id}$			$F \rightarrow (E)$		

Pilha	Entrada	Saída
\$ E	id + id * id \$	
\$ E' T	id + id * id \$	$E \rightarrow T E'$
\$ E' T' F	id + id * id \$	$T \rightarrow F T'$
\$ E' T' id	id + id * id \$	$F o \mathtt{id}$
\$ E' T'	+ id * id \$	
\$ E'	+ id * id \$	T' → ε
\$ E' T +	+ id * id \$	E' → + T E'
\$ E' T	id * id \$	
\$ E' T' F	id * id \$	$T \rightarrow F T'$
\$ E' T' id	id * id \$	$F o exttt{id}$

	id	+	*	()	\$
Ε	$\mathbf{E} \to \mathbf{T} \mathbf{E}'$			$E \rightarrow T E'$		
E'		E' →+T E'			Ε' → ε	Ε' → ε
T	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$F \rightarrow (E)$		

Pilha	Entrada	Saída
\$ E' T' id	id * id \$	$F o exttt{id}$
\$ E' T'	* id \$	
\$ E' T' F *	* id \$	$T' \rightarrow *FT'$
\$ E' T' F	id \$	
\$ E' T' id	id \$	$F o\mathtt{id}$
\$ E' T'	\$	
\$ E'	\$	$T' \rightarrow \varepsilon$
\$	\$	E' → ε

Atividade para treino

5.

6.

Mostrar pilha e árvore para seguinte tabela e entrada:

Stmts $\rightarrow \varepsilon$		if	then	else	while	do	begin	end	id	;	\$
$Expr \rightarrow id$	Stmt	1			2		3				
	Stmts	4			4		4	5			
	Expr								6		

Como montar a tabela??

- Vamos aprender primeiro, como montar o conjunto FIRST e FOLLOW

- o conjunto **First** para um símbolo da gramática a FIRST(a) é o conjunto de terminais que podem aparecer no início de uma sentença derivada de a
 - o conjunto pode ser composto por: terminais, EOF e ε(vazio)

FIRST - Definição formal

Se α é um terminal, ε ou eof, então FIRST(α) tem exatamente um membro, α .

Para uma string $s = \beta_1 \, \beta_2 \, \beta_3 \dots \beta_n$, definimos FIRST(s) como a união dos conjuntos FIRST para $\beta_1 \, \beta_2 \, \beta_3 \dots \beta_n$, onde β_n é o primeiro símbolo cujo conjunto FIRST não contém ϵ , e $\epsilon \in \text{FIRST}(s)$ se, e somente se, ele estiver no conjunto para cada um dos b_i , $1 \leq i \leq k$.

(Construindo Compiladores - Keith D. Cooper e Linda Torczon - 2ed - 2014)

FIRST - Minha maneira de tentar simplificar...

- Iniciamos pelos terminais, caso básico:

$$E \rightarrow T E'$$

$$E' \rightarrow + T E'$$

$$\rightarrow \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T'$$

$$\rightarrow \epsilon$$

$$F \rightarrow (E)$$

$$\rightarrow id$$

FIRST - Minha maneira de tentar simplificar...

- Iniciamos pelos terminais, caso básico:

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \varepsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \varepsilon
FIRST (id) = id
FIRST (:) = (
FIRST (*) = *
(...)
(...)
```

FIRST - Minha maneira de tentar simplificar...

- Não terminais: olhar todas as regras
- se A \rightarrow aXYZ , first(A)<=a | se A \rightarrow ϵ , first(A)<= ϵ
- se A \rightarrow XYZ , first(A)<=first(X), portanto, calcule first(X)- ϵ e adicione ao first(A). Se first(X) contém vazio, first(A)<=first(Y)- ϵ ... assim successivamente. Se first de todos os não terminais a direita puderem ser vazios, first(A)<= ϵ

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

- Não terminais: olhar todas as regras
- se A \rightarrow aXYZ , first(A)<=a | se A \rightarrow ϵ , first(A)<= ϵ
- se A \rightarrow XYZ , first(A)<=first(X), portanto, calcule first(X)- ϵ e adicione ao first(A). Se first(X) contém vazio, first(A)<=first(Y)- ϵ ... assim successivamente. Se first de todos os não terminais a direita puderem ser vazios, first(A)<= ϵ

- Não terminais: olhar todas as regras
- se A \rightarrow aXYZ , first(A)<=a | se A \rightarrow ϵ , first(A)<= ϵ
- se A \rightarrow XYZ , first(A)<=first(X), portanto, calcule first(X)- ϵ e adicione ao first(A). Se first(X) contém vazio, first(A)<=first(Y)- ϵ ... assim successivamente. Se first de todos os não terminais a direita puderem ser vazios, first(A)<= ϵ

$$E \rightarrow T E'$$

$$E' \rightarrow + T E'$$

$$\rightarrow \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T'$$

$$\rightarrow \epsilon$$

$$F \rightarrow (E)$$

$$\rightarrow id$$

FIRST (F)=
$$\{id, (\}\}$$

FIRST (T')= $\{*, \epsilon\}$

- Não terminais: olhar todas as regras
- se $A \rightarrow aXYZ$, first(A) $\leq =a$ | se $A \rightarrow \epsilon$, first(A) $\leq = \epsilon$
- se A \rightarrow XYZ , first(A)<=first(X), portanto, calcule first(X)- ϵ e adicione ao first(A). Se first(X) contém vazio, first(A)<=first(Y)- ϵ ... assim successivamente. Se first de todos os não terminais a direita puderem ser vazios, first(A)<= ϵ

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

```
FIRST (F)={ id, ( }
FIRST (Τ')={*, ε}
FIRST (Τ)=FIRST(F)={id, ( }
```

- Não terminais: olhar todas as regras
- se $A \rightarrow aXYZ$, first(A) $\leq =a$ | se $A \rightarrow \epsilon$, first(A) $\leq = \epsilon$
- se A \rightarrow XYZ , first(A)<=first(X), portanto, calcule first(X)- ϵ e adicione ao first(A). Se first(X) contém vazio, first(A)<=first(Y)- ϵ ... assim successivamente. Se first de todos os não terminais a direita puderem ser vazios, first(A)<= ϵ


```
FIRST (F)={ id, ( }

FIRST (T')={*, \epsilon}

FIRST (T)=FIRST(F)={id, ( }

FIRST (E')={+, \epsilon}
```

- Não terminais: olhar todas as regras
- se $A \rightarrow aXYZ$, first(A) $\leq =a$ | se $A \rightarrow \epsilon$, first(A) $\leq = \epsilon$
- se A \rightarrow XYZ , first(A)<=first(X), portanto, calcule first(X)- ϵ e adicione ao first(A). Se first(X) contém vazio, first(A)<=first(Y)- ϵ ... assim successivamente. Se first de todos os não terminais a direita puderem ser vazios, first(A)<= ϵ

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \varepsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \varepsilon
FIRST (F) = \{ id, (  \}
FIRST (T') = \{ *, \varepsilon \}
FIRST (T) = FIRST(F) = \{ id, (  \}
FIRST (E') = \{ +, \varepsilon \}
FIRST (E') = \{ +, \varepsilon \}
FIRST (E) = FIRST(T) = \{ id, (  \}
FIRST (E') = \{ +, \varepsilon \}
FIRST (E') = \{ id, (  \}
```

Exercício - FIRST

$$S' \rightarrow S \$$$
 $S \rightarrow (L)$
 $S \rightarrow a$
 $L \rightarrow SL'$
 $L' \rightarrow SL'$
 $L' \rightarrow SL'$

Exercício - FIRST

3)

 $A \longrightarrow aA$

 $A \longrightarrow$

 $B \rightarrow AbB$

 $B \rightarrow$

 $C \longrightarrow BcB$

 $D \longrightarrow ABC$

 $E \rightarrow AB$

1) S → Ab | ABc B → bB | Ad | ε A → aA | ε

2) S → ABC A → aA | ε B → bB | ACd C → cC | ε

- Para um não-terminal **B**, **FOLLOW(B)** contém o conjunto de palavras que podem ocorrer imediatamente após **B** em uma sentença

- Para um não-terminal **B**, **FOLLOW(B)** contém o conjunto de palavras que podem ocorrer imediatamente após **B** em uma sentença
- Regras para montar FOLLOW (B):

- Para um não-terminal **B**, **FOLLOW(B)** contém o conjunto de palavras que podem ocorrer imediatamente após **B** em uma sentença
- Regras para montar FOLLOW (B):
 - 1. FOLLOW do símbolo inicial contém \$ (caractere de fim de sentença)

- Para um não-terminal **B**, **FOLLOW(B)** contém o conjunto de palavras que podem ocorrer imediatamente após **B** em uma sentença
- Regras para montar FOLLOW (B):
 - 1. FOLLOW do símbolo inicial contém \$ (caractere de fim de sentença)
 - 2. Para $A \to x \ B \ y$ ou $A \to B \ y$ (ou seja, B não está no fim) $FOLLOW(B) \Longleftrightarrow FIRST(y)$

- Para um não-terminal **B**, **FOLLOW(B)** contém o conjunto de palavras que podem ocorrer imediatamente após **B** em uma sentença
- Regras para montar FOLLOW (B):
 - 1. FOLLOW do símbolo inicial contém \$ (caractere de fim de sentença)
 - 2. Para $A \to x \ B \ y$ ou $A \to B \ y$ (ou seja, B não está no fim) FOLLOW(B) <= FIRST(y)

se pode ser ε , então FOLLOW(B) \leq FOLLOW(A)

- Para um não-terminal **B**, **FOLLOW(B)** contém o conjunto de palavras que podem ocorrer imediatamente após **B** em uma sentença
- Regras para montar FOLLOW (B):
 - 1. FOLLOW do símbolo inicial contém \$ (caractere de fim de sentença)
 - 2. Para A \rightarrow x B y ou A \rightarrow B y (ou seja, B não está no fim) FOLLOW(B) <= FIRST(y)

se pode ser ε , então FOLLOW(B) \leq FOLLOW(A)

3. Para $A \rightarrow x$ B (ou seja, B no fim) FOLLOW (B) $\langle = FOLLOW(A)$

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { } }
FOLLOW(E') = { }
FOLLOW(T) = { }
FOLLOW(T') = { }
FOLLOW(F) = { }
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $ }

FOLLOW(E') = { }

FOLLOW(T') = { }

FOLLOW(T') = { }

FOLLOW(F) = { }
```

```
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

 $E \rightarrow T E'$

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $ }
FOLLOW(E') = { }
FOLLOW(T) = { }
FOLLOW(T') = { }
FOLLOW(F) = { }
```

```
Regra 2:

A \rightarrow x B y

F \rightarrow (E)

FOLLOW(B) \leq FIRST(y)

FOLLOW(E) \leq FIRST()
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
    FOLLOW do símbolo inicial contém $
    Para A → x B y ou A → B y (ou seja, B não está no fim)
        FOLLOW(B) <= FIRST(y)
        se pode ser ε, então FOLLOW(B) <= FOLLOW(A)</li>
    Para A → x B (ou seja, B no fim)
        FOLLOW (B) <= FOLLOW(A)</li>
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E') = { }
FOLLOW(T) = { }
FOLLOW(T') = { }
FOLLOW(F) = { }
```

```
Regra 2:

A \rightarrow x B y

F \rightarrow (E)

FOLLOW(B) \leq FIRST(y)

FOLLOW(E) \leq FIRST()
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
    FOLLOW do símbolo inicial contém $
    Para A → x B y ou A → B y (ou seja, B não está no fim)
        FOLLOW(B) <= FIRST(y)
        se pode ser ε, então FOLLOW(B) <= FOLLOW(A)</li>
    Para A → x B (ou seja, B no fim)
        FOLLOW (B) <= FOLLOW(A)</li>
```

```
VAZIO

nao FIRST (F)={ id, ( }
sim FIRST (T')={*}
nao FIRST (T)={id, ( }
sim FIRST (E')={+}
nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }

FOLLOW(E') = { }

FOLLOW(T) = { }

FOLLOW(T') = { }

FOLLOW(F) = { }
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E') = { }
FOLLOW(T) = { }
FOLLOW(T') = { }
FOLLOW(F) = { }
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { }
FOLLOW(T) = { }
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
Regra 3:

A \rightarrow x B

E \rightarrow T E'

FOLLOW(B) \langle = FOLLOW(A)

FOLLOW(E') \langle = FOLLOW(E)
```

```
E' \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO
 nao FIRST(F) = \{ id, ( \} \}
 sim FIRST (T') = \{*\}
 nao FIRST (T) = \{id, (\}
 \sin \text{ FIRST (E')} = \{+\}
 nao FIRST (E) = \{id, (\}\}
```

```
FOLLOW(E) = \{ \$, \}
FOLLOW(E') = \{ \$, \}
FOLLOW(T) = {
FOLLOW(T') = \{
FOLLOW(F) = {
```

```
\mathbf{E} \to \mathbf{T} \mathbf{E}'
E' \rightarrow + T E'
      \rightarrow 8
T \rightarrow F T'
T' \rightarrow F T'
      \rightarrow \epsilon
\mathbf{F} \rightarrow (\mathbf{E})
```

```
1. FOLLOW do símbolo inicial contém $
2. Para A \rightarrow x B y ou A \rightarrow B y (ou seja, B não está no fim)
     FOLLOW(B) \le FIRST(v)
                          se pode ser \varepsilon, então FOLLOW(B) \leq FOLLOW(A)
3. Para A \rightarrow x B (ou seja, B no fim)
     FOLLOW(B) \le FOLLOW(A)
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { $, ) }
FOLLOW(T) = { }
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
Regra 3:

A \rightarrow x B

E' \rightarrow + T E'

FOLLOW(B) <= FOLLOW(A)

FOLLOW(E') <= FOLLOW(E')
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { $, ) }
FOLLOW(T) = { }
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
Regra 3:

A \rightarrow x B

E' \rightarrow + T E'

FOLLOW(B) <= FOLLOW(A)

FOLLOW(E') <= F9LLOW(E')
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { $, ) }
FOLLOW(T) = { }
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
    FOLLOW do símbolo inicial contém $
    Para A → x B y ou A → B y (ou seja, B não está no fim)
        FOLLOW(B) <= FIRST(y)
        se pode ser ε, então FOLLOW(B) <= FOLLOW(A)</li>
    Para A → x B (ou seja, B no fim)
        FOLLOW (B) <= FOLLOW(A)</li>
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { $, ) }
FOLLOW(T) = { }
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
sim FIRST (E')={+}

nao FIRST (E)={id, (}

FOLLOW(T')={

FOLLOW(F)={

FOLLOW(F)={
```

 $FOLLOW(B) \le FOLLOW(A)$

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { $, ) }
FOLLOW(T) = { + }
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
Regra 2:

A \rightarrow B \ y

E \rightarrow T \ E'

FOLLOW(B) <= FIRST(y)

FOLLOW(T) <= FIRST( E')
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { $, ) }
FOLLOW(T) = { +, $, )}
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
Regra 2:

A → B y

E → T E'

FOLLOW(B) <= FIRST(y)

FOLLOW(T) <= FIRST(E')

Pode ser vazio!

FOLLOW(B) <= FOLLOW(A)

FOLLOW(T) <= FOLLOW(E)
```

```
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

 $E \rightarrow T E'$

```
    FOLLOW do símbolo inicial contém $
    Para A → x B y ou A → B y (ou seja, B não está no fim)
        FOLLOW(B) <= FIRST(y)
        se pode ser ε, então FOLLOW(B) <= FOLLOW(A)</li>
    Para A → x B (ou seja, B no fim)
```

 $FOLLOW(B) \le FOLLOW(A)$

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { $, ) }
FOLLOW(T) = {+, $, )}
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, } }
FOLLOW(E')= { $, } }
FOLLOW(T) = { +, $, } }
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
Regra 2:

A \rightarrow x B y

E' \rightarrow + T E'

FOLLOW(B) \langle = FIRST(y)

FOLLOW(T) \langle = FIRST(E')
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

```
VAZIO

nao FIRST (F)={ id, ( }
sim FIRST (T')={*}
nao FIRST (T)={id, ( }
sim FIRST (E')={+}
nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, } }
FOLLOW(E')= { $, } }
FOLLOW(T) = { +, $, } }
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
Regra 2:

A \rightarrow x B y

E' \rightarrow + T E'

FOLLOW(B) \langle = FIRST(y)

FOLLOW(T) \langle = FIRST(E')
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, } }
FOLLOW(E')= { $, } }
FOLLOW(T) = { +, $, } }
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
Regra 2:

A → x B y
E' → + T E'

FOLLOW(B) <= FIRST(y)
FOLLOW(T) <= FIRST(E')
Pode ser vazio!
FOLLOW (B) <= FOLLOW(A)
FOLLOW (T) <= FOLLOW(E')
```

```
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

 $E \rightarrow T E'$

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, } }
FOLLOW(E')= { $, } }
FOLLOW(T) = { +, $, } }
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
Regra 2:

A → x B y
E' → + T E'

FOLLOW(B) <= FIRST(y)
FOLLOW(T) <= FIRST(E')
Pode ser vazio!
FOLLOW (B) <= FOLLOW(A)
FOLLOW (T) <= FOLLOW(E')
```

```
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

 $E \rightarrow T E'$

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E') = { $, ) }
FOLLOW(T) = { +, $, )}
FOLLOW(T') = { }
FOLLOW(F) = { }
```

```
\begin{array}{c|c}
E \rightarrow T E' \\
E' \rightarrow + T E' \\
\rightarrow \epsilon \\
T \rightarrow F T' \\
T' \rightarrow * F T' \\
\rightarrow \epsilon \\
F \rightarrow (E)
\end{array}
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { $, ) }
FOLLOW(T) = {+, $, )}
FOLLOW(T')= { }
FOLLOW(F)= { }
```

```
Regra 3:

A \rightarrow x B

T \rightarrow F T'

FOLLOW(B) \le FOLLOW(A)

FOLLOW(T') \le FOLLOW(T)
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \varepsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \varepsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, } }
FOLLOW(E')= { $, } }
FOLLOW(T) = {+, $, }}
FOLLOW(T')= {+, $, }}
FOLLOW(F)= { }
```

```
Regra 3:

A \rightarrow x B

T \rightarrow F T'

FOLLOW(B) \le FOLLOW(A)

FOLLOW(T') \le FOLLOW(T)
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { $, ) }
FOLLOW(T) = {+, $, )}
FOLLOW(T')= {+, $, )}
FOLLOW(F)= { }
```

```
nao FIRST (T)={id, (}

sim FIRST (E')={+}

nao FIRST (E)={id, (}

E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \varepsilon
T \rightarrow F T'
D'' \rightarrow * E T'
2. Para A \rightarrow B y ou A \rightarrow B y

(ou seja, B não está no fim)
```

FOLLOW(B) <= FIRST(y)
se pode ser ε, então FOLLOW(B) <= FOLLOW(A)

3. Para A → x B
(ou seja, **B no fim**)
FOLLOW(B) <= FOLLOW(A)

```
VAZIO

nao FIRST (F)={ id, ( }
sim FIRST (T')={*}
nao FIRST (T)={id, ( }
sim FIRST (E')={+}
nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, } }
FOLLOW(E')= { $, } }
FOLLOW(T) = {+, $, }}
FOLLOW(T')= {+, $, }}
FOLLOW(F)= { }
```

```
Regra 3:

A \rightarrow x B

T' \rightarrow * F T'

FOLLOW(B) \langle = FOLLOW(A)

FOLLOW(T') \langle = FOLLOW(T')
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { $, ) }
FOLLOW(T) = {+, $, )}
FOLLOW(T')= {+, $, )}
FOLLOW(F)= { }
```

```
Regra 3:

A \rightarrow x B

T' \rightarrow * F T'

FOLLOW(B) <= FOLLOW(A)

FOLLOW(T') <= FOLLOW(T')
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
    FOLLOW do símbolo inicial contém $
    Para A → x B y ou A → B y (ou seja, B não está no fim)
        FOLLOW(B) <= FIRST(y)
        se pode ser ε, então FOLLOW(B) <= FOLLOW(A)</li>
    Para A → x B (ou seja, B no fim)
        FOLLOW (B) <= FOLLOW(A)</li>
```

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, ) }
FOLLOW(E')= { $, ) }
FOLLOW(T) = {+, $, )}
FOLLOW(T')= {+, $, )}
FOLLOW(F)= {
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO
 nao FIRST(F) = \{ id, ( \} \}
 sim FIRST (T') = \{*\}
 nao FIRST (T) = \{id, (\}
 sim FIRST (E') = \{+\}
 nao FIRST (E) = \{id, (\}\}
```

```
FOLLOW(E) = \{ \$, \}
FOLLOW(E') = \{ \$, \} 
FOLLOW(T) = \{+, \$, \}
FOLLOW(T') = \{+, \$, \}
FOLLOW(F) = \{
```

```
E' \rightarrow + T E'
      \rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow F T'
      \rightarrow \epsilon
\mathbf{F} \rightarrow (\mathbf{E})
```

 $E \rightarrow T E'$

```
1. FOLLOW do símbolo inicial contém $
2. Para A \rightarrow x B y ou A \rightarrow B y (ou seja, B não está no fim)
     FOLLOW(B) \le FIRST(v)
                          se pode ser \varepsilon, então FOLLOW(B) \leq FOLLOW(A)
3. Para A \rightarrow x B (ou seja, B no fim)
     FOLLOW(B) \le FOLLOW(A)
```

```
VAZIO
                                                                                  Regra 2:
                                            FOLLOW(E) = \{ \$, \} 
 nao FIRST (F) = \{ id, ( \} \}
                                                                                  A \rightarrow B y
                                            FOLLOW(E') = \{ \$, \}
  sim FIRST (T') = \{*\}
                                                                                  T \rightarrow F T'
                                            FOLLOW(T) = \{+, \$, \}
  nao FIRST (T) = \{id, (\}
                                            FOLLOW(T') = \{+, \$, \}
  sim FIRST (E') = \{+\}
                                            FOLLOW(F) = \{ *, +, \$, \} 
  nao FIRST (E) = \{id, (\}\}
\mathbf{E} \rightarrow \mathbf{T} \mathbf{E}'
E' \rightarrow + T E'
   \rightarrow \epsilon
                            1. FOLLOW do símbolo inicial contém $
T \rightarrow F T'
                            2. Para A \rightarrow x B y ou A \rightarrow B y
                                                                             (ou seja, B não está no fim)
T' \rightarrow F T'
                                  FOLLOW(B) \le FIRST(v)
    \rightarrow \epsilon
                                                           se pode ser \varepsilon, então FOLLOW(B) \leq FOLLOW(A)
\mathbf{F} \rightarrow (\mathbf{E})
                            3. Para A \rightarrow x B (ou seja, B no fim)
                                  FOLLOW(B) \le FOLLOW(A)
```

 $FOLLOW(B) \le FIRST(y)$ $FOLLOW(F) \le FIRST(T')$ Pode ser vazio! $FOLLOW(B) \le FOLLOW(A)$ $FOLLOW(F) \le FOLLOW(T)$

```
VAZIO

nao FIRST (F)={ id, ( }

sim FIRST (T')={*}

nao FIRST (T)={id, ( }

sim FIRST (E')={+}

nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, } }
FOLLOW(E')= { $, } }
FOLLOW(T) = { +, $, } }
FOLLOW(T')= { +, $, } }
FOLLOW(F)= { *, +, $, } }
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }
sim FIRST (T')={*}
nao FIRST (T)={id, ( }
sim FIRST (E')={+}
nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, } }
FOLLOW(E')= { $, } }
FOLLOW(T) = {+, $, }}
FOLLOW(T')= {+, $, }}
FOLLOW(F)= {*, +, $, }}
```

```
Regra 2:

A \rightarrow x B y

T' \rightarrow * F T'

FOLLOW(B) \langle = FIRST(y)

FOLLOW(F) \langle = FIRST(T')
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }
sim FIRST (T')={*}
nao FIRST (T)={id, ( }
sim FIRST (E')={+}
nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, } }
FOLLOW(E')= { $, } }
FOLLOW(T) = { +, $, } }
FOLLOW(T')= { +, $, } }
FOLLOW(F)= { *, +, $, } }
```

```
Regra 2:

A \rightarrow x B y

T' \rightarrow * F T'

FOLLOW(B) \langle = FIRST(y)

FOLLOW(F) \langle = FIRST(T')
```

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
```

```
VAZIO

nao FIRST (F)={ id, ( }
sim FIRST (T')={*}
nao FIRST (T)={id, ( }
sim FIRST (E')={+}
nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, } }
FOLLOW(E')= { $, } }
FOLLOW(T) = { +, $, } }
FOLLOW(T')= { +, $, } }
FOLLOW(F)= { *, +, $, } }
```

```
Regra 2:

A → x B y
T' → * F T'

FOLLOW(B) <= FIRST(y)
FOLLOW(F) <= FIRST(T')
Pode ser vazio!
FOLLOW (B) <= FOLLOW(A)
FOLLOW (F) <= FOLLOW(T')
```

```
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

 $E \rightarrow T E'$

```
    FOLLOW do símbolo inicial contém $
    Para A → x B y ou A → B y (ou seja, B não está no fim)
        FOLLOW(B) <= FIRST(y)
        se pode ser ε, então FOLLOW(B) <= FOLLOW(A)</li>
    Para A → x B (ou seja, B no fim)
```

 $FOLLOW(B) \le FOLLOW(A)$

```
VAZIO

nao FIRST (F)={ id, ( }
sim FIRST (T')={*}
nao FIRST (T)={id, ( }
sim FIRST (E')={+}
nao FIRST (E)={id, ( }
```

```
FOLLOW(E) = { $, } }
FOLLOW(E')= { $, } }
FOLLOW(T) = { +, $, } }
FOLLOW(T')= { +, $, } }
FOLLOW(F)= { *, +, $, } }
```

```
Regra 2:

A → x B y
T' → * F T'

FOLLOW(B) <= FIRST(y)
FOLLOW(F) <= FIRST(T')
Pode ser vazio!
FOLLOW (B) <= FOLLOW(A)
FOLLOW (F) <= FOLLOW(T')
```

```
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

 $E \rightarrow T E'$

```
    FOLLOW do símbolo inicial contém $
    Para A → x B y ou A → B y (ou seja, B não está no fim)
        FOLLOW(B) <= FIRST(y)
        se pode ser ε, então FOLLOW(B) <= FOLLOW(A)</li>
    Para A → x B (ou seja, B no fim)
```

 $FOLLOW(B) \le FOLLOW(A)$

Exercício - FOLLOW

```
S' \rightarrow S \$
S \rightarrow (L)
S \rightarrow a
L \rightarrow SL'
L' \rightarrow SL'
L' \rightarrow SL'
```

Parser Table

```
FIRST (F) = \{ id, ( \} \\ FIRST (T') = \{ * \} \\ FIRST (T') = \{ * \} \\ FIRST (T) = \{ id, ( \} \\ FOLLOW(T) = \{ +, \$, ) \} \\ FIRST (E') = \{ + \} \\ FIRST (E) = \{ id, ( \} \\ FOLLOW(T') = \{ +, \$, ) \} \\ FIRST (E) = \{ id, ( \} \\ FOLLOW(F) = \{ *, +, \$, ) \}
```

${f E}$	\rightarrow	T E '
E '	\rightarrow	+ T E
	\rightarrow	3
\mathbf{T}	\rightarrow	FT'
T'	\rightarrow	* F T
	\rightarrow	3
\mathbf{F}	\rightarrow	(E)
	\rightarrow	id

	id	+	*	()	\$
E						
E'						
Т						
T'						
F						

 Insere a regra para cada token do FIRST da parte direita da regra FIRST (F)={ id, (}
FIRST (T')={*}
FIRST (T')={*}
FIRST (T)={id, (}
FOLLOW(E')={ \$,) }
FIRST (T)={id, (}
FOLLOW(T)={+, \$,)}
FIRST (E')={+}
FOLLOW(T')={+, \$,)}
FIRST (E)={id, (}
FOLLOW(F)={*, +, \$,) }

$\mathbf{E} \to \mathbf{T} \; \mathbf{E'}$		ic
$\begin{bmatrix} \mathbf{E'} \to \mathbf{+} \ \mathbf{T} \ \mathbf{E'} \\ \to \boldsymbol{\varepsilon} \end{bmatrix}$	Е	
$T \rightarrow F T'$	E'	
$\begin{array}{c c} \mathbf{T'} \to \mathbf{*} & \mathbf{F} & \mathbf{T'} \\ \to & \mathbf{\epsilon} \end{array}$	Т	
$\begin{array}{c} \mathbf{F} \to (\mathbf{E}) \\ \to \mathbf{id} \end{array}$	T'	
→ IU	F	

	id	+	*	()	\$
Е						
E'						
Т						
T'						
F						

 Insere a regra para cada token do FIRST da parte direita da regra FIRST (F)={ id, (}

FIRST (T')={*}

FIRST (T')={id, (}

FOLLOW(E) ={ \$,) }

FIRST (T')={id, (}

FOLLOW(T) ={+, \$,)}

FIRST (E')={+}

FIRST (E)={id, (}

FOLLOW(T) ={+, \$,)}

FOLLOW(T')={+, \$,)}

			•				
$E \rightarrow T E'$		id	+	*	()	\$
$E' \to + T E'$ $\to \varepsilon$	E						
$T \rightarrow F T'$	E'						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Т						
$F \rightarrow (E)$ $\rightarrow id$	T'						
	F						

 Insere a regra para cada token do FIRST da parte direita da regra

```
FIRST (F)={ id, ( } FO

FIRST (T')={*} FO

FIRST (T)={id, ( } FO

FIRST (E')={+} FO

FIRST (E)={id, ( } FO
```

$FOLLOW(E) = \{ \$, \}$	ı	}		
$FOLLOW(E') = \{ \$, \}$	ı	}		
$FOLLOW(T) = \{+, \$$,)}		
FOLLOW(T')={+, \$,)}		
$FOLLOW(F) = {*, +}$	-,	\$,)	}

E	→(T E')
E '	\rightarrow + T F
	\rightarrow ϵ
\mathbf{T}	\rightarrow F T'
T'	→ * F T'
	\rightarrow ϵ
\mathbf{F}	\rightarrow (E)
	\rightarrow id

	id	+	*	()	\$
Е						
E'						
Т						
T'						
F						

 Insere a regra para cada token do FIRST da parte direita da regra

```
FIRST (F)={ id, ( }
FIRST (T')={*}
FIRST (T)={id, ( }
FIRST (E')={+}
FIRST (E)={id, ( }
```

FOLLOW(E) = { \$, } }
FOLLOW(E')= { \$, } }
FOLLOW(T) = { +, \$, } }
FOLLOW(T')= { +, \$, } }
FOLLOW(F)= { *, +, \$, } }

E	→(T E')
E'	\rightarrow + T I
	\rightarrow ϵ
\mathbf{T}	\rightarrow F T'
T'	$\rightarrow * F T$
	\rightarrow ϵ
\mathbf{F}	\rightarrow (E)
	\rightarrow id

	id	+	*	()	\$
E						
E'						
T						
T'						
F						

 Insere a regra para cada token do FIRST da parte direita da regra

```
FIRST (F)={ id, ( }
FIRST (T')={*}
FIRST (T)={id, ( }
FIRST (E')={+}
FIRST (E)={id, ( }
```

$FOLLOW(E) = \{ \$,$)	}		
$FOLLOW(E')=\{ \$,$)	}		
$FOLLOW(T) = \{+, 3\}$	₿,)}		
$FOLLOW(T') = \{+, \}$	₿,)}		
$FOLLOW(F) = { *, -}$	⊢,	\$,)	}

E	→(T E')
E '	\rightarrow + T E
	\rightarrow ϵ
\mathbf{T}	\rightarrow F T'
T'	\rightarrow * F T°
	\rightarrow ϵ
\mathbf{F}	\rightarrow (E)
	\rightarrow id

	id	+	*	()	\$
E	E → T E'			$\mathbf{E} \to \mathbf{T} \mathbf{E}'$		
E'						
T						
T'						
F						

 Insere a regra para cada token do FIRST da parte direita da regra

```
FIRST (F)={ id, ( }
FIRST (T')={*}
FIRST (T')={*}
FIRST (T)={id, ( }
FOLLOW(E)={ $, ) }
FIRST (T)={id, ( }
FOLLOW(T)={+, $, )}
FIRST (E')={+}
FOLLOW(T')={+, $, )}
FIRST (E)={id, ( }
FOLLOW(F)={*, +, $, ) }
```

\mathbf{E}	→ TE'
E'	\rightarrow T E
/III	→ E
\mathbf{T}	\rightarrow F T'
T'	→ * F T'
	\rightarrow ϵ
\mathbf{F}	\rightarrow (E)
	→ id

	id	+	*	()	\$
E	$E \rightarrow T E'$			$E \to T E'$		
E'						
Т						
T'						
F						

 Insere a regra para cada token do FIRST da parte direita da regra

```
FIRST (F)={ id, ( }
FIRST (T')={*}
FIRST (T')={*}
FIRST (T)={id, ( }
FOLLOW(E)={ $, ) }
FIRST (T)={id, ( }
FOLLOW(T)={+, $, )}
FIRST (E')={+}
FOLLOW(T')={+, $, )}
FIRST (E)={id, ( }
FOLLOW(F)={*, +, $, ) }
```

${f E}$	→ TE'
E'	→(+)T E
	\rightarrow ϵ
\mathbf{T}	→ F T'
T'	\rightarrow * F T°
	\rightarrow ϵ
\mathbf{F}	\rightarrow (E)
	\rightarrow id

	id	+	*	()	\$
E	E → T E'			$E \to T E'$		
E'		E' →+T E'				
Т						
T'						
F						

 Insere a regra para cada token do FIRST da parte direita da regra FIRST (F)={ id, (}

FIRST (T')={*}

FIRST (T')={*}

FIRST (T)={id, (}

FOLLOW(E)={\$,) }

FIRST (T)={id, (}

FOLLOW(T)={+, \$,)}

FIRST (E')={+}

FIRST (E)={id, (}

FOLLOW(T)={+, \$,)}

FOLLOW(F)={*, +, \$,)}

$\mathbf{E} \to \mathbf{T} \mathbf{E}'$	
$E' \rightarrow + T E'$	
$\rightarrow \epsilon$	
$T \rightarrow F T'$	E
T' → * F T'	_
\rightarrow ϵ	
$F \rightarrow (E)$	-
\rightarrow id	

		id	+	*	()	\$
	Е	E → T E'			$ E \to T E'$		
	E'		E' →+T E'				
	Т						
	T'						
_	F						

- Insere a regra para cada token do FIRST do símbolo mais à esquerda
- Se regra vazia, usa-se o conjunto FOLLOW

FIRST (F)= $\{id, (\}\}$	$FOLLOW(E) = \{\$, \}$ $FOLLOW(E') = \{\$, \}$
$FIRST (T') = \{*\}$ $FIRST (T) = \{id, (\}\}$	$FOLLOW(E')=\{\$,\ \}$ $FOLLOW(T)=\{+,\$,\}$
$FIRST (E') = \{+\}$	$FOLLOW(T') = \{+, \$, \}$
$FIRST (E) = \{id, (\}\}$	$FOLLOW(F) = \{ *, +, \$,) \}$

$E \rightarrow T E'$		id	+	*	()	\$
$\begin{array}{c} \mathbf{E'} \to + \mathbf{T} \mathbf{E'} \\ \to \varepsilon \end{array}$	E	E → T E'			E → T E'		
$\begin{array}{c} \mathbf{T} \to \mathbf{F} \ \mathbf{T'} \\ \mathbf{T'} \to \mathbf{*} \ \mathbf{F} \ \mathbf{T'} \end{array}$	E'		E' →+T E'				
\rightarrow ϵ	Т						
$\begin{array}{c} \mathbf{F} \to (\mathbf{E}) \\ \to \mathbf{id} \end{array}$	T'						
Iu	F						

- Insere a regra para cada token do FIRST do símbolo mais à esquerda
- Se regra vazia, usa-se o conjunto FOLLOW

FIRST (F)={ id, (}
FIRST (T')={*}
FIRST (T)={id, (}
FIRST (E')={+}
FIRST (E)={id, (}

FOLLOW(E) = { \$, } }

FOLLOW(E') = { \$, } }

FOLLOW(T) = { +, \$, } }

FOLLOW(T') = { +, \$, } }

FOLLOW(F) = { *, +, \$, } }

${f E}$	\rightarrow T E'
E '	\rightarrow + T E
	→ 8
T	\rightarrow F T'
T'	\rightarrow * F T'
	\rightarrow ϵ
\mathbf{F}	\rightarrow (E)
	\rightarrow id

	id	+	*	()	\$
Е	E → T E'			E → T E'		
E'		E' →+T E'				
Т						
T'						
F						

- Insere a regra para cada token do FIRST do símbolo mais à esquerda
- Se regra vazia, usa-se o conjunto FOLLOW

FIRST (F)={ id, (}
FIRST (T')={*}
FIRST (T)={id, (}
FIRST (E')={+}
FIRST (E)={id, (}

FOLLOW(E) = { \$, } }

FOLLOW(E') = { \$, } }

FOLLOW(T) = { +, \$, } }

FOLLOW(T') = { +, \$, } }

FOLLOW(F) = { *, +, \$, } }

E '		1
	→ E	
\mathbf{T}	\rightarrow F T'	
T'	\rightarrow * F T'	
	\rightarrow ϵ	
F	\rightarrow (E)	
	→ id	

	id	+	*	()	\$
E	E → T E'			$E \to T E'$		
E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т						
T'						
F						

- Insere a regra para cada token do FIRST da parte direita da regra
- Se regra vazia, usa-se o conjunto FOLLOW

FIRST (F)={ id, (} FOLLOW(E) ={ \$,) }
FIRST (T')={*} FOLLOW(E')={ \$,) }
FIRST (T)={id, (} FOLLOW(T) ={+, \$,)}
FIRST (E')={+} FOLLOW(T')={+, \$,)}
FIRST (E)={id, (} FOLLOW(F)={*, +, \$,) }

		J				
	id	+	*	()	\$
E	E → T E'			$ E \to T E'$		
E'		E' →+T E'			Ε' → ε	Ε ' → ε
T						
T'						
F						

- Insere a regra para cada token do FIRST da parte direita da regra
- Se regra vazia, usa-se o conjunto FOLLOW

FIRST (F)={ id, (}

FIRST (T')={*}

FIRST (T)={id, (}

FIRST (E')={+}

FIRST (E)={id, (}

FOLLOW(E) = { \$, } }
FOLLOW(E')= { \$, } }
FOLLOW(T) = { +, \$, } }
FOLLOW(T')= { +, \$, } }
FOLLOW(F)= { *, +, \$, } }

	/
\mathbf{E}	→ T E'/
E '	\rightarrow + γ E'
	→ 8
T	→(F T')
T'	→ * F T'
	\rightarrow ϵ
F	\rightarrow (E)
	\rightarrow id

	id	+	*	()	\$
Е	E → T E'			$E \rightarrow T E'$		
E'		E' →+T E'			$E' \rightarrow \epsilon$	Ε ' → ε
Т						
T'						
F						

- Insere a regra para cada token do FIRST da parte direita da regra
- Se regra vazia, usa-se o conjunto FOLLOW

FIRST (F)={ id, (}
$FIRST (T') = \{*\}$
$FIRST (T) = \{id, (\}\}$
$FIRST(E') = \{+\}$
$FIRST (E) = \{id, ()\}$

FOLLOW(E) = { \$, } }
FOLLOW(E')= { \$, } }
FOLLOW(T) = {+, \$, }}
FOLLOW(T')= {+, \$, }}
FOLLOW(F)= {*, +, \$, }}

E	→ T E'/
E'	\rightarrow + \nearrow E
	→ 8
T	→FT'
T'	→ * F T'
	\rightarrow ϵ
\mathbf{F}	\rightarrow (E)
	→ id

	id	+	*	()	\$
E	E → T E'			E → T E'		
E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'						
F						

- Insere a regra para cada token do FIRST da parte direita da regra
- Se regra vazia, usa-se o conjunto FOLLOW

$FIRST (F) = \{ id, (\} \}$	$FOLLOW(E) = \{ \$, \}$
$FIRST (T') = \{*\}$	$FOLLOW(E') = \{ \$, \}$
$FIRST (T) = \{id, (\}$	$FOLLOW(T) = \{+, \$, \}$
$FIRST (E') = \{+\}$	$FOLLOW(T') = \{+, \$, \}$
$FIRST (E) = \{id, (\}$	$FOLLOW(F) = \{ *, +, \$,) \}$

E → T E'		id	+	*	()	\$
$\begin{bmatrix} \mathbf{E'} \to + \mathbf{T} \ \mathbf{E'} \\ \to \boldsymbol{\varepsilon} \end{bmatrix}$	Е	E → T E'			E → T E'		
$T \rightarrow F T'$	E'		E' →+T E'			Ε' → ε	$E' \rightarrow \epsilon$
$\begin{array}{c} T' \to * F T' \\ \hline \to \epsilon \end{array}$	Т	T → F T '			$T \rightarrow F T'$		
$ \begin{array}{c} \mathbf{F} \to (\mathbf{E}) \\ \to \mathbf{id} \end{array} $	T'						
→ id	F						

- Insere a regra para cada token do FIRST da parte direita da regra
- Se regra vazia, usa-se o conjunto FOLLOW

$FIRST (F) = \{ id, (\} \}$	$FOLLOW(E) = \{ \$, \}$
$FIRST (T') = \{*\}$	$FOLLOW(E')=\{\$, \}$
$FIRST (T) = \{id, (\}$	$FOLLOW(T) = \{+, \$, \}$
$FIRST (E') = \{+\}$	$FOLLOW(T') = \{+, \$, \}$
$FIRST (E) = \{id, (\}$	$FOLLOW(F) = \{ *, +, \$,) \}$

E '	→ T E' / → + T/E
Т	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T'	→(* F T')
F	$\begin{array}{ccc} \rightarrow & \epsilon \\ \rightarrow & (E) \\ \rightarrow & id \end{array}$

	id	+	*	()	\$
E	E → T E'			$E \to T E'$		
E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'			T' → * F T'			
F						

- Insere a regra para cada token do FIRST da parte direita da regra
- Se regra vazia, usa-se o conjunto FOLLOW

$FIRST (F) = \{ id, (\} \}$	$FOLLOW(E) = \{ \$, \}$
$FIRST (T') = {*}$	$FOLLOW(E') = \{ \$, \}$
$FIRST (T) = \{id, (\}$	$FOLLOW(T) = \{+, \$, \}$
$FIRST (E') = \{+\}$	$FOLLOW(T') = \{+, \$, \}$
$FIRST (E) = \{id, (\}\}$	$FOLLOW(F) = \{ *, +, \$,) \}$

$E \to T E'$		id	+	*	()	\$
$\begin{bmatrix} \mathbf{E'} \to \mathbf{+} \ \mathbf{T} \ \mathbf{E'} \\ \to \boldsymbol{\varepsilon} \end{bmatrix}$	Е	E → T E'			E → T E'		
$\begin{array}{c} \mathbf{T} \to \mathbf{F} \ \mathbf{T'} \\ \mathbf{T'} \to \mathbf{*} \ \mathbf{F} \ \mathbf{T'} \end{array}$	E'		E' →+T E'			Ε' → ε	Ε' → ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
$\begin{array}{c} \mathbf{F} \to (\mathbf{E}) \\ \to \mathbf{id} \end{array}$	T'			T' → * F T'			
→ Iu	F						

- Insere a regra para cada token do FIRST da parte direita da regra
- Se regra vazia, usa-se o conjunto FOLLOW

FIRST (F)={ id, (}

FIRST (T')={*}

FIRST (T')={*}

FIRST (T)={id, (}

FOLLOW(E) ={ \$,) }

FOLLOW(E')={ \$,) }

FOLLOW(T) ={+, \$,)}

FIRST (E')={+}

FIRST (E)={id, (}

FOLLOW(T)={+, \$,)}

FOLLOW(F)={*, +, \$,) }

$\mathbf{E} \to \mathbf{T} \mathbf{E}'$		id	+	*	()	\$
$\begin{array}{c c} E' \rightarrow + T E' \\ \rightarrow \epsilon \end{array}$	E	E → T E'			E → T E'		
$T \rightarrow F T'$	E'		E' →+T E'			Ε ' → ε	Ε' → ε
$\begin{array}{c} \mathbf{T'} \to * \mathbf{F} \mathbf{T'} \\ \to & \varepsilon \end{array}$	Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
$ \begin{array}{c} \mathbf{F} \to (\mathbf{E}) \\ \to \mathbf{id} \end{array} $	T'		Τ' → ε	T' → * F T'		Τ' → ε	Τ' → ε
→ 10l	F						

- Insere a regra para cada token do FIRST da parte direita da regra
- Se regra vazia, usa-se o conjunto FOLLOW

$FIRST (F) = \{ id, (\} \}$	$FOLLOW(E) = \{ \$, \}$
$FIRST (T') = \{*\}$	$FOLLOW(E')=\{\$,\ \}$
$FIRST (T) = \{id, (\}$	$FOLLOW(T) = \{+, \$, \}$
$FIRST (E') = \{+\}$	$FOLLOW(T') = \{+, \$, \}$
$FIRST (E) = \{id, (\}$	$FOLLOW(F) = \{ *, +, \$,) \}$

 $E' \rightarrow \epsilon$

 $T' \rightarrow \epsilon$

/						
$\boxed{\mathbf{E} \to \mathbf{T} \; \mathbf{E'}}$		id	+	*	()
$\begin{vmatrix} \mathbf{E'} \to \mathbf{+} & \mathbf{T} & \mathbf{E'} \\ \to & \boldsymbol{\epsilon} \end{vmatrix}$	E	E → T E'			E → T E'	
$egin{array}{c} \mathbf{T} ightarrow \mathbf{F} \ \mathbf{T}' ightarrow \mathbf{F} \ \mathbf{T}' \end{array}$	E'		E' →+T E'			E' → ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T	$T \rightarrow F T'$			$T \rightarrow F T'$	
$\mathbf{F} - (\mathbf{E})$	T'		Τ' → ε	T' → * F T'		Τ' → ε
→ 1 u	F					

- Insere a regra para cada token do FIRST da parte direita da regra
- Se regra vazia, usa-se o conjunto FOLLOW

$FIRST (F) = \{ id, (\} \}$	$FOLLOW(E) = \{ \$, \}$
$FIRST (T') = {*}$	$FOLLOW(E') = \{ \$, \}$
$FIRST (T) = \{id, (\}$	$FOLLOW(T) = \{+, \$, \}$
$FIRST (E') = \{+\}$	$FOLLOW(T') = \{+, \$, \}$
$FIRST (E) = \{id, (\}\}$	$FOLLOW(F) = \{ *, +, \$,) \}$

$E \to T E'$		id	+	*	()	\$
$\begin{bmatrix} \mathbf{E'} \to \mathbf{+} \ \mathbf{T} \ \mathbf{E'} \\ \to \boldsymbol{\varepsilon} \end{bmatrix}$	E	E → T E'			E → T E'		
$\begin{array}{c} \mathbf{T} \to \mathbf{F} \ \mathbf{T'} \\ \mathbf{T'} \to * \mathbf{F} \ \mathbf{T'} \end{array}$	E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
$\begin{array}{c} F \rightarrow (E) \\ \rightarrow id \end{array}$	T'		Τ' → ε	T' → * F T'		Τ' → ε	Τ' → ε
→ 10	F				$\mathbf{F} \rightarrow (\mathbf{E})$		

- Insere a regra para cada token do FIRST da parte direita da regra
- Se regra vazia, vsa-se o conjunto FOLLOW

$FIRST (F) = \{ id, (\} \}$	$FOLLOW(E) = \{ \$, \}$
$FIRST (T') = \{*\}$	$FOLLOW(E')=\{\$, \}$
$FIRST (T) = \{id, (\}$	$FOLLOW(T) = \{+, \$, \}$
$FIRST (E') = \{+\}$	$FOLLOW(T') = \{+, \$, \}$
$FIRST (E) = \{id, (\}$	$FOLLOW(F) = \{ *, +, \$,) \}$

_			ı				
$E \rightarrow T E'$		id	+	*	()	\$
$\begin{array}{c} \mathbf{E'} \to \mathbf{+} \ \mathbf{T} \ \mathbf{E'} \\ \to \mathbf{\epsilon} \end{array}$	E	E → T E'			E → T E'		
$T \rightarrow F T' /$	E'		E' → + T E'			Ε' → ε	Ε ' → ε
$\begin{array}{c c} T' \to *F/T' \\ \to & \epsilon/ \end{array}$	Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
$F \rightarrow (E)$	T'		Τ' → ε	T' → * F T'		Τ' → ε	Τ' → ε
/ (lu)	F				$\mathbf{F} \rightarrow (\mathbf{E})$		

- Insere a regra para cada token do FIRST da parte direita da regra
- Se regra vazia, vsa-se o conjunto FOLLOW

$FIRST(F) = \{ id, (\} \}$	$FOLLOW(E) = \{ \$, \}$
$FIRST (T') = \{*\}$	$FOLLOW(E')=\{\$, \}$
$FIRST (T) = \{id, (\}\}$	$FOLLOW(T) = \{+, \$, \}$
$FIRST (E') = \{+\}$	$FOLLOW(T') = \{+, \$, \}$
$FIRST (E) = \{id, (\}$	$FOLLOW(F) = \{ *, +, \$,) \}$

$E \rightarrow T E'$		id	+	*	()	\$
$\begin{bmatrix} \mathbf{E'} \to \mathbf{+} \ \mathbf{T} \ \mathbf{E'} \\ \to \mathbf{\epsilon} \end{bmatrix}$	E	E → T E'			E → T E'		
$\mid T \rightarrow F T' / \mid \mid$	E'		E' →+T E'			E' → ε	Ε' → ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
$F \rightarrow (E)$	T'		Τ' → ε	T' → * F T'		Τ' → ε	Τ' → ε
-/ (Iu)	F	$\mathbf{F} \rightarrow \mathbf{id}$			$\mathbf{F} \rightarrow (\mathbf{E})$		

Parser Table

```
FIRST (F) = \{ id, ( \} \\ FIRST (T') = \{ * \} \\ FIRST (T') = \{ * \} \\ FIRST (T) = \{ id, ( \} \\ FOLLOW(T) = \{ +, \$, ) \} \\ FIRST (E') = \{ + \} \\ FIRST (E) = \{ id, ( \} \\ FOLLOW(T') = \{ +, \$, ) \} \\ FIRST (E) = \{ id, ( \} \\ FOLLOW(F) = \{ *, +, \$, ) \}
```

\mathbf{E}	\rightarrow T E'
E '	\rightarrow + T E
	\rightarrow ϵ
\mathbf{T}	\rightarrow F T'
T'	\rightarrow * F T'
	\rightarrow 8
\mathbf{F}	\rightarrow (E)
	\rightarrow id

	id	+	*	()	\$
E	E → T E'			$E \to T E'$		
E'		E' →+T E'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		Τ' → ε	T' → * F T'		$T' \rightarrow \epsilon$	Τ' → ε
F	$\mathbf{F} \rightarrow \mathbf{id}$			$\mathbf{F} \rightarrow (\mathbf{E})$		

- A ideia é predizer qual regra usar para expandir/derivar a gramática.
- Suponha: estamos no termo E',
- lê-se '+' na entrada,
- Usa-se regra 2, pq + está no conjunto FIRST de E.

```
\begin{array}{lll} \mathbf{E} \rightarrow \mathbf{T} \, \mathbf{E'} & & & & & & & & \\ \mathbf{E'} \rightarrow + \, \mathbf{T} \, \mathbf{E'} & & & & & & & \\ \rightarrow \, \boldsymbol{\epsilon} & & & & & & & \\ \mathbf{T} \rightarrow \mathbf{F} \, \mathbf{T'} & & & & & & \\ \mathbf{T'} \rightarrow * \, \mathbf{F} \, \mathbf{T'} & & & & & & \\ \rightarrow \, \boldsymbol{\epsilon} & & & & & & \\ \mathbf{F} \rightarrow (\, \mathbf{E} \,) & & & & & \\ \rightarrow \, \mathbf{id} & & & & & & \\ \end{array}
```

- A ideia é predizer qual regra usar para expandir/derivar a gramática.
- Suponha: estamos no termo E',
- lê-se '+' na entrada,
- Usa-se regra 2, pq + está no conjunto FIRST de E'.

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

```
VAZIO

nao FIRST (F)={ id, ( }
sim FIRST (T')={*}
nao FIRST (T)=FIRST(F)={id, ( }
sim FIRST (E')={+}
nao FIRST (E)=FIRST(T)={id, ( }
```

- A ideia é predizer qual regra usar para expandir/derivar a gramática.
- Porém, se lermos outro símbolo que não +??

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
VAZIO
nao FIRST (F)=\{id, (\} \\ sim FIRST (T')=\{*\} \\ nao FIRST (T)=FIRST(F)=\{id, (\} \\ sim FIRST (E')=\{+\} \\ nao FIRST (E)=FIRST(T)=\{id, (\} \}
```

- A ideia é predizer qual regra usar para expandir/derivar a gramática.
- Porém, se lermos outro símbolo que não +??
- Precisamos saber se é erro sintático ou se podemos usar a regra 3: E' $\rightarrow \epsilon$
- Portanto, precisamos saber o FOLLOW de E'.

```
E \rightarrow T E'
E' \rightarrow + T E'
\rightarrow \epsilon
T \rightarrow F T'
T' \rightarrow * F T'
\rightarrow \epsilon
F \rightarrow (E)
\rightarrow id
```

```
VAZIO

nao FIRST (F)={ id, ( }
sim FIRST (T')={*}
nao FIRST (T)=FIRST(F)={id, ( }
sim FIRST (E')={+}
nao FIRST (E)=FIRST(T)={id, ( }
```

- A ideia é predizer qual regra usar para expandir/derivar a gramática.
- Porém, se lermos outro símbolo que não +??
- Precisamos saber se é erro sintático ou se podemos usar a regra 3: E' $\rightarrow \epsilon$
- Portanto, precisamos saber o FOLLOW de E'. Ok, se estiver no FOLLOW

Exercício!!

1. Criar parser table (também conjunto follow e first) das seguintes gramáticas:

A)		B)		C)	
1	$S' \rightarrow S $ \$	1	$S' \rightarrow S $,	$S \rightarrow A a $ \$
2	$S \rightarrow e$	2	$S \rightarrow (L)$	2	$A \rightarrow S b$
3	$S \to ABd$	3	$S \rightarrow a$	3	$A \rightarrow c A$
4	$B \rightarrow bB$	4	$L \rightarrow S L'$	4	$A \rightarrow a$
5	$B \to Ad$	5	$L' \rightarrow , SL'$		
6	$\mathrm{B} \rightarrow$	6	$L' \to \epsilon$		
7	$A \rightarrow aA$				
8	$A \rightarrow$				

Exercício!!

2. Mostre o passo a passo da execução:

- da gramática A na entrada: aabdd\$
- da gramática B na entrada: (a,(a,a))\$

Isto é, mostre a pilha de execução e a string da entrada, e regra utilizada, como nos slides 47 e 48

A)					
1	$S' \to S $ \$	B)			
2	$S \rightarrow c$	1	$S' \rightarrow S $	C)	
3	$S \to ABd$	2	$S \rightarrow (L)$	1	$S \rightarrow A a $
4	$B \rightarrow bB$	3	$S \rightarrow a$	2	$A \rightarrow S b$
5	$B \to Ad$	4	$L \rightarrow S L'$	3	$A \rightarrow e A$
6	$\mathrm{B} \rightarrow$	5	$L' \rightarrow , S L'$	4	$A \rightarrow \frac{a}{a}$
7	$A \rightarrow {a \over a} A$	6	$L' \to \epsilon$		
8	$A \rightarrow$				