

/ Projektdokumentation

Betriebshof Anlage Volleinspeisung

Elektro Mustermann Musterstraße 21 54321 Musterstadt

Tel.: +49 123 456-0 Fax: +49 123 456-100

E-Mail: info@el-mustermann.de Internet: www.el-mustermann.de

Projektnummer: ---

Standort: Deutschland / München

Datum: 23.10.2023

Erstellt mit Sunny Design 5.60.1 © SMA Solar Technology AG 2023

/ Inhaltsverzeichnis

Projektübersicht	3
Fact Sheet	4
Auslegungen der Wechselrichter	6
Hinweise	11
Monatswerte	12
Betrachtung der Wirtschaftlichkeit	13
Unverbindliche Kostenschätzung	15
Dachplan	16

Elektro Mustermann Musterstraße 21 54321 Musterstadt

Tel.: +49 123 456-0 Fax: +49 123 456-100

E-Mail: info@el-mustermann.de Internet: www.el-mustermann.de

Elektro Mustermann • Musterstraße 21 • 54321 Musterstadt

Projekt: Betriebshof Anlage Volleinspeisung

Projektnummer: ---

Standort: Deutschland / München **Netzspannung:** 230V (230V / 400V)

Systemübersicht

361 x .SMA SMA Demo Poly 300W (Gebäude 1: Fläche 1-West)

Azimut: 93 °, Neigung: 10 °, Montageart: Dach, Peak-Leistung: 108,30 kWp

361 x .SMA SMA Demo Poly 300W (Gebäude 1: Fläche 1-Ost)

Azimut: -87°, Neigung: 10°, Montageart: Dach, Peak-Leistung: 108,30 kWp

1 x SMA STP 25-50

1 x SMA STP 50-40/41 (CORE1)

3 x SMA STP 25-50

PV-Auslegungsdaten			
Gesamtanzahl der PV-Module:	722	Mehrertrag durch SMA Shadefix:	2.436 kWh
Peak-Leistung:	216,60 kWp	Energienutzungsfaktor:	100 %
Anzahl der PV-Wechselrichter:	5	Performance Ratio*:	77,4 %
AC-Nennleistung der PV-Wechselrichter:	150,00 kW	Spez. Energie-Ertrag*:	892 kWh/kWp
AC-Wirkleistung:	135,00 kW	Leitungsverluste (in % von PV-Energie):	
Wirkleistungsverhältnis:	62,3 %	Schieflast:	0,00 VA
Jährlicher Energie-Ertrag*:	193,31 MWh	CO₂-Reduktion nach 20 Jahren:	1.298 t

^{*}Wichtig: Die angezeigten Ertragswerte sind Schätzwerte. Sie werden mathematisch ermittelt. SMA Solar Technology AG übernimmt keine Haftung für den realen Ertragswert, der von den hier angezeigten Ertragswerten abweichen kann. Gründe für Abweichungen sind verschiedene äußere Umstände, z. B. Verschmutzungen der PV-Module oder Schwankungen der Wirkungsgrade der PV-Module

3 / 16 Version: 5.60.1 / 23.10.2023

Ihr Energiesystem auf einen Blick

Projekt: Betriebshof Anlage Volleinspeisung

Elektro Mustermann Musterstraße 21 54321 Musterstadt Tel.: +49 123 456-0 Fax: +49 123 456-100

E-Mail: info@el-mustermann.de Internet: www.el-mustermann.de

Projektnummer: ---

Standort: Deutschland / München

Datum: 23.10.2023

Erstellt mit Sunny Design 5.60.1 © SMA Solar Technology AG 2023

/ Energiesystem

PV-Anlage	PV-Wechselrichter	PV-Generatoren
_	4 x SMA STP 25-50	722 x .SMA SMA Demo Poly 300W
	1 x SMA STP 50-40/41 (CORE1)	
7 .94 P.J	P *	

Zusätzliche Energiemanagement

Komponenten 1 x SUNNY PORTAL powered by

ennexOS

Systemgröße PV-Anlage

216,60 kWp

/ Vorteile

0,210 EUR Stromgestehungskosten über 20 Jahr(e)

-1,0 aErwartete
Amortisationszeit

-100,00 % Jährliche Rendite (IRR)

1.298 t CO₂-Reduktion nach 20 Jahren

Einspeisevergütung nach 20 Jahr(en): 401.993 EUR

Auslegungen der Wechselrichter

Projekt: Betriebshof Anlage Volleinspeisung

Projektnummer: ---

Standort: Deutschland / München

Umgebungstemperatur:

Minimale Temperatur: -18 °C Auslegungstemperatur: 19 °C Maximale Temperatur: 32 °C

Teilprojekt Teilprojekt 1

1 x SMA STP 25-50 (Teilanlage 2)

Peak-Leistung:	27,60 kWp
Gesamtanzahl der PV-Module:	92
Anzahl der PV-Wechselrichter:	1
Max. DC-Leistung (cos φ = 1):	25,51 kW
Max. AC-Wirkleistung (cos φ = -0,9):	22,50 kW
Netzspannung:	230V (230V / 400V)
Nennleistungsverhältnis:	83 %
Dimensionierungsfaktor:	122,7 %
Verschiebungsfaktor cos φ:	-0,9
Volllaststunden:	1060,9 h

PV-Auslegungsdaten

Eingang A: Gebäude 1: Fläche 1-Ost

51 x .SMA SMA Demo Poly 300W, Azimut: -87 °, Neigung: 10 °, Montageart: Dach

Eingang B: Gebäude 1: Fläche 1-Ost

7 x .SMA SMA Demo Poly 300W, Azimut: -87 °, Neigung: 10 °, Montageart: Dach

Eingang C: Gebäude 1: Fläche 1-West

34 x .SMA SMA Demo Poly 300W, Azimut: 93 °, Neigung: 10 °, Montageart: Dach

	Eingang A:	Eingang B:	Eingang C:
Anzahl der Strings:	3	1	2
PV-Module:	17	7	17
Peak-Leistung (Eingang):	15,30 kWp	2,10 kWp	10,20 kWp
Min. DC-Spannung WR (Netzspannung 230 V):	150 V	150 V	150 V
Typische PV-Spannung:	⊘ 581 V	⊘ 239 V	
Min. PV-Spannung:	537 V	221 V	537 V
Max. DC-Spannung (PV-Modul):	1000 V	1000 V	1000 V
Max. PV-Spannung		⊘ 359 V	
Max. Eingangsstrom pro MPPT:	24 A	24 A	24 A
Max. PV-Generatorstrom:		⊘ 8,2 A	⊘ 16,4 A
Max. Kurzschluss-Strom pro MPPT:	37,5 A	37,5 A	37,5 A
Max. Kurzschluss-Strom PV		⊘ 8,8 A	⊘ 17,7 A

PV/WR kompatibel

Diesen Wechselrichter bekommen Sie inklusive SMA ShadeFix. SMA ShadeFix ist eine patentierte Wechselrichter-Software, die den Ertrag von Photovoltaikanlagen automatisch in jeder Situation optimiert. Auch bei Verschattung.

Auslegungen der Wechselrichter

Projekt: Betriebshof Anlage Volleinspeisung

Projektnummer: ---

Standort: Deutschland / München

Umgebungstemperatur:

Minimale Temperatur: -18 °C Auslegungstemperatur: 19 °C Maximale Temperatur: 32 °C

/ Teilprojekt Teilprojekt 1

1 x SMA STP 50-40/41 (CORE1) (Teilanlage 3)

Peak-Leistung:	98,10 kWp
Gesamtanzahl der PV-Module:	327
Anzahl der PV-Wechselrichter:	1
Max. DC-Leistung (cos ϕ = 1):	51,00 kW
Max. AC-Wirkleistung (cos ϕ = -0,9):	45,00 kW
Netzspannung:	230V (230V / 400V)
Nennleistungsverhältnis:	47 %
Dimensionierungsfaktor:	218 %
Verschiebungsfaktor cos φ:	-0,9
Volllaststunden:	1622,4 h

PV-Auslegungsdaten

Eingang A: Gebäude 1: Fläche 1-West

54 x .SMA SMA Demo Poly 300W, Azimut: 93 °, Neigung: 10 °, Montageart: Dach

Eingang B: Gebäude 1: Fläche 1-West

54 x .SMA SMA Demo Poly 300W, Azimut: 93 °, Neigung: 10 °, Montageart: Dach

Eingang C: Gebäude 1: Fläche 1-West

54 x .SMA SMA Demo Poly 300W, Azimut: 93 °, Neigung: 10 °, Montageart: Dach

Eingang D: Gebäude 1: Fläche 1-West

54 x .SMA SMA Demo Poly 300W, Azimut: 93 °, Neigung: 10 °, Montageart: Dach

Eingang E: Gebäude 1: Fläche 1-West

54 x .SMA SMA Demo Poly 300W, Azimut: 93 °, Neigung: 10 °, Montageart: Dach

Eingang F: Gebäude 1: Fläche 1-West

57 x .SMA SMA Demo Poly 300W, Azimut: 93 °, Neigung: 10 °, Montageart: Dach

		Eingang A:		Eingang B:		Eingang C:
Anzahl der Strings:		3		3		3
PV-Module:		18		18		18
Peak-Leistung (Eingang):		16,20 kWp		16,20 kWp		16,20 kWp
Min. DC-Spannung WR (Netzspannung 230 V):		150 V		150 V		150 V
Typische PV-Spannung:	•	615 V	•	615 V	②	615 V
Min. PV-Spannung:		568 V		568 V		568 V
Max. DC-Spannung (PV-Modul):		1000 V		1000 V		1000 V
Max. PV-Spannung	•	921 V	•	921 V	②	921 V
Max. Eingangsstrom pro MPPT:	•	20 A		20 A		20 A
Max. PV-Generatorstrom:	•	24,6 A	•	24,6 A	•	24,6 A
Max. Kurzschluss-Strom pro MPPT:		30 A		30 A		30 A
Max. Kurzschluss-Strom PV	•	26,5 A	•	26,5 A	•	26,5 A
		Eingang D:		Eingang E:		Eingang F:
Anzahl der Strings:		3		3		3
PV-Module:		18		18		19
Peak-Leistung (Eingang):		16,20 kWp		16,20 kWp		17,10 kWp
Min. DC-Spannung WR (Netzspannung 230 V):		150 V		150 V		150 V
Typische PV-Spannung:	•	615 V	②	615 V	②	649 V
Min. PV-Spannung:		568 V		568 V		600 V
Max. DC-Spannung (PV-Modul):		1000 V		1000 V		1000 V
Max. PV-Spannung	②	921 V	•	921 V	②	972 V
Max. Eingangsstrom pro MPPT:		20 A		20 A		20 A
Max. PV-Generatorstrom:		24,6 A		24,6 A		24,6 A

PV/WR bedingt kompatibel

Max. Kurzschluss-Strom PV

Max. Kurzschluss-Strom pro MPPT:

PV-Generator und Typ des Wechselrichters sind nur bedingt kompatibel, da der Wechselrichter für diese Kombination unterdimensioniert ist (< 77 %).

30 A

PV-Generator und Typ des Wechselrichters sind nur bedingt kompatibel, da die maximale PV-Generatorleistung des Wechselrichters überschritten wurde. Es sind bei der vorliegenden Anla-genkonfiguration jedoch nur geringe Ertragsverluste zu erwarten.

30 A

26,5 A

Diesen Wechselrichter bekommen Sie inklusive SMA ShadeFix. SMA ShadeFix ist eine patentierte Wechselrichter-Software, die den Ertrag von Photovoltaikanlagen automatisch in jeder Situation optimiert. Auch bei Verschattung.

30 A

26,5 A

Auslegungen der Wechselrichter

Projekt: Betriebshof Anlage Volleinspeisung

Projektnummer: ---

Standort: Deutschland / München

Umgebungstemperatur:

Minimale Temperatur: -18 °C Auslegungstemperatur: 19 °C Maximale Temperatur: 32 °C

/ Teilprojekt Teilprojekt 1

3 x SMA STP 25-50 (Teilanlage 1)

Peak-Leistung:	90,90 kWp
Gesamtanzahl der PV-Module:	303
Anzahl der PV-Wechselrichter:	3
Max. DC-Leistung (cos ϕ = 1):	25,51 kW
Max. AC-Wirkleistung (cos $\phi = -0.9$):	22,50 kW
Netzspannung:	230V (230V / 400V)
Nennleistungsverhältnis:	76 %
Dimensionier ungsfaktor:	134,7 %
Verschiebungsfaktor cos φ:	-0,9
Volllaststunden:	1142,3 h

PV-Auslegungsdaten

Eingang A: Gebäude 1: Fläche 1-Ost

68 x .SMA SMA Demo Poly 300W, Azimut: -87 °, Neigung: 10 °, Montageart: Dach

Eingang B: Gebäude 1: Fläche 1-Ost

17 x .SMA SMA Demo Poly 300W, Azimut: -87 °, Neigung: 10 °, Montageart: Dach

Eingang C: Gebäude 1: Fläche 1-Ost

16 x .SMA SMA Demo Poly 300W, Azimut: -87 °, Neigung: 10 °, Montageart: Dach

	Eingang A:	Eingang B:	Eingang C:
Anzahl der Strings:	4	1	1
PV-Module:	17	17	16
Peak-Leistung (Eingang):	20,40 kWp	5,10 kWp	4,80 kWp
Min. DC-Spannung WR (Netzspannung 230 V):	150 V	150 V	150 V
Typische PV-Spannung:	⊘ 581 V	⊘ 581 V	⊘ 546 V
Min. PV-Spannung:	537 V	537 V	505 V
Max. DC-Spannung (PV-Modul):	1000 V	1000 V	1000 V
Max. PV-Spannung		⊘ 870 V	⊘ 819 V
Max. Eingangsstrom pro MPPT:	24 A	24 A	24 A
Max. PV-Generatorstrom:	⊘ 32,8 A	⊘ 8,2 A	⊘ 8,2 A
Max. Kurzschluss-Strom pro MPPT:	37,5 A	37,5 A	37,5 A
Max. Kurzschluss-Strom PV	⊘ 35,4 A	⊘ 8,8 A	⊘ 8,8 A

PV/WR bedingt kompatibel

PV-Generator und Typ des Wechselrichters sind nur bedingt kompatibel, da der Wechselrichter für diese Kombination unterdimensioniert ist (< 79 %).

Diesen Wechselrichter bekommen Sie inklusive SMA ShadeFix. SMA ShadeFix ist eine patentierte Wechselrichter-Software, die den Ertrag von Photovoltaikanlagen automatisch in jeder Situation optimiert. Auch bei Verschattung.

10 / 16 Version: 5.60.1 / 23.10.2023

Hinweise

Projekt: Betriebshof Anlage Volleinspeisung **Standort:** Deutschland / München

Projektnummer: ---

Betriebshof Anlage Volleinspeisung

- Mit Inkrafttreten des EEG 2014 ist in Deutschland die Förderung des eingespeisten Stroms von PV-Anlagen, die ab dem 1. Januar 2016 neu in Betrieb genommen werden, ab einer Peak-Leistung von 100 kWp nur noch im Marktmodell der Direktvermarktung möglich. Hierbei ist die Fernsteuerbarkeit der Anlage durch das Direktvermarktungsunternehmen über einen sicheren Kommunikationskanal gefordert. Dies kann beispielsweise über die Direktvermarktungsschnittstelle des SMA Data Manager oder Power Plant Controller erfolgen.
- Anlagen mit einer installierten Leistung von mehr als 25 kWp müssen gemäß EEG 2021 mit technischen Einrichtungen ausgestattet sein, mit denen der Netzbetreiber jederzeit die Einspeiseleistung bei Netzüberlastung ferngesteuert reduzieren kann.
- (i) In Deutschland müssen Energieerzeugungsanlagen mit einer Leistung größer 13,8 kVA ab 1.1.2012 Blindleistung nach Vorgabe des Netzbetreibers bereitstellen können. Der Verschiebungsfaktor der verwendeten Wechselrichter wird automatisch auf 0,9 untererregt (-) angepasst.

Teilprojekt 1

1 x SMA STP 25-50 (Teilanlage 2)

- Die Anzahl der Strings übersteigt die Anzahl der Anschlüsse am Eingang des Wechselrichters. In diesem Fall müssen geeignete Maßnahmen für den Anschluss der Strings vorgesehen werden, wie z. B. Y Adapter. Beachten Sie die Bedingungen zum Anschluss von Strings an den jeweiligen Wechselrichter (siehe Installationsanleitung des Wechselrichters).
- Diesen Wechselrichter bekommen Sie inklusive SMA ShadeFix. SMA ShadeFix ist eine patentierte Wechselrichter-Software, die den Ertrag von Photovoltaikanlagen automatisch in jeder Situation optimiert. Auch bei Verschattung.
- 1 x SMA STP 50-40/41 (CORE1) (Teilanlage 3)
- PV-Generator und Typ des Wechselrichters sind nur bedingt kompatibel, da der Wechselrichter für diese Kombination unterdimensioniert ist (< 77 %).</p>
- PV-Generator und Typ des Wechselrichters sind nur bedingt kompatibel, da die maximale PV-Generatorleistung des Wechselrichters überschritten wurde. Es sind bei der vorliegenden Anla-genkonfiguration jedoch nur geringe Ertragsverluste zu erwarten.
- Die Anzahl der Strings übersteigt die Anzahl der Anschlüsse am Eingang des Wechselrichters. In diesem Fall müssen geeignete Maßnahmen für den Anschluss der Strings vorgesehen werden, wie z. B. Y Adapter. Beachten Sie die Bedingungen zum Anschluss von Strings an den jeweiligen Wechselrichter (siehe Installationsanleitung des Wechselrichters).
- Diesen Wechselrichter bekommen Sie inklusive SMA ShadeFix. SMA ShadeFix ist eine patentierte Wechselrichter-Software, die den Ertrag von Photovoltaikanlagen automatisch in jeder Situation optimiert. Auch bei Verschattung.

3 x SMA STP 25-50 (Teilanlage 1)

- (7) PV-Generator und Typ des Wechselrichters sind nur bedingt kompatibel, da der Wechselrichter für diese Kombination unterdimensioniert ist (< 79 %).
- Die Anzahl der Strings übersteigt die Anzahl der Anschlüsse am Eingang des Wechselrichters. In diesem Fall müssen geeignete Maßnahmen für den Anschluss der Strings vorgesehen werden, wie z. B. Y Adapter. Beachten Sie die Bedingungen zum Anschluss von Strings an den jeweiligen Wechselrichter (siehe Installationsanleitung des Wechselrichters).
- Diesen Wechselrichter bekommen Sie inklusive SMA ShadeFix. SMA ShadeFix ist eine patentierte Wechselrichter-Software, die den Ertrag von Photovoltaikanlagen automatisch in jeder Situation optimiert. Auch bei Verschattung.

11 / 16

Version: 5.60.1 / 23.10.2023

Monatswerte

Projekt: Betriebshof Anlage Volleinspeisung

Projektnummer: ---

Standort: Deutschland / München

/ Energie-Ertrag

Monat	Energie-Ertrag [kWh]	Performance Ratio
1	5312 (2,7 %)	74 %
2	8102 (4,2 %)	77 %
3	15099 (7,8 %)	79 %
4	22573 (11,7 %)	80 %
5	26268 (13,7 %)	78 %
6	27379 (14,2 %)	78 %
7	27787 (14,5 %)	77 %
8	23563 (12,2 %)	78 %
9	17305 (8,9 %)	77 %
10	10673 (5,5 %)	76 %
11	5201 (2,7 %)	72 %
12	4051 (2,1 %)	72 %

Betrachtung der Wirtschaftlichkeit

Projekt: Betriebshof Anlage Volleinspeisung

Projektnummer: ---

Standort: Deutschland / München

/ Details

Einspeisevergütung nach 20 Jahr(en)	401.993 EUR
Erwartete Amortisationszeit	-1,0 a
Stromgestehungskosten über 20 Jahr(e)	0,210 EUR/kWh
Jährliche Rendite (IRR)	-100,00 %
Gesamtinvestition	324.900,00 EUR

Betrachtung der Wirtschaftlichkeit

Projekt: Betriebshof Anlage Volleinspeisung **Standort:** Deutschland / München

Projektnummer: ---

/ Finanzierung

Die Währung ist EUR

Die Eigenkapitalquote beträgt 100 %

Die Fremdkapitalquote beträgt 0 %

Die Fördersumme beträgt 0,00 EUR

Die Inflationsrate beträgt 3,00 %

Der Betrachtungszeitraum der Wirtschaftlichkeit beträgt 20 Jahre

Strombezugskosten und Einspeisevergütung

Der Strombezugspreis beträgt 0,28000 EUR/kWh

Der Grundpreis beträgt 0,00 EUR/Monat.

Sondertarife werden nicht berücksichtigt

Die jährliche Stromteuerungsrate beträgt 3,0 %

Der anzulegende Wert beträgt 0,10900 EUR/kWh

Die Dauer der Einspeisevergütung beträgt 20 Jahre

Abzug oder Vergütung bei Eigenverbrauch beträgt 0,00000 EUR/kWh

Der Marktwert beträgt 0,03000 EUR/kWh

14 / 16

Version: 5.60.1 / 23.10.2023

Unverbindliche Kostenschätzung

Projekt: Betriebshof Anlage Volleinspeisung **Standort:** Deutschland / München

Projektnummer: ---

Projektkosten		
PV-Anlage	1.500,00 EUR/kWp x 216,60 kWp	324.900,00 EUR
Sonstige Kosten		
Gesamtinvestition		324.900,00 EUR
Fixkosten		
Jährliche Fixkosten (in % der Investitionskosten)	1,50 % der Investitionskosten	4.873,50 EUR
Jährliche Direktvermarktungskosten		0,00 EUR

15 / 16

Version: 5.60.1 / 23.10.2023

Dachplan - Teilprojekt 1 - Gebäude 1

Projekt: Betriebshof Anlage Volleinspeisung **Standort:** Deutschland / München

Projektnummer: ---

Fläche 1

