Análisis Matemático I

Límites:

Definición (límite formal).

$$\lim_{x \to c} f(x) = L \iff \forall \epsilon > 0 \; \exists \; \delta > 0 \; : 0 < |x - c| < \delta \Longrightarrow |f(x) - L|$$

Definición (límite intuitivo). Decir que $\lim_{x\to c} f(x) = L$ significa que cuando x está cerca pero diferente de c, entonces f(x) está cerca de L.

Teorema (unicidad del límite). Si el límite de una función existe, entonces es único.

$$Demostración.$$
 Supongamos que $\lim_{x\to c} f(x) = L$ y $\lim_{x\to c} f(x) = L'$ siendo L y L'

Teorema (del emparedado). Sean f, g y h funciones que satisfacen $f(x) \leq g(x) \leq h(x) \forall x$ cercano a c, excepto posiblemente c. Si $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$, entonces $\lim_{x \to c} g(x) = L$.

Demostración. Sea $\epsilon > 0$. Elegimos δ_1 tal que

$$0 < |x - c| < \delta_1 \Longrightarrow L - \epsilon < f(x) < L + \epsilon$$

y δ_2 tal que

$$0 < |x - c| < \delta_2 \Longrightarrow L - \epsilon < h(x) < L + \epsilon$$

Elegimos δ_3 de modo que

$$0 < |x - c| < \delta_3 \Longrightarrow f(x) \leqslant g(x) \leqslant h(x)$$

Sea $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Entonces

$$0 < |x - c| < \delta \Longrightarrow L - \epsilon < f(x) \le g(x) \le h(x) < L + \epsilon$$

Concluímos que $\lim_{x\to c} g(x) = L$

Continuidad:

Definición (continuidad en un punto). Sea f definida en un intervalo abierto que contiene a c. Decimos que f es continua en c si

$$\lim_{x \to c} f(x) = f(c)$$

Teorema (Bolzano). Sea f una función continua y definida en [a,b]. Si se cumple que f(a) < 0 < f(b) o f(b) < 0 < f(a), entonces existe al menos un punto $c \in (a,b)$ tal que f(c) = 0.

Demostraci'on. Sea funa función continua y definida en [a,b] y f(a) < 0 < f(b). Sea C_+ un conjunto tal que

$$C_{+} = \{x \in [a, b]/f(x) \geqslant 0\}$$

Sea $c \in [a, b]$ el supremo del conjuto C_+ , entonces $\exists [c - \delta, c + \delta] = signo \ de \ f(c)$ (por teorema de la conservación del signo). Entonces f(c) debe ser igual a

Teorema (valor intermedio). Sea f una función continua y definida en [a,b] y $k \in (a,b)$ tal que f(a) < k < f(b), entonces existe $c \in (a,b)$ tal que f(c) = k.

Teorema (máximos y mínimos).