Joanna Riascos

Dr. Sylvain Jaume

Capstone: Big Data

April 3, 2017

Lab Ten

Comparison table between my algorithm and my competitor's algorithm

Competitor	My algorithm
The results show that the algorithm	We used multiple linear regression to better
helps improve the probability of	understand the relationship between the
successful parking and minimizes the	independent and the dependent variables.
user waiting time. Also, the results	Then we used time series to help us
depict that the proposed reservation-	identify the numerous patterns in the
based parking policy has the potential to	correlated data. As well, we performed the
simplify the operations of parking	time series analysis to get a better
systems, as well as alleviate traffic	understanding of the impact that out
congestion caused by parking searching.	variables had on the ozone layer. This
	operation took 3 mins.
Users have to select the parking lots in	Loading and cleaning the data. This
surrounding area, which are near to	operation took about 3 minutes. This
their start points. Therefore, it results in	operation was run on Zeppelin.
the reduction of average driving distance	
during the peak hours.	
With the algorithm average waiting time	Binding the interpreter (Spark) took around
is approximately 20 mins.	5 mins.
The average waiting time for the service	We switched to the R interpret to help in
to the user and the average total time of	the reduction and optimization of our code.
the user in the system, including the	This operation took around 3 mins.
•	This operation took around 3 mins.
waiting, travel, and service times	

reduces.	
The results show that the algorithm	Merged the parking and pollution dataset.
achieves better performance than the	Chose the "ozone" layer as the dependent
system with no parking planning.	variable. It took about 2 mins.
Based on the results of the simulation,	We used R in the code implementation.
we can conclude that if we only use the	We wanted to perform a time series
distance parameter in planning for	analysis and multiple linear regression.
parking, the network performance will	This operation took around 3 mins.
be lower than that of the normal	
network.	
The eveness driving distance in	We say the say time to the comment of the
The average driving distance is	We ran the multiple linear regression to
decreasing at peak time, rather than	identify our most important variables. This
increasing. That is because, after users	took about 3 mins.
learn the states of parking lots, they tend	
to reserve the nearest parking lot to their	
destination.	
The proposed network realizes the best	The ozone layer was used as the dependent
performance in the range from 60 to 70	variable and the vehicle count, total spaces,
vehicles arriving at each car park.	and garage code as the independent
	variables. This took around 2 mins.
In the range from 70 to 90 vehicles	The creation of the Resilient Distributed
arriving at each node, the pair ($\alpha = 0$ and	Dataset (RDD) pairs creates a partitioned
$\beta = 1$) realizes the best performance.	collection of elements that can be operated
	on in parallel with our dataset. This
	operation took around 3 mins.
	•
Users have to select the parking lots in	Time series analysis was performed to
paramg 1000 m	periorite to

surrounding area, which are near to their start points. Therefore, it results in the reduction of average driving distance during the peak hours. analyze and extract the meaningful statistics and characteristics and parts of the data. It was also performed to get a better understanding of the impact that our variables had on the ozone layer. This operation took around 3 mins.

The simulation of the system achieved the optimal solution when most of the vehicles successfully found a free parking space. The average waiting time of each car park for service becomes minimal, and the total time of each vehicle in each car park is reduced.

The multiple regression analysis and the time series analysis helped tremendously in identifying any potential outliers and helped us in improving our model.

References

"A Cloud-Based Smart-Parking System Based On Internet-Of-Things Technologies -

IEEE Xplore Document". <u>Ieeexplore.ieee.org</u>. N. p., 2017. Web. 4 Feb. 2017.

Patil, M., & Sakore, R. (2014). Smart parking system based on reservation. *International Journal of Scientific Engineering and Research (IJSER), ISSN (Online)*, 2347-3878.