Lecture 20

Aakash Jog

Tuesday $6^{\rm th}$ January, 2015

Contents

1	Double Integrals 1.1 Applications	2 3
2	Triple Integrals	3
	2.1 Triple Integrals on Parallelepiped Domains	3
	2.2 Triple Integrals on Arbitrary Domains	7

1 Double Integrals

Example 1. Calculate $\iint_D \sin(y^2) dA$ for D given by the triangle enclosed by (0,0), (0,1), (1,1).

Solution. The domain D is of the first and second kind.

$$D_I: 0 \le x \le 1$$
 & $x \le y \le 1$
 $D_{II}: 0 \le y \le 1$ & $0 \le x \le y$

Therefore,

$$\iint\limits_{D_I} \sin(y^2) \, \mathrm{d}A = \int\limits_0^1 \int\limits_x^1 \sin(y^2) \, \mathrm{d}y \, \mathrm{d}x$$

This form is unsolvable.

$$\iint_{D_{II}} \sin(y^2) \, dA = \int_0^1 \int_0^y \sin(y^2) \, dx \, dy$$

$$= \int_0^1 \sin(y^2) x \Big|_{x=0}^{x=y} \, dy$$

$$= \int_0^1 y \sin(y^2) \, dy$$

$$= -\frac{1}{2} \cos(y^2) \Big|_0^1$$

$$= -\frac{1}{2} \cos 1 + \frac{1}{2}$$

Theorem 1. If D is not a domain of both kinds, but $D = D_I \cup D_{II}$, s.t. the area of $D_I \cap D_{II}$ is zero, then

$$\iint\limits_{D} f(x,y) \, dA = \iint\limits_{D_{I}} f(x,y) \, dA + \iint\limits_{D_{II}} f(x,y) \, dA$$

1.1 Applications

1. If $f_x(x, y)$ and $f_y(x, y)$ are continuous in D, then the area of the surface $\sigma: z = f(x, y)$ above D is equal to

$$S(\Sigma) = \iint_{D} \sqrt{1 + (f_x(x,y))^2 + (f_y(x,y))^2} dA$$

2. If $\rho(x,y)$ is the density function of a thin body,

$$m = \iint_{D} \rho(x, y) \, \mathrm{d}A$$

$$(x_{\text{COM}}, y_{\text{COM}}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$$

where

$$M_x = \iint_D y \rho(x, y) \, dA$$
$$M_y = \iint_D x \rho(x, y) \, dA$$

2 Triple Integrals

2.1 Triple Integrals on Parallelepiped Domains

Definition 1 (Triple integral on parallelepiped domain). Consider a parallelepiped

$$B = \{(x, y, z) | a \le x \le b, c \le y \le d, e \le z \le g\}$$

Consider a partition T

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

$$c = y_0 < y_1 < \dots < y_{n-1} < y_n = d$$

$$e = z_0 < z_1 < \dots < z_{n-1} < z_n = g$$

Consider a parallelepiped

$$B_{ijk} = [x_{i-1}, x_i] \times [y_{j-1}, y - j] \times [z_{k-1}, z_k]$$

Let

$$P_{ijk}^* = (x_{ijk}^*, y_{ijk}^*, z_{ijk}^*)$$

be a point in B_{ijk} . Let

$$\Delta x_i = x_i - x_{i-1}$$

$$\Delta y_j = y_j - y_{j-1}$$

$$\Delta z_k = z_k - z_{k-1}$$

Therefore,

$$\Delta V_{ijk} = \Delta x_i \cdot \Delta y_j \cdot \Delta z_k$$

Let

$$\Delta T = \max\{\Delta x_i, \Delta y_j, \Delta z_k\}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{l} f(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*) \Delta V_{ijk} \text{ is called a Riemann triple integral sum.}$$

The double integral of f(x, y, z) over the domain of definition B is the limit, if it exists, of the Riemann double integral sum, as $\Delta T \to 0$.

$$\iiint_{R} f(x, y, z) \, dV = \lim_{\Delta T \to 0} \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{l} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V_{ijk}$$

Theorem 2 (Fubini Theorem). If f(x, y, z) is continuous on $B = [a, b] \times [c, d] \times [e, g]$, then the triple integral and six iterated integrals exist, and they are equal.

$$\iiint\limits_B f(x,y,z) \, dV = \int\limits_a^b \int\limits_c^d \int\limits_e^g f(x,y,z) \, dz \, dy \, dx = \dots$$

Example 2. Calculate

$$\iiint_{[0,1]\times[-1,2]\times[1,3]} z^2 \sin(x+y) \, dV$$

Solution.

$$\iiint_{[0,1]\times[-1,2]\times[1,3]} z^2 \sin(x+y) \, dV = \int_0^1 \int_{-1}^2 \int_1^3 z^2 \sin(x+y) \, dz \, dy \, dx$$

$$= \int_0^1 \int_{-1}^2 \frac{z^3}{3} \sin(x+y) \Big|_{z=0}^{z=3} dy \, dx$$

$$= \frac{26}{3} \int_0^1 \int_{-1}^2 \sin(x+y) \, dy \, dx$$

$$= \frac{26}{3} \int_0^1 -\cos(x+y) \Big|_{y=-1}^{y=2} dx$$

$$= \frac{26}{3} \int_0^1 (-\cos(x+2) + \cos(x-1)) \, dx$$

$$= \frac{26}{3} \left(-\sin(x+2) + \sin(x-1)\right) \Big|_0^1$$

$$= \frac{26}{3} \left(-\sin 3 + 0 - \left(-\sin 2 + \sin(-1)\right)\right)$$

$$= \frac{26}{3} \left(-\sin 3 + \sin 2 + \sin 1\right)$$

2.2 Triple Integrals on Arbitrary Domains

Definition 2 (Triple integral on arbitrary domain). Let E be an arbitrary solid which is bounded and closed in \mathbb{R}^3 and f(x, y, z) be defined on E. Consider a parallelepiped B, s.t. $E \subset B$ and construct the function F(x, y, z), s.t.

$$F(x,y,z) = \begin{cases} f(x,y,z) & ; \quad (x,y,z) \in E \\ f(x,y,z) & ; \quad 0 \notin E \end{cases}$$
 If $\exists \iiint_B F(x,y,z) \, \mathrm{d}V$, then $\exists \iiint_E f(x,y,z) \, \mathrm{d}V$, and
$$\iiint_E f(x,y,z) \, \mathrm{d}V = \iiint_B F(x,y,z) \, \mathrm{d}V$$

Definition 3 (Solid of the first kind). A solid E in \mathbb{R}^3 is called a solid of the first kind if there exist continuous functions $\varphi_1(x,y)$ and $\varphi_2(x,y)$, s.t.

$$E_{\rm I} = \{(x, y, z) | (x, y) \in D, \varphi_1(x, y) \le z \le \varphi_2(x, y) \}$$

Theorem 3. If f(x, y, z) is continuous on E_{I} ,

$$\iiint\limits_{E_{\mathrm{I}}} f(x, y, z) \, \mathrm{d}V = \iint\limits_{D} \left(\int\limits_{\varphi_{1}(x, y)}^{\varphi_{2}(x, y)} f(x, y, z) \, \mathrm{d}x \right) \mathrm{d}A$$