第2节 三角函数图象的变换 (★★)

内容提要

本节归纳三角函数图象的平移、伸缩变换有关考题,先回顾一下平移、伸缩的规则.

1. 平移(口诀: 左加右减, 上加下减)

$$\begin{cases} y = f(x) & \frac{\text{向左平移a个单位}}{\text{将x替换成}x + a} \rightarrow y = f(x + a) \\ y = f(x) & \frac{\text{向右平移a个单位}}{\text{将x替换成}x - a} \rightarrow y = f(x - a) \end{cases} \qquad \begin{cases} y = f(x) & \frac{\text{向上平移a个单位}}{\text{解析式整体加a}} \rightarrow y = f(x) + a \\ y = f(x) & \frac{\text{向下平移a个单位}}{\text{解析式整体减a}} \rightarrow y = f(x) - a \end{cases}$$

注意: 左右平移的量是加在 x 上的,不是加在整个括号里的. 例如,将函数 $y = \sin(2x + \frac{\pi}{3})$ 右移 $\frac{\pi}{6}$ 个单位得到的是 $y = \sin[2(x - \frac{\pi}{6}) + \frac{\pi}{3}]$,而不是 $y = \sin(2x + \frac{\pi}{3} - \frac{\pi}{6})$;上下平移的量是加在整个解析式后面的.

2. 伸缩

$$\begin{cases} y = f(x) & \frac{\text{横坐标变为原来的2 倍}}{\text{将x替换成}\frac{x}{2}} \\ y = f(x) & \frac{\text{横坐标变为原来的2 倍}}{\text{将x替换成2x}} \\ y = f(x) & \frac{\text{横坐标变为原来的}\frac{1}{2} \text{ 倍}}{\text{将x替换成2x}} \\ y = f(x) & \frac{\text{横坐标变为原来的}\frac{1}{2} \text{ 倍}}{\text{将x的2x}} \\ y = f(x) & \frac{\text{横坐标变为原来的}\frac{1}{2} \text{ 倍}}{\text{f(x)前乘以}\frac{1}{2}} \\ y = f(x) & \frac{\text{横坐标变为原来的}\frac{1}{2} \text{ f(x)}}{\text{f(x)前乘以}\frac{1}{2}} \\ \end{cases}$$

- 3. 求解三角函数图象变换题,需要注意两点:
- ①化同名: 当两个函数的函数名不同时,应先用诱导公式化同名,且化完后应保证x的系数正负一致.
- ②系数化"1": 例如求 $y = \sin(2x + \frac{\pi}{3})$ 和 $y = \sin(2x \frac{\pi}{4})$ 之间的平移关系时,应把 x 前的系数 2 提出去,

将 x 的系数化 1,即化为 $y = \sin 2(x + \frac{\pi}{6})$ 和 $y = \sin 2(x - \frac{\pi}{8})$,再来观察平移量.

典型例题

类型 1: 平移变换问题

【例 1】要得到函数 $y = \sin(2x + \frac{\pi}{4})$ 的图象,只需要将函数 $y = \sin 2x$ 的图象(

(A) 向左平移 $\frac{\pi}{8}$ (B) 向右平移 $\frac{\pi}{8}$ (C) 向左平移 $\frac{\pi}{4}$ (D) 向右平移 $\frac{\pi}{4}$

解析: 先把系数化 1, 以便于观察平移的量, $y = \sin(2x + \frac{\pi}{4}) = \sin 2(x + \frac{\pi}{8})$,

所以在 $y = \sin 2x$ 中将 x 变成 $x + \frac{\pi}{8}$,即把 $y = \sin 2x$ 向左平移 $\frac{\pi}{8}$ 个单位,可得到 $y = \sin(2x + \frac{\pi}{4})$ 的图象.

答案: A

【变式】为了得到函数 $y = \cos(2x + \frac{\pi}{4})$ 的图象,需把 $y = \sin(\frac{\pi}{8} - 2x)$ 的图象上所有点至少向右平移_____个

单位长度.

解析: 函数名不同, x 的系数符号也不同, 先化为相同, 可用 $\sin \alpha = \cos(\frac{\pi}{2} - \alpha)$ 来实现,

$$y = \sin(\frac{\pi}{8} - 2x) = \cos\left[\frac{\pi}{2} - (\frac{\pi}{8} - 2x)\right] = \cos(2x + \frac{3\pi}{8}) = \cos 2(x + \frac{3\pi}{16}), \quad y = \cos(2x + \frac{\pi}{4}) = \cos 2(x + \frac{\pi}{8}),$$

观察发现在
$$y = \cos 2(x + \frac{3\pi}{16})$$
 中将 x 换成 $x - \frac{\pi}{16}$ 可得到 $y = \cos 2(x + \frac{\pi}{8})$,

所以将 $y = \sin(\frac{\pi}{8} - 2x)$ 的图象至少右移 $\frac{\pi}{16}$ 个单位,可得到 $y = \cos(2x + \frac{\pi}{4})$ 的图象.

答案: $\frac{\pi}{16}$

【反思】解决平移问题,先将前后式的x系数符号、三角函数名化为相同,再观察系数化1后平移的量.

类型 II: 伸缩和平移综合变换

【例 2】将 $y = \sin(\frac{x}{2} + \frac{\pi}{3})$ 的图象向右平移 $\frac{\pi}{6}$ 个单位,再把所得图象所有点的横坐标变为原来的一半,最后将所得图象向上平移 2 个单位,则得到的函数的解析式为____.

解析: 右移 $\frac{\pi}{6}$ 个单位,在解析式中将 x 换成 $x-\frac{\pi}{6}$ 即可,这一步得到 $y=\sin[\frac{1}{2}(x-\frac{\pi}{6})+\frac{\pi}{3}]=\sin(\frac{x}{2}+\frac{\pi}{4})$;

再将横坐标变为原来的一半,需把 x 换成 2x,得到 $y = \sin(x + \frac{\pi}{4})$;

最后再上移 2 个单位,得到 $y = \sin(x + \frac{\pi}{4}) + 2$.

答案: $y = \sin(x + \frac{\pi}{4}) + 2$

【变式 1】为了得到 $y = \sin(2x - \frac{\pi}{3})$ 的图象,需将 $y = \sin x$ 的图象进行怎样的变换?

解法 1: 先平移, 再伸缩, 将 $y = \sin x$ 的图象向右平移 $\frac{\pi}{3}$ 个单位, 得到 $y = \sin(x - \frac{\pi}{3})$ 的图象;

再将所得图象上所有点的横坐标变为原来的 $\frac{1}{2}$ 倍,即可得到 $y = \sin(2x - \frac{\pi}{3})$ 的图象.

解法 2: 先伸缩,再平移,将 $y = \sin x$ 的图象所有点的横坐标变为原来的 $\frac{1}{2}$ 倍,得到 $y = \sin 2x$ 的图象;

再将所得图象向右平移 $\frac{\pi}{6}$ 个单位,得到 $y = \sin 2(x - \frac{\pi}{6})$,即 $y = \sin(2x - \frac{\pi}{3})$ 的图象.

【变式 2】为了得到 $y = \tan(2x - \frac{\pi}{3})$ 的图象,需将 $y = \tan x$ 的图象进行怎样的变换?

解法 1: 先平移,再伸缩,将 $y = \tan x$ 的图象向右平移 $\frac{\pi}{3}$ 个单位,得到 $y = \tan(x - \frac{\pi}{3})$ 的图象;

再将所得图象上所有点的横坐标变为原来的 $\frac{1}{2}$ 倍,即可得到 $y = \tan(2x - \frac{\pi}{3})$ 的图象.

解法 2: 先伸缩,再平移,将 $y = \tan x$ 的图象所有点的横坐标变为原来的 $\frac{1}{2}$ 倍,得到 $y = \tan 2x$ 的图象; 再将所得图象向右平移 $\frac{\pi}{6}$ 个单位,得到 $y = \tan 2(x - \frac{\pi}{6})$,即 $y = \tan(2x - \frac{\pi}{3})$ 的图象.

类型Ⅲ: 翻折变换

【例 3】将函数 $f(x) = \sin(3x + \varphi)(|\varphi| < \frac{\pi}{2})$ 的图象向左平移 $\frac{2\pi}{9}$ 个单位长度后得到函数 g(x) 的图象,若 f(x) 与 g(x) 的图象关于 y 轴对称,则 $\varphi = ($)

(A)
$$\frac{\pi}{3}$$
 (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{9}$ (D) $\frac{\pi}{12}$

解析: 先求出 g(x) 的解析式, 由题意, $g(x) = f(x + \frac{2\pi}{9}) = \sin[3(x + \frac{2\pi}{9}) + \varphi] = \sin(3x + \frac{2\pi}{3} + \varphi)$,

因为 f(x) 与 g(x) 的图象关于 y 轴对称,所以 g(x) = f(-x),从而 $\sin(3x + \frac{2\pi}{3} + \varphi) = \sin(-3x + \varphi)$,

上式中x的系数相反,先把系数化为相同,且保持函数名不变,可用诱导公式 $\sin\alpha = \sin(\pi - \alpha)$ 实现,

因为
$$\sin(-3x+\varphi) = \sin[\pi - (-3x+\varphi)] = \sin(3x+\pi-\varphi)$$
,所以 $\sin(3x+\frac{2\pi}{3}+\varphi) = \sin(3x+\pi-\varphi)$,

 $(\theta \sin(\omega x + \varphi_1) = \sin(\omega x + \varphi_2)(\omega \neq 0)$ 这种等式要恒成立, φ_1 和 φ_2 之间一定相差的是 2π 的整数倍,

从而
$$(\frac{2\pi}{3}+\varphi)-(\pi-\varphi)=2k\pi$$
,故 $\varphi=k\pi+\frac{\pi}{6}(k\in \mathbb{Z})$,又 $|\varphi|<\frac{\pi}{2}$,所以 $\varphi=\frac{\pi}{6}$.

答案: B

【总结】①将 f(x) 的图象沿 y 轴翻折,得到的是 f(-x) 图象,故 f(x) 和 f(-x) 关于 y 轴对称,如图 1; ② 将 f(x) 的图象沿 x 轴翻折,得到的是 -f(x) 的图象,所以 f(x) 和 f(-x) 关于 x 轴对称,如图 2.

强化训练

- 1. (2022・成都模拟・★) 要得到函数 $y = \cos(2x \frac{\pi}{4})$ 的图象,只需要将函数 $y = \cos 2x$ 的图象()
- (A) 向左平移 $\frac{\pi}{8}$ 个单位
- (B) 向右平移 $\frac{\pi}{8}$ 个单位
- (C) 向左平移 $\frac{\pi}{4}$ 个单位
- (D) 向右平移 $\frac{\pi}{4}$ 个单位

- 3. $(2022 \cdot 潍坊模拟 \cdot ★★)为了得到函数 y = sin(2x + <math>\frac{\pi}{3}$)的图象,需把 $y = sin(\frac{\pi}{4} 2x)$ 的图象上所有点至 少向右平移____个单位.
- 4. $(2022 \cdot 河南模拟 \cdot ★★★) 已知函数 <math>f(x) = \sin(\omega x + \varphi)(\omega > 0, 0 < \varphi < \frac{\pi}{2})$ 的最小正周期为 π ,且满足 $f(x+\varphi)=f(\varphi-x)$,则要得到函数 f(x)的图象,可将 $g(x)=\cos \omega x$ 的图象 (
- (A) 向左平移 $\frac{\pi}{3}$ 个单位长度 (B) 向右平移 $\frac{\pi}{3}$ 个单位长度
- (C) 向左平移 $\frac{\pi}{6}$ 个单位长度 (D) 向右平移 $\frac{\pi}{6}$ 个单位长度

5. (2022 • 厦门模拟 • ★★)将 $y = \sin(2x + \frac{\pi}{3})$ 的图象向左平移 $\frac{\pi}{6}$ 个单位,再向上平移两个单位,最后将 所有点的横坐标缩短为原来的 $\frac{1}{2}$ 倍,则所得的函数图象的解析式为()

(A)
$$y = \sin(x + \frac{2\pi}{3}) + 2$$

(B)
$$y = \sin(4x - \frac{2\pi}{3}) + 2$$

$$(C) y = \cos 4x + 2$$

(A)
$$y = \sin(x + \frac{2\pi}{3}) + 2$$
 (B) $y = \sin(4x - \frac{2\pi}{3}) + 2$ (C) $y = \cos 4x + 2$ (D) $y = \sin(4x + \frac{2\pi}{3}) + 2$

- 6. $(2022 \cdot \text{南阳模拟} \cdot \star \star \star \star)$ 若将函数 $y = \tan(\omega x \frac{\pi}{4})(\omega > 0)$ 的图象向右平移 $\frac{\pi}{12}$ 个单位长度后,与函数 $y = \tan(\omega x \frac{\pi}{3})$ 的图象重合,则 ω 的最小值为_____.
- 7. $(2022 \cdot 安徽模拟 \cdot ★★★)(多选)为了得到 <math>y = 2\tan(2x \frac{\pi}{3})$ 的图象,只需把 $y = 2\tan(\frac{\pi}{4} 2x)$ 的图象 ()
 - (A) 先沿x轴翻折,再向右平移 $\frac{\pi}{12}$ 个单位
 - (B) 先沿x轴翻折,再向右平移 $\frac{\pi}{24}$ 个单位
 - (C) 先沿y轴翻折,再向右平移 $\frac{7\pi}{24}$ 个单位
- (D) 先沿y轴翻折,再向右平移 $\frac{\pi}{24}$ 个单位

《一数•高考数学核心方法》

- 8. $(2022 \cdot 石嘴山模拟 \cdot ★★★)已知 <math>f(x) = \sin x + \cos x$,设 f'(x)是 f(x)的导函数,则下列结论错误的是()
 - (A) 将 f(x) 的图象向左平移 $\frac{\pi}{2}$ 个单位,可得到 f'(x) 的图象
 - (B)将f(x)的图象向右平移 $\frac{3\pi}{2}$ 个单位,可得到f'(x)的图象
 - (C) f(x)与 f'(x)的图象关于直线 $x = \frac{\pi}{2}$ 对称
 - (D) f(x)与 f'(x)的图象关于 y 轴对称
- 9. $(2022 \cdot 山西三模 \cdot \star \star \star \star)$ 将曲线 $C: y = \sin 2x + \cos 2x$ 向左平移 $\frac{\pi}{4}$ 个单位长度得到曲线 C_1 ,将曲线 C 向右平移 $\varphi(\varphi>0)$ 个单位长度得到曲线 C_2 ,若 C_1 与 C_2 关于 x 轴对称,则 φ 的最小值为(
- (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{2}$ (C) $\frac{2\pi}{3}$ (D) $\frac{3\pi}{4}$