Databases for Big Data

Common Tasks of Databases

- Store data
- Retrieve small bits of information
 - Quickly fetch individual pieces of data
- Process transactions
 - Changes to database which often need to happen in one group
- Produce Reports and Analysis

How Relational Databases Do

- Store Data
 - For small to moderate amounts of data
 - Great!
 - For really large data sets
 - Too big to fit on one machine
 - Problem!

How Relational Databases Do

- Retrieve small bits of information
 - Queries have to be parsed, optimized, and then run
 - Overhead can be a problem
 - Especially when total data is too big for one machine
- Process Transactions
 - Really well
 - But incur overhead to support transactions

How Relational Databases Do

- Produce Reports
 - Pretty well
- Produce Analysis
 - Long-lived queries which have to do serious number crunching are a problem

Database Communication Model

Problems with Single Server

- Data Size
- Reliability
 - What happens if server crashes?
 - What happens if the server's network is down?
- Computationally Intense Analysis
 - Slows everything down
 - Can't be parallelized

NoSQL

- Means databases which aren't oriented around SQL query support
- "Not Only SQL" backronym sometimes used
 - Some NoSQL databases have some SQL support

Goals:

- Handle simple data retrieval quicker
- Distribute data across multiple servers
- Distribute processing across multiple servers

NoSQL

- Non-relational databases
 - More flexible data representation
 - Fewer data consistency guarantees
- Support query through non-SQL means
 - Usually language-specific libraries
- Limited transaction support
 - Eventually correct rather than always consistent

NoSQL

- Data can be split across servers
 - Allows for much larger sets of data
 - Petabytes or Exabytes
- Redundant server support
 - Better reliability when failures occur

NoSQL Data Models

- Column
- Document
 - XML, JSON
- Key-Value
- Graph
- Object
- Tuple store

How NoSQL Databases Do

- Store Data
 - Great!
- Retrieve small bits of information
 - Great!
- Process Transactions
 - Not good
 - Hard to group changes into transactions
 - Limited guarantees about consistency

How NoSQL Databases Do

- Produce Reports
 - Not so good
 - Reports often require a lot of data correlation
 - Correlating distributed data is slow
- Produce Analysis
 - Depends on particular NoSQL database
 - Some aren't designed for analysis
 - If using things like Map-Reduce, great

Map-Reduce

- Google algorithm for data analysis across distributed data storage
- Great for processing highly parallel data
- Parallelizes the data processing as well

Map-Reduce Steps

Map

- At each place where relevant data lives do some initial processing
 - Basically whatever can be done without combining data

Shuffle

- By hashing map results, determine which processing server it should go to
- Send it there

Reduce

Combine received data to produce results

What's Problematic about NoSQL?

- Transactions
 - Very little support
- Reports
 - Data correlation is a pain
- Queries
 - Generally written as computer programs
 - Changes are more expensive

NewSQL

- Have cake and eat it too?
- Well, not quite.
- What do we want?
 - Parallelization
 - Transactions
 - SQL support
 - Relational Model

NewSQL

- Distribute data across servers
- SQL Queries get automatically distributed
- Transaction support
 - But transactions get slow if they touch the same data a lot

NewSQL Architecture

- May be build on top of NoSQL Database engine
 - Add transaction support at expense of speed
- May be distributed storage engine for existing SQL database
- May be new architecture
 - Build to distribute both processing and storage
 - But with extra communication between nodes to handle transactions