Tutorial 4

Exercise 3

- 5. Let $A = \{ (1+t, 1+2t, 1+3t) \mid t \in \mathbb{R} \}$ be a subset of \mathbb{R}^3 .
 - (a) Describe A geometrically.
 - (b) Show that $A = \{(x, y, z) \mid x + y z = 1 \text{ and } x 2y + z = 0\}.$
 - (c) Write down a matrix equation Mx = b where M is a 3×3 matrix and b is a 3×1 matrix such that its solution set is A.
- 7. Let P represent a plane in \mathbb{R}^3 with equation x y + z = 1 and A, B, C represent three different lines given by the following set notation:

$$A = \{ (a, a, 1) \mid a \in \mathbb{R} \}, \quad B = \{ (b, 0, 0) \mid b \in \mathbb{R} \}, \quad C = \{ (c, 0, -c) \mid c \in \mathbb{R} \}.$$

- (a) Express the plane P in explicit set notation.
- (b) Does any of the three lines above lie completely on the plane P? Briefly explain your answer.
- (c) Find all the points of intersection of the line B with the plane P.
- (d) Find the equation of another plane that is parallel to (but not overlapping) the plane P, and contains exactly one of the three lines above.
- (e) Can you find a nonzero linear system whose solution set contains all the three lines? Justify your answer.
- 8. Let $u_1 = (2, 1, 0, 3)$, $u_2 = (3, -1, 5, 2)$, and $u_3 = (-1, 0, 2, 1)$. Which of the following vectors are linear combinations of u_1 , u_2 , u_3 ?

(c) (1,1,1,1), (d) (-4,6,-13,4).

10. Let $V = \{(x, y, z) \mid x - y - z = 0\}$ be a subset of \mathbb{R}^3 .

(a) (2,3,-7,3), (b) (0,0,0,0),

- (a) Let $S = \{(1,1,0), (5,2,3)\}$. Show that span(S) = V.
- (b) Let $S' = \{(1,1,0), (5,2,3), (0,0,1)\}$. Show that span $(S') = \mathbb{R}^3$.
- 12. Let $u_1 = (2, 0, 2, -4)$, $u_2 = (1, 0, 2, 5)$, $u_3 = (0, 3, 6, 9)$, $u_4 = (1, 1, 2, -1)$, $v_1 = (-1, 2, 1, 0)$, $v_2 = (3, 1, 4, 0)$, $v_3 = (0, 1, 1, 3)$, $v_4 = (-4, 3, -1, 6)$. Determine if the following are true.
 - (a) $\operatorname{span}\{u_1, u_2, u_3, u_4\} \subseteq \operatorname{span}\{v_1, v_2, v_3, v_4\}.$
 - (d) span $\{v_1, v_2, v_3, v_4\} = \mathbb{R}^4$.
- 16. Determine which of the following are subspaces of \mathbb{R}^4 . Justify your answers.
 - (b) $\{(w, x, y, z) \mid wx = yz\}.$
 - (e) $\{(w, x, y, z) \mid w = 0 \text{ or } y = 0\}.$
 - (g) $\{(w, x, y, z) \mid w + z = 0 \text{ and } x + y 4z = 0 \text{ and } 4w + y z = 0\}.$