MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Background

- 저용량 메모리환경에 딥러닝을 적용하기 위해서는 모델 경량화가 필요함.
- 이를 위해 depthwise convolution, pointwise convolution을 결합한 Depthwise Separable Convolution제안
- depthwise convolution은 grouped convolution이 됨

Model architecture

• Depthwise convolution과 Pointwise convolution을 차례로 배치한 Depthwise Separable Convolution을 설계하여 연산량을 줄임

Model architecture

- 두 하이퍼 파라미터를 가짐
- 첫 째 하이퍼 파라미터 Width Multiplier α 는 입력, 출력의 채널에 α 를 곱하여 두께를 변화시킴
- 둘 째 하이퍼 파리미터 Resolution Multiplier ρ 는 입력의 해상도에 ρ 를 곱하여 입력 해상도를 변화시킴

Width Multiplier	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
0.75 MobileNet-224	68.4%	325	2.6
0.5 MobileNet-224	63.7%	149	1.3
0.25 MobileNet-224	50.6%	41	0.5

Resolution	ImageNet	ImageNet Million	
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
1.0 MobileNet-192	69.1%	418	4.2
1.0 MobileNet-160	67.2%	290	4.2
1.0 MobileNet-128	64.4%	186	4.2

< Resolution Multiplier ρ 에 따른 MobileNet성능 변화>

<Width Multiplier α 에 따른 MobileNet성능 변화>

Result

• 정확도를 높이기 위한 모델들과 연산량을 줄이기 위한 모델을 MobileNet과 비교하였을 때 더 좋은 성능을 보임

Model	ImageNet	Million	Million	Model	ImageNet
	Accuracy	Mult-Adds	Parameters		Accuracy
1.0 MobileNet-224	70.6%	569	4.2	0.50 MobileNet-160	60.2%
GoogleNet	69.8%	1550	6.8	Squeezenet	57.5%
VGG 16	71.5%	15300	138	AlexNet	57.2%

연산량이 작은 모델과의 성능 및 파라미터 비교

Million

Mult-Adds

76

1700

720

Million

Parameters

1.32

1.25

60

정확도가 좋은 모델과 성능 및 파라미터 비교

한줄평

• 모델의 구조가 ResNeXt와 비슷하지만 목적에 따라서 구조가 약간 달라지는 것을 알았다.