第七章

空间解析几何与向量代数

第一部分 向量代数 第二部分 空间解析几何

在三维空间中:

空间形式 — 点,线,面

数量关系 — 坐标,方程(组)基本方法 — 坐标法;向量法

第一节

第七章

向量及其线性运算

- 一、向量的概念
- 二、向量的线性运算
- 三、空间直角坐标系
- 四、利用坐标作向量的线性运算
- 五、向量的模、方向角、投影

一、向量的概念

向量: 既有大小, 又有方向的量称为向量 (又称矢量).

表示法: 有向线段 $\overline{M_1M_2}$, 或 \overline{a} , 或 a.

向量的模: 向量的大小,记作 $|\overrightarrow{M_1M_2}|$,或 $|\overrightarrow{a}|$,或 $|\overrightarrow{a}|$

向径 (矢径): 起点为原点的向量.

自由向量: 与起点无关的向量.

单位向量: 模为 1 的向量,记作 \bar{a}° 或 \mathbf{a}° .

零向量:模为0的向量,记作0,或0.

若向量 \overline{a} 与 \overline{b} 大小相等, 方向相同, 则称 \overline{a} 与 \overline{b} 相等, 记作 $\overline{a}=\overline{b}$;

若向量 \vec{a} 与 \vec{b} 方向相同或相反,则称 \vec{a} 与 \vec{b} 平行,记作 \vec{a} // \vec{b} ; 规定: 零向量与任何向量平行;

与 \vec{a} 的模相同, 但方向相反的向量称为 \vec{a} 的负向量, 记作一 \vec{a} ;

因平行向量可平移到同一直线上,故两向量平行又称两向量共线.

若k(\geq 3)个向量经平移可移到同一平面上,则称此k个向量共面。

二、向量的线性运算

1. 向量的加法

平行四边形法则:

示则: $(\vec{a} + \vec{b}) + \vec{c} / \vec{b} + \vec{c}$ $\vec{a} + (\vec{b} + \vec{c}) / \vec{a} + \vec{b}$ $\vec{a} + \vec{b} / \vec{b}$

三角形法则:

运算规律:交换律 $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

结合律 $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})=\vec{a}+\vec{b}+\vec{c}$

三角形法则可推广到多个向量相加.

2. 向量的减法

特別当
$$\vec{b} = \vec{a}$$
时,有
 $\vec{a} = \vec{a} + (-\vec{a})$
特別当 $\vec{b} = \vec{a}$ 时,有
 $\vec{a} = \vec{a} + (-\vec{a}) = \vec{0}$
三角不等式

$$|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$$

$$|\vec{a} - \vec{b}| \le |\vec{a}| + |\vec{b}|$$

3. 向量与数的乘法

 λ 是一个数 , λ 与 \vec{a} 的乘积是一个新向量, 记作 $\lambda \vec{a}$. 规定: $\lambda > 0$ 时, $\lambda \bar{a} = \bar{a}$ 间向, $|\lambda \dot{a}| = \lambda |\dot{a}|$; $\lambda < 0$ 时, $\lambda \bar{a} = \bar{a}$ 反向, $|\lambda \bar{a}| = -\lambda |\bar{a}|$; $\lambda = 0$ 时, $\lambda \vec{a} = \vec{0}$. 总之: $|\lambda \vec{a}| = |\lambda| |\vec{a}|$

运算律:结合律 $\lambda(\mu \vec{a}) = \mu(\lambda \vec{a}) = \lambda \mu \vec{a}$ 分配律 $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$ $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$

若 $\vec{a} \neq \vec{0}$,则有单位向量 $\vec{a}^\circ = \frac{1}{|\vec{a}|} \vec{a}$. 因此 $\vec{a} = |\vec{a}| \vec{a}^\circ$

定理1. 设 \vec{a} 为非零向量,则

 $\vec{a}//\vec{b}$ \Longrightarrow $\vec{b} = \lambda \vec{a}$ (λ 为唯一实数) 证: "—". 设 $\vec{a}/\!/\vec{b}$, 取 $\lambda = \pm |\vec{b}/\!/\vec{a}|$, \vec{a} , \vec{b} 同向时

取正号, 反向时取负号, 则 \vec{b} 与 $\lambda \vec{a}$ 同向, 且

$$|\lambda \vec{a}| = |\lambda| |\vec{a}| = \frac{|\vec{b}|}{|\vec{a}|} |\vec{a}| = |\vec{b}|$$

故 $\vec{b} = \lambda \vec{a}$.

再证数 λ 的唯一性. 设又有 $\vec{b} = \mu \vec{a}$, 则 $(\lambda - \mu)\vec{a} = \vec{0}$ 而 $|\vec{a}| \neq 0$,故 $|\lambda - \mu| = 0$,即 $|\lambda = \mu|$.

例1. 设 M 为 $\square ABCD$ 对角线的交点, $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AD} = \overrightarrow{b}$,

试用 \vec{a} 与 \vec{b} 表示 \overrightarrow{MA} , \overrightarrow{MB} , \overrightarrow{MC} , \overrightarrow{MD} .

#:
$$\vec{a} + \vec{b} = \overrightarrow{AC} = 2 \overrightarrow{MC} = -2 \overrightarrow{MA}$$

 $\vec{b} - \vec{a} = \overrightarrow{BD} = 2 \overrightarrow{MD} = -2 \overrightarrow{MB}$

$$\overrightarrow{MA} = -\frac{1}{2}(\overrightarrow{a} + \overrightarrow{b}) \quad \overrightarrow{MB} = -\frac{1}{2}(\overrightarrow{b} - \overrightarrow{a})$$

$$\overrightarrow{MC} = \frac{1}{2}(\overrightarrow{a} + \overrightarrow{b}) \quad \overrightarrow{MD} = \frac{1}{2}(\overrightarrow{b} - \overrightarrow{a})$$

三、空间直角坐标系

1. 空间直角坐标系的基本概念

过空间一定点o,由三条互相垂直的数轴按右手规则

在直角坐标系下

点 $M \leftarrow \stackrel{1--1}{\longrightarrow}$ 有序数组 $(x, y, z) \leftarrow \stackrel{1--1}{\longrightarrow}$ 向径 \overrightarrow{r} (称为点 *M* 的坐标)

特殊点的坐标:

原点 O(0,0,0); 坐标轴上的点 P,Q,R; 坐标面上的点 A,B,C

2. 向量的坐标表示

在空间直角坐标系下,任意向量 \vec{r} 可用向径 \overrightarrow{OM} 表示. 以 \vec{i} , \vec{j} , \vec{k} 分别表示 x , y , z 轴上的单位向量 , 设点 M 的坐标为 M(x,y,z) , 则

$$\overrightarrow{OM} = \overrightarrow{ON} + \overrightarrow{NM} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$

$$\left| \overrightarrow{OA} = x\vec{i}, \overrightarrow{OB} = y\vec{j}, \overrightarrow{OC} = z\vec{k} \right|$$

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k} = (x, y, z)$$

此式称为向量了的坐标分解式,

 $x\vec{i}$, $y\vec{j}$, $z\vec{k}$ 称为向量 \vec{r} 沿三个坐标轴方向的<mark>分向量</mark>.

四、利用坐标作向量的线性运算

设
$$\vec{a} = (a_x, a_y, a_z)$$
, $\vec{b} = (b_x, b_y, b_z)$, λ 为实数,则
$$\vec{a} \pm \vec{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$$
$$\lambda \vec{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$$

 $b_{x} = \lambda a_{x}$ $b_{y} = \lambda a_{y}$

平行向量对应坐标成比例:

当
$$\vec{a} \neq \vec{0}$$
 时,
$$\vec{b} / / \vec{a} \Longrightarrow \vec{b} = \lambda \vec{a}$$

$$\Longrightarrow \frac{b_x}{a_x} = \frac{b_y}{a_y} = \frac{b_z}{a_z}$$

例2. 求解以向量为未知元的线性方程组

$$\begin{cases} 5\vec{x} - 3\vec{y} = \vec{a} & \text{①} \\ 3\vec{x} - 2\vec{y} = \vec{b} & \text{②} \end{cases}$$

其中 \vec{a} = (2,1,2), \vec{b} = (-1,1,-2).

解:
$$2 \times (1) - 3 \times (2)$$
,得
$$\vec{x} = 2\vec{a} - 3\vec{b} = (7, -1, 10)$$
 代入②得
$$\vec{y} = \frac{1}{2}(3\vec{x} - \vec{b}) = (11, -2, 16)$$

例3. 已知两点 $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ 及实数 $\lambda \neq -1$,在 AB 直线上求一点 M,使 $\overline{AM} = \lambda \overline{MB}$.

$$\mathbf{R}$$
: 设 M 的坐标为 (x,y,z) , 如图所示

说明: 由
$$(x,y,z) = \frac{1}{1+\lambda} (x_1 + \lambda x_2, y_1 + \lambda y_2, z_1 + \lambda z_2)$$
 得定比分点公式:
$$x = \frac{x_1 + \lambda x_2}{1+\lambda}, \quad y = \frac{y_1 + \lambda y_2}{1+\lambda},$$

$$z = \frac{z_1 + \lambda z_2}{1+\lambda}$$
 当 $\lambda = 1$ 时,点 M 为 AB 的中点,于是得中点公式:
$$x = \frac{x_1 + x_2}{2}, \quad y = \frac{y_1 + y_2}{2}, \quad z = \frac{z_1 + z_2}{2}$$

五、向量的模、方向角、投影

1. 向量的模与两点间的距离公式

设
$$\vec{r} = (x, y, z)$$
, 作 $\overrightarrow{OM} = \vec{r}$, 则有
$$\vec{r} = \overrightarrow{OM} = \overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}$$

$$|\vec{r}| = |OM| = \sqrt{|OP|^2 + |OQ|^2 + |OR|^2} = \sqrt{x^2 + y^2 + z^2}$$

对两点
$$\Lambda(x_1,y_1,z_1)$$
与 $B(x_2,y_2,z_2)$,因

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$|AB| = \overline{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

例4. 求证以 $M_1(4,3,1), M_2(7,1,2), M_3(5,2,3)$ 为项点的三角形是等腰三角形.

证

$$|\overline{M_1 M_2}| = \sqrt{(7-4)^2 + (1-3)^2 + (2-1)^2} = \sqrt{14}$$

$$|\overline{M_2 M_3}| = \sqrt{(5-7)^2 + (2-1)^2 + (3-2)^2} = \sqrt{6}$$

$$|\overline{M_1 M_3}| = \sqrt{(5-4)^2 + (2-3)^2 + (3-1)^2} = \sqrt{6}$$

$$|\overline{M_2 M_3}| = |\overline{M_1 M_3}|$$

$$|\overline{M_3}| = |\overline{M_1 M_2 M_3}|$$

$$|\overline{M_2 M_3}| = |\overline{M_1 M_3}|$$

例5. 在 z 轴上求与两点 $\Lambda(-4,1,7)$ 及 B(3,5,-2)等距离的点.

解: 设该点为M(0,0,z), 因为|MA| = |MB|,

$$\sqrt{(-4)^2 + 1^2 + (7 - z)^2} = \sqrt{3^2 + 5^2 + (-2 - z)^2}$$

解得 $z = \frac{14}{9}$,故所求点为 $M(0,0,\frac{14}{9})$.

提示

- (1) 设动点为M(x, y, 0),利用|MA| = |MB|,得 14x + 8y + 28 = 0,且 z = 0
- (2) 设动点为M(x, y, z),利用|MA| = |MB|,得 7x + 4y 9z + 14 = 0

例6. 已知两点 A(4,0,5) 和 B(7,1,3),求 $\overrightarrow{AB}^{\circ}$

解:
$$\overrightarrow{AB}^{\circ} = \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} = \frac{1}{\sqrt{14}}(3,1,-2)$$
$$= \left(\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}\right)$$

2. 方向角与方向余弦

设有两非零向量 \bar{a},\bar{b} ,任取空间一点O,作 $\overrightarrow{OA}=\bar{a}$, $\overrightarrow{OB}=\bar{b}$,称 $\varphi=\angle AOB$ $(0\leq \varphi\leq\pi)$ 为向量 \bar{a},\bar{b} 的夹角.

记作
$$(\vec{a}, \vec{b}) = \varphi$$
 或 $(\vec{b}, \vec{a}) = \varphi$

类似可定义向量与轴, 轴与轴的夹角.

 α , β , γ 为其**方向角**.

方向角的余弦称为其方向余弦.

$$\cos \alpha = \frac{x}{|\vec{r}|} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$

$$\cos \alpha = \frac{x}{|\vec{r}|} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$
$$\cos \beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$$

$$\cos \beta = \frac{y}{|\vec{r}|} = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$$

$$\cos \gamma = \frac{z}{|\vec{r}|} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

方向余弦的性质: $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ 向量 r 的单位向量:

$$\vec{r}^{\circ} = \frac{\vec{r}}{|\vec{r}|} = (\cos \alpha, \cos \beta, \cos \gamma)$$

例7. 已知两点 $M_1(2,2,\sqrt{2})$ 和 $M_2(1,3,0)$, 计算向量 $\overline{M_1M_2}$ 的模、方向余弦和方向角.

$$\overrightarrow{M_1M_2} = (1-2, 3-2, 0-\sqrt{2})$$

$$= (-1, 1, -\sqrt{2})$$

$$\overrightarrow{M_1M_2} = \sqrt{(-1)^2 + 1^2 + (-\sqrt{2})^2} = 2$$

$$\cos \alpha = -\frac{1}{2}, \quad \cos \beta = \frac{1}{2}, \quad \cos \gamma = -\frac{\sqrt{2}}{2}$$

$$\alpha = \frac{2\pi}{3}, \qquad \beta = \frac{\pi}{3}, \qquad \gamma = \frac{3\pi}{4}$$

例8. 设点 A 位于第一卦限, 向径 \overrightarrow{OA} 与 x 轴 y 轴的夹角依次为 $\frac{\pi}{3}$, $\frac{\pi}{4}$, 且 $|\overrightarrow{OA}|$ = 6, 求点 A 的坐标.

解: 已知
$$\alpha = \frac{\pi}{3}$$
 , $\beta = \frac{\pi}{4}$, 则 $\cos^2 \gamma = 1 - \cos^2 \alpha - \cos^2 \beta = \frac{1}{4}$ 因点 A 在第一卦限 , 故 $\cos \gamma = \frac{1}{2}$, 于是 $\overrightarrow{OA} = |\overrightarrow{OA}| \overrightarrow{OA}^\circ = 6(\frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{1}{2}) = (3, 3\sqrt{2}, 3)$ 故点 A 的坐标为 $(3, 3\sqrt{2}, 3)$.

备用题

1. 设 $\vec{m} = 3\vec{i} + 5\vec{j} + 8\vec{k}$, $\vec{n} = 2\vec{i} - 4\vec{j} - 7\vec{k}$, $\vec{p} = 5\vec{i} + \vec{j} - 4\vec{k}$, 求向量 $\vec{a} = 4\vec{m} + 3\vec{n} - \vec{p}$ 在 x 轴上的投影及在 y 轴上的分向量.

解: 因
$$\vec{a} = 4\vec{m} + 3\vec{n} - \vec{p}$$

 $= 4(3\vec{i} + 5\vec{j} + 8\vec{k}) + 3(2\vec{i} - 4\vec{j} - 7\vec{k})$
 $-(5\vec{i} + \vec{j} - 4\vec{k})$
 $= 13\vec{i} + 7\vec{j} + 15\vec{k}$
故在 x 轴上的投影为 $a_x = 13$
在 y 轴上的分向量为 $a_y\vec{j} = 7\vec{j}$

2. 设 $\overrightarrow{m} = \overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{n} = -2\overrightarrow{j} + \overrightarrow{k}$, 求以向量 \overrightarrow{m} , \overrightarrow{n} 为边的平行四边形的对角线的长度.

解: 对角线的长为 $|\vec{m}+\vec{n}|, |\vec{m}-\vec{n}|$

$$\overrightarrow{m} + \overrightarrow{n} = (1, -1, 1)$$
$$\overrightarrow{m} - \overrightarrow{n} = (1, 3, -1)$$

$$|\overrightarrow{m} + \overrightarrow{n}| = \sqrt{3}$$
$$|\overrightarrow{m} - \overrightarrow{n}| = \sqrt{11}$$

该平行四边形的对角线的长度各为√3,√11