1. (7 points) The region R is the region bounded by $y = \ln x$ and the x-axis from x = 1 to x = e.

- (a) Set up the integral(s) with respect to x AND set up the integral(s) with respect to y needed to find the area of R.
- (b) Using the $\mathbf{disk/washer}$ \mathbf{method} , set up the integral(s) needed to find the volume when the region R is revolved about the:
 - (i) x-axis
 - (ii) y-axis
 - (iii) the line x = e
- (c) Using the **shell method**, set up the integral(s) needed to find the volume when the region R is revolved about the:
 - (i) x-axis
 - (ii) y-axis
 - (iii) the line x = e

Solution: Note the graph $y = \ln x$ can also be written as $x = e^y$.

(a)
$$A = \int_{1}^{e} (\ln x) dx$$

 $A = \int_{0}^{1} (e - e^{y}) dy.$

FIGURE 1. along x-axis

FIGURE 2. along y-axis

- (b) (i) about the x-axis, disk/washer method: $V = \int_1^e \pi (\ln x)^2 dx$
 - (ii) about the y-axis, disk/washer method: $V = \int_0^1 \pi \left[e^2 (e^y)^2 \right] dy = \int_0^1 \pi \left[e^2 e^{2y} \right] dy$
 - (iii) about x=e, disk/washer method: $V=\int_0^1\pi\left[(e-e^y)^2\right]\,dy$

1----3=hat

FIGURE 3. about x-axis

Figure 4. about y-axis

FIGURE 5. x=e

- (c) (i) about the x-axis, shell method: $V = \int_0^1 2\pi y (e e^y) dy$.
 - (ii) about the y-axis, shell method: $V = \int_1^e 2\pi x (\ln x) dx$.
 - (iii) about x = e, shell method: $V = \int_1^e 2\pi y (e x) \ln x \, dx$.

Figure 6. about x-axis

FIGURE 7. about y-axis

FIGURE 8. about x=e

2. (7 points) The region R is the region bounded by $y = e^x$ and the x-axis from x = 0 to x = 1.

- (a) Set up the integral(s) with respect to x AND set up the integral(s) with respect to y needed to find the area of R.
- (b) Using the $\mathbf{disk/washer}$ \mathbf{method} , set up the integral(s) needed to find the volume when the region R is revolved about the:
 - (i) x-axis
 - (ii) y-axis
 - (iii) the line y = e
- (c) Using the **shell method**, set up the integral(s) needed to find the volume when the region R is revolved about the:
 - (i) x-axis
 - (ii) y-axis
 - (iii) the line y = e

Solution:

(a)
$$A = \int_0^1 e^x dx$$
.
 $A = \int_0^1 1 dy + \int_1^e (1 - \ln y) dy = e - \int_1^e \ln y dy$.

FIGURE 9. along x-axis

FIGURE 10. along y-axis

- (i) about the x-axis, disk/washer method: $V = \int_0^1 \pi(e^x)^2 dx$. (b)
 - (ii) about the y-axis, disk/washer method: $V = \int_0^1 \pi(1)^2 dy + \int_1^e \pi \left[1^2 (\ln y)^2\right] dy.$
 - (iii) about y = e, disk/washer method: $V = \int_0^1 \pi \left[e^2 (e e^x)^2 \right] dx$.

Figure 11. about x-axis

FIGURE 12. about y-axis

FIGURE 13. about y=e

- (i) about the x-axis, shell method: $V = \int_0^1 2\pi y(1) dy + \int_1^e 2\pi y(1-\ln y) dy$.
 - (ii) about the y-axis, shell method: $V = \int_0^1 2\pi x e^x dx$.
 - (iii) about y = e, shell method: $V = \int_0^1 2\pi (e y)(1) dy + \int_1^e 2\pi (e y)(1 \ln y) dy$.

FIGURE 14. about x-axis

Figure 15. about y-axis

FIGURE 16. about y=e

3. (7 points) The region R is the region bounded by $y = \arcsin x$ and the x-axis from x = 0 to x = 1.

- (a) Set up the integral(s) with respect to x AND set up the integral(s) with respect to y needed to find the area of R.
- (b) Using the $\mathbf{disk/washer}$ \mathbf{method} , set up the integral(s) needed to find the volume when the region R is revolved about the:
 - (i) x-axis
 - (ii) y-axis
 - (iii) the line x = 1
- (c) Using the **shell method**, set up the integral(s) needed to find the volume when the region R is revolved about the:
 - (i) x-axis
 - (ii) y-axis
 - (iii) the line x = 1

Solution:

(a) $A = \int_0^1 \arcsin x \, dx.$ $A = \int_0^{\frac{\pi}{2}} (1 - \sin y) \, dy.$

FIGURE 17. about x-axis

FIGURE 18. about y-axis

- (b) (i) about the x-axis, disk/washer method: $V = \int_0^1 \pi(\arcsin x)^2 dx$.
 - (ii) about the y-axis, disk/washer method: $V = \int_0^{\frac{\pi}{2}} \pi \left[1^2 (\sin y)^2\right] dy$.
 - (iii) about x = 1, disk/washer method: $V = \int_0^{\frac{\pi}{2}} \pi (1 \sin y)^2 dy$.

FIGURE 19. about x-axis

FIGURE 20. about y-axis

FIGURE 21. about x=1

- (c) (i) about the x-axis, shell method: $V = \int_0^{\frac{\pi}{2}} 2\pi y (1 \sin y) dy$.
 - (ii) about the y-axis, shell method: $V=\int_0^1 2\pi x \arcsin x \, dx$.
 - (iii) about x = 1, shell method: $V = \int_0^1 2\pi (1 x) \arcsin x \, dx$.

FIGURE 22. about x-axis

FIGURE 23. about y-axis

FIGURE 24. about x=1