TensorFlow Developer Certificate in 2022: Zero To Mastery

What is Deep Learning

- Type of machine learning based on artificial neural networks in which multiple layers of processing are used to extract progressively higher level features from data
- Machine Learning is turning data into numbers and finding patterns in those numbers
- With Machine learning start with the input and ideal output
 - Then show examples of the output and the algorithm will figure out the ideal rules to get form the input to the output

Why Use Deep Learning

- Reason: For a complex problem, can you think of all the rules
- If you can build a simple rule-based system that does not require machine learning do that
- What is deep learning good for
 - Problems with long list of rules
 - Continually changing environments Can adapt to new scenarios
 - Discovering insights within large collections of data
- What is Deep Learning not good for
 - When you need explainability the patterns learned by a deep learning model are typically uninterpretable by a human
 - When the traditional approach is a better option
 - When errors are unacceptable Outputs of learning model are not always predictable
 - When you don't have much data Require large amount of data to produce great results (Well see how to get great result without much data)
- Machine learning work best with structured data and deep learning performs better on unstructured data (Natural Language Processing, Sound Waves)

What are Neural Networks

- Steps
 - Inputs Could be pictures, tweet, sound wave or anything else
 - Numerical Encoding Convert the inputs into numbers and put them into the neural network
 - Learns representation (Patterns/features/weights)
 - finds a pattern in the numbers
 - Representation Outputs transcribe the Outputs
 - Representation Outputs are the patterns that have been found.
 - Outputs We convert them into output a human can use.
- Anatomy of a neural network
 - Input layer
 - hidden layers (learn patterns in data)
 - learn the patterns between the input features and the output
 - Output Layer Outputs learned representation or prediction probabilities
- Patterns is an arbitrary term you will often hear "embedding", weights, features representation and feature vectors

What are Networks Networks

Type of learning

Supervised Learning Uses data and labels (ex. images of food and text associated with images)

- Semi-supervised Learning Only some data has labels – (train on labeled items)

Unsupervised Learning
 Only have data and find the patterns.

- Transfer Learning Taking what one deep learning model has learned and use it on another problem

What is Deep Learning Used for

Use Cases

Recommendation

Translation
 Sequence to Sequence (Translate a set of words into another set)

Speech Recognition

Computer Vision

Natural Language Processing

Classification or Regression

Regression

- Protein Folding

Is it one thing or another

independent variables produce a target variable

What is and why use TensorFlow

- End to End platform for machine learning
- Write fast deep learning code in Python/other accessible languages (able to run on GPU/TPU (Tensor Processing Unit))
- Able to access many pre-built deep learning model (TensorFlow Hub) Transfer Learning
- Whole Stack: Preprocess data, model data (build a neural network), deploy mode in your application
- Why Tensor Flow
 - Easy model building using intuitive high level APIs
 - Robust ML production anywhere. Train and deploy models in the cloud, on-premises or in the browser or devices.
 - Powerful Experimentation for research
- With tools like Colab, Keras, TensorFlow virtually anyone can solve in a day with no initial investment problems that would have required an engineering team working for a quarter and \$20K in 2014
- What is a GPU/TPU
 - GPU Better at finding patterns in numbers
 - TPU All accelerator application specific integrated developed specifically for neural network machine learning

What is a Tensor

- A numerical way to represent information usually the input and the output
- Tensor Flow (flow of the tensor)
 - Inputs
 - Numerical Encoding
 - Learns (representation (patterns/features/weights))
 - Representation outputs
 - Outputs
- Primary data structure used by tensor
 - input/output/transformations are represented as tensors

Using the @tf.function

- Turns a Python function into a callable Tensorflow graph
 - Must decorate it with @tf.function
 - Converts it into a faster version of itself by making it part of a computation graph
- See https://www.tensorflow.org/guide/function
- A transformation tool that creates Python Independent dataflow graphs out of your Python Code
 - Help to create performant and portable models and it is required to use SavedModel
- Recommendations
 - Debug in eager mode then decorate with @tf.function
 - Don't rely on on Python side effect like object mutation or list appends
 - tf.function works best with TensorFlow ops
 - NumPy and Python calls are best converted to constants

Make sure our tensor operations run really fast on a gpu

- A tensor flow tensor can be run on a GPU for faster presenting
- GPU are really fast at numerical compting
- TPU An AI Accelerator application specific integrated circuit developed for neural network machine learning for Tensorflow
- How might you use the GPU
 - tf.config.list_physical_devices() // Get a list of devices on your machine
 - tf.config.list_physical_devices("GPU")// Get list of GPU only
- Colab can provide free access to a GPU Can we do this in Pycharm
- nvidia-smi // Gives the description of the GPU
- If you have access to a cuda gpu then tensorflow will automatically use it.
- For the example there was no difference between the code and the

Introduction to Neural Network Regression with TensorFlow

- Regression : Predicting a number
 - ex. Regression Problems
 - predict coordinates of the boxes for an object detection problem
 - How much will the house sell for.
 - predict the cost of medical insurance for an individual given their demographics (age, sex gender, race)
 - Tell a regression Problem How much, How many
- In Machine Learning and Deep Learning how you define the problem will determine how you approach a problem
- Notes
 - Dependent Variables is the outcome we are trying to predict
 - Independent variables The features as a number
 - Example The number of bedrooms In a house
 - Example The size of the house
 - Regression Analysis A statistical process for estimating the relationships between a dependent variable and one more independent variables

Inputs and outputs of a neural network regression problems

- Predict the sales price of the house
 - Inputs: # of bedrooms, #of bathrooms, # of Garages
 - How do we encode the inputs ? ex. (4 bedrooms, 2 bathtrooms, 2 garages)
 - Could use Hot Encoding [[0,0,0,1], [0,1,0,0], [0,1,0,0]] 1-based to encode the input features
 - Output The prediction
 - Comparing the predicted to the actual make the prediction better known as supervised learning
 - The shape should be [3] and the output is going to be [1] (For regression the output is one value)
 - Question: Why is the input shape 3 and [3,1,4]
 - Answer 3 input vectors 1 for bedroom, 1 for bathroom, 1 for garage
- Looks at many examples and Input features and output prices it will learn the relationship between them
- Often an algorithm exist that is similar to your problem

Anatomy and Architecture of a neural network Regression Model

- Hyperparameter Setting that can be changed. (A dial on your neural network to see if it improves)
- Hyperparameters for Regression

Input Layer Shape
 Same shape as number of features (3 (bedrooms, bathrooms, car)

- Hidden Layers minimum 1, maximum = unlimited

Neurons per hidden layerProblem specific generally 10 to 100

Output Layer Shape
 Same shape as desired prediction shape (1 for house price)

- Hidden Activation Usually ReLU (rectified linear Unit)

Output Activation
 None, ReLU, logistic/tanh

Loss Function
 MSE (mean square error) or MAE (mean absolute error) Huber (combination of MAE/MSE) if outliers

- Optimizer SGD (stochastic gradient descent), Adam

- Improves the predictions
- A hyperparameter in machine learning is something a data analyst or devel can set themselves
- A Parameter describes something a model learns on its won (a value not explicity set by an analyst)

Anatomy and Architecture of a neural network Regression Model

```
    Tensorflow Code
```

```
model = tf.keras.Sequential({
                                                                                                            // Create the model
       tf.keras.Input(shape=-(3,)),
       tf.keras.layers.Dense(100, activation="relu"),
                                                          // Contains neurons per hidden layer, activation parameter
       tf.keras.layers.Dense(100, activation="relu"),
                                                          // 100 is the number of neurons
       tf.keras.layers.Dense(100, activation="relu"),
       tf.keras.layers.Dense(1, activation=None)])
                                                                   // Output
       // Compile the model
model.compile(
       loss=tf.keras.losses.mae.
                                                          // How wrong the relationships are
       optimizer = tf.keras.optimizers.Adam(lr-0.0001),
                                                                   // How to improve the patterns to reduce the lost function
       metrics["mae"])
// Fit the Model
                                                                   // Train
model.fit(x train, y train, epochs=100)
```

Regression Input and Output Shapes Steps in Modeling Tensorflow

- The input shape is the shape of your data that goes into the model.
- The output shape is the shape of your data you want to come out of your model.
- Steps in Modeling Tensor Flow
 - 1. Create a model
 - define the input and output layers as wells as the hidden layers of a deep learning model
 - Can be a functional or Sequential API
 -

 Can import a pretrained model relevant to your problem
 - 2. Compiling a model

 - Loss -- how wrong your models's predictions are compared to the truth labels (you want to minimize this)<br
 - Optimizer -- How your model should update its internal patterns to better make predictions
br>
 - Metrics -- Human Interpretable values for how well your model is doing.

 Metrics -- Human Interpretable values for how well your model is doing.
 - 3. Fitting a model
 - letting the model try to find patterns between X & y (features and labels)

 - Fit the model to the training data so it can discover patterns
 - Epochs -- how many times the model will go through all of the training sample
 - 4. Evaluate the model on the testing data (how reliable are our model's predictions)
 - Common Ways to improve a deep model

Introduction to neural network

- Examples
 - Is the email spam or not spam
 - Is it one thing or another
 - binary classification
 - Is the photo of sushi,k steak or pizza
 - Multi-class classification
 - What Tags should this article have
 - Mutlilabel classification
 - multiple label options per sample.

What is Tensorflow Developer Certification Why the Tensor Flow Certification How to prepare (your brain) for the Tensorflow Developer Certification

- Can you build a tensorflow model for
 - Regression
 - Image Classification
 - NLP Classification
 - Time Series Forecasting
- Given a certain dataset can you access what problem that data is trying to solve and then preprocess and build the model
- Why the Tensor Flow Certification
 - Test your skills and Show Case skills and Tensorflow Certicate Network
- How to prepare (your brain) for the Tensorflow Developer Certification
 - Make sure you go through the Welcome to Mastery TensorFlow for Deep Learning Book
 - Read the TensorFlow Developer Certification
 - Create a notebook and map the skills checklist with running code examples

How to Compare your computer for TensorFlow Certification

- Read the setup environment to take the Tensorflow Develop Certificate Exam
- · Go through PyCharm Tutorials
- Make sure Tensor Flow Pycharm
 - Train the model and save it to .h5 format
 - When submitted it will look for a directory
- If example model script runs in under 5 to 10 minutes in PyCharm your local machine should be good to go.
 - Found in the github image classification test.py
 - If the script takes longer than 5 minutes
 - Run the code in COLAB and put the model in the correct space for saving
- Datasets are not too large
- Troubleshooting Tidbits
 - .Input and Output Shapes print these out if your stuck
 - Input and Output Datatypes TensorFlow usually prefers float32
 - Output Activation Functions for classification sigmoid (binary classification) vs softmax (mutli class classification) which one should you use
 - Loss Functions For Classification sparse_categorical_crossentropy vs categorical_crossentropy which should be used
 - Way to improve the model –

Machine Learning Primer Al/Machine Learning, DataScience

- The harder tasks are to describe the harder it is to tell machines what to do.
- With large amount of data, we can give the data to machine and allow them to make decisions.
- Al/Machine Learning/Data Science
 - Starts with AI
 - narrow Al Machines can be just as good or better than humans at a specific task
 - General Al
 - Machine Learning Subset of Al
 - An approach to achieve intelligence by finding patterns in a set of data
 - Have machines perform task or find data without being explicitly programmed
 - Deep Learning A subset of Machine Learning
 - Data Science
 - Analyzing Data and then doing something with it.

How Did We Get Here

Steps in a full machine learning project

How did we get here Types of Machine Learning

- Hardest part is grabbing the data. We need to find it and understand it.
 - Some data is noisy and messy. We must clean in it.
- Type of Machine Learning
 - Supervised

Classification
 Is it an apple or pear

Regression Predicting stock prices

Unsupervised

Clustering Create groups of similar data

Association Rule Learning
 Associate different things to predict what a customer might buy

Reinforcement

Skill Acquisition
 Play a game and get a higher

· Real Time Learning

What is Machine Learning

- Data + Machine Algorithm learning different patterns in the data and then use the algorithm (including the data it learned) and make predictions about the future
- Models Machine Learning Algorithms with the data (patterns)
- Data Science Run experiments on data with the hope of finding insights.
 - Data Analysis Looking at set of data and gaining an understanding by looking at different examples
 - visualizations
 - Data Science Running experiments on a set of data with the hope of finding actionable insights within it.
 - Machine Learning

Machine Learning – 6 Steps for Machine Learning

- See the Image a few slides above
- Steps
 - Problem Definitions
 - What kind of problem is it: Supervised, Unsupervised, Classification or Regression
 - Data
 - What kind of data do we have (Structured, Unstructured (Images, Audio))
 - Evaluation
 - What success means to us
 - What is the percentage accurate model that we need?
 - Features
 - · What do we know about the data (types Categorical and Derived)
 - Modeling
 - · What machine algorithm should we use
 - Algorithms have already been coded.
 - Focus: Figure out the right model for the right kind of problem.
 - Experimentation
 - How can we improve / What to try next

Types of Machine Learning Problems

Problem Definition

- When shouldn't you use machine learning Will a simple hand-code instruction baed system work
- Main Types of Machine Learning
 - Supervised Learning
 - Classification Is it one thing or another
 - Binary Classification Two Options
 - Multi-Classification more than two options
 - Regression A Continuous Number ex How many people will buy this app.
 - Unsupervised Learning
 - Example
 - The purchase history of all customers at your store and your marketing teams want to send out a promotion Who is interested in it.
 - You apply the label to the data programatically
 - Called Clustering Putting groups of similar examples together
 - Transfer Learning
 - Find patterns in Data then Machine Learning must make millions of calculations
 - Example Finding objects in a picture can be reused (What Tree look like, grass)
 - Reinforcement Learning
 - Have a computer program perform actions in a defined space and reward/punish
 - Example : Chess, Asteroids
 - Yet to find its way into many applications

Types of Machine Learning Problems

- Align the problem you are trying to solve to a machine learning problem
 - Supervised Learning Know your inputs and output
 - Unsupervised Learning Inot ot sure of the outputs, but I have inputs. Trying to group them in some way
 - Transfer Learning Can I leverage an older machine learning model.

Types of Data

- The more data you have the better chances to find more patterns
- What kind of data do we have
 - Structured
 - Unstructured
 - Static / Streaming
 - Static data does not change over time.
 - Usually you want a lot of these examples
 - Streaming
 - Data constantly over time.
 - Example. New Headlines
- Data Science Workflow
 - Open a CSV File in a Ipython Notebook
 - Use pandas for data analysis and visualizations from mathplotlib
 - Build machine learning models using SciKit

Types of Evaluation Features of Data

- A measure of how well a machine learning algorithm predicts the future
- Difference Evaluation Metrics

-	Classification	Regression	Recommendation	
-	Accuracy	Mean Absolute Error (MAE)	Precision at K	(Only care about the top N)
-	Precision	Mean Squared Error (MSE)		
_	Recall	Root Mean Squared Error (RMS	SF)	

- Features of Data
 - What do we already know about data
 - Features Different forms of data within Structured/Unstructured Data
 - Feature Variables Features of the data
 - Used to predict the target variables
 - Different Kinds
 - Numerical Features
 - Categorical Features
 - Derived Creates a new feature using the existing ones
 - Feature Engineering Looking at different features of data and creating new ones/altering existing one
 - Unstructured Data Has features, but are less obvious
 - A feature works best in machine learning algorithm if many of the samples have it
 - Feature Coverage How many sample have different features per column
 - Want at least 10% Coverage at least

Splitting Data

- 3 parts to modeling
 - Choosing and training a model
 - Tuning the model
 - Model Comparison
- Based on problem and data what model should we use
- Most important concept in machine learning Training, Validation and test Sets
- Your Data should be split into

-	Training	Train your model on this	usually 70 to 80 %
-	Validation	Tune your model on this	usually 10 to 15 %
-	Test	Test and compare on this	usually 10 to 15 %

• Generalization – Ability for a machine learning model to perform well on data it has not seen before.

Picking the Model

- Working with Structured Data
 - Decision Trees
 - Random Forest
- Unstructured
 - Deep Learning
 - Neural Networks
 - Transfer Learning
- Train the model by lining up the inputs with the outputs
 - Biggest goal is to minimize time between experiments
 - Use a small amount of data first to decrease the time

Tuning the Model

- Many model have different hyper parameters that can be adjusted.
 - Example Random Forest will adjust the number of trees
 - Example Neural Network will allow the adjustment of the hidden layers
- Tuning can take place on training or validation data sets
- Machine learning models have hyperparameters you can adjust

Model Comparison

- How will a model perform in the real world
- Using your test set it will show how you model generalizes (gets the values right even if it never was tested/validated with those inputs)
 - A good model will have the same performance on the training and test set and validation
 - Not uncommon to see a slight decline in performance from the model
 - not uncomment to see a degradation in conformance on test set
 - Should be worried about
 - Underfitting Training set is higher than test set
 - Overfitting Test Set is higher than training set
 - learn the patterns too well in the dataset
 - Overfitting and Underfitting are examples of a model not be able to generalize well
 - Main reason for Underfitting and Overfitting
 - When the Training Data leaks into Test Data results in overfitting
 - Data Mismatch Data is different (having different features) then the test set results in underfitting
 - Fixing for underfitting
 - Try a more advanced model
 - increase model hyperparameters
 - Reduce amount of features data could have too many features and the model is struggling to find patterns
 - Train Longer sometimes they take longer

Types of Machine Learning Problems

- Fixes for overfitting
 - Collect more data
 - Try a less advanced model
 - The current model could model your data too well and remove the generalization
- When comparing models make sure the dataset is the same
- Keep the test sets separate at all cost do not use them in the validation and test data sets
- One best performance metric does not equal best model

Overfitting and Underfitting Definitions

- Poor performance on training data means the model hasn't learned properly
 - underfitting.
 - Try a different model, improve the existing one through hyperparameter or collect more data.
- Great performance on the training data but poor performance on test data means your model doesn't generalize well.
 - Your model may be overfitting the training data.
 - Try using a simpler model or making sure your the test data is of the same style your model is training on.
- Another form of overfitting can come in the form of better performance on test data than training data.
 - Reaons
 - This may mean your testing data is leaking into your training data (incorrect data splits)
 - you've spent too much time optimizing your model for the test set data.
 - Ensure your training and test datasets are kept separate at all times
 - avoid optimizing a models performance on the test set (use the training and validation sets for model improvement).

Tools We Will Use

- Anaconda Data Science store for your computer
- Jupyter Notebooks
- Data Analysis
 - Pandas
 - Mathplot lib
 - Numpy
- Machine Learning
 - Tensor Flow
 - PyTorch
 - Scikit Learn
 - dmlc XGBoost
 - Cat Boost
- Jupyter Notebooks Jupyter and Anaconda