

Pràctica 3: Disseny RTL i Verificació

Durada: 4 sessions

Introducció

En la pràctica 2 ens vàrem familiaritzar amb el flux de disseny aplicat a un registre de desplaçament. Durant les pròximes 4 sessions dissenyarem i verificarem la resta de mòduls que formen el mestre l²C.

Objectius

- Codificar RTL diferents estructures descrites en base a les especificacions donades.
- Verificació funcional pre- i post-síntesis en FPGA.

P3 Sessió 1: Temporitzador

Introducció

El següent mòdul del mestre I^2C que dissenyarem serà el temporitzador, que s'utilitza per gestionar les temps de bit del bus I^2C .

Objectius

- Codificar RTL en base a les especificacions donades.
- Verificació pre- i post-síntesis.

Material

El material de suport el podeu descarregar del campus virtual:

Plantilla informe de la pràctica.

Tasques a realitzar

1. Dissenyeu el temporitzador de la **Figura 5** (pràctica 2) anomenat *i2c_bit_timer* basat en un comptador regressiu cíclic amb les següents característiques:

- Restabliment o reset: Ha de ser asíncron i actiu per nivell baix i ha de posar tant el valor del comptador com de la sortida a 0.
- Parametritzable: El nombre de bits del comptador ha de ser parametrizable.
- Límit: El valor inicial del ha de ser configurable, mitjançant una entrada de N-bits que anomenarem *Ticks*.
- Auto-reinici: Un cop el comptador arriba al 0, aquest ha de reiniciar-se per començar un nou cicle de comptatge.
- Reinici forçat: El temporitzador ha de poder tornar al valor inicial en qualsevol moment i mantenir-se en aquest mentre la senyal de Start estigui activa.
- Parada: El temporitzador ha de poder parar-se sempre que no s'estigui reiniciant. Per fer-ho, heu d'incloure una entrada que anomenarem Stop, activa per nivell alt.
- Sortida: El temporitzador ha de tenir una sortida anomenada *Out*. Aquesta sortida s'ha d'activar quan es reinicia el valor al temporitzador.
- **2.** Dissenyeu el testbench (*tb_timer.v*) per verificar el correcte funcionament del temporitzador que utilitzi tasques i lògica per automatitzar-ne la verificació. Creeu una tasca que:
 - Verifiqui el nombre de cicles de rellotge entre dos polsos de sortida consecutius.
 - Indiqui el temps transcorregut entre dos polsos consecutius. Ajuda: \$realtime \$time \$monitor \$display \$while.
 - Tingui una entrada per escollir el límit de temporitzador.
 Ajut: quan límit és 0 cas especial! Mostreu un missatge que ho digui.
 - Tingui una entrada per escollir quants cicles es para el temporitzador duran el comptatge.
 - Ajut 1: 0 cicles vol dir que no es para.
 - Ajut 2: feu que es pari quan el comptador va per la meitat.
- 3. Simuleu i verifiqueu el correcte funcionament per un temporitzador de 4-bits pels valors 0, 1, 8 i 15.
- **4.** Sintetitzeu un temporitzador de 8 bits amb el Quartus i simuleu la *netlist* generada per verificar-ne el funcionament per una **Cyclone V model 5CEBA4F23C7N**. Pareu atenció als missatges d'informació i alertes. No us oblideu del fitxer de restriccions (SDC). Els pins d'entrada i sortida han d'anar connectats als següents elements.
 - SW0 SW7 per introduir el nombre de cicles entre polsos.

- Key0 per generar el rellotge del sistema.
- Key1 com a reset del sistema.
- Key2 com a set del sistema.
- LED0 per connectar el senyal d'interrupció del temporitzador.

Nota: consulteu el manual de la placa de desenvolupament per saber quins pins de configuració es corresponen amb cadascun dels elements esmentats.

5. Comproveu que el disseny compleix els requisits temporals.

Entrega

Fer demostració al professor un cop s'ha implementat a la FPGA. En cas de no poder fer la demostració a l'aula, heu de gravar un vídeo que adjuntareu dins la carpeta doc.

Un fitxer ZIP amb el directori de treball:

- 1. A la carpeta **rtl**: el codi RTL sintetitzable.
- 2. A la carpeta **tb**: el codi del testbench complet.
- 3. A la carpeta **misc**: el fitxer de restriccions temporals (.sdc).
- **4.** Dins la carpeta **doc** hi heu de posar l'informe complimentat que trobareu al campus virtual, que constarà de:
 - Enumerar les tasques del testbench i explicar breument què fan.
 - Captures de les simulacions, amb una explicació breu i ressaltant les zones d'interès.
 - Captura del terminal del ModelSim amb els missatges de l'auto verificació.
 - Captura del esquema RTL resultant de la síntesi amb el Quartus (expandiu les caixetes!).
 - Taula on consti frequència màxima d'operació, nombre de portes utilitzades de cada tipus i percentatge d'ocupació de la FPGA.