Programme n°8

ELECTROCINETIQUE

EL4 Régime transitoire du second ordre (Cours et exercices)

Remarque l'oscillateur mécanique sera vu plus tard.

<u>EL5 Les dipôles linéaires en régime sinusoïdal forcé, impédances complexes</u> (Cours et exercices simples et guidés)

- Régime sinusoïdal permanent
- Représentation d'une grandeur sinusoïdale Valeurs instantanées
 - valeurs iristantanees
 - Représentation complexe \rightarrow Définitions
 - → Intérêt
 - → Lois de Kirchhoff

- Dipôles idéaux R, L et C
- Résistance R
- Inductance L
- Capacité C
- Utilisation des impédances complexes- Associations de deux impédances
- → Association série
- → Association parallèle

- Modèle générateur
- Les diviseurs en régime sinusoïdal
- → Diviseur de tension
- → Diviseur de courant
- → Exemples

- La résonance Définition
 - Résonance en courant dans un circuit RLC série
- → Expression du courant
- → La bande passante
- \rightarrow Etude de la phase
- Résonance en tension aux bornes du condensateur
- → Mise équation→ Etude de la résonance

Remarque l'oscillateur mécanique sera vu plus tard.

Impédances complexes.	Établir et connaître l'impédance d'une résistance, d'un condensateur, d'une bobine.
Association de deux impédances.	Remplacer une association série ou parallèle de deux impédances par une impédance équivalente.
Oscillateur électrique ou mécanique soumis à une excitation sinusoïdale. Résonance.	Utiliser la représentation complexe pour étudier le régime forcé. Relier l'acuité d'une résonance au facteur de qualité. Déterminer la pulsation propre et le facteur de qualité à partir de graphes expérimentaux d'amplitude et de phase.
	Mettre en œuvre un dispositif expérimental visant à caractériser un phénomène de résonance.

CINETIQUE CHIMIQUE

CX2 Cinétique formelle, réaction et ordre (Cours et exercices)

TP

Prise en main de l'oscilloscope : approche de la synchronisation, problème de masse...

Circuit RC régime libre et réponse à un échelon de tension

Circuit RCL série en régime transitoire, observation des différents régimes.