ESTATÍSTICA

Michelle Hanne Soares de Andrade

michellehanne@cefetmg.br
1º. SEMESTRE 2018

Distribuição Normal

Distribuição Normal

Distribuição Normal

Se X é uma variável aleatória com distribuição normal de média μ e variância σ^2 , a função densidade de probabilidade de X é definida por

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{\sigma^2}(x-\mu)^2},$$

para $-\infty < x, \mu < +\infty$ e $\sigma > 0$. Notação: $X \sim N(\mu, \sigma^2)$.

Descrição de f(x) de uma N(0,1)

Distribuição Normal

Padronização

Se $X \sim N(\mu, \sigma^2)$ e $Z \sim N(0, 1)$ (normal padrão), então

$$P(X \leq X) = P\left(Z \leq \frac{X - \mu}{\sigma}\right),$$

ou seja, todos os cálculos podem ser feitos pela normal padrão.

As probabilidades na curva Normal são calculadas com o auxílio de uma tabela.

Como existem infinitas combinações dos valores para μ e σ , seria inviável tabelar as probabilidades de todas as distribuições Normais possíveis.

Sendo assim, uma única variável Normal possui suas probabilidades tabeladas: a variável Z com média igual a 0 e desvio-padrão igual a 1.

$$Z \sim \text{Normal } (\mu=0 ; \sigma=1)$$

A variável aleatória Normal com média μ=0 e desvio-padrão σ=1 é chamada de

Variável Normal Padrão

Função de distribuição acumulada: Tabela Z

$$z \ge 0$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939	0.532922	0.527903	0.531881	0.535856
0.1	0.539828	0.543795	0.547758	0.551717	0.555760	0.559618	0.563559	0.567495	0.571424	0.575345
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
0.3	0.617911	0.621719	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802338	0.805106	0.807850	0.810570	0.813267
0.9	0.815940	0.818589	0.821214	0.823815	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
1.0	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976	0.878999	0.881000	0.882977
1.2	0.884930	0.886860	0.888767	0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475
1.3	0.903199	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736
1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
1.5	0.933193	0.934478	0.935744	0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083
1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486
1.7	0.955435	0.956367	0.957284	0.958185	0.959071	0.959941	0.960796	0.961636	0.962462	0.963273
1.8	0.964070	0.964852	0.965621	0.966375	0.967116	0.967843	0.968557	0.969258	0.969946	0.970621
1.9	0.971283	0.971933	0.972571	0.973197	0.973810	0.974412	0.975002	0.975581	0.976148	0.976705
2.0	0.977250	0.977784	0.978308	0.978822	0.979325	0.979818	0.980301	0.980774	0.981237	0.981691
2.1	0.982136	0.982571	0.982997	0.983414	0.983823	0.984222	0.984614	0.984997	0.985371	0.985738
2.2	0.986097	0.986447	0.986791	0.987126	0.987455	0.987776	0.988089	0.988396	0.988696	0.988989
2.3	0.989276	0.989556	0.989830	0.990097	0.990358	0.990613	0.990863	0.991106	0.991344	0.991576
2.4	0.991802	0.992024	0.992240	0.992451	0.992656	0.992857	0.993053	0.993244	0.993431	0.993613
2.5	0.993790	0.993963	0.994132	0.994297	0.994457	0.994614	0.994766	0.994915	0.995060	0.995201

Função de distribuição acumulada: Tabela Z

$$z \leq 0$$

z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.03	-0.01	-0.00
-2.5	0.004799	0.004940	0.005085	0.005234	0.005386	0.005543	0.005703	0.005868	0.006037	0.006210
-2.4	0.006387	0.006569	0.006756	0.006947	0.007143	0.007344	0.007549	0.007760	0.007976	0.008198
-2.3	0.008424	0.008656	0.008894	0.009137	0.009387	0.009642	0.009903	0.010170	0.010444	0.010724
-2.2	0.011011	0.011304	0.011604	0.011911	0.012224	0.012545	0.012874	0.013209	0.013553	0.013903
-2.1	0.014262	0.014629	0.015003	0.015386	0.015778	0.016177	0.016586	0.017003	0.017429	0.017864
-2.0	0.018309	0.018763	0.019226	0.019699	0.020182	0.020675	0.021178	0.021692	0.022216	0.022750
-1.9	0.023295	0.023852	0.024419	0.024998	0.025588	0.026190	0.026803	0.027429	0.028067	0.028717
-1.8	0.029379	0.030054	0.030742	0.031443	0.032157	0.032884	0.033625	0.034379	0.035148	0.035930
-1.7	0.036727	0.037538	0.038364	0.039204	0.040059	0.040929	0.041815	0.042716	0.043633	0.044565
-1.6	0.045514	0.046479	0.047460	0.048457	0.049471	0.050503	0.051551	0.052616	0.053699	0.054799
-1.5	0.055917	0.057053	0.058208	0.059380	0.060571	0.061780	0.063008	0.064256	0.065522	0.066807
-1.4	0.068112	0.069437	0.070781	0.072145	0.073529	0.074934	0.076359	0.077804	0.079270	0.080757
-1.3	0.082264	0.083793	0.085343	0.086915	0.088508	0.090123	0.091759	0.093418	0.095098	0.096801
-1.2	0.098525	0.100273	0.102042	0.103835	0.105650	0.107488	0.109349	0.111233	0.113140	0.115070
-1.1	0.117023	0.119000	0.121001	0.123024	0.125072	0.127143	0.129238	0.131357	0.133500	0.135666
0.1-	0.137857	0.140071	0.142310	0.144572	0.146859	0.149170	0.151505	0.153864	0.156248	0.158655
-0.9	0.161087	0.163543	0.166023	0.168528	0.171056	0.173609	0.176185	0.178786	0.181411	0.184060
-0.8	0.186733	0.189430	0.192150	0.194894	0.197662	0.200454	0.203269	0.206108	0.208970	0.211855
-0.7	0.214764	0.217695	0.220650	0.223627	0.226627	0.229650	0.232695	0.235762	0.238852	0.241964
-0.6	0.245097	0.248252	0.251429	0.254627	0.257846	0.251086	0.264347	0.267629	0.270931	0.274253
-0.5	0.277595	0.280957	0.284339	0.287740	0.291160	0.294599	0.298056	0.301532	0.305026	0.308538
-0.4	0.312067	0.315614	0.319178	0.322758	0.326355	0.329969	0.333598	0.337243	0.340903	0.344578
-0.3	0.348268	0.351973	0.355691	0.359424	0.363169	0.366928	0.370700	0.374484	0.378281	0.382089
-0.2	0.385908	0.389739	0.393580	0.397432	0.401294	0.405165	0.409046	0.412936	0.416834	0.420740
-0.1	0.424655	0.428576	0.432505	0.436441	0.440382	0.444330	0.448283	0.452242	0.456205	0.460172
0.0	0.464144	0.468119	0.472097	0.476078	0.480061	0.484047	0.488033	0.492022	0.496011	0.500000

A Tabela Normal Padrão (Tabela Z) Parte Negativa

Linha: Parte inteira e primeira casa decimal de *z*

	0.00	0.01	0.02	0.03 —	Coluna: Segunda casa decimal de z
-2.9	0.0019	0.0018	0.0017	0.0017	
-0.8	0.2119	.: 0.2090	0.2061	0.2033	

A Tabela Normal Padrão (Tabela Z) Parte Positiva

Linha: Parte inteira e primeira casa decimal de *z*

)	z	0.00	0.01	0.02	0.03	Coluna: Segunda casa decimal de z
	0	0.5000	0.5039	0.5039	0.51197	
	: 1.5	0.9331	0.9344	0.9357	0.93699	

Exemplo: Seja Z uma v.a. normal padronizada. Calcule:

$$P(Z < -1.97) = ?$$

P(Z < -1.97) = 0.0244, obtida direto da tabela.

$$P(Z > 1.84) = ?$$

$$P(Z > 1.84) = P(Z < -1.84) = 0.0329,$$

obtida direto da tabela
e por simetria.

$$P(-1.97 < Z < 0.86) = P(Z < 0.86) - P(Z < -1.97)$$

= 0.8051 - 0.0244
= 0.7807

Cálculo de percentis na curva Normal

Percentil de ordem 2.5

Que valor de Z na tabela Normal Padrão deixa uma área de 0.0250 abaixo dele ?

Ou seja, quem é a tal que P[Z < a] = 0.0250 ?

Como usar a tabela Normal Padrão para calcular probabilidades em uma curva Normal qualquer?

Propriedades da Distribuição Normal

Área fixa entre intervalos simétricos

Cálculo de Probabilidade na Curva Normal

Considere uma variável aleatória X com distribuição Normal (μ, σ) . Ou seja, $X \sim \text{Normal}(\mu, \sigma)$

Probabilidade de X estar entre x_1 e x_2 : P($x_1 < X < x_2$)

Cálculo de Probabilidade na Curva Normal

Curvas Normais diferentes -> áreas diferentes

Distribuição Amostral

Duas amostragens oriundas da mesma população quase sempre terão estatísticas diferentes.

Diferentes amostragens produzirão amostras com estatísticas distintas.

Amostragens são probabilísticas, portanto, estatísticas baseadas nas amostragens também o são.

Se as características da amostragem e a composição da população são conhecidas, a probabilidade de cada resultado pode ser determinada.

 Quando o tamanho da amostra (n) aumenta, independente da forma de distribuição da população, a distribuição amostral da média da amostra (x) converge para uma distribuição normal.

POPULAÇÃO Histogramas de distribuição da média para amostras de n = 10algumas populações n = 25

Fonte: BUSSAB & MORETTIN. Estatistica Básica. São Paulo, Atual, 3ª edição, 1986, pp. 197.

- Se a média de uma amostra for um estimador razoável não será necessário conhecer a f.d.p. da população, pois a distribuição de probabilidades da média das amostras será aproximadamente uma normal.
- A média das distribuições amostrais será igual à da população (μ) e a sua variância será dada por σ^2/n . Matematicamente:

$$E(\bar{x}) = \mu$$
 $Var(\bar{x}) = \frac{\sigma^2}{n}$ $\sigma(\bar{x}) = \frac{\sigma}{\sqrt{n}}$

Distribuição Amostral da Média

Seja X uma variável aleatória (v.a.) com média μ e variância σ^2 , e seja (X1 , X2 ,..., Xn) uma Amostra Aleatória Simples (AAS) de X, de tamanho n, então:

$$E(\bar{x}) = \mu$$

$$\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n} \Rightarrow \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

 Ou seja, quanto maior a amostra, menor o desvio padrão da distribuição amostral.

Distribuição Amostral da Média - Exemplo

		Amplitude d	Dog médico				
n	mé	dias	desvios	-padrão	Das médias		
	mín	máx	mín	máx	média	dpad	
15	1,550	1,777	0,085	0,239	1,672	0,039	
30	1,610	1,738	0,101	0,213	1,672	0,027	
60	1,624	1,720	0,114	0,182	1,671	0,019	
150 1,643		1,703	0,132	0,168	1,669	0,012	

População =
$$X \sim N(1,67; 0,15^2)$$

Parece haver alguma relação entre o desvio-padrão das médias e o tamanho da amostra (n)?

 Serão exibidos construídos histogramas para a distribuição de X ~ B(n, p) variando-se o número de ensaios n e também a probabilidade de sucesso p.

Nota-se pelos gráficos que à medida que n cresce a distribuição de X ~ B(n, p) se aproxima da distribuição de Y ~ $N(\mu_X, \sigma^2_X)$ em que $\mu_X = np$ e $\sigma^2_X = np(1-p)$.

Histogramas B(n, p) para n = 10

Histogramas B(n, p) para n = 30

Histogramas B(n, p) para n = 50

Histogramas B(n, p) para n = 100

Distribuição Poisson

Histogramas P(*m*)

Distribuição Exponencial

Histogramas Soma de Exponenciais com $\lambda = 3$

Enunciado para a Soma Amostral

Para variáveis aleatórias X_1, \ldots, X_n independentes e com mesma distribuição de média μ e variância σ^2 finitas, a distribuição da soma

$$X = X_1 + \cdots + X_n$$

se aproxima à medida que n cresce da distribuição de $Y \sim N(\mu_X, \sigma_X^2)$, em que $\mu_X = n\mu$ e $\sigma_X^2 = n\sigma^2$.

Aproximação para *n* Grande

$$P(a \le X \le b) \cong P(a \le Y \le b)$$

$$= P\left(\frac{a - n\mu}{\sigma\sqrt{n}} \le Z \le \frac{b - n\mu}{\sigma\sqrt{n}}\right),$$

em que $Z \sim N(0,1)$.

Observação: correção de continuidade pode ser aplicada apenas para variáveis aleatórias discretas, tais como binomial e Poisson.

Enunciado para a Média Amostral

Para variáveis aleatórias X_1, \ldots, X_n independentes e com mesma distribuição de média μ e variância σ^2 finitas, a distribuição da média amostral

$$\bar{X} = \frac{X_1 + \cdots + X_n}{n}$$

se aproxima à medida que n cresce da distribuição de $Y \sim N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2)$, em que $\mu_{\bar{X}} = \mu$ e $\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$.

Aproximação para n Grande

$$P(a \le \bar{X} \le b) \cong P(a \le Y \le b)$$

= $P\left(\frac{a - \mu}{\sigma/\sqrt{n}} \le Z \le \frac{b - \mu}{\sigma/\sqrt{n}}\right)$,

em que $Z \sim N(0, 1)$.

Exemplo 1

Uma loja recebe em média 16 clientes por dia com desvio padrão de 4 clientes. Calcule aproximadamente a probabilidade de num período de 30 dias a loja receber mais do que 500 clientes. Calcule também a probabilidade aproximada de nesse mesmo período a média de clientes ultrapassar a 18 clientes.

Dados do Problema

Seja U:número de clientes que a loja recebe num dia. Temos que

- $E(U) = \mu = 16$
- $Var(U) = \sigma^2 = 4^2 = 16$

Soma Amostral

Seja X:número de clientes que a loja recebe em 30 dias. Temos que

- $\mu_X = n \times \mu = 30 \times 16 = 480$
- $\sigma_X^2 = n \times \sigma^2 = 30 \times 16 = 480$
- $\sigma_X = \sqrt{480} \cong 21,91$

Média Amostral

Seja \bar{X} :número médio de clientes que a loja recebe em 30 dias.

Temos que

- $\mu_{\bar{X}} = \mu = 16$
- $\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} = \frac{16}{30} \cong 0,533$
- $\sigma_{\bar{x}} = \sqrt{0,533} \cong 0,73$

Cálculo da Probabilidade

A probabilidade da loja receber mais do que 500 clientes em 30 dias fica dada por

$$P(X \ge 501) \cong P\left(Z \ge \frac{501 - \mu_X}{\sigma_X}\right)$$

$$= P\left(Z \ge \frac{501 - 480}{21,91}\right)$$

$$= P(Z \ge 0,96)$$

$$= 1 - P(Z \le 0,96)$$

$$= 1 - A(0,96)$$

$$= 1 - 0,8315$$

$$= 0,1685(16,85\%).$$

Cálculo da Probabilidade

A probabilidade da média de clientes ultrapassar 18 clientes em 30 dias fica dada por

$$P(\bar{X} > 18) \cong P\left(Z > \frac{18 - \mu_{\bar{X}}}{\sigma_{\bar{X}}}\right)$$

$$= P\left(Z > \frac{18 - 16}{0,73}\right)$$

$$= P(Z > 2,74)$$

$$= 1 - P(Z \le 2,74)$$

$$= 1 - A(2,74)$$

$$= 1 - 0.9969$$

$$= 0,0031(0,31\%).$$