the sis Draft Branch 1 Simple

Donald Blair

16 March 2011

Contents

1	thesis		
	1.1	Meltin	g A
		1.1.1	Background re: melting
		1.1.2	Experiment of Savage et. al
		1.1.3	Simulations
	1.2	Meltin	g B
		1.2.1	Background
		1.2.2	Methods
		1.2.3	Results / Figures
		1.2.4	Discussion
	1.3	Diame	ter of Random Clusters
		1.3.1	Introduction
		1.3.2	Potts Model [?]
		1.3.3	Chemical Distance
		1.3.4	Diameter
		1.3.5	Swendesen-Wang Algorithm
		1.3.6	Determining the Chem Distance and Diameter 4
		1.3.7	Procedure for $q > 1$
		1.3.8	Procedure for $q > 1$
		1.3.9	Simulation Details
	1.4	Phase	Transitions in Computational Complexity 4
		1.4.1	Background
		1.4.2	Percolation
		1.4.3	PRAM
		1.4.4	Parallel Algorithm for Percolation
		1.4.5	Results 5

$1 { m thesis}$	
1.1 Melting A	
1.1.1 Background re: melting	
• Review of theories of melting, 3D, 2D, bulk	
• Expectations for 2D finite crystallites	
1.1.2 Experiment of Savage et. al	
• Setup	
• Tuneable Depletion potential	
• Results	
1.1.3 Simulations	
• Motivation	
• Justification for using Brownian dynamics	
• GROMACS Simulations	
• Simulated Depletion Potential	
• Simulated Lennard-Jones Potential	

- Results
- Discussion

1.2 Melting B

1.2.1 Background

- Colloids: macroscopic system analogous to atomic system
- Experiment by Savage et. al: novel melting kinetics
- Our hypothesis: thermally-activated defects enhance melting rate
- Evidence for hypothesis
- Background Theory

1.2.2 Methods

- Re-analyze data from GROMACS, Part A
- New Brownian Dynamics Simulation Code
- Analysis methods

1.2.3 Results / Figures

- \bullet N vs t
- Order vs. N

- Breakdown by layers
- Average disclination charge
- Phase diagram for various ranges of potential

1.2.4 Discussion

- 1.3 Diameter of Random Clusters
- 1.3.1 Introduction
- 1.3.2 Potts Model [?]
- 1.3.3 Chemical Distance
- 1.3.4 Diameter
- 1.3.5 Swendesen-Wang Algorithm
- 1.3.6 Determining the Chem Distance and Diameter
- 1.3.7 Procedure for q > 1
- 1.3.8 Procedure for q > 1
- 1.3.9 Simulation Details
- 1.4 Phase Transitions in Computational Complexity
- 1.4.1 Background
 - Constraint Satisfaction Problems (CSP)
 - Proposal: study complexity of percolation model

1.4.2 Percolation

- The Model
- Background / applications

1.4.3 PRAM

- Applications in comp sci
- PRIORITY CRCW

1.4.4 Parallel Algorithm for Percolation

1.4.5 Results

- $\bullet~D_2$ vs. p for several system sizes L
- $\log(D_2)$ vs. $\log(L)$
- Distribution of cluster sizes

1.4.6 Discussion