Scilab Textbook Companion for Satellite Communication by A. K. Maini And V. Agrawal¹

Created by
Laxman Ghanasham Sole
B.Tech
Electronics Engineering
Vishwakarma Institute of Technology
College Teacher
Prof. Vijay Mane
Cross-Checked by
K. V. P. Pradeep

May 8, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Satellite Communication

Author: A. K. Maini And V. Agrawal

Publisher: Wiley India Pvt. Ltd. New Delhi

Edition: 1

Year: 2010

ISBN: 978-81-265-2071-8

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
2	Satellite orbits and Trajectories	7
3	Satellite Launch and In orbit Operations	17
4	Satellite Hardware	29
5	Communication Techniques	37
6	Multiple Access Techniques	46
7	Satellite Link Design Fundamentals	51

List of Scilab Codes

Exa 2.1	velocity of satellite	7
Exa 2.2	Orbit parameters	7
Exa 2.3	Orbit parameters	8
Exa 2.4	Orbit parameters	9
Exa 2.5	Orbit eccentricity	9
Exa 2.6	Satellite velocity at particular point	10
Exa 2.7	Satellite velocity at particular point	10
Exa 2.8	Satellite velocity at particular point	11
Exa 2.9	Orbital time period	11
Exa 2.10	Ratio of orbital time period	12
Exa 2.11	Orbit parameters	12
Exa 2.12	Time required to move between two points	13
Exa 2.13	velocity at apogee	13
Exa 2.14	velocity of satellite at particular point	14
Exa 2.16	Apogee distance	14
Exa 2.17	velocity of satellite	15
Exa 2.18	Apogee Distance	15
Exa 3.1	Inclination Angle	17
Exa 3.2	Velocity thrust	17
Exa 3.3	Velocity thrust	18
Exa 3.4	Velocity thrust	18
Exa 3.5	Velocity thrust	19
Exa 3.6	Velocity thrust	19
Exa 3.7	Velocity thrust	20
Exa 3.8	Maximum line of sight distance	21
Exa 3.9	line of sight distance	21
Exa 3.10	Inter satellite distance	22
Eva 3 11	Azimuth and elevation angle	22

Exa 3.12	Delay calculation	23
Exa 3.13	Angular spacing and intersatellite distance	25
Exa 3.14	covered surface area	26
Exa 3.15	Area swept by ground track of satellite	27
Exa 4.1	Ejection velocity	29
Exa 4.2	Mass of propellant to be burnt	29
Exa 4.3	Mass of propellant to be burnt	30
Exa 4.5	Required no of solar cells	30
Exa 4.6	Mass of battery system	31
Exa 4.7	Antenna Gain	32
Exa 4.8	Aperture efficiency and effective aperture	32
Exa 4.9	Directivity	33
Exa 4.10	null to null beam width	33
Exa 4.11	received signal strength	34
Exa 4.12	gain and beam width	35
Exa 4.13	beam width	35
Exa 4.14	phase angle	36
Exa 4.15	Earth station EIRP	36
Exa 5.1	Power Saving	37
Exa 5.2	Total Power in the modulated signal	38
Exa 5.3	Percentage power saving	38
Exa 5.4	Carrier Frequency	39
Exa 5.5	modulation parameters	39
Exa 5.6	maximum phase and frequency deviation	40
Exa 5.7	frequency deviation and Bandwidth	40
Exa 5.8	modulation index and Bandwidth	41
Exa 5.9	modulation index and Bandwidth	41
Exa 5.10	Daviation ratio and Bandwidth	42
Exa 5.11	Sampling level quantizing levels and no of bits	42
Exa 5.12	Nyquist rate	43
Exa 5.13	bits per sample and time duration for one bit	43
Exa 5.15	Sampling rate and sampling interval	44
Exa 5.16	Bit duration and Transmission Rate	44
Exa 6.1	TDMA frame	46
Exa 6.2	Frame efficiency	47
Exa 6.3	TDMA Frame	47
Exa 6.4	Doppler Shift	48
Exa 6.5	Chip Duration and chip rate	49
	5	

Exa 6.6	Maximum Permissible Doppler Effect	50
Exa 6.7	Noise reduction	50
Exa 7.1	Power received by the receiving antenna	51
Exa 7.2	free space path loss	51
Exa 7.3	Attenuation	52
Exa 7.4	Noise temperature and noise figure	53
Exa 7.5	overall noise figure	53
Exa 7.6	noise figure	54
Exa 7.7	Loss factor	55
Exa 7.8	System noise temperature	55
Exa 7.9	carrier to interface ratio	56
Exa 7.10	carrier to interface ratio	56
Exa 7.11	carrier to interface ratio	57
Exa 7.12	Longitudinal separation between two satellites	58
Exa 7.13	Gain per degree Kelvin	58
Exa 7.14	Gain per degree Kelvin	59
Exa 7.15	Link Margin	59

Chapter 2

Satellite orbits and Trajectories

Scilab code Exa 2.1 velocity of satellite

Scilab code Exa 2.2 Orbit parameters

```
1 // Example 2.2, page no-37
2 clear
3 clc
4
5 \quad A = 45000
              //Apogee in km
6 P = 7000
              //Perigee in km
7 //(a)
8 a = (A+P)/2
9 //(b)
10 e=(A-P)/(2*a)
11 //(c)
12 e = (floor(e*100))/100
13 d=a*e
14
15 printf("(a)\nSemi-major axis of elliptical orbit is
     \%d km",a)
16 printf("\n(b)\nEccentricity = \%.2 f",e)
17 printf("\n(c)\n distance between centre of earth
      and centre of ellipse is %d km ",d)
```

Scilab code Exa 2.3 Orbit parameters

```
1 // Example 2.3, page no-37
2 clear
3 clc
4
5 ma=42000 //Major axis distance in Km
6 P=8000 //Perigee distance in Km
7
8 A=ma-P
9 e=(A-P)/ma
10
11 printf("Apogee=%dkm\n Eccentricity=%.2f",A,e)
```

Scilab code Exa 2.4 Orbit parameters

Scilab code Exa 2.5 Orbit eccentricity

```
1 // Example 2.5, page no-38
2 clear
3 clc
4 AP_diff=30000 // difference between apogee and perigee in km
5 AP_sum=62800 // Apogee+perigee
6 
7 E=AP_diff/AP_sum
8 printf("Orbit Eccentricity= %.3f",E)
```

Scilab code Exa 2.6 Satellite velocity at particular point

```
1 // \text{Example } 2.6, page no -38
2 clear
3 clc
5 R=7000*10^3 //sattelite orbit in m
6 mu=39.8*10^13//constant G*M in Nm^2/kg
7 \quad A = 47000 * 10^3
                       //appogee distance in m
8 P = 7000 * 10^3
                 //perigee distance in m
9 \text{ v=} \text{sqrt} (\text{mu/R})
10 a = (A+P)/2
11 v1=sqrt(mu*((2/R)-(1/a)))
12 printf ("Velocity of satellite A at point X is v=\%.2
      fkm/s\n Velocity of satellite B at point X is V=\%
      .3 \, \text{fkm/s}", v/1000, v1/1000) // value in book is
      different at 3rd decimal place.
```

Scilab code Exa 2.7 Satellite velocity at particular point

```
1 // \text{Example } 2.7, \text{ page no} -39
2 clear
3 clc
                           //sattelite orbit in m
5 R = 42000 * 10^3
                           //constant G*M in Nm^2/kg
6 mu=39.8*10<sup>13</sup>
7 \quad A = 42000 * 10^3
                           //appogee distance in m
8 P = 7000 * 10^3
                           //perigee distance in m
9 \text{ v=} \text{sqrt} (\text{mu/R})
10 a = (A+P)/2
11 v1=sqrt(mu*((2/R)-(1/a)))
12 printf ("Velocity of satellite A at point X is v=\%.3
      fkm/s\n Velocity of satellite B at point X is V=\%
       .3 \, \text{fkm/s}", v/1000, v1/1000)
```

Scilab code Exa 2.8 Satellite velocity at particular point

```
1 // \text{Example } 2.8, \text{ page no} -40
2 clear
3 clc
                           //sattelite orbit in m
5 R = 25000 * 10^3
                           //constant G*M in Nm^2/kg
6 \text{ mu} = 39.8 * 10^{13}
7 \quad A = 43000 * 10^3
                           //appogee distance in m
8 P = 7000 * 10^3
                           //perigee distance in m
9 \text{ v=} \text{sqrt} (\text{mu/R})
10 a = (A+P)/2
11 v1=sqrt(mu*((2/R)-(1/a)))
12 printf ("Velocity of satellite A at point X is v=\%.3
      fkm/s\n Velocity of satellite B at point X is V=\%
       .3 \, \text{fkm/s}", v/1000, v1/1000) // value in book is
       different at 3rd decimal place.
```

Scilab code Exa 2.9 Orbital time period

```
1 // Example 2.9, page no-40
2 clear
3 clc
4
5 a=(50000/2)*10^3 //Semi-major axis in m
6 mu=39.8*10^13 //constant G*M in Nm^2/kg
7
8 T=2*3.14*sqrt((a^3)/mu)
9 h=T/(60*60)
10 x=modulo(T,3600)
11 m=x/60
12 s=modulo(x,60)
```

```
13 printf("Orbital time period is given by, T = \% dsec n \ t \ t \ = \% dh \% dm \% ds", T, floor(h), floor(m), floor(s))//value in book is different for seconds.
```

Scilab code Exa 2.10 Ratio of orbital time period

Scilab code Exa 2.11 Orbit parameters

Scilab code Exa 2.12 Time required to move between two points

```
1 // \text{Example } 2.12, page no-43
2 clear
3 clc
4
5 e = 0.6
                             // eccentricity of elliptical
       orbit
6 a=0.97
                            // area of shaded region
7 b=2.17
                            //Area of non-shaded region
8 t=3
                           // time taken by satellite to
      move from pt B to A
9
10 x=b/a
11 \quad y = x * t
12 printf ("Time taken by satellite to move from A to B
      is \%.3 f hours ",y)
```

Scilab code Exa 2.13 velocity at apogee

Scilab code Exa 2.14 velocity of satellite at particular point

Scilab code Exa 2.16 Apogee distance

```
1 // \text{Example } 2.16, page no -49
2 clear
3 clc
5 A1=12000
                                 //first Apogee distance
                                 // Perigee distance
6 P=8000
7 v1 = 1
                                 // assume v1 as 1
8 v2=1.2*v1
                                 //20\% higher than v1
9
10 x = (v2/v1)^2
11 k = (((1+(P/A1))/x)-1)
12 k = floor(k*10^4)/10^4
13 \quad A2=P/k
14
15 printf ("A2 = \%.0 \, \text{fkm}", ceil(A2))
```

Scilab code Exa 2.17 velocity of satellite

```
1 // \text{Example } 2.17, \text{ page no} -50
2 clear
3 clc
4 \text{ vp=8}
                  //horizontal velocity of satellite in
      km/s
5 r = 1620
                  // distance from earth's surface in km
                 // Earth's radius in km
6 R = 6380
                 // distance of point at which velocity
7 d=10000
      to be calculated
                 // angle made by satellite with local
      horzon at that point
9
10 P=r+R
11 v = (vp*P)/(d*cos(theta*%pi/180))
12 printf("v = \%.2 f \text{ km/s}",v)
```

Scilab code Exa 2.18 Apogee Distance

```
1 // \text{Example } 2.18, page no -50
2 clear
3 clc
5 r = 620
                // distance from earth's surface in km
6 vp=8
                 //horizontal velocity of satelliteat
      9000km height in km/s
7 R = 6380
                // Earth's radius in km
8 d = 9000
                // distance of point at which velocity
      to be calculated
9 \text{ theta=30}
                 // angle made by satellite with local
      horzon at that point
10 mu = 39.8 * 10^13 // Nm^2/kg
11
12 P=r+R
```

```
13 m=vp*d*cos(theta*\%pi/180)/P //m=sqrt((2mu/P)-[2mu/(A+P)])
14 m=(m*10^3)^2
15 x=(2*mu/(P*10^3))-m //x=[2mu/(A+P)]
16 x=floor(x/10^4)*10^4
17 k=(2*mu)/x //k=A+P
18 k=ceil(k/10^4)*10^4
19 A=k-(P*10^3)
20 printf("A = \%.0 f km", A/1000)
```

Chapter 3

Satellite Launch and In orbit Operations

Scilab code Exa 3.1 Inclination Angle

```
1 // Example 3.1, page no-72
2 clear
3 clc
4
5 Az=85 // Azimuth angle of injection point
6 l=5.2 // latitude of launch site
7 cosi=sin(Az*%pi/180)*cos(1*%pi/180)
8 i=acos(cosi)
9 i=i*180/%pi
10 printf("Inclination angle attained, i=%.1 f ",i)
```

Scilab code Exa 3.2 Velocity thrust

```
1 // Example 3.2, page no-73 2 clear 3 clc
```

Scilab code Exa 3.3 Velocity thrust

```
1 // \text{Example } 3.3, \text{ page no} -73
2 clear
3 clc
                             // \text{Nm}^2/\text{kg}
5 \text{ mu} = 39.8 * 10^{13}
6 P = 7000 * 10^3
                             // Perigee distance in m
7 e=0.69
                             // eccentricity of eliptical
      orbit
8 w = 60/2
                             // angle made by line joing
      centre of earth and perige
                                                                 e
        with the line of nodes
9 \text{ k=(e/sqrt(1+e))}
10 k = floor(k*100)/100
11 v=2*(sqrt(mu/P))*k*sin(w*%pi/180)
12 printf("The velocity thrust required to rotate the
      perigee point \n by desired amount is given by, v=
      \%.1 \text{ f m/s} = \%.3 \text{ fkm/s}", v, v/1000)
```

Scilab code Exa 3.4 Velocity thrust

```
1 // Example 3.4, page no-74
2 clear
3 clc
```

Scilab code Exa 3.5 Velocity thrust

```
1 // \text{Example } 3.5, \text{ page no} -75
2 clear
3 clc
                                //Original apogee distance
5 A = 15000 * 10^3
6 \quad A1 = 7000 * 10^3
                                // Raised opogee distance
                                 // Perigee Distance
7 P = 7000 * 10^3
8 mu=39.8*10<sup>13</sup>
                                 /Nm^2/kg
9
10 \quad A_d = A - A1
11 v=sqrt((2*mu/P)-(2*mu/(A+P)))
12 del_v = A_d * mu / (v * (A+P)^2)
13 printf("required Thrust velocity Delta_v = \%.1 f m/s"
       ,del_v)
```

Scilab code Exa 3.6 Velocity thrust

```
1 // Example 3.6, page no-76 2 clear
```

Scilab code Exa 3.7 Velocity thrust

```
1 // \text{Example } 3.7, \text{ page no} -77
2 clear
3 clc
4
5 R = 6378 * 10^3
                                //Radius of earth
6 mu=39.8*10<sup>13</sup>
                                /Nm^2/kg
                                 // original orbit from
7 r1=500*10^3
      earths surface
8 r2=800*10^3
                                 // orbit to be raised to
       thisdistance
9 R1 = R + r1
10 R2 = R + r2
11 delta_v=sqrt(2*mu*R2/(R1*(R1+R2)))-sqrt(mu/R1)
12 delta_v_dash=sqrt(mu/R2)-sqrt(2*mu*R1/(R2*(R1+R2)))
13
14 printf("Two thrusts to be applied are,\n Delta_v = \%
      .2 \text{ f m/s} \setminus \text{n Delta\_v\_dash} = \%.2 \text{ f m/s}, delta_v,
      delta_v_dash)
```

Scilab code Exa 3.8 Maximum line of sight distance

Scilab code Exa 3.9 line of sight distance

```
12
13 printf("The line-of-sight distance is %.4 f km",d)
```

Scilab code Exa 3.10 Inter satellite distance

```
1 // \text{Example } 3.9, \text{ page no} -98
2 clear
3 clc
5 //IntelSat-VI location= 37 W
6 // IntelSat-VII location=74 E
7 \text{ theta} = 37 + 74
                        // angular separation between two
       satellites
8 D = 42164
                        //circular equilateral
       geostationary orbit in km
9 k=cosd(theta)
10 // \operatorname{printf}("\%f \setminus n", k)
11 k = -0.357952
12 d = sqrt(2*D^2*(1-k))
13
14 printf("Inter-satellite distance is %.2 f km",d)
```

Scilab code Exa 3.11 Azimuth and elevation angle

```
7 theta_L=60
                        //earth station's location 60 N
       latitude
                        // orbital radius of the
8 r = 42164
      satellite in km
9 R = 6378
                        //Earth's radius in km
10
11 A_dash=atan((tand(theta_s-theta_1))/sind(60))
12 A_dash=A_dash*180/%pi
13 \quad A=180+A_dash
                         //Azimuth angle
14
15 x=(180/\%pi)*acos(cosd(theta_s-theta_l)*cosd(theta_L)
16 y=r-ceil(R*(cosd(theta_s-theta_l)*cosd(theta_L)))
17 z=R*sind(x)
18 E=(atan(y/z)*180/\%pi)-x
19 printf ("Azimuth
                     angle =\%.1 f \n Elevation angle =\%
      .1 f ",A,E)
```

Scilab code Exa 3.12 Delay calculation

```
1 // \text{Example } 3.12, page no-100
2 clear
3 clc
                        //earth station's location 60 W
5 theta_l=60
       longitude
  theta_s=105
                         //satellite's location 105 W
      longitude
  theta_L=30
                        //earth station's location 30 N
       latitude
  theta_11=90
                         //earth station's location 90
       W longitude
10 \text{ theta_s1=105}
                           //satellite's location 105 W
      longitude
```

```
11 theta_L1=45
                           //earth station's location 45
       N latitude
12
13 c = 3 * 10^8
                          //speed of light
14 r=42164
                          // orbital radius of the
      satellite in km
15 R=6378
                          //Earth's radius in km
16
17 x=(180/\%pi)*acos(cosd(theta_s-theta_l)*cosd(theta_L)
18 y=r-ceil(R*(cosd(theta_s-theta_l)*cosd(theta_L)))
19 z=R*sind(x)
20 E = (atan(y/z)*180/\%pi)-x
21
22 	ext{ x1=(180/\%pi)*acos(cosd(theta_s1-theta_l1)*cosd()}
      theta_L1))
23 y1=r-ceil(R*(cosd(theta_s1-theta_l1)*cosd(theta_L1))
24 z1=R*sind(x1)
25 E1 = (atan(y1/z1)*180/\%pi)-x1
26 \quad E1 = floor(E1)
27
28 //calculation of slant range dx
29 k=(R/r)*cosd(E)
30 k = (180/\%pi)*asin(k)
31 k=k+E
32 \text{ k=sind(k)}
33 \text{ k=ceil}(\text{k*}1000)/1000
34 / k=k+E
35 //k = \sin(k)
36 dx = (R)^2 + (r)^2 - (2*r*R*k)
37 dx = sqrt(dx)
38
39
40 //calculation of slant range dy
41 k1 = (R/r) * cosd(E1)
42 k1 = (180/\%pi)*asin(k1)
43 k1 = k1 + E1
```

```
44 \text{ k1} = floor(k1)
45 \text{ k1=sind(k1)}
46 \text{ k1} = \text{ceil}(\text{k1} * 1000) / 1000
47 \text{ dy} = (R)^2 + (r)^2 - (2*r*R*k1)
48 \text{ dy=sqrt(dy)}
49
50 \text{ tr}=dy+dx
51 \text{ delay=tr*}10^6/c
52 x = 50
53 \text{ td=delay+x}
54
55 printf("Elevation angle, Ex =%.1 f ",E)
56 printf("\n Elevation angle, Ey =%.1 f ",floor(E1))
57 printf("\n Slant range dx of the earth station X is
      dx=\%.2 \text{ fkm}", dx)
58 printf("\n Slant range dy of the earth station Y is
      dy=\%.1 \text{ fkm}", dy)
59 printf("\n Therefore, total range to be covered is %
       .2 fkm", tr)
60 printf ("\n propagation delay=\%.2 \,\mathrm{fms}", delay)
61 printf("\n\n Time required too transmit 500 kbs of
       information at \n a transmisssion speed of 10Mbps
        is given by 500000/10^7 = \%.0 \,\text{fms}", 500000000/10^7)
62 printf("\n\ Total Delay= %.2 fms",td)
```

Scilab code Exa 3.13 Angular spacing and intersatellite distance

```
В
8 beeta=60
                             // difference between
      longitudes of two satellites
9 R = 42164
                            // radius of the orbit of
      satellites
10
11
12 theta=(da^2+db^2-2*(R^2)*(1-cosd(beeta)))/(2*da*db)
13 theta=(180/\%pi)*acos(theta)
14
15 d = sqrt(2*(R^2)*(1-cosd(beeta)))
16 printf("Angular spacing between two satellites
      viewed by earth station is,\n theta= \%.1 f ",
      theta)
17 printf("\nInter-satellite distance, d=\%.0 \, \text{fkm}",d)
```

Scilab code Exa 3.14 covered surface area

```
1 // Example 3.14, page no-107
2 clear
3 clc
4
                         // orbital radius of the
5 r = 42164
      satellite in km
                         //Earth's radius in km
6 R = 6378
8 //refer to Figure 3.53
9 // for E=0
10 alfa=asin(R/r)*(180/\%pi)
11 alfa=floor(alfa*10)/10
12 theta=90-alfa
13 //in the right angle triangle OAC,
14 k=sind(alfa)
15 k = floor(k*1000)/1000
16 \text{ oc=R*k}
```

```
17 \text{ oc} = \text{ceil}(\text{oc} * 10) / 10
18 A = 2 * \%pi * R * (R - oc)
19
20
21 / for E=10
22 E=10
23 alfa1=asin((R/r)*cosd(E))*(180/%pi)
24 / alfa1 = ceil (alfa1 * 100) / 100
25 theta1=90-alfa1-E
26 //in the right angle triangle OAC,
27 \text{ k1=sind(alfa1+E)}
28 k1 = floor(k1 * 1000) / 1000
29 \text{ oc1} = R * k1
30 \text{ oc1} = floor(oc1*10)/10
31 A1=2*\%pi*R*(R-oc1)
32
33 printf("for E=0 ,\n covered surface area is %.1 f km
       ^2",A)
34 printf("\n for E=10 ,\n covered surface area is %
       .1 f \text{ km}^2, A1)
```

Scilab code Exa 3.15 Area swept by ground track of satellite

" , theta)

- 10 printf("\n Extreme Southern latitude covered = %.0 f S", theta)
- 11 printf("\n\n In fact, the ground track would sweep\n all latitudes between $\%\,d$ N and $\%\,d$ S",theta, theta)

Chapter 4

Satellite Hardware

Scilab code Exa 4.1 Ejection velocity

```
1 // Example 4.1, page no-122
2 clear
3 clc
4
5
6 I=250    // specific impulse of a propellant
7 g=9.807    // acceleration due to gravity
8
9 v=I*g
10 printf("Ejection velocity of the propellant mass is, v= %.2 f m/s",v)
```

Scilab code Exa 4.2 Mass of propellant to be burnt

Scilab code Exa 4.3 Mass of propellant to be burnt

```
1 // \text{Example } 4.3, page no -123
2 clear
3 clc
5 m = 2950
                //initial mass of the satellite
                //required thrust
6 F = 450
7 T = 10
                // thrust for time period
                //specific impulse of a propellant
8 i = 300
9 g = 9.807
                // acceleration due to gravity
10
11 mi=F*T/(i*g)
12 printf ("Mass of propellant that would be consumed is
      , m=\%.2 \, fkg", mi)
```

Scilab code Exa 4.5 Required no of solar cells

```
1 // Example 4.5, page no-134
2 clear
3 clc
4
5 p=2000    //electrical energy to be generated from solar panel in Watt
```

```
6 \text{ fi} = 1250
                // solar flux falling normally to the
      solar cell in worst case
7 s = 4 * 10^{-4}
                  // Area of each solar cell
8 e = 0.15
                  //conversion efficiency of solar cell
      including the losses
  theta=10
                 // angle made by rays of sun with
      normal
10
11 n=p/(fi*s*e)
12 \quad n1 = ceil(n) * \%pi
13 n2=ceil(n1)/cosd(theta)
14 printf("Required no of solar cells, n = \%.0 f cells",
      ceil(n1))
15 printf("\n No of cells when sunrays are making an
                      are \%.0 \, \mathrm{f} ", ceil(n2))
      angle of 10
```

Scilab code Exa 4.6 Mass of battery system

```
1 // \text{Example } 4.6, page no-134
2 clear
3 clc
4
                  //Power required
5 p = 3600
                  //worst case eclipse period
6 t=1.2
                  //capacity of each cell in Ah
7 c = 90
8 v = 1.3
                  //voltage of each cell in V
                  // Depth of discharge
9 d=0.8
10 e = 0.95
                  //Discharge efficiency
                  //specific energy specification of the
11 E_{sp} = 60
      battery
12
13 energy=p*t
14 \text{ n=energy/(c*v*d*e)}
15 E_b=energy/(d*e)
16 \text{ m=E_b/E_sp}
```

```
17 printf("No of cells, n= %.0f cells\n Energy required to be stored in the battery system is %.1f Wh\n Mass of battery system = %.2f kg",n,E_b,m)
```

Scilab code Exa 4.7 Antenna Gain

```
1 // \text{Example } 4.7, \text{ page no} -153
2 clear
3 clc
4
5 \text{ theta=0.5}
                     //azimuth beam width=Elevation beam
      width
6 f=6*10^9
                    // operating frequency 6 Ghz
7 c = 3*10^8
                   //speed of light in cm/s
8 theta_r=theta*%pi/180
9 theta_r=ceil(theta_r*10^5)/10^5
10 A=4*\%pi/(theta_r^2)
11 A = ceil(A*100)/100
12 A_dB = 10 * log 10 (A)
13 lambda=c/f
14 Ag = (A*lambda^2)/(4*\%pi)
15
16 printf("\nGain in dB = \%.2 f dB \setminus nAntenna gain
      expressed in terms of\nantenna aperture(A) is
      given by G = \%.2 \text{ f m}^2, A_dB, Ag)
```

Scilab code Exa 4.8 Aperture efficiency and effective aperture

```
1 // Example 4.8, page no-153
2 clear
3 clc
4
5 la=0.5 //length efficiency in azimuth direction
```

Scilab code Exa 4.9 Directivity

Scilab code Exa 4.10 null to null beam width

```
Therefore, Null-to-null beam width = \%.1 \text{ f} ",2* beam_w)
```

Scilab code Exa 4.11 received signal strength

```
1 // Example 4.11, page no-154
2 clear
3 clc
                //received signal strenth in dB
4 d = 20
                //incident polarization is circular and
5 loss=3
      antenna is circularly polarized
6 theta=60
               //received wave making angle with
      horizontal
7 total=d+loss
8 los=d*log10(1/cosd(theta))
10 printf("(a)\n When received polarization is same as
      antenna \n polarization, the polarization loss is
     zero.\n Therefore, received sinal strenth = %ddB"
      ,total)
11 printf("\n\n\) \n When the incident wave is
      vertically polarized, \n the angle between
     incident polarization and antenna polarization is
          \n Hence, Polarization loss = infinity\n
      received signal strength = 0")
12 printf("\n\n\c) \n When incident wave is left-hand
      circularly polarized\n and antenna polarization
     is linear,\n then there is polarization loss of
     %ddB and\n received signal strength is %ddB",loss
      , d)
13 printf("\n\n(d)\n Polarization loss = %ddB \n
     Received signal strength = %ddB", los, ceil(total-
     los))
```

Scilab code Exa 4.12 gain and beam width

Scilab code Exa 4.13 beam width

```
f \n\n 3dB beam width = \%.2 f \n null-to-null beam width = \%.2 f ",theta,dbw,floor(200*dbw)/100)
```

Scilab code Exa 4.14 phase angle

Scilab code Exa 4.15 Earth station EIRP

Chapter 5

Communication Techniques

Scilab code Exa 5.1 Power Saving

```
1 // Example 5.1, page no-174
2 clear
3 clc
4 // for case (a)
                    //modulation index
5 m = 0.5
6 // for AM
7 pt1=(1+(m^2)/2)
9 //for SSBSC
10 pt2=(m^2)/4
11
12 / \% power saving
13 p=(pt1-pt2)*100/pt1
14 p=floor(p*10)/10
15 printf("Percentage power saving is %.1f%%",p)
16
17 // for case (b)
18 \text{ m} = 1
                  //modulation index
19 // for AM
20 pt1 = (1 + (m^2)/2)
21
```

```
22  //for SSBSC
23  pt2=(m^2)/4
24
25  //%  power saving
26  p=(pt1-pt2)*100/pt1
27  p=floor(p*10)/10
28  printf("\n Percentage power saving is %.1f%%",p)
```

Scilab code Exa 5.2 Total Power in the modulated signal

```
1 // \text{Example } 5.2, page no-174
2 clear
3 clc
4
                 //energy of carrier signal
5 pc = 500
6 m = 0.6
                //AM modulation index
7 // for (a)
8 pt=pc*(1+(m^2)/2)
9
10 // for (b)
11 pt2=pc*(m^2)/4
12
13 printf("(a)\n A3E is the double side band AM with
      full carrier.\n Therefore, Pt = \%.0 f W \setminus n \setminus n
      J3E is an SSBSC system.\n Therefore, Pt= \%.0 f W',
      pt,pt2)
```

Scilab code Exa 5.3 Percentage power saving

Scilab code Exa 5.4 Carrier Frequency

```
1 // Example 5.4, page no-175
2 clear
3 clc
4
5 // multiplication of two signals gives AM with
    frequency component(wc-wm) and (wc+wm) and its BW
    is 2wm
6 bw=0.5/100 //bw is 0.5% of carrier freq.
7 wc=2/bw
8 printf("Wc = %.0fWm", wc)
```

Scilab code Exa 5.5 modulation parameters

```
1 // Example 5.5, page no-190
2 clear
3 clc
4
5 //comparing given equation with stanard equation
6 m=6 // Modulation Index
```

Scilab code Exa 5.6 maximum phase and frequency deviation

```
1 // Example 5.6, page no-190
2 clear
3 clc
4
5 printf("comparing given equation with stanard equation, we have,\n Maximum phase deviation = 6
    radian\n Maximum frequency deviation =
    12*3.14*10^3 radian/s = 6 KHz")
```

Scilab code Exa 5.7 frequency deviation and Bandwidth

```
frequency is given by, n f = 10^8 - 150*(10^3)*sin(2*3.14*10^3*t)",fd,bw)
```

Scilab code Exa 5.8 modulation index and Bandwidth

```
1 // \text{Example } 5.8, page no-191
2 clear
3 clc
4
                      //frequency deviation in kHz
6 \text{ fd} = 50
7 \quad fm=1
                      //modulating frequency in kHz for
       case 1
  fm2 = 100
                      //modulating frequency in kHz for
       case 2
10 //for casse 1
11 \text{ m=fd/fm}
12 bw=2*(m+1)*fm
13 //for case 2
14 \text{ m}2=\text{fd/fm}2
15 \text{ bw2}=2*(m2+1)*fm2
16
17 printf ("For first case\n Modulation index = \%.0 \,\mathrm{f}\n
      Bandwidth = \%.0 f kHz \n For second case \n
      Modulation index = \%.1 f \n Bandwidth = \%.0 f kHz",
      m, bw, m2, bw2)
```

Scilab code Exa 5.9 modulation index and Bandwidth

```
1 // Example 5.9, page no-192 2 clear 3 clc
```

Scilab code Exa 5.10 Daviation ratio and Bandwidth

Scilab code Exa 5.11 Sampling level quantizing levels and no of bits

```
1 // Example 5.11, page no-199
2 clear
3 clc
4
5 fm=3200    //highest frequency component in message signal
```

Scilab code Exa 5.12 Nyquist rate

Scilab code Exa 5.13 bits per sample and time duration for one bit

```
1 // Example 5.13, page no-199
2 clear
3 clc
4
5 l=128     //no of Quantizing levels
6 fs=10000     //sampling frequency in Hz
7 n= log2(1)
8 t=1/(n*fs)
9 printf("Number of bits per sample (n) = %.0 f\n Time duration of one bit of binary encoded signal is %.3 f micro second",n,t*10^6)
```

Scilab code Exa 5.15 Sampling rate and sampling interval

```
1 / \text{Example } 5.15, page \text{no} - 208
2 clear
3 clc
4
5 f1=2.4
                  //first signal frequency
6 f2=3.2
                  //2nd signal frequency
                  //3rd signal frequency
7 f3=3.4
  //minimum sampling rate for each of the signals
      would be twice the highest frequency component
10
11
12 \text{ sr} = 3*(f3*2)
13 st=10^6/(sr*10^3)
14 printf ("Sampling rate of the composite signal = \%.1 f
       kHz \n Sampling interval of the composite signal
       = \%.0 f micro second", sr, st)
```

Scilab code Exa 5.16 Bit duration and Transmission Rate

Chapter 6

Multiple Access Techniques

Scilab code Exa 6.1 TDMA frame

```
1 // \text{Example } 6.1, \text{ page no} -230
2 clear
3 clc
4 t = 20
               //TDMA frame length in ms
5 1c = 352
               //length of carrier and clock recovery
      frequency in bits
6 lu1=48
               //length of unique word in bits
7 \ 10 = 510
               //length of order wire channel in bits
8 lm= 256 //length of management channel in bits
9 1t = 320
               // length of transmit timming channel in
      bits
10 \ 1s1 = 24
               // length of service channel in bits
               // Guard time in bits
11 gt=64
12 \text{ rb}=2
               // reference burst
13
14 lr=lc+lu1+lo+lm+lt
15 tb=lc+lu1+lo+ls1
16 \text{ tob} = (1r*rb) + (tb*t) + ((t+rb)*gt)
17 printf("(a)\nThe length of reference burst(from
      given data) is \%d bits\n\n(b)\n the length of
      traffic burst premable (from given data) is %d bits
```

```
\n\n(c)\nTotal number of overhead bits is %d bits ",lr,tb,tob)
```

Scilab code Exa 6.2 Frame efficiency

```
1 // \text{Example } 6.2, page \text{no}-230
2 clear
3 clc
4 t = 20
               //TDMA frame length in ms
5 1c = 352
               //length of carrier and clock recovery
      frequency in bits
6 \, lu1 = 48
               //length of unique word in bits
7 lo=510
              //length of order wire channel in bits
8 \text{ lm} = 256
               //length of management channel in bits
               // length of transmit timming channel in
9 1t = 320
      bits
10 \ 1s1=24
               // length of service channel in bits
               // Guard time in bits
11 gt=64
               // reference burst
12 \text{ rb=2}
13 br=90*10^6 //burst bit rate 90Mbps
14
15 bfr=br*t*10^-3
16 \quad lr = lc + lu1 + lo + lm + lt
17 tb=lc+lu1+lo+ls1
18 tob = (lr*rb) + (tb*t) + ((t+rb)*gt)
19 feff = (bfr - tob) *100/bfr
20 feff=ceil(feff*100)/100
21 printf("Frame efficiency = \%.2f\%\%", feff)
```

Scilab code Exa 6.3 TDMA Frame

```
1 // Example 6.2, page no-230 2 clear
```

```
3 clc
4 t = 20
               //TDMA frame length in ms
               //length of carrier and clock recovery
5 1c = 352
      frequency in bits
6 lu1=48
               //length of unique word in bits
7 lo = 510
              //length of order wire channel in bits
8 lm = 256
               //length of management channel in bits
               // length of transmit timming channel in
9 1t = 320
      bits
10 \ ls1 = 24
               // length of service channel in bits
               // Guard time in bits
11 gt=64
              // reference burst
12 \text{ rb=2}
13 br=90*10^6 //burst bit rate 90Mbps
14 dr= 64*10^3 //data rate 64 kbps
15 bfr=br*t*10^-3
16 \quad lr = lc + lu1 + lo + lm + lt
17 tb=lc+lu1+lo+ls1
18 \ \text{tob} = (1r*rb) + (tb*t) + ((t+rb)*gt)
19 feff=(bfr-tob)*100/bfr
20 feff=ceil(feff*100)/100
21 vsb=dr*t*10^-3
22 \text{ x=bfr*feff}/100
23 printf("The number of bits in a frame for a voice
      sub-burst is %d\n\n The total no of bits
      available in a frame for carrying traffic is %d\n
      \n Maximum no of PCM voice channels in a frame is
       %d channels", vsb, x, x/vsb)
```

Scilab code Exa 6.4 Doppler Shift

```
1 // Example 6.4, page no-231
2 clear
3 clc
4
5 R=42150 // orbital radius of satellite
```

```
6 oi=0.25/100 // orbit inclination
                  //error of 0.3 degree
7 \text{ acc} = 0.3
8 c = 3 * 10^8
                  // speed of light
9 x = oi * R
10 x = ceil(x*10)/10
11 y=R*2*\%pi*acc/360
12 \ y = ceil (y*10)/10
13 z = sqrt(x^2+y^2)
14 z = ceil(z*10)/10
15 \text{ delay=z*10^6/c}
16 delay=floor(delay*1000)/1000
17 \text{ pd}=2*\text{delay}
18 printf("variation in alitude caused byorbit
      inclination = \%.1 fkm \setminus n variation due to station -
      keeping error of 0.3 = \%.1 \, \text{fkm}, x, y)
19 printf("\n Both these errors will introduce a
      maximum range variation of \%.1fkm\n This cause a
      one-way propagation delay of %.3 fms\n Round trip
      propagation delay =\%.2 fms\n Dopler Shift = \%.2 f
      ms in 8h=56.25 \text{ ns/s}", z, delay, delay*2, pd)
```

Scilab code Exa 6.5 Chip Duration and chip rate

```
11 printf("Chip Duration, Tc = \%.0\,\mathrm{f} ns \n This gives maximum chip rate as (1/56)\,\mathrm{Gbps} = 1000/56\,\mathrm{Mbps} = \%.3\,\mathrm{f} Mbps",tc*10^9,1000/56)
```

Scilab code Exa 6.6 Maximum Permissible Doppler Effect

```
1 // Example 6.6, page no-238
2 clear
3 clc
4
5 \text{ cr}=25
                    //Chip rate is 25 Mbps
                    // DS-CDMA signals should not exceed
6 c = 20/100
       20% of the chip duration
7 d=1000/cr
               //chip duration in ns
8 \text{ tr=c*d}
9 \text{ x=tr/}(280*10^{-3})
10 printf("The maximum allowable timing error per
      satellite round trip is %.0f ns\n This %.0f ns
      error is to occur in 280 ms.\n Therefore, maximum
       permissible Dopler effect variation is \%.2 f ns/s
     ",tr,tr,x)
```

Scilab code Exa 6.7 Noise reduction

Chapter 7

Satellite Link Design Fundamentals

Scilab code Exa 7.1 Power received by the receiving antenna

```
// Example 7.1, page no-249
clear
clc

d=36000 *10^3 // distance of geostationary satellite
    from earth's surface
Gt=100 // Antenna gain of 20dB
Pt=10 // Power radiated by earth station

Prd=Pt*Gt/(4*%pi*d^2)
printf("Prd = %.4 f * 10 ^-12 W/m^2\n Power received
    by the receiving antenna is given by Pr = %.3 f
pW",Prd*10^12,Prd*10^13)
```

Scilab code Exa 7.2 free space path loss

```
1 // \text{Example } 7.2, page no-262
2 clear
3 clc
4
5 c = 3*10^8
                      //speed of light
                      //path length
6 R=10000
7 f = 4
                      // operating frequencyin GHz
8 EIRP=50
                      //in dB
                      //antenna gain in dB
9 \text{ gr} = 20
                      // received power in dB
10 \text{ rp} = -120
11 //(a)
12 lamda=c/(f*10^9)
13 pl=20*log10(4*\%pi*R/lamda)
14
15 //(b)
16 Lp=EIRP+gr-rp
17 printf("(a)\n Operating wavelength = \%.3 f m\n Path
      loss(in dB) = \%.2 f dB", lamda, pl)
18 printf("\n\n (b)\n Path loss = %.0fdB",Lp)
```

Scilab code Exa 7.3 Attenuation

```
12 Apr2=-20*log10(cosd(p_ex))
13 printf("For polarization mismatch angle = 75 \n
         Attenuation = %.2 f dB", Apr)
14 printf("\n\n For polarization mismatch angle = 3
         \n Attenuation = %.3 f dB", Apr2)
```

Scilab code Exa 7.4 Noise temperature and noise figure

```
1 // Example 7.4, page no-270
2 clear
3 clc
4
5 g1 = 30
                  //gain of RF stage in dB
                  //Noise temperature in K
6 t1=20
                  //down converter gain in dB
7 g2=10
                  //noise temperature in K
8 t2 = 360
9 g3 = 15
                  //gain of IF stage in dB
10 t3 = 1000
                  //noise temperature in K
                  //reference temperature in K
11 t = 290
12
                  //30 dB equivalent gain
13 G1=1000
14 Te=t1+(t2/G1)+t3/(G1*g2)
15 F=1+Te/t
16 printf ("Effective noise temperature, Te = \%.2 \, \text{fK}", Te)
17 printf("\n System Noise Figure, F = \%.2 f",F)
```

Scilab code Exa 7.5 overall noise figure

```
6 t1=20
                //Noise temperature in K
                //down converter gain in dB
7 g2=10
                //noise temperature in K
8 t2 = 360
                //gain of IF stage in dB
9 g3=15
10 t3=1000
                //noise temperature in K
11 t = 290
                //reference temperature in K
12
13 G1=1000
                //30 dB equivalent gain
14 //Te=t1+(t2/G1)+t3/(G1*g2)
15 F1=1+t1/t
16 F2=1+t2/t
17 F3 = 1 + t3/t
18
19 F=F1+((F2-1)/G1)+(F3-1)/(G1*g2)
20 printf ("Noise Figure specification of the three
     F3 = \%.2 f", F1, F2, F3)
21 printf("\n The overall noise figure is, F = \%.2 f",
     F)
```

Scilab code Exa 7.6 noise figure

```
1 // Example 7.6, page no-272
2 clear
3 clc
4
  L=1.778
                       //Loss factor of the feeder 2.5dB
      equivalent
6 \text{ ts} = 30
                       //Noise temperature of sattelite
      receiver in K
7 t = 50
                       //Noise temperature in K
                       // reference temperature in K
8 \text{ ti} = 290
9 x=t/L
10 y=ti*(L-1)/L
11 Te=x+y+ts
```

Scilab code Exa 7.7 Loss factor

Scilab code Exa 7.8 System noise temperature

```
1 // Example 7.8, page no-273 2 clear 3 clc
```

```
4
5 \text{ Ta} = 50
                    //Antenna Noise temperature
6 Tf=300
                    //Thermodynamic temperature of the
      feeder
7 \text{ Te} = 50
                    // Effective input noise temperatuire
9 //(a)
10 Lf=1
11 T=(Ta/Lf)+(Tf*(Lf-1)/Lf)+Te
12 printf("(a)\n System noise temperature = \%.0 \, \text{fK}",T)
13
14 //(b)
15 Lf=1.413
16 T=(Ta/Lf)+(Tf*(Lf-1)/Lf)+Te
17 printf("\n (b)\n System noise temperature = %.3 fK"
      , ceil (T*10^3) /10^3)
```

Scilab code Exa 7.9 carrier to interface ratio

```
1 // Example 7.9, page no-278
2 clear
3 clc
4 e=35    //EIRP radiated by satellite in dBW
5 g=50    //receiver antenna gain in dB
6 e1=30    //EIRP of interfacing satellite in dBW
7 theeta=4    //line-of-sight between earth station and interfacing sattelite
8
9 x=(e-e1)+(g-32+25*log10(theeta))
10 printf("carrier-to-interface (C/I) = %.2 f dB",x)
```

Scilab code Exa 7.10 carrier to interface ratio

```
1 // Example 7.10, page no-279
2 clear
3 clc
4
5 ea = 80
             //EIRP value of earth station A in dBW
6 \text{ eb} = 75
             //EIRP value of earth station B in dBW
7 g = 50
            //transmit antenna gain in dB
              //receiver antenna gain for earth station
8 gra=20
      A in dB
              //receiver antenna gain for earth station
9 \text{ grb}=15
      B in dB
10 theeta=4 //viewing angle of the sattelite from two
      earth station
11 eirp_d=eb-g+32-25*log10(theeta)
12 c_by_i=ea-eirp_d+(gra-grb)
13 printf ("carrier-to-interference ratio at the
      satellite due to\n inteference caused by Eart
      station B is, (C/I) = \%.0 f dB ",c_by_i)
```

Scilab code Exa 7.11 carrier to interface ratio

```
// Example 7.11, page no-279
clear
clc
// carrier sinal strength at sattelite by uplink
u=10000 // equivalent to 40dB
// carrier sinal strength at eart station by downlink
d=3162.28 //equivalent to 35dB

x=1/((1/u)+(1/d))
printf("Total carrier-to-interference ratio is %.2f
= %.1 f dB",x,10*log10(x))
```

Scilab code Exa 7.12 Longitudinal separation between two satellites

Scilab code Exa 7.13 Gain per degree Kelvin

```
1 //Example 7.13, Page no.281
2 clear
3 clc
4 \text{ Ga} = 60
            //Antenna Gain in dB
5 Ta= 60 //Noise teperature of Antenna
6 L1=1.12
             //Feeder Loss equivalent to dB
             //Noise teperature of stage 1
7 T1=290
8 G2 = 10^6
             //Gain of stage 2 in dB
             //Noise teperature of stage 2
9 T2 = 140
             //Noise teperature of stage 3
10 T3=10000
             // input of low noise amplifier
11 G = Ga - 0.5
12 Ts = (Ta/L1) + (T1*(L1-1)/L1) + T2 + (T3/G2)
13 Ts = floor(Ts * 100) / 100
```

```
14 x=G-10*log10(Ts)
15 printf("Tsi = %.2fK\n\n G/T(in dB/K)= %.0f dB/K",Ts, x)
```

Scilab code Exa 7.14 Gain per degree Kelvin

```
1 //Example 7.14, Page no.282
2 clear
3 clc
4
              //Amplifier Gain in dB
5 \text{ Ga} = 60
              //Noise teperature of Antenna
6 \text{ Ta} = 60
              //Feeder Loss equivalent to dB
7 L1=1.12
8 T1=290
              //Noise teperature of stage 1
                 //Gain of stage 2 in dB
9 G2 = 10^6
10 T2=140
              //Noise teperature of stage 2
11 T3=10000
              //Noise teperature of stage 3
12 G = Ga - 0.5
              // input of low noise amplifier
13
14 T=Ta+T1*(L1-1)+L1*(T2+(T3/G2))
15 x = G - 10 * log 10 (T)
16 printf("T = \%.1 \, fK \setminus n \setminus n \, G/T = \%.0 \, f \, dB/k", T, ceil(x))
17 printf("\n\n It is evident from the solutions of the
       problems 13 and 14\n that G/T ratio is invarient
       regardless of the reference point in agreement \
      n with a statement made earlier in the text.")
```

Scilab code Exa 7.15 Link Margin

```
1 //Example 7.15, Page no.286
2 clear
3 clc
4
```

```
5 f = 6 * 10^9
                  //uplink frequency
6 eirp= 80
                   //Earth station EIRP in dBW
                   //Earth station satellite distance
7 r = 35780
                   //attenuation due to atomospheric
8 1=2
      factors in dB
9 e = 0.8
                   // satellite antenna's aperture
       efficiency
10 a=0.5
                   // satellite antenna's aperture area
                 // Satellite receiver's effective noise
11 T=190
      temperature
12 bw=20 *10^6 //Satellite receiver's bandwidth
                 // received carrier-to-noise ratioin dB
13 \text{ cn} = 25
14 c=3*10<sup>8</sup>
                 //speed of light
15
16 \text{ k=1.38*10}^-23
17 lamda=c/f
18 G=e*4*\%pi*a/lamda^2
19 G = ceil(G*100)/100
20 \text{ Gd} = 10 * \log 10 \text{ (G)}
21 p=10*log10(k*T*bw)
22 \text{ pl} = 20 * \frac{\log 10}{4 * \% \text{pi} * \text{r} * 10^3 / \text{lamda}}
23 rp=eirp-l-pl+Gd
24 rp=floor(rp*100)/100
25 \text{ rc=floor}((rp-p)*100)/100
26 \quad lm=rc-cn
27 printf ("Satellite Antenna gain, G = %.2 f = %.2 f dB \
      n Receivers Noise Power = \%.1f dB\n free-space
      path loss = \%.2 \, f \, dB \setminus n received power at
      satellite = \%.2 f dB \n receiver carrier = \% f is
      stronger than noise.\n It is \%.2f dB more than
      the required threshold value.\n Hence, link
      margin = \%.2 f dB, G, Gd, p, pl, rp, rc, lm, lm)
```