the three wheeled robot with \dot{Vx} , \dot{Vy} , $\dot{\Phi}$: the X – coordinate velocity, the y – coordinate velocity, corresponding angle respectively, the linear velocity for each motor can be derived from the following equation:

$$\begin{bmatrix} V1 \\ V2 \\ V3 \end{bmatrix} = \begin{bmatrix} -\sin(\emptyset + \alpha 1) & \cos(\emptyset + \alpha 1) & R \\ -\sin(\emptyset + \alpha 2) & \cos(\emptyset + \alpha 2) & R \\ -\sin(\emptyset + \alpha 3) & \cos(\emptyset + \alpha 3) & R \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\phi} \end{bmatrix}$$

V1, V2, V3: linear velocities for each wheel respectively

$$\alpha 1 = 0$$
, $\alpha 2 = 120$, $\alpha 3 = 240$, $R = 20cm$

We can get the angular velocity for each wheel from the following rule:

$$\begin{bmatrix} \omega 1 \\ \omega 2 \\ \omega 3 \end{bmatrix} = \frac{1}{R} \begin{bmatrix} V1 \\ V2 \\ V3 \end{bmatrix}$$

 ω 1, ω 2, ω 3 the three angular velocities for each wheel respectively