

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS P O Box 1430 Alexandra, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/593,772	09/22/2006	Go Ono	0171-1311PUS1	9154
2592 7590 101727511 BIRCH STEWART KOLASCH & BIRCH PO BOX 747 FALLS CHURCH, VA 22040-0747			EXAM	IINER
			CLARK, GREGORY D	
			ART UNIT	PAPER NUMBER
			1786	
			NOTIFICATION DATE	DELIVERY MODE
			10/17/2011	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

mailroom@bskb.com

Office Action Summary

Application No.	Applicant(s)	
10/593,772	ONO ET AL.	
Examiner	Art Unit	
GREGORY CLARK	1786	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS,

- WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed
- after SIX (6) MONTHS from the mailing date of this communication.

 If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
 Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
 - Any reply received by the Chice later than these months

earned patent term adjustment. See 37 CFR 1.704(b).
Status
1) Responsive to communication(s) filed on 15 August 2011.
2a) ☐ This action is FINAL . 2b) ☐ This action is non-final.
3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
Disposition of Claims

4) ☑ Claim(s) 1-6 and 8-11 is/are pending in the application.
4a) Of the above claim(s) is/are withdrawn from consideration.
5) Claim(s) is/are allowed.
6)⊠ Claim(s) <u>1-6 and 8-11</u> is/are rejected.
7) Claim(s) is/are objected to.
8) Claim(s) are subject to restriction and/or election requirement.
pplication Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. §

a) All b) Some * c) None of:

1. 🗆	Certified copies of the priority documents have been received.
2.	Certified copies of the priority documents have been received in Application No
3.	Copies of the certified copies of the priority documents have been received in this National Stag
	application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

Attachment(s)		
Attachment(3)		
Notice of References Cited (PTO-892)	Interview Summary (PTO-413)	
2) Notice of Eraftsporson's Patent Drawing Seview (PTC-942)	Parer No(s)/Mail Date	
3) Information Disclosure Statement(s) (PTO/SB/08)	 Notice of Informal Patent Application 	
Paper No(s)/Mail Date 08/03/2011.	6) Other:	

Art Unit: 1786

DETAILED ACTION

The examiner acknowledges the receipt of applicants' arguments/amendments dated 08/15/2011.

Claim Status

The previous rejections of claims 1-6 under 35 U.S.C. 103(a) as being unpatentable over Cameron (WO 90/11317) in view of Nalwa (Journal of Materials Science, 26 (1991) (pages1683-1690) are withdrawn.

The previous rejections of claims 8-9 under 35 U.S.C. 103(a) as being unpatentable over Cameron (WO 90/11317) in view of Nalwa (Journal of Materials Science, 26 (1991) (pages 1683-1690) and Oka (JP-07-090179) are maintained.

The previous rejections of claims 10-11 under 35 U.S.C. 103(a) as being unpatentable over Cameron (WO 90/11317) in view of Nalwa (Journal of Materials Science, 26 (1991) p. 1683- 1690) and further in view of and Kin (JP-11-185962) are withdrawn

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 1786

- Claims 1-6 are rejected under 35 U.S.C. 103(a) as being unpatentable over Cameron (WO 90/11317) in view of Nalwa (Journal of Materials Science, 26 (1991) p. 1683-1690) and Oka (JP-07-090179).
- Regarding Claims 1-3, the applicant also claims a charge transporting varnish represented by Formula 1:

$$R^1$$
 $A-NH$ R^2 R^3 R^3

Formula 1

where R1-R2 are H, monovalent hydrocarbon group or organoxy group, R3 is an unsubstituted aryl group, A and B are divalent groups represented by Formula(s) 2 or 3:

Formula 3

Applicants' formula 1 can also be represented by formula 4:

Application/Control Number: 10/593,772 Page 4

Art Unit: 1786

$$\mathbf{A}^{1} \xrightarrow{\mathbf{R}^{4}} \mathbf{R}^{1} \xrightarrow{\mathbf{R}^{5}} \mathbf{R}^{1} \xrightarrow{\mathbf{R}^{2}} \mathbf{R}^{2} \xrightarrow{\mathbf{R}^{5}} \mathbf{R}^{3}$$

formula 4

The formula can also be represented as the quinonediimine derivative.

Applicant further claims the polymer is made of a polyimide precursor represented by the general formula (5), or a polyimide obtained by dehydration ring closure of the polyimide precursor

Where P is selected from formulas 6 to 12 and Q is selected from formulas 13 to 10.

Treatment of the Oligoaniline Limitation

Cameron discloses conductive polymers which include Formula C-1 (page 1):

$$\stackrel{\text{RI}}{\leftarrow} \left(\underbrace{\stackrel{\text{H}}{\wedge}}_{N} + \underbrace{\stackrel{\text{H}}{\otimes}}_{N} + \underbrace{\stackrel{\text{H}}{\wedge}}_{n} - \underbrace{\stackrel{\text{H}}{\wedge}}_{n} + \underbrace{\stackrel{\text{H}}_{n}}_{n} + \underbrace{\stackrel{\text{H}}{\wedge}}_{n} + \underbrace{\stackrel{\text{H}}{\wedge}}_{n} + \underbrace{\stackrel{\text{H}$$

Art Unit: 1786

Cameron discloses that polyaniline polymers (Formula C-1) can be linked with a polyimide and the resulting copolymer can be in a solvent (page 4, lines 5-17).

Cameron further discloses that the molecular weight of Formula C-1 can be 800 to 900 can be used (page 10, lines 17-20). Applicant claims a molecular weight of 250-800.

The molecular weight is viewed as a cause effective variable to control the solubility of the polymeric material. A polymer with a molecular weight that is too high would be expected to be insoluble in common solvents.

Applicant and Cameron teach molecular weight ranges which are not exactly the same but do show a portion of the ranges which overlap, it would have been obvious to one of ordinary skill in the art at the time of the invention to have adjusted the molecular weight of the copolymer (Formula C-1/polyimide) to achieve a material that was soluble in a solvent which would have included the overlapping portion of the ranges, absent unexpected results.

Formula C-1 shows A and B are phenyl groups which correspond to the phenyl groups in applicants' Formula 4. R1-R7 in Formula C-1 are considered to be hydrogen atoms as Cameron does not show any additional substitution (per claim 3).

Cameron fails to mention phenyl as an end-capping group.

Treatment of the End-Capping Group (R3) Limitation

Nalwa discloses that an oligoanilines can be end-capped with a phenyl group (page 1689).

Art Unit: 1786

The examiner takes the position that the nitrogen on the far right in Formula C-1 represents the reactive site for propagation.

Whereas Cameron does not mention the means to terminate the oligomer growth and Nalwa discloses the phenyl group can be used as an end-capping group, it would have been obvious to a person of ordinary skills in the art at the time of the invention to have selected from known end-capping groups which would have included the phenyl group as disclosed by Nalwa which reads on applicants' limitation for the R3 position, absent unexpected results (per claim 2).

Cameron in view of Nalwa teaches polyaniline-polyimide copolymers but fail to mention the claimed polyimide represented by applicants' formula 5.

Treatment of the Polyimide Precursor Limitation

Oka discloses a charge transporting substance made of a charge transporting polyaniline and a polyimide (abstract). The polyimide component can be represented by Formula O-2 (below) which shows a tetravalent organic group corresponding to applicants' P group (Formula 10) and a divalent Ar2 group corresponding to applicants' Q group (paragraph 4).

Art Unit: 1786

As Cameron in view of Nalwa and Oka teach polyaniline-polyimide copolymers as conducting materials, it would have been obvious to one of ordinary skill in the art at the time of the invention to have selected from known polyimide used in polyaniline-polyimide copolymers which would have included the polyimides of Oka (Formula O-2) which reads on the instant limitations, absent unexpected results.

Treatment of the Q in Applicants' Formula 5

As mention above Ar2 in Oka's Formula O-2 (polyimide precursor) corresponds to applicants' Q group. Oka also discloses that the polyimide precursor can be made by the reaction of a tetracarboxylic dianhydride or tetracarboxylic ester or tetracarboxylic acid halide with a diamine (paragraphs 9 and 10).

Oka further discloses that other diamines based on phenylenediamine and diaminobiphenyl can be used to make polyimides precursors that are analogous to applicants' Formula 18 (paragraph 9 and 10).

As Cameron in view of Nalwa and Oka teach polyaniline-polyimide copolymer as conducting materials, it would have been obvious to one of ordinary skill in the art at the time of the invention to have selected from known polyimide derivatives used in polyaniline-polyimide copolymers which would have included Oka who teaches a polyimide derivatives containing a diamine species defined as Q groups in applicants' Formula 18 to make suitable polyimide precursors through a reaction with a tetracarboxylic derivative, absent unexpected results.

Art Unit: 1786

Regarding Claim 4, Cameron in view of Nalwa teaches the invention of claim 1.
 Cameron fails to teach m+n as less than or equal to 6.

The molecular weight of the copolymer affects the ultimate solubility of the copolymer. Polymers with molecular weights that are too high would be expected to have lower solubility in a solvent.

With a reasonable expectation of success, a person of ordinary skill in the art would have tested a series of polymers with varying (different valve of m +n) molecular weight ranges to determine which range give suitable solubility properties which would have included the range claimed by the applicant, absent unexpected results.

Regarding Claims 5, Cameron in view of Nalwa teach the invention of claim 1.
 Cameron fails to teach the weight ratio of polyaniline to polyamide. Applicant claims a % wt. of 0.1 to 50 wt. %.

The polyaniline (Formula C-1) level is viewed as a cause effect variable to control the conductive properties of the copolymer. A polyaniline content that was too low would be expected to result in a material with insufficient conductivity.

It would have been obvious to a person of ordinary skill in the art at the time of the invention to have adjusted to weight range of the polyaniline to optimize the conductivity of the oligomer which would have included the claimed range, absent unexpected results.

Art Unit: 1786

Regarding Claims 6, Cameron in view of Nalwa teach the invention of claim 1.
 Cameron fails to mention the molecular weight of the polyimide material. The applicant claims 1.000-50.000.

Cameron teaches that the polyimide component needs to have a low melting temperature to make the copolymer processable (page 4, lines 17-20).

The molecular weight of the polyimide is viewed as a cause effective variable to control the melting temperature. A polyimide with a molecular weight that was too high would not be expected to have a low melting temperature.

As Cameron teaches that a low melting polyimide is required to ensure processibility, it would have been obvious to one of ordinary skill in the art at the time of the invention to have adjusted the molecular weight of the polyimide which would have included the claimed range, absent unexpected results.

- Claims 8-9 are rejected under 35 U.S.C. 103(a) as being unpatentable over
 Cameron (WO 90/11317) in view of Nalwa (Journal of Materials Science, 26 (1991)
 p. 1683-1690) and Oka (JP-07-090179).
- 7. Regarding Claims 8 and 9, the applicant claims a polyimide precursor represented by formula 21:

Application/Control Number: 10/593,772 Page 10

Art Unit: 1786

Formula 21

Z and Q are divalent groups. Z is selected from applicants" formula(s) 22-27.

Cameron in view of Nalwa teaches polyaniline-polyimide copolymers but fails to mention the claimed polyimide.

Oka discloses a polyimide precursor represented by O-2 (shown above). Oka also discloses that the polyimide precursor can be made by the reaction of a tetracarboxylic dianhydride or tetracarboxylic ester or tetracarboxylic acid halide with a diamine (paragraphs 9 and 10).

Oka further discloses that other diamines based on phenylenediamine and diaminobiphenyl (Z groups, the class of compounds listed in applicants' structures 22-27 in claim 9) can be used to make polyimides precursors that are analogous to applicants' Formula 21. The phenylenediamine or diaminobiphenyl compounds can have the following groups attached: methylenebis (aniline), bis (aminophenoxy) benzene, bis (aminophenoxy) biphenyl and bis [(aminophenoxy) phenyl] propane.

Oka also indicates the above groups can be further substituted (defined as W in the applicants' structures 22-27) with halogens, alkoxy (methoxy, ethoxyl, propoxy) groups, or alkyl groups (methyl, ethyl, propyl) (paragraph 9 and 10).

In essence, Oka discloses a polyimide precursor that can contain both Z and Q groups.

As Cameron in view of Nalwa and Oka teach polyaniline-polyimide copolymer as conducting materials, it would have been obvious to one of ordinary skill in the art at the time of the invention to have selected from known polyimide derivatives used in

Art Unit: 1786

polyaniline-polyimide copolymers which would have included Oka who teaches a combination of diamine species defined as Z and Q groups in Formula 21 to make suitable polyimide precursors through a reaction with a tetracarboxylic derivative, absent unexpected results.

- 8. Claims 10-11 are rejected under 35 U.S.C. 103(a) as being unpatentable over Cameron (WO 90/11317) in view of Nalwa (Journal of Materials Science, 26 (1991) p. 1683-1690) and Oka (JP-07-090179) and further in view of Kin (JP-11-185962).
- 9. Regarding Claims 10 and 11, Cameron in view of Nalwa and Oka teach the invention of Claim 1 but fail to mention a charge transporting thin film or usage in an organic electroluminescent device.

Kin discloses a doped polyaniline (charge transporting substance) (paragraphs 28-30) and the dopant can be benzenesulfonic acid (charge transporting dopant) (paragraph 30). The polymers are soluble in organic solvent (paragraph 39).

Kin also discloses a thin film layer (charge transporting varnish) (paragraph 32) as a component of an electroluminescent device (abstract).

As Kin discloses a similar type of conducting polyaniline material to Cameron, it would have been obvious to a person of ordinary skill in the art at the time of the invention to have used the polyaniline materials of Cameron in known applications

Art Unit: 1786

which would have included as a thin film layer in an electroluminescent device as taught by Kin, absent unexpected results.

The end-capping groups of Cameron in view of Nalwa and Oka was addressed above.

Response to Arguments and Amendments

Applicant has amended claim 1 to require R3 to by an unsubstituted aryl group and the limitations of previous claim 7 have been added.

Applicant argues that Cameron fails to teach an oligoaniline-polyimide charge transporting varnish, but instead teaches as oligoaniline with polyimide groups not used for preparing a blend of a polyimide and a conductive polymer.

The examiner counters that Cameron discloses a polyaniline (which reads on applicants' oligoaniline) reacted with a tetracarboxylic dianhydride (polyimide precursor) to make a conductive polymer. Cameron's blend of said conductive polymer with a non-conductive polyimide to form a blend does not negate that Cameron discloses a conductive polymer-polyimide. As applicant claims a charge transporting varnish comprising an oligoaniline-polyimide, blends of other materials are not excluded from the formulation as the claim recites open the ended "comprising" term.

The examiner further counters that coupling a polyaniline with a known polyimide precursor such as those taught by Oka (reads on applicants' polyimide precursor) would have been well within the scope of one of ordinary skill in the art at the time of the invention.

Art Unit: 1786

The applicant's arguments with respect to the pending claims have been considered but are moot in view of the new grounds of rejection necessitated by the applicant's amendment.

Conclusion

Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any

extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to GREGORY CLARK whose telephone number is (571)270-7087. The examiner can normally be reached on M-Th 7:00 AM to 5 PM Alternating Fri 7:30 AM to 4 PM and Off.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jennifer Chriss can be reached on (571) 272-7783. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Jennifer A Chriss/ Supervisory Patent Examiner, Art Unit 1786

GREGORY CLARK/GDC/ Examiner Art Unit 1786