Comp Sci, March 7, 2023
CBMPSQ, MMC97/2025
RNNS are specialized for mocessing requences of data,
े विक्र
Each stage un an RNN contains;
- new impat
- mampulate state
- reuses weights
- new impat - manipulate state - neuses weights - gives a new output,
Think of an RNN as a Series of measurements.
- Simple example
$\frac{m \frac{d^2x}{dt^2} + y \frac{dx}{dt} + x(t) = F(t)}{dt^2}$
at- at-
mutial condutions
xo = x(to) 1 vo = vo(to)
x8 = x(10) // 100 = 10 000)
Rewrite as two coupled DDEs
$v(t) = \frac{dx}{dt}$
mdv ni = F
$\frac{\partial v}{\partial t} + Mv + x = F$
Discretize
ナーラ セン = せのナイタセ
x'=0,1,2, ~~ m

 $3t = \frac{t_{m-to}}{m}$ Euler's method Xi+1 = Xi + Stor Vi+1 = V2'+ Sta dv = a = an = Fe - M vn' $\frac{-\frac{1}{m}X_{1}^{1}}{N_{1}+1} = N_{1}^{1} + N_{1}^{1$ Ni+1 = f (f(N1-1, Xi-1, Fi-1), Vi, Fi) Tufinge Fix, Xn' Frit, Xi+,

ht = (w) ho (same weights) = W.W.w. -, W.40 assume Wisdiagona-W= KDK = au = 1 eigenpairs of Nane Di and Ni ho = Exiw $W, h_0 = \sum_{i} \alpha_i \lambda_i w_{i}$ Wwi = Diwi ht = Ewaiwi E La an Wal

assume $\lambda_0 > \lambda_1 > \lambda_2 >$ 4 = 20 wodo depending on the value of to , we can get vanishing or exploding gradients Ta avoid exploding, a simple trick is to Chip" the gradient q if 119112 > E endif,