

- Both independent and dependent variables can assume a continuous range of values
- Exists in nature

Digital Signals

- Both independent and dependent variables are discretized
- Representation in computers
- Sampling
 - Discrete independent variable
 - Sample and hold (S/H)
- Quantization
 - Discrete dependent variable
 - Analog to Digital Converter (ADC)

Quantization Error

- Usually like random noise
- Noise is present in most signal acquisition systems
- Random uncorrelated samples added to the original signal

Proper Sampling

 If the original signal can be reconstructed unambiguously from the sampled signal

Is it Proper Sampling?

- DC signal
- Freq = 0.0 x Sampling Rate
- Proper

4

Is it Proper Sampling?

- Freq = 0.09 x Sampling Rate
- Each sample covers 0.09 cycles
- Proper

Is it Proper Sampling?

- Freq = 0.31 x Sampling Rate
- Larger fraction of cycles per sample
- Proper

Is it Proper Sampling?

- Freq = 0.95 x Sampling Rate
- Much larger parts of cycles per sample
- Not Proper
- Aliasing
- Changes frequency and phase

- Proper Sampling: At least one sample per half cycle
- Freq \leq 0.5 x Sampling Rate
- Sampling Rate ≥ 2 x Frequency
- Nyquist Rate

Time (Spatial) Domain vs. Frequency Domain

Any one dimensional *analog signal* can be represented as a linear combination of sine waves of different frequencies

- Amplitude
 - How much details?
 - Sharper details signify higher frequencies
 - Will deal with this mostly

Phase

- Where are the details?
- Though we do not use it much, it is important, especially for perception

- A. The image
- B. Image after convolution
- c. Segmented convolved image
- Edge detected image

Scaling Problem

- Edges in coarser level do not disappear in finer levels
- New edges are added
- Coarser level edges are most important
- Advances like a hierarchy