Zentrale Begriffe (Vorlesung vom 16.10.2015)

Kondition eines Problems:

Kleine Ursache, große Wirkung (Orkan Lothar, Moleküldynamik).

Stabilität eines Algorithmus:

Keine Äquivalenz vom Multiplikation und mehrfacher Addition.

Komplexität eines Problems

Effizienz eines Algorithmus

Die natürlichen Zahlen (anschaulich)

$$0, 1, 2, 3, \dots$$

- kennt jedes Kind
- beginnen mit 0 oder 1
- gut geeignet zum Abzählen
- keine Schulden, keine Tortenstücke

• ...

Die natürlichen Zahlen (axiomatisch)

Definition: \mathbb{N} ist die Menge mit den folgenden Eigenschaften:

- Es gibt ein ausgezeichnetes Element $0 \in \mathbb{N}$.
- Es gibt eine Abbildung $S: \mathbb{N} \to \mathbb{N}$ mit
- (S1) S ist injektiv (d.h. $S(n) \neq S(m)$ falls $n \neq m$)
- (S2) $0 \notin S(\mathbb{N}) = \{S(n) \mid n \in \mathbb{N}\}$
- (S3) Ist $M \subset \mathbb{N}$ und gilt $0 \in M$ und $S(M) \subset M$ so gilt $M = \mathbb{N}$.

Die natürlichen Zahlen (axiomatisch)

Definition: \mathbb{N} ist die Menge mit den folgenden Eigenschaften:

- Es gibt ein ausgezeichnetes Element $0 \in \mathbb{N}$.
- ullet Es gibt eine Abbildung $S:\mathbb{N} \to \mathbb{N}$ mit
- (S1) S ist injektiv (d.h. $S(n) \neq S(m)$ falls $n \neq m$)
- (S2) $0 \notin S(\mathbb{N}) = \{S(n) \mid n \in \mathbb{N}\}\$
- (S3) Ist $M \subset \mathbb{N}$ und gilt $0 \in M$ und $S(M) \subset M$ so gilt $M = \mathbb{N}$.

Anschaulich:

Jede natürlichen Zahl n hat genau einen Nachfolger S(n).

Definition der Addition:

(A1)
$$n + 0 = n$$
 (A1) $n+S(m)=S(n+m)$

Definition der Addition:

(A1)
$$n + 0 = n$$
 (A1) $n+S(m)=S(n+m)$

Nachweis der Rechenregeln:

Assoziativität: k + (n + m) = (k + n) + m

Kommutativität: n + m = m + n

Definition der Addition:

(A1)
$$n + 0 = n$$
 (A1) $n+S(m)=S(n+m)$

Nachweis der Rechenregeln:

Assoziativität: k + (n + m) = (k + n) + m

Kommutativität: n + m = m + n

Folgerung: Wir können mit natürlichen Zahlen rechnen.

Definition der Addition:

(A1)
$$n + 0 = n$$
 (A1) $n+S(m)=S(n+m)$

Nachweis der Rechenregeln:

Assoziativität: k + (n + m) = (k + n) + m

Kommutativität: n + m = m + n

Folgerung: Wir können mit natürlichen Zahlen rechnen.

Aber: Bevor wir die Summe zweier natürlicher Zahlen ausrechnen können muss jede natürliche Zahl genau einen Namen haben!

Ziffernketten

Problem:

unendlich viele natürliche Zahlen ⇔ unendlich viele Namen

Ziffernketten

Problem:

unendlich viele natürliche Zahlen ⇔ unendlich viele Namen

Lösung:

Ziffernketten: $z_1 z_2 z_3 \dots z_k$, $z_i \in \mathcal{Z}$, $i = 1, \dots, k$

endliche Ziffernmenge \mathcal{Z}

Ziffernketten

Problem:

unendlich viele natürliche Zahlen ⇔ unendlich viele Namen

Lösung:

Ziffernketten: $z_1 z_2 z_3 \dots z_k$, $z_i \in \mathcal{Z}$, $i = 1, \dots, k$

endliche Ziffernmenge Z

Interpretation:

- Systematische Konstruktion unterschiedlicher Symbole
- Bilden von Worten aus einem Alphabet

Ziffernsysteme

Satz: Sei \mathcal{Z} eine endliche Ziffernmenge und

$$\mathcal{D}(\mathcal{Z}) = \{ z_1 z_2 \dots z_k \mid k \in \mathbb{N}, \ z_i \in \mathcal{Z}, \ i = 1, \dots, k \}$$

die Menge aller Ziffernketten.

Dann existiert eine bijektive Abbildung $\varphi: \mathbb{N} \to \mathcal{D}(\mathcal{Z})$.

Definition: Die Ziffernmenge $\mathcal Z$ und die Zuordnung φ erzeugen ein Ziffernsystem zur Darstellung von $\mathbb N$.

Ziffernsysteme

Satz: Sei \mathcal{Z} eine endliche Ziffernmenge und

$$\mathcal{D}(\mathcal{Z}) = \{ z_1 z_2 \dots z_k \mid k \in \mathbb{N}, \ z_i \in \mathcal{Z}, \ i = 1, \dots, k \}$$

die Menge aller Ziffernketten.

Dann existiert eine bijektive Abbildung $\varphi: \mathbb{N} \to \mathcal{D}(\mathcal{Z})$.

Definition: Die Ziffernmenge \mathcal{Z} und die Zuordnung φ

erzeugen ein Ziffernsystem zur Darstellung von \mathbb{N} .

Definition: Eine Menge M, für die ein bijektives $\varphi: \mathbb{N} \to M$ existiert

(die sich durchnumerieren lässt), heißt abzählbar.

Beispiele für Ziffernsysteme

römische Zahlen: $\mathcal{Z} = \{I, V, X, L, C, D, M\}$

Beispiele für Ziffernsysteme

römische Zahlen: $\mathcal{Z} = \{I, V, X, L, C, D, M\}$

kein Ziffernsystem!

Beispiele für Ziffernsysteme

römische Zahlen: $\mathcal{Z} = \{I, V, X, L, C, D, M\}$

kein Ziffernsystem!

Unärsystem:

nur eine Ziffer: $\mathcal{Z} = \{ | \}$

Ziffernketten: $\mathcal{D}(\mathcal{Z}) = \{|,||,|||,\ldots\}$

Zuordnung: $\varphi(0) = \varphi(1) = |\varphi(n+1) - \varphi(n)|$

Beispiel: $\varphi(4) = ||||$

Praktische Anwendungen

...vor 15000-20000 Jahren im Kongo:

Praktische Anwendungen

...vor 15000-20000 Jahren im Kongo: ...heute:

Potenzzerlegung zur Basis q

Satz: Sei $q \in \mathbb{N}$, q > 1 fest gewählt.

Dann lässt sich jede Zahl $n \in \mathbb{N}$ als Potenzzerlegung

$$n = \sum_{i=0}^{k} r_i q^i,$$

darstellen.

Dabei sind die Koeffizienten $r_i \in \{0, \dots, q-1\} \subset \mathbb{N}$ eindeutig bestimmt.

Positionssystem zur Basis q

Definition:

Ziffernmenge: $Z = \{z_0, z_1, ..., z_{q-1}\}$

Zuordnung:

$$n \mapsto \varphi(n) = z_n, \qquad n = 0, \dots, q - 1,$$

und im Falle n > q - 1

$$n \mapsto \varphi(n) = z_{r_k} z_{r_{k-1}} \dots z_{r_0} \quad \text{mit} \quad n = \sum_{i=0}^k r_i q^i, \quad 0 \le r_i \le q-1$$

Diese Zifferndarstellung heißt q-adische Darstellung.

Beispiele

Dezimalsystem: $\mathcal{Z} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

q-adische Systeme mit $q \leq 36$: Erweiterung um $\{A, B, C, \ldots, Z\}$

Konventionen:

• keine Unterscheidung zwischen Darstellung und Zahl:

$$z_k z_{k-1} \dots z_{0_q} = \sum_{i=0}^k z_i q^i, \qquad z_i \in \mathcal{Z} = \{0, 1, \dots, q-1\}.$$

- kein Index q, falls q = 10
- ullet den Index i von z_i nennt man Stelle, $z_k z_{k-1} \dots z_{0_q}$ eine k-stellige Zahl

Positionssystem zur Basis q=2: Dualsystem

Ziffernmenge $\mathcal{Z} = \{0, 1\}$

Ideal für die technische Umsetzung:

1 Binärstelle \Leftrightarrow 1 Bit

Alle modernen Rechenmaschinen arbeiten mit dem Dualsystem.

Zahlenbereich: Im Dualsystem lassen sich mit N Stellen alle Zahlen $n \in \mathbb{N}$ mit

$$0 \le n \le 2^N - 1$$

darstellen.

Historische Rechenmaschinen I

- Abakus
- mechanische Zählräder
- 1623 Wilhelm Schickard, 1642 Blaise Pascal, 1673 Gottfried Wilhelm von Leibniz: Rechenmaschinen mit dekadischem System
- 1679 Leibniz: Dualsystem
- 1935 1938 Konrad Zuse (Berlin): erster frei programmierbarer Rechner Z1 (mechanisch)

Rechenmaschinen II

- 1941 Konrad Zuse: elektromechanisch (Relais): Z3
- 1944 Cambridge: rein elektronisch (Elektronenröhren): COLOSSOS
- 1947 John Bardeen, Walter Brattain, William Shockley: Transistor
- 1971 Mikroprozessor: Intel
- 2000 Pentium 4: 42 Millionen Transistoren auf 217 mm²
- 2007 Dual-Core Itanium 2: 1200 Millionen Transistoren auf 596 mm²
- ...

Technische Realisierung

- kleinste Einheit (0 oder 1): Bit
- Bits werden in festen Längen zusammengefaßt.
- 8 Bits = 1 Byte mit $2^8 = 256$ verschiedene Zuständen
- feste Anzahl Bytes f
 ür Zahlendarstellung
- üblich: 1, 2, 4, 8 Bytes bzw. 8, 16, 32, 64 Bits
- Bezeichnungen: BYTE, WORD, DWORD, QWORD (nicht einheitlich)
- Bereich von 64-Bit Zahlen:

$$0 \le z \le 2^{64} - 1 > 18 \cdot 10^{18} = 18$$
 Trillionen

Die ganzen Zahlen (anschaulich)

$$\dots, -2, -1, 0, +1, +2, \dots$$

- kennt (fast) jedes Kind
- beginnen nirgends
- es gibt positive und negative Zahlen
- Schulden, aber keine Tortenstücke

Die ganzen Zahlen (konstruktiv)

Problem:

Ist n > m, so hat x + n = m keine Lösung $x \in \mathbb{N}$

Ausweg:

Erweitere \mathbb{N} um x = (m, n) (wir schreiben m-n)

Neues Problem:

nicht eindeutig: x+2=1 und x+1=0 hätten verschiedene Lösungen

Neuer Ausweg:

Äquivalenzklassen (siehe Skript, Analysis I, Lineare Algebra I, ...)

Zifferndarstellung: Vorzeichenbit

Darstellung der positiven Zahlen:

$$z_k z_{k-1} \dots z_{0q} = \sum_{i=0}^k z_i q^i, \qquad z_i \in \mathcal{Z} = \{0, 1, \dots, q-1\}.$$

zusätzliches Symbol: "-"

Darstellung der negativen Zahlen:

$$-z_k z_{k-1} \dots z_{0q} = -\sum_{i=0}^k z_i q^i, \qquad z_i \in \mathcal{Z} = \{0, 1, \dots, q-1\}.$$

technische Realisierung: Vorzeichenbit

Dualdarstellung ganzer Zahlen mit Vorzeichenbit

$$\mathbb{Z} = \{\dots, 111_2, 110_2, 11_2, 00_2, 01_2, 010_2, 011_2, \dots\}$$

Dualdarstellung ganzer Zahlen mit Vorzeichenbit

$$\mathbb{Z} = \{\ldots, 111_2, 110_2, 11_2, 00_2, 01_2, 010_2, 011_2, \ldots\}$$

Eindeutigkeit bei endlich vielen Stellen: 1. Stelle: Vorzeichenbit

Dualdarstellung ganzer Zahlen mit Vorzeichenbit

$$\mathbb{Z} = \{\ldots, 111_2, 110_2, 11_2, 00_2, 01_2, 010_2, 011_2, \ldots\}$$

Eindeutigkeit bei endlich vielen Stellen: 1. Stelle: Vorzeichenbit

Nachteile:

- Keine eindeutig bestimmte Darstellung der Null: $0 = 00_2 = 10_2$
- Addition natürlicher und ganzer Zahlen grundsätzlich verschieden

Dualdarstellung ganzer Zahlen mit Zweierkomplement

Kochrezept: Das Zweierkomplement von n < 0 erhält man durch

Dualdarstellung, Umklappen und 1 addieren

Beispiel: N=4 Bits vorhanden und n=-3

Einfaches Rechnen mit dem Zweierkomplement

Grundsätzlich keine Subtraktion nötig: a-b=a+(-b)

Addition direkt auf negative Zahlen im Zweierkomplement erweiterbar:

Beispiel: 3-3=3+(-3) im 4-Bit-Zweierkomplement lautet:

Was steckt dahinter?

komplementäre Potenzzerlegung:

$$\begin{bmatrix} 1 \mid z_{N-2} & \cdots & z_0 \end{bmatrix} = -\left(1 + \sum_{i=0}^{N-2} (1 - z_i) \ 2^i \right)$$

eindeutig bestimmte Darstellung der Null: $0 = 0000_2$ asymmetrischer Zahlenbereich:

$$z_{\min} \le -2^{N-1} \le z \le 2^{N-1} - 1 = z_{\max}$$

Nicht verwechseln mit Overflow ...

Beispiel N=3

-1 111

-2 | 1 1 0

-3 1 0 1

-4 | 1 0 0

3 011

 $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

0 0 1

0 0 0

Nicht verwechseln mit Overflow ...

Beispiel N=3

-1 1 1 1 1

-2 | 1 1 0

-3 | 1 0 1

-4 1 0 0

3 011

 $2 \qquad \boxed{0\ 1\ 0}$

 $1 \quad | \quad 0 \quad 0 \quad 1$

0 0 0

Overflow-Desaster: Ariane 5 (4. Juni 1996)

Andere Möglichkeiten...

Asymmetrie des Zweierkomplements:

 $1000, 1001, \ldots, 1101, 1110, 1111, 0000, 0001, 0010, 0011, \ldots, 0111$

Andere Möglichkeiten...

Asymmetrie des Zweierkomplements:

 $1000, 1001, \ldots, 1101, 1110, 1111, 0000, 0001, 0010, 0011, \ldots, 0111$

exotische Alternative: q=3, $z_0=\underline{1}$, $z_1=0$, $z_2=1$

symmetrisch:

 $1111, \ldots, 00\underline{1}0, 00\underline{1}1, 000\underline{1}, 0000, 0001, 001\underline{1}, 0010, \ldots, 1111$

technische Realisierung: Sowjetunion (S.L. Sobolev, 1958)

