

<u>Help</u>

konainniaz 🗸

Problem 1

3/3 points (graded)

A linear classifier on \mathbb{R}^2 is specified by w=(-1,3) and b=-6.

a) At what point does the decision boundary intersect the x_1 -axis? (Just give the x_1 -intercept, a real number.)

b) At what point does the decision boundary intersect the x_2 -axis? (Just give the x_2 -intercept.)

c) What label, 1 or -1, is assigned to the point (1,1)?

Submit

Problem 2

1/1 point (graded)

A particular line in \mathbb{R}^2 passes through the points (0,1) and (2,0) and is specified by equation $w\cdot x+b=0$, where b=-2 and $w\in\mathbb{R}^2$. What is w?

$$\bigcirc \ w=(0,1)$$

$$\bigcirc \ w=(0,2)$$

•
$$w = (1, 2)$$

$$\bigcirc \ w=(2,-1)$$

Submit

Problem 3

The Perceptron algorithm makes an update whenever it encounters a data point (x,y) that is "misclassified" by the current w,b. What does this mean, precisely? Choose the best option from this list. $\bigcirc \ y\left(w\cdot x+b\right)=0$ $\bigcirc y(w\cdot x+b)<0$ $\bigcirc \ y\left(w\cdot x+b\right)>0$ Submit Problem 4 1/1 point (graded) A particular data set of n points is randomly permuted and then the Perceptron algorithm is run on it, repeatedly cycling through the points until convergence. It converges after k updates. Which of the following must be true? Select all that apply. $\ \ \, n\geq k$ ✓ If this process were repeated with a different random permutation, then the algorithm would again converge. If this process were repeated with a different random permutation, then the algorithm would again make k updates before convergence. ✓ The data is linearly separable. Submit Problem 5 1/1 point (graded) The Perceptron algorithm is run on a data set, and converges after performing $oldsymbol{p}+oldsymbol{q}$ updates. Of these updates, p are on data points whose label is -1 and q are on data points whose label is +1. What is the final value of parameter b? $\bullet q-p$ $\bigcirc p+q$ $\bigcirc p-q$ $\bigcirc q$

Problems 6-8 correspond to "Support vector machines I"

Problem 6

1/1 point (graded)

The figure below shows a two-dimensional linear separator $w\cdot x+b=0$, along with the parallel lines $w\cdot x+b=-1$ and $w\cdot x+b=1$.

What is the margin of this classifier?

A number between 0.5 and	0.5 and 1.	between	A number	(•)
--	------------	---------	----------	------------

O 1.

A number between 1 and 2.

O 2.

A number greater than 2.

Submit

Problem 7

5/5 points (graded)

A support vector machine classifier is learned for a data set in \mathbb{R}^2 . It is given by w=(3,4) and b=-12.

a) What is the $oldsymbol{x_1}$ -intercept of the decision boundary?

4	
b) What is the x_2 -intercept of the decision boundar	ry?
3	
3	
c) What is the margin of this classifier?	
0.2	
0.2	
d) It turns out that the data set has two distinct sup	port vectors of the form $(1,?)$. What are they?
(give the missing $oldsymbol{x_2}$ coordinates for the support ve	ctors with the smaller x_2 value first)
2	
2	
2.5	
2.5	
Submit	
Problem 8	
4/4 points (graded) Consider the following small data set in \mathbb{R}^2 :	
Points $(1,2),(2,1),(2,3),(3,2)$ have label -1 .	
Points $(4,5)$, $(5,4)$, $(5,6)$, $(6,5)$ have label $+1$.	
Now, suppose (hard margin) SVM is run on this data	ì.
a) What is the x_1 -intercept of the decision boundar	y?
7	
7	
b) What is the $oldsymbol{x_2}$ -intercept of the decision boundar	ry?
7	
7	
c) What is $oldsymbol{w}$?	
O (1)	

$w = {2 \choose 2}$
$igcirc$ $w=egin{pmatrix} -1 \ -1 \end{pmatrix}$
$\bigcirc w = inom{2}{1/2}$
$w=inom{1/2}{1/2}$
✓
) What is $m{b}$?
- 3.5 ✓
-3.5
Submit
roblems 9-12 correspond to "Support vector machines II"
Problem 9
/4 points (graded) ere is the optimization problem for the soft-margin SVM.
$\min_{\substack{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n \\ \text{s.t.: } y^{(i)}(w \cdot x^{(i)} + b) \geq 1 - \xi_i \text{ for all } i = 1, 2, \dots, n}} \xi_i$
) How many slack variables are there? The answer should be a function of $m{n}$ and/or $m{d}$.
n 🗸
What setting of $oldsymbol{C}$ will recapture the hard-margin SVM?

igcup Very small $oldsymbol{C}$

lacktriangle Very large C

\bigcirc There is no value of C that will do this
Answer Correct: Larger $oldsymbol{C}$ imposes a heavier penalty on slack.
c) As $oldsymbol{C}$ is increased, what happens to the margin of the linear classifier that is returned?
The margin gets larger.
The margin gets smaller.
The margin is unchanged.
The way in which the margin changes is unpredictable.
Answer Correct: As C grows, the optimization problem places more emphasis on classifying the training data correctly and less on having a big margin. d) Suppose we have a data set that is linearly separable and we use it to train both a hard-margin SVM (w_H, b_H) and a soft-margin SVM (w_S, b_S) . Which of the following statements is true? Select all that necessarily apply.
$oxedsymbol{oxed} \ w_H\ \geq \ w_S\ $ $oxedsymbol{oxed} \ w_H\ \leq \ w_S\ $
$lacksquare$ The margin achieved by (w_H,b_H) is at most the margin achieved by (w_S,b_S) .
Submit Problem 10

4/4 points (graded)

The picture below shows the decision boundary obtained upon running soft-margin SVM on a small data set of blue squares and red circles.

a, Frow many Suf	pport vectors are there?
7	
7	
) What is the la	rgest slack value on a red (circle-shaped) point, roughly?
2.3	
2.3	
) What is the lar	rgest slack value on a blue (square-shaped) point, roughly?
1.2	
1.2	
• •	factor $oldsymbol{C}$ in the soft-margin SVM optimization problem were increased. Would you jin to $oldsymbol{ ext{increase}}$ or $oldsymbol{ ext{decrease}}$?
decrease	▼
Submit	
Problem 11	
/1 point (graded) Vould it ever ma pply.	ake sense to use the soft-margin SVM on a linearly separable data set? Select all that
No, unless	you are unsure whether the data is linearly separable.
✓ Yes, becau	use it may lead to a larger margin and better generalization.
No, becaus	se it might fail to perfectly separate the training set.
✓	
Submit	
Problem 12	
•	SVM involves a constant $oldsymbol{C}$ that needs to be set. Which of the following is an of setting it? Select all that apply.
$oxedsymbol{\square}$ The output $oldsymbol{C}$ is set.	t of the SVM is not very sensitive to the choice of $oldsymbol{C}$, so it doesn't really matter how
Try various	s settings, and pick the one that yields the smallest training error.
Try various	s settings, and nick the one that vields the smallest cross-validation error

The dual form of the hard-margin SVM returns a vector $lpha$. Which data points $x^{(i)}$ are the support vectors in this solution?
\bigcirc Those with $lpha_i=0$
$lacktriangledown$ Those with $lpha_i>0$
\bigcirc Those with $lpha_i \geq 0$
\bigcirc The support vectors cannot be determined simply by looking at $lpha$
Submit
Problem 16
2/2 points (graded) Consider the primal and dual forms of the soft-margin SVM for binary classification. Suppose they are used on a training set of $m{n}$ points, where each point is $m{d}$ -dimensional.
a) How many real-valued variables are there in the primal optimization problem? (Don't use spaces in your expression.)
n+d+1 🗸
b) How many real-valued variables are there in the dual optimization problem?
n 🗸
Submit
<pre> < Previous Next > </pre>

Problem 15

1/1 point (graded)

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

<u>Privacy Policy</u>

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>