Cálculo Numérico

Ajuste de Curvas pelo Método dos Quadrados Mínimos

UNESP - Universidade Estadual Paulista São José do Rio Preto, SP. Um ramo da Teoria da Aproximação se trata de **aproximar** e **obter informações** sobre funções que são

- definidas de uma maneira mais complicadas, ou
- definidas apenas em pontos ou em conjuntos limitados.

Neste sentido procuramos aproximar uma função f(x) por uma função mais simples G(x) de maneira que

- a diferença entre f(x) e sua aproximação G(x) seja mínima, e que
- a função G(x) seja mais fácil de ser manuseada do que a função f(x).

O que queremos dizer quando falamos a diferença seja mínima?

No caso do *Método dos Quadrados Mínimos*, que é considerado nesta aula, o objetivo é minimizar a quantidade *I*, onde

Caso Discreto:

$$I = \sum_{j=1}^{N} [f(x_j) - G(x_j)]^2 w_j,$$

onde w_j em geral são pesos positivos.

- Caso mais simples: $w_j = 1, j = 1, 2, \dots, n$.

Caso Contínuo:

$$I = \int_{a}^{b} [f(x) - G(x)]^{2} w(x) dx,$$

onde w(x) em geral é uma função-peso positiva.

- Caso mais simples: w(x) = 1 em [a, b].

								0.5	
f(x)	2.05	0.45	0.4	0.5	0	0.2	0.6	0.512	2.05

Uma forma de trabalhar com uma função definida por uma tabela de valores é *o Método dos Quadrados Mínimos*.

É aconselhável quando:

- a) é preciso obter um valor aproximado da função em algum ponto fora do intervalo de tabelamento.
- b) os valores tabelados poderão conter erro que, em geral, não são previsíveis.

Também é aconselhável quando precisamos expressar uma função mais complicada por uma função simples, como por exemplo, por um polinômio.

O problema do ajuste de curvas no caso em que temos uma tabela de pontos $(x_1, f(x_1)), (x_2, f(x_2)), \ldots, (x_N, f(x_N)),$ com x_1, x_2, \ldots, x_N pertencentes a um intervalo [a, b], consiste em:

"Escolhidas" n funções $g_1(x), g_2(x), \ldots, g_n(x)$, contínuas em [a, b], obter n constantes $\alpha_1, \alpha_2, \ldots, \alpha_n$ tais que a função

$$G(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \ldots + \alpha_n g_n(x),$$

se aproxime ao máximo de f(x).

Este é um modelo matemático linear porque os coeficientes a determinar $\alpha_1, \alpha_2, \ldots, \alpha_n$, aparecem linearmente, embora as funções $g_1(x), g_2(x), \ldots, g_n(x)$ possam ser funções não lineares de x.

A escolha das função pode ser feita observando o gráfico dos pontos tabelados ou baseando-se em fundamentos teóricos do experimento que nos forneceu a tabela.

Exemplo. Considere a tabela de valores obtidas a partir de experimentos.

		-0.75									
f(x)	2.05	1.153	0.45	0.4	0.5	0	0.2	0.6	0.512	1.2	2.05

O diagrama de dispersão dos valores tabelados é:

É natural escolhermos uma função $g_1(x)=x^2$ e procuramos então obter o valor de α tal que $G(x)=\alpha x^2$ aproxime ao máximo os valores tabelados.

No caso geral, escolhidas as funções $g_1(x), g_2(x), \ldots, g_n(x)$, temos que estabelecer o conceito de proximidade entre as funções G(x) e f(x) para obter as constantes $\alpha_1, \alpha_2, \ldots, \alpha_n$.

Algumas ideias são impor que

$$\displaystyle \diamondsuit \max_{1 \leq j \leq N} |f(x_j) - G(x_j)|$$
 seja mínimo, or

No caso do *Método dos Quadrados Mínimos*, impomos que $\alpha_1,\alpha_2,\ldots,\alpha_n$ sejam determinados de forma que

$$\sum_{j=1}^{N} [f(x_j) - G(x_j)]^2$$
 seja mínimo.

Considere a função f(x) dada pela tabela

j	1	2	• • •	N
x_j	<i>x</i> ₁	<i>x</i> ₂		×N
$f(x_j)$	$f(x_1)$	$f(x_2)$		$f(x_N)$

Com as funções g_1,g_2,\ldots,g_n escolhidas de alguma forma, o problema de obter a aproximação

$$G(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \ldots + \alpha_n g_n(x),$$

tal que $\sum_{i=1}^{N} [f(x_i) - G(x_i)]^2$ seja mínimo pode ser resolovido pelo sistema

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix},$$

onde
$$a_{i,k} = \sum_{j=1}^{N} g_i(x_j) g_k(x_j)$$
 e $b_i = \sum_{j=1}^{N} g_i(x_j) f(x_j)$.

Seja

$$F(\alpha_1, \alpha_2, \dots, \alpha_n) = \sum_{j=1}^{N} [f(x_j) - G(x_j)]^2$$
$$= \sum_{j=1}^{N} \left[f(x_j) - \sum_{k=1}^{n} \alpha_k g_k(x_j) \right]^2.$$

Do Cálculo Diferencial sabemos que o mínimo de $F(\alpha_1, \ldots, \alpha_n)$, ocorre em

$$\frac{\partial}{\partial \alpha_i} F(\alpha_1, \alpha_2, \dots, \alpha_n) = \frac{\partial}{\partial \alpha_i} \sum_{j=1}^N \left[f(x_j) - \sum_{k=1}^n \alpha_k g_k(x_j) \right]^2 = 0,$$

para i = 1, 2, ..., n. Fazendo o desenvolvimento, obtemos

$$\sum_{i=1}^{N} 2 \Big[f(x_j) - \sum_{k=1}^{n} \alpha_k g_k(x_j) \Big] g_i(x_j) = 0,$$

para i = 1, 2, ..., n.

As equações

$$\sum_{j=1}^{N} 2 \Big[f(x_j) - \sum_{k=1}^{n} \alpha_k g_k(x_j) \Big] g_i(x_j) = 0,$$

para i = 1, 2, ..., n, que podem ser escritas como

$$\sum_{j=1}^{N} \sum_{k=1}^{n} \alpha_k g_i(x_j) g_k(x_j) = \sum_{j=1}^{N} f(x_j) g_k(x_j),$$

para i = 1, 2, ..., n.

Equivalentemente, podem ser escritas como

$$\sum_{k=1}^{n} \alpha_k \sum_{j=1}^{N} g_i(x_j) g_k(x_j) = \sum_{j=1}^{N} g_i(x_j) f(x_j),$$

para i = 1, 2, ..., n.

A partir de

$$\sum_{k=1}^{n} \alpha_k \sum_{j=1}^{N} g_i(x_j) g_k(x_j) = \sum_{j=1}^{N} g_i(x_j) f(x_j),$$

para $i = 1, 2, \ldots, n$, tomando

$$b_i = \sum_{j=1}^N g_i(x_j) f(x_j)$$
 e $a_{i,k} = \sum_{j=1}^N g_i(x_j) g_k(x_j), k = 1, 2, ..., n,$

e i = 1, 2, ..., n, obtemos o sistema linear Ay = b, onde

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Note que a matriz **A** é simétrica, pois $a_{i,k} = a_{k,i}$.

Conisdere a tabela de valores obtidos a partir de um experimento.

					0.7						
f(x)	-1.0	-0.88	-0.68	-0.51	-0.02	1.0	1.87	2.93	3.49	4.77	7.1

O diagrama de dispersão dos valores tabelados mostra que a tabela representa uma parábola do tipo $a + b x^2$.

Exemplo 1. Valores tabelados:

X	0.0	0.25	0.4	0.5	0.7	1.0	1.2	1.4	1.5	1.7	2.0
f(x)	-1.0	-0.88	-0.68	-0.51	-0.02	1.0	1.87	2.93	3.49	4.77	7.1

Portanto, escolhemos $G(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x)$, onde

$$g_1(x) = 1$$
 e $g_2(x) = x^2$.

Primeiro determinarmos os valores

$$a_{i,k} = \sum_{j=1}^{N} g_i(x_j) g_k(x_j)$$
 e $b_i = \sum_{j=1}^{N} g_i(x_j) f(x_j)$,

para k = 1, 2 e i = 1, 2.

Aqui N = 11 é o número de pontos na tabela.

Depois resolvemos o sistema de equações lineares

$$\begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

Para facilitar os cálculos, consideramos a tabela com índices e valores informados:

,					5						
$\overline{x_j}$	0.0	0.25	0.4	0.5	0.7	1.0	1.2	1.4	1.5	1.7	2.0
$f(x_j)$	-1.0	-0.88	-0.68	-0.51	-0.02	1.0	1.87	2.93	3.49	4.77	7.1

Assim, obtemos

 $b_1 = \sum_{i=1}^{11} g_1(x_i) f(x_i) = \sum_{i=1}^{11} f(x_i)$

$$= [(-1.0) + (-0.88) + (-0.68) + (-0.51) + (-0.02) + 1.0 + 1.87 + 2.93 + 3.49 + 4.77 + 7.1]$$

$$= 18.07,$$

$$b_2 = \sum_{j=1}^{11} g_2(x_j) f(x_j) = \sum_{j=1}^{11} x_j^2 f(x_j)$$

$$= [(0.0)^2 \times (-1.0) + (0.25)^2 \times (-0.88) + (0.4)^2 \times (-0.68) + (0.5)^2 \times (-0.51) + (0.7)^2 \times (-0.02) + (1.0)^2 \times 1.0 + (1.2)^2 \times 1.87 + (1.4)^2 \times 2.93 + (1.5)^2 \times 3.49 + (1.7)^2 \times 4.77 + (2.0)^2 \times 7.1]$$

$$= 59.1723,$$

Exemplo 1.

$$a_{1,1} = \sum_{j=1}^{11} g_1(x_j)g_1(x_j) = \sum_{j=1}^{11} 1 = 11,$$

$$a_{2,1} = a_{1,2} = \sum_{j=1}^{11} g_1(x_j)g_2(x_j) = \sum_{j=1}^{11} (x_j)^2$$

$$= \left[(0.0)^2 + (0.25)^2 + (0.4)^2 + (0.5)^2 + (0.7)^2 + (1.0)^2 + (1.2)^2 + (1.4)^2 + (1.5)^2 + (1.7)^2 + (2.0)^2 \right]$$

$$= 14.5025,$$

$$a_{2,2} = \sum_{j=1}^{11} g_2(x_j)g_2(x_j) = \sum_{j=1}^{11} (x_j)^4$$

$$= \left[(0.0)^4 + (0.25)^4 + (0.4)^4 + (0.5)^4 + (0.7)^4 + (1.0)^4 + (1.2)^4 + (1.4)^4 + (1.5)^4 + (1.7)^4 + (2.0)^4 \right]$$

$$= 36.66190625$$

Exemplo 1. Com os valores de b_i e $a_{i,k}$ obtidos temos o sistema de equações:

$$\left[\begin{array}{cc} 11.0 & 14.5025 \\ 14.5025 & 36.66190625 \end{array}\right] \left[\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array}\right] = \left[\begin{array}{c} 18.07 \\ 59.1723 \end{array}\right].$$

Resolvendo este sistema obtemos

$$\alpha_1 = -1.0140298190471946 \qquad \text{e} \qquad \alpha_2 = 2.0151234621285394.$$

Então, o polinômio quadrático

$$G(x) = -1.0140298190471946 + 2.0151234621285394 x^2$$

é que melhor aproxima a função f(x), dada pela tabela, da forma

$$\sum_{j=0}^{11} [f(x_j) - G(x_j)]^2 = \min_{a \in \mathbb{R}, \ b \in \mathbb{R}} \sum_{j=0}^{11} [f(x_j) - (a + bx_j^2)]^2.$$

Conisdere a tabela de valores obtidos a partir de um experimento.

Xi	-2	-1	0	1	2	3
$f(x_i)$	-7.5	-5.4	-1.5	1.5	3.5	7.3

O diagrama de dispersão dos valores tabelados mostra que a tabela representa uma reta $a+b\,x$.

Exemplo 2.

Portanto, escolhermos que $G(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x)$, onde

$$g_1(x) = 1$$
 e $g_2(x) = x$.

Primeiro determinarmos os valores

$$a_{i,k} = \sum_{j=1}^{N} g_i(x_j) g_k(x_j)$$
 e $b_i = \sum_{j=1}^{N} g_i(x_j) f(x_j)$,

para k = 1, 2 e i = 1, 2. Aqui N = 6 é o número de pontos na tabela.

$$a_{1,1} = \sum_{j=1}^{6} g_1(x_j)g_1(x_j) = \sum_{j=1}^{6} 1 = 6.$$

$$a_{1,2} = \sum_{j=1}^{6} g_1(x_j)g_2(x_j) = \sum_{j=1}^{6} x_j = 3.$$

$$a_{2,2} = \sum_{j=1}^{6} g_2(x_j)g_2(x_j) = \sum_{j=1}^{6} x_j^2 = 19.$$

Exemplo 2.

Matriz é simétrica $a_{2,1} = a_{1,2} = 3$

$$b_1 = \sum_{j=1}^{6} g_1(x_j) f(x_j) = \sum_{j=1}^{6} f(x_j) = -2.1$$

$$b_2 = \sum_{j=1}^{6} g_2(x_j) f(x_j) = \sum_{j=1}^{6} x_j f(x_j) = 50.8$$

Agora resolvemos o sistema de equações lineares

$$\begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

ou seja,

$$\begin{bmatrix} 6 & 3 \\ 3 & 19 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} -2.1 \\ 50.8 \end{bmatrix}.$$

Exemplo 2.

Cuja solução é

$$\alpha_1 = -1.831428571$$
 e $\alpha_2 = 2.962857143$

Assim, a reta

$$G(x) = -1.831428571 + 2.962857143x$$

é a reta que melhor aproxima os pontos dados pelo método dos mínimos quadrados. Veja o gráfico da reta e dos pontos dados.

No caso contínuo, o problema de ajuste de curvas consiste em:

dada uma função f(x) contínua num intervalo [a,b] e escolhidas as funções $g_1(x), g_2(x), \ldots, g_n(x)$ todas contínuas em [a,b], determinar n constantes $\alpha_1, \alpha_2, \ldots, \alpha_n$ tais que a função

$$G(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \ldots + \alpha_n g_n(x),$$

se aproxime ao máximo de f(x) no intervalo [a, b].

Impormos que, $\alpha_1, \alpha_2, \dots, \alpha_n$ sejam escolhidos de maneira que

•
$$\int_a^b [f(x) - G(x)]^2 dx$$
 seja mínimo.

Realizando o desenvolvimento do mesmo modo que foi feito no caso discreto, obtemos:

Dada a função f(x) definida em [a,b], com as funções g_1,g_2,\ldots,g_n escolhidas de alguma forma, o problema de obter a aproximação

$$G(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \ldots + \alpha_n g_n(x),$$

tal que $\int_a^b [f(x) - G(x)]^2 dx$ seja mínimo pode ser resolvido obtendo a solução do sistema

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix},$$

onde

$$a_{i,k} = \int_a^b g_i(x)g_k(x)dx$$
 e $b_i = \int_a^b g_i(x)f(x)dx$.

Exemplo. Obter, entre todas as parábolas, aquela que fica "mais próxima" de $f(x) = 4x^3$ no intervalo [0, 1].

Escolher $g_1(x) = 1$, $g_2(x) = x$ e $g_3(x) = x^2$, e com isso, preciso encontrar os coeficientes α_1 , α_2 e α_3 tais que a função

$$G(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \alpha_3 g_3(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2,$$

se aproxime ao máximo de $4x^3$.

Desenvolvimento:

$$b_1 = \int_0^1 g_1(x)f(x)dx = \int_0^1 4x^3 dx = \left[x^4\right]_0^1 = 1.$$

$$b_2 = \int_0^1 g_2(x)f(x)dx = \int_0^1 4x^4 dx = \left[\frac{4x^5}{5}\right]_0^1 = \frac{4}{5}.$$

$$b_3 = \int_0^1 g_3(x)f(x)dx = \int_0^1 4x^5 dx = \left[\frac{4x^6}{6}\right]_0^1 = \frac{2}{3}.$$

$$a_{1,1} = \int_0^1 g_1(x)g_1(x)dx = \int_0^1 1dx = [x]_0^1 = 1.$$

$$a_{2,1} = a_{1,2} = \int_0^1 g_1(x)g_2(x)dx = \int_0^1 x dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}.$$

$$a_{3,1} = a_{1,3} = \int_0^1 g_1(x)g_3(x)dx = \int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}.$$

$$a_{2,2} = \int_0^1 g_2(x)g_2(x)dx = \int_0^1 x^2 dx = \frac{1}{3}.$$

$$a_{3,2} = a_{2,3} \int_0^1 g_2(x)g_3(x)dx = \int_0^1 x^3 dx = \left[\frac{x^4}{4}\right]_0^1 = \frac{1}{4}.$$

$$a_{3,3} = \int_0^1 g_3(x)g_3(x)dx = \int_0^1 x^4 dx = \left[\frac{x^5}{5}\right]_0^1 = \frac{1}{5}.$$

O sistema linear é então:

$$\begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_n \end{bmatrix} = \begin{bmatrix} 1 \\ 4/5 \\ 2/3 \end{bmatrix}.$$

Resolvendo este sistema obtemos

$$\alpha_1 = 0.2, \quad \alpha_2 = -2.4, \quad \alpha_3 = 6.0$$

Uma observação.

Resolver o sistema

$$\begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_n \end{bmatrix} = \begin{bmatrix} 1 \\ 4/5 \\ 2/3 \end{bmatrix}.$$

também é equivalente de resolver o sistema

$$\begin{bmatrix} 6 & 3 & 2 \\ 30 & 20 & 15 \\ 20 & 15 & 12 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_n \end{bmatrix} = \begin{bmatrix} 6 \\ 48 \\ 40 \end{bmatrix}.$$

Exemplo. Obter, entre todas as parábolas, aquela que fica "mais próxima" de $f(x) = 4x^3$ no intervalo [0,1]. Mas, agora escolhemos

$$g_1(x) = 1$$
, $g_2(x) = 2x - 1$ e $g_3(x) = 6x^2 - 6x + 1$.

Precisamos de encontrar os coeficientes α_1 , α_2 e α_3 tais que a função

$$G(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \alpha_3 g_3(x) = a + bx + cx^2,$$

se aproxime ao máximo de $4x^3$.

Desenvolvimento:

$$b_1 = \int_0^1 g_1(x)f(x)dx = \int_0^1 4x^3 dx = \left[\frac{4x^4}{4}\right]_0^1 = 1,$$

$$b_2 = \int_0^1 g_2(x) f(x) dx = \int_0^1 (2x - 1) 4x^3 dx = \left[\frac{8x^5}{5} - x^4 \right]_0^1 = \frac{3}{5},$$

$$b_3 = \int_0^1 g_3(x) f(x) dx = \int_0^1 (6x^2 - 6x + 1) 4x^3 dx = \left[\frac{24x^6}{6} - \frac{24x^5}{5} + \frac{4x^4}{4} \right]_0^1 = \frac{1}{5},$$

$$a_{1,1} = \int_0^1 g_1(x)g_1(x)dx = \int_0^1 1dx = [x]_0^1 = 1,$$

$$a_{2,1} = a_{1,2} = \int_0^1 g_1(x)g_2(x)dx = \int_0^1 (2x - 1)dx = \left[\frac{2x^2}{2} - x\right]_0^1 = 0,$$

$$a_{3,1} = a_{1,3} = \int_0^1 g_1(x)g_3(x)dx = \int_0^1 (6x^2 - 6x + 1)dx = \left[\frac{6x^3}{3} - \frac{6x^2}{2} + x\right]_0^1 = 0,$$

$$a_{2,2} = \int_0^1 g_2(x)g_2(x)dx = \int_0^1 (2x - 1)^2 dx = \left[\frac{4x^3}{3} - \frac{4x^2}{2} + x\right]_0^1 = \frac{1}{3},$$

$$a_{3,2} = a_{2,3} \int_0^1 g_2(x)g_3(x)dx = \int_0^1 (2x - 1)(6x^2 - 6x + 1)dx = \dots = 0,$$

$$a_{3,3} = \int_0^1 g_3(x)g_3(x)dx = \int_0^1 (6x^2 - 6x + 1)^2 dx = \dots = \frac{1}{5}$$

O sistema linear é então

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/5 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_n \end{bmatrix} = \begin{bmatrix} 1 \\ 3/5 \\ 1/5 \end{bmatrix}.$$

Resolvendo este sistema obtemos

$$\alpha_1 = 1, \quad \alpha_2 = \frac{9}{5} = 1.8, \quad \alpha_3 = 1$$

Então,

$$G(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \alpha_3 g_3(x) = 1 + 1.8(2x - 1) + (6x^2 - 6x + 1)$$
$$= 0.2 - 2.4x + 6x^2.$$

Vimos no caso discreto que, quando queremos encontrar a reta $G(x) = \alpha_1 + \alpha_2 x$ que melhor aproxima uma função f(x), escolhemos $g_1(x) = 1$, $g_2(x) = x$ e resolvemos o sistema

$$\begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix},$$

ou seja, resolvemos

$$\begin{bmatrix} N & \sum_{j=1}^{N} x_j \\ \sum_{j=1}^{N} x_j & \sum_{j=1}^{N} x_j^2 \\ \sum_{j=1}^{N} x_j & \sum_{j=1}^{N} x_j^2 \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{N} f(x_j) \\ \sum_{j=1}^{N} x_j f(x_j) \\ \sum_{j=1}^{N} x_j f(x_j) \end{bmatrix}.$$

Há outros casos que podem ser convertidos na solução de um sistema 2×2 .

1) Dados N valores de uma função f, queremos encontrar uma função G que melhor aproxima f(x), tal que

$$G(x) = ae^{bx},$$

ou seja, precisamos determinar a e b.

• Vamos transformar a função não linear G(X) em um função linear aplicando In em ambos os lados, assim

$$ln(G(x)) = ln(ae^{bx})$$

$$ln(G(x)) = ln(a) + ln(e^{bx})$$

$$ln(G(x)) = ln(a) + bx.$$

• Denotamos h(x) = In(G(x)) que é uma reta e temos que determinar $\alpha_1 = In(a)$ e $\alpha_2 = b$, ou seja determinar a reta

$$h(x) = \alpha_1 + \alpha_2 x.$$

Como a função G(x) foi "linearizada" também precisamos "linearizar" os valores dados da função f(x), ou seja, vamos usar os valores $In(f(x_j))$.

Lembre-se: vamos encontrar h(x) = In(G(x)) que aproxima In(f(x)), assim, G(x) aproxima f(x).

Exemplo: Ajustar os pontos abaixo por uma função do tipo $G(x) = ae^{bx}$.

$\overline{x_j}$	0.1	1.5	3.3	4.5	5.0
$f(x_j)$	5.9	8.8	12.0	19.8	21.5

Vamos ajustar In(f(x)) por $h(x) = In(G(x)) = \alpha_1 + \alpha_2 x$, onde $\alpha_1 = In(a) \Rightarrow a = e^{\alpha_1}$ e $b = \alpha_2$.

Calculamos os valores de $ln(f(x_i))$:

X_j	0.1	1.5	3.3	4.5	5.0
$f(x_j)$	5.9	8.8	12.0	19.8	21.5
$In(f(x_j))$	1.77	2.17	2.48	2.99	3.07

e resolver o sistema

$$\begin{bmatrix} N & \sum_{j=1}^{N} x_j \\ \sum_{j=1}^{N} x_j & \sum_{j=1}^{N} x_j^2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{N} \ln(f(x_j)) \\ \sum_{j=1}^{N} x_j \ln(f(x_j)) \\ \sum_{j=1}^{N} x_j \ln(f(x_j)) \end{bmatrix},$$

ou seja

$$\begin{bmatrix} 5 & 14.4 \\ 14.4 & 58.4 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 12.48 \\ 40.42 \end{bmatrix}.$$

Cuja solução é

$$\alpha_1 = 1.734215501$$
 e $\alpha_2 = 0.2645085066$

Logo,

$$a = e^{\alpha_1} = e^{1.734215501} = 5.664482280$$

е

$$b = \alpha_2 = 0.2645085066$$

e a função G(x) que melhor aproxima f(x) é dada por

$$G(x) = 5.664482280 e^{0.2645085066 x}$$
.

Outras transformações possíveis são

2)

$$G(x) = \frac{1}{a + bx}$$
 \Rightarrow $h(x) = \frac{1}{G(x)} = a + bx = \alpha_1 + \alpha_2 x$,

usando os valores de $\frac{1}{f(x_j)}$ encontra-se a reta h(x), e os valores a e b são obtidos por $a=\alpha_1$ e $b=\alpha_2$.

3)

$$G(x) = ab^x \quad \Rightarrow \quad h(x) = \ln(G(x)) = \ln(a) + \ln(b)x = \alpha_1 + \alpha_2 x,$$

usando os valores de $\ln(f(x_j))$ encontra-se a reta h(x), e os valores a e b são obtidos por $a=e^{\alpha_1}$ e $b=e^{\alpha_2}$.

4)

$$G(x) = e^{a+bx} \quad \Rightarrow \quad h(x) = \ln(G(x)) = a + bx = \alpha_1 + \alpha_2 x,$$

usando os valores de $\ln(f(x_j))$ encontra-se a reta h(x), e os valores a e b são obtidos por $a = \alpha_1$ e $b = \alpha_2$.

5)

$$G(x) = ax^b \quad \Rightarrow \quad h(x) = \ln(G(x)) = \ln(a) + b \ln(x) = \alpha_1 + \alpha_2 t,$$

neste caso temos que usar os valores de $ln(f(x_j))$

e também os valores de $ln(x_j)$, pois a variável depois da transformação é ln(x).

Então, encontra-se a reta h(x), e os valores a e b são obtidos por $a = e^{\alpha_1}$ $b = \alpha_2$.

Ajustar os pontos abaixo por uma função do tipo $G(x) = ax^b$.

$\overline{x_j}$	1	1.5	2	2.5	3
$f(x_j)$	3	23	96	293	729

Como $G(x) = ax^b \Rightarrow h(x) = ln(G(x)) = ln(a) + b ln(x) = \alpha_1 + \alpha_2 t$, precisamos calcular $t_j = ln(x_j)$ e $ln(f(x_j))$

$t_j = In(x_j)$	0	0.41	0.69	0.92	1.1
$ln(f(x_i))$	1.1	3.14	4.56	5.68	6.59

e resolver o sistema

$$\begin{bmatrix} N & \sum_{j=1}^{N} t_j \\ \sum_{j=1}^{N} t_j & \sum_{j=1}^{N} t_j^2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{N} \ln(f(x_j)) \\ \sum_{j=1}^{N} t_j \ln(f(x_j)) \end{bmatrix},$$

ou seja e resolver o sistema

$$\begin{bmatrix} 5 & 3.12 \\ 3.12 & 2.7006 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 21.07 \\ 16.9084 \end{bmatrix},$$

cuja solução é

$$\alpha_1 = 1.1006$$
 e $\alpha_2 = 4.9895$

Para encontrar os valores de a e b fazemos

$$a = e^{\alpha_1} = e^{1.1006} = 3.006$$

е

$$b = \alpha_2 = 4.9895$$

e a função G do tipo ax^b , que melhor aproxima f é dada por

$$G(x) = 3.006 x^{4.9895}$$
.

Gráfico dos pontos de f(x) em azul

$\overline{x_j}$	1	1.5	2	2.5	3
$f(x_j)$	3	23	96	293	729

e da função $G(x) = 3.006 x^{4.9895}$ em vermelho

