pedro.rodrigues@inria.fr
alexandre.wendling@univ-grenoble-alpes.fr

Pedro L. C. Rodrigues Alexandre Wendling

TD 4: Questions from previous exams

▶ Quick review of PCA

► Exercise 1 (credits to Berkeley CS-189)

In linear regression, we model $p(y \mid \mathbf{x}) \sim \mathcal{N}(\beta^{\top} \mathbf{x} + \beta_0, \sigma^2)$. The irreducible error in this model is

- (A) σ^2
- (B) $\mathbb{E}[y \mid \mathbf{x}]$
- (C) $\mathbb{E}[(y \mathbb{E}[y \mid \mathbf{x}])^2 \mid \mathbf{x}]$
- (D) None of the above.

▶ Exercise 2 (credits to EPFL CS-433)

Which of the following transformations to a data matrix \mathbf{X} will affect the principal components obtained through PCA?

- (A) Adding a constant value to all elements of X.
- (B) Multiplying one of the features of **X** by a constant.
- (C) Adding an extra feature to X (i.e. an extra column) that is constant across all data points.
- (D) None of the above answers.

► Exercise 3

In this exercise, we will use the results from a survey performed in the 1950s in France. The dataset contains the average number of Francs spent on several categories of food products according to social class and the number of children per family. We display below some of the rows and columns of this dataset.

```
import pandas as pd
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import numpy as np

df = pd.read_csv('foodFrance.csv', index_col=0)
print(df)
```

##	Class	Children	Bread	Vegetables	 Meat	Poultry	Milk	Wine
## 0	Blue collar	2	332	428	 1437	526	247	427
## 1	White collar	2	293	559	 1527	567	239	258
## 2	Upper class	2	372	767	 1948	927	235	433
## 3	Blue collar	3	406	563	 1507	544	324	407
## 4	White collar	3	386	608	 1501	558	319	363
## 5	Upper class	3	438	843	 2345	1148	243	341
## 6	Blue collar	4	534	660	 1620	638	414	407
## 7	White collar	4	460	699	 1856	762	400	416
## 8	Upper class	4	385	789	 2366	1149	304	282

## 9	Blue collar	5	655	776	 1848	759	495	486
## 10	White collar	5	584	995	 2056	893	518	319
## 11	Upper class	5	515	1097	 2630	1167	561	284
##								

[12 rows x 9 columns]

- (a) Given how the dataset is defined, if we were to do a PCA, would it be preferable to scale or not the variables? Explain your reasoning.
- (b) The plots below illustrate the results of the PCA carried out on the dataset. Interpret what information each principal axis convey and how it is related to the different social classes for each data point. Note that the acronyms on the right panel indicate the social class and the number of children, for instance: WC4 means "White collar with 4 children".

▶ Questions from previous classes and TP1