可換環の局所化

ふらすか*

2022年9月25日

以下, 環といえば可換環を指すものとする.

1 環の局所化

definition 1.1. R を環とする. R の空でない部分集合 S が $1 \in S$ かつ, $a,b \in S \Rightarrow ab \in S$ を満たす時, S を積閉集合という.

proposition 1.2. R を環とし、S をその積閉集合とする. $R \times S$ に次のような関係" \sim " を定める.

任意の $(a,s),(b,t) \in R \times S$ に対して,

 $(a,s) \sim (b,t) : \Leftrightarrow$ ある $u \in S$ が存在して,u(at-bs) = 0

このようにして定めた関係 ~ は同値関係になる.

proof 1. 推移律のみ示す.

 $(a,s)\sim (b,t), (b,t)\sim (c,u)$ と仮定する. この時ある $v,w\in S$ が存在して、 $v(at-bs)=0,\ w(bu-ct)=0$ となる. $wv(at-bs)u=0,\ vw(bu-ct)s=0$ であるから、wvatu-wvcts=wvt(au-cs)=0 を得る. 積閉集合の定義から $wvt\in S$ であるから、 $(a,s)\sim (c,u)$ である. \heartsuit

definition 1.3. R を環とし、S をその積閉集合とする. 上で得られた同値関係 \sim によって $R \times S$ を割ることにより環 $S^{-1}R := (R \times S)/\sim$ を得る. この操作を環の局所化と言い, $S^{-1}R$ を S に関する R の商環という. また $(a,s) \in R \times S$ を代表元とする $S^{-1}R$ の元を a/s で表す.

proposition 1.4. 任意の $a/s, b/s \in S^{-1}R$ に対して、和を a/s+b/t := (at+bs)/st、積を $a/s \times b/t := ab/st$ と定めることにより $S^{-1}R$ は環になる.

本来ならば上で定めた演算(写像)が well-defind であることを示さなければならないが、ここでは割愛する.

2 環の局所化は完全関手

^{*} Twitter:@flasca495, mail:flasca495@gmail.com