Complexité CM8

Antonio E. Porreca

aeporreca.org

Précédemment dans Complexité...

Définition 3-A (p. 64) A Réductions (many-one) polynomiales

• Une réduction (many-one) en temps polynomial d'un problème L_1 (sur l'alphabet Σ_1) à un problème L_2 (sur l'alphabet Σ_2) est une fonction $f\colon \Sigma_1^\star\to \Sigma_2^\star$ calculable en temps polynomial telle que

$$\forall x \in \Sigma_1^* \quad x \in L_1 \iff f(x) \in L_2$$

• Si une telle f existe, on dit que L_1 se réduit à L_2 (via f) et on notera $L_1 \leq_{\rm m}^{\rm P} L_2$ (ou parfois, en bref, $L_1 \leq L_2$)

Definition 3-J (p. 67) A Difficulté et complétude

Soit L un problème et $\mathscr C$ une classe de complexité

- On dit que L est $\mathscr C$ -difficile (ou $\mathscr C$ -dur) si pour tout problème $L' \in \mathscr C$ on a $L' \le L$
- On dit que L est $\mathscr C$ -complet s'il est $\mathscr C$ -difficile et en plus on a $L \in \mathscr C$

P a (beaucoup de) problèmes complets

- Tout problème $L\in \mathbf{P}$ non trivial (c'est-à-dire, $L\neq\varnothing$ et $L\neq\Sigma^{\star}$) est \mathbf{P} -complet pour les reductions en temps polynomial
- Ça veut dire que cette notion de complétude n'est pas très intéressant pour ${f P}_{\cdots}$

Et maintenant, la suite

Il existe bien des problèmes NP-complets,

ou : on est pas là pour perdre notre temps

Proposition 3-M (p. 68) La prédiction est NP-complète

Le problème suivant est NP-complet :

- $A \in \mathbb{NP}$ parce qu'on peut simuler N(x) avec une machine de Turing universelle non déterministe
- Pour tout $B \in \mathbf{NP}$, on a $B \leq A$ parce qu'on peut prévoir le résultat de la machine N_B qui reconnaît B
 - Le problème A est, justement, la prédiction du résultat d'une TM non déterministe

Démonstration : $A \in NP$

- Soit U une machine universelle non déterministe efficace
- Voilà un algorithme pour décider si $(\langle N \rangle, x, 1^t) \in A$:
 - Simuler N(x) pendant t étapes en exécutant $U(\langle N \rangle, x)$
 - Si $U(\langle N \rangle, x)$ accepte en $\leq t$ étapes, accepter
 - Si elle rejette ou elle n'a pas terminé en t étapes, rejeter
- Comme U simule N en temps polynomial, cet algorithme fonctionne aussi en temps polynomial

Démonstration : $\forall B \in \mathbf{NP}, B \leq A$

- Soit $B \in \mathbf{NP}$ et soit N_B une machine non déterministe qui reconnait B en temps polynomial p(n)
- Donc on connaît N_B et son temps de calcul p(n), puisque c'est nécessaire pour prouver que $B \in \mathbb{NP}$
- Voilà la réduction : $f(x) = (\langle N_B \rangle, x, 1^{p(|x|)})$
- $x \in B$ ssi $N_B(x)$ accepte en temps $\leq p(|x|)$ ssi $f(x) \in A$
- f est calculable en temps polynomial

f est calculable en temps polynomial, par exemple si N_B fonctionne en temps $p(n) = n^3 - 3n + 7$

```
fonction f(x)
     n := |x|
      écrire "(" sur le ruban de sortie
      écrire le code \langle N_B \rangle sur le ruban de sortie
      écrire "," sur le ruban de sortie
                                                                   O(n)
      écrire x sur le ruban de sortie
      écrire "," sur le ruban de sortie
                                                                   O(1)
     pour i := 1 à n faire
            pour j := 1 à n faire
                                                                                         O(p(n))
                  pour k := 1 à n faire
                        écrire 1 sur le ruban de sortie
      pour i := 1 à 3 faire
            pour j := 1 à n faire
                  effacer 1 du ruban de sortie
      pour i := 1 à 7 faire
            écrire 1 sur le ruban de sortie
                                                                   O(1)
      écrire ")" sur le ruban de sortie
fin
```


! Remarque!

- Ouais, on est bien d'accord, ce n'est pas un problème très interessant...
- C'est un problème ad-hoc calqué sur la définition de NP
- La NP-complétude devient pertinente lorsqu'elle concerne des problèmes naturels
- On verra qu'il y en a plein de naturels!

Les problèmes NP-complets, ou entrons enfin dans le vif du sujet

Proposition 3-P (p. 69) NP-complétude : tout ou rien

Les affirmations suivantes sont équivalentes :

- 1. P = NP
- 2. tout problème NP-complet est dans P
- 3. il existe un problème NP-complet dans P

- Si P = NP (1), alors en particulier $NP \subseteq P$, donc tout problème NP-complet est dans P (2)
- Si tout problème NP-complet est dans P (2),
 vu qu'il existe au moins un problème NP-complet,
 alors il existe un problème NP-complet dans P (3)
- S'il existe un problème NP-complet A dans P (3), alors on peut le résoudre en temps polynomial déterministe. Mais comme B ≤ A pour tout B ∈ NP, alors B ∈ P aussi, donc NP ⊆ P, donc P = NP (1)

Proposition 3-W (p. 76) NP-complétude par réduction

- Soit C un problème \mathbf{NP} -complet et $A \in \mathbf{NP}$
- Si $C \leq A$ alors A est aussi NP-complet

- Soit $B \in \mathbf{NP}$ n'importe quel problème dans \mathbf{NP}
- Comme C est \mathbf{NP} -complet, on a $B \leq C$
- Si $C \leq A$, alors $B \leq A$ aussi par transitivité de \leq
- Ça vaut pour tout $B \in \mathbf{NP}$, donc A est \mathbf{NP} -difficile
- Et comme $A \in \mathbf{NP}$ aussi, il est \mathbf{NP} -complet

! Remarque!

- On vient d'utiliser la notion de réduction $C \leq A$, qui montre qu'un peut résoudre C efficacement si on a une solution efficace pour A...
- ...d'une façon perverse, pour montrer que A n'a pas de solution efficace*!
- Autrement dit, si C est difficile est A est au moins aussi difficile que C, alors A est difficile aussi

1. Théorème 3-V (p. 72) 1. Théorème de Cook-Levin

- Considérons le problème SAT :
 - Entrée : une formule booléenne ϕ
 - Question : φ est-elle satisfaisable ?
- SAT est NP-complet
- On verra la démonstration dans un prochain épisode

Proposition 3-Z (p. 77) 3SAT est NP-complet

- Considérons le problème 3SAT :
 - Entrée : une formule booléenne φ en forme normale conjonctive avec exactement 3 littéraux par clause, par exemple :

$$\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$$

- Question : φ est-elle satisfaisable ?
- 3SAT est NP-complet

Idée de la démonstration

- On voit une instance $\varphi(x_1, ..., x_n)$ de SAT sous la forme d'un arbre syntaxique
- Tester sa satisfaisabilité revient alors à deviner les valeurs $de x_1, ..., x_n$ et celles des nœuds de l'arbre et tester la cohérence de ces choix
- Ce test est local à chaque nœud de l'arbre et nécessite seulement des clauses contenant trois littéraux car le degré d'un sommet de l'arbre est au plus 3 (un père et au plus deux fils)

$$\varphi = (\neg x_1) \lor ((x_2 \lor x_3) \land (\neg x_2))$$

$$\varphi = (\neg x_1) \lor ((x_2 \lor x_3) \land (\neg x_2))$$

$$y_{4} \iff x_{2}$$

$$\downarrow$$

$$(y_{4} \Rightarrow x_{2}) \land (x_{2} \Rightarrow y_{4})$$

$$\downarrow$$

$$(\neg y_{4} \lor x_{2}) \land (\neg x_{2} \lor y_{4})$$

$$y_7 \iff \neg y_4$$

$$\downarrow$$

$$(y_7 \Rightarrow \neg y_4) \land (\neg y_4 \Rightarrow y_7)$$

$$\downarrow$$

$$(\neg y_7 \lor \neg y_4) \land (y_4 \lor y_7)$$

$$y_{8} \iff y_{6} \land y_{7}$$

$$\downarrow$$

$$(y_{8} \Rightarrow y_{6} \land y_{7}) \land (y_{6} \land y_{7} \Rightarrow y_{8})$$

$$\downarrow$$

$$(\neg y_{8} \lor (y_{6} \land y_{7})) \land (\neg (y_{6} \land y_{7}) \lor y_{8}))$$

$$\downarrow$$

$$(\neg y_{8} \lor y_{6}) \land (\neg y_{8} \lor y_{7}) \land (\neg y_{6} \lor \neg y_{7} \lor y_{8})$$

- Pour chaque nœud $s=1,\ldots,m$ on a une conjonction C_s de deux ou trois clauses disjonctives avec au plus 3 variables
- Soit y_m la variable correspondant à la racine de l'arbre
- On construit la formule en forme normale conjonctive

$$\psi(x_1, ..., x_n, y_1, ..., y_m) = y_m \wedge \bigwedge_{s=1}^m C_s$$

- Pour transformer chaque clause avec < 3 littéraux en une clause avec exactement 3 littéraux :
- On remplace une clause $\ell_1 \lor \ell_2$ par $(\ell_1 \lor \ell_2 \lor z) \land (\ell_1 \lor \ell_2 \lor \neg z)$, avec une nouvelle variable z qui ne change pas le résultat
- On remplace une clause avec un seul littéral ℓ par
 (ℓ ∨ z ∨ w) ∧ (ℓ ∨ ¬z ∨ w) ∧ (ℓ ∨ z ∨ ¬w) ∧ (ℓ ∨ ¬z ∨ ¬w)
 avec deux nouvelles variables z, w qui ne changent
 pas le résultat

$$\psi(x_1, ..., x_n, y_1, ..., y_m) = y_m \wedge \bigwedge_{s=1}^m C_s$$

- La formule ψ est satisfaisable ssi la formule ϕ l'est aussi
- La fonction $\varphi\mapsto \psi$ est calculable en temps polynomial (il suffit de construire les clauses C_s indiquées ci-dessus)
- Donc 3SAT est NP-difficile
- Comme il est dans NP, il est NP-complet

! Remarque!

- On peu résoudre 2SAT en temps polynomial!
- Il est vraiment nécessaire d'avoir 3 littéraux par clause pour obtenir un problème NP-complet*
- Pourquoi 3SAT est important ? C'est très pratique pour faire des réductions 3SAT $\leq A$ et montrer que A est \mathbf{NP} -complet
- La raison est que 3SAT a une structure plus simple et régulière que SAT

^{*} Dans l'hypothèse que $\mathbf{P} \neq \mathbf{NP}$

Problème ENSEMBLE-INDÉPENDANT

- Entrée : un graphe non orienté G et un entier k
- Question : existe-t-il un ensemble de k sommets indépendants dans G, c'est-à-dire tous non reliés deux à deux ?

Proposition 3-AE (p. 80) ENS-INDÉP est NP-complet

• Le problème est dans \mathbf{NP} car vérifier que k sommets sont indépendants se fait en temps polynomial :

```
\begin{array}{c} \text{pour } v \in X \text{ faire} \\ \text{pour } w \in X - \{v\} \text{ faire} \\ \text{si } \{v, w\} \in A \text{ alors} \\ \text{rejeter} \\ \text{accepter} \end{array}
```

• Pour la NP-difficulté, on réduit 3SAT

Proposition 3-AE (p. 80) ENS-INDÉP est NP-complet

- La réduction transforme une formule φ en 3-CNF à i clauses en un graphe contenant i triangles (un pour chaque clause)
- Chaque sommet d'un triangle correspond à un littéral de la clause
- Entre les triangles, on relie ensuite x et $\neg x$
- Si φ est satisfaisable, alors les littéraux valant 1 dans une solution forment un ensemble indépendant du graphe, et réciproquement

- Soit $\varphi(x_1, ..., x_n)$ une instance de 3SAT
- La formule a *m* clauses d'exactement 3 littéraux

Clause → Triangle

Formule → Triangles

$$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

Arcs pour les négations

$$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

Arcs pour les négations

$$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

Graphe associé à la formule

- Soit G = (S, A) le graphe ainsi construit
- Et soit k = m, le nombre de clauses
- On peut construire G et k à partir de ϕ en temps polynomial
- Il reste à montrer que φ est satisfaisable ssi G a un ensemble indépendant de taille k=m

$\varphi \in 3SAT \Rightarrow (G, k) \in ENS-INDÉP$

- Si φ est satisfaisable par une certaine affectation des variables, soit \mathcal{C}_1 un littéral vrai dans la première clause (\mathcal{C}_1 est soit une variable, soit sa négation)
- Au moins l'un des sommets de G correspond à ce littéral ℓ_1
- Soit ℓ_2 un littéral vrai dans la deuxième clause ; donc ℓ_1 et ℓ_2 ne sont pas dans le même triangle de G
- Aussi $\ell_1 \neq \neg \ell_2$, car ils sont tous les deux vrais ; donc il n'y a pas d'arête entre les deux dans G

$$\varphi \in 3SAT \Rightarrow (G, k) \in ENS-INDÉP$$

- En répétant le raisonnement, on obtient un ensemble $\{\ell_1, ..., \ell_m\}$ de littéraux vrais dans φ ...
- ...qui correspond à un ensemble de sommets dans G qui ne sont jamais connectés par une arête
- Donc il s'agit d'un ensemble indépendant de taille m=k
- Donc $(G, k) \in \mathsf{ENS}\text{-}\mathsf{IND\acute{E}P}$

$(G,k) \in \mathsf{ENS} ext{-IND\'eP} \Rightarrow \varphi \in \mathsf{3SAT}$

- Supposons que G ait un ensemble indépendant $\{\ell_1, ..., \ell_m\}$ de taille k=m
- Si $i \neq j$, alors $\ell_i \neq \neg \ell_j$, sinon ils seraient reliés dans G
- Alors il existe une affectations qui rend vrais tous les ℓ_i
- Mais ℓ_i et ℓ_j ne sont jamais littéraux dans la même clause, sinon ils feraient partie du même triangle
- Donc l'affectation rend vraies toutes les clauses
- Donc $\varphi \in 3SAT$

Corollaire 3-AG (p. 82) CLIQUE est NP-complet

- ENS-INDÉP est NP-complet
- ENS-INDÉP \leq CLIQUE \in \mathbb{NP}
- Donc CLIQUE est NP-complet aussi

