EECS 203: Discrete Mathematics Winter 2024 Discussion 3 Notes

1 Proof Styles

1.1 Proofs by Contraposition

Proof by Contraposition: Prove a conditional (in the form "if p, then q") by proving that proving that if q is false, then p must also be false. This is done by assuming the negation of q and concluding the negation of p

1.1.1 Proof by Contraposition \star

Prove that if $n^2 + 2$ is even, then n is even using a proof by contrapositive.

Solution: We will prove the contrapositive, that is: If n is odd, then $n^2 + 2$ is odd.

- Assume n is odd. Then we can write it as n = 2k + 1 for some integer k.
- This means $n^2 + 2 = (2k+1)^2 + 2$. $= 4k^2 + 4k + 1 + 2$ $= 2(2k^2 + 2k + 1) + 1$ = 2j + 1, where j is an integer equal to $2k^2 + 2k + 1$
- Thus from the definition of an odd number, $n^2 + 2$ is odd.

This completes the proof of the contrapositive, and thus the original statement.

1.1.2 Proof by Contraposition II

Prove by contrapositive that if $a^2 + a + 2 \ge b^2 + b + 2$, then $a \ge b$, where a and b are positive integers.

You may use without proving:

- 1. c < d and $e < f \rightarrow (c + e) < (d + f)$
- 2. c < d and $e < f \rightarrow ce < df$, where c, d, e, f are positive integers

Solution:

- The contrapositive of the above statement is If a < b, then $a^2 + a + 2 < b^2 + b + 2$.
- Assume a < b, where a and b are positive integers.
- $a^2 < b^2$ (Using lemma 2)
- $a^2 + a < b^2 + b$ (Using lemma 1)
- $a^2 + a + 2 < b^2 + b + 2$ (Adding 2 to both sides does not change the inequality)

Hence the contrapositive is true. This proves that if $a^2 + a + 2 \ge b^2 + b + 2$, then $a \ge b$

1.2 Proofs by Contradiction

Prove p is true by assuming $\neg p$, and arriving at a contradiction, i.e. a conclusion that we know is false.

When using a proof by contradiction to prove "if p is true then q is true", we assume that p is true and that q is false, and derive a contradiction. This shows us that if p is true, then q is true.

$$\neg (p \to q) \equiv (p \land \neg q) \to F \to \neg (p \land \neg q) \equiv (p \to q)$$

A simpler way to view this: Assume p is true and show that

$$(\neg q \to F) \to q$$

1.2.1 Contraposition vs Contradiction

Show that for an integer n: if $n^3 + 5$ is odd, then n is even, using

- a) a proof by contraposition.
- b) a proof by contradiction.

Note: The algebra in either case is the same. You don't need to rewrite the algebra for part (b), just reformat your proof from (a) into a proof by contradiction.

Solution:

a) We will prove the contrapositive of the proposition, which is: "if n is odd, then $n^3 + 5$ is even".

Since n is odd, n can be written as 2k + 1, where k is some integer. Then,

$$n^{3} + 5 = (2k + 1)^{3} + 5$$

$$= (8k^{3} + 12k^{2} + 6k + 1) + 5$$

$$= 8k^{3} + 12k^{2} + 6k + 6$$

$$= 2(4k^{3} + 6k^{2} + 3k + 3)$$

So $n^3 + 5 = 2m$, where m is the integer $4k^3 + 6k^2 + 3k + 3$. Because $n^3 + 5$ is two times some integer, we can say that $n^3 + 5$ is even.

b) We will use a proof by contradiction. Let $n^3 + 5$ be odd. Seeking a contradiction, assume that n is odd. Since n is odd, it can be written as 2k + 1, where k is some integer. So

$$n^{3} + 5 = (2k + 1)^{3} + 5$$

$$= (8k^{3} + 12k^{2} + 6k + 1) + 5$$

$$= 8k^{3} + 12k^{2} + 6k + 6$$

$$= 2(4k^{3} + 6k^{2} + 3k + 3)$$

Since $n^3 + 5 = 2m$, for an integer m ($m = 4k^3 + 6k^2 + 3k + 3$), then $n^3 + 5$ is even. Since the premise was that $n^3 + 5$ is odd, this completes the contradiction. Therefore, our assumption that n is odd must be false, leading to the conclusion that n is even.

1.3 Choosing Proof Style

A number is considered **rational** if and only if it can be written as the ratio of two integers: $\frac{p}{q}$ where $q \neq 0$.

1.3.1 Proof Practice

Prove or disprove that the sum of a rational number and an irrational number must be irrational.

Solution: We prove the statement via proof by contradiction. Let $\frac{a}{b}$ be a rational number with a and b as integers and $b \neq 0$. Let x be an irrational number. Seeking contradiction assume that the sum $x + \frac{a}{b}$ is rational. Then we can write $x + \frac{a}{b} = \frac{p}{q}$ for some integers p and q with $q \neq 0$. This gives $x = \frac{p}{q} - \frac{a}{b} = \frac{pb-aq}{bq}$. Note that both the numerator and the denominator are integers and that $bq \neq 0$ since b and q were both nonzero. Therefore, x is, by definition, a rational number, which is a contradiction since x was assumed to be irrational. Hence, it must be that the sum of a rational number and an irrational number is irrational.

1.3.2 Odd Proof III

Prove that for all integers a and b, if a divides b and a + b is odd, then a is odd.

Solution: Proof by Contradiction

- We are supposed to prove: $[(a \text{ divides } b) \land (a+b \text{ is odd})] \rightarrow a \text{ is odd}$
- Seeking contradiction, assume the negation of the above statement: \neg [[a divides b $\land a + b$ is odd] $\rightarrow a$ is odd], which is (a divides b) \land (a + b is odd) \land (a is even).
- Since a is even, a = 2k for some integer k.
- Since a divides b we have $b = m \cdot a$.
- So, a+b becomes 2k+m(a)=2k+m(2k)=2(k+km)=2p, where p is an integer equal to k+km
- Thus a+b=2p and is even. However, we had originally assumed that a+b is odd. This leads to our **contradiction**.
- Hence the assumption in the second bullet point is false, and $[(a \text{ divides } b) \land (a+b \text{ is odd})] \rightarrow a \text{ is odd}$

1.3.3 **Proofs**

(a) Prove or disprove: For all nonzero rational numbers x and y, x^y is rational

(b) Prove or disprove: For all even integers x and all positive integers y, x^y is even.

(c) Prove or disprove: For all real numbers x and y, if x^y is irrational, then x or y is not a positive integer

Solution:

1. This is false. Let x=2 and $y=\frac{1}{2}$. Then $x^y=\sqrt{2}$ which is irrational.

2. This is true. Let x = 2k, where k is some integer.

Now, let's substitute this into x^y and rearrange it:

$$x^{y} = (2k)^{y} = (2k) \cdot (2k)^{y-1} = 2 \cdot (k(2k)^{y-1})$$

Since y is a positive integer and k is an integer, $k(2k)^{y-1}$ is an integer, since the integers are closed on multiplication. Therefore, we have written x^y in the form of the definition of even (2 times some integer).

Therefore, for all even x and positive integery, x^y is always even.

3. This is true. Let's look at the contrapositive: "For all real numbers x and y, if x and y are both positive integers, x^y is rational."

Since y > 0, x^y is x multiplied by itself y times - and thus x^y is an integer. As we know all integers are rational, x^y must be rational. Thus, we have proven the contrapositive, and the original statement must therefore be true as well.