ΘΕΜΑ 2

2.1.

2.1.Α. Σωστή απάντηση η (β)

Μονάδες 4

2.1.B. Το σώμα στον οριζόντιο άξονα x'x εκτελεί ευθύγραμμη ομαλή κίνηση και στον κατακόρυφο άξονα y'y ελεύθερη πτώση.

Η ταχύτητα στον άξονα x'x είναι σταθερή $v_x=v_0$

Η ταχύτητα στον άξονα γ'
γ δίνεται από τον τύπο $v_{\mathcal{Y}} = g \cdot t$

Το μέτρο της ταχύτητας $v = \sqrt{{v_x}^2 + {v_y}^2}$ (1)

Αντικαθιστώ όπου $v=3v_0$ και όπου $v_{\rm x}=v_0$ και ο τύπος (1) γίνεται $3v_0=\sqrt{{v_0}^2+{v_y}^2}$,υψώνω στο τετράγωνο και έχω

$$9v_0^2 = v_0^2 + v_v^2 \Leftrightarrow v_v^2 = 8v_0^2 \Leftrightarrow v_v = \sqrt{8v_0^2} \Leftrightarrow v_v = 2v_0\sqrt{2}$$
 (1)

Η ταχύτητα $v_y = g \cdot t \Leftrightarrow t = \frac{v_y}{g} \stackrel{(1)}{\Leftrightarrow} t = \frac{2v_0\sqrt{2}}{g}$

Μονάδες 8

2.2.

2.2.Α. Σωστή απάντηση η (γ)

Μονάδες 4

2.2.B. Οι γωνιακές ταχύτητες των δύο κινητών είναι $ω_1$ και $ω_2$. Τα δύο κινητά μέχρι τη στιγμή συνάντησης διαγράφουν αντίστοιχα γωνίες $φ_1$ και $φ_2$ για τις οποίες ισχύει $φ_1$ + $φ_2$ = π (1)

Για τη γωνία $φ_1$ ισχύει $φ_1$ = $ω_1$ · t (2)

και για την γωνία $φ_2$ ισχύει $φ_2$ = $ω_2$ · t (3).

Η σχέση (1) μέσω των σχέσεων (2) και (3) γίνεται

$$\omega_1 \cdot t + \omega_2 \cdot t = \pi \Leftrightarrow (\omega_1 + \omega_2) \cdot t = \pi \Leftrightarrow t = \frac{\pi}{\omega_1 + \omega_2} (4)$$

Οι γωνιακές συχνότητες $ω_1$ και $ω_2$ συνδέονται με τις συχνότητες f_1 και f_2 βάση των τύπων

$$ω_1 = 2π \cdot f_1$$
 (5) και $ω_2 = 2π \cdot f_2$ (6).

Η σχέση (4) μέσω των σχέσεων (5) και (6) γίνεται

$$t = \frac{\pi}{2\pi \cdot f_1 + 2\pi \cdot f_2} \Leftrightarrow t = \frac{\pi}{2\pi \cdot (f_1 + f_2)} \Leftrightarrow t = \frac{1}{2(f_1 + f_2)}$$

Μονάδες 9