CSE 8803 CDS, Spr 2024, Georgia Tech

CSE 8803 CDS: Homework 5

Due April 19,'24 (11:59 pm ET) on Gradescope

Cite any sources and collaborators; do not copy. See syllabus for policy.

1 Problem 1 (10 points)

Here we would like to proof a foundational result in ergodic theory: Birkhoff ergodic theorem. Consider a map $\varphi: M \to M$ with an ergodic measure, μ . Prove that for any function $f \in L^1(\mu), 1$, its time average along an orbit, $(1/T) \sum_{t \leq T} f(\varphi^t(x))$ converges to a constant, independent of x for μ almost every x.

This result can be interpreted as a strong law of large numbers for the sequence $f \circ \varphi^t(x)$.

Hint: use Theorem 4.1.2 from KH. Then, any function that is constant along an orbit is constant almost everywhere for an ergodic system.

2 Problem 2 (20 points)

In this problem, we will implement an approximate score generative model (Song and Ermon 2019).

Part I Brownian motion or Wiener process is a popular choice for the forward process of an SGM. Simulate a Wiener process W_t , $t \le 1$. Explain your code. (4 points)

Part II Let ρ_t be the solution of the Fokker Planck equation of $dX_t = dW_t$. Set ρ_0 to be a bimodal Gaussian of your choice. What is ρ_t ? (3 points)

Part III The reverse SDE is defined as follows:

$$dY_t = \nabla \log \rho_{1-t}(Y_t) dt + dW_t, \tag{1}$$

with $Y_0 \sim \rho_1$. We will approximate the expression $\nabla \log \rho_{1-t}(Y_t)$ analytically, using the Fokker-Planck equation of the forward process. Simulate the reverse process until t = 1. Plot the distribution of Y_1 . (5 points)

Part IV Do we expect Y_1 to be distributed according to the target distribution (the bimodal Gaussian you set ρ_0 to)? Why or why not? (8 points)

 $[\]overline{L^1(\mu)}$ is the space of functions with $\int |f| d\mu \leq \infty$.