Permit Number 48978

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Aiı	r Contaminant	Emission	Rates *
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY**
1	Cooper Bessemer GMV1 (1,250-HP) (5)	0 PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
2	Cooper Bessemer GMV1 (1,250-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
3	Cooper Bessemer GMV1 (1,250-HP) (5)	0 PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
4	Cooper Bessemer GMV1 (1,250-HP) (5)	0 PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
5	Cooper Bessemer GMV1 (1,250-HP) (5)	0 PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12

Emission	Source	Air	Contaminant	Emission	Rates *
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY**
6	Cooper Bessemer GMV10 (1,250-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
7	Cooper Bessemer GMV10 (1,250-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
8	Cooper Bessemer GMV10 (1,250-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
9	Cooper Bessemer GMV10 (1,250-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
10	Cooper Bessemer GMV10 (1,250-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
11	Cooper Bessemer GMV10 (1,250-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
12	Cooper Bessemer GMV10)	CO	6.04	26.46

	(1,250-HP) (5)	PM ₁₀ SO ₂ VOC	NO _x 0.35 0.01 1.88	49.57 1.52 0.03 8.23	217.12
13	Cooper Bessemer GMVA1 (1,350-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.37 0.01 2.03	6.51 53.52 1.64 0.03 8.90	28.52 234.44
14	Cooper Bessemer GMVA1 (1,350-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.37 0.01 2.03	6.51 53.52 1.64 0.03 8.90	28.52 234.44
15	Cooper Bessemer GMVH2 (2,000-HP) (6)	PM ₁₀ SO ₂ VOC	CO NO _x 0.56 0.01 2.30	7.39 60.65 2.43 0.05 10.06	32.34 265.63
		CO (7 NO _x (7 PM ₁₀ (SO ₂ (7 VOC (7) (7) 7)	4.40 30.83 0.56 0.01 4.40	19.30 135.07 2.43 0.05 19.30
16	Cooper Bessemer GMVH2 (2,000-HP) (6)	PM ₁₀ SO ₂ VOC	CO NO _x 0.56 0.01 2.30	7.39 60.65 2.43 0.05 10.06	32.34 265.63

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
		CO (7)	4.40	19.30
		NO _x (7)	30.83	135.07
		PM ₁₀ (7)	0.56	2.43
		SO ₂ (7)	0.01	0.05
		VOC (7)	4.40	19.30
17	Cooper Bessemer GMVH	10 CO	7.39	32.34
	(2,000-HP) (6)	NO_x	60.65	265.63
		PM ₁₀ 0.56	2.43	
		SO ₂ 0.01	0.05	
		VOC2.30	10.06	
		CO (7)	4.40	19.30
		NO _x (7)	30.83	135.07
		PM ₁₀ (7)	0.56	2.43
		SO ₂ (7)	0.01	0.05
		VOC (7)	4.40	19.30
20	Cooper Bessemer GMVH	10 CO	7.39	32.34
	(2,000-HP) (6)	NO_x	60.65	265.63
	, , ,	PM ₁₀ 0.56	2.43	
		SO ₂ 0.01	0.05	
		VOC2.30	10.06	
		CO (7)	4.40	19.30
		NO _x (7)	30.83	135.07
		$PM_{10}(7)$	0.56	2.43
		SO ₂ (7)	0.01	0.05

Emission	Source Air Contaminant		<u>Emissio</u>	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**	
		VOC (7)	4.40	19.30	
21	Cooper Bessemer GM\ (2,000-HP) (6)	/H10 CO NO_x $PM_{10}0.56$ $SO_2 0.01$ $VOC2.30$	7.39 60.65 2.43 0.05 10.06	32.34 265.63	

Emission	Source	Air Contaminant	Emission	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
		CO (7) NO_x (7) PM_{10} (7) SO_2 (7) VOC (7)	4.40 30.83 0.56 0.01 4.40	19.30 135.07 2.43 0.05 19.30
22	Cooper Bessemer GMVH2 (2,000-HP) (6)	10 CO NO_x $PM_{10}0.56$ $SO_2 0.01$ $VOC2.30$	7.39 60.65 2.43 0.05 10.06	32.34 265.63
		CO (7) NO_x (7) PM_{10} (7) SO_2 (7) VOC (7)	4.40 30.83 0.56 0.01 4.40	19.30 135.07 2.43 0.05 19.30
30	Cooper Bessemer JS8 (5) (715-HP)	CO NO_x $PM_{10}0.20$ $SO_2 0.01$ $VOC0.71$	1.90 24.39 0.87 0.02 3.09	8.30 106.82
31	Cooper Bessemer JS8 (5) (715-HP)	CO NO_x $PM_{10}0.20$ $SO_2 0.01$ $VOC0.71$	1.90 24.39 0.87 0.02 3.09	8.30 106.82
32	Cooper Bessemer JS8 (5) (715-HP)	CO NO_{x} $PM_{10}0.20$ SO_{2} 0.01 $VOC0.71$	1.90 24.39 0.87 0.02 3.09	8.30 106.82

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
33	Cooper Bessemer JS8 (5) (715-HP)	CO NO_x $PM_{10}0.20$ $SO_2 0.01$ $VOC0.71$	1.90 24.39 0.87 0.02 3.09	8.30 106.82
34	Dresser Rand PKVG8 (5) (880-HP)	CO NO _x PM ₁₀ 0.24 SO ₂ 0.01 VOC0.87	2.34 30.00 1.07 0.02 3.83	10.24 131.40
35	Dresser Rand PKVG8 (5) (880-HP)	CO NO _x PM ₁₀ 0.24 SO ₂ 0.01 VOC0.87	2.34 30.00 1.07 0.02 3.83	10.24 131.40
37A	Flare	CO NO_x SO_2 $VOC0.13$	7.12 1.39 0.01 0.58	31.19 6.12 0.04
37B	Flare	CO NO_x SO_2 $VOC0.07$	4.40 2.21 0.01 0.29	19.29 9.66 0.01
HTR-37	Borne Heater (41.1 MMBtu/hr)	CO NO _x PM ₁₀ 0.33 SO ₂ 0.03 VOC0.24	3.61 4.30 1.43 0.11 1.04	15.80 18.81
FUG	Process Fugitive Area (4)	VOC	6.81	29.83

Emission	Source	Air Contaminant	<u>Emissior</u>	1 Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) CO carbon monoxide

NO_x - nitrogen oxides

PM₁₀ - particulate matter less than 10 microns

SO₂ - sulfur dioxide

- VOC volatile organic compounds as defined in the Title 30 Texas Administrative Code § 101.1
- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- 5. These engines shall be permanently shutdown and rendered inoperable by December 31, 2007.
- 6. Emission rate prior to the engine rebuild that is required by special condition number one. The rebuild of this engine must be complete by December 31, 2007.
- 7. Emission rate after engine rebuild completion.
- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:

______<u>24</u> Hrs/day <u>7</u> Days/week <u>52</u> Weeks/year

** Compliance with annual emission limits is based on a rolling 12-month period.

Dated <u>February 6, 2007</u>