Sequence Models

Feed-Forward Networks

Conv
ReLU
Conv
ReLU
Avg Pool
Linear

Information never flows back to previous layers

Acyclic computation graph

Memory

Recurrent Neural Network (RNN)

Unrolling RNNs

Applications

- Natural language processing
 - Either the input or output (or both) is a sequence of words
- Example: Is a review positive or negative?

Example: Language Generation

Example: Translation

Kinds of RNN

Training RNNs

- Unrolled RNNs have a feed-forward computation graph
- Regular backprop handles shared weights
- Long sequences leads to vanishing/exploding gradients

Vanishing/Exploding Gradients

Exploding gradients:
$$\nabla L(\theta) = \min \left(1, \frac{\epsilon}{|\nabla L(\theta)|}\right) \nabla L(\theta)$$

Vanishing gradients: must rely on network structure

Long-term memory

Similar to residual connections

Gated Recurrent Unit (GRU)

LSTM/GRU Networks

