

SARCASM DETECTION IN ENGLISH LANGUAGE

Abhinav Arvind, Hardik Singh, Lakshya Goel, Srimant Mohanty

INTRODUCTION

May 17, 2011 6:26 AM

Morning mom! It's cold (48°) a record low for LA!

Will you survive? :)

- Sarcasm is a prevalent form of communication across various cultures.
- Sarcasm is a way of expression in a humorous or mocking way.
- However, detecting sarcasm in textual means is challenging.
- Sarcasm can lead to misunderstandings and conflicts if not interpreted correctly.
- Studies suggest that misinterpretations of sarcasm can occur in up to 20% of cases.
- Further, sarcasm in conversation may affect various sentiment analysis tasks and lead to biased analysis.

LITERATURE REVIEW

- Rathod et al. investigated sarcasm detection in news headlines. Neural networks were used to create sarcasm detectors and study how computers pick up sarcasm's idiomatic patterns.
- Ghosh et al. redefined sarcasm detection as a word sense disambiguation problem. They termed it as Literal/Sarcastic Sense Disambiguation (LSSD).
- Ghosh et al. also investigated various Long Short-Term Memory (LSTM) network architectures, emphasizing attention mechanisms. The significance of contextual information and attention mechanisms in enhancing sarcasm detection performance

DATASET

- Collection of tweets accompanied by a label and a non-sarcastic rephrase.
- Labels were provided directly by the authors of the tweets themselves.
- Mitigates any potential biases or interpretation issues that may arise from using predefined tags or thirdparty annotators.

	tweet	rephrase	sarcastic
0	The only thing I got from college is a caffein	College is really difficult, expensive, tiring	1
1	I love it when professors draw a big question	I do not like when professors don't write out	1
2	Remember the hundred emails from companies whe	I, at the bare minimum, wish companies actuall	1
3	Today my pop-pop told me I was not "forced" to	Today my pop-pop told me I was not "forced" to	1
4	@VolphanCarol @littlewhitty @mysticalmanatee I	I would say Ted Cruz is an asshole and doesn't	1
	Data Sr	nippet	

METHDOLOGY

- Preprocessing:
 - a) Tweet Normalisation
 - b) Token Normalisation
- Model Selection
- Sarcasm Detection
 - a) SVM
 - b) Pre-trained Helnivan
 - c) BertTweet with BiLSTM
 - d) Bert-Based-Uncased with KIM-CNN
 - e) RoBERTa Base with Dense layers
- Sarcastic Rephrase
 - a) RoBERTa

SVM classifier with BERT embeddings

KIM CNN with BERTtweets & BERT embeddings

BERTtweets with BiLSTM

RESULTS

MODEL	ACCURACY	MACRO-F1
SVM	0.619	0.53
Pre-trained Helnivan (English Sarcasm Detector)	0.793	0.46
BertTweet with BiLSTM	0.766	0.43
Bert-Based-Uncased with KIM-CNN	0.723	0.63
Roberta Base with Dense layers	0.793	0.46

Summary of Evaluation Metrics

Training, Validation Loss v/s Epochs Plot for BERT with KIM-CNN

Confusion Matrix of Sarcasm Rephrase Detection using RoBERTa

Accuracy: 0. Precision: 0				
Recall: 0.85	(전화조대로)			
F_score: 0.7				
	precision	recall	f1-score	support
0	0.86	1.00	0.92	1200
1	0.00	0.00	0.00	200
accuracy			0.86	1400
macro avg	0.43	0.50	0.46	1400
weighted avg	0.73	0.86	0.79	1400

Classification Report of RoBERTa with BiLSTM and Dense layers

ANALYSES

- SVM gives an accuracy of 0.619 amongst the models used. It forms a baseline for performance of ML-based models in sarcasm detection.
- BertTweet with BiLSTM and Bert-Based-Uncased with KIM-CNN models show moderate performance, and the Roberta Base with Dense layers achieves the highest accuracy.
- Helnivan, a pre-trained sarcasm detection model is used as a baseline for transformer based models in sarcasm detection.
- Transformer based are effective in capturing contextual information and subtle linguistic cues associated with sarcasm. Models like Bert-Based-Uncased with KIM-CNN, which leverage transformer-based architectures like BERT demonstrate competitive performance with a macro-F1 score of 0.63.

CONCLUSION

- Overall, the use of transformer-based models for sarcasm detection showcases promising results.
- This highlights the importance of leveraging advanced neural network architectures and pre-training strategies for understanding complex linguistic phenomena in natural language processing tasks.
- Text-only sarcasm detection has limitations; understanding requires context like tone and situation. Multimodal approaches, considering text, audio, and visual cues, are essential for accurate detection.

References

Rathod, S., & Kataria, A. Sarcasm Detection Using Natural Language Processing. *Available at SSRN 4451909*.

Ghosh, D., Guo, W., & Muresan, S. (2015, September). Sarcastic or not: Word embeddings to predict the literal or sarcastic meaning of words. In *proceedings of the 2015 conference on empirical methods in natural language processing* (pp. 1003-1012).

Ghosh, D., Fabbri, A. R., & Muresan, S. (2017). The role of conversation context for sarcasm detection in online interactions. *arXiv* preprint *arXiv*:1707.06226.

Chen, Y. (2015). Convolutional neural network for sentence classification (Master's thesis, University of Waterloo).