一个线性组合的表达式。

第 09 周作业解答

练习 1. 问
$$\beta = \begin{pmatrix} 2 \\ 0 \\ 3 \\ -1 \\ 3 \end{pmatrix}$$
 是否能由向量组 $\alpha_1 = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 5 \\ -1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 4 \\ -1 \end{pmatrix}$ 线性表示? 若能,写出其中

解

可见 $r(\alpha_1\alpha_2\alpha_3) = r(\alpha_1\alpha_2\alpha_3\beta)$, 所以 β 能由 α_1 , α_2 , α_3 。并且从最后简化的阶梯型矩阵容易看出:

$$\beta = -\alpha_1 + 2\alpha_2 + 0\alpha_3 = -\alpha_1 + 2\alpha_2.$$

练习 2. 问向量组
$$\alpha_1 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 是否线性相关?若线性相关,写出它们的一个相关表达式。

解

$$\left(\begin{array}{cccc} \alpha_1 & \alpha_2 & \alpha_3 \end{array} \right) = \left(\begin{array}{cccc} 3 & 1 & 0 \\ -1 & 1 & 0 \\ 2 & 2 & 1 \\ 3 & 0 & 1 \end{array} \right) \xrightarrow{r_1 \leftrightarrow r_2} \left(\begin{array}{cccc} -1 & 1 & 0 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \\ 3 & 0 & 1 \end{array} \right) \xrightarrow{r_2 + 3r_1} \left(\begin{array}{cccc} -1 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & 4 & 1 \\ 0 & 3 & 1 \end{array} \right)$$

$$\xrightarrow{\frac{1}{4} \times r_2} \left(\begin{array}{cccc} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 3 & 1 \end{array} \right) \xrightarrow{r_3 - 4r_2} \left(\begin{array}{cccc} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array} \right) \xrightarrow{r_4 - r_3} \left(\begin{array}{cccc} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right)$$

可见 $r(\alpha_1\alpha_2\alpha_3) = 3 =$ 向量个数,所以 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。

练习 3. 根据参数 a 的取值,讨论向量组 $\alpha_1 = \begin{pmatrix} 3 \\ 1 \\ a \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 4 \\ a \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ a \end{pmatrix}$ 何时线性相关,何时线性无关。

解作矩阵

$$A = \left(\begin{array}{ccc} \alpha_1 & \alpha_2 & \alpha_3 \end{array}\right) = \left(\begin{array}{ccc} 3 & 4 & 1 \\ 1 & a & 0 \\ a & 0 & a \end{array}\right),$$

则 $\alpha_1, \alpha_2, \alpha_3$ 线性相关当且仅当 |A| = 0,线性无关当且仅当 $|A| \neq 0$ 。计算行列式:

$$|A| = \begin{vmatrix} 3 & 4 & 1 \\ 1 & a & 0 \\ a & 0 & a \end{vmatrix} = \frac{c_1 - c_3}{a - a} \begin{vmatrix} 2 & 4 & 1 \\ 1 & a & 0 \\ 0 & 0 & a \end{vmatrix} = \frac{\text{tr} \ 3 \ \text{77 RP}}{\text{tr}} (-1)^{3+3} a \begin{vmatrix} 2 & 4 \\ 1 & a \end{vmatrix} = 2a(a-2).$$

所以

- $\alpha_1, \alpha_2, \alpha_3$ 线性相关 $\Leftrightarrow |A| = 0 \Leftrightarrow a = 0$ 或 a = 2
- $\alpha_1, \alpha_2, \alpha_3$ 线性无关 $\Leftrightarrow |A| \neq 0 \Leftrightarrow a \neq 0 \perp a \neq 2$

练习 4. 设 $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_2 + \alpha_3$, $\beta_3 = \alpha_3 + \alpha_4$, $\beta_4 = \alpha_4 + \alpha_1$ 。证明 β_1 , β_2 , β_3 , β_4 线性相关。解设

$$0 = k_1 \alpha + k_2 (\alpha + \beta) + k_3 (\alpha + \beta + \gamma)$$

= $(k_1 + k_2 + k_3) \alpha + (k_2 + k_3) \beta + k_3 \gamma$

因为 α , β , γ 线性无关, 所以

$$\begin{cases} k_1 + k_2 + k_3 = 0 \\ k_2 + k_3 = 0 \end{cases} \Rightarrow k_1 = k_2 = k_3 = 0$$

$$k_3 = 0$$

所以 α , $\alpha + \beta$, $\alpha + \beta + \gamma$ 线性无关。

另证注意到

$$\underbrace{\left(\alpha \quad \alpha + \beta \quad \alpha + \beta + \gamma\right)}_{\text{记为矩阵}Q} = \underbrace{\left(\alpha \quad \beta \quad \gamma\right)}_{\text{记为矩阵}P} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{记为矩阵}A} \quad \Rightarrow \quad Q = PA$$

而
$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$$
,所以 A 可逆,从而

$$r(Q) = r(PA) = r(P) = 3 = ($$
向量组 $\alpha, \alpha + \beta, \alpha + \beta + \gamma$ 向量个数)

即:

$$r(\alpha, \alpha + \beta, \alpha + \beta + \gamma) = ($$
向量组 $\alpha, \alpha + \beta, \alpha + \beta + \gamma$ 向量个数 $)$

所以 α , $\alpha + \beta$, $\alpha + \beta + \gamma$ 线性无关。