o Orthogonalité et distance dans l'espace : activité

1. Rappels sur le produit scalaire dans un plan.

- **a.** Rappeler la formule du produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$ en fonction de AB, AC et BC.
- **b.** Rappeler la formule d'Al-Kashi.
- **c.** Rappeler l'expression du produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$ en fonction de $||\overrightarrow{AB}||$, $||\overrightarrow{AC}||$ et l'angle α entre les deux vecteurs. Rappeler la définition de la norme d'un vecteur.
- **d.** Rappeler l'expression analytique du produit scalaire de deux vecteurs dans un repère orthonormé.
- e. Que dire du produit scalaire quand les deux vecteurs sont orthogonaux?

TG TG

2. Produit scalaire de deux vecteurs de l'espace

On se place maintenant dans l'espace où les vecteurs \vec{i} , \vec{j} et \vec{k} sont de norme 1 et orthogonaux deux à deux.

- **a.** Comment appelle-t-on le triplet $(\vec{i}, \vec{j}, \vec{k})$?
- **b.** Exprimer \vec{u} , \vec{v} , \vec{w} et \vec{a} en fonction de \vec{i} , \vec{j} et \vec{k} .
- **c.** Dans quel plan se trouvent les vecteurs \overrightarrow{u} et \overrightarrow{v} ?
- **d.** Exprimer le produit scalaire $\overrightarrow{u} \cdot \overrightarrow{v}$ dans ce plan, en fonction de AD, AG et \widehat{GAD}
- **e.** Calculer le produit scalaire $\overrightarrow{u}.\overrightarrow{v}$ dans ce plan en utilisant l'expression analytique.
- **f.** Dans quel plan se trouvent les vecteurs \overrightarrow{v} et \overrightarrow{w} ?
- **g.** Exprimer le vecteur \overrightarrow{FG} en fonction de \overrightarrow{i} , \overrightarrow{j} et \overrightarrow{k} . Dans quel plan se trouve-t-il?
- **h.** En déduire la longeur FG puis calculer AF et AG afin de calculer $\overrightarrow{v}.\overrightarrow{w}$.
- i. Exprimer le produit scalaire $\overrightarrow{v}.\overrightarrow{w}$ dans ce plan, en fonction de AF, AG et \widehat{FAG} puis vérifier le résultat en utilisant, dans ce plan, l'expression analytique.
- **j.** Dans quel plan se trouvent les vecteurs \vec{a} et \vec{j} ?
- **k.** Exprimer le vecteur \overrightarrow{DE} en fonction de \overrightarrow{i} , \overrightarrow{j} et \overrightarrow{k} . Dans quel plan se trouve-t-il?
- **l.** En déduire la longueur DE puis $\vec{a} \cdot \vec{j}$.
- **m.** Dans ce plan où les vecteurs \vec{a} et \vec{j} se trouvent, exprimer leur produit scalaire en fonction de AE, AD et \widehat{EAD}
- **n.** Comparer les résultats obtenus pour les produits scalaires avec l'application :

$$f(\overrightarrow{m}, \overrightarrow{n}) = x_{\overrightarrow{m}} x_{\overrightarrow{n}} + y_{\overrightarrow{m}} y_{\overrightarrow{n}} + z_{\overrightarrow{m}} z_{\overrightarrow{n}}$$

o. Conclure quant aux formules possibles pour un produit scalaire de deux vecteurs de l'espace.