MRSD Assignment 1.2

Due Date: 10/4/2013

Hand-in Instructions

Hand the files in via blackboard as a single .zip file labeled yourgroupID.zip

Purpose

Design a simple power system using Eagle. This is a group assignment and should

be worked on collaboratively with your team.

Background

Power distribution and regulation are essential to all electronic devices. Integrated

circuits generally require extremely narrow voltage ranges to function properly. Devices

like motors generally require a minimum voltage to operate in the correct speed range

and minimum current to deliver their rated torques. These different requirements mean

that even fairly trivial systems will have need for several different voltage sources.

Rather than use separate power supplies or batteries for each subsystem, it is common

to derive all needed voltages and currents from a single DC source (such as a large

battery) and use DC-DC converters to create supplies for subsystems. Most systems

also employ varying levels of protection to protect against common problems, such as

short circuit, reversed input, and overvoltage.

Section 1: Layout

We would like you to design an Eagle Schematic that implements the system shown below.

- a) Four (4) voltage ranges (24V, 12V, 5V, 3.3V) at varying currents
- b) Four (4) protection circuits to protect against short circuit, overvoltage, and reversed input (as needed). Define overvoltage as 10% above nominal voltage.
- c) Six (6) connectors for the various inputs and outputs
- d) Four (4) status indicator LEDs to show that each protected supply is operating.
- e) Assume the motor requires 10A at 24V. Use fast blow fuses rated for 150% of the maximum output current.

To simplify the design, we suggest you limit the parts you use to the following:

Part	Digikey P/N	Notes
Micrel 29300	MIC29300-3.3WU	3.3V/3A max
Micrel 29300	MIC29300-5.0WU	5V/3A max
Micrel 29300	MIC29300-12WU	12V/3A max
Murata UWS	<u>UWS-3.3/15-Q48NM-C</u>	3.3V/15A max
Murata UWS	<u>UWS-5/10-Q48NM-C</u>	5V/10A max
Murata UWS	<u>UWS-12/4.5-Q48N-C</u>	12V/4.5A max
3.3V TVS Diode	SMBJ3V3-E3/52	SMB package
5V TVS Diode	<u>SMAJ5.0</u>	SMA package
16V TVS Diode	P4SMA16A	SMA package
26V TVS Diode	SMAJ26A-E3/61	SMA package
Mini-Fit JR	High Current	Located in con-molex.lbr
	Connector	
C-GRID	Normal Current	Located in con-molex.lbr
	Connector	
Fusing	TE5 or TR5	Located in fuse.lbr
LEDs	Choose a color in	led.lbr, use LED with package 1206
	VALUE	

Other basic parts can be found in the RCL library in Eagle, such as 1206 resistors and capacitors and 2210 capacitors.

Be sure to implement the suggested reference schematic for each regulator (generally just a few capacitors).

Section 2: Layout

Once the schematic is complete, **prepare a layout of the power board**. Dimensions, connectors, and layout are up to your team but the connectors and indicator LEDs should be placed in the following way:

Additional requirements for the PCB layout:

- a) Traces must be appropriately sized for the required currents (see PCB Trace Width Calculator for minimums). Non-critical traces should use a minimum of 10mil width unless a particular part requires smaller.
- b) Four (4) mounting holes should be included for 6-32 screws (approx. 0.125" diameter holes).
- c) Labeling should make it extremely clear what each connector and LED are connected to. Additional labels can be created using the 'text' command in Eagle. The 'tnames' or 'tvalues' layer are common top silkscreen layers.

Section 3: Analysis & Documentation

Normally this would be done during schematic design, but in this case we would like you to analyze the efficiency of your system now. We would like the following information:

- a) State the efficiency of each of your regulators. For linear regulators, it is simply
 [1 ((Vin Vout)/(Vin))]. Switching regulators will state a nominal efficiency in
 their datasheets.
- b) State the input power used for each subsystem at maximum rated output.
- c) State the total system efficiency at maximum rated output.

Finally, a simple CAD model of the board must be created for automatic or manual import into a mechanical CAD software package (such as Solidworks). A basic, dimensioned drawing showing the following will suffice for submission:

- a) Overall dimensions of PCB
- b) X,Y offsets of mounting holes from a common point (usually a board corner)
- c) X,Y offsets of the connectors from a common point. Connectors are usually referenced from its **centroid** or from **PIN1**. Be clear which you use.

Deliverable(s)

One zip file containing the following:

- 1. Your eagle .sch, .brd, and any custom .lbr files created.
- 2. A simple text file containing your analysis.
- 3. A .PDF of your dimensioned drawing. No .DXF or .SLDDRW.

Supplementary Documentation / Links

The latest non-commercial version of Eagle can be downloaded here:

http://www.cadsoftusa.com/download-eagle/

Eagle command references for schematic and layout are available here:

http://gadgetry.ri.cmu.edu/content/eagle-command-reference

Eagle command references for creating library parts are available here:

http://gadgetry.ri.cmu.edu/content/creating-eagle-libraries

Additionally, lectures 3.1, 3.2, 6.2, 7.1, and 9.1 on the Gadgetry website (http://gadgetry.ri.cmu.edu) are of use in figuring out Eagle.