代数 0 R1 班 作业 7

2022年5月19日

1 基础题

本部分题必做.

题 1. 证明循环矩阵

$$\begin{bmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{bmatrix}$$

(在复数域上) 可对角化. 所有变量都是复数.

题 2. 设 $\varphi: V \to V$ 是 n 维复向量空间 V 上的线性变换. 证明, φ 可对角 化当且仅当对任何特征值 λ_0 ,

$$\ker(\lambda_0 \operatorname{id} - \varphi) \cap \operatorname{im}(\lambda_0 \operatorname{id} - \varphi) = 0.$$

题 3. 设 n 阶复矩阵 A 的极小多项式为 $m(\lambda), \deg m(\lambda) = s$. 令 $B = (b_{ij})$ 是 s 阶方阵, 其中 $b_{ij} = \operatorname{tr}(A^{i+j-2})$. 证明, A 可对角化当且仅当 B 可逆.

题 4. 用 Gram-Schimdt 正交化,将 w_1, \dots, w_n 化为 $span\{w_1, w_2, \dots, w_n\}$ 的标准正交基.

1.
$$w_1 = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}, w_2 = \begin{bmatrix} -1 \\ 0 \\ 7 \end{bmatrix}, w_3 = \begin{bmatrix} 2 \\ 9 \\ 11 \end{bmatrix}$$
.

2.
$$w_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix}, w_2 = \begin{bmatrix} 1 \\ 1 \\ -5 \\ 3 \end{bmatrix}, w_3 = \begin{bmatrix} 3 \\ 2 \\ 8 \\ -7 \end{bmatrix}.$$

題 5. 对矩阵
$$A = \begin{bmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{bmatrix}$$
 作 QR 分解。

- **题 6.** 已知 y 是关于 x 的函数,实验测得 y 关于 x 变化的一些数据点为 $(x_1,y_1)=(1,2),(x_2,y_2)=(0,1),(x_3,y_3)=(-1,3),(x_4,y_4)=(2,5),(x_5,y_5)=(3,6)$. 求实系数二次函数 $y(x)=a+bx+cx^2$ 使得 $\sum_i |y(x_i)-y_i|^2$ 最小。
- 题 7. 证明若非零向量组 $v_1, \dots, v_k \in \mathbb{R}^n$ 相互正交,即 $v_i \neq 0, \forall i, 且$ $\langle v_i, v_i \rangle = 0, \forall i \neq j,$ 则该向量组线性无关。
- **题 8.** 对于任意的 $A \in M_n(\Bbbk)$ 满足 $A^2 = I$, 是否都有 A 可对角化, 如果不是请举出例子。
- **题 9.** 证明 A 和 A^T 的所有特征值都相同,且有相同的代数重数和几何重数。(请思考 A 和 A^T 是否一定相似,为什么?)
- 題 10. 假设 $A = (a_{ij})$ 是复方阵。定义 $D_i = \{z \in \mathbb{C} \mid |z a_{ii}| \leq \sum_{j \neq i, 1 \leq j \leq n} |a_{ij}|\}$ 为复平面上的圆盘。证明 A 的特征值落在这些圆盘的并里 $\bigcup_i D_i$ 。(这称为 Gershgorin circle theorem,有更精细的估计在哪些圆盘里有多少特征值的版本。在估计特征值范围时还可以用对角矩阵 Λ 共轭作用于 A,即考虑 $\Lambda^{-1}A\Lambda$ 来改变圆盘的位置,请思考如何选取 Λ 来得到更精细的估计。)
- **题 11.** 分以下步骤证明课上关于 Markov 链的定理。假设 $A \in n$ 阶随机矩阵,且每个元素严格大于零。x 是一个概率向量。
 - 1. A^T 有特征值 1 和特征向量 $x = (1, \dots, 1)^T$.
 - 2. A^T 的其他特征值满足 $|\lambda| < 1$,且特征值 1 的几何重数是 1.
 - 3. 证明特征值 1 的代数重数是 1. (提示:用上三角化和 A^k 是概率矩阵)
 - 4. 证明 $\lim_{k\to\infty}A^k$ 存在。(提示: 用上三角化, 请尽量使用课堂上已经证明的结论。)

5. 证明 $y = \lim_{k \to \infty} A^k x$ 存在,且与 x 的选取无关。如果需要求出 y 的每个分量到小数点后 m 位,需要的 k 多大 ? 给出 k 关于 A 的特征值和 n 的估计。

请看一些定义.

设 $V \in \mathbb{R}$ -向量空间 (不一定有限维), $B(\cdot,\cdot): V \times V \to \mathbb{R}$ 是一个映射.

• 称 B 是双线性型, 如果对任何 $u, v, w \in V, a, b \in \mathbb{R}$, 有

$$B(au + bv, w) = aB(u, w) + bB(v, w),$$

$$B(u, av + bw) = aB(u, v) + bB(u, w).$$

以下总假定 B 是一个双线性型.

• 称双线性型 B 是对称的, 如果对任何 $v, w \in V$,

$$B(v, w) = B(w, v).$$

以下总假定 B 是一个对称双线性型.

• 称对称双线性型 B 是半正定的, 如果对任何 $v \in V$,

• 称对称双线性型 B 是正定的, 如果对任何 $0 \neq v \in V$,

此时也称 $B \in V$ 上的一个内积.

题 12. 考虑 $A \in M_n(\mathbb{R})$. 证明

$$B_A: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (v, w) \mapsto v^T A w$$

是一个双线性型. B_A 什么时候是对称的双线性型?

题 13. 设 V 是一个 \mathbb{R} -向量空间,B 是其上一个对称双线性型. 定义

$$R = \{r \in V : B(r, v) = 0, \forall v \in V\}$$

称为 B 的根 (radical).

- 证明, R 是 V 的线性子空间. 于是我们可以考虑商空间 $\bar{V}=V/R$.
- 构造 \bar{V} 上的对称双线性型 \bar{B} , 使得对任何 $v, w \in V$,

$$\bar{B}(\bar{v}, \bar{w}) = B(v, w),$$

其中 \bar{v}, \bar{w} 分别为 v, w 在 \bar{V} 中的像.

• \bar{V} 关于 \bar{B} 的根是什么?

题 14. 考虑 \mathbb{R} -向量空间 $M_n(\mathbb{R})$ 上的迹形式 (Hilbert-Schmidt 内积):

$$B(X,Y) = \operatorname{tr}(X^T Y).$$

证明, $B(\cdot,\cdot)$ 定义了 $M_n(\mathbb{R})$ 上的一个对称正定双线性型 (即一个内积).

题 15. 设 V 是一个有限维 \mathbb{R} -向量空间, 配有内积 $B(\cdot,\cdot)$. 证明

$$V \to V^*, v \mapsto [w \mapsto B(w, v)]$$

是线性同构, 其中 $V^* = \text{Hom}(V, \mathbb{R})$.