Problems on MOSFET

Ex-1. For the Circuit shown, find l_0 and v_{DS} Assume, $v_{th}=1$ $v_$

Soly

For the circuit in figs, $V_{CS} = 3V$, $V_{DS} = 5V$ Clearly $V_{CS} > V_{th} \Rightarrow NMOS & ON$

 $V_{ov} = V_{cqs} - V_{th} = 3 - 1 = 2$ $Since , V_{DS} > (V_{cqs} - V_{t}) \Rightarrow N mos operating in Saturation$ $I_{D} = \frac{1}{2} E'_{h} \frac{W}{L} (V_{cqs} - V_{th})^{2}$

 $= \frac{1}{2} \times 0.5 \times 2^2 = 1 MA$

(11)

10 V 2 K-2 4 V O T

In the fig. $\delta(b)$. $V_{CS} = 4V$, $V_{DS} = ?$

Sine $V_{GS} \geq V_{t} \Rightarrow NMOS is ON,$ but it is not clear that whether it is en saturation or knode, since V_{OS} is unknown, it depends on I_{D}

so let us assume that it is operating in laturation = 1d= 1 Kin W (Vas-V4)2 $= \frac{1}{2} \times 0.5 \times (4-1)^{2} = 2.25 \text{ MA} \text{ mA}$ then VD = 10 - 2 x 2.25 = 10-4.5 = 655 5.5 V Verify the region of op. Vos = 5.50 Vos-Vth = 4-1 = 3 v Clearly Vos > Vos-Vth =) Saturation =) Assumption is correct [1d= 2.25 mA, Vps= 5.5 V] Determine the value of R, & Rs, so that the transistor

operates at $1_0 = 0.4 \text{ mA}$ and $v_0 = 0.5V$. Assume Vtn = 0.7V, MnCox=1004A/V2, L=1 MA

[Since ic=0 (always) -Same 10 flow en D and S In the upper part lo=0.4 mA, VD= 0.5 V 2.5 - LDRD = . Assuming Source voltage, vs -2.5V

VGS = 0 - Vs = - Vc

It is also clear that $V_0 > V_G \Rightarrow V_{0s} > V_{as} - V_+$ =) Saturation Region lo= 1 Macox W (Vors-Vt)2 $400 = \frac{1}{2} \times 100 \times \frac{32}{1} (V_{UIS} - V_{t})^{2}$ $(V_{GS}-V_{t})=0.5$ Vas = 0.5+V+ = 0.5+0.7 = 1.2 v $-... V_{SS} = -V_{S} = -1.2 V$ Now in the lower part of the circuit, using KVL, $v_s - l_0 R_s = -2.5 \nu$ $R_s = V_s + 2.5$ = -1.2 + 2.5 = $3.25 k\Omega$ EX-3 Design-the Circuit to obtain a VD = 0.8V Assume V_{th} = 0.5 V, $U_n Co_n = 0.4 mA/V^2$, $W/L = 0.72 \mu m$ We need to find R so that $\frac{1}{R} = \frac{1 \cdot 0 - 0 \cdot 8}{R} = \frac{1}{R}$ b d & R In this Crocuit VD = VG · Almays VDS > VGS - VL Vons = Vps = 0-0 Transister will always operate en saluratuen. $\frac{1}{2} = \frac{1}{2} M_n Con \left(\frac{W}{1} \right) \left(V_{G1S} - V_t \right)^2$ $= \frac{1}{2} \times 0.4 \times \frac{0.72}{0.18} (0.8 - 0.5)^{2} = 0.072 \text{ mA}$

 $=\frac{1}{0.072}$ ks= 13.88 ks=

form (1)