

Winning Space Race with Data Science

<Lim Xin Shan> <310122>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
- Summary of all results

Introduction

- Project background and context
- Problems you want to find answers

Methodology

Executive Summary

- Data collection methodology:
 - Describe how data was collected
- Perform data wrangling
 - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Describe how data sets were collected.
- You need to present your data collection process use key phrases and flowcharts

Data Collection – SpaceX API

 Present your data collection with SpaceX REST calls using key phrases and flowcharts

- Add the GitHub URL of the completed SpaceX API calls notebook (must include completed code cell and outcome cell), as an external reference and peer-review purpose
- https://github.com/limxinshan 1988/Capstone_final/blob/mai n/Data%20collection.ipynb

```
# Takes the dataset and uses the launchpad column to call the
API and append the data to the list
def getLaunchSite(data):
    for x in data['launchpad']:
        response =
requests.get("https://api.spacexdata.com/v4/launchpads/"+str
(x)).json()
    Longitude.append(response['longitude'])
    Latitude.append(response['latitude'])
    LaunchSite.append(response['name'])
```

Data Collection - Scraping

 Present your web scraping process using key phrases and flowcharts

 Add the GitHub URL of the completed web scraping notebook, as an external reference and peer-review purpose

 https://github.com/limxinshan1988 /Capstone_final/blob/main/Data%2 Ocollection%20with%20webscrapp ing.ipynb # Lets take a subset of our dataframe keeping only the features we want and the flight number, and date_utc.

data = data[['rocket', 'payloads', 'launchpad', 'cores', 'flight_number', 'date_utc']]

We will remove rows with multiple cores because those are falcon rockets with 2 extra rocket boosters and rows that have multiple payloads in a single rocket.

data = data[data['cores'].map(len)==1]

data = data[data['payloads'].map(len)==1]

Since payloads and cores are lists of size 1 we will also extract the single value in the list and replace the feature.

```
\begin{aligned} &\mathsf{data['cores']} = \mathsf{data['cores']}.\mathsf{map}(\mathsf{lambda}\ x : x[0]) \\ &\mathsf{data['payloads']} = \mathsf{data['payloads']}.\mathsf{map}(\mathsf{lambda}\ x : x[0]) \end{aligned}
```

We also want to convert the date_utc to a datetime datatype and then extracting the date leaving the time data['date'] = pd.to datetime(data['date utc']).dt.date

```
# Using the date we will restrict the dates of the launches data = data[data['date'] <= datetime.date(2020, 11, 13)]
```

Data Wrangling

- Describe how data were processed
- You need to present your data wrangling process using key phrases and flowcharts
- Add the GitHub URL of your completed data wrangling related notebooks, as an external reference and peer-review purpose

EDA with Data Visualization

- Summarize what charts were plotted and why you used those charts
- Add the GitHub URL of your completed EDA with data visualization notebook, as an external reference and peer-review purpose

https://github.com/limxinshan1988/Capstone_final/blob/main/EDA%20with%20visualization%20lab.ipynb

EDA with SQL

- Using bullet point format, summarize the SQL queries you performed
- Add the GitHub URL of your completed EDA with SQL notebook, as an external reference and peer-review purpose

https://github.com/limxinshan1988/Capstone_final/blob/main/EDA%20with%20SQL.ipynb

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	None	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	None	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	None	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10-08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	None	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	None	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Build an Interactive Map with Folium

- Summarize what map objects such as markers, circles, lines, etc. you created and added to a folium map
- Explain why you added those objects
- Add the GitHub URL of your completed interactive map with Folium map, as an external reference and peer-review purpose

https://github.com/limxinshan1988/Capstone_fin al/blob/main/Interactive%20analytics%20with%2 Ofolium.ipynb

Predictive Analysis (Classification)

- Summarize how you built, evaluated, improved, and found the best performing classification model
- You need present your model development process using key phrases and flowchart
- Add the GitHub URL of your completed predictive analysis lab, as an external reference and peer-review purpose

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

 Show a scatter plot of Flight Number vs. Launch Site

 Show the screenshot of the scatter plot with explanations

Payload vs. Launch Site

 Show a scatter plot of Payload vs. Launch Site

 Show the screenshot of the scatter plot with explanations

Success Rate vs. Orbit Type

 Show a bar chart for the success rate of each orbit type

• Show the screenshot of the scatter plot with explanations

Flight Number vs. Orbit Type

 Show a scatter point of Flight number vs. Orbit type

• Show the screenshot of the scatter plot with explanations

Payload vs. Orbit Type

 Show a scatter point of payload vs. orbit type

• Show the screenshot of the scatter plot with explanations

Launch Success Yearly Trend

 Show a line chart of yearly average success rate

 Show the screenshot of the scatter plot with explanations

All Launch Site Names

- Find the names of the unique launch sites
- Present your query result with a short explanation here

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

- Find 5 records where launch sites begin with `CCA`
- Present your query result with a short explanation here

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	None	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	None	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	None	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10-08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	None	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	None	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

- Calculate the total payload carried by boosters from NASA
- Present your query result with a short explanation here

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- Present your query result with a short explanation here

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- Present your query result with a short explanation here

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

Present your query result with a short explanation here

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2016-05-06	05:21:00	F9 FT B1022	CCAFS LC-40	None	4696	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
2016-08-14	05:26:00	F9 FT B1026	CCAFS LC-40	None	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
2017-03-30	22:27:00	F9 FT B1021.2	KSC LC-39A	None	5300	GTO	SES	Success	Success (drone ship)
2017-05-01	11:15:00	F9 FT B1032.1	KSC LC-39A	None	5300	LEO	NRO	Success	Success (ground pad)
2017-09-07	14:00:00	F9 B4 B1040.1	KSC LC-39A	None	4990	LEO	U.S. Air Force	Success	Success (ground pad)
2017-10-11	22:53:00	F9 FT B1031.2	KSC LC-39A	None	5200	GTO	SES EchoStar	Success	Success (drone ship)
2018-01-08	01:00:00	F9 B4 B1043.1	CCAFS SLC-40	None	5000	LEO	Northrop Grumman	Success (payload status unclear)	Success (ground pad)
2018-08-07	05:18:00	F9 B5 B1046.2	CCAFS SLC-40	None	5800	GTO	Telkom Indonesia	Success	Success
2018-11-15	20:46:00	F9 B5 B1047.2	KSC LC-39A	None	5300	GTO	Es hailSat	Success	Success
2019-02-22	01:45:00	F9 B5 B1048.3	CCAFS SLC-40	None	4850	GTO	PSN, SpaceIL / IAI	Success	Success
2019-06-12	14:17:00	F9 B5 B1051.2	VAFB SLC-4E	None	4200	SSO	Canadian Space Agency (CSA)	Success	Success
2020-06-30	20:10:46	F9 B5B1060.1	CCAFS SLC-40	None	4311	MEO	U.S. Space Force	Success	Success
2020-07-20	21:30:00	F9 B5 B1058.2	CCAFS SLC-40	None	5500	GTO	Republic of Korea Army, Spaceflight Industries (BlackSky)	Success	Success
2020-11-05	23:24:23	F9 B5B1062.1	CCAFS SLC-40	None	4311	MEO	USSF	Success	Success

Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- Present your query result with a short explanation here

Boosters Carried Maximum Payload

- List the names of the booster which have carried the maximum payload mass
- Present your query result with a short explanation here

mission_outcome	missionoutcomes
Failure (in flight)	1
Success	99
Success (payload status unclear)	1

2015 Launch Records

• List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Present your query result with a short explanation here

booster_version F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4 F9 B5 B1048.5 F9 B5 B1051.4 F9 B5 B1049.5 F9 B5 B1060.2 F9 B5 B1058.3 F9 B5 B1051.6 F9 B5 B1060.3

F9 B5 B1049.7

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Present your query result with a short explanation here

landing outcome

No attempt

Success (ground pad)

Success (drone ship)

Success (drone ship)

Success (ground pad)

Failure (drone ship)

Success (drone ship)

Success (drone ship)

Success (drone ship)

Failure (drone ship)

Failure (drone ship)

Success (ground pad)

Precluded (drone ship)

No attempt

Failure (drone ship)

No attempt

Controlled (ocean)

Failure (drone ship)

Uncontrolled (ocean)

No attempt

No attempt

Controlled (ocean)

Controlled (ocean)

No attempt

No attempt

Uncontrolled (ocean)

No attempt

No attempt

No attempt

Failure (parachute)

Failure (parachute)

