Linear Algebra Notes

Chris Beard

28 July 2011

Contents

1		ear Algebra Notes
	1.1	Basic Linear Algebra concepts
	1.2	Geometry
	1.3	Nullspace \mathcal{N}
	1.4	Transformations
	1.5	Invertibility
	1.6	Determinants
	1.7	Transpose, left nullspace $\mathcal{N}(A^T)$ and rowspace $C(A^T)$
	1.8	Projections and Least Squares Approximation
	1.9	Coordinates in different bases
	1.10	Orthonormal bases
	1.11	Eigenvalues and vectors
2	Appendix 1	
	2.1	Why reduced row echelon works
	2.2	Solving an example nullspace using reduced row echelon form (#35)
	2.3	Singularity implications

1 Linear Algebra Notes

1.1 Basic Linear Algebra concepts

- 13. Singular matrix, no inverse for matrix M; $|M| = 0 \Leftrightarrow M^{-1}$ undefined 13
- 14. Line: $L = \{\vec{x} + t\vec{v} | t \in \mathbb{R}\}$
- 18. Set of *n* linear independent vectors $\mathcal{V} = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$:
 - $c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n = 0 \Rightarrow c_1 = c_2 = \dots = c_n = 0$
 - \bullet otherwise, \mathcal{V} is linearly dependent
- 19. Subspace: vector space
 - Span of n vectors is valid subspace of \mathbb{R}^n
 - Subspace must be closed under addition
 - and scalar multiplication
 - must include $\{\vec{0}\}$
- 20. Basis: minimum set of linearly independent vectors that spans a subspace

- 21. Dot product: $\vec{a} \cdot \vec{v} = a_1 v_1 + a_2 v_2 + ... + a_n v_n$
 - commutative
 - distributive
 - associative
- 23. Cauchy-Schwartz inequality
 - $|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$
 - special case: $\vec{x} = c\vec{y} \Leftrightarrow |\vec{x} \cdot \vec{y}| = ||\vec{x}|| ||\vec{y}||$
- 24. Vector triangle inequality
 - $|\vec{x} + \vec{y}| \le ||\vec{x}|| + ||\vec{y}||$
 - special case: $|\vec{x} + \vec{y}| = ||\vec{x}|| + ||\vec{y}|| \Leftrightarrow \vec{x} = c\vec{y}$
 - simple, but helpful for scaling to general coordinates

1.2 Geometry

- 1. Angle θ between vectors
 - $\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \theta$
 - $\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b} = 0$
- 2. Find a plane
 - \vec{x}_0 is a point on the plane, \vec{n} is a vector normal to the plane, \vec{x} is a vector that ends on the plane
 - get plane in traditional form: Ax + By + Cz = D

- via:
$$n_1(x-x_0) + n_2(y-y_0) + n_3(z-z_0) = 0$$

- 29. Area of a parallelogram formed by vectors \vec{a}, \vec{b}
 - $A = \|\vec{a} \times \vec{b}\|$

1.3 Nullspace \mathcal{N}

- 34. Subspace: Nullspace $N = \{\vec{x} \in \mathbb{R}^n | A\vec{x} = \vec{0}\}$
 - N(A) = N(rref(A))
 - $N(A) = 0 \Leftrightarrow$ column vectors are linearly independent
- 36. $\mathcal{N}(A) = \{0\} \Leftrightarrow \text{column vectors are linearly independent}$
- 40. Any basis of a given span will have the same number of elements
- 42. $\operatorname{dim}(C(A)) = \operatorname{rank}(A)$ (for column space of A, C(A))

1.4 Transformations

- 47. Linear transformations of x can be represented as Ax for some matrix A
 - linearity:
 - -A(x+y) = Ax + Ay
 - $-A(\alpha x) = \alpha Ax$
- 48. Matrix product with any vector is a linear transformation
 - any linear transformation can be represented as a matrix vector product
- 51. \mathcal{V} a subspace in \mathbb{R}^n
 - $T: \mathbb{R}^n \to \mathbb{R}^m$
 - $-T(\mathcal{V})$ is image of \mathcal{V} under T
 - $-T(\mathbb{R}^n)$ is image of actual 'T'
- 52. $T: X \to Y$, S is a subset of domain Y
 - everything in $x \subseteq X$ maps to some place in Y
 - everything in $S \subseteq Y$ gets mapped to
 - $T^{-1}(S)$ is pre-image of S under T
 - $T^{-1}(S) = {\vec{x} \in \mathbb{R}^n | T(\vec{x}) \in S}$
 - $\operatorname{kernel}(T) = \{ \vec{x} \in \mathbb{R}^n | T(\vec{x}) = \{0\} \}$

57,58. Rotation transformation

- rotation is a linear \Leftrightarrow representable as matrix product.
- Basic method for \mathbb{R}^3 : represent rotation around x axis with matrix A, then about y axis with a matrix B, then about z axis with matrix C. (do this on unit vectors to find A, B, C). The resulting transform on a vector \vec{x} will be $C(B(A\vec{x}))$
- In \mathbb{R}^2 :

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

• In \mathbb{R}^3 , around x-axis:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

- 60. Projections of \vec{x} onto space $L = \{c\vec{v}|c \in \mathbb{R}\}\$
 - $\mathbf{Proj}_L(\vec{x}) = \left(\frac{\vec{x} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right) \vec{v} = \frac{\vec{x} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v}$
 - easier with unit vector
- 61. Projections are easier if you have a normalized vector $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}$:
 - \bullet $\boxed{\mathbf{Proj}_L(\vec{x}) = (\vec{x} \cdot \vec{u})\,\vec{u}} = A\vec{x}$, where \vec{u} is a unit vector on L
 - if $\hat{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, get $A_{n \times n}$ by applying the transformation $\mathbf{Proj}_L(\vec{x})$ to each column in I_n

- 63. Given $T(\vec{x}) = B_{l \times m} \vec{x}, S(\vec{x}) = A_{m \times n} \vec{x}$
 - Then T composed with S is given as $T \circ S(\vec{x}) = T(S(\vec{x})) = B(A\vec{x})$
 - Remember interpretation of matrix vector products:

$$A\vec{x} = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_n \vec{a}_n$$

• In other words, the product of a matrix A and a vector \vec{x} is a linear combination of the column matrices of A, \vec{a}_i , scaled by the elements of \vec{x} , x_i

1.5 Invertibility

- 67. Function f is invertible $\Leftrightarrow \exists$ unique inverse function of f
- 68. Invertibility ⇔ unique solution
- 69. Surjective (onto) and injective (one-to-one)
 - Surjective: $\forall y \in Y \exists$ at least one $x \in X : f(x) = y$
 - Everything in the co-domain gets mapped to, everything reachable
 - Injective: for any $y \in Y, \exists$ at most $1 \ x : f(x) = y$
 - One-to-one correspondence
- 70. Invertibility \Leftrightarrow injective (one-to-one)
- 71. Transformation $T: \mathbb{R}^n \to \mathbb{R}^m, T(\vec{x}) = A\vec{x}$
 - T onto (surjective) $\Leftrightarrow \mathbf{span}(C(A)) = \mathbb{R}^m$
- 72. Viewing a plotted solution set of Ax = b in \mathbb{R}^2
 - solution set is a shifted version of the nullspace, assuming there is a solution
 - Solution set is particular + homogenous solution: $\{\vec{x}_p\} + \mathcal{N}(A)$
- 73. Requirements for A representing an injective (1-1) transformation:
 - $\mathcal{N}(A) = \{0\}$, trivial nullspace, which implies the following:
 - Column vectors of A are LI
 - $C(A) = \mathbf{span}(a_i, a_2, ..., a_n)$
 - The column vectors form a basis for \mathbb{R}^n
 - $-\operatorname{rank}(A) = n$
- 75. Inverses are representable as linear operations
 - cT(x) = T(cx), where T is a linear transformation that gives the inverse
- 76. Get the inverse of $A \in \mathbb{R}^{n \times n}$ via elementary row operations on matrix augmented with I_n :
 - $[A|I] \rightarrow [I|A^{-1}]$
- 78. Formula for inverse of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 - $\bullet \ A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

1.6 Determinants

- 79. Method for 3×3 determinant
- 80. For $n \times n$ determinant
 - $|A| = \sum_{j=i}^{j=n} (-1)^{i+j} a_{ij} |A_{ij}|$, where A_{ij} is the submatrix formed by eliminating the *ith* row and *jth* column
- 82. Rule of Sarrus of Determinants
- 83. Effect of scalar multiplication on the determinant
 - for $n \times n$ matrices, $|kA| = k^n |A|$
 - For a single row of A multiplied by k, det is k|A|
- 85. When you add a row from matrix X to a row from Y to get a matrix Z:
 - |Z| = |X| + |Y|
 - S_{ij} is A with 2 rows swapped: $|S_{ij}| = -|A|$
- 86. If A has duplicate rows, |A| = 0
- 87. Adding scaled rows of a matrix to other rows within the matrix does **not** change the determinant
- 88. Determinant of upper triangular matrix is the product of the diagonal
- 90. Area of the parallelogram formed by 2 column vectors in A is equal to |A|
- 91. A is the area of some set plotted in \mathbb{R}^2 ; the area of the set after transformed by matrix B is $|\det(B)A|$
 - From Wikipedia, "A 2 × 2 matrix with determinant -2, when applied to a region of the plane with finite area, will transform that region into one with twice the area, while reversing its orientation."
- 93. $|A^T| = |A|, A \in \mathbb{R}^{n \times n}$

1.7 Transpose, left nullspace $\mathcal{N}(A^T)$ and rowspace $C(A^T)$

- 94. Transpose of sum: $C = A + B \Rightarrow C^T = (A + B)^T = A^T + B^T$
 - $(A^T)^{-1} = (A^{-1})^T$
- 95. Dot product and transpose (for vectors):
 - $\bullet \ v \cdot w = v^T w$
 - $(Ax) \cdot y = x \cdot (A^T y)$
- 96. Rowspace of A: $C(A^T)$ (column space of A's transpose)
 - Left nullspace: $\{x \in \mathbb{R}^n : (x)^T A = 0^T\}$
- 97. Any member of a rowspace of A is orthogonal to any member of the nullspace of A
 - or, $C(A) \perp \mathbf{LeftNullspace}(A)$
 - Where left nullspace is equal to $\mathcal{N}(A^T)$
- 98. $A = B^T \Rightarrow N(B^T) = C(B)^{\perp}$; left nullspace is the orthogonal complement to the column space
- 99. Rank $(A) = \text{Rank } (A^T)$

- 100. Rank (A)+ Nullity (A) = $\operatorname{dim}(V) + \operatorname{dim}(V^{\perp}) = n$
 - Where A is an $n \times n$ matrix and V is a vector space in \mathbb{R}^n
- 101. $V \cup V^{\perp} = \{\vec{0}\}$ for a vector space $V \subseteq \mathbb{R}^n$
 - $\operatorname{dim}(V) = k, \operatorname{dim}(V^{\perp}) = n k$
 - $\{\vec{v}_1,...,\vec{v}_k\}$ form basis for $V, \{\vec{w}_1,...,\vec{w}_{n-k}\}$ form basis for V^{\perp}
 - For $\vec{x} \in \mathbb{R}^n$, $\vec{x} = c_1 \vec{v}_1 + ... + c_k \vec{v}_k + c_{k+1} \vec{w}_1 + ... + c_n \vec{w}_{n-k}$
 - any vector in \mathbb{R}^n is a linear combination of the basis vectors of $V \subseteq \mathbb{R}^n$ and V^{\perp}
- 102. $\vec{x} \in (V^{\perp})^{\perp} \Rightarrow \vec{x} \in V$
- 103. $\mathcal{N}(A^T)^{\perp} = C(A); C(A^T)^{\perp} = \mathcal{N}(A)$
 - Column space is equal to the orthogonal complement of the left nullspace
 - Nullspace is equal to the orthogonal complement of the rowspace
- 104. #101, 103 \Rightarrow for $x \in \mathbb{R}^n, r_0 \in C(A^T), n_0 \in \mathcal{N}(A) \Rightarrow \boxed{x = r_0 + n_0}$
 - $b \in C(A) \Rightarrow \exists$ unique $r_0 \in C(A^T)$: r_0 is a solution to Ax = b, and s.t. r_0 has the minimum length of any solution
 - rowspace \(\perp\) nullspace
- 105. Geometric interpretation, see notes

1.8 Projections and Least Squares Approximation

- 106. For $A \in \mathbb{R}^{n \times k}$, any $A^T A$ is an invertible square matrix
 - $v \in \mathcal{N}(A^T A) \Rightarrow v \in \mathcal{N}(A), v = \vec{0}$
- 107. Remember, $\mathbf{Proj}_L(\vec{x}) = \left(\frac{\vec{x} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right) \vec{v} = \frac{\vec{x} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v}$
- 108. Geometric interretation of projections, see notes
- 109. Projection onto a subspace is a linear transformation:
 - $\mathbf{Proj}_V(x) = Ay = A(A^TA)^{-1}A^Tx$, where A has basis vectors of subspace V as its column vectors
- 112. $\mathbf{Proj}_{V}(x)$ is the closest vector to x that lies on subspace V
- 113. Least squares approximation: see Figure 1
 - remember: Any solution x for Ax = b must lie on column space of A, C(A)
 - if \nexists solution to Ax = b, (i.e., b isn't in C(A)) we can still find the closest approximation \hat{x} (or x^* in the figure), which is closest to the column space of A
 - this will naturally be $\mathbf{Proj}_{C(A)}b$
 - remember, this is given as $\hat{x} = \mathbf{Proj}_{C(A)}b = A(A^TA)^{-1}A^Tx$
 - when you look at relation of C(A) to $\mathcal{N}(A)$ in the context of p, you get the 'simplification' that $A^T A \hat{x} = A^T b$
- 114. LSA example for intersection of 3 non-intersecting lines: given A, b, want to find \hat{x} .
 - Calculate A^TA , A^Tb , and put these matrices' augmented matrix into rref to get values of \hat{x}
- 115. LSA example of fitting lines to data points (finding best fit for parameters m, b in y = mx + b notation)

Figure 1: Least square approximation (p) for b that minimizes error e. Plane is the column space of A spanned by a_1 and a_2

1.9 Coordinates in different bases

116. $V \subset \mathbb{R}^n, B = \{v_1, ..., v_k\}$ is basis for V

- for all $a \in V, a = c_1 v_1 + ... + c_k v_k$
- c_1, c_2, \cdots, c_k known as 'coordinates with respect to B'
- $[a]_B = \begin{bmatrix} c_1 & c_2 & \cdots & c_k \end{bmatrix}^T = c$, where scalar elements of c are the weights of bases of V that you need to get a in terms of the basis vectors
- Example: $\begin{bmatrix} a \end{bmatrix}_B = \begin{bmatrix} 3 & 2 \end{bmatrix}^T \Rightarrow a = 3v_1 + 2v_2$
- Standard coordinates for \mathbb{R}^2 use $\mathbf{e}_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$, $\mathbf{e}_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$
- 117. $V \subset \mathbb{R}^n, B = \{v_1, ..., v_k\}$ is basis for V:
 - $C = \begin{bmatrix} v_1 & v_2 & \cdots & v_k \end{bmatrix}^T \in \mathbb{R}^{n \times k}$ is change of basis matrix for subspace V
 - $a = C[a]_B$: the basis vectors (C) multiplied by their weights $([a]_B)$ give the vector a in standard coordinates
- 118. If C (matrix with bases of V in B as column vectors) is invertible
 - C is square $\Rightarrow k$ (number of basis vectors) = n (number of rows/dimension of basis vectors) $\Rightarrow \exists n$ basis vectors
 - ullet C has Linearly Independent columns
 - B (set of basis vectors $\in \mathbb{R}^n$ for subspace V) is basis for \mathbb{R}^n
 - C invertible \Leftrightarrow $\mathbf{span}(B) = \mathbb{R}^n$
- 119. Transformation matrix w.r.t. different basis; $T: \mathbb{R}^n \to \mathbb{R}^n$ (T(x) = Ax, A transforms wrt standard basis). See Fig 2
 - $D = C^{-1}AC$, where D gets you from vector a in terms of B to transformation of a in terms of B- i.e., $D[\vec{x}]_B = [T(\vec{x})]_B$ $A = CDC^{-1}$
- 122. Example: Transformation that reflects across a line $L = \{c\hat{u}_1 : c \in \mathbb{R}\}\$ (in \mathbb{R}^2)

$$\vec{x} \xrightarrow{CDC^{-1}} T(\vec{x})$$

$$C^{-1} \downarrow \uparrow C \qquad C^{-1} \downarrow \uparrow C$$

$$[\vec{x}]_{B} \xrightarrow{D} [T(\vec{x})]_{B}$$

Figure 2: Relationship of coordinate transformation matrices. \vec{x} is a vector in standard coordinates, and $T(\vec{x}) = A\vec{x}$ is the transformation, in standard coordinates. These terms enclosed with brackets indicates the vector with respect to the basis B, whose elements form the columns of C. C gets you from B coordinates to standard coordinates, and the inverse reverses this.

- Use vector $\hat{u}_1 = [1 \ 2]^T = [[1 \ 0]^T]_B$ and $\hat{u}_2 = [2 \ -1]^T = [[0 \ 1]^T]_B$ (s.t. $\hat{u}_1 \perp \hat{u}_2$) as new basis vectors, which will be the columns of C
- A will have the transformations of the standard unit vectors $\mathbf{e}_1, \mathbf{e}_2$ as its columns (which are hard to find out)
- D will have the transformations of \hat{u}_1, \hat{u}_2 in modified coordinates as its columns
 - this is easy: \hat{u}_1 will remain the same, \hat{u}_2 will be negated, i.e.,
 - * $[T(\hat{u}_1)]_B = [\hat{u}_1]_B = [[1 \ 0]^T]_B$
 - * $[T(\hat{u}_2)]_B = [-\hat{u}_2]_B = [[0 \ -1]^T]_B$
 - * These are column vectors of D
- $A = CDC^{-1}$

1.10 Orthonormal bases

- 123. Orthonormal bases: basis vectors orthogonal and \perp to each other
- 124. $B = \{v_1, ..., v_k\}$ is ON basis for $V, \vec{x} \in V \Rightarrow \vec{x} = c_1v_1 + \cdots + c_kv_k$
 - if B is orthornormal basis, $v_i \cdot \vec{x} = c_i(v_k \cdot v_i) = c_i$, because of sifting property: $v_i \cdot v_j = \{i \neq j : 0, i = j : 1\}$
 - Remember weights for change of basis matrix

$$[\vec{x}]_B = \begin{bmatrix} c_1 & c_2 & \cdots & c_k \end{bmatrix}^T = \begin{bmatrix} v_1 \cdot x_1 & v_2 \cdot x_2 & \cdots & v_k \cdot x_k \end{bmatrix}$$

- so $[x]_b$ is easy to find
- 125. $B = \{v_1, v_2, ..., v_k\}$ is ON basis for subspace $V \subset \mathbb{R}^n$
 - for $x \in \mathbb{R}^n, x = \vec{v} + \vec{w}$, where $\vec{v} = \mathbf{Proj}_V x \in V, \vec{w} = \mathbf{Proj}_{V^{\perp}} x \in V^{\perp}$
 - remember, #109: $\mathbf{Proj}_V(x) = Ay = A(A^TA)^{-1}A^Tx$, where A has basis vectors of subspace V as its column vectors
 - if B is an ON basis, $A^TA = I_k$, because of ON sifting property (i.e., $A^T = A^{-1}$)
 - $\bullet \quad \boxed{\mathbf{Proj}_V(x) = AA^Tx}$
- 128. Orthogonal matrices preserve angles and lengths (i.e., when ON matrix C is used as a transformation matrix)
 - (a) Length
 - remember $y \cdot y = y^T y$
 - with $||x||^2 = ||Cx||^2$, the C disappears because of above property
 - (b) Angles
 - look at $\cos \theta$ of 2 vectors from its relation to the dot product

- compare this with θ between vectors Cv, Cw, keeping in mind preservation of length property above
- 129. Gram-Schmidt process for basis $B = \{v_1, v_2, ..., v_k\}$ for subspace V
 - basis not originally orthonormal, but first normalize v_1 (or any vector in the set): $u_1 = v_1/\|v_1\|$
 - $\{u_1\}$ is now an ON basis for $V_1 = \mathbf{span}(v_1) \subset V$
 - $V_2 = \mathbf{span}(v_1, v_2) = \mathbf{span}(u_1, v_2) = \mathbf{span}(u_1, y_2)$, where $y_2 = v_2 \mathbf{Proj}_{V_1}(v_2)$, i.e., y_2 is the element of v_2 that is orthogonal to V_1
 - $-y_2 = v_2 (v_2 \cdot u_1)u_1$; u_2 is normalized version of y_2
 - $-\{u_1,u_2\}$ is now ON basis for V_2
 - Repeat this for rest of vectors in B
 - But, in general, $y_i = v_i \mathbf{Proj}_{V_1}(v_i) \mathbf{Proj}_{V_2}(v_i) \dots \mathbf{Proj}_{V_{i-1}}(v_i) = v_i (v_i \cdot u_1)u_1 (v_i \cdot u_2)u_2 \dots (v_i \cdot u_{i-1})u_{i-1}$

1.11 Eigenvalues and vectors

- 132. Eigenvalues; $T: \mathbb{R}^n \to \mathbb{R}^n$
 - Remember, from #122, a new basis was chosen for transformation T, s.t. T did not scale basis vectors
 - $-T(v_1) = (1)v_1$
 - $-T(v_2) = (-1)v_2$
 - For any transformation $T: T(v) = Av = \lambda v$
 - v is an eigenvector, and $\lambda \in \mathbb{R}$ is the eigenvalue associated with it
- 133. Finding λ , s.t. $Av = \lambda v$:

$$0 = \lambda v - Av \tag{1}$$

$$= \lambda I_k v - A v \tag{2}$$

$$= (\lambda I_k - A)v \tag{3}$$

$$\Rightarrow v \in \mathcal{N}(\lambda I_k - A) = \{x \in \mathbb{R}^n | Bx = 0 \text{ where } (\lambda I_k - A) = B\}$$
 (4)

Note: Columns of D Linearly independent $\Leftrightarrow \mathcal{N}(D) = \{0\}$ (5)

- So, columns of D must be Linearly Dependent for there to be a non-trivial eigenvector.
 - If columns LD, D not invertible (since invertibility \Leftrightarrow one-to-one/injective)
 - \Rightarrow **Det** $(\lambda I_k A) = 0$ | should get you your eigenvalue
- 134. Characteristic equation (in terms of λ) is found by evaluating the determinant: **Det** $(\lambda I_k A) = 0$
- 135. Find eigenvector: Solve for v in $(\lambda I_n A)v = 0$
 - Won't need to do rref on augmented matrix, since the RHS is the zero vector
 - rref $(\lambda I_n A)$ will give elements of v
 - Eigenspace will be the span of the eigenvectors
- 138. Eigenbasis (basis composed of eigenvectors) make good coordinate system
 - $A \in \mathbb{R}^{n \times n}$ has n LI eigenvectors, $B = \{v_1, v_2, ..., v_n\}$
 - n vectors that are LI \Rightarrow B is basis for \mathbb{R}^n
 - $-Av_1 = \lambda_1 v_1 + 0v_2 + ... + 0v_n$; $Av_2 = 0v_1 + \lambda_2 v_2 + ... + 0v_n$ (and you get the idea)
 - Remember chart from #122: vectors in B will form columns of C

- Find column j of D by doing $[T(v_j)]_B = [0 \ 0 \cdots \lambda_j \cdots 0]^T = [d_1 \ d_2 \cdots d_n][0 \ 0 \cdots 1 \cdots 0]^T$

Thus,
$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda_n \end{bmatrix}$$

Easy to apply transformation on a whole range of input vectors, and can be worth the overhead of getting the basis and D, if you want to scale up.

2 Appendix

2.1 Why reduced row echelon works

We can use reduced row echelon form to solve a system of equations Ax = b. We want to know any of the polynomials of degree $n \leq 2$ that go through the points $\{(1, -1), (2, 3), (3, 3)\}$. We will look for coefficients a_i associated with terms x^i . Matching the x^i values with their respective coefficients and y values gives us the system

$$a_0 + a_1 + a_2 = -1 (6)$$

$$a_0 + 2a_1 + 4a_2 = 3 (7)$$

$$a_0 + 3a_3 + 9a_2 = 3 (8)$$

which can be represented in Ax = b form by

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 3 \end{bmatrix}.$$

We can see from Eqns. (6)-(8) that our method should be to perform elementary row operations on the different equations, in order to ultimately have only a single unique a_i term on the LHS of each equation. We want the a_i terms to remain in the same columns, but the coefficients to mostly cancel each other. Thus we will augment matrices A and b, and get them in reduced row echelon form:

$$\mathbf{rref} \left(\begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 2 & 4 & 3 \\ 1 & 3 & 9 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

Un-augmenting this matrix, we see that it corresponds to the equations

$$a_0 = -9 \tag{9}$$

$$a_1 = 10 \tag{10}$$

$$a_2 = -2 \tag{11}$$

so that the polynomial can be given as $y(x) = -9 + 10x - 2x^2$.

Note, if the last row of the matrix 2.1 had been $[0\ 0\ 0\ 1]$, meaning that $0a_0 + 0a_1 + 0a_2 = 1$, (an obvious contradiction), it would indicate that there is no possible polynomial of this degree that passes through all the points.

2.2 Solving an example nullspace using reduced row echelon form (#35)

Let's find the nullspace for a matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$

Remember, $\mathcal{N}(A) = \{x \in \mathbb{R}^n : Ax = 0\}$. So we will look for the vector $x \in \mathbb{R}^4$ below:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We will solve this linear system of equations by putting the following matrix into reduced row echelon form:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4 & 0 \\ 4 & 3 & 2 & 1 & 0 \end{bmatrix}$$

This is essentially the same as putting the unaugmented matrix A into RREF, since there is no elementary row operation that will change the elements in the last column, but either way it gives us

$$\begin{bmatrix} 1 & 0 & -1 & -2 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The first two rows/columns have pivot elements, whose columns are the pivot columns (since they have leading 1's). The rest are free columns. The matrices can be read to be saying

$$x_1 = x_3 + 2x_4 (12)$$

$$x_2 = -2x_3 - 3x_4 (13)$$

Or,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}$$

And since, in general, $\mathcal{N}(A) = \mathcal{N}(\mathbf{rref}(A))$, we get

$$\mathcal{N}(A) = \mathbf{span} \left(\begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix} \right).$$

2.3 Singularity implications

For an n-by-n matrix A

Invertible	mnemonic
$ A \neq 0$	$ A = 0 \Rightarrow$ you can't compute the inverse
non-singular	- (remember base case 2×2 matrix inverse involves $1/ A $ term)
A is full rank	linearly independent columns (invertibility \Rightarrow 1-to-1/injective)
$\mathcal{N}(A) = \{0\}$	linearly independent columns
$\mathcal{R}(A) = \mathbb{R}^n$	linearly independent columns
Ax = b has unique solution for every b	- no more than one solution (can't add members of $\mathcal{N}(A)$ for multiple b)
	- one solution, since $\mathcal{R}(A) = \mathbb{R}^n$; everything reachable/surjective
	- one solution found using the unique inverse of A
$\operatorname{rref}(A) = I_n$	
A is a product of elementary matrices	