1. Basic Notions

Definition 1.1. A binary operation on a set S is a function $f: S \times S \to S$.

Definition 1.2. A *field* is a set \mathbb{F} together with two binary operations +, and \cdot called addition and multiplication (respectively) such that

1. For all $a, b, c \in \mathbb{F}$ we have

$$a + (b+c) = (a+b) + c$$

and

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c.$$

2. For all $a, b \in \mathbb{F}$ we have

$$a + b = b + a$$

and

$$a \cdot b = b \cdot a$$
.

- 3. There exists an element $0 \in \mathbb{F}$, called an additive identity, such that for all $a \in \mathbb{F}$ we have a + 0 = a.
- 4. There exists an element $1 \in \mathbb{F}$, called a multiplicative identity, such that for all $a \in \mathbb{F}$ we have $a \cdot 1 = a$.
- 5. For all $a \in \mathbb{F}$ there exists an element $b \in \mathbb{F}$, called an additive inverse, such that a+b=0.
- 6. For all $a \in \mathbb{F}$ such that $a \neq 0$ there exists an element $c \in \mathbb{F}$, called a multiplicative inverse, such that $a \cdot c = 1$.
- 7. For all $a, b, c \in \mathbb{F}$

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

Note: Fields have a unique additive and multiplicative identity denoted 0 and 1 respectively. Moreover, when the additive and multiplicative inverses exist they are unique.

Some examples: All of the following examples are with their standard operations.

- 1. \mathbb{Q} (rational numbers)
- 2. \mathbb{R} (real numbers)
- 3. \mathbb{C} (complex numbers)
- 4. $\mathbb{Z}/p\mathbb{Z}$ for p prime (Integers modulo p)

Non example: \mathbb{Z} is not a field, it lacks multiplicative inverses.

Definition 1.3. A vector space V over a field \mathbb{F} is a set V with two operations called vector addition and scalar multiplication where vector addition is a function $+: V \times V \to V$ and scalar multiplication is a function $\cdot: \mathbb{F} \times V \to V$ such that

1. For all $u, v \in V$ we have

$$u + v = v + u$$

2. For all $u, v, w \in V$ and for all $a, b \in \mathbb{F}$ we have

$$(u+v) + w = u + (v+w)$$

and

$$(ab) \cdot v = a \cdot (b \cdot v)$$

3. There exists a vector $0 \in V$, called an additive identity, such that for all $v \in V$ we have

$$v + 0 = v$$

4. For all $v \in V$ we have a vector $w \in V$, called an additive inverse, such that

$$v + w = 0$$

5. For all $v \in V$ we have

$$1 \cdot v = v$$

6. For all $a, b \in \mathbb{F}$ and for all $u, v \in V$ we have

$$a \cdot (u + v) = a \cdot u + a \cdot v$$

Some examples: All of the following examples are with their standard operations.

1.
$$\mathbb{F}^n = \left\{ \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} : a_i \in \mathbb{F} \right\}$$
 where \mathbb{F} is a field.

- 2. Polynomials with coefficients in a field \mathbb{F} .
- 3. Polynomials (with coefficients in a field \mathbb{F}) of degree $\leq n$
- 4. Continuous functions $f: X \to Y$, C(X,Y), where X and Y are fields.
- 5. Functions from a field X into a field Y.
- 6. $\mathbb{F}^{\infty} = \{(a_1, a_2, a_3, \ldots) : a_i \in \mathbb{F}\}.$

Proposition 1.1. Every vector space V has a unique additive identity. The unique additive identity is denoted 0.

Proposition 1.2. Every element $v \in V$ has a unique additive inverse. For all $v \in V$ its unique additive inverse is denoted -v.

Proposition 1.3. For all $v \in V$ we have $0 \cdot v = 0$.

Proposition 1.4. For all $a \in \mathbb{F}$ and $0 \in V$ we have $a \cdot 0 = 0$.

Proposition 1.5. For every $v \in V$ we have $(-1) \cdot v = -v$

2. Basis for a Vector Space

Definition 2.1. A linear combination of a list of vectors v_1, \ldots, v_m in V is a vector of the form

$$a_1v_1 + \ldots + a_mv_m$$

where $a_1, \ldots, a_m \in \mathbb{F}$.

Definition 2.2. The set of all linear combinations of a list of vectors v_1, \ldots, v_m in V is called the span of v_1, \ldots, v_m denoted by $span\{v_1, \ldots, v_m\}$.

$$span\{v_1, ..., v_m\} = \{a_1v_1 + ... + a_mv_m \mid a_i \in \mathbb{F}\}\$$

Definition 2.3. If V is a vector space and $V = \text{span}\{v_1, \dots, v_m\}$ then we say that v_1, \dots, v_m span V.

Definition 2.4. We say that a vectors space is *finite dimensional* if there exists a finite list of vectors v_1, \ldots, v_m such that

$$\operatorname{span}\{v_1, \dots v_m\} = V$$

Otherwise we say that V is *infinite dimensional*.

Definition 2.5. A list of vectors v_1, \ldots, v_m in V is called *linearly independent* if the only choice of $a_1, \ldots, a_m \in \mathbb{F}$ such that

$$a_1v_1 + \ldots + a_mv_m = 0$$

is $a_1 = a_2 = \ldots = a_m$. A list is called *linearly dependent* if it is not linearly independent.

Lemma 2.6. Suppose that v_1, \ldots, v_m is a linearly dependent list in V. There exists a $j \in \{1, \ldots, m\}$ such that

- 1) $v_j \in span\{v_1, \dots v_{j-1}\}$
- 2) $span\{v_1, \ldots, v_{j-1}, v_j, v_{j+1}, \ldots v_m\} = span\{v_1, \ldots, v_{j-1}, v_{j+1}, \ldots v_m\}$

Proposition 2.1. In a finite dimensional vector space the length of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.

Definition 2.7. A basis for a vector space V is a list of vectors $\{v_1, \ldots, v_n\}$ such that

- 1. $\{v_1, \ldots, v_n\}$ is linearly independent
- 2. span $\{v_1, \dots, v_n\} = V$.

Proposition 2.2. A list of vectors $\{v_1, \ldots, v_n\}$ in V is a basis for V if and only if every vector $v \in V$ can be written uniquely in the form

$$v = a_1 v_1 + \ldots + a_n v_n$$

for some $a_1, \ldots, a_n \in \mathbb{F}$.

Proposition 2.3. Every spanning list of vectors in V can be reduced down to a basis.

Proposition 2.4. Every linearly independent list of vectors in V can be extended to a basis.

Proposition 2.5. Any two basis of a finite dimensional vector space V have the same length.

Definition 2.8. The dimension of a finite dimensional vector space is the length of any basis of the vector space. Denoted $\dim(V)$.

Proposition 2.6. Suppose V is finite dimensional. Every list of linearly independent vectors whose length is equal to the dimension of V is a basis.

Proposition 2.7. Suppose V is finite dimensional. Every spanning list vectors whose length is equal to the dimension of V is a basis.

3. Subspaces

Definition 3.1. A subspace of a vector space V is a subset H such that H is a vector space under the same binary relations and field as V.

Proposition 3.1 (Subspace Test). A subset H is a subspace of V if and only if

- 1. $0 \in H$.
- 2. For all $u, v \in H$ we have $u + v \in H$
- 3. For all $u \in H$ and $a \in \mathbb{F}$ we have $au \in H$.

Proposition 3.2. If U is a subspace of a finite dimensional vector space V then $dim(U) \le dim(V)$. Moreover, dim(U) = dim(V) if and only if V = U.

Definition 3.2. Suppose U_1, \ldots, U_m are subsets of V. The sum of U_1, \ldots, U_m denoted $U_1 + \ldots + U_m$ is the set of all possible sums i.e.,

$$U_1 + \ldots + U_m = \{u_1 + \ldots + u_m \mid u_i \in U_i, i = 1, \ldots, m\}$$

Proposition 3.3. If U_1, \ldots, U_m are subspaces then so is $U_1 + \ldots + U_m$.

Definition 3.3. Suppose U_1, \ldots, U_m are subsspaces of V. The sum $U_1 + \ldots + U_m$ is a direct sum if each element of $U_1 + \ldots + U_m$ can be written in only one way as a sum $u_1 + \ldots + u_m$ where $u_i \in U_i$, $i = 1, \ldots, m$. The direct sum is denoted $U_1 \oplus \ldots \oplus U_m$.

Proposition 3.4. $U_1 + \ldots + U_m$ is a direct sum if and only if the only way to write 0 as a sum is by taking each u_i where $i = 1, \ldots, m$ to be 0.

Proposition 3.5. The sum of two subspaces U and W is a direct sum if and only if $U \cap W = \emptyset$.

Proposition 3.6. If V is a finite dimensional vector space and U is a subspace of V then there exists a W which is a subspace of V such that $V = U \oplus W$.

3.1. Quotient Spaces.

Definition 3.4. Let V be a vectors space and U a subspace. For every $v \in V$ define

$$v + U = \{v + u \mid u \in U\}$$

and

$$V/U = \{v+U \ | \ v \in V\}$$

Proposition 3.7. Let V be a vectorspace, U a subspace and $v, w \in V$. The following are equivalent.

- (a) $v w \in U$
- (b) v + U = w + U
- (c) $(v+U) \cap (w+U) \neq \emptyset$

Proposition 3.8. Let V be a vectorspace, U a subspace, $\lambda \in \mathbb{F}$, and $v, w \in V$ The set V/U is a vector space with the following operations:

$$(v+U) + (w+U) = (v+w) + U$$
$$\lambda(v+U) = (\lambda v) + U$$

Proposition 3.9. Let V be a finite dimensional vector space and U be a subspace.

$$dim(V/U) = dim(V) - dim(U)$$

4. Linear Maps

Definition 4.1. A linear map from $V(\mathbb{F})$ to $W(\mathbb{F})$ is a function $T:V\to W$ such that

$$T(\lambda x + y) = \lambda T(x) + T(y)$$

for every $x, y \in V$ and $\lambda \in \mathbb{F}$. Denote the set of all linear maps from V to W as $\mathcal{L}(V, W)$.

Proposition 4.1. Suppose $\{v_1, \ldots, v_n\}$ is a basis of V and $w_1, \ldots, w_n \in W$. There is a unique linear map $T: V \to W$ such that

$$T(v_j) = w_j$$
 $j = 1, \dots, n$.

Proposition 4.2. If $T: V \to W$ is linear then

$$T(0_V) = 0_W.$$

Definition 4.2. Suppose $S, T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbb{F}$ define

$$(S+T)(v) = S(v) + T(v)$$
 for all $v \in V$

and

$$(\lambda T)(v) = \lambda T(v)$$
 for all $v \in V$.

Proposition 4.3. $\mathcal{L}(V,W)$ is a vector space with the above operations.

Definition 4.3. For $T \in \mathcal{L}(V, W)$ define the null space of T (or kernel of T) to be

$$\operatorname{null}(T) = \{ v \in V \mid Tv = 0 \} \subseteq V$$

and define the range of T to be

$$ran(T) = \{ Tv \mid v \in V \} \subseteq W.$$

Theorem 4.4. For $T \in \mathcal{L}(V, W)$ both null(T) and ran(T) are subspaces. A linear transformation is injective if and only if

$$null(T) = \{0\}.$$

A linear transformation is surjective if and only if ran(T) = W.

Definition 4.5. The *rank* of a linear transformation is the dimension of its range. The *nullity* of a transformation is the dimension of its null space.

Definition 4.6. A vector space isomorphism from V onto W is a bijective linear map $T:V\to W$. If there is a vector space isomorphism from V onto W we say V is isomorphic to W and write $V\cong W$.

Theorem 4.7. Let V and W be two finite dimensional vector spaces. V is isomorphic to W if and only if dim(V) = dim(W).

Definition 4.8. A linear map $T:V\to W$ is *invertible* if there exists an map $S:W\to V$ such that

$$S \circ T = \mathrm{Id}_V$$
$$T \circ S = \mathrm{Id}_W$$

Theorem 4.9. A map $T: V \to W$ is invertible if and only if its bijective.

Proposition 4.4. Suppose $T \in \mathcal{L}(V, W)$ and define

$$\tilde{T}: V/null(T) \to W$$

by

$$\tilde{T}(v + null(T)) = Tv.$$

The following hold:

- a) \tilde{T} is linear
- b) \tilde{T} is injective
- c) $ran(\tilde{T}) = ran(T)$
- d) $V/null(T) \cong ran(T)$.

Theorem 4.10 (Fundamental Theorem of Linear Maps/ Rank-Nullity). Suppose V is a finite dimensional vector space and $T \in \mathcal{L}(V, W)$. We have ran(T) is finite dimensional and

$$\dim(V) = \dim(\operatorname{ran}(T)) + \dim(\operatorname{null}(T)).$$

Proposition 4.5. Suppose V and W are finite dimensional vector spaces. Let $T \in \mathcal{L}(V, W)$.

- a) If $\dim(V) < \dim(W)$ then T is not surjective.
- b) If dim(V) > dim(W) then T is not injective.

Definition 4.11. A linear map $T \in \mathcal{L}(V, V)$ is called an *operator*.

Theorem 4.12. Suppose T is an operator over a vector space V. If V is finite dimension the following are equivalent:

- a) T is injective
- b) T is surjective
- c) T is bijective

4.1. The Matrix of a Linear Map and the Coordinate Transform.

Definition 4.13. Let V be an n-dimensional vector space over the field \mathbb{F} . Let $\beta = \{v_1, \ldots, v_n\}$ be an *ordered* basis for V. The coordinate transform $\varphi_{\beta}: V \to \mathbb{F}^n$ is defined by

$$v = a_1 v_1 + \ldots + a_n v_n \stackrel{\varphi_{\beta}}{\longmapsto} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

Denote the column vector $\varphi_{\beta}(v)$ by $[v]_{\beta}$.

Proposition 4.6. The coordinate transform from V onto \mathbb{F}^n is a vector space isomorphism.

Definition 4.14. Suppose $T: V \to W$ is a linear maps with $\beta = \{v_1, \ldots, v_n\}$ and $\gamma = \{w_1, \ldots, w_m\}$ as ordered basis for V and W respectively. Define the matrix of T, denoted by $[T]^{\gamma}_{\beta}$, by the following If

$$T(v_k) = a_{1,k}w_1 + \ldots + a_{m,k}w_k$$

then the k-th column of $[T]^{\gamma}_{\beta}$ is given by $\begin{bmatrix} a_{1,k} \\ \vdots \\ a_{m,k} \end{bmatrix}$.

Theorem 4.15. The following diagram commutes

$$V \xrightarrow{T} W$$

$$\varphi_{\beta} \downarrow \qquad \qquad \downarrow \varphi_{\gamma}$$

$$\mathbb{F}^{n} \xrightarrow{[T]_{\beta}^{\gamma}} \mathbb{F}^{m}$$

More specifically,

$$[T]^{\gamma}_{\beta}[v]_{\beta} = [T(v)]_{\gamma}.$$