Formális nyelvek és a fordítóprogramok alapjai

2. előadás

Előadó: Nagy Sára, mesteroktató Algoritmusok és Alkalmazásaik Tanszék

Emlékeztető:

V - ábécé, jelek nem üres véges halmaza;

V* - az adott jelkészlet felett értelmezett összes szó;

 $L \subseteq V^*$ - formális nyelv, szavak halmaza.

Nyelv megadása szabályrendszerrel

<u>Definíció:</u> Grammatikának (nyelvtannak) a következő négyest nevezzük:

$$G=(N,T,P,S)$$

- N a nemterminális ábácé,
- T a terminálisok ábécéje,
- P az átírási szabályok véges halmaza,
- S a kezdőszimbólum.

Grammatika: G=(N,T,P,S)

- ▶ N és T diszjunkt halmazok, azaz $N \cap T = \emptyset$.
- ▶ S € N, kezdőszimbólum.
- A szabályok p → q alakúak, ahol p∈(N∪T)*N(N∪T)*, q∈(N∪T)* és p jelöli a szabály baloldalát, q a jobboldalát,
 → a két oldalt elválasztó jel.
- A szabályok baloldala kötelezően tartalmaz legalább egy nemterminális szimbólumot.
- ► (N∪T)* elemeit *mondatformá*knak nevezzük.

Grammatika által generált nyelv

Minden olyan szó, amely közvetetten levezethető a kezdőszimbólumból.

$$L(G) := \{ u \in T^* \mid S \underset{G}{\Rightarrow}^* u \}$$

Generatív grammatika (nyelvtan)

Példa:

 $G = (\{S\}, \{a,b\}, \{S \rightarrow aSb, S \rightarrow ab\}, S)$ egy grammatika.

Ez a grammatika az L= $\{a^nb^n \mid n \ge 1\}$ nyelvet definiálja.

Levezetés:

$$S \underset{G}{\Rightarrow} aSb \underset{G}{\Rightarrow} aaSbb \underset{G}{\Rightarrow} aaaSbbb \underset{G}{\Rightarrow} aaaabbbb$$

$$S \underset{G}{\Rightarrow}^* a^4b^4$$

Grammatika által generált nyelv

Minden olyan szó, amely közvetetten levezethető a kezdőszimbólumból.

$$L(G) := \{ u \in T^* \mid S \underset{G}{\Rightarrow}^* u \}$$

Chomsky féle grammatika típusok

<u>Definició:</u> A G =(N,T,P,S) grammatika i-típusú (i =0,1,2,3), ha P szabályhalmazára teljesülnek a következők:

- i =0: Nincs korlátozás.
- i =1: P minden szabálya u₁Au₂ → u₁vu₂ alakú, ahol u₁,u₂,v ∈ (N∪T)*, A ∈ N, és v ≠ ε, kivéve az S → ε alakú szabályt, de ekkor S nem fordul elő egyetlen szabály jobboldalán sem (Ezt "Korlátozott ε szabály"-nak, röviden: KES szabálynak hívjuk.)
- i =2: P minden szabálya $A \rightarrow v$ alakú, ahol $A \in N$, $v \in (N \cup T)^*$.
- i =3: P minden szabálya vagy A → uB vagy A → u alakú, ahol A,B ∈ N és u ∈ T*.

Nyelvek típusai

Egy L nyelvet i-típusúnak nevezünk (i \in {0,1,2,3}), ha létezik olyan i-típusú grammatika, ami az L nyelvet generálja.

Jelölje \mathcal{L}_i az i-típusú nyelvek halmazát. (Nyelvcsalád.)

Chomsky féle hierarchia

$$\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_0$$

Pontosabban valódi tartalmazás van

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$

Chomsky féle grammatika típusok

<u>Definició:</u> A G = (N,T,P,S) grammatika i-típusú (i =0,1,2,3) ,ha P szabályhalmazára teljesülnek a következők:

- i =0: Nincs korlátozás.
- i =1: P minden szabálya u₁Au₂ → u₁vu₂ alakú, ahol u₁,u₂,v ∈ (N ∪T)*, A ∈ N, és v ≠ ε, kivéve az S → ε alakú szabályt, de ekkor S nem fordul elő egyetlen szabály jobboldalán sem (röviden: KES)
- i =2: P minden szabálya $A \rightarrow v$ alakú, ahol $A \in N, v \in (N \cup T)^*$.
- i =3: P minden szabálya vagy A → uB vagy A → u alakú, ahol A,B ∈ N és u ∈ T*.

Chomsky féle hierarchia

$$\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_0$$

Azonban

$$g_3 \subseteq g_2 \not= g_1 \subseteq g_0$$

Ha a 2-es típusú szabályoknál is kikötnénk, hogy v≠ε, akkor igaz lenne a tartalmazás, és akkor triviálisan igaz lenne a nyelvcsaládokra is tartalmazás.

Nyelvtani transzformáció

A nyelvtani transzformáció olyan eljárás, amely egy G grammatikából egy másik G' grammatikát készít.

Ekvivalens transzformációról beszélünk, ha minden G grammatikára és az ő G' transzformáltjára igaz, hogy L(G)=L(G').

Tétel:

Minden G=(N,T,P,S) környezetfüggetlen (2-es típusú) grammatikához megkonstruálható egy vele ekvivalens G'=(N',T,P',S') környezetfüggetlen grammatika úgy, hogy P'-ben **nincs** $A \rightarrow \varepsilon$ alakú szabály, kivéve, ha $\varepsilon \in L(G)$, mert akkor $S' \rightarrow \varepsilon \in P'$, de ekkor S' nem szerepelhet szabály jobboldalán.

Első lépésben meghatározzuk, hogy mely nemterminálisokból vezethető le az üres szó.

$$H:=\{A \in N \mid A \underset{G}{\Rightarrow}^* \epsilon\}$$

Ehhez definiáljuk a H_i (i≥1) halmazokat:

$$H_1:=\{A \in N \mid \exists A \rightarrow \epsilon \in P\}$$

$$H_{i+1}$$
:= $H_i \cup \{ A \in N \mid \exists A \rightarrow w \in P \text{ \'es } w \in H_i^* \}$

$$H_1 \subseteq H_2 \subseteq ... \subseteq H_k = H_{k+1} \exists k \text{ \'es legyen H:= } H_k.$$

Ekkor látható, ha $A \in \mathbb{N}$ és $A \Rightarrow^* \varepsilon$, akkor, és csak akkor, ha $A \in \mathbb{H}$.

Ennek következménye, hogy $\epsilon \in L(G)$, akkor, és csak akkor, ha $S \in H$.

Második lépésben átalakítjuk H ismeretében a grammatika szabályait a kellő alakúra.

S ∉ H estén:

 $A \rightarrow v' \in P'$, akkor, és csak akkor, ha $v' \neq \epsilon$ és $\exists A \rightarrow v \in P$ úgy, hogy v'-t v-ből úgy kapjuk, hogy elhagyunk nulla vagy több H-beli nemterminálist v-ből.

 $S \in H$ estén:

A korábbi szabályokhoz hozzá vesszük még a következő két szabályt:

S'→ε és S'→S

,ahol S'∉N a G' grammatika új kezdőszimbóluma.

Megjegyzés: Az átalakítás megőrzi a 2. és 3. típust.

```
L={ u \in \{a,b\}^* | \ell_a(u) = \ell_b(u) \ge 0 \}
G = (\{S\}, \{a,b\}, P, S)
      P: S \rightarrow aSbS
           S \rightarrow bSaS
           S \rightarrow \epsilon
 és
       L(G)=L. (Ezt korábban bizonyítottuk.)
```

```
L={ u \in \{a,b\}^* | \ell_a(u) = \ell_b(u) }, azaz ugyanannyi "a" és "b" van a szavakban.
G = (\{S\}, \{a,b\}, P, S) G' = (\{S',S\}, \{a,b\}, P', S')
P: S \rightarrow aSbS
                                   P': S \rightarrow aSbS
                                              S \rightarrow abS
                                              S \rightarrow aSb
                                              S \rightarrow ab
    S \rightarrow bSaS
                                             S \rightarrow bSaS
                                              S \rightarrow baS
                                              S \rightarrow bSa
                                              S \rightarrow ba
    S \to \epsilon
                                             S' \rightarrow \epsilon, S' \rightarrow S
                      L(G)=L(G').
                 és
```

u=abba szó levezetése:

$$S \underset{G}{\Rightarrow} aSbS \underset{G}{\Rightarrow} aSbbSaS \underset{G}{\Rightarrow} abbSaS \underset{G}{\Rightarrow} abbaS \underset{G}{\Rightarrow} abbaS$$

$$S' \underset{G'}{\Rightarrow} S \underset{G'}{\Rightarrow} abS \underset{G'}{\Rightarrow} abba$$

```
G = (\{S,A,B\}, \{a,b\}, P, S)
P: S \rightarrow aAS
     S \rightarrow AaB
     S \rightarrow AB
     A \rightarrow BB
     B \rightarrow bA
     B \rightarrow \epsilon
     H_1 = \{B\}
     H_2 = H_1 U \{A\} = \{A, B\}
     H_3 = H_2 U \{S\} = \{A,B,S\} = N
     H=H_3
```

G' = (
$$\{S',S,A,B\}$$
, $\{a,b\}$, P', S')
P': $S \rightarrow aAS \mid aS \mid aA \mid a$
 $S \rightarrow AaB \mid aB \mid Aa \mid a$
 $S \rightarrow AB \mid B \mid A$
 $A \rightarrow BB \mid B$
 $B \rightarrow bA \mid b$
 $S' \rightarrow \epsilon$
 $S' \rightarrow S$

Emlékeztető

Reguláris műveletek:

- unió
- konkatenáció
- (iteratív) lezárás

Nyelvosztályok zártsága a reguláris műveletekre

Tétel:

Az \mathcal{L}_i , i = 0, 1, 2, 3 nyelvosztályok mindegyike zárt a reguláris műveletekre nézve.

Nyelvosztály zártsága nyelvi műveletre

Legyen ϕ n-változós nyelvi művelet, azaz ha $L_1,...,L_n$ nyelvek, akkor $\phi(L_1,...,L_n)$ is nyelv.

Az \mathcal{L} nyelvcsalád zárt a ϕ műveletre nézve, ha $L_1,..., L_n \in \mathcal{L}$ estén $\phi(L_1,..., L_n) \in \mathcal{L}$.

Unió

G=(N,T,P,S) legyen az L nyelvhez tartozó grammatika és G'=(N',T,P',S') legyen az L' nyelvhez tartozó grammatika és $N\cap N'=\emptyset$ és G, G' azonos típusúak. i=0,2,3 esetén, legyen S_0 új szimbólum, azaz $S_0 \not\in (N\cup N')$. $G_U=(N\cup N'\cup \{S_0\},T,P\cup P'\cup \{S_0\to S,S_0\to S'\},S_0)$. Látható, hogy G_U típusa megegyezik G,G' típusával, és $L(G)\cup L(G')=L(G_U)$

Unió

i=1 estén, ha $\epsilon \in (L \ U \ L')$, akkor az előbbi módon elkészített grammatikában nem teljesül a KES.

Ezért tekintsük az $L_1 = L \setminus \{\epsilon\}$ és $L_2 = L' \setminus \{\epsilon\}$ nyelveket, amelyeket G_1 és G_2 1-es típusú grammatikák generálnak. Készítsük el G_U -t az előbbi módon, majd vezessünk be egy S_1 új kezdőszimbólumot és adjuk a szabályhalmazhoz az $S_1 \rightarrow \epsilon$ és $S_1 \rightarrow S_0$ szabályokat.

Emlékeztető

G=(N,T,P,S) grammatika 3-as típusú, ha szabályai

 $A \rightarrow uB$ alakúak, ahol $A,B \in N$, $u \in T^*$ vagy

 $A \rightarrow u$ alakúak, ahol $A \in \mathbb{N}$, $u \in \mathbb{T}^*$

Konkatenáció

(Megjegyzés: Most csak a 3-as típusra bizonyítjuk.)

Legyen i = 3.

A P szabályhalmazból megkonstruálunk egy P_1 szabályhalmazt úgy, hogy minden $A \to u$ alakú szabályt felcserélünk egy $A \to uS'$ alakú szabályra, a többi szabályt változatlanul hagyjuk.

A $G_c = (N \cup N', T, P_1 \cup P', S)$ grammatika 3-as típusú és generálja az L(G)L(G') nyelvet.

Lezárás

(Megjegyzés: Most csak a 3-as típusra bizonyítjuk.)

Legyen i = 3.

Legyen S_0 új szimbólum, azaz $S_0 \notin N$.

Definiáljuk a P₁ szabályhalmazt úgy, hogy minden

 $A \rightarrow u$ alakú szabályt felcserélünk egy $A \rightarrow uS_0$ alakú szabályra és ezek legyenek a P_1 elemei.

 $G_* = (N \cup \{S_0\}, T, P_1 \cup P \cup \{S_0 \rightarrow \epsilon, S_0 \rightarrow S\}, S_0)$ grammatika generálja az L* nyelvet.

Emlékeztető

Reguláris műveletek:

- \triangleright unió, $(L_1 \cup L_2)$
- \triangleright konkatenáció, (L_1L_2)
- ► (iteratív) lezárás. (L*=L⁰ ∪ L¹ ∪ L² ∪ ...)

3-as nyelvcsalád leírásai

A 3-as nyelvcsalád nyelveit leírhatjuk

- 3-as típusú grammatikával,
- reguláris kifejezéssel,
- véges determinisztikus automatával,
- véges nemdeterminisztikus automatával.

Bizonyítható, hogy

$$\mathcal{L}_3 = \mathcal{L}_{reg} = \mathcal{L}_{VDA} = \mathcal{L}_{VNDA}$$
.

Megjegyzés: A programozási nyelvek lexikális egységei a 3-as nyelvcsaládba tartoznak.

Reguláris nyelvek (rekurzív definíció)

- az elemi nyelvek: Ø, {ε}, {a}, ahol a ∈ U,
 azaz egy tetszőleges betű
- azon nyelvek, melyek az elemi nyelvekből az unió, a konkatenació és a lezárás műveletek véges számú alkalmazásával állnak elő;
- nincs más reguláris nyelv

```
Példa: \{\{a\} \cup \{b\}\}^*\{b\} = \{ub \mid u \in \{a,b\}^*\}
```

Reguláris nyelvek

Tétel: Minden L reguláris nyelvhez megadható egy G 3-as típusú grammatika, amelyre L=L(G). ($\mathcal{L}_{reg} \subseteq \mathcal{L}_3$)

Bizonyítás:

Elemi nyelvekhez adható 3-as típusú grammatika.

G=(
$$\{S\},\{a\},\{S\rightarrow aS\},S$$
) L(G)=Ø
G=($\{S\},\{a\},\{S\rightarrow \epsilon\},S$) L(G)= $\{\epsilon\}$
G=($\{S\},\{a\},\{S\rightarrow a\},S$) L(G)= $\{a\}$

Bizonyítás folytatása

Korábban láttuk, hogy az \mathcal{L}_3 nyelvcsalád zárt a reguláris műveletekre nézve.

Az elemi nyelvek grammatikáiból kiindulva megkonstruálható a reguláris műveletekhez tartozó grammatika konstrukciókkal a megfelelő 3-as típusú grammatika bármely összetett reguláris nyelvhez.

Reguláris kifejezések:

Definició:

- az elemi regularis kifejezesek: \emptyset , ϵ , a, ahol a $\in U$
- ha R₁ es R₂ és R regularis kifejezesek akkor

```
(R_1 \mid R_2);

(R_1R_2);

(R)^* is reguláris kifejezések.
```

 a reguláris kifejezések halmaza a legszűkebb halmaz, melyre a fenti két pont teljesül.

Reguláris kifejezések:

Jelölje L_R az R reguláris kifejezéshez tartozó nyelvet.

$$L_{\emptyset} = \emptyset$$
, $L_{\epsilon} = \{\epsilon\}$, $L_{a} = \{a\}$

Ha Q és R reguláris kifejezések, akkor

$$L_{(Q|R)} = L_Q U L_R$$

unió

$$L_{(QR)} = L_Q L_R$$

konkatenáció

$$L_{(R)^*} = (L_R)^*$$

lezárás

Reguláris kifejezések:

A műveletek prioritási sorrendje növekvően: unió, konkatenáció, lezárás.

A zárójelek elhagyhatók a reguláris kifejezésekből a prioritásoknak megfelelően.

Példák reguláris kifejezésekre

• $(a \mid b)*b$, ahol $L_{(a \mid b)*b} = \{\{a\} \cup \{b\}\}\}*\{b\} = \{ub \mid u \in \{a,b\}^*\}$

L_{aa*b*} = {a,aa,ab,aaa,aab,abb,...}
 aba ∉ L_{aa*b*}

Példák reguláris kifejezésekre

$$0|1(0|1)*0$$
 T={0,1}

A fenti reguláris kifejezésnek a páros bináris számoknak felelnek meg, vezető nullák nélkül.

Érdekes helyek, ahol gyakorolhatók a reguláris kifejezések.

https://regexone.com/

https://regexcrossword.com/

Megjegyzés: A megadott kifejezések a Flex programgenerátor kifejezéseinek részét képezik.

3-típusú grammatikák normál formája

Tétel:

Minden 3-as típusú, nyelv generálható egy olyan grammatikával, amelynek szabályai

 $A \rightarrow aB$, ahol A, B \in N és a \in T vagy

 $A \rightarrow \varepsilon$ alakúak, ahol $A \in N$.

Megjegyzés: A 3-as normál forma alakítható majd át könnyen automatává.

3-as típusú grammatikák normálformára hozása

Legyen G=(N,T,P,S) 3-as típusú grammatika.

Megkonstruálunk egy G'=(N',T,P',S) 3-as normál formájú grammatika, melyre L(G)=L(G').

Lépesei:

- 1. hosszredukció
- 2. befejező szabályok átalakítása
- 3. láncmentesítés

Hosszredukció

Elhagyjuk az $A \rightarrow a_1 ... a_k B$ alakú szabályokat, ahol $k \ge 2$ és $\forall i \in [1,k]$: $a_i \in T$ és $A \in N$, $B \in N$ vagy $B = \varepsilon$.

Helyettesítjük a következő szabályokkal:

 $A \rightarrow a_1 Z_1$, ahol $Z_1 \notin N$, azaz új nemterminális,

 $Z_1 \rightarrow a_2 Z_2$, ahol $Z_2 \notin (NUZ_1)$

•••

$$Z_{k-1} \rightarrow a_k B$$

Megjegyzés: Minden szabályra új nemterminálisokat vezetünk be.

Befejező szabályok átalakítása

Elhagyjuk az $A \rightarrow a$ alakú szabályokat, ahol a \in T és $A \in$ N.

Legyen E egy új nemterminális. (Ez lehet közös minden befejező szabály esetén.)

Vegyük fel P'-be az

 $A \rightarrow aE$ és a $E \rightarrow \epsilon$ szabályokat az előbbiek helyett.

Megjegyzés: A 3-as normál forma alakítható majd át könnyen automatává.

Láncmentesités

Elhagyjuk az $A \rightarrow B$ alakú szabályokat P-ből, ahol A, B \in N.

Első lépésben meghatározzuk minden A ∈ N esetén a

 $H(A):=\{B \in N \mid A \Rightarrow_G^* B\}$ halmazokat.

Ehhez definiáljuk a H₁ (i≥1) halmazokat:

 $H_1(A) = \{ A \}$

 $H_{i+1}(A)=H_i(A)\cup \{B\in N\mid \exists C\in H_i(A) \text{ \'es }C\longrightarrow B\in P\}$

 $H_1(A) \subseteq H_2(A) \subseteq ... \subseteq H_k(A) = H_{k+1}(A) \exists k \text{ \'es legyen } H(A) := H_k(A)$

Ezután P'-be felvesszük az A→ X szabályokat,

ha $\exists B \in H(A)$ és $B \rightarrow X \in P$, ahol $X \in (T \cup N)^*$ és X nem csak egyetlen nemterminális.

Példa

P: $S \rightarrow abS$

 $S \rightarrow B$

 $B \rightarrow bB$

 $\mathsf{B}\to\mathsf{V}$

 $V \rightarrow aa$

hosszredukció után:

P': $S \rightarrow aZ$

 $Z \rightarrow bS$

 $S \rightarrow B$

 $B \rightarrow bB$

 $\mathsf{B}\to\mathsf{V}$

 $V \rightarrow aY$

 $Y \rightarrow aE$

 $E \rightarrow \epsilon$

Példa

P':
$$S \rightarrow aZ$$
 $Z \rightarrow bS$
 $S \rightarrow B$
 $B \rightarrow bB$
 $B \rightarrow V$
 $V \rightarrow aY$
 $Y \rightarrow aE$
 $E \rightarrow \varepsilon$
 $H(S)=\{S,B,V\}$
 $H(B)=\{B,V\}$

láncmentesítés után:

P':
$$S \rightarrow aZ$$
 $Z \rightarrow bS$
 $S \rightarrow bB \mid aY$
 $B \rightarrow bB$
 $B \rightarrow aY$
 $V \rightarrow aY$
 $Y \rightarrow aE$
 $E \rightarrow \epsilon$

Véges determinisztikus automata (VDA)

Definíció:

 $A = (Q, T, \delta, q_0, F)$ rendezett ötöst véges determinisztikus automatának nevezzük, ahol

- Q az állapotok nem üres véges halmaza,
- T az input szimbólumok ábécéje,
- δ : Q x T \rightarrow Q leképezés az állapot-átmeneti függvény,
- q₀ ∈ Q a kezdőállapot,
- F ⊆ Q elfogadóállapotok halmaza.

Véges determinisztikus automata (VDA)

Véges determinisztikus automata estén a

 δ : Q x T \rightarrow Q állapot-átmeneti függvény

∀ (q,a) párra értelmezett, ahol

 $(q,a) \in Q \times T$ és egyetlen olyan $p \in Q$ állapot

van, amelyre $\delta(q,a) = p$.

Példa

Legyen A = (Q, T, δ, q_0, F) a következő, ahol

Q = {q₀, q₁, q₂, q₃}, T = {a, b}, F = {q₀} és

$$\delta(q_0, a) = q_2, \delta(q_0, b) = q_1,$$

 $\delta(q_1, a) = q_3, \delta(q_1, b) = q_0,$
 $\delta(q_2, a) = q_0, \delta(q_2, b) = q_3,$
 $\delta(q_3, a) = q_1, \delta(q_3, b) = q_2.$

L(A)={u ∈ T* | u-ban páros sok ,a' betű és páros sok ,b' betű van}

Példa - automata megadása táblázattal

δ	a	b
→ q0	q2	q1
q1	q3	q0
q2	q0	q3
q3	q1	q2

Példa - automata megadása gráffal

δ	a	b
⊋ q0	q2	q1
q1	q3	q <mark>0</mark>
q2	q0	q3
q3	q1	q2

δ	a	b
q0	q2	q1
q1	q3	q0
q2	q0	q3
q3	q1	q2

aktuális állapot: q0

δ	a	b
q0	q2	q1
q1	q3	q0
q2	q0	q3
q3	q1	q2

δ	a	b
q0	q2	q1
q1	q3	q0
q2	q0	q3
q3	q1	q2

δ	a	b
q0	q2	q1
q1	q3	q <mark>0</mark>
q2	q0	q3
q3	q1	q2

δ	a	b
q0	q2	q1
q1	q3	q <mark>0</mark>
q2	q0	q3
q3	q1	q2

δ	a	b
q0	q2	q1
q1	q3	q <mark>0</mark>
q2	q0	q3
q3	q1	q2

δ	a	b
→ q0	q2	q1
q1	q3	q <mark>0</mark>
q2	q0	q3
q3	q1	q2

aktuális állapot: q0

> q0 elfogadó állapot, tehát a szó jó

Köszönöm a figyelmet!