Párhuzamos Algoritmusok Buborékrendezés

Kórád György (ZF440N) $2023.~\mathrm{május}~9.$

TARTALOMJEGYZÉK	TARTALOMJEGYZÉK
Tartalomjegyzék	
1. A feladat leírása	2
2. Kapott eredmények	3
3. Konklúzió	4

1. A feladat leírása

A feladat célja egy 100000 elemű tömb rendezése szekvenciálisan, majd szálkezeléssel. Végül a kapott eredményeket összehasonlítjuk és az eredmények alapján eldöntjük, melyik módszer a leggyorsabb. A buborékrendezés egy egyszerű algoritmus, hatékonysága rosszabb, mint a más összehasonlításos rendezési algoritmusoké. Az átlagos és legrosszabb esetben is $O(n^2)$ időkomplexitással rendelkezik, ahol "n" a tömb mérete.

Buborékrendező algoritmus

A tesztek futtatásához használt hardware

2. Kapott eredmények

Az algoritmust a szálkezelő technológiák használatával kettő illetve négy szálon futtattam. Majd az így kapott eredményeket egy file-ban tároltam.

	1
Sequential	51512 ms
Pthread 2	9134 ms
Pthread 4	2165 ms
Omp 2	447 ms
Omp 4	1020 ms
Mpi 2	12687 ms
Мрі 4	4947 ms

Futási idők

Érdekes módon az OpenMP technológia két szálon gyorsabb volt, mint négyen, viszont még így is magasan a leggyorsabb mind közül.

Futási idők diagramja

3. Konklúzió

TECH	MS	Acceleration
Sequential	51512	0
Pthread 2	9134	463,96%
Pthread 4	2165	2279,31%
Omp 2	447	11423,94%
Omp 4	1020	4950,20%
Mpi 2	12687	306,02%
Mpi 4	4947	941,28%

Eredmények javulása százalékban

Összességében elmondtható, hogy az OpenMP volt a leggyorsabb, és véleményem szerint a használata is ennek volt a legegyszerűbb. A Message Passing Interface (MPI) is láthattó gyorsulást mutat több szál esetében, viszont ennél érdemes megjegyezni, hogy nem a program forráskódjában adjuk meg a szálak számat, hanem futtatási paraméterként.

mpirun --oversubscribe <szálak> <program>