BE I (Jan. - 2021)

AMR2C1- Applied Mathematics -II

ETC_BRANCHE (A, B)

Maximum Marks: 20

Online Class Test -I

Note: 1. Attempt all questions.

Time: 70 min.

- 2. Questions must be solved at one place.
- 3. Each step must be clear and well-defined.

Q.1 If
$$A = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ 2 & 3 & 10 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$ then
$$05$$
find $\rho(A)$, $\rho(B)$, $\rho(A+B)$.

Q.2 Find the value of α and β for which the equations

$$x + 2y + 3z = 4$$
, $x + 3y + 4z = 5$, $x + 3y + \alpha z = \beta$ 05 have (i) no solution, (ii) unique solution, and (iii) an infinite number of solutions.

Q.3 Solve $(x^2 + y^2 + x)dx + xydy = 0$.

Q.4 Solve
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = \sin(2x+3)$$
.

B.E. I year (CSE-A&B)

Class Test - 1 (Dec. -2022)

Class Test - 1 (Oct. - 2023)

2AMRC1: Applied Mathematics-II

Maximum Marks: 20

Time: 70 min.

Note: Attempt only four questions.

(05)Define rank of matrix by normal form. Also convert the given matrix A to its normal form and 0:1

hence find its rank where,
$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$
.

Examine whether the following system of equations is consistent. If so, find the solution: Q:2

$$3x + 3y + 2z = 1$$
; $x + 2y = 4$; $10y + 3z = -2$, $2x - 3y - z = 5$

Reduce the following equation into exact form and solve:-Q:3

$$(1 + xy) y dx + (1 - xy) x dx = 0$$

Solve the equation- $(D^2 - 3D + 2) y = x e^{3x} + \sin 2x$. Q:4

0/5 Solve-
$$p^2 + 2py \cot x = y^2$$

