Exorcising the Ghost in the Machine Synthetic Spectral Data Cubes for Assessing Big Data Algorithms

Mauricio Araya, Mauricio Solar, Diego Mardones and Teodoro Hochfärber

Laboratory of Interdisciplinary Research in Astroengineering
Universidad Técnica Federico Santa María
Chile

Machine Learning is the solution,

Machine Learning is the solution, right?

Machine Learning is the solution, right? No free lunch!

- data consuming, or...
- highly dependent of prior knowledge
- verifiable (labelled) real data is scarce
- ullet more advanced \sim more complex
- ullet more flexible \sim more parameters
- data analysis science (study)
- parameter tunning is a nightmare

Machine Learning is the solution, right? No free lunch!

- data consuming, or...
- highly dependent of prior knowledge
- verifiable (labelled) real data is scarce
- ullet more advanced \sim more complex
- ullet more flexible \sim more parameters
- data analysis science (study)
- parameter tunning is a nightmare

We need synthetic data!

Astronomical SYnthetic Data Observations (ASYDO)

- Synthetic ALMA-like data generator
- Simple/mock astrophysical models
- Arbitrary data cubes observations (FITS)
- Opportunity for Machine Learning
 - Labelled and reliable data
 - Unbounded number of samples
 - Data-driven sensitivity analysis
- Opportunity for information technologies in general
 - Assessment of bulk-data transfer, compression, etc.
 - Assessment of image analysis techniques
 - Assessment of storage systems

Data Cube Characterization

A spectroscopic data cube with calibrated temperatures, with two spatial axes and a frequency axis. Basic model:

$$C(x, y, f) = \hat{C}(x, y, f) + \mathcal{N}(0, \sigma)$$
 (1)

What to simulate in $\hat{C}(x,y,f)$?

- Emission lines frequency, energy, etc (DB)
- Local radial velocity gradients
- Red-shift correction
- Broadening functions (frequency distribution model)
- Reasonable spatial distribution models

Data Cell Characterization

emission line

The temperature of a cell is given by the following model:

$$C(x, y, f) = \sum_{l \in \mathcal{L}(x, y, f, l)} \int_{\nu_f - \Delta\nu/2}^{\nu_f + \Delta\nu/2} Br(\nu, l) df + \epsilon$$
 (2)

5/14

Data Cell Characterization

The temperature of a cell is given by the following model:

$$C(x,y,f) = \sum_{l \in \mathcal{L}(x,y,f,l)} \int_{\nu_f - \Delta\nu/2}^{\nu_f + \Delta\nu/2} Br(\nu,l) df + \epsilon \tag{2}$$

Example

By assuming a Gaussian line profile,

$$C(x,y,f) = \sum_{l \in \mathcal{L}(x,y,f,l)} \int_{\nu_f - \Delta\nu/2}^{\nu_f + \Delta\nu/2} \frac{T_l(x,y)}{S_l(x,y)\sqrt{2\pi}} exp\left(-\frac{(\nu - \nu_l(1 + Z_l(x,y)))^2}{2S_l(x,y)^2}\right) df + \epsilon \quad \text{(3)}$$

For each line l we need to generate T_l (temperature), Z_l (redshift) and broadening parameters

$$\Phi_l$$
 (i.e. S in example)

ASYDO Elements

Elements:

- Persistent object called Virtual Universe (VU)
- Sources that belongs to VU $(\alpha_S, \delta_S, z_S)$.
- Sources have several components (structures)
- Components use a models
 - Molecular Clouds, PDR, blackbody, continuum
- lacktriangle A model generates each T_l, Z_l and ϕ_l
- Arbitrary observations
 - Angular position (α, δ)
 - Angular resolution $\Delta \theta$ and the Field of View (FOV)
 - Central frequency ν , spectral resolution $(\delta \nu)$ and spectral bandwidth (BW)

Modules:

- asydopy.vu virtual universe (asydo core)
- asydopy.db line database manipulation (SLAP service)
- asydopy factory generate randomized cubes

ASYDO Elements

Elements:

- Persistent object called Virtual Universe (VU)
- Sources that belongs to VU $(\alpha_S, \delta_S, z_S)$.
- Sources have several components (structures)
- Components use a models
 - Molecular Clouds, PDR, blackbody, continuum
- lacktriangle A model generates each $T_l,\,Z_l$ and ϕ_l
- Arbitrary observations
 - Angular position (α, δ)
 - Angular resolution $\Delta \theta$ and the Field of View (FOV)
 - Central frequency ν , spectral resolution $(\delta \nu)$ and spectral bandwidth (BW)

Modules:

- asydopy. vu virtual universe (asydo core)
- asydopy.db line database manipulation (SLAP service)
- asydopy.factory generate randomized cubes

Tools for the Models

- Spatial structures
 - Gaussian 2D
 - Generalized Gaussian 2D (saturated, Lorenzian, etc)
 - Exponential
 - Soft-edge rings (TODO)
 - Random Clouds (TODO)
- Spectral form
 - ► Skew-Normal Distribution (1D)
- Local shift functions
 - Linear
 - Exponantial

What we save in the FITS?

- A 3D image (cube)
- For each component (and subcomponent) we have
 - 2D images with the original matrices
 - \star Temperature (T_m)
 - \star Red-shift (Z_m)
 - ***** Broadening (Φ_m)
 - A FITS table with each line of the component
 - This include:
 - unique line code
 - molecule name
 - chemical name
 - ★ rest frequency
 - ★ observed frequency
 - base red-shift
 - . Dase leu-siiiit
 - temperature

Supervised Learning Example:

- Pick a 2GHz frequency window (~ 300 GHz)
- Select randomly (p=0.3) if a cube have a molecule
- Force Phosphapropynylidyne existence and abscense (Binary Class)
- 30000 cubes, 25x25x1000 size each
- Naive approach: Use a SVM to train and test
- Result: 62% (something)
- The ML approach is insanely simple

Future Work

Virtual Universe Service!

- IVOA-like synthetic data generation standard (web)
- Include more models and tools
- Integration with astropy and/or CASA
- Train using synthetic data, test using real data

Exorcising the Ghost in the Machine Synthetic Spectral Data Cubes for Assessing Big Data Algorithms

Mauricio Araya, Mauricio Solar, Diego Mardones and Teodoro Hochfärber

Laboratory of Interdisciplinary Research in Astroengineering
Universidad Técnica Federico Santa María
Chile

Skew-normal Distribution

• The pdf of the skew normal (SN) distribution is:

$$f(x) = \frac{2}{\omega} \phi\left(\frac{x-\xi}{\omega}\right) \Phi\left(\alpha\left(\frac{x-\xi}{\omega}\right)\right) \tag{4}$$

where $\phi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ is the standard normal pdf and $\Phi(x)=\frac{1}{2}\left[1+\mathrm{erf}\left(\frac{x}{\sqrt{2}}\right)\right]$ the standard normal cdf.

- The parameters of $SN(\xi,\omega,\alpha)$ are $\xi=$ location, $\omega=$ scale and $\alpha=$ shape
- We propose first to reparametrize as follows

$$\mu = E[X] = \xi + \omega \delta \sqrt{\frac{2}{\pi}} \tag{5}$$

$$\sigma^{2} = E[(X - \mu)^{2}] = \omega^{2} \left(1 - \frac{2\delta^{2}}{\pi} \right)$$
 (6)

$$\delta = \frac{\alpha}{\sqrt{1 + \alpha^2}} \tag{7}$$

which gives the following form

$$SN'(\mu, \sigma, a) = SN\left(\mu - \frac{\sigma\delta}{\sqrt{1 - \frac{2\delta^2}{\pi}}} \cdot \sqrt{\frac{2}{\pi}}, \frac{\sigma}{\sqrt{1 - \frac{2\delta^2}{pi}}}, \alpha\right)$$

(8)

Example: simple model

Defining T_l , Z_l y Φ_l matrices for each line is tedious. Group by molecules:

- lacktriangle molecule intensity maps T_m ,
- ullet local molecule redshift maps Z_m ,
- lacktriangle and molecule broadening maps S_m .

The molecular model need to define (simple example):

$$\begin{split} T_l &= f(T_m, l) = T_m exp\left(-\frac{|e_l - t|}{t}\right) \\ Z_l &= g(Z_m, l) = Z_m \\ \phi_l &= h(\phi_m, l) = \frac{S_m \nu_l}{2\sqrt{2 \ln 2}c} \\ T_m &= 2DGauss(\sigma_x, \sigma_y, \theta) \\ Z_m &= Linear(\alpha, \beta, \theta) \\ S_m &= s_m \end{split}$$

Spectral Line Database

 $\mathcal L$ is the set of all lines, and ν_l the central frequency of $l\in\mathcal L$. If the frequency range is constrained to $\mathcal R=[\nu_{min},\nu_{max}]$, the set of potentials peaks in $\mathcal R$ is:

$$\mathcal{L}_{\mathcal{R}} = \{l \in \mathcal{L} | \nu_l \in \mathcal{R}\}$$

A line l has other associated values in the DB such as the transition temperature e_l or the molecule species m_l (formula). For example, the set of species in an arbitrary region $\mathcal R$ is defined as

$$\mathcal{M}_{\mathcal{R}} = \{ m \in \mathcal{M} | \exists l \in \mathcal{L}_{\mathcal{R}}, m = m_l \},$$

where M is the set of all the molecules in the DB

Assumptions

- S1: the DB contains all the observable lines
- S2 each transition has an associated molecule

	Species	Daniel Nate	Colored Free CO-SI Cod Surve.	NUMBER OF STREET	CIMILUFE SHARKET TROOKS TROOKS	6,100	$f_{\alpha}(0)$	UNITE
1	ADMONOR [®]	Ethylene Olycar	270.30GH,	60 830 w 1 - 100 830 m 0	64160	6812000	105.600	COAIS
	01/00H0.ed	Netyliones	15,050.	MEANS READER	00000	232,8994	154,590	9,44
	o coop	Specializary	15 xxen	67 (100) 67 (1,40)	230%	MEMORI	100,004	æ
÷	почоки.	telland	15.00G, 15.00G	3111-10-101-7	00000	01.630	124,3000	COAS
	OVOVO	peofer Charol	275,30600,	PELDEKKYFF	-04000	10.60	205.600	3%
٠	103/03/08	profession	15,000.	164.01031.0; v+11	-08109	211,3001	(75,049	m.
1	o conce	Specialization	12,000	Kina an Kina an	34809	8043060	106.651	an.
	ON ^{MOS}	Making Cyander	£75,34900,	WEDSTAND PROFES	43400	TT7.4064	SEEK KOM	25.
,	esia sosyone,	ERANCOUR	19.000	MEDIUM SHIKEMEN O	49602	192,2961	41.00	0000
26	POPER NO.	Ethylena Clynal	216.00000	463,60m 1-10(146 m)	-6.8630	10360	475.000	COME
11	OA ²⁸ OI	MINISTRA	IBRUE.	DED HAS PURCH	-0807	111,4904	1131,4596	m.
D	ON ^{MON}	Making Cyander	25 Maria, 25 Maria	2002) GASS, Printed	9.2680	TT7.4064	SEEK KOM	JK.
23	OA ^{TA} OI	MINISTRA	15.000	DED HAS PURE.	4999	111,4904	1131,4096	ж.
			EN NOVA					

