A- تذكير

انشطة تذكيرية

نشاط1: نعتبر المتتاليتين (u_n) و (v_n) المعرفتين ب

$$\forall n \in \mathbb{N} \quad v_n = u_{n+1} - u_n \quad \begin{cases} u_0 = 1 & ; \quad u_1 = 3 \\ u_{n+2} = 2u_{n+1} - u_n & \forall n \in \mathbb{N} \end{cases}$$

 (v_n) متتالیة ثابتة . (v_n) متالیة ثابتة .

2- استنتج أن $\left(u_{n}
ight)$ متتالية حسابية و حدد عناصرها المميزة

$$S_n' = \sum_{i=1}^{i=n} u_i$$
 بدلالة -3

نشاط2: نعتبر المتتالية العددية $\left(u_{n}
ight)_{n\geq1}$ المعرفة ب

$$\begin{cases} u_1 = 2 \\ u_{n+1} = \frac{1}{3}u_n + 2 \end{cases}$$

3 مكبورة بالعدد (u_n) مكبورة بالعدد -2

و استنتج أن $\left(u_n\right)_{n\geq 1}$ و استنتج أن $\left(u_n\right)_{n\geq 1}$ مصغورة عامد 2

 $v_n = u_n - 3$ المعرفة بـ $(u_n)_{n \ge 1}$ -4

. n أ- بين أن $\left(v_{n}\right)_{n\geq1}$ متتالية هندسية و أحسب

$$n$$
 بدلالة $S_n = \sum_{i=1}^{i=n} u_i$ بدلالة -ب

<u>1-المتتالية: المكبورة –المصغورة –المحدودة</u>

تكون المتتالية $\left(u_{n}
ight)_{n\geq n_{0}}$ مكبورة اذا وفقط اذا وجد *

 $\forall n \geq n_0 \quad u_n \leq M$ عدد حقیقی M بحیث

تكون المتتالية $\left(u_{n}
ight)_{n\geq n_{0}}$ مصغورة اذا وفقط اذا وجد *

 $\forall n \geq n_0 \quad u_n \geq m$ عدد حقیقي m بحیث

تكون المتتالية $\left(u_{n}\right)_{n\geq n_{0}}$ محدودة اذا وفقط اذا كانت *

مکبورة و مصغورة $\left(u_{n}\right)_{n\geq n_{0}}$

· 2- المتتالية الرتبية

لتكن $(u_n)_{n\geq n_0}$ متتالية

 $\forall n \geq n_0 \quad u_{n+1} \geq u_n \Leftrightarrow$ متتالية تزايدية $\left(u_n\right)_{n \geq n_0}$

 $\forall n \geq n_0 \quad u_{n+1} \succ u_n \Leftrightarrow$ متتالية تزايدية قطعا معتالية $\left(u_n\right)_{n \geq n_0}$

 $orall n \geq n_0$ متتالية تناقصية $u_n \Leftrightarrow u_{n+1} \leq u_n$ متتالية تناقصية

 $\forall n \geq n_0 \quad u_{n+1} \prec u_n \Leftrightarrow$ قطعا قطعا متتالية تناقصية قطعا متتالية تناقصية متتالية تناقصية قطعا

 $\forall n \geq n_0 \quad u_{n+1} = u_n \Leftrightarrow$ متتالية ثابتة $\left(u_n\right)_{n \geq n_0}$

<u>I- المتتالية الحسابية</u>

1- <u>تعرىف</u>

تكون متتالية $\left(u_{n}
ight)_{n\geq n_{0}}$ حسابية اذا كان يوجد عدد

 $\forall n \geq n_0 \quad u_{n+1} = u_n + r$ حقیقی r بحیث العدد r پسمی أساس المتتالیة

2- صبغة الحد العام - محموع حدود متتابعة لمتتالية

<u>حسابية</u>

خاصية

اذا کان r متتالیة حسابیة أساسها ا

$$\forall n \geq p \quad u_n = u_p + (n-p)r$$

r اذا كان $(u_n)_{n>n}$ متتالية حسابية أساسها م

$$\forall n \geq q \geq p$$
 $u_n = u_q + (n-q)r$ فان

<u> ﻧﺎﺻﯩﺔ</u>

لتكن $(u_n)_{n\geq n_0}$ متتالية حسابية

اذا کان
$$S_n = u_p + u_{p+1}.....+ u_{n-1}$$
 فان

$$S_n = \frac{(n-p)(u_p + u_{n-1})}{2}$$

و الحد الأول u_p و S_n هو عدد حدود المجموع n-p للمجموع S_n و الحد الأخيرللمجموع S_n

$$S_n = \frac{(S_n)}{2}$$
 (عدد حدود (S_n) (عدد الأخير + الحد الأول ل (S_n)

II- المتتالية الهندسية

- تع ىف

تكون متتالية $\left(u_{n}
ight)_{n\geq n_{0}}$ هندسية اذا كان يوجد عدد

 $orall n \geq n_0 \quad u_{n+1} = q u_n$ حقيقي q بحيث العدد q يسمى أساس المتتالية .

2- صبغة الحد العام - محموع حدود متتابعة لمتتالية

<u>ھندسىە</u> خاصىة

اذا كان $\left(u_{n}
ight)_{n\geq n_{0}}$ متتالية هندسية أساسها

$$\forall n \ge n_0 \quad u_n = u_{n_0} q^{n - n_0}$$

 $\overline{ extbf{a} extbf{d} extbf{d} = - |$ اذا كان $\left(u_n
ight)_{n \geq n_0}$ متتالية هندسية

 $\forall n \ge p \ge n_0$ $u_n = u_p q^{n-p}$ أساسها q أساسها

<u>خاصية</u>

1 لتكن q متتالية هندسية أساسها لتكن التكن التكن

$$S_n = u_p \left(\frac{1 - q^{n-p}}{1 - q} \right)$$

هو عدد حدود المجموع S_n و u_p هو الحد الأول n-p

 S_n للمجموع

q هندسیة أساسها q یخالف (u_n) مجموع n حدا أولا منها هو S_n فان S_n

$$S_n = u_0 + u_1 + \dots + u_{n-1} = u_0 \left(\frac{1 - q^n}{1 - q} \right)$$

حالة خاصة أِذا كانت $(u_n)_{n\geq n_0}$ متتالية هندسية أساسها

$$S_n = u_p + u_{p+1} + u_{n-1} = u_p (n-p)$$
 فان 1

B – نهايات المتتاليات

I- نهاية متتالية

 $-\infty$ نعرف نهایة متتالیة کما عرفنا نهایة دالة عند $\lim u_n$ باختصار ا $\lim_{n \to +\infty} u_n$ نکتب

 $\forall n \in \mathbb{N}^*$ $v_n = \frac{1}{n} + 3$ $\forall n \in \mathbb{N}$ $u_n = n^2$ حيث $(v_n)_{n \ge 1}$ (u_n) نشاط نعتبر المتتاليتين $\lim v_n$ و $\lim u_n$

 $\lim v_n = 3$ نعلم أن $\lim_{r \to +\infty} \frac{1}{r} + 3 = 3$ نعلم أن $\lim_{r \to +\infty} u_n = +\infty$ اذن

1- تعريف نهاية منتهية لمتتالية

نقول ان نهایة $(u_n^{})_{n\geq n_0}$ تؤول إلی l إذا و فقط إذا كان كل مجال مفتوح مركزه l يحتوي على جميع حدود $\lim u_n = l$ المتتالية $\left(u_n\right)_{n \geq n_0}$ ابتداء من رتبة.

2-<u>تعريف نهاية لا منتهية لمتتالية</u>

نقول ان نهاية $(u_n)_{n\geq n_0}$ تؤول إلى ∞ إذا و فقط إذا كان كل مجال على شكل $A;+\infty$ يحتوي علىجميع* $\lim u_n = +\infty$ حدود المتتالية $\left(u_n\right)_{n\geq n_0}$ ابتداء من رتبة. نكتب

*نقول ان نهایة $[-\infty;A[$ یحتو] تؤول إلی $[u_n]_{n\geq n_0}$ إذا و فقط إذا كان كل مجال على شـكل $[u_n]_{n\geq n_0}$ $\lim u_n = -\infty$ ابتداء من رتبة. نكتب $\left(u_n\right)_{n\geq n_0}$

 $\lim u_n = -\infty \iff \lim -u_n = +\infty$

3-<u>نهایات متتالیة مرجعیة</u>

ليكن $p \ge 1$ عدد صحيح طبيعي $p \ge 1$ و k عدد حقيقي

 $\lim \frac{1}{n^p} = 0 \qquad \lim \frac{k}{\sqrt{n}} = 0 \qquad \lim n^p = +\infty \qquad \lim \sqrt{n} = +\infty$

لتكن متتالية عددية $\left(u_{n}\right)_{n\geq n_{0}}$ و l عددا حقيقيا

 $\lim (u_n - l) = 0 \Leftrightarrow \lim u_n = l$

 $\lim |u_n - l| = 0 \Leftrightarrow \lim u_n = l$

5- متتالية متقارية – متتالية متباعد<u>ة</u>

نقول إن متتالية متقاربة إذا و فقط كانت نهايتها منتهية. نقول إن متتالية متباعدة إذا وفقط كانت غير متقاربة.

$$w_n = (-1)^n$$
 و $v_n = n^3$ و $u_n = \frac{-3}{n^2} + 4$ نعتبر

$$\lim u_n = 4$$
 متقاربة لان (u_n)

$$\lim v_n = +\infty$$
 متباعدة لان (v_n)

متباعدة لأن $\left(w_{n}\right)$ لا تقبل نهاية $\left(w_{n}\right)$

مصادق التقارب $(u_n)_{n\geq n_0}$ متتالیة عددیة $(v_n)_{n\geq n_0}$ متتالیة عددیة متقاربة لأعداد حقیقیة موجبة مصداق $(u_n)_{n\geq n_0}$ متتالیة عددیة موجبة موجبة معددیة عددیة موجبة معددیة معددیة عددیة معددیة موجبة معددیة معددیق معددی

$$\exists N \in \mathbb{N} \quad \forall n \geq N \quad \left| u_n - l \right| \leq v_n$$
 عدد حقیقی حیث l

$$\lim u_n = l$$
 فان $(u_n)_{n \geq n_0}$ فان فان $\lim v_n = 0$

 $\forall n \geq N \quad u_n \leq v_n$ لتكن $\left(u_n\right)_{n \geq n_0}$ و $\left(v_n\right)_{n \geq n_0}$ متتاليتين عدديتين حيث $\left(u_n\right)_{n \geq n_0}$ $\exists N \in \mathbb{N}$ $\lim v = +\infty$ فان $\lim u_n = +\infty$ اذا کان $\lim u_n = -\infty$ اذا کان $\lim v_n = -\infty$ اذا

 $\overline{\forall n \geq N}$ $v_n \leq u_n \leq w_n$ و $(v_n)_{n \geq n_0}$ ثلاث متتالیات حیث $(u_n)_{n \geq n_0}$ و $(v_n)_{n \geq n_0}$ $\exists N \in \mathbb{N}$ $\lim u_n = l$ فان $\lim v_n = \lim w_n = l$ اذا کان

نعتبر $(u_n)_{n\geq 1}$ حدد $\lim u_n$ في الحالات التالية:

$$u_n = \frac{\sin n}{n}$$
 - ج $u_n = -n^2 + n$ - ب $u_n = n^2 + n - 3$ - أ $\lim u_n = +\infty$ هنه $\lim n^2 = +\infty$ و حيث $n^2 \le n^2 + n - 3$ - أ $\lim u_n = -n^2 \le -\frac{n^2}{2}$ و حيث $\lim n - n^2 \le -\frac{n^2}{2}$ و حيث $\lim n - n^2 \le -\frac{n^2}{2}$ و حيث $\lim u_n = -\infty$ المنا لكل $\lim u_n = -\infty$ المنا لكل $\lim u_n = 0$ المنا لكل $\lim u_n = 0$ و حيث $\lim \frac{1}{n} = 0$ و حيث $\lim \frac{1}{n} = 0$ و حيث $\lim \frac{1}{n} = 0$ المنا لكل $\lim \frac{1}{n} = 0$ و حيث $\lim \frac{1}{n} = 0$ و حيث $\lim \frac{1}{n} = 0$ المنا الكل $\lim \frac{1}{n} = 0$ و حيث $\lim \frac{1}{n} = 0$ المنا الكل $\lim \frac{1}{n} = 0$

 $u_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$ حيث $(u_n)_{n \ge 1}$ نعتبر

 $\lim u_n$ و استنتج أن $u_n \geq \sqrt{n}$ و استنتج

 $q^n
 <u>نهاية المتتالية الهندسية -III</u>
 <math>a > 1$ الحالة 1:

 $q^n \ge 1 + na$ ومنه $(1+a)^n \ge 1 + na$ نعلم أن q = 1 + a ومنه a ومنه

$$\lim q^n = +\infty$$
 فان $\lim 1 + na = +\infty$ وحيث

$$\lim q^n = 1$$
 لحالة $q = 1$ لدينا $q = 1$ لحالة $q = 1$ لحالة $q = 1$

$$\lim\left|q^{n}\right|=0$$
 ومنه $\lim\frac{1}{\left|q\right|^{n}}=\lim\left(\frac{1}{\left|q\right|}\right)^{n}=+\infty$ و منه $\left|q\right| imes1$ ومنه $\left|q\right| imes1$

$$\lim q^n = 0$$
 إذن

لیست لها نهایة
$$\left(q^n\right)$$

 $\lim q^n = 0$ فان $-1 \prec q \prec 1$ اذا کان

اذا كان
$$q \le -1$$
 فان q^n ليست لها نهاية

$$\lim q^n = +\infty$$
 اذا کان $q \succ 1$ فان

$$\lim q^n = 1$$
 فان $q = 1$ اذا کان

 $-1 \prec q \leq 1$ المتتالية $\binom{q^n}{q^n}$ متقاربة اذا كان *

$$r \in \mathbb{Q}^*$$
ليكن -*

$$\lim_{r \to 0} n^r = 0$$
 فان $r < 0$ فان $r > 0$ فان $r > 0$ فان $r > 0$ فان الم

$$\lim \frac{2^n + 3^n}{2^n - 3^n}$$
 و $\lim \left(\frac{1 - \sqrt{2}}{1 + \sqrt{2}}\right)^n$ حدد

$$\lim u_n$$
ب - استنتج : $\left\{ u_0 = 10 \\ u_{n+1} = \frac{5u_n}{n+1} \right\}$ حیث $\left\{ u_n = 10 \\ u_{n+1} = \frac{5u_n}{n+1} \right\}$ حیث رالمتتالیة راستالی المتتالیت المتالیت المتتالیت المتتالیت المتالیت المتتالیت المتتالیت المتتالیت المتتالیت المتالیت المتتالیت المتتالیت المتالیت المتتالیت المتالیت المتالیت المتالیت المتالیت المتالیت المتتالیت المتتالیت المتالیت المتتالیت المتالیت ا

$$\lim u_n$$
 نم حدد $\forall n \ge 10$ $0 \le \frac{u_{n+1}}{u_n} < \frac{1}{2}$ بين أن

:تمرین نعتبر المتتالیة العددیة $\left(u_n
ight)_{n\in\mathbb{N}}$ المعرفة ب

$$u_0 = \frac{3}{2}$$
 ; $(\forall n \in \mathbb{N}): u_{n+1} = \frac{u_n^2 + u_n}{u_n^2 + 1}$

$$(\forall n \in \mathbb{N})$$
: $u_n \succ 1$ بين أن (1

ادرس رتابة
$$\left(u_{n}
ight)$$
 و استنتج أن $\left(u_{n}
ight)$ متقاربة (2

$$\forall n \in \mathbb{N}$$
 $0 \prec u_{n+1} - 1 \leq \frac{1}{2} (u_n - 1)$ أ $-$ أ (3

<u>IV- خاصیات</u>

 $l \leq l$ ' فان $n \geq N$ فان $u_n \leq v_n$ فان l و l متتالیتین متقاربتین نهایتها l و l بحیث $u_n \leq v_n$ فان خاصیة

مبرهنه کل متتالیة تزایدیة و مکبورة هي متتالیة متقاربة کل متتالیة تناقصیة و مصغورة هي متتالیة متقاربة

ملاحظة كل متتالية تزايدية و سالبة هي متتالية متقاربة

كل متتالية تناقصية و موجبة هي متتالية متقاربة

$$u_n = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$$
 متتالیة معرفة ب $(u_n)_{n \ge 1}$ نعتبر

تزايدية
$$\left(u_n
ight)_{n\geq 1}$$
 تزايدية -1

$$\forall n \in \mathbb{N}^*$$
 $u_n \prec 2$ ثم بین أن $\forall k \in \mathbb{N}^* - \{1\}$ $\frac{1}{k^2} \prec \frac{1}{k-1} - \frac{1}{k}$ نين أن -2

. استنتج أن $(u_n)_{n\geq 1}$ متقاربة -3

٧- العمليات على نهايات المتتاليات المتقارية

1- مىرھنة

و (v_n) متتالیتین متقاربتین و lpha عدد حقیقی (u_n)

$$\lim(\alpha u_n) = \alpha \lim u_n$$
 $\lim(u_n v_n) = \lim u_n \times \lim v_n$ $\lim(u_n v_n) = \lim u_n \times \lim v_n$

$$\lim (u_n + v_n) = \lim u_n + \lim v_n$$

$$\lim \frac{u_n}{v_n} = \frac{\lim u_n}{\lim v_n}$$
 فان $\lim v_n \neq 0$ إذا كان

العمليات على النمايات

			العمليات على النهايات		
$\lim \frac{u_n}{v_n}$	$\lim(u_n \times v_n)$	$\lim (u_n + v_n)$	$\lim v_n$	$\lim u_n$	
$(l' \neq 0)$ $\frac{l}{l'}$	l×l'	l + l '	l'	l	
0	l مع وضع إشارة ∞	+∞	+∞	$l \neq 0$ l	
0	l مع وضع عكس إشارة ∞	-8	∞	$l \neq 0$ l	
l مع وضع إشـارة $^{\infty}$	0	l	0+	$l \neq 0$ حيث l	
l مع وضع عكس إشـارة $^{\infty}$	0	l	0-	$l \neq 0$ حيث l	
شکل غیر محدد	0	0	0	0	
0	شکل غیر محدد	+∞	+8	0	
0	شکل غیر محدد	8	-∞	0	
شکل غیر محدد	+∞	+∞	+∞	+∞	
شکل غیر محدد	+∞	-∞	$-\infty$	$-\infty$	
شکل غیر محدد	∞	شکل غیر محدد	-∞	+∞	
l مع وضع إشارة ∞	l مع وضع إشارة ∞	+∞	$l \neq 0$ حيث l	+∞	
l مع وضع عكس إشارة ∞	l مع وضع عكس إشارة $^{\infty}$	-∞	$l \neq 0$ حيث l	-∞	

تمرين

$$\lim_{n \to +\infty} \frac{\sqrt[4]{n^3 + n - 1}}{\sqrt[3]{n^2 2n - 4}} \quad , \quad \lim_{n \to +\infty} \frac{2n^2 - 3n + 2}{n^2 - 1} \quad , \quad \lim_{n \to +\infty} \sqrt{n} \left(\sqrt{n + 1} - \sqrt{n} \right)$$

$f(u_n)$ متتاليات من نوع -VI

1- خاصىة

إذا كانت $(u_n)_{n\geq n_0}$ متتالية عددية متقاربة نهايتها l و l دالة متصلة في العدد الحقيقي l فان المتتالية f(l) المعرفة بـ $v_n=f(u_n)$ بحيث $v_n=f(u_n)$ متقاربة و نهايتها $v_n=f(u_n)$

$u_{n+1} = f(u_n)$ متتالیة من نوع -2

نشاط

$$\left\{ egin{aligned} u_0 &= 2 \ u_{n+1} &= rac{2u_n + 3}{u_n} \end{aligned}
ight.$$
 نعتبر $\left(u_n
ight)$ متتالية عددية حيث

$$\forall n \in \mathbb{N}$$
 $2 \le u_n \le \frac{7}{2}$ بين أن -1

$$v_n = 1 - \frac{4}{u_n + 1}$$
 لتكن (v_n) متتالية عددية حيث -2

أ- بين أن
$$\left(v_{_{n}}
ight)$$
 متتالية هندسية

 $\lim u_n$ استنتج ا $\lim v_n$

$$f(x) = \frac{2x+3}{x}$$
 حيث $f(x) = \frac{2x+3}{x}$ حيث -3

$$\left[2;\frac{7}{2}\right]$$
 أ- تأكد أن f متصلة على أ-

$$f\left(\left[2;\frac{7}{2}\right]\right)\subset\left[2;\frac{7}{2}\right]$$
 ب- بین أن

$$f(x) = x$$
 ت- حل المعادلة

ماذا تلاحظ؟ ماذا تستنتج؟

<u>خاصیا</u>

لتكن $(u_n)_{n\geq n_0}$ متتالية عددية معرفة بالعلاقة $u_{n+1}=f\left(u_n
ight)$ بحيث يوجد مجال I ضمن I و الحد الأول للمتتالية $f\left(I
ight)$ ينتمي إلى I و I متصلة على I و I و I متصلة على المتتالية I

 $f\left(x\right)=x$ اذا كانت $\left(u_{n}\right)$ متتالية متقاربة فان نهايتها الاعادلة متقاربة

تمرين

$$\left\{ egin{align*} u_0 = rac{3}{2} \\ u_{n+1} = \sqrt{u_n + 2} \end{array}
ight.$$
 نعتبر المتتالية العددية $\left(u_n
ight)$ المعرفة ب

.
$$\forall n \in \mathbb{N}$$
 $0 \prec u_n \prec 2$ بين أن -1

. بين أن
$$\left(u_{_{n}}
ight)$$
 متتالية تزايدية و استنتج أن $\left(u_{_{n}}
ight)$ متتالية متقاربة -2

$$\lim u_n$$
 استنتج -3

تمرين

$$u_0 = \frac{1}{2}$$
 و $u_{n+1} = \frac{1}{2}u_n \left(1 - u_n\right)$ نعتبر $\left(u_n\right)$ متالية حيث $\left(u_n\right)$ متقاربة و حدد نهايتها