#### Real-world issue: Sensor faults



- Sometimes systems for which we would like a state estimate use sensors having intermittent faults.
- We would like to detect faulty measurements and discard them.
  - □ Time update steps of the KF still implemented.
  - $\Box$  Measurement update steps are skipped ( $L_k = 0$ ).
- KF provides elegant theoretical means to accomplish this goal. Background:
  - $\Box$  Predicted measurement is  $\hat{z}_k = C_k \hat{x}_k^- + D_k u_k$ .
  - $\ \square$  Prediction covariance (uncertainty) matrix is  $\Sigma_{\tilde{z},k} = C_k \Sigma_{\tilde{x}.k}^- C_k^T + \Sigma_{\tilde{v}}$ .
  - $\Box$  The innovation is  $\tilde{z}_k = z_k \hat{z}_k$ .
- By combining  $\tilde{z}_k$  and  $\Sigma_{\tilde{z},k}$  we can determine if the innovation is "too big," which indicates a possible sensor fault.

Dr. Gregory L. Plett

University of Colorado Colorado Springs

Linear Kalman Filter Deep Dive | Extensions and Refinements to Linear Kalman Filters

1 of 0

2.3.1: Automatically detecting bad measurements with a Kalman filte

## Measurement validation gating



 Can place "measurement validation gate" on measurement using normalized estimation error squared (NEES):

$$e_k^2 = \tilde{z}_k^T \Sigma_{\tilde{z},k}^{-1} \tilde{z}_k.$$

- NEES  $e_k^2$  has Chi-squared distribution with m degrees of freedom, where  $z_k \in \mathbb{R}^m$ .
- If  $e_k^2$  is outside of bounding value for Chi-squared distribution for a desired confidence level, then measurement is discarded.
- Note: If a many measurements are discarded in a short time interval, the sensor may truly have failed, or the state estimate and covariance may have gotten "lost."
- It is sometimes helpful to "bump up" covariance  $\Sigma_{\tilde{x},k}^{\pm}$ , which simulates additional process noise, to help Kalman filter to reacquire.
- Both done in practice to aid robustness of a real implementation.

Dr. Gregory L. Plet

University of Colorado Colorado Spring

Linear Kalman Filter Deep Dive | Extensions and Refinements to Linear Kalman Filters

2 of 8

2.3.1: Automatically detecting bad measurements with a Kalman filter

## **NEES** is chi-squared



- To prove NEES is chi-squared, define  $y_k = M_k \tilde{z}_k$ .
  - $\square$  Mean of  $y_k$  is  $\mathbb{E}[y_k] = \mathbb{E}[M_k \tilde{z}_k] = 0$ .
  - $\quad \ \Box \ \, \text{Covariance of} \,\, y_k \,\, \text{is} \,\, \Sigma_{\widetilde{y},k} = \mathbb{E}[M_k \widetilde{z}_k \widetilde{z}_k^T M_k^T] = M_k \Sigma_{\widetilde{z},k} M_k^T.$
  - $\Box$   $y_k$  is Gaussian (since it is a linear combination of Gaussians)
- If we define  $M_k$  such that  $M_k^T M_k = \Sigma_{\tilde{z},k}^{-1}$ , then:
  - $\square$   $M_k$  is the lower-triangular Cholesky factor of  $\Sigma_{\tilde{z},k}^{-1}$ .
  - $\square$  Also,  $y_k \sim \mathcal{N}(0, I)$  since:

$$\Sigma_{\tilde{y},k} = M_k \left( M_k^T M_k \right)^{-1} M_k^T$$
$$= M_k M_k^{-1} M_k^{-T} M_k^T = I.$$

- $\blacksquare \text{ NEES } e_k^2 = y_k^T y_k = \tilde{z}_k^T \Sigma_{\tilde{z},k}^{-1} \tilde{z}_k \text{ is the sum of squares of independent } \mathcal{N}(0,1) \text{ RVs.}$
- So,  $e_k^2$  is chi-square with m degrees of freedom, where m is the dimension of  $\tilde{z}_k$ .

### What does this really mean?



- $e_k^2$  never negative (sum of squares); pdf also asymmetric.
- pdf of chi-square RV *X* having *m* degrees of freedom is:

$$f_X(x) = \frac{1}{2^{m/2}\Gamma(m/2)} x^{(m/2-1)} e^{-m/2}.$$

- □ Tricky, but don't need to evaluate in real time.
- Instead, use value *precomputed* from pdf.
- For  $1-\alpha$  confidence of a valid measurement, need to find  $\chi_U^2$  such that there is  $\alpha$  area above  $\chi_U^2$  (figure drawn for  $\alpha=0.05$ ).
- lacksquare Discard measurement if NEES greater than  $\chi^2_U$ .



Dr. Gregory L. Plett

University of Colorado Colorado Springs

Linear Kalman Filter Deep Dive | Extensions and Refinements to Linear Kalman Filters

4 of 8

2.3.1: Automatically detecting bad measurements with a Kalman filte

# Computer calculation of $\chi_{IJ}^2$



■ In MATLAB (Statistics and Machine Learning Toolbox) can find  $\chi_U^2$  where inverse CDF is equal to  $1-\alpha$ :

X2U = chi2inv(1-0.01,2) % Upper critical value X2U = 9.2103

□ Function "chi2inv" is built in to Octave.

- Note that  $\chi^2_U$  needs to be computed once only, offline.
  - $\ \square$  Based only on m and lpha, so doesn't need to be recalculated as KF runs.
- For hand calculations a  $\chi^2$ -table is available on next page.
- lacksquare If  $e_k^2>\chi_U^2$  , then measurement is discarded ( $L_k=0$ ); else, measurement kept.

Dr. Gregory L. Plett

University of Colorado Colorado Springs

Linear Kalman Filter Deep Dive | Extensions and Refinements to Linear Kalman Filters

5 of 8

2.3.1: Automatically detecting bad measurements with a Kalman filter

# Manual table-lookup of $\chi_U^2$



■ For chi-squared distribution with m degrees of freedom, table entries list values of  $\chi^2_U(\alpha, m)$  for specified upper tail area  $\alpha$ :

| Degrees of  | Upper tail areas $lpha$ |        |        |        |        |        |
|-------------|-------------------------|--------|--------|--------|--------|--------|
| freedom $m$ | 0.25                    | 0.10   | 0.05   | 0.025  | 0.01   | 0.005  |
| 1           | 1.323                   | 2.706  | 3.841  | 5.024  | 6.635  | 7.879  |
| 2           | 2.773                   | 4.605  | 5.991  | 7.378  | 9.210  | 10.597 |
| 3           | 4.108                   | 6.251  | 7.815  | 9.348  | 11.345 | 12.838 |
| 4           | 5.385                   | 7.779  | 9.488  | 11.143 | 13.277 | 14.860 |
| 5           | 6.626                   | 9.236  | 11.070 | 12.833 | 15.086 | 16.750 |
| 6           | 7.841                   | 10.645 | 12.592 | 14.449 | 16.812 | 18.548 |

### Integration into the Kalman filter



```
% KF Step 1c: Predict system output
zhat = Cd*xhat + Dd*u(:,k);
zerror = z(:,k) - zhat;
SigmaZ = C*SigmaX*C' + SigmaV;
nees = zerror'/SigmaZ*zerror;
\% KF validation gate (X2U can be calculated outside of loop) alpha = 0.01; confidence = 1 - alpha;
X2U = chi2inv(confidence,length(zhat)); % Upper critical value
if nees <= X2U</pre>
  % KF Step 2a: Compute Kalman gain matrix
  L = SigmaX*C'/SigmaZ;
  % KF Step 2b: State estimate measurement update
  xhat = xhat + L*zerror;
  % KF Step 2c: Estimation-error covariance measurement update
  SigmaX = SigmaX - L*C*SigmaX;
```

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Linear Kalman Filter Deep Dive | Extensions and Refinements to Linear Kalman Filters

2.3.1: Automatically detecting bad measurements with a Kalman filter

#### Summary



- KF has built-in mechanism that enables detecting sensor
- Once only, off-line, precompute  $\chi_U^2(\alpha, m)$  for  $z_k \in \mathbb{R}^m$  and desired  $\alpha$ .
- $\blacksquare$  As KF executes, every time sample, compute  $e_k^2 = \tilde{z}_k^T \Sigma_{\tilde{z},k}^{-1} \tilde{z}_k$ .
  - $\Box$  If  $e_k^2 > \chi_U^2(\alpha,m)$ , then discard measurement (set  $L_k=0$ ).
  - □ Otherwise, apply measurement update as usual.
- If many sequential measurements discarded, consider "bumping up" covariance as  $\Sigma_{\tilde{x},k}^+ = Q \Sigma_{\tilde{x},k}^+$  where Q > 1.
- If problems persist, likely a permanent sensor fault.

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Linear Kalman Filter Deep Dive | Extensions and Refinements to Linear Kalman Filters |