Classification with Linear Models

Losses for linear classification, logistic regression, multiclass classification

Machine Learning and Data Mining, 2025

Majid Sohrabi

National Research University Higher School of Economics

Can't we just use linear regression for classification?

Classification:

$$\hat{f}(x) = \operatorname{sign}[\theta^{\mathrm{T}} x]$$

For binary classification task, assign:

- -y = +1 for **positive** class
- -y = -1 for **negative** class

Classification:

$$\hat{f}(x) = \text{sign}[\theta^{T} x]$$

For binary classification task, assign:

- -y = +1 for **positive** class
- -y = -1 for **negative** class

Solve linear regression for $\hat{y} = \theta^T x$ with MSE loss

Classification:

$$\hat{f}(x) = \text{sign}[\theta^{T}x]$$

For binary classification task, assign:

- -y = +1 for **positive** class
- -y = -1 for **negative** class

Solve linear regression for $\hat{y} = \theta^T x$ with MSE loss

Classify with $sign[\hat{y}]$

Classification:

$$\hat{f}(x) = \text{sign}[\theta^{\mathsf{T}} x]$$

For binary classification task, assign:

- -y = +1 for **positive** class
- -y=-1 for **negative** class

Solve linear regression for $\hat{y} = \theta^T x$ with MSE loss

Classify with $sign[\hat{y}]$

Any problems with this approach?

May face problems when classes are unbalanced or have different spread

MSE loss makes the model avoid high residuals

at a price of **pushing the decision boundary**towards the class with
higher spread

Can we find a better loss function?

Classification loss functions

0-1 Loss

Probability of an error

$$\mathcal{L}_{0-1} = \frac{1}{N} \sum_{i=1...N} \mathbb{I}(\theta^{T} x_i \cdot y_i < 0)$$
$$y_i \in \{-1, +1\}$$

0-1 Loss

Probability of an error

$$\mathcal{L}_{0-1} = \frac{1}{N} \sum_{i=1...N} \mathbb{I}(\theta^{T} x_i \cdot y_i < 0)$$
$$y_i \in \{-1, +1\}$$

Can't optimize **piecewise constant** function with gradient-based methods*

*other techniques exist (still quite limited)

Margin

$$M = \theta^{\mathrm{T}} x \cdot y$$

$$\mathcal{L}_{0-1} = \frac{1}{N} \sum_{i=1...N} \mathbb{I}\left(\underline{\theta^{\mathsf{T}} x_i \cdot y_i} < 0\right)$$
 margin

$$M > 0$$
 – correct classification $M < 0$ – incorrect classification

Upper bounds on 0-1 loss

Instead of optimizing the 0-1 loss we can optimize a differentiable upper bound

Logistic Regression

Let's model the class probabilities

$$P(y = +1|x) = \widehat{f_{\theta}}(x)$$

$$P(y = -1|x) = 1 - \widehat{f_{\theta}}(x)$$

Let's model the class probabilities

$$P(y = +1|x) = \widehat{f_{\theta}}(x)$$

$$P(y = -1|x) = 1 - \widehat{f_{\theta}}(x)$$

$Likelihood = \prod_{i=1...N} P(y_i|x_i)$

Let's model the class probabilities

$$P(y = +1|x) = \widehat{f_{\theta}}(x)$$

$$P(y = -1|x) = 1 - \widehat{f_{\theta}}(x)$$

Let's model the class probabilities

$$P(y = +1|x) = \widehat{f_{\theta}}(x)$$

$$P(y = -1|x) = 1 - \widehat{f_{\theta}}(x)$$

Likelihood =
$$\prod_{i=1...N} P(y_i|x_i)$$
=
$$\prod_{i=1...N} \left[\mathbb{I}[y_i = +1] \cdot \widehat{f}_{\theta}(x_i) + \mathbb{I}[y_i = -1] \cdot \left(1 - \widehat{f}_{\theta}(x_i)\right) \right]$$

Let's model the class probabilities

$$P(y = +1|x) = \widehat{f_{\theta}}(x)$$

$$P(y = -1|x) = 1 - \widehat{f_{\theta}}(x)$$

Likelihood =
$$\prod_{i=1...N} P(y_i|x_i)$$
=
$$\prod_{i=1...N} \left[\mathbb{I}[y_i = +1] \cdot \hat{f}_{\theta}(x_i) + \mathbb{I}[y_i = -1] \cdot \left(1 - \hat{f}_{\theta}(x_i)\right) \right]$$

$$\theta = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \left[\mathbb{I}[y_i = +1] \cdot \log \widehat{f}_{\theta}(x_i) + \mathbb{I}[y_i = -1] \cdot \log \left(1 - \widehat{f}_{\theta}(x_i)\right) \right]$$

Let's model the class probabilities

$$P(y = +1|x) = \widehat{f_{\theta}}(x)$$

$$P(y = -1|x) = 1 - \widehat{f_{\theta}}(x)$$

Likelihood =
$$\prod_{i=1...N} P(y_i|x_i)$$
=
$$\prod_{i=1...N} \left[\mathbb{I}[y_i = +1] \cdot \hat{f}_{\theta}(x_i) + \mathbb{I}[y_i = -1] \cdot \left(1 - \hat{f}_{\theta}(x_i)\right) \right]$$

Fit with maximum (log) likelihood

$$\theta = \underset{\theta}{\operatorname{argmax}} \sum_{i=1\dots N} \left[\mathbb{I}[y_i = +1] \cdot \log \widehat{f_{\theta}}(x_i) + \mathbb{I}[y_i = -1] \cdot \log \left(1 - \widehat{f_{\theta}}(x_i)\right) \right]$$

Predict the class with **highest probability***

*more generally: find a probability threshold suitable for your problem

How to map the linear model output to a probability value in [0, 1]?

How to map the linear model output to a probability value in [0, 1]?

Common choice – **sigmoid function**:

$$\sigma(\chi) = \frac{1}{1 + e^{-\chi}}$$

How to map the linear model output to a probability value in [0, 1]?

Common choice – **sigmoid function**:

$$\sigma(\chi) = \frac{1}{1 + e^{-\chi}}$$

i.e.
$$P(y = +1|x) = \sigma(\theta^{T}x)$$

How to map the linear model output to a probability value in [0, 1]?

Common choice – **sigmoid function**:

$$\sigma(\chi) = \frac{1}{1 + e^{-\chi}}$$

i.e.
$$P(y = +1|x) = \sigma(\theta^{T}x)$$

Then, $\theta^T x$ has the meaning of **log odds** ratio between the two classes:

sigmoid function 1.00 0.75 $\sigma(\chi)^{0.50}$ 0.25 0.00

$$\log \frac{P(y = +1|x)}{P(y = -1|x)} = \log \left(\frac{1}{1 + e^{-\theta^{T}x}} \cdot \frac{1 + e^{-\theta^{T}x}}{e^{-\theta^{T}x}} \right) = \theta^{T}x$$

Use negative log likelihood as our loss function:

$$\mathcal{L} = -\sum_{i=1}^{N} \left[\mathbb{I}[y_i = +1] \cdot \log \widehat{f}_{\theta}(x_i) + \mathbb{I}[y_i = -1] \cdot \log \left(1 - \widehat{f}_{\theta}(x_i)\right) \right]$$

Use negative log likelihood as our loss function:

$$\mathcal{L} = -\sum_{i=1\dots N} \left[\mathbb{I}[y_i = +1] \cdot \log \widehat{f}_{\theta}(x_i) + \mathbb{I}[y_i = -1] \cdot \log \left(1 - \widehat{f}_{\theta}(x_i)\right) \right]$$

$$= -\sum_{i=1\dots N} \left[\mathbb{I}[y_i = +1] \cdot \log \sigma(\theta^T x_i) + \mathbb{I}[y_i = -1] \cdot \log \sigma(-\theta^T x_i) \right]$$

Use negative log likelihood as our loss function:

$$\mathcal{L} = -\sum_{i=1...N} \left[\mathbb{I}[y_i = +1] \cdot \log \widehat{f}_{\theta}(x_i) + \mathbb{I}[y_i = -1] \cdot \log \left(1 - \widehat{f}_{\theta}(x_i)\right) \right]$$

$$= -\sum_{i=1...N} \left[\mathbb{I}[y_i = +1] \cdot \log \sigma(\theta^T x_i) + \mathbb{I}[y_i = -1] \cdot \log \sigma(-\theta^T x_i) \right]$$

$$= -\sum_{i=1}^{N} \log \sigma (\theta^{\mathrm{T}} x_i \cdot y_i)$$

Use negative log likelihood as our loss function:

$$\mathcal{L} = -\sum_{i=1}^{N} \left[\mathbb{I}[y_i = +1] \cdot \log \widehat{f_{\theta}}(x_i) + \mathbb{I}[y_i = -1] \cdot \log \left(1 - \widehat{f_{\theta}}(x_i)\right) \right]$$

 $1 - \sigma(x) = \sigma(-x)$

$$= -\sum_{i=1}^{N} \left[\mathbb{I}[y_i = +1] \cdot \log \sigma(\theta^{\mathsf{T}} x_i) + \mathbb{I}[y_i = -1] \cdot \log \sigma(-\theta^{\mathsf{T}} x_i) \right]$$

$$= -\sum_{i=1...N} \log \sigma(\theta^{\mathrm{T}} x_i \cdot y_i) = \sum_{i=1...N} \log \left(1 + e^{-\theta^{\mathrm{T}} x_i \cdot y_i}\right)$$

Use negative log likelihood as our loss function:

$$\mathcal{L} = -\sum_{i=1\dots N} \left[\mathbb{I}[y_i = +1] \cdot \log \widehat{f}_{\theta}(x_i) + \mathbb{I}[y_i = -1] \cdot \log \left(1 - \widehat{f}_{\theta}(x_i)\right) \right]$$

$$= -\sum_{i=1\dots N} \left[\mathbb{I}[y_i = +1] \cdot \log \sigma(\theta^T x_i) + \mathbb{I}[y_i = -1] \cdot \log \sigma(-\theta^T x_i) \right]$$

$$= -\sum_{i=1...N} \log \sigma(\theta^{\mathrm{T}} x_i \cdot y_i) = \sum_{i=1...N} \log \left(1 + e^{-\theta^{\mathrm{T}} x_i \cdot y_i}\right)$$

This can be optimized **numerically**

Now the boundary is at the right place

Now the boundary is at the right place Note: when classes are linearly separable for any correct decision boundary $\theta \to C \cdot \theta$, for some $C > 1 \in \mathbb{R}$

keeps the boundary at the same place, yet improves the loss

Now the boundary is at the right place Note: when classes are linearly separable for any correct decision boundary $\theta \to C \cdot \theta$, for some $C > 1 \in \mathbb{R}$

keeps the boundary at the same place, yet improves the loss

ideal fit when sigmoid turns into a step function (at infinitely large θ)

When classes overlap the loss has a finite minimum

Predicted class probability changes smoothly

Multiclass Logistic Regression

Multinomial Logistic Regression

Similarly to the binary case, we'll model the class probabilities

Let's model unnormalized class probabilities like this:

$$\tilde{P}(y = k|x) = \exp \theta_k^{\mathrm{T}} x$$

Note: now we have *K* parameter vectors

Multinomial Logistic Regression

Similarly to the binary case, we'll model the class probabilities

Let's model unnormalized class probabilities like this:

$$\tilde{P}(y = k|x) = \exp \theta_k^{\mathrm{T}} x$$

Note: now we have *K* parameter vectors

Then, the **normalized** probabilities are:

$$P(y = k|x) = \frac{\tilde{P}(y = k|x)}{\sum_{k'=1...K} \tilde{P}(y = k'|x)} = \frac{\exp \theta_k^{T} x}{\sum_{k'=1...K} \exp \theta_{k'}^{T} x}$$

This function is called softmax and is commonly used in neural networks

Note that transforming all $\theta_k \to \theta_k + v$ by some constant vector v does not affect the normalized probability

$$\tilde{P}(y=k|x) = e^{\theta_k^T x} \longrightarrow e^{v^T x} \cdot e^{\theta_k^T x} = e^{v^T x} \cdot \tilde{P}(y=k|x)$$

Note that transforming all $\theta_k \to \theta_k + v$ by some constant vector v does not affect the normalized probability

$$\tilde{P}(y=k|x) = e^{\theta_k^T x} \longrightarrow e^{v^T x} \cdot e^{\theta_k^T x} = e^{v^T x} \cdot \tilde{P}(y=k|x)$$

$$P(y=k|x) = \frac{\tilde{P}(y=k|x)}{\sum_{k'=1...K} \tilde{P}(y=k'|x)} \rightarrow \frac{e^{v^{\mathsf{T}}x} \cdot \tilde{P}(y=k|x)}{\sum_{k'=1...K} e^{v^{\mathsf{T}}x} \cdot \tilde{P}(y=k'|x)} = P(y=k|x)$$

Note that transforming all $\theta_k \to \theta_k + v$ by some constant vector v does not affect the normalized probability

$$\tilde{P}(y=k|x) = e^{\theta_k^T x} \longrightarrow e^{v^T x} \cdot e^{\theta_k^T x} = e^{v^T x} \cdot \tilde{P}(y=k|x)$$

$$P(y=k|x) = \frac{\tilde{P}(y=k|x)}{\sum_{k'=1...K} \tilde{P}(y=k'|x)} \rightarrow \frac{e^{v^{\mathsf{T}}x} \cdot \tilde{P}(y=k|x)}{\sum_{k'=1...K} e^{v^{\mathsf{T}}x} \cdot \tilde{P}(y=k'|x)} = P(y=k|x)$$

This means we can **set one of the vectors** θ_k **to 0**, e.g. the last one:

$$\theta_K = 0$$

Plugging everything into the negative log likelihood we get our loss function:

$$\mathcal{L} = -\sum_{i=1\dots N} \log \frac{\exp \theta_{y_i}^{\mathrm{T}} x_i}{1 + \sum_{k'=1\dots K-1} \exp \theta_{k'}^{\mathrm{T}} x_i}$$

$$(\theta_K=0)$$

Again, this can be optimized numerically

Multiclass classification: general approach

General idea

For a problem with *K* classes introduce *K* predictors:

$$\widehat{f}_k(x)$$
: $\mathcal{X} \to \mathbb{R}$, for $k = 1, ..., K$

each of which outputs a corresponding class score.

Predict the class with the **highest score**:

$$\hat{y}_i = \operatorname*{argmax}_k \hat{f}_k(x_i)$$

Example: binary → multiclass

Any binary linear classification model can be converted to multiclass with **one-vs-rest** strategy

Example: binary → multiclass

Any binary linear classification model can be converted to multiclass with **one-vs-rest** strategy

For each class k train a binary model $\widehat{f}_k(x) = \theta_{(k)}^T x$ separating the given class from all others, $\widehat{y}_{(k)}^{1-\text{vs-rest}} = \text{sign}[\widehat{f}_k(x)]$

Example: binary → multiclass

Any binary linear classification model can be converted to multiclass with **one-vs-rest** strategy

For each class k train a binary model $\widehat{f}_k(x) = \theta_{(k)}^T x$ separating the given class from all others, $\widehat{y}_{(k)}^{1-\text{vs-rest}} = \text{sign}[\widehat{f}_k(x)]$

Use the outputs of \widehat{f}_k as class scores for multiclass classification:

$$\hat{y}_i = \operatorname*{argmax}_k \widehat{f}_k(x_i)$$

Consider the following 3 class problem

"Class-1 VS rest" binary classifier

"Class-2 VS rest" binary classifier

"Class-3 VS rest" binary classifier

 $\widehat{f}_k(x) = 0$ lines (binary decision boundaries)

 $\widehat{f}_k(x) = 0$ lines (binary decision boundaries)

Adding decision boundaries for

$$\hat{y} = \operatorname*{argmax}_{k} \widehat{f}_{k}(x)$$

Adding decision boundaries for

$$\hat{y} = \operatorname*{argmax}_{k} \widehat{f_k}(x)$$

Classification with linear regression and MSE loss may provide biased results

Classification with linear regression and MSE loss may provide biased results

0-1 loss function is better, but is hard to optimize directly

Classification with linear regression and MSE loss may provide biased results

0-1 loss function is better, but is **hard to optimize** directly

Various differentiable upper bounds on 0-1 loss may be used instead

Classification with linear regression and MSE loss may provide biased results

0-1 loss function is better, but is **hard to optimize** directly

Various differentiable upper bounds on 0-1 loss may be used instead

Logistic Regression combines such an upper bound with a **probabilistic model** using the **sigmoid function**

Classification with linear regression and MSE loss may provide biased results

0-1 loss function is better, but is **hard to optimize** directly

Various differentiable upper bounds on 0-1 loss may be used instead

Logistic Regression combines such an upper bound with a **probabilistic model** using the **sigmoid function**

Generalizing sigmoid function to a multiclass case yields softmax function

Classification with linear regression and MSE loss may provide biased results

0-1 loss function is better, but is **hard to optimize** directly

Various differentiable upper bounds on 0-1 loss may be used instead

Logistic Regression combines such an upper bound with a **probabilistic model** using the **sigmoid function**

Generalizing sigmoid function to a multiclass case yields softmax function

Any binary linear classifier can be adapted to multiclass with the **one-vs-rest strategy**

Classification with linear regression and MSE loss may provide biased results

0-1 loss function is better, but is **hard to optimize** directly

Various differentiable upper bounds on 0-1 loss may be used instead

Logistic Regression combines such an upper bound with a **probabilistic model** using the **sigmoid function**

Generalizing sigmoid function to a multiclass case yields softmax function

Any binary linear classifier can be adapted to multiclass with the one-vs-rest

strategy

Food for thought: how can you mitigate the biased probability problems when using one-vs-rest strategy (as discussed on the previous slide)?

Thank you!

