2010-2011

Contrôle continu d'Architecture des ordinateurs

Document non autorisé, Durée 2h

Exercice 1

1. Convertir en décimal les nombres suivants :

Réponses:

 $FA2_{16} = 4002_{10}$

1010110₂=86₁₀

 $410_8 = 264_{10}$

 $433_7 = 220_{10}$ (2points)

2. Exprimer le nombre décimal 936₁₀ dans les bases 2, 4, 8 et 16, en BCD et en code de Gray. *(1point)*

Réponses :

936=11101010002

936=0011 10 10 10 00= 3 2 2 2 0 4

936=0001 110 101 000=1 6 5 0₈

936=0011 1010 1000₂=3A8₁₆

936=100100110110_{BCD}: chaque chiffre décimal est codé par quatre bits

936=1110101000₂ 1 1 1 0 1 0 1 0 0 0

111 0 1 0 1 0 0 0

10011111000

936=100111100 GRAY

- 3. Exprimer en binaire le nombre décimal 52,875₁₀, puis en décimal le nombre binaire 0,101₂ (1point)
- 4. Donner si possible sur 8 bits les représentations signe et valeur absolue, complément logique (à 1) et arithmétique (à 2) des valeurs -32₁₀ et -128₁₀. *(1point)*

	-32	-128
Valeur absolue du nombre	32=00100000 ₂	128=10000000 ₂
sur 8 bit		
Signe et valeur absolu	10100000 ₂	impossible
Complément à 1	11011111 ₂	impossible
Complément à 2	11011111 + 1	-0 sur 7 bits en module et signe=1000000
	11100000	-0 sur 7 bits en complément à 1=1111111 En complément à 2 on ajoute 1→10000000 attribué à - 128

5. Effectuer l'addition en BCD des nombres 225B₁₆ et 283₁₆, puis la soustraction en BCD des nombres 32₁₀ et 1₁₀. (1point)

Réponse:

Exercice 2

1. Montrer qu'une porte ET en logique positive fonctionne comme une porte OU en logique négative et vice versa. *(2points)*

Réponse

$$\overline{\overline{A \bullet B}} = \overline{\overline{A}} + \overline{\overline{B}} = \overline{A \bullet B} = A \bullet B$$

$$\overline{\overline{A + B}} = \overline{\overline{A} \bullet B} = A \bullet B$$

$$A \longrightarrow \overline{\overline{A + B}} = \overline{\overline{A} \bullet B} = A \bullet B$$

$$A \longrightarrow \overline{\overline{A \cdot B}} = \overline{\overline{A \cdot B}} = A \bullet B$$

$$A \longrightarrow \overline{\overline{A \cdot B}} = A \bullet B$$

$$A \longrightarrow \overline{\overline{A \cdot B}} = A \bullet B$$

$$A \longrightarrow \overline{\overline{A \cdot B}} = A \bullet B$$

$$A \longrightarrow \overline{\overline{A \cdot B}} = A \bullet B$$

2. Réalisez la porte logique ET avec des portes NON-OU, puis la porte logique OU avec des portes NON-ET. (1point)

Réponse

ET avec des portes NON-OU

OU avec des portes NON-ET

- 3. Soit la fonction simplifiée $F2=\bar{a}+b+\bar{c}$.
 - Réponse
 - Donner sa table de vérité, sa table de Karnaugh.

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Table Karnaugh

		00	AB 01	11	10
С	0	1	1	1	1
	1	1	1	1	

- Ecrire F2 sous sa forme disjonctive (sommes de mintermes) et sous sa forme conjonctive (produits de maxtermes) ((2points)

Réponse

Forme disjonctive : F2= ābc+ābc+ābc+abc+abc+abc+abc

Forme conjonctive: F2=ā+b+ċ

Exercice 3

a)	Table de vérité	. (1point)
----	-----------------	------------

x	у	z	t	f
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

- b) Table de Karnaugh. (1point)
- c) Circuit après l'avoir simplifiée. (2point) L'expression simplifiée de F=b+ād

2. Soit la fonction F1 représentée par le circuit suivant :

a) Trouver sa fonction logique et donner sa table de vérité. (2points)

Réponse: Sa fonction logique: $f(a,b,c) = abc + a\overline{b}\overline{c} + \overline{a}\overline{b}\overline{c} + a\overline{b}c$

- b) Simplifier la fonction logique avec 2 méthodes
 - La méthode algébrique (algèbre de Boole). (1point)

Réponse : $F = \bar{b}\dot{c}(\bar{a} + a) + ac(b + \bar{b})$

F= bc+ac

- La méthode des tableaux de Karnaugh. (1point)

c) Représenter le circuit correspondant à la forme simplifiée de F1. (1point)

