${ m DM} \ { m N}^o 3 \ ({ m pour \ le \ 14/10/2008})$

Matrices réductibles et irréductibles. Permanents. Théorème de Frobenius et König. Matrices magiques et bistochastiques. Théorème de Birkhoff. Th. d'Alexsandrov. Th. d'Egorychev

NOTATIONS ET DÉFINITIONS:

- \bullet Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2.
- On note $\mathcal{M}_n(\mathbb{R})$ la \mathbb{R} -algèbre des matrices carrées d'ordre n à coefficients réels et, plus généralement, si $(p,q) \in \mathbb{N}^{*2}$, $\mathcal{M}_{p,q}(\mathbb{R})$ l'ensemble des matrices à p lignes et q colonnes à coefficients réels.
- Si $A \in \mathcal{M}_n(\mathbb{R})$, on notera $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$, a_{ij} étant l'élément de la *i*-ème ligne et de la j-ième colonne de A. Pour tout $(i,j) \in [\![1,n]\!]^2$, on note A_{ij} la matrice obtenue à partir de A en supprimant la i-ème ligne et la j-ème colonne.
- I_n désigne la matrice unité de $\mathcal{M}_n(\mathbb{R})$ et J_n désigne la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les éléments sont égaux à 1.
- $\mathcal{M}_n^+(\mathbb{R})$ désignera l'ensemble des matrices carrées d'ordre n à coefficients réels tous positifs ou nuls.
- On note E_n le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$ formé des matrices A telles que les 2n nombres réels

$$\sum_{k=1}^{n} a_{ik} \text{ et } \sum_{h=1}^{n} a_{hj} \text{ pour } 1 \leqslant i \leqslant n \text{ et } 1 \leqslant j \leqslant n$$

soient tous égaux, et on note alors d(A) leur valeur commune. $(E_n$ est l'ensemble des matrices pseudo-magiques d'ordre n).

- E_n^+ désigne l'ensemble $E_n \cap \mathcal{M}_n^+(\mathbb{R})$.
- Ω_n désigne l'ensemble : $\Omega_n = \{A \in E_n^+, d(A) = 1\}$. Les éléments de Ω_n sont appelés les matrices bistochastiques.
- Σ_n désigne le groupe symétrique d'ordre n, i.e le groupe des permutations de l'ensemble [1,n].
- Soit (e_1,e_2,\ldots,e_n) la base canonique de \mathbb{R}^n , et $\sigma\in\Sigma_n$.

On appellera matrice de permutation associée à σ la matrice P_{σ} de $\mathcal{M}_n(\mathbb{R})$ telle que,

pour tout
$$i \in [1,n]$$
, $P_{\sigma}e_i = e_{\sigma(i)}$.

On a donc : $P_{\sigma} = (\delta_{i,\sigma(j)})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}}$, où δ_{ij} est le symbole de Kronecker.

• On dira qu'une matrice $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathcal{M}_n(\mathbb{R})$ est <u>irréductible</u> si pour tout couple (S,T) de parties non vides de $[\![1,n]\!]$ telles que $S \cap T = \emptyset$ et $S \cup T = [\![1,n]\!]$, il existe un élément $a_{ij} \neq 0$ avec $i \in S$ et $j \in T$.

Dans le cas contraire, A est dite <u>réductible</u>.

Ainsi, dire que A est réductible signifie qu'il existe une partition (S,T) de [1,n] (avec S et T non vides) telle que : $\forall (i,j) \in S \times T$, $a_{ij} = 0$.

PARTIE A:

- $\mathbf{1}^{\circ}$) a) Soient $\sigma, \sigma' \in \Sigma_n$.
 - i. Montrer que: $P_{\sigma}P_{\sigma'} = P_{\sigma\sigma'}$.
 - ii. Montrer que P_{σ} est inversible et que $(P_{\sigma})^{-1} = P_{\sigma^{-1}}$.
 - iii. Montrer que: $(P_{\sigma})^{-1} = {}^{t} P_{\sigma}$.

b) Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $P_{\sigma}, P_{\sigma'} \in \mathcal{M}_n(\mathbb{R})$ les matrices associées aux permutations $\sigma, \sigma' \in \Sigma_n$. On note $B = P_{\sigma}AP_{\sigma'} = (b_{ij})_{\substack{1 \le i \le n \\ 1 \le i \le n}}$.

Montrer que $b_{ij} = a_{\sigma^{-1}(i)\sigma'(j)}$.

Par quelles opérations sur les lignes et les colonnes de A la matrice B est-elle obtenue?

2°) a) Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $(p,q) \in [\![1,n]\!]^2$ tels que la matrice nulle de $\mathcal{M}_{p,q}(\mathbb{R})$ soit extraite de A. Montrer qu'il existe $F \in \mathcal{M}_{p,n-q}(\mathbb{R})$, $G \in \mathcal{M}_{n-p,n-q}(\mathbb{R})$, $H \in \mathcal{M}_{n-p,q}(\mathbb{R})$ et des permutations $\sigma, \sigma' \in \Sigma_n$ telles que :

 $P_{\sigma}AP_{\sigma'} = \begin{bmatrix} F & 0 \\ G & H \end{bmatrix}$

b) En déduire que, si $A \in \mathcal{M}_n(\mathbb{R})$ est réductible, alors il existe des matrices de permutation $P_{\sigma}, P_{\sigma'}$, un entier $p \in [\![1,n-1]\!]$ et des matrices $F \in \mathcal{M}_p(\mathbb{R})$, $G \in \mathcal{M}_{n-p,p}(\mathbb{R})$, $H \in \mathcal{M}_{n-p}(\mathbb{R})$ telles que :

$$P_{\sigma}AP_{\sigma'} = \begin{bmatrix} F & 0 \\ G & H \end{bmatrix}$$

c) Plus précisément, montrer que $A \in \mathcal{M}_n(\mathbb{R})$ est réductible si et seulement si il existe une matrice de permutation P_{σ} telle que $P_{\sigma}^{-1}AP_{\sigma}$ soit de la forme:

$$P_{\sigma}^{-1}AP_{\sigma} = \begin{bmatrix} F & 0 \\ G & H \end{bmatrix}$$

où $F \in \mathcal{M}_p(\mathbb{R})$, $G \in \mathcal{M}_{n-p,p}(\mathbb{R})$, $H \in \mathcal{M}_{n-p}(\mathbb{R})$.

- 3°) On veut montrer que $A \in \mathcal{M}_n(\mathbb{R})$ est irréductible si et seulement si la propriété (P) suivante est vérifiée:
 - (P) pour tout couple (i,j) d'indices distincts de $[1,n]^2$, $a_{ij} \neq 0$ ou alors il existe un entier s et des indices i_1,i_2,\ldots,i_s tels que le produit $a_{ii_1}a_{i_1i_2}\ldots a_{i_{s-1}i_s}a_{i_sj}$ soit non nul.
 - a) Établir que la condition est suffisante [on pourra raisonner par l'absurde].
 - **b)** On suppose maintenant que $A \in \mathcal{M}_n(\mathbb{R})$ est irréductible. Pour chaque indice $i \in [1,n]$, on définit X_i comme l'ensemble des indices $j \in [1,n]^2$ tels que:
 - (1) $j \neq i$
 - et (2) soit $a_{ij} \neq 0$

soit il existe i_1, \ldots, i_s tels que le produit $a_{ii_1} a_{i_1 i_2} \ldots a_{i_{s-1} i_s} a_{i_s j}$ soit non nul.

Montrer que $X_i \neq \emptyset$ [on pourra raisonner par l'absurde].

Montrer que $X_i = [1,n] \setminus \{i\}$ [on pourra raisonner par l'absurde], et en déduire que la condition est nécessaire.

 $4^\circ)$ Le concept d'irréductibilité peut être illustré graphiquement .

Soit $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathcal{M}_n(\mathbb{R})$ et $\{P_i, i \in [\![1,n]\!]\}$ un ensemble de n points distincts dans le plan.

Pour chaque couple $(i,j) \in [1,n]^2$ tel que $a_{ij} \neq 0$, on trace une flèche allant de P_i vers P_j . Si a_{ij} et a_{ji} sont tous les deux non nuls, il y aura donc une flèche de P_i vers P_j et une autre de P_j vers P_i . Enfin, si $a_{ii} \neq 0$, on pourra tracer une boucle allant de P_i vers lui-même.

 P_i

 P_i

On associe ainsi à chaque matrice ce qu'on appelle un graphe orienté.

Représentez les graphes associés aux deux matrices suivantes:

$$A_1 \in \mathcal{M}_4(\mathbb{R}), \quad A_1 = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \qquad A_2 \in \mathcal{M}_3(\mathbb{R}), \quad A_2 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

En utilisant la propriété (P), donner une interprétation graphique du caractère réductible ou irréductible d'une matrice. Étudiez les cas de A_1 et A_2 .

PARTIE B: Permanents

Pour $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathcal{M}_n(\mathbb{R})$, on définit le <u>permanent</u> de A par :

$$\mathbf{per}(A) = \sum_{\sigma \in \Sigma_n} a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)n}.$$

Pour $(C_1, C_2, \ldots, C_n) \in (\mathcal{M}_{n,1}(\mathbb{R}))^n$, on définit le permanent $\mathbf{per}(C_1, C_2, \ldots, C_n)$ comme étant celui de la matrice d'ordre n dont C_1, \ldots, C_n sont les colonnes.

- 1°) a) Démontrer que l'application **per** : $(\mathcal{M}_{n,1}(\mathbb{R}))^n \longrightarrow \mathbb{R}$ est une forme n-linéaire symétrique.
 - **b)** Montrer que: $\forall A \in \mathcal{M}_n(\mathbb{R}), \mathbf{per}(A) = \mathbf{per}(^tA).$
- 2°) Développement selon une rangée.

Soit $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathcal{M}_n(\mathbb{R})$. Montrer:

$$\begin{cases} \forall j \in [1,n] , & \mathbf{per}(A) = \sum_{i=1}^{n} a_{ij} \mathbf{per}(A_{ij}) \\ \forall i \in [1,n] , & \mathbf{per}(A) = \sum_{j=1}^{n} a_{ij} \mathbf{per}(A_{ij}) \end{cases}$$

- **3**°) Permanent d'une matrice triangulaire par blocs.
 - a) Soit $p \in [1, n-1]$, $F \in \mathcal{M}_p(\mathbb{R})$, $G \in \mathcal{M}_{n-p,p}(\mathbb{R})$, $H \in \mathcal{M}_{n-p}(\mathbb{R})$ et $A = \begin{bmatrix} F & 0 \\ G & H \end{bmatrix} \in \mathcal{M}_n(\mathbb{R})$. Démontrer que : $\mathbf{per}(A) = \mathbf{per}(F)\mathbf{per}(H)$.
 - b) En déduire que si A est triangulaire inférieure par blocs, c'est-à-dire de la forme

$$A = \begin{pmatrix} A_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ A_{l1} & \dots & A_{ll} \end{pmatrix}, \text{ où les } A_{ii} \text{ sont des matrices carrées, alors } \mathbf{per}(A) = \prod_{i=1}^{l} \mathbf{per}(A_{ii}).$$

4°) Effet d'une matrice de permutation.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $P_{\sigma}, P_{\sigma'} \in \mathcal{M}_n(\mathbb{R})$ les matrices associées aux permutations $\sigma, \sigma' \in \Sigma_n$. Soit $B = P_{\sigma}AP_{\sigma'}$.

Montrer que: $\mathbf{per}(A) = \mathbf{per}(B)$.

PARTIE C: Théorème de Frobenius et König

1°) Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $s \in [1,n]$ tels que la matrice nulle de $\mathcal{M}_{s,n+1-s}(\mathbb{R})$ soit extraite de A.

En utilisant A.2.a et B.3.a, montrer que per(A) = 0.

 2°) On se propose de démontrer par récurrence sur n la propriété suivante :

si A appartient à $\mathcal{M}_n^+(\mathbb{R})$ et si $\mathbf{per}(A) = 0$, alors il existe $s \in [1,n]$ tel que la matrice nulle de $\mathcal{M}_{s,n+1-s}(\mathbb{R})$ soit extraite de A.

Examiner le cas n=2.

On suppose la propriété établie pour tout entier $\leq n$. Soit alors $A \in \mathcal{M}_{n+1}^+(\mathbb{R})$ telle que $\mathbf{per}(A) = 0$ et $A \neq 0$. Il existe alors $(i,j) \in [1,n+1]^2$ tel que $a_{ij} > 0$.

- a) Montrer: $\mathbf{per}(A_{ij}) = 0$.
- **b)** En déduire qu'il existe $s_1 \in \llbracket 1,n \rrbracket$, $F \in \mathcal{M}^+_{s_1}(\mathbb{R})$, $G \in \mathcal{M}_{n+1-s_1,s_1}(\mathbb{R})$ à termes $\geqslant 0$, $H \in \mathcal{M}^+_{n+1-s_1}(\mathbb{R})$ et des matrices de permutation $P_{\sigma}, P_{\sigma'}$ avec $\sigma, \sigma' \in \Sigma_{n+1}$ tels que :

$$P_{\sigma}AP_{\sigma'}=egin{bmatrix} F & 0 \\ G & H \end{bmatrix}$$
 avec $\operatorname{per}(F)=0$ ou $\operatorname{per}(H)=0$

(utiliser l'hypothèse de récurrence et la question A.2).

c) Conclure (appliquer l'hypothèse de récurrence à F ou à G).

PARTIE D: Matrices magiques et bistochastiques; théorème de Birkhoff

- 1°) Montrer que E_n est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$, et que l'application d est une forme linéaire sur E_n .
- **2°)** a) Montrer qu'une matrice A de $\mathcal{M}_n(\mathbb{R})$ appartient à E_n si et seulement si il existe un réel λ tel que $AJ_n = J_nA = \lambda J_n$. Exprimer alors λ en fonction de d(A).
 - b) En déduire que E_n est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$, et que l'application d est un morphisme de \mathbb{R} -algèbres.
 - c) Si A est une matrice inversible de E_n , montrer que d(A) est non nul, que A^{-1} appartient à E_n , et comparer d(A) et $d(A^{-1})$. Réciproquement, si A appartient à E_n et que d(A) est non nul, la matrice A est-elle nécessairement inversible?
- **3**°) En utilisant le théorème de Frobenius et König et la question A.2, montrer que, pour tout $A \in \Omega_n$, $\mathbf{per}(A) > 0$.
- **4°)** En déduire que, pour toute $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \Omega_n$, il existe une permutation $\sigma \in \Sigma_n$ telle que: $\forall j \in [\![1,n]\!]$, $a_{\sigma(j)j} > 0$.
- 5°) Soit $A \in \Omega_n$ une matrice bistochastique réductible; soit alors (S,T) une partition de $[\![1,n]\!]$ telle que $\forall (i,j) \in S \times T$, $a_{ij} = 0$. Montrer que: $\forall (i,j) \in S \times T$, $a_{ji} = 0$.
- **6**°) Soit $A \in \Omega_n$.
 - a) Montrer qu'il existe $X \in \mathcal{M}_{n,1}(\mathbb{R})(X \neq 0)$ tel que AX = X.
 - **b)** On suppose qu'il existe $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que AX = X, X ayant au moins deux

composantes distinctes.

Montrer que A est réductible [on pourra considérer l'ensemble S des indices $i \in [1,n]$ tels que $x_i = \min_j x_j$].

- c) Lorsque A est irréductible, quel est l'ensemble des $X \in \mathcal{M}_{n,1}(\mathbb{R})$ tels que AX = X?
- 7°) On se propose ici de démontrer le **théorème de Birkhoff** (1946):

pour toute $A \in \Omega_n$, il existe $p \in \mathbb{N}^*$, $(\lambda_1, \dots, \lambda_p) \in (\mathbb{R}_+)^p$, $(\sigma_1, \dots, \sigma_p) \in (\Sigma_n)^p$ tels que:

$$\sum_{k=1}^{p} \lambda_k = 1 \text{ et } \sum_{k=1}^{p} \lambda_k P_{\sigma_k} = A.$$

(en d'autres termes, Ω_n est l'enveloppe convexe de $\{P_\sigma, \sigma \in \Sigma_n\}$.)

A cet effet, on va raisonner par récurrence (finie) sur le nombre $\pi(A)$ de termes strictement positifs dans A.

Montrer que: $\pi(A) \ge n$, et examiner le cas $\pi(A) = n$.

Supposons $\pi(A) > n$, et que la propriété voulue est vraie pour toute $B \in \Omega_n$ telle que $\pi(B) < \pi(A)$. D'après D.4, il existe $\sigma \in \Sigma_n$ telle que: $\forall j \in [1,n], a_{\sigma(j)j} > 0$. Puis il existe $k \in [1,n]$ tel que $a_{\sigma(k)k} = \min_{1 \le j \le n} a_{\sigma(j)j}$; notons alors $a = a_{\sigma(k)k}$.

- a) Montrer: 0 < a < 1.
- **b)** Soit $B = \frac{1}{1 a} (A aP_{\sigma}).$

 - ii. En déduire qu'il existe $p \in \mathbb{N}^*$, $(\lambda_1, \ldots, \lambda_p) \in (\mathbb{R}_+)^p$, $(\sigma_1, \ldots, \sigma_p) \in (\Sigma_n)^p$ tels que:

$$\sum_{k=1}^{p} \lambda_k = 1 \text{ et } \sum_{k=1}^{p} \lambda_k P_{\sigma_k} = B.$$

c) Notons
$$\mu_{p+1} = a$$
, $\sigma_{p+1} = \sigma$, et, pour tout $k \in [1,p]$, $\mu_k = (1-a)\lambda_k$.
Vérifier: $\sum_{k=1}^{p+1} \mu_k = 1$ et $\sum_{k=1}^{p+1} \mu_k P_{\sigma_k} = A$. Conclure.

PARTIE E: Une inégalité sur les permanents: théorème d'Aleksandrov

Soient $C_1, C_2, \ldots, C_{n-1} \in \mathcal{M}_{n,1}(\mathbb{R})$, tels que, pour tout $i \in [1, n-1]$, les composantes de C_i soient toutes strictement positives, et $V \in \mathcal{M}_{n,1}(\mathbb{R})$, quelconque.

On se propose de démontrer la propriété \mathcal{P}_n suivante par récurrence sur n: si $\mathbf{per}(C_1,\ldots,C_{n-1},V)=0$, alors $\mathbf{per}(C_1,\ldots,C_{n-2},V,V)\leqslant 0$ avec égalité si et seulement si V=0.

 $\mathbf{1}^{\circ}$) Traiter le cas n=2.

Soit n un entier $\geqslant 3$. On suppose que \mathcal{P}_{n-1} est vraie.

2°) Soient $C_1, \ldots, C_{n-2} \in \mathcal{M}_{n,1}(\mathbb{R})$, tels que, pour tout $i \in [1, n-2]$, les composantes de C_i soient toutes strictement positives.

On note e_n le dernier vecteur de la base canonique de \mathbb{R}^n , $e_n = \begin{pmatrix} 0 \\ \cdots \\ 0 \\ 1 \end{pmatrix}$. Soit $V \in \mathcal{M}_{n,1}(\mathbb{R})$.

Montrer que, si $\mathbf{per}(C_1, \dots, C_{n-2}, e_n, V) = 0$, alors on a: $\mathbf{per}(C_1, \dots, C_{n-2}, V, V) \leq 0$, avec égalité si et seulement si V est proportionnel à e_n [on pourra développer $\mathbf{per}(C_1, \dots, C_{n-2}, e_n, V)$ par rapport à la n-1-ième colonne, puis $\mathbf{per}(C_1,\ldots,C_{n-2},V,V)$ par rapport à la dernière ligne].

3°) En appliquant le résultat précédent à $V + \lambda C_{n-1}$ pour λ convenable, montrer que \mathcal{P}_n est vraie.

4°) Établir le théorème d'Aleksandrov (1938):

Soient $C_1, C_2, \ldots, C_{n-1} \in \mathcal{M}_{n,1}(\mathbb{R})$, tels que , pour tout $i \in [1, n-1]$, les composantes de C_i soient toutes strictement positives, et $C_n \in \mathcal{M}_{n,1}(\mathbb{R})$, quelconque. Alors on a l'inégalité:

$$\left[\mathbf{per}(C_1,\ldots,C_{n-1},C_n)\right]^2 \geqslant \mathbf{per}(C_1,\ldots,C_{n-2},C_{n-1},C_{n-1})\mathbf{per}(C_1,\ldots,C_{n-2},C_n,C_n)$$

avec égalité si et seulement si C_{n-1} et C_n sont proportionnels [on interprétera cette inégalité comme la positivité du discriminant d'un trinôme bien choisi].

5°) Soit $A \in \mathcal{M}_n^+(\mathbb{R})$. Montrer, pour tout $(i,j) \in [1,n]$, l'inégalité:

$$\mathbf{per}(A)^2 \geqslant \left(\sum_{k=1}^n a_{ki} \mathbf{per}(A_{kj})\right) \left(\sum_{k=1}^n a_{kj} \mathbf{per}(A_{ki})\right)$$

PARTIE F: Théorème d'Egorychev

- 1°) (Question à traiter par les 5/2. Les 3/2 admettront le résultat)
 - a) Montrer que Ω_n est une partie convexe compacte de $\mathcal{M}_n(\mathbb{R})$.
 - b) En déduire que l'application $\begin{cases} \Omega_n & \to \mathbb{R} \\ A & \mapsto \mathbf{per}(A) \end{cases}$ admet sur Ω_n une borne inférieure > 0 et que cette borne inférieure est atteinte.

On appellera alors <u>matrice minimale</u> toute matrice $A \in \Omega_n$ en laquelle cette borne inférieure est atteinte.

2°) Soient $A = (a_{ij})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} \in \mathcal{M}_n(\mathbb{R})$ et $B = (b_{ij})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} \in \mathcal{M}_n(\mathbb{R})$. Montrer que:

$$\forall \epsilon > 0$$
, $\mathbf{per}(A + \epsilon B) = \mathbf{per}(A) + \epsilon \sum_{1 \leq i,j \leq n} b_{ij} \mathbf{per}(A_{ij}) + O(\epsilon^2)$ pour $\epsilon \to 0^+$

Soit $A \in \Omega_n$; on appelle modification sur A toute matrice $B = (b_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathcal{M}_n(\mathbb{R})$ telle que:

$$\begin{cases} \forall i \in [1, n], & \sum_{k=1}^{n} b_{ik} = 0 \\ \forall j \in [1, n], & \sum_{l=1}^{n} b_{lj} = 0 \\ \forall (i, j) \in [1, n]^{2}, & a_{ij} = 0 \Rightarrow b_{ij} \geqslant 0 \end{cases}$$

- **3°)** Soit $A \in \Omega_n$ et B une modification sur A.
 - a) Montrer qu'il existe $\eta \in \mathbb{R}_+^*$ tel que : $\forall \epsilon \in]0, \eta[, A + \epsilon B \in \Omega_n$.
 - **b)** En déduire que, si A est minimale, alors : $\sum_{1 \leq i,j \leq n} b_{ij} \mathbf{per}(A_{ij}) \geqslant 0.$
- **4°)** Soit $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ une matrice minimale. On suppose ici A réductible; il existe donc une partition (S,T) de $[\![1,n]\!]$ telle que $\forall (i,j) \in S \times T$, $a_{ij} = 0$ (S et T non vides)

D'après D.4 il existe $\sigma \in \Sigma_n$ telle que $\forall i \in [1,n], \ a_{i\sigma(i)} > 0$. Choisissons $s \in S$ et $t \in T$, et soit $B = (b_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathcal{M}_n(\mathbb{R})$ définie par :

$$b_{s\sigma(s)} = b_{t\sigma(t)} = -1$$
, $b_{s\sigma(t)} = b_{t\sigma(s)} = 1$, $b_{ij} = 0$ sinon

- a) Montrer que B est une modification sur A, et en déduire une contradiction (utiliser C.1)
- b) En déduire que toute matrice minimale est irréductible.
- c) En déduire, en utilisant le théorème de Frobenius et Kônig, que, si $A = (a_{ij})$ est minimale, alors : $\forall (i,j) \in [1,n]^2$, $\mathbf{per}(A_{ij}) > 0$.
- 5°) Si A est une matrice minimale, montrer que les matrices $A^{t}A$ et ${}^{t}AA$ sont irréductibles (on pourra, en utilisant D.4 se ramener au cas où les coefficients diagonaux de A sont strictement positifs).
- **6°)** Soit A une matrice minimale. On se propose de démontrer dans cette question, qu'il existe des réels $\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_n$ tels que:

$$\forall (i,j) \in [[1,n]]^2$$
, $a_{ij}\mathbf{per}(A_{ij}) = a_{ij}(\lambda_i + \mu_j)$

Dans toute la suite, A est fixée, et on note Z l'ensemble des couples (i,j) tels que $a_{ij}=0$.

a) Soit E un espace vectoriel de dimension finie, $\varphi_1, \ldots, \varphi_p$ p formes linéaires sur E, et ψ une autre forme linéaire sur E. on suppose que:

$$\bigcap_{i=1}^{p} \operatorname{Ker}(\varphi_i) \supset \operatorname{Ker}(\psi)$$

Montrer alors que ψ est combinaison linéaire de $\varphi_1, \ldots, \varphi_p$.

- b) Montrer que l'application **per** est une application de classe \mathcal{C}^1 , et en calculer la différentielle en A [on montrera que $d\mathbf{per}_A(M) = \sum_{i,j} \mathbf{per}(A_{ij})m_{ij}$].
- c) Déduire des deux questions précédentes le résultat annoncé.
- **7°)** A désigne toujours une matrice minimale. On note alors $\lambda = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$, $\mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}$ et $e = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ $\in \mathcal{M}_{n,1}(\mathbb{R})$, où les λ_i et les μ_i ont été définis dans la question précédente.
 - a) Établir: $\lambda + A\mu = \mu + A\lambda = \mathbf{per}(A)e$.
 - **b)** En déduire: $A^t A \lambda = \lambda$ et ${}^t A A \mu = \mu$.
 - c) Déduire de F.5: $\lambda_1 = \cdots = \lambda_n$ et $\mu_1 = \cdots = \mu_n$.
 - d) Démontrer, pour $(i,j) \notin Z$: $\mathbf{per}(A) = \mathbf{per}(A_{ij})$.
- 8°) a) Soit A une matrice minimale; on suppose (ici seulement) $a_{11}=0$ et $a_{ii}>0$ pour tout $i \in [\![2,n]\!]$. Montrer que la matrice $B=I_n-A$ est une modification sur A. En utilisant F.3.b, en déduire: $\mathbf{per}(A_{11})>\mathbf{per}(A)$.
 - b) Soit A une matrice minimale. Établir l'inégalité: $\mathbf{per}(A_{ij}) \geqslant \mathbf{per}(A)$.
- 9°) Soit A un matrice minimale. Établir: $\forall (i,j) \in [1,n]^2$, $\mathbf{per}(A_{ij}) = \mathbf{per}(A)$ [on pourra raisonner par l'absurde, et utiliser la question E.5]

- 10°) Soit A une matrice minimale. Soient s et t deux indices distincts dans [1,n], et C_s,C_t les colonnes d'indices s et t de A.
 - a) Soit A' la matrice obtenue à partir de A en remplaçant C_s par $\frac{C_s + C_t}{2}$. Montrer que $\mathbf{per}(A) = \mathbf{per}(A')$.
 - b) Soit A'' la matrice obtenue à partir de A en remplaçant C_s et C_t par $\frac{C_s + C_t}{2}$. Montrer que $\mathbf{per}(A) = \mathbf{per}(A'')$.
- 11°) Soit A une matrice minimale dont toutes les colonnes sont à coefficients strictement positifs, sauf peut-être la dernière. En développant son permanent selon la dernière colonne, et en utilisant E.4, démontrer que: $a_{ij} = \frac{1}{n}$ pour tout $(i,j) \in [\![1,n]\!]^2$.
- 12°) En utilisant la question F.10, établir le même résultat dans le cas où A est une matrice minimale quelconque.
 - \heartsuit On a ainsi établi le **théorème d'Egorychev** (1980), résolvant la conjecture de Van de Waerden (1926): Il existe une et une seule matrice de Ω_n qui réalise le minimum du permanent sur Ω_n : il s'agit de la matrice dont tous les termes sont égaux à $\frac{1}{n}$ (et son permanent est égal à $\frac{n!}{n^n}$).