

O FRYKA TERMODYNAMIKA		257	
P. IZOTERMICZNA	T = const		
24 = W + Q	ΔU=O sta	ω = -Q	
P. 120 CHORYCZNA DU =	&V = 0 W = 0 praca 1	ne istneje bo objetsiv sig ne zmenia	
P. IZOBARYCZNA	p = const		
Dy = W+9	$\frac{V}{t}$ = const		
W= -p &V	·		
P. ADIABATYCZNA	Q = 0		
Du = W			
	(winauxpio) Q = Cw·m· DT		
		-	
	T -	Qp = n Cp AT	
$C = \frac{Q}{n \cdot \Delta T}$	CV (120CHORYWYM)	Qr = h Cr & T	
	Cv	Cp-Cr=R (stala yazowa)	
jednostovnowa czysterlia [He] \$2 R		Cp = K (kappa)	
lunatorous consterles [02] ZR	5 R		

ZALEZNOSU CIEPTO MOLOWE & WTASCIWE

$$C_{V} = M \cdot C_{W_{V}} \qquad \left(n = \frac{m}{\mu}\right)$$
| mosa molowa | mosa m

1 FIZHUA TERMODYNAMILLA P = 2 N Photo control RÓWNANIE TEORII GAZÓW

PROCES ODURACALNY

nun! writer prez te

ENTROPIA ~ miara neupongshowania yhtadu. ~ funkcja stann=zaleig od aktualnoch purumetrew.

d Si = d Opporane i united (a) aliensare province *

S = Su + S.t. gdy cultivate extrepe prostage stale to PROCES ODURACALNY, wige:

ZMIANA ENTROPII, RIENICILA:

d5= dS, + dS, = 0 ; → dS, = -dS,

DLA IDEALNEGO CYLLU CARNOTA

 $\int \frac{dQ}{T} = 0$

PROCES NIED DWRACA LNY , Wedy ! [WZROST CAŁWOWITES ENTROPII]

 $dS_i > \frac{dQ_{poin}}{T} = 0$

45 >0

ZMIANA ENTROPIL

W SWOBODNYM

ROZPRÉZANIU

GAZU DOSU.

(proces nxodurocalny) MAM WZORIAL:

 $ds > \frac{Q_{40}}{T}$ ale

Qdont JEST = 0 WIEL JLAG JIN OT IM JIN TYLUO IE:

45 >0

(taha sama sytnacja dla procesu odurucalneza)

* trough a morre judge stom it rowners cylonijac jahar prace

pnemiona izoterniczna

DU = DQ, - PDV = T, DS - PDV = 0

$$\Delta S = \frac{\rho \Delta V}{T} = \frac{R}{V} \cdot \Delta V$$

PBV = nRAT PAV = n R , n=1

2 FIZYKA TERMODYNAMIKA

* ADIABATA

$$k = \frac{C\rho}{Cv}$$
, gaze $C\rho = Cv + R$

$$Cv = C\rho - R$$

$$k = \frac{C\rho}{Cr}, \text{ gaze } C\rho = Cr + R$$

$$Cr = C\rho - R$$

$$k = \frac{C\rho}{C\rho - R}$$

$$k = \frac{C\rho}{C$$

$$\Delta S = C_V \cdot l_h \frac{T_2}{T_A} + R \cdot l_h \frac{V_2}{V_A}$$

