

4.삼각형의 성질

학생들이 자주 틀리는 문항을 선별하여 제작한 실수 정복 프로젝트 족보

감수자: 이지연 (bori2021@eduzone.co.kr)

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2022-07-01
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

1. $\angle B = 90^{\circ}$, $\angle C = 40^{\circ}$ 인 직각삼각형 ABC에서 내접원 I가 세 변과 접하는 점을 각각 D, E, F라 고 할 때, 다음 〈보기〉 중 옳은 설명을 있는 대로 모두 고른 것은?

<보기>

- $\neg . \ \overline{AD} = \overline{DM}$
- $\ \ \, \Box BFIE = 2 \triangle ANH$
- \Box . $\triangle MCG \equiv \triangle MID$
- \supseteq . $\triangle ABC = \overline{AD} \times \overline{DC}$
- ① □
- ② ¬, ∟
- ③ ∟, ⊏
- ④ ⊏, ≥
- ⑤ 7, ⊏, ≥

2. 넓이가 54인 직각삼각형 ABC의 내접원과 외접 원의 둘레의 합은 21π 이며 내접원의 지름과 외접원 의 지름의 곱은 90일 때, 색칠한 부분의 넓이는?

- (1) 36π
- $2 \frac{189}{4} \pi$
- $3) 48\pi$
- $4) \frac{225}{4}\pi$

- **3.** $\angle A = 90\,^{\circ}$ 인 직각삼각형 ABC의 외접원과 내접 원의 넓이가 각각 $100\pi\,\mathrm{cm}^2$, $16\pi\,\mathrm{cm}^2$ 일 때, $\triangle ABC$ 의 넓이는?
 - $(1) 76 \, \text{cm}^2$
- ② $82 \, \text{cm}^2$
- $38 \, \text{cm}^2$
- 92 cm^2
- $596 \, \text{cm}^2$

4. 다음 그림과 같이 $\angle A = 70\,^{\circ}$ 인 $\triangle ABC$ 의 내심을 I라고 할 때, 점 I에서 \overline{BC} 에 그은 수선의 발을 D라 하자. 점 D에서부터 \overline{BI} , \overline{CI} 에 내린 수선의 발을 각각 E, F라 하자. \overline{DE} , \overline{DF} 의 연장선과 \overline{AB} , \overline{AC} 와의 교점을 각각 G, H라고 할 때, $\angle GDH + \angle IGH$ 의 크기는?

- ① 90°
- ② 85°
- 3 80°
- 4) 75°
- (5) 70°

5. 삼각형 ABC가 주어져 있다. 점 O는 $\triangle ABC$ 의 외심이고, 점 I는 $\triangle ABC$ 의 내심이다. $\angle ABC = 58$ °, $\angle ACB = 42$ °, $\angle OCB = 10$ °이다. 이때, ∠IAO의 크기를 구하면?

- ① 2°
- ② 3°
- ③ 8°
- 4) 11 °

6. 다음 그림과 같이 점 O는 $\triangle ABC$ 의 외심이고 점 I는 $\triangle AOC$ 의 내심이다. $\angle B = 38^{\circ}$ 일 때, $\angle OIC$ 의 크기는?

- ① $76\degree$
- ② $104\degree$
- 3 116 $^{\circ}$
- (4) 128°
- \bigcirc 152 $^{\circ}$

7. $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 밑변 BC위의 한 점 D에 대하여 \overline{AC} 위에 $\overline{BD} = \overline{CE}$ 인 점 E를 잡고 \overline{AB} 위에 $\overline{BF} = \overline{CD}$ 인 점 F를 잡는다. $\angle EDF = 62$ $^{\circ}$ 일 때, $\angle BAC$ 의 크기는?

- ① $54\degree$
- ② 55°
- 356°
- (4) 57°
- $\bigcirc 58^{\circ}$

8. $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 $\angle A$ 의 이등 분선과 \overline{BC} 의 교점을 D라 하자. \overline{AB} 위의 점 E에 대하여 $\overline{AE} = \frac{2}{3}\overline{AC}$ 이고, $\overline{BD} + \overline{AC} = 26\,\mathrm{cm}$,

 \overline{AE} + \overline{BC} = 28 cm 일 때, \overline{BE} 의 길이는?

- ① 6cm
- ② 6.4 cm
- ③ 6.8 cm
- 4) 7 cm
- ⑤ 7.2 cm

9. $\triangle ABC$ 는 $\angle C = 90^{\circ}$, $\overline{BC} = \overline{CA}$ 인 삼각형이고, $\Box DEFG$ 는 정사각형이다. $\overline{DC} + \overline{CE} = 8 \text{cm}$, \overline{BC} = 13 cm 일 때, $\triangle AFE$ 의 넓이는 몇 cm^2 인가?

- ① 18
- 20
- 3 25
- **4** 26
- ⑤ 30

10. 그림과 같이 점 O는 $\triangle ABC$ 의 외심이고 \overline{CO} , \overline{BO} 의 연장선이 \overline{AB} , \overline{AC} 와 만나는 점을 각각 P, Q라 하자. $\overline{BP} = \overline{PQ} = \overline{QC}$ 일 때, $\angle A$ 의 크기는?

- ① 48°
- ② 50°
- 352°
- 4 56 $^{\circ}$
- ⑤ 60°

11. 삼각형 ABC는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이며, $\triangle ABD$, $\triangle ACE$ 는 \overline{AB} , \overline{AC} 를 한 변으로 하는 정 삼각형이다. $\angle BAC = 44^{\circ}$ 일 때, $\angle BDC$ 의 크기 는?

- \bigcirc 22 $^{\circ}$
- \bigcirc 26 $^{\circ}$
- 30°
- ④ 34°
- ⑤ 38°

- **12.** 빗변의 길이가 34 cm인 직각삼각형 ABC에서 외 접원과 내접원의 반지름의 차는 $11\,\mathrm{cm}$ 라 하자. 이 직각삼각형 *ABC*의 넓이는?
 - ① $180 \, \text{cm}^2$
- ② $192 \, \text{cm}^2$
- $3 224 \, \text{cm}^2$
- 40 cm^2
- $(5) 268 \, \text{cm}^2$

13. 그림에서 점 I는 $\triangle ABC$ 의 내심이다.

 $\angle ADI = 100^{\circ}$, $\angle IEC = 98^{\circ}$ 일 때, $\angle B$ 의 크기는?

- \bigcirc 72 $^{\circ}$
- \bigcirc 73 $^{\circ}$
- 374°
- 4 75°
- $\ \ \ \ 76\,^{\circ}$

14. 다음 그림은 $\angle C = 90$ $^{\circ}$ 인 직각삼각형 ABC에서

점 O는 외심, 점 I는 내심이다. 점 P는 \overline{OC} 와 \overline{BI}

의 교점이고 $\angle A = 58$ $^{\circ}$ 일 때, ∠BPC+∠ICP의 크기는?

- ① $129\,^{\circ}$
- ② 132°
- 3 140 $^{\circ}$
- (4) 145°
- (5) 148°

15. 그림과 같이 \overline{BD} 위에 점 C를 잡아 \overline{BC} = \overline{AC} , \overline{CD} = \overline{CE} 인 이등변삼각형 ABC, ECD를 각각 그렸 다. $\angle EBC = 35^{\circ}$, $\angle ACB = 58^{\circ}$, $\angle ECD = 58^{\circ}$ 일 때, <보기> 중 옳은 것은 모두 몇 개인가?

<보기>

- \neg . \angle CAD = 35 $^{\circ}$
- ∟. ∠ADC = 25 °
- \sqsubset . $\angle AHE = 90^{\circ}$
- \equiv . $\angle AFG = 58^{\circ}$
- \Box . $\angle ACD = 122^{\circ}$
- ① 1개
- ② 2개
- ③ 3개
- ④ 4개
- ⑤ 5개

₽

정답 및 해설

1) [정답] ④

[해설] \Box . $\triangle MCG$ 과 $\triangle MID$ 에서

 $\overline{CG} = \overline{ID}$ (내접원의 반지름의 길이)

 $\angle CGM = \angle IDM = 90^{\circ}$

 $\angle GMC = \angle DMI(맞꼭지각)이므로$

 $\triangle MCG \equiv \triangle MID(ASA$ 합동)

 \supseteq . $\triangle AHN \equiv \triangle IDN(ASA$ 합동)

 $\Delta DIM \equiv \Delta GCM(ASA$ 합동)

 $\overline{AE} = \overline{AD} = a$, $\overline{BE} = \overline{BF} = b$, $\overline{CD} = \overline{CF} = c$ 라 하면

 $\triangle ABC = \square AEIH + \square BEIF + \square CFIG$ 이므로

$$\frac{1}{2}(a+b)(b+c) = ab+b^2+bc$$

$$\frac{1}{2}ac = \frac{1}{2}(ab + b^2 + bc)$$

$$\therefore ac = ab + b^2 + bc$$

그런데
$$\triangle ABC = ab + b^2 + bc$$
이므로

$$\triangle ABC = \overline{AD} \times \overline{CD}$$

2) [정답] ②

[해설] 내접원의 반지름의 길이를 a, 외접원의 반지름의 길이를 b라 하면

$$\Delta ABC = \frac{1}{2} \times a \times (2a + 4b) = 54$$

$$\therefore a(a+2b) = 54 \quad \cdots \bigcirc$$

$$2a \times 2b = 90$$
에서 $2ab = 45$ ··· ©

①을 ①에 대입하면 $a^2 + 45 = 54$, $a^2 = 9$

$$\therefore a = 3$$

a=3을 \bigcirc 에 대입하면

$$2 \times 3 \times b = 45$$
, $\therefore b = \frac{15}{2}$

따라서 구하는 넓이는

$$\pi \times \left(\frac{15}{2}\right)^2 - \pi \times 3^2 = \frac{189}{4}\pi$$

3) [정답] ⑤

[해설]

직각삼각형 ABC의 외접원과 내접원의 넓이가 각각 $100\pi \mathrm{cm}^2$, $16\pi \mathrm{cm}^2$ 이면 반지름의 길이는 각 각 $10\mathrm{cm}$, $4\mathrm{cm}$ 이고 외심은 빗변 \overline{BC} 의 중점이므로 그림에서 $\overline{ID} = \overline{IE} = \overline{IF} = 4\mathrm{cm}$ 이다.

이때,
$$\overline{BE} = x$$
cm, $\overline{CD} = y$ cm 라 하면 $\overline{BE} = \overline{BF} = x$ cm, $\overline{CD} = \overline{CF} = y$ cm 이므로 $\overline{BC} = \overline{BF} + \overline{CF}$ 에서 $x+y=20$
 $\therefore \triangle ABC = \triangle AIB + \triangle BIC + \triangle AIC$
 $= \frac{1}{2} \times \{4(4+x) + 20 \times 4 + 4(y+4)\}$
 $= \frac{1}{2} \times \{4(x+y) + 112\}$
 $= \frac{1}{2} \times 192 = 96$ (cm²)

4) [정답] ①

[해설]

 $\triangle BDE$ 와 $\triangle BGE$ 에서

$$\angle BED = \angle BEG = 90^{\circ}, \ \angle DBE = \angle GBE,$$

BE는 공통이므로

 $\triangle BDE \equiv \triangle BGE(ASA$ 합동)

또, $\triangle CDF$ 와 $\triangle CHF$ 에서

$$\angle DFC = \angle HFC = 90^{\circ}$$
, $\angle DCF = \angle HCF$

*CF*는 공통이므로

 $\triangle CDF \equiv \triangle CHF(ASA$ 합동)

따라서 $\triangle GDH$ 에서 점 I는 \overline{GD} , \overline{HD} 의 수직이 등분선의 교점이므로 외심이다.

등순선의 교접이므도 되침이다. 이때, 점 I는 ΔABC 의 내심이므로

$$\angle BIC = \frac{1}{2} \angle A + 90^{\circ} = \frac{1}{2} \times 70^{\circ} + 90^{\circ} = 125^{\circ}$$

사각형 IEDF에서

$$\angle EDF = 360 \degree - (125 \degree + 90 \degree + 90 \degree) = 55 \degree$$

$$\triangle GDH$$
이 $|$ 서 $| \angle GIH = 2 \angle EDF = 2 \times 55$ ° $= 110$ °

$$\overline{\textit{IG}}$$
= $\overline{\textit{IH}}$ 이므로 $\angle \textit{IGH}$ = $\frac{180\degree - 110\degree}{2}$ = $35\degree$

$$\therefore \angle GDH + \angle IGH = 55^{\circ} + 35^{\circ} = 90^{\circ}$$

5) [정답] ③

[해설]
$$\angle BAC = 180^{\circ} - (58^{\circ} + 42^{\circ}) = 80^{\circ}$$

 $\angle IAC = \frac{1}{2} \angle BAC = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$
 $\angle ACO = 42^{\circ} - 10^{\circ} = 32^{\circ}$
 $\overline{OA} = \overline{OC}$ 이므로 $\angle OAC = \angle OCA = 32^{\circ}$

$$\overline{OA} = \overline{OC}$$
이므로 $\angle OAC = \angle OCA = 32^{\circ}$
 $\therefore \angle IAO = 40^{\circ} - 32^{\circ} = 8^{\circ}$

6) [정답] ③

[해설] 점 O는 \overline{BC} 위의 점이므로

$$\angle A = 90$$
 ° 이고 $\overline{OA} = \overline{OB}$

즉, $\triangle ABO$ 는 이등변삼각형이다.

$$\angle OAB = \angle OBA = 38^{\circ}$$

$$\angle OAC = 90\ ^{\circ} - 38\ ^{\circ} = 52\ ^{\circ}$$
 $\triangle AOC$ 에서
$$\angle OIC = \frac{1}{2} \angle OAC + 90\ ^{\circ} = \frac{1}{2} \times 52\ ^{\circ} + 90\ ^{\circ} = 116\ ^{\circ}$$

7) [정답] ③

[해설] $\triangle BDF$ 와 $\triangle CED$ 에서

 $\overline{BF} = \overline{CD}$, $\overline{BD} = \overline{CE}$, $\angle FBD = \angle DCE$ 이므로

 $\triangle BDF \equiv \triangle CED(SAS$ 합동)

 $\angle BFD + \angle BDF = 180^{\circ} - \angle FBD$

 $\angle \mathit{BFD} = \angle \mathit{CDE}$ 이므로

 $\angle CDE + \angle BDF = 180^{\circ} - \angle FDE$

즉, $\angle FBD = \angle FDE = 62^{\circ}$

 $\therefore \angle x = 180^{\circ} - 62^{\circ} \times 2 = 56^{\circ}$

8) [정답] ①

[해설]
$$\overline{AE} = \frac{2}{3}\overline{AC}$$
, $\overline{BC} = 2\overline{BD}$ 이므로

$$\left\{ egin{aligned} \overline{BD} + \overline{AC} &= 26\,cm \\ 2\overline{BD} + rac{2}{3}\,\overline{AC} &= 28\,cm \end{aligned}
ight.$$
 위의 식에 2를 곱하고

아래의 식에 3을 곱하면

 $(2\overline{BD} + 2\overline{AC} = 52\,cm$ 이므로 아래의 식에서 위 $\left| 6\overline{BD} + 2\overline{AC} \right| = 84 \, cm$

의 식을 빼면 $4\overline{BD} = 32 \, cm$, $\overline{BD} = 8 \, cm$

따라서 $\overline{AC} = 18cm$ 이고 $\overline{BE} = \frac{1}{3}\overline{AC} = 6cm$

9) [정답] ②

[해설]

 $\triangle ABC$ 빗변 위의 점 F에서 \overline{AC} 로 수선의 발을 내렸을 때 생기는 점을 H라고 하자. $\triangle ABC$ 가 직각이등변삼각형이므로 $\triangle AFH$ 도 직각이등변삼 각형이다. 그러므로 $\overline{FH} = \overline{AH}$ 이다.

 $\overline{FE} = \overline{ED}$, $\angle FEA = \angle EDC$ 이므로

 $\triangle FEH = \triangle EDC (RHA 합동)$ 이다.

그러므로 $\overline{DC} + \overline{CE} = \overline{CH}$ 이다.

 $\overline{AH} = \overline{FH} = \overline{CE} = (13-8)cm = 5cm$

 $\overline{DC} = (8-5)cm = 3cm$

그러므로 $\triangle AFE$ 의 넓이는 $\frac{1}{2} \times 8 \times 5 = 20cm^2$ 이 다

10) [정답] ⑤

[해설]

 $\triangle PBQ$ 에서 $\overline{PB} = \overline{PQ}$ 이므로 $\angle PBQ = \angle PQB = a$ 라 하면 $\triangle OAB$ 에서 $\overline{OA} = \overline{OB}$ 이므로 $\angle BAO = a$ 또, $\triangle QPC$ 에서 $\overline{PQ} = \overline{QC}$ 이므로 $\angle \mathit{QPC} = \angle \mathit{QCP} = b$ 라 하면 $\triangle OAC$ 에서 $\overline{OA} = \overline{OC}$ 이므로 $\angle CAO = b$ $\therefore \angle BAC = a + b$ 한편, $\angle BOC = 2 \angle BAC$ 이므로 $\angle POQ = \angle BOC = 2(a+b)$ (맞꼭지각) $\triangle OOP$ 에서 $2(a+b)+a+b=180^{\circ}$, $3(a+b)=180^{\circ}$ $\therefore a+b=60^{\circ}$

11) [정답] ①

[해설]
$$\angle ABC = \angle ACB = \frac{180\degree - 44\degree}{2} = 68\degree$$
 $\overline{AD} = \overline{AC}$ 이므로 $\triangle DAC$ 는 이등변삼각형이다. $\angle DAC = \angle DAB + \angle BAC = 60\degree + 44\degree = 104\degree$

$$\therefore \angle ADC = \frac{180° - 104°}{2} = 38°$$

$$\therefore \angle BDC = \angle ADB - \angle ADC = 60^{\circ} - 38^{\circ} = 22^{\circ}$$

12) [정답] ④

[해설] 직각삼각형의 외접원의 지름은 직각삼각형의 빗변과 같다. 그러므로 외접원의 반지름은 17cm 이다. 외접원과 내접원의 반지름의 차가 $11\,cm$ 이 므로 내접원의 반지름은 6cm이다. $\triangle ABC$ 의 빗 변을 \overline{AB} 라고 한다면 $(\overline{BC}-6)+(\overline{CA}-6)=34$ 이므로 $\overline{BC} + \overline{CA} = 46 \, cm$ 이다.

직각삼각형 ABC의 넓이는 $\frac{1}{2} \times 6 \times (\Delta ABC$ 의

둘레) 이므로
$$\frac{1}{2} \times 6 \times (34+46) = 240 \, cm^2$$
이다.

13) [정답] ①

[해설]
$$\angle BAI = \angle CAI = a$$
, $\angle ACI = \angle BCI = b$ 라 하면

 $\triangle ABC$ 에서

$$2(a+b) + \angle B = 180^{\circ}$$
 $\therefore a+b = 90^{\circ} - \frac{1}{2} \angle B$

 $\triangle ABE$ 에서 $\angle AEC = a + \angle B = 98$ ° ... \bigcirc

 $\triangle BCD$ 이] 사 $\angle ADC = b + \angle B = 100$ ··· \bigcirc

①+①을 하면 $a+b+2 \angle B=198$ °이므로

$$(90^{\circ} - \frac{1}{2} \angle B) + 2 \angle B = 198^{\circ}$$

$$\frac{3}{2} \angle B = 108$$
° $\therefore \angle B = 72$ °

14) [정답] ④

[해설]
$$\angle BOC = 2 \angle A = 2 \times 58$$
° = 116 °

$$\overline{OB} = \overline{OC}$$
이므로

$$\angle$$
 OBC = \angle OCB = $\frac{180\degree - 116\degree}{2}$ = 32°

점 I는 $\triangle ABC$ 의 내심이므로

$$\angle IBC = \frac{1}{2} \angle B = \frac{1}{2} \times 32^{\circ} = 16^{\circ}$$

$$\angle ICB = \frac{1}{2} \angle C = 45^{\circ}$$

 ΔPBC 에서

$$\angle BPC = 180\degree - (16\degree + 32\degree) = 132\degree$$

$$\angle ICP = 45^{\circ} - 32^{\circ} = 13^{\circ}$$

$$\therefore \angle BPC + \angle ICP = 132^{\circ} + 13^{\circ} = 145^{\circ}$$

15) [정답] ③

[해설] L. $\angle ACE = 180\degree - 2 \times 58\degree = 64\degree$

 $\triangle ACD$ 와 $\triangle BCE$ 에서

$$\overline{AC} = \overline{BC}$$
, $\angle ACD = \angle ACE + 58^{\circ} = \angle BCE$

$$\overline{CD}$$
= \overline{CE} 이므로 $\triangle ACD \equiv \triangle BCE$

$$\angle ADC = \angle BEC = 180^{\circ} - (35^{\circ} + 122^{\circ}) = 23^{\circ}$$

$$\angle AHE = \angle CHD = 180^{\circ} - (58^{\circ} + 23^{\circ}) = 99^{\circ}$$