POSSESSION OF MOBILES IN EXAM IS UFM PRACTICE

	10.52
Name of student	Enrollment No.

BENNETT UNIVERSITY, GREATER NOIDA B.TECH. Semester - III Makeup Test ODD SEMESTER 2017

	ODD SEMESTER 201	7 .	
COURS	E CODE : ECSE203L E NAME : Discrete Mathematical Structures	MAX. TIME (1 Hour)	
	ECREDIT: 5.0	MAX . MARKS : 15	
Note: Al	l questions are mandatory.		
Q.1 (a)	Let R be a relation defined on a set of positive integ and only if x-y is divisible by 3. Prove that R is an e	•	(2)
(b)	Let f: $R \rightarrow R$ be a function defined as $f(x) = 3x+5$ a defined as $g(x) = x+4$. Find $(g \ o \ f)^{-1}$ and $f^{-1} \ o \ g^{-1}$	nd g: $R \rightarrow R$ be another function	(1.5)
(c)	Find whether function $f(x) = x^3$ is onto or not? Draw	it graphically as well.	(1.5)
Q.2 (a)	Find the smallest number that satisfies all three of the $x \equiv 2 \pmod{3}$ $x \equiv 4 \pmod{5}$ $x \equiv 5 \pmod{7}$	ne following:	(2)
(b)	What is a hash table? Explain quadratic probing inserting in it with example.	for resolving collisions while	(2)
(c)	Find 539 mod 3 using its digits and powers of 10 us:	ing modular arithmetic.	(1)
Q.3 (a)	Find the remainder when 3 ²⁸ is divided by 5.		(2)
(b)	Define an algebraic system 'group' and give an exar	mple.	(1)
(c)	Find the first solution of linear Diophantine equation	a: $32x + 56y = 72$	(2)