图论作业1

一、填空题

1. 非同构的 4 阶和 5 阶树的个数分别为 2 和 3

方法: 按照树中存在的最长路进行枚举(从2开始)

注意: 对于 n > 2 的树来说, 路的最短长度为 2

2. n 阶 k 正则图 G 的补图的边数为 [n(n-1)-nk]/2

考点一:完全图每个点的度数是 (n-1)

考点二: 一个图和其补图的并是完全图 \Rightarrow 一个点在原图和补图中的度数和为 (n-1)

图 G 是 k 正则,那么图 G 的补图为 (n-1-k) 正则。故补图的度数之和为 $d(\overline{G})=n(n-1-k)$

根据握手定理: $m = d(\overline{G})/2 = n(n-1-k)/2$

3. 设图 G = (n, m) 中各顶点度数均为 3,且 2n = m + 3,则 n = 6,m = 9

考点:握手定理

根据握手定理: 2m = 3n

4. 设简单图 G 的邻接矩阵为 A, 且

$$A^2 = egin{pmatrix} 3 & 1 & 1 & 2 & 0 \ 1 & 2 & 1 & 1 & 1 \ 1 & 1 & 3 & 0 & 2 \ 2 & 1 & 0 & 2 & 0 \ 0 & 1 & 2 & 0 & 2 \end{pmatrix}$$

则图 G 的边数为 6

考点: 邻接矩阵的性质

定理 10: 令 G 是一个有推广邻接矩阵 A 的 p 阶标定图,则 A^n 的 i 行 j 列元素 $a_{ij}^{(n)}$ 等于由 v_i 到 v_j 的长度为 n 的途径的数目

推论:设 A 为简单图 G 的邻接矩阵,则: A^2 的元素 $a_{ii}^{(2)}$ 是 v_i 的度数。 A^3 的元素 $a_{ii}^{(3)}$ 是含 v_i 的三角形的数目的两倍 (<mark>考过填空)</mark>

5. 设 G 是一个完全 l 部图, n_i 是第 i 部分的顶点数,则它的边数为 $\sum\limits_{1 \leq i < j < l} n_i n_j$

考点: 完全多部图的概念与结构

完全 l 部图 K_{n_1,n_2,\cdots,n_l} 的点数: $\sum_{i=1}^l n_i$; 边数: $\sum_{1 \leq i < j < l} n_i n_j$ (考过填空)

6. 设 G 是 n 阶简单图,且不含完全子图 K_3 ,则其边数一定不会超过 $\left | n^2/4 \right |$

考点: Turán 定理

定理 18 (Turán): 若 G 是 n 阶简单图,并且不包含 K_{l+1} ,则边数 $m(G) \leq m(T_{l,n})$ 。此外,仅当 $G \cong T_{l,n}$ 时, $m(G) = m(T_{l,n})$

计 计算公式: $K_{l+1} \notin G$, 则 $m(T_{l,n}) = C_l^2(n/l)^2$

■ **例**: n 阶简单图 G, $K_3 \notin G$, 则 G 最多有 $\left\lfloor n^2/4 \right\rfloor$ 条边 $\Rightarrow m(G) \leq m(T_{2,n}) = C_2^2(n/2)^2 = (n/2)^2$

■ **例**: 9 阶简单图 G, $K_4 \notin G$, 则 G 最多有 27 条边 \Rightarrow $m(G) \leq m(T_{3,9}) = C_3^2(9/3)^2 = 3 \times (9/3)^2 = 27$

7. 设 n 阶图 G 是具有 k 个分支的森林、则其边数为 n-k

树的边数 = 顶点数 -1

森林的边数 = 顶点数 - 连通分支数

8. 一棵树有 n_i 个度为 i 的结点, $i=2,3,\cdots,k$,则它有 $\sum\limits_{i=2}^k n_i(i-2)+2$ 个度数为 1 的顶点

考点: 握手定理 + 树的性质 (边数 = 顶点数 - 1)

$$m=n-1$$
,其中 $n=\sum\limits_{i=1}^{k}n_{i}$

由握手定理 $\colon \ 2m = d(T) = \sum\limits_{i=1}^k (i imes n_i)$

故:
$$2(\sum\limits_{i=1}^k n_i-1)=\sum\limits_{i=1}^k (i imes n_i)$$

整理得: $n_1=2+(3-2)n_3+(4-2)n_4+\cdots+(k-2)n_k=\sum\limits_{i=2}^kn_i(i-2)+2$

9. 完全图 K_5 的生成树的个数为 $5^{5-2}=125$

定理 27: $au(K_n) = n^{n-2}$

二、不定项选择题

1. 关于图的度序列,下列命题正确的是(ABCD)

- A. 同构的两个图的度序列相同
- B. 非负整数序列 (d_1, d_2, \dots, d_n) 是图的度序列当且仅当 $d_1 + d_2 + \dots + d_n$ 是偶数
- C. 如果正整数序列 (d_1, d_2, \dots, d_n) 是一棵树的度序列且 $n \geq 2$,那么序列中至少有两个 1
- D. 正整数序列 (d_1, d_2, \dots, d_n) 是非平凡树的度序列当且仅当 $d_1 + d_2 + \dots + d_n = 2(n-1)$
- E. 若图 G 的顶点度数之和大于等于图 H 的顶点度数之和,则图 G 度优于图 H
- F. 如果非负整数序列 (d_1, d_2, \cdots, d_n) 是简单图的度序列,那么在同构意义下只能确定一个图 imes

考点: 度序列 && 图序列

关系: 简单图的度序列简称图序列

注意:判断非负整数序列是否为<mark>简单图</mark>的度序列暂无好的方法,只有等价转换的方法

A 显然正确(已经默认递增或递减排列)

B 正确: **定理 3:** 非负整数组 (d_1,d_2,\cdots,d_n) 是图的度序列的充分必要条件是: $\sum d_i$ 为偶数

C 正确: 定理 20: 每棵非平凡树至少有两片树叶

D 正确:存在一棵非平凡树,以该序列为度序列的充要条件 $d_1+d_2+\cdots+d_n=2(n-1)=2m\Rightarrow$ 握手定理

E 错误: 先有度弱或度优, 才有度数之和小于或大于; 反过来不成立

F 错误: 不止确定一个图

2. 对于序列 (7,5,4,3,3,2), 下列说法<mark>正确</mark>的是 **(BD)**

■ A. 可能是简单图的度序列 ×

- B. 一定不是简单图的度序列
- C. 只能是简单图的度序列 ×
- D. 只能是非简单图的度序列
- E. 不是任意图的度序列 ×

考点: 度序列 && 图序列

对于简单图, 顶点的最大度 ≤ 顶点数 - 1

A 错 B 对 C 错:对于该题,长度为 6,说明有 6 个点,同时最大度为 7,显然不是简单图!!

D 对 E 错: **定理 3:** 非负整数组 (d_1, d_2, \dots, d_n) 是图的度序列的充分必要条件是: $\sum d_i$ 为偶数

3. 下列说法错误的是(ACE)

- A. 若一个图中存在闭途径,则一定存在圈 ×
- B. 偶图中不存在奇圈
- C. 若图 G 不含三角形,则 G 为偶图 X
- D. 图的顶点之间的连通关系一定是等价关系
- E. 存在每个顶点的度数互不相同的非平凡简单图 ×

A 错误: $\boldsymbol{\mathcal{U}}$ lacktriangle $\boldsymbol{\mathcal{V}}$ 闭途径 $(u \rightarrow v \rightarrow u)$,但不存在圈

B 正确: 定理 9: 一个图是偶图当且仅当它不包含奇圈

C错误:可能存在长度不为3的奇圈,如5,7等等

D 正确: 即便在有向图中, 也存在弱连通

E 错误: **定理** 5: 一个简单图 G 的 n 个点的度不能互不相同

4. 关于简单图 G 的邻接矩阵 A,下列说法错误的是(C)

- A. 矩阵 A 的行和等于该行对应顶点的度数
- B. 矩阵 A 的所有元素之和等于该图边数的 2 倍
- \blacksquare C. 矩阵 A 的所有特征值之和等于该图边数的 2 倍 \times
- D. 矩阵 A 的所有特征值的平方和等于该图边数的 2 倍
- E. 矩阵 A^2 的主对角线的元素之和等于该图边数的 2 倍
- F. 若 G 是非连通图,则 A 相似于某个准对角矩阵

考点: 简单图邻接矩阵的性质

A 正确: 矩阵 A 的「行和」或「列和」等于该「行」或「列」对应顶点的度数

B 正确: 所有元素之和等于度数之和, 根据握手定理判断正确

C错误:矩阵的所有特征值之和等于矩阵的迹;矩阵的迹又是矩阵主对角线上的元素之和;对于简单图,邻接矩阵主对角线元素均为 α

D 正确: 所有特征值的平方和等于 A^2 的所有特征值之和; A^2 的迹就是主对角线之和, 也就是图的所有度数之和, 就等于边数的两倍

E显然正确

F 正确:无法解释,因为不懂!!! 🗑 🗑 🗑

5. 图 G = (n, m) 一定是树的是(BDE)

- A. 连通图 X
- B. 无回路但任意添加一条边后有回路的图
- C. 每对顶点间都有路的图 ×
- D. 连通且 m = n 1
- E. 无圏且 m = n 1

考点: 树的基本性质

A 错误: 树是连通的无圈图

B 正确: 回路是边不重圈的并; 无回路肯定无圈, 加一条边有回路, 肯定就有圈

C 错误:每对顶点间存在**唯一**的一条路

DE 显然正确

三、解答题

1. 设无向图 G 有 10 条边,3 度与 4 度顶点各 2 个,其余顶点度数均小于 3,问 G 中至少有几个顶点?在顶点数最少的情况下,写出 G 的 度序列,该度序列是一个图序列吗?

考点:握手定理+图序列

解:由于求顶点数量最少,故假设 0 度顶点为 0 个,1 度顶点为 0 个,同时设 2 度顶点有 d_2 个

根据握手定理得: $10 \times 2 = 2 \times d_2 + 2 \times 3 + 2 \times 4$; 解得: $d_2 = 3$

所以 G 中至少有 7 个顶点;图 G 的度序列为 (4,4,3,3,2,2,2)

根据 Havel-Hakimi 定理,可得下面推导过程:

$$\pi_1 = (3, 2, 2, 1, 2, 2) \Rightarrow \pi_1 = (3, 2, 2, 2, 2, 1)$$

$$\pi_2 = (1,1,1,2,1) \Rightarrow \pi_2 = (2,1,1,1,1)$$

 $\pi_3 = (0, 0, 1, 1)$

显然 π_3 是可图的, 所以 (4,4,3,3,2,2,2) 是可图的

2. 证明整数序列 (6,3,4,2,2,5,2) 是简单图的度序列,并构造一个对应的简单图。

考点: 图序列

注意: 利用等价转换的方法, 前提需要对度序列排序(递减)

证明: 根据 Havel-Hakimi 定理,首先排序 $\pi = (6, 5, 4, 3, 2, 2, 2)$

 $\pi_1 = (4, 3, 2, 1, 1, 1) \rightarrow \pi_2 = (2, 1, 0, 0, 1)$

显然 π_2 是可图的,因此 (6,3,4,2,2,5,2) 是可图的

3. 设 G 与其补图的边数分别为 m_1 和 m_2 ,求 G 的阶数。

解: 设图 $H = G \bigcup \overline{G}$, 图 G 的阶数为 n

显然图 H 为完全图 K_n

根据握手定理得: $n(n-1) = 2(m_1 + m_2)$

解得: $n=rac{1\pm\sqrt{1+8(m_1+m_2)}}{2}$,其中正整数解即为所求

4. 设 G 为 n 阶简单图,n>2 且 n 为奇数,G 与其补图中度数为奇数的顶点个数是否相等?并给出理由。

解:由补图定义知,任意点 v 在图 G 及其补图 \overline{G} 中的度数之和为 n-1,即: $d_G(v)+d_{\overline{G}}(v)=n-1$

因此,若 G 中有 b_i 个度为奇数的顶点,其度数为 d_i ,则这 b_i 个顶点在 \overline{G} 中的度数为 $n-1-d_i$

因为 n 为奇数, 故 n-1 为偶数, 所以 $n-1-d_i$ 为奇数

综上所述, G 与其补图中度数为奇数的顶点个数相等

5. 证明:任何一个人群中至少有两个人认识的朋友数相同。

注意: 此类题目考试中经常出现

证明:以人为顶点,如果两个人相识,对应的顶点之间连一条边,得到的图记为G

显然图 G 是简单图

当一个人的朋友数等于他在图中对应顶点的度数

因为简单图中一定存在度数相等的顶点,所以在任何一个人群中至少有两个人认识的朋友数相同

6. 证明: 若 k 正则二部图具有二分类 $V = V_1 \cup V_2$,则 $|V_1| = |V_2|$ 。

证明:对于二部图来说,因为边是建立在顶点集的二部划分之间的,所以边数既等于 V_1 中顶点的度数之和,也等于 V_2 中顶点的度数

之和

故有: $k imes |V_1| = m = k imes |V_2|$

所以: $|V_1| = |V_2|$

注意: 梳理 k 正则二部图结论

7. 证明: 若图 G 的直径大于 3, 则图 G 的补图的直径小于 3

摆烂吧!!!

不会!!!!

考试难度远远低于本题。。。

所以 哈哈哈哈哈

放弃吧!!!!!