® BUNDESREPUBLIK

DEUTSCHLAND

® Offenlegungsschrift

₀₀ DE 3248585 A1

B01 D 53/14 C 10 K 1/12

(6) Int. Cl. 3:

C 10 K 1/12 B 01 D 3/38 C 01 B 3/52

DEUTSCHES PATENTAMT

(2) Aktenzeichen: P 32 48 585.9 (2) Anmeldetag: 30. 12. 82 (4) Offenlegungstag: 14. 7. 83

30 Unionspriorität: 32 33 31

04.01.82 US 336638

(7) Anmelder:

Exxon Research and Engineering Co., 07932 Florham Park, N.J., US

(74) Vertreter:

Beil, W., Dipl.-Chem. Dr.jur.; Wolff, H., Dipl.-Chem. Dr.jur.; Beil, H., Dr.jur., Rechtsanw., 6230 Frankfurt

@ Erfinder:

Osman, Robert M., Parsippany, N.J., US

Benördeneigen ium

Kreislaufverfahren zur Entfernung saurer Gase aus einem Beschickungsgasstrom, der ein heißes, wasserdampfhaltiges Gasgemisch umfaßt

Die Erfindung betrifft ein Verfahren zur Entfernung saurer Gase, wie z.B. CO₂ und H₂S, aus Gasströmen unter Anwendung einer im Kreislauf geführten wäßrigen alkalischen Waschlösung, die zwischen einer Absorptionsstufe und einer Regenerierungsstufe im Kreislauf geführt wird. Dieses Verlahren wird dadurch verbessert, daß in dieses Kreislaufsystem ein Verfahrensschema integriert wird, bei dem kondensierter Wasserdampf mit darin gelösten gasförmigen Verunreinigungen aus dem Beschickungsgas gewonnen und einem Druck unterworfen wird, unterhalb dessen die Regenerierung der Waschlösung stattfindet. Während dieser Druck beibehalten wird, wird das Verfahrenskondensat erhitzt, zum Sieden gebracht und abgestreift, um ein dampfförmiges Gemisch aus Wasserdampf und gasförmigen Verunreinigungen abzugeben, das verdichtet und in die Regenerierungsstufe eingeführt wird. Durch dieses Verfahren wird wertvolle Arbeit durch Verfahrensströme niedriger Temperatur geleistet, so daß damit die Gesamtwirksamkeit des Krelslaufverfahrens verbessert wird. (3248585)

Patentansprüche

5

10

15

20

25

- 1. Kreislaufverfahren zur Entfernung saurer Gase aus einem Beschickungsgasstrom, der ein heißes, wasserdampfhaltiges Gasgemisch umfaßt, mit Hilfe einer wäßrigen, alkalischen Waschlösung, die kontinuierlich zwischen einem Absorber, in dem die sauren Gase von der Waschlösung absorbiert werden, und einem Regenerator, in dem diese sauren Gase durch Wasserdampf-Abstreifen desorbiert werden, im Kreislauf geführt wird, wobei mindestens ein Teil des Wasserdampfgehaltes des heißen wasserdampfhaltigen Gasgemisches darin kondensiert und unter Bildung eines Verfahrenskondensates mit darin gelösten gasförmigen Verunreinigungen von dem Gasgemisch abgetrennt wird, bevor das Gasgemisch in den Absorber eintritt, dadurch gekennzeichnet, daß man
 - (a) das Verfahrenskondensat einem Druck unterwirft, der geringer als der Druck ist, bei dem die Regenerierung der Waschlösung stattfindet;
- (b) anschließend das in Stufe (a) erhaltene Verfahrenskondensat bei dem Druck der Stufe (a) mit mindestens
 einem fließfähigen Medium, dessen Temperatur ausreicht, um das Verfahrenskondensat zum Sieden zu
 bringen, erhitzt, um das Verfahrenskondensat von
 mindestens einem Teil der darin gelösten gasförmigen
 Verunreinigungen abzustreifen und ein dampfförmiges
 Gemisch, das Wasserdampf und die abgestreiften gasförmigen Verunreinigungen enthält, zu erhalten;
 - (c) das in Stufe (b) erhaltene dampfförmige Gemisch von dem abgestreiften Verfahrenskondensat abtrennt und das dampfförmige Gemisch auf einen Druck verdichtet,

der mindestens gleich dem Druck ist, bei dem die Regenerierung der Waschlösung stattfindet; und

(d) dieses verdichtete dampfförmige Gemisch in den Regenerator einführt, um das Wasserdampf-Abstreifen zu unterstützen.

5

10

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das Verfahrenskondensat in Stufe (b) in einem indirekten Wärmeaustauscher mit dem fließfähigen Medium erhitzt.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man mindestens einen Teil der in Stufe (b) zum Abstreifen des Verfahrenskondensates verwendeten Wärme durch indirekten Wärmeaustausch mit dem Beschickungsgas bereitstellt.
- 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man
- (a) das Verfahrenskondensat in Stufe (a) einem Druck unterwirft, der etwa 0,07 bis etwa 1,73 bar unter dem Druck liegt, bei dem die Regenerierung der Waschlösung stattfindet; und
- 25 (b) in Stufe (b) zum Erhitzen des Verfahrenskondensates als fließfähiges Medium das Beschickungsgas verwendet, welches diesen indirekten Wärmeaustauscher mit einer Temperatur verläßt, die nicht mehr als etwa 28°C oberhalb des Siedepunktes des Verfahrenskondensates aus Stufe (a) liegt.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das Verfahrenskondensat in Stufe (b) in direktem Wärmeaustausch mit Wasserdampf erhitzt, wobei dieser Wasserdampf bei dem Druck, bei dem er geliefert wird, eine Kondensationstemperatur auweist, die nicht mehr als etwa 28°C oberhalb des Siedepunktes des Verfahrenskondensates aus Stufe (a) liegt.

5

- einem Beschickungsgasstrom, der ein heißes wasserdampfhaltiges Gasgemisch umfaßt, mit Hilfe einer wäßrigen,
 alkalischen Waschlösung, die kontinuierlich zwischen
 einem Absorber, in dem die sauren Gase von der Waschlösung absorbiert werden, und einem Regenerator, in
 dem diese sauren Gase durch Wasserdampf-Abstreifen
 desorbiert werden, im Kreislauf geführt wird, wobei
 der zum Abstreifen verwendete Wasserdampf mindestens
 teilweise aus dem heißen wasserdampfhaltigen Beschickungsgas stammt, dadurch gekennzeichnet, daß man
- (a) das Beschickungsgas vor seinem Eintritt in den Absorber auf eine Temperatur abkühlt, die ausreicht, um mindestens einen Teil des Wasserdampfgehaltes darin zu kondensieren, wobei ein Verfahrenskondensat gebildet wird, das diesen kondensierten Wasserdampf und darin gelöste gasförmige Verunreinigungen enthält;
 - (b) das in Stufe (a) erhaltene Verfahrenskondensat von dem Beschickungsgas abtrennt und dieses Verfahrenskondensat einem Druck unterwirft, der geringer als der Druck ist, bei dem die Regenerierung der Waschlösung stattfindet;
 - (c) anschließend das in Stufe (b) erhaltene Verfahrenskondensat bei dem Druck der Stufe (b) erhitzt, indem man es in indirekten Wärmeaustausch mit dem

Beschickungsgas bringt, bevor es in den Absorber eintritt, wobei dieses Beschickungsgas eine Temperatur aufweist, die ausreicht, um das Verfahrenskondensat zum Sieden zu bringen, und wobei das Erhitzen in einer Weise durchgeführt wird, die ausreicht, um das Verfahrenskondensat von mindestens einem Teil der darin gelösten gasförmigen Verunreinigungen abzustreifen und aus dem Verfahrenskondensat ein dampfförmiges Gemisc aus Wasserdampf und den abgestreiften gasförmigen Verunreinigungen zu erhalten;

10

15

20

25

30

- (d) das in Stufe (c) erhaltene dampfförmige Gemisch von dem abgestreiften Verfahrenskondensat abtrennt und das dampfförmige Gemisch auf einen Druck verdichtet, de mindestens gleich dem Druck ist, bei dem die Regenerierung der Waschlösung stattfindet; und
- (e) dieses unter Druck stehende dampfförmige Gemisch in den Regenerator einführt, um das Wasserdampf-Abstreifen zu unterstützen;
- wobei mindestens ein Teil des während der Kühlstufe (a)
 aus dem Beschickungsgas entnommenen Wärmegehaltes verwendet wird, um die Waschlösung zum Sieden zu bringen
 und Wasserdampf zu bilden, der als Abstreifer-Wasserdampf
 zur Regenerierung der Waschlösung verwendet wird, indem man
 - (i) das heiße Beschickungsgas, bevor es in Stufe (c)
 zum Erhitzen des Verfahrenskondensates verwendet
 wird, in indirekten Wärmeaustausch mit der Waschlösung
 bringt, wobei das heiße Beschickungsgas eine Temperatur
 aufweist, die ausreicht, um die Waschlösung zum Sieden
 zu bringen und dadurch die Waschlösung unter Bildung
 von Wasserdampf auf ihren Siedepunkt erhitzt;
 und
 - (ii) diesen aus der Waschlösung stammenden Wasserdampf in den Regenerator einführt.

Unsere Nr. 23 960 :

Ec/br

Exxon Research and Engineering Company Florham Park, N.J., V.St.A.

5

Kreislaufverfahren zur Entfernung saurer Gase aus einem Beschickungsgasstrom, der ein heißes, wasserdampfhaltiges Gasgemisch umfaßt.

10

Die vorliegende Erfindung betrifft eine Verbesserung für Verfahren zur Entfernung saurer Gase, wie ${\rm CO_2}$ und ${\rm H_2S}$, aus heißen, wasserdampfhaltigen Gasgemischen.

15

Die technische Bedeutung von Gaswaschverfahren, die die massenweise Entfernung von sauren Gasen, insbesondere CO2 und H2S, aus verschiedenen rohen Gasgemischen mit sich bringen, steigt ständig. Wie der Bedarf nach synthetischen 20 Brennstoffen und synthetischen Gasen, die aus Brennstoffquellen, wie Naturgas, Öl und Kohle stammen, ansteigt, besteht auch ein immer ansteigender Bedarf nach wirksamen Verfahren zur Entfernung von CO2 und/oder H2S aus den rohen Gasgemischen, die gebildet werden. Beispielsweise 25 wird bei der Reformierung von Naturgas unter Bildung von Wasserstoff für die Ammoniaksynthese oder Hydrierungsræktionen ein rohes Gas gebildet, das gewöhnlich 16 bis 20 trockene Molprozent CO2 enthält, die insgesamt vor der Stufe der Ammoniaksynthese entfernt werden müssen. 30 Auch bei der Herstellung von synthetischem Methan aus Kerosin (Naphtha), Schweröl oder Kohle wird das Ausgangsmaterial einer Reformierung oder einer partiellen Oxidation unterworfen, wobei ein rohes Gas erhalten wird, das z.B. 20 bis sogar 50 % CO₂ zusammen mit geringeren Mengen.

an H₂S enthält, wenn ein schwefelhaltiges Ausgangsmaterial verwendet wird.

5

10

15

20

25

30

Die saures Gas enthaltenden Gemische, die durch Verfahren, wie Reformieren mit Wasserdampf und partielle Oxidation erhalten werden, liegen bei erhöhter Temperatur (und gewöhnlich bei erhöhten Drucken) vor und enthalten große Mengen an Wasserdampf. Eine gute Wärmewirksamkeit fordert die wirksame Entfernung und Ausnutzung des Wärmegehaltes derartiger roher Gase. In diesem Zusammenhang ist das Ausmaß, in dem ein derartiger Wärmegehalt wirksam ausgenutzt werden kann, um die Energie bereitzustellen, die zur Entfernung der großen Mengen an sauren Gasen, die sie enthalten, erforderlich ist, ein höchst bedeutender Faktor bei der Bestimmung der Gesamtenergiewirksamkeit des Systems.

In der modernen Technik umfaßt das am meisten angewendete Verfahren zur massenweisen Entfernung von CO2 und H2S aus derartigen Gasgemischen ein Waschen des Gases mit wäßriger alkalischer Waschlösung. Die Waschlösung wird kontinuierlich zwischen einer Absorptionsstufe, in der die sauren Gase absorbiert werden, und einer Regenerierungsstufe, in der die sauren Gase aus der Lösung mittels Wasserdampf-Abstreifen desorbiert werden, im Kreislauf geführt. Bei den meisten Anwendungen wenden wirksame Arten derartiger Kreislaufverfahren einen im wesentlichen isothermischen Absorptions- und Regenerierungskreislauf an, d.h., die Absorptions- und Regenerierungsstufen werden bei der gleichen Temperatur oder einer sehr ähnlichen Temperatur durchgeführt, z.B. einer Temperatur in der Nähe der Siedetemperatur der Waschlösung bei Normaldruck. Durch die Ausschaltung von Erwärmung und Abkühlung, die in nichtisothermischen Verfahren erforderlich sind, werden

Wärmeverluste in hohem Maße verringert.

5

20

In jedem derartigen Verfahren, ob isothermisch oder nichtisothermisch, stellt den höchsten Energiebedarf des Verfahrens der zum Abstreifen erforderliche Wasserdampf für die Regenerierung der Lösung dar, und es ist daher höchst erwünscht, den Wärmebedarf der Regenerierung zu verringern und/oder derartige Regenerierungs-Wärme aus Wärmequellen abzuleiten, die für andere Zwecke wenig oder gar nicht 10 ausgenutzt werden.

Zum Stand der Technik über Systeme zur Entfernung von CO, wird auf die US-PSen 3 101 996; 3 288 557; 3 714 327; 3 823 222; 4 160 810; 4 198 378; 3 962 404 und 4 073 863 15 sowie auf die beiden Vortragsveröffentlichungen, die 72. Jahrestreffen des American Institute of Chemical Engineers vom 25. bis 29. November 1979 von Crabs u.a. unter dem Titel "Energy Savings for Carbon Dioxide Removal Systems" und von J. Stokes unter dem Titel "The Economics of CO, Removal in Ammonia Plants" vorgelegt wurden, verwiesen. Keine der vorstehenden Druckschriften beschreibt die vorliegende Erfindung.

Gemäß einer Ausführungsform der vorliegenden Erfindung wird eine Verbesserung in einem Kreislaufverfahren zur 25 Entfernung saurer Gase aus einem Beschickungsgasstrom, der ein heißes, wasserdampfhaltiges Gasgemisch umfaßt, mit Hilfe einer wäßrigen, alkalischen Waschlösung, die kontinuierlich zwischen einem Absorber, in dem die sauren 30 Gase von der Waschlösung absorbiert werden, und einer Regeneratorstufe, in der diese sauren Gase durch Wasserdampf-Abstreifen desorbiert werden, im Kreislauf geführt wird,

bereitgestellt. Bevor das heiße, wasserdampfhaltige Gasgemisch in den Absorber des Kreisverfahrens eintritt, wird mindestens ein Teil des Wasserdampfgehaltes des heißen wasserdampfhaltigen Gasgemisches darin kondensiert und unter Bildung eines Verfahrenskondensates mit darin 5 gelösten gasförmigen Verunreinigungen von dem Gasgemisch abgetrennt. Die Verbesserung des erfindungsgemäßen Verfahrens liegt darin, daß man (a) das Verfahrenskondensat einem Druck unterwirft, der geringer als der Druck ist, bei dem die Regenerierung der Waschlösung stattfindet; 10 (b) anschließend das in Stufe (a) erhaltene Verfahrenskondensat bei dem Druck der Stufe (a) mit mindestens einem fließfähigen Medium, dessen Temperatur ausreicht, um das Verfahrenskondensat zum Sieden zu bringen und von mindestens einem Teil der darin gelösten gasförmigen Verunreinigungen abzustreifen, erhitzt, und ein dampfförmiges Gemisch, das Wasserdampf und die abgestreiften gasförmigen Verunreinigungen enthält, zu erhalten; (c) das in Stufe (b) erhaltene dampfförmige Gemisch von dem abgestreiften Verfahrenskondensat abtrennt und das dampfförmige Gemisch 20 unter einen Druck setzt, der mindestens gleich dem Druck ist, bei dem die Regenerierung der Waschlösung stattfindet; und (d) dieses unter Druck stehende dampfförmige Gemisch in den Regenerator einführt, um das Wasserdampf-Abstreifen 25 zu unterstützen.

Die vorliegende Erfindung hält den Druck im Abstreifer für das Verfahrenskondensat bei einer verhältnismäßig geringen Höhe und verringert dadurch die Temperaturen in den Böden des Abstreifers. Diese Verringerung der Temperatur in den Böden des Abstreifers ermöglicht die

Verwendung einer Wärmequelle mit sehr geringer Wärmekapazität zum Abstreifen. Die Überkopfdämpfe des Abstreifers werden dann unter Druck gesetzt und bei dem erhaltenen erhöhten Druck in die Regenerierungsstufe eingeführt, wo die unter 5 Druck stehenden Dämpfe als zusätzlicher Abstreifdampf Regenerierung der Waschlösung dienen. Die vorliegende Erfindung macht es somit möglich, zusätzliche Wärme mit geringer Wärmekapazität (die sonst typischerweise verloren gehen würde) zu gewinnen, diese zur Reinigung des Verfahrenskondensates zu verwenden und gleichzeitig den erhaltenen 10 Überkopfdampf des Abstreifers des Verfahrenskondensates zur Regenerierung zu verwenden. Wenn auch die Einrichtung, mit deren Hilfe Wasserdampf unter Druck gesetzt wird. einige Energie verbraucht, so ist dies doch viel weniger als die Energie, die dadurch gespart wird. Die Reinigung 15 des Verfahrenskondensates ermöglicht es, daß dieses in wirtschaftlicher Weise als Dampfkesselbeschickungswasser für Dampfkessel, die mit hohen Temperaturen und hohen Drucken arbeiten, verwendet wird, oder daß es an die 20 Umgebung mit weniger schädlichem ökologischem Einschlag als nicht abgestreiftes Verfahrenskondensat abgegeben wird.

In einer anderen Ausführungsform der vorliegenden Erfindung
wird das Beschickungsgas auch gekühlt, bevor es in den
Absorber eintritt, um Wasserdampf zu kondensieren, wobei
das Verfahrenskondensat gebildet wird, das dann in dem
Verfahren gemäß der vorstehenden Ausführungsform behandelt
wird. In dieser Ausführungsform wird jedoch mindestens
ein Teil des Wärmegehaltes, der während dieser Abkühlung

aus dem Beschickungsgas entfernt wird, verwendet, um Waschlösung unter Bildung von Wasserdampf, der als Abstreifdampf zur Regenerierung der Waschlösung verwendet wird, zum Sieden zu bringen. Dies wird erreicht, indem man das heiße Beschickungsgas vor der Verwendung des Be-5 schickungsgases zum Erhitzen des Verfahrenskondensates, wenn ein derartiges Beschickungsgas das vorstehend in Stufe (b) beschriebene fließfähige Medium darstellt, in indirekten Wärmeaustausch mit der Waschlösung bringt und dadurch die Waschlösung auf ihren Siedepunkt erhitzt 10 und Wasserdampf herstellt. Der erhaltene Wasserdampf wird dann in den Regenerator eingeführt, wo er als Abstreifdampf dient. Das erhaltene, teilweise gekühlte Beschickungsgas wird dann schließlich verwendet,/durch Gewinnung des darin verbliebenen niederen Wärmegehaltes das Verfahrens-15 kondensat zu erhitzen und zum Sieden zu bringen.

Die Zeichnungen erläutern die Erfindung.

30

- 20 Fig. 1 ist ein Fließdiagramm, das ein Kreislauf-Waschverfahren zur Entfernung von sauren Gasen mit einem Abstreifer für das Verfahrenskondensat und einem darin integrierten Verdichter in seinen bereitesten Ausführungsformen erläutert.
- 25 Fig. 2 ist ein Fließdiagramm, das bevorzugtere Ausführungsformen ähnlicher Kreislaufwaschverfahren erläutert.

Die Fließdiagramme der Figuren 1 und 2 lassen an bestimmten Stellen Merkmale weg, die der Fachmann im tatsächlichen Verfahrensablauf als erwünscht berücksichtigt. Diese Weglassungen werden gemacht, um die Erläuterung der Erfindung zu vereinfachen und zu verhindern, daß sie mit gut bekannten Einzelheiten der Konstruktion belastet wird. So sind beispielsweise in den Fließdiagrammen bestimmte, offensichtlich erforderliche Einrichtungen für die Eießkontrolle, Sicherheit und den Beginn des Verfahrens usw. weggelassen.

In ihren breiteren Ausführungsformen verwendet die Erfindung ein Kreislaufwaschverfahren, in dem eine wäßrige alkalische
Waschlösung benutzt wird, die kontinuierlich zwischen einem Absorber, in dem die in dem heißen wasserdampfhaltigen Beschickungsgas enthaltenen sauren Gase absorbiert werden, und einem Regenerator, in dem die absorbierten sauren Gase durch Wasserdampf-Abstreifen desorbiert werden, im Kreislauf geführt wird.

Integriert in dieses Kreislaufwaschverfahren sind der Abstreifer für das Verfahrenskondensat und Einrichtungen zum Verdichten des daraus erhaltenen überkopfdampfes.

20

25

5

Im einzelnen wird ein heißes, wasserdampfhaltiges Gasgemisch, das behandelt werden soll, um seinen Gehalt an sauren Gasen (hier gemeinsam als Beschickungsgas bezeichnet) zu entfernen, auf Temperaturen abgekühlt, die ausreichen, um mindestens einen Teil des darin vorhandenen Wassers unter Bildung eines Verfahrenskondensates, das Wasser und darin gelöste gasförmige Verunreinigungen umfaßt, zu kondensieren. Die besondere Temperatur, auf die das Beschickungsgas abgekühlt wird, ist nicht kritisch und hängt typischerweise von dem Ausmaß ab, in dem man

die daraus abgeleitete Wärme im Gesamtsystem erfolgreich ausnutzen kann. Je geringer jedoch die Temperatur ist, auf die das Beschickungsgas gekühlt werden kann, desto mehr Wasserdampf kondensiert, desto größer ist die Menge an gasförmigen Verunreinigungen, die darin gelöst werden, und desto geringer ist die Temperatur des Verfahrenskondensates Je geringer der Druck im Abstreifer für das Verfahrenskondensates kondensat ist, desto geringer kann bei einem gegebenen Druck die Temperatur der Wärmequelle für den Abstreifer des Verfahrenskondensates sein und trotzdem noch die thermische Triebkraft für das Abstreifen des Kondensates bereitstellen.

Während also die Temperatur des Beschickungsgases auf

jede Temperatur gekühlt werden kann, die den darin vorhandenen
Wasserdampf wirksam kondensiert, sollten derartige wirksame Temperaturen vorzugsweise bei etwa 66 bis etwa
132°C, insbesondere bei etwa 102 bis etwa 127°C und besonders
bevorzugt bei etwa 107 bis etwa 119°C liegen.

20

30

Die Einrichtungen, die verwendet werden, um ein derartiges Abkühlen zu bewirken, sind ebenfalls nicht kritisch. Zweckmäßigerweise reichen derartige Einrichtungen aus, um einen Wärmeaustausch zwischen dem heißen Beschickungsgas und einem kühlenden fließfähigen Medium (Flüssigkeit oder Gas) auf eine direkte oder indirekte Weise zu ermöglichen und das Verfahrenskondensat zu gewinnen. Zu derartigen Einrichtungen gehören ein oder mehrere indirekte Wärmeaustauscher, wie z.B. ein Aufwärmer, ein Vorerhitzer für Dampfkesselbeschickungswasser, oder ein oder mehrere Wärmeaustauscher mit direktem Kontakt. Zweckmäßigerweise

können derartige Wärmeaustauscheinrichtungen und die dadurch übertragene Wärme verwendet werden, um regenerierte Waschlösung und/oder Wasser gemäß den US-PSen 3 823 222 5 und 4 160 810, auf die hier besonders verwiesen wird, zu erwärmen, und die dadurch gewonnene Wärme kann verwendet werden, um die Regenerierung der Waschlösung zu unterstützen, oder für irgendwelche anderen Zwecke. Vorzugsweise wird das Beschickungsgas, nachdem ein wesentlicher Teil seines 10 Wärmegehaltes mit hoher Wärmekapazität für andere Zwecke entfernt wurde, als Wärmequelle mit geringer Wärmekapazität zum Abstreifen des Verfahrenskondensates wie hier beschrieben verwendet.

- 15 Der Druck des Beschickungsgases ist üblicherweise hoch genug und die Temperatur, auf die es abgekühlt wird, niedrig genug, um die Kondensation eines größeren Teiles des Wasserdampfes bei dem ausgewählten Druck und die Lösung von gasförmigen Verunreinigungen in dem kondensierten 20 Wasserdampf zu bewirken. Drucke, die das Beschickungsgas vor seiner Abkühlung besitzt, hängen ab von dem besonderen Gesamtverfahrenssystem, das angewendet wird, und von örtlichen wirtschaftlichen Faktoren. Zweckmäßigerweise können derartige Drucke bei etwa 7,9 bis etwa 70 bar 25 liegen. Für Ammoniakanlagen zur Reformierung liegen derartige Drucke zweckmäßigerweise bei etwa 18,3 bis etwa 35,5 bar. Ähnliche Betrachtungen treffen im Hinblick auf die Temperatur des Beschickungsgases vor seiner Abkühlung zu. Derartige Temperaturen liegen zweckmäßigerweise bei etwa 177 bis etwa 316°C. Für Ammoniak-Reformierungsanlagen
- 30 liegen derartige Temperaturen zweckmäßigerweise bei etwa

204 bis 288°C. In der Ammoniak-Synthese wird das Beschickungsgas typischerweise aus dem Niedertemperaturkonverter erhalten.

Bekanntlich können im Beschickungsgas neben ${\rm CO_2}$ und/oder ${\rm H_2S}$ auch andere gasförmige Verunreinigungen, wie z.B. ${\rm NH_3}$, Methanol, Amine, COS und dgl., vorhanden sein.

Das Verfahrenskondensat wird dann von dem nichtkondensierten
Teil des Beschickungsgases abgetrennt, d.h. entfernt.
Dies wird durch übliche Verfahrensweisen, z.B. einen
oder mehrere Auswerfertöpfe, bewirkt, die eine Sammlung
des Verfahrenskondensates aus deren Böden und des nichtkondensierten Beschickungsgases als Überkopfdämpfe, die
typischerweise zu der Absorptionssäule geleitet werden,
ermöglichen.

Das Verfahrenskondensat wird dann zu einer hier als KondensatAbstreifer bezeichneten Einrichtung geleitet, in der
20 ein Teil der darin enthaltenen Verunreinigungen entfernt
werden und Wasserdampf von geringem Druck gebildet werden
kann. Da der Druck des Verfahrenskondensates typischerweise
größer ist als der Druck in dem Kondensat-Abstreifer,
wird ein Druckabsenkventil verwendet, um das Fließen
des Verfahrenskondensates zu dem Abstreifer zu kontrollieren.

Die Temperatur des Verfahrenskondensates, das in den Kondensat-Abstreifer eingeführt wird, sollte vorzugsweise niedrig genug sein, um die Herstellung großer Mengen von Wasserdampf, während das Verfahrenskondensat durch

das Druckabsenkventil fließt, zu verhindern. Eine Schnellverdampfung an diesem Punkt ist eine unwirksame Ausnutzung der Wärme in dem Verfahrenskondensat, da damit keinerlei Abstreifen erfolgt und folglich anschließend eine Verdichtung unter Verbrauch weiterer Energie erfolgen muß. Eine Schnellverdampfung des Verfahrenskondensates vor oder während seinem Eintritt in den Kondensat-Abstreifer wird daher vorzugsweise praktisch verhindert oder mindestens auf ein Mindestmaß herabgesetzt. Dies kann durch Kühlung, 10 gegebenenfalls mit Hilfe zusätzlicher Wärmeaustauscher, des Verfahrenskondensates in Verbindung mit den Drucken, die dieses aufweist, bewirkt werden, so daß ein Schnellverdampfen bei seinem Eintritt in den Kondensat-Abstreifer verhindert oder begrenzt wird. In den meisten Fällen ist ein derartiges Abkühlen nicht erforderlich, wenn 15 das gesamte Verfahrenskondensat von dem Beschickungsgas erst eben vor dem Zeitpunkt, zu dem das Beschickungsgas in die Absorptionsstufe eintritt, abgetrennt wird. In diesem Fall wird das Verfahrenskondensat zusammen mit 20 dem nichtkondensierten Beschickungsgas abgekühlt, wenn beide durch die verschiedenen, hier beschriebenen Wärmeaustauscher geleitet werden. Wenn jedoch das Verfahrenskondensat von dem Beschickungsgas abgetrennt wird, nachdem dieses durch alle aufeinanderfolgenden Wärmeaustauscher geleitet 25 wurde, kann die kombinierte Temperatur der verschiedenen Verfahrenskondensatströme, die zu dem Kondensat-Abstreifer geleitet werden, wesentlich oberhalb ihres kombinierten Schnellverdampfungspunktes bei dem Druck des Verfahrenskondensat-Abstreifers liegen. Daher ist es eine bevorzugte Anordnung gemäß vorliegender Erfindung, wenn dieses heiße 30 Verfahrenskondensat vorzugsweise weiter gekühlt werden

kann, indem man in nutzbarer Weise Wärme auf ein anderes fließfähiges Medium überträgt, das auf eine Temperatur erhitzt werden muß, die näher an ihrem Verdampfungspunkt liegt, bevor es in den Kondensat-Abstreifer eintritt.

5

10

Der Druck in dem Kondensat-Abstreifer wird unterhalb
des Druckes gehalten, bei welchem die Regenerierung der
Waschlösung stattfindet. In den Fällen, in denen eine
Regenerierung gleichzeitig bei mehr als einem Druck erfolgt,
wird hiervder "Druck, bei dem die Regenerierung der Waschlösung erfolgt" (hier auch zweckdienlich als "Regenerierungsdruck" bezeichnet) derjenige Druck definiert, der an
dem Punkt im Regenerator existiert, an dem der Überkopfdampf
des abgestreiften Verfahrenskondensates in diesen eintritt.

15

20

25

30

Wenn auch jeder Druck in dem Verfahrenskondensat-Abstreifer unterhalb des Regenerierungsdruckes für die vorliegende Erfindung ausreichend ist, so werden doch größere Wirksamkeiten in Bezug auf Wärmegewinnung aus der Wärmequelle für den Kondensat-Abstreifer erhalten, wenn der Druck des Kondensat-Abstreifers wesentlich unterhalb des Regenerieru druckes liegt. So liegt der Druck des Kondensat-Abstreifers zweckmäßig etwa 0,07 bis etwa 1,73 bar, vorzugsweise etwa 0,34 bis etwa 1,38 bar und insbesondere etwa 0,34 bis etwa 1,03 bar unterhalb des Regenerierungsdruckes.

Durch Einstellung und Verringerung des Druckes in dem Verfahrenskondensat-Abstreifer innerhalb der vorstehenden Bereiche kann die Temperatur des Verfahrenskondensates am Boden des Abstreifers in gleicher Weise auf das Ausmaß verringert werden, das erforderlich ist, um eine geeignete Temperaturdifferenz zwischen Verfahrenskondensat-Böden und der (nachstehend beschriebenen) Wärmequelle, die

zum Sieden und Abstreifen der Böden verwendet wird, zu erreichen. Je geringer der Druck in dem Kondensat-Abstreifer ist, desto geringer ist die Temperatur des Verfahrenskondensates in den Böden, und desto geringer ist daher die Mindestwärmemenge (d.h. Mindesttemperatur) der Wärmequelle, die erforderlich ist, um ein derartiges Temperaturdifferential zu erreichen.

Die besondere Ausgewogenheit von Temperatur und Druck in dem Verfahrenskondensat-Abstreifer wird zweckmäßig so ausgewählt, daß ein Temperaturdifferential zwischen den Kondensat-Böden und der Temperatur am Ausgang der den Abstreifer heizenden Wärmequelle erreicht wird, das ausreicht, um das Verfahrenskondensat abzustreifen und zum Sieden zu bringen. Derartige Verfahrenskondensat-Temperaturen und Temperaturdifferentiale werden in der Praxis der vorliegenden Erfindung leicht erreicht und ermöglichen eine wirksame Gewinnung und Übertragung eines wesentlichen Anteils des Wärmegehaltes mit geringer Wärmekapazität der Wärmequelle, der sonst nach den bisher bekannten Verfahren zum Abstreifen des Verfahrenskondensates

nicht verwendbar wäre.

Das Verfahrenskondensat wird von seinen Verunreinigungen abgestreift, und ein Teil des darin vorhandenen Wassers wird zu Wasserdampf verdampft, indem man es anschließend 5 in einem Wärmeaustauscher bei den vorstehend beschriebenen verringerten Drucken mit einem fließfähigen Medium (Flüssigkeit oder Gas) erhitzt, das einen Wärmegehalt mit geringerer Wärmekapazität aufweist, der gewonnen und auf das Verfahrens- V kondensat übertragen werden kann. Der Wärmegehalt des 10 fließfähigen Mediums mit geringerer Wärmekapazität wird als dessen Temperatur ausgedrückt. Wie vorstehend beschrieben, wird die Temperatur des heizenden fließfähigen Mediums. in Verbindung mit dem Druck (und der Temperatur) in dem Verfahrenskondensat-Abstreifer kontrolliert, um das Temperatur-15 differential bereitzustellen, das zur Erzeugung der thermischen Triebkraft für den Wärmeübergang auf den letzteren erforderlich ist. Da die Temperatur der Verfahrenskondensat-Böden durch die Verringerung des Druckes in dem Kondensat-Abstreifer verringert wird, verringern die vorstehend 20 beschriebenen Temperaturdifferentiale entsprechend die Temperaturerfordernisse des heizenden fließfähigen Mediums. Es ist zwar möglich, ein fließfähiges Medium mit einer höheren Temperatur, als sie zum Sieden und Abstreifen des Verfahrenskondensates erforderlich ist, anzuwenden, 25 die Anwendung eines fließfähigen Mediums mit einer derartigen höheren Temperatur für diesen Zweck würde jedoch Energieverschwendung bedeuten, und der Wärmegehalt mit höherer Wärmekapazität, den diese besitzt, kann besser an anderer Stelle des Systems eingesetzt werden. 30

Daher liegt die Temperatur des heizenden fließfähigen Mediums, das in Kontakt mit dem Verfahrenskondensat steht, typischerweise dann, wenn dieses den Wärmeaustauscher verläßt, nicht mehr als etwa 28°C, vorzugsweise nicht mehr als etwa 22°C und insbesondere nicht mehr als etwa 17°C oberhalb 5 . des Siedepunktes des Verfahrenskondensates bei den vorstehend beschriebenen Drucken. In ähnlicher Weise liegt dann, wenn Wasserdampf direkt in den Abstreifer eingeführt wird, dessen Kondensationstemperatur bei dem Druck, bei dem er geliefert wird, typischerweise nicht mehr als 10 etwa 28°C, vorzugsweise nicht mehr als etwa 22°C und insbesondere nicht mehr als etwa 17°C oberhalb des Siedepunktes des Verfahrenskondensates. Innerhalb des Zusammenhanges der in dem Verfahrenskondensat-Abstreifer existierenden Ausgewogenheit von Temperatur und Druck und des Emperatur-15 differentials, das erforderlich ist, um den vorstehend beschriebenen Wärmeübergang zu erreichen, schwankt die Auslaßtemperatur des in indirektem Wärmeaustausch mit dem Verfahrenskondensat angewendeten heizenden fließfähigen 20 Mediums nach dem Wärmeübergang auf das Verfahrenskondensat typischerweise von etwa 66 bis etwa 149°C, vorzugsweise von etwa 93 bis etwa 132°C und insbesondere von etwa 104 bis etwa 121°C.

Als heizendes fließfähiges Medium kann jede Flüssigkeit oder jedes Gas verwendet werden, das fähig ist, seine Wärme auf das Verfahrenskondensat zu übertragen, ohne die in dem Verfahrenskondensat-Abstreifer auftretenden Ereignisse oder das Kreislaufsystem aus Absorption und Regenerierung ungünstig zu beeinflussen. Zu den zweckmäßig verwendbaren heizenden fließfähigen Medien gehören Wasserdampf und alle Verfahrensströme, die mit einer geeigneten Temperatur erhältlich sind, wie der Fachmann ohne weiteres erkennen wird.

Das bevorzugte heizende fließfähige Medium ist das Beschickungsgas, das gereinigt werden soll. So werden gemäß üblicher Praxis heiße Beschickungsgase aus dem Reformierungsofen, aus einer Einheit zur partiellen Oxidation oder aus einem Reaktor zur Konvertierung von Wassergas durch 5 eine oder mehrere Wärmegewinnungsstufen geleitet, in denen der Wärmegehalt dieser Gase z.B. gewonnen und zur Bildung von Wasserdampf in Abfallwärme-dampfkesseln oder zum Vorerwärmen von Luft oder Beschickungswasser für Dampfkessel verwendet wird. In der bevorzugten Ausführungs-10 form werden diese heißen Beschickungsgase nach Gewinnung möglichst großer Wärmemengen mit hoher Wärmekapazität in indirekten Wärmeaustausch mit Waschlösung, die vorzugsweise aus dem Regenerator abgezogen wurde, gebracht, wodurch die Waschlösung zum Sieden gebracht und Wasserdampf daraus 15 hergestellt wird. Dieser aus Waschlösung erhaltene Wasserdampf wird dann in den Regenerator eingeführt, wo er als Abstreifwasserdampf zur Regenerierung dient.

- Nach Abkühlen der heißen Beschickungsgase auf die vorstehend beschriebenen Temperaturen des heizenden fließfähigen Mediums werden diese in Wärmeaustausch mit dem Verfahrenskondensat im Abstreifer gebracht, wo man sie darin vorhandenen zusätzlichen Wärmegehalt mit geringer Wärmekapazität übertragen läßt, und gegebenenfalls durch einen oder mehrere zusätzliche Wärmeaustauscher für Wärmegehalte mit geringer Wärmekapazität geleitet, bevor sie zu dem Absorber geleitet werden.
- In einigen Fällen kann es zweckmäßiger sein, als Alternative oder zusätzlich Wasserdampf oder aus anderen Quellen als dem Beschickungsgas abgeleitete Wärme, die die geeignete Wärmeaustauschtemperatur besitzt, zu liefern, um das Verfahrenskondensat zu erhitzen.

Die Einrichtungen zur Durchführung des Wärmeaustauschs zwischen dem heizenden fließfähigen Medium und dem Verfahrenskondensat sind bekannt.

So kann das heizende fließfähige Medium in direktem oder indirektem Wärmeaustausch mit dem in dem Kondensat-Abstreifer vorhandenen Verfahrenskondensat verwendet werden. Dieses heizende fließfähige Medium kann dem Verfahrenskondensat über einen indirekten Wärmeaustauscher (z.B. Aufwärmer), der extern zu dem Kondensat-Abstreifer angeordnet ist, oder durch einen solchen, der innerhalb des Abstreifers angeordnet ist, zugeführt werden. Das heizende fließfähige Medium kann aber alternativ auch direkt in den Kondensat-Abstreifer eingespritzt werden.

15

Vorzugsweise wird ein Aufwärmer, der außerhalb des Kondensat-Abstreifers angeordnet ist, verwendet, indem indirekter Wärmeaustausch stattfindet.

20 Mit Hilfe des heizenden fließfähigen Mediums wird das Verfahrenskondensat - vorzugsweise kontinuierlich - auf seinen Siedepunkt bei dem in dem Kondensat-Abstreifer vorliegenden Druck erhitzt. Auf diese Weise wird das Kondensat durch die natürliche Siedewirkung des Verfahrens-25 kondensates von einem Teil, vorzugsweise einem größeren Teil, seiner gasförmigen Verunreinigungen zusammen mit einem Teil seines Wassergehaltes, der als Wasserdampf verdampft wird, abgestreift. Die Größe des Aufwärmers. des Kondensat-Abstreifers wird auf übliche Weise in Verbindung 30 mit der Temperatur des heizenden fließfähigen Mediums und dem Druck im Verfahrenskondensat-Abstreifer derart kontrolliert, daß etwa 0,05 bis etwa 0,5, vorzugsweise

etwa 0,1 bis etwa 0,35 und insbesondere etwa 0,15 bis etwa 0,30 kg Wasserdampf pro kg Kondensat abgegeben werden.

Es sei darauf hingewiesen, daß die oberen Mengen an abgegebenem Dampf, wie sie in den vorstehenden Bereichen angegeben sind, nicht notwendigerweise das erforderliche Minimum darstellen, um ein brauchbares Abstreifen des Verfahrenskondensates zu erreichen, sondern vielmehr ein Bestreben zur Maximierung der Gewinnung von Wärme mit geringer Wärmekapazität aus dem Beschickungsgas zum Ausdruck bringen.

5

10

15

20

25

30

Durch Einstellung der Geschwindigkeit, mit der Wasserdampf aus dem Verfahrenskondensat abgegeben und/oder als heizendes fließfähiges Medium eingeführt wird, wird ein Gleichgewicht mit dem abgegebenen und/oder zugesetzten Wasserdampf eingerichtet. Auf diese Weise wird ein dampfförmiges Gemisch, das Wasserdampf und gasförmige Verunreinigungen enthält, als Überkopfdampfstrom von der Spitze des Abstreifers abgegeben. Dieses bei niedrigem Druck vorliegende dampfförmige Gemisch wird dann durch eine geeignete Einrichtung auf einen Druck verdichtet, der ausreicht, um zu ermöglichen, daß das dampfförmige Gemisch in den Regenerator eingeführt wird, wo es das Abstreifen der verbrauchten Waschlösung unterstützt. Um das dampfförmige Gemisch in den Regenerator einführen zu können, muß es auf einen Druck verdichtet werden, der mindestens gleich und vorzugsweise etwas größer als der Druck ist, der in dem Regenerator an dem Punkt herrscht, an dem es eingeführt wird (hier auch als "Punkt des Regenerierungsdruckes" bezeichnet), und wird vorzugsweise auf einen Druck verdichtet, der mindestens

c

Ţ

gleich und insbesondere etwas größer als der Druck ist, der am Boden der Regenerierungsstufe, in die es eingeführt wird, herrscht.

Jede geeignete Verdichtungseinrichtung, die in der Technik üblicherweise zum Verdichten von Wasserdampf verwendet wird, kann gemäß vorliegender Erfindung verwendet werden. So wird in einer bevorzugten Ausführungsform der Erfindung die Saugseite eines mechanischen Verdichters so adaptiert, daß sie den Überkopfdampfstrom empfangen kann, der aus dem Kopf des Kondensat-Abstreifers ausgestoßen wird. Der Verdichter dient daher nicht nur dazu, den Wasserdampf mit geringem Druck und die gasförmigen Verunreinigungen zu verdichten, sondern stellt auch die Einrichtung zur Verringerung und Kontrolle des Druckes innerhalb des Kondensat-Abstreifers bereit.

Alternativ kann auch die Saugseite einer WasserdampfAusdrückvorrichtung auf ähnliche Weise so adaptiert werden,
daß ein ähnliches Ergebnis erreicht wird. In dieser Ausführungsform muß an die Ausdrückvorrichtung eine Quelle
von antreibendem Wasserdampf geliefert werden, um eine
Verringerung des Druckes und Verdichtung zu erreichen.
Das Gemisch aus verdampftem Wasserdampf (aus dem KondensatAbstreifer) und antreibendem Wasserdampf wird dann in
den Regenerator eingespritzt.

20

25

30

35

Der Punkt, an dem (die Punkte, an denen) der verdichtete Wasserdampf in den Regenerator eingeführt wird, der eine oder mehrere Stufen umfassen kann, ist für die Erfindung nicht kritisch. Für jede Regenerierungsstufe, in die verdichtetes dampfförmiges Gemisch eingeführt wird, sollte der Punkt (sollten die Punkte) der Einführung weit genug unterhalb der besonderen Regenerierungsstufe angeordnet, sein, um zu ermöglichen, daß das dampfförmige Gemisch

aufwärts im Gegenstrom zur verbrauchten Waschlösung fließt.

Das abgestreifte Verfahrenskondensat, das am Boden des Kondensat-Abstreifers vorhanden ist, wird dann, wenn es als Zusatzwasser für mit hohen Drucken arbeitende 5 Dampfkessel verwendet werden soll, typischerweise einer Entmineralisierungsbehandlung durch Kontakt mit einem Ionenaustauscherharz oder mit Chemikalien unterworfen, um Ionen zu entfernen, die in mit hohen Drucken arbeitenden Dampfkesseln schädlichen Kesselstein und/oder Korrosion 10 hervorrufen könnten, und anschließend mit Wasserdampf oder inertem Abstreifgas und dergleichen entlüftet, um Spuren von Sauerstoff und/oder CO, zu entfernen, die von dem Verfahrenskondensat während der Entmineralisierung absorbiert worden sein können. Um das Ausmaß der Reinigung, 15 die mit Hilfe des erfindungsgemäßen Verfahrens erreicht werden kann, zu erläutern, sei aufgeführt, daß ein nicht abgestreiftes Verfahrenskondensat, das aus einem üblichen Beschickungsgas der Ammoniaksynthese stammt, typischerweise Verunreinigungen mit der folgenden repräsentativen Zusammensetzun 20 enthält:

CO2: 1000 bis 5000 ppm

NH3 und Amine: 500 bis 2000 ppm

25 CH₃OH und andere

30

organische Stoffe: 300 bis 2 500 ppm.

Das vorstehende Verfahrenskondensat kann andererseits nach dem Abstreifen typischerweise die folgende Zusammensetzung aufweisen:

CO₂: 5 bis 100 ppm

NH₃ und Amine: 1 bis 100 ppm

CH3OH und andere

35 organische Stoffe: 5 bis 200 ppm

Das erfindungsgemäße Verfahren und die dadurch erreichte Wärmeerhaltung ist besonders vorteilhaft dadurch, daß es nicht nur ein flexibles Mittel zur Gewinnung einer wesentlichen Menge an Wärme mit geringer Wärmekapazität (aus verschiedenen Verfahrensströmen, die in üblichen 5 Systemen mit Absorption und Regenerierung bereits vorhanden sind) bereitstellt, die bisher schwierig in wirtschaftlicher Weise zu gewinnen war, da diese Wärme eine zu geringe Temperatur aufweist, sondern das erfindungsgemäße Verfahren nutzt diese Wärme auch aus, um zwei bedeutende und brauchbare : 10 Funktionen zu erfüllen, nämlich das Abstreifen des Verfahrenskondensates und die Unterstützung beim Abstreifen der verbrauchten Waschlösung. Da diese Funktionen durch Verfahrensströme, die Wärme mit einer geringen Wärmekapazität enthalten, erfüllt werden, wird Wärme mit höherem Energiewert, die 15 ursprünglich in diesen Strömen vorhanden sein kann, für andere Zwecke verfügbar gemacht.

Wie bereits vorstehend ausgeführt wurde, ist die Erfindung 20 allgemein anwendbar auf und integrierbar in Systeme, die irgendeine regenerierbare, absorbierende Lösung, vorzugsweise eine regenerierbare wäßrige alkalische Waschlösung, einschließlich z.B. wäßriger Lösungen von Alkalimetallcarbonaten, insbesondere Kaliumcarbonat, wäßriger 25 Lösungen von Ethanolaminen oder Alkalimetallphosphaten, verwenden. Besonders bevorzugt sind verhältnismäßig konzentrierte Kaliumcarbonatlösungen mit Kaliumcarbonatkonzentratione von 15 bis 45 Gew.-% und vorzugsweise 20 bis 35 Gew.-% (diese Konzentrationen wurden berechnet unter der Annahme, daß das gesamte Kalium in Form von Kaliumcarbonat vorliegt). 30 Kaliumcarbonatlösungen werden vorzugsweise durch Zusatz von Additiven, z.B. Aminen, insbesondere Ethanolamine, Alkalimetallboraten, wie Kaliumborat oder Natriumborat, As202, Aminosäuren, wie z.B. Glycin, oder anderen Additiven,

die die Geschwindigkeit der Absorption und Desorption saurer Gase in der Kaliumcarbonatlösung erhöhen, aktiviert.

Neben den Kaliumcarbonatlösungen mit oder ohne Aktivatoren können auch andere regenerierbare wäßrige alkalische Waschlösungen, wie z.B. wäßrige Lösungen der Ethanolamine oder wäßrige Lösungen der Alkalimetallphosphate, wie z.B. Kaliumphosphat, verwendet werden.

10 Bekanntlich unterscheiden sich die während der Absorption und Regenerierung auftretenden Reaktionen je nach der besonderen Waschlösung, die verwendet wird. Im Fall von Kaliumcarbonat wird durch die Absorption von CO2 Kaliumbicarbonat gebildet, während bei der Regenerierung oder Desorption CO, unter Bildung von Kaliumcarbonat freigesetzt 15 wird. Wie ebenfalls bekannt ist, laufen die reversiblen Absorptions- und Desorptionsreaktionen in der Absorptionsoder Regenerierungsstufe nicht bis zur Vollständigkeit ab, so daß die im Kreislauf geführte Waschlösung tatsächlich 20 ein Gemisch darstellt. Im Fall von Kaliumcarbonatlösungen ist z.B. die regenerierte Waschlösung, die im Fall einer CO2-Absorption zum Absorber geführt wird, ein Gemisch aus Carbonat und Bicarbonat, das reich an Carbonat ist, während die den Absorber verlassende Lösung ein an Bicarbonat 25 reiches Gemisch ist. Die hier gegebenen Hinweise auf Waschlösungen von Kaliumcarbonat, Ethanolaminen oder Kaliumphosphat umfassen daher selbstverständlich Gemische dieser Verbindungen mit den Reaktionsprodukten, die während

Die vorliegende Erfindung ist offensichtlich ebenfalls anwendbar auf die Verwendung von regenerierbaren, absorbierenden Lösungen in jeder einzelnen Stufe von Mehrstufen-

des Absorptionsverfahrens gebildet werden.

absorptions- und/oder -regenerierungsverfahren, die bekannt sind. Das erfindungsgemäße Schema aus Kondensat-Abstreifer und Verdichtungseinrichtung wird vorzugsweise mit üblichen Kreislauf-Waschverfahren integriert, bei denen die Absorption und die Regenerierung bei der gleichen oder bei nahe beieinanderliegenden Temperaturen durchgeführt werden und bei denen die Absorption unter Drucken im wesentlichen oberhalb Normaldruck von mindestens 7,9 bar, zweckmäßigerweise von etwa 7,9 bis etwa 104 bar erfolgt, und bei denen die Regenerierung bei einem Druck in der Nähe 10 von Normaldruck, z.B. zweckmäßigerweise bei etwa 0,67 bis etwa 4,5 bar, vorzugsweise bei etwa 1 bis etwa 3,1 bar und insbesondere bei etwa 1,35 bis etwa 2,4 bar erfolgt.

15

30

5

Das erfindungsgemäße Verfahren ist auch anwendbar auf und kann integriert werden mit Kreislaufsystemen, bei denen die Regenerierung der absorbierenden Lösung in zwei Säulen (angeordnet in Reihe oder parallel) durchgeführt 20 wird, von denen die erste (Hauptsäule) bei einem höheren Druck und mit Hilfe von von außen zugeführter Wärme arbeitet, und die andere (zweite Säule) bei einem geringerem Druck und im wesentlichen mit Hilfe von Wärme, die aus der aus der Hauptsäule ausgetretenen regenerierten Lösung 25 gewonnen wurde, arbeitet.

Die Absorptionsstufe umfaßt zweckmäßig mindestens eine Absorptionssäule, die in geeigneter Weise mit Einrichtungen ausgestattet ist, die eine enge Berührung zwischen Gas und Flüssigkeit bewirken. Für derartige Zwecke werden Packungsmaterialien, wie z.B. Raschigringe (R), Berlsattel (R), Intalox-sattel (R), Pall-ringe (R) oder andere Typen von Packungskörpern verwendet, die dem durch die

5

10

Packung fließenden Gas eine große Flüssigkeitsoberfläche aussetzen. Anstelle von Packungsmaterialien können andere Einrichtungen, wie z.B. Platten, beispielsweise Siebplatten, verwendet werden, um eine innige Berührung von Gas und Flüssigkeit sicherzustellen.

In ähnlicher Weise umfaßt die Regenerierungsstufe typischerweise mindestens eine Regenerierungssäule, die ebenfalls Packungsmaterialien oder Platten enthält, um eine innige Berührung zwischen der Waschlösung und dem durch diese Säule geführten Abstreif-Wasserdampf sicherzustellen.

Gemäß üblichen Kreislaufverfahren zur Entfernung saurer Gase in ihrer einfachsten Form tritt die Waschlösung in einem oder mehreren getrennten Strömen, die unabhängig 15 gekühlt werden können oder auch nicht, an oder in der Nähe der Spitze der Säule in den Absorber ein und fließt typischerweise im Gegenstrom mit dem Beschickungsgas, das gereinigt werden soll, abwärts durch die Säule. Als Ergebnis der Waschwirkung innerhalb der Säule werden 20 die in dem Strom vorhandenen sauren Gasbestandteile in die flüssige Waschlösung absorbiert. Der gereinigte Beschickung: qasstrom wird entfernt und zu einer weiteren Bearbeitung geleitet. Waschböden (wash trays) und/oder ein Mitschleppabscheider können verwendet werden, um mitgeschleppte 25 oder verdampfte Waschlösung aus dem gereinigten Beschickungs qasstrom des Verfahrens abzutrennen.

Die erhaltene verbrauchte Waschlösung, die mit sauren

30 Gasbestandteilen beladen ist, wird bei erhöhtem Druck
und erhöhter Temperatur entfernt und durch eine Verfahrensfolge, die ein Erhitzen, typischerweise mit Wasserdampf,
umfaßt, in der Regenerierungssäule, vorzugsweise bei
einem geringeren Druck, regeneriert, um die sauren Gasbestandteile zu desorbieren.

Die Regenerierung kann in einer oder in mehreren Stufen durchgeführt werden. Bei der Mehrstufenregenerierung wird ein Teil der verbrauchten Waschlösung mindestens einem intermediären Grad der Regenerierung (d.h. unter Hinterlassung eines höheren Anteils an absorbierten Gasen in Lösung) unterworfen, während eine andere Fraktion der verbrauchten Waschlösung einem zusätzlichen Wasserdampfabstreifen unterworfen wird, um eine sorgfältiger regenerierte Waschlösung zu erhalten. Derartige Mehrstufensysteme

10 sind nachstehend in Verbindung mit Fig. 2 sowie in der US-PS 2 886 405 in Verbindung mit Fig. 7 beschrieben.

Die folgenden Erläuterungen beschreiben anhand der Zeichnungen verschiedene Ausführungsformen, bei denen ein Schema aus Verfahrenskondensat-Abstreifer und Verdichter in übliche Kreislaufsysteme zur Absorption und Regenerierung integriert ist.

15

Gemäß Fig. 1 wird heißes Verfahrensbeschickungsgas 20 (von z.B. 227 bis etwa 260°C), das von einem mit niedriger Temperatur arbeitenden Konverter stammt, bei einem Druck von etwa 28,6 bis etwa 35,5 bar durch Leitung 5 in das System eingeführt und durch Hindurchleiten durch mindestens einen Wärmeaustauscher, der insgesamt als 6 bezeichnet 25 ist, auf eine Temperatur von etwa 104 bis etwa 121°C abgekühlt. Als Ergebnis der Abkühlung kondensiert ein Teil des darin vorhandenen Wasserdampfes, der darin CO2 ähnliche Verunreinigungen gelöst enthält. Dieses Gemisch aus kondensiertem Wasserdampf und Beschickungsgas 30 wird durch Leitung 6A in den Auswerfertopf 7 geleitet, in dem die nicht kondensierten Gase als Überkopfstrom von dem Verfahrenskondensat abgetrennt und bei einer Temperatur von etwa 104 bis etwa 121°C durch Leitung 16 zur Absorptionssäule 1 geleitet werden, die bei einem 35 Druck von etwa 28,6 bis etwa 35,5 bar arbeitet.

Das aus dem Boden des Auswerfertopfes 7 gesammelte Verfahrenskondensat wird bei einer Temperatur von etwa 104 bis etwa 121°C und einem Druck von etwa 28,6 bis etwa 35,5 bar durch Leitung 8 geleitet, gegebenenfalls durch den Austauscher 8A geleitet, in dem es, wenn dies angebracht ist, auf eine Temperatur abgekühlt wird, die ausreicht, um ein Verdampfen beim Eintritt in Leitung 10 zu verhindern oder zu beschränken, und anschließend durch das Druckabsenkventil 9 geleitet, in dem der Druck auf etwa 1 bis etwa 1,42 bar in Leitung 10 verringert wird. Aus Leitung 10 10 wird das Kondensat in den Verfahrenskondensat-Abstreifer 11 eingeführt, der im wesentlichen den gleichen Druck wie Leitung 10 aufweist, wo das Kondensat durch Wasserdampf, der in den Abstreifer durch Leitung 12 eingeführt wird, erhitzt wird, wobei der Wasserdampf einen Druck von etwa 15 1,08 bis etwa 2,04 bar aufweist.

5

20

25

30

Alternativ kann der Wasserdampf aus Leitung 12 durch eine andere Wärmequelle ersetzt werden, die in einem Aufwärmer 17 ausgenutzt wird, der indirekt Wärme aus einem durch Leitungen 18 und 19 fließenden fließfähigen Medium überträgt. Vorzugsweise stellt dieser Aufwärmer einen der Wärmeaustauscher in dem Kreislauf zwischen Leitungen 5 und 6A dar, und das heizende fließfähige Medium in Leitungen 18 und 19 ist das Beschickungsgas, das abgekühlt wird. In dieser Ausführungsform tritt das heizende fließfähige Medium durch Leitung 18 bei einer Temperatur von etwa 121 bis etwa 149°C und einem Druck von etwa 28,6 bis etwa 35,5 bar in den Aufwärmer ein und verläßt diesen durch Leitung 19 bei einer Temperatur von etwa 104 bis etwa 121°C und einem Druck von etwa 28,6 bis etwa 35,5 bar. Das im Kreislauf geführte Kondensat in Leitung 21 wird dadurch in dem Aufwärmer erhitzt und

zum Sieden gebracht und sodann durch Leitung 20 mit einer Temperatur von etwa 99 bis etwa 110°C in den Abstreifer zurückgeführt.

5 Ein dampfförmiges Gemisch aus überschüssigem Wasserdampf. der in einer Menge von etwa 0,1 bis 0,3 kg Wasserdampf pro kg Kondensat gebildet wurde, und abgestreiften Verunreinigungen wird als Überkopfstrom des Abstreifers durch die mit der Saugseite des Verdichters 14 verbundene Leitung 10 13 entfernt. Das dampfförmige Gemisch wird auf einen Druck von etwa 1,7 bis etwa 2,04 bar verdichtet und durch Leitung 15 zu der Regenerierungssäule 2 geleitet. Die regenerierte Waschlösung wird durch Leitung 4 und Pumpe 4A nach Durchgang durch Ventil 4B, in dem der Fluß der 15 Lösung in Leitung 25 kontrolliert wird, zu dem Absorber 1 zurückgeführt. Die verbrauchte Waschlösung, die mit sauren Gasen als Verunreinigungen beladen ist, wird durch Leitung 3 nach Passieren durch das Druckabsenkventil 3A oder alternativ eine (nicht gezeigte) hydraulische 20 Turbine in die Regenerierungssäule 2 geleitet und durch den Aufwärmer 31 erhitzt.

Das abgestreifte Verfahrenskondensat wird durch Leitung 24 aus dem Abstreifer 11 abgezogen, um weiter bearbeitet, z.B. entmineralisiert, zu werden.

25

30

Die in dem Kondensat von Leitung 10 vorhandenen Verunreinigung umfassen diejenigen, die vorstehend erläutert wurden, in ähnlichen oder gleichen Konzentrationen, während die Konzentration der Verunreinigungen in dem abgestreiften Verfahrenskondensat der Leitung 24 ebenfalls wie vorstehend erläutert in typischer Weise schwankt.

Desorbiertes CO₂ und/oder H₂S, die mit Wasserdampf und mitgeschlepter Flüssigkeit vermischt sind, verlassen die Regenerierungssäule 2 durch Leitung 23 und werden nach üblichen Verfahren weiterbehandelt. Beispielsweise könnte dieser Strom direkt entlüftet oder gekühlt werden, um in einer oder mehreren Stufen Wasserdampf zu kondensieren. Bevor und/oder nachdem das gereinigte Beschickungsgas die Absorptionssäule 1 durch Leitung 22 verläßt, wird mitgeschlepte Flüssigkeit entfernt, und das Gas wird dann in die nächste Stufe der für das gereinigte Verfahrensbeschickungsgas vorgesehenen Verwendung, z.B. einer Ammoniaksynthese geleitet.

Figur 2 erläutert eine besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens und die Art und Weise, 15 in der es in ein Kreislaufsystem zur Absorption und Regenerierung integriert ist. Das Beschickungsgas stellt einen aus dem Verlauf der Ammoniaksynthese stammenden Abstrom des Konverters bei niedriger Temperatur dar. Diese Ausführungsform verwendet einen in zwei Stufen 20 arbeitenden Absorber 100 und einen in zwei Stufen arbeitenden Regenerator 101. Die absorbierende Lösung umfaßt zwei Arten, wovon die erste, die hier als arme Lösung bezeichnet wird, eine etwa 10 bis 25%ige Umwandlung von Kaliumcarbonat in Kaliumbicarbonat aufweist, und die zweite, die hier 25 als halb-arme Lösung bezeichnet wird, eine etwa 30 bis 50%ige Umwandlung von Kaliumcarbonat in Kaliumbicarbonat aufweist. In Verbindung damit werden auch übliche Aktivatoren eingesetzt.

30

5

10

Gemäß Figur 2 wird Beschickungsgas, das stromaufwärts eine Wärmegewinnung mit höherer Wärmekapazität hinterläßt, mit etwa 149 bis 177°C durch Leitung 51 in den Aufwärmer 52 geleitet, durch den in indirektem Wärmeaustausch arme

Ł

ſ.

- r

Lösung, die durch Leitung 53 mit einer Temperatur von etwa 110 bis 132°C aus dem Regenerator 101 abgezogen wurde, geleitet wird. Die Wärme des Beschickungsgases wird auf die arme Lösung übertragen und erwärmt diese auf ihren Siedepunkt. Das dadurch gebildete Gemisch aus Wasserdampf und Flüssigkeit verläßt den Aufwärmer 52 durch Leitung 54 und wird in den Regenerator 101 eingeführt, um Abstreifer-Wasserdampf bei einem Druck von etwa 1,7 bis 2,39 bar bereitzustellen.

10

5

Das Beschickungsgas verläßt den Aufwärmer 52 durch Leitung 57 mit einer Temperatur von etwa 121 bis 149°C und einem Druck von etwa 28,6 bis 35,5 bar und wird in den Aufwärmer 58 geleitet, in dem es durch Wärmeübertragung in indirektem Wärmeaustausch auf Verfahrenskondensat, das (bei 99 bis 110°C und etwa 1 bis 1,42 bar) durch Leitung 68 aus dem Kondensat-Abstreifer/abgezogen wurde, weiter auf etwa 104 bis 121°C abgekühlt wird. Das Verfahrenskondensat wird dadurch zum Sieden gebracht. Der erhaltene Wasserdampf verläßt den Aufwärmer 58 und wird als Kondensatabstreiferwasserdampf durch Leitung 67 in den Kondensat-Abstreifer 66 eingeführt.

Die Abkühlung des Beschickungsgases in den Aufwärmern

52 und 58 bewirkt, daß ein Teil des Wasserdampfes darin kondensiert und sich Verunreinigungen darin lösen. Das Gemisch aus nichtkondensiertem Beschickungsgas und kondensierter Wasserlösung in Leitung 59 wird bei einer Temperatur von etwa 104 bis 121°C in den Auswerfertopf 60 geleitet,

in dem das nichtabgestreifte Kondensat gesammelt und durch Leitung 62 aus dessen Boden entfernt wird. Das Beschickungsgas wird dann durch Leitung 61 in die Absorptionssäule 100 geleitet.

ŗ.

Ţ

Das nichtabgestreifte Kondensat wird anschließend durch das Druckabsenkventil 64 geleitet, welches den Druck des nichtabgestreiften Kondensates in Leitung 65 auf etwa 1 bis 1,42 bar verringert, wenn es in den Kondensat-Abstreifer 66 eintritt. Der Kondensat-Abstreifer 66 ist mit geeigneten Einrichtungen für die Berührung von Gas und Flüssigkeit ausgestattet.Der durch Aufwärmer 58 gebildete 🕻 Wasser dampf aus Leitung 67 bewirkt ein Abstreifen des Kondensates von seinen Verunreinigungen. Das abgestreifte Kondensat, das einen Ammoniakgehalt von 1 bis 20 ppm 10 aufweist, verläßt den Abstreifer durch Leitung 69 und wird als Zusatzbeschickungswasser für den Dampfkessel zu der Entmineralisierungsanlage geleitet.

5

Leitung 63, die direkt durch Leitung 70 (gestrichelte 15 Linie) oder vorzugsweise indirekt durch Leitung 71 über Verdampfungstank 91 und Leitung 72 mit der Saugseite des Verdichters 92 verbunden ist, zieht Wasserdampf und abgestreifte Verunreinigungen als ein dampfförmiges Gemisch aus dem Überkopfstrom des Kondensat-Abstreifers 66 in 20 einer Menge von etwa 0,1 bis 0,3 kg Wasserdampf pro kg Kondensat ab und leitet es zu dem Verdichter 92, wo es auf einen Druck von etwa 1,7 bis 2,39 bar verdichtet wird. Der verdichtete Wasserdampf wird durch Leitung 25 73 in die halb-arme Sektion der Regenerierungssäule 101 eingeführt und dient als Abstreif-Wasserdampf für die reich mit Gas beladene Waschlösung.

Wenn der Verdampfungstank 91 in den Kreislauf integriert 30 ist, wird halb-arme Waschlösung bei etwa 1,7 bis 2,39 bar durch Leitung 75 aus der Regenerierungssäule 101 abgezogen und durch das Druckabsenkventil 93 und Leitung 74 (bei etwa 1 bis 1,42 bar) in den Verdampfungstank 91 geleitet, in dem ein Teil der Lösung in Wasserdampf umgewandelt wird. Die Verdampfung dieser Lösung wird 35

vorzugsweise durch den Wasserdampf aus Leitung 71, der aus dem Kondensat-Abstreifer 66 ausfließt, aktiviert.

Anschließend werden der aus der halb-armen Lösung stammende Wasserdampf und das aus dem Kondensat-Abstreifer stammende dampfförmige Gemisch zu dem Verdichter 92 geleitet und darin verdichtet. Es wird zwar die Verwendung von Wasserdampf aus Leitung 71 in dieser Weise bevorzugt, es ist jedoch nicht kritisch für das erfindungsgemäße Verfahren, und alternativ kann auch Wasserdampf aus dem Kondensat-Abstreifer direkt, d.h. durch Leitung 70, in den Verdichter geleitet werden, unabhängig davon, ob ein Verdampfungstank 91 verwendet wird.

5

10

15

In jeder der alternativen Ausführungsformen gemäß Figur 2 werden der Wasserdampf und die Verunreinigungen auf einen Druck von etwa 1,7 bis etwa 2,39 bar verdichtet.

Die Absorptionssäule 100 ist ein mit zwei Stufen bei einem Druck von etwa 28,6 bis 35,5 bar arbeitender Turm, 20 der am Boden eine Sektion zur Entfernung der Masse des CO, und darüber eine Aufsäuberungssektion aufweist. Beschickung gas tritt durch Leitung 61 in den Boden der Säule 100 ein. Halb-arme Waschlösung, die durch Pumpe 77 angetrieben wird, wenn sie den Verdampfungstank 91 verläßt, tritt 25 durch Leitung 76 in den oberen Teil der Sektion zur Massenentfernung ein und fließt im Gegenstrom zu dem Beschickungsgas. Arme Waschlösung, die mit einer Temperatur von etwa 116 bis 132°C und einem Druck von 1,7 bis 2,39 bar durch Leitung 84 vom Boden der Regenerierungssäule 101 abgezogen 30 wird, wird mit Hilfe der Pumpe 85 durch den indirekten Wärmeaustauscher 86 getrieben, in dem sie abgekühlt wird, und anschließend durch Leitung 86A in den oberen Teil der Aufsäuberungssektion der Absorptionssäule 100 eingeführt.

Das gereinigte Beschickungsgas wird gewaschen, tritt durch Leitung 90 aus dem oberen Teil der Absorptionssäule 100 aus, mitgeschleppte Flüssigkeit wird gegebenenfalls entfernt, und das Beschickungsgas wird zu der nächsten Stufe der Ammoniaksynthese geleitet. Durch Leitung 88 und Pumpe 89 wird Waschwasser in die Waschsektion der Absorptionssäule eingeleitet.

5

Waschlösung, die reich mit sauren Gasen beladen ist, wird vom Boden der Absorptionssäule 100 durch Leitung 10 87 abgezogen, durch das Druckabsenkventil 87A und/oder eine (nicht gezeigte) hydraulische Turbine geführt und dann in den oberen Teil der Regenerierungssäule 101 eingeführt. Die reich beladene Waschlösung wird in zwei Stufen abgestreift, um arme und halb-arme Lösungen zu erhalten, 15 die zur weiteren Absorption in die Absorptionssäule 100 zurückgeführt werden. So streift die obere Sektion der Regenerierungssäule, die hier als halb-arme Sektion bezeichnet ist, die Lösung teilweise unter Bildung einer halb-armen 20 Lösung ab. Ein Teil der halb-armen Lösung fließt in die untere Sektion des Regenerators 101, die hier als arme Sektion bezeichnet ist, in der er dann weiter unter Bildung der armen Lösung abgestreift wird.

Desorbierter Wasserdampf und CO₂ treten durch Leitung
78 aus der Regenerierungssäule aus und werden durch den
Wärmeaustauscher 79 abgekühlt, um einen Teil des Wasserdampfes
zu kondensieren. Der kondensierte Wasserdampf und gasförmiges
CO₂ fließen durch Leitung 80 und werden im Auswerfertopf
81 abgetrennt. Das kondensierte Wasser wird durch Leitung
83 entfernt. Ein Teil dieses Wassers wird zur Leitung
55 geleitet und mittels der Pumpe 56 als Rückflußwasser
in die arme Sektion des Regenerators getrieben. Ein

anderer Teil des kondensierten Wassers in Leitung 83
wird durch Leitung 88 und Pumpe 89 als Waschwasser für
den Absorber in den oberen Teil der Absorptionssäule
100 geleitet. Irgendwelches überschüssiges Wasser wird
aus dem System entfernt, oder zusätzliches Wasser kann
je nach Bedarf zugesetzt werden. Das CO₂ aus dem Auswerfertopf 81 tritt durch Leitung 82 aus dem System aus, wonach
es gegebenenfalls weiter abgekühlt werden kann und dann
je nach Wunsch verwendet wird, beispielsweise zur Harnstoff10 herstellung.

Die verschiedenen Sektionen der Regenerierungs- und Absorptions säulen wurden zwar vorstehend so erläutert, daß sie jeweils eine Einheit bilden, sie können jedoch jeweils leicht in getrennte Türme aufgeteilt werden.

20

15

25

į