Aufgabe 7.2.x

Sei $n \in \{1, 2, 3, \ldots\}$, K ein Körper, V ein n-dimensionaler Vektorraum, und seien B und C Basen von V. Seien f und g lineare Abbildungen von V nach V, und sei $r \in K$.

Welche der folgenden Aussagen sind garantiert (für alle n, K, V, \ldots) wahr? Wenn eine der Aussagen im Allgemeinen falsch ist, geben Sie ein möglichst kleines Gegenbeispiel (mit möglichst kleinem n). Erklären Sie auch, was in den folgenden Aussagen mit den Symbolen + und \cdot gemeint ist, und was mit 0 gemeint ist. (Funktionen? Von wo wohin? Wie definiert?)

- 1. $det(f \cdot g) = det(f) \cdot det(g)$.
- 2. $det(r \cdot g) = r \cdot det(g)$.
- 3. det(f+g) = det(f) + det(g).
- 4. $det(f) = det(\langle B^*, f(B) \rangle)$.
- 5. $det(f) = det(\langle B^*, f(C) \rangle)$.
- 6. $det(f) = det(\langle C^*, f(C) \rangle)$.
- 7. $f = 0 \Leftrightarrow det(f) = 0$.
- 8. f ist injektiv $\Leftrightarrow det(f) \neq 0$.
- 9. f ist surjektiv $\Leftrightarrow det(f) \neq 0$.