STAT 330 - Mathematical Statistics

Cameron Roopnarine

Last updated: September 9, 2020

Contents

Co	Contents		
2	Ran	dom Variable	2
	2.1	Probability Model	2
	2.2	Random Variable	
	2.3	Discrete Random Variables	6
	2.4	Continuous Random Variable	8

Chapter 2

Random Variable

Review of:

- Probability
- Random variables (discrete and continuous)
- Expectation and variance
- Moment generating function

2.1 Probability Model

DEFINITION 2.1.1: Probability model

A **probability model** is used for a random experiment, which consists of three components:

- (I) Sample space
- (II) Event
- (III) Probability function

DEFINITION 2.1.2: Sample space

A **sample space** S is a set of all the distinct outcomes for a random experiment, with the property that in a single trial, one and only one of these outcomes occurs.

EXAMPLE 2.1.3

Toss a coin twice. This is a random experiment because we do not know the outcome before we toss the coin twice.

```
• S = \{(H, H), (H, T), (T, H), (T, T)\}
```

Define A: First toss is an H.

Clearly, $A = \{(H, H), (H, T)\} \subseteq S$, so A is an event.

DEFINITION 2.1.4: † Sigma algebra

A collection of subsets of a set S is called **sigma algebra**, denoted by β , if it satisfies the following properties:

- (I) $\varnothing \in \beta$
- (II) If $A \in \beta$, then $\bar{A} \in \beta$
- (III) If $A_1, A_2, \ldots \in \beta$, then $\bigcup_{i=1}^{\infty} A_i \in \beta$

DEFINITION 2.1.5: Probability set function

Let β be a sigma algebra associated with the sample space S. A **probability set function** is a function P with domain β that satisfies the following axioms:

- (I) $P(A) \ge 0$ for all $A \in \beta$
- (II) P(S) = 1
- (III) Additivity property: If $A_1, A_2, A_3, \ldots \in \beta$ are pairwise mutually exclusive events; that is, $A_i \cap A_j = \emptyset$ for all $i \neq j$, then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

EXAMPLE 2.1.6

Toss a coin twice, given one event A,

$$P(A) = \frac{\text{\# of outcomes in } A}{4}$$

since |S| = 4. P satisfies the three properties, therefore P is a probability function.

PROPOSITION 2.1.7: Additional Properties of the Probability Set Function

Let β be a sigma algebra associated with the sample space S and let P be a probability set function with domain β . If $A, B \in \beta$, then:

- (1) $P(\emptyset) = 0$
- (2) If A and B are mutually exclusive events, then $P(A \cup B) = P(A) + P(B)$
- (3) $P(\bar{A}) = 1 P(A)$
- (4) If $A \subset B$, then $P(A) \leqslant P(B)$

Note for (4), $A \subset B$ means $a \in A$ implies $a \in B$.

Proof of: 2.1.7

Proof of (1): Let $A_1 = S$ and $A_i = \emptyset$ for i = 2, 3, ... Since $\bigcup_{i=1}^{\infty} A_i = S$, then by (III) it follows that

$$P(S) = P(S) + \sum_{i=2}^{\infty} P(\varnothing)$$

and by (II) we have

$$1 = 1 + \sum_{i=2}^{\infty} P(\varnothing)$$

By (I) the right side is a series of non-negative numbers which must converge to the left side which is 1 which is finite which results in a contradiction unless $P(\emptyset) = 0$ as required.

Proof of (2): Let $A_1 = A$, $A_2 = B$, and $A_i = \emptyset$ for $i = 3, 4, \ldots$ Since $\bigcup_{i=1}^{\infty} A_i = A \cup B$, then by (III)

$$P(A \cup B) = P(A) + P(B) + \sum_{i=3}^{\infty} P(\varnothing)$$

and since $P(\emptyset) = 0$ by the result of (1) it follows that

$$P(A \cup B) = P(A) + P(B)$$

Proof of (3): Since $S = A \cup \bar{A}$ and $A \cap \bar{A} = \emptyset$ then by (II) and by (2) it follows that

$$1 = P(S) = P(A \cup \bar{A}) = P(A) + P(\bar{A})$$

as required.

Proof of (4): Since

$$B = (A \cap B) \cup (\bar{A} \cap B) = A \cup (\bar{A} \cap B)$$

and $A \cap (\bar{A} \cap B) = \emptyset$ then by (2)

$$P(B) = P(A) + P(\bar{A} \cap B)$$

But by (I), $P(\bar{A} \cap B) \ge 0$, so the result now follows.

EXERCISE 2.1.8

Let β be a sigma algebra associated with the sample space S and let P be a probability set function with domain β . If $A, B \in \beta$ then prove the following:

- 1. $0 \le P(A) \le 1$
- 2. $P(A \cap \bar{B}) = P(A) P(A \cap B)$
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 1. $P(A) \geqslant 0$ follows from (I). From (3) we have $P(\bar{A}) = 1 P(A)$. But from (I) $P(\bar{A}) \geqslant 0$ and therefore $P(A) \leqslant 1$.
- 2. Since $A = (A \cap B) \cup (A \cap \bar{B})$ and $(A \cap B) \cap (A \cap \bar{B}) = \emptyset$, then by (2)

$$P(A) = P(A \cap B) + P(A \cap \bar{B})$$

as required.

3. $P(A \cup B) = (A \cap \bar{B}) + P(A \cap B) + P(\bar{A} \cap B)$. By the previous result,

$$P(A \cap \bar{B}) = P(A) - P(A \cap B)$$
 and $P(\bar{A} \cap B) = P(B) - P(A \cap B)$

Therefore,

$$P(A \cup B) = (P(A) - P(A \cap B)) + P(A \cap B) + (P(B) - P(A \cap B))$$

= $P(A) + P(B) - P(A \cap B)$

as required.

DEFINITION 2.1.9: Conditional probability

Let β be a sigma algebra associated with the sample space S and suppose $A, B \in \beta$ with P(B) > 0. Then the **conditional probability** of A given that B has occurred is

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

DEFINITION 2.1.10: Independent events

Let β be a sigma algebra associated with the sample space S and suppose $A, B \in \beta$. A and B are independent events if

$$P(A \cap B) = P(A)P(B)$$

Clearly, $P(A \mid B) = P(A)$ if A and B are independent since

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

EXAMPLE 2.1.11

Toss a coin twice.

- A: First toss is H
- B: Second toss is T

$$P(A) = \frac{\text{\# of outcomes in } A}{4} = \frac{2}{4}$$

also

$$P(B) = \frac{2}{4}$$

$$P(A \cap B) = \frac{1}{4} = P(A)P(B)$$

therefore A and B are independent.

2.2 Random Variable

DEFINITION 2.2.1: Random variable

A random variable X is a function from a sample space S to the real numbers \mathbb{R} ; that is,

$$X:S\to\mathbb{R}$$

satisfies for any given $x \in \mathbb{R} \{X \leq x\}$ is an event.

$$\{X\leqslant x\}=\{\omega\in S: X(\omega)\leqslant x\}\subseteq S$$

EXAMPLE 2.2.2

Toss a coin twice. X: # of H in two tosses Possible values of X: 0, 1, 2. Given $x \in \mathbb{R}$.

$${X \leqslant x}$$

- x < 0 then $\{X \leqslant x\} = \emptyset$
- $0 \le x < 1$ then

then

$${X \leqslant x} = {X = 0} = {(T, T)} \subseteq S$$

therefore *X* is a random variable.

DEFINITION 2.2.3: Cumulative distribution function

The **cumulative distribution function** (c.d.f.) of a random variable X is defined by

$$F(x) = P(X \leqslant x)$$

for all $x \in \mathbb{R}$. Note that the c.d.f. is defined for all \mathbb{R}

DEFINITION 2.2.4: Properties of the cumulative distribution function

- (1) F is a non-decreasing function; that is, if $x_1 \leqslant x_2$, then $F(x_1) \leqslant F(x_2)$. By looking at: $\{X \leqslant x_1\} \subseteq \{X \leqslant x_2\}$ if $x_1 \leqslant x_2$.
- (2) $\lim_{x \to \infty} F(x) = 1$ and $\lim_{x \to -\infty} F(x) = 0$.

By looking at: $x \to \infty$: $\{X \leqslant x\} \to S \ x \to -\infty$: $\{X \leqslant x\} \to \emptyset$

(3) F(x) is a right continuous function; that is, for any $a \in \mathbb{R}$,

$$\lim_{x \to a^+} F(a) = F(a)$$

(4) For all a < b

$$P(a < X \leqslant b) = P(X \leqslant b) - P(X \leqslant a) = F(b) - F(a)$$

(5) For all *b*

$$P(X=b) = P(\mathrm{jump\ at\ } b) = \lim_{t \to b^+} F(t) - \lim_{t \to b^-} F(t) = F(b) - \lim_{t \to b^-} F(t)$$

LECTURE 2 | 2020-09-09

2.3 Discrete Random Variables

DEFINITION 2.3.1: Discrete

If a random variable X can only take finite or countable values, X is a **discrete random variable**.

In this case, F(x) is a right-continuous step function.

Comments:

- Countable: something you can enumerate $(\mathbb{Z}, \mathbb{N}^+)$
- Probability function (pf) or probability mass function:

$$f(x) = \begin{cases} P(X = x) & \text{if } X \text{ can take value of } x \\ 0 & \text{if } X \text{ cannot take value of } x \end{cases}$$

• Support of *X*

$$A = \{x : f(x) > 0\}$$

All possible values X can take

• Property of probability function:

$$-f(x) \geqslant 0$$

$$-\sum_{x\in A} f(x) = 1$$

Review some commonly used discrete random variables:

• Bernoulli random variable. $X \sim \text{Bernoulli}(p)$ where X can only take two possible values 0 (failure) or 1 (success).

$$P(X = 1) = p \text{ and } P(X = 0) = 1 - p$$

Example: Toss a coin twice. Let X be the number of heads. Then $X \sim \text{Bernoulli}(p)$

- Binomial random variable. $X \sim \text{Binomial}(n, p)$
 - We run n trials
 - Each trial is independent of each other
 - Each trial has two possible outcomes: 0 (failure), 1 (success)

$$P(X=1) = p$$

Let X be the number of success across these n trials where p is the success probability for a single trial.

$$X = \sum_{i=1}^{n} X_i$$

 X_i is the outcome of the *i*th trial.

$$P(X_i = 1) = p$$

where $X_i \sim \text{Bernoulli}(p)$

• Geometric random variable. $X \sim \text{Geometric}(p)$. Let X be the number of failures before the first success. X can take values $0, 1, 2, \ldots$

$$P(X = x) = (1 - p)^x p$$

if $x = 0, 1, 2, \dots$ Example. X = number of tails before you get the first head.

$$-f(x) \geqslant 0$$

$$-\sum_{x \in A} f(x) = 1$$

- Negative Binomial random variable. $X \sim NB(r, p)$. where X is the number of failures before you get r success. Example. X = number of tails before you get the rth head.
 - X can take 0, 1, 2, ...

-
$$f(x) = P(X = x) = {x+r-1 \choose x} (1-p)^x p^{r-1} p$$

• Poisson random variable. $X \sim \text{Poisson}(\mu)$ where $X = 0, 1, \dots$

$$P(X=x) = \frac{\mu^x}{x!}e^{-\mu}$$

where x = 0, 1, 2, ...

$$-f(x) \geqslant 0.$$
 $f(x) = 0$ if $x \notin \mathbb{Z}$.

 $-\sum_{x=0}^{\infty} f(x) = 1$ using Taylor expansion of exponential function.

2.4 Continuous Random Variable

DEFINITION 2.4.1

If the possible values of *X* is an interval or real line, *X* is a continuous random variable.

Note: not a rigorous definition, but used in this course.

In this case, F(x) (cdf of X) is a continuous random variable and it's differentiable almost everywhere. (It's not differentiable for at most countable set of points)

DEFINITION 2.4.2: Probability density function

$$f(x) = \begin{cases} F'(x) & \text{if } F(x) \text{ is differentiable at } x \\ 0 & \text{otherwise} \end{cases}$$

Support of X:

$$A = \{x : f(x) > 0\}$$

Continuous case: $f(x) \neq P(X = x)$

$$P(x < X \leqslant x + \delta) \approx f(x)\delta$$

since

$$\lim_{\delta \to 0} \frac{F(x+\delta) - F(x)}{\delta} = F'(x) = f(x)$$

Property of pdf f(x)

- $f(x) \geqslant 0$
- $\int_{-\infty}^{\infty} f(x) dx = 1$
- $F(x) = \int_{-\infty}^{x} f(t) dt$ since $F(-\infty) = 0$.
- f(x) = F'(x)
- $P(X = x) = 0 \neq f(x)$
- $P(a \le X \le b) = P(a < X < b) = P(a \le X < b) = F(b) F(a) = \int_a^b f(x) dx$

EXAMPLE 2.4.3

Suppose the cdf of *X* is

$$F(x) = \begin{cases} 0 & x \leqslant a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x \geqslant b \end{cases}$$

Find pdf.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

 $X \sim \text{uniform}(a, b)$

EXAMPLE 2.4.4

$$f(x) = \begin{cases} \frac{\theta}{x^{\theta+1}} & x \geqslant 1\\ 0 & x < 1 \end{cases}$$

- 1. For what values of θ is f a pdf.
- 2. Find F(x).
- 3. Find P(-2 < X < 3)

$$\frac{\theta}{r^{\theta+1}} \geqslant 0$$

Case 1: $\theta = 0$. $f(x) \equiv 0$, then f cannot be a pdf since $\int_{-\infty}^{\infty} f(x) dx = 0 \neq 1$ Case 2: $\theta > 0$.

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{1} f(x) \, dx + \int_{1}^{\infty} f(x) \, dx = \int_{1}^{\infty} \frac{\theta}{x^{\theta+1}} \, dx = \left[-x^{-\theta} \right]_{1}^{\infty} = 1$$

so f is a pdf.

2. $F(x) = P(X \le x)$

1.
$$x \le 1$$
. $P(X \le x) = \int_{-\infty}^{x} f(t) dt = 0$

1.
$$x \le 1$$
. $P(X \le x) = \int_{-\infty}^{\infty} f(t) dt = 0$
2. $x > 1$. $P(X \le x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{1} f(t) dt + \int_{1}^{x} f(t) dt = \int_{1}^{x} \frac{\theta}{t^{\theta+1}} dt = \left[-t^{-\theta} \right]_{1}^{x} = 1 - x^{-\theta}$
3. $P(-2 < X < 3)$. Either use cdf or pdf. cdf: $F(3) - F(-2) = (1 - 3^{-\theta})$
pdf: $\int_{-2}^{3} f(x) dx = \int_{-2}^{1} f(x) dx + \int_{1}^{3} f(x) dx = \int_{1}^{3} f(x) dx$

3.
$$P(-2 < X < 3)$$
. Either use cdf or pdf. cdf: $F(3) - F(-2) = (1 - 3^{-\theta})$

pdf:
$$\int_{-2}^{3} f(x) dx = \int_{-2}^{1} f(x) dx + \int_{1}^{3} f(x) dx = \int_{1}^{3} f(x) dx$$