3

DESCRIBING DATA WITH STATISTICS

In this chapter, we'll use Python to explore statistics so we can study, describe, and better understand sets of data. After look-

ing at some basic statistical measures—the mean, median, mode, and range—we'll move on to some more advanced measures, such as variance and standard deviation. Then, we'll see how to calculate the correlation coefficient, which allows you to quantify the relationship between two sets of data. We'll end the chapter by learning about scatter plots. Along the way, we'll learn more about the Python language and standard library modules. Let's get started with one of the most commonly used statistical measures—the mean.

NOTE

In statistics, some statistical measures are calculated slightly differently depending on whether you have data for an entire population or just a sample. To keep things simple, we'll stick with the calculation methods for a population in this chapter.

Finding the Mean

The *mean* is a common and intuitive way to summarize a set of numbers. It's what we might simply call the "average" in everyday use, although as we'll see, there are other kinds of averages as well. Let's take a sample set of numbers and calculate the mean.

Say there's a school charity that's been taking donations over a period of time spanning the last 12 days (we'll refer to this as period A). In that time, the following 12 numbers represent the total dollar amount of donations received for each day: 100, 60, 70, 900, 100, 200, 500, 500, 503, 600, 1000, and 1200. We can calculate the mean by summing these totals and then dividing the sum by the number of days. In this case, the sum of the numbers is 5733. If we divide this number by 12 (the number of days), we get 477.75, which is the *mean* donation per day. This number gives us a general idea of how much money was donated on any given day.

In a moment, we'll write a program that calculates and prints the mean for a collection of numbers. As we just saw, to calculate the mean, we'll need to take the sum of the list of numbers and divide it by the number of items in the list. Let's look at two Python functions that make both of these operations very easy: sum() and len().

When you use the sum() function on a list of numbers, it adds up all the numbers in the list and returns the result:

```
>>> shortlist = [1, 2, 3]
>>> sum(shortlist)
6
```

We can use the len() function to give us the length of a list:

```
>>> len(shortlist)
3
```

When we use the len() function on the list, it returns 3 because there are three items in shortlist. Now we're ready to write a program that will calculate the mean of the list of donations.

```
Calculating the mean

def calculate_mean(numbers):
    s = sum(numbers)
    N = len(numbers)
    # Calculate the mean
    mean = s/N

return mean
```

```
if __name__ == '__main__':
    donations = [100, 60, 70, 900, 100, 200, 500, 500, 503, 600, 1000, 1200]
    mean = calculate_mean(donations)
    N = len(donations)
    print('Mean donation over the last {0} days is {1}'.format(N, mean))
```

First, we define a function, calculate_mean(), that accepts the argument numbers, which is a list of numbers. At ①, we use the sum() function to add up the numbers in the list and create a label, s, to refer to the total. Similarly, at ②, we use the len() function to get the length of the list and create a label, N, to refer to it. Then, as you can see at ③, we calculate the mean by simply dividing the sum (s) by the number of members (N). At ④, we create a list, donations, with the values of the donations listed earlier. We then call the calculate_mean() function, passing this list as an argument at ⑤. Finally, we print the mean that was calculated at ⑥.

When you run the program, you should see the following:

Mean donation over the last 12 days is 477.75

The calculate_mean() function will calculate the sum and length of *any* list, so we can reuse it to calculate the mean for other sets of numbers, too.

We calculated that the mean donation per day was 477.75. It's worth noting that the donations during the first few days were much lower than the mean donation we calculated and that the donations during the last couple of days were much higher. The mean gives us one way to summarize the data, but it doesn't give us a full picture. There are other statistical measurements, however, that can tell us more about the data when compared with the mean.

Finding the Median

The *median* of a collection of numbers is another kind of average. To find the median, we sort the numbers in ascending order. If the length of the list of numbers is odd, the number in the middle of the list is the median. If the length of the list of numbers is even, we get the median by taking the mean of the two middle numbers. Let's find the median of the previous list of donations: 100, 60, 70, 900, 100, 200, 500, 500, 503, 600, 1000, and 1200.

After sorting from smallest to largest, the list of numbers becomes 60, 70, 100, 100, 200, 500, 500, 503, 600, 900, 1000, and 1200. We have an even number of items in the list (12), so to get the median, we need to take the mean of the two middle numbers. In this case, the middle numbers are the sixth and the seventh numbers—500 and 500—and the mean of these two numbers is (500 + 500)/2, which comes out to 500. That means the median is 500.

Now assume—just for this example—that we have another donation total for the 13th day so that the list now looks like this: 100, 60, 70, 900, 100, 200, 500, 500, 503, 600, 1000, 1200, and 800.

Once again, we have to sort the list, which becomes 60, 70, 100, 100, 200, 500, 500, 503, 600, 800, 900, 1000, and 1200. There are 13 numbers in this list (an odd number), so the median for this list is simply the middle number. In this case, that's the seventh number, which is 500.

Before we write a program to find the median of a list of numbers, let's think about how we could automatically calculate the middle elements of a list in either case. If the length of a list (N) is odd, the middle number is the one in position (N+1)/2. If N is even, the two middle elements are N/2 and (N/2) + 1. For our first example in this section, N = 12, so the two middle elements were the 12/2 (sixth) and 12/2 + 1 (seventh) elements. In the second example, N = 13, so the seventh element, (N+1)/2, was the middle element.

In order to write a function that calculates the median, we'll also need to sort a list in ascending order. Luckily, the sort() method does just that:

```
>>> samplelist = [4, 1, 3]
>>> samplelist.sort()
>>> samplelist
[1, 3, 4]
```

Now we can write our next program, which finds the median of a list of numbers:

```
Calculating the median
  def calculate median(numbers):
      N = len(numbers)
Ø
      numbers.sort()
      # Find the median
      if N % 2 == 0:
          # if N is even
          m1 = N/2
          m2 = (N/2) + 1
          # Convert to integer, match position
€
          m1 = int(m1) - 1
          m2 = int(m2) - 1
          median = (numbers[m1] + numbers[m2])/2
      else:
0
          m = (N+1)/2
          # Convert to integer, match position
          m = int(m) - 1
          median = numbers[m]
      return median
  if name == ' main ':
      donations = [100, 60, 70, 900, 100, 200, 500, 500, 503, 600, 1000, 1200]
```

```
median = calculate_median(donations)
N = len(donations)
print('Median donation over the last {0} days is {1}'.format(N, median))
```

The overall structure of the program is similar to that of the earlier program that calculates the mean. The calculate_median() function accepts a list of numbers and returns the median. At ①, we calculate the length of the list and create a label, N, to refer to it. Next, at ②, we sort the list using the sort() method.

Then, we check to see whether N is even. If so, we find the middle elements, m1 and m2, which are the numbers at positions N/2 and (N/2) + 1 in the sorted list. The next two statements (and) adjust m1 and m2 in two ways. First, we use the int() function to convert m1 and m2 into integer form. This is because results of the division operator are always returned as floating point numbers, even when the result is equivalent to an integer. For example:

```
>>> 6/2 3.0
```

We cannot use a floating point number as an index in a list, so we use int() to convert that result to an integer. We also subtract 1 from both m1 and m2 because positions in a list begin with 0 in Python. This means that to get the sixth and seventh numbers from the list, we have to ask for the numbers at index 5 and index 6. At **6**, we calculate the median by taking the mean of the two numbers in the middle positions.

Starting at **6**, the program finds the median if there's an odd number of items in the list, once again using int() and subtracting 1 to find the proper index. Finally, the program calculates the median for the list of donations and returns it. When you execute the program, it calculates that the median is 500:

```
Median donation over the last 12 days is 500.0
```

As you can see, the mean (477.75) and the median (500) are pretty close in this particular list, but the median is a little higher.

Finding the Mode and Creating a Frequency Table

Instead of finding the mean value or the median value of a set of numbers, what if you wanted to find the number that occurs most frequently? This number is called the *mode*. For example, consider the test scores of a math test (out of 10 points) in a class of 20 students: 7, 8, 9, 2, 10, 9, 9, 9, 9, 4, 5, 6, 1, 5, 6, 7, 8, 6, 1, and 10. The mode of this list would tell you which score was the most common in the class. From the list, you can see that the score of 9 occurs most frequently, so 9 is the mode for this list of numbers. There's no symbolic formula for calculating the mode—you simply count how many times each unique number occurs and find the one that occurs the most.

To write a program to calculate the mode, we'll need to have Python count how many times each number occurs within a list and print the one that occurs most frequently. The Counter class from the collections module, which is part of the standard library, makes this really simple for us.

Finding the Most Common Elements

Finding the most common number in a data set can be thought of as a subproblem of finding an arbitrary number of most common numbers. For instance, instead of the most common score, what if you wanted to know the five most common scores? The most_common() method of the Counter class allows us to answer such questions easily. Let's see an example:

```
>>> simplelist = [4, 2, 1, 3, 4]
>>> from collections import Counter
>>> c = Counter(simplelist)
>>> c.most_common()
[(4, 2), (1, 1), (2, 1), (3, 1)]
```

Here, we start off with a list of five numbers and import Counter from the collections module. Then, we create a Counter object, using c to refer to the object. We then call the most_common() method, which returns a list ordered by the most common elements.

Each member of the list is a tuple. The first element of the first tuple is the number that occurs most frequently, and the second element is the number of times it occurs. The second, third, and fourth tuples contain the other numbers along with the count of the number of times they appear. This result tells us that 4 occurs the most (twice), while the others appear only once. Note that numbers that occur an equal number of times are returned by the most common() method in an arbitrary order.

When you call the most_common() method, you can also provide an argument telling it the number of most common elements you want it to return. For example, if we just wanted to find the most common element, we would call it with the argument 1:

```
>>> c.most_common(1)
[(4, 2)]
```

If you call the method again with 2 as an argument, you'll see this:

```
>>> c.most_common(2)
[(4, 2), (1, 1)]
```

Now the result returned by the most_common method is a list with two tuples. The first is the most common element, followed by the second most common. Of course, in this case, there are several elements tied for most common, so the fact that the function returns 1 here (and not 2 or 3) is arbitrary, as noted earlier.

The most_common() method returns both the numbers and the number of times they occur. What if we want only the numbers and we don't care about the number of times they occur? Here's how we can retrieve that information:

At ①, we use the label mode to refer to the result returned by the most_common() method. We retrieve the first (and the only) element of this list with mode[0] ②, which gives us a tuple. Because we just want the first element of the tuple, we can retrieve that using mode[0][0] ③. This returns 4—the most common element, or the mode.

Now that we know how the most_common() method works, we'll apply it to solve the next two problems.

Finding the Mode

We're ready to write a program that finds the mode for a list of numbers:

```
calculating the mode
from collections import Counter

def calculate_mode(numbers):
    c = Counter(numbers)
    mode = c.most_common(1)
    return mode[0][0]

if __name__ == '__main__':
    scores = [7, 8, 9, 2, 10, 9, 9, 9, 9, 4, 5, 6, 1, 5, 6, 7, 8, 6, 1, 10]
    mode = calculate_mode(scores)

print('The mode of the list of numbers is: {0}'.format(mode))
```

The calculate_mode() function finds and returns the mode of the numbers passed to it as a parameter. To calculate the mode, we first import the class Counter from the collections module and use it to create a Counter object at ①. Then, at ②, we use the most_common() method, which, as we saw earlier, gives us a list that contains a tuple with the most common number and the number of times it occurs. We assign that list the label mode. Finally, we use mode[0][0] ③ to access the number we want: the most frequent number from the list, which is the mode.

The rest of the program applies the calculate_mode function to the list of test scores we saw earlier. When you run the program, you should see the following output:

```
The mode of the list of numbers is: 9
```

What if you have a set of data where two or more numbers occur the same maximum number of times? For example, in the list of numbers 5, 5, 5, 4, 4, 4, 9, 1, and 3, both 4 and 5 are present three times. In such cases, the list of numbers is said to have multiple modes, and our program should find and print all the modes. The modified program follows:

```
Calculating the mode when the list of numbers may
  have multiple modes
  from collections import Counter
  def calculate mode(numbers):
      c = Counter(numbers)
0
      numbers freq = c.most common()
A
      max count = numbers freq[0][1]
      modes = []
      for num in numbers freq:
€
           if num[1] == max count:
               modes.append(num[0])
      return modes
  if __name__ == '__main__':
      scores = [5, 5, 5, 4, 4, 4, 9, 1, 3]
      modes = calculate mode(scores)
      print('The mode(s) of the list of numbers are:')
4
      for mode in modes:
          print(mode)
```

At **①**, instead of finding only the most common element, we retrieve all the numbers and the number of times each appears. Next, at **②**, we find the value of the maximum count—that is, the maximum number of times any number occurs. Then, for each of the numbers, we check whether the number of times it appears is equal to the maximum count **③**. Each number that fulfills this condition is a mode, and we add it to the list modes and return the list.

At **9**, we iterate over the list returned from the calculate_mode() function and print each of the numbers.

When you execute the preceding program, you should see the following output:

```
The mode(s) of the list of numbers are:
4
5
```

What if you wanted to find the number of times every number occurs instead of just the mode? A *frequency table*, as the name indicates, is a table that shows how many times each number occurs within a collection of numbers.

Creating a Frequency Table

Let's consider the list of test scores again: 7, 8, 9, 2, 10, 9, 9, 9, 9, 4, 5, 6, 1, 5, 6, 7, 8, 6, 1, and 10. The frequency table for this list is shown in Table 3-1. For each number, we list the number of times it occurs in the second column.

Table 3-1: Frequency Table

Score	Frequency
1	2
2	1
4	1
5	2
6	3
7	2
8	2
9	5
10	2

Note that the sum of the individual frequencies in the second column adds up to the total number of scores (in this case, 20).

We'll use the most_common() method once again to print the frequency table for a given set of numbers. Recall that when we don't supply an argument to the most_common() method, it returns a list of tuples with all the numbers and the number of times they appear. We can simply print each number and its frequency from this list to display a frequency table.

Here's the program:

```
Frequency table for a list of numbers
```

from collections import Counter

```
def frequency_table(numbers):
    table = Counter(numbers)
    print('Number\tFrequency')

for number in table.most_common():
    print('{0}\t{1}'.format(number[0], number[1]))

if __name__ == '__main__':
    scores = [7, 8, 9, 2, 10, 9, 9, 9, 9, 4, 5, 6, 1, 5, 6, 7, 8, 6, 1, 10]
    frequency table(scores)
```

The function frequency_table() prints the frequency table of the list of numbers passed to it. At ①, we first create a Counter object and create the label table to refer to it. Next, using a for loop ②, we go through each of the tuples, printing the first member (the number itself) and the second member (the frequency of the corresponding number). We use \t to print a tab between each value to space the table. When you run the program, you'll see the following output:

Number	Frequency
9	5
6	3
1	2
5	2
7	2
8	2
10	2
2	1
4	1

Here, you can see that the numbers are listed in decreasing order of frequency because the most_common() function returns the numbers in this order. If, instead, you want your program to print the frequency table sorted by value from lowest to highest, as shown in Table 3-1, you'll have to re-sort the list of tuples.

The sort() method is all we need to modify our earlier frequency table program:

```
Frequency table for a list of numbers
Enhanced to display the table sorted by the numbers

'''

from collections import Counter

def frequency_table(numbers):
    table = Counter(numbers)
    numbers_freq = table.most_common()
    numbers_freq.sort()

print('Number\tFrequency')
for number in numbers_freq:
    print('{0}\t{1}'.format(number[0], number[1]))
```

```
if __name__ == '__main__':
    scores = [7, 8, 9, 2, 10, 9, 9, 9, 9, 4, 5, 6, 1, 5, 6, 7, 8, 6, 1, 10]
    frequency table(scores)
```

Here, we store the list returned by the most_common() method in numbers_freq at ①, and then we sort it by calling the sort() method ②. Finally, we use the for loop to go over the sorted tuples and print each number and its frequency ③. Now when you run the program, you'll see the following table, which is identical to Table 3-1:

Number	Frequency		
1	2		
2	1		
4	1		
5	2		
6	3		
7	2		
8	2		
9	5		
10	2		

In this section, we've covered mean, median, and mode, which are three common measures for describing a list of numbers. Each of these can be useful, but they can also hide other aspects of the data when considered in isolation. Next, we'll look at other, more advanced statistical measures that can help us draw more conclusions about a collection of numbers.

Measuring the Dispersion

The next statistical calculations we'll look at measure the *dispersion*, which tells us how far away the numbers in a set of data are from the mean of the data set. We'll learn to calculate three different measurements of dispersion: range, variance, and standard deviation.

Finding the Range of a Set of Numbers

Once again, consider the list of donations during period A: 100, 60, 70, 900, 100, 200, 500, 500, 503, 600, 1000, and 1200. We found that the mean donation per day is 477.75. But just looking at the mean, we have no idea whether all the donations fell into a narrow range—say between 400 and 500—or whether they varied much more than that—say between 60 and 1200, as in this case. For a list of numbers, the *range* is the difference between the highest number and the lowest number. You could have two groups of numbers with the exact same mean but with vastly different ranges, so knowing the range fills in more information about a set of numbers beyond what we can learn from just looking at the mean, median, and mode.

The next program finds the range of the preceding list of donations:

```
Find the range
'''

def find_range(numbers):

lowest = min(numbers)
    highest = max(numbers)
    # Find the range
    r = highest-lowest

return lowest, highest, r

if __name__ == '__main__':
    donations = [100, 60, 70, 900, 100, 200, 500, 500, 503, 600, 1000, 1200]
    lowest, highest, r = find_range(donations)
    print('Lowest: {0} Highest: {1} Range: {2}'.format(lowest, highest, r))
```

The function find_range() accepts a list as a parameter and finds the range. First, it calculates the lowest and the highest numbers using the min() and the max() functions at ① and ②. As the function names indicate, they find the minimum and the maximum values in a list of numbers.

We then calculate the range by taking the difference between the highest and the lowest numbers, using the label r to refer to this difference. At ③, we return all three numbers—the lowest number, the highest number, and the range. This is the first time in the book that we're returning multiple values from a function—instead of just returning one value, this function returns three. At ④, we use three labels to *receive* the three values being returned from the find_range() function. Finally, we print the values. When you run the program, you should see the following output:

```
Lowest: 60 Highest: 1200 Range: 1140
```

This tells us that the days' total donations were fairly spread out, with a range of 1140, because we had daily totals as small as 60 and as large as 1200.

Finding the Variance and Standard Deviation

The range tells us the difference between the two extremes in a set of numbers, but what if we want to know more about how all of the individual numbers vary from the mean? Were they all similar, clustered near the mean, or were they all different, closer to the extremes? There are two related measures of dispersion that tell us more about a list of numbers along these lines: the *variance* and the *standard deviation*. To calculate either of these, we first need to find the difference of each of the numbers from the mean. The variance is the average of the squares of those differences.

A high variance means that values are far from the mean; a low variance means that the values are clustered close to the mean. We calculate the variance using the formula

variance =
$$\frac{\sum (x_i - x_{\text{mean}})^2}{n}.$$

In the formula, x_i stands for individual numbers (in this case, daily total donations), $x_{\rm mean}$ stands for the mean of these numbers (the mean daily donation), and n is the number of values in the list (the number of days on which donations were received). For each value in the list, we take the difference between that number and the mean and square it. Then, we add all those squared differences together and, finally, divide the whole sum by n to find the variance.

If we want to calculate the standard deviation as well, all we have to do is take the square root of the variance. Values that are within one standard deviation of the mean can be thought of as fairly typical, whereas values that are three or more standard deviations away from the mean can be considered much more atypical—we call such values *outliers*.

Why do we have these two measures of dispersion—variance and standard deviation? In short, the two measures are useful in different situations. Going back to the formula we used to calculate the variance, you can see that the variance is expressed in square units because it's the average of the squared difference from the mean. For some mathematical formulas, it's nicer to work with those square units instead of taking the square root to find the standard deviation. On the other hand, the standard deviation is expressed in the same units as the population data. For example, if you calculate the variance for our list of donations (as we will in a moment), the result is expressed in dollars squared, which doesn't make a lot of sense. Meanwhile, the standard deviation is simply expressed in dollars, the same unit as each of the donations.

The following program finds the variance and standard deviation for a list of numbers:

```
Find the variance and standard deviation of a list of numbers

def calculate_mean(numbers):
    s = sum(numbers)
    N = len(numbers)
    # Calculate the mean
    mean = s/N

    return mean

def find_differences(numbers):
    # Find the mean
    mean = calculate_mean(numbers)
    # Find the differences from the mean
    diff = []
```

```
for num in numbers:
          diff.append(num-mean)
      return diff
  def calculate variance(numbers):
      # Find the list of differences
0
      diff = find differences(numbers)
      # Find the squared differences
      squared diff = []
      for d in diff:
          squared diff.append(d**2)
      # Find the variance
      sum squared diff = sum(squared diff)
6
      variance = sum squared diff/len(numbers)
      return variance
  if name == ' main ':
      donations = [100, 60, 70, 900, 100, 200, 500, 500, 503, 600, 1000, 1200]
      variance = calculate variance(donations)
      print('The variance of the list of numbers is {0}'.format(variance))
4
      std = variance**0.5
      print('The standard deviation of the list of numbers is {0}'.format(std))
```

The function calculate_variance() calculates the variance of the list of numbers passed to it. First, it calls the find_differences() function at ① to calculate the difference of each of the numbers from the mean. The find_differences() function returns the difference of each donation from the mean value as a list. In this function, we use the calculate_mean() function we wrote earlier to find the mean donation. Then, starting at ②, the squares of these differences are calculated and saved in a list labeled squared_diff. Next, we use the sum() function to find the sum of the squared differences and, finally, calculate the variance at ③. At ④, we calculate the standard deviation by taking the square root of the variance.

When you run the preceding program, you should see the following output:

```
The variance of the list of numbers is 141047.35416666666
The standard deviation of the list of numbers is 375.5627166887931
```

The variance and the standard deviation are both very large, meaning that the individual daily total donations vary greatly from the mean. Now, let's compare the variance and the standard deviation for a different set of donations that have the same mean: 382, 389, 377, 397, 396, 368, 369, 392, 398, 367, 393, and 396. In this case, the variance and the standard deviation turn out to be 135.3888888888889 and 11.63567311713804, respectively. Lower values for variance and standard deviation tell us that the individual numbers are closer to the mean. Figure 3-1 illustrates this point visually.

Figure 3-1: Variation of the donations around the average donation

The mean donations for both lists of donations are similar, so the two lines overlap, appearing as a single line in the figure. However, the donations from the first list vary widely from the mean, whereas the donations from the second list are very close to the mean, which confirms what we inferred from the lower variance value.

Calculating the Correlation Between Two Data Sets

In this section, we'll learn how to calculate a statistical measure that tells us the nature and strength of the relationship between two sets of numbers: the *Pearson correlation coefficient*, which I'll call simply the *correlation coefficient*. Note that this coefficient measures the strength of the *linear* relationship. We'd have to use other measures (which we won't be discussing here) to find out the coefficient when two sets have a nonlinear relationship. The coefficient can be either positive or negative, and its magnitude can range between –1 and 1 (inclusive).

A correlation coefficient of 0 indicates that there's no linear correlation between the two quantities. (Note that this doesn't mean the two quantities are independent of each other. There could still be a nonlinear relationship between them, for example). A coefficient of 1 or close to 1 indicates that there's a strong positive linear correlation; a coefficient of exactly 1 is referred

to as perfect positive correlation. Similarly, a correlation coefficient of –1 or close to –1 indicates a strong negative correlation, where 1 indicates a perfect negative correlation.

CORRELATION AND CAUSATION

In statistics, you'll often come across the statement "correlation doesn't imply causation." This is a reminder that even if two sets of observations are strongly correlated with each other, that doesn't mean one variable causes the other. When two variables are strongly correlated, sometimes there's a third factor that influences both variables and explains the correlation. A classic example is the correlation between ice cream sales and crime rates—if you track both of these variables in a typical city, you're likely to find a correlation, but this doesn't mean that ice cream sales cause crime (or vice versa). Ice cream sales and crime are correlated because they both go up as the weather gets hotter during the summer. Of course, this doesn't mean that hot weather directly causes crime to go up either; there are more complicated causes behind that correlation as well.

Calculating the Correlation Coefficient

The correlation coefficient is calculated using the formula

correlation =
$$\frac{n\sum xy - \sum x\sum y}{\sqrt{\left(n\sum x^2 - \left(\sum x\right)^2\right)\left(n\sum y^2 - \left(\sum y\right)^2\right)}}.$$

In the above formula, n is the total number of values present in each set of numbers (the sets have to be of equal length). The two sets of numbers are denoted by x and y (it doesn't matter which one you denote as which). The other terms are described as follows:

- $\sum xy$ Sum of the products of the individual elements of the two sets of numbers, x and y
- $\sum x$ Sum of the numbers in set x
- $\sum y$ Sum of the numbers in set y
- $(\sum x)^2$ Square of the sum of the numbers in set x
- $(\sum y)^2$ Square of the sum of the numbers in set y
- $\sum x^2$ Sum of the squares of the numbers in set x
- $\sum y^2$ Sum of the squares of the numbers in set y

Once we've calculated these terms, you can combine them according to the preceding formula to find the correlation coefficient. For small lists, it's possible to do this by hand without too much effort, but it certainly gets complicated as the size of each set of numbers increases.

In a moment, we'll write a program that calculates the correlation coefficient for us. In this program, we'll use the zip() function, which will help us calculate the sum of products from the two sets of numbers. Here's an example of how the zip() function works:

The zip() function returns pairs of the corresponding elements in x and y, which you can then use in a loop to perform other operations (like printing, as shown in the preceding code). If the two lists are unequal in length, the function terminates when all the elements of the smaller list have been read.

Now we're ready to write a program that will calculate the correlation coefficient for us:

```
def find corr x y(x,y):
      n = len(x)
       # Find the sum of the products
       prod = []
0
       for xi, yi in zip(x,y):
           prod.append(xi*yi)
       sum prod x y = sum(prod)
a
       sum x = sum(x)
       sum y = sum(y)
4
       squared sum x = sum x^{**}2
       squared sum y = sum y^{**}2
       x square = []
0
       for xi in x:
           x square.append(xi**2)
       # Find the sum
       x = sum(x = sum(x = square)
       y square=[]
       for yi in y:
           y square.append(yi**2)
       # Find the sum
       y square sum = sum(y square)
```

```
# Use formula to calculate correlation
numerator = n*sum_prod_x_y - sum_x*sum_y
denominator_term1 = n*x_square_sum - squared_sum_x
denominator_term2 = n*y_square_sum - squared_sum_y
denominator = (denominator_term1*denominator_term2)**0.5
correlation = numerator/denominator
```

return correlation

The find_corr_x_y() function accepts two arguments, x and y, which are the two sets of numbers we want to calculate the correlation for. At the beginning of this function, we find the length of the lists and create a label, n, to refer to it. Next, at ①, we have a for loop that uses the zip() function to calculate the product of the corresponding values from each list (multiplying together the first item of each list, then the second item of each list, and so on). We use the append() method to add these products to the list labeled prod.

At ②, we calculate the sum of the products stored in prod using the sum() function. In the statements at ③ and ④, we calculate the sum of the numbers in x and y, respectively (once again, using the sum() function). Then, we calculate the squares of the sum of the elements in x and y, creating the labels squared_sum_x and squared_sum_y to refer to them, respectively.

In the loop starting at **⑤**, we calculate the square of each of the elements in x and find the sum of these squares. Then, we do the same for the elements in y. We now have all the terms we need to calculate the correlation, and we do this in the statements at **⑥**, **②**, and **⑥**. Finally, we return the correlation. Correlation is an oft-cited measure in statistical studies—in popular media and scientific articles alike. Sometimes we know ahead of time that there's a correlation, and we just want to find the strength of that correlation. We'll see an example of this in "Reading Data from a CSV File" on page 86, when we calculate the correlation between data read from a file. Other times, we might only suspect that there might be a correlation, and we must investigate the data to verify whether there actually is one (as in the following example).

High School Grades and Performance on College Admission Tests

In this section, we'll consider a fictional group of 10 students in high school and investigate whether there's a relationship between their grades in school and how they fared on their college admission tests. Table 3-2 lists the data we're going to assume for our study and base our experiments on. The "High school grades" column lists the percentile scores of the students' grades in high school, and the "College admission test scores" column shows their percentile scores on the college admission test.

Table 3-2: High School Grades and College Admission Test Performance

High school grades	College admission test scores
90	85
92	87
95	86
96	97
87	96
87	88
90	89
95	98
98	98
96	87

To analyze this data, let's look at a *scatter plot*. Figure 3-2 shows the scatter plot of the preceding data set, with the *x*-axis representing high school grades and the *y*-axis representing the corresponding college admission test performance.

Figure 3-2: Scatter plot of high school grades and college admission test scores

The plot of the data indicates that the students with the highest grades in high school didn't necessarily perform better on the college admission tests and vice versa. Some students with poor high school grades did very well on the college entrance exam, while others had excellent grades but did relatively poorly on the college exam. If we calculate the correlation coefficient of the two data sets (using our program from earlier), we see that it's approximately 0.32. This means that there's some correlation, but not a very strong one. If the correlation were closer to 1, we'd see this reflected in the scatter plot as well—the points would conform more closely to a straight, diagonal line.

Let's assume that the high school grades shown in Table 3-2 are an average of individual grades in math, science, English, and social science. Let's also imagine that the college exam places a high emphasis on math—much more so than on other subjects. Instead of looking at students' overall high school grades, let's look at just their grades in math to see whether that's a better predictor of how they did on their college exam. Table 3-3 now shows only the math scores (as percentiles) and the college admission tests. The corresponding scatter plot is shown in Figure 3-3.

Table 3-3: High School Math Grades and College Admission Test Performance

High school math grades	College admission test scores		
83	85		
85	87		
84	86		
96	97		
94	96		
86	88		
87	89		
97	98		
97	98		
85	87		

Now, the scatter plot (Figure 3-3) shows the data points lying almost perfectly along a straight line. This is an indication of a high correlation between the high school math scores and performance on the college admission test. The correlation coefficient, in this case, turns out to be approximately 1. With the help of the scatter plot and correlation coefficient, we can conclude that there is indeed a strong relationship in this data set between grades in high school math and performance on college admission tests.

Figure 3-3: Scatter plot of high school math grades and college admission test scores

Scatter Plots

In the previous section, we saw an example of how a scatter plot can give us a first indication of the existence of any correlation between two sets of numbers. In this section, we'll see the importance of analyzing scatter plots by looking at a set of four data sets. For these data sets, conventional statistical measures all turn out to be the same, but the scatter plots of each data set reveal important differences.

First, let's go over how to create a scatter plot in Python:

```
>>> x = [1, 2, 3, 4]
>>> y = [2, 4, 6, 8]
>>> import matplotlib.pyplot as plt

• >>> plt.scatter(x, y)

<matplotlib.collections.PathCollection object at 0x7f351825d550>
>>> plt.show()
```

The scatter() function is used to create a scatter plot between two lists of numbers, x and y ①. The only difference between this plot and the plots we created in Chapter 2 is that here we use the scatter() function instead of the plot() function. Once again, we have to call show() to display the plot.

To learn more about scatter plots, let's look at an important statistical study: "Graphs in Statistical Analysis" by the statistician Francis Anscombe. The study considers four different data sets—referred to as *Anscombe's quartet*—with identical statistical properties: mean, variance, and correlation coefficient.

The data sets are as shown in Table 3-4 (reproduced from the original study).

Table 3-4: Anscombe's Quartet—Four Different Data Sets with Almost Identical Statistical Measures

A		В		C	1	[
X1	Υl	X2	Y2	Х3	Y3	Х4	Y4
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	<i>7</i> .58	13.0	8. <i>7</i> 4	13.0	12. <i>7</i> 4	8.0	<i>7.7</i> 1
9.0	8.81	9.0	8.77	9.0	<i>7</i> .11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	<i>7</i> .81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	<i>7</i> .91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

We'll refer to the pairs (X1, Y1), (X2, Y2), (X3, Y3), and (X4, Y4) as data sets A, B, C, and D, respectively. Table 3-5 presents the statistical measures of the data sets rounded off to two decimal digits.

Table 3-5: Anscombe's Quartet—Statistical Measures

	Х		Υ		
Data set	Mean	Std. dev.	Mean	Std. dev.	Correlation
А	9.00	3.32	7.50	2.03	0.82
В	9.00	3.32	<i>7</i> .50	2.03	0.82
С	9.00	3.32	7.50	2.03	0.82
D	9.00	3.32	<i>7</i> .50	2.03	0.82

The scatter plots for each data set are shown in Figure 3-4.

^{1.} F.J. Anscombe, "Graphs in Statistical Analysis," American Statistician 27, no. 1 (1973): 17–21.

Figure 3-4: Scatter plots of Anscombe's quartet

If we look at just the traditional statistical measures (see Table 3-5)—like the mean, standard deviation, and correlation coefficient—these data sets seem nearly identical. But the scatter plots show that these data sets are actually quite different from each other. Thus, scatter plots can be an important tool and should be used alongside other statistical measures before drawing any conclusions about a data set.

Reading Data from Files

In all our programs in this chapter, the lists of numbers we used in our calculations were all explicitly written, or *hardcoded*, into the programs themselves. If you wanted to find the measures for a different data set, you'd have to enter the entire new data set in the program itself. You also know how to make programs that allow the user to enter the data as input, but with large data sets, it isn't very convenient to make the user enter long lists of numbers each time he or she uses the program.

A better alternative is to read the user data from a file. Let's see a simple example of how we can read numbers from a file and perform mathematical operations on them. First, I'll show how to read data from a simple text file with each line of the file containing a new data element. Then, I'll show you how to read from a file where the data is stored in the

well-known CSV format, which will open up a lot of possibilities as there are loads of useful data sets you can download from the Internet in CSV format. (If you aren't familiar with file handling in Python, see Appendix B for a brief introduction.)

Reading Data from a Text File

Let's take a file, *mydata.txt*, with the list of donations (one per line) during period A that we considered at the beginning of this chapter:

```
100
60
70
900
100
200
500
500
500
503
600
1000
```

The following program will read this file and print the sum of the numbers stored in the file:

```
# Find the sum of numbers stored in a file
def sum_data(filename):
    s = 0
    with open(filename) as f:
        for line in f:
        s = s + float(line)
    print('Sum of the numbers: {0}'.format(s))

if __name__ == '__main__':
    sum_data('mydata.txt')
```

The sum_data() function opens the file specified by the argument filename at ① and reads it line by line (f is referred to as the *file object*, and you can think of it as pointing to an opened file). At ②, we convert each number to a floating point number using the float() function and then keep adding until we've read all the numbers. The final number, labeled s, holds the sum of the numbers, which is printed at the end of the function.

Before you run the program, you must first create a file called *mydata.txt* with the appropriate data and save it in the same directory as your program. You can create this file from IDLE itself by clicking **File > New Window**, typing the numbers (one per line) in the new window, and then saving the file as *mydata.txt* in the same directory as your program. Now, if you run the program, you'll see the following output:

```
Sum of the numbers: 5733.0
```

All our programs in this chapter have assumed that the input data is available in lists. To use our earlier programs on the data from a file, we need to first create a list from that data. Once we have a list, we can use the functions we wrote earlier to calculate the corresponding statistic. The following program calculates the mean of the numbers stored in the file *mydata.txt*:

```
Calculating the mean of numbers stored in a file
def read data(filename):
    numbers = []
    with open(filename) as f:
        for line in f:
            numbers.append(float(line))
    return numbers
def calculate mean(numbers):
    s = sum(numbers)
    N = len(numbers)
    mean = s/N
    return mean
if name == ' main ':
    data = read data('mydata.txt')
    mean = calculate mean(data)
    print('Mean: {0}'.format(mean))
```

Before we can call the calculate_mean() function, we need to read the numbers stored in the file and convert them into a list. To do this, use the read_data() function, which reads the file line by line. Instead of summing the numbers, this function converts them into floating point numbers and adds them to the list numbers ①. The list is returned, and we refer to it by the label data ②. We then invoke the calculate_mean() function, which returns the mean of the data. Finally, we print it.

When you run the program, you should see the following output:

Mean: 477.75

Of course, you'll see a different value for the mean if the numbers in your file are different from those in this example.

See Appendix B for hints on how you can ask the user to input the filename and then modify your program accordingly. This will allow your program's user to specify any data file.

Reading Data from a CSV File

A comma-separated value (CSV) file consists of rows and columns with the columns separated from each other by commas. You can view a CSV file using a text editor on your operating system or specialized software, such as Microsoft Excel, OpenOffice Calc, or LibreOffice Calc.

Here's a sample CSV file containing a few numbers and their squares:

```
Number, Squared
10,100
9,81
22,484
```

The first line is referred to as the *header*. In this case, it tells us that the entries in the first column of this file are numbers and those in the second column are the corresponding squares. The next three lines, or rows, contain a number and its square separated by a comma. It's possible to read the data from this file using an approach similar to what I showed for the *.txt* file. However, Python's standard library has a dedicated module (csv) for reading (and writing) CSV files, which makes things a little easier.

Save the numbers and their squares into a file, *numbers.csv*, in the same directory as your programs. The following program shows how to read this file and then create a scatter plot displaying the numbers against their squares:

```
import csv
  import matplotlib.pyplot as plt
  def scatter plot(x, y):
      plt.scatter(x, y)
      plt.xlabel('Number')
      plt.ylabel('Square')
      plt.show()
  def read csv(filename):
      numbers = []
      squared = []
      with open(filename) as f:
          reader = csv.reader(f)
n
          next(reader)
          for row in reader:
ø
              numbers.append(int(row[0]))
              squared.append(int(row[1]))
          return numbers, squared
  if name == ' main ':
      numbers, squared = read csv('numbers.csv')
      scatter plot(numbers, squared)
```

The read_csv() function reads the CSV file using the reader() function defined in the csv module (which is imported at the beginning of the program). This function is called with the file object f passed to it as an argument ①. This function then returns a *pointer* to the first line of the CSV file. We know that the first line of the file is the header, which we want to skip, so we move the pointer to the next line using the next() function. We then read every line of the file with each line referred to by the label row ②, with row[0] referring to the first column of the data and row[1] referring to the second. For this specific file, we know that both these numbers are integers, so we use the int() function to convert these from strings to integers and to store them in two lists. The lists are then returned—one containing the numbers and the other containing the squares.

We then call the scatter_plot() function with these two lists to create the scatter plot. The find_corr_x_y() function we wrote earlier can also easily be used to find the correlation coefficient between the two sets of numbers.

Now let's try dealing with a more complex CSV file. Open https://www.google.com/trends/correlate/ in your browser, enter any search query you wish to (for example, summer), and click the **Search correlations** button. You'll see that a number of results are returned under the heading "Correlated with summer," and the first result is the one with the highest correlation (the number on the immediate left of each result). Click the **Scatter plot** option above the graph to see a scatter plot with the x-axis labeled summer and the y-axis labeled with the top result. Ignore the exact numbers plotted on both axes as we're interested only in the correlation and the scatter plot.

A little above the scatterplot, click **Export data as CSV** and a file download will start. Save this file in the same directory as your programs.

This CSV file is slightly different from the one we saw earlier. At the beginning of the file, you'll see a number of blank lines and lines with a '#' symbol until finally you'll see the header and the data. These lines aren't useful to us—go ahead and delete them by hand using whatever software you opened the file with so that the first line of the file is the header. Also delete any blank lines at the end of the file. Now save the file. This step—where we cleaned up the file to make it easier to process with Python—is usually called *preprocessing* the data.

The header has several columns. The first contains the date of the data in each row (each row has data corresponding to the week that started on the date in this column). The second column is the search query you entered, the third column shows the search query with the *highest* correlation with your search query, and the other columns include a number of other search queries arranged in decreasing order of correlation with your entered search query. The numbers in these columns are the *z*-scores of the corresponding search queries. The *z-score* indicates the difference between the number of times a term was searched for during a specific week and the overall mean number of searches per week for that term. A positive *z*-score indicates that the number of searches was higher than the mean for that week, and a negative *z*-score indicates it was lower.

For now, let's just work with the second and the third columns. You could use the following read_csv() function to read these columns:

```
def read_csv(filename):
    with open(filename) as f:
        reader = csv.reader(f)
        next(reader)

    summer = []
        highest_correlated = []
        for row in reader:
            summer.append(float(row[1]))
            highest_correlated.append(float(row[2]))
```

This is pretty much like the earlier version of the read_csv function; the main change here is how we append the values to each list starting at ①: we're now reading the second and the third members of each row, and we're storing them as floating point numbers.

The following program uses this function to calculate the correlation between the values for the search query you provided and the values for the query with the highest correlation with it. It also creates a scatter plot of these values:

```
import matplotlib.pyplot as plt
import csv

if __name__ == '__main__':
    summer, highest_correlated = read_csv('correlate-summer.csv')
    corr = find_corr_x_y(summer, highest_correlated)
    print('Highest correlation: {0}'.format(corr))
    scatter_plot(summer, highest_correlated)
```

Assuming that the CSV file was saved as *correlate-summer.csv*, we call the read_csv() function to read the data in the second and third columns **①**. Then, we call the find_corr_x_y() function we wrote earlier with the two lists summer and highest_correlated. It returns the correlation coefficient, which we then print. Now, we call the scatter_plot() function we wrote earlier with these two lists again. Before you can run this program, you'll need to include the definitions of the read_csv(), find_corr_x_y(), and scatter_plot() functions.

On running, you'll see that it prints the correlation coefficient and also creates a scatter plot. Both of these should be very similar to the data shown on the Google correlate website.

What You Learned

In this chapter, you learned to calculate statistical measures to describe a set of numbers and the relationships between sets of numbers. You also used graphs to aid your understanding of these measures. You learned a number of new programming tools and concepts while writing programs to calculate these measures.

Programming Challenges

Next, apply what you've learned to complete the following programming challenges.

#1: Better Correlation Coefficient—Finding Program

The find_corr_x_y() function we wrote earlier to find the correlation coefficient between two sets of numbers assumes that the two sets of numbers are the same length. Improve the function so that it first checks the length of the lists. If they're equal, only then should the function proceed with the remaining calculations; otherwise, it should print an error message that the correlation can't be found.

#2: Statistics Calculator

Implement a statistics calculator that takes a list of numbers in the file *mydata.txt* and then calculates and prints their mean, median, mode, variance, and standard deviation using the functions we wrote earlier in this chapter.

#3: Experiment with Other CSV Data

You can experiment with numerous interesting data sources freely available on the Internet. The website http://www.quandl.com/ is one such source. For this challenge, download the following data as a CVS file from http://www.quandl.com/WORLDBANK/USA_SP_POP_TOTL/: the total population of the United States at the end of each year for the years 1960 to 2012. Then, calculate the mean, median, variance, and standard deviation of the https://github.com/dispersion/ in population over the years and create a graph showing these differences.

#4: Finding the Percentile

The percentile is a commonly used statistic that conveys the value below which a given percentage of observations falls. For example, if a student obtained a 95 percentile score on an exam, this means that 95 percent of the students scored less than or equal to the student's score. For another example, in the list of numbers 5, 1, 9, 3, 14, 9, and 7, the 50th percentile is 7 and the 25th percentile is 3.5, a number that is not present in the list.

There are a number of ways to find the observation corresponding to a given percentile, but here's one approach.²

Let's say we want to calculate the observation at percentile p:

- 1. In ascending order, sort the given list of numbers, which we might call data.
- 2. Calculate

$$i = \frac{np}{100} + 0.5,$$

where n is the number of items in data.

- 3. If i is an integer, data[i] is the number corresponding to percentile p.
- 4. If i is not an integer, set k equal to the integral part of i and f equal to the fractional part of i. The number (1-f)*data[k] + f*data[k+1] is the number at percentile p.

Using this approach, write a program that will take a set of numbers in a file and display the number that corresponds to a specific percentile supplied as an input to the program.

#5: Creating a Grouped Frequency Table

For this challenge, your task is to write a program that creates a grouped frequency table from a set of numbers. A grouped frequency table displays the frequency of data classified into different *classes*. For example, let's consider the scores we discussed in "Creating a Frequency Table" on page 69: 7, 8, 9, 2, 10, 9, 9, 9, 9, 4, 5, 6, 1, 5, 6, 7, 8, 6, 1, and 10. A grouped frequency table would display this data as follows:

Grade	Frequency
1–6	6
6–11	14

The table classifies the grades into two classes: 1–6 (which includes 1 but not 6) and 6–11 (which includes 6 but not 11). It displays against them the number of grades that belong to each category. Determining the number of classes and the range of numbers in each class are two key steps involved in creating this table. In this example, I've demonstrated two classes with the range of numbers in each class equally divided between the two.

^{2.} See "Calculating Percentiles" by Ian Robertson (Stanford University, January 2004); http://web.stanford.edu/class/archive/anthsci/anthsci192/anthsci192.1064/handouts/calculating%20percentiles.pdf.

Here's one simple approach to creating classes, which assumes the number of classes can be arbitrarily chosen:

```
def create classes(numbers, n):
    low = min(numbers)
    high = max(numbers)
    # Width of each class
    width = (high - low)/n
    classes = []
    a = low
    b = low + width
    classes = []
    while a < (high-width):
        classes.append((a, b))
        a = b
        b = a + width
    # The last class may be of a size that is less than width
    classes.append((a, high+1))
    return classes
```

The create_classes() function accepts two arguments: a list of numbers, numbers, and n, the number of classes to create. It'll return a list of tuples with each tuple representing a class. For example, if it's called with numbers 7, 8, 9, 2, 10, 9, 9, 9, 4, 5, 6, 1, 5, 6, 7, 8, 6, 1, 10, and n = 4, it returns the following list: [(1, 3.25), (3.25, 5.5), (5.5, 7.75), (7.75, 11)]. Once you have the list, the next step is to go over each of the numbers and find out which of the returned classes it belongs to.

Your challenge is to write a program to read a list of numbers from a file and then to print the grouped frequency table, making use of the create_classes() function.

4

ALGEBRA AND SYMBOLIC MATH WITH SYMPY

The mathematical problems and solutions in our programs so far have all involved the manipulation of numbers. But there's another way math is taught, learned, and practiced, and that's in terms of symbols and the operations between them. Just think of all the xs and ys in a typical algebra problem. We refer to this type of math as symbolic math. I'm sure you remember those dreaded "factorize $x^3 + 3x^2 + 3x + 1$ " problems in your math class. Fear no more, for in this chapter, we learn how to write programs that can solve such problems and much more. To do so, we'll use SymPy—a Python library that lets you write expressions containing symbols and perform operations on them. Because this is a third-party library, you'll need to install it before you can use it in your programs. The installation instructions are described in Appendix A.

Defining Symbols and Symbolic Operations

Symbols form the building blocks of symbolic math. The term symbol is just a general name for the xs, ys, as, and bs you use in equations and algebraic expressions. Creating and using symbols will let us do things differently than before. Consider the following statements:

```
>>> x = 1
>>> x + x + 1
3
```

Here we create a label, x, to refer to the number 1. Then, when we write the statement x + x + 1, it's evaluated for us, and the result is 3. What if you wanted the result in terms of the symbol x? That is, if instead of 3, you wanted Python to tell you that the result is 2x + 1? You couldn't just write x + x + 1 without the statement x = 1 because Python wouldn't know what x refers to.

SymPy lets us write programs where we can express and evaluate mathematical expressions in terms of such symbols. To use a symbol in your program, you have to create an object of the Symbol class, like this:

```
>>> from sympy import Symbol
>>> x = Symbol('x')
```

First, we import the Symbol class from the sympy library. Then, we create an object of this class passing 'x' as a parameter. Note that this 'x' is written as a string within quotes. We can now define expressions and equations in terms of this symbol. For example, here's the earlier expression:

```
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> x + x + 1
2*x + 1
```

Now the result is given in terms of the symbol x. In the statement x = Symbol('x'), the x on the left side is the Python label. This is the same kind of label we've used before, except this time it refers to the symbol x instead of a number—more specifically, a Symbol object representing the symbol 'x'. This label doesn't necessarily have to match the symbol either—we could have used a label like a or var1 instead. So, it's perfectly fine to write the preceding statements as follows:

```
>>> a = Symbol('x')
>>> a + a + 1
2*x + 1
```

Using a non-matching label can be confusing, however, so I would recommend choosing a label that's the same letter as the symbol it refers to.

FINDING THE SYMBOL REPRESENTED BY A SYMBOL OBJECT

For any Symbol object, its name attribute is a string that is the actual symbol it represents:

```
>>> x = Symbol('x')
>>> x.name
'x'
>>> a = Symbol('x')
>>> a.name
'x'
```

You can use .name on a label to retrieve the symbol that it is storing.

Just to be clear, the symbol you create has to be specified as a string. For example, you can't create the symbol x using x = Symbol(x)—you must define it as x = Symbol('x').

To define multiple symbols, you can either create separate Symbol objects or use the symbols() function to define them more concisely. Let's say you wanted to use three symbols—x, y, and z—in your program. You could define them individually, as we did earlier:

```
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> z = Symbol('z')
```

But a shorter method would be to use the symbols() function to define all three at once:

```
>>> from sympy import symbols
>>> x,y,z = symbols('x,y,z')
```

First, we import the symbols() function from SymPy. Then, we call it with the three symbols we want to create, written as a string with commas separating them. After this statement is executed, x, y, and z will refer to the three symbols 'x', 'y', and 'z'.

Once you've defined symbols, you can carry out basic mathematical operations on them, using the same operators you learned in Chapter 1 (+, -, /, *, and **). For example, you might do the following:

```
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> y = Symbol('y')
```

```
>>> s = x*y + x*y
>>> s
2*x*y
```

Let's see whether we can find the product of x(x + x):

```
>>> p = x*(x + x)
>>> p
2*x**2
```

SymPy will automatically make these simple addition and multiplication calculations, but if we enter a more complex expression, it will remain unchanged. Let's see what happens when we enter the expression (x + 2)*(x + 3):

```
>>> p = (x + 2)*(x + 3)
>>> p
(x + 2)*(x + 3)
```

You may have expected SymPy to multiply everything out and output x**2 + 5*x + 6. Instead, the expression was printed exactly how we entered it. SymPy automatically simplifies only the most basic of expressions and leaves it to the programmer to explicitly require simplification in cases such as the preceding one. If you want to multiply out the expression to get the expanded version, you'll have to use the expand() function, which we'll see in a moment.

Working with Expressions

Now that we know how to define our own symbolic expressions, let's learn more about using them in our programs.

Factorizing and Expanding Expressions

The factor() function decomposes an expression into its factors, and the expand() function expands an expression, expressing it as a sum of individual terms. Let's test out these functions with the basic algebraic identity $x^2 - y^2 = (x + y)(x - y)$. The left side of the identity is the expanded version, and the right side depicts the corresponding factorization. Because we have two symbols in the identity, we'll create two Symbol objects:

```
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> y = Symbol('y')
```

Next, we import the factor() function and use it to convert the expanded version (on the left side of the identity) to the factored version (on the right side):

```
>>> from sympy import factor
>>> expr = x**2 - y**2
>>> factor(expr)
(x - y)*(x + y)
```

As expected, we get the factored version of the expression. Now let's expand the factors to get back the original expanded version:

```
>>> factors = factor(expr)
>>> expand(factors)
x**2 - y**2
```

We store the factorized expression in a new label, factors, and then call the expand() function with it. When we do this, we receive the original expression we started with. Let's try it with the more complicated identity $x^3 + 3x^2y + 3xy^2 + y^3 = (x + y)^3$:

```
>>> expr = x**3 + 3*x**2*y + 3*x*y**2 + y**3
>>> factors = factor(expr)
>>> factors
(x + y)**3
>>> expand(factors)
x**3 + 3*x**2*y + 3*x*y**2 + y**3
```

The factor() function is able to factorize the expression, and then the expand() function expands the factorized expression to return to the original expression.

If you try to factorize an expression for which there's no possible factorization, the original expression is returned by the factor() function. For example, see the following:

```
>>> expr = x + y + x*y
>>> factor(expr)
x*y + x + y
```

Similarly, if you pass in an expression to expand() that can't be expanded further, it returns the same expression.

Pretty Printing

If you want the expressions we've been working with to look a bit nicer when you print them, you can use the pprint() function. This function will print the expression in a way that more closely resembles how we'd normally write it on paper. For example, here's an expression:

```
>>> expr = x*x + 2*x*y + y*y
```

If we print it as we've been doing so far or use the print() function, this is how it looks:

```
>>> expr
x**2 + 2*x*y + y**2
```

Now, let's use the pprint() function to print the preceding expression:

```
>>> from sympy import pprint
>>> pprint(expr)
x<sup>2</sup> + 2·x·y + y<sup>2</sup>
```

The expression now looks much cleaner—for example, instead of having a bunch of ugly asterisks, exponents appear above the rest of the numbers.

You can also change the order of the terms when you print an expression. Consider the expression $1 + 2x + 2x^2$:

```
>>> expr = 1 + 2*x + 2*x**2
>>> pprint(expr)
2 · x<sup>2</sup> + 2 · x + 1
```

The terms are arranged in the order of powers of x, from highest to lowest. If you want the expression in the opposite order, with the highest power of x last, you can make that happen with the init_printing() function, as follows:

```
>>> from sympy import init_printing
>>> init_printing(order='rev-lex')
>>> pprint(expr)
1 + 2·x + 2·x²
```

The init_printing() function is first imported and called with the keyword argument order='rev-lex'. This indicates that we want SymPy to print the expressions so that they're in *reverse lexicographical order*. In this case, the keyword argument tells Python to print the lower-power terms first.

NOTE

Although we used the init_printing() function here to set the printed order of the expressions, this function can be used in many other ways to configure how an expression is printed. For more options and to learn more about printing in SymPy, see the documentation at http://docs.sympy.org/latest/tutorial/printing.html.

Let's apply what we've learned so far to implement a series printing program.

Printing a Series

Consider the following series:

$$x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots + \frac{x^n}{n}$$
.

Let's write a program that will ask a user to input a number, n, and print this series for that number. In the series, x is a symbol and n is an integer input by the program's user. The nth term in this series is given by

$$\frac{x^n}{n}$$
.

We can print this series using the following program:

```
Print the series:
  x + x^{**2} + x^{**3} + ... + x^{**n}
   . . .
  from sympy import Symbol, pprint, init printing
  def print series(n):
       # Initialize printing system with reverse order
       init printing(order='rev-lex')
      x = Symbol('x')
0
       series = x
ø
           for i in range(2, n+1):
6
           series = series + (x^{**}i)/i
      pprint(series)
  if name == ' main ':
       n = input('Enter the number of terms you want in the series: ')
       print series(int(n))
```

The print_series() function accepts an integer, n, as a parameter that is the number of terms in the series that will be printed. Note that we convert the input to an integer using the int() function when calling the function at **3**. We then call the init_printing() function to set the series to print in reverse lexicographical order.

At **①**, we create the label, series, and set its initial value as x. Then, we define a for loop that will iterate over the integers from 2 to n at **②**. Each time the loop iterates, it adds each term to series at **③**, as follows:

```
i = 2, series = x + x**2 / 2
i = 3, series = x + x**2/2 + x**3/3
--snip--
```

The value of series starts off as just plain x, but with each iteration, x**i/i gets added to the value of series until the series we want is completed. You can see SymPy addition put to good use here. Finally, the pprint() function is used to print the series.

When you run the program, it asks you to input a number and then prints the series up to that term:

Enter the number of terms you want in the series: 5

Try this out with a different number of terms every time. Next, we'll see how to calculate the sum of this series for a certain value of *x*.

Substituting in Values

Let's see how we can use SymPy to plug values into an algebraic expression. This will let us calculate the value of the expression for certain values of the variables. Consider the mathematical expression $x^2 + 2xy + y^2$, which can be defined as follows:

```
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> x*x + x*y + x*y + y*y
x**2 + 2*x*y + y**2
```

If you want to evaluate this expression, you can substitute numbers in for the symbols using the subs() method:

```
0 >>> expr = x*x + x*y + x*y + y*y
>>> res = expr.subs({x:1, y:2})
```

First, we create a new label to refer to the expression at **①**, and then we call the subs() method. The argument to the subs() method is a Python *dictionary*, which contains the two symbol labels and the numerical values we want to substitute in for each symbol. Let's check out the result:

```
>>> res
9
```

You can also express one symbol in terms of another and substitute accordingly, using the subs() method. For example, if you knew that x = 1 - y, here's how you could evaluate the preceding expression:

```
>>> expr.subs({x:1-y})
y**2 + 2*y*(-y + 1) + (-y + 1)**2
```

PYTHON DICTIONARIES

A dictionary is another type of data structure in Python (lists and tuples are other examples of data structures, which you've seen earlier). Dictionaries contain key-value pairs inside curly braces, where each key is matched up with a value, separated by a colon. In the preceding code listing, we entered the dictionary {x:1, y:2} as an argument to the subs() method. This dictionary has two key-value pairs—x:1 and y:2, where x and y are the keys and 1 and 2 are the corresponding values. You can retrieve a value from a dictionary by entering its associated key in brackets, much as we would retrieve an element from a list using its index. For example, here we create a simple dictionary and then retrieve the value corresponding to key1:

```
>>> sampledict = {"key1": 5, "key2": 20}
>>> sampledict["key1"]
5
```

To learn more about dictionaries, see Appendix B.

If you want the result to be simplified further—for example, if there are terms that cancel each other out, we can use SymPy's simplify() function, as follows:

At $\mathbf{0}$, we create a new label, expr_subs, to refer to the result of substituting x = 1 - y in the expression. We then import the simplify() function from SymPy and call it at $\mathbf{0}$. The result turns out to be 1 because the other terms of the expression cancel each other.

Although there was a simplified version of the expression in the preceding example, you had to ask SymPy to simplify it using the simplify() function. Once again, this is because SymPy won't do any simplification without being asked to.

The simplify() function can also simplify complicated expressions, such as those including logarithms and trigonometric functions, but we won't get into that here.

Calculating the Value of a Series

Let's revisit the series-printing program. In addition to printing the series, we want our program to be able to find the value of the series for a particular value of x. That is, our program will now take two inputs from the user—the number of terms in the series and the value of x for which the value of the series will be calculated. Then, the program will output both the series and the sum. The following program extends the series printing program to include these enhancements:

```
Print the series:
  x + x^{**2} + x^{**3} + ... + x^{**n}
  from sympy import Symbol, pprint, init printing
  def print series(n, x value):
      # Initialize printing system with reverse order
      init printing(order='rev-lex')
      x = Symbol('x')
      series = x
      for i in range(2, n+1):
          series = series + (x**i)/i
      pprint(series)
      # Evaluate the series at x value
0
      series value = series.subs({x:x value})
      print('Value of the series at {0}: {1}'.format(x value, series value))
  if name == ' main ':
      n = input('Enter the number of terms you want in the series: ')
      x value = input('Enter the value of x at which you want to evaluate the series: ')
      print series(int(n), float(x value))
```

The print_series() function now takes an additional argument, x_value, which is the value of x for which the series should be evaluated. At **①**, we use the subs() method to perform the evaluation and the label series_value to refer to the result. In the next line, we display the result.

The additional input statement at ② asks the user to enter the value of x using the label x_value to refer to it. Before we call the print_series() function, we convert this value into its floating point equivalent using the float() function.

If you execute the program now, it will ask you for the two inputs and print out the series and the series value:

```
Enter the number of terms you want in the series: 5
Enter the value of x at which you want to evaluate the series: 1.2

x^2 \quad x^3 \quad x^4 \quad x^5
x + -- + -- + -- + --
2 \quad 3 \quad 4 \quad 5
Value of the series at 1.2: 3.51206400000000
```

In this sample run, we ask for five terms in the series, with x set to 1.2, and the program prints and evaluates the series.

Converting Strings to Mathematical Expressions

So far, we've been writing out individual expressions each time we want to do something with them. However, what if you wanted to write a more general program that could manipulate any expression provided by the user? For that, we need a way to convert a user's input, which is a string, into something we can perform mathematical operations on. SymPy's sympify() function helps us do exactly that. The function is so called because it converts the string into a SymPy object that makes it possible to apply SymPy's functions to the input. Let's see an example:

```
① >>> from sympy import sympify
>>> expr = input('Enter a mathematical expression: ')
Enter a mathematical expression: x**2 + 3*x + x**3 + 2*x
② >>> expr = sympify(expr)
```

We first import the sympify() function at **①**. We then use the input() function to ask for a mathematical expression as input, using the label expr to refer to it. Next, we call the sympify() function with expr as its argument at **②** and use the same label to refer to the converted expression.

You can perform various operations on this expression. For example, let's try multiplying the expression by 2:

```
>>> 2*expr
2*x**3 + 2*x**2 + 10*x
```

What happens when the user supplies an invalid expression? Let's see:

```
>>> expr = input('Enter a mathematical expression: ')
Enter a mathematical expression: x**2 + 3*x + x**3 + 2x
>>> expr = sympify(expr)
Traceback (most recent call last):
   File "<pyshell#146>", line 1, in <module>
        expr = sympify(expr)
   File "/usr/lib/python3.3/site-packages/sympy/core/sympify.py", line 180, in sympify
        raise SympifyError('could not parse %r' % a)
sympy.core.sympify.SympifyError: SympifyError: "could not parse 'x**2 + 3*x + x**3 + 2x'"
```

The last line tells us that sympify() isn't able to convert the supplied input expression. Because this user didn't add an operator between 2 and x, SymPy doesn't understand what it means. Your program should expect such invalid input and print an error message if it comes up. Let's see how we can do that by catching the SympifyError exception:

```
>>> from sympy import sympify
>>> from sympy.core.sympify import SympifyError
>>> expr = input('Enter a mathematical expression: ')
Enter a mathematical expression: x**2 + 3*x + x**3 + 2x
>>> try:
    expr = sympify(expr)
except SympifyError:
    print('Invalid input')
Invalid input
```

The two changes in the preceding program are that we import the SympifyError exception class from the sympy.core.sympify module and call the sympify() function in a try...except block. Now if there's a SympifyError exception, an error message is printed.

Expression Multiplier

Let's apply the sympify() function to write a program that calculates the product of two expressions:

```
Product of two expressions
  from sympy import expand, sympify
  from sympy.core.sympify import SympifyError
  def product(expr1, expr2):
      prod = expand(expr1*expr2)
      print(prod)
  if name ==' main ':
      expr1 = input('Enter the first expression: ')
0
      expr2 = input('Enter the second expression: ')
      try:
          expr1 = sympify(expr1)
          expr2 = sympify(expr2)
      except SympifyError:
          print('Invalid input')
          product(expr1, expr2)
```

At **0** and **0**, we ask the user to enter the two expressions. Then, we convert them into a form understood by SymPy using the sympify() function

in a try...except block. If the conversion succeeds (indicated by the else block), we call the product() function at **3**. In this function, we calculate the product of the two expressions and print it. Note how we use the expand() function to print the product so that all its terms are expressed as a sum of its constituent terms.

Here's a sample execution of the program:

```
Enter the first expression: x**2 + x*2 + x

Enter the second expression: x**3 + x*3 + x

x**5 + 3*x**4 + 4*x**3 + 12*x**2
```

The last line displays the product of the two expressions. The input can also have more than one symbol in any of the expressions:

```
Enter the first expression: x*y+x
Enter the second expression: x*x+y
x**3*y + x**3 + x*y**2 + x*y
```

Solving Equations

SymPy's solve() function can be used to find solutions to equations. When you input an expression with a symbol representing a variable, such as x, solve() calculates the value of that symbol. This function always makes its calculation by assuming the expression you enter is equal to zero—that is, it prints the value that, when substituted for the symbol, makes the entire expression equal zero. Let's start with the simple equation x - 5 = 7. If we want to use solve() to find the value of x, we first have to make one side of the equation equal zero (x - 5 - 7 = 0). Then, we're ready to use solve(), as follows:

```
>>> from sympy import Symbol, solve
>>> x = Symbol('x')
>>> expr = x - 5 - 7
>>> solve(expr)
[12]
```

When we use solve(), it calculates the value of 'x' as 12 because that's the value that makes the expression (x - 5 - 7) equal to zero.

Note that the result 12 is returned in a list. An equation can have multiple solutions—for example, a quadratic equation has two solutions. In that case, the list will have all the solutions as its members. You can also ask the solve() function to return the result so that each member is dictionary instead. Each dictionary is composed of the symbol (variable name) and its value (the solution). This is especially useful when solving simultaneous equations where we have more than one variable to solve for because when the solution is returned as a dictionary, we know which solution corresponds to which variable.

Solving Quadratic Equations

In Chapter 1, we found the roots of the quadratic equation $ax^2 + bx + c = 0$ by writing the formulas for the two roots and then substituting the values of the constants a, b, and c. Now, we'll learn how we can use SymPy's solve() function to find the roots without needing to write out the formulas. Let's see an example:

```
① >>> from sympy import solve
>>> x = Symbol('x')
② >>> expr = x**2 + 5*x + 4
③ >>> solve(expr, dict=True)
④ [{x: -4}, {x: -1}]
```

The solve() function is first imported at ①. We then define a symbol, x, and an expression corresponding to the quadratic equation, $x^{**2} + 5^*x + 4$, at ②. Then, we call the solve() function with the preceding expression at ③. The second argument to the solve() function (dict=True) specifies that we want the result to be returned as a list of Python dictionaries.

Each solution in the returned list is a dictionary using the symbol as a key matched with its corresponding value. If the solution is empty, an empty list will be returned. The roots of the preceding equation are -4 and -1, as you can see at **4**.

We found out in the first chapter that the roots of the equation

$$x^2 + x + 1 = 0$$

are complex numbers. Let's attempt to find those using solve():

```
>>> x=Symbol('x')

>>> expr = x**2 + x + 1

>>> solve(expr, dict=True)

[{x: -1/2 - sqrt(3)*I/2}, {x: -1/2 + sqrt(3)*I/2}]
```

Both the roots are imaginary, as expected with the imaginary component indicated by the I symbol.

Solving for One Variable in Terms of Others

In addition to finding the roots of equations, we can take advantage of symbolic math to use the solve() function to express one variable in an equation in terms of the others. Let's take a look at finding the roots for the generic quadratic equation $ax^2 + bx + c = 0$. To do so, we'll define x and three additional symbols—a, b, and c, which correspond to the three constants:

```
>>> x = Symbol('x')
>>> a = Symbol('a')
>>> b = Symbol('b')
>>> c = Symbol('c')
```

Next, we write the expression corresponding to the equation and use the solve() function on it:

```
>>> expr = a*x*x + b*x + c
>>> solve(expr, x, dict=True)
[{x: (-b + sqrt(-4*a*c + b**2))/(2*a)}, {x: -(b + sqrt(-4*a*c + b**2))/(2*a)}]
```

Here, we have to include an additional argument, x, to the solve() function. Because there's more than one symbol in the equation, we need to tell solve() which symbol it should solve for, which is what we indicate by passing in x as the second argument. As we'd expect, solve() prints the quadratic formula: the generic formula for finding the value(s) of x in a polynomial expression.

To be clear, when we use solve() on an equation with more than one symbol, we specify the symbol to solve for as the second argument (and now the third argument specifies how we want the results to be returned).

Next, let's consider an example from physics. According to one of the equations of motion, the distance traveled by a body moving with a constant acceleration *a*, with an initial velocity *u*, in time *t*, is given by

$$s = ut + \frac{1}{2}at^2.$$

Given u and a, however, if you wanted to find the time required to travel a given distance, s, you'd have to first express t in terms of the other variables. Here's how you could do that using SymPy's solve() function:

```
>>> from sympy import Symbol, solve, pprint
>>> s = Symbol('s')
>>> u = Symbol('u')
>>> t = Symbol('t')
>>> a = Symbol('a')
>>> expr = u*t + (1/2)*a*t*t - s
>>> t_expr = solve(expr,t, dict=True)
>>> pprint(t_expr)
```

The result looks like this:

$$\left[\left\{t: \frac{-u + \sqrt{2.0 \cdot a \cdot s + u}}{2}\right\}, \left\{t: \frac{-\left(u + \sqrt{2.0 \cdot a \cdot s + u}\right)}{a}\right\}\right]$$

Now that we have the expression for t (referred to by the label t_expr), we can use the subs() method to replace the values of s, u, and a to find the two possible values of t.

Solving a System of Linear Equations

Consider the following two equations:

$$2x + 3y = 6$$
$$3x + 2y = 12$$

Say we want to find the pair of values (x, y) that satisfies both the equations. We can use the solve() function to find the solution for a system of equations like this one.

First, we define the two symbols and create the two equations:

```
>>> x = Symbol('x')

>>> y = Symbol('y')

>>> expr1 = 2*x + 3*y - 6

>>> expr2 = 3*x + 2*y - 12
```

The two equations are defined by the expressions expr1 and expr2, respectively. Note how we've rearranged the expressions so they both equal zero (we moved the right side of the given equations to the left side). To find the solution, we call the solve() function with the two expressions forming a tuple:

```
>>> solve((expr1, expr2), dict=True)
[{y: -6/5, x: 24/5}]
```

As I mentioned earlier, getting the solution back as a dictionary is useful here. We can see that the value of x is 24/5 and the value of y is -6/5. Let's verify whether the solution we got really satisfies the equations. To do so, we'll first create a label, soln, to refer to the solution we got and then use the subs() method to substitute the corresponding values of x and y in the two expressions:

```
>>> soln = solve((expr1, expr2), dict=True)
>>> soln = soln[0]
>>> expr1.subs({x:soln[x], y:soln[y]})
0
>>> expr2.subs({x:soln[x], y:soln[y]})
0
```

The result of substituting the values of x and y corresponding to the solution in the two expressions is zero.

Plotting Using SymPy

In Chapter 2, we learned to make graphs where we explicitly specified the numbers we wanted to plot. For example, to plot the graph of the gravitational force against the distance between two bodies, you had to calculate the gravitational force for each distance value and supply the lists of distances and forces to matplotlib. With SymPy, on the other hand, you can just tell SymPy the equation of the line you want to plot, and the graph will be created for you. Let's plot a line whose equation is given by y = 2x + 3:

```
>>> from sympy.plotting import plot
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> plot(2*x+3)
```

All we had to do was import plot and Symbol from sympy.plotting, create a symbol, x, and call the plot() function with the expression 2*x+3. SymPy takes care of everything else and plots the graph of the function, as shown in Figure 4-1.

Figure 4-1: Plot of the line y = 2x + 3

The graph shows that a default range of x values was automatically chosen: -10 to 10. You may notice that the graph window looks very similar to those you saw in Chapters 2 and 3. That's because SymPy uses matplotlib behind the scenes to draw the graphs. Also note that we didn't have to call the show() function to show the graphs because this is done automatically by SymPy.

Now, let's say that you wanted to limit the values of 'x' in the preceding graph to lie in the range -5 to 5 (instead of -10 to 10). You'd do that as follows:

```
>>> plot((2*x + 3), (x, -5, 5))
```

Here, a tuple consisting of the symbol, the lower bound, and the upper bound of the range—(x, -5, 5)—is specified as the second argument to the plot() function. Now, the graph displays only the values of y corresponding to the values of x between -5 and 5 (see Figure 4-2).

Figure 4-2: Plot of the line y = 2x + 3 with the values of x restricted to the range -5 to 5

You can use other keyword arguments in the plot() function, such as title to enter a title or xlabel and ylabel to label the *x*-axis and the *y*-axis, respectively. The following plot() function specifies the preceding three keyword arguments (see the corresponding graph in Figure 4-3):

>>> plot(2*x + 3, (x, -5, 5), title='A Line', xlabel='x', ylabel='2x+3')

Figure 4-3: Plot of the line y = 2x + 3 with the range of x and other attributes specified

The plot shown in Figure 4-3 now has a title and labels on the *x*-axis and the *y*-axis. You can specify a number of other keyword arguments to the plot() function to customize the behavior of the function as well as the graph itself. The show keyword argument allows us to specify whether we want the graph to be displayed. Passing show=False will cause the graph to not be displayed when you call the plot() function:

```
>>> p = plot(2*x + 3, (x, -5, 5), title='A Line', xlabel='x', ylabel='2x+3', show=False)
```

You will see that no graph is shown. The label p refers to the plot that is created, so you can now call p.show() to display the graph. You can also save the graph as an image file using the save() method, as follows:

```
>>> p.save('line.png')
```

This will save the plot to a file *line.png* in the current directory.

Plotting Expressions Input by the User

The expression that you pass to the plot() function must be expressed in terms of x only. For example, earlier we plotted y = 2x + 3, which we entered to the plot function as simply 2x + 3. If the expression were not originally in this form, we'd have to rewrite it. Of course, we could do this manually,

outside the program. But what if you want to write a program that allows its users to graph any expression? If the user enters an expression in the form of 2x + 3y - 6, say, we have to first convert it. The solve() function will help us here. Let's see an example:

```
>>> expr = input('Enter an expression: ')
Enter an expression: 2*x + 3*y - 6

① >>> expr = sympify(expr)
② >>> y = Symbol('y')
>>> solve(expr, y)
② [-2*x/3 + 2]
```

At ①, we use the sympify() function to convert the input expression to a SymPy object. At ②, we create a Symbol object to represent 'y' so that we can tell SymPy which variable we want to solve the equation for. Then we solve the expression to find y in terms of x by specifying y as the second argument to the solve() function. At ③, this returns the equation in terms of x, which is what we need for plotting.

Notice that this final expression is stored in a list, so before we can use it, we'll have to extract it from the list:

```
>>> solutions = solve(expr, 'y')

>>> expr_y = solutions[0]
>>> expr_y
-2*x/3 + 2
```

We create a label, solutions, to refer to the result returned by the solve() function, which is a list with only one item. Then, we extract that item at **4**. Now, we can call the plot() function to graph the expression. The next listing shows a full graph-drawing program:

```
Plot the graph of an input expression

from sympy import Symbol, sympify, solve
from sympy.plotting import plot

def plot_expression(expr):

    y = Symbol('y')
    solutions = solve(expr, y)
    expr_y = solutions[0]
    plot(expr_y)

if __name__ == '__main__':
    expr = input('Enter your expression in terms of x and y: ')
```

```
try:
    expr = sympify(expr)
except SympifyError:
    print('Invalid input')
else:
    plot_expression(expr)
```

Note that the preceding program includes a try...except block to check for invalid input, as we've done with sympify() earlier. When you run the program, it asks you to input an expression, and it will create the corresponding graph.

Plotting Multiple Functions

You can enter multiple expressions when calling the SymPy plot function to plot more than one expression on the same graph. For example, the following code plots two lines at once (see Figure 4-4):

```
>>> from sympy.plotting import plot
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> plot(2*x+3, 3*x+1)
```


Figure 4-4: Plotting two lines on the same graph

This example brings out another difference between plotting in matplotlib and in SymPy. Here, using SymPy, both lines are the same color, whereas matplotlib would have automatically made the lines different colors. To set different colors for each line with SymPy, we'll need to perform some extra steps, as shown in the following code, which also adds a legend to the graph:

```
>>> from sympy.plotting import plot
>>> from sympy import Symbol
>>> x = Symbol('x')
① >>> p = plot(2*x+3, 3*x+1, legend=True, show=False)
② >>> p[0].line_color = 'b'
③ >>> p[1].line_color = 'r'
>>> p.show()
```

At ①, we call the plot() function with the equations for the two lines but pass two additional keyword arguments—legend and show. By setting the legend argument to True, we add a legend to the graph, as we saw in Chapter 2. Note, however, that the text that appears in the legend will match the expressions you plotted—you can't specify any other text. We also set show=False because we want to set the color of the lines before we draw the graph. The statement at ②, p[0], refers to the first line, 2x + 3, and we set its attribute line_color to 'b', meaning that we want this line to be blue. Similarly, we set the color of the second plot to red using the string 'r' ③. Finally, we call the show() to display the graph (see Figure 4-5).

Figure 4-5: Plot of the two lines with each line drawn in a different color

In addition to red and blue, you can plot the lines in green, cyan, magenta, yellow, black, and white (using the first letter of the color in each case).

What You Learned

In this chapter, you learned the basics of symbolic math using SymPy. You learned about declaring symbols, constructing expressions using symbols and mathematical operators, solving equations, and plotting graphs. You will be learning more features of SymPy in later chapters.

Programming Challenges

Here are a few programming challenges that should help you further apply what you've learned. You can find sample solutions at http://www.nostarch.com/doingmathwithpython/.

#1: Factor Finder

You learned about the factor() function, which prints the factors of an expression. Now that you know how your program can handle expressions input by a user, write a program that will ask the user to input an expression, calculate its factors, and print them. Your program should be able to handle invalid input by making use of exception handling.

#2: Graphical Equation Solver

Earlier, you learned how to write a program that prompts the user to input an expression such as 3x + 2y - 6 and create the corresponding graph. Write a program that asks the user for two expressions and then graphs them both, as follows:

```
>>> expr1 = input('Enter your first expression in terms of x and y: ')
>>> expr2 = input('Enter your second expression in terms of x and y: ')
```

Now, expr1 and expr2 will store the two expressions input by the user. You should convert both of these into SymPy objects using the sympify() step in a try...except block.

All you need to do from here is plot these two expressions instead of one.

Once you've completed this, enhance your program to print the solution—the pair of x and y values that satisfies both equations. This will also be the spot where the two lines on the graph intersect. (Hint: Refer to how we used the solve() function earlier to find the solution of a system of two linear equations.)

#3: Summing a Series

We saw how to find the sum of a series in "Printing a Series" on page 99. There, we manually added the terms of the series by looping over all the terms. Here's a snippet from that program:

```
for i in range(2, n+1):
    series = series + (x**i)/i
```

SymPy's summation() function can be directly used to find such summations. The following example prints the sum of the first five terms of the series we considered earlier:

```
>>> from sympy import Symbol, summation, pprint
>>> x = Symbol('x')
>>> n = Symbol('n')

1 >>> s = summation(x**n/n, (n, 1, 5))
>>> pprint(s)
x<sup>5</sup> x<sup>4</sup> x<sup>3</sup> x<sup>2</sup>
--+--+--+x
5 4 3 2
```

We call the summation() function at $\mathbf{0}$, with the first argument being the nth term of the series and the second argument being a tuple that states the range of n. We want the sum of the first five terms here, so the second argument is (n, 1, 5).

Once you have the sum, you can use the subs() method to substitute a value for *x* to find the numerical value of the sum:

```
>>> s.subs({x:1.2})
3.51206400000000
```

Your challenge is to write a program that's capable of finding the sum of an arbitrary series when you supply the *n*th term of the series and the number of terms in it. Here's an example of how the program would work:

```
Enter the nth term: a+(n-1)*d
Enter the number of terms: 3
3·a + 3·d
```

In this example, the *n*th term supplied is that of an *arithmetic progression*. Starting with a and d as the *common difference*, the number of terms up to which the sum is to be calculated is 3. The sum turns out to be 3a + 3d, which agrees with the known formula for the same.

#4: Solving Single-Variable Inequalities

You've seen how to solve an equation using SymPy's solve() function. But SymPy is also capable of solving single-variable inequalities, such as x + 5 > 3 and $\sin x - 0.6 > 0$. That is, SymPy can solve relations besides equality, like >, <, and so on. For this challenge, create a function, isolve(), that will take any inequality, solve it, and then return the solution.

First, let's learn about the SymPy functions that will help you implement this. The inequality-solving functions are available as three separate functions for polynomial, rational, and all other inequalities. We'll need to pick the right function to solve various inequalities, or we'll get an error.

A *polynomial* is an algebraic expression consisting of a variable and coefficients and involving only the operations of addition, subtraction, and multiplication and only positive powers of the variable. An example of a polynomial inequality is $x^2 + 4 < 0$.

To solve a polynomial inequality, use the solve_poly_inequality() function:

```
>>> from sympy import Poly, Symbol, solve_poly_inequality
>>> x = Symbol('x')

① >>> ineq_obj = -x**2 + 4 < 0
② >>> lhs = ineq_obj.lhs
③ >>> p = Poly(lhs, x)
② >>> rel = ineq_obj.rel_op
>>> solve_poly_inequality(p, rel)
[(-oo, -2), (2, oo)]
```

First, create the expression representing an inequality, $-x^2 + 4 < 0$, at \bullet and refer to this expression with the label ineq_obj. Then, extract the left side of the inequality—that is, the algebraic expression $-x^2 + 4$ —using the lhs attribute at \bullet . Next, create a Poly object at \bullet to represent the polynomial we extracted at \bullet . The second argument passed when creating the object is the symbol object that represents the variable, x. At \bullet , extract the relational operator from the inequality object using the rel attribute. Finally, call the solve_poly_inequality() function with the polynomial object, p, and rel as the two arguments. The program returns the solution as a list of tuples, with each tuple representing a solution for the inequality as the lower limit and the upper limit of the range of numbers. For this inequality, the solution is all numbers less than -2 and all numbers greater than 2.

A *rational expression* is an algebraic expression in which the numerator and denominator are both polynomials. Here's an example of a rational inequality:

$$\frac{x-1}{x+2} > 0$$

```
>>> from sympy import Symbol, Poly, solve_rational_inequalities
>>> x = Symbol('x')

① >>> ineq_obj = ((x-1)/(x+2)) > 0
>>> lhs = ineq_obj.lhs

② >>> numer, denom = lhs.as_numer_denom()
>>> p1 = Poly(numer)
>>> p2 = Poly(denom)
>>> rel = ineq_obj.rel_op

③ >>> solve_rational_inequalities([[((p1, p2), rel)]])
(-oo, -2) U (1, oo)
```

Create an inequality object representing our example rational inequality at ① and then extract the rational expression using the 1hs attribute. Separate out the numerator and the denominator into the labels numer and denom using the as_numer_denom() method at ②, which returns a tuple with the numerator and denominator as the two members. Then, create two polynomial objects, p1 and p2, representing the numerator and denominator, respectively. Retrieve the relational operator and call the solve_rational_inequalities() function, passing it the two polynomial objects—p1 and p2—and the relational operator.

The program returns the solution (-00, -2) U (1, 00), where U denotes that the solution is a *union* of the two *sets* of solutions consisting of all numbers less than -2 and all numbers greater than 1. (We'll learn about sets in Chapter 5.)

Finally, $\sin x - 0.6 > 0$ is an example of an inequality that belongs to neither the polynomial nor rational expression categories. If you have such an inequality to solve, use the solve_univariate_inequality() function:

```
>>> from sympy import Symbol, solve, solve_univariate_inequality, sin
>>> x = Symbol('x')
>>> ineq_obj = sin(x) - 0.6 > 0
>>> solve_univariate_inequality(ineq_obj, x, relational=False)
(0.643501108793284, 2.49809154479651)
```

Create an inequality object representing the inequality $\sin(x) - 0.6 > 0$ and then call the solve_univariate_inequality() function with the first two arguments as the inequality object, ineq_obj, and the symbol object, x. The keyword argument relational=False specifies to the function that we want the solution to be returned as a *set*. The solution for this inequality turns out to be all numbers lying between the first and second members of the tuple the program returns.

Hints: Handy Functions

Now remember—your challenge is (1) to create a function, isolve(), that will take any inequality and (2) to choose one of the appropriate functions discussed in this section to solve it and return the solution. The following hints may be useful to implement this function.

The is_polynomial() method can be used to check whether an expression is a polynomial or not:

```
>>> x = Symbol('x')
>>> expr = x**2 - 4
>>> expr.is_polynomial()
True
>>> expr = 2*sin(x) + 3
>>> expr.is_polynomial()
False
```

The is_rational_function() can be used to check whether an expression is a rational expression:

```
>>> expr = (2+x)/(3+x)
>>> expr.is_rational_function()
True
>>> expr = 2+x
>>> expr.is_rational_function()
True
>>> expr = 2+sin(x)
>>> expr.is_rational_function()
False
```

The sympify() function can convert an inequality expressed as a string to an inequality object:

```
>>> from sympy import sympify
>>> sympify('x+3>0')
x + 3 > 0
```

When you run your program, it should ask the user to input an inequality expression and print back the solution.