

Shirin Dora
Senior Lecturer, Loughborough University

August 29, 2025

Outline

- Motivation: Why lifelong learning?
 - Classical machine learning
 - Catastrophic forgetting
- Definitions
 - Lifelong Learning
 - Three L² settings
- Current L² approaches
 - Replay Methods
 - Regularization Methods
 - Architectural Methods
- Evaluation of L² methods
- My Research interest

- Classical machine learning: Isolated single-task learning.
- What is a task?

- Classical machine learning: Isolated single-task learning.
- What is a task?
 - Classification: cars vs truck, MNIST.
 - Regression: stock prices, rainfall.

- Classical machine learning: Isolated single-task learning.
- What is a task?
 - Classification: cars vs truck, MNIST.
 - Regression: stock prices, rainfall.
- Each model performs a single task.
 - Support vector machines, Deep neural networks.

- Classical machine learning: Isolated single-task learning.
- What is a task?
 - Classification: cars vs truck, MNIST.
 - Regression: stock prices, rainfall.
- Each model performs a single task.
 - Support vector machines, Deep neural networks.
 - Very effective but there are limitations!

Key issues in classical machine learning

- No lifelong/continual learning
 - Learning occurs in isolation.
 - Knowledge accumulation is not possible.
 - Knowledge transfer is not possible.

Key issues in classical machine learning

- No lifelong/continual learning
 - Learning occurs in isolation.
 - Knowledge accumulation is not possible.
 - Knowledge transfer is not possible.
- Assumes stationarity: Can't handle environment changes.

Key issues in classical machine learning

- No lifelong/continual learning
 - Learning occurs in isolation.
 - Knowledge accumulation is not possible.
 - Knowledge transfer is not possible.
- Assumes stationarity: Can't handle environment changes.
- No more learning is possible after deployment.

Easy Solution

 Train a single model on multiple tasks one after another (in a sequence).

Easy Solution

- Train a single model on multiple tasks one after another (in a sequence).
- Learning requires updating parameters of the shared model for each task (like weights in a neural network).

Easy Solution

- Train a single model on multiple tasks one after another (in a sequence).
- Learning requires updating parameters of the shared model for each task (like weights in a neural network).
 - Knowledge acquired from previous tasks will be overwritten.
 - Performance on previous tasks deteriorate as we learn new tasks - Catastrophic forgetting.

- Task 1
 - 2 classes: blue and green squares.

- Task 1
 - 2 classes: blue and green squares.
- Find a line that separates two classes.
 - y = mx + c
 - Model = Finding m and c.

- Apply the easy solution
 - Continue training the model on Task 2.

• Task 2

- 2 classes: orange and magenta squares.
- Find a line that separates two classes.

- Apply the easy solution
 - Continue training the model on Task 2.

• Task 2

- 2 classes: orange and magenta squares.
- Find a line that separates two classes.
- Red line is our model now.

- We wanted a single shared model for all tasks.
- New model (line) doesn't work for Task 1.
- Learning Task 2 made model forget Task 1.
 - Catastrophic forgetting.
- Catastrophic forgetting is the most fundamental problem in L².

Definitions

- Learn a sequence of tasks, $T_1, T_2, \ldots, T_N, \ldots$ sequentially.
- Each task t has a dataset for training, $\mathcal{D}_t = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$

- Learn a sequence of tasks, $T_1, T_2, \ldots, T_N, \ldots$ sequentially.
- Each task t has a dataset for training, $\mathcal{D}_t = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- **Goal**: Learn each new task T_{N+1} sequentially:
 - Without catastrophic forgetting: Learning of new task T_{N+1} should not result in degradation of accuracy for the previous N tasks.

- Learn a sequence of tasks, $T_1, T_2, \ldots, T_N, \ldots$ sequentially.
- Each task t has a dataset for training, $\mathcal{D}_t = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- **Goal**: Learn each new task T_{N+1} sequentially:
 - Without catastrophic forgetting: Learning of new task T_{N+1} should not result in degradation of accuracy for the previous N tasks.
 - With knowledge transfer: Utilize knowledge acquired from previous tasks to learn the new task T_{N+1} more effectively.

- Learn a sequence of tasks, $T_1, T_2, \ldots, T_N, \ldots$ sequentially.
- Each task t has a dataset for training, $\mathcal{D}_t = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- **Goal**: Learn each new task T_{N+1} sequentially:
 - Without catastrophic forgetting: Learning of new task T_{N+1} should not result in degradation of accuracy for the previous N tasks.
 - With knowledge transfer: Utilize knowledge acquired from previous tasks to learn the new task T_{N+1} more effectively.
- Assumption: Once a task is learned, its data is no longer accessible (at least majority of it).

Three L^2 settings [Van de Ven, 2022]

- 1. Task incremental learning
 - Models are partially shared across tasks.
 - Task identity is required during testing.

Three L^2 settings [Van de Ven, 2022]

- 1. Task incremental learning
 - Models are partially shared across tasks.
 - Task identity is required during testing.
- 2. Domain incremental learning
 - All tasks have the same set of classes.
 - Task identity is not required during testing.
 - E.g. Classifying objects under different lightning conditions.

Three L^2 settings [Van de Ven, 2022]

- 1. Task incremental learning
 - Models are partially shared across tasks.
 - Task identity is required during testing.
- 2. Domain incremental learning
 - All tasks have the same set of classes.
 - Task identity is not required during testing.
 - E.g. Classifying objects under different lightning conditions.
- 3. Class incremental learning
 - Produce a single model from all tasks.
 - All classes in all tasks are handled by one model.

Three L^2 Settings

XX 7* .1

1 St

0

Task-IL	(e.g., 0 or 1)
Domain-IL	With task unknown, is it a 1 st or 2 nd class? (e.g., in [0, 2, 4, 6, 8] or in [1, 3, 5, 7, 9])
Class-IL	With task unknown, which digit is it? (i.e., choice from 0 to 9)

and

Replay/Rehearsal-based methods

Regularization-based methods

Architectural methods

- Replay/Rehearsal-based methods
 - Replay samples from previous tasks while learning a new task.
- Regularization-based methods

Architectural methods

- Replay/Rehearsal-based methods
 - Replay samples from previous tasks while learning a new task.
- Regularization-based methods
 - Update to model parameters is regularized according to a parameter's importance for previous tasks.
- Architectural methods

Replay/Rehearsal-based methods

 Replay samples from previous tasks while learning a new task.

Regularization-based methods

 Update to model parameters is regularized according to a parameter's importance for previous tasks.

Architectural methods

Expand network architecture to learn new tasks.

Task 1 Training

 Save subset of samples in replay memory.

Task 1 Training

 Save subset of samples in replay memory.

Task 2 Training

- Replay stored samples from previous tasks.
- Save subset of samples in replay memory.

Why replay works?

- For training, mix data from new task and replay samples.
 - Replay samples: Won't allow changes to weights important for previous tasks.
 - New task samples: Learn the new task.
- The quality of stored samples is very important!

Why replay works?

- For training, mix data from new task and replay samples.
 - Replay samples: Won't allow changes to weights important for previous tasks.
 - New task samples: Learn the new task.
- The quality of stored samples is very important!

Is there another way to obtain replay samples?

Why replay works?

- For training, mix data from new task and replay samples.
 - Replay samples: Won't allow changes to weights important for previous tasks.
 - New task samples: Learn the new task.
- The quality of stored samples is very important!

Is there another way to obtain replay samples?

- Train a generative model in-parallel to your classifier.
- Get replay samples from the generative model [Shin, 2017].

Replay Methods

- Exact replay
 - Actual samples from the original dataset are used for replay.
- Generative replay
 - Samples for replay are obtained from generative models.
 - L2 problem is shifted to generative models.

Replay Methods

 Learning in deep neural networks and brains with similarity-weighted interleaved learning, 2022 - Only previous memories with high similarity to the new data.

Coresets

- Gradient based sample selection for online continual learning, 2019 - Select samples that exhibit maximum variance in gradient.
- Online Continual Learning with Maximally Interfered Retrieval, 2019. - Samples most affected by a given gradient update.

- Use an additional penalty term during learning.
- Without regularization

$$\mathcal{L}_{N} = \sum_{\mathbf{x} \in \mathcal{D}_{N}} \mathcal{E}(y_{output}, y_{desired}) \tag{1}$$

- ${\cal E}$ could be MSE, cross entropy, etc.

- Use an additional penalty term during learning.
- Without regularization

$$\mathcal{L}_{N} = \sum_{x \in \mathcal{D}_{N}} \mathcal{E}(y_{output}, y_{desired})$$
 (1)

- ${\cal E}$ could be MSE, cross entropy, etc.
- With regularization,

$$\mathcal{L}_{N} = \sum_{i} \mathcal{E} +$$
 parameter-wise penalty (2)

Regularization: Old wine in new bottles!

$$\mathcal{L}_{N} = \sum_{\mathbf{x} \in \mathcal{D}_{N}} \mathcal{E} + \lambda \sum_{i} \theta_{i}^{2} \tag{3}$$

- L2 Regularization
- θ_i denotes parameters of your network.
- ullet λ determines how strongly regularization is applied.
- Almost a standard technique to prevent overfitting.

Regularization: Old wine in new bottles!

$$\mathcal{L}_{N} = \sum_{x \in \mathcal{D}_{N}} \mathcal{E} + \lambda \sum_{i} \theta_{i}^{2}$$
 (3)

- L2 Regularization
- θ_i denotes parameters of your network.
- ullet λ determines how strongly regularization is applied.
- Almost a standard technique to prevent overfitting.
- Keep θ_i close to zero.

$$\mathcal{L}_{N} = \sum_{x \in \mathcal{D}_{N}} \mathcal{E} + \lambda \sum_{i} (\theta_{i} - 0)^{2}$$
 (4)

$$\mathcal{L}_B = \sum_{x \in B} \mathcal{E} + \lambda \sum_i \theta_i^2 \tag{5}$$

- λ is same for all θ_i .
- All parameters might not be equally important!

$$\mathcal{L}_{B} = \sum_{x \in B} \mathcal{E} + \lambda \sum_{i} \theta_{i}^{2} \tag{5}$$

- λ is same for all θ_i .
- All parameters might not be equally important!

$$\mathcal{L}_{B} = \sum_{\mathbf{x} \in B} \mathcal{E} + \left(\lambda_{i}\right) \sum_{i} \theta_{i}^{2} \tag{6}$$

- High λ_i for less important θ_i .
- Low λ_i for highly important θ_i .

$$\mathcal{L}_{B} = \sum_{x \in B} \mathcal{E} + \lambda \sum_{i} \theta_{i}^{2} \tag{5}$$

- λ is same for all θ_i .
- All parameters might not be equally important!

$$\mathcal{L}_{B} = \sum_{\mathbf{x} \in B} \mathcal{E} + \left(\lambda_{i}\right) \sum_{i} \theta_{i}^{2} \tag{6}$$

- High λ_i for less important θ_i .
- Low λ_i for highly important θ_i .
- How do we set λ_i ?

The usual gradient descent!

Low gradient

- Little change in loss.
- Less importance.

High gradient

- Large change in loss.
- High importance.

Continual learning

- Use parameters less important for previous tasks to learn new task.
 - Low gradient for previous tasks.
 - High gradient for current task.

Continual learning

- Use parameters less important for previous tasks to learn new task.
 - Low gradient for previous tasks.
 - High gradient for current task.
- Double derivative (gradient of the gradient) represents speed of change in the gradient.

$$\mathcal{L}_{new} = \sum_{x \in new} \mathcal{E} + c\lambda_i \sum_{i} (\theta_i - \theta_{i,prev})^2$$
 (7)

- θ_{prev} represents network parameters after learning previous tasks.
- λ_i would be estimated using double derivative [Kirkpatrick, 2016].

$$\lambda_i \propto \frac{\delta^2 \mathcal{L}}{\delta \theta_i^2}$$

- $(\theta_i \theta_{prev})$ has the effect of keeping θ_i close to θ_{prev} when λ_i is high.
- c controls strength of regularization.

- Continual learning through synaptic intelligence Computationally less intensive method for estimating λ .
- Memory Aware Synapses: Learning what (not) to forget -Effect of a parameter change on the network output.
- Optimization and Generalization of Regularization-Based Continual Learning: a Loss Approximation Viewpoint -Unifies various parameter-level regularization methods.
- Continual learning with node-importance based adaptive group sparse regularization, 2020 - Regularization at the level of neurons.

Architectural Methods

Architectural Methods

- Expand the network to learn new tasks.
- Brute force approach to L².
- Leads to parameter explosion.

Progressive Neural Networks[Rusu, 2016]

Architectural Methods

 Progress & compress: A scalable framework for continual learning. - Introduced a compression step for progressive neural networks.

Prune/Add weights to the network

- Lifelong learning with dynamically expandable networks.
- Compacting, picking and growing for unforgetting continual learning.
- Learn to grow: A continual structure learning framework for overcoming catastrophic forgetting.

Evaluating and Debugging L^2 Methods

• What do you notice?

- What do you notice?
- Learned task performance is getting worse after each task is trained.
- This is a sign of catastrophic forgetting!

• What do you notice?

Interpreting L^2 Results

- What do you notice?
- Learned task performance is maintained after learning a new task.
- This indicates no forgetting!

Interpreting L^2 Results

Loughborough University

• What do you notice?

- What do you notice?
- Learned task performance is maintained but new tasks are not learned well enough.
- Problematic learning
 - Over regularization.
 - Limited network capacity.

Interpreting L^2 Results

Loughborough University

• What do you notice?

- What do you notice?
- Learned task performance is maintained
- New task performance is higher than previous task.
- Forward transfer
 - Future tasks utilize knowledge from previous tasks.

Interpreting L^2 Results

Loughborough University

• What do you notice?

Interpreting L^2 Results

- What do you notice?
- Learned task performance is growing.
- New task performance is higher than previous task.
- Forward and backward transfer
 - Future tasks utilize knowledge from previous tasks.
 - Previous tasks gain from future tasks.

- Metrics allow us to determine which scenario our model results represent.
- All L^2 metrics are computed from the accuracy matrix Lopez-paz, 2017.

Accuracy Matrix

 $R_{m,n}$: The performance of the model on task T_n , after continually training till task T_m

Accuracy Matrix

 Increasing → Positive Forward transfer

Accuracy Matrix

- Increasing \rightarrow Positive Forward transfer
- Measuring forward transfer (FWT)

$$\frac{1}{T-1}\sum_{i=2}^{r}(R_{i-1,i}-b_i)$$
(8)

• *b_i* is accuracy before training.

Accuracy Matrix

 Measuring backward transfer (BWT)

$$\frac{1}{T-1} \sum_{i=1}^{T-1} (R_{T,i} - R_{i,i})$$
(9)

Accuracy Matrix

Measuring backward transfer (BWT)

$$\frac{1}{T-1} \sum_{i=1}^{T-1} (R_{T,i} - R_{i,i}) \tag{9}$$

- R_{i,i}: accuracy after training a task.
- $R_{T,i}$: accuracy after training last task.

My Research Interests

Efficient Generative L^2

- Deep Bidirectional Predictive Coding (DBPC) [Senhui 2023].
- Propagation can occur in both directions in DBPC.

Efficient Generative L^2

- Deep Bidirectional Predictive Coding (DBPC) [Senhui 2023].
- Propagation can occur in both directions in DBPC.
- Single network can do classification and generation.
 - Replay without additional memory!

Efficient Generative L^2

Task 1: 0 and 1

Task 2: 2 and 3

Task 3: 4 and 5

Task 4: 6 and 7

Task 5: 8 and 9

Distributed L^2

- Group of nodes perform L² collaboratively.
- Nodes encounter tasks in different sequence.

Distributed L^2

- Group of nodes perform L² collaboratively.
- Nodes encounter tasks in different sequence.
- Sharing knowledge improves speed of learning [Nath 2023].
 - 12 agents learned 16 tasks faster than a smaller group.
 - Agents exchanged knowledge through task-specific masks.

Distributed L^2

- Mask represents a subnetwork in a randomly initialized network
 [Wortsman 2020].
- Training involves estimating a mask for a given task.
- Testing involves processing a sample using the estimated mask.

Thank you!

s.dora@lboro.ac.uk

References

- van de Ven, G. M., Tuytelaars, T., & Tolias, A. S. (2022). Three types of incremental learning. Nature Machine Intelligence, 4(12), 1185-1197.
- Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
 A. A., ... & Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13), 3521-3526.
- Shin, H., Lee, J. K., Kim, J., & Kim, J. (2017). Continual learning with deep generative replay. Advances in neural information processing systems, 30.
- Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
 Kavukcuoglu, K., ... & Hadsell, R. (2016). Progressive neural networks. arXiv preprint arXiv:1606.04671.
- Lopez-Paz, D., & Ranzato, M. A. (2017). Gradient episodic memory for continual learning. Advances in neural information processing systems, 30.

References

- Qiu, S., Bhattacharyya, S., Coyle, D., & Dora, S. (2023). Deep Predictive Coding with Bi-directional Propagation for Classification and Reconstruction. arXiv preprint arXiv:2305.18472.
- Nath, S., Peridis, C., Ben-Iwhiwhu, E., Liu, X., Dora, S., Liu, C., ... &
 Soltoggio, A. (2023). Sharing Lifelong Reinforcement Learning Knowledge via Modulating Masks. arXiv preprint arXiv:2305.10997.
- Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A., Rastegari, M., Yosinski, J., & Farhadi, A. (2020). Supermasks in superposition. Advances in Neural Information Processing Systems, 33, 15173-15184.