Понятие группы занимает очень большое место в современной математике и физике. В то же время элементы теории группы просты и вполне доступны школьникам. Читателям, знакомым с понятиями «отображение множества на множество» и «композиция отображений» (которые входят по новой программе в курс геометрии VI—VIII классов), проще всего начать знакомство с теорией групп на примерах групп преобразований, в частности, групп перемещений на плоскости. Небольшая статья А. Колмогорова о группах пре-

образований может служить введением к изучению групп симметрии. Общей, «абстрактной», теории групп посвящена статья Л. Садовского и М. Аршинова. В ней, впрочем, также
содержится много материала, относящегося
специально к группам преобразований. Наконец, в статье Э. Белаги, помещенной в
разделе «Математический кружок», вы найдете множество задач, решая которые, вы
освоитесь с операцией «композиция» (не
только отображений) и увидите, как применяется теория групп при решении задач.

А. Колмогоров

ГРУППЫ ПРЕОБРАЗОВАНИЙ

Задача моей короткой заметки состоит в том, чтобы сделать более доступным и связать с новыми школьными учебниками содержание публикуемой далее статьи Л. Садовского и М. Аршинова «Группы».

По новым школьным программам школьники в пятом классе знакомятся с понятием «отображение множества на множество». В шестом классе они знакомятся с понятием «обратимое отображение» (в другой терминологии, привычной многим читателям «Кванта», — «взаимно однозначное отображение»).

Каждое обратимое отображение имеет обратиюе отображение. Например, поворот $R_O^{70^\circ}$ вокруг точки O на 70° против часовой стрелки (рис. 1) имеет своим обратным отображением поворот вокруг той же точки O на 70° , но уже по часовой стрелке. В новом учебнике геометрии этот поворот обозначается $R_O^{-70^\circ}$ (поворот вокруг точки O на минус 70°).

В седьмом и восьмом классах школьники знакомятся с понятием «композиция отображений». Рассмотрим для примера два перемещения плоскости, то есть два отобра-

жения плоскости на себя, сохраняющих расстояния. В качестве первого перемещения возьмем осевую симметрию S_x с осью x, в качестве второго — осевую симметрию S_y с осью y, перпендикулярной оси x (рис. 2). Что получится, если произвести эти два отображения последовательно: сначала S_x , а потом S_y ?

Точка P при осевой симметрии S_x перейдет в симметричную ей относительно оси x точку P_1 , а при симметрии S_y точка P_1 перейдет в точку P_2 . Сказанное можно записать в виде равенства

$$P_2 = S_y(S_x(P)).$$

С другой стороны, точку P_2 можно получить непосредственно из точки P при помощи центральной симметрии Z_0 с центром O — точкой пересечения прямых x и y:

$$P_2 = Z_0(P)$$
.

Докажите самостоятельно, что для π ю 6 о й точки P плоскости

$$S_{\nu}(S_{\kappa}(P)) = Z_{O}(P)$$

(предполагается, как было сказано, что прямые x и y перпендикулярны и пересекаются в точке O).

Говорят, что отображение Z_{o} есть «композиция» отображений S_{x} и S_{y} ; записывают этот факт в виде равенства

$$Z_0 = S_y \circ S_x$$
.

Здесь кружочек \circ есть знак операции над отображениями. Подобно тому, как операции сложения (знак (*+)) или умножения (знак (*+)), примененные к паре чисел (*-), дают новые числа:

$$c = a + b$$
, $d = a \times b$,

операция композиции, примененная к двум отображениям, порождает но-

вое отображение.

Нас будут занимать обратимые отображения некоторого множества M на себя. Такие отображения называют «преобразованиями множества M». В качестве примеров приведем перемещение плоскости, гомотетию, преобразование подобия.

Пусть множество M есть плоскость. Рассмотрим множество G всех перемещений этой плоскости, то есть множество всех отображений F плоскости M на себя, сохраняющих расстояния: для любых двух точек P и Q плоскости M

$$|F(P)F(Q)| = |PQ|.$$

Все перемещения обратимы, и потому по указанной выше терминологии они являются преобразованиями плоскости.

Наше множество *G* обладает двумя интересными свойствами:

(1) композиция двух преобразований из G принадлежит G, т. е. композиция двух перемещений есть перемещение;

(2) вместе с преобразованием F множеству G всегда принадлежит и обратное преобразование, то есть преобразование, обратное к перемещению, также есть перемещение.

Определение. Совокупность преобразований множества A, обладающую свойствами (1) и (2), называют группой преобразований множества A.

В силу сказанного множество всех перемещений плоскости может служить примером группы преобразований плоскости. Другим примером может служить множество всех преобразований подобия.

Существуют, однако, и гораздо более простые примеры. Рассмотрим, например, множество G_1 всех перемещений, которые равносторонний треугольник ABC (рис. 3) отображают на самого себя. Легко указать шесть таких перемещений:

- 1) тождественное отображение E, отображающее любую точку P плоскости на себя;
- 2) поворот $R_O^{120^\circ}$ вокруг центра треугольника O на 120° против часовой стрелки;
- 3) поворот $R_0^{-120^{\circ}}$ вокруг центра O на 120° по часовой стрелке;
- 4), 5), 6) осевые симметрии $S_{(OA)}$, $S_{(OB)}$, $S_{(OC)}$.

Задача 1. Докажите, что множество G_1 состоит только из перечисленных шести перемещений.

Задача 2. Проверьте, что каждое из перемещений E, S(OA), S(OB), S(OC) обратно самому себе, а перемещения R_O^{120} ° и R_O^{-120} ° обратны друг другу.

обратны друг другу. Задача 3. Проверьте и дополните таблицу 1 «композиций» для множества G_1 . Решив задачи 2 и 3, вы установите, что множество G_1 обладает свойствами (1) и (2) из определения группы преобразований, то есть что G_1 — группа преобразований плоскости. Можно доказать более общий факт: множество G_{Φ} всех перемещений плоскости; которые отображают какуюлибо заданную фигуру Φ на себя, есть группа преобразований плоскости. Доказательство не сложно (проведите его!). Группа G_{Φ} называется группой симметрии фигуры Φ .

Из таблицы композиций множества G_1 мы видим, что композиция перемещений не всегда переместительна:

$$S_{(OA)} \circ S_{(OB)} = R_o^{-120^{\circ}} \neq R_o^{120^{\circ}} = S_{(OB)} \circ S_{(OA)}.$$

Можно, однако, доказать, что операция композиции преобразований множества М всегда обладает свойством ассоциативности:

$$F_3 \circ (F_2 \circ F_1) = (F_3 \circ F_2) \circ F_1$$

(попробуйте сделать это).

Таблица 1

						таолица
0	E	S(OA)	S _(QB)	S(0C)	R _Q ^{120°}	R ₀ -120°
Е	$E \circ E = E$	$E \circ S_{(OA)} = $ $= S_{(OA)}$	$E \circ S_{(OB)} = $ $= S_{(OB)}$	$E \circ S_{(OC)} = \\ = S_{(OC)}$		$ \begin{vmatrix} E^{\circ}R_{O}^{-120^{\circ}} = \\ = R_{O}^{-120^{\circ}} \end{vmatrix} $
S _(OÅ)	$S_{(OA)} \circ E = $ $= S_{(OA)}$	$S_{(OA)}^{\circ}$ $\circ S_{(OA)} = E$	$S_{(OA)^{\circ}}$ ${}_{\circ}S_{(OB)} = R_{O}^{-120^{\circ}}$			
$S_{(OB)}$		$S_{(OB)}^{\circ}$ ${}^{\circ}S_{(OA)} = R_{O}^{120^{\circ}}$				***
S _(OC)						
R ₀ ^{120°}						
$R_{O}^{-120^{\circ}}$				2		111

Любое перемещение, отображающее треугольник ABC на себя, отображает множество $U = \{A, B, C\}$ вершин треугольника на себя в соответствии с таблицей 2.

В нижней строке даны обозначения отображений множества U на себя, заданных нашей таблицей. Например, функция s_2 (вспомните: отображение и функция — синонимы!) полностью задается равенствами

$$s_2(A) = C$$
, $s_2(B) = B$, $s_2(C) = A$.

Область ее определения есть множество U, множество значений — то же множество U. Конечно, ее нельзя путать с отображением $S_{(OB)}$, которое отображает плоскость M на себя!

Преобразования e, s_1 , s_2 , s_3 , r_1 , r_2 образуют группу G_2 преобразований множества U.

Задача 4. Запишите таблицу композиций для группы G_2 . Укажите для каждого ее элемента обратный элемент.

Таблица 2

x	E (x)	S(0A) (x)	S(0B)(#)	S(OC)(#)	R ₀ ^{120°} (x)	Ro 120°(x)
A B C	A B C	A C B	C B A	B A C	C A B	B C A
	e	s,	s ₂	S,	r _i	r ₂

Группа перемещений G_1 и определенная сейчас группа G_2 в некотором смысле слова «устроены совершенно одинаково». Они «изоморфны». Что это значит на строгом языке математики, вы можете узнать из статьи Л. Садовского и М. Аршинова.

Задача 5. Исследуйте аналогичным образом:

- а) группу симметрии отрезка АВ;
- б) группу симметрии квадрата АВСО.

Новый взгляд на старую задачу

Задача эта такова. В бассейн проведено две трубы. Через одну бассейн может быть наполнен за 4 часа, а через другую — за 12 часов. За какое время наполнится бассейн, если будут открыты одновременно обе трубы?

Напомним обычное решение этой задачи. За один час первая труба наполняет $^{1}/_{4}$, а вторая $^{-1}/_{12}$ часть всего бассейна. Обе трубы за один час наполнят $^{1}/_{4}+$ $^{+1}/_{12}$, то есть $^{1}/_{3}$ бассейна, поэтому весь бассейн будет наполнен за 3 часа.

А теперь проделаем следующее: из концов произвольного отрезка *AB* восставим по одну сторону от него два перпендикуляра: $|AA_1|=4$, $|BB_1|=12$ (см. рисунок). Из точки C_1 пересечения отрезков A_1B и AB_1 опустим перпендикуляр C_1C на прямую AB, тогда $|C_1C|=3$, что равно найденному выше значению.

Докажем, что это не случайное совпадение. Рассмотрим общий случай: пусть первая труба наполняет бассейн за х часов, а вторая — за у часов. Обе трубы при совместной работе наполнят бассейн за z часов, причем

$$\frac{1}{z} = \frac{1}{x} + \frac{1}{y}.$$

При любых допустимых значениях x и y треугольник CBC_1 подобен треугольнику

 ABA_1 , а треугольник ACC_1 подобен треугольнику ABB_1 , поэтому

$$\frac{z}{x} = \frac{|BC|}{|AB|}, \frac{z}{y} = \frac{|AC|}{|AB|},$$
откуда

$$\frac{z}{x} + \frac{z}{y} = 1,$$

$$\frac{1}{z} = \frac{1}{x} + \frac{1}{y}.$$

Аналогично можно найти сопротивление z цепи, составленной из двух сопротивлений величины x и y, включенных параллельно, потому что и в этом случае 1/z = 1/x + 1/y. Последний пример дает возможность решать задачу о бассейнах снажатием кнопки». Составим цепь из двух параллельно включенных сопротивлений величиной 4 ома и 12 ом и измерим ее сопротивление — получим ответ: 3 (ома) RO. Метт