

Localization

INFO 498D - ANDROID

JOEL ROSS

WINTER 2016

Localization

"The process of determining location"

User Context

Localization helps determine a person's **context**— what their situation/activity is!

Mobile phone location not necessarily a proxy for user location (see Patel et al. 2006)

Ubiquitous Computing

See also: Weiser, Mark (1991) The computer for the 21st century. Scientific American, Sept 94-100

Localization History

Hightower, J. and Borriello, G. 2001. *Location systems for ubiquitous computing*. IEEE Computer, 34 (8), 57-66

Table 1. Current location sensing technologies.

								Accuracy a precision is			
Technology	Technique	Physical	Symbolic	Absolute	Relative	LLC	Recognition	available	Scale	Cost	Limitations
GPS	Radio time- of-flight lateration	٠		•		✓		1-5 meters (95-99 percent)	24 satellites worldwide	Expensive infrastructure \$100 receivers	Not indoors
Active Badges	Diffuse infrared cellular proximity		•	•			✓	Room size	1 base per room, badge per base per 10 sec	Administration costs, cheap tags and bases	Sunlight and fluorescent light interfere with infrared
Active Bats	Ultrasound time-of-flight lateration	•		•			✓	9 cm (95 percent)	1 base per 10 square meters, 25 computations per room per sec	Administration costs, cheap tags and sensors	Required ceiling sensor grid
MotionStar	Scene analysis, lateration	•		•			√	1 mm, 1 ms, 0.1° (nearly 100 percent)	Controller per scene, 108 sen- sors per scene	Controlled scenes, expen- sive hardware	Control unit tether, precise installation
VHF Omini- directional Ranging	Angulation	•		•		√		1° radial (≈ 100 percent)	Several transmitters per metropolitan area	Expensive infrastructure, inexpensive aircraft receivers	30-140 nautical miles, line of sight
Cricket	Proximity, lateration		•	o	o	✓		4 × 4 ft. regions (≈ 100 percent)	≈ 1 beacon per 16 square ft.	\$10 beacons and receivers	No central management receiver computation
MSR RADAR	802.11 RF scene analysis and triangulation	•		•			√	3-4.3 m (50 percent)	3 bases per floor	802.11 network installation, ≈ \$100 wireless NICs	Wireless NICs required

GPS: Global Positioning System

GPS: Global Positioning System

Time of Flight

Time of Flight

I heard "It's 10:42:03.253!" at 10:24:03.256, so the satellite is .003sec away!

Trilateration

GPS Limitations

Cell Tower Localization

WiFi Localization

War Driving

Representing Location

Space Place

Measuring Latitude

Latitude & Longitude

Latitude & Longitude

Rough approximation: .01 degrees ~= 1 mile