Lecture 7 More On The Bayes' Theorem

BIO210 Biostatistics

Xi Chen

Spring, 2025

School of Life Sciences
Southern University of Science and Technology

Conditional Probability

The Multiplication Rule

$$\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(A_{1}\right) \cdot \\ \mathbb{P}\left(A_{2} | A_{1}\right) \cdot \\ \mathbb{P}\left(A_{3} | A_{1} \cap A_{2}\right) \cdot \\ \mathbb{P}\left(A_{4} | A_{1} \cap A_{2} \cap A_{3}\right) \cdot \\ \cdots \\ \mathbb{P}\left(A_{n} | \bigcap_{i=1}^{n-1} A_{i}\right)$$

Conditional Probability

The Total Probability Rule

$$\mathbb{P}(B) = \mathbb{P}[(A_1 \cap B) \cup (A_2 \cap B) \cup \dots \cup (A_n \cap B)]$$
$$= \mathbb{P}(A_1 \cap B) + \mathbb{P}(A_2 \cap B) + \dots + \mathbb{P}(A_n \cap B)$$

$$=\sum_{i=1}^{n}\mathbb{P}\left(A_{i}\right)\cdot\mathbb{P}\left(B|A_{i}\right)$$

 A_{n-1}

 \bullet $A_n \cap B$

2/12

Conditional Probability

Bayes' Theorem

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(A_i) \cdot \mathbb{P}(B|A_i)}{\mathbb{P}(B)}$$
$$= \frac{\mathbb{P}(A_i) \cdot \mathbb{P}(B|A_i)}{\sum_{i=1}^n \mathbb{P}(A_i) \cdot \mathbb{P}(B|A_i)}$$

Virus Detection

Who Is Steve

Amos Tversky & Daniel Kahneman

"Steve is very shy and withdrawn, invariably helpful, but with little interest in people, or in the world of reality. A meek and tidy soul, he has a need for order and structure, and a passion for detail. How do people assess the probability that Steve is engaged in a particular occupation from a list of possibilities (for example, farmer, salesman, airline pilot, librarian, or physician)?"

Who Is Steve

Lipkakian

Farmer

When To Use The Bayes' Theorem

You have a hypothesis	You have observed some evidence	You want
The person carries the virus; Steve is a librarian	Test result is positive; Steve's characters	Probability of the hypothesis given the evidence, $\mathbb{P}\left(H E\right)$

The Alternative Form Of The Bayes' Theorem

Bayes' Theorem

$$\mathbb{P}(H_i|E) = \frac{\mathbb{P}(H_i) \cdot \mathbb{P}(E|H_i)}{\mathbb{P}(E)}$$
$$= \frac{\mathbb{P}(H_i) \cdot \mathbb{P}(E|H_i)}{\sum_{i=1}^{n} \mathbb{P}(H_i) \cdot \mathbb{P}(E|H_i)}$$

The Bayes' Theorem

$$\mathbb{P}\left(H_{i}|E\right) = \frac{\mathbb{P}\left(E|H_{i}\right)}{\sum_{i=1}^{n} \mathbb{P}\left(H_{i}\right) \cdot \mathbb{P}\left(E|H_{i}\right)} \cdot \mathbb{P}\left(H_{i}\right)$$

 $\mathbb{P}(H_i)$: prior probability $\mathbb{P}(H_i|E)$: posterior probability

The Bayesian Search

- The 4th H-bomb from American B-52 (1966)
- Air France 447 (2009 2011)
- Malaysian Air Flight 370 (2014)
- USS Scorpion (SSN-589) (1968)

US Navy photo #NH_97214 & 1136658

The Bayesian Search

			NOT				UMB								NG E	Y IC	,000		
NOT	£: *	INDI	CATE	S		_	LANK	-		≤ NUM									
			RPIO I		10 < NUMBER ≤ 100								-			5	7	1	
			Α	в	С	Ø	KXXXX 1000 < NUMBER ≤ 10,000 3 11 14								Z 5-	24	6		
		_											5	26	35	22	26	9	1
		2										18	46	74	42	18	10	4	2
		3								8	111	140	99	45	50	4	2	1	-
		4	2	21	137	16	7	ı,		215		105	30	5	3	ı	-	-	Γ
		5	40	46	747	30		205	571	277	38	5	s	-	1	ı			
	1 1 1	326	3	-	28	31	63	* 85	62	1	8	7		7	3	4			
-	359	175	174	886	282	245	82	71	65	35	27	9	12	6	5	4			
	24	25 25	42	82	297	230	129		61	33	#	-4	10	6	2	5	١		
	17	25	50	20	20	19	55	99	46	30	14	15	3	5	1	6			
	2	110	14	25	20	24	45	34	27	19	15	5	7	5	5	1			
		11	7	13	12	9	1	3	3		14	5	4	3	2	1			
L		12							1	4	4	10	5	4	1				
											1	3	2						
												3	2						
_		_			_	_	_	_	_	_	_	_	L	_	L			_	-

Richardson & Stone - Operations analysis during the underwater search for Scorpions (1971)

FIGURE 2. Overall A Priori distribution for Scorpion search

Simulation of The Bayesian Search

One Simulation Result

12/12