Introduction to R for Biologists

Day 4 - Machine learning & advanced data visualization

Two broad categories of ML

- 1. Unsupervised learning (unlabeled data)
 - A. Dimensionality reduction
 - B. Clustering
 - C. Neural networks
- 2. Supervised learning (labeled data)
 - A. Regression
 - B. Classification

Day 4 Outline

- 1. Unsupervised learning (unlabeled data)
 - A. Dimensionality reduction
 - B. Clustering
 - C. Neural networks
- 2. Supervised learning (labeled data)
 - A. Regression
 - B. Classification

Principal Components Analysis (PCA)

- Dimension reduction
- Useful for exploratory data analysis of highdimensional data sets.

Example: Consider a data set of heights and weights of people

Example: Consider a data set of heights and weights of people

Example: Consider a data set of heights and weights of people

PCA on this data set reframes data in terms of overall size and heavyness

In our earlier example, overall size and heaviness are uncorrelated


```
> pca
Standard deviations:
[1] 1.7083611 0.9560494 0.3830886 0.1439265
```

Rotation:

```
PC1 PC2 PC3 PC4
Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971
```

```
> pca
Standard deviations:
[1] 1.7083611 0.9560494 0.3830886 0.1439265
```

Rotation:

```
PC1 PC2 PC3 PC4
Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971
```

Squares of the std. devs represent the % variance explained by each PC


```
> pca
Standard deviations:
[1] 1.7083611 0.9560494 0.3830886 0.1439265
```

Rotation:

```
PC1 PC2 PC3 PC4
Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971
```

The rotation matrix tells us which variables contribute to which PCs

We can also recover each original observation expressed in PC coordinates

> pca\$x

We can also recover each original observation expressed in PC coordinates

> pca\$x

```
PC1
                            PC2
                                           PC3
                                                         PC4
                                                0.024087508
      -2.25714118
                   -0.478423832
                                  0.127279624
      -2.07401302
                    0.671882687
                                  0.233825517
                                                0.102662845
      -2.35633511
                    0.340766425
                                 -0.044053900
                                                0.028282305
      -2.29170679
                    0.595399863
                                 -0.090985297
                                               -0.065735340
      -2.38186270
                   -0.644675659
                                 -0.015685647
                                               -0.035802870
      -2.06870061
                   -1.484205297
                                 -0.026878250
                                                0.006586116
                   -0.047485118
                                 -0.334350297
                                               -0.036652767
      -2.43586845
      -2.22539189
                   -0.222403002
                                  0.088399352
                                               -0.024529919
      -2.32684533
                    1.111603700
                                               -0.026769540
                                 -0.144592465
      -2.17703491
                    0.467447569
                                  0.252918268
                                               -0.039766068
      -2.15907699
                   -1.040205867
                                  0.267784001
                                                0.016675503
[12,] -2.31836413
                   -0.132633999
                                 -0.093446191
                                               -0.133037725
[13 \ 1 \ -2 \ 21104370]
                    0.726243183
                                  0 230140246
                                                0 002416941
```

Plot of iris plants in PC coordinates reveals differences among species

Species

- setosa
- versicolor
- virginica

These differences are much harder to see in the original variables

Species

- setosa
- versicolor
- virginica

Day 4 Outline

- 1. Unsupervised learning (unlabeled data)
 - A. Dimensionality reduction
 - B. Clustering
 - C. Neural networks
- 2. Supervised learning (labeled data)
 - A. Regression
 - B. Classification

Day 4 Outline

- 1. Unsupervised learning (unlabeled data)
 - A. Dimensionality reduction
 - B. Clustering
 - C. Neural networks
- 2. Supervised learning (labeled data)
 - A. Regression
 - B. Classification
 - A. Logistic regression
 - B. Random forest

Logistic regression

Predict binary outcomes (success/failure) from numerical or categorical predictors.

Linear vs. logistic regression

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

Linear vs. logistic regression

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

Logistic regression:

$$Pr(success) = \frac{e^{t}}{1 + e^{t}}$$
$$t = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

(generalized linear model, GLM)

The logistic equation

Example: Pr(malignant) in biopsy data set

Let's do this step by step...

Recall the biopsy data set

```
clump thickness uniform cell size uniform cell shape marg adhesion
1
2
5
                                  10
                                                      10
  epithelial cell size bare nuclei bland chromatin normal nucleoli mitoses
                                 10
                                 10
    outcome
    benign
    benign
    benign
    benign
    benign
6 malignant
```

We do logistic regression with the glm() function

```
> glm out <- glm(</pre>
    outcome ~ clump thickness +
      uniform cell size +
      uniform cell shape +
      marg adhesion +
      epithelial cell size +
      bare nuclei +
      bland chromatin +
      normal nucleoli +
      mitoses,
    data = biopsy,
    family = binomial
```

> summary(glm out)

Call:

glm(formula = outcome ~ clump_thickness + uniform_cell_size +
 uniform_cell_shape + marg_adhesion + epithelial_cell_size +
 bare_nuclei + bland_chromatin + normal_nucleoli + mitoses,
 family = binomial, data = biopsy)

Deviance Residuals:

Min 1Q Median 3Q Max -3.4841 -0.1153 -0.0619 0.0222 2.4698

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-10.10394	1.17488	-8.600	< 2e-16	***
clump_thickness	0.53501	0.14202	3.767	0.000165	***
uniform_cell_size	-0.00628	0.20908	-0.030	0.976039	
uniform_cell_shape	0.32271	0.23060	1.399	0.161688	
marg_adhesion	0.33064	0.12345	2.678	0.007400	* *
<pre>epithelial_cell_size</pre>	0.09663	0.15659	0.617	0.537159	
bare_nuclei	0.38303	0.09384	4.082	4.47e-05	***
bland_chromatin	0.44719	0.17138	2.609	0.009073	* *
normal_nucleoli	0.21303	0.11287	1.887	0.059115	•
mitoses	0.53484	0.32877	1.627	0.103788	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary(glm out)

Call:

glm(formula = outcome ~ clump_thickness + uniform_cell_size +
 uniform_cell_shape + marg_adhesion + epithelial_cell_size +
 bare_nuclei + bland_chromatin + normal_nucleoli + mitoses,
 family = binomial, data = biopsy)

Deviance Residuals:

Min 1Q Median 3Q Max -3.4841 -0.1153 -0.0619 0.0222 2.4698

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-10.10394	1.17488	-8.600	< 2e-16	***
clump_thickness	0.53501	0.14202	3.767	0.000165	***
uniform coll sizo	-0.00628	0.20908	-0.030	0.976039	
uniform_cell_shape	0.32271	0.23060	1.399	0.161688	
marg_adhesion	0.33064	0.12345	2.678	0.007400	**
epithelial_cell_size	0.09663	0.15659	0.617	0.537159	
bare_nuclei	0.38303	0.09384	4.082	4.47e-05	***
bland_chromatin	0.44719	0.17138	2.609	0.009073	* *
normal_nucleoli	0.21303	0.11287	1.887	0.059115	•
mitoses	0.53484	0.32877	1.627	0.103788	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

```
> glm_out <- glm(
   outcome ~ clump_thickness +
     uniform_cell_shape +
     marg_adhesion +
     epithelial_cell_size +
     bare_nuclei +
     bland_chromatin +
     normal_nucleoli +
     mitoses,
   data = biopsy,
   family = binomial</pre>
```

```
> summary(glm out)
```

Call:

Deviance Residuals:

```
Min 1Q Median 3Q Max -3.4823 -0.1154 -0.0620 0.0222 2.4694
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-10.09765	1.15546	-8.739	< 2e-16	***
clump_thickness	0.53456	0.14125	3.784	0.000154	***
uniform_cell_shape	0.31816	0.17424	1.826	0.067847	•
marg_adhesion	0.32993	0.12115	2.723	0.006465	**
epithelial_cell_size	0.09612	0.15564	0.618	0.536876	
bare_nuclei	0.38308	0.09384	4.082	4.46e-05	***
bland_chromatin	0.44648	0.16986	2.628	0.008578	* *
normal_nucleoli	0.21255	0.11174	1.902	0.057149	•
mitoses	0.53406	0.32761	1.630	0.103064	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
> summary(glm out)
```

Call:

Deviance Residuals:

Min	1Q	Median	3Q	Max
-3.4823	-0.1154	-0.0620	0.0222	2.4694

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-10.09765	1.15546	-8.739	< 2e-16	***
clump_thickness	0.53456	0.14125	3.784	0.000154	***
uniform_cell_shape	0.31816	0.17424	1.826	0.067847	•
marg_adhesion	0.32993	0.12115	2.723	0.006465	**
epitholial coll size	0.09612	0.15564	0.618	0.536876	
bare nuclei	0.38308	0.09384	4.082	4.46e-05	***
bland chromatin					
Diana_cnicomacin	0.44648	0.16986	2.628	0.008578	* *
normal_nucleoli	0.44648 0.21255	0.16986 0.11174		0.008578	
-			1.902		

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
> glm_out <- glm(
   outcome ~ clump_thickness +
     uniform_cell_shape +
     marg_adhesion +
     bare_nuclei +
     bland_chromatin +
     normal_nucleoli +
     mitoses,
   data = biopsy,
   family = binomial</pre>
```

```
> summary(glm out)
Call:
glm(formula = outcome ~ clump thickness + uniform cell shape +
   marg adhesion + bare nuclei + bland chromatin +
normal nucleoli +
   mitoses, family = binomial, data = biopsy)
Deviance Residuals:
   Min
           10 Median 30 Max
-3.5235 -0.1149 -0.0627 0.0219 2.4115
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.98278 1.12610 -8.865 < 2e-16 ***
clump thickness 0.53400 0.14079 3.793 0.000149 ***
uniform cell shape 0.34529 0.17164 2.012 0.044255 *
marg adhesion
            bare nuclei
          0.38830 0.09356 4.150 3.32e-05 ***
bland chromatin 0.46194 0.16820 2.746 0.006025 **
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

0.53119 0.32446 1.637 0.101598

normal nucleoli 0.22606 0.11097 2.037 0.041644 *

mitoses

```
> summary(glm.out)
```

```
Call:
```

```
glm(formula = outcome ~ clump_thickness + uniform_cell_shape +
    marg_adhesion + bare_nuclei + bland_chromatin +
normal_nucleoli +
    mitoses, family = binomial, data = biopsy)
```

Deviance Residuals:

Min	10	Median	3Q	Max
-3.5235	-0.1149	-0.0627	0.0219	2.4115

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-9.98278	1.12610	-8.865	< 2e-16	* * *
clump_thickness	0.53400	0.14079	3.793	0.000149	* * *
uniform_cell_shape	0.34529	0.17164	2.012	0.044255	*
marg_adhesion	0.34249	0.11922	2.873	0.004068	* *
bare_nuclei	0.38830	0.09356	4.150	3.32e-05	* * *
bland_chromatin	0.46194	0.16820	2.746	0.006025	* *
normal_nucleoli	0.22606	0.11097	2.037	0.041644	*
mitosos	0.53119	0.32446	1.637	0.101598	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
> glm_out <- glm(
   outcome ~ clump_thickness +
     uniform_cell_shape +
     marg_adhesion +
     bare_nuclei +
     bland_chromatin +
     normal_nucleoli,
   data = biopsy,
   family = binomial</pre>
```

```
> summary(glm_out)
```

Call:

glm(formula = outcome ~ clump_thickness + uniform_cell_shape +
 marg_adhesion + bare_nuclei + bland_chromatin +
normal_nucleoli,
 family = binomial, data = biopsy)

Deviance Residuals:

Min 1Q Median 3Q Max -3.5201 -0.1186 -0.0570 0.0250 2.4055

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.76708 1.08506 -9.001 < 2e-16 ***

clump_thickness 0.62253 0.13712 4.540 5.62e-06 ***

uniform_cell_shape 0.34951 0.16503 2.118 0.03419 *

marg_adhesion 0.33753 0.11561 2.920 0.00350 **

bare_nuclei 0.37855 0.09381 4.035 5.45e-05 ***

bland_chromatin 0.47134 0.16612 2.837 0.00455 **

normal_nucleoli 0.24317 0.10855 2.240 0.02509 *

--
Signif. codes: 0 ***' 0.001 **' 0.01 *' 0.05 \'.' 0.1 \' 1

The fitted logistic model

We can extract fitted probabilities from glm out\$fitted.values

> glm_out\$fitted.values					
1	2	3	4	5	6
0.0192341317	0.8925583864	0.0081774737	0.8496854505	0.0202506282	0.9999854554
7	8	9	10	11	12
0.0467606911	0.0042790664	0.0011789931	0.0065253423	0.0016231293	0.0018875638
13	14	15	16	17	18
0.3544332567	0.0034543023	0.9993353305	0.7371582761	0.0065253423	0.0104135504
19	20	21	22	23	24
0.9989353409	0.0352597948	0.9969203982	0.9994994519	0.0035120154	0.0016231293
25	26	27	28	29	30
0.7802514369	0.0035120154	0.0120927435	0.0018875638	0.0012725934	0.0035120154
31	32	33	34	35	36
0.0030206952	0.9977220579	0.0042283384	0.0049740412	0.0018875638	0.9998755391
37	38	39	40	41	42
0.1940709471	0.9954253327	0.6691128086	0.9536389392	0.9974078013	0.3002866244
43	44	45	46	47	48
0.9996235802	0.0010137236	0.9583091930	0.0010137236	0.0202506282	0.9836985106
49	50	51	52	53	54
0.7842860362	0.4122043566	0.9956800184	0.9922376046	0.9988895968	0.9870508267
55	56	57	58	59	60
0.9927513406	0.6585108620	0.7534314353	0.8341431018	0.9032183182	0.0014795146
61	62	63	64	65	66
0.9921570845	0.5158282353	0.0010137236	0.7040691331	0.0104135504	0.9498144607

We can extract linear predictors from glm out\$linear.predictors

```
> glm out$linear.predictors
-3.93164737 2.11714436 -4.79816093 1.73213613 -3.87911098 11.13827708
       7 8 9 10
-3.01482307 -5.44973218 -6.74191480 -5.02551514 -6.42177489 -6.27057890
      13 14 15 16 17
-0.59960855 -5.66467448 7.31555568 1.03125059 -5.02551514 -4.55417925
      19 20
                 21 22 23
6.84403543 -3.30911549 5.77987063 7.59930618 -5.64804702 -6.42177489
      25 26 27 28
1.26713222 -5.64804702 -4.40298326 -6.27057890 -6.66542501 -5.64804702
      31 32 33 34 35 36
-5.79924301 6.08220228 -5.46170888 -5.29853619 -6.27057890 8.99139484
      37 38 39 40 41
-1.42377192 5.38263613 0.70417516 3.02382523 5.95265328 -0.84593335
      43 44 45 46
7.88442916 -6.89311078 3.13488983 -6.89311078 -3.87911098 4.10006298
      49 50 51 52 53 54
1.29082051 -0.35486010 5.44017479 4.85067163 6.80192104 4.33368959
      55 56 57 58
                                       59
4.91966368 0.65666514 1.11699791 1.61527962 2.23350656 -6.51456058
      61 62 63 64
4.84027081 0.06333410 -6.89311078 0.86675068 -4.55417925 2.94053974
```

The linear predictor clearly separates benign and malignant outcomes

The linear predictor clearly separates benign and malignant outcomes


```
> patient1 <- data.frame(
    clump_thickness = 1,
    uniform_cell_size = 1,
    uniform_cell_shape = 1,
    marg_adhesion = 1,
    epithelial_cell_size = 4,
    bare_nuclei = 3,
    bland_chromatin = 1,
    normal_nucleoli = 1,
    mitoses = 1
)</pre>
```

```
> patient1 <- data.frame(</pre>
    clump thickness = 1,
    uniform cell size = 1,
    uniform cell shape = 1,
    marg adhesion = 1,
    epithelial cell size = 4,
    bare nuclei = 3,
    bland chromatin = 1,
    normal nucleoli = 1,
    mitoses = 1
> predict(glm out, patient1) # linear predictor
-6.607346
```

```
> patient1 <- data.frame(</pre>
    clump thickness = 1,
    uniform cell size = 1,
    uniform cell shape = 1,
    marg adhesion = 1,
    epithelial cell size = 4,
    bare nuclei = 3,
    bland chromatin = 1,
    normal nucleoli = 1,
    mitoses = 1
> predict(glm out, patient1) # linear predictor
-6.607346
> predict(glm out, patient1, type="response") # probability
0.00134859
```

```
> patient2 <- data.frame(
    clump_thickness = 4,
    uniform_cell_size = 5,
    uniform_cell_shape = 5,
    marg_adhesion = 10,
    epithelial_cell_size = 4,
    bare_nuclei = 10,
    bland_chromatin = 7,
    normal_nucleoli = 5,
    mitoses = 8
)</pre>
```

```
> patient2 <- data.frame(</pre>
    clump thickness = 4,
    uniform cell size = 5,
    uniform cell shape = 5,
    marg adhesion = 10,
    epithelial cell size = 4,
    bare nuclei = 10,
    bland chromatin = 7,
    normal nucleoli = 5,
    mitoses = 8
> predict(glm out, patient2) # linear predictor
        1
6.14665
```

```
> patient2 <- data.frame(</pre>
    clump thickness = 4,
    uniform cell size = 5,
    uniform cell shape = 5,
    marg adhesion = 10,
    epithelial cell size = 4,
    bare nuclei = 10,
    bland chromatin = 7,
    normal nucleoli = 5,
    mitoses = 8
> predict(glm out, patient2) # linear predictor
6.14665
> predict(glm out, patient2, type = "response") # probability
0.9978639
```

Day 4 Outline

- 1. Unsupervised learning (unlabeled data)
 - A. Dimensionality reduction
 - B. Clustering
 - C. Neural networks
- 2. Supervised learning (labeled data)
 - A. Regression
 - B. Classification
 - A. Logistic regression
 - B. Random forest

Random forest algorithms

Logistic regression vs random forest

Logistic Regression	Random Forest	
Path analysis approach, uses a generalized linear equation to describe the directed dependencies among a set of variables.	Top-down induction based approach to classification and prediction. Averages many decision trees (CARTs) together.	
A number of statistical assumptions must be met.	No statistical assumptions; can handle multicollinearity.	
Overfitting a concern (rule of ten), as well as outliers.	Robust to overfitting and outliers.	
Final model should be parsimonious and balanced.	Final model depends on the strength of the trees in the forest and the correlation between them.	
A number of complementary measures can be used to assess goodness of fit (i.e., -2LL, ~R ² , HL).	Random inputs and random features tend to produce better results in RFs (Breiman, 2001).	
Logit link function:	CART Gini impurity algorithm:	
$\ln\left(\frac{\hat{p}_i}{1-\hat{p}_i}\right) = \beta_1 X_i + \beta_0$	$\sum_{i=1}^{J} p_i (1-p_i) = \sum_{i=1}^{J} (p_i - {p_i}^2) = \sum_{i=1}^{J} p_i - \sum_{i=1}^{J} {p_i}^2 = 1 - \sum_{i=1}^{J} {p_i}^2$	

Decision trees

Random forest prediction

Consists of a large number of individual decision trees that operate as an ensemble

Tally: Six 1s and Three 0s

Prediction: 1

Random forest prediction

Each individual tree in the random forest spits out a class prediction

The class with the most votes becomes our model's prediction

Tally: Six 1s and Three 0s

Prediction: 1

Random forest prediction

A large number of relatively uncorrelated models (trees) operating as a committee will outperform any of the individual constituent models.

Tally: Six 1s and Three 0s

Prediction: 1