Ensure Normality Stat -> Basic Stat -> Normality Test

1 Sample T

Stat -> Basic Stat -> 1-Sample t

Add a boxplot

Perform hypothesized test against the mean=20 for A:

In options specify alternative hypothesis as "less than" 20

Conclude: reject the null hypothesis. Population mean is less than 20

Descriptive Statistics

				95% Upper Bound
Ν	Mean	StDev	SE Mean	for μ
100	18.975	1.143	0.114	19.165

μ: population mean of A

Test

Null hypothesis H_0 : $\mu = 20$ Alternative hypothesis H_1 : $\mu < 20$

T-Value P-Value -8.97 0.000

2 Sample T

Stat -> Basic Stat -> 2-Sample tEach sample is in its own column
Add a boxplot

Conclusion: fail to reject the null hypothesis. There is no difference between A and D.

 μ_1 : population mean of A μ_2 : population mean of D Difference: μ_1 - μ_2

Sample	Ν	Mean	StDev	SE Mean
A	100	18.97	1.14	0.11
D	100	19.56	3.14	0.31

Equal variances are not assumed for this analysis.

Estimation for Difference

Test

Null hypothesis H_0 : $\mu_1 - \mu_2 = 0$ Alternative hypothesis H_1 : $\mu_1 - \mu_2 \neq 0$

T-Value	DF	P-Value	
-1.75	124	0.082	

