

VLSI Testing 積體電路測試

Logic Built-In Self Test (BIST) Part 2: ORA, BIST Architecture*

Professor James Chien-Mo Li 李建模
Lab. of Dependable Systems
Graduate Institute of Electronics Engineering
National Taiwan University

Architecture of BIST (Review)

- Three components: BIST Controller, TPG, ORA
- Three I/O Pins: Start BIST, BIST Done, Pass/Fail

Why Am I Learning This?

- Output Response Analyzer
 - Observe CUT output responses on chip
 - Very small area but correct Pass/Fail decision

"What the superior man seeks is in himself; what the small man seeks is in others."

君子求諸己,小人求諸人

(Confucius)

BIST Part 2

- Part 1
 - Introduction
 - Test Pattern Generation
- Part 2
 - Output Response Analysis
 - BIST Architecture
 - Issues with BIST
 - Conclusions

Output Response Analyzer

- What is ORA?
 - Compress CUT output responses into a small signature
 - Compare signature with gold signature to determine pass or fail
 - ORA also called signature analyzer
- What is good ORA? (very difficult to meet all requirements)
 - 1. Signature as small as possible
 - 2. Correct Pass/Fail decision (i.e. low aliasing, see next slide)
 - 3. Small area
 - 4. Diagnosis support

Aliasing

- Aliasing occurs when
 - signature_{faulty output} = signature_{good output} (gold signature)
- Aliasing → Fault coverage loss → Test escapes
 - Defective circuits pass tests (Very bad!)

Probability of Aliasing

- Aliasing depends on many factors:
 - CUT, faults, test pattern, ORA structure
 - Exact analysis of aliasing difficult
 - Just probability analysis is good enough
- Probability of Aliasing (PAL)

$$PAL = \frac{number\ of\ faulty\ outputs\ that\ generate\ gold\ signature}{total\ number\ of\ faulty\ outputs}$$

PAL between 0 and 1. Lower is better.

Good ORA Requires Low PAL

Quiz

Q1: We use OR gate as ORA. Suppose good output is '01', what is gold signature?

ANS:

Q2: What is PAL of this ORA? Suppose '00, 01 10, 11' equally likely

$$PAL = \frac{number\ of\ faulty\ outputs\ that\ generate\ gold\ signature}{total\ number\ of\ faulty\ outputs}$$

ANS:

BIST Part 2

- Output Response Analysis
 - Simple ORA
 - Duplication, Reverse operation
 - Checksum (aka. Parity Checker)
 - * Ones counter
 - Transition counter
 - LFSR-based
- BIST Architecture
- Issues with BIST
- Conclusions

Duplication

- Advantage: low aliasing; good for on-line BIST
- Disadvantages: too big in area

Reverse Operation

- Advantages
 - Applicable to both on-line and off-line BIST
 - Low aliasing
- Disadvantages
 - Not generally applicable to all CUT

F-1 is reverse operation of F

Parity Checker

- Signature = Inversion parity of CUT output
 - Odd or even
- Example (initially DFF=0)
 - Good CUT output = 01100 → 0 gold signature
 - Faulty CUT1 output = 01000 → 1 detected, no aliasing
 - Faulty CUT2 output = 01010 → 0 not detected, aliasing

$$PAL = \frac{number\ of\ faulty\ outputs\ that\ generate\ gold\ signature}{total\ number\ of\ faulty\ outputs} = \frac{16-1}{2^5-1} = \frac{15}{31}$$

Ones Counter

- Signature = number of ones
- Example: sequence length=5=m; signature=2=n;
 - Good CUT output = $01100 \rightarrow 2$ gold signature
 - Faulty CUT1 output = 01000 → 1 detected, no aliasing
 - Faulty CUT2 output = 01010 → 2 not detected, aliasing

$$PAL = \frac{C_n^m - 1}{2^m - 1} = \frac{C_2^5 - 1}{2^5 - 1} = \frac{10 - 1}{32 - 1} = \frac{9}{31}$$

Transition Counter

- Signature = number of transitions $(0 \rightarrow 1, 1 \rightarrow 0)$
- Example: sequence length=5=m; signature=2=n;
 - Good CUT output = $01100 \rightarrow 2$
 - Faulty CUT1 output = 01000 → 2 not detected, aliasing
 - Faulty CUT2 output = 01010 → 4 detected, no aliasing

$$PAL = \frac{2C_n^{m-1} - 1}{2^m - 1} = \frac{2C_2^4 - 1}{2^5 - 1} = \frac{12 - 1}{32 - 1} = \frac{11}{31}$$

Summary

- Output Response Analyzer
 - Compress CUT output responses into signatures
 - Aliasing mean faulty outputs compressed into gold signature
 - * induces test escape
 - Probability of aliasing (PAL)

$$PAL = \frac{number\ of\ faulty\ outputs\ that\ generate\ gold\ signature}{total\ number\ of\ faulty\ outputs}$$

- Simple ORA
 - Duplication
 - Parity Checker
 - Ones counter
 - Transition counter

These ORA not Good Enough

FFT: Transition Counter

Q: Why factor of 2 in PAL?

