Controlli Automatici - T

Progetto Tipologia c - Traccia 2 Controllo del motore di un'automobile

Il progetto riguarda il controllo del motore di un'automobile.

Descrizione del problema

Si consideri il motore di un'automobile con una massa d'aria m(t) nel collettore d'aspirazione ed una velocità angolare $\omega(t)$ dell'albero di trasmissione. Si supponga che la dinamica del sistema sia descritta dalle seguenti equazioni differenziali

$$\dot{m} = \gamma_1 (1 - \cos(\beta \theta - \psi)) - \gamma_2 \omega m \tag{1a}$$

$$J\dot{\omega} = \delta_1 m - \delta_2 \omega - \delta_3 \omega^2,\tag{1b}$$

in cui la variabile d'ingresso $\theta(t)$ indica l'angolo di accelerazione e il termine $\gamma_1(1-\cos(\beta\theta-\psi))$, con $\gamma_1 \in \mathbb{R}$ e $\psi \in \mathbb{R}$, modella la caratteristica intrinseca della valvola. Il parametro $J \in \mathbb{R}$ rappresenta il momento d'inerzia equivalente del sistema automobile ed il termine $\delta_1 m$ descrive la coppia trasmessa all'albero motore, con $\delta_1 \in \mathbb{R}$. Il termine $\delta_2 \omega$ modella l'attrito nel motore ed il termine $\delta_3 \omega^2$ descrive la resistenza dell'aria, con $\delta_2, \delta_3 \in \mathbb{R}$. Uno schema esplicativo è riportato in Figura 1.

Figura 1: Schema illustrativo della dinamica del motore.

Infine, si suppone di poter misurare la velocità angolare $\omega(t)$.

Punto 1

Si riporti il sistema (1) nella forma di stato

$$\dot{x} = f(x, u) \tag{2a}$$

$$y = h(x, u). (2b)$$

In particolare, si dettagli la variabile di stato, la variabile d'ingresso, la variabile d'uscita e la forma delle funzioni f e h. A partire dal valore di equilibrio ω_e (fornito in tabella), si trovi l'intera coppia di equilibrio

 (x_e, u_e) e si linearizzi il sistema non lineare (2) nell'equilibrio, così da ottenere un sistema linearizzato del tipo

$$\delta \dot{x} = A\delta x + B\delta u \tag{3a}$$

$$\delta y = C\delta x + D\delta u,\tag{3b}$$

con opportune matrici $A, B, C \in D$.

Figura 2: Schema di controllo.

Punto 2

Si calcoli la funzione di trasferimento da δu a δy , ovvero la funzione G(s) tale che $\delta Y(s) = G(s)\delta U(s)$.

Punto 3

Si progetti un regolatore (fisicamente realizzabile) considerando le seguenti specifiche:

- 1) Errore a regime $|e_{\infty}| \leq e^{\star} = 0.01$ in risposta a un gradino $w(t) = 9 \cdot 1(t)$ e $d(t) = 8 \cdot 1(t)$
- 2) Per garantire una certa robustezza del sistema si deve avere un margine di fase $M_f \geq 55^{\circ}$.
- 3) Il sistema può accettare una sovraelongazione percentuale al massimo dell'5% : $S\% \leq 5\%$.
- 4) Il tempo di assestamento all' $\epsilon\%=5\%$ deve essere inferiore al valore fissato: $T_{a,\epsilon}=0.08s$.
- 5) Il disturbo sull'uscita d(t), con una banda limitata nel range di pulsazioni [0, 0.05], deve essere abbattutto di almeno 55 dB.
- 6) Il rumore di misura n(t), con una banda limitata nel range di pulsazioni $[8 \cdot 10^3, 2 \cdot 10^6]$, deve essere abbattutto di almeno 45 dB.

Punto 4

Testare il sistema di controllo sul sistema linearizzato con $w(t) = 0.75 \cdot 1(t), d(t) = \sum_{k=1}^4 0.05 \cdot \sin(0.01kt)$ e $n(t) = \sum_{k=1}^4 0.02 \cdot \sin(8 \cdot 10^3 kt)$.

Punto 5

Testare il sistema di controllo sul modello non lineare (ed in presenza di d(t) ed n(t)).

Punti opzionali

- Sviluppare (in Matlab) un'interfaccia grafica di animazione in cui si mostri la dinamica dell'albero motore e le variazioni della massa d'aria.
- Supponendo un riferimento $w(t) \equiv 0$, esplorare il range di condizioni iniziali dello stato del sistema non lineare (nell'intorno del punto di equilibrio) tali per cui l'uscita del sistema in anello chiuso converga a $h(x_e, u_e)$.
- Esplorare il range di ampiezza di riferimenti a gradino tali per cui il controllore rimane efficace sul sistema non lineare.

γ_1	0.75
γ_2	0.15
β	1.3
ψ	0.04
δ_1	$3 \cdot 10^4$
δ_2	0.2
δ_3	0.02
J	20
ω_e	30

Tabella 1: Parametri progetto.