Nazwa kursu: Projektowanie Algorytmów i Metody Sztucznej Inteligencji

Tytuł: Projekt 2 - grafy

Data oddania: 8.05.2020 r.

Termin zajęć: Piątek 7:30

Prowadzący: mgr inż. Marta Emirsajłow

Dane studenta: Konrad Arent 243646

1. Cel ćwiczenia

Celem ćwiczenia było badanie efektywności algorytmu Djikstry w zależności od metody reprezentacji grafu w postaci macierzy sąsiedztwa oraz listy sąsiedztwa. Badania należało wykonać dla 5 różnych liczb wierzchołków w grafie (u mnie 10, 25, 50, 75, 100) oraz następujących gęstości grafu: 25%, 50%, 75% i grafu pełnego. Dla każdego zestawu parametrów: algorytm, reprezentacja grafu, liczba wierzchołków i gęstość należało wygenerować po 100 losowych instancji, a w sprawozdaniu umieszczone zostały wyniki uśrednione.

2. Algorytm Djikstry

Jest to algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (wierzchołka początkowego) do pozostałych wierzchołków. Algorytm wymaga, aby wagi krawędzi grafu nie były ujemne. Złożoność implementacji algorytmu powinna wynosić O(KlogW), gdzie K to liczba krawędzi, a W liczba wierzchołków.

3. Wyniki eksperymentów

Macierz		Gęstość				
		0,25	0,5	0,75	1	
Liczba	10	120.04 μs	77.42 μs	104.22 μs	130.91 μs	
elementów	25	520.42 μs	524.86 μs	654.1 μs	852.59 μs	
	50	2891.05 μs	2325.69 μs	2847.53 μs	3422.15 μs	
	75	4599.72 μs	6014.47 μs	7394.38 μs	8855.23 μs	
	100	9845.44 μs	12163.5 μs	15134.8 μs	17416.8 μs	

Lista		Gęstość				
		0,25	0,5	0,75	1	
Liczba	10	133.35 μs	89.08 μs	133.42 μs	156.27 μs	
elementów	25	557.02 μs	618.28 μs	855.75 μs	1170.78 μs	
	50	2965.63 μs	3016.12 μs	4239.76 μs	6013.52 μs	
	75	5380.89 μs	7770.41 μs	11250.8 μs	15884.3 μs	
	100	10542.9 μs	16041.6 μs	25275.4 μs	34345.1 μs	

Porównanie obu metod dla zadanej gęstości grafu:

4. Specyfikacja komputera, na którym prowadzono pomiary

Procesor: Intel Core i7-4510U (2 GHz, 3.1 GHz Turbo, 4MB Cache)

Ram: 8GB

5. Wnioski

- Czas potrzebny do znalezienia najkrótszej ścieżki w grafie jest krótszy dla grafu w postaci macierzy
- Do gęstości 25% obie metody uzyskują bardzo podobne rezultaty

6. Bibliografia

http://algorytmy.ency.pl/artykul/algorytm_dijkstry

https://pl.wikipedia.org/wiki/Algorytm Dijkstry

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/

http://home.agh.edu.pl/~horzyk/lectures/wdi/WDI-Grafy.pdf

http://www.zio.iiar.pwr.wroc.pl/sdizo/Wyklady/sdizo_2018_wyklad_5.pdf