

-- Verlustfunktion in Neuronales Netzwerk

Wie die Verlustfunktion gestaltet wird?

 $L(y,\widehat{y})$

- Methode der kleinsten Quadrate
- Maximum-Likelihood-Schätzung

Methode der kleinsten Quadrate

Logistic Regression cost function
$$\hat{y}^{(i)} = \sigma(w^T \underline{x}^{(i)} + b), \text{ where } \sigma(z^{(i)}) = \frac{1}{1 + e^{-z_{(i)}}} \qquad \stackrel{\geq (i)}{\geq \omega^T \underline{x}^{(i)} + b}$$
Given $\{(\underline{x}^{(1)}, y^{(1)}), \dots, (\underline{x}^{(m)}, y^{(m)})\}, \text{ want } \hat{y}^{(i)} \approx \underline{y}^{(i)}. \qquad \stackrel{\leq (i)}{\leq \omega^T \underline{x}^{(i)} + b}$

$$\text{Loss (error) function:} \qquad \underbrace{\int (\hat{y}, \underline{y}) = \frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = \frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y}, \underline{y}) = -\frac{1}{2} (\hat{y} - \underline{y})^2}_{\text{T}} \qquad \underbrace{\int (\hat{y},$$

Prof. Andrew Ng, 2018

$$L_i(y, \widehat{y}) = \min \sum_{i=1}^n |y - \widehat{y}|$$

$$L_{ii}(y, \widehat{y}) = \min \sum_{i=1}^{n} (y - \widehat{y})^2$$

L(y,
$$\hat{y}$$
) = min $\sum_{i=1}^{n} \frac{1}{2} (y - \hat{y})^2$

Wie die Verlustfunktion gestaltet wird?

 $L(y,\widehat{y})$

- Methode der kleinsten Quadrate
- Maximum-Likelihood-Schätzung

Maximum-Likelihood-Schätzung

nicht in der Realität existieren

 $N(\mu, \sigma^2)$

Echter Wert: $y_i \in \{0, 1\}$

• Vorhersagewert: $\hat{y}_i \sim (0, 1)$

quantitativ beurteilen

Annäherungsweise Darstellung des Modells

Statistisches Moell

yi

- Gauß-Verteilung
- Poisson-Verteilung

Kommensurabilität

 $\mathbf{Min} \left(-\sum_{i=1}^{n} \left(y_{i} \log \widehat{y}_{i} + (1-yi) \log \left(1 - \widehat{y}_{i} \right) \right) \right)$

Neuronales Netzwerk

Maximum-Likelihood-Schätzung

nicht in der Realität existieren

 $N(\mu, \sigma^2)$

Echter Wert: $y_i \in \{0, 1\}$

• Vorhersagewert: $\hat{y}_i \sim (0, 1)$

quantitativ beurteilen

Annäherungsweise Darstellung des Modells

Statistisches Moell

yi

- Gauß-Verteilung
- Poisson-Verteilung

Inkommensurabilität

 $Min \left(-\sum_{i=1}^{n} \left(y_{i} \log \widehat{y}_{i} + (1-yi) \log \left(1-\widehat{y}_{i}\right)\right)\right)$

Neuronales Netzwerk

Wie die Verlustfunktion gestaltet wird?

$L(y,\widehat{y})$

- Methode der kleinsten Quadrate
- Maximum-Likelihood-Schätzung
- Kreuzentropie (Informationstheorie / Thermodynamik)

Claude Elwood Shannon (1916-2001) war ein US-amerikanischer Mathematiker und Elektrotechniker. Er gilt als Begründer der Informationstheorie.

Informationsgehalt

f(x) := Informationsgehalt?

f(x) := Informationsgehalt

 $f(DE\ Sieger) = f(DE\ Finale) + f(DE\ Finale\ Gewinn)$

Ungewissheit (1/8) --> Gewissheit (1)

 $f(DE \ Sieger) = f(DE \ Finale) + f(DE \ Finale \ Gewinn)$

Ungewissheit (1/8) --> Gewissheit (1)

$$f(1/8) = f(1/4) + f(1/2)$$

 $P(DE Sieger) = P(DE Finale) \cdot P(DE Finale Gewinn)$

$$f(x_1 \cdot x_2) = f(x_1) + f(x_2)$$

$$f(x) := ?log_2x$$

- 1		Formula	Example
P([Product	$\log_b(xy) = \log_b x + \log_b y$	$\log_3 243 = \log_3 (9 \cdot 27) = \log_3 9 + \log_3 27 = 2 + 3 = 5$
	Quotient	$\log_b \frac{x}{y} = \log_b x - \log_b y$	$\log_2 16 = \log_2 \frac{64}{4} = \log_2 64 - \log_2 4 = 6 - 2 = 4$
	Power	$\log_b(x^p) = p \log_b x$	$\log_2 64 = \log_2 \left(2^6 ight) = 6\log_2 2 = 6$
	Root	$\log_b \sqrt[p]{x} = rac{\log_b x}{p}$	$\log_{10} \sqrt{1000} = \frac{1}{2} \log_{10} 1000 = \frac{3}{2} = 1.5$

Viertelfinale

f(x) := Informationsgehalt

 $f(DE \ Sieger) = f(DE \ Finale) + f(DE \ Finale \ Gewinn)$

Ungewissheit (1/8) --> Gewissheit (1)

$$f(1/8) = f(1/4) + f(1/2)$$

 $P(DE\ Sieger) = P(DE\ Finale) \cdot P(DE\ Finale\ Gewinn)$

$$f(x_1 \cdot x_2) = f(x_1) + f(x_2)$$

$$f(x) := -\log_2 x$$

f(x) := Informationsgehalt

 $f(DE \ Sieger) = f(DE \ Finale) + f(DE \ Finale \ Gewinn)$

Ungewissheit (1/8) --> Gewissheit (1)

$$f(1/8) = f(1/4) + f(1/2)$$

 $P(DE\ Sieger) = P(DE\ Finale) \cdot P(DE\ Finale\ Gewinn)$

$$f(x_1 \cdot x_2) = f(x_1) + f(x_2)$$

$$f(x) := -\log_2 x$$

f(x) := Informationsgehalt

 $f(DE \ Sieger) = f(DE \ Finale) + f(DE \ Finale \ Gewinn)$

Ungewissheit (1/8) --> Gewissheit (1)

$$f(1/8) = f(1/4) + f(1/2)$$

 $P(DE\ Sieger) = P(DE\ Finale) \cdot P(DE\ Finale\ Gewinn)$

$$f(x_1 \cdot x_2) = f(x_1) + f(x_2)$$

$$f(x) := -log_2 x$$

$$f(1/8) = f(1/4) + f(1/2) = 3$$

$$P = 1/1024$$

$$f(x) := -\log_2 x$$

$$f(P) = -log_{2}P = 10$$
 (bit)

Informationsgehalt:

Schwierigkeit (Event): Ungewissheit --> Gewissheit

Entropie:

Schwierigkeit (System): Ungewissheit --> Gewissheit

Einheit (Informationsgehalt) = Einheit (Entropie)

$$f(x) := Informationsgehalt$$

$$f(DE \ Sieger) = f(DE \ Finale) + f(DE \ Finale \ Gewinn)$$

$$f(1/8) = f(1/4) + f(1/2)$$

$$P(DE\ Sieger) = P(DE\ Finale) \cdot P(DE\ Finale\ Gewinn)$$

$$f(x_1 \cdot x_2) = f(x_1) + f(x_2)$$

$$f(x) := -log_2 x$$

$$f(1/8) = f(1/4) + f(1/2) = 3$$

Informationsgehalt: $-\log_2 1/2 = 1$ $-\log_2 1/2 = 1$ $-\log_2 1\% = 6,6439$ $-\log_2 99\% = 0,0145$

Entropie (Event): $\frac{1}{2} \cdot (-\log_2 1/2) = \frac{1}{2}$ $\frac{1}{2} \cdot (-\log_2 1/2) = \frac{1}{2}$

Entropie (System): $\frac{1}{2} + \frac{1}{2} = 1$ 0,066439 + 0,014355 = 0,080794

Entropie (System): Erwartungswert des Informationsgehalts

Entropie (Informationstheorie)

Entropie (System): Erwartungswert des Informationsgehalts

$$H(P) := E(P_I)$$

$$= \sum_{i=1}^{m} P_i \cdot f(P_i) = \sum_{i=1}^{m} P_i \cdot (-\log_2 P_i) = -\sum_{i=1}^{m} P_i \cdot \log_2 P_i$$

Kullback-Leibler-Divergenz (relative Entropie)

Kullback-Leibler-Divergenz (relative Entropie)

Kullback-Leibler-Abstand und relative Entropie bezeichnen ein Maß für die Unterschiedlichkeit zweier Wahrscheinlichkeitsverteilungen.

$$f_Q(q_i)$$
 $f_P(p_i)$

$$\begin{aligned} \mathbf{D}_{\mathsf{KL}} \left(\mathbf{P} | \, | \, \mathbf{Q} \right) \\ \textit{basierend auf } \mathbf{P} &:= \sum_{i=1}^{m} \, \mathbf{p}_{\mathsf{i}} \cdot (\mathbf{f}_{\mathsf{Q}}(\mathsf{q}_{\mathsf{i}}) - \mathbf{f}_{\mathsf{P}}(\mathsf{p}_{\mathsf{i}})) \\ &= \sum_{i=1}^{m} \, \mathbf{p}_{\mathsf{i}} \cdot ((-\mathsf{log}_{2}\mathsf{q}_{\mathsf{i}}) - (-\mathsf{log}_{2}\mathsf{p}_{\mathsf{i}})) \\ &= \sum_{i=1}^{m} \, \mathbf{p}_{\mathsf{i}} \cdot (-\mathsf{log}_{2}\mathsf{q}_{\mathsf{i}}) - \sum_{i=1}^{m} \mathbf{p}_{\mathsf{i}} \cdot (-\mathsf{log}_{2}\mathsf{p}_{\mathsf{i}}) \end{aligned}$$

Kullback-Leibler-Divergenz (relative Entropie)

Kullback-Leibler-Abstand und relative Entropie bezeichnen ein Maß für die Unterschiedlichkeit zweier Wahrscheinlichkeitsverteilungen.

Informationsgehalt:

$$f_Q(q_i)$$
 $f_P(p_i)$

$$\begin{array}{l} \mathbf{D_{KL}}\left(\mathbf{P}|\,|\,\mathbf{Q}\right) \\ \textit{basierend auf}\,\,\mathbf{P} \end{array} := \sum_{i=1}^{m}\,\mathbf{p_i}\cdot(\mathbf{f_Q}(\mathbf{q_i})\,-\mathbf{f_P}(\mathbf{p_i})) \\ = \sum_{i=1}^{m}\,\mathbf{p_i}\cdot((-\log_2\!\mathbf{q_i})\,-\,(-\log_2\!\mathbf{p_i})) \\ = \sum_{i=1}^{m}\,\mathbf{p_i}\cdot(-\log_2\!\mathbf{q_i})\,-\,\sum_{i=1}^{m}\,\mathbf{p_i}\cdot(-\log_2\!\mathbf{p_i}) \end{array} \text{ Entropie (System P)} \\ \text{Kreuzentropie H(P, Q)} \end{array}$$

Gibbs-Ungleichung

Es seien $p=(p_1,\dots,p_n)$ und $q=(q_1,\dots,q_n)$ diskrete Wahrscheinlichkeitsverteilungen, d. h. $p_i,q_i>0$ für alle i und $\sum_{i=1}^n p_i=\sum_{i=1}^n q_i=1$. Dann gilt:

$$-\sum_{i=1}^n p_i \log_2 p_i \leq -\sum_{i=1}^n p_i \log_2 q_i$$

Gleichheit tritt genau dann auf, wenn $p_i=q_i$ für alle i.

Josiah Willard Gibbs (1839-1903) war ein amerikanischer Wissenschaftler, der bedeutende theoretische Beiträge zur Physik, Chemie und Mathematik leistete.

Kullback-Leibler-Divergenz (relative Entropie)

Kullback-Leibler-Abstand und relative Entropie bezeichnen ein Maß für die <u>Unterschiedlichkeit</u> zweier Wahrscheinlichkeitsverteilungen.

Informationsgehalt:

$$f_Q(q_i)$$
 $f_p(p_i)$

$$\begin{aligned} \mathbf{D_{KL}} & (\mathbf{P} | \mathbf{IQ}) \\ \textit{basierend auf } \mathbf{P} & := \sum_{i=1}^{m} \mathbf{p_i} \cdot (\mathbf{f_Q}(\mathbf{q_i}) - \mathbf{f_P}(\mathbf{p_i})) \\ & = \sum_{i=1}^{m} \mathbf{p_i} \cdot ((-\log_2 \mathbf{q_i}) - (-\log_2 \mathbf{p_i})) \\ & = \sum_{i=1}^{m} \mathbf{p_i} \cdot (-\log_2 \mathbf{q_i}) - \sum_{i=1}^{m} \mathbf{p_i} \cdot (-\log_2 \mathbf{p_i}) \end{aligned} \quad \text{Entropie (System P)}$$

• Echter Wert: $y_i \in \{0, 1\}$

• Vorhersagewert: $\hat{y}_i \sim (0, 1)$

Kreuzentropie H(P, Q)

$$= \sum_{i=1}^{m} \mathbf{p_i} \cdot (-\log_2 \mathbf{q_i})$$

$$\begin{aligned} \mathbf{D_{KL}} & (\mathbf{P} | \, | \, \mathbf{Q}) \\ & := \sum_{i=1}^{n} \, \mathbf{p_i} \cdot (\mathbf{f_Q}(\mathbf{q_i}) - \mathbf{f_P}(\mathbf{p_i})) \\ & = \sum_{i=1}^{n} \, \mathbf{p_i} \cdot ((-\log_2 \mathbf{q_i}) - (-\log_2 \mathbf{p_i})) \\ & = \sum_{i=1}^{n} \, \mathbf{p_i} \cdot (-\log_2 \mathbf{q_i}) - \sum_{i=1}^{m} \mathbf{p_i} \cdot (-\log_2 \mathbf{p_i}) \end{aligned}$$

$$\begin{aligned} \mathbf{D_{KL}} & (\mathbf{P} | \, \mathbf{IQ}) \\ & := \sum_{i=1}^{m} \, \mathbf{p_i} \cdot (\mathbf{f_Q}(\mathbf{q_i}) \, - \mathbf{f_P}(\mathbf{p_i})) \\ & = \sum_{i=1}^{m} \, \mathbf{p_i} \cdot ((-\log_2 \mathbf{q_i}) \, - \, (-\log_2 \mathbf{p_i})) \\ & = \sum_{i=1}^{m} \, \mathbf{p_i} \cdot (-\log_2 \mathbf{q_i}) \, - \sum_{i=1}^{m} \mathbf{p_i} \cdot (-\log_2 \mathbf{p_i}) \end{aligned}$$

- Echter Wert: $y_i \in \{0, 1\}$
- Vorhersagewert: $\hat{y}_i \sim (0, 1)$

Kreuzentropie H(P, Q)

$$\begin{split} &= \sum_{i=1}^{m} \mathbf{p}_{i} \cdot (-\log_{2}\mathbf{q}_{i}) \\ &= \sum_{i=1}^{n} \mathbf{y}_{i} \cdot (-\log_{2}\mathbf{q}_{i}) \\ &= -\sum_{i=1}^{n} (\mathbf{y}_{i} \cdot (\log_{2}\widehat{\mathbf{y}}_{i}) + (\mathbf{1}-\mathbf{y}\mathbf{i}) \cdot \log_{2}(1-\widehat{\mathbf{y}}_{i})) \end{split}$$

$$2(\hat{y},y) = -(y\log\hat{y}) + (1-y)\log(1-\hat{y}) \in Prof. Andrew Ng, 2018$$

Take Home Messages

- Der Informationsgehalt bewertet das Ausmaß der Schwierigkeiten eines Events, das sich von Ungewissheit zu Gewissheit entwickelt. Je höher der Informationsgehalt, desto größer die Schwierigkeiten.
- Die Entropie bewertet das Ausmaß der Schwierigkeiten aller Ereignisse in einem System, das sich von der Ungewissheit zur Gewissheit entwickelt.
- Die Kreuzentropie kann eine Verlustfunktion sein, die Formel ist die gleiche wie bei der Maximum-Likelihood, aber die physikalischen Angaben sind unterschiedlich.

Nächste Schritte:

Gradientenverfahren

Vielen herzlichen Dank für eure Aufmerksamkeit!

