Lambda Calculus & Church Encoding

Kristopher Micinski (Slides in part by Thomas Gilray, UAB) CIS 700 — Program Analysis: Foundations and Applications Fall '19, Syracuse University

Today's insight

- We can define a **tiny language**—namely the lambda calculus—that encapsulates a Turing-equivalent formulation of our language.
- We can give this language a simple machine-based semantics via textual substitution (term-rewriting).
- Therefore, we will have encapsulated a fully-precise model of Core Scheme by the combination of (a) applications of the desugarings, and (b) the simple term-rewriting semantics of the lambda calculus.

- A system for calculating based entirely on computing with functions.
- Developed as a foundation for mathematics (originally used to model the natural numbers) by Alonzo Church in 1936.
- Church's thesis: "Every effectively calculable function (effectively decidable predicate) is general recursive", i.e., can be computed using the λ-calculus. Used to show there exist unsolvable problems.
- One of the simplest Turing-equivalent languages!
 - Church, with his student Alan Turing, proved the equivalent expressiveness of Turing machines and the λ-calculus (called the *Church-Turing thesis*).
- Still makes up the heart of all functional programming languages!

lambdas are just anonymous functions!

$$e \in \mathbf{Exp} ::= (\lambda \ (x) \ e)$$
 λ -abstraction
$$| \ (e \ e)$$
 function application
$$| \ x$$
 variable reference

$$x \in Var ::= \langle variables \rangle$$

Textual-reduction semantics

- One way of designing a formal semantics is as a relation over terms in the language—one that reduces the term textually.
- This is usually small-step—each eval step must terminate
 (meaning there are no premises above the line in our rules of
 inference and no recursive use of the interpreter within a step.)
- Consider a small-step semantics for our arithmetic language:

$$a \in AExp ::= n \mid a+a \mid a-a \mid a \times a$$

$$n, m \in Num ::= \langle integer constants \rangle$$

Textual-reduction semantics

$$a \in \mathsf{AExp} ::= n \mid a + a \mid a - a \mid a \times a$$

 $n, m \in \mathsf{Num} ::= \langle \mathsf{integer\ constants} \rangle$

 Rules to reduce terms in this language match operations that have two numeric operands already and apply the operation, textually substituting a numeric value for the operation; e.g.:

where
$$a_0$$
 is n_0 and a_1 is n_1 $a_0 \times a_1 \Rightarrow n_0 * n_1$

- For example: $2*3+4*5 \Rightarrow 2*3+20 \Rightarrow 6+20 \Rightarrow 26$
- Is there another way to evaluate 2*3 + 4*5 using similar rules?

Big Step Interpreters

Interpreter works in one "big step"

```
(define (eval env e)
   ...)
```

(eval env `(,e0 ,e1))

(eval env e0)

To evaluate (e0 e1), interpreter recursively calls **itself** to evaluate e0

Big Step Interpreters

Interpreter works in one "big step"

```
(define (eval env e)
...)
```

```
(eval env `(,e0 ,e1))
Returns result of e0, then continues evaluation...

(eval env `(,e0 ,e1))

(eval env e0)
```

To evaluate (e0 e1), interpreter recursively calls **itself** to evaluate e0

In a big-step semantics, the recursive nature of expression evaluation is exposed via the **interpreter's stack**.

A call to evaluate a nested expression will push a frame onto the interpreter's stack for each subexpression.

lambdas are just anonymous functions!

$$e \in \mathbf{Exp} ::= (\lambda \ (x) \ e)$$
 \(\lambda\) -abstraction \(| (e \ e) \) function application \(| x \) variable reference

$$x \in Var ::= \langle variables \rangle$$

The lambda-calculus is the functional core of Racket (as of other functional languages).

Just the following subset of Racket is Turing-equivalent!

$$e \in \mathbf{Exp} ::= (\lambda \ (x) \ e)$$
 (lambda (x) e)
$$| \ (e \ e)$$

$$| \ x$$

$$x \in Var ::= \langle variables \rangle$$

The lambda-calculus is the functional core of Racket (as of other functional languages).

Just the following subset of Racket is Turing-equivalent!

$$e \in \mathbf{Exp} ::= (\lambda \ (x) \ e)$$
 (lambda (x) e)
$$| \ (e \ e)$$

$$| \ x$$

$$x \in Var ::= \langle variables \rangle$$

Lambda Abstraction

An expression, *abstracted* over all possible values for a formal parameter, in this case, x.

Application

When the first expression is evaluated to a value (in this language, all values are functions!) it may be invoked / applied on its argument.

Variable

Variables are only defined/assigned when a function is applied and its parameter bound to an argument.

Variable reference

Textual substitution. This says:

replace every x in E_0 with E_1 .

redex

(reducible expression)

Note: this is a definition you will want to remember! The term "redex" is frequently used to mean reducible expression in many different types of semantics.

$$((\lambda (x) x) (\lambda (x) x))$$

$$\downarrow \beta$$

$$x[x \leftarrow (\lambda (x) x)]$$

$$((\lambda (x) x) (\lambda (x) x))$$

$$\downarrow \beta$$

$$(\lambda (x) x)$$

Try an example. Can you beta-reduce this term? Can you beta-reduce it more than once?

$$((\lambda (x) (x x)) (\lambda (x) (x x)))$$

```
((\lambda (x) (x x)) (\lambda (x) (x x)))
β reduction may continue
 indefinitely (i.e., in non-
 terminating programs)
           ((\lambda (x) (x x)) (\lambda (x) (x x)))
           ((\lambda (x) (x x)) (\lambda (x) (x x)))
           ((\lambda (x) (x x)) (\lambda (x) (x x)))
```

$$((\lambda \ (x) \ (x \ x)) \ (\lambda \ (x) \ (x \ x)))$$

$$\beta$$

$$((\lambda \ (x) \ (x \ x)) \ (\lambda \ (x) \ (x \ x)))$$

$$This specific program is known as Ω (Omega)
$$\beta$$

$$((\lambda \ (x) \ (x \ x)) \ (\lambda \ (x) \ (x \ x)))$$

$$\beta$$

$$((\lambda \ (x) \ (x \ x)) \ (\lambda \ (x) \ (x \ x)))$$

$$\beta$$$$

```
((\lambda (x) (x x)) (\lambda (x) (x x))
          \Omega is the smallest non-
terminating program!
Note how it reduces to itself in a single step!
((\lambda (x) (x x)) (\lambda (x) (x x)))
((\lambda (x) (x x)) (\lambda (x) (x x))
```

Evaluation with β reduction is nondeterministic!

$$\left(\left(\left(\lambda \right) \left(\lambda \right) \right) \left(\lambda \right) \left(\lambda \right) \left(\lambda \right) \left(\lambda \right) \left(z \right) z \right) \right)$$

$$\left(\left(\lambda \right) z \right) \right)$$

Evaluation with β reduction is nondeterministic!

Try an example. Perform each possible β-reduction

$$((\lambda (x) ((\lambda (y) (x y)) x)) (\lambda (z) (z z)))$$

How many different β-reductions are possible from the above?

Answer

$$((\lambda (x) ((\lambda (y) (x y)) x)) (\lambda (z) (z z)))$$

$$\downarrow \beta$$

$$((\lambda (x) (x x)) (\lambda (z) (z z)))$$

Can reduce inner redex...

Answer

$$((\lambda \ (x) \ ((\lambda \ (y) \ (x \ y)) \ x)) \ (\lambda \ (z) \ (z \ z)))$$

$$\downarrow \beta$$

$$((\lambda \ (y) \ ((\lambda \ (z) \ (z \ z)) \ y)) \ (\lambda \ (z) \ (z \ z)))$$

Or the outer redex.

Answer

$$((\lambda (x) ((\lambda (y) (x y)) x)) (\lambda (z) (z z)))$$

$$\downarrow \beta$$

$$((\lambda (y) ((\lambda (z) (z z)) y)) (\lambda (z) (z z)))$$

Can't reduce this since we don't (yet) know about

the particular value (function) z in call position.

Free variables

$$FV : Exp \rightarrow \mathscr{P}(Var)$$

$$\mathbf{FV}(x) \stackrel{\Delta}{=} \{x\}$$

$$\mathbf{FV}((\lambda \ (x) \ e_b)) \stackrel{\Delta}{=} \mathbf{FV}(e_b) \setminus \{x\}$$

$$\mathbf{FV}(e_f \ e_a)) \stackrel{\Delta}{=} \mathbf{FV}(e_f) \ \cup \ \mathbf{FV}(e_a)$$

Free variables

$$FV((x y)) = \{x, y\}$$

$$FV(((\lambda (x) x) y)) = \{y\}$$

$$FV(((\lambda (x) x) x) = \{x\}$$

$$FV(((\lambda (y) ((\lambda (x) (z x)) x))) = \{z, x\}$$

Try an example. What are the free variables of each of the following terms?

$$((\lambda (x) x) y)$$
 $((\lambda (x) (x x)) (\lambda (x) (x x)))$
 $((\lambda (x) (z y)) x)$

Try an example. What are the free variables of each of the following terms?

The problem with (naive) textual substitution

$$((\lambda (a) (\lambda (a) a)) (\lambda (b) b))$$

The problem with (naive) textual substitution

$$((\lambda (a) (\lambda (a) a)) (\lambda (b) b))$$

$$\downarrow \beta$$

$$(\lambda (a) a) [a \leftarrow (\lambda (b) b)]$$

The problem with (naive) textual substitution

$$((\lambda (a) (\lambda (a) a)) (\lambda (b) b))$$

$$\beta$$

$$(\lambda (a) (\lambda (b) b))$$

$$(\lambda (a) (\lambda (b) b))$$

Capture-avoiding substitution

$$E_0[x \leftarrow E_1]$$

$$x[x \leftarrow E] = E$$

$$y[x \leftarrow E] = y \text{ where } y \neq x$$

$$(E_0 E_1)[x \leftarrow E] = (E_0[x \leftarrow E] E_1[x \leftarrow E])$$

$$(\lambda (x) E_0)[x \leftarrow E] = (\lambda (x) E_0)$$

$$(\lambda (y) E_0)[x \leftarrow E] = (\lambda (y) E_0[x \leftarrow E])$$

where $y \neq x$ and $y \notin FV(E)$

 β -reduction cannot occur when $y \in FV(E)$

Capture-avoiding substitution

$$((\lambda (a) (\lambda (a) a)) (\lambda (b) b))$$

$$\beta$$

$$(\lambda (a) a)$$

$$(\lambda (a) a)$$

$$((\lambda (y) ((\lambda (z) (\lambda (y) (z y))) y))$$

 $(\lambda (x) x))$

$$((\lambda (y) \\ ((\lambda (z) (\lambda (y) (z y))) y)) \\ (\lambda (x) x)) \\ \beta \\ ((\lambda (z) (\lambda (y) (z y))) (\lambda (x) x))$$

$$(\lambda (y) ((\lambda (z) (\lambda (y) z)) (\lambda (x) y))$$

$$(\lambda (y) ((\lambda (z) (\lambda (y) z)) (\lambda (x) y))$$

You cannot! This redex would require:

$$(\lambda (y) z)[z \leftarrow (\lambda (x) y)]$$

(y is free here, so it would be captured)

$$(λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))$$
 $→_α (λ (y) ((λ (z) (λ (w) z)) (λ (x) y)))$
 $→_β (λ (y) (λ (w) (λ (x) y)))$

Instead we alpha-convert first.

α - renaming

These two expressions are equivalent—they only differ by their variable names (x = a; y = b)

\alpha - renaming

$$(\lambda (x) E_{\theta}) \rightarrow_{\alpha} (\lambda (y) E_{\theta}[x \leftarrow y])$$

$$=_{\alpha}$$

 α renaming/conversions can be run backward, so you might think of it as an equivalence relation

α-renaming

α renaming/conversions can be used to implement capture-avoiding substitution

Rename variables that would break naive substitution!

$$((\lambda (x) (\lambda (x) x)) (\lambda (y) y))$$

\alpha - renaming \]

α renaming/conversions can be used to implement capture-avoiding substitution

Rename variables that would break naive substitution!

$$((\lambda (x) (\lambda (x) x)) (\lambda (y) y))$$

Can't perform naive substitution w/o capturing x.

α - renaming

α renaming/conversions can be used to implement capture-avoiding substitution

Rename variables that would break naive substitution!

$$((\lambda (x) (\lambda (x) x)) (\lambda (y) y))$$

Fix by α renaming to z

α-renaming

α renaming/conversions can be used to implement capture-avoiding substitution

Rename variables that would break naive substitution!

$$((\lambda (x) (\lambda (z) z)) (\lambda (y) y))$$

Fix by α renaming to z

α-renaming

α renaming/conversions can be used to implement capture-avoiding substitution

Rename variables that would break naive substitution!

$$((\lambda (x) (\lambda (z) z)) (\lambda (y) y))$$

Could now perform beta-reduction with naive substitution

η - reduction

$$(\lambda (x) (E_0 x)) \rightarrow_{\eta} E_0 \text{ where } x \notin FV(E_0)$$

$$E_0 \longrightarrow_{\eta} (\lambda (x) (E_0 x)) \text{ where } x \notin FV(E_0)$$

Reduction

$$(\rightarrow) = (\rightarrow_{\beta}) \cup (\rightarrow_{\alpha}) \cup (\rightarrow_{\eta})$$

$$(\rightarrow^*)$$

reflexive/transitive closure

Evaluation

Evaluation to normal form

Evaluation to normal form

In *normal form*, no function position can be a lambda; this is to say: *there are no unreduced redexes left*!

$$(\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow_{\eta} ((\lambda (y) y) (\lambda (z) z))$$

$$\rightarrow_{\beta} (\lambda (z) z)$$

$$((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow \beta ((\lambda (y) y) (\lambda (z) z))$$

$$\rightarrow \beta (\lambda (z) z)$$

$$((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow \beta ((\lambda (x) x) (\lambda (z) z))$$

$$\rightarrow \beta (\lambda (z) z)$$

Confluence

Diverging paths of evaluation must eventually join back together.

Church-Rosser Theorem

If—starting from E_0 —we can reach *both* E_1 and E_2 , then we **must** be able to get to some E_3 starting from *either* E_2 or E_1 .

$$e_0 \quad \stackrel{\alpha}{\longleftrightarrow} \quad e_1 \quad \stackrel{\alpha}{\longleftrightarrow} \quad e_2 \quad \stackrel{\alpha}{\longleftrightarrow} \quad e_3 \quad \stackrel{\alpha}{\longleftrightarrow} \quad e_4 \quad \stackrel{\alpha}{\longleftrightarrow} \quad e_5$$

Confluence (i.e., Church-Rosser Theorem)

Applicative evaluation order

Always evaluates the innermost leftmost redex first.

Normal evaluation order

Always evaluates the *outermost* leftmost redex first.

Applicative evaluation order

$$((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

Normal evaluation order

$$(((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z)) (\lambda (w) w))$$

Call-by-value (CBV) semantics

Applicative evaluation order, but not under lambdas.

Call-by-name (CBN) semantics

Normal evaluation order, but not under lambdas.

Church encoding

Church encoding is the process of encoding all values as lambda abstractions. E.g., Church numerals are an encoding of numbers, 0, 1, 2, ..., as first-class functions. Church booleans are an encoding of #t and #f as functions. Church lists are an encoding of lists (pairs and null) as functions.

"If I only let you use the lambda calculus, can you still write normal programs (e.g., ones that use recursion/+/if/etc...)?"

Church encoding

Church encoding is the process of encoding all values as lambda abstractions. E.g., Church numerals are an encoding of numbers, 0, 1, 2, ..., as first-class functions. Church booleans are an encoding of #t and #f as functions. Church lists are an encoding of lists (pairs and null) as functions.

"If I only let you use the lambda calculus, can you still write normal programs (e.g., ones that use recursion/+/if/etc...)?"

Church encoding

Church encoding is the process of encoding all values as lambda abstractions. E.g., Church numerals are an encoding of numbers, 0, 1, 2, ..., as first-class functions. Church booleans are an encoding of #t and #f as functions. Church lists are an encoding of lists (pairs and null) as functions.

We will start from core scheme...

```
e ::= (letrec ([x (lambda (x ...) e)]))
    [ (let ([x e] ...) e)
    | (lambda (x ...) e)
    (e e ...)
    I (if e e e)
    | (prim e e) | (prim e)
d ::= N | #t | #f | '()
x ::= <vars>
prim ::= + | - | * | not | cons | ...
```


Today, we'll start with:

```
e ::= (letrec ([x (lambda (x ...) e)]))
     [ (let ([x e] ...) e)
     | (lambda (x ...) e)
     l (e e ...)
     | (if e e e)
     | (+ e e) | (* e e)
     (cons e e) | (car e) | (cdr e)
d ::= \mathbb{N} \mid \#t \mid \#f \mid `()
x ::= \langle vars \rangle
```

Desugaring Let

```
(let ([x e] ...) ebody)
```

Currying

$$(\lambda (x y z) e) \longrightarrow (\lambda (x) (\lambda (x) (\lambda (z) e))$$

$$(\lambda (x) e) \longrightarrow (\lambda (x) e)$$

$$(\lambda () e) \longrightarrow (\lambda (\underline{}) e)$$

 $(f \ a \ b \ c \ d) \longrightarrow ((((f \ a) \ b) \ c) \ d)$ $(f \ a) \longrightarrow (f \ a)$ $(f) \longrightarrow (f \ (\lambda \ (x) \ x))$

```
e ::= (letrec ([x (lambda (x) e)]))
    | (lambda (x) e)
    (e e)
    | (if e e e)
    | ((+ e) e) | ((* e) e)
    ((cons e) e) (car e) (cdr e)
d ::= N | #t | #f | '()
x ::= <vars>
```

Conditionals & Booleans

$$((\lambda \ (t \ f) \ t) \ e_T \ e_F) \qquad ((\lambda \ (t \ f) \ f) \ e_T \ e_F)$$

$$((\lambda \ (t \ f) \ t) \ v_T \ v_F) \qquad ((\lambda \ (t \ f) \ f) \ v_T \ v_F)$$

$$(\lambda \ (t \ f) \ t) \ v_T \ v_F)$$

What issues arise with this encoding?

$$((\lambda (t f) t) e_T \Omega)$$

```
((\lambda (t f) (t)) (\lambda () e_T) (\lambda () \Omega))
                    ((\lambda () e_T))
                            VT
```

```
e ::= (letrec ([x (lambda (x) e)]))
    | (lambda (x) e)
    (e e)
    | ((+ e) e) | ((* e) e)
    ((cons e) e) | (car e) | (cdr e)
     d
d ::= \mathbb{N} \mid `()
x ::= <vars>
```

Natural Numbers

Hint: turn all nouns into verbs!

(Focus on the *behaviors* that are implicit in values.)

$$(\lambda (f) (\lambda (x) (f^N x)))$$

0: $(\lambda (f) (\lambda (x) x))$

1: $(\lambda (f) (\lambda (x) (f x))$

2: $(\lambda (f) (\lambda (x) (f (f x)))$

3: $(\lambda (f) (\lambda (x) (f (f x))))$

church+ =
$$(\lambda (n) (\lambda (m) (\lambda (x) (\lambda (f) (\lambda (x) ...)))$$

```
church+ = (\lambda (n) (\lambda (m) (\lambda (f) (\lambda (x) (n) (n) (m f) x))))
```

church* =
$$(\lambda (n) (\lambda (m) (\lambda (f) (\lambda (x) (f) (\lambda (x) (f) (\lambda (x) (f) (f) (f) (f))))$$

```
church* = (\lambda (n) (\lambda (m))
(\lambda (f) (\lambda (x))
((n (m f)) x))))
```

$$fN^{M} = fN^{*M}$$

Lists

The fundamental problem:

We need to be able to case-split.

The solution:

We take two callbacks as with #t, #f!

```
() = (λ (when-cons) (λ (when-null))
(when-null))
```

(cons a b) =
$$(\lambda \text{ (when-cons) } (\lambda \text{ (when-null)})$$

(when-cons a b)))

Try an Example. How can we define null?

Try an Example. How can we define null?

```
church:null? = (\lambda (p)

(p (\lambda (a b) #f)

(\lambda () #t)))
```

$$((\lambda (x) (x x)) (\lambda (x) (x x)))$$

Key: U takes a function and calls it on itself

$$((\lambda (x) (x x)) (\lambda (x) (x x)))$$

(define U (λ (f) (f f)))

What can I type right here to make fib work?

(Hint: the answer can be written in 5 characters)

(define U (λ (f) (f f)))

What can I type right here to make fib work?

Y combinator

Key idea: instead of

```
(let ([mk (\lambda (mk) (\lambda (n) (if (= n 0) 1 (* n ((mk mk) (- n 1))))))]) ((mk mk) 5))
```


$$(Y f) = f (Y f)$$

(It's a fixed-point combinator!)

Three step process for deriving Y

$$(Y f) = f (Y f)$$

$$Y = (\lambda (f) (f (Y f))) \qquad 1. \text{ Treat as definition}$$

$$mY = (\lambda (mY)) \qquad \qquad 2. \text{ Lift to mk-Y,}$$

$$(f ((mY mY) f)))) \text{ use self-application}$$

$$mY = (\lambda (mY)) \qquad \qquad 3. \text{ Eta-expand}$$

$$(\lambda (f)) \qquad \qquad (f (\lambda (x) ((mY mY) f) x))))$$

U-combinator: (U U) is Omega

$$Y = (U (\lambda (y) (\lambda (f) (f (\lambda (x) (((y y) f) x)))))$$

Try an example!!!

Rewrite this to use the Y combinator instead

```
(define (church->nat cv)
(define (church->list cv)
(define (church->bool cv)
```

```
(define (church->nat cv)
        ((cv add1) 0))
(define (church->list cv)
(define (church->bool cv)
```

```
(define (church->nat cv)
         ((cv add1) 0))
(define (church->list cv)
         ((cv (\lambda (car))
                 (\lambda (cdr)
                   (cons car
                      (church->list cdr))))
          (\lambda (na) ())
(define (church->bool cv)
```

```
(define (church->nat cv)
         ((cv add1) 0))
(define (church->list cv)
         ((cv (\lambda (car))
                  (\lambda (cdr)
                     (cons car
                       (church->list cdr))))
           (\lambda (na) ())
(define (church->bool cv)
         ((cv (\lambda () #t))
           (\lambda () \#f))
                         126
```

```
(define lst
              ((((((((((\lambda (Y-comb))
                                                                                              (λ (church:null?)
                                                                                                             (λ (church:cons)
                                                                                                                             (λ (church:car)
                                                                                                                                             (λ (church:cdr)
                                                                                                                                                            (λ (church:+)
                                                                                                                                                                            (λ (church:*)
                                                                                                                                                                                            (λ (church:not)
                                                                                                                                                                                                           ((\lambda (map))
                                                                                                                                                                                                                           ((map
                                                                                                                                                                                                                                           (\lambda (x)
                                                                                                                                                                                                                                                           ((church: + (\lambda (f) (\lambda (x) (f x))))
                                                                                                                                                                                                                                                                x)))
                                                                                                                                                                                                                                    ((church:cons (\lambda (f) (\lambda (x) x)))
                                                                                                                                                                                                                                           ((church:cons
                                                                                                                                                                                                                                                           (\lambda (f)
                                                                                                                                                                                                                                                                           (\lambda (x) (f (f (f (f x))))))
                                                                                                                                                                                                                                                   ((church:cons
                                                                             > (map church-\Re n_{ahen}^{(\lambda)} - (e_{ahen}^{(\lambda)} - e_{ahen}^{(\lambda)} - e_{a
                                                                                                                                                                                                                                                                          (\lambda \text{ (when-null)})
                                                                               '(1 6 4)
                                                                                                                                                                                                                                                                                           (when-null (\lambda (x) x)))))))))
                                                                                                                                                                                                            (Y-comb
```

Try an example.

Write a lambda term other than Ω which also does not terminate

(Hint: think about using some form of self-application)

Write a lambda term other than Ω which also does not terminate

Evaluation contexts

Restrict the order in which we may simplify a program's redexes

(left-to-right) CBV evaluation

(left-to-right) CBN evaluation

$$v := (\lambda (x) e)$$

$$e := (\lambda (x) e)$$

| (e e)
| x

Context and redex

For CBV a redex must be
$$(v \ v)$$
 For CVN, a redex must be $(v \ e)$
$$\mathscr{E} \left[\begin{array}{c} (v \ v) \end{array} \right] = ((\lambda \ (x) \ (\lambda \ (y) \ y) \ x)) \ (\lambda \ (z) \ z)) \ (\lambda \ (w) \ w))$$

$$r = ((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

Context and redex

$$\mathscr{E}[r] =$$

$$(((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z)) (\lambda (w) w))$$

$$\mathscr{E} = (\Box (\lambda (w) w))$$

$$r = ((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow_{\beta} ((\lambda (y) y) (\lambda (z) z))$$

Put the reduced redex back in its evaluation context...

$$\mathcal{E} = (\Box (\lambda (w) w))$$

$$r = ((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow \beta ((\lambda (y) y) (\lambda (z) z))$$

$$\downarrow \mathcal{E}[r]$$

$$(((\lambda (y) y) (\lambda (z) z)) (\lambda (w) w))$$

Exercises—can you evaluate...

1)
$$(((\lambda (y) y) (\lambda (z) z)) (\lambda (w) w))$$

2)
$$((\lambda (u) (u u)) (\lambda (x) (\lambda (x) x))$$

3)
$$(((\lambda (x) x) (\lambda (y) y))$$

 $((\lambda (u) (u u)) (\lambda (z) (z z))))$