2-) Cache Memory (Block Size)

In this problem, we will compare three direct-mapped caches with approximately the same amount of memory (128 bytes of SRAM):

1 block=4bytes= 2 words and 128 = 32= i-) block size of 4 bytes \Longrightarrow

ii-) block size of 8 bytes = 1 block = 8 bytes = 4 words and 4128/8 = 27/23 = 16 block size of 64 bytes = 16 block = 64 bytes = 32 words = 28 bytes = 28/23 = 16 block = 28 bytes = 32 words = 28 bytes

a-) Fill in the number of bits used for each field od the address for each cache:

	tag	index	Word-Offset	Byte-offset
i	2-51+	5-61+	1-101+	1-61+
ii	2-61	4-61+	2-61+	1-61+
iii	2-101+	1-bit	5-61+	1-61+

8/64=2

b- Assuming a cold start, fill in the "hit" or "miss" for the following sequence of memory references for each cache (addresses are in binary)

Referenced Addresses	i	ii	iii
00000010	Miss	miss	miss
000000100	miss	hit	nit
010001010	221m	mis	miss
000000111	bit	hit	221m
0 1 1 0 0 1 0 1 0	miss	· miss	miss
0 1 0 1 0 1 0 1 0	miss	miss	miss
g Byte		Cy	

Which cache has the fewest misses for this set of references?

00000000000 00 00 00 10 0 - hit 01 00 01 01 0 - miss 000000111 1 miss Index

Block size of 8 bytes has the fewest misses for this set of references.