Assignment -2 Visualization and preprocessing

Assignment Date	29 September 2022
Student Name	Clifford Lebo J
Student Roll Number	CITC1907005
Maximum Marks	2 Marks

Question 1. Download the dataset: Dataset

1. Importing required libraries

In [1]: import pandas as pd
 import seaborn as sns
 from matplotlib import pyplot as plt
 import numpy as np
 //matplotlib inline

Question 2. Load the dataset.

2. Load the dataset
df=pd.read_csv("Churn_Modelling.csv")
df

Question 3. Perform Below Visualizations.

Univariate Analysis

Code:

df.dtypes
df['Age'].value_counts()
sns.kdeplot(df['Age'])

3.1.univatiate Analysis

```
In [3]: df.dtypes
 Out[3]: RowNumber
                              int64
          CustomerId
                              int64
          Surname
                             object
          CreditScore
                              int64
          Geography
                             object
          Gender
                             object
                              int64
          Age
          Tenure
                              int64
                            float64
          Balance
          NumOfProducts
                              int64
          HasCrCard
                              int64
          IsActiveMember
                              int64
          EstimatedSalary float64
          Exited
                              int64
          dtype: object
In [4]: df['Age'].value_counts()
Out[4]: 37
              478
        38
              477
        35
              474
              456
        36
        34
              447
        92
                2
        82
                1
        88
                1
        85
                1
        83
                1
        Name: Age, Length: 70, dtype: int64
```

sns.kdeplot(df['Age']) <AxesSubplot:xlabel='Age', ylabel='Density'> 0.04 0.03 0.02 0.01 0.00 Age

• Bi - Variate Analysis

```
Code:
#1.

df.corr()
#2.
import seaborn as sns
sns.heatmap(df.corr())
#3.
import statsmodels.api as sm
#define response variable
y = df['Age']
#define explanatory variable
x = df[['Exited']]
#add constant to predictor variables
x = sm.add_constant(x)
```

#fit linear regression model
model = sm.OLS(y, x).fit()
#view model summary
print(model.summary())

3.2.Bi-Variate Analysis

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
RowNumber	1.000000	0.004202	0.005840	0.000783	-0.006495	-0.009067	0.007246	0.000599	0.012044	-0.005988	-0.016571
CustomerId	0.004202	1.000000	0.005308	0.009497	-0.014883	-0.012419	0.016972	-0.014025	0.001665	0.015271	-0.006248
CreditScore	0.005840	0.005308	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
Age	0.000783	0.009497	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
Tenure	-0.006495	-0.014883	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
Balance	-0.009067	-0.012419	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
NumOfProducts	0.007246	0.016972	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
HasCrCard	0.000599	-0.014025	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
IsActiveMember	0.012044	0.001665	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
Estimated Salary	-0.005988	0.015271	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
Exited	-0.016571	-0.006248	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

In [7]: import seaborn as sns|
sns.heatmap(df.corr())

Out[7]: <AxesSubplot:>


```
In [8]: import statsmodels.api as sm
        #define response variable
y = df['Age']
         #define explanatory variable
        x = df[['Exited']]
        #add constant to predictor variables
        x = sm.add\_constant(x)
         #fit linear regression model
        model = sm.OLS(y, x).fit()
        #view model summary
        print(model.summary())
                                      OLS Regression Results
```

				=====					
Dep. Variable: Model:				Age OLS		uared: R-squared:	0.081 0.081		
Method:		Least Squares			F-st	atistic:		886.1	
Date:		Sun, 02 Oct 2022			Prob	(F-statistic):	1.24e-186		
Time:		22:44:02			Log-	Likelihood:	-37266.		
No. Observa	tions:		1	0000	AIC:			7.454e+04	
Df Residual	s:			9998	BIC:			7.455e+04	
Df Model:				1					
Covariance	Type:		nonro	bust					
	(coef	std err		t	P> t	[0.025	0.975]	
const	37.4	4084	0.113	332	.078	0.000	37.188	37.629	
Exited	7.4	4296	0.250	29	.767	0.000	6.940	7.919	
Omnibus:	=====	=====	 1974	.048	==== Durb	in-Watson:	======	2.027	
Prob(Omnibu	s):		0	.000	Jarq	ue-Bera (JB):		4381.188	
Skew:	kew: 1.136		Prob	(JB):		0.00			
Kurtosis:	s: 5.314		.314	Cond	. No.		2.60		
========	=====	====	=======	=====	====	=========	======	=======	

Notes:

• Multi - Variate Analysis

Code

sns.pairplot(data=df[['CustomerId', 'CreditScore', 'Gender', 'Age', 'Tenure', 'Geography', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember' ,'EstimatedSalary', 'Exited']],hue='Geography')

Question 4. Perform descriptive statistics on the dataset.

Code:

df.describe()

Question 5. Handle the Missing values.

Code: df.fillna(df.mean())

Question 6. Find the outliers and replace the outliers

Code: df["Tenure"] = np.where(df["Tenure"] > 10, np.median,df["Tenure"]) df["Tenure"]

Question 7. Check for Categorical columns and perform encoding.

```
x=list(df.columns)
for i in x:
    print(pd.Categorical(df[i]))
    print("\n\n\n")
```

```
In [22]: x=list(df.columns)
    for i in x:
        print(pd.Categorical(df[i]))
        print("\n\n")

[1, 1, 3, 2, 1, ..., 2, 1, 1, 2, 1]
        Length: 10000
        Categories (4, int64): [1, 2, 3, 4]

[1, 0, 1, 0, 1, ..., 1, 1, 0, 1, 1]
        Length: 10000
        Categories (2, int64): [0, 1]

[1, 1, 0, 0, 1, ..., 0, 1, 1, 0, 0]
        Length: 10000
        Categories (2, int64): [0, 1]
```

Question 8. Split the data into dependent and independent variables.

```
dependent=df[x[:2]]
independent=df[x[2:]]
print("dependent variables\n",dependent.head())
print("\n\nindependent variables\n",independent.head())
```

```
In [16]: dependent=df[x[:2]]
           independent=df[x[2:]]
In [17]: print("dependent variables\n", dependent.head())
           print("\n\nindependent variables\n",independent.head())
           dependent variables
                RowNumber CustomerId
                 1 15634602
                        2 15647311
3 15619304
                      3
                      4 15701354
           3
                      5 15737888
           independent variables
                Surname CreditScore Geography Gender Age Tenure
                                                                                   Balance \
          0 Hargrave 619 France Female 42 2 0.00
1 Hill 608 Spain Female 41 1 83807.86
2 Onio 502 France Female 42 8 159660.80
3 Boni 699 France Female 39 1 0.00
4 Mitchell 850 Spain Female 43 2 125510.82
              NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
                   1 1 1 101348.88
1 0 1 112542.58
3 1 0 113931.57
2 0 0 93826.63
1 1 1 79084.10
           1
           2
           3
```

Question 9. Scale the independent variables

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["RowNumber"]] = scaler.fit_transform(df[["RowNumber"]])
print(df.head())
```

```
In [18]: import pandas as pd
        from sklearn.preprocessing import MinMaxScaler
        scaler = MinMaxScaler()
        df[["RowNumber"]] = scaler.fit_transform(df[["RowNumber"]])
          RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
                   15634602 Hargrave
15647311 Hill
15619304 Onio
                     15634602 Hargrave
                                             619
                                                   France Female
        1
            0.0001
                                             608
                                                    Spain Female
                                                                  41
                                                                          1
        2
                                             502 France Female 42
            0.0002
                                                                          8
            0.0003 15701354 Boni
                                             699 France Female 39
                                                                          1
           0.0004 15737888 Mitchell
                                             850
                                                   Spain Female 43
           Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary \
             0.00
                             1
                                   1
                                                  1
                                                             101348.88
       1 83807.86
                                       0
                                                             112542.58
                              1
                                                     1
        2 159660.80
                                                            113931.57
              0.00
                                                     0
                                                             93826.63
       3
                             2
                                       0
        4 125510.82
                                                              79084.10
          Fxited
       1
               0
        2
              1
```

Question 10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split

train_size=0.8

X = df.drop(columns = ['Tenure']).copy()

y = df['Tenure']

X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)

test_size = 0.5

X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)

print(X_train.shape), print(y_train.shape)

print(X_valid.shape), print(y_valid.shape)

print(X_test.shape), print(y_test.shape)
```

```
In [19]: from sklearn.model_selection import train_test_split
         train_size=0.8
         X = df.drop(columns = ['Tenure']).copy()
         y = df['Tenure']
         X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
         test_size = 0.5
         X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
         print(X_train.shape), print(y_train.shape)
         \verb|print(X_valid.shape)|, \verb|print(y_valid.shape)||
         print(X_test.shape), print(y_test.shape)
          (8000, 13)
          (8000,)
          (1000, 13)
          (1000,)
          (1000, 13)
          (1000,)
Out[19]: (None, None)
```