PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Solución Ayudantía 2

Álgebra I - MAT2227

Fecha: 2019/08/20

- 1) \Leftarrow es clara. Para \Longrightarrow , sea $B = \{b \in \mathbb{N} : \exists a \in \mathbb{N} (a \nmid b \wedge a^2 \mid b^2)\}$. Si es que B es vacío se tiene lo pedido, en otro caso se usa buen orden para tomar b_0 el elemento mínimo de B. Luego existe $a_0 \in \mathbb{N}$ tq $a_0 \nmid b_0$ y $a_0^2 \mid b_0^2$. Se sabe que existe p primo tq $p \mid a_0$, por lo que $p \mid b_0^2$ y como p es primo se tiene que $p \mid b_0$, y por ende $b_0 = pb_1$ y $a_0 = pb_1$. De esto se ve que $p^2a_1^2 \mid p^2b_1^2$, por lo que $a_1^2 \mid b_1^2$, como $b_1 < b_0$ se tiene que $a_1 \mid b_1$, por lo que $a_1 \mid pb_1$, pero es equivalente a que $a_0 \mid b_0$, por lo que $a_1 \mid b_0$ es vacío. Y se tiene lo pedido.
- 2) Por contradicción, sea (a+b,ab)=k>1, entonces existe p primo que divide k, por lo que $p\mid ab$ y $p\mid a+b$, dado que p es primo lo anterior se reescribe de la siguiente manera:

$$(p \mid a + b \land p \mid b) \lor (p \mid a + b \land p \mid a)$$

Con esto se tiene que $p \mid a \ y \ p \mid b$, por lo que $p \mid (a,b) = 1$, una contradicción. Con lo que se tiene lo pedido.

- 3) Para cada uno se usa congruencias modulares:
 - 1) $a_n \dots a_0 \equiv \sum_{i=0}^n a_i \cdot 10^i \equiv a_0 \mod 2$
 - 2) $a_n \dots a_0 \equiv \sum_{i=0}^n a_i \cdot 10^i \equiv \sum_{i=0}^n a_i \mod 3$
 - 3) $a_n \dots a_0 \equiv \sum_{i=0}^n a_i \cdot 10^i \equiv a_1 \cdot 10 + a_0 \equiv 2a_1 + a_0 \mod 4$ (Para i > 1 se tiene que $4 \mid 10^i$)
 - 4) $a_n \dots a_0 \equiv \sum_{i=0}^n a_i \cdot 10^i \equiv a_0 \mod 5$
- 4) Se describe el siguiente algoritmo:

Para cada número n se revisa si es primo, si lo es se enumera, si no se continua al

siguiente número. Para determinar si un número n es primo, se ven todos los números mayores a 1 y menores a n, si alguno divide a n, entonces n no es primo, en otro caso n es primo.

Demostración de su correctitud: Sea p primo no enumerado por el algoritmo, entonces por construcción el algoritmo encontró un divisor de p, por lo que p no es primo. Sea n un número no primo enumerado por el algoritmo, por construcción no es divisible por números menores a sí mismo, por lo que por definición es primo.