

### **BerkeleyX:** CS105x Introduction to Apache Spark



▼ Week 1 - Apache Spark Programming Model

Lecture 1: Apache Spark Architecture and Programming Model Ouizzes

Setting up the Course
Software Environment (Due
September 10, 2016 at 23:59
UTC)
Setup

(Optional) Survey about your machine and setup experience

- Week 2 The Structured
   Query Language and
   Spark SQL
- Week 3 AnalyzingSemi-Structured Data

Week 1 - Apache Spark Programming Model > Lecture 1: Apache Spark Architecture and Programming Model > Apache Spark Transformations

**■** Bookmark

# **Apache Spark Transformations**

BERCS1052016-V001300



Couldn't get auth token: undefined



### **User Defined Functions**

Note that UDFs in Python are slow, so whenever possible, consider using built-in functions instead. For example, instead of creating a lambda function and using a UDF to subtract one from the values of a column, you should use a select transformation to perform the subtraction.

## **Python Documentation**

A very useful reference when writing pySpark applications is the Python Documentation site. You can even download the reference documentation for later reference.

# Lazy Evaluation

(1/1 point)

Why is the lazy evaluation of transformations important?

- Spark can execute the transformations when it has several ready to run
- The Catalyst Optimizer can optimize which transformations are run and how they are run
  - It is simpler to delay the execution of transformations than run them immediately

#### **EXPLANATION**

By delaying the evaluation of transformations, Spark can use the Catalyst Optimizer to optimize the execution of transformations, including potentially skipping unnecessary transformations.

You have used 1 of 2 submissions



© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

















