1. Fale podłużne w ciałach stałych

Zespół 3: Górski Paweł, Sozańska Ada EAIiIB Informatyka, Rok II 18 października 2017

1 Wprowadzenie

Celem tego doświadczenia jest wyznaczenie w sposób doświadczalny przybliżonej wartości modułu Younga dla ciał stałych, wykonanych z różnych materiałów.

Moduł Younga jest to wielkość charakteryzująca własności sprężyste ciała stałego i podatność materiału na odkształcenia podłużne przy rozciąganiu, ściskaniu lub zginaniu. Prawo Hooke'a definiuje nam zależność modułu Younga od innych wielkości:

$$E = \frac{\sigma}{\varepsilon},\tag{1.1}$$

gdzie σ to naprężenie normalne ciała, a ε to odkształcenie względne ciała.

Rozważając pręt o gęstości ρ i szybkości fali rozchodzącej się w pręcie v oraz korzystając z prawa Hooke'a (równanie 1.1), jesteśmy w stanie podać następującą zależność:

$$E = \rho v^2. (1.2)$$

W rozważanym pręcie fale padająca i odbita interferują ze sobą, tworząc falę stojącą. Znając częstotliwość fali f oraz jej długość λ jesteśmy w stanie

obliczyć szybkość fali w danym ciele:

$$v = f\lambda. \tag{1.3}$$

Przyjmijmy również, że te pręty są obustronnie otwarte lub obustronnie zamknięte. W takim przypadku możemy przedstawić długość fali stojącej jako $\lambda=2l$, gdzie l jest długością pręta. Biorąc to pod uwagę, jesteśmy w stanie przedstawić formułę na moduł Younga, w której każda wielkość jest mierzalna:

$$E = 4\rho l^2 f^2. (1.4)$$

Fale dźwiękowe w pręcie można przybliżyć za pomocą złożenia harmonicznych drgań sinusoidalnych, a wykorzystując FFT (Fast Fourier Transform) możemy otrzymać odpowiadające im częstotliwości.

Częstotliwość najniższego tonu jest nazywana częstotliwością podstawową, a kolejne nazywane są częstotliwościami harmonicznymi, będącymi wielokrotnościami częstotliwości podstawowej.

$$f_k = k f_0$$
, gdzie $k = 2, 3, 4 \dots$ (1.5)

2 Wykonanie ćwiczenia

W celu wykonania doświadczenia wykorzystaliśmy:

- Komputer stacjonarny z mikrofonem,
- Oprogramowanie Zelscope,
- Zestaw 7 prętów (o różnych kształtach i z różnych materiałów),
- Suwmiarkę,
- Miarkę w rolce,
- Młotek,
- Dwie wagi elektroniczne o różnych dokładnościach.

Doświadczenie rozpoczęliśmy od zmierzenia i zważenia próbek prętów (lub samych prętów, gdy nie było im odpowiadających próbek) w celu wyznaczenia gęstości materiałów. Część pomiarów zostało wykonanych za pomocą suwmiarki z dokładnością 0,05 mm, inne (dłuższe pręty) zostały zmierzone za pomocą miarki o działce elementarnej równej 1 mm. Do zważenia większości próbek użyliśmy wagi z dokładnością 0,01 g, natomiast jeden pręt (ze względu na jego wielkość) musiał być zważony wagą o mniejszej dokładności równej 1 g.

Następnie do jednego końca pręta przyłożony został mikrofon tak, aby po uderzeniu młotkiem w drugi koniec zostały zarejestrowane harmoniczne tego drgania. Za pomocą programu *Zelscope* (po zastosowaniu FFT) z wykresu zostały odczytane częstotliwości dla kolejnych harmonicznych z niepewnością oszacowaną na 20 Hz. Powyższa procedura została powtórzona dla czterech prętów (stalowego, aluminiowego, mosiężnego i miedzianego).

3 Opracowanie danych pomiarowych

3.1 Gęstości materiałów

Zmierzone zostały wymiary oraz masy próbek (lub samego pręta w przypadku braku próbki) dla każdego z czterech prętów.

Próbka stalowa miała kształt prostopadłościanu o wymiarach:

$$a = 14,20 \text{ mm}, b = 14,00 \text{ mm} \text{ i } c = 19,80 \text{ mm},$$

 $u(a) = u(b) = u(c) = 0,05 \text{ mm}.$ (3.1)

Niepewność pomiaru objętości tej próbki została wyznaczona korzystając z prawa propagacji niepewności:

$$V = abc, (3.2)$$

$$u(V) = \sqrt{(bc \cdot u(a))^2 + (ac \cdot u(b))^2 + (ab \cdot u(c))^2}.$$
 (3.3)

Próbka aluminiowa miał kształt walca o średnicy d i wysokości l:

$$d = 5,00 \text{ mm}, \quad l = 440 \text{ mm},$$

 $u(d) = 0,05 \text{ mm}, \quad u(l) = 1 \text{ mm}.$ (3.4)

Niepewność pomiaru objętości tej próbki została wyznaczona korzystając z prawa propagacji niepewności:

$$V = d^2 l \frac{\pi}{4},\tag{3.5}$$

$$u(V) = \sqrt{\left(dl\frac{\pi}{2} \cdot u(d)\right)^2 + \left(d^2\frac{\pi}{4} \cdot u(l)\right)^2}.$$
 (3.6)

Próbka mosiężna miała kształt walca o średnicy d i wysokości l:

$$d = 5,90 \text{ mm}, \quad l = 312 \text{ mm},$$

 $u(d) = 0,05 \text{ mm}, \quad u(l) = 1 \text{ mm}.$ (3.7)

Objętość próbki została policzona ze wzoru (3.5), a niepewność pomiaru objętości ze wzoru (3.6).

Pręt miedziany, nie posiadał próbki dlatego też wymiary i masa zostały zmierzone bezpośrednio. Miał on kształt rury o średnicy zewnętrznej d_{zew} , średnicy wewnętrznej d_{wew} i wysokości l:

$$d_{zew} = 18,15 \text{ mm}, \ d_{wew} = 15,50 \text{ mm}, \ l = 1802 \text{ mm},$$

 $u(d_{zew}) = u(d_{wew}) = 0,05 \text{ mm}, \ u(l) = 1mm.$ (3.8)

Objętość rury została policzona ze wzoru:

$$V = (d_{zew}^2 - d_{wew}^2)l\frac{\pi}{4}. (3.9)$$

Niepewność pomiaru objętości tej rury została wyznaczona korzystając z prawa propagacji niepewności:

$$u(V) = \sqrt{\left(\frac{\partial V}{\partial d_{zew}} \cdot u(d_{zew})\right)^2 + \left(\frac{\partial V}{\partial d_{wew}} \cdot u(d_{wew})\right)^2 + \left(\frac{\partial V}{\partial l} \cdot u(l)\right)^2},$$
(3.10)

gdzie

$$\frac{\partial V}{\partial d_{zew}} = d_{zew} l \frac{\pi}{2} - 1,$$

$$\frac{\partial V}{\partial d_{wew}} = 1 - d_{wew} l \frac{\pi}{2},$$

$$\frac{\partial V}{\partial l} = (d_{zew}^2 - d_{wew}^2) \frac{\pi}{4}.$$
(3.11)

Gęstości materiałów wyznaczone zostały za pomocą wzoru:

$$\rho = \frac{m}{V},\tag{3.12}$$

gdzie m jest masą badanej próbki, a V objętością tej próbki. Niepewność pomiaru gęstości została wyznaczona na mocy prawa przenoszenia niepewności:

$$u(\rho) = \sqrt{\left(\frac{u(m)}{V}\right)^2 + \left(-m\frac{u(V)}{V}\right)^2}.$$
 (3.13)

Wyniki dla poszczególnych materiałów zostały zestawione w tabeli (Tab. 1).

Tab. 1: Objętości wraz z gęstościami dla badanych materiałów

Materiał	m [g]	u(m) [g]	$V [\mathrm{cm}^3]$	u(V) [cm ³]	$\rho \left[\frac{\mathrm{kg}}{\mathrm{m}^3} \right]$	$u(\rho) \left[\frac{\mathrm{kg}}{\mathrm{m}^3}\right]$
Stal	30,862	0,001	3,936	0,022	7840	44
Aluminium	23,883	0,001	8,63	0,17	2764	55
Mosiądz	74,536	0,001	8,53	0,14	8738	150
Miedź	760	1	126,2	3,3	6022	161

3.2 Analiza składowych harmonicznych

Dla częstotliwości podstawowej, długość rozchodzącej się fali stojącej λ wynosi $\lambda=2l$, gdzie l to długość pręta. Z zależności między częstotliwościami składowych harmonicznych (1.5), wzoru na szybkość fali (1.3) i faktu, iż szybkość ta jest stała dla danego ośrodka wynika, że dla każdej kolejnej składowej harmonicznej wartość ta jest n razy mniejsza, gdzie n oznacza numer harmonicznej.

W tabeli poniżej zawarte są wyniki otrzymane przy pomocy programu Zelscope.

Tab. 2: Częstotliwości składowych harmonicznych oraz odpowiadające im szybkości fali dla poszczególnych materiałów

		Sta	l = 1, 8 m				
Nr harmonicznej	1	2	3	4	5	6	
f [Hz]	1410	2900	4310	5720	7120	8600	
$\lambda \ [\mathrm{m}]$	3,600	1,800	1,200	0,900	0,720	0,600	
f_0 [Hz]	1410	1450	1436	1430	1424	1433	
$v\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	5076	5220	5172	5148	5126	5160	
		Alumi	nium		l =	1 m	
Nr harmonicznej	1	2	3	4	5	6	
f [Hz]	2435	4970	6842	9560	11340	12370	
$\lambda \ [\mathrm{m}]$	2,000	1,000	0.666	0,500	0,400	0,333	
$f_0 [\mathrm{Hz}]$	2435	2485	2280	2390	2268	2061	
$v\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	4870	4970	4561	4780	4536	4123	
$\mathbf{Mosiadz} \qquad \qquad l=1 \; \mathrm{m}$							
Nr harmonicznej	1	2	3	4	5	6	
f [Hz]	1690	3470	5160	6840	8630	12000	
$\lambda \ [\mathrm{m}]$	2,000	1,000	0.666	0,500	0,400	0,333	
f_0 [Hz]	1690	1735	1720	1710	1726	2000	
$v\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	3380	3470	3440	3420	3452	4000	
$\mathbf{Mied\acute{z}} \qquad \qquad l=1,8 \; \mathrm{m}$							
Nr harmonicznej	1	2	3	4	5	6	
f [Hz]	1180	2160	3240	4280	5260	6200	
$\lambda [m]$	2 000	1,800	1,200	0,900	0,720	0,600	
,, [111]	3,600	1,000	1,200	0,000	-)	′	
f_0 [Hz]	3,600	1080	1080	1070	1052	1033	

Analizując dane z tabeli (Tab. 2) można zauważyć, że dla aluminium oraz mosiądzu wartości f_0 dla szóstej składowej harmonicznej znacznie odbiegają od pozostałych. Podobna sytuacja zachodzi w przypadku pierwszej częstotliwości dla pręta miedzianego. Prawdopodobnie został popełniony błąd gruby, dlatego też wyniki te odrzucamy. Następnie dla pozostałych danych wyznaczamy średnie wartości szybkości v i częstotliwości podstawowej f_0 . Dodatkowo dla wyznaczonych wartości gęstości ρ i szybkości v obliczamy moduł Younga E każdego z omawianych materiałów. Obliczoną wartość E porównujemy z wartościami tabelarycznymi E_0 odpowiadających im materiałów (zaczerpniętymi z www.engineeringtoolbox.com).

Niepewność dla szybkości v wyznaczamy stosując prawo przenoszenia niepewności dla wzoru (1.3):

$$u(v) = \sqrt{(f \cdot u(\lambda))^2 + (\lambda \cdot u(f))^2}.$$
 (3.14)

Identycznie postępujemy dla wzoru (1.2) na moduł Younga:

$$u(E) = \sqrt{(v^2 \cdot u(\rho))^2 + (2\rho v \cdot u(v))^2}.$$
 (3.15)

Dla niepewności $u(\lambda) = 1$ mm, $u(f_0) = 20$ Hz i $u(\rho)$ w tabeli (Tab. 1) obliczamy niepewności u(v) i u(E) według powyższych wzorów. Wszystkie wyniki zawarte są w poniżej tabeli.

Tab. 3: Obliczona i tabelaryczna wartość modułu Younga

Material	f_0 [Hz]	$v\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	$u(v) \left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	E [GPa]	u(E) [GPa]	E_0 [GPa]
Stal	1430	5150	72	207,9	5,9	200
Aluminium	2371	4743	40	62,1	1,6	69
Mosiądz	1716	3432	40	102,9	2,9	102 - 125
Miedź	1063	3827	72	88,2	4,0	117

Dla stali wartość modułu Younga jest zgodna w granicy błędu, ponieważ:

$$|E_0 - E| = 7,9 < U(E) = 11,8 \text{ [GPa]}.$$
 (3.16)

Dla aluminium obliczona wartość modułu Younga nie jest zgodna z wartością tabelaryczną, gdyż:

$$|E_0 - E| = 6,9 > U(E) = 3,2 \text{ [GPa]}.$$
 (3.17)

Dla mosiądzu wartość modułu Younga zawiera się w przedziale dopuszczalnym dla tego materiału:

$$102 < E = 102, 9 < 125 \text{ [GPa]}.$$
 (3.18)

Dla miedzi obliczona wartość modułu Younga nie jest zgodna z wartością tabelaryczną, gdyż:

$$|E_0 - E| = 28, 8 > U(E) = 8, 0 \text{ [GPa]}.$$
 (3.19)

4 Wnioski

Dzięki pomiarom masy i objętości próbek (oraz rury), byliśmy w stanie wyznaczyć odpowiadające im gęstości. Następnie przy pomocy programu Zelscope otrzymaliśmy częstotliwości składowych harmonicznych co pozwoliło nam wyznaczyć szybkość rozchodzenia się fali w prętach, a w konsekwencji obliczyć wartość modułu Younga.

Otrzymane w ten sposób wartości dla stali oraz mosiądzu zgadzają się z odpowiadającymi im wartościami tabelarycznymi.

Niestety, mimo odrzucenia błędu grubego dla aluminium i miedzi wartość modułu Younga dla tych materiałów nie jest zgodna z wartością tabelaryczną. W przypadku aluminium można podejrzewać, że został popełniony błąd systematyczny, ponieważ wartości częstotliwości podstawowej f_0 cechowały się stosunkowo dużym rozrzutem. Natomiast w przypadku miedzi, wyznaczona gęstość nie była zgodna z wartością tabelaryczną $\rho_0 = 8940 \left[\frac{\mathrm{kg}}{\mathrm{m}^3}\right]$:

$$\left| \rho_0 - \rho \right| = 2918 > U(\rho) = 322 \left[\frac{\text{kg}}{\text{m}^3} \right],$$
 (4.1)

co może sugerować, że rura ta nie była wykonana z miedzi lub pomiary masy i jej rozmiaru mogły zostać źle wykonane. Nie można wykluczyć też, że błędne było założenie, iż średnica wewnętrzna tej rury była stała na całej długości.