

B.M.S. COLLEGE OF ENGINEERING, BENGALURU-19

Autonomous Institute, Affiliated to VTU
DEPARTMENT OF MATHEMATICS

SYLLABUS (2019 - 2020)

THIRD SEMESTER B.E COURSE

(Common to All Branches)

Course Title	Additional Mathematics-I	Course Code	19MA3IMMAT
Credits	00	L-T-P	3 - 1 - 0
Contact hours	48 hours (36L+12T)	III semester Lateral Entry students	

Prerequisites: Basic concepts of Trigonometry, Trigonometric formulas, concept of differentiation, concept of integration.

Course Objectives: To provide students with a solid foundation in mathematical fundamentals such as differentiation, differential equations, vectors and orthogonal curvilinear coordinates for different branches of engineering.

UNIT 1

DIFFERENTIAL AND INTEGRAL CALCULUS

[9 Hours]

List of standard derivatives including hyperbolic functions, rules of differentiation. Taylor's and Maclaurin's series expansion for functions of single variable. List of standard integrals, integration by parts. Definite integrals – problems. (7L+2T)

UNIT 2

POLAR COORDINATES AND PARTIAL DERIVATIVES

[10 Hours]

Polar curves: Polar coordinates, angle between radius vector and tangent, angle between two polar curves. Partial differentiation. Total differentiation-Composite and Implicit functions. Jacobians and their properties (without proof) – Problems. (7L+3T)

UNIT 3

VECTOR CALCULUS AND ORTHOGONAL CURVILINEAR COORDINATES [10 Hours]

Recapitulation of scalars, vectors and operation on scalars and vectors. Scalar and vector point functions. Del operator, gradient-directional derivative, divergence, curl and Laplacian operator. Vector identities (without proof). Cylindrical and Spherical polar coordinate systems. Expressing a vector point function in cylindrical and spherical systems. Expressions for gradient, divergence, curl and Laplacian in orthogonal curvilinear coordinates. (7L+3T)

UNIT 4

FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

[9 Hours]

Introduction to first order differential equations. Linear equation and its solution. Bernoulli's equation and its solution. Exact differential equation and its solution. Orthogonal Trajectories.

(7L+2T)

UNIT 5

SECOND AND HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS [10 Hours]

Ordinary differential equations with constant coefficients: Homogeneous differential equations, non-homogeneous differential equations – Particular integral for functions of the type $f(x) = e^{ax}$, $\sin(ax)$, $\cos(ax)$, x^n , method of variation of parameters, Cauchy's and Legendre linear differential equations.

(8L+2T)

B.M.S. COLLEGE OF ENGINEERING, BENGALURU-19

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF MATHEMATICS

On completion of the course, students will have the ability to:

Course Code	CO#	COURSE OUTCOME (CO)	
19MA3IMMAT	CO 1	Understand the basic concepts of differentiation and integration.	
	CO 2	Apply the concepts of polar curves and multivariate calculus.	
	CO 3	Apply analytical techniques to compute solutions of first and higher order ordinary differential equations.	1
	CO 4	O 4 Apply techniques of vector calculus to engineering problems.	
		Comprehend the generalization of vector calculus in curvilinear	
		coordinate system.	

Text Book:

- 1. Higher Engineering Mathematics, B. S. Grewal, 43rd edition, 2014, Khanna Publishers
- 2. Advanced Engineering Mathematics, 4th edition, 2011, by Dennis G. Zill and Cullen, Jones and Bartlett India Pvt. Ltd.

Reference Book:

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Precise Textbook series, Vol. 1 and Vol. 2, 10th edition, 2014, Wiley-India.
- 2. Higher Engineering Mathematics, B. V. Ramana, 2007, Tata McGraw Hill.

E books and online course materials:

- 1. Engineering Mathematics, K. A. Stroud, Dexter J. Booth, Industrial Press, 2001
- 2. http://books.google.co.in/books/about/Engineering_Mathematics.html?id=FZncL-xB8dEC&redir esc=y.
- 3. Advanced Engineering Mathematics, P. V. O'Neil, 5th Indian reprint, 2009, Cengage learning India Pvt. Ltd.
- 4. http://ocw.mit.edu/courses/mathematics/ (online course material)

Online Courses:

- 1. https://www.khanacademy.org/Math
- 2. https://www.class-central.com/subject/math (MOOCS)
