12. Выражение НОД через исходные многочлены.

Алгоритм Евклида поиска НОД

Пусть
$$f(x),g(x)\in F[x],g(x)
eq 0$$
 и $f(x)=q_1(x)g(x)+r_1(x),g(x)=q_2(x)r_1(x)+r_2(x).$

Поделим с остатком f(x) на g(x). Пусть r_1 - остаток. Тогда поделим g(x) на r_1 с остатком r_2 . Теперь поделим r_1 на r_2 с остатком r_3 , и так далее. Алгоритм продолжается, пока мы не получим нулевой остаток. Последний ненулевой остаток r_k - и есть НОД f(x) и g(x).

То, что алгоритм завершится за конечное число шагов следует из того, что на каждом шаге степени остатков уменьшаются \implies на каком-то шаге получится нулевой остаток.

Под словом "выразить" в этом контексте имеется в виду представление наибольшего общего делителя в виде d(x) = f(x)u(x) + g(x)v(x), где u(x) и v(x) -- какие-то многочлены. Их требуется найти, чтобы выполнялось указанное равенство. Есть теорема, что для НОД оно будет выполнено при удачном выборе множителей.

Одним из способов решить эту задачу является метод неопределённых коэффициентов. Пусть степени f и g равны m и n. Тогда u и v подбираются в виде выражений степени n-1 и m-1 с буквенными коэффициентами. После раскрытия скобок и приравнивания коэффициентов при одинаковых степенях у многочленов в левой и правой части получится система из m+n линейных уравнений от такого же количества неизвестных. Этот метод очень часто бывает удобен, но здесь лучше поступить по-другому.

Алгоритм Евклида в общем виде устроен так. Сначала делим f_1 на f_2 , получая остаток f_3 . Затем делим f_2 на f_3 , обозначая остаток через f_4 . И так далее, пока не окажется, что f_{n-1} нацело разделилось на f_n . Тогда f_n и будет являться НОД.

Теперь, идя по записям снизу вверх, мы сначала выражаем f_n через f_{n-1} и f_{n-2} . Это легко сделать, так как f_n появилось как остаток от деления f_{n-2} на f_{n-1} . Далее мы можем по такому же принципу выразить f_{n-1} через f_{n-2} и f_{n-3} . Подставляя это выражение в предыдущую формулу, мы сможем избавиться от f_{n-1} , после чего f_n окажется выраженным уже через f_{n-2} и f_{n-3} . Далее идём вверх по такому же принципу, и итогом будет выражение f_n через f_1 и f_2 , что нам и требуется.

Для примера: пусть $f_1=f_2q_1+f_3$, $f_2=f_3q_2+f_4$, $f_3=f_4q_3$. Тогда НОД равен f_4 , и мы его выражаем как $f_4=f_2-f_3q_3=f_2-(f_1-f_2q_2)q_3$, и далее после упрощений получается выражение вида f_1u+f_2v .