Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № *labnum*

name of your labwork

Автор:

your name *groupname*

Долгопрудный, 2021

1 Подготовка.

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, индуктивность, осциллограф, измеритель LCR.

Цель работы: исследование зависимости периода свободных колебаний контура от емкости, зависимость логарифмического декремента затухания от сопротивления, определить критическое сопротивление и добротность контура, пронаблюдать затухающие колебания на фазовой плоскости.

Схема установки.

Рис. 1: Схема установки для исследования свободных колебаний

Расчетные формулы.

Период колебательного контура.

$$T = 2\pi\sqrt{LC} \tag{1}$$

Частота колебательного контура.

$$\nu_0 = \frac{1}{2\pi\sqrt{LC}}\tag{2}$$

Критическое сопротивление.

$$R_{\rm kp} = 2\sqrt{\frac{L}{C}} \tag{3}$$

Логарифмический декремент затухания.

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}} \tag{4}$$

Добротность.

$$Q = 2\pi \frac{W}{\Delta W_T} = \frac{W}{\Delta W} = \frac{\pi}{\gamma T} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{L}{C}}$$
 (5)

2 Обработка данных.

Экспериментальным путем измерили период колебаний, при R=0 T=340 мкс; тогда частота колебаний составляет $\nu\approx 2941.18Hz\approx 3$ к Γ ц.

Используя формулу Томсона, вычислим индуктивность

$$T = 2\pi\sqrt{LC} \Rightarrow L = \frac{1}{C}\left(\frac{T}{2\pi}\right)^2 = \frac{1}{2\cdot 10^{-8}} \frac{3.4^2\cdot 10^{-8}}{4\pi^2} \approx 146.55 \text{ м}$$
Гн

Измерим индуктивность при помощи прибора TETPOH-RLC200. Полученное значение – $L=143.47~\mathrm{mFh}$.

Примем расчетную погрешность 4%; погрешность вычисления индуктивности ($\pm 5.74 \text{ м}\Gamma\text{н}$).

Вывод: Таким образом, приходим к выводу, что полученные значения совпадают в пределах погрешности.

Измерим зависимость $T^2(C)$; построим график данной зависимости.

$C (10^{-2} \text{ мк}\Phi)$			4	7	9
$T^2 (10^3 \text{ MKc}^2)$	57.6	115.6	230.4	409.6	518.4

По графику проверим справедливость формулы Томсона.

Вывод: график $T^2(C)$ представляет собой линейную зависимость, таким образом, приходим к выводу о справедливости формулы Томсона.

Измерим зависимость логарифмического декремента затухания от сопротивления.

Вычислим теоретическое значение критического сопротивления.

$$R_{\text{kp}} = 2\sqrt{\frac{L}{C}} = 2\sqrt{\frac{143.47 \cdot 10^{-3}}{2 \cdot 10^{-8}}} \approx 5356.680 \text{M}$$

$$\theta = \gamma T = \frac{R}{2L} 2\pi \sqrt{LC} = R\pi \sqrt{\frac{C}{L}} = \frac{2\pi}{R_{\text{kp}}} R$$
(6)

$$R = R_{\text{внеш}} + R_{\text{внутр}} \tag{7}$$

$R_{\text{внеш}}$, Ом	n	U_1/U_n	θ	Q
0	23	2	0.03	104.6
2	21	2	0.033	95.15
4	20	2	0.034	92.35
6	19	2	0.036	87.22
8	17	2	0.041	76.59
10	25	3	0.044	71.36
12	24	3	0.046	68.26
15	28	4	0.049	64.08

$$\theta = \frac{2\pi}{R_{\text{kp}}} R_{\text{внеш}} + \frac{2\pi}{R_{\text{kp}}} R_{\text{внутр}} \tag{8}$$

Построим график зависимости $\theta(R)$ и выразим $R_{\text{внеш}}$ $R_{\text{внутр}}$.

$$\frac{2\pi}{R_{\rm kp}} = 0.0013 \Rightarrow R_{\rm kp} \approx 4830.77 \text{ Om}$$

$$\frac{2\pi}{R_{\text{кр}}}R_{\text{внутр}} = 0.029 \Rightarrow R_{\text{внутр}} \approx 22.31 \text{ Om}$$

Вывод: таким образом, с помощью графика зависимости $\theta(R)$ мы нашли значения внутреннего и критического сопротивления.

Вычислим логарифмический декремент затухания по фазовой диаграмме.

Вычисления выполним по формуле:

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$$

$$300 \text{ Om: } \theta = \frac{1}{4} \ln \frac{14}{3} \approx 0.39$$

$$1 \text{ kOm: } \theta = \ln \frac{6}{2} \approx 1.09$$

Рис. 2: Колебания на фазовой диаграмме ${
m R}=300~{
m Om}$

Рис. 3: Колебания на фазовой диаграмме ${\rm R}=1~{\rm кOm}$