

Lösungen zu den Aufgaben in Kapitel 16

1. Tragen Sie die *x*-Werte und die *y*-Werte aus Tabelle 16.1 mittels eines Tabellenkalkulationsprogramms oder eines Statistikprogramms in eine Datei ein und berechnen Sie anhand der Regressionsgleichung F 16.3 die \hat{y} -Werte sowie die Residualwerte ($e_i = y_i - \hat{y}_i$)! Überprüfen Sie das Ergebnis anhand der Werte in Tabelle 16.1.

Die korrekten Werte finden sich in Tabelle 16.1

2. Berechnen Sie mit Hilfe der Korrelationsprozedur des verwendeten Programms die Produkt-Moment-Korrelationen zwischen der unabhängigen Variable X, der abhängigen Variable \hat{Y} , der Variable \hat{Y} der vorhergesagten Werte und der Residualvariablen E. Vergleichen Sie die Korrelationen und erklären Sie das Ergebnis.

Es ergeben sich folgende Korrelationen:

- ▶ Die Korrelation $r_{XY} = 0.88$ haben wir bereits im Text besprochen, sie zeigt einen hohen positivlinearen Zusammenhang zwischen beiden Variablen an.
- ▶ Die Korrelation $r_{X\hat{Y}} = 1,00$ zeigt an, dass die vorhergesagten \hat{y} -Werte perfekt-linear von den Werten der unabhängigen Variablen X abhängen. Dies geht in der einfachen linearen Regression gar nicht anders. Die Korrelation $r_{X\hat{Y}}$ muss immer 1 sind, das ist eine Implikation des Modells, die immer wahr ist.
- ▶ Die Korrelation $r_{XE} = 0.00$ zeigt dass die Residualwerte und die Werte der unabhängigen Variablen in der Regressionsanalyse immer unkorreliert sind, die Residualwerte repräsentieren den Teil von Y, der nicht aufgrund von X in einer linearen Regression vorhersagbar ist.
- ▶ Die Korrelation $r_{\hat{Y}\hat{Y}} = 0.88$ ist gleich der Korrelation r_{XY} . Auch dies muss in der einfachen linearen Regression immer so sein, da \hat{Y} und X lineare Transformationen voneinander sind und die lineare Transformation einer Variablen die Produkt-Moment-Korrelation nicht ändert. Das Quadrat der Korrelation $r_{\hat{Y}\hat{Y}}$ ist daher immer gleich dem Determinationskoeffizienten: $r_{\hat{Y}\hat{Y}}^2 = R^2$.
- ▶ Die Korrelation $r_{YE} = 0,48$ zeigt an, dass die X-Variable nicht alle Unterschiede in Y erklären kann und ein Teil der Unterschiede in Y Residualunterschiede widerspiegelt. Diese Korrelation muss immer positiv sein, da größere y-Werte immer größere Residualwerte haben. Darüber hinaus ist das Quadrat dieser Korrelation gleich dem Indeterminationskoeffizienten und somit immer gleich $1 r_{YY}^2$: $r_{YE}^2 = 1 r_{YY}^2$.
- ▶ Die Korrelation $r_{\hat{YE}}$ muss immer 0 sein: $r_{\hat{YE}} = 0$. Die Residualvariable ist mit der unabhängigen Variablen unkorreliert und da die vorhergesagten Werte lineare Transformationen der Werte der unabhängigen Variablen ist, kann die Residualvariable auch nicht mit \hat{Y} korreliert sein.
- 3. Zeigen Sie dass aus Formel F 16.14 und F 16.18b folgt: $1-R^2=(1-r_{xy}^2)$ und $R^2=r_{xy}^2$.

Durch Umformen erhält man aus $s_E = s_Y \sqrt{1 - r_{XY}^2}$ den Ausdruck $\frac{s_E}{s_Y} = \sqrt{1 - r_{XY}^2}$ und durch Quadrieren:

 $\frac{s_E^2}{s_Y^2} = 1 - r_{XY}^2 = 1 - R^2$. Subtrahiert man von beiden Seiten den Wert 1 und multipliziert man mit (-1) erhält man $r_{XY}^2 = R^2$.