Práctica 1: Representación de la información Números enteros

Organización del Computador I DC - UBA

Verano 2018

Cada número se puede representar de varias maneras.

Por ejemplo: el vigésimo elemento de los números naturales sin el cero.

▶ Si se escribiese en la antigua Roma hubiese sido:

Cada número se puede representar de varias maneras.

Por ejemplo: el vigésimo elemento de los números naturales sin el cero.

▶ Si se escribiese en la antigua Roma hubiese sido:

Si se escribiese acá mismo, sería:

Cada número se puede representar de varias maneras.

Por ejemplo: el vigésimo elemento de los números naturales sin el cero.

Si se escribiese en la antigua Roma hubiese sido:

XX

Si se escribiese acá mismo, sería:

20

Aunque... también podría haber sido:

Cada número se puede representar de varias maneras.

Por ejemplo: el vigésimo elemento de los números naturales sin el cero.

Si se escribiese en la antigua Roma hubiese sido:

XX

Si se escribiese acá mismo, sería:

20

Aunque... también podría haber sido:

10100

Sistemas no posicionales: Los porotos

Para representar un número natural podemos usar:

En este caso, representan el número 27.

¿Importa el orden de los porotos?

Sistemas no posicionales: Tanteando en el truco

Cuando jugamos al truco, anotamos los puntos de una manera particular:

Aquí vemos que un equipo tiene 11 puntos y el otro 6.

¿Importa el orden de los palitos? Sólo los juntamos para contar más rápido...

Sistemas posicionales: Sistema decimal

Un sistema decimal utiliza un conjunto que tiene 10 símbolos. Usualmente utilizamos estos:

¿Qué número representa la siguiente tira de símbolos?

Sistemas posicionales: Sistema decimal

Un sistema decimal utiliza un conjunto que tiene 10 símbolos. Usualmente utilizamos estos:

¿Qué número representa la siguiente tira de símbolos?

478
$$_{$$
 $_{$
Podría ser 4 + 7 + 8 = diecinueve?

► El sistema *decimal* utiliza un conjunto de 10 símbolos para representar los números.

- ► El sistema *decimal* utiliza un conjunto de 10 símbolos para representar los números.
- Así, en cada numeral, la posición de cada símbolo está relacionada con una potencia de 10.

- ► El sistema *decimal* utiliza un conjunto de 10 símbolos para representar los números.
- Así, en cada numeral, la posición de cada símbolo está relacionada con una potencia de 10.

¿Y si en vez de diez símbolos tuviéramos otra cantidad?

- ► El sistema *decimal* utiliza un conjunto de 10 símbolos para representar los números.
- Así, en cada numeral, la posición de cada símbolo está relacionada con una potencia de 10.

¿Y si en vez de diez símbolos tuviéramos otra cantidad?

A esa cantidad la llamamos base

Representaciones e interpretaciones de números.

¿Qué números pueden representar las siguientes cadenas?
 10
 478
 2011
 ORGA1

Representaciones e interpretaciones de números.

¿Qué números pueden representar las siguientes cadenas?
 478
 2011
 ORGA1

▶ Dada la representación de un número, ¿puedo saber qué base se está utilizando?

Bases.

- ► En base 2, usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101, 110...
- ► En base 3, usamos los símbolos 0, 1 y 2 y escribimos los naturales: 0, 1, 2, 10, 11, 12, 20...
- ...y así...

Bases más comunes

Base	Símbolos usados		
2 (binario)	0, 1		
8 (octal)	0, 1, 2, 3, 4, 5, 6, 7		
10 (decimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9		
16 (hexadecimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F		

Bases.

- ► En base 2, usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101, 110...
- ► En base 3, usamos los símbolos 0, 1 y 2 y escribimos los naturales: 0, 1, 2, 10, 11, 12, 20...
- ...y así...

Bases más comunes

Base	Símbolos usados	
2 (binario)	0, 1	
8 (octal)	0, 1, 2, 3, 4, 5, 6, 7	
10 (decimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	
16 (hexadecimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F	

¿Es posible cambiar un número de una base a otra?

Bases.

- ► En base 2, usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101, 110...
- ► En base 3, usamos los símbolos 0, 1 y 2 y escribimos los naturales: 0, 1, 2, 10, 11, 12, 20...
- ...y así...

Bases más comunes

Base	Símbolos usados	
2 (binario)	0, 1	
8 (octal)	0, 1, 2, 3, 4, 5, 6, 7	
10 (decimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	
16 (hexadecimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F	

¿Es posible cambiar un número de una base a otra? ¿Cómo escribirían un programa que lo haga?

Cambios de bases: Teorema de la división.

Teorema

Sean $a \in \mathbb{Z}$ y $b \in \mathbb{N}$. Existen $q, r \in \mathbb{Z}$ con $0 \le r < b$ tales que $a = b \times q + r$ Además, q y r son únicos. Cambios de bases: Teorema de la división.

Teorema

Sean $a \in \mathbb{Z}$ y $b \in \mathbb{N}$. Existen $q, r \in \mathbb{Z}$ con $0 \le r < b$ tales que $a = b \times q + r$ Además, q y r son únicos.

Ejercitación

Escribir los siguientes números en binario, octal y hexadecimal.

- diez
- quinientos doce

Sumando...

En base 3	
2 1 2	
+ 101	
1020	

Multiplicando...

En base 3

$$\begin{array}{r}
 12 \\
 \times 21 \\
\hline
 12 \\
 \hline
 101 - \\
\hline
 1022
\end{array}$$

Tiras de símbolos

Si sólo podemos escribir tiras de símbolos de longitud fija:

- ¿cuántos números podemos representar?
- ▶ ¿de qué depende?

Tiras de símbolos

Si sólo podemos escribir tiras de símbolos de longitud fija:

- ¿cuántos números podemos representar?
- ▶ ¿de qué depende?

	i

Al operar con precisión fija, podemos tener **overflow** Ocurre overflow cuando el resultado de una operación necesita una tira de símbolos más grande que la disponible

Hasta aca: números naturales

Por ahora sabemos...

- Leer naturales
- Escribir naturales
- Cambiarlos de base
- Operar con naturales (sumarlos, multiplicarlos)

¿Y qué hacemos con los enteros?

► Sin signo

Sin signo solo sirve para positivos.

- Sin signo solo sirve para positivos.
- ► Signo + Magnitud

- Sin signo solo sirve para positivos.
- Signo + Magnitud
 se usa un bit para indicar el signo

- Sin signo solo sirve para positivos.
- Signo + Magnitud
 se usa un bit para indicar el signo
- ► Complemento a 2

- Sin signo solo sirve para positivos.
- Signo + Magnitud
 se usa un bit para indicar el signo
- ► Complemento a 2 los positivos se representan igual, un número negativo n como $2^k + n$

- Sin signo solo sirve para positivos.
- Signo + Magnitud
 se usa un bit para indicar el signo
- ► Complemento a 2 los positivos se representan igual, un número negativo n como $2^k + n$
- Exceso m

- Sin signo solo sirve para positivos.
- Signo + Magnitud
 se usa un bit para indicar el signo
- ► Complemento a 2 los positivos se representan igual, un número negativo n como $2^k + n$
- Exceso m represento n como m + n

Codificando...

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	?		
-2			
-8			

Codificando...

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011		
-2			
-8			

Codificando...

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	?	
-2			
-8			

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	
-2			
-8			

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	?
-2			
-8			

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2			
-8			

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	?		
-8			

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	1010		
-8			

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	1010	?	
-8			

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	1010	1110	
-8			

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	1010	1110	?
-8			

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	1010	1110	1101
-8			

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	1010	1110	1101
-8	?		

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	1010	1110	1101
-8	OVERFLOW		

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	1010	1110	1101
-8	OVERFLOW	?	

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	1010	1110	1101
-8	OVERFLOW	1000	

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	1010	1110	1101
-8	OVERFLOW	1000	?

En base 2, numerales de 4 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	OVERFLOW
-2	1010	1110	1101
-8	OVERFLOW	1000	0111

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	?		
-2			
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011		
-2			
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	?	
-2			
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	
-2			
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	?
-2			
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2			
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	?		
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010		
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	?	
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	?
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	0000 1101
-8			

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	0000 1101
-8	?		

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	0000 1101
-8	1000 1000		

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	0000 1101
-8	1000 1000	?	

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	0000 1101
-8	1000 1000	1111 1000	

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	0000 1101
-8	1000 1000	1111 1000	?

En base 2, numerales de 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	0000 1101
-8	1000 1000	1111 1000	0000 0111

Similitudes entre 4 y 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	0000 1101
-8	1000 1000	1111 1000	0000 0111

Similitudes entre 4 y 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	0000 1101
-8	1000 1000	1111 1000	0000 0111

Extendiendo la cantidad de bits de precisión:

- Signo + Magnitud: Se extiende con 0's, pero el bit más significativo se mantiene indicando el signo.
- Complemento a 2: Se extiende con el valor del bit más significativo.
- Complemento a m: Se extiende siempre con 0's.

Resumiendo: Codificando números enteros en numerales binarios

Sin Signo

Solo sirve para los positivos. numeral \rightarrow número que representa

$1111 \rightarrow 15_{10}$	$0111 \rightarrow 7_{10}$
$1110 \rightarrow 14_{10}$	$0110 \rightarrow 6_{10}$
$1101 \rightarrow 13_{10}$	$0101 \rightarrow 5_{10}$
$1100 \rightarrow 12_{10}$	$0100 \rightarrow 4_{10}$
$1011 \rightarrow 11_{10}$	$0011 \rightarrow 3_{10}$
$1010 \rightarrow 10_{10}$	$0010 \rightarrow 2_{10}$
$1001 \rightarrow \ 9_{10}$	$0001 \rightarrow 1_{10}$
$1000 \rightarrow~8_{10}$	$0000 \rightarrow 0_{10}$

Para los numerales de 4 bits.

Resumiendo: Codificando números enteros en numerales binarios

 ${\sf Signo+Magnitud}$

El primer bit es el signo, los demás son el significado (la magnitud del número en valor absoluto).
numeral \rightarrow número que representa

$\textcolor{red}{0111} \rightarrow 7_{10}$
${\color{red}0110} \rightarrow 6_{10}$
$\textcolor{red}{0101} \rightarrow 5_{10}$
${\color{red}0100} \rightarrow 4_{10}$
$\textcolor{red}{0011} \rightarrow 3_{10}$
$\textcolor{red}{0010} \rightarrow 2_{10}$
$\textcolor{red}{0001} \rightarrow 1_{10}$
${\color{red}0000} \rightarrow 0_{10}$

Para los numerales de 4 bits.

Resumiendo: Codificando números enteros en numerales binarios

Complemento a dos

Los numerales que representa positivos son iguales a los anteriores Para los negativos, dado un n negativo se representan escribiendo $2^k + n$ en notación sin signo

cuentas o numeral o número que representa

$$\begin{array}{llll} 2^4 + (-1) = 15 \rightarrow & 1111 \rightarrow -1_{10} & 0111 \rightarrow 7_{10} \\ 2^4 + (-2) = 14 \rightarrow & 1110 \rightarrow -2_{10} & 0110 \rightarrow 6_{10} \\ 2^4 + (-3) = 13 \rightarrow & 1101 \rightarrow -3_{10} & 0101 \rightarrow 5_{10} \\ 2^4 + (-4) = 12 \rightarrow & 1100 \rightarrow -4_{10} & 0100 \rightarrow 4_{10} \\ 2^4 + (-5) = 11 \rightarrow & 1011 \rightarrow -5_{10} & 0011 \rightarrow 3_{10} \\ 2^4 + (-6) = 10 \rightarrow & 1010 \rightarrow -6_{10} & 0010 \rightarrow 2_{10} \\ 2^4 + (-7) = 9 \rightarrow & 1001 \rightarrow -7_{10} & 0001 \rightarrow 1_{10} \\ 2^4 + (-8) = 8 \rightarrow & 1000 \rightarrow -8_{10} & 0000 \rightarrow 0_{10} \end{array}$$

Para los numerales de 4 bits.

Codificando números enteros en numerales binarios

Exceso a m

El número n se representa como m+n cuentas \rightarrow numeral \rightarrow número que representa

Para los numerales de 4 bits en exceso 5.

Mañana

- ► Codificación de números con coma
- ► Codificación de caracteres