

Electrolytic Hydrogen Production Workshop, National Renewable Energy Laboratory, Golden, Colorado, Feb 27-28, 2014

Current Initiatives for Electrolytic H₂ Production at HySA Infrastructure

Dmitri Bessarabov
DST HySA Infrastructure Center of
Competence, NWU/CSIR
http://www.hysainfrastructure.org/

South African Energy Profile

*CR&W: Combustible Renewable

and Waste

Source: International Energy

Agency (IEA)

- Coal supplies ~75 % of South Africa's primary energy and 90 % of its electricity requirements
- Domestic consumption of coal amounts to ~171 million tons (~ 100 mt for electricity and ~ 70 mt for synfuels) and ~69 million tons is exported (annually)
 - RSA has energy intensive economy
 - RSA has a large SO₂/CO₂ footprint
 - RSA's CO₂ footprint per capita ranks among the top 12 in the world
 - Large SO₂ footprint

Solar Energy Potential in South Africa

In SA:

❖ AVERAGE: 4.5 − 5

kWh/m²/day

❖1 kW/m² for a 5.5

hour day

❖245 GW capacity

♦834 TWh @ 39 %

capacity factor

More reading: Thomas P. Fluri – nominal capacity for CSP in South Africa is 547.6GW, Energy Policy, v 37, Issue 12, December 2009, 5075–5080

South Africa is the dominant PGM supplier

PGM Supply by region

Strategic Goals

- Develop local cost competitive hydrogen generation solution based on renewable resources
- Wealth creation through value added manufacturing of PGM catalysis, goal- supply 25% of PGM catalysts demand by 2020
- Promote equity and inclusion in the economic benefits of South Africa's resources, SMEs to play an important role

From: Dr Phil Mjwara, DG-DST: "Vision 2030: Hydrogen and Fuel Cells in SA", IPHE Meeting, Cape Town, 03 May 2012

PEM Electrolysers: Development strategy

Why PEM electrolysers?

- 1. High PGM content as platform for beneficiation.
- PEM electrolysers are robust and dynamic: fast response to volatile renewable energy sources.
- 3. Can generate practical high discharge H₂ pressure.
- 4. Dynamic profile of H₂ production rate meeting various requirements.
- 5. Large-scale: addressing demand for energy storage.

Presented by the author at F-Cell, 2012, Stuttgart

PEM Electrolysers: Gen 1 high-level TDM targets (2012/13) (Gen 2 high-level targets are under review)

Category	Parameter	Unit	SOTA	Gen 1 HySA targets	Comments
	H2 production costs	\$/kg	0.9-10	0.9-3	1
Cost	Capital investment	\$/kg-H2 over operating life	0.6	0.3	2
	Operating life	hrs	10,000-20,000	50,000 - 100,000	3
Durability	Operating cycle	Energise/deenergise cycles	5800	>17000	4
	H2 production rate	kg H2/hr		0-10	5
	Power	Kw		0-500	
Performance	Energy efficiency (enthalpic)	%	80% at 1 A/cm2	80% at 2-3 A/cm2	6
	H2 compressed pressure	bar	15-50	250	7
Operating Conditions	Operating Cell Temparature	Deg C	50-90	60-80	8
	Operating current density	A/cm2		>3	9
	Voltage	V/cell	1.8/cell	1.65/cell	
PGM loading	Anode/Cathode total PGM loading	mg/cm2	2 to 5	0.3	10

- 1. Energy cost (strongly depends on electricity price in $\$ /kWh). $\$ /gge : gallon gasoline equivalent $\$ 1 kg H2
- 2. Dependent on design and capacity. 3. Need to specify stationary or transient operations (e.g., linked to renewables).
- 4. Shut-down at least 4 times/day when system fully charged. 5. Dispensing volume in range practical for target application
- 6. Enthalpic efficiency, HHV, PGM catalysts. 7. Development of advanced seals required.
- 8. Membrane integrity and high T requires development.
- 9. Trade of with efficiency, production rate, manufacturing cost and life time. Dictate product size.
- 10. Trade of with costs, efficiency, durability

International Team Contribution 2012

Conclusions

Fuel Cells and associated H₂ Infrastructure represent a new market which could drive growth for platinum as well as spark significant new opportunities internationally and locally in SA.

- ❖ HySA depends on Government funding so far.
- ❖ Benefits of developing H₂ infrastructure and fuel cell market in SA:
 - Means of meeting increasing demand for energy,
 - Reduction of carbon footprint,
 - Platform for mineral beneficiation,
 - Opportunity for job creation,
 - Export opportunities,
 - Increase demand for platinum group metals.
- ❖Power-to-Gas is a new complex technology that uses renewable H2 and could become fastest growing technology utilizing electrolytic hydrogen, thus significantly increasing demand for large electrolyzes.

