

ESCOLA DE ENGENHARIA DE VOLTA REDONDA (EEIMVR-UFF) Departamento de Ciências Exatas (VCE)

Verificação de Recuperação (VR) - 2019/2

Disciplina:	Equações Diferenciais Ordinárias (EDOs)	Data: 06 / 12 / 2019	Folhas	NOTA
Professor:	Yoisell Rodríguez Núñez			
Aluno(a):				

- 1. (1,50 pontos) Determine a solução geral da EDO: $ydx + (2xy e^{-2y})dy = 0$
- 2. (1,50 pontos) **Resolva** a EDO: $\frac{dy}{dx} + \frac{y}{x} = \cos(x) + \frac{\sin(x)}{x}$
- 3. (1,50 pontos) Encontre a solução da EDO: $\frac{dy}{dx} + xy = x^3y^3$
- 4. (1,50 pontos)* Calcule a solução do PVI:

$$\begin{cases} y'' + y' - 2y = 5e^{-t} \operatorname{sen}(2t) \\ y(0) = 1, \\ y'(0) = 0 \end{cases}$$

- a) Usando as ferramentas sobre EDOs de 2^a ordem linear não-homogêneas e com coeficientes constantes (estudadas na primeira parte do curso).
- b) Via transformada de Laplace.

Dica:

$$\frac{1}{(s-1)(s+2)} \left[\frac{10}{(s+1)^2+4} + s + 1 \right] \ = \ \frac{13}{12(s-1)} - \frac{1}{3(s+2)} + \frac{1}{4} \left[\frac{s+1}{(s+1)^2+4} \right] - \frac{3}{4} \left[\frac{2}{(s+1)^2+4} \right]$$

5. (2,00 pontos) Calcule a transformada inversa de Laplace da função:

a)
$$\frac{2(s-1)e^{-2s}}{s^2-2s+2}$$

b)
$$\frac{3s+12}{s^2+8s+17}$$

6. (2,00 pontos) Encontre a solução geral para o seguinte sistema de EDOs homogêneo:

$$\begin{cases} x_1' = 4x_1 - 2x_2, \\ x_2' = x_1 + x_2 \end{cases}$$

Observações:

- o * Na questão 4, faça apenas um dos itens (a) ou b))
- o As demais questões são de resolução obrigatória.
- o Todas **as respostas devem ser justificadas**, isto é, acompanhadas dos argumentos e/ou cálculos usados para obtê-las.

Laplace transforms - Table					
$f(t) = L^{-1}{F(s)}$	F (s)	$f(t) = L^{-1}\{F(s)\}$	F (s)		
$a t \ge 0$	$\frac{a}{s}$ $s > 0$	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$		
at $t \ge 0$	$\frac{a}{s^2}$	cosωt	$\frac{s}{s^2 + \omega^2}$		
e ^{-at}	$\frac{1}{s+a}$	$\sin(\omega t + \theta)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$		
te ^{-at}	$\frac{1}{(s+a)^2}$	$\cos(\omega t + \theta)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$		
$\frac{1}{2}t^2e^{-at}$	$\frac{1}{(s+a)^3}$	t sin ωt	$\frac{2\omega s}{(s^2 + \omega^2)^2}$		
$\frac{1}{(n-1)!}t^{n-1}e^{-at}$	$\frac{1}{(s+a)^n}$	tcosωt	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$		
e ^{at}	$\frac{1}{s-a} \qquad s > a$	sinh ωt	$\frac{\omega}{s^2 - \omega^2} \qquad s > \omega $		
te ^{at}	$\frac{1}{(s-a)^2}$	$\cosh \omega t$	$\frac{s}{s^2 - \omega^2} \qquad s > \omega $		
$\frac{1}{b-a}\left(e^{-at}-e^{-bt}\right)$	$\frac{1}{(s+a)(s+b)}$	e ^{-at} sin ωt	$\frac{\omega}{(s+a)^2+\omega^2}$		
$\frac{1}{a^2}[1-e^{-at}(1+at)]$	$\frac{1}{s(s+a)^2}$	e ^{-at} cosωt	$\frac{s+a}{(s+a)^2+\omega^2}$		
t ⁿ	$\frac{n!}{s^{n+1}}$ $n = 1,2,3$	e ^{at} sin ωt	$\frac{\omega}{(s-a)^2+\omega^2}$		
t ⁿ e ^{at}	$\frac{n!}{(s-a)^{n+1}} s > a$	e ^{at} cos ωt	$\frac{s-a}{(s-a)^2+\omega^2}$		
t ⁿ e ^{-at}	$\frac{n!}{(s+a)^{n+1}} s > a$	$1-e^{-at}$	$\frac{a}{s(s+a)}$		
\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{3/2}}$	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$		
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$ $s > 0$	$f(t-t_1)$	$e^{-t_1s}F(s)$		
$g(t) \cdot p(t)$	$G(s) \cdot P(s)$	$f_1(t) \pm f_2(t)$	$F_1(s) \pm F_2(s)$		
$\int f(t)dt$	$\frac{F(s)}{s} + \frac{f^{-1}(0)}{s}$	$\delta(t)$ unit impulse	1 all s		
$\frac{df}{dt}$	sF(s)-f(0)	$\frac{d^2f}{df^2}$	$s^2F(s) - sf(0) - f'(0)$		
$\frac{d^n f}{dt^n}$	$\frac{d^n f}{dt^n} \qquad s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - s^{n-3} f''(0) - \dots - f^{n-1}(0)$				