

Um estudo sobre metódos simpléticos

Solução Númerica do problema dos n-corpos Gil Sales M. Neto

Trabalho Final de ANEDO

O Problema dos N-Corpos

- O problema dos dois, três ou n-corpos é um problema de mecânica clássica que modela o movimento de n partículas que interagem entre com uma força gravitacional.
- O movimento é calculado utilizando as Leis de Movimento de Newton, e a Lei da Gravitação Universal de Newton.
- Há atualmente aproximadamente 1800 satélites artificais orbitando a Terra.

One Equation to rule them all

One Equation to find them all

A segunda lei de Newton

$$F = ma$$

A Lei da Gravitação Universal

$$F = G \cdot \frac{m_1 m_2}{r^2}$$

The One Differential equation

$$m_1 a = G \cdot \frac{m_1 m_2}{r^2} \implies \ddot{r} = G \cdot \frac{m_2}{\|r\|^2}$$

Redução de ordem da EDO e sistema de Equações

A equação diferencial

$$\ddot{r}_i = G \cdot \sum_{j=0}^n \frac{m_j}{\|r_{i,j}\|^2}$$

Reduzindo a um sistema de equações

$$\begin{cases} \frac{\mathrm{d}r_i}{\mathrm{d}t} = \mathsf{v}_i \\ \frac{\mathrm{d}\mathsf{v}_i}{\mathrm{d}t} = \mathsf{G} \cdot \sum_{j=0}^n \frac{m_j}{\|r_{i,j}\|^2} \end{cases}$$

E resolvendo esse sistema de equações podemos determinar a posição do corpo *i*

As leis físicas que regem o movimento dos planetas As 3 leis de Kepler

- Planetas se movem ao redor do Sol em órbitas Elipticas, com o Sol em um dos focos
- Um planeta varre a mesma área em um mesmo período de tempo
- Os quadrados dos períodos de revolução dos planetas são diretamente proporcionais aos cubos dos raios médios de suas órbitas

As leis físicas que regem o movimento dos planetas

Hamiltoniano e Momento Angular

•
$$U = G \sum_{i,j}^{n} \frac{m_i m_j}{\|q_i - q_j\|}$$
, Self Potential Energy
• $p_i = m_i \dot{q}_i$ Momento Linear
• $H = \sum_{i=1}^{n} \frac{\|p_i\|^2}{2m_i} - U$, Hamiltoniano
• $L = q \times p$, Momento Angular
• $\|L\| = \sqrt{\|q\|^2 \|p\|^2 (\sin(\theta))^2} = \sqrt{\|q\|^2 \|p\|^2 - (q, p)^2}$

Discretização da EDO

O Metódo de Euler

Podemos discretizar a nossa equação diferencial com base no metódo de Euler, que é um metódo de passo explicito.

A discretização é feita com a expansão em Série de Taylor das equações diferenciais

$$\begin{cases} r_{t+1} = r_t + \Delta t \cdot v_t \\ v_{t+1} = v_t + \Delta t \cdot a_t \end{cases}$$

Definindo valores iniciais

$$\begin{cases} r_x(0) = & \text{Afélio} \\ r_y(0) = & 0 \\ v_x(0) = & 0 \\ v_y(0) = & \text{Velocidade orbital média} \end{cases}$$

https://nssdc.gsfc.nasa.gov/planetary/factsheet/

O que deu errado?

Integradores Simpléticos

O metódo de Euler explicito conserva apenas aproximadamente a energia do sistema.

Metódos simpléticos conservam exatamente uma quantia que aproximadamente é a Energia do sistema.

Integradores Simpléticos

- Euler-Cromer
- Velocity-Verlet
- 7 Step Verlet (Leapfrog)

Integradores Simpléticos

Vantagens

- Podem 'voltar no tempo'
- Conservam momento Angular
- Simpléticos (presevam área)

Euler-Cromer

Verlet-Stormer (Euler semi-implicito 1ª ordem)

$$\begin{cases} v_{t+1} = v_t + \Delta t \cdot a_t \\ r_{t+1} = r_t + \Delta t \cdot v_{t+1} \end{cases}$$

Integrador de Verlet de 3 passos

Velocity Verlet (2° ordem)

$$\begin{cases} v_{t_{\frac{1}{2}}} = v_t + \frac{1}{2}\Delta t \cdot a_t \\ r_{t+1} = r_t + \Delta t \cdot v_{t_{\frac{1}{2}}} \\ v_{t+1} = v_{t_{\frac{1}{2}}} + \frac{1}{2}\Delta t \cdot A(r_{t+1}) \end{cases}$$

Integrador de Verlet de 7 passos *Leapfrog*

Integrador de Verlet de 7 passos

Leapfrog

$$\begin{cases} w & = \sqrt[3]{2} \\ f & = 2 - w \\ leap_1 = leap_7 & = \frac{h}{2f} \\ leap_2 = leap_6 & = \frac{h}{f} \\ leap_3 = leap_5 & = (1 - w)\frac{h}{2f} \\ leap_4 & = -h\frac{w}{f} \end{cases}$$

$$\begin{cases} x_1 & = x_t + leap_1 \cdot v_t \\ v_2 & = v_t + leap_2 \cdot A(x_1) \\ x_3 & = x_1 + leap_3 \cdot v_2 \\ v_4 & = v_2 + leap_4 \cdot A(x_3) \\ x_5 & = x_3 + leap_5 \cdot v_4 \\ v_{t+1} & = v_4 + leap_6 \cdot A(x_5) \\ x_{t+1} & = x_5 + leap_7 \cdot v_{t+1} \end{cases}$$

$$x_1 = x_t + leap_1 \cdot v_t$$

 $v_2 = v_t + leap_2 \cdot A(x_1)$
 $x_3 = x_1 + leap_3 \cdot v_2$
 $v_4 = v_2 + leap_4 \cdot A(x_3)$
 $x_5 = x_3 + leap_5 \cdot v_4$
 $v_{t+1} = v_4 + leap_6 \cdot A(x_5)$
 $x_{t+1} = x_5 + leap_7 \cdot v_{t+1}$

Conservação do Hamiltoniano

Conservação do Momento Angular

Metódo de Euler, The Inner Solar System - euler - h = 3.00 days

Leapfrog The Inner Solar System - leapfrog - h = 3.00 days Sun Earth 2.01 Venus Mars Mercury 1.34 0.67 Longitudinal distance in AU 0.00 -0.67 -1.34 -2.01

-0.67

0.00

Latitudinal distance in AU

0.67

-2.01

-1.34

1.34

Euler-Cromer

Latitudinal distance in AU

Velocity Verlet The Inner Solar System - velocity-verlet - h = 3.00 days

Table: Comparação da ecentricidade das órbitas

	Leapfrog Value	NASA Data
Mercury	0.196	0.206
Venus	0.018	0.007
Earth	0.0164	0.017
Mars	0.09	0.093
Jupiter	0.05	0.048

Muito Obrigado!

Carl Sagan

Diante da vastidão do tempo e da imensidão do universo, é um prazer para mim dividir um planeta e uma época com vocês.