## 1. Introdução

As mudanças climáticas, especialmente o aumento das temperaturas, que ocorrem ao longo de décadas [@IPCC], têm produzido alterações na distribuição geográfica de espécies [@parmesan2003; @parmesan2006] e seus comportamentos [@pecl2017], impactando a maior parte da biodiversidade do planeta. Estudos indicam a tendência de que a redistribuição de espécies esteja acontecendo de maneira acelerada [@pecl2017], comprometendo o funcionamento dos ecossistemas e as interações ecológicas entre os indivíduos, os quais são expostos a condições ambientais incomuns que testam a sensibilidade da comunidade [@williams2009].

Diante dessas condições, a migração para nichos climáticos adequados [@parmesan2006] surge como possível resposta de algumas espécies às alterações no clima, o que não ocorre ao mesmo passo nos diferentes grupos de seres vivos, dados diferentes traços funcionais e características ambientais [@doak2010]. Caso a adaptação geográfica das espécies não seja acompanhada também pela adaptação dos outros indivíduos com os quais existem relações ecológicas, ocorre o chamado mismatch espacial [@hegland2008; @schweiger2008], que se caracteriza pela diminuição ou ruptura total das interações ecológicas entre as espécies devido à incompatibilidade geográfica das mesmas.

A fim de investigar como determinadas espécies podem se comportar em cenários climáticos futuros, os Modelos de Distribuição de Espécies (MDEs) são as ferramentas comumente utilizadas para prever as distribuições potenciais de organismos [@elith2009]. Os MDEs são construídos a partir de combinações entre as ocorrências observadas (ou também ausentes) das espécies e as variáveis ambientais preditoras, juntamente com algoritmos de modelagem e métodos matemáticos [@anderson2013; @franklin2010]. A partir dos dados reunidos e das variáveis ambientais estabelecidas, os algoritmos geram os modelos de distribuição das espécies. Esse modelo é então extrapolado para diferentes tempos e áreas geográficas de estudo, visando fazer predições ou descrever padrões [@elith2009].

No presente trabalho, utilizamos da Modelagem de Distribuição para projetar a distribuição potencial futura da espécie de vegetal *Encholirium subsecundum* (Baker) Mez e de seu único polinizador conhecido [@dias2013], o quiróptero *Lonchophylla bokermanni* Sazima e colab., 1978, projetando dois cenários de mudanças climáticas para 2050, de RCP 4.5 e 8.5 [@worldclim]. O objetivo deste trabalho foi compreender qual a magnitude com que as mudanças climáticas podem alterar as distribuições potenciais das duas espécies e causar o *mismatch* espacial entre ambas. Foram propostas 3 hipóteses iniciais: 1. O desacoplamento espacial entre ambas as espécies aumenta nos cenários futuros; 2. O desacoplamento espacial aumenta apenas com relação à distribuição da planta; e 3. O desacoplamento espacial aumenta apenas com relação à distribuição do morcego.