

Tumormarker

Arnold von Eckardstein
Institut für Klinische Chemie, Unispital Zürich

UZH Medizinische Fakultät (CC BY-NC)

16 WE	3 Grundlagen Tumormarker	Arnold von	224	Sie können die Definition von Tumormarkern wiedergeben und grundsätzliche molekulare Eigenschaften von Tumormarkern aufzählen.
	der Diagnos-	Eckardstein	226	2. Sie können die prinzipiellen Einsatzfelder von Tumormarkern erläutern: Früherkennung, (Differential-)Diagnose, Monitoring,
	tik und		157	3. Sie können beschreiben, wie der klinische Nutzen von Tumormarkern beurteilt wird, und können Beispiele von Tumormarkern mit hoher Evidenz für
	Therapie			klinische Nützlichkeit nennen.
				4. Sie können wichtige Fallstricke bei der Indikation und Interpretation von Tumormarkern erläutern: Methodenabhängigkeit, Impräzision und kritische
				Differenz, Interferenzen durch Antikörper.
				5.

Tumormarker: Lernziele

Sie kennen Definitionen und grundsätzliche molekulare Eigenschaften von Tumormarkern

Sie kennen die prinzipiellen Einsatzfelder von Tumormarkern:

Früherkennung, (Differenzial)diagnose, Monitoring

Sie wissen, wie der klinische Nutzen von Tumormarkern beurteilt wird und kennen Beispiele von Tumormarkern mit hoher Evidenz für klinische Nützlichkeit.

Sie kennen wichtige Fallstricke bei der Indikation und Interpretation von Tumormarkern: Methodenabhängigkeit, Impräzision und kritische Differenz, Interferenzen durch Antikörper

SSP's

157: abnormal faecal analyses, occult blood, parasites

request for check-up, health examination, radiologic and laboratory procedures

227: shared assessment of risks and protective factors for frequent life-compromising diseases,

such as cardiovascular, metabolic and oncologic diseases

Schwerpunkt: Forschung

Tumorgrösse und Nachweisgrenzen physikalischer und biochemischer diagnostischer Verfahren

Definition "Tumormarker"

➤ Tumormarker sind spezifische Moleküle (vor allem Proteine und Peptide aber auch Nukleinsäuren), die von Tumorzellen produziert werden und im Blut, Gewebe oder in anderen Korperflüssigkeiten vorkommen. Ihr Auftreten oder die Erhöhung ihrer Konzentration kann auf die Entstehung oder das Wachstum eines Tumors hinweisen.

Diagnostisch nutzbare Veränderungen maligner Zellen

- Mutationen
- veränderte nukleäre Antigene
- veränderte zytoplasmatische Antigene
- Veränderte Oberflächenantigene
 - modifizierte Glykoproteine
 - Neoantigene
 - Oberflächenenzyme
- Freisetzung tumorassoziierter Moleküle

Tumorassoziierte Moleküle

- Virale Antigene (z.B. HPV-, HSV-, EBV-, HepB-, HTLV-Antigene)
- Leukämie-Antigene
- Onkofetale Antigene (z.B. CEA, AFP)
- **Hybridom-Antigene** (z.B. CA19-9, CA 125, CA 15-3)
- Differenzierungs- und Proliferationsantigene (z.B. PSA, NSE, β2-Mikroglobulin)
- **Hormone** (z.B. β-HCG, ACTH, Calcitonin, PTH, Katecholamine etc.)
- **Serumproteine** (z.B. monoklonale Immunglobuline, β2-Mikroglobulin)
- mikroRNAs (z.B. miR371 bei Hodentumoren)
- DNA: zirkulierende Tumor-DNA
- Zellen: zirkulierende Tumorzellen

«liquid biopsy»

Einsatz von Labordiagnostik in Abhängigkeit von der Kanzerogenese

Zeit

Einsatzgebiete von Tumormarkern

Neumaier & Findeisen In Renz (Hrsg). Praktische Labordiagnostik, 3. Auflage 2018

Einsatz von Labordiagnostik in Abhängigkeit von der Kanzerogenese

Zellzahl

Gendiagnostik

(DNA-Tests)

<u>Beispiele</u>

- Familiäre Adenomatöse Polyposis Coli (FAP)
- Hereditäres Non-Polyposis Coli Colon-Karzinom (HNPCC)
- Familiäres Mamma-Karzinom (BRCA1, BRCA2)
- Medulläres Schilddrüsen-Karzinom (RET)
- Multiple Endokrine Neoplasie (RET)

Genetische Prädisposition

Einsatz von Labordiagnostik in Abhängigkeit von der Kanzerogenese

Problematik der Unter- und Überdiagnostik in Abhängigkeit vom Verlauf eines Karzinoms

Krebsvorsorgeuntersuchungen (USPSFT)

kolorektales Karzinom:

fekales okkultes Blut (iFOBT, FIT) & (DRU) jährlich, oder Colonoskopie alle 10 Jahre oder Sigmoidoskopie alle 5 Jahre (+ iFOBT alle 3 Jahre) Männer und Frauen 50 -75 Jahre

Lungenkarzinom

low dose-CT, jährlich Männer und Frauen 55 -80 Jahre (in CH als Pilot für Raucher geplant)

> Prostata-Karzinom:

Digitale rektale Untersuchung (DRU) & Prostata Spezifisches Antigen (PSA)

> Mamma-Karzinom

Abtasten der Brust, Mammographie, Ultraschall

Cervix-Karzinom

vaginale Untersuchung & PAP Abstrich (Papilloma-Virus-Genotypen) Frauen 21 - 65 Jahre, alle 3 bis 5 Jahre

Nachweis von okkultem Blut im Stuhl zum Screening des Dickdarmkarzinoms

Okkultes Blut im Stuhl

Guajakharz imprägniertes Filterpapier

- + Stuhlprobe
- + Wasserstoffperoxid
- = Blaufärbung, wenn Hämoglobin vorhanden
- ✓ Untersuchung von 3 seriellen Proben
- ✓ Ernährung anpassen
- ✓ Testbrief <u>nicht</u> rehydrieren (Spezifität↓)
- √ jährliche Durchführung
- ✓ bei positivem Blutnachweis
 - -> Abklärung durch Coloskopie

Nachweis von Hämoglobin im Stuhl durch immunologische Tests (FIT)

<u>Hämoglobin im Stuhl</u>

- ✓ Untersuchung von 1 Probe
- ✓ keine Ernährungsanpassung
- √ jährliche Durchführung
- bei positivem Blutnachweis
 - -> Abklärung durch Coloskopie

Geschätzte diagnostische Performance etablierter Screeningverfahren für kolorektale Karzinome (CRC)

Screening	Sensitivity for CRC (%)	Sensitivity for advanced adenomas (%)	Specificity for CRC (%)	Specificity for advanced adenomas (%)
FOBT				
gFOBT	11-64	11-41	91–98	n.a.
iFOBT	56-89	27-56	91–97	n.a.
Flexsig	60-70	50-81	60–70	50-80
Colonoscopy	95	95	95–99	90–95

Flex sig, flexible sigmoidoscopy; advanced adenomas, adenomas with high-grade dysplasia, villous components or size < 9 mm; n.a., not applicable; FOBT, faecal occult blood test.

FIT gut für Karzinom-Nachweis, aber nicht für Adenom (Präkanzerosen)-Nachweis

Anzahl neudiagnostizierter kolorektaler Karzinome durch Kolonoskopie oder Fekales Immunchemisches Testen (FIT)

(50 – 69 J.: 26'703 einmalige Kolonoskopie, 26'599 alle 2 Jahre FIT, 2 Jahre Follow-up)

Colorectal Lesion	Colonoscopy $(N = 26,703)$		FIT (N = 26,599)		Odds Ratio (95% CI)†	P Value
	Subjects	Rate	Subjects	Rate		
	no.	%	no.	%		
Cancer	30	0.1	33	0.1	0.99 (0.61–1.64)	0.99
Advanced adenoma‡	514	1.9	231	0.9	2.30 (1.97–2.69)	< 0.001
Advanced neoplasia§	544	2.0	264	1.0	2.14 (1.85-2.49)	< 0.001
Nonadvanced adenoma	1109	4.2	119	0.4	9.80 (8.10-11.85)	< 0.001
Any neoplasia	1653	6.2	383	1.4	4.67 (4.17-5.24)	< 0.001

Aber:

Teilnahmerate signifikant höher in der FIT-Gruppe: 34.2% versus 24.6% (P < 0.001)

Quintero et al. N Engl. J. Med. 366; 697-706 (2012)

Senkung der Inzidenz und Mortalität kolorektaler Karzinome (CRC) durch Screening

Screening Test	Author (Reference)	Location	Patients, n (thousands)	Interval	Follow-up, y	CRC Mortality Reduction (95% CI), %	CRC Incidence Reduction (95% CI), %
Fecal occult blood test	Mandel (16)	Minnesota	47	Annual/ biennial	18	Annual: 33 (17–49); biennial: 21 (3–38)	Annual: 20 (10–30); biennial: 17 (6–27)
	Kronborg (66)	Denmark	62	Biennial	10	18 (1-32)	NS
	Hardcastle (25)	United Kingdom	153	Biennial	8	15 (2–26)	NS
	Lindholm (67)	Sweden	68	Biennial	9	16 (1-29)	NS
	Faivre (68)	France	91	Biennial	11	16 (1-29)	NS
Flexible sigmoidoscopy	Flexiscope (17)	United Kingdom	170	One-time FSG	11	31 (18–41)	23 (16–30)
	SCORE (38)	Italy	34	One-time FSG	11	22 (-8-54)*	18 (4–31)
	PLCO (6)	United States	155	Two FSGs, 3- to 5-y intervals	12	26 (13–37)	21 (15–28)

CRC = colorectal cancer; FSG = flexible sigmoidoscopy; NS = not significant.

Weinberg & Schoen. Ann Intern Med. 2014;160(9):ITC5-1.

FOBT: Number needed to screen, um 1 CRC-Tod zu verhüten: 625 (range: 349-834)

(Bretthauer, J. Intern. Med. 270, 87-98 (2011)

^{*}Mortality reduction was not statistically significant.

4.2.1.1. Koloskopie

AWMF-Leitlinie: Untersuchungsverfahren für die Darmkrebsfrüherkennung

Nr.	Empfehlungen/Statements	EG	LoE
4.2.	Die komplette qualitätsgesicherte Koloskopie besitzt die höchste Sensitivität und Spezifität für das Auffinden von Karzinomen und Adenomen und sollte daher als Standardverfahren für die KRK-Vorsorge/-Früherkennung eingesetzt werden. Bei unauffälligem Befund sollte die Koloskopie nach 10 Jahren wiederholt werden. Zur Durchführung wird auf die Krebsfrüherkennungsrichtlinie³ verwiesen, die digitale rektale Untersuchung ist hierbei obligat. Bei Personen, die an der Koloskopie-Vorsorge/-Früherkennung entsprechend dieser Richtlinie teilnehmen, erübrigt sich das FOBT-Vorsorge/Früherkennungsverfahren.	В	3b

4.2.1.2. Sigmoidoskopie

Nr.	Empfehlungen/Statements	EG	LoE
4.3.	Eine qualitätsgesicherte Sigmoidoskopie sollte Personen, die die Koloskopie als Vorsorge-/ Früherkennungsmaßnahme ablehnen, angeboten werden.	В	2b
4.4.	Zur möglichen Detektion proximaler Karzinome sollte zusätzlich zur Sigmoidoskopie eine jährliche FOBT- Durchführung erfolgen	В	3b

S3-Leitlinie Kolorektales Karzinom

Kurzversion 2.1 - Januar 2019 AWMF-Registernummer: 021/0070L

AWMF-Leitlinie: Untersuchungsverfahren für die Darmkrebsfrüherkennung

4.2.2.1. Fäkaler occulter Bluttest (FOBT)

Nr.	Empfehlungen/Statements	EG	LoE
4.6.	Bei Personen mit durchschnittlichem Darmkrebsrisiko, die keine Koloskopie wünschen, sollte ein FOBT jährlich durchgeführt werden.		E.
4.7.	Ein positives Testergebnis macht die endoskopische Untersuchung des gesamten Dickdarmes erforderlich.	St	1a
4.8.	Der jährliche FOBT ist bezüglich einer Senkung der KRK- bedingten Mortalität der zweijährlichen Untersuchung überlegen.	St	1b
4.9.	Bei Personen, die an der Koloskopie- Vorsorge/-Früherkennung teilnehmen, erübrigt sich ein FOBT und auch andere Maßnahmen.	St	1a
4.10.	Immunologische FOBT (iFOBT) mit nachgewiesen hoher Spezifität >90% und Sensitivität können alternativ zum Guaiak- Test eingesetzt werden.	0	3a

S3-Leitlinie Kolorektales Karzinom

Kurzversion 2.1 - Januar 2019 AWMF-Registernummer: 021/0070L

Cave: FOBT oder iFOBT ungeeignet bei Patienten mit

- hereditärer Präkanzerose (z.B. FAP, HNPCC)
- Entzündlicher Darmerkrankung (Colitis ulcerosa, M. Crohn)
- bekannten Adenomen

Screening auf Prostatakarzinom (PCa)

Risiko eines 50-jährigen, in seinem weiteren Leben -

- ein Prostatakarzinom zu entwickeln: ca. 40%

- ein Prostatakarzinom diagnostiziert zu bekommen: ca. 15 %

- am Prostatakarzinom zu sterben: ca. 3%

DRE = digitale rektale Untersuchung; PSA = Prostata-spezifisches Antigen

Zwei grosse randomisierte klinische Studien in Europa (ERSPC) und den USA (PLCO) ergaben widersprüchliche Ergebnisse zum klinischen Nutzen des PSA -Screenings

		F	rostate Cancer Detected	d	Died of Prostate Cancer			
	Follow-up,	No./Total (Cumu	lative Incidence %)	Rate Ratio (95% CI)	No./Total (Cumul	Rate Ratio		
Site	Median, y	Control	Screening		Control	Screening	(95% CI)	
ERSPC ²⁷				4-7-7				
The Netherlands	11.1	896/17390 (5.2)	2028/17443 (11.6)		97/17390 (0.56)	69/17443 (0.40)	0.71 (0.52-0.96)	
Belgium	12.1	311/4255 (7.3)	420/4307 (9.8)		25/4255 (0.48)	22/4307 (0.51)	0.89 (0.48-1.52)	
Sweden	14	507/5951 (8.5)	759/5901 (12.9)		70/5951 (1.18)	39/5901 (0.66)	0.56 (0.38-0.83)	
Finland	11	3175/48409 (6.6)	2838/31970 (8.9)		237/48409 (0.49)	139/31970 (0.43)	0.89 (0.72-1.09)	
Italy	10.7	257/7251 (3.5)	374/7266 (5.1)		22/7251 (0.30)	19/7266 (0.26)	0.86 (0.46-1.58)	
Spain	10.7	24/1141 (2.1)	69/1056 (6.5)		1/1141 (0.088)	2/1056 (0.19)	2.15 (0.2-23.77)	
Switzerland	8.2	226/4955 (4.6)	475/4948 (9.6)		10/4955 (0.02)	9/4948 (0.18)	0.89 (0.36-2.20)	
All sites ^a	11.0	5396/89352 (6.0)	6963/72891 (9.6)	1.63 (1.57-1.69)	462/89352 (0.52)	299/72891 (0.41)	0.79 (0.68-0.91)	
				Relative Risk			Relative Risk	
PLCO ²⁵	13	3815/38345 (9.9)	4250/38340 (11.0)	1.12 (1.07-1.17)	145/38345 (0.38)	158/38340 (0.41)	1.09 (0.87-1.36)	

 a For all sites, P = .001.

JAMA. 2014;311(11):1143-1149.

Cave drop-in bei PLCO-Studie: mehr als 80 % der Teilnehmer in der Kontrollgruppe, gaben an, sich während der Studie mindestens einem PSA-Test unterzogen zu haben.

PSA und Malignität eines Prostata-Karzinoms

Sensitivität (alle PCa's):

Sensitivität (hochmaligne PCa's):

Spezifität:

Positiv prädiktiver Wert (PPV):

ca. 20% (PSA <u>></u>4 μg/L)

ca. 50% (PSA <u>></u>4 μg/L)

ca. 90% (PSA <4 μg/L)

ca. 30% (PSA <u>></u>4 μg/L)

Mögliche Komplikationen der Prostata-Biopsie und Behandlung des Prostata-Karzinoms

Prostata-Biopsie

- Schmerzen
- Miktionsbeschwerden
- Hämaturie
- Rektale Blutung
- Infektion

Prostata-Karzinom-Therapie

- erektile Dysfunktion (C, R, A)
- Harninkontinenz (C)
- Gynäkomastie (A)
- Gastrointestinale Beschwerden (A)
- KHK-Ereignisse (C)
- Tod (C)

C = chirurgische Prostatektomie

R = Strahlentherapie

A = Anti-Androgene

Flussdiagram für Indikationen zur Prostatabiopsie zur Früherkennung oder Verdacht auf Prostata-Karzinom

MRI = magnetic resonance imaging; a) PSA >50, cT3-4. b If MRI not available/possible

EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update.

Part I: Screening, Diagnosis, and Local Treatment with Curative Intent.

Cornford et al. E U R O P E AN UROLOG Y 8 6 (2 0 2 4) 1 4 8 – 1 6 3

Diagnosis

Treatment

Follow-up

Strategien zur Optimierung der diagnostischen Effizienz der PSA-Bestimmung

- "PSA-Dichte": cut-off 0.15 ng/mL/mL Prostata-Volumen
- "PSA-Geschwindigkeit": cutoff 0.75 ng/mL/Jahr (erfordert 3 Messungen/Jahr)
- altersadjustierte Referenzbereiche: verbessert Sensitivität bei jungen Männern und Spezifität bei älteren Männern
- freies PSA: eingesetzt im PSA-Graubereich von 2 10 μg/L; verbessert Spezifität zu Lasten der Sensitivität
- neue Biomarker, z.B

Test	Sample	Target	Sensitivity %	Specificity %	AUC*
Select MDx		1011	89	53	0.82 - 0.86
Mitomic Prostate Test TM			92	71	G.
Prostate Health Index (PHI)		8	90	23 - 31.1	0.67 - 0.70
4K score		8	93	36	0.75 - 0.90
Proclarix		6	90	43	0.67 - 0.79
Sentinel™ PCC4 Assay			93	96	0.98
Stockholm3 Test		€ VV	90	33	82.7 - 89.2
ExoDx™ IntelliScore test			92	26.1 - 34	0.67 - 0.80

Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Cirrhosis: A Meta Analysis

		Sensitivity	early HCC, %	Spec	cificity, %
Author and year	AFP cutoff	Ultrasound alone	Ultrasound plus AFP	Ultrasound alone	Ultrasound plus AFP
Pateron 1994	15 ng/mL	21.4 (4.7–50.8)	35.7 (12.8–64.9)	96.2 (90.4–98.9)	82.7 (74.0–89.4)
Henrion 2000	200 ng/mL	66.7 (22.3–95.7)	100 (60.7–100)	Not reported	
Qian 2010	Not reported	68.2 (45.1–86.1)	77.3 (54.6–92.2)	Not	reported
Lok 2010	Not reported	35.9 (21.2-52.8)	51.3 (34.8-67.6)	Not	reported
Trinchet 2011	20 ng/mL	65.0 (55.9–73.4)	74.8 (66.2–82.2)	89.7 (87.8-91.4)	82.9 (80.6–85.0)
Singal 2012	20 ng/mL	31.7 (18.1–48.1)	63.4 (46.9–77.9)	91.5 (88.4–94.1)	83.3 (79.3–86.8)
Kim 2016	20 ng/mL	25.6 (13.5–41.2)	32.6 (19.1–48.5)	90.1 (86.6–93.0)	88.2 (84.4–91.3)

Einsatz von Labordiagnostik in Abhängigkeit von der Kanzerogenese

Zeit

Aufgaben von Tumormarkern bei Diagnose des Karzinoms

- Diagnose / Differentialdiagnose
- Stadieneinteilung und Prognose
- Therapientscheidung

Serum levels of alpha-Fetoprotein (AFP) and human Choriongonadotropin (hCG) in Germ Cell Tumors (GCTs)

GCT histological subtype	AFP	hCG
Yolk sac tumour	++	-
Seminoma	_	±
Embryonal carcinoma	±	±
Choriocarcinoma	-	++
Teratoma	±	-

AFP, α -fetoprotein; GCT, germ cell tumour; hCG, human chorionic gonadotrophin. ++, strongly positive levels; ±, levels may be negative or moderately positive; –, negative levels.

IGCCC classification of metastatic Germ Cell Tumors (GCTs)

AFP, α -fetoprotein; GCT, germ cell tumour; hCG, human chorionic gonadotrophin. IGCCC, International Germ Cell Consensus Classification; LDH, lactate dehydrogenase; NSGCT, non-seminomatous GCT; NPVM, non-pulmonary visceral metastases; ULN, upper limit of normal. *Any one of these risk factors will classify a patient with NSGCT as having an intermediate prognosis; ‡ No patients with seminoma classified as having poor prognosis; $^{\$}$ Any one of these risk-factors will classify a patient with NSGCT as having poor prognosis.

Murray et al. Nat. Rev. Urology 13, 715-725 (2016)

Clinical variable	Seminoma	NSGCT					
Good-prognosis group							
Primary site	Any	Testis or retroperitoneal					
Metastases	No NPVM	No NPVM					
AFP (ng/ml)	Normal	<1,000					
hCG (IU/L)	Any	<5,000					
LDH (×ULN)	Any	<1.5 × ULN					
Intermediate-prognosis group							
Primary site	Any	Testis or retroperitoneal					
Metastases	NPVM	No NPVM					
AFP (ng/ml)	Normal	≥1,000 and ≤10,000*					
hCG (IU/L)	Any	≥5,000 and ≤50,000*					
LDH (×ULN)	Any	≥1.5 and ≤10 ×ULN*					
Poor-prognosis group							
Primary site	None [‡]	Mediastinal [§] ; or testis or retroperitoneal with any of the risk factors below					
Metastases	None [‡]	NPVM§					
AFP (ng/ml)	None [‡]	>10,000§					
hCG (IU/L)	None [‡]	>50,000§					
LDH (×ULN)	None [‡]	>10×ULN§					

Einsatz von Labordiagnostik in Abhängigkeit von der Kanzerogenese

Zeit

HCG tumour marker treatment graph demonstrating a patient responding to low-risk chemotherapy)

Seckl et al.
Annals of Oncology 24
(Supplement 6):
vi39–vi50, 2013

Effects of intensive surveillance on the survival following resection of colorectal cancer

Meta- analysis	Year	Studies included	Benefit of intensive follow-up on survival (5-y mortality): OR (95% CI)
Bruinvels ²³ Rosen ²⁴	1993 1998	7 Nonrandomized 2 RCTs, 3 nonrandomized (comparative cohort); 14 single cohort	9% advantage 6% advantage
Jeffery ²⁵ (Cochrane)	2002	5 RCTs	0.67 (0.53–0.84)
Renehan ²⁶	2002	5 RCTs	0.81 (0.70-0.94)
Figueredo ^{a27}	2003	6 RCTs	0.80 (0.70-0.91)
Tjandra ^{a2}	2007	8 RCTs	0.74 (0.59-0.93)
Jeffery ^{a28} (Cochrane)	2007	8 RCTs	0.73 (0.59–0.91)

RCT = randomized controlled trial.

Steele et al. Dis Colon Rectum 2015; 58: 713–725

^aDenotes since 2002.

Recommended schedule of surveillance for colon and rectal cancer (AJCC stage I (at increased risk for recurrencea), stage II, stage III, and stage IV (when isolated metastases are resected for cure))

Rectum ^b			
Office visit and CEA Every 3–6 mo for 2 y, then every 6 mo until 5 y CT chest/abdomen/pelvis Annually for 5 y ^d Colonoscopy 1 y after preoperative colonoscopy (or 3–6 mo after surgery if colon not preoperatively "cleared") ^e Proctoscopy (+/– ERUS) Every 6–12 mo ^f for patients who underwent resection with anastomosis or every 6 mo for patients undergoing local excision for 3–5 y			

AJCC = American Joint Committee on Cancer; ERUS = endorectal ultrasound; LN = lymph node; Nx = nodal; s/p = status post.

^aHigh risk of recurrence is defined by the treating provider. High-risk factors may include margin positivity (≤1 mm), Nx status (rectal cancer s/p local excision, higher-risk malignant polyps that do not undergo radical surgery, inadequate LN sampling), lymphovascular invasion, poorly differentiated tumors (grade 3 or 4), and T2 disease.

^bFor patients who receive neoadjuvant therapy, these guidelines refer to clinical rather than pathologic stage.

cPET-CT is not typically recommended, although PET-CT or MRI might be considered for imaging in a patient with contraindication to intravenous-contrast-enhanced CT scanning or to follow-up abnormalities seen on CT scans.

^dMore frequent imaging may be considered for patients at particularly high risk for recurrence, including those with N2 disease, previous liver resection for metastasis, etc. ^eFurther colonoscopy frequency depends on the results of the 1-year colonoscopy, with repeat examination in 3 years for patients without adenomas and 1 year for patients with adenomas. Annual colonoscopy is generally recommended for patients with confirmed or suspected familial cancer syndromes that have not undergone total proctocolectomy.

Patients at higher risk for local recurrence may be considered for the more frequent intervals, and for ERUS in addition to proctoscopy. Higher-risk patients may include those with poorer-risk tumors (eg, T2 or poor differentiation) who underwent local excision, those with positive margins (≤1 mm), and those with T4 or N2 rectal cancers.

The Clinical Practice Guidelines Committee of the American Society of Colon and Rectal Surgeons Steele et al. Dis Colon Rectum 2015; 58: 713–725

Recommendations on the Use of Tumor Markers Reported in US-Guidelines

Tumor Marker	Tumor Origin	Screening	Differential Diagnosis	Initial Workup	Response to Treatment	Disease Progression	Disease Monitoring
CA 19.9	Gastric	NA	NA	NA	NA	NA	NA
	Colorectal	No	No	No	NA	No	No
	Ovarian (mucinous)	NA	NA	NA	NA	NA	NA
	Pancreatic	No	Yes/no ^c	Yes/no ^d	Yes	Yes	Yes
	Biliary tract	No	No	Yes	NA	NA	NA
	Bladder	NA	NA	NA	NA	NA	NA
CA 15.3	Breast	No	No	Yes/noe	No	No	Yes/nof
CA 125	Ovarian (serous)	Yes/no ^g	Yes	Yes	Yes	Yes	Yes
PSA	Prostatic	No	Yes	Yes	Yes	Yes	Yes
CEA	Gastric	NA	NA	NA	NA	NA	NA
	Colorectal	No	No	Yes/noh	NA	Yes	Yes
	Breast	No	No	Yes/no ^e	No	No	Yes/nof
	Pancreatic	No	No	No	No	Yes/noi	Yes/noi
	Lung	No	No	No	No	No	No
	Biliary tract	No	No	Yes	No	No	No
AFP	Ovarian (nonepithelial)	No	Yes (<40 y)	Yes	Yes	Yes	Yes
	Liver	Yes	Yes	Yes	NA	Yes	NA
	Testicular	NA	Yes	Yes	Yes	Yes	Yes
SCCA	Cervical	No	No	Yes	NA	Yes/nok	NA
	Pharynx (squamous)	No	No	No	No	No	No
NSE	Lung (small cell)	No	No	No	No	No	No
CYFRA 21.1	Lung (squamous)	No	No	No	No	No	No
CgA	Gastrointestinal (neuroendocrine)	No	Yes	Yes	NA	Yes	Yes
β-hCG	Ovarian (choriocarcinoma)	No	Yes	Yes	Yes	Yes	Yes
	Testicular	NA	Yes	Yes	Yes	Yes	Yes

Ferraro et al. Am J Clin Pathol 2015;144:649-658

Liquid biopsy assays enable the monitoring of genomic alterations present in circulating tumour DNA

Berger and Maris. Nat. Rev. Oncology 2018; 15: 353-365

Fallstricke in der Analytik von Tumormarkern (durchaus auch anderer Biomarker)

- Ein 65-jähriger Patient wird wegen eines Prostata-Karzinoms operiert. Vor der Operation betrug die im Spitallabor gemessene Konzentration des Prostata Spezifischen Antigens (PSA total) im Plasma 20 μg/L (normal <2.5 μg/L). Postoperativ sinkt die Konzentration im Verlauf von einer Woche Spitalaufenthalt auf 5 μg/L. Nach der Entlassung aus dem Spital veranlasst der private Urologe eine Woche später eine weitere Messung des PSA in einem Privatlabor und erhält ein Messergebnis von 8 μg/L.
- a) Die fehlende Normalisierung des PSA spricht für eine inkomplette Tumorresektion oder das Vorliegen von Metastasen
- b) Der Wiederanstieg des PSA ist am ehesten durch ein Fortschreiten von Tumorwachstum oder Metastasierung zu erklären
- c) Der Anstieg des PSA-Wertes nach Spitalentlassung ist am ehesten durch den Einsatz unterschiedlicher PSA-Tests in den beiden Laboratorien zu erklären
- d) Die unterschiedlichen PSA Werte erklären sich durch die Impräzision der PSA-Tests

Konsequenzen der Methodenabhängigkeit von Tumormarker-Messungen

(aber auch vieler anderer Biomarker)

- Labor: exakte Nennung der Methode (Firmenbezeichnung) im Befund
- Labor:
 Cave Methodenwechsel: Parallelmessung alte und neue
 Methode für längere Zeit, um sicherzustellen, dass ein Patient 2
 überlappende Werte hat
- Arzt: cave Laborwechsel impliziert häufig Methodenwechsel

Konsequenzen Vemeidung falsch-tiefer Messungen von Tumormarkern (aber auch vieler anderer Biomarker)

- Thyreoglobulin: Obligate Messung von anti-Thyreoglobulin Antikörpern und/oder Wiederfindung bei Nachsorge von Patienten mit Schilddrüsen-Karzinom
- Cave: interferierende Autoantikörper oder heterophile Antikörper können auch bei anderen Tumormarkern (Biomarkern) stören
- Insbesondere Tumormarker (Biomarker) mit grossem Konzentrationsspektrum sind von high-dose hook Effekten bedroht, z.B. beta-HCG