Evaluation of Classification Models

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Classification

Goal: Assign one of several predefined classes based on features

Binary classification: 2 classes (Positive and Negative)

Diagnosis of Alzheimer's disease

Neurodegenerative disease causing 60 - 70% cases of dementia

Diagnosis via positron-emission tomography is invasive and costly

Structural MRI is non-invasive and less costly

Goal: Diagnose Alzheimer's using MRI scans

Cognitively-normal patient

Alzheimer's patient

Alzheimer's diagnosis

Logistic regression

Plan

How should we evaluate?

- ▶ Predict Alzheimer's if estimated probability > 0.5
- Compute accuracy (fraction of correct estimates)

Accuracy is 81.0%

End of story?

Not really

Fraction of Alzheimer's patients diagnosed correctly? We don't know!

Consider classifier that classifies everyone as healthy

Accuracy is 78.4%, but Alzheimer's is never detected

We need more informative metrics

Binary classification

P examples with positive labels

N examples with negative labels

True Est.	Negative	Positive
Negative	True Negatives (TN)	False Negatives (FN)
Positive	False Positives (FP)	True Positives (TP)

$$TP + FN = P$$

 $TN + FP = N$

Accuracy

Fraction of examples that are correctly classified

$$\mathsf{Accuracy} := \frac{\mathsf{TN} + \mathsf{TP}}{\mathsf{N} + \mathsf{P}}$$

AD diagnostics

True Est.	Healthy	AD
Healthy	1579	356
AD	24	86

$$\mathsf{Accuracy} := \frac{\mathsf{TN} + \mathsf{TP}}{\mathsf{N} + \mathsf{P}} = 0.81$$

True positive rate (TPR), a.k.a. recall, sensitivity, hit rate

Fraction of positive examples that are correctly classified

$$TPR := \frac{TP}{P}$$

AD diagnostics

True Est.	Healthy	AD
Healthy	1579	356
AD	24	86

$$\mathsf{TPR} := \frac{\mathsf{TP}}{\mathsf{P}} = 0.19$$

False positive rate (FPR)

Fraction of negative examples that are incorrectly classified

$$FPR := \frac{FP}{N}$$

 $1 - \mathsf{FPR}$ is known as specificity, a.k.a. true negative rate, selectivity

Specificity :=
$$\frac{TN}{N}$$

AD diagnostics

True Est.	Healthy	AD
Healthy	1579	356
AD	24	86

$$\mathsf{FPR} := \frac{\mathsf{FP}}{\mathsf{N}} = 0.01$$

Precision, a.k.a. positive predictive value

Fraction of examples predicted as positive that are correctly classified

$$\mathsf{Precision} := \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

AD diagnostics

True Est.	Healthy	AD
Healthy	1579	356
AD	24	86

$$Precision := \frac{TP}{TP + FP} = 0.78$$

F1 score

TPR and precision are fractions with the same numerator (TP)

We can combine them with a harmonic mean

$$F1 \ score := \frac{2 \cdot TPR \cdot Precision}{TPR + Precision}$$

Alzheimer's diagnostics

F1 score
$$:= 0.31$$

Classifiers output estimated probabilities

- ► Naive Bayes
- Gaussian discriminant analysis
- Logistic regression
- Classification trees
- Neural networks

Metrics depend on threshold used to determine positive / negative estimates

Alzheimer's diagnostics

Alzheimer's diagnostics

Threshold = 0.05

True Est.	Н	AD
Н	774	31
AD	829	411

Accuracy =
$$0.58$$

 $TPR = 0.93$
 $FPR = 0.52$
Precision = 0.33
 $F1$ score = 0.49

Threshold = 0.2

True Est.	Н	AD
Н	1399	173
AD	204	269

$$Accuracy = 0.82$$

$$TPR = 0.61$$

$$FPR = 0.13$$

$$Precision = 0.57$$

$$F1 \ score = 0.59$$

Threshold = 0.5

True Est.	Н	AD
Н	1579	356
AD	24	86

Accuracy =
$$0.81$$

 $TPR = 0.19$
 $FPR = 0.01$
Precision = 0.78

Figure
$$= 0.76$$

$$F1 \text{ score} = 0.31$$

Goal

TPR - FPR tradeoff

Threshold = 0.05

True Est.	Н	AD
Н	774	31
AD	829	411

Accuracy =
$$0.58$$

 $TPR = 0.93$
 $FPR = 0.52$
Precision = 0.33
 $F1$ score = 0.49

Threshold = 0.2

True Est.	Н	AD
Н	1399	173
AD	204	269

Accuracy =
$$0.82$$

 $TPR = 0.61$
 $FPR = 0.13$
Precision = 0.57
 $F1 \text{ score} = 0.59$

Threshold = 0.5

True Est.	Н	AD
Н	1579	356
AD	24	86

Precision =
$$0.78$$

F1 score = 0.31

Receiver operating characteristic (ROC) curve

Area under ROC curve (AUROC or AUC) = 0.847

Concordance or c-index

Threshold-free measure of discrimination performance

Fraction of negative - positive examples such that estimated probability is higher for positive example

Equal to AUC

Is discrimination all we care about?

Classifier that assigns:

- ightharpoonup 0.8 ightharpoonup healthy subjects
- ightharpoonup 0.9 ightharpoonup AD patients

AUC? 1! Perfectly discriminative

Among examples assigned a probability estimate of 0.8, how many have AD? 0

Probability estimates are totally wrong, the model is uncalibrated

Estimated probabilities vs empirical probabilities

Reliability diagram

Evaluates model calibration

Is calibration enough?

For dataset with 21.6% of AD patients

Calibration of model that assigns 0.216 to every data point?

Only one bin, empirical probability = 0.216

Perfectly calibrated, is this a good classifier?

It's terrible! Completely non-discriminative (ignores the features)

Brier score

Given dataset $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

Brier score :=
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - p_{\text{est}}(x_i))^2$$

Evaluates both discrimination and calibration

Perfectly discriminative, but uncalibrated model: 0.504

Perfectly calibrated, but undiscriminative model: 0.169

Our model: 0.131

What have we learned?

How to evaluate binary classification models:

- ► Accuracy, TPR, FPR, Precision, F1 score
- ► AUC / concordance
- ► Calibration
- Brier score