

Algoritmos

Aula 03 – Algoritmos: elementos básicos

Professora

Laysa Mabel de Oliveira Fontes

mabel.fontes@ufersa.edu.br

Pau dos Ferros/RN 2025

Palavras Reservadas

Palavras Reservadas

São palavras que tem significados pré-determinados e fazem parte da estrutura da linguagem utilizada.

Palavras Reservadas

Palavras Reservadas								
aleatorio	caracter	e	fimalgoritmo	grauprad	maiusc	passo	randi	
abs	caso	eco	fimenquanto	inicio	mensagem	pausa	repita	
algoritmo	compr	enquanto	fimescolha	int	minusc	pi	se	
arccos	copia	entao	fimfuncao	interrompa	nao	pos	sen	
arcsen	cos	escolha	fimpara	leia	numerico	procedimento	senao	
arctan	cotan	escreva	fimprocedimento	literal	numpcarac	quad	timer	
arquivo	cronometro	exp	fimrepita	log	ou	radpgrau	tan	
asc	debug	faca	fimse	logico	outrocaso	raizq	verdadeiro	
ate	declare	falso	função	logn	para	rand	xou	

Função de Saída

Se uma calculadora realiza várias operações, mas não tem um display para mostrar os resultados, qual a utilidade dela?

Função de Saída

Todo algoritmo deve exibir mensagens com os valores de saída.

- Todas as linguagens de programação permitem isso;
- Em pseudocódigo, utiliza-se a função escreva¹.

¹ A função escreval exibe uma mensagem na tela e, em seguida, pula uma linha.

Função de Saída

• Sintaxe:

escreva(<mensagem composta por texto² e/ou variáveis/expressões³>)

Exemplo:

```
algoritmo "Olá Mundo"
inicio
escreva("Olá mundo!")
fimalgoritmo
```

²Todo texto deve estar entre aspas.

³ As variáveis/expressões devem estar fora das aspas e separadas do texto por meio de vírgulas.

Variáveis

Ao criar algoritmos ou programas é necessário armazenar informações para poder utilizá-las durante sua execução.

Para tornar isso possível, utiliza-se variáveis!

Variáveis

Variáveis

São espaços reservados para armazenar algum dado, por analogia, como uma caixa que serve para armazenar algo.

Variáveis

Quando se diz que uma **variável x** assume um **valor 5**, se quer dizer, na realidade, que existe uma **posição de memória**, representada simbolicamente por **x**, que contém o **valor 5**.

Declaração de Variáveis

Para que o computador possa executar comandos que envolvem variáveis da maneira correta, ele deve conhecer os detalhes das variáveis que pretendemos utilizar.

- Esses detalhes são:
 - O identificador dessa variável;
 - O tipo de valores que essa variável irá conter.

Declaração de Variáveis

• Sintaxe:

```
var
<variável 1>, <variável 2>, ..., <variável n>: <tipo das variáveis>
```

• Exemplo:

```
algoritmo "Idade"

var
    i: inteiro

inicio
    escreval("Quantos anos você tem? ")
    leia(i)
    escreva("Você tem", i, " anos de idade.")

fimalgoritmo
```

Nomeação de Variáveis

- Deve seguir as seguintes regras:
 - Só pode conter letras, números e underline;
 - Deve começar com uma letra ou underline;
 - Letras não podem ter acentos;
 - Não pode começar com número;
 - Não pode ter espaços;
 - Não pode ser uma palavra reservada;
 - Deve ter no máximo 127 caracteres.
 - Não podem ser repetidas dentro do algoritmo.

Nomeação de Variáveis

• Exemplos válidos:

- media
- _media
- nota2
- media_final

• Exemplos inválidos:

- média
- 2nota
- media final
- nome-completo

Nomeação de Variáveis

Na sintaxe do pseudocódigo, não há diferença entre letras maiúsculas e minúsculas.

- Exemplo:
 - NOME é o mesmo que noMe

Função de Entrada

Nem todos os dados que um algoritmo manipula são gerados por ele. Deve haver um meio para que sejam atribuídos os dados (entradas) para o algoritmo.

- Todas as linguagens de programação permitem isso;
- Em pseudocódigo, utiliza-se a função leia.

Função de Entrada

• Sintaxe:

```
leia(<variável 1>, <variável 2>, ..., <variável n>)
```

Exemplo:

```
algoritmo "Olá"

var

n: caractere

inicio

escreva("Digite seu nome: ")

leia(n)

escreva("Olá ", n)

fimalgoritmo
```

Tipos de Dados

- Os dados podem ser divididos em quatro tipos:
 - Inteiro
 - Real
 - Caractere
 - Lógico

Inteiro

Toda e qualquer informação numérica que pertença ao conjunto dos números inteiros.

- Exemplos:
 - 5
 - -15
 - 0
 - 1340

Real

Toda e qualquer informação numérica que pertença ao conjunto dos números reais.

- Exemplos:
 - 3
 - -52.453
 - 0
 - 3.74

Caractere

Representa textos, ou seja, cadeia de caracteres entre aspas. Esses textos podem ser constituídos por números, letras e símbolos.

- Exemplos:
 - "Rua Getúlio Vargas, nº 8"
 - "Luiz Felipe da Silva"
 - "F"

Lógico

Representa valores lógicos, ou seja, verdadeiro ou falso.

- Exemplos:
 - verdadeiro
 - falso

Atribuição

Uma atribuição, representada pelo operador ":=", define a ação de atribuir um determinado valor a uma variável.

```
algoritmo "Declarações e Atribuições"
var
                                                           idade
                                                                   altura
                                                                          tipoSangue
                                                                                     endereço
                                                                                              doador
      idade: inteiro
                                                          (inteiro)
                                                                          (caractere)
                                                                                    (caractere)
                                                                                             (lógico)
                                                                    (real)
      altura: real
      tiposangue, endereco: caractere
      doador: logico
inicio
      idade := 26
      altura := 1.70
                                                           idade
                                                                          tipoSangue
                                                                   altura
                                                                                     endereço
                                                                                               doador
      altura := 1.67
                                                                                               (lógico)
                                                          (inteiro)
                                                                   (real)
                                                                          (caractere)
                                                                                    (caractere)
                                                                                    Av. Norte, 34,
                                                                                               verdadeiro
                                                            26
                                                                    1.67
      tiposanque := "A"
                                                                                      Recife
      endereco := "Av. Norte, 34, Recife"
      doador := verdadeiro
fimalgoritmo
```

Nas atribuições, **NÃO** é permitido inserir valores em uma variável de um tipo diferente do seu.

Exceção: o único caso permitido é a atribuição de um valor inteiro a uma variável real. O contrário não é permitido!

```
algoritmo "Atribuições_Simples"
var

    peso: real
    nome: caractere
    achei: logico
inicio
    peso := 78.7
    nome := "João da Silva"
    achei := falso
fimalgoritmo
```

Correto!

```
algoritmo "Atribuições_Simples"
var
    x, y: inteiro
inicio
    y := 2
    x := y + 2
    x := x + 2
fimalgoritmo
```

Correto!

```
algoritmo "Atribuições_Simples"
var
    salario: real
inicio
    salario := "Insuficiente"
fimalgoritmo
```

Incorreto!

Deve estar claro também que sempre à esquerda do operador de atribuição deve haver uma, e somente uma, variável.

```
algoritmo "Atribuições_Simples"
var
    numeroConta, numeroAgencia, digitoControle: inteiro
    nome, sobrenome: caractere
inicio
    3063 := numeroConta
    numeroAgencia + digitoControle := 1021 + 011
    nome + sobrenome := "João" + "Silva"
fimalgoritmo
```

Incorreto!

Expressões

Operandos

São os elementos de uma expressão que sofrem uma ação.

- Exemplos:
 - Variáveis;
 - Valores;
 - Outras expressões.

Operadores

São os elementos de uma expressão que realizam a ação.

- Exemplos:
 - Operadores aritméticos;
 - Operadores relacionais;
 - Operadores lógicos.

Expressões

```
algoritmo "Exemplo_Expressão"
var
    x: inteiro
inicio
    x := 3 + 2
fimalgoritmo
```

• Na expressão x := 3 + 2, temos:

Operadores Aritméticos

Operador Aritmético	Pseudocódigo
Adição	+
Subtração	-
Multiplicação	*
Divisão	
Divisão inteira	\
Exponenciação	^
Módulo (resto da divisão)	%

Operadores Aritméticos

Expressão	Resultado
1 + 2	3
5.1 - 1	4.1
2 * 1.5	3
5 / 2	2.5
5 \ 2	2
8 ^ 2	64
10 % 5	0

Operadores Aritméticos

Operador Aritmético	Prioridade
Exponenciação	3
Multiplicação	2
Divisão	2
Divisão inteira	2
Módulo (resto da divisão)	2
Adição	1
Subtração	1

Obs.: para alterar a ordem de prioridade, utiliza-se parênteses.

Operadores Aritméticos

• Exemplo:

$$2 + 12 / 2 * 3$$
 $2 + 6 * 3$
 $2 + 18$
 20

$$((2+12)/2)*3$$

 $(14/2)*3$
 $7*3$
21

Expressões Lógicas

Podem ser consideradas afirmações que serão testadas pelo computador.

- Tendo como resultado:
 - verdadeiro
 - falso
- São utilizadas com os operadores relacionais e lógicos.

Operadores Relacionais

Operador Relacional	Pseudocódigo
Maior	>
Menor	<
Maior ou igual	>=
Menor ou igual	<=
Igual	=
Diferente	<>

Operadores Relacionais

Expressão	Resultado
1 = 2	falso
"A" = "a"	verdadeiro
5 > 2	verdadeiro
3 <= 3	verdadeiro
2+3 <> 5	falso

Operador Lógico	Pseudocódigo
Conjunção	e
Disjunção	ou
Negação	nao

- e:
 - Resulta verdadeiro se ambas as expressões forem verdadeiras.
- ou:
 - Resulta verdadeiro se ao menos uma das expressões for verdadeira.
- nao:
 - Nega a expressão, ou seja, inverte o valor.

• Exemplo do operador e:

$$(n > 0) e (n \% 2 = 0)$$

• Exemplo do operador ou:

$$(i \ge 65)$$
 ou $(t \ge 30)$

• Exemplo do operador nao:

nao (n
$$\%$$
 2 = 0)

• Tabela verdade do operador e:

A	В	A e B
verdadeiro	verdadeiro	verdadeiro
verdadeiro	falso	falso
falso	verdadeiro	falso
falso	falso	falso

• Tabela verdade do operador ou:

A	В	A ou B
verdadeiro	verdadeiro	verdadeiro
verdadeiro	falso	verdadeiro
falso	verdadeiro	verdadeiro
falso	falso	falso

• Tabela verdade do operador nao:

A	nao A
verdadeiro	falso
falso	verdadeiro

Operadores

O software Visualg não possui relacionamento de categorias.

• Exemplos:

$$2 * 5 > 3$$
 ou $5 + 1 < 2$ e $2 < 7 - 2$

$$(2 * 5 > 3)$$
 ou $((5 + 1 < 2))$ e $(2 < 7 - 2)$

Comentários

Os comentários são declarações não compiladas que podem conter qualquer informação textual para referência e documentação de seu programa.

- São representados por duas barras normais "//";
- Todo o texto inserido após as duas barras será comentário.

Comentários


```
algoritmo "Olá"

//Exemplo de comentário

var

n: caractere

inicio

escreva("Digite seu nome: ")

leia(n)

escreva("Olá ", n)

fimalgoritmo
```

Linearização de Expressões

Todas as expressões aritméticas devem ser linearizadas, ou seja, colocadas em linhas, devendo também ser feito o mapeamento dos operadores da aritmética tradicional para os do pseudocódigo.

• Exemplo:

Tradicional	Computacional
$\left\{ \left[\frac{2}{3} - (5 - 3) \right] + 1 \right\} \cdot 5$	((2 / 3 - (5 - 3)) + 1) * 5

Referência

• MANZANO, J. A. N. G; OLIVEIRA, J. F. **Algoritmos:** lógica para desenvolvimento de programação de computadores. 27^a ed. São Paulo: Érica, 2014. (Capítulo 3).

