Universidad de la República Facultad de Ingeniería IMERL: Matemática Discreta 2, semipresencial

Primer parcial (segunda prueba) 24 de setiembre de 2018. Duración: 3 horas

Nombre y Apellido	Cédula de identidad

Para cada pregunta o ejercicio, deben presentar claramente el razonamiento y cálculos realizados para obtener su respuesta final. Si una implicancia es válida debido a algún teorema, proposición o propiedad, deben especificarlo. Presentar una respuesta final a la pregunta sin justificación carece de validez.

Ejercicio 1. (9 puntos)

El número de la cédula uruguaya tiene la forma $x_1x_2...x_7 - x_8$ donde cada $x_i, i = 1, 2...8$ es un dígito de 0 a 9. El dígito verificador x_8 se calcula de la siguiente manera. Sea

$$c = \sum_{i=1}^{7} a_i \cdot x_i,$$

donde $(a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (2, 9, 8, 7, 6, 3, 4)$. Entonces x_8 es: $r \equiv -c \pmod{10}$, $0 \le r < 10$.

- a. Verificar cuál o cuáles de las siguientes cédulas son falsas:
 - Cédula (A): 5806386-7
 - Cédula (B): 418160-6
- b. Investigar si el dígito verificador detecta el error de copiar mal el segundo dígito.
- c. Probar que el dígito verificador detecta el error de intercambiar los dos primeros dígitos x_1, x_2 .

Ejercicio 2. (9 puntos)

- a. Demostrar el Teorema de Euler. Sean $a, n \in \mathbb{Z}$ tales que mcd(a, n) = 1, entonces: $a^{\varphi(n)} \equiv 1 \pmod{n}$.
- **b.** Calcular $22^{232} \equiv \pmod{9}$.
- c. Calcular $22^{232} \equiv \pmod{36}$.

Ejercicio 3. (12 puntos)

- **a**. Hallar el $mcd(7^4 1, 11^4 1)$.
- **b.** Demostrar que si $p \ge 7$ es primo entonces $240|(p^4-1)$.
- c. Sea $A \subset \mathbb{Z}^*$ un subjconjunto no vacío de números enteros diferentes de cero. Definimos $\operatorname{mcd}(A) = \max\{d \in \mathbb{Z}^+ \ / \ d | a$, para todo $a \in A\}$. Probar, a partir de las partes anteriores, que: $\operatorname{mcd}\{p^4 1 \ / \ p \geq 7, \ p \text{ primo }\} = 240$.