

Neural Networks

CCDEPLRL: Deep Learning

Joseph Jessie S. Oñate, MSc.

Neural Networks

Neural Network

Single Layer Neural Network

Quantifying Loss

Quantifying Loss

The loss of our network measures the cost incurred from incorrect predictions.

$$L(f(x^{(i)}; W), y^{(i)})$$

Empirical Loss

The empirical loss measures the total loss over our entire dataset.

- **Empirical Risk**

i=1

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and 1

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers.


```
tf.keras.losses.MeanSquaredError(
    reduction='sum_over_batch_size',
    name='mean_squared_error'
)
```


Training Neural Networks

We want to find the network weights that achieve the lowest loss

$$W^* = \underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} L(f(x^{(i)}; W), y^{(i)})$$

$$W^* = \underset{w}{\operatorname{argmin}} J(W)$$

We want to find the network weights that achieve the lowest loss

Remember:
Our loss is a function of the network weights!

Randomly pick an initial (W_0 , W_1)

Compute gradient, $\frac{\partial J(W)}{\partial W}$

Take small step in opposite direction of gradient

Repeat until convergence

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0,\sigma^2)$
- 2. Loop until convergence:
 - 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
 - 4. Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Backpropagation

How does a small change in one weight (ex. w_2) affect the final loss J(W)?

Backpropagation

Repeat this for every weight in the network using gradients from later layers

Training Neural Networks is Difficult

Loss Functions Can Be Difficult to Optimize

Remember:

Optimization through gradient descent

learning rate?

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

 $(\theta)_{\Gamma}$

Large learning rates overshoot, become unstable and diverge

Stable learning rates converge smoothly and avoid local minima

How to deal with this?

Idea I:

Try lots of different learning rates and see what works "just right"

Idea II:

Do something smarter!

Design an adaptive learning rate that "adapts" to the landscape

Adaptive Learning Rates

- Learning rates are no longer fixed
- Can be made larger or smaller depending on:
 - how large gradient is
 - how fast learning is happening
 - size of particular weights
 - etc...

Gradient Descent Algorithms

Algorithm	TF Implementation
SGD	tf.keras.optimizers.SGD()
Adam	tf.keras.optimizers.Adam()
Adadelta	tf.keras.optimizers.Adadelta()
Adagrad	tf.keras.optimizers.Adagrad()
RMSprop	tf.keras.optimizers.RMSprop()
Others	https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

The Problem of Overfitting

Overfitting in Neural Network Regularization

What is it?

Technique that constrains our optimization problem to discourage complex models

Why do we need it?

Improve generalization of our model on unseen data

Regularization I: Dropout

During training, randomly set some activations to 0

Regularization I: Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any node


```
tf.keras.layers.Dropout(
    rate, noise_shape=None, seed=None, **kwargs
)
```


Regularization 2: Early Stopping


```
tf.keras.callbacks.EarlyStopping(
    monitor='val_loss',
    min_delta=0,
    patience=0,
    verbose=0,
    mode='auto',
    baseline=None,
    restore_best_weights=False,
    start_from_epoch=0
)
```

Stop training before we have a chance to overfit

Thank you!

CCDEPLRL: Deep Learning

