A Style for Random Notes

Shawn O'Hare

February 7, 2017

Abstract

This document serves an example utilizing the styles provided by notes.sty

Contents

1	Pag	e Layout																	1
	1.1	Headings	 	 		 													1

1 Page Layout

1.1 Headings

In his later books, [Tufte(2006)] Tufte starts each section with a bit of vertical space, a non-indented paragraph, and sets the first few words of the sentence in SMALL CAPS.

1.1.1 Definition (Gadget). A gadget is a thing. Each gadget comes equipped with some data.

Various special types of gadgets exist. For example, the widget is commonly encountered in practice.

1.1.2 Definition (widget). A widget is a type of gadget.

Below we consider some examples of gadgets. This text serves as an example of a paragraph inbetween two theorem-like environments.

Another paragraph to demonstrate space rendering between paragraphs. Sometimes a line break between each paragraph is desirable.

1.1.3 Example (Gadget). A set is a type of gadget.

This paragraph serves as some text before a remark, which in the amsthm style has no extra space above or below.

1.1.4 Remark (Some remark). Now, let's consider some remark.

This paragraph serves as some text after a remark, which in the amsthm style has no extra space above or below.

1.1.5 Theorem (Quotient Groups). Let G be a finite group and H a normal subgroup. Then the left cosets G/H form a group under left multiplication via (xH)(yH) = xyH.

Animal	Description	Price (\$)
Gnat	per gram each	13.65 50.00
Gnu Emu	$\begin{array}{c} \text{stuffed} \\ \text{stuffed} \end{array}$	10.00 5.00

Table 1.1: An example table

Proof. Since H is normal in G, for any $x \in G$ $H = x^{-1}Hx$. Multiply by x on both sides yields xH = Hx. It follows for any x, y in G that

$$(xH)(yH) = x(Hy)H (1.1)$$

$$= x(yH)H \tag{1.2}$$

$$= xy(HH) \tag{1.3}$$

$$= xyH. (1.4)$$

From this it easily follows that G/H is a group.

References

[Tufte(2006)] Edward R. Tufte. Beautiful Evidence. Graphics Press, LLC, first edition, May 2006. ISBN 0-9613921-7-7.