Figure 2a: I/O interface of the DE10-Standard FPGA board Figure 2b: I/O interface of the DE2-115 FPGA board

Figure 2: I/O interface of the DE10-Standard and the DE2-115 FPGA boards

The digital system is composed of two concurrent parts, combinatorial and synchronous, as shown in Figures 3 and 4.

System Top Entity

Y[n-1:0] X[n-1:0] Overflow, V ALUFN[4:3]-Zero, Z → Carry, C Combinatorial → Negative, N **Digital Circuit** ALUFN[4:3] → ALUout[n-1:0] ALUFN[4:3] ALUFN[4:3] Synchronous → PWM_{out} **Digital Circuit** ALUFN[4:3]-ENA-RST-CLK-ALUFN[2:0]

Figure 3: Digital System subparts

System Top Entity

Figure 4: Digital System subparts architecture

Figure 5: PWM output unit architecture

The whole system must be connected to the Altera board interfaces according to the following diagram:

Figure 6: Digital system with I/O interface

The ISA of the combinatorial subpart is given in Figure 7, which is associated with the LAB1 task.

Function Type	Decimal	ALUFN	Operation	Note
	value			
PWM Output	0	00 000	PWM MODE0	PWM Mode is Set/Reset
(Y and X are 16-bit	1	00 001	PWM MODE1	PWM Mode is Reset/Set
width)	2	00 010	PWM MODE2	PWM Mode is Toggle
Arithmetic	8	01 000	Res=Y+X	
(Y and X are 8-bit	9	01 001	Res=Y-X	Used also for comparison operation
width)	10	01 010	Res=neg(X)	
	11	01 011	Res=Y+1	Increment of Y in one
	12	01 100	Res=Y-1	Decrement of Y in one
	13	01 101	Res=swap(Y)	Res=(Ylshw, Ymshw)
Shift	16	10 000	Res=SHL Y,X(k-1 to 0)	Shift Left Y of q≜X(k-10) times
(Y and X are 8-bit				Res=Y(n-1-q0)#(q@0)
width)				When $k = log_2 n$
	17	10 001	Res=SHR Y,X(k-1 to 0)	Shift Right Y of q≜X(k-10) times
				Res=(q@0)#Y(n-1q)
				When $k = log_2 n$
Boolean	24	11 000	Res=not(Y)	
(Y and X are 8-bit	25	11 001	Res=Y or X	
width)	26	11 010	Res=Y and X	
	27	11 011	Res=Y xor X	
	28	11 100	Res=Y nor X	
	29	11 101	Res=Y nand X	
	30	11 110	Res=Y xnor X	

Figure 7: ISA of the combinatorial subpart of digital design