Name:	
J#:	Dr. Clontz
Date:	

MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

	Mark:
Standard E1.	

Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 2 & -1 & 0 & 1 \\ -1 & 4 & 1 & -7 \\ 1 & 2 & -1 & 0 \end{bmatrix}$$

	Mark:
Standard E2.	

Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix}$$

Standard E3.

Mark:

Find the solution set for the following system of linear equations.

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 8$$
$$x_1 + x_2 - x_3 + 5x_4 = 3$$

Standard E4.

Mark:

Find a basis for the solution set to the homogeneous system of equations given by

$$2x_1 - 2x_2 + 6x_3 - x_4 = 0$$
$$3x_1 + 6x_3 + x_4 = 0$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = 0$$

Standard V1.

Mark:

Let V be the set of all real numbers with the operations, for any $x,y\in V,\,c\in\mathbb{R},$

$$x \oplus y = \sqrt{x^2 + y^2}$$

$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative: $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.
- (b) Determine if V is a vector space or not. Justify your answer.

Standard V2.

Mark:

Determine if $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 3\\0\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\4 \end{bmatrix}$, and $\begin{bmatrix} 5\\1\\-6 \end{bmatrix}$.

$$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and $\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$.

Standard V3.	Mark:						
Determine if the vectors	$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}$, and	$\begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}$	span \mathbb{R}^4 .

Standard V4.

Determine if the set of all lattice points, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers}\}$ is a subspace of \mathbb{R}^2 .

Standard S1.

Mark:

Determine if the set of matrices $\left\{ \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -8 \\ 6 & 5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Standard S2. $\begin{bmatrix} & & & \\ & & & \\ & 1 & \\ & 1 & \\ & 1 & \\ & 1 & \\ \end{bmatrix}, \begin{bmatrix} & 1 & \\ & -1 & \\ & 0 & \\ & 2 & \\ \end{bmatrix}, \begin{bmatrix} & 0 & \\ & 2 & \\ & -1 & \\ & 0 & \\ & -1 & \\ \end{bmatrix}, \begin{bmatrix} & 0 & \\ & 2 & \\ & 0 & \\ & -1 & \\ \end{bmatrix}$ is a basis of \mathbb{R}^4 .

Standard S3.

$$\begin{bmatrix}
\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \\
\end{bmatrix}$$
Let $W = \text{span}\left(\left\{\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}\right\}\right)$. Find a basis of W .

Standard S4.

Mark:

Let W be the subspace of \mathcal{P}_3 given by $W = \operatorname{span}\left(\left\{x^3 - x^2 + 3x - 3, 2x^3 + x + 1, 3x^3 - x^2 + 4x - 2, x^3 + x^2 + x - 7\right\}\right)$. Compute the dimension of W.

Additional Notes/Marks