Computational Physics

Topic 01: Exploratory Data Analysis

Lecture 01 : Top X pandas commands

Dr Kieran Murphy

Computing and Mathematics, SETU (Waterford). (kieran.murphy@setu.ie)

Autumn Semester, 2022/23

Outline

- Reading data formats
- Computing descriptive statistics
- Processing data by filtering and grouping

Part I

Introduction

Minimal Dataset

To better understand the various pandas operations we are going use a tiny* dataset based on (fictional) student results. (marks.csv)

$\rangle \dots$ like to know $\dots \rangle$

- Student performance weighted mark on each module, missing deliverables etc.
- Module performance number of attempts and average mark.
- Deliverable performance number of attempts and average mark, predictor of overall module grade, etc.

^{*}Dataset is small enough that you can verify operation results by hand.

Termonology

df.	df.head(1000)					
	Student	Module	Deliverable	Weight	Mark	
0	Α	Maths	Practical	40	60	
1	Α	Maths	Exam	60	80	
2	Α	Programming	Project 1	10	50	
3	Α	Programming	Project 2	30	60	
4	Α	Networking	Lab Work	100	80	
5	В	Maths	Practical	40	60	
6	В	Maths	Exam	60	80	
7	В	Programming	Project 1	10	50	
8	В	Programming	Project 2	30	60	
9	В	Programming	Project 3	60	75	
10	В	Networking	Project	100	80	
11	С	Maths	Exam	60	80	
12	С	Programming	Project 1	10	50	
13	С	Programming	Project 2	30	60	
14	С	Programming	Project 3	60	75	
15	С	Networking	Lab Work	100	80	

- A DataFrame is a table of data values.
 - df = pd.read_csv("marks.csv")
- A Series is a list of data values typically columns in a dataframe. We can access an individual column using
 - df.Deliverable
 df["Deliverable"]
 df.iloc[:,2]
 (dot notation)
 (dict notation)
 (numpy, index notation)
- The index is a special column whose values can be used to access rows rather using row number.
 - The default index is equal to the row number.

Part II

Input and Output

Reading data from a CSV file

Pandas supports a huge variety of input/output formats so best approach is to focus on what is needed to process the given data and verify input. Our marks dataset is in CSV format so we start with

```
import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
 plt.style.use('seaborn-darkgrid')
                                                                                   (16, 5)
                              Always verify input by checking dataset
                                                                                     Student
                                                                                             Module Deliverable Weight
and input using
                              dimensions and looking at some rows,
                                                                                              Maths
                                                                                                              80
                                                                                              Maths
                                                                                                     Exam
 df = pd.read_csv('marks.csv', sep=',')
                                                                                                   Project 1
                                                                                                               50
                                                                                         A Programming
  print(df.shape)
                                                                                                          100
                                                                                                              80
                                                                                           Networking
                                                                                                   Lab Work
  df.head()
```

Datatypes

Pandas data types:

- object used for text or mixed numeric and non-numeric values.
- int64 integer values,
 - Does not support missing values, so an int column containing at least one missing value will automatically be converted to float.
- float64 floating point numbers.
- bool True/False values
- datetime64 date and time values
- category Finite (typically small) list of text values

Student object
Module object
Deliverable object
Weight int64
Mark int64
dtype: object

df.dtypes

Regularly verifying datatypes is vital[†]:

- Operations differ based on datatype, eg, '+' concatenate strings but adds numerical values.
- datatype can change based on results, eg, int converts to float due to missing values.

[†]Google "Detecting Excel's gene auto-conversions."

Datatypes — Converting

We will deal with modifying and creating new columns later, but while we are on datatypes, we will look at changing datatypes . . .

```
Using the Series function astype
```

```
df["Weight"] = df["Weight"].astype('float')
df["Weight"].dtype

dtype('float64')
```

- New datatype is required argument 'int', 'float', 'str', 'object', 'category', etc.
- Simple, but fragile if data conversion is possible.

```
or using pandas function to_numeric
```

```
df["Weight"] = pd.to_numeric(df["Weight"])
df["Weight"].dtype

dtype('float64')
```

- More powerful, can specify what to do in cases where the conversion fails etc
- Have functions to_numeric, to_datetime, and to_timedelta.

Missing Values

Identifying and dealing with missing values is critical step in data preparation. What should you do? delete rows containing missing values? or impute then? Here we will just look at identifying missing values.

Output

Saving dataframe to CSV is straightforward (I rarely include the (default) index when saving datasets).

```
df.to_csv('marks_2.csv', index=False)
```

- CSV has become the default file format in Data Mining application especially for 'informal' datasets.
- Other formats are better for speed and resulting file size and for saving meta data not supported by CSV (such as columns datatypes, category information, etc).

Part III

Filtering

Selecting individual rows/columns results in a series

Columns can accessed using dot, dict and numpy index notation.

Head and Tail

Commands head and tail return the first and last n rows (default n = 5) of a dataframe/series.

	Student	Module	Deliverable	Weight	Mark
0	A	Maths	Practical	40	60
1	A	Maths	Exam	60	80
2	A	Programming	Project 1	10	50
3	A	Programming	Project 2	30	60
4	A	Networking	Lab Work	100	80
5	В	Maths	Practical	40	60
6	В	Maths	Exam	60	80
7	В	Programming	Project 1	10	50
8	В	Programming	Project 2	30	60
9	В	Programming	Project 3	60	75
10	В	Networking	Project	100	80
11	C	Maths	Exam	60	80
12	C	Programming	Project 1	10	50
13	С	Programming	Project 2	30	60
14	C	Programming	Project 3	60	75
15	С	Networking	Lab Work	100	80

Stud	dent Module	Deliverab	le Weig	ht Mark
0 A	Maths	Practical	40	60
1 A	Maths	Exam	60	80
2 A	Programmi	ng Project 1	10	50
3 A	Programmi	ng Project 2	30	60
4 A	Networking	g Lab Work	100	80

	Student	Module	Deliverable	Weight	Mark
0	A	Maths	Practical	40	60

Student	Module	Deliverable	Weight	Mark
11 C	Maths	Exam	60	80
12 C	Programming	Project 1	10	50
13 C	Programming	Project 2	30	60
14 C	Programming	Project 3	60	75
15 C	Networking	Lab Work	100	80

	Student	Module	Deliverable	Weight	Mark
15	С	Networking	Lab Work	100	80

Query — on a single-column criteria

Query — on multiple columns (using python) ogical operators)

Query — on multiple columns (using pandas ogical operators)

Filtering using 10c

Note the square (not round) brackets — think of loc as array indexing not a function call.

	Student	Module	Deliverable	Weight	Mark
0	A	Maths	Practical	40	60
1	A	Maths	Exam	60	80
2	A	Programming	Project 1	10	50
3	A	Programming	Project 2	30	60
4	A	Networking	Lab Work	100	80
5	В	Maths	Practical	40	60
6	В	Maths	Exam	60	80
7	В	Programming	Project 1	10	50
8	В	Programming	Project 2	30	60
9	В	Programming	Project 3	60	75
10	В	Networking	Project	100	80
11	C	Maths	Exam	60	80
12	С	Programming	Project 1	10	50
13	C	Programming	Project 2	30	60
14	C	Programming	Project 3	60	75
15	C	Networking	Lab Work	100	80

df.loc[ROW_SELECTION, COL_SELECTION] where row and columns selection can be

- Single values: row number or column name
- An integer list for rows or list of column names
- A boolean list for logical indexing of rows
- A colon to indicate every row/column

	Student	Module	Deliverable	Weight	Mark
0	A	Maths	Practical	40	60
1	A	Maths	Exam	60	80
2	A	Programming	Project 1	10	50
3	A	Programming	Project 2	30	60
4	A	Networking	Lab Work	100	80
5	В	Maths	Practical	40	60
6	В	Maths	Exam	60	80
7	В	Programming	Project 1	10	50
8	В	Programming	Project 2	30	60
9	В	Programming	Project 3	60	75
10	В	Networking	Project	100	80
11	C	Maths	Exam	60	80
12	C	Programming	Project 1	10	50
13	C	Programming	Project 2	30	60
14	C	Programming	Project 3	60	75
15	C	Networking	Lab Work	100	80

		Student	Mark
	0	A	60
	1	A	80
	5	В	60
•	6	В	80
	11	C	80

df.loc[df.Module=="Maths", ["Student", "Mark"]]

More complicated example

I prefer to define define row selection criteria, and the column list and order, separately to the loc statement.

	Student	Module	Deliverable	Weight	Mark
0	A	Maths	Practical	40	60
1	A	Maths	Exam	60	80
2	A	Programming	Project 1	10	50
3	A	Programming	Project 2	30	60
4	A	Networking	Lab Work	100	80
5	В	Maths	Practical	40	60
6	В	Maths	Exam	60	80
7	В	Programming	Project 1	10	50
8	В	Programming	Project 2	30	60
9	В	Programming	Project 3	60	75
10	D	Networking	Droject	100	80

	Student	Module	Deliverable	Weight	Mark
0	A	Maths	Practical	40	60
1	A	Maths	Exam	60	80
2	A	Programming	Project 1	10	50
3	A	Programming	Project 2	30	60
4	A	Networking	Lab Work	100	80
5	В	Maths	Practical	40	60
6	В	Maths	Exam	60	80
7	В	Programming	Project 1	10	50
8	В	Programming	Project 2	30	60
9	В	Programming	Project 3	60	75
10	В	Networking	Project	100	80
11	C	Maths	Exam	60	80
12	C	Programming	Project 1	10	50
13	C	Programming	Project 2	30	60
14	С	Programming	Project 3	60	75
15	C	Networking	Lab Work	100	80

	Module	Student	Mark
2	Programming	A	50
3	Programming	A	60
7	Programming	В	50
8	Programming	В	60
12	Programming	C	50
13	Programming	C	60
7 8 12	Programming Programming Programming	B B C	50 60

```
criteria = ((df.Mark<50) & (df.Module=='Maths')) | ((df.Mark<70) & (df.Module!='Maths'))
columns = ['Module', 'Student', 'Mark']
df.loc[criteria, columns]</pre>
```

Sampling

The sample function selects a random subset of the dataframe rows.

- Either specify the number of rows (as an integer) or fraction of the data (as a float).
- Can set the seed using random_state parameter for reproducible samples.

t	Module	Deliverable	Weight	t Mark		Stu	dent Module	Deliverable	Weight	
	Maths	Practical	40	60		5 B	Maths	Practical	40	
	Maths	Exam	60	80		_				
	Programming	Project 1	10	50		2 A	Programming	Project 1	10	4
	Programming	Project 2	30	60		9 B	Programming	Project 3	60	7
	Networking	Lab Work	100	80		<u>-</u> B	1 Togramming	1 Toject 5	00	,
}	Maths	Practical	40	60						
3	Maths	Exam	60	80	25	Stı	ıdent Module	Deliverable	Weight	N
3	Programming	Project 1	10	50	df.sample(n=3)	0 A	Maths	Practical	40	6
3	Programming	Project 2	30	60						
3	Programming	Project 3	60	75		15 C	Networking	Lab Work	100	8
3	Networking	Project	100	80		6 B	Maths	Exam	60	8
C	Maths	Exam	60	80		_	1.10.0115			Ū
C	Programming	Project 1	10	50						
C	Programming	Project 2	30	60		Stu	ident Module	Deliverabl	e Weigh	ıt
C	Programming	Project 3	60	75		10 B	Networking	Project	100	
C	Networking	Lab Work	100	80	\			110,000		
						1 A	Maths	Exam	60	
						14 C	Programmin	g Project 3	60	

Part IV

Sorting

Sorting

A pandas dataframe has two sorting operations:

- sort_index() orders rows based on current index.
- sort_values(COLUMNS) orders rows based on single column or list of columns.

Two important modifications:

- By default, the sort order is in ascending. Set parameter ascending=False to reverse this.
- By default, a new dataframe is returned with desired sort order, set parameter inplace=True to update current dataframe instead.

Studer	nt Module	Deliverab	le Weigl	nt Mark		Stude	nt Module	Deliverable	Weigh	h
0 A	Maths	Practical	40	60	-	1 A	Maths	Exam	60	-
1 A	Maths	Exam	60	80		6 B	Maths	Exam	60	
2 A	Programming	Project 1	10	50		11 C	Maths	Exam	60	
3 A	Programming	510	2.0					actical	40	
4 A	Networking	L df.	sor	t_va	llues(['Module','Deliverable'], inplace=T	rue)		ectical	40	
5 B	Maths	Practical	10	00		- /1	110tworking	Lab Work	100	
6 B	Maths	Exam	60	80		15 C	Networking	Lab Work	100	
7 B	Programming	Project 1	10	50		10 B	Networking	Project	100	
B B	Programming	Project 2	30	60		2 A	Programming	Project 1	10	
9 B	Programming	Project 3	60	75		7 B	Programming	Project 1	10	
10 B	Networking	Project	100	80		12 C	Programming	Project 1	10	
11 C	Maths	Exam	60	80		3 A	Programming	Project 2	30	
12 C	Programming	Project 1	10	50		8 B	Programming	Project 2	30	
13 C	Programming	Project 2	30	60		13 C	Programming	Project 2	30	
14 C	Programming	Project 3	60	75		9 B	Programming	Project 3	60	
15 C	Networking	Lab Work	100	80		14 C	Programming	Project 3	60	

Part V

Defining New Columns

Defining new columns — row-wise operation

We want to compute the weighted mark for each module for each student. Two steps:

- Create column, W_Mark, to store the weighted mark for each deliverable. This is a row by row calculation only need data in current row to compute the result.
- Create column, M_Mark, to store the module mark for each student. This is a group calculation need all rows for that student and module to compute the result.

Studen	t Module	Deliverable	Weight	Mark							Student	Module	Deliverable	Weight	Mark	W_Mark
1 A	Maths	Exam	60	80							1 A	Maths	Exam	60	80	48
6 B	Maths	Exam	60	80							6 B	Maths	Exam	60	80	48
11 C	Maths	Exam	60	80							11 C	Maths	Exam	60	80	48
0 A	Maths	Practical	40	60							0 A	Maths	Practical	40	60	24
5 B	Maths	Practical	40	60							5 B	Maths	Practical	40	60	24
4 A	Networking	Lab Work	10027	-1 C	TITT Ma	1-1	7 40 5	7 1- +	l C Ml-	// 100	_	Networking	Lab Work	100	80	80
15 C	Networking	Lab Work	100	ai	L w_Mai	ark	J = ar.v	veignt >	* df.Mark	// 100		Networking	Lab Work	100	80	80
10 B	Networking	Project	100	80						>	10 B	Networking	Project	100	80	80
2 A	Programming	Project 1	10	50							2 A	Programming	Project 1	10	50	5
7 B	Programming	Project 1	10	50							7 B	Programming	Project 1	10	50	5
12 C	Programming	Project 1	10	50							12 C	Programming	Project 1	10	50	5
3 A	Programming	Project 2	30	60		NI	and to m	a diet n	otation (not	7	3 A	Programming	Project 2	30	60	18
8 B	Programming	Project 2	30	60		\ IN	eed to us	se dict no	otation (not)	8 B	Programming	Project 2	30	60	18
13 C	Programming	Project 2	30	60		do	ot notatio	n) when	defining a		13 C	Programming	Project 2	30	60	18
9 B	Programming	Project 3	60	75	((ew colun			(9 B	Programming	Project 3	60	75	45
14 C	Programming	Project 3	60	75			- Coluit	·····			14 C	Programming	Project 3	60	75	45

Defining new columns — group aggregate result

45

45

75

75

Programming Project 3

Programming Project 3

9 B

14 C

- Create column, W_Mark, to store the weighted mark for each deliverable. This is a row by row calculation only need data in current row to compute the result.
- Create column, M_Mark, to store the module mark for each student. This is a group calculation need all rows for that student and module to compute the result.

24 of 28

Defining new columns — group aggregate result

columns to group on output cols

df.groupby(['Student','Module'])[['W_Mark']].sum().reset_index()

aggregate

	Student	Module	Deliverable	Weight	Mark	W_Mark
1	A	Maths	Exam	60	80	48
6	В	Maths	Exam	60	80	48
11	C	Maths	Exam	60	80	48
0	A	Maths	Practical	40	60	24
5	В	Maths	Practical	40	60	24
4	A	Networking	Lab Work	100	80	80
15	C	Networking	Lab Work	100	80	80
10	В	Networking	Project	100	80	80
2	A	Programming	Project 1	10	50	5
7	В	Programming	Project 1	10	50	5
12	C	Programming	Project 1	10	50	5
3	A	Programming	Project 2	30	60	18
8	В	Programming	Project 2	30	60	18
13	С	Programming	Project 2	30	60	18
9	В	Programming	Project 3	60	75	45
14	С	Programming	Project 3	60	75	45

This is the required result and we can save this to a new dataframe. However, we often want to put this into to out original dataframe as an extra column. Only problem we have different rows so can't just assign to a new column — need to use transform function.

	Student	Module	W_Mark
0	A	Maths	72
1	A	Networking	80
2	A	Programming	23
3	В	Maths	72
4	В	Networking	80
5	В	Programming	68
6	C	Maths	48
7	C	Networking	80
8	С	Programming	68

Defining new columns — group aggregate result

output cols columns to group on df['M_Mark'] = df.groupby(['Student','Module'])[['W_Mark']].transform(sum) aggregate Deliverable Weight Mark W Mark M Mark **Student Module** Deliverable Weight Mark W Mark **Student Module** 1 A Maths 80 48 Maths 60 80 48 72 Exam 60 Exam 6 B 48 80 72 Maths 60 Maths 60 80 48 Exam Exam 11 C 48 11 C Maths 80 Maths 60 48 48 Exam 60 Exam 80 Maths 60 24 72 Practical 40 Maths Practical 60 24 40 5 B Maths Practical 40 24 Maths **Practical** 60 24 72 60 40 **Student Module** W Mark 80 Α Networking 80 80 Networking Lab Work 80 Lab Work 80 100 100 80 - 80 0 A 72 Maths 15 C C Networking Lab Work 80 Networking Lab Work 80 100 100 80 1 A Networking 80 Networking Project 10 B 0 B 80 Networking Project 80 80 80 **480** 100 100 2 A Programming 23 Programming Project 1 5 3 B Programming Project 1 5 23 10 50 10 50 Maths 72 4 B Networking 80 7 B 5 В Programming Project 1 Programming Project 1 10 50 10 50 5 68 5 B Programming 68 **12** C C Programming Project 1 50 5 Programming Project 1 5 68 10 10 50 6 C Maths 3 A Programming Project 2 18 Programming Project 2 18 30 60 7 C A 30 60 23 Networking 80 8 B Programming Project 2 30 60 18 В Programming Project 2 30 18 68 8 C Programming 68 60 13 C Programming Project 2 30 60 18 13 C Programming Project 2 30 18 68 60 9 B Programming Project 3 45 Programming Project 3 9 B 68 60 75 60 75 45 14 C 14 C Programming Project 3 Programming Project 3 68 45 75 45 60 60

The transform broadcasts the result for each group over every row in that group.

26 of 28

Part VI

Review Exercises

Review Exercises

Generate the following reports:

- Number of deliverables by each student.
- List and rank deliverables by grade.
- Top 2 deliverables (by grade).
- Top 2 module (by average grade).
- Top 2 modules (by minimum grade).
- **Modules** (by minimum grade).

Harder exercises (new functions)

• List which students missed which deliverables.

(pivot, melt)