

College Algebra and Trigonometry

Prof. Liang ZHENG

Fall 2024

1 Graph Linear Equations in Two Variables

Linear Equation in Two Variables

A linear equation in two variables x and y is the equation that is written in the standard form as:

$$Ax + By = C$$
.

where A, B, C are real numbers in which both A and B are nonzero.

Example 1:

Graph the following linear equations.

a)
$$2x + 3y = 6$$

b)
$$\frac{x}{2} - \frac{y}{3} = 1$$

2 Determine a Slope of a Line

Slope of a Line:

The slope of a line passing through the distinct points (x_1, y_1) and (x_2, y_2) is:

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

provided that x_1 and x_2 are non equal.

Example 2:

Find the slope of the line passing through the given points.

a)
$$(-3, -2)$$
 and $(2, 5)$

Example 3:

Find the slope of horizontal and vertical lines.

a)
$$x = -2$$

b)
$$y = 3$$

Linear Equations and Slopes of Lines:

$$Ax + By = C$$

 $(A \neq 0 \text{ and } B \neq 0)$

Slanted line

$$x = k$$

(k is a constant)

Vertical line

$$y = C$$

(C is a constant)

Horizontal line

Negative Slope

Undefined Slope

Zero Slope

3 Apply the Slope-Intercept Form of a Line

Slope-Intercept Form of a Line:

Given a line with slope m and y-intercept (0, b), the slope-intercept form of the line is given by:

$$y = mx + b$$

Example 4:

Use the slope and y-intercept to graph a line given 3x + 4y = 4.

- a) Write the equation in the slope-intercept form.
- b) Determine the slope and y-intercept.
- c) Graph the line by using the slope and y-intercept.

Definition of Linear and Constant Functions

Let m and b represent real numbers where $m \neq 0$. Then:

- A function defined by f(x) = mx + b is a linear function whose graph is a slanted line.
- A function defined by f(x) = b is a constant function whose graph is a horizontal line.

Example 5:

Write an equation of the line with a slope of 3 and passing through the point (2, 1). Then write the linear equation using the function notation y = f(x).

4 Compute Average Rate of Change

Average Rate of Change:

If a function f(x) is defined on an interval $[x_1, x_2]$, then the average rate of change of f(x) on this interval is the slope of the secant line containing (x_1, y_1) and (x_2, y_2) , written as:

Average rate of change
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Example 6:

Given the function $f(x) = x^2 - 1$, Determine the average rate of change from $x_1 = -2$ to $x_2 = 0$.

1 Apply the Point-Slope Formula

$$\frac{y - y_1}{x - x_1} = m$$

$$y - y_1 = m(x - x_1)$$
Slope Formula

Point-Slope Formula

Point-Slope Formula

The point-slope formula for a line is given by $y - y_1 = m(x - x_1)$, where m is the slope of the line and (x_1, y_1) is a point on the line.

Example 1:

Use the point-slope formula to find an equation for the line passing through the point (2, -3) and having the slope of -4. Write the answer in the slope-intercept form.

Example 2:

Use the point-slope formula to find an equation for the line passing through the points (4, -6) and (-1, 2). Write the answer in the slope-intercept form.

2 Determine the Slopes of Parallel and Perpendicular Lines

Slopes of Parallel and Perpendicular Lines

- If m_1 and m_2 represent the slopes of two nonvertical parallel lines, then $m_1 = m_2$.
- If m_1 and m_2 represent the slopes of two nonvertical perpendicular

lines, then
$$m_1 = -\frac{1}{m_2}$$
, or equivalently $m_1 m_2 = -1$.

Example 3:

Write an equation of the line passing through the point (-4, 1) and parallel to the line defined by x + 4y = 3. Write the answer in the slope-intercept form and the standard form.

Example 4:

Write an equation of the line passing through the point (2, -3) and perpendicular to the line defined by y = x/2 - 4. Write the answer in the slope-intercept form and the standard form.