1. NOÇÕES TOPOLÓGICAS EM R e INDUÇÃO MATEMÁTICA (SOLUÇÕES)

1.2.

a)
$$int(A) = (1,5)$$
,
 $ext(A) = (-\infty, 1) \cup (5, +\infty)$,
 $fr(A) = \{1,5\}$,
 $A' = [1,5] = \overline{A}$,
 $isol(A) = \varnothing$;
b) $int(B) = (-3, -1) \cup (1, 2)$,
 $ext(B) = \mathbb{R} \setminus ([-3, -1] \cup [1, 2] \cup \{0, 4\})$,
 $fr(B) = \{-3, -1, 0, 1, 2, 4\}$,
 $B' = [-3, -1] \cup [1, 2] = \overline{B}$,
 $isol(B) = \{0, 4\}$;
c) $int(C) = (-5, 2) \cup (2, 9)$,
 $ext(C) = (-\infty, -5) \cup (9, +\infty)$
 $ext(D) = (-2, 2)$

c)
$$int(C) = (-5, 2) \cup (2, 9)$$
, d) $int(D) = (-\infty, -2) \cup (2, +\infty)$, $ext(C) = (-\infty, -5) \cup (9, +\infty)$, $ext(D) = (-2, 2)$, $fr(C) = \{-5, 2, 9\}$, $fr(D) = \{-2, 2\}$, $fr(D) = \{-2, 2\}$, $fr(D) = \{-2, 2\}$, $fr(D) = [-\infty, -2] \cup [2, +\infty) = \overline{D}$, $fr(D) = \emptyset$;

e)
$$int(E) = \emptyset$$
, $ext(E) = \mathbb{R} \setminus (E \cup \{1\})$, $fr(E) = E \cup \{1\} = \overline{E}$, $E' = \{1\}$, $isol(E) = E$.

1.3.

- a) $int(A) = \emptyset$, $ext(A) = \mathbb{R} \setminus A$, $fr(A) = A = \{1, 2, 3, 4, 5\}$, $A' = \emptyset$, $\overline{A} = A$, isol(A) = A, $A \in n\tilde{a}o \text{ aberto, mas } \in fechado;$
- b) $int(B) = (-\infty, 4)$, $ext(B) = (4, +\infty)$, $fr(B) = \{4\}$, $B' = B = \overline{B}$, $isol(B) = \emptyset$, B é não aberto, mas é fechado;
- c) int(C)=C, $ext(C)=(-\infty,-3)$, $fr(C)=\{-3\}$, $C'=[-3,+\infty)=\overline{C}$, $isol(C)=\varnothing$, C é aberto, mas é não fechado;
- d) $int(D) = (-\infty, -1) \cup (0, +\infty)$, ext(D) = (-1, -0), $fr(D) = \{-1, 0\}$, $D' = D = \overline{D}$, $isol(D) = \emptyset$, D é não aberto, mas é fechado;
- e) $int(E)=\varnothing=E, \quad ext(E)=\mathbb{R}, \quad fr(E)=\varnothing, \quad E'=\varnothing=\overline{E}, \quad isol\left(E\right)=\varnothing, \quad E$ é aberto e fechado;

- $f) \ int(F) = F, \quad ext(F) = \mathbb{R} \setminus \left(\left[-\sqrt{3}, -1 \right] \cup \left[1, \sqrt{3} \right] \right), \quad fr(F) = \left\{ -\sqrt{3}, -1, 1, \sqrt{3} \right\}, \quad F' = \left[-\sqrt{3}, -1 \right] \cup \left[1, \sqrt{3} \right] = \overline{F}, \quad isol\left(D \right) = \varnothing, \quad F \text{ \'e aberto, mas \'e n\~ao fechado.}$
- g) $int(G) = \emptyset$, $ext(G) = \mathbb{R}\backslash\mathbb{N}$, fr(G) = G, $G' = \emptyset$, $\overline{G} = G$, isol(G) = G, G é não aberto, mas é fechado;
- h) $int(H) = \emptyset$, $ext(H) = \emptyset$, $fr(H) = \mathbb{R}$, $H' = \mathbb{R} = \overline{H}$, $isol(H) = \emptyset$, H não é aberto nem fechado;
- $i) \ \ int(I)=I, \quad ext(I)=\varnothing, \quad fr(I)=\varnothing, \quad I'=I=\overline{I} \ , \quad isol \ (I)=\varnothing, \quad I \ \ \text{\'e} \ \ \text{aberto e fechado}.$

1.4.

- a) $D_f = (-\infty, -3) \cup (3, +\infty)$;
- b) $int(D_f) = D_f$, $ext(D_f) = (-3,3)$, $fr(D_f) = \{-3,3\}$, $\overline{D_f} = (-\infty, -3] \cup [3, +\infty) = D'_f$;
- c) D_f é aberto, porque $int(D_f) = D_f$; D_f é não fechado, porque $\overline{D_f} \neq D_f$; D_f não é limitado, pois não é majorado nem minorado.

1.5.

- a) $D_a = (-\infty, -2) \cup (0, +\infty)$;
- b) $int(D_g) = D_g$, $ext(D_g) = (-2, 0)$, $\overline{D_g} = (-\infty, -2] \cup [0, +\infty) = D'_g$;
- c) D_g é aberto, mas não é fechado nem limitado.

1.6.

- a) $D_h = \mathbb{R} \setminus \{-1, 1\}$;
- b) $int(D_h) = \mathbb{R} \setminus \{-1, 1\}, \quad ext(D_h) = \emptyset, \quad fr(D_h) = \{-1, 1\}, \quad \overline{D_h} = \mathbb{R} \text{ e } isol(D_h) = \emptyset;$
- c) D_f é aberto, mas não é fechado nem limitado.

1.7.

a) Como $Maj\ A = \emptyset$ e $Min\ A = (-\infty, 5]$, então A é minorado, mas não é majorado, portanto, A não é limitado; inf (A) = 5, mas não existe o sup (A), o max (A) e o min (A);

- b) Como $Maj\ B = [-2, +\infty)$ e $Min\ B = \emptyset$, então B é majorado, mas não é minorado, portanto, B não é limitado; sup $(B) = \max(B) = -2$, mas não existe o inf (B) e o min (B);
- c) Como Maj $C = [3, +\infty)$ e Min $C = (-\infty, -3]$, então C é majorado e minorado, logo C é limitado; $\sup(C) = \max(C) = 3$ e $\inf(C) = \min(C) = -3$;
- d) Como $Maj\ D=Min\ D=\varnothing$, então D não é majorado nem minorado, portanto, D não é limitado; Além disso, não existe o $\sup(D)$, o $\max(D)$, o $\inf(D)$ e o $\min(D)$;
- e) Como $Maj\ E = [10, +\infty)$ e $Min\ E = (-\infty, \sqrt{5}]$, então E é majorado e minorado, logo E é limitado; $\sup(E) = 10$ e $\inf(E) = \min(E) = \sqrt{5}$, mas não existe o $\max(E)$;
- f) Como $Maj\ F = \emptyset$ e $Min\ F = (-\infty, 0]$, então F é minorado, mas não é majorado, portanto, F não é limitado; inf (F) = 0, mas não existe o $\sup(F)$, o $\max(F)$ e o $\min(F)$.

1.8.

- a) Verdadeira, dado que se tem sempre $int(A) \subset A$ e se também se tem $A \subset int(A)$ (por hipótese), então conclui-se que int(A) = A, pelo que A é aberto;
- b) Falso, porque $\{-1,0,1\} \not\subseteq fr(A) = \{-1,1\};$
- c) Verdadeira, porque uma vez que $\overline{A} = A \cup fr(A)$, então tem-se $A \subset \overline{A}$;
- d) Falso, porque $fr(\mathbb{R}\backslash A) = fr(A) \in fr(A) \cap ext(A) = \emptyset$;
- e) Falso, porque B não tem mínimo.