PROPOSISI

(Bagian II)

7.1. Tautologi, Kontradiksi, dan Kontingensi

Tautologi merupakan suatu pernyataan majemuk yang selalu bernilai benar untuk semua kemungkinan nilai kebenaran dari pernyataan-pernyataan komponennya. Sementara, kontradiksi merupakan suatu pernyataan majemuk yang selalu bernilai salah untuk semua kemungkinan nilai kebenaran dari pernyataan-pernyataan komponennya. Sedangkan, kontingensi merupakan suatu pernyataan majemuk yang nilai kebenarannya merupakan perpaduan antara benar dan salah.

Contoh 1:

Tunjukkan bahwa:

a. $(p \land q) \rightarrow p$ adalah suatu tautologi.

b. $p \wedge (q \wedge \sim p)$ adalah suatu kontradiksi.

Jawab

a. Dengan menggunakan tabel kebenaran,

p	q	$p \wedge q$	$(p \land q) \rightarrow p$
В	В	В	В
В	S	S	В
S	В	S	В
S	S	S	В

Jadi, $(p \land q) \rightarrow p$ adalah suatu tautologi.

b. Dengan menggunakan tabel kebenaran,

p	q	~ p	<i>q</i> ∧~ <i>p</i>	$p \wedge (q \wedge \sim p)$
В	В	S	S	S
В	S	S	S	S
S	В	В	В	S
S	S	В	S	S

Jadi, $p \land (q \land \sim p)$ adalah suatu kontradiksi.

7.2. Argumen

Argumen adalah suatu rangkaian pernyataan yang dibentuk oleh sekumpulan pernyataan majemuk (yang dinamakan premis) yang kemudian menghasilkan suatu pernyataan majemuk baru (yang dinamakan konklusi/kesimpulan). Sebagai contoh, argumen dapat disajikan dalam susunan sebagai berikut.

a Premis 1 b Premis 2 $\therefore c$ Konklusi/kesimpulan Penyataan a sebagai premis 1, pernyataan b sebagai premis 2, dan pernyataan c sebagai konklusi/kesimpulan. Tanda \therefore dibaca 'jadi' atau 'oleh karena itu'.

Argumen dikatakan sahih (valid) jika konjungsi dari premis-premisnya berimplikasi konklusi. Sedangkan, argumen dikatakan tidak sahih (invalid) jika konjungsi dari premis-premisnya tidak berimplikasi konklusi. Sahih atau tidaknya suatu argumen dapat diuji dengan tabel kebenaran:

- jika menghasilkan suatu tautologi, maka argumen itu sahih (valid),
- jika tidak menghasilkan suatu tautologi, maka argumen itu tidak sahih (invalid).

Perhatikan contoh berikut untuk memahami pengujian suatu argumen dengan menggunakan tabel kebenaran. Misalkan:

Sesudah itu, buatlah pernyataan majemuk dari argumen di atas, yakni:

$$((a) \land (b) \land (c)) \rightarrow (d)$$

Contoh 2:

Periksalah sahih atau tidaknya argumen berikut ini!

Premis 1 Jika Jeni seorang artis, maka ia berparas cantik.

Premis 2 Jeni berparas cantik.

Konklusi Jeni seorang artis.

Jawab:

Tetapkan terlebih dahulu pernyataan-pernyataan berikut:

p: Jeni seorang artis.

q : Jeni berparas cantik.

Dengan menetapkan pernyataan-pernyataan di atas, argumen pada soal dapat disusun menjadi:

$$p \to q$$

$$\underline{q}$$

$$\therefore p$$

Pernyataan majemuk dari argumen di atas adalah: $((p \rightarrow q) \land q) \rightarrow p$.

p	q	$p \rightarrow q$	$(p \rightarrow q) \land q$	$((p \to q) \land q) \to p$
В	В	В	В	В
В	S	S	S	В
S	В	В	В	S
S	S	В	S	В

Berdasarkan tabel di atas, tampak bahwa $((p \rightarrow q) \land q) \rightarrow p$ bukanlah tautologi. Dengan demikian, argumen ini tidaklah sahih.

Dalam logika matematika, sahih atau tidaknya suatu argumen tidak tergantung pada wajar atau tidaknya makna suatu konklusi sebagai suatu pernyataan.

- Ada argumen yang konklusinya bermakna wajar, tetapi tidak diturunkan dengan memakai prinsip-prinsip logika yang benar. Argumen seperti ini tidak sahih.
- Ada argumen yang konklusinya bermakna tidak wajar, tetapi diturunkan dengan memakai prinsip-prinsip logika yang benar. Argumen seperti ini sahih.

7.3. Metode Penarikan Kesimpulan

Metode yang digunakan dalam penarikan kesimpulan ada tiga, yaitu:

1) modus ponens

$$\begin{array}{c}
p \to q \\
\hline
 \vdots q
\end{array}$$

2) modus tollens

$$\begin{array}{c}
p \to q \\
\sim q \\
\hline
\therefore \sim p
\end{array}$$

3) silogisme

$$\begin{array}{c}
p \to q \\
q \to r \\
\hline
\therefore p \to r
\end{array}$$

Contoh 3:

Diketahui:

P₁: Jika Andi belajar, maka ia tidak gagal ujian.
P₂: Jika Andi tidak bermain catur, maka ia belajar.

P₃ : Ternyata, Andi gagal ujian. Tentukan konklusi dari ketiga premis di atas!

Jawab:

Tetapkan terlebih dahulu pernyataan-pernyataan berikut:

p : Andi belajar.
q : Andi gagal ujian.
r : Andi bermain catur.

Dengan menetapkan pernyataan-pernyataan di atas, maka:

 $\begin{array}{cccc} P_1 & : & p \rightarrow \sim q \\ P_2 & : & \sim r \rightarrow p \\ P_3 & : & q \end{array}$

Pertama-tama, selesaikan dulu P_1 dan P_2 . Ingat kembali bahwa implikasi ekuivalen dengan kontraposisi, sehingga $P_1: p \to \sim q \equiv q \to \sim p$ dan $P_2: \sim r \to p \equiv \sim p \to r$.

Dengan silogisme,

$$\begin{array}{c}
q \to \sim p \\
\sim p \to r \\
\hline
\therefore q \to r
\end{array}$$

Selanjutnya, hasil yang didapat dari P_1 dan P_2 disambungkan dengan P_3 . Dengan modus ponens,

$$\begin{array}{c}
q \to r \\
\hline
q \\
\hline
\vdots r
\end{array}$$

Jadi, kesimpulannya adalah Andi bermain catur.

7.4. Pernyataan Berkuantor dan Ingkarannya

Pernyataan berkuantor merupakan suatu pernyataan untuk menyatakan jumlah objek yang terlibat. Kuantor ini ada dua macam, kuantor universal dan kuantor eksistensial.

Kuantor universal (\forall) menunjukkan bahwa setiap objek dalam semestanya mempunyai sifat kalimat yang menyatakan semuanya. Contoh kata yang digunakan sebagai kuantor universal adalah semua atau setiap. Berikut adalah contoh kalimatnya:

'Semua bilangan prima adalah bilangan asli."

Penulisan pernyataan berkuantor universal adalah sebagai berikut. Misalkan p(x) adalah suatu kalimat terbuka, maka penulisannya: $\forall x$, p(x) (dibaca: Untuk semua x, berlakulah p(x)).

Contoh 4:

Diketahui kalimat terbuka p(x): 2x-1=3.

Nyatakan pernyataan berkuantor universal dari p(x) serta nilai kebenarannya, jika himpunan semestanya adalah:

- a. semua himpunan bilangan real *R*.
- b. semua himpunan bilangan bulat *Z*.
- c. semua himpunan bilangan asli *N*.

Jawab:

$$\forall x \in R, \ 2x - 1 = 3$$

Pernyataan berkuantor universal ini bernilai salah. (Ambil x = 3/2 sebagai contoh penyangkal.)

b.
$$\forall x \in \mathbb{Z}, \ 2x-1=3$$

Pernyataan berkuantor universal ini bernilai salah. (Ambil x = -2 sebagai contoh penyangkal.)

c.
$$\forall x \in \mathbb{N}, \ 2x-1=3$$

Pernyataan berkuantor universal ini bernilai salah. (Ambil x = 4 sebagai contoh penyangkal.)

Kuantor eksistensial (∃) menunjukkan bahwa antara objek-objek dalam semesta, paling sedikit ada satu objek atau lebih yang memenuhi sifat kalimat yang menyatakannya. Contoh kata yang digunakan sebagai kuantor eksistensial adalah beberapa, sebagian, ada, atau sekurang-kurangnya. Berikut adalah contoh kalimatnya:

'Beberapa bilangan genap adalah bilangan prima."

Penulisan pernyataan berkuantor eksistensial adalah sebagai berikut. Misalkan p(x) adalah suatu kalimat terbuka, maka penulisannya: $\exists x, \ p(x)$ (dibaca: Ada x sedemikian sehingga berlakulah p(x)).

Contoh 5:

Diketahui kalimat terbuka p(x): 2x-1=3 dan $q(x): x^2+4 \le 0$.

Nyatakan pernyataan berkuantor eksistensial dari p(x) dan q(x) serta nilai kebenarannya, jika himpunan semestanya adalah himpunan bilangan real R!

Jawab:

$$\exists x \in R, 2x-1=3$$

Pernyataan berkuantor eksistensial ini bernilai benar; karena ada nilai $x \in R$ sehingga 2x-1=3 berlaku, yaitu saat x=2.

$$\exists x \in R, \ x^2 + 4 \le 0$$

Pernyataan berkuantor eksistensial ini bernilai salah. (Tidak ada nilai x yang memenuhi pertidaksamaan $x^2 + 4 \le 0$.)

Selanjutnya, ingat kembali mengenai negasi atau ingkaran dari suatu pernyataan. Setidaknya, ada tiga hal yang perlu diperhatikan, yaitu: negasi dari pernyataan p dilambangkan $\sim p$, saat p bernilai benar maka $\sim p$ bernilai salah, dan saat p bernilai salah maka $\sim p$ bernilai benar.

PERNYATAAN BERKUANTOR	NEGASI (INGKARAN)
$\forall x, \ p(x)$	$\exists x, \sim p(x)$
Semua X adalah Y.	Beberapa <i>X</i> bukan <i>Y</i> .
Semua A adami 1.	Tidak semua <i>X</i> adalah <i>Y</i> .
$\exists x, \ p(x)$	$\forall x, \sim p(x)$
$\exists x, \ p(x)$	$\forall x, \sim p(x)$ Semua <i>X</i> bukan <i>Y</i> .
$\exists x, \ p(x)$ Beberapa X adalah Y .	* * * * * * * * * * * * * * * * * * * *

Contoh 6:

Tentukan negasi atau ingkaran dari pernyataan-pernyataan berikut:

- a. $\forall x, x^2 1 < 0$
- b. $\exists x, x+4=1$
- c. Semua bilangan prima adalah bilangan asli.
- d. Beberapa bilangan genap adalah bilangan prima.

Jawab:

a.
$$\sim [\forall x, x^2 - 1 < 0] \equiv \exists x, \sim (x^2 - 1 < 0) \equiv \exists x, x^2 - 1 \ge 0$$

b.
$$\sim [\exists x, x+4=1] \equiv \forall x, \sim (x+4=1) \equiv \forall x, x+4\neq 1$$

- c. Beberapa bilangan prima bukan bilangan asli.
- d. Semua bilangan genap bukan bilangan prima.

LATIHAN SOAL

1. Tentukan manakah dari pernyataan majemuk di bawah ini yang merupakan tautologi!

a.
$$[\sim (p \lor \sim q) \lor (\sim p \land \sim q)] \leftrightarrow \sim p$$

b.
$$(q \rightarrow r) \rightarrow [(p \lor q) \rightarrow (p \lor r)]$$

2. Periksalah kesahihan setiap argumen berikut!

$$\begin{array}{c}
p \to q \\
 \sim p \\
 \therefore \sim q
\end{array}$$

$$\begin{array}{c}
\sim p \to q \\
\sim q \\
\vdots p
\end{array}$$

$$\begin{array}{c}
 \sim q \to p \\
q \lor \sim p \\
 \vdots q
\end{array}$$

3. Premis 1 : Jika suatu bilangan habis dibagi 6, maka bilangan itu habis dibagi 3.

Premis 2 : 60 habis dibagi 6.

Kesimpulan: 60 habis dibagi 3.

Tunjukkan apakah penarikan kesimpulan pada argumen di atas sahih!

- 4. Tentukan ingkaran dari setiap pernyataan berkuantor berikut!
 - a. Semua tamu boleh menyalami pengantin.
 - b. Setiap bilangan real adalah rasional atau irasional.
 - c. Ada murid mengatakan belajar itu membosankan.
 - d. Beberapa fungsi kuadrat tidak memotong sumbu-x.
- 5. Tentukanlah konklusinya!
 - a. Jika Aron dermawan, maka ia disenangi masyarakat. Namun sayangnya, ia bukanlah seorang yang dermawan.
 - b. Jika servis hotel baik, maka hotel itu kedatangan banyak tamu. Hotel itu akan mendapat untung besar jika kedatangan banyak tamu.
 - c. Jika lulus Ujian Nasional dan tidak lulus SBMPTN, maka Prisma bekerja di perusahaan swasta. Kenyataannya, Prisma tidak bekerja di perusahaan swasta.
 - d. Jika penguasaan matematika rendah, maka sulit untuk menguasai Logika Matematika. Logika Matematika tidak sulit dikuasai atau penalaran logis tidak berkembang. Jika penalaran logis tidak berkembang, maka negara akan semakin tertinggal.