1. used example-projection.c

starting from DEM file from INGV, create projected map, and get the geodetic coordinate of the experiment location.

visualisation of of the surrounding area of the Mt. Vesuvius, based on a 5m precision **DEM** file from INGV.

National Institute of Geophysics and Volcanology - Vesuvius Observatory.

projected map

MURAVES location in DEM

MURAVES experiment **Geodetic Coordinate**. latitude = 40.810251, longitude = 14.411708

checked with Google Earth

2. used example-stepper.c

MURAVES' Geodetic Coordinate

ECEF Coordinate Position

+ azimuth and elevation angle

Cartesian Direction in ECEF

Loaded the <u>projected map</u>, used turtle_stepper_step

Rockthickness map of the Mt. Vesuvius at the observation point MURAVES

3. using geometry.c

- only take 2 arguments: Azimuth (ψ) and Elevation (α) angels.
 - -> direction = $(-sin\theta, 0, -cos\theta)$, $\theta = 90 \alpha$
- load RockThickness evaluated with Turtle.
- one medium so far: local_rock

$$r = \sqrt{x^2 + y^2 + z^2} \qquad ur = \sqrt{ux^2 + uy^2 + uz^2}$$

- ? 1. z < 0, Muon outside the simulation area; step = -1
 - 2. r < rock thickness t,
 - 1) uz > 0, backwards upgoing:

step =
$$\frac{t-r}{ur}$$

2) uz < 0, backwards downgoing:

step =
$$-\frac{r}{ur}$$

