# PARC: Cross-Lingual Retrieval Augmented Prompt for Low-Resource Languages

Ercong Nie\* 1,2

Sheng Liang\* 1,2 Hinrich Schütze<sup>1,2</sup> Helmut Schmid<sup>1</sup>







<sup>1</sup>Center for Information and Language Processing (CIS), LMU Munich, Germany

<sup>2</sup> Munich Center for Machine Learning (MCML), Germany

\* Equal contribution

September 1, 2023



- Introduction
- 2 Motivation
- 3 PARC : Prompts Augmented by Retrieval Crosslingually
- Experimental Results and Analysis
- Conclusion

#### Introduction



#### Background:

- Multilingual pretrained language models (MPLMs), pretrained on multilingual corpora with >100 languages, exhibit strong multilinguality on downstream tasks.
- Low-resource languages (LRLs), for which little text data is available for pretraining monolingual pretrained language models (PLMs), benefit from MPLMs.

#### But...

- lacktriangledown Pretraining corpora of MPLMs are **imbalanced distributed** in languages. ightarrow LRLs are **under-represented**.
- ② LRLs lack annotated data for finetuning. → LRLs are difficult to employ pretraining-finetuning paradigm.



- Introduction
- 2 Motivation
- 3 PARC : Prompts Augmented by Retrieval Crosslingually
- 4 Experimental Results and Analysis
- Conclusion

#### Motivation



#### Our work aims to

- improve the zero-shot transfer performances of LRLs on natural language understanding tasks
- leverage the cross-lingual retrieval and the multilinguality of MPLMs.

#### Specifically, we

- first retrieve semantically similar cross-lingual sentences from high-resource languages (HRLs)
- then use the cross-lingual retrieval information to benefit the LRLs from the multilinguality of MPLMs



- Introduction
- 2 Motivation
- 3 PARC : Prompts Augmented by Retrieval Crosslingually
- 4 Experimental Results and Analysis
- Conclusion

# PARC Pipeline



To this end, we propose the PARC pipeline, Prompts Augmented by Retrieval Crosslingually. It consists of two steps:

- Cross-lingual retrieval from HRL corpora
  - An LRL input sample is taken as query by the cross-lingual retriever to retrieve the semantically most similar HRL sample from the HRL corpus.
  - The label of the retrieved HRL sample is obtained either from the corpus (labeled setting) or by self-prediction (unlabeled setting).
- Prediction with a retrieval-augmented prompt



(b) Prediction with a retrieval-augmented promptFigure: The pipeline of our proposed PARC method

# PARC Pipeline



- Cross-lingual retrieval from HRL corpora
- Prediction with a retrieval-augmented prompt
  - The retrieved HRL sample together with its label and the input sample are reformulated as prompts. For that, we need a pattern P(.) to convert the input sentence into a cloze-style question with a mask token, e.g.: P(X) = X ∘ "In summary, the product was [MASK].", and a verbalizer v(.) to map each possible class onto a word, e.g.: {pos → "great". neg → "terrible"}.
  - In this way, retrieved HRL sample is reformulated by the prompt pattern P(.) as the cross-lingual context C<sub>k</sub><sup>i</sup>:

$$C_k^i = P(X_k^{R_i}, v(y_k^{R_i}))$$

 Next, the cross-lingual retrieval-augmented prompt is created by the concatenation operator as the final input I<sub>i</sub>.

$$I_i = C_k^i \circ P(X_i^L)$$

At last, the prompted input augmented by cross-lingual retrieval I<sub>i</sub> is taken by the MPLM M for prediction. M performs masked token prediction and returns the probabilities p = M(I<sub>i</sub>) of all candidate words for the masked token in I<sub>i</sub>. We predict the class ŷ whose verbalizer v(ŷ) received the highest probability from model M:

$$\hat{y} = \arg\max_{y \in Y} p(v(y))$$



(a) Retrieval from high-resource language corpora



(b) Prediction with a retrieval-augmented prompt

Figure: The pipeline of our proposed PARC method



- Introduction
- 2 Motivation
- 3 PARC : Prompts Augmented by Retrieval Crosslingually
- Experimental Results and Analysis
- Conclusion

#### Main results



|                 | Amazon | AGNews | XNLI | Avg. |
|-----------------|--------|--------|------|------|
| MAJ             | 50.0   | 25.0   | 33.3 | 36.1 |
| Random          | 48.2   | 25.6   | 32.4 | 35.4 |
| Direct          | 53.8   | 36.3   | 33.1 | 41.1 |
| Finetune        | 68.6   | 57.9   | 34.5 | 53.7 |
| PARC -unlabeled | 58.4   | 46.7   | 33.5 | 46.2 |
| PARC -labeled   | 68.9   | 67.6   | 35.8 | 57.4 |

Table: Overview of results on three classification tasks. The reported numbers are averaged across 10 evaluation LRLs. The number of prompts k=1 in relevant baselines and our methods for all three tasks.

- PARC performs better than the direct baseline in both unlabeled and labeled settings.
- PARC in labeled setting outperforms the finetuning baseline.

# Effect of Languages



| Unlabeled           | Sim.                 |                     | source size           |                     | target size          |                    |
|---------------------|----------------------|---------------------|-----------------------|---------------------|----------------------|--------------------|
| Spearman<br>Pearson | corr<br>0.28<br>0.27 | p<br>0.05<br>0.06*  | corr<br>0.20<br>0.22  | p<br>0.16*<br>0.12* | corr<br>0.31<br>0.38 | p<br>0.03<br>6e-03 |
| labeled             | Sim.                 |                     | source size           |                     | target size          |                    |
| Spearman<br>Pearson | corr<br>0.42<br>0.41 | p<br>2e-03<br>3e-03 | corr<br>0.08<br>-3e-4 | p<br>0.54*<br>1.00* | corr<br>0.44<br>0.46 | p<br>1e-03<br>8e-4 |

Table: Correlations between Amazon review performance and three features. Sim.: language similarity between an LRL and an HRL; source (target) size: the log of the data size (MB) of source (target). \*: insignificant result with a p value larger than 0.05.

 Pretraining data size of LRL and language similarity positively correlate to the transfer performance.



Figure: Accuracy on three tasks with different k in the labeled (LB) and unlabeled (UN) setup.

• Increasing the number of retrieved prompts improves performance at first, but deteriorates it after a certain point.

#### Generalization to other retrievers and MPLMs



|       |                                                                                         | Amazon                                      | AGNews                                      | XNLI                                        | Avg.                                        |
|-------|-----------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Direc | t                                                                                       | 53.8                                        | 36.2                                        | 33.1                                        | 41.0                                        |
| UN    | mBERT+pooling<br>mBERT+distiluse<br>mBERT+paraphrase<br>XLM-R+paraphrase<br>mBERT+LaBSE | 53.1<br>54.7<br>59.6<br><b>70.1</b><br>59.4 | 36.9<br>38.4<br>46.7<br><b>57.4</b><br>43.8 | 33.6<br>34.0<br>33.7<br>34.7<br><b>35.1</b> | 41.2<br>42.3<br>46.7<br><b>54.1</b><br>46.1 |
| LB    | mBERT+pooling<br>mBERT+distiluse<br>mBERT+paraphrase<br>XLM-R+paraphrase<br>mBERT+LaBSE | 53.6<br>62.8<br>72.9<br><b>73.0</b><br>72.2 | 58.0<br>63.8<br>67.6<br>76.0<br><b>80.0</b> | 33.8<br>34.6<br>36.8<br>35.7<br><b>37.5</b> | 48.5<br>53.7<br>59.1<br>61.6<br><b>63.2</b> |

Table: Accuracy with different models used in our approach. pooling: cosine similarity of the last hidden states from the MPLM; distiluse: distiluse-base-multilingual-cased-v2, sentence transformer of multilingual distillBERT; paraphrase: paraphrase-multilingual-mpnet-base-v2, sentence transformer of XLM-R. UN: unlabeled setup; LB: labeled setup.

 PARC shows strong generalization ability to different cross-lingual retrievers and MPLMs.

# Robustness on unseen languages



|       |     | lg   | Sn   | Mt   | Co   | Sm   |
|-------|-----|------|------|------|------|------|
| Direc | t   | 30.3 | 32.1 | 29.8 | 32.6 | 30.4 |
|       | k=1 | 56.5 | 59.7 | 63.9 | 75.0 | 52.0 |
| LB    | k=3 | 58.1 | 61.4 | 65.2 | 78.2 | 54.1 |
|       | k=5 | 58.8 | 61.6 | 65.9 | 79.8 | 55.4 |
| UN    | k=1 | 36.6 | 37.3 | 39.1 | 42.6 | 34.4 |
|       | k=3 | 34.8 | 36.2 | 37.6 | 40.6 | 33.9 |
|       | k=5 | 34.8 | 35.3 | 37.2 | 40.4 | 34.1 |
|       |     | St   | Haw  | Zu   | Ny   | Avg. |
| Direc | :t  | 30.4 | 27.1 | 34.4 | 29.8 | 30.8 |
| LB    | k=1 | 53.5 | 49.9 | 58.0 | 54.9 | 58.1 |
|       | k=3 | 55.5 | 49.7 | 58.5 | 57.0 | 59.7 |
|       | k=5 | 56.8 | 51.4 | 58.8 | 58.0 | 60.7 |
|       | k=1 | 36.3 | 31.6 | 35.6 | 35.3 | 36.5 |
|       |     |      |      |      |      |      |
| UN    | k=3 | 33.7 | 31.0 | 34.3 | 32.9 | 35.0 |

Table: Results of several unseen languages on a topic categorization task (AG News dataset). Ig - Igbo, Sn - Shona, Mt - Maltese, Co - Corsican, Sm - Samoan, St - Sesotho, Haw - Hawaiian, Zu - Zulu, Ny - Chiechewa.

PARC shows strong robustness to unseen languages.



- Introduction
- 2 Motivation
- 3 PARC : Prompts Augmented by Retrieval Crosslingually
- 4 Experimental Results and Analysis
- Conclusion

#### Conclusions



- We propose Prompts Augmented by Retrieval Crosslingually (PARC), a pipeline for integrating retrieved cross-lingual information into prompt engineering for zero-shot learning.
- We conduct experiments on three different multilingual classification tasks: binary sentiment analysis of product reviews, news topic classification, and natural language inference task.
- To find an optimal configuration of our PARC pipeline, we conduct a comprehensive study on the variables that affect the zero-shot performance: the number of prompts, the choice of HRL, and the robustness w.r.t. other retrieval methods and MPLMs.

# Thanks for your attention!