Delay, Loss, and Throughput

Daniel Zappala

CS 460 Computer Networking Brigham Young University

Delay

• How fast will your data get from point A to point B?

Delay Queueing Theory Calculating Delay Throughput Measurement Tools

Processing Delay

 the time it takes a node to check a message for errors, decide where it goes next, and queue it for delivery Delay Queueing Theory Calculating Delay Throughput Measurement Tools

Queueing Delay

- the time a message spends waiting in a queue before being sent on a link
- most network queues are FIFO

Delay Queueing Theory Calculating Delay Throughput Measurement Tools

Transmission Delay

- the time it takes for the source to send a message on the link
- given by L/R
 - *L* = length of the message in bits
 - R = rate of the link, in bits/second

Propagation Delay

- the time it takes for the message to travel down the link
- limited by the speed of light
- speed of electricity in cable: $s = 2 * 10^8 m/s$
- propagation delay = d/s, d is the length of the link in meters

Sources of Delay

Queueing Theory

Observations and Questions

- transmission delay and propagation delay are fixed, depend on the type of link
- processing delay depends on CPU speed, CPU load, complexity of table lookup
- queueing delay depends on load
 - how often do packets arrive?
 - how big are they?
 - how do we model queueing delay?

Basic Definitions

- arrival process: probability distribution to model arriving packets
- service process: probability distribution to model service time, equivalent to probability distribution for packet size
- number of servers: how many links are sending to the destination, one in the simplest case

M/D/1 Queue

definition

- M = exponential arrival rate (Poisson process)
- D = deterministic service rate
- 1 = 1 server (or 1 link to the destination)
- unlimited queue size

parameters

- $\lambda = \text{mean arrival rate (packets per second)}$
- $\mu = R/L =$ mean service rate (packets per second)
- $\bullet \quad \rho = \lambda/\mu$

forumulas

- average queue length, $\bar{Q} = rac{
 ho^2}{2(1ho)}$
- average wait time in queue, $\bar{w} = \frac{1}{2\mu} (\frac{\rho}{1-\rho})$
- average time in system, $\bar{t} = \frac{1}{2\mu} (\frac{2-\rho}{1-\rho})$

M/D/1 Queueing Delay

• as ρ approaches 1, delay becomes infinite

Packet Loss

- what causes packet loss?
 - queue overflow
 - what causes the queue to overflow?
 - packets arriving faster than they can be serviced
 - $\rho > 1$
- can packet loss happen with $\rho < 1$?

Calculating Delay

Single Queue

 What if you want to send a message between two directly-connected machines?

- ignore processing delay (very short in modern routers)
- problem
 - 2 machines, joined by 1 link
 - $ightharpoonup R = 10 \; ext{Mbps, d} = 1000 \; ext{m}$
 - \bullet L = 10,000 bits, divided into 10 packets of 1,000 bits
 - D = total delay from first machine to second machine = ?
- solution
 - transmission delay = $L/R = 100 \mu s$
 - propagation delay = $d/s = 5\mu s$
 - one packet takes $L/R + d/s = 105 \mu s$

Calculating Delay over a Single Queue

- ignore processing delay (very short in modern routers)
- problem
 - 2 machines, joined by 1 link
 - $ightharpoonup R = 10 \; Mbps, \; d = 1000 \; m$
 - \bullet L = 10,000 bits, divided into 10 packets of 1,000 bits
 - D = total delay from first machine to second machine = ?
- solution
 - transmission delay = $L/R = 100 \mu s$
 - propagation delay = $d/s = 5\mu s$
 - one packet takes $L/R + d/s = 105 \mu s$
 - 10 packets take $10 * (L/R + d/s) = 1050 \mu s = 1.05 ms$?

Parallelism

- parallelism in propagation delay
 - transmission delay = $L/R = 100 \mu s$
 - propagation delay = $d/s = 5\mu s$
 - propagation delay so small that packet 1 arrives at 2nd machine before it is finished being transmitted at first machine
 - as last part of a packet travels down the link, the next packet can be sent on the link
- $D = 10 * L/R + d/s = 1005\mu = 1.005ms$

delay?

What about queueing

Calculating Delay over Multiple Queues

- A transmits a 1 MB file to C, using 1 kB packets
- how long will it take?
- is it bandwidth or delay constrained?

Calculating Delay over Multiple Queues

90ms + 1000 * 80ms + 10ms = 80.1seconds

Calculating Delay over Multiple Queues

- A transmits a 1 MB file to C, using 1 kB packets
- how long will it take?
- is it bandwidth or delay constrained?

40ms + 1000 * 10ms + 30ms = 10.07seconds

Throughput

Delay Approximation using Throughput

- where is the bottleneck?
 - at the edges?
 - in the core?
- delay = file size ÷
 bottleneck rate

Measurement Tools

ping

- measures the round-trip time and records any packet loss
- how it works
 - sends ICMP echo request packets to the target host
 - listens for ICMP echo response replies
- demonstration

traceroute

- records the route a packet will take and the delay to each hop
- how it works
 - sends a series of UDP packets to a machine on port 33434
 - the first three packets use a TTL of 1, the next three use a TTL of 2, etc.
 - each hop that sees an expired TTL will send an ICMP time exceeded message
- demonstration
- tcptraceroute uses TCP packets and open ports to get around traceroute blocking