

Mathematics: analysis and approaches Higher level Paper 3

$\overline{}$						
·.	n	\sim	\sim 1	n	\sim	n
S	IJ	ㄷ	G		ı	11
_	г	_		٠.		

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- · Answer all the questions in the answer booklet provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [55 marks].

Answer **all** questions in the answer booklet provided. Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 30]

This question asks you to investigate regular n-sided polygons inscribed and circumscribed in a circle, and the perimeter of these as n tends to infinity, to make an approximation for π .

(a) Consider an equilateral triangle ABC of side length, x units, inscribed in a circle of radius 1 unit and centre O as shown in the following diagram.

The equilateral triangle ABC can be divided into three smaller isosceles triangles, each subtending an angle of $\frac{2\pi}{3}$ at O, as shown in the following diagram.

Using right-angled trigonometry or otherwise, show that the perimeter of the equilateral triangle ABC is equal to $3\sqrt{3}$ units.

(b) Consider a square of side length, x units, inscribed in a circle of radius 1 unit. By dividing the inscribed square into four isosceles triangles, find the exact perimeter of the inscribed square.

[3]

[3]

(Question 1 continued)

Find the perimeter of a regular hexagon, of side length, x units, inscribed in a circle of radius 1 unit. [2]

Let $P_i(n)$ represent the perimeter of any *n*-sided regular polygon inscribed in a circle of radius 1 unit.

(d) Show that
$$P_i(n) = 2n\sin\left(\frac{\pi}{n}\right)$$
. [3]

Use an appropriate Maclaurin series expansion to find $\lim P_i(n)$ and interpret this (e) result geometrically.

[5]

Consider an equilateral triangle ABC of side length, x units, circumscribed about a circle of radius 1 unit and centre O as shown in the following diagram.

Let $P_c(n)$ represent the perimeter of any n-sided regular polygon circumscribed about a circle of radius 1 unit.

(f) Show that
$$P_c(n) = 2n \tan\left(\frac{\pi}{n}\right)$$
. [4]

(g) By writing
$$P_c(n)$$
 in the form $\frac{2\tan\left(\frac{\pi}{n}\right)}{\frac{1}{n}}$, find $\lim_{n\to\infty}P_c(n)$. [5]

Use the results from part (d) and part (f) to determine an inequality for the value of π in (h) terms of n. [2]

The inequality found in part (h) can be used to determine lower and upper bound approximations for the value of π .

(i) Determine the least value for n such that the lower bound and upper bound approximations are both within 0.005 of π . [3]

[4]

[4]

2. [Maximum mark: 25]

This question asks you to investigate some properties of the sequence of functions of the form $f_n(x) = \cos(n \arccos x)$, $-1 \le x \le 1$ and $n \in \mathbb{Z}^+$.

Important: When sketching graphs in this question, you are **not** required to find the coordinates of any axes intercepts or the coordinates of any stationary points unless requested.

- (a) On the same set of axes, sketch the graphs of $y = f_1(x)$ and $y = f_2(x)$ for $-1 \le x \le 1$. [2]
- (b) For odd values of n > 2, use your graphic display calculator to systematically vary the value of n. Hence suggest an expression for odd values of n describing, in terms of n, the number of
 - (i) local maximum points;
 - (ii) local minimum points.
- (c) On a new set of axes, sketch the graphs of $y = f_2(x)$ and $y = f_4(x)$ for $-1 \le x \le 1$. [2]
- (d) For even values of n > 2, use your graphic display calculator to systematically vary the value of n. Hence suggest an expression for even values of n describing, in terms of n, the number of
 - (i) local maximum points;
 - (ii) local minimum points.
- (e) Solve the equation $f_n'(x) = 0$ and hence show that the stationary points on the graph of $y = f_n(x)$ occur at $x = \cos \frac{k\pi}{n}$ where $k \in \mathbb{Z}^+$ and 0 < k < n. [4]

The sequence of functions, $f_n(x)$, defined above can be expressed as a sequence of polynomials of degree n.

(f) Use an appropriate trigonometric identity to show that $f_2(x) = 2x^2 - 1$. [2]

Consider $f_{n+1}(x) = \cos((n+1)\arccos x)$.

- (g) Use an appropriate trigonometric identity to show that $f_{n+1}(x) = \cos(n\arccos x)\cos(\arccos x) \sin(n\arccos x)\sin(\arccos x).$ [2]
- (h) Hence
 - (i) show that $f_{n+1}(x) + f_{n-1}(x) = 2xf_n(x), n \in \mathbb{Z}^+$;
 - (ii) express $f_3(x)$ as a cubic polynomial. [5]