

TI Precision Labs - Clocks and Timing

Presented by Dean Banerjee Prepared by Vibhu Vanjari

Overview

- Types of clocking devices
- Examples of common clock trees
- System-level constraints
- Output clock requirements
- Input considerations

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

- 1. Performance vs power vs price
- 2. Identify the power rails required by each device
- Identify the total current consumed on each power rail
- 4. Ensure the total power consumption meets your power consumption budget

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

- 1. Performance vs power vs price
- 2. Identify the power rails required by each device
- Identify the total current consumed on each power rail
- 4. Ensure the total power consumption meets your power consumption budget

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

- 1. Performance vs power vs price
- 2. Identify the power rails required by each device
- Identify the total current consumed on each power rail
- 4. Ensure the total power consumption meets your power consumption budget

			MI	N	NOM	MAX	UNIT
V_{DD}	Device supply voltage		1.	7	1.8	1.9	V
Vo	Outrot Vice completed them a Middle of	CDCE937	2	3		3.6	1/
	Output Yx supply voltage, Vddout	CDCEL937	1	7		1.9	V
	PARAMETER	TEST CONDITIONS		MI	N TYP ⁽¹⁾	MAX	UNIT

	PARAMETER	TEST CONDITIO	ONS	MIN TYP ⁽¹⁾ MAX	UNIT
	Supply current (age Figure 1)	All outputs off, $f_{(CLK)} = 27 \text{ MHz}$,	All PLLS on	29	m A
IDD	Supply current (see Figure 1)	f _(VCO) = 135 MHz	Per PLL	9	mA
I _{DDOUT}	Output supply current	No load, all outputs on,	CDCE937, V _{DDOUT} = 3.3 V	3.1	A
	(see Figure 2 and Figure 3)	f _{OUT} = 27 MHz	CDCEL937, V _{DDOUT} = 1.8 V	1.5	mA
I _{DD(PD)}	Power-down current	Every circuit powered down excep $f_{IN} = 0$ MHz, $V_{DD} = 1.9$ V	t SDA/SCL,	50	μА

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

- 1. Performance vs power vs price
- 2. Identify the power rails required by each device
- Identify the total current consumed on each power rail
- 4. Ensure the total power consumption meets your power consumption budget

			MIN	NOM	MAX	UNIT
V_{DD}	Device supply voltage		1.7	1.8	1.9	V
Vo	Output Viv outpuls voltage Viddout	CDCE937	2.3		3.6	\/
	Output Yx supply voltage, Vddout	CDCEL937	1.7		1.9	V
			<u>'</u>			

	PARAMETER	TEST CONDITIO	NS	MIN TYP ⁽¹⁾ MAX	UNIT
		All outputs off, f _(CLK) = 27 MHz,	All PLLS on	29	mΛ
IDD		f _(VCO) = 135 MHz	Per PLL	9	mA
I _{DDOUT}	Output supply current (see Figure 2 and Figure 3)	No load, all outputs on,	CDCE937, V _{DDOUT} = 3.3 V	3.1	A
		f _{OUT} = 27 MHz	CDCEL937, V _{DDOUT} = 1.8 V	1.5	mA
I _{DD(PD)}	Power-down current	Every circuit powered down except f _{IN} = 0 MHz, V _{DD} = 1.9 V	t SDA/SCL,	50	μА

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

- 1. Performance vs power vs price
- 2. Identify the power rails required by each device
- Identify the total current consumed on each power rail
- 4. Ensure the total power consumption meets your power consumption budget

			MIN	NOM	MAX	UNIT
V_{DD}	Device supply voltage		1.7	1.8	1.9	V
Vo	Output Viv outpuls voltage Viddout	CDCE937	2.3		3.6	\/
	Output Yx supply voltage, Vddout	CDCEL937	1.7		1.9	V
			<u>'</u>			

	PARAMETER	TEST CONDITION	MIN TYP ⁽¹⁾ MAX	UNIT	
	Supply current (see Figure 1)	All outputs off, $f_{(CLK)} = 27 \text{ MHz}$,	All PLLS on	29	m A
IDD	Supply current (see Figure 1)	f _(VCO) = 135 MHz	Per PLL	9	mA
	Output supply current	No load, all outputs on,	CDCE937, V _{DDOUT} = 3.3 V	3.1	m^
IDDOUT	(see Figure 2 and Figure 3)	f _{OUT} = 27 MHz	CDCEL937, V _{DDOUT} = 1.8 V	1.5	- mA
I _{DD(PD)}	Power-down current	Every circuit powered down exception fin = 0 MHz, V _{DD} = 1.9 V	ot SDA/SCL,	50	μА

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

Compare the price of the devices selected.

Compare	Part Number Filter by part number Q	Function	Number of outputs	Output type	Output frequency (Max) (MHz)	Input type	Core supply voltage (V)	Output supply voltage (V)	Operating temperature range (C)	Package size: mm2:W x L (PKG)	Approx. price (USD)
	CDCEL937 - Programmable 3-PLL VCXO clock synthesizer with 1.8-V LVCMOS outputs	Clock synthesizer	7	LVCMOS	230	XTAL, LVCMOS	1.8	1.8	-40 to 85	42 mm2: 6.4 x 6.5 (TSSOP 20	\$1.883 1ku
	CDCEL913 - Programmable 1-PLL VCXO clock synthesizer with 1.8-V LVCMOS outputs	Clock synthesizer	3	LVCMOS	230	XTAL, LVCMOS	1.8	1.8	-40 to 85	32 mm2: 6.4 x 5 (TSSOP 14)	\$1.408 1ku
	CDCEL925 - Programmable 2-PLL VCXO clock synthesizer with 1.8-V LVCMOS outputs	Clock synthesizer	5	LVCMOS	230	XTAL, LVCMOS	1.8	1.8	-40 to 85	22 mm2: 4.4 x 5 (TSSOP 16)	\$1.584 1ku
	CDCEL949 - Programmable 4-PLL VCXO clock synthesizer with 1.8-V LVCMOS outputs	Clock synthesizer	9	LVCMOS	230	XTAL	1.8	1.8	-40 to 85	34 mm2: 4.4 x 7.8 (TSSOP 24	\$2.068 1ku
	CDCE937 - Programmable 3-PLL VCXO clock synthesizer with 2.5-V or 3.3-V LVCMOS outputs	Clock synthesizer	7	LVCMOS	230	XTAL, LVCMOS	1.8	2.5, 3.3	-40 to 85	42 mm2: 6.4 x 6.5 (TSSOP 20	\$1.883 1ku

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

LMX2820 package dimensions

- I. Identify the package sizes of devices
- 2. Determine the external components needed
- 3. Budget for routing clock signals

LMX2820 loop filter

LMX2820 routing

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

LMX2820 package dimensions

- 1. Identify the package sizes of devices
- 2. Determine the external components needed
- 3. Budget for routing clock signals

LMX2820 loop filter

LMX2820 routing

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

LMX2820 package dimensions

- 1. Identify the package sizes of devices
- 2. Determine the external components needed
- 3. Budget for routing clock signals

LMX2820 loop filter

LMX2820 routing

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

LMX2820 package dimensions

- I. Identify the package sizes of devices
- 2. Determine the external components needed
- 3. Budget for routing clock signals

LMX2820 loop filter

LMX2820 routing

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

LMK04832-SP package

		MIN	NOM	MAX	UNIT
VDD_VCO	Core supply voltage	1.71	1.8, 2.5, 3.3	3.465	V
VDDO_12, VDDO_34	Output supply voltage	1.71	1.8, 2.5, 3.3	3.465	V
VDD_REF	Reference supply voltage	1.71	1.8, 2.5, 3.3	3.465	V
T _A	Ambient temperature	-40		105	°C
TJ	Junction temperature	-40		125	°C

CDCE6214-Q1 operating conditions

			VALUE	UNIT
		Human-body model (HBM), per AEC Q100-002, HBM ESD Classification Level 2 ⁽¹⁾	2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011 CDM ESD Classification Level C5	750	V

CDCE6214-Q1 ESD ratings

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

- Power consumption
- Price
- Area
- High reliability
- Free-running vs synchronous

- Output frequencies
- Number of outputs
- Jitter/noise performance
- Output formats

- Output frequencies
- Number of outputs
- Jitter/noise performance
- Output formats

- Output frequencies
- Number of outputs
- Jitter/noise performance
- Output formats

- Output frequencies
- Number of outputs
- Jitter/noise performance
- Output formats

			MIN	NOM	MAX	UNIT
		VA19, Analog 1.9V supply ⁽¹⁾	1.8	1.9	2.0	V
V_{DD}	Supply Voltage Range	VA11, Analog 1.1V supply ⁽¹⁾	1.05	1.1	1.15	V
		VD11, Digital 1.1V supply ⁽²⁾	1.05	1.1	1.15	V
V _{CMI} Inp		INA+, INA-, INB+, INB-(1)	-50	0	100	mV
	Input common mode voltage	CLK+, CLK-, SYSREF+, SYSREF-(1)(3)	0.0	0.3	0.55	V
		TMSTP+, TMSTP-(1)(4)	0.0	0.3	0.55	V
	Input voltage, peak-to-peak	CLK+ to CLK-, SYSREF+ to SYSREF-, TMSTP+ to TMSTP-	0.4	1.0	2.0	V _{PP-DIFF}
	differential	INA+ to INA-, INB+ to INB-			1.0(5)	V _{PP-DIFF}
V _{IH}	High level input voltage	CALTRIG, NCOA0, NCOA1, NCOB0, NCOB1, PD, SCLK, SCS, SDI, SYNCSE ⁽¹⁾	0.7			٧
V _{IL}	Low level input voltage	CALTRIG, NCOA0, NCOA1, NCOB0, NCOB1, PD, SCLK, SCS, SDI, SYNCSE ⁽¹⁾			0.45	٧

LVDS termination

ADC12DJ3200 input voltage requirements

Input considerations

- Input frequency
- Input format
- Input jitter/noise performance

Input considerations

- Input frequency
- Input format
- Input jitter/noise performance

Input considerations

- Input frequency
- Input format
- Input jitter/noise performance

External VCXO for jitter cleaning

BAW VCO1 for jitter cleaning

LMK05318B block diagram

Key resources

Generate clock tree solutions on webench.ti.com/clock-tree-architect

- Download PLLatinum Sim at ti.com/tool/PLLATINUMSIM-SW
- For all clocking related questions reach us at e2e.ti.com/support/clock-and-timing
- To find more technical resources and search products, visit ti.com/clocks
- Related videos from the TI Precision Labs Clocks and Timing series:
 - 1.1 Systems Overview 4.1 Frequency Planning

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

Short quiz

- 1. True or false: There are clocking devices where the jitter at the output is better than the jitter at the input
- 2. True or false: For a device that has higher current consumption, the power consumption will also be higher.
- True or false: Provided a driving output meets signal swing and differential/single-ended requirements it will be compatible to drive an input
- 4. True or false: The clock jitter can limit the maximum achievable SNR for a data converter.

© Copyright 2021 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com