torch.nn.functional

Convolution functions

conv1d	Applies a 1D convolution over an input signal compose of several input planes.
conv2d	Applies a 2D convolution over an input image compose of several input planes.
conv3d	Applies a 3D convolution over an input image compose of several input planes.
conv_transpose1d	Applies a 1D transpose convolution operator over an input signal compose of several input planes, sometimes also calle "econvolution".
conv_transpose2d	Applies a 2D transpose convolution operator over an input image compose of several input planes, sometimes also calle "econvolution".
conv_transpose3d	Applies a 3D transpose convolution operator over an input image compose of several input planes, sometimes also calle "econvolution"
unfold	Extract sli ing local locks from a atche input tensor.
fold	Com ine an array of sli ing local locks into a large containing tensor.

Pooling functions

1 3 3 111 8 1 4 11 2 11 3		
avg_pool1d	Applies a 1D average pooling over an input signal compose of several input planes.	
avg_pool2d	Applies 2D average-pooling operation in $kH imes kW$ regions y step size $sH imes sW$ steps.	
avg_pool3d	Applies 3D average-pooling operation in $kT imes kH imes kW$ regions y step size $sT imes sH imes sW$ steps.	
max_pool1d	Applies a 1D max pooling over an input signal compose of several input planes.	
max_pool2d	Applies a 2D max pooling over an input signal compose of several input planes.	
max_pool3d	Applies a 3D max pooling over an input signal compose of several input planes.	
max_unpool1d	Compute a partial inverse of MaxPool1d.	
max_unpool2d	Compute a partial inverse of MaxPool2d.	
max_unpool3d	Compute a partial inverse of MaxPool3d.	
lp_pool1d	Apply a 1D power-average pooling over an input signal compose of several input planes.	
lp_pool2d	Apply a 2D power-average pooling over an input signal compose of several input planes.	
lp_pool3d	Apply a 3D power-average pooling over an input signal compose of several input planes.	
adaptive_max_pool1d	Applies a 1D a aptive max pooling over an input signal compose of several input planes.	
adaptive_max_pool2d	Applies a 2D a aptive max pooling over an input signal compose of several input planes.	
adaptive_max_pool3d	Applies a 3D a aptive max pooling over an input signal compose of several input planes.	
adaptive_avg_pool1d	Applies a 1D a aptive average pooling over an input signal compose of several input planes.	

adaptive_avg_pool3d	compose of several input planes.
<pre>fractional_max_pool2d</pre>	Applies 2D fractional max pooling over an input signal compose of several input planes.
<pre>fractional_max_pool3d</pre>	Applies 3D fractional max pooling over an input signal compose of several input planes.

Attention Mechanisms

The torch.nn.attention.bias mo ule contains attention_ iases that are esigne to e use with scale _ ot_pro uct_attention.

scaled_dot_product_attention	scale _ ot_pro uct_attention(query, key, value, attn_mask=None, ropout_p=0.0,
------------------------------	---

Non-linear activation functions

Non-inteal activation functions	
threshold	Apply a threshol to each element of the input Tensor.
threshold_	In-place version of threshold().
relu	Applies the rectifie linear unit function element-wise.
relu_	In-place version of relu().
hardtanh	Applies the Har Tanh function element-wise.
hardtanh_	In-place version of hardtanh().
hardswish	Apply har swish function, element-wise.
relu6	Applies the element-wise function $\mathrm{ReLU6}(x) = \min(\max(0,x),6).$
elu	Apply the Exponential Linear nit (EL) function element-wise.
elu_	In-place version of elu().
selu	Applies element-wise, $\mathrm{SELU}(x) = scale * (\max(0,x) + \min(0,\alpha*(\exp(x)-1)))$, with $\alpha=1.6732632423543772848170429916717$ an $\ scale=1.0507009873554804934193349852946$.
celu	Applies element-wise, $\operatorname{CELU}(x) = \max(0,x) + \min(0,lpha*(\exp(x/lpha)-1)).$
leaky_relu	Applies element-wise, $\operatorname{LeakyReLU}(x) = \max(0,x) + \operatorname{negative_slope} * \min(0,x)$
leaky_relu_	In-place version of <pre>leaky_relu()</pre> .
prelu	Applies element-wise the function $\mathrm{PReLU}(x) = \max(0,x) + \mathrm{weight} * \min(0,x)$ where weight is a learnalle parameter.
rrelu	Ran omize leaky ReL .
rrelu_	In-place version of rrelu().
glu	The gate linear unit.
gelu	When the approximate argument is 'none', it applies element-wise the function $\operatorname{GELU}(x) = x * \Phi(x)$
logsigmoid	Applies element-wise $\operatorname{LogSigmoid}(x_i) = \log\left(rac{1}{1 + \exp(-x_i)} ight)$
hardshrink	Applies the har shrinkage function element-wise
tanhshrink	Applies element-wise, $\mathrm{Tanhshrink}(x) = x - \mathrm{Tanh}(x)$
softsign	Applies element-wise, the function $\mathrm{SoftSign}(x) = rac{x}{1+ x }$

softmin	Apply a softmin function.
softmax	Apply a softmax function.
softshrink	Applies the soft shrinkage function elementwise
gumbel_softmax	Sample from the Gum el-Softmax istri ution (Link 1 Link 2) an optionally iscretize.
log_softmax	Apply a softmax followe y a logarithm.
tanh	Applies element-wise, $\mathrm{Tanh}(x)=\mathrm{tanh}(x)=rac{\exp(x)-\exp(-x)}{\exp(x)+\exp(-x)}$
sigmoid	Applies the element-wise function $\operatorname{Sigmoid}(x) = rac{1}{1 + \exp(-x)}$
hardsigmoid	Apply the Har sigmoi function element-wise.
silu	Apply the Sigmoi Linear nit (SiL) function, element-wise.
mish	Apply the Mish function, element-wise.
batch_norm	Apply Batch Normalization for each channel across a atch of ata.
group_norm	Apply Group Normalization for last certain num er of imensions.
<pre>instance_norm</pre>	Apply Instance Normalization in epen ently for each channel in every ata sample within a atch.
layer_norm	Apply Layer Normalization for last certain num er of imensions.
local_response_norm	Apply local response normalization over an input signal.
rms_norm	Apply Root Mean Square Layer Normalization.
normalize	Perform L_p normalization of inputs over specifie $\;\;$ imension.
Linear functions	
linear	Applies a linear transformation to the incoming $\ \ { m ata}: y = xA^T + b.$
bilinear	Applies a $$ ilinear transformation to the incoming $$ ata: $y=x_1^TAx_2+b$
Dro out functions	
dropout	During training, ran omly zeroes some elements of the input tensor with pro $$ a ility $$ p $$.
alpha_dropout	Apply alpha ropout to the input.
feature_alpha_dropout	Ran omly masks out entire channels (a channel is a feature map).
dropout1d	Ran omly zero out entire channels (a channel is a 1D feature map).
dropout2d	Ran omly zero out entire channels (a channel is a 2D feature map).
dropout3d	Ran omly zero out entire channels (a channel is a 3D feature map).
S arse functions	
embedding	Generate a simple lookup ta le that looks up em e ings in a fixe ictionary an size.
o timize your ex erience, we serve cookies on this site. By clicking or	navigating, you agree to allow our usage of cookies. As the current maint

	Takes LongTensor with in ex values of shape (*) an returns a
one_hot	tensor of shape (*, num_classes) that have zeros everywhere except where the in ex of last imension matches the correspon ing value of the input tensor, in which case it will e 1.

Distance functions

pairwise_distance	See torch.nn.PairwiseDistance for etails
cosine_similarity	Returns cosine similarity etween x1 an x2, compute along im.
pdist	Computes the p-norm istance etween every pair of row vectors in the input.

Loss functions	
binary_cross_entropy	Measure Binary Cross Entropy etween the target an input pro a ilities.
binary_cross_entropy_with_logits	Calculate Binary Cross Entropy etween target an input logits.
poisson_nll_loss	Poisson negative log likelihoo loss.
cosine_embedding_loss	See CosineEmbeddingLoss for etails.
cross_entropy	Compute the cross entropy loss etween input logits an target.
ctc_loss	Apply the Connectionist Temporal Classification loss.
gaussian_nll_loss	Gaussian negative log likelihoo loss.
hinge_embedding_loss	See HingeEmbeddingLoss for etails.
kl_div	Compute the KL Divergence loss.
l1_loss	Function that takes the mean element-wise a solute value ifference.
mse_loss	Measures the element-wise mean square error, with optional weighting.
margin_ranking_loss	See MarginRankingLoss for etails.
multilabel_margin_loss	See MultiLabelMarginLoss for etails.
multilabel_soft_margin_loss	See MultiLabelSoftMarginLoss for etails.
multi_margin_loss	See MultiMarginLoss for etails.
nll_loss	Compute the negative log likelihoo loss.
huber_loss	Computes the Hu er loss, with optional weighting.
smooth_l1_loss	Compute the Smooth L1 loss.
soft_margin_loss	See SoftMarginLoss for etails.
triplet_margin_loss	Compute the triplet loss etween given input tensors an a margin greater than 0.
triplet_margin_with_distance_loss	Compute the triplet margin loss for input tensors using a custom istance function.

Vision functions

	Rearranges elements in a tensor of shape $(*,C imes r^2,H,W)$
pixel shuffle	to a tensor of shape $(*,C,H imes r,W imes r)$, where r is the
,	upscale_factor.

Pa s tensor. pad Down/up samples the input. interpolate psample input. upsample psamples the input, using nearest neigh ours' pixel values. upsample_nearest psamples the input, using ilinear upsampling. upsample_bilinear Compute gri sample. grid_sample Generate 2D or 3D flow fiel (sampling gri), given a atch of affine_grid affine matrices theta.

DataParallel functions (multi-GP , istri ute)

ata_ arallel

Evaluate mo ule(input) in parallel across the GP s given in torch.nn.parallel.data_parallel evice_i s.

∢ Previous Next >

© Co yright 2024, PyTorch Contri utors. Built with S hinx using a theme rovi e y Rea the Docs.

Docs	Tutorials	Resources
Access com rehensive evelo er ocumentation for PyTorch	Get in- e th tutorials for eginners an a vance evelo ers	Fin evelo ment resources an get your uestions answere
View Docs >	View Tutorials >	View Resources >

C	PyTorch	Resources	Stay u to ate	PyTorch Po casts
	Get Starte	Tutorials	Face ook	S otify
	Features	Docs	Twitter	A le
	Ecosystem	Discuss	YouTu e	Google
	Blog	Githu Issues	Linke In	Amazon
	Contri uting	Bran Gui elines		

Terms | Privacy

© Co yright The Linux Foun ation. The PyTorch Foun ation is a rolect of The Linux Foun ation. For we site terms of use, trallemark olicy an other olicies a lica le to The PyTorch Foun ation lease see www.linuxfoun ation.org/ olicies/. The PyTorch Foun ation su orts the PyTorch o en source ro ect, which has een esta lishe as PyTorch Pro ect a Series of LF Pro ects, LLC. For olicies a lica le to the PyTorch Pro ect a Series of LF Pro ects, LLC, lease see www.lf ro ects.org/ olic