SBML Model Report

Model name: "Dutta-Roy2015 - Opening of the multiple AMPA receptor conductance states"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Nicolas Le Novre¹ and Audald Lloret i Villas² at March 23rd 2015 at one o' clock in the afternoon. and last time modified at April eighth 2016 at 5:53 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	21
events	0	constraints	0
reactions	62	function definitions	8
global parameters	42	unit definitions	0
rules	0	initial assignments	24

Model Notes

Dutta-Roy2015 - Opening of the multiple AMPAreceptor conductance states

¹Babraham Institute, n.lenovere@gmail.com

²EMBL-EBI, lloret@ebi.ac.uk

This model is described in the article:Ligand-dependent opening of the multiple AMPA receptor conductance States: a concerted model.Dutta-Roy R, Rosenmund C, Edelstein SJ, Le Novre N.PLoS ONE 2015; 10(1): e0116616

Abstract:

Modulation of the properties of AMPA receptors at the post-synaptic membrane is one of the main suggested mechanisms underlying fast synaptic transmission in the central nervous system of vertebrates. Electrophysiological recordings of single channels stimulated with agonists showed that both recombinant and native AMPA receptors visit multiple conductance states in an agonist concentration dependent manner. We propose an allosteric model of the multiple conductance states based on concerted conformational transitions of the four subunits, as an iris diaphragm. Our model predicts that the thermodynamic behaviour of the conductance states upon full and partial agonist stimulations can be described with increased affinity of receptors as they progress to higher conductance states. The model also predicts the existence of AMPA receptors in non-liganded conductive substates. However, the probability of spontaneous openings decreases with increasing conductances. Finally, we predict that the large conductance states are stabilized within the rise phase of a whole-cell EPSC in glutamatergic hippocampal neurons. Our model provides a mechanistic link between ligand concentration and conductance states that can explain thermodynamic and kinetic features of AMPA receptor gating.

This model is hosted on BioModels Database and identified by: BIOMD0000000569.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
synapse	synapse		3	10^{-16}	1	Z	

3.1 Compartment synapse

This is a three dimensional compartment with a constant size of 10^{-16} litre.

Name synapse

Notes The volume must be divided by 50 (resulting in 2e-18 litre) to simulate a single relative e^{-18}

4 Species

This model contains 21 species. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
B0	В0	synapse	$\text{mol} \cdot l^{-1}$		
SO	S0	synapse	$\text{mol} \cdot 1^{-1}$		
B1	B1	synapse	$\text{mol} \cdot 1^{-1}$		
S1	S 1	synapse	$\text{mol} \cdot 1^{-1}$		\Box
B2	B2	synapse	$\text{mol} \cdot 1^{-1}$		
S2	S2	synapse	$\operatorname{mol} \cdot 1^{-1}$		
В3	В3	synapse	$\text{mol} \cdot 1^{-1}$		
S3	S 3	synapse	$\text{mol} \cdot 1^{-1}$		
B4	B4	synapse	$\operatorname{mol} \cdot 1^{-1}$		
S4	S4	synapse	$\operatorname{mol} \cdot 1^{-1}$		
MO	M 0	synapse	$\text{mol} \cdot 1^{-1}$		
M1	M1	synapse	$\text{mol} \cdot 1^{-1}$		
M2	M2	synapse	$\text{mol} \cdot 1^{-1}$		
МЗ	M3	synapse	$\operatorname{mol} \cdot 1^{-1}$		
M4	M4	synapse	$\operatorname{mol} \cdot 1^{-1}$		
LO	L0	synapse	$\operatorname{mol} \cdot 1^{-1}$		
L1	L1	synapse	$\operatorname{mol} \cdot 1^{-1}$		
L2	L2	synapse	$\text{mol} \cdot 1^{-1}$		
L3	L3	synapse	$\text{mol} \cdot 1^{-1}$		
L4	L4	synapse	$\text{mol} \cdot 1^{-1}$		
glu	glu	synapse	$\text{mol} \cdot 1^{-1}$		

5 Parameters

This model contains 42 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
Bkon	Bkon	5000000.000		
Bkoff	Bkoff	4495.000		$ \overline{\checkmark} $
Skon	Skon	5000000.000		$ \overline{\checkmark} $
Skoff	Skoff	270.400		
Mkon	Mkon	5000000.000		
Mkoff	Mkoff	16.650		
Lkon	Lkon	5000000.000		
Lkoff	Lkoff	1.149		
BSk0	BSk0	1083.603		$ \overline{\checkmark} $
SBk0	SBk0	238094.579		
BSk1	BSk1	4420.109		
SBk1	SBk1	58369.604		
BSk2	BSk2	18030.000		
SBk2	SBk2	14309.484		
BSk3	BSk3	73545.904		$\overline{\mathbf{Z}}$
SBk3	SBk3	3508.013		
BSk4	BSk4	300000.000		$ \overline{\checkmark} $
SBk4	SBk4	860.000		
SMk0	SMk0	75.891		
MSk0	MSk0	38212.599		
SMk1	SMk1	305.774		$ \overline{\checkmark} $
MSk1	MSk1	9484.118		$\overline{\mathbf{Z}}$
SMk2	SMk2	1232.000		
MSk2	MSk2	2353.896		$ \overline{\checkmark} $
SMk3	SMk3	4963.869		
MSk3	MSk3	584.222		
SMk4	SMk4	20000.000		
MSk4	MSk4	145.000		
MLkO	MLk0	238.050		
LMkO	LMk0	145137.576		
MLk1	MLk1	906.241		
LMk1	LMk1	38124.522		$ \overline{\checkmark} $
MLk2	MLk2	3450.000		$ \overline{\checkmark} $
LMk2	LMk2	10014.493		$\overline{\mathbf{Z}}$
MLk3	MLk3	13133.926		$\overline{\mathbf{Z}}$
LMk3	LMk3	2630.592		$\overline{\mathbf{Z}}$
MLk4	MLk4	50000.000		$\overline{\mathbf{Z}}$

Id	Name	SBO	Value	Unit	Constant
LMk4	LMk4		691.000)	
BSc	BSc		0.060)	$\overline{\mathbf{Z}}$
SMc	SMc		0.062	2	
MLc	MLc		0.069)	$\overline{\mathbf{Z}}$
p	p		0.500)	\square

6 Initialassignments

This is an overview of 24 initial assignments.

6.1 Initialassignment BSk0

Derived unit contains undeclared units

Math $BSk1 \cdot BSc^p$

6.2 Initialassignment SBk0

Derived unit contains undeclared units

6.3 Initialassignment BSk1

Derived unit contains undeclared units

Math BSk2 · BSc^p

6.4 Initialassignment SBk1

Derived unit contains undeclared units

Math $\frac{SBk2}{BSc^p}$

6.5 Initialassignment BSk2

Derived unit contains undeclared units

Math BSk3 · BSc^p

6.6 Initialassignment SBk2

Derived unit contains undeclared units

Math $\frac{SBk3}{BSc^p}$

6.7 Initialassignment BSk3

Derived unit contains undeclared units

 $\textbf{Math} \ BSk4 \cdot BSc^p$

6.8 Initialassignment SBk3

Derived unit contains undeclared units

 $\quad \text{Math} \ \ \tfrac{SBk4}{BSc^p}$

6.9 Initialassignment SMk0

Derived unit contains undeclared units

Math $SMk1 \cdot SMc^p$

6.10 Initialassignment MSk0

Derived unit contains undeclared units

Math $\frac{MSk1}{SMc^p}$

6.11 Initialassignment SMk1

Derived unit contains undeclared units

Math $SMk2 \cdot SMc^p$

6.12 Initialassignment MSk1

Derived unit contains undeclared units

6.13 Initialassignment SMk2

Derived unit contains undeclared units

Math $SMk3 \cdot SMc^p$

6.14 Initialassignment MSk2

Derived unit contains undeclared units

6.15 Initialassignment SMk3

Derived unit contains undeclared units

 $\textbf{Math} \;\; SMk4 \cdot SMc^p$

6.16 Initialassignment MSk3

Derived unit contains undeclared units

6.17 Initialassignment MLk0

Derived unit contains undeclared units

 $\textbf{Math} \ MLk1 \cdot MLc^p$

6.18 Initialassignment LMk0

Derived unit contains undeclared units

6.19 Initialassignment MLk1

Derived unit contains undeclared units

Math $MLk2 \cdot MLc^p$

6.20 Initialassignment LMk1

Derived unit contains undeclared units

6.21 Initialassignment MLk2

Derived unit contains undeclared units

Math MLk3·MLcp

6.22 Initialassignment LMk2

Derived unit contains undeclared units

6.23 Initialassignment MLk3

Derived unit contains undeclared units

 $\textbf{Math} \ MLk4 \cdot MLc^p$

6.24 Initialassignment LMk3

Derived unit contains undeclared units

7 Function definitions

This is an overview of eight function definitions.

7.1 Function definition Ligand_Binding_1

Name Ligand Binding 1

Arguments k, R, L

Mathematical Expression

$$4 \cdot k \cdot R \cdot L \tag{1}$$

7.2 Function definition Ligand_Binding_2

Name Ligand Binding 2

Arguments k, R, L

Mathematical Expression

$$3 \cdot k \cdot R \cdot L \tag{2}$$

7.3 Function definition Ligand_Binding_3

Name Ligand Binding 3

Arguments k, R, L

Mathematical Expression

$$2 \cdot k \cdot R \cdot L \tag{3}$$

Name Ligand Binding 4 Arguments k, R, L**Mathematical Expression** $k\cdot R\cdot L$ (4) 7.5 Function definition Ligand_Unbinding_1 Name Ligand Unbinding 1 $\textbf{Arguments} \ k, R$ **Mathematical Expression** $\mathbf{k} \cdot \mathbf{R}$ (5) **7.6 Function definition** Ligand_Unbinding_2 Name Ligand Unbinding 2 $\textbf{Arguments} \ k, R$ **Mathematical Expression** $2 \cdot k \cdot R$ (6) **7.7 Function definition** Ligand_Unbinding_3 Name Ligand Unbinding 3 Arguments k, R**Mathematical Expression** $3 \cdot k \cdot R$ (7) 7.8 Function definition Ligand_Unbinding_4 Name Ligand Unbinding 4 Arguments k, R**Mathematical Expression** $4\cdot k\cdot R$ (8)

7.4 Function definition Ligand_Binding_4

8 Reactions

This model contains 62 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	B0S0	B0 -> S0	$B0 \xrightarrow{B0} S0$	
2	S0B0	S0 -> B0	$S0 \xrightarrow{S0} B0$	
3	B1S1	B1 -> S1	$B1 \xrightarrow{B1} S1$	
4	S1B1	S1 -> B1	$S1 \xrightarrow{S1} B1$	
5	B2S2	B2 -> S2	$B2 \xrightarrow{B2} S2$	
6	S2B2	S2 -> B2	$S2 \xrightarrow{S2} B2$	
7	B3S3	B3 -> S3	$B3 \xrightarrow{B3} S3$	
8	S3B3	S3 -> B3	$S3 \xrightarrow{S3} B3$	
9	B4S4	B4 -> S4	$B4 \xrightarrow{B4} S4$	
10	S4B4	S4 -> B4	$S4 \xrightarrow{S4} B4$	
11	SOMO	S0 -> M0	$S0 \xrightarrow{S0} M0$	
12	MOSO	M0 -> S0	$M0 \xrightarrow{M0} S0$	
13	S1M1	S1 -> M1	$S1 \xrightarrow{S1} M1$	
14	M1S1	M1 -> S1	$M1 \xrightarrow{M1} S1$	
15	S2M2	S2 -> M2	$S2 \xrightarrow{S2} M2$	
16	M2S2	M2 -> S2	$M2 \xrightarrow{M2} S2$	

	Nº Id	Name	Reaction Equation	SBO
	17 S3M3	S3 -> M3	$S3 \xrightarrow{S3} M3$	
	18 M3S3	M3 -> S3	$M3 \xrightarrow{M3} S3$	
	19 S4M4	S4 -> M4	$S4 \xrightarrow{S4} M4$	
	20 M4S4	M4 -> S4	$M4 \xrightarrow{M4} S4$	
	21 MOLO	M0 -> L0	$M0 \xrightarrow{M0} L0$	
	22 LOMO	L0 -> M0	$L0 \stackrel{L0}{\longrightarrow} M0$	
	23 M1L1	M1 -> L1	$M1 \xrightarrow{M1} L1$	
1	24 L1M1	L1 -> M1	$L1 \stackrel{L1}{\longrightarrow} M1$	
	25 M2L2	M2 -> L2	$M2 \xrightarrow{M2} L2$	
	26 L2M2	L2 -> M2	$L2 \xrightarrow{L2} M2$	
	27 M3L3	M3 -> L3	$M3 \xrightarrow{M3} L3$	
	28 L3M3	L3 -> M3	$L3 \xrightarrow{L3} M3$	
(29 M4L4	M4 -> L4	$M4 \xrightarrow{M4} L4$	
	30 L4M4	L4 -> M4	$L4 \xrightarrow{L4} M4$	
	31 B0B1	B0 -> B1	$B0 + glu \xrightarrow{B0, glu} B1$	
	32 B1B0	B1 -> B0	$B1 \xrightarrow{B1} B0 + glu$	
	33 B1B2	B1 -> B2	$B1 + glu \xrightarrow{B1, glu} B2$	
	34 B2B1	B2 -> B1	$B2 \xrightarrow{B2} B1 + glu$	
	35 B2B3	B2 -> B3	$B2 + glu \xrightarrow{B2, glu} B3$	
	36 B3B2	B3 -> B2	$B3 \xrightarrow{B3} B2 + glu$	
	37 B3B4	B3 -> B4	$B3 + glu \xrightarrow{B3, glu} B4$	

Nº Id	1	Name	Reaction Equation	SBO
38 B4	4B3	B4 -> B3	$B4 \xrightarrow{B4} B3 + glu$	
39 SO	0S1	S0 -> S1	$S0 + glu \xrightarrow{S0, glu} S1$	
40 S1	1S0	S1 -> S0	$S1 \xrightarrow{S1} S0 + glu$	
41 S1	1S2	S1 -> S2	$S1 + glu \xrightarrow{S1, glu} S2$	
42 S2	2S1	$S2 \rightarrow S1$	$S2 \xrightarrow{S2} S1 + glu$	
43 S2	2S3	S2 -> S3	$S2 + glu \xrightarrow{S2, glu} S3$	
44 S3	3S2	S3 -> S2	$S3 \xrightarrow{S3} S2 + glu$	
45 S3	3S4	S3 -> S4	$S3 + glu \xrightarrow{S3, glu} S4$	
46 S4	4S3	S4 -> S3	$S4 \xrightarrow{S4} S3 + glu$	
47 MO	OM1	M0 -> M1	$M0 + glu \xrightarrow{M0, glu} M1$	
48 M1	1MO	M1 -> M0	$M1 \xrightarrow{M1} M0 + glu$	
49 M1	1M2	M1 -> M2	$M1 + glu \xrightarrow{M1, glu} M2$	
50 M2	2M1	M2 -> M1	$M2 \xrightarrow{M2} M1 + glu$	
51 M2	2M3	M2 -> M3	$M2 + glu \xrightarrow{M2, glu} M3$	
52 M3	3M2	M3 -> M2	$M3 \xrightarrow{M3} M2 + glu$	
53 M3	3M4	M3 -> M4	$M3 + glu \xrightarrow{M3} M4$	
54 M4	4M3	M4 -> M3	$M4 \xrightarrow{M4} M3 + glu$	
55 LO	0L1	L0 -> L1	$L0 + glu \xrightarrow{L0, glu} L1$	
56 L1	1L0	L1 -> L0	$L1 \xrightarrow{L1} L0 + glu$	
57 L1	1L2	L1 -> L2	$L1 + glu \xrightarrow{L1, glu} L2$	

Nº Id	Name	Reaction Equation	SBO
58 L2L1	L2 -> L1	$L2 \xrightarrow{L2} L1 + glu$	
59 L2L3	L2 -> L3	$L2 + glu \xrightarrow{L2, glu} L3$	
60 L3L2	L3 -> L2	$L3 \xrightarrow{L3} L2 + glu$	
61 L3L4	L3 -> L4	$L3 + glu \xrightarrow{L3, glu} L4$	
62 L4L3	L4 -> L3	$L4 \xrightarrow{L4} L3 + glu$	

8.1 Reaction B0____S0

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name B0 -> S0

Reaction equation

$$B0 \xrightarrow{B0} S0 \tag{9}$$

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
ВО	B0	

Modifier

Table 7: Properties of each modifier.

Id	Name	SBO
ВО	B0	

Product

Table 8: Properties of each product.

Id	Name	SBO
SO	S0	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = vol(synapse) \cdot BSk0 \cdot [B0]$$
 (10)

8.2 Reaction S0____B0

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $S0 \rightarrow B0$

Reaction equation

$$S0 \xrightarrow{S0} B0$$
 (11)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
S0	S0	

Modifier

Table 10: Properties of each modifier.

Id	Name	SBO
S0	S0	

Product

Table 11: Properties of each product.

Id	Name	SBO
В0	В0	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{synapse}) \cdot \text{SBk0} \cdot [\text{S0}] \tag{12}$$

8.3 Reaction B1____S1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name B1 -> S1

Reaction equation

$$B1 \xrightarrow{B1} S1 \tag{13}$$

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
В1	B1	

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
В1	B1	

Product

Table 14: Properties of each product.

Id	Name	SBO
S1	S 1	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{synapse}) \cdot \text{BSk1} \cdot [\text{B1}] \tag{14}$$

8.4 Reaction S1____B1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $S1 \rightarrow B1$

Reaction equation

$$S1 \xrightarrow{S1} B1 \tag{15}$$

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
S1	S 1	

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
S1	S 1	

Product

Table 17: Properties of each product.

Id	Name	SBO
B1	B1	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}(\text{synapse}) \cdot \text{SBk1} \cdot [\text{S1}] \tag{16}$$

8.5 Reaction B2____S2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name B2 -> S2

Reaction equation

$$B2 \xrightarrow{B2} S2 \tag{17}$$

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
В2	B2	

Modifier

Table 19: Properties of each modifier.

Id	Name	SBO
B2	B2	

Product

Table 20: Properties of each product.

Id	Name	SBO
S2	S2	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{synapse}) \cdot \text{BSk2} \cdot [\text{B2}]$$
 (18)

8.6 Reaction S2___B2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $S2 \rightarrow B2$

Reaction equation

$$S2 \xrightarrow{S2} B2 \tag{19}$$

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
S2	S2	

Modifier

Table 22: Properties of each modifier.

Id	Name	SBO
S2	S2	

Product

Table 23: Properties of each product.

Id	Name	SBO
В2	B2	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{synapse}) \cdot \text{SBk2} \cdot [\text{S2}]$$
 (20)

8.7 Reaction B3____S3

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name B3 -> S3

Reaction equation

$$B3 \xrightarrow{B3} S3 \tag{21}$$

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
ВЗ	В3	

Modifier

Table 25: Properties of each modifier.

Id	Name	SBO
ВЗ	В3	

Product

Table 26: Properties of each product.

Id	Name	SBO
S3	S 3	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{synapse}) \cdot \text{BSk3} \cdot [\text{B3}]$$
 (22)

8.8 Reaction S3____B3

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $S3 \rightarrow B3$

Reaction equation

$$S3 \xrightarrow{S3} B3$$
 (23)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
S3	S 3	

Modifier

Table 28: Properties of each modifier.

Id	Name	SBO
S3	S3	

Product

Table 29: Properties of each product.

Id	Name	SBO
ВЗ	В3	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}(\text{synapse}) \cdot \text{SBk3} \cdot [\text{S3}]$$
 (24)

8.9 Reaction B4____S4

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $B4 \rightarrow S4$

Reaction equation

$$B4 \xrightarrow{B4} S4 \tag{25}$$

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
В4	B4	

Modifier

Table 31: Properties of each modifier.

Id	Name	SBO
В4	B4	

Product

Table 32: Properties of each product.

Id	Name	SBO
S4	S4	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}(\text{synapse}) \cdot \text{BSk4} \cdot [\text{B4}] \tag{26}$$

8.10 Reaction S4____B4

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $S4 \rightarrow B4$

Reaction equation

$$S4 \xrightarrow{S4} B4$$
 (27)

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
S4	S4	

Modifier

Table 34: Properties of each modifier.

Id	Name	SBO
S4	S4	

Product

Table 35: Properties of each product.

Id	Name	SBO
В4	B4	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}(\text{synapse}) \cdot \text{SBk4} \cdot [\text{S4}]$$
 (28)

8.11 Reaction S0____MO

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $S0 \rightarrow M0$

Reaction equation

$$S0 \xrightarrow{S0} M0$$
 (29)

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
SO	S0	

Modifier

Table 37: Properties of each modifier.

Id	Name	SBO
S0	S0	

Product

Table 38: Properties of each product.

Id	Name	SBO
МО	M0	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}(\text{synapse}) \cdot \text{SMk0} \cdot [\text{S0}]$$
 (30)

8.12 Reaction MO____SO

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $M0 \rightarrow S0$

Reaction equation

$$M0 \xrightarrow{M0} S0$$
 (31)

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
МО	M0	

Modifier

Table 40: Properties of each modifier.

Id	Name	SBO
МО	M0	

Product

Table 41: Properties of each product.

Id	Name	SBO
SO	S0	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}(\text{synapse}) \cdot \text{MSk0} \cdot [\text{M0}]$$
 (32)

8.13 Reaction S1____M1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $S1 \rightarrow M1$

Reaction equation

$$S1 \xrightarrow{S1} M1$$
 (33)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
S1	S 1	

Modifier

Table 43: Properties of each modifier.

Id	Name	SBO
S1	S 1	

Product

Table 44: Properties of each product.

Id	Name	SBO
M1	M1	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{synapse}) \cdot \text{SMk1} \cdot [\text{S1}] \tag{34}$$

8.14 Reaction M1____S1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $M1 \rightarrow S1$

Reaction equation

$$M1 \xrightarrow{M1} S1$$
 (35)

Reactant

Table 45: Properties of each reactant.

Id	Name	SBO
M1	M1	

Modifier

Table 46: Properties of each modifier.

Id	Name	SBO
M1	M1	

Product

Table 47: Properties of each product.

Id	Name	SBO
S1	S1	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}(\text{synapse}) \cdot \text{MSk1} \cdot [\text{M1}]$$
 (36)

8.15 Reaction S2____M2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name S2 -> M2

Reaction equation

$$S2 \xrightarrow{S2} M2 \tag{37}$$

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
S2	S2	

Modifier

Table 49: Properties of each modifier.

Id	Name	SBO
S2	S2	

Product

Table 50: Properties of each product.

Id	Name	SBO
M2	M2	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}(\text{synapse}) \cdot \text{SMk2} \cdot [\text{S2}]$$
 (38)

8.16 Reaction M2___S2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name M2 -> S2

Reaction equation

$$M2 \xrightarrow{M2} S2 \tag{39}$$

Reactant

Table 51: Properties of each reactant.

Id	Name	SBO
M2	M2	

Modifier

Table 52: Properties of each modifier.

Id	Name	SBO
M2	M2	

Product

Table 53: Properties of each product.

Id	Name	SBO
S2	S2	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{synapse}) \cdot \text{MSk2} \cdot [\text{M2}]$$
 (40)

8.17 Reaction S3____M3

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $S3 \rightarrow M3$

Reaction equation

$$S3 \xrightarrow{S3} M3$$
 (41)

Reactant

Table 54: Properties of each reactant.

Id	Name	SBO
S3	S 3	

Modifier

Table 55: Properties of each modifier.

Id	Name	SBO
S3	S3	

Product

Table 56: Properties of each product.

Id	Name	SBO
МЗ	M3	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}(\text{synapse}) \cdot \text{SMk3} \cdot [\text{S3}]$$
 (42)

8.18 Reaction M3____S3

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name M3 -> S3

Reaction equation

$$M3 \xrightarrow{M3} S3$$
 (43)

Reactant

Table 57: Properties of each reactant.

Id	Name	SBO
МЗ	M3	

Modifier

Table 58: Properties of each modifier.

Id	Name	SBO
МЗ	M3	

Product

Table 59: Properties of each product.

Id	Name	SBO
S3	S 3	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol}(\text{synapse}) \cdot \text{MSk3} \cdot [\text{M3}]$$
 (44)

8.19 Reaction S4____M4

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name S4 -> M4

Reaction equation

$$S4 \xrightarrow{S4} M4$$
 (45)

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
S4	S4	

Modifier

Table 61: Properties of each modifier.

Id	Name	SBO
S4	S4	

Product

Table 62: Properties of each product.

Id	Name	SBO
M4	M4	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol}(\text{synapse}) \cdot \text{SMk4} \cdot [\text{S4}] \tag{46}$$

8.20 Reaction M4____S4

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $M4 \rightarrow S4$

Reaction equation

$$M4 \xrightarrow{M4} S4 \tag{47}$$

Reactant

Table 63: Properties of each reactant.

Id	Name	SBO
M4	M4	

Modifier

Table 64: Properties of each modifier.

Id	Name	SBO
M4	M4	

Product

Table 65: Properties of each product.

Id	Name	SBO
S4	S4	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol}(\text{synapse}) \cdot \text{MSk4} \cdot [\text{M4}] \tag{48}$$

8.21 Reaction MO____LO

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $M0 \rightarrow L0$

Reaction equation

$$M0 \xrightarrow{M0} L0$$
 (49)

Reactant

Table 66: Properties of each reactant.

Id	Name	SBO
МО	M0	

Modifier

Table 67: Properties of each modifier.

Id	Name	SBO
МО	M0	

Product

Table 68: Properties of each product.

Id	Name	SBO
LO	L0	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}(\text{synapse}) \cdot \text{MLk0} \cdot [\text{M0}]$$
 (50)

8.22 Reaction LO____MO

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $L0 \rightarrow M0$

Reaction equation

$$L0 \xrightarrow{L0} M0$$
 (51)

Reactant

Table 69: Properties of each reactant.

Id	Name	SBO
LO	L0	

Modifier

Table 70: Properties of each modifier.

Id	Name	SBO
LO	L0	

Product

Table 71: Properties of each product.

Id	Name	SBO
МО	M0	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol}(\text{synapse}) \cdot \text{LMk0} \cdot [\text{L0}]$$
 (52)

8.23 Reaction M1____L1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $M1 \rightarrow L1$

Reaction equation

$$M1 \xrightarrow{M1} L1$$
 (53)

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
M1	M1	

Modifier

Table 73: Properties of each modifier.

Id	Name	SBO
M1	M1	

Product

Table 74: Properties of each product.

Id	Name	SBO
L1	L1	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}(\text{synapse}) \cdot \text{MLk1} \cdot [\text{M1}]$$
 (54)

8.24 Reaction L1____M1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $L1 \rightarrow M1$

Reaction equation

$$L1 \xrightarrow{L1} M1$$
 (55)

Reactant

Table 75: Properties of each reactant.

Id	Name	SBO
L1	L1	

Modifier

Table 76: Properties of each modifier.

Id	Name	SBO
L1	L1	

Product

Table 77: Properties of each product.

Id	Name	SBO
M1	M1	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}(\text{synapse}) \cdot \text{LMk1} \cdot [\text{L1}]$$
 (56)

8.25 Reaction M2___L2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $M2 \rightarrow L2$

Reaction equation

$$M2 \xrightarrow{M2} L2 \tag{57}$$

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
M2	M2	

Modifier

Table 79: Properties of each modifier.

Id	Name	SBO
M2	M2	

Product

Table 80: Properties of each product.

Id	Name	SBO
L2	L2	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}(\text{synapse}) \cdot \text{MLk2} \cdot [\text{M2}]$$
 (58)

8.26 Reaction L2___M2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $L2 \rightarrow M2$

Reaction equation

$$L2 \xrightarrow{L2} M2$$
 (59)

Reactant

Table 81: Properties of each reactant.

Id	Name	SBO
L2	L2	

Modifier

Table 82: Properties of each modifier.

Id	Name	SBO
L2	L2	

Product

Table 83: Properties of each product.

Id	Name	SBO
M2	M2	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol}(\text{synapse}) \cdot \text{LMk2} \cdot [\text{L2}]$$
 (60)

8.27 Reaction M3____L3

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $M3 \rightarrow L3$

Reaction equation

$$M3 \xrightarrow{M3} L3$$
 (61)

Reactant

Table 84: Properties of each reactant.

Id	Name	SBO
МЗ	M3	

Modifier

Table 85: Properties of each modifier.

Id	Name	SBO
МЗ	M3	

Product

Table 86: Properties of each product.

Id	Name	SBO
L3	L3	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{vol}(\text{synapse}) \cdot \text{MLk3} \cdot [\text{M3}]$$
 (62)

8.28 Reaction L3___M3

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name L3 -> M3

Reaction equation

$$L3 \xrightarrow{L3} M3$$
 (63)

Reactant

Table 87: Properties of each reactant.

Id	Name	SBO
L3	L3	

Modifier

Table 88: Properties of each modifier.

Id	Name	SBO
L3	L3	

Product

Table 89: Properties of each product.

Id	Name	SBO
МЗ	M3	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{vol}(\text{synapse}) \cdot \text{LMk3} \cdot [\text{L3}]$$
 (64)

8.29 Reaction M4____L4

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name $M4 \rightarrow L4$

Reaction equation

$$M4 \xrightarrow{M4} L4 \tag{65}$$

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
M4	M4	

Modifier

Table 91: Properties of each modifier.

Id	Name	SBO
M4	M4	

Product

Table 92: Properties of each product.

Id	Name	SBO
L4	L4	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{vol}(\text{synapse}) \cdot \text{MLk4} \cdot [\text{M4}] \tag{66}$$

8.30 Reaction L4____M4

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name L4 -> M4

Reaction equation

$$L4 \xrightarrow{L4} M4 \tag{67}$$

Table 93: Properties of each reactant.

Id	Name	SBO
L4	L4	

Table 94: Properties of each modifier.

Id	Name	SBO
L4	L4	

Product

Table 95: Properties of each product.

Id	Name	SBO
M4	M4	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \text{vol}(\text{synapse}) \cdot \text{LMk4} \cdot [\text{L4}]$$
 (68)

8.31 Reaction B0____B1

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name $B0 \rightarrow B1$

Reaction equation

$$B0 + glu \xrightarrow{B0, glu} B1 \tag{69}$$

Table 96: Properties of each reactant.

Id	Name	SBO
В0	В0	
glu	glu	

Table 97: Properties of each modifier.

Id	Name	SBO
ВО	В0	
glu	glu	

Product

Table 98: Properties of each product.

Id	Name	SBO
В1	B1	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_1}(\text{Bkon}, [\text{B0}], [\text{glu}])$$
 (70)

$$Ligand_Binding_1(k,R,L) = 4 \cdot k \cdot R \cdot L \tag{71}$$

Ligand_Binding_1
$$(k, R, L) = 4 \cdot k \cdot R \cdot L$$
 (72)

8.32 Reaction B1____B0

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $B1 \rightarrow B0$

Reaction equation

$$B1 \xrightarrow{B1} B0 + glu \tag{73}$$

Table 99: Properties of each reactant.

Id	Name	SBO
В1	B1	

Table 100: Properties of each modifier.

Id	Name	SBO
В1	B1	

Products

Table 101: Properties of each product.

Id	Name	SBO
В0	В0	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_1}(\text{Bkoff}, [\text{B1}])$$
 (74)

$$Ligand_Unbinding_1(k,R) = k \cdot R \tag{75}$$

$$Ligand_Unbinding_1(k,R) = k \cdot R \tag{76}$$

8.33 Reaction B1____B2

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name $B1 \rightarrow B2$

Reaction equation

$$B1 + glu \xrightarrow{B1, glu} B2 \tag{77}$$

Table 102: Properties of each reactant.

Id	Name	SBO
B1	B1	
glu	glu	

Table 103: Properties of each modifier.

Id	Name	SBO
B1	B1	
glu	glu	

Product

Table 104: Properties of each product.

Id	Name	SBO
B2	B2	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_2}(\text{Bkon}, [\text{B1}], [\text{glu}])$$
 (78)

Ligand_Binding_2(k, R, L) =
$$3 \cdot k \cdot R \cdot L$$
 (79)

Ligand_Binding_2(k, R, L) =
$$3 \cdot k \cdot R \cdot L$$
 (80)

8.34 Reaction B2____B1

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $B2 \rightarrow B1$

Reaction equation

$$B2 \xrightarrow{B2} B1 + glu \tag{81}$$

Table 105: Properties of each reactant.

Id	Name	SBO
B2	B2	

Table 106: Properties of each modifier.

Id	Name	SBO
В2	B2	

Products

Table 107: Properties of each product.

Id	Name	SBO
B1	B1	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_2}(\text{Bkoff}, [\text{B2}])$$
 (82)

Ligand_Unbinding_2(k,R) =
$$2 \cdot k \cdot R$$
 (83)

Ligand_Unbinding_2(k,R) =
$$2 \cdot k \cdot R$$
 (84)

8.35 Reaction B2____B3

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name $B2 \rightarrow B3$

Reaction equation

$$B2 + glu \xrightarrow{B2, glu} B3$$
 (85)

Table 108: Properties of each reactant.

Id	Name	SBO
B2	B2	
glu	glu	

Table 109: Properties of each modifier.

Id	Name	SBO
B2	B2	
glu	glu	

Product

Table 110: Properties of each product.

Id	Name	SBO
ВЗ	В3	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_3}(\text{Bkon}, [B2], [glu])$$
 (86)

Ligand_Binding_3
$$(k, R, L) = 2 \cdot k \cdot R \cdot L$$
 (87)

Ligand_Binding_3
$$(k, R, L) = 2 \cdot k \cdot R \cdot L$$
 (88)

8.36 Reaction B3____B2

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $B3 \rightarrow B2$

Reaction equation

$$B3 \xrightarrow{B3} B2 + glu \tag{89}$$

Table 111: Properties of each reactant.

	1	
Id	Name	SBO
В3	В3	

Table 112: Properties of each modifier.

Id	Name	SBO
В3	В3	

Products

Table 113: Properties of each product.

Id	Name	SBO
B2	B2	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_3}(\text{Bkoff}, [\text{B3}])$$
 (90)

Ligand_Unbinding_3
$$(k, R) = 3 \cdot k \cdot R$$
 (91)

Ligand_Unbinding_3(k,R) =
$$3 \cdot k \cdot R$$
 (92)

8.37 Reaction B3____B4

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name $B3 \rightarrow B4$

Reaction equation

$$B3 + glu \xrightarrow{B3, glu} B4 \tag{93}$$

Table 114: Properties of each reactant.

Id	Name	SBO
ВЗ	В3	
glu	glu	

Table 115: Properties of each modifier.

Id	Name	SBO
ВЗ	В3	
glu	glu	

Product

Table 116: Properties of each product.

Id	Name	SBO
В4	B4	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_4}(\text{Bkon}, [\text{B3}], [\text{glu}])$$
 (94)

$$Ligand_Binding_4(k,R,L) = k \cdot R \cdot L \tag{95}$$

$$Ligand_Binding_4(k,R,L) = k \cdot R \cdot L \tag{96}$$

8.38 Reaction B4____B3

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $B4 \rightarrow B3$

Reaction equation

$$B4 \xrightarrow{B4} B3 + glu \tag{97}$$

Table 117: Properties of each reactant.

Id	Name	SBO
В4	B4	

Table 118: Properties of each modifier.

Id	Name	SBO
В4	B4	

Products

Table 119: Properties of each product.

Id	Name	SBO
В3	В3	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_4}(\text{Bkoff}, [\text{B4}])$$
 (98)

Ligand_Unbinding_4(k,R) =
$$4 \cdot k \cdot R$$
 (99)

$$Ligand_Unbinding_4(k,R) = 4 \cdot k \cdot R \tag{100}$$

8.39 Reaction S0____S1

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name $S0 \rightarrow S1$

Reaction equation

$$S0 + glu \xrightarrow{S0, glu} S1$$
 (101)

Table 120: Properties of each reactant.

Id	Name	SBO
SO	S0	
glu	glu	

Table 121: Properties of each modifier.

Id	Name	SBO
SO	S0	
glu	glu	

Product

Table 122: Properties of each product.

Id	Name	SBO
S1	S 1	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_1}(\text{Skon}, [\text{S0}], [\text{glu}])$$
 (102)

$$Ligand_Binding_1(k,R,L) = 4 \cdot k \cdot R \cdot L \tag{103}$$

Ligand_Binding_1
$$(k, R, L) = 4 \cdot k \cdot R \cdot L$$
 (104)

8.40 Reaction S1____S0

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name S1 -> S0

Reaction equation

$$S1 \xrightarrow{S1} S0 + glu$$
 (105)

Table 123: Properties of each reactant.

Id	Name	SBO
S1	S 1	

Table 124: Properties of each modifier.

Id	Name	SBO
S1	S 1	

Products

Table 125: Properties of each product.

Id	Name	SBO
SO	S0	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_1}(\text{Skoff}, [S1])$$
 (106)

$$Ligand_Unbinding_1(k,R) = k \cdot R \tag{107}$$

$$Ligand_Unbinding_1(k,R) = k \cdot R \tag{108}$$

8.41 Reaction S1____S2

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name $S1 \rightarrow S2$

Reaction equation

$$S1 + glu \xrightarrow{S1, glu} S2$$
 (109)

Table 126: Properties of each reactant.

Id	Name	SBO
S1	S 1	
glu	glu	

Table 127: Properties of each modifier.

Id	Name	SBO
S1	S1	
glu	glu	

Product

Table 128: Properties of each product.

Id	Name	SBO
S2	S2	

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_2}(\text{Skon}, [S1], [glu])$$
 (110)

$$Ligand_Binding_2(k,R,L) = 3 \cdot k \cdot R \cdot L \tag{111}$$

Ligand_Binding_2(k,R,L) =
$$3 \cdot k \cdot R \cdot L$$
 (112)

8.42 Reaction S2____S1

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name S2 -> S1

Reaction equation

$$S2 \xrightarrow{S2} S1 + glu \tag{113}$$

Table 129: Properties of each reactant.

Id	Name	SBO
S2	S2	

Table 130: Properties of each modifier.

Id	Name	SBO
S2	S2	

Products

Table 131: Properties of each product.

Id	Name	SBO
S1	S1	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_2}(\text{Skoff}, [\text{S2}])$$
 (114)

Ligand_Unbinding_2(k,R) =
$$2 \cdot k \cdot R$$
 (115)

Ligand_Unbinding_2(k,R) =
$$2 \cdot k \cdot R$$
 (116)

8.43 Reaction S2____S3

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name S2 -> S3

Reaction equation

$$S2 + glu \xrightarrow{S2, glu} S3$$
 (117)

Table 132: Properties of each reactant.

Id	Name	SBO
S2	S2	
glu	glu	

Table 133: Properties of each modifier.

Id	Name	SBO
S2	S2	
glu	glu	

Product

Table 134: Properties of each product.

Id	Name	SBO
S3	S3	

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_3}(\text{Skon}, [S2], [glu])$$
 (118)

Ligand_Binding_3
$$(k, R, L) = 2 \cdot k \cdot R \cdot L$$
 (119)

Ligand_Binding_3
$$(k, R, L) = 2 \cdot k \cdot R \cdot L$$
 (120)

8.44 Reaction S3____S2

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $S3 \rightarrow S2$

Reaction equation

$$S3 \xrightarrow{S3} S2 + glu \tag{121}$$

Table 135: Properties of each reactant.

Id	Name	SBO
S3	S3	

Table 136: Properties of each modifier.

Id	Name	SBO
S3	S 3	

Products

Table 137: Properties of each product.

Id	Name	SBO
S2	S2	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_3}(\text{Skoff}, [\text{S3}])$$
 (122)

Ligand_Unbinding_3(k,R) =
$$3 \cdot k \cdot R$$
 (123)

Ligand_Unbinding_3
$$(k, R) = 3 \cdot k \cdot R$$
 (124)

8.45 Reaction S3____S4

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name S3 -> S4

Reaction equation

$$S3 + glu \xrightarrow{S3, glu} S4 \tag{125}$$

Table 138: Properties of each reactant.

Id	Name	SBO
S3	S3	
glu	glu	

Table 139: Properties of each modifier.

Id	Name	SBO
S3	S3	
glu	glu	

Product

Table 140: Properties of each product.

Id	Name	SBO
S4	S4	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_4}(\text{Skon}, [\text{S3}], [\text{glu}])$$
 (126)

$$Ligand_Binding_4(k, R, L) = k \cdot R \cdot L \tag{127}$$

$$Ligand_Binding_4(k, R, L) = k \cdot R \cdot L \tag{128}$$

8.46 Reaction S4____S3

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name S4 -> S3

Reaction equation

$$S4 \xrightarrow{S4} S3 + glu \tag{129}$$

Table 141: Properties of each reactant.

Id	Name	SBO
S4	S4	

Table 142: Properties of each modifier.

Id	Name	SBO
S4	S4	

Products

Table 143: Properties of each product.

Id	Name	SBO
S3	S3	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_4}(\text{Skoff}, [\text{S4}])$$
 (130)

Ligand_Unbinding_4(k,R) =
$$4 \cdot k \cdot R$$
 (131)

Ligand_Unbinding_4(k,R) =
$$4 \cdot k \cdot R$$
 (132)

8.47 Reaction MO____M1

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name $M0 \rightarrow M1$

Reaction equation

$$M0 + glu \xrightarrow{M0, glu} M1$$
 (133)

Table 144: Properties of each reactant.

Id	Name	SBO
MO	M0	
glu	glu	

Table 145: Properties of each modifier.

Id	Name	SBO
MO	M0	
glu	glu	

Product

Table 146: Properties of each product.

Id	Name	SBO
M1	M1	

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_1}(\text{Mkon}, [M0], [glu])$$
 (134)

$$Ligand_Binding_1(k,R,L) = 4 \cdot k \cdot R \cdot L \tag{135}$$

Ligand_Binding_1
$$(k, R, L) = 4 \cdot k \cdot R \cdot L$$
 (136)

8.48 Reaction M1____MO

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name M1 -> M0

Reaction equation

$$M1 \xrightarrow{M1} M0 + glu \tag{137}$$

Table 147: Properties of each reactant.

Id	Name	SBO
M1	M1	

Table 148: Properties of each modifier.

Id	Name	SBO
M1	M1	

Products

Table 149: Properties of each product.

Id	Name	SBO
МО	M0	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_1}(\text{Mkoff}, [\text{M1}])$$
 (138)

$$Ligand_Unbinding_1(k,R) = k \cdot R \tag{139}$$

$$Ligand_Unbinding_1(k,R) = k \cdot R \tag{140}$$

8.49 Reaction M1____M2

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name M1 -> M2

Reaction equation

$$M1 + glu \xrightarrow{M1, glu} M2$$
 (141)

Table 150: Properties of each reactant.

Id	Name	SBO
M1	M1	
glu	glu	

Table 151: Properties of each modifier.

Id	Name	SBO
M1	M1	
glu	glu	

Product

Table 152: Properties of each product.

Id	Name	SBO
M2	M2	

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_2}(\text{Mkon}, [M1], [glu])$$
 (142)

Ligand_Binding_2(k, R, L) =
$$3 \cdot k \cdot R \cdot L$$
 (143)

Ligand_Binding_2(k, R, L) =
$$3 \cdot k \cdot R \cdot L$$
 (144)

8.50 Reaction M2____M1

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $M2 \rightarrow M1$

Reaction equation

$$M2 \xrightarrow{M2} M1 + glu \tag{145}$$

Table 153: Properties of each reactant.

Id	Name	SBO
M2	M2	

Table 154: Properties of each modifier.

Id	Name	SBO
M2	M2	

Products

Table 155: Properties of each product.

Id	Name	SBO
M1	M1	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{50} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_2}(\text{Mkoff}, [\text{M2}])$$
 (146)

Ligand_Unbinding_2(k,R) =
$$2 \cdot k \cdot R$$
 (147)

Ligand_Unbinding_2(k,R) =
$$2 \cdot k \cdot R$$
 (148)

8.51 Reaction M2____M3

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name M2 -> M3

Reaction equation

$$M2 + glu \xrightarrow{M2, glu} M3$$
 (149)

Table 156: Properties of each reactant.

Id	Name	SBO
M2	M2	
glu	glu	

Table 157: Properties of each modifier.

Id	Name	SBO
M2	M2	
glu	glu	

Product

Table 158: Properties of each product.

Id	Name	SBO
МЗ	M3	

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_3}(\text{Mkon}, [M2], [glu])$$
 (150)

$$Ligand_Binding_3(k,R,L) = 2 \cdot k \cdot R \cdot L \tag{151}$$

Ligand_Binding_3
$$(k, R, L) = 2 \cdot k \cdot R \cdot L$$
 (152)

8.52 Reaction M3____M2

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $M3 \rightarrow M2$

Reaction equation

$$M3 \xrightarrow{M3} M2 + glu \tag{153}$$

Table 159: Properties of each reactant.

Id	Name	SBO
МЗ	M3	

Table 160: Properties of each modifier.

Id	Name	SBO
МЗ	M3	

Products

Table 161: Properties of each product.

Id	Name	SBO
M2	M2	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = vol(synapse) \cdot Ligand_Unbinding_3(Mkoff, [M3])$$
 (154)

Ligand_Unbinding_3(k,R) =
$$3 \cdot k \cdot R$$
 (155)

Ligand_Unbinding_3(k,R) =
$$3 \cdot k \cdot R$$
 (156)

8.53 Reaction M3____M4

This is an irreversible reaction of two reactants forming one product influenced by one modifier.

Name M3 -> M4

Reaction equation

$$M3 + glu \xrightarrow{M3} M4$$
 (157)

Table 162: Properties of each reactant.

Id	Name	SBO
МЗ	M3	
glu	glu	

Table 163: Properties of each modifier.

Id	Name	SBO
МЗ	M3	

Product

Table 164: Properties of each product.

Id	Name	SBO
M4	M4	

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_4}(\text{Mkon}, [\text{M3}])$$
 (158)

$$Ligand_Unbinding_4(k,R) = 4 \cdot k \cdot R \tag{159}$$

$$Ligand_Unbinding_4(k,R) = 4 \cdot k \cdot R \tag{160}$$

8.54 Reaction M4____M3

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $M4 \rightarrow M3$

Reaction equation

$$M4 \xrightarrow{M4} M3 + glu \tag{161}$$

Table 165: Properties of each reactant.

Id	Name	SBO
M4	M4	

Table 166: Properties of each modifier.

Id	Name	SBO
M4	M4	

Products

Table 167: Properties of each product.

Id	Name	SBO
МЗ	M3	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{54} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_4}(\text{Mkoff}, [\text{M4}])$$
 (162)

Ligand_Unbinding_4(k,R) =
$$4 \cdot k \cdot R$$
 (163)

Ligand_Unbinding_4(k,R) =
$$4 \cdot k \cdot R$$
 (164)

8.55 Reaction L0____L1

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name $L0 \rightarrow L1$

Reaction equation

$$L0 + glu \xrightarrow{L0, glu} L1$$
 (165)

Table 168: Properties of each reactant.

Id	Name	SBO
LO	L0	
glu	glu	

Table 169: Properties of each modifier.

Id	Name	SBO
LO	L0	
glu	glu	

Product

Table 170: Properties of each product.

Id	Name	SBO
L1	L1	

Kinetic Law

Derived unit contains undeclared units

$$v_{55} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_1}(\text{Lkon}, [\text{L0}], [\text{glu}])$$
 (166)

$$Ligand_Binding_1(k,R,L) = 4 \cdot k \cdot R \cdot L \tag{167}$$

Ligand_Binding_1
$$(k, R, L) = 4 \cdot k \cdot R \cdot L$$
 (168)

8.56 Reaction L1___L0

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $L1 \rightarrow L0$

Reaction equation

$$L1 \xrightarrow{L1} L0 + glu \tag{169}$$

Table 171: Properties of each reactant.

Id	Name	SBO
L1	L1	

Table 172: Properties of each modifier.

Id	Name	SBO
L1	L1	

Products

Table 173: Properties of each product.

Id	Name	SBO
LO	L0	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_1}(\text{Lkoff}, [\text{L1}])$$
 (170)

$$Ligand_Unbinding_1(k,R) = k \cdot R \tag{171}$$

$$Ligand_Unbinding_1(k,R) = k \cdot R$$
 (172)

8.57 Reaction L1___L2

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name $L1 \rightarrow L2$

Reaction equation

$$L1 + glu \xrightarrow{L1, glu} L2 \tag{173}$$

Table 174: Properties of each reactant.

Id	Name	SBO
L1	L1	
glu	glu	

Table 175: Properties of each modifier.

Id	Name	SBO
L1	L1	
glu	glu	

Product

Table 176: Properties of each product.

Id	Name	SBO
L2	L2	

Kinetic Law

Derived unit contains undeclared units

$$v_{57} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_2}(\text{Lkon}, [\text{L1}], [\text{glu}])$$
 (174)

Ligand_Binding_2(k, R, L) =
$$3 \cdot k \cdot R \cdot L$$
 (175)

Ligand_Binding_2(k, R, L) =
$$3 \cdot k \cdot R \cdot L$$
 (176)

8.58 Reaction L2___L1

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $L2 \rightarrow L1$

Reaction equation

$$L2 \xrightarrow{L2} L1 + glu \tag{177}$$

Table 177: Properties of each reactant.

Id	Name	SBO
L2	L2	

Table 178: Properties of each modifier.

Id	Name	SBO
L2	L2	

Products

Table 179: Properties of each product.

Id	Name	SBO
L1	L1	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{58} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_2}(\text{Lkoff}, [\text{L2}])$$
 (178)

Ligand_Unbinding_2(k,R) =
$$2 \cdot k \cdot R$$
 (179)

Ligand_Unbinding_2(k,R) =
$$2 \cdot k \cdot R$$
 (180)

8.59 Reaction L2___L3

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name $L2 \rightarrow L3$

Reaction equation

$$L2 + glu \xrightarrow{L2, glu} L3$$
 (181)

Table 180: Properties of each reactant.

Id	Name	SBO
L2	L2	
glu	glu	

Table 181: Properties of each modifier.

Id	Name	SBO
L2	L2	
glu	glu	

Product

Table 182: Properties of each product.

Id	Name	SBO
L3	L3	

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_3}(\text{Lkon}, [\text{L2}], [\text{glu}])$$
 (182)

Ligand_Binding_3
$$(k, R, L) = 2 \cdot k \cdot R \cdot L$$
 (183)

Ligand_Binding_3
$$(k, R, L) = 2 \cdot k \cdot R \cdot L$$
 (184)

8.60 Reaction L3___L2

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $L3 \rightarrow L2$

Reaction equation

$$L3 \xrightarrow{L3} L2 + glu \tag{185}$$

Table 183: Properties of each reactant.

Id	Name	SBO
L3	L3	

Table 184: Properties of each modifier.

Id	Name	SBO
L3	L3	

Products

Table 185: Properties of each product.

Id	Name	SBO
L2	L2	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_3}(\text{Lkoff}, [\text{L3}])$$
 (186)

Ligand_Unbinding_3(k,R) =
$$3 \cdot k \cdot R$$
 (187)

Ligand_Unbinding_3(k,R) =
$$3 \cdot k \cdot R$$
 (188)

8.61 Reaction L3____L4

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name $L3 \rightarrow L4$

Reaction equation

$$L3 + glu \xrightarrow{L3, glu} L4 \tag{189}$$

Table 186: Properties of each reactant.

Id	Name	SBO
L3	L3	
glu	glu	

Table 187: Properties of each modifier.

Id	Name	SBO
L3	L3	
glu	glu	

Product

Table 188: Properties of each product.

Id	Name	SBO
L4	L4	

Kinetic Law

Derived unit contains undeclared units

$$v_{61} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Binding_4}(\text{Lkon}, [\text{L3}], [\text{glu}])$$
 (190)

$$Ligand_Binding_4(k, R, L) = k \cdot R \cdot L \tag{191}$$

Ligand_Binding_4(k,R,L) =
$$k \cdot R \cdot L$$
 (192)

8.62 Reaction L4____L3

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name $L4 \rightarrow L3$

Reaction equation

$$L4 \xrightarrow{L4} L3 + glu \tag{193}$$

Table 189: Properties of each reactant.

Id	Name	SBO
L4	L4	

Table 190: Properties of each modifier.

Id	Name	SBO
L4	L4	

Products

Table 191: Properties of each product.

Id	Name	SBO
L3	L3	
glu	glu	

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = \text{vol}(\text{synapse}) \cdot \text{Ligand_Unbinding_4}(\text{Lkoff}, [\text{L4}])$$
 (194)

$$Ligand_Unbinding_4(k,R) = 4 \cdot k \cdot R \tag{195}$$

$$Ligand_Unbinding_4(k,R) = 4 \cdot k \cdot R \tag{196}$$

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

9.1 Species B0

Name B0

Notes The amount must be divided by 50 to simulate a single receptor (scale down the volume initial concentration $8.30269391581363 \cdot 10^{-7} \, \mathrm{mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in B0___S0, B0___B1 and as a product in S0___B0, B1__B0 and as a modifier in B0__S0, B0__B1).

$$\frac{\mathrm{d}}{\mathrm{d}t}B0 = |v_2| + |v_{32}| - |v_1| - |v_{31}| \tag{197}$$

9.2 Species S0

Name S0

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in S0___B0, S0__M0, S0__S1 and as a product in B0__S0, M0__S0, S1__S0 and as a modifier in S0__B0, S0_M0, S0__S1).

$$\frac{\mathrm{d}}{\mathrm{d}t}S0 = |v_1| + |v_{12}| + |v_{40}| - |v_2| - |v_{11}| - |v_{39}| \tag{198}$$

9.3 Species B1

Name B1

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in B1___S1, B1__B0, B1__B2 and as a product in S1_B1, B0_B1, B2_B1 and as a modifier in B1_S1, B1_B0, B1_B2.

$$\frac{\mathrm{d}}{\mathrm{d}t}B1 = v_4 + v_{31} + v_{34} - v_3 - v_{32} - v_{33} \tag{199}$$

9.4 Species S1

Name S1

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in S1___B1, S1___M1, S1___S0, S1___S2 and as a product in B1___S1, M1___S1, S0___S1, S2___S1 and as a modifier in S1___B1, S1___M1, S1___S0, S1___S2).

$$\frac{\mathrm{d}}{\mathrm{d}t}S1 = |v_3| + |v_{14}| + |v_{39}| + |v_{42}| - |v_4| - |v_{13}| - |v_{40}| - |v_{41}| \tag{200}$$

9.5 Species B2

Name B2

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in B2___S2, B2__B1, B2__B3 and as a product in S2__B2, B1_B2, B3__B2 and as a modifier in B2__S2, B2_B1, B2_B3).

$$\frac{d}{dt}B2 = v_6 + v_{33} + v_{36} - v_5 - v_{34} - v_{35} \tag{201}$$

9.6 Species S2

Name S2

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in twelve reactions (as a reactant in S2___B2, S2__M2, S2__S1, S2__S3 and as a product in B2__S2, M2__S2, S1__S2, S3__S2 and as a modifier in S2__B2, S2__M2, S2__S1, S2__S3).

$$\frac{\mathrm{d}}{\mathrm{d}t}S2 = |v_5| + |v_{16}| + |v_{41}| + |v_{44}| - |v_6| - |v_{15}| - |v_{42}| - |v_{43}| \tag{202}$$

9.7 Species B3

Name B3

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in B3____S3, B3___B2, B3___B4 and as a product in S3___B3, B2___B3, B4___B3 and as a modifier in B3___S3, B3___B2, B3__B4).

$$\frac{\mathrm{d}}{\mathrm{d}t}B3 = |v_8| + |v_{35}| + |v_{38}| - |v_7| - |v_{36}| - |v_{37}| \tag{203}$$

9.8 Species S3

Name S3

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in S3___B3, S3___M3, S3___S2, S3___S4 and as a product in B3___S3, M3___S3, S2__S3, S4__S3 and as a modifier in S3__B3, S3___B3, S3__S2, S3__S4).

$$\frac{\mathrm{d}}{\mathrm{d}t}S3 = |v_7| + |v_{18}| + |v_{43}| + |v_{46}| - |v_8| - |v_{17}| - |v_{44}| - |v_{45}|$$
(204)

9.9 Species B4

Name B4

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in B4___S4, B4___B3 and as a product in S4___B4, B3__B4 and as a modifier in B4___S4, B4__B3).

$$\frac{\mathrm{d}}{\mathrm{d}t}B4 = v_{10} + v_{37} - v_9 - v_{38} \tag{205}$$

9.10 Species S4

Name S4

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in S4___B4, S4__M4, S4__S3 and as a product in B4__S4, M4__S4, S3__S4 and as a modifier in S4__B4, S4_M4, S4__S3).

$$\frac{\mathrm{d}}{\mathrm{d}t}S4 = |v_9| + |v_{20}| + |v_{45}| - |v_{10}| - |v_{19}| - |v_{46}| \tag{206}$$

9.11 Species MO

Name M0

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in MO___SO, MO__LO, MO__M1 and as a product in SO__MO, LO_MO, M1__MO and as a modifier in MO__SO, MO__LO, MO__M1).

$$\frac{\mathrm{d}}{\mathrm{d}t}M0 = |v_{11}| + |v_{22}| + |v_{48}| - |v_{12}| - |v_{21}| - |v_{47}| \tag{207}$$

9.12 Species M1

Name M1

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in M1___S1, M1__L1, M1__M0, M1____M2 and as a product in S1___M1, L1__M1, M0__M1, M2__M1 and as a modifier in M1___S1, M1__L1, M1__M0, M1___M2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M}\mathbf{1} = |v_{13}| + |v_{24}| + |v_{47}| + |v_{50}| - |v_{14}| - |v_{23}| - |v_{48}| - |v_{49}| \tag{208}$$

9.13 Species M2

Name M2

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in M2___S2, M2__L2, M2__M1, M2___M3 and as a product in S2___M2, L2__M2, M1__M2, M3__M2 and as a modifier in M2___S2, M2__L2, M2__M1, M2__M3).

$$\frac{\mathrm{d}}{\mathrm{d}t}M2 = |v_{15}| + |v_{26}| + |v_{49}| + |v_{52}| - |v_{16}| - |v_{25}| - |v_{50}| - |v_{51}|$$
(209)

9.14 Species M3

Name M3

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in M3___S3, M3__L3, M3__M2, M3___M4 and as a product in S3___M3, L3__M3, M2__M3, M4__M3 and as a modifier in M3___S3, M3__L3, M3__M4.

$$\frac{d}{dt}M3 = v_{17} + v_{28} + v_{51} + v_{54} - v_{18} - v_{27} - v_{52} - v_{53}$$
 (210)

9.15 Species M4

Name M4

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in M4___S4, M4__L4, M4__M3 and as a product in S4__M4, L4__M4, M3__M4 and as a modifier in M4__S4, M4__L4, M4__M3).

$$\frac{d}{dt}M4 = |v_{19}| + |v_{30}| + |v_{53}| - |v_{20}| - |v_{29}| - |v_{54}|$$
(211)

9.16 Species LO

Name L0

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in L0___MO, L0___L1 and as a product in M0___L0, L1___L0 and as a modifier in L0___MO, L0___L1).

$$\frac{\mathrm{d}}{\mathrm{d}t}L0 = |v_{21}| + |v_{56}| - |v_{22}| - |v_{55}| \tag{212}$$

9.17 Species L1

Name L1

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in L1...M1, L1...L0, L1...L2 and as a product in M1...L1, L0...L1, L2...L1 and as a modifier in L1...M1, L1...L0, L1...L2).

$$\frac{\mathrm{d}}{\mathrm{d}t}L1 = |v_{23}| + |v_{55}| + |v_{58}| - |v_{24}| - |v_{56}| - |v_{57}| \tag{213}$$

9.18 Species L2

Name L2

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in L2___M2, L2__L1, L2__L3 and as a product in M2__L2, L1__L2, L3__L2 and as a modifier in L2__M2, L2__L1, L2__L3).

$$\frac{\mathrm{d}}{\mathrm{d}t}L2 = |v_{25}| + |v_{57}| + |v_{60}| - |v_{26}| - |v_{58}| - |v_{59}| \tag{214}$$

9.19 Species L3

Name L3

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in L3___M3, L3___L2, L3___L4 and as a product in M3___L3, L2___L3, L4___L3 and as a modifier in L3___M3, L3___L2, L3___L4).

$$\frac{\mathrm{d}}{\mathrm{d}t}L3 = |v_{27}| + |v_{59}| + |v_{62}| - |v_{28}| - |v_{60}| - |v_{61}| \tag{215}$$

9.20 Species L4

Name L4

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in L4___M4, L4___L3 and as a product in M4___L4, L3___L4 and as a modifier in L4___M4, L4___L3).

$$\frac{\mathrm{d}}{\mathrm{d}t} L4 = |v_{29}| + |v_{61}| - |v_{30}| - |v_{62}| \tag{216}$$

9.21 Species glu

Name glu

Initial concentration $8.30269391581363 \cdot 10^{-4} \text{ mol} \cdot 1^{-1}$

This species takes part in 47 reactions (as a reactant in B0___B1, B1___B2, B2___B3, B3___B4, S0___S1, S1___S2, S2___S3, S3___S4, M0___M1, M1___M2, M2___M3, M3___M4, L0___L1, L1__L2, L2__L3, L3___L4 and as a product in B1___B0, B2___B1, B3___B2, B4___B3, S1___S0, S2___S1, S3___S2, S4___S3, M1___M0, M2___M1, M3___M2, M4___M3, L1__L0, L2___L1, L3__L2, L4__L3 and as a modifier in B0___B1, B1__B2, B2__B3, B3__B4, S0__S1, S1__S2, S2__S3, S3__S4, M0__M1, M1__M2, M2__M3, L0__L1, L1__L2, L2__L3, L3__L4).

$$\frac{d}{dt}glu = v_{32} + v_{34} + v_{36} + v_{38} + v_{40} + v_{42} + v_{44} + v_{46} + v_{48} + v_{50} + v_{52} + v_{54} + v_{56} + v_{58} + v_{60} + v_{62} - v_{31} - v_{33} - v_{35} - v_{37} - v_{39} - v_{41} - v_{43} - v_{43} - v_{45} - v_{47} - v_{49} - v_{51} - v_{53} - v_{55} - v_{57} - v_{59} - v_{61}$$

$$(217)$$

SML2ATeX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany