multilayer_perceptron

November 15, 2022

Multilayer Perceptron

```
[]: import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.model_selection import train_test_split
     from sklearn.neural_network import MLPClassifier
     import pandas as pd
     from sklearn import preprocessing
[]: data=pd.read_csv('C:\Coding\ML_python\machine-learning-lab-main\datasets\iris.
      ⇔csv¹)
     data.head()
[]:
        sepal_length sepal_width petal_length petal_width species
                 5.1
                              3.5
                                             1.4
                                                          0.2 setosa
                 4.9
                              3.0
                                             1.4
                                                          0.2 setosa
     1
                 4.7
     2
                              3.2
                                             1.3
                                                          0.2 setosa
     3
                                             1.5
                 4.6
                              3.1
                                                          0.2 setosa
     4
                 5.0
                              3.6
                                             1.4
                                                          0.2 setosa
[]: X=data.iloc[:,:4]
     y=data.iloc[:,4]
     print(X)
     print(y)
                       sepal_width petal_length petal_width
         sepal_length
                  5.1
                                              1.4
                                                            0.2
    0
                                3.5
                                              1.4
                                                            0.2
                  4.9
                                3.0
    1
    2
                  4.7
                                3.2
                                              1.3
                                                            0.2
    3
                  4.6
                                3.1
                                              1.5
                                                            0.2
    4
                  5.0
                                3.6
                                              1.4
                                                            0.2
    145
                  6.7
                                3.0
                                              5.2
                                                            2.3
                  6.3
                                2.5
                                              5.0
                                                            1.9
    146
    147
                  6.5
                                3.0
                                              5.2
                                                            2.0
                  6.2
                                              5.4
    148
                                3.4
                                                            2.3
    149
                  5.9
                                3.0
                                              5.1
                                                            1.8
```

[150 rows x 4 columns]

```
0
          setosa
   1
          setosa
   2
          setosa
   3
          setosa
   4
          setosa
   145
        virginica
   146
        virginica
   147
        virginica
   148
        virginica
   149
        virginica
   Name: species, Length: 150, dtype: object
[]: le = preprocessing.LabelEncoder()
   y=le.fit_transform(y)
   у
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        []: xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3,_u
    →random state=0)
   print("training dataset:\n",xtrain,"\n",ytrain)
   print("\ntesting dataset:\n",xtest,"\n",ytest)
   training dataset:
       sepal_length sepal_width petal_length petal_width
   60
             5.0
                       2.0
                                  3.5
                                           1.0
   116
             6.5
                       3.0
                                  5.5
                                           1.8
             6.7
                       3.3
                                  5.7
   144
                                           2.5
   119
             6.0
                       2.2
                                  5.0
                                           1.5
   108
             6.7
                       2.5
                                  5.8
                                           1.8
   . .
   9
             4.9
                                  1.5
                                           0.1
                       3.1
                       2.9
                                  5.6
   103
             6.3
                                           1.8
   67
             5.8
                       2.7
                                  4.1
                                           1.0
   117
             7.7
                       3.8
                                  6.7
                                           2.2
   47
             4.6
                       3.2
                                  1.4
                                           0.2
   [105 rows x 4 columns]
    [1\ 2\ 2\ 2\ 2\ 1\ 2\ 1\ 1\ 2\ 2\ 2\ 2\ 1\ 2\ 1\ 0\ 2\ 1\ 1\ 1\ 1\ 2\ 0\ 0\ 2\ 1\ 0\ 0\ 1\ 0\ 2\ 1\ 0\ 1\ 2\ 1
   2 \ 0 \ 2 \ 0 \ 0 \ 2 \ 0 \ 2 \ 1 \ 1 \ 1 \ 2 \ 2 \ 1 \ 1 \ 0 \ 1 \ 2 \ 2 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 2 \ 1 \ 2 \ 0]
```

testing dataset:				
	sepal_length	sepal_width	petal_length	petal_width
114	5.8	2.8	5.1	2.4
62	6.0	2.2	4.0	1.0
33	5.5	4.2	1.4	0.2
107	7.3	2.9	6.3	1.8
7	5.0	3.4	1.5	0.2
100	6.3	3.3	6.0	2.5
40	5.0	3.5	1.3	0.3
86	6.7	3.1	4.7	1.5
76	6.8	2.8	4.8	1.4
71	6.1	2.8	4.0	1.3
134	6.1	2.6	5.6	1.4
51	6.4	3.2	4.5	1.5
73	6.1	2.8	4.7	1.2
54	6.5	2.8	4.6	1.5
63	6.1	2.9	4.7	1.4
37	4.9	3.1	1.5	0.1
78	6.0	2.9	4.5	1.5
90	5.5	2.6	4.4	1.2
45	4.8	3.0	1.4	0.3
16	5.4	3.9	1.3	0.4
121	5.6	2.8	4.9	2.0
66	5.6	3.0	4.5	1.5
24	4.8	3.4	1.9	0.2
8	4.4	2.9	1.4	0.2
126	6.2	2.8	4.8	1.8
22	4.6	3.6	1.0	0.2
44	5.1	3.8	1.9	0.4
97	6.2	2.9	4.3	1.3
93	5.0	2.3	3.3	1.0
26	5.0	3.4	1.6	0.4
137	6.4	3.1	5.5	1.8
84 27	5.4 5.2	3.0 3.5	4.5 1.5	1.5
127	6.1	3.0	4.9	0.2 1.8
132	6.4	2.8	5.6	2.2
59	5.2	2.7	3.9	1.4
18	5.7	3.8	1.7	0.3
83	6.0	2.7	5.1	1.6
61	5.9	3.0	4.2	1.5
92	5.8	2.6	4.0	1.2
112	6.8	3.0	5.5	2.1
2	4.7	3.2	1.3	0.2
2 141	6.9	3.1	5.1	2.3
43	5.0	3.5	1.6	0.6
10	5.4	3.7	1.5	0.2
	0.1	0.,	1.0	V.2

$\begin{bmatrix} 2 & 1 & 0 & 2 & 0 & 2 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 2 & 1 & 0 & 0 & 2 & 0 & 0 & 1 & 1 & 0 & 2 & 2 & 1 & 0 \\ 1 & 1 & 1 & 2 & 0 & 2 & 0 & 0 \end{bmatrix}$

- []: mlp.fit(xtrain, ytrain)
- []: MLPClassifier(hidden_layer_sizes=10, learning_rate_init=0.01, max_iter=500, random_state=113, solver='sgd')
- []: print(mlp.score(xtest,ytest))
 - 0.97777777777777