

Problem 1.

Task 1 Double Tree.

O MST (greedy & Kruskal Algo.) 2 = 3 = 4 = 5 = 6 = 9 = 10 = 22 = 33 = 50 €66 € 86 € 86 € 100 € 95 2

finally choose

2 (386), 3 (286), 4 (486) 5 (4&5), 10(1&2)

(2) double it

3 path (Eulerian)

(4) shortcut,

and get cost as

10+3+2+6+5+33=59.

Task 2 . Christofide's

(.just improve performance on nodes that has redd degree)

① MST (same as task 1)

2 set of odd degree {1,6,3,5}

Add them up

@ Eulerian path (walk) $1\rightarrow 2\rightarrow 6\rightarrow 3\rightarrow 6\rightarrow 4\rightarrow 5\rightarrow 1$

1 Shortcut (→2→6 →3 →4→5 and get cost as 10+3+2+6+5+33 =59

Problem 2 Task 2. (Greedy) We rank the $\frac{1}{5}$; and get $(0, \frac{2}{5}, 1, 1)$ $\frac{6}{8} \le \frac{5}{5} \le \frac{4}{3} \le \frac{4}{3}$ (0,0,1,1) Running greedy algo. we will choose item | and 2, the total value is δ ,

Not optimal:

> By choosing item 184, total value is 4+5 = 9 which is more than 8.

掃描全能王 創建

Problem 2 Task 1 (KS) (*b	lank	grids	are	∞))		<u> </u>
ask 1 (K3) 1 2 3	4	5	6	7	8	9	1
i=1 0	3						
<u>1=2</u> 0	-3				6		
i=3 0	3	1	8		6	8	1
1=4 0		5	-			0	
$\begin{pmatrix} V \\ 5 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 6 \\ 8 \end{pmatrix}, \begin{pmatrix} 5 \\ 5 \end{pmatrix}$							
we can read from-	the	tab	le -	tha-	t		
arg max { T[n,w]:	T(n	,w]{	B}	=	9.		
Problem 3.							
Task 1 Greedy							
first iteration:							
$S_1 = \frac{6}{5} = 1.2 ?3 > 1.2 > 1$							
$S_2 = \frac{15}{5} = 3$ we choose S_3 .							
$S_3 = \frac{7}{7} = 1$							
second iteration;							
$S_1 = \frac{6}{3} = 2$ $\therefore 3 > 2$							
$S_2 = \frac{15}{5} = 3$ We choose S_1							
third iteration:							
we still need	to c	h 00 S	е. 1. Ц	ch.	ons P	52	
However, only	52	ìs	ILTC	_, C+ K		J V	
Luckily, after all	itera	tion	15,				
$V = S_1 US_2 US_3$							
we call it a day.	Tot	al	cost	13			
(115+7 = 28 (Si, Sz, Sz, are chosen)							

14 16 13 Problem 3 Task 2. this greedy solution is not optional, By Choosing S2 & S3, V = S2 US3 with cost 15+7=22<28 which is a better solution. Q.E.D. Also, I will prove S2US3 is optimal. Since V should be covered, we have to cover e12 and e6, which means at least 52 and 52 should be chosen. Thus optimal. Bonus. Task 1. Dual (D) is (X) object: maximize \(\sum_{j \in D} \square\) constrain: Oj-Bij≤dij, tieF,j&D. (*)

11 12 13 14 15 16 17 18 19

no need for nvmax

19 is enough

Censtrain: O(j-βij≤dij, HieF, jeD. (*)

∑Bij≤fi, HieF

JeD

O(j≥0, HjeD

Bij>0 HieF, jeD

(By plugging in general Form in Lec 011)

掃描全能王 創建

detailed process:
$$2i=|F|, j=|D|$$
. (2)

Ebj. $f_1.y_1+...+f_1y_1+din X_{11}+...+dij X_{2j} min$

st. $\begin{cases} X_{11}+X_{21}+...+X_{11} \ge 1 & \forall 1 \\ X_{12}+...+X_{2j} \ge 1 & \forall j \end{cases}$
 $\begin{cases} X_{12}+...+X_{2j} \ge 1 & \forall j \\ X_{12}+...+X_{2j} \ge 1 & \forall j \end{cases}$
 $\begin{cases} 1. X_{11} \le y_1 & B_{11} \\ P_{12} & P_{12} \\ P_{13} & P_{13} \end{cases}$
 $\begin{cases} 1. X_{11} \le y_1 & B_{11} \\ P_{12} & P_{13} \\ P_{13} & P_{13} \end{cases}$

=> coefficient comparison.

Task 2, Bonus.

it is easy to understand that

by all the demands, which is

[Fi] = fi when optimal,

- for every demand, of is the total

 Amount of money j is willing to pay,

 we want to maximize ∑odi to

 get most profit (purchasing potential)

 I guess
- (x) a)=min(Bij+olij) when optimal.

 the RHS is the tost to open facility

 t cost of travel, should be covered
 by the demand)

the demand side should be willing to pay for the total cost when optimal.

Honor Code

I accept the letter and spirit of the honor code:

I have neither given nor received unauthorized and on this examination, nor have I concealed any violations of the Honor Code by myself or others.

Wang Yichao

掃描全能王 創建