INTERNET

Por Sediane Carmem Lunardi Hernandes

AGENDA

Introdução

Protocolos em camada

História da Internet

Padrões da Internet

1. INTRODUÇÃO

- A Internet conecta bilhões de computadores
- É uma combinação de redes (inter-rede ou internetwork)
- Mas...
 - O que é uma rede?
 - O que é uma inter-rede?
 - Como a Internet é estruturada?

2. REDES

- Uma rede é "a interligação de um conjunto de dispositivos capazes de se comunicar" (FOROUZAN; MOSHARRAF, 2013, p. 2).
 - Dispositivos são:
 - chamados de hosts (ou sistema final)
 - conectados usando meios de transmissão com (cabo) ou sem fio (ar).

2. REDES (CONT.)

Exemplos de dispositivos:

- Dispositivos como sistema final ou host:
 - Mainframe
 - Desktop
 - Laptop
 - Estação de trabalho
 - Telefone celular
 - Sistema de segurança.

- Dispositivos de conexão:
 - Modem
 - Roteador
 - Switch

2.1 REDE LOCAL

LAN isolada

(a) LAN conectada por um cabo compartilhado (passado)

Host (de qualquer tipo)

Switch

Acoplador de cabo

Terminador de cabo

Cabo compartilhado

Conexão

- Uma rede local (LAN Local Area Network) conecta alguns hosts em um ambiente único (p. e., escritório, prédio).
 - Cada host em uma LAN possui um identificador (endereço único na LAN)
 - logo, pacote enviado de um host para outro possui o endereço do host origem e do host destino.

(b) LAN conectada por um switch (hoje em dia)

2.1 REDE LOCAL (CONT.)

Modem: converte dados em voz.

Switch (comutador): liga dispositivos entre si. É capaz de reconhecer o endereço de destino do pacote e encaminhá-lo a seu destino sem enviá-lo a todos os outros hosts. O switch alivia o tráfego na LAN e permite que mais de um par de hosts se comuniquem uns com os outros ao mesmo tempo, caso não haja uma fonte ou destino em comum entre cada par.

Roteador: liga uma rede a outras redes.

2.1 REDE LOCAL (CONT.)

- Características:
 - Possui tamanho limitado
 - É propriedade da organização que a utiliza (privada)
 - Foi projetada para permitir que os recursos fossem compartilhados entre os hosts.

2.2 REDE DE LONGA DISTÂNCIA

 Uma rede de longa distância (WAN – Wide Area Network) é também uma interligação de dispositivos capazes de se comunicar. Entretanto, uma WAN interliga dispositivos de conexão como switches, roteadores ou modems.

- Características:
 - Possui extensão maior do que a LAN (cidade, estado, país, continente)
 - Costuma ser criada e operada por empresas de comunicação e alugada por uma organização que a utiliza.

2.2 REDE DE LONGA DISTÂNCIA (CONT.)

- Tipos de WANs:
 - WAN ponto a ponto
 - Uma WAN ponto a ponto é uma rede que conecta dois dispositivos de comunicação usando um meio de transmissão (cabo ou ar).

WAN comutada:

- Uma WAN comutada é uma rede com mais de duas extremidades
- Uma WAN comutada é uma combinação de várias WANs ponto a ponto que são ligadas por meio de switches.

3. INTERNET

•1 L A internet (i minúsculo) consiste em duas ou mais redes que podem comunicar-se entre si

A internet mais conhecida é aquela chamada de Internet (com I maiúsculo), composta por milhares de redes interconectadas (FOROUZAN; MOSHARRAF, 2013)

internet

WAN (*Wide Area Network*) - Rede de longa distância: interliga dispositivos de conexão como switches, roteadores ou modems. Criada e operada por empresas de comunicação e alugada por uma organização que a utiliza.

Internet

Bakcbones (nível superior)

 Redes grandes de propriedade de algumas empresas conectadas por sistemas complexos de comutação (pontos de troca de tráfego)

Redes de provedores (segundo nível)

- Utilizam os serviços dos backbones mediante o pagamento de uma taxa
- Estão conectadas aos backbones e algumas vezes a outras redes de provedores

Redes de clientes (terceiro nível)

- São as redes na borda da Internet que efetivamente usam os serviços prestados pela Internet
- Pagam taxas para as redes de provedores para receber serviços.

- Os backbones e as redes de provedores são também chamados Provedores de Serviços de Internet (ISPs – Internet Service Providers)
 - backbones são frequentemente denominados ISPs internacionais e;
 - as redes de provedores, ISPs nacionais ou regionais.
- A Internet atual é um conjunto de redes que permite que qualquer usuário se torne parte dela, desde que esteja fisicamente conectado a um ISP. A ligação física costuma ser feita por meio de uma WAN ponto a ponto.

CURIOSIDADE!

- Primeiro backbone do Brasil
 - Chamado de Rede Ipê
 - Criado pela Rede Nacional de Pesquisa (RNP)
 - Inaugurado em 2005

Rede Ipê: infraestrutura de rede Internet dedicada à comunidade brasileira de ensino superior e pesquisa, que interconecta universidades e seus hospitais, institutos de pesquisa e instituições culturais.

- Para que a comunicação aconteça na Internet é necessário
 - Hardware
 - Software

Protocolos de comunicação

4. PROTOCOLOS EM CAMADA

- Um protocolo define "as regras que o remetente, o destinatário e todos os dispositivos intermediários precisam seguir para que sejam efetivamente capazes de se comunicar" (FOROUZAN; MOSHARRAF, 2013, p. 9).
 - Comunicação complexa
 - Tarefa dividida em camadas
 - Uso de um protocolo em cada camada (protocolo em camadas)

Protocolo de uma camada

Protocolo de três camadas

4. PROTOCOLOS EM CAMADA (CONT.)

- Vantagem principal da divisão de protocolos em camadas
 - Separação dos serviços de suas implementações

Uma camada deve ser capaz de receber um conjunto de serviços da camada inferior e de prover serviços para a camada superior; não importando como a camada é implementada.

4. PROTOCOLOS EM CAMADA (CONT.)

Princípios dos protocolos em camadas:

- lo. princípio: para a comunicação bidirecional, cada camada deve executar duas tarefas opostas, uma em cada direção (p.e., cifrar e decifrar).
- 20. princípio: os dois objetos em cada camada devem ser idênticos (p.e., na camada 3 em ambos os lados o objeto deve ser uma carta em texto original).

4. PROTOCOLOS EM CAMADA (CONT.)

Conexões lógicas:

 Significa que existe uma comunicação de uma camada para a outra - uma conexão (imaginária) em cada camada lógica, através da qual se pode enviar o objeto criado daquela camada.

4.1 A PILHA DE PROTOCOLOS TCP/IP

 O TCP/IP (Transmission Control Protocol/Internet Protocol, ou Protocolo de Controle de Transmissão/Protocolo Internet) consiste em "uma pilha de protocolos (um conjunto de protocolos organizados em diferentes camadas) usados na Internet atual" (FOROUZAN; MOSHARRAF, 2013, p. 12).

Cada protocolo prove uma funcionalidade específica (serviço) e é apoiado pelos serviços fornecidos por um ou mais protocolos dos níveis abaixo dele

Forouzan; Mosharraf (2013, p. 12)

Na prática como isso funciona?

- Então...
 - A função das camadas de aplicação, transporte e de rede é fim a fim
 - A função das camadas de enlace de dados e física é salto a salto, sendo que um salto (ou hop) é um host ou roteador
 - O domínio da ação das três camadas mais altas é a internet e o domínio de ação das duas camadas mais baixas é o enlace.

- Para entender as conexões lógicas é importante levar em consideração a unidade de dados criada a partir de cada camada
 - Nas três camadas superiores, a unidade de dados (pacotes) não deve ser alterada por qualquer roteador ou switch de camada de enlace
 - Nas duas camadas inferiores, o pacote criado pelo host é alterado apenas pelos roteadores, e não pelos switches de camada de enlace.

Forouzan; Mosharraf (2013, p. 14)

A) CAMADA DE APLICAÇÃO

- [®]A comunicação processo a processo é a função da camada de aplicação.
 - A comunicação se dá entre dois processos (dois programas em execução nessa camada)
 - [®] Para se comunicar, um processo envia um pedido para o outro processo e recebe uma resposta.
- As duas camadas de aplicação trocam mensagens entre si como se não houvesse
 uma ponte entre elas
 - ©Entretanto, a comunicação é feita através de todas as camadas (FOROUZAN; MOSHARRAF, 2013, p. 14).
- A camada de aplicação na Internet inclui muitos protocolos predefinidos, mas o
 usuário também pode criar um par de processos para serem executados nos dois
 hosts.

A) CAMADA DE APLICAÇÃO (CONT.)

- Protocolos da camada de aplicação (FOROUZAN; MOSHARRAF, 2013, p. 14):
 - 1. Protocolo de Transferência de Hipertexto (HTTP HyperText Transfer Protocol): um meio de acesso à World Wide Web (WWW).
 - 2. Protocolo Simples de Transferência de Correio (SMTP Simple Mail Transfer Protocol): o principal protocolo utilizado no serviço de correio eletrônico (e-mail).
 - 3. **Protocolo de Transferência de Arquivo**s (FTP *File Transfer Protocol*): usado para transferir arquivos de um host para outro.
 - 4. Rede de Terminais (TELNET Terminal Network) e o SSH (Secure Shell): usados para acessar uma máquina remotamente.
 - 5. **Protocolo Simples de Gerenciamento de Rede** (SNMP Simple Network Management Protocol): usado por um administrador para gerenciar a Internet nos níveis global e local.
 - 6. **Sistema de Nomes de Domínio** (DNS *Domain Name System*): usado por outros protocolos para localizar o endereço de camada de rede de um computador.
 - 7. Protocolo de Gerenciamento de Grupos Internet (IGMP Internet Group Management Protocol): usado para agregar participantes a um grupo.

B) CAMADA DE TRANSPORTE

- A camada de transporte é responsável por prover serviços para a camada de aplicação
 - A camada de transporte no host de origem recebe a mensagem da camada de aplicação, a encapsula em um pacote da camada de transporte (denominado um segmento ou um datagrama de usuário, dependendo do protocolo) e a envia através da conexão lógica (imaginária) para a camada de transporte no host de destino.

B) CAMADA DE TRANSPORTE (CONT.)

- Protocolos da camada de transporte na Internet:
 - 1. Protocolo de Controle de Transporte (TCP Transport Control Protocol)
 - É um protocolo orientado à conexão que inicialmente estabelece uma conexão lógica entre as camadas de transporte dos dois hosts antes de transferir dados
 - O TCP provê controle de fluxo (harmonizando a taxa de envio de dados do host de origem e a taxa de recepção de dados do host de destino para impedir que este fique sobrecarregado), controle de erros (para garantir que os segmentos cheguem ao destino sem erros e para reenviar segmentos corrompidos) e controle de congestionamento para reduzir a perda de segmentos devido a congestionamentos na rede.
 - 2. Protocolo de Datagrama de Usuário (UDP User Datagram Protocol)
 - É um protocolo não orientado à conexão que transmite datagramas de usuário sem antes criar uma conexão lógica.
 - 3. Protocolo de Controle de Fluxo de Transmissão (SCTP Stream Control Transmission Protocol)
 - Atende as novas aplicações que estão surgindo na área de multimídia.

C) CAMADA DE REDE

A camada de rede é responsável pela comunicação host a host e pelo roteamento de pacotes através de possíveis rotas.

Principal potocolo da camada de rede:

- **Protocolo da Internet** (IP *Internet Prococol*)
 - O IP é um protocolo não orientado à conexão que não fornece qualquer serviço de controle de fluxo, controle de erro, ou controle de congestionamento (preciso dos serviços dos protocolos da camada de transporte para isso).
 - É responsável pelo roteamento de um pacote de sua origem até seu destino, o que é conseguido por meio do encaminhamento do datagrama de cada roteador para o próximo roteador no seu caminho

C) CAMADA DE REDE (CONT.)

- Outros protocolos da camada de rede:
 - 1. Protocolo de Mensagens de Controle da Internet (ICMP *Internet Control Message Protocol*)
 - ajuda o IP a relatar alguns problemas durante o roteamento de pacotes.
 - 2. Protocolo de Gerenciamento de Grupos Internet (IGMP Internet Group Management Protocol)
 - protocolo que ajuda o IP, neste caso em tarefas de multicast.
 - 3. Protocolo de Configuração Dinâmica de Host (DHCP Dynamic Host Configuration Protocol)
 - ajuda o IP a obter o endereço de camada de rede para um host.
 - 4. Protocolo de Resolução de Endereços (ARP Address Resolution Protocol)
 - ajuda o IP a localizar o endereço da camada de enlace de um host ou de roteador quando o seu endereço de camada de rede é dado.

D) CAMADA DE ENLACE

- Uma internet é composta de vários enlaces (LANs e WANs) conectados por roteadores
- Quando o próximo enlace a ser utilizado é determinado pelo roteador, a camada de enlace de dados é responsável por pegar o datagrama e movê-lo através do enlace (os roteadores são responsáveis por escolher os melhores enlaces)
 - Para isso, a camada de enlace de dados pega um datagrama e o encapsula em um pacote chamado de quadro (também denominado frame).

E) CAMADA FÍSICA

- A camada física é responsável por transportar os bits individuais de um quadro através do enlace
 - os bits recebidos em um quadro da camada de enlace de dados são transformados (sinais elétricos ou ópticos) e enviados através dos meios de transmissão

ENCAPSULAMENTO/DESENCAPSULAMENTO

- O encapsulamento de dados é o processo que adiciona mais informações de cabeçalho de protocolo aos dados antes da transmissão
 - Na maioria das formas de comunicação de dados, os dados originais são encapsulados ou envolvidos com informações de vários protocolos antes de serem transmitidos

ENCAPSULAMENTO/DESENCAPSULAMENTO

ENCAPSULAMENTO/DESENCAPSULAMENTO

- Exemplo:
 - Servidor web

Animação: http://deptal.estgp.pt:9090/cisco/ccnal/course/module3/3.3.1.3/3.3.1.3.html

5. HISTÓRIA DA INTERNET

Como surgiu a Internet?

- Em meados dos anos 1960, os computadores do tipo mainframe localizados em organizações de pesquisa eram dispositivos isolados
 - Computadores de diferentes fabricantes eram incapazes de se comunicar uns com os outros.
- A Agência de Projetos de Pesquisa Avançados (ARPA – Advanced Research Projects Agency), órgão do Departamento de Defesa dos Estados Unidos, estava interessada em conectar computadores
 - Pesquisadores poderiam compartilhar suas descobertas
 - Redução de custos
 - Eliminação de duplicação de esforços.

- Em 1967, a ARPA apresentou suas **ideias** da Rede da Agência de Projetos de Pesquisa Avançados (ARPANET *Advanced Research Projects Agency Network*),
 - uma pequena rede de computadores conectados
 - cada computador (não necessariamente do mesmo fabricante) seria ligado a um computador especializado, chamado de Processador de Mensagens de Interface (IMP – Interface Message Processor)
 - os IMPs, por sua vez, seriam ligados uns aos outros.
 - cada IMP precisava ser capaz de se comunicar com outros IMPs, bem como com o host ao qual estava conectado.

- Em 1969, a ARPANET tornou-se realidade.
 - Quatro nós
 - 1. Universidade da Califórnia em Los Angeles (UCLA)
 - 2. Universidade da Califórnia em Santa Barbara (UCSB)
 - 3. Instituto de Pesquisa de Stanford (SRI)
 - 4. Universidade de Utah

foram conectados por meio de IMPs para formar uma rede. Um software chamado de Protocolo de Controle de Rede (NCP – *Network Control Protocol*), permitia a comunicação entre os *hosts*.

- Em 1972, a Internet surgiu
 - Vint Cerf e Bob Kahn, ambos parte do grupo que criou a ARPANET, colaboraram no que eles chamaram de Internetting Project (Projeto Inter-redes)
 - desejavam ligar redes distintas para que um host em uma rede pudesse se comunicar com um host em outra rede
 - tiveram a ideia de um dispositivo chamado de gateway para atuar como o hardware intermediário na transferência de dados de uma rede para outra

- Em 1973
 - Publicação de um artigo que esboçava os protocolos para entrega de dados fim a fim
 - Protocolo de controle de transmissão (TCP Transmission Control Protocol).
- Em 1977
 - Demonstração com sucesso de uma internet consistindo de três diferentes redes (ARPANET, Packet Radio e Packet Satellite).
- Entre 1977 e 1981
 - Divisão de o protocolo TCP em dois: o TCP e o IP TCP/IP.
- Em 1981
 - Modificação do sistema operacional UNIX para incluir o TCP/IP
 - a Universidade da Califórnia em Berkeley, seguindo um contrato com o Departamento de Defesa americano, deu a todos os fabricantes de dispositivos/computadores um código-base funcional do TCP/IP.
- Em 1983
 - O TCP/IP tornou-se o protocolo oficial da ARPANET
 - aqueles que desejassem usar a Internet para acessar um computador em uma rede diferente tinham que estar utilizando o TCP/IP.

6. PADRÕES DA INTERNET

- Um padrão Internet é uma especificação amplamente testada, útil e aceita por aqueles que trabalham com a Internet. É um conjunto de regras formais que devem ser seguidas.
 - A especificação começa como um Internet draft (um esboço do padrão)
 - um Internet draft é um documento de trabalho (um trabalho em andamento) sem qualquer status oficial e com uma vida útil de seis meses
 - é publicado como um Pedido de Comentários (RFC Request for Comment)
 - cada RFC é editado, tem um número a ele atribuído e é disponibilizado a todos os interessados.
- Algumas RFCs que são padrões Internet:
 - RFC 793 (TCP) https://www.ietf.org/rfc/rfc793.txt
 - RFC 791 (IP) https://www.rfc-editor.org/info/rfc791

Para pesquisar RFC de alguns protocolos veja: https://www.rfc-editor.org/search/rfc_search_detail.php?pubstatus%5B%5D=Standards+Track&std_trk=Internet+Standard&pub_date_type=any

7. ADMINSITRAÇÃO DA INTERNET

 Vários grupos que coordenam as questões da Internet têm guiado seu crescimento e desenvolvimento

TAREFA

 Pesquise sobre os órgãos de administração da Internet e escreva sobre cada um deles.

REFERÊNCIAS

• FOROUZAN, Behrouz A.; MOSHARRAF, Firouz. **Redes de computadores**. Porto Alegre: Grupo A, 2013. E-book. ISBN 9788580551693. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788580551693/. Acesso em: 11 jul. 2023.