Peripherals (1/2)

1

Interfacing Processors and Peripherals

- I/O Design affected by many factors (expandability, resilience)
- **Performance:**
 - access latency
 - throughput
 - connection between devices and the system
 - the memory hierarchy
 - the operating system
- A variety of different users (e.g., banks, supercomputers, engineers)

I/O System Characteristics

- **Dependability is important**
 - Particularly for storage devices
- **Performance measures**
 - Latency (response time)
 - Throughput (bandwidth)
 - Desktops & embedded systems
 - · Mainly interested in response time & diversity of devices
 - Servers
 - · Mainly interested in throughput & expandability of devices

CE, KWU Prof. S.W. LEE 3

Dependability

- Fault: failure of a component
 - May or may not lead to system failure

Dependability Measures

- Reliability: mean time to failure (MTTF)
- Service interruption: mean time to repair (MTTR)
- Mean time between failures
 - MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR) = MTTF / MTBF
- **Improving Availability**
 - Increase MTTF: fault avoidance, fault tolerance, fault forecasting
 - Reduce MTTR: improved tools and processes for diagnosis and repair

Time Between Failures = { down time - up time}

Mean time between failures =
$$MTBF = \frac{\Sigma(downtime - uptime)}{number of failures}$$

CE, KWU Prof. S.W. LEE 5

Disk Storage

Nonvolatile, rotating magnetic storage

Disk Sectors and Access

- **Each sector records**
 - Sector ID
 - Data (512 bytes, 4096 bytes proposed)
 - Error correcting code (ECC)
 - Used to hide defects and recording errors
 - Synchronization fields and gaps
- Access to a sector involves
 - Queuing delay if other accesses are pending
 - Seek: move the heads
 - Rotational latency
 - Data transfer
 - Controller overhead

CE, KWU Prof. S.W. LEE 7

Disk Access Example

- Given
 - 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer rate, 0.2ms controller overhead, idle disk
- Average read time
 - 4ms seek time
 - $+ \frac{1}{2} / (15,000/60) = 2$ ms rotational latency
 - + 512 / 100MB/s = 0.005ms transfer time
 - + 0.2ms controller delay
 - = 6.2 ms
- If actual average seek time is 1ms
 - Average read time = 3.2ms

Disk Performance Issues

- Manufacturers quote average seek time
 - Based on all possible seeks
 - Locality and OS scheduling lead to smaller actual average seek times
- Smart disk controller allocate physical sectors on disk
 - Present logical sector interface to host
 - SCSI (Small Computer System Interface), ATA (Advanced Technology) Attachment), SATA (Serial ATA)
- Disk drives include caches
 - Prefetch sectors in anticipation of access
 - Avoid seek and rotational delay

CE, KWU Prof. S.W. LEE 9

Flash Storage

- Nonvolatile semiconductor storage
 - $-100 \times -1000 \times$ faster than disk
 - Smaller, lower power, more robust
 - But more \$/GB (between disk and DRAM)

Flash Types

- NOR flash: bit cell like a NOR gate
 - Random read/write access
 - Used for instruction memory in embedded systems
- NAND flash: bit cell like a NAND gate
 - Denser (bits/area), but block-at-a-time access
 - Cheaper per GB
 - Used for USB keys, media storage, ...
- Flash bits wears out after 1000's of accesses
 - Not suitable for direct RAM or disk replacement
 - Wear leveling: remap data to less used blocks

CE, KWU Prof. S.W. LEE 11

RAID

- Redundant Array of Inexpensive (Independent) Disks
 - Use multiple smaller disks (c.f. one large disk)
 - Parallelism improves performance
 - Plus extra disk(s) for redundant data storage
- Provides fault tolerant storage system
 - Especially if failed disks can be "hot swapped"
- It's a technology that enables greater levels of performance, reliability and/or large volumes when dealing with data.
- Mirroring, Stripping (of data) and Error correction techniques combined with multiple disk arrays give you the reliability and performance.

RAID 0

- It splits data among two or more disks.
- Provides good performance.
- Lack of data redundancy means there is no fail over support with this configuration.
- In the diagram to the right, the odd blocks are written to disk 0 and the even blocks to disk 1 such that A1, A2, A3, A4, ... would be the order of blocks read if read sequentially from the beginning.
- Used in read only NFS systems and gaming systems.
- JBOD = Just a bunch of disks

CE, KWU Prof. S.W. LEE 13

RAID 0 analysis

- **Failure Rate:**
 - MTBF of RAID0 is roughly proportional to the number of disks in the array.
 - Pr(disk.fail) = 5%, then $Pr(at.least.one.fails) = 1 - Pr(none.fails) = 1 - (1 - 0.05)^2 = 9.75\%$
- Performance:
 - The fragments are written to their respective disks simultaneously on the same sector.
 - This allows smaller sections of the entire chunk of data to be read off the drive in parallel, hence good performance.

RAID 1

- RAID1 is 'data mirroring'.
- Two copies of the data are held on two physical disks, and the data is always identical.
- Twice as many disks are required to store the same data when compared to RAID 0.
- Array continues to operate so long as at least one drive is functioning.
- Failure Rate:
 - If Pr(disk.fail) = 5%, then the probability of both the drives failing in a 2-disk array is $Pr(both.fail) = (0.05)^2 = 0.25\%.$
- Performance:
 - If we use independent disk controllers for each disk, then we can increase the read or write speeds by doing operations in parallel.

CE, KWU Prof. S.W. LEE 15

RAID 10

- Combines RAID 1 and RAID 0.
- Which means having the pleasure of both - good performance and good failover handling.
- Also called 'Nested RAID'.
- RAID 01
 - Mirroring of striped disks
 - 2nd failure while repairing results in the system failure.

RAID 2: Bit-Interleaved with ECC

- **Error correcting code (ECC)**
 - N + E disks (e.g., 10 + 4)
 - Split data at bit level across N disks
 - Generate E-bit ECC
 - Too complex, not used in practice

CE, KWU Prof. S.W. LEE 17

RAID 3: Byte-Interleaved Parity

- N + 1 disks
 - Data striped across N disks at byte level
 - Redundant disk stores parity
 - Read access
 - · Read all disks
 - Write access
 - · Generate new parity and update all disks
 - On failure
 - Use parity to reconstruct missing data
- Not widely used

RAID 4: Block-Interleaved Parity

- N + 1 disks
 - Data striped across N disks at block level
 - Redundant disk stores parity for a group of blocks
 - Read access
 - Read only the disk holding the required block
 - Write access
 - · Just read disk containing modified block, and parity disk
 - Calculate new parity, update data disk and parity disk
 - On failure
 - · Use parity to reconstruct missing data
- Not widely used

CE, KWU Prof. S.W. LEE 19

RAID 3 vs RAID 4

RAID 5: Distributed Block Parity

- N + 1 disks
 - Like RAID 4, but parity blocks distributed across disks
 - · Avoids parity disk being a bottleneck
- Widely used

CE, KWU Prof. S.W. LEE 21

RAID 6: P + Q Redundancy

- N + 2 disks
 - Like RAID 5, but two lots of parity
 - Greater fault tolerance through more redundancy
- It is seen as the best way to guarantee data integrity as it uses double parity.
- Lesser MTBF compared to RAID5.
- It has a drawback though of longer write time.

Implementations

- Software based RAID:
 - Software implementations are provided by many Operating Systems.
 - A software layer sits above the disk device drivers and provides an abstraction layer between the logical drives(RAIDs) and physical drives.
 - Server's processor is used to run the RAID software.
 - Used for simpler configurations like RAID0 and RAID1.
- Hardware based RAID:
 - A hardware implementation of RAID requires at least a specialpurpose RAID controller.
 - On a desktop system this may be built into the motherboard.
 - Processor is not used for RAID calculations as a separate controller present.

CE, KWU Prof. S.W. LEE 23

A Bus is:

- shared communication link
- single set of wires used to connect multiple subsystems

- A Bus is also a fundamental tool for composing large, complex systems
 - systematic means of abstraction

Bus basics

- · A bus consists of
 - A set of wires over which data and bus commands are transferred
 - Communication protocols for determining bus ownership, (which device can currently use the bus), bus commands, and responses to commands
- To use the bus, a device (cache, memory, or I/O) must first arbitrate for the usage of the bus in order to get exclusive usage for the required time period
- A bus operation may consist of sending
 - Bus commands (e.g., read, write)
 - Addresses (e.g., of the memory location to read or write)
 - Data (e.g., to be returned in response to a read command)

CE, KWU Prof. S.W. LEE 25

Interconnecting Components

- **Need interconnections between**
 - CPU, memory, I/O controllers
- **Bus: shared communication channel**
 - Parallel set of wires for data and synchronization of data transfer
 - Can become a bottleneck
- Performance limited by physical factors
 - Wire length, number of connections
- More recent alternative: high-speed serial connections with switches
 - Like networks

Bus Types

- **Processor-Memory buses**
 - Short, high speed
 - Design is matched to memory organization
- I/O buses
 - Longer, allowing multiple connections
 - Specified by standards for interoperability
 - Connect to processor-memory bus through a bridge

CE, KWU Prof. S.W. LEE 27

Bus Signals and Synchronization

- **Data lines**
 - Carry address and data
 - Multiplexed or separate
- Control lines
 - Indicate data type, synchronize transactions
- Synchronous
 - Uses a bus clock
- Asynchronous
 - Uses request/acknowledge control lines for handshaking

Advantages and Disadvantage of Buses

- Advantages
 - Versatility:
 - New devices can be added easily
 - · Peripherals can be moved between computer systems that use the same bus standard
 - Low Cost:
 - A single set of wires is shared in multiple ways
 - Manage complexity by partitioning the design
- **Disadvantages**
 - It creates a communication bottleneck
 - The bandwidth of that bus can limit the maximum I/O throughput
 - The maximum bus speed is largely limited by:
 - The length of the bus
 - The number of devices on the bus
 - The need to support a range of devices with:
 - Widely varying latencies
 - Widely varying data transfer rates

CE, KWU Prof. S.W. LEE 29

The General Organization of a Bus

- **Control lines:**
 - Signal requests and acknowledgments
 - Indicate what type of information is on the data lines
- Data lines:
 - carry information between the source and the destination:
 - Data and Addresses
 - Complex commands
- What defines a bus?
 - Transaction Protocol
 - Timing and Signaling Specification
 - Bunch of Wires
 - Electrical Specification
 - Physical / Mechanical Characterisics the connectors

Master versus Slave

- A bus transaction includes two parts:
 - Issuing the command (and address) - request
 - Transferring the data
- Master is the one who starts the bus transaction by:
 - issuing the command (and address)
- Slave is the one who responds to the address by:
 - Sending data to the master if the master ask for data
 - Receiving data from the master if the master wants to send data

action

CE, KWU Prof. S.W. LEE 31

Types of Buses

- **Processor-Memory Bus (design specific)**
 - Short and high speed
 - Only need to match the memory system
 - Maximize memory-to-processor bandwidth
 - Connects directly to the processor
 - Optimized for cache block transfers
- I/O Bus (industry standard)
 - Usually is lengthy and slower
 - Need to match a wide range of I/O devices
 - Connects to the processor-memory bus or backplane bus
- **Backplane Bus (standard or proprietary)**
 - Backplane: an interconnection structure within the chassis
 - Allow processors, memory, and I/O devices to coexist
 - Cost advantage: one bus for all components

A Computer System with One Bus: Backplane Bus

- A single bus (the backplane bus) is used for:
 - Processor to memory communication
 - Communication between I/O devices and memory
- Advantages: Simple and low cost
- Disadvantages: slow and the bus can become a major bottleneck
- **Example: IBM PC AT**

CE, KWU Prof. S.W. LEE 33

A Two-Bus System

- I/O buses tap into the processor-memory bus via bus adaptors:
 - Processor-memory bus: mainly for processor-memory traffic
 - I/O buses: provide expansion slots for I/O devices
- **Apple Macintosh-II**
 - NuBus: Processor, memory, and a few selected I/O devices
 - SCSI Bus: the rest of the I/O devices

A Three-Bus System

- A small number of backplane buses tap into the processor-memory bus
 - Processor-memory bus is used for processor memory traffic
 - I/O buses are connected to the backplane bus
- Advantage: loading on the processor bus is greatly reduced