ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 13
Linguagens sensíveis ao contexto e irrestritas
Cap 3.3 – Definição de algoritmo

Profa. Ariane Machado Lima ariane.machado@usp.br

Linguagens sensíveis ao contexto

- Teorema: as Gramáticas Sensíveis ao Contexto e as Máquinas de Turing com Fita Limitada representam exatamente a mesma classe de linguagens – as linguagens sensíveis ao contexto
 - Demonstração: livro (RAMOS, NETO e VEGA, 2009) – leitura complementar definida na primeira aula.

Hierarquia de Chomsky

 $\alpha \rightarrow \beta$

Hierarquia de Chomsky

Linguagens recursivas (Turing-decidíveis) e não recursivas (as demais)

Hierarquia de Chomsky

Linguagens irrestritas ou recursivamente enumeráveis

Linguagens irrestritas ou recursivamente enumeráveis ou Turing-reconhecíveis

- Uma linguagem L é chamada irrestrita ou recursivamente enumerável ou Turingreconhecível se ela for aceita por pelo menos uma Máquina de Turing M, ou seja:
 - Para toda cadeia w E L, M pára e aceita w
 - Para toda cadeia z € Σ*-L, M pára e rejeita z ou executa uma sequência infinita de movimentações

Linguagens recursivas ou Turing-decidíveis

- Uma linguagem L é chamada recursiva se ela for decidida por pelo menos uma Máquina de Turing M, ou seja:
 - Para toda cadeia w E L, M pára e aceita w
 - Para toda cadeia z € Σ*-L, M pára e rejeita z

Linguagens não-recursivas

- Uma linguagem L é chamada não-recursiva se ela for aceita por pelo menos uma Máquina de Turing M mas não decidida por nenhuma Máquina de Turing, ou seja:
 - Para toda cadeia w E L, M pára e aceita w
 - Para pelo menos uma cadeia z € Σ*-L, M executa uma sequência infinita de movimentações (e pára e rejeita as demais cadeias y € Σ*-L)

Linguagens recursivas

- Toda linguagem sensível ao contexto é recursiva
- Toda linguagem recursiva que NÃO é sensível ao contexto é também chamada estritamente recursiva

Cap 3.3 – A definição de algoritmo

Um pouco de história

- 1833 Charles Babbage e a concepção da máquina analítica (programável)
- Ada Lovelace
 - criou estruturas de programas para a máquina analítica (loops, saltos condicionais, subrotinas,...)
 - Inventou a palavra algoritmo em homenagem ao matemático Al-Khawarizmi (820 D.C.)
- Mas algoritmos ainda eram uma noção intuitiva...

Um pouco de história

- 1900 palestra do matemático David Hilbert
 - 23 desafios matemáticos para o próximo século
 - Décimo problema: um processo pelo qual possa ser determinado, com um número finito de operações, se um polinômio tem raízes inteiras.
- 1936 artigos de Alonzo Church e Alan Turing definindo formalmente um algoritmo
 - Church com lambda-cálculo
 - Turing com Máquinas de Turing
 - As duas formulações são equivalentes

Tese de Church-Turing

Noção intuitiva de algoritmos

é igual a

algoritmos de máquina de Turing

Algoritmo para o problema de Hilbert

Problema de Hilbert:

D = { p | p é um polinômio com uma raiz inteira}
D é decidível?

Algoritmo para o problema de Hilbert

Problema de Hilbert:

D = { p | p é um polinômio com uma raiz inteira}
D é decidível?

1970 – Yuri Matijasevic mostrou que não

Problema simplificado

 $D_1 = \{p | p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira} \}.$

Problema simplificado

 $D_1 = \{p | p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira} \}.$

Aqui está uma MT M_1 que reconhece D_1 :

 M_1 = "A entrada é um polinômio p sobre a variável x.

1. Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \ldots$ Se em algum ponto o valor do polinômio resulta em 0, aceite."

Decidivel?

Problema simplificado

 $D_1 = \{p | p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira} \}.$

Aqui está uma MT M_1 que reconhece D_1 :

 M_1 = "A entrada é um polinômio p sobre a variável x.

1. Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \ldots$ Se em algum ponto o valor do polinômio resulta em 0, aceite."

Decidível? Sim...

As raízes de um polinômio de uma só variável devem residir entre os dois valores:

$$\pm k \frac{c_{\text{máx}}}{c_1},$$

onde k é o número de termos no polinômio, $c_{\text{máx}}$ é o coeficiente com o maior valor absoluto, e c_1 é o coeficiente do termo de mais alta ordem. Se uma raiz não for encontrada dentro desses limitantes, a máquina *rejeita*.