$TASK_1_Titanic_Survival_Prediction$

1. Loading the dataset

[1]:	PassengerId	Survived	Pclass	,
0	1	0	3	
1	2	1	1	
2	3	1	3	
3	4	1	1	
1	5	0	3	

	Name Sex Ag	e SibSp \
0	Braund, Mr. Owen Harris male 22.	0 1
1	Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0	1
2	Heikkinen, Miss. Laina female 26.	0 0
3	Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.	0 1
4	Allen, Mr. William Henry male 35.	0 0

	Parch	Ticket	Fare	${\tt Cabin}$	Embarked
0	0	A/5 21171	7.2500	${\tt NaN}$	S
1	0	PC 17599	71.2833	C85	C
2	0	STON/02. 3101282	7.9250	NaN	S
3	0	113803	53.1000	C123	S
4	0	373450	8.0500	NaN	S

2. Data Inspection

2.1. Checking Data Types

[2]: print("Data Types:\n\n", data.dtypes)

Data Types:

 ${\tt PassengerId}$ int64 Survived int64 Pclass int64 Name object Sex object float64 Age int64SibSp Parch int64Ticket object Fare float64 Cabin object ${\tt Embarked}$ object

dtype: object

2.2. Checking Dataset Shape

[3]: print("Dataset Shape:", data.shape)

Dataset Shape: (891, 12)

2.3. Describing the Dataset

[4]: print("Describe the Dataset \n\n", data.describe())

Describe the Dataset

	PassengerId	Survived	Pclass	Age	SibSp	\
count	891.000000	891.000000	891.000000	714.000000	891.000000	
mean	446.000000	0.383838	2.308642	29.699118	0.523008	
std	257.353842	0.486592	0.836071	14.526497	1.102743	
min	1.000000	0.000000	1.000000	0.420000	0.000000	
25%	223.500000	0.000000	2.000000	20.125000	0.000000	
50%	446.000000	0.000000	3.000000	28.000000	0.000000	
75%	668.500000	1.000000	3.000000	38.000000	1.000000	
max	891.000000	1.000000	3.000000	80.000000	8.000000	

	Parch	Fare
count	891.000000	891.000000
mean	0.381594	32.204208
std	0.806057	49.693429
min	0.000000	0.000000
25%	0.000000	7.910400
50%	0.000000	14.454200
75%	0.000000	31.000000
max	6.000000	512.329200

3. Handling Missing Values

3.1. Initial Check for Missing Values

```
[5]: print("\nMissing values:\n\n", data.isnull().sum())
```

Missing values:

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

3.2. Filling Missing 'Embarked' Values

```
[6]: #data['Embarked'].fillna(data['Embarked'].mode()[0], inplace=True) #it⊔

→ gives future warning for inplace=True

data['Embarked'] = data['Embarked'].fillna(data['Embarked'].mode()[0])
```

3.3. Re-checking Missing Values (after Embarked imputation)

```
[7]: print("\nAgain Check Missing values:\n\n", data.isnull().sum())
#Missing value in Embarked is 0
```

Again Check Missing values:

```
PassengerId
                    0
Survived
                   0
Pclass
                   0
Name
                   0
Sex
                   0
                 177
Age
{\tt SibSp}
                   0
Parch
                   0
Ticket
                   0
Fare
                   0
Cabin
                 687
Embarked
                   0
```

dtype: int64

3.4 Filling Missing 'Age' Values

```
[8]: # Fill missing age using median by Pclass and Sex group

data['Age'] = data.groupby(['Pclass', 'Sex'])['Age'].transform(lambda x: x.

→fillna(x.median()))
```

3.5 Re-checking Missing Values (after Age imputation)

```
[9]: print("\nAgain Check Missing values:\n\n", data.isnull().sum())
#Missing value in Age is 0
```

Again Check Missing values:

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	0
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	0
dtype: int64	

3.6 Dropping 'Cabin' Column

```
[10]: # Drop Cabin column because too many missing values
    data.drop(columns=['Cabin'], inplace=True)
    print("Preprocessed_Data is ready")
```

Preprocessed_Data is ready

4. Saving Preprocessed Data

```
[11]: # Save as Excel
excel_file = 'Preprocessed_data.xlsx'
data.to_excel(excel_file, index=False)
```

5. Data Visualization

5.1. Barplot for Survival by gender

```
[12]: # Plot for Survival by gender
import seaborn as sns
import matplotlib.pyplot as plt
sns.barplot(x='Sex', y='Survived', data=data, color = "Red")
```

```
plt.title("Survival Rate by Gender")
plt.show()
```


5.2. Barplot for Survival by Embarked

```
[13]: # Plot for Survival by Embarked
import seaborn as sns
import matplotlib.pyplot as plt

sns.barplot(x='Embarked', y='Survived', data=data, color = "Purple")
plt.title("Survival Rate by Embarked")
plt.show()
```


5.3. Scatterplot for Age vs Fare (Survival Highlighted)

```
[14]: import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.lines import Line2D

sns.set_style('whitegrid')

plt.figure(figsize=(7, 5))
sns.scatterplot(x=data['Age'], y=data['Fare'], hue=data['Survived'], palette={0:
    'red', 1: 'green'}, alpha=0.7)

# Custom legend with matching colors and text
custom_legend = [
    Line2D([0], [0], marker='o', label='Not Survived', markerfacecolor='red', usuarkersize=8),
    Line2D([0], [0], marker='o', label='Survived', markerfacecolor='green', usuarkersize=8)
]
# Plot titles and labels
```

```
plt.title('Scatterplot of Age vs Fare (Survival Highlighted)')
plt.xlabel('Age')
plt.ylabel('Fare')
plt.legend(handles=custom_legend)
plt.show()
```

Scatterplot of Age vs Fare (Survival Highlighted)

5.4. Barplot for Survival by Passenger Class

```
[15]: import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style('whitegrid')

# Plot titles and labels
plt.figure(figsize=(7, 5))
sns.barplot(x='Pclass', y='Survived', data=data, color="blue")
plt.title('Survival Rate by Passenger Class')
plt.xlabel('Passenger Class')
plt.ylabel('Survival Rate')
plt.show()
```


6. Feature Engineering

6.1. Dropping Irrelevant Features

```
[16]: # Drop unnecessary columns
data_model = data.drop(columns=["PassengerId", "Ticket"])
```

6.2. Inspecting DataFrame Columns

```
[17]: data.columns
```

6.3. Encoding Categorical Variables

```
[18]: from sklearn.preprocessing import LabelEncoder

# Encode categorical columns
data_model['Sex'] = LabelEncoder().fit_transform(data_model['Sex'])
data_model['Embarked'] = LabelEncoder().fit_transform(data_model['Embarked'])
```

7. Model Training and Performance Evaluation

7.1. Data Splitting and Model Training

7.2. Model Accuracy Assessment

Model Performance:

Accuracy: 82.12%

The model correctly predicts survival 82 out of 100 times.

7.3. Classification Report

```
[21]: from sklearn.metrics import classification_report
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Convert classification report to DataFrame
report_dict = classification_report(y_test, y_pred, output_dict=True)
report_df = pd.DataFrame(report_dict).transpose()
```

Classification Report

7.4. Confusion Matrix Visualization

```
[22]: import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Not Survived', usurvived'])
plt.xlabel('Predicted')
plt.ylabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
```

```
plt.tight_layout()
plt.show()
```


7.5. Feature Correlation Analysis (Heatmap)

```
import matplotlib.pyplot as plt
import seaborn as sns

# Drop the 'Name' column and any other non-numeric columns not needed for_
correlation

# (e.g., 'Ticket' if it exists and is not numeric, though it's less common to_
correlate)

data_for_correlation = data_model.drop(columns=['Name', 'Ticket'],__
errors='ignore')

correlation_matrix = data_for_correlation.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f",__
elinewidths=.5)
plt.title('Correlation Heatmap of Titanic Features')
plt.show()
```


8. Boosting Model Performance (Accuracy)

8.1. Calculating Family Size

```
[24]: data_model['FamilySize'] = data_model['SibSp'] + data_model['Parch'] + 1
```

8.2. Identifying Alone Passengers

```
[25]: #Creating 'IsAlone' based on 'FamilySize' data_model['IsAlone'] = (data_model['FamilySize'] == 1).astype(int)
```

8.3. Creating Age Bins

```
[26]: #Categorizing 'Age' into 'AgeRange' for better insights
import pandas as pd
data_model['AgeRange'] = pd.cut(data_model['Age'], bins=[0, 12, 18, 30, 45, 460, 100],
```

```
labels=['Child', 'Teenager', 'Young Adult', 'Adult', 'Middle Aged', □ 

'Senior'])
```

8.4. Extracting and Encoding Titles

8.5. Barplot for Survival Rate by Age Group

```
[28]: import matplotlib.pyplot as plt
      import pandas as pd
      # Step 1: Group total and survived counts by AgeRange
      total_by_age = data_model.groupby('AgeRange', observed=True)['Survived'].count()
      survived by age = data model.groupby('AgeRange', observed=True)['Survived'].
       ⇒sum()
      # Calculate survival rate
      survival_rate = (survived_by_age / total_by_age) * 100
      plt.figure(figsize=(7, 5))
      survival rate.plot(kind='bar', color='skyblue', edgecolor='black')
      plt.title("Survival Rate by Age Group")
      plt.ylabel("Survival Rate (%)")
      plt.xlabel("Age Group")
      plt.ylim(0, 100)
      plt.xticks(rotation=45)
      plt.tight_layout()
      plt.show()
```


8.6. Final Model Accuracy Check

Model Performance:

Accuracy: 84.36%

The model correctly predicts survival 84 out of 100 times.

```
[30]: print("--- Titanic Survival Prediction Task Complete ---")
```

--- Titanic Survival Prediction Task Complete ---