Introduction to Quantum Information and Computing - Lecture 6

Shrikara A, Arnav Negi, Kriti Gupta, Manav Shah, Mohammed Shamil, Shiven Sinha, Swayam Agarwal, Vineeth Bhat, Yash Adivarekar

24th January, 2023

Contents

1	General Quantum Circuits	1
	1.1 Tensor Product	1
	1.2 Ordinary Matrix Product	1
2	Cost of Quantum Circuits	1
	2.1 Query Complexity	2
3	State produced by Hadamard Gate	2
	3.1 Single Hadamard gate	2
	3.2 N Hadamard gates	3
4	Universality of Quantum Gates	3
	4.1 Solovay-Kitaev Theorem	3
	4.1.1 1-2 Qubit	
	4.1.2 t-Gate	4
5	Quantum Parallelism	4

1 General Quantum Circuits

Elementary gates can be composed into bigger quantum circuits. This can be done in two ways:

- 1. Tensor product
- 2. Ordinary matrix product

1.1 Tensor Product

Combination of gates applied to different registers.

$$U_1 |0\rangle \otimes U_2 |0\rangle ... U_n |0\rangle = (U_1 \otimes U_2 ... \otimes U_n) |0...0\rangle$$

= $U^{\otimes n} |0^n\rangle$ when $U_i = U \forall i$

 $(U_1 \otimes U_2 ... \otimes U_n)$ is a 2^n dimension unitary.

1.2 Ordinary Matrix Product

Combination of gates applied to same register.

$$|0\rangle$$
 U_1 U_2 U_2 U_n

Output, $|\psi\rangle = (U_n...U_1)|0\rangle$ Here, for all U, dim = 2×2 (if all $U_i s$ are single qubit)

2 Cost of Quantum Circuits

- 1. Gate complexity
- 2. Depth complexity
- 3. Query complexity

2.1 Query Complexity

Query complexity is decided by number of queries made to a blackbox, U_f .

Gates added before and after the blackbox to prepare desired input/output state do not affect the complexity.

3 State produced by Hadamard Gate

3.1 Single Hadamard gate

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

$$H\left|0\right\rangle = \frac{1}{\sqrt{2}}(\left|0\right\rangle + \left|1\right\rangle)$$

$$H\left|1\right\rangle = \frac{1}{\sqrt{2}}(\left|0\right\rangle - \left|1\right\rangle)$$

when $x \in \{0, 1\},\$

$$H|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^x |1\rangle) = \frac{1}{\sqrt{2}} \sum_{z \in \{0,1\}} (-1)^{xz} |z\rangle$$

3.2 N Hadamard gates

$$H^{\otimes n} = H \otimes H... \otimes H$$

$$Output = |+^{\otimes n}\rangle$$

$$= \frac{1}{\sqrt{2}^n}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \dots \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$= \frac{1}{\sqrt{2}^n}(|0...000\rangle + |0...001\rangle + |0...010\rangle \dots)$$

$$= \frac{1}{\sqrt{2}^n}\sum \text{(basis of n qubits)}$$

$$H^{\otimes n} \left| 0^{\otimes n} \right\rangle = \frac{1}{\sqrt{2}^n} \sum_{z \in 0, 1^n} \otimes \left| z \right\rangle$$

$$H^{\otimes n} |x\rangle = \frac{1}{\sqrt{2}^n} \sum_{z \in 0.1^n} \otimes (-1)^{x \cdot z} |z\rangle$$

4 Universality of Quantum Gates

Can any U be decomposed into a combination of unitaries/gates from some finite set?

- 1. CNOT, all single qubit gates \equiv universal set for QC \rightarrow but, not finite
- 2. CNOT, H, T = G } Good approximation for any quantum gate.

4.1 Solovay-Kitaev Theorem

• Uses G, and each of the gates' inverse

4.1.1 1-2 Qubit

It is possible to approximate any unitary (gate) in one or two qubits upto an error ϵ by using only $O(polylog(\frac{1}{\epsilon})$ gates from G.

$$||U|\psi\rangle - U_m U_{m-1}...U_1|\psi\rangle|| \le \epsilon$$

Where U is the matrix being approximated and each $U_i \in G$ and $m \in polylog(\frac{1}{\epsilon})$

4.1.2 t-Gate

Any 't' gate quantum circuit can be ϵ -approximated by only $O(t \cdot polylog(\frac{1}{\epsilon})$ gates from G

5 Quantum Parallelism

- Quantum circuits can be applied to multiple/all states in one query.
- But, output would still be of no use until we apply appropriate transformations to separate the outputs.

E.g., Consider a classical circuit that computes

$$f: \{0,1\}^n \to \{0,1\}$$

We need to run this 2^n times (once for each input) to find output for each input. Converting it to a quantum circuit but replacing gates with reversible unitaries,

$$Output, |\psi\rangle = \frac{1}{\sqrt{2}^n} \sum_{z \in \{0,1\}^n} |z\rangle \, |f(|z\rangle)\rangle$$