MATHS

Section: Maths

1ère Session

EXERCICE 1

Dans ce qui suit, x et y désignent des entiers.

Répondre par vrai ou faux en justifiant la réponse.

- a) $x^3 \equiv x \pmod{2}$.
- b) Si $x \equiv 2 \pmod{14}$ alors $x \equiv 1 \pmod{7}$.
- c) Si $4x \equiv 10y \pmod{5}$ alors $x \equiv 0 \pmod{5}$.

Si
$$\begin{cases} x \equiv 4 \pmod{5} \\ y \equiv 5 \pmod{8} \end{cases}$$
 alors $8x - 5y = 7$

Contenu

- Congruence.
- Reste modulo n.

Solutions et commentaires

a) Vrai. En effet: on sait que si x est un entier, alors son reste modulo 2 est soit 0 soit 1:

Reste de x (mod2)	0	1
Reste de x ³ (mod2)	0	1

Il en résulte du tableau ci-dessus que $x^3 \equiv x \pmod{2}$.

- ✓ On pourrait envisager la justification suivante : $x^3 x = x(x-1)(x+1)$ est toujours pair, par conséquent $x^3 \equiv x \pmod{2}$
- b) Faux. Car pour x = 2, $2 \equiv 2 \pmod{14}$ et 2 non congru à 1 modulo 7.
- c) Vrai. En effet : si $4x \equiv 10y \pmod{5}$ alors $4x \equiv 0 \pmod{5}$ et donc $x \equiv 0 \pmod{5}$; car $4 \land 5 \equiv 1$.
- ✓ Il s'agit d'utiliser le lemme de Gauss: $\begin{cases} ax \equiv 0 \pmod{b} \\ b \text{ ne divise pas a} \end{cases} \text{ alors } x \equiv 0 \pmod{b}$
- d) **Faux**. Car: pour x = 9 et y = 5, $8 \times 9 7 \times 5 = 47$.

EXERCICE 2

- **I** Soit g la fonction définie sur \mathbb{R} par $g(x) = e^{-x}$ et (Γ) sa courbe représentative dans un repère orthonormé (O, \vec{i} , \vec{j}).
 - 1) Déterminer une équation de la tangente à (Γ) au point d'abscisse 0.
 - 2) a) Montrer que pour tout $x \ge 0$, $1-x \le e^{-x} \le 1$.
 - b) En déduire que pour tout $x \ge 0$, $x \frac{x^2}{2} \le 1 e^{-x} \le x$.
- II On considère la fonction f définie sur $[0,+\infty[$ par

$$\begin{cases} f(x) = e^{-\frac{1}{x}} & \text{si } x > 0 \\ f(0) = 0 \end{cases}$$

On désigne par (\mathcal{C}) sa courbe représentative dans le repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) a) Calculer la limite de f(x) lorsque x tend vers $+\infty$.
 - b) Etudier la continuité et la dérivabilité de f à droite en 0.
 - c) Dresser le tableau de variation de f.
- 2) a) Montrer que le point I $\left(\frac{1}{2}, \frac{1}{e^2}\right)$ est un point d'inflexion de la courbe (\mathcal{C}).
 - b) Donner une équation de la tangente T à la courbe (C) au point I.
- 3) Dans la **figure 1** de l'annexe ci-jointe, on a représenté la courbe (Γ) dans le repère orthonormé (O, \vec{i}, \vec{j}) .
 - a) Construire I.
 - b) Construire la tangente T.
 - c) Tracer la courbe (C).
- 4) Soit A_k l'aire du domaine plan limité par la courbe (\mathcal{C}), la droite d'équation y = 1 et les droites d'équations x = k et x = k + 1 où k est un entier naturel non nul.
 - a) En utilisant I 2) b) montrer que $\ln\left(\frac{k+1}{k}\right) \frac{1}{2} \left\lceil \frac{1}{k} \frac{1}{k+1} \right\rceil \le A_k \le \ln\left(\frac{k+1}{k}\right)$.
 - b) Calculer $\lim_{k\to +\infty} A_k$.
- 5) Pour tout $n \ge 1$, on pose $S_n = \sum_{k=1}^n A_k$.
 - a) Interpréter graphiquement $\boldsymbol{S}_{\boldsymbol{n}}$.
 - b) Montrer que $\mbox{ln}(n+1) \ -\frac{1}{2} \left[1 \frac{1}{n+1} \right] \leq S_n \leq \mbox{ln}(n+1) \ .$
 - c) En déduire les limites de S_n et de $\frac{S_n}{\ln(n)}$, quand n tend vers l'infini.

EXERCICE 2 figure 1

Contenu

- Continuité- Dérivabilité –calculs de limites.
- Calcul d'intégrales
- Suites d'intégrales, limite d'une suite réelle.

Aptitudes visées :

- Etudier la continuité et la dérivabilité d'une fonction en un point.
- Encadrer une expression algébrique.
- Etudier les variations d'une fonction.
- Reconnaître un point d'inflexion.
- Exploiter un graphique pour construire un point ou une droite dans le plan.
- Tracer la courbe représentative d'une fonction.
- Reconnaître et encadrer une aire.

Solutions et commentaires

I.

- 1) g(0) = 1. Pour tout réel x, $g'(x) = -e^{-x}$ ce qui donne g'(0) = -1. Une équation de la tangente à (Γ) au point d'abscisse 0 est y = g'(0)x + g(0) = -x + 1.
- 2) a) Pour tout $x \ge 0$, $-x \le 0$ donc $e^{-x} \le 1$.

Pour tout $x \ge 0$, posons la fonction h définie par $h(x) = e^{-x} + x - 1$.

La fonction h est dérivable sur $[0,+\infty[$ et h' $(x)=1-e^{-x}\geq 0$ donc h est strictement croissante sur

 $\left[0,+\infty\right[\text{ . Il en résulte que si }x\geq0\text{ alors }h\left(x\right)\geq h\left(0\right)=0\text{ . On en déduit que }e^{-x}\geq1-x\text{ pour tout }x\geq0.$ Ainsi pour tout $x\geq0,\ 1-x\leq e^{-x}\leq1.$

✓ La courbe représentative de la fonction

exponentielle est au dessus de la la tangente T_1 au point

d'abscisse 0 $(T_1: y = x+1)$ (voir graphique ci-contre).

Ainsi pour tout réel x; $e^x \ge x + 1$ et par conséquent $e^{-x} \ge -x + 1$.

Les fonctions $t\mapsto 1-t$ et $t\mapsto e^{-t}$ sont continues sur $[0,x],\ x\geq 0$

Donc
$$\left[t - \frac{t^2}{2}\right]_0^x \le \left[-e^{-t}\right]_0^x \le x$$
 d'où $x - \frac{x^2}{2} \le 1 - e^{-x} \le x$ pour tout $x \ge 0$.

II.

1) a)
$$\begin{cases} \lim_{x \to +\infty} -\frac{1}{x} = 0 \\ \lim_{x \to 0} e^x = 1 \end{cases}$$
 on en déduit que $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} e^{-\frac{1}{x}} = 1$.

b)
$$\begin{cases} \lim_{x \to 0^+} -\frac{1}{x} = -\infty \\ \lim_{x \to 0^+} e^x = 0 \end{cases}$$
 on en déduit que $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} e^{-\frac{1}{x}} = 0 = f(0)$ donc f est continue à droite en 0.

$$\lim_{x\to 0^+} \frac{f\left(x\right) - f\left(0\right)}{x} = \lim_{x\to 0^+} \frac{e^{\frac{-1}{x}}}{x} = \lim_{x\to 0^+} - \left(-\frac{1}{x}e^{\frac{-1}{x}}\right) = 0 = f_d'\left(0\right). \text{donc } f \text{ est d\'erivable \`a droite en } 0 \text{ et } f_d'\left(0\right) = 0 \ .$$

c) La fonction f est dérivable sur
$$]0,+\infty[$$
 et f' $(x)=\frac{1}{x^2}e^{-\frac{1}{x}}>0$.

X	0 +∞
f'(x)	0 +
f	0

2) a) La fonction f' est dérivable sur
$$]0,+\infty[$$
 et $f''(x) = -\frac{2}{x^3}e^{-\frac{1}{x}} + \frac{1}{x^4}e^{-\frac{1}{x}} = \frac{1-2x}{x^4}e^{-\frac{1}{x}}.$

f "(x) s'annule en $\frac{1}{2}$ en changeant de signe. Donc le point $I\left(\frac{1}{2},\frac{1}{e^2}\right)$ est un point d'inflexion de la courbe (\mathscr{C}).

b)
$$f'\left(\frac{1}{2}\right) = \frac{4}{e^2}$$
; $T: y = \frac{4}{e^2}x - \frac{3}{e^2}$.

3) a) Le point I est le point de
$$(\Gamma)$$
 d'abscisse $\frac{1}{2}$

✓ Il s'agit d'exploiter une donnée graphique pour construire un point du plan.

b) La tangente T passe par le point I et de coefficient directeur $\frac{4}{e^2}$; ce coefficient est constructible vu que $\frac{1}{e^2}$.

c) Représentation graphique de f.

4)a)
$$A_k = \int_k^{k+1} (1 - f(x)) dx = \int_k^{k+1} \left(1 - e^{-\frac{1}{x}} \right) dx$$
. or d'après I 2) on a $x - \frac{x^2}{2} \le 1 - e^{-x} \le x$ pour tout $x \ge 0$,

on en déduit que $\frac{1}{x} - \frac{1}{2x^2} \le 1 - e^{-\frac{1}{x}} \le \frac{1}{x}$ pour tout x > 0.

Les fonctions $x \mapsto \frac{1}{x} - \frac{1}{2x^2}, x \mapsto 1 - e^{-\frac{1}{x}}$ et $t \mapsto \frac{1}{x}$ sont continues sur $[k, k+1], k \ge 1$

$$donc \ \int_{k}^{k+1} \frac{1}{x} - \frac{1}{2x^2} dx \leq \int_{k}^{k+1} \left(1 - e^{-\frac{1}{x}} \right) dx \leq \int_{k}^{k+1} \frac{1}{x} dx \ d'où \left[\ln x + \frac{1}{2x} \right]_{k}^{k+1} \leq A_k \leq \left[\ln x \right]_{k}^{k+1} dx$$

on en déduit que $\ln\left(\frac{k+1}{k}\right) - \frac{1}{2}\left[\frac{1}{k} - \frac{1}{k+1}\right] \le A_k \le \ln\left(\frac{k+1}{k}\right).$

$$b) \lim_{k \to +\infty} ln \left(\frac{k+1}{k}\right) - \frac{1}{2} \left[\frac{1}{k} - \frac{1}{k+1}\right] = \lim_{k \to +\infty} ln \left(\frac{k+1}{k}\right) = 0 \ donc \lim_{k \to +\infty} A_k = 0.$$

5)a) pour tout entier naturel n non nul, $S_n = \sum_{k=1}^n A_k = \sum_{k=1}^n \int_k^{k+1} \left(1 - e^{-\frac{1}{x}}\right) dx = \int_1^{n+1} \left(1 - e^{-\frac{1}{x}}\right) dx$. Ainsi S_n est l'aire de la partie du plan limitée par (\mathscr{C}), la droite y = 1 et les droites d'équations x = 1 et x = n+1.

b) On a
$$S_n = \int_1^{n+1} \left(1 - e^{-\frac{1}{x}} \right) dx$$
 donc $\int_1^{n+1} \left(\frac{1}{x} - \frac{1}{2x^2} \right) dx \le S_n \le \int_1^{n+1} \frac{1}{x} dx$.

On en déduit que $\ln(n+1) - \frac{1}{2} \left[1 - \frac{1}{n+1} \right] \le S_n \le \ln(n+1)$.

c) On sait
$$\ln(n+1) - \frac{1}{2} \left[1 - \frac{1}{n+1} \right] \le S_n$$
 et $\lim_{n \to +\infty} \ln(n+1) - \frac{1}{2} \left[1 - \frac{1}{n+1} \right] = +\infty$ donc $\lim_{n \to +\infty} S_n = +\infty$.

De plus pour tout n > 1, $\ln(n) > 0$ donc

$$\frac{\ln(n+1) - \frac{1}{2} \left[1 - \frac{1}{n+1} \right]}{\ln(n)} \le \frac{S_n}{\ln(n)} \le \frac{\ln(n+1)}{\ln(n)} \text{ et puisque}$$

$$\lim_{n\to+\infty} \frac{\ln\left(n+1\right)}{\ln\left(n\right)} = \lim_{n\to+\infty} \frac{\ln\left(n+1\right) - \frac{1}{2}\left[1 - \frac{1}{n+1}\right]}{\ln\left(n\right)} = 1 \text{ on en déduit que}$$

$$\lim_{n\to+\infty}\frac{S_n}{\ln(n)}=1.$$

EXERCICE 3

Dans la figure ci-contre, ABF est un triangle rectangle isocèle

tel que
$$(\overrightarrow{AB}, \overrightarrow{AF}) \equiv \frac{\pi}{2} [2\pi]$$
,

I est le milieu de [AF] . Les droites (IB) et (AE) se coupent en G

et EGB est un triangle rectangle isocèle en G.

- 1) Soit f la similitude directe de centre B, d'angle $\frac{\pi}{4}$ et de rapport $\frac{\sqrt{2}}{2}$. Déterminer les images des points E et F par f.
- 2) Soit g la similitude directe qui envoie A en F et F en B.
 - a) Montrer que g est de rapport $\sqrt{2}$ et d'angle $\left(-\frac{3\pi}{4}\right)$.
 - b) Déterminer la nature de g o g et préciser son rapport et son angle.
 - c) Montrer que $\tan(ABI) = \frac{1}{2}$. En déduire que GB = 2 GA.
 - d) En déduire que G est le centre de g.
- 3) Soit $r = g \circ f$.
 - a) Montrer que r est la rotation de centre F et d'angle $-\frac{\pi}{2}$.
 - b) Déterminer r(E). En déduire que EFGH est un carré, où H est le milieu de [EB].

Contenu

- Similitude directe.
- Composée de deux similitudes directes.
- Rotation.

Aptitudes visées :

- Reconnaître l'image d'un point par une similitude directe.
- Identifier une similitude directe connaissant deux points et leurs images.
- Reconnaître la composée de deux similitudes directes non inverses et de rapports inverses.
- Exploiter une isométrie pour identifier une configuration usuelle du plan (carré).

Solutions et commentaires

1) Le triangle BEG est rectangle, isocèle en G et de sens direct donc $\begin{cases} \frac{BG}{BE} = \frac{BG}{\sqrt{2}BG} = \frac{\sqrt{2}}{2} \\ \left(\overrightarrow{BE}, \overrightarrow{BG}\right) = \frac{\pi}{4} [2\pi] \end{cases}$

Il en résulte que f(E) = G.

Le triangle BFA est rectangle, isocèle en A et de sens direct donc $\begin{cases} \frac{BA}{BF} = \frac{\sqrt{2}}{2} \\ \left(\overrightarrow{BF}, \overrightarrow{BA}\right) = \frac{\pi}{4} [2\pi] \end{cases}$

Il en résulte que f(F) = A.

Il s'agit d'utiliser une configuration de bases usuelle (triangle rectangle et isocèle) pour identifier l'image d'un point par une similitude directe.

2) a)
$$\frac{FB}{AF} = \sqrt{2} \text{ et}\left(\overrightarrow{AF}; \overrightarrow{FB}\right) \equiv \pi + \left(\overrightarrow{FA}; \overrightarrow{FB}\right) \left[2\pi\right]. \text{ Soit } \left(\overrightarrow{AF}; \overrightarrow{FB}\right) \equiv -\frac{3\pi}{4} \left[2\pi\right]$$

b) $g \circ g$ est une similitude directe de rapport 2 et d'angle $\frac{\pi}{2}$

c)
$$\tan(ABI) = \frac{AI}{AB} = \frac{\frac{1}{2}AF}{AB} = \frac{1}{2} \text{ or } \tan(ABI) = \tan(ABG) = \frac{GA}{GB} \text{ donc } GB = 2GA.$$

- d) $g \circ g(A) = B$ et $(\overrightarrow{GA}; \overrightarrow{GB}) = \frac{\pi}{2} [2\pi]$ et GB = 2GA donc G est le centre de $g \circ g$ donc G est le centre de g.
- Il s'agit d'exploiter un résultat de cours : g et g o g sont deux similitudes directes de même centre.
- 3) a) r est la composée de deux similitudes directes de rapports respectifs $\sqrt{2}$ et $\frac{\sqrt{2}}{2}$ et d'angles respectifs $-\frac{3\pi}{4}$ et $\frac{\pi}{4}$, il en résulte que r est une rotation et d'angle $-\frac{3\pi}{4} + \frac{\pi}{4} = -\frac{\pi}{2} \left[2\pi \right]$ comme $(g \circ f)(F) = g(A) = F$ donc r est la rotation de centre F et d'angle $-\frac{\pi}{2}$.

b) r(E) = g(f(E)) = g(G) = G donc FE = FG et $GFE = \frac{\pi}{2}$ par suite le triangle EFG est rectangle et isocèle en F donc $GEF = \frac{\pi}{4}$. D'autre part H est le milieu de [BE] et le triangle EGB est rectangle et isocèle en G donc le triangle EGH est rectangle et isocèle en H donc $GEH = \frac{\pi}{4}$, on en déduit que $HEF = \frac{\pi}{2}$. D'où $GHE = EFG = HEF = \frac{\pi}{2}$ ce qui prouve que le quadrilatère EFGH est un rectangle et puisque FE = FG donc EFGH est un carré.

✓ Il s'agit d'utiliser un déplacement pour identifier une configuration usuelle (un carré).

EXERCICE 4

Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère le point A d'affixe (-1) et les points M, N et P d'affixes respectives z, z^2 et z^3 où z est un nombre complexe non nul différent de (-1) et de 1.

1) a) Montrer que:

(le triangle MNP est rectangle en P) si et seulement si $(\frac{1+z}{z})$ est imaginaire pur).

- b) On pose z = x + iy où x et y sont des réels. Montrer que $\frac{1+z}{z} = \frac{x^2 + y^2 + x iy}{x^2 + y^2}$.
- c) En déduire que l'ensemble des points M tels que le triangle MNP soit un triangle rectangle en P est le cercle (Γ) de diamètre [OA], privé des points O et A.
- 2) Dans la **figure 2** de l'annexe ci-jointe, on a tracé le cercle (Γ) et on a placé un point M d'affixe z sur (Γ) et son projeté orthogonal H sur l'axe (\vec{O} , \vec{u}).

On se propose de construire les points N et P d'affixes respectives z^2 et z^3 tels que le triangle MNP soit rectangle en P.

- a) Montrer que $(\overrightarrow{OM}, \overrightarrow{ON}) = (\overrightarrow{u}, \overrightarrow{OM})[2\pi]$ puis que $(\overrightarrow{ON}, \overrightarrow{OP}) = (\overrightarrow{u}, \overrightarrow{OM})[2\pi]$.
- b) Montrer que $OH = OM^2$.
- c) Donner un procédé de construction des points N et P puis les construire.

EXERCICE 4 : figure 2

Contenu

- Ecriture algébrique d'un nombre complexe.
- Argument d'un nombre complexe non nul.
- Affixe et image.

Aptitudes visées :

- Déterminer l'écriture algébrique d'un nombre complexe.
- Repérer un point dans le plan et déterminer son affixe.
- Utiliser les nombres complexes pour déterminer un ensemble des points du plan.
- Utiliser les nombres complexes pour des constructions géométriques.

Solutions et commentaires

1) a) Le triangle MNP est rectangle en P si et seulement si $\frac{z-z^3}{z^2-z^3}$ est imaginaire pur si et seulement si $\frac{1+z}{z}$ est imaginaire pur.

b)
$$\frac{1+z}{z} = \frac{1+x+iy}{x+iy} = \frac{(1+x+iy)(x-iy)}{(x+iy)(x-iy)} = \frac{x^2+y^2+x-iy}{x^2+y^2}$$
.

c) Soit M un point du plan d'affixe z non nulle et différente de 1 et -1.

(Le triangle MNP est rectangle en P) si et seulement si $\frac{1+z}{z}$ est imaginaire pur si et seulement si

$$\begin{cases} x^2 + y^2 + x = 0 \\ M \neq O \\ M \neq A \end{cases}$$
 si et seulement si
$$\begin{cases} \left(x + \frac{1}{2}\right)^2 + y^2 = \frac{1}{4} \\ M \neq O \\ M \neq A \end{cases}$$
 si et seulement si M appartient au cercle Γ de centre

 $I\left(-\frac{1}{2},0\right)$ et de rayon $\frac{1}{2}$ privé des points O et A. Or le point I est le milieu de [OA] donc le cercle Γ est le cercle de diamètre [OA]. On en déduit que l'ensemble cherché est le cercle Γ de diamètre [OA] privé de O et A.

2) a)
$$\left(\overrightarrow{OM}; \overrightarrow{ON}\right) \equiv \arg\left(\frac{z^2}{z}\right) \left[2\pi\right] \operatorname{donc}\left(\overrightarrow{OM}; \overrightarrow{ON}\right) \equiv \arg\left(z\right) \left[2\pi\right] \operatorname{d'où}\left(\overrightarrow{OM}; \overrightarrow{ON}\right) \equiv \left(\overrightarrow{u}; \overrightarrow{OM}\right) \left[2\pi\right].$$

$$\left(\overrightarrow{ON};\overrightarrow{OP}\right) \equiv arg\left(\frac{z^3}{z^2}\right) \left[2\pi\right] donc\left(\overrightarrow{ON};\overrightarrow{OP}\right) \equiv \left(\overrightarrow{u};\overrightarrow{OM}\right) \left[2\pi\right].$$

b) OH =
$$-x$$
 or $x^2 + y^2 + x = 0$ donc $-x = x^2 + y^2$ il en résulte que OH = OM².

c) $ON = |z|^2 = OM^2 = OH$ donc N est le point d'intersection de la demi-droite [OC) telle $QUE(\overrightarrow{OM};\overrightarrow{OC}) = (\overrightarrow{u};\overrightarrow{OM})$ [2 π] avec le cercle de centre O et de rayon OH.

P est le point d'intersection du cercle de diamètre [MN] avec la demi-droite image de [OM) par la symétrie orthogonale d'axe (ON).

