Х20 — Магнитная сборка Халбаха

 $\overline{{f A1^{0.50}}}$ Магнитное поле ослабляется с увеличением расстояния, для заданного угла heta найдите зависимость магнитного поля B на расстоянии r от диполя.

Зависимость магнитного поля диполя от \vec{r} :

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \left(\frac{3\vec{r}(\vec{m}\cdot\vec{r})}{r^5} - \frac{\vec{m}}{r^3} \right), \vec{m}\cdot\vec{r} = mr\cos\theta \Rightarrow$$

$$\vec{B}(\vec{r}) = \frac{m\mu_0}{4\pi r^3} (3\cos\theta \hat{r} - \hat{y})$$

Находить модуль этого вектора можно по-разному, например, удобно ввести дополнительный единичный вектор:

$$\hat{\theta} = -\sin\theta \cdot \hat{y} + \cos\theta \cdot \hat{x}, \hat{r} = \cos\theta \cdot \hat{y} + \sin\theta \cdot \hat{x}$$

Или иначе:

$$\hat{y} = \cos\theta \cdot \hat{r} - \sin\theta \cdot \hat{\theta}, \hat{x} = \sin\theta \cdot \hat{r} + \cos\theta \cdot \hat{\theta}$$

$$3\cos\theta \hat{r} - \hat{y} = 3\cos\theta \hat{r} - (\cos\theta \cdot \hat{r} - \sin\theta \cdot \hat{\theta}) \Rightarrow$$

$$3\cos\theta \hat{r} - \hat{y} = 3\cos\theta \hat{r} - (\cos\theta \cdot \hat{r} - \sin\theta \cdot \hat{\theta}) \Rightarrow$$

$$\vec{B}(\vec{r}) = \frac{\mu_0 m}{4\pi r^3} ((2\cos\theta)\hat{r} + (\sin\theta)\hat{\theta}) \Rightarrow B = \frac{\mu_0 m}{4\pi r^3} \sqrt{(2\cos\theta)^2 + (\sin\theta)^2})$$

 $B1^{1.50}$ Выразите магнитное поле B(y) вдоль оси, перпендикулярной магниту, на расстоянии y от центра.

Для нахождения ответа в этом пункте, разобьём магнит на бесконечно узкие кольца и проинтегрируем:

Получаем слеующее выражение:
$$\vec{B}(y) = \frac{\mu_0}{4\pi} \cdot \int_0^R 2\pi x \cdot dx \cdot \sigma \cdot \frac{1}{(x^2 + y^2)^{\frac{3}{2}}} \cdot (2\cos\theta \cdot \cos\theta \cdot \hat{y} + \sin\theta \cdot \sin\theta \cdot (-\hat{y}))$$
 Для удобства перейдём к интегрированию по углу:

Для удобства перейдём к интегрированию по углу:

$$R = y \cdot \tan \theta_{max}, x = y \cdot \tan \theta, dx = y \cdot \frac{d\theta}{\cos^2 \theta}, \frac{y}{\cos \theta} = \sqrt{x^2 + y^2}$$

Тогда
$$B = \frac{\mu_0 \sigma}{2} \cdot \int_0^{\theta_{max}} y \cdot \tan \theta \cdot y \cdot \frac{d\theta}{\cos^2 \theta} \cdot \frac{\cos^3 \theta}{y^3} \cdot \hat{y} \cdot (2\cos^2 \theta - \sin^2 \theta)$$

$$= \frac{\mu_0 \sigma \cdot \hat{y}}{2y} \cdot \int_0^{\theta_{max}} d\theta \cdot (2\cos^2 \theta \sin \theta - \sin^3 \theta)$$

$$=\frac{\mu_0\sigma\cdot\hat{y}}{2u}\cdot\int_0^{\theta_{max}}d\theta\cdot(2\cos^2\theta\sin\theta-\sin^3\theta)$$

$$= \frac{\mu_0 \sigma \cdot \hat{y}}{2y} \cdot \int_0^{\theta_{max}} d\theta \cdot (3\cos^2 \theta \sin \theta - \sin \theta)$$

$$= \frac{2y}{2y} \int_0^{\infty} d\theta \cdot (2\cos\theta \cdot \sin\theta - \sin\theta)$$

$$= \frac{\mu_0 \sigma \cdot \hat{y}}{2y} \cdot \int_0^{\theta_{max}} d\theta \cdot (3\cos^2\theta \sin\theta - \sin\theta)$$

$$= \frac{\mu_0 \sigma \cdot \hat{y}}{2y} \cdot [-\cos^3\theta + \cos\theta]|_0^{\theta_{max}} = \frac{\mu_0 \sigma \cdot \hat{y}}{2y} \cdot [\cos\theta_{max} - \cos^3\theta_{max}]$$

$$\cos\theta_{max} = \frac{y}{\sqrt{R^2 + y^2}}$$
Упроциял получаем итоговый результат:

$$\cos \theta_{max} = \frac{y}{\sqrt{R^2 + y^2}}$$

Упрощая, получаем итоговый результат:
$$B(y) = \frac{\mu_0 \sigma}{2} \cdot \frac{R^2}{(R^2 + y^2)^{\frac{3}{2}}}$$

 $B2^{0.50}$ Оцените величину магнитного поля вблизи поверхности магнита. Ответ выразите через величины t, D, ρ, μ_0 .

Поскольку выполняется соотношение $t \ll D$, магнит можно считать плоским и пренебрегать его

толщиной при нахождении поля у поверхности:
$$\sigma = \rho \cdot t, B(y) = \frac{\mu_0 \sigma}{2} \cdot \frac{R^2}{(R^2 + y^2)^{\frac{3}{2}}}, y = 0 \Rightarrow B_0 = \frac{\mu_0 \rho t}{D}$$

$$\frac{\mu_0 \rho t}{D} = 0.13$$
Тл

 ${f B3^{0.50}}$ Получите выражение и численное значение силы взаимодействия F_0 между дверью и прижатым к ней магнитом, также вычислите давление P_0 магнита на дверь.

ВЗ) По условию, объемная плотность энергии магнитного поля составляет:

$$\frac{E}{V} = \frac{1}{2\mu_0} \cdot B^2$$

При отрыве магнита от двери на небольшое расстояние y:

$$\Delta E = \pi (D/2)^2 \cdot y \cdot \frac{1}{2\mu_0} \cdot B_0^2$$

$$F = \frac{\Delta E}{y} = \pi (D/2)^2 \cdot \frac{1}{2\mu_0} \cdot B_0^2 = 2.2H$$

Зная силу и площадь соприкосновения, легко выразить давление:

$$P = \frac{F}{S} = \frac{B_0^2}{2\mu_0} = 6.9 \cdot 10^3 \Pi a$$

С1^{2.00} Запишите выражение для поля $ec{B}(ec{r}_0,y)$ которое создает ряд магнитов. (Для удобства поле выражается и через \vec{r}_0 , и через y, хотя технически $y=(\vec{r}_0)_{y}$.

По схеме ниже:

$$\begin{split} r_0 &= \frac{y}{\cos\alpha}, x = y \tan\alpha, \vec{r_0} = y \hat{y} + x \hat{x} \Rightarrow r_0 = \hat{y} \cdot \cos\alpha + \hat{x} \cdot \sin\alpha \\ \frac{r_0}{r} &= \cos\theta, z = r_0 \tan\theta \Rightarrow dz = \frac{r_0 d\theta}{\cos^2\theta} \\ \vec{r} &= x \hat{x} + y \hat{y} + (-z) \hat{z} \\ \vec{B}(\vec{r_0}, y) &= \frac{\mu_0}{4\pi} \cdot \int_{-\infty}^{\infty} dz \cdot \rho_L \cdot \left[\frac{3}{r^4} (\frac{y \cdot \cos\theta}{r_0}) \cdot (\vec{r_0} - z \hat{z}) - \frac{\hat{y}}{r^3} \right] = \\ \frac{\mu_0 \cdot \rho_L}{4\pi} \cdot \int_{-\pi/2}^{\pi/2} d\theta \cdot \frac{r_0}{\cos^2\theta} \cdot \left[\frac{3y}{r_0^5} \cdot \cos^5\theta \cdot \vec{r_0} - \frac{\hat{y}}{r_0^3} \cdot \cos^3\theta \right] = \\ \frac{\mu_0 \cdot \rho_L}{4\pi r_0^2} \cdot \int_{-\pi/2}^{\pi/2} d\theta \cdot \left[\frac{3y \cdot \vec{r_0}}{r_0^2} \cdot \cos^3\theta - \hat{y} \cdot \cos\theta \right] = \\ \frac{\mu_0 \cdot \rho_L}{4\pi r_0^2} \cdot \left[\frac{3y \cdot \vec{r_0}}{r_0^2} \cdot (\sin\theta - \frac{1}{3}\sin^3\theta) - \hat{y} \cdot \sin\theta \right] \Big|_{-\pi/2}^{\pi/2} = \\ \frac{\mu_0 \cdot \rho_L}{4\pi r_0^2} \cdot \left[\frac{4y \cdot \vec{r_0}}{r_0^2} - 2\hat{y} \right] \end{split}$$

 ${f C2^{1.00}}$ Найдите магнитного поля с двух сторон от сборки. Ответ дать в виде некоторого интеграла.

По схеме ниже:

$$r_0 = \frac{y_0}{\cos \alpha} = \frac{y}{\cos(\beta + \alpha)} \Rightarrow y = y_0 \cdot \frac{\cos(\beta + \alpha)}{\cos \alpha}$$

$$\hat{y} = \cos \beta \cdot \hat{y_0} + \sin \beta \cdot \hat{x}, \hat{r_0} = \cos \alpha \cdot \hat{y_0} - \sin \alpha \cdot \hat{x}$$

$$\vec{B} = \int_{-\infty}^{\infty} dx \cdot \frac{\mu_0 \sigma}{4\pi y_0^2} \cdot \cos^2 \alpha \cdot [4\cos(\beta + \alpha)[\cos \alpha \cdot \hat{y_0} - \sin \alpha \cdot \hat{x}] - 2[\cos \beta \cdot \hat{y_0} + \sin \beta \cdot \hat{x}]]$$
Путём несложных математических преобразований получаем:

Путём несложных математических преобразований получаем:

$$\frac{\frac{\mu_0\sigma}{2\pi y_0} \cdot \int_{-\pi/2}^{\pi/2} d\alpha \cdot [\hat{y_0} \cdot \cos(\beta + 2\alpha) - \hat{x} \cdot \sin(\beta + 2\alpha)]}{2\pi y_0}$$

Подставим зависимость для β :

$$\beta = \beta_0 + kx_0 + ky_0 \cdot \tan \alpha$$

Получаем:

$$\frac{\mu_0\sigma}{2\pi y_0} \cdot \int_{-\pi/2}^{\pi/2} d\alpha \cdot \left[\hat{y_0} \cdot \cos(\beta_0 + kx_0 + ky_0 \cdot \tan\alpha + 2\alpha) - \hat{x} \cdot \sin(\beta_0 + kx_0 + ky_0 \cdot \tan\alpha + 2\alpha) \right]$$

 $C3^{1.00}$ Покажите, что с одной стороны идеальной сборки магнитное поле стремится к нулю.

Посмотрим внимательно на полученное выражение:

$$\cos(\beta_0 + kx_0 + ky_0 \cdot \tan \alpha + 2\alpha)$$

$$= \cos(ky_0 \cdot \tan \alpha + 2\alpha) - \sin(\beta_0 + kx_0)\sin(ky_0 \cdot \tan \alpha + 2\alpha)$$

$$\cos(ky_0 \cdot \tan \alpha + 2\alpha) = \cos(ky_0 \cdot \tan \alpha)\cos(2\alpha) - \sin(ky_0 \cdot \tan \alpha)\sin(2\alpha)$$

$$\int_{-\pi/2}^{\pi/2} dx \cdot \cos(2x) \cos(c \cdot \tan x) = \frac{c \cdot \pi}{e^c} = \int_{-\pi/2}^{\pi/2} dx \cdot \sin(2x) \cdot \sin(c \cdot \tan x)$$

Несложно заметить, что это и есть наш интеграл, если взять в качестве c величину ky_0 .

 $C4^{1.00}$ Запишите выражение для поля с другой стороны.

При переходе к другой стороне сборки, некоторые знаки в уравнении меняются на противоположные: $\vec{B} = -\frac{\mu_0 \sigma}{2\pi y_0} \cdot \int_{-\pi/2}^{\pi/2} d\alpha \cdot [\hat{y}_0 \cdot [\cos(\beta_0 + kx_0) \cdot \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots" \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin" \dots"] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cos(-ky_0 \cdot \tan \alpha + 2\alpha) - \sin' \alpha + 2\alpha) - (\sin(\beta_0 + kx_0) \cos(-kx_0 \cdot \tan \alpha + 2\alpha) - \sin' \alpha + 2\alpha) - (\sin(\beta_0 + kx_0) \cos(-kx_0 \cdot \tan \alpha + 2\alpha) - (\sin(\beta_0 + kx_0) \cos(-kx_0 \cdot \tan \alpha + 2\alpha) - (\sin(\beta_0 + kx_0) \cos(-kx_0 \cdot \tan \alpha + 2\alpha) - (\sin(\beta_0 + kx_0) \cos(-kx_0 \cdot \tan \alpha + 2\alpha) - (\sin(\beta_0 + kx_0) \cos(-kx_0) - (\cos(\beta_0 + kx_0) - (\cos(\beta_0 + kx_0) \cos(-kx_0) - (\cos(\beta_0 + kx_0) - (\cos(\beta_0 + kx_0)$ $\tan \alpha + 2\alpha$) + \cos "..." sin"..."

Интегралы от нечётных функций будут зануляться из-за соображений симметрии, чётные функции

остаются.
$$\vec{B} = -\frac{\mu_0 \sigma}{2\pi y_0} \cdot \int_{-\pi/2}^{\pi/2} d\alpha \cdot \left[\hat{y_0} \cdot \left[\cos(\beta_0 + k x_0 - k y_0 \cdot \tan \alpha + 2\alpha) \right] - \hat{x} \cdot \left[\sin(\beta_0 + k x_0) \cos(-k y_0 \cdot \tan \alpha + 2\alpha) + \cos" \dots" \sin" \dots" \right] \right]$$

Страница 2 из 3 ≈

$$= -\frac{\mu_0 \sigma}{2\pi y_0} \cdot \int_{-\pi/2}^{\pi/2} d\alpha \cdot [\hat{y}_0 \cdot \cos(\beta_0 + kx_0) \cdot (\cos(2\alpha) \cos(ky_0 \cdot \tan \alpha) + \sin"..." \sin"...")] - \hat{x} \cdot [\sin(\beta_0 + kx_0) \cdot "..."]]$$

$$= -\frac{\mu_0 \sigma}{2\pi y_0} \cdot [\hat{y}_0 \cdot \cos(\beta_0 + kx_0) - \hat{x} \cdot \sin(\beta_0 + kx_0)] \cdot 2 \cdot \frac{ky_0 \pi}{e^{ky_0}}$$

$$= -\mu_0 \sigma k \cdot e^{-ky_0} \cdot [\hat{y}_0 \cdot \cos(\beta_0 + kx_0) - \hat{x} \cdot \sin(\beta_0 + kx_0)]$$

С5^{1.50} На основании выражения поля найдите среднее давление P такого магнита на дверь холодильника. Возьмите следующие параметры: толщина t=0.5мм, объемная плотность магнитного диполя $\rho=2\cdot 10^5 \frac{{\rm Ta\cdot M}}{{\rm \Gamma H}}$, шаг сборки $\lambda=5$ мм.

Сила и давление находятся так же, как и в пункте В3: $y_0 \to 0 \Rightarrow \vec{B} = -\mu_0 \sigma k \cdot [\hat{y_0} \cdot \cos(\beta_0 + kx_0) - \hat{x} \cdot \sin(\beta_0 + kx_0)] \Rightarrow B^2 = (\mu_0 \sigma k)^2, P = \frac{1}{2\mu_0} \cdot B^2, \sigma = \rho t \Rightarrow B = (1.257 \cdot 10^{-6} \Gamma_{\rm H/M}) \cdot (2 \cdot 10^5 {\rm Tr. m/Fh}) \cdot (5 \cdot 10^{-4} {\rm m}) \cdot \frac{2 \cdot 3.14}{5 \cdot 10^{-3} {\rm m}} = 0.16 {\rm Tr.}$ $P = \frac{1}{2\mu_0} \cdot B^2 = \frac{1}{2 \cdot 1.257 \cdot 10^{-6} \Gamma_{\rm H/M}} \cdot (0.16 {\rm Tr.}^2) = 10 {\rm kfla}$

C6^{0.50} Найдите соотношение между давлением, которое создает магнитная сборка Халбаха и давлением, которое создает обычный магнит из того же материала, с теми же радиусом и толщиной. Здесь тоже следует пренебречь эффектами на периметре кружка и и толщиной магнита.

По формулам, полученным ранее: $\eta = \frac{P}{P_0} = (\frac{B}{B_0})^2 (\frac{\mu_0 p t k}{\mu_0 p t / 2R})^2 = (\frac{4\pi R}{\lambda})^2$