Algèbre Linéaire

Semestre d'automne 2018

Bronstein Huruguen

Corrigé 2

Langage Ensembliste: exercice 14

Rappel:

$$A \times B = \{(x, y) \mid x \in A \text{ et } y \in B\}$$

On représente l'ensemble A sur l'axe horizontal et l'ensemble B sur l'axe vertical.

Soient
$$G = \{1; 2\}, F = \{-1; 0; 1\} \text{ et } K = ((\mathbb{Z} \times G) \cap (F \times \mathbb{N})) \cup G^2$$
.

Pour exprimer K comme produit de deux ensembles, le plus simple est de le représenter graphiquement. On procède par étape :

- représenter l'ensemble produit $\mathbb{Z} \times G$.
- représenter l'ensemble produit $F \times \mathbb{N}$.
- déduire de la représentation graphique de ces ensembles, la représentation graphique de l'intersection.
- représenter l'ensemble produit $G \times G$, et faire la réunion avec $(\mathbb{Z} \times G) \cap (F \times \mathbb{N})$.

Représentation graphique de $\mathbb{Z} \times G$

$$\mathbb{Z} \times G = \{(x, y) \mid x \in \mathbb{Z} \text{ et } y \in G\}$$

 $\mathbb{Z} = \{ \dots -1; 0; 1; 2 \dots \}$
 $G = \{1; 2\}$

Représentation graphique de $F \times \mathbb{N}$

$$\begin{split} F \times \mathbb{N} &= \{(x, y) \mid x \in F \text{ et } y \in \mathbb{N}\} \\ F &= \{-1; \ 0; \ 1\} \\ \mathbb{N} &= \{ \ 0; \ 1; \ 2; \ 3 \dots \} \end{split}$$

Représentation graphique de $(\mathbb{Z}\times G)\cap (F\times \mathbb{N})$ et de $G\times G$

D'où finalement :

$$K = ((\mathbb{Z} \times G) \cap (F \times \mathbb{N})) \cup G^2$$

On observe que $K=\{-1;\,0;\,1;\,2\}\times\{1;\,2\}$

Langage Ensembliste: exercice 16

On procède par étapes :

- \bullet Expliciter l'ensemble E et l'ensemble B.
- Représenter l'ensemble produit $B \times A$.
- \bullet Représenter l'ensemble D.
- Déduire de la représentation graphique des ensembles $B \times A$ et D, la représentation graphique de l'intersection.

 $Rappel: 2\mathbb{Z}$ est l'ensemble des multiples de 2.

• $E = \{x \in 2\mathbb{Z} \mid -4 \le x < 4\} = \{-4; -2; 0; 2\}$ D'où l'ensemble B:

$$B = \bigcup_{k \in E} \]k; \ k+1] =]-4; \ -3] \ \cup \]-2; \ -1] \ \cup \]0; \ 1] \ \cup \]2; \ 3] \subset \mathbb{R}$$

• Représentation graphique de $B \times A$

On représente l'ensemble B sur l'axe horizontal et l'ensemble A sur l'axe vertical.

$$B \times A = (]-4;-3] \cup]-2;-1] \cup]0;1] \cup]2;3] \times [0;+\infty[$$

Représentation graphique de D

$$D = \{(x; y) \in \mathbb{R}^2 \, | \, y + x - 3 = 0\} = \{(x; y) \in \mathbb{R}^2 \, | \, y = -x + 3\}$$

D est l'ensemble des points de la droite d'équation y = -x + 3; elle a pour pente -1 et elle passe par le point (0,3).

Représentation graphique de $(B \times A) \cap D$

Langage Ensembliste: exercice 17

L'ensemble $B=\bigcup_{k\in I}\,]\,k\,,\,k+1\,]$ est la réunion des quatre intervalles $\,]\,k\,,\,k+1\,]$ correspondants à $\,k\in\{-3\,,-1\,,\,1\,,\,3\,\}$

D'où
$$B = [-3, -2] \cup [-1, 0] \cup [1, 2] \cup [3, 4].$$

Représentation graphique de $A \times B$.

On représente l'ensemble $\ A=]-3\,,\,+\infty\,[\,$ sur l'axe horizontal et l'ensemble $\ B$ sur l'axe vertical.

On décrit l'ensemble D comme une réunion de deux ensembles.

$$D = \{ (x, y) \in \mathbb{R}^2 \mid x \ge 4 \text{ ou } |y| \le 2 \} .$$

$$D = \{ (x, y) \in \mathbb{R}^2 \mid x \ge 4 \} \cup \{ (x, y) \in \mathbb{R}^2 \mid |y| \le 2 \} .$$

$$D = \{ (x,y) \in \mathbb{R}^2 \mid x \ge 4 \} \ \cup \ \{ (x,y) \in \mathbb{R}^2 \mid \ -2 \le y \le 2 \} \ .$$

Représentation graphique de D.

Finalement on représente sur une même figure les ensembles $A \times B$ et D, puis en déduire la partie commune.

$$(A \times B) \cap D = \{ (x, y) \in \mathbb{R}^2 \mid (x, y) \in A \times B \text{ et } (x, y) \in D \}$$
.

Représentation graphique de $(A \times B) \cap D$.

Langage Ensembliste: exercice 19

Pour traduire en langage ensembliste, on utilise les équivalences entre propriétés et ensembles.

$Propri\'et\'es$		Ensembles
P ou Q	\Leftrightarrow	$A \cup B$
P et Q	\Leftrightarrow	$A \cap B$
non P	\Leftrightarrow	$C_E A$
$P \Rightarrow Q$	\Leftrightarrow	$A \subset B$

E: référentiel

$$A = \{x \in E \mid x \text{ v\'erifie } P\} = \{x \in E \mid P(x)\}$$

$$B = \{x \in E \mid x \text{ v\'erifie } Q\} = \{x \in E \mid Q(x)\}$$

(Rappel: on note $\bar{A} = C_E A$)

• On considère la propriété :

R: pour tout x appartenant à E, x vérifie [(nonP) ou Q].

Or:

$$(\text{non}P(x)) \Leftrightarrow x \in \bar{A}$$

 $(\text{non}P(x)) \text{ ou } Q(x) \Leftrightarrow x \in (\bar{A} \cup B)$

De plus : soit T(x) une propriété et $C = \{x \in E \mid T(x)\}$, alors : pour tout x appartenant à E, x vérifie $T \Leftrightarrow C = E$

Donc:

R: pour tout x appartenant à E, x vérifie $\lceil (\text{non}P) \text{ ou } Q \rceil \iff \bar{A} \cup B = E$

• On considère la propriété :

$$S: P(x) \Rightarrow Q(x)$$

Alors: $S \Leftrightarrow A \subset B$

L'équivalence des propriétés R et S se traduit par une équivalence entre ensembles :

$$(R \Leftrightarrow S) \Leftrightarrow (\bar{A} \cup B = E \Leftrightarrow A \subset B)$$

ce que l'on peut illustrer avec un diagramme de Venn.

Si $A \not\subset B$, on constate que $\bar{A} \cup B$ ne peut être égal à E: il manque la partie en blanc de l'ensemble A.

Si $A \subset B$, on constate que $\bar{A} \cup B$ est égal à E: la partie qui manque, c'est-à-dire A, est complétée par B.

Langage Ensembliste: exercice 20

Pour traduire en langage ensembliste, on utilise les équivalences entre propriétés et ensembles.

$Propri\'et\'es$		Ensembles
P ou Q	\Leftrightarrow	$A \cup B$
P et Q	\Leftrightarrow	$A \cap B$
non P	\Leftrightarrow	$C_E A$
$P \Rightarrow Q$	\Leftrightarrow	$A \subset B$

L'ensemble $E = \{ n \in \mathbb{Z} \mid -20 \le n \le 20 \}$ est le référentiel sur lequel sont définies les propriétés P, Q et R.

Ces propriétés définissent les ensembles A, B et C que l'on peut expliciter :

$$A = \{n \in E \mid P(n)\} = \{n \in E \mid n \text{ est divisible par 4}\}$$

$$= \{-20; -16; -12; -8; -4; 0; 4; 8; 12; 16; 20\}$$

$$B = \{n \in E \mid Q(n)\} = \{n \in E \mid n \text{ est divisible par 5}\}$$

$$= \{-20; -15; -10; -5; 0; 5; 10; 15; 20\}$$

$$C = \{n \in E \mid R(n)\} = \{n \in E \mid n \text{ est divisible par 10}\}$$

$$= \{-20; -10; 0; 10; 20\}$$

Il faut traduire en langage ensembliste l'implication entre les propriétés :

$$(P \text{ et } Q) \Rightarrow R \qquad \Leftrightarrow \qquad (A \cap B) \subset C$$

On peut alors vérifier cette équivalence en utilisant les ensembles que l'on a explicités :

$$A \cap B = \{-20; 0; 20\}$$

On a bien que $\{-20; 0; 20\} \subset C$

Logique: exercice 1

On utilise la négation d'une proposition :

non
$$(\forall x \in E, R(x)) \Leftrightarrow (\exists x \in E, \text{ non } R(x))$$

non $(\exists x \in E, R(x)) \Leftrightarrow (\forall x \in E, \text{ non } R(x))$
et les équivalences :
 $P \text{ vrai} \Leftrightarrow \text{non } P \text{ faux}$
 $P \text{ faux} \Leftrightarrow \text{non } P \text{ vrai}$

Pour justifier si P(x) ou non P(x) est vrai, il faut soit montrer l'existence d'un élément $(\exists x \in ... \text{ tel que } ...)$ soit donner une brève justification.

Par exemple:

P: $\exists x \in \mathbb{R}, \ x^2 - 1 < 0$: vrai car il existe $x = \frac{1}{2}$ tel que $\frac{1}{2^2} - 1 = -\frac{3}{4} < 0$

(a) $P: \exists x \in \mathbb{R}, |x| = 0.$

 $\begin{array}{ll} (\text{non } P): \ \forall \, x \in \mathbb{R} \,, \ |x| \neq 0 \,. \\ P \ \text{vrai, car il existe} \ x = 0 \in \mathbb{R} \,. \\ (\text{non } P) \ \text{faux.} \end{array}$

(b) $P: \forall x \in \mathbb{R}, x = \sqrt{3}$.

 $\begin{array}{ll} (\text{non } P): \ \exists \, x \in \mathbb{R} \,, \ x \neq \sqrt{3} \,. \\ (\text{non } P) \ \text{vrai, car il existe} \ \ x = \sqrt{2} \in \mathbb{R} \,. \\ P \ \ \text{faux.} \end{array}$

(c) $P: \forall x \in \mathbb{R}, x \neq 0$.

 $(\text{non } P): \exists x \in \mathbb{R}, x = 0.$ $(\text{non } P) \text{ vrai, car il existe } x = 0 \in \mathbb{R}.$ P faux.

(d) $P: \exists x \in \mathbb{R}, x^2 - 2x + 2 = 0.$

 $\begin{array}{l} (\text{non } P): \ \forall \, x \in \mathbb{R} \,, \ x^2 - 2x + 2 \neq 0 \,. \\ \text{or } \Delta' = 1 - 2 < 0 \\ (\text{non } P) \ \text{vrai, car} \ \Delta' < 0. \\ P \ \text{faux.} \end{array}$

(e) $P: \forall x \in \{1; 2; 3; 4\}, x^2 - 10 \le 0.$

 $\begin{array}{ll} (\text{non } P): \; \exists \, x \in \{1; \, 2; \, 3; \, 4\} \,, \; x^2 - 10 > 0 \,. \\ (\text{non } P) \; \text{vrai, car il existe} \; \; x = 4 \; \text{tel que} \; \; x^2 - 10 > 0. \\ P \; \; \text{faux.} \end{array}$

(f) $P: \forall x \in \mathbb{N}, \exists k \in \mathbb{N}, x = 2k$.

(non P): $\exists x \in \mathbb{N}$, $\forall k \in \mathbb{N}$, $x \neq 2k$. (non P) vrai, car il existe x = 3 tel que pour tout $k \in \mathbb{N}$, $x \neq 2k$. P faux.

(g) $P: \forall x \in A = \{1; 2; 3\}, \exists y \in A, x^2 + 2y < 10.$

 $\begin{array}{ll} (\text{non }P): \ \exists\, x\in A=\{1;\,2;\,3\}\,,\ \forall\, y\in A\,,\ x^2+2y\geq 10\,.\\ (\text{non }P) \ \text{vrai, car il existe}\ \ x=3\ \text{tel que pour tout}\ \ y\in A\ :\ x^2+2y\geq 10\,.\\ P\ \ \text{faux.} \end{array}$

(h) $P: \forall (a; b) \in \mathbb{N}^2, \ a^2 + b^2 < (a+b)^2.$

 $\begin{array}{l} (\text{non } P): \ \exists \, (a; \, b) \in \mathbb{N}^2 \,, \ a^2 + b^2 > (a+b)^2 \,. \\ P \ \text{vrai, car pour tout } (a; \, b) \in \mathbb{N}^2 \,, \ ab \geq 0 \quad \text{donc} \\ a^2 + b^2 \leq a^2 + b^2 + 2ab \quad \text{c'est-\`a-dire} \quad a^2 + b^2 \leq (a+b)^2 \,. \\ (\text{non } P) \ \text{faux.} \end{array}$

(i) $P: \forall x \in \mathbb{R}_+, (x \le 1 \text{ et } x^2 \le x).$

(non P): $\exists x \in \mathbb{R}_+$, $(x > 1 \text{ ou } x^2 > x)$. non P vrai, car il existe x = 2 tel que x > 1. P faux.

(j) $P: \forall x \in \mathbb{R}_+, (x \le 1 \text{ ou } x^2 \le x).$

 $\begin{array}{l} (\text{non } P): \ \exists \, x \in \mathbb{R}_+ \,, \ (x>1 \ \text{et} \ x^2>x) \,. \\ \text{non } P \ \text{vrai, } \ \text{car il existe} \ x=2 \ \text{tel que} \ x>1 \ \text{et} \ x^2>x \,. \\ P \ \ \text{faux.} \end{array}$

(k) $P: (\forall x \in \mathbb{R}_+ \text{ tel que } x \le 1), \quad x^2 \le x.$

 $\begin{array}{ll} (\text{non } P): \ \exists \, x \in \mathbb{R}_+ \ \text{tel que } x \leq 1 \,, x^2 > x \,. \\ P \ \text{vrai, car pour tout } 0 \leq x \leq 1 \,, x^2 - x \leq 0. \\ \text{non } P \ \text{faux.} \end{array}$

Logique: exercice 3

(a) • On a les équivalences suivantes :

 $P \Leftrightarrow S : ABCD$ est un parallélogramme $\Leftrightarrow ABCD$ a des angles opposés égaux

 $Q \Leftrightarrow R : ABCD$ est un losange qui a un angle droit $\Leftrightarrow ABCD$ est un carré

• On a les implications suivantes :

 $Q \Rightarrow P : ABCD$ est un los ange qui a un angle droit $\Rightarrow ABCD$ est un parallé logramme

 $R \Rightarrow P \; : \; ABCD$ est un carré $\Rightarrow ABCD$ est un parallélogramme

 $R \Rightarrow S \; : \; ABCD$ est un carré $\Rightarrow ABCD$ a des angles opposés égaux

 $Q\Rightarrow S\;:\;ABCD$ est un los ange qui a un angle droit $\Rightarrow ABCD$ a des angles opposés éga ux

(b) $P \Rightarrow Q$ mais la réciproque est fausse.

Logique: exercice 4

Rappel:

n est pair $\Leftrightarrow \exists k \in \mathbb{Z}, \quad n = 2k$ m est impair $\Leftrightarrow \exists l \in \mathbb{Z}, \quad m = 2l + 1$

(a) Référentiel : \mathbb{Z} Hypothèse : n pair Conclusion: $\exists l \in \mathbb{Z}, \quad n^2 + 1 = 2l + 1$

Preuve:

$$n \text{ pair } \Leftrightarrow \exists k \in \mathbb{Z}, \quad n = 2k$$

$$n^2 + 1 = (2k)^2 + 1$$

$$= 4k^2 + 1$$

$$= 2(2k^2) + 1 : \text{ on pose } 2k^2 = l \in \mathbb{N}$$

$$= 2l + 1 \text{ où } l \in \mathbb{N}$$

(b) Référentiel : \mathbb{Z}

Hypothèse : n impair

Conclusion: $\exists l \in \mathbb{N}, \quad n^2 - 1 = 2l$

= 2l où $l \in \mathbb{N}$

Preuve:

$$n \text{ impair } \Leftrightarrow \exists k \in \mathbb{Z}, \quad n = 2k + 1$$

$$n^2 - 1 = (2k + 1)^2 - 1$$

$$= 4k^2 + 4k$$

$$= 2(2k^2 + 2k) : \text{ on pose } 2k^2 + 2k = l \in \mathbb{N}$$

Remarque: une autre preuve est aussi possible. Par exemple: $\frac{1}{2} = \frac{1}{2} \frac{1}{2$

 $n^2 - 1 = (n-1)(n+1)$

n étant impair, n-1 et n+1 sont pairs donc leur produit est pair.

(c) Référentiel : N

Hypothèse : n impair

Conclusion: $\exists l \in \mathbb{N}, \quad n^2 + 2 = 2l + 1$

Preuve:

$$n \text{ impair } \Leftrightarrow \exists k \in \mathbb{Z}, \quad n = 2k + 1$$

$$n^2 + 2 = (2k + 1)^2 + 2$$

$$= 4k^2 + 4k + 1 + 2$$

$$= 2(2k^2 + 2k + 1) + 1 : \text{ on pose } 2k^2 + 2k + 1 = l \in \mathbb{N}$$

$$= 2l + 1 \text{ où } l \in \mathbb{N}$$

(d) Indication: Factoriser $n^2 - n$ et conclure.

Référentiel : N

Hypothèse : n est un entier positif Conclusion : $\exists l \in \mathbb{N}, \quad n^2 - n = 2l$

Preuve:

$$n^2 - n = n \ (n-1)$$

ce qui est le produit de deux entiers consécutifs, donc l'un des deux est pair. Le produit est donc pair.

Remarque : une autre preuve est aussi possible. Par exemple par disjonction de l'hypothèse :

si
$$n = 2k$$
: $n^2 - n = 4k^2 - 2k = 2(2k^2 - k) = 2l$

ou

si
$$n = 2k + 1$$
: $n^2 - n = 4k^2 + 4k + 1 - 2k - 1 = 4k^2 + 2k = 2l$

(e) Indication: Factoriser $n^3 - n$ et conclure.

Référentiel : \mathbb{N}

Hypothèse : n est un entier positif Conclusion : $\exists l \in \mathbb{N}$, $n^3 - n = 3l$

Preuve:

$$n^3 - n = n (n^2 - 1) = n(n - 1)(n + 1)$$

ce qui est le produit de trois entiers consécutifs, donc l'un est un multiple de 3. Le produit est donc un multiple de 3.

Remarque: une preuve par disjonction des cas de l'hypothèse n'est ici pas adéquate.

(f) Référentiel : Z

Hypothèse : n impair

Conclusion: $\exists k \in \mathbb{N}, \quad n^2 = 8k + 1$

Preuve:

$$n \text{ impair } \Leftrightarrow \exists l \in \mathbb{Z}, \quad n = 2l + 1$$

$$n^2 = (2l+1)^2$$

= $4l^2 + 4l + 1$
= $4l(l+1) + 1$: or $l(l-1)$

=4l(l+1)+1: or l(l+1) est le produit de 2 entiers consécutifs donc est pair

 $= 4 \cdot 2k + 1 : \text{ on a posé } l(l+1) = 2k$

= 8k + 1 où $k \in \mathbb{N}$

(g) Remarque:

 $a\in\mathbb{N}\,$ n'est pas un multiple de $\,3\,$

 \Leftrightarrow

$$\exists k \in \mathbb{N}, \quad a = 3k+1 \quad \text{ou} \quad a = 3k+2$$

Référentiel : \mathbb{N}

Hypothèse : a n'est pas un multiple de 3 Conclusion : $a^2 + 2$ est un multiple de 3

Preuve:

$$1^{\text{er}} \cos : a = 3k + 1$$

$$a^{2} + 2 = (3k + 1)^{2} + 2$$

$$= 9k^{2} + 6k + 1 + 2$$

$$= 9k^{2} + 6k + 3$$

$$= 3(3k^{2} + 2k + 1) = 3k' \text{ où } k' \in \mathbb{N}$$

 \Rightarrow $a^2 + 2$ est un multiple de 3.

 $\underline{2^{\text{ème}}} \cos : a = 3k + 2$

$$a^{2} + 2 = (3k + 2)^{2} + 2$$

$$= 9k^{2} + 12k + 4 + 2$$

$$= 9k^{2} + 12k + 6$$

$$= 3(3k^{2} + 4k + 2) = 3k'' \text{ où } k'' \in \mathbb{N}$$

 \Rightarrow $a^2 + 2$ est un multiple de 3.

Au final, si a n'est pas un multiple de 3, alors $a^2 + 2$ est un multiple de 3.

(h) Référentiel : \mathbb{Z}

Hypothèse : m pair ou n pair

Conclusion: $m^2 + n^2 = 2k' + 1$ ou $m^2 + n^2 = 4l'$

Il faut traduire correctement le "ou" de l'hypothèse : seulement 2 cas sont à envisager.

Preuve:

 1^{er} cas : m et n sont pairs

$$m = 2k$$
 et $n = 2l$
 $n^2 + m^2 = 4k^2 + 4l^2$
 $= 4(k^2 + l^2)$
 $= 4l'$ où $l' \in \mathbb{N}$

 \Rightarrow $m^2 + n^2$ est un multiple de 4.

 $2^{\text{ème}}$ cas : m et n ne sont pas de même parité

Soit:
$$m = 2k$$
 et $n = 2p + 1$
 $m^2 + n^2 = 4k^2 + 4p^2 + 4p + 1$
 $= 2(2k^2 + 2p^2 + 2p) + 1$
 $= 2l' + 1$ où $l' \in \mathbb{N}$

(i) On additionne un nombre *impair* d'entiers *consécutifs*. Il est donc judicieux de les écrire en utilisant des symétries par rapport au terme de rang milieu.

Par exemple:

n-1, n, n+1 sont 3 entiers consécutifs.

Référentiel : \mathbb{N}

Hypothèse : m est la somme de 5 entiers consécutifs

Conclusion: $m = 5k, k \in \mathbb{N}$

Preuve:

Soit 5 entiers consécutifs. On peut toujours les écrire de la manière suivante :

$$n-2, n-1, n, n+1, n+2, n \in \mathbb{N}.$$

Par hypothèse, m est la somme de ces 5 entiers consécutifs donc :

$$m=n-2+n-1+n+n+1+n+2=5n$$
 \Leftrightarrow m est un multiple de 5.

Si m est la somme de 2k+1 entiers consécutifs, alors m est un multiple de 2k+1 car on écrit ces 2k+1 entiers ainsi :

$$n-k\,,n-k+1\,,\ n-k+2\,,\ \dots\ ,\ n-2\,,\ n-1\,,\ n\,,\ n+1\,,\ \dots\ ,n+k$$
 et en les additionnant on obtient :

$$m = (2k+1)n \quad \Leftrightarrow \quad m \text{ est un multiple de } 2k+1$$

Par contre la somme de 2k entiers consécutifs n'est pas un multiple de 2k. Un contre-exemple le montre.

(j) Rappel:

$$\bullet \ A = B \quad \Leftrightarrow \quad (A \subset B \quad \text{ et } \quad B \subset A)$$

•
$$A \subset B \Leftrightarrow \forall x \in A, x \in B$$

Référentiel : E

Hypothèse : $A \cup B = A \cap B$

Conclusion: A = B

Preuve:

$A \subset B$:

$$x \in A$$
 \Rightarrow $x \in A$ ou $x \in B$
 \Leftrightarrow $x \in A \cup B$
 \Leftrightarrow $x \in A \cap B$
 \Leftrightarrow $x \in A$ et $x \in B$
 \Rightarrow $x \in B$

$B \subset A$:

$$x \in B \Rightarrow x \in A \text{ ou } x \in B$$

 $\Leftrightarrow x \in A \cup B$
 $\Leftrightarrow x \in A \cap B$
 $\Leftrightarrow x \in A \text{ et } x \in B$
 $\Rightarrow x \in A$

Logique: exercice 6

Rappel:

Démonstration de l'énoncé $H \Rightarrow C$ par la méthode par l'absurde : montrer que les hypothèses H et non C vraies aboutissent à une situation contradictoire.

(a) Référentiel : \mathbb{R}

Hypothèse : $x \in \mathbb{R} \setminus \mathbb{Q}$ et $y \in \mathbb{Q}$: H Conclusion : $x + y \in \mathbb{R} \setminus \mathbb{Q}$: C

Preuve par l'absurde :

On suppose les hypothèses H et non C vraies :

$$\begin{cases} H: & x \in \mathbb{R} \setminus \mathbb{Q} & \text{et} \quad y \in \mathbb{Q} \\ \text{non } C: & x+y \in \mathbb{Q} \end{cases}$$

Ainsi par hypothèse

$$(x+y)\in\mathbb{Q}\Leftrightarrow x+y=\frac{m}{n}\,,\ m\in\mathbb{Z}\,,\ n\in\mathbb{Z}^*\ \mathrm{et}\ m\,,n$$
 premiers entre eux et

$$y \in \mathbb{Q} \Leftrightarrow y = \frac{a}{b}, \ a \in \mathbb{Z}, \ b \in \mathbb{Z}^* \text{ et } a, b \text{ premiers entre eux}$$

D'où :
$$x + \frac{a}{b} = \frac{m}{n} \implies x = \frac{m}{n} - \frac{a}{b} = \frac{bm - an}{nb} = \frac{c}{d}, \quad c, d \in \mathbb{Z} \implies x \in \mathbb{Q}.$$
 Mais par hypothèse, $x \in \mathbb{R} \setminus \mathbb{Q}$.

L'hypothèse (non C vraie) aboutit à une situation contradictoire où l'on a simultanément $x \in \mathbb{Q}$ et $x \in \mathbb{R} \setminus \mathbb{Q}$.

Ce qui est impossible donc la conclusion (x + y irrationnel) est vraie.

(b) Référentiel : N

Hypothèse : $n, m \in \mathbb{N}, n \neq 0$: H Conclusion : $m + n\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$: C

Preuve par l'absurde :

On suppose les hypothèses H et non C vraies :

$$\begin{cases} H: & n, m \in \mathbb{N}, n \neq 0 \\ \text{non } C: & m + n\sqrt{2} \in \mathbb{Q} \end{cases}$$

Ainsi par hypothèse

 $m+n\sqrt{2}\in\mathbb{Q} \ \Leftrightarrow \ m+n\sqrt{2}=\frac{a}{b}\,,\ a\in\mathbb{Z}\,,\ b\in\mathbb{Z}^* \ \text{et} \ a\,,b \ \text{premiers entre eux}$

Or
$$n \neq 0$$
, d'où $\sqrt{2} = \frac{a - bm}{nb} = \frac{c}{d}$, $c, d \in \mathbb{Z} \Rightarrow \sqrt{2} \in \mathbb{Q}$

Mais $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ (pour la démonstration voir le point f)

L'hypothèse (non C vraie) aboutit à une situation contradictoire où l'on a simultanément $\sqrt{2} \in \mathbb{Q}$ et $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

Ce qui est impossible donc la conclusion $(m + n\sqrt{2} \text{ irrationnel})$ est vraie.

(c) Référentiel : N

Hypothèse : $\forall a \in \mathbb{N}^*$, $a^2+2=3k$ $k \in \mathbb{N}^*$: H Conclusion : a n'est pas multiple de 3 : C

Preuve par l'absurde :

On suppose les hypothèses H et non C vraies :

$$\begin{cases} H: & \forall a \in \mathbb{N}^*, \ a^2 + 2 = 3k \quad k \in \mathbb{N}^* \\ \text{non } C: \ a = 3n, \ n \in \mathbb{N}^* \end{cases}$$

Ainsi par hypothèse

$$\begin{cases} a^2 + 2 = 3k \\ a^2 + 2 = (3n)^2 + 2 = 9n^2 + 2 \end{cases}$$

d'où

$$3k = 9n^2 + 2$$
 \Rightarrow $2 = 3(k - 3n^2)$ c'est-à-dire 2 est multiple de 3.

L'hypothèse (non C vraie) aboutit à la situation absurde où 2 est un multiple de 3.

Ce qui est impossible donc la conclusion (a n'est pas multiple de 3) est vraie.

(d) Référentiel : N

Hypothèse : $\forall m, n \in \mathbb{N}, m \leq 3 \text{ et } n \leq 3$: H Conclusion : $m \cdot n \neq 15$: C

Preuve par l'absurde :

On suppose les hypothèses H et non C vraies :

$$\begin{cases} H: & \forall m, n \in \mathbb{N}, m \leq 3 \text{ et } n \leq 3 \\ \text{non } C: & m \cdot n = 15 \end{cases}$$

• $\operatorname{si} n \neq 0$: $m \cdot n = 15$ \Rightarrow $m = \frac{15}{n} \geq 5 \text{ car } n \leq 3$.

On a donc silmultanément $m \le 3$ et $m \ge 5$: ce qui est impossible. Ainsi $(m \cdot n \ne 15)$ est vrai.

- si n=0: on a simultanément $m \cdot n = 0$ et $m \cdot n = 15$: ce qui est impossible. Ainsi la conclusion $(m \cdot n \neq 15)$ est vraie.
- (e) Remarque : on note \overline{A} le complémentaire de A dans E .

Référentiel : un ensemble E

Hypothèse : $\forall A, B \in E, A \subset B$: H Conclusion : $\overline{A} \cup B = E$: C

Preuve par l'absurde :

On suppose les hypothèses H et non C vraies :

$$\left\{ \begin{array}{ll} H : & \forall A \,,\, B \in E \,,\,\, A \subset B \\ \text{non } C : \ \overline{A} \,\cup\, B \,\neq\, E \end{array} \right.$$

Par hypothèse :

$$\overline{A} \cup B \neq E \quad \Rightarrow \quad \exists \, x \in E \,, \quad x \notin \overline{A} \cup B$$

$$\Rightarrow \quad \exists \, x \in E \,, \quad x \in \overline{\overline{A} \cup B}$$

$$\Rightarrow \quad \exists \, x \in E \,, \quad x \in A \cap \overline{B}$$

$$\Rightarrow \quad \exists \, x \in E \,, \quad x \in A \text{ et } x \in \overline{B}$$

$$\Rightarrow \quad \exists \, x \in E \,, \quad x \in A \text{ et } x \notin B$$

$$\Rightarrow \quad A \not\subset B$$

L'hypothèse (non C vraie) about it à une situation contradictoire où l'on a simultanément $A\subset B$ et $A\not\subset B$.

Ce qui est impossible donc la conclusion $(\overline{A} \cup B = E)$ est vraie.

(f) Indication: utiliser $a^2 = 3k \Leftrightarrow a = 3k', k, k' \in \mathbb{N}$ (la preuve se fera plus loin)

Référentiel : \mathbb{R}

Hypothèse: $x = \sqrt{3}$

Conclusion: x est irrationnel

Preuve par l'absurde :

On suppose les hypothèses ${\cal H}$ et non ${\cal C}$ vraies :

$$\begin{cases} H : & x = \sqrt{3} \\ \text{non } C : & x = \sqrt{3} \text{ est rationnel} \end{cases}$$

Par hypothèse :

 $\sqrt{3}$ est rationnel

 \Leftrightarrow

 $\exists \ a \ \in \mathbb{N} \ \text{ et } \ b \in \mathbb{N}^* \ \text{ premiers entre eux tels que :}$

$$\sqrt{3} = \frac{a}{b} > 0$$

$$\Leftrightarrow 3 = \frac{a^2}{b^2}$$

$$\Leftrightarrow a^2 = 3b^2$$

 $\Leftrightarrow a^2$ est multiple de 3

 \Leftrightarrow a est multiple de 3

$$\Leftrightarrow a = 3a', a' \in \mathbb{N}^*$$

$$\sqrt{3}$$
 rationnel $\Leftrightarrow \sqrt{3} = \frac{3a'}{b} > 0$

$$\Leftrightarrow 3 = \frac{9a'^2}{b^2}$$

$$\Leftrightarrow b^2 = 3a'^2$$

$$\Leftrightarrow b^2 \text{ est multiple de 3}$$

$$\Leftrightarrow b \text{ est multiple de 3}$$

$$\Leftrightarrow b = 3b', b' \in \mathbb{N}^*$$

Ainsi
$$\sqrt{3}$$
 est rationnel \Leftrightarrow $\sqrt{3} = \frac{3a'}{3b'} = \frac{a}{b}$

donc a et b ont un facteur commun, mais par hypothèse, a et b sont premiers entre eux.

Ainsi en supposant $\sqrt{3}$ rationnel, on a simultanément que a et b ont un facteur commun et a et b sont premiers entre eux : ce qui est impossible. Donc $\sqrt{3}$ est irrationnel.

Logique : exercice 7

Soit le théorème :

$$T : \forall x \in E, A \Rightarrow B$$

A est l'hypothèse et B est la conclusion.

Son énoncé contraposé est :

$$C : \forall x \in E, \quad \text{non } B \Rightarrow \quad \text{non } A$$

non B est l'hypothèse de C et non A est sa conclusion.

Le référentiel du théorème et de son contraposé est le même.

(a) Référentiel: Soient ABC un triangle et D le milieu du côté AB.

E est le milieu du côté AC \Rightarrow DE est parallèle à BC.

non B: DE n'est pas parallèle à BC

non A: E n'est pas le milieu de AC.

D'où l'énoncé contraposé :

Soient ABC un triangle, D le milieu de AB.

DE n'est pas parallèle à $BC \Rightarrow E$ n'est pas le milieu de AC

- (b) $Référentiel: \forall a, b \in \mathbb{N}^*$
 - a ou b pairs \Rightarrow ab pair.
 - non B: ab impair
 - non A: a et b impairs
 - D'où l'énoncé contraposé :
 - $\forall a, b \in \mathbb{N}^*$: $ab \text{ impair} \Rightarrow a \text{ et } b \text{ impairs}$
- (c) $Référentiel: \forall x \in \mathbb{R}$
 - $x(x-3) > 0 \quad \Rightarrow \quad x < 0 \text{ ou } x > 3$
 - non $B: x \ge 0$ et $x \le 3$
 - $non A: x(x-3) \le 0$
 - D'où l'énoncé contraposé :
 - $\forall x \in \mathbb{R} : x \ge 0 \text{ et } x \le 3 \implies x(x-3) \le 0$
- (d) $R\acute{e}f\acute{e}rentiel: \forall x \in \mathbb{R}$
 - $x^2 1 < 0 \implies x < 1 \text{ et } x > -1$
 - $non B: x \ge 1 \text{ ou } x \le -1$
 - non $A: x^2 1 \ge 0$
 - D'où l'énoncé contraposé :
 - $\forall x \in \mathbb{R} : x \ge 1 \text{ ou } x \le -1 \implies x^2 1 \ge 0$
- (e) $Référentiel: \forall m, n \in \mathbb{N}$
 - $m \le 3$ et $n \le 3$ \Rightarrow $m \cdot n \ne 15$.
 - non $B: m \cdot n = 15$
 - non A: m > 3 ou n > 3
 - D'où l'énoncé contraposé :
 - $\forall m, n \in \mathbb{N} : m \cdot n = 15 \Rightarrow m > 3 \text{ ou } n > 3$
- (f) $R\acute{e}f\acute{e}rentiel: \forall m, n \in \mathbb{N}$
 - $m+n=0 \Rightarrow m=0 \text{ et } n=0.$
 - non $B: m \neq 0$ ou $n \neq 0$
 - non $A: m+n \neq 0$
 - D'où l'énoncé contraposé :
 - $\forall\, m\,,\, n\in\mathbb{N}\ :\quad m\neq 0\ \ \text{ou}\ \ n\neq 0\quad \Rightarrow\quad m+n\neq 0$
- (g) $Référentiel: \forall m, n \in \mathbb{N}$
 - m = 0 ou n = 0 \Rightarrow $m \cdot n = 0$.
 - non $B: m \cdot n \neq 0$
 - non $A: m \neq 0$ et $n \neq 0$

D'où l'énoncé contraposé :

 $\forall m, n \in \mathbb{N} : m \cdot n \neq 0 \Rightarrow m \neq 0 \text{ et } n \neq 0$

(h) $Référentiel: \forall a \in \mathbb{R}$

 $(\,\forall\,\varepsilon>0\,,\,\,|a|<\varepsilon\,)\quad\Rightarrow\quad a=0.$

 $\mathrm{non}\ B:\ a\neq 0$

 $non A: \exists \varepsilon > 0, |a| \ge \varepsilon$

D'où l'énoncé contraposé :

 $\forall a \in \mathbb{R} : a \neq 0 \Rightarrow \exists \varepsilon > 0, |a| \geq \varepsilon$

Logique : exercice 8

Démontrer un théorème en utilisant son énoncé contraposé :

- ullet on écrit l'énoncé contraposé C,
- $\bullet\,$ on démontre C par la méthode directe.

Rappel:

Soit le théorème : T : $[\forall n, m \in \mathbb{N}, P \Rightarrow Q]$

et son énoncé contraposé C : $[\forall n, m \in \mathbb{N}, \text{ non } Q \Rightarrow \text{ non } P]$

Ces deux énoncés sont logiquement équivalents : C vrai $\Leftrightarrow T$ vrai.

(a) Soit le théorème T:

Référentiel : $m, n \in \mathbb{N}$

Hypothèse $P: m \cdot n$ pair

Conclusion Q: m est pair ou n est pair

On écrit la proposition contraposée C:

Référentiel : $m, n \in \mathbb{N}$

Hypothèse non Q: m est impair et n est impair

Conclusion non $P: m \cdot n$ est impair

Preuve de la proposition contraposée :

Par hypothèse : $\begin{cases} m = 2k+1, k \in \mathbb{N} \\ n = 2l+1, l \in \mathbb{N} \end{cases}$

 $m \cdot n = (2k+1) \cdot (2l+1) = 4kl + 2k + 2l + 1$ = 2(2kl + k + l) + 1= 2k' + 1 où $k' \in \mathbb{N}$

 $\Rightarrow m \cdot n$ est impair.

L'énoncé contraposé C est vrai donc T est aussi vrai.

(b) Soit le théorème T:

Référentiel : $m, n \in \mathbb{N}^*$

Hypothèse $P: m^n$ impair

Conclusion Q: m est impair ou n est impair

On écrit la proposition contraposée :

Référentiel : $m, n \in \mathbb{N}^*$

Hypothèse non Q: m est pair et n est pair

Conclusion non $P: m^n$ est pair

Preuve de la proposition contraposée :

Par hypothèse :
$$\left\{ \begin{array}{lll} m &=& 2k\,,\; k \in \mathbb{N}^* \\ n &=& 2l\,,\; l \in \mathbb{N}^* \end{array} \right.$$

$$m^{n} = (2k)^{2l} = 2^{2l} \cdot k^{2l}$$

$$= 2(2^{2l-1} \cdot k^{2l})$$

$$= 2k' \quad \text{où } k' = 2^{2l-1} \cdot k^{2l} \in \mathbb{N}^{*}$$

 $\Rightarrow m^n$ est pair.

L'énoncé contraposé C est vrai donc T est aussi vrai.

(c) Soit le théorème T:

Référentiel : $m, n \in \mathbb{N}$

Hypothèse $P: m^2 + n^2$ est impair ou $m^2 + n^2 = 4k, k \in \mathbb{N}$

Conclusion Q: m est pair ou n est pair

On écrit la proposition contraposée:

Référentiel : $m, n \in \mathbb{N}$

Hypothèse non Q : m est impair et n est impair

Conclusion non $P: m^2 + n^2$ est pair et $m^2 + n^2 \neq 4k$, $k \in \mathbb{N}$

Preuve de la proposition contraposée :

Par hypothèse :
$$\begin{cases} m = 2k+1, k \in \mathbb{N} \\ n = 2l+1, l \in \mathbb{N} \end{cases}$$

$$m^{2} + n^{2} = 4k^{2} + 4k + 1 + 4l^{2} + 4l + 1$$

$$= 4(k^{2} + k + l^{2} + l) + 2$$

$$= 4k' + 2 \text{ où } k' \in \mathbb{N}$$

$$= 2(2k' + 1)$$

ainsi $m^2 + n^2$ est pair mais n'est pas multiple de 4 car 2k' + 1 est impair.

L'énoncé contraposé ${\cal C}$ est vrai donc ${\cal T}$ est aussi vrai.

(d) Soit le théorème T:

Référentiel : $m, n \in \mathbb{N}^*$

Hypothèse $P: m^2 - n^2$ n'est pas un multiple de 8

Conclusion Q: m est pair ou n est pair

On écrit la proposition contraposée :

Référentiel : $m, n \in \mathbb{N}^*$

Hypothèse non Q: m est impair et n est impair Conclusion non $P: m^2 - n^2$ est un multiple de 8

Preuve de la proposition contraposée :

Par hypothèse :
$$\left\{ \begin{array}{ll} m = 2l+1 \,, \ l \in \mathbb{N} \\ n = 2p+1 \,, \ p \in \mathbb{N} \end{array} \right.$$

$$m^{2} - n^{2} = (2l+1)^{2} - (2p+1)^{2}$$

$$= 4(l^{2} + l - p^{2} - p)$$

$$= 4l(l+1) - 4p(p+1)$$

$$= 4 \cdot 2a - 4 \cdot 2b \qquad a, b \in \mathbb{Z}$$

car l et l+1 sont deux entiers consécutifs donc leur produit est pair, de même pour p et p+1 .

$$\Rightarrow m^2-n^2=8a-8b=8k, \quad k\in\mathbb{Z}$$
ainsi m^2-n^2 est un multiple de 8.

L'énoncé contraposé C est vrai donc T est aussi vrai.

(e) Soit le théorème T:

Référentiel : $n \in \mathbb{N}$

Hypothèse $P: n^2 = 3k, k \in \mathbb{N}$

Conclusion $Q: n = 3k', k' \in \mathbb{N}$

On écrit la proposition contraposée :

Référentiel : $n \in \mathbb{N}$

Hypothèse non $Q: n \neq 3k', k' \in \mathbb{N}$ Conclusion non $P: n^2 \neq 3k, k \in \mathbb{N}$

Preuve de la proposition contraposée :

- On suppose : n = 3l + 1, $l \in \mathbb{N}$ $n^2 = (3l + 1)^2 = 9l^2 + 6l + 1 = 3(3l^2 + 2l) + 1 = 3l' + 1$, $l' \in \mathbb{N}$ Ainsi n^2 n'est pas un multiple de 3.
- On suppose : n = 3l + 2, $l \in \mathbb{N}$ $n^2 = (3l+2)^2 = 9l^2 + 12l + 4 = 9l^2 + 12l + 3 + 1 = 3(3l^2 + 4l + 1) + 1 = 3l' + 1$, $l' \in \mathbb{N}$ Ainsi n^2 n'est pas un multiple de 3.

L'énoncé contraposé C est vrai donc T est aussi vrai.