MATH7501: Week 9 Practical Questions

April 23, 2023

Problem 1. Compute the second order Taylor polynomial of $f(x) = 2(\ln x)^2 - \ln x$, at a = 1.

Problem 2. Use a linear approximation to estimate the quantity: $\sqrt{1.01} \times (\sqrt{0.97})^3$.

Problem 3. Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable on \mathbb{R} , and suppose that there exists a finite B > 0, such that $f''(x) \leq B$, for all x. Prove that for each $y \in \mathbb{R}$, the function

$$g(x) = f(y) + f'(y)(x - y) + \frac{1}{2}B(x - y)^{2} \ge f(x)$$

for all $x \in \mathbb{R}$.

Problem 4. We say that the function $f: \mathbb{R} \to \mathbb{R}$ is convex if for each $x \in \mathbb{R}$ and $y \in \mathbb{R}$, the statement

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

holds for every $\lambda \in [0,1]$. Suppose that f is differentiable on \mathbb{R} . Show that if

$$f(y) \ge f(x) + f'(x)(y - x),$$

for all $x \in \mathbb{R}$ and $y \in \mathbb{R}$, then f is convex.

Problem 5. For each $n \in \{1, 2, 3, \dots\}$, prove that

$$1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!} > 0,$$

for all $x \in \mathbb{R}$.

Problem 6. Prove that for all $n \in \{1, 2, ...\}$, the function $f: (0, \infty) \to \mathbb{R}$, given by $f(x) = x^n \ln x$ has nth derivative:

$$f^{(n)}(x) = n! \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \ln x\right).$$

Problem 7. Let $f:[0,1]\to\mathbb{R}$ be twice differentiable, and suppose that $|f''(x)|\leq M$, for each $x\in[0,1]$. Prove that if $\sum_{k=1}^{\infty}f(1/k)$ converges, then f(0)=f'(0)=0.

Problem 8. Recall that a positive number c is rational if there exists $a \in \mathbb{N}$ and $b \in \mathbb{N}$, such that c = a/b. Prove that e is irrational (i.e., e is not rational).