北京工业大学 2005~2006 年度第 1 学期

040700~040706,040721,040722【 离散数学】考试题(A)

考试形式: 闭卷 考试时间: 2005 年 12 月 27 日 9:55~11:30

学号	<i>姓夕</i>	i

- 一、 (每小题 5 分, 本题共 10 分)设 A B C 是集合, 试证明:
- 1. $(A-B) \cup (A-C) \cup (A \cap B \cap C) = A$ $(A-B) \cup (A-C) \cup (A \cap B \cap C)$
 - $= (A \cap \sim B) \cup (A \cap \sim C) \cup (A \cap B \cap C)$
 - $= (A \cap (\neg B \cup \neg C) \cup (A \cap B \cap C)$
 - $= (A \cap \sim (B \cap C)) \cup (A \cap B \cap C)$
 - $= (A \cap (\sim (B \cap C) \cup (\cap B \cap C))$
 - = A
- 2, $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$

 $A \cap (B \oplus C)$

 $=A \cap ((B-C) \cup (C-B))$

 $= A \cap ((B \cap \sim C) \cup (C \cap \sim B))$

 $= (A \cap B \cap \sim C) \cup (A \cap \sim B \cap C)$

 $(A \cap B) \oplus (A \cap C)$

- $= ((A \cap B) (A \cap C)) \cup ((A \cap C) (A \cap B))$
- $= ((A \cap B) \cap (A \cap C)) \cup ((A \cap C) \cap (A \cap B))$
- $= ((A \cap B) \cap (\neg A \cup \neg C)) \cup ((A \cap C) \cap (\neg A \cup \neg B))$
- $= (A \cap B \cap A) \cup (A \cap B \cap C) \cup (A \cap C \cap A) \cup (A \cap C \cap B)$
- $= (A \cap B \cap C) \cup (A \cap C \cap B)$
- $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$

二、(本题 10 分)设 A 是含有 3 个元素的有限集合,请回答下列问题。

- 1、 在 A 上可定义多少种既不是自反又不是反自反的二元关系?
 - A 上可定义 2⁶ 种自反的二元关系
 - A 上可定义 2⁶ 种反自反的二元关系
 - A 上可定义 2⁹ 种不同的二元关系
 - A 上的自反关系必不是反自反的, 反自反关系必不是自反的
 - 因此 A 上可定义 2^9 $2*2^6$ 种 = 384 种既不是自反又不是反自反的二元关系
- 2、 在 A 上可定义多少种既不是对称又不是反对称的二元关系?
 - A 上可定义 2⁶ 种对称的二元关系
 - A上可定义 2³* 3³ 种反对称的二元关系
 - A 上可定义 2⁹ 种不同的二元关系
 - A上可定义 2^3 种既是对称又是反对称的二元关系

因此 A 上可定义 2^9 - 2^6 - 2^3 * 3^3 + 2^3 种 = 240 种既不是对称又不是反对称的二元关系

三、(本题 10 分) 设集合 A = {1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 24, 48}, R 是 A 上的整除关系,请画出 R 的哈斯图表示,并给出 A 的子集 B={2, 3, 6}的上界和上确界。

B={2, 3, 6}的上界: 6,12,24,48 上确界: 6

四、(本题 10 分)设 R_1 和 R_2 都是集合 A 上的对称关系,且 R_1 ° R_2 = R_2 ° R_1 , 试证明 R_1 ° R_2 也是 A 上的对称关系。 证明:

对任意的 x, $y \in A$

如果 $\langle x, y \rangle \in R_1 \circ R_2$,

则存在 $z \in A$ 使得 $\langle x, z \rangle \in R_1$, $\langle z, y \rangle \in R_2$

因为 R_1 和 R_2 是对称关系,

所以 $\langle z, x \rangle \in R_1$, $\langle y, z \rangle \in R_2$

因此, $\langle y, x \rangle \in R_2^{\circ}R_1$,

 \mathbb{X} R_1 ° $R_2 = R_2$ ° R_1 ,

所以 $\langle y, x \rangle \in R_1 \circ R_2$

故 R₁°R₂ 也是 A 上的对称关系。

 \therefore (本题 10 分)设 $A \times B$ 是集合,且|A|=4,|B|=2,问:可定义多少种不同的 A 到 B 的满射函数? (要求写出解题步骤)

解: 设 A = {a1, a2, a3, a4}

 $B = \{b1, b2\}$

A 到 B 的函数共有 2^4 =16 种,其中不是满射的只有两种

f1:f1(a1) = f1(a2) = f1(a3) = f1(a4) = b1

f2:f2(a1) = f2(a2) = f2(a3) = f2(a4) = b2

所以,可定义14种不同的A到B的满射函数

七、(本题 10 分)设图 G 是具有 n 个顶点、m 条边的无向简单图,且又是欧拉图。若图 G 中各个顶点的度数都为 k, n, m 满足 n+8=m。 求 n 和 m, 并画出符合题设条件的一种图。

解: 由握手定理 kn=2m

∇∵ n+8=m

 \therefore kn=2n+16

即: (k-2) n=16

又: G 是无向简单图

∴ k≤n-1

∴ k-2=2 n=8

此种图是哈密尔顿图

七. (本题 10 分)设图 G 是含有 6 个顶点, 13 条边的无向简单图,证明图 G 是哈密顿图但不是欧拉图。 证明:

1 先证明每个顶点的度数 \geq 3,否则假设有一顶点的度数 \leq 2,则其余 5 个顶点的度数和应 \geq 2*13-2=24,因为 G 是无向简单图,在由这 5 个顶点构成的子图中其度数和 \leq 20,再加上与此顶点关联的度数,其度数和 \leq 22,矛盾,所以每个顶点的度数 \geq 3,因此 G 是哈密顿图。

2 证明 G 不是欧拉图,如果 G 是欧拉图,则每个顶点的度数均为偶数,又顶点个数为 6,则边数应为偶数。

八、(本题 10 分)证明彼德逊图(见下图)去掉一个顶点 v_1 后所得子图与 $K_{3,3}$ 二度同构。

土地二人伍占元 产品但之图

九、(本题 10 分)设有向图 D 的底图是彼德逊图,证明有向图 D 中各顶点的出度平方之和等于各顶点的入度平方之和。即

$$\sum_{i=1}^{10} (deg+(v_i))^2 = \sum_{i=1}^{10} (deg-(v_i))^2$$

十、(每小题 5分,本题共 10分)请回答下列问题

1. T 是无向树, T 中有 29 个二度点, 3 个 3 度点, 5 个 4 度点, 4 个 5 度点, T 中没有大于 5 度的顶点, 那么 T 中有几片树叶.

解: 设T有x片树叶, n个顶点, m条边,

则有
$$m=n-1$$

$$n = x+29+3+5+4$$

由度**数**定理**则**有 x+2*29+3*3+5*4+4*5=2*(x+29+3+5+4-1)

$$x=3+5*2+4*3+2=27$$

所以 T 有 27 片树叶

2. 求叶片权为 2, 4, 6, 8, 10, 20 的最优树, 并写出最优树的权.

叶片权为 2, 4, 6, 8, 10, 20 的最优树:

最优树的权:

20+2*4+4*4+6*3+8*3+10*3=116