

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Information

About the

meetings
Two Textbooks

Overviev

A Blend of two things

Discrete Objects

Continuou Obiects

Consider This!

# Discrete Structures: CMPSC 102

Oliver BONHAM-CARTER

Fall 2022 Week 1





## The Class Websites General Information

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

#### Getting Information

About the

Class and lab meetings Two Textbooks

Overview
A Blend of tw

Discrete Objects

Continuou Objects

Conside This!'

#### • The course Website:

 https://www.oliverbonhamcarter.com/classes/ discretestructures/





## The Class Website Office hours

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Information

About the class

Class and lab meetings Two Textbooks

Overvie

A Blend of tw

Discrete Objects

Continuou Objects

Consider This!'

#### Booking office hours:

https://www.oliverbonhamcarter.com/contactandabout/





#### The Class Website

Please be familiar with the course syllabus

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Information

About the class

Class and lab meetings Two Textbooks

A Blend of tw

Discrete Objects

Continuou Objects

Consider This!'

#### Check the syllabus

https:
//github.com/CMPSC-102-Allegheny-College-Fall-2022/
classDocs/blob/main/README.md



Figure: Did I search for Syllabus correctly?



### Class and lab meeting times

Please read the syllabus before next class!!

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

About the

Class and lab meetings Two Textbooks

Overview
A Blend of two things

Discrete Objects

Continuou Objects

Conside This!'

- Lecture, Discussion, Presentations, and Group Work:
  - Monday, Wednesday, Friday 1:30pm 2:20pm, Alden Hall 101
- Laboratory Session:
  - Tuesday 2:30PM 4:20PM, Alden Hall 101



### Textbook

Discrete Structures: CMPSC 102

BONHAM-CARTER

Getting Informatio

About the class

meetings
Two Textbooks

Overview
A Blend of two

Discrete Objects

Continuous Objects

Consider This!' Programming and Mathematical Thinking A Gentle Introduction to Discrete Math Featuring Python Allan M. Stavely

 Programming and Mathematical Thinking - A Gentle Introduction to Discrete Math Featuring Python by Allan M. Stavely; ISBN paperback 978-1-938159-00-8 and ISBN ebook: 978-1-938159-01-5



### Textbook

Discrete Structures: CMPSC 102

BONHAM CARTER

Getting Informatio

About the class

meetings Two Textbooks

A Blend of tw

Discrete Objects

Continuou Objects

Consider Fhis!'



 Doing Math with Python by Amit Saha; ISBN paperback: 1-59327-640-0



## Learning as a Computer Scientist?

In terms of programming

Discrete Structures: CMPSC 102

Oliver BONHAN CARTER

Getting Informatio

About the class
Class and lab meetings
Two Textbooks

Overview
A Blend of two

Discrete Objects

Continuou Objects

Consider This!'

#### Key Question

How do I connect mathematical terminology (e.g., mapping, function, number, sequence, and set), to the implementation of Python programs that declare and call functions and declare and manipulate variables?

#### Learning Objectives

To **remember** and **understand** some of the discrete mathematics and Python programming concepts, setting the stage for the exploration of discrete structures.



## Learning as a Computer Scientist? For example

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

class
Class and lab
meetings
Two Teythooks

Overview

A Blend of two things

Discrete Objects

Continuou Objects

Consider This!'

#### Discrete Structures = Math + Code

#### Discrete mathematics

- P Made up from: symbols, character strings, truth values, objects, and collections of these entities as stored in sets or tuples (for example)
- •
- Specifying and designing a **computer program** 
  - Describe input, output, and internal objects
  - Use the vocabulary of discrete mathematics
  - Implement and test the program in a language
- Our goal:
  - To implement a program P that meets a particular specification S



## Learning as an Analytical Thinker? In terms of mathematics

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

About the class Class and lab meetings Two Textbooks

A Blend of two

Discrete Objects

Continuous Objects

Consider This!' "An introduction to the foundations of computer science with an emphasis on understanding the abstract structures used to represent discrete objects."

#### Wait! What?

We keep using the word, **discrete**. What do we mean here?

#### Discreet or Discrete

- **Discreet** means *unobtrusive* or *unnoticeable* (not this course!)
- **Discrete** means *separate*, not continuous or *not sharing* any common space



## Discrete and Countable Objects

Discrete Structures: CMPSC 102

BONHAN CARTER

Getting Information

About the

Class and lab meetings Two Textbooks

A Blend of tw things

Discrete Objects

Continuou Objects

Conside This!'



- Discrete means "countable" (can be listed in an order)
- We can count the number of animals.



## So, Discrete Objects, Then?

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

About the class

Class and lab meetings Two Textbooks

A Blend of tw

Discrete Objects

Continuous Objects

Consider This!'



• Discrete mathematics involves being able to count (*list*) things individually.



### ... And, Continuous Objects?

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

About the class

Class and lab meetings Two Textbook

Overview

Discrete

Continuous Objects

Consider This!'



 "Overlapping" objects cannot be counted (i.e., listed) separately.



# Non-Discrete and Un-Countable Objects Really big amounts of things

Discrete Structures: CMPSC 102

BONHAM CARTER

Getting Information

class
Class and lab
meetings
Two Textbool

Overview
A Blend of two

Discrete Objects

Continuous Objects

Consider This!'



- Are the numbers of grains uncountable (i.e., unlistable)?
- Is anything *un*countable at the beach?
- How do we count an uncountable object? Why?



## Relationships to Computing

Computer MUST be able to count to compute

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

class
Class and lab
meetings
Two Textbool

Overview
A Blend of two

Discrete Objects

Continuous Objects

Consider This!'

#### Binary Numbers

In mathematics and digital electronics, a binary number is a number expressed in the base-2 numeral system or binary numeral system, which uses only two symbols: typically, 0 (False, zero) and 1 (True, one).

- Computers use binary to function
- Processes (i.e., memory, computation, networking) are broken down into binary-driven procedures



## Binary Numbers

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

About the

Class and lab meetings Two Textbooks

A Blend of tw

Discrete Objects

Continuous Objects

Consider This!'



- Computing implies digital processing
- Computing binary values is a countable task.
- Can anything, or any number, that a computer computes be written in binary?



#### Countable and Not Countable?

What can be *listed* and what cannot be listed?

Discrete Structures: CMPSC 102

Oliver BONHAM-CARTER

Getting Information

About the class
Class and lal meetings

Overview

Discrete Objects

Continuou Objects

Consider

- Get into groups and discuss the following. Take notes to report back to the class.
- Can you think of countable objects?
- Can you think of un-countable objects?
  - Can you think of types of numbers that may fit into each of these above groups?

