

Department of Computer Engineering

Artificial Intelligence

Assignment 5 part 2

Dr. Rohban

Parsa Mohammadian — 98102284

December 10, 2021

Contents

1																				1
	1.1	 																		
	1.2	 																		-

1

1.1

This is a trick which add a fix number to occurrence of each variable value. It will garauntee that all probabilities are non-zero. So the model is not overfitted.

1.2

First I write Naive Bayes based leaning result (table 1). Now we can calculate the probability of each labels for given the query.

$$P(Y = Go|X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 0)$$

$$= P(Y = Go) \times P(Y = Go|X_1 = 1) \times P(X_2 = 1|Y = Go)$$

$$\times P(X_3 = 1|Y = Go) \times P(X_4 = 0|Y = Go)$$

$$P(Y = Stop|X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 0)$$

$$= P(Y = Stop) \times P(Y = Stop|X_1 = 1) \times P(X_2 = 1|Y = Stop)$$

$$\times P(X_3 = 1|Y = Stop) \times P(X_4 = 0|Y = Stop)$$

Both $P(Y = Go|X_1 = 1)$ and $P(X_3 = 1|Y = Stop)$ are zero. So the probability of all labels are zero, which is because of overfitting.

So we must use Laplace smoothing (a generalization technic) to avoid this problem. So I wrote Naive Bayes with Laplace smoothing result (table 2). Based on this table and above equations, we calcualte each label probability.

$$Query = X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 0$$

$$P(Y = Go|Query) \propto \frac{5}{9} \times \frac{1}{7} \times \frac{4}{7} \times \frac{6}{7} \times \frac{4}{7} = \frac{480}{21609}$$

$$P(Y = Stop|Query) \propto \frac{4}{9} \times \frac{4}{6} \times \frac{4}{6} \times \frac{1}{6} \times \frac{1}{6} = \frac{64}{11664}$$

$$P(Y = Go|Query) > P(Y = Stop|Query)$$

Finally robot must **Go** for given query.

Y	$P(X_1 = 0 Y)$	$P(X_1 = 1 Y)$	Y	$P(X_2 = 0 Y)$	$P(X_2 = 1 Y)$
Go	$\frac{5}{5} = 1$	0	Go	$\frac{2}{5}$	$\frac{3}{5}$
Stop	$\frac{1}{4}$	$\frac{3}{4}$	Stop	$\frac{1}{4}$	$\frac{3}{4}$
Y	$P(X_3 = 0 Y)$	$P(X_3 = 1 Y)$	Y	$P(X_4 = 0 Y)$	$P(X_4 = 1 Y)$
Go	$\frac{0}{5} = 0$	1	Go	3 5	$\frac{2}{5}$
Stop	$\frac{4}{4} = 1$	0	Stop	$\frac{0}{4} = 0$	1

Table 1: Naive Bayes

Y	$P(X_1 = 0 Y)$	$P(X_1 = 1 Y)$	Y	$P(X_2 = 0 Y)$	$P(X_2 = 1 Y)$
Go	$\frac{6}{7}$	$\frac{1}{7}$	Go	$\frac{3}{7}$	$\frac{4}{7}$
Stop	$\frac{2}{6}$	$\frac{4}{6}$	Stop	$\frac{2}{6}$	$\frac{4}{6}$
Y	$P(X_3 = 0 Y)$	$P(X_2 = 1 Y)$	Y	$P(X_4 = 0 Y)$	$P(X_4 = 1 Y)$
	(0 - 1 /	1 (213 1 1)	_	1 (114 0 1)	1 (114 1 1)
Go	$\frac{1}{7}$	$\frac{6}{7}$	Go	$\frac{4}{7}$	$\frac{3}{7}$

Table 2: Naive Bayes with Laplace smoothing