# Nonparametric Tail Risk Analysis of Global Equities

Ajay Kirpekar & Vu Nguyen

UC Irvine

June 18, 2022

#### Motivation

Almeida et al. (2017): higher-order moments of asset returns linked to tail risks Global tail risks not observed

#### This paper:

- forecast small set of global stock returns
- extract investment implications

#### Main ingredients:

- ▶ asymmetric shocks, stochastic volatility, restricted information of beliefs
- covariance with business cycles
- ▶ dual problem: minimum-distance discount factor and optimal portfolio weights

### Motivation

#### Main findings:

- ► EM filter offers flexibility in characterizing distributions
- higher-order moments in macro variables strongly correlated with asset prices

#### Related Literature

Nonlinear stochastic discount factor

- ► Almeida et al. (2017)
- ► Nicolini et al. (2015)

Higher-order moments in asset pricing

- ► Kraus & Litzenberger (1976, 1983), Dittmar (2002)
- ► Chabi-Yo (2019)
- ► Barro & Liao (2020)

#### Estimation:

- ► Chib & Ramamurthy (2010)
- ► Chen & Liu (2000): Mixture Kalman filters
- ► Ehrmann, Fratzscher, Rigobon (2006): Macro shocks

#### Minimum-distance stochastic discount factor

Almeida et. al (2016): given Cressie-Read discrepancy function  $\phi(m) = \frac{m^{\gamma+1} - a^{\gamma+1}}{\gamma(\gamma+1)}$ , solving

$$\min_{m_1, m_2, \dots, m_T} \frac{1}{T} \sum_{t=1}^T \phi(m_t) \ \text{ s.t. } \ \frac{1}{T} \sum_{t=1}^T m_t R_t = 1_K; \frac{1}{T} \sum_{t=1}^T m_t = a$$

is equivalent to solving for

$$\hat{\lambda} = \operatorname*{argsup}_{\lambda \in \mathbb{R}^K} \frac{1}{T} \sum_{t=1}^T \left( \frac{a^{\gamma}}{1+\gamma} - \frac{1}{1+\gamma} \left( a^{\gamma} + \gamma \lambda' \left( R_t - \frac{1}{a} \mathbf{1}_K \right) \right)^{\frac{\gamma+1}{\gamma}} \right).$$

Then

$$\widehat{m}_t = a \frac{\left(a^{\gamma} + \gamma \widehat{\lambda}' \left(R_t - \frac{1}{a} \mathbf{1}_K\right)\right)^{\frac{1}{\gamma}}}{\frac{1}{T} \sum_{t=1}^{T} \left(a^{\gamma} + \gamma \widehat{\lambda}' \left(R_t - \frac{1}{a} \mathbf{1}_K\right)\right)^{\frac{1}{\gamma}}}$$

# Asset Pricing

We first assume the SDF has a discount has the following form:

$$m_{t+1} = \beta + \sum_{j} \tau_{t+1}^{j}$$
 
$$P_{t}^{i} = \widehat{E}_{t} \left( m_{t+1} P_{t+1}^{i} \right)$$
 
$$P_{t}^{i} = \widehat{E}_{t} \left( \beta P_{t+1}^{i} + P_{t+1}^{i} \sum_{j} \theta_{j} \tau_{t+1}^{j} \right)$$

Investors perceive asset prices to follow:

$$\widetilde{P}_t^i = \mu_i + \psi_i P_{t-1}^i + \sigma_t^i \varepsilon_t^{s,i}$$

Iterating forward:

$$\widehat{E}_t \widetilde{P}_{t+1}^i = \mu_i + \psi_i \widehat{E}_t P_t^i + \sigma_t^i \varepsilon_t^{s,i}$$

#### Stochastic Process

Joint Normality of Equity and Macro shocks:

$$\begin{bmatrix} \varepsilon_{t+1}^{s} \\ \varepsilon_{t+1}^{j,N} \end{bmatrix} \sim N \begin{pmatrix} \overline{0}, & \begin{bmatrix} \left(\sigma_{t+1}^{s,i}\right)^{2} & h_{t}^{i,j} \\ h_{t}^{i,j} & \left(\sigma_{t+1}^{N,j}\right)^{2} \end{bmatrix} \end{pmatrix}$$

Inflation and Output Growth Process:

$$\begin{split} \boldsymbol{z}_{t}^{j} &= \begin{bmatrix} \boldsymbol{x}_{t}^{j} \\ \boldsymbol{\pi}_{t}^{j} \end{bmatrix} = \boldsymbol{\beta}_{0,t}^{j} + \boldsymbol{\beta}_{1,t}^{j} \boldsymbol{z}_{t-1}^{j} \\ & \boldsymbol{\beta}_{0,t}^{j} \sim \boldsymbol{\tau}_{0,t}^{j} \\ & \boldsymbol{\beta}_{0,t}^{j} \sim \boldsymbol{\tau}_{1,t}^{j} \end{split}$$

Tail Risk Errors:

$$au_{t+1}^{j} = egin{cases} arepsilon_{t+1}^{j,N} \ extit{pr.} \ 1-\lambda_{j} \ q_{t+1}^{j} \ extit{pr.} \ \lambda_{j} \end{cases}$$

#### Mixture Model Estimation

Step 1: Generate Random Variables

$$\widetilde{C} \equiv \{c_n\}_{n=1}^N \sim \overline{\tau}_{t+1}$$

Step 2: Approximate distribution via EM algorithm

$$(w^*, \mu^*, \Sigma^*) = \max_{w, \mu, \Sigma} J\left(\widetilde{C}, w^*, \mu^*, \Sigma^*\right)$$

$$J\left(\widetilde{C}, w^*, \mu^*, \Sigma^*\right) \equiv \prod_{n=0}^{N} \sum_{k} w_k \left\{ f_N\left(c_n - \mu_k, \Sigma_k\right) \right\}$$

Step 3: Generate macro variables via Ensemble kalman filter:

$$E\left[z_{t}^{j}|\mathcal{I}_{t-1}\right] = \sum_{t} w_{k} \left(\beta_{0,t|t-1}^{j,k} + \beta_{1,t|t-1}^{j,k} z_{t-1|t-1}^{j,k}\right)$$

# Empirical Likelihood

Observation Equation:

$$\widetilde{Y}_t = \begin{bmatrix} Y_t^{obs, stock} \\ Y_t^{macro, stock} \end{bmatrix} = M_1 T_t + M_2 T_{t-1} + \varepsilon_t^m \; ; \; \varepsilon_t^m \sim \mathcal{N}(0, D)$$

Likelihood:

$$P\left(\widetilde{Y}|\Theta\right) = \prod_{t=1}^{T} \mathcal{N}\left(\widetilde{Y}_{t} - M_{1}T_{t} + M_{2}T_{t-1}, D\right)$$

Tail Model:

$$T_t \equiv \sum_{k} w_k \{ A_t^k + B_t^k T_{t-1}^k + \varepsilon_t^{k,T} \}$$

Normal Model:

$$T_t = A_t + B_t T_{t-1} + \varepsilon_t^T$$

# **Prior Specification**

Rare Disaster Prob: 
$$\lambda_j \sim \Gamma(\mu = .1, \sigma^2 = .05)$$
,  $\forall j$ 

$$vec(\Omega) \sim \mathcal{N}(\mu = vec(\Sigma_M^{OLS}), \sigma^2 = 1000 \times I)$$
Pareto Curvature:  $\alpha \sim \Gamma(\mu = 7.5, \sigma^2 = .05)$ 

$$\lambda_j \in [0, 1] \ \forall j$$

$$\alpha \in [5, 8]$$

Macro Sensitivity:  $\theta_{i,i} \in [0,\infty]$  &  $\theta_{i,i} = 1 \ \forall i,j$ 

#### **Estimation Results**



(a) Likelihood





(b) Log Posterior (c) SSE

#### Predictive Distribution

Utilizing the Equity forecast distribution, we obtain:

$$\begin{split} \widehat{m}_{t} &= E\left[\mathcal{G}\left(\left\{R_{\tau}\right\}_{\tau}^{T}, \gamma, a\right)\right] = E\left[\mathcal{G}\left(\left\{\mathcal{F}_{t-1}(R_{\tau})\right\}_{\tau}^{T}, \gamma, a\right)\right] \\ \mathcal{F}_{t-1}(\overline{P}_{t} - \overline{P}_{t-1|t-1}) &= \mathcal{F}(m_{t+1} \circ \overline{P}_{t+1} - \overline{P}_{t-1|t-1}) \\ &= \mathcal{F}_{t-1}(m_{t+1}(\mu + \Psi \overline{P}_{t-1|t-1} + (\Lambda_{S}S_{t-1|t-1} + \varepsilon_{i}^{s}))\widetilde{\varepsilon}_{t} - \overline{P}_{t}) \\ R_{t} &\approx \overline{P}_{t} - \overline{P}_{t-1} \\ \mathcal{F}(m_{t}) \sim w_{k} \mathcal{N}_{k}(\mu_{k}, \Sigma_{k}) \end{split}$$

Related Literature Results II •000000000

# SDF Results (Data)



oduction Motivation Related Literature State-Space Representation Results I Pred Distribution Results II

O OO 00000 O O O

# SDF Results (Model)



oduction Motivation Related Literature State-Space Representation Results I Pred Distribution Results II

O OO OOOOO O O OOOOOOO

#### Predictive Distribution Results



(d) Nikkei 225 Covid

(e) Nikkei 225 Global Financial Crisis

### Predictive Distribution Results



(f) KOSPI Asian Financial Crisis

# Portfolio Performance (TvD)



# Portfolio Performance (TvN)



# Portfolio Performance (TvEQR)



troduction Motivation Related Literature State-Space Representation Results I Pred Distribution Results II

O OO OOOOOOOOOO

### Return Performance Stats

| Portfolio              | Sortino Ratio | Sharpe Ratio | Sortino Std Dev. | Avg Return |
|------------------------|---------------|--------------|------------------|------------|
| Tail                   | .245          | .134         | 2.39%            | .83%       |
| Normal                 | .09           | .06          | 2.57%            | .47%       |
| MD SDF Data            | .11           | .11          | 2.60 %           | 0.54 %     |
| 55 Risk Free Equal Cap | .452          | .293         | 2.92%            | 1.57%      |
| Equal Cap              | 0.447         | 0.293        | 5.37 %           | 2.66 %     |
| Tail MV                | 0.004         | 0.003        | 6.46 %           | .526 %     |
| Norm MV                | -0.013        | -0.009       | 6.28 %           | 0.418 %    |

# Return Distribution



#### Tail & Normal Return Distribution

