Stochastic Numerics for Mathematical Physics

With 48 Figures and 28 Tables

Table of Contents

1	Me	an-squ	are approximation	
	\mathbf{for}	stocha	stic differential equations	1
	1.1		amental theorem on the mean-square order of convergence	3
		1.1.1	Statement of the theorem	3
		1.1.2	Proof of the fundamental theorem	5
		1.1.3	The fundamental theorem for equations	
			in the sense of Stratonovich	9
		1.1.4	Discussion	10
		1.1.5	The explicit Euler method	12
		1.1.6	Nonglobally Lipschitz conditions	16
	1.2	Metho	ods based on Taylor-type expansion	18
		1.2.1	Taylor expansion of solutions	
			of ordinary differential equations	18
		1.2.2	Wagner-Platen expansion of solutions	
			of stochastic differential equations	19
		1.2.3	Construction of explicit methods	23
	1.3	Implie	eit mean-square methods	29
		1.3.1	Construction of drift-implicit methods	29
		1.3.2	The balanced method	33
		1.3.3	Implicit methods for SDEs	
			with locally Lipschitz vector fields	37
		1.3.4	Fully implicit mean-square methods: The main idea	38
		1.3.5	Convergence theorem for fully implicit methods	41
		1.3.6	General construction of fully implicit methods	43
	1 .4	Mode	ling of Ito integrals	45
		1.4.1	Ito integrals depending on a single noise	
			and methods of order $3/2$ and $2 \dots \dots$	45
		1.4.2	Modeling Ito integrals by the rectangle	
			and trapezium methods	51
		1.4.3	Modeling Ito integrals by the Fourier method	54
	1.5		cit and implicit methods of order 3/2 for systems	
			additive noise	60
		1.5.1	Explicit methods based on Taylor-type expansion	60
		1.5.2	Implicit methods based on Taylor-type expansion	62

X Table of Contents

		1.5.3	Stiff systems of stochastic differential equations	
			with additive noise. A-stability	66
		1.5.4	Runge–Kutta type methods	71
		1.5.5	Two-step difference methods	75
	1.6	Nume	rical schemes for equations with colored noise	77
		1.6.1	Explicit schemes of orders 2 and $5/2 \dots$	78
		1.6.2	Runge-Kutta schemes	80
		1.6.3	Implicit schemes	81
2	Wea	ak app	proximation	
	\mathbf{for}	stocha	stic differential equations	83
	2.1	One-s	tep approximation	87
		2.1.1	Properties of remainders and Ito integrals	88
		2.1.2	One-step approximations of third order	92
		2.1.3	The Taylor expansion of mathematical expectations	98
	2.2	The n	nain theorem on convergence of weak approximations	
		and n	nethods of order two	99
		2.2.1	The general convergence theorem	100
		2.2.2	Runge-Kutta type methods	104
		2.2.3	The Talay-Tubaro extrapolation method	
		2.2.4	Implicit method	109
	2.3	Weak	methods for systems with additive and colored noise	
		2.3.1	Second-order methods	113
		2.3.2	Main lemmas for third-order methods	113
		2.3.3	Construction of a method of order three	116
		2.3.4	Weak schemes for systems with colored noise	121
	2.4	Varia	nce reduction	123
		2.4.1	The method of important sampling	123
		2.4.2	Variance reduction by control variates	
			and combining method	126
		2.4.3	Variance reduction for boundary value problems	129
	2.5	Appli	cation of weak methods to the Monte Carlo	
			utation of Wiener integrals	130
		2.5.1	The trapezium, rectangle, and other methods	
			of second order	133
		2.5.2	A fourth-order Runge-Kutta method for computing	
			Wiener integrals of functionals of exponential type	135
		2.5.3	Explicit Runge–Kutta method of order four	
			for conditional Wiener integrals of exponential-type	
			functionals	137
		2.5.4	Theorem on one-step error	
		2.5.5	Implicit Runge–Kutta methods for conditional	
			Wiener integrals of exponential-type functionals	145
		2.5.6	Numerical experiments	
	2.6		om number generators	

		2.6.1	Some uniform random number generators	160
		2.6.2	A specific test for SDE integration	163
		2.6.3	Generation of Gaussian random numbers	166
		2.6.4	Parallel implementation	168
3	Nun	nerical	l methods for SDEs with small noise	171
	3.1		square approximations and estimation of their errors	
		3.1.1	Construction of one-step mean-square approximation .	
		3.1.2	Theorem on mean-square global estimate	
		3.1.3	Selection of time increment h	
			depending on parameter ε	
		3.1.4	(h, ε) -approach versus (ε, h) -approach	177
	3.2		concrete mean-square methods	
			stems with small noise	
		3.2.1	Taylor-type numerical methods	
		3.2.2	Runge–Kutta methods	
		3.2.3	Implicit methods	
		3.2.4	Stratonovich SDEs with small noise	183
		3.2.5	Mean-square methods for systems	
			with small additive noise	
	3.3		rical tests of mean-square methods	185
		3.3.1	Simulation of Lyapunov exponent of a linear system	
			with small noise	
		3.3.2	Stochastic model of a laser	188
	3.4		nain theorem on error estimation and general approach	
			struction of weak methods	
	3.5		concrete weak methods	
		3.5.1	Taylor-type methods	
		3.5.2	Runge–Kutta methods	
		3.5.3	Weak methods for systems with small additive noise	
	3.6		asion of the global error in powers of h and ε	
	3.7		tion of the Monte Carlo error	203
	3.8		ation of the Lyapunov exponent of a linear system	
		with s	mall noise by weak methods	206
4	Sto	chastic	e Hamiltonian systems	
	and	Lange	evin-type equations	211
	4.1	Preser	evation of symplectic structure	213
	4.2	Mean-	square symplectic methods	
			ochastic Hamiltonian systems	216
		4.2.1	General stochastic Hamiltonian systems	
		4.2.2	Explicit methods in the case of separable Hamiltonians	
	4.3	Mean-	square symplectic methods for Hamiltonian systems	
			· · · · · · · · · · · · · · ·	224
		4.3.1	The case of a general Hamiltonian	224
		4.3.2	The case of separable Hamiltonians	

		4.3.3	The case of Hamiltonian	
			$H(t, p, q) = \frac{1}{2} p^{T} M^{-1} p + U(t, q)$	234
	4.4	Nume	rical tests of mean-square symplectic methods	237
			Kubo oscillator	
		4.4.2		
			in storage rings	239
	-	4.4.3	Linear oscillator with additive noise	240
	4.5	Liouvi	illian methods for stochastic systems	
			ving phase volume	246
		4.5.1	Liouvillian methods for partitioned systems	
			with multiplicative noise	248
		4.5.2	Liouvillian methods for a volume-preserving system	
			with additive noise	250
	4.6	Weak	symplectic methods for stochastic Hamiltonian systems	251
		4.6.1	Hamiltonian systems with multiplicative noise	
		4.6.2	Hamiltonian systems with additive noise	255
		4.6.3	Numerical tests	257
	4.7		-symplectic mean-square methods	
			ngevin-type equations	
		4.7.1	Langevin equation: Linear damping and additive noise	262
		4.7.2	Langevin-type equation: Nonlinear damping	
		_	and multiplicative noise	
	4.8	-	-symplectic weak methods for Langevin-type equations .	
		4.8.1	• •	273
		4.8.2	Langevin-type equation: Nonlinear damping	075
		400	and multiplicative noise	
		4.8.3	Numerical examples	270
5	Sim		n of space and space-time bounded diffusions \dots	283
	5.1		-square approximation for autonomous SDEs	
			ut drift in a space bounded domain	286
		5.1.1	Local approximation of diffusion	
			in a space bounded domain	287
		5.1.2	Global algorithm for diffusion	
			in a space bounded domain	
		5.1.3	Simulation of exit point $X_x(\tau_x)$	
	5.2		ms with drift in a space bounded domain	
	5.3		-time Brownian motion	
		5.3.1	Auxiliary knowledge	
		5.3.2	Some distributions for one-dimensional Wiener process	308
		5.3.3	Simulation of exit time and exit point	
			of Wiener process from a cube	313
		5.3.4	Simulation of exit point of the space-time	
			Brownian motion from a space-time parallelepiped	
			with cubic base	316

	5.4		DEs in a space-time bounded domain \dots 3	317
			uare approximation in a space-time	
			in	
			m in a space-time bounded domain 3	
			of exit point $(au, X(au)) \dots 3$	
		5.4.4 Simulation of s	pace-time Brownian motion with drift . 3	328
	5.5			
	5.6	Mean-square approximately	nation of diffusion with reflection 3	337
6	Ran	dom walks for linea	r boundary value problems 3	339
	6.1	Algorithms for solvin	g the Dirichlet problem	
		based on time-step co	$\operatorname{ntrol} \ldots \ldots \ldots \ldots 3$	339
		6.1.1 Theorems on o	ne-step approximation 3	341
		6.1.2 Numerical algo	rithms and convergence theorems 3	348
	6.2	The simplest random	walk for the Dirichlet problem	
		for parabolic equation	s	353
		6.2.1 The algorithm	of the simplest random walk 3	353
		6.2.2 Convergence th	neorem 5	356
		6.2.3 Other random	walks	359
		6.2.4 Numerical tests	s	364
	6.3	Random walks for the	elliptic Dirichlet problem 3	365
		6.3.1 The simplest ra	andom walk for elliptic equations 3	366
		6.3.2 Other methods	for elliptic problems	370
		6.3.3 Numerical tests	s	372
	6.4	Specific random walk	s for elliptic equations	
		and boundary layer .		374
		6.4.1 Conditional ex	pectation of Ito integrals	
		connected with	Wiener process in the ball	376
		6.4.2 Specific one-ste	ep approximations for elliptic equations.	380
		6.4.3 The average nu	$1 \text{ mber of steps} \dots \dots$	384
			orithms and convergence theorems	
	6.5	Methods for elliptic e	equations with small parameter	
		at higher derivatives.		392
	6.6	Methods for the Neur	nann problem for parabolic equations 3	397
		6.6.1 One-step appro	eximation for boundary points 3	399
		6.6.2 Convergence th	neorems	403
7	Pro	pabilistic approach	to numerical solution	
			for nonlinear parabolic equations4	407
	7.1		n to linear parabolic equations	
	7.2		nilinear parabolic equations 4	
			on of layer methods	
			neorem for a layer method4	
		0	orithms	
	7.3	9	ie	

		7.3.1	Multidimensional parabolic equation	. 427
		7.3.2	Probabilistic approach to reaction-diffusion systems	. 429
	7.4	Nume	erical examples	. 431
	7.5	Proba	abilistic approach to semilinear parabolic equations	
		with s	small parameter	. 438
		7.5.1	Implicit layer method and its convergence	. 440
		7.5.2	Explicit layer methods	. 442
		7.5.3	Singular case	
		7.5.4	Numerical algorithms based on interpolation	. 445
	7.6	High-	order methods for semilinear equation with small	
			ant diffusion and zero advection	. 446
		7.6.1	Two-layer methods	. 447
		7.6.2	Three-layer methods	
	7.7	Nume	erical tests	. 451
		7.7.1	The Burgers equation with small viscosity	. 452
		7.7.2	The generalized FKPP-equation	
			with a small parameter	. 455
			-	
8			al solution of the nonlinear Dirichlet and	
	Neı		problems based on the probabilistic approach .	. 461
	8.1		methods for the Dirichlet problem	
		for se	milinear parabolic equations	
		8.1.1	Construction of a layer method of first order	
		8.1.2	Convergence theorem	. 467
		8.1.3	A layer method with a simpler approximation	
			near the boundary	
		8.1.4	Numerical algorithms and their convergence	
	8.2		sion to the multi-dimensional Dirichlet problem	
	8.3	Nume	erical tests of layer methods for the Dirichlet problems .	
		8.3.1	The Burgers equation	
		8.3.2	Comparison analysis	
		8.3.3	Quasilinear equation with power law nonlinearities	. 485
	8.4		methods for the Neumann problem	
		for se	milinear parabolic equations	. 488
		8.4.1	Construction of layer methods	. 489
		8.4.2	Convergence theorems	. 493
		8.4.3	Numerical algorithms	. 497
		8.4.4	Some other layer methods	. 499
	8.5	Exten	sion to the multi-dimensional Neumann problem	
	8.6		erical tests for the Neumann problem	
		8.6.1		
		8.6.2	A comparison analysis of layer methods	
			and finite-difference schemes	. 505

9			on of stochastic numerics to models hastic resonance and to Brownian ratchets 509
	9.1	Noise	induced regular oscillations in systems
		with s	stochastic resonance
		9.1.1	Sufficient conditions for regular oscillations 512
		9.1.2	
			theory of diffusion over a potential barrier 517
		9.1.3	High-frequency regular oscillations in systems
			with multiplicative noise
		9.1.4	Large-amplitude regular oscillations
			in monostable system
		9.1.5	
			of two coupled oscillators
	9.2	Noise	-induced unidirectional transport 526
		9.2.1	Systems with state-dependent diffusion 528
		9.2.2	Forced thermal ratchets
A	App	endix	: Practical guidance to implementation
			chastic numerical methods
	A.1	Mean	-square methods
	A.2	Weak	methods and the Monte Carlo technique 544
			ithms for bounded diffusions 550
	A.4	Rand	om walks for linear boundary value problems
			near PDEs
	A.6	Misce	llaneous
Rei	feren	ces	
Ind	lex		