

CSSE2010/CSSE7201 Lecture 19

More I/O

School of Information Technology and Electrical Engineering
The University of Queensland

Today

- More I/O
 - ✓ I²C, TWI, SPI
 - Synchronous Serial
- AVR I/O coding
- ✓ Volatile variables
 - Setting/clearing bits in I/O registers

Bus Masters and Slaves

- Master
- Device which initiates (and controls) the transfer of data
- Slave
- ✓ Waits for requests
 - Responds to master
- Some devices can be both masters and slaves (at different times)
 - Memory can never be a bus master

- I²C = Inter-Integrated Circuit created by Philips Semiconductor (now NXP)
- TWI = Two-wire Interface
 - Name used by Atmel

up to derres

Seval comm.
Synchronous.

4

TWI on AVR

- ATmega324A has one TWI port
 - Alternate use for pins

```
C0 (SCL) ✓
C1 (SDA) ✓
```

- See datasheet pages 211 to 239 for details
 - Includes full description of TWI

SPI – Other configurations

SPI on the AVR

- ATmega324A has one SPI port

 - Shares pins with upper half of port B
 Hardware takes care of generating signals
 - Can be master or slave
 - See datasheet pages 166 to 174
- USARTs can also be used as SPI masters

SPI on the AVR (cont.)

- For Master operation, can choose clock rate divider:
 - 2 (4MHz)@ 8MHz clock)
 - 4 (2MHz)
 - 8 (1MHz)
 - 16 (500kHz)
 - 32 (250kHz)
 - 64 (125kHz)
 - 128 (62.5kHz)
- For slave operation, fastest clock is f_{OSC} / 4 (2MHz in our case)

Bit Bashing

- Sometimes microcontroller doesn't have support for a bus standard
 - Or enough interfaces of a particular standard
- Can simulate I/O standards using general purpose ports

AVR I/O Coding Volatile variables

- Example: volatile int running;
- Tells compiler that variable can change outside of standard flow of control
 - e.g. in interrupt handler or a thread
- Prevents compiler applying optimisations

```
Example:
    running = 0;
    while(!running) {
        /; /* Do nothing */|
}
```

```
Without volatile, optimising compiler will change this to while(1) {
;
}
```


AVR I/O Coding Setting I/O register bits

• When setting/clearing specific bits in I/O registers, be explicit about the bits (I)I rib, exil example (all have the same effect):

```
Poor:
                                     10
  Better:
                         1463
                                  1441
   \blacksquare TCCR1B = 0 \times 0 A;
  Best:
                                              PORTC = OX 11 /
                 (1<<WGM12)
  Makes code easier to understand
```


Setting I/O register bits

- Where do names come from?
 - See datasheet (note errors see IO register summary)
- e.g. for TCCR0B (page 112)

Bit	7	6	5	4	(3)	2	1	0
0x25 (0x45)	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00
Read/Write	W	W	R	R	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	0	0

Bit names are defined as macros, e.g.

#define WGM02 3

assembler

assembler

by a construction

construction

assembler

by a construction

construction

assembler

by a construction

construction

construction

assembler

by a construction

con

Can use same names in assembly language also, e.g.
 ldi r16, (1<<WGM02) | (1<<Cs01)

Clearing/Toggling I/O register bits

- Same rules apply
- To clear a bit, e.g.

```
PINC &= ~ (1<<5); PINC = PINC & (11101111)

To +0~~'
```

To toggle a bit, e.g.

```
/* Enable Output Compare A Interrupt
```

** for timer 2 */

000 (0000

