VERMES MIKLÓS Fizikaversenv 2019, március 4. II. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

IX. osztály

I. feladat

Egy m tömegű prizma keresztmetszete egyenlő szárú derékszögű háromszög (1. ábra). A prizma egy kettős lejtőt alkot és egy vízszintes síkfelületen található, melyen súrlódás nélkül csúszhat. A kettős lejtő élén egy ideális csiga található, melyen egy ideális fonál van átvetve. A fonál végeire m_1 illetve m_2 tömegű testek vannak kötözve ($m_2 = km_1, k > 1$). A testek, illetve a prizma oldallapjai közötti csúszó súrlódási együttható u. Egy vízszintes erő tartja nyugalomban a prizmát a vízszintes síkon, miközben a testek szabadon csúsznak. Ismert m, m_1 , k, μ és g, számítsd ki:

a) a	testel	k gyorsu	lásait;		4,5 p

b) a prizma által a vízszintes síkra kifejtett nyomóerőt; 3,5p2 p

c) azt a vízszintes erőt, melynek hatására a prizma nyugalomban marad!

II. feladat

1) Egy k = 6 N/m rugalmassági együtthatójú rugót két egyenlő hosszúságú részre vágunk. Ha a két rugót párhuzamosan kapcsoljuk, milyen rugalmassági együtthatója lesz a rendszernek?

5 p

2) Két különböző ϱ_1 és ϱ_2 sűrűségű anyagból ($\varrho_1 < \varrho_2$) azonos nagyságú építőelemeket készítenek, majd ezekből egy nagyobb építményt, melynek átlagsűrűsége ϱ_k . Legyenek $\Delta \varrho_1 = |\varrho_1 - \varrho_k|$, illetve $\Delta \rho_2 = |\rho_2 - \rho_k|$ a sűrűség-eltérések az átlagsűrűséghez képest. Ismert a két anyag sűrűség-eltéréseinek aránya $A = \Delta Q_1/\Delta Q_2$. Az építmény elkészítéséhez összesen N építőelemet használtak fel. Számítsuk ki, hogy hány építőelem készült mindegyik anyagból! Alkalmazás: A = 3; N = 32.

5 p

III. feladat

1) Két égitest $m_1 = 7,5 \cdot 10^{30} \ kg$ és $m_2 = 15 \cdot 10^{30} \ kg$, úgy kering egy O pont körül, hogy az O ponton átmenő és az égitesteket összekötő szakasz állandó, $L = 6,67 \cdot 10^7 \ km$ nagyságú (2. *ábra*). Számítsuk ki:

a) az égitestek keringési pályájának sugarát;

5 p

b) keringéseik szögsebességét;

0,5 p

c) periódusát!

0,5 p

Az általános tömegvonzási állandó $K = 6,67 \cdot 10^{-11} \text{ N} m^2/kg^2$.

2. ábra

2) Két testet ugyanazon helyről, ugyanazon $v_0 = 2$ m/s sebességgel, a vízszintes iránnyal $\alpha_1 = 30^\circ$, illetve $\alpha_2 = -30^\circ$, szögeket bezáró irányokba hajítunk el. Határozzuk meg a 2-es test 1-es testhez viszonyított relatív sebességét!

4 p