Artificial Intelligence

(Please notice that this document has been combined from several sources. Some of the material might be <u>irrelevant</u>).

Textbooks

- Artificial Intelligence : Structures and Strategies for Complex Problem Solving
 - George Luger and William Stubblefield
 - Benjamin/Cummings
- Artificial Intelligence : A modern Approach
 - Stuart Russell and Peter Norvig
 - Prentice-Hall
- Machine Learning
 - Tom Mitchell
 - McGraw-Hill
- www.aaai.org/AI Topics

What is Intelligence?

Intelligence is an interior characteristic. Its presence can not be measured directly. It can be related to:

- perception and comprehension
- making generalizations and relationships
- solving complex problems (labyrinth traversal monkey + bananas + boxes in a room - language learning – talking ...)

In 1976, Newell and Simon proposed that intelligence resides in physical symbol systems (collection of patterns and processes).

What is Artificial Intelligence?

- Cognitive AI (Study of mind structure and its processes)
 - Study of mental faculties (seeing, learning, remembering, and reasoning) through computational models
- Engineering AI
 - Making computers do what people currently do better
 - Study of heuristic solutions to NP-complete problems

Ancestors of AI (Multidisciplinary Science)

- Computer Science
- Mathematics
- Philosophy

- Probability and statistics
- Decision theory and econonmies
- Psychology
- Biology
- Control systems
- Operations research

This gives us four possible goals to pursue in artificial intelligence:

Systems that think like humans.	Systems that think rationally.
Systems that act like humans	Systems that act rationally

Acting humanly: The Turing Test approach

Thinking humanly: The cognitive modelling approach Thinking rationally: The laws of thought approach

Thinking rationaly = to obtain correct con clusions given correct premises.

Acting rationally: The rational agent approach

Architecture of an Al System (Agent)

(If changes can be made to any functional unit - as indicated by the arrows- this implies that the system can adapt or learn).

Historical Perspective

formalizing the laws of human thought

(4th C BC+) Aristotle, George Boole, Gottlob Frege, Alfred Tarski

• formalizing probabilistic reasoning

(16th C+) Gerolamo Cardano, Pierre Femat, James Bernoulli, Thomas Bayes

• thinking as computation

(1950+) Alan Turing, John von Neumann, Claude Shannon

start of the field of AI

(1956) John McCarthy, Marvin Minsky, Herbert Simon, Allen Newell

Al has gone through 3 phases

General Problem Solving: 50's

Expert Sytems : 70's

Machine Learning; 80's

Problem solving and search

Chapter 3, Sections 1–5

Expand shallowest unexpanded node

Implementation:

Expand shallowest unexpanded node

Implementation:

Expand shallowest unexpanded node

Implementation:

Expand shallowest unexpanded node

Implementation:

Complete??

Complete?? Yes (if b is finite)

Time??

Complete?? Yes (if b is finite)

Time??
$$1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$$
, i.e., exp. in d

Space??

Complete?? Yes (if b is finite)

<u>Time??</u> $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal??

Complete?? Yes (if b is finite)

<u>Time??</u> $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 10MB/sec so 24hrs = 860GB.

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost $\geq \epsilon$

<u>Time??</u> # of nodes with $g \leq \text{cost of optimal solution}$, $O(b^{\lceil C^*/\epsilon \rceil})$ where C^* is the cost of the optimal solution

Space?? # of nodes with $g \leq cost of optimal solution, <math>O(b^{\lceil C^*/\epsilon \rceil})$

Optimal?? Yes—nodes expanded in increasing order of g(n)

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

Complete??

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time??

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

<u>Time??</u> $O(b^m)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space??

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

<u>Time??</u> $O(b^m)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

<u>Time??</u> $O(b^m)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

Depth-limited search

= depth-first search with depth limit l, i.e., nodes at depth l have no successors

Recursive implementation:

```
function Depth-Limited-Search (problem, limit) returns soln/fail/cutoff Recursive-DLS (Make-Node (Initial-State [problem]), problem, limit) function Recursive-DLS (node, problem, limit) returns soln/fail/cutoff cutoff-occurred? \leftarrow false if Goal-Test[problem] (State[node]) then return node else if Depth[node] = limit then return cutoff else for each successor in Expand (node, problem) do result \leftarrow Recursive-DLS (successor, problem, limit) if result = cutoff then cutoff-occurred? \leftarrow true else if result \neq failure then return result if cutoff-occurred? then return cutoff else return failure
```

Iterative deepening search

```
function Iterative-Deepening-Search(pr_{oblem}) returns a solution inputs: problem, a problem  \begin{aligned} & \text{for } depth \leftarrow \text{ 0 to } \infty \text{ do} \\ & result \leftarrow \text{Depth-Limited-Search}(problem, depth) \\ & \text{if } result \neq \text{cutoff then return } result \\ & \text{end} \end{aligned}
```

Iterative deepening search l = 0

Limit = 0

Iterative deepening search l=1

Iterative deepening search l=2

Iterative deepening search l=3

Complete??

Complete?? Yes

Time??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$$

Space??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$$

Space?? O(bd)

Optimal??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$$

Space?? O(bd)

Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Numerical comparison for b=10 and d=5, solution at far right:

$$N(\mathsf{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$$

 $N(\mathsf{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100$

Summary of algorithms

Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete?	Yes*	Yes*	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\lceil C^*/\epsilon ceil}$	b^m	b^l	b^d
Space	b^{d+1}	$b^{\lceil C^*/\epsilon ceil}$	bm	bl	bd
Optimal?	Yes^*	Yes^*	No	No	Yes

Graph search

```
function Graph-Search( problem, fringe) returns a solution, or failure closed \leftarrow an empty set fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe) loop do if fringe is empty then return failure node \leftarrow Remove-Front(fringe) if Goal-Test[problem](State[node]) then return node if State[node] is not in closed then add State[node] to closed fringe \leftarrow InsertAll(Expand(node, problem), fringe) end
```

Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

Informed Search algorithms

Chapter 4, Sections 1–2, 4

Outline

- ♦ Best-first search
- \Diamond A* search
- ♦ Heuristics
- ♦ Hill-climbing
- \Diamond Simulated annealing

Review: Tree search

```
function TREE-SEARCH( problem, fringe) returns a solution, or failure fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe)
loop do

if fringe is empty then return failure node \leftarrow \text{REMOVE-FRONT}(fringe)
if \text{GOAL-TEST}[problem] applied to \text{STATE}(node) succeeds return node fringe \leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe)
```

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an *evaluation function* for each node

– estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:

greedy search A* search

Romania with step costs in km

Greedy search

Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g., $h_{\mathrm{SLD}}(n) = \mathrm{straight}$ -line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Complete??

Complete?? No-can get stuck in loops, e.g., with Oradea as goal, lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow Complete in finite space with repeated-state checking

Time??

Complete?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space??

 $\frac{\mathsf{Complete}??}{\mathsf{Iasi}} \to \mathsf{Neamt} \to \mathsf{Iasi} \to \mathsf{Neamt} \to$

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal??

Complete?? No-can get stuck in loops, e.g.,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost to goal from n

f(n) =estimated total cost of path through n to goal

A* search uses an *admissible* heuristic

i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the *true* cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

Optimality of A^* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

Optimality of A* (more useful)

Lemma: A^* expands nodes in order of increasing f value*

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Properties of A*

Complete??

Properties of A*

 $\underline{\text{Complete}}$?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time??

Properties of A^*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times length$ of soln.]

Space??

Properties of A^*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal??

Properties of A*

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times length$ of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Proof of lemma: Consistency

A heuristic is *consistent* if

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$
 $\geq g(n) + h(n)$
= $f(n)$

I.e., f(n) is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

Start State

Goal State

$$\frac{h_1(S) = ??}{h_2(S) = ??}$$

Admissible heuristics

E.g., for the 8-puzzle:

$$h_1(n) = \text{number of misplaced tiles}$$

$$h_2(n) = \text{total Manhattan distance}$$

(i.e., no. of squares from desired location of each tile)

$$\frac{h_1(S)}{h_2(S)} = ?? 7$$

 $\frac{h_2(S)}{h_2(S)} = ?? 4+0+3+3+1+0+2+1 = 14$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima

In continuous spaces, problems w/ choosing step size, slow convergence

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

```
function SIMULATED-ANNEALING (pr_{oblem}, schedule) returns a solution state
   inputs: problem, a problem
              schedule, a mapping from time to "temperature"
   local variables: current, a node
                         next, a node
                         T, a "temperature" controlling prob. of downward steps
   current \leftarrow \text{Make-Node}(\text{Initial-State}[pr_{oblem}])
   for t \leftarrow 1 to \infty do
         T \leftarrow schedule[t]
        if T = 0 then return current
         next \leftarrow a randomly selected successor of current
         \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
         else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of simulated annealing

At fixed "temperature" T, state occupation probability reaches Boltzman distribution

$$p(x) = \alpha e^{\frac{E(x)}{kT}}$$

T decreased slowly enough \Longrightarrow always reach best state

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

Board Games & Search

Move generation Static Evaluation Min Max Alpha Beta Practical matters

1949 Shannon paper 1951 Turing paper 1958 Bernstein program 55-60 Simon-Newell program (α-β McCarthy?) 61 Soviet program 66 - 67 MacHack 6 (MIT AI) 70's NW Chess 4.5 80's Cray Blitz 90's Belle, Hitech, Deep Thought,

Deep Blue

Types of games

perfect information

imperfect information

deterministic	chance
chess, checkers, go, othello	backgammon monopoly
	bridge, poker, scrabble nuclear war

Game Tree Search

- · Initial state: initial board position and player
- · Operators: one for each legal move
- · Goal states: winning board positions
- · Scoring function: assigns numeric value to states
- · Game tree: encodes all possible games
- We are not looking for a path, only the next move to make (that hopefully leads to a winning position)
- · Our best move depends on what the other player does

A modified version of the game of "nim": Assume a pile that contains n chips in the beginning.

The first player can have three choices: take 1, 2 or 3 chips.

The second player can also have three choices: take 1, 2 or 3 chips.

The **winner** is the player who empties the pile first. The amount of payoff is the number of chips the winner takes in his last turn.

Numbers shown indicate amount of **payoff**. Since one person's gain = another's person loss, **values** representing the opponent scores are negated.

Best strategy for MAX player: take 2 chips and always win (if both players play optimally).

Other Games

- Backgammon
 - · Involves randomness dice rolls
 - Machine-learning based player was able to draw the world champion human player.
- Bridge
 - Involves hidden information other players' cards and communication during bidding.
 - · Computer players play well but do not bid well
- Go
 - · No new elements but huge branching factor
 - · No good computer players exist

Move Generation

Chess
b = 36
d > 40
36
is big!

Partial Game Tree for Tic-Tac-Toe

Scoring function

Static Evaluation

```
S = c_1 \times \text{material} 
+ c_2 \times \text{pawn structure} 
+ c_3 \times \text{mobility} 
+ c_4 \times \text{king safety} 
+ c_5 \times \text{center control} 
K 3
B 3.5
R 5
Q 9
```

Too weak to predict ultimate success

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically *linear* weighted sum of features

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

e.g., $w_1 = 9$ with

 $f_1(s) =$ (number of white queens) – (number of black queens), etc.

Limited look ahead + scoring

MIN-MAX

Min-Max

// initial call is MAX-VALUE(state, MAX-DEPTH)

```
function MAX-VALUE (state, depth)
  if (depth == 0) then return EVAL (state)
   v = -\infty
  for each s in SUCCESSORS (state) do
     v = MAX (v, MIN-VALUE (s, depth-1))
  end
  return v
function MIN-VALUE (state, depth)
  if (depth == 0) then return EVAL (state)
  v = \infty
  for each s in SUCCESSORS (state) do
     v = MIN(v, MAX-VALUE(s, depth-1))
  end
  return v
```

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity?? O(bm) (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games \Rightarrow exact solution completely infeasible

Deep Blue

32 SP2 processors each with 8 dedicated chess processors = 256 CP

50 – 100 billion moves in 3 min 13-30 ply search.

 α is lower bound on score β is upper bound on score

Cutting off search

 $Minimax Cutoff \ is \ identical \ to \ Minimax Value \ \text{except}$

- 1. TERMINAL? is replaced by CUTOFF?
- 2. UTILITY is replaced by EVAL

Does it work in practice?

$$b^m = 10^6, \quad b = 35 \quad \Rightarrow \quad m = 4$$

4-ply lookahead is a hopeless chess player!

4-ply \approx human novice 8-ply \approx typical PC, human master 12-ply \approx Deep Blue, Kasparov

$\alpha - \beta$

```
// α = best score for MAX, β = best score for MIN
// initial call is MAX-VALUE(state, -∞, ∞, MAX-DEPTH)
```

```
function MAX-VALUE (state, \alpha, \beta, depth) if (depth == 0) then return EVAL (state) for each s in SUCCESSORS (state) do \alpha = MAX (\alpha, MIN-VALUE (s, \alpha, \beta,depth-1)) if \alpha \ge \beta then return \alpha // cutoff end
```

return ox

return B

```
function MIN-VALUE (state, \alpha, \beta, depth) if (depth = 0) then return EVAL (state) for each s in SUCCESSORS (state) do \beta = MIN (\beta, MAX-VALUE (s, \alpha, \beta, depth-1)) if \beta \le \alpha then return \beta // cutoff end
```


A total of 3 static evaluations were needed to obtain the value for the tree.

Idea of $\alpha - \beta$ Pruning :-

 α Cut-Off: If we know that node S has a value \leq α then prune the tree with S as root.

α Can not Decrease

 β Cut-Off: If we know that node S has a value \geq β then prune the tree with S as root.

β Can not Increase

Whenever the α cut-off exceeds the β cut-off we use the α cut-off if the node is MAX & use the β cut-off if the node is MIN

$$\alpha - \beta$$

- Guaranteed same value as Max-Min
- In a perfectly ordered tree, expected work is 0(b^{d/2}), vs 0 (b^d) for Max-Min, so can search twice as deep with the same effort!
- With good move ordering, the actual running time is close to the optimistic estimate.

Properties of α - β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With "perfect ordering," time complexity = $O(b^{m/2})$

- ⇒ *doubles* depth of search
- \Rightarrow can easily reach depth 8 and play good chess

A simple example of the value of reasoning about which computations are relevant (a form of *metareasoning*)

α - β (NegaMax form)

```
// \alpha = best score for MAX, \beta = best score for MIN // initial call is Alpha-Beta(state,-\infty,\infty,MAX-DEPTH)
```

```
function Alpha-Beta (state, \alpha, \beta, depth) if (depth == 0) then return EVAL (state) for each s in SUCCESSORS (state) do \alpha = MAX(\alpha, -Alpha-Beta (s, -\beta, -\alpha, depth-1)) if \alpha \geq \beta then return \alpha// cutoff end return \alpha
```


Game Program

 Time

 1. Move generator (ordered moves)
 50%

 2. Static evaluation
 40%

 3. Search control
 10%

openings databases end games

[all in place by late 60's.]

Move Generator

- 1. Legal moves
- 2. Ordered by
 - 1. Most valuable victim
 - 2. Least valuable agressor
- 3. Killer heuristic

Static Evaluation

Initially - Very Complex

70's - Very simple (material)

now - Deep searchers: moderately complex (hardware)

PC programs: elaborate, hand tuned

Practical matters

Variable branching

Iterative deepening

- order best move from last search first
- use previous backed up value to initialize $[\alpha, \beta]$
- keep track of repeated positions (transposition tables)

Horizon effect

- L quiescence
- L Pushing the inevitable over search horizon

Parallelization

OBSERVATIONS

- Computers excel in well-defined activities where rules are clear
 - chess
 - mathematics
- Success comes after a long period of gradual refinement

For more detail on building game programs visit: http://www1.ics.uci.edu/~eppstein/180a/w99.html