Algorithmic and High-frequency trading: an overview

Marco Avellaneda
New York University &
Finance Concepts LLC

ICBI Global Derivatives, April 11 2010

US Equities markets: percentage of orders generated by algorithms

The market in numbers

- US Equities volumes: 5 and 10 billion shares per day
- 1.2 2.5 Trillion shares per year
- Annual volume: USD 30 70 trillion
- At least 30% of the volume is algorithmic: 360 a 750 billion shares/year
- Typical large ``sell side'' broker trades between 1 and 5 USD Tri per year using algos
- Each day, between 15,000 and 3,000 orders are processed
- An algorithmic execution strategy can be divided into 500 1,000 small daughter orders

Algorithmic trading

- Algorithmic trading: the use of programs and computers to generate and execute (large) orders in markets with electronic access.
- Orders come from institutional investors, hedge funds and Wall Street trading desks
- The main objective of algo trading is not necessarily to maximize profits but rather to control execution costs and market risk.
- Algorithms started as tools for institutional investors in the beginning of the 1990s. Decimalization, direct market access (DMA), 100% electronic exchanges, reduction of commissions and exchange fees, rebates, the creation of new markets aside from NYSE and NASDAQ and *Reg NMS* led to an explosion of algorithmic trading and the beginning of the decade.

Today, brokers compete actively for the commission pool associated with algorithmic trading around the globe – a business estimated at USD 400 to 600 million per year.

Why Algorithms?

- Institutional clients need to trade large amounts of stocks . These amounts are often larger than what the market can absorb without impacting the price.
- The demand for a large amount of liquidity will typically affect the cost of the trade in a negative fashion (``slippage'')
- Large orders need to be split into smaller orders which will be executed electronically over the course of minutes, hours, day.
- The procedure for executing this order will affect the average cost per share, according to which algorithm is used.
- In order to evaluate an algorithm, we should compare the average price obtained by trading with a market benchmark (``global average'' of the daily price, closing price, opening price, ``alpha decay'' of a quant strategy, etc).

Main issues in Algorithmic Trading

■ The decision of how to split the order in smaller pieces is just one of several issues.

- Once an algo is chosen the smaller orders need to be executed electronically
- Execution strategies interact with the market and decide how to place orders (Limit, Market,etc) and at what prices
- Objective: to achieve the ``best price'' for each daughter order
- Recent changes in the US equity market structure (in particular, different liquidity sources)
 make things more interesting and complicated
- Dark Pools (liquidity pools that do not show the order book), ECNs (electronic communications networks), autonomous liquidity providers

1. ``Ancient'' brokerage model

2. Electronic market

Electronic order-management and execution system (client-broker)

3. Electronic execution model with API

4. Direct Market Access (DMA)

ECNs, Dark Pools, Multiple Execution Venues

A few trading venues for US equity markets

• ARCA-NYSE: electronic platform of NYSE (ex- Archipelago)

• BATS: (Kansas)

• BEX: Boston Equity Exchange

CBSX: CBOE Stock Exchange

CSXZ: Chicago Stock Exchange

DRCTEDGE: Direct Edge (Jersey City, NJ)

• ISE: International Securities Exchange

• ISLAND: Acquired by Nasdaq in 2003

LAVA: belongs to Citigroup

NSX: National Stock Exchange (Chicago)

NYSE: New York Stock Exchange

TRACKECN: Track ECN

Reg NMS (``National market system'')

Order Protection Rule (Trade-thru rule) - protects visible liquidity at the top of book of automated market centers (SROs + ADF participants) from being traded through by executions outside each market's BBO.

Access Rule - caps access fees for top of book access at \$.003

Sub-Penny Rule - prohibits market centers from accepting quotes or orders in fractions under \$.01 for any security priced greater than \$1.00.

Market Data Rule - changes the allocation of market data revenue to SROs for quotes and trades

SRO: NYSE, NASD, FINRA

ADF: Alternative Display Facility/ consolidation of NYSE/NASDAQ

The three steps in algorithmic trading

Algorithmic trading strategy (Macrotrader)

Order placing algorithms (Microtrader)

Smart routing in case of more than one available Trading venue

Time-weighted average price (TWAP)

Equal amount of shares in each period of time.

Example: 100,000 shares TWAP/all day

5-minute consecutive intervals

Volume is greater in the beginning and at the end of the day

Volume-weighted average price (VWAP)

Volume changes in the course of the day (less volume in the middle).

VWAP: To execute a large order, the way in which we split it depends on the time of day (minimize impact)

Objetive: obtain an average price "weighted by volume"

Algorithm:

- 1. estimate the average volume traded in every 5 minute interval
- 2. In each time-interval, execute an amount proportional to the normative volume for that interval

Properties:

- 1. the algorithm always concludes (trade sizes are known in advance)
- 2. volume function is estimated using historical data. This may not correspond exactly to *ex-post* VWAP.

$$VWAP(t_{1}, t_{2}) = \frac{\sum_{t=t_{1}}^{t_{2}} \delta V(t) P(t)}{\sum_{t=t_{1}}^{t_{2}} \delta V(t)}$$

Percentage of Volume (POV)

- The PoV (Percentage of Volume) algorithm addresses the problem of VWAP by using the actual traded volume of the day as benchmark. The idea is to have a contant percentage participation in the market along the trading period.
- If the quantity that remains to be traded is \mathbf{Q} , and the participation ratio is γ , the algo algo computes the volume \mathbf{V} traded in the period $(\mathbf{t} \Delta \mathbf{T}, \mathbf{t})$ and executes a quantity $\mathbf{q} = \min(\mathbf{Q}, \mathbf{V}^* \gamma)$

V(t) = total volume traded in the market up to time t

Q(t) = number of shares that remain to be traded. (Q(0) = initial quantity)

$$Q(t + \delta t) - Q(t) = -\min[\gamma(V(t) - V(t - \delta t)), Q(t)]$$

$$\begin{cases} \frac{dQ}{dt} = -\gamma \frac{dV}{dt} & ; \ Q(t) > \gamma \frac{dV}{dt} \, \delta t \approx 0 \\ \frac{dQ}{dt} = 0 & ; \ Q(t) \le \gamma \frac{dV}{dt} \, \delta t \approx 0 \end{cases}$$

$$\frac{dQ}{dt} = -\gamma \frac{dV}{dt} \quad \therefore \quad Q(T) - Q(0) = -\gamma \cdot V(T) \quad \therefore \quad Q(0) = \gamma \cdot V(T)$$

$$\frac{dQ}{dt}p(t) = -\gamma \frac{dV}{dt}p(t) \quad \therefore \quad \int_{0}^{T} \left| \frac{dQ}{dt} \right| p(t) = \gamma \int_{0}^{T} \frac{dV}{dt}p(t)$$

$$\frac{\int_{0}^{T} \left| \frac{dQ}{dt} \right| p(t)}{Q(0)} = \frac{\int_{0}^{T} \frac{dV}{dt} p(t)}{V(T)}$$

POV is similar to WVAP if ratio is small

(Or is it? More later ©)

Almgren-Chriss (``Expected Shortfall'')

Market impact combined with "urgency in execution" (price risk)

$$dp(t) = -av(t)dt + \sigma dZ(t) \qquad v(t) = -\frac{dQ(t)}{dt}$$

Dynamic price model with price impact (`permanent impact')

$$\overline{p}(t) = p(t) - b|v(t)|$$

Execution price ('temporary impact')

$$E = -\mathbf{E} \left\{ \int_{0}^{T} \overline{p}(t) \frac{dQ(t)}{dt} dt \right\} = -\mathbf{E} \left\{ \int_{0}^{T} p(t) \frac{dQ(t)}{dt} \right\} + b \int_{0}^{T} \left(\frac{dQ(t)}{dt} \right)^{2} dt \qquad \text{Expected cost}$$

Expected execution cost

$$V = \sigma^2 \int_{0}^{T} (Q(0) - Q(t))^2 dt$$

Execution risk

$$\min_{\mathcal{Q}} \left\{ E + \lambda V \right\}$$

Optimization problem

Analytic solution

$$Q(t) = Q(0) \frac{\sinh\left(\sqrt{\frac{\lambda\sigma^2}{a+b}}(T-t)\right)}{\sinh\left(\sqrt{\frac{\lambda\sigma^2}{a+b}}T\right)}$$

$$\frac{Q(t)}{Q(0)} = \frac{\sinh(\Omega(1-\tau))}{\sinh\Omega}, \qquad \Omega = T\sqrt{\frac{\lambda\sigma^2}{a+b}}, \quad \tau = \frac{t}{T}$$

Omega: proportional to execution time, varies directly with risk-aversion and volatility, inversely to market impact elasticities

Omega = (price risk)/(impact risk)

Case $\Omega = 0$, TWAP (VWAP)

Time elapsed

Case $\Omega = 10$

Significant market risk

Execution must be faster

Case $\Omega = 20$

Faster execution

Time elapsed

Case $\Omega = 100$

"Slam" the market!

Generalizations of Almgren-Chriss order-splitting algorithm

- Incorporate intraday volume in the impact model (modification of VWAP)
- Incorporate drift in the price model (momentum)
- Incorporate exchange fees, rebates and other costs
- Almgren-Chriss & generalizations are now part of the standard toolkit that execution brokers offer to clients

Examples of <u>quant strategies</u> that make use of algorithms

- Index and ETF arbitrage
- Statistical arbitrage (``Stat Arb")
- Liquidity providing (``Market making'')
- Volume providing (``High-frequency, selective, market-making")
- High frequency trading and price forecasting

ETFs

- -- ETF: similar to mutual funds (holding vehicles) but which trade like stocks
- -- Short-selling, margin financing allowed.
- -- Began like equity index & basket trackers, then generalized to currencies and commodities
- -- **Authorized participants** may create or redeem ETF shares at NAV, enforcing the theoretical relationship between the ETF and the underlying basket
- -- "creation units": 25K to 100K shares
- -- Authorized participants are typically market-makers in the ETFs (but not always).

Arbitrage of ETFs against the underlying basket

- 1. Buy/sell ETF against the underlying share holdings
- 2. Creation/redemption of ETFs to close the trade

This requires high-frequency algorithmic trading to lock-in arbitrage opportunities

Statistical Arbitrage Long-short shares/etfs – market neutral

			Market Cap		unit: 1M/usd	
Sector	ETF	Num of Stocks	Average	Max	Min	
Internet	ннн	22	10,350	104,500	1,047	
Real Estate	IYR	87	4,789	47,030	1,059	
Transportation	IYT	46	4,575	49,910	1,089	
Oil Exploration	ОІН	42	7,059	71,660	1,010	
Regional Banks	RKH	69	23,080	271,500	1,037	
Retail	RTH	60	13,290	198,200	1,022	
Semiconductors	SMH	55	7,303	117,300	1,033	
Utilities	UTH	75	7,320	41,890	1,049	
Energy	XLE	75	17,800	432,200	1,035	
Financial	XLF	210	9,960	187,600	1,000	
Industrial	XLI	141	10,770	391,400	1,034	
Technology	XLK	158	12,750	293,500	1,008	
Consumer Staples	XLP	61	17,730	204,500	1,016	
Healthcare	XLV	109	14,390	192,500	1,025	
Consumer discretionary	XLY	207	8,204	104,500	1,007	
Total		1417	11,291	432,200	1,000	

January, 2007

Statistical Arbitrage (II)

Stock return is compared to the return on the **corresponding sector ETF** (regression, co-integration)

$$\varepsilon_i(t) = \alpha_i dt + dX_i(t)$$

Residuals: modeled as a mean-reverting process

$$dX_{i}(t) = \kappa_{i}(m_{i} - X_{i}(t))dt + \sigma_{i}dW_{i}(t)$$

Ornstein-Ulembeck (AR-1)

Example of sampling window =3 months (~ 60 business days)

X(t) process for JPM/XLF (Financial sector ETF from State Street)

Constructing Stat Arb strategies

- -- Diversified universe of stocks, "good choice" of shares/ETF pairs
- -- Buy or sell the spread (pair) according to the statistical model
- -- Risk-management using real-time VaR
- -- Execution: VWAP
- -- Taking volume into account is important to avoid ``adverse selection'' (the reason for divergence of X(t) in practice)

Example of Stat-Arb portfolio

Liquidity providing (high frequency)

HF Pairs trading? Intraday evolution of FAZ & FAZ (inverse leveraged ETFs)

Algorithmic trading and the ``flash crash'' (May 6, 2010)

The reasons behind the ``crash of 2:15" were studied in a joint CFTC/SEC report available online.

Institutional trader sold 75,000 S&P E-mini contracts in 15 minutes PoV.

- * Drop in S&P futures, SPY etf, etf components
- * Withdrawal of autonomous MMs; ``stub quotes"
- * HFTs provide a lot of volume but not a lot of liquidity ('hot potato trading')

Forecasting prices in HF?

- Models for the dynamics of order books
- Modeling hidden liquidity in the market (not visible in the OB)
- Computing the probabilities of price changes (up or down)
 given liquidity on the bid side and ask-side
 (Avellaneda, Stoikov, Reed, 2010: pre-published in SSRN, Oct-10)

Simple formula that we are testing with HF data

$$P(\uparrow) = \frac{H+x}{2H+(x+y)}$$

H= ``hidden liquidity''

Mathematical framework: Diffusion Approximation for Quote Sizes (Level I)

A price change occurs when (i) one of the sizes vanishes and (ii) either there is a new bid or a new ask level

Probability that the Ask queue depletes before the Bid queue

$$u(x,y) = \frac{1}{2} \left(1 - \frac{\tan^{-1} \left(\sqrt{\frac{1+\rho}{1-\rho}} \frac{y-x}{x+y} \right)}{\tan^{-1} \left(\sqrt{\frac{1+\rho}{1-\rho}} \right)} \right)$$

$$\rho = 0 \implies u(x, y) = \frac{2}{\pi} \tan^{-1} \left(\frac{x}{y}\right)$$

$$\rho = -1$$
 \Rightarrow $u(x, y) = \frac{x}{x + y}$

$$p \uparrow (x, y, H) = u(x + H, y + H)$$

Probability of an upward price change.

H=`hidden liquidity'.

Estimating hidden liquidity in different exchanges (ability to forecast price moves)

Sample data

Sample data								
symbol	date	time	bid	ask	bsize	asize	exchange	
QQQQ	1/4/2010	9:30:23	46.32	46.33	258	242	Т	
QQQQ	1/4/2010	9:30:23	46.32	46.33	260	242	Т	
QQQQ	1/4/2010	9:30:23	46.32	46.33	264	242	Т	
QQQQ	1/4/2010	9:30:24	46.32	46.33	210	271	P	
QQQQ	1/4/2010	9:30:24	46.32	46.33	210	271	Р	
QQQQ	1/4/2010	9:30:24	46.32	46.33	161	271	Р	

Estimated H across markets

Ticker	NA	SDAQ	NYS	SE	BATS	5
XLF		0.15		0.17		0.17
QQQQ		0.21		0.04		0.18
JPM		0.17		0.17		0.11
AAPL (s=1)		0.16		0.9		0.65
AAPL (s=2)		0.31		0.6		0.64
AAPL (s=3)		0.31		0.69		0.63

Conclusions

- Over 50% of all trades in the US equity markets are algorithmic. Algorithmic execution of block trades is an important tool allowing for systematic and disciplined execution of size
- The main idea is to split large orders into smaller ones according to available market liquidity, generally following volume (TWAP, VWAP, PoV)
- Algorithmic trading is essential to implement quant strategies such as stat arb and ETF arb
- With DMA and low-latency trading, we see the emergence of autonomous market-makers
- HFT traders provide volume but not necessarily liquidity when needed. Neither do the autonomous MMs (flash crash). Can we detect ``good liquidity''?
- Regulation on HFT and electronic market-making is being drafted and implemented as we speak. Recently, **stub quotes were forbidden by the SEC**. Other measures to regulate HF trading will follow.
- Algorithmic trading, DMA, autonomous market-making and HFT are here to stay and are rapidly expanding to new markets in Asia and Latin America.