Отчёт об этапе проекта №1

Предмет: Математическое моделирование

Евдокимов М.М., НФИбд-01-20 Евдокимов И.А., НФИбд-01-20 Манаева В.Е., НФИбд-01-20 Покрас И.М., НФИбд-02-20 Сулицкий Б.Р., НФИбд-02-20 Новосельцев Д.С., НФИбд-02-20

Содержание

1	Текс		3
	1.1	Этап №2. Проект №2	3
	1.2	Цель работы	3
	1.3	Условия модели	3
	1.4	Молния в природе	4
		Упрощения для реализации модели	
	1.6	Особенности алгоритма	5
	1.7	A-star	6
	1.8	Молния не бьёт в одно место дважды	7

1 Текст

1.1 Этап №2. Проект №2

Здравствуйте, я Иван Евдокимов из группы НФИбд-01-20 и сегодня я представляю второй этап группового проекта по теме "Моделирование электрического пробоя"

Второй этап проекта это презентация по алгоритмам для реализации пробоя.

1.2 Цель работы

Цель - разобрать алгоритмы электрического пробоя для дальнейшего написания.

Задачи второго этапа проекта:

- Выделить алгоритм, который будет использоваться для построения модели;
- Разобрать формулы, использующиеся в нём;
- Посмотреть, какие алгоритмы будут наиболее эффективными для реализации формул в коде.

Пролистать слайд со словом алгоритмы

1.3 Условия модели

В данном проекте мы хотим сосредоточиться на формировании молнии в неоднородном воздушном пространстве.

1.4 Молния в природе

Модель построена на основании реального механизма образования линейной молнии в природе. Так, в облаках заряды разделяются на положительные и отрицательные, при этом отрицательные заряды на нижней поверхности облаков будут взаимодействовать с положительными зарядами на поверхности земли. После достижения порогового значения в несколько тысяч вольт, формируется пробой.

1.5 Упрощения для реализации модели

Упрощения, сделанные для уменьшения работы над моделями.

1. Статические заряды в воздухе;

В модели будут случайным образом заданы заряды в воздухе, создающие электрическое поле, в котором будет развиваться молния. Однако на сами заряды это поле воздействовать не будет, то есть, они не будут двигаться под воздействием электрического поля.

2. Поверхность земли, куда бьёт молния, ровная;

Это упрощает генерацию каждой конкретной молнии в модели.

3. Молния начинается в заранее определённом месте;

Опять же, упрощение для того, чтобы следить за генерацией молний различных форм.

4. Не учитываются электрохимические реакции, образование радикалов и так далее.

Таким образом обеспечивается неизменность электрического поля в модели.

1.6 Особенности алгоритма

Для реализации создания молнии будет использоваться алгоритм поиска оптимального решения. Для этого мы сгенерируем электрические заряды в нашем "поле". На их основании будет создано электрическое поле. Этот этап можно коротко назвать создание поля.

Далее идёт рабочий цикл, в котором из очереди будет доставаться один из шагов решения. Этот шаг будет обрабатываться и, если он не подходит под условие ответа, он обновляется и добавляется в очередь.

Если шаг решения будет соответствовать условию, которое мы обозначим как завершение рабочего цикла, этот шаг объявится финальным. Из информации шага восстанавливается путь молнии, который дальше отрисовывается на графике.

Пролистать слайд со словом формулы

В первом этапе алгоритма планируется создать слой отрицательных зарядов по верхнему краю поля и слой положительных зарядов по нижнему краю поля. Затем нужно сгенерировать случайные заряды, разбросанные в воздухе. Это делается через генерацию псевдослучайных чисел, встроенную в почти любой язык программирования.

Дальше необходимо создать электрическое поле. Разберём формулы, которые для этого требуются.

Сила, оказываемая зарядом электрического поля (q_i) на движущийся заряд (q_0) это формула, данная в левой колонке. Заряды q-итое и q нулевое задаются в Кулонах (в нашем случае, они будут случайно сгенерированы программой), умножаются на константу K и делятся на эпсилон и расстояние до движущегося заряда в квадрате.

$$\overrightarrow{F_i} = k \frac{q_i q_0}{\varepsilon r_i^2}$$

Дальше, на основании силы воздействия на заряд, считается напряжённость, создаваемая этим самым зарядом. Для этого сила делится на сам заряд q нулевое.

В программе будет считаться совмещённая формула, то есть первая формула без q нулевого, так как нет смысла умножать, а затем делить на одно и то же число.

$$\overrightarrow{E_i} = \frac{\overrightarrow{F_i}}{q_0}$$

Дальше напряжённости суммируются и получается значение общей напряжённости поля.

$$\vec{E} = \sum_{i=0}^{n} \vec{E_i}$$

Формула общей напряжённости электрического поля считается для каждой точки поля, именно таким образом и создаётся "поле", которое будет использоваться для генерации молнии.

Молния идёт от верхней стороны экрана к нижней, при этом выбирая поля наибольшей напряжённости. Благодаря этому задача построения пробоя сводится к алгоритму поиска оптимального пути (или поиска минимального решения по графу).

Пролистать слайд со словами алгоритмы поиска решения в ...

Для поиска оптимального пути существуют следующие алгоритмы:

- (поиск в ширину);
- (поиск в глубину);
- (А-звёздочка);

Сконцентрируемся на третьем алгоритме как на более оптимальном из перечисленных.

1.7 A-star

А* - алгоритм поиска по первому наилучшему совпадению на графе, который находит маршрут с наименьшей стоимостью от начальной вершины к конечной.

Он похож на поиск в ширину и глубину, однако А-стар эффективнее их, так как использует метрики для оптимизации пути. У нас метрикой будет сумма напряжённостей поля в пройденных точках. Очередь шагов решения будет сортироваться по максимальному значению метрики.

Пролистать слайд со словами "Прочие оптимизации"

Уже была упомянута оптимизация для формул силы действия заряда на движущийся заряд, и напряжённости поля, создаваемой і-тым зарядом. В программе будет считаться совмещённая формула, то есть формула силы действия без q нулевого, так как в формуле напряжённости сила, в которой есть множитель q нулевое, делится на q нулевое.

1.8 Молния не бьёт в одно место дважды...

Говорят, что молния не бьёт в одно место дважды. Но не забывайте, что это относится только к линейным молниям в рамках одной грозы.