SISTEM MONITORING JARINGAN PADA SERVER LINUX DENGAN MENGGUNAKAN SMS GATEWAY

Taufan Dwi Prayogo¹, Kushartantya², Helmie Arif Wibawa² Program Studi Teknik Informatika FMIPA UNDIP

ABSTRAK

Administrator jaringan bertanggung jawab melakukan *monitoring* jaringan terhadap suatu jaringan komputer. *Monitoring* harusnya dilakukan secara terus menerus untuk menjaga kualitas jaringan, karena kesalahan pada jaringan tidak bisa dideteksi kapan terjadinya. Hal ini akan menyulitkan jika administrator berada jauh dari pusat pengawasan. Situasi ini bisa berakibat fatal jika terjadi kesalahan jaringan yang tidak diketahui karena administrator jaringan sedang tidak ada di tempat pengawasan. Dengan memanfaatkan teknologi *SMS gateway* yang menggunakan server berbasis Linux, administrator jaringan dapat mendapatkan informasi kondisi server secara cepat. Hasil yang didapatkan adalah sebuah sistem yang mampu membantu administrator jaringan dalam melakukan monitoring jaringan kapan saja dan dimana saja untuk menjaga jaringan akan tetap stabil walaupun administrator jaringan sedang tidak di pusat pengawasan.

Kata Kunci: Monitoring jaringan, SMS gateway, Server Linux.

1. Pendahuluan

Pesatnya kemajuan jaman menuntut semua orang untuk selalu *update* segala informasi dari berbagai sumber. Internet merupakan salah satu sumber informasi yang paling banyak digunakan masyarakat saat ini. Kemajuan itu pula yang membuat masyarakat sudah dapat mengakses ke internet dengan berbagai cara dan tempat. Didukung dengan banyaknya Internet *Service Provider* (ISP) yang menyediakan layanan internet secara cepat membuat makin mudah dan murah dalam menggunakan internet.

Sebuah jaringan lokal yang terhubung dengan internet membutuhkan server yang dapat berfungsi sebagai *router* maupun *gateway*, sehingga komputer *client* dalam jaringan tersebut dapat melakukan komunikasi secara *online*. Sebuah server dituntut untuk dapat memberikan layanan real time secara 24 jam. Terkadang karena banyaknya user yang mengakses melalui sebuah server menyebabkan kepadatan arus jalur data pada jam-jam tertentu yang menyebabkan gagal koneksi atau *Request Time Out*.

Dalam pengelolaan sebuah server dibutuhkan seseorang yang memiliki kemampuan serta tanggung jawab yang tinggi dalam menjamin server tersebut dapat melayani komputer *client* dengan baik yang biasa disebut administrator jaringan. Tetapi kadang kala administrator jaringan tidak dapat mengawasi koneksi server secara 24 jam penuh, oleh karena itu untuk

memperingan pekerjaan administrator jaringan dibutuhkan sebuah sistem yang dapat menginformasikan status koneksi dari server secara real time.

alternatif Dibutuhkan teknologi membantu administrator jaringan mendapatkan informasi mengenai status koneksi jaringannya secara cepat dan akurat. Teknologi yang mungkin dapat digunakan adalah teknologi SMS, SMS tidak hanya dapat digunakan untuk berkomunikasi secara cepat dan murah, namun dapat dimanfaatkan dalam banyak hal. Salah satunya sebagai jaringan alternatif penghantar pesan untuk menginformasikan status koneksi server kepada admininstrator jaringan jika jaringan komputer terputus atau lumpuh. Kelebihan lain dari penggunaan SMS adalah dapat dibuat aplikasi yang menghubungkan server dengan administrator jaringan melalui jaringan SMS gateway, dengan tarif normal [6].

Untuk membuat teknologi SMS yang dapat membantu administrator jaringan, perlu dibuat sistem SMS gateway. Fungsi SMS gateway sebagai teknologi pendukung SMS agar dapat digunakan sebagai alert system. Penggunaan SMS gateway sebagai sistem yang melakukan pengiriman SMS secara otomatis. Sehingga administator jaringan akan menerima SMS tentang keadaan jaringannya yang dikirim melalui SMS gateway.

Teknologi monitoring jaringan yang sebelumnya hanya mengandalkan administrator

jaringan untuk memantau server jaringannya. Kekurangan dari teknologi monitoring terdahulu adalah tidak adanya sistem memberitahukan administrator jaringan tentang kondisi koneksi server dan sebagian besar server yang digunakan adalah server berbasis Linux. Sehingga admininstrator jaringan harus berada dalam lingkungan server agar terus dapat memantau server. Pada tulisan ini akan dibahas tentang penerapan SMS gateway untuk sistem monitoring jaringan pada server Linux yang dapat membantu tugas administrator jaringan dalam pengawasan koneksi server.

2. Short Messaging Service

SMS (Short Messaging Service) adalah suatu layanan untuk mengirimkan pesan pendek (160 karakter) dari satu telepon GSM ke yang lainnya [6]. Layanan ini juga dapat digunakan untuk mengirim pesan teks regular seperti halnya logo operator, nada dering, isi kontak telepon, dan konfigurasi telepon. Layanan SMS berisi beberapa service yang dapat dihubungkan melalui pesan SMS untuk beberapa nomor telepon tertentu, vang dapat menjawab isi yang diminta, apabila tersedia. Sedangkan SMS gateway adalah aplikasi yang menyediakan antarmuka antara pesan SMS dan protokol lainnya dan menghubungkan perangkat mobile (Ponsel, PDA phone dll) dengan SMS Center [6].

3. Tahapan Life Cycle Approach

Dalam pengembangan sistem berbasis jaringan, metode pengembangan sistem yang digunakan menurut [1], *Life Cycle Approach* (Pendekatan daur hidup)

Gambar 1. Tahapan-tahapan *life cycle*

a. Prepare

Pada bagian ini dilakukan analisa untuk menjabarkan dan menempatkan strategi networking yang akan dibangun sesuai dengan infrastruktur IT (Information Technology) dan aspek finansial yang dikembangkan ke depan.

b. Plan

Pada bagian perencanaan, akan dipelajari tentang infrastruktur IT (hadware, software, topologi jaringan) yang telah berjalan dan digunakan. Tahapan ini meneruskan dari sebelumnya. tahap prepare Dengan perencanaan yang baik akan membantu untuk mengatur pekerjaan, resiko yang mungkin muncul, permasalahan yang ditemui, responsibility, tenggang waktu milestones, dan kebutuhan sumber daya yang dibutukan.

c. Design

Dalam tahap ini menjelaskan tentang bagaimana proses konfigurasi, koneksi percobaan, pengembangan ke depan, dan proses migrasi dari sistem lama ke sistem baru, demo sistem dan yalidasi.

d. Implement

Sebelum diimplementasikan akan dilakukan *testing* terlebih dahulu, hal ini dilakukan untuk meminimalisasi kesalahan yang mungkin muncul. Proses ditahapan ini adalah instalasi, konfigurasi, dan integrasi sistem. Bisa jadi salah satu bagian *network* telah berhasil dimigrasi dengan baik namun tidak berarti semua bagian akan lancar.

e. Operate

Tahap ini merupakan lanjutan dari tahap implementasi, dilakukan pengawasan dan pengoperasiannya, pemantauan pada beberapa kasus pada tahapan ini akan terlihat beberapa masalah misalnya tidak kompatibelnya *hardware*, masalah pada software dan aplikasi yang selama ini jalan tidak ada hambatan setelah namun implementasi menjadi terganggu.

f. Optimize

Masukan pada saat tahapan implementasi dan operate akan sangat mempengaruhi tahapan optimalisasi ini, masukan tadi bisa memberikan input untuk penanganan, redesign, rekonfigurasi dan perubahan yang

perlu dilakukan tanpa merubah arah dari tujuan sistem tersebut.

4. Perancangan

Dalam pembangunan sistem monitoring jaringan dengan SMS gateway ini dibutuhkan tiga desain fungsional. yang pertama digunakan untuk menjelaskan urutan logis dalam konfigurasi sistem, kemudian kedua menggambarkan urutan logis uji koneksi ping dan yang ketiga adalah untuk uji koneksi database. Tabel berikut ini memaparkan desain fungsional konfigurasi

Tabel 3.1 Desain fungsional konfigurasi

Desain fungsional konfigurasi

i adalah jumlah host yang akan diuji dengan ping

ii adalah jumlah host sql yang akan diuji dengan netcat

tunda adalah jeda tiap pengujian

noa adalah nomor ponsel admin

port adalah port database mysql

host[] adalah array yang berisi host yang akan diuji dengan ping

host_sql[] adalah array yang berisi host sql
yang akan diuji dengan netcat

Inisialisasi variabel

```
i, ii, tunda, noa, port, host[], host_sql[]
for (m = 1; m <= i; m++) {
            iphost=host[m]
            eksekusi file ptest.sh }
for (n = 1; n <= ii; n++) {
            iphost_sql=host_sql[n]
            eksekusi file ttest.sh }</pre>
```

Tabel 3.2 Desain fungsional ping_test

Desain fungsional ping_test

- C Merupakan counter untuk perulangan
- **B** merupakan *counter* banyaknya ping yang berhasil
- G merupakan *counter* banyaknya ping yang gagal
- **H** merupakan variabel untuk menampung *capture* hasil ping (berisi karakter "64" jika ping berhasil dan "" *null* jika ping gagal)

iphost merupakan alamat *host* tujuan ping

```
for (C = 1; C <= 10; C++) {
    H=(ping $iphost)
    if (H = "64") {
        B=B+1
        Else
```

```
G=G+1
}
if ( G = 10) {
    gammu send sms }
```

Tabel 3.3 Desain fungsional database_test

Desain fungsional database test

C Merupakan counter untuk perulangan

B merupakan counter banyaknya test yang berhasil G merupakan counter banyaknya test yang gagal

H merupakan variabel untuk menampung capture hasil Netcat

iphost_sql merupakan server tujuan database
port merupakan port server tujuan database

Perancangan dilakukan dengan membuat desain flowchart yang menggambarkan secara garis besar algoritma sistem, mulai dari sistem dijalankan hingga waktu terminasi.

Gambar 3. Flowchart ping_test

Gambar 4. Flowchart database_test

5. Implementasi dan Pengujian Sistem5.1. Implementasi

Langkah –langkah dalam implementasi

a. Menyiapkan direktori script

Script yang dibuat nanti harus berada dalam direktori yang benar, agar sesuai manajemen direktori. Harus diletakkan pada direktori/usr/local/, direktori/usr bersifat *shareable*,

- yang berarti isi dari direktori /usr dapat digunakan oleh *host* lain.
- b. Menyiapkan *script* uji koneksi dengan ping Perintah yang digunakan untuk membuat *script* uji koneksi dengan ping adalah

```
root:~# sudo gedit
/usr/local/smsmon/ptest.sh
```

Dalam file ptest.sh, terdapat perintah untuk melakukan ping dan mengirim SMS sesuai dengan algoritma yang telah dibuat, implementasinya sebagaimana terlihat pada kode 1 berikut:

```
#!/bin/bash
# program monitoring koneksi
server dengan ping
#inisialisasi variable lokal
                    #counter untuk
menghitung banyak ping yang gagal
                    #counter untuk
menghitung banyak ping yang
berhasil
#Begin
for (( c = 1; c <= 10; c++))
      h=$(sleep $tunda | ping -c 1
$iphost | head-n 2|tail-n1)
      h=$\{h:0:2\}
      jam=$(date +"%H:%M:%S")
      if [ "$h" != "64" ]
      then
            g=$((g+1))
echo "Terputus dengan $iphost pada
$jam. test ke $c. Gagal $g kali"
      else
            b=$((b+1))
            echo
                        "Tersambung
dengan $iphost pada $jam. test ke
$c.
        Berhasil
                      $b
                              kali"
      fi
done
jam2=$(date
                       +"%H:%M:%S")
echo "Hasil pengujian ping server
:
                              kali"
echo "Berhasil
                    $g
echo "Gagal:
                              kali"
if
      [
                           10
then
      echo
            "Tindakan
                           Mengirim
SMS"
      echo
            "Ping gagal,
                            koneksi
                           gammu-
$iphost putus pada $jam2"
smsd-inject
                   TEXT
                               $noa
```

```
echo "Tindakan : Tidak
mengirim SMS"
fi
#End
```

Kode 1. Script uji koneksi dengan ping

Agar *script* ptest.sh dapat dijalankan, *script* ptest.sh harus dibuat menjadi mode *executable* [7].

c. Menyiapkan *script* uji koneksi *database* dengan Netcat

Pada tahap ini dibuat script yang berisi perintah untuk melakukan uji koneksi terhadap server *database* dan mengirim SMS sesuai dengan algoritma yang telah dibuat, implementasinya sebagaimana terlihat pada kode 2 berikut:

```
#!/bin/bash
# program monitoring port server
database Mysql dengan Netcat
#inisialisasi variable lokal
    #counter untuk menghitung
banyak
           gagal
                      netcat
b=0 #counter untuk menghitung
banyak
        berhasil
                      netcat
#Begin
for ((c = 1 ; c <= 10 ; c++))
     h=$(sleep $tunda | nc -zv
$iphost_sql $port 2>&1 | grep
succeeded
/usr/local/smsmon/nc.log
     cap=$(grep succeeded
/usr/local/smsmon/nc.log | head -
       2|tail
                   -n
     jam=$(date
                    +"%H:%M:%S")
     cap=${cap:0:2}
            "$cap"
     if [
                    != "Co"
     then
           q=$((q+1))
           echo "Terputus dengan
database $iphost_sql pada $jam.
test ke $c. Gagal $g kali"
     else
           b=$((b+1))
                     "Tersambung
           echo
dengan database $iphost_sql pada
$jam. test ke $c. Berhasil $b
kali"
     fi
```

```
+"%H:%M:%S")
jam2=$(date
echo "Hasil pengujian server
database
                         kali"
echo "Berhasil
                    $b
echo "Gagal :
                         kali"
                 $g
if
                       10
then
     echo "Tindakan : Mengirim
SMS"
     echo "Koneksi database
```

Kode 2. Script uji koneksi database

Script harus diubah ke dalam mode *executable* agar dapat dijalankan.

d. Membuat file konfigurasi utama sistem *monitoring*

Konfigurasi yang diperlukan sebagai informasi *host* yang akan diuji, seperti waktu tunda, nomer telpon admin, IP *Address* dan *port* menggunakan varibel global agar variabel dapat digunakan *script* lain [3]. Isi dari *script* konfigurasi ditunjukkan pada kode 3

```
#File konfigurasi sistem
monitoring jaringan
#berisi daftar host yang akan
dimonitoring
#deklarasi jumlah host
i=2
#deklarasi jumlah host sql
ii=1
#jeda tiap pengujian (detik)
export tunda=3
#nomer telpon admin
export noa=085726940720
#port database
export port=3306
#ip host
declare -a host
host[1]=192.168.1.1
host[2]=192.168.1.2
#ip host sql server
declare -a host_sql
host_sql[1]=192.168.1.2
#menjalankan uji koneksi (ping)
for (( c = 1 ; c <= i ; c++ ))
      export iphost=${host[$c]}
      ./ptest.sh >> cron1.log
```

Kode 3. Script konfigurasi

e. Mengatur penjadwalan *script* untuk dijalankan
Sistem *monitoring* jaringan menggunakan *SMS gateway* akan melakukan pengujian koneksi selama 10 menit sekali. Untuk mengimplementasikannya, *script* konfigurasi diatur penjadwalan eksekusinya menggunakan crontab. Caranya dengan mengetikkan perintah

```
root@:~# sudo crontab -e
```

Kemudian akan terbuka editor konfigrasi crontab, selanjutnya tambahkan perintah untuk melakukan penjadwalan *script* konfigurasi

```
/ */10 * * * *
// /usr/local/smsmon/config.sh
```

5.2. Pengujian

Fungsi utama sistem *monitoring* jaringan berbasis *SMS gateway* adalah memberi *alert* atau peringatan kepada admin mengenai konektifitas server dengan DNS dan konektifitas *database* server secara teraktual melalui SMS [2].

Untuk melakukan pengujian, dibuat jaringan sederhana dengan topologi seperti ditunjukkan gambar 5, kemudian dilakukan percobaan dengan melakukan monitoring

Gambar 5.Topologi uji sistem *monitoring* jaringan dengan *SMS gateway*

Berdasarkan dua fitur utama dalam sistem ini, uji koneksi menggunakan ping akan dilakukan PC A kepada DNS server PC B. Jika PC A dan PC B terhubung, hasil yang diperoleh dari monitoring ini dapat dilihat pada /usr/local/smsmon/cron1.log sebagaimana terlihat pada gambar 6 berikut.

```
Tersambung pada "16:00:06". test
ke 1. Berhasil 1 kali
Tersambung pada "16:00:09". test
ke 2. Berhasil 2 kali
Tersambung pada "16:00:12". test
ke 3. Berhasil 3 kali
Tersambung pada "16:00:15". test
ke 4. Berhasil 4 kali
Tersambung pada "16:00:18". test
ke 5. Berhasil 5 kali
Tersambung pada "16:00:21". test
ke 6. Berhasil 6 kali
Tersambung pada "16:00:24". test
ke 7. Berhasil 7 kali
Tersambung pada "16:00:27". test
ke 8. Berhasil 8 kali
Tersambung pada "16:00:30". test
ke 9. Berhasil 9 kali
Tersambung pada "16:00:33". test
ke 10. Berhasil 10 kali
Hasil pengujian ping server :
            : 10 kali
Berhasil
            : 0 kali
Gagal
Tindakan : Tidak mengirim SMS
```

Gambar 6. Hasil monitoring konektifitas server dengan DNS dengan kondisi terhubung

Namun apabila PC A tidak dapat terhubung dengan PC B, hasil yang diperoleh dari monitoring ini dapat dilihat pada gambar 7.

Terputus pada "16:00:04". test ke 1. Gagal 1 kali Terputus pada "16:00:07". test ke 2. Gagal 2 kali Terputus pada "16:00:10". test ke 3. Gagal 3 kali Terputus pada "16:00:13". test ke 4. Gagal 4 kali Terputus pada "16:00:16". test ke 5. Gagal 5 kali Terputus pada "16:00:19". test ke 6. Gagal 6 kali Terputus pada "16:00:22". test ke 7. Gagal 7 kali Terputus pada "16:00:25". test ke 8. Gagal 8 kali Terputus pada "16:00:28". test ke 9. Gagal 9 kali Terputus pada "16:00:31". test ke 10. Gagal 10 kali Hasil pengujian ping server : : 0 kali Berhasil : 10 kali Gagal Tindakan : Mengirim SMS Written message with ID 51

Gambar 7. Hasil monitoring konektifitas server dengan DNS dengan kondisi tidak terhubung

Ketika melakukan monitoring, apabila dalam 10 kali percobaan akses gagal, maka sistem akan megirimkan SMS kepada admin seperti gambar 8.

Gambar 8. Pesan diterima admin

Fitur kedua adalah pengujian koneksi database server. Dalam topologi pengujian

sederhana, PC A akan melakukan pengujian koneksi *database* terhadap PC C dengan cara memonitor port 3306 pada PC C menggunakan aplikasi Netcat. Bila PC A terhubung dengan *port database* PC C hasil monitoring yang diperoleh dapat dilihat pada gambar 9.

```
Tersambung dengan database pada
"16:00:04". test ke 1. Berhasil 1
Tersambung dengan database pada
"16:00:07". test ke 2. Berhasil 2
kali
Tersambung dengan database pada
"16:00:10". test ke 3. Berhasil 3
Tersambung dengan database pada
"16:00:13". test ke 4. Berhasil 4
kali
Tersambung dengan database pada
 "16:00:16". test ke 5. Berhasil 5
kali
Tersambung dengan database pada
 "16:00:19". test ke 6. Berhasil 6
kali
Tersambung dengan database pada
 "16:00:22". test ke 7. Berhasil 7
kali
Tersambung dengan database pada
"16:00:25". test ke 8. Berhasil 8
kali
Tersambung dengan database pada
"16:00:28". test ke 9. Berhasil 9
kali
Tersambung dengan database pada
 "16:00:31". test ke 10. Berhasil
10 kali
Hasil pengujian server database:
Berhasil
             : 10 kali
             : 0 kali
Gagal
Tindakan : Tidak mengirim SMS
```

Gambar 9. Hasil monitoring konektifitas *database* kondisi terhubung

Namun apabila PC A tidak dapat terhubung dengan *port database* PC C, yaitu bila dalam 10 kali akses gagal, sistem akan mengirimkan SMS kepada admin seperti gambar 10.

Gambar 10. Pesan diterima admin

Hasil monitoring akses *database* yang diperoleh dari percobaan ini dapat dilihat pada gambar 11.

```
Terputus dengan database pada
I"16:10:04". test ke 1. Gagal 1
kali
Terputus dengan database pada
"16:10:07". test ke 2. Gagal 2
kali
Terputus dengan database pada
"16:10:10". test ke 3. Gagal 3
Terputus dengan database pada
"16:10:13". test ke 4. Gagal 4
kali
Terputus dengan database pada
"16:10:16". test ke 5. Gagal 5
Terputus dengan database pada
"16:10:19". test ke 6. Gagal 6
Terputus dengan database pada
"16:10:22". test ke 7. Gagal
|7 kali
Terputus dengan database pada
"16:10:25". test ke 8. Gagal 8
lkali
Terputus dengan database pada
.
| "16:10:28". test ke 9. Gagal 9
Terputus dengan database pada
|"16:10:31". test ke 10. Gagal 10
Hasil pengujian server database :
Berhasil
            : 0 kali
            : 10 kali
Tindakan : Mengirim SMS
Written message with ID 52
```

Gambar 11. Hasil monitoring konektifitas *database* kondisi tidak terhubung

Di dalam aplikasi gammu sudah terdapat database yang menyimpan semua pesan yang dikirim maupun diterima secara otomatis. Sehingga dapat dimanfaatkan menjadi SMS log untuk implementasi sistem monitoring jaringan menggunakan SMS gateway. Seperti yang terlihat pada gambar 12.

Nomor	Tanggal Pengiriman	Nomer tujuan	Pesan
			Koneksi database 127.0.0.1 port 3307 gagal, putus pada "15:50:31"
	2010-12-12 15:50:35	085726940720	Ping gagal, koneksi google.com putus pada "15:50:31"

Gambar 12. SMS log yang terkirim dalam database

6. Simpulan

Setelah dilakukan serangkaian percobaan maka didapatkan hasil sebagai berikut:

- a. Sistem *monitoring* jaringan dibangun untuk dapat membantu administrator jaringan mengawasi kondisi koneksi server linux.
- b. Dengan memperhatikan banyaknya SMS yang terkirim pada SMS log di database, administrator dapat mengambil tindakan untuk melakukan sesuatu terhadap jaringannya.

7. Daftar Pustaka

- [1] Eric Cole, Ronald Krutz, & James W. Conley, 2005, "Network Security Bible", Wiley Publishing, Inc. Indianapolis, United States.
- [2] Ghazali, M. 2008, "Topologi jaringan", diakses dari http://www.scribd.com/doc/46315374/Topo logi-Jaringan pada 12 november 2010 pukul 22.00 WIB.
- [3] Lydia P, David T, Britt C. T. 2006, "TCP/IP Tutorial and Technical Overview", IBM International Technical Support Organization, New York, United States.
- [4] Machtelt Garrels, 2008, "Introduction to Linux", diakses dari http://tldp.org/LDP/intro-linux/intro-linux.pdf, pada tanggal 10 januari 2011 pukul 11.00 WIB.

- [5] Tito, 2004, "Jaringan Komputer" diakses dari http://blog.unikom.ac.id/v/L5/ pada 21 Oktober 2010 pukul 18.50 WIB.
- [6] Tri Wicaksono, Mohamad. 2006, "Pemrograman SMS Interaktif Berbasis Java", Elex Media Komputindo, Jakarta.
- [7] Vivek G. Gite. 1999-2002, "Linux Shell basics", diakses dari http://www.freeos.com/guides/lsst/ pada tanggal 23 Oktober 2010 pukul 18.50 WIB.