

Índice

Introducción	7
Resultados obtenidos por cada Algoritmo	
GRASP	
ILS	
VNS	
Tabla global de resultados por datasets	
Resumen a280	
Resumen ch130	4
Resumen st70	3
Análisis de los resultados obtenidos	5
Índice de Tablas	
Tabla 1. Tabla de Costes GRASP	2
Tabla 2. Tabla de Costes ILS	2
Tabla 3. Tabla de Costes VNS	3
Tabla 4. Resumen resultados para el dataset st70	3
Tabla 5. Resumen resultados para el dataset ch130	3
Tabla 6. Resumen resultados para el dataset a280	3
Índice de Gráficas	
Ilustración 1. Eficiencia Temporal	۷
Ilustración 2. Coste Medio Normalizado	
Ilustración 3. Mejor Resultado Normalizado	-
Ilustración 4. Numero de evaluaciones Normalizadas	-
iiusti ation 4. Numero de evaluationes normalizadas	4

Introducción

El objetivo de esta práctica es estudiar el funcionamiento de los Algoritmos de Búsqueda Multiarranque:

- Procedimiento de búsqueda Voraz Aleatorio Adaptativo (GRASP)
- Búsqueda Local Reiterada (ILS)
- Búsqueda basada en entornos cambiantes (VNS)

Para ello, se implementará estos algoritmos para resolver el problema del *Viajante de Comercio* (TSP). El comportamiento de estos algoritmos debe compararse entre sí y también con las técnicas *Greedy* y *Búsqueda Local del Mejor* Vecino.

Resultados obtenidos por cada Algoritmo

GRASP

Tabla 1. Tabla de Costes GRASP

		St70			Ch130			A280	
	Coste I.	Coste	#EV	Coste I.	Coste	#EV	Coste I.	Coste	#EV
Ejecución 1	1.711	1.035	94.185	19.773	13.275	208.000	11.653	9.684	448.000
Ejecución 2	1.638	954	108.675	19.313	13.394	208.000	12.138	9.689	448.000
Ejecución 3	1.591	908	112.000	19.461	13.100	208.000	11.666	9.624	448.000
Ejecución 4	1.663	922	89.355	19.148	12.420	208.000	10.992	9.493	448.000
Ejecución 5	1.461	930	96.600	17.175	12.788	208.000	11.762	9.702	448.000
Ejecución 6	1.622	988	99.015	17.384	12.003	208.000	11.549	9.905	448.000
Ejecución 7	1.370	921	82.110	17.142	12.519	208.000	11.473	9.655	448.000
Ejecución 8	1.405	908	86.940	16.814	11.682	208.000	11.140	9.451	448.000
Ejecución 9	1.622	847	111.090	17.065	11.788	208.000	11.429	9.884	448.000
Ejecución 10	1.575	961	79.695	17.165	11.942	208.000	10.900	9.539	448.000
Media	1.565,8	937,4	95.966,5	18.044	12.491,1	208.000	11.470,2	9.662,6	448.000
Desviación Típica	-	50,968	-		630,97	-	-	149,38	-

ILS

Tabla 2. Tabla de Costes ILS

	St70 Coste #EV		Ch130		A280	
			Coste #EV		Coste #EV	
Ejecución	808	1.928.080	10.076	9.774.115	10.053	22.400.000

VNS

Tabla 3. Tabla de Costes VNS

	St70 Coste #EV		Ch130		A280	
			Coste #EV		Coste	#EV
Ejecución	922	1.341.235	9.055	8.913.190	9.193	22.400.000

Tabla global de resultados por datasets

Resumen st70

Tabla 4. Resumen resultados para el dataset st70

	Coste Medio	Mejor (675)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Greedy	830	830	-	0	1	0,0039
BL El Mejor	1.226,8	1.104	7	79,275	112.000	0,493
GRASP	937,4	847	-	50,968	95.966,5	0,54
ILS	808	808	-	0	1.928.080	9,55
VNS	922	922	-	0	1.341.235	6,81

Resumen ch130

Tabla 5. Resumen resultados para el dataset ch130

	Coste Medio	Mejor (6.110)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Greedy	7.579	7.579	-	0	1	0,0069
BL El Mejor	23.566,7	22.697	1	574,499	208.000	1,07
GRASP	12.491,1	11.682	-	630,97	208.000	1,23
ILS	10.076	10.076	-	0	9.774.115	47,46
VNS	9.055	9.055	-	0	8.913.190	43,28

Resumen a280

Tabla 6. Resumen resultados para el dataset a280

	Coste Medio	Mejor (2.579)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Greedy	3.157	3.157	-	0	1	0,01
BL El Mejor	26.900,9	25.229	8	970,726	448.000	2,475
GRASP	9.662,6	9.451	-	149,38	448.000	2,88
ILS	10.053	10.053	-	0	22.400.000	120,69
VNS	9.193	9.193	-	0	22.400.000	120,26

Análisis de los resultados obtenidos

Ilustración 2. Eficiencia Temporal

Ilustración 1. Coste Medio Normalizado

Ilustración 3. Numero de evaluaciones Normalizadas

Ilustración 4. Mejor Resultado Normalizado

Podemos observar que en la gráfica de la eficiencia temporal y en número de evaluaciones, el algoritmo Greedy, seguido de BL el mejor vecino y GRASP son los mas eficientes ya que los otros dos, ILS y VNS llaman X veces al algoritmo BL el mejor para optimizar sus resultados.

Se puede observar la mejora en cuanto a resultados entre el método GRASP y BL el mejor vecino, siendo la única diferencia el hecho de que en vez de empezar con una solución aleatoria, empezamos con una solución que nos la aporta el algoritmo Greedy Probabilístico.

Además de mejorar la solución, podemos observar en las tablas como la desviación típica y el coste medio son inferiores en el GRASP, gracias a ello la robustez y calidad de la solución es mejor.

Comparando los nuevos algoritmos entre ellos, GRASP, ILS y VNS, podemos observar como la mutación y/o modificación del entorno mejoran los resultados respecto al GRASP y con ello respecto a la BL el mejor vecino.

En el ILS es una mutación de tamaño fijo, pero en el algoritmo ILS gracias a la "mutación" de un tamaño X de la solución en función de si mejora o no mejora la solución, es decir, que cuando llega a un mínimo relativo, es capaz de alejarse de ese mínimo gracias a la "mutación" buscando otros mínimos que mejoran la solución.