Design and Analysis of Algorithms Assignment-1

Submitted by:

Joseph Antony

CS6A

33

a direct the asymptotic order of the robutton for the blow recurrence equation using suitable methods. You may around
$$T(1) = 1$$
, the equation using suitable methods. You may around $T(1) = 1$, the equation using suitable methods and $T(n) + \frac{n}{\log n}$

Then $= 2 \cdot T(n/a) + \frac{n}{\log n}$

But $n = \frac{n}{2}$ in eq (1)

We get,

 $T(n) = 2 \cdot T(n/4) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/4) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/4) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/4) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/4) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/4) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/8) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/8) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/8) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/8) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/8) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/8) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/8) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n) = 2 \cdot T(n/3) + \frac{n}{2\log n}$

Then $T(n$

$$= a^{k} T(\frac{n}{a^{k}}) + n \cdot \sum_{i=0}^{k-1} \frac{1}{ign-iga^{i}}$$

$$= a^{k} T(\frac{n}{a^{k}}) + n \cdot \sum_{i=0}^{k-1} \frac{1}{ign-i}$$
(Now at loss and,
$$\frac{n}{a^{k}} = 1 \implies n = a^{k}$$

$$\frac{n}{a^{k}} = 1$$