Session: Linear Regression

One Variable
Gradient Descent
Many Variables

Lesson Objectives 2019-03-12

- Understand linear regression with one variable
- Introduce the idea of the model
- Explain the gradient descent solution
- Understand linear regression with many variables

What Is Linear Regression?

Data

◆ Input variables → continuous output

Blood pressure as function of age

Hypertension Prevalence in the US by Age

Fields LE et al (2004) Hypertension 44:398-404

House Price vs Size 2019-03-12 Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @

- Not a perfect fit
- More predictors may be needed

One Variable

→ One Variable

Gradient Descent

Many Variables

SageMaker Linear Learner

Linear Regression Workship One Variable

- Univariate (simple) linear regression
- One input → One output
- x → y
- Our hypothesis (or model)

$$y = T_0 + T_1 x$$

Problem: Tip Calculation Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ General Company (

- ◆ Bill → Tip
- Imagine we do not know 15% rule
- Looks like a linear dependency

Solution Attempt 2019-03-12

Hypothesistin = T + T I

$$tip = T_0 + T_1 bill$$

- ◆ But what are T₀ and T₁?
- ◆ Say T_0 =0 and T_1 =0.15
- Not a fantastic success
- **♦** ⊗

_					
D	ra	Иı	cti	^	n
	ıc	uı	LLI	v	

- 7.5
- 4.5
 - 9
 - F
- 9.75
 - 3
- 1.5
- 2.25
- 3.75
- 5.25

We Need a Data Scientific and Licensed for personal use only for Fernando K -fernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Company of the Company of

- Cost of replacing data with our model
- Measures the accuracy of our hypothesis (model)

$$C(T_0, T_1) = \frac{1}{2m} \sum_{i=1}^{m} (y'_i - y_i)^2$$

- Where
- - = y, is realizated
 - y is real value

Cost Function Explained Machine Learning at Dell Brazil (QE) @

\$ Error

$$h_T(x_i) - y_i$$

Square error

$$\sum_{1}^{m} (h_T(x_i) - y_i)^2$$

- Special multiplier
- Special multiplier

1

- To do mean and to cancel outin subsequent gradient descent
- ◆ To do mean and to cancel out in subsequent gradient descent

Cost Function Break wown Machine Learning at Dell Brazil (QE) @

Better, use function h_⊤ instead of

$$C(T_0, T_1) = \frac{1}{2m} \sum_{i=1}^{m} (y'_i - y_i)^2$$

Better, use function h_T instead of y'_i

$$C(T_0, T_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_T(xi) - y_i)^2$$

Here the Cost Would 19-03-13 e Zero

- If the line passes through all points
- The the cost would be zero

$$C(T_0, T_1) = 0$$

Cost Function IIIum 2019 ated

- We want to find the best possible line to approximate the data
- Each line will have a cost
- We want to find a line that will minimize the cost

Gradient Descent

→ Gradient DescentMany Variables

Optimization Problems: Optimi

- We have the cost formula
- ◆ We can calculate the cost for every T₀ and T₁
- ◆ We want to find the best values of T₀ and T₁

MSE for Ligensed for personal use only for Fernando K < fernando_kruse @dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

MSE for Conseq for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

MSE for Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

MSE for Topersonal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

MSE for Usersed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

Cost vs 1 0 2019-03-12 Cost vs 1 1 2019-03-12

Gradient Descent Demno Kafernando Kasernando Kasernando

Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @

Gradient Descent Result

Algorithm for Gradient Descent

= Generally,,
$$T = ((T_{0}, T_{1}, T_{2}, \dots, T_{h}))$$

- 1. $T_{next} = Tcurrent + Direction * Step$
- 2. Direction = $\frac{dCost}{dT}$
- 3. Step = Learning Step
- Repeat until convergence
- Repeat until convergence Next values are worse, or

 - Next values are worse, or
 The improvement is too small
 - The improvement is too small

Batch Gradient Descent

- We did "batch" gradient descent
 - We used all training samples
 - There are versions that will use some groups of samples
- There exists a precise solution in linear algebra
 - But gradient descent scales better
- Gradient descent will be used everywhere

Stochastic Gradient 20 Descent

For each step of the Gradient Descent, we need a derivative

$$Direction = \frac{dCost}{dT}$$

- How many calculations is that?
- ◆ Нфуффанулавьнані фыя
 - Proportionate to m(prestictors)
- Stornastio contection (presidents)
- ◆ Steahastic Gradicet desernt
 - samples data at each step

Overview:

Practice Linear Regression

Approximate Time:30 mins

Instructions:

- Linear-regression / 1-lr
- Follow appropriate Python / R / Spark instructions
- (1T-Ir-tips.ipynb, 1K-Ir-tips.ipynb)

Many Variables

One Variable
Gradient Descent
→ Many Variables

Problem: House Prices

Sale Price \$	Bedrooms	Bathrooms	Sq.ft Living	Sq.ft Lot
280,000	6	3	2,400	9,373
1,000,000	4	3.75	3,764	20,156
745,000	4	1.75	2.060	26,036
425,000	5	3.75	3,200	8,618
240,000	4	1.75	1,720	8,620
327,000	3	1.5	1,750	34,465
347,000	4	1.75	1,860	14,650

- Multiple factors are needed to predict house prices
- This is called multiple linear regression
- Terminology note
 - "Multivariable" would mean a vector output, not scalar

• What are the m and n for the previous slides?

Linear Regression Workship Many Variables

Multiple linear regression

- ◆ Many inputs → One output
- Our hypothesis (or model)

$$y = T_0 + T_1 x_1 + T_2 x_2 + T_3 x_3 + ... + T_n x_n$$

- Cost of replacing data with our model
- Measures the accuracy of our hypothesis (model)

$$C(T_0, T_1, T_n) = \frac{1}{2m} \sum_{i=1}^{m} (y'_i - y_i)^2$$

Cost Function Break www.

◆ Better, use function h_⊤ instead of

$$C(T_0, T_1, , T_n) = \frac{1}{2m} \sum_{i=1}^{m} (y'_i - y_i)^2$$

Solution \mathbf{h}_{T} instead of y'_{i}

$$C(T_0, T_1, T_0) = \frac{1}{2m} \sum_{i=1}^{m} (h_T(x_i) - y_i)^2$$

Where

$$h_{T(X_i)} = T_0 + T_1 X_1 + T_2 X_2 + \dots + T_n X_n$$

Solution Advice Licensed for personal-use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- Verify the dimensions
- Feature scaling
- Choose learning rate

Verify the Dimension of Sernando K Sernando

- Number of features: n
- Feature index j = 1 to n
- Number of data points: m
- Data index i = 1 to m

Feature Scaling Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

Approximately

$$-0.5 \le x_i \le 0.5$$

♦ For example, floor area

$$x_3 = \frac{sq.ft - 2000}{4000}$$

Chose Learning Rate 19-03-12 Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Rate 19-03-12

- Sufficiently small learning rate gives always improving cost
- Avoid jumps up and down

Lab: Multiple Linear²⁰¹⁹ Regression

Overview:

Practice Multiple Linear Regressions

Approximate Time:

30 mins

Instructions:

Follow appropriate Python / R / Spark instructions

- LIR-2: House prices

- (2T-mlr-house-prices.ipynb, 2K-mlr-house-prices.ipynb)

Regularization Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- Regularization seeks to
 - Minimize RSS of model
 - And to reduce the complexity of the model
- How to reduce the complexity of model
 - Removing unnecessary coefficients (b₁, b₂ ..etc)
 - Keeping coefficient values getting too large (parameter shrinkage)
 - Large coefficients amplify certain parameters
- ◆ Minimize = RSS + ¾ * penalty on the parameters
- Two types of regularizations
 - Lasso Regression (L1 regularization):
 Minimizes the absolute sum of the coefficients
 - Ridge Regression (L2 regularization):
 Minimizes the squared absolute sum of the coefficients

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p + e$$

- Ridge regression will 'minimize' coefficients but not to zero
 - Called parameter shrinkage
- Lasso regression can shrink parameters can also set them zero!
 - By setting some coefficients to zero, it eliminates certain features
 - Called variable/feature selection
- Lambda (λ) can be calculated using cross validation

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p + e$$

Lab: Multiple Linear²⁰¹⁹ egression

Overview:

Practice Multiple Linear Regressions

Approximate Time:

30 mins

Instructions:

Follow appropriate Python / R / Spark instructions

- LIR-2: House prices

- LIR-3: AIC

Preparing Data for Los Preparing Data for Los Preparing Learning at Dell Brazil (QE) @ Preparing Data for Los Preparing Learning at Dell Brazil (QE) @ Preparing Data for Los Preparing

Linear Assumption:

Linear Regression assumes linear relationship between input and output.

May be need to transform data (e.g. log transform) to make the relationship linear

Remove Noise:

Remove outlier data

Remove Collinearity:

Linear regression will over-fit your data when you have highly correlated input variables

Gaussian Distributions

Linear regression will make more reliable predictions if your input and output variables have a Gaussian distribution. Transform data (e.g. logarithmic) make their distribution more Gaussian looking for better results

Preparing Data for Logarite ar Regression Preparing Data for Logarite Regression

experience (years)		ary	log(salary)	
2	\$	100,000	5.00	
4	\$	400,000	5.60	
6	\$	1,000,000	6.00	
8	\$	4,000,000	6.60	
10	\$	16,000,000	7.20	
15	\$	45,000,000	7.65	
20	\$	80,000,000	7.90	

Actual data.
Not Linear

46

Data scaled at logarithmic scale.
Linear!

com> from Machine Learning at Dell Brazil (QE) @

2019-03-12

Review Questions | Compare the compared of th

What is Linear Regression?