Prova P3 – EAI-21-2020 – COMP

Nome:		Duração: 2:30h		
Data_prova:	Horário/Inicio:	Término		

1Q: (2.0) Obter a tabela primitiva de fluxo de estados (TPFE) de uma máquina sequencial assíncrona modelo Moore. Esta máquina opera no modo fundamental normal e tem as variáveis **CLK** e **G** de entrada e a variável **Y** de saída. A saída *Y* se comporta segundo o diagrama de temporização da figura 1.

Figura 1. Diagrama de Temporização

- **2Q:** A MEFA abaixo é implementada usando Latch C. Ela tem duas entradas (Ain, Rin) e duas saídas (Aout, Rout), onde as saídas também fazem o papel de variáveis de estado. Pede-se:
- (1,5) a) Tabela de fluxo de estados; b) (1,0) Implemente a tabela do item (a) na arquitetura RS. Obs: A equação característica do RS é Q_{N+1} = S' + R Q_N

Dado: Tabela de operações do latch C

Tabela de operações do latch C

C1	C2	Q _{N+1}	
0	0	0	
0	1	Qn	
1	1	1	
1	0	Qn	

3Q: A tabela primitiva de fluxo de estados no modelo Moore abaixo descreve um detector de sequencias, onde temos as entradas X1 e X2 e uma saída Z. Pede-se: a)(**1.5**) a tabela de fluxo de estados minimizada; b) (**1.5**) sintetize a tabela de fluxo do item (a) como máquina de Huffman minimizada, livre de corrida crítica, livre de hazard lógico e a saída Z não tem glitch.

12/2					
Estados	00	01	11	10	Z
1	1	2		5	0
2	1	2	3	_	0
3	—	6	3	4	1
4	1	_	3	4	1
5	1	_	7	5	0
6	8	6	3		1
7	_	9	7	5	0
8	8	6	—	10	1
9	1	9	7	_	0
10	8		3	10	1

- **4Q:** A Figura 4 mostra o grafo de transição de estado (GTE) que descreve uma máquina de estado finito síncrona (MEFS) modelo Mealy. As entradas são [a,b] e as saídas são [x,y]. Pede-se:
- a) (1.0) Converta o GTE modelo Mealy da Figura 4 para GTE modelo Moore
- b) (1.5) Sintetize a MEFS especificada no GTE do item (a), usando flip-flops JK e portas, usando o menor número de variáveis de estado, isto é, as saídas podem ter também o papel de variáveis de estados. Pede-se: As equações de excitação e de saída minimizadas na forma de soma de produto. Dado:

Figura 4. GTE modelo Mealy