

Práctica 8

Enrique García Velasco Juan Diego Villalobos Quirós

ÍNDICE

01
Hardware Código
implementado

03
Métricas Conclusiones

61 HARDWARE USADO

HARDWARE

	Procesador	Caché (L1)	Caché (L2)	Caché (L3)	Hilos	Ram
Enrique	Intel Core i5-8250U	4 x 32 KBytes 4 x 32 KBytes	4 x 256 Kbytes	6 Mbytes	8	8 GB
Juan Diego	Intel Core i5-10400	6 x 32 KBytes 6 x 32 Kbytes	6 x 256 Kbytes	12 Mbytes	12	16 GB
Maquina Virtual	Procesador con 8 Cores	4 x 32 KBytes 4 x 32 KBytes	4 x 256 Kbytes	6 Mbytes	8	6 GB

62 CÓDIGO IMPLEMENTADO

SIN PARALELIZAR

```
void seq_fourier(ElementType temp[MAX_RANGE][MAX_RANGE], int current_range, int n_iter) {
    int row, col, iter;
    for (iter = 0; iter <n_iter; iter++) {</pre>
        for (row = 0; row < current_range ; row++) {</pre>
            for (col = 1; col < current_range - 1; col++) {</pre>
                temp[row][col] = 0.5*(temp[row][col - 1] + temp[row][col + 1]);
```

OPENMP

```
void par_fourier_openmp(ElementType temp[MAX_RANGE][MAX_RANGE], int current_range, int n_iter) {
    int row, col, iter;
    omp_set_num_threads(12);
#pragma omp parallel for default(none) shared(n_iter,current_range, temp) private(iter,row,col)
    for (iter = 0; iter < n_iter; iter++) {
        for (row = 0; row < current_range; row++) {
            for (col = 1; col < current_range - 1; col++) {
                temp[row][col] = 0.5 * (temp[row][col - 1] + temp[row][col + 1]);
            }
        }
    }
}</pre>
```


Fórmula para calcular la aceleración:

Tiempo ejecución (lento) / Tiempo ejecución (rápido) * 100

2 Hilos = 2,05689 (205,6%)

4 Hilos = 3,42405 (342,4%)

8 Hilos = 3,433220 (343,22%)

2 Hilos = 1,8397 (183,97%)

4 Hilos = 3,4399 (343,99%)

8 Hilos = 5,7120 (571,2%)

2 Hilos = 2,0153 (203,53%)

4 Hilos = 3,9879 (398,79%)

8 Hilos = 7,7851 (778,51%)

12 Hilos = 7,39155 (739,25%)

2 Hilos = 1,9989 (199,89%)

4 Hilos = 3,9781 (397,81%)

8 Hilos = 7,9857 (798.57%)

12 Hilos = 11,1627 (1116,27%)

2 Hilos = 1,9976 (199,76%)

4 Hilos = 2,9591 (295,91%)

8 Hilos = 6,3738 (637,38%)

2 Hilos = 1,9594 (195,94%)

4 Hilos = 2,87455 (287,45%)

8 Hilos = 6,8027 (680,27%)

04 CONCLUSIONES