

COM303: Digital Signal Processing

Lecture 2: Discrete-Time Signals

Module Overview:

- ► discrete-time signals
- ▶ elementary signal operations
- ▶ the Karplus-Strong algorithm

Discrete-time signals have a long tradition...

Meteorology (limnology): the floods of the Nile

Representations of flood data: circa 2500 BC

Discrete-time signals have a long tradition...

Representations of flood data: circa AD 2000

Probably your first scientific experiment...

Probably your first scientific experiment...

Astronomy

History and sociology

Economics

a purely man-made signal: the Dow Jones industrial average

discrete-time signal: a sequence of complex numbers

- ▶ one dimension (for now)
- ▶ notation: x[n]
- ightharpoonup two-sided sequences: $x: \mathbb{Z} \to \mathbb{C}$
- ▶ n is a-dimensional "time"
- analysis: periodic measurement
- synthesis: stream of generated samples

discrete-time signal: a sequence of **complex** numbers

- ► one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is *a-dimensional* "time"
- ▶ analysis: periodic measurement
- synthesis: stream of generated samples

discrete-time signal: a sequence of complex numbers

- ► one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is *a-dimensional* "time"
- ▶ analysis: periodic measurement
- synthesis: stream of generated samples

discrete-time signal: a sequence of complex numbers

- ► one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is *a-dimensional* "time"
- analysis: periodic measurement
- synthesis: stream of generated samples

discrete-time signal: a sequence of complex numbers

- ► one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is *a-dimensional* "time"
- analysis: periodic measurement
- synthesis: stream of generated samples

discrete-time signal: a sequence of complex numbers

- ► one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is *a-dimensional* "time"
- ▶ analysis: periodic measurement
- synthesis: stream of generated samples

discrete-time signal: a sequence of complex numbers

- ▶ one dimension (for now)
- ▶ notation: x[n]
- ▶ two-sided sequences: $x : \mathbb{Z} \to \mathbb{C}$
- ▶ *n* is *a-dimensional* "time"
- ▶ analysis: periodic measurement
- synthesis: stream of generated samples

The delta signal

Ç

How do you synchronize audio and video...

How do you synchronize audio and video...

The unit step

The Frankenstein switch...

The exponential decay

How fast does your coffee get cold...

How fast does your coffee get cold...

Newton's law of cooling:

$$\frac{dT}{dt} = -c(T - T_{\mathsf{env}})$$

$$T(t) = T_{\mathsf{env}} + (T_0 - T_{\mathsf{env}})e^{-ct}$$

In practice:

- must have convection only
- must have large conductivity

How fast does your coffee get cold...

Newton's law of cooling:

$$\frac{dT}{dt} = -c(T - T_{\mathsf{env}})$$

$$T(t) = T_{\mathsf{env}} + (T_0 - T_{\mathsf{env}})e^{-ct}$$

In practice:

- must have convection only
- must have large conductivity

Also, how fast your capacitor discharges

The sinusoid

Oscillations are everywhere!

- ▶ finite-length
- ▶ infinite-length
- periodic
- ► finite-support

- ▶ finite-length
- ▶ infinite-length
- periodic
- ► finite-support

- ▶ finite-length
- ▶ infinite-length
- periodic
- ► finite-support

- ▶ finite-length
- ▶ infinite-length
- periodic
- ► finite-support

Finite-length signals

- ▶ sequence notation: x[n], n = 0, 1, ..., N 1
- ightharpoonup vector notation: $\mathbf{x} = [x_0 x_1 \dots x_{N-1}]^T$
- practical entities, good for numerical packages (e.g.numpy)

Finite-length signals

- ▶ sequence notation: x[n], n = 0, 1, ..., N 1
- vector notation: $\mathbf{x} = [x_0 x_1 \dots x_{N-1}]^T$
- practical entities, good for numerical packages (e.g.numpy)

Finite-length signals

- ▶ sequence notation: x[n], n = 0, 1, ..., N 1
- vector notation: $\mathbf{x} = [x_0 x_1 \dots x_{N-1}]^T$
- practical entities, good for numerical packages (e.g.numpy)

Infinite-length signals

- ▶ sequence notation: x[n], $n \in \mathbb{Z}$
- ► abstraction, good for theorems

Infinite-length signals

- ▶ sequence notation: x[n], $n \in \mathbb{Z}$
- ► abstraction, good for theorems

Periodic signals

- ▶ *N*-periodic sequence: $\tilde{x}[n] = \tilde{x}[n + kN], \quad n, k, N \in \mathbb{Z}$
- ▶ same information as finite-length of length *N*
- "natural" bridge between finite and infinite lengths

Periodic signals

- ▶ *N*-periodic sequence: $\tilde{x}[n] = \tilde{x}[n + kN], \quad n, k, N \in \mathbb{Z}$
- ▶ same information as finite-length of length *N*
- "natural" bridge between finite and infinite lengths

Periodic signals

- ▶ *N*-periodic sequence: $\tilde{x}[n] = \tilde{x}[n+kN], n, k, N \in \mathbb{Z}$
- ▶ same information as finite-length of length *N*
- "natural" bridge between finite and infinite lengths

Finite-support signals

► Finite-support sequence:

$$ar{x}[n] = \left\{ egin{array}{ll} x[n] & ext{if } 0 \leq n < N \ 0 & ext{otherwise} \end{array}
ight. \quad n \in \mathbb{Z}$$

- ▶ same information as finite-length of length *N*
- another bridge between finite and infinite lengths

Finite-support signals

► Finite-support sequence:

$$ar{x}[n] = \left\{ egin{array}{ll} x[n] & ext{if } 0 \leq n < N \ 0 & ext{otherwise} \end{array}
ight. \quad n \in \mathbb{Z}$$

- ▶ same information as finite-length of length *N*
- another bridge between finite and infinite lengths

Finite-support signals

► Finite-support sequence:

$$ar{x}[n] = \left\{ egin{array}{ll} x[n] & ext{if } 0 \leq n < N \ 0 & ext{otherwise} \end{array}
ight. \quad n \in \mathbb{Z}$$

- ▶ same information as finite-length of length *N*
- another bridge between finite and infinite lengths

scaling:

$$y[n] = \alpha x[n]$$

▶ sum:

$$y[n] = x[n] + z[n]$$

product:

$$y[n] = x[n] \cdot z[n]$$

ightharpoonup shift by k (delay):

$$y[n] = x[n-k]$$

scaling:

$$y[n] = \alpha x[n]$$

sum:

$$y[n] = x[n] + z[n]$$

product:

$$y[n] = x[n] \cdot z[n]$$

ightharpoonup shift by k (delay):

$$y[n] = x[n-k]$$

scaling:

$$y[n] = \alpha x[n]$$

sum:

$$y[n] = x[n] + z[n]$$

product:

$$y[n] = x[n] \cdot z[n]$$

ightharpoonup shift by k (delay):

$$y[n] = x[n-k]$$

scaling:

$$y[n] = \alpha x[n]$$

sum:

$$y[n] = x[n] + z[n]$$

product:

$$y[n] = x[n] \cdot z[n]$$

▶ shift by *k* (delay):

$$y[n] = x[n-k]$$

$$[x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7]$$

$$x[n]$$
... $x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7$...

$$\begin{bmatrix} x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \end{bmatrix}$$

$$\tilde{x}[n-1]$$
 ... x_4 x_5 x_6 x_7 x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_0 x_1 ...

$$\tilde{x}[n-2]$$
 ... x_3 x_4 x_5 x_6 x_7 x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_0 ...

$$\tilde{x}[n-3]$$
 ... x_2 x_3 x_4 x_5 x_6 x_7 x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 ...

$$\tilde{x}[n-4]$$
 ... x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_0 x_1 x_2 x_3 x_4 x_5 x_6 ...

Energy and power

$$E_{x} = \sum_{n=-\infty}^{\infty} |x[n]|^{2}$$

$$P_{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^{2}$$

Energy and power

$$E_{x} = \sum_{n=-\infty}^{\infty} |x[n]|^{2}$$

$$P_{X} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^{2}$$

Energy and power: periodic signals

$$E_{\tilde{x}}=\infty$$

$$P_{\tilde{x}} \equiv \frac{1}{N} \sum_{n=0}^{N-1} |\tilde{x}[n]|^2$$

Energy and power: periodic signals

$$\textit{E}_{\tilde{x}} = \infty$$

$$P_{\tilde{x}} \equiv \frac{1}{N} \sum_{n=0}^{N-1} |\tilde{x}[n]|^2$$

Overview:

- ▶ DSP as Lego: The fundamental building blocks
- Averages and moving averages
- ▶ Recursion: Revisiting your bank account
- ▶ Building a simple recursive synthesizer
- Examples of sounds

DSP as Lego

Building Blocks: Adder

Building Blocks: Adder

Building Blocks: Adder

Building Blocks: Multiplier

$$x[n] \xrightarrow{\alpha} \alpha x[n]$$

Building Blocks: Multiplier

$$x[n] \xrightarrow{\alpha} \alpha x[n]$$

Building Blocks: Multiplier

$$x[n] \xrightarrow{\alpha} \alpha x[n]$$

Building Blocks: Unit Delay

Building Blocks: Unit Delay

Building Blocks: Unit Delay

Building Blocks: Arbitrary Delay

Building Blocks: Arbitrary Delay

Building Blocks: Arbitrary Delay

The 2-point Moving Average

simple average:

$$m=\frac{a+b}{2}$$

▶ moving average: take a "local" average

$$y[n] = \frac{x[n] + x[n-1]}{2}$$

The 2-point Moving Average

simple average:

$$m=\frac{a+b}{2}$$

▶ moving average: take a "local" average

$$y[n] = \frac{x[n] + x[n-1]}{2}$$

The 2-point Moving Average Using Lego

$$x[n] = \delta[n]$$

$$x[n] = \delta[n]$$

$$x[n] = u[n]$$

39

$$x[n] = u[n]$$

$$x[n] = \cos(\omega n), \quad \omega = \pi/10$$

40

$$x[n] = \cos(\omega n), \quad \omega = \pi/10$$

$$x[n] = (-1)^n$$

$$x[n] = (-1)^n$$

What if we reverse the loop?

What if we reverse the loop?

What if we reverse the loop?

A powerful concept: recursion

How we solve the chicken-and-egg problem

Zero Initial Conditions

- set a start time (usually $n_0 = 0$)
- ightharpoonup assume input and output are zero for all time before n_0

- ► constant interest/borrowing rate of 5% per year
- ▶ interest accrues on Dec 31
- ightharpoonup deposits/withdrawals during year n: x[n]
- ▶ balance at year *n*

$$y[n] = 1.05 y[n-1] + x[n]$$

- ► constant interest/borrowing rate of 5% per year
- ▶ interest accrues on Dec 31
- ightharpoonup deposits/withdrawals during year n: x[n]
- ▶ balance at year *n*

$$y[n] = 1.05 y[n-1] + x[n]$$

- ► constant interest/borrowing rate of 5% per year
- ▶ interest accrues on Dec 31
- ▶ deposits/withdrawals during year n: x[n]
- ▶ balance at year *n*

$$y[n] = 1.05 y[n-1] + x[n]$$

- ► constant interest/borrowing rate of 5% per year
- ▶ interest accrues on Dec 31
- ▶ deposits/withdrawals during year n: x[n]
- ▶ balance at year *n*:

$$y[n] = 1.05 y[n-1] + x[n]$$

Accumulation of interest: first-order recursion

$$x[n] = 100 \delta[n]$$

- y[0] = 100
- y[1] = 105
- y[2] = 110.25, y[3] = 115.7625 etc.
- ► In general: $y[n] = (1.05)^n 100 u[n]$

$$x[n] = 100 \delta[n]$$

- y[0] = 100
- y[1] = 105
- y[2] = 110.25, y[3] = 115.7625 etc.
- ► In general: $y[n] = (1.05)^n 100 u[n]$

$$x[n] = 100 \delta[n]$$

- y[0] = 100
- y[1] = 105
- y[2] = 110.25, y[3] = 115.7625 etc.
- ▶ In general: $y[n] = (1.05)^n 100 u[n]$

$$x[n] = 100 \delta[n]$$

- y[0] = 100
- y[1] = 105
- y[2] = 110.25, y[3] = 115.7625 etc.
- ▶ In general: $y[n] = (1.05)^n 100 u[n]$

$$x[n] = 100 \delta[n]$$

- y[0] = 100
- y[1] = 105
- y[2] = 110.25, y[3] = 115.7625 etc.
- ▶ In general: $y[n] = (1.05)^n 100 u[n]$

Example: the saver

$$x[n] = 100 u[n]$$

- y[0] = 100
- y[1] = 205
- y[2] = 315.25, y[3] = 431.0125 etc.
- ▶ In general: $y[n] = 2000((1.05)^{n+1} 1)u[n]$

Example: the saver

$$x[n] = 100 u[n]$$

- y[0] = 100
- y[1] = 205
- y[2] = 315.25, y[3] = 431.0125 etc.
- ▶ In general: $y[n] = 2000((1.05)^{n+1} 1)u[n]$

Example: the saver

$$x[n] = 100 u[n]$$

- y[0] = 100
- y[1] = 205
- y[2] = 315.25, y[3] = 431.0125 etc.
- ▶ In general: $y[n] = 2000 ((1.05)^{n+1} 1) u[n]$

Example: the saver

$$x[n] = 100 u[n]$$

- y[0] = 100
- y[1] = 205
- y[2] = 315.25, y[3] = 431.0125 etc.
- ▶ In general: $y[n] = 2000 ((1.05)^{n+1} 1) u[n]$

Example: the saver

$$x[n] = 100 u[n]$$

- y[0] = 100
- y[1] = 205
- y[2] = 315.25, y[3] = 431.0125 etc.
- ▶ In general: $y[n] = 2000 ((1.05)^{n+1} 1) u[n]$

$$x[n] = 100 \delta[n] - 5 u[n-1]$$

- y[0] = 100
- y[1] = 100
- y[2] = 100, y[3] = 100 etc.
- ▶ In general: y[n] = 100 u[n]

$$x[n] = 100 \,\delta[n] - 5 \,u[n-1]$$

- y[0] = 100
- y[1] = 100
- y[2] = 100, y[3] = 100 etc.
- ▶ In general: y[n] = 100 u[n]

$$x[n] = 100 \delta[n] - 5 u[n-1]$$

- y[0] = 100
- y[1] = 100
- y[2] = 100, y[3] = 100 etc.
- ▶ In general: y[n] = 100 u[n]

$$x[n] = 100 \delta[n] - 5 u[n-1]$$

- y[0] = 100
- y[1] = 100
- y[2] = 100, y[3] = 100 etc.
- ▶ In general: y[n] = 100 u[n]

$$x[n] = 100 \delta[n] - 5 u[n-1]$$

- y[0] = 100
- y[1] = 100
- y[2] = 100, y[3] = 100 etc.
- ▶ In general: y[n] = 100 u[n]

An interesting generalization

$$y[n] = \alpha y[n - M] + x[n]$$

Creating loops

51

$$M = 3$$
, $\alpha = 0.7$, $x[n] = \delta[n]$

- y[0] = 1, y[1] = 0, y[2] = 0
- y[3] = 0.7, y[4] = 0, y[5] = 0
- $y[6] = 0.7^2$, y[7] = 0, y[8] = 0, etc.

$$M = 3$$
, $\alpha = 0.7$, $x[n] = \delta[n]$

- y[0] = 1, y[1] = 0, y[2] = 0
- y[3] = 0.7, y[4] = 0, y[5] = 0
- $y[6] = 0.7^2$, y[7] = 0, y[8] = 0, etc.

$$M = 3$$
, $\alpha = 0.7$, $x[n] = \delta[n]$

- y[0] = 1, y[1] = 0, y[2] = 0
- y[3] = 0.7, y[4] = 0, y[5] = 0
- $y[6] = 0.7^2$, y[7] = 0, y[8] = 0, etc.

$$M = 3$$
, $\alpha = 0.7$, $x[n] = \delta[n]$

- y[0] = 1, y[1] = 0, y[2] = 0
- y[3] = 0.7, y[4] = 0, y[5] = 0
- $y[6] = 0.7^2$, y[7] = 0, y[8] = 0, etc.

$$M = 3$$
, $\alpha = 1$, $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2]$

- y[0] = 1, y[1] = 2, y[2] = 3
- y[3] = 1, y[4] = 2, y[5] = 3
- y[6] = 1, y[7] = 2, y[8] = 3, etc.

$$M = 3$$
, $\alpha = 1$, $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2]$

- y[0] = 1, y[1] = 2, y[2] = 3
- y[3] = 1, y[4] = 2, y[5] = 3
- y[6] = 1, y[7] = 2, y[8] = 3, etc.

$$M = 3$$
, $\alpha = 1$, $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2]$

- y[0] = 1, y[1] = 2, y[2] = 3
- y[3] = 1, y[4] = 2, y[5] = 3
- y[6] = 1, y[7] = 2, y[8] = 3, etc.

$$M = 3$$
, $\alpha = 1$, $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2]$

- y[0] = 1, y[1] = 2, y[2] = 3
- y[3] = 1, y[4] = 2, y[5] = 3
- y[6] = 1, y[7] = 2, y[8] = 3, etc.

- ▶ build a recursion loop with a delay of *M*
- ▶ choose a signal $\bar{x}[n]$ that is nonzero only for $0 \le n < M$
- choose a decay factor
- ▶ input $\bar{x}[n]$ to the system
- play the output

- ▶ build a recursion loop with a delay of M
- ▶ choose a signal $\bar{x}[n]$ that is nonzero only for $0 \le n < M$
- choose a decay factor
- ▶ input $\bar{x}[n]$ to the system
- play the output

- ▶ build a recursion loop with a delay of *M*
- lacktriangle choose a signal $ar{x}[n]$ that is nonzero only for $0 \le n < M$
- ► choose a decay factor
- ▶ input $\bar{x}[n]$ to the system
- play the output

- ▶ build a recursion loop with a delay of *M*
- lacktriangle choose a signal $ar{x}[n]$ that is nonzero only for $0 \le n < M$
- choose a decay factor
- input $\bar{x}[n]$ to the system
- play the output

- ▶ build a recursion loop with a delay of M
- ▶ choose a signal $\bar{x}[n]$ that is nonzero only for $0 \le n < M$
- ► choose a decay factor
- ▶ input $\bar{x}[n]$ to the system
- play the output

- ► *M*-tap delay → *M*-sample "periodicity"
- ▶ associate time *T* to sample interval
- periodic signal of frequency

$$f = \frac{1}{MT} Hz$$

$$f \approx 440 \text{Hz}$$

- ► *M*-tap delay → *M*-sample "periodicity"
- ► associate time *T* to sample interval
- periodic signal of frequency

$$f = \frac{1}{MT} Hz$$

$$f \approx 440 \text{Hz}$$

- ► *M*-tap delay → *M*-sample "periodicity"
- ▶ associate time *T* to sample interval
- periodic signal of frequency

$$f = \frac{1}{MT}$$
Hz

$$f \approx 440 \text{Hz}$$

- ► *M*-tap delay → *M*-sample "periodicity"
- ▶ associate time *T* to sample interval
- periodic signal of frequency

$$f = \frac{1}{MT}$$
Hz

$$f \approx 440 \text{Hz}$$

Playing a sine wave

 $M=100,~\alpha=1,~\bar{x}[n]=\sin(2\pi~n/100)$ for $0\leq n<100$ and zero elsewhere

Playing a sine wave

$$M=100,~\alpha=1,~\bar{x}[n]=\sin(2\pi~n/100)$$
 for $0\leq n<100$ and zero elsewhere

Introducing some realism

- ► *M* controls frequency (pitch)
- $ightharpoonup \alpha$ controls envelope (decay)
- $ightharpoonup \bar{x}[n]$ controls color (timbre)

Introducing some realism

- ► *M* controls frequency (pitch)
- $ightharpoonup \alpha$ controls envelope (decay)
- $ightharpoonup \bar{x}[n]$ controls color (timbre)

Introducing some realism

- ► *M* controls frequency (pitch)
- $ightharpoonup \alpha$ controls envelope (decay)
- $ightharpoonup \bar{x}[n]$ controls color (timbre)

A proto-violin

 $M=100,~\alpha=0.95,~ar{x}[n]$: zero-mean sawtooth wave between 0 and 99, zero elsewhere

A proto-violin

 $M=100,~\alpha=0.95,~ar{x}[n]$: zero-mean sawtooth wave between 0 and 99, zero elsewhere

The Karplus-Strong Algorithm

 $M=100,~\alpha=0.9,~\bar{x}[n]$: 100 random values between 0 and 99, zero elsewhere

The Karplus-Strong Algorithm

 $M=100, \ \alpha=0.9, \ \bar{x}[n]$: 100 random values between 0 and 99, zero elsewhere

Recap

- We have seen basic elements:
 - adders
 - multipliers
 - delays
- ▶ We have seen two systems
 - moving averages
 - recursive systems
- ▶ We were able to build simple systems with interesting properties
- ▶ to understand all of this in more details we need a mathematical framework!