JBMO ShortLists 2002

- A student is playing computer. Computer shows randomly 2002 positive numbers. Game's rules let do the following operations to take 2 numbers from these, to double first one, to add the second one and to save the sum. to take another 2 numbers from the remainder numbers, to double the first one, to add the second one, to multiply this sum with previous and to save the result. to repeat this procedure, until all the 2002 numbers won't be used. Student wins the game if final product is maximum possible. Find the winning strategy and prove it.
- Positive real numbers are arranged in the form: 1 3 6 10 15... 2 5 9 14... 4 8 13... 5 12... 11... Find the number of the line and column where the number 2002 stays.
- 3 Let a, b, c be positive real numbers such that $abc = \frac{9}{4}$. Prove the inequality: $a^3 + b^3 + c^3 > a\sqrt{b+c} + b\sqrt{c+a} + c\sqrt{a+b}$ Jury's variant: Prove the same, but with abc = 2
- 5 Let a, b, c be positive real numbers. Prove the inequality: $\frac{a^3}{b^2} + \frac{b^3}{c^2} + \frac{c^3}{a^2} \ge \frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a}$
- 6 Let $a_1, a_2, ..., a_6$ be real numbers such that: $a_1 \neq 0, a_1a_6 + a_3 + a_4 = 2a_2a_5$ and $a_1a_3 \geq a_2^2$ Prove that $a_4a_6 \leq a_5^2$. When does equality holds?
- 7 Consider integers a_i , $i = \overline{1,2002}$ such that $a_1^{-3} + a_2^{-3} + \ldots + a_{2002}^{-3} = \frac{1}{2}$ Prove that at least 3 of the numbers are equal.
- 8 Let ABC be a triangle with centroid G and A_1, B_1, C_1 midpoints of the sides BC, CA, AB. A parallel through A_1 to BB_1 intersects B_1C_1 at F. Prove that triangles ABC and FA_1A are similar if and only if quadrilateral AB_1GC_1 is cyclic.
- 9 In triangle ABC, H, I, O are orthocenter, incenter and circumcenter, respectively. CI cuts circumcircle at L. If AB = IL and AH = OH, find angles of triangle ABC.
- Let ABC be a triangle with area S and points D, E, F on the sides BC, CA, AB. Perpendiculars at points D, E, F to the BC, CA, AB cut circumcircle of the triangle ABC at points $(D_1, D_2), (E_1, E_2), (F_1, F_2)$. Prove that: $|D_1B \cdot D_1C D_2B \cdot D_2C| + |E_1A \cdot E_1C E_2A \cdot E_2C| + |F_1B \cdot F_1A F_2B \cdot F_2A| > 4S$
- Let ABC be an isosceles triangle with AB = AC and $\angle A = 20^{\circ}$. On the side AC consider point D such that AD = BC. Find $\angle BDC$.
- Let ABCD be a convex quadrilateral with AB = AD and BC = CD. On the sides AB, BC, CD, DA we consider points K, L, L_1, K_1 such that quadrilateral KLL_1K_1 is rectangle. Then consider rectangles MNPQ inscribed in the triangle BLK, where $M \in KB, N \in BL, P, Q \in LK$ and $M_1N_1P_1Q_1$ inscribed in triangle DK_1L_1 where P_1 and Q_1 are situated on the L_1K_1 , M on the DK_1 and N_1 on the DL_1 . Let S, S_1, S_2, S_3 be the areas of the

JBMO ShortLists 2002

 $ABCD, KLL_1K_1, MNPQ, M_1N_1P_1Q_1$ respectively. Find the maximum possible value of the expression: $\frac{S_1+S_2+S_3}{S}$

13 Let $A_1, A_2, ..., A_{2002}$ be the arbitrary points in the plane. Prove that for every circle of the radius 1 and for every rectangle inscribed in this circle, exist 3 vertexes M, N, P of the rectangle such that: $MA_1 + MA_2 + ... + MA_{2002} + NA_1 + NA_2 + ... + NA_{2002} + PA_1 + PA_2 + ... + PA_{2002} \ge 6006$