Post-ANOVA

Stat 120

February 27 2023

Post-ANOVA

Inference AFTER doing ANOVA to compare means for several groups:

Confidence interval for a single mean
Confidence interval for a difference in two means
Pairwise t-test for a difference in two means
Multiple comparisons

ANOVA for Difference in Means

Data: Random samples of size n_1, n_2, \cdots, n_k from each of k populations (or groups)

Summary statistics:

- Sample mean for each group
- Std. dev. for each group
- Mean and std. dev. for all values

ANOVA for Difference in Means

 $H_0: \mu_1=\mu_2=\dots=\mu_k$

 H_a : at least one μ_i is different

footnotesize Conditions: Similar variability AND either sample sizes in each group are large (each $n_i \geq 30$) OR the data are relatively normally distributed

Cuckoo Birds

- Cuckoo birds lay their eggs in the nests of other birds
- When the cuckoo baby hatches, it
 kicks out all the original
 eggs/babies
- If the cuckoo is lucky, the

 mother will raise the cuckoo as

 if it were her own

Cuckoo bird in nest

Do cuckoo bird eggs found in nests of different species differ in size?

Cuckoo Dataset

- cuckoo dataset contains
 information on 120 Cuckoo
 eggs, obtained from
 randomly selected "foster"
 nests.
- **researchers have measured the length (in mm) and established the type (species) of foster parent.

```
Species=1: Hedge Sparrow

Species=2: Meadow Pit

Species=3: Pied Wagtail

Species=4: European Robin

Species=5: Tree Pipit

Species=6: Eurasian Wren

Eurasi
```

Side-by-side Boxplot (1a)

```
Cuckoo %>%
  ggplot(aes(x=species,y=length,fill=species)
  theme_bw() +
  geom_boxplot() +
  geom_jitter(width = 0.2) +
  labs(title ="Boxplot of the length of eggs
        y = "length (mm)",
        x = "type") +
  stat_summary(fun=mean, geom="point", shape size=2, color="red", fill="bit ggthemes::theme_tufte() +
  theme(axis.text.x = element_text(angle = 1)
```


Approximate normality in groups (1b)

```
Cuckoo %>%
  ggplot(aes(sample=length)) +
  geom_qq() +
  geom_qq_line() +
  facet_grid(~species) +
  theme(strip.text.x = element_t
  theme_bw()
```


Fitting ANOVA (1c)

```
library(broom)
fit_anova <- aov(length~species, Cuckoo)
knitr::kable(tidy(fit_anova))</pre>
```

term	df	sumsq	meansq	statistic	p.value
species	5	42.81015	8.5620298	[10.44934]	
(Residuals)	$\left(114\right)$	93.40985	0.8193847	NA]	NA

Since the p-value is very small, at the significance level of 5%, we have sufficient evidence to conclude that the mean egg length for at least one bird type is different from the mean egg length in at least one other bird type.

But which of the species are different?

Inference after ANOVA

Compute a CI for any μ_i

$$ar{x}_i \pm t^* rac{s_i}{\sqrt{n_i}}$$

BUT after ANOVA, estimate any σ with the pooled standard deviation:

$$ar{x}_i \pm t^* rac{\sqrt{MSE}}{\sqrt{n_i}}$$

the corresponding df=n-k

Cuckoo Eggs (1d)

Find a 95% confidence interval for the mean cuckoo egg length in **European** robin nests (Type = 4).

MSE <- 0.8193847

knitr::kable(tidy(fit_anova))

term	df	sumsq	meansq	statistic	p.value
species	5	42.81015	8.5620298	[10.44934]	0
Residuals	$\left(114\right)$	93.40985	0.8193847	NA]	(NA)

type	mean	sd	n
hedge.sparrow	23.11429	1.0494373	$\left(\begin{array}{c}14\end{array}\right)$
meadow.pipit	22.29333	0.9195849	(45)
pied.wagtail	22.88667	1.0722917	[15]
robin	22.55625	0.6821229	16
tree.pipit	23.08000	0.8800974	15
wren	21.12000	0.7542262	15

$$ar{x}_i \pm t^* rac{\sqrt{MSE}}{\sqrt{n_i}}, \; ext{df} = ext{n-k}$$

Inference after ANOVA

$$H_0: \mu_i = \mu_i \text{ vs. } H_a: \mu_i \neq \mu_i$$

Compute a CI for $\mu_i - \mu_j$

$$(ar{x}_i-ar{x}_j)\pm t^*\sqrt{rac{s_i^2}{n_i}+rac{s_j^2}{n_j}}$$

Use the usual procedures except estimate any σ with the pooled standard deviation: \sqrt{MSE} and use the error degrees of freedom, df=n-k, for any t-values

$$(ar{x}_i - ar{x}_j) \pm t^* \sqrt{MSE\left(rac{1}{n_i} + rac{1}{n_j}
ight)}$$

Cuckoo Eggs (1e)

Find a 95% CI for the difference in mean egg length between **European** robin(type = 4) and **Eurasian wren**(type = 6) nests.

term	df	sumsq	meansq	statistic	p.value
species	5	42.81015	8.5620298	[10.44934]	0
Residuals	114	93.40985	0.8193847	NA]	(NA)

$$(22.556-21.120)\pm 1.981\cdot \sqrt{0.8194\left(rac{1}{16}+rac{1}{15}
ight)}=(0.792,2.081)$$

type	mean	sd	n
hedge.sparrow	23.11429	1.0494373	[14]
meadow.pipit	22.29333	0.9195849	45
pied.wagtail	22.88667	1.0722917	[15]
robin	22.55625	0.6821229	[16]
tree.pipit	23.08000	0.8800974	15
wren	21.12000	0.7542262	15

```
(stat[4,2] - stat[6,2]) + c(-1,1)* (qt(1-0.05/2, df=114))* sqrt(MSE*(1/stat[4,4] + 1/stat[6,4]))
[1] 0.7917811 2.0807189
```

Why is it important that the interval contains only positive values?

Cuckoo Eggs (1f)

Find a 95% CI for the difference in mean egg length between Pied Wagtail (type = 3) and European robin(type = 4) nests.

term	df	sumsq	meansq	statistic	p.value
species	5	42.81015	8.5620298	[10.44934]	
(Residuals	$\left(\begin{array}{c}114\end{array}\right)$	93.40985	0.8193847	NA]	NA

$$(22.887 - 22.556) \pm 1.981 \cdot \sqrt{0.8194 \left(rac{1}{15} + rac{1}{16}
ight)} = (-0.314, 0.975)$$

type	mean	sd	n
hedge.sparrow	23.11429	1.0494373	[14]
meadow.pipit	22.29333	0.9195849	45
pied.wagtail	22.88667	1.0722917	[15]
robin	22.55625	0.6821229	[16]
tree.pipit	23.08000	0.8800974	15
wren	21.12000	0.7542262	15

```
(stat[3,2] - stat[4,2]) + c(-1,1)* (qt(1-0.05/2, df=114))*sqrt(MSE*(1/stat[3,4] + 1/stat[4,4]))
[1] -0.3140522 0.9748855
```

What does it mean if the interval contains 0?

Mutiple Comparisons

Often, doing pairwise comparisons after ANOVA involves many tests

Mutiple Comparisons

If each test has an α chance of a Type I error (finding a difference between a pair that aren't different), the overall Type I error rate can be much higher.

Use a smaller α for each pairwise test (Bonferroni)

$$lpha^*=rac{lpha}{k}$$
 e.g $lpha=0.05$ and $k=6$, then $lpha^*=0.05/6=0.0083$

Cuckoo Eggs (1g)

Which means are "different" at a 5% significance level?

```
pairwise.t.test(Cuckoo$length, Cuckoo$species, p.adjust.method = "bonferroni")
```

```
Pairwise comparisons using t tests with pooled SD
data: Cuckoo$length and Cuckoo$species
           hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit
meadow.pipit 0.05554
pied.wagtail 1.00000
                       0.44898
                  1.00000 1.00000
robin
           1.00000
tree.pipit 1.00000
                   0.06426 1.00000 1.00000 -
       5e-07
                       0.00045
                                7e-06 0.00035 5e-07
wren
P value adjustment method: bonferroni
```


Go over to the in-class
activity file
Complete the remaining
activity