

V CONGRESO INTERNACIONAL DE INGENIERÍA DE SISTEMAS

Desafíos del aprendizaje profundo en la visión por computador Introducción al aprendizaje profundo y aplicaciones en teledetección

Dr. Pedro Achanccaray Diaz

p.diaz@tu-braunschweig.de

Contenido

1. Introducción

2. Aplicaciones en agricultura

- 3. Aplicaciones en el mar
- 4. Aplicaciones en conservación de patrimonio cultural

Contenido

1. Introducción

- 2. Aplicaciones en agricultura
- 3. Aplicaciones en el mar
- 4. Aplicaciones en conservación de patrimonio cultural

Síntesis y Muestreo

Síntesis y Muestreo

Síntesis y Muestreo

Traducción Automática

Vehículos autónomos

Analisis de Sentimientos

Síntesis y Muestreo

Traducción Automática

Reconocimiento de Voz

Primeras Capas

Ultimas Capas

Fuente: Rafael C. González, Richard E. Woods. Digital image processing, 4th Edition. Pearson Education 2018,

Foto

Tomografias, Radiografias, Resonancias Magnéticas

Clasificación de Imágenes

Asignar una clase a toda la imagen

Clasificación de Imágenes

Asignar una clase a toda la imagen

Segmentación Semántica

Asignar una clase a cada pixel de la imagen

Clasificación de Imágenes

Asignar una clase a toda la imagen

Segmentación Semántica

Asignar una clase a cada pixel de la imagen

Detección de Objetos

Encontrar la ubicación de un objeto en la imagen

Clasificación de Imágenes

Asignar una clase a toda la imagen

Segmentación Semántica

Asignar una clase a cada pixel de la imagen

Detección de Objetos

Encontrar la ubicación de un objeto en la imagen

Segmentación de Instancias

Detectar y delinear cada objeto distinto en la imagen

1. Introducción – Teledetección

"adquisición de información sobre un objeto o fenómeno sin hacer contacto físico con él"

Cámaras Digitales [Source]

"adquisición de información sobre un objeto o fenómeno sin hacer contacto físico con él"

Cámaras Digitales [Source]

"adquisición de información sobre un objeto o fenómeno sin hacer contacto físico con él"

LiDAR [Source]

1. Introducción – Teledetección

"adquisición de información sobre un objeto o fenómeno sin hacer contacto físico con él"

LiDAR [Source]

Cámaras Digitales [Source]

Satélites [Source]

Contenido

1. Introducción

2. Aplicaciones en agricultura

3. Aplicaciones en el mar

4. Aplicaciones en conservación de patrimonio cultural

2. Aplicaciones en Agricultura

Reconocimiento de cultivos agrícolas

- Registros de rotación de cultivos
- Mapear productividad del suelo
- Inventarios sobre tipos de cultivos
- Predicción de rendimiento
- Monitoreo de actividades agrícolas

2. Aplicaciones en Agricultura

Reconocimiento de cultivos agrícolas

- Registros de rotación de cultivos
- Mapear productividad del suelo
- Inventarios sobre tipos de cultivos
- Predicción de rendimiento
- Monitoreo de actividades agrícolas

Segmentación Semántica Imágenes de satélite

Fuente: Crops identification by using satellite images http://www.igik.edu.pl/en/remote-sensing-crop-recognition

Reconocimiento de cultivos agrícolas

- Registros de rotación de cultivos
- Mapear productividad del suelo
- Inventarios sobre tipos de cultivos
- Predicción de rendimiento
- Monitoreo de actividades agrícolas

Segmentación Semántica Imágenes áreas

2. Aplicaciones en Agricultura

Reconocimiento de cultivos agrícolas

- Registros de rotación de cultivos
- Mapear productividad del suelo
- Inventarios sobre tipos de cultivos
- Predicción de rendimiento
- Monitoreo de actividades agrícolas

Segmentación Semántica
Imágenes de drones

Fuente: Feng, Q., Yang, J., Liu, Y., Ou, C., Zhu, D., Niu, B., ... & Li, B. (2020). Multi-temporal unmanned aerial vehicle remote sensing for vegetable mapping using an attention-based recurrent convolutional neural network. Remote Sensing, 12(10), 1668.

Contenido

1. Introducción

2. Aplicaciones en agricultura

3. Aplicaciones en el mar

4. Aplicaciones en conservación de patrimonio cultural

Industria Offshore de Petróleo y gas

Onshore

Offshore

- Industria Offshore de Petróleo y gas
- Actividades en el mar
 - Exploración
 - encontrar nuevas ubicaciones
 - mapeo de la vida marina
 - Monitoreo
 - estado de equipos
 - prevención
 - Extracción
 - perforación
 - estado de los reservorios
 - pozos de petróleo

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

Monitoreo de eventos marinos usando datos satelitales

- · Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

C. Bentz, Reconhecimento automático de eventos ambientais costeiros e oceânicos em imagens de radares orbitais

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

C. Bentz, Reconhecimento automático de eventos ambientais costeiros RADARSAT-1 03/04/02 e oceânicos em imagens de radares orbitais

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

C. Bentz, Reconhecimento automático de eventos ambientais costeiros e oceânicos em imagens de radares orbitais

RADARSAT-1 03/04/02

Zonas de poco viento

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

Descartes de embarcaciones en movimiento

C. Bentz, Reconhecimento automático de eventos ambientais costeiros e oceânicos em imagens de radares orbitais

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

Descartes de embarcaciones en movimiento

C. Bentz. Reconhecimento automático de eventos ambientais costeiros e oceânicos em imagens de radares orbitais

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- **Eventos**
 - **Naturales**
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

- Derrame de petróleo
- Agua de producción (oleosa)
- Fluidos de perforación

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

Segmentación Semántica

Liu, G., Xia, G. S., Yang, W., & Xue, N. (2014, July). SAR image segmentation via non-local active contours. In 2014 IEEE Geoscience and Remote Sensing Symposium (pp. 3730-3733).

Contenido

1. Introducción

2. Aplicaciones en agricultura

- 3. Aplicaciones en el mar
- 4. Aplicaciones en conservación de patrimonio cultural

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

Fuente: Translating lost languages using machine learning https://news.mit.edu/2020/translating-lost-languages-using-machine-learning-1021

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

Fuente: Assael, Y., Sommerschield, T., & Prag, J. (2019). Restoring ancient text using deep learning: a case study on Greek epigraphy. arXiv preprint arXiv:1910.06262.

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

Fuente: Cooper, J., & Arandjelović, O. (2020). Learning to Describe: A New Approach to Computer Vision Based Ancient Coin Analysis. Sci, 2(2), 27.

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

Detección automática de edificios del periodo de alto modernismo (1920-1970)

KT 60 L

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

nDSM DOP

Detección automática de edificios del periodo de alto modernismo (1920-1970)

DOP: Digital Orthophoto nDSM: Normalized Digital Surface Model

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

Detección automática de edificios del periodo de alto modernismo (1920-1970)

Manual (naranja) Automático (azul)

Desafios

Pocos datos para entrenamiento

Ausencia de muestras para ciertas clases

Desafios

Pocos datos para entrenamiento

Aumento de Datos

Ausencia de muestras para ciertas clases

Flips

Pocos datos para entrenamiento

Generación de Datos Sínteticos

Ausencia de muestras para ciertas clases

Pocos datos para entrenamiento

Generación de Datos Sínteticos

Ausencia de muestras para ciertas clases

Desafios

Pocos datos para entrenamiento

Ausencia de muestras para ciertas clases

Uso de Imágenes oblicuas de resolución especial muy alta

Desafios

Uso de Imágenes oblicuas de resolución especial muy alta

Pocos datos para entrenamiento

V CONGRESO INTERNACIONAL DE INGENIERÍA DE SISTEMAS

Desafíos del aprendizaje profundo en la visión por computador Introducción al aprendizaje profundo y aplicaciones en teledetección

Dr. Pedro Achanccaray Diaz

p.diaz@tu-braunschweig.de