

Laurent White (Exxon), Alistair Adcroft (Princeton Univ.) & Robert Hallberg (GFDL)

Advances towards accurate general coordinate ocean models:

REMAPPING, REGRIDDING AND CONTINUOUS ISOPYCNAL COORDINATES

White & Adcroft, JCP 2008
White, Adcroft & Hallberg, JCP 2009

Spurious diapycnal diffusion

- A common justification for isopycnal models:
 - "z-coordinates exhibit spurious diapycnal diffusion"
 DYNAMO; Legg et al., 2006 (GCE-CPT)
- Attempts to quantify "spurious" diffusion
 Griffies et al, 2000; Maqueda & Holloway, 2006;
 Rennau & Burchard, 2009; PO45A-03 Getzlaff et al.
- Motivation for hybrid/general coordinate models
 - use most appropriate coordinate for region e.g. HyCOM
- Will general coordinate models be adiabatic enough?
 - i.e. How much spurious mixing is there in a general coordinate model with active regridding-remapping to isopycnals?

Coordinate free algorithm

Re-gridding

- Re-mapping
- Re-construct **global** profile
 - Single valued (monotonic)
 - (continuous or not)
 - (conservative or not)

- Re-construct **local** profiles
 - Conservative
 - Limited (monotonic)
 - Discontinuous (exclusive!)
- Find position of new grid Integrate for new cell averages
- •This is not how traditional layered isopycnal models work ·The accuracy of the reconstructions are the key!

Piecewise * Method (* = C,L,P or Q)

- PLM: two degrees of freedom
 - Cell mean + slope
- PPM: three degrees of freedom
 - Very widely used
 - Cell mean + two edge values
- PQM: five degrees of freedom
 - Cell mean + two edge
 values + two edge slopes

Successive schemes provide more flexibility to represent structures → more accurate

Sloshing test case

- Continuous isopycnals work
 - PPM too diffuse in z-coordinates
 - PQM-PQM as good as layered

Sloshing test case

- Internal wave displacing a thermocline (tanh)
 - Simple problem but hard[er] for z-coordinates

% volume change in each density class

Gravity current (2D)

- Spurious diffusion significantly dilutes gravity current
- Continuous isopycnals do as well (look better) than layered
- Re-mapping to non-isopycnal clearly diffusive

Final thoughts

- GOLD uses same method throughout water column whether isopycnal or not
 - Continuous isopycnal approach works (as well as layered)
 - Not tied to pot. density, more flexible than layered isopycnal
- Spurious diffusion can be minimized when <u>remapping</u> to isopycnals
 - ... using PQM

- Need to quantify in context of global application (measure κ)
- PLM is too diffusive; PPM may be too diffusive
- Verdict on non-isopycnal coordinates
 - Jury is out ... but not looking good
 - PQM or even higher order approaches could come to rescue
 - About to evaluate schemes in eddying simulations
- Ready to explore new [hybrid] coordinates
- Consolidate "physics", e.g. bulk mixed layer vs. KPP
 White & Adcroft, JCP 2008 White, Adcroft & Hallberg, JCP 2009

