EigenPortfolio Project

1. Overview

Finance and algorithmic trading heavily use linear algebra. In this project, we will investigate how you can directly create a portfolio (set of allocations for companies in the market) by using the singular value decomposition (SVD) that you learned in class. In essence, we will use the past daily prices for over 1000 companies over a "training" period to generate right singular vectors and normalize these singular vectors to get allocations for each of the 1000 companies over the "test" period. In particular, we outline below how to create these "eigen"-portfolios:

- 1. Import necessary packages and data.
- 2. Pre-process, clean up, and plot the data using pandas and matplotlib.
- 3. Transform the data to use company returns and normalized returns rather than close prices.
- 4. Split the data into a training set and a test set.
- 5. Compute the SVD of the training data (you will complete this portion).
- 6. Plot the SVD to get a sense of the market.
- 7. Compile the SVD into the eigen-portfolios.
- 8. Compute returns and cumulative returns.
- 9. Compute performances of portfolios with the Sharpe ratio.
- 10. Plot performances of best eigen-portfolios.

The only aspects of these steps that you need to actually do here will be to compute the SVD and compile the SVD into the eigen-portfolios.

```
In [10]: # import packages
   import pandas as pd
   import numpy as np
   import os
   import datetime
   import matplotlib.pyplot as plt
%matplotlib inline
   df_path = 'close_prices.csv'
```

2. Uploading data into Google Colaboratory

To actually run this jupyter notebook, you can run jupyter notebook on your own computer if you have it set up; however, you may also use Google colaboratory to create and run this notebook. I've implemented the first method of how to import the data into google colaboratory. The details are outlined here. If you are using Google colaboratory, uncomment the lines of code after the first in the next cell.

```
In [11]: # only uncomment the next lines if using google colaboratory (takes some time)
    # import io
    # from google.colab import files
    # uploaded = files.upload()
    # df_path = io.StringIO(uploaded['close_prices.csv']).decode('utf-8')
```

3. Data Wrangling

We clean the data here to make sure that any of the dates we use have at least 500 data points. In particular, we get rid of dates that have too many NaN values. We also transform the dates into pandas datetime indices to be able to easily manage data. We finally take a look at some portion of the dataframe.

```
In [12]: # import data
    close_prices = pd.read_csv(df_path)
# clean data
    close_prices['date'] = close_prices['date'].apply(lambda x: x.split()[0])
```

```
close_prices = close_prices.set_index(['date'])
close_prices = close_prices[~close_prices.index.duplicated(keep='first')]
close_prices = close_prices[close_prices.isnull().sum(axis=1) < 500]
dts = pd.to_datetime(close_prices.index)
close_prices.index = dts
close_prices.name = 'prices'
close_prices.head(10)</pre>
```

Out[12]:

	AAIC	AAL	AAON	AAP	AAPL	АВ	ABB	ABBV	ABC	ABCB	•••	Υ	YE
date													
1999- 11-01	17.215847	NaN	0.963988	NaN	0.595872	5.832890	NaN	NaN	2.646925	5.628370		150.909670	108830.9029
1999- 11-02	18.253337	NaN	0.995558	NaN	0.616062	6.378645	NaN	NaN	2.621790	5.602393		151.699773	108438.4838
1999- 11-03	18.026386	NaN	1.009507	NaN	0.625658	6.289377	NaN	NaN	2.536717	5.576416		151.897299	110400.5794
1999- 11-04	18.447866	NaN	0.995558	NaN	0.641933	6.555154	NaN	NaN	2.513515	5.576416		150.909670	110008.1603
1999- 11-05	19.452934	NaN	1.005102	NaN	0.677937	6.620076	NaN	NaN	2.440043	5.576416		149.724516	109223.322(
1999- 11-08	18.836925	NaN	0.991153	NaN	0.739812	6.441539	NaN	NaN	2.453578	5.736608		149.724516	107195.8232
1999- 11-09	18.447866	NaN	0.963988	NaN	0.687993	6.429366	NaN	NaN	2.513515	5.628370		149.329464	107588.2423
1999- 11-10	17.831857	NaN	0.945633	NaN	0.701965	6.327925	NaN	NaN	2.610189	5.576416		147.354207	110400.5794
1999- 11-11	17.831857	NaN	0.940494	NaN	0.708183	6.175762	NaN	NaN	2.501915	5.602393		146.666817	111185.417€
1999- 11-12	20.684954	NaN	0.936089	NaN	0.695670	6.530808	NaN	NaN	2.536717	5.602393		145.378949	112362.6750

10 rows × 1256 columns

```
DatetimeIndex: 4000 entries, 1999-11-01 to 2015-09-24 Columns: 1256 entries, AAIC to ZTS
```

dtypes: float64(1256) memory usage: 38.4 MB

None

4. Plotting functionality

Just to get a visual idea of the data, we plot the prices for a particular symbol. We will finally plot this for the asset returns later on as well. Take a look at the plot for AAPL.

```
In [14]: # plotting function
def plot_symbol(symbol, df, csum=False):
    # csum denotes cummulative summation (useful for returns)
    yvals = df[symbol]
    if csum: yvals = np.cumsum(yvals)
    plt.plot(df.index, yvals)
    title = symbol + ' ' + df.name
    plt.title(title)

# check price chart for
plot_symbol('AAPL', close_prices)
```


5. Asset Returns Transform

plot_symbol('AMZN', returns, csum=True)

We calculate the returns by the day-to-day percent change of an asset. Once we have the returns, we normalize them by normalizing each individual asset's mean and standard deviation. Why would we want to normalize the returns in this manner?

```
In [15]: # calculate the percent change of each asset (pandas as an easy way to do this....)
    returns = close_prices.pct_change().dropna(axis=0, how='all')
    normed_returns = (returns - returns.mean())/returns.std()
    normed_returns = normed_returns.dropna(axis=0, how='all')
    returns.name = 'returns'
    normed_returns.name = 'normalized returns'
In [16]: # plot returns
```


In [17]: # plot normalized returns
plot_symbol('AMZN', normed_returns, csum=True)

In [19]: plot_symbol('MSFT', returns, csum=True)

In [20]: plot_symbol('MSFT', normed_returns, csum=True)

6 Data Preparation

In this section, we create a training and test data set.

```
In [21]: # use datetime cut-off for training vs test data set
    train_end = datetime.datetime(2014, 9, 24)
    # get training data for normed returns
    df_train = normed_returns[normed_returns.index <= train_end].copy().dropna(axis=1, how='any')
    # get test data for normed returns
    df_test = normed_returns[normed_returns.index > train_end].copy().dropna(axis=1, how='any')
    df_test = df_test[df_train.columns] # retain same tickers in test data as in training

# get training data for regular returns
    df_raw_train = returns[returns.index <= train_end].copy().dropna(axis=1,how='any')
    # get test data for regular returns
    df_raw_test = returns[returns.index > train_end].copy().dropna(axis=1,how='any')
    df_raw_test = df_raw_test[df_train.columns] # retain same tickers in test data as in training

print('Train dataset:', df_train.shape)
    print('Train dataset:', df_train.shape)

Train dataset: (3747, 1073)
```

7. Computing SVD of training data

Consider our training data matrix as an $T \times N$ matrix X with N samples (our tickers) and T variables (our dates). If we assume that X is normalized as we have done above, we can calculate the empirical correlation matrix of our data by

$$C = rac{1}{T-1} X^T X \in \mathbb{R}^{N imes N}$$

Test dataset: (252, 1073)

with eigendecomposition $C=VLV^T$. The eigenvectors of C should tell us how the stocks correlate to each other. Notice, however, that the eigenvectors V of C are just the right singular vectors of $X=U\Sigma V^T$. This means that we only need to compute the SVD of our data to be able to investigate the correlation of the stocks. Let's calculate the SVD using numpy. Call the right singular vectors \mathbf{v} for \mathbf{df} and \mathbf{v} and \mathbf{v} for \mathbf{df} frain and \mathbf{v} for \mathbf{df} frain \mathbf{v} frain \mathbf{v} frain \mathbf{v}

After gathering the singular vectors, we proceed to create a scatter plot of the singular vectors. Try to plot different singular vectors and comment on the behavior of the singular vectors for the normalized vs raw return SVDs.

Definition: Let V, W be inner product spaces, and $T \in \mathcal{L}(V,W)$ is any linear map. A map $S \in \mathcal{L}(W,V)$ is called the adjoint of T if $\langle Tv,w \rangle = \langle v,Sw \rangle$. And we write $S = T^*$.

For example, if matrix $A \in \mathbb{R}^{n \times n}$, then we have

$$egin{aligned} \langle Ax,y
angle &= y^T Ax \ &= y^T (A^T)^T x \ &= (A^T y)^T x \ &= \langle x, A^T y
angle \end{aligned}$$

In this case, $C \in \mathbb{R}^{N \times N}$ is the empirical correlation matrix. With its symmetry $C^T = C$, it is self-adjoint.

Spectral Theorem:

- If $T \in \mathcal{L}(V)$ is a self-adjoint linear map, then V has an orhtonormal basis consist of eigenvectors of T.
- $A \in \mathbb{R}^{n \times n}$ symmetric. Then A is orthogonally diagonalizable. Namely, there exists an orthogonal matrix U and a diagonal matrix

$$D=egin{pmatrix} \lambda_1 & & & & & \ & \lambda_2 & & & & \ & & \ddots & & & \ & & & \lambda_n \end{pmatrix}$$
 such that $A=UDU^{-1}=UDU^T$

 $C = VLV^T$ where V is the matrix of normalized eigenvectors. $\lambda = \sigma^2$

$$C = \frac{1}{T-1}X^T X$$

$$= \frac{1}{T-1}(U\Sigma^T V)^T (U\Sigma V^T)$$

$$= \frac{1}{T-1}(V\Sigma^T U^T U\Sigma V^T)$$

$$= \frac{1}{T-1}(V\Sigma^T \Sigma V^T)$$

$$= V\frac{\Sigma^T \Sigma}{T-1}V^T$$

$$= VLV^T$$

And
$$L=rac{1}{T-1}egin{pmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{pmatrix}$$

```
In [57]: # C is a 1073 x 1073 correlation matrix
# C = 1/X.shape[0]*X.T@X
X = df_train.values
X_raw = df_raw_train.values

# calculate SVD here
# np.linalg.svd returns the transpose of V
U, S, v = np.linalg.svd(X)
U_raw, S_raw, v_raw = np.linalg.svd(X_raw)
```

```
In [58]: # plot the
    # Explore the structure within the data
    # Each singular vecotr in 2 D space (projections)
# Each dot on the plot is a sticker.

def scatter_plot_svd(v, i1=1, i2=2):
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(v[i1,:], v[i2,:])
    title = 'Scatter of singular vectors'
    ax.set_title(title)
    ax.set_xlabel('singular vector '+str(i1))
    ax.set_ylabel('singular vector '+str(i2))

scatter_plot_svd(v, 4, 9)
scatter_plot_svd(v_raw, 4, 9)
```


8. Generate portfolios by normalizing

We will define the jth eigenportfolio $Q^{(j)}$ by simply the normalized jth right singular vector $v^{(j)}$ so that the resultant $Q^{(j)}$ sums to 1. In particular, compute

$$Q^{(j)} = \frac{1}{\sum_{k=1}^{N} v_k^{(j)}} v^{(j)}$$

We do this in the function below and compile the portfolios into a single pandas dataframe.

```
j_port = s_vecs[j]/np.sum(s_vecs[j,:])
    j_port = pd.DataFrame(j_port,index=tickers, columns=['Q_'+str(j+1)])
    portfolios.append(j_port)
    portfolios = pd.concat(portfolios, axis=1)
    return portfolios

portfolios_svd = j_eigPortfolio(v) # SVD portfolio computed from normalized returns
portfolios_svd_raw = j_eigPortfolio(v_raw) # SVD portfolio computed from raw returns
```

In [79]: # view data
display(portfolios_svd_raw.head(10))
display(portfolios_svd.head(10))

	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	Q_8	Q_9	Q_10	•••	
AAIC	0.001680	0.006791	-0.005605	-0.004373	0.008490	-0.013861	-0.026036	0.321520	5.287515	-0.007419		(
AAON	0.000998	0.005098	0.000990	-0.007519	0.005757	-0.008419	0.003069	0.102075	2.265475	0.003815		-(
AAPL	0.000897	0.005534	0.000963	-0.005424	-0.022579	0.000186	0.008870	-0.046476	-1.765839	-0.002053		1
AB	0.001120	0.007951	-0.000712	-0.000002	0.005648	-0.006837	-0.017325	-0.046924	-1.115297	-0.004185		
ABC	0.000490	0.010355	-0.002882	0.001852	0.002460	0.000924	0.005171	-0.084748	0.491095	0.011815		
ABCB	0.001283	0.008977	-0.004340	-0.001490	0.021949	-0.020366	-0.042097	0.093879	3.209758	-0.001036		-
ABEV	0.000642	0.005053	0.000413	0.002142	0.008668	0.016684	0.041873	-0.018195	-0.592915	-0.000631		1
ABIO	0.000873	0.011491	0.017207	0.001515	-0.041788	0.013408	0.006316	0.112287	16.843743	0.013699		
ABM	0.000852	0.000508	-0.000361	0.002642	0.004187	-0.005465	-0.010340	0.019721	1.038481	0.005829		
ABMD	0.001068	0.017214	0.001355	0.012386	-0.014966	-0.004158	-0.019399	0.088884	4.477438	0.006511		(

10 rows × 1073 columns

	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	Q_8	Q_9	Q_10	•••
AAIC	0.000869	-0.002110	-0.011231	-0.039571	0.018026	-0.032980	-0.014841	0.004586	-0.011438	-0.009146	
AAON	0.000986	-0.001087	-0.009540	-0.021038	0.020908	0.077128	0.031736	0.000100	-0.004756	-0.001349	
AAPL	0.000822	0.021252	-0.002387	-0.014092	0.003918	-0.055220	-0.037208	-0.002334	-0.021707	-0.013464	
АВ	0.001232	-0.000710	-0.008048	-0.022987	-0.017994	-0.065367	0.008990	-0.003866	0.020271	0.016062	
ABC	0.000711	-0.001175	0.010994	0.155579	0.002968	0.008083	0.016982	0.024506	0.038724	-0.015596	
ABCB	0.001107	-0.012768	-0.020011	-0.029253	0.024680	0.013709	0.041800	-0.002010	-0.017206	-0.009567	
ABEV	0.000745	-0.004757	0.020183	-0.046637	-0.002984	-0.030452	-0.047121	0.011433	-0.009518	0.014774	
ABIO	0.000266	0.010099	0.000901	-0.009887	0.007283	-0.012889	0.012250	0.013663	0.027030	0.002073	
ABM	0.001114	-0.000279	-0.006700	0.026754	0.020729	0.070815	0.028910	0.001963	0.000521	0.001935	
ABMD	0.000687	0.009123	-0.004855	-0.007072	0.018357	-0.016268	0.039279	0.011799	0.030670	-0.001362	

10 rows × 1073 columns

9 Compute performance of eigenportfolios

9.1 Compute returns and cumulative returns

We will simply compute the dot product of each eigenportfolio weight with how each stock performed for the test data. This is easily done by using .dot for a pandas dataframe. Afterwards, we can compute the cumulative returns by just using the pandas function .cumsum(). We will consider 3 portfolio performances:

- 1. normalized returns training data portfolio performance on the normalized returns test data.
- 2. raw returns training data portfolio performance on the raw returns test data.
- 3. normalized returns training data portfolio performance on the raw returns test data.

```
In [80]: # use df.dot from pandas to do this
# SVD returns
```

```
svd_rets = df_test.dot(portfolios_svd) # norm_return train vs norm_return
svd_rets_raw = df_raw_test.dot(portfolios_svd_raw) # raw_return train vs raw_return test
svd_rets_prime = df_raw_test.dot(portfolios_svd) # norm_return train vs raw_return test

# SVD cumulative returns
c_svd_rets = svd_rets.cumsum()
c_svd_rets_raw = svd_rets_raw.cumsum()
c_svd_rets_prime = svd_rets_prime.cumsum()
```

9.2 Performance metrics with Sharpe Ratio

When looking for a good investment, we want **positive** steady returns. We can think of the positive returns aspect as a positive average return whilst the **steady** returns aspect can be thought of as having low variance in the returns. This idea gives rise to the Sharpe ratio $\frac{\mu}{\sigma}$, a common method to measure the profitability of a trading strategy, which is essentially the mean divided by the standard deviation.

- A high Sharpe ratio indicates high average returns with low variance (i.e. steady returns).
- A low (but positive) Sharpe ratio means positive returns but risky.
- A negative Sharpe ratio means negative returns.

We will calculate the Sharpe ratios of all the portfolios and order them by the best performing ones.

```
In [81]: # sharpe ratio calculations
         def sharpe_ratio(ts_returns):
             sharpe_ratio - Calculates annualized return, annualized vol, and annualized sharpe ratio,
             where sharpe ratio is defined as annualized return divided by annualized volatility
             Arguments: ts_returns - pd.Series of returns of a single eigen portfolio
             annualized_return = 0.
             annualized_vol = 0.
             annualized_sharpe = 0.
             n_years = ts_returns.shape[0]
             ret = ts_returns.mean()
             ret.name = 'mean returns'
             tot_rets = ts_returns.sum()
             tot_rets.name = 'cumulative returns'
             vol = ts_returns.std()
             vol.name = 'vol'
             sharpe = ret / vol
             sharpe.name = 'sharpe'
             out_df = pd.concat([ret, tot_rets ,vol,sharpe],axis=1)
             return out_df
         # svd sharpe ratios
         svd_sharpe = sharpe_ratio(svd_rets).sort_values(by=['sharpe'], ascending=False)
         svd_raw_sharpe = sharpe_ratio(svd_rets_raw).sort_values(by=['sharpe'],ascending=False)
         \verb|svd_prime_sharpe| = \verb|sharpe_ratio(svd_rets_prime).sort_values(by=['sharpe'], ascending=|False|)| \\
```

Take a look at the top 5 performing portfolios from each section.

```
In [82]:
    print('SVD sharpe')
    display(svd_sharpe.head(5))
    print('SVD raw sharpe')
    display(svd_raw_sharpe.head(5))
    print('SVD prime sharpe')
    display(svd_prime_sharpe.head(5))
```

SVD sharpe

	mean returns	cumulative returns	vol	sharpe
Q_575	0.931256	234.676474	4.426585	0.210378
Q_258	7.585107	1911.446935	40.923444	0.185349
Q_584	1.086480	273.792896	6.179419	0.175822
Q_912	23.813802	6001.078013	136.912758	0.173934
Q_514	0.471488	118.814931	3.036164	0.155291
SVD ra	w sharpe			
	mean returns	cumulative returns	vol	sharpe
Q_1020	0.049062	12.363619	0.214973	0.228224
Q_644	0.189340	47.713793	0.898191	0.210802
Q_300	0.019358	4.878180	0.096674	0.200238
Q_872	0.022231	5.602189	0.111524	0.199337
Q_909	0.042788	10.782517	0.231836	0.184560
SVD pr	ime sharpe			
	mean returns	cumulative returns	vol	sharpe
Q_258	0.252665	63.671689	1.430187	0.176666
Q_1051	0.082910	20.893412	0.481511	0.172188
Q_575	0.022128	5.576288	0.130323	0.169795
Q_584	0.030289	7.632936	0.184086	0.164539
Q_215	0.005808	1.463616	0.035419	0.163982

9.3 Plotting top portfolios

Here we plot the top portfolios of each configuration.

```
In [83]: def plot_performance(c_rets, indices, title='PCA'):
    fig = plt.figure(figsize=(13,7))
    ax0 = fig.add_subplot(111)
    ax0.plot(c_rets[indices])
    title = title+': Portfolio performance'
    ax0.set_title(title)
    ax0.legend(indices)
In [84]: plot_performance(c_svd_rets, svd_sharpe.head(5).index, title='SVD')
    plot_performance(c_svd_rets_raw, svd_raw_sharpe.head(5).index, title='SVD raw')
    plot_performance(c_svd_rets_prime, svd_prime_sharpe.head(5).index, title='SVD prime')
```

SVD: Portfolio performance

2015-03

2015-05

2015-07

2015-09

2015-01

2014-11

SVD prime: Portfolio performance

