Corneliu Gaina 15 / 01 / 18 Lovelace III

The Watch #4

IoT: Internet of things

1.1 Qu'est ce qui a permis l'internet des objets ?

doublement du nombre des transistors dans les circuits tous les 18 mois.

Effet de reseau = l'utilité d'un réseau est proportionnelle au carré du nombre de ses utilisateurs.

<u>Efficience au kWh</u> = le nombre de calculs par joule d'énergie dépensé double tous les 18 mois environ (<-> Loi de Moore).

(actuellement ~7nm) (x10 entre 2015 et 2020)

1.2 Exemples d'applications IoT

Enceinte => API Web

1.3.1 Ecosysteme IoT (1): explosion avec l'automation

FIGURE 1: Depiction of four ages of automation, illustrating the reach of control over time (bottom) and the increase in the global number of connectable devices (top)

Timeline

1.3.2 Ecosysteme IoT (2): la chaîne de valeur loT Value Chain – Where Is The Money? favoriot

1.4 Les réseaux de communication sans fil

1.5 Haut debit vs. Bas debit

Haut debit:

3G / 4G LTE / 5G future

- Bas debit = technologies LPWAN : **Nb-loT** (<=> 4G, licenced spectrum)
 - Sigfox (techno proprietaire/licensed)
 - **LoRaWan** (unlicenced spectrum)

Avantages:

Haut debit (1-20/Mbit/s 4G & >1Gbit/s)

Portee movenne.

Avantages:

Longue portee

Low cost (<7\$ / node)

Longue batterie (5-10 ans / node)

(3km conditions urbaines/ +15 km plein air)

Inconvenients:

Energivore et cher pour deployement.

Inconvenients:

Debit de <50ko/s.

1.6 Low Power Wide Area Network: LPWAN

- La technologie LoRa est francaise et acquise par le semi-conducteur americain
 Semtech puis developpee avec la Lora Alliance.
- Sigfox est une entreprise et technologie francaise, en plein deployement.

LoRa Alliance™ Wide Area Networks for **LoRaWAN™ NETWORKS** Wide Area Networks for IoT Alliance Member Public Networks Other LoRaWAN Deployment

83 Network Operators

56Alliance Member Operators

Operating in 49 Countries

~100 Countries With LoRaWAN Deployments

May 2018

All information contained herein is current at time of publishing - LoRa Alliance is not responsible for the accuracy of information presented

Couverture LoRa® Orange

COMMUNITIES LABS LEARN SUPPORT FORUM MARKETPLACE

GATEWAYS Add a gateway

2.1 Focus LoRaWan : origine et deployement

Feature	LoRaWAN	Narrow-Band	LTE Cat-1 2016 (Rel12)	LTE Cat-M 2018 (Rel13)	NB-LTE 2019(Rel13+)
Modulation	SS Chirp	UNB / GFSK/BPSK	OFDMA	OFDMA	OFDMA
Rx bandwidth	500 - 125 KHz	100 Hz	20 MHz	20 - 1.4 MHz	200 KHz
Data Rate	290bps - 50Kbps	100 bit/sec 12 / 8 bytes Max	10 Mbit/sec	200kbps – 1Mbps	~20K bit/sec
Max. # Msgs/day	Unlimited	UL: 140 msgs/day	Unlimited	Unlimited	Unlimited
Max Output Power	20 dBm	20 dBm	23 - 46 dBm	23/30 dBm	20 dBm
Link Budget	154 dB	151 dB	130 dB+	146 dB	150 dB
Batery lifetime - 2000mAh	105 months	90 months		18 months	
Power Efficiency	Very High	Very High	Low	Medium	Med high
Interference immunity	Very high	Low	Medium	Medium	Low
Coexistence	Yes	No	Yes	Yes	No
Security	Yes	No	Yes	Yes	Yes
Mobility / localization	Yes	Limited mobility, No loc	Mobility	Mobility	Limited Mobility No Loc

2.2.1 LoRaWan: architecture de deployment

Single Conduit acting as Packet FW + Lora Server

2.2.2 **LoRaWan**: quelle integration backend/frontend?

Documentation & setup: <u>LoRa</u> <u>Server</u> application;

- Envoi/Reception des donnees du serveur via le protocole MQTT (Message Queuing Telemetry Transport) OU HTTP.
- Via API Google Cloud, Amazon Web Services, Microsoft Azure Cloud (cf. Cayenne de myDevices).

Integration custom & open-source dans les projets (client-serveur) :

- <u>gRPC API</u> (code client peut être généré dans tous les langages: Java, Go, PHP, Node.js, Python...)
- RESfful JSON API (Javascript Object Notation)

2.3.1 Prototyper un projet LoRaWan (1)

Micro USB

16G TF Card

1GHz Antenna

Abonnement à un opérateur (Proximus, Orange, tiers) ou bricolage *Do It Yourself*.

Presentation du projet sur Youtube

2.3.2 Prototyper un projet LoRaWan (2)

Temperature, Humidite, Lumiere, CO2 and presence (mouvement).

Differents sensors/objets, differentes gammes et standards industriels (3-300\$).

2.3.3 Prototyper un projet LoRaWan (3)

How lot Is Changing Web Development

By ELIFTECH - November 27, 2018

Quid pour nous?

La collecte de beaucoup de datas, donc assurer la scability et reliability.

-> **Javascript**: programmation de scripts et oriente objet, pour le web (95% des sites web).

Certaines programmations matérielles se font via le Node.js

(Python: programmation objet et datascientist) (Java sur la programmation objet et logiciel) (Javascript utilise pour le developpement web)

Pistes de reflexion sur l'IoT ...

Le Big Data ?

L'Intelligence Artificielle ?

Innovation environnementale et sociale ?

Sources -

- Pages wiki /documentation dans liens cliquables des slides.
- A technical overview of LoRa® and LoRaWAN™, 2015, LoRa Alliance.
- Documentation LoRa Server: https://www.loraserver.io/
- LoRaWan Security: Full End-to-End encryption for IoT Applications providers
- Prototypes et tutoriels : www.hackster.io &

"#115 Construire une Passerelle LoRa/LoraWAN branché sur TTN" sur Youtube

"#112 LoRa / LoRaWAN De-Mystified / Tutorial" sur Youtube

Petit resume: https://www.objetconnecte.com/tout-savoir-reseau-lora-bouygues/

Commentez et posez vos questions sur ce Google Slide!:)