MI3 Sección A Primer Semestre 2021

Profesora: Inga. Ericka Cano Aux: William Hernandez

CLASE 29/01/2021

MÉTODOS DE SOLUCIÓN PARA ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Ecuaciones Lineales

Resuelva

$$x^{2}y' + 3xy = \frac{1}{x} \cos x$$

$$x^{2}y' + 3xy = \frac{1}{x} \cos x$$

$$x^{2}y' + 3xy = \frac{1}{x} \cos x$$

$$\frac{x^{2}y'}{x^{2}} + \frac{3xy}{x^{2}} = \frac{\cos x}{x(x^{2})}$$

$$\Re(x)$$

$$y' \left(+ \frac{3y}{x} \right) = \frac{\cos x}{x^3}$$

$$y' + \frac{3y}{x} = \frac{\cos x}{x^3}$$

$$P(x) = \frac{3}{x}$$

$$F.I. = e^{3\int \frac{dx}{x}} = e^{3\ln x} = e^{inx^3} = x^3$$

$$\times \frac{3}{4} = \int \frac{1}{2} \times \frac{3}{4} = e^{inx^3} = x^3$$

$$(F.I.)y = \int (F.I.)Q(x)dx$$

$$x^3y = \int x^3 \left(\frac{\cos x}{x^3}\right) dx$$

$$y' + P(x)y = Q(x)$$

$$Lineal\ en\ "y"$$
 $F.I. = V(x) = e^{\int P(x)dx}$

$$x^3y = \int x^3 \left(\frac{\cos x}{x^3}\right) dx$$

$$x^3y = \int \cos x \, dx$$

$$x^3y = senx + c$$

$$y = \frac{senx + c}{x^3}$$

$$y = x^{-3}(senx + c)$$

Solución explícita Solución general Resuelva

Luisl en't
$$= Q(x)$$

$$(1-4xy^2)^{\frac{1}{2}} = y^3$$

$$(1-4xy^2) \frac{dy}{dx} = y^3 + (1-4xy^2)$$

Resolver

$$(1 - 4xy^2) \underbrace{\frac{dy}{dx}} y^3 \underbrace{y^3}$$

$$(1 - 4xy^2) = y^3 \frac{dx}{dy}$$

$$\frac{dx}{dy} + \underbrace{4xy^2}_{3} = \underbrace{1}_{3}$$

$$\frac{dx}{dy} + \frac{4x}{y} = \frac{1}{y^3}$$

$$x' + \frac{4x}{y} = \frac{1}{y^3}$$

mial en X X+P(T)X = Q(T

$$x' \left(+ \frac{4x}{y} = \boxed{\frac{1}{y^3}} \right)$$

$$x' + P(y)x = Q(y)$$
Lineal en "x"

$$P(y) = \frac{4}{y}$$

$$F.I. = V(y) = e^{\int P(y)dy}$$

$$F.I. = V(y) = e^{4 \int \frac{dy}{y}} = e^{4 \ln y} = e^{\ln y^4} = y^4$$

$$T^{4}X = \int T^{4} \left(\frac{1}{T^{3}}\right) dT$$

$$(F.I.)x = \int (F.I.)Q(y)dy$$

$$y^4x = \left(\int y^4 \left(\frac{1}{y^3} \right) dy \right)$$

$$y^4x = \int y^4 \left(\frac{1}{y^3}\right) dy$$

$$y^4x = \int y \, dy$$

$$(y^4)x = \frac{y^2}{2} + c$$

$$x = \frac{y^{-2}}{2} + cy^{-4}$$
 Solución explícita
Solución general

ECUACIONES LINEALES CON COEFICIENTES DISCONTINUOS

Estas ecuaciones están compuestas por funciones por partes en algunos de los coeficientes de la ED

EJEMPLO

Resuelva el problema con valores iniciales de tal forma que la Solución sea continua

$$f(x) = \begin{cases} \frac{dy}{dx} + 2xy = f(x) \\ 0 \le x < 1 \\ 0, x \ge 1 \end{cases} \quad \text{sujeto a } y(0) = 2 \qquad \begin{cases} x, \\ 0, 2 \end{cases}$$

$$\frac{dy}{dx} + 2xy = f(x)$$

$$f(x) = \begin{cases} x, & 0 \le x < 1 \\ 0, & x \ge 1 \end{cases}, \quad sujeto \ a \ y(0) = 2$$

$$PARA \ 0 \le x < 1$$
$$f(x) = x$$

$$\frac{dy}{dx} + 2xy = x \Rightarrow lineal en y$$

$$Q(x) = x$$

Factor de integración

$$V(x) = e^{\int 2x dx} = e^{x^2} = \text{F.I.}$$

$$e^{x^2}y = \int xe^{x^2}dx$$

$$e^{x^{2}}y = \int xe^{x^{2}}dx$$

$$u = x^{2}$$

$$du = 2xdx$$

$$e^{x^{2}}y = \int \frac{e^{u}}{2}du$$

$$\frac{du}{2} = xdx$$

$$e^{x^{2}}v = \frac{e^{u}}{2} + c$$

$$y(0) = 2$$

$$2 = \frac{1}{2} + ce^{-(0)^{2}}$$

$$c = 2 - \frac{1}{2} = \frac{3}{2}$$

$$C = \frac{3}{2}$$

$$y = \frac{1}{2} + ce^{-x^{2}}$$

$$y = \frac{1}{2} + \frac{3}{2}e^{-x^{2}} \to 0 \le x < 1$$

 $c = \frac{3}{2}$

$$\frac{dy}{dx} + 2xy = f(x)$$

$$f(x) = \begin{cases} x, & 0 \le x < 1, \\ 0, & x \ge 1 \end{cases}, \quad sujeto \ a \ y(0) = 2$$

$$PARA \ x \ge 1 \qquad \boxed{1, \ \infty}$$

$$f(x) = 0$$

$$\frac{dy}{dx} + 2xy = 0 \to lineal\ en\ y$$

$$\frac{dy}{dx} + 2xy = 0 \to lineal\ en\ y$$

Separación de variables

$$\int \frac{dy}{y} = -2x dx$$

$$\ln|y| = e^{-x^2 + c_1}$$

$$y = e^{-x^2 + c_1}$$

$$y = e^{-x^2 + c_2}$$

$$y = \begin{cases} \frac{1}{2} + \frac{3}{2}e^{-x^{2}}, & 0 \le x < 1\\ \frac{1}{2}e + \frac{3}{2}e^{-x^{2}}, & x \ge 1 \end{cases}$$

Existe Continuidad en x = 1

$$\lim_{x \to 1^{-}} y = \lim_{x \to 1^{+}} y$$

$$\lim_{x \to 1^{-}} \frac{1}{2} + \frac{3}{2} e^{-x^{2}} = \lim_{x \to 1^{+}} \left(c e^{-x^{2}} \right)$$

$$\left(\frac{1}{2} + \frac{3}{2} e^{-(1)^{2}} \right) = c e^{-(1)^{2}}$$

$$\left(\frac{1}{2} + \frac{3}{2} e^{-1} \right) = c$$

$$c = \frac{1}{2} e + \frac{3}{2}$$

ECUACIÓN DE BERNOULLI

ECUACIÓN DE BERNOULLI

Una importante ecuación no lineal, que puede ser reducida a la forma lineal con una $\gamma' + \ell(x) \gamma = Q(x)$ $para n \neq 0 \ y \ n \neq 1$ sustitución apropiada es la Ecuación de Bernoulli

$$\frac{dy}{dx} + P(x)y = Q(x)y^n$$

Donde P(x) y Q(x) son funciones de "x" y/o constantes y el coeficiente que acompaña a y' es 1.

$$\frac{dv}{dx} = \frac{d(y^{1-n})}{dx}$$

La sustitución genera un cambio de variable dependiente que reduce la ecuacion original a una ecuación lineal. Para cambiar el diferencial de la variable dependiente se deriva la sustitución establecida.