Лекции по функциональному анализу

Олег Галкин

20.01.22

Содержание

1	Множества	2
2	Функции 2.1 Свойства образов и прообразов	3
3	Сравнение мощностей 3.1 Операции над мощностями	5
4	Теория меры 4.1 Сисетемы множеств	7 7

1 Множества

Зафиксируем универс \mathcal{U} .

Определение 1 Характеристическая функция (индикатор) множества $A \subset \mathcal{U}$:

$$I_A \colon \mathcal{U} \to \{0, 1\}; \ I_A(x) = \begin{cases} 1, x \in M \\ 0, x \notin M \end{cases}$$

Обозначим за $\text{Hom}(\mathcal{U}, \{0,1\})$ множество всех отображений из универса в двухэлементое множество. Рассмотрим оператор

$$\varphi \colon \mathcal{P}(\mathcal{U}) \to \operatorname{Hom}(\mathcal{U}, \{0, 1\}); A \mapsto I_A$$

Мы построили функтор из категории подножеств универса в хом-категорию.

Теорема 1 φ - биекция.

Доказательство. Инъективность следует из того, что различным множествам соответсвуют различные индикаторы. Докажем сюръективность. Пусть I - произвольный индикатор. Сопоставим ему следующее множество:

$$A_I = \{ x \in \mathcal{U} \mid I(x) = 1 \}$$

Как соотносятся операции над множествами и индикаторы? Имеем $I_{A\cap B}=I_A,\,I_{A\cup B}=I_A+A_B-I_AI_B.$ Можно придумать и другие функции: например, $I_{A\cup B}=I_A^3+A_B^2-I_AI_B=\max$

Пусть φ - оператор, A_i - последовательность множеств. Построим по ней последовательность индикаторов I_{A_i} . Предел функциональной последовательности $\lim_{i\to\infty}I_{A_i}=I_A$ является индикаторов некоего множества A.

Определение 2 Множество A является пределом последовательности множеств A_i .

Определение 3 Верхний предел множеств:

$$\overline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \sup A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$
 (1)

Задача. Доказать $\varliminf_{n\to\infty}A_n\subset\varlimsup_{n\to\infty}A_n$. Решение: по определению имеем

$$\underline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = (A_1 \cap ...) \cup (A_2 \cap ...) \cup ...$$

Если x лежит в этом множестве, то $\exists n: x \in \bigcap_{k=n}^{\infty} A_k$. То есть $\forall k \geqslant n_0: x \in A_k$. Теперь докажем, что этот $x \in \overline{\lim_{n \to \infty}} A_n = (A_1 \cup A_2 \cup ...) \cap ... \cap (A_n \cup A_{n+1} \cup ...) \cap ...$

Определение 4 Нижний предел называется пределом последовательности (множеств), если он совпадает с верхним пределом.

Задача. Доказать по определению, что если $A_1 \subset A_2 \subset A_3 \subset ...$, то $\exists \lim_{n \to \infty} A_n$. Решение: найдем верхний и нижний пределы: $\underline{\lim}_{n \to \infty} A_n =$

$$\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}A_{k}=\bigcup_{n=1}^{\infty}A_{n},\ \overline{\lim_{n\to\infty}}\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_{k}=\bigcap_{n=1}^{\infty}\bigcup_{k=1}^{\infty}A_{k}=\bigcup_{k=1}^{\infty}A_{k}$$
 (в последнем равенстве мы избавились от зависимости от n).

Дз1: доказать в случае обратных включений.

Задача. Найдем $\lim_{n\to\infty} [0, 1+\frac{(-1)^n}{n}]$. Имеем $\lim_{n\to\infty} \bigcup_{n=1}^\infty \bigcap_{k=n}^\infty A_k = \bigcup_{n=1}^\infty B_n$. Заметим, что $B_n = B_{n-1} = A_n$ при нечетном n, поэтому

$$\boxed{ \boxed{ ДЗ2: доказать } } C \left(\underbrace{\varliminf_{n \to \infty}}_{n \to \infty} A_n \right) = \varlimsup_{n \to \infty} CA_n$$

ДЗЗ: найти : ПУсть $A_1 = A_3 = A_5 = \dots = [0,1]$, четные- [-1,0].

Найти верхний и нижний предел.

ДЗ4: доказать: верхний предел последовательности множеств = элементы, леж

2 Функции

Определение 5 Функция $f: A \to B$ - это тройка (A, B, f), где A, B - множество, f - правило, сопоставляющее каждому элементу множества A ровно один элемент множества B. A - область определения.

Определение 6 Область определения функции - $\{y \in B \mid \exists x \in A : f(x) = y\} = \{f(x) \mid x \in A\}.$

Определение 7 Декартово (прямое) произведение - $A \times B = \{(x,y) \mid x \in A, y \in B\}$ Кортеж - $A_1 \times A_2 \dots \times A_n = \{\}$

Как ввести счетное произведение множеств? $A_1 \times A_2 \times ... = \{(x_1, x_2, ...) \mid x_i \in X_i\} = \prod_{n=1}^\infty A_k = A^\mathbb{N}$. Как индексировать декартовы произведения множеством любой мощности? Записывается как $\{(x_\gamma)_{\gamma \in \Gamma} \mid x_\gamma \in A_\gamma\} = \prod_{\gamma \in \Gamma} A_\gamma = A^\Gamma$.

Теорема 2 Существует биекция между A^{Γ} и $\operatorname{Hom}(\Gamma, A)$.

Доказательство. Имеем $A^{\Gamma} = \prod_{\gamma \in \Gamma} A_{\gamma}$ Построим следующую биекцию:

$$\varphi \colon A^{\Gamma} \to \operatorname{Hom}(\Gamma, A),$$

$$(x_{\gamma})_{\gamma \in \Gamma} \mapsto [\gamma \mapsto x_{\gamma}]$$

Почему это биекция? □

Пример. Пусть $A = \mathbb{R}$, $\Gamma = \{1, 2, 3\}$. С одной стороны, мы имеем последовательности из 1,2,3, индексированные действительными числами, а с другой стороны - функции из множества $\{1, 2, 3\}$ в действительные числа. Тогда биекция $\varphi \colon \mathbb{R}^{\{1,2,3\}} \to \operatorname{Hom}(\{1,2,3\},\mathbb{R})$ задается следующим образом: $\varphi(x_1, x_2, x_3) = f : f(1) = x_1, f(2) = x_2, f(3) = x_3$

Из теоремы немедлено получаем следствие:

Теорема 3 Существует биекция между $\{0,1\}^{\Gamma}$, $\operatorname{Hom}(\Gamma,\{0,1\})$ и $\mathcal{P}(\Gamma)$.

Доказательство. Первая биекция - по теореме 1. Вторая биекция $\psi \colon \operatorname{Hom}(\Gamma, \{0, 1\}) \to \mathcal{P}(\Gamma)$ строится так:

$$[f \colon \Gamma \to \{0,1\}] \mapsto \{\gamma \in \Gamma \mid f(\gamma) = 1\}$$

Обратная к этой биекции сопоставляет множеству индикатор.

2.1 Свойства образов и прообразов

Пусть $f: X \to Y$.

Определение 8 $f^{-1}(y) = \{x \in X \mid f(x) = y\}$ - полный прообраз точки y. Полный прообраз множества - объединение полных прообразов его точек.

Определение 9 Образ множества - множество образов всех его элементов. Вопрос: ДЗ образ пересечения = пересечение образов?

Вопрос. Счетеное произведение континуумов - континуум.

Решение. $\mathbb{R}^{\mathbb{N}} = \{(a_1, a_2, ...) \mid a_i \in \mathbb{R}\}$. Так как $\mathbb{R} \sim \text{Hom}(\mathbb{N}, \{0, 1\}) \sim \{0, 1\}^{\mathbb{N}} \sim \{(x_1, x_2, ...) \mid x_i \in \{0, 1\}\}$, то $\mathbb{R}^{\mathbb{N}} \sim \{(a_1, a_2, ...) \mid a_i \in \{0, 1\}^{\mathbb{N}}\}$. Покажем, что $\{(a_1, a_2, ...) \mid a_i \in \{0, 1\}^{\mathbb{N}}\} \sim \{0, 1\}^{\mathbb{N}}$. Расположив это все это в бесконечной матрице, используем змейку лол.

Мы различаем Нот-множества и $B^A = \{(b_a)_{a \in A}\}$ - множество индексированных последовательностей. С другой стороны, последовательность есть функция на множестве натуральных чисел.

3 Сравнение мощностей

Пусть $\alpha = |A|, \beta = |B|$.

Определение 10 Говорим, что $\alpha < \beta$, если $\alpha \neq \beta$ и $\exists B_1 \subset B : A \sim B_1$.

Определение 11 Говорим, что $\alpha \leq \beta$, если $\alpha < \beta$ или $\alpha = \beta$

В частности, из аксиомы выбора следует сравнимость любых множеств. Следует ли обратно?

Теорема 4 Любые две мощности сравнимы.

Доказательство. По аксиоме выбора, любые множества можно вполне упорядочить (теорема Цермело). Из сравнения порядковых чисел следует, что либо $A \sim B_1 \subset B$ (1), либо $B \sim A_1 \subset A$ (2). Возможны следующие варианты:

- 1. $A \sim B_1 \subset B$, $B \sim A_1 \subset A$. Тогда по КШБ $A \sim B$.
- 2. (1) и не (2).
- 3. не (1) и (2). 4. не (1) и не (2) не бывает. \square

3.1 Операции над мощностями

Пусть
$$\alpha = |A|, \beta = |B|$$
.

Определение 12 Определим следующие операции:

$$\alpha \cdot \beta := |A \times B|$$

$$\alpha + \beta := |A \cup B|$$

$$\alpha^{\beta} := |A^{B}|$$

Докажем, что введенное определение корректно: именно, если $|A_1| =$ $|A| = \alpha, |B_1| = |B| = \beta,$ тогда:

- 1. $|A_1 \times B_1| = |A \times B|$;
- 2. $|A_1 \cup B_1| = |A \cup B|$;
- 3. $|A_1^{\bar{B}_1}| = |A^B|$.

Теорема 5 Для мощностей выполнены свойства:

- 1. $\alpha\beta = \beta\alpha$
- 2. $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$ 3. $\alpha^{\beta+\gamma} = \alpha^{\beta}\alpha^{\gamma}$
- 4. $(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma}$
- 5. $(\alpha\beta)^{\gamma} = \alpha^{\gamma}\beta^{\gamma}$

Доказательство.

- 1.
- 2.
- 3.
- 4. По определению, $(\alpha^{\beta})^{\gamma} = |(A^B)^C|, \ \alpha^{\beta\gamma} = |A^{B\times C}|, \ поэтому построим$ биекцию $\varphi \colon (A^B)^C \to A^{\acute{B} \times C}$.

Вспоминаем, что $(A^B)^C = \{(d_c)_{c \in C} \mid d \in A^B\}, A^{B \times C} = \{(a_{(b,c)})_{(b,c) \in B \times C} \mid d \in A^B\}$ $a_c \in A$ \}. \square

ДЗ №2 ДЗ №2 З Д З Д З Д ЗД З Д З Д З Д З Д З Д

Примеры. $2^{\aleph_0} = |\mathbb{R}|$

C одной стороны, $\aleph_0^{\aleph_0}\geqslant 2^{\aleph_0}=\mathfrak{C}.$ C другой стороны, $\aleph_0^{\aleph_0}\geqslant \mathfrak{C}^{\aleph_0}=\mathfrak{C},$ откуда $\aleph_0^{\aleph_0} = \mathfrak{C}$.

Теорема 6 (Кантор)

$$\mathcal{P}(X) \not\sim X$$

Теорема 7 Если $|A| \geqslant 2$, то $\forall B \neq \emptyset : |A^B| > B$.

Доказательство. Очевидно из теоремы Кантора, что отношение здесь больше или равно. Исключим раVенство - докажем, что нет биекции. Именно, нет биекции меZду B и $HE\ddot{M}$ - додокаZать. \square

Пример: континум в степени континуум это 2 в степени континума. Если максимум существует, то он достигается.

4 Теория меры

Определение 13 Мера μ на семействе множеств Σ - функция μ : $\Sigma \to \mathbb{R}$, такая что:

1.
$$\forall A_1, ..., A_n \in \Sigma : A_i \cap A_j \neq 0, \bigcup_i A_i \in \Sigma : \mu(A_1 \cup, ..., \cup A_n) = \mu(A_1) +$$

 $\dots + \mu(A_n)$ - конечная аддитивность;

2. $\mu(A) \geqslant 0$ - неотрицательность.

Определение 14 Мера называется счетно-аддитивной, если аддитивность для счетного числа множеств:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

Пример. $\Sigma = \{\langle a,b\rangle \cap \mathbb{Q} \mid a \leqslant b\}, \ \mu(\langle a,b\rangle \cap \mathbb{Q}) = b-a.$ Мера точки - ноль. Имеем

$$\mu([0,1] \cap \mathbb{Q}) = 1$$

НО

$$\mu([0,1] \cap \mathbb{Q}) = \sum_{i=1}^{\infty} \mu(c_i) = 0, \ c_i \in [0,1] \cap \mathbb{Q}$$

Значит, мера не счетно-аддитивна. ДЗ доказать конечно-аддитивность Пример. $\mu(A \cap B) = \mu(A(\backslash B) \cap B) = \mu(A \setminus B) + \mu(B)$. Значит, $\mu(A \setminus B) = \mu(A) - \mu(A \cap B)$,

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$

4.1 Сисетемы множеств

Определение 15 Кольцо множеств R — непустое семейство множеств, причем $\forall x,y \in R : x \cap y, x \cup y, x \setminus y, x \triangle y \in R$

Пример. Множество всех промежутков на прямой - не кольцо, так как объединение не лежит в нем. Булеан множества - кольцо.

Теорема 8 Булеан любого множества - кольцо относительно пересечения (умножение) и симметрической разности (сложение).

Теорема 9 Семейство множеств является кольцом множеств \Leftrightarrow оно непусто и замнкуто относительно объединения и разности (либо относительно пересечения и симметрической разности).

Доказательство. Докажем, что все операции, фигурирующиев в определении кольца множеств, выражаются черех объединение и разность. Действительно, $A\triangle B = (A \setminus B) \cup (B \setminus A), \ A \cap B = (A \cup B) \setminus (AB)$. есемейство множеств $R \square$

ДЗДЗДЗДЗДЗДЗ 333333Полна ли система только с одной операцией?3333333

Теорема 10 Кольцу множеств принадлежат конечные объединения и пересечения его элементов.

Доказательство. По индукции. \square

Теорема 11 Пересечение любых колец множеств - кольцо множеств.

Доказательство. Объединение и пересечение, разность и симметрическая разность элементов лежат в каждом из множеств, а значит, и в пересечении колец. \square

Объединение - не всегда кольцо: контрпример доставляют кольца $\{A,\varnothing\},\{B,\varnothing\}.$

Определение 16 Произведение систем множеств -

$$S_1 \times S_2 := \{ A_1 \times A_2 \mid A_1 \in S_1, A_2 \in S_2 \}$$

Определение 17 Если S - система множеств, то порожденным её кольцом называется кольцо R(S), такое что $S \subset R(S)$ и $\forall R_1 : S \subset R_1$ имеет место $R(S) \subset R_1$.

ДЗДЗДЗДЗДЗДЗД найти порожденное кольцо $S = \{\{1, 2, 3\}, \{2, 3, 4\}\}$

Теорема 12 Порожденное кольцо существует для любого непустого семейства множеств и единственно.

Доказательство. Пусть $X = \bigcup_{A \in S} A$. $S \subset \mathcal{P}(X)$ - кольцо. Положим \tilde{R} - пересечние всех колец, содержащих S. Покажем, что оно порожденное и единственное.

Единственность. Пусть есть два минимальных кольца. Они лежат друг в друге. \square

Определение 18 Полукольцо множеств - семейство множеств S, если замкнуто относительно пересечения и разность двух множеств должна представляться в виде конечного объединения непересекающихся множеств.

Пример - семейство всех промежутков на прямой.

ДЗЗЗДЗДЗДЗВЕЗДОЧКА Произведение множеств всех промежутков - кольцо или полукольцо?