

DOCUMENT RESUME

ED 201 997

CS 006 095

AUTHOR Hirschfeld, Rafael; Bieger, George  
TITLE Instrumentation and Software for the Collection,  
Analysis, and Interpretation of Eye Movement Data  
during Reading. Technical Report No. 3.  
INSTITUTION State Univ. of New York, Ithaca. Coll. of Agriculture  
and Life Sciences at Cornell Univ.  
SPONS AGENCY Office of Naval Research, Arlington, Va. Personnel  
and Training Research Programs Office.  
PUB DATE Jun 81  
CONTRACT # N00014-80-C-0372  
NOTE 30p.; Bibliography may not reproduce clearly.  
EDRS PRICE MF01/PC02 Plus Postage.  
DESCRIPTORS Cognitive Processes; \*Data Analysis; \*Data  
Collection; \*Eye Fixations; \*Eye Movements;  
\*Measurement Equipment; \*Measurement Techniques;  
Psychology; Reading Research; Research Methodology;  
Visual Perception

ABSTRACT

Noting that the equipment traditionally used in eye movement research is both expensive and stationary in nature, this report describes apparatus for collecting and interpreting eye movement data that is both relatively inexpensive and portable. The report lists and describes hardware and software components of a data collection and data analysis system that provides precise information regarding the location, duration, and sequence of eye fixations during the reading of materials that are composed of both text and pictures. It also describes a procedure for collecting eye movement data in nonlaboratory settings, such as classrooms. (Author/FL)

\*\*\*\*\*  
\* Reproductions supplied by EDRS are the best that can be made \*  
\* from the original document. \*  
\*\*\*\*\*

This document has been reproduced as  
received from the person or organization  
originating it.

Minor changes have been made to improve  
reproduction quality.

- Points of view or opinions stated in this docu-  
ment do not necessarily represent official NIE  
position or policy.



DEPARTMENT OF EDUCATION

College of Agriculture and Life Sciences

CORNELL UNIVERSITY

INSTRUMENTATION AND SOFTWARE FOR THE COLLECTION  
ANALYSIS, AND INTERPRETATION OF EYE MOVEMENT  
DURING READING

Raphael Hirschfeld

George Biener

Technical Report No. 3

Reproduction in whole or part is ~~permitted~~ for any purpose of the United  
States Government

This research was sponsored by the Personnel and Training Research Programs,  
Psychological Sciences Division, Bureau of Naval Research, under Contract  
No. N00014-80-C-0372, Contract Authority Identification Number NR157-452.

This report, No. 4, Series B, is issued by the Reading Research Group,  
Department of Education, New York State College of Agriculture and Life  
Sciences, a Statutory College of the State University, Cornell University,  
Ithaca, N.Y. 14853. It is supported in part by Hatch Funds Project  
#424 PRES. STRAT. IMP. COMP. PRINT TECHN. MAT.

Approved for public release; distribution unlimited.

Unclassified

~~SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)~~

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20.

data in non-laboratory settings such as classrooms.

4

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

# Eye Movement Instrumentation

1

## Instrumentation and Software for the Collection, Analysis, and Interpretation of Eye Movement Data during Reading

Rafael Hirschfeld and George R. Bieger  
Cornell University

### Abstract

Describes a method and apparatus for collecting and interpreting eye movement data, for research on reading pictures as well as text, that is both relatively inexpensive and portable. Lists and describes hardware and software components of a data collection and data analysis system which provides precise information regarding the location, duration, and sequence of eye fixations during the reading of materials that are composed of both text and pictures. Also describes a procedure for collecting eye-movement data in non-laboratory settings such as classrooms.

Instrumentation and Software for the Collection, Analysis,  
and Interpretation of Eye Movement Data during Reading

During the past few years investigators in several domains of cognitive psychology have begun to develop and use techniques for recording the patterns of small eye movements and "fixations" which they use as correlates of mental processes. In particular they have been studying fixation durations as indices of the temporal properties of mental operations, including those mental operations and processes involved in reading (Bouma & deVoogd, 1974; Carpenter & Just, 1972, 1977; Just & Carpenter, 1976a, 1976b, 1980; Loftus, 1978; Loftus, 1975; McConkie, 1976; Rayner, 1975a, 1976, 1977, 1978; Rayner & McConkie, 1976). Although such techniques have proven valuable, they have been found to have at least two major practical drawbacks limiting their widespread use in reading research. The first obstacle has been the high cost. Eye tracking devices are typically expensive themselves and usually require very costly accessory equipment to be useful. An equipment expenditure in excess of \$50,000 is not unusual, but is often prohibitive to many prospective researchers in this field. A second problem is that such equipment is necessarily stationary and requires that all data be collected in the laboratory. This limitation (often precludes (or at least makes more difficult) the use of subjects who do not have easy

access to the laboratory. Data from these subjects are often useful in those investigations concerned with individual differences in reading. This report describes apparatus and procedures designed to overcome these obstacles while retaining the precision and accuracy necessary for the use of eye movement techniques in reading research.

The development and use of the equipment, software, and procedures described below came about in response to problems encountered while investigating the ways readers use the information contained in materials consisting of pictures and text. Our intent was to manipulate the location of certain kinds of information (e.g., locative or descriptive information) in text or pictures and measure the effects of these manipulations on comprehension. We wanted to know what caused a reader to leave the text to search a picture for additional information and where in the picture they looked for that information. We also wanted to compare reading strategies among diverse categories of readers; for example, beginning and immature versus accomplished readers. These objectives required that we know: (a) where the reader was looking (i.e. the location of the eye fixation), (b) how long he/she attended to that location (i.e. the duration of the fixation), and (c) where he/she looked next (i.e. the sequence of fixations). Also, collecting data from people of various backgrounds, many of whom could not practically come to our laboratory, required a portable data collection system.

Given our budgetary limitations, we attempted to adapt our equipment to meet the specifications of our research. That equipment is described below and our laboratory layout is shown in Figure 1.

---

Insert Figure 1 about here.

---

#### Equipment

- 1) Gulf and Western Model 106 Eye-trac system (cost \$2500)

This device uses a differential reflection method of limbus and eyelid tracking, and produces an analog signal proportional to the displacement of the eye.

Since it can follow each eye's movements in only one direction, we record horizontal movements from one eye and vertical movements from the other. It is equipped with a chin and temple rest and has been modified to include a head restraint to minimize head movements but allow reasonable comfort. The machine is easily portable and we have bolted it to a base which in turn can be clamped to any table or platform to provide it with stable support.

- 2) JVC KD-A2 stereo cassette deck (cost \$300)

We use this to store the output of the Eye-trac system

when we are ~~away~~ from the laboratory and cannot send the signal directly to the computer. In order to record the D.C. signal we have built a detachable modulator/demodulator (see Figure 2).

3) Data Translation DT2762 A/D converter (cost \$750)

This takes the analog signal from the Eye-trac system or the tape deck and converts it to a digital value for computer analysis.

4) PDP-11/03 computer system (cost \$4500)

The computer system includes a dual floppy disk drive, 32K RAM, 4-port serial line interface, line time clock, and CRT terminal. The system accepts data from the analog-to-digital converter and stores them on floppy disks for subsequent analysis. This analysis will be described more fully in the section on software.

5) Hewlett-Packard 7221B plotter (cost \$5000 - optional)

Although this device is not essential, we have found it extremely useful for displaying eye positions and for setting up maps of the stimuli. The plotter sends the boundaries of all stimulus target regions to a mapping program (using a digitizing sight) and, after data have been collected, plots the eye positions over a larger scale reproduction of the stimulus.

Software

- 1) MAP - creates a map of target locations in the stimulus (i.e. words or parts of pictures) by accepting the digitized coordinates of the boundaries of the target areas from the plotter. In configurations without the plotter a modified version of MAP will accept the manually measured coordinates from the keyboard. This information is stored for subsequent comparison to the raw eye movement data gathered by the program ITRAK.
- 2) ITRAK - gathers data from the eye track machine. Two types of data are collected: the raw eye position data which is sampled at the rate of 60/sec., and calibration data used to map the eye position data onto the stored representation of the stimulus created by MAP.  
Currently, we ask the subjects to look at the corners of the stimulus card to determine the coordinates of the card boundaries. This information is then used to compute a linear transformation that changes the scale of the raw data to that of the stored stimulus map. We have found, however, that this method presents several problems. First, it is difficult to tell exactly when the subject is looking at a corner of the card. Second, due to nonlinearities inherent in the eye track machine and the analog/digital converter, these coordinates often do not define a rectangle, but rather some bizarre

quadrilateral. In order to remedy the first problem, we are installing a pushbutton switch connected to the external trigger input of the A/D converter. The subject would then push this button when looking at the calibration point to begin conversion. This will provide a more precise value for each calibration point. To overcome the nonlinearity problem, we are developing a more general interpolation algorithm.

- 3) MATCH - takes the eye movement data (from ITRAK) and determines the target area to which each pair of coordinates is closest. It does this by applying the transformation computed in ITRAK to the converted data and comparing the coordinates to those of the target regions in the stimulus map created by MAP. It then produces a summary listing of these target areas on the terminal, in the order they were scanned, and with the time spent on each.
- 4) PLOT (Optional) - makes a scaled reproduction of the stimulus and plots the eye movements on this depiction. For ease of interpretation we plot the reproduction of the stimulus in black ink; eye positions are shown in red ink; and a sequence of numerals is plotted in green ink at intervals of 60 eye positions, which corresponds to one second of sampling.

Procedures

- 1) After turning off the room lights to minimize artifacts, the experimenter calibrates the Eye-trac system for the particular subject.
- 2) The subject looks at each of the calibration points in succession and the coordinates of each is stored, either on floppy disks via the A-D converter and micro-computer, or on the cassette tape for later conversion and storage on floppy disks.
- 3) The subject begins reading and the program ITRAK collects eye position data and stores them on a floppy disk. In 'out of laboratory data collection', the subject's eye positions are sent from the eye track device to the cassette tape recorder, and later, in the laboratory, are sent from the tape recorder to the micro-computer using ITRAK. The subject is instructed to look at several 'landmarks' on the stimulus both before beginning and after finishing reading the material. During data analysis the eyes' positions before and after reading, as recorded by the equipment, are compared. If the recorded location for the same landmark has not changed from start to finish, we assume that the eyes' positions as recorded are accurate for the entire sample. If however, there is a substantial difference (Just & Carpenter, 1980 suggest that 0.5

degrees visual angle constitutes a substantial difference) the subject's data are not useable.

- 4) After the data are collected and stored on floppy disks, the experimenter runs MATCH, which summarizes the location, duration, and sequence of the eyes' positions during reading (see Figure 3).
- 5) (Optional) The experimenter runs PLOT which reproduces a scaled enlargement of the stimulus and plots the eyes' positions on it. These are represented by points, connected by straight lines which indicate the sequence of fixations (see Figure 4).

---

Insert Figure 3 about here.

---

---

Insert Figure 4 about here.

---

#### Data Analysis

The data collected by ITRAK and displayed by MATCH and PLOT is in such a form that it can easily be analyzed to identify the location, duration, and sequence of eye fixations. Figure 3 depicts the output from MATCH and can be used by itself to

identify these important variables. The locations identified in Figure 3 represent the defined target area to which a given eye position was closest and the durations are measured in 'ticks' or sixtieths of a second. The order from top to bottom shows the sequence of fixations. The principle disadvantage with using MATCH alone is that the eyes will frequently stop at or near the boundary between two target areas. Because the eyes are never literally 'fixed' (there are small irregular movements called tremors that occur when the eyes appear stationary) this may cause MATCH to show a series of very brief fixations alternating between the two target areas surrounding the point of focus.

Such a disadvantage is not necessarily serious if the general location of a fixation is all that is needed, however if more precise information about the eyes' position is required this limitation could be a problem.

The use of the graphics plotter has overcome this limitation. The plotter displays a reproduction of the original stimulus and PLOT draws the eyes' positions over this depiction. Figure 4 shows a sample of the PLOT and graphics plotter output. Note especially that the eyes' positions are indicated with substantial precision. This plotter and the program PLOT, used together with MATCH, allows us to determine the location, duration, and sequence of eye fixations with considerable precision.

The equipment, software, and procedures described above have

# Eye Movement Instrumentation

11

enabled us to make relatively precise observations of eye behavior during reading without the prohibitively high costs which typically characterize such systems. We are also able to make those observations wherever there is a room capable of being darkened and that has an electrical outlet and a table. We feel that this instrumentation and procedures will provide opportunities for research by investigators who do not have the funds to purchase more expensive equipment.

---

Note: FORTRAN IV source programs, for all of the user written software described in this paper, are available on request by contacting:

Reading Research Group

213 Stone Hall

Cornell University

Ithaca, NY 14853

(607)256-5423 or 256-7706

References

- Bouma, H. & deVoogd, A. H. On the control of eye saccades in reading. Vision Research, 1974, 14, 273-284.
- Carpenter, P. A. & Just, M. A. Semantic control of eye movements during picture scanning in a sentence-picture verification task. Perception and Psychophysics, 1972, 12, 61-64.
- Carpenter, P. A. & Just, M. A. Reading comprehension as eyes see it. In M. A. Just & P. A. Carpenter (Eds.), Cognitive processes in comprehension. Hillsdale, N. J.: Lawrence Erlbaum Associates, 1977.
- Just, M. A. & Carpenter, P. A. Eye fixations and cognitive processes. Cognitive Psychology, 1976, 8, 441-480. (a)
- Just, M. A. & Carpenter, P. A. The role of eye fixation research in cognitive psychology. Behavior Research Methods and Instrumentation, 1976, 8, 139-143. (b)
- Just, M. A. & Carpenter, P. A. A theory of reading: From eye fixations to comprehension. Psychological Review, In press.
- Lefton, L. A. Eye movements in reading disabled children. In J. W. Senders, D. F. Fisher, & R. A. Monty (Eds.) Eye movements and the higher psychological functions. Hillsdale, N. J.: Lawrence Erlbaum Associates, 1978.
- Loftus, G. R. General software for an on-line eye movement recording system. Behavior Research methods and Instrumentation, 1975, 7, 201-204.
- McConkie, G. W. The use of eye-movement data in determining the perceptual span in reading. In R. A. Monty & J. W. Senders (Eds.) Eye movements and psychological processes. Hillsdale, N. J.: Laurence Erlbaum Associates, 1976.
- Rayner, K. Parafocal identification during a fixation in reading. ACTA Psychologica, 1975, 39, 271-282. (a)
- Rayner, K. The perceptual span and peripheral cues in reading. Cognitive Psychology, 1975, 7, 65-81. (b)
- Rayner, K. Visual attention in reading: Eye movements reflect cognitive processes. Memory and Cognition, 1977, 5, 443-448.

Eye Movement Instrumentation

13

Rayner, K. Eye movements in reading and information processing.  
Psychological Bulletin, 1978, 85, 618-660.

Rayner, K. & McConkie, G. W. What guides a reader's eye  
movements? Vision Research, 1976, 16, 829-837.

---

19  
14  
**Eye Movement Instrumentation**



Figure 1. Eye movement laboratory



VCO - Voltage Control Oscillator

PLL - Phase Lock Loop

Figure 2. Schematic for modulator/demodulator device.

Eye Movement Instrumentation

16

Duration is indicated in "ticks" each of which is 1/60th of a second (16.7 ms)

Location indicates the word to which the eye's focus was closest

duration location

|    |          |                                                                 |
|----|----------|-----------------------------------------------------------------|
| 28 | THIS     | -- cluster of points in the upper left corner, at the beginning |
| 4  | TRACK    |                                                                 |
| 4  | EYE      |                                                                 |
| 1  | IS       | -- eye blink                                                    |
| 3  | FOR      |                                                                 |
| 93 | THIS     | -- fixations #1 and #2                                          |
| 50 | IS       | -- #3                                                           |
| 2  | A        |                                                                 |
| 3  | TEST     |                                                                 |
| 5  | A        | -- fixation between "A" and "TEST"                              |
| 44 | TEST     |                                                                 |
| 53 | SENTENCE | -- #4                                                           |
| 1  | MACHINE  |                                                                 |
| 1  | TRACK    | -- regressive sweep to beginning of second line                 |
| 1  | THE      |                                                                 |
| 46 | FOR      | -- fixation above #5                                            |
| 7  | THE      |                                                                 |
| 31 | FOR      | -- #6                                                           |
| 37 | THE      | -- between "THE" and "EYE"                                      |
| 2  | EYE      |                                                                 |
| 35 | TRACK    | -- #7                                                           |
| 55 | MACHINE  | -- #8                                                           |
| 1  | TRACK    |                                                                 |
| 1  | THE      | -- movement back toward the top for second reading              |
| 2  | FOR      |                                                                 |

Figure 3. Sample of output from MATCH program.

(To be used with Figure 4b)



(a)



(b)

23

Figure 4 Samples of output from PLOT program

cornell/glock May 27, 1981

Navy

- 1 Meryl S. Baker  
NPRDC  
Code P309  
San Diego, CA 92152
- 1 Dr. Alvh Bittner  
Naval Biodynamics Laboratory  
New Orleans, Louisiana 70189
- 1 Dr. Robert Breaux  
Code N-711  
NAVTRAEEQUIPCEN  
Orlando, FL 32813
- 1 Dr. Richard Elster  
Department of Administrative Sciences  
Naval Postgraduate School  
Monterey, CA 93940
- 1 DR. PAT FEDERICO  
NAVY PERSONNEL R&D CENTER  
SAN DIEGO, CA 92152
- 1 Dr. John Ford  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 Dr. Henry M. Halff  
Department of Psychology, C-009  
University of California at San Diego  
La Jolla, CA 92093
- 1 LT Steven D. Harris, MSC, USN  
Code 6021  
Naval Air Development Center  
Warminster, Pennsylvania 18974
- 1 Dr. Jim Holian  
Code 304  
Navy Personnel R & D Center  
San Diego, CA 92152
- 1 CDR Charles W. Hutchins  
Naval Air Systems Command Hq  
AIR-340F  
Navy Department  
Washington, DC 20361
- 1 CDR Robert S. Kennedy  
Head, Human Performance Sciences  
Naval Aerospace Medical Research Lab  
Box 29407  
New Orleans, LA 70189
- 1 Dr. Norman J. Kerr  
Chief of Naval Technical Training  
Naval Air Station Memphis (75)  
Millington, TN 38054
- 1 Dr. William L. Maloy  
Principal Civilian Advisor for  
Education and Training  
Naval Training Command, Code 00A  
Pensacola, FL 32508

Navy

- 1 CAPT Richard L. Martin, USN  
Prospective Commanding Officer  
USS Carl Vinson (CVN-70)  
Newport News Shipbuilding and Drydock Co  
Newport News, VA 23607
- 1 Dr. James McBride  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 Dr William Montague  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 Ted M. I. Yellen  
Technical Information Office, Code 201  
NAVY PERSONNEL R&D CENTER  
SAN DIEGO, CA 92152
- 1 Library, Code P201L  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 Technical Director  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 Commanding Officer  
Naval Research Laboratory  
Code 2627  
Washington, DC 20390
- 1 Psychologist  
ONR Branch Office  
Bldg. 114, Section D  
666 Summer Street  
Boston, MA 02210
- 1 Psychologist  
ONR Branch Office  
536 S. Clark Street  
Chicago, IL 60605
- 1 Office of Naval Research  
Code 437  
800 N. Quincy Street  
Arlington, VA 22217
- 1 Personnel & Training Research Programs  
(Code 458)  
Office of Naval Research  
Arlington, VA 22217
- 1 Psychologist  
ONR Branch Office  
1030 East Green Street  
Pasadena, CA 91101
- 1 Special Asst. for Education and  
Training (OP-01E)  
Rm. 2705 Arlington Annex  
Washington, DC 20370

cornell/glock May 27, 1981

Navy

- 1 Office of the Chief of Naval Operations  
Research Development & Studies Branch  
(OP-115)  
Washington, DC 20350
- 1 Dr. Donald F. Parker  
Graduate School of Business Administration  
University of Michigan  
Ann Arbor, MI 48109
- 1 LT Frank C. Petho, MSC, USN (Ph.D)  
Selection and Training Research Division  
Human Performance Sciences Dept.  
Naval Aerospace Medical Research Laboratory  
Pensacola, FL 32508.
- 1 Dr. Gary Poock  
Operations Research Department  
Code 55PK  
Naval Postgraduate School  
Monterey, CA 93940
- 1 Roger W. Remington, Ph.D  
Code L52  
NAMRL  
Pensacola, FL 32508
- 1 Dr. Worth Scanland, Director  
Research, Development, Test, & Evaluation  
N-5  
Naval Education and Training Command  
NAS, Pensacola, FL 32508
- 1 Dr. Robert G. Smith  
Office of Chief of Naval Operations  
OP-987H  
Washington, DC 20350
- 1 Dr. Alfred F. Smode  
Training Analysis & Evaluation Group  
(TAEQ)  
Dept. of the Navy  
Orlando, FL 32813
- 1 Dr. Richard Sorensen  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 Roger Weissinger-Baylon  
Department of Administrative Sciences  
Naval Postgraduate School  
Monterey, CA 93940
- 1 Dr. Robert Wisher  
Code 309  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 Mr. John H. Wolfe  
Code F310  
U. S. Navy Personnel Research and  
Development Center  
San Diego, CA 92152

Army

- 1 Technical Director  
U. S. Army Research Institute for the  
Behavioral and Social Sciences  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 Dr. Beatrice J. Farr  
U. S. Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 Dr. Dexter Fletcher  
U.S. Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 DR. FRANK J. HARRIS  
U.S. ARMY RESEARCH INSTITUTE  
5001 EISENHOWER AVENUE  
ALEXANDRIA, VA 22333
- 1 Dr. Michael Kaplan  
U.S. ARMY RESEARCH INSTITUTE  
5001 EISENHOWER AVENUE  
ALEXANDRIA, VA 22333
- 1 Dr. Milton S. Katz  
Training Technical Area  
U.S. Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 Dr. Harold F. O'Neil, Jr.  
Attn: PERI-OK  
Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 Dr. Robert Sasnor  
U. S. Army Research Institute for the  
Behavioral and Social Sciences  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 Dr. Frederick Steinheiser  
Dept. of Navy  
Chief of Naval Operations  
OP-113  
Washington, DC 20350
- 1 Dr. Joseph Ward  
U.S. Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333

cornell/glock May 27, 1981

Civil Govt

Air Force

- 1 Dr. Earl A. Alluisi  
HQ, AFHRL (AFSC)  
Brooks AFB, TX 78235
- 1 Dr. Genevieve Haddad  
Program Manager  
Life Sciences Directorate  
AFOSR  
Bolling AFB, DC 20332
- 1 Dr. Marty Rockway  
Technical Director  
AFHRL(OT)  
Williams AFB, AZ 85224
- 2 3700 TCHW/TIGH Stop 32  
Sheppard AFB, TX 76311

Marines

- 1 H. William Greenup  
Education Advisor (E031)  
Education Center, MCDEC  
Quantico, VA 22134
- 1 Special Assistant for Marine  
Corps Matters  
Code 100M  
Office of Naval Research  
800 N. Quincy St.  
Arlington, VA 22217
- 1 DR. A.L. SLAFKOSKY  
SCIENTIFIC ADVISOR (CODE RD-1)  
HQ, U.S. MARINE CORPS  
WASHINGTON, DC 20380

Other DoD

- 12 Defense Technical Information Center  
Cameron Station, Bldg.5  
Alexandria, VA 22314  
Attn: TC
- 1 Military Assistant for Training and  
Personnel Technology  
Office of the Under Secretary of Defense  
for Research & Engineering  
Room 3D129, The Pentagon  
Washington, DC 20301
- 1 DARPA  
1400 Wilson Blvd.  
Arlington, VA 22209

1 Dr. Susan Chipman  
Learning and Development  
National Institute of Education  
1200, 19th Street NW  
Washington, DC 20208

1 William J. McLaurin  
66610 Howie Court  
Camp Springs, MD 20031

1 Dr. Arthur Melmed  
National Institute of Education  
1200 19th Street NW  
Washington, DC 20208

1 Dr. Andrew R. Molnar  
Science Education Dev.  
and Research  
National Science Foundation  
Washington, DC 20550

1 Dr. Joseph Psotka  
National Institute of Education  
1200 19th St. NW  
Washington, DC 20208

1 Dr. Frank Withrow  
U. S. Office of Education  
400 Maryland Ave. SW  
Washington, DC 20202

1 Dr. Joseph L. Young, Director  
Memory & Cognitive Processes  
National Science Foundation  
Washington, DC 20550

Non Govt

1 Dr. John R. Anderson  
Department of Psychology  
Carnegie Mellon University  
Pittsburgh, PA 15213

1 Anderson, Thomas H., Ph.D.  
Center for the Study of Reading  
174 Children's Research Center  
51 Gerty Drive  
Champaign, IL 61820

1 Dr. John Annett  
Department of Psychology  
University of Warwick  
Coventry CV4 7AL  
ENGLAND

1 psychological research unit  
Dept. of Defense (Army Office)  
Campbell Park Offices  
Canberra ACT 2600, Australia

1 Dr. Alan Baddeley  
Medical Research Council  
Applied Psychology Unit  
15 Chaucer Road  
Cambridge CB2 2EE  
ENGLAND

cornell/glock May 27, 1981

Non Govt

- 1 Dr. Patricia Baggett  
Department of Psychology  
University of Denver  
University Park  
Denver, CO 80208
- 1 Dr. Jonathan Baron  
Dept. of Psychology  
University of Pennsylvania  
3813-15 Walnut St. T-3  
Philadelphia, PA 19104
- 1 Mr Avron Barr  
Department of Computer Science  
Stanford University  
Stanford, CA 94305
- 1 CDR Robert J. Biersner  
Program Manager  
Human Performance  
Navy Medical R&D Command  
Bethesda, MD 20014
- 1 Liaison Scientists  
Office of Naval Research,  
Branch Office, London  
Box 39 FPO New York 09510
- 1 Dr. Lyle Bourne  
Department of Psychology  
University of Colorado  
Boulder, CO 80309
- 1 Col Ray Bowles  
800 N. Quincy St.  
Room 804  
Arlington, VA 22217
- 1 Dr. John S. Brown  
XEROX Palo Alto Research Center  
3333 Coyote Road  
Palo Alto, CA 94304
- 1 Dr. Bruce Buchanan  
Department of Computer Science  
Stanford University  
Stanford, CA 94305
- 1 DR. C. VICTOR BUNDERSON  
WICAT INC.  
UNIVERSITY PLAZA, SUITE 10  
1160 SO. STATE ST.  
OREM, UT 84057
- 1 Dr. Pat Carpenter  
Department of Psychology  
Carnegie-Mellon University  
Pittsburgh, PA 15213
- 1 Dr. John B. Carroll  
Psychometric Lab  
Univ. of No. Carolina  
Davie Hall 013A  
Chapel Hill, NC 27514

Non Govt

- 1 Charles Myers Library  
Livingstone House  
Livingstone Road  
Stratford  
London E15 2LJ  
ENGLAND
- 1 Dr. William Chase  
Department of Psychology  
Carnegie Mellon University  
Pittsburgh, PA 15213
- 1 Dr. Micheline Chi  
Learning R & D Center  
University of Pittsburgh  
3939 O'Hara Street  
Pittsburgh, PA 15213
- 1 Dr. Francois G. Christen  
Perceptronics  
6271 Variel Avenue  
Woodland Hills, CA 91367
- 1 Dr. William Clancey  
Department of Computer Science  
Stanford University  
Stanford, CA 94305
- 1 Dr. Allan M. Collins  
Bolt Beranek & Newman, Inc.  
50 Moulton Street  
Cambridge, Ma 02138
- 1 Dr. Lynn A. Cooper  
LRDC  
University of Pittsburgh  
3939 O'Hara Street  
Pittsburgh, PA 15213
- 1 Dr. Meredith P. Crawford  
American Psychological Association  
1200 17th Street, N.W.  
Washington, DC 20036
- 1 Dr. Kenneth B. Gross  
Anacapa Sciences, Inc.  
P.O. Drawer Q  
Santa Barbara, CA 93102
- 1 Dr. Hubert Dreyfus  
Department of Philosophy  
University of California  
Berkeley, CA 94720
- 1 LCOL J. C. Eggenberger  
DIRECTORATE OF PERSONNEL APPLIED RESEARCH  
NATIONAL DEFENCE HQ  
101 COLONEL BY DRIVE  
OTTAWA, CANADA K1A 0K2
- 1 ERIC Facility-Acquisitions  
4833 Rugby Avenue  
Bethesda, MD 20014

cornell/glock May 27, 1981

Non Govt

- 1 Dr. Ed Feigenbaum  
Department of Computer Science  
Stanford University  
Stanford, CA 94305
- 1 Dr. Richard L. Ferguson  
The American College Testing Program  
P.O. Box 168  
Iowa City, IA 52240
- 1 Mr. Wallace Fuerzeig  
Bolt Beranek & Newman, Inc.  
50 Moulton St.  
Cambridge, MA 02138
- 1 Dr. John R. Frederiksen  
Bolt Beranek & Newman  
50 Moulton Street  
Cambridge, MA 02138
- 1 Dr. Alinda Friedman  
Department of Psychology  
University of Alberta  
Edmonton, Alberta  
CANADA T6G 2E9
- 1 DR. ROBERT GLASER  
LRDC  
UNIVERSITY OF PITTSBURGH  
3939 O'HARA STREET  
PITTSBURGH, PA 15213
- 1 Dr. Daniel Gopher  
Industrial & Management Engineering  
Technion-Israel Institute of Technology  
Haifa  
ISRAEL
- 1 DR. JAMES G. GREENO  
LRDC  
UNIVERSITY OF PITTSBURGH  
3939 O'HARA STREET  
PITTSBURGH, PA 15213
- 1 Dr. Harold Hawkins  
Department of Psychology  
University of Oregon  
Eugene OR 97403
- 1 Dr. James R. Hoffman  
Department of Psychology  
University of Delaware  
Newark, DE 19711
- 1 Dr. Kristina Hooper  
Clark Kerr Hall  
University of California  
Santa Cruz, CA 95060

Non Govt

- 1 Glenda Greenwald, Ed.  
"Human Intelligence Newsletter"  
P. O. Box 1163  
Birmingham, MI 48012
- 1 Dr. Earl Hunt  
Dept. of Psychology  
University of Washington  
Seattle, WA 98105
- 1 Dr. Greg Kearsley  
HUMRHO  
300 N. Washington Street  
Alexandria, VA 22314
- 1 Dr. Steven W. Keele  
Dept. of Psychology  
University of Oregon  
Eugene, OR 97403
- 1 Dr. Walter Kintsch  
Department of Psychology  
University of Colorado  
Boulder, CO 80302
- 1 Dr. David Kieras  
Department of Psychology  
University of Arizona  
Tuscon, AZ 85721
- 1 Dr. Kenneth A. Klivington  
Program Officer  
Alfred P. Sloan Foundation  
630 Fifth Avenue  
New York, NY 10111
- 1 Dr. Stephen Kosslyn  
Harvard University  
Department of Psychology  
33 Kirkland Street  
Cambridge, MA 02138
- 1 Mr. Marlin Kroger  
1117 Via Goleta  
Palos Verdes Estates, CA 90274
- 1 Dr. Jill Larkin  
Department of Psychology  
Carnegie Mellon University  
Pittsburgh, PA 15213
- 1 Dr. Alan Lesgold  
Learning R&D Center  
University of Pittsburgh  
Pittsburgh, PA 15260
- 1 Dr. Michael Levine  
Department of Educational Psychology  
210 Education Bldg.  
University of Illinois  
Champaign, IL 61801
- 1 Dr. Charles Lewis  
Faculteit Sociale Wetenschappen  
Rijksuniversiteit Groningen  
Oude Boteringestraat 23  
9712GC Groningen  
Netherlands

cornell/glock May 27, 1981

Non Govt

- 1 Dr. Erik McWilliams  
Science Education Dev. and Research  
National Science Foundation  
Washington, DC 20550
- 1 Dr. Mark Miller  
TI Computer Science Lab  
C/O 2824 Winterplace Circle  
Plano, TX 75075
- 1 Dr. Allen Munro  
Behavioral Technology Laboratories  
1845 Elena Ave., Fourth Floor  
Redondo Beach, CA 90277
- 1 Dr. Donald A Norman  
Dept. of Psychology C-009  
Univ. of California, San Diego  
La Jolla, CA 92093
- 1 Dr. Jesse Orlansky  
Institute for Defense Analyses  
400 Army Navy Drive  
Arlington, VA 22202
- 1 Dr. Seymour A. Papert  
Massachusetts Institute of Technology  
Artificial Intelligence Lab  
545 Technology Square  
Cambridge, MA 02139
- 1 Dr. James A. Paulson  
Portland State University  
P.O. Box 751  
Portland, OR 97207
- 1 Dr. James W. Pellegrino  
University of California,  
Santa Barbara  
Dept. of Psychology  
Santa Barbara, CA 93106
- 1 MR. LUIGI PETRULLO  
2431 N. EDGEWOOD STREET  
ARLINGTON, VA 22207
- 1 Dr. Martha Polson  
Department of Psychology  
Campus Box 346  
University of Colorado  
Boulder, CO 80309
- 1 DR. PETER POLSON  
DEPT. OF PSYCHOLOGY  
UNIVERSITY OF COLORADO  
BOULDER, CO 80309
- 1 Dr. Steven E. Poltrack  
Department of Psychology  
University of Denver  
Denver, CO 80208
- 1 MINRAT M. L. RAUCH  
P II 4  
BUNDESMINISTERIUM DER VERTEIDIGUNG  
POSTFACH 1328  
D-53 BONN 1, GERMANY

Non Govt

- 1 Dr. Fred Reif  
SESAME  
c/o Physics Department  
University of California  
Berkeley, CA 94720
- 1 Dr. Andrew M. Rose  
American Institutes for Research  
1055 Thomas Jefferson St. NW  
Washington, DC 20007
- 1 Dr. Ernst Z. Rothkopf  
Bell Laboratories  
600 Mountain Avenue  
Murray Hill, NJ 07974
- 1 Dr. David Rumelhart  
Center for Human Information Processing  
Univ. of California, San Diego  
La Jolla, CA 92093
- 1 DR. WALTER SCHNEIDER  
DEPT. OF PSYCHOLOGY  
UNIVERSITY OF ILLINOIS  
CHAMPAIGN, IL 61820
- 1 Dr. Alan Schoenfeld  
Department of Mathematics  
Hamilton College  
Clinton, NY 13323
- 1 DR. ROBERT J. SEIDEL  
INSTRUCTIONAL TECHNOLOGY GROUP  
HUMRRO  
300 N. WASHINGTON ST.  
ALEXANDRIA, VA 22314
- 1 Committee on Cognitive Research  
c/o Dr. Lonnie R. Sherrod  
Social Science Research Council  
605 Third Avenue  
New York, NY 10016
- 1 Robert S. Siegler  
Associate Professor  
Carnegie-Mellon University  
Department of Psychology  
Schenley Park  
Pittsburgh, PA 15213
- 1 Dr. Edward E. Smith  
Bolt Beranek & Newman, Inc.  
50 Moulton Street  
Cambridge, MA 02138
- 1 Dr. Robert Smith  
Department of Computer Science  
Rutgers University  
New Brunswick, NJ 08903
- 1 Dr. Richard Snow  
School of Education  
Stanford University  
Stanford, CA 94305
- 1 Dr. Robert Sternberg  
Dept. of Psychology  
Yale University  
Box 11A, Yale Station  
New Haven, CT 06520

*cornell/glock* May 27, 1981

Non Govt

1 DR. ALBERT STEVENS  
BOLT BERANEK & NEWMAN, INC.  
50 MOULTON STREET  
CAMBRIDGE, MA 02138

1 David E. Stone, Ph.D.  
Hazeltine Corporation  
7680 Old Springhouse Road  
McLean, VA 22102

1 DR. PATRICK SUPPES  
INSTITUTE FOR MATHEMATICAL STUDIES IN  
THE SOCIAL SCIENCES  
STANFORD UNIVERSITY  
STANFORD, CA 94305

1 Dr. Kikumi Tatsuoka  
Computer Based Education Research  
Laboratory  
252 Engineering Research Laboratory  
University of Illinois  
Urbana, IL 61801

1 Dr. Douglas Towne  
Univ. of So. California  
Behavioral Technology Labs  
1845 S. Elena Ave.  
Redondo Beach, CA 90277

1 Dr. J. Uhlauer  
Perceptronics, Inc.  
6271 Variel Avenue  
Woodland Hills, CA 91364

1 Dr. Phyllis Weaver  
Graduate School of Education  
Harvard University  
290 Larsen Hall, Appian Way  
Cambridge, MA 02138

1 Dr. David J. Weiss  
N660 Elliott Hall  
University of Minnesota  
75 E. River Road  
Minneapolis, MN 55455

1 DR. GERSHON WELTMAN  
PERCEPTRONICS INC.  
6271 VARIEL AVE.  
WOODLAND HILLS, CA 91367

1 Dr. Keith T. Wescourt  
Information Sciences Dept.  
The Rand Corporation  
1700 Main St.