Représentations paramétriques et équations cartésiennes

1. Représentation paramétrique d'une droite

Soit (d) est une droite définie par un point $A(x_A; y_A; z_A)$ et un vecteur directeur $\vec{u}(a; b; c)$.

$$M(x; y; z) \in (d) \iff \exists t \in \mathbb{R}, tq:$$

$$\begin{cases} x = x_A + a \cdot t \\ y = y_A + b \cdot t \\ z = z_A + c \cdot t \end{cases}$$

Ce système est appelé représentation paramétrique de la droite (d).

Exemple:

Le système :
$$\begin{cases} x = -2 + 3t \\ y = -t \\ z = 1 + 2t \end{cases}$$
 définit la droite passant par

le point (-2; 0; 1) et de vecteur directeur (3; -1; 2)

2. Équation cartésienne d'un plan

Soit P le plan passant par le point $A(x_A; y_A; z_A)$ et admettant un vecteur normal $\vec{n}(a; b; c)$

$$M(x; y; z) \in P \iff \overrightarrow{AM} \cdot \overrightarrow{n} = 0 \iff a(x - x_A) + b(y - y_A) + c(z - z_A) = 0$$

Ceci donne une équation de la forme
$$ax + by + cz + d = 0$$
 $(d = -ax_A - by_A - cz_A)$

Cette équation est appelé équation cartésienne du plan.

Exemple:

L'équation 2x - 3y - z + 4 = 0 est l'équation d'un plan de vecteur normal (2; -3; -1) et passant par le point (0; 0; 4)

3. Cas particuliers

Les équations z + d = 0 correspondent à des plans orthogonaux à l'axe (OZ) et donc de vecteur normal (0 ;0 ;1)

Ces plans définissent l'ensemble des points dont la hauteur z est constante

De même les équations y + d = 0 correspondent à des plans orthogonaux à l'axe (OY) et donc de vecteur normal (0;1;0)

Ces plans définissent l'ensemble des points dont l'ordonnée y est constante

Les équations x + d = 0 correspondent à des plans orthogonaux à l'axe (OX) et donc de vecteur normal (1;0;0)

Ces plans définissent l'ensemble des points dont l'abscisse x est constante

4. Projeté orthogonale d'un point sur une droite

• Le projeté orthogonal d'un point A sur une droite (d) est l'unique point H intersection de la droite (d) et du plan orthogonal à (d) passant par A

 Pour trouver les coordonnées de H, on utilise son écriture paramétrique qui découle de l'équation paramétrique de (d)

on calcule ensuite les coordonnées de \overrightarrow{AH} et on résout l'équation $\overrightarrow{AH} \cdot \overrightarrow{u} = 0$

5. Projeté orthogonale d'un point sur une plan

 Le projeté orthogonal d'un point A sur un plan P est l'unique point H intersection de P et de la droite (AH) orthogonale à P passant par A

- Pour trouver les coordonnées de H, on commence par trouver l'équation paramétrique de la droite (AH) orthogonale à P passant par A.
- On cherche ensuite l'intersection de cette droite avec le plan P en insérant les coordonnées paramétriques dans l'équation cartésienne du plan P.

METHODES

Donner une équation paramétrique d'une droite

Soient
$$A = (7; 2; -3)$$
 et $B = (2; 4; 1)$

Un vecteur directeur de (AB) est $\overrightarrow{AB}(-5; 2; 4)$

Donc une représentation paramétrique de la droite (AB)

est :
$$\begin{cases} x = 7 - 5t \\ y = 2 + 2t \\ z = -3 + 4t \end{cases}$$

Montrer qu'un point appartient à une droite

On considère la droite (d) définie par $\begin{cases} x = 1 + 2t \\ y = -3 + 4t \\ z = 5 - t \end{cases}$

A(9; 13; 1) appartient-il à la droite (d)?

Pour cela on résout le système d'équations :

$$\begin{cases} 9 = 1 + 2t \\ 13 = -3 + 4t \\ 1 = 5 - t \end{cases}$$

$$9 = 1 + 2t \Leftrightarrow t = 4$$

Et on vérifie les deux autres équations sont bien vérifiées : $13 = -3 + 4 \times 4$ et 1 = 5 - 4

Donc le point A(9; 13; 1) appartient à la droite (d)

Donner une équation cartésienne d'un plan

Soit le plan P qui passe par le point A(1; -2; 4) et de vecteur normal \vec{n} (5; 3; -1)

Une équation cartésienne de P s'écrit 5x + 3y - z + d = 0

$$A \in P$$
 donc $5 - 6 - 4 + d = 0 \Leftrightarrow d = 5$

Une équation cartésienne de P est donc :

$$5x + 3y - z + 5 = 0$$

Positions relatives de droites et plans dans l'espace

Cas particuliers:

- Deux plans sont orthogonaux
 ⇔ leurs vecteurs normaux respectifs sont orthogonaux
- Une droite et un plan sont orthogonaux

 ⇔ un vecteur directeur de la droite est <u>colinéaire</u> a un vecteur normal du plan
- Deux droites sont orthogonales
 ⇔ leurs vecteurs directeurs sont orthogonaux

Si les droites sont en plus coplanaires, alors elles sont perpendiculaires

Déterminer les coordonnées du projeté orthogonal d'un point sur une droite

 Le projeté orthogonal d'un point A sur une droite (d) est l'unique point H intersection de la droite (d) et du plan orthogonal à (d) passant par A

Exemple:

Soient A(3; 5; 4) et (d) passant par le point (1; -3; 20) et de vecteur directeur $\vec{u}(2; -1; 2)$

 Pour trouver les coordonnées de H, on utilise les coordonnes paramétriques de H qui découlent de l'équation paramétrique de (d) :

$$\begin{cases} x = 1 + 2t \\ y = -3 - t \\ z = 20 + 2t \end{cases}$$

• on calcule ensuite les coordonnées de \overrightarrow{AH} et on résout l'équation $\overrightarrow{AH} \cdot \overrightarrow{u} = 0$

$$\overrightarrow{AH} = (-2 + 2t; -8 - t; 16 + 2t)$$

$$\overrightarrow{AH} \cdot \overrightarrow{u} = 0 \Leftrightarrow 2(-2 + 2t) - (-8 - t) + 2(16 + 2t) = 0$$

$$\Leftrightarrow -4 + 4t + 8 + t + 32 + 4t = 0 \Leftrightarrow 36 + 9t = 0$$

$$\Leftrightarrow t = -\frac{36}{9} = -4$$

Donc
$$H = (-7; 1; 12)$$

Déterminer les coordonnées du projeté orthogonal d'un point sur un plan

La projection orthogonal d'un point A sur un plan P est le point d'intersection H entre ce plan P et la droite orthogonale à P passant par A.

Exemple:

$$P: 4x + y - 2z - 66 = 0$$
 et $A(-1; 3; -2)$

• On commence par trouver l'équation paramétrique de la droite (AH) orthogonale a P passant par A :

(AH):
$$\begin{cases} x = -1 + 4t \\ y = 3 + t \\ z = -2 - 2t \end{cases}$$

 On cherche ensuite l'intersection de cette droite avec le plan P en insérant les coordonnées paramétriques dans l'équation cartésienne du plan P

$$4x + y - 2z - 66 = 0$$

 $\Leftrightarrow 4(-1 + 4t) + (3 + t) - 2(-2 - t) - 66 = 0$
 $\Leftrightarrow 21t - 63 = 0$
 $\Leftrightarrow t = 3$

Donc
$$H = (11; 6; 8)$$

Trouver le point d'intersection entre un plan et une droite

$$P: 3x + y - 5z + 6 = 0$$
 et $(d): \begin{cases} x = -1 + 2t \\ y = 2 - 3t \\ z = 5 + t \end{cases}$

Pour trouver le point d'intersection, on injecte les coordonnées paramétriques dans l'équation cartésienne du plan *P*.

On a donc :
$$3(-1+2t) + (2-3t) - 5(5+t) + 6 = 0$$

Soit après simplification :
$$-2t - 20 = 0 \Leftrightarrow t = -10$$

Le point d'intersection est donc (-21; 32; -5)

Trouver le point d'intersection entre deux droites

$$(d): \begin{cases} x = 9 + k \\ y = -1 + 2k \\ z = -3k \end{cases} \qquad (d'): \begin{cases} x = k' \\ y = 2 - k' \\ z = -1 + k' \end{cases}$$

Pour trouver le point d'intersection (éventuel), on résout le système :

$$\begin{cases}
9 + k = k' \\
-1 + 2k = 2 - k' \\
-3k = -1 + k'
\end{cases}$$

On peut par exemple utiliser les deux premières équations pour trouver k et k'. En additionnant ces équations on élimine k' et on trouve

$$8 + 3k = 2 \Leftrightarrow k = -2$$
 et donc $k' = 9 + k = 7$

On vérifie ensuite que La dernière équation est aussi vérifiée pour ces valeurs : $-3 \times -2 = -1 + 7$

On a donc bien un point d'intersection. Ses coordonnées sont (7 ; -5 ; 6)

Trouver la droite d'intersection entre deux plans sécants

$$P_1$$
: $2x + 3y - z + 2 = 0$ P_2 : $x + y - 2z + 5 = 0$

Pour trouver la droite d'intersection, on résout le système d'équations:

$$\begin{cases} 2x + 3y - z + 2 = 0 \\ x + y - 2z + 5 = 0 \end{cases}$$

on fixe une des variables, par exemple z=t et on résout le système pour déterminer x et y en fonction de t

$$\begin{cases} 2x + 3y = t - 2\\ x + y = 2t - 5 \end{cases}$$

Après calcul on trouve
$$\begin{cases} x = -13 + 5t \\ y = 8 - 3t \end{cases}$$

La droite d'intersection $P_1 \cap P_2$ a donc pour équation paramétrique :

$$\begin{cases} x = -13 + 5t \\ y = 8 - 3t \\ z = t \end{cases}$$

Plans particuliers dans l'espace

• $z + d = 0 \iff z \text{ constant}$

Plan orthogonal à l'axe des z de vecteur normal (0; 0; 1)

• $y + d = 0 \iff y \text{ constant}$

Plan orthogonal à l'axe des y de vecteur normal (0; 1; 0)

• $x + d = 0 \iff x \text{ constant}$

Plan orthogonal à l'axe des x de vecteur normal (1; 0; 0)

