МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра инфокоммуникаций

Отчет по лабораторной работе №3.4

Основы работы с пакетом matplotlib.

по дисциплине «Анализ данных»

Выполнил студент группы	ИВТ-	-б-о-21-	1
Лысенко И.А. « »	20_	_Γ.	
Подпись студента			
Работа защищена « »		20_	_г.
Проверил Воронкин Р.А.			
	(подпись)	

Цель работы: исследовать базовые возможности библиотеки matplotlib языка программирования Python.

Ход работы:

1. Создал репозиторий на GitHub:

https://github.com/IsSveshuD/lab_3.4.git .

2. Проработал примеры:

Основы работы с пакетом matplotlib

In [9]:
 import matplotlib.pyplot as plt
 import numpy as np
 %matplotlib inline

Если вы работаете в Jupyter Notebook для того, чтобы получать графики рядом с ячейками с кодом необходимо выполнить специальную magic команду после того, как импортируете matplotlib.

In [10]: plt.plot([1, 2, 3, 4, 5], [1, 2, 3, 4, 5]);

Построение графика

```
In [12]:
# Независимая (x) и зависимая (y) переменные
x = np.linspace(0, 10, 50)
y = x

# Построение графика
plt.title("Линейная зависимость y = x") # заголовок
plt.xlabel("x") # ось абсцисс
plt.ylabel("y") # ось ординат
plt.grid() # включение отображение сетки
plt.plot(x, y); # построение графика
```


Размещение графиков на разных полях

```
Существуют три основных подхода к размещению нескольких графиков на разных полях:

использование функции subplot() для указания места размещения поля с графиком;

использование функции subplots() для предварительного задания сетки, в которую будут укладываться поля;

использование GridSpec, для более гибкого задания геометрии размещения полей с графиками в сетке.
```

Работа с функцией subplot()

```
In [74]: # Μεχοδημώ μαδορ δαμμως

x = [1, 5, 10, 15, 20]

y1 = [1, 7, 3, 5, 11]

y2 = [i*1.2 + 1 for i in y1]

y3 = [i*1.2 + 1 for i in y2]

y4 = [i*1.2 + 1 for i in y3]

In [75]: # Ηαεπροῦκα ραβμεροβ ποδποκκυ
plt.figure(figsize=(12, 7))

Out[75]: ⟨Figure size 1200x700 with 0 Axes⟩

⟨Figure size 1200x700 with 0 Axes⟩

In [77]: # Βωθοδ εραφικοθ
plt.subplot(2, 2, 1)
plt.plot(x, y1, '-')

plt.subplot(2, 2, 2)
plt.plot(x, y2, '--')

plt.subplot(2, 2, 3)
plt.plot(x, y3, '--')

plt.subplot(2, 2, 4)
plt.plot(x, y4, ':');
```


Рисунок 1 – Примеры

Ответы на вопросы:

1. Как осуществляется установка пакета matplotlib?

Существует два основных варианта установки этой библиотеки: в первом случае вы устанавливаете пакет Anaconda, в состав которого входит большое количество различных инструментов для работы в области машинного обучения и анализа данных (и не только); во втором – устано вить Matplotlib самостоятельно, используя менеджер пакетов.

Установка matplotlib через менеджер pip

Второй вариант — это воспользоваться менеджером рір и установить Matplotlib самостоятельно, для этого введите в командной строке вашей операционной системы следующие команды:

python -m pip install -U pip

python -m pip install -U matplotlib

Первая – обновит рір до последней версии. Вторая установит пакет matplotlib.

2. Какая "магическая" команда должна присутствовать в ноутбуках Jupyter для корректного отображения графиков matplotlib?

Если вы работаете в Jupyter Notebook для того, чтобы получать графики рядом с ячейками с кодом необходимо выполнить специальную magic команду после того, как импортируете matplotlib:

import matplotlib.pyplot as plt

%matplotlib inline

3. Как отобразить график с помощью функции plot?

plt.plot([1, 2, 3, 4, 5], [1, 2, 3, 4, 5]) — если работаем в ноутбуке и использовали магическую команду, то plt.show() писать не надо

plt.show() – для вывода в отдельном окне

4. Как отобразить несколько графиков на одном поле?

Построим несколько графиков на одном поле, для этого добавим квадратичную зависимость:

Линейная зависимость

```
x = np.linspace(0, 10, 50) y1 = x # Квадратичная зависимость y2 = [i^**2 \text{ for } i **in^** x # Построение графика plt.title("Зависимости: y1 = x, y2 = x^2") # заголовок plt.xlabel("x") # ось абсцисс plt.ylabel("y1, y2") # ось ординат plt.grid() # включение отображение сетки plt.plot(x, y1, x, y2) # построение графика
```

5. Какой метод Вам известен для построения диаграмм категориальных данных?

Mетод: bar()

fruits = ["apple", "peach", "orange", "bannana", "melon"] counts = [34, 25, 43, 31, 17] plt.bar(fruits, counts)

6. Какие основные элементы графика Вам известны?

7. Как осуществляется управление текстовыми надписями на графике?

Наиболее часто используемые текстовые надписи на графике

это:

наименование осей;

наименование самого графика;

текстовое примечание на поле с графиком; легенда.

Наименование осей

Для задания подписи оси х используется функция xlabel(), оси у – ylabel(). Разберемся с аргументами данных функций.

Функции xlabel()/ylabel() принимают в качестве аргументов параметры конструктора класса matplotlib.text. Техt. Пример использования:

plt.xlabel('Day', fontsize=15, color='blue')

Заголовок графика

Для задания заголовка графика используется функция title(): plt.title('Chart price', fontsize=17)

Текстовое примечание

За размещение текста на поле графика отвечает функция text(), которой вначале передаются координаты позиции надписи, после этого – текст самой надписи.

plt.text(1, 1, 'type: Steel')

7. Как осуществляется управление легендой графика?

Легенда будет размещена на графике, если вызвать функцию legend().

Параметр	Тип	Описание
fontsize	int или float или {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}	Размера шрифта надписи легенды
Frameon	bool	Отображение рамки легенды
framealpha	None или float	Прозрачность легенды
facecolor	None или str	Цвет заливки
edgecolor	None или str	Цвет рамки
title	None или str	Текст заголовка
title_fontsize	None или str	Размер шрифта

Место расположения легенды определяется параметром *loc*, которое может принимать одно из следующих значений:

Строковое описание	Код
'best'	0
'upper right'	1
'upper left'	2
'lower left'	3
'lower right'	4
'right'	5
'center left'	6
'center right'	7
'lower center'	8

8. Как задать цвет и стиль линий графика?

Стиль линии графика задается через параметр linestyle, который может принимать значения из приведенной ниже таблицы.

Значение параметра	Описание	
'-' или 'solid'	Непрерывная линия	
'-' или 'dashed'	Штриховая линия	
'' или 'dashdot'	Штрихлунктирная линия	
':' или 'dotted'	Пунктирная линия	
None' или ' ' или "	Не отображать линию	

Стиль линии можно передать сразу после указания списков с координатами без указания, что это параметр *linewidth*.

```
x = [1, 5, 10, 15, 20]
y = [1, 7, 3, 5, 11]
plt.plot(x, y, '--')
```

9. Как выполнить размещение графика в разных полях?

Работа с функцией subplot()

Самый простой способ представить графики в отдельных полях – это использовать функцию supplot() для задания их мест размещения. До этого момента мы не работали с Фигурой (Figure) напрямую, значения ее параметров, задаваемые по умолчанию, нас устраивали. Для решения текущей задачи придется один из параметров – размер подложки, задать вручную. За это отвечает аргумент figsize функции figure(), которому присваивается кортеж из двух float элементов, определяющих высоту и ширину подложки.

После задания размера, указывается местоположение, куда будет установлено поле с графиком с помощью функции subplot(). Чаще всего используют следующие варианты вызова subplot:

subplot(nrows, ncols, index)

- · nrows: int
 - Количество строк.
- · ncols: int
 - Количество столбцов.
- · index: int
 - Местоположение элемента.

subplot(pos)

- · pos:int
 - Позиция, в виде трехзначного числа, содержащего информацию о количестве строк, столбцов и индексе, например 212, означает подготовить разметку с двумя строками и одним столбцов, элемент вывести в первую позицию второй строки. Этот вариант можно использовать, если количество строк и столбцов сетки не более 10, в ином случае лучше обратиться к первому варианту.

Вывод: в результате выполнения лабораторной работы были получены необходимые теоретические сведения и практические навыки для работы с библиотекой matplotlib языка программирования Python.