Воронежский Государственный Университет Факультет прикладной математики, информатики и механики

Кафедра вычислительной математики и прикладных информационных технологий

Применение персистентных гомологий для задачи классификации изображений

Бакалаврская работа

Направление 01.03.02 Прикладная математика и информатика Профиль Математическое моделирование и вычислительная математика

Обучающийся

Снопов П.М.

Руководитель Леденева Т.М. д.т.н., проф.

Актуальность

- Классификация изображений фундаментальная задача анализа данных, одно из основных направлений приложения машинного обучения к компьютерному зрению.
- ullet Машинное обучение главный тренд последних 10 лет $(\sim 150$ публ./день).
- Устойчивые гомологии и топологический анализ данных недавно возникшая и быстро развивающаяся область современной математики и анализа данных.

Постановка задачи

- Задано конечное множество объектов вместе с метками классов.
- Метки классов остальных объектов не известны.
- Требуется построить алгоритм, способный классифицировать произвольный объект из исходного множества.

Рис. Пример изображения из датасета MNIST

Цель и задачи работы

Цель: Исследование подхода, основанного на топологическом анализе данных, для классификации изображений

Задачи:

- Изучение теоретических и практических основ топологического анализа данных
- Анализ подходов классификации изображений
- Формирование алгоритма на основе персистентных гомологий
- Проведение вычислительного эксперимента, выявление области применимости, плюсов и минусов данного подхода

Симплициальные комплексы

Симплициальный комплекс K – это множество симплексов, т.е. выпуклых оболочек набора n+1 точек $\in \mathbb{R}^p$, таких, что векторы $x_1-x_0,...,x_n-x_0$ линейно независимы, при этом

- ullet Для каждого симплекса из K его грани тоже лежат в K,
- Пересечение любых двух симплексов $\sigma, \tau \in K$ либо пусто, либо является гранью и σ , и τ .

Симплициальные гомологии

 Γ руппа симплициальных гомологий $H_n(K)$ размерности n отражает количество n-циклов. Ранг данной группы – n-ое число Бетти β_n – количество n-циклов.

$$\beta_n = \dim(H_n(K))$$

 $\beta_0 = 1$

 $\beta_1 = 0$

 $\beta_2 = 0$

$$\beta_0 = 0$$

$$\beta_2 = 0$$

$$\beta_0 = 1$$

$$\beta_1 = 0$$

$$\beta_2 = 1$$

$$\beta_0 = 1$$

$$\beta_1 = 2$$

$$\beta_2 = 1$$

Как построить симплициальный комплекс?

Фильтрации и устойчивые гомологии

Фильтрация – коллекция комплексов.

Устойчивые гомологии – коллекция групп гомологий комплексов фильтрации.

Фильтрации и устойчивые гомологии

Рис. Диаграмма персистентности

Векторизация диаграмм персистентности

Диаграммы устойчивости с данной метрикой образуют метрическое пространство \mathcal{D} :

$$W_p(B,B^{'}) = \inf_{\gamma:B \to B^{'}} \left(\sum_{u \in B} \lVert u - \gamma(u) \rVert_{\infty}^{p} \right)^{\frac{1}{p}}.$$

Векторизация диаграмм – это отображение $\varphi:\mathcal{D}\to V$, где V – нормированное векторное пространство.

Рис. График некоторой векторизации

Алгоритм построения векторного представления

Исходные данные: Черное-белое изображение

Результат: Вектор размерности *d*

По изображению построить n разных кубических фильтраций

Для каждой фильтрации выполнять

найти ее 0 и 1 кубические гомологии построить диаграмму устойчивости

посчитать k разных векторных представлений

Конец

Собрать d = 2nk представлений в один вектор

Использованное ПО

- Python
- Scikit-Learn
- Giotto-TDA
- NumPy
- Matplotlib

Процесс получения векторного представления

Сравнение результатов различных методов машинного обучения

Таблица: Значения базовых моделей на тренировочной и тестовой выборках

Название модели	Значение на трениро-	Значение на тестовой
	вочной выборке	выборке
Логистическая регрес-	0.989	0.903
сия		
Метод опорных векто-	1.0	0.893
ров		
Случайный лес	1.0	0.89
LightGBM	1.0	0.9
XGBoost	1.0	0.883
CatBoost	1.0	0.893

Сравнение результатов различных методов машинного обучения

Таблица: Значения наилучших моделей, полученных в результате подбора параметров поиском по сетке, на тренировочной и тестовой выборках

Название модели	Значение на трениро-	Значение на тестовой
	вочной выборке	выборке
Логистическая регрес-	0.911	0.917
сия		
Метод опорных векто-	0.903	0.893
ров		
Случайный лес	0.88	0.87
LightGBM	0.908	0.917
XGBoost	0.907	0.897
CatBoost	1.0	0.927

Подбор гиперпараметров и отбор признаков

Рис. Логистическая регрессия

Подбор гиперпараметров и отбор признаков

Рис. Метод опорных векторов

Подбор гиперпараметров и отбор признаков

Рис. Случайный лес

Первые несколько изображений, на которых ошибся классификатор

Результаты

- В ходе данной работы был изучен теоретический материал по алгебраической и прикладной топологии и машинному обучению.
- Было проведено сравнение пакетов топологического анализа данных.
- Был реализован алгоритм классификации датасета MNIST, который использовал только топологические характеристики рукописных цифр в качестве признаков.
- Было проведено сравнение моделей машинного обучения с разными признаками.

Выводы

- Подход, основанный на топологических характеристиках данных, показал свою работоспособность на примере изображений.
- Реализованный алгоритм является эффективным алгоритмом понижения размерности пространства признаков: он показывает более высокую точность классификации при меньшем числе признаков.

Спасибо за внимание!

Мои публикации на данную тему:

Снопов П. М. — Применение алгебраической топологии в задачах анализа данных. — // Сборник трудов Международной научной конференции «Актуальные проблемы прикладной математики, информатики и механики». — Воронеж, 2020. — с. 1085—1093.

Снопов П. М. — Сравнительный анализ пакетов для вычисления устойчивых гомологий. — // Межвузовская научная конференция молодых ученых и студентов «Математика, информационные технологии, приложения». — Воронеж, 2021. — с. 234—239.

