

POLITECHNIKA WARSZAWSKA

Transmisja bezprzewodowa i anteny

Laboratorium 3
Charakterystyki polaryzacyjne
i częstotliwościowe anten
Cz. 3: Badanie charakterystyk polaryzacyjnych
anten

Semestr 23L

Politechnika Warszawska

Badanie charakterystyk polaryzacyjnych anten

Zadanie polega na badaniu własności polaryzacyjnych dwóch anten:

- anteny o polaryzacji liniowej
- anteny o polaryzacji kołowej.

Na następnych slajdach przedstawione są elementy stanowiska pomiarowego.

Badane anteny

Dwie anteny łatkowe na pasmo 2.4 GHz

Aplikacja mechanizmu obrotowego sondy dipolowej

Aplikacja wektorowego analizatora obwodów

Pomiar współczynnika transmisji S21

Odczyt markera

Ustawienia markera

Zadania do wykonania

- 1. Naprzeciwko sondy dipolowej umieścić antenę o polaryzacji liniowej i podłączyć do analizatora.
- 2. Jeśli aplikacja sterująca mechanizmem obrotowym nie jest uruchomiona, uruchomić ją komendą Stolik_obrotowy w Matlabie i przyciskiem "Połącz" zainicjować komunikację z mechanizmem. Stolik wykona procedurę bazowania i ustawi sondę w pozycji 0°.
- 3. W aplikacji analizatora wczytać konfigurację z pliku (File > Load setup > C:\Student\TBAT_Lab3\TBAT.setup)
- 4. Na analizatorze ustawić marker na częstotliwości zadanej przez prowadzącego.
- 5. Zanotować poziomy współczynnika transmisji (*) odczytane z markera, obracając sondę dipolową od 0° do 360° z krokiem 15°. Po zakończeniu ustawić ponownie pozycję 0°.
- 6. Zmienić badaną antenę na antenę o polaryzacji kołowej i powtórzyć pomiar.
- (*) Nieobowiązkowo, dla chętnych/zainteresowanych oprócz poziomu współczynnika transmisji zanotować także fazę. W sprawozdaniu wykreślić i porównać fazę w funkcji położenia sondy dla obu anten.

Sprawozdanie

W sprawozdaniu w części 3 powinny się znaleźć:

- Sformułowanie celu pomiaru.
- Schemat stanowiska.
- Przydzielona częstotliwość pomiarowa.
- Wykres poziomu współczynnika transmisji w funkcji położenia sondy dipolowej we współrzędnych kartezjańskich w skali decybelowej (na wspólnym wykresie dla obu badanych anten).
- Wykres natężenia pola w skali liniowej unormowanego do maksimum w funkcji położenia sondy dipolowej we współrzędnych biegunowych (na wspólnym wykresie dla obu badanych anten). Taki wykres to tzw. diagram polaryzacji.
- Zależności matematyczne wykorzystane w obliczeniach.
- Wnioski i komentarze.

Przypomnienie – przeliczanie parametrów rozproszenia na decybele

Współczynnik transmisji to parametr amplitudowy, więc współczynnik przy logarytmie wynosi 20:

S21 [dB] = $20 \cdot \log_{10}$ (S21 [skala liniowa])