Poznámky k seminářům z obecné chemie

Zdeněk Moravec, hugo@chemi.muni.cz

9. prosince 2024

Obsah

1	Ter	modynamika	3
	1.1	Zákony termodynamiky	3
	1.2	Termochemie	4
	1.3	Hessův zákon	5
2	pН		6
	2.1	Vzorce	6
	2.2	Iontový součin vody	6
	2.3	Silné kyseliny a zásady	7
	2.4	Slabé kyseliny a zásady	8
	2.5	Soli	8
		2.5.1 Sůl silné kyseliny a silné zásady	8
	2.6	Pufry	9
3	Krv	rstaly	10

1 Termodynamika

1.1 Zákony termodynamiky

Termodynamika je obor fyziky, který se zabývá procesy a vlastnostmi látek a polí spojených s teplem a tepelnými jevy; je součástí termiky. Vychází přitom z obecných principů přeměny energie, které jsou popsány čtyřmi termodynamickými zákony (z historických důvodů číslovány nultý až třetí):

Nultý zákon TD

Jsou-li dvě a více těles v termodynamické rovnováze s tělesem dalším, pak jsou všechna tato tělesa v rovnováze.

První zákon TD

Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno.

Nelze sestrojit stroj, který by trvale dodával mechanickou energii, aniž by spotřeboval odpovídající množství energie jiného druhu.

Druhý zákon TD

Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší.

Nelze sestrojit periodicky pracující tepelný stroj, který by trvale konal práci pouze tím, že by ochlazoval jedno těleso, a k žádné další změně v okolí by nedocházelo.

Třetí zákon TD

Při absolutní nulové teplotě je entropie čisté látky pevného nebo kapalného skupenství rovna nule.

1.2 **Termochemie**

Vypočítejte reakční entalpii přeměny grafitu na diamant:

$$C(gr) \longrightarrow C(diam)$$

jestliže znáte entalpie reakcí:

A:
$$C(gr) + O_2(g) \longrightarrow CO_2(g)$$
 $-393,77 \text{ kJ.mol}^{-1}$
B: $C(diam) + O_2(g) \longrightarrow CO_2(g)$ $-395,65 \text{ kJ.mol}^{-1}$

Jelikož nás zajímá přeměna grafitu na diamant, vezmeme entalpii spalování grafitu a od ní odečteme entalpii spalování diamantu: A-B

$$C(gr) + O_2(g) + CO_2(g) \longrightarrow C(diam) + O_2(g) + CO_2(g)$$

Entalpii tedy vypočítáme:

$$\Delta H_r \ = \ -393,77 \ - (-395,65) \ = \ 1,88 \ \mathrm{kJ.mol^{-1}}$$

Entalpie přeměny grafitu na diamant bude 1,88 kJ.mol⁻¹

Vypočítejte entalpii spalování acetylenu:

$$C_2H_2(g) + \frac{5}{2}O_2(g) \longrightarrow 2CO_2(g) + H_2O(l)$$
 jestliže znáte entalpie reakcí:

$$\begin{array}{lll} A\colon & 2\,C(s) + H_2(g) \longrightarrow C_2H_2(g) & 226,92 \text{ kJ.mol}^{-1} \\ B\colon & 2\,C(s) + O_2(g) \longrightarrow CO_2(g) & -393,97 \text{ kJ.mol}^{-1} \\ C\colon & H_2(g) + \frac{1}{2}\,O_2(g) \longrightarrow H_2O(l) & -285,96 \text{ kJ.mol}^{-1} \end{array}$$

C:
$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$$
 $-285,96 \text{ kJ.mol}^{-1}$

Zadanou rovnici získáme následující kombinací známých reakcí: -A+2B+C

Entalpii tedy vypočítáme:

$$\Delta H_r = -226,92-2.393,7-285,96=-1300,82~{\rm kJ.mol^{-1}}$$
 Entalpie zadané reakce bude $-1300,82~{\rm kJ.mol^{-1}}$

1.3 Hessův zákon

2 pH

2.1 Vzorce

Silná kyselina
$$pH = -\log c$$

Silná zásada
$$pH = 14 + \log c$$

Slabá kyselina
$$pH = \frac{1}{2}pK_A - \frac{1}{2}\log c$$

Slabá zásada
$$\mathrm{pH} = 14 \; + \; \tfrac{1}{2} \log \mathrm{c} - \tfrac{1}{2} \mathrm{p} K_B$$

Sůl slabé k a silné z pH = 7 +
$$\frac{1}{2}\log c + \frac{1}{2}pK_A$$

Sůl silné k a slabé z pH = 7
$$\frac{1}{2} \log c - \frac{1}{2} pK_B$$

Sůl slabé k a slabé z pH = 7 +
$$\frac{1}{2}$$
p $K_A - \frac{1}{2}$ p K_B

Pufr – kyselina
$$\mathrm{pH} = \mathrm{p} K_A + \log \tfrac{[A^-]}{[HA]}$$

Pufr – zásada pH = 14 - p
$$K_B$$
 – $\log \frac{[B^+]}{[BOH]}$

2.2 Iontový součin vody

$$\mathrm{H_2O} + \mathrm{H_2O} \Longrightarrow \mathrm{H_3O}^+ + \mathrm{OH}^-$$

$$K = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$$

$$K_w = [H_3O^+][OH-] = 10^{-14}$$

$$\mathrm{pK}_w = \mathrm{pH} + \mathrm{pOH} = 14$$

2.3 Silné kyseliny a zásady

Vypočítej pH kyseliny chlorovodíkové o koncentraci 0,3 M.

$$HCl \longrightarrow H^+ + Cl^-$$

$$pH = -\log c = -\log 0.3 = 0.52$$

Vypočítej pH kyseliny sírové o koncentraci 0,3 M.

$$H_2SO_4 \longrightarrow 2H^+ + SO_4^{2-}$$

$$pH = -log c = -log (2 \times 0.3) = 0.22$$

Vypočítej pH hydroxidu sodného o koncentraci 0,3 M.

$$NaOH \longrightarrow Na^{+} + OH^{-}$$

$$pOH = -log c = -log 0.3 = 0.52$$

$$pH = 14 - pH = 14 - 0.52 = 13.48$$

2.4 Slabé kyseliny a zásady

Jak'e je pH 0,2 M kyseliny octov\'e, p $K_a=4,76$?

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$

$$K_a = 10^{-\mathrm{pK}_a} = 10^{-4.76} = 0,000017$$

$$K_a = \frac{[\mathrm{CH_3COO^-}][\mathrm{H^+}]}{[\mathrm{CH_3COOH}]} = \frac{x.x}{0.2-x}$$

Dosadíme za K_a a upravíme získaný výraz, čímž dostaneme kvadratickou rovnici:

$$x^2 + 0,000017x - 0,0000034 = 0$$

Kvadratickou rovnici vyřešíme pomocí diskriminantu:

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-0,000017 \pm \sqrt{0,000017^2 - 4.1.(-0,0000034)}}{2.1}$$

Ze dvou vypočítaných kořenů zvolíme ten kladný, koncentrace nemůže být záporná.

$$x = 0,001835$$

$$pH = -\log[H^+] = -\log 0,01835 = 2,736$$

Zjednodušený výpočet

$$K_a = \frac{[\mathrm{CH_3COO^-}][\mathrm{H^+}]}{[\mathrm{CH_3COOH}]} = \frac{x.x}{0.2}$$

Dosadíme za K_a a upravíme získaný výraz, čímž dostaneme kvadratickou rovnici:

$$x^2 - 0,0000034 = 0$$

$$x = \pm \sqrt{0,0000034}$$

$$x = 0,001844$$

$$pH = -log 0.001844 = 2.734$$

Vzorec pro výpočet pH:

$$\mathrm{pH} = \frac{1}{2} \mathrm{p} K_A - \frac{1}{2} \log \, \mathrm{c} = \frac{1}{2} \times 4,76 - \frac{1}{2} \log \, 0,\! 2 = 2,\! 73$$

2.5 Soli

2.5.1 Sůl silné kyseliny a silné zásady

$$NaCl \longrightarrow Na^+ + Cl^-$$

Při disociaci nedochází ke vzniku $\boldsymbol{H}^+,$ ani \boldsymbol{OH}^- iontů, hodnota pH tedy není ovlivněna.

2.6 Pufry

3 Krystaly

V elementární buňce rozlišujeme čtyři typy poloh:

- 1. Poloha uvnitř buňky, atom patří celý do jediné buňky
- 2. Poloha ve středu stěny, atom je sdílen dvěma buňkami. V konkrétní buňce je umístěna polovina atomu.
- 3. Poloha ve středu hrany, atom je sdílen čtyřmi buňkami. V konkrétní buňce je umístěna čtvrtina atomu.
- 4. Poloha ve vrcholu buňky, atom je sdílen osmi buňkami. V konkrétní buňce je umístěna osmina atomu.

Obrázek 1: Krystalová struktura chloridu cesného.¹

Např. chlorid cesný obsahuje cesný i
on ve středu kubické buňky a osm chloridových aniontů v jejích vrcholech. Cesný kation patři do krystalové buňky celý a každý chlorid tam spadá $\frac{1}{8},$ t
zn. vzorec je $\mathrm{CsCl}_{8\times\frac{1}{9}}=\mathrm{CsCl}.$

Obrázek 2: Krystalová struktura oxidu titaničitého.²

- 1. Ti: šedé, $8 \times \frac{1}{8} + 1 = 2$
- 2. O: červené, $2{\times}1\,+\,4{\times}\frac{1}{2}=4$

¹Zdroj: Benjah-bmm27/Commons

²Zdroj: Ben Mills/Commons