

Learning Objectives

1. Describe the principles of capillary electrophoresis (CE)

2. Describe the main components of the CE instrument

3. Discuss the advantages of CE over traditional slab gel

Topics

Principles of Capillary Electrophoresis

CE Instrumentation

Separation Modes

Applications

Classical Electrophoresis

Classical electrophoresis

- **+** Inexpensive
- + Parallel operation
- Manual
- Time consuming
- Laborious
- Long analysis times
- Low efficiencies
- Difficulties in detection and automation

What is Capillary Electrophoresis?

• Similar to slab gel electrophoresis, but done in a capillary

High Performance Capillary Electrophoresis, Agilent Technologies

- More quantifiable and reliable
- Provides information on the size, charge, identity and purity
- Diverse application range
 - Proteins
 - Peptides
 - Amino acids
 - Nucleic acids (RNA and DNA)
 - Inorganic ions
 - Organic bases
 - Organic acids
 - Whole cells

Principles of CE

• Same as gel electrophoresis, CE uses **electrophoresis** as the driving force of separation on a thin capillary

Principles of CE

- The small diameter of the capillary contributes to another aspect of the separation process
 - The phenomenon known as electroosmosis or electrooosmotic flow (EOF)

Electroosmotic Flow

This first layer of cations (fixed layer) is not of sufficient density to totally neutralise the negative charges of the silanoate, so a second outer layer of cations forms (mobile layer)

EOF

EOF leads to en masse movement of all charged species towards the cathode

Anode Cathode

Controlling EOF

- The EOF is usually beneficial, but it needs to be controlled
- For example:

At high pH the EOF may be too rapid, resulting in elution of solutes before separation has occurred.

At low or moderate pH, the low negative charge of the inner capillary surface can cause adsorption of cationic solutes

Some electrophoretic separation modes (isoelectric focusing, capillary gel electrophoresis require reduction or absence of EOF)

Controlling EOF

Variable	Result	Notes
Electric Field	Proportional change in EOF	Joule heating may result
Buffer pH	EOF decreased at low pH, increased at high pH	Best method to control EOF, but may change charge of analytes
Ionic Strength	Decreases ζ and EOF with increasing buffer concentration	High ionic strength means high current and Joule heating
Organic Modifiers	Decreases ζ and EOF with increasing modifier	Complex effects
Surfactant	Adsorbs to capillary wall through hydrophobic or ionic interactions	Anionic surfactants increase EOF Cationic surfactants decrease EOF
Neutral hydrophilic polymer	Adsorbs to capillary wall via hydrophobic interactions	Decreases EOF by shielding surface charge, also increases viscosity
Covalent coating	Chemically bonded to capillary wall	Many possibilities
Temperature	Changes viscosity	Easy to control

 $[\]zeta$ = Zeta potential, the electrokinetic potential at any given point in an ion double layer

Topics

Principles of Capillary Electrophoresis

CE Instrumentation

Separation Modes

Applications

High-voltage Supply

G. D. Christian, Analytical Chemistry, 6th ed., John Wiley, 2004, p. 632

The Capillary

G. D. Christian, Analytical Chemistry, 6th ed., John Wiley, 2004, p. 632

The capillary

- Diameter of 25-100μm, up to 1m long (coiled)
- Large surface area to volume ratio which enhances efficiency of heat dissipation from the system
- This allows operation at higher current density, which speeds up the rate of migration through the capillary
- A window (no polyimide coating) allows the detector to read a signal from the capillary

The capillary

- Capillary sometimes needs to be cut and fitted into a cartridge
- Cutting is done using a cleaving stone
- Capillary needs to be examined under a microscope to ensure it was not damaged during cutting and fitting
- Many QC labs prefer to use pre-cut capillaries

Result of dragging a cleaving stone across capillary

Result of folding the column to snap it

The cartridge

- The capillary is pushed through a cartridge to prepare it for use in the CE
- It can have different length loops attached to allow different lengths of capillaries to be used
- It has a window to give the detector access to the capillary window

Detector

G. D. Christian, Analytical Chemistry, 6th ed., John Wiley, 2004, p. 632

Detectors

- Detectors:
 - UV
 - Photodiode array detector (PDA)
 - Laser-induced fluorescence (LIF)

UV Detector

- Most widely used detection
- Modular, selectable wavelengths (below 200nm up to the visible spectrum)

Basic Principles and Modes of Capillary Electrophoresis, Clinical and Forensic Applications of Capillary Electrophoresis, 2001.

Diode Array Detector

- Allows spectral data to be collected so scans across all wavelengths at the same time, rather than only
 reading at one absorbance as with UV detector
- Any wavelength in the scan range may be viewed during a run and selected for extraction and analysis
 after the run
- Useful for method development (finding optimal wavelength) and for confirmatory analysis (identity, purity)

All the energy of the source lamp focused onto a very small region of the capillary - Some capillary coatings and buffers will decompose under this conditions!

LIF Detector

- Laser-induced fluorescence
- Used for analysis of carbohydrates, nucleic acids & other compounds which either naturally fluoresce or that can be fluorescently labelled
- LIF is selective and highly sensitive and typically yields 10 1000 times better sensitivity than UV absorbance
- Range of commercially available reagents have been developed which allow for the addition of a fluorescence molecule to a specific functional group on the analyte

Buffer and Sample Reservoirs

G. D. Christian, Analytical Chemistry, 6th ed., John Wiley, 2004, p. 632

Methods of Sample Injection

Electrokinetic

- The capillary inlet is inserted into the sample and the outlet into a buffer vial
- Voltage is briefly applied sample is drawn into the capillary through a combination of electrophoresis and electroosmotic flow

Components that migrate more rapidly in the electrical field will be over-represented in the sample compared to slower moving components!

Methods of Sample Injection

Hydrodynamic

- By pressurising the sample to 'push' it into the capillary
- By creating a vacuum at the receiving reservoir, 'pulling' the sample into the capillary
- Injection volume can be controlled by adjusting delivery pressure and delivery time (lower pressure injection usually gives better performance)

Injection by pressure or vacuum:

Temperature (and thus viscosity) affects reproducibility of injection volumes in both cases!

CE Results

• Results are shown as an **electropherogram** (similar to a chromatogram in HPLC): time v absorbance/fluorescence units

Flat Flow Velocity Profile

- A unique feature of EOF in the capillary is the flat flow velocity profile
- The flat flow velocity profile is beneficial since it does not contribute to the broadening of sample zones.
- This is in contrast to the flow velocity profile generated by pressure (e.g. HPLC), which yields a laminar flow velocity profile due to the shear forces at the wall

The flat movement of sample through capillary leads to very high resolution

Topics

Principles of Capillary Electrophoresis CE Instrumentation **Separation Modes Applications**

CE separation techniques

 Several separation techniques can be used depending on the capillary and the electrolytes used

- Capillary Zone Electrophoresis (CZE): simplest form of CE, separation is by charge-to-mass ratio
- Capillary Gel Electrophoresis (CGE): separation occurs in a gel in the capillary
 e.g. polyacrylamide gel. SDS can be used to coat protein in negative charge so
 separation is by size
- Capillary iso-electric focusing (CIEF): separation is by <u>charge</u> & occurs along a
 pH gradient so proteins migrate depending on their isoelectric point

Capillary Gel Electrophoresis (CGE)

- CGE is the adaptation of traditional gel electrophoresis into the capillary using polymers in solution to create a molecular sieve
- SDS negatively charges all proteins so separation is by size: <u>CE-SDS</u>
- Larger molecules tend to be retarded more by the viscous separation medium than smaller molecules

CGE Separation Medium

Agarose and cross-linked polyacrylamide (CPA) were used as sieving matrices, and these
matrices were prepared directly inside the capillary

Issues:

- CPA sometimes shrinks and breaks during polymerisation leading to bubble formation inside the capillary
- Over-time large molecules and particulates accumulate at the end of the capillary and clog the capillary
- Run-to-run reproducibility poor

CGE Separation Medium

- Currently, water-soluble, replaceable linear or slightly branched polymers, are used (linear polyacrylamide polyethylene glycol, polyethylene oxide, dextran, pullulan)
- Can be dissolved in buffer and hydrodynamically loaded into the capillary
- The capillary wall needs to be coated to eliminate EOF

Capillary iso-electric focusing (CIEF)

- CIEF can be used for charge heterogeneity determination
- Useful for determining the **identity**, **purity**, **post-translational modifications** (e.g. sialylation, phosphorylation, deamidation) and **stability** of therapeutic proteins
- Separation of samples by their iso-electric point in a pH gradient
- EOF needs to be minimised!

Different solutions are premixed and filled into the capillary:

- Carrier ampholytes,
- Sample proteins,
- Standards (pl markers),
- Optional additives

CIEF

• One end of the filled capillary is connected with the low pH electrolyte (anolyte) and the other end with the high pH electrolyte (catholyte) and electric filed is applied

Focusing

- Proteins and the ampholyte become sorted in the capillary from low to high pI –
 FOCUSING
- At the beginning of the focusing process a high current is observed, which continuously decreases until it reaches a minimum (usually 10% of the initial value)

Mobilisation

- To be detected the analytes must be moved past the point of detection **MOBILISATION**
- Two approaches:
 - Hydrodynamic or pressure mobilisation
 - Chemical mobilisation

Hydrodynamic mobilisation

- A slight pressure is applied to the anolyte vial
- The content is pushed forward and every zone is driven to the point of detection
- Some broadening of the focused analyte zones might occur

Chemical mobilisation

- The anolyte or catholyte is replaced by another electrolyte solution with different pH or ionic strength (e.g sodium chloride, acetic acid)
- This disrupts the pH gradient causing analytes to acquire the net charge and start moving towards the outlet

Capillary Electrophoresis

Capillary electrophoresis

- + Automatic
- + High resolution
- + On-line detection
- **+** Quantitative
- + Minimal sample volume requirements
- Parallel operation

NIBRT © 4:

Topics

Principles of Capillary Electrophoresis CE Instrumentation **Separation Modes Applications**

Applications

Examples

- Determination of SDS molecular weight of protein
- IgG purity and heterogeneity determination
- Capillary Iso-electric focusing (CIEF): determination of charge heterogeneity
- Carbohydrate analysis with CE-LIF

1. IgG purity and heterogeneity determination

- Separation by CGE: by size
- Allows resolution of IgG isoforms and impurities
- Can analyse IgG in non-reduced or reduced forms:

Non-reduced IgG:

- Intact non-glycosylated tetramer (2HC, 2LC)
- Intact glycosylated tetramer (2HC, 2LC)

Reduced IgG:

- **Light chain** (~25kDa)
- Non-glycosylated heavy chain (<50kDa)
- Glycosylated heavy chain (~50kDa)

1. IgG purity and heterogeneity determination

Example:

2. Analysis of charge variants by cIEF

Topics

Principles of Capillary Electrophoresis CE Instrumentation **Separation Modes Applications**

Thank You

