

Выпускная квалификационная работа по курсу «Data Science»

Прокофьев Алексей Николаевич

Тема выпускной квалификационной работы:

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Задание:

- 1. Изучить теоретические основы и методы решения поставленной задачи.
- 2. Провести разведочный анализ предложенных данных. Необходимо нарисовать гистограммы распределения каждой из переменной, диаграммы ящика с усами, попарные графики рассеяния точек. Необходимо также для каждой колонке получить среднее, медианное значение, провести анализ и исключение выбросов, проверить наличие пропусков.
- 3. Провести предобработку данных (удаление шумов, нормализация и т.д.).
- 4. Обучить нескольких моделей для прогноза модуля упругости при растяжении и прочности при растяжении. При построении модели необходимо 30% данных оставить на тестирование модели, на остальных происходит обучение моделей. При построении моделей провести поиск гиперпараметров модели с помощью поиска по сетке с перекрестной проверкой, количество блоков равно 10.
- 5. Написать нейронную сеть, которая будет рекомендовать соотношение матрица-наполнитель.
- 6. Разработать приложение с графическим интерфейсом или интерфейсом командной строки, которое будет выдавать прогноз, полученный в задании 4 или 5 (один или два прогноза, на выбор учащегося).
- 7. Оценить точность модели на тренировочном и тестовом датасете.
- 8. Создать репозиторий в GitHub / GitLab и разместить там код исследования. Оформить файл README.

Постановка задачи:

- 1. изучить предметную область
- 2. провести разведочный анализ данных
- 3. разделить данные на тренировочную и тестовую выборки
- 4. выполнить препроцессинг (предобработку)
- 5. выбрать базовую модель и модели для подбора
- 6. сравнить модели с гиперпараметрами по умолчанию
- 7. подобрать гиперпараметры с помощью с помощью поиска по сетке с перекрестной проверкой
- 8. сравнить модели после подбора гиперпараметров и выбрать лучшую
- 9. сравнить качество лучшей и базовой моделей на тестовой выборке
- 10. сравнить качество лучшей модели на тренировочной и тестовой выборке
- 11. разработать приложение

Разведочный анализ данных

X_bp (матрица из базальтопластика):

- признаков: 10 и индекс

- строк: 1023

X_nup (наполнитель из углепластика):

- признаков: 3 и индекс

- строк: 1040

Объединение с типом INNER по индексу, получилось:

- признаков: 13

- строк: 1023

Название	Файл	Тип данных	Непустых значений	Уникальных значений
Соотношение матрица-	X_bp	float64	1023	1014
Плотность, кг/м3	X_bp	float64	1023	1013
модуль упругости, ГПа	X_bp	float64	1023	1020
Количество отвердителя, м.%	X_bp	float64	1023	1005
Содержание эпоксидных групп,%_2	X_bp	float64	1023	1004
Температура вспышки, С_2	X_bp	float64	1023	1003
Поверхностная плотность, г/м2	X_bp	float64	1023	1004
Модуль упругости при растяжении, ГПа	X_bp	float64	1023	1004
Прочность при растяжении, МПа	X_bp	float64	1023	1004
Потребление смолы, г/м2	X_bp	float64	1023	1003
Угол нашивки, град	X_nup	float64	1023	2
Шаг нашивки	X_nup	float64	1023	989
Плотность нашивки	X_nup	float64	1023	988

	Среднее	Стандартное отклонение	Минимум	Максимум	Медиана
Соотношение матрица-наполнитель	2.9304	0.9132	0.3894	5.5917	2.9069
Плотность, кг/м3	1975.7349	73.7292	1731.7646	2207.7735	1977.6217
модуль упругости, ГПа	739.9232	330.2316	2.4369	1911.5365	739.6643
Количество отвердителя, м.%	110.5708	28.2959	17.7403	198.9532	110.5648
Содержание эпоксидных групп, %_2	22.2444	2.4063	14.2550	33.0000	22.2307
Температура вспышки, С_2	285.8822	40.9433	100.0000	413.2734	285.8968
Поверхностная плотность, г/м2	482.7318	281.3147	0.6037	1399.5424	451.8644
Модуль упругости при растяжении, ГПа	73.3286	3.1190	64.0541	82.6821	73.2688
Прочность при растяжении, МПа	2466.9228	485.6280	1036.8566	3848,4367	2459.5245
Потребление смолы, г/м2	218.4231	59.7359	33.8030	414.5906	219.1989
Угол нашивки, град	44.2522	45.0158	0.0000	90.0000	0.0000
Шаг нашивки	6.8992	2.5635	0.0000	14.4405	6.9161
Плотность нашивки	57.1539	12.3510	0.0000	103.9889	57.3419

Гистограммы распределения и диаграммы «ящик с усами»

Большинство — количественные, вещественные, положительные, нормально распределенные. Угол нашивки — категориальный, бинарный.

Попарные графики рассеяния точек

Выбросы есть

Зависимостей нет

Выбросы

Найдено:

- методом 3-х сигм 24 выброса
- методом межквартильных расстояний 93 выброса

Значения, определенные как выбросы, удаляем. Осталось 1000 строк и 13 признаков-переменных

Матрица корреляции

Линейной зависимости нет

Модели

Линейная регрессия

Лассо (LASSO) и гребневая (Ridge) регрессия

Метод опорных векторов для регрессии

Метод k-ближайших соседей

Деревья решений

Случайный лес

Градиентный бустинг

Модель для модуля упругости при растяжении

	R2	RMSE	MAE	MAPE	max error
	IV.	TUISE	IIAE	TIME E	max_crror
DummyRegressor	-0.021502	-3.059339	-2.465060	-0.033641	-8.053111
LinearRegression	-0.022620	-3.059379	-2.464305	-0.033641	-8.139731
Ridge	-0.022538	-3.059264	-2.464226	-0.033640	-8.139352
Lasso	-0.021502	-3.059339	-2.465060	-0.033641	-8.053111
SVR	-0.037763	-3.082058	-2.472179	-0.033767	-8.146369
KNeighborsRegressor	-0.197298	-3.312241	-2.624624	-0.035795	-8.876770
DecisionTreeRegressor	-1.229594	-4.485293	-3.545377	-0.048431	-12.178495
RandomForestRegressor	-0.061516	-3.117096	-2.485271	-0.033934	-8.457280

	R2	RMSE	MAE	MAPE	max_error
Ridge(alpha=480, solver="lsqr")	-0.013299	-3.046623	-2.455526	-0.033517	-8.071899
Lasso(alpha=0.15)	-0.019048	-3.055423	-2.459921	-0.033574	-8.102101
SVR(C=0.015, kernel='linear')	-0.016521	-3.052020	-2.456808	-0.033549	-8.140634
KNeighborsRegressor(n_neighbors=25)	-0.030786	-3.074728	-2.461113	-0.033581	-8.031419
DecisionTreeRegressor(criterion='absolute_error', max_depth=2, max_features=10, random_state=3128, splitter='random')	-0.009281	-3.041407	-2.435050	-0.033185	-8.004156
RandomForestRegressor(bootstrap=False, criterion='absolute_error', max_depth=4, max_features=2, random_state=3128)	-0.015396	-3.049810	-2.446070	-0.033369	-8.275716

	R2	RMSE	MAE	MAPE	max_error
Модуль упругости, тренировочный	0.017295	-3.037284	-2.410294	-0.032850	-9.008468
Модуль упругости, тестовый	-0.035776	-3.277844	-2.610243	-0.035707	-8.152045

Модель для прочности при растяжении

R2	RMSE	MAE	MAPE	max_error
-0.012988	-484.654884	-385.827028	-0.169931	-1228.780064
-0.022969	-487.063246	-388.303827	-0.170559	-1249.517419
-0.022896	-487.046319	-388.290667	-0.170555	-1249.460177
-0.021388	-486.695829	-387.988314	-0.170448	-1248.210674
-0.011952	-484.429045	-385.715018	-0.169382	-1232.355369
-1.187233	-702.791415	-555.350332	-0.238620	-1927.849316
-0.084580	-500.230316	-398.052645	-0.174164	-1312.87332
0.004360	300.230310	-590.032043	0.174104	1312.0733
	-0.012988 -0.022969 -0.022896 -0.021388 -0.011952 -1.187233	-0.012988 -484.654884 -0.022969 -487.063246 -0.022896 -487.046319 -0.021388 -486.695829 -0.011952 -484.429045 -1.187233 -702.791415	-0.012988 -484.654884 -385.827028 -0.022969 -487.063246 -388.303827 -0.022896 -487.046319 -388.290667 -0.021388 -486.695829 -387.988314 -0.011952 -484.429045 -385.715018 -1.187233 -702.791415 -555.350332	-0.012988 -484.654884 -385.827028 -0.169931 -0.022969 -487.063246 -388.303827 -0.170559 -0.022896 -487.046319 -388.290667 -0.170555 -0.021388 -486.695829 -387.988314 -0.170448 -0.011952 -484.429045 -385.715018 -0.169382 -1.187233 -702.791415 -555.350332 -0.238620

	R2	RMSE	MAE	MAPE	max_error
Ridge(alpha=990, solver='sparse_cg')	-0.010764	-484.199853	-385.891069	-0.169828	-1233.19657
Lasso(alpha=50)	-0.012988	-484.654884	-385.827028	-0.169931	-1228.78006
SVR(C=0.2)	-0.012246	-484.489867	-385.724279	-0.169413	-1232.34149
DecisionTreeRegressor(criterion='poisson', max_depth=3, max_features=6, random_state=3128, splitter='random')	-0.009440	-483.713960	-384.045197	-0.169031	-1244.35990
GradientBoostingRegressor(max_depth=1, max_features=1, n_estimators=50, random_state=3128)	-0.005486	-483.026609	-385.268908	-0.169409	-1231.87829

	R2	RMSE	MAE	MAPE	max_error
Базовая модель	-0.000531	-479.694153	-375.066608	-0.165566	-1431.321957
Лучшая модель (градиентный бустинг)	0.004028	-478.600202	-376.647056	-0.166046	-1384.841404
	R	2 RMSE	MAE	MAPE	max_error
Прочность при растяжении, тренировочны	ы <mark>й</mark> 0.05714	1 -472.832206	-374.670333	-0.164825	-1383.885510
Прочность при растяжении, тестовый	0.00402	8 -478.600202	-376.647056	-0.166046	-1384.841404

Модель для соотношения матрица-наполнитель

	R2	RMSE	MAE	MAPE	max_error
DummyRegressor	-0.011269	-0.911261	-0.737067	-0.299795	-2.684301
MLPRegressor	-0.052842	-0.929803	-0.751262	-0.306957	-2.790557

Модель для соотношения матрица-наполнитель

Обучение нейросети

Борьба с переобучением: Борьба с переобучением: ранняя остановка

Dropout

Модель для соотношения матрица-наполнитель

Метрики работы нейросетей на тестовом множестве

	R2	RMSE	MAE	MAPE	max error
DummyRegressor	-0.011269	-0.911261	-0.737067	-0.299795	-2.684301
Нейросеть переобученная	-0.624376	-1.154922	-0.938195	-0.373712	-2.868809
Нейросеть с ранней остановкой	-0.322407	-1.042058	-0.852214	-0.312846	-2.781806
Нейросеть dropout	-0.628132	-1.156256	-0.960385	-0.343979	-2.903841

Сравнение ошибок модели для соотношения матрица-наполнитель на тренировочном и тестовом датасете

	R2	RMSE	MAE	MAPE	max_error
Соотношение матрица-наполнитель, тренировочный	-0.212722	-0.999613	-0.787676	-0.298627	-3.084322
Соотношение матрица-наполнитель, тестовый	-0.322407	-1.042058	-0.852214	-0.312846	-2.781806

РЕЗЮМЕ ПРОЕКТА

ЗАДАЧА НЕ РЕШЕНА!

Для данного исследования был создан удаленный репозиторий на GitHub, который находится по адресу: https://github.com/e-tut/course-data-science (e-tut.github.io/course-data-science/).

do.bmstu.ru

