

# Lecture 10: Power

### What is due 10/3

- $\square$  Reading 5.1 5.3
- Midterm will be on 10/10
- ☐ Quiz #5 will be on thursday

## **Outline**

- □ Power and Energy
- Dynamic Power
- ☐ Static Power

# **Power and Energy**

- □ Power is drawn from a voltage source attached to the V<sub>DD</sub> pin(s) of a chip.
- ☐ Instantaneous Power: P(t) =
- $\Box$  Energy: E =
- $\Box$  Average Power:  $P_{\text{avg}} = 0$

#### **Power in Circuit Elements**

$$P_{V\!D\!D}\left(t\right) = I_{D\!D}\left(t\right)V_{D\!D}$$

$$P_{R}(t) = \frac{V_{R}^{2}(t)}{R} = I_{R}^{2}(t)R$$

$$E_C = \int_0^\infty I(t)V(t)dt = \int_0^\infty C\frac{dV}{dt}V(t)dt$$
$$= C\int_0^{V_C} V(t)dV = \frac{1}{2}CV_C^2$$

$$\overset{+}{\bigvee}_{C} + \overset{+}{\longleftarrow} C \downarrow I_{C} = C \text{ dV/dt}$$

# **Charging a Capacitor**

- When the gate output rises
  - Energy stored in capacitor is

$$E_C = \frac{1}{2} C_L V_{DD}^2$$

But energy drawn from the supply is

$$E_{VDD} = \int_{0}^{\infty} I(t)V_{DD}dt = \int_{0}^{\infty} C_{L} \frac{dV}{dt} V_{DD}dt$$
$$= C_{L}V_{DD} \int_{0}^{V_{DD}} dV = C_{L}V_{DD}^{2}$$



- Half the energy from V<sub>DD</sub> is dissipated in the pMOS transistor as heat, other half stored in capacitor
- ☐ When the gate output falls
  - Energy in capacitor is dumped to GND
  - Dissipated as heat in the nMOS transistor

# **Switching Waveforms**

 $\square$  Example:  $V_{DD} = 1.0 \text{ V}$ ,  $C_L = 150 \text{ fF}$ , f = 1 GHz



# **Switching Power**

$$P_{\text{switching}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

$$= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$$

$$= \frac{V_{DD}}{T} \left[ T f_{\text{sw}} C V_{DD} \right]$$

$$= C V_{DD}^{2} f_{\text{sw}}$$



# **Activity Factor**

- ☐ Suppose the system clock frequency = f
- $\Box$  Let  $f_{sw} = \alpha f$ , where  $\alpha = activity factor$ 
  - If the signal is a clock,  $\alpha$  = 1
  - If the signal switches once per cycle,  $\alpha = \frac{1}{2}$
- Dynamic power:

$$P_{\text{switching}} = \alpha C V_{DD}^2 f$$

### **Short Circuit Current**

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output
- ☐ We will generally ignore this component

# **Power Dissipation Sources**

- $\Box$   $P_{total} = P_{dynamic} + P_{static}$
- ☐ Dynamic power: P<sub>dynamic</sub> = P<sub>switching</sub> + P<sub>shortcircuit</sub>
  - Switching load capacitances
  - Short-circuit current
- $\square$  Static power:  $P_{\text{static}} = (I_{\text{sub}} + I_{\text{gate}} + I_{\text{junct}} + I_{\text{contention}})V_{\text{DD}}$ 
  - Subthreshold leakage
  - Gate leakage
  - Junction leakage
  - Contention current

# **Dynamic Power Example**

- ☐ 1 billion transistor chip
  - 50M logic transistors
    - Average width: 12 λ
    - Activity factor = 0.1
  - 950M memory transistors
    - Average width: 4 λ
    - Activity factor = 0.02
  - 1.0 V 65 nm process
  - $-C = 1 \text{ fF/}\mu\text{m (gate)} + 0.8 \text{ fF/}\mu\text{m (diffusion)}$
- ☐ Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

#### Solution

$$C_{\text{logic}} = (50 \times 10^6)(12\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 27 \text{ nF}$$

$$C_{\text{mem}} = (950 \times 10^6)(4\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 171 \text{ nF}$$

$$P_{\text{dynamic}} = \left[0.1C_{\text{logic}} + 0.02C_{\text{mem}}\right](1.0)^2 (1.0 \text{ GHz}) = 6.1 \text{ W}$$

# **Dynamic Power Reduction**

- $\square P_{\text{switching}} = \alpha C V_{DD}^{2} f$
- ☐ Try to minimize:
  - Activity factor
  - Capacitance
  - Supply voltage
  - Frequency

# **Activity Factor Estimation**

- - $-\overline{P_i} = 1-P_i$
- $\square$   $\alpha_i = \overline{P}_i * P_i$
- $\Box$  Completely random data has P = 0.5 and  $\alpha$  = 0.25
- □ Data is often not completely random
  - e.g. upper bits of 64-bit words representing bank account balances are usually 0
- Data propagating through ANDs and ORs has lower activity factor
  - Depends on design, but typically  $\alpha \approx 0.1$

# **Switching Probability**

| Gate  | P <sub>Y</sub>                                                      |  |
|-------|---------------------------------------------------------------------|--|
| AND2  | $P_{\mathcal{A}}P_{\mathcal{B}}$                                    |  |
| AND3  | $P_{\mathcal{A}}P_{B}P_{C}$                                         |  |
| OR2   | $1 - \overline{P}_{A}\overline{P}_{B}$                              |  |
| NAND2 | $1 - P_A P_B$                                                       |  |
| NOR2  | $\overline{P}_{\!\mathcal{A}}\overline{P}_{\!\mathcal{B}}$          |  |
| XOR2  | $P_{\mathcal{A}}\overline{P}_{B} + \overline{P}_{\mathcal{A}}P_{B}$ |  |

## **Example**

- □ A 4-input AND is built out of two levels of gates
- ☐ Estimate the activity factor at each node if the inputs have P = 0.5



# **Clock Gating**

- ☐ The best way to reduce the activity is to turn off the clock to registers in unused blocks
  - Saves clock activity ( $\alpha$  = 1)
  - Eliminates all switching activity in the block
  - Requires determining if block will be used



10: Power

# Capacitance

- ☐ Gate capacitance
  - Fewer stages of logic
  - Small gate sizes
- □ Wire capacitance
  - Good floorplanning to keep communicating blocks close to each other
  - Drive long wires with inverters or buffers rather than complex gates

# Voltage / Frequency

- □ Run each block at the lowest possible voltage and frequency that meets performance requirements
- Voltage Domains
  - Provide separate supplies to different blocks
  - Level converters required when crossing from low to high V<sub>DD</sub> domains



- Dynamic Voltage Scaling
  - Adjust V<sub>DD</sub> and f according to workload



#### **Static Power**

- Static power is consumed even when chip is quiescent.
  - Leakage draws power from nominally OFF devices
  - Ratioed circuits burn power in fight between ON transistors

# **Static Power Example**

- ☐ Revisit power estimation for 1 billion transistor chip
- Estimate static power consumption
  - Subthreshold leakage
    - Normal  $V_t$ : 100 nA/ $\mu$ m
    - High  $V_t$ : 10 nA/ $\mu$ m
    - High Vt used in all memories and in 95% of logic gates
  - Gate leakage5 nA/μm
  - Junction leakage negligible

#### Solution

$$\begin{split} W_{\text{normal-V}_{t}} &= \left(50 \times 10^{6}\right) \left(12\lambda\right) \left(0.025 \,\mu\text{m} / \lambda\right) \left(0.05\right) = 0.75 \times 10^{6} \,\mu\text{m} \\ W_{\text{high-V}_{t}} &= \left[\left(50 \times 10^{6}\right) \left(12\lambda\right) \left(0.95\right) + \left(950 \times 10^{6}\right) \left(4\lambda\right)\right] \left(0.025 \,\mu\text{m} / \lambda\right) = 109.25 \times 10^{6} \,\mu\text{m} \\ I_{sub} &= \left[W_{\text{normal-V}_{t}} \times 100 \,\text{nA} / \mu\text{m} + W_{\text{high-V}_{t}} \times 10 \,\text{nA} / \mu\text{m}\right] / \,2 = 584 \,\text{mA} \\ I_{gate} &= \left[\left(W_{\text{normal-V}_{t}} + W_{\text{high-V}_{t}}\right) \times 5 \,\text{nA} / \mu\text{m}\right] / \,2 = 275 \,\text{mA} \\ P_{static} &= \left(584 \,\text{mA} + 275 \,\text{mA}\right) \left(1.0 \,\text{V}\right) = 859 \,\text{mW} \end{split}$$

# **Leakage Control**

- ☐ Leakage and delay trade off
  - Aim for low leakage in sleep and low delay in active mode
- ☐ To reduce leakage:
  - Increase V<sub>t</sub>: multiple V<sub>t</sub>
    - Use low V<sub>t</sub> only in critical circuits
  - Increase V<sub>s</sub>: stack effect
    - Input vector control in sleep
  - Decrease V<sub>b</sub>
    - Reverse body bias in sleep
    - Or forward body bias in active mode

## **Gate Leakage**

- Extremely strong function of t<sub>ox</sub> and V<sub>gs</sub>
  - Negligible for older processes
  - Approaches subthreshold leakage at 65 nm and below in some processes
- ☐ An order of magnitude less for pMOS than nMOS
- $\Box$  Control leakage in the process using  $t_{ox} > 10.5 \text{ Å}$ 
  - High-k gate dielectrics help
  - Some processes provide multiple t<sub>ox</sub>
    - e.g. thicker oxide for 3.3 V I/O transistors
- □ Control leakage in circuits by limiting V<sub>DD</sub>

# NAND3 Leakage Example

☐ 100 nm process

$$I_{gn} = 6.3 \text{ nA}$$
  $I_{gp} = 0$ 

$$I_{offn} = 5.63 \text{ nA}$$
  $I_{offp} = 9.3 \text{ nA}$ 



| Input State (ABC) | I <sub>sub</sub> | Igate | l <sub>total</sub> | $V_{x}$          | V <sub>z</sub>   |
|-------------------|------------------|-------|--------------------|------------------|------------------|
| 000               | 0.4              | 0     | 0.4                | stack effect     | stack effect     |
| 001               | 0.7              | 0     | 0.7                | stack effect     | $V_{DD} - V_{t}$ |
| 010               | 0.7              | 1.3   | 2.0                | intermediate     | intermediate     |
| 011               | 3.8              | 0     | 3.8                | $V_{DD} - V_{t}$ | $V_{DD} - V_{t}$ |
| 100               | 0.7              | 6.3   | 7.0                | 0                | stack effect     |
| 101               | 3.8              | 6.3   | 10.1               | 0                | $V_{DD} - V_{t}$ |
| 110               | 5.6              | 12.6  | 18.2               | 0                | 0                |
| 111               | 28               | 18.9  | 46.9               | 0                | 0                |

Data from [Lee03]

# **Junction Leakage**

- ☐ From reverse-biased p-n junctions
  - Between diffusion and substrate or well
- Ordinary diode leakage is negligible
- ☐ Band-to-band tunneling (BTBT) can be significant
  - Especially in high-V<sub>t</sub> transistors where other leakage is small
  - Worst at  $V_{db} = V_{DD}$
- ☐ Gate-induced drain leakage (GIDL) exacerbates
  - Worst for  $V_{gd} = -V_{DD}$  (or more negative)

# **Power Gating**

- ☐ Turn OFF power to blocks when they are idle to save leakage

  Header Switch Transistors
  - Use virtual  $V_{DD}$  ( $V_{DDV}$ )
  - Gate outputs to prevent invalid logic levels to next block



- □ Voltage drop across sleep transistor degrades performance during normal operation
  - Size the transistor wide enough to minimize impact
- ☐ Switching wide sleep transistor costs dynamic power
  - Only justified when circuit sleeps long enough