PREDICTING THE SEVERITY OF CAR ACCIDENTS

IBM DATA SCIENCE CAPSTONE PROJECT

PROBLEM

- Road fatalities are very common (Source: Budget Direct)
 - 18.2 people per 100000 people die daily
 - Daily deaths rate of 3
- Lives lost and properties destroyed
- Rapid development of data science tools today
 - Exploring the capability of analysing real-world large data sets to model car accidents is gaining extreme attention
- Stake holders
 - Public Development Authority of Seattle
 - General Public

DATA

- Data storage of Public Police Department Seattle from 2014 2019
- 0.2 million data records, 37 feature attributes
- Characteristics of road car accidents with severity is recorded

METHODOLOGY

- Data Cleaning
 - Remove unrelated attributes
 - Location coordinates, Incident Key etc.
 - Remove attributes vulnerable to significant data missing
 - Speeding Over 95% of values missing
- Exploratory Data analysis
 - Determine impact of features to severity
- Data Preparation
 - Convert categorical variables to numerical variables
 - One-hot encoding
- Modeling and Prediction
 - Logistic Regression

RESULTS

- Predicting Severity Category 1 accidents
 - 72% accuracy
- Predicting Severity Category 2 accidents
 - **82**%

DISCUSSION AND CONCLUSION

- Most influential features
 - Weather, Road Condition, Collision Type, Number of Persons and Number of Vehicles
- Analysis is enormously helpful for authorities ()
 - To identify accident vulnerable locations/road type
 - To install new instructions/road signs
 - Implement new rules and regulations
 - i.e. new speeding limits
- Prediction helps to minimize and avoid accidents using real-time predictions
 - 77% accuracy is predicting severity using logistic regression
- Other classification techniques foe better accuracy
 - SVM, KNN, Decision Trees

