ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет бизнеса и менеджмента

ДОМАШНЕЕ ЗАДАНИЕ №2 ПО КУРСУ "КЛАССИФИКАЦИЯ СТАТИСТИЧЕСКИХ ДАННЫХ"

Григоращенко Екатерины Андреевны

2 курс, образовательная программа «Бизнес-информатика»

Оглавление

Оглавление	2
1. Формирование базы данных	3
2. Дискриминантный анализ	8
3. Построение дерева классификации	15
4. Декомпозиция смеси	25
Источники	29

1. Формирование базы данных

В данном исследовании будет изучено влияние различных признаков на качество в разных странах. В качестве независимых непрерывных переменных были взяты показатели: индекс качества жизни, паритет покупателя, индекс безопасности, индекс здравоохранения, индекс стоимости проживания, соотношение стоимости жилья и заработной платы населения. В качестве бинарных независимых переменных взяты степень загрязнения воздуха (1 - состояние находится в пределах нормы) и климат (1 - более благоприятный климат, 0 - менее благоприятный климат). В качестве целевой (зависимой переменной) был взят ответ на вопрос, находится ли страна в топе 50 лучших стран для проживания или нет. "1" обозначает принадлежность к топу 50, "2" - обратное.

Задача классификация: определить является ли страна более комфортной для проживания людей или нет.

Таблица 1. Исходные данные

Страна	Индекс качеств а жизни	Паритет покупате льной способно сти	Индекс безопасн ости	Индек с здраво охране ния	Индекс стоимос ти прожив ания	Соотнош ения стоимост и жилья и заработка	Степе нь загряз нения воздух а	Клим ат	Прису тствие в топ 50
Switzerlan d	190,82	110,96	78,65	74,47	131,75	8,42	1	1	1
Denmark	190,01	94,73	73,28	79,96	91,67	6,66	1	1	1
Netherland s	183,31	83,89	72,78	75,76	78,64	7,35	1	0	1
Finland	182,79	89,05	72,99	76,4	77,46	8,64	1	1	1
Austria	182,37	78,23	74,77	78,4	75,49	10,4	1	1	1
Australia	181,52	99,29	57,56	77,71	84,14	7,38	1	0	1
Iceland	179,1	71,88	75,87	65,69	96,77	6,31	1	1	1
Germany	176,76	93,72	64,58	73,77	70,62	9,12	1	1	1

New Zealand	175,77	81,44	57,74	73,58	79,14	8,09	1	0	1
Norway	173,57	79,43	66,65	75,5	106,09	8,49	1	1	1
				,					
Estonia	173,56	61,22	76,62	72,83	56,45	9,11	1	1	1
Oman	172,08	84,45	79,74	58,42	50,18	5,75	1	1	1
Sweden	171,4	90,55	52,8	68,8	79,17	8,56	1	1	1
Slovenia	168,2	56,14	78,21	65,28	59,38	10,89	1	1	1
United States	166,98	102,58	52,26	69,03	71,92	3,99	1	1	1
Spain	164,48	62,68	66,87	78,8	59,09	9,59	1	0	1
Japan	162,32	76,53	78,05	80,68	87,77	13,04	1	1	1
Portugal	161,91	44,96	70,11	71,93	52,88	12,65	1	0	1
Lithuania	160,02	54,6	66,16	70,97	47,66	10,97	1	1	1
Canada	159,99	82,76	58,81	71,8	70,08	7,53	1	1	1
United Kingdom	158,99	82,56	54,74	74,93	71,03	9,57	1	0	1
Czech Republic	156,33	56,4	74,69	75,37	49,18	15,46	1	1	1
Croatia	156,1	43,13	75,09	64,23	56,36	14,2	1	0	1
United Arab Emirates	156,03	85,74	84,65	68,02	61,67	4,93	0	1	1
Qatar	154,58	93,12	87,71	73	64,23	5,97	0	1	1
Belgium	150,89	76,54	55,83	75,2	78,52	6,91	0	1	1
Ireland	150,89	73,84	54,98	52,78	83,11	7,4	1	0	1
France	150,73	74,06	50,8	80,99	80,62	13,48	1	0	1
Slovakia	149,68	50,39	70,26	60,89	49,08	11,14	1	1	1

Latvia	147,59	45,94	62,79	62,18	52,87	8,48	1	1	1
Saudi Arabia	147,37	88,18	74,07	60,71	49,95	2,57	0	1	1
Israel	144,14	70,36	68,79	73,76	86,63	13,68	0	0	1
Cyprus	144,06	52,34	68,03	52,71	64,05	7,12	0	0	1
Singapore	143,82	83,62	67,02	70,88	85,59	19,38	1	1	1
Taiwan	138,82	56,08	84,76	86,39	65,25	23,63	0	0	1
Italy	138,63	58,7	55,63	66,77	73,11	9,52	0	1	1
Hungary	134,01	49,81	65,19	51,64	42,75	11,6	1	0	1
Poland	132,65	47,09	70,68	58,25	42,04	14,03	0	0	1
Bulgaria	126,34	40,26	61,88	56,13	40,92	8,97	0	1	2
Turkey	125,97	35,35	60,47	70,71	31,48	8,21	0	0	2
Bosnia And Herzegovi na	125,71	42,56	56,99	53,48	38,56	10,75	0	1	2
Uruguay	124,63	30,62	48,78	67,66	51,09	17,33	1	0	2
Costa Rica	121,65	39,01	44,66	62,92	50,64	10,07	1	0	2
Mexico	120,29	35,54	45	72,51	35,05	10,46	0	0	2
Georgia	118,87	25,67	77,38	53,83	28,05	14,16	0	0	2
Ecuador	118,76	30,54	45,59	68,81	40,08	12,59	0	0	2
Malaysia	116,94	56,1	42,11	69,59	39,51	9,92	0	1	2
Serbia	116,24	35,83	61,74	51,62	39,19	17,08	0	1	2
Jordan	114,04	33,13	59,27	65,38	52,17	8,03	0	0	2
Kuwait	113,98	75,32	65,96	58,97	49,4	13,18	0	1	2
Argentina	110,5	34,56	36,69	68,58	37,87	22,68	0	0	2
Panama	110,32	32,05	54,15	60,43	54,07	12,33	0	1	2

North Macedonia	108,47	31,97	61,41	56,49	34,15	12,67	0	1	2
Ukraine	107,35	30,1	51,72	53,43	29,21	10,77	0	1	2
Belarus	107,35	31,96	39,73	44,44	30,69	16,79	1	1	2
Pakistan	105,14	27,28	56,14	60,52	21,59	12,62	0	1	2
Brazil	104,75	28,66	32,15	57,33	31,82	16,13	0	0	2
India	104,52	47,13	55,28	66,25	25,16	11,31	0	1	2
Morocco	104,42	32,17	50,9	45,81	36,85	13,49	0	0	2
China	103,15	57,47	69,83	66,38	42,54	29,02	0	1	2
Azerbaijan	102,88	25,77	68,34	44,02	30,9	16,58	0	0	2
Russia	101,67	34,61	59,87	58,44	33,17	11,14	0	1	2
Colombia	101,33	26,13	44,23	66,72	31	18,67	0	0	2
Thailand	100,29	31,36	60,62	78,08	49,32	22,16	0	1	2
Chile	99,9	33,33	47,92	63,72	49,33	17,6	0	0	2
Hong Kong	99,34	62,45	78,27	66,34	79,94	45,19	0	1	2
Kazakhsta n	96,42	34,92	45,98	60,09	29,76	9,63	0	1	2
Lebanon	94,47	29,49	53,04	63,29	75,88	14,07	0	0	2
Indonesia	90,1	20,89	53,77	60,49	37,44	22,01	0	1	2
Vietnam	88,38	27,26	53,91	58,28	38,05	20,59	0	1	2
Egypt	86,31	19,99	53,21	46,21	30,1	13,65	0	0	2
Peru	83,3	28,81	33,39	56,38	36,26	16,88	0	0	2
Sri Lanka	79,78	20,77	58,81	72,63	31,28	35,01	0	1	2
Philippines	78,39	19,71	57,84	67,09	40,65	30,14	0	1	2
Kenya	75,77	27,67	38,60	55,83	36,3	27,27	0	0	2

Banglades h	65,27	24,07	35,78	42,7	33,31	14,43	0	1	2
Iran	64,73	19,00	50,81	52,25	41,34	34,24	0	1	2
Nigeria	52	9,78	36,14	48,89	29,74	17,74	0	1	2
Puerto Rico	130,77	69,22	36,65	55,57	69,51	3,56	0	1	
South Korea	130,02	76,6	73,14	82,34	81,2	23,63	0	1	

2. Дискриминантный анализ

2.1. Выделить 1-3 наблюдения, подлежащих дискриминации

Наблюдения, которые будут подлежать дискриминации - данные о Южной Корее и Пуэрто-Рико, так как данные страны находились на стыке первой и второй половина топа 100 лучших стран мира для проживания, а значит они наиболее удалены от центра двух выделенных кластеров и без анализа их сложно отнести к одной из исследуемых групп.

2.2. Провести дискриминантный анализ

Дискриминантный анализ проводился с помощью компьютерной программы для статистической обработки данных - SPSS.

2.3. Выражение для дискриминантной функции

Таблица 2. Коэффициенты канонической дискриминантной функции

	Функция
	1
Индекс качества жизни	,029
Паритет покупательной способности	,018
Индекс безопасности	,033
Индекс здраввоохранения	-,008
Индекс стиомости проживания	,011
Соотношения стоимости жилья и зароботка	-,012
Степень загрязнения воздуха (0 - серьёзное, 1 - не серьезное)	,837
Климат (1- благоприятный климат, 0 - не благоприятный)	-,235
(Константа)	-6,907

Нестандартизованные коэффициенты

Дискриминантная функция: f(x) = -6,907+0,29x1+0,18x2+0,33x3-0,008x4+0,011x5-0,012x6+0,837x7-0,235x8

Где х1...х8 - это все независимые переменные от индекса качества жизни до климата.

2.4. Оценка значимости дискриминантной функции

Таблица 3. Лямбда Уилкса

Критерий для функций	Лямбда Уилкса	Хи-квадрат	ст.св.	знач.
1	,203	113,333	8	,000

В данном примере лямбда Уилкса равна 0,203, что является хорошим результатом, однако было бы лучше, если бы она была ближе к 0.

Функция значима, так как уровень значимости меньше 0,05.

2.5. Определение относительного вклада каждой переменной в формирование классов

Таблица 4. Коэффициенты стандартизированной канонической дискриминантной функции

	Функция 1
Индекс качества жизни	,492
Паритет покупательной способности	,274
Индекс безопасности	,353
Индекс здраввоохранения	-,065
Индекс стиомости проживания	,169
Соотношения стоимости жилья и зароботка	-,081
Степень загрязнения воздуха (0 - серьёзное, 1 - не серьезное)	,300
Климат (1- благоприятный климат, 0 - не благоприятный)	-,117

Относительный вклад каждой переменной в различие двух сформированных классов можно оценить с помощью коэффициентов стандартизированной канонической дискриминантной функции. Чем больше коэффициент по модулю, тем больше влияние на формирование классов оказывает переменная.

Таким образом индекс качества жизни, индекс безопасности и степень загрязнения воздуха имеют наибольший вклад в формирование классов, а индекс здравоохранения и соотношение стоимости жилья и заработка наименьший.

2.6. Определение средних значений дискриминантной функции по группам

Таблица 5. Функции в центроидах групп

	Функция
Кластер 1	1
1	1,983
2	-1,932
Нестандарт е каноничес дискримина функции, вычисленнь	ские антные
групповых с	редних

Расстояние между центроидами — среднее значение дискриминантной функции в исследуемых группах. В группе 1 - страны более комфортные для жизни, среднее значение дискриминантной функции равно = 1,983. В группе 2 - страны менее комфортные для жизни, среднее значение дискриминантной функции равно = -1,932.

2.7. Указать, к каким группам были отнесены классифицируемые объекты и вероятности, с которыми объекты входят в эти группы;

Таблица 6. Статистика по наблюдениям

				P(D>d	G=g)	
	Номер наблюдения	Фактическая группа	Предсказанн ая группа	PM	ст.св.	P(G=g D=d)
Исходный	1	1	1	,009	1	1,000
	2	1	1	,093	1	1,000

3	1	1	,163	1	1,000
4	1	1	,227	1	1,000
5	1	1	,314	1	1,000
6	1	1	,249	1	1,000
7	1	1	,226	1	1,000
8	1	1	,438	1	1,000
9	1	1	,520	1	1,000
10	1	1	,382	1	1,000
11	1	1	,716	1	1,000
12	1	1	,359	1	1,000
13	1	1	,759	1	1,000
14	1	1	,813	1	1,000
15	1	1	,727	1	1,000
16	1	1	,990	1	1,000
17	1	1	,562	1	1,000
18	1	1	,748	1	,998
19	1	1	,548	1	,995
20	1	1	,943	1	,999
21	1	1	,965	1	,999
22	1	1	,641	1	,997
23	1	1	,778	1	,999
24	1	1	,887	1	,999
25	1	1	,980	1	1,000
26	1	1	,190	1	,926
27	1	1	,918	1	,999
28	1	1	,577	1	,996
29	1	1	,452	1	,991
30	1	1	,282	1	,969
31	1	1	,456	1	,991
32	1	1	,348	1	,982
33	1	1	,199	1	,933
34	1	1	,818	1	,999
35	1	1	,207	1	,938
36	1	2**	,058	1	,560
37	1	1	,247	1	,958
38	1	2**	,054	1	,529
40	2	2	,294	1	,972
41	2	2	,320	1	,978
42	2	2	,135	1	,859
43	2	2	,133	1	,837
44	2	2	,712	1	
45	2	2	,712	1	,998 ,941
46	2	2	,755	1	,941

47	2	2	,704	1	,998
48	2	2	,485	1	,993
49	2	2	,376	1	,985
50	2	2	,116	1	,819
51	2	2	,763	1	1,000
52	2	2	,721	1	,998
53	2	2	,723	1	,998
54	2	2	,969	1	1,000
55	2	2	,659	1	,997
56	2	2	,869	1	1,000
57	2	2	,532	1	1,000
58	2	2	,881	1	,999
59	2	2	,822	1	,999
60	2	2	,458	1	,991
61	2	2	,576	1	,996
62	2	2	,885	1	,999
63	2	2	,632	1	1,000
64	2	2	,969	1	1,000
65	2	2	,970	1	1,000
66	2	2	,230	1	,951
67	2	2	,620	1	1,000
68	2	2	,813	1	,999
69	2	2	,457	1	1,000
70	2	2	,525	1	1,000
71	2	2	,603	1	1,000
72	2	2	,245	1	1,000
73	2	2	,231	1	1,000
74	2	2	,277	1	1,000
75	2	2	,176	1	1,000
76	2	2	,068	1	1,000
77	2	2	,096	1	1,000
78	2	2	,010	1	1,000
79	не сгруппирован о	2	,180	1	,918
80	не сгруппирован о	1	,115	1	,816

^{**.} Ошибочно классифицированное наблюдение

У большинства классифицируемых объектов фактическая и предсказанные группы совпали. Исключением стали наблюдения 36 и 38. Не сгруппированное наблюдения 79 попало в группу 2, а объект 80 в группу 1.

Вероятности, с которыми наблюдения входят в предсказанные группы можно увидеть в столбце с названием Р.

2.8. Проверка значимости различий средних значений дискриминантной функции в двух группах

Таблица 7. Критерии равенства групповых средних

	Лямбда Уилкса	F	ст.св.1	ст.св.2	знач.
Индекс качества жизни	,233	246,984	1	75	,000
Паритет покупательной способности	,367	129,388	1	75	,000
Индекс безопасности	,633	43,415	1	75	,000
Индекс здраввоохранения	,731	27,574	1	75	,000
Индекс стиомости проживания	,497	76,043	1	75	,000
Соотношения стоимости жилья и зароботка	,744	25,814	1	75	,000
Степень загрязнения воздуха (0 - серьёзное, 1 - не серьезное)	,515	70,533	1	75	,000
Климат (1- благоприятный климат, 0 - не благоприятный)	,995	,357	1	75	,552

Переменную климат можно убрать из анализа, т.к. значимость ее различия с другими значениями их группы больше 0,05.

Остальные переменные имеют значимость меньше или равно 0,05 и следовательно средние двух групп значимо различаются, т.е. доказано наличие дискриминирующих особенностей этих переменных.

2.9. Оценить качество дискриминантного анализа

Функция	Собственное значение	% дисперсии	Суммарный %	Каноническа я корреляция
1	3,934ª	100,0	100,0	,893

а. Для анализа использовались первые 1 из канонических дискриминантных функций.

Собственное значение - отношение межгрупповой дисперсии к внутригрупповой дисперсии выборочных значений дискриминантной функции. Чем больше собственное значение, тем лучше подобрана дискриминантная функция.

В исследуемом случае собственное значение равно 3,934, что является достаточно большим значением. А значит дискриминантная функция была подобрана хорошо.

Каноническая корреляция характеризует качество достоверности дискриминации. В данном случае достоверность дискриминации равно 0,893, что является хорошим показателем, а значит функция была подобрана хорошо.

2.10. Оценить целесообразность проведения дискриминантного анализа по Вашим данным.

Я считаю, что было целесообразно проводить анализ по исследуемым данным, т.к. большинство показателей являются значимыми и позволяют достоверно определить кластеры, однако если убрать показатель климата, то анализ был бы еще более точным.

3.Построение дерева классификации

3.1. Выбор зависимой переменной

Так как задачей исследования является определение комфортности жизни в различных странах, в качестве зависимой переменной будет взята кластеризация, получившаяся в итоге дискриминантного анализа. (предсказанная группа из пункта 2.7)

3.2. Построение деревьев с помощью метода CHAID с различными независимыми переменными

Рассмотрим схемы деревьев с различными независимыми признаками.

- Независимый признак - индекс качества жизни

Рис.1. Дерево классификаций с независимой переменной - индекс качества жизни

- Независимый признак - индекс безопасности

Рис.2. Дерево классификаций с независимой переменной - индекс безопасности

- Независимый признак - Степень загрязнения воздуха

Рис.3. Дерево классификаций с независимой переменной - степень загрязнения воздуха

- Независимый признак - Паритет покупательской способности

Рис.4. Дерево классификаций с независимой переменной - паритет покупательской способности

- Независимый признак - индекс стоимости проживания

Рис. 5. Дерево классификаций с независимой переменной - индекс стоимости проживания

- Независимый признак - климат

Рис. б. Дерево классификаций с независимой переменной - климат

- Независимый признак - соотношение стоимости жилья и заработка

Рис.7. Дерево классификаций с независимой переменной - соотношение стоимости жилья и заработной платы

- Независимый признак - индекс здравоохранения

Рис. 8. Дерево классификаций с независимой переменной - индекс здравоохранения

3.3. Выбор оптимального дерева с помощью таблицы классификации

- Независимый признак - индекс качества жизни

Таблица 9. Классификация с независимой переменной - индекс качества жизни

	Предсказанные				
Наблюденные	Страны более комфортные для жизни	Страны менее комфортные для жизни	Процент правильных		
Страны более комфортные для жизни	37	0	100,0%		
Страны менее комфортные для жизни	3	40	93,0%		
Общая процентная доля	50,0%	50,0%	96,3%		

Метод построения: CHAID

Зависимая переменная: Предсказанная группа для анализа 1

- Независимый признак - индекс безопасности

Таблица 10. Классификация с независимой переменной - индекс безопасности

	Предсказанные				
Наблюденные	Страны более комфортные для жизни	Страны менее комфортные для жизни	Процент правильных		
Страны более комфортные для жизни	26	11	70,3%		
Страны менее комфортные для жизни	6	37	86,0%		
Общая процентная доля	40,0%	60,0%	78,8%		

Метод построения: CHAID

Зависимая переменная: Предсказанная группа для анализа 1

- Независимый признак - Степень загрязнения воздуха

Таблица 11. Классификация с независимой переменной - степень загрязнения воздуха

Классификация

	Предсказанные			
Наблюденные	Страны более комфортные для жизни	Страны менее комфортные для жизни	Процент правильных	
Страны более комфортные для жизни	29	8	78,4%	
Страны менее комфортные для жизни	3	40	93,0%	
Общая процентная доля	40,0%	60,0%	86,3%	

Метод построения: CHAID

Зависимая переменная: Предсказанная группа для анализа 1

- Независимый признак - Паритет покупательской способности

Таблица 12. Классификация с независимой переменной - паритет покупательской способности

	Предсказанные				
Наблюденные	Страны более комфортные для жизни	Страны менее комфортные для жизни	Процент правильных		
Страны более комфортные для жизни	37	0	100,0%		
Страны менее комфортные для жизни	11	32	74,4%		
Общая процентная доля	60,0%	40,0%	86,3%		

Метод построения: CHAID

Зависимая переменная: Предсказанная группа для анализа 1

- Независимый признак - индекс стоимости проживания

Таблица 13. Классификация с независимой переменной - индекс стоимости проживания

	Предсказанные				
Наблюденные	Страны более комфортные для жизни	Страны менее комфортные для жизни	Процент правильных		
Страны более комфортные для жизни	37	0	100,0%		
Страны менее комфортные для жизни	11	32	74,4%		
Общая процентная доля	60,0%	40,0%	86,3%		

Метод построения: CHAID

Зависимая переменная: Предсказанная группа для анализа 1

- Независимый признак - климат

Таблица 14. Классификация с независимой переменной - климат

	Предсказанные				
Наблюденные	Страны более комфортные для жизни	Страны менее комфортные для жизни	Процент правильных		
Страны более комфортные для жизни	0	37	0,0%		
Страны менее комфортные для жизни	0	43	100,0%		
Общая процентная доля	0,0%	100,0%	53,8%		

Метод построения: CHAID

Зависимая переменная: Предсказанная группа для анализа 1

- Независимый признак - соотношение стоимости жилья и заработка

Таблица 15. Классификация с независимой переменной - соотношение стоимости жилья и заработка

	Предсказанные				
Наблюденные	Страны более комфортные для жизни	Страны менее комфортные для жизни	Процент правильных		
Страны более комфортные для жизни	20	17	54,1%		
Страны менее комфортные для жизни	4	39	90,7%		
Общая процентная доля	30,0%	70,0%	73,8%		

Метод построения: CHAID

Зависимая переменная: Предсказанная группа для анализа 1

- Независимый признак - индекс здравоохранения

Таблица 16. Классификация с независимой переменной - индекс здравоохранения

	Предсказанные				
Наблюденные	Страны более комфортные для жизни	Страны менее комфортные для жизни	Процент правильных		
Страны более комфортные для жизни	26	11	70,3%		
Страны менее комфортные для жизни	6	37	86,0%		
Общая процентная доля	40,0%	60,0%	78,8%		

Метод построения: CHAID

Зависимая переменная: Предсказанная группа для анализа 1

Вывод: независимые признаки индекс качества жизни, индекс стоимости проживания, паритет покупательской способности и степень загрязнения воздуха показали наилучшие результаты и процент правильных ответов в классфикации по данных признакам превышает 85%, поэтому они будут использоваться для построение финального дерева решений.

3.4. Визуализация результатов

Рис. 9. Дерево классификаций с независимыми переменными - индекс качества жизни, индекс стоимости проживания, паритет покупательской способности и степень загрязнения воздуха

Таблица 17. Классификация с независимыми переменными - индекс качества жизни, индекс стоимости проживания, паритет покупательской способности и степень загрязнения воздуха

	Предсказанные				
Наблюденные	Страны более комфортные для жизни	Страны менее комфортные для жизни	Процент правильных		
Страны более комфортные для жизни	37	0	100,0%		
Страны менее комфортные для жизни	3	40	93,0%		
Общая процентная доля	50,0%	50,0%	96,3%		

Метод построения: CHAID

Зависимая переменная: Предсказанная группа для анализа 1

3.5. Интерпретация результатов

Построение финального дерева показало, что достаточно использовать независимый признак индекса качества жизни, чтобы с максимально возможной вероятностью предсказать классификацию объекта. Однако, признаки индекс стоимости проживания, паритет покупательской способности и степень загрязнения воздуха могут также показать достаточно точный результат. Все остальные признаки не целесообразно использовать для классификации, так как вероятность верности их предсказания ниже 85%.

4. Декомпозиция смеси

Прологарифмируем исходные данные и построим эмпирическую гистограмму для более удобного анализа распределения.

Рис.10. Гистограмма эмпирических частот пролагорифмированных данных

На гистограмме можно выделить три части, предположительно являющиеся 3 разными смесями распределений. Проанализируем их по отдельности. Кластеризуем распределение на три составляющих: с начала до второй частоты 6 - первая часть; со второй частоты 11 до 68 - вторая; 191, 428, 110 - третья. (по частотам)

Выбираем "пики" по частотам из каждой составляющей распределения и записываем их. Находим где предположительно пересекаются хвосты распределений и вычитаем из этого значения мат.ожидание (ранее найденные "пики"). Предполагаем долю смеси в общем распределении. Ищем логнормальное распределение для нахождения теоретических частот до оптимизации. Строим гистограмму теоретических частот до оптимизации.

Рис.11. Гистограмма эмпирических и теоретических частот до оптимизации

На данном этапе можно заметить различия в гистограммах, которые показывают некоторые ошибочные теоретические предположения, особенно в зоне -0,11 - 1,36. Также значения в зоне 4,8 и больше оказались слишком малы. Оптимизируем теоретические частоты.

Рис.12. Гистограмма эмпирических частот, теоретических частот до оптимизации и после оптимизации

После оптимизации частот, значения получились максимально приближенными к искомым и на 90,95% совпали, а значит можно использовать найденные мат.ожидания, процентные соотношения и стандартные отклонения для исследования смесей трех распределений.

Найдем значения смесей на интервале [-3; 5,5], а также значения функций принадлежности к стратам. Построим разные графики, для анализа смесей.

Рис.14. Гистограмма страт нормированная с областями и накоплениями

Рис.15. График страт

Рис.15. График с маркерами смесей распределений

Вывод: судя по графикам логарифмированные значения от -3 до 3,8 скорее всего попадут в группу 1. Значения от 3,8 до 4,4 будут принадлежать либо распределению 1, либо распределению 3. Значения от 4,4 до 4,8 с высокой вероятностью будут принадлежать либо распределению 2, либо распределению 3, хотя маленькая вероятность того, что они будут лежать в распределении 1, все же имеется. Значение от 4,8 до 5,5 имеют примерно одинаковую вероятность быть частью как и распределения 1, так и распределения 3.

Мой номер в группе - 8, значение, которое соответствует ему - 93,76. Логарифм этого числа равен 4,5407, значит скорее всего оно относится к распределению 3, однако есть небольшая вероятность, что это распределение 1 или 2, т.к. значение находится вблизи пересечения распределений.

Источники

- 1. https://www.numbeo.com/quality-of-life/rankings_by_country.jsp
- 2. https://nafi.ru/upload/spss/NAFI%20-%2011.lection.pdf