实验七 预习报告

实验内容

利用实验六设计的全加器,设计一个 4 位二进制串行乘法器,其中"被乘数"用 4 个逻辑电平开关输入,"乘数"也用 4 个逻辑电平开关输入,"积"用 2 个数码管显示(十六进制)。

实验设计方案

输入、输出信号编码

输入信号: 用 M3、M2、M1、M0、N3、N2、N1、N0 表示输入, M3M2M1M0 表示被乘数, N3N2N1N0 表示乘数。

输出信号: 用 Q7、Q6、Q5、Q4、Q3、Q2、Q1、Q0 表示输出。

逻辑电路设计

实验六中设计的4位全加器原理图如图1。

图 1

将 4 位全加器的输入输出信号用总线的方式引出,并封装成元件如图 2。 4 位二进制串行乘法器状态转移图如图 3(以 1101×1001 为例)。

在 Quartus 软件中绘制 4位二进制串行乘法器原理图如图 4。

图 4

编译时产生的错误和警告信息

Info: Quartus II Simulator was successful. 0 errors, 0 warnings

功能仿真

在 Quartus 软件中对 4位全加器进行功能仿真如图 5。

在 Quartus 软件中对 4位二进制串行乘法器进行功能仿真如图 6。

图 6

引脚分配

在 Quartus 软件中对 4位二进制串行乘法器完成引脚分配如图 7。

图 7

将4位二进制串行乘法器封装成元件如图8。

时序仿真与分析

对 4 位二进制串行乘法器进行时序仿真。时延信息表如图 8,时延仿真结果如图 9。

Setup Times Clock Clock Data Clock Fall Rise Port Port Edge Reference 2.379 | 2.535 | Rise □ M[*] CP CP 2 M[0]|CP|2.021 | 2.237 | Rise CP 3 M[1]|CP| 2.078 | 2.298 | Rise CP 4 2.379 2.535 Rise CP M[2]|CP 5 2.300 | 2.473 | Rise CP M[3]|CP| 6 2.043 | 2.291 | Rise CP □ N[*] CP 7 1.990 2.205 Rise CP N[0] CP 8 N[1] CP 2.035 | 2.235 | Rise CP 9 2.036 | 2.291 | Rise N[2] CP CP 10 ≒ N[3] | CP | 2.043 | 2.272 | Rise CP 11 ST 3.082 | 3.297 | Rise CP CP

图 9

任选两处不稳定的输出状态,试对4位二进制串行乘法器做时延分析:

Q7Q6Q5Q4Q3Q2Q1Q0 的状态由 000000000 转移到 00001001 的过程中, Q3 的变化速度比 Q0 快, 因此在极短的时间内(780ps)出现了 00001000 的非法状态。

Q7Q6Q5Q4Q3Q2Q1Q0 的状态由 00110110 转移到 00011011 的过程中,输出变量的变化顺序为 Q3 \rightarrow Q5 \rightarrow Q2 \rightarrow Q0,因此在极短的时间内(780ps)依次出现了 00111110 \rightarrow 00011110 \rightarrow 00011010 的非法状态。

由于设计电路中包含若干个寄存器等时序电路模块,模块自身的延时会导致多变量变化的状态转移无法在同一时间完成,导致了出现极端事件的输出状态错误。可以通过增加选通脉冲的方法,选中正确的状态采样输出,消除竞争与险象。