

Drum fills detection and generation

Frédéric Tamagnan & Yi-Hsuan Yang

Introduction

Origins

We wanted to generate drum fills as an answer to regular patterns with Deep Learning

We had to detect and extract drum fills

What is a drum fill?

https://www.youtube.com/embed/u5MIa4wgmU4 ?start=140&enablejsapi=1

- 1. To segment a music piece
- 2. To make long-term music generation with dynamic and variations
- 3. To make short-term music generation for live performances

Kink, boiler room Moscow, Live set, 2015

Tr-8S, Roland

Tr-8S, Roland

Challenges

- Hard to define what is a drum fill with a general rule
- No big datasets with drum fills labels

Problem definition

- We focus on detection and generation of 4/4 bars containing a drum fill
- We don't take in account the precise boundaries of the fills
- We use 9 instruments * 16 timesteps tensor to represent
 a drum bar
 Parts of a Drum Kit (5 piece kit)

Empirical observations

Drum fills:

- 1. A **greater use of toms, snares or cymbals**, than in the regular drums pattern
- 2. A **difference of played notes** between the regular pattern and the drum fill
- 3. An appearance in general at the end of a cycle of 4 or 8 bars

Datasets at our disposal

Labelled dataset: Native instruments +
 Oddgrooves.com midi drums pack:
 5,317 regular patterns bars + 1,1412 drum fills bars

2. **Unlabelled dataset**: Lakh pianoroll dataset: **21,425 songs** with their related pianorolls

Dong, H.W., Hsiao, W.Y., Yang, L.C., Yang, Y.H.: MuseGAN: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment. In:Thirty-Second AAAI Conference on Artificial Intelligence (2018)

Drum fills Detection

Drum fills Detection

2 Methods

- Supervised Learning
- Rule-based Method

Features

 Variational Auto-encoder latent space features

t-SNE Visualization

Drum fills and regular patterns in the latent space of a VAE trained on the LDP dataset

Hard to separate if we consider all the bars at the same time!

t-SNE Visualization

Drum fills and regular patterns in the latent space of a VAE trained on the LDP dataset

Better if we consider only one genre!

t-SNE Visualization

Drum fills and regular patterns in the latent space of a VAE trained on the LDP dataset

Better if we consider only one genre!

t-SNE Visualization

Drum fills and regular patterns in the latent space of a VAE trained on the LDP dataset

...but not always the case

Supervised learning features

VAE latent space features

+

Handcrafted Features:

- Instruments used
- Max, std, mean of velocity
 - = Dimension of input vector: 59

Supervised Learning Model

- Logistic Regression
- Standardization
- L2 Regularization

Supervised Learning Validation

Feature set	Precision	Recall	F1 Score
HD	0.80	0.79	0.79
LS	0.58	0.06	0.10
$_{\mathrm{HD+LS}}$	0.89	0.81	0.85

Table 2. Validation metrics of our classifier. HD : Handcrafted features, LS : VAE's latent space features

NB : Handcrafted features : Velocity features + use of instruments

Supervised Learning Validation

Most correlated Handcrafted features:

- 1. max velocity of high tom,
- 2. Std of velocity of mid tom
- 3. max velocity of low tom

Rule-based Method

Difference of notes between two bars

Let A, B two bars binarized tensors of dimensions $t \times n$ (time steps \times number of instruments), we define the difference of notes DN between A and B as:

$$DN(A,B) = \sum_{\substack{0 \le i < t \\ 0 \le j < n}} max(0, A_{i,j} - B_{i,j})$$
(1)

Labelling and extraction

Data cleaning

- Removing duplicated rows
- Removing all the couples where the regular pattern or the drum fill have fewer than 7 notes
- Removing all the couple where the drum fill has a too high density of snare notes, above 8

	#ML dataset	#RB dataset
Raw	13,476	97,023
After rule 1	6,324	45,723
After rule 2	5,271	39,108
After rule 3	3,283	32,130

Extraction Evaluation

Amount of notes by instrument for the ML dataset

Extraction Evaluation

Drum fills Generation

RNN Many-to-many

Input: Regular pattern bar

Output: Drum fill bar

Evaluation

Mean of notes by instrument

Original fills, ML Fills et RB Fills

Evaluation Standard-deviation by instrument

Evaluation Euclidian distance in the latent spae

	Sum of euclidean distance	
ML fills	93012	
RB fills	93844	
Original fills	102135	

Génération

Evaluation User Study

- 51 participants
- 50% amateur musicians
- 14% semi-professional musicians
- 2% professional musicians

Among musicians:

- 78% DAW users
- 53% drummers

Génération

Evaluation User Study

We asked people to compare:

- 1 ML fill
- 1 RB fill
- 1 Original fill (ground truth)
- 1 Rule composed fill (same layer of cymbals and toms applied on the regular pattern)

Evaluation User Study

https://w.soundcloud.com/player/? url=https%3A//api.soundcloud.com/playlists/797390628&color=%23ff5500&a uto_play=false&hide_related=false&show_comments=true&show_user=true& show_reposts=false&show_teaser=true

Evaluation User Study

	ML	RB	Original	RC
Overall grade	l .		3.13	3.10
Most coherent	17%	18%	29%	$\overline{36\%}$
Less coherent			23%	18%
Best groove	13%	25%	34%	28%
Worst groove	35%	30%	18%	17%

Evaluation User Study

Why the results are bad, even for the human fills?

- Hard to evaluate a fill with no musical background playing
- Specific and complex notion
- Only five sets of examples
- Hard to give a rating about a really short event
- ...

Future directions

- Train a classifier with handlabelled data
- Use of binary neurons
- More sophisticated generation method

Thank you for your attention!

Mail: frederic.tamagnan@gmail.com