Result Graph Summary

Hun

2/19/2022

```
library(kableExtra)
```

Jimmy needs to give me the right esitmate of effect right now here is what I am using

```
smaller_true_ATE <- 0.15
bigger_true_ATE <- 0.3

pos_beta <- 1
neg_beta <- -1</pre>
```

Compiling Binary Data

view(binary_scen_1)

Get all the odd numbers $\beta_1 = 0.767$

```
binary_final_odd <-
  binary_scen_1 %>% mutate(n_sample = 1000, beta1 = 0.767, desired_prop = 0.1) %>%
  bind_rows(binary_scen_3 %>% mutate(n_sample = 1000, beta1 = 0.767, desired_prop = 0.2)) %>%
  bind_rows(binary_scen_5 %>% mutate(n_sample = 1000, beta1 = 0.767, desired_prop = 0.3)) %>%
  bind_rows(binary_scen_13 %>% mutate(n_sample = 100, beta1 = 0.767, desired_prop = 0.1)) %>%
  bind_rows(binary_scen_15 %>% mutate(n_sample = 100, beta1 = 0.767, desired_prop = 0.2)) %>%
  bind_rows(binary_scen_17 %>% mutate(n_sample = 100, beta1 = 0.767, desired_prop = 0.3))

binary_final_odd <- binary_final_odd %>%
  mutate(
    ATE_bias = ATE - smaller_true_ATE,
    empirical_bias = empirical_mean - smaller_true_ATE,
    boot_type = ifelse(boot_type == 0, "Simple", "Complex")
)

rm(binary_scen_1, binary_scen_3, binary_scen_5, binary_scen_13, binary_scen_15, binary_scen_17)
```

Get all the even numbers $\beta_1 = 1.587$

```
binary_final_even <-
binary_scen_2 %>% mutate(n_sample = 1000, beta1 = 1.587, desired_prop = 0.1) %>%
bind_rows(binary_scen_4 %>% mutate(n_sample = 1000, beta1 = 1.587, desired_prop = 0.2)) %>%
bind_rows(binary_scen_6 %>% mutate(n_sample = 1000, beta1 = 1.587, desired_prop = 0.3)) %>%
```

Compiling Continuous Data

```
continuous final odd <-
  cont_df_scen_1 %>% mutate(n_sample = 1000, beta1 = pos_beta, desired_prop = 0.1) %>%
  bind_rows(cont_df_scen_3 %>% mutate(n_sample = 1000, beta1 = pos_beta, desired_prop = 0.2)) %>%
  bind_rows(cont_df_scen_5 %>% mutate(n_sample = 1000, beta1 = pos_beta, desired_prop = 0.3)) %>%
  bind_rows(cont_df_scen_13 %>% mutate(n_sample = 100, beta1 = pos_beta, desired_prop = 0.1)) %>%
  bind rows(cont df scen 15 %>% mutate(n sample = 100, beta1 = pos beta, desired prop = 0.2)) %>%
  bind_rows(cont_df_scen_17 %>% mutate(n_sample = 100, beta1 = pos_beta, desired_prop = 0.3)) %>%
  mutate(
   ATE_bias = ATE - pos_beta,
   empirical_bias = empirical_mean - pos_beta,
   boot_type = ifelse(boot_type == 0, "Simple", "Complex")
rm(cont_df_scen_1, cont_df_scen_3, cont_df_scen_5, cont_df_scen_13, cont_df_scen_15, cont_df_scen_17)
continuous_final_even <-</pre>
  cont_df_scen_2 %% mutate(n_sample = 1000, beta1 = neg_beta, desired_prop = 0.1) %%
  bind_rows(cont_df_scen_4 %>% mutate(n_sample = 1000, beta1 = neg_beta, desired_prop = 0.2)) %>%
  bind_rows(cont_df_scen_6 %>% mutate(n_sample = 1000, beta1 = neg_beta, desired_prop = 0.3)) %>%
  bind_rows(cont_df_scen_14 %>% mutate(n_sample = 100, beta1 = neg_beta, desired_prop = 0.1)) %>%
  bind_rows(cont_df_scen_16 %>% mutate(n_sample = 100, beta1 = neg_beta, desired_prop = 0.2)) %>%
  bind_rows(cont_df_scen_18 %>% mutate(n_sample = 100, beta1 = neg_beta, desired_prop = 0.3)) %>%
  mutate(
   ATE_bias = ATE - neg_beta,
   empirical_bias = empirical_mean - neg_beta,
   boot_type = ifelse(boot_type == 0, "Simple", "Complex")
  )
rm(cont_df_scen_2, cont_df_scen_4, cont_df_scen_6, cont_df_scen_14, cont_df_scen_16, cont_df_scen_18)
```

```
continuous_final <-</pre>
  continuous_final_odd %>%
  bind rows(continuous final even) %>%
  rename(scenario = scenario_id)
rm(continuous_final_even, continuous_final_odd)
```

```
Creating Dataframes
cr df binary <-
  binary_final %>%
  group_by(scenario, boot_type) %>%
  summarize(cr = (sum(covered) / 100) %>% round(digits = 3)) %>%
  pivot_wider(names_from = boot_type, values_from = cr) %>%
  rename(S_CR = Simple, C_CR = Complex)
## 'summarise()' has grouped output by 'scenario'. You can override using the '.groups' argument.
cr df continuous <-
  continuous_final %>%
  group_by(scenario, boot_type) %>%
  summarize(cr = (sum(covered) / 100) %>% round(digits = 3)) %>%
  pivot_wider(names_from = boot_type, values_from = cr) %>%
  rename(S_CR = Simple, C_CR = Complex)
## 'summarise()' has grouped output by 'scenario'. You can override using the '.groups' argument.
se_df_binary <-
  binary_final %>%
  group_by(scenario, boot_type) %>%
  summarize(se_ATE = sd(ATE) %>% round(digits = 3)) %>%
  pivot_wider(names_from = boot_type, values_from = se_ATE) %>%
  rename(S_SE = Simple, C_SE = Complex)
## 'summarise()' has grouped output by 'scenario'. You can override using the '.groups' argument.
se_df_continuous <-</pre>
  continuous_final %>%
  group_by(scenario, boot_type) %>%
  summarize(se_ATE = sd(ATE) %>% round(digits = 3)) %>%
  pivot_wider(names_from = boot_type, values_from = se_ATE) %>%
  rename(S_SE = Simple, C_SE = Complex)
## 'summarise()' has grouped output by 'scenario'. You can override using the '.groups' argument.
bias_df_binary <-</pre>
  binary_final %>%
  group_by(scenario, boot_type) %>%
  summarize(bias = mean(ATE_bias) %>% round(digits = 3)) %>%
```

pivot wider(names from = boot type, values from = bias) %>%

rename(S_Bias = Simple, C_Bias = Complex)

```
## 'summarise()' has grouped output by 'scenario'. You can override using the '.groups' argument.
bias_df_continuous <-</pre>
 continuous_final %>%
 group_by(scenario, boot_type) %>%
 summarize(bias = mean(ATE_bias) %>% round(digits = 3)) %>%
 pivot_wider(names_from = boot_type, values_from = bias) %>%
 rename(S_Bias = Simple, C_Bias = Complex)
## 'summarise()' has grouped output by 'scenario'. You can override using the '.groups' argument.
all_result_binary <-
 se_df_binary %>%
 full_join(bias_df_binary) %>%
 full_join(cr_df_binary) %>%
 relocate(starts_with("S")) %>%
 relocate(scenario) %>%
 rename(Scenario = scenario)
## Joining, by = "scenario"
## Joining, by = "scenario"
all_result_continuous <-
 se_df_continuous %>%
 full_join(bias_df_continuous) %>%
 full_join(cr_df_continuous) %>%
 relocate(starts_with("S")) %>%
 relocate(scenario) %>%
 rename(Scenario = scenario)
## Joining, by = "scenario"
## Joining, by = "scenario"
all_result_binary
## # A tibble: 12 x 7
## # Groups:
              Scenario [12]
##
     Scenario S_SE S_Bias S_CR C_SE C_Bias C_CR
##
        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1
            1 0.054 -0.007 0.91 0.036 -0.008
                                               1
## 2
            2 0.053 -0.107 0.69 0.033 -0.11
                                                0.98
            3 0.043 -0.017 0.83 0.03 -0.015 0.99
## 3
## 4
            4 0.039 -0.119 0.67 0.028 -0.116 0.91
## 5
           5 0.033 -0.014 0.88 0.028 -0.013 0.98
## 6
           6 0.032 -0.119 0.63 0.026 -0.119 0.84
## 7
           13 0.194 -0.034 0.8 NA
                                        NA
                                               NΑ
## 8
           14 0.147 -0.115 0.85 NA
                                        NA
                                               NΑ
## 9
           15 0.14
                    0.008 0.86 0.109 -0.007 0.99
## 10
           16 0.113 -0.113 0.82 0.08 -0.117 0.99
           17 0.115 -0.022 0.81 0.103 -0.013 0.98
## 11
```

18 0.096 -0.115 0.81 0.072 -0.115 0.98

12

all_result_continuous

A tibble: 12 x 7

```
## # Groups:
              Scenario [12]
##
      Scenario S_SE S_Bias S_CR C_SE C_Bias C_CR
##
         <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1
            1 0.114 -0.028 0.94 0.054 -0.014 1
## 2
            2 0.114 -0.028 0.92 0.054 -0.014 0.93
## 3
            3 0.071 0.003 0.95 0.041 -0.01
                                                 0.95
            4 0.071 0.003 0.95 0.041 -0.01
## 4
                                                 0.95
## 5
            5 0.052 -0.01
                             0.92 0.034 -0.013 0.96
## 6
            6 0.052 -0.01
                             0.92 0.034 -0.013 0.96
## 7
           13 0.367 0.002 0.95 NA
                                         NA
                                                NA
## 8
           14 0.367 0.002 0.95 NA
                                         NA
                                                NA
## 9
           15 0.302 -0.037 0.96 0.138 -0.03
                                                 0.96
## 10
           16 0.302 -0.037 0.96 0.138 -0.03
## 11
            17 0.218 -0.006 0.95 0.115 -0.012 0.96
            18 0.218 -0.006 0.95 0.115 -0.012 0.96
## 12
all_result_binary["Scenario"] <-</pre>
                          c("Large Sample, ATE = 1, p = 0.1",
                            "Large Sample, ATE = -1, p = 0.1",
                            "Large Sample, ATE = 1, p = 0.2",
                            "Large Sample, ATE = -1, p = 0.2",
                            "Large Sample, ATE = 1, p = 0.3",
                            "Large Sample, ATE = -1, p = 0.3",
                            "Small Sample, ATE = 1, p = 0.1",
                            "Small Sample, ATE = -1, p = 0.1",
                            "Small Sample, ATE = 1, p = 0.2",
                            "Small Sample, ATE = -1, p = 0.2",
                            "Small Sample, ATE = 1, p = 0.3",
                            "Small Sample, ATE = -1, p = 0.3")
all_result_continuous["Scenario"] <-</pre>
                          c("Large Sample, ATE = 0.15, p = 0.1",
                            "Large Sample, ATE = 0.30, p = 0.1",
                            "Large Sample, ATE = 0.15, p = 0.2",
                            "Large Sample, ATE = 0.30, p = 0.2",
                            "Large Sample, ATE = 0.15, p = 0.3",
                            "Large Sample, ATE = 0.30, p = 0.3",
                            "Small Sample, ATE = 0.15, p = 0.1",
                            "Small Sample, ATE = 0.30, p = 0.1",
                            "Small Sample, ATE = 0.15, p = 0.2",
                            "Small Sample, ATE = 0.30, p = 0.2",
                            "Small Sample, ATE = 0.15, p = 0.3",
                            "Small Sample, ATE = 0.30, p = 0.3")
all_result_binary %>%
  kbl() %>%
  kable_classic("striped", full_width = F , html_font = "Cambria") %>%
  column_spec(5, width = "5cm") %>%
  column spec(1:7, border left = T, border right = T) %>%
  add_header_above(c("Binary Outcome" = 1, "Simple" = 2, "Empirical(no boot)" = 2, "Complex" = 2))
```

Binary Outcome	Simple		Empirical(no boot)		Complex	
Scenario	S_SE	S_Bias	S_CR	C_SE	C_Bias	C_CR
Large Sample, ATE = 1 , p = 0.1	0.054	-0.007	0.91	0.036	-0.008	1.00
Large Sample, ATE = -1 , p = 0.1	0.053	-0.107	0.69	0.033	-0.110	0.98
Large Sample, ATE = 1 , p = 0.2	0.043	-0.017	0.83	0.030	-0.015	0.99
Large Sample, ATE = -1 , p = 0.2	0.039	-0.119	0.67	0.028	-0.116	0.91
Large Sample, ATE = 1 , p = 0.3	0.033	-0.014	0.88	0.028	-0.013	0.98
Large Sample, ATE = -1, $p = 0.3$	0.032	-0.119	0.63	0.026	-0.119	0.84
Small Sample, ATE = 1 , p = 0.1	0.194	-0.034	0.80	NA	NA	NA
Small Sample, ATE = -1 , p = 0.1	0.147	-0.115	0.85	NA	NA	NA
Small Sample, ATE = 1 , p = 0.2	0.140	0.008	0.86	0.109	-0.007	0.99
Small Sample, ATE = -1 , p = 0.2	0.113	-0.113	0.82	0.080	-0.117	0.99
Small Sample, ATE = 1 , p = 0.3	0.115	-0.022	0.81	0.103	-0.013	0.98
Small Sample, ATE = -1 , p = 0.3	0.096	-0.115	0.81	0.072	-0.115	0.98

Continuous Outcome	Simple		Empirical(no boot)		Complex	
Scenario	S_SE	S_Bias	S_CR	C_SE	C_Bias	C_CR
Large Sample, ATE = 0.15 , p = 0.1	0.114	-0.028	0.94	0.054	-0.014	1.00
Large Sample, ATE = 0.30 , p = 0.1	0.114	-0.028	0.92	0.054	-0.014	0.93
Large Sample, ATE = 0.15 , p = 0.2	0.071	0.003	0.95	0.041	-0.010	0.95
Large Sample, ATE = 0.30 , p = 0.2	0.071	0.003	0.95	0.041	-0.010	0.95
Large Sample, ATE = 0.15 , p = 0.3	0.052	-0.010	0.92	0.034	-0.013	0.96
Large Sample, ATE = 0.30 , p = 0.3	0.052	-0.010	0.92	0.034	-0.013	0.96
Small Sample, ATE = 0.15 , p = 0.1	0.367	0.002	0.95	NA	NA	NA
Small Sample, ATE = 0.30 , p = 0.1	0.367	0.002	0.95	NA	NA	NA
Small Sample, ATE = 0.15 , p = 0.2	0.302	-0.037	0.96	0.138	-0.030	0.96
Small Sample, ATE = 0.30 , p = 0.2	0.302	-0.037	0.96	0.138	-0.030	0.96
Small Sample, ATE = 0.15 , p = 0.3	0.218	-0.006	0.95	0.115	-0.012	0.96
Small Sample, ATE = 0.30 , p = 0.3	0.218	-0.006	0.95	0.115	-0.012	0.96

```
all_result_continuous %>%
  kbl() %>%
  kable_classic("striped", full_width = F , html_font = "Cambria") %>%
  column_spec(5, width = "5cm") %>%
  column_spec(1:7, border_left = T, border_right = T) %>%
  add_header_above(c("Continuous Outcome" = 1, "Simple" = 2, "Empirical(no boot)" = 2, "Complex" = 2))
```