	HI IIII I	PAPER ID-411411	
--	-----------	-----------------	--

					Pr	inte	i Pa	ge:	l of:	3
	 	 	 	 Su	bjec	t Co	de:	BCS	5402	2
Roll No:										1

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3	HRS
---------	-----

e

M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably

SECTION A

1.	Attem	npt all questions in brief.	$2 \times 7 = 14$	
	a.	Give the mathematical definition of DFA Differentiate b		i

	DFA.
b.	Construct Deterministic Finite Automata (DFA) to accept string that always ends with 101 over alphabet $\Sigma = \{0,1\}$
c.	Give regular expressions that represent the language (L), which has all binary strings having two consecutive 0s and two consecutive 1s over the alphabet $\Sigma = \{0, 1\}$.
d.	Compute the Language generated by the given CFG $G = (\{S\}, \{a, b\}, P, S\})$ where P is defined by: $\{S \rightarrow SS, S \rightarrow ab, S \rightarrow ba, S \rightarrow \epsilon\}$
e.	Let G be the grammar $S \rightarrow 0B \mid 1A$ $A \rightarrow 0 \mid 0S \mid 1AA$

f. Explain the concept of two stack PDA. Give an example of a language that is accepted by two stack PDA but not accepted by normal one stack PDA.

g. Explain Multi Tape Turing Machine.

 $B \rightarrow 1 \mid 1S \mid 0BB$

SECTION B

Attempt any three of the following: 7 x 3 = 21
 Construct a Finite automata (DFA) which accepts all binary numbers whose

	L	decimal equivalent is divisible by 4 over $\Sigma = \{0, 1\}$.
	b.	Compute the regular expression using Arden's Theorem for the following
i		DFA.
		0

C. Write an equivalent left linear grammar from the given right linear grammar.

S→0A | 1B

A→0C | 1A | 0

B→1B|!A|1 C→0|0A

d. Differentiate between DPDA and NPDA. Construct a PDA that accepts language $L = \{a^n b^n \mid n \ge 1\}$.

Differentiate between <u>Peterministic Turing machine</u> and Non-Deterministic Turing machine. Design a Turing machine for the language L={ww | w ε (a + b)*}

1 | Paga

Printed Page: 2 of 3 Subject Code: BCS402

Roll No:

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS

M.MARKS: 70

SECTION C

4. Attempt any one part of the following:

 $7 \times 1 = 7$

- a. State Pumping Lemma for Regular Language. Show that the given language L={a^p | Where p is a prime} is not regular.
 b. Discuss closure properties (i.e. union, concatenation complement, intersection and difference) of regular language. https://www.aktuonline.com
- 5. Attempt any one part of the following:

 $7 \times 1 = 7$

a.	Reduce the given grammar G = ({S, A, B}, {a, b}, P, S) to Chomsky Normal
	form. Where P is defined by:
	S →bA aB
	$A \rightarrow bAA \mid aS \mid a$
	B →aBB bS b
b.	Design a CFG for the following language:
ļ	(i) $L = \{0^m 1^n m \neq n \& m, n \geq 1\}$
	(ii) L= $\{a^p b^q c^r \mid p+q=r \& p, q>=1\}$

6. Attempt any one part of the following:

 $7 \times 1 = 7$

	The part of the last of the la	
a .	Construct PDA equivalent to the following CFG $G = (\{S, A\}, \{0,1\}, P, S\}$	Ì
	where P is defined by:	ł
	S →0S1 A	Ì
,	$A \rightarrow 1AO + S + c$	ł

2 | F . 3 =

	Ш					
		Р	APER	ID.	411411	

				 Sul	oject	Co	de:	BCS	340
Roll No:									

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS			MLMARKS: 70	
ſ	b.	Find the equivalent CFG of the following PDA		
		$P = (\{q0, q1,\}, \{a, b\}, \{a, z0\}, \delta, q0, z0)$ where δ is given by:		
		$\delta(q0, a, z0) = (q0, az0)$		
		$\delta(q0, a, a) = (q1, aa)$		
		$\delta(q1, a, a) = (q1, \varepsilon)$		

7. Attempt any one part of the following:

 $\delta(q1, \epsilon, z0) = (q1, \epsilon)$

Printed Page: 3 of 3

- Construct Turing Machine that accepts language $L=\{a^{2n}b^n \mid n>=1\}$. Also show the instantaneous description for the string w = aaaabb.
- Explain the any two of the following:
 - Universal Turing Machine.
 - Post Correspondence Problem. ii.
 - Recursive and recursively Enumerable Languages

https://www.aktuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से