1) Fonctions polynôme du second degré

a) Fonction polynôme du second degré

Définition

Une fonction polynôme du second degré à valeurs réelles est une fonction f définie sur $\mathbb R$ par :

$$f(x) = ax^2 + bx + c$$

Où a, b et c sont des nombres réels donnés avec $a \neq 0$. On dit que a, b et c sont les coefficients de la fonction f.

Exemple 1

Les fonctions suivantes sont-elles des fonctions polynômes du second degré ? Justifier ?

$$a. \quad f(x) = x - 2$$

b.
$$g(x) = 2(x-1)^2 + 4$$

c.
$$h(x) = x - 7 + \frac{x^2}{2}$$

d.
$$t(x) = -2(x-1)(x+3)$$

e.
$$p(x) = 2.5x - 3 + \frac{1}{x^2}$$

b) Forme canonique¹

Définition et propriété

Toute fonction polynôme du second degré définie sur ${\mathbb R}$ par :

 $f(x) = ax^2 + bx + c$ avec $a \ne 0$ peut s'écrire sous la forme :

$$f(x) = a(x - \alpha)^2 + \beta$$
 où $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$.

Cette forme est appelée la forme canonique.

Démonstration

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par : $f(x) = ax^2 + bx + c$ avec $a \neq 0$

$$f(x) = ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a(x^{2} + 2 \times \frac{b}{2a}x + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} + \frac{c}{a})$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right]$$

$$= a(x - a)^{2} + \beta$$

$$Où \alpha = -\frac{b}{2a} \text{ et } \beta = -\frac{b^{2} - 4ac}{4a}$$

¹ En maths, canonique signifie « naturel ». On se sert de cette écriture pour démontrer la plupart des propriétés.

Remarque

$$f(\alpha) = \beta$$

Exemple 2

Ecrire sous forme canonique les trinômes du second degré suivants :

a.
$$f(x) = x^2 + 4x - 5$$

b.
$$h(x) = 2x^2 - 3x + 10$$

2) Equation du second degré, discriminant

On considère l'équation du second degré (E) : $ax^2 + bx + c = 0$ avec $a \neq 0$.

a) Discriminant

Définition

Le discriminant de l'équation du second degré $ax^2 + bx + c = 0$ ($a \ne 0$) est le nombre réel, noté Δ , défini par : $\Delta = b^2 - 4ac$

b) Résolution de l'équation (E): $ax^2 + bx + c = 0$ ($a \ne 0$)

Propriété

$$ightharpoonup$$
 Si $\Delta > 0$, l'équation a deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Si Δ= 0, l'équation a une solution dite double :
$$x_0 = -\frac{b}{2a}$$
.

Démonstration

L'équation (E): $ax^2 + bx + c = 0$ ($a \ne 0$) est équivalente à $a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right] = 0$

Donc (E) équivaut à
$$\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} = 0$$
 (car $a \neq 0$)

> Si Δ > 0, l'équation (E) équivaut à $x + \frac{b}{2a} = \frac{\sqrt{\Delta}}{2a}$ ou $x + \frac{b}{2a} = -\frac{\sqrt{\Delta}}{2a}$, donc l'équation a deux solutions distinctes:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

 $x_1 = \frac{-b - \sqrt{\Delta}}{2a} \text{ et } x_2 = \frac{-b + \sqrt{\Delta}}{2a}.$ > Si $\Delta = 0$, l'équation (E) équivaut à $x + \frac{b}{2a} = 0$, donc l'équation a une solution $x_0 = -\frac{b}{2a}$.

ightharpoonup Si $\Delta < 0$ alors $-\frac{\Delta}{4a^2} > 0$, donc pour tout nombre réel x, $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} > 0$. Donc l'équation (E) n'a pas de solution réelle.

Remarque

$$S = x_1 + x_2 = -\frac{b}{a}$$
 et $P = x_1 \times x_2 = \frac{c}{a}$

2

c) <u>Discriminant et représentation graphique d'une fonction polynôme du second degré</u>

Exemple 3 a > 0

3) Signe d'un trinôme

a) Racine d'un trinôme du second degré

Définition

On appelle racine ou zéro du trinôme du second degré $ax^2 + bx + c$ ($a \ne 0$) toute solution de l'équation $ax^2 + bx + c = 0$

Exemple 4

Les racines du trinôme $x^2 - 4x + 3$ sont 1 et 3.

b) Factorisation d'un trinôme du second degré

Propriété

Soit un trinôme du second degré $f(x) = ax^2 + bx + c$ ($a \neq 0$).

- > $Si \Delta > 0$ alors $f(x) = a(x x_1)(x x_2)$, où x_1 et x_2 sont les racines de ce trinôme.
- > $Si \Delta = 0$ alors $f(x) = a(x x_0)^2$, où x_0 est la racine double de ce trinôme.
- ightharpoonup Si Δ < 0 alors f(x) ne peut pas se factoriser en facteurs du premier degré.

Démonstration

$$f(x) = ax^2 + bx + c = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right]$$

> Si Δ> 0 alors

$$f(x) = a\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right)$$
$$= a\left(x - \frac{-b - \sqrt{\Delta}}{2a}\right)\left(x - \frac{-b + \sqrt{\Delta}}{2a}\right)$$
$$= a(x - x_1)(x - x_2)$$

Où x_1 et x_2 sont les solutions de l'équation f(x) = 0.

- Si $\Delta = 0$ alors $f(x) = a\left(x + \frac{b}{2a}\right)^2 = a\left(x \frac{-b}{2a}\right)\left(x \frac{-b}{2a}\right) = a(x x_0)^2$ où x_0 est la solution de l'équation f(x) = 0.
- > Si Δ< 0:

Par un raisonnement par l'absurde on suppose que f(x) peut se factoriser en produit de facteurs du premier degré.

Si f(x) se factorisait en produit de facteurs du premier degré, il aurait deux racines ; ce qui contredit le fait que $\Delta < 0$ donc f(x) ne peut pas se factoriser en facteurs du premier degré.

c) Signe de $ax^2 + bx + c$ ($a \neq 0$)

Propriété

Soit un trinôme du second degré $f(x) = ax^2 + bx + c$ ($a \ne 0$) et Δ son discriminant.

- $ightharpoonup \Delta > 0$ le trinôme est du signe de a si, et seulement si, $x \in]-\infty; x_1[\ \cup\]x_2; +\infty[$ et du signe de -a si, et seulement si, $x \in]x_1; x_2[$ où x_1 et x_2 sont les racines du trinôme avec $x_1 < x_2$.
- $ightharpoonup \Delta = 0$ le trinôme est du signe de a si, et seulement si, $x_0 \neq -\frac{b}{2a}$.
- $ightharpoonup \Delta < 0$ le trinôme est du signe de a pour tout réel x.

Tableau de signe d'un trinôme

$1^{er} \cos \Delta > 0$

7 1 1 X 1 1 1 2	-∞	<i>x</i> ₁	The street of the	x ₂	+∞
f(x) ,	signe de a	•	signe de – a	•	signe de a

$2^e \cos \Delta = 0$

x	-∞	x ₀	+00
f(x)	signe de d		signe de a

3° cas $\Delta < 0$

* * * * * * * * * * * * * * * * * * *		+∞
f(x)	signe	de a

Signe du trinôme et représentation graphique d'une fonction polynôme du second degré

Exemple 5

$1^{er} \cos \Delta > 0$

 $2^{\circ} \cos \Delta = 0$

 3° cas $\Delta < 0$

Exemple 6

Etudier suivant les valeurs du réel \boldsymbol{x} le signe des trinômes suivants :

a.
$$-x^2 + 4x - 5$$

b.
$$2x^2 - 4x + 6$$

4) Inéquation du second degré

Définition

On appelle inéquation du second degré à une inconnue, toute inéquation de la forme f(x) > 0, f(x) < 0, $f(x) \ge 0$ ou $f(x) \le 0$, où f(x) est un trinôme du second degré.

Exemple 7

Résoudre dans ${\mathbb R}$ les inéquations suivantes :

a.
$$2x^2 - 5x + 1 > 0$$

b.
$$-3x^2 + 12x - 8 \le 0$$