Quantum Augmented Dual Attack

Martin R. Albrecht and Yixin Shen

Royal Holloway, Univesity of London

September 27, 2022

https://eprint.iacr.org/2022/656

Post-quantum cryptography

- isogeny-based
- multivariate
- code-based
- lattice-based: LWE

Let n = 4, m = 6 and q = 17.

Given A and b, find s.

5

3 | 14

Let n = 4, m = 6 and q = 17.

Given A and b, find s.

→ Very easy (e.g. Gaussian elimination) and in polynomial time

Let n = 4, m = 6 and q = 17.

random				S	ecre	t r	oise			
A	$l \in Z$	$\mathbb{Z}_q^{m imes}$: <i>n</i>	S	e e	$\in \mathbb{Z}_q^n$	b b	$b \in \mathbb{Z}_q^n$		
14	12	2	5		1		-3		11	
5	3	1	7	×	2	1	-1	_	5	
14	7	2	5	^	1	Т	2	_	14	
0	9	8	4		5		-3		6	
8	11	5	12		·		3		12	
5	1	3	14				-1		13	

Let n = 4, m = 6 and q = 17.

random				secret			noise				
	$A \in \mathcal{I}$	$\mathbb{Z}_q^{m imes}$	(n		$s \in \mathbb{Z}$	n ¹q	e ∈	\mathbb{Z}_q^n	b	$\in \mathbb{Z}$	m q
14	1 12	2	5							11	
5	3	1	7	×					_	5	
14	1 7	2	5						_	14	
0	9	8	4							6	
8	11	5	12							12	
5	1	3	14							13	

Given A and b, find s.

→ Suspected hard problem, even for quantum algorithms

Let $n, m, q \in \mathbb{Z}$ and χ_e, χ_s two distributions over \mathbb{Z}_q .

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- ightharpoonup output (A, As + e).

Intuition: As + e is very close to a uniform distribution.

Let $n, m, q \in \mathbb{Z}$ and χ_e, χ_s two distributions over \mathbb{Z}_q .

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- ▶ output (*A*, *As* + *e*).

Intuition: As + e is very close to a uniform distribution.

Search LWE problem: given $(A, b) \leftarrow \text{LWE}(n, m, q, \chi_e, \chi_s)$, recover s.

Decision LWE problem:

distinguish LWE $(n, m, q, \chi_e, \chi_s)$ from $U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m)$.

Let $n, m, q \in \mathbb{Z}$ and χ_e, χ_s two distributions over \mathbb{Z}_q .

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- ightharpoonup output (A, As + e).

Intuition: As + e is very close to a uniform distribution.

Search LWE problem: given $(A, b) \leftarrow \text{LWE}(n, m, q, \chi_e, \chi_s)$, recover s.

Decision LWE problem:

distinguish LWE $(n, m, q, \chi_e, \chi_s)$ from $U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m)$.

Lemma: Search LWE is easy if and only if decision LWE is easy.

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- output (A, As + e).

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_a^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- output (A, As + e).

Secret distributions χ_s :

- ightharpoonup originally uniform in \mathbb{Z}_q
- ▶ now discrete Gaussian of small deviation σ_s (e.g. $\{-1,0,1\}$ whp)
- Fact: small secret is as hard as uniform secret
- small secret allows more efficient schemes

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- output (A, As + e).

Noise distributions χ_e :

- usually discrete Gaussian of deviation σ_e
- encryption (Kyber/Saber): σ_e small (\approx 1)
- FHE: σ_e is larger

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:

- several lattice-based NIST PQC candidates rely on LWE
- extensive literature
- all evidence points to resistance against quantum attacks

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:

- several lattice-based NIST PQC candidates rely on LWE
- extensive literature
- all evidence points to resistance against quantum attacks

Two types of attacks:

- Primal attacks:
 - more efficient
 - no quantum speed-up known
- Dual attacks:
 - originally less efficient, now catching up
 - no quantum speed-up known up to now

Contribution: first significant quantum speed-up on dual attacks

Very naive attack:

Attack:

Very naive attack: guess secret §

Attack:

- **▶** get (*A*, *b*)
- ▶ guess §
- ightharpoonup output $b' = b A\tilde{s}$

Very naive attack: guess secret §

Attack:

- ▶ get (A, b)
- guess §
- ▶ output $b' = b A\tilde{s}$

Good guess (
$$s = \tilde{s}$$
):

$$b' = e$$

follows a discrete Gaussian of small deviation

Very naive attack: guess secret §

Attack:

- **▶** get (*A*, *b*)
- guess §
- ▶ output $b' = b A\tilde{s}$

Good guess (
$$s = \tilde{s}$$
):

$$b' = e$$

follows a discrete Gaussian of small deviation

Bad guess (
$$s \neq \tilde{s}$$
):

$$b' = e + A(s - \tilde{s})$$

follows a uniform¹ distribution (*A* uniform in $\mathbb{Z}_q^{m \times n}$)

¹Technically only true for fixed s, random A and s

Uniform/Gaussian distinguisher

Given a sampler for χ , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian)

Uniform/Gaussian distinguisher

Given a sampler for χ , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian) Essentially optimal distingusher: use FFT transform

$$\mathbb{E}_{\mathbf{x} \leftarrow \chi}[e^{2i\pi \mathbf{x}/q}], \mathsf{Var}_{\mathbf{x} \leftarrow \chi}[e^{2i\pi \mathbf{x}/q}] \approx \begin{cases} 0, 0 & \text{if } \chi = U(\mathbb{Z}_q) \\ e^{-2\left(\frac{\pi\sigma}{q}\right)^2}, e^{-8\left(\frac{\pi\sigma}{q}\right)^2} & \text{if } \chi = D_{\sigma,q} \end{cases}$$

Uniform/Gaussian distinguisher

Given a sampler for χ , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian) Essentially optimal distingusher: use FFT transform

$$\mathbb{E}_{x \leftarrow \chi}[e^{2i\pi x/q}], \mathsf{Var}_{x \leftarrow \chi}[e^{2i\pi x/q}] \approx \begin{cases} 0, \mathbf{0} & \text{if } \chi = U(\mathbb{Z}_q) \\ e^{-2\left(\frac{\pi\sigma}{q}\right)^2}, e^{-8\left(\frac{\pi\sigma}{q}\right)^2} & \text{if } \chi = D_{\sigma,q} \end{cases}$$

Attack:

- ▶ sample $N = \Omega(1/\varepsilon^2)$ values $x_1, ..., x_N$ from χ
- compute

$$S = \frac{1}{N} \sum_{j=1}^{N} e^{2i\pi x_j/q}$$

► Check if $S > e^{-2\left(\frac{\pi\sigma}{q}\right)^2}$

The quantity $\varepsilon = e^{-2\left(\frac{\pi\sigma}{q}\right)^2}$ is called the advantage.

Very naive attack: summary

Very naive attack:

- guess \tilde{s} : deviation of s is σ_s so in $\{-\sigma_s, \dots, \sigma_s\}^n$ whp
- ▶ compute $1/\varepsilon^2$ samples to check guess

Very naive attack: summary

Very naive attack:

- **p** guess \tilde{s} : deviation of s is σ_s so in $\{-\sigma_s, \dots, \sigma_s\}^n$ whp
- ▶ compute $1/\varepsilon^2$ samples to check guess

Complexity estimate:

$$(2\sigma_s)^n \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} = \text{too much}$$

Very naive attack: summary

Very naive attack:

- **•** guess \tilde{s} : deviation of s is σ_s so in $\{-\sigma_s, \ldots, \sigma_s\}^n$ whp
- ▶ compute $1/\varepsilon^2$ samples to check guess

Complexity estimate:

$$(2\sigma_s)^n \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} = \text{too much}$$

Dual attacks: provide an efficient way to only guess a part of the secret

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$, guess \tilde{s}_{fft} , output $(A_{\text{lat}}, b' = b - A_{\text{fft}} \tilde{s}_{\text{fft}})$

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$, guess \tilde{s}_{fft} , output $(A_{\text{lat}}, b' = b - A_{\text{fft}} \tilde{s}_{\text{fft}})$

Good guess (
$$s_{fft} = \tilde{s}_{fft}$$
):

$$b' = A_{lat} s_{lat} + e$$

so (A_{lat}, b') follows an LWE distribution

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$, guess \tilde{s}_{fft} , output $(A_{\text{lat}}, b' = b - A_{\text{fft}} \tilde{s}_{\text{fft}})$

Good guess (
$$s_{\text{fft}} = \tilde{s}_{\text{fft}}$$
):
 $b' = A_{\text{lat}} s_{\text{lat}} + e$
so (A_{lat}, b') follows an LWE distribution

Bad guess
$$(s_{\text{fft}} \neq \tilde{s}_{\text{fft}})$$
:

$$b' = A_{\text{fft}}(s_{\text{fft}} - \tilde{s}_{\text{fft}}) + \cdots$$

so (A_{lat}, b') follows a uniform distribution $(A_{fft}$ uniform)

Given a sampler for χ , decide if χ = uniform or LWE.

Given a sampler for χ , decide if χ = uniform or LWE.

- ▶ sample (A, b) from χ
- ▶ compute $\mathbf{x} \in \mathbb{Z}_q^m$ such that $\mathbf{x}^T A = \mathbf{0}$
- ightharpoonup output x^Tb

Given a sampler for χ , decide if χ = uniform or LWE.

- ▶ sample (A, b) from χ
- ▶ compute $\mathbf{x} \in \mathbb{Z}_q^m$ such that $\mathbf{x}^T A = \mathbf{0}$
- ightharpoonup output x^Tb

Given a sampler for χ , decide if χ = uniform or LWE.

- ▶ sample (A, b) from χ
- ▶ compute $x \in \mathbb{Z}_q^m$ such that $x^T A = 0$
- ightharpoonup output x^Tb

When
$$\chi = LWE$$
:

$$x^Tb = x^Te$$

follows an approximate Gaussian distribution

Given a sampler for χ , decide if χ = uniform or LWE.

- ▶ sample (A, b) from χ
- ▶ compute $x \in \mathbb{Z}_q^m$ such that $x^T A = 0$
- \triangleright output x^Tb

When
$$\chi = LWE$$
:

$$x^Tb = x^Te$$

follows an approximate Gaussian distribution

When
$$\chi = \text{Uniform}$$
:

$$x^Tb$$

follows a uniform distribution (b uniform, independent from A)

Dual attack: summary

Basic dual attack:

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- guess š_{fft}, subtract guess
- \triangleright compute dual vector \mathbf{x} and dot product $\mathbf{x}^T b$
- compute $1/\varepsilon^2$ samples to check guess

Basic dual attack:

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- guess š_{fft}, subtract guess
- \triangleright compute dual vector x and dot product x^Tb
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- $x^Tb = x^Te$ approx Gaussian deviation $||x||\sigma_e$

Basic dual attack:

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- guess š_{fft}, subtract guess
- \triangleright compute dual vector x and dot product x^Tb
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- ▶ $x^Tb = x^Te$ approx Gaussian deviation $||x||\sigma_e$

Complexity estimate:

$$(2\sigma_s)^{k_{\text{fit}}} \cdot e^{4\left(\frac{\pi ||x||\sigma_e}{q}\right)^2} \cdot \text{(time to compute } x\text{)}$$

Basic dual attack:

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- guess š_{fft}, subtract guess
- compute dual vector x and dot product x^Tb
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- ▶ $x^Tb = x^Te$ approx Gaussian deviation $||x||\sigma_e$

Complexity estimate:

$$(2\sigma_s)^{k_{\text{fit}}} \cdot e^{4\left(\frac{\pi ||x||\sigma_e}{q}\right)^2} \cdot (\text{time to compute } x)$$

 \sim we want x to be short

Basic dual attack:

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- guess š_{fft}, subtract guess
- \triangleright compute dual vector \mathbf{x} and dot product $\mathbf{x}^T \mathbf{b}$
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- ▶ $x^Tb = x^Te$ approx Gaussian deviation $||x||\sigma_e$

Complexity estimate:

$$(2\sigma_s)^{k_{\text{fit}}} \cdot e^{4\left(\frac{\pi ||x||\sigma_e}{q}\right)^2} \cdot \text{(time to compute } x\text{)}$$

 \rightarrow we want x to be short \rightarrow lattice reduction

What is a (Euclidean) lattice?

Definition

$$\mathcal{L}(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n) = \left\{\sum_{i=1}^n x_i \boldsymbol{b}_i : x_i \in \mathbb{Z}\right\}$$
 where $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n$ is a basis of \mathbb{R}^n .

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

Basic dual attack:

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- guess š_{fft}, subtract guess
- \triangleright compute dual vector x and dot product x^Tb
- ightharpoonup compute $1/\varepsilon^2$ samples to check guess

Basic dual attack:

- ightharpoonup split secret $n = k_{\rm fft} + k_{\rm lat}$
- ightharpoonup guess \tilde{s}_{fft} , subtract guess
- \triangleright compute dual vector x and dot product x^Tb
- ▶ compute $1/\varepsilon^2$ samples to check guess

Pick x short in lattice L using BKZ:

$$L = \left\{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T A_{\mathrm{lat}} = 0 \bmod q \right\}$$

Complexity estimate:

$$(2\sigma_s)^{k_{\text{fit}}} \cdot e^{4\left(\frac{\pi \|\mathbf{x}\|\sigma_e}{q}\right)^2} \cdot T_{\text{BKZ}}$$

Basic dual attack:

- ightharpoonup split secret $n = k_{\rm fft} + k_{\rm lat}$
- guess š_{fft}, subtract guess
- \triangleright compute dual vector x and dot product x^Tb
- compute $1/\varepsilon^2$ samples to check guess

Pick x short in lattice L using BKZ:

$$L = \left\{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T A_{\mathrm{lat}} = 0 \bmod q \right\}$$

Complexity estimate:

$$(2\sigma_s)^{k_{\text{fit}}} \cdot e^{4\left(\frac{\pi \|\mathbf{x}\|\sigma_e}{q}\right)^2} \cdot T_{\text{BKZ}}$$

- ▶ BKZ trade-off short x ~ more expensive algorithm
- **best dual attack parameters** ($k_{\text{fft}},...$) found by optimization

Advanced dual attacks

More details:

- ▶ modulo switching: only guess part of secret modulo p ($p \ll q$)
 - reduce guessing complexity
 - increase distinguishing cost due to modulo remainders
 - makes reduced secret dense

Advanced dual attacks

More details:

- ▶ modulo switching: only guess part of secret modulo p ($p \ll q$)
 - reduce guessing complexity
 - increase distinguishing cost due to modulo remainders
 - makes reduced secret dense
- split secret into three parts: brute force guess, FFT, lattice
 - leverage sparse secret before modulo reduction
 - decrease BKZ dimension and cost

Advanced dual attacks

More details:

- ▶ modulo switching: only guess part of secret modulo p ($p \ll q$)
 - reduce guessing complexity
 - increase distinguishing cost due to modulo remainders
 - makes reduced secret dense
- split secret into three parts: brute force guess, FFT, lattice
 - leverage sparse secret before modulo reduction
 - decrease BKZ dimension and cost
- BKZ with sieving to obtain many dual vectors at once

All you need to know for what follows: attack looks like

- lacktriangle enumerate $s_{ ext{enum}} \in \mathbb{Z}_q^{k_{ ext{enum}}}$
 - lacktriangle enumerate all $s_{ ext{fft}} \in \mathbb{Z}_q^{k_{ ext{fft}}}$
 - compute an FFT-like sum
 - check if it is above the threshold

sampled from $\chi_s^{k_{\rm enum}}$ uniform in $\mathbb{Z}_a^{k_{\rm fit}}$

All you need to know for what follows: attack looks like

- lacktriangle enumerate $s_{ ext{enum}} \in \mathbb{Z}_q^{k_{ ext{enum}}}$
 - ightharpoonup enumerate all $s_{ ext{fft}} \in \mathbb{Z}_a^{k_{ ext{fft}}}$
 - compute an FFT-like sum
 - check if it is above the threshold

sampled from $\chi_{\mathcal{S}}^{k_{\mathrm{enum}}}$ uniform in $\mathbb{Z}_{q}^{k_{\mathrm{fin}}}$

Classical complexity:

- ightharpoonup guessing complexity: try s_{enum} in decreasing order of probability
- ▶ FFT: compute all FFT-sums in one go with a DFT gives

$$G(\chi_s^{k_{ ext{enum}}}) \cdot q^{k_{ ext{fft}}}$$

All you need to know for what follows: attack looks like

- lacktriangle enumerate $s_{ ext{enum}} \in \mathbb{Z}_q^{k_{ ext{enum}}}$
 - enumerate all $s_{\text{fft}} \in \mathbb{Z}_{q}^{k_{\text{fft}}}$
 - compute an FFT-like sum
 - check if it is above the threshold

sampled from $\chi_{\mathcal{S}}^{k_{\mathrm{enum}}}$ uniform in $\mathbb{Z}_{q}^{k_{\mathrm{fit}}}$

Classical complexity:

- ightharpoonup guessing complexity: try $s_{\rm enum}$ in decreasing order of probability
- ▶ FFT: compute all FFT-sums in one go with a DFT gives

$$G(\chi_s^{k_{ ext{enum}}}) \cdot q^{k_{ ext{fft}}}$$

Quantum complexity: can we hope for $\sqrt{G(\chi_s^{k_{\rm enum}})\cdot q^{k_{\rm fit}}}$?

All you need to know for what follows: attack looks like

- lacktriangle enumerate $s_{ ext{enum}} \in \mathbb{Z}_q^{k_{ ext{enum}}}$
 - enumerate all $s_{\text{fft}} \in \mathbb{Z}_a^{k_{\text{fft}}}$
 - compute an FFT-like sum
 - check if it is above the threshold

sampled from $\chi_s^{k_{\rm enum}}$ uniform in $\mathbb{Z}_a^{k_{\rm fit}}$

Classical complexity:

- ightharpoonup guessing complexity: try $s_{\rm enum}$ in decreasing order of probability
- ▶ FFT: compute all FFT-sums in one go with a DFT gives

$$G(\chi_s^{k_{\text{enum}}}) \cdot q^{k_{\text{fft}}}$$

Quantum complexity: can we hope for $\sqrt{G(\chi_s^{k_{
m enum}})\cdot q^{k_{
m fit}}}$? Probably not

D discrete distribution on $x_1, x_2, ...,$ let p_i be the probability of x_i .

Guessing game: your friend samples $X \leftarrow D$, you must find i such that $X = x_i$ only by asking queries of the form "is $X = x_j$?" for some j. Minimize (expected) number of queries.

D discrete distribution on $x_1, x_2, ...,$ let p_i be the probability of x_i .

Guessing game: your friend samples $X \leftarrow D$, you must find i such that $X = x_i$ only by asking queries of the form "is $X = x_j$?" for some j. Minimize (expected) number of queries.

Example: $D = U(\mathbb{Z}_5)$

Friend samples X = 3

- ▶ is X equal to 1 ? No
- ▶ is X equal to 4 ? No
- ▶ is X equal to 5 ? No
- ▶ is X equal to 3 ? Yes

4 queries

For uniform the query order does not matter

D discrete distribution on $x_1, x_2, ...,$ let p_i be the probability of x_i .

Guessing game: your friend samples $X \leftarrow D$, you must find i such that $X = x_i$ only by asking queries of the form "is $X = x_j$?" for some j. Minimize (expected) number of queries.

Example: $D = U(\mathbb{Z}_5)$

Friend samples X = 3

- ▶ is X equal to 1 ? No
- ▶ is X equal to 4 ? No
- ▶ is X equal to 5 ? No
- ▶ is X equal to 3 ? Yes

4 queries

For uniform the query order does not matter

Example:
$$p_1 = 0.9$$
, $p_2 = 0.09$, $p_3 = 0.009$, $p_4 = 0.001$

Friend samples X = 1 (most likely)

- ▶ is X equal to 1 ? Yes
- 1 query

D discrete distribution on $x_1, x_2, ...,$ let p_i be the probability of x_i .

Guessing game: your friend samples $X \leftarrow D$, you must find i such that $X = x_i$ only by asking queries of the form "is $X = x_j$?" for some j. Minimize (expected) number of queries.

Example: $D = U(\mathbb{Z}_5)$

Friend samples X = 3

- ▶ is X equal to 1 ? No
- ▶ is X equal to 4 ? No
- ▶ is X equal to 5 ? No
- ▶ is X equal to 3 ? Yes

4 queries

For uniform the query order does not matter

Example:
$$p_1 = 0.9$$
, $p_2 = 0.09$, $p_3 = 0.009$, $p_4 = 0.001$

Friend samples X = 4 (unlikely)

- ▶ is X equal to 1 ? No
- ► is X equal to 2 ? No
- ► is X equal to 3 ? No
- ▶ is X equal to 4 ? Yes
- 4 queries

D discrete distribution on $x_1, x_2, ...,$ let p_i be the probability of x_i .

Guessing game: your friend samples $X \leftarrow D$, you must find i such that $X = x_i$ only by asking queries of the form "is $X = x_j$?" for some j. Minimize (expected) number of queries.

Example: $D = U(\mathbb{Z}_5)$

Friend samples X = 3

- ▶ is X equal to 1 ? No
- ▶ is X equal to 4 ? No
- ▶ is X equal to 5 ? No
- ▶ is X equal to 3 ? Yes

4 queries

For uniform the query order does not matter

Example:
$$p_1 = 0.9$$
, $p_2 = 0.09$, $p_3 = 0.009$, $p_4 = 0.001$

Friend samples X = 4 (unlikely)

- ▶ is X equal to 1 ? No
- ightharpoonup is X equal to 2 ? No
- ▶ is X equal to 3 ? No
- ▶ is X equal to 4 ? Yes

4 queries

Ask most likely elements first

D discrete distribution on $x_1, x_2, ...,$ let p_i be the probability of x_i .

Guessing game: your friend samples $X \leftarrow D$, you must find i such that $X = x_i$ only by asking queries of the form "is $X = x_j$?" for some j. Minimize (expected) number of queries.

Optimal strategy: always guess elements by decreasing probability

Expected number of guesses $(p_1 \geqslant p_2 \geqslant \cdots \geqslant p_N)$:

$$G(D) = \sum_{i=1}^{N} i \cdot p_i,$$

D discrete distribution on $x_1, x_2, ...,$ let p_i be the probability of x_i .

Guessing game: your friend samples $X \leftarrow D$, you must find i such that $X = x_i$ only by asking queries of the form "is $X = x_j$?" for some j. Minimize (expected) number of queries.

Optimal strategy: always guess elements by decreasing probability

Expected number of guesses $(p_1 \geqslant p_2 \geqslant \cdots \geqslant p_N)$:

$$G(D) = \sum_{i=1}^{N} i \cdot p_i,$$

What about quantum guessing?

- Grover-like search
- can even handle faulty query oracles

D discrete distribution on $x_1, x_2, ...,$ let p_i be the probability of x_i .

Guessing game: your friend samples $X \leftarrow D$, you must find i such that $X = x_i$ only by asking queries of the form "is $X = x_j$?" for some j. Minimize (expected) number of queries.

Optimal strategy: always guess elements by decreasing probability

Expected number of guesses $(p_1 \geqslant p_2 \geqslant \cdots \geqslant p_N)$:

$$G(D) = \sum_{i=1}^{N} i \cdot p_i,$$
 $G^{qc}(D) = \sum_{i=1}^{N} \sqrt{i} \cdot p_i$

What about quantum guessing?

- Grover-like search
- can even handle faulty query oracles

Guessing complexity (results)

Guessing complexity of the modular discrete Gaussian $D_{\sigma,q,n}$ on \mathbb{Z}_q^n :

$$D_{\sigma,q,n}(x) \propto
ho_{\sigma}(x+q\,\mathbb{Z}^n), \qquad
ho_{\sigma}(y) = e^{-\|y\|^2/2\sigma}, \quad y \in \mathbb{Z}^n.$$

Guessing complexity (results)

Guessing complexity of the modular discrete Gaussian $D_{\sigma,q,n}$ on \mathbb{Z}_q^n :

$$D_{\sigma,q,n}(x) \propto \rho_{\sigma}(x+q\mathbb{Z}^n), \qquad \rho_{\sigma}(y) = e^{-\|y\|^2/2\sigma}, \quad y \in \mathbb{Z}^n.$$

Theorem (Simplified)

$$G(D_{\sigma,q,n}) \lesssim 1.22^n \cdot 2^{\mathsf{H}}, \qquad G^{qc}(D_{\sigma,q,n}) \lesssim 1.12^{n/2} \cdot 2^{\mathsf{H}/2}$$

where $H \approx \frac{1/2 + \log(\sigma\sqrt{2\pi})}{\log 2}$ is the entropy of the discrete Gaussian.

Observations:

- G exponentially times bigger than 2^H
- $G^{qc} \leqslant \sqrt{G}$ is true for any distributions
- G^{qc} seems exponentially smaller than \sqrt{G} ...
- ... but we do not have matching lower bounds to confirm it yet

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- ▶ enumerate all $s \in \mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - ightharpoonup check if $F_s \geqslant$ threshold

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- lacktriangle enumerate all $s\in\mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - check if $F_s \geqslant$ threshold

Naive complexity:

$$O(q^{k_{\text{fit}}} \cdot N)$$

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (N large)

- lacktriangle enumerate all $s\in\mathbb{Z}_q^{k_{\mathrm{fit}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - ▶ check if F_s \geqslant threshold

Naive complexity:

$$O(q^{k_{\text{fift}}} \cdot N)$$

Classical algorithm with optimisation:

- T ← k-dimensional array set to zero
- ► $T[x_i] \leftarrow 1$ for all j
- ▶ compute FFT \hat{T} of T (Fact: $\hat{T}[s] = F_s$)
- check all $\widehat{T}[s]$ against threshold

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- ightharpoonup enumerate all $s \in \mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - ightharpoonup check if $F_s \geqslant$ threshold

Naive complexity:

$$O(q^{k_{\rm fft}} \cdot N)$$

Classical algorithm with optimisation:

- T ← k-dimensional array set to zero
- ► $T[x_i] \leftarrow 1$ for all j
- ▶ compute FFT \widehat{T} of T (Fact: $\widehat{T}[s] = F_s$)
- check all $\widehat{T}[s]$ against threshold

Complexity:

array filling time + FFT time + search time =
$$O(N + q^{k_{\mathrm{fit}}}) = O(q^{k_{\mathrm{fit}}})$$

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- ightharpoonup enumerate all $s \in \mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - ightharpoonup check if $F_s \geqslant$ threshold

What about quantum? initial idea: use the QFT

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- lacktriangle enumerate all $s\in\mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - ightharpoonup check if $F_s \geqslant$ threshold

What about quantum? initial idea: use the QFT

create superposition

$$\psi = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} |x_j\rangle$$

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- lacktriangle enumerate all $s\in\mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - check if $F_s \geqslant$ threshold

What about quantum? initial idea: use the QFT

create superposition

$$\psi = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} |x_j\rangle$$

apply QFT to get

$$\hat{\psi} = rac{1}{\sqrt{N}} \sum_{s \in \mathbb{Z}_q^k}^N F_s \ket{s}$$

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- lacktriangle enumerate all $s\in\mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - ightharpoonup check if $F_s \geqslant$ threshold

What about quantum? initial idea: use the QFT

create superposition

$$\psi = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} |x_j\rangle$$

apply QFT to get

$$\hat{\psi} = rac{1}{\sqrt{N}} \sum
olimits_{oldsymbol{s} \in \mathbb{Z}_q^k} F_{oldsymbol{s}} \ket{oldsymbol{s}}$$

check if any amplitude in the superposition is above the threshold

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- ightharpoonup enumerate all $s \in \mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - ightharpoonup check if $F_s \geqslant$ threshold

What about quantum? initial idea: use the QFT

create superposition

▶ impossible without QRAM?

$$\psi = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} |x_j\rangle$$

apply QFT to get

$$\hat{\psi} = rac{1}{\sqrt{N}} \sum
olimits_{oldsymbol{s} \in \mathbb{Z}_q^k} F_{oldsymbol{s}} \ket{oldsymbol{s}}$$

check if any amplitude in the superposition is above the threshold

FFT search with threshold

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (N large)

- lacktriangle enumerate all $s\in\mathbb{Z}_q^{k_{\mathrm{fit}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - check if $F_s \geqslant$ threshold

What about quantum? initial idea: use the QFT

create superposition

▶ impossible without QRAM?

$$\psi = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} |x_j\rangle$$

apply QFT to get

polynomial time

$$\hat{\psi} = rac{1}{\sqrt{N}} \sum
olimits_{oldsymbol{s} \in \mathbb{Z}_q^k} F_{oldsymbol{s}} \ket{oldsymbol{s}}$$

check if any amplitude in the superposition is above the threshold

FFT search with threshold

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{\kappa_{\text{fit}}}$ (*N* large)

- ightharpoonup enumerate all $s \in \mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - ightharpoonup check if $F_s \geqslant$ threshold

What about quantum? initial idea: use the QFT

create superposition

▶ impossible without QRAM?

$$\psi = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} |x_j\rangle$$

apply QFT to get

polynomial time

$$\hat{\psi} = rac{1}{\sqrt{N}} \sum_{s \in \mathbb{Z}_q^k}^N F_s \ket{s}$$

check if any amplitude in the superposition is above the threshold

▶ extremely expensive?

Open question: can this approach be made efficient?

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- lacktriangle enumerate all $s\in\mathbb{Z}_q^{k_{\mathrm{fit}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - check if $F_s \geqslant$ threshold

Alternative quantum algorithm:

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- lacktriangle enumerate all $s\in\mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - ightharpoonup check if $F_s \geqslant$ threshold

Alternative quantum algorithm:

- search over $s \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ with Grover for...
 - compute F_s and check against threshold

Complexity:
$$O(\sqrt{q^{k_{\text{fit}}}} \cdot N)$$

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- lacktriangle enumerate all $s\in\mathbb{Z}_q^{k_{\mathrm{fit}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - check if $F_s \ge$ threshold

Alternative quantum algorithm:

- ▶ search over $s \in \mathbb{Z}_q^{k_{\text{fit}}}$ with Grover for...
 - compute F_s and check against threshold

Complexity: $O(\sqrt{q^{k_{\text{fit}}}} \cdot N) \triangleright$ worse than classical unless N is very small!

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- lacktriangle enumerate all $s\in\mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^{N} e^{2i\pi s^T x_i/q}$
 - check if $F_s \geqslant$ threshold

Alternative quantum algorithm:

- ▶ search over $s \in \mathbb{Z}_q^{k_{\text{fit}}}$ with Grover for...
 - compute F_s and check against threshold

Complexity: $O(\sqrt{q^{k_{\text{fit}}}} \cdot N) \triangleright$ worse than classical unless N is very small!

Theorem (Simplified)

There is a quantum algorithm that computes $F_s \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X :

$$\mathcal{O}_X: |j\rangle |0\rangle \rightarrow |j\rangle |x_j\rangle.$$

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{\kappa_{\text{fit}}}$ (*N* large)

- lacktriangle enumerate all $s \in \mathbb{Z}_q^{k_{\mathrm{fft}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - check if $F_s \geqslant$ threshold

Alternative quantum algorithm:

- ▶ search over $s \in \mathbb{Z}_q^{k_{\text{fit}}}$ with Grover for...
 - compute F_s and check against threshold

Complexity: $O(\sqrt{q^{k_{\text{fit}}}} \cdot N) \triangleright$ worse than classical unless N is very small!

Theorem (Simplified)

There is a quantum algorithm that computes $F_s \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X :

$$\mathcal{O}_X: \ket{j}\ket{0} \rightarrow \ket{j}\ket{x_j}.$$

How can we build such an oracle?

Fundamental operation: given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^{k_{\mathrm{fit}}}$ (*N* large)

- lacktriangle enumerate all $s\in\mathbb{Z}_q^{k_{\mathrm{fit}}}$
 - compute an FFT sum $F_s = \sum_{i=1}^N e^{2i\pi s^T x_i/q}$
 - check if $F_s \geqslant$ threshold

Alternative quantum algorithm:

- ▶ search over $s \in \mathbb{Z}_q^{k_{\text{fit}}}$ with Grover for...
 - compute F_s and check against threshold

Complexity: $O(\sqrt{q^{k_{\text{fit}}}} \cdot N) \triangleright$ worse than classical unless N is very small!

Theorem (Simplified)

There is a quantum algorithm that computes $F_s \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X :

$$\mathcal{O}_X:\ket{j}\ket{0}
ightarrow \ket{j}\ket{x_j}$$
.

How can we build such an oracle? → QRAM

Given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^k$

- ▶ put samples in a QRAM O_X
- ▶ search over $s \in \mathbb{Z}_q^k$ with Grover for...
 - ightharpoonup compute F_s using theorem with \mathcal{O}_X and check against threshold

Theorem (Simplified)

There is a quantum algorithm that computes $F_s \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X .

Given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^k$

- ▶ put samples in a QRAM \mathcal{O}_X
- ▶ search over $s \in \mathbb{Z}_q^k$ with Grover for...
 - ightharpoonup compute F_s using theorem with \mathcal{O}_X and check against threshold

Theorem (Simplified)

There is a quantum algorithm that computes $F_s \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X .

What about ε ?

Given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^k$

- ▶ put samples in a QRAM O_X
- ▶ search over $s \in \mathbb{Z}_q^k$ with Grover for...
 - ightharpoonup compute F_s using theorem with \mathcal{O}_X and check against threshold

Theorem (Simplified)

There is a quantum algorithm that computes $F_s \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X .

What about ε ? For dual attacks: $\varepsilon = \Omega(1/\sqrt{N})$

Quantum complexity

$$O(\sqrt{q^{k_{\mathrm{fft}}}\cdot N})$$

Given samples $x_1, \ldots, x_N \in \mathbb{Z}_q^k$

- ▶ put samples in a QRAM \mathcal{O}_X
- ▶ search over $s \in \mathbb{Z}_q^k$ with Grover for...
 - ightharpoonup compute F_s using theorem with \mathcal{O}_X and check against threshold

Theorem (Simplified)

There is a quantum algorithm that computes $F_s \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X .

What about
$$\varepsilon$$
? For dual attacks: $\varepsilon = \Omega(1/\sqrt{N})$

Quantum complexity

$$O(\sqrt{q^{k_{\mathrm{fft}}}\cdot N})$$

$$O(q^{k_{\rm fft}} + N)$$

- quantum never worse than classical
- ightharpoonup significant gain when $N \ll q^{k_{
 m fit}}$: like in dual attacks

Prepare the state

$$\frac{1}{\sqrt{N}}\sum_{j=1}^{N}\left|j\right\rangle\left|\mathbf{0}\right\rangle\left|\mathbf{s}\right\rangle\left|0\right\rangle\left|0\right\rangle,$$

apply $O_X:|j\rangle\,|0\rangle o |j\rangle\,|m{x}_j\rangle$ on the first and second registers to get

Prepare the state

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}|j\rangle|\mathbf{0}\rangle|\mathbf{s}\rangle|0\rangle|0\rangle,$$

apply $O_X:|j\rangle\,|0\rangle o |j\rangle\,ig|m{x}_jig
angle$ on the first and second registers to get

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}\left|j\right\rangle\left|\boldsymbol{x}_{j}\right\rangle\left|\boldsymbol{s}\right\rangle\left|0\right\rangle\left|0\right\rangle.$$

Prepare the state

$$\frac{1}{\sqrt{N}}\sum_{j=1}^{N}\left|j\right\rangle\left|\mathbf{0}\right\rangle\left|\boldsymbol{s}\right\rangle\left|0\right\rangle\left|0\right\rangle,$$

apply $O_X:|j\rangle\,|0\rangle o |j\rangle\,ig|m{x}_jig
angle$ on the first and second registers to get

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}\left|j\right\rangle \left|\boldsymbol{x}_{j}\right\rangle \left|\boldsymbol{s}\right\rangle \left|0\right\rangle \left|0\right\rangle .$$

Then apply

$$O_{\cos}: |{m x}\rangle\,|{m s}\rangle\,|0
angle
ightarrow |{m x}\rangle\,|{m s}
angle\,|\cos(2\pi\langle{m x},{m s}
angle/q)
angle\,,$$

on the second, third, fourth registers to get

Prepare the state

$$\frac{1}{\sqrt{N}}\sum_{j=1}^{N}|j\rangle|\mathbf{0}\rangle|\mathbf{s}\rangle|0\rangle|0\rangle,$$

apply $O_X:\ket{j}\ket{0} o \ket{j}\ket{m{x}_j}$ on the first and second registers to get

$$\frac{1}{\sqrt{N}}\sum_{j=1}^{N}\left|j\right\rangle \left|\boldsymbol{x}_{j}\right\rangle \left|\boldsymbol{s}\right\rangle \left|0\right\rangle \left|0\right\rangle .$$

Then apply

$$O_{\cos}: |{m x}\rangle\,|{m s}\rangle\,|0
angle
ightarrow |{m x}\rangle\,|{m s}
angle\,|\cos(2\pi\langle{m x},{m s}
angle/q)
angle\,,$$

on the second, third, fourth registers to get

$$\frac{1}{\sqrt{N}} \sum_{j=1}^{N} |j\rangle |\mathbf{x}_{j}\rangle |\mathbf{s}\rangle |\cos(2\pi \langle \mathbf{x}_{j}, \mathbf{s}\rangle)/q\rangle |0\rangle.$$

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}\ket{j}\ket{\boldsymbol{x}_{j}}\ket{\boldsymbol{s}}\ket{\cos(2\pi\langle\boldsymbol{x}_{j},\boldsymbol{s}\rangle/q)}\ket{0}.$$

$$\frac{1}{\sqrt{N}}\sum_{j=1}^{N}\ket{j}\ket{\boldsymbol{x}_{j}}\ket{\boldsymbol{s}}\ket{\cos(2\pi\langle\boldsymbol{x}_{j},\boldsymbol{s}\rangle/q)}\ket{0}.$$

Apply

$$O_{CR^+}: \ket{a}\ket{0}
ightarrow egin{cases} \ket{a} \left(\sqrt{a}\ket{1} + \sqrt{1-a}\ket{0}
ight), & ext{if } a \geq 0 \ \ket{a}\ket{0}, & ext{otherwise,} \end{cases}$$

on the fourth and fifth registers to get

$$\frac{1}{\sqrt{N}}\sum_{j=1}^{N}\ket{j}\ket{\boldsymbol{x}_{j}}\ket{\boldsymbol{s}}\ket{\cos(2\pi\langle\boldsymbol{x}_{j},\boldsymbol{s}\rangle/q)}\ket{0}.$$

Apply

$$O_{CR^+}: |a
angle |0
angle
ightarrow egin{cases} |a
angle \left(\sqrt{a}\left|1
ight
angle + \sqrt{1-a}\left|0
ight
angle
ight), & ext{if } a \geq 0 \ |a
angle \left|0
ight
angle \, , & ext{otherwise,} \end{cases}$$

on the fourth and fifth registers to get

Using QRACM to construct U

$$\begin{split} &\frac{1}{\sqrt{N}} \sum_{\substack{j \in [N] \text{ and } \\ \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle / q) \rangle}} \left(\begin{array}{c} \sqrt{1 - \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle / q)} \, |0\rangle \\ + \sqrt{\cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle / q)} \, |1\rangle \end{array} \right) \\ &+ \frac{1}{\sqrt{N}} \sum_{\substack{j \in [N] \text{ and } \\ \cos(2\pi \langle \boldsymbol{x}_i, \boldsymbol{s} \rangle / q) > 0}} |j\rangle \, \left| \boldsymbol{x}_j \right\rangle \, |\boldsymbol{s}\rangle \, \left| \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle / q) \right\rangle \, |0\rangle \end{aligned}$$

Using QRACM to construct U

$$\begin{split} &\frac{1}{\sqrt{N}} \sum_{\substack{j \in [N] \text{ and } \\ \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle / q) \rangle}} \left(\begin{array}{c} \sqrt{1 - \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle / q)} \, |0\rangle \\ + \sqrt{\cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle / q)} \, |1\rangle \end{array} \right) \\ &+ \frac{1}{\sqrt{N}} \sum_{\substack{j \in [N] \text{ and } \\ \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle / q) < 0}} |j\rangle \, \left| \boldsymbol{x}_j \right\rangle |\boldsymbol{s} \rangle \, \left| \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle / q) \right\rangle |0\rangle \\ &= \sqrt{a^+} \, |\phi_1\rangle \, |1\rangle + \sqrt{1 - a^+} \, |\phi_0\rangle \, |0\rangle \, , \end{split}$$

where

$$a^+ = \sum_{\substack{j \in [N] ext{ and} \ \cos(2\pi \langle \pmb{x}_j, \pmb{s}
angle/q) \geq 0}} rac{\cos\left(2\pi \langle \pmb{x}_j, \pmb{s}
angle/q
ight)}{N}.$$

Using QRACM to construct U

$$\begin{split} &\frac{1}{\sqrt{N}} \sum_{\substack{j \in [N] \text{ and } \\ \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle) \geq 0}} |j\rangle \left| \boldsymbol{x}_j \right\rangle |\boldsymbol{s} \rangle \left| \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle/q) \right\rangle \left(\begin{array}{c} \sqrt{1 - \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle/q)} \, |0\rangle \\ + \sqrt{\cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle/q)} \, |1\rangle \end{array} \right) \\ &+ \frac{1}{\sqrt{N}} \sum_{\substack{j \in [N] \text{ and } \\ \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle/q) < 0}} |j\rangle \left| \boldsymbol{x}_j \right\rangle |\boldsymbol{s} \rangle \left| \cos(2\pi \langle \boldsymbol{x}_j, \boldsymbol{s} \rangle/q) \right\rangle |0\rangle \\ &= \sqrt{a^+} \left| \phi_1 \right\rangle |1\rangle + \sqrt{1 - a^+} \left| \phi_0 \right\rangle |0\rangle \,, \end{split}$$

where

$$m{a}^+ = \sum_{\substack{j \in [N] ext{ and} \ \cos\left(2\pi \langle m{x}_j, m{s}
angle/q
ight) \geq 0}} rac{\cos\left(2\pi \langle m{x}_j, m{s}
angle/q
ight)}{N}.$$

→ Amplitude Estimation

Dual attack cost estimates (logarithms to base two)

Scheme	CC	CN	C0	GE19	QN	Q0	This work	This work
							(QN)	(Q0)
Kyber 512	139	134	115	139	124	103	113	95
Kyber 768	196	191	174	192	175	155	159	142
Kyber 1024	262	256	242	252	235	215	212	196
LightSaber	139	133	114	138	123	101	113	94
Saber	201	196	179	196	180	159	165	147
FireSaber	264	258	244	253	236	217	215	199
TFHE630	118	113	93	120	105	83	95	77
TFHE630	122	117	95	124	109	85	101	80