I. ผลคูณคาร์ทีเชียน

คู่อันดับ

$$(a,b) = (c,d) \rightarrow a = c \text{ use } b = d$$

$$(a,b) \neq (c,d) \rightarrow a \neq c \text{ who } b \neq d$$

บทนิยาม

ผลคุณคาร์ทีเซียน
$$A\times B=\left\{(a\,,b)\,\big|\,a\in A\text{ และ }b\in B\right\}$$

สมบัติ

1.
$$A \times B = B \times A \longrightarrow A = B$$
 หรือ $A = \emptyset$ หรือ $B = \emptyset$

2. สมบัติการกระจาย

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$A \times (B - C) = (A \times B) - (A \times C)$$

3.
$$(A \times B) \cap (C \times D) = \overline{(A \cap C) \times (B \cap D)}$$

4.
$$n(A \times B) = n(A) \times n(B)$$

$$\underline{\mathrm{Ex}}$$
 กำหนดให้ $A=\{1,2\}, B=\{a\,,b\}$ จงหา $A\times B, n(A\times B)$

Sol
$$A \times B = \{(1,a), (1,b), (2,a), (2,b)\}$$

 $n(A \times B) = 2 \times 2 = 4$

II. ความสัมพันธ์

บทนิยาม

- r เป็นความสัมพันธ์จาก A ไป $B \mapsto r \subset A imes B$
- (x,y) ∈ r เขียนแทนด้วย x r y
- ความสัมพันธ์ใน A คือ ความสัมพันธ์จาก A ไป A
- จำนวนความสัมพันธ์จาก A ไป B เท่ากับ $2^{n(A \times B)} = 2^{n(A) \cdot n(B)}$
- \varnothing เป็นความสัมพันธ์จาก A ไป B เสมอ

 $\underline{\mathrm{Ex}}$ กำหนดให้ $A=\{\,1\,\},\,B=\{a\,,\,b\,\}$ จงหาความสัมพันธ์จาก A ไป B

Sol จาก $A \times B = \{(1,a),(1,b)\}$ จะได้ ความสัมพันธ์จาก A ไป B ได้แก่ $r_1 = \emptyset, r_2 = \{(1,a)\}, r_3 = \{(1,b)\}, r_4 = \{(1,a),(1,b)\}$

โดเมนและเรนจ์ของความสัมพันธ์

โคเมน (D_r) คือ เชตของสมาชิกตัวหน้าของคู่อันดับใน r เรนจ์ (R_r) คือ เชตของสมาชิกตัวหลังของคู่อันดับใน r

หลักการหาโดเมนและเรนจ์ของความสัมพันธ์จากเงื่อนไข

โดเมน (x)	เรนจ์ (y)
 จัด y ในเทอมของ x พิจารณาค่า x ที่ทำให้หาค่า y ได้ 	 จัด x ในเทอมของ y พิจารณาค่า y ที่ทำให้หาค่า x ได้

Ex กำหนดให้
$$r = \{(x, y) | y = \frac{2x+3}{4x-1}\}$$
จงหาโดเมน,เรนจ์
Sol $y(4x-1) = 2x+3$

$$4xy - y = 2x + 3$$

$$x(4y - 2) = y + 3$$

$$D_r = R - \left\{\frac{1}{4}\right\}$$

$$x = \underbrace{y + 3}_{R_r} = R - \left\{\frac{1}{2}\right\}$$

II. ความสัมพันธ์ (ต่อ)

กราฟของความสัมพันธ์

นิยาม

เชตของจุดบนระนาบของความสัมพันธ์

โดเมน

หาได้จากขอบเขตของค่า x บนกราฟ

เรนจ์

หาได้จากขอบเขตของค่า y บนกราฟ

 $\underline{\mathrm{Ex}}$ กำหนดให้ $r = \{(x\,,\,y) | |x\,| + |y\,| = 1\}$ จงหาโดเมน, เรนจ์ Sol จากกราฟความสัมพันธ์

ดังนั้น โดเมน คือ $D_r = [-1,1]$

$$D_r = [-1, 1]$$

เรนซ์ คือ
$$R_r = [-1,1]$$

III. อินเวอร์สของความสัมพันธ์

บทนิยาม

ก้าหนดให้
$$r=\{(x\,,\,y)\in A\times B|(x\,,\,y)\in r\}$$
 จะได้ว่า $r^{-1}=\{(y\,,\,x)\in B\times A|(x\,,\,y)\in r\}$

(หลักการหาอินเวอร์สของความสัมพันธ์)

r เขียนแ	บบแจกแจงสมาชิก	สลับที่ตัวหน้ากับตัวหลัง ในคู่อันดับทุกตัว
r เขียนแ	บบบอกเงื่อนไข เช่น	$r^{-1} = \{(y, x) \in B \times A y = f(x)\}$
$r = \{(x)$	$, y) \in A \times B y = f$	$f(x)\} \qquad r^{-1} = \{(x, y) \in B \times A x = f(y)\}$
	Ex กำหนดให้ จะได้ว่า	$r = \{(a,1), (b,2), (c,3)\}$ $r^{-1} = \{(1,a), (2,b), (3,c)\}$
	<u>Ex</u> กำหนดให้	$r = \{(x, y) \in A \times B y = \frac{2x-1}{3} \}$
1		$r^{-1} = \left\{ (x, y) \in B \times A \mid x = \frac{2y - 1}{3} \right\} $
	หรือ	$r^{-1} = \{(x, y) \in B \times A \mid y = \frac{3x+1}{2}\}$

สมบัติเกี่ยวกับอินเวอร์ส

$$D_{r^{-1}}=R_r^-;R_{r^{-1}}=D_r^-$$

กราฟของ r กับ r^{-1} สมมาตรบนเส้นตรง $y=x$

$$\underline{\mathrm{Ex}}$$
 ก้าหนดให้ $r = \left\{ (x,y) | \ y = (x-1)^2 \right\}$ จงหา $r^{-1}, D_{r^{-1}}, R_{r^{-1}}$ และกราฟ r^{-1} $\underline{\mathrm{Sol}}$ จะได้ว่า $r^{-1} = \left\{ (x,y) | \ x = (y-1)^2 \right\}$ $D_{r^{-1}} = R_r = [0,\infty)$ $R_{r^{-1}} = D_r = R$

IV. ฟังก์ชัน

บทนิยาม

ฟังก์ชัน คือ ความสัมพันธ์ ซึ่งสมาชิกในโคเมนแต่ละตัวไปจับกับสมาชิกในเรนจ์ เพียงตัวเคียว ช้อตกลงเกี่ยวกับสัญลักษณ์ y = f(x) โดยที่ f(x) คือ ค่า y ที่ x ใดๆ

f ห้ามเจ้าชู้ (หน้าเหมือนหลังต้องเหมือน)

หลักพิจารณาฟังก์ชัน

1. แบบแจกแจงสม	มาชิก ถ้า x "เจ้าชู้" \longrightarrow ไม่เป็นฟังก์ชัน
2. แบบบอกเรื่	อนไข แทน x 1 ค่า ได้ y มากกว่า 1 ค่า ไม่เป็นฟังก์ชัน
3.1	าราฟ ลากเส้นขนานแกน y ตัดมากกว่า 1 จุด ไม่เป็นฟังก์ชัน

Ex จงพิจารณาว่าความสัมพันธ์ต่อไปนี้เป็นฟังก์ชันหรือไม่

$$r_1 = \{(1,2),(2,1),(3,2),(2,3)\}$$
 ไม่เป็นฟังก์ชัน (เพราะ $(2,1)$ และ $(2,3)$)
 $r_2 = \{(x,y)|y^2 = |x-2|\}$ ไม่เป็นฟังก์ชัน (เพราะแทน $x = 1$ ได้ $y = -1,1$)

ไม่เป็นฟังก์ชัน (เพราะจากเส้นขนาน แกน y ตัดกราฟมากกว่า 1 จุด)

IV. ฟังก์ชัน (ต่อ)

ลักษณะของฟังก์ขัน

จาก A ไป B (A into B) $f: A \to B$	$D_f=A\ ;\ R_f\subset B$
จาก A ไปทั่วถึง B (A onto B) $f: A \stackrel{\leadsto}{\to} B$	$D_f = A$; $R_f = B$
1-1 ann A ld B (one to one) $f: A \xrightarrow{1-1} B$	ก้า $f(x_1) = f(x_2)$ แล้ว $x_1 = x_2$

หลักพิจารณาฟังก์ชัน 1-1

1. แบบแจกแจงสมาชิก	ถ้า y "เจ้าซู้" → ไม่เป็นฟังก์ชัน 1-1
2. แบบบอกเงื่อนไข	แทน y 1 ค่า ได้ x มากกว่า 1 ค่า ไม่เป็นฟังก์ชัน 1-1
3. nsnv	ลากเส้นขนานแกน x ตัดมากกว่า 1 จุด ไม่เป็นฟังก์ชัน 1-

Ex จงพิจารณาว่าความสัมพันธ์ต่อไปนี้เป็นฟังก์ชัน 1-1 หรือไม่

$$r_{\rm l} = \{(1,2),(2,1),(3,2)\}$$
 ไม่เป็นฟังก์ชัน 1-1 (เพราะ $(1,2)$ และ $(3,2)$)

$$r_2 = \{(x, y) | y = |x - 2|\}$$
 ไม่เป็นฟังก์ชัน 1-1 (เพราะแทน $y = 1$ ได้ $x = 1, 3$)

เ<u>ป็นฟังก์ชัน 1-1</u> (เพราะ ลากเส้นขนานแกน x ตัดกราฟเพียงจุดเดียว)

V. ฟังก์ชันอินเวอร์ส

- f ใบ็นฟังก์ชัน → f เป็นฟังก์ชัน 1-1
- 2. $D_{f^1} = R_f$ was $R_{f^1} = D_f$
- 3. $(f^{-1})^{-1} = f$
- \checkmark 4. $f(\triangle) = \square \leftrightarrow \triangle = f^{-1}(\square)$

Ex กำหนดให้
$$f(2x+1) = x-3$$
 จงหา $f^{-1}(2)$

Sol จาก
$$f(\triangle) = \square \rightarrow \triangle = f^{-1}(\square)$$

ดังนั้น $2x + 1 = f^{-1}(x - 3)$
แทน $x = 5$ จะได้
 $\therefore f^{-1}(2) = 11$

VI. ฟังก์ชันประกอบ

$$\underline{\mathrm{Ex}}$$
 กำหนดให้ $(fog)(x) = x^2 - 3$, $f(x) = 2x + 1$ จงหา $(gof)(x)$

Sol
$$(f \circ g)(x) = f(g(x))$$

 $x^2 - 3 = 2g(x) + 1$
 $g(x) = \frac{x^2 - 4}{2}$
 $\therefore (g \circ f)(x) = g(f(x))$
 $= g(2x + 1)$
 $= \frac{(2x + 1)^2 - 4}{2}$
 $= \frac{4x^2 + 4x - 3}{2}$

VII. พีชคณิตของฟังก์ชัน

(f+g)(x) = f(x) + g(x); $D_{f+g} = D_f \cap D_g$

(f - g)(x) = f(x) - g(x) ; $D_{f - g} = D_f \cap D_g$

 $(f \cdot g)(x) = f(x) \cdot g(x)$; $D_{f \cdot g} = D_f \cap D_g$

 $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \qquad ; \quad D_{\frac{f}{g}} = D_f \cap D_g - \left\{x \mid g(x) = 0\right\}$

VIII. ฟังก์ชันเพิ่ม ฟังก์ชันลด

นิยาม

ฟังก์ชันเพิ่ม	x เพิ่ม y เพิ่ม/x ลดy ลด	*	ตามกัน
ฟังก์ชันลด	x เพิ่ม y ลด/ x ลด y เพิ่ม	*	สวนทางกัน

วิธีตรวจสอบ

วาดกราฟ	ดู slope ของเส้นสัมผัส	ถ้า slope + เป็นฟังก์ชันเพิ่ม		
		ถ้า slope - เป็นฟังก์ชันลด		
ทนิยาม		$\rightarrow y_1 < y_2$ (ตามกัน)		
	৺ f রল x ₁ < x ₂ -	$y_1 > y_2$ (สวนทางกัน)		

IX. Trick/ โจทย์แนวพิเศษ

ฟังก์ชันเวียนเกิด

$$\underline{\mathbf{E}}\mathbf{x}$$
 ให้ $y_1=f(x)=\frac{x+1}{x-1}$ $y_2=f(y_1),\ y_3=f(y_2),\ y_n=f(y_{n+1})$ สำหรับ $n=2,3,4,...$ จงหว $y_{2553}+y_{2010}$

Sol

$$y_{1} = \frac{x+1}{x-1}$$

$$y_{2} = \frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1} = x$$

$$y_{3} = \frac{x+1}{x-1}$$

$$y_{4} = \begin{cases} \frac{x+1}{x-1} & \text{if } n \in \mathbb{N} \\ x & \text{if } n \in \mathbb{N} \end{cases}$$

$$y_{5} = \begin{cases} \frac{x+1}{x-1} & \text{if } n \in \mathbb{N} \\ x & \text{if } n \in \mathbb{N} \end{cases}$$

$$y_{6} = \begin{cases} \frac{x+1}{x-1} & \text{if } n \in \mathbb{N} \\ x & \text{if } n \in \mathbb{N} \end{cases}$$

$$y_{7} = \begin{cases} \frac{x+1}{x-1} & \text{if } n \in \mathbb{N} \\ x & \text{if } n \in \mathbb{N} \end{cases}$$

$$y_{7} = \begin{cases} \frac{x+1}{x-1} & \text{if } n \in \mathbb{N} \\ x & \text{if } n \in \mathbb{N} \end{cases}$$

$$y_{7} = \begin{cases} \frac{x+1}{x-1} & \text{if } n \in \mathbb{N} \\ x & \text{if } n \in \mathbb{N} \end{cases}$$

สมการเชิงฟังก์ชัน

Ex กำหนดให้ $f: R \to R$ เป็นฟังก์ชัน โดยที่ $xf(x) + f(1-x) = 2x - x^2$ จงหา f(x)

Sol แทน
$$x$$
 ด้วย $1-x$; $(1-x)$ $f(1-x)+f(x)=2(1-x)-(1-x)^2$

$$(1-x) f(1-x)+f(x)=1-x^2$$

$$(1-x) f(1-x)+f(x)=1-x^2$$

$$(1-x)xf(x)+f(1-x)=2x-x^2$$
 คูณด้วย $1-x$

$$(1-x)xf(x)+(1-x)f(1-x)=(2x-x^2)(1-x)$$

$$(1-x)xf(x)+(1-x)f(1-x)=(2x-x^2)(1-x)$$

$$(1-x)xf(x)+(1-x)f(1-x)=(2x-x^2)(1-x)$$

$$(1-x)xf(x)+(1-x)f(1-x)=(2x-x^2)(1-x)$$

$$(1-x)xf(x)+(1-x)f(1-x)=(2x-x^2)(1-x)$$

$$(1-x)xf(x)+(1-x)f(1-x)=(2x-x^2)(1-x)$$

$$(1-x)xf(x)+(1-x)f(1-x)=(2x-x^2)(1-x)$$