Practical Methodology

Deep Learning Reading Group

July 4, 2017

Sivarajan Karunanithi

Model capacity

- Representational capacity
- Learning algorithm
- Performance metric

Hyperparameters

Architecture

- Hidden layers
- Hidden units (HU)
- Cost function
- Activation function
- Regularization parameters

Training

- Instances (N)
- Iterations (n)
- Batch size (B)
- Epochs (E)
- Learning rate
- Early stopping

Hidden Units – Rule of thumb

- HU = # Input (I) + # output(o)/2
- 1≤HU ≤ 2I

- Training data availability?
 - HU = N/30
- No regularization?
 - Avoid overfitting using more (?) training data
- Other design choices?

Performance

Epoch

Reality is ugly

http://page.mi.fu-berlin.de/prechelt/Biblio/stop_tricks1997.pdf

So, what to tune?

Performance

Early stopping

Early stopping

- Average training set error, after epoch 't'
- $E_{va}(t)$ Average validation set error, after epoch 't'

$$E_{opt}(t) := \min_{t' \le t} E_{va}(t')$$

Generalization loss $GL(t) = 100 \cdot \left(\frac{E_{va}(t)}{E_{out}(t)} - 1\right)$

 GL_{α} : stop after first epoch t with $GL(t) > \alpha$

$$P_k(t) := 1000 \cdot \left(\frac{\sum_{t'=t-k+1}^t E_{tr}(t')}{k \cdot \min_{t'=t-k+1}^t E_{tr}(t')} - 1 \right)$$

Progress quotient

 PQ_{α} : stop after first end-of-strip epoch t with $\frac{GL(t)}{D(t)} > \alpha$

$$\frac{GL(t)}{P_k(t)} > \alpha$$

Hyperparameter Tuning

- Manual
- Automatic optimization
 - Grid search
 - Random search
 - Model based optimization

Manual tuning

- Learning rate, regularization parameter
- Approach
 - Explore: Bottom up
 - Step-size: Top Down
- Feedback
 - Validation error, cost function

Manual tuning

Hyperparameter	Increases capacity when	Reason	Caveats
Number of hid- den units	increased	Increasing the number of hidden units increases the representational capacity of the model.	Increasing the number of hidden units increases both the time and memory cost of essentially every op- eration on the model.
Learning rate	tuned op- timally	An improper learning rate, whether too high or too low, results in a model with low effective capacity due to optimization failure	
Convolution ker- nel width	increased	Increasing the kernel width increases the number of pa- rameters in the model	A wider kernel results in a narrower output dimen- sion, reducing model ca- pacity unless you use im- plicit zero padding to re- duce this effect. Wider kernels require more mem- ory for parameter storage and increase runtime, but a narrower output reduces memory cost.
Implicit zero padding	increased	Adding implicit zeros be- fore convolution keeps the representation size large	Increased time and mem- ory cost of most opera- tions.
Weight decay co- efficient	decreased	Decreasing the weight de- cay coefficient frees the model parameters to be- come larger	
Dropout rate	decreased	Dropping units less often gives the units more oppor- tunities to "conspire" with each other to fit the train- ing set	

http://timdettmers.c om/2015/03/09/dee p-learninghardware-guide/

Grid search

- Experience
- Discrete values
- Logarithmic scale
 - Learning rate
 - Hidden units
 - Regularization
- Scale top-down
- Slow convergence
- Multiple iterations
- Parallelization

Random search

- Non-discrete
- Marginal distribution for each parameter
- Eg. log_learning_rate ~u(-1, -5)
- Fast covergence
- Time/cost efficient
- Ease of manual intervention to refine

Model-Based optimization

- Optimal hyperparameters
- Trade off between exploration and exploitation
- Open research field

Bayesian optimization

- Prior over functions
 - Expressing assumptions of optimization function
- Acquisition function
 - Uses the model posterior to determine the next point of evaluation
- Cannot confidently recommend Bayesian optimization
- Not necessarily better than manual search

Debugging

97% accuracy!!!
Time to check before you open a bottle of champagne!

Debugging

- Check the outputs
 - Not just the performance measures
 - Images, audio, etc.
- Fit tiny datasets
 - Especially if you are building network from scratch
 - Make manual comparison of derivatives
- Check the reliability of software/packages

Summary

- Manual:
 - Learning rate, regularization parameter
- Automatic optimization algorithms
- Random search is better than grid search
- Do not get over excited by DL!!!

Thank you!

References

- [1] <u>Neural Networks and Deep</u> <u>Learning</u> (Michael Nielsen)
- [2] <u>Deep Learning</u> (Ian Goodfellow, Yoshua Bengio and Aaron Courville)