

University of Pennsylvania **ScholarlyCommons**

Senior Design Reports (CBE)

Department of Chemical & Biomolecular Engineering

4-2012

Process Design for the Production of Ethylene from Ethanol

Gregory Cameron University of Pennsylvania

Linda Le University of Pennsylvania

Julie Levine University of Pennsylvania

Nathan Nagulapalli University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cbe_sdr

Part of the Biochemical and Biomolecular Engineering Commons

Cameron, Gregory; Le, Linda; Levine, Julie; and Nagulapalli, Nathan, "Process Design for the Production of Ethylene from Ethanol" (2012). Senior Design Reports (CBE). 39. http://repository.upenn.edu/cbe_sdr/39

This paper is posted at Scholarly Commons. http://repository.upenn.edu/cbe_sdr/39 For more information, please contact libraryrepository@pobox.upenn.edu.

Process Design for the Production of Ethylene from Ethanol

Abstract

This project considers using ethanol dehydration as a means to mass-produce ethylene. 2.3MM tonnes of a 95% ethanol / 5% water feed will be converted into 1MM tonnes of 99.96% pure ethylene per year using a series of adiabatic, fixed-bed catalytic reactors operating at 750°F and 600psi. The catalyst is gamma-alumina in the form of 1cm diameter spherical pellets. After the dehydration process, the product will be purified using two flash separation units, an adsorption unit with zeolite 13X sorbent, and finally a cryogenic distillation unit. The plant will be located in São Paulo, Brazil. Because ethanol production in Brazil is seasonal, the plant will operate only 280 days per year at a very high capacity. This includes 30 days worth of on-site feed storage. After conducting an analysis of the sensitivity of the plant's Net Present Value and Internal Rate of Return to ethylene and ethanol prices, it was determined that while profitability is not attainable in the current market (which prices ethanol at \$0.34/lb and ethylene at \$0.60/lb), profitability is attainable should ethylene prices rise to \$0.64/lb and ethanol prices fall to \$0.305/lb.

Disciplines

Biochemical and Biomolecular Engineering

Process Design for the Production of Ethylene from Ethanol

Design Project By:
Gregory Cameron
Linda Le
Julie Levine
Nathan Nagulapalli

Presented To:
Professor Leonard Fabiano
Dr. Raymond Gorte

April 10, 2012

Department of Chemical and Biomolecular Engineering

University of Pennsylvania

School of Engineering and Applied Science

April 10, 2012
Professor Leonard Fabiano
Dr. Raymond Gorte
University of Pennsylvania
School of Engineering and Applied Science
Department of Chemical and Biomolecular Engineering

Dear Professor Fabiano and Dr. Gorte,

We would like to present our solution to the *Ethylene from Ethanol* design project suggested by Mr. Bruce Vrana. We have designed a plant, to be located in São Paulo, Brazil, which will produce one million tonnes of polymer-grade ethylene (99.96% pure) per year from a 95% ethanol feed. The ethanol will be dehydrated using fixed-bed, adiabatic reactors filled with gamma-alumina catalyst. The products of the dehydration will then be separated using flash distillation, adsorption over a zeolite packing, and cryogenic distillation. This method of ethylene production presents an alternative to the popular hydrocarbon cracking technique that is presently widely used.

This report contains a detailed description of the plant process equipment and operating conditions. Our plant is expected to be complete in 2015 and has an anticipated life of 20 years. It will require an annual ethanol feed of 2,300,000 tonnes of 95% purity ethanol. Because we will be operating in Brazil (where ethanol is only produced nine months out of the year), we expect to operate 280 days per year (including 30 days of operating from on site storage). This design is expected to meet the required one million tonnes of 99.96% purity ethylene per year.

Additionally, this report discusses our decision to locate the plant in São Paulo and the technical and economic implications of operating in Brazil. We will present a comparison of the details of operating in the United States and Brazil which led us to make this choice. Additionally, we will discuss the economics of building and running the plant and its potential profitability. As it stands, current ethylene and ethanol prices do not allow this plant to be profitable. However, prices for which this plant can be successful are not far off.

Sincerely,			
Gregory Cameron	Linda Le	Julie Levine	Nathan Nagulapalli

Table of Contents

	Section	Page
I.	Abstract	7
II.	Introduction	9
III.	Customer Requirements	13
IV.	Process Flow Diagram and Material Balances	17
V.	Process Description	29
VI.	Energy Balance and Utility Requirements	37
VII.	Economic Discussion and Market Analysis	41
VIII.	Location	55
IX.	Safety and Other Considerations	59
X.	Equipment List and Unit Descriptions	63
XI.	Specification Sheets	75
XII.	Conclusions and Recommendations	107
XIII.	Acknowledgements	109
XIV.	Bibliography	111
XV.	Appendix	115

Section I

Abstract

This project considers using ethanol dehydration as a means to mass-produce ethylene. 2.3MM tonnes of a 95% ethanol / 5% water feed will be converted into 1MM tonnes of 99.96% pure ethylene per year using a series of adiabatic, fixed-bed catalytic reactors operating at 750°F and 600psi. The catalyst is gamma-alumina in the form of 1cm diameter spherical pellets. After the dehydration process, the product will be purified using two flash separation units, an adsorption unit with zeolite 13X sorbent, and finally a cryogenic distillation unit. The plant will be located in São Paulo, Brazil. Because ethanol production in Brazil is seasonal, the plant will operate only 280 days per year at a very high capacity. This includes 30 days worth of on-site feed storage. After conducting an analysis of the sensitivity of the plant's Net Present Value and Internal Rate of Return to ethylene and ethanol prices, it was determined that while profitability is not attainable in the current market (which prices ethanol at \$0.34/lb and ethylene at \$0.60/lb), profitability is attainable should ethylene prices rise to \$0.64/lb and ethanol prices fall to \$0.305/lb.

Section II

Introduction

Background

The purpose of this project is to design a plant that efficiently converts liquid ethanol into high purity ethylene gas using an alumina catalyst. Ethylene is currently the most consumed intermediate product in the world. In 2009 it was estimated that the world demand for ethylene was over 140 million tons per year, with an approximate yearly increase of 3.5%. One of the most important uses of ethylene is the production of polyvinyl chloride (PVC). PVC currently serves over 70% of the construction market. This includes plastics, dominating pipe and fittings, widows, siding, decking and fencing. In addition, PVC serves 60% of the wire and cable plastics market and 25% of the coatings market.

Ethylene was first obtained from ethanol in the 18th century, when ethanol was passed over a heated catalyst. The plastics industry gave rise to several ethanol dehydration units which operated from the 1930s up until the 1960s. The advent of naptha (liquefied petroleum gas) cracking rendered these dehydration units defunct. Naptha cracking involves a liquid feed of saturated hydrocarbons diluted with steam and heated to extreme temperatures in the absence of oxygen. The functionality of this process reversed industrial trends, turning ethylene into a raw material for ethanol, as opposed to a derivative of it.

However, with increasing global demand for hydrocarbons and increasingly stricter environmental regulations, this process for ethylene production has proven to become very costly. Therefore, a cheaper process of creating ethylene is highly sought in today's economy, and the original production method of ethanol dehydration is being reconsidered.

Process Goals

This project focuses on using the dehydration of ethanol as an alternative to cracking for producing ethylene. This report details a plant that produces 1MM tonnes of 99.96% pure ethylene per year from approximately 2.19MM tonnes of 95% ethanol, along with a thorough economic analysis. US Patent 4,396,789 has been used as the basis for the plant design, with several modifications and optimized design decisions put in place.

Reaction

The dehydration reaction of ethanol to yield ethylene is shown below.

$$C_2H_5OH \leftrightarrow H_2O + C_2H_4$$

This reaction is zero-order and endothermic, having a standard heat of reaction (ΔH_{RXN}) of approximately 401BTU/lb. In addition, the reaction does not progress to completion under standard temperature and pressure (298K and 1atm) and exhibits an equilibrium that favors ethanol formation.

A high temperature reactor operating at 750° F is needed in order to shift the equilibrium toward product formation and efficiently produce ethylene with a high conversion. Additionally, the reaction over γ -Alumina yields a number of byproducts that must be removed through the separations train. The side reactions that produce these byproducts are listed in approximate order of decreasing prevalence.

$$2C_2H_5OH \rightarrow H_2O + (C_2H_5)_2O$$

$$C_2H_5OH \rightarrow H_2 + CH_3COH$$

$$C_2H_5OH + 2H_2 \rightarrow H_2O + 2CH_4$$

$$C_2H_5OH + H_2O \rightarrow 2H_2 + CH_3COOH$$

$$C_2H_5OH + H_2 \rightarrow H_2O + C_2H_6$$

Due to the high purity of ethylene product required (99.96 %), nearly all of the byproducts must be removed from the final product stream. These two factors form the basis of this plant design: a high temperature reactor and an intricately designed separations train with product purity as the main goal.

Plant Location

In the United States, ethanol is produced from corn, which is grown year-round. In Brazil, ethanol is produced from sugar cane, which is only available nine months per year. However, the cheaper Brazilian ethanol prices and greater costal access for shipping purposes allow for a more cost-effective process. Therefore, a plant situated in and around the Sao Paulo area is the most fiscally sensible plan. For a more detailed discussion regarding the choice to locate in Brazil, please refer to Section 8)

Safety

Both ethanol and ethylene are potentially dangerous materials if handled incorrectly. Section 9 contains a detailed discussion of safety considerations. Additionally, MSDS reports for all materials handled in this process are supplied in the appendix.

Section III

Customer Requirements

Figure 3.1

Innovation Map

Voice of the Customer

The main customers for this plant are plastic companies that require ethylene for polymerization into products such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polystyrene, ethylene glycol, or polyvinyl chloride (PVC). Ethylene demand is generally demand and classified as fitness-to-standard, based upon the existing characteristics of ethylene produced by cracking of fossil fuels. Figure 3.1 shows an innovation map, which illustrates the relationship between customer values and the two main ethylene production processes (ethanol dehydration and hydrocarbon cracking). Most customers require their ethylene to be polymergrade, or 99.96% pure. In general, an environmentally friendly process with low carbon emissions and waste is desired. It has been projected that by 2030, the demand for ethylene in the United States alone will be about 5MM tonnes /year. Most industrializing countries, such as Brazil, have a growing market for plastics, and resultantly, an increasing demand for ethylene.

Section IV

Process Flow Diagram and

Material Balances

Figure 4.1: Reactor Section 100

Table 4.1

	Stream Table for Reactor Section 100									
Stream ID	FEED	S102	S103	S104	S105	S106	S107	RECYCLE		
Temperature (°F)	77.0	78.8	572.0	752.0	590.0	752.0	590.0	96.9		
Pressure (psi)	14.7	602.5	595.4	618.0	584.2	580.2	582.7	2.0		
Vapor Fraction	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00		
Volume Flow (ft ³ /h)	11,485	11,502	209,159	256,490	394,244	471,246	445,761	208		
Enthalpy (BTU/h)	-1.621E+09	-1.620E+09	-1.259E+09	-1.196E+09	-1.080E+09	-1.025E+09	-1.029E+09	-3.846E+07		
Mass Flow (lb/hr)										
Ethanol	5.499E+05	5.499E+05	5.499E+05	5.499E+05	1.615E+05	1.615E+05	4.382E+04	9.998E+03		
Water	2.894E+04	2.894E+04	2.894E+04	2.894E+04	1.800E+05	1.800E+05	2.257E+05	3.155E+03		
Ethylene	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.344E+05	2.344E+05	3.052E+05	8.562E+02		
Diethyl-Ether	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.212E+03	2.212E+03	3.187E+03	4.395E+02		
Methane	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.830E+01	3.830E+01	7.205E+01	8.831E-02		
Acetaldehyde	0.000E+00	0.000E+00	0.000E+00	0.000E+00	4.207E+02	4.207E+02	5.288E+02	1.169E+03		
Ethane	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.589E+01	3.589E+01	4.644E+01	5.715E+01		
Acetic Acid	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.792E+02	1.792E+02	2.108E+02	6.111E-02		
Hydrogen	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.406E+01	2.406E+01	2.618E+01	2.309E-02		
Total Mass Flow (lb/h)	5.788E+05	5.788E+05	5.788E+05	5.788E+05	5.788E+05	5.788E+05	5.788E+05	1.568E+04		

Table 4.2

Section 100 Cont.							
Stream ID	S108	S109	S110	SEP			
Temperature (°F)	591.1	752.0	590.0	179.3			
Pressure (psi)	582.7	577.3	581.2	577.3			
Vapor Fraction	1.00	1.00	1.00	0.47			
Volume Flow (ft ³ /h)	454,243	541,479	473,540	127,545			
Enthalpy (BTU/h)	-1.067E+09	-1.011E+09	-1.049E+09	-1.409E+09			
Mass Flow (lb/hr)							
Ethanol	5.383E+04	5.383E+04	1.027E+04	1.027E+04			
Water	2.289E+05	2.289E+05	2.458E+05	2.458E+05			
Ethylene	3.061E+05	3.061E+05	3.323E+05	3.323E+05			
Diethyl-Ether	3.627E+03	3.627E+03	3.952E+03	3.952E+03			
Methane	7.214E+01	7.214E+01	9.276E+01	9.276E+01			
Acetaldehyde	1.701E+03	1.701E+03	1.747E+03	1.747E+03			
Ethane	1.037E+02	1.037E+02	1.107E+02	1.107E+02			
Acetic Acid	2.108E+02	2.108E+02	2.214E+02	2.214E+02			
Hydrogen	2.621E+01	2.621E+01	2.597E+01	2.597E+01			
Total Mass Flow (lb/h)	5.945E+05	5.945E+05	5.945E+05	5.945E+05			

Table 4.3

Utilities Table for Reactor Section 100							
Stream ID	FUEL-1	FUEL-2	FUEL-3				
Type	Natural Gas	Natural Gas	Natural Gas				
Temperature (°F)	70	70	70				
Pressure (psi)	14.7	14.7	14.7				
Volume Flow (SCF/h)	60,106	52,908	53,734				
Duty (BTU/h)	6.311E+07	5.555E+07	5.642E+07				

Figure 4.2: Flash Separation 200

Table 4.4

	Stream Table for Flash Section 200								
Stream ID	SEP	S202	S203	S204	S205	S206	S207	S208	
Temperature (°F)	179.3	122	122	122	122	57	39	39	
Pressure (psi)	577.3	574.3	573.1	573.1	573.1	569.3	455.6	455.6	
Vapor Fraction	0.47	0.46		0.00	1.00	1.00	1.00	0.00	
Enthalpy (BTU/h)	1.275E+05	-1.436E+09	-1.686E+09	-1.686E+09	2.498E+08	2.371E+08	-7.662E+06	-7.662E+06	
Volume Flow (ft ³ /h)	-1.409E+09	107,996	108,259	4,306	103,952	78,294	141,740	24	
Mass Flow (lb/h)									
Ethanol	1.027E+04	1.024E+04	1.024E+04	9.654E+03	5.907E+02	5.907E+02	5.907E+02	3.452E+02	
Water	2.458E+05	2.453E+05	2.453E+05	2.443E+05	1.044E+03	1.044E+03	1.044E+03	9.563E+02	
Ethylene	3.323E+05	3.316E+05	3.316E+05	8.357E+02	3.308E+05	3.308E+05	3.308E+05	2.046E+01	
Diethyl-Ether	3.952E+03	3.943E+03	3.943E+03	4.090E+02	3.534E+03	3.534E+03	3.534E+03	3.050E+01	
Methane	9.276E+01	9.256E+01	9.256E+01	8.640E-02	9.248E+01	3.534E+03	9.248E+01	1.911E-03	
Acetaldehyde	1.747E+03	1.743E+03	1.743E+03	1.104E+03	6.391E+02	3.534E+03	6.391E+02	6.516E+01	
Ethane	1.107E+02	1.105E+02	1.105E+02	5.673E+01	5.377E+01	3.534E+03	5.377E+01	4.149E-01	
Acetic Acid	2.214E+02	2.209E+02	2.209E+02	2.200E+02	9.218E-01	3.534E+03	9.218E-01	8.441E-01	
Hydrogen	2.597E+01	2.592E+01	2.592E+01	2.285E-02	2.589E+01	3.534E+03	2.589E+01	2.367E-04	
Total Mass Flow (lb/h)	5.945E+05	5.933E+05	5.933E+05	2.565E+05	3.368E+05	3.368E+05	3.368E+05	1.419E+03	

Table 4.5

Section 200 cont.								
Stream ID	CRYO-OUT	PRODUCT	ADSORB	DISTILL				
Temperature (°F)	-35	52	39	122				
Pressure (psi)	275.6	275.6	455.6	455.6				
Vapor Fraction	1.00	1.00	1.00	0.00				
Enthalpy (BTU/h)	2.452E+08	2.578E+08	2.448E+08	-1.694E+09				
Volume Flow (ft ³ /h)	141,716	202,904	100,528	4,391				
Mass Flow (lb/h)								
Ethanol	7.443E-11	7.443E-11	7.320E-04	3.876E-02				
Water	8.816E-19	8.816E-19	2.606E-04	9.506E-01				
Ethylene	9.996E-01	9.996E-01	9.863E-01	3.319E-03				
Diethyl-Ether	1.219E-07	1.219E-07	1.045E-02	1.704E-03				
Methane	2.804E-04	2.804E-04	2.758E-04	3.424E-07				
Acetaldehyde	4.917E-08	4.917E-08	1.711E-03	4.533E-03				
Ethane	8.322E-05	8.322E-05	1.591E-04	2.215E-04				
Acetic Acid	7.519E-18	7.519E-18	2.315E-07	8.561E-04				
Hydrogen	7.852E-05	7.852E-05	7.721E-05	8.951E-08				
Total Mass Flow (lb/h)	3.298E+05	3.298E+05	3.353E+05	2.580E+05				

Table 4.6

Utilities Table for Flash Section 200						
Stream ID	CW201	CW202				
Type	Cooling Water	Cooling Water				
Temperature (°F)	100	120				
Pressure (psi)	14.7	14.7				
Mass Flow (lb/h)	903,320	903,320				
Duty (BTU/h)	-1.436E+09					

Figure 4.3: Distillation 300

Table 4.7

	Stream Table for Distillation Section 300									
Stream ID	DISTILL	S302	S303	S304	S305	S306	S307	S308		
Temperature (°F)	121.7	122.1	221.7	206.4	206.4	206.4	206.4	206.4		
Pressure (psi)	455.6	30.9	29.5	29.4	29.4	29.4	28.0	29.4		
Vapor Fraction	0.00	0.00	1.00	0.54	1.00	0.00	0.00	0.00		
Volume Flow (ft ³ /h)	4,391	10,794	1	-	109,081	1	-	-		
Enthalpy (BTU/h)	-1.694E+09	-1.694E+09	-9.379E+08	-1.029E+08	-4.139E+07	-6.153E+07	-6.153E+07	-6.153E+07		
Mass Flow (lb/h)										
Ethanol	1.002E+04	1.002E+04	1.633E+04	1.633E+04	1.002E+04	6.307E+03	6.307E+03	6.307E+03		
Water	2.457E+05	2.457E+05	9.922E+03	9.922E+03	3.161E+03	6.760E+03	6.760E+03	6.760E+03		
Ethylene	8.580E+02	8.580E+02	8.588E+02	8.588E+02	8.580E+02	8.367E-01	8.367E-01	8.367E-01		
Diethyl-Ether	4.404E+02	4.404E+02	4.475E+02	4.475E+02	4.404E+02	7.088E+00	7.088E+00	7.088E+00		
Methane	8.850E-02	8.850E-02	8.852E-02	8.853E-02	8.850E-02	2.541E-05	2.541E-05	2.541E-05		
Acetaldehyde	1.172E+03	1.172E+03	1.444E+03	1.444E+03	1.172E+03	2.718E+02	2.718E+02	2.718E+02		
Ethane	5.727E+01	5.727E+01	6.201E+01	6.201E+01	5.727E+01	4.743E+00	4.743E+00	4.743E+00		
Acetic Acid	2.213E+02	2.213E+02	4.650E-01	4.650E-01	6.124E-02	4.037E-01	4.037E-01	4.037E-01		
Hydrogen	2.314E-02	2.314E-02	2.314E-02	2.314E-02	2.314E-02	4.290E-06	4.290E-06	4.290E-06		
Total Mass Flow (lb/h)	2.585E+05	2.585E+05	2.906E+04	2.906E+04	1.571E+04	1.335E+04	1.335E+04	1.335E+04		

Table 4.8

	Section 300 cont.								
Stream ID	S309	S310	S311	TREAT	RECYCLE				
Temperature (°F)	252.4	252.6	252.6	252.6	634.4				
Pressure (psi)	31.1	31.2	31.1554114	45.9	599.6				
Vapor Fraction	0.00	1.00	0.00	0.00	1.00				
Volume Flow (ft ³ /h)	-	-	4350.76317	4,351	8,028				
Enthalpy (BTU/h)	-1.958E+09	-2.970E+08	-1.612E+09	-1.612E+09	-4.139E+07				
Mass Flow (lb/h)									
Ethanol	5.459E+00	3.996E+00	1.486E+00	1.486E+00	1.002E+04				
Water	2.947E+05	5.244E+04	2.426E+05	2.426E+05	3.161E+03				
Ethylene	1.953E-42	1.964E-42	6.070E-46	6.070E-46	8.580E+02				
Diethyl-Ether	8.149E-25	8.148E-25	4.791E-27	4.791E-27	4.404E+02				
Methane	7.363E-52	7.404E-52	9.732E-56	9.732E-56	8.850E-02				
Acetaldehyde	8.445E-05	7.106E-05	1.380E-05	1.380E-05	1.172E+03				
Ethane	4.494E-06	3.744E-06	7.715E-07	7.715E-07	5.727E+01				
Acetic Acid	2.473E+02	2.619E+01	2.212E+02	2.212E+02	6.124E-02				
Hydrogen	3.883E-52	3.905E-52	5.683E-56	5.683E-56	2.314E-02				
Total Mass Flow (lb/h)	2.950E+05	5.247E+04	2.428E+05	2.428E+05	1.571E+04				

Table 4.9

Utilities Table for Distillation Section 300								
Stream ID	REBOIL-OUT	REBOIL-OUT FROM-COOL TO-REBOIL STEAM301 STEA						
Type	Cooling Water	Cooling Water	Cooling Water	Steam	Steam			
Temperature (°F)	100	100	120	298	298			
Pressure (psi)	14.7	14.7	14.7	50	50			
Mass Flow (lb/h)	49,342	209,162	258504	54267	54267			
Duty (BTU/h)	9.063	E+06		49469600				

Figure 4.4: Adsorption Sequence 400

Table 4.10

Stream Table for Adsorption Section 400							
Stream ID	ADSORB	CRYO	NITROGEN	S408	TO HEAT		
Temperature (°F)	39.0	39.6	80.0	350.0	352.0		
Pressure (psi)	455.6	441.0	15	41	26.3		
Vapor Fraction	1.00	1.00	1	1	1.00		
Enthalpy (BTU/hr)	2.448E+08	2.459E+08	2.632E+03	2.603E+05	2.608E+05		
Volume Flow (ft ³ /h)	100,525	100,854	67,506.0000	36,171.0000	38,210		
Mass Flow (lb/hr)							
Ethanol	3.315E+05	3.315E+05	0.000E+00	0.000E+00	0.000E+00		
Water	2.460E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
Ethylene	6.770E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
Diethyl-Ether	3.511E+03	3.511E+03	0.000E+00	0.000E+00	0.000E+00		
Methane	4.204E+01	4.204E+01	0.000E+00	0.000E+00	0.000E+00		
Acetaldehyde	2.609E+02	2.609E+02	0.000E+00	0.000E+00	0.000E+00		
Ethane	1.180E+01	1.180E+01	0.000E+00	0.000E+00	0.000E+00		
Acetic Acid	3.500E-02	3.500E-02	0.000E+00	0.000E+00	0.000E+00		
Hydrogen	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
Nitrogen	0.000E+00	0.000E+00	4.070E+03	4.070E+03	4.070E+03		
Total Mass Flow (lb/h)	3.353E+05	3.350E+05	4.070E+03	4.070E+03	4.070E+03		

^{*}Note: The 400 section is designed such that at a given time the only active streams are ADSORB and CRYO, which are run through one column. The other streams are used for hot Nitrogen purge gas, which cleans the sorbent.

Table 4.11

Stream Table for Cryogenic Distillation Section 500									
Stream ID	CRYO-IN	S502	S503	S504	S505	S506	S507	S508	S509
Temperature (°F)	39.61	6.80	-35.11	-67.15	-67.54	-67.54	-67.54	-67.54	-67.54
Pressure (psi)	455.6	452.5	279.2	279.3	279.2	279.2	279.2	238.2	279.2
Vapor Fraction	1.00	1.00	1.00	1.00	0.57	0.00	1.00	0.00	0.00
Volume Flow (ft ³ /h)	100,864	80,797	139,354	-	-	-	102,938	-	-
Enthalpy (BTU/h)	2.460E+08	2.394E+08	2.394E+08	4.177E+08	3.613E+08	1.228E+08	2.386E+08	2.386E+08	2.386E+08
Mass Flow (lb/h)									
Ethanol	8.716E-07	8.716E-07	8.716E-07	2.460E-05	2.460E-05	3.090E-26	2.460E-05	3.090E-26	3.090E-26
Water	3.103E-07	3.103E-07	3.103E-07	7.312E-10	2.009E-06	2.009E-06	2.913E-13	2.009E-06	2.009E-06
Ethylene	1.174E+04	1.174E+04	1.174E+04	5.781E+05	5.739E+05	2.436E+05	3.303E+05	2.436E+05	2.436E+05
Diethyl-Ether	1.244E+02	1.244E+02	1.244E+02	1.600E+01	3.544E+03	3.544E+03	4.028E-02	3.544E+03	3.544E+03
Methane	3.284E+00	3.284E+00	3.284E+00	1.038E+02	9.970E+01	7.035E+00	9.267E+01	7.035E+00	7.035E+00
Acetaldehyde	2.038E+01	2.038E+01	2.038E+01	4.261E+00	6.204E+02	6.204E+02	1.625E-02	6.204E+02	6.204E+02
Ethane	1.894E+00	1.894E+00	1.894E+00	8.621E+01	1.311E+02	1.036E+02	2.750E+01	1.036E+02	1.036E+02
Acetic Acid	2.757E-03	2.757E-03	2.757E-03	1.532E-07	5.665E-03	5.665E-03	2.485E-12	5.665E-03	5.665E-03
Hydrogen	9.194E-01	9.194E-01	9.194E-01	2.616E+01	2.607E+01	1.205E-01	2.595E+01	1.205E-01	1.205E-01
Total Mass Flow (lb/h)	1.190E+04	1.190E+04	1.190E+04	5.783E+05	5.783E+05	2.479E+05	3.305E+05	2.479E+05	2.479E+05

Table 4.12

Section 500 cont.						
Stream ID	S510	S511	PURGE-2	CRYO-OUT		
Temperature (°F)	-66.59	-21.20	-21.15	-35.44		
Pressure (psi)	280.0	272.0	279.8	275.6		
Vapor Fraction	0.00	1.00	0.00	1.00		
Volume Flow (ft ³ /h)	-	-	122	141,716		
Enthalpy (BTU/h)	8.236E+07	1.379E+08	-6.496E+06	2.386E+08		
Mass Flow (lb/h)						
Ethanol	5.156E-67	7.499E-69	5.081E-67	2.460E-05		
Water	8.935E-06	1.792E-07	8.756E-06	2.914E-13		
Ethylene	1.918E+05	1.907E+05	1.124E+03	3.303E+05		
Diethyl-Ether	5.209E+03	1.697E+03	3.511E+03	4.028E-02		
Methane	2.378E-02	2.374E-02	4.273E-05	9.267E+01		
Acetaldehyde	1.133E+03	5.583E+02	5.751E+02	1.625E-02		
Ethane	1.131E+03	1.105E+03	2.596E+01	2.750E+01		
Acetic Acid	7.816E-02	3.482E-04	7.781E-02	2.485E-12		
Hydrogen	1.292E-07	1.292E-07	2.089E-11	2.595E+01		
Total Mass Flow (lb/h)	1.993E+05	1.940E+05	5.237E+03	3.305E+05		

Table 4.13

Utilities Table for Distillation Section 500							
Stream ID	TO-REBOIL	TO-COOL	REBOIL-OUT	R501	R502		
Type	Water	Water	Water	Propylene	Propylene		
Temperature (°F)	100	100	120	-78	-78		
Pressure (psi)	14.7	14.7	14.7	-	-		
Mass Flow (lb/h)	258,504	49,342	49342	420000	420000		
Duty (BTU/h)	N/A	4.904E+07		-5.637E+07			

Section V

Process Description

Overview

The above illustration (Figure 6.1) provides a brief introduction to the specifics of the process. Each item mentioned will be described in more detail in the sections immediately following. In addition, the exact specifications for each process unit are provided in Section X. The process begins with a 1MM gallon feed storage tank. A tank of this size can hold a one month supply of ethanol. The feed is then pumped to a high pressure, vaporized, and passed through a series of three adiabatic reactors. Just after leaving the second reactor, it is combined with a recycle stream. The reaction products are sent through a separation train designed to purify the ethylene product to a polymer-grade level of 99.96%. The ethylene product stream is sent directly into the customer's barge or, if necessary, into one of the two on-site spherical storage tanks available. A plant operating at this capacity is capable of filling a 3000 ton barge in 18 hours. The separation train also produces a waste stream of mostly water, which is sent directly to an off-site waste treatment facility.

Feed Storage

A 95% solution of ethanol (5% water) feed is stored at atmospheric pressure and temperature in a 1MM gallon, floating-roof storage tank. This volume is large enough to hold a one month supply of ethanol and will be replenished by the ethanol plants located conveniently in the area. The large volume of storage allows the plant to continue operation for one month into the rainy season when Brazilian ethanol plants cease production and the price of ethanol increases. In addition, it provides flexibility in scheduling feed replenishment and helps ensure consistent production. In the future, it might be of value to install a direct piping route from one of those plants; however, for now it is assumed that all feed ethanol arrives via railcars and barges and is pumped directly into the storage tank.

Reactor Section

The reactor section of this process is shown in Figure 4.1 and details regarding the conditions and contents of the streams in this section are included in Tables 4.1, 4.2, and 4.3. Two, three-staged pumps in parallel (P101 A/B and P102 A/B) are used to increase the pressure of the feed stream to 603 psi. This very high pressure is used to obviate subsequent compression that would be needed in the separation train. At the high flow rates at which this plant operates, the economic difference between pumping here and compressing later is on the order of \$12MM/year.

The stream is then passed through a shell and tube heat exchanger (HX101) which is used to preheat the feed to 572°F. HX101 uses the heated reactor effluent stream (S110) to reduce the energy required to raise the feed to temperatures. A furnace (F101) is necessary to heat the feed stream the rest of the way to the desired reactor inlet temperature of 752°F. Furnace F101 will require about 60,000SCF/h of natural gas to supply enough energy and impart this temperature increase.

A series of three adiabatic, fixed-bed reactors follows (R101, R102, and R103) in which the overall reaction of ethanol to water, ethylene, diethyl-ether, methane and the other byproducts takes place. The reactors are sized progressively to accommodate the increasing volume of fluid and ensure adequate overall conversion of ethanol. R101 is 224 ft³, R102 is 256 ft³, and R103 is

310 ft³. The large increase in volume between R102 and R103 is due to the addition of the ethanol recycle stream (RECYCLE). The high pressure and temperature conditions at which these reactors operate result in an overall ethanol conversion of 98% and an ethylene yield of 98%.

The three reactors are filled to capacity with γ -alumina catalyst in the form of 1cm diameter spherical pellets. The total weight of catalyst required is 126,260lb. Every 90 days it is necessary to discard and replace all of the catalyst. Regeneration is not feasible because the loss of catalytic activity is due directly to irreversible damage caused by constant exposure to the high temperature and pressure conditions in the reactors. It was deemed economical to have a separate, identical reactor train running in parallel. For a 1% (\sim \$600,000) increase in the total permanent investment (Table 7.2), the cost of 3 additional reactors (Table 7.1), the plant can run consistently and not have to shut down every 90 days. This investment pays for itself in under 3 years. If it takes 2 days to replace the catalyst, the plant would lose approximately \$250,000 in net revenue without the spare reactors.

Between each reactor is a furnace (F102 and F103) that heats the stream from 590°F back to the desired 752°F. The intermittent heating steps serve to negate the temperature reduction caused by the endothermic dehydration reaction and maintain the driving force toward ethylene production. These furnaces require about 53,000SCF/hr of natural gas.

Upon leaving the reactor, the products enter HX101 which lowers their temperature to 179° F. It is desirable to remove as much heat as possible from this stream since the separation train requires low temperatures. In addition, the stream that is being heated requires additional heating after this step. Thus, this heat exchanger was designed to transfer as much heat as possible by specifying the temperature of the stream going into the reactors (S103 above) at the maximum it can possibly reach without violating a minimum approach temperature of 40°F. Having a minimum approach temperature helps to increase heat exchanger efficiency and keeps the necessary surface area for transfer from growing out of control. The reactor effluent stream then enters the separation train.

Separation Train

After the reactor effluent stream (S110) passes through HX101 and is cooled by the feed stream, it enters the separation phase of the process. The separations section is designed to bring the ethylene product to a 99.96% purity using as little equipment and as few utilities as possible. It can roughly be broken into 4 sections as shown in the flow diagrams above: a flash section that removes the high boiling components (Figure 4.2), a distillation section (Figure 4.3) that removes most of the water from the process so that the unreacted ethanol can be recycled without causing reactor volume to grow too large, a drying section (Figure 4.4) in which adsorption is used to remove any remaining water and ethanol, and a cryogenic distillation section (Figure 4.5) in which very low temperatures are used to finally achieve the needed purity of ethylene. A more detailed run down of each step follows.

Upon passing through HX101, the stream goes through a cooler, HX201, to further reduce the temperature. This cooler is designed so that it can use cooling water as its utility. It requires approximately 903,000 lb/h of cooling water (Table 4.4) to achieve the necessary heat transfer. Next, the stream is throttled to the desired pressure of 558.4psi and fed into a flash drum, FL201.

This first of two flash vessels (FL201, FL202) serves to remove the bulk of the water and unreacted ethanol and to lighten the duty of the intermediate heat exchanger (HX202). The bottom stream (S204) is sent to a distillation tower (D301) and the top stream (S205) is sent to the intermediate cooler (HX202).

The top stream (S205) is cooled to 57°F, throttled to 455psi, and fed into the second flash drum (FL202). The vapor product is then passed through an adsorption unit (AD401A) and the liquid product is fed along with the previous product into the distillation tower (D301). This vessel was designed with the purity of the top stream in mind rather than the flow rate of ethylene. It was deemed more important to remove as much water and ethanol as possible from this stream, even though some ethylene must be sent to the distillation tower (D301) to do so. If the flash specifications are modified so that 50% of the ethylene that exits through the bottom stream now exits through the top, it takes about 2646lb/h of water and ethanol with it (this is likely due to solubility). This is a 400% increase from what the design currently specified and results in a roughly \$3.5MM increase in capital cost to cover the much larger adsorption column

dimensions. In contrast, increasing the ethylene flow rate into the distillation tower does not change capital costs appreciably and has hardly any effect at all on annual utilities.

The combined liquid streams from the flash vessels are then fed into a 26 stage distillation column (D301). The main purpose of this column is to strip away most of the water so that a more concentrated ethanol stream can be returned to the reactors. The detailed specifications of the column are included in Section X.

Care was taken to ensure that almost no ethanol was purged. The partial condenser utilizes cooling water and requires approximately 260,000 lb/hr to achieve the necessary heat transfer. The reboiler uses 50psi steam and requires approximately 54,000 lb/hr. The distillate stream (S305) is fed into a compressor (C301) where it is returned to roughly 600psi and recycled into the reactors. The bottoms (TREAT) is purged and pumped to an off-site waste treatment facility.

When designing this column, additional consideration was paid to finding the best pressure at which to operate. It was determined from economic analysis that throttling the feed all the way down to 14.7 psig and then compressing the reflux back to 600psi reduces annual costs considerably. This is because the utility costs for the reboiler greatly diminish as the column pressure decreases. If the column is operated at the column feed stream's pressure of 455 psi, the temperature of the bottoms stream is 440°F. This high temperature requires 450psi steam and accounts for roughly \$6.2MM/yr in operating costs. When compared to the cost of the reboiler, the \$33,000 annual cost of compression disappears in the rounding. Throttling to 14.7psig reduces the reboiler temperature to 256°F which can easily be achieved with only 50psi steam. While the cost of compression does skyrocket all the way to \$360,000 /yr, the reboiler cost decreases to only \$1.4M/yr for a net 73% utilities cost.

The vapor stream from the second flash vessel (ADSORB) then enters stage 4 of the separation train: the drying stage. In this stage, the vapor is fed through an adsorption column (AD401A) packed with zeolite 13X particles. This step is critical in ensuring that absolutely no water or ethanol remains in the stream that will next be fed into the cryogenic distillation tower. If any of either of those two components remains, the cryogenic conditions could cause them to freeze and damage the column.

In order to have a continuous process, it is necessary to run two units in parallel, with one unit processing the stream while the other unit is undergoing regeneration of the sorbent. It was recommended that our design incorporate a daily cycle where each column is active for a day, then regenerated for a day with that cycle repeating. This recommendation proved to give reasonable column sizes and capital costs.

The dried stream (CRYO) passes through a heat exchanger (HX501) where the stream is cooled to 6.8°F by exchanging with the final product stream (S507). Then it is throttled one last time. This step reduces the temperature all the way to -35°F by dropping the pressure to 279psi, a suitable temperature to perform cryogenic distillation.

The ethylene-rich stream is then fed into the cryogenic distillation unit (D501). D501 has 8 sieve trays and operates with a condenser pressure of 279.2psi. The partial condenser (HX502) operates at -67.54°F and requires 5.637e7 BTU/hr of refrigeration to achieve the necessary reflux ratio of 0.75. For temperatures in this range, propylene was selected as an appropriate refrigerant and it was determined that 420,000 lb/hr are required to achieve this degree of refrigeration.

The reboiler (HX503) operates at -35°F and therefore only requires cooling water to heat. 49,342 lb/hr of cooling water are needed to achieve the required heat transfer of 4.904e7 BTU/hr. The cooling water used for this heat exchanger is piped directly from that used to cool the condenser in the recycling distillation section (HX301). Following the path of the cooling water (stream S312 in Figure 4.3), first it enters HX301 at 90°F. It exchanges with the top stream of D301 and exits at 120°F (stream TO-REBOIL). From there (moving to Figure 4.5), it splits into two fractions (S512 and TO-COOL). TO-COOL is sent directly to the cooling tower and recycled to the process. Stream S512 is sent to the reboiler of the cryogenic column (HX503). The split fraction was set so that the amount of cooling water that flows through HX503 allows for a temperature change from 120°F to 90°F. In this way, 49.342 lb/h of cooling water is both heated and cooled within the process and can be considered a close to free utility.

Distillation column (D501) removes ethane and the other heavy impurities to the bottom (S510) and leaves the 99.96% pure ethylene product in the top (S504). This stream is then passed through two heat exchangers in series (HX501 then HX202) to fully utilize its cooling ability. First it pre-cools the feed to D501 by exchanging with CRYO-IN. Then it exchanges with S205

to cool the feed to the second flash vessel (FL202). After exiting these two exchangers, the ethylene product stream (PRODUCT) is at a temperature if 52°F.

The 1MM tonnes of ethylene product coming from HX202 is fed directly into the customers' barges for transportation to plastic plants around the world. Anticipating a maximum barge capacity of 3000 tons, our plant will require barges to cycle every 18 hours. To maintain reliable production and hopefully be able to run continuously throughout the dry season, 2MM gallon tanks are included in the design to store approximately 3 hours worth of ethylene in case of unforeseen delays in the transportation. Any more than that results in simply too great of a capital and land strain.

Section VI

Energy Balance and Utility Requirements

The major heating requirements of the ethanol processing plant lie mainly in the three fired heaters (F101, F102, and F103) intermittently placed between the three adiabatic reactors. Together these three furnaces account for 175,000,000 BTU/hr. The various pumps and compressors necessary to move the liquid/vapor streams through the process contribute relatively little to overall energy requirements of the process. The other major heating/cooling requirements lie in the heat exchangers. HX301 and HX302 function as the condenser and reboiler of distillation column D301, respectively. HX502 functions as the condenser of the cryogenic distillation column D501. Meanwhile, HX203 is the only standalone heat exchanger that contributes a heat duty to the process, utilizing cooling water to achieve the remaining cooling of the reactor effluent.

Additionally, various other heat exchangers are present throughout the process, such as HX202, HX501, and HX503, which do not contribute a heat duty to overall process. This is a result of efficient stream matching, coupling necessary hot and cold streams within the process with each other to achieve the desired result. HX202 and HX501 each utilize the distillate stream, S507, of D501 to respectively cool the vapor product of the flash vessel FL201 and the input to D501. HX503 similarly uses the exit cooling water of HX301 to reboil the bottoms stream of D501.

Table 6.2 shows a complete list of all utilities that are necessary. Cooling water, low pressure steam (50 psig), natural gas, and propylene are needed to achieve the proper heating and cooling within the process. Also shown in Table 6.2 are the electrical power requirements of each piece of equipment.

Table 6.1

ENERGY RI	EQUIREMEN'	IS OF PROCI	ess	
		<u>Duty</u>		
<u>Equipment</u>	<u>Description</u>	(BTU/hr)	<u>Source</u>	
Section 100				
F101	Fired Heater	63,111,000	Natural Gas	
F102	Fired Heater	55,553,221	Natural Gas	
F103	Fired Heater	56,420,329	Natural Gas	
P101 AB	Pump	839,261	Electricity	
P102 AB	Pump	839,261	Electricity	
		176,763,072	•	Net Section 100
Section 200			1	
	Heat		Cooling	
HX201	Exchanger	-27,014,000	Water	
		-27014000		Net Section 200
Section 300			-	
P301	Pump	1,356	Electricity	
	Heat		Cooling	
HX301	Exchanger	-39,976,822	Water	
*****	Heat	10 150 500	Steam (50	
HX302	Exchanger	49,469,600	psig)	
P302	Pump	16,426	Electricity	
C301	Compressor		Electricity	
		12,447,185	•	Net Section 300
Section 400				
C401	Compressor	295,482	Electricity	
AD401	Adsorbtion	112 400	E14: -:4	
AD401	Column	113,400	Electricity	M . G
		408,882	•	Net Section 400
Section 500				
P501	Pump	36,566	Electricity	
HX502	Heat	56 257 200	Dropylana	
плэцг	Exchanger	-56,357,300	Propylene	M . G .: 500
		-56,320,734	•	Net Section 500
D		106 204 405	DTI/ID	1
Required		106,284,405	B I U/HK	

Table 6.2

UTILITIES REQ	UIREMENT (OF PROC	CESS
Electricity		kW	
Equipment List	<u>Description</u>	<u>Usage</u>	<u>Cost (\$)</u>
P101AB		230	129,367
P102AB		230	129,367
P301		0.4	160
P302		4.81	1,941
C301		860	452,562
C401		86.6	45,457
AD401		33.2	10,000
P501		10.7	4,321
Cooling Water		lb/hr	
Equipment List	Description	Usage	Cost (\$)
HX201	Везеприон	901,425	
HX301		253,085	·
			,
Steam (50 psig)		lb/hr	
(- · F38)		10/111	
Equipment List	Description		<u>Cost (\$)</u>
	<u>Description</u>		Cost (\$) 1,091,736
Equipment List	<u>Description</u>	<u>Usage</u>	
Equipment List HX302		Usage 54,266 SCF/hr	1,091,736
Equipment List HX302 Natural Gas		Usage 54,266 SCF/hr	1,091,736 <u>Cost (\$)</u>
Equipment List HX302 Natural Gas Equipment List		Usage 54,266 SCF/hr Usage	1,091,736 Cost (\$) 2,176,170
Equipment List HX302 Natural Gas Equipment List F101		<u>Usage</u> 54,266 SCF/hr <u>Usage</u> 60,106	1,091,736 Cost (\$) 2,176,170 1,915,565
Equipment List HX302 Natural Gas Equipment List F101 F102		<u>Usage</u> 54,266 SCF/hr <u>Usage</u> 60,106 52,908	1,091,736 Cost (\$) 2,176,170 1,915,565
Equipment List HX302 Natural Gas Equipment List F101 F102 F103		Usage 54,266 SCF/hr Usage 60,106 52,908 53,734 lb/hr	Cost (\$) 2,176,170 1,915,565 1,945,465 Cost (\$)
Equipment List HX302 Natural Gas Equipment List F101 F102 F103 Refrigeration Equipment List	Description Description	<u>Usage</u> 54,266 SCF/hr <u>Usage</u> 60,106 52,908 53,734 Ib/hr	Cost (\$) 2,176,170 1,915,565 1,945,465 Cost (\$)

Section VII

Economic Discussion and

Market Analysis

One major difficulty with this project is that the selling price of ethylene relative to ethanol is too low for the plant to be profitable, given 1.73lb ethanol are required to produce 1lb ethylene. An evaluation of current markets (discussed later) suggests that the selling price of ethylene in 2014 should be around \$0.60/lb, while the price of ethanol is expected to fall around \$0.34/lb. With these values, sales of ethylene will not cover operating and raw material costs, and the Net Present Value of the venture will become increasingly negative over time. However, a sensitivity analysis of the response of NPV and Internal Rate of Return to ethanol and ethylene prices does provide some hope; should the prices of these commodities fall around \$0.64/lb ethylene and \$0.305/lb ethanol, the plant will become profitable.

Additionally, in an attempt to cut costs, the same analyses were conducted under the condition that Research and Development (a variable cost previously equal to 4.8% of sales) was shut down completely. With this change, the potential profitability of the plant increases considerably. Realistically, it is unwise to entirely scrap all R&D; however it is interesting to consider the potential value of shrinking the department.

The following section details the various costs of the plant, and shows the aforementioned sensitivity analysis. Additionally, there is a discussion of other important economic considerations.

Summary of Costs

The following cost analysis is based on selling prices of \$0.60/lb ethylene and \$0.34/lb ethanol. It was determined that the total equipment cost for the plant will be \$40MM (Figure 7.1). The Direct Permanent Investment will be \$49MM and the Total Permanent Investment will be \$65MM. The Total Depreciable Capital will be \$58MM (Figure 7.2). The plant's total capital investment will be around \$78MM (Figure 7.5). At the current market prices for ethylene and ethanol, the Internal Rate of Return for the project will be negative (Figure 7.7), which is obviously undesirable. Later in this section, the conditions for a positive IRR and Net Present Value are discussed in more detail.

Figure 7.1

Equipment Description		Bare Module
P101 A/B	Process Machinery	\$129,000
P102 A/B	Process Machinery	\$129,000
HX101	Fabricated Equipment	\$860,000
F101	Fabricated Equipment	\$4,022,000
R101-A/B	Fabricated Equipment	\$192,000
F102	Fabricated Equipment	\$1,916,000
R102-A/B	Fabricated Equipment	\$250,000
F103	Fabricated Equipment	\$1,945,000
R1023-A/B	Fabricated Equipment	\$250,000
HX201	Fabricated Equipment	\$253,000
FL201	Fabricated Equipment	\$252,000
HX202	Fabricated Equipment	\$149,000
FL202	Fabricated Equipment	\$179,000
D301	Fabricated Equipment	\$809,000
HX301	Fabricated Equipment	\$84,000
AC301	Fabricated Equipment	\$32,000
P301 A/B	Process Machinery	\$16,000
P302 A/B	Process Machinery	\$27,000
C301	Fabricated Equipment	\$4,634,000
HX302	Fabricated Equipment	\$380,000
C401	Fabricated Equipment	\$290,000
AD401	Fabricated Equipment	\$729,000
AD402	Fabricated Equipment	\$729,000
HX501	Fabricated Equipment	\$157,000
D501	Fabricated Equipment	\$720,000
HX502	Fabricated Equipment	\$9,464,000
AC501	Fabricated Equipment	\$268,000
P501 A/B	Process Machinery	\$33,000
HX503	Fabricated Equipment	\$225,000
FEED TANK	Fabricated Equipment	\$1,820,000
PRODUCT TANK	Fabricated Equipment	\$4,257,000
PRODUCT TANK	Fabricated Equipment	\$4,257,000
P101 A/B	Fabricated Equipment	\$129,000
P102 A/B	Fabricated Equipment	\$129,000
R102-A/B	Fabricated Equipment	\$16,000
		\$27,000
		\$33,000
		\$192,000
		\$250,000
<u>Total</u>		<u>\$40,233,000</u>

44

Figure 7.2

Investment Summary		
Bare Module Costs		
Fabricated Equipment	\$ 43,956,199	
Process Machinery	\$ 334,964	
Spares	\$ -	
Storage	\$ 558,300	
Other Equipment	\$ -	
Catalysts	\$ _	
Computers, Software, Etc.	\$ -	
Total Bare Module Costs:		\$ 44,849,463
Direct Permanent Investment		
Cost of Site Preparations:	\$ 2,242,473	
Cost of Service Facilities:	\$ 2,242,473	
Allocated Costs for utility plants and related fac	-,- :-, : : -	
Direct Permanent Investment		\$ 49,334,409
Total Depreciable Capital		
Cost of Contingencies & Contractor Fees	\$ 8,880,194	
Total Depreciable Capital		\$ 58,214,603
Total Permanent Investment		
Cost of Land:	\$ 1,164,292	
Cost of Royalties:	\$ -	
Cost of Plant Start-Up:	\$ 5,821,460	
Total Permanent Investment - Unadjusted		\$ 65,200,355
Site Factor		1.00
Total Permanent Investment		\$ 65,200,355

Figure 7.3

st Summary	
Operations	
Direct Wages and Benefits	\$ 364,000
Direct Salaries and Benefits	\$ 54,600
Operating Supplies and Services	\$ 21,840
Technical Assistance to Manufacturing	\$ -
Control Laboratory	\$ -
Total Operations	\$ 440,440
<u>Maintenance</u>	
Wages and Benefits	\$ 2,619,657
Salaries and Benefits	\$ 654,914
Materials and Services	\$ 2,619,657
Maintenance Overhead	\$ 130,983
Total Maintenance	\$ 6,025,211
Operating Overhead	
General Plant Overhead:	\$ 262,215
Mechanical Department Services:	\$ 88,636
Employee Relations Department:	\$ 217,897
Business Services:	\$ 273,295
Total Operating Overhead	\$ 842,043
Property Taxes and Insurance	
Property Taxes and Insurance:	\$ 1,164,292
Other Annual Expenses	
Rental Fees (Office and Laboratory Space):	\$ -
Licensing Fees:	\$ -
Miscellaneous:	\$ -
Total Other Annual Expenses	\$ -
Total Fixed Costs	\$ 8,471,987

Figure 7.4

Variable Cost Summary			
Variable Costs at	100% Capacity:		
General Expenses	<u>.</u>		
Selling / T	Гransfer Expenses:	\$	39,872,544
Direct Re	esearch:	\$	63,796,071
Allocated	l Research:	\$	6,645,424
Administr	rative Expense:	\$	26,581,696
Managen	nent Incentive Compensation:	\$	16,613,560
Total General Exp	oenses	\$	153,509,295
Raw Materials	\$0.595680 per lb of Ethylene	\$1,	,319,515,398
Byproducts	Byproducts \$0.000000 per lb of Ethylene		
<u>Utilities</u>	\$0.006222 per lb of Ethylene		\$13,783,367
Total Variable Co	<u>sts</u>	\$1	,486,808,060

Figure 7.5

Working Capital				
		2015	2016	<u>2017</u>
	Accounts Receivable	\$ 49,157,931	\$ 24,578,966	\$ 24,578,966
	Cash Reserves	\$ 823,143	\$ 411,572	\$ 411,572
	Accounts Payable	\$ (49,313,790)	\$ (24,656,895)	\$ (24,656,895)
	Ethylene Inventory	\$ 6,554,391	\$ 3,277,195	\$ 3,277,195
	Raw Materials	\$ 3,253,600	\$ 1,626,800	\$ 1,626,800
	Total	\$ 10,475,275	\$ 5,237,637	\$ 5,237,637
	Present Value at 15%	\$ 6,887,663	\$ 2,994,636	\$ 2,604,032
Total Capital	Investment		\$ 77,686,686	

Figure 7.6

	Cash Flow Summary														
Year	Percent Capacity	Product Unit Price	Sales	Sales	Capital Costs	Working Capital	Var Costs	Fixed Costs	Depreciation	Taxible Income	Taxible Income	Taxes	Net Earnings	Cash Flow	NPV
2012	0%		-	-	-	-	-	-	-	-	-	-	-	-	-
2013	0%		-	-	(65,200,400)	-	-	-	-	-	-	-	-	(65,200,400)	(56,696,000)
2014	0%		-	-	-	-	-	-	-	-	-	-	-	-	(56,696,000)
2015	0%		-	-	-	(10,475,300)	-	-	-	-	-	-	-	(10,475,300)	(63,583,600)
2016	45%	\$0.60	598,088,164	598,088,200	-	(5,237,600)	(669,063,600)	(8,472,000)	(11,642,900)	(91,090,370)	(91,090,400)	33,703,400	(57,386,900)	(50,981,700)	(92,732,500)
2017	68%	\$0.60	897,132,246	897,132,200	-	(5,237,600)	(1,003,595,400)	(8,472,000)	(18,628,700)	(133,563,854)	(133,563,900)	49,418,600	(84,145,200)	(70,754,200)	(127,909,900)
2018	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	(11,177,200)	(161,600,117)	(161,600,100)	59,792,000	(101,808,100)	(90,630,900)	(167,092,100)
2019	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	(6,706,300)	(157,129,235)	(157,129,200)	58,137,800	(98,991,400)	(92,285,100)	(201,785,500)
2020	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	(6,706,300)	(157,129,235)	(157,129,200)	58,137,800	(98,991,400)	(92,285,100)	(231,953,700)
2021	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	(3,353,200)	(153,776,074)	(153,776,100)	56,897,100	(96,878,900)	(93,525,800)	(258,539,500)
2022	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	-	(150,422,913)	(150,422,900)	55,656,500	(94,766,400)	(94,766,400)	(281,964,300)
2023	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	-	(150,422,913)	(150,422,900)	55,656,500	(94,766,400)	(94,766,400)	(302,333,700)
2024	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	-	(150,422,913)	(150,422,900)	55,656,500	(94,766,400)	(94,766,400)	(320,046,300)
2025	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	-	(150,422,913)	(150,422,900)	55,656,500	(94,766,400)	(94,766,400)	(335,448,500)
2026	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	-	(150,422,913)	(150,422,900)	55,656,500	(94,766,400)	(94,766,400)	(348,841,700)
2027	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	-	(150,422,913)	(150,422,900)	55,656,500	(94,766,400)	(94,766,400)	(360,487,900)
2028	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	-	(150,422,913)	(150,422,900)	55,656,500	(94,766,400)	(94,766,400)	(370,615,100)
2029	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	-	(150,422,913)	(150,422,900)	55,656,500	(94,766,400)	(94,766,400)	(379,421,400)
2030	90%	\$0.60	1,196,176,327	1,196,176,300	-	-	(1,338,127,300)	(8,472,000)	-	(150,422,913)	(150,422,900)	55,656,500	(94,766,400)	(94,766,400)	(387,079,000)
2031	90%	\$0.60	1,196,176,327	1,196,176,300	-	20,950,500	(1,338,127,300)	(8,472,000)	-	(150,422,913)	(150,422,900)	55,656,500	(94,766,400)	(73,815,900)	(392,265,700)

Figure 7.7

Profitability Measures

The Internal Rate of Return (IRR) for this project is

Negative IRR

The Net Present Value (NPV) of this project in 2012 is

\$ (392,265,700)

ROI Analysis (Third Production Year)

Annual Sales	1,196,176,327
Annual Costs	(1,346,599,240)
Depreciation	(5,216,028)
Income Tax	57,586,408
Net Earnings	(98,052,533)
Total Capital Investment	86,150,905
ROI	-113.81%

Ethylene/Ethanol Price Sensitivity (With Research and Development)

The following figures (Figure 7.8, 7.9) show how the NPV and IRR vary with the prices of ethylene and ethanol. Notice that the plant will only be profitable with relatively high ethylene prices (\$0.63/lb) and low ethanol prices (\$0.32/lb).

Figure 7.8

Net Present Value for Varied Ethanol and Ethylene Prices ETHYLENE \$/LB

1							
		\$0.62	\$0.63	\$0.64	\$0.65	\$0.66	\$0.67
	\$0.360	(505,735,700)	(429,816,500)	(391,857,000)	(353,897,400)	(315,937,800)	(277,978,300)
	\$0.355	(467,878,300)	(391,959,200)	(353,999,600)	(316,040,000)	(278,080,500)	(240,120,900)
E	\$0.350	(430,020,900)	(354,101,800)	(316,142,200)	(278,182,600)	(240,223,100)	(202,263,500)
T	\$0.345	(392,163,500)	(316,244,400)	(278,284,800)	(240,325,300)	(202,365,700)	(164,406,100)
Н	\$0.340	(354,306,100)	(278,387,000)	(240,427,400)	(202,467,900)	(164,508,300)	(126,548,800)
A	\$0.335	(467,878,300)	(240,529,600)	(202,570,100)	(164,610,500)	(126,650,900)	(88,691,400)
N	\$0.330	(278,591,400)	(202,672,200)	(164,712,700)	(126,753,100)	(88,793,600)	(50,834,000)
O	\$0.325	(240,734,000)	(164,814,900)	(126,855,300)	(88,895,700)	(50,936,200)	(12,976,600)
L	\$0.320	(202,876,600)	(126,957,500)	(88,997,900)	(51,038,400)	(13,078,800)	24,880,800
\$/LB	\$0.315	(165,019,200)	(89,100,100)	(51,140,500)	(13,181,000)	24,778,600	62,738,100
	\$0.310	(127,161,900)	(51,242,700)	(13,283,200)	24,676,400	62,636,000	100,595,500
	\$0.305	(89,304,500)	(13,385,300)	24,574,200	62,533,800	100,493,300	138,452,900
	\$0.300	(51,447,100)	24,472,000	62,431,600	100,391,200	138,350,700	176,310,300

Figure 7.9

Internal Rate of Return for Varied Ethanol and Ethylene Prices

ETHYLENE \$/LB \$0.67 \$0.62 \$0.63 \$0.64 \$0.65 \$0.66 Negative IRR Negative IRR \$0.360 Negative IRR Negative IRR Negative IRR Negative IRR \$0.355 Negative IRR Е \$0.350 Negative IRR Negative IRR Negative IRR Negative IRR Negative IRR Negative IRR T \$0.345 Negative IRR Η \$0.340 Negative IRR Α \$0.335 Negative IRR 2% N \$0.330 Negative IRR Negative IRR Negative IRR Negative IRR Negative IRR O \$0.325 Negative IRR Negative IRR Negative IRR Negative IRR 12% L \$0.320 Negative IRR Negative IRR Negative IRR Negative IRR 12% 19% \$/LB \$0.315 Negative IRR Negative IRR Negative IRR 12% 19% 25% \$0.310 Negative IRR Negative IRR 12% 19% 25% 30% \$0.305 2% 12% 19% 25% 30% 34% \$0.300 12% 19% 25% 30% 34% 38%

Ethylene/Ethanol Price Sensitivity (Without Research and Development)

The following figures (Figure 7.10, 7.11) show the same analysis except with no expenses for research and development. Notice that the plant becomes profitable at lower prices of ethylene and higher prices of ethanol. Since prices are ethylene over \$0.62 are unlikely, this option for cutting costs is recommended. Realistically, it is prudent to only downsize R&D spending, rather than cutting it altogether. This analysis merely illustrates the sensitivity of profitability to R&D spending.

Figure 7.10

Net Present Value for Varied Ethanol and Ethylene Prices Without R&D

ETHYLENE \$/LB

		\$0.62	\$0.63	\$0.64	\$0.65	\$0.66	\$0.67
	\$0.360	(\$323,125,700)	(\$282,833,100)	(\$242,540,400)	(\$202,247,800)	(\$161,955,100)	(\$121,662,500)
	\$0.355	(\$285,268,300)	(\$244,975,700)	(\$204,683,000)	(\$164,390,400)	(\$124,097,800)	(\$83,805,100)
E	\$0.350	(\$247,410,900)	(\$207,118,300)	(\$166,825,700)	(\$126,533,000)	(\$86,240,400)	(\$45,947,800)
T	\$0.345	(\$209,553,500)	(\$169,260,900)	(\$128,968,300)	(\$88,675,600)	(\$48,383,000)	(\$8,090,400)
Н	\$0.340	(\$171,696,200)	(\$131,403,500)	(\$91,110,900)	(\$50,818,300)	(\$10,525,600)	\$29,767,000
Α	\$0.335	(\$133,838,800)	(\$93,546,100)	(\$53,253,500)	(\$12,960,900)	\$27,331,800	\$67,624,400
N	\$0.330	(\$95,981,400)	(\$55,688,800)	(\$15,396,100)	\$24,896,500	\$65,189,100	\$105,481,800
O	\$0.325	(\$58,124,000)	(\$17,831,400)	\$22,461,300	\$62,753,900	\$103,046,500	\$143,339,200
L	\$0.320	(\$20,266,600)	\$20,026,000	\$60,318,600	\$100,611,300	\$140,903,900	\$181,196,500
\$/LB	\$0.315	\$17,590,700	\$57,883,400	\$98,176,000	\$138,468,600	\$178,761,300	\$219,053,900
	\$0.310	\$55,448,100	\$95,740,800	\$136,033,400	\$176,326,000	\$216,618,700	\$256,911,300
	\$0.305	\$93,305,500	\$133,598,100	\$173,890,800	\$214,183,400	\$254,476,000	\$294,768,700
	\$0.300	\$131,162,900	\$171,455,500	\$211,748,200	\$252,040,800	\$292,333,400	\$332,626,100

Figure 7.11

Internal Rate of Return for Varied Ethanol and Ethylene Prices Without R&D

ETHYLENE \$/LB

				LIIIILLIA	Ψ/ ΕΙΒ		
		\$0.62	\$0.63	\$0.64	\$0.65	\$0.66	\$0.67
	\$0.360	Negative IRR					
	\$0.355	Negative IRR					
E	\$0.350	Negative IRR					
T	\$0.345	Negative IRR	Negative IRR	Negative IRR	Negative IRR	2%	13%
Н	\$0.340	Negative IRR	Negative IRR	Negative IRR	Negative IRR	13%	20%
A	\$0.335	Negative IRR	Negative IRR	Negative IRR	12%	20%	26%
N	\$0.330	Negative IRR	Negative IRR	12%	20%	26%	31%
O	\$0.325	Negative IRR	11%	19%	25%	30%	35%
L	\$0.320	10%	19%	25%	30%	35%	39%
\$/LB	\$0.315	18%	25%	30%	34%	38%	42%
	\$0.310	24%	30%	34%	38%	42%	45%
	\$0.305	29%	34%	38%	42%	45%	48%
	\$0.300	34%	38%	41%	45%	48%	51%

Historical Ethylene Prices

Figure 7.12

As it is clearly seen in figure 7.12, the price of ethylene is hardly stable. This in mind, it is not unreasonable to assume that prices may rise adequately to make this plant profitable.

Market Considerations

Ethylene is a high demand product because it is an essential raw material in the production of plastics, in particular low and high density polyethylenes and PVC. In the US alone, the yearly demand is approximately 5MM tonnes of ethylene. Traditionally, ethylene is produced by cracking of heavy hydrocarbons from fossil fuels. In fact, in the 1960's this process was so profitable that ethylene was used to produce ethanol in the reverse of the process used by this plant. However, a worldwide oil crisis in 1973 raised petroleum prices making cracking a much less economically reasonable method of ethanol production. Since plastics remain in high demand, ethylene production via ethanol is being explored again.

The major benefit of using ethanol as the raw material for ethylene production instead of fossil fuels is that ethanol is renewable; it can be produced from fermentation of feedstocks such as corn or sugar cane. If the demand for ethylene remains high while the supply of fossil fuels is diminished, the selling price of ethylene may be driven up, making this process profitable. Additionally, as environmental awareness becomes more socially prevalent, governments are encouraging companies to move away from fossil fuels because they are non-renewable and have high carbon emissions. Government support of this "greener," renewable process may further impact ethylene costs and also investment and operating costs for the plant.

Comparison to Traditional Ethylene Plants

According to Seider, Seader, Lewin, and Widago, the typical total depreciable capital associated with a traditional ethylene plant (naphthalene cracking) is \$681MM. The total depreciable capital for this plant is \$58MM (Figure 7.5) which is far less. The total permanent investment for a traditional cracking plant is \$855MM, while the total permanent investment for this plant is \$65MM (Figure 7.2), again far less.

The values were generated with the following assumptions: Land cost is typically 2% of the C_{TDC} . The cost of plant start-up is typically 10% of the C_{TDC} . However, since the process is well-known, the figure can be estimated around 9%. The total permanent investment can be estimated as 8% of the C_{TDC} , and is corrected to a site factor which is now 1.0 for Brazil.

Additional Economic Considerations

Transportation of Materials

Transportation of the ethylene product is generally the responsibility of the buyers, who may use barges docked near the plant. Ethylene can thus be piped directly from the plant onto the barges at minimal cost. Because there are many ethanol vendors near the plant location, it may be possible to pipe ethanol directly to the plant at minimal cost. If not it can be transported cheaply by rail.

With efforts by the Brazilian government to reduce transportation costs in Brazil, it is safe to assume a low price for shipping the ethylene product to a nearby port, such as Rio de Janeiro, so that buyers do not have to come to São Paulo to pick up the ethylene.

Cyclic Ethanol Availability

Since the sugar cane ethanol price increases dramatically during the winter months (because sugar cane growth is seasonal), it was decided that the plant will only operate 280 days per year. This was determined because storage tanks for three months worth of ethanol (which would cover the off-season) would require almost 21.5MM cubic feet of volume, which comes at an astronomical cost.

Environmental Awareness

One major advantage of this process over hydrocarbon cracking is that ethanol dehydration is relatively "green" because it has very low carbon emissions. This in mind, it is reasonable to expect government support, possibly in the form of subsidies.

Section VIII

Location

A major factor regarding the profitability of the project is the location of the plant. Based on the supply of ethanol and demand for ethylene, it was necessary to choose between building in either the United States or Brazil. Different sites may affect the economics of the plant due to differences in the site factors, supply of ethanol, price of ethanol, price of ethylene, ability to transport goods, and environmental regulations. The considerations and explanation of the final decision to locate in São Paulo, Brazil are discussed here.

Site Factor

Site factors help companies compare the cost of building a plant in various locations based on the availability of labor, efficiency of the workforce, local rules and customs, and union status among other considerations. Overall, Brazil has a site factor of 1.0 compared to the United States Gulf Coast, so these factors do not affect the choice of location. In the past, Brazil's site factor was 0.90 due to lower exchange rates and labor costs. More recently, it has been the largest and fastest growing economy in South America, so its construction costs have increased. Also, because the United States has been the center of industry for such a long time, it has grown more competitive, developing a more low-cost manufacturing economy with decreasing construction costs despite providing better benefits for laborers.

Ethanol Price

The price of our ethanol feed plays a large factor in the profitability of the project. It is crucial to find inexpensive ethanol that is near the plant to decrease transportation costs as much as possible. Corn ethanol, which is largely produced in the United States, is \$0.30/L whereas Brazilian sugar cane ethanol is only \$0.22/L. Additionally, since there are many sugar cane fields near São Paulo, transportation costs will competitive with those in the US, if not lower. Consequently, locating in Brazil is more economical from an ethanol standpoint.

Ethanol Supply

Differences in the supply of ethanol feed for the plant are enormous. In the United States, ethanol is largely made from corn while Brazil generally produces ethanol using sugar cane. The presence of plants to produce the needed quantity of ethanol is essential to the survival of this project. Corn ethanol is widely available in the Midwest of the United States. Meanwhile,

Brazil is a large producer of sugar cane ethanol with the exception of the cold, rainy season which eliminates the sugar cane supply for ethanol from June-September. To compensate, either a storage tank of ethanol for those months must be built, or the plant must be operated at higher capacity for the rest of the year. A storage tank would need to hold 481,000 tonnes of ethanol to support the plant's production. This would consist of many tanks with a total volume of 21.5MM ft³, which would cost roughly \$87MM. Because the economics of the project are so tight and space is a big issue, it would be most beneficial to not use a storage tank. Therefore, it is recommended to operate the plant at a higher capacity for the rest of the year to make up for the nonproduction during the 3 months. Due to the already incredibly high capacity of this plant, scaling up is not an issue at all.

Ethylene Price

The price of ethylene gives insight on the market where the product will be introduced. As discussed in the Economics Section of this report, the price of ethylene worldwide has shown dramatic fluctuation over the past decade; however, if the price stabilizes around its current value it is reasonable to estimate a selling price of \$0.65/lb in 2014 when the plant is expected to be complete. This number accounts for the decrease in availability of natural fuels, like naphthalene, for cracking into ethylene. Since the price for ethylene is the same in both the Brazilian and American markets, the major concern with the profitability of ethanol becomes the cost of shipping.

Transportation

A plant is only operable if there is a suitable means of transportation to and from it. This is necessary because in order for the plant to be built, materials must be shipped to the site. Additionally, in order for it to run, raw materials, products, and employees must be brought to and from the site. Good roads, a railway infrastructure, and access to ports and waterways are a large factor in determining the location of the plant. Locating the plant in Brazil allows for easy access to both a feed of ethanol from a nearby plant (there are several near São Paulo) and a port to ship the ethylene product. All of the ethanol plants in the United States are landlocked, so transportation would have to be by railcar. This limits the shipping quantity of both ethanol and

ethylene and also the buyer of ethylene. Access to ports allows for easier access to international markets than railcars from the central United States.

There are additional benefits to specifically locating in São Paulo. It is a large city with a good road and rail infrastructure, which means that it can easily supply a sizable workforce. Also, it is only 220 miles from the major economic center Rio de Janeiro. Sao Paulo also boasts the availability of freight transportation to Ports Santos and Sepetiba. Finally, it is promising to note that the Brazilian government is sponsoring projects for improving transportation to and from Sao Paulo.

Section IX

Safety and Other Important Considerations

Safety

Ethanol and ethylene are both very flammable, and as such careful attention must be paid to their transportation to and from and storage at the facility. Ethanol spontaneously combusts at about 790°F. Since the reactors operate near this limit (750°F), it is very important to invest in accurate and careful controllers to ensure that the temperatures in the furnaces and compressor outlet stream never reach this level. The plant is at no risk of ethylene accidently autoigniting as ethylene's ignition temperature is 914°F and it spends most of the process under cryogenic conditions. In addition, none of the byproducts are at serious risk.

While spontaneous combustion of ethylene is not a serious concern, it is still a highly volatile and flammable hydrocarbon. Even while being treated in the cryogenic column at temperatures as low as -67°F, it is still well above its flash point (-218°F). Measures should be taken to ensure that minute leaks in process equipment, particularly the separation units which handle highly concentrated ethylene, can be quickly detected and isolated. In addition, it is advisable to invest a greater amount in the piping and transport equipment to lower the risk of leaks. If an ethylene leak is left undetected, immediate surroundings will rapidly reach the lower flammability limit of ethylene in air (about 3%) and put the plant, the operators, and the surroundings at serious risk.

Ethanol is not nearly as volatile as ethylene and is thus less likely to cause an explosion. However, as it is heated to a vapor, ethanol does become quite flammable and a greater risk to the plant. Similar treatment should be given to the highly concentrated ethanol reactor feed stream to ensure quick detection of potential leaks.

Another possible concern is the spontaneous free radical polymerization of ethylene. Such reactions are often used to generate polyethylene on industrial scales. This is not a huge operational risk in this plant, as free radical polymerization requires astronomically high pressures (on the order of 1000atm) to occur. However, to prevent runaway in the unlikely event that a free radical initiator is introduced in the concentrated ethylene streams (particularly stream S510 and PURGE on Figure 7.5 which carry liquid ethylene), pipes with periodic pinches should be used. The pinches help prevent the polymerization from spreading throughout the entire plant and ruining an entire ethylene stock.

For feed storage, a floating roof tank is being used. Some pure nitrogen will be available to ensure that no air contacts the stored ethanol and jeopardizes the feed.

Kinetic Considerations

The reaction kinetic data used in this design was obtained from Fikry Ebeid's work. The data published specifically applies to high-temperature reactions, though there is no mention of the operating pressure in the paper. As such, it was assumed that the high operating pressures of this plant would not have a significant impact on the kinetics. It was also necessary to make the assumption that the rate constant followed the Arrhenius equation with no additional temperature correction factor. In order to verify that the kinetics are sufficiently independent of pressure, it would be necessary to conduct a small scale experiment in a laboratory setting.

Additional Considerations

All of the chemicals reacting involved in this plant are well understood. In addition, dehydration reactions over alumina-based catalysts are also common. Thus there were few additional assumptions that had to be made.

One assumption was the composition of the byproducts. It was difficult to obtain side-reaction data, but based on the available material it was assumed that diethyl-ether and acetaldehyde are the main byproducts formed. Additionally, it was assumed that some quantity of methane would be formed, potentially posing a problem.

Methane is notoriously difficult to remove. After simulating the cryogenic distillation column for a host of different operating and inlet conditions, it was determined that using the property selection model NRTL-RK, it is impossible to purify and ethylene/methane stream to more than 99.92% pure ethylene using distillation. There are two explanations for this behavior. Ethylene and methane may form an azeotrope at these extremely non-ideal conditions (low temperature, high pressure). This explanation seems unlikely as both are light hydrocarbons having zero dipole moments. The second possible explanation is that methane can dissolve in ethylene to that extent.

If the side reactions were adjusted such that more methane was produced, this process may become infeasible. Since this reaction is so important, the reactor should be modeled to measure the extent of methane formation before this plant is designed.

Section X

Equipment List and Unit Descriptions

Table 7.1

PUMPS		
Equipment ID	Type	
P101 A/B	Multistage Centrifugal Pump	
P102 A/B	Multistage Centrifugal Pump	
P301 A/B	Centrifugal Pump	
P302 A/B	Centrifugal Pump	
P501 A/B	Centrifugal Pump	
P101 A/B	Centrifugal Pump	
P102 A/B	Centrifugal Pump	
HEAT EXCHANGERS		
Equipment ID	Type	
HX101	Shell and Tube Heat Exchanger	
HX201	Shell and Tube Heat Exchanger	
HX202	Shell and Tube Heat Exchanger	
HX301	Shell and Tube Partial	
плэит	Condenser	
HX302	U Tube Kettle Reboiler	
HX501	Shell and Tube Heat Exchanger	
HX502	Shell and Tube Partial	
	Condenser	
HX503	U Tube Kettle Reboiler	
F101	Furnace	
F102	Furnace	
F103	Furnace	
TANKS		
Equipment ID	Type	
FEED TANK	Floating Cylinder Tank	
PRODUCT TANK	Spherical Tank	
PRODUCT TANK	Spherical Tank	
AC301	Reflux Accumulator	
AC501	Reflux Accumulator	

PRESSURE VESSELS	
Equipment ID	Type
R101 A/B	Fixed Bed Catalytic Reactor
R102 A/B	Fixed Bed Catalytic Reactor
R103 A/B	Fixed Bed Catalytic Reactor
FL201	Flash Vessel
FL202	Flash Vessel
TOWERS	
Equipment ID	Type
D301	Distillation Tower
D501	Distillation Tower
AD401 A/B	Packed Tower
COMPRESSORS	
Equipment ID	Type
C301	Multistage Compressor
C401	Multistage Compressor

Unit Descriptions

100_Reactors Section

Reaction Vessels

R101 is a horizontal adiabatic reactor, made of carbon steel, with a length of 8.46 feet and a diameter of 5.81 feet. The wall thickness is 1.84 inches, with a total reactor volume for 224 cubic feet. 36,111lb of one cm Γ-Alumina diameter pellets are used as catalyst to convert ethanol to ethylene. The 578,839 lb/hr inlet flow enters at 752°F and 618psi and leaves at 590°F and 616psi.

R102 is a horizontal adiabatic reactor, made of carbon steel, with a length of 8.07 meters and a diameter of 6.36 feet. The wall thickness is 2.01 inches, with a total reactor volume for 256 cubic feet. It requires 41,227lb of catalyst. The 578,839 lb/hr inlet flow enters at 752°F and 608psi and leaves at 590°F and 600psi.

R103 is a horizontal adiabatic reactor, made of carbon steel, with a length of 7.78 feet and a diameter of 7.12 feet. The wall thickness is 2.24 inches, with a total reactor volume for 310 cubic feet. It requires 49,872lb of catalyst. The 578,839 lb/hr inlet flow enters at 752°F and 600psi and leaves at 590°C and 597psi.

Each reactor has an identical spare available in case of repair and catalyst regeneration. The catalyst is replaced every 90 days.

The choice of using three reactors is to ensure a proper conversion of ethanol to ethylene, achieving a required conversion of 98%. Due to the endothermic nature of the ethanol dehydration reaction, temperature is a clear factor in the reaction kinetics. The ability to reheat the reactants before running the catalyzed reactants ensures a high rate of reaction before an equilibrium state is reached. Additionally, the recycle stream is fed before the final reactor in order to reduce the heat duty of the furnaces for the two previous reactors. Finally, the choice of using three adiabatic reactors instead of using isothermal reactors is due to the tremendous amount of energy necessary to run an isothermal reactor at the necessary temperature. Due to

the endothermic nature of the reaction, sustaining an isothermal reactor is incredibly cumbersome; adiabatic reactors coupled with re-heating furnaces are more efficient.

Heat Exchanger

HX101 is a shell and tube heat exchanger is used to simultaneously cool S110 (reactor effluent) while heating S102 (reactor inlet). The heat exchanger is made of carbon steel with a heat transfer area of 30,000 ft². The total heat duty used is 361MM BTU/h.

Furnaces

F101 is a fired heater used to heat stream S103 from an inlet temperature of 572°F to the desired temperature of 752°F before entering R101. Due to the fact that the feed is essentially at room temperature, a relatively large amount of heat must be used in order to reach the aforementioned reactor feed temperature. The heater supplies 63MM BTU/hr of heat, while utilizing 60,000 SCF/h of natural gas as fuel. Chromium-Molybdenum Steel is used as a construction material in order to withstand the high heating temperatures. A total mass of 580,000 lb/hr enters and exits the heater, consisting mainly of ethanol and water.

F102 is a fired heater used to heat stream S105 from an inlet temperature of 590°F to the desired temperature of 752°F before entering R102. The heater supplies 55.5MM BTU/hr of heat, while utilizing 53,000 SCF/h of natural gas as fuel. Chromium-Molybdenum Steel is used as a construction material in order to withstand the high heating temperatures. A total mass of 580,000 lb/hr enters and exits the heater.

F103 is a fired heater used to heat stream S107 from an inlet temperature of 572°F to the desired temperature of 752°F before entering R103. The heater supplies 56.4MM BTU/hr of heat, while utilizing 53,000 SCF/h of natural gas as fuel. Chromium-Molybdenum Steel is used as a construction material in order to withstand the high heating temperatures. A total mass of 580,000 lb/hr enters and exits the heater.

F101, F102, and F103 all emit flue streams that are released to the atmosphere.

Pumps

P101 and P102 are identical cast iron three stage pumps. Each pump provides a pressure increase of 588 psi. Because of the considerable mass of the feed, it was necessary to use two pumps in parallel to raise its pressure; just one large pump would have had to be unreasonably large.

200_Flash Distillation Section

Flash Distillation

FL201 is a flash distiller used to remove water and ethanol from the product stream. Stream S203, the product of the reactor section at a temperature and pressure of 122°F and 574 psi, is fed into the distiller. This stream is about 55.6% ethylene, with significant amounts of water and ethanol, as well as trace amounts of ether, ethane, acetaldehyde, methane, and acetic acid. After separation, the top product, stream S205, consists of 98.2% ethylene by weight along with trace amounts of the other components. The bottoms, stream S204, contains 3.8% ethanol and 95.2% water along with other impurities.

FL202 also serves to remove more water and ethanol from the product stream coming from the top of the previous flash distiller (FL201). Stream S207, the cooled and throttled top product of FL201, is fed into this distiller to achieve a more thorough separation of water and ethanol. The stream is at 569 psi and 57.2°F, and the resulting top stream is 98.6% ethylene by weight. The bottoms product contains 346 lb/hr ethanol (24.3% by weight). This stream will be recycled later.

Heat Exchangers

HX201 is used to cool the reactor product using cooling water introduced in stream CW201. The reactor product, stream S110, was cooled to 180°F from a previous exchanger, and is now further cooled to 122°F before entering the flash distiller. This temperature is required to achieve an effective separation of ethanol and water from the ethylene product. The 182 tubes with 2 shell and 2 tube passes has a total transfer area is 7,630 ft² with an overall transfer coefficient of 80 BTU/hr*ft²*R and a heat duty of -27,014,000 BTU/hr.

HX202 is used to cool the ethylene rich stream from the 1st flash vessel using the product stream which exits the top of the cryogenic distiller, stream CRYO-OUT. This cold ethylene product stream at -35.4°F cools the flash feed stream from 122°F to 57.2°F so that the water and ethanol can be further separated from other impurities. HX202 also warms the cold product to 52.4°F, bringing it somewhat closer to the environmental temperature so that there is less expansion as the ethylene warms during shipment. The 250 tubes with 1 shell and 2 tube passes has a total transfer area is 2,629 ft² with an overall transfer coefficient of 60 BTU/hr*ft²*R and a heat duty of 12,630,433 BTU/hr.

Valves

V201 is a throttle which decreases the pressure of the reactor product to 569 psi. This allows the stream to be at a pressure suitable for feeding into the flash distiller to achieve an efficient separation. This throttle also conveniently lowers the temperature to 122°F.

V202 brings the stream exiting FL201 from 569 to 441 psi for the 2nd, more thorough ethanol and water separation which takes place in FL202. The lowered pressure also helps to decrease the temperature of the stream to 36.6°F from the 57.2°F stream which was heat exchanged with the cryogenic distiller overhead.

300 Distillation Column Section

Distillation Column

D301 is the distillation column responsible for the recycle stream. Its purpose is to take the bottoms products from both flash distillers, stream S302, and separate the ethanol from the water and other components. The tower is made of carbon steel and stands 64 feet tall with 26 trays spaced 2 feet apart and a diameter of 6 feet. It is operated at 122°F and 30.9 psi, resulting in an ethanol-rich stream as the top product. The distillate, S303, passes through a partial condenser which operates at 29.4 psi and 206°F while the bottoms, S309, pass through a reboiler operating at 31.2 psi and 252°F. The tower's reflux ratio given by the reflux accumulator, AC301, is 0.85. The distillate, a 10,044 lb/hr ethanol stream, is later recycled into the 3rd reactor. The distiller is very efficient with only 2 lb/hr of ethanol being lost to the bottoms stream.

Heat Exchanger

HX301 is a carbon steel shell and tube heat exchanger that makes up the partial condenser section of the distillation tower. Using cooling water, it partially condenses the vapor stream exiting the top of the column so that it can enter the reflux accumulator (AC301). The condenser contains 122 tubes with one shell pass and one tube pass. The total transfer area is 642 ft² with an overall transfer coefficient of 180 BTU/hr*ft²*R. This condenser has a heat duty of 9,063,300 BTU/hr.

HX302 is carbon steel U-tube kettle reboiler which uses steam at 50 psi to vaporize the bottoms product (S309) which is then put back into the column. The kettle reboiler's total transfer area is 5,684 ft² and the overall transfer coefficient is 80 BTU/hr*ft²*R with a heat duty of 49,469,600 BTU/hr.

Reflux Accumulator

AC301 accumulates the partially condensed reflux from D301 to send back to the column. It is 5 ft high with a 3 ft diameter and a storage volume of 264 gallons and is made of carbon steel. The accumulator operates at 206.4°F and 28 psi.

Multistage Compressor

C301 is responsible for compressing the distillation column's distillate stream (S305) by 570 psi. The resulting stream is at 600 psi, which is the appropriate pressure for combining with the 3rd reactor feed, S107. Without the compressor, there cannot be a stream to recycle the 10,044 lb/hr ethanol.

Centrifugal Pumps

P301 A/B is a centrifugal pump responsible for pumping the reflux from the accumulator back into the top of the column after it is condensed. It operates on electricity, is made of cast iron, and pumps 44 gallons per minute of the condensed vapor from stream S307 back into the column. The pump efficiency is 0.7 and consumes 1,356 BTU/hr. The discharge pressure will be 29.4 psi with a pressure head of 76 feet.

P302 A/B is the centrifugal pump which forces the bottoms product, S311, of the distillation tower away from the process to undergo waste treatment for disposal. The pump is also made of cast iron and consumes 16,426 BTU/hr of electricity to pump 597 gallons per minute of the purge (S311) which consists mainly of water and a little bit of ethanol and acetic acid.

Valve

V301 is the valve which decreases the pressure of the feed into the distillation tower. The combined flash distiller bottoms (S209) is at 455.6 psi and must be reduced to 30.9 psi to achieve a good separation of ethanol from water. The valve is the piece of equipment which allows us to achieve this pressure drop.

400_Adsorption Tower Section

Adsorption Towers

AD401 is an adsorption column which is fed with the ethylene-rich top product stream of the series of flash distillators (S210). It contains a 13X, 3mm spherical zeolite filling whose purpose is to absorb the rest of the water and ethanol as well as all other condensables that would clog the cryogenic distiller. The column is made of carbon steel and requires 772 ft³ of zeolite filling. The eluent is 4,800 lb/hr of 350°F nitrogen. The ethylene stream feed enters at 335,339 lb/hr with residence time of 22 sec and a breakthrough time of 24 hr. It experiences a pressure drop of 15 psi and the column's heat of adsorption is 113,400 BTU/hr. The exit, stream S404 is now an ethylene stream along with various light key impurities that will not freeze at cryogenic temperatures.

AD402 is an identical adsorption tower to AD401 but alternates in productivity so that the plant can continue to run while one adsorption tower is being maintained. Maintenance of the tower occurs after one day of productivity and consists of cleaning the zeolite filling using a compressed nitrogen purge stream. The zeolite also needs to be replaced every 3 years.

Multistage Compressor

C401 is a multistage compressor that sends the nitrogen into the adsorption column that is not in operation as a purge used to clean that tower. The nitrogen needs to be condensed to raise the temperature for optimal cleaning. Therefore, this carbon steel, one-stage compressor consumes 295,482 BTU/hr of electricity to condense the nitrogen stream by 26 psi, causing a temperature rise of 247°F. The compressor condenses 67,506 ft³/hr of nitrogen to 36,171ft³/hr for cleaning purposes.

Valves

V401 and V404 decide which adsorption tower to send the future product stream (S210) to. This depends on which one is cleaned and ready for use while the other one is undergoing maintenance.

V403 and V406 open the pipe that contains the ethylene-rich stream exit (S404 or S407) from whichever adsorption tower is used. It is then sent to be further treated before being fed into the cryogenic distiller.

V407 and V408 determine the route of the nitrogen purge stream (S408), sending it to the unused adsorption tower that is to be cleaned.

V402 and V405 release the cleaning nitrogen purge stream. This condensed nitrogen is later sent through a heat exchanger to warm the cold cryogenic ethylene product stream.

500_Cryogenic Distillation Section

Cryogenic Distiller

D501 is a cryogenic distiller which operates at the cold temperature of about -35°F to effectively separate ethylene from other light impurities such as ether, ethane, and methane. The impurities exit out the bottom as stream S511 which is burned and purged. The tower distillate (S507) contains 330,473 kg/hr of the final 99.96% pure ethylene product at -68°F. The cryogenic distiller is made of stainless steel because carbon steel is brittle at such low temperatures. The feed stream, S503, enters on the 3rd of 8 stages with 2 foot spacing. The tower is 24 feet with a

diameter of 10.5 feet. The tray efficiency is 0.75. With the cryogenic distiller, enough impurities are removed to achieve the 99.96% ethylene purity required to qualify as polymer grade.

Heat Exchangers

HX501 cools the stream entering the cryogenic column by running it through this stainless steel shell and tube heat exchanger against the cold product stream exiting the cryogenic distiller. The exchanger consists of 144 tubes with a total transfer area of 2,951 ft³ with an overall heat transfer coefficient of 30 BTU/hr*ft²*R and a heat duty of 6,591,610 BTU/hr. The -68°F ethylene product is warmed to -35°F while the cryogenic feed is cooled from 40°F to 7°F to reduce the necessary refrigeration in the cryogenic distillation column.

HX502 is a floating head shell and tube partial condenser which uses 420,000 lb/hr propylene introduced in stream R501 at -90°F to condense the 420,000 lb/hr vapor overhead of the cryogenic distiller so that it can be accumulated and reintroduced into the column for a more thorough separation. The condensed exit stream is partially sent to the HX501 exchanger and the other part is sent to the reflux accumulator. It is made of stainless steel and has 1,122 tubes with 8 tube and 2 shell passes, having a total transfer area of 188,500 ft² with an overall transfer coefficient of 50 BTU/hr*ft²*R and a heat duty of 56,357,300 BTU/hr. Exiting HX502 is the cold but purified product stream of 99.96% ethylene.

HX503 is a U-tube kettle reboiler for vaporizing the bottoms product (S510) using steam to reintroduce into the column again. 199,282 lb/hr of steam is used to partially vaporize 49,342 lb/hr of the eventual purge. It is made of stainless steel and has a total transfer area of 2,105 ft² with an overall transfer coefficient of 45 BTU/hr*ft²*R and a heat duty of 49,039,968 BTU/hr.

Valve

V501 decreases the pressure of the feed into the cryogenic distillation tower from 452.5 psi to 279.2 psi. The decrease in pressure also causes a convenient temperature decrease from 6.8°F to -35.1°F which improves the separation in the cryogenic distiller. Without the valve, S503 would not be at an optimal temperature and pressure for removing the light keys from the ethylene product.

Reflux Accumulator

AC501 accumulates the partially condensed reflux from D501 to send back to the column. It is 20 ft high with a 7 ft diameter and a storage volume of 4,965 gallons. The accumulator operates at -68°F and 238 psi. Reflux accumulators for cryogenic distillers are made of stainless steel to withstand cold temperatures.

Pumps

P501 A/B is the centrifugal pump which works to send the reflux of condensed overhead (S508) back into the cryogenic distiller. This pump is made of stainless steel to withstand the low temperatures. It pumps 791 gallons per minute back into the column and causes a pressure rise of 41 psi and a pressure head of 107 feet. It consists of one stage with an efficiency of 0.70 and uses 36,566 BTU/hr of electricity. The result is stream S509 which is sent back into the column.

Section XI

Specification Sheets

Reactor Section

Feed Storage Tank			
Block Type:	Floating Roof Storage Tank		
Function:	Stores 1 month supply of feed		
Materials:			
Mass Fraction:			
Ethanol	0.95		
Water	0.05		
Operating Conditions:			
Pressure (psi)	14.7		
Temperature (°F)	80		
Design Data:			
Construction Material	Carbon Steel		
Volume (gal)	1,110,000		
Diameter (ft)	350.000		
Height (ft)	270		
Purchase Cost:	\$574,000		
Bare Module Cost:	\$1,819,580		
Annual Operating Cost:	: \$0		

P101 A/B			
Block Type: Function:	Multistage Centrifugal Pump Raise the FEED pressure		
Materials: Stream	<i>Inlet</i> FEED	Outlet S102	
Operating Conditions: Pressure Increase (psi) Pressure Head (ft) Flow Rate (GPM)	1680		
Design Data: Construction Material Number of Stages Pump Efficiency Consumed Power (BTU/h) Power Source	es 3 cy 1 h) 839,261		
Purchase Cost: Bare Module Cost: Annual Operating Cost:	\$32,780 \$103,913 \$129,367		

P102 A/B			
Block Type: Function:	Multistage Centrifugal Pump Raise the FEED pressure		
Materials: Stream	Inlet FEED	Outlet S102	
Operating Conditions: Pressure Increase (psi) Pressure Head (ft) Flow Rate (GPM)	1680		
Design Data: Construction Material Number of Stages Pump Efficiency Consumed Power (BTU/h) Power Source	es 3 cy 1 h) 839,261		
Purchase Cost: Bare Module Cost: Annual Operating Cost:	\$32,780 \$103,913 \$129,367		

HX101			
Block Type:	U-Tube Shell and Tube Heat Exchang		
Function:	Heat FEED ethan	ol and cool S110	
Tube:	Inlet	Outlet	
Stream	S102	S103	
Temperature (°F)	79	572	
Pressure (psi)	602.5	595.4	
Shell:			
Stream	S110	SEP	
Temperature (°F)	590	179	
Pressure (psi)	581.2	577.3	
Operating Conditions:			
Tube Flow Rate (lb/h)	578,839		
Shell Flow Rate (lb/h)			
Design Data:			
Construction Material	l Carbon Steel		
Flow Direction	Counte	ercurrent	
Number of Tubes	3	867	
Number of Tube Passes		4	
Number of Shell Passes		2	
Transfer Area (ft ²)	30	,084	
Overall Heat Transfer Coefficient	t		
(BTU/h*ft ² *R)		70	
Heat Duty (BTU/h)			
Purchase Cost:	\$271,316		
Bare Module Cost:	\$860,073		
Annual Utilities Cost:	\$0		

	R101			
Block Type: Fixed Bed Catalytic Reactor				
Function:	•			
Materials:	Inlet	Outlet		
Stream		S105		
Mass Flow (lb/h)	578,839	578,839		
Volumetric Flow (ft ³ /h)	265,590	435,582		
Breakdown (lb/h):				
Ethanol	549,897	161,532		
Water	28,942	179,995		
Ethylene	0	234,402		
Diethyl-Ether	0	2,212		
Methane	0	38		
Acetaldehyde	0	421		
Ethane	0	36		
Acetic Acid	0	179		
Hydrogen	0	24		
Operating Conditions:	Inlet	Outlet		
Temperature (°F)	752	590		
Pressure (psi)	618.0	616.0		
Design Data:				
Construction Material	Cr-Mo Steel SA-387B	Catalyst	Γ -Alumina	
Vessel Weight (lb)	17,759	Residence Time (s)	3.14	
Volume (ft ³)	224	Catalyst Volume (ft ³)	157.00	
Diameter (ft)	5.81	Catalyst Weight (lb)		
Length (ft)	8.46	Catalyst Cost	\$180,555	
Wall Thickness (in)	1.84	Catalyst Life (days)	90	
Purchase Cost:	\$63,104			
Bare Module Cost:	\$192,467			
Annual Catalyst Cost:	\$15,885			

R102				
Block Type: Fixed Bed Catalytic Reactor				
Function: Convert ethanol in S106 to ethylene				
		1		
Materials:	Inlet	Outlet		
Stream		S107		
Mass Flow (lb/h)	578,839	578,839		
Volumetric Flow (ft ³ /h)	271,109	435,582		
Breakdown (lb/h):				
Ethanol	161,532	43,816		
Water	179,995	225,728		
Ethylene	234,402	305,225		
Diethyl-Ether	2,212	3,187		
Methane	38	72		
Acetaldehyde	421	529		
Ethane	36	46		
Acetic Acid	179	211		
Hydrogen	24	26		
Operating Conditions:	Inlet	Outlet		
Temperature (°F)	752	590		
Pressure (psi)	608.0	606.0		
Design Data:				
Construction Material	Cr-Mo Steel SA-387B	Catalyst	Γ-Alumina	
Vessel Weight (lb)	24,731	Residence Time (s)	3.73	
Volume (ft ³)	256	Catalyst Volume (ft ³)	179.46	
Diameter (ft)	6.36	Catalyst Weight (lb)	41,277	
Length (ft)	8.07	Catalyst Cost	\$206,383	
Wall Thickness (in)	2.01	Catalyst Life (days)	90	
Purchase Cost:	\$77,115			
Bare Module Cost:	\$235,202			
Annual Operating Cost:	\$573,286			

R103					
Block Type: Fixed Bed Catalytic Reactor					
Function:	•				
Materials:	Inlet	Outlet			
Stream		S110			
Mass Flow (lb/h)	594,547	594,547			
Volumetric Flow (ft ³ /h)	535,522	521,378			
Breakdown (lb/h):					
Ethanol	53,834	10,266			
Water	228,889	245,822			
Ethylene	306,083	332,309			
Diethyl-Ether	3,627	3,952			
Methane	72	93			
Acetaldehyde	1,701	1,747			
Ethane	104	111			
Acetic Acid	211	221			
Hydrogen	26	26			
Operating Conditions:	Inlet	Outlet			
Temperature (°F)	752	590			
Pressure (psi)	600.0	597.0			
Design Data:					
Construction Material	Cr-Mo Steel SA-387B	Catalyst	Γ-Alumina		
Vessel Weight (lb)	27,290	Residence Time (s)	4.05		
Volume (ft ³)	310	Catalyst Volume (ft ³)	216.83		
Diameter (ft)	7.12	Catalyst Weight (lb)	49,872		
Length (ft)	7.78	Catalyst Cost	\$249,359		
Wall Thickness (in)	2.24	Catalyst Life (days)	90		
Purchase Cost:	\$82,071				
Bare Module Cost:	\$250,316				
Annual Catalyst Cost:	\$775,784				

F101			
Block Type:	Fired Heater		
Function:	Heat stream	S103	
Materials:	Inlet	Outlet	
Material Stream	S103	S104	
Mass Flow (lb/h)	578,839	578,839	
Fuel Stream	FUEL-1	FLUE-1	
Operating Conditions:	Inlet	Outlet	
Temperature (°F)	572	752	
Pressure (psi)	598.9	588.0	
Design Data:			
Construction Material	Cr-Mo Stee	1SA-387B	
Heat Duty (BTU/h)	63,11	1,000	
Fuel Type	Natura	ıl Gas	
Fuel Flow (SCF/h)	60,106		
Purchase Cost:	\$1,836,640		
Bare Module Cost:	\$4,022,242		
Annual Utilities Cost:	\$2,176,170		

F102			
Block Type:	Fired Heater		
Function:	Heat stream	S105	
Materials:	Inlet	Outlet	
Material Stream	S105	S106	
Mass Flow (lb/h)	578,839	578,839	
Fuel Stream	FUEL-2	FLUE-2	
Operating Conditions:	Inlet	Outlet	
Temperature (°F)	590	752	
Pressure (psi)	616.0	608.9	
Design Data:			
Construction Material	Cr-Mo Stee	1SA-387B	
Heat Duty (BTU/h)	55,553	3,211	
Fuel Type	Natura	l Gas	
Fuel Flow (SCF/h)	52,9	800	
Purchase Cost:	\$1,665,130		
Bare Module Cost:	\$3,646,634		
Annual Utilities Cost:	: \$1,915,565		

F103			
Block Type:	Fired Heater		
Function:	Heat stream	S108	
Materials:	Inlet	Outlet	
Material Stream	S108	S109	
Mass Flow (lb/h)	578,839	578,839	
Fuel Stream	FUEL-3	FLUE-3	
Operating Conditions:	Inlet	Outlet	
Temperature (°F)	591	752	
Pressure (psi)	607.0	599.6	
Design Data:			
Construction Material	Cr-Mo Stee	1SA-387B	
Heat Duty (BTU/h)	56,420),329	
Fuel Type	Natura	ıl Gas	
Fuel Flow (SCF/h)	53,7	⁷ 34	
Purchase Cost:	\$1,685,002		
Bare Module Cost:	\$4,690,155		
Annual Utilities Cost:	\$1,945,465		

Flash Separation Section

	HX201			
Block Type:	Floating Head She	ll and Tube Hea	at Exchanger	
Function:				
	Cool SEP for flash	separation usin	ng cooling water	
Shell:	Inlet		Outlet	
Stream	CW201		CW202	
Temperature (°F)	90		120	
Pressure (psi)	14.7		14.7	
Tube:				
Stream	SEP		S202	
Temperature (°F)	179		122	
Pressure (psi)	577.0		574.6	
Operating Conditions:				
Shell Flow Rate (lb/h)		903,320		
Tube Flow Rate (lb/h)	594,547			
Design Data:				
Construction Material	Carbon Steel			
Flow Direction	C	Countercurrent		
Number of Tubes	182			
Number of Tube Passes		2		
Number of Shell Passes		2		
Transfer Area (ft ²)	7,630			
Overall Heat Transfer	00			
Coefficient (BTU/h*ft²*R)	80			
Heat Duty (BTU/h)				
Purchase Cost:	\$79,870			
Bare Module Cost:	\$253,186			
Annual Utilities Cost:	\$55,068			

HX202			
Block Type:	Shell and Tube He	eat Exchanger	
Function:		for flash separation	
Shell:	Inlet	Outlet	
Stream	CRYO-OUT	PRODUCT	
Temperature (°F)	-34	52	
Pressure (psi)	276	276	
Tube:			
Stream	S205	S206	
Temperature (°F)	122	57	
Pressure (psi)	565.0	562.0	
Operating Conditions:			
Shell Flow Rate (lb/h)	330,473		
Tube Flow Rate (lb/h)		7,938	
Design Data:			
Construction Material	Carbo	on Steel	
Flow Direction	Count	ercurrent	
Number of Tubes	2	250	
Number of Tube Passes		2	
Number of Shell Passes		1	
Transfer Area (ft ²)	2,	629	
Overall Heat Transfer Coefficient			
(BTU/h*ft ² *R) Heat Duty (BTU/h)	2)		
Purchase Cost:	\$46,879		
Bare Module Cost:	\$148,607		
Annual Operating Cost:	\$0		

	FL201			
Block Type: Flash Drum Remove most of the water and ethanol				
Function:	from S203	of the water an	id Culation	
Materials:	Inlet	Overhead	Bottoms	
Stream	S203	S205	S204	
Phase	MIX	VAP	LIQ	
Mass Flow (kg/h)	594,547	337,465	257,082	
Volumetric Flow (L/h)	4,391	100,528	24	
Breakdown (kg/h):				
Ethanol	10,266	592	9,674	
Water	245,822	1,046	244,776	
Ethylene	332,309	331,472	837	
Ether	3,952	3,542	410	
Methane	93	93	0	
Acetaldehyde	1,747	640	1,107	
Ethane	111	54	57	
Acetic Acid	221	1	220	
Hydrogen	26	26	0	
Operating Conditions:				
Pressure (psi)		565.0		
Temperature (°F)		122		
Equilibrium	Vapor-	Liquid Equilibr	ium	
Design Data:				
Construction Material	Carbon Steel	Diameter (ft)	6.5	
Weight (lb)	31,000	Height (ft)	19.5	
Volume (gal)	4,841			
Purchase Cost:	\$60,500			
Bare Module Cost:	\$251,680			
Annual Operating Cost	\$0			

	FL202				
Block Type: Flash Drum					
Function:	Remove further amounts of ethanol				
ruicuon.	and				
	1				
Materials:	Inlet	Overhead	Bottoms		
Stream	S207	S210	S208		
Phase	MIX	VAP	LIQ		
Mass Flow (kg/h)	337,465	336,043	1,422		
Volumetric Flow (L/h)	78,294	100,528	24		
Breakdown (kg/h):					
Ethanol	592	246	346		
Water	1,046	88	958		
Ethylene	331,472	331,451	21		
Ether	3,542	3,511	31		
Methane	93	93	0		
Acetaldehyde	640	575	65		
Ethane	54	53	0		
Acetic Acid	1	0	1		
Hydrogen	26	26	0		
Operating Conditions:					
Pressure (psi)		455.6			
Temperature (°F)		39			
Equilibrium	Vapor-	Liquid Equiliba	rium		
Design Data:					
Construction Material	Carbon Steel	Diameter (ft)	6		
Weight (lb)	18,300	Height (ft)	12		
Volume (gal)	2,538				
Purchase Cost:	\$43,100				
Bare Module Cost:	\$179,296				
Annual Operating Cost	\$0				
	I				

Distillation Section

	D301			
Block Type: Seive Tray Distillation Tower				
	Remove water and from S302 and enrich			
Function:	stream S305 in ethanol			
Materials:	Inlet	Distillate	Bottoms	
Stream		S305	S311	
Phase	LIQ	VAP	LIQ	
Mass Flow (kg/h)	_	15,708	242,796	
Volumetric Flow (L/h)		109,081	4,351	
Temperature (°F)		206	253	
Breakdown (lb/h):				
Ethanol	10,020	10,019	1	
Water	,	3,161	242,573	
Ethylene	858	858	0	
Ether		440	0	
Methane	0	0	0	
Acetaldehyde	1,172	1,172	0	
Ethane		57	0	
Acetic Acid	221	0	221	
Hydrogen	0	0	0	
Operating Conditions:				
Condenser Pressure (psi)	29.4			
Condenser Temperature (°F)	206			
Reboiler Pressure (psi)		31.18		
Reboiler Temperature (°F)		252		
Reflux Ratio		0.85		
Design Data:				
Construction Material	Carbon Steel	Tray Efficiency	0.69	
Weight (lb)	57,900	Number Trays	26	
Diameter (ft)	6	Feed Stage	7	
Height (ft)	64	Tray Spacing (ft)	2	
Exterior Components:				
Condenser		HX301		
Reflux Accumulator		AC301		
Pump	P301			
Reboiler				
Purchase Cost:	\$194,400			
Bare Module Cost:	\$808,704			
Annual Operating Cost:	\$0			

	HX301		
D. 1. T.	Fixed Head Shell and Tube		
Block Type:	Partial Condenser		
Function:	Condense vapor	product from D301	
	using cooling water	er	
Shell:	Inlet	Outlet	
Stream	S312	TO-REBOIL	
Temperature (°F)	90	120	
Pressure (psi)	14.7	14.7	
Tube:			
Stream	S303	S304	
Temperature (°F)	206	206	
Pressure (psig)	31.2	30.0	
Operating Conditions:			
Shell Flow Rate (lb/h)	258,504		
Tube Flow Rate (lb/h)	18	3,480	
Design Data:	G 1	G. I	
Construction Material		on Steel	
Flow Direction		ercurrent	
Number of Tubes		122	
Number of Tube Passes		1	
Number of Shell Passes		1	
Transfer Area (ft ²)	(542	
Overall Heat Transfer		180	
Coefficient (BTU/h*ft²*R)	100		
Heat Duty (BTU/h)	9,063,300		
Purchase Cost:	\$17,900		
Bare Module Cost:	\$84,000		
Annual Utilities Cost:	\$24,100		

HX302			
Block Type:	U Tube Kettle Reboiler		
Function:	Vaporize liquid product from D301		
	using 50psi steam		
Tube:	Inlet	Outlet	
Stream		STEAM302	
Temperature (°F)	298	298	
Pressure (psig)	50.0	50.0	
Shell:			
Stream		S310	
Temperature (°F)		253	
Pressure (psig)	31.2	29.8	
O			
Operating Conditions:	54,267		
Tube Flow Rate (lb/h)		•	
Shell Flow Rate (lb/h)	230	3,504	
Design Data:			
Construction Material	Carbo	on Steel	
Transfer Area (ft ²)	5.	684	
Overall Heat Transfer			
Coefficient (BTU/h*ft²*R)		80	
Heat Duty (BTU/h)			
=======================================	12,102,000		
Purchase Cost:	\$119,800		
Bare Module Cost:	\$379,766		
Annual Utilities Cost:	\$1,091,736		

AC301			
Block Type:	Reflux Accumulator - Horizontal Vessel		
Function:	Accumulate reflux from D301		
Materials:	Inlet	Outlet	
Stream	S306	S307	
Operating Conditions:			
Pressure (psi)	28	3.0	
Temperature (°F)	206.383		
Design Data:			
Construction Material	Carbon Steel		
Storage Volume (gal)	264		
Diameter (ft)	_		
Height (ft)			
Purchase Cost:	\$10,500		
Bare Module Cost:	\$32,025		
Annual Utilities Cost:	\$0		

P301 A/B			
Block Type:	Centrifugal Pump		
Function:	Return reflux to D301		
Materials:	Inlet	Outlet	
Stream	S307	S308	
Operating Conditions:			
Discharge Pressure (psi)	29.4		
Pressure Head (ft)	76		
Flow Rate (gpm)	44		
Design Data:			
Construction Material	Cast Iron		
Number of Stages	1		
Pump Efficiency	0.7		
Consumed Power (BTU/h)	1,356		
Power Source	Electricity		
Purchase Cost:	\$4,900		
Bare Module Cost:	\$16,170		
Annual Utilities Cost:	\$160		

P302 A/B			
Block Type:	Centrifugal Pump		
Function:	Pump purge water		
Materials:	Inlet	Outlet	
Stream	S311	TREAT	
Operating Conditions:			
Pressure Increase (psi)	14.7		
Pressure Head (ft)	38		
Flow Rate (gpm)	597		
Design Data:			
Construction Material	Cast Iron		
Number of Stages	s 1		
Pump Efficiency	0.711		
Consumed Power (BTU/h)	16,426		
Power Source	Electricity		
Purchase Cost:	\$8,300		
Bare Module Cost:	\$27,390		
Annual Operating Cost:	\$1,941		

C301			
Block Type:	Multistage Com	pressor	
Function:	Compress S305	so it can be	
	recycled to the	reactor section	
Materials:	Inlet	Outlet	
Stream	S305	RECYCLE	
Operating Conditions:			
Pressure Change (psi)	57	0.0	
Temperature Rise (°F)	428		
Inlet Flow Rate (ft ³ /h)	109,081		
Outlet Flow Rate (ft3/h)			
Design Data:			
Construction Material	Carbo	n Steel	
Number of Stages	,	3	
Interstage Cooling	N	/A	
Consumed Power (BTU/h)	2,936,625		
Power Source	e Electricity		
Purchase Cost:	\$1,403,400		
Bare Module Cost:	\$4,631,220		
Annual Operating Cost:	\$452,562		

Product Storage Tank			
Block Type:	Spherical Storage Tank		
Number of Units:	2		
Function:	Stores one hour of ethylene product		
Materials:			
Mass Fraction:			
Ethylene	0.99960		
Hydrogen	0.00003		
Methane	0.00008		
Operating Conditions:			
Pressure (psi)	14.7		
Temperature (°F)	80		
Design Data:			
Construction Material	Carbon Steel		
Volume (gal)	1,000,000		
Diameter (ft)	63.439		
Purchase Cost:	\$1,343,000		
Bare Module Cost:	\$4,257,310		
Annual Operating Cost:	\$0		

Adsorption Section

C401			
Block Type:	Multistage Compressor		
Function:	Compress the n	itrogen to both	
	raise the temper	ature and	
Materials:	Inlet	Outlet	
Stream	NITROGEN	S408	
Temperature (°F)	80	350	
Operating Conditions:			
Pressure Change (psi)	26	5.0	
Temperature Rise (°F)	24	47	
Inlet Flow Rate (ft ³ /h)	67,506		
Outlet Flow Rate (ft3/h)	36,	171	
Design Data:			
Construction Material	Carbo	n Steel	
Number of Stages		1	
Interstage Cooling	N	/A	
Consumed Power (BTU/h)	295	,482	
Power Source	Elect	tricity	
Purchase Cost:	\$87,800		
Bare Module Cost:	\$289,740		
Annual Nitrogen Cost	\$91,800		
Annual Utilities Cost:	\$45,547		

	AD401 A/B				
Block Type: Adsorption Column					
Remove trace water and ethanol from ADSORB so it					
Function: cannot damage D501					
Materials:	Inlet	Overhead			
Stream		CRYO			
Mass Flow (lb/h)	·	335,005			
Volumetric Flow (GPM)		12,574			
Temperature (°F)		39.6			
Pressure (psi)	455.6	441.0			
Breakdown (lb/h):					
Ethylene	331,451	331,451			
Ethanol	246	0			
Water	67.7	0			
Diethylether	3,511.3	3,511.3			
Methane	42.0	42.0			
Acetaldehyde	260.9	260.9			
Hydrogen	11.8	11.8			
Acetic Acid	0.035	0.035			
Operating Conditions:					
Breakthrough Time (h)	24	Pressure Drop (psi)	15		
Maximum Capacity (lb)	7,320	Residence Time (s)	22		
Heat of Adsorption (BTU/hr)	113,400				
Regeneration:					
Eluent	NITROGEN	Temperature (°F)	350		
Mass Flow (lb/h)		Regeneration Time (h)	24		
D. C. D. C.					
Design Data:	a . a .		0.20		
Construction Material		Volume (ft ³)	839		
Vessel Weight (lb)	75,890	Diameter (ft)	7.50		
Adsorbant:					
Adsorbant Type	Zeolite 13X	Adsorbant Weight (lb)	13,550		
Spherical Diameter (mm)	3	Adsorbant Cost	\$15,000		
Adsorbant Volume (ft ³)	772	Adsorbant Life (yrs)	3		
Purchase Cost:	\$221,000	<u> </u>			
Bare Module Cost:	\$729,300				
Annual Adsorbant Cost:	\$10,000				

Cryogenic Distillation Section

D501				
Block Type:				
Function:	Purify ethylene product			
Materials:	Inlet	Distillate	Bottoms	
Stream	S503	S506	S511	
Phase	MIX	VAP	LIQ	
Mass Flow (kg/h)	335,710	330,473	5,237	
Volumetric Flow (L/h)	139,354	102,938	122	
Temperature (°F)	-35	-68	-21	
Breakdown (kg/h):				
Ethanol	0	0	0	
Water		0	0	
Ethylene		330,327	1,124	
Ether		0	3,511	
Methane	93	93	0	
Acetaldehyde		0	575	
Ethane	53	28	26	
Acetic Acid		0	0	
Hydrogen		26	0	
Tij di ogen			Ü	
Operating Conditions:				
Condenser Pressure (psi)		279.2		
Condenser Temperature (°F)	-67.5			
Reboiler Pressure (psi)	279.8			
Reboiler Temperature (°F)				
Reflux Ratio				
D : D :				
Design Data:	Ctoinlana Ctool	Tues Ecciones	0.75	
Construction Material		Tray Efficiency	0.75	
Weight (lb)		Number Trays	8	
Diameter (ft)		Feed Stage	3	
Height (ft)	24	Tray Spacing (ft)	2	
Exterior Components:		I	<u> </u>	
Condenser		HX502		
Reflux Accumulator	AC501			
Pump	P501			
Reboiler				
Purchase Cost:	\$173,000			
Bare Module Cost:	\$719,680			
Annual Operating Cost:	\$0			

	HX501		
Block Type:	Shell and Tube Heat Exchanger		
Function:	Heat CRYO-IN and cool S507		
Shell:	Inlet	Outlet	
Stream	S507	CRYO-OUT	
Temperature (°F)	-68	-35	
Pressure (psi)	279.2	275.6	
Tube:			
Stream	CRYO-IN	S502	
Temperature (°F)	40	7	
Pressure (psi)	455.6	452.5	
Operating Conditions:			
Shell Flow Rate (lb/h)	330,473		
Tube Flow Rate (lb/h)	335,710		
Design Data:			
Construction Material	Stainless Steel		
Flow Direction	Countercurrent		
Number of Tubes	144		
Number of Tube Passes	1		
Number of Shell Passes	1		
Transfer Area (ft ²)	2,951		
Overall Heat Transfer			
Coefficient (BTU/h*ft²*R) Heat Duty (BTU/h)			
Purchase Cost:	\$49,673		
Bare Module Cost:	\$157,463		
Annual Operating Cost:	\$0		

HX502			
Dia da Tarra	Floating Head Shell and		
Block Type:	Tube Partial Condenser		
Function:	Condense vapor product from D501		
	using propylene re	efrigerant	
Shell:	Inlet	Outlet	
Stream	R501	R502	
Temperature (°F)	-90	-70	
Tube:			
Stream		S505	
Temperature (°F)		-68	
Pressure (psig)	279.2	240.0	
Operating Conditions:		0.000	
Shell Flow Rate (lb/h)	· ·		
Tube Flow Rate (lb/h)	2818		
Design Data:			
Construction Material	Stainless Steel		
Number of Tubes			
Number of Tube Passes	′		
Number of Shell Passes	2		
Transfer Area (ft ²)			
Overall Heat Transfer Coefficient			
(BTU/h*ft2*R)	5()		
Heat Duty (BTU/h)			
Tion Duty (B10/II)	30,337,300		
Purchase Cost:	\$2,985,500		
Bare Module Cost:	\$9,464,035		
Annual Utilities Cost:	\$5,368,643		

HX503				
Block Type:	U Tube Kettle Reboiler			
Function:	Vaporizes the bottoms to return as			
	boilup	boilup		
Tube:	Inlet	Outlet		
Stream		REBOIL-OUT		
Temperature (°F)		100		
Pressure (psig)	14.7	14.7		
Shell:				
Stream	S510	S511		
Temperature (°F)	-21.2	-21.2		
Pressure (psig)	279.8	272.0		
Operating Conditions:				
Tube Flow Rate (lb/h)	49,342			
Shell Flow Rate (lb/h)	199,282			
Design Data:				
Construction Material	Stainless Steel			
Transfer Area (ft ²)	2,105			
Overall Heat Transfer Coefficient				
(BTU/h*ft ² *R)	45			
Heat Duty (BTU/h)	49,039,968			
Purchase Cost:	\$59,500			
Bare Module Cost:	\$224,700			
Annual Utilities Cost:	-\$3,930			

	AC501		
Block Type:	Reflux Accumulator		
Function:	Accumulate reflux from D501		
Materials:	Inlet	Outlet	
Stream	S506	S508	
Operating Conditions:			
Pressure (psi)	238.0		
Temperature (°F)	-68		
Design Data:			
Construction Material	Staink	ess Steel	
Storage Volume (gal)	4,965		
Diameter (ft)	· ·		
Height (ft)		20	
Purchase Cost:	\$43,900		
Bare Module Cost:	\$267,790		
Annual Operating Cost:	\$0		

P501 A/B			
Block Type:	Centrifugal Pump		
Function:	back		
	into the column		
Materials:	Inlet	Outlet	
Stream		S509	
Sucum	B500	5507	
Operating Conditions:			
Pressure Rise (psi)	41.0		
Pressure Head (ft)	107		
Flow Rate (gpm)	791		
Design Data:			
Construction Material	Stainless Steel		
Number of Stages	1		
Pump Efficiency	0.70		
Consumed Power (BTU/h)	36,566		
Power Source	e Electricity		
Purchase Cost:	\$9,900		
Bare Module Cost:	\$32,670		
Annual Operating Cost:	\$4,321		

Section XII

Conclusions and Recommendations

The profitability of this plant is highly dependent on the prices of ethylene and ethanol, both of which fluctuate often. At currently available market prices, it is not likely to be profitable. The economic analysis conducted in this report shows that ethylene prices must rise significantly and ethanol prices must fall significantly before the plant will return a positive Net Present Value or Internal Rate of Return. While this is not entirely unreasonable, intense market research will be necessary to determine if the risk associated with building a plant at the present time is worthwhile.

There is a strong incentive to find ways to lower the operating cost of this process. Ethanol dehydration is preferable to the currently prevalent ethylene-yielding process of hydrocarbon cracking. For one, ethanol is renewable; it can be derived from sugar cane or corn, two major crops grown in South and North America. Additionally, ethanol dehydration produces far less waste and carbon emissions than cracking does. Governments worldwide are currently incentivizing the preference of "green" industry.

The two factors that make operating this plant expensive are heating the feed to extreme temperatures, and running cryogenic distillation to separate the final product. If more effective systems for heating or refrigeration were developed, this plant could potentially operate closer to profitability. In the future, it is recommended to research these areas to help improve the potential of this plant to succeed.

Section XIII

Acknowledgements

We would like to take this opportunity to thank the following faculty, consultants, and fellow colleagues for their guidance in the successful completion of this report:

Dr. Raymond Gorte, our faculty advisor, for his weekly guidance throughout the project in dealing with the AspenPLUS simulation and chemical engineering calculations.

Professor Leonard Fabiano for sharing his extensive industrial expertise and his considerable help with AspenPLUS.

Industrial consultants Bruce Vrana, Steven Tieri, John Wismer, and Gary Sawyer for providing advice, information, and design experience to our project.

In addition, we would also like to thank two of our fellow classmates. Peter Terpeluk for knowing how to answer every question we asked and his incredible willingness to help even at his own expense. Also, we would like to thank Steve Lantz for sharing his extensive knowledge of Excel with us, making some of our analysis much easier (and prettier).

Section XIV

Bibliography

- Agência Nacional do Petróleo (ANP). 2012. Web. 22 Mar 2012 http://www.anp.gov.br/>.
- "Braskem Ethanol-to-Ethylene Plant, Brazil." *Chemicals Technology*. Net Resources International, 2011. Web. 16 Jan. 2012. http://www.chemicals-technology.com/projects/braskem-ethanol/.
- "Brazil Freight Transport Report." *Business Monitor*. Business Monitor International, Ltd., 2012. Web. 27 Feb. 2012. http://www.slideshare.net/john_pellizzetti/brazil-freight-transport-report.
- "Code of Federal Regulations." *National Archives and Records Administration*.e-CFR, 26 Mar. 2012. Web. 28 Mar. 2012. .">http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=081cc5c5cd4e7c46ceebea27be14e038&rgn=div5&view=text&node=49:2.1.1.3.9&idno=49>.
- Ebeid, Fikry M. "Mechanism of Dehydratio of Ethanol Over Gamma-Alumina." *Qatar University Science Journal*. 1.1 (1981): 117-127. Print.
- The Economist, March 3-9, 2007 "Fuel for Friendship" p. 44
- "Ethanol/Ethyl Alcohol." *Ethanol Material Safety Data Sheet*. The Online Distillery Network for Distilleries & Fuel Ethanol Plants Worldwide, 2001. Web. 27 Mar. 2012. http://www.distill.com/materialsafety/msds-eu.html.
- "Ethanol Facts." *Renewable Fuels Association*. RFA, 2012. Web. 9 Jan. 2012. http://ethanolrfa.org/pages/ethanol-facts.
- "Ethylene: Prices, Markets, and Analysis." *ICIS*. Reed Business Information Limited, 2012. Web. 20 Jan. 2012. http://www.icis.com/chemicals/ethylene/>.
- "Ethylene Product Stewardship Guidance Manual." *LyondellBasell*. American Chemistry Council and Chemstar, Dec. 2004. Web. 27 Mar. 2012. http://www.lyondellbasell.com/techlit/techlit/Handbooks%20and%20Manuals/ACC_Ethylene_Manual%203096.pdf.

- "Handling and Transportation Guide for Ethylene, Refrigerated Liquid (Cryogenic Ethylene)." *LyondellBasell*. American Chemistry Council, Apr. 2004. Web. 27 Mar. 2012. http://www.lyondellbasell.com/techlit/techlit/Handbooks%20and%20Manuals/3424%2 Oethylene%20cryo%20guide.pdf >.
- http://wpage.unina.it/avitabil/testi/PE.pdf
- Melby, Kory. "Infrastructure: Railroads." *Ag Consulting Services and Investment Tours*. Brazil International. Web. 20 Feb. 2012.
 - < http://www.brazilintl.com/agsectors/infrastructure/railroads/menu_railroads.htm>.
- Piel, Christian. Polymerization of Ethene and Ethene-co-α-Olefin: Investigations on Short- and Long- Chain Branching and Structure-Property Relationships, Dissertation, University of Hamburg. Hamburg: 2005
- Seider, Warren D. *Product and Process Design Principles: Synthesis, Analysis, and Evaluation.*Hoboken, NJ: John Wiley & Sons, 2010. Print.
- Schill, Susanne Retka. "Braskem Starts Off Ethanol-to-Ethylene Plant." *Ethanol Producer Magazine | EthanolProducer.com.* BBL International, 23 Sept. 2010. Web. 16 Jan. 2012. http://ethanolproducer.com/articles/7022/braskem-starts-up-ethanol-to-ethylene-plant/.
- Valladares Barrocas, Helcio V. Process for Preparing Ethene. Petroleo Brasileiro S.A.-Petrobras, assignee. Patent 4232179. 4 Nov. 1980. Print.
- Valladares Barrocas, Helcio V. Process for Dehydration of a Low Molecular Weight Alcohol. Petroleo Brasileiro S.A.-Petrobras, assignee. Patent 4396789. 2 Aug. 1983. Print.

Section XV

Appendix

Appendix Table of Contents

Section

- A. Sample Calculations
- B. ASPEN Printouts
- C. Problem Statement
- D. Relevant Documents
- E. MSDS Reports

Appendix A

Sample Calculations

CALCULATIONS FOR DISTILLATION COLUMN SIZING (D301)

Weighted liquid density (ρ_L)

$$p_L = \sum (p_i)(MassFrac_i) \tag{0.1}$$

Where ρ_i = density of each component in the stream

MassFrac_i= mass fraction of that component within the stream

 $\rho_L = (1000 \text{ kg/m}^3 \text{ H}_2\text{O})(\sim 1.0) = 1000 \text{ kg/m}^3$

Weighted gas density (ρ_g)

$$MW = \sum (MW_i)(MassFrac_i) \tag{0.2}$$

Where MW= weighted molecular weight of gas stream

MassFrac_i= mass fraction of that component within the stream

$$p_g = \frac{MW * P}{R * T} \tag{0.3}$$

Where P= pressure at the top tray

R= ideal gas constant

T= absolute temperature at that tray

 $MW = (0.0461 \text{ kg/mol ethanol})(0.515) + (0.016 \text{ kg/mol } H_2O)(0.318) + (0.0461 \text{kg/mol ether})(0.049) + (0.026 \text{ kg/mol acetylene})(0.080) = 0.034 \text{ kg/mol}$

$$p_g = \frac{(0.034 \frac{kg}{mol})(20.4bar)}{(8.314x10^{-5} \frac{m^3 \cdot bar}{K \cdot mol})(449K)} = 18.5 \frac{kg}{m^3}$$

Flooding Correlation (F_{LG})

$$F_{LG} = \frac{L}{G} \left(\frac{p_G}{p_L} \right)^{0.5} \tag{0.4}$$

Where L= liquid rate

G= gas rate

$$F_{LG} = \left(\frac{88500 \frac{kg}{hr}}{48200 \frac{kg}{hr}}\right) \left(\frac{18.5 \frac{kg}{m^3}}{1000 \frac{kg}{m^3}}\right)^{0.5} = 0.250$$

Parameter C_{SB}

(Use table in *Seider et al* pg.505)

For 18 inch spacing, $C_{SB} = 0.2 \text{ft/s}$

Surface Tension Factor (FST)

$$F_{ST} = (\frac{\sigma}{20})^{0.20} \tag{0.5}$$

 σ = surface tension (dyne/cm)~20

$$F_{ST} = \left(\frac{20\frac{dyne}{cm}}{20}\right)^{0.20} \approx 1$$

Foaming Factor (F_F)

For non-foaming systems, F_F=1

Hole-Area Factor (F_{HA})

1 for

$$\frac{A_h}{A_T} \ge 0.1 \tag{0.6}$$

Where $A_{h=}$ total hole area on tray

A_a= is the active area of the tray

Capacity Parameter (C)

$$C = C_{SR} F_{ST} F_F F_{HA} \tag{0.7}$$

C=(0.2ft/s)(1)(1)(1)=0.2ft/s

Flooding Velocity (U_f)

$$U_f = C(\frac{\rho_L - \rho_G}{\rho_G})^{0.5} \tag{1.8}$$

$$U_f = 0.2 \frac{ft}{s} \left(\frac{1000 \frac{kg}{s} - 18.5 \frac{kg}{s}}{18.5 \frac{kg}{s}} \right)^{0.5} = 1.46 \frac{ft}{s} * \frac{3600s}{hr} = 5248 \frac{ft}{hr}$$

Ratio A_d/A_T (for $0.1 \le F_{LG} \le 1.0$)

$$\frac{A_d}{A_T} = 0.1 + \frac{(F_{LG} - 0.1)}{9} \tag{1.9}$$

$$\frac{A_d}{A_T} = 0.1 + \frac{(0.250 - 0.1)}{9} = 0.117$$

Fraction of Inside Cross-sectional Area to Vapor Flooding Velocity (f)

$$f = (0.75 \sim 0.85)$$

Assume f=0.85

Tower Inside Diameter (D_T)

$$D_T = \sqrt{\frac{4G}{(fU_f)\pi\left(1 - \frac{A_d}{A_T}\right)\rho_G}}$$
 (1.10)

$$D_T = \sqrt{\frac{4 * 48200 \frac{kg}{hr}}{\left(0.85 * 5250 \frac{ft}{hr} * 0.3048 \frac{mft}{m}\right) \pi (1 - 0.117) * 18.5 \frac{kg}{m^3}}} = 2m = 6 ft$$

Tower Height (H)

$$H = (N_{travs} - 1) * (spacing) + 4 ft + 10 ft$$
 (1.11)

H=(26-1)*2.0ft+4ft+10ft=64 feet

REACTOR COSTING CALCULATIONS (R101)

$$P_d = \exp \left\{ 0.60608 + 0.91615 [\ln(P_0)] + 0.0015655 [\ln(P_0)]^2 \right\}$$

$$P_d = \exp\left\{0.60608 + 0.91615[\ln(588psig)] + 0.0015655[\ln(588[sig)]^2\right\}$$

$$P_d = 673$$
psig

$$t_s = \frac{P_d * D_i}{2*S*E-1.2*P_d}$$

$$t_{s} = \frac{(673psig)(5.81ft)}{2*13100-1.2(673psig)}$$

$$t_s = 0.154ft$$

$$W = \pi (D_i + t_s)(L + 0.8D_i) * t_s * \rho$$

$$W = \pi (5.81ft + .154ft)(8.46ft + 0.8(5.81ft)) * (.154ft) * (473\frac{lb}{ft^3})$$

$$W = 17,874lb$$

$$C_V = \exp \{8.9552 - 0.2330[\ln(W)] + 0.04333[\ln(W)]^2$$

$$C_V = \exp\left\{8.9552 - 0.2330[\ln(17874lb)] + 0.04333[\ln(17874lb)]^2\right.$$

$$C_V = $50,400$$

$$C_P = F_M * C_V + C_{PL}$$

$$C_P = (1.2) * (\$50400) + 0$$

$$C_P = \$63,345$$

$$C_{BM} = F_{BM} * C_P$$

$$C_{BM} = (3.05)(\$63345)$$

$$C_{BM} = \$193,201$$

APPENDIX B

ASPEN Reports

The following are ASPEN block results for the blocks representing R101, HX101, FL101, D501, and F101.

BLOCK: R1 MC	DDEL: RSTOIC				
INLET STREAM: OUTLET STREAM: PROPERTY OPTION HENRY-COMPS ID:	20 SET: NRTL-RK		(NRTL) /	REDLICH-KWO	ONG
	*** MASS A				
DIFF.	IN		OUT	GENERATIO	N RELATIVE
TOTAL BALANCE					
MOLE(KMOL/HR)	6142.95	99	38.61	3795.66	
0.00000					
MASS(KG/HR)	262557.	26	52557.		
0.00000 ENTHALPY (GCAL/HF 0.967891E-01	-301.338	-27	72.172		-
FEED STREAMS CO PRODUCT STREAMS NET STREAMS CO2 UTILITIES CO2E TOTAL CO2E PROD	CO2E E PRODUCTION PRODUCTION	0.00000 434.297 434.297 0.00000	KG/H KG/H	R R R R	
STOICHIOMETRY MA		IPUT DATA	* * *		
REACTION # 1: SUBSTREAM MIXE ETHANOL -1.0	ED :	1.00	ETHYLENE	1.00	
REACTION # 2: SUBSTREAM MIXE ETHANOL -2.0		1.00	ETHER	1.00	
REACTION # 3: SUBSTREAM MIXE ETHANOL -1.0		-1.00	AACID	1.00	HYDROGEN
REACTION # 4: SUBSTREAM MIXE ETHANOL -1.0	ID :	1.00	HYDROGEN	1.00	
REACTION # 5: SUBSTREAM MIXE ETHANOL -1.0	ED :	1.00	METHANE	2.00	HYDROGEN -

29.166

REACTION # 6:
SUBSTREAM MIXED:
ETHANOL -1.00 WATER 1.00 ETHANE 1.00 HYDROGEN 1.00

REACTION CONVERSION SPECS: NUMBER= 6

REACTION # 1:
SUBSTREAM:MIXED KEY COMP:ETHANOL CONV FRAC: 0.7000

REACTION # 2:
SUBSTREAM:MIXED KEY COMP:ETHANOL CONV FRAC: 0.5000E-02

REACTION # 3:
SUBSTREAM:MIXED KEY COMP:ETHANOL CONV FRAC: 0.2500E-03

REACTION # 4:
SUBSTREAM:MIXED KEY COMP:ETHANOL CONV FRAC: 0.8000E-03

REACTION # 5:
SUBSTREAM:MIXED KEY COMP:ETHANOL CONV FRAC: 0.1000E-03

REACTION # 6:
SUBSTREAM:MIXED KEY COMP:ETHANOL CONV FRAC: 0.1000E-03

ONE PHASE TP FLASH SPECIFIED PHASE IS VAPOR SPECIFIED TEMPERATURE C 310.000 SPECIFIED PRESSURE BAR 40.2767 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 SIMULTANEOUS REACTIONS GENERATE COMBUSTION REACTIONS FOR FEED SPECIES NO *** RESULTS *** OUTLET TEMPERATURE С 310.00 OUTLET PRESSURE BAR 40.277

GCAL/HR

REACTION EXTENTS:

HEAT DUTY

REACTION	REACTION
NUMBER	EXTENT
	KMOL/HR
1	3790.0
2	13.536
3	1.3536
4	4.3314
5	0.54142
6	0.54142

BLOCK: FURN1 MODEL: HEATER
----INLET STREAM: FROMRHX

OUTLET STREAM: REACTIN

PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

HENRY-COMPS ID: HC-1

*** MASS AND ENERGY BALANCE ***

IN OUT RELATIVE

DIFF.

TOTAL BALANCE

MOLE (KMOL/HR) 6142.95 6142.95 0.00000 MASS (KG/HR) 262557. 262557. 0.00000 ENTHALPY (GCAL/HR) -317.242 -301.338 -0.501316E-

01

*** CO2 EQUIVALENT SUMMARY ***

FEED STREAMS CO2E 0.00000 KG/HR
PRODUCT STREAMS CO2E 0.00000 KG/HR
NET STREAMS CO2E PRODUCTION 0.00000 KG/HR
UTILITIES CO2E PRODUCTION 0.00000 KG/HR
TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***

TWO PHASE TP FLASH

SPECIFIED TEMPERATURE C 400.000 SPECIFIED PRESSURE BAR 42.6072 MAXIMUM NO. ITERATIONS 30

CONVERGENCE TOLERANCE

0.000100000

*** RESULTS ***

OUTLET TEMPERATURE C 400.00
OUTLET PRESSURE BAR 42.607
HEAT DUTY GCAL/HR 15.904
OUTLET VAPOR FRACTION 1.0000
PRESSURE-DROP CORRELATION PARAMETER -1165.8

V-L PHASE EQUILIBRIUM :

COMP F(I) X(I) Y(I) K(I) ETHANOL 0.88138 0.96486 0.88138

1.8458

WATER 0.11862 0.35136E-01 0.11862

6.8219

BLOCK: FLASH1 MODEL: FLASH3

INLET STREAM: SEPFEEDC

OUTLET STREAM: SEPFEEDC
OUTLET VAPOR STREAM: FTOP
FIRST LIQUID OUTLET: FMIDDLE
SECOND LIQUID OUTLET: FBOTTOM

PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

HENRY-COMPS	ID:	HC-1

11	ENKI COMIS ID.	110	L			
		*** MA:	SS AND ENE	RGY BALANCI		RELATIVE
DIFF	•					
	TOTAL BALANCE MOLE (KMOL/HF	2)	11717.	4	11717.4	-0.155238E-
15 15	MASS (KG/HR)	269682	. 2	269682.	-0.431676E-
09	ENTHALPY (GCA	AL/HR)	-361.94	7 –:	361.947	0.743684E-
			_			
	FEED STREAMS CO PRODUCT STREAMS NET STREAMS CO2 UTILITIES CO2E TOTAL CO2E PROD	02E S CO2E E PRODUCTION PRODUCTION	1051.8 1051.8 0.0000 0.0000	00 KG, 00 KG,	/HR /HR /HR /HR	
		***	INPUT DA	TA ***		
S S M C N	HREE PHASE PÇ PECIFIED PRESSU PECIFIED HEAT I IAXIMUM NO. ITEF CONVERGENCE TOLE TO KEY COMPONENT EY LIQUID STREF	PLASH URE BAR DUTY GCAL RATIONS CRANCE LIS SPECIF	/HR			39.5167 0.0 30 0.000100000
C V 1	OUTLET TEMPERATU OUTLET PRESSURE PAPOR FRACTION ST LIQUID/TOTAI	BAR LIQUID	NEOULIO	***		49.971 39.517 0.46334 1.0000
	COMP	F(I)	X1(I)	X2(I)	Y(I)	K1(I)
K2(I	ETHANOL 9E-01	0.863E-02	0.151E-01	0.151E-01	0.107E-02	0.709E-01
		0.528	0.980	0.980	0.485E-02	0.495E-02
458.	ETHYLENE	0.459	0.215E-02	0.215E-02	0.987	458.
10.0	ETHER	0.206E-02	0.399E-03	0.399E-03	0.399E-02	10.0
	METHANE 4E+04	0.224E-03	0.389E-06	0.389E-06	0.483E-03	0.124E+04
0.67	ACETALD	0.154E-02	0.181E-02	0.181E-02	0.121E-02	0.670
1.10	ETHANE	0.143E-03	0.136E-03	0.136E-03	0.150E-03	1.10

AACID 0.143E-03 0.265E-03 0.265E-03 0.129E-05 0.485E-02 0.485E-02

HYDROGEN 0.499E-03 0.819E-06 0.819E-06 0.108E-02 0.131E+04

0.131E+04

BLOCK: CRYO MODEL: RADFRAC -----

INLETS - INCRYO STAGE 3 OUTLETS - CRYOVER STAGE 1

CPURGE STAGE 6 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

HENRY-COMPS ID: HC-1

*** MASS AND ENERGY BALANCE ***

OUT ΙN RELATIVE DIEE TOTAL BALANCE MOLE (KMOL/HR) 5395.80 5395.80 -0.384217E-09 MASS(KG/HR) 152275. 152275. -0.322460E-09 ENTHALPY (GCAL/HR) 60.3259 58.4819 0.305663E-01

*** CO2 EQUIVALENT SUMMARY ***

PRODUCT STREAMS CO2E 1050.87 KG/HR
PRODUCT STREAMS CO2E 1050.87 NET STREAMS CO2E PRODUCTION 0.879258E-04 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.879258E-04 KG/HR

> ******* **** INPUT DATA **** ******

**** INPUT PARAMETERS ****

NUMBER OF STAGES 6 ALGORITHM OPTION STANDARD ABSORBER OPTION NO INITIALIZATION OPTION STANDARD HYDRAULIC PARAMETER CALCULATIONS NO INSIDE LOOP CONVERGENCE METHOD BROYDEN NESTED DESIGN SPECIFICATION METHOD MAXIMUM NO. OF OUTSIDE LOOP ITERATIONS 150 MAXIMUM NO. OF INSIDE LOOP ITERATIONS 10 MAXIMUM NUMBER OF FLASH ITERATIONS 30 FLASH TOLERANCE 0.000100000 OUTSIDE LOOP CONVERGENCE TOLERANCE 0.000100000

**** COL-SPECS ****

MOLAR VAPOR DIST / TOTAL DIST

MASS REFLUX RATIO

MASS DISTILLATE RATE

KG/HR

1.00000

0.75000

**** PROFILES ****

P-SPEC STAGE 1 PRES, BAR 19.2518

*** COMPONENT SPLIT FRACTIONS ***

		OUTLET STREAMS
	CRYOVER	CPURGE
COMPONENT:		
ETHANOL	1.0000	0.0000
WATER	.33271E-07	1.0000
ETHYLENE	.99661	.33920E-02
ETHER	.11471E-04	.99999
METHANE	1.0000	.46106E-06
ACETALD	.28257E-04	.99997
ETHANE	.51445	.48555
AACID	.31932E-10	1.0000
HYDROGEN	1.0000	.80519E-12

*** SUMMARY OF KEY RESULTS ***

TOP STAGE TEMPERATURE	С	-55.2971
BOTTOM STAGE TEMPERATURE	С	-29.5271
TOP STAGE LIQUID FLOW	KMOL/HR	4,007.41
BOTTOM STAGE LIQUID FLOW	KMOL/HR	45.9789
TOP STAGE VAPOR FLOW	KMOL/HR	5,349.82
BOILUP VAPOR FLOW	KMOL/HR	3,115.93
MOLAR REFLUX RATIO		0.74907
MOLAR BOILUP RATIO		67.7686
CONDENSER DUTY (W/O SUBCOOL)	GCAL/HR	-14.2018
REBOILER DUTY	GCAL/HR	12.3579

**** MAXIMUM FINAL RELATIVE ERRORS ****

DEW POINT	0.24631E-05	STAGE=	6
BUBBLE POINT	0.18015E-07	STAGE=	6
COMPONENT MASS BALANCE	0.75536E-06	STAGE=	5 COMP=ETHER
ENERGY BALANCE	0.25259E-06	STAGE=	6

**** PROFILES ****

^{**}NOTE** REPORTED VALUES FOR STAGE LIQUID AND VAPOR RATES ARE THE FLOWS

FROM THE STAGE INCLUDING ANY SIDE PRODUCT.

STAGE	TEMPERATU	RE PRES	SURE		ENTHAI KCAL/N	MOT.	HEAT DUTY
	С	BAR		LI	IQUID	VAPOR	GCAL/HR
2 3 4 5	-55.297 -55.083 -55.029 -55.000 -54.772 -29.527	19.2 19.2 19.2 19.2 19.2	260 268 277 285	7.2 7.1 7.0 6.5	2006 .344)945	11.238 11.249 11.258 11.245 11.210 11.152	-14.2018 12.3578
	FLOW	RATE			FEED RATE		PRODUCT RATE
	KMOL	/HR		T.TOIITD	KMOL/HR VAPOR	MIXED	KMOL/HR LIQUID
5349.8	4007 . 226	5350.				MIXED	птботр
3 4	3528. 3530. 3526. 3162.	3485. 3484.		2.9462	5392.8552		
	45.98						45.9789
**	** MASS F	LOW PROF	LES	* * * *			
STAGE	KG/H	R			FEED RATE KG/HR		PRODUCT RATE KG/HR
VAPOR	TIĞOID	VAPOR		LIĞOID	VAPOR	MIXED	LIQUID
.14990 2 0 3 0 4 0	.1124E+06 +06 .9997E+05 .1001E+06 .1000E+06 .9039E+05	0.2623E+(0.9778E+(0.9775E+()6)5 1	90.2472	.15209+06		
6	2375.	0.8802E+0)5				2375.3259
			****	MOLE->	K-PROFILE	***	
STA METHAN	GE ETH E	ANOL	TAW	ER.	ETHYLE	NE E	THER
0.7848	1 0.133 6E-04	47E-30	0.459)21E-14	0.99965	0.2	4372E-04
0.5012	2 0.766 6E-04	56E-31	0.127	48E-10	0.99247	0.5	4650E-02
0.8125	3 0.178 1E-05	13E-30	0.624	59E-10	0.99140	0.6	0986E-02
	4 0.533	03E-51	0.625	30E-10	0.99019	0.6	1132E-02
	5 0.160	56E-71	0.711	48E-10	0.98083	0.1	0081E-01
	6 0.108	81E-69	0.479	046E-08	0.39536	0.4	6733

STAGE 1 2 3 4 5	0.16098E-02 0.16824E-02 0.16902E-02 0.36909E-02	ETHANE 0.22100E-03 0.39387E-03 0.81084E-03 0.20048E-02 0.53937E-02	0.10782E-07 0.16649E-06 0.16668E-06	HYDROGEN 0.11853E-04 0.68311E-05 0.75451E-07 0.83378E-09 0.91971E-11	
		**** MOLE-	Y-PROFILE	***	
STAGE	ETHANOL	WATER	ETHYLENE	ETHER	
METHANE					
1	0.45270E-10	0.13710E-17	0.99834	0.46074E-07	
0.48977E-0)3				
2	0.25883E-10	0.19674E-14	0.99890	0.10464E-04	
0.31363E-0)3				
3	0.60285E-10	0.95588E-14	0.99964	0.11760E-04	
0.50798E-0)4				
4	0.18048E-30	0.95147E-14	0.99927	0.11818E-04	
0.82320E-0)5				
5	0.54007E-51	0.97801E-14	0.99805	0.19714E-04	
0.13340E-0)5				
6	0.23695E-73	0.14484E-11	0.98947	0.33336E-02	
0.21542E-0)6				
			Y-PROFILE		
STAGE	ACETALD			HYDROGEN	
1		0.77554E-04			
2		0.13899E-03			
3	0.49305E-05	0.28662E-03	0.19245E-11	0.69253E-05	
4	0.49646E-05	0.70915E-03	0.19332E-11	0.76447E-07	
5	0.10992E-04	0.19188E-02	0.21971E-11	0.84479E-09	
6	0.18450E-02	0.53477E-02	0.84414E-09	0.93313E-11	
		**** K-VALU	JES	***	
STAGE	ETHANOL	WATER	ETHYLENE	ETHER	
METHANE					
1	0.10000E+21	0.29856E-03	0.99869	0.18905E-02	6.2402
2	0.10000E+21	0.15433E-03	1.0065	0.19147E-02	6.2568
3	0.10000E+21	0.15304E-03	1.0083	0.19283E-02	6.2520
4	0.10000E+21	0.15216E-03	1.0092	0.19332E-02	6.2508
5	0.10000E+21	0.13746E-03	1.0176	0.19557E-02	6.2728
6	0.21777E-03	0.30210E-03	2.5027	0.71333E-02	8.1988
		**** K-VALU	JES	***	
STAGE	ACETALD	ETHANE	AACID	HYDROGEN	
1	0.28678E-02	0.35092	0.12148E-04	92.069	
2	0.29127E-02	0.35288	0.11470E-04	92.082	
3	0.29307E-02	0.35348	0.11559E-04	91.785	
4	0.29373E-02	0.35372	0.11598E-04	91.687	
5	0.29782E-02	0.35574	0.11768E-04	91.854	
6	0.14326E-01	0.62789	0.66041E-04	91.266	

STAGE METHANE	ETHANOL	**** MASS-X WATER	-PROFILE ETHYLENE	
		0.29489E-14	0.99964	0.64393E-04
	0.12465E-30	0.81065E-11	0.98275	0.14298E-01
	0.28933E-30	0.39672E-10	0.98058	0.15938E-01
	0.86568E-51	0.39712E-10	0.97927	0.15974E-01
5 0.11934E-0	0.25874E-71	0.44835E-10	0.96250	0.26137E-01
6 0.81590E-0	0.97032E-70 8	0.16720E-08	0.21469	0.67051
		**** MASS-X	-DROFILE	***
STAGE 1 2 3 4 5	ACETALD 0.17126E-04 0.25031E-02 0.26130E-02 0.26249E-02 0.56876E-02 0.10982	ETHANE 0.23688E-03 0.41803E-03 0.85963E-03 0.21252E-02	AACID 0.61812E-12 0.22855E-07 0.35250E-06 0.35286E-06	HYDROGEN 0.85173E-06 0.48606E-06 0.53626E-08 0.59253E-10 0.64853E-12
		**** MASS-Y	-PROFILE	***
	ETHANOL	**** MASS-Y WATER		**** ETHER
METHANE 1	0.74432E-10	WATER	ETHYLENE	
METHANE 1 0.28042E-0 2	0.74432E-10 3 0.42533E-10	WATER	ETHYLENE	ETHER
METHANE 1 0.28042E-0 2 0.17947E-0	0.74432E-10 3 0.42533E-10 3 0.98997E-10	WATER 0.88150E-18	ETHYLENE 0.99956	ETHER 0.12188E-06
METHANE 1 0.28042E-0 2 0.17947E-0 3 0.29049E-0 4 0.47072E-0	0.74432E-10 3 0.42533E-10 3 0.98997E-10 4 0.29636E-30 5	WATER 0.88150E-18 0.12643E-14 0.61383E-14 0.61096E-14	ETHYLENE 0.99956 0.99959	ETHER 0.12188E-06 0.27667E-04 0.31071E-04 0.31224E-04
METHANE 1 0.28042E-0 2 0.17947E-0 3 0.29049E-0 4 0.47072E-0 5 0.76273E-0	0.74432E-10 3 0.42533E-10 3 0.98997E-10 4 0.29636E-30 5 0.88674E-51	WATER 0.88150E-18 0.12643E-14 0.61383E-14 0.61096E-14 0.62794E-14	ETHYLENE 0.99956 0.99959 0.99962 0.99920 0.99787	ETHER 0.12188E-06 0.27667E-04 0.31071E-04 0.31224E-04 0.52080E-04
METHANE 1 0.28042E-0 2 0.17947E-0 3 0.29049E-0 4 0.47072E-0 5 0.76273E-0	0.74432E-10 3 0.42533E-10 3 0.98997E-10 4 0.29636E-30 5 0.88674E-51 6 0.38644E-73	WATER 0.88150E-18 0.12643E-14 0.61383E-14 0.61096E-14 0.62794E-14	ETHYLENE 0.99956 0.99959 0.99962 0.99920 0.99787	ETHER 0.12188E-06 0.27667E-04 0.31071E-04 0.31224E-04
METHANE 1 0.28042E-0 2 0.17947E-0 3 0.29049E-0 4 0.47072E-0 5 0.76273E-0 6	0.74432E-10 3 0.42533E-10 3 0.98997E-10 4 0.29636E-30 5 0.88674E-51 6 0.38644E-73	WATER 0.88150E-18 0.12643E-14 0.61383E-14 0.61096E-14 0.62794E-14 0.92372E-12 **** MASS-YETHANE 0.83228E-04 0.14908E-03 0.30721E-03 0.76005E-03	ETHYLENE 0.99956 0.99959 0.99962 0.99920 0.99787 0.98268 -PROFILE AACID 0.75183E-17 0.26491E-12 0.41196E-11 0.41379E-11	ETHER 0.12188E-06 0.27667E-04 0.31071E-04 0.31224E-04 0.52080E-04 0.87474E-02 **** HYDROGEN 0.78515E-04 0.45231E-04 0.49763E-06 0.54929E-08

UTILITY USAGE: HW (WATER)

REBOILER 2.2428+04 0.4486

TOTAL: 2.2428+04 KG/HR 0.4486 \$/HR

BLOCK: REACTHX MODEL: HEATX

HOT SIDE:

INLET STREAM: REACTOUT
OUTLET STREAM: SEPFFFD
PROPERTY OF

PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

HENRY-COMPS ID: HC-1

COLD SIDE:

INLET STREAM: TORHX
OUTLET STREAM: FROMRHX

PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

HENRY-COMPS ID: HC-1

*** MASS AND ENERGY BALANCE ***

IN OUT RELATIVE

DIFF.

TOTAL BALANCE

MOLE (KMOL/HR) 17860.4 17860.4 0.00000 MASS (KG/HR) 532239. 532239. 0.00000 ENTHALPY (GCAL/HR) -672.382 -672.382 -0.169081E-

15

*** CO2 EQUIVALENT SUMMARY ***

FEED STREAMS CO2E 1051.87 KG/HR
PRODUCT STREAMS CO2E 1051.87 KG/HR
NET STREAMS CO2E PRODUCTION 0.00000 KG/HR
UTILITIES CO2E PRODUCTION 0.00000 KG/HR
TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***

FLASH SPECS FOR HOT SIDE:

TWO PHASE FLASH

MAXIMUM NO. ITERATIONS 30

CONVERGENCE TOLERANCE 0.000100000

FLASH SPECS FOR COLD SIDE:

TWO PHASE FLASH

MAXIMUM NO. ITERATIONS 30

CONVERGENCE TOLERANCE 0.000100000

FLOW DIRECTION AND SPECIFICATION:

COUNTERCURRENT HEAT EXCHANGER

SPECIFIED COLD OUTLET TEMP

SPECIFIED VALUE C 300.0000 LMTD CORRECTION FACTOR 1.00000

PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE COLD SIDE OUTLET PRESSURE	BAR	39.8000 41.0500
HEAT TRANSFER COEFFICIENT SPECIF OVERALL COEFFICIENT	ICATION: KCAL/HR-SQM-K	1220.6069
	L RESULTS ***	
^^^ OVERAL	L KESULIS ^^^	
STREAMS:		
REACTOUT> T= 3.1000D+02 8.1840D+01	НОТ	 > SEPFEED T=
P= 4.0074D+01		P=
3.9800D+01 V= 1.0000D+00 4.7123D-01		V=
FROMRHX < T= 3.0000D+02 2.6026D+01	COLD	 < TORHX T=
P= 4.1050D+01		P=
4.1543D+01 V= 1.0000D+00 0.0000D+00		V=
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN		90.8984 2794.9152 2794.9152 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	KCAL/HR-SQM-K CAL/SEC-K	1220.6069 947636.8860
LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERIES	С	1.0000 26.6448 1
PRESSURE DROP: HOTSIDE, TOTAL COLDSIDE, TOTAL	BAR BAR	0.2740 0.4932
PRESSURE DROP PARAMETER: HOT SIDE: COLD SIDE:		154.74 779.31

APPENDIX C

Problem Statement

Ethylene from Ethanol

(Recommended by Bruce M. Vrana, DuPont)

Ethylene is conventionally produced from fossil-fuel feedstocks such as ethane or naphtha in huge, expensive ethylene crackers. Typical crackers produce 1 million tonnes of ethylene per year and cost over a billion dollars to build. The ethylene market is large and growing worldwide. The industry needs about 5 million tonnes per year of new capacity by 2030 in the U.S. alone. Ethylene is one of the basic building blocks of the chemical industry, going into a wide variety of products, including polyethylene, polystyrene, ethylene glycol, and PVC. To reduce your company's dependence on fossil fuels, your team has been assembled to design a plant to make 1MM tonnes of ethylene per year from ethanol, made by fermentation of renewable resources. The goal is to be cost competitive with fossil ethylene while reducing greenhouse gas emissions.

Ethanol dehydration to ethylene was practiced commercially in the first half of the 20th century in the U.S. and Europe, and in the second half of the century in Brazil and elsewhere, but was abandoned largely with the global expansion of the petrochemical industry. However, with the increase in the cost of, and limited supply of, fossil fuels, and the growing production of ethanol, companies are beginning to consider this technology again.

Ethanol dehydration to ethylene is an endothermic reaction, usually carried out at 300 to 400°C at moderate pressure over an activated alumina or silica catalyst. Ethanol conversion is 98%, and selectivity to ethylene is about 98%. Ethylene must be 99.96% pure to meet polymer grade specs.

There are two different reactor technologies. An isothermal fixed bed reactor can be run at 350°C with a liquid hourly space velocity of 0.2/hr. Catalyst is typically packed in tubes of a heat exchanger, with heating on the outside to maintain isothermal operation. The catalyst must be regenerated to remove coke approximately every 1 to 2 months, so your design should consider this fact. Regeneration takes about 3 days. Most plants built in the 20th century used isothermal technology. (If you cannot find selectivity data, you may assume the same product distribution as in the Petrobras patent for adiabatic reactors without steam co-feed at whatever pressure you wish to operate).

Alternatively, an adiabatic fixed bed reactor can be used, with an inlet temperature of 450°C. Petrobras technology used steam in the feed to solve the coking problem, and catalyst life was about 1 year. The Petrobras patent gives more details. You may use either isothermal or adiabatic reactor technology, and if adiabatic, you may add steam to the feed or not. You should justify your choice based on economic estimates as well as technical feasibility. The United States and Brazil produce most of the world's ethanol by fermentation of local agricultural feedstocks. The U.S. industry is almost entirely based on corn, while Brazil uses sugar cane. Process efficiencies in both countries have improved dramatically in recent years, with increasing ethanol production for use in transportation fuels; thus, do not use process or cost data that is more than 2-3 years old. You may locate your plant in either the U.S. or Brazil, using appropriate construction costs for your location, and local ethanol costs and specs.

If you decide to locate in Brazil, one important factor to consider in your economics is that ethanol price increases dramatically during the inter-harvest period, typically 3-4 months of the year when sugar cane cannot be harvested and local ethanol plants shut down. In recent years, Brazil has imported ethanol from the U.S. during this part of the year. Corn ethanol in the U.S. has no such restriction, as corn can be stored year-round. Be sure to include freight to your plant site in the cost of the ethanol.

You will need to make many assumptions to complete your design, since the data you have is far from complete. State them explicitly in your report, so that management may understand the uncertainty in your design and economic projections before considering the next step toward commercialization – designing and running a pilot plant. Test your economics to reasonable ranges of your assumptions. If there are any possible "showstoppers" (i.e., possible fatal flaws, if one assumption is incorrect that would make the design either technically infeasible or uneconomical), these need to be clearly communicated and understood before proceeding.

The plant design should be as environmentally friendly as possible, at a minimum meeting Federal and state emissions regulations. Recover and recycle process materials to the maximum economic extent. Also, energy consumption should be minimized, to the extent economically justified. The plant design must also be controllable and safe to operate. Remember that you will

be there for the plant start-up and will have to live with whatever design decisions you have made.

References

U.S. Patent 4,232,179, November 4, 1980, assigned to Petrobras.

The Renewable Fuels Association web site has a good description of the fuel ethanol process and industry. http://www.ethanolrfa.org

APPENDIX D

MSDS Reports

APPENDIX E

Relevant Documents