## ECON-UA 370 Quantitative Econ with Python

Lecture 1: Introduction

Zhen Huo [zh335@nyu.edu]

Matthew McKay [mm8390@nyu.edu]

Thomas Sargent [thomas.sargent@nyu.edu]

January 2016

## Introduction to the Course

The aim of this course is to teach Quantitative Economics alongside the programming language Python.

Some topics in this course include:

- Python Programming Fundamentals
- Linear State Space Models
- · Working with Data in Python
- Markov Chains
- The Lake Model of Employment and Unemployment
- •

# **Topic Schedule**

Weeks 1-3 Python: Programming Fundamentals

Weeks 4-8 Python: Linear Algebra, Linear State Space Models,
Discrete Markov Chain, and the Lake Model

Week 9 Python: Object Oriented Programming

Week 10 McCall Search Model

Week 11 Python: Data Analysis and Manipulation using Pandas

Week 12 Permanent Income Model

Weeks 13-14 Extension Topics (Asset Pricing, Kalman Filters)

Full syllabus is available on the course GitHub page.

### Course Website

Where do you get lecture slides, course notes, and assignments?

 $Github^1$ 

https://github.com/mmcky/nyu-econ-370

## Requirements ...

## The requirements for this course are:

- A laptop
- · Anaconda Python Distribution
- see Alfred for course prerequisites

## Week 1 Assignment

First Assignment

Install the Anaconda Python distribution (Ready for Thursday Class)

https://www.continuum.io/downloads

Install Guide: install-local-guide.pdf on GitHub

### Demo

Let's have a look at some of the things you will learn in this course:

- 1. Constrained Optimization (Demand with a Budget Constraint)
- 2. Linear Algebra
- 3. Schelling's Segregation Model
- 4. Lake Model

Additional Slides if Time Permits

# **Quick Survey**

Who has done some programming before?

Who has used Python before?

# Why Python?

#### Python is:

- 1. free
- 2. a full programming environment
- 3. easier to learn than some other languages
- 4. has a large package library
- 5. has a large community
- 6. ...

Provides a powerful environment for scientific research and computation.

# Python 2.7 or 3.5?

#### Python 2.7

- Pro
  - More packages are available in Python 2.7
  - A lot of examples are written in Python 2.7 syntax.
- Con
  - In maintenance mode not getting new features as the language develops over time.

### Python 3.5 (Best **default** selection)

- Pro
  - Newest version which is the long term future of Python
  - Most of the scientific stack has been ported to Python 3
- Con
  - Sometimes want to use a library which has not been migrated to Python 3 yet. (but can make use of conda environments if needed)



## Best way to Learn Programming?

The best way to learn is through practice ...

Start with small programs and then move onto larger applications.

This process is time consuming - but it can also be fun!

### **Installation Guides**

The following installation guides are available for:

- 1. Linux<sup>2</sup>
- 2. OS X
- 3. Windows

on the course Github site:

https://github.com/mmcky/nyu-econ-370.git.

Part of Assignment #1 is to setup Anaconda on your own laptops.

<sup>&</sup>lt;sup>2</sup>Ubuntu and its derivatives are the most commonly. Linux Mint is used in the installation guide.

# Jupyter

Jupyter is an excellent interactive environment in the Data Science community

Learn more here

Jupyter Demo

# Some simple tests

Run these commands in a terminal.

- 1. Try updating conda by typing: conda update conda
- Try updating the anaconda library by typing: conda update anaconda
- 3. Open IPython Notebook by typing: jupyter notebook open a new notebook and try out a few python examples
- 4. Install QuantEcon library by typing in a terminal: pip install quantecon. Next open an Jupyter notebook and try importing the library using: import quantecon as qe in one of the code blocks

**Note:** For Windows systems these should be run in a cmd or powershell terminal.