

Kurz Data Science

Kde jsme?

Úvod	Programování v Pythonu	Matematika & Datová analýza	Klasické strojové učení	Umělé neuronové sítě	Závěrečný projekt
 1-3 ★ Úvod do Data Science ★ Nástroj GIT (video) ★ Systémové nástroje, správa verzí GIT a projektový management 	 4-6 ★ Základy Pythonu ★ Python pro mírně pokročilé ★ Python v Data Science 	7-10 ★ Datové pipeliny ★ Matematický základ pro Data Science ★ Zpracování dat & explorativní datová analýza ★ Vizualizace dat	 ★ Klasické strojové učení ★ Učení pod dohledem: Regrese ★ Cvičení: Regrese (projekt) ★ Učení pod dohledem: Klasifikace ★ Cvičení: Klasifikace (projekt) ★ Učení bez dohledu ★ Cvičení: Učení bez dohledu (projekt) 	 18-21 ★ Úvod do umělých neuronových sítí ★ TensorFlow knihovna & Keras API ★ Trénování hlubokých neuronových sítí ★ Hluboké učení: Přizpůsobené trénování a aplikace 	Závěrečný projekt

Regrese (projekt)

Praktické projekty hrají klíčovou roli ve výuce ML, protože poskytují praktickou zkušenost a pomáhají upevnit vaše porozumění teoretickým konceptům s jejich aplikací v kontextu reálného světa.

- > průzkum a zpracování dat
 - zpracování chybějících hodnot
 - detekce odlehlých hodnot
 - feature engineering
 - o normalizace/standardizace dat
- > výběr modelu
 - o lineární regrese (jedna nebo více proměnných)
 - polynomiální rysy
 - vztahy proměnných
 - regularizace
 - SVR support vector regressor
 - o rozhodovací strom a souborné metody
- hodnocení modelu
 - výběr metrik (MSE, R ² nebo RMSE)
 - rozdělení trénovací/validační/testovací sada
 - o křížová validace a ladění modelu

Regrese (projekt)

Praktické projekty zahrnují prezentaci vašich zjištění zainteresovaným stranám nebo členům týmu. Prostřednictvím těchto projektů rozvineme dovednosti v efektivní komunikaci výsledků a jejich vizualizaci, což je klíčové pro předávání komplexních konceptů netechnickému publiku.

- vysvětlete všechny provedené kroky
- diskutujte o potížích, se kterými jste se setkali
- > zobrazte srovnání výkonnosti každého modelu
- interpretujte výsledky (včetně koeficientů a statistické významnosti proměnných)

Mít sbírku dokončených projektů prokazuje vaši schopnost používat regresní techniky a zvyšuje vaši důvěryhodnost jako datového vědce nebo analytika.

- poskytujte zdrojový kód ve skriptech .ipynb nebo .py
- nahrávejte své projekty na GitHub
- Prezentujte je ve svém portfoliu nebo při pracovních pohovorech

Regrese (projekt)

Rozvrh dne

- > rozdělení do projektových skupin (max. 2-3 osoby)
- ➤ KROK 1:
 - výběr projektu a stažení dat
 - shromáždění požadavků
 - o porozumění datům
 - předběžná analýza dat
- SHRNUTÍ 1:
 - podrobný popis a prezentace hypotéz, které mají být testovány
- ➤ KROK 2:
 - průzkumná analýza dat (EDA)
 - vizualizace dat
 - zpracování dat
 - aplikace regresních algoritmů
 - o hodnocení jejich výkonu
 - o možné aplikace
- ➤ SHRNUTÍ 2

Regrese (projekt)

Požadavky

- Projekt lze dodat jako:
 - PowerPoint nebo prezentace Google Slides
 - alt. lze to provést v aplikaci Jupyter Notebook nebo Google Colab
 - Kód Pythonu ve skriptech .ipynb nebo .py
- Práce se dá vyřešit
 - V prostředí vašeho počítače nejprve nainstalujte všechny potřebné balíčky pomocí příkazu pip
 - o pomocí Google Colab
- V určitém okamžiku by měl být kód refaktorován a vyčištěn, např. pomocí PyCharm nebo jiného IDE.
- Kód by měl být sdílen se všemi členy týmu prostřednictvím vzdáleného úložiště git, například na platformě GitHub.

Regrese (projekt)

Detailní popis

- 1. Rozdělení do projektových skupin
 - Můžete si vybrat sami nebo vás trenér náhodně rozdělí.
- Výsledkem tohoto cvičení by měl být krátký 1-2 stránkový úvod analyzující problém z obchodního/obsahového hlediska:
 - seznamte se s vybraným souborem dat a popisem úkolu, který má být proveden
 - stáhněte požadovaná data do počítače nebo na Disk Google
 - definujte, co o daném tématu víme
 - načtěte data, seznamte se s jejich strukturou a základními informacemi

Dále uveďte popis toho, co vaše skupina hodlá s datovým souborem dělat a jaká jsou omezení, tzn. co nelze udělat kvůli nedostatku informací nebo příliš velkému počtu odlehlých nebo chybějících hodnot.

Regrese (projekt)

- 3. Příprava dat včetně:
 - extrahujte číselné a kategorické rysy
 - připravte data
 - zbavte se nebo imputujte chybějící/neúplné hodnoty
 - agregujte informace (groupby)
 - vyčistěte data
 - zpracujte data
 - transformace atributů
 - diskretizace
 - škálování
 - shlukování
 - ..
 - základní statistiky pro každý atribut
- 4. Seznam algoritmů strojového učení, které plánujete použít k řešení vašeho problému

Detailní popis

- 5. Vizualizujte data, EDA
 - spojnicové grafy
 - histogramy
 - rozptylové grafy
 - tepelné mapy
 - sloupcové grafy

Deskriptivní statistika:

- korelační koeficienty
- rozptyl, kovariance
- standardní odchylka
- variační koeficient
- statistické rozdělení
- korelační matice

- 6. S využitím všech shromážděných informací o problému, zejména popisu dat z předchozí části, navrhněte 3 algoritmy k implementaci.
 - Implementujte algoritmy lineární regrese (pro jednu a více proměnných), polynomiální regrese a rozhodovacího stromu.
 - Zkuste minimalizovat hodnotu nákladové funkce, v případě potřeby pomocí metody gradient nebo jiné funkce zabudované do balíčku sklearn.
 - Zobrazte hodnotu nákladové funkce v grafu pro počátečních 10 a 20 iterací a váhy algoritmu.
 - Proveďte předpovědi pomocí trénovaného modelu.

- 7. Rozdělte data do trénovací a validační sady
 - Použijte křížovou validaci a leave-one-out (nezapomeňte zamíchat data)
 - Vyhodnoťte výkonnost modelů (koeficient determinace a dvě metody měření chyby predikce)
 - Stanovte řešení problému nadměrného nebo nedostatečného přizpůsobení algoritmu (overfitting a underfitting)
 - Nalezněte kompromis mezi odchylkou a rozptylem (bias a variance) a zobrazte jej v grafu

- 8. Vyvoďte závěry z předchozích kroků a na 1–2 snímcích vysvětlete, proč jste použili tento konkrétní model, přičemž mějte na paměti:
 - rozlišení lineárních a nelineárních problémů
 - vliv statistik, jako je korelace
 - odlehlé hodnoty
 - váhy algoritmu
 - hodnocení jeho výkonu
 - prediktivní schopnost

- 9. Odpovězte na otázky na 1-2 snímcích:
 - Jaké problémy jste schopni vyřešit pomocí svého algoritmu?
 - Jak se dá použít? Jak předáte získané informace někomu dalšímu?
 - Jak interpretujete výsledky?
 - Jak interpretujete výkon algoritmu?
 - Jak můžeme model v budoucnu zlepšit?

Souhrn

- 1. Identifikujte obtíže při práci v týmu.
- 2. Identifikujte, která část způsobila největší problémy.
- Identifikujte témata výuky, která potřebujete zopakovat..
- 4. Pomohl vám tento projekt lépe porozumět regresním problémům, které se dříve naučili?
- 5. Může vám způsob realizace projektu pomoci s nějakými budoucími problémy?

ML v praxi: Regrese (projekt)

- dokumentace sklearn https://scikit-learn.org/stable/
- > Data: https://github.com/matzim95/ML-datasets
- Regrese kompletní příklad https://towardsdatascience.com/machine-learning-with-python-regression-complete-tutorial-d2c99dc 524ec
- Rozhodovací stromy vysvětlení https://www.youtube.com/watch?v=7VeUPuFGJHk
- Přednáška SVM MIT (50 minut) https://www.youtube.com/watch?v=_PwhiWxHK8o

