Rozdział 18 Optymalizacja poleceń SQL

Schemat optymalizacji, polecenie EXPLAIN PLAN, dyrektywa AUTOTRACE, optymalizacja kosztowa i regułowa, statystyki i histogramy, metody dostępu i sortowania, indeksy typu B* drzewo, indeksy bitmapowe i funkcyjne, metody połączeń, wskazówki

Przetwarzanie polecenia SQL

Optymalizacja polecenia SQL

- struktury danych
- metody dostępu
- reguly

Polecenie EXPLAIN PLAN

Utworzenie tabeli PLAN_TABLE

SQL> @\$ORACLE_HOME\RDBMS\ADMIN\UTLXPLAN.SQL

Wygenerowanie planu wykonania zapytania

```
EXPLAIN PLAN
[ SET STATEMENT_ID = 'identyfikator' ]
FOR SELECT ... FROM ... WHERE ... ;
```

Obejrzenie wyników

SQL> @\$ORACLE_HOME\RDBMS\ADMIN\UTLXPLS.SQL

Dyrektywa AUTOTRACE

SQL> @\$ORACLE_HOME\SQLPLUS\ADMIN\PLUSTRCE.SQL SQL> GRANT PLUSTRACE TO SCOTT

SQL> SET AUTOTRACE [ON | OFF] [TRACEONLY]
[EXPLAIN] [STATISTICS]

```
SQL> SET AUTOTRACE TRACEONLY EXPLAIN

SQL> SELECT nazwisko FROM pracownicy WHERE id_prac=100;

Plan wykonania

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1 Card=1 Bytes=22)

1 0 TABLE ACCESS (BY ROWID) OF 'PRACOWNICY' (Cost=1 Card=1 Bytes=22)

2 1 INDEX (UNIQUE SCAN) OF 'PK_PRAC' (UNIQUE)

SQL> SET AUTOTRACE OFF
```


Optymalizacja

Optymalizacja to proces doboru odpowiednich struktur danych, metod dostępu i operacji (planu wykonania), w celu zminimalizowania kosztu realizacji polecenia.

Optymalizacja jest wykonywana przez wyspecjalizowany moduł systemu – optymalizator zapytań.

regułowa

- oparta na rankingu metod dostępu do struktur danych
- preferowana dla aplikacji spadkowych

kosztowa

- oparta na szacowaniu kosztu (czas zajętości procesora, liczby operacji we/wy, zajętość pamięci operacyjnej itp.), wykonania wszystkich potencjalnych planów wykonania
- zalecana dla wszystkich nowopowstających aplikacji
- zakłada duże obciążenie systemu: dużą współbieżność operacji, niski współczynnik trafień w bufor danych

Zmiana celu optymalizacji

W pliku inicjalizacyjnym bazy danych

parametr OPTIMIZER_MODE = [CHOOSE | RULE]

Dla bieżącej sesji

- parametr OPTIMIZER_GOAL
 - CHOOSE: kosztowa (jeśli są statystyki) lub regułowa
 - RULE: optymalizacja regułowa
 - ALL_ROWS: kosztowa maksymalizująca przepustowość
 - FIRST_ROWS: kosztowa minimalizująca czas odpowiedzi
 - FIRST_ROWS_N: kosztowa minimalizująca łączny czas odczytania pierwszych N (1,10,100,1000) krotek

ALTER SESSION SET OPTIMIZER_GOAL = FIRST_ROWS;

Statystyki

Informacje charakteryzujące struktury danych dane generowane dla tabeli:

- liczba wierszy,
- liczba bloków danych zawierających dane,
- liczba nigdy nie użytych, zaalokowanych bloków danych,
- średnia wielkość wolnego miejsca w zajętych blokach danych,
- liczba łańcuchowanych wierszy,
- średnia wielkość wiersza,
- dla wszystkich kolumn liczbę unikalnych wartości oraz wartość minimalną i maksymalną

dane generowane dla indeksu:

- wysokość drzewa,
- liczbę bloków-liści drzewa,
- liczbę unikalnych wartości indeksu,
- średnią liczbę bloków-liści przypadającą na jedną wartość klucza indeksu,
- średnią liczbę bloków danych (w tabeli) przypadającą jedną wartość klucza indeksu,
- współczynnik zgrupowania, który określa na ile wiersze w tabeli są uporządkowane wg klucza indeksy.

Histogramy

Szczegółowe statystyki opisujące rozkład wartości poszczególnych kolumn, przydatne w szczególności dla optymalizacji wykorzystania indeksów

Zbieranie statystyk (do Oracle 8.0)

ANALYZE TABLE nazwa_tabeli

COMPUTE STATISTICS

FOR TABLE FOR ALL INDEXES;

ANALYZE TABLE nazwa_tabeli

ESTIMATE STATISTICS

SAMPLE liczba ROWS | PERCENT;

ANALYZE TABLE nazwa_tabeli DELETE STATISTICS;

ANALYZE TABLE zespoly COMPUTE STATISTICS;
ANALYZE TABLE zespoly
ESTIMATE STATISTICS SAMPLE 20 PERCENT;

SELECT NUM_ROWS, BLOCKS, EMPTY_BLOCKS,
AVG_ROW_LEN, LAST_ANALYZED FROM USER_TABLES
WHERE TABLE_NAME = 'ZESPOLY';

Zbieranie histogramów (do Oracle 8.0)

```
ANALYZE TABLE nazwa_tabeli

COMPUTE STATISTICS

[FOR ALL INDEXES]

[FOR ALL [INDEXED] COLUMNS [SIZE liczba]]|

[FOR COLUMNS [SIZE liczba] kolumna1 [SIZE liczba], ...]};
```

ANALYZE TABLE pracownicy
ESTIMATE STATISTICS SAMPLE 10 PERCENT
FOR ALL INDEXES
FOR COLUMNS etat SIZE 5, placa_pod SIZE 3;

```
SELECT COLUMN_NAME, NUM_DISTINCT, LOW_VALUE,
HIGH_VALUE, NUM_NULLS, AVG_COL_LEN
FROM USER_TAB_COL_STATISTICS
WHERE TABLE_NAME='PRACOWNICY';
```

Zbieranie statystyk za pomocą pakietu DBMS_STATS (Oracle 8*i*)

```
GATHER_INDEX_STATS - indeksu

GATHER_TABLE_STATS - tabela, indeks, kolumny

GATHER_SCHEMA_STATS - wszystkie obiekty w schemacie

GATHER_DATABASE_STATS- wszystkie obiekty w bazie danych
```

EXEC DBMS_STATS.GATHER_TABLE_STATS('MIKOLAJ','ZESPOLY');

EXEC DBMS_STATS.DELETE_TABLE_STATS('MIKOLAJ','ZESPOLY');

Metody dostępu do danych

Dostęp za pomocą adresu rekordu (ang. ROWID)

- O numer obiektu w bazie danych
- F względny numer pliku w przestrzeni tabel
- B numer bloku w pliku
- R numer rekordu w bloku

Podstawowy – FFFF.BBBBBBBB.RRRR

Rodzaje sortowania

ORDER BY: sortowanie wyników zapytania

AGGREGATE: wyliczanie wartości funkcji grupowej

SELECT MAX(zatrudniony) FROM pracownicy;

GROUP BY: podział relacji na grupy

SELECT etat, AVG(placa_pod)
FROM pracownicy GROUP BY etat;

UNIQUE: eliminacja duplikatów

SELECT DISTINCT etat FROM pracownicy;

Indeks B*-drzewo

SELECT ETAT, PLACA_POD FROM PRACOWNICY WHERE NAZWISKO = 'Frankowski';

Rodzaje B*-drzew

- Unikalność wartości kluczy: nieunikalne, unikalne
- Liczba atrybutów w kluczu: zwykłe, skonkatenowane
- Kompresja: nie skompresowane, skompresowane
- Porządek kluczy: leksykograficzny, odwrócony

```
CREATE [ UNIQUE ] INDEX nazwa ON tabela(atrybut1, atrybut2, ..)
[ COMPRESS | NOCOMPRESS ] [ REVERSE ]
[ COMPUTE STATISTICS ];
```

CREATE INDEX i_nazwisko ON pracownicy(nazwisko) COMPRESS;

CREATE UNIQUE INDEX i_complex
ON pracownicy(id_prac, nazwisko, etat);

Przesłanki do utworzenia indeksu B*-drzewo

- na atrybutach często wykorzystywanych w warunkach selekcji,
- na atrybutach połączeniowych,
- tylko na atrybutach o dużej selektywności,
- na atrybutach rzadko modyfikowanych,
- na atrybutach będących kluczami obcymi (uniknięcie niepotrzebnego blokowania tabeli podrzędnej w przypadku operacji modyfikacji rekordów nadrzędnych)
- w systemach przetwarzania transakcyjnego OLTP

Metody dostępu do indeksu B*- drzewo

unikalne przeglądnięcie (ang. unique scan)

przeglądnięcie zakresu (ang. range scan)

pełne przeglądnięcie (ang. full scan)

- odczyt blok po bloku nawigacja po liściach
- •stosowany również do sortowania

szybkie pełne przeglądniecie (ang. fast full scan)

- odczyt wieloblokowy
- stosowany zamiast full table scan

Indeks bitmapowy

PWG01425	czerwony	fiat
WAW3456	czarny	fiat
POZ3756	czarny	BMW
KTW3756	zielony	VW
PNR8956	czerwony	BMW

SELECT count(*) FROM samochody
WHERE kolor IN
('czerwony', 'zielony')
AND marka='fiat'

Przesłanki do utworzenia indeksu bitmapowego

- w systemach przetwarzania analitycznego OLAP,
- na atrybutach o małej selektywności,
- na atrybutach rzadko modyfikowanych
- dla zapytań z poszukiwaniem wartości pustych
- dla zapytań z dużą liczbą warunków OR i AND

CREATE BITMAP INDEX nazwa ON tabela (atrybut);

CREATE BITMAP INDEX b_etat ON pracownicy(etat)
COMPUTE STATISTICS;

Indeks B*-drzewo vs. bitmapowy

B* - drzewo

- skuteczny dla atrybutów z dużą dziedziną wartości
- efektywne wykonywanie operacji koniunkcji
- wielkość słabo zależna od wielkości dziedziny atrybutu
- bardzo wysoka współbieżność modyfikacji - blokada pojedynczego klucza indeksu
- niski koszt pojedynczej modyfikacji - modyfikacja pojedynczego klucza indeksu
- stosunkowo wysoki koszt modyfikacji grupy rekordów każda wartość modyfikowana oddzielnie
- główne zastosowanie OLTP

Bitmapowy

- skuteczny dla atrybutów z małą dziedziną wartości
- efektywne wykonywanie operacji alternatywy i koniunkcji
- wielkość bardzo silnie zależna od wielkości dziedziny atrybutu
- niska współbieżność modyfikacji
 blokada całej bitmapy
- wysoki koszt pojedynczej modyfikacji - modyfikacji całej bitmapy (kompresja)
- stosunkowo niski koszt modyfikacji grupy rekordów modyfikacja grupowa z możliwością zrównoleglenia
- główne zastosowanie OLAP

Indeksy oparte na wyrażeniach

CREATE INDEX sum_płaca ON pracownicy (placa_pod+placa_dod);

Struktura fizyczna:

- Bitmapowe
- B*-drzewa

przyśpieszają operacje (selekcja, połączenie) na wyrażeniach, mogą zawierać funkcje zdefiniowane przez użytkownika zalecane dla wyrażeń umieszczanych w klauzuli ORDER BY

Tabele zorganizowane jako indeks (ang. Index-Organized Table - IOT)

tabela z indeksem

- dla tabel przeglądanych zakresami wg klucza podstawowego
- dla tabel, które zawierają niewiele informacji oprócz klucza podstawowego
- dla tabel o nigdy nie modyfikowanym kluczu podstawowym
- w systemach przetwarzania analitycznego OLAP

Tworzenie IOT

```
CREATE TABLE nazwa (..., PRIMARY KEY (...))
ORGANIZATION INDEX
[PCTTHRESHOLD procent]
[INCLUDING nazwa_kolumny]
[OVERFLOW TABLESPACE nazwa_przestrzeni_tabel]
```

```
CREATE TABLE prac_zesp (
id_prac NUMBER PRIMARY KEY,
nazwisko VARCHAR2(20),
nazwa VARCHAR2(20) )
ORGANIZATION INDEX
PCTTHRESHOLD 20
OVERFLOW TABLESPACE USERS;
```


Połączenia - nested loop

Odczyt jednokrotny

Tabela zewnętrzna

Tabela wewnętrzna

2	а
1	b
2	С
3	d
1	е

Odczyt wielokrotny

Α	3	3	d	
В	2	2	а	
В	2	2	С	
С	1	1	b	
С	1	1	е	
D	3	3	d	

Wynik połączenia

Połączenia - sort merge

Połączenia - hash join

Połączenia indeksów

SELECT id_prac FROM pracownicy WHERE placa_pod >1000;

Range scan(indeks na placa_pod)

join (hash)

Fast Full Scan(indeksu na id_prac)

120	
140	

Wskazówki (ang. hints)

Wskazówki umożliwiają określenie następujących elementów pracy optymalizatora:

- rodzaj optymalizatora,
- cel optymalizacji,
- sposób dostępu do danych,
- kolejność łączonych tabel dla operacji połączenia,
- sposób realizacji połączenia

Wskazówki umieszcza się w komentarzu bezpośrednio po klauzulach SELECT, INSERT, UPDATE, DELETE, przy czym pierwszym znakiem wskazówki musi być + (plus)

SELECT /*+ CHOOSE */ nazwisko FROM pracownicy WHERE id_prac=100;

Wybór optymalizatora

CHOOSE - kosztowy RULE - regułowy

Wybór celu optymalizacji

ALL_ROWS - przepustowość
FIRST_ROWS - czas odpowiedzi
FIRST_ROWS(n) – czas odpowiedzi (pierwszych n krotek)

Sposób dostępu do danych

FULL_SCAN(nazwa_tabeli) - pełne przeglądnięcie tabeli (ang. full scan) INDEX (nazwa_tabeli [nazwa_indeksu]) - dostęp do rekordów za pomocą indeksu

INDEX_COMBINE (nazwa_tabeli [nazwa_indeksu]) - dostęp do rekordów za pomocą indeksu bitmapowego

Kolejność łączenia tabel

ORDERED - określenie kolejności łączenie tabel według kolejności określonej w klauzuli FROM

STAR - określenie kolejności łączenie tabel o schemacie gwiazdy z wykorzystaniem indeksu skonkatenowanego

Sposób łączenia tabel

USE_NL(tabela_wewnętrzna [...]) - połączenie NESTED LOOP USE_HASH (tabela_wewnętrzna [...]) - połączenie HASH JOIN USE_MERGE (tabela_wewnętrzna [...]) - połączenie SORT MERGE

Sposób dostępu do danych cd.

- INDEX_ASC (nazwa_tabeli [nazwa_indeksu]) kierunek przeszukiwania indeksu przy selekcji zakresu wartości
- INDEX_DESC (nazwa_tabeli [nazwa_indeksu]) kierunek przeszukiwania indeksu przy selekcji zakresu wartości
- INDEX_FFS (nazwa_tabeli [nazwa_indeksu]) szybkie przeszukanie
 indeksu (ang. fast full scan)
- INDEX_JOIN (nazwa_tabeli [nazwa_indeksu]) łączenie indeksów
- AND_EQUAL(nazwa_tabeli nazwa_indeksu nazwa_indeksu) powiązanie indeksów,
- USE_CONCAT transformacja poleceń z operatorem OR na zapytania złożone z operatorem UNION ALL
- NO_INDEX(nazwa_tabeli [nazwa_indeksu]) uniknięcie użycia indeksu
- NO_EXPAND uniknięcie zamiany operatora IN na ciąg wyrażeń z operatorem OR
- MERGE_SJ (umieszczona w podzapytaniu) transformacja podzapytania z operatorem EXISTS na pół-złączenie
- HASH_SJ (umieszczona w podzapytaniu) transformacja podzapytania z operatorem EXISTS na pół-złączenie

