

Reconnaissance of Chemical and Physical Characteristics of Selected Bottom Sediments of the Caloosahatchee River and Estuary, Tributaries, and Contiguous Bays, Lee County, Florida,

July 20-30, 1998

U.S. GEOLOGICAL SURVEY Open-File Report 99-226

Prepared in cooperation with the

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 1999		3. DATES COVERED					
4. TITLE AND SUBTITLE	5a. CONTRACT	NUMBER					
Bottom Sediments	Chemical and Physiof the Caloosahatch	ee River and Estuar	ry, Tributaries,	5b. GRANT NUMBER			
and Continguous E	Bays, Lee County, Fl	orida, July 20-30, 1	998	5c. PROGRAM E	LEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NU	MBER		
			5e. TASK NUMBER				
			5f. WORK UNIT NUMBER				
	ZATION NAME(S) AND AE f the Interior 1849 (ngton, DC	8. PERFORMING ORGANIZATION REPORT NUMBER				
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)			
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited							
13. SUPPLEMENTARY NOTES The original document contains color images.							
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	SAR 134		ALSI ONSIBLE I ERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188 Reconnaissance of Chemical and Physical Characteristics of Selected Bottom Sediments of the Caloosahatchee River and Estuary, Tributaries, and Contiguous Bays, Lee County, Florida, July 20-30, 1998

By Mario Fernandez, Jr., Marci Marot, and Charles Holmes

U.S. Geological Survey

Open-File Report 99-226

Prepared in cooperation with the SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Tallahassee, Florida 1999

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Charles G. Groat, Director

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey

For additional information write to:

District Chief U.S. Geological Survey Suite 3015 227 N. Bronough Street Tallahassee, FL 32301 Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225 888-ASK-USGS

CONTENTS

Abstract	1
Introduction.	
Purpose and Scope	
Previous Studies	
Description of Study Area	
Sampling Strategy	
Sample Collection and Analysis Methods	
Collection, Preparation, and Preservation of Sediment Samples	
Identification of Short-Term Sedimentation Patterns Using Beryllium-7 Radiodating	
Analysis for Sediment Size	
Scans for Trace Elements	
Analysis for Total Organic Carbon	
Immunoassay Analysis for Toxic Organic Compounds	
Laboratory Analysis for Toxic Organic Compounds and Trace Elements	
Chemical and Physical Characteristics of Selected Bottom Sediments	
Short-Term Sedimentation Patterns Using Beryllium-7 Radiodating	
Sediment Size	
Trace Elements	
Total Organic Carbon	23
Immunoassay Results for Toxic Organic Compounds	
Laboratory Results for 10 Selected Sites	
Toxic Organic Compounds	
Trace Elements	
Summary	
References	
Appendix—Analytical report for organic compounds and trace elements in 10 selected bottom-sediment	
samples, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998	31
Plates [in back pocket]	

- 1. Location of previous bottom-sediment sampling sites (1982-1997), and present bottom-sediment sampling sites in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.
- 2. Distribution of beryllium-7 in bottom sediment in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.
- 3. Distribution of trace elements above Natural Range in bottom sediment in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.
- 4. Distribution of total organic carbon in bottom sediment in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.
- 5. Distribution of DDT enzyme-linked immunosorbent assay data in bottom sediment in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.
- 6. Distribution of chlordane enzyme-linked immunosorbent assay data in bottom sediment in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.
- 7. Distribution of carcinogenic polycyclic aromatic hydrocarbons enzyme-linked immunosorbent assay data in bottom sediment in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

Figures

1.	Map showing Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998	2
2.	Diagram showing sampling and analysis steps for the Caloosahatchee River and Estuary study area,	
	Lee County, Florida, July 20-30, 1998	5

3-12. Graphs showing: 3. Arsenic concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, 4. Cadmium concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, 5. Chromium concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, 6. Copper concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, 7. Nickel concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, 8. Lead concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, 9. Zinc concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, 10. DDT enzyme-linked immunosorbent assay data normalized to total organic carbon, Caloosahatchee 11. Chlordane enzyme-linked immunosorbent assay data normalized to total organic carbon, Caloosahatchee 12. Carcinogenic polycyclic aromatic hydrocarbons enzyme-linked immunosorbent assay data normalized to total organic carbon, Caloosahatchee River and Estuary study area, Lee County, Florida, Tables 1. Summary of data collected during previous studies of sediment chemical analysis, Caloosahatchee River 2. Bottom-sediment sampling sites in the Caloosahatchee River and Estuary study area, Lee County, Florida, 3. Beryllium-7 radioisotope activity on bottom-sediment samples collected in the Caloosahatchee River and Sediment size analyses on bottom-sediment samples collected in the Caloosahatchee River and Estuary 5. Scans for trace elements on selected bottom-sediment samples collected in the Caloosahatchee River and 6. Scans for trace elements on selected bottom-sediment samples collected in the contiguous bays and 7. Laboratory analyses for total organic carbon on selected bottom-sediment samples collected in the Immunoassay screening on selected bottom-sediment samples collected in the Caloosahatchee River and 9. DDT, cyclodienes as chlordane, and carcinogenic polycyclic aromatic hydrocarbons normalized to total organic carbon on selected bottom-sediment samples collected in the contiguous bays and tributaries to the 10. Laboratory analytical results for pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons on 10 bottom-sediment samples collected in the Caloosahatchee River Estuary, Lee County,

11. Laboratory analytical results for trace elements on 10 bottom-sediment samples collected in the

CONVERSION FACTORS AND ADDITIONAL ABBREVIATIONS

Multiply	Ву	To obtain	
inch (in.)	25.40	millimeter	
foot (ft)	0.3048	meter	
mile (mi)	1.609	kilometer	

μg/kg = micrograms per kilogram

< = less than

>= greater than

BDL = below detection limit

CaPAHs = carcinogenic polycyclic aromatic hydrocarbons

CBBI = Charlotte Harbor–Bird Island

CBFM = Charlotte Harbor–Ft. Myers

cm = centimeter

dpm/g = disintegrations per minute per gram

EPA = Environmental Protection Agency

FDEP = Florida Department of Environmental Protection

kev = kiloelectron volts

mg/kg = milligrams per kilogram

MWP = Mussel Watch Program

NOAA = National Oceanic and Atmospheric Administration

NS&T = National Status and Trends

PAHs = polycyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

PEL = Probable Effects Level

ppb = parts per billion

ppm = parts per million

QC = quality control

SFWMD = South Florida Water Management District

TEL = Threshold Effects Level

TOC = total organic carbon

USGS = United States Geological Survey

Reconnaissance of Chemical and Physical Characteristics of Selected Bottom Sediments of the Caloosahatchee River and Estuary, Tributaries, and Contiguous Bays, Lee County, Florida, July 20-30, 1998

By Mario Fernandez, Jr., Marci Marot, and Charles Holmes

Abstract

This report summarizes a reconnaissance study, conducted July 20-30, 1998, of chemical and physical characteristics of recently deposited bottom sediments in the Caloosahatchee River and Estuary. Recently deposited sediments were identified using an isotopic chronometer, Beryllium-7 (⁷Be), a short-lived radioisotope. Fifty-nine sites were sampled in an area that encompasses the Caloosahatchee River (River) about three miles upstream from the Franklin Lock (S-79), the entire tidally affected length of the river (estuary), and the contiguous water bodies of Matlacha Pass, San Carlos Bay, Estero Bay, Tarpon Bay, and Pine Island Sound in Lee County, Florida.

Bottom sediments were sampled for ⁷Be at 59 sites. From the results of the ⁷Be analysis, 30 sites were selected for physical and chemical analysis. Sediments were analyzed for particle size, total organic carbon (TOC), trace elements, and toxic organic compounds, using semiquantitative methods for trace elements and organic compounds. The semiquantitative scans of trace elements indicated that cadmium, copper, lead, and zinc concentrations, when normalized to aluminum, were above the natural background range at 24 of 30 sites. Particle size and TOC were used to characterize sediment deposition patterns and organic content. Pesticides, polychlorinated biphenyls (PCBs), and carcinogenic polycyclic aromatic hydrocarbons (CaPAHs) were determined at 30 sites using immunoassay analysis. The semiquantitative immunoassay analyses of toxic organic compounds indicated that all of the samples contained DDT, cyclodienes as chlordane (pesticides), and CaPAHs. PCBs were not detected.

Based on analyses of the 30 sites, sediments at 10 of these sites were analyzed for selected trace elements and toxic organic compounds, including pesticides, PCBs, and PAHs, using quantitative

laboratory procedures. No arsenic or cadmium was detected. Zinc was detected at two sites with concentrations greater than the lower limit of the range of sediment contaminant concentrations that are usually or always associated with adverse effects (Florida Department of Environmental Protection's Sediment Quality Assessment Guidelines). Organochlorine pesticides were detected at four sites at concentrations below the reporting limits; there were no organophosphorus pesticides or PCBs detected. PAHs were detected at eight sites; however, only four sites had concentrations above the reporting limit.

INTRODUCTION

The South Florida Water Management District (District) is developing a Caloosahatchee River Water Management Plan to address environmental conditions and water-supply needs of the Caloosahatchee watershed. As part of this plan, the District will evaluate nitrogen, phosphorus, and potential toxic trace elements in the sediments in the Caloosahatchee River and Estuary, and the contiguous water bodies of Matlacha Pass, San Carlos Bay, Estero Bay, Tarpon Bay, and Pine Island Sound, (fig. 1), in Lee County, Florida (study area). As part of this plan, the USGS in July 1998, in cooperation with the District, conducted a reconnaissance of chemical and physical characteristics of selected bottom-sediment samples in the study area for anthropogenic organic compounds and trace elements. The anthropogenic compounds are referenced in this study as toxic organic compounds and include organochlorine pesticides, organophosphorus pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) which include the carcinogenic PAHs (CaPAHs). The anthropogenic trace elements include arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc.

Figure 1. Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

2

Purpose and Scope

The purpose of this report is to summarize the findings of the USGS reconnaissance survey of bottom sediments in the Caloosahatchee River and Estuary, tributaries, and contiguous bays conducted on July 20-30, 1998.

The USGS reconnaissance survey consisted of the following activities:

- Determination of the chemical and physical characteristics of 60 selected bottom sediment-sampling sites including 2 sites above the Franklin Lock (S-79), and
- Selection of 10 sampling sites for analysis of toxic organic compounds and selected trace elements. The 10 sites were selected from the 60 bottom sediment-sampling sites.

A technical advisory group, consisting of USGS and South Florida Water Management District personnel, selected the initial 60 sampling sites. Fifty-eight sites were located in the estuary, tributaries, and the bays; and two sites were located upstream of the Franklin Lock.

Previous Studies

Several Federal and State agencies have previously conducted sediment chemistry investigations of the Caloosahatchee River and Estuary. The National Oceanic and Atmospheric Administration (NOAA) has monitored spatial and temporal trends of chemical contamination and biological responses to contamination in their National Status and Trends Program (NS&T). NOAA's Mussel Watch Program (MWP) has monitored bottom sediments at Charlotte Harbor-Bird Island (CBBI) (at the mouth of the Caloosahatchee River) in 1986 and 1987, and Charlotte Harbor-Ft. Myers (CBFM) in 1988 (table 1, plate 1). The constituents analyzed in the sediments included chlorinated pesticides, PCBs, PAHs, total organic carbon (TOC), and selected trace elements. Sediment-size distribution was also determined.

The Florida Department of Environmental Protection (FDEP) published the "Florida Coastal Sediment Contaminants Atlas" in 1994 which presented the quality of the coastal sediments for five sites in the Caloosahatchee Estuary, one site in San Carlos Bay, and one site in Estero Bay (table 1). The atlas presents summarized data and interpretations for the distribution of pesticides, PCBs, PAHs, TOC, total nitrogen, total phosphorus, and trace elements.

The FDEP further developed a statistical/graphical approach to differentiate concentrations of trace elements present in sediment samples from varied natural background concentrations (FDEP, 1988).

Table 1. Summary of data collected during previous studies of sediment chemical analysis, Caloosahatchee River and Estuary, and contiguous bays, Lee County, Florida, 1978-88

[PAH, polycyclic aromatic hydrocarbons; PCBs, polychlorinated biphenyls; TOC, total organic carbon; TKN, total Kjedhal nitrogen; TP. total phosphorus; X. analyzed: -. not analyzed!

		Lattenda			l amadenda			Constituents analyzed							
Site	Sam- pling		Latitude			Longitude		Organic compounds						Trace ele-	Sedi- ment
number	date	Degrees	Minutes	Seconds	Degrees	Degrees Minutes S	Seconds	Pesti- cides	PCBs	PAH	тос	TKN	TP	ments	size
CLR-00011	8/28/85	26	41	47	81	47	52	X	X	X	X	X	X	X	_
CLR-00021	8/28/85	26	36	39	81	53	50	X	X	X	X	X	X	X	-
CLR-00031	8/28/85	26	36	7	81	54	5	X	X	X	X	X	X	X	-
CLR-00041	8/28/85	26	32	8	81	56	48	X	X	X	X	X	X	X	-
CLR-00051	8/28/85	26	31	43	81	58	26	X	X	X	X	X	X	X	-
SCB-00011	8/28/85	26	30	32	82	1	4	X	X	X	X	X	X	X	-
EST-00011	9/23/86	26	24	49	81	52	0	X	X	X	X	X	X	X	-
CBBI ²	1986-87	26	30	52	82	2	4	X	X	X	X	-	-	X	X
CBFM ²	1988	26	33	30	81	55	22	X	X	X	X	-	-	X	X
S-79 ³	1978	26	43	25	81	41	55	-	X	-	-	-	-	X	-
CH-27 ⁴	1982	26	31	46	81	59	52	X	X	X	-	X	X	X	X

¹Seal, Thomas, Florida Department of Environmental Protection, written commun.,1999. (CLR, Caloosahatchee River; SCB, San Carlos Bay; EST, Estero Bay).

²Cantillo, Adriana, National Oceanic and Atmospheric Administration, National Status and Trends, written commun., 1997; (CBBI, Charlotte Harbor-Bird Island; CBFM, Charlotte Island-Ft. Myers).

³La Rose, H.R., and McPherson, B.F.,1983, Chemical and hydrologic assessment of the Caloosahatchee River Basin, Lake Okeechobee to Franklin Lock, Florida: U.S. Geological Survey, Water-Resources Investigations Report 83-4126.

⁴Stoker, Y.E., 1986, Water quality of the Charlotte Harbor estuarine system, Florida, November 1982 through October 1984: U.S. Geological Survey Open-File Report 85-563.

The statistical approach was based on the normalization of trace elements concentrations to aluminum concentrations in sediment samples. The FDEP stated that regression lines and the 95 percent confidence limits resulting from normalizing the data provided a valid statistical estimate of the range of values to be expected from samples collected from clean sediments (Natural Range) in Florida (FDEP, 1988, p. 29). Data points plotting above the upper 95 percent confidence limit corresponded to "Above Natural Range (enrichment)"; data points plotting below the lower 95 percent confidence limit corresponded to "Below Natural Range (possible analytical error)". A detailed discussion about the development of this statistical method is described in "A guide to the interpretation of metal concentrations in estuarine sediments" (FDEP, 1988).

The FDEP developed effects-based sediment quality assessment guidelines (SQAGs) as a cost-effective approach for screening chemical levels to estimate potential adverse biological effects (FDEP, 1994). The SQAGs may be used to:

- Assess the adverse biological effects that could, potentially, be associated with levels of sedimentassociated contaminants.
- Evaluate existing sediment chemistry data, and rank areas of concern and chemicals of concern in terms of their potential to be associated with adverse biological effects.
- Evaluate existing data to determine if additional testing is needed to support regulatory decisions.

Three distinct ranges of contaminant concentrations were defined in the FDEP (1994) report: 1) a minimal effects range, 2) a possible effects range, and 3) a probable effects range. The upper limit of the minimal effects range was represented by the Threshold Effects Level (TEL). The TEL represents the upper limit of the range of sediment contaminant concentrations dominated by no adverse biological effects. The Probable Effects Level (PEL) represents the lower limit of the range of contaminant concentrations that are usually or always associated with adverse biological effects. The TEL and the PEL bracket the range of possible effects; data falling within this range suggest additional investigations.

Normalization of toxic organic compounds to TOC was used by the FDEP (1994) to account for the influence of organic carbon on the bioavailability of the organic compounds, and therefore the potential for toxicity. High TOC concentrations will tend to reduce the bioavailability of toxic organic compounds by effectively sequestering them in the sediments (FDEP, 1994).

Two USGS reports contain information about chemical constituents in bottom sediments of the Caloosahatchee River and Estuary. LaRose and McPherson (1983) collected samples from four sites upstream of the Franklin Lock (S-79) and Stoker (1986) collected samples from five sites across a transect at the mouth of the estuary at Shell Point (table 1, plate 1).

Information about discharges that may affect the water quality of the Caloosahatchee watershed can be found at the Environmental Protection Agency's Index of Watershed Indicators web site (www.epa.gov/surf2). The web site contains environmental uses and discharges (provided by EPA Envirofacts) and facilities regulated by EPA including hazardous waste facilities (Resources Conservation Recovery Act – RCRA); superfund sites (Comprehensive Environmental Response, Compensation, and Liability Act – CERCLA); and toxic releases (Toxic Release inventory – TRI).

DESCRIPTION OF STUDY AREA

The study area encompasses a 1.3-mile length of the Caloosahatchee River upstream from the Franklin Lock (S-79) (River), the entire tidally affected length of the river (estuary) and the contiguous water bodies of Matlacha Pass, San Carlos Bay, Estero Bay, Tarpon Bay, and Pine Island Sound (plate 1). Boundaries of the contiguous water bodies are based on the delineation reported by Goodwin (1991). The estuary has 16 tributaries and two major cities, Cape Coral and Fort Myers. Cape Coral is on the west bank, and Fort Myers is on the east bank. The city of Cape Coral, with a population of approximately 84,000 (Pierce, 1995), has about 400 miles (mi) of canals that honeycomb the entire city. Of the 400 mi, about 130 mi are tidally affected (Goodwin, 1991). The city of Fort Myers has a population of approximately 46,000 (Pierce, 1995), and does not have a canal system like Cape Coral. Runoff from areas of Cape Coral, Fort Myers, and some unincorporated areas of Lee County discharge through stormwater conveyances into the Caloosahatchee River estuary (Tony Pellicer, Natural Resource Manager, Lee County, Florida, verbal commun., 1999).

SAMPLING STRATEGY

The sampling strategy for the study was developed with the cooperation of a technical advisory group assembled by the District. The strategy specified the collection of approximately the top 1-centimeter (cm) of soft bottom-sediment samples at 60 selected sites and the physical and chemical characterization of the sediment samples (excluding rocks, sand, gravel, and vegetation). A sampling and analysis step diagram is presented in figure 2.

Figure 2. Sampling and analysis steps for the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

The characterization included short-term sediment accumulation patterns (determined from analyses of Beryllium-7 (⁷Be), sediment-size distributions, concentrations of trace elements, total organic carbon, and selected toxic organic compounds. Locations of the 60 sites and number of samples collected are listed below:

- *Caloosahatchee River*: 32 samples in the estuary including 2 samples upstream of the Franklin Lock (fig. 1),
- Matlacha Pass: 3 samples,
- San Carlos Bay: 13 samples,
- Estero Bay: 8 samples,
- Tarpon Bay: 2 samples, and
- Pine Island Sound: 2 samples.

Fifty-nine of the 60 selected sites were sampled; one site, located in San Carlos Bay, was not sampled because the bottom sediments consisted of sand within a 1-mile radius. Initially, samples from the 59 sites would be analyzed for ⁷Be to determine short-term sedimentation patterns. Samples from 30 sites with the most recent sedimentation based on the findings of the ⁷Be survey were selected for sediment-size distribution, scans for trace elements, total organic carbon, and semiquantitative analysis of toxic organic compounds.

Subsequently, based on the analytical findings for the 30 selected sites, samples from the 10 sites with the greatest percentage of fine sediments and concentrations of chemical constituents were analyzed by a contract laboratory. The 10 samples sent to the laboratory were analyzed for organochlorine and organophosphorus pesticides, PCBs, PAHs, and selected trace elements.

SAMPLE COLLECTION AND ANALYSIS METHODS

This section describes the sediment collection method and analytical methods used in this report.

Collection, Preparation, and Preservation of Sediment Samples

The descriptive information (site number, latitude and longitude, name of surface-water body, distance downstream from the Franklin Lock (S-79), date sampled, and depth to the top of the sediment layer) about the sediment-sampling sites in the study area is presented in table 2. Visual, mechanical, and depth-sounding methods were used to locate areas of recent sediment deposition (less than 6 months).

Table 2. Bottom-sediment sampling sites in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998

[Site number and site location same as previous study except when noted by (n): (n), previous site is near the site sampled in this report; Previously reported, previously reported data collected by C (Crean and Chamberlain (1985), or H (Haunert, 1978); ---, not previously sampled; (miles), miles upstream from the confluence with the Caloosahatchee River Estuary; n, near the site sampled in this study; na, not applicable]

Site number		Latitude		Longitude		- Surface-	Distance	Date	Depth to sediments
This report	Previous report	Degrees	Minutes	Degrees	Minutes	water body	down- stream ¹ (in miles)	sampled	from surface (in feet)
1		26	43.278	81	41.060	Caloosahatchee River ²	-1.1	07/29/09	24.0
1 2		26 26	43.375	81	40.870	Caloosahatchee River ³	-1.1 -1.3	07/28/98	6.7
3	C-156 ⁴	26	43.576	81	40.870	Caloosahatchee River Estuary	-1.3 0.7	07/28/98 07/20/98	9.5
4	C-150 C-159	26	43.061	81	45.045	Caloosahatchee River Estuary	3.1	07/20/98	8.3
5	H-6 ⁵	26	42.154	81	46.504	Caloosahatchee River Estuary	5.4	07/20/98	11.2
6	C-163	26	41.860	81	47.389	Caloosahatchee River Estuary	6.4	07/20/98	9.5
7	C-103	26	41.365	81	45.993	Orange River (3.5 miles)	6.8	07/21/98	11.0
8	C-165	26	41.793	81	47.764	Caloosahatchee River Estuary	6.8	07/21/98	3.5
9	C-103	26	42.115	81	49.876	Daughtrey Creek (0.6 mile)	9.6	07/30/98	4.2
10	C-167	26	41.948	81	48.659	Caloosahatchee River Estuary	9.0 8.1	07/21/98	5.2
11	C-167 C-169(n)	26	41.417	81	49.722	•	8.8		3.1
12	C-109(II) C-170	26	40.853	81	49.722	Caloosahatchee River Estuary Caloosahatchee River Estuary	9.3	07/20/98	6.3
13	C-170 C-171	26	40.833	81	49.889	Caloosahatchee River Estuary	9.3 8.9	07/22/98	7.5
	C-171 C-173(n)	26	0.637	81	50.989	Caloosahatchee River Estuary	10.5	07/21/98	5.3
14	C-173(II) C-174	26	40.326	81	51.479	•	10.3	07/22/98	5.5 6.5
15						Caloosahatchee River Estuary		07/22/98	
16		26	39.477	81	51.631	Caloosahatchee River Estuary	11.9	07/22/98	6.5 2.9
17		26	39.171	81	50.720	Billy Creek (0.9 mile)	11.3	07/22/98	
18		26	39.176	81	51.564	Caloosahatchee River Estuary	12.2	07/22/98	7.1
19		26	38.739	81	52.402	Caloosahatchee River Estuary	13.0	07/22/98	9.1
20	C-228	26	39.766	81	52.415	Caloosahatchee River Estuary	12.1	07/22/98	5.1
21		26	39.453	81	53.722	Yellow Fever Creek (0.1 mile)	13.7	07/22/98	9.5
22		26	38.548	81	53.756	Caloosahatchee River Estuary	14.2	07/22/98	7.0
23	C-227	26	37.678	81	53.502	Caloosahatchee River Estuary	14.9	07/22/98	8.1
24		26	36.130	81	51.874	Caloosahatchee River Estuary	17.0	07/23/98	3.9
25		26	36.068	81	53.667	Caloosahatchee River Estuary	16.7	07/23/98	2.2
26		26	35.457	81	54.145	Caloosahatchee River Estuary	17.6	07/23/98	9.6
27		26	32.620	81	55.79000	Caloosahatchee River Estuary	21.2	07/23/98	7.2
28	C-218(n)	26	32.218	81	56.29200	Caloosahatchee River Estuary	21.8	07/30/98	2.0
29	C-214(n)	26	31.780	81	58.78600	Caloosahatchee River Estuary	24.3	07/29/98	14.0
30	C-211	26	31.381	82	0.3090	San Carlos Bay	na	07/23/98	5.0
31		26	32.194	81	59.91600	Caloosahatchee River Estuary	26.7	07/24/98	15.8
32		26	0.509	82	1.611	San Carlos Bay	na	07/23/98	5.3
33		26	30.238	82	1.042	San Carlos Bay	na	07/30/98	5.5
34		26	29.910	82	1.027	San Carlos Bay	na	07/23/98	2.7
35		26	29.630	82	0.137	San Carlos Bay	na	07/30/98	1.5
36				mpled ⁶			na		
37	C-192(n)	26	28.081	82	2.656	San Carlos Bay	na	07/29/98	21.0
38	C-188	26	29.404	82	5.221	San Carlos Bay	na	07/29/98	4.5
39		26	29.964	82	2.543	San Carlos Bay	na	07/29/98	4.4
40	C-191(n)	26	29.563	82	2.259	San Carlos Bay	na	07/29/98	3.1
40A		26	29.056	82	2.259	San Carlos Bay	na	07/29/98	10.7
41		26	29.056	82	2.031	San Carlos Bay	na	07/23/98	4.5
42		26	30.358	82	2.669	San Carlos Bay	na	07/23/98	2.7

6

Table 2. Bottom-sediment sampling sites in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998 (Continued)

[Site number and site location same as previous study except when noted by (n): (n), previous site is near the site sampled in this report; Previously reported, previously reported data collected by C (Crean and Chamberlain (1985), or H (Haunert, 1978); ---, not previously sampled; (miles), miles upstream from the confluence with the Caloosahatchee River Estuary; n, near the site sampled in this study; na, not applicable]

Si	ite number	Lati	itude	Longitude			Distance		Depth to
This report	Previous report	Degrees	Minutes	Degrees	Minutes	Surface- water body	down- stream ¹ (in miles)	Date sampled	sediments from surface (in feet)
43	C-180	26	30.860	82	3.648	San Carlos Bay	na	07/29/98	5.3
44	C-175	26	31.693	82	3.465	Matlacha Pass	na	07/29/98	8.5
45	C-177(n)	26	31.712	82	2.349	Matlacha Pass	na	07/23/98	1.3
46		26	31.955	82	4.472	Matlacha Pass	na	07/29/98	1.5
47		26	27.927	82	4.993	Tarpon Bay	na	07/23/98	2.9
48		26	27.485	82	4.436	Tarpon Bay	na	07/23/98	8.0
49		26	28.589	82	7.889	Pine Island Sound	na	07/29/98	2.0
50		26	29.986	82	7.284	Pine Island Sound	na	07/29/98	5.5
51		26	27.310	81	57.011	Estero Bay	na	07/29/98	10.0
52		26	27.912	81	51.965	Estero Bay	na	07/28/98	4.1
53		26	27.569	81	52.223	Estero Bay	na	07/28/98	3.5
54		26	25.566	81	52.635	Estero Bay	na	07/24/98	6.3
55		26	24.014	81	51.176	Estero Bay	na	07/24/98	6.5
56		26	22.115	81	51.003	Estero Bay	na	07/28/98	11.0
57		26	21.103	81	50.964	Estero Bay	na	07/24/98	4.7
58		26	39.061	81	51.246	Billy Creek (0.4 mile)	12.1	07/22/98	1.9
59		26	26.337	81	53.866	Estero Bay	na	07/24/98	3.7
60		26	32.635	81	58.486	Caloosahatchee River Estuary	23.8	07/30/98	10.4

¹Locations of bottom-sediment sampling sites in the estuary are referenced to midstream distances in miles downstream from the Franklin Lock (S-79).

A Rockwell geographical positioning system (GPS) was used from the sampling boat to record latitude and longitude for each sampling site. Sediment samples were collected from approximately the top 1-cm at each site using an Eckman dredge with a messenger for soft sediments (rocks, sand, gravel, and vegetation were avoided). The samples collected for each site were combined and sealed in plastic bags, labeled, iced in the field, and stored in a laboratory freezer for processing. In preparation for analysis, the 59 frozen combined sediment samples were subdivided in the USGS laboratory with a heated nickel-chromium wire. One set of samples was thawed at room temperature; the

other set of samples was kept frozen for future immunoassay and laboratory analysis. The thawed subset was divided into two parts: one part was dried in an oven at 60 °C for radioisotopes and trace elements, and the other part was analyzed for sediment-size analysis.

Identification of Short-Term Sedimentation Patterns Using Beryllium-7 Radiodating

The relative activity of ⁷Be in the surface layer of the bottom sediments was used to identify the location of recently deposited material. ⁷Be is a naturally produced radioisotope that is formed by

²Above Franklin Lock (S-79).

³Oxbow above Franklin Lock (S-79).

⁴Site number for data collected by Crean and Chamberlain in 1985.

⁵Site number for data collected by Haunert in 1978.

⁶Not sampled, bottom sediments consisted of sand within a 1-mile radius.

cosmic ray bombardment of atmospheric nitrogen (N) and oxygen (O). The ⁷Be is transferred from the atmosphere to earth through precipitation (Geyh and Schleicher, 1990). This radioisotope is a highly reactive element that becomes rapidly and tightly associated with sedimentary substrata. ⁷Be has a half-life of 53 days, it can be used as a tracer of sedimentation that has occurred within approximately the past 6 months. Thus, detection of ⁷Be in the sediment indicates that the sediment and sedimentation patterns have been present for less than 6 months (Charles Holmes, USGS, verbal commun., 1998).

The 59 thawed samples were dried in an oven at 60°C and then ground finely using a mortar and pestle. Fifty grams were sealed in counting jars for gamma emission detection. Gamma emissions were measured using a Canberra high-purity germanium detector with a PC-based multichannel analyzer. Each sample was counted for a minimum of 24 hours, and the ⁷Be activity was calculated from the net area of the 477 kev (kiloelectron volts) photopeak. The ⁷Be activity was decay-corrected to the date of sampling using the following equation:

$$A = A_0 e^{-\lambda t} \tag{1}$$

where,

A is the activity, decay-corrected to the date of sampling,

A₀ is the measured activity,

 λ is the ⁷Be decay constant, and

t is the time since collection.

The results were reported as ⁷Be disintegrations per minute per gram of sample (dpm/g) and statistical counting error.

Analysis for Sediment Size

The purpose of collecting bottom sediment for size analysis was to determine the distribution of fine sediments (silt and clays) because the amount of silt and clay-sized particles impacts the chemical properties of the sediments. Size analyses were performed on 30 sediment samples to determine the distribution of fine sediments (silts and clays). Potential sources of sediment particles for an estuary include rivers, net sediment flux from the marine environment, overland runoff, and anthropogenic point sources (Schoellhamer, 1991). Fine sediments can be resuspended into the water column, adsorb organic compounds and

trace elements that may be present, and then become a vehicle for transport and redeposition of the sorbed organic compounds and trace elements.

A wet sieve analysis was performed on the samples as described by Matthes (1992). The analysis included 8 mesh sizes: >4, >2, >1, >0. 5, >0.25, >0.125, >0.0625, and <0.0625 millimeters. The sieved fractions were dried in an oven at 60° C, cooled, weighed, and the percentage of each fraction determined.

Scans for Trace Elements

Scans for trace elements were performed by a USGS contract laboratory on 30 sediment samples for 30 trace elements including seven trace elements often associated with anthropogenic activities. The selected trace elements included arsenic, cadmium, chromium, copper, lead, nickel, and zinc.

The samples were dried and then digested in a 4-acid digestion (HNO₃-HClO₄-HF-HCl) procedure. Digested samples were analyzed for 30 trace elements by an inductive coupled plasma/atomic emission spectroscopy analytical method. The 30 trace elements analyzed are listed below:

Aluminum	Iron	Silver
Antimony	Lead	Sodium
Arsenic	Magnesium	Strontium
Barium	Manganese	Tin
Bismuth	Molybdenum	Titanium
Cadmium	Nickel	Tungsten
Calcium	Phosphorus	Vanadium
Chromium	Potassium	Yttrium
Cobalt	Scandium	Zinc
Copper	Selenium	Zirconium

Analysis for Total Organic Carbon

Thirty sediment samples were sent to a contract laboratory for TOC analysis using EPA Method SW-9040/E415.1. TOC was used to identify the distribution of the total organic constituents in the sediments and to normalize the toxic organic compounds. The total organic constituents included those that are naturally occurring organic compounds (marine life residue and tannins from vegetation decay) and anthropogenic organic (toxic) compounds.

Immunoassay Analysis for Toxic Organic Compounds

Immunoassay technology was used at the USGS North Carolina District's laboratory to semiquantitatively identify anthropogenic organic compounds in 30 samples. This technology is based on biologically generated "immunoglobulin" proteins (antibodies) reacting with specific target compounds (antigens). Highly specific antibodies for target compounds, such as chlorinated pesticides, PCBs, and carcinogenic PAHs (CaPAHs) have been developed for use in environmental immunoassays. The antigen-antibody complexes of specific target compounds provided a high degree of analytical specificity.

Competitive enzyme-linked immunosorbent assay (ELISA) was used in this study (Strategic Diagnostics Inc., 1998). In competitive ELISAs, the unlabeled analyte (liquid extract of the sediment sample) is combined with a labeled enzyme analog of the analyte and the analyte specific antibody. Both the unlabeled and the enzyme-labeled (Horse Radish Peroxidase) analytes competed for a limited number of antibody sites, and bonded to antibodies in direct proportions to their relative concentrations in the reactive mixture. After an incubation period, the antigen-antibody complexes were separated from the unbound substances by decanting the liquid. Reagents were added to the complexes and a color developed which was read in a spectrophotometer. The color was proportional to the enzyme-labeled analyte and inversely proportional to the concentration of the sample analyte. The targeted toxic organic compounds, chlorinated pesticides, and PCBs were analyzed using the ELISA competitive method; CaPAHs were analyzed by ELISA/paramagnetic particle analysis.

In the paramagnetic particle analysis procedure, an enzyme-labeled CaPAH (enzyme conjugate) was added to the sample followed by paramagnetic particles with antibodies specific to CaPAHs. Both the sample and the enzyme conjugate competed for antibody sites on the magnetic particles. At the end of an incubation period, a magnetic field was applied to hold the paramagnetic particles that have the sample's CaPAH and the enzyme conjugate bound to the antibodies on the particle. The sample's CaPAH and the enzyme conjugate were bound in proportion to their original concentration in the tube. After the attached particles were washed, an enzyme substrate

and chromogen was added and a color was developed during an incubation period. Because the enzyme conjugate was in competition with the unlabeled CaPAHs in the sample for antibody sites on the paramagnetic particles, the color was, therefore, inversely proportional to the concentrations of CaPAHs in the sample.

As with all ELISA tests, cross-reactivity needs to be considered. Because more than one compound will react with the ELISA test, a positive result only indicates the presence of one or more compounds that are listed with the individual kits.

The DDT immunoassay test does not differntiate between DDT and other organochlorine compounds. The following organochlorine compounds yield positive results with this assay:

p,p'-DDT	DDA
p,p'-DDD	Chloropropylate
p,p'-DDE	Chlorobenzilate
o,p'-DDT	Dicofol
o,p'-DDD	Tetradifon
o,p'-DDE	

The calibrating standard used for the DDT assay was p,p'-DDT. The standard concentrations were 0.2, 1.0, and 10 parts per million (ppm). Two sample extracts were analyzed in duplicate for quality control (QC).

The cyclodiene immunoassay test does not differentiate between chlordane and other cyclodienes. The following cyclodiene compounds yield positive results with this assay:

Chlordane	Dieldrin
Aldrin	Heptachlor
Endosulfan	Toxaphene
Endrin	

The calibrating standard used for the cyclodiene assay was chlordane. The calibrating standard concentrations were 20, 100, and 590 parts per billion (ppb) (0.02, 0.1 and 0.59 ppm). Two sample extracts were analyzed in duplicate for QC.

The PCBs (Aroclors) immunoassay test does not differentiate between various Aroclors. The following Aroclor compounds yield positive results with this assay:

Aroclor 1016	Aroclor 1254
Aroclor 1221	Aroclor 1260
Aroclor 1232	Aroclor 1268
Aroclor 1242	Aroclor 1282
Aroclor 1248	

The calibrating standard used for the PCBs was Aroclor 1248. The calibrating standard concentrations were 1, 5, 10, and 50 ppm. Two sample extracts were analyzed in duplicate for QC.

The CaPAHs immunoassay test does not differentiate between various CaPAHs of the pyrene series, selected PAHs, creosote, and fuels. The following CaPAH compounds and mixtures yield positive results with this assay:

CaPAH Compounds

Acenaphthalene	Benzo[a]pyrene	Fluorene
Acenaphthylene	Benzo[g,h,i]perylene	Indeno[1,2,3-c,d]pyrene
Anthracene	Chrysene	Naphthlene
Benzo[a]anthracene	Dibenzo[a,h]anthracene	Phenanthrene
Benzo[k]fluoranthene	Fluoranthene	Pyrene
Benzo[b]fluoranthene		

CaPAH Mixtures

Cresote	Gasoline
Diesel Fuel	Heating Fuel
Fuel Oil #4	Jet A Fuel
Fuel Oil #5	Kerosene
Fuel Oil #6	

The calibrating standard used for the CaPAHs was benzo(a)pyrene. The calibrating standard concentrations were 0.1, 1.0, and 5.0 ppb. Two sample extracts were analyzed in duplicate for QC.

Laboratory Analysis for Toxic Organic Compounds and Trace Elements

Based on the preliminary findings for the 30 selected sites, 10 sites were selected by the technical advisory group for further laboratory analysis of pesticides, PCBs, PAHs, and selected trace elements. The technical advisory group selected the 10 sites based on the percentage of fine sediments, ⁷Be activity, and concentrations of chemical constituents. The sites selected were site numbers 4, 12, 14, 18, 22, 26, 27, 30, 33, and 60. Samples from the 10 sites were analyzed according to EPA methods listed below:

Chemical Constituents	EPA analytical method
Pesticides	
Organochlorine	EPA Method SW-8080
Organophosphorus	EPA Method SW-8140
Polychlorinated Biphenyls	EPA Method SW-8080
Polycyclic Aromatic Hydrocar-	EPA Method SW-8310
bons	

Selected Trace Elements:

aluminum, arsenic, cadmium	, EPA Method SW-5910
chromium, copper, iron, lead	, EPA Method SW-5910
zinc, and	EPA Method SW-5910
mercury	EPA Method SW-7471A

CHEMICAL AND PHYSICAL CHARACTERISTICS OF SELECTED BOTTOM SEDIMENTS

This section of the report presents the results of physical and chemical analysis of bottom-sediment samples collected during the reconnaissance survey.

Short-Term Sedimentation Patterns Using Beryllium-7 Radiodating

The data for the ⁷Be activity of bottom sediments from the 59 sites in the study area are presented in table 3. The data ranged from not detected to 10.17 dpm/g. Thirty-one of the 59 sites sampled had detectable ⁷Be ranging between 0.95 and 10.17 dpm/g. The locations of the sites in table 3 are identified with reference to their respective surfacewater body. There were 19 recent sedimentation sites in the river and estuary, and 12 recent sedimentation sites in the bays and tributaries. The locations of these sites are presented in plate 2.

Sediment Size

Fifty-nine bottom-sediment samples were analyzed for eight particle sizes. The sizes represent the distribution at the top 1-cm of the bottom sediments. The eight particle sizes included mesh sizes >4, >2, >1, >0.5, >0.25, >0.125, >0.0625, and <0.0625. The total fines are represented by the sum of the percentages from mesh sizes >0.0625 and <0.0625. The corresponding sieve number and phi size are presented with the percentage of each size in table 4. The total percent of fines in the estuary ranged from 10.06 (site 28) to 85.55 (site 31). The total percent of fines in the bays ranged from 39.21 (site 33) to 89.95 (site 51).

Trace Elements

Scans for trace elements are presented in tables 5 and 6. The concentrations of the trace elements, arsenic through zinc, were normalized to aluminum by superimposing the data from this study (tables 5 and 6) on the regression curves published by FDEP (1984).

Table 3. Beryllium-7 radioisotope activity on bottom-sediment samples collected in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998

[cm, centimeter; ⁷Be, Beryllium-7; dpm/g, disintegrations per minute per gram; ±, statistical counting error; (miles), miles upstream from the confluence with the Caloosahatche River Estuary; Tr, trace, too low to quantify; na, no data; nd, not detected]

Site No.	Depth (cm)	Surface-water body	⁷ Be (dpm/g)	± dpm/g
1	0-1	Caloosahatchee River ²	3.19	1.24
2	0-1	Caloosahatchee River ³	10.00	2.17
3	0-1	Caloosahatchee River Estuary	3.99	1.15
4	0-1	Caloosahatchee River Estuary	5.75	1.60
5	0-1	Caloosahatchee River Estuary	1.02	0.02
6	0-1	Caloosahatchee River Estuary	Tr	na
7	0-1	Orange River (3.5 miles)	nd	na
8	0-1	Caloosahatchee River Estuary	nd	na
9	0-1	Daughtrey Creek (0.6 mile)	3.43	1.12
10	0-1	Caloosahatchee River Estuary	0.95	0.48
11	0-1	Caloosahatchee River Estuary	Tr	na
12	0-1	Caloosahatchee River Estuary	2.26	0.75
13	0-1	Caloosahatchee River Estuary	nd	na
14	0-1	Caloosahatchee River Estuary	4.71	1.05
15	0-1	Caloosahatchee River Estuary	3.88	1.01
16	0-1	Caloosahatchee River Estuary	2.20	0.95
17	0-1	Billy Creek (0.9 mile)	nd	na
18	0-1	Caloosahatchee River Estuary	5.34	1.00
19	0-1	Caloosahatchee River Estuary	5.25	0.98
20	0-1	Caloosahatchee River Estuary	2.37	0.66
21	0-1	Yellow Fever Creek (0.1 mile)	5.86	1.07
22	0-1	Caloosahatchee River Estuary	3.18	0.80
23	0-1	Caloosahatchee River Estuary	1.96	0.68
24	0-1	Caloosahatchee River Estuary	Tr	na
25	0-1	Caloosahatchee River Estuary	Tr	na
26	0-1	Caloosahatchee River Estuary	3.42	1.02
27	0-1	Caloosahatchee River Estuary	6.48	0.93
28	0-1	Caloosahatchee River Estuary	nd	na
29	0-1	Caloosahatchee River Estuary	1.31	0.60
30	0-1	San Carlos Bay	3.63	1.06
31	0-1	Caloosahatchee River Estuary	Tr	na
32	0-1	San Carlos Bay	Tr	na
33	0-1	San Carlos Bay	1.85	0.86
34	0-1	San Carlos Bay	2.45	0.70
35	0-1	San Carlos Bay	1.19	0.60
36		Not Sampled	na	na
37	0-1	San Carlos Bay	Tr	na
38	0-1	San Carlos Bay	2.24	0.65
39	0-1	San Carlos Bay	nd	na
40	0-1	San Carlos Bay	Tr	na
41	0-1	San Carlos Bay	nd	na
42	0-1	San Carlos Bay	nd	na
43	0-1	San Carlos Bay	nd	na
44	0-1	Matlacha Pass	2.80	0.96
45	0-1	Matlacha Pass	nd	na
46	0-1	Matlacha Pass	2.94	0.67

Table 3. Beryllium-7 radioisotope activity on bottom-sediment samples collected in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998 (Continued) [cm, centimeter; ⁷Be, Beryllium-7; dpm/g, disintegrations per minute per gram; ±, statistical counting error; (miles), miles upstream from the confluence with the Caloosahatche River Estuary; Tr, trace, too low to quantify; na, no data; nd, not detected]

Site No.	Depth (cm)	Surface-water body	⁷ Be (dpm/g)	± dpm/g
47	0-1	Tarpon Bay	1.66	0.55
48	0-1	Tarpon Bay	Tr	na
49	0-1	Pine Island Sound	nd	na
50	0-1	Pine Island Sound	Tr	na
51	0-1	Estero Bay	2.51	1.06
52	0-1	Estero Bay	nd	na
53	0-1	Estero Bay	nd	na
54	0-1	Estero Bay	Tr	na
55	0-1	Estero Bay	nd	na
56	0-1	Estero Bay	Tr	na
57	0-1	Estero Bay	Tr	na
58	0-1	Estero Bay	10.17	1.56
59	0-1	Estero Bay	nd	na
60	0-1	Caloosahatchee River Estuary	7.25	1.41

Table 4. Sediment size analyses on bottom-sediment samples collected in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998 [Sample depth is from 0 to 1 centimeter below the bottom sediments. Mesh size, in millimeters; >, greater than; <, less than]

				Sedim	ent size				
Sieve No. Mesh size Phi size	5 >4 -2	10 >2 -1	18 >1 0	35 >0.5 1	60 >0.25 2	120 >0.125 3	230 >0.0625 4	<230 <0.0625 <4	
Site No.				Percent of	dry weight				Total fines ¹
1^{2}	7.52	0.70	4.38	9.81	13.38	8.07	16.95	39.18	56.13
2^{2}	0.11	0.21	2.57	21.76	10.11	11.55	11.51	42.17	53.68
3	0.08	0.08	1.17	5.30	3.36	14.01	23.04	52.96	76.00
4	0.54	0.24	4.31	9.74	8.50	5.20	14.86	56.62	71.47
5	0.33	0.64	1.42	3.35	22.36	35.95	26.23	9.72	35.95
6	0.15	0.26	0.50	1.84	19.13	35.99	33.50	8.63	42.13
7	2.75	3.75	2.09	4.15	37.95	13.80	17.08	18.44	35.52
8	0.14	0.34	0.70	0.86	8.35	64.57	22.31	2.74	25.04
9	0.78	2.55	2.68	3.53	12.64	26.06	30.66	21.11	51.76
10	26.96	0.69	0.82	0.63	8.67	27.32	26.80	8.12	34.91
11	0.56	0.89	0.60	0.67	3.03	51.39	38.89	3.98	42.86
12	0.50	1.17	2.46	3.66	8.48	39.77	28.80	15.16	43.96
13	2.40	1.91	4.16	4.30	17.23	34.68	20.62	14.71	35.32
14	1.12	0.90	1.62	2.15	3.48	13.05	19.44	58.22	77.67
15	0.24	1.62	1.96	2.96	5.17	26.71	34.91	26.43	61.34
16	0.35	3.52	3.59	2.10	5.49	38.18	39.69	7.08	46.77
17	0.63	0.43	0.38	0.97	24.21	52.47	14.12	6.79	20.91
18	20.87	2.32	1.79	1.26	0.87	10.40	22.30	40.19	62.49
19	0.39	0.37	0.67	1.06	2.69	21.28	46.26	27.29	73.55

Table 4. Sediment size analyses on bottom-sediment samples collected in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998 (Continued)

[Sample depth is from 0 to 1 centimeter below the bottom sediments. Mesh size, in millimeters;

	Sediment size								
Sieve No. Mesh size Phi size	5 >4 -2	10 >2 -1	18 >1 0	35 >0.5 1	60 >0.25 2	120 >0.125 3	230 >0.0625 4	<230 <0.0625 <4	
Site No.				Percent of	dry weight	:			Total fines ¹
20	0.72	0.96	1.41	1.25	3.11	27.36	34.49	30.70	65.19
21	1.39	1.07	1.58	2.12	4.06	11.08	50.99	27.71	78.70
22	1.32	2.29	2.74	2.58	4.20	23.99	44.34	18.54	62.88
23	0.56	0.22	0.34	0.35	1.00	42.86	47.33	7.33	54.67
24	0.14	0.25	0.39	0.47	4.35	53.13	40.30	0.97	41.27
25	0.08	0.09	0.14	0.17	8.73	63.29	27.03	0.48	27.50
26	0.00	0.08	0.47	0.49	0.99	29.36	45.68	22.92	68.61
27	0.22	0.31	0.67	0.70	1.29	21.98	45.70	29.13	74.83
28	0.01	0.01	0.02	0.34	30.52	59.03	9.42	0.64	10.06
29	0.02	0.22	0.54	0.76	7.82	48.11	34.12	8.41	42.52
30	1.61	5.07	12.05	7.77	4.95	10.46	11.35	46.74	58.09
31	0.00	0.04	0.22	4.03	3.00	7.16	16.98	68.56	85.55
32	0.03	0.02	0.23	0.30	1.86	21.94	64.29	11.34	75.63
33	2.66	7.57	4.14	3.00	8.54	34.88	26.43	12.78	39.21
34	0.06	0.16	0.11	0.07	0.74	38.65	43.52	16.70	60.22
35	0.72	0.10	0.65	0.57	3.54	22.04	37.50	34.87	72.37
36					ampled				
37	1.92	4.70	10.12	5.21	3.83	17.17	29.75	27.29	57.05
38	0.13	0.07	0.30	0.15	0.15	13.61	55.52	30.07	85.59
39	0.08	0.20	0.44	0.38	1.48	38.32	50.75	8.35	59.10
40	0.18	0.20	0.27	0.25	4.19	44.54	36.29	14.08	50.37
41	0.73	0.22	0.39	0.54	3.06	32.16	49.84	13.06	62.90
42	0.20	0.10	0.18	0.40	2.04	32.94	51.68	12.46	64.14
43	0.10	0.15	0.43	0.40	2.36	30.45	61.19	4.92	66.11
44	0.03	0.20	0.29	0.27	3.84	45.78	38.58	11.01	49.60
45	0.00	0.02	0.03	0.05	2.12	39.33	56.93	1.52	58.45
46	0.45	0.08	0.28	0.78	1.44	43.73	35.80	17.45	53.25
47	0.85	0.63	0.52	0.34	0.50	19.84	58.10	19.22	77.32
48	0.00	0.10	0.11	0.32	1.38	28.08	62.07	7.94	70.01
49	0.30	0.25	0.32	1.74	4.94	48.31	35.24	8.88	44.13
50	0.30	0.58	0.52	0.57	2.47	28.00	61.01	6.65	67.66
51	0.00	0.03	0.25	0.46	0.71	8.60	24.79	65.16	89.95
52	0.00	0.03	0.23	0.46	8.46	49.44	32.50	8.42	40.92
53	0.29	0.23	0.25	0.38	2.12	36.97	49.75	10.36	60.11
54	0.00	0.17	0.29	0.58	4.21	47.87	31.57	15.02	46.59
55	0.00	0.20	0.29	0.05	1.20	32.36	41.59	24.72	66.31
56	0.00	0.02	0.03	0.03	0.92	14.40	56.35	27.92	84.27
50 57	0.00	0.11	0.09	0.21	0.53	14.40	28.56	56.02	84.58
58	3.43	2.26	2.44	1.45	3.18	48.08	28.36 19.75	19.40	39.15
58 59	0.22						38.80		
		0.28	0.27	0.45	2.21	53.63		4.14	42.94 86.30
60	0.00	0.88	2.84	3.44	2.85	3.60	4.04	82.35	86.39

¹Total fines, sum of 230 (coarse silt) and <230 (silt and clay).

²Sites 1 and 2 located above Franklin Lock (S-79).

Table 5. Scans for trace elements on selected bottom-sediment samples collected in the Caloosahatchee River and Estuary, Lee County, Florida, July 20-30, 1998

[Sites 1 and 2 located upstream from Franklin Lock (S-79); distance downstream from Franklin Lock; Concentration in parts per million; D, duplicate sample; <, less than; NG, no guidelines]

Site	Distance		Concentration						
number	downstream (in miles)	Aluminum	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
1	1.1	34,800	<5	2.0	74	36	17	16	77
2	1.3	33,600	<5	1.2	58	34	19	19	80
2D	1.3	36,600	<5	1.0	65	36	21	21	88
3	0.7	33,300	<5	1.2	58	32	20	18	78
4	3.1	31,300	<5	1.3	58	34	19	16	76
5	5.4	7,100	<5	0.4	18	7	5	4	17
12	9.3	12,400	<5	0.4	30	14	10	6	44
12D	9.3	11,000	<5	0.5	27	13	8	5	41
15	10.3	14,300	<5	0.7	34	16	13	8	50
14	10.5	23,700	<5	1.1	49	24	20	11	79
16	11.9	1,700	<10	<5	8	5	5	1	<1
20	12.1	7,100	<5	<4	12	9	9	3	26
18	12.2	24,000	<5	1.0	66	55	39	13	161
19	13.0	17,000	<5	0.7	54	34	38	9	120
21	13.7	26,000	8.00	1.1	73	56	32	32	150
22	14.2	12,600	<5	5.0	33	14	12	6	48
22D	14.2	12,600	<5	<4	33	14	12	6	49
23	14.9	4,700	<5	<4	15	5	5	2	19
26	17.6	8,500	<5	0.4	25	9	10	7	30
27	21.2	16,900	<5	0.6	40	30	18	9	74
29	21.8	2,600	<5	<4	10	2	<5	2	8
60	23.8	27,800	<5	0.9	81	34	25	18	94
			Se	diment quality	assessment g	juidelines for	trace elemen	ts ¹	
	TEL^2	NG	7.24	0.676	52.3	18.7	30.2	15.6	124
	PEL^3	NG	41.6	4.21	160	108	112	42.8	271

¹Sediment Quality Assessment Guidelines, helps address concerns relative to contamination of coastal ecosystems with substances that tend to be associated with sediments (FDEP, 1994).

14

²TEL, Threshold Effects Level, defines the upper limit of the range of sediment contaminant concentrations dominated by no effects data entries (minimal effect range).

³PEL, Probable Effects Level, defines the lower limit of the range of sediment contaminant concentrations that are usually or always associated with adverse effects.

Table 6. Scans for trace elements on selected bottom-sediment samples collected in the contiguous bays and tributaries to the Caloosahatchee River Estuary, Lee County, Florida, July 20-30, 1998

[Concentration in parts per million; D, duplicate sample; <, less than; NG, no guidelines]

0:1- N-	Lagadian		Concentration						
Site No.	Location	Aluminum	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
9	Daughtrey Creek	6,000	<10	0.5	24	21	15	7	2
9D	Daughtrey Creek	4,200	<10	< 0.5	19	21	14	5	2
30	San Carlos Bay	4,300	<10	< 0.5	22	7	8	3	1
33	San Carlos Bay	1,400	<10	< 0.5	8	2	3	1	<1
34	San Carlos Bay	2,500	<10	< 0.5	14	4	5	3	<1
35	San Carlos Bay	10,600	<5	< 0.4	34	8	10	5	21
35D	San Carlos Bay	13,100	<5	0.4	38	11	11	6	26
38	San Carlos Bay	12,900	5	0.4	40	9	10	8	28
44	San Carlos Bay	6,600	<10	< 0.5	30	11	11	8	25
44D	San Carlos Bay	6,600	<10	< 0.5	27	7	6	7	16
46	Matlacha Pass	17,800	<5	< 0.4	40	12	18	13	26
47	Tarpon Bay	5,600	<5	< 0.4	20	4	5	5	8
51	Estero Bay	13,400	<10	0.6	87	29	15	12	47
58	Billy Creek	5,400	<10	1.1	62	64	100	14	318
			Se	ediment Qualit	y Assessment (Guidelines for	trace elemen	ts ¹	
	TEL ²	NG	7.24	0.676	52.3	18.7	30.2	15.6	124
	PEL^3	NG	41.6	4.21	160	108	112	42.8	271

¹Sediment Quality Assessment Guidelines, helps address concerns relative to contamination of coastal ecosystems with substances that tend to be associated with sediments (FDEP, 1994).

Figures 3 to 9 provide a visual representation of where the bottom sediments in this study plot relative to FDEP's upper and lower 95 percent prediction limits for Natural Range. By superimposing the data from this study on FDEP's regression curves, several observations were noted:

- *Arsenic*: All samples plotted within the Natural Range,
- *Cadmium*: 17 samples plotted above the upper limits,

- *Chromium*: 6 samples plotted above the upper limits,
- Copper: 8 samples plotted above the upper limits,
- *Nickel*: All samples plotted within the Natural Range,
- *Lead*: 8 samples plotted above the upper limits, and
- Zinc: 18 samples plotted above the upper limits.

Plate 3 shows a map locating the sites from which samples were scanned and the number of sites with trace elements above the Natural Range.

²TEL, Threshold Effects Level, defines the upper limit of the range of sediment contaminant concentrations dominated by no effects data entries (minimal effect range).

³PEL, Probable Effects Level, defines the lower limit of the range of sediment contaminant concentrations that are usually or always associated with adverse effects.

Figure 3. Arsenic concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

Figure 4. Cadmium concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

Figure 5. Chromium concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

Figure 6. Copper concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

Figure 7. Nickel concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

Figure 8. Lead concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

Figure 9. Zinc concentrations normalized to aluminum concentrations for 30 bottom-sediment samples compared to Florida Department of Environmental Protection regression line and prediction limits, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

Total Organic Carbon

TOC analyses of the 30 bottom-sediment samples collected in the study area are presented in table 7 and plate 4. The data for the Caloosahatchee River and Estuary are referenced to the respective site numbers and distance in miles above and below the Franklin Lock (S-79); data for the bays and tributaries are referenced only to the site numbers. TOC concentrations in the bottom sediments of the river and estuary ranged from 4,600 to 164,000 ppm; TOC concentrations in the bays and tributaries ranged from 4,290 to 142,000 ppm.

Immunoassay Results for Toxic Organic Compounds

ELISA analyses for the 30 bottom-sediment samples collected in the study area are presented in table 8 and plates 5, 6, and 7. The SQAGs that were established by FDEP (1994) are presented in table 8. At 11 sites, the concentrations of the DDT ELISA tests

were above the FDEP's PEL of 0.0517 mg/kg. All the sites had concentrations of cyclodienes as chlordane greater than the PEL. There were no samples that responded to the PCB ELISA test. All of the samples responded to the CaPAH ELISA test. The concentrations for CaPAH were below the TEL except for sites 19 and 58 which were above the TEL; there were no sites at or above the PEL. PEL defines the lower limit of the range of contaminant concentrations that are usually or always associated with adverse biological effects, whereas TEL defines the upper limit of the range of sediment contaminant concentrations dominated by the minimal effects range (FDEP, 1994). As with all ELISA tests, cross-reactivity needs to be considered (Mike Meyer, USGS, verbal commun., 1999). Therefore, the data presented in table 8 do not absolutely indicate that any individual compound exceeded the PEL. However, the data do suggest that quantitative analyses should be performed on samples to determine which compounds responded to the different ELISA tests and if any of these compounds exceeded the PEL.

Table 7. Laboratory analyses for total organic carbon on selected bottom-sediment samples collected in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998

[TOC, total organic carbon; ppm, parts per million]

	Sit	es in the Caloosaha	tchee River and E	stuary	
Site No.	Distance downstream (in miles)	TOC (ppm)	Site No.	Distance downstream (in miles)	TOC (ppm)
1	-1.1	74,800	18	12.2	36,600
2	-1.3	164,000	19	13.0	16,400
3	0.7	149,000	21	13.7	90,600
4	3.1	124,000	22	14.2	26,000
5	5.4	30,600	23	14.9	4,600
12	9.3	29,100	26	17.6	20,600
14	10.5	69,900	27	21.2	26,700
15	10.3	34,500	29	24.3	5,570
16	11.9	17,700	60	23.8	54,300
20	12.1	71,400			

Sites in bays and tributaries to the Caloosahatchee River estuary

Site No.	Location	TOC (ppm)	Site No.	Location	TOC (ppm)
9	Daughtrey Creek	142,000	44	San Carlos Bay	4,290
30	San Carlos Bay	33,400	46	Matlacha Pass	27,500
33	San Carlos Bay	6,800	47	Matlacha Pass	10,000
34	San Carlos Bay	11,800	51	Estero Bay	27,500
35	San Carlos Bay	30,700	58	Billy Creek	34,300
38	San Carlos Bay	26,700			

Table 8. Immunoassay screening on selected bottom-sediment samples collected in the Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998

[Site number, site numbers 1 and 2 are sites located above the Franklin Lock (S-79); Distance downstream from Franklin Lock (S-79); PCBs, polychlorinated biphenyls; mg/kg, milligrams per kilogram; µg/kg, micrograms per kilogram; <, less than; >, greater than; concentrations based on dry weight; DDT, includes DDT metabolites; PCBs, polychlorobiphenyls; CaPAH, carcinogenic polycyclic hydrocarbons]

N: (- NI -	Distance down-	DDT ¹	Chlordane ²	PCBs ³	CaPAH ⁴
Site No.	stream (in miles)	mg/kg	mg/kg	mg/kg	μ g/kg
1	-1.1	0.89	1.49		239
2	-1.3	1.00	0.89	< 0.25	15
3	0.7	< 0.05	1.52		317
4	3.1	0.61	1.72	< 0.25	333
5	5.4	< 0.05	0.62		32
12	9.3	0.29	0.67		397
15	10.3	< 0.05	1.02		314
14	10.5	< 0.05	0.76	< 0.25	183
16	11.9	< 0.05	0.47	< 0.25	177
20	12.1	0.23	0.47		335
18	12.2	< 0.05	1.17		1378
19	13.0	< 0.05	0.88	< 0.25	1894
21	13.7	>0.05 but <0.1	1.62	< 0.25	620
22	14.2	< 0.05	1.01		401
23	14.9	< 0.05	0.29	< 0.25	257
26	17.6	< 0.05	0.52		419
27	21.2	< 0.05	0.68	< 0.25	274
29	21.8	< 0.05	0.37		81
60	23.8	>0.05 but <0.1	1.02	< 0.25	131
9	Daughtrey Creek	>0.05 but <0.1	1.34	< 0.25	310
30	San Carlos Bay	1.27	1.81	< 0.25	221
33	San Carlos Bay	0.21	0.41		33
34	San Carlos Bay	>0.05 but <0.1	0.89	< 0.25	92
35	San Carlos Bay	< 0.05	0.46		96
38	San Carlos Bay	>0.05 but <0.1	0.87	< 0.25	100
44	San Carlos Bay	>0.05 but <0.1	0.33		23
46	Matlacha Pass	0.60	1.31	< 0.25	195
47	Tarpon Bay	< 0.05	0.77		23
51	Estero Bay	>0.05 but <0.1	0.82	< 0.25	280
58	Billy Creek	1.64	1.21		1,914
		Sediment Qual	ity Assessment Guid	elines ⁵	
	TEL ⁶	0.00389	0.00226	0.0216	1,684
	PEL ⁷	0.0517	0.00479	0.189	16,770

¹DDT, DDT test cross-reacts with DDTs, DDEs, DDDs, DDA, chloropropylate, chlorobenzilate, dicofol, and tetradifon; concentrations may represent one, or the sum of part or all the compounds.

⁴CaPAHs; CaPAHs test cross-reacts with the compounds below; concentrations may represent one, or the sum of part or all the compounds.

Benzo[a]pyrene	Phenanthrene	Fuel Oil #4
Benzo[a]anthracene	Benzo[g,h,i]perylene	Fuel Oil #5
Benzo[k]fluoranthene	Pyrene	Fuel Oil #6
Chrysene	Fluorene	Heating Fue
Benzo[b]fluoranthene	Naphthalene	Diesel Fuel
Indeno[1,2,3-c,d]pyrene	Acenaphthalene	Gasoline
Dibenzo[a,h]anthracene	Creosote	Kerosene
Anthracene	Fluoranthene	Jet A Fuel
Acenaphthylene		

⁵Sediment Quality Assessment Guidelines based on dry basis. FDEP suggests that SQAGs may be used to assess the adverse biological effects that could, potentially, be associated with levels of sediment-associated contaminants (FDEP, 1994).

²Chlordane, chlordane test cross-reacts with aldrin, endosulfan, endrin, dieldrin , heptachlor, and toxaphene. Concentrations may represent one, or the sum of part or all of the compounds.

³PCBs, PCBs test cross-reacts with Aroclors 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1268, and 1282; concentrations may represent one, or the sum of more than one compound.

⁶TEL,Threshold Effects Level, defines the upper limit of the range of sediment contaminant concentrations dominated by no effects data entries (FDEP, 1994).

⁷PEL, Probable Effects Level, defines the lower limit of the range of contaminant concentrations that are usually or always associated with adverse biological effects.

The concentrations of all samples that responded to the ELISA tests were normalized to the TOC concentration of each respective sample (FDEP, 1994). The normalized ELISA DDT test data for the sites in the river and estuary are presented in figure 10; the data for the bays and tributaries are presented in table 9. The normalized data for the ELISA Chlordane and CaPAH tests for the sites in the river and estuary are presented in figures 11 and 12 respectively; the data for the bays and tributaries are presented in table 9. The FDEP (1994) presents a discussion on the use of normalizing the sum of each group of organic compounds in a sample to the sample's TOC. The normalized toxic organic compound data can be used to compare the sampling sites on the relative potential impact on the benthic organisms at the respective sites (FDEP, 1994). The potential impact is relative to the size of the bar (figs. 10-12).

Figure 10. DDT enzyme-linked immunosorbent assay data normalized to total organic carbon, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

Table 9. DDT, cyclodienes as chlordane, and carcinogenic polycyclic aromatic hydrocarbons normalized to total organic carbon on selected bottom-sediment samples collected in the contiguous bays and tributaries to the Caloosahatchee River Estuary, Lee County, Florida, July 20-30, 1998

[Factor, ratio multiplied by a number so that the ratio is reported as a whole number; NA, not applicable; reported findings are trace or not detected]

Site No.	Location	Ratio to total organic carbon x's factor				
NO.	-	DDT ¹	Chlordane ²	CaPAH ³		
9	Daughtrey Creek	NA	9	22		
30	San Carlos Bay	38	54	66		
33	San Carlos Bay	31	60	49		
34	San Carlos Bay	NA	75	78		
35	San Carlos Bay	NA	15	31		
38	San Carlos Bay	NA	33	37		
44	San Carlos Bay	NA	77	54		
46	Matlacha Pass	22	48	71		
47	Tarpon Bay	NA	77	23		
51	Estero Bay	NA	30	102		
58	Billy Creek	48	35	558		

¹Factor equals 10⁶. DDT, DDT test cross-reacts with DDTs, DDEs, DDDs, DDA, chloropropylate, chlorobenzilate, dicofol, and tetradifon; concentrations may represent one, or the sum of part or all the compounds.

²Factor equals 10⁶. Chlordane, chlordane test cross-reacts with the cyclodiene compounds aldrin, endosulfan, endrin, dieldrin, heptachlor, and toxaphene. Concentrations may represent one, or the sum of part or all the compounds.

³Factor equals 10⁵. CaPAHs; CaPAHs test cross-reacts with the compounds below; concentrations may represent one, or the sum of part or all the compounds.

Benzo[a]pyrene	Acenaphthylene
Benzo[a]anthracene	Fluorene
Benzo[k]fluoranthene	Naphthalene
Chrysene	Creosote
Benzo[b]fluoranthene	Fuel Oil #4
Indeno[1,2,3-c,d]pyrene	Fuel Oil #5
Dibenzo[a,h]anthracene	Fuel Oil #6
Anthracene	Heating Fuel
Phenanthrene	Diesel Fuel
Benzo[g,h,i]perylene	Gasoline
Acenaphthalene	Kerosene
Pyrene	Jet A Fuel
Fluoranthene	

Figure 11. Chlordane enzyme-linked immunosorbent assay data normalized to total organic carbon, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

Figure 12. Carcinogenic polycyclic aromatic hydrocarbons enzyme-linked immunosorbent assay data normalized to total organic carbon, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998.

Laboratory Results for 10 Selected Sites

The data for the bottom-sediment samples analyzed for toxic organic compounds and selected trace elements are presented in tables 10 and 11, and in the appendix. All the samples analyzed are from the Caloosahatchee River estuary. The reporting limits

(detection limits) for the toxic organic compounds and trace elements varied with each sample because of the different moisture content of the samples. The reporting limits are directly related to the moisture content of the samples (Christina Mott, Quanterra Laboratories, verbal commun., April 1999).

Table 10. Laboratory analytical results for pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons on 10 bottom-sediment samples collected in the Caloosahatchee River Estuary, Lee County, Florida, July 20-30, 1998

[μ g/kg, micrograms per kilogram; PCBs, polychlorinated biphenyls; PAH, polycyclic aromatic hydrocarbon; nd, not detected; J, estimated result, result is less than reporting limit]

_								
Site		ides						
No.	organo- chlorine ¹	μ g/kg	organo- phosphorus ²	μ g/kg	PCBs ¹	μ g/kg	PAH ³	μ g/kg
4	nd		nd		nd		Anthracene	130J
							Benzo(a)anthracene	150J
							Benzo(b)fluoranthene	840J
							Benzo(ghi)perylene	110J
							Benzo(k)fluoranthene	270J
							Fluoranthene	1,100J
12	4,4'-DDD	5.3J	nd		nd		Benzo(a)pyrene	120J
							Benzo(b)fluoranthene	240J
							Fluoranthene	230J
14	4,4'-DDD	3.3J	nd		nd		Benzo(a)anthracene	60J
							Benzo(a)pyrene	120J
							Benzo(b)fluoranthene	270
							Fluoranthene	210J
18	nd		nd		nd		Anthracene	95J
							Benzo(a)anthracene	940
							Fluoranthene	4,100
							Phenanthrene	730
							Pyrene	1,700
22	nd		nd		nd		Benzo(a)pyrene	58J
							Benzo(b)fluoranthene	91J
							Fluoranthene	78J
26	delta-BHC	3.8J	nd		nd		Benzo(a)pyrene	78
							Benzo(ghi)perylene	71J
							Benzo(k)fluoranthene	40J
							Fluoranthene	110J
27	gamma-BHC	1.5J	nd		nd		Benzo(k)fluoranthene	21J
	(Lindane)						Fluoranthene	58J
							Fluorene	130
							Pyrene	57J
30	nd		nd		nd		nd	
33	nd		nd		nd		nd	
60	nd		nd		nd		Benzo(a)pyrene	120J
							Benzo(b)fluoranthene	190J

¹Environmental Protection Agency Method SW8080A.

²Environmental Protection Agency Method SW8140.

³Environmental Protection Agency Method SW8310.

Table 11. Laboratory analytical results for trace elements on 10 bottom-sediment samples collected in the Caloosahatchee River Estuary, Lee County, Florida, July 20-30, 1998

[Concentration, in milligrams per kilogram; nd, not detected; na, not applicable; B, estimated result. Result is less than reporting limits]

Oir- N-	Concentration								
Site No.	Aluminum	Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Mercury	Zinc
4	33,900	nd	nd	110.0	123.0	78,800	61.4B	nd	290
12	10,000	nd	nd	42.0	34.5	22,400	24.0B	nd	110
14	9,960	nd	nd	42.1	35.1	24,400	24.3B	0.21	119
18	15,200	nd	nd	78.2	107.0	35,700	72.2	nd	296
22	3,340	nd	nd	15.3	11.4	7,950	10.1B	nd	46.3
26	3,060	nd	nd	14.7	10.0	7,120	8.9B	nd	36.4
27	1,700	nd	nd	8.6	9.3	3,540	nd	nd	25.0
30	6,000	nd	nd	30.6	12.3	8,320	10.7B	nd	29.3
33	1,630	nd	nd	8.5	2.7B	2,220	nd	nd	7.4
60	26,300	nd	nd	127.0	80.4	41,400	55.5	nd	223
				Sediment Qu	ality Assessme	ent Guidelines	l		
TEL ²	na	7.24	0.676	52.3	18.7	na	30.2	0.13	124
PEL^3	na	41.6	4.21	160	108	na	112	0.696	271

¹Sediment Quality Assessment Guidelines, helps address concerns relative to contamination of coastal ecosystems with substances that tend to be associated with sediments (FDEP, 1994).

Toxic Organic Compounds

The toxic organic compounds in the estuary are reported as pesticides (organochlorine and organophosphorus), PCBs, and PAHs. There were 3 organochlorine pesticide compounds, 4,4'-DDD, delta-BHC, and gamma-BHC (Lindane), detected in sediment samples from four sites (sites 12,14, 26, and 27) (table 10, appendix). The concentrations of the DDD's and BHC's were all below the reporting limit. There were no organophosphorus pesticides or PCBs reported for the 10 sediment samples.

There were eight sites with detectable PAHs; however, only four sites (14, 18, 26, and 27) had reportable concentrations (table 10). The remaining sites (4, 12, 22, and 60) had concentrations less than the reportable limits for the method of analysis. There were no PAHs detected in sites 30 and 33.

Trace Elements

All 10 sites in the estuary had sediment samples with trace elements (table 11). No arsenic or cadmium was detected in the samples; however, aluminum, chromium, copper, iron, lead, mercury, and zinc were

detected. The ranges of concentrations of the trace elements detected are listed below:

- Aluminum: from 1,630 to 33,900 mg/kg,
- Chromium: from 8.5 to 127 mg/kg,
- *Copper*: from 2.7 to 123 mg/kg,
- *Iron*: from 2,220 to 78,800 mg/kg,
- Lead: from not detected to 72.2 mg/kg,
- *Mercury*: from not detected to 0.21 mg/kg (only at one site), and
- Zinc: from 7.4 to 296 mg/kg

There were five sites with trace elements greater than the TEL and PEL. The five sites and the concentrations in mg/kg at each site are shown below.

Site No.	Chromium	Copper	Lead	Mercury	Zinc
4	110	123	61.4		290
12		34.5			
14		35.1		0.21	
18	78.2	107	72.2		296
60	127	80.4	55.5		223
TEL	52.3	18.7	30.2	0.13	124
PEL	160	108	112	0.696	271

²TEL, Threshold Effects Level, defines the upper limit of the range of sediment contaminant concentrations dominated by no effects data entries (minimal effect range).

³PEL, Probable Effects Level, defines the lower limit of the range of sediment contaminant concentrations that are usually or always associated with adverse effects.

SUMMARY

The South Florida Water Management District (District) is developing a Caloosahatchee River Water Management Plan to address environmental and water-supply needs of the Caloosahatchee watershed. The study area of this report includes the Caloosahatchee River and Estuary, and the contiguous water bodies of Matlacha Pass, San Carlos Bay, Estero Bay, Tarpon Bay, and Pine Island Sound, in Lee County. As part of this plan, the District will evaluate potential toxic substances in the sediments of the study area. The toxic substances include anthropogenic organic compounds (polynuclear aromatic hydrocarbons (PAH) organochlorine pesticides, organophosphorus pesticides), and trace elements. The data in this report provide chemical and physical characterization of sediments at selected sites in the study area. The USGS reconnaissance survey consisted of the following activities:

- Determination of the chemistry and physical characteristics of 60 selected bottom sediment-sampling sites including 2 sites above the Franklin Lock (S-79), and
- Selection of 10 sampling sites for analysis of toxic organic compounds and selected trace elements.
 The 10 sites were selected from the 60 bottom sediment-sampling sites.

A technical advisory group, consisting of USGS and South Florida Water Management District personnel, selected the initial 60 sampling sites. Fifty-eight sites were located in the estuary, tributaries, and the bays; and two sites were located upstream of the Franklin Lock.

A sampling strategy was developed to provide chemical and physical characterization of bottom sediments at selected sites in the study area. The strategy was developed with the cooperation of the technical advisory group. The strategy specified collection of approximately the top 1-cm of bottom sediment samples at 60 selected sites and the physical and chemical characterization of the sediment samples. The characterization included short-term sediment accumulation patterns, sediment-size distribution, concentrations of trace elements, total organic carbon, and selected toxic organic compounds. Fifty-nine of the planned 60 sites were sampled; one site, located in San Carlos Bay, was not sampled because the bottom sediments consisted of sand within a 1-mile radius.

Bottom samples from 59 sites were analyzed for ⁷Be activity; thirty-one of the 59 sites sampled had detectable ⁷Be; nineteen in the river/estuary, and twelve in the bays and tributaries. Sediment-size distribution analysis was used to determine the extent of fine bottom sediments. The total percent of fines in the estuary ranged from 10.06 (site 28) to 85.55 (site 31). The total percent of fines in the bays ranged from 39.21 (site 33) to 89.95 (site 51).

Scans for trace elements were used to identify the presence of trace elements above Natural Range. The trace elements were differentiated from varied natural background concentrations by comparing data with FDEP regression curves based on the normalization of trace elements concentrations to aluminum concentration in the sample. Cadmium, chromium, copper, lead, and zinc were above Natural Range at some sites in the estuary and bays.

Total organic carbon analyses were used to identify the locations of carbonaceous sediments. TOC concentration in 30 selected sites ranged between 4,290 and 164,000 parts per million. The TOC from sediments in 18 sites in the river and estuary ranged between 4,600 (at site 23) and 164,000 parts per million (at site 2). The TOC in the bays and tributaries ranged between 4,290 at site 44 (Matlacha Pass) and 142,000 parts per million at site 9 (Daughtrey Creek).

Immunoassay analysis of competitive enzymelinked immunosorbent assay (ELISA) was used to identify and estimate semiquantitatively the concentration of groups of toxic compounds. Three groups were identified; chlorinated pesticides (DDTs and cyclodienes as chlordane), polychlorinated biphenyls (Aroclors) and carcinogenic polycyclic aromatic hydrocarbons. All the concentrations from samples that responded to the DDT and Chlordane ELISA test were above the Florida Department of Environmental Protection's Probable Effect Level (PEL).

Laboratory analysis for toxic organic compounds and selected trace elements was performed on samples from 10 sites (4, 12, 14, 18, 22, 26, 27, 30, 33, and 60). The toxic organic compounds included the organochlorine and organophosphorus pesticides, PCBs, and PAHs. The selected trace elements included arsenic, cadmium, chromium, copper, iron, lead, mercury, and zinc. There were 3 organochlorine pesticide compounds, 4,4'-DDD, delta-BHC, and gamma-BHC (Lindane), detected in sediment samples from four sites (12,14, 26, and 27).

The concentrations of the DDD and BHC's were all below the reporting limit. There were no organophosphorus pesticides or PCBs reported for the 10 sediment samples. There were eight sites with detectable PAHs; however, only four sites (14, 18, 26, and 27) had concentrations equal to or greater than the reportable limit. Sites 4, 12, 22, and 60 had concentrations less than the reportable limit for the method of analysis. There were no PAHs detected in sites 30 and 33.

Trace elements at 10 sites were analyzed in the USGS contract laboratory. No arsenic and cadmium were detected in the samples; however, there were five sites (4, 12, 14, 18, and 60) with trace elements greater than the TEL or the PEL.

REFERENCES

- Florida Department of Environmental Protection, 1988, A guide to the interpretation of metal concentrations in estuarine sediments: Tallahassee, Florida, 44 p.
- —— 1994, Florida coastal sediment contaminants atlas, A summary of coastal sediment quality surveys: Tallahassee, Florida, 111 p.
- Geyh, M.A., and Schleicher, H., 1990, Absolute age determination-Physical and chemical dating methods and their applications: Berlin, Springer-Verlag, 503 p.
- Goodwin, C.R., 1991, Simulation of the effects of proposed tide gates on circulation, flushing, and water quality in residential canals, Cape Coral: U.S. Geological Survey Open-File Report 91-237, 43 p.
- Holmes, C.W., 1998, Short-lived isotopic chronometers, A means of measuring decadal sedimentary dynamics: U.S. Geological Survey Fact Sheet FS-073-98.
- La Rose, H.R., and McPherson, B.F., 1983, Chemical and hydrologic assessment of the Caloosahatchee River basin, Lake Okeechobee to Franklin Lock: U.S. Geological Survey Water-Resources Investigations Report 83-4126, 63 p.

- Matthes, W.J., Jr., 1992, Quality-assurance plan for the analysis of fluvial sediment by laboratories of the U.S. Geological Survey: Open-File Report 91-467, 31 p.
- Pierce, A. C., ed., 1995, Florida Statistical Abstract (29th ed.): Gainesville, Fla., University Press of Florida, Gainesville, Florida, Bureau of Economic and Business Research, College of Business Administration.
- Schoellhamer, D.H., 1991, Size classification of bed sediment and selection of resuspension monitoring sites in Upper Tampa Bay, Florida: U.S. Geological Survey Water-Resources Investigations Report 91-4070, 23 p.
- Stoker, Y.E., 1986, Water quality of the Charlotte Harbor estuarine system, Florida, November 1982 through October 1984: U.S. Geological Survey Open-File Report 85-563, 213 p.
- Strategic Diagnostics Incorporated, 1998, Remediation, assessment, and industrial testing product information: Newark, New Jersey.

Verbal and written communications:

- Cantillo, Adriana, National Oceanic and Atmospheric Administration, 1997, written communication.
- Crean, D., and Chamberlain, R., South Florida Water Management District, 1985, written communication.
- Haunert, D., South Florida Water Management District, 1978, written communication.
- Holmes, Charles, U.S. Geological Survey, 1998, verbal communication.
- Meyer, Mike, U.S. Geological Survey, 1999, verbal communication.
- Mott, Christina, Quanterra Laboratory, Arvada, Colorado, 1999, verbal communication.
- Pellicer, Tony, Natural Resource Manager, Lee County, Florida, 1999, verbal communication.
- Seal, Thomas, Florida Department of Environmental Protection, 1999, written communication.

Appendix

Analytical report for organic compounds and trace elements in 10 selected bottom-sediment samples, Caloosahatchee River and Estuary study area, Lee County, Florida, July 20-30, 1998

32

Quanterra Incorporated 4955 Yarrow Street Arvada, Colorado 80002

303 421-6611 Telephone 303 431-7171 Fax

ANALYTICAL REPORT

FL00108

Lot #: D9B240185

Richard Daddow

U.S. Geological Survey

QUANTERRA INCORPORATED

Christina M. Mott

In M. hott

Project Manager

May 24, 1999

Case Narrative

This report has been revised to show the results as dry weight corrected.

Organophophorus Pesticides by GC, Method 8140

The spike compound, Ethyl Parathion, is reported above the acceptance limit for the Laboratory Control Samples. As the method blank and matrix spike samples are in control, and there are no samples that contain Ethyl Parathion above the reporting limit, the data are reported.

Polynuclear Aromatic Hydrocarbons by HPLC, Method 8310

The Relative Percent Difference value for Fluorene in the Laboratory Control Samples is reported above the acceptance limit. As the individual percent recoveries are in control, the data are reported.

Several percent recoveries and one RPD value are reported outside of the acceptance limits for several of the analytes for the matrix spike samples due to sample matrix.

With exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. All laboratory quality control samples analyzed in conjunction with the samples in this project were within established control limits.

EXECUTIVE SUMMARY - Detection Highlights

D9B240185

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
FL00108 SITE#4 02/22/99 001				
Anthracene	130 Ј	890	ug/kg	SW846 8310
Benzo(a) anthracene	150 J	890	ug/kg	SW846 8310
Benzo(b) fluoranthene	840 J	890	ug/kg	SW846 8310
Benzo(ghi)perylene	110 J	1800	ug/kg	SW846 8310
Benzo(k) fluoranthene	270 J	890	ug/kg	SW846 8310
Fluoranthene	1100 J	1800	ug/kg	SW846 8310
Aluminum	33900	223	mg/kg	SW846 6010B
Chromium	110	22.3	mg/kg	SW846 6010B
Copper	123	44.6	mg/kg	SW846 6010B
Iron	78800	223	mg/kg	SW846 6010B
Lead	61.4 B	112	mg/kg	SW846 6010B
Zinc	290	44.6	mg/kg	SW846 6010B
Percent Moisture	95.5	0.10	%	MCAWW 160.3 MOD
FL00108 SITE#12 02/22/99 002				
4,4'-DDD	5.3 J	24	ug/kg	SW846 8080A
Benzo(a)pyrene	120 J	290	ug/kg	SW846 8310
Benzo(b) fluoranthene	240 J	290	ug/kg	SW846 8310
Fluoranthene	230 J	570	ug/kg	SW846 8310
Aluminum	10000	71.8	mg/kg	SW846 6010B
Chromium	42.0	7.2	mg/kg	SW846 6010B
Copper	34.5	14.4	mg/kg	SW846 6010B
Iron	22400	71.8	mg/kg	SW846 6010B
Lead	24.0 B	35.9	mg/kg	SW846 6010B
Zinc	110	14.4	mg/kg	SW846 6010B
Percent Moisture	86.1	0.10	%	MCAWW 160.3 MOD
FL00108 SITE#14 02/22/99 003				
4,4'-DDD	3.3 J	19	ug/kg	SW846 8080A
Benzo(a)anthracene	60 J	230	ug/kg	SW846 8310
Benzo(a)pyrene	120 J	230	ug/kg	SW846 8310
Benzo(b) fluoranthene	270	230	ug/kg	SW846 8310
Fluoranthene	210 J	450	ug/kg	SW846 8310
Mercury	0.21	0.19	mg/kg	SW846 7471A
Aluminum	9960	56.6	mg/kg	SW846 6010B
Chromium	42.1	5.7	mg/kg	SW846 6010B
Copper	35.1	11.3	mg/kg	SW846 6010B
Iron	24400	56.6	mg/kg	SW846 6010B
Lead	24.3 B	28.3	mg/kg	SW846 6010B
Zinc	119	11.3	mg/kg	SW846 6010B
Percent Moisture	82.3	0.10	%	MCAWW 160.3 MOD

(Continued on next page)

EXECUTIVE SUMMARY - Detection Highlights

D9B240185

PARAMETER	RESULT	REPORTII	NG <u>UNITS</u>	ANALYTICAL METHOD		
FL00108 SITE#18 02/22/99 004						
Anthracene	95 J	180	ug/kg	SW846 8310		
Benzo(a)anthracene	940	180	ug/kg	SW846 8310		
Fluoranthene	4100	360	ug/kg	SW846 8310		
Phenanthrene	730	360	ug/kg	SW846 8310		
Pyrene	1700	360	ug/kg	SW846 8310		
Aluminum	15200	89.3	mg/kg	SW846 6010B		
Chromium	78.2	8.9	mg/kg	SW846 6010B		
Copper	107	17.9	mg/kg	SW846 6010B		
Iron	35700	89.3	mg/kg	SW846 6010B		
Lead	72.2	44.6	mg/kg	SW846 6010B		
Zinc	296	17.9	mg/kg	SW846 6010B		
Percent Moisture	88.8	0.10	8	MCAWW 160.3 MOD		
FL00108 SITE#22 02/22/99 005	5					
Benzo(a)pyrene	58 J	140	ug/kg	SW846 8310		
Benzo(b)fluoranthene	91 J	140	ug/kg	SW846 8310		
Fluoranthene	78 J	280	ug/kg	SW846 8310		
Aluminum	3340	34.7	mg/kg	SW846 6010B		
Chromium	15.3	3.5	mg/kg	SW846 6010B		
Copper	11.4	6.9	mg/kg	SW846 6010B		
Iron	7950	34.7	mg/kg	SW846 6010B		
Lead	10.1 B	17.3	mg/kg	SW846 6010B		
Zinc	46.3	6.9	mg/kg	SW846 6010B		
Percent Moisture	71.2	0.10	8	MCAWW 160.3 MOD		
FL00108 SITE#26 02/22/99 006	5					
delta-BHC	3.8 J	5.5	ug/kg	SW846 8080A		
Benzo(a)pyrene	78	65	ug/kg	SW846 8310		
Benzo(ghi)perylene	71 J	130	ug/kg	SW846 8310		
Benzo(k)fluoranthene	40 J	65	ug/kg	SW846 8310		
Fluoranthene	110 J	130	ug/kg	SW846 8310		
Aluminum	3060	32.5	mg/kg	SW846 6010B		
Chromium	14.7	3.3	mg/kg	SW846 6010B		
Copper	10	6.5	mg/kg	SW846 6010B		
Iron	7120	32.5	mg/kg	SW846 6010B		
Lead	8.9 B	16.3	mg/kg	SW846 6010B		
Zinc	36.4	6.5	mg/kg	SW846 6010B		
Percent Moisture	69.3	0.10	* *	MCAWW 160.3 MOD		

(Continued on next page)

EXECUTIVE SUMMARY - Detection Highlights

D9B240185

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD	
W 004.00 OTWELLOW 00.400.400					
FL00108 SITE#27 02/22/99 007					
gamma-BHC (Lindane)	1.5 J	4.9	ug/kg	SW846 8080A	
Benzo(k)fluoranthene	21 J	57	ug/kg	SW846 8310	
Fluoranthene	58 J	110	ug/kg	SW846 8310	
Fluorene	130	110	ug/kg	SW846 8310	
Pyrene	57 J	110	ug/kg	SW846 8310	
Aluminum	1700	28.6	mg/kg	SW846 6010B	
Chromium	8.6	2.9	mg/kg	SW846 6010B	
Copper	9.3	5.7	mg/kg	SW846 6010B	
Iron	3540	28.6	mg/kg	SW846 6010B	
Zinc	25.0	5.7	mg/kg	SW846 6010B	
Percent Moisture	65.1	0.10	"'9/ 'A'9 %	MCAWW 160.3 MOD	
rercenc moiscure	65.1	0.10	6	MCAWW 160.3 MOD	
FL00108 SITE#30 02/22/99 008					
Aluminum	6000	42.4	mg/kg	SW846 6010B	
Chromium	30.6	4.2	mg/kg	SW846 6010B	
Copper	12.3	8.5	mg/kg	SW846 6010B	
Iron	8320	42.4	mg/kg	SW846 6010B	
Lead	10.7 B	21.2	mg/kg	SW846 6010B	
Zinc	29.3	8.5	mg/kg	SW846 6010B	
Percent Moisture	76.4	0.10	% %	MCAWW 160.3 MOD	
refeeme Melbeure	70.4	0.10	б	MCAWW 160.3 MOD	
FL00108 SITE#60 02/22/99 009					
Benzo(a)pyrene	120 Ј	420	ug/kg	SW846 8310	
Benzo(b) fluoranthene	190 J	420	ug/kg	SW846 8310	
Aluminum	26300	105	mg/kg	SW846 6010B	
Chromium	127	10.5	mg/kg	SW846 6010B	
Copper	80.4	21.1	mg/kg	SW846 6010B	
Iron	41400	105	mg/kg	SW846 6010B	
Lead	55.5	52.7	mg/kg	SW846 6010B	
Zinc	223	21.1	mg/kg	SW846 6010B	
Percent Moisture	90.5	0.10	111g/kg %		
rerecite Morbeare	90.5	0.10	б	MCAWW 160.3 MOD	
FL00108 SITE#33 02/22/99 010					
Aluminum	1630	26.1	mg/kg	SW846 6010B	
Chromium	8.5	2.6	mg/kg	SW846 6010B	
Copper	2.7 B	5.2	mg/kg	SW846 6010B	
Iron	2220	26.1	mg/kg	SW846 6010B	
Zinc	7.4	5.2	mg/kg	SW846 6010B	
Percent Moisture	61.7	0.10	™g/ kg %	MCAWW 160.3 MOD	
rorone horbeare	01.7	0.10	ъ	MCAWW 160.3 MOD	

ANALYTICAL METHODS SUMMARY

D9B240185

PARAMETER	ANALYTICAL METHOD
Inductively Coupled Plasma (ICP) Metals	SW846 6010B
Mercury in Solid Waste (Manual Cold-Vapor)	SW846 7471A
Organochlorine Pesticides and PCBs	SW846 8080A
Organophosphorous Pesticides by GC	SW846 8140
Percent Moisture	MCAWW 160.3 MOD
Polynuclear Aromatic Hydrocarbons by HPLC	SW846 8310
References:	

MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

PREPARATION METHODS SUMMARY

D9B240185

PREPARATION DESCRIPTION	PREPARATION METHOD	ANALYTICAL METHOD
Acid Digestion of Sediments, Sludges, Soils	SW846 3050B	SW846 6010B
Low Concentration Utrasonic Extraction	SW846 3550	SW846 8140
Low Concentration Utrasonic Extraction	SW846 3550	SW846 8310
Mercury sample preparation	SW846 7471A	SW846 7471A
Sonication-Low Level	SW846 8080A	SW846 8080A
Total Residue as Percent Moisture	MCAWW 160.3 MOD	MCAWW 160.3 MOD

References:

MCAWW	"Methods for Chemical Analysis of Water and Wastes", ${\sf EPA-600/4-79-020}$, March 1983 and subsequent revisions.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

D9B240185

ANALYTICAL METHOD	ANALYST	ANALYST ID
MCAWW 160.3 MOD	Andrea Sporleder	001971
SW846 6010B	Tracy Anderson	009690
SW846 7471A	William G. Logan	002179
SW846 8080A	Mike Schmitt	005925
SW846 8140	Matthew Graves	001801
SW846 8310	Dane Rodgers	007407

References:

MCAWW	"Methods for Chemical Analysis of Water and Wastes",
	EPA-600/4-79-020, March 1983 and subsequent revisions.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical
	Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

D9B240185

WO #	SAMPLE#	CLIENT SAMPLE ID	DATE TIME
CR3CF	001	FL00108 SITE#4	02/22/99
CR3DN	002	FL00108 SITE#12	02/22/99
CR3DV CR3E1	003 004	FL00108 SITE#14 FL00108 SITE#18	02/22/99
CR3E1	004	FL00108 SITE#10	02/22/99 02/22/99
CR3E6	006	FL00108 SITE#26	02/22/99
CR3E9	007	FL00108 SITE#27	02/22/99
CR3EP	800	FL00108 SITE#30	02/22/99
CR3EW	009	FL00108 SITE#60	02/22/99
CR3F5	010	FL00108 SITE#33	02/22/99

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: FL00108 SITE#4

GC Semivolatiles

Lot-Sample #...: D9B240185-001 Work Order #...: CR3CF103 Matrix.....: SOLID

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date.....:
 03/08/99
 Analysis Date...:
 03/28/99

 Prep Batch #...:
 9067354
 Analysis Time...:
 07:16

Dilution Factor: 1

Method..... SW846 8080A

		REPORTIN	NG
PARAMETER	RESULT	LIMIT	UNITS
Aldrin	ND	38	ug/kg
alpha-BHC	ND	38	ug/kg
beta-BHC	ND	38	ug/kg
delta-BHC	ND	38	ug/kg
gamma-BHC (Lindane)	ND	38	ug/kg
Chlordane (technical)	ND	380	ug/kg
alpha-Chlordane	ND	38	ug/kg
gamma-Chlordane	ND	38	ug/kg
Chlorobenzilate	ND	740	ug/kg
4,4'-DDD	ND	74	ug/kg
4,4'-DDE	ND	74	ug/kg
4,4'-DDT	ND	74	ug/kg
Diallate	ND	740	ug/kg
Dieldrin	ND	74	ug/kg
Endosulfan I	ND	38	ug/kg
Endosulfan II	ND	74	ug/kg
Endosulfan sulfate	ND	74	ug/kg
Endrin	ND	74	ug/kg
Endrin aldehyde	ND	74	ug/kg
Endrin ketone	ND	74	ug/kg
Heptachlor	ND	38	ug/kg
Heptachlor epoxide	ND	38	ug/kg
Isodrin	ND	74	ug/kg
Kepone	ND	1900	ug/kg
Methoxychlor	ND	380	ug/kg
Aroclor 1016	ND	740	ug/kg
Aroclor 1221	ND	740	ug/kg
Aroclor 1232	ND	740	ug/kg
Aroclor 1242	ND	740	ug/kg
Aroclor 1248	ND	740	ug/kg
Aroclor 1254	ND	740	ug/kg
Aroclor 1260	ND	740	ug/kg
Toxaphene	ND	3800	ug/kg
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS	•
Decachlorobiphenyl	87	(62 - 13	
Tetrachloro-m-xylene	60	(46 - 11	
and a support	00	(40 - TT	• 1]

NOTE(S):

Client Sample ID: FL00108 SITE#12

GC Semivolatiles

Lot-Sample #: D9B240185-002	Work Order #: CR3DN103	Matrix SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
<pre>Prep Date: 03/08/99</pre>	Analysis Date: 03/28/99	
Prep Batch #: 9067354	Analysis Time: 07:51	
Dilution Factor: 1		

Method.....: SW846 8080A

		REPORTING	7
PARAMETER	RESULT	LIMIT	UNITS
Aldrin	ND	12	ug/kg
alpha-BHC	ND	12	ug/kg
beta-BHC	ND	12	ug/kg
delta-BHC	ND	12	ug/kg
gamma-BHC (Lindane)	ND	12	ug/kg
Chlordane (technical)	ND	120	ug/kg
alpha-Chlordane	ND	12	ug/kg
gamma-Chlordane	ND	12	ug/kg
Chlorobenzilate	ND	240	ug/kg
4,4'-DDD	5.3 J	24	ug/kg
4,4'-DDE	ND	24	ug/kg
4,4'-DDT	ND	24	ug/kg
Diallate	ND	240	ug/kg
Dieldrin	ND	24	ug/kg
Endosulfan I	ND	12	ug/kg
Endosulfan II	ND	24	ug/kg
Endosulfan sulfate	ND	24	ug/kg
Endrin	ND	24	ug/kg
Endrin aldehyde	ND	24	ug/kg
Endrin ketone	ND	24	ug/kg
Heptachlor	ND	12	ug/kg
Heptachlor epoxide	ND	12	ug/kg
Isodrin	ND	24	ug/kg
Kepone	ND	600	ug/kg
Methoxychlor	ND	120	ug/kg
Aroclor 1016	ND	240	ug/kg
Aroclor 1221	ND	240	ug/kg
Aroclor 1232	ND	240	ug/kg
Aroclor 1242	ND	240	ug/kg
Aroclor 1248	ND	240	ug/kg
Aroclor 1254	ND	240	ug/kg
Aroclor 1260	ND	240	ug/kg
Toxaphene	ND	1200	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	<u>_</u>
Decachlorobiphenyl	90	(62 - 139)
Tetrachloro-m-xylene	75	(46 - 117	')

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#14

GC Semivolatiles

Lot-Sample #: D9B240185-003	Work Order #: CR3DV103	Matrix SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
<pre>Prep Date: 03/08/99</pre>	Analysis Date: 03/28/99	
Prep Batch #: 9067354	Analysis Time: 08:25	
Dilution Factor: 1		

Method..... SW846 8080A

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aldrin	ND	9.6	ug/kg
alpha-BHC	ND	9.6	ug/kg
beta-BHC	ND	9.6	ug/kg
delta-BHC	ND	9.6	ug/kg
gamma-BHC (Lindane)	ND	9.6	ug/kg
Chlordane (technical)	ND	96	ug/kg
alpha-Chlordane	ND	9.6	ug/kg
gamma-Chlordane	ND	9.6	ug/kg
Chlorobenzilate	ND	190	ug/kg
4,4'-DDD	3.3 J	19	ug/kg
4,4'-DDE	ND	19	ug/kg
4,4'-DDT	ND	19	ug/kg
Diallate	ND	190	ug/kg
Dieldrin	ND	19	ug/kg
Endosulfan I	ND	9.6	ug/kg
Endosulfan II	ND	19	ug/kg
Endosulfan sulfate	ND	19	ug/kg
Endrin	ND	19	ug/kg
Endrin aldehyde	ND	19	ug/kg
Endrin ketone	ND	19	ug/kg
Heptachlor	ND	9.6	ug/kg
Heptachlor epoxide	ND	9.6	ug/kg
Isodrin	ND	19	ug/kg
Kepone	ND	470	ug/kg
Methoxychlor	ND	96	ug/kg
Aroclor 1016	ND	190	ug/kg
Aroclor 1221	ND	190	ug/kg
Aroclor 1232	ND	190	ug/kg
Aroclor 1242	ND	190	ug/kg
Aroclor 1248	ND	190	ug/kg
Aroclor 1254	ND	190	ug/kg
Aroclor 1260	ND	190	ug/kg
Toxaphene	ND	960	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Decachlorobiphenyl	85	(62 - 139)	
Tetrachloro-m-xylene	71	(46 - 117)	

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#18

GC Semivolatiles

Lot-Sample #...: D9B240185-004 Work Order #...: CR3E1103 Matrix.....: SOLID

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date.....:
 03/08/99
 Analysis Date...:
 03/28/99

 Prep Batch #...:
 9067354
 Analysis Time...:
 08:59

Dilution Factor: 1

Method..... SW846 8080A

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aldrin	ND	15	ug/kg
alpha-BHC	ND	15	ug/kg
beta-BHC	ND	15	ug/kg
delta-BHC	ND	15	ug/kg
gamma-BHC (Lindane)	ND	15	ug/kg
Chlordane (technical)	ND	150	ug/kg
alpha-Chlordane	ND	15	ug/kg
gamma-Chlordane	ND	15	ug/kg
Chlorobenzilate	ND	290	ug/kg
4,4'-DDD	ND	29	ug/kg
4,4'-DDE	ND	29	ug/kg
4,4'-DDT	ND	29	ug/kg
Diallate	ND	290	ug/kg
Dieldrin	ND	29	ug/kg
Endosulfan I	ND	15	ug/kg
Endosulfan II	ND	29	ug/kg
Endosulfan sulfate	ND	29	ug/kg
Endrin	ND	29	ug/kg
Endrin aldehyde	ND	29	ug/kg
Endrin ketone	ND	29	ug/kg
Heptachlor	ND	15	ug/kg
Heptachlor epoxide	ND	15	ug/kg
Isodrin	ND	29	ug/kg
Kepone	ND	740	ug/kg
Methoxychlor	ND	150	ug/kg
Aroclor 1016	ND	290	ug/kg
Aroclor 1221	ND	290	ug/kg
Aroclor 1232	ND	290	ug/kg
Aroclor 1242	ND	290	ug/kg
Aroclor 1248	ND	290	ug/kg
Aroclor 1254	ND	290	ug/kg
Aroclor 1260	ND	290	ug/kg
Toxaphene	ND	1500	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Decachlorobiphenyl	73	(62 - 139)	•
Tetrachloro-m-xylene	73 71	(62 - 139) (46 - 117)	
TOTAGILOTO III AYTOLO	, <u> </u>	(1 0 - 11/)	

NOTE (S):

Client Sample ID: FL00108 SITE#22

GC Semivolatiles

Lot-Sample #: D9B240185-005	Work Order #: CR3E3103	Matrix SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
Prep Date: 03/08/99	Analysis Date: 03/28/99	
Prep Batch #: 9067354	Analysis Time: 09:33	

Prep Batch #...: 9067354

Dilution Factor: 1

Method..... SW846 8080A

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aldrin	ND	5.9	ug/kg
alpha-BHC	ND	5.9	ug/kg
beta-BHC	ND	5.9	ug/kg
delta-BHC	ND	5.9	ug/kg
gamma-BHC (Lindane)	ND	5.9	ug/kg
Chlordane (technical)	ND	59	ug/kg
alpha-Chlordane	ND	5.9	ug/kg
gamma-Chlordane	ND	5.9	ug/kg
Chlorobenzilate	ND	110	ug/kg
4,4'-DDD	ND	11	ug/kg
4,4'-DDE	ND	11	ug/kg
4,4'-DDT	ND	11	ug/kg
Diallate	ND	110	ug/kg
Dieldrin	ND	11	ug/kg
Endosulfan I	ND	5.9	ug/kg
Endosulfan II	ND	11	ug/kg
Endosulfan sulfate	ND	11	ug/kg
Endrin	ND	11	ug/kg
Endrin aldehyde	ND	11	ug/kg
Endrin ketone	ND	11	ug/kg
Heptachlor	ND	 5.9	ug/kg
Heptachlor epoxide	ND	5.9	ug/kg
Isodrin	ND	11	ug/kg
Kepone	ND	290	ug/kg
Methoxychlor	ND	59	ug/kg
Aroclor 1016	ND	110	ug/kg
Aroclor 1221	ND	110	ug/kg
Aroclor 1232	ND	110	ug/kg
Aroclor 1242	ND	110	ug/kg
Aroclor 1248	ND	110	ug/kg
Aroclor 1254	ND	110	ug/kg
Aroclor 1260	ND	110	ug/kg
Toxaphene	ND	590	ug/kg
-			-3/3
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Decachlorobiphenyl	82	(62 - 139)	•
Tetrachloro-m-xylene	74	(46 - 117)	
4	_	120 22//	

NOTE(S):

Client Sample ID: FL00108 SITE#26

GC Semivolatiles

Lot-Sample #: D9B240185-006	Work Order #: CR3E6103	Matrix SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
<pre>Prep Date: 03/08/99</pre>	Analysis Date: 03/28/99	
Prep Batch #: 9067354	Analysis Time: 10:08	
Dilution Factor: 1		

Method..... SW846 8080A

		REPORTIN	1G
PARAMETER	RESULT	LIMIT	UNITS
Aldrin	ND	5.5	ug/kg
alpha-BHC	ND	5.5	ug/kg
beta-BHC	ND	5.5	ug/kg
delta-BHC	3.8 J	5.5	ug/kg
gamma-BHC (Lindane)	ND	5.5	ug/kg
Chlordane (technical)	ND	55	ug/kg
alpha-Chlordane	ND	5.5	ug/kg
gamma-Chlordane	ND	5.5	ug/kg
Chlorobenzilate	ND	110	ug/kg
4,4'-DDD	ND	11	ug/kg
4,4'-DDE	ND	11	ug/kg
4,4'-DDT	ND	11	ug/kg
Diallate	ND	110	ug/kg
Dieldrin	ND	11	ug/kg
Endosulfan I	ND	5.5	ug/kg
Endosulfan II	ND	11	ug/kg
Endosulfan sulfate	ND	11	ug/kg
Endrin	ND	11	ug/kg
Endrin aldehyde	ND	11	ug/kg
Endrin ketone	ND	11	ug/kg
Heptachlor	ND	5.5	ug/kg
Heptachlor epoxide	ND	5.5	ug/kg
Isodrin	ND	11	ug/kg
Kepone	ND	270	ug/kg
Methoxychlor	ND	55	ug/kg
Aroclor 1016	ND	110	ug/kg
Aroclor 1221	ND	110	ug/kg
Aroclor 1232	ND	110	ug/kg
Aroclor 1242	ND	110	ug/kg
Aroclor 1248	ND	110	ug/kg
Aroclor 1254	ND	110	ug/kg
Aroclor 1260	ND	110	ug/kg
Toxaphene	ND	550	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Decachlorobiphenyl	87	(62 - 13	9)
Tetrachloro-m-xylene	81	(46 - 11	

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#27

GC Semivolatiles

Lot-Sample #: D9B240185-007	Work Order #: CR3E9103	Matrix SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
Prep Date: 03/08/99	Analysis Date: 03/28/99	
Prep Batch #: 9067354	Analysis Time: 10:42	
Dilution Factor: 1		
	Method SW846 8080A	

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aldrin	ND	4.9	ug/kg
alpha-BHC	ND	4.9	ug/kg
beta-BHC	ND	4.9	ug/kg
delta-BHC	ND	4.9	ug/kg
gamma-BHC (Lindane)	1.5 J	4.9	ug/kg
Chlordane (technical)	ND	49	ug/kg
alpha-Chlordane	ND	4.9	ug/kg
gamma-Chlordane	ND	4.9	ug/kg
Chlorobenzilate	ND	94	ug/kg
4,4'-DDD	ND	9.4	ug/kg
4,4'-DDE	ND	9.4	ug/kg
4,4'-DDT	ND	9.4	ug/kg
Diallate	ND	94	ug/kg
Dieldrin	ND	9.4	ug/kg
Endosulfan I	ND	4.9	ug/kg
Endosulfan II	ND	9.4	ug/kg
Endosulfan sulfate	ND	9.4	ug/kg
Endrin	ND	9.4	ug/kg
Endrin aldehyde	ND	9.4	ug/kg
Endrin ketone	ND	9.4	ug/kg
Heptachlor	ND	4.9	ug/kg
Heptachlor epoxide	ND	4.9	ug/kg
Isodrin	ND	9.4	ug/kg
Kepone	ND	240	ug/kg
Methoxychlor	ND	49	ug/kg
Aroclor 1016	ND	94	ug/kg
Aroclor 1221	ND	94	ug/kg
Aroclor 1232	ND	94	ug/kg
Aroclor 1242	ND	94	ug/kg
Aroclor 1248	ND	94	ug/kg
Aroclor 1254	ND	94	ug/kg
Aroclor 1260	ND	94	ug/kg
Toxaphene	ND	490	ug/kg
			<u> </u>
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Decachlorobiphenyl	88	(62 - 139)
Tetrachloro-m-xylene	80	(46 - 117	')

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#30

GC Semivolatiles

Lot-Sample #: D9B240185-008	Work Order #: CR3EP103	Matrix: SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
<pre>Prep Date: 03/08/99</pre>	Analysis Date: 03/28/99	
Prep Batch #: 9067354	Analysis Time: 12:24	

Dilution Factor: 1

Method.....: SW846 8080A

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aldrin	ND	7.2	ug/kg
alpha-BHC	ND	7.2	ug/kg
beta-BHC	ND	7.2	ug/kg
delta-BHC	ND	7.2	ug/kg
gamma-BHC (Lindane)	ND	7.2	ug/kg
Chlordane (technical)	ND	72	ug/kg
alpha-Chlordane	ND	7.2	ug/kg
gamma-Chlordane	ND	7.2	ug/kg
Chlorobenzilate	ND	140	ug/kg
4,4'-DDD	ND	14	ug/kg
4,4'-DDE	ND	14	ug/kg
4,4'-DDT	ND	14	ug/kg
Diallate	ND	140	ug/kg
Dieldrin	ND	14	ug/kg
Endosulfan I	ND	7.2	ug/kg
Endosulfan II	ND	14	ug/kg
Endosulfan sulfate	ND	14	ug/kg
Endrin	ND	14	ug/kg
Endrin aldehyde	ND	14	ug/kg
Endrin ketone	ND	14	ug/kg
Heptachlor	ND	7.2	ug/kg
Heptachlor epoxide	ND	7.2	ug/kg
Isodrin	ND	14	ug/kg
Kepone	ND	350	ug/kg
Methoxychlor	ND	72	ug/kg
Aroclor 1016	ND	140	ug/kg
Aroclor 1221	ND	140	ug/kg
Aroclor 1232	ND	140	ug/kg
Aroclor 1242	ND	140	ug/kg
Aroclor 1248	ND	140	ug/kg
Aroclor 1254	ND	140	ug/kg
Aroclor 1260	ND	140	ug/kg
Toxaphene	ND	720	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Decachlorobiphenyl	89	(62 - 139)	-
Tetrachloro-m-xylene	77	(46 - 117)	
-		, ==-,	

NOTE(S):

Client Sample ID: FL00108 SITE#60

GC Semivolatiles

Lot-Sample #...: D9B240185-009 Work Order #...: CR3EW103 Matrix...... SOLID

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date....:
 03/08/99
 Analysis Date...:
 03/28/99

 Prep Batch #...:
 9067354
 Analysis Time...:
 12:59

Dilution Factor: 1

Method..... SW846 8080A

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aldrin	ND	18	ug/kg
alpha-BHC	ND	18	ug/kg
beta-BHC	ND	18	ug/kg
delta-BHC	ND	18	ug/kg
gamma-BHC (Lindane)	ND	18	ug/kg
Chlordane (technical)	ND	180	ug/kg
alpha-Chlordane	ND	18	ug/kg
gamma-Chlordane	ND	18	ug/kg
Chlorobenzilate	ND	350	ug/kg
4,4'-DDD	ND	35	ug/kg
4,4'-DDE	ND	35	ug/kg
4,4'-DDT	ND	35	ug/kg
Diallate	ND	350	ug/kg
Dieldrin	ND	35	ug/kg
Endosulfan I	ND	18	ug/kg
Endosulfan II	ND	35	ug/kg
Endosulfan sulfate	ND	35	ug/kg
Endrin	ND	35	ug/kg
Endrin aldehyde	ND	35	ug/kg
Endrin ketone	ND	35	ug/kg
Heptachlor	ND	18	ug/kg
Heptachlor epoxide	ND	18	ug/kg
Isodrin	ND	35	ug/kg
Kepone	ND	870	ug/kg
Methoxychlor	ND	180	ug/kg
Aroclor 1016	ND	350	ug/kg
Aroclor 1221	ND	350	ug/kg
Aroclor 1232	ND	350	ug/kg
Aroclor 1242	ND	350	ug/kg
Aroclor 1248	ND	350	ug/kg
Aroclor 1254	ND	350	ug/kg
Aroclor 1260	ND	350	ug/kg
Toxaphene	ND	1800	ug/kg
			J1 J
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Decachlorobiphenyl	69	(62 - 139)	-
Tetrachloro-m-xylene	69	(46 - 117)	
		,	

NOTE(S):

Client Sample ID: FL00108 SITE#33

GC Semivolatiles

Lot-Sample #: D9B240185-010	Work Order #: CR3F5103	Matrix: SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
<pre>Prep Date: 03/08/99</pre>	Analysis Date: 03/28/99	
Prep Batch #: 9067354	Analysis Time: 13:33	
Dilution Factor: 1	_	

Method.....: SW846 8080A

PARAMETER			מדיים∩סקק	REPORTING	
Aldrin	PARAMETER	RESULT			
alpha-BHC ND 4.4 ug/kg beta-BHC ND 4.4 ug/kg delta-BHC ND 4.4 ug/kg gamma-BHC (Lindane) ND 4.4 ug/kg chlordane (technical) ND 4.4 ug/kg alpha-Chlordane ND 4.4 ug/kg gamma-Chlordane ND 4.4 ug/kg gamma-Chlordane ND 4.4 ug/kg Chlorobenzilate ND 8.6 ug/kg Chlorobenzilate ND 8.6 ug/kg 4,4'-DDE ND 8.6 ug/kg 4,4'-DDE ND 8.6 ug/kg 4,4'-DDT ND 8.6 ug/kg Dieldrin ND 8.6 ug/kg Indosulfan ND 8.6 ug/kg Endosulfan I ND 8.6 ug/kg Endrin ND 8.6 ug/kg Endrin aldehyde ND 8.6 ug/kg			 		
Deta-BHC ND	alpha-BHC				
Detail	-				
gamma-BHC (Lindane) ND 4.4 ug/kg Chlordane (technical) ND 44 ug/kg alpha-Chlordane ND 4.4 ug/kg gamma-Chlordane ND 4.4 ug/kg Chlorobenzilate ND 86 ug/kg 4,4'-DDD ND 8.6 ug/kg 4,4'-DDE ND 8.6 ug/kg 4,4'-DDT ND 8.6 ug/kg Diallate ND 8.6 ug/kg Endosulfan II ND 8.6 ug/kg	delta-BHC				
Chlordane (technical) alpha-Chlordane ND A.4 ug/kg alpha-Chlordane ND A.4 ug/kg gamma-Chlordane ND A.4 ug/kg Chlorobenzilate ND B.6 ug/kg 4,4'-DDD ND B.6 ug/kg 4,4'-DDT ND B.6 ug/kg A,4'-DDT ND B.6 ug/kg Dieldrin ND B.6 ug/kg Endosulfan I ND B.6 ug/kg Endosulfan II ND B.6 ug/kg Endosulfan sulfate ND B.6 ug/kg Endrin aldehyde ND B.6 ug/kg Endrin aldehyde ND B.6 ug/kg Endrin aldehyde ND B.6 ug/kg Endrin betone ND B.6 ug/kg Endrin ketone ND B.6 ug/kg Aroclor 1016 ND B.6 ug/kg Aroclor 1016 ND B.6 ug/kg Aroclor 1221 ND B.6 ug/kg Aroclor 1242 ND B.6 ug/kg Aroclor 1242 ND B.6 ug/kg Aroclor 1248 ND B.6 ug/kg Aroclor 1248 ND B.6 ug/kg Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1260 ND B.6 ug/kg Aroclor 1254 Aroclor 1260 ND B.6 ug/kg Aroclor 1254 Aroclor 1260 ND B.6 ug/kg Aroclor 1254 Aroclor 1260 ND B.6 ug/kg Aroclor 1270 Aroclor 1281 Aroclor 1					
Alpha-Chlordane	Chlordane (technical)				
gamma-Chlordane ND 4.4 ug/kg Chlorobenzilate ND 86 ug/kg 4,4'-DDD ND 8.6 ug/kg 4,4'-DDE ND 8.6 ug/kg 4,4'-DDT ND 8.6 ug/kg Diallate ND 86 ug/kg Diallate ND 8.6 ug/kg Endosulfan ND 8.6 ug/kg Endosulfan II ND 8.6 ug/kg Endosulfan sulfate ND 8.6 ug/kg Endrin ND 8.6 ug/kg Endrin ND 8.6 ug/kg Endrin aldehyde ND 8.6 ug/kg Endrin ketone ND 8.6 ug/kg Heptachlor ND 8.6 ug/kg Heptachlor ND 8.6 ug/kg Kepone ND 8.6 ug/kg Methoxychlor ND 8.6 ug/kg Aroclor 1232					
Chlorobenzilate ND 86 ug/kg 4,4'-DDD ND 8.6 ug/kg 4,4'-DDE ND 8.6 ug/kg 4,4'-DDE ND 8.6 ug/kg 4,4'-DDT ND 8.6 ug/kg Diallate ND 86 ug/kg Diallate ND 86 ug/kg Endosulfan I ND 8.6 ug/kg Endosulfan II ND 8.6 ug/kg Endosulfan II ND 8.6 ug/kg Endosulfan sulfate ND 8.6 ug/kg Endosulfan sulfate ND 8.6 ug/kg Endrin aldehyde ND 8.6 ug/kg Endrin aldehyde ND 8.6 ug/kg Endrin ketone ND 8.6 ug/kg Endrin ketone ND 8.6 ug/kg Endrin ketone ND 8.6 ug/kg Wg Endrin ketone ND 8.6 ug/kg Wg Endrin ketone ND 8.6 ug/kg Wg Endrin ketone ND 4.4 ug/kg Wg Heptachlor epoxide ND 4.4 ug/kg Wg	-	ND			
4,4'-DDD ND 8.6 ug/kg 4,4'-DDT ND 8.6 ug/kg 4,4'-DDT ND 8.6 ug/kg Diallate ND 86 ug/kg Dieldrin ND 8.6 ug/kg Endosulfan I ND 4.4 ug/kg Endosulfan II ND 8.6 ug/kg Endrin II ND 8.6 ug/kg Endrin sulfate ND 8.6 ug/kg Endrin ND 8.6 ug/kg Endrin aldehyde ND 8.6 ug/kg Endrin ketone ND 8.6 ug/kg Heptachlor ND 4.4 ug/kg Heptachlor epoxide ND 4.4 ug/kg Isodrin ND 8.6 ug/kg Kepone ND 8.6 ug/kg Methoxychlor ND 86 ug/kg Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1242 ND 86	Chlorobenzilate	ND			
4,4'-DDE ND 8.6 ug/kg 4,4'-DDT ND 8.6 ug/kg Diallate ND 86 ug/kg Dieldrin ND 8.6 ug/kg Endosulfan I ND 4.4 ug/kg Endosulfan II ND 8.6 ug/kg Endosulfan sulfate ND 8.6 ug/kg Endrin ND 8.6 ug/kg Endrin aldehyde ND 8.6 ug/kg Endrin ketone ND 8.6 ug/kg Heptachlor ND 4.4 ug/kg Heptachlor epoxide ND 4.4 ug/kg Isodrin ND 4.4 ug/kg Kepone ND 220 ug/kg Methoxychlor ND 44 ug/kg Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1232 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND <t< td=""><td>4,4'-DDD</td><td>ND</td><td></td><td></td></t<>	4,4'-DDD	ND			
A,4'-DDT	4,4'-DDE	ND			
Diallate ND 86 ug/kg Dieldrin ND 8.6 ug/kg Endosulfan I ND 4.4 ug/kg Endosulfan II ND 8.6 ug/kg Endosulfan sulfate ND 8.6 ug/kg Endrin ND 8.6 ug/kg Endrin ND 8.6 ug/kg Endrin aldehyde ND 8.6 ug/kg Endrin ketone ND 8.6 ug/kg Endrin ketone ND 4.4 ug/kg Heptachlor ND 4.4 ug/kg Heptachlor epoxide ND 4.4 ug/kg Isodrin ND 8.6 ug/kg Kepone ND 8.6 ug/kg Methoxychlor ND 8.6 ug/kg Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1242 ND 86 ug/kg Aroclor	4,4'-DDT				
Dieldrin ND 8.6 ug/kg Endosulfan I ND 4.4 ug/kg Endosulfan II ND 8.6 ug/kg Endosulfan sulfate ND 8.6 ug/kg Endrin ND 8.6 ug/kg Endrin aldehyde ND 8.6 ug/kg Endrin ketone ND 8.6 ug/kg Heptachlor ND 4.4 ug/kg Heptachlor epoxide ND 4.4 ug/kg Isodrin ND 8.6 ug/kg Kepone ND 8.6 ug/kg Methoxychlor ND 44 ug/kg Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1232 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg To	Diallate	ND			
Endosulfan I	Dieldrin	ND			
Endosulfan II ND 8.6 ug/kg Endosulfan sulfate ND 8.6 ug/kg Endrin ND 8.6 ug/kg Endrin aldehyde ND 8.6 ug/kg Endrin ketone ND 8.6 ug/kg Heptachlor ND 4.4 ug/kg Heptachlor epoxide ND 4.4 ug/kg Isodrin ND 8.6 ug/kg Kepone ND 220 ug/kg Methoxychlor ND 44 ug/kg Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1232 ND 86 ug/kg Aroclor 1242 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY SURROGATE RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)	Endosulfan I				
Endosulfan sulfate ND 8.6 ug/kg Endrin ND 8.6 ug/kg Endrin aldehyde ND 8.6 ug/kg Endrin ketone ND 8.6 ug/kg Heptachlor ND 4.4 ug/kg Heptachlor epoxide ND 4.4 ug/kg Isodrin ND 8.6 ug/kg Kepone ND 220 ug/kg Methoxychlor ND 44 ug/kg Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1232 ND 86 ug/kg Aroclor 1242 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg	Endosulfan II				
Endrin	Endosulfan sulfate	ND			
Endrin aldehyde	Endrin	ND			
Endrin ketone ND 8.6 ug/kg Heptachlor ND 4.4 ug/kg Heptachlor epoxide ND 4.4 ug/kg Isodrin ND 8.6 ug/kg Kepone ND 220 ug/kg Methoxychlor ND 44 ug/kg Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1232 ND 86 ug/kg Aroclor 1242 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)	Endrin aldehyde	ND			
Heptachlor ND 4.4 ug/kg Heptachlor epoxide ND 4.4 ug/kg Isodrin ND 8.6 ug/kg Kepone ND 220 ug/kg Methoxychlor ND 44 ug/kg Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1232 ND 86 ug/kg Aroclor 1242 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)	Endrin ketone	ND			
Heptachlor epoxide ND 4.4 ug/kg Isodrin ND 8.6 ug/kg Kepone ND 220 ug/kg Methoxychlor ND 44 ug/kg Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1232 ND 86 ug/kg Aroclor 1242 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)	Heptachlor	ŇD			
ND S.6 ug/kg	Heptachlor epoxide	ND			
Kepone ND 220 ug/kg Methoxychlor ND 44 ug/kg Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1232 ND 86 ug/kg Aroclor 1242 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)	Isodrin	ND			
Methoxychlor ND 44 ug/kg Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1232 ND 86 ug/kg Aroclor 1242 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg SURROGATE RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)	Kepone	ND			
Aroclor 1016 ND 86 ug/kg Aroclor 1221 ND 86 ug/kg Aroclor 1232 ND 86 ug/kg Aroclor 1242 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY LIMITS (62 - 139)	Methoxychlor	ND	44		
Aroclor 1221 ND 86 ug/kg Aroclor 1232 ND 86 ug/kg Aroclor 1242 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)	Aroclor 1016	ND	86		
Aroclor 1232 ND 86 ug/kg Aroclor 1242 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY SURROGATE RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)	Aroclor 1221	ND	86		
Aroclor 1242 ND 86 ug/kg Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY SURROGATE RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)	Aroclor 1232	ND	86		
Aroclor 1248 ND 86 ug/kg Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)	Aroclor 1242	ND	86		
Aroclor 1254 ND 86 ug/kg Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY SURROGATE RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)		ND	86		
Aroclor 1260 ND 86 ug/kg Toxaphene ND 440 ug/kg PERCENT RECOVERY SURROGATE RECOVERY LIMITS Decachlorobiphenyl 85 (62 - 139)		ND	86		
Toxaphene ND 440 ug/kg PERCENT RECOVERY SURROGATE RECOVERY Decachlorobiphenyl 85 (62 - 139)	Aroclor 1260	ND	86		
SURROGATERECOVERYLIMITSDecachlorobiphenyl85(62 - 139)	Toxaphene	ND	440		
SURROGATERECOVERYLIMITSDecachlorobiphenyl85(62 - 139)		PERCENT	RECOVERY		
Decachlorobiphenyl 85 (62 - 139)	SURROGATE				
				9)	

NOTE(S):

Client Sample ID: FL00108 SITE#4

GC Semivolatiles

Lot-Sample #: D9B240185-001	Work Order #: CR3CF10H	Matrix SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
Prep Date: 03/08/99	Analysis Date: 03/10/99	
Prep Batch #: 9067270	Analysis Time: 06:47	
Dilution Factor: 1		

Method.....: SW846 8140

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Azinphos-methyl	ND	1900	ug/kg
Bolstar	ND	380	ug/kg
Chlorpyrifos	ND	380	ug/kg
Coumaphos	ND	380	ug/kg
Demeton (total)	ND	380	ug/kg
Diazinon	ND	380	ug/kg
Dichlorvos	ND	380	ug/kg
Dimethoate	ND	380	ug/kg
Disulfoton	ND	380	ug/kg
Ethoprop	ND	380	ug/kg
Ethyl parathion	ND	380	ug/kg
Fensulfothion	ND	1900	ug/kg
Fenthion	ND	380	ug/kg
Malathion	ND	940	ug/kg
Merphos	ND	380	ug/kg
Methyl parathion	ND	380	ug/kg
Mevinphos	ND	4700	ug/kg
Naled	ND	7400	ug/kg
Phorate	ND	380	ug/kg
Ronnel	ND	380	ug/kg
Sulfotepp	ND	380	ug/kg
Tokuthion	ND	380	ug/kg
Trichloronate	ND	380	ug/kg
Tetrachlorvinphos (Stirophos)	ND	1900	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	•
Ethyl Pirimifos	80	(55 - 105)	
Chlormefos	74	(50 - 150)	

NOTE(S):

Client Sample ID: FL00108 SITE#12

GC Semivolatiles

Lot-Sample #: D9B240185-002	Work Order #: CR3DN10F	Matrix SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
Prep Date: 03/08/99	Analysis Date: 03/10/99	
Prep Batch #: 9067270	Analysis Time: 07:19	

Prep Batch #...: 9067270

Dilution Factor: 1

Method..... SW846 8140

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Azinphos-methyl	ND	600	ug/kg
Bolstar	ND	120	ug/kg
Chlorpyrifos	ND	120	ug/kg
Coumaphos	ND	120	ug/kg
Demeton (total)	ND	120	ug/kg
Diazinon	ND	120	ug/kg
Dichlorvos	ND	120	ug/kg
Dimethoate	ND	120	ug/kg
Disulfoton	ND	120	ug/kg
Ethoprop	ND	120	ug/kg
Ethyl parathion	ND	120	ug/kg
Fensulfothion	ND	600	ug/kg
Fenthion	ND	120	ug/kg
Malathion	ND	300	ug/kg
Merphos	ND	120	ug/kg
Methyl parathion	ND	120	ug/kg
Mevinphos	ND	1500	ug/kg
Naled	ND	2400	ug/kg
Phorate	ND	120	ug/kg
Ronnel	ND	120	ug/kg
Sulfotepp	ND	120	ug/kg
Tokuthion	ND	120	ug/kg
Trichloronate	ND	120	ug/kg
Tetrachlorvinphos (Stirophos)	ND	600	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Ethyl Pirimifos	85	(55 - 105)	
Chlormefos	77	(50 - 150)	

NOTE(S):

Client Sample ID: FL00108 SITE#14

GC Semivolatiles

Lot-Sample #: D9B240185-003	Work Order #: CR3DV10F	Matrix: SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
<pre>Prep Date: 03/08/99</pre>	Analysis Date: 03/10/99	
Prep Batch #: 9067270	Analysis Time: 07:52	
Dilution Factor: 1		

Method.....: SW846 8140

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Azinphos-methyl	ND	470	ug/kg
Bolstar	ND	96	ug/kg
Chlorpyrifos	ND	96	ug/kg
Coumaphos	ND	96	ug/kg
Demeton (total)	ND	96	ug/kg
Diazinon	ND	96	ug/kg
Dichlorvos	ND	96	ug/kg
Dimethoate	ND	96	ug/kg
Disulfoton	ND	96	ug/kg
Ethoprop	ND	96	ug/kg
Ethyl parathion	ND	96	ug/kg
Fensulfothion	ND	470	ug/kg
Fenthion	ND	96	ug/kg
Malathion	ND	240	ug/kg
Merphos	ND	96	ug/kg
Methyl parathion	ND	96	ug/kg
Mevinphos	ND	1200	ug/kg
Naled	ND	1900	ug/kg
Phorate	ND	96	ug/kg
Ronnel	ND	96	ug/kg
Sulfotepp	ND	96	ug/kg
Tokuthion	ND	96	ug/kg
Trichloronate	ND	96	ug/kg
Tetrachlorvinphos (Stirophos)	ND	470	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Ethyl Pirimifos	86	(55 - 105)	
Chlormefos	76	(50 - 150)	

NOTE(S):

Client Sample ID: FL00108 SITE#18

GC Semivolatiles

Lot-Sample #...: D9B240185-004 Work Order #...: CR3E110F Matrix....: SOLID Date Sampled...: 02/22/99 Date Received..: 02/24/99

Prep Batch #...: 02/22/99

Pate Received..: 02/24/99

Analysis Date..: 03/10/99

Analysis Time..: 08:25

Dilution Factor: 1

Method..... SW846 8140

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Azinphos-methyl	ND	740	ug/kg
Bolstar	ND	150	ug/kg
Chlorpyrifos	ND	150	ug/kg
Coumaphos	ND	150	ug/kg
Demeton (total)	ND	150	ug/kg
Diazinon	ND	150	ug/kg
Dichlorvos	ND	150	ug/kg
Dimethoate	ND	150	ug/kg
Disulfoton	ND	150	ug/kg
Ethoprop	ND	150	ug/kg
Ethyl parathion	ND	150	ug/kg
Fensulfothion	ND	740	ug/kg
Fenthion	ND	150	ug/kg
Malathion	ND	380	ug/kg
Merphos	ND	150	ug/kg
Methyl parathion	ND	150	ug/kg
Mevinphos	ND	1900	ug/kg
Naled	ND	2900	ug/kg
Phorate	ND	150	ug/kg
Ronnel	ND	150	ug/kg
Sulfotepp	ND	150	ug/kg
Tokuthion	ND	150	ug/kg
Trichloronate	ND	150	ug/kg
Tetrachlorvinphos (Stirophos)	ND	740	ug/kg
GENT T 0 G 2 TH	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	-
Ethyl Pirimifos	88	(55 - 105)	
Chlormefos	78	(50 - 150)	

NOTE(S):

Client Sample ID: FL00108 SITE#22

GC Semivolatiles

LOC-Sample #: D9B240185-005	Work Order #:	CR3E310F	Matrix: SOLID
Date Sampled: 02/22/99	Date Received:	02/24/99	
<pre>Prep Date: 03/08/99</pre>	Analysis Date:	03/10/99	
Prep Batch #: 9067270	Analysis Time:	08:58	
Dilution Factor: 1			
	** . 7 . 7		

Method....: SW846 8140

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Azinphos-methyl	ND	290	ug/kg
Bolstar	ND	59	ug/kg
Chlorpyrifos	ND	59	ug/kg
Coumaphos	ND	59	ug/kg
Demeton (total)	ND	59	ug/kg
Diazinon	ND	59	ug/kg
Dichlorvos	ND	59	ug/kg
Dimethoate	ND	59	ug/kg
Disulfoton	ND	59	ug/kg
Ethoprop	ND	59	ug/kg
Ethyl parathion	ND	59	ug/kg
Fensulfothion	ND	290	ug/kg
Fenthion	ND	59	ug/kg
Malathion	ND	150	ug/kg
Merphos	ND	59	ug/kg
Methyl parathion	ND	59	ug/kg
Mevinphos	ND	730	ug/kg
Naled	ND	1100	ug/kg
Phorate	ND	59	ug/kg
Ronnel	ND	59	ug/kg
Sulfotepp	ND	59	ug/kg
Tokuthion	ND	59	ug/kg
Trichloronate	ND	59	ug/kg
Tetrachlorvinphos (Stirophos)	ND	290	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Ethyl Pirimifos	59	(55 - 105)	
Chlormefos	79	(50 - 150)	

NOTE(S):

Client Sample ID: FL00108 SITE#26

GC Semivolatiles

Lot-Sample #: D9B240185-006	Work Order #: CR3E610F	Matrix SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	

Prep Date....: 03/08/99

Prep Batch #...: 9067270

Dilution Factor: 1

Date Received.:: 02/24/99

Analysis Date..: 03/10/99

Analysis Time..: 11:42

Method..... SW846 8140

	REPORTING		
PARAMETER	RESULT	LIMIT	UNITS
Azinphos-methyl	ND	270	ug/kg
Bolstar	ND	55	ug/kg
Chlorpyrifos	ND	55	ug/kg
Coumaphos	ND	55	ug/kg
Demeton (total)	ND	55	ug/kg
Diazinon	ND	55	ug/kg
Dichlorvos	ND	55	ug/kg
Dimethoate	ND	55	ug/kg
Disulfoton	ND	55	ug/kg
Ethoprop	ND	55	ug/kg
Ethyl parathion	ND	55	ug/kg
Fensulfothion	ND	270	ug/kg
Fenthion	ND	55	ug/kg
Malathion	ND	140	ug/kg
Merphos	ND	55	ug/kg
Methyl parathion	ND	55	ug/kg
Mevinphos	ND	680	ug/kg
Naled	ND	1100	ug/kg
Phorate	ND	55	ug/kg
Ronnel	ND	55	ug/kg
Sulfotepp	ND	55	ug/kg
Tokuthion	ND	55	ug/kg
Trichloronate	ND	55	ug/kg
Tetrachlorvinphos (Stirophos)	ND	270	ug/kg
			-
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Ethyl Pirimifos	85	(55 - 105)	
Chlormefos	77	(50 - 150)	

NOTE(S):

Client Sample ID: FL00108 SITE#27

GC Semivolatiles

Lot-Sample #: D9B240185-007	Work Order #: (CR3E910F	Matrix SOLID
Date Campled . 02/22/00	D-+- D	00/04/00	

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date....:
 03/08/99
 Analysis Date...:
 03/10/99

 Prep Batch #...:
 9067270
 Analysis Time...:
 12:15

Dilution Factor: 1

Method.....: SW846 8140

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Azinphos-methyl	ND	240	ug/kg
Bolstar	ND	49	ug/kg
Chlorpyrifos	ND	49	ug/kg
Coumaphos	ND	49	ug/kg
Demeton (total)	ND	49	ug/kg
Diazinon	ND	49	ug/kg
Dichlorvos	ND	49	ug/kg
Dimethoate	ND	49	ug/kg
Disulfoton	ND	49	ug/kg
Ethoprop	ND	49	ug/kg
Ethyl parathion	ND	49	ug/kg
Fensulfothion	ND	240	ug/kg
Fenthion	ND	49	ug/kg
Malathion	ND	120	ug/kg
Merphos	ND	49	ug/kg
Methyl parathion	ND	49	ug/kg
Mevinphos	ND	600	ug/kg
Naled	ND	940	ug/kg
Phorate	ND	49	ug/kg
Ronnel	ND	49	ug/kg
Sulfotepp	ND	49	ug/kg
Tokuthion	ND	49	ug/kg
Trichloronate	ND	49	ug/kg
Tetrachlorvinphos (Stirophos)	ND	240	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Ethyl Pirimifos	85	(55 - 105)	
Chlormefos	75	(50 - 150)	

NOTE(S):

Client Sample ID: FL00108 SITE#30

GC Semivolatiles

Lot-Sample #: D9B240185-008 Date Sampled: 02/22/99 Prep Date: 03/08/99 Prep Batch #: 9067270 Dilution Factor: 1	Work Order #: Date Received: Analysis Date: Analysis Time: Method	02/24/99 03/10/99 12:48	Matrix: SOLID
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Azinphos-methyl	ND	350	ug/kg
Bolstar	ND	72	ug/kg
Chlorpyrifos	ND	72	ug/kg
Coumaphos	ND	72	ug/kg
Demeton (total)	ND	72	ug/kg
Diazinon	ND	72	ug/kg
Dichlorvos	ND	72	ug/kg
Dimethoate	ND	72	ug/kg
Disulfoton	ND	72	ug/kg
Ethoprop	ND	72	ug/kg
Ethyl parathion	ND	72	ug/kg
Fensulfothion	ND	350	ug/kg
Fenthion	ND	72	ug/kg
Malathion	ND	180	ug/kg
Merphos	ND	72	ug/kg
Methyl parathion	ND	72	ug/kg
Mevinphos	ND	890	ug/kg
Naled	ND	1400	ug/kg
Phorate	ND	72	ug/kg
Ronnel	ND	72	ug/kg
Sulfotepp	ND	72	ug/kg
Tokuthion	ND	72	ug/kg
Trichloronate	ND	72	ug/kg

350

ug/kg

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Ethyl Pirimifos	85	(55 - 105)
Chlormefos	77	(50 - 150)

ND

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Tetrachlorvinphos (Stirophos)

Client Sample ID: FL00108 SITE#60

GC Semivolatiles

Lot-Sample #: D9B240185-009	Work Order #: CR3EW10F	Matrix SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
Prep Date: 03/08/99	Analysis Date: 03/10/99	
Prep Batch #: 9067270	Analysis Time: 13:20	
Dilution Factor: 1		
	Method SW846 8140	

PARAMETER			REPORTING	
Bolstar	PARAMETER	RESULT	LIMIT	UNITS
ND	Azinphos-methyl	ND	870	ug/kg
Chlorpyrifos ND 180 ug/kg Coumaphos ND 180 ug/kg Demeton (total) ND 180 ug/kg Diazinon ND 180 ug/kg Dichlorvos ND 180 ug/kg Dimethoate ND 180 ug/kg Disulfoton ND 180 ug/kg Ethoprop ND 180 ug/kg Ethyl parathion ND 180 ug/kg Fensulfothion ND 180 ug/kg Fenthion ND 180 ug/kg Malathion ND 180 ug/kg Merphos ND 180 ug/kg Methyl parathion ND 180 ug/kg Mevinphos ND 180 ug/kg Naled ND 3500 ug/kg Naled ND 180 ug/kg Romel ND 180 ug/kg Sulfotepp ND<	Bolstar	ND	180	
Coumaphos ND 180 ug/kg Demeton (total) ND 180 ug/kg Diazinon ND 180 ug/kg Dichlorvos ND 180 ug/kg Dimethoate ND 180 ug/kg Disulfoton ND 180 ug/kg Ethoprop ND 180 ug/kg Ethyl parathion ND 180 ug/kg Fensulfothion ND 180 ug/kg Malathion ND 180 ug/kg Merphos ND 180 ug/kg Methyl parathion ND 180 ug/kg Mevinphos ND 180 ug/kg Naled ND 3500 ug/kg Naled ND 3500 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Tokuthion ND<	Chlorpyrifos	ND	180	
Demeton (total)	Coumaphos	ND	180	
Diazinon ND 180 ug/kg Dichlorvos ND 180 ug/kg Dimethoate ND 180 ug/kg Disulfoton ND 180 ug/kg Ethoprop ND 180 ug/kg Ethyl parathion ND 180 ug/kg Fenthion ND 870 ug/kg Malathion ND 180 ug/kg Merphos ND 180 ug/kg Methyl parathion ND 180 ug/kg Mevinphos ND 180 ug/kg Naled ND 3500 ug/kg Naled ND 180 ug/kg Phorate ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg Tetrachlorvinphos	Demeton (total)	ND	180	
Dichlorvos ND 180 ug/kg Dimethoate ND 180 ug/kg Disulfoton ND 180 ug/kg Ethoprop ND 180 ug/kg Ethyl parathion ND 180 ug/kg Fensulfothion ND 180 ug/kg Fenthion ND 180 ug/kg Malathion ND 440 ug/kg Merphos ND 180 ug/kg Methyl parathion ND 180 ug/kg Mevinphos ND 2200 ug/kg Naled ND 3500 ug/kg Phorate ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg Ethyl Piri	Diazinon	ND	180	
Dimethoate ND 180 ug/kg Disulfoton ND 180 ug/kg Ethoprop ND 180 ug/kg Ethyl parathion ND 180 ug/kg Fensulfothion ND 870 ug/kg Fenthion ND 180 ug/kg Malathion ND 440 ug/kg Merphos ND 180 ug/kg Methyl parathion ND 180 ug/kg Mevinphos ND 2200 ug/kg Naled ND 3500 ug/kg Naled ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Tokuthion ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg Tetrachlorvinphos Stirophos) ND Ethyl Imits	Dichlorvos	ND	180	
Disulfoton ND 180 ug/kg Ethoprop ND 180 ug/kg Ethyl parathion ND 180 ug/kg Fensulfothion ND 870 ug/kg Fenthion ND 180 ug/kg Malathion ND 440 ug/kg Merphos ND 180 ug/kg Methyl parathion ND 180 ug/kg Mevinphos ND 180 ug/kg Naled ND 3500 ug/kg Phorate ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg Ethyl Pirimifos 83 (55 - 105)	Dimethoate	ND	180	
Ethyl parathion ND 180 ug/kg Fensulfothion ND 870 ug/kg Fenthion ND 180 ug/kg Malathion ND 440 ug/kg Merphos ND 180 ug/kg Methyl parathion ND 180 ug/kg Mevinphos ND 2200 ug/kg Naled ND 3500 ug/kg Phorate ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg Ethyl Pirimifos 83 (55 - 105)	Disulfoton	ND	180	
Fensulfothion ND 870 ug/kg Fenthion ND 180 ug/kg Malathion ND 440 ug/kg Merphos ND 180 ug/kg Methyl parathion ND 180 ug/kg Mevinphos ND 2200 ug/kg Naled ND 3500 ug/kg Phorate ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg PERCENT RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)	_ _ _ _	ND	180	ug/kg
Fenthion Malathion Morphos Methyl parathion Mevinphos ND ND ND ND ND ND ND ND ND N		ND	180	ug/kg
Malathion ND 440 ug/kg Merphos ND 180 ug/kg Methyl parathion ND 180 ug/kg Mevinphos ND 2200 ug/kg Naled ND 3500 ug/kg Phorate ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg Ethyl Pirimifos RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)	Fensulfothion	ND	870	ug/kg
Merphos ND 180 ug/kg Methyl parathion ND 180 ug/kg Mevinphos ND 2200 ug/kg Naled ND 3500 ug/kg Phorate ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg SURROGATE RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)		ND	180	ug/kg
Methyl parathion ND 180 ug/kg Mevinphos ND 2200 ug/kg Naled ND 3500 ug/kg Phorate ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg PERCENT RECOVERY LIMITS SURROGATE RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)	Malathion	ND	440	ug/kg
Mevinphos ND 2200 ug/kg Naled ND 3500 ug/kg Phorate ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg SURROGATE RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)	=	ND	180	ug/kg
Naled ND 3500 ug/kg Phorate ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg PERCENT RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)		ND	180	ug/kg
Phorate ND 180 ug/kg Ronnel ND 180 ug/kg Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg PERCENT RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)		ND	2200	ug/kg
ND	Naled	ND	3500	ug/kg
Sulfotepp ND 180 ug/kg Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg PERCENT RECOVERY SURROGATE RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)		ND	180	ug/kg
Tokuthion ND 180 ug/kg Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg PERCENT RECOVERY SURROGATE RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)		ND	180	ug/kg
Trichloronate ND 180 ug/kg Tetrachlorvinphos (Stirophos) ND 870 ug/kg PERCENT RECOVERY SURROGATE RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)	= =	ND	180	ug/kg
Tetrachlorvinphos (Stirophos) ND 870 ug/kg PERCENT RECOVERY SURROGATE RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)		ND	180	ug/kg
PERCENT RECOVERY SURROGATE RECOVERY LIMITS Ethyl Pirimifos 83 (55 - 105)		ND	180	ug/kg
SURROGATERECOVERYLIMITSEthyl Pirimifos83(55 - 105)	Tetrachlorvinphos (Stirophos)	ND	870	ug/kg
SURROGATERECOVERYLIMITSEthyl Pirimifos83(55 - 105)				
Ethyl Pirimifos 83 (55 - 105)		PERCENT	RECOVERY	
				_
Chlormefos 75 (50 - 150)	-			
	Chlormefos	75	(50 - 150)	

NOTE(S):

Client Sample ID: FL00108 SITE#33

GC Semivolatiles

Lot-Sample #: D9B240185-010	Work Order #: CR3F510F	Matrix: SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
Pren Date - 03/08/99	Analygia Data - 03/10/00	

 Prep Date.....:
 03/08/99
 Analysis Date...
 03/10/99

 Prep Batch #...:
 9067270
 Analysis Time...
 13:53

Dilution Factor: 1

Method..... SW846 8140

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Azinphos-methyl	ND	220	ug/kg
Bolstar	ND	44	ug/kg
Chlorpyrifos	ND	44	ug/kg
Coumaphos	ND	44	ug/kg
Demeton (total)	ND	44	ug/kg
Diazinon	ND	44	ug/kg
Dichlorvos	ND	44	ug/kg
Dimethoate	ND	44	ug/kg
Disulfoton	ND	44	ug/kg
Ethoprop	ND	44	ug/kg
Ethyl parathion	ND	44	ug/kg
Fensulfothion	ND	220	ug/kg
Fenthion	ND	44	ug/kg
Malathion	ND	110	ug/kg
Merphos	ND	44	ug/kg
Methyl parathion	ND	44	ug/kg
Mevinphos	ND	550	ug/kg
Naled	ND	860	ug/kg
Phorate	ND	44	ug/kg
Ronnel	ND	44	ug/kg
Sulfotepp	ND	44	ug/kg
Tokuthion	ND	44	ug/kg
Trichloronate	ND	44	ug/kg
Tetrachlorvinphos (Stirophos)	ND	220	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Ethyl Pirimifos	83	(55 - 105)
Chlormefos	78	(50 - 150	

NOTE(S):

Client Sample ID: FL00108 SITE#4

HPLC

TOC-2900 #: DARS40182-001	work Order #: CR3CF102	Matrix SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
Prep Date • 02/25/99	Analysis Date . 02/12/00	

 Prep Date.....:
 02/25/99

 Prep Batch #...:
 9056304

 Dilution Factor:
 2

Analysis Date..: 03/12/99

Analysis Time..: 14:51

Method..... SW846 8310

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	8900	ug/kg
Acenaphthylene	ND	8900	ug/kg
Anthracene	130 J	890	ug/kg
Benzo(a)anthracene	150 J	890	ug/kg
Benzo(a)pyrene	ND	890	ug/kg
Benzo(b)fluoranthene	840 J	890	ug/kg
Benzo(ghi)perylene	110 J	1800	ug/kg
Benzo(k)fluoranthene	270 Ј	890	ug/kg
Chrysene	ND	1800	ug/kg
Dibenzo(a,h)anthracene	ND	1800	ug/kg
Fluoranthene	1100 Ј	1800	ug/kg
Fluorene	ND	1800	ug/kg
Indeno(1,2,3-cd)pyrene	ND	1800	ug/kg
1-Methylnaphthalene	ND	8900	ug/kg
2-Methylnaphthalene	ND	8900	ug/kg
Naphthalene	ND	8900	ug/kg
Phenanthrene	ND	1800	ug/kg
Pyrene	ND	1800	ug/kg
			_
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Terphenyl-d14	67	(57 - 140	0)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#12

HPLC

Lot-Sample #...: D9B240185-002 Work Order #...: CR3DN102 Matrix...... SOLID

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date....:
 02/25/99
 Analysis Date...:
 03/12/99

 Prep Batch #...:
 9056304
 Analysis Time...:
 16:21

Dilution Factor: 2

Method..... SW846 8310

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Acenaphthene	ND	2900	ug/kg	
Acenaphthylene	ND	2900	ug/kg	
Anthracene	ND	290	ug/kg	
Benzo(a)anthracene	ND	290	ug/kg	
Benzo(a)pyrene	120 Ј	290	ug/kg	
Benzo(b)fluoranthene	240 J	290	ug/kg	
Benzo(ghi)perylene	ND	570	ug/kg	
Benzo(k)fluoranthene	ND	290	ug/kg	
Chrysene	ND	570	ug/kg	
Dibenzo(a,h)anthracene	ND	570	ug/kg	
Fluoranthene	230 J	570	ug/kg	
Fluorene	ND	570	ug/kg	
Indeno(1,2,3-cd)pyrene	ND	570	ug/kg	
1-Methylnaphthalene	ND	2900	ug/kg	
2-Methylnaphthalene	ND	2900	ug/kg	
Naphthalene	ND	2900	ug/kg	
Phenanthrene	ND	570	ug/kg	
Pyrene	ND	570	ug/kg	
			- -	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Terphenyl-d14	61	(57 - 140)		

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#14

HPLC

LOC-Sample #: D9B240185-003	Work Order #: CR3DV102	Matrix SOLID
Date Sampled: 02/22/99	Date Received: 02/24/99	
Prep Date: 02/25/99	Analysis Date: 03/12/99	
Prep Batch #: 9056304	Analysis Time: 16:50	
Dilution Factor: 2		
	Method : SW846 8310	

		REPORTIN	REPORTING		
PARAMETER	RESULT	LIMIT	UNITS		
Acenaphthene	ND	2300	ug/kg		
Acenaphthylene	ND	2300	ug/kg		
Anthracene	ND	230	ug/kg		
Benzo(a)anthracene	60 J	230	ug/kg		
Benzo(a)pyrene	120 Ј	230	ug/kg		
Benzo(b)fluoranthene	270	230	ug/kg		
Benzo(ghi)perylene	ND	450	ug/kg		
Benzo(k)fluoranthene	ND	230	ug/kg		
Chrysene	ND	450	ug/kg		
Dibenzo(a,h)anthracene	ND	450	ug/kg		
Fluoranthene	210 J	450	ug/kg		
Fluorene	ND	450	ug/kg		
Indeno(1,2,3-cd)pyrene	ND	450	ug/kg		
1-Methylnaphthalene	ND	2300	ug/kg		
2-Methylnaphthalene	ND	2300	ug/kg		
Naphthalene	ND	2300	ug/kg		
Phenanthrene	ND	450	ug/kg		
Pyrene	ND	450	ug/kg		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS	LIMITS		
Terphenyl-d14	72	(57 - 140)			

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#18

HPLC

Lot-Sample #:	D9B240185-004	Work Order #: CR3E1102	Matrix SOLID
	! !		

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date.....:
 02/25/99
 Analysis Date...:
 03/05/99

 Prep Batch #...:
 9056304
 Analysis Time...:
 08:34

Dilution Factor: 1

Method..... SW846 8310

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNIT
Acenaphthene	ND	1800	ug/k
Acenaphthylene	ND	1800	ug/kg
Anthracene	95 J	180	ug/kg
Benzo(a) anthracene	940	180	ug/kg
Benzo(a)pyrene	ND	180	ug/kg
Benzo(b)fluoranthene	ND	180	ug/kg
Benzo(ghi)perylene	ND	360	ug/kg
Benzo(k)fluoranthene	ND	180	ug/kg
Chrysene	ND	360	ug/kg
Dibenzo(a,h)anthracene	ND	360	ug/kg
Fluoranthene	4100	360	ug/kg
Fluorene	ND	360	ug/kg
Indeno(1,2,3-cd)pyrene	ND	360	ug/kg
1-Methylnaphthalene	ND	1800	ug/kg
2-Methylnaphthalene	ND	1800	ug/kg
Naphthalene	ND	1800	ug/kg
Phenanthrene	730	360	ug/kg
Pyrene	1700	360	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Terphenyl-d14	73	(57 - 14	0)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#22

HPLC

Lot-Sample #: D9B2	40185-005 Work	Order #:	CR3E3102	Matrix:	SOLID

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date....:
 02/25/99
 Analysis Date...:
 03/12/99

 Prep Batch #...:
 9056304
 Analysis Time...:
 17:20

Dilution Factor: 2

Method..... SW846 8310

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	1400	ug/kg
Acenaphthylene	ND	1400	ug/kg
Anthracene	ND	140	ug/kg
Benzo(a)anthracene	ND	140	ug/kg
Benzo(a)pyrene	58 J	140	ug/kg
Benzo(b)fluoranthene	91 J	140	ug/kg
Benzo(ghi)perylene	ND	280	ug/kg
Benzo(k)fluoranthene	ND	140	ug/kg
Chrysene	ND	280	ug/kg
Dibenzo(a,h)anthracene	ND	280	ug/kg
Fluoranthene	78 J	280	ug/kg
Fluorene	ND	280	ug/kg
Indeno(1,2,3-cd)pyrene	ND	280	ug/kg
1-Methylnaphthalene	ND	1400	ug/kg
2-Methylnaphthalene	ND	1400	ug/kg
Naphthalene	ND	1400	ug/kg
Phenanthrene	ND	280	ug/kg
Pyrene	ND	280	ug/kg
			J, J
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Terphenyl-d14	66	(57 - 140)	•

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#26

HPLC

Lot-Sample #...: D9B240185-006 Work Order #...: CR3E6102 Matrix.....: SOLID

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date....:
 02/25/99
 Analysis Date...:
 03/05/99

 Prep Batch #...:
 9056304
 Analysis Time...:
 10:03

Dilution Factor: 1

Method..... SW846 8310

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	650	ug/kg
Acenaphthylene	ND	650	ug/kg
Anthracene	ND	65	ug/kg
Benzo(a) anthracene	ND	65	ug/kg
Benzo(a)pyrene	78	65	ug/kg
Benzo(b)fluoranthene	ND	65	ug/kg
Benzo(ghi)perylene	71 J	130	ug/kg
Benzo(k)fluoranthene	40 J	65	ug/kg
Chrysene	ND	130	ug/kg
Dibenzo(a,h)anthracene	ND	130	ug/kg
Fluoranthene	110 J	130	ug/kg
Fluorene	ND	130	ug/kg
Indeno(1,2,3-cd)pyrene	ND	130	ug/kg
1-Methylnaphthalene	ND	650	ug/kg
2-Methylnaphthalene	ND	650	ug/kg
Naphthalene	ND	650	ug/kg
Phenanthrene	ND	130	ug/kg
Pyrene	ND	130	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Terphenyl-d14	58	(57 - 140)	-

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#27

HPLC

Lot-Sample #: D9B240185-007	Work	Order	#:	CR3E9102	Matrix SOLID
m .		_			

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date....:
 02/25/99
 Analysis Date...:
 03/05/99

 Prep Batch #...:
 9056304
 Analysis Time...:
 10:33

Dilution Factor: 1

Method..... SW846 8310

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	570	ug/kg
Acenaphthylene	ND	570	ug/kg
Anthracene	ND	57	ug/kg
Benzo(a)anthracene	ND	57	ug/kg
Benzo(a)pyrene	ND	57	ug/kg
Benzo(b)fluoranthene	ND	57	ug/kg
Benzo(ghi)perylene	ND	110	ug/kg
Benzo(k) fluoranthene	21 J	57	ug/kg
Chrysene	ND	110	ug/kg
Dibenzo(a,h)anthracene	ND	110	ug/kg
Fluoranthene	58 J	110	ug/kg
Fluorene	130	110	ug/kg
Indeno(1,2,3-cd)pyrene	ND	110	ug/kg
1-Methylnaphthalene	ND	570	ug/kg
2-Methylnaphthalene	ND	570	ug/kg
Naphthalene	ND	570	ug/kg
Phenanthrene	ND	110	ug/kg
Pyrene	57 J	110	ug/kg
			-
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Terphenyl-d14	57	(57 - 140	0)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#30

HPLC

Lot-Sample #...: D9B240185-008 Work Order #...: CR3EP102 Matrix.....: SOLID

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date....:
 02/25/99
 Analysis Date...:
 03/12/99

 Prep Batch #...:
 9056304
 Analysis Time...:
 17:50

Dilution Factor: 2

Method..... SW846 8310

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	1700	ug/kg
Acenaphthylene	ND	1700	ug/kg
Anthracene	ND	170	ug/kg
Benzo(a)anthracene	ND	170	ug/kg
Benzo(a)pyrene	ND	170	ug/kg
Benzo(b)fluoranthene	ND	170	ug/kg
Benzo(ghi)perylene	ND	340	ug/kg
Benzo(k)fluoranthene	ND	170	ug/kg
Chrysene	ND	340	ug/kg
Dibenzo(a,h)anthracene	ND	340	ug/kg
Fluoranthene	ND	340	ug/kg
Fluorene	ND	340	ug/kg
Indeno(1,2,3-cd)pyrene	ND	340	ug/kg
1-Methylnaphthalene	ND	1700	ug/kg
2-Methylnaphthalene	ND	1700	ug/kg
Naphthalene	ND	1700	ug/kg
Phenanthrene	ND	340	ug/kg
Pyrene	ND	340	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Terphenyl-d14	63	(57 - 140))

NOTE(S):

Client Sample ID: FL00108 SITE#60

HPLC

Lot-Sample #:	D9B240185-009	Work Order #: CR3EW102	Matrix SOLID

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date.....:
 02/25/99
 Analysis Date...:
 03/12/99

 Prep Batch #...:
 9056304
 Analysis Time...:
 18:20

Dilution Factor: 2

Method..... SW846 8310

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	4200	ug/kg
Acenaphthylene	ND	4200	ug/kg
Anthracene	ND	420	ug/kg
Benzo(a)anthracene	ND	420	ug/kg
Benzo(a)pyrene	120 J	420	ug/kg
Benzo(b)fluoranthene	190 J	420	ug/kg
Benzo(ghi)perylene	ND	840	ug/kg
Benzo(k)fluoranthene	ND	420	ug/kg
Chrysene	ND	840	ug/kg
Dibenzo(a,h)anthracene	ND	840	ug/kg
Fluoranthene	ND	840	ug/kg
Fluorene	ND	840	ug/kg
Indeno(1,2,3-cd)pyrene	ND	840	ug/kg
1-Methylnaphthalene	ND	4200	ug/kg
2-Methylnaphthalene	ND	4200	ug/kg
Naphthalene	ND	4200	ug/kg
Phenanthrene	ND	840	ug/kg
Pyrene	ND	840	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Terphenyl-d14	62	(57 - 140)	

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#33

HPLC

Lot-Sample #...: D9B240185-010 Work Order #...: CR3F5102 Matrix.....: SOLID

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date.....:
 02/25/99
 Analysis Date...:
 03/12/99

 Prep Batch #...:
 9056304
 Analysis Time...:
 18:50

Dilution Factor: 2

Method..... SW846 8310

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	1000	ug/kg
Acenaphthylene	ND	1000	ug/kg
Anthracene	ND	100	ug/kg
Benzo(a) anthracene	ND	100	ug/kg
Benzo(a)pyrene	ND	100	ug/kg
Benzo(b)fluoranthene	ND	100	ug/kg
Benzo(ghi)perylene	ND	210	ug/kg
Benzo(k)fluoranthene	ND	100	ug/kg
Chrysene	ND	210	ug/kg
Dibenzo(a,h)anthracene	ND	210	ug/kg
Fluoranthene	ND	210	ug/kg
Fluorene	ND	210	ug/kg
Indeno(1,2,3-cd)pyrene	ND	210	ug/kg
1-Methylnaphthalene	ND	1000	ug/kg
2-Methylnaphthalene	ND	1000	ug/kg
Naphthalene	ND	1000	ug/kg
Phenanthrene	ND	210	ug/kg
Pyrene	ND	210	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Terphenyl-d14	68	(57 - 140)	

NOTE(S):

Client Sample ID: FL00108 SITE#4

TOTAL Metals

Lot-Sample #...: D9B240185-001
Date Sampled...: 02/22/99
Date Received..: 02/24/99

PARAMETER	RESULT	REPORTIN LIMIT	IG UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	.: 9056141 ND	0.74 Dilution Fac	mg/kg tor: 1	SW846 7471A Analysis Time: 11:21	02/25-02/26/99	CR3CF10E
Prep Batch #	.: 9056181					
Aluminum	33900	223 Dilution Fac	mg/kg tor: 1	SW846 6010B Analysis Time: 19:06	02/26/99	CR3CF105
Arsenic	ND	223 Dilution Fac	mg/kg tor: 1	SW846 6010B Analysis Time: 19:06	02/26/99	CR3CF106
Cadmium	ND	11.2 Dilution Fact	mg/kg tor: 1	SW846 6010B Analysis Time: 19:06	02/26/99	CR3CF107
Chromium	110	22.3 Dilution Fact	mg/kg	SW846 6010B Analysis Time: 19:06	02/26/99	CR3CF108
Copper	123	44.6 Dilution Fact	mg/kg	SW846 6010B Analysis Time: 19:06	02/26/99	CR3CF109
Iron	78800	223 Dilution Fact	mg/kg	SW846 6010B Analysis Time: 20:55	02/26/99	CR3CF10A
Lead	61.4 B	112 Dilution Fact	mg/kg	SW846 6010B Analysis Time: 19:06	02/26/99	CR3CF10C
Zinc	290	44.6 Dilution Fact	mg/kg	SW846 6010B Analysis Time: 19:06	02/26/99	CR3CF10D
NOTE(S):						

B Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#12

TOTAL Metals

Lot-Sample #...: D9B240185-002 Matrix..... SOLID Date Sampled...: 02/22/99 Date Received..: 02/24/99 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 9056141 Mercury ND 0.24 mq/kq SW846 7471A 02/25-02/26/99 CR3DN10E Dilution Factor: 1 Analysis Time..: 11:23 Prep Batch #...: 9056181 Aluminum 10000 71.8 mg/kg SW846 6010B 02/26/99 CR3DN105 Dilution Factor: 1 Analysis Time..: 19:11 Arsenic ND 71.8 02/26/99 mq/kq SW846 6010B CR3DN106 Dilution Factor: 1 Analysis Time..: 19:11 Cadmium ND 3.6 mg/kg SW846 6010B 02/26/99 CR3DN107 Dilution Factor: 1 Analysis Time..: 19:11 Chromium 42.0 7.2 mq/kq SW846 6010B 02/26/99 CR3DN108 Dilution Factor: 1 Analysis Time..: 19:11 Copper 34.5 14.4 mg/kg SW846 6010B 02/26/99 CR3DN109 Dilution Factor: 1 Analysis Time..: 19:11 Iron 22400 71.8 mg/kg SW846 6010B 02/26/99 CR3DN10A Dilution Factor: 1 Analysis Time..: 21:00 Lead 24.0 B 35.9 mg/kg SW846 6010B 02/26/99 CR3DN10C Dilution Factor: 1 Analysis Time..: 19:11 Zinc 110 14.4 mg/kg SW846 6010B 02/26/99 CR3DN10D Dilution Factor: 1 Analysis Time..: 19:11

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

B Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#14

TOTAL Metals

Lot-Sample #...: D9B240185-003

Date Sampled...: 02/22/99

Date Received..: 02/24/99

PARAMETER	RESULT	REPORTI LIMIT	NG UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	: 9056141					
Mercury	0.21	0.19	mg/kg	SW846 7471A	02/25-02/26/99	CR3DV10R
		Dilution Fa		Analysis Time: 11:25	-,,,	
Prep Batch #	: 9056181					
Aluminum	9960	56.6	mg/kg	SW846 6010B	02/26/99	CR3DV105
		Dilution Fa	ctor: 1	Analysis Time: 19:15		
Arsenic	ND	56.6	mg/kg	SW846 6010B	02/26/99	CR3DV106
		Dilution Fa		Analysis Time: 19:15	01, 10, 33	011327200
Cadmium	ND	2.8	mg/kg	SW846 6010B	02/26/99	CR3DV107
		Dilution Fa	ctor: 1	Analysis Time: 19:15	, ,	
Chromium	42.1	5.7	mg/kg	SW846 6010B	02/26/99	CR3DV108
		Dilution Fa	ctor: 1	Analysis Time: 19:15		
Copper	35.1	11.3	mg/kg	SW846 6010B	02/26/99	CR3DV109
		Dilution Fac	ctor: 1	Analysis Time: 19:15		
Iron	24400	56.6	mg/kg	SW846 6010B	02/26/99	CR3DV10A
		Dilution Fac	ctor: 1	Analysis Time: 21:04	• •	
Lead	24.3 B	28.3	mg/kg	SW846 6010B	02/26/99	CR3DV10C
		Dilution Fac	J. J	Analysis Time: 19:15		
Zinc	119	11.3	mg/kg	SW846 6010B	02/26/99	CR3DV10D
		Dilution Fac	U . U	Analysis Time: 19:15	-,,	
NOTE(S):						

B Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#18

TOTAL Metals

Lot-Sample #...: D9B240185-004

Date Sampled...: 02/22/99

Date Received..: 02/24/99

Date Sampled	.: 02/22/99	Date	Received.				
PARAMETER	RESULT	REPORTIN LIMIT	G <u>UNITS</u>	METHOD)	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	: 9056141						
Mercury	ND	0.29 Dilution Fact	mg/kg cor: 1	SW846 Analysis	7471A Time: 11:28	02/25-02/26/99	CR3E110E
Prep Batch #	: 9056181						
Aluminum	15200	89.3 Dilution Fact	mg/kg	SW846 Analysis	6010B Time: 19:30	02/26/99	CR3E1105
Arsenic	ND	89.3 Dilution Fact	mg/kg	SW846 Analysis	6010B Time: 19:30	02/26/99	CR3E1106
Cadmium	ND	4.5 Dilution Fact	mg/kg	SW846 Analysis	6010B Time: 19:30	02/26/99	CR3E1107
Chromium	78.2	8.9 Dilution Fact	mg/kg .or: 1	SW846 Analysis	6010B Time: 19:30	02/26/99	CR3E1108
Copper	107	17.9 Dilution Fact	mg/kg or: 1	SW846 Analysis	6010B Time: 19:30	02/26/99	CR3E1109
Iron	35700	89.3 Dilution Fact	mg/kg or: 1	SW846 Analysis	6010B Time: 21:16	02/26/99	CR3E110A
Lead	72.2	44.6 Dilution Fact	mg/kg or: 1	SW846 Analysis	6010B Time: 19:30	02/26/99	CR3E110C
Zinc	296	17.9 Dilution Fact	mg/kg	SW846 (6010B Fime: 19:30	02/26/99	CR3E110D

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: FL00108 SITE#22

Date Received..: 02/24/99

TOTAL Metals

REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 9056141 Mercury ND 0.11 SW846 7471A mg/kg 02/25-02/26/99 CR3E310E Dilution Factor: 1 Analysis Time..: 11:30 Prep Batch #...: 9056181 Aluminum 3340 34.7 mg/kg SW846 6010B 02/26/99 CR3E3105 Dilution Factor: 1 Analysis Time..: 19:34 Arsenic ND 34.7 mg/kg SW846 6010B 02/26/99 CR3E3106 Dilution Factor: 1 Analysis Time..: 19:34 Cadmium ND 1.7 mg/kg SW846 6010B 02/26/99 CR3E3107 Dilution Factor: 1 Analysis Time..: 19:34

mq/kq

mg/kg

mq/kq

mg/kg

mq/kq

SW846 6010B

SW846 6010B

SW846 6010B

SW846 6010B

SW846 6010B

Analysis Time..: 19:34

Analysis Time..: 19:34

Analysis Time..: 21:20

Analysis Time..: 19:34

Analysis Time..: 19:34

NOTE(S): B Estimated result. Result is less than RL.

Chromium

Copper

Iron

Lead

Zinc

15.3

11.4

7950

10.1 B

46.3

3.5

6.9

34.7

17.3

6.9

Dilution Factor: 1

Lot-Sample #...: D9B240185-005

Date Sampled...: 02/22/99

Matrix....: SOLID

02/26/99

02/26/99

02/26/99

02/26/99

02/26/99

CR3E3108

CR3E3109

CR3E310A

CR3E310C

CR3E310D

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FL00108 SITE#26

TOTAL Metals

Lot-Sample #...: D9B240185-006

Date Sampled...: 02/22/99

Date Received..: 02/24/99

		REPORTING	G			PREPARATION-	WORK
PARAMETER	RESULT	<u>LIMIT</u>	<u>UNITS</u>	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #	.: 9056141						
Mercury	ND	0.11	mg/kg	SW846	7471A	02/25-02/26/99	CR3E610E
		Dilution Fact	or: 1	Analysis	Time: 11:37		
Prep Batch #	- 9056181						
Aluminum	3060	32.5	mg/kg	SW846	6010B	02/26/99	CR3E6105
		Dilution Fact			Time: 19:39	02/20/33	CRSECHS
					12		
Arsenic	ND	32.5	mg/kg	SW846	6010B	02/26/99	CR3E6106
		Dilution Fact	or: 1	Analysis	Time: 19:39	, ,	
Cadmium	ND	1.6	mg/kg	SW846	6010B	02/26/99	CR3E6107
		Dilution Fact	or: 1	Analysis	Time: 19:39		
Chromium	14.7	3.3	ma /lea	OTTO 4.C	C010D	00/05/00	
CIIIOMIUM	11.7	Dilution Fact	mg/kg		6010B Time: 19:39	02/26/99	CR3E6108
		Directon Face	or: 1	Analysis	Time: 19:39		
Copper	10	6.5	mg/kg	SW846	6010B	02/26/99	CR3E6109
		Dilution Fact	3. 3		Time: 19:39	02,20,33	CRSECTOS
				-			
Iron	7120	32.5	mg/kg	SW846	6010B	02/26/99	CR3E610A
		Dilution Fact	or: 1	Analysis	Time: 21:24		
- 1			_				
Lead	8.9 B	16.3	mg/kg		6010B	02/26/99	CR3E610C
		Dilution Fact	or: 1	Analysis	Time: 19:39		
Zinc	36.4	6.5	mg/kg	CWO A C	6010B	02/26/00	CD 2 TC 1 CD
	30.1	Dilution Fact	٥. ٥		Time: 19:39	02/26/99	CR3E610D
			· · ·	wirathata	11me: 19:39		
NOTE (S):							

B Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#27

TOTAL Metals

Lot-Sample #...: D9B240185-007
Date Sampled...: 02/22/99
Date Received..: 02/24/99

PARAMETER	RESULT	REPORTIN	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #.	: 9056141					
Mercury	ND	0.094	mg/kg	SW846 7471A	02/25-02/26/99	CR3E910E
		Dilution Fac	tor: 1	Analysis Time: 11:39	. , , , ,	
Prep Batch #.	: 9056181					
Aluminum	1700	28.6	mg/kg	SW846 6010B	02/26/99	CR3E9105
		Dilution Fac	tor: 1	Analysis Time: 19:44		
Arsenic	ND	28.6	mg/kg	SW846 6010B	02/26/99	CR3E9106
		Dilution Fac	tor: 1	Analysis Time: 19:44	. ,	
Cadmium	ND	1.4	mg/kg	SW846 6010B	02/26/99	CR3E9107
		Dilution Fact	cor: 1	Analysis Time: 19:44	. ,	
Chromium	8.6	2.9	mg/kg	SW846 6010B	02/26/99	CR3E9108
		Dilution Fact	or: 1	Analysis Time: 19:44		
Copper	9.3	5.7	mg/kg	SW846 6010B	02/26/99	CR3E9109
		Dilution Fact	or: 1	Analysis Time: 19:44	. ,	
Iron	3540	28.6	mg/kg	SW846 6010B	02/26/99	CR3E910A
		Dilution Fact	or: 1	Analysis Time: 21:28	. ,	
Lead	ND	14.3	mg/kg	SW846 6010B	02/26/99	CR3E910C
		Dilution Fact	or: 1	Analysis Time: 19:44	,,	01.525100
Zinc	25.0	5.7	mg/kg	SW846 6010B	02/26/99	CR3E910D
		Dilution Fact		Analysis Time: 19:44	, 20, 33	CLUD10D
NOTE(S):						

Client Sample ID: FL00108 SITE#30

TOTAL Metals

Date Received..: 02/24/99

REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 9056141 Mercury ND 0.14 mg/kg SW846 7471A 02/25-02/26/99 CR3EP10E Dilution Factor: 1 Analysis Time..: 11:42 Prep Batch #...: 9056181 Aluminum 6000 42.4 mg/kg SW846 6010B 02/26/99 CR3EP105 Dilution Factor: 1 Analysis Time..: 19:48

				_			
Arsenic	ND	42.4	mg/kg	SW846	6010B	02/26/99	CR3EP106
		Dilution Fa	ctor: 1	Analysis	Time: 19:48		
Cadmium	ND	2.1	mg/kg	SW846	6010B	02/26/99	CR3EP107
		Dilution Fa	ctor: 1	Analysis	Time: 19:48	, ,	
Chromium	30.6	4.2	mg/kg	SW846	6010B	02/26/99	CR3EP108
		Dilution Factor: 1			Time: 19:48	, , , , ,	
Copper	12.3	8.5	mg/kg	SW846	6010B	02/26/99	CR3EP109
		Dilution Fa	ctor: 1		Time: 19:48	, ,	
Iron	8320	42.4	mg/kg	SW846	6010B	02/26/99	CR3EP10A
		Dilution Fa			Time: 21:32	,,	
Lead	10.7 B	21.2	mg/kg	SW846	6010B	02/26/99	CR3EP10C
		Dilution Fa			Time: 19:48	,,	CALSEL TOC
Zinc	29.3	8.5	mg/kg	SW846	6010B	02/26/99	<i>ሮ</i> የ3 ጀ

mg/kg

SW846 6010B

Analysis Time..: 19:48

02/26/99

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Dilution Factor: 1

Lot-Sample #...: D9B240185-008

Date Sampled...: 02/22/99

CR3EP10D

Matrix..... SOLID

B Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#60

TOTAL Metals

Lot-Sample #...: D9B240185-009 Matrix....: SOLID

_	, ,						
		REPORTI	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	<u>UNITS</u>	METHO	D	ANALYSIS DATE	ORDER #
Drop Batch #	- 0056141						
<pre>Prep Batch #. Mercury</pre>	ND	0.35	mg/kg	CIMOAG	7471A	02/25-02/26/99	CD 3 EM1 OF
y	110	Dilution Fac			74/1A Time: 11:44	02/25-02/26/99	CR3EWIUE
				mulyot	, 11110 11.44		
Prep Batch #.	• 9056181						
Aluminum	26300	105	mq/kq	SW846	6010B	02/26/99	CR3EW105
		Dilution Fac			Time: 19:53	02,20,33	CRSENEOS
Arsenic	ND	105	mg/kg		6010B	02/26/99	CR3EW106
		Dilution Fac	ctor: 1	Analysis	Time: 19:53		
Cadmium	ND	5.3	mg/kg	SW846	6010B	02/26/99	CR3EW107
		Dilution Fac		Analysis	Time: 19:53	, ,	
Chromium	127	10 F	<i>(</i> 1	~			
CITOMITUM	127	10.5 Dilution Fac	mg/kg		6010B	02/26/99	CR3EW108
		Diluction Fac	ctor: 1	Analysis	Time: 19:53		
Copper	80.4	21.1	mg/kg	SW846	6010B	02/26/99	CR3EW109
		Dilution Fac	ctor: 1	Analysis	Time: 19:53		
Iron	41400	105	/2				
IIOII	41400	Dilution Fac	mg/kg		6010B	02/26/99	CR3EW10A
		Direction Fac	cor: 1	Analysis	Time: 21:36		
Lead	55.5	52.7	mg/kg	SW846	6010B	02/26/99	CR3EW10C
		Dilution Fac	ctor: 1	Analysis	Time: 19:53		
Zinc	223	21.1	mor/kor	CTAO 4 C	C010D	02/26/02	GD 2 TT 14 6 -
ZIIC	223	Dilution Fac	mg/kg		6010B	02/26/99	CR3EW10D
		Directon Fac		HUMIYSIS	Time: 19:53		
NOTE(S):							

Client Sample ID: FL00108 SITE#33

TOTAL Metals

Lot-Sample #...: D9B240185-010

Date Sampled...: 02/22/99

Date Received..: 02/24/99

PARAMETER	RESULT	REPORTING LIMIT U	NITS METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	.: 9056141 ND	0.086 mg	. .	7471A Time: 11:46	02/25-02/26/99	CR3F510E
Prep Batch #	: 9056181					
Aluminum	1630	26.1 mg	-	6010B Time: 19:58	02/26/99	CR3F5105
Arsenic	ND	26.1 mc	J, J	6010B Time: 19:58	02/26/99	CR3F5106
Cadmium	ND	1.3 mc	J, J	6010B Time: 19:58	02/26/99	CR3F5107
Chromium	8.5	2.6 mc Dilution Factor:	J. J	6010B Time: 19:58	02/26/99	CR3F5108
Copper	2.7 B	5.2 mg	. J	6010B Time: 19:58	02/26/99	CR3F5109
Iron	2220	26.1 mg		6010B Time: 21:40	02/26/99	CR3F510A
Lead	ND	13.1 mg	g/kg SW846 1 Analysis	6010B Time: 19:58	02/26/99	CR3F510C
Zinc	7.4	5.2 mg	g/kg SW846 1 Analysis	6010B Time: 19:58	02/26/99	CR3F510D
NOTE(S):						

B Estimated result. Result is less than RL.

Client Sample ID: FL00108 SITE#4

General Chemistry

Lot-Sample #...: D9B240185-001

Work Order #...: CR3CF

Matrix..... SOLID

Date Sampled...: 02/22/99

Date Received..: 02/24/99

PREPARATION- PREP

PARAMETER

RESULT

RL UNITS

METHOD

ANALYSIS DATE BATCH #

Percent Moisture

95.5

0.10 %

MCAWW 160.3 MOD

03/03/99 9062255

Dilution Factor: 1

Analysis Time..: 00:00

NOTE(S):

RL Reporting Limit

Client Sample ID: FL00108 SITE#12

General Chemistry

Lot-Sample #...: D9B240185-002

Work Order #...: CR3DN

Matrix..... SOLID

Date Sampled...: 02/22/99

Date Received..: 02/24/99

PREPARATION- PREP

PARAMETER

RESULT

____UNITS

METHOD

ANALYSIS DATE BATCH #

Percent Moisture

86.1

0.10 %

MCAWW 160.3 MOD

03/03/99 9062255

Dilution Factor: 1

Analysis Time..: 00:00

NOTE(S):

RL Reporting Limit

Client Sample ID: FL00108 SITE#14

General Chemistry

Lot-Sample #...: D9B240185-003

Work Order #...: CR3DV

Matrix..... SOLID

Date Sampled...: 02/22/99

Date Received..: 02/24/99

PREPARATION-PREP

PARAMETER

RESULT RL

METHOD

ANALYSIS DATE

BATCH #

Percent Moisture

82.3

UNITS 0.10 웋

MCAWW 160.3 MOD

03/03/99

Dilution Factor: 1

Analysis Time..: 00:00

9062255

NOTE(S):

RL Reporting Limit

Client Sample ID: FL00108 SITE#18

General Chemistry

Lot-Sample #...: D9B240185-004

Work Order #...: CR3E1

Matrix..... SOLID

Date Sampled...: 02/22/99

Date Received..: 02/24/99

PREPARATION-PREP

PARAMETER

RESULT

RL UNITS

METHOD

ANALYSIS DATE BATCH #

Percent Moisture

88.8

0.10 왕

Dilution Factor: 1

MCAWW 160.3 MOD Analysis Time..: 00:00 03/03/99 9062255

NOTE(S):

RL Reporting Limit

Client Sample ID: FL00108 SITE#22

General Chemistry

Lot-Sample #...: D9B240185-005

Work Order #...: CR3E3

Matrix....: SOLID

Date Sampled...: 02/22/99

Date Received..: 02/24/99

PREPARATION-PREP

PARAMETER

RESULT RL

METHOD

ANALYSIS DATE BATCH #

Percent Moisture

71.2

UNITS 0.10

MCAWW 160.3 MOD

03/03/99

Dilution Factor: 1

Analysis Time..: 00:00

9062255

NOTE(S):

RL Reporting Limit

Client Sample ID: FL00108 SITE#26

General Chemistry

Lot-Sample #...: D9B240185-006

Work Order #...: CR3E6

Matrix..... SOLID

Date Sampled...: 02/22/99

Date Received..: 02/24/99

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Moisture
 69.3
 0.10
 %
 MCAWW 160.3 MOD
 03/03/99
 9062255

Dilution Factor: 1 Analysis Time..: 00:00

NOTE(S):

RL Reporting Limit

Client Sample ID: FL00108 SITE#27

General Chemistry

Lot-Sample #...: D9B240185-007

Work Order #...: CR3E9

Matrix..... SOLID

Date Sampled...: 02/22/99

Date Received..: 02/24/99

PREPARATION-PREP

PARAMETER

RESULT

RL UNITS

METHOD

ANALYSIS DATE BATCH #

Percent Moisture

65.1

0.10

MCAWW 160.3 MOD

03/03/99

9062255

Dilution Factor: 1

Analysis Time..: 00:00

NOTE (S):

RL Reporting Limit

Client Sample ID: FL00108 SITE#30

General Chemistry

Lot-Sample #...: D9B240185-008

Work Order #...: CR3EP

UNITS

왕

Matrix....: SOLID

Date Sampled...: 02/22/99

Date Received..: 02/24/99

PREPARATION-PREP

PARAMETER

RESULT RL

METHOD

ANALYSIS DATE BATCH #

Percent Moisture

76.4 0.10

MCAWW 160.3 MOD

03/03/99

9062255

Dilution Factor: 1

Analysis Time..: 00:00

NOTE(S):

RL Reporting Limit

Client Sample ID: FL00108 SITE#60

General Chemistry

Lot-Sample #...: D9B240185-009

Work Order #...: CR3EW

Matrix....: SOLID

Date Sampled...: 02/22/99

Date Received..: 02/24/99

PREPARATION-

PARAMETER

RESULT

RL UNITS METHOD

ANALYSIS DATE BATCH #

PREP

Percent Moisture

90.5

0.10 왛

MCAWW 160.3 MOD

03/03/99

Dilution Factor: 1

Analysis Time..: 00:00

9062255

NOTE(S):

RL Reporting Limit

Client Sample ID: FL00108 SITE#33

General Chemistry

Lot-Sample #...: D9B240185-010

Work Order #...: CR3F5

Matrix..... SOLID

Date Sampled...: 02/22/99

Date Received..: 02/24/99

PREPARATION-

PARAMETER

RESULT

UNITS

METHOD

PREP ANALYSIS DATE BATCH #

Percent Moisture

61.7

0.10 ક

MCAWW 160.3 MOD

03/03/99

Dilution Factor: 1

RL

Analysis Time..: 00:00

9062255

NOTE(S):

RL Reporting Limit

QC DATA ASSOCIATION SUMMARY

D9B240185

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	SOLID	SW846 8080A		9067354	9067175
	SOLID	SW846 7471A		9056141	9056036
	SOLID	SW846 6010B		9056181	9056053
	SOLID	SW846 8310		9056304	9056118
	SOLID	MCAWW 160.3 MOD		9062255	
	SOLID	SW846 8140		9067270	9067126
002	SOLID	SW846 8080A		9067354	9067175
	SOLID	SW846 7471A		9056141	9056036
	SOLID	SW846 6010B		9056181	9056053
	SOLID	SW846 8310		9056304	9056118
	SOLID	MCAWW 160.3 MOD		9062255	
	SOLID	SW846 8140		9067270	9067126
003	SOLID	SW846 8080A		9067354	9067175
	SOLID	SW846 7471A		9056141	9056036
	SOLID	SW846 6010B		9056181	9056053
	SOLID	SW846 8310		9056304	9056118
	SOLID	MCAWW 160.3 MOD		9062255	
	SOLID	SW846 8140		9067270	9067126
004	SOLID	SW846 8080A		9067354	9067175
	SOLID	SW846 7471A		9056141	9056036
	SOLID	SW846 6010B		9056181	9056053
	SOLID	SW846 8310		9056304	9056118
	SOLID	MCAWW 160.3 MOD		9062255	
	SOLID	SW846 8140		9067270	9067126
005	SOLID	SW846 8080A		9067354	9067175
	SOLID	SW846 7471A		9056141	9056036
	SOLID	SW846 6010B		9056181	9056053
	SOLID	SW846 8310		9056304	9056118
	SOLID	MCAWW 160.3 MOD		9062255	
	SOLID	SW846 8140		9067270	9067126
006	SOLID	SW846 8080A		9067354	9067175
	SOLID	SW846 7471A		9056141	9056036
	SOLID	SW846 6010B		9056181	9056053
	SOLID	SW846 8310		9056304	9056118
	SOLID	MCAWW 160.3 MOD		9062255	
	SOLID	SW846 8140		9067270	9067126

(Continued on next page)

QC DATA ASSOCIATION SUMMARY

D9B240185

Sample Preparation and Analysis Control Numbers

		ANALYTICA	<u> </u>	LEACH	PREP	
SAMPLE#	MATRIX	METHOD		BATCH #	BATCH #	MS RUN#
007	SOLID	SW846 808)A		9067354	9067175
	SOLID	SW846 747	lΑ		9056141	9056036
	SOLID	SW846 6010)B		9056181	9056053
	SOLID	SW846 831)		9056304	9056118
	SOLID	MCAWW 160	.3 MOD		9062255	
	SOLID	SW846 8140)		9067270	9067126
008	SOLID	SW846 8080)A		9067354	9067175
	SOLID	SW846 7473	LA		9056141	9056036
	SOLID	SW846 6010)B		9056181	9056053
	SOLID	SW846 8310)		9056304	9056118
	SOLID	MCAWW 160.	.3 MOD		9062255	· · · · · ·
	SOLID	SW846 8140)		9067270	9067126
009	SOLID	SW846 8080)A		9067354	9067175
	SOLID	SW846 7471	.A		9056141	9056036
	SOLID	SW846 6010)B		9056181	9056053
	SOLID	SW846 8310)		9056304	9056118
	SOLID	MCAWW 160.	3 MOD		9062255	
	SOLID	SW846 8140)		9067270	9067126
010	SOLID	SW846 8080	A		9067354	9067175
	SOLID	SW846 7471	.A		9056141	9056036
	SOLID	SW846 6010	В		9056181	9056053
	SOLID	SW846 8310	1		9056304	9056118
	SOLID	MCAWW 160.	3 MOD		9062255	
	SOLID	SW846 8140			9067270	9067126

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: D9B240185 Work Order #...: CRF2K102-LCS Matrix..... SOLID

LCS Lot-Sample#: D9C080000-354 CRF2K103-LCSD

 Prep Date.....:
 03/08/99
 Analysis Date...:
 03/28/99

 Prep Batch #...:
 9067354
 Analysis Time...:
 06:08

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHO	D
4,4'-DDT	72	(60 - 133)			SW846	8080A
	74	(60 - 133)	2.2	(0-16)	SW846	8080A
Aldrin	95	(73 - 129)			SW846	8080A
	95	(73 - 129)	0.27	(0-16)	SW846	8080A
Dieldrin	90	(58 - 118)			SW846	8080A
	91	(58 - 118)	0.90	(0-16)		8080A
Endrin	92	(64 - 125)			SW846	8080A
	93	(64 - 125)	1.0	(0-17)	_	8080A
gamma-BHC (Lindane)	36	(34 - 158)		,,,		8080A
	36	(34 - 158)	0.18	(0-15)		8080A
Heptachlor	98	(74 - 134)		(0 10)		A0808
	98	(74 - 134)	0.54	(0-15)		8080A
		172 2017	0.51	(0 15)	DHOTO	OUDUA
		PERCENT	RECOV	ERY		
SURROGATE		RECOVERY	LIMIT	S		
Decachlorobiphenyl		95	(62 -	139)		
		97	(62 -			
Tetrachloro-m-xylene		82	(46 -	,		
		82	(46 -			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: D9B240185 Work Order #...: CRF2K102-LCS Matrix...... SOLID

LCS Lot-Sample#: D9C080000-354 CRF2K103-LCSD

 Prep Date.....:
 03/08/99
 Analysis Date..:
 03/28/99

 Prep Batch #...:
 9067354
 Analysis Time..:
 06:08

Dilution Factor: 1

	SPIKE	MEASURE	מי:	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
4,4'-DDT	16.7	12.1	ug/kg	72		SW846 8080A
	16.7	12.4	ug/kg	74	2.2	SW846 8080A
Aldrin	6.67	6.31	ug/kg	95		SW846 8080A
	6.67	6.33	ug/kg	95	0.27	SW846 8080A
Dieldrin	16.7	15.1	ug/kg	90		SW846 8080A
	16.7	15.2	ug/kg	91	0.90	SW846 8080A
Endrin	16.7	15.4	ug/kg	92	0.50	SW846 8080A
	16.7	15.6	ug/kg	93	1.0	SW846 8080A
gamma-BHC (Lindane)	6.67	2.42	ug/kg	36		SW846 8080A
	6.67	2.41	ug/kg	36	0.18	SW846 8080A
Heptachlor	6.67	6.50	ug/kg	98	0.10	SW846 8080A
-	6.67	6.54	ug/kg	98	0.54	SW846 8080A
			J. J	- +	0.01	5.1010 000021
			PERCENT	RECOVERY		
SURROGATE			RECOVERY	LIMITS		
Decachlorobiphenyl			95	(62 - 139)	
			97	(62 - 139		
Tetrachloro-m-xylene			82	(46 - 117	•	
			82	(46 - 117		
				. –– .	•	
NOTE(S):						

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

METHOD BLANK REPORT

GC Semivolatiles

Client Lot #...: D9B240185

Work Order #...: CRF2K101

Matrix..... SOLID

MB Lot-Sample #: D9C080000-354

Prep Date....: 03/08/99 **Prep Batch #...:** 9067354

Analysis Time..: 05:34

Analysis Date..: 03/28/99

Dilution Factor: 1

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Aldrin	ND	1.7	ug/kg	SW846 8080A
alpha-BHC	ND	1.7	ug/kg	SW846 8080A
beta-BHC	ND	1.7	ug/kg	SW846 8080A
delta-BHC	ND	1.7	ug/kg	SW846 8080A
gamma-BHC (Lindane)	ND	1.7	ug/kg	SW846 8080A
Chlordane (technical)	ND	17	ug/kg	SW846 8080A
alpha-Chlordane	ND	1.7	ug/kg	SW846 8080A
gamma-Chlordane	ND	1.7	ug/kg	SW846 8080A
Chlorobenzilate	ND	33	ug/kg	SW846 8080A
4,4'-DDD	ND	3.3	ug/kg	SW846 8080A
4,4'-DDE	ND	3.3	ug/kg	SW846 8080A
4,4'-DDT	ND	3.3	ug/kg	SW846 8080A
Diallate	ND	33	ug/kg	SW846 8080A
Dieldrin	ND	3.3	ug/kg	SW846 8080A
Endosulfan I	ND	1.7	ug/kg	SW846 8080A
Endosulfan II	ND	3.3	ug/kg	SW846 8080A
Endosulfan sulfate	ND	3.3	ug/kg	SW846 8080A
Endrin	ND	3.3	ug/kg	SW846 8080A
Endrin aldehyde	ND	3.3	ug/kg ug/kg	SW846 8080A
Endrin ketone	ND	3.3	ug/kg ug/kg	
Heptachlor	ND	1.7	ug/kg ug/kg	SW846 8080A
Heptachlor epoxide	ND	1.7	ug/kg ug/kg	SW846 8080A
Isodrin	ND	3.3	ug/kg ug/kg	SW846 8080A
Kepone	ND	83	ug/kg ug/kg	SW846 8080A
Methoxychlor	ND	17	ug/kg ug/kg	SW846 8080A
Aroclor 1016	ND	33	ug/kg ug/kg	SW846 8080A
Aroclor 1221	ND	33	ug/kg ug/kg	SW846 8080A
Aroclor 1232	ND	33	ug/kg ug/kg	SW846 8080A
Aroclor 1242	ND	33		SW846 8080A
Aroclor 1248	ND	33	ug/kg	SW846 8080A
Aroclor 1254	ND	33	ug/kg	SW846 8080A
Aroclor 1260	ND	33	ug/kg	SW846 8080A
Toxaphene	ND		ug/kg	SW846 8080A
· -	MD	170	ug/kg	SW846 8080A
GTTP 2 G2	PERCENT	RECOVERY	•	
SURROGATE	RECOVERY	LIMITS		
Decachlorobiphenyl	89	162 - 13	۵١	

	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Decachlorobiphenyl	89	(62 - 139)			
Tetrachloro-m-xylene	82	(46 - 117)			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: D9B240185 Work Order #...: CR3F510G-MS Matrix.....: SOLID

MS Lot-Sample #: D9B240185-010 CR3F510H-MSD

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date.....:
 03/08/99
 Analysis Date...:
 03/28/99

 Prep Batch #...:
 9067354
 Analysis Time...:
 14:07

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Aldrin	106	(73 - 129)			SW846 8080A
	106	(73 - 129)	0.70	(0-16)	SW846 8080A
gamma-BHC (Lindane)	39	(34 - 158)			SW846 8080A
	39	(34 - 158)	0.31	(0-15)	SW846 8080A
4,4'-DDT	74	(60 - 133)			SW846 8080A
	76	(60 - 133)	2.3	(0-16)	SW846 8080A
Dieldrin	98	(58 - 118)			SW846 8080A
	95	(58 - 118)	2.5	(0-16)	SW846 8080A
Endrin	100	(64 - 125)			SW846 8080A
	98	(64 - 125)	2.4	(0-17)	SW846 8080A
Heptachlor	96	(74 - 134)			SW846 8080A
	98	(74 - 134)	1.4	(0-15)	SW846 8080A
		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	
Decachlorobiphenyl		87		(62 - 139)	_
		87		(62 - 139)	
Tetrachloro-m-xylene		78		(46 - 117)	
		80		(46 - 117)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: D9B240185 Work Order #...: CR3F510G-MS Matrix.....: SOLID

MS Lot-Sample #: D9B240185-010 CR3F510H-MSD

 Date Sampled...:
 02/22/99
 Date Received..:
 02/24/99

 Prep Date....:
 03/08/99
 Analysis Date..:
 03/28/99

 Prep Batch #...:
 9067354
 Analysis Time..:
 14:07

Dilution Factor: 1

PARAMETER	SAMPLE AMOUNT	SPIKE AMT	MEASRD AMOUNT	UNITS	PERCENT RECOVERY	RPD	METHO:	D
Aldrin	ND	17.4	18.5	ug/kg	106		SW846	8080A
	ND	17.4	18.4	ug/kg	106	0.70	SW846	8080A
gamma-BHC (Lindane)	ND	17.4	6.79	ug/kg	39			8080A
	ND	17.4	6.81	ug/kg	39	0.31		8080A
4,4'-DDT	ND	43.6	32.4	ug/kg	74			8080A
	ND	43.6	33.1	ug/kg	76	2.3		8080A
Dieldrin	ND	43.6	42.7	ug/kg	98			8080A
	ND	43.6	41.6	ug/kg	95	2.5		8080A
Endrin	ND	43.6	43.8	ug/kg	100			8080A
	ND	43.6	42.8	ug/kg	98	2.4		8080A
Heptachlor	ND	17.4	16.8	ug/kg	96		SW846	8080A
	ND	17.4	17.0	ug/kg	98	1.4	SW846	A080A
			PERCENT		RECOVERY			
SURROGATE			RECOVERY	Y	LIMITS			
Decachlorobiphenyl			87	_	(62 - 139	1)		
			87		(62 - 139)		
Tetrachloro-m-xylene			78		(46 - 117			
			80		(46 - 117			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: D9B240185 Work Order #...: CREM3102-LCS Matrix...... SOLID

LCS Lot-Sample#: D9C080000-270 CREM3103-LCSD

 Prep Date.....:
 03/08/99
 Analysis Date..:
 03/10/99

 Prep Batch #...:
 9067270
 Analysis Time..:
 05:41

Dilution Factor: 1

PARAMETER Diazinon Ethyl parathion Malathion Methyl parathion Phorate	PERCENT RECOVERY 104 100 228 a 198 a 112 106 107 103 99	RECOVERY LIMITS (52 - 139) (52 - 139) (61 - 150) (61 - 150) (58 - 121) (58 - 121) (67 - 115) (1.0- 116) (1.0- 116)	RPD 4.0 14 5.3 3.8	RPD LIMITS (0-22) (0-23) (0-16) (0-15)	METHON SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8140 8140 8140 8140 8140 8140 8140 8140
SURROGATE Ethyl Pirimifos Chlormefos		PERCENT RECOVERY 101 99 90 89	RECOVI LIMITS (55 - (55 - (50 -	ERY	ONO TO	0140

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: D9B240185 Work Order #...: CREM3102-LCS Matrix.....: SOLID

LCS Lot-Sample#: D9C080000-270 CREM3103-LCSD

 Prep Date.....:
 03/08/99
 Analysis Date...:
 03/10/99

 Prep Batch #...:
 9067270
 Analysis Time...:
 05:41

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT			
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHO	D
Diazinon	167	173	ug/kg	104		SW846	
	167	166	ug/kg	100	4.0	SW846	8140
Ethyl parathion	167	381 a	ug/kg	228		SW846	8140
	167	330 a	ug/kg	198	14	SW846	8140
Malathion	167	186	ug/kg	112		SW846	
	167	177	ug/kg	106	5.3	SW846	8140
Methyl parathion	167	179	ug/kg	107		SW846	8140
_	167	172	ug/kg	103	3.8	SW846	8140
Phorate	167	165	ug/kg	99		SW846	8140
	167	162	ug/kg	97	1.9	SW846	8140
			PERCENT	RECOVERY			
SURROGATE			RECOVERY	LIMITS			
Ethyl Pirimifos			101	(55 - 105)		
			99	(55 - 105	-		
Chlormefos			90	(50 - 150			
			89	(50 - 150			
MOUNT (C)							

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

METHOD BLANK REPORT

GC Semivolatiles

Client Lot #...: D9B240185

MB Lot-Sample #: D9C080000-270

Work Order #...: CREM3101

Matrix..... SOLID

12 200 bampie #: D30000000-27

Prep Date....: 03/08/99
Prep Batch #...: 9067270

Analysis Time..: 05:08

Analysis Date..: 03/10/99

Dilution Factor: 1

REPORTING

		WHI OKI I	11/0	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Azinphos-methyl	ND	83	ug/kg	SW846 8140
Bolstar	ND	17	ug/kg	SW846 8140
Chlorpyrifos	ND	17	ug/kg	SW846 8140
Coumaphos	ND	17	ug/kg	SW846 8140
Demeton (total)	ND	17	ug/kg	SW846 8140
Diazinon	ND	17	ug/kg	SW846 8140
Dichlorvos	ND	17	ug/kg	SW846 8140
Dimethoate	ND	17	ug/kg	SW846 8140
Disulfoton	ND	17	ug/kg	SW846 8140
Ethoprop	ND	17	ug/kg	SW846 8140
Ethyl parathion	ND	17	ug/kg	SW846 8140
Fensulfothion	ND	83	ug/kg	SW846 8140
Fenthion	ND	17	ug/kg	SW846 8140
Malathion	ND	42	ug/kg	SW846 8140
Merphos	ND	17	ug/kg	SW846 8140
Methyl parathion	ND	17	ug/kg	SW846 8140
Mevinphos	ND	210	ug/kg	SW846 8140
Naled	ND	330	ug/kg	SW846 8140
Phorate	ND	17	ug/kg	SW846 8140
Ronnel	ND	17	ug/kg	SW846 8140
Sulfotepp	ND	17	ug/kg	SW846 8140
Tokuthion	ND	17	ug/kg	SW846 8140
Trichloronate	ND	17	ug/kg	SW846 8140
Tetrachlorvinphos (Stirop	ND	83	ug/kg	SW846 8140
			373	5510 0110
	PERCENT	RECOVERY	7	
SURROGATE	RECOVERY	LIMITS	_	
Ethyl Pirimifos	78	(55 - 10	05)	
Chlormefos	83	(50 - 15		
		, = -	· - ,	
NOTE(S).				

: (6) atom

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: D9B240185 Work Order #...: CR3E310G-MS Matrix..... SOLID

MS Lot-Sample #: D9B240185-005 CR3E310H-MSD

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date.....:
 03/08/99
 Analysis Date...:
 03/10/99

 Prep Batch #...:
 9067270
 Analysis Time...:
 09:31

Dilution Factor: 1

PARAMETER Diazinon	PERCENT RECOVERY 110	RECOVERY LIMITS (52 - 139)	RPD	RPD LIMITS	METHO:	
Ethyl parathion	137 112 115	(52 - 139) (61 - 150)	22	(0-22)	SW846 SW846	8140
Malathion	98 101	(61 - 150) (58 - 121) (58 - 121)	2.9	(0-23) (0-16)	SW846 SW846	8140
Methyl parathion	102 104	(67 - 115) (67 - 115)	1.9	(0-15)	SW846 SW846	8140
Phorate	82 83	(1.0- 116) (1.0- 116)	0.79	(0-50)	SW846 SW846	8140
SURROGATE Ethyl Pirimifos		PERCENT RECOVERY 94 96		RECOVERY LIMITS (55 - 105) (55 - 105)	-	
Chlormefos		81 80		(50 - 150) (50 - 150)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results and reporting limits have been adjusted for dry weight.

MATRIX SPIKE SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: D9B240185 Work Order #...: CR3E310G-MS Matrix.....: SOLID

MS Lot-Sample #: D9B240185-005 CR3E310H-MSD

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date.....:
 03/08/99
 Analysis Date...:
 03/10/99

 Prep Batch #...:
 9067270
 Analysis Time...:
 09:31

Dilution Factor: 1

PARAMETER Diazinon Ethyl parathion Malathion Methyl parathion Phorate	SAMPLE AMOUNT ND	SPIKE AMT 578 578 578 578 578 578 578 578 578 578	MEASRD AMOUNT 636 792 645 664 566 582 592 603 477 480	UNITS ug/kg	PERCENT RECOVERY 110 137 112 115 98 101 102 104 82 83	22 2.9 2.8 1.9	METHOI SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8140 8140 8140 8140 8140 8140 8140 8140
SURROGATE Ethyl Pirimifos Chlormefos			PERCENT RECOVERY 94 96 81 80	<u> </u>	RECOVERY LIMITS (55 - 105 (55 - 105 (50 - 150 (50 - 150))		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results and reporting limits have been adjusted for dry weight.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

HPLC

Client Lot #...: D9B240185 Work Order #...: CR51K102-LCS Matrix...... SOLID

LCS Lot-Sample#: D9B250000-304 CR51K103-LCSD

 Prep Date....:
 02/25/99
 Analysis Date..:
 03/05/99

 Prep Batch #...:
 9056304
 Analysis Time..:
 05:02

Dilution Factor: 1

PARAMETER Benzo(a)pyrene	PERCENT RECOVERY 94	RECOVERY LIMITS (61 - 128)	RPD	RPD LIMITS	METHOD SW846 8310
Fluorene	101 68 91 p	(61 - 128) (63 - 138)	7.1	(0-34)	SW846 8310 SW846 8310
Indeno(1,2,3-cd)pyrene	106 105	(63 - 138) (69 - 127)	29	(0-22)	SW846 8310 SW846 8310
Naphthalene	103 127 104	(69 - 127) (60 - 138) (60 - 138)	0.70	(0-15)	SW846 8310 SW846 8310
Pyrene	93 99	(59 - 136)	20	(0-26)	SW846 8310 SW846 8310
	<i>J</i> J	(59 - 136)	6.3	(0-20)	SW846 8310
SURROGATE Terphenyl-d14		PERCENT RECOVERY 62 64	RECOV <u>LIMIT</u> (57 - (57 -	S 140)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

p Relative percent difference (RPD) is outside stated control limits.

LABORATORY CONTROL SAMPLE DATA REPORT

HPLC

Client Lot #...: D9B240185 Work Order #...: CR51K102-LCS Matrix.....: SOLID

LCS Lot-Sample#: D9B250000-304 CR51K103-LCSD

 Prep Date....:
 02/25/99
 Analysis Date..:
 03/05/99

 Prep Batch #...:
 9056304
 Analysis Time..:
 05:02

Dilution Factor: 1

PARAMETER Benzo(a) pyrene Fluorene Indeno(1,2,3-cd) pyrene Naphthalene Pyrene	SPIKE AMOUNT 533 533 533 533 533 533 533 533 533 53	MEASURE AMOUNT 501 538 362 487 p 566 562 678 555 495 527	UNITS ug/kg	PERCENT RECOVERY 94 101 68 91 106 105 127 104 93 99	7.1 29 0.70 20 6.3	METHOD SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310	
SURROGATE Terphenyl-d14			PERCENT RECOVERY 62 64	RECOVERY LIMITS (57 - 140 (57 - 140			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

p Relative percent difference (RPD) is outside stated control limits.

METHOD BLANK REPORT

HPLC

Client Lot #...: D9B240185

MB Lot-Sample #: D9B250000-304

Work Order #...: CR51K101

Matrix..... SOLID

<u>-</u>

Prep Date....: 02/25/99
Prep Batch #...: 9056304

Analysis Time..: 04:33

Analysis Date..: 03/05/99

Dilution Factor: 1

	ING

		KDI OKTI.	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acenaphthene	ND	200	ug/kg	SW846 8310
Acenaphthylene	ND	200	ug/kg	SW846 8310
Anthracene	ND	20	ug/kg	SW846 8310
Benzo(a)anthracene	ND	20	ug/kg	SW846 8310
Benzo(a)pyrene	ND	20	ug/kg	SW846 8310
Benzo(b)fluoranthene	ND	20	ug/kg	SW846 8310
Benzo(ghi)perylene	ND	40	ug/kg	SW846 8310
Benzo(k)fluoranthene	ND	20	ug/kg	SW846 8310
Chrysene	ND	40	ug/kg	SW846 8310
Dibenzo(a,h)anthracene	ND	40	ug/kg	SW846 8310
Fluoranthene	ND	40	ug/kg	SW846 8310
Fluorene	ND	40	ug/kg	SW846 8310
Indeno(1,2,3-cd)pyrene	ND	40	ug/kg	SW846 8310
1-Methylnaphthalene	ND	200	ug/kg	SW846 8310
2-Methylnaphthalene	ND	200	ug/kg	SW846 8310
Naphthalene	ND	200	ug/kg	SW846 8310
Phenanthrene	ND	40	ug/kg	SW846 8310
Pyrene	ND	40	ug/kg	
		40	ug/kg	SW846 8310
	PERCENT	RECOVERY	7	
SURROGATE	RECOVERY	LIMITS	•	
Terphenyl-d14	63			
•	0.5	(57 - 14	:0)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

HPLC

Client Lot #...: D9B240185 Work Order #...: CR3CF10F-MS Matrix..... SOLID

MS Lot-Sample #: D9B240185-001 CR3CF10G-MSD

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date....:
 02/25/99
 Analysis Date...:
 03/12/99

 Prep Batch #...:
 9056304
 Analysis Time...:
 15:21

Dilution Factor: 2

PARAMETER Benzo(a)pyrene	PERCENT RECOVERY 73 47 a,p	RECOVERY LIMITS (61 - 128)	RPD	RPD LIMITS	METHO:	8310
Fluorene	113	(61 - 128) (63 - 138)	42	(0-34)	SW846 SW846	
Indeno(1,2,3-cd)pyrene	101 109	(63 - 138) (69 - 127)	11	(0-22)	SW846 SW846	
Naphthalene	95 86	(69 - 127) (60 - 138)	14	(0-15)	SW846 SW846	
Pyrene	64 p 109	(60 - 138) (59 - 136)	29	(0-26)	SW846 SW846	8310
	85 p	(59 - 136)	25	(0-20)	SW846	8310
SURROGATE Terphenyl-d14		PERCENT RECOVERY 74 71		RECOVERY LIMITS (57 - 140) (57 - 140)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results and reporting limits have been adjusted for dry weight.

a Spiked analyte recovery is outside stated control limits.

p Relative percent difference (RPD) is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

HPLC

Client Lot #...: D9B240185 Work Order #...: CR3CF10F-MS Matrix..... SOLID

MS Lot-Sample #: D9B240185-001 CR3CF10G-MSD

 Date Sampled...:
 02/22/99
 Date Received...:
 02/24/99

 Prep Date....:
 02/25/99
 Analysis Date...:
 03/12/99

 Prep Batch #...:
 9056304
 Analysis Time...:
 15:21

Dilution Factor: 2

PARAMETER Benzo (a) pyrene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Pyrene	SAMPLE AMOUNT ND	AMT 11900 11900 11900 11900 11900 11900 11900 11900		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	PERCENT RECOVERY 73 47 113 101 109 95 86 64 109 85	RPD 42 11 14 29 25	METHON SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8310 8310 8310 8310 8310 8310 8310 8310
SURROGATE Terphenyl-d14			PERCENT RECOVERY 74 71	<u>r</u>	RECOVERY LIMITS (57 - 140	•		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results and reporting limits have been adjusted for dry weight.

a Spiked analyte recovery is outside stated control limits.

p Relative percent difference (RPD) is outside stated control limits.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Lot-Sample #...: D9B240185

Lot-Sample	#: D9B24	10185		Matrix SOLID
PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- PREP- ANALYSIS DATE BATCH #
Mercury	98	(82 - 114)	SW846 7471A	02/25-02/26/99 9056141
	101	(82 - 114) 3.5 (0-10)	SW846 7471A	02/25-02/26/99 9056141
		Dilution Factor: 1		, 332, = 1, 23 3 3 3 3 2 1 1
Aluminum	100	(88 - 120)	SW846 6010B	02/26/99 9056181
	100	(88 - 120) 0.12 (0-10)	SW846 6010B	02/26/99 9056181
		Dilution Factor: 1		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Arsenic	96	(80 - 120)	SW846 6010B	02/26/99 9056181
	96	(80 - 120) 0.01 (0-10)	SW846 6010B	02/26/99 9056181
		Dilution Factor: 1		, , , = = = = = = = = = = = = = = = = =
Cadmium	102	(80 - 120)	SW846 6010B	02/26/99 9056181
	101	(80 - 120) 0.26 (0-16)	SW846 6010B	02/26/99 9056181
		Dilution Factor: 1		3030101
Chromium	102	(83 - 112)	SW846 6010B	02/26/99 9056181
	102	(83 - 112) 0.25 (0-10)	SW846 6010B	02/26/99 9056181
		Dilution Factor: 1		, , ,
Copper	103	(84 - 115)	SW846 6010B	02/26/99 9056181
	103	(84 - 115) 0.53 (0-10)	SW846 6010B	02/26/99 9056181
		Dilution Factor: 1		,,
Iron	103	(87 - 117)	SW846 6010B	02/26/99 9056181
	102	(87 - 117) 0.34 (0-10)	SW846 6010B	02/26/99 9056181
		Dilution Factor: 1		
Lead	101	(82 - 114)	SW846 6010B	02/26/99 9056181
	100	(82 - 114) 0.18 (0-11)	SW846 6010B	02/26/99 9056181
		Dilution Factor: 1		, 1,11
Zinc	99	(80 - 120)	SW846 6010B	02/26/99 9056181
	99	(80 - 120) 0.28 (0-10)	SW846 6010B	02/26/99 9056181
		Dilution Factor: 1		5-, 50, 55

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

TOTAL Metals

Lot-Sample #...: D9B240185

Matrix..... SOLID

PARAMETER	SPIKE AMOUNT	MEASUR!	ED UNITS	PERCNT RECVRY	מפק	METHO	חו	PREPARATION- ANALYSIS DATE	PREP
Mercury	0.417	0.407	mg/kg	98	1(11)		7471A	02/25-02/26/99	BATCH #
_	0.417	0.421	mg/kg	101	3.5		7471A	02/25-02/26/99	
			Dilution Fa	-		2	, 1 , 111	02/25-02/26/99	3036141
Aluminum	200	200	mg/kg	100		SW846	6010B	02/26/99	9056181
	200	200	mg/kg	100	0.12	SW846	6010B	02/26/99	9056181
			Dilution Fa	ctor: 1				, ,	
Arsenic	200	192	mg/kg	96		CTAO A C	6010B	00/06/00	00=4++
	200	192	mg/kg	96	0 01		6010B	02/26/99	9056181
			Dilution Fa		0.01	20040	00100	02/26/99	9056181
Cadmium	5.00	5.08	mg/kg	102		SW846	6010B	02/26/99	9056181
	5.00	5.07	mg/kg	101	0.26	SW846	6010B	02/26/99	9056181
			Dilution Fa	ctor: 1					
Chromium	20.0	20.5	mg/kg	102		SW846	6010B	02/26/99	0056101
	20.0	20.4	mg/kg	102	0.25	SW846		02/26/99	9056181
			Dilution Fa		0.23	DNOTO	OOLOB	02/26/99	9056181
-									
Copper	25.0	25.8	mg/kg	103		SW846	6010B	02/26/99	9056181
	25.0	25.7	mg/kg	103	0.53	SW846	6010B	02/26/99	9056181
			Dilution Fac	ctor: 1				, ,	
Iron	100	103	mg/kg	103		SW846	6010B	02/26/99	0056101
	100	102	mg/kg		0.34	SW846		02/26/99	9056181 9056181
			Dilution Fac			2	00102	02/20/99	3030101
Lead	50.0	50.3	(1						
nead	50.0	50.3	mg/kg mg/kg	101		SW846		02/26/99	9056181
	50.0		mg/kg Dilution Fac		0.18	SW846	6010B	02/26/99	9056181
				COL. I					
Zinc	50.0	49.5	mg/kg	99		SW846	6010B	02/26/99	9056181
	50.0	49.4	mg/kg	99	0.28	SW846		02/26/99	9056181
			Dilution Fac				— 	04,20,33	2020101

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: D9B240185

PARAMETER

RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
#: D9B250000-14	1 Dron Bat	tab # . 0	056141		

Matrix..... SOLID

MB Lot-Sample	#: D9B250000	-141 Prep	Batch #:	9056141	
Mercury	ND	0.033	mg/kg	SW846	02/25-02/26/99 CR407101
		Dilution Fa	actor: 1		
		Analysis Ti	ime: 10:00		

MB Lot-Sampl Mercury	Le #: D9B2500 ND	0.00-141 Prep Batch #: 0.033 mg/kg Dilution Factor: 1 Analysis Time: 10:00	: 9056141 SW846 7471A	02/25-02/26/99 CR407101
MB Lot-Sampl Aluminum	e #: D9B2500 ND	00-181 Prep Batch #: 10.0 mg/kg	9056181 SW846 6010B	02/26/99 CR46912A
		Dilution Factor: 1 Analysis Time: 18:33		
Arsenic	ND	10.0 mg/kg Dilution Factor: 1 Analysis Time: 18:33	SW846 6010B	02/26/99 CR46912C
Cadmium	ND	0.50 mg/kg Dilution Factor: 1 Analysis Time: 18:33	SW846 6010B	02/26/99 CR46912D
Chromium	ND	1.0 mg/kg Dilution Factor: 1 Analysis Time: 18:33	SW846 6010B	02/26/99 CR46912E
Copper	ND	2.0 mg/kg Dilution Factor: 1 Analysis Time: 18:33	SW846 6010B	02/26/99 CR46912F
Iron	1.4 B	10.0 mg/kg Dilution Factor: 1 Analysis Time: 20:27	SW846 6010B	02/26/99 CR469127
Lead	ND	5.0 mg/kg Dilution Factor: 1 Analysis Time: 18:33	SW846 6010B	02/26/99 CR469128
Zinc	ND	2.0 mg/kg Dilution Factor: 1 Analysis Time: 18:33	SW846 6010B	02/26/99 CR469129
NOTE (S):				

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHO	DD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Samp	ole #: D9B24	0161-002	Prep Ba	atch #	: 905	56141		
Mercury	86	(82 - 114)				7471A	02/25-02/26/99	CR37R13
	86		ion Fact			5 7471A	02/25-02/26/99	
MS Lot-Samp	ole #: D9B24	0161-002 I	rep Ba	atch #	. = 905	6181		
Aluminum	NC,MSB	(88 - 120)				6010B	02/26/99	CR37R12
	NC,MSB		on Fact	(0-10) or: 1 : 18:57	SW846	6010B	02/26/99	CR37R12
Arsenic	90	(80 - 120)			SW846	6010B	02/26/99	CR37R12
	90		on Fact		SW846	6010B	02/26/99	CR37R12
Cadmium	94	(80 - 120)			SW846	6010B	02/26/99	CR37R13
	95		on Facto			6010B	02/26/99	CR37R13
Chromium	110	(83 - 112)			SW846	6010B	02/26/99	CR37R13;
	107		on Facto		SW846	6010B	02/26/99	CR37R134
Copper	98	(84 - 115)			SW846	6010B	02/26/99	CR37R136
	95		on Facto		SW846	6010B		CR37R137
ron	NC,MSB	(87 - 117)			SW846	6010B	02/26/99	CR37R12G
	NC,MSB		n Facto	(0-10) r: 1 .: 20:47	SW846			CR37R12H
ead	93	(82 - 114)			SW846	6010B	02/26/99	CR37R12K
	93		n Facto		SW846	6010B		CR37R12L

(Continued on next page)

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: D9B240185

Date Sampled...: 02/23/99 15:15 Date Received..: 02/24/99

Matrix..... SOLID

Zinc 96 (80 - 120) SV	PREPARATION- ANALYSIS DATE W846 6010B 02/26/99 W846 6010B 02/26/99	WORK ORDER # CR37R12N CR37R12P
-----------------------	--	--------------------------------

Analysis Time..: 18:57

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Results and reporting limits have been adjusted for dry weight.

NC The recovery and/or RPD were not calculated.

MSB The recovery and RPD were not calculated because the sample amount was greater than four times the spike amount.

MATRIX SPIKE SAMPLE DATA REPORT

TOTAL Metals

Client Lot #...: D9B240185

Date Sampled...: 02/23/99 15:15 Date Received..: 02/24/99

Matrix..... SOLID

PARAMETER Lead	SAMPLE AMOUNT		MEASURED AMOUNT	UNITS	PERCNT RECVRY	RPD	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
	6.5 6.5	58.7 58.7		mg/kg mg/kg ion Factor: 1 sis Time: 18		0.07	SW846 SW846		02/26/99 02/26/99	CR37R12K CR37R12L
Zinc	34.4		89.1 Diluti	J. J			SW846 SW846		02/26/99 02/26/99	CR37R12N CR37R12P

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Results and reporting limits have been adjusted for dry weight.

NC The recovery and/or RPD were not calculated.

MSB The recovery and RPD were not calculated because the sample amount was greater than four times the spike amount.

MATRIX SPIKE SAMPLE DATA REPORT

TOTAL Metals

Client Lo	ot #: oled:	D9B24 02/23	10185 3/99 15:15	Date Receiv	ved:	02/24	/99	Matr	ix SOI	.ID
PARAMETER			MEASUREI AMOUNT	UNITS	PERCN RECVR	T Y RPD	METH	OD	PREPARATION - ANALYSIS DATE	WORK ORDER #
MS Lot-Sa Mercury	mple #:	D9B24	0161-002	Prep Batch	#:	905614	11			
	ND ND			mg/kg mg/kg ution Factor: 1 lysis Time: 1	86 86 1:16	0.74		5 7471A 5 7471A	02/25-02/26/99 02/25-02/26/99	CR37R13
MS Lot-Sa Aluminum	mple #:	D9B24	0161-002	Prep Batch	#: 9	905618	31			
	3830	235	6990 Qua	mg/kg lifiers: NC,	MSB		SW846	6010B	02/26/99	CR37R12R
	3830	235	6900 Qua Dilu	mg/kg lifiers: NC, tion Factor: 1 ysis Time: 18	MSB		SW846	6010B	02/26/99	CR37R12T
Arsenic										
	5.1 5.1	235 235		mg/kg mg/kg tion Factor: 1 ysis Time: 18	90 90 :57	0.28		6010B 6010B	02/26/99 02/26/99	CR37R12V CR37R12W
Cadmium										
		5.87 5.87		mg/kg mg/kg tion Factor: 1 ysis Time: 18	94 95 :57	0.48	SW846 SW846	6010B 6010B	02/26/99 02/26/99	CR37R130 CR37R131
Chromium	_									
	_			mg/kg mg/kg tion Factor: 1	110 107 :57	1.9		6010B 6010B		CR37R133 CR37R134
Copper	14 5 .									
		29.4 29.4	42.7 Dilut	4-	98 95 57	1.7	SW846 SW846			CR37R136 CR37R137
Iron										
		117	11900 Qual	mg/kg ifiers: NC,M	SB		SW846	6010B	02/26/99	CR37R12G
	10700 1	117	11000 Qual Dilut	mg/kg ifiers: NC,M ion Factor: 1 sis Time: 20:	SB		SW846	6010B	02/26/99	CR37R12H

D.	
ite	
an	
S	

Q uanterra	9	-22-99	Lab Number Page of	Analysis (Attach list if more space is needed)	- Eg	Special Instructions/ Conditions of Receipt	ממה	X X X X X	4 to tat 2 to 2 to 2 to 2 to 2 to 2 to 2			×			*				(A lee may be assessed if samples are retained Months longer than 3 months)	1	Date	Date Time	Date Time	1.4.47.70
D18240185		MARIE TENNINGE TO	umber (Area Code)/Fax Number	Lab Contact	Carrier/Waybill Number	Matrix Containers &	succept Specific Spec		本のなり			387	U WILE	7100	7	T W CA		Committee Discount	Sample Disposar Return To Client Unisposal By Lab Archive For	Centract ac Requirements (Specify)	Date 1. Received By	Time 2. Received By	Time 3. Received By	
uchain of secord		S. Evological Sarvey	10 Elsen Kower Birch	State Zip Code		Contract/Purchase Order/Quote No.	No. and Desc	17. 00108 Ste# 4-1 2-22-99	50 Jacob 8 5/4 4/-2 11	2FL00108 Site #4-3 11	cor	7200108 STO# 12-1 20099	FLEOLO & S. Fox 1,3-2 11	FLOOICK Sito# 12-3 "	Ste# 14-1	Blo# 14~	FLOORIS SIEST 14-3 "	Possible Hazard Identification	nmable Skin Irritant Poison B	/ Turn Around Time Required 21 Days 14 Days 21 Days 0	len	2. Relinquished By Date	3. Relinquished By Date	Скортепіs

ω The Sample; CANARY - Returned to Client with Report; PINK - Field Copy

Quanterra South ACM	Date Chain of Custody Number 336				Special Instructions/	The 4. 4. 2. C.C.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									3	7	(A lee may be assessed if samples are retained			Date Time	, Date Time	Date Time	066777 0700
	APEN FERNING	Telephone Number (Area Gode)/Fay Number	Lab Contact	4	Matrix Containers & OSC	HOBN	* × ×	* × %	X		X XX	**************************************	**************************************	×	×	×		Sample Disposal Return To Client Disposal By Lab Archive For	Tet An St. (Sp.	77 77	-97 I'me 1. Heceived By	Time 2. Received By	Time 3. Received BV	1100 C
uchain of south 124 0787	Tile Sum	Adjess Allo Eigenfierre 1310 d	State Zip Code	Project Name Project Name	Contract/Purchase Order/Quote No.	Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date Time	5 FLECIOS SIPH 18-1 2-22-59	FLEDIOR STA	# FLOOION SIX # 18-3 11	K.	FLOOION STE# 22-1 2-12-59	FLOOVOS STO# 43-2 "	FLOCIOS Site #33-3 "	Fro 108 Site #24-1 222-95	Flourios Site # 26-2 "	FLOODS Ste# 26-3 4		n mmable 🔲 Skin Irritant 📗 Poison B 🔲 Unknown	e Required	d By	Moder There	2. Relinduished By Date	3. Relinquished By Date	

ω N UDISTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to Client with Report; PINK - Field Copy

rd or Chain of Sustant Custody F

	_
	oce,
	Ü
	a
	Œ
1	\sim
	$\tilde{\mathcal{O}}$
:	0
	*
,	St
•	3
Š	(ì
<u>'</u>	

Custody Record				Quanterra
COUA-4124 0797				Gate 24566
Ille S. Golozica Surv	- 1	Emonde	Date	Chain of Custody Number 2338
TO Exer down B	Telephone Number (Area Code) $8/3 - 857$	JFax Number SEX	MG Lab Number	Page 3 of 4
State	Site Contact	Lab Confact	Analysis (Attach list if more space is needed)	
B	Carrier/Waybill Number		<i>S</i> *	
Contract/Purchase Order/Quote No. U	Matrix	Containers & Preservatives	7) °	Special Instructions/ Conditions of Receipt
Sample I.D. No. and Description (i) (Containers for each sample may be combined on one line)	Time succepts Sed. Sed.	NSOH HOS HOS HOS HISO¢	nai j	
FLEQUOR 574#37-1 22299				A1. A. C.A. C. C
8700103 St# 37-2 5			λ,	Ro Dt 2m
17 Sib# 27-3 }			×	
cor				
1-05 # 20-1		×	~	
#	,		>	
1200108 Site # 30-3 1	*		<u> </u>	
Stat to			X	
Sito + 60-			×	
FC 60108 STE# 60-3			×	()
Possible Hazard Identification)
nable Skin Irritant Poison B	Sample Disposal Unknown Return To Client	Disposal By Lab Archive For	Months	(A lee may be assessed if samples are retained
7 Days 14 Days 21 Da	(A)	Spi		fem
Secret	Date Time	1. Received By		Date Time
	ŀ	2. Received By		Date Time
3. Relinquished By	Date Time	3. Received By		Date Time
င်က္ထာrents ထု ယ				-
DISTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to Client with Report; PINK - Field Copy	with Report; PINK - Field Copy			

ord Ouanterra Custody R

	Reco
5	ά
	sto
=	3

archain of ecord			Quanterra
H H D QUA-4124 0797)	Parts 245H
in die Serolo sical Servi	Project Mayager) Date	Chain of Custody Number
Address Shew hours Shed	Telephone Number (Area Code)/Fax Number	2 X X X	7 " 7 ma
State Zip Code	Site Contact Lab Contact	Analysis (Attach list if more space is needed)	
T Project Name O M M	Carrier/Waybill Number		
Contract/Purchase Order/Quote No.	Matrix Containers & Preservatives		Special Instructions/ Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	HOPN PARTY P	18	40,40 Cd. C. C.
EFL CO108 STe#33-122289		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\$ 12 x 4
F EXIS 51/2 # 33-2			. TI
2 FC colo3 Ste# 33-3		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
cor			
У			
Possible Hazard Identification Mon-Hazard Elammahla Chin Industry Delication	Sample Disposal		sssed if samples are retained
Paning	Unknown Heturn 10 Cilent Disposal By Lab	Archive For Months	longer than 3 months)
24 Hours 48 Hours 7 Days 14 Days 21 Days	the Ceri	(Ajis	
Theilipquished By Willer	Date 1. Received By		Date Time
2. Relinquished By	Date Time 2. Received By		Date Time
3. Relinquished By	Date Time 3. Beenred By		Date Time
Coments	1912 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1020779 OGLOS

 ∞ bistnibution: White Siays with the Sample; CANARY - Returned to Client with Report; PINK - Field Copy

Sample Receiving Checklist

Lo	ot #:_	J9B240185 Date/Time Received: 02249 9 0900				
Company Name & Sampling Site: US65 Florida						
	*Co	poler #(s):				
	Temp	peratures: <u>3 6</u>				
Unpacking & Labeling Check Points:						
N/A		, No	<i>Initials</i>			
		1. Cooler seals intact.	<u>PK</u>			
	6	2. Chain of custody present.				
		3. Bottles broken and/or are leaking, comment if yes.				
		PHOTOGRAPH BROKEN BOTTLES				
	\square	4. Containers labeled, comment if no.				
		5. pH of all samples checked and meet requirements, note exceptions.				
	a	 6. Chain of custody includes "received by" and "relinquished" by signatures, dates, and times. 				
	Ø	7. Receipt date(s) > 48 hours past the collection date(s)? If yes, notify PA/PM.				
	a	8. Chain of custody agrees with bottle count, comment if no.				
	ď	9. Chain of custody agrees with labels, comment if no.				
<u>a</u>		☐ 10. VOA samples filled completely, comment if no.				
Z		☐ 11. VOA bottles preserved, check for labels.				
		12. Did samples require preservation with sodium thiosulfate?				
		13. If yes to #12, did the samples contain residual chlorine?				
Q		14. Sediment present in "D," dissolved, bottles.				
		15. Are analyses with short holding times requested?				
		16. Is extra sample volume provided for MS, MSD or matrix duplicates?				
		17. Multiphase samples present? If yes, comment below.				
		18. Any subsampling for volatiles? If yes, list samples.				
		PHOTOGRAPH MULTIPHASE SAMPLES				
a		19. Clear picture taken, labeled, and stapled to project folder.				
<u>d</u>		□ 20. Subcontract COC signed and sent with samples to bottle prep?				
		21. Was sample labeling double checked by a second person?	V			

Document any problems or discrepancies and the actions taken to resolve them on a Condition Upon Receipt Anomaly Report (CUR)

\QA\Forms\Sample Receiving\SR Checklist

2/10/99 Revision

Base from U.S. Geological Survey digital data, 1:100,000, 1983 Albers Equal-Area Conic projection Standard Parallels 29° 30′ and 45° 30′, central meridian –83° 00′

26°20′

Historical sampling transect

(Stoker, 1986)

5 MILES

5 KILOMETERS

Albers Equal-Area Conic projection Standard Parallels 29° 30' and 45° 30', central meridian –83° 00'

Distribution of trace elements above Natural Range — Plate 3

Base from U.S. Geological Survey digital data, 1:100,000, 1983 Albers Equal-Area Conic projection

Standard Parallels 29° 30' and 45° 30', central meridian -83° 00'

Base from U.S. Geological Survey digital data, 1:100,000, 1983 Albers Equal-Area Conic projection

Standard Parallels 29° 30' and 45° 30', central meridian -83° 00'

Base from U.S. Geological Survey digital data, 1:100,000, 1983 Albers Equal-Area Conic projection Standard Parallels 29° 30′ and 45° 30′, central meridian –83° 00′

Base from U.S. Geological Survey digital data, 1:100,000, 1983 Albers Equal-Area Conic projection Standard Parallels 29° 30′ and 45° 30′, central meridian –83° 00′

DISTRIBUTION OF CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS ENZYME-LINKED IMMUNOSORBENT ASSAY DATA IN BOTTOM SEDIMENT IN THE CALOOSAHATCHEE RIVER AND ESTUARY STUDY AREA, LEE COUNTY, FLORIDA, JULY 20-30, 1998

Standard Parallels 29° 30' and 45° 30', central meridian -83° 00'