Experiment No.4

Aim: Implementation of Binomial Heaps and its various operations

Objective:

- Understanding Binomial Trees , Binomial Heap and its operations.
- Implement Binomial Tree and Binomial Heap class.
- Define the Binomial Heap operations under Binomial Heap class.

Methodology:

- I. A Binomial Tree of order 0 has 1 node. A Binomial Tree of order k can be constructed by taking two binomial trees of order k-1 and making one as leftmost child or other.
- **II.** A Binomial Tree of order k has following properties:
 - a) It has exactly 2^k nodes.
 - **b)** It has depth as k.
 - c) There are exactly kC_i nodes at depth i for i = 0, 1, ..., k.
 - **d)** The root has degree k and children of root are themselves Binomial Trees with order k-1, k-2,.. 0 from left to right.

Bk

Experiment No.4

- III. A Binomial Heap is a set of Binomial Trees where each Binomial Tree follows Min Heap property. And there can be at most one Binomial Tree of any degree.
- IV. A Binomial Heap with n nodes has the number of Binomial Trees equal to the number of set bits in the Binary representation of n. For example let n be 13, there 3 set bits in the binary representation of n (00001101), hence 3 Binomial Trees.

Implementation:

- Implemented the class BinomialTree with following members:
 - ♠ key
 - ◆ Children (a list)
 - order
- Implemented the *class BinomialHeap* with following member functions:
 - ◆ def extract min(self)
 - def get_min(self)
 - def combine_roots(self, h)
 - def merge(self, h)
 - def insert(self, key)
- Mainly 3 operations are implemented by User view named:
 - ♦ Insert.
 - min get.
 - min extract.

Results:

Input:

Experiment No.4

Output:

Experiment No.4

Conclusions:

Thus we have successfully implemented Binomial Heap and its various applications.