Lecture 6: Cauchy Stress Tensor

Logistics: - HWZ graded

-> dou't work out identities explicitly

Last time: - Integral theorems

- Derivatives of tenser functions

Today: - Stress

Continuum mans & force concept continuum is infinitely divisibe

ignore the discrete nature of atomic structure works at length ecales bijger than mean atomic spacing.

Mars density

mans is physical property of matter that quantifies its resistance to acceleration

lu continuem assumption me assume that mass is continously distributed

any subset 52 of B

with pos. volume has pos. mon

VQ = SodV mg = Sopialy

where pcs) is man density field which

is deflued at any point x by

$$\rho(x) = \lim_{s \to 0} \frac{m_{\Omega_s}}{V_{\Omega_s}}$$

Center of volume: $\underline{x}_{V} = \frac{1}{V_{\Omega}} \int_{\Omega} \underline{x} dV$

Coult of man: $\times m = \frac{1}{m\Omega} \int_{\Omega} \times p(x) dV$

Body forces

Foras are the mech. intractions of a body with its environment.

Any force not due to physical contact is a booky force.

Common body forces: -gravitational field - electromagnetic sield

Inestal/ficicious forces:-centrifugeal force -Coviolis force

If b is a body force field with units

Force $= \frac{\pi}{V} = \frac{aM}{V} \left[\frac{1}{L^{2}} \frac{L}{T^{2}} H = \frac{H}{L^{2}T^{2}} \right]$

then the resultant force on a booly is

and the torque on I about point z

$$\underline{\Gamma}_{b} = \int_{C} (x - \overline{z}) \times \underline{p}(x) dV$$

Example: gravitational body force $\underline{b}_{g} = \rho g \qquad \left[\frac{H}{L^{3}} \frac{L}{T^{2}} = \frac{H}{L^{2}T^{2}} \right]$

Surface / Contact forces

arise due to contact between bodies

External surface forces act on bounding

surface of a booky

Internal surface forces tect on "Imaginery"

Surfaces within the booky

Traction field

arbitrary suface l'in B

with nermal next that defrus

pos. a neg. side.

The force per muit area exerted by pos. side onto meg. side is given by traction field \underline{t}_n of Γ

The resultant force due to trach'ousield on Π $\Gamma_s[\Pi] = \int_{\Pi} \underline{t}_n(x) dA$

The resultant torque about z du hofraction on Γ $\left[\sum_{s} [\Gamma] = \int_{\Gamma} (\underline{x} - \underline{z}) \times \underline{t}_{n}(x) dA \right]$

Example: Archimedes principle

Aug object, wholly or

Be IX3 postially submurged in a

fluid is bouged up by

a force equal to the weight

of the fluid displaced by the object."

Hydrostatic force field on 2B

E = -pn where p = pg x3

subst. into def. of resulting force

[S[2B] = S E dA = S - pndA

2B

2B

2B

multiply by a coust vect = to apply dir theorem

C. IS[3B] = J-beingy = J-D. (be) dr

Cauchy's postulate

The traction field to (x) on surface I' in B depends only point wise on unit normal field nex). In perhicular, there is a trachou function s.t [tn=tn(n(x),x)

Assumes that to is independent of ∇n ie. Hu euverture of M

=> traction b; on all I; that one tungent at x is same ti=tu

Law of Action and Reaction

If $\underline{\underline{\underline{L}}}(\underline{\underline{u}},\underline{\underline{x}})$ is continous and bounded $\overline{F}(-\overline{n}'\overline{x}) = -\overline{F}(\overline{n}'\overline{x})$

for all u and x.

To show this consider a disk D with arbit. fixed radius around x.

Inst term vanishes because $\underline{t} < \infty$ and $\Gamma_{\xi} > 0$ Use $\Gamma^{\pm} \rightarrow D$ $\int_{\Gamma} \underline{t}((\underline{n}, \underline{y}) + \underline{t}(-\underline{n}, \underline{y}) dA = 0$

because Dis erbliary the integrand must be zero.