Homework 2 (due Tuesday September 10)

Quiz 2 Thursday September 12.

Main Topics:

Numerical algorithms and errors. Chapters 1 and 2 in textbook.

Main Objectives:

Classify the type of errors that occur in numerical algorithms. Discuss round off errors.

Main Tools:

Basic calculus and numbers representation.

Chapter 1 Questions

- 1. Review questions
 - a) Give an example where relative error is a more suitable measure than absolute error, and another example where the absolute error measure is more suitable.
 - b) State a major difference between the nature of roundoff errors and discretization errors.
 - c) Explain the differences between accuracy, efficiency, and robustness as criteria for evaluating an algorithm.
 - d) Distinguish between problem conditioning and algorithm stability.
 - e) Explain briefly why accumulation of roundoff errors is inevitable when arithmetic operations are performed in a floating point system. Under which circumstances is it tolerable in numerical computations?
- 2. Approximate the derivative of $f(x) = e^{-3x}$ at x = 0. By $f'(0) \approx \frac{f(h) f(0)}{h}$. Calculate and plot (use the loglog command) the absolute error of this approximation for values of h that approach zero. Comment and explain your results.
- 3. Consider the problem presented in example 1.6 in your textbook. There it was presented a numerically unstable procedure for carrying out and integration.
 - a) Derive a formula for approximately computing these integrals based on evaluating y_{n-1} given y_n .
 - b) Show that for any value $\varepsilon > 0$ and positive integer n_0 , there exists an integer $n_1 \ge n_0$ such that taking $y_{n1} = 0$ as a starting value will produce integral evaluations y_n with an absolute error smaller than ε for all $0 < n \le n_0$.
 - c) Explain why your algorithm is stable.
 - d) Write a MATLAB function that computes the value of y_{20} within an absolute error of at most 10^{-5} . Explain how you choose n_1 in this case.

Chapter 2 Questions

- 4. Review Ouestions
 - a) A general floating point system is characterized by four values (β, t, L, U) . Explain in a few brief sentences the meaning and importance of each of these parameters.
 - b) Write down the floating point representation of a given number x in a decimal system with t = 4, using (i) chopping and (ii) rounding.
 - c) Define rounding unit (or machine precision) and explain its importance.
 - d) Define underflow and overflow. Why is the later more damaging than the former.?
 - e) What is cancellation error? Give an example of an application where it arises in a natural way.

- 5. Write a MATLAB program that receives as input a number x and a parameter n and returns x rounded to n decimal digits. Write your program so that it can handle an array as input, returning an array of the same size in this case.
- 6. Show that $\ln(x \sqrt{x^2 1}) = -\ln(x + \sqrt{x^2 1})$. Which of the two formulas is more suitable for numerical computation? Explain why and provide a numerical example in which the difference in accuracy is evident.
- 7. Consider the linear system

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ with } a, b > 0; a \neq b.$$

- a) If $a \approx b$, what is the numerical difficulty in solving this linear system.
- b) Suggest a numerically stable formula for computing z = x + y given a and b.
- c) Determine whether the following statement is true or false, and explain why: "When $a \approx b$, the problem of solving the linear system is ill conditioned, but the problem of computing x + y is not ill conditioned."
- 8. Write a MATLAB program that
 - a) Sums up $\frac{1}{n}$ for $n = 1, 2, \dots, 10000$;
 - b) Rounds each number $\frac{1}{n}$ to 5 decimal digits and then sums them up in 5-digit decimal arithmetic for $n = 1, 2, \dots, 10000$;
 - c) Sums up the same rounded numbers (in 5-digit decimal arithmetic) in reverse order, i.e., for $n = 10000, \dots, 2,1$

Compare the three results and explain your observations. You can use exercise 5.