HW1 Problem 2

Part A

Read in dataset MNIST

```
In [ ]:
```

Create untouched, bounding data

```
In [24]:
```

```
import pandas as pd
import numpy as np
from PIL import Image
from resizeimage import resizeimage
from sklearn.model_selection import train_test_split
# untouched
X train utch, X test utch, y train utch, y test utch=train test split(mnist.data,
                                                                     mnist.target, test size=1/7.0)
# bounding box
data = pd.DataFrame (mnist.data)
df = np.where(data<128,0,1)
df = pd.DataFrame(df)
rec=[]
#img=Image.new('1',(28,28))
for i in range(df.shape[0]):
   img=Image.new('1',(28,28))
    img.putdata(df.iloc[i,])
    img.save('my.png')
   im=Image.open('my.png')
   im = resizeimage.resize crop(im, [20,20])
   pixel=[i/255 for i in list(im.getdata())]
   rec.append(pixel)
data_bb=pd.DataFrame(rec)
```

create stretched bounding data

```
In [39]:
```

```
#streched bounding
rac=[]
for i in range(df.shape[0]):
    #generate a new image
   img=Image.new('1', (28, 28))
    # put the data in
   img.putdata(df.iloc[i,])
    img.save('my.png')
    im=Image.open('my.png')
    #crop into the getbox() coordinates
   im=im.crop(im.getbbox())
    # enlarge to size 20*20
   im = im.resize((20,20))
    # get the data
    pixel=[i/255 for i in list(im.getdata())]
    rac.append(pixel)
data sb = pd.DataFrame(rac)
```

split dataset

```
In [42]:
```

In [61]:

```
#Gaussian, untouch
from sklearn.naive_bayes import GaussianNB, BernoulliNB
gnb=GaussianNB()
y_pred=gnb.fit(X_train_utch, y_train_utch).\
predict(X_test_utch)
a=((y_pred==y_test_utch).sum()/len(y_test_utch))
print(a)
```

In [62]:

0.5564

```
#Gaussian, sb
y_pred=gnb.fit(X_train_sb,y_train_sb).\
predict(X_test_sb)
b=((y_pred==y_test_sb).sum()/len(y_test_sb))
print(b)
```

0.8179

In [63]:

```
#Bernoulli,untouched
bnb=BernoulliNB()
y_pred=bnb.fit(X_train_utch,y_train_utch).\
predict(X_test_utch)
c=((y_pred==y_test_utch).sum()/len(y_test_utch))
print(c)
0.8244
```

In [64]:

```
#Bernoulli, sb
y_pred=bnb.fit(X_train_sb,y_train_sb).\
predict(X_test_sb)
d=((y_pred==y_test_sb).sum()/len(y_test_sb))
print(d)
```

0.8166

In [65]:

Out[65]:

	Gaussian	Bernoulli
untouched	0.5564	0.8179
stretched bounding	0.8244	0.8166

For untouched dataset, Bernoulli is better. For stretched bounding, Gaussian performs slightly better. Classifier are ranked by prediction accuracy on test data

Part b

Random forest with untouched data

In [57]:

```
#random forest, untouched
res=[]
for i in [10,20,30]:
    for j in [4,8,16]:
        rf = RandomForestClassifier(n_estimators=i,max_depth=j)
            rf.fit(X_train_utch, y_train_utch)
            y_pred = rf.predict(X_test_utch)
            res.append(((y_pred==y_test_utch).sum()/len(y_test_utch)))

pd.DataFrame(np.reshape(res,(3,3)), index=['No. trees 10','No. trees 20','No. trees 30'],
            columns=['depth = 4','depth = 8','depth = 16'])
```

Out[57]:

	depth = 4	depth = 8	depth = 16
No. trees 10	0.7479	0.8969	0.9429
No. trees 20	0.7787	0.9041	0.9535
No. trees 30	0.7831	0.9114	0.9573

Random forest with stretched bounding data

In [60]:

```
#random forest, stretched bounding
from sklearn.ensemble import RandomForestClassifier
res1=[]
for i in [10,20,30]:
    for j in [4,8,16]:
        rf = RandomForestClassifier(n_estimators=i,max_depth=j)
            rf.fit(X_train_sb,y_train_sb)
        y_pred = rf.predict(X_test_sb)
        res1.append(((y_pred==y_test_sb).sum()/len(y_test_sb)))
pd.DataFrame(np.reshape(res1,(3,3)), index=['No. trees 10','No. trees 20','No. trees 30'],
            columns=['depth = 4','depth = 8','depth = 16'])
```

Out[60]:

	depth = 4	depth = 8	depth = 16
No. trees 10	0.7216	0.8849	0.9444
No. trees 20	0.7255	0.8966	0.9547
No. trees 30	0.7638	0.9019	0.9568

for both datasets, depth with 16 and 30 total decision trees perform better because more trees with higher depth will get higher accuracy

```
In [ ]:
```