Page -2-

Amendments to the Claims:

This listing of claims will replace all prior versions and listing of claims in the application.

Listing of Claims:

1. (previously cancelled)

2. (previously amended) A vehicle suspension assembly, comprising:

a first control arm having a first end and a second end, wherein the first end of the first control arm includes a first bushing adapted to pivotally couple the first control arm to a first frame member of a vehicle, and wherein the second end of the first control arm is adapted to be pivotally coupled to an axle of a vehicle;

a second control arm having a first end and a second end, wherein the first end of the second control arm includes a second bushing adapted to pivotally couple the second control arm to a second frame member of the vehicle, and wherein the second end of the second control arm is adapted to be pivotally coupled to an axle of the vehicle;

a rigid first torsional member coupled to the first control arm along a length of the first control arm rearward of the first bushing and forward of an axle, and coupled to the second control arm along a length of the second control arm rearward of the second bushing and forward of an axle, wherein the first torsional member is fixedly coupled to the first control arm proximate the first end of the first control arm, and wherein the torsional member is fixedly coupled to the second control arm proximate the first end of the second control arm; and

a third control arm having a first end and a second end, wherein the first end of the third control arm is adapted to be pivotally coupled to a third frame member of a vehicle, and wherein the second end of the third control arm is adapted to be pivotally coupled to at least a select one of the second frame members and an axle of a vehicle.

3. (previously amended) The vehicle suspension assembly of claim 2, wherein the first torsional member is tube-shaped.

Applicant Serial No.

: Mark Molitor : 10/757,897

Page -3-

4. (previously amended) The vehicle suspension assembly of claim 2, wherein the first end of the first control arm is adapted to be pivotally coupled with a first linkage member that is fixedly attached to and extends downwardly from the first frame member.

- 5. (original) The vehicle suspension assembly of claim 4, wherein the first end of the second control arm is adapted to be pivotally coupled with a second linkage member that is fixedly attached to and extends downwardly from the second frame member.
- 6. (previously amended) The vehicle suspension assembly of claim 5, wherein the second end of the third control arm is adapted to be pivotally coupled with a third linkage member that is fixedly attached to and extends upwardly from an axle.
- 7. (previously amended) The vehicle suspension assembly of claim 2, wherein the first bushing of the first end of the first control arm and the second bushing of the first end of the second control arm are each elastically deformable, and wherein the second end of the first control arm and the second control arm each include an elastically deformable bushing.
- 8. (previously amended) The vehicle suspension assembly of claim 7, wherein the bushings of the first and second ends of the first and second control arms each have an aperture extending therethrough, and wherein each aperture is elongated.
- 9. (original) The vehicle suspension assembly of claim 7, wherein the first and second end of the third control arm each include an elastically deformable bushing.
- 10. (previously amended) The vehicle suspension assembly of claim 2, wherein the first torsional member includes a first flanged end and a second flanged end, and the first flanged end is fixedly coupled to the first control arm via at least one bolt extending through at least one aperture in the first flanged end and at least one aperture in the first control arm, and wherein the second flanged end is fixedly coupled to the second

Page -4-

control arm via at least one bolt extending through at least one aperture in the second flanged end and at least one aperture in the second control arm.

- 11. (previously amended) The vehicle suspension assembly of claim 2, further including:
- a first pneumatic suspension bag adapted to be positioned between the first frame member and an axle; and
- a second pneumatic suspension bag adapted to be positioned between the second frame member and an axle.
- 12. (previously amended) The vehicle suspension assembly of claim 11, further including:
- a third pneumatic suspension bag positioned between the first frame member and an axle; and
- a fourth pneumatic suspension bag positioned between the second frame member and an axle.
- 13. (previously amended) The vehicle suspension assembly of claim 2, further including:

a fourth control arm having a first end and a second end, wherein the first end of the fourth control arm is adapted to be pivotally coupled to the third frame member of a vehicle, and wherein the second end of the fourth control arm is adapted to be pivotally coupled to an axle of a vehicle.

14. (original) The vehicle suspension assembly of claim 13, further including:

a rigid second torsional member fixedly attached to the third control arm along a length of the third control arm, and fixedly attached to the fourth control arm along a length of the fourth control arm.

Applicant : Serial No. :

: Mark Molitor : 10/757,897

Page -5-

15. (previously amended) The vehicle suspension assembly of claim 2, wherein the first and the second control arms are each substantially L-shaped defining an elbow along the length of each of the control arms.

- 16. (original) The vehicle suspension assembly of claim 15, wherein the first torsional member is fixedly coupled to the first and second control arms proximate the elbows thereof.
- 17. (previously amended) The vehicle suspension assembly of claim 2, wherein the second end of the first control arm and the second end of the second control arm are each substantially fork-shaped.
- 18. (previously amended) A vehicle suspension assembly, comprising:

a first control arm having a first end and a second end, wherein the first end of the first control arm includes a first bushing adapted to pivotally couple the first control arm to a first frame member of a vehicle, and wherein the second end of the first control arm is adapted to be pivotally coupled to an axle of a vehicle;

a second control arm having a first end and a second end, wherein the first end of the second control arm includes a second bushing adapted to pivotally couple the second control arm to a second frame member of the vehicle, and wherein the second end of the second control arm is adapted to be pivotally coupled to the an axle of the vehicle;

a rigid first torsional member coupled to the first control arm along a length of the first control arm rearward of the first bushing and forward of an axle, and coupled to the second control arm along a length of the second control arm rearward of the second bushing and forward of an axle, wherein the torsional member is pivotably coupled to the first control arm, and wherein the first torsional member is pivotably coupled to the second control arm; and

a third control arm having a first end and a second end, wherein the first end of the third control arm is adapted to be pivotally coupled to a third frame member of a Applicant : No. : 1

: Mark Molitor : 10/757,897

Page -6-

....

vehicle, and wherein the second end of the third control arm is adapted to be pivotally coupled to at least a select one of the second frame members and an axle of a vehicle.

19. (original) The vehicle suspension assembly of claim 18, wherein the first torsional member is pivotable with respect to the first and second control arms in a substantially vertical direction.

20. (original) The vehicle suspension assembly of claim 18, wherein the first torsional member is pivotable with respect to the first and second control arms in a substantially horizontal direction.

21. (previously cancelled)

22. (previously amended) A vehicle suspension assembly, comprising:

a first control arm having a first end and a second end, wherein the first end of the first control arm is adapted to be pivotally coupled to a first frame member of a vehicle, and wherein the second end of the first control arm is adapted to be pivotally coupled to an axle of a vehicle;

a second control arm having a first end and a second end, wherein the first end of the second control arm is adapted to be pivotally coupled to the first frame member of a vehicle, and wherein the second end of the second control arm is adapted to be pivotally coupled to an axle of a vehicle;

a rigid first torsional member coupled to the first control arm along a length of the first control arm, and coupled to the second control arm along a length of the second control arm; and

a third control arm having a first end and a second end, wherein the first end of the third control arm is adapted to be pivotally coupled to a select one of the first frame member, a second frame member, and a third frame member of a vehicle, and wherein the second end of the third control arm is adapted to be pivotally coupled to an axle of a Applicant Serial No.

: Mark Molitor : 10/757,897

Page -7-

vehicle wherein the third control arm is positioned between the first and second control arms, and wherein the third control arm is pivotably coupled with the first frame member.

- 23. (previously amended) The vehicle suspension assembly of claim 22, wherein the torsional member is tube-shaped.
- 24. (previously amended) The vehicle suspension assembly of claim 22, wherein the first end of the first control arm is adapted to be pivotally coupled with a first linkage member that is fixedly attached to and extends upwardly from an axle.
- 25. (previously amended) The vehicle suspension assembly of claim 24, wherein the first end of the second control arm is adapted to be pivotally coupled with a second linkage member that is fixedly attached to and extends upwardly from an axle.
- 26. (previously amended) The vehicle suspension assembly of claim 22, wherein the first and second end of the first control arm and the first and second end of the second control arm each include an elastically deformable bushing.
- 27. (original) The vehicle suspension assembly of claim 26, wherein the first and second end of the third control arm each include an elastically deformable bushing.
- 28. (previously amended) The vehicle suspension assembly of claim 22, wherein the first end of the third control arm is adapted to be pivotably coupled to the second frame member, and further including:

a fourth control arm having a first end and a second end, wherein the first end of the fourth control arm is adapted to be pivotally coupled to the third frame member of a vehicle, and wherein the second end of the fourth control arm is adapted to be pivotally coupled to an axle of a vehicle. Applicant Serial No. : Mark Molitor : 10/757,897

Page -8-

•

29. (previously amended) A vehicle suspension assembly, comprising:

a first control arm having a first end and a second end, wherein the first end of the first control arm is adapted to be pivotally coupled to a first frame member of a vehicle, and wherein the second end of the first control arm is adapted to be pivotally coupled to an axle of a vehicle;

a second control arm having a first end and a second end, wherein the first end of the second control arm is adapted to be pivotally coupled to the first frame member of a vehicle, and wherein the second end of the second control arm is adapted to be pivotally coupled to an axle of a vehicle;

a rigid first torsional member coupled to the first control arm along a length of the first control arm, and coupled to the second control arm along a length of the second control arm; and

a third control arm having a first end and a second end, wherein the first end of the third control arm is adapted to be pivotally coupled to a select one of the first frame member, a second frame member, and a third frame member of a vehicle, and wherein the second end of the third control arm is adapted to be pivotally coupled to an axle of a vehicle wherein the torsional member is pivotably coupled to the first control arm, and wherein the first torsional member is pivotably coupled to the second control arm.

- 30. (original) The vehicle suspension assembly of claim 29, wherein the first torsional member is pivotable with respect to the first and second control arms in a substantially vertical direction.
- 31. (original) The vehicle suspension assembly of claim 30, wherein the first torsional member is pivotable with respect to the first and second control arms in a substantially horizontal direction.
- 32. (previously presented) A vehicle suspension assembly, comprising:

a first control arm having a first end and a second end, wherein the first end of the first control arm includes a first bushing adapted to pivotally couple the first control

Page -9-

arm to a first frame member of a vehicle, and wherein the second end of the first control arm is adapted to be pivotally coupled to an axle of a vehicle;

a second control arm having a first end and a second end, wherein the first end of the second control arm includes a second bushing adapted to pivotally couple the second control arm to a second frame member of a vehicle, and wherein the second end of the second control arm is adapted to be pivotally coupled to an axle of a vehicle; and

a rigid first torsional member coupled to the first control arm along a length of the first control arm rearward of the first bushing and forward of an axle, and coupled to the second control arm along a length of the second control arm rearward of the second bushing and forward of an axle.

33. (previously presented) A vehicle suspension assembly, comprising:

a first control arm having a first end and a second end, wherein the first end of the first control arm includes a first bushing adapted to pivotally couple the first control arm to a first frame member of a vehicle, and wherein the second end of the first control arm is adapted to be pivotally coupled to an axle of a vehicle;

a second control arm having a first end and a second end, wherein the first end of the second control arm includes a second bushing adapted to pivotally couple the second control arm to a second frame member of the vehicle, and wherein the second end of the second control arm is adapted to be pivotally coupled to the an axle of the vehicle;

a rigid first torsional member coupled to the first control arm along a length of the first control arm rearward of the first bushing and forward of an axle, and coupled to the second control arm along a length of the second control arm rearward of the second bushing and forward of an axle wherein the torsional member is pivotally coupled to the first control arm, and wherein the first torsional member is pivotally coupled to the second control arm.

Page -10-

34. (previously presented) The vehicle suspension assembly of claim 33, wherein the first torsional member is pivotable with respect to the first and second control arms in a substantially vertical direction.

35. (previously presented) The vehicle suspension assembly of claim 33, wherein the first torsional member is pivotable with respect to the first and second control arms in a substantially horizontal direction.

36. (previously presented) A vehicle suspension assembly, comprising:

a first control arm having a first end and a second end, wherein the first end of the first control arm is adapted to be pivotally coupled to a first frame member of a vehicle, and wherein the second end of the first control arm is adapted to be pivotally coupled to an axle of a vehicle;

a second control arm having a first end and a second end, wherein the first end of the second control arm is adapted to be pivotally coupled to the second frame member of a vehicle, and wherein the second end of the second control arm is adapted to be pivotally coupled to an axle of a vehicle;

a third control arm having a first end and a second end, wherein the first end of the third control arm is adapted to be pivotally coupled to a third frame member of a vehicle, and wherein the second end of the third control arm is adapted to be pivotally coupled to an axle of a vehicle;

a fourth control arm having a first end and a second end, wherein the first end of the fourth control arm is adapted to be pivotally coupled to a third frame member of a vehicle, and wherein the second end of the third control arm is adapted to be pivotally coupled to an axle of a vehicle; and

a rigid first torsional member coupled to the third control arm along a length of the first control arm, and coupled to the fourth control arm along a length of the second control arm.

Page -11-

37. (new) A vehicle suspension assembly, comprising:

a first control arm having a first end and a second end, wherein the first end of the first control arm includes a first bushing adapted to pivotally couple the first control arm to a first frame member of a vehicle, and wherein the second end of the first control arm is adapted to be pivotally coupled to an axle of a vehicle;

a second control arm having a first end and a second end, wherein the first end of the second control arm includes a second bushing adapted to pivotally couple the second control arm to a second frame member of the vehicle, and wherein the second end of the second control arm is adapted to be pivotally coupled to an axle of the vehicle;

a rigid first torsional member coupled to the first control arm along a length of the first control arm rearward of the first bushing and forward of an axle, and coupled to the second control arm along a length of the second control arm rearward of the second bushing and forward of an axle, wherein the first torsional member is fixedly coupled to the first control arm at a location along a length of the first control member that is closer to a selective one of the first and second ends of the first control arm than to a mid-point of the first control arm, and wherein the torsional member is fixedly coupled to the second control arm proximate the first end of the second control arm; and

a third control arm having a first end and a second end, wherein the first end of the third control arm is adapted to be pivotally coupled to a third frame member of a vehicle, and wherein the second end of the third control arm is adapted to be pivotally coupled to at least a select one of the second frame members and an axle of a vehicle.