Análise de Complexidade Parte 3

Prof. Kennedy Reurison Lopes

July 12, 2023

 Na análise de algoritmos, geralmente usa-se a complexidade assintótica, analisando o algoritmo para n tendendo a infinito;

- Na análise de algoritmos, geralmente usa-se a complexidade assintótica, analisando o algoritmo para n tendendo a infinito;
- Nesse caso, despreza-se constantes e termos de menor crescimento;

- Na análise de algoritmos, geralmente usa-se a complexidade assintótica, analisando o algoritmo para n tendendo a infinito;
- Nesse caso, despreza-se constantes e termos de menor crescimento;
- Usa-se notações especiais para a complexidade assintótica.

- Na análise de algoritmos, geralmente usa-se a complexidade assintótica, analisando o algoritmo para n tendendo a infinito;
- Nesse caso, despreza-se constantes e termos de menor crescimento;
- Usa-se notações especiais para a complexidade assintótica.

- Na análise de algoritmos, geralmente usa-se a complexidade assintótica, analisando o algoritmo para n tendendo a infinito;
- Nesse caso, despreza-se constantes e termos de menor crescimento;
- Usa-se notações especiais para a complexidade assintótica.

Tipos de Notação:

Notação Descrição simplificada

- Na análise de algoritmos, geralmente usa-se a complexidade assintótica, analisando o algoritmo para n tendendo a infinito;
- · Nesse caso, despreza-se constantes e termos de menor crescimento;
- Usa-se notações especiais para a complexidade assintótica.

Notação	Descrição simplificada
<i>O</i> (<i>n</i>)	Limitador Estrito Superior

- Na análise de algoritmos, geralmente usa-se a complexidade assintótica, analisando o algoritmo para n tendendo a infinito;
- Nesse caso, despreza-se constantes e termos de menor crescimento;
- Usa-se notações especiais para a complexidade assintótica.

Notação	Descrição simplificada
<i>O</i> (<i>n</i>)	Limitador Estrito Superior
$\Omega(n)$	Limitador Estrito Inferior

- Na análise de algoritmos, geralmente usa-se a complexidade assintótica, analisando o algoritmo para n tendendo a infinito;
- Nesse caso, despreza-se constantes e termos de menor crescimento;
- Usa-se notações especiais para a complexidade assintótica.

Notação	Descrição simplificada
<i>O</i> (<i>n</i>)	Limitador Estrito Superior
$\Omega(n)$	Limitador Estrito Inferior
$\Theta(n)$	Limitador Central

- Na análise de algoritmos, geralmente usa-se a complexidade assintótica, analisando o algoritmo para n tendendo a infinito;
- · Nesse caso, despreza-se constantes e termos de menor crescimento;
- Usa-se notações especiais para a complexidade assintótica.

Notação	Descrição simplificada
<i>O</i> (<i>n</i>)	Limitador Estrito Superior
$\Omega(n)$	Limitador Estrito Inferior
$\Theta(n)$	Limitador Central
o(n)	Limitador Não Estrito Superior

- Na análise de algoritmos, geralmente usa-se a complexidade assintótica, analisando o algoritmo para n tendendo a infinito;
- · Nesse caso, despreza-se constantes e termos de menor crescimento;
- Usa-se notações especiais para a complexidade assintótica.

Notação	Descrição simplificada
<i>O</i> (<i>n</i>)	Limitador Estrito Superior
$\Omega(n)$	Limitador Estrito Inferior
$\Theta(n)$	Limitador Central
o(n)	Limitador Não Estrito Superior
$\omega(n)$	Limitador Não Estrito Inferior

Uma função f(n) é dita como sendo O(g(n)) se existe uma constante positivas c para o qual:

$$0 < f(n) \le c \times g(n)$$

Uma função f(n) é dita como sendo O(g(n)) se existe uma constante positivas c para o qual:

$$0 < f(n) \le c \times g(n)$$

Uma função f(n) é dita como sendo O(g(n)) se existe uma constante positivas c para o qual:

$$0 < f(n) \le c \times g(n)$$

Uma função f(n) é dita como sendo O(g(n)) se existe uma constante positivas c para o qual:

$$0 < f(n) \le c \times g(n)$$

Uma função f(n) é dita como sendo O(g(n)) se existe uma constante positivas c para o qual:

$$0 < f(n) \le c \times g(n)$$


```
void funcao(int *v, int n){
int soma = 0;
for (int i=0; i<(n/2); i++)
for (int j=0; j<(n/4); j++)
soma += i + j;
return soma;
}</pre>
```

```
void funcao(int *v, int n){
int soma = 0;
for (int i=0; i<(n/2); i++)
for (int j=0; j<(n/4); j++)
soma += i + j;
return soma;
}</pre>
```

```
void funcao(int *v, int n){
int soma = 0;
for (int i=0; i<(n/2); i++)
for (int j=0; j<(n/4); j++)
soma += i + j;
return soma;
}</pre>
```

Verifique se o algoritmo é $O(n^2)$.

```
1 void funcao(int *v, int n){
2    int soma = 0;
3    for (int i=0; i<(n/2); i++)
4        for (int j=0; j<(n/4); j++)
5        soma += i + j;
6    return soma;
7 }</pre>
```

L2) 1

```
1 void funcao(int *v, int n){
2   int soma = 0;
3   for (int i=0; i<(n/2); i++)
4   for (int j=0; j<(n/4); j++)
5    soma += i + j;
6   return soma;
7 }</pre>
```

```
L2) 1 L3) 1 + n/2
```

```
1 void funcao(int *v, int n){
2    int soma = 0;
3    for (int i=0; i <(n/2); i++)
4    for (int j=0; j <(n/4); j++)
5    soma += i + j;
6    return soma;
7 }</pre>
```

```
L2) 1
L3) 1 + n/2
L4) 1 + (n/4)(n/2)
```

```
void funcao(int *v, int n){
int soma = 0;
for (int i=0; i<(n/2); i++)
for (int j=0; j<(n/4); j++)
soma += i + j;
return soma;
}</pre>
```

```
L2) 1
L3) 1 + n/2
L4) 1 + (n/4)(n/2)
L5) 3(n/4)(n/2)
```

```
void funcao(int *v, int n){
int soma = 0;
for (int i=0; i<(n/2); i++)
for (int j=0; j<(n/4); j++)
soma += i + j;
return soma;
}</pre>
```

```
L2) 1
L3) 1 + n/2
L4) 1 + (n/4)(n/2)
L5) 3(n/4)(n/2)
L6) 1
```

```
1 void funcao(int *v, int n){
2    int soma = 0;
3    for (int i=0; i<(n/2); i++)
4    for (int j=0; j<(n/4); j++)
5        soma += i + j;
6    return soma;
7 }</pre>
```

L2) 1
L3)
$$1 + n/2$$

L4) $1 + (n/4)(n/2)$
L5) $3(n/4)(n/2)$
L6) 1

$$T(n) = 4 + \left(\frac{n}{2}\right) + \left(\frac{n}{2}\frac{n}{4}\right) + 3\left(\frac{n}{2}\frac{n}{4}\right)$$

$$T(n) = 4 + \frac{n}{2} + \frac{n^2}{2}$$

$$T(n) = 4 + \frac{n}{2} + \frac{n^2}{2} = \frac{8 + n + n^2}{2}$$
 $0 < f(n) \le c \times g(n)$
 $0 < \frac{8 + n + n^2}{2} \le c_1 \times n^2$

A primeira inequação sempre será válida, basta então avaliar a segunda inequação:

$$T(n) = 4 + \frac{n}{2} + \frac{n^2}{2} = \frac{8 + n + n^2}{2}$$
 $0 < f(n) \le c \times g(n)$
 $0 < \frac{8 + n + n^2}{2} \le c_1 \times n^2$

A primeira inequação sempre será válida, basta então avaliar a segunda inequação:

$$T(n) = 4 + \frac{n}{2} + \frac{n^2}{2} = \frac{8 + n + n^2}{2}$$
 $0 < f(n) \le c \times g(n)$
 $0 < \frac{8 + n + n^2}{2} \le c_1 \times n^2$

A primeira inequação sempre será válida, basta então avaliar a segunda inequação:

$$\frac{n^2 + n + 8}{2} \le c_1 n^2$$

$$n^2 + n + 8 \le 2c_1 n^2$$

$$n^2 (1 - 2c_1) + n + 8 \le 0$$

$$T(n) = 4 + \frac{n}{2} + \frac{n^2}{2} = \frac{8 + n + n^2}{2}$$
 $0 < f(n) \le c \times g(n)$
 $0 < \frac{8 + n + n^2}{2} \le c_1 \times n^2$

A primeira inequação sempre será válida, basta então avaliar a segunda inequação:

$$\frac{n^2 + n + 8}{2} \le c_1 n^2$$

$$n^2 + n + 8 \le 2c_1 n^2$$

$$n^2 (1 - 2c_1) + n + 8 \le 0$$

Os valores de c_1 indicarão em quais condições n permitirá que a inequação será verdadeira.

Escolha de c_1 :

Uma função f(n) é dita como sendo $\Omega(g(n))$ se existe uma constante positivas c para o qual:

$$0 < c \times g(n) \leq f(n)$$

Uma função f(n) é dita como sendo $\Omega(g(n))$ se existe uma constante positivas c para o qual:

$$0 < c \times g(n) \leq f(n)$$

Uma função f(n) é dita como sendo $\Omega(g(n))$ se existe uma constante positivas c para o qual:

$$0 < c \times g(n) \leq f(n)$$

Uma função f(n) é dita como sendo $\Omega(g(n))$ se existe uma constante positivas c para o qual:

$$0 < c \times g(n) \leq f(n)$$

Uma função f(n) é dita como sendo $\Omega(g(n))$ se existe uma constante positivas c para o qual:

$$0 < c \times g(n) \leq f(n)$$

Mostre que:

$$2n^2 - 20n - 50 \text{ \'e } \Omega(2n)$$

Resolvendo a inequação da notação Ω:

$$c_1 \times (2n) \le 2n^2 - 20n - 50$$
 (1)

$$2n^2 - 20n - 50 - 2c_1n \ge 0 (2)$$

$$2n^2 - n(20 + 2c_1) - 50 \ge 0 \tag{3}$$

$$n^2 - n(10 + c_1) - 25 \ge 0 (4)$$

portanto, precisamos avaliar a concavidade desta curva. Escolher um valor de c_1 no qual a inequação 4 seja válida para qualquer valor de $n \ge n_0$.

Ao analisar a inequação:

$$n^2 - n(10 + c_1) - 25 \ge 0$$

Percebemos que se comporta como uma inequação do segundo grau no qual o produto e a soma das raízes são respectivamente $(10 + c_1)$ e (-25). Graficamente:

Ao analisar a inequação:

$$n^2 - n(10 + c_1) - 25 \ge 0$$

Percebemos que se comporta como uma inequação do segundo grau no qual o produto e a soma das raízes são respectivamente $(10 + c_1)$ e (-25). Graficamente:

Ao analisar a inequação:

$$n^2 - n(10 + c_1) - 25 \ge 0$$

Percebemos que se comporta como uma inequação do segundo grau no qual o produto e a soma das raízes são respectivamente $(10 + c_1)$ e (-25). Graficamente:

$$n_1 + n_2 = 10 + c_1$$
$$n_1 n_2 = -25$$

Escolhendo $c_1 = 2$, observamos que $n_1 \approx -13.81$ e $n_2 \approx -1.81$.

Ao analisar a inequação:

$$n^2 - n(10 + c_1) - 25 \ge 0$$

Percebemos que se comporta como uma inequação do segundo grau no qual o produto e a soma das raízes são respectivamente $(10 + c_1)$ e (-25). Graficamente:

$$n_1 + n_2 = 10 + c_1$$
$$n_1 n_2 = -25$$

Escolhendo $c_1 = 2$, observamos que $n_1 \approx -13.81$ e $n_2 \approx -1.81$.

Ou seja:

A partir de $n_0 = 2$, escolhendo $c_1 = 2$, a inequação será sempre válida.

Uma função f(n) é dita como sendo $\Theta(g(n))$ se existem constantes positivas c_1 , c_2 e n_0 para os quais:

$$0 < c_1 g(n) \leq f(n) \leq c_2 g(n)$$

Uma função f(n) é dita como sendo $\Theta(g(n))$ se existem constantes positivas c_1 , c_2 e n_0 para os quais:

$$0 < c_1 g(n) \leq f(n) \leq c_2 g(n)$$

Uma função f(n) é dita como sendo $\Theta(g(n))$ se existem constantes positivas c_1 , c_2 e n_0 para os quais:

$$0 < c_1 g(n) \leq f(n) \leq c_2 g(n)$$

Uma função f(n) é dita como sendo $\Theta(g(n))$ se existem constantes positivas c_1 , c_2 e n_0 para os quais:

$$0 < c_1 g(n) \le f(n) \le c_2 g(n)$$

Uma função f(n) é dita como sendo $\Theta(g(n))$ se existem constantes positivas c_1 , c_2 e n_0 para os quais:

$$0 < c_1 g(n) \le f(n) \le c_2 g(n)$$

Verifique se:

$$\lg n \in \Theta(\log_{10} n)$$

Para ser $\Theta(\log_{10} n)$, a seguinte inequação deverá ser válida para um c_1 e c_2 positivos escolhidos arbitrariamente.

$$0 < c_1 \log_{10} n \le \lg n \le c_2 g(n) \log_{10}$$

Devemos então resolver separadamente estas inequações sabendo que:

$$\log_{10} n = \frac{\lg n}{\lg 10}$$

¹ Verifique esta afirmação

¹ Verifique esta afirmação

Parte 1:

$$c_1 \log_{10} n \leq \lg n$$

$$c_1 \frac{\lg n}{\lg 10} \le \lg n$$
$$c_1 \le \lg 10$$

Parte 1:

$$c_1 \log_{10} n \leq \lg n$$

$$\lg n \le c_2 \log_{10} n$$

$$c_1 \frac{\lg n}{\lg 10} \le \lg n$$
$$c_1 \le \lg 10$$

$$\lg n \le c_2 \frac{\lg n}{\lg 10}$$

$$c_2 \ge \lg 10$$

Parte 1:

Parte 2:

$$c_1 \log_{10} n \leq \lg n$$

$$\lg n \le c_2 \log_{10} n$$

$$c_1 \frac{\lg n}{\lg 10} \le \lg n$$
$$c_1 < \lg 10$$

$$\lg n \le c_2 \frac{\lg n}{\lg 10}$$
$$c_2 \ge \lg 10$$

Ou seja, podemos escolher os valores:

$$c_1 = 2 \le \lg 10$$

 $c_2 = 3 \ge \lg 10$

¹ Verifique esta afirmação

Parte 1:

Parte 2:

$$c_1 \log_{10} n \leq \lg n$$

$$\lg n \le c_2 \log_{10} n$$

$$c_1 \frac{\lg n}{\lg 10} \le \lg n$$
$$c_1 \le \lg 10$$

$$\lg n \le c_2 \frac{\lg n}{\lg 10}$$

$$c_2 > \lg 10$$

Ou seja, podemos escolher os valores:

$$c_1 = 2 \le \lg 10$$

 $c_2 = 3 \ge \lg 10$

Deste modo, a partir de $n_0 > 0^1$:

$$0 < c_1 \log_{10} n \le \lg n \le c_2 \log_{10} n$$

¹ Verifique esta afirmação

Ordem de Complexidade

Complexidade Descrição simplificada

Ordem de Complexidade

Complexidade	Descrição simplificada
O(1)	Complexidade Constante

Ordem de Complexidade

Complexidade	Descrição simplificada
<i>O</i> (1)	Complexidade Constante
O(log(n))	Complexidade logarítmica

Complexidade	Descrição simplificada
<i>O</i> (1)	Complexidade Constante
O(log(n))	Complexidade logarítmica
<i>O</i> (<i>n</i>)	Complexidade Linear

Complexidade	Descrição simplificada
<i>O</i> (1)	Complexidade Constante
O(log(n))	Complexidade logarítmica
<i>O</i> (<i>n</i>)	Complexidade Linear
$O(n \log(n))$	Complexidade Log Linear

Complexidade	Descrição simplificada
<i>O</i> (1)	Complexidade Constante
O(log(n))	Complexidade logarítmica
<i>O</i> (<i>n</i>)	Complexidade Linear
$O(n \log(n))$	Complexidade Log Linear
$O(n^2)$	Complexidade Quadrática

Complexidade	Descrição simplificada
<i>O</i> (1)	Complexidade Constante
O(log(n))	Complexidade logarítmica
<i>O</i> (<i>n</i>)	Complexidade Linear
$O(n \log(n))$	Complexidade Log Linear
$O(n^2)$	Complexidade Quadrática
$O(n^3)$	Complexidade Cúbica

Complexidade	Descrição simplificada
O(1)	Complexidade Constante
O(log(n))	Complexidade logarítmica
<i>O</i> (<i>n</i>)	Complexidade Linear
$O(n \log(n))$	Complexidade Log Linear
$O(n^2)$	Complexidade Quadrática
$O(n^3)$	Complexidade Cúbica
O(2 ⁿ)	Complexidade Exponencial

Complexidade	Descrição simplificada
O(1)	Complexidade Constante
O(log(n))	Complexidade logarítmica
<i>O</i> (<i>n</i>)	Complexidade Linear
$O(n \log(n))$	Complexidade Log Linear
$O(n^2)$	Complexidade Quadrática
$O(n^3)$	Complexidade Cúbica
$O(2^n)$	Complexidade Exponencial
<i>O</i> (<i>n</i> !)	Complexidade Fatorial

 Ocorre quando a complexidade do algoritmo independe do tamanho do problema (n);

- Ocorre quando a complexidade do algoritmo independe do tamanho do problema (n);
- As instruções são executadas em uma quantidade fixa de vezes.

- Ocorre quando a complexidade do algoritmo independe do tamanho do problema (n);
- As instruções são executadas em uma quantidade fixa de vezes.

Exemplo:

```
int funcConstante(int *v, int n){
    if(V[0] > V[n-1]){
        return V[n-1];
    }else{
        return V[0];
    }
}
```

 Ocorre quando um problema é subdividido em em subproblemas menores.

- Ocorre quando um problema é subdividido em em subproblemas menores.
- A solução deve ser apenas uma das soluções menores.

- Ocorre quando um problema é subdividido em em subproblemas menores.
- A solução deve ser apenas uma das soluções menores.

Exemplo:

```
bool funcLog(int v[], int a, int b, int x)

if (a > b)
    return false;

int c = (a + b) / 2;

if (v[c] == x)
    return true;

else if (v[c] > x)
    return funcLog(v, a, c-1, x);

else
    return funcLog(v, c+1, b, x);

}
```

 Ocorre quando a complexidade do algoritmo é proporcional ao tamanho do problema;

- Ocorre quando a complexidade do algoritmo é proporcional ao tamanho do problema;
- O tempo computacional é um múltiplo de n podendo ser acrescido de alguma constante.

- Ocorre quando a complexidade do algoritmo é proporcional ao tamanho do problema;
- O tempo computacional é um múltiplo de n podendo ser acrescido de alguma constante.

Exemplo:

```
int funcLinear(int *v, int n){
   int maior = v[0];
   int cont = 0;

while(cont < n){
      if(v[cont] > maior){
      maior = v[i];
   }
   cont = cont + 1;
}
return maior;
}
```

· Ocorre quando o problema é subdividido em subproblemas;

- Ocorre quando o problema é subdividido em subproblemas;
- A solução será a união das contribuiçoes das resoluções dos subproblemas.

- Ocorre quando o problema é subdividido em subproblemas;
- A solução será a união das contribuiçoes das resoluções dos subproblemas.

Exemplo:

```
void funcLogLinear (int inicio, int fim){
if ( inicio < fim ){
    int meio = ( inicio + fim )/2;
    funcLogLinear ( inicio , meio );
    funcLogLinear ( meio +1 , fim );
    unir ( inicio , meio , fim );
}</pre>
```

 Geralmente está associado a dois laços que são proporcionais ao tamanho do problema.

- Geralmente está associado a dois laços que são proporcionais ao tamanho do problema.
- Qualquer uma outra complexidade anterior pode ser adicionada sem mudança na complexidade quadrática.

- Geralmente está associado a dois laços que são proporcionais ao tamanho do problema.
- Qualquer uma outra complexidade anterior pode ser adicionada sem mudança na complexidade quadrática.

Exemplo:

 Geralmente está associado a três laços que são proporcionais ao tamanho do problema.

- Geralmente está associado a três laços que são proporcionais ao tamanho do problema.
- Qualquer uma outra complexidade anterior pode ser adicionada sem mudança na complexidade Cúbica.

- Geralmente está associado a três laços que são proporcionais ao tamanho do problema.
- Qualquer uma outra complexidade anterior pode ser adicionada sem mudança na complexidade Cúbica.

Exemplo:

```
void funcCubica (int *v, int n){
int aux;

for(int i=0; i<n; i++)

for(int j=i+1; j<n; j++)

for(int k=j+1; j<n; j++)

aux = v[i] + v[j] + v[k];

printf("%d", aux);

}</pre>
```

Complexidade Exponencial (2^n)

Complexidade Exponencial (2^n)

 Geralmente está associado a um problema que a resolução é feita por força-bruta.

Complexidade Exponencial (2^n)

- Geralmente está associado a um problema que a resolução é feita por força-bruta.
- Qualquer uma outra complexidade anterior pode ser adicionada sem mudança na complexidade Exponencial.

Complexidade Exponencial (2ⁿ)

- Geralmente está associado a um problema que a resolução é feita por força-bruta.
- Qualquer uma outra complexidade anterior pode ser adicionada sem mudança na complexidade Exponencial.

Exemplo:

```
int funcExp(int n){
    int aux;
    if (n < 2)
        return n;
    else
        return funcExp(n-1) + funcExp(n-2);
}</pre>
```

Complexidade Exponencial (2ⁿ)

- Geralmente está associado a um problema que a resolução é feita por força-bruta.
- Qualquer uma outra complexidade anterior pode ser adicionada sem mudança na complexidade Exponencial.

Exemplo:

```
int funcExp(int n){
    int aux;
    if (n < 2)
        return n;
    else
        return funcExp(n-1) + funcExp(n-2);
}</pre>
```

Exercício: Prove se é verdadeiro ou falso:

$$f(n) = 3^n \in O(2^n)$$

Complexidade Fatorial (n!**)**

Complexidade Fatorial (*n*!**)**

• Complexidade para algoritmo de força-bruta;

Complexidade Fatorial (*n*!**)**

- Complexidade para algoritmo de força-bruta;
- Problemas como caixeiro-viajante e criptografia podem se valer desta complexidade.

Considere p algoritmo abaixo:

Considere p algoritmo abaixo:

Como avaliar esse algoritmo?

Considere p algoritmo abaixo:

```
#define N 100000
int busca(int *A, int v){
    for(int x = 0; x<N; x++){
        if(A[x] == v)
            return x;
}
return -1;
}</pre>
```

- Como avaliar esse algoritmo?
- O desempenho depende apenas do tamanho de N?

Considere p algoritmo abaixo:

```
#define N 100000
int busca(int *A, int v){
    for(int x = 0; x<N; x++){
        if(A[x] == v)
            return x;
}
return -1;
}</pre>
```

- Como avaliar esse algoritmo?
- O desempenho depende apenas do tamanho de N?
- O desempenho é modificado pelos valores de entrada?

• **Pior caso** é a função que relaciona o tamanho da entrada *n* com o maior tempo possível para execução deste problema.

- Pior caso é a função que relaciona o tamanho da entrada n com o maior tempo possível para execução deste problema.
- Melhor caso é a função que relaciona o tamanho da entrada n com o menor tempo possível para execução deste problema.

- Pior caso é a função que relaciona o tamanho da entrada n com o maior tempo possível para execução deste problema.
- Melhor caso é a função que relaciona o tamanho da entrada n com o menor tempo possível para execução deste problema.
- Caso médio é a função que relaciona o tamanho da entrada n com o tempo médio para execução deste problema. Para isso, é considerado uma distribuição de probabilidade das possíveis entradas.

Exemplo:

Qual o pior, melhor e o caso médio para a execução desse algoritmo? Quais suas complexidades?

```
#define N 100000
int busca(int *A, int v){
for(int x = 0; x<N; x++){
    if (A[x] == v)
        return x;
}
return -1;
}</pre>
```

Considere:

Considere:

• $0 \le p \le 1$ é a probabilidade de v estar no vetor A;

Considere:

- $0 \le p \le 1$ é a probabilidade de ν estar no vetor A;
- p/n é a probabilidade de v estar no vetor A na posição x.

Considere:

- $0 \le p \le 1$ é a probabilidade de ν estar no vetor A;
- p/n é a probabilidade de v estar no vetor A na posição x.

Desta forma, podemos dizer que:

Considere:

- $0 \le p \le 1$ é a probabilidade de ν estar no vetor A;
- p/n é a probabilidade de v estar no vetor A na posição x.

Desta forma, podemos dizer que:

O custo de encontrar um elemento é:

$$1 \times \frac{p}{n} + 2 \times \frac{p}{n} + \dots n \times \frac{p}{n} = \sum_{i=1}^{n} i \times \frac{p}{n}$$
 (5)

Considere:

- $0 \le p \le 1$ é a probabilidade de v estar no vetor A;
- p/n é a probabilidade de v estar no vetor A na posição x.

Desta forma, podemos dizer que:

O custo de encontrar um elemento é:

$$1 \times \frac{p}{n} + 2 \times \frac{p}{n} + \dots n \times \frac{p}{n} = \sum_{i=1}^{n} i \times \frac{p}{n}$$
 (5)

Considere:

- $0 \le p \le 1$ é a probabilidade de ν estar no vetor A;
- p/n é a probabilidade de v estar no vetor A na posição x.

Desta forma, podemos dizer que:

O custo de encontrar um elemento é:

$$1 \times \frac{p}{n} + 2 \times \frac{p}{n} + \dots n \times \frac{p}{n} = \sum_{i=1}^{n} i \times \frac{p}{n}$$
 (5)

O custo do elemento n\u00e3o ser encontrado \u00e9:

$$(1-p)(n+1) \tag{6}$$

Somando 6 com 5, temos:

$$S_{medio} = (1 - p)(n + 1) + \sum_{i=1}^{n} i * \frac{p}{n}$$

$$= (1 - p)(n + 1) + \frac{p}{n} \sum_{i=1}^{n} i$$

$$= (1 - p)(n + 1) + \frac{p}{n} \frac{n(n + 1)}{2}$$

$$= \frac{(n + 1)(2 - p)}{2}$$

Somando 6 com 5, temos:

$$S_{medio} = (1 - p)(n + 1) + \sum_{i=1}^{n} i * \frac{p}{n}$$

$$= (1 - p)(n + 1) + \frac{p}{n} \sum_{i=1}^{n} i$$

$$= (1 - p)(n + 1) + \frac{p}{n} \frac{n(n + 1)}{2}$$

$$= \frac{(n + 1)(2 - p)}{2}$$

• Considere p=1 (busca bem sucedida), então o custo médio será de $\frac{n+1}{2}$.

Somando 6 com 5, temos:

$$S_{medio} = (1 - p)(n + 1) + \sum_{i=1}^{n} i * \frac{p}{n}$$

$$= (1 - p)(n + 1) + \frac{p}{n} \sum_{i=1}^{n} i$$

$$= (1 - p)(n + 1) + \frac{p}{n} \frac{n(n + 1)}{2}$$

$$= \frac{(n + 1)(2 - p)}{2}$$

- Considere p = 1 (busca bem sucedida), então o custo médio será de $\frac{n+1}{2}$.
- Considere p = 0 (busca mal sucedida), então o custo médio será de (n+1).

Pontos importantes:

 A complexidade média é de mais difícil obtenção: Dificuldade maior na análise.

- A complexidade média é de mais difícil obtenção: Dificuldade maior na análise.
- A complexidade no pior caso é tão importante quanto por apresentar o pior cenário possível.

- A complexidade média é de mais difícil obtenção: Dificuldade maior na análise.
- A complexidade no pior caso é tão importante quanto por apresentar o pior cenário possível.
- A complexidade no melhor caso não é tão relevante para análise de algoritmos.

- A complexidade média é de mais difícil obtenção: Dificuldade maior na análise.
- A complexidade no pior caso é tão importante quanto por apresentar o pior cenário possível.
- A complexidade no melhor caso n\u00e3o \u00e9 t\u00e3o relevante para an\u00e1lise de algoritmos.
- A complexidade do caso médio não é a média entre o pior caso e o melhor caso.

Pior e Caso médio das estruturas básicas:

Estrutura	n ⁰ elem	Busca	Inserção	Remoção
Array	<i>O</i> (1)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
Pilha	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(1)	O(1)
Fila	O(n)	<i>O</i> (<i>n</i>)	<i>O</i> (1)	O(1)

Algoritmo Pior Caso Caso Médio Melhor Caso

Algoritmo	Pior Caso	Caso Médio	Melhor Caso
Bubble Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)

Algoritmo	Pior Caso	Caso Médio	Melhor Caso
Bubble Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Insertion Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)

Algoritmo	Pior Caso	Caso Médio	Melhor Caso
Bubble Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Insertion Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$

Algoritmo	Pior Caso	Caso Médio	Melhor Caso
Bubble Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Insertion Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$

Algoritmo	Pior Caso	Caso Médio	Melhor Caso
Bubble Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Insertion Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Heap Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$

Algoritmo	Pior Caso	Caso Médio	Melhor Caso
Bubble Sort	O(n ²)	O(n ²)	<i>O</i> (<i>n</i>)
Insertion Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Heap Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Quick Sort	$O(n^2)$	$O(n \log n)$	$O(n \log n)$

Algoritmo	Pior Caso	Caso Médio	Melhor Caso
Bubble Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Insertion Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Heap Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Quick Sort	$O(n^2)$	$O(n \log n)$	$O(n \log n)$
Tree Sort	$O(n^2)$	$O(n \log n)$	$O(n \log n)$

Algoritmo	Pior Caso	Caso Médio	Melhor Caso
Bubble Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Insertion Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Heap Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Quick Sort	$O(n^2)$	$O(n \log n)$	$O(n \log n)$
Tree Sort	$O(n^2)$	$O(n \log n)$	$O(n \log n)$
Counting Sort	O(n+k)	O(n+k)	O(n+k)

Algoritmo	Pior Caso	Caso Médio	Melhor Caso
Bubble Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Insertion Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Heap Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Quick Sort	$O(n^2)$	$O(n \log n)$	$O(n \log n)$
Tree Sort	$O(n^2)$	$O(n \log n)$	$O(n \log n)$
Counting Sort	O(n+k)	O(n+k)	O(n+k)
Bucket Sort	$O(n^2)$	$O(n^2)$	O(n+k)

Algoritmo	Pior Caso	Caso Médio	Melhor Caso
Bubble Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Insertion Sort	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Heap Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Quick Sort	$O(n^2)$	$O(n \log n)$	$O(n \log n)$
Tree Sort	$O(n^2)$	$O(n \log n)$	$O(n \log n)$
Counting Sort	O(n+k)	O(n+k)	O(n+k)
Bucket Sort	$O(n^2)$	$O(n^2)$	O(n+k)
Radix Sort	O(nk)	O(nk)	O(nk)