Opening the Black Box of Interaction in Visualization

Hans-Jörg Schulz¹, Tatiana v. Landesberger², Dominikus Baur³

VIS Tutorial 2014

- 1. Fraunhofer IGD, Rostock, Germany
- 2. TU Darmstadt, Darmstadt, Germany
- 3. Dominikus Baur Interfacery

PART I: INTERACTION ACTIVITIES

Speaker: Tatiana von Landesberger

Part 1: Interaction activities

Activities: What the user does to trigger a change in the computer (*Action*)

Metaphor: What the user thinks the computer is doing and vice versa (*Understanding*)

Architecture: What the computer actually does (*Reaction*)

Part 1: Interaction activities

Activities: What the user does to trigger a change in the computer (*Action*)

Metaphor: What the user thinks the computer is doing and vice versa (*Understanding*)

Architecture: What the computer actually does (*Reaction*)

Overview of Part 1

 6W's of User's Interaction and interaction loop

Systematization of interaction

- Human (Ws) and System (Vis)
- Vis/VA-focused systematizations:
 - 1. Visualization, 2. Visual Data Mining
 - 3. Reasoning
- Third view: Interaction Support

Motivation

- •System developers:
 - What to include in my system
- •Researchers:
 - What is there and what is missing
- •Users:
 - What to expect from the system
- •Developers, researchers,...:
 - Canonicum for evaluation and system testing

Motivation

Make it easier for you...

Systematization of perspectives ...

What is interaction from user's point of view?

USER'S ACTION AND THE INTERACTION LOOP

WHY do we interact?
What is the goal?

WHAT is the purpose?

What is the intended effect of interaction?

HOW do we interact?

Which means do we use/have at disposal?

WHO interacts?

Who are the users interacting? What is their background?

WHEN do we interact?

When is interaction needed?

WHERE is interaction used?

Where users interact?

Effects and means

Context of interaction

[adapted & merged Roth13, Jansen et al 13]

WHY do we interact?

What is the goal?

WHAT is the purpose?

What is the intended effect of interaction?

HOW do we interact?

Which means do we use/have at disposal?

WHO interacts?

Who are the users interacting? What is their background?

WHEN do we interact?

When is interaction needed?

WHERE is interaction used?

Where users interact?

Effects and means

Context of interaction

[adapted & merged Roth13, Jansen et al 13]

WHY do we interact?

What is the goal?

WHAT is the purpose?

What is the intended effect of interaction?

HOW do we interact?

Which means do we use/have at disposal?

WHO interacts?

Who are the users interacting? What is their background?

WHEN do we interact?

When is interaction needed?

WHERE is interaction used?

Where users interact?

Effects and means

Context of interaction

[adapted & merged Roth13, Jansen et al 13]

WHY do we interact?

What is the goal?

WHAT is the purpose?

What is the intended effect of interaction?

HOW do we interact?

Which means do we use/have at disposal?

WHO interacts?

Who are the users interacting? What is their background?

WHEN do we interact?

When is interaction needed?

WHERE is interaction used?

Where users interact?

Effects and means

Context of interaction

[adapted & merged from Roth13, Jansen et al 13]

Hierarchic View on Interaction

WHY do we interact?

WHAT is the purpose?

HOW do we interact?

Norman's Model of Interaction

8. Take further action

(compare outcome with goal)

EXECUTION

- Establish a goal (Why?)
- 2. Form intention/identify task
 (What?)

3. Specify action sequence (How?)

Execution/
Evaluation loop

4. Execute action

EVALUATION

- 7. Evaluate the outcome
 - (Why?)
- 6. Interpret the system's state (What?)
- 5. Perceive the state of the system (How?)

[Norman88]

Preliminary Summary

- 1. 6Ws of interaction:
 - 1. Effects+means: Why?, What? How?
 - 2. Context: Who? Where? When?
- 2. Hierarchic nature of interaction
- 3. Execution/Evaluation loop

Which interactions exist?

INTERACTION SYSTEMATIZATION

TWO VIEWS ON INTERACTION

What is interaction \rightarrow Systematization

- 1. 6Ws of interaction:
 - 1. Effects+means: Why?, What? How?
 - 2. Context: Who? Where? When?
- 2. Hierarchic nature of interaction
- 3. Execution/Evaluation loop

What is interaction > Systematization

- 1. 6Ws of interaction:
 - 1. Effects+means: Why?, What? How?
 - 2. Context: Who? Where? When?
- 2. Hierarchic nature of interaction
- 3. Execution/Perception loop

What is interaction > Systematization

- 1. 6Ws of interaction:
 - 1. Effects+means: Why?, What? How?
 - 2. Context: Who? Where? When?
- 2. Hierarchic nature of interaction
- 3. Execution/Perception loop

Visualization side?

Human ↔ Visualization

WHY

Subjective perception

Visualization changes

WHAT

What should be modified in the view (goal/intention)

What in the visualization is modified

HOW

How it should be modified (which action)

How this is done (software/hardware)

[adjusted Roth13]

Human ↔ Visualization

Human ↔ Visual Analytics

Information Visualization Model

[Card et al.99]

Information Visualization Model

Data

Visual

[Card et al.99]

Visualization -> Visual Analytics

Simple Information Visualization Model

[Keim et al. 2008]

Visualization → Visual Analytics

Simple Data Mining Model

Visual Analytics Model

3 Ways of Visual Analytics

Way 1: InfoVis

Feedback loop

3 Ways of Visual Analytics

Way 2: Visual Data Mining

3 Ways of Visual Analytics

Way 3: Provenance/Sensemaking/Reasoning

Interaction Need in Visual Analytics Support all 3 ways via visual means

Systematization of Interaction

WHAT

HOW

Systematization of Interaction

WHAT

HOW

Levels of Systematization: Example

WHY

[Yi et al 07]

Select, Explore, Reconfigure, Encode, Abstract/Elaborate, Filter, Connect

WHAT

HOW

Levels of Systematization: Problem of ambiguous terms

Pipeline-Focused Interaction Systematization

Pipeline-Focused Interaction Systematization

Unified VA Interaction Systematization

[von Landesberger et al. 2014]

Feedback loop

3 Ways of Visual Analytics: InfoVis (Way 1)

INFOVIS - FOCUSED **SYSTEMATIZATIONS**

1. Visualization Systematizations

1. Visualization Systematization

[Card et al 99]

- Navigation
 - Pan, zoom, scroll,...

Navigation in visible space

Source: maps.google.com

NAVIGATE: Paris → Sydney

- Navigation
 - Pan, zoom, scroll,...

Navigation in visible space

Source: maps.google.com

Problem: Cumbersome, time consuming, "lost in space"

InfoVis Interaction: View Transformation Navigation

Topology-Aware Navigation in Large Networks

[Moskovich et al.09]

- Navigation
 - Pan, zoom, scroll,...
- Highlighting
 - Hover
 - Select+highlight
 - Brushing and linking
 - Magic lenses

tiple views on the screen

Highlighting important information

- Navigation
 - Pan, zoom, scroll,...
- Highlighting
 - Hover
 - Select+highlight
 - Brushing and linking
 - Magic lenses
- View reconfiguration
 - (Re-)arrange multiple views on the screen
 - Open/close new views

Configuring multiple views

[Card et al 99]

- Visualization type
 - Type of visualization
 - Scatterplot/matrix
 - Node-link/matrix
 - Type of mapping
 - E.g. color/size/form

- Visualization type
 - Type of visualization
 - Type of mapping
- Mapping parameter
 - Data ←→ mapping
 - E.g. color scheme

- Visualization type
 - Type of visualization
 - Type of mapping
- Mapping parameter
 - Data ←→ mapping
 - E.g. color scheme

- Visualization type
 - Type of visualization
 - Type of mapping
- Mapping parameter
 - Data to be mapped
 - E.g. color scheme
- Further specifics
 - E.g. type of layout, sorting

[van den Elzen & van Wijk 13]

InfoVis Interaction: Data Manipulation

InfoVis Interaction: Data Manipulation

- Data navigation
 - drill down, expand, filter, ...

InfoVis Interaction: Data Manipulation

- Data navigation
 - drill down, expand, filter, ...
 - Top down
 - Filter, details on demand
 - Bottom up
 - Expand on demand
 - Middle out
 - Start in the middle

 [von Landesberger et al 11]

InfoVis Interaction: Data Manipulation

Data navigation

- Search, Show Context, Expand on Demand
- drill down, expand, filter, ...
- Top down
 - Filter, details on demand
- Bottom up
 - Expand on demand
- Middle out
 - Start in the middle

[van Ham & Perer 09]

InfoVis Interaction:

Data selection for visualization

Source: Gapminder.org

InfoVis Interaction: Data Manipulation

- Data navigation
 - drill down, expand, filter, ...
- Data transformation
 - Normalization (lin, log, exp,..)
 - Aggregation (manual, according to data,...)
 - •

InfoVis Interaction: Data Manipulation

- Data navigation
 - drill down, expand, filter, ...
- Data transformation
 - Normalization (e.g. lin, log)
 - Aggregation
 - Manual
 - According to data attributes
 - According to data structure (e.g. communities)
 - Etc.

InfoVis Interaction: Data Manipulation

- Data navigation
 - drill down, expand, filter, ...
- Data transformation
 - Normalization (lin, log, exp,..)
 - Aggregation (manual, according to data,...)
- Data editing
 - Change values
 - Create data
 - Individual values
 - Whole datasets

InfoVis Interaction: Data editing

PC/DC

InfoVis Interaction: Data creation

On the Highway to Data

[Bremm et al 2012]

Summary: InfoVis Interaction

#Words	#Sentence
50	9
100	20
80	7

Way 2: Visual data mining

VISUAL DATA MINING INTERACTION

VA Interaction Systematization

Visual Data Mining

 Computationally enhanced Visualization (V++)

Visually enhanced Mining (M++)

Integrated Visualization and Mining (VM)

[Bertini & Lalanne09]

Visual Data Mining Interaction

Manipulating and tuning:

Vis: DM:

changing representation changing model parameters parameters

Changing the scheme:

Vis: DM:

changing the visual mapping changing the data model or visual representation

[Bertini & Lalanne09]

Visual Data Mining Interaction

Manipulating and tuning:

Vis: DM:

changing representation parameters

changing model parameters

For example: changing color scheme

Visual Data Mining Interaction

Changing the scheme :

Vis:

changing the visual mapping or visual representation

For example: changing node-link diagram to adjacency matrix

DM:

changing the data model

For example motif search vs clustering

Visual Data Mining Interaction: Motif search and Visualization

[von Landesberger et al 09]

Way 3: Feedback loop

SENSEMAKING, PROVENANCE, REASONING

VA Interaction Systematization

Reasoning/Provenance Systematization

[Heer & Shneiderman12]

Reasoning/Provenance Systematization

Visualization

Interstitial pneumo... [Alveolar hypoxemic... [Interstitial pneum. Intrapleural instil... Addition of rituxim... Methotrexate presun Early cardiotoxicit... [Elevation of serum... Serum CA 125 as a p.... Type III procollag. Pulmonary toxicity of e... Cardiotoxicity of e... [Predictive signifi... Serum carnitine lev Serum CA 125 is of Pirarubicin-induced Severe lung toxicit. Serum CA 125 levels... Radiotherapy does n...

Visual history & annotation

Visualization

Visual history & annotaation

Visualization

Visual history & annotation

Systematization of Interaction

Systematization of Interaction - according to InfoVis Pipeline

InfoVis-Focused Systematization: Problem of ambiguous terms

SYSTEMATIZATION: INTERACTION SUPPORT

Interaction hierarchy

[Sedic & Parsons 10]

Interaction hierarchy

Time & cognitive burden

[Sedic & Parsons 10]

Three Dimensions:

Supported

- Snap to grid
- Edgelens

"manual"

[Wong & Carpendale03]

Data driven

- Topology-aware navigation
- Data-aware select
- Slow/cumbersome
- High cognitive burden
- Full control

"manual"

Guidance

- Small multiples
- DOI-based exploration
 - Fast
 - No cognitive burden
 - No control

"automatic"

- **Smart**
- Tableau "show me"

- "smart"
- Fast
- No cognitive burden
- No control

"manual"

Slow/cumbersome

High cognitive

burden

Full control

"automatic"

Automatic

NodeTrix

- Fast
- No cognitive burden
- No control

"automatic"

Part 1: Interaction actions

SUMMARY

Summary

THANK YOU

Q&A

Next: Interaction architecture

Hans-Jörg Schulz

Activities: What the user does to trigger a change in the computer (*Action*)

Metaphor: What the user thinks the computer is doing and vice versa (*Understanding*)

Architecture: What the computer actually does (*Reaction*)