Math 110A Homework 2

Jiaping Zeng

1/17/2021

- 1. (a) Which of [0], [1], [2], [3] is equal to $[5^{2000}]$ in $\mathbb{Z}/4\mathbb{Z}$?

 Answer: Since $5 \equiv 1 \pmod{4}$, by repeatedly applying Theorem 2.2 we have $5^{2000} \equiv 1^{2000} = 1 \pmod{4}$. Then by Theorem 2.3 $[5^{2000}] \equiv [1] \pmod{4}$.
 - (b) Which of [0], [1], [2], [3], [4] is equal to $[4^{2001}]$ in $\mathbb{Z}/5\mathbb{Z}$?

 Answer: Since $4 \equiv -1 \pmod{5}$, by repeatedly applying Theorem 2.2 we have $4^{2001} \equiv (-1)^{2001} = -1 \pmod{5}$. Then by Theorem 2.3 $[4^{2001}] \equiv [-1] \equiv [4] \pmod{5}$.
- 2. If $a \in \mathbb{Z}$, prove that a^2 is not congruent to 2 or 3 modulo 4. **Answer**: By Corollary 2.5, a must be congruent to one of $0, 1, 2, 3 \pmod{4}$. Then by Theorem 2.2, a^2 must be congruent to one of $0^2, 1^2, 2^2, 3^2$. Note that $2^2 = 4 \equiv 0 \pmod{4}$ and $3^2 = 9 \equiv 1 \pmod{4}$, therefore a^2 can only be congruent to 0 or 1.
- 3. (a) Prove or disprove: If $a^2 \equiv b^2 \pmod{n}$, then $a \equiv b \pmod{n}$ or $a \equiv -b \pmod{n}$. **Answer**: Disprove by counter example: let a = 2 and b = 4, then $a^2 = 4 \equiv 16 = b^2 \pmod{4}$. However, $2 \not\equiv 4 \pmod{4}$ and $2 \not\equiv -4 \pmod{4}$.
 - (b) Do part (a) when n is prime. **Answer**: By definition, $a^2 \equiv b^2 \pmod{n}$ implies that n divides $a^2 - b^2$. By difference of squares, n divides (a+b)(a-b), then since n is prime it must divide either a+b or a-b by Theorem 1.5. If n divides a+b, $a \equiv -b \pmod{n}$ by definition and if n divides a-b, $a \equiv b \pmod{n}$.
- 4. Fermat's Little Theorem. Let p be a positive prime number.
 - (a) Prove that for any $a, b \in \mathbb{Z}$, $(a+b)^p \equiv a^p + b^p \pmod{p}$. **Answer**: By binomial theorem, $(a+b)^p = \sum_{m=0}^p \binom{p}{m} a^m b^{p-m}$. By exercise 1.3.25, p divides $\binom{p}{k}$ for $1 \le k \le p-1$, i.e. p divides every term in the polynomial except the two with coefficients $\binom{p}{0}$ and $\binom{p}{p}$, which corresponds to the terms $\binom{p}{0}b^p = b^p$ and $\binom{p}{p}a^p = a^p$. Since the other terms are divisible by p, by Theorem 2.3 they are congruent to 0 (mod p). Therefore $(a+b)^p \equiv a^p + b^p$.
 - (b) Prove by induction that $a^p \equiv a \pmod{p}$ for all nonnegative integers a.

Answer: By induction on a.

Base case: a = 1, then clearly $1^p = 1$ is true for any p.

Induction step: suppose $a^p \equiv a \pmod{p}$, we want to show that $(a+1)^p \equiv a+1 \pmod{p}$. This is trivial upon substituting b=1 into part (a).

Therefore $a^p \equiv a \pmod{p}$ for $a \ge 1$.

(c) Prove that if $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$.

Answer: Since $p \nmid a \implies (a,p) = 1$, by Theorem 2.10 a is a unit in $\mathbb{Z}/p\mathbb{Z}$ with an inverse b such that ab = 1. By part (b), $a \equiv a^p \pmod{p}$, so $ab = 1 \implies a^p b \equiv 1 \implies a^{p-1}(ab) \equiv 1 \implies a^{p-1} \equiv 1 \pmod{p}$.

(d) Find the remainder when 3^{1000} is divided by 7, without using a calculator or computer.

Answer: Since $7 \nmid 3$, we know that $3^6 \equiv 1 \pmod{7}$ by part (c). Then $3^{1000} = 3^{6^{166}} \cdot 3^4 \equiv 3^4 = 81 \equiv 4 \pmod{7}$. Therefore the remainder is 4.

- 5. Write out the addition and multiplication tables for
 - (a) $\mathbb{Z}/4\mathbb{Z}$

Answer:

\oplus	[0]	[1]	[2]	[3]	•	[0]	[1]	[2]	[3]
[0]	0	1	2	3	[0]	0	0	0	0
[1]	1	2	3	0	[0] [1] [2] [3]	0	1	2	3
[2]	2	3	0	1	[2]	0	2	0	2
[3]	3	0	1	2	[3]	0	3	2	1

(b) $\mathbb{Z}/7\mathbb{Z}$

Answer:

\oplus	[0]	[1]	[2]	[3]	[4]	[5]	[6]	•	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]	0	1	2	3	4	5	6	[0]	0	0	0	0	0	0	0
[1]	1	2	3	4	5	6	0	[1]	0	1	2	3	4	5	6
[2]	2	3	4	5	6	0	1	[2]	0	2	4	6	1	3	5
[3]	3	4	5	6	0	1	2	[3]	0	3	6	2	5	1	4
[4]	4	5	6	0	1	2	3	[4]	0	4	1	5	2	6	3
[5]	5	6	0	1	2	3	4	[5]	0	5	3	1	6	4	2
[6]	6	0	1	2	3	4	5	[6]	0	6	5	4	3	2	1

6. Solve the equation $x^2 \oplus [3] \odot x \oplus [2] = [0]$ in $\mathbb{Z}/6\mathbb{Z}$.

Answer:

$$\begin{array}{|c|c|c|c|}\hline x & x^2 \oplus [3] \odot x \oplus [2] & \text{is solution?}\\ \hline [0] & [0] \odot [0] \oplus 3 \odot [0] \oplus 2 = [0] + [0] + [2] = [2] & \text{yes}\\ \hline [1] & [1] \odot [1] \oplus 3 \odot [1] \oplus 2 = [1] + [3] + [2] = [0] & \text{no}\\ \hline [2] & [2] \odot [2] \oplus 3 \odot [2] \oplus 2 = [4] + [0] + [2] = [0] & \text{no}\\ \hline [3] & [3] \odot [3] \oplus 3 \odot [3] \oplus 2 = [3] + [3] + [2] = [2] & \text{yes}\\ \hline [4] & [4] \odot [4] \oplus 3 \odot [4] \oplus 2 = [2] + [0] + [2] = [4] & \text{no}\\ \hline [5] & [5] \odot [5] \oplus 3 \odot [5] \oplus 2 = [1] + [3] + [2] = [0] & \text{no} \\ \hline \end{array}$$

Therefore the equation has two solutions: [0] and [2].

7. (a) Find an element [a] in $\mathbb{Z}/7\mathbb{Z}$ such that every nonzero element of $\mathbb{Z}/7\mathbb{Z}$ is a power of [a].

Answer: Let a=3, then we have $[a]=[3], [a]^2=[2], [a]^3=[6], [a]^4=[4], [a]^5=[5], [a]^6=[1]$ as desired.

(b) Do (a) in $\mathbb{Z}/5\mathbb{Z}$.

Answer: Again let a = 3, then we have $[a] = [3], [a]^2 = [4], [a]^3 = [2], [a]^4 = [1]$ as desired.

(c) Can you do (a) in $\mathbb{Z}/6\mathbb{Z}$?

Answer: No. If we pick an odd a then a^n would also be odd and $[a]^n$ would not contain the even classes (since $a^n - 6k$ would be odd for any k); similarly if we pick an even a then all powers would be even and $[a]^n$ would not contain the odd classes.

- 8. Find all units and zero divisors in
 - (a) $\mathbb{Z}/8\mathbb{Z}$

Answer: 1, 3, 5, 7 are units in $\mathbb{Z}/8\mathbb{Z}$ because $3 \cdot 3 = 1$, $5 \cdot 5 = 1$ and $7 \cdot 7 = 1$; 2, 4 are zero divisors because $2 \cdot 4 = 0$.

(b) $\mathbb{Z}/9\mathbb{Z}$

Answer: 1, 2, 4, 5, 7, 8 are units in $\mathbb{Z}/9\mathbb{Z}$ because $2 \cdot 5 = 1$, $4 \cdot 7 = 1$ and $8 \cdot 8 = 1$; 3 is a zero divisor because $3 \cdot 3 = 0$.

(c) $\mathbb{Z}/10\mathbb{Z}$

Answer: 1, 3, 7, 9 are units in $\mathbb{Z}/10\mathbb{Z}$ because $3 \cdot 7 = 1$ and $9 \cdot 9 = 1$; 2, 5 are zero divisors because $2 \cdot 5 = 0$.

- 9. Let a, b, n be integers with n > 1. Let d = (a, n) and assume that d|b. Prove that the equation [a]x = [b] has exactly d solutions in $\mathbb{Z}/n\mathbb{Z}$ as follows:
 - (a) Explain why there are integers u, v, a_1, b_1, n_1 such that $au+nv=d, a=da_1, b=db_1$ and $n=dn_1$. **Answer**: By Theorem 1.2, since d=(a,n) there must exist $u,v\in\mathbb{Z}$ such that au+nv=d. By definition of gcd, d=(a,n) divides both a and n; in addition, it is given that d divides b. Then by definition of divisibility there exists $a_1,b_1,n_1\in\mathbb{Z}$ such that $a=da_1,b=db_1$ and $n=dn_1$.
 - (b) Show that each of $[ub_1]$, $[ub_1 + n_1]$, $[ub_1 + 2n_1]$, ..., $[ub_1 + (d-1)n_1]$ is a solution of [a]x = [b]. **Answer**: Define k such that $0 \le k \le d-1$, then we want to show that each of $[ub_1 + kn_1]$ is a solution. By substitution we have $[a][ub_1 + kn_1] = [aub_1 + akn_1] = [(d-nv)b_1 + da_1kn_1] = [db_1 - nvb_1 + dn_1a_1k = [b-n(vb_1 + a_1k)]$. Note that $[b-n(vb_1 + a_1k)] \equiv [b] \pmod{n}$, so each of $[ub_1 + kn_1]$ is a solution of [a]x = [b].
 - (c) Show that the solutions listed in part (b) are all distinct.

Answer: Take distinct and arbitrary k_1, k_2 such that $0 \le k_1, k_2 \le d - 1$, we want to show that $[ub_1 + k_1n_1] \ne [ub_1 + k_2n_1]$. By taking the difference we have $[ub_1 + k_1n_1] - [ub_1 + k_2n_1] = [(k_1 - k_2)n_1]$. However $n = dn_1 \nmid (k_1 - k_2)n_1$ as we would need $(k_1 - k_2)$ to be a multiple of d, which is not possible by our constraint $0 \le k_1, k_2 \le d - 1$. Therefore the solutions listed in part (b) are distinct.

(d) If x = [r] is any solution of [a]x = [b], show that $[r] = [ub_1] + [kn_1]$ for some integer k with $0 \le k \le d - 1$.

Answer: Since x = [r] is a solution as given, we have $[a][r] = [b] \implies [ar] - [b] = [0]$. As shown in part (b), $x = [ub_1]$ is also a solution, i.e. $[a][ub_1] = [b]$. By substitution we have $[ar] - [aub_1] = [0]$,

therefore $[ar] \equiv [aub_1] \pmod{n}$ and $n|(ar-aub_1)$ by definition of congruence. Then since $n = dn_1$ and $a = da_1$, we have $dn_1|da_1(r-ub_1) \implies n_1|a_1(r-ub_1)$. Since a_1 and n_1 are constructed by factoring out the gcd of a and n, we know that $(a_1, n_1) = 1$. Therefore by Theorem 1.4 we have $n_1|(r-ub_1)$, i.e. there exist some $k \in \mathbb{Z}$ such that $kn_1 = r - ub_1 \implies r = ub_1 + kn_1 \implies [r] = [ub_1 + kn_1]$.

10. Use Problem 9 to solve the following equations:

(a) 15x = 9 in $\mathbb{Z}/18\mathbb{Z}$

Answer: We have a = 15, b = 9 and n = 18, then d = (a, n) = 3, $b_1 = b/d = 3$ and $n_1 = n/d = 6$. We can then take u = -1 and v = 1 to have au + nv = d. Then by the problem 9(b), the solutions are [-3], [-3 + 6], [-3 + 12] which are congruent to [15], [3], [9] respectively.

(b) $25x = 10 \text{ in } \mathbb{Z}/65\mathbb{Z}$.

Answer: We have a = 25, b = 10 and n = 65, then d = (a, n) = 5, $b_1 = b/d = 2$ and $n_1 = n/d = 13$. We can then take u = -5 and v = 2 to have au + nv = d. Then by the problem 9(b), the solutions are [-10], [-10+13], [-10+26], [-10+39], [-10+52] which are congruent to [55], [3], [16], [29], [42] respectively.