CSE-3103: Microprocessor and Microcontroller

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Immediate Addressing Mode

Operands are specified within instructions.

Example →

MOV AL, 15H ADD AX, 0B14H

Register Addressing Mode

Operands are stored within any of internal registers.

Example →

MOV AX, BX

ADD AL, BL

8-bit register →

AH, AL, BH, BL, CH, CL, DH, DL.

16-bit register →

AX, BX, CX, DX, SP, BP, SI, DI.

Instructions have to use same size registers.

Register Addressing Mode

Operands are stored within any of internal registers.

Example → MOV AX, BX

MOV AX, BX ADD AL, BL

8086 MPU				Address	Memory Content	Instruction
0000	IP	—		01000	.8B	MOV AX, BX
0100	CS			01001	C3	
	DS			01002	.XX	Next Instruction
	SS					
	ES					
XXXX	AX					
ABCD	BX					
	CX					
	DX					
	SP					
	BP					
	SI					
	DI					

Direct Addressing Mode

16-bit offset address is directly specified in instruction.

Example \rightarrow MOV CX, BETA physical address = DS×10H + 1234H = 0200×10H + 1234H = 03234H CL \leftarrow [03234H]

 $CL \leftarrow [03234H]$ $CH \leftarrow [03235H]$

PA = Base segment : Direct address.

= DS/ES/SS : EA

Memory address →

default segment address = DS alternate segment address = SEG (ES/SS). SEG = segment override prefix.

Direct Addressing Mode

16-bit offset address is directly specified in instruction.

Example \rightarrow

MOV CX, BETA

Register Indirect Addressing Mode

```
Data is available at address → offset address → BX, SI or DI. segment → DS (default) or ES. another option → SS : BP
```

```
Difference →
direct addressing →
EA = constant
register indirect addressing →
EA = variable.
```

```
Example \rightarrow MOV AX, [SI] physical address = DS×10H + SI = 0200×10H + 1234H = 03234H
```


direct addressing: MOV CX, [BETA]

Register Indirect Addressing Mode

Based Addressing Mode

Operand offset address \rightarrow

BX/BP registers + 8-bit/16-bit displacement.

Default segment address →

DS for BX.

SS for BP.

PA = Base segment : Base + Displacement

Change displacement value →
access different elements within same
data structure.

Change base register value → access same element in another data structure.

Example \rightarrow

MOV [BX].BETA, AL

physical address = $DS \times 10H + [BX] + BETA$

 $= 0200 \times 10H + 1000H + 1234H$

= 04234H

Based Addressing Mode

Operand offset address →

BX/BP registers + 8-bit/16-bit displacement.

Default segment address \rightarrow

DS for BX.

SS for BP.

PA = Base segment : Base + Displacement

Change displacement value →

access different elements within same

data structure.

Change base register value \rightarrow

access same element in another

data structure.

Example →

MOV [BX].BETA, AL

physical address = $DS \times 10H + [BX] + BETA$

 $= 0200 \times 10H + 1000H + 1234H$

= 04234H

Based Addressing Mode

physical address = $DS\times10H + [BX] + BETA$ = $0200\times10H + 1000H + 1234H$

= 04234H

Indexed Addressing Mode

Operand offset address →

SI or DI register + 8-bit/16-bit displacements.

Default segment address \rightarrow

DS for SI.

ES for DI.

PA = Base segment : Index + Displacement

Change index register value \rightarrow

access different elements within same data structure.

Change displacement value →

access same element in another data structure.

Example →

MOV AL, ARRAY[SI]

physical address = $DS \times 10H + [SI] + ARRAY$

 $= 0200 \times 10H + 2000H + 1234H$

= 05234H

Indexed Addressing Mode

Operand offset address \rightarrow

SI or DI register + 8-bit/16-bit displacements.

Default segment address \rightarrow

DS for SI.

ES for DI.

PA = Base segment : Index + Displacement

Change index register value →
access different elements within same
data structure.

Change displacement value → access same element in another data structure.

Example →

MOV AL, ARRAY[SI]

physical address = $DS\times10H + [SI] + ARRAY$ = $0200\times10H + 2000H + 1234H$ = 05234H

Indexed Addressing Mode

 $physical \ address = DS \times 10H + [SI] + ARRAY$ $= 0200 \times 10H + 2000H + 1234H$ = 05234H

Based Indexed Addressing Mode

```
Based indexed addressing = based addressing + indexed addressing.

Offset address →

Base register (BX or BP) + Index register (SI or DI).

Segment address →

DS or SS.

PA = Base segment : Base + Index

= DS : BX + SI or

= SS : BP + DI

Example →

MOV AL, [BX].[SI]

physical address = DS×10H + [BX] + [SI]

= 0300×10H + 1000H + 1234H

= 05234H
```

Relative Based Indexed Addressing

```
Offset address \rightarrow
                                                                                     Memory
         BX or BP + SI or DI
                                                                                   Element (m,n)
         + 8- or 16-bit displacement.
Segment address \rightarrow
         DS or SS.
                                                           Index register
                                                                                   Element (m,1)
                                                                                   Element (m.0)
PA = Base segment : Base + Index
                                                                                   Element (1,n)
                        + Displacement
                                                                                                  Two-dimensional
                                                                                                    array of data
Used to access 2-D (m \times n) array.
                                                                                   Element (1,1)
                                                           Base register
Displacement = starting position of array.
                                                                                   Element (1.0)
Base register = one coordinate (say m),
                                                                                   Element (0,n)
Index register = other coordinate (say n).
                                                                                   Element (0,1)
Example \rightarrow
                                                           Displacement
                                                                                   Element (0,0)
         MOV AH, [BX] [SI] + BETA
         physical address = DS \times 10H + [BX] + [SI] + BETA
                            = 0200 \times 10H + 1000H + 2000H + 1234H
                            = 06234H
```

Relative Based Indexed Addressing

Offset address \rightarrow

BX or BP + SI or DI

+ 8- or 16-bit displacement.

Segment address →

DS or SS.

PA = Base segment : Base + Index + Displacement

Used to access 2-D ($m \times n$) array.

Displacement = starting position of array.

Base register = one coordinate (say m),

Index register = other coordinate (say n).

Example →

MOV AH, [BX] [SI] + BETA

physical address = $DS \times 10H + [BX] + [SI] + BETA$

 $= 0200 \times 10H + 1000H + 2000H + 1234H$

= 06234H

Relative Based Indexed Addressing

 $physical \ address = DS \times 10H + [BX] + [SI] + BETA \\ = 0200 \times 10H + 1000H + 2000H + 1234H \\ = 06234H$