Statistical physics approaches to large-scale socio-economic networks

Michael Szell

Defensio for Dr. rer. nat. (Physics)

Supervisors: Stefan Thurner

Christoph Dellago

Data from social systems is hard to get

Data from social systems is hard to get

Collective human behavior is poorly understood

Social systems are Complex systems

- Many elements
- Strong interactions Networks
- Emergence of macroscopic properties

Brain, traffic, internet, society, economy

Power laws, anomalous diffusion, etc.

Castellano, Fortunato and Loreto, Rev Mod Phys 81, 591-646 (2009)
Barabási and Albert, Science 286, 504 (2000)
Park and Newman, PRE 70, 066117 (2004)
Bak, Tang and Wiesenfeld, PRL 59, 381-384 (1987)
Metzler and Klafter, Phys Rep 339, 1-77 (2000)

Could THIS be a human society?

Massive multiplayer online games

www.pardus.at

Players live an alternative life, in a virtual universe interacting with many others

- 400,000 registered players
- 12,000 active players
- Online since 2004

Complete data on human society!

The framework of the game

- Economic life
 Trade, produce, make profit
 Spend money on ships, ...
- Social life
 Chat, forum, messages
 Make friends
- Exploratory life ("Science")
 Universe and lifeforms

No rules, No goals

Emergence of complex socio-economic behavior

- Hierarchical groups
- Cartels
- Political parties, diplomacy
- Organized attacks + wars over territory, resources, ...

Data available

- All actions by all players
- Over 2000 days, with timestamp
- Ongoing generation of new data

Contributions of the thesis

- I) Individual
 Human behavioral sequences, mobility
- 2) Network Social dynamics, testing classic hypotheses
- 3) Network-network Multi-relational organization

Show feasibility of "social labs"

Thurner, Szell and Sinatra, PLoS ONE 7, e29796 (2012) Szell, Sinatra, Petri, Thurner and Latora, in review (2012) Szell and Thurner, Social Networks 32, 313-329 (2010) Szell, Lambiotte and Thurner, PNAS 107, 13636-13641 (2010)

1) Individual: Behavioral codes

Alphabet of 8 letters = action types

(a) Actions

Actions and received actions

Player 199 ... C A A C A A T F C T C C E E A C ...

(b) CACAAFCCEAC +-+--+

Stanley et al, Physica A 224, 302-321 (1996)

l) Individual: Behavioral codes

- Most players are "good", "bad" players are dominant
- Attack is persistent, Communication is anti-persistent
- ullet Receiving neg actions o Performing neg actions

1) Individual: Mobility

Mean Square Displacement

finite universe

$$\nu = \lim_{t \to \infty} \frac{d}{dt}(\mathrm{MSD})$$

$$\log \mathrm{MSD}$$

$$\log \mathrm{MSD}$$

$$\log \mathrm{MSD}$$

$$\log \mathrm{MSD}$$

expect finite size effect

1) Individual: Mobility

$$\nu = 0.26 < 1$$

Subdiffusive

Order of visitations!

Players

Models

Song et al, Nature Physics 6, 818-823 (2010)

2) Network: 6 Types

Directed one-to-one interactions

Positive	Negative
Friendship	Enmity
Communication	Attack
Trade	Bounty

Reciprocity

If I * you, do you * me?

	į F	Positive	9	Negative			
	Friends	PMs	Trades	Enemies	Attacks	Bounties	
\overline{N}	4,313	5,877	18,589	2,906	7,992	2,980	
r	0.68	0.84	0.57	0.11	0.13	0.20	
C	0.25	0.28	0.43	0.03	0.06	0.01	
C/C^{rand}	109.52	45.71	131.95	6.13	37.27	13.88	
$ ho(k^{ m in},k^{ m out})$	0.88	0.98	0.93	0.11	0.64	0.31	

YES NO

Clustering

If I * others, do they * each other?

	Positive			Negative			
	Friends	PMs	Trades	Enemies	Attacks	Bounties	
\overline{N}	4,313	5,877	18,589	2,906	7,992	2,980	
r	0.68	0.84	0.57	0.11	0.13	0.20	
C	0.25	0.28	0.43	0.03	0.06	0.01	
C/C^{rand}	109.52	45.71	131.95	6.13	37.27	13.88	
$ ho(k^{ m in},k^{ m out})$	0.88	0.98	0.93	0.11	0.64	0.31	

YES NO

In/Out degree correlation

If I * few/many others, do few/many others * me?

	Positive			Negative			
	Friends	PMs	Trades	Enemies	Attacks	Bounties	
\overline{N}	4,313	5,877	18,589	2,906	7,992	2,980	
r	0.68	0.84	0.57	0.11	0.13	0.20	
C	0.25	0.28	0.43	0.03	0.06	0.01	
C/C^{rand}	109.52	45.71	131.95	6.13	37.27	13.88	
$ ho(k^{ m in},k^{ m out})$	0.88	0.98	0.93	0.11	0.64	0.31	

YES NO

2) Network: Evolution

Average degrees grow

Diameters shrink

Densification

Directed triad classes

More generally

Expect over-representation of complete triads in friend networks

Triad significance profile = Statistical significances of triad classes in the network compared to random networks

Indicates triadic closure

Measure all transitions between triad classes over time interval

- Explicit quantitative evidence for triadic closure
- Provide transition probabilities for modeling

Ignorance of relation types

Loss of essential information!

	Positive							
	Friends	PMs	Trades	Enemies	Attacks	Bounties	All	
\overline{N}	4,313	5,877	18,589	2,906	7,992	2,980	18,819	
r	0.68	0.84	0.57	0.11	0.13	0.20	0.59	
C	0.25	0.28	0.43	0.03	0.06	0.01	0.42	
C/C^{rand}	109.52	45.71	131.95	6.13	37.27	13.88	109.93	
$ ho(k^{ m in},k^{ m out})$	0.88	0.98	0.93	0.11	0.64	0.31	0.95	

3) Network-network: Interactions

Description of co-existence of links

Link overlap (Jaccard coefficient)

3) Network-network: Interactions

Description of co-existence of links

- Link overlap (Jaccard coefficient)
- Degree correlation

3) Network-network: Interactions

Different roles in different networks

3) Network-network: Social balance

Theory about cognitive dissonance in social networks

Multiplex network of friends (+) and enemies (-)

3) Network-network: Social balance

What does the data say?

3) Network-network: Social balance

Evidence for overrepresenation of balanced triads Evidence for underrepresenation of unbalanced triads

Summary

- Establish a large-scale socio-economic laboratory
- Structural differences between positive and negative tie networks
- Testing hypotheses: Triadic closure, Social balance
- Statistical physics approach

Collaborators

Renaud Lambiotte

Giovanni Petri

Roberta Sinatra

Vito Latora

Stefan Thurner

Institute

www.complex-systems.meduniwien.ac.at

Section for Science of Complex Systems

