- 1. U algoritmu grupiranja BFR skup odbačenih točaka (engl. discard set) predstavlja:
 - Točke koje su dovoljno blizu centroida grupe, a ne zadržavaju se u radnoj memoriji
- 2. Neka je zadana sljedeća "Utiliity" matrica u kojoj su znakom "-" označene ocjene koje nedostaju. Izračunajte sličnost između korisnika U₁ i U₂ korištenjem Cosine similarity mjere sličnosti.

	I ₁	l ₂	I_3	I_4	
U ₁	-	-	5	1	
U ₂	-	4	4	1	

- 0.72
- 3. U točki $C_{x,y}$ = (1, 2) zadan je centroid oko kojeg su podaci normalno distribuirani. Odredite Mahalanobisovu udaljenost točke $T_{x,y}$ = (3, 4) od centroida, ako varijance po dimenzijama iznose: v_x = 0.01 i v_y = 0.02.
 - o 24.49
- 4. Neka je zadan skup košara:

$$B_1 = \{1, 2, 3\}$$
 $B_4 = \{1, 3, 4\}$

$$B_4 = \{1, 3, 4\}$$

$$B_2 = \{1, 4\}$$
 $B_5 = \{4\}$

$$B_5 = \{4\}$$

$$B_{2} = \{1, 3, 4\}$$

$$B_3 = \{1, 3, 4\}$$
 $B_6 = \{2, 3, 4\}$

Pod pretpostavkom da prag potpore (engl. support threshold) iznosi 3, koliko podskupova podataka je često?

- 5. Promatramo računanje Rabinovog sažetka nad n-gram prozorom proizvoljnog teksta koristeći kodiranje polinomima. Ako je o, broj operacija potrebnih za računanje sažetka i-tog n-gram prozora (i je zadan u [1, n]). Onda vrijedi:
 - o₁ > o₁ , za svaki i > 1
- 6. Neka je zadana sljedeća "Utiliity" matrica u kojoj su znakom "-" označene ocjene koje nedostaju:

Izračunajte sličnost između korisnika U₁ i U₂ korištenjem Jaccard similarity mjere sličnosti.

o ²/₃, 0.67

7. Zadan je graf na slici za koji je potrebno izračunati vektor utjecaja (engl. rank vector). Primjeni li se metoda uzastopnog potenciranja s ciljem izračunavanja vektora ranga r na zadani graf, hoće li dobiveni rezultati biti vjerodostojni?

- Ne, u grafu postoji "paukova zamka" (engl. spider trap).
- **8.** Prilikom stvaranja skupovnih reprezentacija tekstualnih dokumenata za potrebe algoritma MinHash, označite tvrdnju koja vrijedi za veličinu shingleova kada se razmatraju dulji tekstualni dokumenti.
 - Uputno je koristiti duže shingleove
- **9.** Pretpostavite da su provođenjem algoritma MinHash nad izvornim skupovnim reprezentacijama dobiveni sljedeći sažeci:

	s0	s1	s2	s3	s4
b ₀	2	5	4	7	3
b ₁	7	6	2	8	5
b ₂	4	3	3	5	6
b_3	4	3	2	4	2

Nadalje, pretpostavite da se koristi algoritam sažimanja osjetljivog na bliskost (engl. Locality Sensitive Hashing) s veličinom pojasa b=2.

Unutar prvog pojasa koristi se sljedeća funkcija sažimanja:

$$f_1 = (b_0 * 10 + b_1) \mod 6$$
,

Unutar drugog pojasa koristi se sljedeća funkcija sažimanja:

$$f_2 = (b_2 * 10 + b_3) \mod 6.$$

Npr. sažetak s₀ u prvom pojasu se rasprši u pretinac p=3:

$$p = (2 * 10 + 7) \% 6 = 3.$$

Koliko će biti parova kandidata za sličnost kada se završi algoritam za oba pojasa?

0 4

10. Neka su zadana dva dokumenta D₁="ABECEDA" i D₂="CEDAR". Izračunajte sažetke dokumenata koristeći MinHash algoritam uz duljinu shingleova L=3, koristeći dvije funkcije sažimanja f₁ i f₂ umjesto permutacija prema zadanoj tablici.

r	shingle	f ₁ = (r + 1) mod 6	f ₂ = (r + 2) mod 6
0	ABE	1	2
1	BEC	2	3
2	ECE	3	4
3	CED	4	5
4	EDA	5	0
5	DAR	0	1

Izračunajte sličnost dobivenih sažetaka kao omjer: broj redaka u kojima su sažeci jednaki i ukupni broj redaka u sažecima!

- 0.5
- 11. Negativna granica u Toivonenovom algoritmu definira se kao skup podskupova podataka X za koji vrijedi:
 - Niti jedan y iz X nije čest u uzorku, ali svi podskupovi od y nastali uklanjanjem točno jednog elementa jesu česti
- 12. Zadan je graf na slici za koji je potrebno izračunati vektor utjecaja (engl. rank vector).

Primijeni li se metoda uzastopnog potenciranja s ciljem izračunavanja vektora ranga r na zadani graf, hoće li dobiveni rezultati biti vjerodostojni?

o Ne, u grafu postoje "mrtvi čvorovi" (engl. dead end nodes).

13. U tablici ispod zadana je matrica ocjena korisnika za pojedine filmove (engl. user-item matrix, utility matrix). Prazna polja u matrici predstavljaju ocjene koje nedostaju. Korištenjem algoritama suradničkog filtriranja (engl. Collaborative Filtering) potrebno je izračunati ocjenu za korisnika U₄ i film M₂ ako se koristi User-User pristup suradničkog filtriranja.

Bitne napomene:

- o Za računanje sličnosti među filmovima koristi se Pearson Correlation Coefficient.
- Sustav koristi najviše k = 2 najsličnijih filmova za izračun ocjene.
- o Prilikom izračuna, filmovi čija sličnost je manja od 0 se ne uzimaju u obzir.

	U ₁	U_2	U_{3}	U_4	$U_{\scriptscriptstyle{5}}$
\mathbf{M}_{1}	2	3	4	1	3
$\mathbf{M_2}$	-	3	3	-	4
\mathbf{M}_3	-	2	3	1	5
M_4	1	2	5	2	3
M_{5}	2	5	4	-	5

Odgovor:

o 3.00

14. Algoritam simhash u svojoj kanonskoj inačici koristi 3-bitne sažetke, a jedinke su riječi (odvojene razmacima). Interna funkcija sažimanja je definirana s h(x) = duljina(x) % 8, gdje je x riječ, a duljina(x) broj znakova riječi. Decimalni simhash sažetak teksta "with or without you" jest:

o **7**

- **15.** Složenost algoritma hijerarhijskog grupiranja iznosi:
 - \circ O(n² log(n))
- **16.** U postupku generiranja pravila asocijacije $I \rightarrow j$ nad skupom predmeta I parametar pouzdanost (eng. confidence) definira se kao (potpora eng. support):
 - $conf(I \rightarrow j) = support(I \cup j) / support(I)$
- **17.** Sustav za pretragu dokumenata je ispisao sljedeće dokumente za zadani upit: [D1, D3, D5]. Međutim, ručnom provjerom pokazano je da je sustav ipak trebao ispisati dokumente: [D1, D2, D5, D9, D10]. Kolika je ocjena uspješnosti F1 za navedeni upit?
 - 0.5
- **18.** Pretpostavite da se koristi algoritam sažimanja osjetljivog na bliskost (engl. **Locality Sensitive Hashing**). Ukupna duljina sažetaka jest N elemenata te se pritom koristi B pojaseva svaki duljine B elemenata. Što će se dogoditi ako se **broj pojaseva poveća** na 2B, a **duljina jednog pojasa smanji** na B/2 elemenata?
 - Broj lažno negativnih (engl. false negative) parova kandidata za sličnost će se smanjiti, dok će se broj lažno pozitivnih (engl. false positive) parova kandidata za sličnost povećati.
- **19.** Ulaz u algoritam simhash su "n-gram" jedinke. Ako je svaka n-gram jedinka dodatna dimenzija u višedimenzionalnom prostoru pojavljivanja jedinki, onda s **povećanjem parametra "n"** načelno vrijedi:
 - o sažeci sličnih dokumenata su sve manje slični i dimenzionalnost sustava raste

- 20. Koji od navedenih algoritama grupira skup podataka u samo jednom prolazu?
 - o CURE
 - Aglomerativno hijerarhijsko grupiranje
 - o BFR
 - o k-means
 - Divizivno hijerarhijsko grupiranje
- **21.** Neka je dostupan skup simhash sažetaka i neka se koristi sustav brze paralelne pretrage bliskih sažetaka koristeći više permutiranih tablica. U takvom sustavu je potrebno provjeriti Hammingovu udaljenost k za određeni broj sažetaka. Ako je k unaprijed zadana udaljenost, onda **smanjenjem k**, načelno vrijedi:
 - o Preciznost se povećava, a odziv se smanjuje.
- **22.** U postupcima pronalaska čestih podskupova podataka pojam **potpore podskupa (itemset support)** definira se kao:
 - Ukupan broj košara u kojima se pojavljuje odgovarajući podskup predmeta
- 23. U sustavu za preporučivanje knjiga korisnicima, koristimo jednostavni (osnovni) model matrične faktorizacije s dvije skrivene značajke (K = 2). U tom modelu, knjizi Hobit pridružen je vektor skrivenih značajki [0.2, -0.75], a knjizi Pinokio vektor [-0.63, 0.4]. Model predviđa da će interes korisnika Ivice za Hobita biti 0.23, a interes Marice za Pinokija biti 0.77. Poznato je da Ivica i Marica knjige čitaju zajedno i jednako ih ocjenjuju pa su njihovi vektori skrivenih značajki jednaki. Vaš je zadatak izračunati taj vektor. Zbrojimo li elemente tog vektora, dobit ćemo (zaokruženo na dvije decimale):
 - o **-2.47**
- **24.** Označiti točan odgovor ako se razmatraju prostorna i vremenska složenost algoritma Flajolet-Martin: Odaberite jedan odgovor:
 - o vremenska složenost je obrnuto proporcionalna broju korištenih funkcija sažimanja
 - prostorna složenost je obrnuto proporcionalna broju korištenih funkcija sažimanja
 - o prostorna složenost ne ovisi o broju funkcija sažimanja
 - o prostorna složenost je proporcionalna broju korištenih funkcija sažimanja

25. Uz podatkovnu matricu A i glavne komponente v₁ i v₂ izračunajte sadržaj matrice A' koja je rekonstrukcija točaka u originalni podatkovni prostor nakon PCA transformacije.

$$A = egin{bmatrix} 1 & 1 \ 1.5 & 2 \ 2 & 2 \ 3 & 3 \ 3.5 & 3 \ 4 & 4 \ 5 & 5 \ \end{bmatrix} \quad v_1 = egin{bmatrix} rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \ \end{bmatrix}$$

$$A'= \left[egin{array}{ccc} 1 & 1 \ rac{7}{4} & rac{7}{4} \ 2 & 2 \ 3 & 3 \ rac{13}{4} & rac{13}{4} \ 4 & 4 \ 5 & 5 \end{array}
ight]$$

0

- 26. Što od navedenog ne vrijedi za autoenkodere?
 - o Funkcija dekodera jest rekonstruirati ulaz iz njegove sažete, kodirane reprezentacije.
 - Autoenkoder je građen od enkodera i dekodera.
 - Regularizacijom kontraktivnog autoenkodera (engl. contractive autoencoder) nastoje se smanjiti iznosi derivacija težina u skrivenim slojevima.
 - Ograničavanje preslikavanja ulaza na izlaz kod rijetkog se autoenkodera (engl. sparse autoencoder)
 s jednim skrivenim slojem postiže dodatnim kažnjavanjem težina neurona ulaznog sloja.
 - Učenje konvolucijskih autoenkodera podrazumijeva učenje optimalnih filtera za detekciju specifičnih značajki u "rešetkastim" podacima.
- 27. Što od navedenog nije mjera primjenjiva za ocjenu preciznosti sustava za predviđanje i preporučivanje?
 - o Rank correlation
 - Normalized Discounted Cumulative Gain (NDCG)
 - Root Mean Square Error (RMSE)
 - Hit ratio (HR)
 - Alternating least squares (ALS)
- 28. Svojstvo lokalnosti društvenih mreža definira se na sljedeći način:
 - Ako postoji brid između čvorova A i B te čvorova A i C, onda je vjerojatnost da su čvorovi B i C povezani natprosječna.
- 29. Kompetitivni omjer BALANCE algoritma za dva oglašivača iznosi:
 - 0.75

30. Inačica m-bitnog Bloomovog filtera koristi dvije grupe funkcija sažimanja: $f_i(x)$, i je iz [1, N] i $g_j(x)$, j je iz [1, M] te su sve funkcija sažimanja uniformne na [0, m-1]. Kod ove inačice Bloomovog filtera potrebno je prvo postaviti na 1 bitove na pozicijama $f_1(x)$, $f_2(x)$,..., $f_N(x)$ te potom postaviti na 0 bitove na pozicijama $g_1(x)$, $g_2(x)$,..., $g_M(x)$. Bloomov filter vraća potvrdan odgovor ako su svi bitovi na pozicijama $f_1(x)$, $f_2(x)$,..., $f_N(x)$ jednaki 1, a svi bitovi na pozicijama $g_1(x)$, $g_2(x)$,..., $g_M(x)$ jednaki 0.

Za opisanu inačicu Bloomovog filtera vrijedi:

- Moguća je pojava lažno pozitivnog rezultata i lažno negativnog rezultata.
- **31.** Zadana je matrica snage pripadnosti čvorova zajednicama za BigCLAM algoritam.

Postoje dvije zajednice A i B pri čemu su snage pripadnosti čvorova X i Y zajednici A redom $X_A = 0.8$ i $Y_A = 0.92$.

Odredite koliko iznosi snaga pripadnosti čvora Y zajednici B ($Y_B = ?$) ako je poznato da X_B iznosi 0.66, a ukupna vjerojatnost da su čvorovi X i Y povezani u grafu iznosi 0.708.

- 0.75
- 32. Ulazni parametri Adwords problema su:
 - Skup ponuda oglašivača za pojmove pretraživanja, CTR, budžet oglašivača i limit broja oglasa koji se mogu prikazati korisniku
- 33. Osnovni parametri AGM modela su:
 - broj čvorova mreže, broj zajednica mreže, vjerojatnost povezanosti čvorova u zajednici i pripadnost čvorova zajednicama
- **34.** Društvena mreža sa dvije zajednice opisana je AGM modelom. Vjerojatnost da su dva čvora povezana unutar zajednice A iznosi $p_A = 0.72$, a vjerojatnost da su dva čvora povezana, a pripadaju istovremeno zajednicana A i B iznosi 0.93. Koliko iznosi vjerojatnosd da su čvorovi povezani unutar zajednice B ($p_B = ?$)
 - 0.75
- 35. Odaberite tvrdnju koja je istinita za duboke mreže vjerovanja.
 - Veze u najdubljem sloju duboke mreže vjerovanja usmjerene su prema plićem sloju.
 - Učenje duboke mreže vjerovanja započinje predtreniniranjem ograničena Boltzmannova stroja najbližeg njezinu izlazu.
 - Usmjerene veze u nižim slojevima duboke mreže vjerovanja usmjerene su prema dubljem sloju.
 - Latentne varijable u skrivenim slojevima uglavnom poprimaju binarne vrijednosti.
 - Ulazni sloj duboke mreže vjerovanja specijaliziran je za detekciju značajki iz podataka.
- **36.** Koji se od navedenih blokova (košara, tj. bucketa) **ne može pojaviti** u osnovnom Datar-Gionis-Indyk-Motwani (DGIM) algoritmu?
 - o Blok s 0 nula i 8 jedinica
 - o Blok s 80 nula i 8 jedinica
 - o Blok s 2 nule i 14 jedinica
 - o Blok s 1 nulom i 8 jedinica
 - o Blok s 0 nula i 1 jedinicom

Unofficial hint - broj jedinica mora biti potencija broja 2. Jedino u bloku veličine 1 ne smije biti niti jedna 0.

- **37.** Koliki je postotak bitova postavljen na vrijednost 1 u 1000-bitnom Bloomovom filteru koji koristi 2 funkcije sažimanja za ukupno 100 unesenih elemenata, ako pretpostavimo da su korištene funkcije sažimanja savršene (bez kolizija)?
 - 0 20%

38. Tri oglašivača A, B i C postavljaju ponude na pojmove oglašavanja X, Y i Z.

Oglašivač A postavlja ponude na pojmove X i Y, oglašivač B na pojmove Y i Z, a oglašivač C na pojmove X i Z.

Oglasi se prikazuju primjenom BALANCE algoritma pri čemu je:

- Početni budžet svih oglašivača isti i iznosi 3
- Cijena svih oglasa je ista i iznosi 1
- U slučaju izjednačene situacije algoritam daje prednost oglašivačima po abecedi, tako da A ima najviši, a C najniži prioritet

Navedite kojim će se redosijedom prikazivati oglasi ako je ulazni niz upita: X X X Y Z Y Z Z Y

• ACABBACB-

39. PCA je	metoda, a LDA je _	me	toda:
0	nenadzirana, nadzirana		