Roll Number:		18BCD7143		
Student name:		L.Satyajit		
Slot (L1/L2/L4):		L2		
Title of the Project:				
		Pulsar Star F	Prediction	
Objective of the Project (What exactly the project is about?)		Pulsars are a rare type of Neutron star that produce radio emission detectable here on Earth. Our objective of this project is to predict the pulsar star by the observations from the candidates.		
Dataset Link	Number Columns	of rows and	About columns	
https://www.kaggle.com/colearninglounge/predicting-pulsar-starintermediate	Rows :12528 Columns :9		Number of Categorical columns: 1 Number of Integer/Float Columns: 8 Unique Values in each Column: column 1:7192 column 2:12510 column 3:10794 column 4:12528 column 5:7224 column 6:11349 column 7:12526 column 8:11902 column 9:2	
			column 4:12528 column 5:7224 column 6:11349 column 7:12526 column 8:11902	

Challenges identified in the project	How did you address that challenge?	References		
imbalanced dataset	 Random Oversampling Random Undersampling 	https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/		
missing values	 simple imputer(mean) [Basic] simple imputer(median) simple imputer(mode) Dropping Rows 	https://machinelearningmastery.com/handle-missing-data-python/		
Noisy Data	NormalizationStandardization	https://www.analyticsvidhya.com/blog/2020/04/feature-scaling-machine-learning-normalization-standard ization/		
Without Pre-processing- Different	Performance(Accuracy/	Which model worked well on the		
Algorithms	confusion matrix	test data and WHY?		
[Basic preprocessing is done]	measures/ROC AUC/ AVG)			
KNN	97.54% / 59F- & 188F+ / 89.59*/97.07%	XG boosting model has a good overall performance compared to		
XG boosting	98.19%/45F- & 136F+/92.46/97.82%	any other algorithms as it has good accuracy score, Reasonably		
Support Vector Machine	92.46%/32 F- & 107 F+/92.52%/92.35%	minimum false values, Great ROC AUC, and best average accuracy of all.		
Random Forest classifier	97.72% / 45 F- & 184 F+/89.88%/97.57%	an.		
Naive bayes classifier	94.36% / 418 F- & 147 F+/89.81%/94.35%			
Which Pre-processing technique you applied?	Why did you apply that pre- processing Technique?	References		
dropna()	To Handle missing values	https://machinelearningmas tery.com/handle-missing- dat a-python/		
SimpleImputer (median)	To Handle missing values	https://machinelearningmas tery.com/handle-missing- dat a-python/		

SimpleImputer (mode)		To Handle missing values		https://machinelearningmas tery.com/handle-missing-dat_apython/		
RandomOverSampler		To Balance Dataset		https://machinelearningmas tery.com/random-oversampl ingand- undersampling-for-i mbalanced- classification/		
Random UnderSampler		To Balance Dataset		https://machinelearningmas tery.com/random-oversampl ingand- undersampling-for-i mbalanced- classification/		
Min Max Scaler		To Handle noisy data		https://www.analyticsvidhya .com/blog/2020/04/featurescalingmachine- learning-nor malizationstandardization/		
Standard Scaler		To Handle noisy data		https://www.analyticsvidhya .com/blog/2020/04/featurescalingmachine- learning-nor malizationstandardization/		
Pre-processing technique name?	Data Mining Algorithm you applied?	measures/ROC AUC/ AVG			Which model worked well on the test data and WHY?	
dropna()	Random Forest Classifier	184 107 F		7%/ 36 F- & F+/ 5%/97.98%	KNN works great compared to any other machine learning algorithms. It has a great	
SimpleImputer (median)	Random Forest Classifier			2%/ 45 F- & 184 9.88%/97.59%	accuracy score, minimum False positives, excellent ROC AUC values and maximum	
SimpleImputer (mode)	Random Forest Classifier	97.72%/ 45 F- & 184 F+/89.88%/97.57%	F+/89	1%/46F- & 184 9.88%/97.59%	average accuracy among other models with best	

RandomOverSampler	Random Forest Classifier	97.72%/ 45 F- & 184 F+/89.88%/97.57%	93.64%/227F-& 930F+/93.66%/93.5%	
Random UnderSampler	Random Forest Classifier	97.72%/ 45 F- & 184 F+/89.88%/97.57%	94.03%/22F- & 88F+/ 94.09%/93.55%	
Min Max Scaler	Random Forest Classifier	97.72%/ 45 F- & 184 F+/89.88%/97.57%	97.72%/45F- & 184F+/89.88%/97.57 %	preprocessing techniques

Standard Scaler	Random Forest Classifier	97.72%/ 45 F- & 184 F+/89.88%/97.57%	97.72%/45F- & 184F+/89.88%/97.57 %	
dropna(), Random UnderSampler, Min Max Scaler	Random Forest Classifier	97.72%/ 45 F- & 184 F+/89.88%/97.57%	93.82%/13F-& 71F+/93.84/93.16	
dropna()	KNN	97.54%/ 59F-& 188F+/89.59*/97.0 %	97.87%/37F-& 121F+/90.7%/97.26%	
SimpleImputer (median)	KNN	97.54%/ 59F-& 188F+/89.59*/97.0 %	97.55%/57F-& 189F+/89.55%/97.07 %	
SimpleImputer (mode)	KNN	97.54%/ 59F-& 188F+/89.59*/97.0 %	97.57%/57F-&187F+/ 89.65%/97.09%	
RandomOverSampler	KNN	97.54%/ 59F-& 188F+/89.59*/97.0 %	97.86%/383F-& 7F+/97.85%/96.64%	
Random UnderSampler	KNN	97.54%/ 59F-& 188F+/89.59*/97.0 %	92.90%/46F-& 85F+/92.93%/91.05%	
Min Max Scaler	KNN	97.54%/ 59F-& 188F+/89.59*/97.0 %	97.82%/53F-&165F+/ 90.86%/97.53%	

Standard Scaler	KNN	97.54%/ 59F-& 188F+/89.59*/97.0 %	97.90%/50F-&160F+/ 91.14%/97.58%	
dropna(), Random OverSampler, Standard Scaler	KNN	97.54%/ 59F-& 188F+/89.59*/97.0 %	97.82%/288F-&6F+/ 97.82%/96.56%	
dropna()	SVM	92.46%/32 F- & 107 F+/92.52%/92.35%	97.37%/29F-&166F+/ 87.42%/97.34%	
SimpleImputer (median)	SVM	92.46%/32 F- & 107 F+/92.52%/92.35%	97.03%/44F-&254F+/ 86.13%/97.01%	
SimpleImputer (mode)	SVM	92.46%/32 F- & 107 F+/92.52%/92.35%	96.94%/44F-&263F+/ 85.65%/96.91%	
RandomOverSampler	SVM	92.46%/32 F- & 107 F+/92.52%/92.35%	92.19%/293F-& 1128F+/92.21%/92.16 %	
Random UnderSampler	SVM	92.46%/32 F- & 107 F+/92.52%/92.35%	92.03%/34F-&113F+/ 92.09%/91.76%	
Min Max Scaler	SVM	92.46%/32 F- & 107 F+/92.52%/92.35%	97.64%/40F-&197F+/ 89.21%/97.56%	
Standard Scaler	SVM	92.46%/32 F- & 107 F+/92.52%/92.35%	97.87%/40F-&173F+/ 90.50%/97.76%	
dropna() Random UnderSampler Standard Scaler	SVM	92.46%/32 F- & 107 F+/92.52%/92.35%	91.76%/30F-&82F+/ 91.78%/91.25%	
dropna()	Naive bayes classifier	94.36% /418 F- & 147F+/89.81%/94.3 5%	94.58%/303F-&99F+/ 90.38%/94.59%	

SimpleImputer (median)	Naive bayes classifier	94.36% / 418 F- & 147F+/89.81%/94.3 5%	94.33%/425F-&143F+ /89.99%/94.34%	
SimpleImputer (mode)	Naive bayes classifier	94.36% /418 F- & 147F+/89.81%/94.3 5%	94.34%/398F-&169F+ /88.74%/94.32%	
RandomOverSampler	Naive bayes classifier	94.36% / 418 F- & 147F+/89.81%/94.3 5%	89.97%/498F-& 1328F+/89.99%/89.96 %	
Random UnderSampler	Naive bayes classifier	94.36% /418 F- & 147F+/89.81%/94.3 5%	89.48%/57F-&137F+/ 89.54%/89.42%	
Min Max Scaler	Naive bayes classifier	94.36% / 418 F- & 147F+/89.81%/94.3 5%	94.36%/418F-&147F+ /89.81%/94.35%	
Standard Scaler	Naive bayes classifier	94.36% /418 F- & 147F+/89.81%/94.3 5%	94.36%/418F-&147F+ /89.81%/94.35%	
dropna() RandomOverSampler Standard Scaler	Naive bayes classifier	94.36% / 418 F- & 147F+/89.81%/94.3 5%	90.43%/366F-&923F+ /90.44%/90.38%	
dropna()	XG boosting	98.19%/45F- & 136F+/92.46/97.82 %	98.41%/37F-&81F+/ 93.69%98.07%	
SimpleImputer (median)	XG boosting	98.19%/45F- & 136F+/92.46/97.82 %	98.16%/47F-&137F+/ 92.39%/97.84%	
SimpleImputer (mode)	XG boosting	98.19%/45F- & 136F+/92.46/97.82 %	98.18%/43F-&139F+/ 92.31%/97.77%	
RandomOverSampler	XG boosting	98.19%/45F- & 136F+/92.46/97.82 %	94.96%/227F-&691F+ /94.97%/94.77%	

Random UnderSampler	XG boosting	98.19%/45F- & 136F+/92.46/97.82 %	95.34%/22F-&64F+/ 95.37%/93.49%	
Min Max Scaler	XG boosting	98.19%/45F- & 136F+/92.46/97.82 %	98.19%/45F-&136F+/ 92.46%/97.82%	
Standard Scaler	XG boosting	98.19%/45F- & 136F+/92.46/97.82 %	98.19%/45F-&136F+/ 92.46%/97.82%	
dropna() Random UnderSampler Standard Scaler	XG boosting	98.19%/45F- & 136F+/92.46/97.82 %	96.25%/9F-&42F+/ 96.26%/93.82%	

Summary:

Number of Pre-processing Techniques applied with their names: 8

- dropna()
- simpleimputer (median)
- simpleimputer (mean)
- simpleimputer(mode) Random Under Sampler
- Random Over Sampler
- Min Max Scaler
- Standard Scaler

Number of Data Mining Algorithms applied with their names: 5

- KNN
- XG boosting
- Random Forest Classifier
- Support Vector Machine
- Naive bayes classifier

Which algorithm showed highest performance after all pre-processing techniques and WHY?:

KNN works great compared to any other machine learning algorithms. It has a great accuracy score, minimum False positives, excellent ROC AUC values and maximum average accuracy among other models with best pre-processing techniques.

Conclusion-Write in your own words:

As we observe, XG boost worked well before pre-processing but had a lot of false positives. In our experiment false positives has higher priority than false negatives as it would spoil the integrity of our experiment. After all pre-processing SVM model brought out very good figures with minimum false positives, which is indeed a solution with improved precision.