โครงงานเลขที่ วศ.คพ. S006-2/66/2566

เรื่อง

ระบบสนับสนุนการตัดสินใจซื้อขายสินทรัพย์ด้วยฟัซซีโลจิก

โดย

ธนัตถ์ ตั้งอั้น รหัส 630610737ธนวัตน์ บำเพ็งพันธุ์ รหัส 630610736

โครงงานนี้
เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรบัณฑิต
ภาควิชาวิศวกรรมคอมพิวเตอร์
คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่
ปีการศึกษา 2566

PROJECT No. CPE S006-2/66/2566

Fuzzy Logic in Market Trading Decision Support System

Tanat Tangun 630610737 Thanawat Bumpengpun 630610736

A Project Submitted in Partial Fulfillment of Requirements
for the Degree of Bachelor of Engineering
Department of Computer Engineering
Faculty of Engineering
Chiang Mai University
2023

หัวข้อโครงงาน	: ระบบสนับสนุนการตัดสินใจซื้อขายสินทรัพย์ด้วยฟัชซีโลจิก	
	: Fuzzy Logic in Market Trading Decision Support Syste	m
โดย	: ธนัตถ์ ตั้งอั้น รหัส 630610737	
	ธนวัตน์ บำเพ็งพันธุ์ รหัส 630610736	
ภาควิชา	: วิศวกรรมคอมพิวเตอร์	
อาจารย์ที่ปรึกษา	: รศ.ดร. ศันสนีย์ เอื้อพันธ์วิริยะกุล	
	: วิศวกรรมศาสตรบัณฑิต	
สาขา	: วิศวกรรมคอมพิวเตอร์	
ปีการศึกษา	: 2566	
ภาควิชาวิศวกรรม	คอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่ ได้อนุมัติให้	
	าตามหลักสูตรปริญญาวิศวกรรมศาสตรบัณฑิต (สาขาวิศวกรรมคอมพิ	
	ขึ้น	
	หัวหน้าภาควิชาวิศ	วกรรมคอมพิวเตอร์
	(รศ.ดร.สันติ พิทักษ์กิจนุกูร)	
	10	
คณะกรรมการสอง	บโครงงาน	
		ประธานกรรมการ
	(รศ.ดร. ศันสนีย์ เอื้อพันธ์วิริยะกุล)	
		กรรมการ
	(ผศ.ดร. เกษมสิทธิ์ ตียพันธ์)	110 00711110
	(WILM & BIOABIND NONBO)	
		กรรมการ
	(รศ.ดร. นิพนธ์ ธีรอำพน)	

หัวข้อโครงงาน : ระบบสนับสนุนการตัดสินใจซื้อขายสินทรัพย์ด้วยฟัซซีโลจิก

: Fuzzy Logic in Market Trading Decision Support System

โดย : ธนัตถ์ ตั้งอั้น รหัส 630610737

ธนวัตน์ บำเพ็งพันธุ์ รหัส 630610736

ภาควิชา : วิศวกรรมคอมพิวเตอร์

อาจารย์ที่ปรึกษา : รศ.ดร. ศันสนีย์ เอื้อพันธ์วิริยะกุล

ปริญญา : วิศวกรรมศาสตรบัณฑิตสาขา : วิศวกรรมคอมพิวเตอร์

ปีการศึกษา : 2566

บทคัดย่อ

ในการวิเคราะห์ทางเทคนิค มีการใช้อินดิเคเตอร์ทางเทคนิคและปัจจัยอื่นๆมาใช้ช่วนในการตัดสินใจ ซึ่ง หลายๆอย่างก็มีการตีความหมายด้วยเกณฑ์ที่ไม่สามารถรับความไม่แน่นอนและความผันผวนของตลาดได้ เช่น ค่าคงที่ เป็นต้น และถ้าเราใช้อินดิเคเตอร์ทางเทคนิดหลายๆ อันด้วยกันแล้วการตีความหมายแต่ละอย่าง พร้อมๆกันก็เป็นเรื่องที่เราทำได้ยาก ดังนั้นทางผู้จัดจึงสร้างระบบเพื่อช่วยนักลงทุนในการเทรดโดยนำอินดิเค เตอร์ทางเทคนิคและปัจจัยอื่นๆ ของผู้ใช้งานที่ใช้ในการวิเคราะห์การซื้อ และการขายมาสร้างอินดิเคเตอร์ตัว ใหม่ที่ช่วยตัดสินใจโดยใช้ Fuzzy logic ซึ่งต่างจากอินดิเคเตอร์ทางเทคนิคแบบดั้งเดิม เนื่องจากสามารถเอา มุมมองการวิเคราะห์ส่วนตัวของผู้ใช้งานใส่เข้าไปในอินดิเคเตอร์ตัวนี้ได้ โดยอินดิเคเตอร์ตัวนี้จะรับข้อมูลอย่าง เช่น RSI, MA, การทำกำไรของสินทรัพย์, ความผันผวนของตลาด และข้อมูลอื่นๆ ที่ผู้ใช้งานอาจจะต้องการ ในขณะที่เอาต์พุตคือสัญญาณการซื้อ และการขาย หรือสัญญาณวิเคราะห์อื่นๆ ที่ผู้ใช้งานต้องการสร้าง ขึ้น ด้วยวิธีดังกล่าวอินดิเคเตอร์ของเราจะสามารถช่วยนักลงทุนในการจัดการกับข้อมูลหลายๆปัจจัยที่ผู้ใช้งาน ใช้ในการวิเคราะห์ ออกมาเป็นสัญญาณใหม่เพียง 1 หรือ 2 สัญญาณที่เข้าใจง่าย เพื่อใช้ในการช่วยตัดสินใจ เราจะสร้างเว็บแอพพลิเคชั่นจากไอเดียดังกล่าวข้างต้น แล้วเผยแพร่เพื่อเก็บผลตอบรับจากผู้ใช้งาน

สารบัญ

	สารเ สารเ	ัดย่อ	୩ ଜ ସ
1	1.2 1.3 1.4 1.5 1.6 1.7	ที่มาของโครงงาน วัตถุประสงค์ของโครงงาน ขอบเขตของโครงงาน ประโยชน์ที่ได้รับ เทคโนโลยีและเครื่องมือที่ใช้ แผนการดำเนินงาน บทบาทและความรับผิดชอบ ผลกระทบด้านสังคม สุขภาพ ความปลอดภัย กฎหมาย และวัฒนธรรม	1 1
2		ฎีที่เกี่ยวข้อง ฟัชซีลอจิก (Fuzzy Logic)	3 3 3
	2.2	2.1.2 ระบบประมวลผลฟัซซีลอจิก (Fuzzy Logic System) การหาค่าที่เหมาะสมที่สุดโดยกลุ่มของอนุภาค (Particle Swarm Optimization (PSO)) 2.2.1 อนุภาค (Particle) 2.2.2 อัลกอริทึมสำหรับการจัดระเบียบกลุ่มของอนุภาค	3 6 6 7
	2.3 2.4	ความรู้ตามหลักสูตรซึ่งถูกนำมาใช้หรือบูรณาการในโครงงาน	9
3		สร้างและขั้นตอนการทำงาน	10
	3.1		
		การสร้างตัวชี้วัดทางเทคนิคด้วย Fuzzy Logic	
	3.2	3.2.1 ตัวแปรทางภาษา (Linguistic Variable)	11
		3.2.2 Fuzzy Rules	11
	3.3	การปรับแต่ง Fuzzy Logic ด้วย PSO	12
		9	12
		3.3.2 Backtesting	12
	2.4	3.3.3 Objective Function	13
	3.4 3.5	การจัดการเงินทุน	14 15
	3.6	การพัฒนาเว็บไซต์	17
	3.7	แผนภาพกระแสข้อมูลโดยรวมของระบบ (Data Flow Diagram)	17
4	การเ	กดลองและผลลัพธ์	19
	4.1	พารามิเตอร์ในการใช้ PSO	19
	4.2	AROON-MACD	20
	4.3	RSI-BB	20
	1 1	005000000000000000000000000000000000000	\sim
	4.4 4.5	การทดลองกับตลาด sideway, และตลาด bearish	2121

	รุปและข้อเสนอแนะ
	* สรุปผล
5.2	ปัญหาที่พบและแนวทางการแก้ไข
5.3	ข้อเสนอแนะและแนวทางการพัฒนาต่อ
บรรณาเ	เ๋บรท
.1	Backend
2.	Frontend
• —	ၿပီး မရိမ
.3	การตั้งค่าของตัวชี้วัด

สารบัญรูป

2.1	ฟัชซีเซต หนาว,อบอุ่น,ร้อน และฟังก์ชันภาวะสมาชิก	3
2.2	ตัวอย่างการทำงานของระบบประมวลผลฟัชซีลอจิก	4
2.3	ตัวอย่างกราฟฟังก์ชันภาวะสมาชิก Triangular function	4
2.4	9	6
2.5	รูปแบบของเพื่อนบ้านสำหรับการจัดระเบียบกลุ่มของอนุภาค ทอพอโลยีแบบดาว	7
2.6	รู้ปแบบของเพื่อนบ้านสำหรับการจัดระเบียบกลุ่มของอนุ่ภาค ทอพอโลยีแบบวงแหวน	7
3.1	โครงสร้างของการจัดเก็บข้อมูล โดนเส้นประคือทำครั้งเดียวในตอนแรกเริ่ม และเส้นที่บจะ	
	ทำในทุกๆ ชม. โดยเป็นการเรี้ยกใช้โปรแกรม dBUpdater ใน AWS Lambda	10
3.2		11
3.3	ตัวแปรทางภาษาและตัวแปรที่เราต้องการจะปรับแต่ง $\mu_{ ext{medium}} = b(1-rac{ x-a }{s})$ (ในที่นี้คือ	
	เราจะปรับแต่งค่าของ a,b,s)	13
3.4	ตัวอย่างของ Net Profit และ Maximum Drawdown	14
3.5	แผนภาพกระแสข้อมูล	18
4.1	Fuzzy Rules ของตัวชี้วัด AROON-MACD จากในระบบของเรา	20
4.2	Fuzzy Rules ของตัวชี้วัด RSI-BB จากในระบบของเรา	22
1	ตัวอย่างข้อมูลตลาดหุ้นในฐานข้อมูล	26
2	UI/UX ของแอปพลิเคชันบนโทรศัพท์	27
3	UI/UX ของเว็บไซต์	28
4		29
5	ตัวแปรทางภาษาของตัวชี้วัด RSI-BB จากในระบบของเรา	30

สารบัญตาราง

3.1	ตัวอย่างของ Fuzzy Rules ที่ใช้แค่ RSI และ Bollinger Band เพื่อสร้าง long และ short.	12
4.1	ตัวชี้วัดที่นำมาใช้ในการเข้าซื้อ	19
4.2		20
4.3		21
4.4		21

บทที่ 1 บทนำ

1.1 ที่มาของโครงงาน

ในปัจจุบัน, นักลงทุนมีการใช้การวิเคราะห์ทางเทคนิค (Technical Analysis) เพื่อช่วยให้การซื้อขายสินทรัพย์ในระยะสั้นได้กำไรสูงสุดเท่าที่เป็นไปได้ ซึ่งก็มักจะมีการใช้ตัวชี้วัดทางเทคนิค (Technical Indicators) หลายๆ อัน ในการที่จะพยายามหาจุดเข้าซื้อ หรือจุดขาย โดย ตัวชี้วัดทางเทคนิคเหล่านี้ส่วนใหญ่แล้วเป็นการคำนวณทางสถิติที่ใช้ ราคาย้อนหลัง, ปริมาณการซื้อขายย้อนหลัง, หรืออื่นๆ ในการ คำนวณค่ามาเพื่อที่ จะพยายามทำนายทิศทางของตลาด ซึ่งเราสามารถตีความหมายค่าของตัวชี้วัดทางเทคนิคด้วยเกณฐ์บางอย่าง เช่น สำหรับ RSI (Relative Strength Index) วิธีตีความหมายโดยทั่วไปคือ ถ้า RSI มากกว่า 70 หมายความว่าตลาดอยู่ใน ภาวะซื้อมากเกินไปให้ขาย และถ้า RSI น้อยกว่า 30 หมายความว่าตลาดอยู่ในภาวะขาย มากเกินไปให้เข้าซื้อ

ผู้จัดทำคิดว่าสามารถทำได้ดีกว่าการตีความหมายแบบในตัวอย่างก่อนหน้านี้ โดยใช้ Fuzzy Rule ในการตีความหมายจะให้ผลลัพธ์ที่ดีกว่าเนื่องจากตลาด ซื้อขายสินทรัพย์นั้นมีความผันผวนและไม่แน่นอน ซึ่ง Fuzzy Logic นั้นสามารถทำงานได้ดีในการตีความ และใช้ข้อมูลที่คลุมเครือและไม่แน่นอน นอกจากนี้ใน งานวิจัยของ [1] ก็มีการใช้ Fuzzy Logic ในการระบบการซื้อขายสินทรัพย์ที่สำหรับจังหวะการเข้าซื้อ และ การจัดการเงินทุน ซึ่งทำงานได้ดีในตลาด NASDAQ100 และ EUROSTOXX ใน [2] ก็มีการใช้ Fuzzy Logic ในการสร้างตัวซื้วัดทางเทคนิคจากการรับความเสี่ยงของผู้ใช้, ข้อมูลของตลาด, และอื่นๆ ซึ่งได้ผลลัพธ์ ว่าตัวซื้วัดทางเทคนิคจาก Fuzzy Logic มีประสิทธิภาพมากกว่าตัวซื้วัดทางเทคนิคแบบปกติ ได้แก่ MA, RSI และ MACD

ผู้จัดทำจึงได้สร้างระบบในการสร้างตัวชี้วัดทางเทคนิคใหม่จากตัวชี้วัดทางเทคนิค เช่น MACD, RSI, และอื่นๆ ด้วย Fuzzy Logic และสร้างระบบการจัดการเงินทุนด้วย optimal-F ที่ดัดแปลงให้ใช้ตัวชี้วัดทาง เทคนิคที่มาจาก Fuzzy Logic (อ้างอิงจาก [1]) เพื่อช่วยในการตัดสินใจซื้อขายสินทรัพย์ให้ได้กำไรมากยิ่ง ขึ้น โดยระบบทั้งหมดนี้จะมีเว็บไซต์ และแอพโทรศัพท์แอนดรอยด์เป็นอินเตอร์เฟซในการใช้งาน โดยผู้จัดจะ ทำตัวชี้วัดจาก Fuzzy Logic นี้บน 2 ตลาดก็คือตลาดหุ้น NASDAQ และตลาด Crypto-Currency เพื่อ เปรียบเทียบความแตกต่างของผลลัพธ์ในตลาดที่มีความผันผวนต่างกัน และมีความถี่ของข้อมูลที่แตกต่างกัน

1.2 วัตถุประสงค์ของโครงงาน

- 1. เพื่อพัฒนา Fuzzy Logic ร่วมกับ Particle Swarm Optimization (PSO) สำหรับการสร้างวิธิการ ซื้อขายเฉพาะของแต่ละสินทรัพย์
- 2. เพื่อสร้างเว็บไซต์เพื่อให้ผู้ใช้งานสามารถใช้งานระบบได้

1.3 ขอบเขตของโครงงาน

ข้อมูลที่ใช้งานคือข้อมูลของตลาดหุ้น NASDAQ ที่ได้มาจาก AlphaVantage (และ Finnhub) ในช่วงประ-มาณไตรมาสแรกของปี 2021 ถึงปัจจุบัน โดยมีของบริษัท TSLA, NKE, และ JPM และข้อมูลของตลาด Crypto-Currency จาก Binance โดยมี BTC, ETH และ BNB ในช่วงตั้งแต่ที่ Binance มีข้อมูลให้ รูป แบบของข้อมูลจะอยู่ในรูปของแท่งเทียนซึ่งมี ราคาเปิด, ราคาสูงสุด, ราคาต่ำสุด, ราคาปิด, และปริมาณการ ซื้อขาย ในช่วงเวลา 1 ชั่วโมง

1.4 ประโยชน์ที่ได้รับ

เว็บไซต์ที่สามารถโชว์ตัวชี้วัดทางเทคนิคจาก Fuzzy Logic ของเราทั้งที่ได้มาจากการปรับแต่งด้วย PSO และแบบที่จัดทำขึ้นมาเอง โดยมี UI ให้ user ปรับแต่ง Fuzzy Logic ต่างๆ เองได้ และมีราคาสินทรัพย์ที่ อยู่ในรูปแบบแท่งเทียนโชว์อยู่ด้วย

1.5 เทคโนโลยีและเครื่องมือที่ใช้

- 1. Actix (Web Server Framework), Rust: สำหรับพัฒนาในส่วนของ Backend, การฝึกสอน Model, และ API ไว้ติดต่อกับ Frontend
- 2. SvelteKit (Web Application Framework), Typescript: สำหรับพัฒนา Frontend ในส่วนของ หน้าเว็บไซต์
- 3. MongoDB: สำหรับเก็บข้อมูลตลาดสินทรัพย์ที่เอาไว้ใช้ในการฝึกสอน Model, ใช้ในการแสดงบน Frontend และเก็บ Model ที่ฝึกสอนแล้ว

1.6 แผนการดำเนินงาน

1.7 บทบาทและความรับผิดชอบ

- นายธนัตถ์ ตั้งอั้น รหัส 630610737 ทำในส่วนของ Backend โดยมีองค์ประกอบหลักๆ ก็คือตัวเว็บ เซิฟเวอร์, database, การคำนวณ fuzzy logic และตัวชี้วัดทางเทคนิคต่างๆ และ การปรับแต่ง fuzzy logic ด้วย PSO
- นายธนวัตน์ บำเพ็งพันธุ์ รหัส 630610736 ทำในส่วนของ Frontend คือการออกแบบ UI/UX, สร้าง เว็บและแอปพลิเคชันมือถือเพื่อติดต่อกับ User และบริการเว็บเซิฟเวอร์

1.8 ผลกระทบด้านสังคม สุขภาพ ความปลอดภัย กฎหมาย และวัฒนธรรม

ระบบนี้อาจจะสามารถต่อเติมด้วยการใส่ตัวชี้วัดทางเทคนิคอื่นๆ ที่อาจจะมาจากแหล่งต่างๆมาเพิ่มความละ-เอียดในการวิเคราะห์บางอย่าง ซึ่งถ้าระบบนี้สำเร็จ ระบบนี้อาจจะเป็นเครื่องมือสำคัญให้กับนักลงทุนหลายๆ คน และสามารถช่วยสร้างกำไรให้นักลงทุนเพิ่มได้

บทที่ 2 ทฤษฎีที่เกี่ยวข้อง

การทำโครงงาน เริ่มต้นด้วยการศึกษาค้นคว้า ทฤษฎีที่เกี่ยวข้อง หรือ งานวิจัย/โครงงาน ที่เคยมีผู้นำเสนอไว้ แล้ว ซึ่งเนื้อหาในบทนี้ก็จะเกี่ยวกับการอธิบายถึงสิ่งที่เกี่ยวข้องกับโครงงาน เพื่อให้ผู้อ่านเข้าใจเนื้อหาในบท ถัดๆ ไปได้ง่ายขึ้น

2.1 ฟัซซีลอจิก (Fuzzy Logic)

พิชซีลอจิก เป็นแนวคิดเกี่ยวกับการวิเคราะห์เชิงตรรกะ แต่การวิเคราะห์ไม่ได้มีเพียง ถูกกับผิด หรือ 0 กับ 1 เนื่องจากเหตุการณ์ในความเป็นจริงสร้างความคลุมเครือในการวิเคราะห์ เช่น อุณหภูมิอากาศ 20 องศา เซลเซียสเป็นอากาศที่หนาวไปหรือไม่? หากนำคำถามนี้ไปให้ผู้วิเคราะห์ต่างที่อยู่อาศัยกัน จะได้คำตอบที่ ไม่เหมือนกัน เนื่องจากการวิเคราะห์แนวนี้ไม่เหมาะกับการตอบเพียงใช่หรือไม่ การใช้พิชซีลอจิก (Fuzzy Logic) มาใช้วิเคราะห์เหตุการณ์จึงจะได้คำตอบที่ดีกว่า แทนที่จะตอบเพียงแค่ ใช่หรือไม่ คำตอบที่ได้จะเป็น พจน์ของ ตัวแปรทางภาษา (Linguistic Variable) และความเป็นสมาชิก เช่นตัวแปรทางภาษาอุณหภูมิมี ค่า หนาว 60% อบอุ่น 15% ร้อน 0% (เพราะผู้วิเคราะห์อาจจะรู้สึกหนาวแต่ก็ไม่ได้หนาวเกินไปหรืออบอุ่น อยู่เล็กน้อย) จะเห็นว่าการบอกค่าเชิงตรรกะแบบพิชซีสะท้อนความจริงได้ดีกว่าการตอบแบบเดิม

2.1.1 ฟัซซีเซต (Fuzzy Set)

เป็นเซตที่ขอบเขตไม่เด่นชัดหรือคลุมเครือโดยการบอกค่าเชิงตรรกะจะถูกสร้างเป็นฟัซซีเซตที่เราสามารถวัด ระดับความเป็นสมาชิก (Membership Value) ของสมาชิกในเอกภพสัมพัทธ์ต่อฟัซซีเซตนั้นผ่านทางฟังก์ชัน ภาวะสมาชิก (Membership function) ซึ่งเป็นฟังก์ชันที่รับสมาชิกในเอกภพสัมพัทธ์แล้วส่งไปที่ช่วง [0,1] โดยจากตัวอย่างดังกล่าวจะสามารถสร้างเป็นฟัซซีเซ็ตได้เป็น เซ็ตของอากาศ หนาว, อบอุ่น, ร้อน โดยให้ อุณหภูมิเป็นสมาชิกของเซ็ตซึ่งสมาชิกแต่ละตัวสามารถเป็นสมาชิกของทุกเซ็ตได้ เช่น อุณหภูมิ 20 องศาเซลเซียส มีระดับความเป็นสมาชิกในฟัซซีเซตอากาศหนาว 0.6, อบอุ่น 0.15, ร้อน 0

รูปที่ 2.1: ฟัชซีเซต หนาว,อบอุ่น,ร้อน และฟังก์ชันภาวะสมาชิก

2.1.2 ระบบประมวลผลฟัชซีลอจิก (Fuzzy Logic System)

เป็นการนำเอาความสามารถของพีซซีลอจิกมาสร้างเป็นระบบประมวลผลแบบฟัซซีลอจิกซึ่งเป็นการเลียน แบบการคิด การหาเหตุผล การตัดสินใจและการกระทำของมนุษย์ โดยจะมีส่วนประกอบสำคัญ 4 ส่วนคือ 1. การแปลงข้อมูลขาเข้าเป็นฟัซซี (Fuzzification), 2. กฏ (Fuzzy Rules), 3. การอนุมานหรือการตี-

ความ (Inference), 4. การแปลงข้อมูลฟัซซีเป็นตัวเลข (Defuzzification) ซึ่งจะมีตัวอย่างการทำงานเมื่อ ใช้ระบบประมวลผลฟัซซีลอจิกดังภาพรวมในรูปที่ 2.2

รูปที่ 2.2: ตัวอย่างการทำงานของระบบประมวลผลฟัชซีลอจิก

โดยในงานนี้เราใช้ระบบฟัชซีแบบ Mamdani

การแปลงข้อมูลขาเข้าเป็นฟัซซี (Fuzzification)

เป็นการแปลงข้อมูลอินพุตทั่วไปที่เป็นตัวเลข (Crisp Set) ไปเป็นข้อมูลในรูปแบบฟัชซีเซต หรือที่เรียกว่า ตัวแปรทางภาษา (Linguistic Variable) โดยจะสร้างฟังก์ชันภาวะสมาชิกซึ่งขึ้นอยู่กับลักษณะของข้อมูล ขาเข้าและความสำคัญต่อข้อมูลเอาท์พุต

$$\mu_{A}(x) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{b-a} & \text{if } a < x < b \\ \frac{c-x}{c-b} & \text{if } b \le x < c \\ 0 & \text{if } x \ge c \end{cases}$$

$$(2.1)$$

รูปที่ 2.3: ตัวอย่างกราฟฟังก์ชันภาวะสมาชิก Triangular function

กฏฟัซซี (Fuzzy Rules) [3]

เป็นส่วนของการกำหนดวิธีการควบคุมซึ่งได้มาจากผู้เชี่ยวชาญหรือการปรับแต่งทดลองขึ้นเองโดยจะอยู่ในรูป แบบของชุดข้อมูลแบบกฎของภาษา ซึ่งกฎฟัชซีแบบที่นิยมใช้มากและใช้ในงานนี้เป็นกฎฟัชซีแบบ ถ้า-แล้ว (If-then rule) โดยในงานนี้ได้ใช้วิธีการของ Mamdani หากมีอินพุต $X_1,X_2,...,X_n$ และพจน์ภาษา $T(x_i)$ ของตัวแปรทางภาษา x_i ในเซตสากล X_i สำหรับ $1 \leq i \leq n$ ในขณะเดียวกัน Y ก็ถูกนิยามด้วยตัวแปรทาง

ภาษา และพจน์ภาษา T(y) ของตัวแปรทางภาษา y ในเซตสากล Y

IF
$$x_1$$
 is $A^{(1)}$ and x_2 is $A^{(2)}$ and ... and x_n is $A^{(n)}$ THEN y is B

โดยที่ $A^{(1)},A^{(2)},...,A^{(n)}$ เป็นพจน์ในภาษา $T(x_i)$ และ ${\bf B}$ เป็นพจน์ในภาษา T(y)

การอนุมานหรือการตีความ (Inference) [3]

เป็นส่วนของการประมวลผลจะมีการตีความตามเงื่อนไขที่กำหนดไว้ หรือก็คือตีความผ่านกฏฟัซซี ซึ่งจากกฏ-ฟัซซีดังกล่าวจะประกอบด้วยกันสองส่วนคือ ส่วนที่เกิดขึ้นก่อน (If Part) และผลที่ตามมา (Then part) โดย-ที่อินพุตและเอาท์พุตนั้นอาจมีหลายตัวก็ได้ขึ้นอยู่กับการออกแบบ ผลที่ตามมาของแต่ละกฏจะถูกรวมกันด้วย วิธีทางตรรกศาสตร์เพื่อให้ได้ค่าเอาท์พุตเพียงค่าเดียว

โดยจะเริ่มจากการหาระดับความเข้ากันได้ของแต่ละอินพุต $(x_i, i \in \{1, 2, ..., n\})$ กับพจน์ภาษาในกฎ นั้น และเนื่องจากลักษณะของส่วนที่เกิดขึ้นก่อน (If Part) ของกฎต้องการให้ทุกอินพุตเป็นไปตามพจน์ภาษา ดังนั้นค่าความเป็นสมาชิกของแต่ละอินพุตในแต่ละพจน์ภาษาจะถูกรวมกันในลักษณะของตัวเชื่อม conjunction นั่นคือที่กฎ j

$$\alpha_{j} = \min\{A_{i1,j}^{(1)}(x_{1}), A_{i2,j}^{(2)}(x_{2}), ..., A_{in,j}^{(n)}(X_{n})\}$$
(2.2)

และเอาต์พุตของกฎ j เป็นฟัชซีเซตที่เกิดจากการตัด (cut off) พจน์ภาษา $B_{i,j}$ ด้วย $lpha_j$ หรือ

$$OUT_{x_1,x_2,...,x_n}^{(j)}(y) = min(A_{i_1,i}^{(1)}(x_1), A_{i_2,i}^{(2)}(x_2), ..., A_{i_n,i}^{(n)}(x_n), B_{i,i}(y))$$
(2.3)

และเมื่อได้เอาต์พุตของแต่ละกฏแล้ว พืชซีเอาต์พุตจากทุกกฏจะถูกรวมกันโดยการหาพัชซียูเนียนมาตรฐาน (ซึ่งจะได้ฟัชซีเอาต์พุตรวม (OUT)) สมมติให้มีกฏทั้งหมด k กฏ จะได้ OUT เป็น

$$OUT_{x_1,x_2,...,x_n}(y) = \max_{j \in \{1,2,...,k\}} \min(A_{i1,j}^{(1)}(x_1), A_{i2,j}^{(2)}(x_2), ..., A_{in,j}^{(n)}(x_n), B_{i,j}(y))$$
 (2.4)

ตัวอย่าง สมมติให้ระบบมีกฎ 2 กฎ โดยที่แต่ละกฎจะมีอินพุต 2 อินพุต และแต่ละอินพุตในแต่ละกฎมีพจน์ ภาษาดังรูป โดยที่มีกฎดังนี้คือ

$$R1: IF x_1 is L_1 and x_2 is H_2, THEN y is L$$

$$R2: IF x_1 is M_1 and x_2 is M_2, THEN y is H$$

ถ้ากำหนดให้ x_1 มีค่าเท่ากับ 2 และ x_2 มีค่าเท่ากับ 5 จะได้ว่า

$$\alpha_1 = min(L_1(x_1), H_2(x_2)) = min(1, 0.5) = 0.5$$

$$\alpha_2 = min(M_1(x_1), H_2(x_2)) = min(0, 0.5) = 0$$

ฟัซซีเอาต์พุตของกฎที่ 1 และ 2 และฟัซซีเอาต์พุตรวม (OUT) ดังที่แสดงในรูป 2.4

รูปที่ 2.4: ตัวอย่างการอนุมาน

การแปลงข้อมูลฟัซซีเป็นค่าปกติ (Defuzzification)

เนื่องจากผลลัพธ์ที่ได้จากการตีความนั้นยังอยู่ในรูปแบบของฟัซซี ในส่วนนี้เป็นการทำการแปลงข้อมูลที่อยู่ใน รูปแบบฟัซซีเป็นข้อมูลที่เป็นตัวเลข (Crisp set) ด้วยวิธีทางคณิตศาสตร์ เช่น Center of Area (Centroid) เพื่อนำค่าที่ได้มาใช้ในการตัดสินใจและนำไปควบคุมระบบได้

วิธีแปลงโดยการหา Centroid จะหาค่าเอาต์พุตจากจุดศูนย์กลางของพื้นที่กราฟได้ดังสมการต่อไปนี้

$$de_{y} = \frac{\int B(z) \cdot z dz}{\int B(z) dz}$$
 (2.5)

โดย B(z) คือ ค่าความเป็นสมาชิก (Membership Value) ของตำแหน่ง z

2.2 การหาค่าที่เหมาะสมที่สุดโดยกลุ่มของอนุภาค (Particle Swarm Optimization (PSO))

จาก [3] การหาค่าที่เหมาะสมที่สุดโดยกลุ่มของอนุภาค เป็นอัลกอริทึมการค้นหาที่ขึ้นกับประชากร ซึ่งเป็น-การจำลองพฤติกรรมเชิงสังคมของฝูงนก ท่าทางของฝูงนกเชิงภูมิศาสตร์ที่คาดเดาไม่ได้ โดยที่มีจุดประสงค์ใน การค้นพบรูปแบบที่ควบคุมความสามารถของนกในการบินพร้อมกันและสามารถเปลี่ยนทิศทางได้อย่างกะ-ทันหัน โดยการรวมกลุ่มกันใหม่ในลักษณะที่เหมาะสมที่สุด ทำให้เกิดอัลกอริทึมสำหรับการจัดระเบียบกลุ่ม ของอนุภาค ที่ง่ายและมีประสิทธิภาพ

2.2.1 อนุภาค (Particle)

อนุภาค 1 อนุภาค คือคำตอบที่เป็นไปได้ของปัญหาการหาค่าที่เหมาะสม โดยอนุภาคจะบินในปริภูมิการค้นหา หลายมิติ การเปลี่ยนแปลงของอนุภาคในกลุ่มนั้นมีอิทธิพลมาจากประสบการณ์ หรือความรู้ของเพื่อนบ้าน รูป ร่างของเพื่อนบ้านมีหลายรูปแบบ และมีการสร้างอัลกอริทึมตามแต่ละรูปแบบ

ทอพอโลยีแบบดาว (Star Topology)

รูปแบบนี้ทำให้แต่ละอนุภาคสามารถติดต่อกับอนุภาคอื่นได้ทุกอนุภาค แต่ละอนุภาคจะสนใจอนุภาคที่ดีที่สุด ในกลุ่ม และแต่ละอนุภาคจะเลียนแบบอนุภาคที่ดีที่สุดในกลุ่มนี้เอง โดยอัลกอริทึมที่จำลองสถานการณ์นี้คือ อัลกอริทึมดีที่สุดแบบรวม (global best)

รูปที่ 2.5: รูปแบบของเพื่อนบ้านสำหรับการจัดระเบียบกลุ่มของอนุภาค ทอพอโลยีแบบดาว

ทอพอโลยีแบบวงแหวน (Ring Topology)

รูปแบบนี้ทำให้แต่ละอนุภาคจะติดต่อได้กับเพื่อนบ้านที่ใกล้ที่สุด n อนุภาค ดังแสดงในรูป เมื่อ n=2 ดังนั้น อนุภาคเคลื่อนที่ตามเพื่อนดีที่ในกลุ่มเพื่อนบ้านที่ติดต่อได้ ซึ่งอัลกอริทึมที่จำลองสถานการณ์นี้คือ อัลกอริทึม ดีที่สุดแบบเฉพาะที่ (local best)

รูปที่ 2.6: รูปแบบของเพื่อนบ้านสำหรับการจัดระเบียบกลุ่มของอนุภาค ทอพอโลยีแบบวงแหวน

2.2.2 อัลกอริทึมสำหรับการจัดระเบียบกลุ่มของอนุภาค

อนุภาคจะบินอยู่ในปริภูมิการค้นหาหลายมิติ โดยที่ตำแหน่งของอนุภาคจะเปลี่ยนไปตามประสบการณ์ของตัว อนุภาคเอง หรือของเพื่อนบ้าน ให้ $x_i(t)$ เป็นตำแหน่งของอนุภาค P_i ในปริภูมิไฮเปอร์ (hyperspace) ที่เวลา

t และตำแหน่งของอนุภาคจะเปลี่ยนได้โดยการเพิ่มความเร็ว $v_i(t)$ ให้กับตำแหน่งปัจจุบันดังนี้

$$x_i(t) = x_i(t-1) + v_i(t)$$
 (2.6)

ซึ่งความเร็วนี้เป็นตัวขับในกระบวนการหาค่าที่เหมาะสม และสะท้อนถึงการแลกเปลี่ยนข้อมูลในสังคม

ฟังก์ชันจุดประสงค์ (Objective Function)

เป็นฟังก์ชันที่เราสร้างขึ้นมาหรือฟังก์ชันปัญหาที่เราต้องการหาค่าที่เหมาะสมที่สุดเพื่อที่จะทำให้ได้คำตอบที่ดี ที่สุด และจะใช้คำนวณหาค่าความเหมาะสม ซึ่งเปรียบเหมือนประสิทธิภาพของแต่ละอนุภาค

อัลกอริทึมดีที่สุดแบบรวม (Global Best)

อัลกอริทึม gbest นี้เป็นการใช้โครงสร้างทอพอโลยีแบบดาว ดังนั้นการเคลื่อนที่ของอนุภาคจะขึ้นอยู่กับตำ-แหน่งที่ดีที่สุดของอนุภาคตัวที่ดีที่สุดในกลุ่ม และประวัติจากประสบการณ์ของตนเอง ดังนั้นอัลกอริทึมนี้สา-มารถสรุปได้ดังนี้

- 1. ตั้งค่ากลุ่ม (P(t) ที่ t=0) ของอนุภาค โดยที่ตำแหน่ง ($x_i(t)$) ของอนุภาค $i(P_i \in P(t))$ จะถูกสุ่ม โดยให้ค่าอยู่ภายในปริภูมิไฮเปอร์ ที่ต้องการค้นหาคำตอบ
- 2. คำนวณค่าประสิทธิภาพ F ของแต่ละอนุภาค โดยใช้ตำแหน่งปัจจุบัน $x_i(t)$
- 3. เปรียบเทียบค่าที่ได้ในข้อ 2 ของอนุภาค i กับค่าที่ดีที่สุดของตนเอง $(pbest_i)$ ดังนี้ ถ้า $F(x_i(t)) < pbest_i$ แล้วกำหนดให้ $pbest_i = F(x_i(t))$ และ $x_{pbest_i}(t) = x_i(t)$
- 4. เปรียบเทียบค่าที่ได้ในข้อ 2 ของอนุภาค i กับค่าที่ดีที่สุดของกลุ่ม (gbest) ดังนี้ ถ้า $F(x_i(t)) < gbest$ แล้วกำหนดให้ $gbest = F(x_i(t))$ และ $x_{gbest}(t) = x_i(t)$
- 5. ปรับความเร็วของแต่ละอนุภาคดังนี้

$$v_i(t) = v_i(t-1) + \rho_1(x_{pbest_i} - x_i(t)) + \rho_2(x_{gbest} - x_i(t))$$
 (2.7)

โดยที่ ho_1 และ ho_2 เป็นค่าที่ถูกสุ่มมา

- 6. ปรับตำแหน่งของแต่ละอนุภาค ตามสมการที่ 2.6 และตั้งค่า t=t+1
- 7. กลับไปยังข้อ 2 และทำซ้ำ จนกระทั่งจะลู่เข้า (converge)

อัลกอริทึมดีที่สุดแบบเฉพาะที่ (Local Best)

อัลกอริทึม lbest นี้เป็นการใช้เพื่อนบ้านในลักษณะของทอโพโลยีแบบวงแหวน ดังนั้นอนุภาคที่มีผลต่อการ เคลื่อนที่คืออนุภาคที่อยู่ในเพื่อนบ้าน ที่ดีที่สุดและตำแหน่งที่ดีที่สุดของตนเอง ซึ่งอัลกอริทึมนี้จะคล้ายกับแบบ gbest เพียงแต่ในขั้นตอนที่ 4 และ 5 เปลี่ยนจาก gbest เป็น lbest นั่นเอง

อัลกอริทึม lbest นี้จะชำในการลู่เข้ามากกว่าแบบ gbest แต่จะให้คำตอบที่ดีกว่า และเป็นการค้นหาโดย ครอบคลุมพื้นที่ได้กว้างกว่า

2.3 ความรู้ตามหลักสูตรซึ่งถูกนำมาใช้หรือบูรณาการในโครงงาน

ทฤษฎีฟัชชีลอจิก และการหาคำตอบที่เหมาะสมแบบฝูงอนุภาค ทั้ง 2 ทฤษฎีนี้เป็นสิ่งที่เราได้เรียนรู้มาจาก วิชา Introduction to Computational Intelligence for Computer Engineering (261456) โดยใน งานนี้เราได้นำทั้ง 2 ทฤษฎีมาใช้งานร่วมกันโดยใช้ทฤษฎีการหาคำตอบที่เหมาะสมแบบฝูงอนุภาคในการปรับ พารามิเตอร์ในระบบประมวลผลฟัชชี

2.4 ความรู้นอกหลักสูตรซึ่งถูกนำมาใช้หรือบูรณาการในโครงงาน

ความรู้เกี่ยวกับการเทรด การใช้งานและวิเคราะห์ตัวชี้วัดทางเทคนิค

บทที่ 3 โครงสร้างและขั้นตอนการทำงาน

ในบทนี้จะกล่าวถึงหลักการ, การนำทฤษฎีที่เกี่ยวข้องมาประยุกต์ใช้ และการออกแบบของระบบ

3.1 การจัดเก็บข้อมูล

โดยข้อมูลราคาหุ้นทุกตัวจะมีแหล่งที่มาจาก AlphaVantage โดยจะให้ข้อมูลย้อนหลังไป 2 ปี และใช้อัพเดท ข้อมูลแบบทุกๆ 30 นาที และในส่วนของราคา Crypto-Currency จะมีแหล่งที่มาจาก Binance ทั้งหมด ซึ่งมีการอัพเดททุกๆ 30 นาทีเช่นกัน เราใช้ MongoDB เป็น Database สำหรับจัดเก็บข้อมูลตลาดหุ้น

ในตอนเริ่มตันนั้นเราดึงข้อมูลที่ต้องการมาจาก AlphaVantage API ซึ่งได้มาเป็นข้อมูลตลาดหุ้นย้อน หลัง 2 ปีโดย และเก็บข้อมูลลง MongoDB โดยมีการแปลงข้อมูลให้เป็นในรูปแบบข้อมูลตลาดของเราซึ่งก็ จะประกอบด้วย

- 1. ticker: ชื่อของหุ้นที่ทำการซื้อขาย เช่น AAPL/USD, TSLA/USD, ETH/USDT
- 2. open: เป็นราคาซื้อขายแรกที่เกิดขึ้นใน ช่วงเวลานั้นๆ
- 3. close: เป็นราคาสุดท้ายที่เกิดขึ้นจากการซื้อขายสิ้นสุด ของช่วงเวลานั้นๆ
- 4. high: การเคลื่อนไหวของราคาหุ้น ณ ระดับราคาสูงสุดในช่วงเวลานั้นๆ
- 5. low: การเคลื่อนไหวของราคาหุ้น ณ ระดับราคาต่ำสุดในช่วงเวลานั้นๆ
- 6. volume: ปริมาณการซื้อขายในช่วงเวลานั้นๆ

จากนั้นในการอัพเดตข้อมูลทุกๆ 30 นาที เราจะใช้ Amazon EventBridge Scheduler ที่จะไปเรียกใช้ AWS Lambda ที่เราสร้างขึ้นมาโดยใน Lambda จะดึงข้อมูลจาก AlphaVantage มาอัพเดต ในส่วนของ Crypto-Currency ก็จะใช้ระบบแบบเดียวกันแต่จะใช้ Binance API ทั้งในการดึงข้อมูลครั้งแรกและการ อัพเดตแทน

รูปที่ 3.1: โครงสร้างของการจัดเก็บข้อมูล โดนเส้นประคือทำครั้งเดียวในตอนแรกเริ่ม และเส้นทึบจะทำใน ทุกๆ ชม. โดยเป็นการเรียกใช้โปรแกรม dBUpdater ใน AWS Lambda

3.2 การสร้างตัวชี้วัดทางเทคนิคด้วย Fuzzy Logic

เราจะใช้ Mamdani Fuzzy Inference System กับตัวแปรทางภาษาและ Fuzzy Rule ที่จะกล่าวด้านล่าง นี้ในการคำนวณค่าสัญญาณของเรามา โดย defuzzification method จะใช้แบบ centroid

3.2.1 ตัวแปรทางภาษา (Linguistic Variable)

สำหรับตัวชี้วัดทางเทคนิคแต่ละตัวที่เรามีให้ได้แก่ Relative Index Strength (RSI), Bollinger Band (BB), Moving Average Convergence/Divergence (MACD), Average Directional Index (ADX), Aroon oscillator (AROON), On-Balance Volume (OBV), Stochastic Oscillator, Accumulation/Distribution Indicator (A/D) ซึ่งผู้ใช้สามารถใช้ระบบของเราผ่านเว็บไซต์ ในการสร้างตัวแปรทางภาษาจากแต่ละตัวชี้วัดทางเทคนิค และก็สามารถสร้างตัวแปรทางภาษาสำหรับสัญญาที่จะออกมายก ตัวอย่างเช่น ทำป็นสัญญาณ long (ควรเข้า position long) และสัญญาณ short (ควรเข้า position short) ซึ่งจะคิดมาจากตัวแปรทางภาษาของตัวชี้วัดทางเทคนิคที่กล่าวถึงด้านบน ยกตัวอย่างตัวแปรทางภาษาที่เรา อาจจะใช้บนรูปที่ 3.2

รูปที่ 3.2: ตัวแปรทางภาษาสำหรับ RSI, Bollinger Band, long, short

3.2.2 Fuzzy Rules

เราจะใช้การตีความทั่วๆไปของแต่ละตัวชี้วัดมาสร้าง Fuzzy Rule เริ่มต้น ยกตัวอย่างเช่นถ้าเราใช้แค่ RSI และ Bollinger Band ในการสร้าง long และ short เราจะมี fuzzy rule เหมื่อนในตารางที่ 3.1 โดย ในระบบของเราจริงๆ เราจะใช้ตัวแปรทางภาษาที่เรากล่าวในหัวข้อก่อนหน้ามาทั้งหมดสร้าง Fuzzy Rule

ในการสร้างสัญญาณ long และ short และเรา จะออกแบบระบบให้ผู้ใช้สามารถปรับแต่งกฎตรงนี้ได้ในทั้ง website

RSI	Bollinger Bands	LONG	SHORT
HIGH	LONG	WEAK	WEAK
HIGH	WAIT	WEAK	STRONG
HIGH	SHORT	WEAK	VERYSTRONG
MEDIUM	LONG	WEAK	STRONG
MEDIUM	WAIT	WEAK	WEAK
MEDIUM	SHORT	STRONG	WEAK
LOW	LONG	VERYSTRONG	WEAK
LOW	WAIT	STRONG	WEAK
LOW	SHORT	WEAK	WEAK

ตารางที่ 3.1: ตัวอย่างของ Fuzzy Rules ที่ใช้แค่ RSI และ Bollinger Band เพื่อสร้าง long และ short.

3.3 การปรับแต่ง Fuzzy Logic ด้วย PSO

เป้าหมายของเราในการปรับแต่ง Fuzzy Logic ที่ใช้สำหรับการสร้างตัวชี้วัดทางเทคนิคใหม่ของเรานั้น ก็คือ การปรับแต่งตัวแปรทางภาษาต่างๆ ที่มีอยู่ fuzzy rules เพื่อให้ ตัวชี้วัดทางเทคนิคของเรานั้นสามารถสร้าง กำไรได้มากที่สุดในว*ิธีการเทรดที่เราใช้ปรับแต่ง* โดยเราจะใช้ PSO (Particle Swarm Optimization) ใน การปรับพารามิเตอร์ที่ใช้ สร้างตัวแปรทางภาษาแต่ละอัน โดยพารามิเตอร์ในการสร้าง fuzzy set นั้นจะแตก ต่างกันไปตามรูปแบบของ fuzzy set เช่นถ้าเป็นแบบสามเหลี่ยมก็จะมีพารามิเตอร์ดังที่เห็นในรูปที่ 3.3 โดย ผู้ใช้งานจะสามารถใช่ PSO ในการปรับแต่งตัวแปรทางภาษาได้เองผ่าน website ที่เราจัดทำขึ้นมา

3.3.1 กลยุทธ์ที่เราใช้ปรับแต่ง

โดยในการปรับแต่ง Fuzzy Logic ของเรานั้นอันดับแรกเลยเราต้องเลือกกลยุทธ์การเทรดที่เราต้องการปรับแต่ง ให้มีผลต่อตัวชี้วัดทางเทคนิค ยกตัวอย่างกลยุทธ์การเทรด เช่น มีเงินต้น 2000 บาท ถ้า buySignal มากกว่า 50 ให้เข้าซื้อด้วย 100 บาท ด้วย stop-loss ที่ 10% และ take profit ที่ 20%

3.3.2 Backtesting

Backtesting คือการนำกลยุทธ์การเทรดที่เราเลือก ไปใช้กับข้อมูลในอดีตในกรอบเวลาที่ผ่านๆ มาเพื่อทดสอบว่ากลยุทธ์นั้นไปใช้ในตลาดจริงๆ ในอดีตแล้วได้ผลดีแค่ไหน โดยเราสามารถเลือกกรอบเวลาที่ตลาดมีลักษณะคล้ายๆ กับในปัจจุบัน แล้วลองปรับเปลี่ยนและทดสอบกลยุธ์การเทรดนั้นๆ ได้เพื่อให้ได้ผลลัพธ์ที่เรา ต้องการ

โดยเราจะทำการ backtest ด้วยกลยุทธ์การเทรดที่เราเลือกมา แล้วเก็บข้อมูลการเทรดที่เกิดขึ้นทั้งหมด โดยแต่ละการเทรดจะมีข้อมูลดังนี้

- เวลาที่เข้า position
- เวลาที่ออก position

รูปที่ 3.3: ตัวแปรทางภาษาและตัวแปรที่เราต้องการจะปรับแต่ง $\mu_{\mathrm{medium}} = b(1-\frac{|x-a|}{s})$ (ในที่นี้คือเราจะปรับแต่งค่าของ a,b,s)

- ราคาที่เข้าซื้อ
- ราคาที่ขาย
- จำนวนเงินที่จ่ายไป
- กำไรขาดทุนที่ได้ (realizedPnl)

3.3.3 Objective Function

เราจะใช้ Objective Function ที่คำนวณมาดังนี้

$$f = \begin{cases} \infty & |\text{trades}| = 0\\ -1 \times ((\text{np} - \text{np}_r) + (\text{mdd}_r - \text{mdd})) & \text{otherwise} \end{cases}$$

โดยที่

- np = $\frac{\sum_{i=0}^n p_i (\text{realizedPnl})}{\text{startMoney}}$ คือ Net Profit ที่มีค่าอยู่ในช่วง $[0,\infty)$ ซึ่งได้จากการเทรดทั้งหมด โดยคำนวนจากข้อมูลการเทรดที่เราได้จากการทำ backtest โดย n คือจำนวนข้อมูลทั้งหมด และ $p_i (\text{realizedPnl})$ คือข้อมูลตัวที่ i โดยเอาค่า realizedPnl มา
- mdd (Maximum Drawdown ตัวอย่างในรูปที่ 3.4) มีค่าอยู่ในช่วง [0, 1] โดยเราสามารถคิดค่านี้ โดยให้

$$g(x) = \sum_{i=0}^{x} p_i(\text{realizedPnl})$$

$$mdd' = \max_{r \in (0,n)} \left[\max_{t \in (0,r)} g(t) - g(r) \right]$$
 (3.1)

แล้วให้เราจำค่า y=g(t) ที่ทำให้ได้ mdd' เยอะที่สุดไว้ แล้วจะได้ว่า $\operatorname{mdd}=\frac{\operatorname{mdd}'}{\mathcal{V}}$

- |trades| คือจำนวนของการซื้อขายที่เกิดขึ้นในการ backtest
- np_r และ mdd_r. คือค่า Net Profit และ Maximum Drawdown ที่เราได้จากการ backtest โดย ใช้ตัวแปรทางภาษาตั้งต้นก่อนที่จะทำการ ฝึกสอนด้วย PSO โดยเราจะใช้ค่านี้เป็นตัวอ้างอิงไว้เปรียน เทียบกับผลลัพธ์ของการปรับแต่งตัวแปรทางภาษาเพื่อให้เราได้ผลที่ไม่แย่ไปกว่าตัวแปรทางภาษาแบบ เดิม

ในส่วนของ hyper parameters ต่างๆ ที่เราต้องตั้งให้ PSO algorithm เช่น จำนวน particles, การคำนวณ velocity เป็นต้น จะเปลี่ยนไปตามแต่ละครั้งของการปรับแต่ง โดยเราจะทดลองหลายๆ แบบเพื่อให้ได้ตัวชี้ วัดที่มีประสิทธิภาพดีที่สุด

รูปที่ 3.4: ตัวอย่างของ Net Profit และ Maximum Drawdown

3.4 การจัดการเงินทุน

เราจะใช้ optimal-f ([4]) ที่ถูกดัดแปลงตามที่ [1] ได้ทำไว้ในส่วนของการจัดการเงินทุน ซึ่งจะบอกเราว่า ควรลงทุนโดยใช้เงินเท่าไหร่ เพื่อให้เงินกำไรเติบโตแบบ exponential โดยจะคิดมาจากผลลัพธ์ของการเทรด ก่อนหน้า ถ้าเราเทรดสำเร็จเยอะก็จะเพิ่มเงินที่จะลงทุน ถ้าเทรดพลาดเยอะก็จะลดเงินที่จะลงทุน

อันดับแรกให้เราหาค่า f ที่ทำให้ terminal wealth relative (TWR) ในสมการ 3.2 มีค่ามากที่สุด

$$TWR(f) = \prod_{i=1}^{n} HPR_i(f)$$
 (3.2)

$$HPR_{i}(f) = 1 + \frac{f \cdot p_{i}(realizedPnl)}{riskFactor}$$
(3.3)

โดยที่ HPR คือ holding perioid return หรือก็คืออัตราส่วนกำไรขาดทุนของแต่ละ position ,n คือจำนวน position ทั้งหมด, p_i (realizedPnI) คือกำไรขาดทุนของ position ที่ i, และ riskFactor คือค่าสัมบูรณ์

ของ $p_i(\text{realizedPnl})$ ที่แย่ที่สุด

แต่ในปรกติแล้วค่า f ที่เราได้มานั้นจะมีความเสี่ยงมากเกินไปเราก็จะใช้เป็น liquid-F ที่เป็น 10% ของ f เป็น liquid $_f=0.1f$

$$size = liquid_f + \frac{(output - threshold) \cdot (f - liquid_f)}{output_{max} - threshold}$$
(3.4)

โดย output คือค่าจากสัญญาน long หรือ short ของเรา, threshold คือค่าที่ output ที่ต่ำที่สุดที่เราจะเข้า position, และ output_{max} คือค่าที่มากที่สุดที่เป็นไปได้ของ output จากนั้นเราก็นำ size ไปคำนวณจำนวน ที่จะลงทุนด้วยสมการ 3.5

$$amount = \frac{C \cdot size}{price}$$
 (3.5)

โดย C คือจำนวนเงินที่เราทำไปลงทุนได้ และ price คือราคาของสินทรัพย์ที่เราจะลงทุน แล้วถ้าเรามี C ไม่ พอให้เราลงทุนมากที่สุดเท่าที่จะทำได้

3.5 เว็บเซิร์ฟเวอร์

ก่อนจะเรียกใช้ APIs ต่างๆของเรานั้นผู้ใช้ต้องทำการสร้างบัญชีเอาไว้ก่อนเพื่อให้สามารถเก็บค่าการปรับแต่ง fuzzy logic ที่ผู้ใช้แต่ละคนทำไว้ได้ แล้ว endpoints แต่ละอันนั้นก็ต้องส่ง Bearer Token ยืนยันตัวผู้ใช้มา ด้วยโดยเราจะมี endpoints ดังต่อไปนี้

- 1. GET /api/ohlc?symbol=[supported_symbols]&interval=[1d|4h|1h] จะให้ข้อมูล OHLC ของสินทรัพย์ที่เราต้องการ
- 2. POST /api/users/[]
- 3. GET /api/indicators/macd?symbol=[supported_symbols]&interval=[1d|4h|
 1h]
- 4. GET /api/indicators/macd/transformed?symbol=[supported_symbols]&interval=[1d| 4h|1h]
- 5. GET /api/indicators/rsi?symbol=[supported_symbols]&interval=[1d|4h|
 1h]
- 6. GET /api/indicators/bb?symbol=[supported_symbols]&interval=[1d|4h|1h]
- 7. GET /api/indicators/adx?symbol=[supported_symbols]&interval=[1d|4h|
 1h]
- 8. GET /api/indicators/obv?symbol=[supported_symbols]&interval=[1d|4h|
 1h]
- 9. GET /api/indicators/aroon?symbol=[supported_symbols]&interval=[1d|4h|
 1h]

- 10. GET /api/indicators/accumdist?symbol=[supported_symbols]&interval=[1d|■ 4h|1h]
- 12. GET /api/fuzzy?symbol=[supperted_symbols]&interval=[1d|4h|1h]&preset=[preset]
- 13. GET /api/settings?preset=[[preset]]
- 14. PUT /api/settings/linguisticvars?preset=[preset]
- 15. DELETE /api/settings/linguisticvars/[name]?preset=[preset]
- 16. POST /api/settings/fuzzyrules?preset=[preset]
- 17. DELETE /api/settings/fuzzyrules/[id]
- 18. GET /api/settings/presets
- 19. POST /api/settings/presets/[preset]
- 20. DELETE /api/settings/presets/[preset]
- 21. PUT /api/settings/users
- 22. GET /api/settings/users
- 23. POST /api/backtesting/run?preset=[preset]
- 24. GET /api/backtesting/running
- 25. GET /api/backtesting
- 26. GET /api/backtesting/[id]
- 27. DELETE /api/backtesting/[id]
- 28. DELETE /api/backtesting
- 29. POST /api/pso/run/[preset]?symbol=[supported_symbols]&interval=[1d| 4h|1h]&runtype=[normal|crossvalid]
- 30. GET /api/pso
- 31. DELETE /api/pso/[id]
- 32. GET /api/pso/running
- 33. GET /api/user

โดยที่ supported_symbols มีดังนี้

- ETH/USDT
- BTC/USDT

- BNB/USDT
- AAPL/USD
- IBM/USD
- JPM/USD
- MSFT/USD
- NKE/USD
- TSLA/USD

3.6 การพัฒนาเว็บไซต์

จุดประสงค์ของเว็บไซต์คือเป็นส่วนติดต่อให้กับผู้ใช้งานที่ต้องการเข้ามาใช้ระบบของเราโดยมีส่วนที่ต้องรอง-รับหลักดังนี้

- ผู้ใช้งานสามารถดูกราฟ OHLC ของสินทรัพย์
- ผู้ใช้งานสามารถเพิ่มเครื่องมือตัวชี้วัดเบื้องต้นที่ต้องการอย่างเช่น RSI, MACD, และตัวอื่นๆที่ระบบ ของเรามีให้
- ผู้ใช้งานสามารถปรับแต่งระบบ Fuzzy logic (ปรับกฎ และตัวแปรทางภาษา)
- ผู้ใช้งานสามารถดูผลลัพธ์ที่ได้จากระบบ Fuzzy logic

ทำการออกแบบ UI/UX ของเว็บไซต์ Figma โดยในการพัฒนาเว็บไซต์ส่วนหลักใช้ UI Framework อย่าง SvelteKit และภาษา TypeScript

3.7 แผนภาพกระแสข้อมูลโดยรวมของระบบ (Data Flow Diagram)

แผนภาพแสดงกระแสข้อมูลโดยเริ่มตั้งแต่การดึงข้อมูลตลาดจาก API มาเก็บที่ Database ซึ่งข้อมูลในนั้นจะ ถูกนำมาใช้งานคำนวณตัวชี้วัดทางเทคนิค, ประมวลผลและปรับตั้งระบบฟัซซี จนกระทั่งได้สัญญาณจากระ บบฟัซซีไปแสดงบนเว็บไซต์ให้กับผู้ใช้งาน

รูปที่ 3.5: แผนภาพกระแสข้อมูล

บทที่ 4

การทดลองและผลลัพธ์

ในการทดลองนี้เราจะใช้ระบบของเราในการทำการทดสอบโดยจะทำการทดสอบโดยใช้เงินตั้งต้น 3,000 USD และทดสอบบนตลาด Crypto Currency (BTC, ETH, BNB) และตลาดหุ้น NASDAQ (AAPL, IBM, JPM, MSFT, NKE, TSLA) ซึ่งเงินตั้งต้นจะถูกแบ่งให้เท่าๆ กันจาก 3,000 USD สำหรับแต่ละ เหรียญหรือหุ้นในทั้ง 2 ตลาด โดยวิธีการเข้าซื้อจะมีดังนี้

ส่วนเสริม	Classical	Fuzzy	Fuzzy C	Fuzzy PSO	Fuzzy PSO
ใช้ Fuzzy Logic ในการทำอินดิเคเตอร์ขึ้นมา		✓		✓	✓
การจัดการเงินทุนโดยใช้ค่าของอินดิเคเตอร์จาก Fuzzy Logic					
(Liquidation F)			~		~
การใช้ Particle Swarm Optimization (PSO) ในการปรับค่าของตัว แปรทางภาษาของอินดิเคเตอร์				~	✓

ตารางที่ 4.1: ตัวชี้วัดที่นำมาใช้ในการเข้าซื้อ

โดยสำหรับวิธี Classical นั้นเราจะใช้ค่าของอินดิเคเตอร์แต่ละตัวตรงๆ มาใช้ตัดสินใจเข้าซื้อ ส่วนด้าน ล่างนี้เป็นเงื่อนไขสำหรับการทดสอบ

- มีการเข้าซื้อขั้นต่ำอยู่ที่ 30 USD
- สำหรับการเข้าซื้อแบบที่ไม่ได้การจัดการเงินทุนจะเข้าซื้อที่ 5% ของเงินที่มีอยู่ขณะนั้น
- สำหรับตลาด Crypto Curreny เมื่อกำไรของการเข้าซื้อนั้น ≥ 20% (take profit) หรือเมื่อขาดทุน ≥ 10% (stop loss) เราจะขายออก
- สำหรับตลาดหุ้น NASDAQ เมื่อกำไรของการเข้าซื้อนั้น ≥ 10% (take profit) หรือเมื่อขาดทุน ≥ 5% (stop loss) เราจะขายออก

นอกจากนี้เราจะมีวิธี Buy & Hold ซึ่งเป็นวิธีการนี้ก็คือการซื้อสินทรัพย์ไว้ด้วยจำนวนเงินทั้งหมด ตั้งแต่วัน แรกที่ทดสอบไว้แล้วถือไว้โดยไม่ขายออกเป็นตัวไว้เปรียบเทียบ การทดสอบจะเริ่มตั้งแต่วันที่ 1 ตุลาคม 2023 ถึง 8 มีนาคม 2024 เป็นเวลาประมาณ 5 เดือน

4.1 พารามิเตอร์ในการใช้ PSO

ในการใช้ PSO เราจะกำหนดให้มีพารามิเตอร์ตังนี้

- จำนวนกลุ่ม (Swarm Size) ที่ใช้ในการฝึกสอน จะมี 3 รูปแบบ คือ 5, 10, 15
- จำนวนสมาชิกในแต่ละกลุ่ม (Number of Particles) จะเป็น 10
- เงื่อนไขในการจบการทำงาน คือเมื่อถึงรอบที่ 10

โดยเราจะฝึกสอนโดยใช้ข้อมูลตั้งแต่จุดเริ่มต้นของข้อมูลตลาดแต่ละตลาด ถึงจุดเริ่มต้นของช่วง validation ซึ่งจะเป็น 6 เดือนก่อนหน้าวันที่ 1 ตุลาคม 2023 และเราก็จะใช้กรอบเวลาของข้อมูลเป็นสี่ชั่วโมง (4h) จาก นั้นเราก็จะเลือกตัวที่ให้ผลลัพธ์ที่ดีที่สุด แล้วไปใช้ในการทดสอบต่อไป

Symbol	Classical	Fuzzy	Fuzzy C	Fuzzy PSO	Fuzzy PSO C
BTC	680.48	1305.54	1414.23	1361.90	1417.82
ETH	440.45	1172.24	1215.12	1309.22	1269.03
BNB	448.98	1145.47	989.82	1048.35	1098.35
TOTAL	1569.91	3623.26	3619.17	3719.48	3785.20

ตารางที่ 4.2:

4.2 AROON-MACD

สำหรับตัวชี้วัดตัวนี้จะมีตัวแปรทางภาษาตามรูปที่ 4 ในภาคผนวก และมี Fuzzy Rules ดังรูปที่ 4.1 ด้าน ล่างนี้

	Input	Output		
aroondown	aroonup	macd	long	short
low	high	long	strong	weak
low	high	wait	strong	weak
low	high	short	weak	weak
high	low	long	weak	weak
high	low	wait	weak	strong
high	low	short	weak	strong

รูปที่ 4.1: Fuzzy Rules ของตัวชี้วัด AROON-MACD จากในระบบของเรา

โดยสำหรับตัวชี้วัดนี้จะเป็นตัวชี้วัดแบบ Trend Following ซึ่งคือการที่เราพยายามซื้อขายสินทรัพย์ตาม แนวโน้มของตลาด ถ้าตลาดกำลังอยู่ในขาขึ้นก็จะมีการทำการเข้าซื้อแบบ long และถ้าตลาดกำลังอยู่ในขา ลงก็จะมีการทำการเข้าซื้อแบบ short โดย MACD จะเป็นตัวที่บอกเราว่าควรเข้าซื้อ ณ เวลาไหน และ AROON จะเป็นตัวบอกเราว่าตลาดกำลังอยู่ในขาขึ้นหรือขาลง โดยเราจะเข้าซื้อเมื่อค่าของอินดิเคเตอร์มี ค่าเกิน 30

4.3 RSI-BB

สำหรับตัวชี้วัดตัวนี้จะมีตัวแปรทางภาษาตามรูปที่ 5 ในภาคผนวก และมี Fuzzy Rules ดังรูปที่ 4.2 ด้าน ล่างนี้

โดยสำหรับตัวชี้วัดนี้จะเป็นตัวชี้วัดแบบ Mean Reversion ซึ่งคือการที่เราคาดว่าราคาของสินทรัพย์จะมี

Symbol	Classical	Fuzzy	Fuzzy C	Fuzzy PSO	Fuzzy PSO C
AAPL	4.41	-20.71	-21.44	-11.16	-10.09
IBM	81.12	192.97	148.08	161.47	149.91
JPM	13.59	153.30	154.41	152.66	153.32
MSFT	90.80	131.75	138.94	91.67	41.57
NKE	45.31	10.87	10.26	6.08	7.45
TSLA	171.23	-102.00	-93.96	-59.43	-148.31
TOTAL	406.46	366.19	336.30	341.29	293.84

ตารางที่ 4.3:

Symbol	Classical	Fuzzy	Fuzzy C	Fuzzy PSO	Fuzzy PSO C
BTC	-479.80	1304.04	1215.85	10.61	1362.42
ETH	-490.69	1172.24	1215.85	0.00	1238.96
BNB	-413.48	1145.4	984.30	0.00	0.00
TOTAL	-1383.98	3621.75	3614.11	10.61	2601.37

ตารางที่ 4.4:

แนวโน้มที่จะกลับมาสู่ราคาเฉลี่ย โดย bollinger band (bb) จะเป็นตัวบอกว่าราคาของสินทรัพย์นั้นสูงหรือ ต่ำกว่าค่าเฉลี่ยเกินไปหรือไม่ และ rsi จะเป็นตัวที่บอกเราว่าควรเข้าซื้อ ณ ตอนไหน ถ้าราคาของสินทรัพย์นั้น ต่ำกว่าค่าเฉลี่ย และ rsi บอกว่าสินทรัพย์นั้นมีการขายอย่างมาก เราก็จะเข้าซื้อแบบ long และถ้าราคาของ สินทรัพย์นั้นสูงกว่าค่าเฉลี่ย และ rsi บอกว่าสินทรัพย์นั้นมีการซื้ออย่างมาก เราก็จะเช้าซื้อแบบ short โดย เราจะเข้าซื้อเมื่อค่าของอินดิเคเตอร์รี้มีค่าเกิน 25

4.4 การทดลองกับตลาด sideway, และตลาด bearish

4.5 การใช้กรอบของเวลาที่ต่างกัน 1h กับ 1d

Input		Out	put
bb	rsi	long	short
long	high	weak	weak
wait	high	weak	strong
short	high	weak	verystrong
long	medium	weak	strong
wait	medium	weak	weak
short	medium	strong	weak
long	low	verystrong	weak
wait	low	strong	weak
short	low	weak	weak

รูปที่ 4.2: Fuzzy Rules ของตัวชี้วัด RSI-BB จากในระบบของเรา

บทที่ 5 บทสรุปและข้อเสนอแนะ

5.1 สรุปผล

นศ. ควรสรุปถึงข้อจำกัดของระบบในด้านต่างๆ ที่ระบบมีในเนื้อหาส่วนนี้ด้วย

5.2 ปัญหาที่พบและแนวทางการแก้ไข

ในการทำโครงงานนี้ พบว่าเกิดปัญหาหลักๆ ดังนี้

5.3 ข้อเสนอแนะและแนวทางการพัฒนาต่อ

ข้อเสนอแนะเพื่อพัฒนาโครงงานนี้ต่อไป มีดังนี้

บรรณานุกรม

- [1] Rodrigo Naranjo, Albert Meco, Javier Arroyo, and Matilde Santos. An intelligent trading system with fuzzy rules and fuzzy capital management. *International Journal of Intelligent Systems*, 30(8):963–983, 2015.
- [2] Alejandro Escobar, Julián Moreno, and Sebastián Múnera. A technical analysis indicator based on fuzzy logic. *Electronic Notes in Theoretical Computer Science*, 292:27–37, 2013. Proceedings of the XXXVIII Latin American Conference in Informatics (CLEI).
- [3] Ph.D.Associate Professor Sansanee Auephanwiriyakul. *Introduction to Computational Intelligence for Computer Engineering*. 2013.
- [4] Ralph Vince. Portfolio management formulas. Wiley, 1990.

.1 Backend

ได้มีการจัดเก็บข้อมูลตลาดหุ้น, ตลาด crypto currency และสร้างระบบอัพเดตข้อมูลอัตโนมัติ ได้เขียนโปร-แกรมสำหรับ Fuzzy Logic ไปบางส่วนแล้ว รวมถึงมีการลองทำตัวเว็บเซิร์ฟเวอร์ไปบ้าง โดยสามารถดู code ได้ที่ https://github.com/Fuzzy-Technical-Indicator/backend

รูปที่ 1: ตัวอย่างข้อมูลตลาดหุ้นในฐานข้อมูล

.2 Frontend

ได้มีการออกแบบหน้าตาแอปพลิเคชันทั้งแบบบนเว็บไซต์และแบบโทรศัพท์

รูปที่ 2: UI/UX ของแอปพลิเคชันบนโทรศัพท์

.3 การตั้งค่าของตัวชี้วัด

รูปที่ 3: UI/UX ของเว็บไซต์

รูปที่ 4: ตัวแปรทางภาษาของตัวชี้วัด AROON-MACD จากในระบบของเรา

รูปที่ 5: ตัวแปรทางภาษาของตัวชี้วัด RSI-BB จากในระบบของเรา

ประวัติผู้เขียน

Your biosketch goes here. Make sure it sits inside the biosketch environment.