8.(3)09 Section 7

October 22, 2021

1 H-J Example

Consider a one-dimensional system governed by the Hamiltonian $H=a\,e^{-q}p+b\,e^{-2q}$ where $a,\,b>0$

(a)

Write down the Hamilton-Jacobi equation for this system and find a general solution (involving constants that are determined by the initial conditions).

(b)

Suppose that at time t=0 the system is in state (q,p)=(0,0). Determine q(t), p(t) completely.

2 Action-angle with a half-pipe potential

Consider a particle of mass m with the Hamiltonian

$$H = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{m\omega_0^2 x^2}{2} + V(y), \quad V(y) = \begin{cases} 0 & b < y \\ -V_0 & -b < y < b \\ 0 & v < -b \end{cases}$$
 (1)

and $\omega_0 > 0$, b > 0, $V_0 > 0$ are constants. If the mass hits the potential wall at $y = \pm b$ then it bounces off elastically, with the same velocity in the x direction and opposite velocity in the y-direction. Take the initial conditions to be (x,y) = (0,0) and $(\dot{x},\dot{y}) = (v_x,v_y)$ at time t=0, with $v_x > 0$, $v_y > 0$. The following integral may be helpful:

$$\int_0^{z_0} dz \sqrt{z_0^2 - z^2} = \frac{\pi z_0^2}{4}$$

(a)

Determine the conserved energy E=H in terms of the given constants.

(b)

Define action variables J_x and J_y for the periodic motion, and express the Hamiltonian as a function of J_x and J_y .

(c)

Find the frequencies ν_x and ν_y as functions of ω_0 , v_x , v_y , and b.

(d)

Write down a condition that will guarantee that the four-dimensional phase space orbit for (x, p_x, y, p_y) forms a closed path.