In 1963, Nobel Laureate Richard Feynman (1918-1988), one of the most accomplished and influential scientists of the 20th century, wrote:	
"If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generation of creatures,	
what statement would contain the most information in the fewest	
words? I believe it is the atomic hypothesis (or the atomic fact, or whatever you wish to call it) that all things are made of atoms—little	
particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling on being squeezed	
into one another. In that one sentence, you will see, there is an enormous amount of information about the world, if just a little	
imagination and thinking are applied." (Feynman 1963)	
relenon Prierry	
atoms of molecules molecules	vani
, destroy	
Chemistry, life, the universe & everything - Cooper & Klymkowsky	
Q 1: What do you know about atoms?	
(Make a list)	
(Wide a list)	
V-9%	
VII., vol.	
energy atoms	
molecules	
Chemistry, life, the universe & everything - Cooper & Klymkowsky	

Q 2: Which has atoms in it?

- I. Heat
- II. Cells
- III. Air
- IV. Gold
 - A. All of them
 - B. II and IV
 - C. II III and IV
 - D. Only IV

Chemistry, life, the universe & everything - Cooper & Klymkowsky

Q 3: Which is smaller?

- A. An atom
- B. A molecule
- C. A cell
- D. It depends

Chemistry	life, the universe	& everything -	Cooper &	Clumknowsky

Q 4: How big do you think an atom (H) is?

- A. About 0.1 centimeters (0.1 x 10-2 m)
- B. About 0.1 millimeter (0.1 x 10⁻³ m)
- C. About 0.1 micrometer (0.1 x 10⁻⁶ m)
- D. About 0.1 nanometer (0.1 x 10⁻⁹ m)
- E. About 0.1 picometer (0.1 x 10⁻¹² m)

Chemistry, life, the universe & everything - Cooper & Klymkowsky

Evidence for atoms

How do you know atoms exist?

What is the evidence?

Chemistry, life, the universe & everything - Cooper & Klymkowsky

Atomic Theory Development

- Where did the original idea of atoms come from?
- · (the Greeks)
- Was this a Scientific Theory?

Development of Atomic Theory

- Greeks: earliest atomic theory
 - Not based on experimental evidence based on philosophy
 - Elements: Earth, fire, air, and water (and aether)
 - Atoms were thought to be in constant motion - based on watching the movement of dust motes in sunlight - and that there was nothing or a "void" between them (later called Brownian motion from Einstein)

- ato
- If at you
- · If " sha "air

Chemistry, life, the universe & everything - Cooper & Klymkowsky	
Questions	
at properties ascribed by the Greeks to ms do we still consider to be valid?	
toms are in constant motion, what do think keeps them moving?	
pe would you ascribe to the elements	
"water", and "fire"?	
Chemistry, life, the universe & everything - Cooper & Klymkowsky	

Elements

- · Atom is smallest unit of an element
- 91 naturally occurring ordered in the periodic table.

H				236			10		19		18		53		18			He
-H-Listas	Be												B	ċ	N	ó	F	He Ne
Na	Mg												Äl	Si	P	S	ČI	Ar
ĸ	Ca		Sc	Ti	V	Čr	Mn	Fe	Co	Ni Ni	Ču	Žn	Al Ga	Ge	As	O S S S S S S S S S S S S S S S S S S S	CI # Br	Kr
Rb	Sr		Sc III Y	41	Nb	Mo No	Tc	Řu	Co Rh	Pd.	Ag	cd.	În	š Sn	Sb	Te	1	Xe
Cs	Be Mg Ca Sr Sr Ba Ba Ra	*	Lu	Zr Hf	Ta Db	W	Tc Re Bh	Ru Os Hs	lr	Pt Pt Uun	Au	Hg	In Ti	Sn Pb	As Sb	Po	Åt	Rn
Fr	Ra	* *	Lr	Řf	Db	Sg	Bh	Hs	Ir Mt	Uun	Uuu	Uub		Uuq				
T and	hanide		100	 54	50		- 41	42							1 70	79	1	
	inida s		La	Ce Th	Pr	Nd ü	Pm	Sm	Eu	Gd Cm	Tb	Ďy Čf	100.00	Er	Tm	Yb		
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Ës	Fm	Md	No		

Questions

- How would you explain the difference between an atom and an element?
- What distinguishes one element from another?
 How do the atoms of different elements differ?
- What types of evidence might be used to conclude that you had isolated a new element?
- What types of elements would be difficult to identify?

Chemistry, life, the universe & everything - Cooper & Klymkowsky

Dalton's Atomic Theory

- Elements are composed of small indivisible, indestructible particles called atoms
- All atoms of an element are identical and have the same mass and properties
- Atoms of a given element are different from atoms of other elements
- Compounds are formed by combinations of atoms of two or more elements
- Chemical reactions are due to the rearrangements of atoms, atoms (matter) are neither created nor destroyed during a reaction.

re relenant energy atoms molecules of decrees

-			

Dalton's Atomic Theory

- Does Daltons Theory still hold?
- What tenets are no longer valid?
- · What tenets are still true?

Chemistry, life, the universe & everything - Cooper & Klymkowsky

Atoms have sub-structure

- Which subatomic particle was discovered first? (and why do you think this is so?)
 - A. Proton
 - B. Electron
 - C. Neutron
 - D. Quark

Thomson's experiments showed that...

- "Particles" emerged from one disc (the cathode) and moved to the other (the anode)
- These particles could be deflected by electrical fields in a direction that would indicate they were negatively charged.
- · The particles could also be deflected by magnetic fields.
- The particles carried the electrical charge that is if the ray was bent, for example by a magnetic field, the charge went with it.
- The metal that the cathode was made of did not affect the behavior of the ray – so whatever the composition of the ray – it appeared to be independent of the element that it came from

Note: In all of these experiments, + and - are meant to

Question

- · What is the evidence from Thomsons expt that all atoms contain electrons?
 - A. The particles were attracted to the + electrode
 - B. The particles were deflected by magnetic fields
 - C. The particles were deflected by electrical fields
 - D. The particles were identical regardless of the identity of the cathode (where they were emitted from)

Thomson's Plum Pudding Atom

· Atoms contain electrons "embedded" in the atom like raisins in a plum pudding.

This is a plum pudding (not a picture of the modell

What is an alpha particle?

Has two protons and two neutrons (the nucleus of a helium atom)

Chemistry, life, the universe & everything - Cooper & Klymkowsky

Showed that...

- Atom was mostly empty space (Greeks said this)
- Small dense positive nucleus in the center of the atom

Neutrons (discovered 1932)

- · Harder to detect!
- Why?
- · Are neutral in charge
- · Slightly heavier than protons

Group Activity

Chemistry, life, the universe & everything - Cooper & Klymkowsky

Discovery of the Nucleus (Rutherford)

- Watch Rutherford
- Play with the Rutherford applet
- What was the experimental evidence that atoms have a nucleus?
- What was the problem with Rutherfords Planetary Model?

