PATENT ABSTRACTS OF JAPAN

(11)Publication number :

2001-240763

(43)Date of publication of application: 04.09.2001

(51)Int.CI.

CO9B 67/46 B41J 2/01 B41M 5/00 CO9B 55/00 C09B 67/02 CO9D 11/00

(21)Application number : 2000-078491

(71)Applicant : FUJI PHOTO FILM CO LTD

(22)Date of filing:

21.03.2000

(72)Inventor: KIMURA KEIZO

ISHIZUKA TAKAHIRO

YAMADA MASATO

(30)Priority

Priority number: 11365187

Priority date: 22.12.1999

Priority country: JP

(54) COLORED FINE PARTICLE DISPERSION, INK FOR INK-JETTING AND INK-JETTING RECORDING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a colored fine particle dispersion which is excellent in dispersion stability of a fine particle, has no paper-dependency to print on because the dispersion can furnish a printed character with excellent coloring, color tone (especially reproducible magenta color), water resistance and light resistance on an any selected printing paper, and hence is suitable for a water- based writing ink, a water-based printing ink, and an information recording ink.

SOLUTION: The colored fine particle dispersion comprises dispersing N the colored fine particle containing an oil-soluble dyestuff and an oilsoluble polymer in a water-based medium, wherein said dispersion has a maximum absorption wavelength (λ max (nm)) within the region of 510-560 nm, an absorption of 0.2 or blow at the wavelength of λ max+75 (nm), and an absorption of 0.4 or blow at the wavelength of $\boldsymbol{\lambda}$

max-75 (nm) if said dispersion has an absorption of 1 at the maximum absorption wavelength (λ max (nm)). The preferable dispersion includes a mode wherein said oil-soluble dyestuff is represented by the below formula and a mode wherein the oil-soluble polymer is a vinyl polymer.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration] [Date of final disposal for application]

[Patent number]

[Date of extinction of right]

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]

Copyright (C); 1998,2003 Japan Patent Office

			,
			•
	· .		 -
	ہ ت		

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-240763 (P2001 - 240763A)

(43) 公開日 平成13年9月4日(2001.9.4)

(21)出願番		特顧2000-78491(P20	00-78491)	(71)	出題	人 000005	201		
			審査請求	未請求	請	求項の数 11	OL	(全 64 頁)	最終 頁に続く
C 0 9 B	55/00					67/02		Α	
B 4 1 M	5/00			C 0	9 B	55/00		Α	
B41J	2/01			B 4	1 M	5/00		E	4 J O 3 9
								Α	2H086
C09B	67/46			C 0	9 B	67/46		В	2 C O 5 6
(51) Int.Cl.7		識別記号		FΙ				รี	7]1*(参考)

(22)出顧日 平成12年3月21日(2000.3.21)

(31) 優先権主張番号 特願平11-365187

(32)優先日 平成11年12月22日(1999.12.22)

(33)優先権主張国 日本(JP)

富士写真フイルム株式会社 神奈川県南足柄市中沼210番地

(72)発明者 木村 桂三

神奈川県南足柄市中沼210番地 富士写真

フイルム株式会社内

(72)発明者 石塚 孝宏

神奈川県南足柄市中沼210番地 富士写真

フイルム株式会社内

(74)代理人 100079049

弁理士 中島 淳 (外3名)

最終頁に続く

(54) 【発明の名称】 着色微粒子分散物、インクジェット用インク及びインクジェット記録方法

(57)【要約】

【課題】 着色微粒子の分散安定性に優れ、紙依存性が なく、任意に選択した紙に印字した際の発色性・色調 (特にマゼンタの色再現) に優れ、かつ耐水性、耐光性 にも優れ、筆記用水性インク、水性印刷インク、情報記 録用インク等に好適な着色微粒子分散物を提供する。

【解決手段】 油溶性染料と油溶性ポリマーとを含む着 色微粒子を水系媒体に分散してなり、波長510~56 Onmの範囲内に最大吸収波長(Amax (nm))があ り、該最大吸収波長 (Amax (nm)) における吸光度 を1としたとき、波長 $(\lambda \max + 75 \pmod{n})$ におけ る吸光度が 0. 2以下であり、かつ、波長 ($\lambda \max - 7$ 5 (nm)) における吸光度が 0. 4以下であることを 特徴とする着色微粒子分散物である。油溶性染料が下記 式で表される態様、油溶性ポリマーがビニルポリマーで ある態様などが好ましい。

【化1】

【特許請求の範囲】

【請求項1】 油溶性染料と油溶性ポリマーとを含む着色微粒子を水系媒体に分散してなり、波長510~560nmの範囲内に最大吸収波長(λ max (nm))があり、該最大吸収波長(λ max (nm))における吸光度を1としたとき、波長(λ max+75 (nm))における吸光度が0.2以下であり、かつ、波長(λ max-75 (nm))における吸光度が0.4以下であることを特徴とする着色微粒子分散物。

【請求項2】 油溶性染料が下記式(I)で表される請求項1に記載の着色微粒子分散物。

式 (I)

【化1】

式(I)中、R¹は、水素原子、脂肪族基、芳香族基、 複素環基、シアノ基、-OR¹¹、-SR¹²、-CO₂R 13, $-OCOR^{14}$, $-NR^{15}R^{16}$, $-CONR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}$ R^{24} , $-NR^{25}CO_2R^{26}$, $-COR^{27}$, $-NR^{28}CO$ R^{29} 又は $-NR^{30}SO_2R^{31}$ を表す。 R^{11} 、 R^{12} 、 R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R 21, R²², R²³, R²⁴, R²⁵, R²⁶, R²⁷, R²⁸, R²⁹、R³⁰及びR³¹は、それぞれ水素原子、脂肪族基又 は芳香族基を表す。Aは、-NR4R5又はヒドロキシ基 を表す。R⁴及びR⁵は、それぞれ水素原子、脂肪族基 芳香族基又は複素環基を表す。 B l は、= C (R6) - 又 は=N-を表す。 B^2 は、 $-C(R^7)=$ 又は-N=を表 す。 R^2 、 R^3 、 R^6 及び R^7 は、それぞれ水素原子、ハロ ゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{51}$, $-SR^{52}$, $-CO_2R^{53}$, $-OCOR^{54}$, - $NR^{55}R^{56}$, $-CONR^{57}R^{58}$, $-SO_2R^{59}$, $-SO_2$ $NR^{60}R^{61}$, $-NR^{62}CONR^{63}R^{64}$, $-NR^{65}CO_2$ R⁷¹を表す。R⁵¹、R⁵²、R⁵³、R⁵⁴、R⁵⁵、R⁵⁶、R 57、R⁵⁸、R⁵⁹、R⁶⁰、R⁶¹、R⁶²、R⁶³、R⁶⁴、 R⁶⁵、R⁶⁶、R⁶⁷、R⁶⁸、R⁶⁹、R⁷⁰及びR⁷¹は、それ ぞれ水素原子、脂肪族基又は芳香族基を表す。 R²とR³ とは、 R^3 と R^4 とは、 R^4 と R^5 とは、 R^5 と R^6 とは、及 び、R⁶とR⁷とは、互いに結合して環を形成してもよ い。Cは、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{81}$, $-SR^{82}$, $-CO_2R^{83}$, $-OCOR^{84}$, - $NR^{85}R^{86}$, $-CONR^{87}R^{88}$, $-SO_2R^{89}$, $-SO_2$ $NR^{90}R^{91}$, $-NR^{92}CONR^{93}R^{94}$, $-NR^{95}CO_2$ R^{96} 、 $-COR^{97}$ 、 $-NR^{98}COR^{99}$ 及びNR¹⁰⁰SO₂ R¹⁰¹の少なくとも1つで置換されていてもよい5員又

は6員の含窒素複素環を形成する原子群を表す。該含窒素複素環は、更に別の環と縮合環を形成してもよい。R 81、R⁸²、R⁸³、R⁸⁴、R⁸⁵、R⁸⁶、R⁸⁷、R⁸⁸、 R⁸⁹、R⁹⁰、R⁹¹、R⁹²、R⁹³、R⁹⁴、R⁹⁵、R⁹⁶、R 97、R⁹⁸、R⁹⁹、R¹⁰⁰及びR¹⁰¹は、それぞれ水素原子、脂肪族基又は芳香族基を表す。

【請求項3】 油溶性染料が下記式 (II) で表される請求項1に記載の着色微粒子分散物。 式 (II)

【化2】

式(II)中、R¹は、水素原子、脂肪族基、芳香族基、 複素環基、シアノ基、-OR¹¹、-SR¹²、-CO₂R 13, $-OCOR^{14}$, $-NR^{15}R^{16}$, $-CONR^{17}R^{18}$ $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}$ R^{24} , $-NR^{25}CO_2R^{26}$, $-COR^{27}$, $-NR^{28}CO$ R^{29} 又は $-NR^{30}SO_2R^{31}$ を表す。 R^{11} 、 R^{12} 、 R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R 21, R²², R²³, R²⁴, R²⁵, R²⁶, R²⁷, R²⁸ R^{29} 、 R^{30} 及び R^{31} は、それぞれ水素原子、脂肪族基又 は芳香族基を表す。 R²、R³、R⁶及びR⁷は、それぞれ 水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環 基、シアノ基、-OR⁵¹、-SR⁵²、-CO₂R⁵³、- $OCOR^{54}$, $-NR^{55}R^{56}$, $-CONR^{57}R^{58}$, -SO $2R^{59}$, $-SO_2NR^{60}R^{61}$, $-NR^{62}CONR^{63}R^{64}$, $-NR^{65}CO_2R^{66}$, $-COR^{67}$, $-NR^{68}COR^{69}$ X はNR⁷⁰SO₂R⁷¹を表す。R⁵¹、R⁵²、R⁵³、R⁵⁴、 R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{62} 63、R⁶⁴、R⁶⁵、R⁶⁶、R⁶⁷、R⁶⁸、R⁶⁹、R⁷⁰及びR 71は、それぞれ水素原子、脂肪族基又は芳香族基を表 す。R⁴及びR⁵は、それぞれ水素原子、脂肪族基、芳香 族基又は複素環基を表す。X及びYは、それぞれ-C 基又は芳香族基を表す。X及びYの一方は必ず-N=を 40 表し、X及びYが同時に-N=を表すことはない。

【請求項4】 着色微粒子が、油溶性ポリマー中に油溶性染料が分散されてなる請求項1から3のいずれかに記載の着色微粒子分散物。

【請求項5】 着色微粒子が、油溶性ポリマーと油溶性 染料とを含有する有機溶媒に水を添加すること、及び、 水中に該有機溶媒を添加すること、のいずれかにより、 該有機溶媒を乳化させ微粒子化させることにより得られ る請求項1から4のいずれかに記載の着色微粒子分散 物。

【請求項6】 油溶性ポリマーがビニルポリマーである

.3

請求項1から5のいずれかに記載の着色微粒子分散物。 【請求項7】 ビニルポリマーの解離性基がカルボキシル基及びスルホン酸基の少なくとも一方である請求項6 に記載の着色微粒子分散物。

【請求項8】 下記式(I)で表される油溶性染料と、カルボキシル基及びスルホン酸基の少なくとも一方を解離性基として有するビニルポリマーとを含む着色微粒子を水系媒体に分散してなることを特徴とする着色微粒子分散物。

式(I)

[化3]

式(I)中、R¹は、水素原子、脂肪族基、芳香族基、 複素環基、シアノ基、-OR¹¹、-SR¹²、-CO₂R 13, $-OCOR^{14}$, $-NR^{15}R^{16}$, $-CONR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}$ R^{24} , $-NR^{25}CO_2R^{26}$, $-COR^{27}$, $-NR^{28}CO$ R^{29} 又は $-NR^{30}SO_2R^{31}$ を表す。 R^{11} 、 R^{12} 、 R13, R14, R15, R16, R17, R18, R19, R20, R 21, R22, R23, R24, R25, R26, R27, R28, R²⁹、R³⁰及びR³¹は、それぞれ水素原子、脂肪族基又 は芳香族基を表す。Aは、-NR⁴R⁵又はヒドロキシ基 を表す。R⁴及びR⁵は、それぞれ水素原子、脂肪族基、 芳香族基又は複素環基を表す。 B^1 は、 $=C(R^6)-$ 又 は=N-を表す。 B^2 は、 $-C(R^7)=$ 又は-N=を表 す。 R^2 、 R^3 、 R^6 及び R^7 は、それぞれ水素原子、ハロ ゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{51}$, $-SR^{52}$, $-CO_2R^{53}$, $-OCOR^{54}$, - $NR^{55}R^{56}$, $-CONR^{57}R^{58}$, $-SO_2R^{59}$, $-SO_2$ $NR^{60}R^{61}$, $-NR^{62}CONR^{63}R^{64}$, $-NR^{65}CO_2$ R^{66} 、 $-COR^{67}$ 、 $-NR^{68}COR^{69}$ 又はNR 70 SO $_2$ R⁷¹を表す。R⁵¹、R⁵²、R⁵³、R⁵⁴、R⁵⁵、R⁵⁶、R 57, R58, R59, R60, R61, R62, R63, R64, R⁶⁵、R⁶⁶、R⁶⁷、R⁶⁸、R⁶⁹、R⁷⁰及びR⁷¹は、それ ぞれ水素原子、脂肪族基又は芳香族基を表す。R²とR³ とは、 R^3 と R^4 とは、 R^4 と R^5 とは、 R^5 と R^6 とは、及 び、R⁶とR⁷とは、互いに結合して環を形成してもよ い。Cは、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{81}$, $-SR^{82}$, $-CO_2R^{83}$, $-OCOR^{84}$, - $NR^{85}R^{86}$, $-CONR^{87}R^{88}$, $-SO_2R^{89}$, $-SO_2$ $NR^{90}R^{91}$, $-NR^{92}CONR^{93}R^{94}$, $-NR^{95}CO_2$ R^{96} 、 $-COR^{97}$ 、 $-NR^{98}COR^{99}$ 及びNR 100 SO $_2$ R 101の少なくとも1つで置換されていてもよい5員又 は6員の含窒素複素環を形成する原子群を表す。該含窒 素複素環は、更に別の環と縮合環を形成してもよい。R

81、R82、R83、R84、R85、R86、R87、R88、R89、R90、R91、R92、R93、R94、R95、R96、R97、R98、R99、R100及びR101は、それぞれ水素原子、脂肪族基又は芳香族基を表す。

【請求項9】 下記式(III)で表される油溶性染料と、油溶性ポリマーとを含む着色微粒子を水系媒体に分散してなることを特徴とする着色微粒子分散物。 式(III)

【化4】

式 (III) 中、R¹は、水素原子、脂肪族基、芳香族基、 複素環基、シアノ基、-OR¹¹、-SR¹²、-CO₂R 13, $-OCOR^{14}$, $-NR^{15}R^{16}$, $-CONR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}$ R^{24} , $-NR^{25}CO_2R^{26}$, $-COR^{27}$, $-NR^{28}CO$ R^{29} 又は $-NR^{30}SO_2R^{31}$ を表す。 R^{11} 、 R^{12} 、 R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R 21, R²², R²³, R²⁴, R²⁵, R²⁶, R²⁷, R²⁸, R29 R30及びR31は、それぞれ水素原子、脂肪族基又 は芳香族基を表す。 R^2 、 R^3 、 R^6 及び R^7 は、それぞれ 水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環 基、シアノ基、 $-OR^{51}$ 、 $-SR^{52}$ 、 $-CO_2R^{53}$ 、- $OCOR^{54}$, $-NR^{55}R^{56}$, $-CONR^{57}R^{58}$, -SO $2R^{59}$, $-SO_2NR^{60}R^{61}$, $-NR^{62}CONR^{63}R^{64}$, $-NR^{65}CO_2R^{66}$, $-COR^{67}$, $-NR^{68}COR^{69}$ 又 はNR⁷⁰SO₂R⁷¹を表す。R⁵¹、R⁵²、R⁵³、R⁵⁴、 R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, R⁶², R 63、R⁶⁴、R⁶⁵、R⁶⁶、R⁶⁷、R⁶⁸、R⁶⁹、R⁷⁰及びR 71は、それぞれ水素原子、脂肪族基又は芳香族基を表 す。R4及びR5は、それぞれ水素原子、脂肪族基、芳香 族基又は複素環基を表す。 R⁸は、水素原子、脂肪族基 又は芳香族基を表す。

【請求項10】 請求項1から9のいずれかに記載の着 色微粒子分散物を含有してなることを特徴とするインク ジェット用インク。

【請求項11】 請求項10に記載のインクジェット用インクを用いて記録を行うことを特徴とするインクジェット記録方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、油溶性染料を含有する水系の着色微粒子分散物、該着色微粒子分散物を含有してなるインクジェット用インク、及び該インクジェット用インクを用いるインクジェット記録方法に関し、更に詳しくは、色再現(特にマゼンタの色再現)が良好

であり、筆記用水性インク、水性印刷インク、情報記録 用インク等に好適な着色微粒子分散物、並びに、サーマル、圧電、電界又は音響インクジェット方式に好適なインクジェット用インク及びインクジェット記録方法に関する。

[0002]

【従来の技術】近年、コンピューターの普及に伴い、インクジェットプリンターがオフィスだけでなく家庭でも、紙、フィルム、布等の印字等に広く利用されている。インクジェット用インクとしては、油性インク、水性インク、固体状インクが知られているが、これらの中でも、製造容易性、取扱性、臭気性、安全性等の点で水性インクが有利であり、水性インクが主流となっている。

【0003】しかし、前記水性インクの多くは、分子状態で溶解する水溶性染料を用いているため、透明性、色濃度が高いという利点があるものの、染料が水溶性であるため耐水性が悪く、いわゆる普通紙に印字すると滲み(ブリード)を生じて著しく印字品質が低下したり、耐光性が悪いという問題がある。

【0004】そこで、前記問題を解決する目的で顔料や分散染料を用いた水性インクが、例えば、特開昭56-157468号、特開平4-18468号、同10-110126号、同10-195355号等の各公報において提案されている。ところが、これらの水性インクの場合、耐水性はある程度向上するものの十分とは言い難く、該水性インク中の顔料や分散染料の分散物の保存安定性に欠け、インク吐出口での目詰まりを起こし易い等の問題がある。また、これらの水性インクの場合、一般に、色相が十分でなく、特にマゼンタ成分の色相が十分でなく、色調の不十分さに基づく色再現性に問題がある。

【0005】一方、特開昭58-45272号、特開平6-340835号、同7-268254号、同7-268254号、同7-268257号、同7-268260号の各公報には、ウレタンやポリエステル分散物粒子に染料を内包させる方法が提案されている。しかしながら、これらの場合、色調の不十分さに基づく色再現性が十分でなく、所望の濃度に染料を内包した時の染料内包ポリマー分散物の分散安定性や耐水性も必ずしも十分でないという問題がある。

【0006】他方、特開平9-59552号、同9-11163号、同9-255887号、同10-36728号の各公報には、ピラゾロトリアゾールに芳香族ジアミンをカップリングさせた色素を使用することにより、色調を改良することが提案されている。しかしながら、これらの場合、受像紙の種類によって色調が変化してしまう、また耐水性も十分でないという問題がある。【0007】

【発明が解決しようとする課題】本発明は、前記従来に

おける諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、着色微粒子の分散安定性に優れ、紙依存性がなく、任意に選択した紙に印字した際の発色性・色調(特にマゼンタの色再現)に優れ、かつ耐水性、耐光性にも優れ、筆記用水性インク、水性印刷インク、情報記録用インク等に好適な着色微粒子分散物、並びに、サーマル、圧電、電界又は音響インクジャット方式に好適であり、ノズル等を用いて印字等を行った際、該ノズル先端で目詰まりを起こすことがなく、紙で存性がなく、任意に選択した紙に印字した際の発色性・色調(特にマゼンタの色再現)に優れ、かつ耐水性、耐光性にも優れるインクジェット用インク及びインクジェット記録方法を提供することを目的とする。

[0008]

【課題を解決するための手段】前記課題を解決するため の手段は、以下の通りである。即ち、

<1> 油溶性染料と油溶性ポリマーとを含む着色微粒子を水系媒体に分散してなり、波長510~560nmの範囲内に最大吸収波長(λ max (nm))があり、該最大吸収波長(λ max (nm))における吸光度を1としたとき、波長(λ max+75 (nm))における吸光度が0.2以下であり、かつ、波長(λ max-75 (nm))における吸光度が0.4以下であることを特徴とする着色微粒子分散物である。

【0009】<2> 油溶性染料が下記式(I)で表される前記<1>に記載の着色微粒子分散物である。式(I)

[0010]

【化5】

【0011】式(I)中、R¹は、水素原子、脂肪族基、芳香族基、複素環基、シアノ基、-OR¹¹、-SR 12、-CO₂R¹³、-OCOR¹⁴、-NR¹⁵R¹⁶、-CONR¹⁷R¹⁸、-SO₂R¹⁹、-SO₂NR²⁰R²¹、-NR²²CONR²³R²⁴、-NR²⁵CO₂R²⁶、-COR²⁷、-NR²⁸COR²⁹又は-NR³⁰SO₂R³¹を表す。R¹¹、R¹²、R¹³、R¹⁴、R¹⁵、R¹⁶、R¹⁷、R¹⁸、R¹⁹、R²⁰、R²¹、R²²、R²³、R²⁴、R²⁵、R²⁶、R²⁷、R²⁸、R²⁹、R³⁰及びR³¹は、それぞれ水素原子、脂肪族基又は芳香族基を表す。Aは、-NR⁴R⁵又はヒドロキシ基を表す。R⁴及びR⁵は、それぞれ水素原子、脂肪族基、芳香族基又は複素環基を表す。B^{1は、-C}(R⁷)=又は-N=を表す。R²、R³、R⁶及びR⁷は、それぞれ水素原子、ハロゲン原子、脂肪族基、芳

香族基、複素環基、シアノ基、-OR⁵¹、-SR⁵²、- CO_2R^{53} , $-OCOR^{54}$, $-NR^{55}R^{56}$, -CONR $57R^{58}$, $-SO_2R^{59}$, $-SO_2NR^{60}R^{61}$, $-NR^{62}C$ $ONR^{63}R^{64}$, $-NR^{65}CO_2R^{66}$, $-COR^{67}$, -N $R^{68}COR^{69}$ 又はNR⁷⁰SO₂R⁷¹を表す。R⁵¹、 R52, R53, R54, R55, R56, R57, R58, R59, R 60, R61, R62, R63, R64, R65, R66, R67, R⁶⁸、R⁶⁹、R⁷⁰及びR⁷¹は、それぞれ水素原子、脂肪 族基又は芳香族基を表す。 R^2 と R^3 とは、 R^3 と R^4 と は、 R^4 と R^5 とは、 R^5 と R^6 とは、及び、 R^6 と R^7 と は、互いに結合して環を形成してもよい。Cは、脂肪族 基、芳香族基、複素環基、シアノ基、-OR⁸¹、-SR $82. -CO_2R^{83}. -OCOR^{84}. -NR^{85}R^{86}. -C$ $ONR^{87}R^{88}$, $-SO_2R^{89}$, $-SO_2NR^{90}R^{91}$, -N $R^{92}CONR^{93}R^{94}$, $-NR^{95}CO_2R^{96}$, -CO R^{97} 、 $-NR^{98}COR^{99}$ 及びNR $^{100}SO_2R^{101}$ の少な くとも1つで置換されていてもよい5員又は6員の含窒 素複素環を形成する原子群を表す。該含窒素複素環は、 更に別の環と縮合環を形成してもよい。R81、R82、R 83, R84, R85, R86, R87, R88, R89, R90, R91, R92, R93, R94, R95, R96, R97, R98, R 99、R 100及びR 101は、それぞれ水素原子、脂肪族基又 は芳香族基を表す。

【0012】<3> 油溶性染料が下記式(II)で表される前記<1>に記載の着色微粒子分散物である。 式(II)

[0013]

【化6】

【0014】式(II) 中、R¹は、水素原子、脂肪族 基、芳香族基、複素環基、シアノ基、-OR¹¹、-SR $12, -CO_2R^{13}, -OCOR^{14}, -NR^{15}R^{16}, -C$ $ONR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, -N $R^{22}CONR^{23}R^{24}$, $-NR^{25}CO_2R^{26}$, -CO R^{27} 、 $-NR^{28}COR^{29}$ 又は $-NR^{30}SO_2R^{31}$ を表 す。R¹¹、R¹²、R¹³、R¹⁴、R¹⁵、R¹⁶、R¹⁷、 R¹⁸, R¹⁹, R²⁰, R²¹, R²², R²³, R²⁴, R²⁵, R 26、R²⁷、R²⁸、R²⁹、R³⁰及びR³¹は、それぞれ水素 原子、脂肪族基又は芳香族基を表す。R²、R³、R⁶及 ${
m UR}^7$ は、それぞれ水素原子、ハロゲン原子、脂肪族 基、芳香族基、複素環基、シアノ基、-OR⁵¹、-SR $52. - CO_2R^{53}. - OCOR^{54}. - NR^{55}R^{56}. - C$ $ONR^{57}R^{58}$, $-SO_2R^{59}$, $-SO_2NR^{60}R^{61}$, -N $R^{62}CONR^{63}R^{64}$, $-NR^{65}CO_2R^{66}$, -CO R^{67} 、 $-NR^{68}COR^{69}$ 又は $NR^{70}SO_2R^{71}$ を表す。

 R^{51} 、 R^{52} 、 R^{53} 、 R^{54} 、 R^{55} 、 R^{56} 、 R^{57} 、 R^{58} 、 R^{59} 、 R^{60} 、 R^{61} 、 R^{62} 、 R^{63} 、 R^{64} 、 R^{65} 、 R^{66} 、 R^{67} 、 R^{68} 、 R^{69} 、 R^{70} 及び R^{71} は、それぞれ水素原子、脂肪族基又は芳香族基を表す。 R^{4} 及び R^{5} は、それぞれ水素原子、脂肪族基、芳香族基又は複素環基を表す。 X及びYは、それぞれ-C (R^{8}) =又は-N=を表す。 R^{8} は、水素原子、脂肪族基又は芳香族基を表す。 X及びYの一方は必ず-N=を表し、X及びYが同時に-N=を表すことはない。

【0015】<4> 着色微粒子が、油溶性ポリマー中に油溶性染料が分散されてなる前記<1>から<3>のいずれかに記載の着色微粒子分散物である。

<5> 着色微粒子が、油溶性ポリマーと油溶性染料とを含有する有機溶媒に水を添加すること、及び、水中に該有機溶媒を添加すること、のいずれかにより、該有機溶媒を乳化させ微粒子化させることにより得られる前記<1>から<4>のいずれかに記載の着色微粒子分散物である。

【0016】<6> 油溶性ポリマーがビニルポリマー である前記<1>から<5>のいずれかに記載の着色微粒子分散物である。

<7> ビニルポリマーの解離性基がカルボキシル基及 びスルホン酸基の少なくとも一方である前記<6>に記 載の着色微粒子分散物である。

【0017】<8> 下記式(I)で表される油溶性染料と、カルボキシル基及びスルホン酸基の少なくとも一方を解離性基として有するビニルポリマーとを含む着色微粒子を水系媒体に分散してなることを特徴とする着色微粒子分散物である。

30 式(I)

【0018】 【化7】

【0019】式(I)中、R¹は、水素原子、脂肪族 基、芳香族基、複素環基、シアノ基、-OR¹¹、-SR 12、-CO₂R¹³、-OCOR¹⁴、-NR¹⁵R¹⁶、-C ONR¹⁷R¹⁸、-SO₂R¹⁹、-SO₂NR²⁰R²¹、-N R²²CONR²³R²⁴、-NR²⁵CO₂R²⁶、-CO R²⁷、-NR²⁸COR²⁹又は-NR³⁰SO₂R³¹を表 す。R¹¹、R¹²、R¹³、R¹⁴、R¹⁵、R¹⁶、R¹⁷、 R¹⁸、R¹⁹、R²⁰、R²¹、R²²、R²³、R²⁴、R²⁵、R 26、R²⁷、R²⁸、R²⁹、R³⁰及びR³¹は、それぞれ水素 原子、脂肪族基又は芳香族基を表す。Aは、-NR⁴R⁵ 又はヒドロキシ基を表す。R⁴及びR⁵は、それぞれ水素 原子、脂肪族基、芳香族基又は複素環基を表す。B

 1 は、=C(R⁶) -又は=N-を表す。 B^{2} は、-C 7は、それぞれ水素原子、ハロゲン原子、脂肪族基、芳 香族基、複素環基、シアノ基、-OR⁵¹、-SR⁵²、- CO_2R^{53} , $-OCOR^{54}$, $-NR^{55}R^{56}$, -CONR $57R^{58}$, $-SO_2R^{59}$, $-SO_2NR^{60}R^{61}$, $-NR^{62}C$ $ONR^{63}R^{64}$, $-NR^{65}CO_{2}R^{66}$, $-COR^{67}$, -N $R^{68}COR^{69}$ 又はNR⁷⁰SO₂R⁷¹を表す。R⁵¹、 R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R 60, R⁶¹, R⁶², R⁶³, R⁶⁴, R⁶⁵, R⁶⁶, R⁶⁷, R⁶⁸、R⁶⁹、R⁷⁰及びR⁷¹は、それぞれ水素原子、脂肪 族基又は芳香族基を表す。 R^2 と R^3 とは、 R^3 と R^4 と は、 R^4 と R^5 とは、 R^5 と R^6 とは、及び、 R^6 と R^7 と は、互いに結合して環を形成してもよい。Cは、脂肪族 基、芳香族基、複素環基、シアノ基、-OR⁸¹、-SR 82, $-CO_2R^{83}$, $-OCOR^{84}$, $-NR^{85}R^{86}$, -C $ONR^{87}R^{88}$, $-SO_2R^{89}$, $-SO_2NR^{90}R^{91}$, -N $R^{92}CONR^{93}R^{94}$, $-NR^{95}CO_2R^{96}$, -CO R^{97} 、 $-NR^{98}COR^{99}$ 及びNR $^{100}SO_2R^{101}$ の少な くとも1つで置換されていてもよい5員又は6員の含窒 素複素環を形成する原子群を表す。該含窒素複素環は、 更に別の環と縮合環を形成してもよい。R81、R82、R 83, R⁸⁴, R⁸⁵, R⁸⁶, R⁸⁷, R⁸⁸, R⁸⁹, R⁹⁰, R⁹¹, R⁹², R⁹³, R⁹⁴, R⁹⁵, R⁹⁶, R⁹⁷, R⁹⁸, R 99、R¹⁰⁰及びR¹⁰¹は、それぞれ水素原子、脂肪族基又 は芳香族基を表す。

【0020】<9> 下記式(III)で表される油溶性染料と、油溶性ポリマーとを含む着色微粒子を水系媒体に分散してなることを特徴とする着色微粒子分散物である。式(III)

[0021]

【化8】

【0022】式(III) 中、R¹は、水素原子、脂肪族基、芳香族基、複素環基、シアノ基、-OR¹¹、-SR 12、-CO₂R¹³、-OCOR¹⁴、-NR¹⁵R¹⁶、-CONR¹⁷R¹⁸、-SO₂R¹⁹、-SO₂NR²⁰R²¹、-NR²²CONR²³R²⁴、-NR²⁵CO₂R²⁶、-COR²⁷、-NR²⁸COR²⁹又は-NR³⁰SO₂R³¹を表す。R¹¹、R¹²、R¹³、R¹⁴、R¹⁵、R¹⁶、R¹⁷、R¹⁸、R¹⁹、R²⁰、R²¹、R²²、R²³、R²⁴、R²⁵、R²⁶、R²⁷、R²⁸、R²⁹、R³⁰及びR³¹は、それぞれ水素原子、脂肪族基又は芳香族基を表す。R²、R³、R⁶及びR⁷は、それぞれ水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、-OR⁵¹、-SR

52、-CO₂R⁵³、-OCOR⁵⁴、-NR⁵⁵R⁵⁶、-CONR⁵⁷R⁵⁸、-SO₂R⁵⁹、-SO₂NR⁶⁰R⁶¹、-NR⁶²CONR⁶³R⁶⁴、-NR⁶⁵CO₂R⁶⁶、-COR⁶⁷、-NR⁶⁸COR⁶⁹又はNR⁷⁰SO₂R⁷¹を表す。R⁵¹、R⁵²、R⁵³、R⁵⁴、R⁵⁵、R⁵⁶、R⁵⁷、R⁵⁸、R⁵⁹、R⁶⁰、R⁶¹、R⁶²、R⁶³、R⁶⁴、R⁶⁵、R⁶⁶、R⁶⁷、R⁶⁸、R⁶⁹、R⁷⁰及びR⁷¹は、それぞれ水素原子、脂肪族基又は芳香族基を表す。R⁴及びR⁵は、それぞれ水素原子、脂肪族基又は芳香族基又は複素環基を表す。R⁸は、水素原子、脂肪族基又は芳香族基を表す。R⁸は、水素原子、脂肪族基又は芳香族基を表す。【0023】<10> 前記<1>から<9>のいずれかに記載の着色微粒子分散物を含有してなることを特徴とするインクジェット用インクである。

【0024】<11> 前記<10>に記載のインクジェット用インクを用いて記録を行うことを特徴とするインクジェット記録方法である。

【0025】本発明においては、更に以下の手段も好適に挙げられる。

<12> Xが-N=を表し、かつYが-C (R^8) = を表す前記<3>に記載の着色微粒子分散物である。 <13> ビニルポリマーの解離性基の含量が $0.1\sim$ 3.0 mm o 1/g である前記<6>から<8>のいずれかに記載の着色微粒子分散物である。

<14> ビニルポリマーの解離性基がカルボキシル基である前記<6>、<7>又は<13>に記載の着色微粒子分散物である。

<15> ビニルポリマーの解離性基がカルボキシル基及びスルホン酸基の少なくとも一方である前記<9>に記載の着色微粒子分散物である。

<16> ビニルポリマーの解離性基がカルボキシル基である前記<9>に記載の着色微粒子分散物である。
 <17> ビニルポリマーの解離性基の含量が0.1~
 0mmol/gである前記<9>、<15>又は<17>に記載の着色微粒子分散物である。

[0026]

【発明の実施の形態】以下、本発明の着色微粒子分散物、インクジェット用インク及びインクジェット記録方法について説明する。

【0027】(着色微粒子分散物)本発明の着色粒子分散物は、その最大吸収波長(λ max (nm))が、波長 $510\sim560$ nmの範囲内にあることが必要であり、 $520\sim550$ nmの範囲内にあることが好ましく、 $530\sim550$ nmの範囲内にあることがより好ましい。 前記最大吸収波長(λ max (nm))が前記数値範囲内にあると色再現性に優れ、前記好ましい数値範囲内、前記より好ましい数値範囲内にあると色再現性に顕著に優れる点で有利である。

【0028】本発明の着色微粒子分散物は、前記最大吸収波長(λ max (nm))における吸光度を1としたとき、波長(λ max +75 (nm))における吸光度が

0.2以下であることが必要であり、 $0.15\sim0.3$ 0が好ましく、 $0.10\sim0.20$ がより好ましく、かつ、波長(λ max -75 (nm))における吸光度が 0.4以下であることが必要であり、 $0.15\sim0.3$ 0が好ましく、 $0.10\sim0.20$ がより好ましい。前記波長(λ max +75 (nm))における吸光度及び波長(λ max +75 (nm))における吸光度が前記数値範囲内にあると色再現性に優れ、前記好ましい数値範囲内、前記より好ましい数値範囲内にあると色再現性に顕著に優れる点で有利である。

【0029】前記本発明の着色微粒子分散物は、油溶性 染料と油溶性ポリマーとを含む着色微粒子を水系媒体に 分散してなる。

【0030】一油溶性染料-

前記油溶性染料としては、例えば、下記式(I)で表される化合物が挙げられる。

式(I)

[0031]

【化9】

【0032】式 (I) 中、 R^1 は、水素原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{11}$ 、 $-SR^{12}$ 、 $-CO_2R^{13}$ 、 $-OCOR^{14}$ 、 $-NR^{15}R^{16}$ 、 $-CONR^{17}R^{18}$ 、 $-SO_2R^{19}$ 、 $-SO_2NR^{20}R^{21}$ 、 $-NR^{22}CONR^{23}R^{24}$ 、 $-NR^{25}CO_2R^{26}$ 、 $-COR^{27}$ 、 $-NR^{28}COR^{29}$ 又は $-NR^{30}SO_2R^{31}$ を表す。 R^{11} 、 R^{12} 、 R^{13} 、 R^{14} 、 R^{15} 、 R^{16} 、 R^{17} 、 R^{18} 、 R^{19} 、 R^{20} 、 R^{21} 、 R^{22} 、 R^{23} 、 R^{24} 、 R^{25} 、 R^{26} 、 R^{27} 、 R^{28} 、 R^{29} 、 R^{30} 及び R^{31} は、それぞれ水素原子、脂肪族基又は芳香族基を表す。

【0033】これらの中でも、R¹は、水素原子、脂肪族基、芳香族基、一OR¹¹、一SR¹²、一NR¹⁵R¹⁶、一SO₂R¹⁹、一NR²²CONR²³R²⁴、一NR²⁵CO₂R²⁶、一NR²⁸COR²⁹又は一NR³⁰SO₂R³¹であることが好ましく、水素原子、脂肪族基、芳香族基、一OR¹¹又はNR¹⁵R¹⁶であることがより好ましく、水素原子、アルキル基、置換アルキル基、アリール基、アルコキシ基、置換アルコキシ基、置換アルコキシ基、置換アルコキシ基、置換アルコキシ基、関連アルキルアミノ基であることが更に好ましく、水素原子、炭素原子数1~10の置換アルキル基、炭素原子数1~10の置換アルキル基、炭素原子数1~10の置換アルキル基であることが特に好ましく、水素原子、炭素原子数1~6の置換アリール基であることが特に好ましく、水素原子、炭素原子数1~6の置換アルキル基であることが特に好ましく、水素原子、炭素原子数1~6の置換アルキル基であることが特に好ましく、水素原子、炭素原子数1~6の置換アルキル基であるこ

12

とが最も好ましい。

【0034】前記脂肪族基は、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、置換アルキン基及び置換アラルキル基を意味する。

【0035】前記アルキル基は、直鎖状であってもよいし、分岐状であってもよく、また環を形成していてもよい。前記アルキル基の炭素原子数としては、1~20が好ましく、1~18がより好ましい。前記置換アルキル基のアルキル部分は、前記アルキル基と同様である。

【0036】前記アルケニル基は、直鎖状であってもよいし、分岐状であってもよく、また環を形成していてもよい。前記アルケニル基の炭素原子数としては、2~20が好ましく、2~18がより好ましい。前記置換アルケニル基のアルケニル部分は、前記アルケニル基と同様である。

【0037】前記アルキニル基は、直鎖状であってもよいし、分岐状であってもよく、また環を形成していてもよい。前記アルキニル基の炭素原子数としては、2~200が好ましく、2~18がより好ましい。前記置換アルキニル基のアルキニル部分は、前記アルキニル基と同様である

【0038】前記アラルキル基及び前記置換アラルキル基のアルキル部分としては、前記アルキル基と同様である。前記アラルキル基及び前記置換アラルキル基のアリール部分としては、フェニル又はナフチルが好ましく、フェニルが特に好ましい。

【0039】前記置換アルキル基、前記置換アルケニル 基、前記置換アルキニル基及び前記置換アラルキル基の 30 アルキル部分の置換基としては、例えば、ハロゲン原 子、シアノ、ニトロ、複素環基、-OR¹¹¹、-S R^{112} , $-CO_2R^{113}$, $-NR^{114}R^{115}$, $-CONR^{116}$ R^{117} 、 $-SO_2R^{118}$ 及び $SO_2NR^{119}R^{120}$ などが挙げ られる。R¹¹¹、R¹¹²、R¹¹³、R¹¹⁴、R¹¹⁵、R¹¹⁶、 R¹¹⁷、R¹¹⁸、R¹¹⁹及びR¹²⁰は、それぞれ水素原子、 脂肪族基又は芳香族基を表す。前記置換アラルキル基の アリール部分の置換基としては、例えば、ハロゲン原 子、シアノ、ニトロ、脂肪族基、複素環基、一〇 R^{121} , $-SR^{122}$, $-CO_2R^{123}$, $-NR^{124}R^{125}$, - $CONR^{126}R^{127}$ 、 $-SO_2R^{128}$ 及び $SO_2NR^{129}R^{13}$ 0などが挙げられる。 R¹²¹、R¹²²、R¹²³、R¹²⁴、R 125、R126、R127、R128、R129及びR130は、それぞ れ水素原子、脂肪族基又は芳香族基を表す。

【0040】前記芳香族基は、アリール基及び置換アリール基を意味する。前記アリール基としては、フェニル 又はナフチルが好ましく、フェニルが特に好ましい。前 記置換アリール基のアリール部分は、前記アリール基と 同様である。

【0041】前記複素環基は、5員又は6員の飽和若しくは不飽和の複素環を含むことが好ましく、これらの複

素環には、更に脂肪族環、芳香族環又は他の複素環が縮合していてもよい。前記複素環におけるヘテロ原子の例としては、B、N、O、S、Se及びTeが挙げられる。該ヘテロ原子の中でも、N、O及びSが好ましい。前記複素環の中でも、炭素原子が遊離の原子価(一価)を有する(複素環基は炭素原子において結合する)ことが好ましい。

【0042】前記飽和の複素環の例としては、ピロリジン環、モルホリン環、2-ボラー1,3-ジオキソラン環及び1,3-チアゾリジン環が挙げられる。前記不飽和の複素環の例としては、イミダソール環、チアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾトリアゾール環、ベンゾセレナソール環、ピリジン環、ピリミジン環及びキノリン環が挙げられる。

【0043】前記複素環基は、置換基を有していてもよく、該置換基の例としては、ハロゲン原子、シアノ基、ニトロ基、脂肪族基、芳香族基、複素環基、一〇R¹³¹、一SR¹³²、一CO₂R¹³³、一NR¹³⁴R¹³⁵、一CONR¹³⁶R¹³⁷、一SO₂R¹³⁸及びSO₂NR¹³⁹R¹⁴⁰が挙げられる。R¹³¹、R¹³²、R¹³³、R¹³⁴、R¹³⁵、R¹³⁶、R¹³⁷、R¹³⁸、R¹³⁹及びR¹⁴⁰は、それぞれ水素原子、脂肪族基又は芳香族基を表す。

【0044】前記式(I) 中、Aは、 $-NR^4R^5$ 又はヒドロキシ基を表し、 $-NR^4R^5$ であることが好ましい。【0045】前記式(I) 中、 R^4 及び R^5 は、それぞれ水素原子、脂肪族基、芳香族基又は複素環基を表し、水素原子又は脂肪族基であることが好ましく、水素原子、アルキル基又は置換アルキル基であることがより好ましく、水素原子、炭素原子数が $1\sim18$ のアルキル基又は炭素原子数が $1\sim18$ の置換アルキル基であることが特に好ましい。

【0046】R⁴及びR⁵が、炭素原子数1~18のアルキル基である場合、その一方又は両方が、脂肪族基、芳香族基、複素環基、シアノ基、一OR¹⁴¹、一SR¹⁴²、一CO₂R¹⁴³、一OCOR¹⁴⁴、一NR¹⁴⁵R¹⁴⁶、一CONR¹⁴⁷R¹⁴⁸、一SO₂R¹⁴⁹、一SO₂NR¹⁵⁰R¹⁵¹、一NR¹⁵²CONR¹⁵³R¹⁵⁴、一N¹⁵⁵CO₂R¹⁵⁶、一COR¹⁵⁷、一NR¹⁵⁸COR¹⁵⁹又はNR¹⁶⁰SO₂R¹⁶¹の少なくとも1つで置換されていることが好ましい。ここで、R¹⁴¹、R¹⁴²、R¹⁴³、R¹⁴⁴、R¹⁴⁵、R¹⁴⁶、R¹⁴⁷、R¹⁴⁸、R¹⁴⁹、R¹⁵⁰、R¹⁵¹、R¹⁵²、R¹⁵³、R¹⁵⁴、R¹⁵⁵、R¹⁵⁶、R¹⁵⁷、R¹⁵⁸、R¹⁵⁹、R¹⁶⁰及びR¹⁶¹は、それぞれ独立に、水素原子、脂肪族基又は芳香族基を表す。

【0047】これらの中でも、シアノ基、 $-OR^{141}$ 、 $-SR^{142}$ 、 $-CO_2R^{143}$ 、 $-OCOR^{144}$ 、 $-CONR^{147}R^{148}$ 、 $-SO_2R^{149}$ 、 $-SO_2NR^{150}R^{151}$ 、 $-NR^{152}CONR^{153}R^{154}$ 、 $-NR^{155}CO_2R^{156}$ 、 $-COR^{157}$ 、 $-NR^{158}COR^{159}$ 又は $NR^{160}SO_2R^{161}$ が好ましく、シアノ基、 $-OR^{141}$ 、 $-CO_2R^{143}$ 、-OC

14

 OR^{144} 又は $-NR^{160}SO_2R^{161}$ がより好ましく、シアノ基、 $-CO_2R^{143}$ が特に好ましい。置換基が $-OR^{141}$ の場合、 R^4 と R^5 とで合計 2 個以上有し、 $2\sim 4$ 個有することが好ましく、2 個有することがより好ましい。前記式(I)中、 B^1 は、 $=C(R^6)$ -又は=N-を表す。 B^2 は、 $-C(R^7)$ =又は-N=を表す。これらの中でも、 B^1 及び B^2 が同時に-N=とならない場合が好ましく、 B^1 が $=C(R^6)$ -を表し、 B^2 が $-C(R^7)$ =を表す場合がより好ましい。

【0048】 R^2 、 R^3 、 R^6 及び R^7 は、それぞれ水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{51}$ 、 $-SR^{52}$ 、 $-CO_2R^{53}$ 、 $-OCO_2R^{54}$ 、 $-NR^{55}R^{56}$ 、 $-CONR^{57}R^{58}$ 、 $-SO_2R^{59}$ 、 $-SO_2NR^{60}R^{61}$ 、 $-NR^{62}CONR^{63}R^{64}$ 、 $-NR^{65}CO_2R^{66}$ 、 $-COR^{67}$ 、 $-NR^{68}COR^{69}$ 又は $-NR^{70}SO_2R^{71}$ を表す。 R^{51} 、 R^{52} 、 R^{53} 、 R^{54} 、 R^{55} 、 R^{56} 、 R^{57} 、 R^{58} R^{59} R^{60} R^{61} R^{62} R^{63} R^{64} R^{65} R^{66} R^{67} R^{68} R^{69} R^{70} R^{71} は、それぞれ水素原子、脂肪族基又は芳香族基を表す。

【0049】これらの中でも、 R^2 及び R^7 は、それぞれ 水素原子、ハロゲン原子、脂肪族基、 $-OR^{51}$ 、-NR $62CONR^{63}R^{64}$ 、 $-NR^{65}CO_2R^{66}$ 、 $-NR^{68}CO$ R^{69} 又は $-NR^{70}SO_2R^{71}$ であることが好ましく、水素原子、フッ素原子、塩素原子、アルキル基、置換アルキル基、 $-NR^{62}CONR^{63}R^{64}$ 又は $NR^{68}COR^{69}$ であることがより好ましく、水素原子、塩素原子、炭素原子数 $1\sim 10$ のであることがより好ましく、水素原子、塩素原子、炭素原子数 $1\sim 10$ のでかきル基であることが更に好ましく、水素原子、炭素原子数 $1\sim 4$ の置換アルキル基であることが最も好ましい。

【0050】これらの中でも、R²及びR⁷は置換アルキル基が好ましく、トリフルオロメチル基が特に好ましい。アルキル基上の置換基は、ハロゲン原子又はフッ素原子が好ましく、フッ素原子が特に好ましい。また、R 3及びR⁶は、それぞれ水素原子、ハロゲン原子又は脂肪族基であることが好ましく、水素原子、フッ素原子、塩素原子、アルキル基又は置換アルキル基であることがより好ましく、水素原子、塩素原子、炭素原子数1~10のアルキル基、炭素原子数1~10の置換アルキル基であることが更に好ましく、水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4の置換アルキル基であることが最も好ましい。

【0051】 R^2 と R^3 とは、 R^3 と R^4 とは、 R^4 と R^5 とは、 R^5 と R^6 とは、及び、 R^6 と R^7 とは、互いに結合して環を形成してもよい。 R^2 と R^3 とが、又は、 R^6 と R^7 とが、互いに結合して形成する環としては、5員環又は6員環であることが好ましく、該環は、芳香族環(例、ベンゼン環)又は不飽和複素環(例、ピリジン環、イミダゾール環、チアゾール環、ピリミジン環、ピロール

環、フラン環)であることが好ましい。 R^3 と R^4 とが、又は、 R^5 と R^6 とが、互いに結合して形成する環としては、5 員環又は6 員環であることが好ましく、該環には、テトラヒドロキノリン環及びジヒドロインドール環が含まれる。 R^4 と R^5 とが互いに結合して形成する環としては、5 員環又は6 員環であることが好ましく、該環には、ピロリジン環、ピペリジン環及びモルホリン環が含まれる。

【0052】前記式(I)中、Cは、脂肪族基、芳香族 基、複素環基、シアノ基、-OR⁸¹、-SR⁸²、-CO $2R^{83}$, $-OCOR^{84}$, $-NR^{85}R^{86}$, $-CONR^{87}R$ $88. - SO_2R^{89}. - SO_2NR^{90}R^{91}. - NR^{92}CON$ $R^{93}R^{94}$, $-NR^{95}CO_2R^{96}$, $-COR^{97}$, $-NR^{98}$ COR⁹⁹及びNR¹⁰⁰SO₂R¹⁰¹の少なくとも1つで置 換されていてもよい5員又は6員の含窒素複素環を形成 する原子群を表す。該含窒素複素環は、更に別の環と縮 合環を形成してもよい。R⁸¹、R⁸²、R⁸³、R⁸⁴、 R85, R86, R87, R88, R89, R90, R91, R92, R 93、R⁹⁴、R⁹⁵、R⁹⁶、R⁹⁷、R⁹⁸、R⁹⁹、R¹⁰⁰及び R¹⁰¹は、それぞれ水素原子、脂肪族基又は芳香族基を 表す。これらの中でも、Cは、5員の含窒素複素環を形 成するのが好ましく、該5員の含窒素複素環には、イミ ダゾール環、トリアゾール環、テロラゾール環が含まれ る。

【0053】本発明においては、前記式(I)で表される化合物の中でも、下記式(II)で表される化合物が特に好ましい。

式 (II)

[0054]

【化10】

$$\begin{array}{c|c} R^2 & R^3 \\ R^1 & N & R^7 & R^8 \end{array}$$

【0055】前記式(II)中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 及び R^7 は、前記式(I)におけるのと同義である。X及びYは、それぞれ-C (R^8) = Yは-N = を表す。Y を表す。Y を表す。Y を表す。Y を表す。Y を表す。Y を表す。Y を表す。Y が同時に-N = を表すことはない。Y には大きを表し、水素原子、Y には、Y にないます。Y にはいます。Y に

16

炭素数 $1\sim100$ の置換アリール基であることが更に好ましい。 R^8 は、XとYとが同時に-C(R^8) = を表すときは、互いに結合して環を形成してもよく、該環としては6員環であることが好ましく、芳香族環(例えばベンゼン環)がより好ましい。

【0056】本発明においては、前記式(II)で表される化合物の中でも、Xが-N=を表し、かつ<math>Yが-C(R^8) =を表す場合、即ち、下記式(III)で表される化合物が特に好ましい。

10 式 (III)

[0057]

【化11】

【0.05.8】前記式 (III) 中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 及び R^8 は、前記式 (II) におけるのと同義である。

【0059】また、R⁸が置換アリール基の場合、置換基を2つ以上有することが好ましく、3,4ジ置換フェニル基又は3,5ジ置換フェニル基であることがより好ましく、3,5ジ置換フェニル基であることが特に好ましい。

【0060】前記式 (I) で表される油溶性染料は、 $-NR^{170}SO_2R^{171}$ で表される置換基を分子内に合計 2 個以上有することが好ましく、合計 $2\sim5$ 個有するのがより好ましく、合計 $2\sim3$ 個有するのが特に好ましい。ここで R^{170} 及び R^{171} は、それぞれ水素原子、脂肪族基又は芳香族基を表す。これらの中でも、 R^{170} は、水素原子又は脂肪族基が好ましく、水素原子が特に好ましい

【0061】前記式(I)で表される油溶性染料は、分子内に1個以上の水溶性基を有することも好ましい。その水溶性基は、例えばカルボキシル基、4級アンモニウム基、スルホン酸基等のイオン性親水性基が挙げられ、カルボキシル基が特に好ましい。

【0062】前記式(I)で表される化合物は、次式(IV-1)、(IV-2)、(IV-3a)、(IV-3b)、(IV-4)及び(IV-5)のいずれかで表される化合物である場合も好ましい。

[0063]

【化12】

【0064】前記式 (IV-1)、 (IV-2)、 (IV-3 a)、(IV-3b)、(IV-4)及び(IV-5)中、X 及びYは、各々前述の式(II)と同義である。また、R 1、R²、R³、R⁴、R⁵、R⁶、R⁷及びR⁸は、各々前述 と同義である。これらの中でも、(IV-1)、(IV-2)、(IV-4)及び(IV-5)については、Xが-N =であり、Yが-C(R8)=となる場合がより好まし く、また(IV-3b)よりも(IV-3a)の方がより好 ましい。前記式 (IV-1) 中、R201及びR202は、炭素 原子数が1~18のアルキル基で、その一方又は両方 が、複素環基、シアノ基、-OR³⁰¹、-SR³⁰²、-C O_2R^{303} , $-OCOR^{304}$, $-NR^{305}R^{306}$, -CON $R^{307}R^{308}$, $-SO_2R^{309}$, $-SO_2NR^{310}R^{311}$, - $NR^{312}CONR^{313}R^{314}$, $-NR^{315}CO_2R^{316}$, -C OR^{317} 、 $-NR^{318}COR^{319}$ 及びNR 320 SO $_{2}$ R 321 の 少なくとも1つで置換されている。ここで、R³⁰¹、R 302, R³⁰³, R³⁰⁴, R³⁰⁵, R³⁰⁶, R³⁰⁷, R³⁰⁸, R 309, R³¹⁰, R³¹¹, R³¹², R³¹³, R³¹⁴, R³¹⁵, R 316、R³¹⁷、R³¹⁸、R³¹⁹、R³²⁰及びR³²¹は、それぞ れ独立に、水素原子、脂肪族基又は芳香族基を表す。

【0065】 R^{201} 及び R^{202} の置換基としては、シアノ基、 $-OR^{301}$ 、 $-SR^{302}$ 、 $-CO_2R^{303}$ 、-OCOR

304、-CONR307R308、 $-SO_2R309$ 、 $-SO_2NR310R311$ 、-NR312CONR313R314、-NR315CO2R316、-COR317、 $-NR318COR319又はNR320SO_2R321が好ましく、シアノ基、<math>-OR301$ 、 $-CO_2R303$ 、 $-OCOR304又はNR320SO_2R321がより好ましく、シアノ基、<math>-CO_2R303$ が特に好ましい。置換基が-OR301の場合、R201とR202とで合計2個以上有し、 $2\sim4$ 個有することが好ましく、2個有することが特に好ましい。

【0066】前記式 (IV-2) 中、R²⁰³は、炭素原子数1~10の置換アルキル基を表、炭素原子数1~4の置換アルキル基が好ましく、トリフルオロメチル基が特に好ましい。置換基としては、ハロゲン原子又はフッ素原子が好ましく、フッ素原子が特に好ましい。

【0067】前記式 (IV-3a) 及び (IV-3b) 中、R²⁰⁴、R²⁰⁵、R²⁰⁶及びR²⁰⁷は、炭素原子数0~100 の脂肪族基、芳香族基、複素環基、シアノ基、-OR31、-SR³³²、-CO₂R³³³、-OCOR³³⁴、-NR³³⁵R³³⁶、-CONR³³⁷R³³⁸、-SO₂R³³⁹、-SO₂NR³⁴⁰R³⁴¹、-NR³⁴²CONR³⁴³R³⁴⁴、-NR³⁴⁵CO₂R³⁴⁶、-COR³⁴⁷、-NR³⁴⁸COR³⁴⁹又はNR³⁵⁰SO₂R³⁵¹を表し、脂肪族基は、炭素原子数0

~50が好ましい。R331、R332、R333、R334、R335、R336、R337、R338、R339、R340、R341、R342、R343、R344、R345、R346、R347、R348、R349、R350及びR351は、それぞれ独立に、水素原子、脂肪族基又は芳香族基を表す。R204、R205、R206及びR207は、炭素原子数0~30の脂肪族基、芳香族基、一OR331、一CO2R333、一OCOR334、一CONR337R338、一SO2NR340R341、一NR342CONR343R344、一NR345CO2R346、一COR347、一NR348COR349又はNR350SO2R351が好ましい。R204、R205、R206及びR207は、炭素原子数0~30の脂肪族基、一OR331、一CO2R333、一OCOR334、一CONR337R338、一NR348COR349又はNR350SO2R351がより好ましい。

【0068】前記式 (IV-4) 中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 及び R^8 は、そのいずれかに合計 2個以上の $-NR^{361}$ SO_2R^{362} で表される置換基を有し、合計 $2\sim5$ 個が好ましく、合計 $2\sim3$ 個がより好ましい。 R^{361} 及び R^{362} は、それぞれ水素原子、脂肪族基又は芳香族基を表す。 R^{361} は水素原子又は脂肪族基が好ましく、水素原子が特に好ましい。

【0069】前記式 (IV-5) 中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 及び R^8 は、その何れかに、1 個以上の水溶性基を有する。その水溶性基としては、例えば

20

カルボキシル基、4級アンモニウム塩、スルホン酸基等 のイオン性親水性基が挙げられ、カルボキシル基が特に 好ましい。

【0070】前記式 (IV-1)、 (IV-2)、 (IV-3a)、 (IV-3b)、 (IV-4) 及び (IV-5) で表される化合物を本発明に用いると、分散経時安定性の点で好ましい。式 (IV-1) で表される化合物を本発明に用いると、600nmにおける吸収が小さく好ましいものであり、また紙に印字した際のにじみが少なくなる点で有利である。式 (IV-2) で表される化合物を本発明に用いると、耐熱性に優れた画像が得られる点で好ましい。式 (IV-3a) 及び (IV-3b) で表される化合物を本発明に用いると、シャープな分光吸収特性の優れた色相が得らる点で好ましい。式 (IV-4) で表される化合物を本発明に用いると、分散熱安定性の点で好ましい。式 (IV-5) で表される化合物を本発明に用いると、分散熱安定性の点で好ましい。式 (IV-5) で表される化合物を本発明に用いると、か散熱安定性の点で好ましい。式 (IV-5) で表される化合物を本発明に用いると、対散物が得られる点で好ましい

【0071】以下、前記式(I)で表される化合物(ア ・ ゾメチン色素)の具体例(I-1)~I-92))を列挙 する。

[0072] [化13]

21 I - 1) N N(CH₃)₂ NHCCHO

H₃C N N(C₂H₅)₂

H₃C N OC₈H₁₇(n)

NHSO₂ OC₈H₁₇(n)

I - 3)

H₃C

NHSO₂CH₃

OC₈H₁₇(n)

NHSO₂

OC₈H₁₇(n)

NHSO₂

NHSO₂

NHSO₂

[0073]

[0074]

[0075]

【化16】

[0076]

[0077]

[0078]

【化19】

[0079]

35 I - 2 9) N N N ((C₂H₄O)₃C₂H₅]₂ CO₂(C₂H₄O)₃C₂H₅

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{OC}_{18} \\ \text{H}_{37} \\ \text{(n)} \\ \text{NHSO}_2 \\ \\ \text{\{\{\c 2\ 1\ \}\}} \end{array}$$

[0080]

[0081]

【化22】

[0082] [化23]

(22)

[0084]

$$\begin{array}{c} 45 \\ 1-49) \\ ((n)C_4H_9)_2N \\ N \\ N \\ C_8H_{17}(n) \\ C_8H_{$$

[0085]

【化26】

[0086]

【化27】

[0087]

【化28】

[0088]

【化29】

[0089]

【化30】

[0090]

【化31】

[0091]

【化32】

$$I - 8 \text{ O})$$

$$N - C_4H_9(n)$$

$$OC_8H_{17}(n)$$

$$OC_8H_{17}(n)$$

$$NHSO_2 - OC_8H_{17}(n)$$

[0093]

【化34】

[0094]

[0095]

【化36】

【0096】前記式(I)で表される化合物(アゾメチン色素)は、例えば、特開平4-126772号、特公平7-94180号の各公報に記載された方法に従って合成することができる。また、前記式(I)において、Xが-N=を表し、かつYが-C(R^8)=を表す化合物、即ち前記式(III)で表される化合物は、例えば、特公平7-14941号、特公平7-100705号、特開平3-184980号、特開平11-265044号の各公報に記載された方法に従って合成することができる。また、前記式(I)において、Xが-C(R^8)=を表し、かつYが-N=を表す化合物は、例えば、特開平5-127328号、特開平3-15842号の各公報、米国特許第3,725,067号明細書に記載された方法に従って合成することができる。

【0097】上記化合物の中でも、前記式 (IV-1) に含まれるものとして、(I-3)、(I-5)、(I-6)、(I-7)、(I-9)、(I-10)、(I-11)、(I-12)、(I-13)、(I-15)、(I-17)、(I-18)、(I-21)、(I-23)、(I-24)、(I-26)、(I-28)、

(I-29), (I-31), (I-32), (I-33), (I-34), (I-35), (I-37), (I-38), (I-39), (I-40), (I-41), (I-42), (I-43), (I-45), (1-46), (1-47), (1-48), (1-49), (I-50), (I-51), (I-53), (I-54), (I-55), (I-56), (I-79), (I-80), (I-81), (I-82), (I-83)、(I-85)、(I-91)及び(I-40 92) が挙げられる。また前記式 (IV-2) に含まれる 50217(1-6), (1-87), (1-88), (I-89)及び(I-90)が挙げられる。また前記 式 (IV-3a) 及び (IV-3b) に含まれるものとして (I-19), (I-24), (I-36), (I-4)8)、(I-84)、(I-85)、(I-88)及び (I-90) が挙げられる。また前記式 (IV-4) に含 まれるものとして、(I-3)、(I-6)、(I-7), (I-9), (I-18), (I-21), (I-24), (I-31), (I-36), (I-3 50 7), (I-39), (I-40), (I-41),

(I-43)、(I-46)、(I-48)、(I-50)、(I-54)、(I-56)、(I-80)、(I-85)、(I-91) 及び(I-92) が挙げられる。また前記式(IV-5) に含まれるものとして、(I-14)、(I-19)、(I-27)、(I-91) 及び(I-92) が挙げられる。

【0098】 -油溶性ポリマー-

前記油溶性ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、ビニルポリマーが好適に挙げられる。前記ビニルポリマーとしては、従来公知のものが挙げられ、水不溶性型、水分散(自己乳化)型、水溶性型の何れもものであってもよいが、着色微粒子の製造容易性、分散安定性等の点で水分散型のものが好ましい。

【0099】前記水分散型のビニルポリマーとしては、イオン解離型のもの、非イオン性分散性基含有型のもの、あるいはこれらの混合型のもののいずれであってもよい。前記イオン解離型のビニルポリマーとしては、三級アミノ基などのカチオン性の解離性基を含有するビニルポリマーや、カルボン酸、スルホン酸などのアニオン性の解離性基を含有するビニルポリマーが挙げられる。前記非イオン性分散性基含有型のビニルポリマーとしては、ポリエチレンオキシ鎖などの非イオン性分散性基を含有するビニルポリマーが挙げられる。これらの中でも、着色微粒子の分散安定性の点で、アニオン性の解離性基を含有するイオン解離型のビニルポリマー、非イオン性分散性基含有型のビニルポリマー、混合型のビニルポリマーが好ましい。

【0100】前記ビニルポリマーを形成するモノマーと しては、例えば、以下のものが挙げられる。即ち、アク リル酸エステル類、具体的には、メチルアクリレート、 エチルアクリレート、n-プロピルアクリレート、イソ プロピルアクリレート、nーブチルアクリレート、イソ ブチルアクリレート、secーブチルアクリレート、t ertーブチルアクリレート、アミルアクリレート、ヘ キシルアクリレート、2-エチルヘキシルアクリレー ト、オクチルアクリレート、tertーオクチルアクリ レート、2-クロロエチルアクリレート、2-ブロモエ チルアクリレート、4-クロロブチルアクリレート、シ アノエチルアクリレート、2-アセトキシエチルアクリ レート、ベンジルアクリレート、メトキシベンジルアク リレート、2-クロロシクロヘキシルアクリレート、シ クロヘキシルアクリレート、フルフリルアクリレート、 テトラヒドロフルフリルアクリレート、フェニルアクリ レート、5-ヒドロキシペンチルアクリレート、2,2 -ジメチル-3-ヒドロキシプロピルアクリレート、2 -メトキシエチルアクリレート、3-メトキシブチルア クリレート、2-エトキシエチルアクリレート、2-ブ トキシエチルアクリレート、2-(2-メトキシエトキ シ) エチルアクリレート、2-(2-ブトキシエトキ

68

シ) エチルアクリレート、グリシジルアクリレート、1 ーブロモー2ーメトキシエチルアクリレート、1, 1ー ジクロロー2ーエトキシエチルアクリレート、2, 2, 2ーテトラフルオロエチルアクリレート、1H, 1H, 2H, 2Hーパーフルオロデシルアクリレート等が挙げ られる。

【0101】メタクリル酸エステル類、具体的には、メ チルメタクリレート、エチルメタクリレート、nープロ ピルメタクリレート、イソプロピルメタクリレート、n ーブチルメタクリレート、イソプチルメタクリレート、 secーブチルメタクリレート、tertーブチルメタ クリレート、アミルメタクリレート、ヘキシルメタクリ レート、シクロヘキシルメタクリレート、ベンジルメタ クリレート、クロロベンジルメタクリレート、オクチル メタクリレート、ステアリルメタクリレート、2-(3 ーフェニルプロピルオキシ) エチルメタクリレート、フ ルフリルメタクリレート、テトラヒドロフルフリルメタ クリレート、フェニルメタクリレート、クレジルメタク リレート、ナフチルメタクリレート、2-ヒドロキシエ チルメタクリレート、4-ヒドロキシブチルメタクリレ ート、トリエチレングリコールモノメタクリレート、ジ プロピレングリコールモノメタクリレート、2ーメトキ シエチルメタクリレート、3-メトキシブチルメタクリ レート、2-エトキシエチルメタクリレート、2-is o-プロポキシエチルメタクリレート、2-ブトキシエ チルメタクリレート、2-(2-メトキシエトキシ)エ チルメタクリレート、2-(2-エトキシエトキシ)エ チルメタクリレート、2-(2-ブトキシエトキシ)エ チルメタクリレート、2-アセトキシエチルメタクリレ ート、2-アセトアセトキシエチルメタクリレート、ア リルメタクリレート、グリシジルメタクリレート、2, 2, 2-テトラフルオロエチルメタクリレート、1H, 1H, 2H, 2H-パーフルオロデシルメタクリレート などが挙げられる。

【0102】ビニルエステル類、具体的には、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルイソブチレート、ビニルカプロエート、ビニルクロロアセテート、ビニルメトキシアセテート、ビニルフェニルアセテート、安息香酸ビニル、サリチル酸ビニルなどが挙げられる。

【0103】アクリルアミド類、具体的には、アクリルアミド、メチルアクリルアミド、エチルアクリルアミド、プロピルアクリルアミド、ブチルアクリルアミド、
tertーブチルアクリルアミド、tertーオクチルアクリルアミド、シクロヘキシルアクリルアミド、ベンジルアクリルアミド、ヒドロキシメチルアクリルアミド、メトキシメチルアクリルアミド、ブトキシメチルアクリルアミド、メトキシエチルアクリルアミド、ジェチルアクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、ジェチルアクリルアミド、ジェチルアクリルアミド、βーシアノエチルアクリルアミド、N

-69

(2-アセトアセトキシエチル)アクリルアミド、ジアセトンアクリルアミドなどが挙げられる。

【0104】メタクリルアミド類、具体的には、メタクリルアミド、メチルメタクリルアミド、エチルメタクリルアミド、プロピルメタクリルアミド、ブチルメタクリルアミド、ナertーブチルメタクリルアミド、シクロヘキシルメタクリルアミド、ベンジルメタクリルアミド、ヒドロキシメチルメタクリルアミド、メトキシエチルメタクリルアミド、フェニルメタクリルアミド、ジメチルメタクリルアミド、 βーシアノエチルメタクリルアミド、 Nー (2ーアセトアセトキシエチル) メタクリルアミドなどが挙げられる。

【0105】オレフィン類、具体的には、ジシクロペンタジエン、エチレン、プロピレン、1ーブテン、1ーペンテン、塩化ビニル、塩化ビニリデン、イソプレン、クロロプレン、ブタジエン、2,3ージメチルブタジエン等、スチレン類、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、クロルメチルスチレン、メトキシスチレン、アセトキシスチレン、クロルスチレン、ジクロルスチレン、ブロムスチレン、ビニル安息香酸メチルエステルなどが挙げられる。

【0106】ビニルエーテル類、具体的には、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。

【0107】その他のモノマーとして、クロトン酸ブチル、クロトン酸ヘキシル、イタコン酸ジメチル、イタコン酸ジブチル、マレイン酸ジエチル、マレイン酸ジメチル、マレイン酸ジブチル、フマル酸ジエチル、フマル酸ジメチル、フマル酸ジブチル、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトン、ドービニルオキサゾリドン、Nービニルピロリドン、ビニリデンクロライド、メチレンマロンニトリル、ビニリデン、ジフェニルー2ーメタクリロイルオキシエチルホスフェート、ジブケルー2ーメタクリロイルオキシエチルホスフェート、ジオクチルー2ーメタクリロイルオキシエチルホスフェート、ジオクチルー2ーメタクリロイルオキシエチルホスフェート、ジオクチルー2ーメタクリロイルオキシエチルホスフェートなどが挙げられる。

【0108】また、解離性基を有するモノマーとしては、アニオン性の解離性基を有するモノマー、カチオン性の解離性基を有するモノマーが挙げられる。

【0109】前記アニオン性の解離性基を有するモノマーとしては、例えば、カルボン酸モノマー、スルホン酸モノマー、リン酸モノマー等が挙げられる。

【0110】前記カルボン酸モノマーとしては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸、クロトン酸、イタコン酸モノアルキルエステル(例えば、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチルな

70

ど)、マレイン酸モノアルキルエステル (例えば、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸 モノブチルなど) などが挙げられる。

【0111】前記スルホン酸モノマーとしては、例え ば、スチレンスルホン酸、ビニルスルホン酸、アクリロ イルオキシアルカンスルホン酸(例えば、アクリロイル ・ オキシメタンスルホン酸、アクリロイルオキシエタンス ルホン酸、アクリロイルオキシプロパンスルホン酸な ど)、メタクリロイルオキシアルカンスルホン酸(例え ば、メタクリロイルオキシメタンスルホン酸、メタクリ ロイルオキシエタンスルホン酸、メタクリロイルオキシ プロパンスルホン酸など)、アクリルアミドアルキルス ルホン酸(例えば、2-アクリルアミドー2-メチルエ タンスルホン酸、2-アクリルアミド-2-メチルプロ パンスルホン酸、2-アクリルアミド-2-メチルブタ ンスルホン酸など)、メタクリルアミドアルキルスルホ ン酸(例えば、2ーメタクルリアミドー2ーメチルエタ ンスルホン酸、2-メタクリルアミド-2-メチルプロ パンスルホン酸、2-メタクリルアミド-2-メチルブ 20 タンスルホン酸など) などが挙げられる。

【0112】前記リン酸モノマーとしては、例えば、ビニルホスホン酸、メタクリロイルオキシエチルホスホン酸などが挙げられる。

【0113】これらの中でも、アクリル酸、メタクリル酸、スチレンスルホン酸、ビニルスルホン酸、アクリルアミドアルキルスルホン酸、メタクリルアミドアルキルスルホン酸が好ましく、アクリル酸、メタクリル酸、スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-2-メチルブタンスルホン酸がより好ましい。

【0114】前記カチオン性の解離性基を有するモノマーとしては、例えば、ジアルキルアミノエチルメタクリレート、ジアルキルアミノエチルアタクリレートなどの3級アミノ基を有するモノマーが挙げられる。

【0115】また、非イオン性分散性基を含有するモノ マーとしては、例えば、ポリエチレングリコールモノア ルキルエーテルとカルボン酸モノマーとのエステル、ポ リエチレングリコールモノアルキルエーテルとスルホン 酸モノマーとのエステル、ポリエチレングリコールモノ アルキルエーテルとリン酸モノマーとのエステル、ポリ 40 エチレングリコールモノアルキルエーテルとイソシアネ ート基含有モノマーから形成されるビニル基含有ウレタ ン、ポリビニルアルコール構造を含有するマクロモノマ ーなどが挙げられる。前記ポリエチレングリコールモノ アルキルエーテルのエチレンオキシ部の繰り返し数とし ては、8~50が好ましく、10~30がより好まし い。前記ポリエチレングリコールモノアルキルエーテル のアルキル基の炭素原子数としては、1~20が好まし く、1~12がより好ましい。

□ 【0116】これらのモノマーは、1種単独で使用され

てビニルポリマーが形成されていてもよいし、2種以上が併用されてビニルポリマーが形成されていてもよく、 前記ビニルポリマーの目的(Tg調節、溶解性改良、分散物安定性等)に応じて適宜選択することができる。

【0117】本発明においては、前記ビニルポリマーの中でも、前記解離性基を有するものが好ましく、前記解離性基としてカルボキシル基及びスルホン酸基の少なくとも一方を有するものがより好ましく、前記解離性基としてカルボキシル基を有するものが特に好ましい。

【0118】前記ビニルポリマーにおける解離性基の含量としては、0.1~3.0mmol/gが好ましく、0.2~2.0mmol/gがより好ましい。なお、前記解離性基の含量が、少ない場合にはビニルポリマーの自己乳化性が小さく、多い場合には水溶性が高くなり染料の分散に適さなくなる傾向がある。

【0119】なお、前記解離基として、前記アニオン性の解離基としては、更に、アルカリ金属(例えばNa、Kなど)又はアンモニウムイオンの塩などであってもよく、前記カチオン性の解離基としては、更に、有機酸(例えば、酢酸、プロピオン酸、メタンスルホン酸)や

無機酸(塩酸、硫酸など)の塩であってもよい。 【0120】前記ビニルポリマーの具体例(P-1) \sim P-105))を以下に列挙する。括弧内の比は質量比を意味する。なお、本発明は、これらの具体例に何ら限

【0121】P-1) メチルメタクリレートーエチルアク リレート共重合体(50:50)

P-2) メチルメタクリレートーメチルアクリレート共重合体(65:35)

- P-3) ブチルアクリレート-スチレン共重合体(50:50)
- P-4) ポリエチルメタクリレート

定されるものではない。

- P-5) ポリn-ブチルメタクリレート
- P-6) ポリイソブチルメタクリレート
- P-7) ポリイソプロピルメタクリレート
- P-8) ポリ2-クロロエチルアクリレート
- P-9) $\sharp J$ (2 t e r t J + J
- P-10) $\sharp J$ (4 tert- \check{J} + \check{J}
- P-11) n-ブチルメタクリレート-N-ビニル-2-ピロリドン共重合体(90:10)
- P-12) メチルメタクリレート-塩化ビニル共重合体(70:30)
- P-13) メチルメタクリレート-スチレン共重合体(50:50)
- P-14) イソブチルメタクリレートーブチルアクリレート共重合体(55:45)
- P-15) n ープチルメタクリレートーメチルメタクリレートースチレン共重合体(50:30:20)

[0122]

72

- P-16) 酢酸ビニルーアクリルアミド共重合体(85:15)
- P-17) 塩化ビニルー酢酸ビニル共重合体(65:35)
- P-18) n ーブチルアクリレートーメチルメタクリレー トーn ーブチルメタクリレート共重合体(35:35:30)
- P-19) ジアセトンアクリルアミドーメチルメタクリレート共重合体(50:50)
- P-20) エチルメタクリレート-n-ブチルアクリレー ト共重合体(70:30)
- P-21) メチルメタクリレートーシクロヘキシルアクリ 10 レート共重合体(50:50)
 - P-22) tert-ブチルメタクリルアミドーメチルメタクリレート-アクリル酸共重合体(60:30:10)
 - P-23) n-ブチルアクリレート-アクリル酸共重合体 (80:20)
 - P-24) メチルメタクリレート-イソブチルメタクリレート-アクリル酸共重合体(52:28:20)
 - P-25) sec-ブチルアクリレートーアクリル酸共重 合体(85:15)
 - P-26) n ーブチルメタクリレートーペンチルメタクリレートーメタクリル酸共重合体(38:38:24)
 - P-27) エチルメタクリレート-アクリル酸(95:5)
 - P-28) イソプロピルアクリレートーアクリル酸共重合体(90:10)
 - P-29) ブチルメタクリレート-2-ヒドロキシエチル メタクリレート-アクリル酸共重合体(85:5:10)
 - P-30) シアノエチルアクリレートーベンジルメタクリレート-アクリル酸共重合体(60:30:10)
 - 【0123】P-31) イソブチルメタクリレートーテト ラヒドロフルフリルアクリレートーアクリル酸共重合体 (60:30:10)
 - P-32) n-ブチルメタクリレートー tert-ブチルアクリルアミドーアクリル酸共重合体(55:37:8)
 - P-33) n-ブチルメタクリレートー1H, 1H, 2H, 2H-パーフルオロデシルアクリレートーアクリル酸共重合体 (75:20:5)
 - P-34) メチルメタクリレート-n-ブチルアクリレート-アクリル酸共重合体(50:45:5)
 - P-35) 2エチルヘキシルメタクリレートーメチルアクリレートーアクリル酸共重合体(40:55:5)
- 40 P-36) 3ーメトキシブチルメタクリレートースチレン ーアクリル酸共重合体(35:50:15)
 - P-37) シクロヘキシルメタクリレートーアリルメタクリレートーアクリル酸共重合体(35:50:15)
 - P-38) イソプロピルメタクリレートーフルフリルメタ クリレートーアクリル酸共重合体(80:10:10)
 - P-39) イソプロピルメタクリレートー2ーブトキシエ チルメタクリレートーアクリル酸共重合体(75:15:10)
 - P-40) エチルアクリレートーフェニルメタクリレート -アクリル酸共重合体(72:15:13)
- 50 P-41) イソブチルメタクリレートー2- (2-エトキ

シエトキシ) エチルメタクリレート-アクリル酸共重合体(80:10:10)

P-42) イソブチルメタクリレートーポリエチレングリコールモノメチルエーテル(エチレンオキシ鎖繰り返し数23)のメタクリル酸エステルーアクリル酸共重合体(70:20:10)

P-43) イソブチルメタクリレートージプロピレングリコールモノメタクリレートーアクリル酸共重合体(85:5:10)

P-44) イソブチルメタクリレートーポリエチレングリコールモノメチルエーテル(エチレンオキシ鎖繰り返し数9)のメタクリル酸エステルーアクリル酸共重合体(80:10:10)

P-45) イソプチルアクリレートーグリシジルメタクリレートーアクリル酸共重合体(75:15:10)

【0124】P-46) イソブチルアクリレート-メトキシスチレン-アクリル酸共重合体(75:15:10)

P-47) イソブチルアクリレート-N-ビニルピロリドン-アクリル酸共重合体(60:30:10)

P-48) tert-ブチルアクリレートーメタクリル酸 共重合体(88:12)

P-49) ヘキシルアクリレートースチレンーメタクリル 酸共重合体(80:5:15)

P-50) 2, 2, 2ーテトラフルオロエチルメタクリレートーメチルメタクリレート共重合体-メタクリル酸共重合体(25:60:15)

P-51) エチルメタクリレートー2ーメトキシエチルメ タクリレートーメタクリル酸共重合体(70:15:15)

P-52) エチルメタクリレートー2-エトキシエチルメ タクリレートーメタクリル酸共重合体(70:15:15)

P-53) ビニルアセテートーメタクリル酸共重合体(85:15)

P-54) n-ブチルメタクリレート-アクリルアミドーメタクリル酸共重合体(70:15:15)

P-55) tertーオクチルアクリルアミドープロピルメタクリレートーメタクリル酸共重合体(20:65:15)

P-56) n - ブチルメタクリレート-ブトキシメチルア クリルアミド-メタクリル酸共重合体(80:5:15)

P-57) n ープチルメタクリレートージフェニルー 2 ーメタクリロイルオキシエチルホスフェートーメタクリル 酸共重合体(80:5:15)

P-58) イソブチルメタクリレートージメチルアクリルアミドーメタクリル酸共重合体(70:15:15)

P-59) n-ブチルメタクリレート-ブチルアクリルア ミド-メタクリル酸共重合体(70:15:15)

P-60) n - ブチルメタクリレート-フェニルアクリル アミド-メタクリル酸共重合体(70:15:15)

【0125】P-61) n-ブチルメタクリレート-メタ クリルアミドーメタクリル酸共重合体(70:15:15)

P-62) n-ブチルメタクリレート-メトキシエチルメ

74

タクリルアミドーメタクリル酸共重合体(70:15:15) P-63) nーブチルメタクリレートーNービニルピロリドンーメタクリル酸共重合体(70:15:15)

P-64) イソブチルメタクリレート-1H, 1H, 2 H, 2H-パーフルオロデシルアクリレート-メタクリル酸共重合体(55:30:15)

P-65) イソブチルメタクリレート-2- (2-メトキシエトキシ) エチルメタクリレート-メタクリル酸共重合体(50:35:15)

P-66) n-ブチルメタクリレート-スチレンスルホン 酸共重合体(90:10)

P-67) エチルメタクリレート-スチレンスルホン酸共 重合体(90:10)

P-68) n-ブチルアクリレート-スチレン-スチレン スルホン酸共重合体(80:10:10)

P-69) イソブチルメタクリレートースチレンスルホン 酸共重合体(90:10)

P-70) イソブチルアクリレートートリエチレングリコ ールモノメタクリレートースチレンスルホン酸共重合体 (80:10:10)

P-71) n-ブチルアクリレート-1H, 1H, 2H, 2H-パーフルオロデシルメタクリレート-スチレンス ルホン酸共重合体(80:10:10)

P-72) n-ブチルアクリレート-2-ブトキシエチル メタクリレートースチレンスルホン酸共重合体(70:20:10)

P-73) n ーブチルメタクリレートー2ーアクリルアミドー2ーメチルエタンスルホン酸共重合体(90:10)

P-74) n-ブチルアクリレート-2-ブトキシエチル メタクリレート-2-アクリルアミド-2-メチルエタ ンスルホン酸共重合体(70:20:10)

P-75) イソブチルメタクリレート-2-アクリルアミド-2-メチルエタンスルホン酸共重合体(90:10)

【0126】P-76) イソブチルアクリレートーn-ブ チルメタクリレートー2-アクリルアミドー2-メチル エタンスルホン酸共重合体(70:20:10)

P-77) エチルアクリレートーtert-ブチルメタク リレート-2-アクリルアミド-2-メチルエタンスル ホン酸共重合体(60:30:10)

40 P-78) n-ブチルメタクリレート-2-アクリルアミド-2-メチルプロパンスルホン酸共重合体(90:10)

P-79) エチルメタクリレート-2-アクリルアミド-2-メチルプロパンスルホン酸共重合体(90:10)

P-80) エチルアクリレートーtertーブチルメタク リレートー2ーアクリルアミドー2ーメチルプロパンス ルホン酸共重合体(60:30:10)

P-81) n-ブチルアクリレートー tert-ブチルメタクリレートー 2-アクリルアミドー 2-メチルプロパンスルホン酸共重合体 (60:30:10)

50 P-82) tert-ブチルアクリレートーテトラヒドロ

フルフリルアクリレート-2-メチルプロパンスルホン酸共重合体(50:40:10)

P-83) tert-ブチルアクリレート-1H, 1H, 2H, 2H-パーフルオロデシルメタクリレート-2-アクリルアミド-2-メチルプロパンスルホン酸共重合体(60:30:10)

P-84) tertーブチルアクリレートーポリエチレングリコールモノメチルエーテル(エチレンオキシ鎖繰り返し数23)のメタクリル酸エステルー2ーアクリルアミドー2ーメチルプロパンスルホン酸共重合体(60:30:10)

P-85) イソブチルアクリレート-N-ビニルピロリド ン-2-アクリルアミド-2-メチルプロパンスルホン 酸共重合体(60:30:10)

P-86) エチルメタクリレート-2-アクリルアミド-2-メチルプロパンスルホン酸ソーダ共重合体(90.4:9.6)

P-87) n-ブチルメタクリレート-2-アクリルアミド-2-メチルプロパンスルホン酸ソーダ共重合体(98: 12)

P-88) イソブチルメタクリレートー2ーアクリルアミドー2ーメチルプロパンスルホン酸ソーダ共重合体(90.4:9.6)

P-89) n - ブチルメタクリレート- t e r t - ブチルメタクリレート- 2 - アクリルアミド- 2 - メチルプロパンスルホン酸ソーダ共重合体(50:35:15)

P-90) ビニルピロリドン-イソブチルメタクリレート -2-アクリルアミド-2-メチルプロパンスルホン酸 ソーダ共重合体(50:35:15)

【 O 1 2 7 】 P-91) n ーブチルメタクリレートー2ーメタクリルアミドー2ーメチルプロパンスルホン酸共重合体(90:10)

P-92) n-プチルアクリレートーtert-ブチルメタクリレート-2-メタクリルアミド-2-メチルプロパンスルホン酸共重合体(<math>60:30:10)

P-93) イソブチルアクリレートーヒドロキシメチルア クリルアミドー2ーメタクリルアミドー2ーメチルプロ パンスルホン酸共重合体(80:10:10)

P-94) n-ブチルアクリレート-tert-ブチルメタクリレート-ビニルスルホン酸共重合体(60:30:10)

P-95) ヘキシルメタクリレートーメチルメタクリレートービニルスルホン酸共重合体(40:45:15)

P-96) エチルアクリレート-tert-ブチルメタク リレート-ビニルスルホン酸共重合体(60:30:10)

P-97) n-ブチルメタクリレート-2-アクリルアミド-2-メチルブタンスルホン酸共重合体(90:10)

P-98) エチルメタクリレート-2-アクリルアミドー2-メチルブタンスルホン酸共重合体(90:10)

P-99) エチルアクリレート-tert-ブチルメタク リレート-2-アクリルアミド-2-メチルプタンスル 76

ホン酸共重合体(60:30:10)

P-100) nーブチルアクリレートーtertーブチルメ タクリレートー2ーアクリルアミドー2ーメチルブタン スルホン酸共重合体(60:30:10)

P-101) エチルメタクリレート-2-アクリルアミドー2-メチルブタンスルホン酸ソーダ共重合体(90.4:9.6) P-102) n-ブチルメタクリレート-2-アクリルアミド-2-メチルブタンスルホン酸ソーダ共重合体(98:12)

P-103) イソブチルメタクリレート-2-アクリルアミド-2-メチルブタンスルホン酸ソーダ共重合体(90.4:9.6)

P-104) nーブチルメタクリレートーtertーブチル メタクリレートー2ーアクリルアミドー2ーメチルブタ ンスルホン酸ソーダ共重合体(50:35:15)

P-105) n ーブチルメタクリレートー2ーメタクリルア ミドー2ーメチルブタンスルホン酸共重合体(90:10)

【0128】前記ビニルポリマーの分子量(Mw)としては、通常1000~10000であり、3000~5000が好ましい。前記分子量が、1000未満であると、安定な着色微粒子の分散物を得るのが難しくなる傾向があり、100000を超えると、有機溶媒への溶解性が悪くなったり、有機溶媒の粘度が増加して分散し難くなる傾向がある。

【0129】-着色微粒子分散物の製造-

本発明の着色微粒子分散物は、前記油溶性染料と前記油溶性ポリマーとを含む着色微粒子を水系媒体(少なくとも水を含有する液)に分散することにより製造される。 具体的には、例えば、予め前記油溶性ポリマーのラテックスを調製しこれに前記油溶性染料を含浸させる方法、あるいは共乳化分散法などが挙げられる。これらの中でも、前記共乳化分散法が好ましく、該共乳化分散法とうする有機溶媒に水を添加すること、及び、水中に該有機溶媒を添加すること、のいずれかにより、該有機溶媒を乳化させ微粒子化させる方法が好適に挙げられる。

【0130】なお、前記ラテックスとは、水不溶な前記油溶性ポリマーが微細な粒子として水系媒体中に分散したものを意味する。前記分散の状態としては、前記油溶性ポリマーが前記水系媒体中に乳化されているもの、乳化重合されたもの、ミセル分散されたもの、あるいは前記油溶性ポリマーが分子中に部分的に親水的な構造をもち分子鎖自身が分子状分散したもの、などのいずれであってもよい。

【0131】前記ラテックスの平均粒径としては、通常 1~500nmであり、3~300nmが好ましく、3~200nmが特に好ましい。前記ラテックスの粒径分布としては、特に制限はなく、広い粒径分布であってもよいし、単分散の粒径分布であってもよい。なお、ポリマー微粒子については「合成樹脂エマルジョン(奥田

平、稲垣寛編集、高分子刊行会発行(1978))」、「高分² 子ラテックスの化学(室井宗一著、高分子刊行会発行(1 970))」などに記載されている。

【0132】ここで、予め前記油溶性ポリマーのラテッ クスを調製しこれに前記油溶性染料を含浸させる方法に ついて説明する。なお、ここでは前記油溶性ポリマーと してビニルポリマーを用いた場合とする。この方法の第 一の例は、ビニルポリマーラテックスを調製する第一の 工程と、有機溶剤に前記油溶性染料を溶解した染料溶液 を調製する第二の工程と、前記染料溶液と前記ビニルポ リマーラテックスとを混合し着色微粒子分散物を調製す る第三工程とを含む。この方法の第二の例は、ビニルポ リマーラテックスを調製する第一の工程と、有機溶剤に 前記油溶性染料を溶解した染料溶液を調製し、この染料 溶液と少なくとも水を含む液とを混合して染料微粒子分 散液を調製する第二工程と、前記ビニルポリマーラテッ クスと前記染料微粒子分散液とを混合し着色微粒子分散 物を調製する第三工程とを含む。この方法の第三の例と しては、特開昭55-139471号公報に記載の方法 が挙げられる。

【0133】ここで、前記共乳化分散法について説明する。 なお、ここでは前記油溶性ポリマーとしてビニルポリマーを用いた場合とする。

【0134】この方法の第一の例は、有機溶剤に前記油 溶性染料と、前記ビニルポリマーとを溶解したビニルポ リマー染料溶液を調製する第一の工程と、前記ビニルポ リマー染料溶液と、少なくとも水を含む液とを混合して 着色微粒子分散物を調製する第二の工程とを含む。この 方法の第二の例は、有機溶剤に前記油溶性染料を溶解し た染料溶液を調製する第一の工程と、前記ビニルポリマ ーを溶解したビニルポリマー溶液を調製する第二の工程 と、前記染料溶液と前記ビニルポリマー溶液と少なくと も水を含む液とを混合して着色微粒子分散物を調製する 第三の工程とを含む。この方法の第三の例は、有機溶剤 に前記油溶性染料を溶解した染料溶液を調製し、この染 料溶液と少なくとも水を含む液とを混合して染料微粒子 分散液を調製する第一の工程と、前記ビニルポリマーを 溶解したビニルポリマー溶液を調製し、このビニルポリ マ一溶液と少なくとも水を含む液とを混合してビニルポ リマー微粒子分散液を作製する第二の工程と、前記染料 微粒子分散液と前記ビニルポリマー微粒子分散液とを混 合して着色微粒子分散物を調製する第三の工程とを含 む。この方法の第四の例は、有機溶剤に前記ビニルポリ マーを溶解したビニルポリマー溶液を調製する第一のエ 程と、前記油溶性染料を溶解した染料溶液を調製し、こ の染料溶液と少なくとも水を含む液とを混合して染料微 粒子分散液を調製する第二の工程と、前記ビニルポリマ 一溶液と前記染料微粒子分散液とを混合し着色微粒子分 散物を調製する第三の工程とを含む。

【0135】前記着色微粒子分散物において、前記油溶

78

性ポリマー (ビニルポリマー)の使用量としては、前記油溶性染料100質量部に対し、10~600質量部が好ましく、50~400質量部がより好ましい。前記油溶性ポリマー (ビニルポリマー)の使用量が、10質量部未満であると、微細で安定な分散がし難くなる傾向があり、600質量部を超えると、着色微粒子分散物中の前記油溶性染料の割合が少なくなり、該着色微粒子分散物を水系インクとして使用した場合に配合設計上の余裕がなくなる傾向がある。

【0136】-有機溶剤-

前記着色微粒子分散物を製造する際に用いる有機溶剤と しては、特に制限はなく、前記油溶性染料や前記油溶性 ポリマー(ビニルポリマー)の溶解性に基づいて適宜選 択することができ、例えば、アセトン、メチルエチルケ トン、ジエチルケトン等のケトン系溶剤、メタノール、 エタノール、2-プロパノール、1-プロパノール、1 ーブタノール、tertーブタノール等のアルコール系 溶剤、クロロホルム、塩化メチレン等の塩素系溶剤、ベ ンゼン、トルエン等の芳香族系溶剤、酢酸エチル、酢酸 ブチル、酢酸イソプロピルなどのエステル系溶剤、ジエ チルエーテル、テトラヒドロフラン、ジオキサン等のエ ーテル系溶剤、エチレングリコールモノメチルエーテ ル、エチレングリコールジメチルエーテル等のグリコー ルエーテル系溶剤、などが挙げられる。これらの有機溶 剤は、1種単独で使用してもよいし、2種以上を併用し てもよい。

【0137】前記有機溶剤の使用量としては、本発明の 効果を害しない範囲内であれば特に制限はないが、前記 油溶性ポリマー(ビニルポリマー)100質量部に対 し、10~2000質量部が好ましく、100~100 0 質量部がより好ましい。前記有機溶剤の使用量が、1 0 質量部未満であると、着色微粒子の微細で安定な分散 がし難くなる傾向があり、2000質量部を超えると、 該有機溶剤を除去するための脱溶媒と濃縮の工程が必須 になり、かつ配合設計上の余裕がなくなる傾向がある。 【0138】前記有機溶剤は、該有機溶剤の水に対する 溶解度が10%以下である場合、あるいは、該有機溶剤 の蒸気圧が水より大きい場合には、着色微粒子分散物の 安定性の点で除去されるのが好ましい。前記有機溶剤の 除去は、常圧~減圧条件で10℃~100℃で行うこと ができ、常圧条件で40~100℃あるいは減圧条件で 10~50℃で行うのが好ましい。

【0139】また、本発明の着色微粒子分散物は、高沸点で水に不溶性の有機溶媒(以下「高沸点有機溶媒」ということがある)を含んでいてもよい。前記高沸点有機溶媒の使用量としては、前記油溶性染料に対し、1~1000重量%がより好ましい。前記高沸点有機溶媒の沸点としては、150℃以上であることが必要であり、170℃以上が好まし

い。前記高沸点有機溶媒の誘電率としては、3~12で

あることが必要であり、4~10が好ましい。ここでい う誘電率とは、25℃における真空中に対する比誘電率 を表す。

【0140】前記高沸点有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、米国特許第2,322,027号等に記載の化合物が挙げられ、リン酸エステル類、脂肪酸エステル類、フタル酸エステル類、安息香酸エステル類、フェノール類、アミド系類の高沸点有機溶媒が好ましい。

【0141】前記高沸点有機溶媒としては、下記式 [S-1] から [S-9] で表される化合物が特に好ましい。

[0142]

【化37】

$$\pm (S-1)$$
 $O=R^{-1}$ $O=R^{-1}$ $O=R^{-1}$ $O=R^{-1}$ $O=R^{-1}$ $O=R^{-1}$ $O=R^{-1}$

【0143】前記式 [S-1] において、 R^1 、 R^2 及び R^3 は、それぞれ独立に、脂肪族基又はアリール基を表す。また、a、b及びcは、ぞれぞれ独立に、0又は1を表す。

【0144】前記式 [S-2] において、 R^4 及びR5は、それぞれ独立に、脂肪族基又はアリール基を表す。 R^6 は、ハロゲン原子(F、C1、Br、I以下同

80

じ)、アルキル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基を表す。 d は、 $0 \sim 3$ の整数を表す。 d が複数のとき、複数の R^6 は同じであってもよいし、異なっていてもよい。

【0145】前記式 [S-3] において、Ar は、P リール基を表す。e は、 $1\sim6$ の整数を表す。 R^7 は、e 価の炭化水素基又はエーテル結合で互いに結合した炭化水素基を表す。

10 【0146】前記式 [S-4] において、R⁸ は、脂肪 族基を表す。fは、1~6の整数を表す。R⁹は、f 価 の炭化水素基又はエーテル結合で互いに結合した炭化水 素基を表す。

【0147】前記式 [S-5] において、g は、 $2\sim6$ の整数を表す。 R^{10} は、g 価の炭化水素基(ただしアリール基を除く)を表す。 R^{11} は、脂肪族基又はアリール基を表す。

【0148】前記式 [S-6] において、 R^{12} 、 R^{13} 及 UR^{14} は、それぞれ独立に、水素原子、脂肪族基又はア U-N基を表す。Xは、-CO-又は SO_2- を表す。 R^{12} と R^{13} と、又は、 R^{13} と R^{14} とは、互いに結合して 環を形成していてもよい。

【0149】前記式 [S-7] において、R¹⁵は、脂肪 族基、アルコキシカルボニル基、アリールオキシカルボ ニル基、アルキルスルホニル基、アリールスルホニル 基、アリール基又はシアノ基を表す。R¹⁶は、ハロゲン 原子、脂肪族基、アリール基、アルコキシ基又はアリー ルオキシ基を表す。hは、0~3の整数を表す。hが複 数のとき、複数のR¹⁶は同じであってもよいし、異なっ ていてもよい。

【0150】前記式 $\{S-8\}$ において、 R^{17} 及び R^{18} は、それぞれ独立に、脂肪族基又はアリール基を表す。 R^{19} は、ハロゲン原子、脂肪族基、アリール基、アルコキシ基又はアリールオキシ基を表す。 i は、 $0\sim4$ の整数を表す。 i が複数のとき、複数の R^{19} は、同じであってもよいし、異なっていてもよい。

【0151】前記式〔S-9〕において、R²⁰及びR²¹ は、脂肪族基又はアリール基を表す。 j は、1又は2を 表す。

 $\{0\ 1\ 5\ 2\}$ 前記式 $\{S-1\}\sim \{S-9\}$ において、 $R^1\sim R^6$ 、 R^8 、 $R^{11}\sim R^{21}$ が脂肪族基又は脂肪族基を含む基であるとき、該脂肪族基は、直鎖状、分岐鎖状、環状のいずれであってもよく、また不飽和結合を含んでいてもよく、置換基を有していてもよい。該置換基の例としては、ハロゲン原子、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、ヒドロキシル基、アシルオキシ基、エポキシ基等が挙げられる。 $\{0\ 1\ 5\ 3\}$ 前記式 $\{S-1\}\sim \{S-9\}$ において、 $R^1\sim R^6$ 、 R^8 、 $R^{11}\sim R^{21}$ が環状脂肪族基、即ちシクロアルキル基であるか、又はシクロアルキル基を含む基

であるとき、該シクロアルキル基は、3~8員の環内に不飽和結合を含んでよく、また置換基や架橋基を有していてもよい。該置換基の例としては、ハロゲン原子、脂肪族基、ヒドロキシル基、アシル基、アリール基、アルコキシ基、エポキシ基、アルキル基等が挙げられ、該架橋基の例としては、メチレン基、エチレン基、イソプロピリデン基等が挙げられる。

【0154】前記式 [S-1] ~ [S-9] において、R¹~R⁶、R⁸、R¹¹~R²¹がアリール基又はアリール基を含む基であるとき、該アリール基は、ハロゲン原子、脂肪族基、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基等の置換基で置換されていてもよい。

【0155】前記式 [S-3]、前記式 [S-4]及び前記式 [S-5]において、R⁷、R⁹又はR¹⁰が炭化水素基であるとき、該炭化水素基は、環状構造(例えばベンゼン環、シクロペンタン環、シクロペキサン環)や不飽和結合を含んでいてもよく、また置換基を有していてもよい。該置換基の例としては、ハロゲン原子、ヒドロキシル基、アシルオキシ基、アリール基、アルコキシ基、アリールオキシ基、エポキシ基、等が挙げられる。【0156】前記式 [S-9]において、A1、A2、・・・・、Anを与える非発色性エチレン様モノマーの例として、アクリル酸エステル類、メタアクリル酸エステル類、ビニルエステル類、アクリルアミド類、メタアクリルアミド類、オレフィン類、スチレン類、ビニルエ

【0157】次に、本発明において特に好ましい高沸点有機溶媒について説明する。

ーテル類、アクリロニトリル類、等が挙げられる。

【0158】前記式 [S-1] において、 R^1 、 R^2 及び R^3 は、炭素原子数(以下C数と略す) $3\sim24$ (好ましくは $4\sim18$)の脂肪族基(例えばn-プチル、2-エチルへキシル、3, 3, 5-トリメチルへキシル、n-ドデシル、n-オクタデシル、ベンジル、オレイル、2-クロロエチル、2, 3-ジクロロプロピル、2-プトキシエチル、2-フェノキシエチル、シクロペンチル、シクロヘキシル、4-エーブチルシクロヘキシル、4-メチルシクロヘキシル)又はC数 $6\sim24$ (好ましくは $6\sim18$)のアリール基(例えばフェニル、クレジ

82

ル、p-Jニルフェニル、キシクル、クメニル、p-メトキシフェニル、p-メトキシカルボニルフェニル)である。a、b及びcは、それぞれ独立に、0又は1であり、好ましくは総て1である。

【0159】前記式 [S-2] において、R⁴及びR 5は、C数4~24 (好ましくは4~18) の脂肪族基 (例えば前記R¹について挙げたアルキル基と同じ基、 エトキシカルボニルメチル、1.1-ジエチルプロピ ル、2-エチル-1-メチルヘキシル、シクロヘキシル 10 メチル、1-エチル-1, 5-ジメチルヘキシル、3, 5, 5-トリメチルシクロヘキシル、1-メチルシクロ ヘキシル) 又はC数6~24 (好ましくは6~18) の アリール基(例えば前記R1 について挙げたアリール 基、4-t-ブチルフェニル、4-t-オクチルフェニ ル、1,3,5ートリメチルフェニル、2,4,-ジー t-ブチルフェニル、2, 4, -ジ-t-ペンチルフェ ニル)である。R⁶は、ハロゲン原子(好ましくはC 1)、C数1~18のアルキル基(例えばメチル、イソ プロピル、t-ブチル、n-ドデシル)、C数1~18 20 のアルコキシ基(例えばメトキシ、n-ブトキシ、n-オクチルオキシ、メトキシエトキシ、ベンジルオキ シ)、C数6~18のアリールオキシ基(例えばフェノ キシ、p-トリルオキシ、4-メトキシフェノキシ、4 - t - ブチルフェノキシ) 又はC数2~19のアルコキ シカルボニル基(例えばメトキシカルボニル、n-ブト キシカルボニル、2-エチルヘキシルオキシカルボニ ル) 又はC数6~25のアリールオキシカルボニル基で ある。 dは、0又は1である。

【0160】前記式 [S-3] において、Art、C数 $6\sim24$ (好ましくは $6\sim18$)のアリール基(例えば フェニル、4-クロロフェニル、4-メトキシフェニル、1, 3, 5-トリメチルフェニル)であり、 $bt1\sim4$ (好ましくは $1\sim3$)の整数であり、 R^7 は、eta (好ましくは $2\sim18$)の炭化水素基 [例えば前記 R^4 について挙げたアルキル基、シクロアルキル基、アリール基、- (CH_2) 2-、更に以下の基、

【0161】 【化38】

【0162】又は、e価の炭素原子数4~24(好まし くは4~18)のエーテル結合で互いに結合した炭化水 素基 [例えば、-CH₂CH₂OCH₂CH₂-、-CH₂ CH_2 (OCH₂CH₂) ₃-, -CH₂CH₂CH₂OCH₂ *

【0164】前記式 [S-4] において、 R^8 は、C数 3~24 (好ましくは3~17) の脂肪族基 (例えばn 30 挙げた基) である。 ープロピル、1ーヒドロキシエチル、1ーエチルペンチ ル、n-ウンデシル、ペンタデシル、8,9-エポキシ ヘプタデシル、シクロプロピル、シクロヘキシル、4-メチルシクロヘキシル)であり、fは、1~4 (好まし くは $1\sim3$)の整数であり、 R^9 は、f価のC数 $2\sim2$ 4 (好ましくは2~18) の炭化水素基又はc価の炭素 原子数4~24 (好ましくは4~18) のエーテル結合 ※

*CH₂CH₂-、更に以下の基が挙げられる。 [0163] 【化39】

※で互いに連結した炭化水素基(例えば前記R⁷について

【0165】前記式 [S-5] において、gは、2~4 (好ましくは2又は3)であり、R10は、g価の炭化 水素基 [例えば、-CH₂-、- (CH₂)₂-、- (C H2)₄-、-(CH₂)₇-、更に以下の基が挙げられ る。

[0166]

【化40】

【0167】R¹¹は、C数4~24(好ましくは4~1 8) の脂肪族基又はC数6~24 (好ましくは6~1 50 肪族基、アリール基) である。

8) のアリール基 (例えば、前記R⁴について挙げた脂

【0168】前記式 [S-6] において、R¹²は、C数⁻ 3~20の脂肪族基〔例えばnープロピル、1-エチル ペンチル、n-ウンデシル、n-ペンタデシル、2, 4 ージー t ーペンチルフェノキシメチル、4 ー t ーオクチ ルフェノキシメチル、3- (2, 4-ジ-t-ブチルフ エノキシ) プロピル、1-(2,4-ジ-t-ブチルフ エキシ) プロピル、シクロヘキシル、4-メチルシクロ ヘキシル) 又はC数6~24 (好ましくは6~18) の アリール基(例えば前記Arについて挙げたアリール 基)である。R¹³及びR¹⁴は、C数3~24(好ましく は3~18) の脂肪族基 (例えばイソプロピル、n-ブ チル、n-ヘキシル、2-エチルヘキシル、n-ドデシ ル、シクロペンチル、シクロプロピル)又はC数6~1 8 (好ましくは6~15) のアリール基 (例えばフェニ ル、1-ナフチル、p-トリル)である。R¹³とR¹⁴と が互いに結合し、Nとともにピロリジン環、ピペリジン 環、モルホリン環を形成してもよく、R12とR13とが互 いに結合してピロリドン環を形成してもよい。Xは、-CO-又はSO2を表し、-CO-が好ましい。

【0169】前記式 [S-7] において、R¹⁵は、C数 20 3~24 (好ましくは3~18) の脂肪族基 (例えばイ ソプロピル、tーブチル、tーペンチル、tーヘキシ ル、 t - オクチル、2 - ブチル、2 - ヘキシル、2 - オ クチル、2-ドデシル、2-ヘキサデシル、t-ペンタ デシル、シクロペンチル、シクロヘキシル)、C数5~ 24 (好ましくは5~17) のアルコキシカルボニル基 (例えばn-ブトキシカルボニル、2-エチルヘキシル オキシカルボニル、n-ドデシルオキシカルボニル) C 数3~24(好ましくは3~18)のアルキルスルホニ ル基(例えばnーブチルスルホニル、nードデシルスル ホニル)、C数6~30 (好ましくは6~24) のアリ ールスルホニル基(例えばpートリルスルホニル、pー ドデシルフェニルスルホニル、p-ヘキサデシルオキシ フェニルスルホニル)、C数6~32(好ましくは6~ 24) のアリール基 (例えばフェニル、p-トリル) 又 はシアノ基である。

【0170】 R^{16} は、ハロゲン原子(好ましくはC 1)、C数3~24(好ましくは3~18)のアルキル基(例えば前記 R^{15} について挙げたアルキル基)、C数5~17のシクロアルキル基(例えばシクロペンチル、シクロヘキシル)、C数6~32(好ましくは6~24)のアリール基(例えばフェニル、p-hリル)C数1~24(好ましくは1~18)のアルコキシ基(例えばメトキシ、n-ブトキシ、2-エチルヘキシルオキシ、ベンジルオキシ、n-ドデシルオキシ、n-ベキサデシルオキシ)又はC数6~32(好ましくは6~24)のアリールオキシ基(例えばフェノキシ、p-tープチルフェノキシ、p-tープチルフェノキシ、p-tーペンタデシルフェノキシ、p-ドデシルオキシフェノキシ)であり、hは1~2の整数である。

86

【0171】前記式 [S-8] において、 R^{17} 及び R^{18} は、前記 R^{13} 及び R^{14} と同じであり、 R^{19} は前記 R^{16} と同じである。

【0172】前記式 [S-9] において、 R^{20} 及び R^{21} は、前記 R^1 、 R^2 及び R^3 と同じである。 jは1又は2を表し、1が好ましい。

【0173】以下に、前記高沸点有機溶媒の具体例(前記 [S-1] で表される化合物としての $S-1\sim23$ 、前記 [S-2] で表される化合物としての $S-24\sim3$ 9、前記 [S-3] で表される化合物としての $S-40\sim44$ 、前記 [S-4] で表される化合物としての $S-40\sim45\sim50$ 、前記 [S-5] で表される化合物としての $S-51\sim58$ 、前記 [S-6] で表される化合物としての $S-59\sim67$ 、前記 [S-7] で表される化合物としての $S-59\sim67$ 、前記 [S-7] で表される化合物としての $S-68\sim75$ 、前記 [S-8] で表される化合物としての $S-76\sim79$ 、及び、前記 [S-9] で表される化合物としての $S-80\sim81$)を示す。

[0174]

【化41】

式〔S-1〕で表される化合物

50

[0175] 【化42】

S-8 $O=P(OC_4H_9(n))_3$

 $S-9 O=P(OC_6H_{13}(n))_3$

S-10 O=P(OCH₂CHC₄H₉(n))₃

Ċ₂H₅

S-11 0=P(OCH₂CHCH₂CCH₃)₃ CH₂ CH₃

S-12 O=P(OC₁₂H₂₅(n))₃

S-13 O=P(OC₁₆H₃₃(n))₃

 $S-14 O=P(O(CH_2)_8CH=CHC_8H_{17}(n))_3$

S-15 O=P(OCH₂CH₂CI)₃

 $S-16 O=P(OCH_2CH_2OC_4H_9(n))_3$

S-17 O=P(OCH2CHCH2CI)3

[0176]

【化43】

(45)

$$S-19$$
 $O=P-\left(O-\left(H\right)-C_4H_9(t)\right)_3$

$$S-23$$
 (n)C₈H₁₇-P(OC₈H₁₇(n))₂

[0177] [化44]

(46)

89 式 [S-2] で表される化合物 S-24 COOC₄H_g(n)

[0178] 【化45】

【0179】 30 【化46】

[0180] [化47]

92

- 2

(48)

93 式 [S-3] で表される化合物

[0181]

* *【化48】 式 [S-4] で表される化合物

S-45 (n)C₁₅H₃₁COOC₁₆H₃₃(n)

【0182】 【化49】 94

90 式 [S-5] で表される化合物

$$S = 5.2$$
 C_2H_5 C_2H_5

$$S-53$$
 (n)C₄H₉OCO(CH₂)₈COOC₄H₉(n)

S – 5 5
$$\begin{array}{c} C_2H_5 \\ COOCH_2CHC_4H_9(n) \\ \hline \\ COOCH_2CHC_4H_8(n) \\ \hline \\ C_2H_5 \end{array}$$

$$S-5$$
 $CH_2COOC_4H_9(n)$ $CH_3COO-C-COOC_4H_9(n)$ $CH_2COOC_4H_9(n)$

式〔8-6〕で表される化合物

$$S - 5.9$$
 (n)C₁₁H₂₃CON C₄H₉(n)

$$S - 6.1$$
 $C_8H_{17} - COC_2H_{5}$
 $C_4H_{8}(n)$

【0184】 【化51】

$$S - 6.7$$
 (n)C₆H₁₃ O O C₆H₁₃(n)
(n)C₆H₁₃ NC(CH₂)₄CN C₆H₁₃(n)

S - 7 2
$$C_{15}H_{31}(n)$$

HO $C_{8}H_{17}(t)$

【0186】 30 【化53】

式[S-8]で表される化合物

$$S - 7.7$$
 (n)C₈H₁₇N—OC₈H₁₇(n)

$$S - 7.9$$
 $OC_4H_9(n)$ $OC_4H_9(n)$ $OC_4H_9(n)$ $OC_8H_{17}(t)$

【0187】 【化54】 式 (S-9】で表される化合物 S-80 (n)C₇H₁₅-S-C₇H₁₅(n)

$$S-8.1$$
 Q (n)C₄H₉CHCH₂—S—CH₂CHC₄H₉(n) C₂H₅ O C₂H₅

【0188】これらの高沸点有機溶媒は、1種単独で使用してもよいし、2種以上を併用してもよく、例えば、トリクレジルホスフェートとジブチルフタレートとの併用、トリオクチルホスフェートとジ(2-エチルヘキシル)セバケートとの併用、ジブチルフタレートとポリ(N-t-ブチルアクリルアミド)との併用、などが挙げられる。

【0189】前記高沸点有機溶媒の前記以外の化合物の例としては、及び/又は、これら高沸点有機溶媒の合成方法としては、例えば、米国特許第2,322,027号、同第2,533,514号、同第2,772,163号、同第2,835,579号、同第3,594,171号、同第3,676,137号、同第3,689,271

100

号、同第3,700,454 号、同第3,748,141 号、同第3,764, 336 号、同第3,765,897 号、同第3,912,515 号、同第3, 936, 303 号、同第4, 004, 928 号、同第4, 080, 209 号、同 第4,127,413 号、同第4,193,802 号、同第4,207,393 号、同第4,220,711 号、同第4,239,851 号、同第4,278, 757 号、同第4,353,979 号、同第4,363,873 号、同第4, 430,421 号、同第4,430,422 号、同第4,464,464 号、同 第4,483,918 号、同第4,540,657 号、同第4,684,606 号、同第4,728,599 号、同第4,745,049 号、同第4,935, 10 321 号、同第5,013,639 号、欧州特許第276,319A号、同 第286, 253A号、同第289, 820A号、同第309, 158A号、同第 309, 159A号、同第309, 160A号、同第509, 311A号、同第51 0,576A号、東独特許第147,009号、同第157,147 号、同 第159,573 号、同第225,240A号、英国特許第2,091,124A 号、特開昭48-47335号、同50-26530号、同51-25133号、 同51-26036号、同51-27921号、同51-27922号、同51-149 028 号、同52-46816号、同53-1520 号、同53-1521 号、 同53-15127号、同53-146622 号、同54-91325号、同54-1 06228 号、同54-118246 号、同55-59464号、同56-64333 20 号、同56-81836号、同59-204041 号、同61-84641号、同 62-118345 号、同62-247364 号、同63-167357 号、同63 -214744 号、同63-301941 号、同64-9452 号、同64-945 4 号、同64-68745号、特開平1-101543号、同1-102454 号、同2-792 号、同2-4239号、同2-43541 号、同4-2923 7 号、同4-30165 号、同4-232946号、同4-346338号等に 記載されている。

【0190】一添加剤一

本発明の着色微粒子分散物は、本発明の効果を害しない 範囲内において、目的に応じて適宜選択した添加剤を含 30 んでいてもよい。前記添加剤としては、例えば、中和 剤、分散剤、分散安定剤などが挙げられる。

【0191】前記中和剤は、前記油溶性ポリマー(ビニルポリマー)が未中和の前記解離性基を有する場合に、該着色微粒子分散物のpH調節、自己乳化性調節、分散安定性付与等の点で好適に使用することができる。前記中和剤としては、有機塩基、無機アルカリなどが挙げられる。

【0192】前記有機塩基としては、トリエタノールアミン、ジエタノールアミン、Nーメチルジエタノールアミン、ジメチルエタノールアミンなどが挙げられる。前記無機アルカリとしては、アルカリ金属の水酸化物(例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウムなど)、炭酸塩(例えば、炭酸ナトリウム、炭酸水素ナトリウムなど)、アンモニアなどが挙げられる。前記中和剤は、着色微粒子分散物における分散安定性を向上させる観点からは、pH4.5~10.0となるよう添加するのが好ましく、pH6.0~10.0となるよう添加するのがより好ましい。

【0193】前記分散剤、分散安定剤は、ビニルポリマ 50 ーラテックス、ビニルポリマー溶液、染料溶液、少なく

とも水を含む溶液等のいずれに添加してもよいが、ビニルポリマー及び/又は染料微粒子分散液を調製する前工程の、ビニルポリマー、染料溶液、水を含む溶液に添加するのが好ましい。前記分散剤、分散安定剤としては、カチオン、アニオン、ノニオン系の各種界面活性剤、水溶性又は水分散性の低分子化合物、オリゴマー等、が挙げられる。前記分散剤、分散安定剤の添加量としては、前記油溶性染料と前記油溶性ポリマー(ビニルポリマー)との合計に対し、0~100質量%であり、0~20質量%が好ましい。

【0194】一着色微粒子一

前記着色微粒子においては、前記油溶性ポリマー中に前記油溶性染料が分散されているのが好ましい。前記着色微粒子の着色微粒子分散物における含有量としては、1~45質量%が好ましく、2~30質量%がより好ましい。前記含有量は、希釈、蒸発、限外濾過等により適宜調整することができる。前記着色微粒子の平均粒径としては、1~500nmが好ましく、3~300nmがより好ましく、3~200nmが特に好ましい。前記平均粒径は、遠心分離、濾過等により調整することができる。

【0195】-着色微粒子分散物の用途-

本発明の着色微粒子分散物は、各種分野において使用することができるが、筆記用水性インク、水性印刷インク、情報記録用インク等に好適であり、以下の本発明のインクジェット用インクに特に好適に使用することができる。

【0196】前記着色微粒子分散物を、筆記用水性インク、水性印刷インク、情報記録用インク等のインクとして使用する場合、該インクの被記録材としては、特に制限はなく公知の材料が挙げられるが、例えば、普通紙、樹脂コート紙、インクジェット専用紙、フィルム、電子写真共用紙、布帛、ガラス、金属、陶磁器等が挙げられる。

【0197】(インクジェット用インク及びインクジェット記録方法)本発明のインクジェット用インクは、前記本発明の着色微粒子分散物を含有してなり、更に必要に応じて適宜選択したその他の成分を含有してなる。本発明のインクジェット記録方法においては、前記本発明のインクジェット用インクを用いて記録を行うが、その際に使用するインクノズル等については特に制限はなく、目的に応じて適宜選択することができる。

【0198】 - その他の成分-

前記その他の成分は、本発明の効果を害しない範囲内に おいて含有される。前記その他の成分としては、例え ば、乾燥防止剤、浸透促進剤、紫外線吸収剤、酸化防止 剤、防黴剤、pH調整剤、表面張力調整剤、消泡剤、粘 度調整剤、分散剤、分散安定剤、防錆剤、キレート剤、 等の公知の添加剤が挙げられる。

【0199】前記乾燥防止剤は、インクジェット記録方

102

式に用いるノズルのインク噴射口において該インクジェット用インクが乾燥することによる目詰まりを防止する目的で好適に使用される。

【0200】前記乾燥防止剤としては、水より蒸気圧の 低い水溶性有機溶剤が好ましく、具体例として、エチレ ングリコール、プロピレングリコール、ジエチレングリ コール、ポリエチレングリコール、チオジグリコール、 ジチオジグリコール、2-メチル-1, 3-プロパンジ オール、1,2,6-ヘキサントリオール、アセチレン グリコール誘導体、グリセリン、トリメチロールプロパ ン等に代表される多価アルコール類、エチレングリコー ルモノメチル(又はエチル)エーテル、ジエチレングリ コールモノメチル (又はエチル) エーテル、トリエチレ ングリコールモノエチル(又はブチル)エーテル等の多 価アルコールの低級アルキルエーテル類、2-ピロリド ン、N-メチル-2-ピロリドン、1, 3-ジメチル-2-イミダゾリジノン、N-エチルモルホリン等の複素 環類、スルホラン、ジメチルスルホキシド、3-スルホ レン等の含硫黄化合物、ジアセトンアルコール、ジエタ ノールアミン等の多官能化合物、尿素誘導体、が挙げら れる。これらの中でも、グリセリン、ジエチレングリコ ール等の多価アルコールがより好ましい。これらの乾燥 防止剤は、1種単独で使用してもよいし、2種以上を併 用してもよい。前記乾燥防止剤の前記インクジェット用 インク中の含有量としては、10~50質量%が好まし

【0201】前記浸透促進剤は、インクジェット用インクを紙により良く浸透させる目的で好適に使用される。 【0202】前記浸透促進剤としては、例えば、エタノール、イソプロパノール、ブタノール,ジ(トリ)エチレングリコールモノブチルエーテル、1,2ーヘキサンジオール等のアルコール類やラウリル硫酸ナトリウム、オレイン酸ナトリウムやノニオン性界面活性剤、等が挙げられる。前記浸透促進剤は、印字の滲み、紙抜け(プリントスルー)等を生じない範囲内で含有され、インクジェット用インク中に5~30質量%程度含有されれば通常十分な効果を発揮する。

【0203】前記紫外線吸収剤は、画像の保存性を向上させる目的で使用される。前記紫外線吸収剤としては、例えば、特開昭58-185677号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34057号公報等に記載されたベンゾトリアゾール系化合物、特開昭46-2784号公報、特開平5-194483号公報、米国特許第3214463号等に記載されたベンゾフェノン系化合物、特公昭48-30492号公報、同56-21141号公報、特開平10-88106号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特表平8-501291号

公報等に記載されたトリアジン系化合物、リサーチディスクロージャーNo. 24239号に記載された化合物やスチルベン系、ベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤、などが挙げられる。

【0204】前記酸化防止剤は、画像の保存性を向上さ せる目的で使用される。前記酸化防止剤としては、例え ば、各種の有機系及び金属錯体系の褪色防止剤を使用す ることができる。前記有機系の褪色防止剤としては、ハ イドロキノン類、アルコキシフェノール類、ジアルコキ シフェノール類、フェノール類、アニリン類、アミン 類、インダン類、クロマン類、アルコキシアニリン類、 ヘテロ環類、などが挙げられる。前記金属錯体系の褪色 防止剤としては、ニッケル錯体、亜鉛錯体、などが挙げ られ、具体的には、リサーチディスクロージャーNo. 17643の第VIIのI~J項、同No. 15162、 同No. 18716の650頁左欄、同No. 3654 4の527頁、同No. 307105の872頁、同N o. 15162に引用された特許に記載された化合物 や、特開昭62-215272号公報の127頁~13 7頁に記載された代表的化合物の一般式及び化合物例に 含まれる化合物を使用することができる。

【0205】前記防黴剤としては、デヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオン-1-オキシド、p-ヒドロキシ安息香酸エチルエステル、1,2-ベンズイソチアゾリン-3-オン及びその塩等が挙げられる。これらはインク中に0.02~1.00質量%使用するのが好ましい。

【0206】前記pH調整剤としては、前記中和剤(有機塩基、無機アルカリ)を用いることができる。前記pH調整剤は、インクジェット用インクの保存安定性を向上させる目的で、該インクジェット用インクがpH6~10と夏用に添加するのが好ましく、pH7~10となるように添加するのがより好ましい。

【0207】前記表面張力調整剤としては、ノニオン、カチオン又はアニオン界面活性剤が挙げられる。なお、本発明のインクジェット用インクの表面張力としては、25~70mPa・sが好ましく、25~60mPa・sがより好ましい。また、本発明のインクジェット用インクの粘度としては、30mPa・s以下が好ましく、20mPa・s以下がより好ましい。

【0208】前記消泡剤としては、フッ素系、シリコーン系化合物やEDTAに代表されるれるキレート剤等も必要に応じて使用することができる。

【0209】本発明のインクジェット用インクは、公知の被記録材に好適に印字等することができる。前記被記録材としては、特に制限はないが、インクジェット専用紙が好ましい。前記インクジェット専用紙としては、例えば、特開平8-169172号公報、同8-27693号公報、同2-276670号公報、同7-2767

104

89号公報、同9-323475号公報、特開昭62-238783号公報、特開平10-153989号公報、同10-217473号公報、同10-235995号公報、同10-337947号公報、同10-217597号公報、同10-337947号公報、等に記載されているものが挙げられる。

【0210】また、本発明においては、前記被記録材として、前記インクジェット専用紙の外、以下の記録紙及び記録フィルムが好適に使用される。前記記録紙及び記録フィルムは、支持体と、インク受容層とを積層してなり、必要に応じて、バックコート層等のその他の層をも積層してなる。なお、インク受容層をはじめとする各層は、それぞれ1層であってもよいし、2層以上であってもよい。

【0211】前記支持体としては、LBKP、NBKP等の化学パルプ、GP、PGW、RMP、TMP、CTMP、CGP等の機械パルプ、DIP等の古紙パルプ等からなるものが挙げられる。前記パルプには、必要に応じて従来の公知の顔料、バインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等が添加混合されていてもよい。前期支持体は、長網抄紙機、円網抄紙機等の各種装置を用いてセ形成することができる。前記支持体としては、更に合成紙、プラスチックフィルムシート等であってもよい。

【0212】前記支持体の厚みとしては、 $10\sim250$ μ m程度であり、坪量は $10\sim250$ g / m 2 が望ましい。

【0213】前記支持体には、前記インク受容層を、更に必要に応じて選択した前記バックコート層を、直接積層してもよいし、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層を設けた後に、前記インク受容層及び前記バックコート層を設けてもよい。また、前記支持体には、マシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。

【0214】前記支持体の中でも、両面をポリオレフィン (例、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリブテン及びそれらのコポリマー)でラミネートした紙、及びプラスチックフイルムが好ましく、前記ポリオレフィン中に、白色顔料(例、酸化チタン、酸化亜鉛)又は色味付け染料(例、コバルトブルー、群青、酸化ネオジウム)を添加されているのがより好ましい。

【0215】前記インク受容層は、顔料、水性バインダー、媒染剤、耐水化剤、耐光性向上剤、界面活性剤、その他の添加剤を含有する。

【0216】前記顔料としては、白色顔料が好ましい。 前記白色顔料としては、例えば、炭酸カルシウム、カオ リン、タルク、クレー、珪藻土、合成非晶質シリカ、珪 酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、 水酸化アルミニウム、アルミナ、リトポン、ゼオライト、硫酸バリウム、硫酸カルシウム、二酸化チタン、硫化亜鉛、炭酸亜鉛等の無機白色顔料、スチレン系ピグメント、アクリル系ピグメント、尿素樹脂、メラミン樹脂、等の有機顔料等が挙げられる。これらの中でも、多孔性無機顔料が好ましく、細孔面積が大きい合成非晶質シリカ等が特に好ましい。前記合成非晶質シリカは、乾式製造法によって得られる無水珪酸、湿式製造法によって得られる含水珪酸のいずれも使用可能であるが、含水珪酸が特に好ましい。

【0217】前記水性バインダーとしては、例えば、ポ

リビニルアルコール、シラノール変性ポリビニルアルコ ール、デンプン、カチオン化デンプン、カゼイン、ゼラ チン、カルボキシメチルセルロース、ヒドロキシエチル セルロース、ポリビニルピロリドン、ポリアルキレンオ キサイド、ポリアルキレンオキサイド誘導体、等の水溶 性高分子、スチレンブタジエンラテックス、アクリルエ マルジョン等の水分散性高分子、等が挙げられる。これ らは、1種単独で使用してもよいし、2種以上を併用し てもよい。これらの中でも、前記顔料に対する付着性、 インク受容層の耐剥離性の点で、ポリビニルアルコー ル、シラノール変性ポリビニルアルコールが好ましい。. 【0218】前記媒染剤としては、不動化されているこ とが好ましく、そのためにはポリマー媒染剤が好まし い。前記ポリマー媒染剤としては、特開昭48-283 25号、同54-74430号、同54-124726 号、同55-22766号、同55-142339号、 同60-23850号、同60-23851号、同60 -23852号、同60-23853号、同60-57 836号、同60-60643号、同60-11883 4号、同60-122940号、同60-122941 号、同60-122942号、同60-235134 号、特開平1-161236号の各公報、米国特許24 84430号、同2548564号、同3148061 号、同3309690号、同4115124号、同41 24386号、同4193800号、同4273853 号、同4282305号、同4450224号の各明細 書に記載がある。特開平1-161236号公報の21 2~215頁に記載のポリマー媒染剤が好適に挙げられ る。これらのポリマー媒染剤を用いると、優れた画質の 画像が得られ、かつ画像の耐光性が改善される点で好ま しい。

【0219】前記耐水化剤は、画像を耐水化させる目的で使用される。前記耐水化剤としては、カチオン樹脂が好ましい。前記カチオン樹脂としては、例えば、ポリアミドポリアミンエピクロルヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド、コロイダルシリカ等が挙げられる。これらのカチオン樹脂の中でも、ポリアミドポリアミンエピクロルヒドリンが

106

特に好ましい。前記カチオン樹脂の含有量としては、前記インク受容層の全固形分に対して1~13質量%が好ましく、3~10質量%がより好ましい。

【0220】前記耐光性向上剤としては、例えば、硫酸 亜鉛、酸化亜鉛、ヒンダーアミン系酸化防止剤、ベンゾ フェノン等のベンゾトリアゾール系の紫外線吸収剤等が 挙げられる。これらの中でも、硫酸亜鉛が特に好ましい。

【0221】前記界面活性剤は、塗布助剤、剥離性改良剤、スベリ性改良剤あるいは帯電防止剤として機能する。前記界面活性剤としては、特開昭62-173463号、同62-183457号の各公報に記載されたものが挙げられる。なお、前記界面活性剤の代わりに有機フルオロ化合物を用いてもよい。前記有機フルオロ化合物は、疎水性であることが好ましい。前記有機フルオロ化合物としては、例えば、フッ素系界面活性剤、オイル状フッ素系化合物(例、フッ素油)及び固体状フッ素化合物樹脂(例、四フッ化エチレン樹脂)が含まれ、特公昭57-9053号(第8~17欄)、特開昭61-20994号、同62-135826号の各公報に記載されたものが挙げられる。

【0222】前記その他の添加剤としては、例えば、顔料分散剤、増粘剤、消泡剤、染料、蛍光増白剤、防腐剤、pH調整剤、マット剤、硬膜剤、等が挙げられる。 【0223】前記バックコート層は、白色顔料、水性バインダー、その他の成分を含有する。

【0224】前記白色顔料としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルシリカ、コロイダルシリカ、コロイダルシリカ、コロイダルシリカ、コロイダルシリカ、カーマイト、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム等の白色無機顔料、スチックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有機顔料、等が挙げられる。

【0225】前記水性バインダーとしては、スチレン/マレイン酸塩共重合体、スチレン/アクリル酸塩共重合体、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子、等が挙げられる。

【0226】前記その他の成分としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐剤、耐水化剤、等が挙げられる。

・ 【0227】なお、前記記録紙及び記録フィルムにおけ

る各層には、ポリマーラテックスが添加されてもよい。 前記ポリマーラテックスは、寸度安定化、カール防止、 接着防止、膜のひび割れ防止のような膜物性改良の目的 で使用される。前記ポリマーラテックスとしては、特開 昭62-245258号、同62-1316648号、 同62-110066号の各公報に記載されたものが挙 げられる。ガラス転移温度が低い(40℃以下の)ポリ マーラテックスを前記媒染剤を含む層に添加すると、該 層のひび割れやカールを防止することができる。また、 ガラス転移温度が高いポリマーラテックスを前記バック コート層に添加するとカールを防止することができる。 【0228】本発明のインクジェット用インクは、いか なるインクジェット記録方式にも適用でき、例えば、静 電誘引力を利用してインクを吐出させる電荷制御方式、 ピエソ素子の振動圧力を利用するドロップオンデマンド 方式(圧力パルス方式)、電気信号を音響ビームに変え インクに照射して放射圧を利用してインクを吐出させる * 108

*音響インクジェット方式、インクを加熱して気泡を形成 し、生じた圧力を利用するサーマルインクジェット(バ ブルジェット(登録商標))方式、等に好適に使用され る。なお、前記インクジェット記録方式には、フォトイ ンクと称する濃度の低いインクを小さい体積で多数射出 する方式、実質的に同じ色相で濃度の異なる複数のイン クを用いて画質を改良する方式や無色透明のインクを用 いる方式が含まれる。

[0229]

【実施例】以下、本発明の実施例を説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、以下において「部」及び「%」は、特に断りがない限り、「質量部」及び「質量%」を表す。

【0230】 <合成例1 (油溶性染料 I - 6の合成) > 下記反応式に基づき例示化合物 (I - 6)を合成した。

[0231]

【化55】

例示化合物 I-6)

【0232】3ツロフラスコに第一の化合物(前記反応式における矢印の左側化合物)を99.8g、トリエチルアミン83.7ml、酢酸エチル1000ml、及び、N,Nージメチルアセトアミド300mlを入れ、室温にて攪拌しながら、ここへ第二の化合物(前記反応式における矢印の上側化合物)を12.2g添加し、続けてNープロモスクシンイミド3.6gを添加した。5分そのまま攪拌を続けた後、再びここへ前記第二の化合物を12.2g添加し、続けてNープロモスクシンイミ

ド3.6gを添加した。この後、更に前記第二の化合物を12.2g添加し、続けてNーブロモスクシンイミド3.6gを添加する操作を4回行い、添加終了後室温で1時間攪拌した。その後、ここへ水700mlを加えて抽出し、得られた酢酸エチル層を、600mlの水と100mlの飽和食塩水とからなる混合溶液で5回洗浄した。こうして得られた酢酸エチル層を、無水硫酸ナトリウムで乾燥し、ロータリーエバポレーターにて濃縮し、得られた残留物をカラムクロマトグラフィーにて精製し

た後、酢酸エチルとnーへキサンとにて晶析を行なって 目的の例示化合物(I-6)108.7gを得た(収率 88%)。なお、出発物質である前記第一の化合物は、 特公平7-14941号公報に記載された方法を参照し て合成した。また、前記第二の化合物は、特開平11-12251号公報に記載された方法を参照して合成し * *た。

【0233】<合成例2 (油溶性染料 I-31の合成) >下記反応式に基づき例示化合物 (I-31)を合成した。

[0234] [化56]

【0235】3ツロフラスコに第一の化合物(前記反応式における矢印の左側化合物)を99.8g、第二の化合物(前記反応式における矢印の上側化合物)52.4g、炭酸カリウム82.8g、酢酸エチル700ml、イソプロピルアルコール350ml、及び、水580mlを入れ、室温にて攪拌しながら、ここへペルオキソニ硫酸アンモニウム27.4gを水250mlに溶解した水溶液を20分かけて滴下した。添加終了後、室温で1時間攪拌した後、ここへ水400mlを加えて抽出し、得られた酢酸エチル層を、500mlの水と100mlの飽和食塩水からなる混合溶液で5回洗浄した。こうし

て得られた酢酸エチル層を、無水硫酸ナトリウムで乾燥し、ロータリーエバポレーターにて濃縮し、得られた残留物にアセトニトリルを加えて晶析を行なって、目的の例示化合物(I-31)113.9gを得た(収率96%)。

【0236】<合成例3 (油溶性染料 I - 40の合成) >下記反応式に基づき例示化合物 (I - 40)を合成した。

[0237]

40 【化57】

110

【0238】3ツロフラスコに第一の化合物(前記反応 式における矢印の左側化合物)を109.5g、第二の 化合物(前記反応式における矢印の上側化合物)を3 6. 2g、及び、エタノール500mlを入れ、室温に て攪拌しながらここへ無水酢酸15.9mlを10分か けて滴下した。その後、室温で4時間攪拌し、ここへ酢 酸エチル11、水700mlを加えて抽出し、得られた 30 【0239】<合成例4(油溶性染料I-42の合成) 酢酸エチル層を、600mlの水と100mlの飽和食 塩水とからなる混合溶液で5回洗浄した。こうして得ら れた酢酸エチル層を、無水硫酸ナトリウムで乾燥し、ロ ータリーエバポレーターにて濃縮し、得られた残留物を

カラムクロマトグラフィーにて精製して、目的の例示化 合物 (I-40) 132. Ogを得た(収率92%)。 なお、出発物質である第一の化合物は、特開平2-14 9582号公報に記載された方法を参照して合成した。 また、前記第二の化合物は、特開平11-12251号 公報に記載された方法を参照して合成した。

>下記反応式に基づき例示化合物(I-42)を合成し た。

[0240] 【化58】

【0241】3ツロフラスコに第一の化合物(前記反応 式における矢印の左側化合物)を55.6g、第二の化 合物(前記反応式における矢印の上側化合物)を24. 6g、炭酸カリウム58.0g、酢酸エチル500m 1、イソプロピルアルコール250ml、及び、水33 0mlを入れ、室温にて攪拌しながら、ここへペルオキ ソ二硫酸アンモニウム19.2gを水200m1に溶解 した水溶液を10分かけて滴下した。添加終了後、室温 で2時間攪拌した後、ここへ水200mlを加えて抽出 し、得られた酢酸エチル層を、300mlの水と80m 1の飽和食塩水とからなる混合溶液で5回洗浄した。こ *

*うして得られた酢酸エチル層を、無水硫酸ナトリウムで 20 乾燥し、ロータリーエバポレーターにて濃縮し、得られ た残留物にアセトニトリルを加えて晶析を行なって、目 的の例示化合物(I-42) 49.1gを得た(収率8 4%)。なお、出発物質である前記第一の化合物は、特 開平5-127328号公報に記載された合成法の通り 合成した。

【0242】<合成例5>下記式に基づき例示化合物 (I-85)を合成した。

[0243]

【化59】

【0244】3ツロフラスコに化合物12を103.1

アミド300mlを入れ、室温にて撹拌しながらここへ g、酢酸エチルを 1. 6 l 及び N, N — ジメチルアセト 50 化合物 1 3 を 1 7 に 8 g 添加し、そのまま 1 時間攪拌し

た。ここへトリエチルアミン83.7m1を10分かけて滴下し、続けて化合物15を21.5g添加し、続けて化合物13を5.3g添加した。5分そのまま撹拌を続けた後、再びここへ化合物15を21.5g添加し、続けて化合物13を5.3g添加した。更に化合物15を21.5g添加し、続けて化合物13を5.3g添加する操作を3回行い、添加終了後、室温で1時間撹拌した。その後、ここへ水1.21を加えて抽出し、得られた酢酸エチル層を800mlの水と100mlの飽和食塩水とからなる混合溶液で5回洗浄した。こうして得られた酢酸エチル層を無水硫酸ナトリウムで乾燥し、ロー*

116

* タリーエバポレーターにて濃縮し、得られた残留物をカラムクロマトグラフィーにて精製した後、酢酸エチルと n ー へ キサンとにて晶析を行なって目的の例示化合物 (I - 85) 105.6gを得た(収率85%)。なお、出発物質である化合物12は、特開平11-265044号公報に記載の方法に従って合成した。

【0245】<合成例6>下記式に基づき例示化合物(I-91)を合成した。

[0246]

(化60]

Me N CH₂CO₂H C₈H₁₇(n)
N OC₁₈H₃₇(n)
OC₁₈H₃₇(n)
NHSO₂
例示化合物 I - 9 1
Me

【0247】3ツロフラスコに化合物16を104.6 g、酢酸エチルを1.01、N, N-ジメチルアセトア ミド300m1、イソプロピルアルコール700m1、 炭酸カリウム82.9g及び水800mlを入れ、室温 にて攪拌しながらここへ化合物17を77.3g添加 し、更にペルオキソ2硫酸アンモニウム29.7gを2 00mlの水に溶解したものを1時間かけて滴下した。 そのまま1時間撹拌した後、ここへ酢酸エチル11と水 1.21とを加えて抽出し、得られた酢酸エチル層を9 00mlの水と100mlの飽和食塩水とからなる混合 溶液で5回洗浄した。こうして得られた酢酸エチル層を 無水硫酸ナトリウムで乾燥し、ロータリーエバポレータ 一にて濃縮し、得られた残留物をカラムクロマトグラフ ィーにて精製し、目的の化合物18を120.7g得た (収率92%)。さらに3ツロフラスコに得られた化合 物18を65.7g、エタノール650mlを入れ、室 温にて攪拌しながらここへ水酸化ナトリウム10gと水 40mlとからなる水溶液を10分かけて滴下した。そ のまま2時間撹拌を続けた後、このものを氷1kgと塩 酸21.5mlの混合物に注ぎ、酢酸エチル1lを添加

して抽出した。得られた酢酸エチル層を600m1の水と100m1の飽和食塩水とからなる混合溶液で5回洗浄した。こうして得られた酢酸エチル層を無水硫酸ナトリウムで乾燥し、ロータリーエバポレーターにて濃縮し、得られた残留物をカラムクロマトグラフィーにて精製した後、アセトニトリルにて晶析を行なって目的の例示化合物(I-91)60.5gを得た(収率94%)。

【0248】表1に、前記油溶性染料の例示化合物のいくつかについて、その酢酸エチル溶液の可視吸収の吸収極大(λmax)とモル吸光係数(ε)とを示した。

[0249]

【表1】

化合物No.	吸収極大 (λ max)	モル吸光係数 (ε)	
1-6	542.0nm	4.51×10 ⁴	
1-7	570.3nm	4.41×10 ⁴	
1-18	532.4nm	5.17×10 ⁴	
1-27	53 4.6 nm	4.89×10 ⁴	
1-29	532.1nm	4.77×10 ⁴	
1-30	533.5nm	5.48×10 ⁴	
1-31	543.6nm	5.43×10⁴	
1-36	538.6nm	5.35×10 ⁴	
I-40	531.5nm	5.45×10 ⁴	
I-41	527.8nm	5.15×10 ⁴	
1-43	522.3nm	5.39×10 ⁴	
1-46	522.3nm	5.39×10 ⁴	

【0250】<合成例7 (ビニルポリマーP-33の合成) >n-ブチルメタクリレート37.5部、1H,1H, 2H, 2H-パーフルオロデシルアクリレート10.0 部、及び、アクリル酸2.5部からなる混合液を調製し た。次に、イソプロピルアルコール40部、ジクロロエ タン60部、及び、ジメチル2,2'ーアゾビス(2-メチルプロピオネート) 0. 25部をフラスコに仕込 み、窒素シール下に攪拌しながら、80℃まで昇温させ た後、前記混合液を2時間かけて滴下し、滴下終了後、 ジメチル2, 2'ーアゾビス(2ーメチルプロピオネー ト)を0.05部加え、更に同温度で5時間反応させ た。以上により目的のビニルポリマーが得られた。得ら れたビニルポリマーは、その解離性基の含量が0.69 mmol/gであり、その分子量 (Mw) が61000 であり、その溶液の固形分は35%であった。以下、こ のビニルポリマーの溶液をビニルポリマー溶液(A-1)と略記する。

【0251】<合成例8(ビニルポリマーP-27の合成)>前記合成例5において、ブチルメタクリレート37.5部、1H,1H,2H,2Hーパーフルオロデシルアクリレート10.0部、及び、アクリル酸2.5部の代りに、エチルメタクリレート47.5部、ドデシルメルカプタン0.4部、及びアクリル酸2.5部からなる混合液を用いた以外は、前記合成例5と同様にした。得られたビニルポリマーは、その解離性基の含量が0.69mmol/gであり、その分子量(Mw)が2400であり、その溶液の固形分は34%であった。以下、このビニルポリマー溶液をビニルポリマー溶液(A-2)と略記する。

【0252】<合成例9(ビニルポリマーP-34の合成) >メチルメタクリレート23.8部、n-ブチルアクリレート23.8部、及びアクリル酸2.5部からなる混合液を調製した。次に、イソプロピルアルコール100部、ジメチル2,2'-アゾビス(2-メチルプロピオネート)0.25部をフラスコに仕込み、窒素シール下に攪拌しながら、<math>80でまで昇温させた後、前記混合液 118

を2時間かけて滴下し、滴下終了後、ジメチル2, 2'ーアゾビス(2ーメチルプロピオネート)を0.05部加え、更に同温度で10時間反応させた。以上により目的のビニルポリマーが得られた。得られたビニルポリマーは、その解離性基の含量が0.68mmol/gであり、その分子量(Mw)が42000であり、その溶液の固形分は36%であった。以下、このビニルポリマー溶液を、ビニルポリマー溶液(A-3)と略記する。【0253】<合成例10(ビニルポリマーP-86の合

【0253】<合成例10(ビニルポリマーP-86の合 10 成) >エチルメタクリレート72. 3部、2-アクリル アミドー2-メチルプロパンスルホン酸ソーダ7.7 部、水25部、及びイソプロピルアルコール70部から なる混合液を調製した。次に、イソプロピルアルコール 20部、及び、ジメチル2、2'-アゾビス(2-メチ ルプロピオネート)0. 4部をフラスコに仕込み、窒素 シール下に攪拌しながら、80℃まで昇温させた後、前 記混合液を3時間かけて滴下し、滴下終了後、ジメチル 2, 2'ーアゾビス(2-メチルプロピオネート)を 0. 2部加え、更に同温度で8時間反応させた。以上に より目的のビニルポリマーが得られた。得られたビニル ポリマーは、その解離性基の含量が 0. 42 mm o 1/ gであり、その分子量(Mw)が56000であり、そ の溶液の固形分は47%であった。以下、このビニルポ リマー溶液をビニルポリマー溶液 (A-4) と略記す

【0254】<合成例11 (ビニルポリマーP-88の合成) >前記合成例8において、エチルメタクリレート72.3部、2-アクリルアミドー2ーメチルプロパンスルホン酸ソーダ7.7部、水25部、及びイソプロピルアルコール70部の代りに、イソブチルメタクリレート72.3部、2-アクリルアミドー2ーメチルプロパンスルホン酸ソーダ7.7部、水25部、及びイソプロピルアルコール70部からなる混合液を用いた以外は、前記合成例8と同様にした。得られたビニルポリマーは、その解離性基の含量が0.42mmol/gであり、その分子量(Mw)が60000であり、その溶液の固形分は46%であった。以下、このビニルポリマー溶液をビニルポリマー溶液(A-5)と略記する。

【0255】<製造例1(着色微粒子分散物(B-1)の調製)>イソプロピルアルコール10部、前記ビニルポリマー溶液(A-1)9.1部、及び前記油溶性染料(I-30)0.8部の混合液に、2mol/L水酸化ナトリウム2.3部を徐々に加えた後、80℃まで昇温させた後、攪拌しながら、水50部を添加した。この液を減圧下40℃で濃縮し、固形分20%の着色微粒子分散物を調製した。該着色微粒子分散物中の着色微粒子の粒径は、体積平均径で35nmであった(マイクロトラックUPA150;日機装(株)社製で測定)。以下、これを着色微粒子分散物(B-1)と略記する。

【0256】<製造例2(着色微粒子分散物(B−2)</p>

の調製)>イソプロピルアルコール4部、テトラヒドロフラン6部、前記ビニルポリマー溶液(A-2)9.4 部、前記油溶性染料(I-30)0.8部の混合液に、2N水酸化ナトリウム2.3部を徐々に加えた後、70℃まで昇温させた後、攪拌しながら、水50部を添加した。この液を減圧下40℃で濃縮し、固形分20%の着色微粒子分散物を調製した。該着色微粒子分散物中の着色微粒子の粒径は、体積平均径で42nmであった。以下、これを着色微粒子分散物(B-2)と略記する。

【0257】<製造例3(着色微粒子分散物(B-3)の調製)> tertーブタノール10部、前記ビニルポリマー溶液(A-3)7.8部、及び前記油溶性染料(I-31)1.2部の混合液に、1N炭酸水素ナトリウム1.9部を徐々に加えた後、75℃まで昇温させた後、攪拌しながら、水45部を添加した。この液を減圧下40℃で濃縮し、固形分20%の着色微粒子分散物を調製した。該着色微粒子分散物中の着色微粒子の粒径は、体積平均径で68nmであった。以下、これを着色微粒子分散物(B-3)と略記する。

【0258】<製造例4(着色微粒子分散液(B-4)の調製)> tertーブタノール8部、メチルエチルケトン1部、前記ビニルポリマー溶液(A-4)6.0 部、及び前記油溶性染料(I-6)1.2部の混合液を、75℃まで昇温させた後、攪拌しながら、水45部*

120

*を添加した。この液を減圧下40℃で濃縮し、固形分20%の着色微粒子分散物を調製した。該着所微粒子分散物中の着色微粒子の粒径は、体積平均径で70nmであった。以下、これを着色微粒子分散物(B-4)と略記する。

【0259】<製造例5(着色微粒子分散物(B-5)の調製)>tertーブタノール5部、テトラヒドロフラン5部、前記ビニルポリマー溶液(A-5)6.1 部、及び前記油溶性染料(I-18)1.2部の混合液を、75℃まで昇温させた後、攪拌しながら、水45部を添加した。この液を減圧下40℃で濃縮し、固形分20%の着色微粒子分散物を調製した。該着色微粒子分散物中の着色微粒子の粒径は、体積平均径で34nmであった。以下、これを着色微粒子分散物(B-5)と略記する。

【0260】<製造例6(比較例用の着色微粒子分散物(B-6)の調製)>前記製造例2において、前記油溶性染料(I-30)を下記化合物(H-1)に代えた以外は、前記製造例2と同様にして、固形分20%の着色微粒子分散物を調製した。該着色微粒子分散物中の着色微粒子の粒径は、体積平均径で78nmであった。以下、これを着色微粒子分散物(B-6)と略記する。

【0261】 【化61】

(化合物H-1)

【0262】(実施例1)前記製造例1で調製した着色 微粒子分散物(B-1)62部に、ジエチレングリコール10部、グリセリン8部、トリエチレングリコールモノブチルエーテル8部、界面活性剤の25%水溶液(花 王 (株) 製; エマール20C) 4部、及びイオン交換水8部を混合し、0.2 μ mのフィルターによって濾過し、水性のインクジェット用インクを調製した。

【0263】 (実施例2) 前記実施例1において、前記着色微粒子分散物 (B-1) を、前記製造例2で調製した着色微粒子分散物 (B-2) に代えた以外は、前記実施例1と同様にインクジェット用インクを調製した。

【0264】(実施例3)前記製造例3で調製した着色 微粒子分散物(B-3)42部に、ジエチレングリコール10部、グリセリン8部、トリエチレングリコールモノブチルエーテル8部、界面活性剤の25%水溶液(花王(株)製;エマール20C)4部、及び、イオン交換

水 28 部を混合し、 0.2_{μ} mのフィルターによって濾過しインクジェット用インクを調製した。

【0265】(実施例4) 前記実施例3において、前記着色微粒子分散物(B-3)を、前記製造例4で調製した着色微粒子分散物(B-4)に代えた以外は、前記実 施例3と同様にインクジェット用インクを調製した。

【0266】(実施例5)前記実施例3において、前記着色微粒子分散物(B-3)を、前記製造例5で調製した着色微粒子分散物(B-5)に代えた以外は、前記実施例3と同様にインクジェット用インクを調製した。

【0267】(比較例1)前記実施例1において、前記着色微粒子分散物(B-1)を、前記製造例6で調製した着色微粒子分散物(B-6)に代えた以外は、前記実施例1と同様にインクジェット用インクを調製した。

【0268】(比較例2)下記比較色素(H-2)4部 に、ジエチレングリコール10部、グリセリン8部、テ

トラエチレングリコールモノブチルエーテル10部、ジエタノールアミン1部、及び、イオン交換水67部を混合し、0.2 μ mのフィルターによって濾過しインクジェット用インクを調製した。

[0269]

【化62】

(化合物H-2)

【0270】 (画像記録及び評価) 以上の各実施例及び 比較例のインクジェット用インクについて、下記評価を 行った。その結果を表2に示した。なお、表2におい て、「水分散物の吸収」とは、インクジェット用インク の分光吸収特性の評価を意味する。また、「色調」、 「紙依存性」、「耐水性」及び「耐光性」は、各インク

ジェット用インクを、インクジェットプリンター(EPSON(株)社製; PM-700C)でフォト光沢紙(富士写真フイルム(株)製; インクジェットペーパー、フォトグレード)に画像を記録した後で評価したものである。

【0271】 <分光吸収特性>各インクジェット用イン クを、吸光度が0.8~1.2になるようイオン交換水 で希釈し、可視吸収スペクトルを測定し、該最大吸収波 * 122

* 長 (λ max (n m)) における吸光度を1としたとき、 波長 (λ max + 75 (n m)) における吸光度と、波長 (λ max - 75 (n m)) における吸光度とを測定し た。

【0272】 <色調>前記記録した画像を目視にて、A(良好)、B(不良)の二段階で評価した。

【0273】<紙依存性>前記フォト光沢紙に形成した 画像と、別途にPPC用普通紙に形成した画像との色調 を比較し、両画像間の差が小さい場合をA(良好)、両 画像間の差が大きい場合をB(不良)として、二段階で 評価した。

【0274】<耐水性>前記画像を形成したフォト光沢紙を、1時間室温乾燥した後、30秒間水に浸漬し、室温にて自然乾燥させ、滲みを観察した。滲みが無いものをA、滲みが僅かに生じたものをB、滲みが多いものをCとして、三段階で評価した。

【0275】<耐光性>前記画像を形成したフォト光沢紙に、ウェザーメーター(アトラスC. I65)を用いて、キセノン光(850001x)を3日間照射し、キセノン照射前後の画像濃度を反射濃度計(X-Rite310TR)を用いて測定し、色素残存率として評価した。なお、前記反射濃度は、1、1.5及び2.0の3点で測定した。何れの濃度でも色素残存率が70%以上の場合をA、1又は2点が70%未満をB、全ての濃度で70%未満の場合をCとして、三段階で評価した。

[0276]

【表2】

No.	水分散物の吸収		色調	紙依存性	耐水性	耐光性	
	λ max(nm)	Α-	A ⁺		WW. W. T.	阿水江	#170 LL
実施例1	542	0.18	0.10	Α	Α	Α	Α
実施例2	540	0.17	0.11	Α	Α	Α	A
実施例3	552	0.20	0.07	Α	Α	Α	A
実施例4	551	0.17	0.05	Α	Α	A	Α
実施例5	540	0,18	0.05	Α	Α	A	Α
比較例1	534	0.31	0.21	В	В	Α	B
比較例2	536	0.41	0.03	A	В	С	В

A⁻: λ max-75nmの吸光度 A⁺: λ max+75nmの吸光度

【0277】表2から明らかなように、本発明のインクジェット用インクは、発色性・色調に優れ、紙依存性がなく、耐水性、耐光性に優れていた。

【0278】(実施例6)前記製造例2において、前記油溶性染料(I-30)をそれぞれ表3の染料に代えた以外は、前記製造例2と同様にして、固形分20%の着色微粒子分散物(B-11)~(B-36)を調製した。該着色微粒子分散物中の着色微粒子の粒径(体積平均径)は表3に示した通りであった。さらに前記実施例1において前記着色微粒子分散物(B-1)を着色微粒

子分散物 (B-2) 、 (B-6) 及び (B-11) ~ (B-36) に代えた以外は、前記実施例1と同様にインクジェット用インクを調製した。これらを25 ℃にて1 ヶ月経過後、再び0. 2 μ mのフィルターによって濾過し、そのときのフィルターの着色度を調べ、A(殆ど着色なし)、B(若干着色がある)、C(着色が激しい)の三段階で評価した。

[0279]

【表3】

【0280】表3から明らかなように本発明のインクジェット用インクは、分散安定性に優れ、そのなかでも前記式 (IV-1)、 (IV-2) (IV-3a)、 (IV-3b)、 (IV-4) 及び (IV-5) で表される油溶性染料である (I-3)、 (I-5)、 (I-6)、 (I-15)、 (I-24)、 (I-31)、 (I-32)、 (I-36)、 (I-39)、 (I-49)、 (I-80)、 (I-81)、 (I-82)、 (I-83)、 (I-84)、 (I-85)、 (I-14)0、 (I-27)、 (I-87)、 (I-88)、 (I-89)0、 (I-90)0、 (I-91)1、 (I-92)2)を用いた場合、特に優れていた。また前記式 (IV-5)0で表される油溶性染料である (I-14)、 (I-27)、 (I-91)、 (I-92) は着色微粒子分散物の粒径が小さく好ましいものであることがわかる。

【0281】 (実施例7) 前記製造例2において、前記油溶性染料 (I-30) をそれぞれ (I-5)、(I-15)、(I-21)、(I-24)、(I-39)、(I-49)、(I-80)、(I-81)、(I-82)、(I-83)及び(I-85)に代えた以外は、前記製造例2と同様にして、固形分20%の着色微粒子

(63)

124

分散物(B-41)~(B-51)を調製した。さらに前記実施例1において前記着色微粒子分散物(B-1)を着色微粒子分散物(B-1)を着色微粒子分散物(B-1)に代えた以外は、前記実施例1と同様にインクジェット用インクを調製した。こうして得られた各インクジェット用インクを、インクジェットプリンター(EPSON(株)社製;PM-700C)でフォト光沢紙(富士写真フイルム(株)製;インクジェットペーパー、フォトグレード)に画像を記録したとき、その吸光度が0.8~1.2になるようイオン交換水で希釈し、その可視吸収スベクトルを評価したところ(B-41)~(B-51)を用いたいずれのインクも600nmにおける吸収が小さく好ましいものであり、また紙に印字した際のにじみが少なく好ましいものであった。

【0282】 (実施例8) 前記製造例2において、前記 油溶性染料(I-30)をそれぞれ(I-6)、(I-87)、(I-88)、(I-89)及び(I-90) に代えた以外は、前記製造例2と同様にして、固形分2 0%の着色微粒子分散物(B-61)~(B-65)を 20 調製した。さらに前記実施例1において前記着色微粒子 分散物(B-1)を着色微粒子分散物(B-61)~ (B-65) に代えた以外は、前記実施例1と同様にイ ンクジェット用インクを調製した。こうして得られた各 インクジェット用インクを、インクジェットプリンター (EPSON (株) 社製; PM-700C) でフォト光 沢紙 (富士写真フイルム (株) 製;インクジェットペー パー、フォトグレード)に画像を記録したとき、その吸 光度が 0. 5~2. 5になるようイオン交換水で希釈 し、画像を形成したフォト光沢紙を80℃にて1週間保 30 存した前後の画像濃度を反射濃度計 (X-Rite31 OTR)を用いて測定し、色素残存率として評価したと ころ(B-61)~(B-65)を用いたいずれのイン クも残存量が90%以上で良好であった。

【0283】 (実施例9) 前記製造例2において、前記 油溶性染料 (I-30) をそれぞれ (I-36) 、 (I -84)、(I-85)、(I-88)及び(I-9 0) に代えた以外は、前記製造例2と同様にして、固形 分20%の着色微粒子分散物(B-71)~(B-7 5) を調製した。さらに前記実施例1において前記着色 40 微粒子分散物 (B-1) を着色微粒子分散物 (B-7 1)~(B-75)に代えた以外は、前記実施例1と同 様にインクジェット用インクを調製した。こうして得ら れた各インクジェット用インクを、インクジェットプリ ンター(EPSON(株)社製; PM-700C)でフ オト光沢紙 (富士写真フイルム (株) 製;インクジェッ トペーパー、フォトグレード)に画像を記録したとき、 その吸光度が0.8~1.2になるようイオン交換水で 希釈し、その可視吸収スペクトルを評価したところ(B -71)~(B-75)を用いたいずれのインクも波形 50 がシヤープで好ましいものであった。なお、波形のシャ

ープさは、最高吸収強度の50%及び15%における波² 形の幅で評価した。

【0284】(実施例10) 前記製造例2において、前記油溶性染料(I-30)をそれぞれ(I-3)、(I-6)、(I-36)、(I-40)、(I-48)、(I-80)及び(I-85)に代えた以外は、前記製造例2と同様にして、固形分20%の着色微粒子分散物(B-81)~(B-87)を調製した。さらに前記実施例1において前記着色微粒子分散物(B-1)を着色微粒子分散物(B-81)~(B-87)に代えた以外は、前記実施例1と同様にインクジェット用インクを調製した。これらを40° Cにて7日経過後、再び0.2 μ mのフィルターによって濾過し、そのときのフィルターの着色度からインクの熱安定性を評価したところ(B-81)~(B-87)を用いたインクは良好であっ

126

た。

[0285]

【発明の効果】本発明によると、前記従来における諸問題を解決することができ、着色微粒子の分散安定性に優れ、紙依存性がなく、任意に選択した紙に印字した際の発色性・色調(特にマゼンタの色再現)に優れ、かつ耐水性、耐光性にも優れ、筆記用水性インク、水性印刷インク、情報記録用インク等に好適な着色微粒子分散物、並びに、サーマル、圧電、電界又は音響インクジェット方式に好適であり、ノズル等を用いて印字等を行った際、該ノズル先端で目詰まりを起こすことがなく、紙依存性がなく、任意に選択した紙に印字した際の発色性・色調(特にマゼンタの色再現)に優れ、かつ耐水性、耐光性にも優れるインクジェット用インク及びインクジェット記録方法を提供することができる。

フロントページの続き

(51) Int. Cl. ⁷

識別記号

C 0 9 B 67/02 C 0 9 D 11/00

(72)発明者 山田 真人

神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内 FΙ

テーマコード(参考)

C 0 9 D 11/00 B 4 1 J 3/04

101Y

F ターム(参考) 2C056 EA13 FC01

2H086 BA53 BA54 BA55 BA56 BA59

BA60

4J039 AD09 BC40 BC51 GA24