Chapter 5 Eigenvalues and Eigenvectors

David Robinson

Eigenvalues and Eigenvectors

An **eigenvector** of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an *eigenvector corresponding to* λ .

Theorem 1

The eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 2

If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \dots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.

Validating an Eigenvalue

- 1. Start with the equation $A\mathbf{x} = \lambda \mathbf{x}$
- 2. Form the matrix $A \lambda I$
- 3. If the columns are linearly dependent, λ is an eigenvalue
- 4. Reduce the matrix to reduced echelon form and each column vector in terms of the free variables is a corresponding eigenvector and a part of the basis for the eigenspace

Validating an Eigenvector

- 1. Start with the equation $A\mathbf{x} = \lambda \mathbf{x}$
- 2. Compute the product of Ax
- 3. If $A\mathbf{x}$ is proportional to \mathbf{x} , then \mathbf{x} is an eigenvector and the scaling factor is the eigenvalue

Key Points

- If the columns of A are linearly dependent, one eigenvalue of A is $\lambda = 0$
- If A is the zero matrix, then the only eigenvalue of A is 0

The Characteristic Equation

The scalar equation $\det(A - \lambda I) = 0$ is called the characteristic equation. The characteristic polynomial is the simplified polynomial in the characteristic equation and the eigenvalues are the values for λ .

Theorem 3 — Properties of Determinants

Let A and B be $n \times n$ matrices.

- 1. A is invertible if and only if $\det A \neq 0$.
- 2. $\det AB = (\det A)(\det B)$.
- 3. $\det A^T = \det A$.
- 4. If *A* is triangular, then det *A* is the product of the entries on the main diagonal of *A*.
- 5. A row replacement operation on *A* does not change the determinant. A row interchange changes the sign of the determinant. A row scaling also scales the determinant by the same scalar factor.

The Invertible Matrix Theorem (continued)

Let A be an $n \times n$ matrix. Then A is invertible if and only if, the number 0 is **not** an eigenvalue of A.

Theorem 4

If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).