Diplomová práce

České vysoké učení technické v Praze

F3

Fakulta elektrotechnická Katedra mikroelektroniky

Systém pro podlahové vytápění rodinného domu pomocí zónové regulace

Bc. Roman Labovský

Vedoucí: Ing. Vladimír Janíček, Ph.D.

Obor: Elektronika

Studijní program: Elektronika a komunikace

Leden 2021

Poděkování Prohlášení

Abstrakt

Abstract

Klíčová slova:

Vedoucí: Ing. Vladimír Janíček, Ph.D. České vysoké učení technické v Praze, Elektrotechnická fakulta, Katedra mikroelektroniky
Technická 2,
Praha 6

Keywords:

Title translation: System for underfloor heating of a family house using zone control

Obsah

1 Úvod	1			
Část I Teoretická část				
2 Rešerše	5			
2.1 Podlahové topení	5			
2.2 Zónová regulace vytápění	7			
2.2.1 Principy zónové regulace	8			
2.2.2 Dostupné komerční řešení zónové regulace podlahového vytápění	9			
3 Návrh konceptu řídícího systému	17			
3.1 Popis celkového konceptu	17			
3.1.1 Hardwarová část	18			
3.1.2 Softwarová/komunikační část	21			
4 Závěr	25			
Přílohy				
A Literatura	29			

Obrázky

2.1 Vertikální průběh teploty vzduchu ve vytápěné místnosti při různém způsobu vytápění. Upraveno z [9]. a) Ideální požadovaný průběh, b) Podlahové vytápění, c) Vytápění radiátory (vnitřní stěna), d) Vytápění radiátory (venkovní stěna), e) Teplovzdušné vytápění (podlahové konvektory), f) Stropní vytápění 6
2.2 Porovnání rozložení teplot při použití podlahové topení a radiátorů. Upraveno z [10] 6
2.3 Obecný princip zónové podlahové regulace topení 9
2.4 Jednotlivá zařízení systému Elektrobock PocketHome. a) Nástěnný snímač prostorové teploty. b) Centrální jednotka. c) Spínací jednotka kotle. d) Zónový regulátor. Upraveno z [11, 12, 13, 14] 10
2.5 Jednotlivá zařízení systému Honeywell Evohome. a) Nástěnný snímač prostorové teploty. b) Centrální jednotka. c) Spínací jednotka kotle. d) Řízení dobíjení TUV. e) Zónový regulátor. f) Rozšiřující modul pro zónový regulátor. Upraveno z [15, 16, 17, 18, 19, 20]
2.6 Jednotlivá zařízení systému Danfoss Danfoss Link. a) Nástěnný snímač prostorové teploty. b) Centrální jednotka. c) Spínací jednotka kotle. d) Zónový regulátor. Upraveno z [21, 22, 23, 24]

3.1 Otopná soustava v domě	18
3.2 Návrh hardwarové části systému.	20
3.3 Návrh softwarové části systému.	22
3.4 Základní funkční schéma MQTT komunikace. Příklad přenosu hodno do koncových zařízení. Znak # nahrazuje jednu či více úrovní, budo přijímány subscribers všechny zpráv tykající se prvního patra domu	u

Tabulky

2.1	Srovnání	funkcí jednotlivých	
ko	merčních	systémů	. 14

Kapitola 1 Úvod

Část I

Teoretická část

Kapitola 2

Rešerše

2.1 Podlahové topení

U podlahového vytápění dochází k přenosu tepla do vytápěného prostoru převážně sáláním. Což má za následek, že se od sálající plochy ohřívají plochy osálané a teprve od sálajících a osálaných ploch se ohřívá okolní vzduch (druhá konvenkční složka z celkového tepelného toku). Naproti tomu při přenosu tepla pomocí tradičních radiátorů dochází k přenosu pomocí proudění (konvekční složka). Teplota otopné plochy je poměrně nízká pohybuje se mezi 25 až 34 °C u podlahového vytápění a tedy i teplota teplonosné látky je nízká (otopná plocha je zahřívaná buď teplou vodou, teplým vzduchem nebo elektricky). Proto je tento typ vytápění vhodné využít při zapojení s nízkoteplotním zdrojem, jako jsou tepelná čerpadla, kondenzační kotle či solární panely.

Důležitým parametrem pro příjemný pobyt v místnosti je prostorové rozložení teploty, jak ve vertikální tak horizontální rovině. Na vertikální rozložení teplot ve vytápěné místnosti je způsobeno nerovnoměrným přívodem tepla a nerovnoměrným ochlazování jednotlivých stěn místnosti. Vertikální nerovnoměrnost teplot je tím větší, čím vyšší je povrchová teplota otopné plochy. Vzhledem k tomu, že teplota u podlahové vytápění je povrchová teplota otopné vody ze všech druhů velkoplošného vytápění (podlahové, stropní, stěnové) nejnižší, je vertikální rozložení teplot skoro ideální, viz obrázek 2.1a. Optimální vytápění by mělo zajistit, aby v oblasti hlavy stojícího člověka byla teplota minimálně o 2 °C nižší než je v úrovni kotníků. Takovému ideálnímu průběhu teplot odpovídá obrázek 2.1b. Dále jsou na obrázku 2.1 jsou další druhy vytápění s vertikálními průběhy teplot. Na obrázku 2.2 je prosto-

2. Rešerše

rové porovnání teplot podlahové vytápění a vytápění při využití radiátorů s vyznačenými oblastmi teplot.

Rostoucí teplota Klesající teplota

Obrázek 2.1: Vertikální průběh teploty vzduchu ve vytápěné místnosti při různém způsobu vytápění. Upraveno z [9].

a) Ideální požadovaný průběh, b) Podľahové vytápění, c) Vytápění radiátory (vnitřní stěna), d) Vytápění radiátory (venkovní stěna), e) Teplovzdušné vytápění (podľahové konvektory), f) Stropní vytápění

(a) : Rozložení teplot při použití podlahové topení.

 $\mbox{(b)}$: Rozložení teplot při použití radiátorů.

Obrázek 2.2: Porovnání rozložení teplot při použití podlahové topení a radiátorů. Upraveno z [10].

Výhody

- Je vhodné zejména tam, kde je nízkoteplotní zdroj tepla (tepelné čerpadlo, kondenzační kotel, solární panely, . . .).
- Větší užitný prostor (místo nezabírají otopná tělesa).

- Cirkulace vzduchu je nižší oproti radiátorům, proto je víření prachu v místnosti menší.
- Téměř rovnoměrná teplota místnosti.

Nevýhody

- Zvýšené náklady na realizaci.
- Nezbytná pečlivá montáž a stavební dozor.
- Vyšší tepelná setrvačnost otopné soustavy.
- Vyšší nároky na řízení podlahové otopné plochy (zejména hlídání maximální vstupní otopné vody).

2.2 Zónová regulace vytápění

Význam zónové regulace spočívá v systému umožňující individuální vytápění v jednotlivých místnostech (každá místnost nebo spojení více místností označuje zónu) na požadovanou teplotu. Základ zónové regulace je centrální řídicí jednotka, která přijímá data od jednotlivých místností (zejména jejich aktuální teplotu) a dává povely na zařízení, které ovládá (otevírání/zavírání pohonů u jednotlivých topných okruhů apod.). Přístup k řídicí jednotce je nejčastěji pomocí displeje, webového rozhraní nebo jejich kombinace. V řídicí jednotce se dá celý systém vytápění nastavit (nastavení časových a teplotních programů pro jednotlivé zóny a mnohé další).

Zónové systémy vytápění se rozdělují na dvě hlavní skupiny. První tvoří zónové systémy propojené pomocí vodičů a druhou skupinu tvoří bezdrátová technologie propojující centrální řídicí jednotku a jednotlivé zóny.

Hlavní částí zónového systému je centrální řídící jednotka. Mezi další komponenty patří, nástěnné snímače vnitřní teploty, snímač venkovní teploty, termoelektrické pohony, elektronické regulátory otopných těles, reléová spínací jednotka. Mezi komponenty, které přispívají ke komfortu zónové regulace jako senzor intenzity slunečního záření, senzor rychlosti větru, různé spínací jednotky, jednotky pro ovládání žaluzií, moduly pro dálkové ovládání pomocí GSM a další.

2.2.1 Principy zónové regulace

Jak již bylo řečeno, základem celého systému je centrální řídicí jednotka. Další důležitou komponentou je zónový regulátor, který slouží pro ovládání komponent, které jsou k zónovému regulátoru připojeny. Mezi hlavní komponenty, který zónový regulátor ovládá jsou termoelektrické pohony. Termoelektrický pohon je podobný termostatické hlavici, která se nasazuje na radiátorový ventil, ale je jej možné ovládat elektrickým napětím. Samotná regulace vytápění probíhá tak, že řídicí jednotka je propojena se zónovým regulátorem. K zónovému regulátoru jsou připojeny jednotlivé nástěnné snímače prostorové teploty a termoelektrické pohony, které jsou nasazeny na termostatický ventilech otopných okruhů/těles. V centrální jednotce jsou nastaveny časové programy (různé požadované teploty pro různé časové úseky). Centrální jednotka posílá do zónového regulátoru požadované teploty pro všechny zóny. Tyto teploty jsou v zónovém regulátoru porovnávány s aktuálními prostorovými teplotami měřenými nástěnnými jednotkami. V případě, že je prostorová teplota příslušné zóny nižší než požadovaná teplota (nastavená v centrální jednotce), ovládá zónový regulátor odpovídající pohon, který otevírá/zavírá daný ventil a umožňuje proudění otopné vody do topného okruhu/tělesa, čím dochází ke změně teploty v místnosti. Pokud je připojen například kotel, je pak hořák kotle ovládán při požadavku vytápění v jakékoliv místnosti. Princip zónové regulace je zobrazen na obrázku 2.3.

Další možné zapojení může být takové, že jednotlivé nástěnné snímače prostorové teploty jsou přímo propojeny s centrální jednotkou, která následně podle časového programu posílá zónovému regulátoru požadavky na ovládání jednotlivých pohonů.

Mezi další ovládána zařízení při regulace vytápění mohou být čerpadla, směšovací ventily zejména pro podlahové vytápění, kde je nutné udržovat teplotu otopné vody v daných mezích.

Obrázek 2.3: Obecný princip zónové podlahové regulace topení.

2.2.2 Dostupné komerční řešení zónové regulace podlahového vytápění

Optimální systém pro otopnou soustavu, kterou hodlám řídit z obrázku 3.1 se skládá z řízení ovládání kotle, spínání čerpadel v případě zatopení v krbech a následnou indikaci uživateli, jak moc je zásobník otopné vody natopen, dále z jednotlivých topných okruhů (12 pohonů pro 9 zón) a čerpadla podlahového topení. Pro zónovou regulaci se používá pouze patro.

Elektrobock

Česká firma Elektrobock nabízí bezdrátové řešení pro řízení podlahové topení. Systém řízení je zastřešené pod aplikaci PocketHome. Jednotlivé zařízení systému mohou fungovat samostatně bez nebo s centrální řídicí jednotkou. Tato centrální jednotka je zastřešené pod aplikaci PocketHome. Řídicí systém se skládá z centrální jednotky, nástěnných snímačů prostorové teploty pro jednotlivé místnosti a zónového regulátoru pro ovládání jednotlivých topných okruhů (celkově je možné ovládat 9 zón) a oběhového čerpadla, dále je k dispozici zařízení pro zapínání/vypínání kotle nebo komunikace pomocí

2. Rešerše

protokolu OpenTherm. Na obrázku 2.4 jsou zobrazeny jednotlivé zařízení systému. Jistou nevýhodou může být bezdrátová komunikace na frekvenci 433,92 MHz, v případě delší vzdálenosti a především umístění na jiném patře centrální jednotky a lokální termostatů, zónového regulátoru může docházet k problémům s komunikací, zejména pokud se jedná o zástavbu z železobetonu, kde odrazivost a neprůchodnost signálu je poměrně značná. Jednotlivé prvky mohou pracovat samostatně bez centrální jednotky, na druhou stranu se tímto ztrácí přehled o celém systému a komfortu nastavování z jednoho místa. Systém se může nastavovat pomocí PC (systém Windows) nebo pomocí chytrého telefonu/tabletu (systém Android, iOS). Systém počítá s jedním zdrojem tepla, tedy kotlem (elektrickým, plynovým, automatickým), neuvažuje se s otopnou soustavu, kde je začleněn např. krb s tepelným výměníkem, jak z pohledu řízení čerpadel,tak i případnou indikaci o stavu natopení zásobníku s otopnou vodou. Další otázkou je využíti tohoto řídícího systému při použití centrální zásobníku na otopnou vodou, zejména při použití nízko teplotních zdrojů. Kde distribuce otopné vody pochází primárně z tohoto zásobníku, je nutné sledovat teplotu a na základě toho spínat kotel pro dobíjení, případně jiných zdrojů tepla. Problém bezdrátového bateriového řešení je nutná výměna baterií po určité době.

Obrázek 2.4: Jednotlivá zařízení systému Elektrobock PocketHome. a) Nástěnný snímač prostorové teploty. b) Centrální jednotka. c) Spínací jednotka kotle. d) Zónový regulátor. Upraveno z [11, 12, 13, 14].

Honeywell

Honeywell nabízí bezdrátový systém regulace podlahové topení. Systém řízení je zastřešené pod aplikaci Evohome. Skládá se z centrální jednotky s dotykovým displejem, nástěnných snímačů prostorové teploty pro jednotlivé místnosti, zónového regulátoru pro ovládání jednotlivých topných okruhů (celkově je možné ovládat 5 zón, s rozšiřovacím modulem je možné se dostat na 8 zón). Systém je možné rozšířit o dobíjení TUV, pro sledování teploty na zásobníku je možné umístit teplotní čidlo, ze kterého je teplota odesílaná do centrální jednotky. Na obrázku 2.5 jsou zobrazeny jednotlivé zařízení systému. Systém však při dobíjení zásobníku TUV počítá se zdrojem tepla pouze s kotlem, takže v případě využití krbů s výměníkem nastává problém. V neposlední řadě umožňuje zapojit směšovací ventil pro optimální teplotu do podlahového topení. Systém je možné ovládat lokálně nebo řídit vzdáleně odkudkoliv, je zapotřebí se zaregistrovat si účet a spárovat ho s centrální jednotkou. Vzdálený server přijímá požadavky na změny režimů či nastavení teplot, a zasílá je do řídící jednotky. Server průběžně shromažďuje různá data o chování soustavy, a může je na základě žádosti poskytnout. Z toho vyplývá, že pro lepší řízení a nastavení vytápění je nutné zřídit vzdálený přístup a samotné vyhodnocení a dání povelů, pak dochází na vzdálením serveru, nemáme moc pod kontrolou data a životnost takového systému do budoucnosti. Otázka je i při využití pouze lokálního režimu, zda regulace nepřichází o výhody cloudového řešení. Problém bezdrátového řešení může být opět prostup signálu mezi zařízeními a centrální jednotkou (popsaný u předešlého systému), zejména prostup železobetonovými podlahami a to především při komunikace mezi centrální jednotkou umístěnou v patře a komunikací mezi se zařízeními ve sklepě (nutný průchod dvěma podlahami) a je nutná výměna baterií v zařízeních po určité době. Komunikace mezi zařízeními probíhá na frekvenci 868 MHz, připojení k centrální jednotce pomocí mobilní aplikace je pomocí WiFi (respektive centrální jednotka je připojena na domácí WiFi router, komunikace pak probíhá mezi aplikací, vzdáleným serverem a centrální jednotkou).

2. Rešerše

Obrázek 2.5: Jednotlivá zařízení systému Honeywell Evohome. a) Nástěnný snímač prostorové teploty. b) Centrální jednotka. c) Spínací jednotka kotle. d) Řízení dobíjení TUV. e) Zónový regulátor. f) Rozšiřující modul pro zónový regulátor. Upraveno z [15, 16, 17, 18, 19, 20].

Danfoss

Danfoss nabízí bezdrátový systém regulace podlahové topení. Systém řízení je zastřešené pod aplikaci Danfoss Link. Řídící systém se skládá z centrální jednotky s dotykovým displejem, nástěnných snímač prostorové teploty pro jednotlivé místnosti a zónového regulátoru pro ovládání jednotlivých topných okruhů (celkově je možné ovládat 10 zón), oběhového čerpadla a řízení kotle. Na obrázku 2.6 jsou zobrazeny jednotlivé zařízení systému. Obdobným problém jako u PocketHome je počítání pouze s jedním zdrojem tepla, nepočítání s centrálním zásobníkem teplé vody. Vzdálené ovládání umožněno přes mobilní aplikací pomocí cloudové řešení. Systém má absenci v řízení dobíjení TUV, respektive zásobníku na otopnou vodu a použít více zdrojů tepla (viz předchozích systémy). Opětovnými problémy může být šíření bezdrátového signálu mezi zařízeními (výrobce nabízí zesilovače/opakovače pro signál), problémy cloudového řešení a nutná výměna baterií po určité době (problémy více popsány u předešlých systémů). Komunikace mezi zařízeními probíhá na

frekvenci 868 MHz, připojení k centrální jednotce je možné pomocí mobilní aplikace.

Obrázek 2.6: Jednotlivá zařízení systému Danfoss Danfoss Link. a) Nástěnný snímač prostorové teploty. b) Centrální jednotka. c) Spínací jednotka kotle. d) Zónový regulátor. Upraveno z [21, 22, 23, 24].

Pokud shrnu hlavní nedostatky zmíněných systému pro řízení podlahové vytápění, tak mezi ně patří bezdrátové ovládání, zejména tedy možný problém komunikace mezi centrální jednotkou a zařízeními, výměna baterií po určité době. Dále absence počítání s více zdroji tepla a s centrálním zásobníkem otopné vody, systém od firmy Honeywell počítá alespoň s ohřevem TUV. Další možným nedostatkem může být cloudové řešení z pohledu dlouhodobé garance fungování služby, další věcí pak je že vzdálené ovládání neprobíhá přímo s centrální jednotkou, ale se vzdáleným serverem. Další zjištěním bylo, že všechny systémy jsou nabízeny jako bezdrátové, což je samozřejmě pochopitelné jak z pohledu jednoduchého nainstalování, již do stávajících obydlí, kde s takovým to systémem nebylo počítáno (zejména staré zástavby), též není nutné provádět žádné stavební úpravy. Pokud jsou nabízené drátové řešení, tak zde není žádná centrální jednotka, ovládání probíhá přes drátové lokální termostaty připojené přímo na zónový regulátor, který následně ovládá jednotlivé topné okruhy. Tabulka ?? zobrazuje přehled možností systémů zmíněné výše.

2. Rešerše

Systém Funkce	Elektrobock (PocketHome)	Honeywell (Evohome)	Danfoss (Danfoss Link)
Napojení na více zdrojů tepla	Ne	Ne	Ne
Napojení na centrální zásobník topné vody	Ne	Ne	Ne
Ohřev TUV	Ne	Ano	Ne
Bezdrátové/drátové řešení	Ano	Ano	Ano
Možnosti ovládání	PC chytrý telefon	dotykový displej chytrý telefon	chytrý telefon
Cloudové řešení	Ne	Ano	Ano
Centrální řídicí jednotka	(PH-CJ39-WIFI, 1×) 3 678 Kč	(ATC928G3026, 1×) 5 994 Kč	(014G0288, 1×) 8 694 Kč
Zónový regulátor	(PH-BP1-P9, 1×) 3 388 Kč	(HCE80, 1×) 5 622 Kč	(088U1031, 1×) 4 299 Kč
Nástěnný snímač prostorové teploty	(PH-BP7-V, 9×) 9 036 Kč	$(T87RF2083, 9\times)$ 12 141 Kč	(088U1081, 9×) 19 476 Kč
Spínací jednotka kotle	(PH-PK20, 1×) 1 498 Kč	(BDR91A1000, 1×) 1 100 Kč	$(014G0272, 1\times)$ 2 190 Kč
Řízení dobíjení TUV		(ATF500DHW, 1×) 3 818 K	
Rozšiřující modul pro zónový regulátor		(HCS80, 1×) 1 897 Kč	
Celková cena včetně DPH ^a	17 600 Kč	30 572 Kč	34 659 Kč

^a Ceny stanoveny ke dni 26. 11. 2020.

Tabulka 2.1: Srovnání funkcí jednotlivých komerčních systémů.

V tabulce ?? chybí v části ceny pohony pro ovládání jednotlivých topných okruhů pomocí zónového regulátoru. Pro výše zmíněné systémy, zónový regulátor podporuje pohony na 230 V AC, pohony je možné koupit přímo od daného výrobce nebo od jiného, na samotnou funkčnost to nemá vliv. Jediný rozdíl může být v pořizovací ceně, kde pro termoelektrické pohony je cena od 400 do 800 Kč, pro servopohony může být cena ještě vyšší. Celková cena za 12 pohonů se pohybuje v řádu jednotek tisíc. Někteří výrobci jako Danfoss nabízejí pro jejich systém zesilovače/opakovače signálu pro bezdrátový systém, v případě špatného průchodu signálu je možné zakoupit toto zařízení, ale nutné počítat s dalšími náklady na víc (řády jednotek tisíc). V případě, že systém neumí ovládat kotel pro dobíjení TUV, případně nesplňuje požadavky, které

bychom chtěli, pak je nutné využít jiné řešení/systém, což se dále promítá do dalších nákladů a hlavně se jedná o nejednotnost jednoho systému.

Kapitola 3

Návrh konceptu řídícího systému

3.1 Popis celkového konceptu

Otopná soustava domu je zobrazena na obrázku 3.1. Skládá v současné době pouze z jednoho zdroje tepla a to krbů v přízemí a v patře s teplovodními výměníky. Krby s teplovodním výměníkem slouží k ohřevu otopné vody proudící skrz vložku krbu, které dobíjí zásobník otopné vody, dále pak vzniká teplo ze samotného ohně sálající do místnosti. Na každém patře je rozdělovač podlahové topení s 12 topnými okruhy, kde každý okruh se dá ovládat zvlášť (průtok otopné vody). Dále je zde čerpadlo a manuální trojcestný směšovací ventil pro nastavení optimální teploty do podlahového topení. Druhým zdrojem tepla je plynový kondenzační kotel, který není v současnosti pořízen, nicméně se s ním počítá do budoucna. Bude sloužit k ohřívání otopné vody, pokud nebudou využiti krby s teplovodním výměníkem, zejména v letním období pro ohřev teplé užitkové vody (dále jen TUV). Oba zdroje tepla ohřívání otopnou vodu do centrálního zásobníku (objem je 1 500 l). Kde je přibližně v jedné horní třetině výšky zásobníku umístěna nádoba TUV (objem je 120 l). Navržený systém řídí ovládání čerpadel u rozdělovačů podlahové topení, čerpadel pro krby s výměníkem a pohonů pro jednotlivé okruhy podlahové topení. K ovládání čerpadel, topných okruhů dochází při požadavku topení nebo pokud dojde k zatopení v krbech. Řízení podlahové topení respektive pohonů dochází pouze v patře, kde je více obytných místností, dochází ke stoupání teploty z přízemí a proto je výhodnější toto patro regulovat.

Obrázek 3.1: Otopná soustava v domě.

3.1.1 Hardwarová část

Centrální jednotka je jednodeskový počítač s periferiemi jako ethernetový port, USB, univerzálními vstupy/výstupy, případně s alternativní funkcí pinů jako sběrnice I²C nebo dalšími typy periferií. Dále by měla disponovat dostatečnou velikostí RAM pamětí a relativně výkonným procesorem pro snadné zpracování vstupní/výstupních dat či povelů.

Bezdrátové nástěnné snímače prostorové teploty jsou napájeny z lokálních sítových adaptérů, každý modul má své napájení. Nástěnný snímač prostorové teploty se skládá z displeje pro zobrazení aktuální a požadované teploty a dalších nastavení. Dále ze tří tlačítek pro vstup do menu a tlačítek pro zvý-

šení/snížení požadované teploty a teplotního senzoru. Komunikace s centrální jednotkou je zajištěny pomocí WiFi modulu skrz WiFi router.

Kabelové nástěnné snímače prostorové teploty jsou napájeny pomocí switche s POE. Nástěnný snímač prostorové teploty se skládá z displeje pro zobrazená aktuální a požadované teploty a dalších nastavení. Dále ze tří tlačítek pro vstup do menu a tlačítek pro zvýšení/snížení požadované teploty a teplotního senzoru. Komunikace s centrální jednotkou je zajištěna skrz zmíněného switche.

Indikátor stavů je propojen přímo s centrální jednotkou, skládá z části indikující stavy pomocí LED pro jednotlivé teploty měřené v zásobníku otopné vody rozmístěné v jednotlivých částech nádrže. Dále je zde sběrnice pro komunikaci LCD displejem a centrální jednotkou pro zobrazení teplot ze zásobníku, respektive dvou teplot ze spodní části. LED diody a LCD displej jsou umístěny u krbů v každém patře.

Spínací jednotka se skládá z relé modulů pro ovládání jednotlivých čerpadel pro oběh otopné vody do podlahové topení v jednotlivých patrech. Dále jsou zde ovládány čerpadla pro cirkulaci vody z krbových výměníků. V neposlední řadě je zde případné ovládání plynové kondenzačního kotle.

Zónový regulátor je umístěn v daném patře v rozdělovači pro jednotlivé topné okruhy. Komunikace mezi zónovým regulátorem a centrální jednotkou je pomocí sběrnice. Zónový regulátor ovládá jednotlivé pohony pro místností pomocí PWM signálu. Pohony jsou přímo připojené na zónový regulátor.

Sítové prvky se skládají z centrálního switche, switche s POE a domácího WiFi routeru. Centrální switch sdružuje veškerou komunikace jak z kabelových nástěnných snímačů prostorové teploty, tak i bezdrátových. Bezdrátové nástěnné snímače prostorové teploty jsou připojeny pomocí WiFi routeru a ten následně do centrální switche, který přepojuje komunikaci do centrální jednotky. Kabelové nástěnné snímače prostorové teploty jsou připojeny přes switch s POE, který zařízení napájí a přeposílá komunikaci do centrálního switche, který přepojuje komunikaci do centrální jednotky.

Teplotní senzory v zásobníku otopné vody jsou rozmístěné ve třech částech zásobníku. Dále jsou teplotní sensory na kouřovodech u jednotlivých krbů pro detekci topení. Všechny senzory jsou napojeny na jednu sběrnici.

Výše popsaný hardwarový koncept je nakreslen na obrázku 3.2.

Obrázek 3.2: Návrh hardwarové části systému.

Teplotní čidla

Jak bylo zmíněno výše, teplotní čidla jsou potřebná na snímání teplot na kouřovodech krbů pro následné sepnutí oběhového čerpadla. Teplota na kouřovodech se může dosáhnout až 300 °C (optimální teplota se však pohybuje přibližně mezi 120 °C až 240 °C, kdy je nejvyšší účinnost kamen a hoření paliva), proto je nutné zvolit takové čidlo, které je na tyto teploty vhodné. Mezi takové teplotní čidlo patří odporové teplotní čidlo (teplotní rozsahy od -240 °C až 600 °C) nebo termočlánek (teplotní rozsahy od -260 °C až 2 300 °C). Pro zjištění teploty není nutná velmi velká přesnost, citlivost, jistým požadavkem je robustnost čidla (nejen ochrana čidla, ale i přívodních

kabelů), vzhledem k umístění u krbu, kde je dosahováno vyšších teplot.

Princip termočlánku spočívá v Seebeckově efektu, jsou-li spojeny dva vodiče z různých kovů, tak v místě spojení je generováno napětí. Velikost napětí je závislá na vnější teplotě a materiálu článku. Linearita výstupního napětí článku je závislá na typu termočlánku a rozsahu teplot.

Další teplotní čidla jsou nutná pro nástěnné teplotní snímače pro každou místnost, zásobník otopné vody a venkovní čidlo. Teplotní rozsah těchto čidel nemusí být tak vysoký jako u měření teplot na kouřovodech. Teplotní rozsah stačí v řádů desítek stupňů jak pro kladné, tak i záporné hodnoty teploty. Vzhledem ke vzdálenostem teplotních čidel a centrální jednotky bude lepší zvolit digitální teplotní čidla, které výslednou změřenou teplotu zpracuje pošle po sběrnici v digitální podobě. Není pak nutná další elektronika pro zpracování hodnot teploty jako například u termočlánku či teplotně odporového čidla.

3.1.2 Softwarová/komunikační část

Komunikace mezi centrální řídicí jednotkou a bezdrátovými i kabelovými nástěnnými snímači prostorové teploty je zajištěny pomocí protokolu MQTT. Centrální jednotka dostává informace z jednotlivých nástěnných snímačů prostorové teploty, zároveň je možné některá parametry nastavovat přímo přes centrální jednotku, která následně dané nastavení pošle do daných zařízení.

Indikátor stavů komunikuje s centrální jednotkou pomocí sběrnice I²C pro zobrazení hodnot na LCD displeji. Zároveň je zde přímé připojení na vstupní/výstupní piny centrální jednotky pro ovládání indikačních LED diod.

Spínací jednotka je přímo připojena do centrální jednotky pro spínání daných čerpadel pro podlahové topení, čerpadel pro krbové výměníky a kondenzačního plynového kotle.

Zónový regulátor komunikuje s centrální jednotkou pomocí I²C sběrnice, následné ovládání pohonů pro topné okruhy je přímo zónovým regulátorem.

Teplotní senzory umístěné v zásobníku otopné vody a na kouřovodech krbů komunikují s centrální jednotkou pomocí 1-Wire sběrnice.

Obrázek 3.3: Návrh softwarové části systému.

MQTT protokol

MQTT (Message Queuing Telemetry Transport) je jednoduchý a nenáročný M2M/"Internet Of Things" komunikační protokol. Protokol je založen na principu předávání zpráv mezi klienty přes centrální server (broker). Centrální server přijímá zprávy od poskytovatele zprávy (tzv. publisher), které následně předává k přečtení čtenářům, kteří tuto zprávu odebírají (tzv. subscribers). Publisher obvykle představuje nějaký sensor či měřící jednotku, která vysílá naměřeného hodnoty na broker, zatímco subscriber obvykle tvoří nějaká řídící jednotka, která hodnoty odebírá (přijímá) a dále s nimi pracuje nebo je zobrazuje.

Přenášené zprávy jsou tříděny do témat (topic). Každá zpráva patří právě do jednoho tématu, přičemž témata definuje přímo publisher. Subscriber pak musí předem znát jméno (označení) tématu, aby se mohlo přihlásit u brokeru k jeho odběru. Subscriber nemusí znát umístění ani komunikační adresu publisheru. Musí jen znát komunikační adresu (umístění) brokeru. Témata jsou hierarchická a oddělená lomítky. Příklad struktury tématu: "dum/patro/loznice/sensor/teplota", lze tak přehledně roztřídit jednotlivá umístění zařízení a případné rozšiřování systému je pak snadné. Příklad schématu komunikace a struktury topiců je zobrazena na obrázku 3.4.

Obrázek 3.4: Základní funkční schéma MQTT komunikace. Příklad přenosu hodnot do koncových zařízení. Znak # nahrazuje jednu či více úrovní, budou přijímány subscribers všechny zprávy tykající se prvního patra domu.

Obsahem zprávy není přesně definován. Nejčastěji se používá formát (způsob zápisu) dat JSON (JavaScript Object Notation), BSON (Binary JSON) nebo textové zprávy. Velikost zprávy je pak v aktuální verzi protokolu omezena na necelých 256 MB, ale vzhledem k využití "Internet of Things" bývá většina zpráv mnohem menší.

Protokol MQTT popisuje jen samotný popis struktury přenášených zpráv, ale nedefinuje způsob přenosu. K tomu se využívá TCP/IP protokol. Protokol definuje tři úrovně potvrzování zpráv QoS (Quality of Service). QoS 0 – Zpráva je odeslána bez potvrzení a není zaručeno její doručení. QoS 1 – Publisher zprávu odešle a přes broker je od odběratelů posláno potvrzení, broker může poslat potvrzení, aniž by měl potvrzení od všech odběratelů (závisí na implementaci). QoS 2 – Publisher zprávu odešle, broker pošle publisherovi potvrzení o přijetí na kterou publisher odpoví potvrzením, broker zprávu smaže a potvrdí zprávou, tím je komunikace mezi publisherem a brokerem uzavřena. Tato komunikace probíhá i mezi brokerem a odběrateli.

V přihlašovací sekvenci se využívá identifikace klienta pomocí ID a pak volitelně i pomocí uživatelské jména a hesla. MQTT díky podpoře SSL/TLS umožňuje přihlášení pomocí klientského SSL certifikátu.

- 3. Návrh konceptu řídícího systému
- I²C sběrnice
- 1-Wire sběrnice
- Inteligentní část systému

Pro co největší využití centrálního řízení podlahového vytápění je vhodné využít různé metody pro její optimalizaci, což se následně promítne do nákladů energie, tak též i do teplotního konfortu uživatelů. Jednou z metod je využití předpovědi počasí, kdy dopředu víme teplotní předpověď, kterou můzeme začlenit do teplotních programů (časově definované úsek pro vytápění) definované uživatel a základě předpovědi se rozhodnout, zda je nutné místnosti natápět dříve v případě snížení venkovní teploty nebo naopak s vytápěním počkat. Další možností

Řídicí systémy

Kapitola 4 Závěr

Přílohy

Příloha A

Literatura

- [1] BAŠTA, Jiří. Velkoplošné vytápění (I): Úvod do problematiky. *Tzbinfo* [online]. Praha, 26. 6. 2006n. l., **2006** [cit. 2020-11-01]. Dostupné z: https://vytapeni.tzb-info.cz/3383-velkoplosne-vytapeni-i
- [2] MATZ, Václav. Zónové regulační systémy a jejich využití při úsporném efektivním vytápění. *TZB-info* [online]. Praha, 2010 [cit. 2020-11-09]. Dostupné z: https://vytapeni.tzb-info.cz/mereni-a-regulace/6203-zonove-regulacni-systemy-a-jejich-vyuziti-pri-uspornem-efektivnim-vytapeni
- [3] , Redakce. Podlahové vytápění přehled trhu. *TZB-info* [online]. Praha, 2008 [cit. 2020-11-09]. Dostupné z: https://vytapeni.tzb-info.cz/podlahove-vytapeni/4667-podlahove-vytapeni-prehled-trhu
- [4] MALÝ, Martin. Protokol MQTT: komunikační standard pro IoT. Root.cz [online]. Praha, 2016 [cit. 2020-12-02]. Dostupné z: https://www.root.cz/clanky/protokol-mqtt-komunikacni-standard-proiot/
- [5] VOJÁČEK, Antonín. IoT MQTT prakticky v automatizaci 1.díl úvod. Automatizace.hw.cz: rady a poslední novinky z oboru [online]. Praha: HW server, 2017 [cit. 2020-12-02]. Dostupné z: https://automatizace.hw.cz/iotmqtt-prakticky-v-automatizaci-1dil-uvod.html
- [6] VALTER, Jaroslav. Regulace v praxi: aneb Jak to dělám já. Praha: BEN
 technická literatura, 2010. ISBN 9788073002565.
- [7] DPS: Elektronika od A do Z [online]. 11. Liberec: CADware, 2020 [cit. 2020-11-29]. ISSN 1805-5044. Dostupné z: https://www.dps-az.cz/e-archiv/detail/id:68995/3-2020

A. Literatura

[8] DPS: Elektronika od A do Z [online]. 3. Liberec: CADware, 2012 [cit. 2020-11-29]. ISSN 1804-4891. Dostupné z: https://www.dps-az.cz/e-archiv/detail/id:10370/4-2012

- [9] VERMEULEN, Gavin. Heating and Wellbeing. In: *Heat Pumps* [online]. Austrálie [cit. 2020-11-05]. Dostupné z: http://www.adelaidehydronicheating.com.au/heatpumps.html
- [10] Velkoplošné sálavé systémy revoluce ve vytápění a chlazení. In: Asb [online]. Praha, 2016, 29. 9. 2016 [cit. 2020-11-01]. Dostupné z: https://www.asb-portal.cz/stavebnictvi/technicka-zarizeni-budov/vytapeni/velkoplosne-salave-systemy-revoluce-ve-vytapeni-a-chlazeni
- [11] Bezdrátový vysílač pro podlah.topení PH-BP7-V. In: *Elet-robock* [online]. Kuřim, 2017 [cit. 2020-11-26]. Dostupné z: https://www.elektrobock.cz/bezdratovy-vysilac-pro-podlah-topeni/p275
- [12] Produkty centrální jednotky. In: *Pocket home* [online]. Kuřim [cit. 2020-11-26]. Dostupné z: https://pockethome.cz/cs/centralni-jednotky/
- [13] Přijímač kotle-nástěnný PH-PK20. In: *Eletrobock* [online]. Kuřim [cit. 2020-11-26]. Dostupné z: https://www.elektrobock.cz/prijimac-kotle-nastenny/p104
- [14] 9-ti kanálový přijímač pro podlah.topení PH-BP1-P9. In: *Elet-robock* [online]. Kuřim, 2016 [cit. 2020-11-26]. Dostupné z: https://www.elektrobock.cz/9-ti-kanalovy-prijimac-pro-podlah-topeni/p199
- [15] Bezdrátový jednozónový prostorový termostat Honeywell Round T87RF2083. In: *Bola: Měřící, regulační a topenářská technika* [online]. Praha [cit. 2020-11-26]. Dostupné z: https://www.bola.cz/bezdratovy-jednozonovy-prostorovy-termostat-honeywell-round-t87rf2025
- [16] Řídící jednotka Evohome Touch Wi-Fi Honeywell ATC928G3026. In: Bola: Měřící, regulační a topenářská technika [online]. Praha [cit. 2020-11-26]. Dostupné z: https://www.bola.cz/ridici-jednotka-evohome-touch-wi-fi-honeywell-atc928g3026
- [17] Bezdrátová reléová jednotka Honeywell Evohome BDR91A1000. In: *Bola: Měřící, regulační a topenářská technika* [online]. Praha [cit. 2020-11-26]. Dostupné z: https://www.bola.cz/bezdratova-releova-jednotka-honeywell-evohome-bdr91a1000
- [18] Sada Evohome TV Honeywell ATF500DHW. In: Bola: Měřící, regulační a topenářská technika [online]. Praha [cit. 2020-11-26]. Dostupné z: https://www.bola.cz/sada-evohome-tv-honeywell-atf500dhw

A. Literatura

- [19] Honeywell Home podlahový termostat Honeywell evohome HCE80. In: *Conrad* [online]. Praha [cit. 2020-11-26]. Dostupné z: https://www.conrad.cz/p/honeywell-home-podlahovy-termostat-honeywell-evohome-hce80-1205666
- [20] Rozšiřující modul pro HCC80 a HCE80 Honeywell Evohome HCS80. In: Bola: Měřící, regulační a topenářská technika [online]. Praha [cit. 2020–11-26]. Dostupné z: https://www.bola.cz/rozsirujici-modul-pro-hcc80-a-hce80-honeywell-evohome-hcs80
- [21] Regulační prvky podlahového vytápění, Danfoss Icon 088U1081. In: Danfoss [online]. [cit. 2020-11-26]. Dostupné z: https://store.danfoss.com/cz/cs/Vyt%C3%A1p%C4%9Bn%C3%AD-ad%C3%A1lkov%C3%A9-vyt%C3%A1p%C4%9Bn%C3%AD/Teplovodn%C3%AD-podlahov%C3%A9-vyt%C3%A1p%C4%9Bn%C3%AD/Prostorov%C3%A1regulace/Regula%C4%8Dn%C3%AD-prvky-podlahov%C3%A9ho-vyt%C3%A1p%C4%9Bn%C3%AD%2C-Danfoss-Icon/p/088U1081
- [22] Danfoss Link, Central controller, Power supply: PSU 014G0288. In: Danfoss [online]. [cit. 2020-11-26]. Dostupné z: https://store.danfoss.com/en/Heating-and-District-Energy/Smart-Heating/Danfoss-Link—Smart-Heating/Central-Controller/Danfoss-Link%E2%84%A2%2C-Central-controller%2C-Power-supply%3A-PSU/p/014G0288
- [23] Regulační prvky podlahového vytápění, Danfoss Icon. 230.0 AC: 230. 8 Výstup napětí 088U1031.In: Danfoss[online]. cit. 2020-11-26]. Dostupné https://store.danfoss.com/cz/cs/Vyt%C3%A1p%C4%9Bn%C3%AD-a $d\%C3\%A1lkov\%C3\%A9-vyt\%C3\%A1p\%C4\%9Bn\%C3\%AD/Teplovodn\%C3\%AD-toplowdn\%C3\takentarea.$ podlahov%C3%A9-vyt%C3%A1p%C4%9Bn%C3%AD/Prostorov%C3%A1 $regulace/Regula\%C4\%8Dn\%C3\%AD-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov\%C3\%A9ho-prvky-podlahov%C3\lldown-prvky-podlahov-prvky-podlahov-prvky-podlahov-prvky-podlahov-prvky-podlahov-prvky-podlahov-prvky-podlahov-prvky-podlahov-prvky-podlahov-prvky-podlahov-prvky-podlahov-prvky-podlahov-pr$ vyt%C3%A1p%C4%9Bn%C3%AD%2C-Danfoss-Icon%2C-230-0-V%2C-V%C3%BDstup—nap%C4%9Bt%C3%AD-%5BV%5D-AC%3A-230%2C-8/p/088U1031
- [24] Kotlové relé pro systém Danfoss Link, 868.42 MHz 014G0272. In: *Danfoss* [online]. [cit. 2020-11-26]. Dostupné z: https://store.danfoss.com/cz/cs/Kotlov%C3%A9-rel%C3%A9-prosyst%C3%A9m-Danfoss-Link%2C-868-42-MHz/p/014G0272