Cours L'ARITHMETIQUE

avec Exercices avec solutions

1BAC SM BIOF

L'ARITHMETIQUE

PROF: ATMANI NAJIB

I) LA DIVISIBILITE DANS Z

1) Définition et conséquences

1.1 Diviseur d'un entier

Définition: Soient a et b deux entiers relatifs tels que $b \neq 0$; on dit que l'entier relatif b divise a s'il existe un entier relatif k tel que a = kb; On écrit : b|a.

On dit que a est divisible par b

Exemples: $\frac{3}{12}$ car $12 = 3 \times 4$ et $\frac{-6}{42}$

car $-42 = 7 \times (-6)$ et on a :7 ne divise pas 16

Remarques:

- Si l'entier non nul b divise l'entier a alors -b divise lui aussi.
- 1 divise tous les entiers relatifs
- 0 est divisible par tous les entiers non nuls : $car 0 = 0 \times b$
- Si a est un entier les diviseurs de a constituent un ensemble fini noté D_a :

$$D_a = \{b \in \mathbb{Z} / b | a\}$$

Exemple:

$$D_{\scriptscriptstyle{18}} = \{-18,\, -9,\, -6,\, -3,\, -2,\, -1,1,2,3,6,9,18\}$$

et
$$D_{18}^+ = \{1,2,3,6,9,18\}$$

Exercice01 : 1) Déterminer et dénombrer les diviseurs naturels de 156

12)Déterminer dans $\,\mathbb{Z}$ tous les diviseurs de -8 $\,$

Solution01:1) 156 a 12 diviseurs:

1; 2; 3; 4; 6; 12; 13; 26; 39; 52; 78 et 156.

156 et 1 sont appelés diviseurs triviaux, les autres sont des diviseurs stricts.

2)
$$D_{-8} = \{-8, -4, -2, -1, 1, 2, 4, 8\}$$

Propriété : $a \in \mathbb{Z}$; $b \in \mathbb{Z}$; $c \in \mathbb{Z}$

- 1/a et -1/a et a/a et a/-a
- $b|a \Rightarrow |b| \le |a|$
- $a/b \Rightarrow a/b \times c$
- $a/b \Rightarrow |a| \le |b|$
- $b|1 \Rightarrow b \in \{-1,1\}$

Déduction :

Si m et n sont deux entiers relatifs tels que : mn = 1 alors |m| = 1 et |n| = 1.

1.2 Multiple d'un entier.

Définition : On dit que a est un multiple de b si b est un diviseur de a

Remarque: Si b est un entier non nul,

les multiples de b constituent Un ensemble infini noté $b\mathbb{Z}$

 $b\mathbb{Z} = \{m \in \mathbb{Z} \mid m = kb \text{ où } k \in \mathbb{Z} \}$

Exemple:

 $3\mathbb{Z} = \{\leftarrow \cdots, -12, -9, -6, -3,0,3,6,9,12, \dots \rightarrow \}$ **1.3 Diviseur commun, multiple commun de deux entiers**

Définition :a) Si b|m et b|n on dit que b est un diviseur commun de m et n

b) Si b|m et b'|m, on dit que m est un multiple commun de b et b'.

Exemples :4 est un diviseur commun de 16 et 12

36 est un multiple commun de 9 et 12.

Propriété : Etant donnés des entiers relatifs non nuls. On a les propositions suivantes :

- a|b et $b|a \Rightarrow |a| = |b|$
- a|b et c|d \Rightarrow ac|bd
- a|b et $b|c \Rightarrow a|c$
- $\bullet a|b \Rightarrow a|bc$
- a|m et $a|n \Rightarrow a|m + n$
- $\bullet a | m \text{ et } a | n \Rightarrow a | m n$
- a|m et $a|n \Rightarrow a|\alpha m + \beta n$ où α et β sont des entiers relatifs quelconques.
- $\bullet a/b \Rightarrow a^n/b^n \quad n \in \mathbb{N}$

Exercice02:

- 1) $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$ et $c \in \mathbb{Z}$ et $x \in \mathbb{Z}$ et $y \in \mathbb{Z}$
- a) montrer que si $\frac{a}{2b+c}$ et $\frac{a}{b+c}$ alors $\frac{a}{c}$
- b) montrer que si $\frac{a}{2b+3c}$ et $\frac{a}{b+c}$ alors $\frac{a}{c}$
- c) montrer que si a/x-y et a/b-c alors a/xb-cy
- 2) $a \in \mathbb{Z}$ et $n \in \mathbb{N}$ et $\frac{a}{12n+1}$ et $\frac{a}{-2n+3}$

Montrer que $\frac{a}{19}$

3) $d \in \mathbb{Z}$ et $a \in \mathbb{Z}$ et d/2 + 3 et d/2 - 1

Montrer que $\frac{d}{13}$

Solution02: 1) a) $\begin{cases} a/2b+c \Rightarrow a/2(b+c)-(2b+c) \Rightarrow a/c \end{cases}$

1) b)
$$\begin{cases} a/2b+3c \Rightarrow a/2b+3c-2(b+c) \Rightarrow a/c \\ a/b+c \end{cases}$$

1) b)
$$\begin{cases} a/2b+3c \Rightarrow a/2b+3c-2(b+c) \Rightarrow a/c \\ a/b+c \end{cases}$$
1) c)
$$\begin{cases} a/2b+3c \Rightarrow a/2b+3c-2(b+c) \Rightarrow a/c \\ a/2b+3c \Rightarrow a/2b+3c-2(b+c) \Rightarrow a/2b$$

2)
$$a_{12n+1}$$
 et a_{-2n+3}

$$\Rightarrow \frac{a}{12n+1}et \frac{a}{-12n+18} \Rightarrow \frac{a}{19}$$

$$\Rightarrow a \in \{\pm 1; \pm 19\}$$

3)
$$d \in \mathbb{Z}$$
 et $a \in \mathbb{Z}$ et $d/2$ et $d/2$ et $d/2$ $n-1$

$$\Rightarrow \frac{d}{n^2 + 3} et \frac{a}{(2n-1)^2} \Rightarrow \frac{d}{4n^2 + 12} et \frac{d}{4n^2 - 4n + 1}$$

$$\Rightarrow \frac{d}{11+4n}et\frac{d}{-2+4n} \Rightarrow \frac{d}{13}$$

Exercice03: $a \in \mathbb{Z}$ et $x \in \mathbb{Z}$

Montrer que :
$$\begin{cases} a/5x-7 \Rightarrow a/29 \\ a/2x+3 \end{cases}$$

Solution03:
$$\begin{cases} a/5x-7 \Rightarrow a/2(5x-7)-5(2x+3) \end{cases}$$

$$a_{10x-14-10x-15} \Rightarrow a_{-29} \Rightarrow a_{29}$$

Exercice04: Montrer que : $\forall n \in \mathbb{N}$:

3 divise $4^n - 1$ **Solution 04**:

Montrons que : $\forall n \in \mathbb{N} \quad \exists k \in \mathbb{N} / 4^n - 1 = 3k$

1étapes : l'initialisation :Pour n=0 nous avons

 $4^0 - 1 = 0$ est un multiple de 3

Donc P (0) est vraie.

2étapes : d'hérédité : Supposons que P(n) soit

vraie c'est-à-dire : $\exists k \in \mathbb{N} / 4^n - 1 = 3k$ donc

$$4^n = 3k + 1$$

3étapes : Nous allons montrer que P(n+1) est vraie. Montrons alors que:

$$\exists k' \in \mathbb{N} / 4^{n+1} - 1 = 3k'$$
 ??

$$4^{n+1} - 1 = 4 \times 4^n - 1$$

$$=4\times(3k+1)-1=12k+4-1=12k+3=3(4k+1)$$

avec k' = 4k + 1 Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence on a :

 $\forall n \in \mathbb{N}$; $4^n - 1$ est divisible par 9

Exercice05 : Quelles sont les valeurs de l'entier relatif n pour lesquelles : n+2/3n+1

Solution05: n+2/3n+1 et n+2/n+2

n+2/3n+1et n+2/3n+6donc

$$n+2/(3n+6)-(3n+1)$$
 donc $n+2/5$

Les diviseurs de 5 sont 1; -1; 5; -5 donc II faut

que $n+2 \in \{-1,-5,1,5\}$ ce qui entraine que $n \in \{-3, -7, -1, 3\}$

On vérifie que que que si $n \in \{-3, -7, -1, 3\}$ alors n+2/3n+1 avant de conclure.

Conclusion : les valeurs de l'entier relatif n pour lesquelles : n+2/3n+1 sont : -7 ; -3 ;-1 ;3

Exercice 06 : Quelles sont les valeurs de l'entier relatif n pour lesquelles la fraction $\frac{3n+8}{n}$

Représente un entier relatif?

Solution06: Cette fraction a un sens si : $n+4 \neq 0$ soit $n \neq -4$

On constate que 3n+8=3(n+4)-4

n+4 divise 3(n+4), donc n+4 divise 3n+8 si n+4 divise -4.

Les diviseurs de -4 sont 1 ; -1 ; 2 ; -2 ; 4 ; -4. Il faut que $n+4 \in \{-4,-2,-1,1,2,4\}$ ce qui

entraine que $n \in \{-8, -6, -5, -3, -2, 0\}$

On vérifie que -4 n'appartient pas à -8 ; -6 ; -5 ; -3; -2; 0 avant de conclure.

Conclusion : la fraction $\frac{3n+8}{n+4}$ représente un

entier relatif pour les valeurs de l'entier relatif n : -8; -6; -5; -3; -2; 0.

Exercice07: Résoudre dans \mathbb{N}^2 les équations suivantes :a) $x^2 - y^2 = 32$ avec x > y

b)
$$2xy + 2x + y = 99$$

Solution07:a) $x^2 - y^2 = 32 \Leftrightarrow (x - y)(x + y) = 32$ x-y et x+y sont des diviseurs positif de 32 Et (x-y)+(x+y)=2x est u nombre pair

Donc x - y et x + y ont la même parité $32 = 2^5$ On dresse un tableau:

x-y	2	4
x+y	16	8
х	9	6
у	7	2

$$S = \{(6;2);(9;7)\}$$

b)
$$2xy + 2x + y = 99 \Leftrightarrow 2xy + y + 2x + 1 - 1 = 99$$

 $\Leftrightarrow y(2x+1) + 2x + 1 = 99 + 1 \Leftrightarrow (2x+1)(y+1) = 100$

Donc: 2x+1 et y+1 sont des diviseurs positif de 100 $D_{100} = \{1; 2; 4; 5; 10; 20; 25; 50; 100\}$

2x+1	1	2	4	5	20	25	50	100
y+1	100	50	25	20	5	4	2	1
X	0			2		12		
У	99			10		3		

$$S = \{(0,99); (2,19); (12,3)\}$$

2) La division euclidienne

2.1 La division euclidienne dans N.

Propriété : Considérons a et b deux entiers naturels tels que $b \neq 0$; ils existent deux entiers naturels q et r tels que a = bq + r où $0 \leq r < b$

• L'entier a s'appelle : Le divisé

• L'entier *b* s'appelle : *Le diviseur*

• L'entier q s'appelle : Le quotient

• L'entier r s'appelle : Le reste

Remarque : Si r est le reste de la division euclidienne par b alors : $r \in \{0,1,\ldots,b-1\}$.

Exemple1:

la division euclidienne de 75 par 8 donne : $75 = 9 \times 6 + 3$ car $0 \le 3 \le 8$

la division euclidienne de 126 par 7 donne : $126=18\times7+0$ car $0\leq0<7$

la division euclidienne de 85 par 112

donne : $85 = 0 \times 112 + 85$ car $0 \le 85 < 112$

Exemple2 : Un entier naturel n peut s'écrire de l'une des façons suivantes

n = 5k ou n = 5k + 1 ou n = 5k + 2

ou n = 5k + 3 ou n = 5k + 4 avec $k \in \mathbb{N}$

Exercice 08: déterminer le nombre entier naturel n Tel que le quotient de la division euclidienne de n par 25 est p et le reste est p^2 ($p \in \mathbb{N}$)

Solution $(p \in \mathbb{N})$

Solution08: $n \in \mathbb{N}$: $n = 25p + p^2$ et $0 \le p^2 < 25$

donc $0 \le p < 5$

Donc: $\begin{cases} p = 0 \\ n = 0 \end{cases} ou \begin{cases} p = 1 \\ n = 26 \end{cases} ou \begin{cases} p = 2 \\ n = 54 \end{cases} ou \begin{cases} p = 3 \\ n = 84 \end{cases} ou \begin{cases} p = 4 \\ n = 116 \end{cases}$

Donc: $n \in \{0, 26, 54, 84, 116\}$

Exercice 09: n et a et b des entiers naturels Démontrer que si q est le quotient de la division euclidienne de n par a et q' est le quotient de q par b Alors q' est aussi le quotient de n par ab

Solution09 : soit r le reste de la division euclidienne de n par a et r' le reste de la division euclidienne de q par b on a donc :

n = aq + r et $0 \le r \le a - 1$ et on a : q = bq' + r'

et $0 \le r' \le b-1$ donc on déduit que :

n = a(bq' + r') + r = abq' + ar' + r

Et puisque : $0 \le r' \le b-1$ et $0 \le r \le a-1$ alors : $ar' + r \le ab-1$ donc n = abq' + ar' + r

 $0 \le ar' + r \le b - 1$ conclusion : q' est aussi le quotient de n par ab

2.2 La division euclidienne dans Z

Propriété: Considérons a et b deux entiers relatifs tels que $b \neq 0$; ils existent un entiers relatif a et un entier naturel a

Tels que : a = bq + r où $0 \le r < |b|$

Exemple1:1)la division euclidienne de 37 par -

11 donne: $37 = (-11) \times (-3) + 4 \text{ car } 0 \le 4 < 11$

2)a division euclidienne de -37 par 11

donne: $-37 = 11 \times (-4) + 7$ car $0 \le 7 < 11$

3) I a division euclidienne de -37 par -11

donne: $-37 = (-11) \times 4 + 7 \text{ car } 0 \le 7 < 11$

Exercice 10: $b \in \mathbb{N}^*$ et $a \in \mathbb{Z}$

si q est le quotient de la division euclidienne de a-1 par b déterminer le quotient de la division

euclidienne de ab^9-1 par b^{10}

Solution10: soit r le reste de la division

euclidienne de a-1 par b donc :

a-1=bq+r et $0 \le r < b$

Donc: $ab^9 - b^9 = b^{10}q + rb^9$

Donc: $ab^9 - 1 = b^{10}q + rb^9 + b^9 - 1$

Donc: $ab^9 - 1 = b^{10}q + (r+1)b^9 - 1$

On montre que : $0 \le (r+1)b^9 - 1 < b^{10}$???

On a : $0 \le r < b \text{ donc } 0 \le r + 1 \le b$

donc $0 \le (r+1)b^9 \le b^{10}$ donc $0 \le (r+1)b^9 - 1 \le b^{10} - 1$

donc $0 \le (r+1)b^9 - 1 < b^{10}$

conclusion : q est aussi le quotient de la

division euclidienne de ab^9-1 par b^{10}

II) LES NOMBRES PREMIERS

1) Définition et propriétés

Définitions: a) On dit que l'entier d est un diviseur **effectif** de l'entier relatif a

Si d|a et $|d| \neq 1$ et $|d| \neq |a|$

b) On dit qu'un entier relatif non nul p est **premier** s'il est différent de 1 et s'il n'admet pas de diviseurs effectifs.

Remarques:

- Un nombre premier p admet exactement deux diviseurs positifs 1 et |p|.
- Si p est un nombre premier positif alors p n'admet pas de diviseurs effectifs de même
- p n'admet pas de diviseurs effectif d'où :
- -p est aussi premier;
- Pour l'étude des nombres premiers on se contente d'étudier les nombres premiers positifs.

Propriété : Soit *a* un entier naturel non nul différent de 1 et non premier, le plus petit

diviseur de a diffèrent de 1 est un nombre premier

Exemple1 : Les nombres -3 et -7 et 23 sont premiers.

2) Détermination d'un nombre premier

Propriété: Soit n un entier naturel non nul, diffèrent de 1 et non premier, il existe un nombre premier p qui divise l'entier n et qui vérifie $p^2 \le n$.

Remarque : Cette propriété nous permet de déterminer si un nombre est premier ou non. **Corolaire :** Si un entier n n'est divisible par aucun entier premier p et qui vérifie $p^2 \le n$ alors n est premier.

Exercice: 1) Les nombres suivants sont—ils premiers :499 ; 601 ; 703 ; 2003 ; $2n^2 + 3n \quad n \in \mathbb{N}$ **Théorème :** L'ensemble des nombres premiers est infini.

III) PLUS GRAND DIVISEUR COMMUN, PLUS PETIT MULTIPLE COMMUN.

1) Plus grand diviseurs commun 1.1 Définition et propriété

Définition: On dit que le nombre d est **le plus grand diviseur commun** de deux entiers relatifs a et b lorsque d divise a et d divise b et qu'il n'y a pas d'autre plus grands diviseurs de ces deux nombres.

On note $d = PGDC(a, b) = a \wedge b$

Exemple:

 $-48 \wedge 36 = 12$

Propriétés :1) $a \wedge a = |a|$ 2) $1 \wedge a = 1$

3) $(a \wedge b) \wedge c = a \wedge (b \wedge c)$

4) Si b|a alors $a \wedge b = |b|$

5)si d|a et d|b alors $d|(a \land b)$

Exercice11: montrer que $\forall a \in \mathbb{Z} \ a \land (a+1)=1$

Solution11: on pose $d = a \land (a+1)$

$$\Rightarrow \frac{d}{a} \text{ et } \frac{d}{a+1} \Rightarrow \frac{d}{1} \Rightarrow d=1$$

Exercice12: $n \in \mathbb{N}$ On considère les deux

nombres: $A = n^2 + 3$ et B = n + 2

1) montrer que $A \wedge B = (n+2) \wedge 7$

2) déterminer l'entier naturel n tel que : $\frac{n^2+3}{n+2} \in \mathbb{N}$

Solution12:1)on pose $d = A \wedge B$ et $d' = (n+2) \wedge 7$

On a : $d = A \wedge B$

$$\Rightarrow \frac{d}{A} \text{ et } \frac{d}{B} \Rightarrow \frac{d}{n^2+3} \text{ et } \frac{d}{n+2}$$

 $\Rightarrow \frac{d}{n^2+3}$ et $\frac{d}{n+2}$ on utilisant la division

euclidienne : on trouve : $n^2 + 3 = (n+2)(n-2) + 7$

$$n^2 + 3 - (n+2)(n-2) = 7$$

$$\Rightarrow \frac{d}{n^2 + 3 - (n+2)(n-2)}$$

$$\Rightarrow \frac{d}{\sqrt{n+2}} \Rightarrow \frac{d}{\sqrt{n+2}} \wedge 7 \Rightarrow \frac{d}{\sqrt{d'}}$$

Inversement : On a : $d' = (n+2) \wedge 7$

$$\Rightarrow d'/_{n+2}$$
 et $d'/_7 \Rightarrow d'/_{(n+2)(n-2)}$ et $d'/_7$

$$\Rightarrow d'/(n+2)(n-2)+7$$
 et $d'/7 \Rightarrow d'/(n^2+3)$ et $d'/7$

donc: $d'/_{A \wedge B}$ donc $d'/_{d}$

donc d/d et d'/d et $d \in \mathbb{N}$ et $d' \in \mathbb{N}$ donc

donc d = d' donc: $A \wedge B = (n+2) \wedge 7$

2)
$$\frac{n^2+3}{n+2} \in \mathbb{N} \Leftrightarrow n+2/n^2+3$$
 et et on a : $n+2/n+2$

Donc:
$$n+2/A \wedge B$$
 Donc: $n+2/(n+2) \wedge 7$

Donc: n+2/7 or 7 est premier donc:

If faut que $n+2 \in \{1,7\}$ ce qui entraine que n=5

Définition : On dit que deux entier relatifs a et b sont premiers entre eux si $a \land b = 1$.

Exemple :21 et 10 sont premiers entre eux. **Exercice 13:** $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$ et $c \in \mathbb{Z}$ et $d \in \mathbb{Z}$

tels que : a = bc + d

1) montrer que $a \wedge b = b \wedge d$

2) En déduire que : $a \wedge b = b \wedge (a - bc)$

Solution13:1)on pose $\Delta_1 = a \wedge b$ et $\Delta_2 = b \wedge d$

On a :
$$\frac{\Delta_l}{a}$$
 et $\frac{\Delta_l}{b}$ donc $\frac{\Delta_l}{a}$ et $\frac{\Delta_l}{bc}$ donc

$$\frac{\Delta_1}{a-bc}$$
 donc $\frac{\Delta_1}{d}$

donc
$$\frac{\Delta_{\rm l}}{d}$$
 et $\frac{\Delta_{\rm l}}{b}$ donc $\frac{\Delta_{\rm l}}{b\wedge d}$ donc $\frac{\Delta_{\rm l}}{\Delta_{\rm l}}$

inversement On a :
$$^{\Delta_2}\!\!/_{\!b}$$
 et $^{\Delta_2}\!\!/_{\!d}$ donc $^{\Delta_2}\!\!/_{\!d}$ et

$$\frac{\Delta_2}{bc}$$
 donc $\frac{\Delta_2}{bc+d}$ donc $\frac{\Delta_2}{a}$

donc
$$\frac{\Delta_2}{a}$$
 et $\frac{\Delta_2}{b}$ donc $\frac{\Delta_2}{a \wedge b}$ donc $\frac{\Delta_2}{\Delta_1}$

On a donc :
$$\Delta_1 / \Delta_2$$
 et Δ_2 / Δ_1 et $\Delta_1 \in \mathbb{N}$ et $\Delta_2 \in \mathbb{N}$

donc $\Delta_{\rm l}=\Delta_{\rm 2}$

donc: $a \wedge b = b \wedge d$

2)on a : a = bc + (a - bc) si on prend : d = a - bc et

d'après 1) on aura : $a \wedge b = b \wedge d = b \wedge (a - bc)$

<u>4</u>

Exercice14: $a \in \mathbb{N}$ On considère les deux nombres : A = 35a + 57 et B = 45a + 76 montrer que $A \land B = 1$ ou $A \land B = 19$

Solution14:1)on pose $d = A \wedge B$

$$\Rightarrow d/A \text{ et } d/B \Rightarrow d/35a + 57 \text{ et } d/45a + 76$$

$$\Rightarrow \frac{d}{9(35a+57)}$$
et $\frac{d}{7(45a+76)}$

$$\Rightarrow \frac{d}{315a+513}$$
 et $\frac{d}{315a+532}$

$$\Rightarrow \frac{d}{19}$$
 or 19 est premier donc :

II faut que $d \in \{1,19\}$ ce qui entraine que :

 $A \wedge B = 1$ ou $A \wedge B = 19$

1.2 L'algorithme d'Euclide.

Théorème : Soit a un entier naturel et b un entier naturel non nul on a : a = bq + rOù $0 \le r < b$ on a : $a \land b = b \land r$

L'algorithme d'Euclide.

Propriété: Soient a et b deux entier naturels non nuls. Le plus grand diviseur commun de a et b est le dernier reste non nul dans les divisions euclidiennes successives.

Application:

- 1- Trouver le PGDC (362154, 82350).
- 2- Déterminer tous les diviseurs communs de 362154 et 82350.

Propriété : Soient a et b deux entier relatifs non nuls

Les diviseurs communs de a et b sont les diviseurs de $a \wedge b$.

On peut dire que : $D_a \cap D_b = D_{a \wedge b}$

Exercice : Montrer que : $\forall n \in \mathbb{N}^*$ on a :

1)
$$n \wedge (n+1) = 1$$
 2) $n \wedge (2n+1) = 1$

3)
$$(2n+1) \land (3n+1) = 1$$

2) Le plus petit multiple commun. Définition et propriété

Définition : On dit que le nombre entier naturel m est le plus petit multiple commun de deux entiers relatifs a et b lorsque

m est un multiple de a et de b et qu'il n'y a pas d'autre plus petit multiple non nuls de ces deux nombres. On note : $m = PPCM(a, b) = a \lor b$

Exemple : $-48 \land 36 = 144$

Propriétés :

1)
$$a \lor a = |a|$$
 2) $a \lor b = b \lor a$

3)
$$a \vee 1 = |a|$$
 4) Si $b|a$ alors $a \vee b = |a|$

5)
$$a \lor (b \lor c) = (a \lor b) \lor c$$

6)
$$a|(a \lor b)$$
; $b|(a \lor b)$ et $(a \lor b)|ab$

Propriété : Considérons a et b deux entiers relatifs. Si $a \lor b = m$ et M un multiple commun de a et b alors m|M.

Indications pour preuve:

Poser M = qm + r on a : a|m, a|M conclure. De même pour b et si $r \neq 0$ aboutir à une contradiction.

IV) LA CONGRUENCE MODULO n 1) Définition et propriétés.

Activité : Quelle relation y a-t-il entre ces nombres -11, 15, 67, 28, 132 et 13.

Définition: Soient a et b deux entiers relatifs; et n un entier naturel non nul. On dit que : a est congrue à b modulo n si n | (b - a).

On écrit : $a \equiv b [n]$

Exemples :122 \equiv 27 [5] 34 \equiv 13 [7]

Propriété: Si $a \equiv b$ [n] alors a et b ont le même reste de la division euclidienne sur n

Propriété fondamentale :

- 1) $(\forall a \in \mathbb{Z})(a \equiv a \ [n])$ on dit que la relation de congruence est réflexive.
- 2) $(\forall (a, b) \in \mathbb{Z}^2)(a \equiv b [n] \Leftrightarrow b \equiv a [n])$: on dit que la relation de congruence est symétrique.
- 3) $(\forall (a, b, c) \in \mathbb{Z}^3)$
- $(a \equiv b \ [n] \text{ et } b \equiv c \ [n] \Rightarrow a \equiv c \ [n])$: on dit que la relation de congruence est transitive.

Définition : Puisque la relation est de congruence est réflexive, symétrique et transitive on dit que la relation de congruence est une **relation d'équivalence**

2) Compatibilité de la relation d'équivalence avec l'addition et la multiplication dans \mathbb{Z} .

Propriété et définition : Soit n un entier naturel non nul. Si $a \equiv b$ [n] et $c \equiv d$ [n] alors :

- 1) $a + c \equiv b + d [n]$; On dit que la relation de congruence est compatible avec l'addition dans \mathbb{Z}
- 2) $ac \equiv bd \ [n]$; On dit que la relation de congruence est compatible avec la multiplication dans \mathbb{Z}

Corolaire :Si $a \equiv b \ [n]$ alors pour tout k dans \mathbb{N} on a : $a^k \equiv b^k \ [n]$

Remarque: La réciproque du corolaire n'est pas vraie : $2^4 \equiv 3^4 [5]$ mais $2 \not\equiv 3 [5]$

Exercice15: $a \in \mathbb{N}$ et $b \in \mathbb{N}$ Si 17 est le reste de la division euclidienne de a par 19 Et Si 15 est le reste de la division euclidienne de b par 19 Déterminer le reste de la division euclidienne des nombres suivants par 19 :

1)
$$a+b$$
 2) a^2+b^2 3) $2a-5b$

Solution15: 1)On a :
$$a = 17[19]$$
 et $b = 15[19]$

donc:
$$a + b = 17 + 15[19] \Leftrightarrow a + b = 13[19]$$

Par suite : le reste dans la division du nombre a+b Par 19 est : 13

2)
$$a = 17[19] \Rightarrow a^2 = 17^2[19] \Rightarrow a^2 = 4[19]$$

 $b = 15[19] \Rightarrow b^2 = 15^2[19] \Rightarrow b^2 = 16[19]$

Donc:
$$a^2 + b^2 \equiv 4 + 16[19] \Leftrightarrow a^2 + b^2 \equiv 1[19]$$

Par suite : le reste dans la division du nombre $a^2 + b^2$ Par 19 est : 1

3)
$$a = 17[19] \Rightarrow 2a = 2 \times 17[19] \Rightarrow 2a = 15[19]$$
 (1) $b = 15[19] \Rightarrow 5b = 5 \times 15[19] \Rightarrow 5b = 18[19]$

Donc:
$$5b = -1[19] \Rightarrow -5b = 1[19]$$
(2)

De (1) et (2) on déduit que :

$$2a-5b \equiv 15+1[19] \Rightarrow 2a-5b \equiv 16[19]$$

Par suite : le reste dans la division du nombre 2a-5b Par 19 est : 16

Exercice16 : 1) Déterminer et discuter suivants les valeurs de l'entier naturel n le reste de la division par 10 du nombres 3^n

2)en déduire le chiffre des unités du nombres 2019^{2020}

3)Déterminer les valeurs de l'entier naturel n tél que : $3^n + 5n + 2 \equiv 0 \lceil 10 \rceil$

Solution16:1) $3^n \equiv r[10]$ et $r \in \{0,1,2,3,4,5,6,7,8,9\}$

On a:
$$3^0 = 1[10]$$
 et $3^1 = 3[10]$ et $3^2 = 9[10]$

et
$$3^3 \equiv 7[10]$$
 et $3^4 \equiv 1[10]$

Si $n \in \mathbb{N}$ alors: n = 4k + r avec $r \in \{0;1;2;3\}$

On a:
$$3^4 \equiv 1[10]$$
 donc: $(3^4)^k \equiv 1^k[10]$

donc:
$$3^{4k} \equiv 1[10]$$
 et $3^{4k+1} \equiv 3[10]$ et $3^{4k+2} \equiv 9[7]$

et
$$3^{4k+3} \equiv 7[10]$$

2) le chiffre des unités du nombres 2019^{2020} est le reste dans la division du nombre 2019^{2020} Par 10 cad : on cherche r tel que : $2019^{2020} \equiv r \lceil 10 \rceil$??

On a:
$$2019 = 2010 + 9$$
 donc: $2019 = 9[10]$

donc:
$$2019^{2020} \equiv 9^{2020} [10]$$
 donc: $2019^{2020} \equiv 3^{4040} [10]$

or:
$$4040 = 4 \times 1010 = 4 \times k$$

donc:
$$2019^{2020} \equiv 3^{4k} [10]$$
 donc: $2019^{2020} \equiv 1[10]$

le chiffre des unités du nombres 2019^{2020} est 1

Autre méthode : 2019 = 9[10]

donc: $2019 \equiv -1[10]$ donc: $2019^{2020} \equiv 1[10]$

3)On Dresse une table comme suite:

n	4 <i>k</i>	4k+1	4k + 2	4k + 3
3 ⁿ	$\equiv 1[10]$	$\equiv 3[10]$	≡ 9[10]	$\equiv 7[10]$
5n	$\equiv 0[10]$	≡ 5[10]	$\equiv 0[10]$	$\equiv 5[10]$
$3^n + 5n + 2$	$\equiv 3[10]$	$\equiv 0[10]$	≡ 1[10]	= 4[10]

donc: $3^n + 5n + 2 \equiv 0[10] \Leftrightarrow n = 3k + 1 \text{ avec } k \in \mathbb{N}$

Exercice17: 1)montrer que $\forall n \in \mathbb{N}^*$

$$(n+2)^{n+2}-2^{n+2}(n+1)\equiv 0[n^2]$$

2) montrer que: $7^{7^{7^{7^{-1}}}} \equiv 3[10]$

Solution17:1)on a: $(n+2)^{n+2} = \sum_{k=0}^{n+2} C_{n+2}^k n^k 2^{n+2-k}$ Donc:

$$(n+2)^{n+2} = C_{n+2}^{0} n^{0} 2^{n+2} + C_{n+2}^{1} n 2^{n+1} + \sum_{k=2}^{n+2} C_{n+2}^{k} n^{k} 2^{n+2-k}$$

$$(n+2)^{n+2} = 2^{n+2} + (n+2)n2^{n+1} + \sum_{k=0}^{n+2} C_{n+2}^k n^k 2^{n+2-k}$$

Donc:
$$(n+2)^{n+2} = 2^{n+1}(2+n^2+2n) + n^2 \sum_{k=2}^{n+2} C_{n+2}^k n^k 2^{n-k}$$

$$(n+2)^{n+2} = 2^{n+1}(2+2n) + 2^{n+1}n^2 + n^2 \sum_{k=2}^{n+2} C_{n+2}^k n^k 2^{n-k}$$

$$(n+2)^{n+2} - 2^{n+2}(1+n) = n^2 \left(2^{n+1} + \sum_{k=2}^{n+2} C_{n+2}^k n^k 2^{n-k}\right)$$

on a:
$$n^2 \left(2^{n+1} + \sum_{k=2}^{n+2} C_{n+2}^k n^k 2^{n-k} \right) \equiv 0 [n^2]$$

donc:
$$(n+2)^{n+2} - 2^{n+2}(n+1) \equiv 0[n^2]$$

2) on a :
$$7 \equiv 7 \lceil 10 \rceil$$
 et $7^2 \equiv -1 \lceil 10 \rceil$ donc $7^4 \equiv 1 \lceil 10 \rceil$

Donc:
$$7^{4k} \equiv 1[10]$$
 et $7^{4k+1} \equiv 7[10]$ et $7^{4k+2} \equiv 9[10]$

$$7^{4k+3} \equiv 3\lceil 10 \rceil$$

On aussi:
$$7 = 3[4]$$
 et $7^2 = 1[4]$

Donc
$$7^{2k} \equiv 1[4]$$
 et $7^{2k+1} \equiv 3[4]$

Or:
$$7^{7^{7^{7^{7}}}} \equiv 1[2]$$
 (car impair)

Exercice 18 : 1) Déterminer le reste de la division euclidienne de 45872^{2018} par 9

- 2) Déterminer le reste de la division euclidienne de 25614^{6512} par 13
- 3) Montrer que pour tout n entier naturel : $3^{2n+1} + 2^{n+2}$ est divisible par 7
- 4) Montrer que pour tout n entier naturel,
- $5n^3 + n$ est divisible par 6
- 5) Montrer que si n n'est pas un multiple de 7, alors : $n^6 1$ est un multiple de 7
- 6 Montrer que pour tout entier naturel, le nombre $n(n^2+5)$ est divisible par 6

Exercice19: $x \in \mathbb{N}^*$ et $y \in \mathbb{N}^*$ On considère les deux nombres : a = 9x + 4y et b = 2x + y

- 1)montrer que $x \wedge y = a \wedge b$
- 2) $n \in \mathbb{N}$ on pose: $a = n^2 + 5n + 13$ et b = n + 3

a)montrer que $a \wedge b = b \wedge 7$

b)en déduire les valeurs possibles $a \wedge b = d$

c)montrer que : $n = 4[7] \Leftrightarrow a \land b = 7$

d)en déduire les valeurs de $n \in \mathbb{N}$ tel que : $a \wedge b = 1$

Solution19:1)on pose $d = x \wedge y$ et $d' = a \wedge b$

montrons que : d = d'

$$d = x \wedge y \text{ donc} : \Rightarrow \frac{d}{x} \text{ et } \frac{d}{y} \Rightarrow \frac{d}{a} \text{ et } \frac{d}{b}$$

Car il divise toute combinaison de x et y

$$\Rightarrow \frac{d}{a \wedge b} \Rightarrow \frac{d}{d'}$$

Inversement:

$$d' = a \wedge b \Rightarrow d'/a \text{ et } d'/b \Rightarrow d'/9x + 4y \text{ et } d'/2x + y$$

$$\Rightarrow d'/9x + 4y - 4(2x + y) \text{ et } d'/9(2x + y) - 2(9x + 4y)$$

$$\Rightarrow d'/x \text{ et } d'/y \Rightarrow d'/x \wedge y \Rightarrow d'/d$$

ce qui entraine: d = d'

2) $n \in \mathbb{N}$ on pose : $a = n^2 + 5n + 13$ et b = n + 3

a) montrons que $a \wedge b = b \wedge 7$?

la division euclidienne de $n^2+5n+13$ par n+3

donne:
$$n^2 + 5n + 13 = (n+3)(n+2) + 7$$

Donc:
$$a = b(n+2)+7 \Leftrightarrow a-b(n+2)=7$$

on pose $d' = b \wedge 7$ et $d = a \wedge b$

montrons que : d = d'

$$d = a \wedge b \Rightarrow \frac{d}{a} \operatorname{et} \frac{d}{b} \Rightarrow \frac{d}{a - b(n+2)} \operatorname{et} \frac{d}{b}$$

$$\Rightarrow \frac{d}{2}$$
 et $\frac{d}{b} \Rightarrow \frac{d}{b \wedge 7} \Rightarrow \frac{d}{d}$

$$d' = b \wedge 7 \Rightarrow \frac{d'}{7} \text{ et } \frac{d'}{b} \Rightarrow \frac{d'}{b(n+2)+7} \text{ et } \frac{d'}{b}$$

$$\Rightarrow d'/a \text{ et } d'/b \Rightarrow d'/a \land b \Rightarrow d'/a$$

ce qui entraine: d = d'

b) les valeurs possibles $a \wedge b = d$??

on a: $a \wedge b = b \wedge 7 = d$

donc: $d/\sqrt{1}$ donc: d=1 ou d=7

c)montrons que : $n = 4[7] \Leftrightarrow a \land b = 7$

$$n \equiv 4[7] \Leftrightarrow n+3 \equiv 0[7] \Leftrightarrow \frac{7}{n+3} \Leftrightarrow \frac{7}{b} \Leftrightarrow b \wedge 7 = 7 \Leftrightarrow b \wedge a = 7$$

d) les valeurs de $n \in \mathbb{N}$ tel que : $a \land b = 1$?? $a \wedge b = 1 \Leftrightarrow n$ n'est pas congrue a 0 modulo 4 n = 0[7] ou n = 1[7] ou n = 2[7] ou n = 3[7] ou n = 5[7]

ou n = 6[7]

3) Les classes d'équivalences.

3.1 Définition et propriété :

Activité : Déterminer l'ensemble des entiers relatifs qui admettent 2 pour reste de la division par 7.

Définition : Soit *n* un entier naturel non nul. L'ensemble des entiers relatifs qui ont le même reste r de la division euclidienne par n s'appelle

la classe d'équivalence de r et se note : r = $\{m \in \mathbb{Z} \mid m \equiv r [n]\} = \{nk + r \text{ où } k \in \mathbb{Z}\}$

Exemple : Pour n = 7 les restes possibles sont les éléments de l'ensemble :{0,1,2,3,4,5,6} Donc on peut définir les classes d'équivalences suivantes:

$$0 = \{ m \in \mathbb{Z} \mid m \equiv 0 \ [7] \}$$

$$\bar{1} = \{ m \in \mathbb{Z} \mid m \equiv 1 \ [7] \} \text{ et } \dots$$

$$\overline{6} = \{ m \in \mathbb{Z} \mid m \equiv 6 \ [7] \}$$

on remarquer que 0 = 7

Les classes d'équivalences modulo 7 constituent :un ensemble noté :

$$\mathbb{Z}/7\mathbb{Z} = \left\{\overline{0}; \overline{1}; \overline{2}; \overline{3}; \overline{4}; \overline{5}; \overline{6}\right\}$$

Généralisation : $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}; \overline{1}; \overline{2}; \overline{3}; ...; \overline{n-1}\}$

3.2 Les opérations sur $\mathbb{Z}/n\mathbb{Z}$

Définition: Soit *n* un entier naturel non nul.

On définit dans $\mathbb{Z}/n\mathbb{Z}$ les deux lois :

1) L'addition : On pose $\overline{a+b} = \overline{a+b}$

2) La multiplication : On pose : $\overline{a} \times \overline{b} = \overline{a \times b}$

Exemple: Dans $\mathbb{Z}/6\mathbb{Z}$: $3\times 4=0$ et 5+4=3

Exercice20: Résoudre les équations

suivantes dans $\mathbb{Z}_{4\mathbb{Z}}$: 1) $\overline{2}x = \overline{3}$ 2) $x^2 + \overline{3}x = \overline{0}$

3)
$$\overline{2013}x^3 + \overline{2}x = \overline{k}$$

Solution20: On a : $\mathbb{Z}/_{4\mathbb{Z}} = \{\bar{0}; \bar{1}; \bar{2}; \bar{3}\}$

1)On Dresse une table comme suite :

	х	$\bar{0}$	ī	$\bar{2}$	3
١	$\bar{2}x$	$\bar{0}$	$\overline{2}$	$\bar{0}$	$\bar{2}$

Et en utilisant cette une table on déduit que Cette équation n'admet pas de solutions Donc: $S = \emptyset$

1)On Dresse une table comme suite :

X	$\bar{0}$	<u>1</u>	$\bar{2}$	3
x^2	$\bar{0}$	ī	$\bar{0}$	ī
$\bar{3}x$	$\bar{0}$	3	$\bar{2}$	ī
$x^2 + \overline{3}x$	$\bar{0}$	$\bar{0}$	$\bar{2}$	$\overline{2}$

Et en utilisant cette une table on déduit que :

0 et 1 sont solutions de l'équation

Donc : $S = \{\bar{0}; \bar{1}\}$

2)	$\overline{2013}x^{3}$	$+\bar{2}x =$	$\bar{k} \Leftrightarrow$	$\bar{1}x^3 +$	$\overline{2}x =$	$\bar{k} \Leftrightarrow$	$x^{3} +$	$\overline{2}x =$	\bar{k}
_,			,			,			••

 $Car: 2013 = 503 \times 4 + 1$

On Dresse une table comme suite :

х	$\bar{0}$	ī	$\bar{2}$	3
x^3	$\bar{0}$	1	$\bar{0}$	3
$\overline{2}x$	$\bar{0}$	$\bar{2}$	$\bar{0}$	$\bar{2}$
$x^3 + \overline{2}x$	$\bar{0}$	3	$\bar{0}$	1

Si
$$\overline{k} = \overline{0}$$
: $S = \{\overline{0}, \overline{2}\}$ Si $\overline{k} = \overline{1}$: $S = \{\overline{3}\}$

Si
$$\bar{k} = \bar{1} : S = \{\bar{3}\}$$

Si
$$\bar{k} = \bar{2}$$
: $S = \emptyset$

Si
$$\overline{k} = \overline{2}$$
 : $S = \emptyset$ Si $\overline{k} = \overline{3}$: $S = \{\overline{1}\}$

Exercice21 : Résoudre dans $\left(\mathbb{Z}/_{5\mathbb{Z}}\right)^2$ l'équations

suivants: x + 3y = 1

Solution21 :on Dresse une table des opérations

de $\mathbb{Z}/5\mathbb{Z} = \{\overline{0}; \overline{1}; \overline{2}; \overline{3}; \overline{4}\}$ Comme suite

	$\bar{0}$	ī	$\bar{2}$	3	$\frac{1}{4}$
$\bar{0}$	$\frac{0}{0}$	$\frac{\overline{3}}{\overline{4}}$	ī	$\frac{\overline{3}}{\overline{4}}$	$\begin{array}{c} 4 \\ \overline{2} \\ \overline{3} \\ \overline{4} \\ \overline{0} \end{array}$
ī	ī	$\bar{4}$	$\bar{2}$	$\bar{0}$	3
$\frac{1}{2}$ $\frac{3}{4}$	$\frac{\overline{2}}{\overline{3}}$	$\bar{0}$	$\frac{\overline{2}}{\overline{2}}$ $\overline{4}$ $\overline{0}$	$\frac{\overline{1}}{\overline{2}}$	$\overline{4}$
3	3	ī	$\bar{4}$	$\bar{2}$	$\bar{0}$
$\overline{4}$	$\bar{4}$	$\bar{2}$	$\bar{0}$	ī	ī

$$S = \left\{ \left(\bar{0}; \bar{2} \right); \left(\bar{1}; \bar{0} \right); \left(\bar{2}; \bar{3} \right); \left(\bar{3}; \bar{1} \right); \left(\bar{4}; \bar{3} \right); \left(\bar{4}; \bar{4} \right) \right\}$$

Exercice22: Résoudre dans $\left(\mathbb{Z}/_{5\mathbb{Z}}\right)^2$ les

système suivants : $\begin{cases} 3x + 2y = 1 \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases}$

Solution22:

$$\begin{cases} \overline{3}x + \overline{2}y = \overline{1} \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases} \Leftrightarrow \begin{cases} (\overline{3} + \overline{2})x + (\overline{2} + \overline{4})y = \overline{3} + \overline{1} \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases}$$

$$\begin{cases} y = \overline{4} \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases} \Leftrightarrow \begin{cases} x = \overline{1} \\ y = \overline{4} \end{cases} \text{ donc } S = \left\{ \left(\overline{1}; \overline{4}\right) \right\}$$

Exercice: 1) Dresser les tables des opérations de $\mathbb{Z}/7\mathbb{Z}$

2) Résoudre dans $\mathbb{Z}/7\mathbb{Z}$ les équations :

a)
$$\bar{2}x - \bar{1} = \bar{0}$$

b)
$$\bar{4}x + \bar{1} = x + \bar{3}$$

c)
$$\bar{5}x^2 + \bar{3}x + \bar{1} = \bar{0}$$

Propriété : Si p est premier alors

dans $\mathbb{Z}/p\mathbb{Z}$ on a :

 $(\overline{a} \times \overline{b} = 0 \Leftrightarrow \overline{a} = 0 \text{ ou } \overline{b} = 0)$

Preuve: Après la décomposition.

IV) DECOMPOSITION D'UN ENTIER EN FACTEURS DES NOMBRES PREMIERS

1) Définition et propriétés

Activité : Décomposer en produit de facteurs premiers le nombre : 24816

Théorème:

a)Chaque entier **naturel** m non nul s'écrit d'une façon unique comme le produit des facteurs premiers comme suite:

$$m = p_1^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times ... \times p_n^{\alpha_n} = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$

b) Chaque entier relatif m non nul s'écrit d'une façon unique comme le produit des facteurs premiers

comme suite:

$$m = \varepsilon p_1^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times ... \times p_n^{\alpha_n} = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$

où ε ∈ {−1,1}

Propriété 1:Soit a un entier relatif dont la décomposition est de la forme :

$$a = \varepsilon p_1^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times \dots \times p_n^{\alpha_n} = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$

un entier d non nul divise l'entier a si et seulement si d à une décomposition de la forme

$$d = \varepsilon p_1^{\beta_1} \times p_2^{\beta_2} \times p_3^{\beta_3} \times ... \times p_n^{\beta_n} = \prod_{k=1}^{k=n} p_k^{\beta_k} \delta n \text{ où}$$

$$(\forall i \in [1, n])(0 \le \beta_i \le \alpha_i)$$

 δn un diviseur de a le nombre des valeurs possibles de δi est $\alpha i + 1$

On en déduit que :

Propriété 2:

$$a = \varepsilon p_1^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times ... \times p_n^{\alpha_n} = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$

est un entier, le nombre des diviseurs de a

est:
$$2(\alpha_1+1)(\alpha_2+1)...(\alpha_n+1)$$

Exercice:

- 1- Décomposer le nombre 2975 en facteurs des nombres premiers
- 2- Déterminer le nombre des diviseurs de 2975.
- 3- Déterminer tous les diviseurs positifs de 2975.

Propriété 3 : Soit a un entier relatif dont la décomposition est de la forme :

$$a = \varepsilon p_1^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times \dots \times p_n^{\alpha_n} = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$

un entier m est un multiple de a si et seulement

$$\text{si } m = \varepsilon \, p_1^{\beta_1} \times p_2^{\beta_2} \times p_3^{\beta_3} \times \dots \times p_n^{\beta_n} = \prod_{k=1}^{k=n} p_k^{\beta_k}$$

où $(\forall i \in [1, n]) (\alpha_i \leq \beta_i)$

2) Application de la décomposition.

Propriété: Soient a et b deux entiers naturels

1) Le plus grand entier n qui vérifie :

 $n \le a$ et $n \le b$ est inf (a, b)

2) Le plus petit entier n qui vérifie :

 $n \ge a$ et $n \ge b$ est sup (a, b)

Exemple : a = 7 et b = 10

Le plus grand des entiers n tel que :

 $n \le 7 \text{ et } n \le 10 \text{ est}$: $7 = \inf(10,7)$

Le plus petit des entiers n tel que : $n \ge 7$ et $n \ge 10$ est $10 = \sup (10,7)$

2.1 Le P.G.C.D de deux nombres.

Soient
$$a = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$
 =1 et $b = \prod_{k=1}^{k=n} p_k^{\beta_k}$ deux

entiers ;le P. G. D. C (a, b) est l'entier

$$a \wedge b = \prod_{k=1}^{k=n} p_k^{\inf(\alpha_k;\beta_k)}$$

Remarque : Soient a et b deux entiers relatifs

on a: $a \wedge b = |a| \wedge |b|$

Exemple: Déterminer: $(-5664) \land (-984)$ et

 $324 \wedge (-144)$

Exercice:

- 1- Décomposer les nombres 362154 et 82350 en produit des facteurs premiers
- 2- Déterminer le P.G.C.D de 362154 et 82350
- 3- Déterminer tous les diviseurs communs de 362154 et 82350

2.2 Le P.P.C.M de deux nombres.

Soient
$$a = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$
 =1 et $b = \prod_{k=1}^{k=n} p_k^{\beta_k}$ deux

entiers; le ppmc (a, b) est l'entier

$$a \vee b = \prod_{k=1}^{k=n} p_k^{\sup(\alpha_k; \beta_k)}$$

Exemple: déterminer: $d = (-8316) \land 1080$ et

 $m = 8316 \lor 1080$

<u>Solution</u>: la décomposition des nombres 8316 et 1080 en produit des facteurs premiers

Donnent: $8316 = 2^2 \times 3^3 \times 7 \times 11$ et

$$1080 = 2^3 \times 3^3 \times 5$$

$$d = 8316 \land 1080 = 2^2 \times 3^3 = 108$$
 et

$$m = 8316 \lor 1080 = 2^3 \times 3^3 \times 5 \times 7 \times 11 = 11880$$

2.3 Applications de la décomposition.

Propriété : Soient a et b deux entiers relatifs non nuls, on a les assertions suivantes :

- 1) $(a \wedge b) \times (a \vee b) = |ab|$
- 2) $ca \lor cb = c(a \lor b)$
- 3) $ca \wedge cb = c(a \wedge b)$

Exemple :si $2 = a \wedge b$ et $-12 = a \times b$

déterminer : $a \lor b$

Solution: on a $a \wedge b \times (a \vee b) = |ab|$

donc: $a \lor b = |a \times b|/a \land b = |-12|/2 = 6$

Exercice23: $a = (25^n - 1)(36^n - 1)$ et $b = (5^n - 1)(6^n - 1)$

Calculer les $a \lor b$ $(n \in \mathbb{N})$

Solution23:

$$a = ((5^n)^2 - 1)((6^n)^2 - 1) = (5^n - 1)(5^n + 1)(6^n - 1)(6^n + 1)$$

$$a = b(5^n + 1)(6^n + 1)$$
 donc: b/a donc: $a \lor b = a$

V) Exercices avec solutions

Exercice24: n et a et b des entiers naturels Démontrer que si q est le quotient de la division euclidienne de n par a et q' est le quotient de q par b Alors q' est aussi le quotient de n par ab

Solution : soit r le reste de la division euclidienne de n par a et r' le reste de la division euclidienne de q par b on a donc :

n = aq + r et $0 \le r \le a - 1$ et on a : q = bq' + r' et

 $0 \le r' \le b-1$ donc on déduit que :

$$n = a(bq' + r') + r = abq' + ar' + r$$

Et puisque : $0 \le r' \le b-1$ et $0 \le r \le a-1$ alors :

 $ar' + r \le ab - 1$ donc n = abq' + ar' + r

 $0 \le ar' + r \le b - 1$ conclusion : q' est aussi le

quotient de *n* par *ab*

Exercice25: Déterminer le reste de la division

euclidienne de $19^{52} \times 23^{41}$ par 7

Solution25: on a 19 = 5[7] donc $19^2 = 4[7]$

donc: $19^4 \equiv 2[7]$ donc $19^{52} \equiv 2^{13}[7]$

Et on a 23 = 2[7] donc $23^{41} = 2^{41}[7]$ donc

 $23^{41} \times 19^{52} \equiv 2^{13} \times 2^{41} [7]$

donc $23^{41} \times 19^{52} \equiv 2^{54} [7]$ donc

 $23^{41} \times 19^{52} \equiv (2^3)^{18} [7] \text{ donc } 23^{41} \times 19^{52} \equiv 8^{18} [7]$

et puisque : $8 \equiv 1[7]$ donc $23^{41} \times 19^{52} \equiv 1[7]$

conclusion :1est le reste de la division

euclidienne de $19^{52} \times 23^{41}\,$ par 7

Exercice26: $n \in \mathbb{N}$ on pose $U_n = 4^n - 3n - 1$

1)montrer que $\forall n \in \mathbb{N}$ $U_{n+1} = 4U_n + 9n$

2) En déduire que $\forall n \in \mathbb{N}$ 9 divise $4^n - 3n - 1$

Solution26:1)on a $U_{n+1} = 4^{n+1} - 3(n+1) - 1$

donc $U_{n+1} = 4 \times 4^n - 3n - 3 - 1$

et puisque : $U_n = 4^n - 3n - 1$ donc :

 $4^n = U_n + 3n + 1$ donc: $U_{n+1} = 4U_n + 9n$

2) notons P(n) La proposition suivante : « 9 divise U_n » . Nous allons démontrer par

récurrence que P(n) est vraie pour tout $n \in \mathbb{N}$.

1étapes : l'initialisation :Pour n=0 nous avons

 $U_0 = 4^0 - 3 \times 0 - 1 = 0$ donc 9 divise 0.

Donc P (0) est vraie.

2étapes : d'hérédité ou Hypothèse de récurrence : Supposons que P(n) soit vraie c'est-à-dire : « 9 divise U_n »

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que : « 9 divise U_{n+1} » ??

c'est-à-dire Montrons que $U_{n+1} \equiv 0[9]$??

On a d'après l'hypothèse de récurrence: « 9 divise U_n » donc $U_n \equiv 0[9]$ donc $4U_n \equiv 0[9]$

Et on a : $9n_n \equiv 0[9]$ donc $U_n + 9n_n \equiv 0[9]$ donc

 $U_{n+1} \equiv 0[9]$

Conclusion: $\forall n \in \mathbb{N}$ 9 divise $4^n - 3n - 1$

Exercice27: 1)Résoudre dans $\mathbb{Z}/_{5\mathbb{Z}}$ l'équation:

$$\bar{4}x - \bar{3} = \bar{0}$$

2) Résoudre dans $\left(\mathbb{Z}/_{5\mathbb{Z}}\right)^2$ le système suivant :

$$\begin{cases} \overline{3}x + \overline{2}y = \overline{1} \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases}$$

3) Résoudre dans $\mathbb{Z}/_{5\mathbb{Z}}$ l'équation: $x^2 - x - \overline{2} = \overline{0}$

Solution27:1)on Dresse une table des opérations de $\mathbb{Z}/5\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

Comme suite :

Comme suite.							
X	$\bar{0}$	ī	$\overline{2}$	3	$\overline{4}$		
$\overline{4}x$	$\bar{0}$	$\bar{4}$	3	$\bar{2}$	ī		
$\overline{4}x-\overline{3}$	$\bar{2}$	ī	$\bar{0}$	$\bar{4}$	3		

Et on utilisons cette une table on déduit que $\frac{1}{2}$ est la seul solution de l'équation

Donc : $S = \{\overline{2}\}$

2):
$$\begin{cases} \overline{3}x + \overline{2}y = \overline{1} \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases} \Leftrightarrow \begin{cases} (\overline{3} + \overline{2})x + (\overline{2} + \overline{4})y = \overline{3} + \overline{1} \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases}$$

$$\begin{cases} y = \overline{4} \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases} \Leftrightarrow \begin{cases} x = \overline{1} \\ y = \overline{4} \end{cases} \text{ donc } S = \left\{ \left(\overline{1}; \overline{4}\right) \right\}$$

3)on Dresse une table des opérations de $\mathbb{Z}/5\mathbb{Z}=\left\{\bar{0};\bar{1};\bar{2};\bar{3};\bar{4}\right\}$

Comme suite:

X	$\bar{0}$	1	$\bar{2}$	3	$\overline{4}$
x^2	$\bar{0}$	ī	$\bar{4}$	$\bar{4}$	ī
$x^{2}-x-\bar{2}$	3	3	$\bar{0}$	$\bar{4}$	$\bar{0}$

Et on utilisons cette une table on déduit que $\frac{1}{2}$ et $\frac{1}{4}$ sont les solutions de l'équation

Donc : $S = \{\overline{2}; \overline{4}\}$

Exercice28: $n \in \mathbb{Z}$ on pose $\alpha_n = n^4 - n^2 + 16$

- 1)montrer que $n^2 3n + 4$ et $n^2 + 3n + 4$ sont des nombres paires
- 2) En déduire que $\alpha_{\scriptscriptstyle n}$ n'est pas un nombre premier

Solution28:1)soit $n \in \mathbb{Z}$

$$n^2 - 3n + 4 \equiv n^2 - n[2]$$
 donc

$$n^2 - 3n + 4 \equiv n(n-1)[2]$$

Or n(n-1) est le produit de deux nombres consécutifs donc paire

donc
$$n(n-1) \equiv 0[2]$$
 donc $n^2 - 3n + 4 \equiv 0[2]$

donc $n^2 - 3n + 4$ est un nombre paire

et on a :
$$n^2 + 3n + 4 \equiv n^2 + n[2]$$
 donc

$$n^2 + 3n + 4 \equiv n(n+1)[2]$$

Or n(n+1) est le produit de deux nombres consécutifs donc paire

donc
$$n(n+1) \equiv 0[2]$$
 donc $n^2 + 3n + 4 \equiv 0[2]$

donc $n^2 + 3n + 4$ est un nombre paire

$$\alpha_n = n^4 - n^2 + 16 = (n^2 + 4)^2 - 9n^2 = (n^2 - 3n + 4)(n^2 + 3n + 4)$$

Et puisque $n^2 - 3n + 4$ et $n^2 + 3n + 4$ sont des nombres paire

alors: $n^2 - 3n + 4 \neq 1$ et $n^2 + 3n + 4 \neq 1$

donc α_n n'est pas un nombre premier

Exercice29: $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$ et $c \in \mathbb{Z}$ et $d \in \mathbb{Z}$ tels

que: a = bc + d

1) montrer que $a \wedge b = b \wedge d$

2) En déduire que : $a \wedge b = b \wedge (a - bc)$

Solution29:1)on pose $\Delta_1 = a \wedge b$ et $\Delta_2 = b \wedge d$

On a : $\frac{\Delta_{\text{l}}}{a}$ et $\frac{\Delta_{\text{l}}}{b}$ donc $\frac{\Delta_{\text{l}}}{a}$ et $\frac{\Delta_{\text{l}}}{bc}$ donc

$$\frac{\Delta_{l}}{a-bc}$$
 donc $\frac{\Delta_{l}}{d}$

inversement On a : $^{\Delta_2}\!\!/_{\!\!b}$ et $^{\Delta_2}\!\!/_{\!\!d}$ donc $^{\Delta_2}\!\!/_{\!\!d}$ et

$$\frac{\Delta_2}{bc}$$
 donc $\frac{\Delta_2}{bc+d}$ donc $\frac{\Delta_2}{a}$

donc
$$^{\Delta_2}\!\!/_a$$
 et $^{\Delta_2}\!\!/_b$ donc $^{\Delta_2}\!\!/_{a\wedge b}$ donc $^{\Delta_2}\!\!/_{\Delta_1}$

On a donc : Δ_1 / Δ_2 et Δ_2 / Δ_1 et $\Delta_1 \in \mathbb{N}$ et $\Delta_2 \in \mathbb{N}$

donc $\Delta_1 = \Delta_2$

donc: $a \wedge b = b \wedge d$

2)on a: a = bc + (a-bc) si on prend: d = a-bc et

d'après 1) on aura : $a \wedge b = b \wedge d = b \wedge (a - bc)$

Exercice30: $a \in \mathbb{N}^*$ et $b \in \mathbb{N}^*$ et $a \ge 3$ et a est

impair On pose : $d = (2^a - 1) \land (2^b + 1)$

1) a)montrer que $2^{ab} \equiv 1[d]$

b)montrer que $2^{ab} \equiv -1[d]$

2) En déduire que : $d \in \{1,2\}$

3)montrer que d=1

Solution31:1) a)montrons que $2^{ab} \equiv 1[d]$

On a: $d = (2^a - 1) \land (2^b + 1)$

Donc il existent : $\alpha \in \mathbb{N}^*$ et $\beta \in \mathbb{N}^*$ tels que :

 $2^a - 1 = d\alpha$ et $2^b + 1 = d\beta$ donc:

$$2^{ab} = \left(2^a\right)^b = \left(d\alpha + 1\right)^b$$

Et on a : $d\alpha + 1 \equiv 1[d]$ Donc $(d\alpha + 1)^b \equiv 1[d]$

Par suite : $2^{ab} \equiv 1[d]$

1) a)montrons que $2^{ab} \equiv -1[d]$

On a: $2^{ab} = (2^b)^a = (d\beta - 1)^a$

Et on a : $d\beta - 11 \equiv -1[d]$ Donc $(d\beta - 1)^a \equiv (-1)^a[d]$

et puisque a est impair on a $(d\beta-1)^a \equiv -1[d]$

Par suite : $2^{ab} \equiv -1[d]$

2) $d \in \{1; 2\}$???

on a : $2^{ab} \equiv 1[d]$ et $2^{ab} \equiv -1[d]$ donc $0 \equiv 2[d]$

donc d/2 et on a $d \in \mathbb{N}^*$ donc $d \in \{1; 2\}$

3)montrons que d = 1

On a : $2^a - 1$ et $2^b - 1$ sont impairs donc d est impair Et puisque $d \in \{1; 2\}$ donc d = 1

Exercice32:

1)a) montrer que : $2^{4k+r} \equiv 2^r [5] \forall (k;r) \in \mathbb{N}^2$

b)Déterminer et discuter suivants les valeurs de l'entier naturel n le reste de la division par 5 du nombres 2^n

2)montrer que $5/17^{4p+2} + 32^{4p+3} + 3 \forall p \in \mathbb{N}^*$

3)montrer que $5/1^{2006} + 2^{2006} + 3^{2006} + 4^{2006}$

Solution33: 1) a)on a : $2^4 \equiv 1[5]$ donc

 $(2^4)^k \equiv 1^k [5] \operatorname{donc} 2^{4k} \equiv 1[5] \operatorname{donc} 2^{4k} \times 2^r \equiv 2^r [5]$

Donc $2^{4k+r} \equiv 2^r [5] \forall (k;r) \in \mathbb{N}^2$

b) $2^n \equiv r[5]$ et $r \in \{0;1;2;3;4\}$

Si $n \in \mathbb{N}$ alors: n = 4k + r avec $r \in \{0,1,2,3\}$

donc: $2^{4k} \equiv 1[5]$ et $2^{4k+1} \equiv 2[5]$ et $2^{4k+2} \equiv 4[5]$

et $2^{4k+3} \equiv 3[5]$

2)montrons que $\int_{17^{4p+2}+32^{4p+3}+3}^{5} \forall p \in \mathbb{N}^*$?

on a : $17 \equiv 2[5]$ donc : $17^{4p+2} \equiv 2^{4p+2}[5]$

 $32^{4p+3} \equiv -2^{4p+3} [5] \quad 17^{4p+2} \equiv 4[5]$

on a : $32 \equiv 2[5]$ donc : $32^{4p+3} \equiv 2^{4p+3}[5]$

donc: $32^{4p+3} \equiv 3[5]$ donc $32^{4p+3} \equiv 2[5]$

donc $17^{4p+2} + 32^{4p+3} + 3 \equiv 4 + 3 + 3[5]$

donc $17^{4p+2} + 32^{4p+3} + 3 \equiv 0[5]$

donc $5/17^{4p+2} + 32^{4p+3} + 3 \quad \forall p \in \mathbb{N}^*$

3

on a : 1 = 1[5] et 2 = 2[5] et 3 = -2[5] et 4 = -1[5]

donc: $1^{2006} \equiv 1^{2006} [5]$ et $2^{2006} \equiv 2^{2006} [5]$ et

 $3^{2006} \equiv (-2)^{2006} [5] \text{ et } 4^{2006} \equiv (-1)^{2006} [5]$

donc; $1^{2006} + 2^{2006} + 3^{2006} + 4^{2006} \equiv 2 + 2 \times 2^{2006} [5]$

 $1^{2006} + 2^{2006} + 3^{2006} + 4^{2006} \equiv 2 + 2^{2007} [5]$

Or: $2007 = 4 \times 501 + 3$ donc: $2^{2007} \equiv 3[5]$

Donc: $1^{2006} + 2^{2006} + 3^{2006} + 4^{2006} \equiv 2 + 3[5] \equiv 0[5]$

Exercice34 : déterminer le chiffre des unités

des nombres suivants : 1) $2019^{2020^{2021}}$ 2) $1987^{1991^{1983}}$

Solution34:1) on a : 2019 = -1[10] donc

 $2019^{2020^{2021}} \equiv (-1)^{2020^{2021}} [10]$ et puisque 2020^{2021}

Est paire donc : $2019^{2020^{2021}} \equiv 1[10]$

le chiffre des unités est 1

2) on a : $1987 \equiv 7[10]$ donc $1987^2 \equiv 9[10]$

Et $1987^3 \equiv 3[10]$ et $1987^4 \equiv 1[10]$

Donc: $1987^{4k} \equiv 1[10]$ et $1987^{4k+1} \equiv 7[10]$ et

 $1987^{4k+2} \equiv 9[10]$ et $1987^{4k+3} \equiv 3[10]$

 $1991^{1983} \equiv ?[4]$

 $1991 \equiv 3[4]$ et $1991^2 \equiv 1[4]$

on a : $1983 \equiv 1[2]$ donc : $1991^{1983} \equiv 3[4]$

donc: $1987^{1991^{1983}} \equiv 3[10]$

Le chiffre des unités est 3

Exercice35: soit $N = \overline{dcba}$ un entier naturel

montrer que : $N \equiv a - b + c - d[11]$

Solution35 :on a :

 $N = \overline{dcba} = a + b \times 10 + c \times 10^2 + d \times 10^3$

et on a : 10 = -1[11] et $10^2 = 1[11]$ et $10^3 = -1[11]$

Donc: N = a - b + c - d[11]

Exercice36:

1)En utilisant l'algorithme d'Euclide calculer : 67 ∧ 39

2) en déduire deux nombres relatifs u et v tel que : 39u + 67v = 1

Solution36:1)

(1) $67 = 1 \times 39 + 28$ **(2)** $39 = 1 \times 28 + 11$

(3) $28 = 2 \times 11 + 6$ (4) $11 = 1 \times 6 + 5$

(5) $6 = 1 \times 5 + 1$ **(6)** $5 = 1 \times 5 + 0$

Donc: $67 \land 39 = 1$ c'est le dernier reste non nul dans l'algorithme d'Euclide

2) **(5)** $6 = 1 \times 5 + 1$ \Rightarrow $6 - 1 \times 5 = 1$

 \Rightarrow 6-1×(11-1×6) = $\boxed{1}$ \Rightarrow 2×6-1×11 = $\boxed{1}$

 \Rightarrow 2×(28-2×11)-1×11= $\boxed{1}$ \Rightarrow 2×28-5×11= $\boxed{1}$

 $\Rightarrow 2 \times 28 - 5 \times (39 - 1 \times 28) = \boxed{1} \Rightarrow 7 \times 28 - 5 \times 39 = \boxed{1}$

 \Rightarrow 7×(67-1×39)-5×39 = $\boxed{1}$ \Rightarrow 7×67-12×39 = $\boxed{1}$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

