$$\underline{\underline{S}}' = A\underline{\underline{S}}A^T \qquad \qquad A = \begin{bmatrix} \underline{e}'_1 \cdot \underline{e}_1 & \underline{e}'_1 \cdot \underline{e}_2 & \underline{e}'_1 \cdot \underline{e}_3 \\ \underline{e}'_2 \cdot \underline{e}_1 & \underline{e}'_2 \cdot \underline{e}_2 & \underline{e}'_2 \cdot \underline{e}_3 \\ \underline{e}'_3 \cdot \underline{e}_1 & \underline{e}'_3 \cdot \underline{e}_2 & \underline{e}'_3 \cdot \underline{e}_3 \end{bmatrix}$$
 where $\underline{\underline{A}}$ is the transformation matrix from the old base \underline{e}_i to base \underline{e}'_i and the components are the projection of the elements of the new base on the old base.

- Old system: N-E-D (Right-handed) Geographical system
- New system: 1-2-3 (Right-handed) Principal stress system

cos
$$a\cos b$$
 sin $a\cos b$ - sin $b\cos a\sin b\sin g$ - sin $a\cos b$ sin $a\sin b\sin g$ + cos $a\cos g$ cos $a\sin b\cos g$ + sin $a\sin g$ sin $a\sin b\cos g$ - cos $a\sin g$ cos $a\sin b\cos g$ + sin $a\sin g$ sin $a\sin b\cos g$ - cos $a\sin g$ cos $a\sin b\cos g$