Project Report

Chiorean I. and Golovco S. Programming for bioinformatics

TEDAR validation project

The first step we had to make, was analyzing the given data from TEDAR algorithm and comparing them with the data of the other three static algorithms: *mensile, trimestrale, statico*. The datasets *notorietà 2018* and *notorietà 2019* were used for the validation of the algorithms. In order to deal with it, we merged the given datasets to obtain the unique values and then we produced the following data table.

	Notorietà 2018			
	Chi3	Chi5	CI3	CI5
Mensile #elementi prima	5456	3067	6064	3410
	11493	5890	12673	6532
Trimestrale #elementi prima	5136	3284	6115	3916
	11050	6572	12999	7784
Statico #elementi prima	3984	2963	5339	3996
	8776	6087	11485	8119
TEDAR #elementi prima	5362	3596	6429	4302
	11591	7308	13698	8723

#elementi notorietà 2018 = 26847

	Notorietà 2019			
	Chi3	Chi5	CI3	CI5
Mensile #elementi prima	5512	3094	6134	3442
	11493	5890	12673	6532
Trimestrale #elementi prima	5194	3315	6174	3942
	11050	6572	12999	7784
Statico #elementi prima	4042	3005	5400	4042
	8776	6087	11485	8119
TEDAR #elementi prima	5424	3633	6485	4338
	11591	7308	13698	8723

#elementi notorietà 2019 = 27926

Here CI means confidence interval and Chi refers to the Chi Square test. The corresponding numbers are the thresholds used for the tests. Each cell of the table contains the number of known signals of the algorithm identified by applying the threshold.

The second step was producing the related Venn diagrams and plots to better understand and visualize the results. (More detailed pictures can be found in the GitHub repository together with the scripts.)

First of all, precision and sensitivity had to be calculated before producing the diagrams. The two formulas are the following: sensitivity = tp/(tp+fn) and precision = tp/(tp+fp) where tp=true positives, fn=false negatives, fp=false positive.

The way we obtained true positives, false negatives and false positives is described in the given script.

Sensitivity and Precision for TEDAR

	Notorietà 2018			
	Chi3	Chi5	CI3	CI5
True positive	5362	3596	6429	4302
False negative	21485	23251	20418	22545
False positive	6229	3712	7269	4421
Sensitivity	0.1997244	0.1339442	0.2394681	0.1602414
Precision	0.4626003	0.4920635	0.4693386	0.493179

	Notorietà 2019			
	Chi3	Chi5	CI3	CI5
True positive	5424	3633	6485	4338
False negative	22502	24293	21441	23588
False positive	6167	3675	7213	4385
Sensitivity	0.1942276	0.1300938	0.2322209	0.1553391
Precision	0.4679493	0.4971264	0.4734268	0.497306

Here there is the example for TEDAR vs. annual PRR.

Density plots

Another task was producing the density plots for the drugs and for the couples drug-ADR given other input datasets: *drugfreq.csv* and *drugsCoupled.csv*. The latter was produced as well as the first one by keeping only the first two columns of the given csv file.

These are the obtained results:

Density per drug with the dashed line representing the mean

Sum.Col8. refers to the frequency of each drug. This holds for all the other following plots.

Density per drug with xlim and the dashed line representing the mean

Here x axis is limited between the range 0 and 5000.

Density per drug with ylim and the dashed line representing the mean

Here y axis is limited between the range 0.000 and 0.0005.

The same work was made also for the couple drug-ADR, as already said. So here there the results:

V3 refers to the frequency of each couple drug-ADR. This holds for all the other following plots.

Density per couple with the dashed line representing the mean.

Density per couple with xlim and the dashed line representing the mean

Here x axis is limited between the range 0 and 5000.

Density per drug with ylim and the dashed line representing the mean

Here y axis is limited between the range 0.000 and 0.0005.

All the scripts, images and plots are available together with the input data in a GitHub repository. Here there is the link: https://github.com/stelutik/project-bioinfo-lab