

**Direction Technique** 

# Sorties de télé-information client des appareils de comptage Linky utilisés en généralisation par ERDF

Identification: ERDF-NOI-CPT\_54E

Version: V1



| Version | Date d'application | Nature de la modification | Annule et remplace |
|---------|--------------------|---------------------------|--------------------|
| V1      | 15/10/2014         | Création                  |                    |
|         |                    |                           |                    |
|         |                    |                           |                    |
|         |                    |                           |                    |

• Document(s) associé(s) et annexe(s)

## Résumé / Avertissement

Ce document de spécification est nécessaire pour le développement des équipements reliés aux compteurs Linky, via la sortie de télé-information :

- il concerne les compteurs Linky destinés au déploiement sur l'ensemble du territoire : « Généralisation Linky »,
- il décrit les caractéristiques techniques et fonctionnelles des sorties de télé-information client de ces compteurs.
- il préconise, si nécessaire, les caractéristiques spécifiques à un appareil raccordé sur cette téléinformation (récepteur de télé-information),
- il ne couvre pas l'utilisation des informations recueillies sur le compteur par les récepteurs de téléinformation (information du client, pilotage de charges, enquêtes ... ».

# **SOMMAIRE**

| 1 Do                                                        | cuments de référence                                                               | 3             |
|-------------------------------------------------------------|------------------------------------------------------------------------------------|---------------|
| 2 Gé                                                        | néralités                                                                          | 4             |
| 2.1                                                         | Objet du document                                                                  |               |
| 2.2                                                         | Les compteurs concernés                                                            | 4             |
| 3 Des                                                       | scription générale de la télé-information client (TIC)                             | 5             |
| 3.1                                                         | Utilisation de la TIC                                                              |               |
| 3.2                                                         | Principales caractéristiques de la sortie TIC                                      |               |
| 3.3                                                         | Modes de fonctionnement de la TIC                                                  |               |
| 4 Cai                                                       | ractéristiques du circuit d'alimentation de la TIC                                 |               |
|                                                             | ractéristiques du circuit d'information                                            |               |
| 5.1                                                         | Fonctionnement en bus de télé-information                                          |               |
| 5.1.1<br>5.1.2<br>5.1.3                                     | Principe d'un bus de télé-information  Caractéristiques du bus de télé-information | 7<br>7        |
| 5.2                                                         | Caractéristiques des informations de la TIC en mode historique                     | 8             |
| 5.3                                                         | Caractéristiques des informations de TIC en mode standard                          | 8             |
| 5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br>5.3.5<br>5.3.6<br>5.3.7 | Prescriptions générales des signaux du circuit information                         | 9<br>10<br>11 |
| 6 Des                                                       | scription des trames de télé-information                                           | 14            |
| 6.1                                                         | Trames de télé-information du mode historique                                      |               |
| 6.1.1<br>6.1.2                                              | Compteurs monophasés (60 A et 90 A)                                                | 14            |
| 6.2                                                         | Trames de télé-information du mode standard                                        | 17            |
| 6.2.1<br>6.2.2<br>6.2.3                                     | Liste des données restituées                                                       | 18            |
| 7 Vol                                                       | ume du compteur disponible sous couvre-bornes client                               | 29            |
| 7.1                                                         | Principe de pose d'un équipement sous cache-bornes client                          | 29            |
| 7.2                                                         | Repérage des borniers d'un compteur                                                | 30            |
| 7.3                                                         | Vue en 3D de l'équipement client                                                   | 31            |
| 7.4                                                         | Côtes maximales pour un équipement client                                          | 32            |

## 1 Documents de référence

[1] Document intitulé « Sorties de télé-information client des appareils de comptage électroniques utilisés par ERDF » de référence « ERDF-NOI-CPT 02E » en version 4 du 01/07/2010 disponible sur le site ERDF

[2] NF EN 62056-3-1, Échange des données de comptage de l'électricité – La suite DLMS/COSEM – Partie 3-1: Utilisation des réseaux locaux sur paire torsadée avec signal de porteuse

- Cette norme est utilisée en référence pour les signaux de télé-information émis par le compteur dont les caractéristiques correspondent aux signaux des émetteurs de station secondaire.

  Toutefois, elle peut être complétée ou amendée par le présent document qui est prépondérant
- Cette norme ne décrit pas les récepteurs de télé-information

## 2 Généralités

## 2.1 Objet du document

Ce document est destiné aux fabricants de matériel électrique ou électronique connecté à la sortie de téléinformation des compteurs Linky de la généralisation.

Le document a pour but de donner toutes les informations nécessaires au développement de ces équipements pour assurer un bon fonctionnement du lien avec le compteur :

- il détaille les caractéristiques techniques et fonctionnelles des sorties de télé-information client des compteurs;
- il préconise, si nécessaire, les caractéristiques spécifiques à un appareil raccordé sur cette téléinformation (récepteur de télé-information).

Ces équipements peuvent avoir des destinations diverses et variées : information du client, pilotage de charges, enquêtes...

Le document ne traite pas du tout ces aspects relatifs au service offert par l'équipement.

Toutefois, pour faciliter les analyses d'éventuels dysfonctionnements, il est préconisé que l'équipement sépare clairement ses traitements en 2 parties :

- la réception et la compréhension des informations issues du compteur ;
- le service offert à partir des informations recueillies.

Dans la suite du document, pour bien affirmer son périmètre, réduit à la réception des signaux de télé-information, les équipements raccordés au compteur sont appelés « récepteurs de télé-information ».

## 2.2 Les compteurs concernés

Ce document traite uniquement des compteurs Linky répondant aux spécifications de la généralisation.

Les compteurs sont identifiables à partir de leur numéro de série dont la codification répond à la norme EURIDIS en tant qu'identifiant de station secondaire (ADS).

Le numéro de série des compteurs est codé sur 12 caractères numériques qui correspondent à la définition suivante :

code du constructeur 2 caractères
 millésime de l'année de construction 2 caractères
 type de l'appareil 2 caractères
 matricule de l'appareil 6 caractères

Les compteurs concernés par ce document sont identifiables à partir des 2 caractères représentant le type de l'appareil. Les valeurs couvertes sont :

| 61 : Compteur monophasé 60 A généralisation Linky G3 - arrivée puissance haute       |
|--------------------------------------------------------------------------------------|
| 62 : Compteur monophasé 90 A généralisation Linky G1 - arrivée puissance basse       |
| 63 : Compteur triphasé 60 A généralisation Linky G1 - arrivée puissance basse        |
| 64 : Compteur monophasé 60 A généralisation Linky G3 - arrivée puissance basse       |
| 70 : Compteur monophasé Linky 60 A mise au point G3                                  |
| 71 : Compteur triphasé Linky 60 A mise au point G3                                   |
| 75 : Compteur monophasé 90 A généralisation Linky G3 - arrivée puissance basse       |
| <b>76</b> : Compteur triphasé 60 A généralisation Linky G3 - arrivée puissance basse |

## 3 Description générale de la télé-information client (TIC)

## 3.1 Utilisation de la TIC

Les appareils de comptage électroniques (notamment le compteur Linky, objet de ce document) intègrent des options tarifaires et des traitements de plus en plus riches.

Pour que les utilisateurs du réseau puissent tirer les meilleurs bénéfices de ces traitements, le compteur offre des interfaces d'information performantes comme un affichage multi-écran, des contacts de sortie programmables et une sortie d'information numérique. Cette sortie d'information numérique est couramment appelée « sortie de télé-information client » ou, plus simplement, «télé-information» ou TIC.

La sortie de télé-information offre à l'utilisateur du réseau la possibilité d'être informé en temps réel de ses consommations de mesures des grandeurs électriques et du suivi du tarif. Elle diffuse en permanence les paramètres actualisés par le compteur.

La sortie est de type asynchrone classique et les informations sont transmises cycliquement en série sur la ligne. Chaque donnée transmise est précédée d'une étiquette permettant de l'identifier. L'ensemble des données transmises dépend de l'appareil de comptage et de sa programmation. Les groupes d'information inutiles au regard du mode de fonctionnement programmé ne sont pas émis.

## 3.2 Principales caractéristiques de la sortie TIC

La sortie de télé-information est de type filaire sous couvre-bornes client :

- elle est composée de 2 circuits, un circuit d'alimentation et un circuit de signaux,
- le circuit d'alimentation met une puissance (alimentation TIC) à disposition des récepteurs de téléinformation sur porteuse à 50 kHz,
- les signaux d'information sont de type « modulation d'amplitude » sur une porteuse à 50 kHz,
- le raccordement se fait par un bornier comprenant 3 bornes à effet ressort (permettant la connexion sans outil de broches rigides),
- l'alimentation est disponible dans les 2 modes de la TIC (TIC historique & TIC standard),
- en général, les caractéristiques des signaux et des équipements constitutifs des bus de téléinformation sont déduits de la norme Euridis (voir document [2]). Toutefois, des adaptations sont parfois nécessaires pour cette application particulière en télé-information.

Le présent document est donc prépondérant par rapport à la norme pour les paramètres dont les valeurs sont différentes de celles de la norme.

## 3.3 Modes de fonctionnement de la TIC

La télé-information client peut fonctionner selon 2 modes différents :

- **Historique** : dans ce mode, le compteur Linky permet de restituer des trames d'information équivalentes à celles des anciens compteurs électroniques résidentiels, (voir document [1]). Toutefois, pour obtenir les informations optimales dans ce mode d'information, la configuration tarifaire du compteur doit être réalisée dans la même logique des contrats historiques ;
- **Standard**: ce nouveau mode, est apparu avec les compteurs Linky. Il est plus rapide que le mode historique, et comporte des informations différentes, avec un formatage spécifique.

Les transitions entre les modes se font par ERDF qui doit réaliser une programmation du compteur. En sortie d'usine les compteurs Linky sont initialisés en mode historique.

Le mode de fonctionnement de la TIC peut être vérifié par deux autres interfaces :

- lecture par les interfaces de communication du distributeur (CPL ou Euridis),
- consultation de l'afficheur.
   Toutefois, cet affichage est arbitrable par une programmation du compteur (Euridis ou CPL).
   Les paramètres affichés par le compteur sont validés par des instances habilités et ne sont pas à l'initiative exclusive d'ERDF.

# 4 Caractéristiques du circuit d'alimentation de la TIC

L'accès au circuit d'alimentation de la TIC se fait via les bornes I1 et A.

Ce circuit est mis à disposition des clients pour alimenter un récepteur de télé-information rattaché au compteur (un module radio, par exemple).

Le circuit d'alimentation de la TIC respecte les caractéristiques suivantes :

- à vide : lorsque aucune charge n'est raccordée à la sortie de l'alimentation de la TIC, la tension aux bornes de l'alimentation vaut 13 Vrms max ;
- en charge : les caractéristiques de l'alimentation de la TIC sont définies dans le tableau ci-dessous :

Table 1 – caractéristiques du circuit d'alimentation de la TIC

|                   | Niveaux                                                                   |
|-------------------|---------------------------------------------------------------------------|
| Puissance fournie | 130 mW minimum                                                            |
| Tension           | 6 Vrms ± 10% à 50 kHz                                                     |
|                   | (12 V pic au maximum tenant compte d'éventuelles déformations du signal ) |
|                   | La sortie doit être protégée contre les court-circuits                    |
| Protection        | La tenue à la tension secteur (230 V 50 Hz) est exigée (en cas de         |
|                   | branchement intempestif de l'installation client)                         |

En complément de ces exigences, l'impédance de sortie du circuit d'alimentation de la TIC à 50 kHz est purement résistive.

## 5 Caractéristiques du circuit d'information

## 5.1 Fonctionnement en bus de télé-information

## 5.1.1 Principe d'un bus de télé-information

Ce chapitre reprend les caractéristiques électriques pour un bus de télé-information qui permettrait le fonctionnement en parallèle de plusieurs récepteurs de télé-information.

Les caractéristiques du bus de télé-information sont conformes aux caractéristiques des bus Euridis (voir document [2].

## 5.1.2 Caractéristiques du bus de télé-information

L'accès au circuit d'informations se fait via les bornes I1 et I2. Les signaux peuvent être transmis sur un bus filaire.

Les spécifications de ce paragraphe s'appliquent au bus d'informations et ne concernent pas le circuit d'alimentation de la TIC.

Pour assurer son bon fonctionnement et le respect des caractéristiques électriques, la longueur maximale du bus d'information ne doit pas dépasser les 500 m (topologie quelconque).

Les bornes de connexion du bus d'information consommateur font l'objet d'un isolement galvanique de l'électronique d'émission à l'intérieur des compteurs. L'électronique interne des appareils récepteurs fait l'objet d'un isolement galvanique du bus pour permettre le raccordement simultané de plusieurs récepteurs sur un même bus. L'objet de cette prescription est d'éviter les transits de courants de mode commun entre récepteurs.

Le câble de raccordement est un câble téléphonique intérieur de type :

- paire torsadée simple avec écran aluminium et conducteur de drain,
- conducteur monobrin en cuivre étamé de diamètre 0,5 mm,
- isolant PVC.

Ses caractéristiques électriques sont :

résistance de boucle en continu à 20° C : 176 à 192 Ω/km.

Ses caractéristiques à 50 kHz entre -15° C et +45° C sont :

- résistance de boucle : 154 à 220 Ω /km,
- inductance de boucle : 500 à 800 µH/km,
- capacité mutuelle : 80 à 130 nF/km,
- facteur de perte de la capacité : 5% maximum,
- capacité déséquilibrée, conducteur-écran : 5% maximum,
- impédance caractéristique : 74 à 115 Ω,
- déphasage linéaire à 50 kHz : 150 degrés/km maximum.

Les caractéristiques ci-dessus sont données pour une source symétrique isolée de l'écran du câble avec des impédances Z et Z' supérieures à 1 000  $\Omega$  à 50 kHz (voir Figure 1).



ERDF, Électricité Réseau Distribution France – www.erdf.fr – ERDF-NOI-CPT\_54E – V1 – 15/10/2014 Page 7/32

Figure 1 - Impédance du bus

#### 5.1.3 Raccordement du bus d'information

Le conducteur de drain doit être raccordé en un point à la terre, si elle existe, ou à une référence de potentiel équivalente. Aucune impédance (excepté le câble lui-même) de moins de 1000  $\Omega$  à 50 kHz, ne doit être connectée entre les câbles du bus et celui de l'écran ou de la terre.

Dans les cas d'utilisation de câbles légèrement en dehors des spécifications ci-dessus :

- dans le cas d'un câble ayant une capacité ou une résistance linéique plus importante, la longueur maximale du bus doit être réduite. La longueur maximale du bus évolue approximativement inversement proportionnellement à la valeur de la résistance ou de la capacité linéique;
- un câble ayant une capacité ou une résistance linéique plus faible peut conduire à des surtensions sur les entrées d'un récepteur placé sur un bus vide et très long. Ce problème peut être résolu en plaçant entre les conducteurs du bus, à proximité de l'extrémité opposée à l'émetteur, une résistance d'amortissement (330 Ω à 1000 Ω; 0,25 W) dont la valeur dépend du rapport de surtension. Une capacité de 47 nF et de tension de claquage adaptée doit être placée en série avec cette résistance de façon à supporter la connexion accidentelle au réseau électrique.

## 5.2 Caractéristiques des informations de la TIC en mode historique

Les caractéristiques des signaux dans ce mode, sont équivalentes à celles des anciens compteurs électroniques résidentiels. Elles sont entièrement décrites dans le document [1].

Toutefois, pour réaliser une interface physique commune aux TIC mode historique et TIC mode standard, les exigences relatives aux niveaux des signaux du mode standard peuvent être appliquées au mode historique. Les paramètres concernés par cet assouplissement sont identifiés dans les paragraphes suivants par une note explicite : « applicable aussi au mode historique ».

Pour assurer une parfaite interprétation des trames, le tableau suivant est ajouté. Il y figure le format d'un groupe d'informations du mode historique pour bien marquer les différences avec le mode standard, et notamment le calcul du CRC

Table 2 - Information mode historique

| Format d'un groupe d'information du mode historique |                                                         |    |  |  |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------------|----|--|--|--|--|--|--|
| <lf><br/>(0x0A)</lf>                                | Etiquette     SP   Donnée   SP   Checksum   CR   (0x0D) |    |  |  |  |  |  |  |
|                                                     | Zone contrôlée par                                      | um |  |  |  |  |  |  |

## 5.3 Caractéristiques des informations de TIC en mode standard

### 5.3.1 Caractéristiques des signaux

Le tableau ci-dessous présente les principales caractéristiques des signaux en mode standard :

Table 3 – Caractéristiques des signaux

|                       | 9 ***                                                                                                                                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Transmission          | Binaire avec une porteuse modulée à 50 kHz ± 3%                                                                                         |
| Transmission          | Unidirectionnelle                                                                                                                       |
| Temps bit             | Égal pour les bits « 0 » et « 1 »                                                                                                       |
| Logique de codage     | Négative : dans le cas où la porteuse est présente alors le bit vaut « 0 », et dans le cas où la porteuse est absente le bit vaut « 1 » |
| Débit de transmission | 9600 Bauds ± 1%                                                                                                                         |

## 5.3.2 Prescriptions générales des signaux du circuit information

Les signaux présents sur le circuit d'information sont représentés par la figure 2 et sont caractérisés par les paramètres suivants :

- a) Vevh1 est le niveau maximum de l'enveloppe pour la transmission d'un "1",
- b) VevI0 est le niveau minimum de l'enveloppe pour la transmission d'un "0",
- c) Vevh0 est le niveau maximum de l'enveloppe pour la transmission d'un "0"
- d) Tev1 est le temps minimum garanti pendant lequel l'enveloppe a un niveau inférieur à Vevh1.
- e) Tev0 est le temps minimum garanti pendant lequel l'enveloppe a un niveau compris entre Vevl0 et Vevh0.
- f) Vevl0 et Vevh0 ne sont pas les valeurs extrêmes de l'enveloppe, mais plutôt les limites "basse" et "haute" garantissant un fonctionnement correct,
- g) pendant la durée Tev0 le niveau de l'enveloppe ne doit pas varier de plus de 20 %,
- h) durant les intervalles de temps qui s'écoulent entre Tev0 et Tev1, l'évolution croissante ou décroissante de l'enveloppe est de type exponentiel, ou sinusoïde amortie avec addition de transitoires basses fréquences,
- i) le taux de distorsion harmonique, pendant une émission continue de la porteuse sur une résistance de  $100 \Omega$ , est inférieur à 15% (applicable aussi au mode historique),
- j) toutes les tensions sont spécifiées en valeurs crêtes.



Figure 2 - Caractéristiques de l'enveloppe de la porteuse

## 5.3.3 Prescriptions particulières à l'émetteur d'information (le compteur)

Les émetteurs TIC sont définis dans les spécifications particulières des appareils de comptage. Les caractéristiques physiques retenues pour la sortie TIC sont les mêmes que celles de la sortie Euridis (standard CEI 62056-31- voir document [2]) lorsqu'elles ne sont pas modifiées par le présent document :

- en conséquence, les prescriptions pour un émetteur TIC se déduisent des prescriptions des émetteurs de stations secondaires Euridis;
- toutefois certaines adaptations sont nécessaires pour faire fonctionner un circuit de téléinformation (par exemple, plus de couplage magnétique). Dans ce cas, les adaptations sont reportées dans le présent document et remplacent les caractéristiques correspondantes de la norme Euridis

Le signal émis sur le bus satisfait aux prescriptions générales des chapitres 5.3.1 et 5.3.2, dans tout le domaine de température, avec :

a) Tev1 = Tev0 =  $60 \mu s \ a \ 9600 \ bauds$ .

Dans le cas où les deux bornes de raccordement au bus d'information sont en circuit ouvert, la condition suivante doit être respectée :

b) Vevh0 = 25 V.

Les niveaux aux bornes de raccordement au bus, pour les conditions d'impédances spécifiées, doivent satisfaire les conditions ci-dessous :

Les deux bornes de raccordement au bus d'information étant connectées à une résistance comprise entre 100  $\Omega$  et 2 k $\Omega$  à la place du bus, les conditions suivantes doivent être respectées :

- c) VevI0 = 1.2 V,
- d) Vevh0 = 5 V, --> applicable aussi au mode historique,
- e) Vevh1 = 0.2 V.

Les deux bornes de raccordement au bus d'information étant connectées à une capacité de 31,8 nF placée à la place du bus et le signal étant mesuré aux bornes d'une résistance de 1  $\Omega$ , montée en série avec la capacité, et multiplié par 100 :

- f) VevI0 = 1.5 V,
- g) Vevh0 = 5 V, --> applicable aussi au mode historique,
- h) Vevh1 = 0.2 V.

Note : la mesure de ces tensions, à travers une capacité, peut faire apparaître une amplification anormale des transitoires basses fréquences.

De plus, les deux bornes de raccordement au bus étant connectées à une résistance de 100  $\Omega$  ou à une capacité de 31,8 nF :

- i) les signaux parasites dus à la commutation du mode transmission en mode bloqué et inversement, ne doivent en aucun cas dépasser 0,75 V crête,
- j) le niveau de bruit émis sur les sorties du bus, dans toutes les conditions, et, dans la bande de fréquence [1 kHz; 1 MHz], ne doit pas dépasser 50 mV après extinction des transitoires.

#### De plus:

- k) les circuits d'émission doivent supporter un court-circuit permanent et la connexion accidentelle à la tension nominale maximale présente sur le point de comptage,
- le courant de court-circuit ne doit pas être destructif pour les composants des circuits d'émission (pas d'exigence sur la valeur du courant de court-circuit). Il doit être cohérent avec les spécifications particulières de l'équipement, notamment les consommations spécifiques à la TIC (applicable aussi au mode historique),
- m) la capacité en mode commun entre les bornes du bus d'information consommateur et les autres bornes de l'appareil est inférieure à 15 pF.

#### 5.3.4 Prescriptions particulières à un récepteur d'information

Un appareil récepteur de signaux du bus d'information est réputé compatible avec les émetteurs TIC s'il sait interpréter les messages transmis dans les conditions décrites ci-dessus (chapitre 5.3.3).

Le passage de tests de conformité permet d'éviter les incompatibilités de matériels entre eux et facilite l'identification des responsabilités des différents matériels en cas de défaillance de la relation entre un compteur et un récepteur par la liaison TIC.

Il est aussi recommandé que ces récepteurs disposent d'un témoin lumineux indiquant spécifiquement la bonne réception de données.

Par ailleurs, l'intégration des contraintes topologiques des réseaux d'informations du consommateur permet de décrire les caractéristiques d'entrée et les niveaux de sensibilité que les récepteurs de gestionnaires doivent prendre en compte pour assurer cette compatibilité.

Ainsi, les prescriptions de ce chapitre autorisent la connexion (sans contrainte de position) de 1 à 5 gestionnaires sur un seul et même bus d'information du consommateur respectant les caractéristiques du chapitre 5.1.

Pour le respect de ce contexte, le récepteur de gestionnaire doit fonctionner correctement avec un signal d'entrée vérifiant les caractéristiques suivantes :

a) Tev1 = Tev0 =  $50 \mu s \ a \ 9600 \ bauds$ .

Les valeurs ci-dessous sont obtenues avec un générateur dont l'impédance interne est négligeable devant l'impédance d'entrée du récepteur.

- b) Vevh1 = 0.4 V.
- c) VevI0 = 0.8 V,
- d) Vevh0 = 5 V.

## Note

Dans les cas d'utilisation de la TIC en bus, une attention particulière doit être portée sur la conception du bus et des récepteurs. Les niveaux de signaux en entrée des récepteurs pourraient être supérieurs aux niveaux spécifiés en connexion directe (circuits L/C).

En outre, le récepteur doit être insensible à :

- e) un signal sinusoïdal permanent de fréquence comprise dans l'intervalle : [1 kHz ; 1 MHz] et de valeur crête égale à 0,1 V,
- f) une distorsion harmonique de 50 %,
- g) une impulsion de 20 V et de durée 5 µs.

L'impédance d'entrée à 50 kHz du récepteur de gestionnaire, comporte une composante résistive, en parallèle avec une composante réactive.

Pour des signaux allant jusqu'à 5 V crête, les valeurs suivantes sont à respecter que le gestionnaire soit, ou non, sous tension :

h) composante parallèle résistive : entre 500 et 2000  $\Omega$ ,

composante parallèle réactive :  $> 2000 \Omega$ , si elle est inductive,

> 10 k $\Omega$ , si elle est capacitive,

i) en cas de dysfonctionnement de l'électronique de réception, l'impédance d'entrée du gestionnaire doit rester supérieure à 200  $\Omega$ .

De plus, la réalisation physique du gestionnaire permet de vérifier le point suivant :

- j) la capacité en mode commun entre les bornes de raccordement au bus de télé-information consommateur et les autres bornes de l'appareil est inférieure à 15 pF,
- k) robustesse à une application permanente de 230 V, 50 Hz : Les circuits de la TIC sont proches du contact sec et partagent le même espace, ce qui amène un risque de connexion accidentelle du 230 V :
  - -> le compteur Linky est insensible à une connexion permanente du 230 V, 50 Hz sur ses circuits TIC.
  - -> le récepteur de télé-information ne doit pas provoquer de dommage sur les circuits du compteur (télé-information et alimentation) lorsqu'il lui est appliqué un signal permanent de 230 V, 50 Hz sur les entrées correspondantes.

Note:

Le test à l'impulsion de 20 V (voir alinéa g), ci-dessus) prend en compte les signaux parasites présents sur le bus et dus, aussi bien aux commutations sur le réseau (remontant à travers les capacités entre le réseau et le bus ou, à travers les appareils raccordés au bus) qu'aux commutations de l'émetteur TIC.

## 5.3.5 Couche physique

Type de transmission

La sortie information est de type asynchrone comme défini dans la norme IEC 62056-21 clause 5.1

Vitesse de transmission

baud rate: 9600 +/- 1%

Format des caractères

Chaque caractère est émis dans un ensemble cohérent de 10 bits dont la constitution est la suivante :

- un bit de start correspondant à un "0" logique,
- 7 bits pour représenter le caractère en ASCII,
- 1 bit de parité, parité paire,
- un bit de stop correspondant à un "1" logique.

Lors d'une émission les bits sont transmis, le Least Significant Bit (L.S.B.) en premier, le Most Significant Bit (M.S.B.) en dernier.

Table 2 - Format d'un caractère

| Start bit Bit 0 Bit 1 Bit | Bit 3 Bit 4 Bit 5 | Bit 6 Bit parité Stop bit |
|---------------------------|-------------------|---------------------------|
|---------------------------|-------------------|---------------------------|

Lors d'une émission d'un groupe d'information, les caractères sont émis dans le sens de la lecture (gauche vers la droite).

#### 5.3.6 Couche liaison

Principes des trames

Le compteur émet des trames, composées de plusieurs groupes d'information.

Les trames sont émises les unes après les autres en continu :

- entre la fin d'une trame et le début de la suivante, un délai sans l'émission est ménagé. Sa durée est comprise entre 16,7 et 33,4 ms,
- de même le délai entre 2 groupes d'information successifs d'une même trame ne doit pas être supérieur à 33,4 ms.

#### Format des trames

Une trame est constituée de trois parties :

- le caractère "Start TeXt" STX (0x02) indique le début de la trame,
- le corps de la trame est composé de plusieurs groupes d'informations,
- le caractère "End TeXt" ETX (0x03) indique la fin de la trame.

#### Table 5 - Format de la trame

| STX Data set Data set Data set E |
|----------------------------------|
|----------------------------------|

Les trames ont une longueur qui dépend du type de contrat choisi et contiennent toutes les informations présentes dans les mémoires du compteur et pouvant aider à la gestion d'énergie.

Les informations transmises sont décrites dans le chapitre 6.

## Format des groupes d'information

Un groupe d'information est composé de 7 parties ou 9 parties (cas avec horodate) décrites cidessous :

- un caractère "Line Feed" LF (0x0A) indiquant le début du groupe,
- le champ étiquette dont la longueur est inférieure ou égale à huit caractères,
- un caractère "Horizontal Tab" HT (0x09), séparateur du champ "étiquette" et du champ "donnée".
- le champ donnée dont la longueur est variable,
- un caractère "Horizontal Tab" HT (0x09), séparateur du champ "donnée" et du champ "checksum",
- le champ "checksum" dont le calcul est donné ci-dessous,
- un caractère "Carriage Return" CR (0x0D) indiquant la fin du groupe d'information.
- le groupe d'information peut porter une horodate. Elle s'intercale alors entre le champ étiquette et le champ donnée avec un séparateur complémentaire "Horizontal Tab" HT (0x09).

#### Note:

Le caractère séparateur des champs "Horizontal Tab" HT (0x09), en mode standard est different du caractère séparateur "Space" SP (0x20) en mode historique. Cette disposition permet d'utiliser le caractère "Space" pour les données.

Table 6 - Information systématiquement horodatée par le compteur

|                      | Format d'un groupe contenant une donnée horodatée |  |  |  |  |  |  |  |  |
|----------------------|---------------------------------------------------|--|--|--|--|--|--|--|--|
| <lf><br/>(0x0A)</lf> | Horodata   Donnag   Chackeum                      |  |  |  |  |  |  |  |  |
|                      | Zone contrôlée par la checksum                    |  |  |  |  |  |  |  |  |

Table 7 - Information sans horodate

|                      | Format d'un groupe contenant une donnée non horodatée    |  |  |  |  |  |  |  |  |
|----------------------|----------------------------------------------------------|--|--|--|--|--|--|--|--|
| <lf><br/>(0x0A)</lf> | Etiquette CHT> (0x09) Donnée CHT> (0x09) Checksum (0x0D) |  |  |  |  |  |  |  |  |
|                      | Zone contrôlée                                           |  |  |  |  |  |  |  |  |

L'ordre d'émission des données dans la trame est celui donné par la lecture de haut en bas des tableaux donnés dans le chapitre 6.

La checksum est calculée sur l'ensemble des caractères allant du début du champ *Etiquette* à la fin du champ *Donnée*, caractères <HT> inclus.

Le principe de calcul de la Checksum est le suivant :

- calcul de la somme « S1 » de tous les caractères allant du début du champ « Etiquette » jusqu'au délimiteur (inclus) entre les champs « Donnée » et « Checksum »),
- cette somme déduite est tronquée sur 6 bits (cette opération est faite à l'aide d'un ET logique avec 0x3F).
- pour obtenir le résultat checksum, on additionne le résultat précédent S2 à 0x20.

## En résumé :

Checksum = (S1 & 0x3F) + 0x20

Le résultat sera toujours un caractère ASCII imprimable compris entre 0x20 et 0x5F.

## 5.3.7 Couche application

Les données émises dépendent du type de contrat choisi et sont décrites dans le chapitre 6 cidessous.

Le chapitre 6 précise aussi le format des données et les principes de cohérence des données d'une même trame.

## 6 Description des trames de télé-information

## 6.1 Trames de télé-information du mode historique

Dans ce mode, les trames sont identiques aux trames des compteurs électroniques antérieurs à Linky. Toutefois, pour que les informations soient les plus complètes possible, le compteur doit être configuré en contrat historique.

Certaines données du mode historique ne sont pas disponibles dans les compteurs Linky. C'est, entre autres, le cas de l'intensité souscrite, des intensités maximales ou de la zone de tarification (A, C, D, E, Y). Dans ces cas, d'autres informations sont utilisées à la place.

Des précisions sur les informations émises par le compteur sont disponibles dans le document [1].

Ce chapitre rappelle les informations émises par les compteurs monophasés et triphasés. Il précise les restrictions qui peuvent intervenir lorsque le compteur est configuré dans un contrat de nouvelles offres (« contrat non historique » du tableau).

Dans les tableaux, les informations sont décrites avec leur étiquette et le nombre de caractères des données associées. L'unité est indiquée pour information; elle est implicite et elle ne figure pas parmi les caractères émis.

## 6.1.1 Compteurs monophasés (60 A et 90 A)

|                             |           | Name to a de         |       | Compteur Linky monophasé |                        |  |
|-----------------------------|-----------|----------------------|-------|--------------------------|------------------------|--|
| Désignation                 | Étiquette | Nombre de caractères | Unité | Contrat<br>historique    | Contrat non historique |  |
| Adresse du compteur         | ADCO      | 12                   |       | ADS                      | 3                      |  |
| Option tarifaire choisie    | OPTARIF   | 4                    |       | Selon contrat            | "BASE"                 |  |
| Intensité souscrite         | ISOUSC    | 2                    | Α     | PREF (en V               | A) / 200 V             |  |
| Index option Base           | BASE      | 9                    | Wh    | Index fournisseur 1      | Index<br>Totalisateur  |  |
| Index option Heures Creuses |           |                      |       |                          |                        |  |
| Heures Creuses              | HCHC      | 9                    | Wh    | Index fournisseur 1      | NON<br>TRANSMIS        |  |
| Heures Pleines              | HCHP      | 9                    | Wh    | Index fournisseur 2      |                        |  |
| Index option EJP            |           |                      |       |                          |                        |  |
| Heures Normales             | EJPHN     | 9                    | Wh    | Index fournisseur 1      | NON<br>TRANSMIS        |  |
| Heures de Pointe Mobile     | EJPHPM    | 9                    | Wh    | Index fournisseur 2      | TTO ANOMIC             |  |
| Index option Tempo          |           |                      |       |                          |                        |  |
| Heures Creuses Jours Bleus  | BBRHCJB   | 9                    | Wh    | Index fournisseur 1      |                        |  |
| Heures Pleines Jours Bleus  | BBRHPJB   | 9                    | Wh    | Index fournisseur 2      | NON                    |  |
| Heures Creuses Jours Blancs | BBRHCJW   | 9                    | Wh    | Index fournisseur 3      | NON<br>TRANSMIS        |  |
| Heures Pleines Jours Blancs | BBRHPJW   | 9                    | Wh    | Index fournisseur 4      | TTO A VOIVING          |  |
| Heures Creuses Jours Rouges | BBRHCJR   | 9                    | Wh    | Index fournisseur 5      |                        |  |
| Heures Pleines Jours Rouges | BBRHPJR   | 9                    | Wh    | Index fournisseur 6      |                        |  |
| Préavis Début EJP (30 min)  | PEJP      | 2                    | min   | "30", en préavis<br>EJP  | NON<br>TRANSMIS        |  |
| Période Tarifaire en cours  | PTEC      | 4                    |       | Selon contrat et tarif   | "TH"                   |  |

|                                                     |           | Nombre de  |       | Compteur Link                                  | ky monophasé           |
|-----------------------------------------------------|-----------|------------|-------|------------------------------------------------|------------------------|
| Désignation                                         | Étiquette | caractères | Unité | Contrat<br>historique                          | Contrat non historique |
| Couleur du lendemain                                | DEMAIN    | 4          |       | Selon annonce, en<br>Tempo                     | NON<br>TRANSMIS        |
| Intensité Instantanée                               | IINST     | 3          | Α     | Courant efficace (en A)                        |                        |
| Avertissement de Dépassement De Puissance Souscrite | ADPS      | 3          | А     | Courant efficace, si Ilnst > IR                |                        |
| Intensité maximale appelée                          | IMAX      | 3          | Α     | 90 (en A)                                      |                        |
| Puissance apparente                                 | PAPP      | 5          | VA    | S (en VA), arrondi à la dizaine la plus proche |                        |
| Horaire Heures Pleines Heures<br>Creuses            | ННРНС     | 1          |       | "A"                                            |                        |
| Mot d'état du compteur                              | MOTDETAT  | 6          |       | "000000"                                       |                        |

L'intensité maximale « IMAX » est toujours égale à 90 A dans le cas de ce compteur monophasé. Le contrôle de dépassement de puissance souscrite (ADPS) est effectué en comparant l'intensité efficace instantanée à l'intensité de référence (déduite de la puissance de référence). L'intensité de référence est calculée de la façon suivante : IR = P Référence en VA / 200 V.

## 6.1.2 Compteurs triphasés

Une trame longue se compose des groupes suivants :

|                             | <b>4</b>  | Nombre           |       | Compteur Lir             | nky triphasé           |
|-----------------------------|-----------|------------------|-------|--------------------------|------------------------|
| Désignation                 | Étiquette | de<br>caractères | Unité | Contrat historique       | Contrat non historique |
| Adresse du compteur         | ADCO      | 12               |       | AD                       | S                      |
| Option tarifaire choisie    | OPTARIF   | 4                |       | Selon contrat            | "BASE"                 |
| Intensité souscrite         | ISOUSC    | 2                | А     | 1/3 PREF (en VA) / 200 V |                        |
| Index option Base           | BASE      | 9                | Wh    | Index fournisseur 1      | Index Totalisateur     |
| Index option Heures Creuses |           |                  |       |                          |                        |
| Heures Creuses              | HCHC      | 9                | Wh    | Index fournisseur 1      | NON TRANSMIS           |
| Heures Pleines              | HCHP      | 9                | Wh    | Index fournisseur 2      |                        |
| Index option EJP            |           |                  |       |                          |                        |
| Heures Normales             | EJPHN     | 9                | Wh    | Index fournisseur 1      | NON TRANSMIS           |
| Heures de Pointe Mobile     | EJPHPM    | 9                | Wh    | Index fournisseur 2      |                        |

## Sorties de télé-information client des appareils de comptage Linky utilisés en généralisation par ERDF

|                                            | 4.        | Nombre           |       | Compteur Linky triphasé                                                                                |                        |  |
|--------------------------------------------|-----------|------------------|-------|--------------------------------------------------------------------------------------------------------|------------------------|--|
| Désignation                                | Étiquette | de<br>caractères | Unité | Contrat historique                                                                                     | Contrat non historique |  |
| Index option Tempo                         |           |                  |       |                                                                                                        |                        |  |
| Heures Creuses Jours Bleus                 | BBRHCJB   | 9                | Wh    | Index fournisseur 1                                                                                    |                        |  |
| Heures Pleines Jours Bleus                 | BBRHPJB   | 9                | Wh    | Index fournisseur 2                                                                                    |                        |  |
| Heures Creuses Jours Blancs                | BBRHCJW   | 9                | Wh    | Index fournisseur 3                                                                                    | NON TRANSMIS           |  |
| Heures Pleines Jours Blancs                | BBRHPJW   | 9                | Wh    | Index fournisseur 4                                                                                    |                        |  |
| Heures Creuses Jours Rouges                | BBRHCJR   | 9                | Wh    | Index fournisseur 5                                                                                    |                        |  |
| Heures Pleines Jours Rouges                | BBRHPJR   | 9                | Wh    | Index fournisseur 6                                                                                    |                        |  |
| Préavis Début EJP (30 min)                 | PEJP      | 2                | min   | "30", en préavis EJP                                                                                   | NON TRANSMIS           |  |
| Période Tarifaire en cours                 | PTEC      | 4                |       | Selon contrat et tarif                                                                                 | "TH"                   |  |
| Couleur du lendemain                       | DEMAIN    | 4                |       | Selon annonce, en<br>Tempo                                                                             | NON TRANSMIS           |  |
| Intensité Instantanée pour les 3 phases 1, | IINST1    | 3                | А     | Courant efficace                                                                                       | phase 1 (en A)         |  |
| 2 et 3                                     | IINST2    | 3                | Α     | Courant efficace                                                                                       | phase 2 (en A)         |  |
|                                            | IINST3    | 3                | Α     | Courant efficace                                                                                       | phase 3 (en A)         |  |
| Intensité maximale par phase 1, 2 et 3     | IMAX1     | 3                | А     | 60 (e                                                                                                  | n A)                   |  |
|                                            | IMAX2     | 3                | Α     | 60 (e                                                                                                  | n A)                   |  |
|                                            | IMAX3     | 3                | Α     | 60 (e                                                                                                  | n A)                   |  |
| Puissance maximale triphasée atteinte      | PMAX      | 5                | W     | Smax (en VA                                                                                            | ) du jour n-1          |  |
| Puissance apparente triphasée soutirée     | PAPP      | 5                | VA    | S (en VA), arrondi à la dizaine la plus proch                                                          |                        |  |
| Horaire Heures Pleines Heures Creuses      | ННРНС     | 1                |       | "A"                                                                                                    |                        |  |
| Mot d'Etat du compteur                     | MOTDETAT  | 6                |       | "000000"                                                                                               |                        |  |
| Présence des potentiels                    | PPOT      | 2                |       | "0X", le X reflétant les coupures de phase selon la règle suivante:  absence de la phase n ⇒ bit n = 1 |                        |  |

L'intensité maximale « IMAXx » d'une phase est toujours égale à 60 A dans le cas d'un compteur triphasé.

Le contrôle de dépassement de puissance souscrite (ADPS) est effectué phase par phase en comparant l'intensité efficace instantanée à l'intensité de référence (déduite de la puissance de référence). L'intensité de référence est calculée de la façon suivante : IR = P Référence en VA / 200 V / 3 phases.

Pour les compteurs triphasés, on distingue 2 types de trames: les trames longues et les trames courtes. Les trames courtes sont émises lorsque l'intensité efficace instantanée d'au moins une des 3 phases est supérieure à l'intensité de réglage.

Les trames courtes se composent des groupes suivants :

| Dr. Const.                                        | Ésta an   | Nombre de  |       | Compteur Linky triphasé  |                        |
|---------------------------------------------------|-----------|------------|-------|--------------------------|------------------------|
| Désignation                                       | Étiquette | caractères | Unité | Contrat<br>historique    | Contrat non historique |
|                                                   | ADIR1     | 3          | Α     | Courant effic            | ace phase 1            |
| Avertissement de Dépassement d'intensité de       | ADIR2     | 3          | Α     | Courant efficace phase 2 |                        |
| réglage par phase                                 | ADIR3     | 3          | Α     | Courant efficace phase 3 |                        |
| Adresse du compteur                               | ADCO      | 12         |       | ADS                      |                        |
|                                                   | IINST1    | 3          | А     | Courant efficace phase 1 |                        |
| Intensité Instantanée pour les 3 phases 1, 2 et 3 | IINST2    | 3          | Α     | Courant efficace phase 2 |                        |
| 61.3                                              | IINST3    | 3          | Α     | Courant effic            | ace phase 3            |

Pendant la présence d'un dépassement d'intensité de réglage sur l'une quelconque des phases (au moins) et pendant la minute qui suit la disparition du dernier dépassement, des cycles de 20 trames courtes suivies d'une trame longue sont émis.

## 6.2 Trames de télé-information du mode standard

Ce nouveau mode est apparu avec les compteurs Linky. Les informations mise à disposition par le compteur sont décrites entièrement dans le présent chapitre.

## 6.2.1 Couche application

## 6.2.1.1 Format des horodates

Le format utilisé pour les horodates est *SAAMMJJhhmmss*, c'est-à-dire Saison, Année, Mois, Jour, heure, minute, seconde.

## Exemple :

Le 25 décembre 2008, à 22h 35min 18s est codé ainsi:

H081225223518

Le *H* signifiant que l'on est en heure d'hiver.

Le 14 juillet 2009, 07h 45min 53s est codé ainsi:

E090714074553

Le E, signifiant que l'on est en heure d'été.

Dans le cas où une horodate a été obtenue avec une horloge temps réel en mode dégradé (cas de fonctionnement du compteur qui a débordé son autonomie de marche de l'horloge et tant que son horloge n'a pas pu être resynchronisée par programmation), alors l'information de saison est codée avec une lettre minuscule.

| Caractère<br>saison | <espace></espace>         | Н                | E             | h            | е |  |
|---------------------|---------------------------|------------------|---------------|--------------|---|--|
| Signification       | Heure d'hiver Heure d'été |                  | Heure d'hiver | Heure d'été  |   |  |
| Signification       | Non applicable            | Mode non dégradé |               | Mode dégradé |   |  |

Dans certains cas, le caractère saison n'est pas applicable, et est remplacé par le caractère « Espace » (caractère ASCII 0x20). Il s'agit des groupes d'information de début et de fin de pointe mobile.

### 6.2.1.2 Format des données

Le champ « donnée » contient des caractères ASCII imprimables, c'est-à-dire compris entre 0x20 et 0x7E. Sa taille est fixée pour chaque groupe. L'unité des données n'est jamais précisée car elle est implicite. Les valeurs numériques sont complétées par des zéros d'en-tête. Par exemple, 3 au format XXX est transmis sous la forme suivante : 003.

## 6.2.1.3 Influence du mode de fonctionnement du compteur

Le compteur comporte 2 modes de fonctionnement différents : mode consommateur et mode producteur. En mode producteur, les trames sont plus longues qu'en mode consommateur, car des groupes supplémentaires sont émis.

#### 6.2.1.4 Influence du nombre de phases

Si le compteur est monophasé, les groupes relatifs aux phases 2 et 3 ne sont jamais émis.

De plus, dans certains cas (exemple : il existe un groupe d'informations totalisateur), le groupe relatif à la phase 1 n'est pas émis par les compteurs monophasés.

Pour être exhaustif sur cette question, le tableau ci-dessous précise, dans la colonne « Triphasé seulement », les groupes de données qui sont émis uniquement par les compteurs triphasés.

### 6.2.1.5 Cohérence des données d'une trame

Par souci de cohérence des données, le compteur doit assurer une bonne synchronisation et une bonne fraicheur des informations émises sur la TIC.

Ainsi, pour chaque groupe d'information, la donnée restituée doit dater au plus d'un délai correspondant au temps d'émission d'une trame complète (temps de cycle de la télé-information).

## 6.2.2 Liste des données restituées

| Donnée Restituée                                 | Étiquette | Horodate | Nombre de<br>caractères<br>de la donnée | Unité<br>donnée | Triphasé<br>seulement | Producteur<br>seulement |
|--------------------------------------------------|-----------|----------|-----------------------------------------|-----------------|-----------------------|-------------------------|
| Adresse Secondaire du<br>Compteur                | ADSC      |          | 12                                      | Sans            |                       |                         |
| Version de la TIC                                | VTIC      |          | 2                                       | Sans            |                       |                         |
| Date et heure courante                           | DATE      | √        | 0                                       | Sans            |                       |                         |
| Nom du calendrier tarifaire fournisseur          | NGTF      |          | 16                                      | Sans            |                       |                         |
| Libellé tarif fournisseur en cours               | LTARF     |          | 16                                      | Sans            |                       |                         |
| Energie active soutirée totale                   | EAST      |          | 9                                       | Wh              |                       |                         |
| Energie active soutirée<br>Fournisseur, index 01 | EASF01    |          | 9                                       | Wh              |                       |                         |
| Energie active soutirée<br>Fournisseur, index 02 | EASF02    |          | 9                                       | Wh              |                       |                         |
| Energie active soutirée                          | EASF03    |          | 9                                       | Wh              |                       |                         |

| Donnée Restituée                                  | Étiquette | Horodate | Nombre de<br>caractères<br>de la donnée | Unité<br>donnée | Triphasé<br>seulement | Producteur seulement |
|---------------------------------------------------|-----------|----------|-----------------------------------------|-----------------|-----------------------|----------------------|
| Fournisseur, index 03                             |           |          |                                         |                 |                       |                      |
| Energie active soutirée<br>Fournisseur, index 04  | EASF04    |          | 9                                       | Wh              |                       |                      |
| Energie active soutirée<br>Fournisseur, index 05  | EASF05    |          | 9                                       | Wh              |                       |                      |
| Energie active soutirée<br>Fournisseur, index 06  | EASF06    |          | 9                                       | Wh              |                       |                      |
| Energie active soutirée<br>Fournisseur, index 07  | EASF07    |          | 9                                       | Wh              |                       |                      |
| Energie active soutirée<br>Fournisseur, index 08  | EASF08    |          | 9                                       | Wh              |                       |                      |
| Energie active soutirée<br>Fournisseur, index 09  | EASF09    |          | 9                                       | Wh              |                       |                      |
| Energie active soutirée<br>Fournisseur, index 10  | EASF10    |          | 9                                       | Wh              |                       |                      |
| Energie active soutirée<br>Distributeur, index 01 | EASD01    |          | 9                                       | Wh              |                       |                      |
| Energie active soutirée<br>Distributeur, index 02 | EASD02    |          | 9                                       | Wh              |                       |                      |
| Energie active soutirée<br>Distributeur, index 03 | EASD03    |          | 9                                       | Wh              |                       |                      |
| Energie active soutirée<br>Distributeur, index 04 | EASD04    |          | 9                                       | Wh              |                       |                      |
| Energie active injectée totale                    | EAIT      |          | 9                                       | Wh              |                       | $\sqrt{}$            |
| Energie réactive Q1 totale                        | ERQ1      |          | 9                                       | varh            |                       | V                    |
| Energie réactive Q2 totale                        | ERQ2      |          | 9                                       | varh            |                       | $\sqrt{}$            |
| Energie réactive Q3 totale                        | ERQ3      |          | 9                                       | varh            |                       | V                    |
| Energie réactive Q4 totale                        | ERQ4      |          | 9                                       | varh            |                       | $\sqrt{}$            |
| Courant efficace, phase 1                         | IRMS1     |          | 3                                       | Α               |                       |                      |
| Courant efficace, phase 2                         | IRMS2     |          | 3                                       | Α               | V                     |                      |
| Courant efficace, phase 3                         | IRMS3     |          | 3                                       | А               | √                     |                      |
| Tension efficace, phase 1                         | URMS1     |          | 3                                       | V               |                       |                      |
| Tension efficace, phase 2                         | URMS2     |          | 3                                       | V               | V                     |                      |
| Tension efficace, phase 3                         | URMS3     |          | 3                                       | V               | V                     |                      |
| Puissance app. de référence (PREF)                | PREF      |          | 2                                       | kVA             |                       |                      |

| Donnée Restituée                                 | Étiquette | Horodate     | Nombre de<br>caractères<br>de la donnée | Unité<br>donnée | Triphasé<br>seulement | Producteur<br>seulement |
|--------------------------------------------------|-----------|--------------|-----------------------------------------|-----------------|-----------------------|-------------------------|
| Puissance app. de coupure (PCOUP)                | PCOUP     |              | 2                                       | kVA             |                       |                         |
| Puissance app. Instantanée soutirée              | SINSTS    |              | 5                                       | VA              |                       |                         |
| Puissance app. Instantanée soutirée phase 1      | SINSTS1   |              | 5                                       | VA              | V                     |                         |
| Puissance app. instantanée soutirée phase 2      | SINSTS2   |              | 5                                       | VA              | V                     |                         |
| Puissance app. instantanée soutirée phase 3      | SINSTS3   |              | 5                                       | VA              | V                     |                         |
| Puissance app. max. soutirée n                   | SMAXSN    | $\checkmark$ | 5                                       | VA              |                       |                         |
| Puissance app. max. soutirée n phase 1           | SMAXSN1   | $\checkmark$ | 5                                       | VA              | V                     |                         |
| Puissance app. max. soutirée n phase 2           | SMAXSN2   | V            | 5                                       | VA              | V                     |                         |
| Puissance app. max. soutirée n phase 3           | SMAXSN3   | $\checkmark$ | 5                                       | VA              | V                     |                         |
| Puissance app max. soutirée n-1                  | SMAXSN-1  | V            | 5                                       | VA              |                       |                         |
| Puissance app max. soutirée n-1 phase 1          | SMAXSN1-  | V            | 5                                       | VA              | V                     |                         |
| Puissance app max. soutirée n-1 phase 2          | SMAXSN2-  | V            | 5                                       | VA              | V                     |                         |
| Puissance app max. soutirée n-1 phase 3          | SMAXSN3-  | V            | 5                                       | VA              | V                     |                         |
| Puissance app. Instantanée injectée              | SINSTI    |              | 5                                       | VA              |                       | V                       |
| Puissance app. max. injectée n                   | SMAXIN    | V            | 5                                       | VA              |                       | √                       |
| Puissance app max. injectée n-1                  | SMAXIN-1  | V            | 5                                       | VA              |                       | V                       |
| Point n de la courbe de charge active soutirée   | CCASN     | V            | 5                                       | W               |                       |                         |
| Point n-1 de la courbe de charge active soutirée | CCASN-1   | V            | 5                                       | W               |                       |                         |
| Point n de la courbe de charge active injectée   | CCAIN     | V            | 5                                       | W               |                       | <b>V</b>                |

| Donnée Restituée                                 | Étiquette | Horodate     | Nombre de<br>caractères<br>de la donnée | Unité<br>donnée | Triphasé<br>seulement | Producteur<br>seulement |
|--------------------------------------------------|-----------|--------------|-----------------------------------------|-----------------|-----------------------|-------------------------|
| Point n-1 de la courbe de charge active injectée | CCAIN-1   | V            | 5                                       | W               |                       | <b>√</b>                |
| Tension moy. ph. 1                               | UMOY1     | $\checkmark$ | 3                                       | V               |                       |                         |
| Tension moy. ph. 2                               | UMOY2     | $\checkmark$ | 3                                       | V               | $\sqrt{}$             |                         |
| Tension moy. ph. 3                               | UMOY3     | $\sqrt{}$    | 3                                       | V               | $\sqrt{}$             |                         |
| Registre de Statuts                              | STGE      |              | 8                                       | Sans            |                       |                         |
| Début Pointe Mobile 1                            | DPM1      | V            | 2                                       | Sans            |                       |                         |
| Fin Pointe Mobile 1                              | FPM1      | V            | 2                                       | Sans            |                       |                         |
| Début Pointe Mobile 2                            | DPM2      | V            | 2                                       | Sans            |                       |                         |
| Fin Pointe Mobile 2                              | FPM2      | V            | 2                                       | Sans            |                       |                         |
| Début Pointe Mobile 3                            | DPM3      | V            | 2                                       | Sans            |                       |                         |
| Fin Pointe Mobile 3                              | FPM3      | V            | 2                                       | Sans            |                       |                         |
| Message court                                    | MSG1      |              | 32                                      | Sans            |                       |                         |
| Message Ultra court                              | MSG2      |              | 16                                      | Sans            |                       |                         |
| PRM                                              | PRM       |              | 14                                      | Sans            |                       |                         |
| Relais                                           | RELAIS    |              | 3                                       | Sans            |                       |                         |
| Numéro de l'index tarifaire en cours             | NTARF     |              | 2                                       | Sans            |                       |                         |
| Numéro du jour en cours calendrier fournisseur   | NJOURF    |              | 2                                       | Sans            |                       |                         |
| Numéro du prochain jour calendrier fournisseur   | NJOURF+1  |              | 2                                       | Sans            |                       |                         |
| Profil du prochain jour calendrier fournisseur   | PJOURF+1  |              | 98                                      | Sans            |                       |                         |
| Profil du prochain jour de pointe                | PPOINTE   |              | 98                                      | Sans            |                       |                         |

Tous les registres d'énergie sont systématiquement émis, même ceux qui ne sont pas utilisés par les contrats en cours.

## 6.2.3 Précisions sur le format de certaines données

## 6.2.3.1 Adresse secondaire du compteur

Il s'agit de l'adresse secondaire Euridis du compteur qui correspond aussi à son numéro de série (voir cidessus § 2.2).

## 6.2.3.2 Version de la TIC

Il s'agit de la version de la spécification de la TIC. Cette donnée évoluera lorsque la définition du mode standard changera. Dans la spécification actuelle, la version de la TIC est 02.

#### 6.2.3.3 Date et heure courante

Pour ce groupe, l'information est contenue dans la zone « horodate ».

La zone « donnée » est vide (tous les caractères de séparation <HT> sont présents dans le groupe d'information).

#### 6.2.3.4 Nom du calendrier tarifaire fournisseur

La donnée transmise correspond au nom de l'offre tarifaire déclarée par le fournisseur.

Techniquement, elle est portée par un objet COSEM programmable du compteur : les 16 premiers octets de l'attribut 2 « nom\_calendrier\_actif » de l'objet « ProviderActivityCalendar ». Si la donnée n'existe pas, l'étiquette et la donnée ne sont pas transmises sur la TIC.

#### 6.2.3.5 Libellé tarif fournisseur en cours

La donnée transmise correspond au nom du tarif actif dans le calendrier tarifaire fournisseur.

Techniquement la donnée transmise correspond à la donnée programmée sur l'objet « *DisplayConfigurationActive »*. Si la donnée n'existe pas dans l'objet « *DisplayConfigurationActive »* l'étiquette et la donnée ne sont pas transmises sur la TIC.

### 6.2.3.6 Energies

Toutes les informations d'énergie (EAST, EASFxx, EASDxx, EAIT et ERQx) restituent directement les index correspondants.

#### 6.2.3.7 Courant efficace

La TIC retransmet les courants efficaces (pour chacune des phases) qui correspondent à la définition suivante :

Les tensions et courants efficaces sont calculés phase par phase sur la base des formules générales suivantes :

$$V_{eff} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} v_{inst}^2(t).dt$$
  $I_{eff} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} i_{inst}^2(t).dt$ 

Pour éviter les effets d'évènements transitoires, les tensions et courants efficaces sont calculés toutes les secondes. La période d'intégration des formules précédentes (T) vaut alors 1 seconde. Dans la suite du document :

- les grandeurs intensité et tensions qui sont complétées de l'attribut « instantané » ou « efficace » correspondent à ce calcul de valeur efficace sur 1 seconde;
- certains objets peuvent être indicés Phase 1, 2 ou 3 :
  - en monophasé : seule phase 1 est concernée ;
  - en triphasé : les numéros de phases sont définis physiquement selon leur raccordement sur le bornier de puissance (1 à 3 en partant de la gauche vers la droite des entrées réseau).

## 6.2.3.8 Tension efficace

La TIC retransmet les tensions efficaces (pour chacune des phases) qui correspondent à la définition cidessus.

## 6.2.3.9 Puissance de référence et puissance de coupure

La Puissance de référence correspond à la puissance souscrire du contrat de fourniture. La puissance de coupure est généralement identique à la puissance de référence et correspond au seuil de puissance accordée au client contrôlée par l'organe de coupure. Dans le cas de certains évènements contractuels particuliers, la puissance de coupure peut être différente de la puissance de référence.

.

## 6.2.3.10 Puissances apparentes instantanées soutirées et injectées

La TIC retransmet les puissances apparentes instantanées soutirées (totale et pour chacune des phases) et injectées (totale uniquement) qui correspondent à la définition suivante :

Les grandeurs suivantes sont calculées toutes les secondes, phase par phase. Leur sens de transit est contrôlé en même temps. Le tableau définit également les valeurs agrégées.

|                                    | Phase 1                               | Phase 2                                  | Phase 3                                                | Agrégation<br>en triphasé      |
|------------------------------------|---------------------------------------|------------------------------------------|--------------------------------------------------------|--------------------------------|
| Puissance active                   | $P_1 = \int v_1.i_1$                  | $P_2 = \int v_2.i_2$                     | $P_3 = \int v_3 . i_3$                                 | $P = P_1 + P_2 + P_3$          |
| Puissance<br>réactive              | $Q_1 = V_{1fond}.I_{1fond}.sin\phi_1$ | $Q_2 = V_{2fond}.I_{2fond}.sin\varphi_2$ | $Q_3 = V_{3fond}.I_{3fond}.sin\phi_3$                  | $Q = Q_1 + Q_2 + Q_3$          |
| Puissance<br>apparente<br>soutirée | $S_1 = V_{1eff} \times I_{1eff}$      | $S_2 = V_{2eff} \times I_{2eff}$         | S <sub>3</sub> = V <sub>3eff</sub> x I <sub>3eff</sub> | Voir paragraphe ci-<br>dessous |
| Puissance<br>apparente<br>injectée | $S_1 = V_{1eff} \times I_{1eff}$      | $S_2 = V_{2eff} \times I_{2eff}$         | S <sub>3</sub> = V <sub>3eff</sub> x I <sub>3eff</sub> | Voir paragraphe ci-<br>dessous |

On définit une puissance apparente soutirée et une puissance apparente injectée. Le sens de la puissance apparente est défini par le sens de transit de l'énergie active, soit :

- sur une phase, ou en monophasé S est soutirée si P ≥ 0 ; sinon S est injectée ;
- en triphasé Stri est soutirée si P = (P1+P2+P3) ≥ 0 ; sinon Stri est injectée.

La puissance apparente triphasée (soutirée ou injectée) est calculée, pour le compteur triphasé, en prenant la valeur absolue de la somme des puissances apparentes de phases. La puissance apparente d'une phase prend un signe négatif si cette phase est en « fonctionnement injection ».

Ces informations sont utilisées sur la télé-information et sur l'affichage (indicateur de dépassement et de la puissance apparente).

En télé-information, seuls les groupes correspondants à la configuration du compteur (consommateur/producteur – monophasé/triphasé) sont transmis.

## 6.2.3.11 Puissances apparentes maximales soutirées et injectées

Les puissances apparentes maximales soutirées (totale et pour chacune des phases) et injectées (totale uniquement) sont définies par comparaison des puissances réalisées sur une même journée. Les puissances prises en compte pour cette comparaison sont des puissances « moyennes » issues d'un filtre de calcul identique au filtre de contrôle de la puissance consommée (pilotage de l'organe de coupure) :

- une puissance indicée « n » est la valeur du jour en cours, correspondant à la dernière valeur historisée depuis le début de la journée et jusqu'au moment d'émission de la trame;
- une puissance indicée « n-1 » est la valeur historisée la veille du jour en cours.

Seuls les groupes correspondants à la configuration du compteur (consommateur/producteur – monophasé/triphasé) sont transmis.

## 6.2.3.12 Points des courbes de charge soutirage et injection

La TIC doit restituer les 2 derniers points (« n » et « n-1 ») des courbes de charge correspondant aux 2 dernières périodes complètes. Le compteur dispose de 10 secondes pour mettre à jour les points de courbe de charge à la fin d'une période d'intégration. Lorsqu'un point n'est pas disponible, alors son groupe d'information n'est pas transmis.

## En particulier :

 lorsque la courbe de charge est arrêtée (raison contractuelle), les groupes d'informations correspondant ne sont plus transmis sur la TIC;  lorsque le compteur est en mode « consommateur », seule la courbe de charge soutirage est émise sur la TIC.

## 6.2.3.13 Tensions moyennes

En mode standard, la TIC retransmet la tension moyenne (pour chacune des phases).

Cette tension moyenne est calculée sur un intervalle de temps programmable qui correspond à la règlementation en vigueur (10 min à la date de publication de ce document).

## 6.2.3.14 Registre de statuts

Le contenu du registre de statuts retranscrit en format codé ci-dessous l'état de fonctionnement du compteur au moment de l'émission de la trame. Il est transmis sous la forme de 8 caractères ASCII ("0" à "9" et "A" à "F"), octet de poids fort en tête. Il correspond à la définition suivante

| Fonctions concernées                     | Statuts                                                                                                                                              | Bit associé dans le registre de<br>statuts |  |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|
| Contact sec                              | 0 = fermé                                                                                                                                            | D# 0                                       |  |  |
|                                          | 1 = ouvert                                                                                                                                           | Bit 0                                      |  |  |
| Organe de coupure                        | 0 = fermé                                                                                                                                            |                                            |  |  |
|                                          | 1 = ouvert sur surpuissance                                                                                                                          |                                            |  |  |
|                                          | 2 = ouvert sur surtension                                                                                                                            |                                            |  |  |
|                                          | 3 = ouvert sur délestage                                                                                                                             |                                            |  |  |
|                                          | 4 = ouvert sur ordre CPL ou Euridis                                                                                                                  |                                            |  |  |
|                                          | 5 = ouvert sur une surchauffe avec une valeur du courant supérieure au courant de commutation maximal                                                | Bits 1 (LSB) à 3 (MSB)                     |  |  |
|                                          | 6 = ouvert sur une surchauffe avec une valeur de courant inférieure au courant de commutation maximal                                                |                                            |  |  |
| État du cache-bornes distributeur        | 0 = fermé                                                                                                                                            | Div. 4                                     |  |  |
|                                          | 1 = ouvert                                                                                                                                           | Bit 4                                      |  |  |
| Non utilisé                              | Toujours à 0                                                                                                                                         | Bit5                                       |  |  |
| Surtension sur une des phases            | <ul> <li>0 = pas de surtension</li> <li>1 = surtension</li> <li>La mise à 1 de ce bit peut provoquer</li> <li>une alarme à destination du</li> </ul> | Bit 6                                      |  |  |
|                                          | concentrateur en fonction du registre « AlarmFilter »                                                                                                |                                            |  |  |
| Dépassement de la puissance de référence | 0 = pas de dépassement<br>1 = dépassement en cours                                                                                                   | Bit 7                                      |  |  |
| Fonctionnement producteur/consommateur   | 0 = consommateur<br>1 = producteur                                                                                                                   | Bit 8                                      |  |  |
| Sens de l'énergie active                 | 0 = énergie active positive                                                                                                                          | Bit 9                                      |  |  |

| Fonctions concernées                                                                                                                                              | Statuts                                                                                                                                                                                                                                                                                                                                    | Bit associé dans le registre de<br>statuts |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                                                                   | 1 = énergie active négative                                                                                                                                                                                                                                                                                                                |                                            |
| Tarif en cours sur le contrat fourniture                                                                                                                          | 0 = énergie ventilée sur Index 1 1 = énergie ventilée sur Index 2 2 = énergie ventilée sur Index 3 3 = énergie ventilée sur Index 4 4 = énergie ventilée sur Index 5 5 = énergie ventilée sur Index 6 6 = énergie ventilée sur Index 7 7 = énergie ventilée sur Index 8 8 = énergie ventilée sur Index 9 9 = énergie ventilée sur Index 10 | Bits 10 (LSB) à 13 (MSB)                   |
| Tarif en cours sur le contrat distributeur                                                                                                                        | 0 = énergie ventilée sur Index 1 1 = énergie ventilée sur Index 2 2 = énergie ventilée sur Index 3 3 = énergie ventilée sur Index 4                                                                                                                                                                                                        | Bits 14 (LSB) et 15 (MSB)                  |
| Mode dégradée de l'horloge (perte de l'horodate de l'horloge interne)                                                                                             | 0 = horloge correcte 1 = horloge en mode dégradée                                                                                                                                                                                                                                                                                          | Bit 16                                     |
| État de la sortie télé-information                                                                                                                                | 0 = mode historique<br>1 = mode standard                                                                                                                                                                                                                                                                                                   | Bits 17                                    |
| Non utilisé                                                                                                                                                       | Non utilisé                                                                                                                                                                                                                                                                                                                                | Bits 18                                    |
| État de la sortie communication<br>Euridis                                                                                                                        | 00 = désactivée 01 = activée sans sécurité 11 = activée avec sécurité (Notation binaire)                                                                                                                                                                                                                                                   | Bits 19 (LSB) et 20 (MSB)                  |
| Statut du CPL                                                                                                                                                     | 00 = New / Unlock<br>01 = New / Lock<br>10 = Registered<br>(Notation binaire)                                                                                                                                                                                                                                                              | Bits 21 (LSB) et 22 (MSB)                  |
| Synchronisation CPL                                                                                                                                               | 0= compteur non synchronisé 1 = compteur synchronisé                                                                                                                                                                                                                                                                                       | Bit 23                                     |
| Couleur du jour pour le contrat historique tempo Pour un contrat Tempo, la valeur 0 n'est pas acceptée Pour les autres contrats la valeur est à 0 (Pas d'annonce) | 0 = Pas d'annonce<br>1 = Bleu<br>2 = Blanc<br>3 = Rouge                                                                                                                                                                                                                                                                                    | Bits 24 (LSB) et 25 (MSB)                  |
| Couleur du lendemain pour le contrat historique tempo Pour les autres contrats la valeur                                                                          | 0 = Pas d'annonce  1 = Bleu                                                                                                                                                                                                                                                                                                                | Bits 26 (LSB) et 27 (MSB)                  |

### Sorties de télé-information client des appareils de comptage Linky utilisés en généralisation par ERDF

| Fonctions concernées    | Statuts                     | Bit associé dans le registre de<br>statuts |
|-------------------------|-----------------------------|--------------------------------------------|
| est à 0 (Pas d'annonce) | 2 = Blanc                   |                                            |
|                         | 3 = Rouge                   |                                            |
| Préavis pointes mobiles | 0 = pas de préavis en cours |                                            |
|                         | 1 = préavis PM1 en cours    | Bit 28 (LSB) à 29 (MSB)                    |
|                         | 2 = préavis PM2 en cours    | (contrat Tempo et EJP inclus)              |
|                         | 3 = préavis PM3 en cours    |                                            |
| Pointe mobile (PM)      | 0 = Pas de pointe mobile    |                                            |
|                         | 1 = PM 1 en cours           | Bit 30 (LSB) à 31 (MSB)                    |
|                         | 2 = PM 2 en cours           | (contrat Tempo et EJP inclus)              |
|                         | 3 = PM 3 en cours           |                                            |

## 6.2.3.15 Début pointe mobile et fin de pointe mobile

Le compteur transmet les informations relatives à l'engagement des pointes mobiles qu'il connaît. Le contrat peut définir 3 profils de jours de pointe mobile différents (PM1, PM2 et PM3). Si plusieurs commandes identiques coexistent pour la même pointe mobile, l'information diffusée correspond la première action chronologique.

## 6.2.3.16 Message court

En mode standard, la TIC retransmet le message court sur 32 caractères.

## 6.2.3.17 Message ultra-court

En mode standard, la TIC retransmet le message ultra-court sur 16 caractères. Le contenu du message ultra-court est émis dans la trame en cours lorsqu'il est pris en compte par le compteur (il est émis une seule fois et est inséré après le message court).

## 6.2.3.18 PRM

En mode standard la TIC retransmet le PRM.

## 6.2.3.19 Relais

Les données transmises correspondent à l'état des 8 relais dont 1 réel et 7 virtuels. La donnée est exprimée en décimal sur 3 caractères avec la logique suivante.

| N° Relais | 1 (réel) | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|-----------|----------|---|---|---|---|---|---|---|
| N° Bit    | 1        | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Le bit est à 0 si le contact est ouvert et à 1 si le contact est fermé.\*

Exemple:

| N°<br>relais | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Valeur en décimal<br>restituée sur la TIC |
|--------------|---|---|---|---|---|---|---|---|-------------------------------------------|
| État         | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 140                                       |
| État         | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 001                                       |
|              |   |   |   |   |   |   |   |   |                                           |

#### 6.2.3.20 Numéro de l'index tarifaire en cours

L'information correspond au numéro de l'index tarifaire en cours et doit être cohérente avec l'information du registre des statuts, bits 10 à 13.

## 6.2.3.21 Numéro du jour en cours et du prochain jour

Le numéro du jour (en cours ou prochain) se déduit de la grille tarifaire fournisseur en prenant en compte les jours spéciaux.

Le contrat peut définir 10 profils de jours différents (déclarés par le fournisseur) numérotés de 0 à 9.

Techniquement les données transmises correspondent à l'élément day\_id du jour en cours (ou lendemain) dans l'attribut « day\_profile\_table\_active ».

## Remarques :

- 1. cette information ne prend pas en compte les périodes de pointe mobile (qui apparaissent dans les informations « Début et Fin de pointe mobile »),
- 2. le numéro de profil du jour et du prochain jour est actualisé quotidiennement à partir de la première trame émise après 00h00.

## 6.2.3.22 Profil du prochain jour calendrier fournisseur

Techniquement, le profil de jour est extrait de l'attribut 5 « day\_profile\_table\_active » dans l'objet « ProviderActivityCalendar ». Il s'agit de reprendre, pour cette donnée, la partie de la définition du profil de jour dont le day\_id correspond à l'information « NJOURF+1 » dans la même trame.

Les caractères retenus de cet objet (recensés ci-dessous) sont transcrits dans le format des données TIC. La donnée d'informations se compose d'une suite de 11 blocs de données, correspondant aux 11 créneaux horaires possibles dans la description d'un profil de jour. Les blocs sont séparés entre eux par un espace. Chaque bloc de données est constitué de 8 caractères symbolisés « HHMMSSSS » correspondra à :

- HHMM: heure et minute du champ « start time »;
- SSSS: valeur déduite de « script\_selector » correspondant aux actions dans le créneau (voir cidessous): C'est une chaine de 4 caractères codée en hexadécimal par ensembles de 4 bits, partant du bit de poids fort vers le bit de poids faible;
- si le profil de jour comporte moins de 11 créneaux, alors, pour assurer une taille constante de la donnée, les créneaux « non utilisés » prennent la valeur de remplissage « NONUTILE ».

#### Description de actions « SSSS » associée à un créneau

Une action est de type long-unsigned (16 bits).

|        | 0.01.01.                | <del></del> | -)          |        |        | ( : 0 : 0 : 1                                  | - , - |       |       |       |       |       |       |                 |       |  |  |
|--------|-------------------------|-------------|-------------|--------|--------|------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-----------------|-------|--|--|
| Bit 15 | Bit 14                  | Bit 13      | Bit 12      | Bit 11 | Bit 10 | Bit 9                                          | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1           | Bit 0 |  |  |
| Gesti  | on                      | Non         | Non utiliaá |        |        | pilotogo dos 7 contecto virtuale du pº1 ou pº7 |       |       |       |       |       |       |       | Numéro index de |       |  |  |
| conta  | contact sec Non utilisé |             |             |        | pilota | pilotage des 7 contacts virtuels du n°1 au n°7 |       |       |       |       |       |       |       | ventilation     |       |  |  |

## Numéro index de ventilation :

| Bit 3 | Bit2 | Bit1 | Bit0 | Index de ventilation                  |
|-------|------|------|------|---------------------------------------|
| 0     | 0    | 0    | 0    | Pas d'action, le tarif reste inchangé |
| 0     | 0    | 0    | 1    | Index tarifaire fourniture 1          |
| 0     | 0    | 1    | 0    | Index tarifaire fourniture 2          |
| 0     | 0    | 1    | 1    | Index tarifaire fourniture 3          |
| 0     | 1    | 0    | 0    | Index tarifaire fourniture 4          |
| 0     | 1    | 0    | 1    | Index tarifaire fourniture 5          |
| 0     | 1    | 1    | 0    | Index tarifaire fourniture 6          |

| 0 | 1 | 1 | 1 | Index tarifaire fourniture 7          |  |  |  |  |
|---|---|---|---|---------------------------------------|--|--|--|--|
| 1 | 0 | 0 | 0 | Index tarifaire fourniture 8          |  |  |  |  |
| 1 | 0 | 0 | 1 | Index tarifaire fourniture 9          |  |  |  |  |
| 1 | 0 | 1 | 0 | Index tarifaire fourniture 10         |  |  |  |  |
| 1 | 0 | 1 | 1 | Pas d'action, le tarif reste inchangé |  |  |  |  |
| 1 | 1 | 0 | 0 | Pas d'action, le tarif reste inchangé |  |  |  |  |
| 1 | 1 | 0 | 1 | Pas d'action, le tarif reste inchangé |  |  |  |  |
| 1 | 1 | 1 | 0 | Pas d'action, le tarif reste inchangé |  |  |  |  |
| 1 | 1 | 1 | 1 | Pas d'action, le tarif reste inchangé |  |  |  |  |

### Gestion contact sec:

| itable 500 | <u>, .</u> |                                                                                                                                                                                                                                                |
|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 15     | Bit14      | Gestion contact sec                                                                                                                                                                                                                            |
| 0          | 0          | Le contact sec reste dans sa position (aucune manœuvre)                                                                                                                                                                                        |
| 0          | 1          | Si le contrat est Tempo, alors les positions du contact sec et du contact virtuel n°1 sont définies par l'objet Configuration Contact Sec Tempo; Si le contrat n'est pas Tempo, alors le contact sec reste dans sa position (aucune manœuvre). |
| 1          | 0          | Le Contact sec passe en position ouvert et reste en position ouvert                                                                                                                                                                            |
| 1          | 1          | Le Contact sec passe en position fermé et reste en position fermé                                                                                                                                                                              |

### Pilotage des 7 contacts virtuels du n°1 au n°7 :

Les bits n°4 à 10 indiquent l'état des 7 contacts virtuels.

Le tableau ci dessous présente la relation entre les 7 contacts virtuels et les numéros de bits :

| N° Bit | Information           |  |  |  |  |  |
|--------|-----------------------|--|--|--|--|--|
| 4      | Contacts virtuel n° 1 |  |  |  |  |  |
| 5      | Contacts virtuel n° 2 |  |  |  |  |  |
| 6      | Contacts virtuel n° 3 |  |  |  |  |  |
|        |                       |  |  |  |  |  |
| 10     | Contacts virtuel n° 7 |  |  |  |  |  |

### 6.2.3.23 Profil du prochain jour de pointe

Le profil du prochain jour de pointe est émis dès l'apparition d'au moins une des informations « DPM1 » (resp. « DPM2 » ou « DPM3 ») sur la même trame. Cette information est émise entre le moment d'apparition de l'information et jusqu'au début effectif de cette pointe mobile (correspondant à l'horodate véhiculée par l'information « DPM1 », respectivement « DPM2 » ou « DPM3 »).

Lorsque plusieurs informations de pointes mobiles coexistent (exemple : DPM1 et DPM2 sont dans la même trame), le profil du prochain jour de pointe correspond à la pointe mobile non commencée et dont l'horodate (véhiculée par l'information « DPM1 », respectivement « DPM2 » ou « DPM3 ») est la plus rapprochée dans le futur.

Lorsque cette pointe mobile débute, c'est alors la prochaine pointe mobile non commencée dont l'horodate est la plus rapprochée dans le futur qui est émise.

Le profil du prochain jour de pointe est extrait de l'attribut 2 « value » dans l'objet « PeakDayProfileN1Setup » (resp. « PeakDayProfileN2Setup » ou « PeakDayProfileN3Setup »). La donnée de ce groupe d'informations est définie de façon identique à la donnée de l'information « *PJOURF+1* » (voir ci-dessus).

# 7 Volume du compteur disponible sous couvre-bornes client

## 7.1 Principe de pose d'un équipement sous cache-bornes client



## Remarque (compteur triphasé):

Le compteur triphasé dispose d'un espace client dans sa partie supérieure. Ce compteur est moins contraint en volume que le compteur monophasé. Toutefois, le compteur triphasé doit assurer l'accueil sous son couvrebornes d'un équipement adapté au compteur monophasé. Le compteur triphasé doit respecter les conditions minimales suivantes :

- le sens des bornes TIC défini pour le compteur monophasé,
- un volume identique à celui du compteur monophasé face au bornier de la TIC.

## 7.2 Repérage des borniers d'un compteur

## Schéma des borniers du compteur monophasé :



## Repérage des bornes du bornier client :

- bornier TIC :
  - o circuit alimentation → bornes I1 et A,
  - o circuit d'informations → bornes I1 et I2,
- bornier contact sec : circuit contact → bornes C1 et C2.

3

## Dimensionnement des bornes :

Les bornes du bornier TIC (alimentation et signaux) ainsi que les bornes du contact sec permettent le raccordement d'un conducteur d'un diamètre compris entre 0,4 à 1,4 mm.

# 7.3 Vue en 3D de l'équipement client



## 7.4 Côtes maximales pour un équipement client

Les dimensions de l'espace mis à disposition par le compteur sous le cache-bornes client sont les suivantes

|             | Dimensions en (mm) |             |            |             |           |             |           |             |          |      |           |          |            |             |               |
|-------------|--------------------|-------------|------------|-------------|-----------|-------------|-----------|-------------|----------|------|-----------|----------|------------|-------------|---------------|
| 11          | <b>I</b> 2         | <b>I</b> 3  | A          | В           | h=B+A     | F           | L=F+ec4   | G           | K        | ec1  | ec2       | ec3      | ec4        | E=A+ec3     | ec5 et<br>ec6 |
| 49.5<br>min | 27<br>min          | 22.5<br>max | 9.7<br>min | 48.3<br>min | 58<br>min | 24.5<br>min | 30<br>min | 16.2<br>min | 9<br>max | 5.08 | 15<br>min | 7<br>min | 5.5<br>min | 16.7<br>min | 5 max         |

ec2 correspond à la longueur de broches assurant la meilleure tenue des bornes.

ec5 et Ec6 figurent un biseau qui assure l'intégration de l'équipement sous l'arrête arrondie du compteur, (la diagonale de cet angle correspond au diamètre maximum de l'arrondi).