Platelet

Team Reference Material

(25-page version)

凌皓煜 陈 彤

顾 逸 目录 1. Graph Theory

				3.2	平面最近点对 (Grimoire)	15
	1录			3.3	凸包游戏 (Grimoire)	15
ŀ	目录			3.4	半平面交 (Grimoire)	16
_				3.5	点在多边形内 (Grimoire)	16
1	Graph Theory	1		3.6	最小圆覆盖 (Grimoire)	16
	1.1 2-SAT (ct)	1		3.7	最小球覆盖 (Grimoire)	16
	1.2 割点与桥 (ct)	2		3.8	圆并 (Grimoire)	17
	1.3 Steiner tree (lhy)	2		3.9	圆与多边形并 (Grimoire)	17
	1.4 K 短路 (lhy)	2			三角剖分 (Grimoire)	18
	1.5 最大团 (Nightfall)	3			三维几何基础 (Grimoire)	19
	1.6 极大团计数 (Nightfall)	3			三维凸包 (Grimoire)	19
	1.7 SAP (lhy)	3			三维绕轴旋转 (gy)	19
	1.8 二分图最大匹配 (lhy)	4				19
	1.9 一般图最大匹配 (lhy)	4		5.14	プロ内が (gy) ····································	19
	1.10 KM 算法 (Nightfall)		4	Strii	ησ	20
	1.11 最小树形图 (Nightfall)	4	•	4.1	exKMP (ct)	20
	1.12 支配树 (Nightfall)	5		4.2	Lydon Word Decomposition (Nightfall)	20
	1.13 虚树 (ct)	5		4.3	后缀数组 (ct)	20
	1.14 点分治 (ct)	6		4.4	后缀自动机 (lhy)	20
	1.15 Link-Cut Tree (ct)	6		4.4	Manacher (ct)	21
	1.16 圆方树 (ct)	7		4.6	回文树 (ct)	21
	1.17 无向图最小割 (Nightfall)	7		4.0 4.7		21
	1.18 zkw 费用流 (lhy)	7		4.7	最小表示法 (ct)	
	1.19 图论知识 (gy,lhy)	8		4.0	子付中和识 (Nightian)	21
	1110 E171 (N (S))		5	Data	Structure	21
2			5		a Structure 貴以 (ct)	21
2	Math	9	5	5.1	莫队 (ct)	21
2	Math 2.1 int64 相乘取模 (Durandal)	9 9	5	5.1 5.2	莫队 (ct)	21 22
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy)	9 9	5	5.1 5.2 5.3	莫队 (ct)	21 22 22
2	Math 2.1 int64 相乘取模 (Durandal)	9 9 9	5	5.1 5.2 5.3 5.4	莫队 (ct)	21 22 22 22
2	Math 2.1 int64 相乘取模 (Durandal)	9 9 9 9	5	5.1 5.2 5.3 5.4 5.5	莫队 (ct)	21 22 22 22 22
2	Math 2.1 int64 相乘取模 (Durandal)	9 9 9 9 9	5	5.1 5.2 5.3 5.4 5.5 5.6	莫队 (ct)	21 22 22 22 22 23
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall)	9 9 9 9 9 9	5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	莫队 (ct) 带权并查集 (ct) Splay (ct) 线段树 (ct) 二进制分组 (ct) CDQ 分治 (ct) 斜率优化 (ct)	21 22 22 22 22 23 23
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy)	9 9 9 9 9 9	5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	莫队 (ct) 带权并查集 (ct) Splay (ct) 线段树 (ct) 二进制分组 (ct) CDQ 分治 (ct) 斜率优化 (ct) 树分块 (ct)	21 22 22 22 22 23 23 23
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 $O(m^2 \log n)$ 线性递推 (lhy)	9 9 9 9 9 9 9	5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	莫队 (ct)	21 22 22 22 22 23 23 23 23
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 $O(m^2 \log n)$ 线性递推 (lhy) 2.9 线性基 (ct)	9 9 9 9 9 9 9 9 10	5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	莫队 (ct) 带权并查集 (ct) Splay (ct) 线段树 (ct) 二进制分组 (ct) CDQ 分治 (ct) 斜率优化 (ct) 树分块 (ct)	21 22 22 22 22 23 23 23
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 $O(m^2 \log n)$ 线性递推 (lhy) 2.9 线性基 (ct) 2.10 FFT NTT FWT (lhy,ct,gy)	9 9 9 9 9 9 9 9 10 10		5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	莫队 (ct)	21 22 22 22 23 23 23 23 24
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 O(m² log n) 线性递推 (lhy) 2.9 线性基 (ct) 2.10 FFT NTT FWT (lhy,ct,gy) 2.11 杜教筛 (ct)	9 9 9 9 9 9 9 9 10 10 10		5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	莫队 (ct)	21 22 22 22 23 23 23 23 24 24
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 $O(m^2 \log n)$ 线性递推 (lhy) 2.9 线性基 (ct) 2.10 FFT NTT FWT (lhy,ct,gy) 2.11 杜教筛 (ct) 2.12 Extended Eratosthenes Sieve (Nightfall)	9 9 9 9 9 9 9 9 10 10 10		5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Othe 6.1	莫队 (ct)	21 22 22 22 23 23 23 23 24 24
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 O(m² log n) 线性递推 (lhy) 2.9 线性基 (ct) 2.10 FFT NTT FWT (lhy,ct,gy) 2.11 杜教筛 (ct) 2.12 Extended Eratosthenes Sieve (Nightfall) 2.13 BSGS (ct,Durandal)	9 9 9 9 9 9 9 9 10 10 11 11 11		5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Othe 6.1 6.2	莫队 (ct) 带权并查集 (ct)	211 222 222 222 233 233 242 244 244 255
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 O(m² log n) 线性递推 (lhy) 2.9 线性基 (ct) 2.10 FFT NTT FWT (lhy,ct,gy) 2.11 杜教筛 (ct) 2.12 Extended Eratosthenes Sieve (Nightfall) 2.13 BSGS (ct,Durandal) 2.14 直线下整点个数 (gy)	9 9 9 9 9 9 9 9 10 10 11 11 11 12 12		5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Othe 6.1 6.2 6.3	莫队 (ct) 带权并查集 (ct)	211 222 222 222 233 233 244 244 255 255
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 O(m² log n) 线性递推 (lhy) 2.9 线性基 (ct) 2.10 FFT NTT FWT (lhy,ct,gy) 2.11 杜教筛 (ct) 2.12 Extended Eratosthenes Sieve (Nightfall) 2.13 BSGS (ct,Durandal) 2.14 直线下整点个数 (gy) 2.15 Pell equation (gy)	9 9 9 9 9 9 9 9 10 10 11 11 11 12 12		5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Othe 6.1 6.2 6.3 6.4	莫队 (ct) 带权并查集 (ct) Splay (ct) 线段树 (ct) 二进制分组 (ct) CDQ 分治 (ct) 斜率优化 (ct) 树分块 (ct) KD tree (lhy) DLX (Nightfall) ers bashrc vimrc (gy) STL 释放内存 (Durandal) 开栈 (Durandal) O3 (gy)	21 22 22 22 23 23 23 24 24 24 25 25 25 25
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 O(m² log n) 线性递推 (lhy) 2.9 线性基 (ct) 2.10 FFT NTT FWT (lhy,ct,gy) 2.11 杜教筛 (ct) 2.12 Extended Eratosthenes Sieve (Nightfall) 2.13 BSGS (ct,Durandal) 2.14 直线下整点个数 (gy) 2.15 Pell equation (gy) 2.16 单纯形 (gy)	9 9 9 9 9 9 9 9 9 10 10 10 11 11 11 12 12 12		5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Othe 6.1 6.2 6.3 6.4 6.5	莫队 (ct) 带权并查集 (ct) Splay (ct) 线段树 (ct) 二进制分组 (ct) CDQ 分治 (ct) 斜率优化 (ct) 树分块 (ct) KD tree (lhy) DLX (Nightfall) ers bashrc vimrc (gy) STL 释放内存 (Durandal) 开栈 (Durandal) O3 (gy) 模拟退火 (ct)	21 22 22 22 23 23 23 24 24 24 25 25 25 25
2	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 O(m² log n) 线性递推 (lhy) 2.9 线性基 (ct) 2.10 FFT NTT FWT (lhy,ct,gy) 2.11 杜教筛 (ct) 2.12 Extended Eratosthenes Sieve (Nightfall) 2.13 BSGS (ct,Durandal) 2.14 直线下整点个数 (gy) 2.15 Pell equation (gy)	9 9 9 9 9 9 9 9 10 10 11 11 11 12 12		5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Othe 6.1 6.2 6.3 6.4 6.5 6.6	莫队 (ct) 带权并查集 (ct) Splay (ct) 线段树 (ct) 二进制分组 (ct) CDQ 分治 (ct) 斜率优化 (ct) 树分块 (ct) KD tree (lhy) DLX (Nightfall) ers bashrc vimrc (gy) STL 释放内存 (Durandal) 开栈 (Durandal) O3 (gy) 模拟退火 (ct) Simpson 积分 (gy)	211 222 222 222 232 233 243 244 244 255 255 255 255 255
	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 O(m² log n) 线性递推 (lhy) 2.9 线性基 (ct) 2.10 FFT NTT FWT (lhy,ct,gy) 2.11 杜教筛 (ct) 2.12 Extended Eratosthenes Sieve (Nightfall) 2.13 BSGS (ct,Durandal) 2.14 直线下整点个数 (gy) 2.15 Pell equation (gy) 2.16 单纯形 (gy) 2.17 数学知识 (gy)	9 9 9 9 9 9 9 9 9 9 10 10 10 11 11 12 12 12 13		5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Othe 6.1 6.2 6.3 6.4 6.5 6.6 6.7	莫队 (ct) 带权并查集 (ct) Splay (ct) 线段树 (ct) 选段树 (ct) 二进制分组 (ct) CDQ 分治 (ct) 斜率优化 (ct) 树分块 (ct) KD tree (lhy) DLX (Nightfall) ers bashrc vimrc (gy) STL 释放内存 (Durandal) 开栈 (Durandal) O3 (gy) 模拟退火 (ct) Simpson 积分 (gy) Zeller Congruence (gy)	211 222 222 222 232 233 243 244 244 255 255 255 255 255
	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 O(m² log n) 线性递推 (lhy) 2.9 线性基 (ct) 2.10 FFT NTT FWT (lhy,ct,gy) 2.11 杜教筛 (ct) 2.12 Extended Eratosthenes Sieve (Nightfall) 2.13 BSGS (ct,Durandal) 2.14 直线下整点个数 (gy) 2.15 Pell equation (gy) 2.16 单纯形 (gy) 2.17 数学知识 (gy) Geometry	9 9 9 9 9 9 9 9 9 10 10 10 11 11 11 12 12 12 13	6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Othe 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	莫队 (ct) 带权并查集 (ct) Splay (ct) 线段树 (ct) 二进制分组 (ct) CDQ 分治 (ct) 斜率优化 (ct) 树分块 (ct) KD tree (lhy) DLX (Nightfall) ers bashrc vimrc (gy) STL 释放内存 (Durandal) 开栈 (Durandal) O3 (gy) 模拟退火 (ct) Simpson 积分 (gy) Zeller Congruence (gy) 博弈论模型 (gy)	211 222 222 222 233 233 234 244 254 255 255 255 255 255 255
	Math 2.1 int64 相乘取模 (Durandal) 2.2 ex-Euclid (gy) 2.3 中国剩余定理 (Durandal) 2.4 线性同余不等式 (Durandal) 2.5 平方剩余 (Nightfall) 2.6 组合数 (Nightfall) 2.7 Miller Rabin & Pollard Rho (gy) 2.8 O(m² log n) 线性递推 (lhy) 2.9 线性基 (ct) 2.10 FFT NTT FWT (lhy,ct,gy) 2.11 杜教筛 (ct) 2.12 Extended Eratosthenes Sieve (Nightfall) 2.13 BSGS (ct,Durandal) 2.14 直线下整点个数 (gy) 2.15 Pell equation (gy) 2.16 单纯形 (gy) 2.17 数学知识 (gy)	9 9 9 9 9 9 9 9 9 9 10 10 10 11 11 12 12 12 13	6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Othe 6.1 6.2 6.3 6.4 6.5 6.6 6.7	莫队 (ct) 带权并查集 (ct) Splay (ct) 线段树 (ct) 选段树 (ct) 二进制分组 (ct) CDQ 分治 (ct) 斜率优化 (ct) 树分块 (ct) KD tree (lhy) DLX (Nightfall) ers bashrc vimrc (gy) STL 释放内存 (Durandal) 开栈 (Durandal) O3 (gy) 模拟退火 (ct) Simpson 积分 (gy) Zeller Congruence (gy)	211 222 222 222 232 233 243 244 244 255 255 255 255 255

Ch1. Graph Theory

1.1. 2-SAT (ct)

```
1struct Edge {
2    Edge *next;
3    int to;
4} *last[maxn<<1],e[maxn<<2],*ecnt = e;
5inline void link(int a,int b){
6    *++ecnt = (Edge){last[a],b};
7    last[a] = ecnt;}
8 int dfn[maxn],low[maxn],timer,st[maxn],top,
9    id[maxn],colcnt,n;
10 bool fail,used[maxn];
11 void tarjan(int x,int fa){
12    dfn[x] = low[x] = ++timer; st[++top] = x;
13    for(Edge *iter = last[x];iter;iter = iter->next)
14    if(iter->to!=fa){
15        if(!dfn[iter->to]){
```

```
tarjan(iter->to,x);
          cmin(low[x],low[iter->to]);
17
        }else if(!id[iter->to])
18
19
          cmin(low[x],dfn[iter->to]);}
20
    if(dfn[x]==low[x]){
21
      ++colcnt; bool flag = 1;
22
      for(;;){
23
        int now = st[top--]; id[now] = colcnt;
24
        if(now<=2*n){
25
          flag &= !used[id[now<=n ? now+n : now-n]];</pre>
          now<=n ? fail |= (id[now+n]==id[now]) :</pre>
            fail |= (id[now-n]==id[now]);}
        if(now==x) break;}
      used[colcnt] = flag;}}
29
30 int ans[maxn],tot;
31 int main(){
32 /*build your graph here.*/
33 for(int i = 1;!fail&&i<=n;++i)
      if(!dfn[i]) tarjan(i,0);
35
   if(fail){
```

1.2. 割点与桥 (ct) 1. Graph Theory

```
puts("Impossible");
                                                            9}edge[MAXM];
                                                             10 struct Edge {
     return 0;}
   for(int i = 1; i \le n; ++i)
                                                            int v,nxt,w;Edge(){};
     if(used[id[i]]) ans[++tot] = i:
                                                            12 Edge(int _v,int _nxt,int _w):v(_v),nxt(_nxt),
39
   printf("%d\n",tot);
                                                            13
   std::sort(ans+1,ans+tot+1);
                                                            14 }e [MAXM];
   for(int i = 1;i<=tot;++i)</pre>
                                                            15 inline void addedge(int u,int v,int w){
     printf("%d ",ans[i]);
                                                                e[++cnt]=Edge(v,adj[u],w);adj[u]=cnt;}
   return 0;}
                                                            17 void dij(int S){
                                                                for(int i = 1;i<=N;i++){
1.2. 割点与桥 (ct)
                                                                   dist[i]=INF;dep[i]=0x3f3f3f3f;
                                                                   used[i]=0;from[i]=0;}
割点
                                                             20
                                                                static priority_queue <pair<LL,int>,vector<</pre>
                                                             21
int dfn[maxn],low[maxn],timer,ans,num;
                                                            22
                                                                   pair<LL,int>>,greater<pair<LL,int>>>hp;
2void tarjan(int x,int fa){
                                                                while(!hp.empty())hp.pop();
                                                             23
   dfn[x] = low[x] = ++timer;
                                                                hp.push(make_pair(dist[S]=0,S));dep[S]=1;
   for(Edge *iter = last[x];iter;iter = iter->next)
                                                                while(!hp.empty()){
     if(iter->to!=fa){
                                                                  pair<LL,int> now=hp.top();hp.pop();
                                                            26
       if(!dfn[iter->to]){
                                                            27
                                                                   int u=now.second;
         tarjan(iter->to,x);
                                                            28
                                                                   if(used[u])continue;else used[u]=true;
         cmin(low[x],low[iter->to]);
                                                                   for(int p=adj[u];p;p=e[p].nxt){
                                                            29
         if(dfn[x] <= low[iter->to]){
                                                                     int v=e[p].v;if(dist[u]+e[p].w<dist[v]){</pre>
                                                             30
           cut[x] = 1;
                                                                       dist[v]=dist[u]+e[p].w;dep[v]=dep[u]+1;
                                                            31
           if(!fa&&dfn[x]<low[iter->to]) num = 233;
                                                                       from[v]=p;hp.push(make_pair(dist[v],v));
           else if(!fa) ++num;}
                                                                   }}}
                                                             33
       }else cmin(low[x],dfn[iter->to]);}}
                                                                for(int i=1;i<=m;i++)w[i]=0;
                                                             34
14 int main(){
                                                                for(int i=1;i<=N;i++)if(from[i])w[from[i]]=-1;</pre>
                                                             35
   for(int i = 1;i<=n;++i)
                                                                for(int i=1;i<=m;i++)</pre>
                                                             36
     if(!dfn[i]){
16
                                                             37
                                                                   if(~w[i]&&dist[edge[i].u]<INF&&</pre>
       num = 0; tarjan(i,0);
                                                             38
                                                                      dist[edge[i].v]<INF)w[i]=-dist[edge[i].u]+
       if(num==1) cut[i] = 0;}}
18
                                                             39
                                                                            (dist[edge[i].v]+edge[i].w);
                                                             40
                                                                   else w[i]=-1;
                                                            41}
int dfn[maxn],low[maxn],timer;
                                                            42 inline bool cmp_dep(int p,int q){
2 void tarjan(int x,int fa){
                                                            43 return dep[p]<dep[q];}
   dfn[x] = low[x] = ++timer;
   for(Edge *iter = last[x];iter;iter = iter->next)
                                                            44 struct Heap{
                                                            45 LL kev;
     if(iter->to!=fa){
                                                                int id,lc,rc,dist;
       if(!dfn[iter->to]){
                                                                Heap(){};
         dfs(iter->to,x);
                                                                Heap(LL k,int i,int l,int r,int d)
         cmin(low[x],low[iter->to]);
                                                            48
         if(dfn[x]<low[iter->to])
                                                                     : key(k),id(i),lc(l),rc(r),dist(d){};
            ans[x][iter->to] = ans[iter->to][x] = 1;
                                                                inline void clear(){key=0;id=lc=rc=dist=0;}
                                                             51 }hp [MAXNODE];
       }else cmin(low[x],dfn[iter->to]); } }
                                                            52inline int merge_simple(int u,int v){
1.3. Steiner tree (lhv)
                                                                if(!u)return v;if(!v)return u;
                                                            53
                                                                if(hp[u].key>hp[v].key)swap(u,v);
void Steiner_Tree(){
                                                                hp[u].rc=merge_simple(hp[u].rc,v);
                                                            55
   memset(f,0x3f,sizeof(f));
                                                                if(hp[hp[u].lc].dist<hp[hp[u].rc].dist)</pre>
                                                            56
   for(int i=1;i<=n;i++)f[0][i]=0;
                                                                   swap(hp[u].lc,hp[u].rc);
                                                            57
   for(int i=1;i<=p;i++)f[1<<(i-1)][idx[i]]=0;
                                                                hp[u].dist=hp[hp[u].rc].dist+1;
                                                            58
   int S=1<<p;
                                                            59
                                                                return u;}
   for(int s=1;s<S;s++){</pre>
                                                            60 inline int merge_full(int u,int v){
     for(int i=1;i<=n;i++)</pre>
                                                                if(!u)return v;if(!v)return u;
       for(int k=(s-1)&s;k;k=(k-1)&s)
         f[s][i]=min(f[s][i],f[k][i]+f[s^k][i]);
                                                                if(hp[u].key>hp[v].key)swap(u,v);
                                                                int nnode=++cnt;hp[nnode]=hp[u];
     SPFA(f[s]);
10
                                                                hp[nnode].rc=merge_full(hp[nnode].rc,v);
11
                                                                if(hp[hp[nnode].lc].dist<hp[hp[nnode].rc].dist)</pre>
   int ans=inf;
                                                                   swap(hp[nnode].lc,hp[nnode].rc);
   for(int i=1;i<=n;i++)ans=min(ans,f[S-1][i]);
                                                            67 hp[nnode].dist=hp[hp[nnode].rc].dist+1;
14 }
                                                            68 return nnode;}
1.4. K 短路 (lhy)
                                                            69using ele=pair<LL,int>;
                                                            70 priority_queue <ele, vector<ele>, greater<ele>> Q;
1 const int MAXNODE=MN+MAXM*2;
                                                            71 int main(){
2 int n,m,cnt,S,T,Kth,N,TT,used[MN];
                                                            72 while(scanf("%d%d",&n,&m)!=EOF){
int rt[MN],seq[MN],adj[MN],from[MN],dep[MN];
                                                                   scanf("%d%d%d%d", &S, &T, &Kth, &TT);
                                                            73
4LL dist[MN],w[MAXM],ans[MAXK];
                                                                   for(int i=1;i<=m;i++){int u,v,w;</pre>
                                                            74
5struct GivenEdge{
                                                            75
                                                                     \operatorname{scanf}("%d%d%d", \&u, \&v, \&w); \operatorname{edge}[i] = \{u, v, w\}; \}
  int u,v,w;GivenEdge(){};
                                                            76
                                                                   N=n;memset(adj,0,sizeof(*adj)*(N+1));cnt=0;
   GivenEdge(int _u,int _v,int _w): u(_u),v(_v),
                                      w(_w)\{\};
```

1.5. 最大团 (Nightfall) 1. Graph Theory

```
for(int i=1;i<=m;i++)</pre>
                                                                      int pi = R[i].i,k = 1;
        addedge(edge[i].v,edge[i].u,edge[i].w);
                                                                      while(cut1(pi,C[k])) k++;
                                                             39
78
      dij(T);if(dist[S]>TT){/*NO PATH*/;continue;}
                                                                      if(k>maxno) maxno = k,C[maxno+1].clear();
                                                              40
79
                                                                      C[k].push_back(pi);
      for(int i=1;i<=N;i++)seq[i]=i;</pre>
                                                              41
80
      sort(seq+1,seq+N+1,cmp_dep);
                                                              42
                                                                      if(k<min_k) R[j++].i = pi; }</pre>
81
      cnt=0;memset(adj,0,sizeof(*adj)*(N+1));
                                                              43
                                                                    if(j>0) R[j-1].d = 0;
82
      memset(rt,0,sizeof(*rt)*(N+1));
                                                              44
                                                                   for(int k = min_k;k<=maxno;k++)</pre>
83
      for(int i=1;i<=m;i++)</pre>
                                                                      for(int i = 0;i<(int)C[k].size();i++)</pre>
                                                              45
84
        addedge(edge[i].u,edge[i].v,edge[i].w);
                                                                        R[j].i = C[k][i],R[j++].d = k;}
85
                                                              46
      rt[T]=cnt=0; hp[0].dist=-1;
                                                                 void expand_dyn(Vertices &R){
86
                                                              47
                                                                   S[level].i1=S[level].i1+S[level-1].i1-S[level].i2;
      for(int i=1;i<=N;i++){</pre>
                                                              48
87
        int u=seq[i],v=edge[from[u]].v;rt[u]=0;
                                                                   S[level].i2 = S[level-1].i1;
                                                              49
88
                                                                   while((int)R.size()){
        for(int p=adj[u];p;p=e[p].nxt){if(~w[p]){
                                                              50
89
            hp[++cnt]=Heap(w[p],p,0,0,0);
                                                                      if((int)Q.size()+R.back().d>(int)QMAX.size()){
                                                              51
qη
                                                                        Q.push_back(R.back().i);
            rt[u]=merge_simple(rt[u],cnt);}}
                                                              52
91
        if(i==1)continue;
                                                              53
                                                                        Vertices Rp; cut2(R,Rp);
92
        rt[u]=merge_full(rt[u],rt[v]);}
                                                              54
                                                                        if((int)Rp.size()){
93
      while(!Q.empty())Q.pop();
                                                                          if((float)S[level].i1/++pk<Tlimit)</pre>
94
                                                              55
      Q.push(make_pair(dist[S],0));edge[0].v=S;
                                                              56
                                                                            degree_sort(Rp);
95
      for(int kth=1,t;kth<=Kth;kth++){//ans[1..Kth]</pre>
                                                                          color_sort(Rp); S[level].i1++,level++;
        if(Q.empty()){ans[kth] = -1;continue;}
                                                                          expand_dyn(Rp); level--;
                                                                        }else if((int)Q.size()>(int)QMAX.size())
        pair<LL,int> now=Q.top();Q.pop();
                                                              59
98
        ans[kth]=now.first;int p=now.second;
                                                                          QMAX = Q;
                                                              60
99
        if(t=hp[p].lc)Q.push(make_pair(
                                                                        Q.pop_back();
                                                              61
100
          hp[t].key+now.first-hp[p].key,t));
                                                                     }else return;
101
                                                              62
        if(t=hp[p].rc)Q.push(make_pair(
                                                                     R.pop_back(); }}
                                                              63
102
              hp[t].key+now.first-hp[p].key,t));
                                                                 void mcqdyn(int *maxclique,int &sz){
                                                              64
        if(t=rt[edge[hp[p].id].v])Q.push(make_pair(
                                                                   set_degrees(V);
                                                              65
104
            hp[t].key+now.first,t));}}
                                                                    sort(V.begin(), V.end(), desc_degree);
                                                              66
105
                                                              67
                                                                    init_colors(V);
 1.5. 最大团 (Nightfall)
                                                              68
                                                                   for(int i = 0;i<(int)V.size()+1;i++)</pre>
    时间复杂度建议 n \le 150
                                                              69
                                                                     S[i].i1 = S[i].i2 = 0;
                                                                    expand_dyn(V); sz = (int)QMAX.size();
 1typedef bool BB[N];
                                                              70
                                                             71
                                                                   for(int i = 0;i<(int)QMAX.size();i++)</pre>
 2struct Maxclique {
                                                                     maxclique[i] = QMAX[i]; }
                                                             72
   const BB *e; int pk,level; const float Tlimit;
                                                                 void degree_sort(Vertices &R){
                                                             73
   struct Vertex {
                                                                   set_degrees(R);
                                                             74
      int i,d;
                                                                   sort(R.begin(),R.end(),desc_degree); }
                                                             75
      Vertex(int i): i(i),d(0){} };
                                                                 Maxclique(const BB *conn,const int sz,
                                                             76
    typedef vector <Vertex> Vertices; Vertices V;
                                                                          const float tt = .025)
                                                             77
    typedef vector<int> ColorClass; ColorClass QMAX,Q;
                                                                      : pk(0),level(1),Tlimit(tt){
                                                             78
    vector <ColorClass> C;
                                                             79
                                                                   for(int i = 0;i<sz;i++) V.push_back(Vertex(i));</pre>
    static bool desc_degree(const Vertex &vi,
                                                              80
                                                                   e = conn,C.resize(sz+1),S.resize(sz+1); }};
                             const Vertex &vj){
                                                              81 BB e[N]:
      return vi.d>vj.d; }
                                                             82 int ans, sol[N];
    void init_colors(Vertices &v){
13
                                                              83// for(...) e[x][y]=e[y][x]=true;
      const int max_degree = v[0].d;
14
                                                             84// Maxclique mc(e,n);
      for(int i = 0;i<(int)v.size();i++)</pre>
                                                              s5// mc.mcqdyn(sol,ans); // 全部 0 下标
        v[i].d = min(i,max_degree)+1; }
16
                                                              86//for(int i = 0;i<ans;++i) cout << sol[i] <<endl;
    void set_degrees(Vertices &v){
      for(int i = 0,j;i<(int)v.size();i++)</pre>
18
                                                              1.6. 极大团计数 (Nightfall)
        for(v[i].d = j = 0; j < (int)v.size(); j++)
19
          v[i].d += e[v[i].i][v[j].i]; }
                                                                  0-based, 需删除自环
20
                                                              极大团计数, 最坏情况 O(3^{n/3})
    struct StepCount {
21
      int i1,i2;
                                                              111 ans; ull E[64];
      StepCount(): i1(0),i2(0){} };
23
                                                              2#define bit(i) (1ULL << (i))
    vector <StepCount> S;
24
                                                              3void dfs(ull P,ull X,ull R){ //不要方案可去掉 R
    bool cut1(const int pi,const ColorClass &A){
25
                                                              4 if(!P&&!X){ ++ans; sol.pb(R); return; }
      for(int i = 0;i<(int)A.size();i++)</pre>
26
                                                                 ull Q = P&~E[__builtin_ctzll(P|X)];
        if(e[pi][A[i]]) return true;
27
                                                                 for(int i;i = __builtin_ctzll(Q),Q;
      return false: }
28
                                                                      Q &= ~bit(i)){
    void cut2(const Vertices &A, Vertices &B){
29
                                                                   dfs(P&E[i],X&E[i],R|bit(i));
      for(int i = 0; i < (int)A.size()-1; i++)
30
                                                                   P &= ~bit(i),X |= bit(i); }}
        if(e[A.back().i][A[i].i])
                                                             _{10}//ans = 0;dfs(n== 64 ? ~OULL : bit(n) - 1,0,0);
          B.push_back(A[i].i); }
    void color_sort(Vertices &R){
33
                                                              1.7. SAP (lhy)
      int j = 0, maxno = 1;
                                                              void SAP(int n,int st,int ed){
      int min_k=max((int)QMAX.size()-(int)Q.size()+1,1);
      C[1].clear(),C[2].clear();
                                                              for(int i=1;i<=n;i++)now[i]=son[i];sumd[0]=n;</pre>
      for(int i = 0;i<(int)R.size();i++){</pre>
                                                             int flow=inf,x=st;
```

```
18
   while(dis[st]<n){
                                                               int lca(int u,int v){
     back[x]=flow;int flag=0;
                                                                  for(++W;;u=pre[mat[u]],swap(u,v))
                                                            19
                                                                    if(vis[u=find(u)]==W)return u;
     for(int i=now[x];i!=-1;i=edge[i].next){
                                                            20
       int y=edge[i].y;
                                                                    else vis[u]=u?W:0:
                                                            21
       if(edge[i].f&&dis[y]+1==dis[x]){
                                                            22
                                                                }
         flag=1; now[x]=i; pre[y]=i;
                                                                void aug(int u,int v){
                                                            23
         flow=min(flow,edge[i].f);x=y;
                                                                  for(int w;u;v=pre[u=w])
                                                            24
10
         if(x==ed){ans+=flow; while(x!=st){
                                                                    w=mat[v],mat[mat[u]=v]=u;
                                                            25
              edge[pre[x]].f-=flow;
                                                            26
              edge[pre[x]^1].f+=flow;
                                                                void blo(int u,int v,int f){
13
              x=edge[pre[x]].x;}flow=inf;}break;}}
                                                                  for(int w;find(u)^f;u=pre[v=w]){
                                                            28
     if(flag)continue;int minn=n-1,tmp;
                                                                    pre[u]=v,F[u]?0:F[u]=f;
15
                                                             29
     for(int i=son[x];i!=-1;i=edge[i].next){
                                                                    F[w = mat[u]]?0:F[w]=f;
                                                            30
16
       int y=edge[i].y;
                                                                    tp[w]^1?0:tp[q[++1]=w]=-1;
                                                             31
       if(edge[i].f&&dis[y]<minn){</pre>
                                                             32
18
                                                                }
         minn=dis[y];tmp=i;}}
                                                             33
19
                                                                int bfs(int x){
     now[x]=tmp;
                                                            34
20
     if(!(--sumd[dis[x]]))return;
                                                                  for(int i=1;i<=n;i++)tp[i]=F[i]=0;</pre>
21
                                                            35
     sumd[dis[x]=minn+1]++;
                                                                  h=1=0; q[++1]=x; tp[x]--;
                                                            36
     if(x!=st)flow=back[x=edge[pre[x]].x];}}
                                                                  while(h<1){
                                                                    x = q[++h];
1.8. 二分图最大匹配 (lhy)
                                                                    for(int i=son[x];i;i=edge[i].next){
   左侧 n 个点, 右侧 m 个点, 1-based, 初始化将 matx 和 maty
                                                                      int y=edge[i].y,Lca;
置为 0
                                                                      if(!tp[y]){
                                                             41
                                                                         if(!mat[y])return aug(y,x),1;
                                                             42
int BFS(){
                                                                         pre[y]=x,++tp[y];--tp[q[++1] = mat[y]];
                                                             43
1 int flag=0,h=0,l=0;
                                                                      }else if(tp[y]^1&&find(x)^find(y))
                                                             44
   for(int i=1;i<=k;i++)dy[i]=0;
                                                             45
                                                                         blo(x,y,Lca=lca(x,y)),blo(y,x,Lca);
   for(int i=1;i<=n;i++){</pre>
                                                             46
       dx[i]=0;if(!matx[i])q[++1]=i;}
                                                                  }
                                                             47
   while(h<1){
                                                             48
                                                                  return 0:
     int x=q[++h];
                                                                }
                                                            49
     for(int i=son[x];i;i=edge[i].next){
                                                                int solve(){
                                                            50
       int y=edge[i].y;
                                                            51
                                                                  int ans=0:
       if(!dy[y]){
                                                                  for(int i=1;i<=n;i++)if(!mat[i])ans+=bfs(i);</pre>
                                                            52
         dy[y]=dx[x]+1;if(!maty[y])flag=1;
                                                                  return ans;
                                                            53
         else{dx[maty[y]]=dx[x]+2;q[++1]=maty[y];}
                                                            54 }
       }}}
                                                            55 }G;
   return flag;}
15 int DFS(int x){
                                                             1.10. KM 算法 (Nightfall)
   for(int i=son[x];i;i=edge[i].next){
                                                                 O(n^3), 1-based, 最大权匹配
     int y=edge[i].y;
     if(dy[y]==dx[x]+1){
                                                             不存在的边权值开到 -n \times (|MAXV|), \infty 为 3n \times (|MAXV|)
18
       dy[y]=0;
                                                             匹配为 (lk_i, i)
19
       if(!maty[y]||DFS(maty[y])){
20
                                                             1long long KM(int n,long long w[N][N]){
         matx[x]=y,maty[y]=x;return 1;}}
                                                                long long ans=0,d;int x,py,p;
   return 0;}
                                                                for(int i=1;i<=n;i++)lx[i]=ly[i]=0,lk[i]=-1;
23 void Hopcroft(){
                                                                for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)</pre>
   for(int i=1;i<=n;i++)matx[i]=maty[i]=0;</pre>
                                                                    lx[i]=max(lx[i],w[i][j]);
   while(BFS())
                                                                for(int i=1;i<=n;i++){</pre>
     for(int i=1;i<=n;i++)if(!matx[i])DFS(i);}</pre>
                                                                  for(int j=1;j<=n;j++)slk[j]=inf,vy[j]=0;</pre>
1.9. 一般图最大匹配 (lhy)
                                                                  for(lk[py=0]=i;lk[py];py=p){
                                                                     vy[py]=1;d=inf;x=lk[py];
1struct blossom {
                                                                    for(int y=1;y<=n;y++)</pre>
   struct Edge {
                                                                      if(!vy[y]){
     int x,y,next;
                                                             12
                                                                         if(lx[x]+ly[y]-w[x][y] < slk[y])
   }edge[M];
                                                                           slk[y]=lx[x]+ly[y]-w[x][y],pre[y]=py;
                                                             13
   int n,W,tot,h,l,son[N];
                                                                         if(slk[y]<d)d=slk[y],p=y;}</pre>
                                                             14
   int mat[N],pre[N],tp[N],q[N],vis[N],F[N];
                                                                    for(int y=0;y<=n;y++)</pre>
                                                            15
   void Prepare(int n_){
                                                                      if(vy[y])lx[lk[y]]-=d,ly[y]+=d;
                                                             16
     n=n_{;W=tot=0};
                                                                      else slk[y]-=d;}
     for(int i=1;i<=n;i++)son[i]=mat[i]=vis[i]=0;</pre>
9
                                                                  for(;py;py=pre[py])lk[py]=lk[pre[py]];}
                                                            18
   }
10
                                                                for(int i=1;i<=n;i++)ans+=lx[i]+ly[i];</pre>
   void add(int x,int y){
                                                                return ans;}
     edge[++tot].x=x;edge[tot].y=y;
     edge[tot].next=son[x];son[x]=tot;
13
                                                             1.11. 最小树形图 (Nightfall)
14
                                                             using Val = long long;
   int find(int x){
     return F[x]?F[x]=find(F[x]):x;
                                                             2#define nil mem
16
   }
                                                            : 3struct Node {
17
```

1.12. 支配树 (Nightfall) 1. Graph Theory

```
4 Node *1,*r; int dist; int x,y; Val val,laz;
                                                            vector<int> e[N],dom[N],be[N];
5} mem[M] = {{nil,nil,-1}};
                                                                void ins(int x,int y){e[x].push_back(y);}
6 int sz = 0;
                                                                void dfs(int x){
7#define NEW(arg...) (new(mem + ++
                                                                 dfn[x] = ++cnt; id[cnt] = x;

    sz)Node{nil,nil,0,arg})

                                                                  for(auto i:e[x]){
8 void add(Node *x, Val o){
                                                                    if(!dfn[i])dfs(i),pa[dfn[i]] = dfn[x];
9 if(x!=nil) x->val += o,x->laz += o;}
                                                                    be[dfn[i]].push_back(dfn[x]); }}
                                                            10
10 void down(Node *x){
                                                                int get(int x){
add(x->1,x->laz); add(x->r,x->laz); x->laz = 0; }
                                                                  if(p[x]!=p[p[x]]){
12 Node *merge(Node *x, Node *y){
                                                            13
                                                                    if(semi[mn[x]]>semi[get(p[x])])
if(x==nil) return y; if(y==nil) return x;
                                                                      mn[x] = get(p[x]);
                                                            14
if (y-val<x-val) swap(x,y); //smalltop heap
                                                                    p[x] = p[p[x]]; 
                                                            15
down(x); x->r = merge(x->r,y);
                                                                  return mn[x]; }
                                                            16
if (x->l->dist< x->r->dist) swap(x->l,x->r);
                                                                Void I.T() {
                                                            17
x->dist = x->r->dist+1;
                                                                  for(int i = cnt;i>1;i--){
                                                            18
18 return x; }
                                                            19
                                                                    for(auto j:be[i])
                                                                      semi[i] = min(semi[i],semi[get(j)]);
19 Node *pop(Node *x){
                                                            20
   down(x); return merge(x->1,x->r);}
                                                            21
                                                                    dom[semi[i]].push_back(i);
21 struct DSU {
                                                            22
                                                                    int x = p[i] = pa[i];
22 int f[N];
                                                            23
                                                                    for(auto j:dom[x])
void clear(int n){
                                                            24
                                                                      idom[j] = (semi[get(j)] < x ? get(j) : x);
       for(int i = 0;i<=n;++i) f[i] = i; }
                                                            25
                                                                    dom[x].clear(); }
25 int fd(int x){
                                                                  for(int i = 2;i<=cnt;i++){</pre>
                                                            26
     if(f[x]==x) return x;
                                                                    if(idom[i]!=semi[i])idom[i] = idom[idom[i]];
                                                            27
26
     return f[x] = fd(f[x]); }
                                                                    dom[id[idom[i]]].push_back(id[i]); }}
                                                            : 28
int &operator[](int x){return f[fd(x)];} };
                                                                void build(){
                                                            29
29 DSU W,S; Node *H[N],*pe[N];
                                                                  for(int i = 1;i<=n;i++)
                                                            30
30 vector <pair<int,int>> G[N];
                                                                    dfn[i] = 0,dom[i].clear(),be[i].clear(),
                                                            31
                                                                      p[i] = mn[i] = semi[i] = i;
31 int dist[N],pa[N];
                                                            32
32// addedge(x, y, w) : NEW(x, y, w, 0)
                                                            33
                                                                  cnt = 0,dfs(s),LT(); }};
33 Val chuliu(int s,int n){ // O(ElogE)
   for(int i = 1;i<=n;++i) G[i].clear();
                                                            1.13. 虚树 (ct)
   Val re = 0;
   W.clear(n); S.clear(n);
                                                             struct Edge { Edge *next; int to;
   int rid = 0;
                                                             2}*last[maxn],e[maxn<<1],*ecnt = e;</pre>
   fill(H,H+n+1,(Node *)nil);
                                                             3inline void link(int a,int b);
   for(auto i = mem+1;i<=mem+sz;++i)</pre>
                                                             4 int a[maxn],n,dfn[maxn],pos[maxn],timer,inv[maxn];
     H[i->y] = merge(i,H[i->y]);
40
                                                             sint fa[maxn], size[maxn], dep[maxn], son[maxn],
   for(int i = 1;i<=n;++i) if(i!=s)</pre>
41
                                                             6 top[maxn], st[maxn], vis[maxn];
42
                                                             7void dfs1(int x); // 树剖
       auto in = H[S[i]]; H[S[i]] = pop(H[S[i]]);
43
                                                             8 void dfs2(int x);
       if(in==nil) return INF; // no solution
                                                             9inline int getlca(int a,int b);
       if(S[in->x]==S[i]) continue;
45
                                                            10 inline bool cmp(int a,int b){
       re += in->val; pe[S[i]] = in;
                                                            return dfn[a] < dfn[b];}</pre>
       // if (in->x == s) true root = in->y
47
                                                            12 inline bool isson(int a,int b){
       add(H[S[i]],-in->val);
48
                                                            return dfn[a] <= dfn[b] &&dfn[b] <= inv[a]; }
       if(W[in->x]!=W[i]){ W[in->x] = W[i];break; }
49
                                                            14 typedef long long ll;
       G[in->x].push_back({in->y,++rid});
50
                                                            15 bool imp[maxn];
       for(int j = S[in->x]; j!=S[i]; j = S[pe[j]->x]){
51
                                                            16 struct sEdge { sEdge *next; int to,w;
         G[pe[j]->x].push_back({pe[j]->y,rid});
52
                                                            17  *slast[maxn],se[maxn<<1],*secnt = se;</pre>
         H[j] = merge(H[S[i]],H[j]); S[i] = S[j]; }}
                                                            18 inline void slink(int a,int b,int w){
                                                            19 *++secnt = (sEdge){slast[a],b,w};
   for(int i = 1;i<=n;++i) if(i!=s&&S[i]==i)
55
                                                            20 slast[a] = secnt;}
     G[pe[i]->x].push_back({pe[i]->y,rid});
                                                           21int main(){
   return re; }
                                                                scanf("%d",&n);
                                                            22
58 void makeSol(int s,int n){
                                                                for(int i = 1;i<n;++i){</pre>
                                                            23
   fill(dist,dist+n+1,n+1); pa[s] = 0;
                                                                  int a,b; scanf("%d%d",&a,&b);link(a,b);}
   for(multiset<pair<int,int>> h={{0,s}};!h.empty();){
                                                                int m; scanf("%d",&m); dfs1(1); dfs2(1);
                                                            25
     int x = h.begin()->second;
61
                                                                memset(size, 0, (n+1) << 2);
                                                            26
     h.erase(h.begin()); dist[x] = 0;
62
                                                                for(;m;--m){
                                                            27
     for(auto i : G[x]) if(i.second<dist[i.first]){</pre>
63
                                                                  int top = 0; scanf("%d",&k);
                                                            28
       h.erase({dist[i.first],i.first});
                                                                  for(int i = 1;i<=k;++i)
                                                            29
       h.insert({dist[i.first] = i.second,i.first});
                                                                    scanf("%d", &a[i]), vis[a[i]] = imp[a[i]] = 1;
                                                            30
       pa[i.first] = x; }}}
                                                                  std::sort(a+1,a+k+1,cmp); int p = k;
                                                            31
                                                                  for(int i = 1;i<k;++i){
                                                            32
1.12. 支配树 (Nightfall)
                                                            33
                                                                    int lca = getlca(a[i],a[i+1]);
struct Dominator_Tree {
                                                                    if(!vis[lca]) vis[a[++p] = lca] = 1; }
                                                            34
                                                                  std::sort(a+1,a+p+1,cmp); st[++top] = a[1];
   int n.s.cnt:
                                                            35
   int dfn[N],id[N],pa[N],semi[N],idom[N],p[N],mn[N];
                                                                  for(int i = 2;i<=p;++i){
```

1.14. 点分治 (ct) 1. Graph Theory

```
while(!isson(st[top],a[i])) --top;
       slink(st[top],a[i],dep[a[i]]-dep[st[top]]);
38
       st[++top] = a[i]; }
39
     /* write your code here. */
40
     for(int i = 1; i \le p; ++i)
41
       vis[a[i]] = imp[a[i]] = 0,slast[a[i]] = 0;
42
43
   return 0; }
1.14. 点分治 (ct)
int root,son[maxn],size[maxn],sum;
2bool vis[maxn];
3void dfs_root(int x,int fa){
4 size[x] = 1;
   son[x] = 0;
   for(Edge *iter = last[x];iter;
       iter = iter->next){
     if(iter->to==fa||vis[iter->to]) continue;
     dfs_root(iter->to,x);
     size[x] += size[iter->to];
10
     cmax(son[x],size[iter->to]);
11
12
   cmax(son[x],sum-size[x]);
13
   if(!root||son[x]<son[root]) root = x;</pre>
14
15 }
16 void dfs_chain(int x,int fa){
     write your code here.
19
   for(Edge *iter = last[x];iter;
20
      iter = iter->next){
21
     if(vis[iter->to]||iter->to==fa) continue;
     dfs_chain(iter->to,x);
23
24
25 }
26 void calc(int x){
   for(Edge *iter = last[x];iter;
       iter = iter->next){
     if(vis[iter->to]) continue;
     dfs_chain(iter->to,x);
     /*write your code here.*/
31
32
33 }
34 void work(int x){
35 vis[x] = 1;
   calc(x);
   for(Edge *iter = last[x];iter;
       iter = iter->next){
     if(vis[iter->to]) continue;
39
     root = 0;
     sum = size[iter->to];
41
     dfs_root(iter->to,0);
42
     work(root);
43
   }
44
45 }
46 int main(){
47 root = 0;
   sum = n;
49 dfs_root(1,0);
   work(root);
51 return 0;
52}
1.15. Link-Cut Tree (ct)
   LCT 常见应用
 • 动态维护边双
可以通过 LCT 来解决一类动态边双连通分量问题。即静态的询问 133 }
```

可以用边双连通分量来解决,而树有加边等操作的问题。

把一个边双连通分量缩到 LCT 的一个点中,然后在 LCT 上求出 :35

答案。缩点的方法为加边时判断两点的连通性,如果已经联通则把 两点在目前 LCT 路径上的点都缩成一个点。

• 动态维护基环森林

通过 LCT 可以动态维护基环森林,即每个点有且仅有一个出度的 图。有修改操作,即改变某个点的出边。对于每颗基环森林记录-个点为根,并把环上额外的一条边单独记出,剩下的边用 LCT 维 护。一般使用有向 LCT 维护。

修改时分以下几种情况讨论:

- 修改的点是根,如果改的父亲在同一个连通块中,直接改额外边, 否则删去额外边,在 LCT 上加边。
- 修改的点不是根,那么把这个点和其父亲的联系切除。如果该点 和根在一个环上,那么把多的那条边加到 LCT 上。最后如果改的 那个父亲和修改的点在一个联通块中,记录额外边,否则 LCT 上 加边。

• 子树询问

通过记录轻边信息可以快速地维护出整颗 LCT 的一些值。如子树 和,子树最大值等。在 Access 时要进行虚实边切换,这时减去实边 的贡献、并加上新加虚边的贡献即可。有时需要套用数据结构、如 Set 来维护最值等问题。

```
模板:
-x \rightarrow y链 +z
```

- $x \rightarrow y$ 链变为 z
- 在以 x 为根的树对 y 子树的点权求和
- $-x \rightarrow y$ 链取 \max
- $-x \rightarrow y$ 链求和
- 连接 x, y
- 断开 x, y

V 单点值, sz 平衡树的 size, mv 链上最大, S 链上和, sm 区间 相同标记, lz 区间加标记, B 虚边之和, ST 子树信息和, SM 子 树和链上信息和。更新时:

```
S[x] = S[c[x][0]] + S[c[x][1]] + V[x]
ST[x] = B[x] + ST[c[x][0]] + ST[c[x][1]]
SM[x] = S[x] + ST[x]
```

```
struct Node *null;
 2struct Node {
 3 Node *ch[2],*fa,*pos;
    int val,mn,l,len;
 5 bool rev;
6
    // min_val in chain
    inline bool type(){
      return fa->ch[1]==this;
8
9
   inline bool check(){
10
11
      return fa->ch[type()]==this;
12 }
inline void pushup(){
      pos = this;
14
      mn = val;
15
       ch[0] \rightarrow mn < mn = ch[0] \rightarrow mn, pos = ch[0] \rightarrow pos
16
                    : 0;
       ch[1] \rightarrow mn < mn ? mn = ch[1] \rightarrow mn, pos = ch[1] \rightarrow pos
19
                    : 0;
20
      len = ch[0] -> len + ch[1] -> len + 1;
   }
21
    inline void pushdown(){
22
23
      if(rev){
         ch[0]->rev ^= 1;
24
         ch[1]->rev ^= 1;
25
         std::swap(ch[0],ch[1]);
26
         rev ^= 1;
28
    }
29
    inline void pushdownall(){
30
       if(check()) fa->pushdownall();
      pushdown();
34 inline void rotate(){
      bool d = type();
```

1.16. 圆方树 (ct) 1. Graph Theory

```
Node *f = fa,*gf = f->fa;
                                                                     do{
     (fa = gf,f->check()) ? fa->ch[f->type()] =
                                                                       now = st[top--];
37
                               this : 0;
                                                                       cmin(minn,c[now]);
38
                                                           15
     (f\rightarrow ch[d] = ch[!d])!=null ? ch[!d]\rightarrow fa = f
                                                                     }while(iter->to!=now);
                                                           16
39
                                                                     for(int i = top+1;i<=elder;++i)</pre>
                                : 0:
                                                           17
40
     (ch[!d] = f) -> fa = this;
                                                                       add(scc,st[i],minn);
                                                           18
41
     f->pushup();
                                                           19
                                                                     add(scc,x,minn);
42
43
                                                           20
   inline void splay(bool need = 1){
                                                           21
                                                                 }else if(!id[iter->to])
44
     if(need) pushdownall();
                                                           22
                                                                   cmin(low[x],dfn[iter->to]);
45
     for(;check();rotate())
                                                           23 }
46
       if(fa->check())
47
          (type()==fa->type() ? fa : this)
48
                                                            1.17. 无向图最小割 (Nightfall)
           ->rotate();
49
                                                            int d[N];bool v[N],g[N];
     pushup();
50
                                                            2int get(int &s,int &t){
51
                                                              CL(d);CL(v);int i,j,k,an,mx;
   inline Node *access(){
52
                                                               for(i=1; i \le n; i++) {k=mx=-1;
     Node *i = this, *j = null;
53
                                                                 for(j=1;j<=n;j++)
     for(;i!=null;i = (j = i)->fa){
54
                                                                   if(!g[j]\&\&!v[j]\&\&d[j]>mx)k=j,mx=d[j];
       i->splay();
                                                                 if(k==-1)return an;
       i->ch[1] = j;
                                                                 s=t; t=k; an=mx; v[k]=1;
57
       i->pushup();
                                                                 for(j=1;j<=n;j++)
     }
58
                                                                   if(!g[j]&&!v[j])d[j]+=w[k][j];}return an;}
                                                           10
59
     return j;
                                                           11 int mincut(int n,int w[N][N]){
   }
60
                                                           12 //n 为点数, w[i][j] 为 i 到 j 的流量
   inline void make_root(){
61
                                                           13 //返回无向图所有点对最小割之和
     access():
62
                                                           int ans=0,i,j,s,t,x,y,z;
     splav():
63
                                                           15 for(i=1;i<=n-1;i++){
     rev ^= 1;
64
                                                                 ans=min(ans,get(s,t));g[t]=1;if(!ans)break;
65
   }
                                                                 for(j=1;j<=n;j++)
                                                           17
66
   inline void link(Node *that){
                                                                   if(!g[j])w[s][j]=(w[j][s]+=w[j][t]);
                                                           18
67
     make_root();
                                                           19 return ans;}
     fa = that;
                                                           20// 无向图最小割树
     splay(0);
69
                                                           21void fz(int 1,int r){// 左闭右闭,分治建图
   }
70
                                                           22 if(l==r)return;S=a[1];T=a[r];
   inline void cut(Node *that){
71
                                                           23 reset();// 将所有边权复原
     make root();
                                                           24 flow(S,T);// 做网络流
     that->access();
73
                                                               dfs(S);// 找割集, v[x]=1 属于 S 集, 否则属于 T 集
     that->splay(0);
74
                                                               ADD(S,T,f1);// 在最小割树中建边
     that->ch[0] = fa = null;
75
                                                           27 L=1,R=r;
     that->pushup();
76
                                                           28 for(i=l;i<=r;i++)
   }
77
                                                                 if(v[a[i]])q[L++]=a[i];else q[R--]=a[i];
                                                           29
78  mem[maxn];
                                                           30 for(i=1;i<=r;i++)a[i]=q[i];</pre>
79 inline Node *query(Node *a, Node *b){
                                                           31 fz(1,L-1);fz(R+1,r);}
   a->make_root();
   b->access();
81
                                                            1.18. zkw 费用流 (lhy)
   b->splay(0);
82
   return b->pos;
83
                                                            int aug(int no,int res){
84 }
                                                               if(no==ED)return mincost+=111*pil*res,res;
85 inline int dist(Node *a, Node *b){
                                                               v[no]=1;int flow=0;
86 a->make_root();
                                                               for(int i=son[no];i!=-1;i=edge[i].next)
   b->access();
                                                                 if(edge[i].f&&!v[edge[i].y]&&!edge[i].c){
   b->splay(0);
                                                                   int d=aug(edge[i].y,min(res,edge[i].f));
   return b->len;
                                                                   edge[i].f-=d,edge[i^1].f+=d,flow+=d,
90 }
                                                                   res-=d;if(!res)return flow;}
                                                               return flow;}
1.16. 圆方树 (ct)
                                                           10 bool modlabel(){
int dfn[maxn],low[maxn],timer,st[maxn],top,
                                                               long long d=INF;
                                                           11
id[maxn],scc;
                                                               for(int i=1;i<=cnt;i++)if(v[i]){</pre>
                                                            12
3 void dfs(int x){
                                                                   for(int j=son[i];j!=-1;j=edge[j].next)
                                                            13
4 dfn[x] = low[x] = ++timer;
                                                                     if(edge[j].f\&\&!v[edge[j].y]\&\&edge[j].c<d)
                                                            14
                                                                       d=edge[j].c;}
   st[++top] = x;
   for(Edge *iter = last[x];iter;iter = iter->next)
                                                               if(d==INF)return 0;
                                                               for(int i=1;i<=cnt;i++)if(v[i]){</pre>
     if(!dfn[iter->to]){
                                                           17
       dfs(iter->to);
                                                                   for(int j=son[i];j!=-1;j=edge[j].next)
                                                           18
       cmin(low[x],low[iter->to]);
                                                                      edge[j].c-=d,edge[j^1].c+=d;
                                                           pil+=d;return 1;}
       if(dfn[x] == low[iter->to]){
         int now,elder = top,minn = c[x];
                                                           21 void minimum_cost_flow_zkw(){
                                                           int nowans=0;pil=0;nowf = 0;
         ++scc;
```

1.19. 图论知识 (gy,lhy) 1. Graph Theory

```
do{
do{
for(int i=1;i<=cnt;i++)v[i]=0;
nowans=aug(ST,inf);nowf+=nowans;
}while(nowans);}while(modlabel());}</pre>
```

1.19. 图论知识 (gy,lhy)

Hall theorem

二分图 G = (X,Y,E) 有完备匹配的充要条件是: 对于 X 的任意一个子集 S 都满足 $|S| \leq |A(S)|$, A(S) 是 Y 的子集,是 S 的邻集(与 S 有边的边集)。

Prufer 编码

树和其 prufer 编码——对应, 一颗 n 个点的树, 其 prufer 编码长度为 n-2, 且度数为 d_i 的点在 prufer 编码中出现 d_i-1 次。由树得到序列: 总共需要 n-2 步, 第 i 步在当前的树中寻找具有最小标号的叶子节点,将与其相连的点的标号设为 Prufer 序列的第 i 个元素 p_i ,并将此叶子节点从树中删除,直到最后得到一个长度为n-2 的 Prufer 序列和一个只有两个节点的树。

由序列得到树: 先将所有点的度赋初值为 1, 然后加上它的编号在 Prufer 序列中出现的次数, 得到每个点的度; 执行 n-2 步, 第 i 步选取具有最小标号的度为 1 的点 u 与 $v=p_i$ 相连, 得到树中的一条边, 并将 u 和 v 的度减 1。最后再把剩下的两个度为 1 的点连边,加入到树中。

相关结论:

- n 个点完全图, 每个点度数依次为 d_1,d_2,\ldots,dn ,这样生成树的棵树为: $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\ldots(d_n-1)!}$
- 左边有 n_1 个点,右边有 n_2 个点的完全二分图的生成树棵树为: $n_1^{n_2-1}+n_2^{n_1-1}$
- m 个连通块,每个连通块有 c_i 个点,把他们全部连通的生成树方案数: $(\sum c_i)^{m-2} \prod c_i$

差分约束

若要使得所有量两两的值最接近,则将如果将源点到各点的距离初始化为 0。若要使得某一变量与其余变量的差最大,则将源点到各点的距离初始化为 ∞ ,其中之一为 0。若求最小方案则跑最长路,否则跑最短路。

弦图

弦图:任意点数 ≥ 4 的环皆有弦的无向图 单纯点:与其相邻的点的诱导子图为完全图的点 完美消除序列:每次选择一个单纯点删去的序列 弦图必有完美消除序列

O(m+n) 求弦图的完美消除序列:每次选择未选择的标号最大的点,并将与其相连的点标号 +1,得到完美消除序列的反序最大团数 = 最小染色数:按完美消除序列从后往前贪心地染色最小团覆盖 = 最大点独立集:按完美消除序列从前往后贪心地选点加入点独立集

计数问题

• 有根树计数

$$\begin{split} a_1 &= 1 \\ a_{n+1} &= \frac{\sum\limits_{j=1}^{n} j \cdot a_j \cdot S_{n,j}}{n} \\ S_{n,j} &= \sum\limits_{i=1}^{n/j} a_{n+1-ij} = S_{n-j,j} + a_{n+1-j} \end{split}$$

• 无根树计数

$$\begin{cases} a_n - \sum_{i=1}^{n/2} a_i a_{n-i} & n \text{ is odd} \\ a_n - \sum_{i=1}^{n/2} a_i a_{n-i} + \frac{1}{2} a_{\frac{n}{2}} (a_{\frac{n}{2}} + 1) & n \text{ is even} \end{cases}$$

• 生成树计数

Kirchhoff Matrix T = Deg - A, Deg 是度数对角阵, A 是邻接矩阵。 无向图度数矩阵是每个点度数; 有向图度数矩阵是每个点入度。邻接矩阵 A[u][v] 表示 $u \to v$ 边个数, 重边按照边数计算, 自环不计入度数。

无向图生成树计数: c = |K的任意1 - n - 1阶主子式| 有向图外向树计数: c = |去掉根所在的那阶得到的主子式|

• Edmonds Matrix

Edmonds matrix A of a balanced (|U| = |V|) bipartite graph G = (U, V, E):

$$A_{ij} = \begin{cases} x_{ij} & (u_i, v_j) \in E \\ 0 & (u_i, v_j) \notin E \end{cases}$$

where the x_{ij} are indeterminates.

G 有完备匹配当且仅当关于 x_{ij} 的多项式 $\det(A_{ij})$ 不恒为 0。 完备匹配的个数等于多项式中单项式的个数

• 偶数点完全图完备匹配计数

(n-1)!!

• 无根二叉树计数

(2n-5)!!

• 有根二叉树计数

(2n-3)!!

上下界网络流

B(u,v) 表示边 (u,v) 流量的下界,C(u,v) 表示边 (u,v) 流量的上界,设 F(u,v) 表示边 (u,v) 的实际流量

设 G(u,v) = F(u,v) - B(u,v), 则 $0 \le G(u,v) \le C(u,v) - B(u,v)$

• 无源汇的上下界可行流

建立超级源点 S^* 和超级汇点 T^* ,对于原图每一条边 (u,v) 在新网络中连如下三条边: $S^* \to v$,容量为 B(u,v); $u \to T^*$,容量为 B(u,v); $u \to v$,容量为 C(u,v) - B(u,v)。最后求新网络的最大流,判断从超级源点 S^* 出发的边是否都满流即可,边 (u,v) 的最终解中的实际流量为 G(u,v) + B(u,v)。

• 有源汇的上下界可行流

从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边。按照无源汇的上下界可行流一样做即可,流量即为 $T \to S$ 边上的流量。

- 有源汇的上下界最大流
- 在有源汇的上下界可行流中,从汇点 T 到源点 S 的边改为连一条上界为 ∞,下界为 x 的边。x 满足二分性质,找到最大的 x 使得新网络存在有源汇的上下界可行流即为原图的最大流。
- 从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边,变成无源汇的网络。按照无源汇的上下界可行流的方法,建立超级源点 S^* 与超级汇点 T^* ,求一遍 S^* → T^* 的最大流,再将从汇点 T 到源点 S 的这条边拆掉,求一次 S → T 的最大流即可。
- 有源汇的上下界最小流
- 在有源汇的上下界可行流中,从汇点 T 到源点 S 的边改为连一条上界为 x,下界为 0 的边。x 满足二分性质,找到最小的 x 使得新网络存在有源汇的上下界可行流即为原图的最大流。
- 按照无源汇的上下界可行流的方法,建立超级源点 S^* 与超级汇点 T^* ,求一遍 S^* \to T^* 的最大流,但是注意不加上汇点 T 到源点 S 的这条边,即不使之改为无源汇的网络去求解。求完后,再加上那条汇点 T 到源点 S 的边,上界为 ∞ 的边。因为这条边的下界为 0,所以 S^* , T^* 无影响,再求一次 S^* \to T^* 的最大流。若超级源点 S^* 出发的边全部满流,则 T \to S 边上的流量即为原图的最小流,否则无解。
- 上下界费用流

求无源汇上下界最小费用可行流或有源汇上下界最小费用最大可行 流,用相应构图方法,给边加上费用即可。

求有源汇上下界最小费用最小可行流,先按相应构图方法建图,求出一个保证必要边满流情况下的最小费用。如果费用全部非负,那么此时的费用即为答案。如果费用有负数,继续做从S到T的流量任意的最小费用流,加上原来的费用就是答案。

费用流消负环

新建超级源 S^* 和超级汇 T^* ,对于所有流量非空的负权边 e,先满流 $(ans+=e.f^*e.c, e.rev.f+=e.f, e.f=0)$,再连边 $S^*\to e.to$, $e.from\to T^*$,流量均为 e.f(>0),费用均为 0。再连边 $T\to S$,流量为 ∞ ,费用为 0。跑一遍 $S^*\to T^*$ 的最小费用最大流,将费用累加 ans,拆掉 $T\to S$ 那条边(此边的流量为残量网络中 $S\to T$ 的流量。此时负环已消,再继续跑最小费用最大流。

二物流

水源 S_1 ,水汇 T_1 ,油源 S_2 ,油汇 T_2 ,每根管道流量共用,使流量和最大。

建超级源 S_1^* ,超级汇 T_1^* ,连边 $S_1^* \to S_1$, $S_1^* \to S_2$, $T_1 \to T_1^*$, $T_2 \to T_1^*$,设最大流为 x_1 。

建超级源 S_2^* ,超级汇 T_2^* ,连边 $S_2^* \to S_1$, $S_2^* \to T_2$, $T_1 \to T_2^*$, $S_2 \to T_2^*$,设最大流为 x_2 。则最大流中水流量 $\frac{x_1+x_2}{2}$,油流量 $\frac{x_1-x_2}{2}$ 。

最大权闭合子图

给定一个带点权的有向图,求其最大权闭合子图。

从源点 S 向每一条正权点连一条容量为权值的边,每个负权点向 汇点 T 连一条容量为权值绝对值的边,有向图原来的边容量为 ∞ 。 权值和 - 最小割。

最大密度子图

给定一个无向图, 求其一个子图, 使得子图的边数 |E| 和点数 |V| 满足 $\frac{|E|}{|V|}$ 最大。

求它的最小割,与源点 S 连通的点构成最大权闭合子图,权值为正 = 二分答案 k,使得 $|E|-k|V| \geq 0$ 有解,将原图边和点都看作点, 边 (u,v) 分别向 u 和 v 连边求最大权闭合子图。

Ch2. Math

2.1. int64 相乘取模 (Durandal)

```
1LL mul(LL x,LL y,LL p){
LL t = (x*y-(LL)((LD)x/p*y+1e-3)*p)%p;
3 return t<0?t+p:t;}</pre>
```

2.2. ex-Euclid (gy)

```
1// ax+by=gcd(a,b)
2 int extend_gcd(int a,int b,int &x,int &y){
if(b==0){x = 1,y = 0;return a;}
  int res = extend_gcd(b,a%b,x,y);int t = y;
   y = x-a/b*y; x = t;return res;}
6// return x: ax+by=c or -1
7int solve_equ(int a,int b,int c){
s int x,y,d;d = extend_gcd(a,b,x,y);
9 if(c%d)return -1;
int t = c/d; x *= t; y *= t; int k = b/d;
x = (x%k+k)%k; return x;
_{12}// return x: ax==b(mod p) or -1
13 int solve(int a,int b,int p){
a = (a\%p+p)\%p;b = (b\%p+p)\%p;
return solve_equ(a,p,b);}
```

2.3. 中国剩余定理 (Durandal)

返回是否可行, 余数和模数结果为 r_1 , m_1

```
1bool CRT(int &r1,int &m1,int r2,int m2) {
int x,y,g=extend_gcd(m1,m2,x,y);
if ((r2-r1)\%g!=0) return false;
x = 111*(r2-r1)*x\%m2; if (x<0) x += m2;
5 x /= g; r1 += m1 * x; m1 *= m2 / g; return true; }
```

2.4. 线性同余不等式 (Durandal)

必须满足 $0 \le d < m$, $0 \le l \le r < m$, 返回 $\min\{x \ge 0 \mid l \le r \le m\}$ $x \cdot d \mod m \leq r$ }, 无解返回 -1

```
2 calc(int64_t d,int64_t m,int64_t l,int64_t r){
3 if(l==0) return 0; if(d==0) return -1;
if(d*2>m) return calc(m-d,m,m-r,m-l);
5 if((l-1)/d<r/d) return (l-1)/d+1;</pre>
int64_t k = calc((-m\%d+d)\%d,d,1\%d,r\%d);
  if (k==-1) return -1;
  return (k*m+l-1)/d+1; }
```

2.5. 平方剩余 (Nightfall)

```
x^2 \equiv a \pmod{p}, 0 \le a < p
返回是否存在解
```

p 必须是质数, 若是多个单次质数的乘积可以分别求解再用 CRT 合 并

复杂度为 $O(\log n)$

```
1void multiply(ll &c,ll &d,ll a,ll b,ll w){
int cc = (a*c+b*d%MOD*w)%MOD;
int dd = (a*d+b*c)\%MOD;
c = cc,d = dd;}
5bool solve(int n,int &x){
6 if(n==0) return x = 0,true;
7 if(MOD==2) return x = 1,true;
8 if(power(n,MOD/2,MOD)==MOD-1) return false;
9 ll c = 1,d = 0,b = 1,a,w;
```

```
10 // finding a such that a^2 - n is not a square
11 do{
     a = rand()%MOD;
12
    w = (a*a-n+MOD)\%MOD;
13
     if(w==0) return x = a,true;
14
15 }while(power(w,MOD/2,MOD)!=MOD-1);
16 for(int times = (MOD+1)/2;times;times >>= 1){
17
     if(times&1) multiply(c,d,a,b,w);
     multiply(a,b,a,b,w); }
18
_{19} // x = (a + sqrt(w)) ^ ((p + 1) / 2)
20 return x = c,true; }
 2.6. 组合数 (Nightfall)
 int 1,a[33],p[33],P[33];
 2//求 n! mod pk^tk, 返回值 U{不包含 pk 的值,pk 出现的次
 → 数}
3U fac(int k,LL n){
4 if(!n)return U{1,0};
5 LL x = n/p[k], y = n/P[k], ans = 1; int i;
6 if(y){// 求出循环节的答案
     for(i=2;i<P[k];i++) if(i\%p[k]) ans = ans*i%P[k];
     ans = Pw(ans,y,P[k]); }
for(i = y*P[k]; i \le n; i++) if(i\%p[k]) ans = ans*i\%M;
Uz = fac(k,x); return U{ans*z.xM,x+z.z}; }
11LL get(int k,LL n,LL m){// 求 C(n,m) mod pk^tk
U a = fac(k,n),b = fac(k,m), c = fac(k,n-m);
13 return Pw(p[k],a.z-b.z-c.z,P[k])*a.x%P[k]*
          inv(b.x,P[k])%P[k]*inv(c.x,P[k])%P[k]; }
15LL CRT(){// CRT 合并答案
16 LL d, w, y, x, ans = 0;
17 for(int i=1;i<=1;i++)
w = M/P[i], exgcd(w, P[i], x, y), ans =
     (ans+w*x\%M*a[i])\%M;
19
20 return (ans+M)%M;}
21LL C(LL n,LL m){// 求 C(n,m)
 22 for(int i=1;i<=1;i++) a[i] = get(i,n,m);</pre>
   return CRT();}
24LL exLucas(LL n,LL m,int M){
25 int jj = M,i;
   // 求 C(n,m)mod M,M=prod(pi^ki), 时间 O(pi^kilg^2n)
27 for(i = 2;i*i<=jj;i++) if(jj%i==0)
28
     for(p[++1] = i,P[1] = 1;jj\%i==0;P[1] *= p[1])
```

2.7. Miller Rabin & Pollard Rho (gy)

if(jj>1)1++,p[1] = P[1] = jj; return C(n,m); }

jj /= i;

Test Set	First Wrong Answer
2, 3, 5, 7	(INT32_MAX)
2, 7, 61	4,759,123,141
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37	(INT64_MAX)

```
2multiply_mod(int64_t x,int64_t y,int64_t p){
   int64_t =
      (x*y-(int64_t)((long double)x/p*y+1e-3)*p)%p;
 5 return t<0 ? t+p : t; }</pre>
 6int64_t add_mod(int64_t x,int64_t y,int64_t p){
 return (Oull+x+y)%p; }
sint64 t
9power_mod(int64_t x,int64_t exp,int64_t p){
\vdots<sub>10</sub> int64_t ans = 1;
```

29

```
while(exp){
                                                                    bin.push_back(add(bin[i-1],bin[i-1]));}
     if(exp&1) ans = multiply_mod(ans,x,p);
                                                                int calc(long long k){
12
                                                                  poly a(n+1,0);a[0]=1;int ret=0;
     x = multiply_mod(x,x,p); exp >>= 1;}
                                                            22
   return ans; }
                                                                  for(int i=0;i<LOG;i++)</pre>
                                                            23
14
                                                                    if((k>>i)&1)a=add(a,bin[i]);
15 bool
                                                            24
16 miller_rabin_check(int64_t prime,int64_t base){
                                                                  for(int i=0;i<n;i++)</pre>
                                                            25
                                                                    (ret+=111*a[i+1]*first[i]%mo)%=mo;
   int64_t number = prime-1;
                                                            26
   for(;~number&1;number >>= 1) continue;
                                                                  return ret;}};
                                                            27
18
   int64_t result = power_mod(base,number,prime);
                                                             2.9. 线性基 (ct)
20
     number!=prime-1&&result!=1&&result!=prime-1;
                                                             int main(){
     number <<= 1)
22
                                                                for(int i = 1; i <= n; ++i){
     result = multiply_mod(result,result,prime);
                                                                  ull x=F();cmax(m,63-__builtin_clzll(x));
return result==prime-1||(number&1)==1; }
                                                                  for(;x;){
25bool miller_rabin(int64_t number){
                                                                    tmp = __builtin_ctzll(x);
if(number<2) return false;
                                                                    if(!b[tmp]){ b[tmp] = x; break; }
if (number<4) return true;
                                                                    x ^= b[tmp]; } }}
if(~number&1) return false;
29 for(int i = 0;
                                                             2.10. \ FFT\ NTT\ FWT\ (lhy,ct,gy)
       i<test_case_size&&test_cases[i]<number;i++)</pre>
                                                             FFT (ct)
     if(!miller_rabin_check(number,test_cases[i]))
                                                                0-based
       return false;
33 return true; }
                                                             1typedef double db;
34 int64_t gcd(int64_t x,int64_t y){
                                                             2 const db pi = acos(-1);
35 return y==0 ? x : gcd(y,x\%y); }
                                                             struct Complex {
36\,\text{int}64\_\text{t}
                                                                db x.v:
37pollard_rho_test(int64_t number,int64_t seed){
                                                                Complex operator*(const Complex &that) const{
   int64_t x = rand()\%(number-1)+1, y = x;
                                                                  return (Complex) {x*that.x-y*that.y,
   int head = 1,tail = 2;
                                                                                    x*that.y+y*that.x};
   while(true){
     x = multiply_mod(x,x,number);
                                                                Complex operator+(const Complex &that) const{
                                                             9
     x = add_mod(x,seed,number);
                                                                  return (Complex){x+that.x,y+that.y};
                                                            10
     if(x==y) return number;
                                                            11 }
     int64_t answer = gcd(std::abs(x-y),number);
                                                            12 Complex operator+=(const Complex &that){
     if(answer>1&&answer<number) return answer;</pre>
45
                                                                  x += that.x;
                                                            13
     if(++head==tail){ y = x; tail <<= 1; }}}</pre>
                                                                  y += that.y;
                                                            14
47 void factorize(int64_t number,
                                                            15 }
                 std::vector <int64_t> &divisor){
48
                                                            16
                                                                Complex operator-(const Complex &that) const{
   if(number>1){
49
                                                            17
                                                                  return (Complex) {x-that.x,y-that.y};
     if(miller_rabin(number)){
50
                                                            18
       divisor.push_back(number);
51
                                                            19 buf_a[maxn],buf_b[maxn],buf_c[maxn],w[maxn],
     }else{
52
                                                            c[maxn],a[maxn],b[maxn];
       int64_t factor = number;
53
                                                            21 int n;
       while(factor>=number)
54
                                                            22 void bit_reverse(Complex *x,Complex *y){
         factor = pollard_rho_test(number,
                                                            23 for(int i = 0;i<n;++i) y[i] = x[i];
55
                  rand()\%(number-1)+1);
56
                                                            24 Complex tmp;
       factorize(number/factor,divisor);
                                                            25 for(int i = 0,j = 0;i<n;++i){
       factorize(factor,divisor); }}}
                                                                  (i>j) ? tmp = y[i],y[i] = y[j],y[j] = tmp,0
                                                            26
                                                            27
2.8. O(m^2 \log n) 线性递推 (lhy)
                                                                  for(int l = n>>1;(j ^= l)<1;l >>= 1);
                                                            28
typedef vector<int> poly;
                                                                }
                                                            29
2//\{1, 3\} \{2, 1\} an = 2an-1 + an-2, calc(3) = 7
                                                            30 }
3struct LinearRec {
                                                            31 void init(){
   int n,LOG;poly first,trans;vector <poly> bin;
                                                            32 int h = n>>1;
                                                               for(int i = 0;i<h;++i)
   poly add(poly &a,poly &b){
                                                            33
                                                            34
     poly res(n*2+1,0);
                                                                  w[i+h] =
     for(int i=0;i<=n;i++)for(int j=0;j<=n;j++)</pre>
                                                            35
                                                                    (Complex) {cos(2*pi*i/n), sin(2*pi*i/n)};
          (res[i+j]+= 111*a[i]*b[j]%mo)%=mo;
                                                                for(int i = h;i--;)w[i] = w[i<<1];
                                                             36
     for(int i=2*n;i>n;i--){
                                                            37 }
       for(int j=0;j<n;j++)</pre>
                                                             38 void dft(Complex *a){
          (res[i-1-j]+=111*res[i]*trans[j]%mo)%=mo;
                                                                Complex tmp;
                                                             39
       res[i]=0;}
                                                                for(int p = 2, m = 1; m! = n; p = (m = p) << 1)
     res.erase(res.begin()+n+1,res.end());
                                                            41
                                                                  for(int i = 0;i!=n;i += p)
                                                                    for(int j = 0; j!=m; ++j){
     return res;}
                                                            42
   LinearRec(poly &first,poly &trans,int LOG): LOG(
                                                                      tmp = a[i+j+m]*w[j+m];
                                                            43
     LOG),first(first),trans(trans){
                                                            44
                                                                      a[i+j+m] = a[i+j]-tmp;
                                                                      a[i+j] += tmp;
     n=first.size();poly a(n+1,0);a[1]=1;
                                                            45
     bin.push_back(a);
                                                            46
                                                            i<sub>47</sub>}
     for(int i=1;i<LOG;i++)</pre>
```

2.11. 杜教筛 (ct) 2. Math

```
48 int main(){
                                                                           x[j^{(1<< i)}]=(p+q)>>1;x[j]=(q-p)>>1;//xor
   fread(S,1,1<<20,stdin);
                                                                           x[j^{(1<< i)}]=p;x[j]=q-p;//or
   int na = F(),nb = F(),x;
                                                                           x[j^{(1<< i)}]=p-q;x[j]=q;//and
   for(int i = 0;i<=na;++i) a[i].x = F();</pre>
                                                                         }}}
                                                               12
   for(int i = 0; i \le nb; ++i) b[i].x = F();
                                                               13 void solve(int n,int *a,int *b,int *c){
   for(n = 1; n < na+nb+1; n <<= 1);
                                                               14 fwt(n,a);fwt(n,b);
53
                                                                   for(int i=0;i<(1<<n);i++)c[i]=a[i]*b[i];
   bit_reverse(a,buf_a);
54
   bit_reverse(b,buf_b);
                                                                16 fwt(n,c,1);}
55
   init();
                                                                 2.11. 杜教筛 (ct)
   dft(buf_a);
                                                                    Dirichlet 卷积: (f * g)(n) = \sum_{d|n} f(d)g(\frac{n}{d})
   dft(buf_b);
   for(int i = 0;i<n;++i) c[i] = buf_a[i]*buf_b[i];</pre>
                                                                对于积性函数 f(n), 求其前缀和 S(n) = \sum_{i=1}^{n} f(i)
   std::reverse(c+1,c+n);
61 bit_reverse(c,buf_c);
                                                                 寻找一个恰当的积性函数 g(n), 使得 g(n) 和 (f*g)(n) 的前缀和
  dft(buf_c);
   for(int i = 0;i<=na+nb;++i)</pre>
                                                                则 g(1)S(n) = \sum_{i=1}^{n} (f * g)(i) - \sum_{i=2}^{n} ng(i)S(\lfloor \frac{n}{i} \rfloor)
      printf("%d%c", int(buf_c[i].x/n+0.5),
             " \n"[i==na+nb]);
                                                                 \mu(n) 和 \phi(n) 取 g(n) = 1
   return 0;
                                                                 两种常见形式:
                                                                 • S(n) = \sum_{i=1}^{n} (f \cdot g)(i) 且 g(i) 为完全积性函数
NTT (gy)
    0-based
                                                                S(n) = \sum_{i=1}^{n} ((f * 1) \cdot g)(i) - \sum_{i=2}^{n} S(\lfloor \frac{n}{i} \rfloor) g(i)
1 const int N = 1e6+10;
                                                                 • S(n) = \sum_{i=1}^{n} (f * g)(i)
2 const int64_t MOD = 998244353,G = 3;
3int rev[N];
                                                                S(n) = \sum_{i=1}^{n} g(i) \sum_{i,j \le n} (f * 1)(j) - \sum_{i=2}^{n} S(\lfloor \frac{n}{i} \rfloor)
4int64_t powMod(int64_t a,int64_t exp);
5 void number_theoretic_transform(
         int64_t *p,int n,int idft){
                                                                 int phi[maxn],pr[maxn/10],prcnt;ll sph[maxn];
   for(int i = 0;i<n;i++)if(i<rev[i])</pre>
                                                                2bool vis[maxn];
       std::swap(p[i],p[rev[i]]);
                                                                3const int moha = 3333331;
   for(int j = 1; j < n; j <<= 1){
9
                                                                4struct Hash {
     static int64_t wn1,w,t0,t1;
10
                                                                 5 Hash *next;int ps;ll ans;
      wn1 = powMod(G,(MOD-1)/(j<<1));
                                                                6} *last1[moha],mem[moha],*tot = mem;
      if(idft==-1)wn1 = powMod(wn1,MOD-2);
                                                                7inline ll S1(int n){
13
      for(int i = 0; i < n; i += j << 1){
                                                                8 if(n<maxn)return sph[n];</pre>
        w = 1:
                                                                   for(Hash *it=last1[n\moha];it;it=it->next)
        for(int k = 0; k < j; k++){
                                                                     if(it->ps==n)return it->ans;
          t0 = p[i+k]; t1 = w*p[i+j+k]%MOD;
                                                               11 ll ret=111*n*(n+111)/2;
          p[i+k] = (t0+t1)\%MOD;
                                                                  for(ll i=2,j;i<=n;i=j+1){
          p[i+j+k] = (t0-t1+MOD)\%MOD;
                                                                      j=n/(n/i); res-=S1(n/i)*(j-i+1);
          (w *= wn1) %= MOD; }}
19
   if(idft==-1){
                                                                   *++tot=(Hash){last1[n\moha],n,ret};
      int nInv = powMod(n,MOD-2);
21
                                                                    last1[n%moha]=tot;return ret;
      for(int i = 0;i<n;i++)(p[i] *= nInv) %= MOD; }}</pre>
24ntt_main(int64_t *a,int64_t *b,int n,int m){
                                                                 2.12. Extended Eratosthenes Sieve (Nightfall)
   static int64_t aa[N],bb[N]; static int nn,len;
                                                                    一般积性函数的前缀和,要求: f(p) 为多项式
   len = 0; for(nn = 1;nn<m+n;nn <<= 1) len++;</pre>
27 for(int i = 0;i<nn;i++)aa[i] = a[i],bb[i] = b[i];</pre>
                                                                1struct poly {
28 rev[0] = 0;
                                                                 2 LL a[2];
   for(int i = 1;i<nn;i++)
                                                                   poly(){}
     rev[i] = (rev[i>>1]>>1)|((i&1)<<(len-1));
30
                                                                   int size() const{return 2;}
   number_theoretic_transform(aa,nn,1);
31
                                                                   poly(LL x, LL y){a[0] = x; a[1] = y;}
   number_theoretic_transform(bb,nn,1);
                                                                6};
32
   for(int i = 0;i<nn;i++) (aa[i] *= bb[i]) %= MOD;</pre>
                                                                7poly operator*(poly a,int p){
   number_theoretic_transform(aa,nn,-1);
                                                                8 return poly(a.a[0],a.a[1]*p);}
   return aa; }
                                                                poly operator-(const poly &a,const poly &b){
                                                                return poly(a.a[0]-b.a[0],a.a[1]-b.a[1]);}
FWT (lhy)
                                                                11 poly sum_fp(LL l,LL r){ // f(p) = 1 + p
    0-based
                                                                return poly(r-l+1,(l+r)*(r-l+1)/2);}
1void fwt(int n,int *x,bool inv=false){
                                                                13LL fpk(LL p,LL k){ // f(p^k) = sum\{i in 0..k | p^i\}
   for(int i=0; i<n; i++)for(int j=0; j<(1<<n); j++)
                                                                14 LL res = 0, q = 1;
      if((j>>i)&1){int p=x[j^(1<<i)],q=x[j];
                                                                for(int i = 0;i<=k;++i){ res += q; q *= p; }</pre>
         if(!inv){
                                                                16 return res; }
           x[j^{(1<< i)}]=p-q;x[j]=p+q;//xor
                                                               17 LL Value(poly p){return p.a[0]+p.a[1];}
                                                               18LL n; int m; vector<poly> A,B; vector<int> P;
           x[j^{(1<< i)}]=p;x[j]=p+q;//or
           x[j^{(1 << i)}]=p+q;x[j]=q;//and
                                                               _{19}//\text{need } w = n/k \text{, about } O(w^0.7)
         }else{
                                                               :20LL calc(LL w,int id,LL f){
```

```
LL T = w>m ? Value(B[n/w]) : Value(A[w]);
                                                             int64_t ex_bsgs(int64_t a,int64_t b,int64_t p){
   if(id) T -= Value(A[P[id-1]]);
                                                              2 if(b==1)
   LL ret = T*f;
                                                                   return 0:
   for(int i = id;i<P.size();++i){</pre>
                                                                 int64_t t,d = 1,k = 0;
     int p = P[i], e = 1; LL q = (LL)p*p;
                                                                 while((t = std::__gcd(a,p))!=1){
25
     if(q>w) break;
                                                                   if(b%t) return -1;
26
                                                                   k++,b /= t,p /= t,d = d*(a/t)%p;
     ret += calc(w/p,i+1,f*fpk(p,1));
27
                                                                   if(b==d) return k;
     while(1){
28
        ++e;LL f2 = f*fpk(p,e);ret += f2;LL qq = q*p;
        if(qq \le w) \{ret += calc(w/q, i+1, f2); q = qq;
                                                                map.clear();
                                                             10
       }else break;}}
                                                                 int64_t
                                                                  m = std::ceil(std::sqrt((long double)p));
   return ret;}
33 void prepare(LL N){ // about O(n^0.67)
                                                             int64_t a_m = pow_mod(a,m,p);
   n = N; m = (int) sqrt(n+.5L);
                                                             14 int64_t mul = b;
                                                                 for(int j = 1; j \le m; j++){
   A.resize(m+1); B.resize(m+1); P.clear();
   vector<int> isp; isp.resize(m+1,1);
                                                             16
                                                                   (mul *= a) %= p;
   for(int i = 1;i<=m;++i){</pre>
                                                             17
                                                                   map[mul] = j;
37
                                                             18 }
     A[i] = sum_fp(2,i); B[i] = sum_fp(2,n/i);
   for(int p = 2;p<=m;++p){</pre>
                                                             19 for(int i = 1;i<=m;i++){</pre>
39
     if(isp[p]) P.push_back(p);
                                                             20
                                                                   (d *= a_m) \%= p;
                                                             21
     for(int j : P){
                                                                   if(map.count(d))
       if(j*p>m) break;
                                                                     return i*m-map[d]+k;
                                                             22
42
                                                             23 }
       isp[j*p] = 0;
43
       if(j\%p==0) break; }
44
                                                             24 return -1;
                                                             25 }
     if(!isp[p]) continue;
45
     poly d = A[p-1]; LL p2 = (LL)p*p;
                                                             26 int main(){
46
     int to = (int)min(n/p2,(LL)m);
                                                             27 int64_t a,b,p;
47
     for(int i=1;i<=m/p;++i)B[i] = B[i]-(B[i*p]-d)*p;
                                                              while(scanf("%lld%lld%lld",&a,&b,&p)!=EOF)
48
     for(int i=m/p+1;i<=to;++i)</pre>
                                                                   printf("%lld\n",ex_bsgs(a,b,p));
49
         B[i]=B[i]-(A[n/p/i]-d)*p;
                                                              30 return 0;
     for(int i=m;i>=p2;--i)A[i] = A[i]-(A[i/p]-d)*p;}}
                                                              31 }
52// main(): prepare(n); LL ans = calc(n,0,1);
                                                              2.14. 直线下整点个数 (gy)
                                                                 必须满足 a \ge 0, b \ge 0, m > 0, 返回 \sum_{i=0}^{n-1} \frac{a+bi}{m}
2.13. BSGS (ct,Durandal)
BSGS (ct)
                                                              1int64_t
   p 是素数,返回 \min\{x \ge 0 \mid y^x \equiv z \pmod{p}\}
                                                              2 count(int64_t n,int64_t a,int64_t b,int64_t m){
1 const int mod = 19260817;
                                                              if (b==0) return n*(a/m);
                                                              if(a>=m)return n*(a/m)+count(n,a%m,b,m);
2 struct Hash{Hash *next;int key,val;
                                                              if (b>=m) return (n-1)*n/2*(b/m)+count(n,a,b/m,m);
3  *last[mod],mem[100000],*tot = mem;
                                                              6 return count((a+b*n)/m,(a+b*n)\m,m,b);}
4inline void insert(int x,int v){
5 *++tot = (Hash){last[x\mod],x,v};
                                                              2.15. Pell equation (gy)
   last[x%mod] = tot;}
                                                                  x^2 - ny^2 = 1 有解当且仅当 n 不为完全平方数
7inline int query(int x){
                                                              求其特解 (x_0, y_0)
   for(Hash *iter=last[x%mod];iter;iter=iter->next)
                                                              其通解为 (x_{k+1}, y_{k+1}) = (x_0x_k + ny_0y_k, x_0y_k + y_0x_k)
     if(iter->key==x) return iter->val;return -1;}
                                                              std::pair<int64_t,int64_t> pell(int64_t n){
10 inline void del(int x){last[x%mod]=0;}
                                                                 static int64_t p[N],q[N],g[N],h[N],a[N];
int main(){
                                                                 p[1] = q[0] = h[1] = 1; p[0] = q[1] = g[1] = 0;
   for(;T;--T){
     int y,z,p; scanf("%d%d%d",&y,&z,&p);
                                                                 a[2] = std::sqrt(n)+1e-7L;
13
     int m = (int)sqrt(p*1.0);
                                                                 for(int i = 2; true; i++){}
14
     y %= p; z %= p;
                                                                   g[i] = -g[i-1]+a[i]*h[i-1];
                                                                   h[i] = (n-g[i]*g[i])/h[i-1];
     if(!y&&!z){puts("0");continue; }
16
     if(!y){puts("NoSol");continue; }
                                                                   a[i+1] = (g[i]+a[2])/h[i];
                                                                   p[i] = a[i]*p[i-1]+p[i-2];
     int pw = 1, ans = -1;
18
                                                                   q[i] = a[i]*q[i-1]+q[i-2];
     for(int i = 0; i < m; ++i, pw = 111*pw*y%p)
                                                             10
19
                                                                   if(p[i]*p[i]-n*q[i]*q[i]==1)
20
       insert(111*z*pw%p,i);
                                                             11
                                                                     return std::make_pair(p[i],q[i]); }}
     for(int i = 1,t,pw2 = pw;i<=p/m+1;</pre>
          ++i,pw2 = 111*pw2*pw%p)
                                                              2.16. 单纯形 (gy)
       if((t = query(pw2))!=-1){
23
                                                                  返回 x_{m\times 1} 使得 \max\{c_{1\times m}\cdot x_{m\times 1}\mid x_{m\times 1}\geq 0_{m\times 1},A_{n\times m}\cdot x_{m\times 1}\}
          ans = i*m-t; break; }
24
                                                              x_{m\times 1} \leq b_{n\times 1}
     if(ans==-1) puts("NoSol");
25
     else printf("%d\n",ans);tot = mem; pw = 1;
                                                              1const double eps = 1e-8;
26
                                                              2std::vector<double> simplex(
     for(int i = 0; i<m; ++i,pw = 111*pw*y%p)
        del(111*z*pw%p); }return 0;}
                                                              const std::vector<std::vector<double>> &A,
                                                              const std::vector<double> &b,
ex-BSGS (Durandal)
                                                                const std::vector<double> &c){
    必须满足 0 \le a < p, 0 \le b < p, 返回 \min\{x \ge 0 \mid a^x \equiv b \mid b = a.size(), m = A[0].size()+1,r=n,s=m-1;
                                                             i 7 std::vector <std::vector<double>>
\pmod{p}
```

2.17. 数学知识 (gy) 2. Math

```
D(n+2,std::vector<double>(m+1));
   std::vector<int> ix(n+m);
   for(int i = 0;i<n+m;i++){ix[i] = i;}</pre>
   for(int i = 0; i < n; i++){
      for(int j = 0; j < m-1; j++) \{D[i][j] = -A[i][j]; \}
      D[i][m-1] = 1; D[i][m] = b[i];
13
      if(D[r][m]>D[i][m]){ r = i; }}
14
   for(int j = 0; j < m-1; j++) \{ D[n][j] = c[j]; \}
15
   D[n+1][m-1] = -1;
   for(double d;true;){
17
      if(r<n){ std::swap(ix[s],ix[r+m]);</pre>
        D[r][s] = 1./D[r][s];
19
        for(int j=0; j<=m; j++)if(j!=s)D[r][j]*=-D[r][s];</pre>
        for(int i = 0;i<=n+1;i++)if(i!=r){
            for(int j = 0; j \le m; j++){
               if(j!=s){D[i][j] += D[r][j]*D[i][s];}}
23
            D[i][s] *= D[r][s];}}
24
25
      r = -1, s = -1;
      for(int j = 0; j \le m; j++) if(s \le 0 | |ix[s] > ix[j]) {
26
          if(D[n+1][j]>eps||
              D[n+1][j] > -eps\&\&D[n][j] > eps)s = j;
      if(s<0){break;}</pre>
29
      for(int i = 0; i \le n; i++) if(D[i][s] \le -eps){
30
          if(r<0||
31
              (d = D[r][m]/D[r][s]-D[i][m]/D[i][s]) <
32
              -eps||d < eps\&\&ix[r+m]>ix[i+m]){r = i;}
33
      if(r<0){
34
        return/* unbounded */std::vector<double>();}}
35
   if(D[n+1][m] \leftarrow eps){
36
      return/* no solution */std::vector<double>();}
   std::vector<double> x(m-1);
   for(int i = m; i < n+m; i++)
      if(ix[i]<m-1){x[ix[i]] = D[i-m][m];} return x;}
```

2.17. 数学知识 (gy)

原根

当 gcd(a, m) = 1 时,使 $a^x \equiv 1 \pmod{m}$ 成立的最小正整数 x 称为 a 对于模 m 的阶,计为 $ord_m(a)$ 。

阶的性质: $a^n \equiv 1 \pmod{m}$ 的充要条件是 $\mathrm{ord}_m(a) \mid n$,可推出 $\mathrm{ord}_m(a) \mid \psi(m)$ 。

当 $\operatorname{ord}_m(g) = \psi(m)$ 时,则称 g 是模 n 的一个原根, $g^0, g^1, \ldots, g^{\psi(m)-1}$ 覆盖了 m 以内所有与 m 互素的数。 原根存在的充要条件: $m = 2, 4, p^k, 2p^k$,其中 p 为奇素数, $k \in \mathbb{N}^*$

求和公式

- $\sum_{k=1}^{n} (2k-1)^2 = \frac{1}{3}n(4n^2-1)$
- $\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2$
- $\sum_{k=1}^{n} (2k-1)^3 = n^2(2n^2-1)$
- $\sum_{k=1}^{n} k^4 = \frac{1}{30}n(n+1)(2n+1)(3n^2+3m-1)$
- $\sum_{n=1}^{n} k^5 = \frac{1}{12}n^2(n+1)^2(2n^2+2n-1)$
- $\sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2)$
- $\sum_{k=1}^{n} k(k+1)(k+2) = \frac{1}{4}n(n+1)(n+2)(n+3)$
- $\sum_{k=1}^{n} k(k+1)(k+2)(k+3) = \frac{1}{5}n(n+1)(n+2)(n+3)(n+4)$

错排公式

 D_n 表示 n 个元素错位排列的方案数

$$D_1 = 0, D_2 = 1$$

$$D_n = (n-1)(D_{n-2} + D_{n-1}), n \ge 3$$

$$D_n = n! \cdot (1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!})$$

Fibonacci sequence

$$F_0 = 0, F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$

$$F_{n+1} \cdot F_{n-1} - F_n^2 = (-1)^n$$

$$F_{-n} = (-1)^n F_n$$

$$F_{n+k} = F_k \cdot F_{n+1} + F_{k-1} \cdot F_n$$

$$\gcd(F_m, F_n) = F_{\gcd(m,n)}$$

$$F_m \mid F_n^2 \Leftrightarrow nF_n \mid m$$

$$F_n = \frac{\varphi^n - \Psi^n}{\sqrt{5}}, \varphi = \frac{1+\sqrt{5}}{2}, \Psi = \frac{1-\sqrt{5}}{2}$$

$$F_n = \lfloor \frac{\varphi^n}{\sqrt{5}} + \frac{1}{2} \rfloor, n \ge 0$$

$$n(F) = \lfloor \log_{\varphi}(F \cdot \sqrt{5} + \frac{1}{2}) \rfloor$$

Stirling number (1st kind)

用 $\binom{n}{k}$ 表示 Stirling number (1st kind), 为将 n 个元素分成 k 个环的方案数

$$\begin{bmatrix} n+1 \\ k \end{bmatrix} = n {n \brack k} + {n \brack k-1}, k > 0
 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1, {n \brack 0} = {n \brack n} = 0, n > 0
 \begin{bmatrix} n \\ k \end{bmatrix} 为将 n 个元素分成 k 个环的方案数$$

$$\begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \left\langle n \right\rangle \right\rangle \binom{x+k}{2n}$$

Stirling number (2nd kind)

用 $\binom{n}{k}$ 表示 Stirling number (2nd kind),为将 n 个元素划分成 k 个非空集合的方案数

Catalan number

 c_n 表示长度为 2n 的合法括号序的数量

$$c_1 = 1, c_{n+1} = \sum_{i=1}^{n} c_i \times c_{n+1-i}$$

 $c_n = \frac{\binom{2n}{n}}{n+1}$

Bell number

 B_n 表示基数为 n 的集合的划分方案数

$$B_i = \begin{cases} 1 & i = 0\\ \sum_{k=0}^{n} \binom{n}{k} B_k & i > 0 \end{cases}$$

 $B_n = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix}$

 $B_{p^m+n} \equiv mB_n + B_{n+1} \pmod{p}$

五边形数定理

p(n) 表示将 n 划分为若干个正整数之和的方案数 $p(n) = \sum_{k \in \mathbb{N}^*} (-1)^{k-1} p(n - \frac{k(3k-1)}{2})$

Bernoulli number

$$\sum_{j=0}^{m} {m+1 \choose j} B_j = 0, m > 0$$

$$B_i = \begin{cases} 1 & i = 0 \\ -\sum_{j=0}^{i-1} {i+1 \choose j} B_j & i > 0 \end{cases}$$

$$\sum_{k=1}^{n} k^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}$$

Stirling permutation

 $1,1,2,2\ldots,n,n$ 的排列中,对于每个 i,都有两个 i 之间的数大于 i

排列方案数为 (2n-1)!!

Eulerian number

$$\binom{n}{k}$$
 表示 1 到 n 的排列中,恰有 k 个数比前一个大的方案数 $\binom{n}{0} = \binom{n}{n-1} = 1$ $\binom{0}{m} = [m=0]$

Eulerian number (2nd kind)

Burnside lemma

Let G be a finite group that acts on a set X. For each g in G let X^g denote the set of elements in X that are fixed by g (also said to be left invariant by g), i.e. $X^g = \{x \in X \mid g.x = x\}$. Burnside's lemma asserts the following formula for the number of orbits, denoted |X/G|:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

Example application: The number of rotationally distinct colorings of the faces of a cube using n colors

Let X be the set of n^6 possible face colour combinations that can be applied to a cube in one particular orientation, and let the rotation group G of the cube act on X in the natural manner. Then two elements of X belong to the same orbit precisely when one is simply a rotation of the other. The number of rotationally distinct colourings is thus the same as the number of orbits and can be

found by counting the sizes of the fixed sets for the 24 elements of G.

- one identity element which leaves all n^6 elements of X unchanged
- six 90-degree face rotations, each of which leaves n^3 of the elements of X unchanged
- three 180-degree face rotations, each of which leaves n^4 of the elements of X unchanged
- eight 120-degree vertex rotations, each of which leaves n^2 of the elements of X unchanged
- six 180-degree edge rotations, each of which leaves n^3 of the elements of X unchanged

The average fix size is thus $\frac{1}{24}(n^6+6\cdot n^3+3\cdot n^4+8\cdot n^2+6\cdot n^3)$ Hence there are 57 rotationally distinct colorings of the faces of a cube in 3 colours.

Pólya theorem

设 \overline{G} 是 n 个对象的置换群,用 m 种颜色对 n 个对象染色,则不同染色方案为:

$$L = \frac{1}{|\overline{G}|} \left(m^{c(\overline{P_1})} + m^{c(\overline{P_2})} + \dots + m^{c(\overline{P_g})} \right)$$

其中 $\overleftarrow{G}=\{\overline{P_1},\overline{P_2},\ldots,\overline{P_g}\},\ c(\overline{P_k})$ 为 $\overline{P_k}$ 的循环节数

Möbius function

 $\mu(n) = \begin{cases} 1 & n \text{ square-free, even number of prime factors} \\ -1 & n \text{ square-free, odd number of prime factors} \\ 0 & n \text{ has a squared prime factor} \end{cases}$

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & n = 1\\ 0 & n > 1\\ g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d) g(\frac{n}{d}) \end{cases}$$

Lagrange polynomial

给定次数为 n 的多项式函数 L(x) 上的 n+1 个点 $(x_0,y_0),(x_1,y_1),\ldots,(x_n,y_n)$

则
$$L(x) = \sum_{j=0}^{n} y_j \prod_{0 \le m \le n, m \ne j} \frac{x - x_m}{x_j - x_m}$$

Ch3. Geometry

3.1. 点、直线、圆 (gy)

```
point intersect(const line &a,const line &b){
number s1 = det(a.b-a.a,b.a-a.a);
   number s2 = det(a.b-a.a,b.b-a.a);
   return (b.a*s2-b.b*s1)/(s2-s1); }
5point projection(const point &p,const line &l){
   return 1.a+(1.b-1.a)*dot(p-1.a,1.b-1.a)/
              (1.b-1.a).len2(); }
snumber dis(const point &p,const line &l){
   return std::abs(det(p-1.a,1.b-1.a))/
          (1.b-1.a).len(); }
10
11 bool intersect(const line &1, const circle &a,
                point &p1,point &p2){
   number x = dot(1.a-a.o,1.b-1.a);
13
   number y = (1.b-1.a).len2();
14
   number d = x*x-y*((1.a-a.o).len2()-a.r*a.r);
   if(sgn(d)<0) return false;
16
   point p = 1.a-(1.b-1.a)*(x/y);
17
   point delta = (1.b-1.a)*(\_sqrt(d)/y);
   p1 = p+delta,p2 = p-delta;
   return true; }
21 bool intersect(const circle &a, const circle &b,
                point &p1,point &p2){
   if(a.o==b.o\&\&cmp(a.r,b.r)==0)
     return /* value for coincident circles */ false;
   number s1 = (b.o-a.o).len();
   if(cmp(s1,a.r+b.r)>0||
```

```
cmp(s1,std::abs(a.r-b.r))<0) return false;</pre>
   number s2 = (a.r*a.r-b.r*b.r)/s1;
   number aa = (s1+s2)/2,bb = (s1-s2)/2;
   point p = (b.o-a.o)*(aa/(aa+bb))+a.o;
   point delta = (b.o-a.o).unit().rotate90()*
                  _sqrt(a.r*a.r-aa*aa);
   p1 = p+delta,p2 = p-delta;
   return true; }
35 bool tangent(const point &p0,const circle &c,
               point &p1,point &p2){
    number x = (p0-c.o).len2();
   number d = x-c.r*c.r;
    if(sgn(d)<0) return false;</pre>
    if(sgn(d)==0) return /* point_on_line */ false;
    point p = (p0-c.o)*(c.r*c.r/x);
    point delta =
      ((p0-c.o)*(-c.r*_sqrt(d)/x)).rotate90();
    p1 = c.o+p+delta; p2 = c.o+p-delta;
    return true; }
45
46bool ex_tangent(const circle &a,const circle &b,
                  line &11,line &12){
    if(cmp(std::abs(a.r-b.r),(b.o-a.o).len())==0){
      point p1,p2; intersect(a,b,p1,p2);
      11 = 12 = line(p1,p1+(a.o-p1).rotate90());
50
      return true;
51
    }else if(cmp(a.r,b.r)==0){
52
      point dir = b.o-a.o;
53
54
      dir = (dir*(a.r/dir.len())).rotate90();
55
      11 = line(a.o+dir,b.o+dir);
      12 = line(a.o-dir,b.o-dir);
```

```
if((a[i1]-p).det(a[id]-p)<0) i1 = id; }
     return true:
   }else{
                                                              void binary_search(int 1,int r,Point p,int &i0,
58
                                                                                 int &i1){
     point p = (b.o*a.r-a.o*b.r)/(a.r-b.r);
                                                          26
59
                                                                if(l==r) return:
     point p1,p2,q1,q2;
                                                          27
60
     if(tangent(p,a,p1,p2)&&tangent(p,b,q1,q2)){
                                                          28
                                                                update_tangent(p,1%n,i0,i1);
61
       11 = line(p1,q1); 12 = line(p2,q2);
                                                          29
                                                                int sl = sign((a[1\%n]-p).det(a[(l+1)\%n]-p));
62
       return true;
                                                          30
                                                                for(;l+1<r;){
63
     }else{ return false; }}}
                                                                  int mid = (1+r)/2;
                                                          31
64
65 bool in_tangent(const circle &a,const circle &b,
                                                          32
                                                                  int smid =
                 line &11,line &12){
                                                          33
                                                                    sign((a[mid%n]-p).det(a[(mid+1)%n]-p));
66
   if(cmp(a.r+b.r,(b.o-a.o).len())==0){
                                                          34
                                                                  if(smid==sl) l = mid; else r = mid; }
                                                                update_tangent(p,r%n,i0,i1); }
     point p1,p2; intersect(a,b,p1,p2);
                                                          35
68
     11 = 12 = line(p1,p1+(a.o-p1).rotate90());
                                                              int binary_search(Point u,Point v,int 1,int r){
69
                                                           36
     return true:
                                                                int sl = sign((v-u).det(a[1%n]-u));
                                                          37
70
   }else{
                                                                for(;l+1<r;){
                                                          38
     point p = (b.o*a.r+a.o*b.r)/(a.r+b.r);
                                                          39
                                                                  int mid = (1+r)/2;
                                                                  int smid = sign((v-u).det(a[mid%n]-u));
73
     point p1,p2,q1,q2;
                                                          40
     if(tangent(p,a,p1,p2)&&tangent(p,b,q1,q2)){
                                                                  if(smid==sl) 1 = mid; else r = mid; }
74
                                                          41
       11 = line(p1,q1); 12 = line(p2,q2);
                                                                return 1%n; }
       return true;
                                                              // 判定点是否在凸包内, 在边界返回 true
     }else{ return false; }}}
                                                              bool contain(Point p){
                                                                if(p.x<lower[0].x||p.x>lower.back().x)
                                                          45
3.2. 平面最近点对 (Grimoire)
                                                                    return false;
                                                          46
1bool byY(P a,P b){return a.y<b.y;}</pre>
                                                                int id = lower_bound(lower.begin(),lower.end(),
                                                          : 47
2LL solve(P *p,int l,int r){
                                                                              Point(p.x,-INF))-lower.begin();
                                                          48
   LL d = 1LL << 62;
                                                                if(lower[id].x==p.x){
                                                          49
   if(l==r)return d;
                                                          50
                                                                  if(lower[id].y>p.y) return false;
   if(l+1==r)return dis2(p[1],p[r]);
                                                          51
                                                                }else if((lower[id-1]-p).det(lower[id]-p)<0)</pre>
   int mid = (1+r)>>1;
                                                          52
                                                                  return false;
   d = min(solve(l,mid),d); d = min(solve(mid+1,r),d);
                                                          53
                                                                id = lower_bound(upper.begin(),upper.end(),Point(
   vector<P> tmp;
                                                          54
                                                                        p.x,INF),greater<Point>())-upper.begin();
   for(int i = 1;i<=r;i++) if(sqr(p[mid].x-p[i].x)<=d)</pre>
                                                                if(upper[id].x==p.x){
                                                          55
     tmp.push_back(p[i]);
                                                                  if(upper[id].y<p.y) return false;</pre>
10
                                                          56
   sort(tmp.begin(),tmp.end(),byY);
                                                                }else if((upper[id-1]-p).det(upper[id]-p)<0)</pre>
                                                          57
   for(int i = 0;i<tmp.size();i++)</pre>
                                                          58
                                                                  return false;
                                                                return true; }
     for(int j = i+1; j < tmp.size() & & j-i < 10; j++)
                                                          59
13
       d = min(d,dis2(tmp[i],tmp[j]));
                                                              // 求点 p 关于凸包的两个切点
                                                          60
14
                                                              // 如果在凸包外则有序返回编号
   return d; }
                                                          61
                                                              // 共线的多个切点返回任意一个, 否则返回 false
                                                          62
3.3. 凸包游戏 (Grimoire)
                                                              bool get_tangent(Point p,int &i0,int &i1){
                                                          63
   给定凸包, O(n \log n) 完成询问:
                                                                if(contain(p)) return false;
   点在凸包内
                                                          65
                                                                i0 = i1 = 0;
  凸包外的点到凸包的两个切点
                                                          66
                                                                int id = lower_bound(lower.begin(),lower.end(),p)
   向量关于凸包的切点
                                                          67
                                                                    -lower.begin();
  直线与凸包的交点
                                                                binary_search(0,id,p,i0,i1);
                                                          68
传入凸包要求 1 号点为 Pair(x,y) 最小的
                                                                binary_search(id,(int)lower.size(),p,i0,i1);
                                                          69
                                                          70
                                                                id = lower_bound(upper.begin(),upper.end(),p,
1 const int INF = 1000000000;
                                                                                 greater<Point>())-upper.begin();
2struct Convex {
                                                                binary_search((int)lower.size()-1,
   int n; vector <Point> a,upper,lower;
                                                          73
                                                                              (int)lower.size()-1+id,p,i0,i1);
   Convex(vector <Point> _a): a(_a){
                                                                binary_search((int)lower.size()-1+id,
     n = a.size(); int ptr = 0;
                                                                              (int)lower.size()-1+
                                                          75
     for(int i = 1;i<n;++i) if(a[ptr]<a[i]) ptr = i;</pre>
                                                                              (int)upper.size(),p,i0,i1);
                                                          76
     for(int i = 0;i<=ptr;++i) lower.push_back(a[i]);</pre>
                                                                return true; }
                                                          77
     for(int i = ptr;i<n;++i) upper.push_back(a[i]);</pre>
                                                              // 求凸包上和向量 vec 叉积最大的点,返回编号
                                                          78
     upper.push_back(a[0]); }
                                                              // 共线的多个切点返回任意一个
                                                          79
   int sign(long long x){return x<0 ? -1 : x>0;}
10
                                                              int get_tangent(Point vec){
                                                          80
   pair<long long,int> get_tangent(
11
                                                                pair<long long,int> ret = get_tangent(upper,vec);
                                                          81
           vector<Point> &convex,Point vec){
                                                                ret.second = (ret.second+(int)lower.size()-1)%n;
                                                          82
     int l = 0, r = (int)convex.size()-2;
13
                                                                ret = max(ret,get_tangent(lower,vec));
                                                          83
     for(;1+1<r;){
14
                                                                return ret.second; }
       int mid = (1+r)/2;
                                                              // 求凸包和直线 u,v 的交点,如果无严格相交返回 false
       if(sign((convex[mid+1]-convex[mid]).det(vec))
16
                                                              // 如果有则是和 (i,next(i)) 的交点,两个点无序,
          >0) r = mid;
                                                              // 交在点上不确定返回前后两条线段其中之一
                                                          87
       else 1 = mid; }
18
                                                              bool get_intersection(Point u,Point v,int &i0,
                                                          88
     return max(make_pair(vec.det(convex[r]),r),
19
                                                                                    int &i1){
                                                          89
                make_pair(vec.det(convex[0]),0)); }
                                                                int p0 = get_tangent(u-v), p1 = get_tangent(v-u);
                                                          90
   void update_tangent(const Point &p,int id,int &i0,
                                                          91
                                                                if(sign((v-u).det(a[p0]-u))*
                  int &i1){
     if((a[i0]-p).det(a[id]-p)>0) i0 = id;
```

3.4. 半平面交 (Grimoire) 3. Geometry

```
sign((v-u).det(a[p1]-u))<0){
                                                            line BCO = (line){(c+b)/2, Rev(b-c)};
                                                            return ABO*BCO; }
       if(p0>p1) swap(p0,p1);
93
       i0 = binary_search(u,v,p0,p1);
                                                            14 void solve(){
94
       i1 = binary_search(u,v,p1,p0+n);
                                                                random_shuffle(p+1,p+1+n);
                                                            15
95
                                                                0 = p[1]; r = 0;
       return true;
                                                            16
     }else{ return false; }};
                                                                for(int i = 2;i<=n;i++){
                                                            17
                                                                  if(dis(p[i],0)<r+1e-6)continue;
                                                            18
3.4. 半平面交 (Grimoire)
                                                                  0 = get(p[1],p[i]); r = dis(0,p[i]);
                                                            19
struct P {
                                                            20
                                                                  for(int j = 1; j < i; j++){
   int quad() const{
                                                             21
                                                                    if(dis(p[j],0)<r+1e-6)continue;</pre>
     return sgn(y)==1||(sgn(y)==0\&\&sgn(x)>=0); \};
                                                                    0 = get(p[i],p[j]); r = dis(0,p[i]);
4struct L {
                                                                    for(int k = 1; k < j; k++){
                                                             23
   bool onLeft(const P &p) const{
                                                                      if(dis(p[k],0)<r+1e-6)continue;</pre>
                                                             24
     return sgn((b-a)*(p-a))>0; }
                                                                      0 = get(p[i],p[j],p[k]); r = dis(0,p[i]);}
                                                             25
   L push() const{
     P delta = (b-a).turn90().norm()*eps;
                                                             3.7. 最小球覆盖 (Grimoire)
     return L(a-delta,b-delta); }};
10 bool sameDir(const L &10,const L &11){
                                                             1// operator% dot; operator* det
return parallel(10,11)&&
                                                             2struct Plane {
          sgn((10.b-10.a)^(11.b-11.a))==1; }
                                                                Point nor; double m;
13bool operator<(const P &a,const P &b){</pre>
                                                                Plane(const Point &nor,const Point &a):
   if(a.quad()!=b.quad())return a.quad()<b.quad();</pre>
                                                                    nor(nor), m(nor%a){}};
   else return sgn((a*b))>0; }
                                                             6Point intersect(const Plane &a, const Plane &b,
16 bool operator < (const L &10, const L &11) {
                                                                               const Plane &c){
   if(sameDir(10,11))return 11.onLeft(10.a);
                                                                Point c1(a.nor.x,b.nor.x,c.nor.x),
   else return (10.b-10.a)<(11.b-11.a); }
                                                                  c2(a.nor.y,b.nor.y,c.nor.y),
                                                             9
19 bool check(const L &u,const L &v,const L &w){
                                                                  c3(a.nor.z,b.nor.z,c.nor.z),c4(a.m,b.m,c.m);
                                                            10
20 return w.onLeft(intersect(u,v)); }
                                                               return 1/((c1*c2)%c3)*
                                                            11
21 vector <P> intersection(vector <L> &1){
                                                                       Point((c4*c2)%c3,(c1*c4)%c3,(c1*c2)%c4); }
   sort(1.begin(),1.end()); deque<L> q;
                                                            13 bool in(const Point &a,const Circle &b){
   for(int i = 0;i<(int)1.size();++i){</pre>
                                                             return sign((a-b.o).len()-b.r)<=0; }</pre>
     if(i&&sameDir(l[i],l[i-1])) continue;
                                                            15 bool operator<(const Point &a,const Point &b){
     while (q.size()>1&&! check(q[q.size()-2],
25
                                                             if(!equal(a.x,b.x)) return a.x<b.x;</pre>
                  q[q.size()-1],1[i])) q.pop_back();
26
                                                             if(!equal(a.y,b.y)) return a.y<b.y;</pre>
     while (q.size()>1&&!check(q[1],q[0],l[i]))
                                                             if(!equal(a.z,b.z)) return a.z<b.z;</pre>
       q.pop_front();
28
                                                               return false; }
     q.push_back(l[i]); }
29
                                                            20 bool operator == (const Point &a, const Point &b){
   while(q.size()>2\&\&!check(q[q.size()-2],
                                                            21
                                                                return equal(a.x,b.x)and equal(a.y,b.y)and
                q[q.size()-1],q[0])) q.pop_back();
31
                                                             22
                                                                       equal(a.z,b.z); }
   while(q.size()>2\&\&!check(q[1],q[0],
                                                             23 vector<Point> vec;
                q[q.size()-1])) q.pop_front();
33
                                                             24Circle calc(){
   vector <P> ret;
34
                                                                if(vec.empty()){
   for(int i = 0;i<(int)q.size();++i)</pre>
35
                                                                  return Circle(Point(0,0,0),0);
     ret.push_back(intersect(q[i],q[(i+1)%q.size()]));
36
                                                                }else if(1==(int)vec.size()){
   return ret; }
                                                                  return Circle(vec[0],0);
                                                                }else if(2==(int)vec.size()){
                                                             29
3.5. 点在多边形内 (Grimoire)
                                                                  return Circle(0.5*(vec[0]+vec[1]),
                                                             30
1bool inPoly(P p,vector <P> poly){
                                                                                 0.5*(vec[0]-vec[1]).len());
                                                            31
   int cnt = 0;
                                                                }else if(3==(int)vec.size()){
   for(int i = 0;i<poly.size();i++){</pre>
                                                                  double r((vec[0]-vec[1]).len()*
     P a = poly[i],b = poly[(i+1)%poly.size()];
                                                                            (vec[1]-vec[2]).len()*
     if(onSeg(p,L(a,b))) return false;
                                                                            (\text{vec}[2]-\text{vec}[0]).len()/2/fabs(
     int x = sgn(det(a,p,b));
                                                                     ((vec[0]-vec[2])*(vec[1]-vec[2])).len()));
                                                             36
     int y = sgn(a.y-p.y); int z = sgn(b.y-p.y);
                                                                  return Circle(intersect(
                                                             37
      cnt += (x>0\&\&y<=0\&\&z>0); cnt -= (x<0\&\&z<=0\&\&y>0);
                                                                    Plane(vec[1] - vec[0], 0.5*(vec[1] + vec[0])),
                                                             38
   return cnt; }
                                                                    Plane(vec[2] - vec[1], 0.5*(vec[2] + vec[1])),
                                                             39
                                                                    Plane((vec[1]-vec[0])*(vec[2]-vec[0]),
                                                             40
3.6. 最小圆覆盖 (Grimoire)
                                                                           vec[0])),r);
                                                             41
struct line { point p,v; };
                                                                }else{
                                                             42
2point Rev(point v){return point(-v.y,v.x);}
                                                                  Point o(intersect(
                                                             43
3point operator*(line A,line B){
                                                                    Plane(vec[1] - vec[0], 0.5*(vec[1] + vec[0])),
                                                             44
   point u = B.p-A.p;
                                                                    Plane(vec[2]-vec[0], 0.5*(vec[2]+vec[0])),
                                                             45
   double t = (B.v*u)/(B.v*A.v);
                                                                    Plane(vec[3]-vec[0], 0.5*(vec[3]+vec[0])));
                                                                  return Circle(o,(o-vec[0]).len()); }}
   return A.p+A.v*t; }
                                                             47
7point get(point a,point b){ return (a+b)/2; }
                                                            48Circle miniBall(int n){
%point get(point a,point b,point c){
                                                                Circle res(calc());
                                                            49
                                                                for(int i(0);i<n;i++) if(!in(a[i],res)){</pre>
if(a==b)return get(a,c); if(a==c)return get(a,b);
                                                            50
   if(b==c)return get(a,b);
                                                                    vec.push_back(a[i]); res = miniBall(i);
                                                            51
   line ABO = (line){(a+b)/2, Rev(a-b)};
                                                                    vec.pop_back();
                                                            : <sub>52</sub>
```

3.8. 圆并 (Grimoire) 3. Geometry

```
if(i){
                                                                   dvd = cir[i].o-Point(cir[i].r,0); nV = 0;
         Point tmp(a[i]);
                                                                   vec[nV++] = arc(-pi,dvd,1); cnt = 0;
                                                            60
         memmove(a+1,a,sizeof(Point)*i);
                                                                   for(int j(0);j<n;j++) if(j!=i){</pre>
                                                             61
55
         a[0] = tmp; }
                                                                     double d = (cir[j].o-cir[i].o).sqrlen();
                                                             62
56
   return res;}
                                                             63
                                                                     if(d<sqr(cir[j].r-cir[i].r)+eps){</pre>
57
58 void solve(){
                                                             64
                                                                       if(cir[i].r+i*eps<cir[j].r+j*eps)</pre>
   sort(a,a+n); n = unique(a,a+n)-a;
                                                                         psh(-pi,dvd,pi,dvd);
                                                             65
   vec.clear(); miniBall(n); }
                                                                     }else if(d+eps<sqr(cir[j].r+cir[i].r)){</pre>
                                                             66
                                                             67
                                                                       double lambda = 0.5*(1+(sqr(cir[i].r)-
3.8. 圆并 (Grimoire)
                                                             68
                                                                               sqr(cir[j].r))/d);
                                                             69
                                                                       Point cp(cir[i].o+
1double ans[2001];
                                                                               lambda*(cir[j].o-cir[i].o));
                                                             70
2struct Point {
                                                                       Point nor((cir[j].o-cir[i].o).rev()
   double x,y;
                                                             71
                                                                                  .zoom(sqrt(sqr(cir[i].r)-
   Point(){}
                                                                                  (cp-cir[i].o).sqrlen())));
   Point(const double &x,const double &y): x(x),y(y){}
                                                             74
                                                                       Point frm(cp+nor); Point to(cp-nor);
   void scan(){scanf("%lf%lf",&x,&y);}
                                                                       psh(atan2(frm-cir[i].o),frm,
                                                             75
   double sqrlen(){return sqr(x)+sqr(y);}
                                                                           atan2(to-cir[i].o),to); }}
                                                             76
   double len(){return sqrt(sqrlen());}
                                                             77
                                                                   sort(vec+1, vec+nV); vec[nV++] = arc(pi, dvd, -1);
   Point rev(){return Point(y,-x);}
                                                             78
                                                                   for(int j = 0; j+1 < nV; j++){
   void print(){printf("%f %f\n",x,y);}
                                                                     cnt += vec[j].delta;
                                                             79
   Point zoom(const double &d){
                                                                     //if(cnt==1){只算 ans[1] 和 centre[1], 加 if 加
                                                             80
     double lambda = d/len();
     return Point(lambda*x,lambda*y); }
                                                                     double theta(vec[j+1].theta-vec[j].theta);
14} dvd,a[2001];
                                                             81
                                                                     double area(sqr(cir[i].r)*theta*0.5);
                                                             82
15 Point centre [2001];
                                                                     combine(cnt,area,cir[i].o+1./area/3
                                                             83
16 double atan2(const Point &x){ return atan2(x.y,x.x); }
                                                                             *cub(cir[i].r)*Point(
                                                             84
17// operator* det; operator% dot
                                                             85
                                                                             sin(vec[j+1].theta)-sin(vec[j].theta),
18 circle cir[2001];
                                                             86
                                                                             cos(vec[j].theta)-cos(vec[j+1].theta)));
19 struct arc {
                                                             87
                                                                     combine(cnt,-sqr(cir[i].r)*sin(theta)*0.5,
20 double theta; int delta; Point p;
                                                             88
                                                                      1./3*(cir[i].o+vec[j].p+vec[j+1].p));
21 arc(){}:
                                                                     \texttt{combine(cnt,vec[j].p*vec[j+1].p*0.5},\\
                                                             89
   arc(const double &theta,const Point &p,int d)
                                                                             1./3*(vec[j].p+vec[j+1].p));
                                                             90
     : theta(theta),p(p),delta(d){}
                                                                     /* } */}}
                                                             91
24} vec[4444];
                                                                 combine(0,-ans[1],centre[1]);
                                                             92
25 int nV, cnt;
                                                                 for(int i = 0;i<m;i++){</pre>
26 bool operator<(const arc &a,const arc &b){
                                                             93
                                                                   if(i!=index)
                                                             94
   return a.theta+eps<b.theta; }</pre>
                                                                     (a[index]-Point(
                                                             95
28 void psh(const double t1, const Point p1,
                                                                       (a[i]-a[index])*(centre[0]-a[index]),
                                                             96
                  const double t2,const Point p2){
                                                                       (a[i]-a[index])%(centre[0]-a[index]))
                                                             97
   if(t2+eps<t1) cnt++;</pre>
                                                                       .zoom((a[i]-a[index]).len())).print();
                                                             98
   vec[nV++]=arc(t1,p1,1); vec[nV++]=arc(t2,p2,-1); }
                                                                   else a[i].print(); }}
32 double cub(const double &x){return x*x*x;}
33 void combine(int d,const double &area,const Point &o){
   if(sign(area)==0) return;
                                                              3.9. 圆与多边形并 (Grimoire)
   centre[d]=1/(ans[d]+area)*(ans[d]*centre[d]+area*o);
   ans[d] += area; }
                                                              1double form(double x){
37 bool f[2001];
                                                                while(x \ge 2*pi)x -= 2*pi; while(x < 0)x += 2*pi;
38 void solve(){
                                                                return x; }
   for(int i(0);i<n;i++){//这一段在去重圆 删掉不会错
                                                              4double calcCir(C cir){
     f[i] = true;
                                                                 vector<double> ang;
     for(int j(0); j<n; j++) if(i!=j){
                                                                 ang.push_back(0); ang.push_back(pi);
41
        if(equal(cir[i],cir[j])and
                                                                 double ans = 0;
           i<j or!equal(cir[i],cir[j])and</pre>
                                                                 for(int i = 1;i<=n;i++){
43
          cir[i].r<cir[j].r+eps and
                                                                   if(cir==c[i])continue;
           (cir[i].o-cir[j].o).sqrlen()
                                                                   P p1,p2;
                                                             10
          sqr(cir[i].r-cir[j].r)+eps){
                                                                   if(intersect(cir,c[i],p1,p2)){
                                                             11
         f[i] = false;
                                                                     ang.push_back(form(cir.ang(p1)));
                                                             12
47
         break; }}}
                                                                     ang.push_back(form(cir.ang(p2))); }}
48
   int n1(0);
                                                                 for(int i = 1;i<=m;i++){</pre>
49
                                                             14
   for(int i(0);i<n;i++) if(f[i]) cir[n1++] = cir[i];
                                                                   vector<P> tmp;
                                                             15
   n = n1;//去重圆结束
                                                                   tmp = intersect(poly[i],cir);
                                                             16
   fill(ans,ans+n+1,0);
                                                             17
                                                                   for(int j = 0; j < tmp.size(); j++){
   fill(centre,centre+n+1,Point(0,0));
                                                                     ang.push_back(form(cir.ang(tmp[j]))); }}
                                                             18
   //ans[i] 被覆盖 >=i 次的面积 centre[i] 为 ans[i] 的重
                                                                 sort(ang.begin(),ang.end());
                                                             19
                                                                 for(int i = 0;i<ang.size();i++){</pre>

→ ハ';

                                                             20
                                                                   double t1 = ang[i],t2 =
   for(int i(0);i<m;i++)</pre>
                                                            21
     combine(0,a[i]*a[(i+1)\%m]*0.5,
                                                                     (i+1==ang.size() ? ang[0]+2*pi : ang[i+1]);
                                                            22
56
             1./3*(a[i]+a[(i+1)\%m]));
                                                                   P p = cir.at((t1+t2)/2); int ok = 1;
                                                            23
   for(int i(0);i<n;i++){
                                                                   for(int j = 1; j \le n; j++){
                                                            : 24
```

```
30
       if(cir==c[j])continue;
                                                               int num_children() const{
       if(inC(p,c[j],true)){ok = 0; break; }}
                                                                  return children[0] == 0 ? 0 :
                                                            31
26
                                                                         children[1] == 0 ? 1 :
     for(int j = 1; j <= m&&ok; j++)</pre>
                                                            32
27
       if(inPoly(p,poly[j],true)){ ok = 0; break; }
                                                                         children[2] == 0 ? 2 : 3; }
                                                            33
28
     if(ok){
                                                               bool contains(P const &q) const{
                                                            34
29
                                                                  double a = side(p[0], p[1], q),
       double r = cir.r,x0 = cir.o.x,y0 = cir.o.y;
                                                            35
30
       ans += (r*r*(t2-t1)+r*x0*(sin(t2)-sin(t1))-
                                                                    b = side(p[1], p[2], q), c = side(p[2], p[0], q);
                                                            36
31
               r*y0*(cos(t2)-cos(t1)))/2; }}
                                                                  return a>=-eps&&b>=-eps&&c>=-eps; }
                                                            37
32
                                                            38  triange_pool[MAX_TRIS],*tot_triangles;
34P st;
                                                            39 void set_edge(Edge a, Edge b) {
35 bool bySt(P a,P b){ return dis(a,st)<dis(b,st); }</pre>
                                                               if(a.tri) a.tri->edge[a.side] = b;
                                                               if(b.tri) b.tri->edge[b.side] = a; }
36 double calcSeg(L 1){
   double ans = 0; vector<P> pt;
                                                            42 class Triangulation {
   pt.push_back(1.a); pt.push_back(1.b);
                                                            43 public:
   for(int i = 1;i<=n;i++){
                                                               Triangulation(){
                                                            44
                                                                  const double LOTS = 1e6; //初始为极大三角形
     P p1,p2;
                                                            45
40
                                                                  the_root = new(tot_triangles++) Triangle(
41
     if(intersect(c[i],1,p1,p2)){
                                                            46
       if(onSeg(p1,1)) pt.push_back(p1);
                                                                    P(-LOTS,-LOTS),P(+LOTS,-LOTS),P(0,+LOTS)); }
42
       if(onSeg(p2,1)) pt.push_back(p2); }}
                                                               TriangleRef find(P p)const{return find(the_root,p);}
43
   st = 1.a;
                                                               void add_point(P const &p){
   sort(pt.begin(),pt.end(),bySt);
                                                                  add_point(find(the_root,p),p);}
                                                           51 private:
   for(int i = 0;i+1<pt.size();i++){</pre>
                                                               TriangleRef the_root;
     P p1 = pt[i], p2 = pt[i+1], p = (p1+p2)/2;
                                                            52
47
                                                                static TriangleRef find(TriangleRef root,P p){
     int ok = 1;
48
     for(int j = 1; j \le n; j++)
                                                                  for(;;){
49
                                                            54
       if(sgn(dis(p,c[j].o),c[j].r)<0){ok = 0;break;}
                                                                    if(!root->has_children()) return root;
                                                            55
50
                                                                    else for(int i = 0;i<3&&root->children[i];++i)
                                                            56
51
       double x1 = p1.x, y1 = p1.y, x2 = p2.x, y2 = p2.y;
                                                            57
                                                                      if(root->children[i]->contains(p)){
52
       double res = (x1*y2-x2*y1)/2; ans += res;}}
                                                            58
                                                                        root = root->children[i];
   return ans;}
                                                            59
                                                                        break; }}}
                                                            60
                                                                void add_point(TriangleRef root,P const &p){
3.10. 三角剖分 (Grimoire)
                                                            61
                                                                  TriangleRef tab,tbc,tca;
   Triangulation::find 返回包含某点的三角形
                                                                  tab = new(tot_triangles++)
                                                            62
Triangulation::add_point 将某点加入三角剖分
                                                                        Triangle(root->p[0],root->p[1],p);
                                                            63
某个 Triangle 在三角剖分中当且仅当它的 has children 为 0
                                                                  tbc = new(tot_triangles++)
                                                            64
如果要找到三角形 u 的邻域,则枚举它的所有 u.edge[i].tri,该条边
                                                                        Triangle(root->p[1],root->p[2],p);
                                                            65
的两个点为 u.p[(i + 1) % 3], u.p[(i + 2) % 3]
                                                                  tca = new(tot triangles++)
                                                            66
通过三角剖分构造 V 图:连接相邻三角形外接圆圆心
                                                                        Triangle(root->p[2],root->p[0],p);
                                                            67
注意初始化内存池和 Triangulation :: LOTS
                                                                  set_edge(Edge(tab,0),Edge(tbc,1));
                                                            68
复杂度 O(n \log n)
                                                                  set_edge(Edge(tbc,0),Edge(tca,1));
                                                            69
                                                            70
                                                                  set_edge(Edge(tca,0),Edge(tab,1));
1 const int N = 100000+5, MAX_TRIS = N*6;
                                                            71
                                                                  set_edge(Edge(tab,2),root->edge[2]);
2double dist_sqr(P const &a,P const &b);
                                                                  set_edge(Edge(tbc,2),root->edge[0]);
3bool in_circumcircle(P const &p1,P const &p2,
                                                                  set_edge(Edge(tca,2),root->edge[1]);
                                                            73
     P const &p3,P const &p4){//p4 in C(p1,p2,p3)
                                                                  root->children[0] = tab;
                                                            74
   double u11=p1.x-p4.x,u21=p2.x-p4.x,u31=p3.x-p4.x;
                                                                  root->children[1] = tbc;
                                                            75
   double u12=p1.y-p4.y,u22=p2.y-p4.y,u32=p3.y-p4.y;
                                                                  root->children[2] = tca;
                                                            76
   double u13=sqr(p1.x)-sqr(p4.x)+sqr(p1.y)-sqr(p4.y);
                                                            77
                                                                  flip(tab,2); flip(tbc,2); flip(tca,2); }
   double u23=sqr(p2.x)-sqr(p4.x)+sqr(p2.y)-sqr(p4.y);
                                                                void flip(TriangleRef tri,SideRef pi){
                                                            78
   double u33=sqr(p3.x)-sqr(p4.x)+sqr(p3.y)-sqr(p4.y);
                                                                  TriangleRef trj = tri->edge[pi].tri;
                                                            79
   double det = -u13*u22*u31+u12*u23*u31+u13*u21*u32
                                                            80
                                                                  int pj = tri->edge[pi].side;
                 -u11*u23*u32-u12*u21*u33+u11*u22*u33;
                                                            81
                                                                  if(!trj||!in_circumcircle(
   return det>eps; }
                                                                      tri->p[0],tri->p[1],tri->p[2],trj->p[pj]))
                                                            82
13 double side(P const &a,P const &b,P const &p){
                                                            83
   return (b.x-a.x)*(p.y-a.y)-(b.y-a.y)*(p.x-a.x); }
                                                                  TriangleRef trk = new(tot_triangles++)
                                                            84
15 typedef int SideRef;
                                                                   Triangle(tri->p[(pi+1)%3],trj->p[pj],tri->p[pi]);
                                                            85
16 struct Triangle;
                                                                  TriangleRef trl = new(tot_triangles++)
                                                            86
17 typedef Triangle *TriangleRef;
                                                                   \label{eq:tri-p[pj],tri-p[pi],trj-p[pj]} Triangle(trj->p[(pj+1)%3],tri->p[pi],trj->p[pj]);
                                                            87
18 struct Edge {
                                                                  set_edge(Edge(trk,0),Edge(trl,0));
                                                            88
   TriangleRef tri; SideRef side;
19
                                                                  set_edge(Edge(trk,1),tri->edge[(pi+2)%3]);
                                                            89
   Edge(): tri(0),side(0){}
20
                                                                  set_edge(Edge(trk,2),trj->edge[(pj+1)%3]);
                                                            90
   Edge(TriangleRef tri,SideRef side):
21
                                                                  set_edge(Edge(trl,1),trj->edge[(pj+2)%3]);
       tri(tri),side(side){} };
                                                                  set_edge(Edge(trl,2),tri->edge[(pi+1)%3]);
23 struct Triangle {
                                                                  tri->children[0] = trk;
                                                            93
   P p[3]; Edge edge[3]; TriangleRef children[3];
                                                                  tri->children[1] = trl;
                                                            94
   Triangle(){}
                                                                  tri->children[2] = 0;
                                                            95
   Triangle(P const &p0,P const &p1,P const &p2){
                                                                  trj->children[0] = trk;
                                                            96
     p[0] = p0; p[1] = p1; p[2] = p2;
                                                                  trj->children[1] = trl;
                                                            97
     children[0] = children[1] = children[2] = 0;}
   bool has_children() const{return children[0]!=0;}
```

```
trj->children[2] = 0;
     100 int n; P ps[N];
101 void build(){
   tot_triangles = triange_pool;
102
   random_shuffle(ps,ps+n);
103
   Triangulation tri;
104
   for(int i = 0;i<n;++i) tri.add_point(ps[i]); }</pre>
 3.11. 三维几何基础 (Grimoire)
 1// operator* det; operator^ dot
2// 3D line intersect
 3P intersect(const P &a0,const P &b0,const P &a1,
             const P &b1){
    double t = ((a0.x-a1.x)*(a1.y-b1.y)-
                (a0.y-a1.y)*(a1.x-b1.x))/
               ((a0.x-b0.x)*(a1.y-b1.y)-
                (a0.y-b0.y)*(a1.x-b1.x));
   return a0+(b0-a0)*t; }
10// area-line intersect
11 P intersect(const P &a, const P &b, const P &c,
             const P &10,const P &11){
   P p = (b-a)*(c-a);
   double t = (p^(a-10))/(p^(11-10));
   return 10+(11-10)*t; }
 3.12. 三维凸包 (Grimoire)
 int mark[1005][1005],n,cnt;;
 2double area(int a,int b,int c){
 return ((info[b]-info[a])*(info[c]-info[a])).len();}
 4double volume(int a,int b,int c,int d){
   return mix(info[b]-info[a],info[c]-info[a],
              info[d]-info[a]);}
struct Face {
   int a,b,c;
   Face(){}
   Face(int a,int b,int c): a(a),b(b),c(c){}
    int &operator[](int k){
     if(k==0) return a; if(k==1) return b; return c; }};
13 vector <Face> face;
14 inline void insert(int a,int b,int c){
face.push_back(Face(a,b,c)); }
16 void add(int v){
   vector <Face> tmp; int a,b,c; cnt++;
   for(int i = 0;i<SIZE(face);i++){</pre>
     a = face[i][0]; b = face[i][1]; c = face[i][2];
     if(sgn(volume(v,a,b,c))<0)</pre>
20
        mark[a][b] = mark[b][a] = mark[b][c] =
21
        mark[c][b] = mark[c][a] = mark[a][c] = cnt;
     else tmp.push_back(face[i]); }
23
   face = tmp;
   for(int i = 0;i<SIZE(tmp);i++){</pre>
     a = face[i][0]; b = face[i][1]; c = face[i][2];
     if(mark[a][b] == cnt) insert(b,a,v);
     if(mark[b][c]==cnt) insert(c,b,v);
     if(mark[c][a] == cnt) insert(a,c,v); }}
29
30 int Find(){
   for(int i = 2;i<n;i++){
31
     P ndir = (info[0]-info[i])*(info[1]-info[i]);
32
     if(ndir==P()) continue;
33
     swap(info[i],info[2]);
34
     for(int j=i+1;j<n;j++)if(sgn(volume(0,1,2,j))!=0){</pre>
35
        swap(info[j],info[3]);
        insert(0,1,2);insert(0,2,1);
       return 1; }}
   return 0; }
40 double calcDist(const P &p,int a,int b,int c){
   return fabs(mix(info[a]-p,info[b]-p,info[c]-p)/
                                                           中线长 M_a = \frac{1}{2}\sqrt{2(b^2+c^2)-a^2} = \frac{1}{2}\sqrt{b^2+c^2+2bc\cdot\cos A}
                area(a,b,c)); }
```

```
43//find the weight center
   double totalWeight = 0;
   P center(.0,.0,.0); P first = info[face[0][0]];
   for(int i = 0;i<SIZE(face);++i){</pre>
     P p = (info[face[i][0]] + info[face[i][1]] +
48
            info[face[i][2]]+first)*.25;
49
     double weight = mix(info[face[i][0]]-first,
50
51
                        info[face[i][1]]-first,
52
                        info[face[i][2]]-first);
53
     totalWeight += weight;
     center = center+p*weight; }
54
   center = center/totalWeight;
  return center: }
57//compute the minimal distance of center of any faces
58 double minDis(P p){
   double res = 1e100; //compute distance
   for(int i = 0;i<SIZE(face);++i)</pre>
     res = min(res, calcDist(p,face[i][0],face[i][1],
                            face[i][2]));
63 return res; }
64 void findConvex(P *info,int n){
sort(info,info+n); n = unique(info,info+n)-info;
face.clear(); random_shuffle(info,info+n);
67 if(!Find())return abort();
memset(mark,0,sizeof(mark)); cnt = 0;
69 for(int i = 3;i<n;i++) add(i); }
3.13. 三维绕轴旋转 (gy)
   右手大拇指指向 axis 方向, 四指弯曲方向旋转 w 弧度
1P rotate(const P &s,const P &axis,double w){
   double x = axis.x,y = axis.y,z = axis.z;
   double s1 = x*x+y*y+z*z, ss1 = msqrt(s1);
   double cosw = cos(w),sinw = sin(w);
   double a[4][4]; memset(a,0,sizeof a);
   a[3][3] = 1;
   a[0][0] = ((y*y+z*z)*cosw+x*x)/s1;
   a[0][1] = x*y*(1-cosw)/s1+z*sinw/ss1;
   a[0][2] = x*z*(1-cosw)/s1-y*sinw/ss1;
   a[1][0] = x*y*(1-cosw)/s1-z*sinw/ss1;
   a[1][1] = ((x*x+z*z)*cosw+y*y)/s1;
   a[1][2] = y*z*(1-cosw)/s1+x*sinw/ss1;
   a[2][0] = x*z*(1-cosw)/s1+y*sinw/ss1;
   a[2][1] = y*z*(1-cosw)/s1-x*sinw/ss1;
   a[2][2] = ((x*x+y*y)*cos(w)+z*z)/s1;
   double ans[4] = \{0,0,0,0\},c[4] = \{s.x,s.y,s.z,1\};
   for(int i = 0; i<4;++i) for(int j = 0; j<4;++j)
       ans[i] += a[j][i]*c[j];
18
   return P(ans[0],ans[1],ans[2]); }
3.14. 几何知识 (gy)
Pick theorem
   顶点为整点的简单多边形,其面积 A,内部格点数 i,边上格点
数 b 满足:
A = i + \frac{b}{2} - 1
欧拉示性数
 • 三维凸包的顶点个数 V, 边数 E, 面数 F 满足:
V - E + F = 2
 • 平面图的顶点个数 V, 边数 E, 平面被划分的区域数 F, 组成
图形的连通部分的数目 C 满足:
V - E + F = C + 1
几何公式
 • 三角形
半周长 p = \frac{a+b+c}{2}
```

面积 $S = \frac{1}{2}aH_a = \frac{1}{2}ab \cdot \sin C = \sqrt{p(p-a)(p-b)(p-c)} = pr = \frac{1}{2}ab \cdot \sin C = \sqrt{p(p-a)(p-b)(p-c)} = pr = \frac{1}{2}ab \cdot \sin C = \frac{1}{2}ab \cdot \cos C = \frac{1}{2$

```
角平分线长 T_a = \frac{\sqrt{bc((b+c)^2-a^2)}}{b+c} = \frac{2bc}{b+c}\cos\frac{A}{2}
高 H_a = b \sin C = \sqrt{b^2 - (\frac{a^2 + b^2 - c^2}{2a})^2}
内切圆半径 r=\frac{S}{p}=4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}=\sqrt{\frac{(p-a)(p-b)(p-c)}{p}}=
p \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}
p \tan \frac{1}{2} \cos \frac{1}{2} 外接圆半径 R = \frac{abc}{2S} = \frac{a}{2\sin A}
旁切圆半径 r_A = \frac{2S}{-a+b+c}
重心 \left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)
             x_1^2 + y_1^2 \quad y_1 \quad 1
                                              x_1 \quad x_1^2 + y_1^2
             x_2^2 + y_2^2
                          y_2 1
                                               x_2 x_2^2 + y_2^2 1
             x_3^2 + y_3^2 \quad y_3
                                                       x_3^2 + y_3^2
                                               x_3
                 x_1 \ y_1 \ 1
                                                           y_1
                x_2 \ y_2 \ 1
                                                   x_2 \quad y_2
                 x_3 \quad y_3 \quad 1
                                                    x_3
                                                           y_3
内心 \left(\frac{ax_1+bx_2+cx_3}{a+b+c}, \frac{ay_1+by_2+cy_3}{a+b+c}\right)
                                    1
             x_2x_3 + y_2y_3
                                         y_1
                                                      x_2x_3 + y_2y_3
                                                                             x_1
                                                      x_3x_1 + y_3y_1
                                                                                     1
                                   1
                                                                             x_2
             x_3x_1 + y_3y_1
                                          y_2
             x_1x_2 + y_1y_2
                                    1
                                                      x_1x_2 + y_1y_2
                                                                              1
                     x_1
                            y_1
                                                               x_1
                                                                       y_1
                                    1
                                                                              1
                     x_2 \quad y_2
                                                              x_2
                                                                      y_2
                                                              x_3
                     x_3 	 y_3 	 1
                                                                      y_3
                                                                               1
旁心 \left(\frac{-ax_1+bx_2+cx_3}{-a+b+c}, \frac{-ay_1+by_2+cy_3}{-a+b+c}\right)
• 圆
弧长 l = rA
弦长 a = 2\sqrt{2hr - h^2} = 2r \cdot \sin \frac{A}{2}
弓形高 h = r - \sqrt{r^2 - \frac{a^2}{4}} = r(1 - \cos\frac{A}{2})
```

```
扇形面积 S_1 = \frac{1}{2}lr = \frac{1}{2}Ar^2
弓形面积 S_2 = \frac{1}{2}r^2(A - \sin A)
• Circles of Apollonius
已知三个两两相切的圆, 半径为 r_1, r_2, r_3
与它们外切的圆半径为
                             r_1r_2+r_2r_3+r_3r_1-2\sqrt{r_1r_2r_3(r_1+r_2+r_3)}
                                r_1r_2r_3
与它们内切的圆半径为
                            r_1r_2+r_2r_3+r_3r_1+2\sqrt{r_1r_2r_3(r_1+r_2+r_3)}
棱台
体积 V = \frac{1}{3}h(A_1 + A_2 + \sqrt{A_1A_2})
正棱台侧面积 S = \frac{1}{2}(p_1 + p_2)l, l 为侧高
体积 V = \frac{4}{3}\pi r^3
表面积 S = 4\pi r^2
球台
侧面积 S = 2\pi rh
体积 V = \frac{1}{6}\pi h(3(r_1^2 + r_2^2) + h_h)

    球扇形

球面面积 S = 2\pi rh
体积 V = \frac{2}{3}\pi r^2 h = \frac{2}{3}\pi r^3 h(1 - \cos\varphi)
• 球面三角形
考虑单位球上的球面三角形,a,b,c 表示三边长(弧所对球心角),
A,B,C 表示三角大小(切线夹角)
余弦定理 \cos a = \cos b \cdot \cos c + \sin a \cdot \sin b \cdot \cos A
正弦定理 \frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}
球面面积 S = A + B + C - \pi

    四面体

体积 V = \frac{1}{6} |\overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD})|
```

Ch4. String

4.1. exKMP (ct)

 $extend_i$ 表示 T 与 $S_{i,n}$ 的最长公共前缀

```
int next[maxn], extend[maxn], fail[maxn];
zvoid getnext(char *s,int len){
    fail[1]=0;int p=0;memset(next,0,(len+2)<<2);
    for(int i = 2;i<=len;++i){
        while(p&&s[p+1]!=s[i]) p = fail[p];
        s[p+1]==s[i] ? ++p : 0; fail[i] = p;
        p ? cmax(next[i-p+1],p) : 0; } }
svoid getextend(char *s,int lens, char *t,int lent){
    getnext(t,lent); int a = 1,p = 0;
    for(int i = 1;i<=lens;++i){
        if(i+next[i-a+1]-1>=p){ cmax(p,i-1);
            while(p<lens&&p-i+1<lent&&s[p+1]==t[p-i+2])
            ++p; a = i; extend[i] = p-i+1;
    }else extend[i] = next[i-a+1]; }
}</pre>
```

4.2. Lydon Word Decomposition (Nightfall)

满足 s 的最小后缀等于 s 本身的串称为 Lyndon 串. 等价于: s 是它自己的所有循环移位中唯一最小的一个. 任意字符串 s 可以分解为 $s = \overline{s_1 s_2 \dots s_k}$,其中 s_i 是 Lyndon 串, $s_i \geq s_i + 1$ 。且这种分解方法是唯一的。

```
1// 每个前缀的最小后缀
2void mnsuf(char *s,int *mn,int n){
3 for(int i = 0;i<n;){
4    int j = i,k = i+1;
5    mn[i] = i;
6    for(;k<n&&s[j]<=s[k];++k)
7    if(s[j]==s[k]) mn[k] = mn[j]+k-j,++j;
8    else mn[k] = j = i;
9    for(;i<=j;i += k-j){}
10 }
11} // lyn+=s[i..i+k-j-1]
12//每个前缀的最大后缀
```

```
13 void mxsuf(char *s,int *mx,int n) {
14  fill(mx,mx+n,-1);
15  for(int i = 0;i<n;) {
16   int j = i,k = i+1;
17   if(mx[i]==-1) mx[i] = i;
18   for(;k<n&&s[j]>=s[k];++k) {
19      j = s[j]==s[k] ? j+1 : i;
20      if(mx[k]==-1) mx[k] = i;
21   }
22   for(;i<=j;i += k-j) {}
23  }
24}</pre>
```

4.3. 后缀数组 (ct)

```
int sa[maxn], rank[maxn], wa[maxn], wb[maxn],
      cnt[maxn],height[maxn];
 3inline void build(int n,int m){int *x=wa,*y=wb,*t;
    for(int i=1;i<=n;++i)cnt[x[i]=s[i]-'a'+1]++;
    for(int i=1;i<=m;++i)cnt[i]+=cnt[i-1];
    for(int i=n;i;--i)sa[cnt[x[i]]--]=i;
    for(int j=1; j< n \mid (j==1 \&\&m < n); j<<=1, t=x, x=y, y=t){
      memset(cnt+1,0,m<<2);
      int p = 0;for(int i=n-j+1;i<=n;++i)y[++p]=i;</pre>
      for(int i=1;i<=n;++i){</pre>
        ++cnt[x[i]];sa[i]>j?y[++p]=sa[i]-j:0;}
      for(int i=1;i<=m;++i)cnt[i]+=cnt[i-1];m=0;</pre>
      for(int i=n;i;--i)sa[cnt[x[y[i]]]--]=y[i];
      for(int i=1;i<=n;++i)</pre>
14
        y[sa[i]] = (i==1||x[sa[i]]!=x[sa[i-1]]||
15
        x[sa[i-1]+j]!=x[sa[i]+j])?++m:m;
   for(int i=1;i<=n;++i) rank[sa[i]] = i;</pre>
    for(int i=1,j,k=0;i<=n;height[rank[i++]]=k)</pre>
   for(k?--k:0, j=sa[rank[i]-1]; s[i+k]==s[j+k]; ++k);
4.4. 后缀自动机 (lhy)
struct Sam {
 2 Sam *fa,*go[26];int val;
```

void clear(){

4.5. Manacher (ct) 5. Data Structure

```
fa=0;val=0;memset(go,0,sizeof(go));}
5}*now,*root,*last,*cur,Pool[N<<1];
6 void Prepare(){
   cur=Pool;cur->clear();root=last=cur;}
8Sam *Insert(Sam *last,int now){
   Sam *p=last;
   if(p->go[now]){
10
     Sam *q=p->go[now];
11
     if(q->val==p->val+1)return q;
     Sam *nt=++cur;nt->clear();nt->val=p->val+1;
     memcpy(nt->go,q->go,sizeof(q->go));
     nt->fa=q->fa;q->fa=nt;
     while (p\&\&p->go[now]==q)p->go[now]=nt,p=p->fa;
     return nt:}
17
   Sam *np = ++cur;np->clear();np->val=p->val+1;
   while (p\&\&!p->go[now])p->go[now]=np,p=p->fa;
   if(!p)np->fa=root;
21
22
     Sam *q=p->go[now];
     if(q-val==p-val+1)np-fa=q;
23
       Sam *nt=++cur;nt->clear();nt->val=p->val+1;
25
       memcpy(nt->go,q->go,sizeof q->go);
       nt->fa=q->fa;q->fa=nt;np->fa=nt;
       while (p\&\&p->go[now]==q)
         p->go[now]=nt,p=p->fa;}}
   return np;}
4.5. Manacher (ct)
1 char str[maxn]; int p1[maxn],p2[maxn],n;
2void manacher1(){
int mx = 0,id; for(int i = 1;i<=n;++i){</pre>
     if(mx>=i)p1[i]=dmin(mx-i,p1[(id<<1)-i]);
     else p1[i]=1;
     for(;str[i+p1[i]]==str[i-p1[i]];++p1[i]);
     if(p1[i]+i-1>mx) id = i,mx = p1[i]+i-1;}
8 void manacher2(){
9 int mx = 0,id; for(int i = 1;i<=n;i++){</pre>
     if(mx>=i) p2[i] = dmin(mx-i,p2[(id<<1)-i]);
     else p2[i]=0;
     for(;str[i+p2[i]+1]==str[i-p2[i]];++p2[i]);
     if(p2[i]+i>mx) id = i,mx = p2[i]+i;}
14 int main(){ scanf("%s",str+1);
n = strlen(str+1); str[0] = '#'; str[n+1] = '$';
manacher1(); manacher2(); return 0;}
4.6. 回文树 (ct)
1 char str[maxn];
2 int next[maxn] [26], fail[maxn], len[maxn], cnt[maxn],
3 last,tot,n;
4inline int new_node(int 1){
5 len[++tot] = 1; return tot; }
6inline void init(){
7 	 tot = -1; new_node(0); new_node(-1);
8 str[0] = -1; fail[0] = 1; }
```

```
11 return x; }
12 inline void extend(int c){
13 ++n; int cur = get_fail(last);
14 if(!next[cur][c]){
     int now = new_node(len[cur]+2);
15
     fail[now] = next[get_fail(fail[cur])][c];
16
     next[cur][c] = now; }
17
last = next[cur][c]; ++cnt[last]; }
19 long long ans;
20 inline void count(){
21 for(int i = tot;i;--i){
22 cnt[fail[i]]+=cnt[i];
cmax(ans,111*len[i]*cnt[i]);}}
24int main(){
25 scanf("%s",str+1); init();
26 for(int i = 1;str[i];++i) extend(str[i]-'a');
27 count(); printf("%lld\n",ans); return 0; }
 4.7. 最小表示法 (ct)
 int main(){
 int i = 0, j = 1, k = 0;
   while(i<n\&\&j<n\&\&k<n)\{
      int tmp = a[(i+k)\%n]-a[(j+k)\%n];
      if(!tmp) k++;
       if(tmp>0) i += k+1;
       else j += k+1;
       if(i==j) ++j;
       k = 0;
10
     }
11
12 }
13 j = dmin(i,j);
for(int i = j;i<n;++i) printf("%d ",a[i]);</pre>
for(int i = 0;i<j-1;++i) printf("%d ",a[i]);</pre>
if(j>0) printf("%d\n",a[j-1]);
17
   return 0;
18 }
 4.8. 字符串知识 (Nightfall)
 双回文串
 是回文串,则 x_1 和 z_2 也是回文串。
```

如果 $s = x_1 x_2 = y_1 y_2 = z_1 z_2$, $|x_1| < |y_1| < |z_1|$, x_2, y_1, y_2, z_1

Border 的结构

字符串 s 的所有不小于 |s|/2 的 border 长度构成一个等差数

字符串 s 的所有 border 按长度排序后可分成 $O(\log |s|)$ 段, 每段是 一个等差数列。

回文串的回文后缀同时也是它的 border。

子串最小后缀

设 s[p..n] 是 $s[i..n], (l \le i \le r)$ 中最小者, 则 minsuf(l,r) 等于 s[p..r] 的最短非空 border。minsuf $(l,r) = \min\{s[p..r], \min suf(r - l)\}$ $2^{k} + 1, r$, $(2^{k} < r - l + 1 \le 2^{k+1})$.

子串最大后缀

从左往右,用 set 维护后缀的字典序递减的单调队列,并在对 应时刻添加"小于事件"点以便以后修改队列;查询直接在 set 里 lower bound

Ch₅. Data Structure

9inline int get_fail(int x){

5.1. 莫队 (ct)

```
int size:
2struct Query{int l,r,id;
  inline bool operator<(const Queuy &that)const{</pre>
     return 1/size!=that.1/size?1<that.1:(
```

while(str[n-len[x]-1]!=str[n]) x = fail[x];

```
(1/size)&1?r<that.r:r>that.r);}} q[maxn];
6int main(){
 size=(int)sqrt(n*1.0); std::sort(q+1,q+m+1);
 8 int l=1,r=0;for(int i=1;i<=m;++i){</pre>
     for(;r<q[i].r;) add(++r);
     for(;r>q[i].r;) del(r--);
10
11
     for(;l<q[i].1;) del(1++);
     for(;l>q[i].1;) add(--1);
      /* write your code here. */}}
```

5.2. 带权并查集 (ct) 5. Data Structure

5.2. 带权并查集 (ct)

```
struct edge { int a,b,w;
   inline bool operator<(const edge &that) const{
     return w>that.w; } e[maxm];
4int fa[maxn],f1[maxn],f2[maxn],f1cnt,f2cnt,
   val[maxn],size[maxn];
6int main(){
   int n,m; scanf("%d%d",&n,&m);
   for(int i=1;i<=m;++i)
     scanf("%d%d%d", &e[i].a, &e[i].b, &e[i].w);
   for(int i=1;i<=n;++i)size[i]=1;</pre>
   std::sort(e+1,e+m+1);
   for(int i=1;i<=m;++i){</pre>
     int x=e[i].a,y=e[i].b;
     for(;fa[x];x=fa[x]);
14
     for(;fa[y];y=fa[y]);
15
     if(x!=y){
16
        if(size[x]<size[y]) std::swap(x,y);</pre>
        size[x]+=size[y];val[y]=e[i].w;fa[y]=x;}}
18
   int q; scanf("%d",&q);
19
   for(;q;--q){
20
      int a,b; scanf("%d%d", &a, &b);f1cnt=f2cnt=0;
     for(;fa[a];a=fa[a])f1[++f1cnt]=a;
     for(;fa[b];b=fa[b])f2[++f2cnt]=b;
23
     if(a!=b){puts("-1");continue;}
     \label{eq:while} \begin{tabular}{ll} while (f1cnt&&f2cnt&&f1[f1cnt] == f2[f2cnt]) \\ \end{tabular}
        --f1cnt,--f2cnt; int ret = 0x7ffffffff;
     for(;f1cnt;--f1cnt) cmin(ret,val[f1[f1cnt]]);
     for(;f2cnt;--f2cnt) cmin(ret,val[f2[f2cnt]]);
     printf("%d\n",ret);}}
```

5.3. Splay (ct)

```
struct Node *null;
2struct Node {
   Node *ch[2],*fa; int val; bool rev;
   inline bool type(){return fa->ch[1]==this;}
   inline void pushup(){}
   inline void pushdown(){
     if(rev){
       ch[0]->rev^=1; ch[1]->rev^=1;
       std::swap(ch[0],ch[1]); rev ^= 1;}}
   inline void rotate(){
     bool d=type(); Node *f=fa,*gf=f->fa;
     (fa = gf,f->fa!=null)?fa->ch[f->type()]=this:0;
     (f->ch[d]=ch[!d])!=null?ch[!d]->fa=f:0;
13
     (ch[!d]=f)->fa=this;
14
     f->pushup();}
15
   inline void splay(){
16
     for(;fa!=null;rotate())if(fa->fa!=null)
         (type()==fa->type()?fa:this)->rotate();
     pushup();}
20 } mem[maxn];
```

5.4. 线段树 (ct)

吉利线段树

吉利线段树能解决一类区间与某个数取最大或最小,区间求和的问题。以区间取最小值为例,在线段树的每一个节点额外维护区间中的最大值 ma,严格次大值 se 以及最大值个树 t。现在假设我们要让区间 [L,R] 对 x 取最小值,先在线段树中定位若干个节点,对于每个节点分三种情况讨论:

- 当 $ma \le x$ 时,显然这一次修改不会对这个节点产生影响,直接推出。
- 当 se < x < ma 时,显然这一次修改只会影响到所有最大值,所以把 num 加上 $t \times (x ma)$,把 ma 更新为 x,打上标记推出。
- 当 $x \le se$ 时,无法直接更新这一个节点的信息,对当前节点的 左儿子和右儿子递归处理。

单次操作的均摊复杂度为 $O(\log^2 n)$

线段树维护折线

问题的关键就在于如何合并两个区间,显然左区间的答案肯定可以作为总区间的答案,那么接下来就是看右区间有多少个在新加入左区间的约束后是可行的。考虑如果右区间最大值都小于等于左区间最大值那么右区间就没有贡献了,相当于是被整个挡住了。如果大于最大值,就再考虑右区间的两个子区间: 左子区间、右子区间,加入左子区间的最大值小于等于左区间最大值,那么就递归处理右子区间; 否则就递归处理左子区间,然后加上右子区间原本的答案。考虑这样做的必然性: 因为加入左区间最高的比左子区间最高的矮,那么相当于是左区间对于右子区间没有约束,都是左子区间产生的约束。但是右子区间的答案要用右区间答案 — 左子区间答案,不能直接调用右子区间本身答案,因为其本身答案没有考虑

对于线段树每个结点维护两个值: ans 和 max, ans 表示只考

虑这个区间的可视区间的答案, max 表示这个区间的最大值。那么

线段树维护矩形面积并

左子区间的约束。

线段树上维护两个值: Cover 和 Len Cover 意为这个区间被覆盖了多少次 Len 意为区间被覆盖的总长度 Maintain 的时候,如果 Cover > 0,Len 直接为区间长 否则从左右子树递推 Len 修改的时候直接改 Cover 就好

5.5. 二进制分组 (ct)

用线段树维护时间的操作序列,每次操作一个一个往线段树里面插,等到一个线段被插满的时候用归并来维护区间的信息。查询的时候如果一个线段没有被插满就递归下去。定位到一个区间的时候在区间里面归并出来的信息二分。

```
1//1 区间变成线性递推 2 执行某个时间区间的所有操作
 2struct Seg {int 1,r,a,b;} p[maxn*200];
 int lef[maxm<<2],rig[maxm<<2],pcnt,ta,tb,ql,qr,n,</pre>
   m,k,ans,x[maxn],tnum;
 5 void update(int o,int l,int r){
    lef[o]=pcnt+1;
    for(int i=lef[o<<1], j=lef[o<<1|1], head = 1;
        i<=rig[o<<1]||j<=rig[o<<1|1];)</pre>
 9
      if(p[i].r<=p[j].r){ p[++pcnt]=
10
           (Seg) {head, p[i].r, 111*p[i].a*p[j].a%m,
11
                 (111*p[j].a*p[i].b+p[j].b)%m};
12
        head=p[i].r+1; p[i].r==p[j].r?++j:0; ++i;
      else{ p[++pcnt]=
           (Seg) {head, p[j].r, 111*p[i].a*p[j].a\m,
14
                 (111*p[j].a*p[i].b+p[j].b)%m};
        head=p[j].r+1; ++j;} rig[o] = pcnt;}
17 int find(int o,int t,int &s){
    int l=lef[o],r=rig[o];
18
    while (1< r) {int mid = 1+r>>1;
      if(t<=p[mid].r)r = mid;else l=mid+1;}</pre>
    s=(111*s*p[1].a+p[1].b)\%m;
22 void modify(int o,int l,int r,int t){
    if(l==r){ lef[o]=pcnt+1;
      ql>1?p[++pcnt]=(Seg){1,ql-1,1,0},1:0;
      p[++pcnt]=(Seg){ql,qr,ta,tb};
25
      qr<n?p[++pcnt]=(Seg){qr+1,n,1,0},1:0;
26
      rig[o]=pcnt;return;}
    int mid=l+r>>1;
    if(t<=mid)modify(o<<1,1,mid,t);</pre>
    else modify(o<<1|1,mid+1,r,t);</pre>
    if(t==r)update(o,1,r);}
 32 void query(int o,int l,int r){
    if(ql<=l&&r<=qr){find(o,k,ans);return;}</pre>
    int mid=l+r>>1;
    if(ql<=mid)query(o<<1,1,mid);</pre>
    if(mid<qr)query(o<<1|1,mid+1,r);}
37 int main(){int type, Q;scanf("%d%d%d",&type,&n,&m);
    for(int i=1;i<=n;++i)scanf("%d",&x[i]);</pre>
    scanf("%d", &Q); for(int QQ=1;QQ<=Q;++QQ){
      int opt,1,r; scanf("%d%d%d", &opt, &1, &r);
40
      if(opt==1){ scanf("%d%d", &ta, &tb);
: 41
```

5.6. CDQ 分治 (ct) 5. Data Structure

```
++tnum; ql=l; qr=r; modify(1,1,Q,tnum);}
    else{ scanf("%d",&k);ql=1;qr=r;ans=x[k];
      query(1,1,Q);printf("%d\n",ans);}}
5.6. CDQ 分治 (ct)
struct event{int x,y,id,opt,ans;}t[maxn],q[maxn];
2 void cdq(int l,int r){
  if(l==r)return; int m=l+r>>1;
  cdq(1,m); cdq(m+1,r);
  for(int i=1, j=m+1; j<=r;++j){</pre>
    for(;i<=m&&q[i].x<=q[j].x;++i)</pre>
       if(!q[i].opt) add(q[i].y,q[i].ans);
    //考虑前面的修改操作对后面的询问的影响
    if(q[j].opt) q[j].ans += query(q[j].y);}
  int i,j,k=0; //以下相当于归并排序
  for(i=1,j=m+1;i<=m&&j<=r;){</pre>
    if(q[i].x<=q[j].x)t[k++]=q[i++];
    else t[k++]=q[j++];}
  while(i \le m)t[k++]=q[i++]; while(j \le r)t[k++]=q[j++];
  for(int i=0;i<k;++i)q[l+i]=t[i];}</pre>
5.7. 斜率优化 (ct)
```

对于斜截式 y = kx + b,如果把 k_i 看成斜率,那 dp 时需要最小化截距,把斜截式转化为 $b_i = -k_i x_j + y_j$,就可以把可以转移到这个状态的点看作是二维平面上的点 $(-x_j, y_j)$,问题转化为了在平面上找一个点使得斜率为 k_i 的直线的截距最小。这样的点一定在凸包上,这样的点在凸包上和前一个点的斜率 $\leq k_i$,和后面一个点

的斜率 $\geq k_i$ 。这样就可以在凸包上二分来加速转移。当点的横坐标 x_i 和斜率 k_i 都是单调的,还可以用单调队列来维护凸包。

```
_{1}// DP : f[i]=min{f[j]+sqr(sum[i]-sum[j]-1), 0<j<i}
2 int a[maxn],n,1,q[maxn]; ll sum[maxn],f[maxn];
3inline ll sqr(ll x){return x*x;}
4#define y(_i) (f[_i] + sqr(sum[_i] + 1))
5 #define x(_i) (2 * sum[_i])
6inline db slope(int i,int j){
   return (y(i)-y(j))/(1.0*(x(i)-x(j)));}
sint main(){ n=F(); l=F()+1;
   for(int i=1;i<=n;++i)</pre>
     {a[i]=F();sum[i]=sum[i-1]+a[i];}
   for(int i=1;i<=n;++i)sum[i]+=i;</pre>
   f[0]=0; int h=1,t=1; q[h]=0;
   for(int i=1;i<=n;++i){</pre>
13
     while (h < t \& \& slope(q[h], q[h+1]) < = sum[i]) + +h;
14
     f[i]=f[q[h]]+sqr(sum[i]-sum[q[h]]-1);
     while (h<t\&\&slope(q[t-1],i)<slope(q[t-1],q[t]))
16
        --t; q[++t] = i;}
   printf("%lld\n",f[n]); return 0; }
```

5.8. 树分块 (ct)

树分块套分块:给定一棵有点权的树,每次询问链上不同点权 个数

```
int col[maxn], hash[maxn], hcnt, n, m, near[maxn];
2bool vis[maxn]; int jp[maxn];
int mark[maxn], mcnt, tcnt[maxn], tans, pre[256][maxn];
4struct Block{int cnt[256];}mem[maxn],*tot = mem;
5inline Block *nw(Block *last,int v){
   Block *ret = ++tot;
   memcpy(ret->cnt,last->cnt,sizeof(ret->cnt));
   ++ret->cnt[v&255]; return ret; }
9struct Arr{Block *b[256];
int v(int c){return b[c>>8]->cnt[c&255];}}c[maxn];
inline Arr cp(Arr last,int v){ Arr ret;
   memcpy(ret.b,last.b,sizeof(ret.b));
   ret.b[v>>8]=nw(last.b[v>>8],v);return ret;}
14 void bfs(){int head=0,tail=1;q[1]=1;
   while(head<tail){//bfs 树剖 + 预处理
     int now=q[++head];
     size[now]=1;vis[now]=1;dep[now]=dep[fa[now]]+1;
     for(Edge *iter=last[now];iter;iter=iter->next)
```

```
19
        if(!vis[iter->to])fa[q[++tail]=iter->to]=now;}
    for(int i=n;i;--i){
20
      int now=q[i]; size[fa[now]]+=size[now];
: 21
      size[son[fa[now]]]<size[now]?son[fa[now]]=now:0;}</pre>
22
    for(int i=0;i<256;++i)c[0].b[i]=mem;
23
    for(int i=1;i<=n;++i){int now=q[i];</pre>
24
      c[now] = cp(c[fa[now]], col[now]);
25
      top[now]=son[fa[now]]==now?top[fa[now]]:now;}}
26
27 inline int getlca(int a,int b);
 28 void dfs_init(int x){vis[x]=1;
    ++tcnt[col[x]] == 1? ++tans: 0; pre[mcnt][x] =tans;
    for(Edge *iter=last[x];iter;iter=iter->next)
      if(!vis[iter->to]) dfs_init(iter->to);
    --tcnt[col[x]]==0?--tans:0:}
33 int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i)scanf("%d",&col[i]);
    for(int i=1;i<n;++i){</pre>
      int a,b;scanf("%d%d",&a,&b);link(a,b);}
    bfs(); int D=sqrt(n);
    for(int i=1;i<=n;++i)if(dep[i]%D==0&&size[i]>=D){
        memset(vis,0,n+1);mark[i]=++mcnt;dfs_init(i);}
    for(int i=1;i<=n;++i)</pre>
      near[q[i]]=mark[q[i]]?q[i]:near[fa[q[i]]];
    int ans=0;memset(vis,0,n+1);
    for(;m;--m){int x,y;scanf("%d%d",&x,&y);
 44
      x^=ans;ans=0;int lca=getlca(x,y);
 45
 46
      if(dep[near[x]] < dep[lca]) std::swap(x,y);</pre>
 47
      if(dep[near[x]]>=dep[lca]){
 48
        Arr *_a=c+near[x],*_b=c+y;
        Arr *_c=c+lca,*_d=c+fa[lca];
 49
        for(;!mark[x];x=fa[x])
 50
          if(_a->v(col[x])+_b->v(col[x])==
51
              _{c}-v(col[x])+_{d}-v(col[x])&&
52
              !vis[col[x]])vis[jp[++ans]=col[x]]=1;
        for(int i=1;i<=ans;++i)vis[jp[i]]=0;</pre>
54
        ans+=pre[mark[near[x]]][y];}
55
56
        for(;x!=lca;x = fa[x])
57
           !vis[col[x]]?vis[jp[++ans]=col[x]]=1:0;
58
        for(;y!=lca;y=fa[y])
           !vis[col[y]]?vis[jp[++ans]=col[y]]=1:0;
60
61
         !vis[col[lca]]?vis[jp[++ans]=col[lca]]=1:0;
62
        for(int i=1;i<=ans;++i)vis[jp[i]]=0;}</pre>
      printf("%d\n",ans);}return 0;}
 5.9. KD tree (lhy)
 inline int cmp(const lhy &a, const lhy &b){
   return a.d[D] < b.d[D];</pre>
 3 }
 4inline void updata(int x){
    if(p[x].1){
      for(int i=0;i<2;i++){
        Min(p[x].min[i],p[p[x].1].min[i]);
        Max(p[x].max[i],p[p[x].1].max[i]);}}
    if(p[x].r){
      for(int i = 0;i<2;i++){
 10
        Min(p[x].min[i],p[p[x].r].min[i]);
        Max(p[x].max[i],p[p[x].r].max[i]);}
13 int build(int l,int r,int d){
    D=d;int mid=(1+r)>>1;
 14
    nth_element(p+l,p+mid,p+r+1,cmp);
15
    for(int i=0;i<2;i++)</pre>
16
      p[mid].max[i]=p[mid].min[i]=p[mid].d[i];
17
    if(1<mid)p[mid].l=build(1,mid-1,d^1);</pre>
18
    if(mid<r)p[mid].r=build(mid+1,r,d^1);</pre>
19
    updata(mid);
20
    return mid;}
```

5.10. DLX (Nightfall) 6. Others

```
22 void insert(int now,int D){
                                                               20 }
   if(p[now].d[D]>=p[n].d[D]){
                                                              21 }
      if(p[now].1)insert(p[now].1,D^1);
                                                              22 void Remove(node *x){
                                                              23 x->left->right = x->right;
      else p[now].l=n;updata(now);
25
                                                                  x->right->left = x->left;
   }else{
26
      if(p[now].r)insert(p[now].r,D^1);
                                                                  for(node *i = x->down;i!=x;i = i->down)
                                                               25
     else p[now].r=n;updata(now);}}
                                                                     for(node *j = i->right;j!=i;j = j->right){
28
                                                               26
                                                                       j->up->down = j->down;
29 int dist(lhy &P,int X,int Y){
                                                               27
   int nowans=0;
                                                                       j->down->up = j->up;
                                                               28
   if(X>=P.max[0])nowans+=X-P.max[0];
                                                                       --(j->col->cnt);
                                                               29
   if(X \le P.min[0])nowans += P.min[0] - X;
                                                               30
   if(Y>=P.max[1])nowans+=Y-P.max[1];
                                                               31 }
   if(Y<=P.min[1])nowans+=P.min[1]-Y;
                                                               32 void Resume(node *x){
                                                               33 for(node *i = x->up;i!=x;i = i->up)
   return nowans:}
36 void ask1(int now){
                                                                     for(node *j = i->left;j!=i;j = j->left){
   int pl=inf,pr=inf;
                                                                       j->up->down = j->down->up = j;
   Min(ans,abs(x-p[now].d[0])+abs(y-p[now].d[1]));
                                                               36
                                                                       ++(j->col->cnt);
                                                                     }
   if(p[now].1)pl=dist(p[p[now].1],x,y);
                                                               37
   if(p[now].r)pr=dist(p[p[now].r],x,y);
                                                               38
                                                                  x->left->right = x,x->right->left = x;
   if(pl<pr){</pre>
                                                               39 }
     if(pl<ans)ask(p[now].1);</pre>
                                                               40bool search(int tot){
     if(pr<ans)ask(p[now].r);</pre>
                                                               41 if(head->right==head) return ansNode = tot,true;
43
                                                               42 node *choose = NULL;
   }else{
     if(pr<ans)ask(p[now].r);</pre>
                                                                  for(node *i = head->right;i!=head;i = i->right){
45
                                                                     if(choose==NULL||choose->cnt>i->cnt)
     if(pl<ans)ask(p[now].1);}}</pre>
47 void ask2(int now){
                                                                       choose = i:
                                                               45
   if(x1 \le p[now].min[0] \&\&x2 \ge p[now].max[0] \&\&
                                                                    if(choose->cnt<2) break;</pre>
                                                               46
       y1 \le p[now].min[1] &&y2 \ge p[now].max[1]){
                                                               47
49
     ans+=p[now].sum;return;}
                                                               48
                                                                  Remove(choose);
50
51
   if(x1>p[now].max[0]||x2<p[now].min[0]||
                                                               49
                                                                   for(node *i = choose->down;i!=choose;
      y1>p[now].max[1]||y2<p[now].min[1])return;
                                                               50
                                                                       i = i \rightarrow down)
   if(x1 \le p[now].d[0] \&\&x2 \ge p[now].d[0] \&\&
                                                               51
                                                                     for(node *j = i->right;j!=i;j = j->right)
      y1 \le p[now].d[1] &&y2 \ge p[now].d[1])
                                                               52
                                                                       Remove(j->col);
     ans+=p[now].val;
                                                                     ans[tot] = i;
                                                               53
                                                                     if(search(tot+1)) return true;
   if(p[now].1)ask(p[now].1);
                                                               54
                                                                     ans[tot] = NULL;
   if(p[now].r)ask(p[now].r);}
                                                               55
                                                                     for(node *j = i->left;j!=i;j = j->left)
                                                              56
5.10. DLX (Nightfall)
                                                              57
                                                                       Resume(j->col);
struct node {
                                                               58
   node *left,*right,*up,*down,*col;
                                                                  Resume(choose);
                                                               59
   int row,cnt;
                                                                  return false;
                                                               60
4  *head,*col[MAXC],Node[MAXNODE],*ans[MAXNODE];
                                                               61 }
5 int totNode, ansNode;
                                                               62 void prepare(int totC){
6 void insert(const std::vector<int> &V,int rownum){
                                                                  head = Node+totC;
7 std::vector<node*>N;
                                                                  for(int i = 0;i<totC;++i) col[i] = Node+i;</pre>
   for(int i = 0;i<int(V.size());++i){</pre>
                                                                  totNode = totC+1;
                                                               65
     node *now = Node+(totNode++);
                                                                  ansNode = 0;
                                                               66
     now->row = rownum;
                                                                  for(int i = 0;i<=totC;++i){</pre>
                                                               67
     now->col = now->up = col[V[i]];
                                                                     (Node+i)->right = Node+(i+1)%(totC+1);
                                                               68
     now->down = col[V[i]]->down;
                                                                     (Node+i)->left = Node+(i+totC)%(totC+1);
                                                               69
     now->up->down = now,now->down->up = now;
13
                                                                     (Node+i)->up = (Node+i)->down = Node+i;
                                                               70
     now->col->cnt++;
14
                                                                     (Node+i)->cnt = 0;
                                                               71
     N.push_back(now);
15
                                                               72
   }
                                                               73 }
   for(int i = 0;i<int(V.size());++i){</pre>
                                                               74// prepare(C);for(i(rows))insert({col_id},C);
     N[i] \rightarrow right = N[(i+1)\%V.size()];
                                                              75// search(0);
     N[i] \rightarrow left = N[(i-1+V.size())\%V.size()];
```

Ch6. Others

6.1. bashrc vimrc (gy)

```
1 export

→ CPPFLAGS='-std=c++11 -Wall -Wextra -Wconversion -02'

1 se et ts=4 sw=4 sts=4 nu sc sm lbr is hls mouse=a
2 sy on
```

3ino <tab> <c-n>

11 au filetype cpp se cin fdm=syntax

6.2. STL 释放内存 (Durandal)

```
1template<typename T>
2__inline void clear(T &container){
  container.clear();
  T(container).swap(container);
```

6.3. 开栈 (Durandal)

```
register char *_sp __asm__("rsp");
2int main(){
  const int size = 400<<20; // 400 MB
   static char *sys,
     *mine(new char[size]+size-4096);
   sys = _sp;_sp = mine;
   _main(); // main method
   _{sp} = sys;
   return 0;
10 }
```

6.4. O3 (gy)

1_attribute__((optimize("-03"))) void f(){}

6.5. 模拟退火 (ct)

```
inline db rand01(){return rand()/2147483647.0;}
2 inline db randp(){return (rand()&1?1:-1)*rand01();}
3inline db f(db x){
4 /* write your function here. */
  if(maxx<fans){fans=maxx;ans_x=x;}return maxx;}</pre>
6int main(){
  srand(233);db x=0,fnow=f(x);fans=1e30;
  for(db T=1e4; T>1e-4; T*=0.997){
    db nx=x+randp()*T,fnext=f(nx),delta=fnext-fnow;
    if(delta<1e-9||exp(-delta/T)>rand01()){
       x=nx;fnow=fnext;}}return 0;}
```

6.6. Simpson 积分 (gy)

```
number f(number x){ return std::sqrt(1-x*x)*2; }
2 number simpson(number a, number b){
   number c = (a+b)/2;
   return (f(a)+f(b)+4*f(c))*(b-a)/6; }
5 number integral(number a, number b, number eps) {
   number c = (a+b)/2;
   number mid = simpson(a,b),l = simpson(a,c),
     r = simpson(c,b);
   if(std::abs(l+r-mid) \le 15*eps)
     return l+r+(l+r-mid)/15;
   else
11
     return integral(a,c,eps/2)+integral(c,b,eps/2); }
```

6.7. Zeller Congruence (gy)

```
int day_in_week(int year,int month,int day){
  if(month==1||month==2)month += 12,year--;
  int c = year/100, y = year%100, m = month, d = day;
  int ret = (y+y/4+c/4+5*c+13*(m+1)/5+d+6)\%7;
  return ret>=0 ? ret : ret+7; }
```

6.8. 博弈论模型 (gy)

Wythoff's game

给定两堆石子,每次可以从任意一堆中取至少一个石子,或从两堆 中取相同的至少一个石子, 取走最后石子的胜

先手胜当且仅当石子数满足:

 $\lfloor (b-a) \times \phi \rfloor = a, (a \le b, \phi = \frac{\sqrt{5}+1}{2})$ 先手胜对应的石子数构成两个序列:

 $a_n = \lfloor n \times \phi \rfloor, b_n = \lfloor n \times \phi^2 \rfloor$

• Fibonacci nim

给定一堆石子, 第一次可以取至少一个、少于石子总数数量的石子, 之后每次可以取至少一个、不超过上次取石子数量两倍的石子,取

走最后石子的胜

先手胜当且仅当石子数为斐波那契数

• anti-SG

决策集合为空的游戏者胜

先手胜当且仅当满足以下任一条件

- 所有单一游戏的 SG 值都 < 2 且游戏的 SG 值为 0
- 至少有一个单一游戏的 SG 值 ≥ 2 且游戏的 SG 值不为 0

6.9. 积分表 (integral-table.com)
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1$$

$$\int \frac{1}{x} dx = \ln |x|$$

$$\int u dv = uv - \int v du$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln |ax+b|$$

$$\int \frac{1}{(x+a)^2} dx = -\frac{1}{x+a}$$

$$\int (x+a)^n dx = \frac{(x+a)^{n+1}}{n+1}, \quad n \neq -1$$

$$\int x(x+a)^n dx = \frac{(x+a)^{n+1}((n+1)x-a)}{(n+1)(n+2)}$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x$$

$$\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$$

$$\int \frac{x}{a^2+x^2} dx = \frac{1}{2} \ln |a^2+x^2|$$

$$\int \frac{x^2}{a^2+x^2} dx = x-a \tan^{-1} \frac{x}{a}$$

$$\int \frac{x^3}{a^2+x^2} dx = \frac{1}{2} x^2 - \frac{1}{2} a^2 \ln |a^2+x^2|$$

$$\int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln \frac{a+x}{b+x}, \quad a \neq b$$

$$\int \frac{x}{(x+a)^2} dx = \frac{a}{a+x} + \ln |a+x|$$

$$\int \frac{x}{ax^2+bx+c} dx = \frac{1}{2a} \ln |ax^2+bx+c| - \frac{b}{a\sqrt{4ac-b^2}} \tan^{-1} \frac{2ax+b}{\sqrt{4ac-b^2}}$$

$$\int \sqrt{x-a} dx = \frac{2}{3} (x-a)^{3/2}$$

$$\int \sqrt{x-a} dx = \frac{2}{3} (x-a)^{3/2}$$

$$\int \frac{1}{\sqrt{x\pm a}} dx = 2\sqrt{x\pm a}$$

$$\int \sqrt{x-a} \, dx = \frac{2}{3} (x-a)^{3/2}$$

$$\int \frac{1}{\sqrt{x\pm a}} \, dx = 2\sqrt{x\pm a}$$

$$\int \frac{1}{\sqrt{a-x}} \, dx = -2\sqrt{a-x}$$

$$\int x\sqrt{x-a} \, dx = \begin{cases} \frac{2a}{3} (x-a)^{3/2} + \frac{2}{5} (x-a)^{5/2}, \text{ or } \\ \frac{2}{3} (x-a)^{3/2} - \frac{4}{15} (x-a)^{5/2}, \text{ or } \\ \frac{2}{3} (2a+3x)(x-a)^{3/2} \end{cases}$$

$$\int \sqrt{ax+b} \, dx = \left(\frac{2b}{3a} + \frac{2x}{3}\right) \sqrt{ax+b}$$

$$\int (ax+b)^{3/2} \, dx = \frac{2}{5a} (ax+b)^{5/2}$$

$$\int \frac{x}{\sqrt{x\pm a}} \, dx = \frac{2}{3} (x\mp 2a)\sqrt{x\pm a}$$

$$\int \sqrt{\frac{x}{a-x}} \, dx = -\sqrt{x(a-x)} - a \tan^{-1} \frac{\sqrt{x(a-x)}}{x-a}$$

$$\int \sqrt{\frac{x}{a+x}} \, dx = \sqrt{x(a+x)} - a \ln\left(\sqrt{x} + \sqrt{x+a}\right)$$

$$\int x\sqrt{ax+b} \, dx = \frac{2}{15a^2} (-2b^2 + abx + 3a^2x^2) \sqrt{ax+b}$$

$$\int \sqrt{x(ax+b)} \ dx =$$

$$\frac{1}{4a^{3/2}} \left((2ax+b)\sqrt{ax(ax+b)} - b^2 \ln \left| a\sqrt{x} + \sqrt{a(ax+b)} \right| \right)$$

$$\begin{split} \int \sqrt{x^3 (ax+b)} \ dx &= \\ & \left(\frac{b}{12a} - \frac{b^2}{8a^2x} + \frac{x}{3} \right) \sqrt{x^3 (ax+b)} + \frac{b^3}{8a^{5/2}} \ln \left| a\sqrt{x} + \sqrt{a(ax+b)} \right| \\ & \int \sqrt{x^2 \pm a^2} \ dx &= \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right| \end{split}$$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$

$$\int x \sqrt{x^2 \pm a^2} \, dx = \frac{1}{3} \left(x^2 \pm a^2 \right)^{3/2}$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} \, dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right|$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}$$

$$\int \frac{x}{\sqrt{x^2 \pm a^2}} \, dx = \sqrt{x^2 \pm a^2}$$

$$\int \frac{x}{\sqrt{x^2 \pm a^2}} \, dx = -\sqrt{a^2 - x^2}$$

$$\int \frac{x}{\sqrt{x^2 \pm a^2}} \, dx = -\frac{1}{2} x \sqrt{x^2 \pm a^2} + \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right|$$

$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right|$$

$$\int x \sqrt{ax^2 + bx + c} \, dx = \frac{1}{48a^{5/2}} \left(2\sqrt{a}\sqrt{ax^2 + bx + c} \, \left(-3b^2 + 2abx + 8a(c + ax^2) \right) + 3(b^3 - 4abc) \ln \left| b + 2ax + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|$$

$$\int \frac{1}{\sqrt{ax^2 + bx + c}} \, dx = \frac{1}{a} \sqrt{ax^2 + bx + c} \, dx = \frac{1}{a} \sqrt{ax^2 + bx + c}$$

$$\int \frac{dx}{(a^2 + x^2)^{3/2}} = \frac{x}{a^2\sqrt{a^2 + x^2}}$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax$$

$$\int \sin^2 ax \, dx = \frac{x}{2} - \frac{\sin 2ax}{4a}$$

$$\int \sin^3 ax \, dx = -\frac{3\cos ax}{4a} + \frac{\cos 3ax}{12a}$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax$$

$$\int \cos^2 ax \, dx = \frac{x}{2} + \frac{\sin 2ax}{4a}$$

$$\int \cos^3 ax \, dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a}$$

$$\int \cos x \sin x \, dx = \frac{1}{2} \sin^2 x + c_1 = -\frac{1}{2} \cos^2 x + c_2 = -\frac{1}{4} \cos 2x + c_3$$

$$\int \cos ax \sin bx \, dx = \frac{\cos[(a - b)x]}{2(a - b)} - \frac{\cos[(a + b)x]}{2(a + b)}, a \neq b$$

$$\int \sin^2 ax \cos bx \, dx = -\frac{\sin[(2a - b)x]}{4(2a - b)} + \frac{\sin bx}{2(a + b)} - \frac{\sin[(2a + b)x]}{4(2a + b)}$$

 $\int \sin^2 x \cos x \ dx = \frac{1}{2} \sin^3 x$

$$\int \cos^2 ax \sin bx \, dx = \frac{\cos[(2a - b)x]}{4(2a - b)} - \frac{\cos bx}{2b} - \frac{\cos[(2a + b)x]}{4(2a + b)}$$

$$\int \cos^2 ax \sin ax \, dx = -\frac{1}{3a} \cos^3 ax$$

$$\int \sin^2 ax \cos^2 bx dx = \frac{x}{4} - \frac{\sin 2ax}{8a} - \frac{\sin[2(a - b)x]}{16(a - b)} + \frac{\sin 2bx}{8b} - \frac{\sin[2(a + b)x]}{10(a + b)}$$

$$\int \sin^2 ax \cos^2 ax \, dx = \frac{x}{8} - \frac{\sin 4ax}{32a}$$

$$\int \tan ax \, dx = -\frac{1}{a} \ln \cos ax$$

$$\int \tan^3 ax \, dx = \frac{1}{a} \ln \cos ax + \frac{1}{2a} \sec^2 ax$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax$$

$$\int \sec^2 x \, dx = \frac{1}{a} \tan ax$$

$$\int \sec^3 x \, dx = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln |\sec x + \tan x|$$

$$\int \sec^2 x \tan x \, dx = \sec x$$

$$\int \sec^2 x \tan x \, dx = \frac{1}{a} \sec^2 x$$

$$\int \sec^2 x \tan x \, dx = \frac{1}{a} \cot ax$$

$$\int \csc^2 x \, dx = \ln |\tan \frac{x}{2}| = \ln |\csc x - \cot x|$$

$$\int \csc^2 x \, dx = -\frac{1}{a} \cot ax$$

$$\int \csc^2 x \, dx = -\frac{1}{a} \cot ax$$

$$\int \csc^2 x \, dx = -\frac{1}{a} \cot ax$$

$$\int \csc^2 x \, dx = -\frac{1}{a} \cot ax$$

$$\int x \cos x \, dx = \ln |\tan x| = \ln |\tan x|$$

$$\int x \cos x \, dx = \cos x + x \sin x$$

$$\int x \cos x \, dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$$

$$\int x \cos x \, dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$$

$$\int x \cos x \, dx = \frac{2x \cos x}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax$$

$$\int x \sin x \, dx = -x \cos x + \sin x$$

$$\int x \sin ax \, dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2}$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin x$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin x$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin x$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin x$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin x$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin x$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin x$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin x$$

$$\int x \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin ax$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin ax$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin ax$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos x + 2x \sin ax$$

$$\int x^2 \sin ax \, dx = \left(2 - x^2\right) \cos ax + \frac{2x \sin ax}{a^2}$$

$$\int x \cos^2 x \, dx = \frac{x^2}{a} - \frac{1}{a} \cos 2x + \frac{1}{4} x \sin 2x$$

$$\int x \sin^2 x \, dx = \frac{x^2}{a} - \frac{1}{a} \cos 2x - \frac{1}{4} x \sin 2x$$