لمتتالية الحسابية والمتتالية الهندسية للسنة الثانية ثانوي 16 1202 MEBARK

MEBARK12016 U_p متتالیة هندسیة أساسها q و أحد حدودها (U_n)

معناه : $\left\{ egin{aligned} U_p \\ U_{n+1} = U_n imes q \end{aligned} \right.$ عدد حقیقی ثابت

طريقة إثبات متتالية أنها هندسية:

 $\frac{U_{n+1}}{U_n} = q$ أو $U_{n+1} = U_n \times q$: إثبات أن حيث وعدد ثابت و هو أساس المتتالية عبارة الحد العام لمتتالية هندسية:

إذا علم U_n أحد حدود المتتالية الهندسية U_n و

 $oldsymbol{U}_n = oldsymbol{U}_p imes oldsymbol{q}^{n-p}$: أساسها q فإن

 $\overline{U_n = U_1 \times q^{n-1}}$: ينتج عنها : لما يعلم U_1 فإن $U_n = U_0 \times q^n$: فإن U_0 فإن

اتجاه تغير متتالية هندسية يلخص في الجدول الآتي:

<u> </u>	<u> </u>	<u> </u>
سالب تماما	موجب تماما	إذا كان الحد الأول
متناقصة	متزايدة	$q \succ 1$
متزايدة	متناقصة	$0 \prec q \prec 1$
ابتـــة	Ä	q = 1

مجموع حدود متتابعة لمتتالية هندسية:

 $(U_{\scriptscriptstyle m})$ مجموع الحدود المتتابعة للمتتالية الهندسية S U_{m} الذي ينطلق من الحد U_{p} حتى نصل إلى الحد $S = U_p + U_{p+1} + ... + U_m$

 $S = U_p imes rac{1 - q^{m-p+1}}{1 - q}$: q
eq 1 في حالة $S = U_p \times \frac{q^{m-p+1} - 1}{q - 1}$ $S = (m-p+1) \times U_p$: q = 1 في حالة

MEBARKI2016

إذا كان : a ، a و c بهذا الترتيب هي حدود متتابعة $b^2 = a \times c$: فإن فإن فلاسية هندسية

MEBARK12016 U_n arrille and U_n have U_n

معناه : حيث r عدد حقيقي ثابت $\left\{ egin{aligned} U_p \\ U_{n+1} = U_n + r \end{aligned}
ight.$

طريقة إثبات متتالية أنها حسابية:

إثبات أن $U_{n+1} - U_n$ عدد ثابت هو أساس المتتالية

$$U_{n+1} - U_n = r$$

عبارة الحد العام لمتتالية حسابية:

إذا علم U_n أحد حدود المتتالية الحسابية U_n و

$$U_n = U_p + (n-p)r$$
 اساسها r فإن r

 $U_n = U_1 + (n-1)r$: ينتج عنها : لما يعلم U_1 فإن $U_n = U_0 + nr$: فإن U_0 فإن

اتجاه تغير متتالية حسابية: يستنتج حسب الأساس

إذا كان : $\mathbf{0}$ فإن $\mathbf{0}$ متتالية متزايدة تماما.

إذا كان $r \prec 0$ فإن (U_n) متتالية متناقصة تماما.

إذا كان : r=0 فإن (U_{x}) متتالية ثابتة تماما.

مجموع حدود متتابعة لمتتالية حسابية:

 (U_n) مجموع الحدود المتتابعة للمتتالية الحسابية S U_m الذي ينطلق من الحد U_n حتى نصل إلى الحد $S = U_p + U_{p+1} + ... + U_m$

MISIS/AIR X 1/2(0) FI

عدد الحدو د

للمجموع للمجموع 2

 $S = \frac{m-p+1}{2} \left(U_p + U_m \right)$ أي :

 $U_{\scriptscriptstyle n}$ ملاحظة : $U_{\scriptscriptstyle m}$ و $U_{\scriptscriptstyle m}$ يحسبان بعبارة الحد العام

إذا كان : a ، b ، a و c بهذا الترتيب هي حدود متتابعة 2b = a + c : فإن عسابية فإن

لا تنسى: 1 + دليل الحد الأول - دليل الحد = رتبة حد MEBARKI2016

(علينا العمل و عليكم النجاح) دليل الحد

MEBARKI2016

ملخص عام حول المتتاليتين الحسابية والهندسية