Docket No.: GMC 0039 PA/GP-301960/40320.42

AMENDMENTS TO THE CLAIMS

 (Original) A device comprising a NO_X removal system for removing nitrogen oxides from a nitrogen oxide containing exhaust, said NO_X removal system comprising a NO_X treatment section, a diverter, and a hydrogen generation section, wherein:

said NO_X treatment section is configured to remove nitrogen oxides from said exhaust; said diverter is configured to enable delivery of water to said hydrogen generation section:

said hydrogen generation section is configured to deliver hydrogen to said NO_{X} treatment section; and

said NO_X removal system is configured such that said delivery of said hydrogen to said NO_X treatment section is substantially isolated from delivery of a substantial amount of oxygen to said NO_X treatment section.

- 2. (Original) A device as claimed in claim 1 wherein said exhaust comprises oxygen.
- 3. (Original) A device as claimed in claim 1 wherein said NO_X removal system is configured such that said delivery of said hydrogen to said NO_X treatment section is substantially isolated from delivery of said exhaust to said NO_X treatment section.
- 4. (Original) A device as claimed in claim 1 wherein said NO_X treatment section is configured to remove nitrogen oxides from said exhaust through adsorption.
- 5. (Original) A device as claimed in claim 4 wherein said NO_X treatment section comprises a plurality of catalyst beds.
- (Original) A device as claimed in claim 1 wherein said NO_X treatment section comprises at least one NO_X adsorber.
- 7. (Original) A device as claimed in claim 1 wherein said NO_X treatment section defines at least two independent NO_X treatment zones.
- 8. (Original) A device as claimed in claim 7 wherein said independent NO_X treatment zones are

Docket No.: GMC 0039 PA/GP-301960/40320.42

defined by independent NOx adsorbers.

9. (Original) A device as claimed in claim 7 wherein said independent NO_X treatment zones are

defined by multiple catalyst beds packaged as a single NOx adsorber unit.

10. (Original) A device as claimed in claim 7 wherein said NOx removal system is configured to

deliver said exhaust to one of said independent NO_v treatment zones on a selective basis.

11. (Original) A device as claimed in claim 10 wherein said delivery of said exhaust is affected

by a flow diverter valve.

12. (Original) A device as claimed in claim 10 wherein said NO_v removal system is configured

to deliver said hydrogen from said hydrogen generation section to one of said independent NOx

treatment zones on a selective basis.

13. (Original) A device as claimed in claim 12 wherein said NO_X removal system is configured

to deliver said hydrogen and said exhaust to said NO_X treatment section such that each is

delivered to different ones of said independent NO_X treatment zones on a selective basis.

14. (Original) A device as claimed in claim 1 wherein said diverter is positioned downstream of

said NO_X treatment section.

15. (Original) A device as claimed in claim 1 wherein said diverter is configured to extract water

from said exhaust.

16. (Original) A device as claimed in claim 1 wherein said diverter comprises a condensation

unit or a semi-permeable membrane.

17. (Original) A device as claimed in claim 1 wherein said hydrogen generation section is

configured to deliver an amount of hydrogen sufficient to affect desulfation of said NOx

treatment section.

3 of 7

Docket No.: GMC 0039 PA/GP-301960/40320 42

18. (Original) A device as claimed in claim 1 wherein said hydrogen generation section is configured to deliver an amount of hydrogen sufficient to affect catalytic regeneration of said NO_x treatment section.

- 19. (Original) A device as claimed in claim 1 wherein said hydrogen generation section is configured to accumulate and store hydrogen.
- 20. (Original) A device as claimed in claim 19 wherein said hydrogen generation section further comprises a pressure monitor configured to monitor said accumulation and storage of hydrogen.
- 21. (Original) A device as claimed in claim 1 wherein said hydrogen generation section comprises an electrolysis unit.
- 22. (Original) A device as claimed in claim 1 wherein said hydrogen generation section comprises a hydrogen storage reservoir fed by a hydrogen output of said electrolysis unit.
- 23. (Original) A device as claimed in claim 1 wherein said hydrogen generation section is configured to deliver hydrogen to one of at least two independent NO_X treatment zones of said NO_X treatment section on a selective basis.
- 24. (Original) A device as claimed in claim 1 wherein said hydrogen generation section comprises at least one hydrogen injector.
- 25. (Original) A device as claimed in claim 1 wherein: said hydrogen generation section comprises a pair of hydrogen injectors; and each of said hydrogen injectors is in communication with different independent NO_X treatment zones of said NO_Y treatment section.
- 26. (Original) A device as claimed in claim 1 wherein: said device comprises an engine configured to generate torque; and said engine generates said exhaust.

Docket No.: GMC 0039 PA/GP-301960/40320 42

27. (Original) A device as claimed in claim 26 wherein said engine comprises a diesel engine.

28. (Original) A device as claimed in claim 26 wherein said engine is configured such that said

exhaust is characterized by an oxygen content of about 1 to about 20 percent, by weight.

29. (Original) A device as claimed in claim 26 wherein:

said device comprises an electrical generator driven by said engine; and

said hydrogen generation section is powered by said electrical generator.

30. (Original) A device as claimed in claim 26 wherein said device comprises at least one

exhaust treatment system in addition to said NO_X treatment section.

31. (Original) A device as claimed in claim 1 wherein said NO_X removal system comprises a

controller programmed to control delivery of said exhaust to said NO_X treatment section.

32. (Original) A device as claimed in claim 31 wherein said controller is programmed to:

monitor a condition indicative of removal of said nitrogen oxides by at least one

treatment zone of said NOx treatment section; and

divert exhaust from said treatment zone when said treatment zone approaches its nitrogen

oxide removal capacity.

33. (Original) A device as claimed in claim 32 wherein said controller is programmed to affect

delivery of said hydrogen to said treatment zone following diversion of said exhaust from said

treatment zone.

34. (Original) A device as claimed in claim 1 wherein said NO_X removal system further

comprises a controller programmed to control delivery of said hydrogen to said NOx treatment

section.

35. (Original) A device as claimed in claim 34 wherein:

5 of 7

Docket No.: GMC 0039 PA/GP-301960/40320.42

said NO_X treatment section defines at least two independent NO_X treatment zones; and said controller is programmed to deliver said exhaust and said hydrogen respectively to different ones of said independent NO_X treatment zones.

- 36. (Original) A device as claimed in claim 34 wherein said controller is configured to monitor accumulation and storage of hydrogen in said hydrogen generation section.
- 37. (Original) A device as claimed in claim 36 wherein monitoring of said accumulation and storage of hydrogen is affected through a pressure monitor in communication with said controller
- 38. (Original) A device as claimed in claim 1 wherein said device comprises:
 - a vehicle body or stationary device;

an engine configured to generate said exhaust and sufficient torque to accelerate said vehicle body or power said stationary device.

39-47 (Canceled)

48. (Original) A device comprising an engine and a NO_X removal system for removing nitrogen oxides from an exhaust generated by said engine, said NO_X removal system comprising a NO_X treatment section, a diverter, and a hydrogen generation section, wherein:

said exhaust comprises oxygen and nitrogen oxides;

said NO_X treatment section is configured to remove nitrogen oxides from said exhaust; said diverter is configured to enable delivery of water to said hydrogen generation section:

said hydrogen generation section is configured to deliver hydrogen to said NO_X treatment section; and

said NO_X removal system is configured such that said delivery of said hydrogen to said NO_X treatment section is substantially isolated from delivery of a substantial amount of said oxygen in said exhaust to said NO_X treatment section.