Tensors

Parth Sarii

Definition

diagram

Tensor networks

References and Thanks

From phylogenetics to statistical physics: tensor wiring diagrams and the applications of tensors to the sciences

Parth Sarin

Department of Mathematics Texas A&M University

MAA MathFest, July 2017

The end goal... applications of tensor networks

Tensors

Parth Sari

Definition

Wiring

Tensor networks

References

Tensors

Parth Sarir

Definition

Wiring diagrams

Tensor networks

References and Thanks

We suspect that pigeons, lizards, crocodiles, and alligators evolved from dinosaurs in the manner above... How can we check?

Tensors

Parth Sarir

Definition

Wiring diagram:

Tensor networks

References and Thanks

We suspect that pigeons, lizards, crocodiles, and alligators evolved from dinosaurs in the manner above... How can we check?

We associate a vector space to each vertex on the graph. In this case, each vector space is \mathbb{R}^4 because there are 4 DNA bases: A, T, C, and G.

Tensors

Parth Sarir

Definition

Wiring

Tensor network

References and Thanks

We suspect that pigeons, lizards, crocodiles, and alligators evolved from dinosaurs in the manner above... How can we check?

We associate a vector space to each vertex on the graph. In this case, each vector space is \mathbb{R}^4 because there are 4 DNA bases: A, T, C, and G. Every living species has a certain percentage of A, T, C, and G. That is, every species can be represented by a vector in \mathbb{R}^4 whose components add up to 1.

Tensors

Parth Sarir

Definition

Wiring diagram:

Tensor networks

References and Thanks

We check if:

$$P \otimes L \otimes C \otimes A \in TNS(G, \vec{w}, (\mathbb{R}^4)^{\otimes 7}) \downarrow_{(\mathbb{R}^4)^{\otimes 4}} \subset (\mathbb{R}^4)^{\otimes 4}$$

More formally, we check,

$$[P \otimes L \otimes C \otimes A] \in \sigma_4(Seg(\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}(\mathbb{R}^4 \otimes \mathbb{R}^4)))$$
$$\cap \sigma_4(Seg(\mathbb{P}(\mathbb{R}^4 \otimes \mathbb{R}^4) \times \mathbb{P}^3 \times \mathbb{P}^3))$$

Table of Contents

Tensors

Parth Sarir

Definition

Wiring diagrams

Tensor networks

References and Thanks

- 1 Definitions
- 2 Wiring diagrams
- 3 Tensor networks
- 4 References and Thanks

Table of Contents

Tensors

Parth Sarir

Definitions

Wiring diagrams

Tensor networks

References

1 Definitions

2 Wiring diagrams

3 Tensor networks

4 References and Thanks

The dual space

Tensors

Parth Sarii

Definitions

Wiring diagram

Tensor networks

References

Definition 1

The **dual space** to a vector space, V, is denoted V^* and is defined as:

$$V^* := \{ \beta : V \to \mathbb{C} : \beta \text{ is linear} \}$$

The dual space

Tensors

Parth Sarii

Definitions

Wiring diagram

Tensor networks

References

Definition 1

The **dual space** to a vector space, V, is denoted V^* and is defined as:

$$V^* := \{ \beta : V \to \mathbb{C} : \beta \text{ is linear} \}$$

Remark

If elements of V are represented by column vectors, then elements of V^* are row vectors, and the map $u \mapsto \beta(u)$ is given by row-column matrix multiplication. That is,

$$\beta(u) = (\beta_1 \cdots \beta_n) \begin{pmatrix} u^1 \\ \vdots \\ u^n \end{pmatrix} = \beta_1 u^1 + \cdots + \beta_n u^n$$

What is a tensor?

Tensors

Parth Sarir

Definitions

Wiring diagrams

Tensor networks

References and Thanks Multilinear maps are functions

$$T: V_1 \times \cdots \times V_k \to \mathbb{C}$$

where T is linear in each V_i .

What is a tensor?

Tensors

Parth Sarin

Definitions

Wiring diagram:

Tensor networks

References and Thanks Multilinear maps are functions

$$T: V_1 \times \cdots \times V_k \to \mathbb{C}$$

where T is linear in each V_i .

Definition 2

The space of such multilinear functions is denoted $V_1^* \otimes \cdots \otimes V_k^*$, and elements $T \in V_1^* \otimes \cdots \otimes V_k^*$ are called **tensors**.

Tensors

Parth Sari

Definitions

Wiring diagram

Tensor networks

References

Linear maps can be realized as tensors! More precisely, there is an isomorphism between linear maps and tensors.

Tensors

Parth Sarii

Definitions

Wiring diagram

Tensor networks

References

Linear maps can be realized as tensors! More precisely, there is an isomorphism between linear maps and tensors. Suppose $L:V\to W$ is a (given) linear map. Then, the corresponding tensor is $\tilde{L}:V\times W\to \mathbb{C}$ where $L(v,\beta):=\beta(L(v))$, and the definition extends linearly.

Tensors

Parth Sarir

Definitions

Wiring diagram

Tensor networks

References and Thanks Linear maps can be realized as tensors! More precisely, there is an isomorphism between linear maps and tensors. Suppose $L:V\to W$ is a (given) linear map. Then, the corresponding tensor is $\tilde{L}:V\times W\to \mathbb{C}$ where $L(v,\beta):=\beta(L(v))$, and the definition extends linearly. Conversely, if $\tilde{L}:V\times W\to \mathbb{C}$ is a given tensor, the corresponding linear map is $L:v\mapsto \tilde{L}(v,\cdot)$ where we partially satisfy the tensor such that $L(v)\in (W^*)^*$. In fact, $(W^*)^*=W$.

Tensors

Parth Sarii

Definitions

Wiring diagram

Tensor networks

References

Linear maps can be realized as tensors! More precisely, there is an isomorphism between linear maps and tensors. Suppose $L: V \to W$ is a (given) linear map. Then, the

Suppose $L: V \to W$ is a (given) linear map. Then, the corresponding tensor is $\tilde{L}: V \times W \to \mathbb{C}$ where

 $L(v,\beta) := \beta(L(v))$, and the definition extends linearly.

Conversely, if $\tilde{L}: V \times W \to \mathbb{C}$ is a given tensor, the corresponding linear map is $L: v \mapsto \tilde{L}(v, \cdot)$ where we partially satisfy the tensor such that $L(v) \in (W^*)^*$. In fact, $(W^*)^* = W$

 $(W^*)^*=W.$

These two maps are actually both the same isomorphism. Because of how natural this isomorphism is, we just say $L = \tilde{L}$.

Tensors

Definitions

Linear maps can be realized as tensors! More precisely, there is an isomorphism between linear maps and tensors.

Suppose $L: V \to W$ is a (given) linear map. Then, the corresponding tensor is $\tilde{L}: V \times W \to \mathbb{C}$ where

 $L(v,\beta) := \beta(L(v))$, and the definition extends linearly.

Conversely, if $\tilde{L}: V \times W \to \mathbb{C}$ is a given tensor, the corresponding linear map is $L: v \mapsto \tilde{L}(v,\cdot)$ where we partially satisfy the tensor such that $L(v) \in (W^*)^*$. In fact,

 $(W^*)^* = W.$

These two maps are actually both the same isomorphism. Because of how natural this isomorphism is, we just say $L = \tilde{L}$. In general, any multilinear map

 $T: V_1 \otimes \cdots \otimes V_s \to W_1 \otimes \cdots \otimes W_k$ can be realized as $T: V_1 \otimes \cdots \otimes V_s \otimes W_1^* \otimes \cdots \otimes W_{\nu}^* \to \mathbb{C}.$

Tensors

Parth Sarir

Definitions

Wiring diagram:

Tensor networks

References and Thanks The reasoning behind this realization is that if

$$L = \sum_{i} \alpha^{i} \otimes w_{i}$$

where $\alpha^i \in V^*$ and $w_i \in W$. Then, we can say

$$L(v) = \sum_{i} \alpha^{i}(v) w_{i} \in W$$

or

$$L(v,\beta) = \sum_{i} \alpha^{i}(v)\beta(w_{i}) \in \mathbb{C}$$

Tensors

Parth Sarin

Definitions

Wiring diagram:

Tensor networks

References

Pick a basis v_i for V, which induces a basis, α^i for V^* . Consider $Id \in V^* \otimes V$,

$$Id = \alpha^1 \otimes v_1 + \dots + \alpha^n \otimes v_n = \sum_s \alpha^s \otimes v_s$$

Tensors

Parth Sarin

Definitions

Wiring diagrams

Tensor networks

References and Thanks Pick a basis v_i for V, which induces a basis, α^i for V^* . Consider $Id \in V^* \otimes V$,

$$Id = \alpha^1 \otimes v_1 + \dots + \alpha^n \otimes v_n = \sum_s \alpha^s \otimes v_s$$

 Id can be thought of as a map from $V \times V^* \to \mathbb{C}$, or a map from $V \to V$.

Tensors

Parth Sarin

Definitions

Wiring diagrams

Tensor networks

References and Thanks Pick a basis v_i for V, which induces a basis, α^i for V^* . Consider $Id \in V^* \otimes V$,

$$Id = \alpha^1 \otimes v_1 + \dots + \alpha^n \otimes v_n = \sum_s \alpha^s \otimes v_s$$

Id can be thought of as a map from $V \times V^* \to \mathbb{C}$, or a map from $V \to V$. As we saw in the previous slide, Id is a matrix, so if we feed it a vector $u = (u^1, \cdots, u^n)^\mathsf{T} \in V$.

$$Id(u) = \alpha^{1}(u)v_{1} + \cdots + \alpha^{n}(u)v_{n} = u^{1}v_{1} + \cdots + u^{n}v_{n} = u$$

Tensors

Parth Sarin

Definitions

Wiring diagram:

Tensor networks

References and Thanks Pick a basis v_i for V, which induces a basis, α^i for V^* . Consider $Id \in V^* \otimes V$,

$$Id = \alpha^1 \otimes v_1 + \dots + \alpha^n \otimes v_n = \sum_s \alpha^s \otimes v_s$$

Id can be thought of as a map from $V \times V^* \to \mathbb{C}$, or a map from $V \to V$. As we saw in the previous slide, Id is a matrix, so if we feed it a vector $u = (u^1, \cdots, u^n)^\mathsf{T} \in V$.

$$Id(u) = \alpha^{1}(u)v_{1} + \cdots + \alpha^{n}(u)v_{n} = u^{1}v_{1} + \cdots + u^{n}v_{n} = u$$

Or, if we feed it another matrix, say $B = \sum b_i^i v_i \otimes \alpha^j$, then:

$$Id(B) = \sum b_j^i \delta_i^s \delta_s^j = \sum_s b_s^s = \operatorname{tr}(B)$$

Tensors

Parth Sarin

Definitions

Wiring diagrams

Tensor networks

References and Thanks Pick a basis v_i for V, which induces a basis, α^i for V^* . Consider $Id \in V^* \otimes V$,

$$Id = \alpha^1 \otimes v_1 + \dots + \alpha^n \otimes v_n = \sum_s \alpha^s \otimes v_s$$

Id can be thought of as a map from $V \times V^* \to \mathbb{C}$, or a map from $V \to V$. As we saw in the previous slide, Id is a matrix, so if we feed it a vector $u = (u^1, \cdots, u^n)^{\mathsf{T}} \in V$.

$$Id(u) = \alpha^{1}(u)v_{1} + \cdots + \alpha^{n}(u)v_{n} = u^{1}v_{1} + \cdots + u^{n}v_{n} = u$$

Or, if we feed it another matrix, say $B=\sum b_j^i v_i\otimes lpha^j$, then:

$$Id(B) = \sum b_j^i \delta_i^s \delta_s^j = \sum_s b_s^s = \operatorname{tr}(B)$$

Thus, the identity map and the trace function are the same tensor!

Table of Contents

Tensors

Parth Sarir

Definition

Wiring diagrams

Tensor networks

References and Thanks

- 1 Definitions
- 2 Wiring diagrams
- 3 Tensor networks
- 4 References and Thanks

What is a wiring diagram?

Tensors

Parth Sarii

Definition

Wiring diagrams

Tensor networks

References and Thanks Wiring diagrams represent tensors and tensor operations.

What is a wiring diagram?

Tensors

Parth Sarii

Definition

Wiring diagrams

Tensor networks

References and Thanks Wiring diagrams represent tensors and tensor operations.

This tells us that $T: A \otimes A \otimes A \to A \otimes A$. That is, $T \in (A^*)^{\otimes 3} \otimes A^{\otimes 2}$.

Tensors

Parth Sari

Definition

Wiring diagrams

Tensor networks

References and Thanks

Here is the simplest representation of the identity as a wiring diagram:

 $Id_A:A\to A$

Tensors

Parth Sarir

Definitions

Wiring diagrams

Tensor networks

References and Thanks

Tensors

Parth Sarin

Definitions

Wiring diagrams

Tensor networks

References and Thanks

Tensor operations are preserved, so the image on the right can be obtained by composing the two images on the left...

Tensors

Parth Sarin

Definition

Wiring diagrams

Tensor networks

References and Thanks

Tensor operations are preserved, so the image on the right can be obtained by composing the two images on the left... $\lambda \mapsto \lambda Id \mapsto \lambda tr(Id) = \lambda \dim(A) \implies$ the rightmost picture represents $\dim(A)$.

Table of Contents

Tensors

Parth Sarir

Definition

Wiring

Tensor

networks

References and Thanks

- 1 Definitions
- 2 Wiring diagrams
- 3 Tensor networks
- 4 References and Thanks

A brief look at some applications

Tensors

Parth Sarii

Definition

Wiring

Tensor networks

References and Thanks

Back to the beginning...

Tensors

Parth Sarir

Definition

Wiring diagrams

Tensor networks

References and Thanks

We check if:

$$P \otimes L \otimes C \otimes A \in TNS(G, \vec{w}, (\mathbb{R}^4)^{\otimes 7}) \downarrow_{(\mathbb{R}^4)^{\otimes 4}} \subset (\mathbb{R}^4)^{\otimes 4}$$

More formally, we check,

$$[P \otimes L \otimes C \otimes A] \in \sigma_4(Seg(\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}(\mathbb{R}^4 \otimes \mathbb{R}^4)))$$
$$\cap \sigma_4(Seg(\mathbb{P}(\mathbb{R}^4 \otimes \mathbb{R}^4) \times \mathbb{P}^3 \times \mathbb{P}^3))$$

Table of Contents

Tensors

Parth Sarir

Definition

Wiring diagram

Tensor networks

References and Thanks

- 1 Definitions
- 2 Wiring diagrams
- 3 Tensor networks
- 4 References and Thanks

References and Thanks

Tensors

Parth Sarir

Definition

Wiring

Tensor networks

References

Landsberg, J. M.

Tensors: Geometry and Applications.

Wiring diagrams in §2.11; tensor networks in §14.1. American Mathematical Society, 2011.

Eisert, J.

Entanglement and Tensor Network States Freie Universität Berlin. 2013.

Huge thanks to Dr. Joseph M. Landsberg and Dr. Philip Yasskin, who advised me on much of this talk and research.

Tensors

Parth Sarii

Definition

Wiring diagram

Tensor networks

References and Thanks Given a graph, Γ , with m edges, e_s , and n vertices v_i , where every edge as a weight \mathbf{e}_s , and given vector spaces V_1, \dots, V_n corresponding to the vertices, we can construct a tensor network state.

Tensors

Parth Sarii

Definition

Wiring diagram

Tensor networks

References and Thanks Given a graph, Γ , with m edges, e_s , and n vertices v_i , where every edge as a weight \mathbf{e}_s , and given vector spaces V_1, \dots, V_n corresponding to the vertices, we can construct a tensor network state.

To be clearer, $TNS(\Gamma, \vec{\mathbf{e}}, \mathbf{V})$ denotes the tensor network state corresponding to the graph, Γ , where $\vec{\mathbf{e}} = (\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $V = V_1 \otimes \cdots \otimes V_n$.

Tensors

Parth Sarir

Definition

Wiring diagram

Tensor networks

References and Thanks

Constructing a tensor network state

1 Associate V_j to the vertex v_j and an auxillary vector space $E_s \cong \mathbb{C}^{\mathbf{e}_s}$ to the edge e_s .

Tensors

Parth Sarir

Definition

Wiring diagram

Tensor networks

References and Thanks

Constructing a tensor network state

- **1** Associate V_j to the vertex v_j and an auxillary vector space $E_s \cong \mathbb{C}^{\mathbf{e}_s}$ to the edge e_s .
- 2 Make Γ into a directed graph. (The choice of directions will not affect the end result.)

Tensors

Parth Sarir

Definition

Wiring diagram

Tensor networks

References and Thanks

Constructing a tensor network state

- 1 Associate V_j to the vertex v_j and an auxillary vector space $E_s \cong \mathbb{C}^{\mathbf{e}_s}$ to the edge e_s .
- 2 Make Γ into a directed graph. (The choice of directions will not affect the end result.)
- 3 Let $\mathbf{V} = V_1 \otimes \cdots \otimes V_n$, and say that $s \in in(j)$ means that e_s is an incoming edge to v_j and $s \in out(j)$ means e_s is an outgoing edge.

Tensors

Parth Sarir

Definition

Wiring

Tensor network

References

Constructing a tensor network state

- 1 Associate V_j to the vertex v_j and an auxillary vector space $E_s \cong \mathbb{C}^{\mathbf{e}_s}$ to the edge e_s .
- **2** Make Γ into a directed graph. (The choice of directions will not affect the end result.)
- 3 Let $\mathbf{V} = V_1 \otimes \cdots \otimes V_n$, and say that $s \in in(j)$ means that e_s is an incoming edge to v_j and $s \in out(j)$ means e_s is an outgoing edge.
- 4 Define:

$$TNS(\Gamma, \vec{\mathbf{e}}, \mathbf{V}) := \{ T \in V_1 \otimes \cdots \otimes V_n : \exists T_j \in V_j \otimes (\otimes_{s \in in(j)} E_s) \otimes (\otimes_{t \in out(j)} E_t^*) \}$$

such that $T = Con(T_1 \otimes \cdots \otimes T_n) \}$

Tensors

Parth Sarir

Definition

Wiring

Tensor

networks

References and Thanks

Examples

If Γ is:

then $TNS(\Gamma, \mathbf{e}_1, V_1 \otimes V_2)$ is the set of elements of $V_1 \otimes V_2$ of rank at most \mathbf{e}_1 .

Tensors

Parth Sarir

Definition

Wiring

Tensor network

References and Thanks

Examples

If Γ is:

then $TNS(\Gamma, \mathbf{e}_1, V_1 \otimes V_2)$ is the set of elements of $V_1 \otimes V_2$ of rank at most \mathbf{e}_1 .

Construction: WLOG, pick e_1 going in to v_1 . Let t_1, \dots, t_{e_1} be a basis for E_1 and $\tau^1, \dots, \tau^{e_1}$ be a basis for E_1^* . Then, a general tensor $T_1 \in V_1 \otimes E_1$ can be written as $T_1 = v_1 \otimes t_1 + \dots + v_{e_1} \otimes t_{e_1}$. Similarly, a general tensor $T_2 \in V_2 \otimes E_1^*$ can be written as $T_2 = w_1 \otimes \tau^1 + \dots + w_{e_1} \otimes \tau^{e_1}$. The contraction of these tensors is $v_1 \otimes w_1 + \dots + v_{e_1} \otimes w_{e_1}$, which is of rank at most e_1 .