Struktura přednášky

- Přehled
 - Uvoc
- 3 Poskytované služby
 - Internetworking
- 5 Adresace
 - IPv4: typy adres
 - IPv4: Classful Addressing
 - IPv4: Classless Addressing
 - IPv4: Network Address Translation (NAT)
 - IPv4: Vyčerpávání adresového prostoru
 - IPv6 adresv
 - Interakce L3 se spojovou vrstvou (L2
 - ARP protokol
 - 7 IP protokol
 - IP protokol verze 4 (IPv4)
 - ICMP
 - IP protokol verze 6 (IPv6)
 - ICMPv6
 - Mechanismy pro podporu přechodu IPv4 → IPv6
 - IPv6: Literatura
- 8 IPv6: Kde se nacházíme? Eva Hladká (FI MU)

Adresace na L3

- požadavek jednoznačné identifikace každého zařízení připojeného k Internetu
- nutnost systematického přidělování adres
 - za účelem snadnějšího směrování
- každému zařízení/rozhraní přiřazena Internetová adresa (IP adresa)
 - IPv4 adresa (32 bitů) vs. IPv6 adresa (128 bitů)

Eva Hladká (FI MU) 3. Sítová vrstva jaro 2013 18 / 81

IPv4 - typy adres

- Individuální (unicast) adresy identifikace jednoho síťového rozhraní
 - identifikace jediného odesílatele/příjemce
- Broadcast adresy slouží pro zasílání dat všem možným příjemcům na dané LAN ("all-hosts broadcast")
 - zdrojová adresa datagramu (identifikace odesílatele) je unicastová
- Skupinové (multicast) adresy slouží pro adresování skupiny příjemců (síťových rozhraní), kteří o data projevili zájem
 - data směrovači rozesílána všem členům skupiny
 - zdrojová adresa datagramu (identifikace odesílatele) je unicastová

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 19 / 81

Přidělování adres – Classful Addressing

- Classful Addressing:
 - zcela první metoda přidělování adres
 - adresní prostor rozdělen do 5 tříd:
 - třída A: 2⁷ sítí, každá z nich 2²⁴ uzlů
 - třída B: 2¹⁴ sítí, každá z nich 2¹⁶ uzlů
 - třída C: 2²¹ sítí, každá z nich 2⁸ uzlů
 - třída D: multicastové adresy
 - třída E: rezervovaný prostor

Eva Hladká (FI MU) Síťová vrstva jaro 2013 20 / 81

NetID vs. HostID

- Adresa sítě (NetID):
 - identifikuje danou síť (nemůže být přidělena uzlu/rozhraní)
 - tuto identifikaci lze využít pro směrování (viz později)
- Adresa uzlu/rozhraní (HostID):
 - identifikuje jedinečný uzel v síti NetID

Příklad: HostID = $147.251.48.1 \Rightarrow$ třída B \Rightarrow NetID = 147.251.0.0

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 21 / 81

Problémy Classful adresování

- nedostatečná granularita každá třída rozdělena na pevný počet sítí s pevnou maximální velikostí
 - = plýtvání adresním rozsahem
 - organizace chce využít 10 IP adres? Dostane C třídu (256 adres)
 - organizace chce využít 270 IP adres? Dostane B třídu (65536 adres)
 - organizace chce využít 70000 IP adres? Dostane A třídu (2097152 adres)
 - možné řešení: přidělování více síťových adres menší třídy
- popsané řešení generuje nárůst směrovacích tabulek
 - roste objem směrovacích informací, které musí být zpracovávány při rozhodování o volbě dalšího směru procházejícího paketu
 - nutnost prohledávání tabulek (lineární složitost)

Ilustrace problému: organizace s 1500 uzly

- lacktriangle přidělena adresa třídy $B\Rightarrow$ zabráno 65536 adres $\Rightarrow 1$ záznam ve sm.tabulce
- 2 přiděleno 8 adres třídy C \Rightarrow zabráno 2048 adres \Rightarrow 8 záznamů ve sm.tabulce

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 22 / 81

Problémy Classful adresování – řešení

Subnetting, Supernetting

- Lze přidělenou adresu sítě dále dělit do menších podsítí?
 - např. rozdělení sítě dle organizačních složek v rámci jedné organizace
 - Subnetting
- Lze využít skutečnosti, že organizace má přidělen souvislý blok adres určité třídy?
 - a snižovat tak velikost směrovacích tabulek
 - Supernetting

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 23 / 81

Classful adresování – Subnetting

- standardní IP adresa poskytuje dvouúrovňovou hierarchii
 - adresa sítě a adresa uzlu
- Subnetting zavádí možnost tříúrovňové hierarchie
 - adresa sítě, adresa podsítě a adresa uzlu
 - využitelné v nějaké geograficky omezené oblasti (velké organizace, univerzity, ISPs)
 - síť rozdělena na menší podsítě (subnetworks (subnets))
 - důležitý princip uzavřenosti:
 - "zvenčí" (z pohledu Internetu) se jeví jako 1 síť (1 záznam ve sm. tabulkách), podsítě se rozlišují až na hraničním směrovači
 - tj. má pouze lokální platnost, nikoli platnost globální

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 24 / 81

Classful adresování – Subnetting

To the rest of the Internet

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 25 / 81

Classful adresování – Supernetting

Supernetting:

- pravý opak subnettingu, posouvá pomyslnou dělící čáru mezi oběma složkami IP adresy směrem k vyšším bitům
- spojuje (agreguje) několik původně samostatných síťových IP adres v jednu výslednou
- musí však jít o "sousední" síťové adresy
 - síťové IP adresy se musí shodovat v určitém počtu vyšších bitů své síťové části
 - a musí vyčerpávat všechny bitové kombinace v příslušném počtu nižších bitů (své síťové části)

Eva Hladká (FI MU) Síťová vrstva jaro 2013 26 / 81

Classful adresování – Subnetting vs. Supernetting

(a) Subnetting

(b) Supernetting

 Eva Hladká (FI MU)
 3. Síťová vrstva
 jaro 2013
 27 / 81

Classful adresování – Maska sítě/podsítě

- oba způsoby vyžadují mechanismus pro identifikaci bitů, které identifikují síť
 - v rámci subnettingu nezbytné jen na hraničních směrovačích
 - v rámci supernettingu nezbytné na všech směrovačích
- využitý mechanismus maska sítě
 - 32-bitový řetězec (v rámci IPv4)
 - obsahuje 1 v těch bitech, které odpovídají síťové části adresy, 0 tam, kde jde o relativní adresu uzlu v rámci sítě
 - IP adresa uzlu && maska sítě = adresa sítě

Class	Binary form	Decimal form	Using slash
Α	1111111 00000000 00000000 00000000	255 .0.0.0	/8
В	1111111 1111111 00000000 00000000	255.255 .0.0	/16
С	11111111 11111111 11111111 00000000	255. 255. 255 . 0	/24
	1111111 11111000 00000000 00000000	255.248 .0.0	/13
	11111111 11111111 11111111 10000000	255.255.255.128	/25

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 28 / 81

Přidělování adres – Classless Addressing

- do poloviny 90. let adresy přidělovány pouze v rámci tříd
 - nejmenší počet přidělených adres 256 (třída C)
- Classless Addressing:
 - zobecnění a rozšíření subnettingu/supernettingu
 - zavádí zcela variabilní délku bloku adresy sítě
 - identifikace sítě = adresa sítě a maska sítě
 - adresy se přidělují hierarchicky
 - umožnění agregace směrování (viz později) ⇒ snaha o minimalizaci velikosti směrovacích tabulek
 - opodstatnění subnettingu zůstává

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 29 / 81

Classless Addressing – Classless Inter-Domain Routing (CIDR)

- konvence popisující "pravidla hry" použití IP adres, významu masek, supernetting a subnetting
- nahrazuje původní "třídní" charakter IP adres (třídy A, B a C)
 - IP adresy přidělovány po tzv. CIDR blocích
- velikost CIDR bloku dána příslušnou maskou
 - možno velmi pružně přizpůsobovat
- ⇒ snížení tempa vyčerpávání adresového prostoru
- Důsledek CIDRu: adresy závislé na poskytovateli
 - původně IP adresy nezávislé na způsobu jejich připojení
 - zavedení závislosti
 - poskytovatel získává CIDR blok, který si rozděluje dle svého uvážení
 - vnější směrovače směrují jen na základě CIDR bloku
 - při změně poskytovatele je potřeba síť přeadresovat (přečíslovat)

Eva Hladká (FI MU) Síťová vrstva jaro 2013 30 / 81

Network Address Translation (NAT)

- další mechanismus pro snížení tempa vyčerpávání adresového prostoru
- určeno zejména pro domácí uživatele
 - ullet původně připojování modemy o možnost dynamického přidělování adres
 - nyní ADSL, kabelová připojení (většinou) trvalá alokace adres
 - časté požadavky na přidělení více IP adres
- řešení: Network Address Translation (NAT)
 - "skrývání" vnitřní sítě za jednu/několik externích adres
 - v rámci vnitřní sítě možnost využít mnoho interních adres
 - rezervované privátní adresy (viz obrázek), unikátní v rámci organizace
 - vedlejší efekt: ochrana vnitřní sítě
 - překlad adres procházejících síťovým prvkem (např. NAT směrovačem)

		Range	Total
10.0.0.0	to	10.255.255.255	2 ²⁴
172.16.0.0	to	172.31.255.255	2 ²⁰
192.168.0.0	to	192.168.255.255	216

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 31 / 81

Network Address Translation (NAT) – ilustrace

Site using private addresses

 Eva Hladká (FI MU)
 3. Síťová vrstva
 jaro 2013
 32 / 81

Network Address Translation (NAT) – překlad adres

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 33 / 81

Network Address Translation (NAT) – překlad adres II.

- překlad adres odchozích paketů je triviální
- překlad adres příchozích paketů vyžaduje dodatečné informace:
 - kterému stroji z vnitřní sítě mají být data přeposlána?
 - překladové tabulky (translation tables)

Private Address	Private Port	External Address	External Port	Transport Protocol
172.18.3.1	1400	25.8.3.2	80	ТСР
172.18.3.2	1401	25.8.3.2	80	ТСР
			<i>p</i>	

Obrázek: Ukázka překladové tabulky.

Eva Hladká (FI MU) 3. Sítová vrstva jaro 2013 34 / 81

IPv4 – vyčerpávání adresového prostoru

Eva Hladká (FI MU)

3. Síťová vrstva

- adresy využívané protokolem IPv6 (viz dále)
- (prozatím) finální řešení nedostatku IP adres
- IPv6 adresa má 128 bitů (= 16 bajtů):
 - 2^{128} možných adres ($\approx 3 \times 10^{38}$ adres $\Rightarrow \approx 5 \times 10^{28}$ adres na každého obyvatele Země)
 - hexadecimální zápis místo dekadického (po dvojicích bajtů oddělených znakem ":")

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 36 / 81

IPv6 adresy – zkracování zápisu

Úvodní nuly lze ze zápisu každé skupiny vynechat:

- 0074 lze psát jako 74, 000*F* jako *F*, ...
- 3210 nelze zkracovat!

Sekvenci po sobě jdoucích nulových skupin lze vynechat:

vždy však pouze jednu sekvenci takovýchto nulových skupin!

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 37 / 81

IPv6 adresy - hierarchie

- cílem opět usnadnění směrování
- strukturu individuálních IPv6 adres definuje RFC 3587
- základní struktura:

n bitů	64-n bitů	64 bitů
globální směrovací prefix	adresa podsítě	adresa rozhraní

- globální směrovací prefix ≈ adresa sítě
- adresa podsítě obvykle 16 bitů ⇒ globální prefix 48 bitů
 - prvních 16 bitů obsahuje hodnotu 2001₁₆
 - dalších 16 bitů přiděluje regionální registrátor (RIR)
 - dalších 16 bitů přiděluje lokální registrátor (LIR)

16 bitů	16 bitů	16 bitů	16 bitů	64 bitů
2001	přiděluje RIR	přiděluje LIR	adresa podsítě	adresa rozhraní

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 38 / 81

IPv6 adresy && CIDR

- IPv6 adresace je pouze *classless*, třídy neexistují
- sítě v IPv6 popisovány s využitím notace CIDR (stejně jako v IPv4)
- např. FDEC:0:0:0:0:BBFF:0:FFFF/60

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 39 / 81

- Individuální (unicast) adresy totéž co v IPv4, identifikace jednoho síťového rozhraní
- Skupinové (multicast) adresy totéž co v IPv4, slouží pro adresování skupin počítačů či jiných síťových zařízení
 - data jsou vždy doručena všem členům skupiny
 - prefix ff00::/8
- Výběrové (anycast) adresy novinka v IPv6
 - také označují skupinu příjemců
 - data se však doručí jen jedinému jejímu členovi (tomu, který je nejblíže)
- broadcast adresy IPv4 protokolu se v IPv6 nevyužívají
 - nahrazeny speciálními multicastovými skupinami (např. všechny uzly na dané lince)

Eva Hladká (FI MU) 3. Sítová vrstva jaro 2013 40 / 81

Struktura přednášky

- Přehled
 - 2) Uvoc
- Poskytované služby
 - Internetworking
- 5 Adresace
 - IPv4: typy adres
 - IPv4: Classful Addressing
 - IPv4: Classless Addressing
 - IPv4: Network Address Translation (NAT)
 - IPv4: Vyčerpávání adresového prostoru
 - IPv6 adresv
 - Interakce L3 se spojovou vrstvou (L2)
 - ARP protokol
- 7 IP protoko
 - IP protokol verze 4 (IPv4)
 - ICMP
 - IP protokol verze 6 (IPv6)
 - ICMPv6
 - Mechanismy pro podporu přechodu IPv4 → IPv6
 - IPv6: Literatura
- 8 IPv6: Kde se nacházíme? Eva Hladká (FI MU)

Interakce L3 se spojovou vrstvou (L2) – mapování adres

- mechanismus doručení dat v IP sítích hop-by-hop
- vlastní předání/doručení zprávy na základě fyzických (MAC) adres
- 2 alternativy:
 - příjemce na stejné LAN jako odesílatel
 - IP datagram obsahuje IP adresu příjemce, rámec L2 vrstvy MAC adresu příjemce
 - příjemce na jiné LAN než odesílatel
 - IP datagram obsahuje IP adresu příjemce, rámec L2 vrstvy MAC adresu směrovače
 - směrovač po přijetí (a zpracování) datagramu jej vloží do nového rámce s MAC adresou dalšího směrovače ve snaze přiblížit se cíli (odtud hop-by-hop)
 - po dosažení cílové LAN platí alternativa 1 (lokální "odesílatel" = poslední směrovač)

Interakce L3 se spojovou vrstvou (L2) – mapování adres II.

- • ¬ nutnost mapování IP adres na fyzické (MAC) adresy
 - statické mapování
 - vytvoření statické tabulky párů (IP adresa, MAC adresa)
 - obtížně spravovatelné
 - dynamické mapování
 - Address Resolution Protocol (ARP)

Síťová vrstva jaro 2013 43 / 81

Interakce L3 se spojovou vrstvou (L2) – mapování adres III.

Case 1. A host has a packet to send to another host on the same network.

Case 3. A router receives a packet to be sent to a host on another network.

It must first be delivered to the appropriate router.

Case 2. A host wants to send a packet to another host on another network.

It must first be delivered to the appropriate router.

Case 4. A router receives a packet to be sent to a host on the same network.

Obrázek: Případové ilustrace využití ARP protokolu (hop-by-hop doručení).

- protokol pro zjištění MAC adresy uzlu/směrovače na základě IP adresy
- mechanismus:
 - 2 zaslání tzv. ARP request paketu všem uzlům na dané LAN (broadcast)
 - paket obsahuje IP & MAC adresu odesílatele a IP adresu hledaného uzlu
 - paket zpracován všemi uzly; odpoví jen ten, jehož IP adresa se shoduje s hledanou
 - ostatní paket zahodí
 - hledaný uzel žadateli odpovídá tzv. ARP reply paketem
- ARP pakety baleny přímo do rámců L2 vrstvy

- protokol RARP (Reverse Address Resolution Protocol)
 - zpětný překlad MAC adres na IP adresy; již se nevyužívá

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 45 / 81

Interakce L3 se spojovou vrstvou (L2) – ARP protokol II.

Obrázek: Ilustrace mechanismu operace ARP protokolu.

• více viz animace: http://frakira.fi.muni.cz/~jeronimo/vyuka/OsiSchool_ARP.swf

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 46 / 81

Struktura přednášky

- Přehled
 - 2) Uvod
- Poskytované služby
 - Internetworking
- 5 Adresace
 - IPv4: typy adres
 - IPv4: Classful Addressing
 - IPv4: Classless Addressing
 - IPv4: Network Address Translation (NAT)
 - IPv4: Vyčerpávání adresového prostoru
 - IPv6 adresv
 - Interakce L3 se spojovou vrstvou (L2)
 - ARP protokol
- IP protokol
 - IP protokol verze 4 (IPv4)
 - ICMP
 - IP protokol verze 6 (IPv6)
 - ICMPv6
 - Mechanismy pro podporu přechodu IPv4 → IPv6
 - IPv6: Literatura
- 8 IPv6: Kde se nacházíme? Eva Hladká (FI MU)

Internet Protocol (IP protokol)

- nejrozšířenější protokol síťové vrstvy
 - doprava dat (datagramů) na místo jejich určení, a to i přes mezilehlé uzly (směrovače) – host-to-host delivery
 - uzly/rozhraní v rámci IP protokolu jednoznačně identifikovány IP adresami
 - využívá datagramový přístup k přepínání paketů, komunikace je nespojovaná
 - ⇒ směrování (příští přednáška)
 - poskytuje nespolehlivou (tzv. best-effort) službu
 - doplněn dalšími podpůrnými protokoly (ICMP, ARP, RARP, IGMP)
 - ošetření nestandardních situací, šíření informací potřebných ke korektnímu směrování, identifikace rozhraní na LAN atd.
- navržen a standardizován ve dvou verzích:
 - Internet Protocol verze 4 (IPv4) 1981, RFC 791
 - Internet Protocol verze 6 (IPv6) 1998, RFC 2460

 Eva Hladká (FI MU)
 3. Síťová vrstva
 jaro 2013
 48 / 81

IPv4 datagram

VER	HLEN	DS	Total length		
4 bits	4 bits	8 bits	16 bits		
Identification			Flags	Fragmentation offset	
16 bits			3 bits	13 bits	
Time	to live	live Protocol Header checksum			
8 t	oits	8 bits	16 bits		
Source IP address					
Destination IP address					
Option					

Eva Hladká (FI MU) jaro 2013 49 / 81 3. Síťová vrstva

IPv4 datagram II.

- Version (VER) verze IP protokolu
- Header length (HLEN) délka hlavičky IP datagramu (ve 4B slovech)
 - nezbytné kvůli poli Option (proměnná délka datagramu)
- Differentiated services (DS), také Type of service (TOS) třída datagramu v rámci kvality služby (QoS)
 - nezbytné pro odlišení "důležitých" (řídící datagramy, provoz v reálném čase) a "méně důležitých" datagramů
 - později (konec semestru)
- Total length délka celého IP datagramu (v B)
 - max. $2^{16} 1 = 65535$ bajtů
- Identification, Flags, Offset viz Fragmentace v IPv4, slide 55
- Time to live (TTL) řízení maximálního počtu skoků (= směrovačů) navštívených datagramem
 - ullet odesílací uzel vloží číslo (pprox 2 imes největší počet skoků mezi libovolnými dvěma uzly)
 - po průchodu směrovačem TTL dekrementováno o 1
 - pokud po dekrementování platí TTL = 0, datagram je zahozen

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 50 / 81

- Protocol identifikace protokolu vyšší vrstvy využívajícího služeb IP vrstvy
 - nezbytné pro specifikaci cílového protokolu, kterému má být datagram doručen
 - forma multiplexingu/demultiplexingu
 - identifikátory určeny v online databázi asociace IANA
 - např. 1 = ICMP, 2 = IGMP, 6 = TCP, 17 = UDP, atd.
 - viz http://www.iana.org/assignments/protocol-numbers

 Eva Hladká (FI MU)
 3. Síťová vrstva
 jaro 2013
 51 / 81

IPv4 datagram IV.

- Header checksum kontrolní součet hlavičky IP datagramu
 - bez dat
 - data (resp. transportní protokoly) mají vlastní kontrolní součty
 - hlavní důvod pro zdvojení:
 - nutnost přepočítávání kontrolního součtu na směrovačích díky proměnlivým polím IP datagramu (např. TTL)
 - ⇒ počítání kontrolního součtu jen hlavičky = úspora času (data se stejně nemění)
- Source IP address, Destination IP address 32-bitová IPv4 adresa identifikující odesílací/přijímající uzel
- Options volitelná součást IP datagramů, určeno zejména pro budoucí rozšíření IPv4
- Data vlastní přenášená data

 Eva Hladká (FI MU)
 3. Síťová vrstva
 jaro 2013
 52 / 81

- datagram při cestě k cíli prochází různými sítěmi
- ne všechny sítě (resp. využité L2 protokoly) mohou přenášet data stejné velikosti
- Maximum Transfer Unit (MTU) maximální velikost dat, které lze přenést využitým L2 protokolem
 - určuje maximální velikost přenositelného IP datagramu (Total size)

Eva Hladká (FI MU) 3. Sítová vrstva jaro 2013 53 / 81

situace:

- zdrojový uzel chce odeslat datagram, který je větší než MTU výstupní linky
- směrovač přijme datagram, který je větší než MTU výstupní linky
- řešení: provedení tzv. fragmentace IP datagramu
 - původní datagram je rozdělen na několik menších datagramů (tzv. fragmenty)
 - každý fragment získá svou vlastní IP hlavičku (= stane se z něj nový, plnohodnotný datagram)
 - fragmenty na cílovém uzlu složeny do původního datagramu (před předáním transportnímu protokolu)
- složení fragmentů do původního datagramu vyžaduje:
 - identifikaci datagramu, kterému fragmenty náleží
 - znalost počtu fragmentů
 - znalost pozice každého fragmentu v původním datagramu
- využití polí IP hlavičky: Identification, Flags a Offset

Eva Hladká (FI MU) 3. Sítová vrstva jaro 2013 54 / 81

IPv4 – fragmentace datagramů III.

- **Identification** pole identifikuje původní datagram, kterému fragmenty náleží
 - tj. všechny fragmenty jednoho datagramu mají stejné identifikační číslo
- Flags 3-bitová hodnota:
 - 1 bit rezervovaný
 - do-not-fragment bit hodnota 1 = datagram nesmí být fragmentován (v případě nutnosti generována ICMP zpráva – viz dále)
 - more-fragment bit hodnota 1 = fragment není posledním fragmentem (0 určuje poslední fragment daného datagramu)
- Offset relativní pozice fragmentu v původním datagramu
 - 13 bitů ⇒ offset max. 8191 ⇒ nelze pokrýt větší datagramy
 - ⇒ jednotka offsetu stanovena na 8 B

Eva Hladká (FI MU) Síťová vrstva jaro 2013 55 / 81

IPv4 – fragmentace datagramů IV.

Obrázek: Ukázka fragmentace 4000B datagramu do 3 fragmentů.

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 56 / 81

- Kde se fragmentace provádí?
 - na zdrojovém uzlu
 - na směrovačí/směrovačích
- Kde se provádí skládání fragmentů?
 - pouze na cílovém uzlu
 - ztráta fragmentu = ztráta datagramu
 - na směrovačích nelze skládat ze dvou důvodů:
 - zbytečná zátěž směrovače
 - fragmenty putují sítí nezávisle na sobě (tj. i jinými cestami)
- Možno provádět vícenásobnou fragmentaci
 - "fragmentaci fragmentu"
 - otázka: jak bude vypadat hlavička fragmentů fragmentů?

Síťová vrstva jaro 2013 57 / 81

Internet Control Message Protocol (ICMP)

- IP protokol poskytuje nespolehlivou (best-effort) službu
 - bez mechanismů pro informování odesílatele o vzniklých chybách
 - bez podpůrných mechanismů pro zjišťování stavu sítě
- Internet Control Message Protocol (ICMP)
 - RFC 792
 - doprovodný protokol IP protokolu
 - poskytuje informace o chybách při přenosu IP datagramů
 - poskytuje základní informace o stavu sítě
- přestože je ICMP protokolem síťové vrstvy, zprávy nejsou předávány linkové vrstvě, ale baleny do IP protokolu
 - hodnota pole Protocol v hlavičce IP datagramu nastavena na 1

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013

58 / 81

ICMP

Internet Control Message Protocol (ICMP) – hlavička

Aktuální přehled definovaných typů ICMP zpráv dostupný na adrese http://www.iana.org/assignments/icmp-parameters

Eva Hladká (FLMU) 3. Síťová vrstva jaro 2013 59 / 81

Internet Control Message Protocol (ICMP) – příklady zpráv

- oznamy o chybách:
 - Destination unreachable "Destination" může být protokol, port, uzel nebo celá síť
 - Time exceeded informace o vypršení TTL či informace o vypršení času pro znovusložení fragmentů IP datagramu
- dotazy na stav sítě/uzlu:
 - Echo request/reply požadavek na odpověď
- zprávy obsahují část paketu, který
 - způsobil chybu
 - na který se váže odpověď
- přímé využití ICMP v aplikacích:
 - program ping využití ICMP Echo request/reply
 - program traceroute využití ICMP Time exceeded (TTL expired)

Eva Hladká (FI MU) 3. Síťová vrstva jaro 2013 60 / 81

Internet Control Message Protocol (ICMP) – omezení

- ochrana proti rekurzivnímu generování:
 - Chybový ICMP paket není generován jako reakce na:
 - ICMP chybu
 - broadcast nebo multicast zprávu
 - poškozenou IP hlavičku (špatná cílová adresa)
 - chybu fragmentu (kromě prvního)
- generování ICMP zpráv často výkonnostně omezeno

Eva Hladká (FI MU) Síťová vrstva jaro 2013 61 / 81

IP protokol verze 6 (IPv6) – Proč nový protokol?

- hlavní impulz pro návrh nového IP protokolu: relativně rychlé vyčerpávání adresního prostoru IPv4 protokolu
 - (počátek 90. let 20. století)
- další důvody: problémy IPv4, které vyvstaly s rozvojem Internetu, zejména
 - slabá podpora přenosů aplikací reálného času
 - žádná podpora zabezpečené komunikace na úrovni IP
 - žádná podpora autokonfigurace zařízení
 - žádná podpora mobility
 - atp.
- (mnoho vlastností do IPv4 zpětně doimplementováno)

Eva Hladká (FI MU) Síťová vrstva jaro 2013 62 / 81