

#### Introduction to Data Mining

Lecture #12: Frequent Itemsets

U Kang Seoul National University



## **Association Rule Discovery**

# Supermarket shelf management – Market-basket model:

- Goal: Identify items that are bought together by sufficiently many customers
- Approach: Process the sales data collected with barcode scanners to find dependencies among items

#### A classic rule:





- If someone buys diaper and milk, then he/she is likely to buy beer
- Don't be surprised if you find six-packs next to diapers!

U Kang

2



#### The Market-Basket Model

- A large set of items
  - e.g., things sold in a supermarket
- A large set of baskets
- Each basket is a small subset of items
  - e.g., the things one customer buys on one day
- Want to discover association rules
  - People who bought {x,y,z} tend to buy {v,w}
    - Amazon!

#### Input:

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Coke, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Coke, Diaper, Milk        |

#### **Output:**

#### **Rules Discovered:**

```
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```

3



#### Applications – (1)

- Items = products; Baskets = sets of products someone bought in one trip to the store
- Real market baskets: Chain stores keep TBs of data about what customers buy together
  - Tells how typical customers navigate stores, lets them position tempting items
  - Suggests tie-in "tricks", e.g., run sale on diapers and raise the price of beer
  - Need the rule to occur frequently, or no \$\$'s
- Amazon's people who bought X also bought Y



### Applications – (2)

- Baskets = sentences; Items = documents containing those sentences
  - □ How can we interpret items that appear together too often?
  - Items that appear together too often could represent plagiarism
  - Notice items do not have to be "in" baskets
- Baskets = patients; Items = biomarkers(genes, proteins), diseases
  - How can we interpret frequent itemset (disease and biomarker)?
  - Frequent itemset consisting of one disease and one or biomarkers suggests a test for the disease

U Kang

5



## More generally

- A general many-to-many mapping (association)
   between two kinds of things
  - But we ask about connections among "items", not "baskets"

#### For example:

□ Finding communities in graphs (e.g., Twitter)



#### **Example:**

- Finding communities in graphs (e.g., Twitter)
- Baskets = nodes; Items = outgoing neighbors
  - ullet Searching for complete bipartite subgraphs  $K_{s,t}$  of a big graph



#### ■ How?

- View each node *i* as a basket *B<sub>i</sub>* of nodes *i* points to
- □  $K_{s,t}$  = a node set Y of size t that occurs in s baskets  $B_i$
- Looking for  $K_{s,t}$  → all frequent sets of size t that appears s times



#### ROADMAP

#### **First: Define**

**Frequent itemsets** 

**Association rules:** 

Confidence, Support, Interestingness

#### Then: Algorithms for finding frequent itemsets

Finding frequent pairs

**A-Priori algorithm** 

PCY algorithm + 2 refinements

U Kang

8



#### **Outline**

- **→** □ Frequent Itemsets
  - ☐ Finding Frequent Itemsets



#### Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for itemset I: Number of baskets containing all items in I
  - (Often expressed as a fraction of the total number of baskets)
- Given a minimum support s, then sets of items that appear in at least s baskets are called frequent itemsets

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Coke, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Coke, Diaper, Milk        |

Support of {Beer, Bread} = 2



## **Example: Frequent Itemsets**

- Items = {milk, coke, pepsi, beer, juice}
- Minimum support = 3 baskets

$$B_1 = \{m, c, b\}$$

$$B_2 = \{m, p, j\}$$

$$B_3 = \{m, b\}$$

$$B_4 = \{c, j\}$$

$$B_5 = \{m, p, b\}$$

$$B_6 = \{m, c, b, j\}$$

$$B_7 = \{c, b, j\}$$

$$B_8 = \{b, c\}$$

#### Frequent itemsets:

□ {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}



#### **Association Rules**

- Association Rules:
  If-then rules about the contents of baskets
- $\{i_1, i_2, ..., i_k\} \rightarrow j$  means: "if a basket contains all of  $i_1, ..., i_k$  then it is *likely* to contain j"
- In practice there are many rules, want to find significant/interesting ones!
- Confidence of this association rule is the probability of j given  $I = \{i_1, ..., i_k\}$

$$conf(I \to j) = \frac{support(I \cup j)}{support(I)}$$



## **Interesting Association Rules**

- Not all high-confidence rules are interesting
  - □ The rule  $X \rightarrow milk$  may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high
- Interest of an association rule  $I \rightarrow j$ :
  difference between its confidence and the fraction of baskets that contain j

$$Interest(I \rightarrow j) = conf(I \rightarrow j) - Pr[j]$$

 Interesting rules are those with high positive or negative interest values (usually above 0.5)



#### **Interesting Association Rules**

■ Interest of an association rule  $I \rightarrow j$ :
difference between its confidence and the fraction of baskets that contain j

$$Interest(I \rightarrow j) = conf(I \rightarrow j) - Pr[j]$$

- □ Interesting rules are those with high positive or negative interest values (usually above 0.5)
- □ E.g.
  - conf[I -> j] is large, but Pr[j] is small ?
  - conf[I -> j] is small, but Pr[j] is large ?



### **Example: Confidence and Interest**

$$B_1 = \{m, c, b\}$$
  $B_2 = \{m, p, j\}$   
 $B_3 = \{m, b\}$   $B_4 = \{c, j\}$   
 $B_5 = \{m, p, b\}$   $B_6 = \{m, c, b, j\}$   
 $B_7 = \{c, b, j\}$   $B_8 = \{b, c\}$ 

- Association rule:  $\{m, b\} \rightarrow c$ 
  - **□ Confidence =** 2/4 = 0.5
  - $\square$  | Interest | = |0.5 5/8 | = 1/8
    - Item *c* appears in 5/8 of the baskets
    - Rule is not very interesting!

U Kang

15



## **Finding Association Rules**

- Problem: Find all association rules with support  $\geq s$  and confidence  $\geq c$ 
  - Note: Support of an association rule is the support of the set of items on the left side
- Hard part: Finding the frequent itemsets!
  - □ If  $\{i_1, i_2, ..., i_k\} \rightarrow j$  has high support and confidence, then both  $\{i_1, i_2, ..., i_k\}$  and  $\{i_1, i_2, ..., i_k, j\}$  will be "frequent"

$$conf(I \rightarrow j) = \frac{support(I \cup j)}{support(I)}$$

U Kang

16



#### Mining Association Rules

- Step 1: Find all frequent itemsets I
  - (we will explain this next)
- Step 2: Rule generation
  - $\square$  For every subset A of I, generate a rule  $A \to I \setminus A$ 
    - Since I is frequent, A is also frequent
    - Variant 1: Single pass to compute the rule confidence
      - □ confidence( $A,B \rightarrow C,D$ ) = support(A,B,C,D) / support(A,B)
    - Variant 2:
      - $\square$  Observation: If A,B,C $\rightarrow$ D is below confidence, so is A,B $\rightarrow$ C,D
      - Can generate "bigger" rules from smaller ones!
  - $\Box$  Output the rules with confidence  $\geq c$



#### Example

$$B_1 = \{m, c, b\}$$
  $B_2 = \{m, p, j\}$   
 $B_3 = \{m, c, b, n\}$   $B_4 = \{c, j\}$   
 $B_5 = \{m, p, b\}$   $B_6 = \{m, c, b, j\}$   
 $B_7 = \{c, b, j\}$   $B_8 = \{b, c\}$ 

- Minimum support s = 3, confidence c = 0.75
- 1) Frequent itemsets:
  - □ {b,m} {b,c} {c,m} {c,j} {m,c,b}
- 2) Generate rules:

**b**→**m**: 
$$c=4/6$$
 **b**→**c**:  $c=5/6$ 

$$\mathbf{m} \rightarrow \mathbf{b} : c = 4/5$$
 ...  $\mathbf{b}, \mathbf{m} \rightarrow \mathbf{c} : c = 3/4$ 

□ U Kang

$$b \rightarrow c,m: c=3/6$$

 $b,c \rightarrow m: c=3/5$ 



#### **Compacting the Output**

- To reduce the number of rules we can post-process them and only output:
  - Maximal frequent itemsets:

No superset is frequent

- E.g., if {A}, {A, B}, {B,C} are frequent, {A,B}, {B,C} are maximal
- Gives more pruning

or

#### Closed itemsets:

No immediate superset has the same count (> 0)

- E.g., if {A}, {A,C} both have support 5, {A} is not closed
- Stores not only frequent information, but exact counts



## **Example: Maximal/Closed**





#### **Outline**

- Frequent Itemsets
- **→** □ Finding Frequent Itemsets



### **Itemsets: Computation Model**

- Back to finding frequent itemsets
- Typically, data are kept in flat files rather than in a database system:
  - Stored on disk
  - Stored basket-by-basket
  - Baskets are small but we have many baskets and many items
    - Expand baskets into pairs, triples, etc.
       as you read baskets
    - Use k nested loops to generate all sets of size k

**Note:** We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.



Items are positive integers, and boundaries between baskets are -1.



## **Computation Model**

- The true cost of mining disk-resident data is usually the number of disk I/Os
- In practice, association-rule algorithms read the data in passes – all baskets read in turn
- We measure the cost by the number of passes an algorithm makes over the data
  - □ 1-pass, 2-pass, ...



## **Main-Memory Bottleneck**

- For many frequent-itemset algorithms,
   main-memory is the critical resource
  - As we read baskets, we need to count something, e.g., occurrences of pairs of items
  - The number of different things we can count is limited by main memory
  - Swapping counts in/out from/to disk is a disaster (why?)



## **Finding Frequent Pairs**

- The hardest problem often turns out to be finding the frequent pairs of items  $\{i_1, i_2\}$ 
  - Why? Freq. pairs are common, freq. triples are rare

- Let's first concentrate on pairs, then extend to larger sets
- The approach:
  - We always need to generate all the itemsets
  - But we would only like to count (keep track of) those itemsets that in the end turn out to be frequent



## **Naïve Algorithm**

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
  - From each basket of *n* items, generate its n(n-1)/2 pairs by two nested loops
- Fails if (#items)² exceeds main memory
  - Remember: #items can be100K (Wal-Mart) or 10B (Web pages)
    - Suppose 10<sup>5</sup> items, counts are 4-byte integers
    - Number of pairs of items:  $10^{5}(10^{5}-1)/2 \approx 5*10^{9}$
    - Therefore, 2\*10<sup>10</sup> (20 gigabytes) of memory needed



## **Counting Pairs in Memory**

#### Two approaches:

- Approach 1: Count all pairs using a matrix
- Approach 2: Keep a table of triples [i, j, c] = "the count of the pair of items  $\{i, j\}$  is c." (where c>0)
  - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
  - Plus some additional overhead for the hashtable

#### Note:

- Approach 1 only requires 4 bytes per pair
- Approach 2 uses 12 bytes per pair (but only for pairs with count > 0)



## Comparing the 2 Approaches



# of all items

**Triangular Matrix** (Approach 1) Store all (i,j) where i<j



**Triples** (Approach 2) Store (i,j) whose sup>=1



### Comparing the two approaches

- Approach 1: Triangular Matrix
  - $\mathbf{n}$  = total number items
  - Count pair of items {i, j} only if i<j</p>
  - Can use one-dimensional array to store the tri. matrix
    - Keep pair counts in lexicographic order:
      - $\square$  {1,2}, {1,3},..., {1,*n*}, {2,3}, {2,4},...,{2,*n*}, {3,4},...
    - Pair  $\{i, j\}$  is at position (i-1)(n-i/2) + j i (array index starts from 1)
  - □ Total number of pairs n(n-1)/2; total bytes ~  $2n^2$
  - Triangular Matrix requires 4 bytes per pair
- Approach 2 uses 12 bytes per occurring pair (but only for pairs with count > 0)
  - When should we prefer Approach 2 over Approach 1?
    - If less than 1/3 of possible pairs actually occur



### Comparing the two approaches

■ Approach 1: Triangular Matrix

- n = term
   Co
   Ca
   Problem is if we have too many items so the pairs do not fit into memory.
   To
   Tri
   Can we do better?
  - (but only jor pairs with count > 0)
    - When should we prefer Approach 2 over Approach 1?
      - If less than 1/3 of possible pairs actually occur



# **Questions?**