Определение 1. Цепной дробью (конечной или бесконечной) $[a_0; a_1, a_2, \ldots]$, где $a_0 \in \mathbb{Z}, a_1, a_2, \ldots \in \mathbb{N}$ называется выражение вида

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$$
.

Рациональные число $S_n = [a_0; a_1, \dots, a_n]$ называется n-ой подходящей дробью цепной дроби $[a_0; a_1, a_2, \ldots]$. Числитель n-ой подходящей дроби S_n обозначается p_n , знаменатель — q_n , так что и p_n , и q_n являются многочленами от букв a_0, \ldots, a_n , например, $p_1 = a_0 a_1 + 1$, $q_1 = a_1$.

Задача 1. а) Выразите p_n и q_n через числители и знаменатели S_{n-1} и S_{n-2} .

- **б)** докажите тождество: $S_{n+1} S_n = \frac{(-1)^n}{q_n q_{n+1}}.$ **в)** докажите, что всякая подходящая дробь несократима.

Задача 2. Докажите, что для всякой цепной дроби последовательность подходящих дробей имеет предел.

Таким образом, корректно определено значение цепной дроби.

Задача 3. Для всякой конечной цепной дроби $[a_0; a_1, \ldots, a_n] = [a_0; a_1, \ldots, a_n - 1, 1]$. Докажите, что это единственный случай, когда разные цепные дроби могут иметь одинаковые значения.

Задача 4. Докажите, что всякое вещественное число единственным (в смысле предыдущей задачи) образом представляется в виде цепной дроби. Опишите алгебраически и геометрически алгоритм представления числа в виде цепной дроби.

Задача 5. а) Пусть HOД(m,n) = 1. Как, зная разложение m/n в цепную дробь, найти решение диофантова уравнения mx + ny = 1?

б) Пусть m и n - целые ненулевые числа. Как найти HOД(m,n) из представления m/n в виде цепной дроби? Какое отношение к представлению рациональных чисел цепными дробями имеет алгоритм Евклида?

Задача 6. а) Вещественное число называется квадратичной иррациональностью, если оно является корнем квадратного уравнения с целыми коэффициентами. Докажите, что цепная дробь, представляющая квадратичную иррациональность, периодична.

б)* докажите обратное утверждение: если цепная дробь периодична, то она представляет квадратичную иррациональность.

Определение 2. Показателем качества (или коэффициентом качества) приближения p/q числа α (где $p,q\in\mathbb{Z},\alpha\in\mathbb{Q}$) называется число $q\cdot|\alpha-\frac{p}{q}|$. Из двух приближений лучшим считается то, у которого показатель качества меньше.

Задача 7. Пусть α - вещественное число. Докажите, что для любого $q \in \mathbb{N}$ существует рациональное приближение p/q числа α с показателем качества меньшим 1/2.

Задача 8. а) Какое из приближений числа $\sqrt{2}$ лучше: 3/2; 7/5; или 1,41?

б) Какое из приближений числа π лучше: 3; 3, 14; или 22/7?

Задача 9. а) Докажите, что *n*-я подходящая дробь приближает значение цепной дроби с показателем качества не более $1/q_{n+1}$

б)* Докажите, что абсолютная погрешность приближения $\alpha - \frac{p_n}{q_n}$ иррационального числа α n-ой подходящей дробью является наименьшей среди приближений дробями со знаменателями, не превосходящими q_n .

Задача 10. а) Найдите три первых подходящих дроби числа π (соответственно, приближения Архимеда и Меция). Каковы у них показатели качества?

6)* Длина астрономического года равна 365 дней 5 часов 48 минут 46 секунд. На каком приближении основан юлианский календарь? Можете предложить что-либо лучшее (например, система Омара Хаяма дает погрешность в 19 секунд в отличие от 11 минут Цезаря)