Young Adult Migration in the United States

Alaina Holland, Joselyn Molina Lagunas, Jordyn Irwin, & Brittany F<u>isher</u>

Table of contents

Background

- The importance of migration data:
 - Demographic trends
 - Labor market dynamics
 - Policy formulation and implementation
 - Global development

Target audience

- U.S. Department of Labor & U.S. Department of Education
- Benefits for these departments :
 - Educational planning and resource allocation
 - Identifies educational needs
 - Improves workforce development
 - Improves policy development

Objective

Problem Statement:

Research Questions

Predict migration patterns between origin and destination commuting zones based on race, parental income, and origin

- 1) Can parental income level and/or race predict whether or not a person will move?
- 2) Can parental income level and/or race predict how far a person might move?
- 3) Are there discernible trends based on race and parental income levels?

Data

- Data was compiled from federal tax data from 1994, 1995, 1998-2018 linked to the 2000 and 2010 decennial censuses, 2005-2018 American Community Survey data, and Department of Housing and Urban Development address information.
- Children born 1984-1992 measuring their childhood locations at age 16 and young adult locations at age 26.
- We are focusing only on observations with an origin on the West Coast (Washington, Oregon, and California).

Count Data

	Unnamed: 0	o_cz	o_cz_name	o_state_name	d_cz	d_cz_name	d_state_name	n	n_tot_o	n_tot_d	pool	pr_d_o	pr_o_d
797036	13708961	39400	Seattle	Washington	38601	Spokane	Washington	7	2355	88	AsianQ1	0.002972	0.079546
797989	13709914	39400	Seattle	Washington	38601	Spokane	Washington	6	3569	117	AsianQ2	0.001681	0.051282
798248	13710173	39400	Seattle	Washington	38601	Spokane	Washington	9	4161	170	AsianQ3	0.002163	0.052941
798996	13710921	39400	Seattle	Washington	38601	Spokane	Washington	12	5209	152	AsianQ4	0.002304	0.078947
799614	13711539	39400	Seattle	Washington	38601	Spokane	Washington	12	5067	119	AsianQ5	0.002368	0.100840
800827	13712752	39400	Seattle	Washington	38601	Spokane	Washington	23	5444	391	BlackQ1	0.004225	0.058824
801680	13713605	39400	Seattle	Washington	38601	Spokane	Washington	34	5738	314	BlackQ2	0.005925	0.108280
801941	13713866	39400	Seattle	Washington	38601	Spokane	Washington	15	3403	227	BlackQ3	0.004408	0.066079
802942	13714867	39400	Seattle	Washington	38601	Spokane	Washington	10	2716	144	BlackQ4	0.003682	0.069444
803864	13715789	39400	Seattle	Washington	38601	Spokane	Washington	8	1790	86	BlackQ5	0.004469	0.093023

How Distance was calculated?

- Data retrieved from SimpleMaps which compiles information from the U.S. Postal Service™, U.S. Census Bureau, National Weather Service, American Community Survey, and the IRS.
- Combined on the city and state to gather the latitude and longitude.

Distance Data

```
origin = ds[(["o_cityState", "o_lat", "o_lng"])]

origin.head()

o_cityState o_lat o_lng

O Ontario, Oregon 44.1109 -117.0738

Ontario, Oregon 44.1109 -117.0738
```

```
        destination = ds[(["d_cityState", "d_lat", "d_lng"])]

        d_cityState
        d_lat
        d_lng

        0 North Wilkesboro, North Carolina
        36.1665
        -81.0791

        1 Roanoke Rapids, North Carolina
        36.4305
        -77.7183

        2 Monroe, Louisiana
        32.5392
        -92.1069

        3 Hattiesburg, Mississippi
        31.2350
        -89.2691

        4 Austin, Texas
        30.2702
        -97.7425
```

Distance data

```
origin[['lat_radians_o','long_radians_o']] = (
    np.radians(origin.loc[:,['o_lat','o_lng']])
)
destination[['lat_radians_d','long_radians_d']] = (
    np.radians(destination.loc[:,['d_lat','d_lng']])
)
```

```
origin=origin.drop_duplicates()
origin.head()
                                                lat_radians_o long_radians_o
                                                     0.769880
                                                                    -2.043323
                                                     0.725818
                                                                    -2.165231
                Burns, Oregon 43,5880 -118,8581
                                                     0.760754
                                                                    -2 074465
             Lakeview, Oregon 42,2983 -120,3917
                                                     0.738245
            Redding, California 40.5773 -122,4544
                                                     0.708207
destination=destination.drop duplicates()
destination.head(10)
                                             d_lng lat_radians_d long_radians_d
 0 North Wilkesboro, North Carolina 36,1665
     Roanoke Rapids, North Carolina 36,4305
                                                        0.635832
                                                                       -1.356440
                Monroe, Louisiana 32,5392
                                                                       -1.607569
                                                        0.545154
                                                                       -1.558040
           Hattiesburg, Mississippi 31,2350
```

0.528315

-1.705928

Distance data

ds_dist_unpv.head()

	o_cityState	d_cityState	distance
0	Ontario, Oregon	North Wilkesboro, North Carolina	1961.671028
1	Klamath Falls, California	North Wilkesboro, North Carolina	2317.821008
2	Burns, Oregon	North Wilkesboro, North Carolina	2048.864779
3	Lakeview, Oregon	North Wilkesboro, North Carolina	2126.734491
4	Redding, California	North Wilkesboro, North Carolina	2241.271000

```
conv_fac = 0.621371
ds_dist_unpv["miles"] = ds_dist_unpv.distance /conv_fac
```

ds_dist_unpv.head()

	o_cityState	d_cityState	distance	miles
0	Ontario, Oregon	North Wilkesboro, North Carolina	1961.671028	3157.004476
1	Klamath Falls, California	North Wilkesboro, North Carolina	2317.821008	3730.172487
2	Burns, Oregon	North Wilkesboro, North Carolina	2048.864779	3297.329259
3	Lakeview, Oregon	North Wilkesboro, North Carolina	2126.734491	3422.648452
4	Redding, California	North Wilkesboro, North Carolina	2241.271000	3606.977153

Transformations

- Narrowed to and origin only on the West Coast– California, Oregon, and Washington
- Count data expanded into individual record rows
- Joined with the latitude and longitude of both the origin and the destination
- Categorical data re-coded
- Migration column created

	n	pool	ethnicity	income	migrated	d_cityState	d_lat	d_lng	o_cityState	o_lat	o_lng	o_d	dist_miles
(0	AsianQ1	1	1	1	North Wilkesboro, North Carolina	36.1665	-81.0791	Ontario, Oregon	44.1109	-117.0738	Ontario, Oregon-North Wilkesboro, North Carolina	3157.004476
1	I 0	AsianQ1	1	1	1	Roanoke Rapids, North Carolina	36.4305	-77.7183	Ontario, Oregon	44.1109	-117.0738	Ontario, Oregon-Roanoke Rapids, North Carolina	3411.728192
2	2 0	AsianQ1	1	1	1	Monroe, Louisiana	32.5392	-92.1069	Ontario, Oregon	44.1109	-117.0738	Ontario, Oregon-Monroe, Louisiana	2514.796149
3	3 0	AsianQ1	1	1	1	Hattiesburg, Mississippi	31.2350	-89.2691	Ontario, Oregon	44.1109	-117.0738	Ontario, Oregon- Hattiesburg, Mississippi	2815.030003
4	1 0	AsianQ1	1	1	1	Austin, Texas	30.2702	-97.7425	Ontario, Oregon	44.1109	-117.0738	Ontario, Oregon-Austin, Texas	2291.772825

EDA

Differences in Average Distance Moved by Ethnicity and Income

RQ 1: Can we predict if a young person will move based on their ethnicity, parental income, and origin city?

Details:

- Data is very unbalanced: 1,261,736 individuals who did migrate and 3,362,219 who did not.
- To combat this, the train test split includes random_state=1 and stratify=y.
- Feature variables: pooled ethnicity and parental income, ethnicity, parental income, their origin city
- Response variable: their migration status
- Again, to account for the unbalanced data set, a weight class of balanced was set.

```
1  X_train1, X_test1, y_train1, y_test1 = train_test_split(x, y, random_state=1, stratify=y)
2  print (X_train1.shape, y_train1.shape)
3  print (X_test1.shape, y_test1.shape)
(3467966, 4) (3467966,)
(1155989, 4) (1155989,)
```


Results:

- Meh!
- Accuracy score: 0.5784328397588558
- Not terribly indicative for this algorithm
- Precision for non-migration is great, but can only predict the migrating youth 35% of the time.
- Recall is better for migrating youth and both are in the 'meh' realm.
- F-1 score falls into average overall.

F1 score	Interpretation
> 0.9	Very good
0.8 - 0.9	Good
0.5 - 0.8	ОК
< 0.5	Not good

1	<pre>print(classification_report(y_test1, preds))</pre>								
		precision	recall	f1-score	support				
	0 1	0.81 0.35	0.55 0.65	0.65 0.46	840555 315434				
	accuracy macro avg ghted avg	0.58 0.68	0.60 0.58	0.58 0.56 0.60	1155989 1155989 1155989				

K-Nearest Neighbors

Details:

- Due to extremely slow processing, the dataset needed to be smaller.
- To accomplish this, we took a stratified sample of 20,000 per pool from 4.6 million rows, which gives us 500,000 total rows in the sample dataset.
- Algorithm set to 'kd_tree' to optimize— even a sample still took quite a long time.
- K set to 3– choice confirmed with further analyzation.

```
knn_clf = KNeighborsClassifier(weights='distance', n_neighbors=3, algorithm ='kd_tree')
knn_clf.fit(X_train, y_train)
```

```
▼ KNeighborsClassifier
```

KNeighborsClassifier(algorithm='kd_tree', n_neighbors=3, weights='distance')

K-Nearest Neighbors

Results:

- Not fantastic!
- Accuracy score: 0.683584
- Again, precision, recall, and F-1 scores are worse for the migrating youth.
- Overall average scores fall into the middle of the road.

F1 score	Interpretation
> 0.9	Very good
0.8 - 0.9	Good
0.5 - 0.8	ок
< 0.5	Not good

1	print(cla	ssification_	report(y_	test, y_kn	n_pred))
		precision	recall	f1-score	support
	0	0.75	0.86	0.80	92200
	1	0.33	0.20	0.24	32800
	accuracy			0.68	125000
1	nacro avg	0.54	0.53	0.52	125000
wei	ghted avg	0.64	0.68	0.65	125000

K-Nearest Neighbors

Continued:

- Is three the correct amount of clusters?
- We used a function to loop through 12 cluster options:
- Testing accuracies for each number of clusters:
 - 1: 0.631992, 2: 0.722112, 3: 0.683584, 4: 0.714632, 5: 0.694856, 6: 0.722416, 7: 0.695352, 8: 0.72312, 9: 0.715536, 10: 0.732624, 11: 0.72708, 12: 0.733384
- Though accuracy improves with even clusters, precision and recall tank even further for migrating individuals
 - Odd numbers also recommended in case of a tie

Continued:

- To align with the sampled data used in the KNN classifier, we re-ran the Random Forest Classifier with that data.
- Extremely similar to the entire dataset.

F1 score	Interpretation
> 0.9	Very good
0.8 - 0.9	Good
0.5 - 0.8	ОК
< 0.5	Not good

1	print(cla	ssification_	_report(y_	test, pred	s2))	
		precision	recall	f1-score	support	
	0 1	0.81 0.34	0.56 0.63	0.66 0.44	92200 32800	
	accuracy macro avg ghted avg	0.57 0.69	0.59 0.58	0.58 0.55 0.61	125000 125000 125000	

Categorical Naive Bayes

Details:

- Naive Bayes are a family of linear "probabilistic classifiers".
- A "simple" classifier.
- Assumes that the features are conditionally independent.

```
1 cnb = CategoricalNB()
2 cnb.fit(X_train, y_train)

v CategoricalNB
CategoricalNB()

1 y_predict = cnb.predict(X_test)
```

Categorical Naive Bayes

Results:

- Misleading!
- Again, the model is having a difficult time with the migrating youth.
- The overall accuracy is an improvement on previous models, but the avg for recall and precision are very similar to previous models.

1	accuracy_score(y_test,	y_predict)
---	------------------------	------------

0.7256

1	print	classification_	_report(y_test,	<pre>y_predict))</pre>
---	-------	-----------------	-----------------	------------------------

	precision	recall	f1-score	support
0 1	0.75 0.43	0.94 0.13	0.83 0.20	92200 32800
accuracy macro avg weighted avg	0.59 0.67	0.53 0.73	0.73 0.52 0.67	125000 125000 125000

Ensemble Learning

Voting classifier:

- A technique to enhance models and their ability to predict by merging predictions from multiple models.
- Gains experience by training on a collection of several models and predicting a class based on the class with the highest likelihood of becoming the output.
- Two types: hard voting and soft voting

Ensemble Learning

Results:

- The KNN and Random Forest Classifier are extremely similar.
- Using the Voting Classifier operates under the bias-variance trade off concept.

Model Performance

KNeighborsCl	assifier				
	precision	recall	f1-score	support	
0	0.75	0.83	0.79	92129	
1	0.32	0.23	0.27	32871	
10 10 10 10 10 10 10 10 10 10 10 10 10 1			0 67	425000	
accuracy			0.67	125000	
macro avg	0.54	0.53	0.53	125000	
weighted avg	0.64	0.67	0.65	125000	
RandomForest	Classifier				
	precision	recall	f1-score	support	
0	0.80	0.60	0.69	92129	
1	0.34	0.58	0.43	32871	
accuracy			0.60	125000	
accuracy		0 50		AND DEVELOP	
macro avg		0.59	0.56	125000	
weighted avg	0.68	0.60	0.62	125000	

CategoricalNB				
	precision	recall	f1-score	support
0	0.75	0.93	0.83	92129
1	0.42	0.13	0.20	32871
accuracy			0.72	125000
macro avg	0.58	0.53	0.52	125000
weighted avg	0.66	0.72	0.67	125000
VotingClassif	ier			
	precision	recall	f1-score	support
0	0.76	0.89	0.82	92129
1	0.39	0.20	0.27	32871
accuracy			0.71	125000
macro avg	0.57	0.54	0.54	125000
weighted avg	0.66	0.71	0.67	125000

RQ 2:

Can we predict how far a young person will move based on their ethnicity, parental income, and origin city?

Random Forest Regressor

Details:

- Feature variables: pooled ethnicity and parental income, ethnicity, parental income, their origin city, and migration status.
- Response variable: distance moved in miles.
- Still using the 20k stratified sample.

Random Forest Regressor

R-squared: 0.02581330523197678

Results:

- So bad!
- We wanted a mean squared error as close to 0 as possible.
- Also, we wanted an R-squared close to 1.

```
1  oob_score = distCLF.oob_score_
2  print(f'Out-of-Bag Score: {oob_score}')

Out-of-Bag Score: 0.025392197181454135

1  mse = mean_squared_error(y_test, distPred)
2  print(f'Mean Squared Error: {mse}')

3  4  r2 = r2_score(y_test, distPred)
5  print(f'R-squared: {r2}')

Mean Squared Error: 893784.4470626586
```


RQ 3: Are there discernible trends based on race and family income levels?

Parental Income

Note: Income Quartile is based on the ranges per city NOT U.S. average income quartiles

Quartile	Income
Q1	Lowest
Q2	Lower- Middle
Q3	Middle
Q4	Middle- High
Q5	Highest

Race

Conclusions

Results:

- Our ability to predict migration for youth from this data is pretty mediocre.
- Combined models performed the best.
- We cannot predict how far someone moves just with this data.

Limitations:

- Count data!
- Very few variables to explore.
- Categorical variables
- Somewhat out of date.
- Limited ML experience

Next Steps

Data:

- At what age did they move?
- What are their motivations to move?
- Is it due to college? If so, do they return to their origin city?

Incorporate Additional Variables:

- Employment opportunities
- Housing prices
- Education levels
- Family ties
- Environmental factors like climate or geographic features
- Time Period of move (economic recession/boom)
- Expand to across the country

Questions:

- Are there important differences between age groups?
- Have there been changes over time?
- Did the pandemic make a significant difference to migration?

Any questions?

PS: pls don't have questions, we are very tired.