We gives a map reduction from PCP to $AMBIG_{CFG}$.

For an PCP instance $\{(a_i,b_i)\}_{i=1}^n$ where $a_i,b_i\in\Sigma^*$, We construct a CFG $G=(V,\Sigma',R,S)$ as following:

- $V = \{S, A, B, A', B'\}.$
- $\Sigma' = \Sigma \cap [1, n]$. Here we consider every integer as one symbol.
- ullet R contains the following rules:
 - \circ $S \rightarrow A'|B'$.
 - $\circ \ A
 ightarrow \epsilon$, $B
 ightarrow \epsilon$.
 - $A \rightarrow iAa_i$ for every $1 \leq i \leq n$.
 - ullet $B o iBb_i$ for every $1 \le i \le n$.
 - ullet $A' o iAa_i$ for every $1 \le i \le n$.
 - ullet $B' o iBb_i$ for every $1\leq i\leq n$.

G does not accept ϵ . For every string w=st where $s\in [1,n]^+$ and $t\in \Sigma^*$, G accepts w first changing S to A' if and only if $t=a_{s_{|S|}}\cdots a_{s_1}$; G accepts w first changing S to S' if and only if $t=b_{s_{|S|}}\cdots b_{s_1}$. So S' accepts a string S' with two distinct parse tree if and only if the S' instance is a YES instance.