## Unsupervised Learning

Vladislav Goncharenko Harbour, 2021

#### Outline

- Manifold assumption
- Dimensionality reduction
  - Multidimensional Scaling (MDS)
  - o Isomap
  - Locally linear embedding (LLE)
  - o t-SNE
- Clustering
  - k-means
  - DBSCAN
  - Hierarchical clustering

# Naïve Bayes

### Naïve Bayes

Naive assumption of features independence leads to simple and easy to calculate result

$$P(y|x_1,\ldots,x_n) = P(y) \cdot \frac{P(x_1,\ldots,x_n|y)}{P(x_1,\ldots,x_n)}$$

$$P(x_i|y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i|y)$$

$$P(y|x_1,\ldots,x_n) = P(y) \cdot \frac{\prod_i P(x_i|y)}{P(x_1,\ldots,x_n)}$$

$$P(x_1,\ldots,x_n) \equiv const$$

$$\hat{y} = \arg\max_{y} P(y) \cdot \prod_{i} P(x_i|y)$$

What  $P(x_i|y)$  really is?

#### Typical likelihood of the features

- 1. Gaussian
- 2. Multinomial
- 3. Bernoulli

$$P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

$$P(x_i \mid y) = P(i \mid y)x_i + (1 - P(i \mid y))(1 - x_i)$$

# Unsupervised learning

# Supervised learning



# Unsupervised learning



#### Manifold assumption

The data lie approximately on a manifold of much lower dimension than the input space

So problem dimensionality could be (non-)linearly reduced

Approach doesn't require any labels



<u>Tenenbaum, de Silva, Langford</u>
A Global Geometric Framework for Nonlinear Dimensionality Reduction

## Dimensionality reduction

#### Multidimensional Scaling (MDS)



Voting patterns in the United States House of Representatives

Goal:
Linearly embed to given lower space
Solution:
PCA

$$L = ||D_x - D_y||_2 \to \min_{y = Ax}$$

$$y = \Lambda^{1/2} V^T$$

Params: p - target dimensionality

#### Isomap



Now make distancies geodesic! And measure distances on the produced graph

Params:

Original article

n - number of neighbours to connect

p - dimensionality of manifold

#### Isomap

| Step |                                   |                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Construct neighborhood graph      | Define the graph $G$ over all data points by connecting points $i$ and $j$ if [as measured by $d_X(i,j)$ ] they are closer than $\epsilon$ ( $\epsilon$ -Isomap), or if $i$ is one of the $K$ nearest neighbors of $j$ ( $K$ -Isomap). Set edge lengths equal to $d_X(i,j)$ .                                                                                           |
| 2    | Compute shortest paths            | Initialize $d_G(i,j) = d_X(i,j)$ if $i,j$ are linked by an edge; $d_G(i,j) = \infty$ otherwise. Then for each value of $k = 1, 2, \ldots, N$ in turn, replace all entries $d_G(i,j)$ by $\min\{d_G(i,j), d_G(i,k) + d_G(k,j)\}$ . The matrix of final values $D_G = \{d_G(i,j)\}$ will contain the shortest path distances between all pairs of points in $G$ (16, 19). |
| 3    | Construct d-dimensional embedding | Let $\lambda_p$ be the $p$ -th eigenvalue (in decreasing order) of the matrix $\tau(D_G)$ (17), and $v_p^i$ be the $i$ -th component of the $p$ -th eigenvector. Then set the $p$ -th component of the $d$ -dimensional coordinate vector $\mathbf{y}_i$ equal to $\sqrt{\lambda_p}v_p^i$ . 17. The operator $\tau$ is defined by                                       |

Floyd-Warshall algorithm

17. The operator  $\tau$  is defined by  $\tau(D) = -HSH/2$ , where S is the matrix of squared distances  $\{S_{ij} = D_{ij}^2\}$ , and H is the "centering matrix"  $\{H_{ij} = \delta_{ij} - 1/N\}$  (13).

#### Locally linear embedding (LLE)

#### Idea:

Smooth manifold can be locally approximated linearly. Linear peases can be flattened

#### Original article









#### Locally linear embedding (LLE)

Two steps of embedding and two objective functions:

1. estimate point by its K neighbours

$$\varepsilon(W) = \sum_{i=1}^{n} ||x_i - \sum_{j=1}^{K} W_{ij} x_j||^2$$

2. Estimate new points based on known relations

$$\Phi(Y) = \sum_{i=1}^{n} ||y_i - \sum_{j=1}^{n} W_{ij} y_j||^2$$

Params:

n - number of neighbours to connect

p - dimensionality of manifold



#### Many more...

- Hessian Eigenmapping
- Spectral Embedding
- Local Tangent Space Alignment
- Riemannian Geometry
- .....

#### t-SNE

#### t-distributed Stochastic Neighbor Embedding

SNE

original article

#### Stochastic Neighbor Embedding

Idea:

Convert pairwise distances to probabilities, preserve probabilities through the spaces

$$p_{j|i} = \frac{\exp(-\frac{||x_i - x_j||^2}{2\sigma_i^2})}{\sum_{k \neq i} \exp(-\frac{||x_i - x_k||^2}{2\sigma_i^2})}$$

asymmetric probability of object i chooses j as its neighbour

$$q_{j|i} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq i} \exp(-||y_i - y_k||^2)}$$

the same in target space

Let's construct embedding s.t. this distributions are close. What are close distributions?

#### Kullback-Leibler divergence

$$D_{KL}(P || Q) = \sum_{i,j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$



Suspiciously similar to Shannon entropy

Learn more

#### Stochastic Neighbor Embedding

$$p_{j|i} = \frac{\exp(-\frac{||x_i - x_j||^2}{2\sigma_i^2})}{\sum_{k \neq i} \exp(-\frac{||x_i - x_k||^2}{2\sigma_i^2})}$$
$$q_{j|i} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq i} \exp(-||y_i - y_k||^2)}$$

$$D_{KL}(P \mid\mid Q) \to \min_{Y}$$

#### t-distributed Stochastic Neighbor Embedding

#### Patches over SNE:

- 1. make distribution symmetric
- 2. make it decrease faster than Gaussian (use <u>Student's t-distribution</u>)

$$p_{ij} = \frac{\exp(-||x_i - x_j||^2/2\sigma^2)}{\sum_{k \neq l} \exp(-||x_k - x_l||^2/2\sigma^2)}$$

$$q_{ij} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq l} \exp(-||y_k - y_l||^2)}$$



Original article

# Clustering

#### k-means



#### DBSCAN



## Hierarchical clustering







## Hierarchical clustering



#### Hierarchical clustering



#### Links

- 1. Good lecture on MDS, Isomap, LLE
- 2. <u>Lecture on t-SNE</u> (this one is good too)
- 3. Slides about clusterization
- 4. Metrics in clusterization
- 5. Slides about ICA
- 6. <u>More clustering methods</u> (in russian)