Chapitre 1 - Calcul Matriciel

 $\mathcal{F}.\mathcal{J}$

19 janvier 2024

1 Produits scalaires réels et complexes

1.1 Cas réel

Définition 1. On se place dans un espace vectoriel réel (\mathbb{R}), appelons E. Un produit scalaire (PS) sur E est une forme bilinéaire symétrique définie positive, i.e une application $p: E \times E \to \mathbb{R}$ vérifiant les trois propriétées suivantes :

- 1. Bilinéarité;
- 2. Symétrie;
- 3. Positivité.

Le nom de produit scalaire évoque à la fois la bilinéarité et le fait que ses valeurs soient "scalaires", i.e appartiennent au corps de base (ici \mathbb{R}) de l'espace vectoriel E.

Il est intéressant de se rappeler qu'un produit scalaire est entièrement déterminé par sa forme quadratique associée; si p est le produit scalaire sur E, on a $P:E\to\mathbb{R}$ sa forme quadratique, définie par : $P(x)=p(x,x), \ (x\in E)$. En utilisant la bilinéarité et la symététrie on se ramène par "polarisation" au produit scalaire à partir de la forme quadratique.

Une conséquence de la **positivité** du produit scalaire, est l'inégalité de Cauchy-Schwarz :

Proposition 1 (Cauchy-Schwarz). Considérons un produit scalaire sur un espace vectoriel réel E. Alors, pour tout couple (x, y) d'éléments de E, on a :

$$p(x,y)^2 \le p(x,x)p(y,y);$$

On a égalité si et seulement si (x, y) est lié.

Démonstration : Une preuve simple consiste à prendre un scalaire et à développer :

$$p(x + \lambda y, x + \lambda y)$$
.

Ne pas oublier le cas d'égalité!

De l'inégalité de Cauchy-Schwarz, on déduit l'existence d'une norme canoniquement associée à un produit scalaire :

Proposition 2 (Norme canonique). Soit p un produit scalaire sur un espace vectoriel réel E. L'application

$$x \mapsto N(x) = \sqrt{p(x,x)}$$

est une norme sur E.

Définition 2. Soit E un espace vectoriel réel :

- 1. Si E est muni d'un produit scalaire p, on dit que (E, p) est un **espace préhilbertien** réel.
- 2. Si E est de dimension finie, on dit que (E, p) est un **espace euclidien**.

Proposition 3 (Théorème de Pythagore). Soit E un espace préhilbertien réel. **Deux** éléments $x, y \in E$ sont orthogonaux si et seulement si :

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

1.2 Cas complexe

Définition 3. On considère cette fois le corps des complexes :

Soit E un espace vectoriel sur le corps \mathbb{C} . On appelle produit scalaire hermitien sur E une forme :

$$p: E \times E \to \mathbb{C}, \ (x,y) \mapsto \langle x \mid y \rangle_{\mathbb{C}}$$

- 1. p est \mathbb{C} -linéaire en y (parfois en x) : $\langle x \mid \lambda y_1 + \alpha y_2 \rangle = \lambda \langle x \mid y_1 \rangle + \alpha \langle x \mid y_2 \rangle$;
- 2. p possède la symétrie hermitienne : $\langle x \mid y \rangle = \overline{\langle y \mid x \rangle}$;
- 3. p est définie positive : $\langle x \mid x \rangle > 0$ pour tout $x \neq 0$.

Attention:

Il résulte de cette définition que le produit scalaire hermitien est antilinaire (on dit aussi $\mathbb C$ - linéaire par rapport à la première variable.

Attention:

Sur $E = \mathbb{C}^n$ le produit scalaire hermitien "standard" est : $\sum_{j=1}^n \overline{z}_j t_j$ (ou parfois : $\sum_{j=1}^n z_j \overline{t}_j$)

Proposition 4 (Inégalité de Cauchy-Schwarz). Soit $\langle . | . \rangle_{\mathbb{C}}$ un produit scalaire hermitien sur un espace vectoriel complexe E. On a alors, pour tout couple (x, y) d'éléments de E,

$$|\langle x \mid y \rangle|^2 \le \langle x \mid x \rangle \times \langle y \mid y \rangle$$

Avec égalité si et seulement si (x, y) est lié.

Démonstration : idem que dans le cas réel. Toujours bien penser au cas d'égalité.

Proposition 5 (Norme induite). Soit E un espace vectoriel complexe et soit $\langle . | . \rangle_{\mathbb{C}}$ un produit scalaire hermitien sur E. L'application

$$x \mapsto ||x|| = \sqrt{\langle x \mid x \rangle_{\mathbb{C}}}$$

Démonstration : 1. Comme $\langle x \mid x \rangle_{\mathbb{C}} = 0$ entraı̂ne x = 0, on a ||x|| = 0 si et seulement si x = 0;

- 2. Comme $\langle x \mid x \rangle_{\mathbb{C}} = |\lambda|^2 \langle x \mid x \rangle_{\mathbb{C}}$, on a $||\lambda x|| = |\lambda| ||x||$;
- 3. Enfin on a $\|x+y\|^2 = \langle x+y \mid x+y \rangle_{\mathbb{C}} = \langle x \mid x \rangle_{\mathbb{C}} + \langle y \mid y \rangle_{\mathbb{C}} + \langle x \mid y \rangle_{\mathbb{C}} \langle y \mid x \rangle_{\mathbb{C}} = \|x\|^2 + \|y\|^2 + \langle x \mid y \rangle_{\mathbb{C}} \langle y \mid x \rangle_{\mathbb{C}} = \|x\|^2 + \|y\|^2 + \langle x \mid y \rangle_{\mathbb{C}} + \langle x \mid y \rangle_{\mathbb{C}} = \|x\|^2 + \|y\|^2 + 2Re(\langle x \mid y \rangle_{\mathbb{C}}),$ on a $|Re(\langle x \mid y \rangle_{\mathbb{C}})| \leq \langle x \mid x \rangle_{\mathbb{C}}$, d'où, par Cauchy-Schwarz on a $\|x+y\|^2 \leq \|x\|^2 + \|y\|^2 + 2\|x\|\|y\| \leq \|x\|^2 + \|y\|^2.$

1.3 Matrice et produit scalaire

Définition 4. Donnons quelques définitions de matrice :

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ on définie sa **transposée** : $(A^t) \in \mathcal{M}_n(\mathbb{R})$ par $(A^t)_{ij} = A_{ij}$, pour tous $i, j \in \{1, ..., n\}$.
- 2. Soit $A \in \mathcal{M}(\mathbb{C})$ on définie son **adjointe** $A^* \in \mathcal{M}_n(\mathbb{C})$ par $A_{i,j}^* = \overline{A_{i,j}}$ pour tous $i, j \in \{1, ..., n\}$.
- 3. Soit $A \in \mathcal{M}_n(\mathbb{R})$, on dit que A est **symétrique** si $A = A^t$ (ou encore $A = A^*$).
- 4. Soit $A \in \mathcal{M}_n(\mathbb{K})$, on dit que A est **orthogonale** (ou unitaire) si $A^{-1} = A^*$.
- 5. Soit $A \in \mathcal{M}_n(\mathbb{K})$, on dit que A est **normale** si $AA^* = A^*A$.
- 6. Soit $A \in \mathcal{M}_n(\mathbb{C})$, on dit que A est auto-adjointe ou **hermitienne** si $A = A^*$.
- 7. Soit $A \in \mathcal{M}_n(\mathbb{R})$, on dit que A est **définie positive** si $x^t A x > 0$, $\forall x \in \mathbb{R}^n$ et $x \neq 0$.
- 8. Soit $A \in \mathcal{M}_n(\mathbb{R})$, on dit que A est **positive** si $x^t A x \geq 0$, $\forall x \in \mathbb{R}^n$.
- 9. Soit $A \in \mathcal{M}_n(\mathbb{C})$, on dit que A est **définie positive** si $\overline{x}^t Ax > 0$, $\forall x \in \mathbb{C}^n$ et $x \neq 0$.
- 10. Soit $A \in \mathcal{M}_n(\mathbb{C})$, on dit que A est **positive** si $\overline{x}^t Ax \geq 0$, $\forall x \in \mathbb{C}^n$.

Proposition 6 (Caractérisation de la transposée par le produit scalaire réel). Soit $\langle .|. \rangle$ le produit scalaire euclidien sur \mathbb{R}^n . Alors on a :

$$\langle Au|v\rangle = \langle u|A^tv\rangle, \ \forall u,v \in \mathbb{R}^n.$$

 A^t est unique.

Proposition 7 (Caractérisation de l'adjointe par le produit scalaire hermitien (\mathbb{C})). Soit $\langle .|.\rangle_{\mathbb{C}}$ le produit scalaire hermitien canonique sur \mathbb{C}^n . Alors on a :

$$\langle Au|v\rangle_{\mathbb{C}} = \langle u|A^*v\rangle_{\mathbb{C}}, \ \forall u,v \in \mathbb{C}^n.$$

 A^* est unique.

Proposition 8 (Cas réel). Soit $A \in \mathcal{M}_n(\mathbb{R})$. Alors A est symétrique si et seulement si

$$\langle Au|v\rangle = \langle u|Av\rangle, \ \forall u,v \in \mathbb{R}^n.$$

Proposition 9 (Cas complexe). Soit $A \in \mathcal{M}_n(\mathbb{C})$. Alors A est **hermitienne** si et seulement si :

$$\langle Au|v\rangle_{\mathbb{C}} = \langle u|Av\rangle_{\mathbb{C}}, \ \forall u,v\in\mathbb{C}^n.$$

2 Réduction des matrices

2.1 Théorie spéctrale des matrices

On suppose ici que les matrices sont carrées et qu'elles vivent dans \mathbb{C} ou \mathbb{R} .

Définition 5. Quelques définitions à savoir :

- 1. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Le polynôme caractéristique de A est défini sur \mathbb{C} par $P_A(\lambda) = det(A \lambda I)$, c'est un polynôme de degré égal à n, il admet donc n racines dans \mathbb{C} , les racines sont appelé **valeurs propres** de A. La multiplicité d'une valeur propre est sa multiplicité en tant que racine de $P_A(\lambda)$.
- 2. Soit λ une valeur propre de A. On appelle **sous-espace propre** associé à la valeur propre λ , et on note E_{λ} , le sous-espace vectoriel défini par $E_{\lambda} = Ker(A \lambda I_n)$.
- 3. Soit $A \in \mathcal{M}_n(\mathbb{C})$. On appelle **rayon spectral** de A, et on note $\rho(A)$, le maximum des modules des valeurs propres de $A : \rho(A) := \max_{\lambda \in Sp(A)} |\lambda|$

Exercice 1. Déterminer la nature des valeurs propres d'une matrice hermitienne

Proposition 10 (Cayly-Hamilton). Soit $P_A(\lambda) = det(A - \lambda I_n)$, le polynôme caractéristique de A. On a

$$P_A(A) = 0.$$

Proposition 11. Soit $A, B \in \mathcal{M}_n(\mathbb{C})$ deux matrices semblables (*i.e* qu'il existe une matrice $P \in \mathcal{M}_n(\mathbb{C})$ inversible telle que $A = PBP^{-1}$.

Alors les valeurs propres de A et de B sont les mêmes i.e:

$$Sp(A) = Sp(B).$$

Proposition 12 (Nature des valeurs propres d'une matrice hermitienne (i.e $A = A^*$)). Soit $A \in \mathcal{M}_n(\mathbb{R})$ symétrique ou bien $A \in \mathcal{M}_n(\mathbb{C})$ hermitienne. On a :

$$Sp(A) \subset \mathbb{R}$$
.

2.2 Trigonalisation des matrices

Il existe des classes de matrices particulièrement simples. Par exemple les matrices triangulaires supérieures i.e telles que $a_{i,j} = 0$ si i > j. Réduire une matrice c'est la transformer par un changement de base en une de ces formes particulières.

Définition 6. Une matrice A est dite triangulisable s'il existe une matrice inversible P et une matrice triangulaire T telle que

$$A = PTP^{-1}.$$

On dit que les matrices A et T sont **semblables**.

Proposition 13. Toute matrice $A \in \mathcal{M}_n(\mathbb{C})$ est triangulisable.

Démonstration : Par récurrence sur n.

Proposition 14 (Factorisation de Schur). Pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$ il existe une matrice unitaire U (i.e $U^{-1} = U^*$), telle que $U^{-1}AU$ soit triangulaire.