# CSC520 - Artificial Intelligence Lecture 11

Dr. Scott N. Gerard

North Carolina State University

Feb 13, 2025

# Agenda

- Knowledge-based agents
- Propositional logic

#### Assignment 1 Histogram

#### 520 Grades Histogram.png



# Assignment 1 Quantiles

#### 520 Grades Quantiles.png



# Knowledge-based Agent

- Knowledge-base is a set of sentences in a formal language
- Sentences represent some assertions about the world
- Agent can add sentences (using TELL) to its knowledge-base and query its knowledge-base (using ASK)
  - ▶ TELL: If there is a high chance of rain, carry an umbrella
  - ► TELL: If it is cloudy, there is a high chance of rain
  - ► TELL: It is cloudy
  - ASK: Should I carry an umbrella?
- Declarative approach for building an agent
  - ▶ TELL it what it needs to know
- In contrast, procedural approach encodes behaviors in code

# Knowledge-based Agent

```
function KB-AGENT(percept) return an action persistent: KB, a knowledge base, t, a time counter, initially 0 TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t) TELL(KB, MAKE-ACTION-SENTENCE(action, t)) t \leftarrow t+1 return action
```

#### Wumpus World

- Performance measure
  - ▶ Gold +1000, death -1000
  - ▶ -1 per step, -10 for arrow
- Environment
  - 4x4 grid of rooms
  - Squares adjacent to wumpus are smelly and adjacent to pit are breezy
  - Glitter if gold in the square
  - Agent dies if pit or wumpus
  - Shooting kills wumpus
- Actuators
  - Forward, turn left, turn right, grab, shoot, climb
- Sensors
  - Stench, breeze, glitter, bump, scream



# Wumpus Environment

- Fully observable? No, partially observable due to local perception
- Deterministic? Yes, since outcomes are specified
- Episodic? No, sequential at the level of actions
- Static? Yes, wumpus and pits don't move
- Discrete? Yes
- Single-agent? Yes, wumpus is part of the env

# **Exploring the Wumpus World**

| 1,4            | 2,4       | 3,4 | 4,4 | A = Agent B = Breeze G = Glitter, Gold OK = Safe square | 1,4            | 2,4              | 3,4    | 4,4 |
|----------------|-----------|-----|-----|---------------------------------------------------------|----------------|------------------|--------|-----|
| 1,3            | 2,3       | 3,3 | 4,3 | P = Pit S = Stench V = Visited W = Wumpus               | 1,3            | 2,3              | 3,3    | 4,3 |
| 1,2            | 2,2       | 3,2 | 4,2 |                                                         | 1,2<br>OK      | 2,2<br>P?        | 3,2    | 4,2 |
| 1,1<br>A<br>OK | 2,1<br>OK | 3,1 | 4,1 |                                                         | 1,1<br>V<br>OK | 2,1 A<br>B<br>OK | 3,1 P? | 4,1 |

- KB initially contains the rules of the environment
- $\bullet$  [1, 1]: Percept [none, none, none, none, none], [1, 2] and [2, 1] are safe
- [2,1]: Percept [none, breeze, none, none, none], pit in [2,2] or [3,1]

# Exploring the Wumpus World

| 1,4             | 2,4              | 3,4    | 4,4 |
|-----------------|------------------|--------|-----|
| 1,3 W!          | 2,3              | 3,3    | 4,3 |
| 1,2A<br>S<br>OK | 2,2<br>OK        | 3,2    | 4,2 |
| 1,1<br>V<br>OK  | 2,1 B<br>V<br>OK | 3,1 P! | 4,1 |

| Α  | = Agent         |
|----|-----------------|
| В  | = Breeze        |
| G  | = Glitter, Gold |
| ок | = Safe square   |
| P  | = Pit           |
| s  | = Stench        |
| v  | = Visited       |
| w  | = Wumpus        |

|                  | 2,4<br>P?           | 3,4               | 4,4 |
|------------------|---------------------|-------------------|-----|
| 1,3 W!           | 2,3 A<br>S G<br>B   | 3,3 <sub>P?</sub> | 4,3 |
| 1,2 S<br>V<br>OK | 2,2<br>V<br>OK      | 3,2               | 4,2 |
| 1,1<br>V<br>OK   | 2,1<br>B<br>V<br>OK | 3,1 P!            | 4,1 |

- [1,2]: Percept [stench, none, none, none, none], wumpus can be in [1,1], [1,3] or [2,2]
- ullet Wumpus not in [1,1]
- Wumpus not in [2, 2] since no stench in [2, 1]
- Wumpus is in [1, 3]
- [2,2] is safe since no breeze in [1,2]
- pit in [3, 1]; move to safe cell [2, 2]

# **Exploring the Wumpus World**

| 1,4              | 2,4              | 3,4               | 4,4 | B<br>G<br>OK     |
|------------------|------------------|-------------------|-----|------------------|
| 1,3 w!           | 2,3              | 3,3               | 4,3 | P<br>S<br>V<br>W |
| 1,2 A<br>S<br>OK | 2,2<br>OK        | 3,2               | 4,2 |                  |
| 1,1<br>V<br>OK   | 2,1 B<br>V<br>OK | <sup>3,1</sup> P! | 4,1 |                  |

|                     | 2,4<br>P?         | 3,4               | 4,4 |
|---------------------|-------------------|-------------------|-----|
|                     | 2,3 A<br>S G<br>B | 3,3 <sub>P?</sub> | 4,3 |
| 1,2<br>S<br>V<br>OK | 2,2<br>V<br>OK    | 3,2               | 4,2 |
| 1,1<br>V            | 2,1<br>B<br>V     | 3,1<br>P!         | 4,1 |

OK

OK

• [2, 2]: Percept [none, none, none, none, none], [2, 3] and [3, 2] are safe; agent moves to [2, 3]

= Agent = Breeze = Glitter, Gold = Safe square = Pit = Stench = Visited = Wumpus

- [2, 3]: Percept [stench, breeze, glitter, none, none]
- Pick up gold!
- Pit in [3,3] or [2,4]

#### Logic in General

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the meaning of sentences
  - ▶ Define truth of a sentence in a "possible world" (model)
- E.g., consider the language of arithmetic
- Syntax
  - $x + 2 \ge y$  is a sentence
  - > x + y > is not a sentence
- Semantics
  - $x+2 \ge y$  is true iff x+2 is no less than y
  - $x + 2 \ge y$  is true in a world where x = 7, y = 1
  - $\triangleright$   $x + 2 \ge y$  is *false* in a *world* where x = 0, y = 6

#### Entailment

- Entailment means that one thing follows from another
- $KB \models \alpha$
- Knowledge base KB entails a sentence  $\alpha$  if and only if  $\alpha$  is true in all worlds where KB is true
- E.g., x + y = 4 entails x = 4 y



Dr. Gerard (NCSU)

#### Entailment



If KB is true in the real world, then any sentence  $\alpha$  derived from KB by a sound inference procedure is also true in the real world

#### Models

- Model is a formally structured world with respect to which truth can be evaluated
- m is a model of a sentence  $\alpha$  if  $\alpha$  is true in m
  - ▶ Suppose  $\alpha$  is the sentence  $x + 2 \ge y$
  - ▶ Then, one model  $m_1$  of  $\alpha$  is a world where x = 7, y = 1
  - Another model  $m_2$  of  $\alpha$  is a world where x=4, y=2
- $M(\alpha)$  is a set of all models of  $\alpha$ 
  - ▶ For the sentence  $x + 2 \ge y$ :  $M(\alpha) = \{m_1, m_2, \ldots\}$
- Then  $KB \models \alpha$  iff  $M(KB) \subseteq M(\alpha)$



◆ロト ◆個ト ◆園ト ◆園ト ■ 釣り○

# Entailment in Wumpus World

- Consider the situation after detecting nothing in [1, 1] followed by detecting breeze in [2, 1]
- Possible models for ?s assuming only pits
- 3 Boolean variables, 2<sup>3</sup>=8 possible models







KB = wumpus world rules + observations

Dr. Gerard (NCSU) Lecture 11 Feb 13, 2025 18 / 28



KB = wumpus world rules + observations  $\alpha_1 = [1, 2]$  is safe;  $KB \models \alpha_1$  proved by model checking.

4□▶ 4□▶ 4□▶ 4□▶ □ 900



 $\mathit{KB} = \mathsf{wumpus} \; \mathsf{world} \; \mathsf{rules} + \mathsf{observations}$   $\alpha_1 = [1,2] \; \mathsf{is} \; \mathsf{safe}; \; \mathit{KB} \models \alpha_1 \; \mathsf{proved} \; \mathsf{by} \; \mathsf{model} \; \mathsf{checking}. \; \mathit{M}(\mathit{KB}) \subset \mathit{M}(\alpha_1)$ 

Dr. Gerard (NCSU) Lecture 11 Feb 13, 2025 19 / 28



 $\mathit{KB} = \text{wumpus world rules} + \text{observations}$   $\alpha_2 = [2,2]$  is safe; Does  $\mathit{KB}$  entail  $\alpha_2$ ?



KB = wumpus world rules + observations  $\alpha_2 = [2,2]$  is safe; Does KB entail  $\alpha_2$ ?  $M(KB) \not\subset M(\alpha_2)$ 

◆□▶◆□▶◆□▶◆□▶ ■ 900

#### Inference Procedures

- $KB \vdash_i \alpha$ : Sentence  $\alpha$  can be derived from KB by procedure i
- Soundness: Procedure *i* is sound if it derives only entailed sentences
  - ▶ When  $KB \vdash_i \alpha$  it is also true that  $KB \models \alpha$
- Completeness: Procedure i is complete if it can derive any sentence that is entailed
  - ▶ Whenever  $KB \models \alpha$  it is also true that  $KB \vdash_i \alpha$

## Propositional Logic

- Propositional logic is the simplest logic
- Proposition symbols e.g. P, Q, etc. are sentences
- Negation: If S is a sentence,  $\neg S$  is a sentence
- Conjunction: If  $S_1$  and  $S_2$  are sentences,  $S_1 \wedge S_2$  is a sentence
- Disjunction: If  $S_1$  and  $S_2$  are sentences,  $S_1 \vee S_2$  is a sentence
- ullet Implication: If  $S_1$  and  $S_2$  are sentences,  $S_1 \Rightarrow S_2$  is a sentence
- Biconditional: If  $S_1$  and  $S_2$  are sentences,  $S_1 \Leftrightarrow S_2$  is a sentence

#### Propositional Logic Semantics

- Model specifies true or false value for each proposition
  - ▶ Consider three propositions:  $P_{1,2}$ ,  $P_{2,2}$ ,  $P_{3,1}$
  - ▶ A possible model is:  $m_1 = \{P_{1,2} = false, P_{2,2} = false, P_{3,1} = true\}$
- Rules for evaluating truth with respect to a model m
  - $ightharpoonup \neg S$  is true iff S is false
  - $S_1 \wedge S_2$  is true iff  $S_1$  is true and  $S_2$  is true
  - ▶  $S_1 \lor S_2$  is true iff  $S_1$  is true or  $S_2$  is true
  - $S_1 \Rightarrow S_2$  is true iff  $S_1$  is false or  $S_2$  is true
  - ▶  $S_1 \Leftrightarrow S_2$  is true iff  $S_1 \Rightarrow S_2$  is true and  $S_2 \Rightarrow S_1$  is true
- Simple recursive process evaluates an arbitrary sentence
  - $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1})$

#### Truth Tables for Connectives

| P (                 | $Q$ $\neg P$                                   | $P \wedge Q$                    | $P \lor Q$                    | $P \Rightarrow Q$             | $P \Leftrightarrow Q$          |
|---------------------|------------------------------------------------|---------------------------------|-------------------------------|-------------------------------|--------------------------------|
| false tr<br>true fa | dse true<br>rue true<br>dse false<br>rue false | false<br>false<br>false<br>true | false<br>true<br>true<br>true | true<br>true<br>false<br>true | true<br>false<br>false<br>true |

# Wumpus World Sentences

- Let  $P_{i,j}$  be true if there is a pit in [i,j]
- Let  $B_{i,j}$  be true if there is breeze in [i,j]
- There is no pit in [1,1]  $R_1 : \neg P_{1,1}$
- Pits cause breeze in adjacent squares

$$R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$R_3:B_{2,1}\Leftrightarrow (P_{1,1}\vee P_{2,2}\vee P_{3,1})$$

ullet There is no breeze in [1,1]

$$R_4: \neg B_{1,1}$$

• There is breeze in [2, 1]

 $R_5: B_{2,1}$ 



#### Model Checking Wumpus World Sentences

| $B_{1,1}$ | $B_{2,1}$ | $P_{1,1}$ | $P_{1,2}$ | $P_{2,1}$ | $P_{2,2}$ | $P_{3,1}$ | $R_1$ | $R_2$ | $R_3$ | $R_4$ | $R_5$ | KB                 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------|-------|-------|-------|-------|--------------------|
| false     | true  | true  | true  | true  | false | false              |
| false     | false     | false     | false     | false     | false     | true      | true  | true  | false | true  | false | false              |
| :         | ;         | :         | :         | :         | :         | :         | :     | :     | :     | :     | :     | ;                  |
| false     | true      | false     | false     | false     | false     | false     | true  | true  | false | true  | true  | false              |
| false     | true      | false     | false     | false     | false     | true      | true  | true  | true  | true  | true  | $\underline{true}$ |
| false     | true      | false     | false     | false     | true      | false     | true  | true  | true  | true  | true  | $\underline{true}$ |
| false     | true      | false     | false     | false     | true      | true      | true  | true  | true  | true  | true  | $\underline{true}$ |
| false     | true      | false     | false     | true      | false     | false     | true  | false | false | true  | true  | false              |
| :         | :         | :         | :         | :         | :         | :         | :     | :     | :     | :     | :     | :                  |
| true      | false | true  | true  | false | true  | false              |

KΒ

• 
$$R_1 : \neg P_{1,1}$$

• 
$$R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

• 
$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

• 
$$R_4 : \neg B_{1,1}$$

$$\bullet$$
  $R_5: B_{2,1}$ 

• Does 
$$KB \models \alpha$$
 where  $\alpha = \neg P_{1,2}$ ?

• Does 
$$KB \models \alpha$$
 where  $\alpha = \neg P_{2,2}$ ?

## Inference by Enumeration

```
function TT-ENTAILS(KB, \alpha) true or false
   inputs: KB, a knowledge base, \alpha, a sentence
   symbols \leftarrow a list of proposition symbols in KB and \alpha
    return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
function TT-CHECK-ALL(KB, \alpha, symbols, model) true or false
   if EMPTY(symbols) then
        if PL-TRUE(KB, model) then return PL-TRUE(\alpha, model)
        else return true
   else
        P \leftarrow \text{FIRST}(symbols)
        rest \leftarrow REST(symbols)
        return TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = true\})
           and TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false\})
```

#### Class Exercise

| $B_{1,1}$      | $B_{2,1}$      | $P_{1,1}$     | $P_{1,2}$     | $P_{2,1}$      | $P_{2,2}$      | $P_{3,1}$    | $R_1$       | $R_2$       | $R_3$        | $R_4$       | $R_5$          | KB                                      |
|----------------|----------------|---------------|---------------|----------------|----------------|--------------|-------------|-------------|--------------|-------------|----------------|-----------------------------------------|
| false<br>false | false<br>false | false $false$ | false $false$ | false<br>false | false<br>false | false $true$ | true $true$ | true $true$ | true $false$ | true $true$ | false<br>false | false $false$                           |
| :              | :              | :             | ;             | :              | :              | :            | :           | :           | ;            | :           | :              | ;                                       |
| false          | true           | false         | false         | false          | false          | false        | true        | true        | false        | true        | true           | false                                   |
| false          | true           | false         | false         | false          | false          | true         | true        | true        | true         | true        | true           | $\frac{true}{true}$ $\frac{true}{true}$ |
| false          | true           | false         | false         | false          | true           | false        | true        | true        | true         | true        | true           |                                         |
| false          | true           | false         | false         | false          | true           | true         | true        | true        | true         | true        | true           |                                         |
| false :        | true           | false         | false         | true           | false          | false        | true        | false       | false        | true        | true           | false                                   |
|                | :              | :             | :             | :              | :              | :            | :           | :           | :            | :           | :              | :                                       |
| true           | true           | true          | true          | true           | true           | true         | false       | true        | true         | false       | true           | false                                   |

KΒ

•  $R_1 : \neg P_{1,1}$ 

•  $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ 

 $\bullet \ R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$ 

•  $R_4 : \neg B_{1,1}$ 

• R<sub>5</sub>: B<sub>2.1</sub>

• Does  $KB \models \alpha$  where  $\alpha = \neg P_{3,1}$ ? Explain your answer.