第 5 章 素性检测

在数论及其应用领域,素性检测占据着举足轻重的地位。不仅是数学本身研究的基础,更在加密等安全技术中扮演着核心角色,如 RSA 算法的安全性高度依赖于大素数的生成。因此,高效且准确的素性检测方法对于保障信息安全具有重要意义。

前书中我们已介绍试除法等初等的素性检测算法,本章我们将在此基础上进一步介绍著名的 Fermat 素性检测、Solovay-Stassen 素性检测、Miller-Rabin素性检测和 Agrawal-Kayal-Saxena 素性检测.

由此我们可以看到,素性检测不仅是数学研究的重要课题,更是现代信息安全体系的基础。从 Fermat 素性检测到 Agrawal-Kayal-Saxena 素性检测,每一种方法的提出都推动了素性检测技术的发展,为实际应用提供了更加高效、准确的解决方案。

本章的知识要点:

图 5-1 素性检测知识点图谱

5.1 Fermat (费马)素性检测

根据 Fermat 小定理,我们知道: 如果 n 是一个素数,则对任意整数 b,(b, n) =1,有 $b^{n-1} \equiv 1 \pmod{n}$.

由此,我们得到: 如果有一个整数 b, (b, n) =1 使得 $b^{n-1} \not\equiv 1 \pmod{n}$, 则 n 是一个合数.

例 5.1.1 因为 $2^{14} \equiv (2^4)^3 \cdot 2^2 \equiv 1^3 \cdot 2^2 \equiv 4 \not\equiv 1 \pmod{15}$,所以 15 是一个合数. 上述说法的否命题不能成立. 事实上,我们有

例 5.1.2 $4^{14} \equiv (4^2)^7 \equiv 1 \pmod{15}$.

5.1.1 伪素数

定义 5.1.1 设 n 是一个奇合数,如果整数 b , (b, n) = 1 使同余方程 $b^{n-1} \equiv 1 \pmod{n}$ 成立,则 n 叫做对于基 b 的**伪素数**.

例 5.1.3 整数 15 是对于基 *b*=4 的伪素数.

例 5.1.4 整数 $341 = 11 \cdot 31$, $561 = 3 \cdot 11 \cdot 17$, $645 = 3 \cdot 5 \cdot 43$ 都是对于基 b=2 的伪素数, 因为 $2^{340} \equiv 1 \pmod{341}$, $2^{560} \equiv 1 \pmod{561}$, $2^{644} \equiv 1 \pmod{645}$.

接下来讨论伪素数的存在性.

引理 5.1.1 设 d, n 都是正整数, 如果 d 能整除 n, 则 2^{d} -1 能整除 2^{n} -1.

证 因为 $d \mid n$, 所以存在一个整数 q 使得n = dq, 因此, 我们有

$$2^{n}-1=(2^{d})^{q}-1=(2^{d}-1)((2^{d})^{q-1}+(2^{d})^{q-2}+\cdots+2^{d}+1).$$

 $\ \, \text{th}\, 2^{d}-1\,|\,2^{n}-1\,.$

定理 5.1.1 存在无穷多个对于基 2 的伪素数.

证 (*i*) 如果 *n* 是对于基 2 的伪素数,则 $m = 2^n - 1$ 也是对于基 2 的伪素数.

事实上,因为n是对于基2的伪素数,所以n是奇合数,并且 $2^{n-1} \equiv 1 \pmod{n}$.

由于 n 是奇合数, 所以我们有因数分解式 n = dq, 1 < d < n, 1 < q < n,

根据引理 5.1.1, 我们得到 $2^d - 1 \mid 2^n - 1$, 因此 $m = 2^n - 1$ 是合数.

现在验证: $2^{m-1} \equiv 1 \pmod{m}$.

因为 $2^{n-1} \equiv 1 \pmod{n}$,所以我们可以将 $m-1=2(2^{n-1}-1)$ 写成m-1=kn,

根据引理 5.1.1, 我们得到 $2^n-1|2^{m-1}-1$, 即 $m|2^{m-1}-1$. 因此, 同余方程

$$2^{m-1} \equiv 1 \pmod{m}$$

成立. 故 $m=2^n-1$ 是对于基 2 的伪素数.

(ii) 取 n_0 为对于基 2 的一个伪素数,例如 n_0 =341 是一个对于基 2 的伪素数,再令 $n_1=2^{n_0}-1$, $n_2=2^{n_1}-1$, $n_3=2^{n_2}-1$,…

根据结论(i)这些整数都是对于基 2 的伪素数.

定理 5.1.2 设 n 是一个奇合数,则

- (i) n 是对于基 b, ((b, n) =1) 的伪素数当且仅当 b 模 n 的指数整除 n-1.
- (*ii*) 如果 n 是对于基 b_1 ((b_1 , n) =1) 和基 b_2 ((b_2 , n) =1) 的伪素数,则 n 是对于基 b_1b_2 的伪素数.
- (iii) 如果 n 是对于基 b, ((b, n) =1) 的伪素数,则 n 是对于基 b-1 的伪素数.
- (iv) 如果有一个整数 b,(b, n) =1,使得同余方程 $b^{n-1} \equiv 1 \pmod{n}$ 不成立,则模 n 的简化剩余系中至少有一半的数使得同余方程 $b^{n-1} \equiv 1 \pmod{n}$ 不成立.
- 证 (*i*) 如果 n 是对于基 b 的伪素数,则我们有 $b^{n-1} \equiv 1 \pmod{n}$.

根据定理 4.1.1,我们有 $ord_n(b) | n-1$.

反过来,如果 $ord_n(b)|n-1$,则存在整数q使得 $n-1=ord_n(b)q$.

因此,我们有 $b^{n-1} \equiv (b^{ord_n(b)})^q \equiv 1 \pmod{n}$.

(ii) 因为n是对于基 b_1 和基 b_2 的伪素数,所以我们有

$$b_1^{n-1} \equiv 1, b_2^{n-1} \equiv 1 \pmod{n}$$
.

从而, $(b_1b_2)^{n-1} \equiv b_1^{n-1}b_2^{n-1} \equiv 1 \pmod{n}$.

故 n 是对于基 b_1b_2 的伪素数.

(iii) 因为 n 是对于基 b 的伪素数,所以我们有 $b^{n-1} \equiv 1 \pmod{n}$.

从而,
$$(b^{-1})^{n-1} \equiv (b^{n-1})^{-1} \equiv 1 \pmod{n}$$
.

故 n 是对于基 b^{-1} 的伪素数.

(iv) 设 $b_1, \dots, b_s, b_{s+1}, \dots, b_{\varphi(n)}$ 是模的简化剩余系,其中前 s 个数使得同余方程 $b^{n-1} \equiv 1 \pmod{n}$ 成立,后 $\varphi(n) - s$ 个数使得同余方程 $b^{n-1} \equiv 1 \pmod{n}$ 不成立.

根据假设条件,存在一个整数 b,(b,n)=1,使得同余方程 $b^{n-1}\equiv 1 \pmod n$ 不成立. 再根据结论 (ii) 和 (iii),我们有 s 个模 n 不同简化剩余 bb_1, \cdots, bb_s 使得同余方程 $b^{n-1}\equiv 1 \pmod n$ 不成立.

因此, $s \le \varphi(n) - s$,或者 $\varphi(n) - s \ge \frac{\varphi(n)}{2}$.这就是说,模n 的简化剩余系中至少有一半的数使得同余方程 $b^{n-1} \equiv 1 \pmod{n}$ 不成立.

注: 定理 5.1.2 (iv) 告诉我们,对于大奇数,如果有一个整数 b, (b, n) =1 使得同余方程 $b^{n-1} \equiv 1 \pmod{n}$ 不成立,则模 n 的简化剩余系中至少有一半的数使得同余方程 $b^{n-1} \equiv 1 \pmod{n}$ 不成立。这就是说,对于随机选取的整数 b, (b, n) =1,有 50%以上的机

会来判断出 n 是合数,或者说,满足同余方程 $b^{n-1} \equiv 1 \pmod{n}$ 的 n 是合数的可能性小于 50%.

5.1.2 Fermat 素性检测方法

现在, 我们给出判断一个大奇整数 n 为素数的方法.

随机选取整数 b_1 , $0 < b_1 < n$, 利用广义欧几里得除法计算 b_1 和 n 的最大公因数 $d_1 = (b_1, n)$, 如果 $d_1 > 1$, 则 n 不是素数. 如果 $d_1 = 1$, 则计算 $b_1^{n-1} \pmod{n}$,看看同余方程 $b_1^{n-1} \equiv 1 \pmod{n}$ 是否成立.

如果 $b_1^{n-1} \equiv 1 \pmod{n}$ 不成立,则 n 不是素数;

如果 $b_1^{n-1} \equiv 1 \pmod{n}$ 成立,则 n 是合数的可能性小于 1/2 或者说 n 是素数的可能性大于 1-(1/2).

重复上面的步骤.

再随机选取整数 b_2 , $0 < b_2 < n$, 利用广义欧几里得除法计算 b_2 和 n 的最大公因数 $d_2 = (b_2, n)$, 如果 $d_2 > 1$, 则 n 不是素数. 如果 $d_2 = 1$, 则计算 $b_2^{n-1} \pmod{n}$, 看看同余方程 $b_2^{n-1} \equiv 1 \pmod{n}$ 是否成立. 如果不成立,则 n 不是素数;如果成立,则 n 是合数的可能性小于 $1/2^2$ 或者说 n 是素数的可能性大于 $1-(1/2^2)$.

继续重复上述步骤, ..., 直至第 t 步.

随机选取整数 b_t , $0 < b_t < n$, 利用广义欧几里得除法计算 b_t 和 n 的最大公因数 $d_t = (b_t, n)$, 如果 $d_t > 1$, 则 n 不是素数. 如果 $d_t = 1$, 则计算 $b_t^{n-1} \pmod{n}$, 看看同余方程 $b_t^{n-1} \equiv 1 \pmod{n}$ 是否成立. 如果不成立,则 n 不是素数,如果成立,则 n 是合数的可能性小于 $1/2^t$ 或者说 n 是素数的可能性大于 $1-(1/2^t)$.

上述过程也可以简单归纳为:

素性检测 1 (Fermat 素性检测):

给定奇数n ≥ 3和安全参数t

- 1. 随机选取整数 $b,2 \le b \le n-2$;
- 2. 计算 $r = b^{n-1} \pmod{n}$;
- 3. 如果 $r \neq 1$,则n是合数:
- 4. 重复上述步骤 t 次

5.1.3 Carmichael 数

本节讨论使得 Fermat 素性检测算法无效的整数.

定义 5.1.2 合数 n 为 Carmichael 数,如果对所有的正整数b,(b,n)=1都有同余方程 $b^{n-1} \equiv 1 \pmod{n}$ 成立.

例 5.1.5 整数 561 = 3·11·17 是一个 Carmichael 数.

证 如果(b,561)=1,则(b,3)=(b,11)=(b,17)=1,根据 Fermat 小定理,我们有 $b^2\equiv 1 \pmod{3}, b^{10}\equiv 1 \pmod{11}, b^{16}\equiv 1 \pmod{17}.$

从而

$$b^{560} \equiv (b^2)^{280} \equiv 1 \pmod{3},$$

 $b^{560} \equiv (b^{10})^{56} \equiv 1 \pmod{11},$
 $b^{560} \equiv (b^{16})^{35} \equiv 1 \pmod{17}$

因此,我们有

$$b^{560} \equiv 1 \pmod{561}$$
.

定理 5.1.3 设 *n* 是一个奇合数.

- (i) 如果 n 被一个大于 1 平方数整除,则 n 不是 Carmichael 数.
- (ii) 如果 $n = p_1 \cdots p_k$ 是一个无平方数,则 n 是 Carmichael 数的充要条件是

$$p_i - 1 \mid n - 1, 1 \le i \le k$$
.

定理 5.1.4 每个 Carmichael 数是至少三个不同素数的乘积.

- 注: 1. 存在无穷多个 Carmichael 数.
 - 2. 当 n 充分大时,区间[2, n]内的 Carmichael 数的个数大于等于 $n^{2/7}$.

5.2 Solovay-Stassen (S-S)素性检测

设 n 是奇素数,根据欧拉判别法则(定理 3.3.3),我们有同余方程

$$b^{(n-1)/2} \equiv (\frac{b}{n}) (\operatorname{mod} n),$$

对任意整数 b 成立.

因此,如果存在整数b,(b,n)=1,使得

$$b^{(n-1)/2} \neq (\frac{b}{n}) \pmod{n},$$

则 n 不是一个素数.

例 5.2.1 设 *n*=341, *b*=2, 我们分别计算得到:

$$2^{170} \equiv 1 \pmod{341}$$

以及

$$(\frac{2}{341}) = (-1)^{(341^2 - 1)/8} = -1$$

因为

$$2^{170} \not\equiv (\frac{2}{341}) \pmod{341}$$

所以341不是一个素数.

5.2.1 Euler 伪素数

定义 5.2.1 设 n 是一个正奇合数, 设整数 b 与 n 互素, 如果整数 n 和 b 满足条件:

$$b^{(n-1)/2} \equiv \left(\frac{b}{n}\right) \pmod{n},$$

则 n 叫做对于基 b 的 Euler **伪素数**.

例 5.2.2 设 *n*=561, *b*=2,则 561 是一个对于基 2 的 Euler 伪素数.

解: 我们分别计算得到: $2^{280} \equiv 1 \pmod{561}$ 以及 $\left(\frac{2}{561}\right) = (-1)^{(561^2-1)/8} = 1$.

因为
$$2^{280} \equiv \left(\frac{2}{561}\right) \pmod{561}$$
,

所以 561 是一个对于基 2 的 Euler 伪素数.

定理 5.2.1 如果 n 是对于基 b 的 Euler 伪素数,则 n 是对于基 b 的伪素数.

证 设n是对于基b的 Euler 伪素数,则我们有

$$b^{(n-1)/2} \equiv (\frac{b}{n}) \pmod{n}.$$

上式两端平方,并注意到 $(\frac{b}{n}) = \pm 1 \pmod{n}$,我们有

$$b^{n-1} \equiv (b^{(n-1)/2})^2 \equiv (\frac{b}{n})^2 \equiv 1 \pmod{n}$$
.

因此, n 是对于基 b 的伪素数.

定理 5.2.1 的逆不成立,即不是每个伪素数都是 Euler 伪素数.

例 5.2.3 整数 341 是对于基 2 的伪素数, 但不是对于基 2 的 Euler 伪素数.

5.2.2 S-S 素性检测方法

现在,给出判断大奇整数 n 为素数的 Solovay-Stassen (S-S)素性检测方法.

素性检测 2 (S-S 素性检测):

给定奇整数 n≥3和安全参数 t.

- 1. 随机选取整数 $b,2 \le b \le n-2$;
- 2. 计算 $r = b^{(n-1)/2} \pmod{n}$;
- 3. 如果r ≠ 1以及r ≠ n − 1则 n 是合数;
- 4. 计算 Jacobi 符号 $s = (\frac{b}{n})$;
- 5. 如果 $r \neq s$,则n是合数;
- 6. 上述过程重复 t 次.

5.3 Miller-Rabin (M-R)素性检测

5.3.1 强伪素数

设 n 是正奇整数, 并且有 $n-1=2^{s}t$, 则我们有如下因数分解式:

$$b^{n-1} - 1 = (b^{2^{s-1}t} + 1)(b^{2^{s-2}t} + 1)\cdots(b^t + 1)(b^t - 1)$$

因此,如果有同余方程

$$b^{n-1} \equiv 1 \pmod{n},$$

则如下同余方程至少有一个成立:

$$b^{t} \equiv 1 \pmod{n}$$

$$b^{t} \equiv -1 \pmod{n}$$

$$b^{2t} \equiv -1 \pmod{n}$$

$$\vdots$$

$$b^{2^{s-1}t} \equiv -1 \pmod{n}$$

定义 5.3.1 设 n 是一个奇合数,且有表示式 $n-1=2^{s}t$,其中 t 为奇数. 设整数 b 与

n 互素. 如果整数 n 和 b 满足条件 $b' \equiv 1 \pmod{n}$,或者存在一个整数 $r, 0 \le r < s$ 使得 $b^{2^r t} \equiv -1 \pmod{n}$,则 n 叫做对于基 b 的**强伪素数**.

例 5.3.1 整数 n = 2047 = 23.89 是对于基 b=2 的强伪素数.

解 因为
$$2^{2046/2} \equiv (2^{11})^{93} \equiv (2048)^{93} \equiv 1 \pmod{2047}$$
 所以整数 2047 是对于基 $b=2$ 的强伪素数.

定理 5.3.1 存在无穷多个对于基 2 的强伪素数.

证 如果 n 是对于基 2 的伪素数,则 $m=2^n-1$ 也是对于基 2 的强伪素数.

事实上,因为n是对于基2的伪素数,所以n是奇合数,并且 $2^{n-1} \equiv 1 \pmod{n}$.

由此得到 $2^{n-1}-1=nk$, 对某整数 k, 进一步, k 是奇数. 我们有

$$m-1=2^n-2=2(2^{n-1}-1)=2^n nk$$
.

这是 m-1 分解为 2 的幂和奇数乘积的表达式.

注意到 $2^n = (2^n - 1) + 1 = m + 1 \equiv 1 \pmod{m}$, 我们有

$$2^{(m-1)/2} \equiv 2^{nk} \equiv (2^n)^k \equiv 1 \pmod{m}$$
.

此外, 我们知道: n 是合数时, m 也是合数. 故 m 是对于 2 的强伪素数.

因为对于基 2 的伪素数 n 产生一个对于基 2 的强伪素数 $2^n - 1$,

而且存在无穷多个对于基 2 的伪素数,

所以存在无穷多个对于基 2 的强伪素数.

定理 5.3.2 如果 n 是对于基 b 的强伪素数, n 是对于基 b 的 Euler 伪素数.

定理 5.3.3 设 n 是一个奇合数,则 n 是对于基b, $1 \le b \le n-1$ 的强伪素数的可能性至多为 25%.

5.3.2 M-R 素性检测方法

现在,给出判断大奇整数 n 为素数的 Miller-Rabin (M-R) 素性检测方法.

素性检测 3 (M-R 素性检测):

给定奇整数 $n \ge 3$ 和安全参数k.

写 $n-1=2^{s}t$, 其中t为奇整数.

1. 随机选取整数b, $2 \le b \le n-2$;

- 2. 计算 i = 0, $r \equiv b^t \pmod{n}$;
- 3. 如果 r=1 或 r=n-1, 则通过检测, n 可能为素数; 否则, 有 $r \neq 1$ 以及 $r \neq n-1$, 我们计算 $i=i+1, r=r^2 \pmod n$;
- 4. 重复执行步骤 (3), 直到 i = s-1;
- 5. 如果 r = n-1, 则通过检测, n 可能为素数; 否则, $r \neq n-1$, n 为合数;
- 6. 上述过程重复 k 次.

注: 通过 M-R 素性检测的整数 n, 其是合数的可能性小于 $\frac{1}{4^k}$, 或者说, 其是素数的可能性大于 $1-\frac{1}{4^k}$.

从上述结论可知,随着 k 的选取和增加,通过 M-R 素性检测的整数 n 几乎可以确定是一个素数,但 M-R 素性检测仍是一个概率性算法.如何使其变成确定性的算法?

以 ψ_m 表示对于前 m 个最小素数 2, 3, … , p_m 为基的最小强伪素数,那么对于任意的整数 $n<\psi_m$,只需要分别以前 m 个最小素数为基对 n 进行 M-R 素性检测,就可以确定性得出 n 是否是素数.

Pomerance 和 Jaeschke 等人给出了 ψ_m , $1 \le m \le 8$ 的具体值和 ψ_m , $9 \le m \le 11$ 的对应上界. Zhang 进一步降低 ψ_m , $9 \le m \le 11$ 的上界并猜想这些新上界就是其确值,还给出了 ψ_m , $12 \le m \le 20$ 的猜想. 后来,2014 年,Jiang 和 Deng 给出了 ψ_m , $9 \le m \le 11$ 猜想的证明,2017 年 Sorenson 和 Webster 给出了 ψ_m , $12 \le m \le 13$ 猜想的证明.

关于 ψ_m , $1 \le m \le 13$ 的确定值.

 $\psi_1 = 2047 = 23.89;$

 ψ_2 =1373653=829·1657;

 ψ_3 =25326001=2251·11251;

 ψ_4 =3215031751=151·751·28351;

 ψ_5 =2152302898747=6763·10627·29947;

 ψ_6 =3474749660383=1303·16927·157543;

 $\psi_7 = \psi_8 = 341550071728321 = 10670053 \cdot 32010157;$

 $\psi_9 = \psi_{10} = \psi_{11} = 3825123056546413051 = 149491 \cdot 747451 \cdot 34233211;$

 ψ_{12} =318665857834031151167461=399165290221•798330580441;

 ψ_{13} =3317044064679887385961981=1287836182261·2575672364521.

关于 ψ_m , $14 \le m \le 20$ 的猜想.

 ψ_{14} =6003094289670105800312596501=54786377365501·109572754731001;

$$\begin{split} &\psi_{15} = 59276361075595573263446330101 = 172157429516701 \cdot 344314859033401; \\ &\psi_{16} = \psi_{17} = 564132928021909221014087501701 = 531099297693901 \cdot 1062198595387801; \\ &\psi_{18} = \psi_{19} = 1543267864443420616877677640751301 = 27778299663977101 \cdot 55556599327954201; \\ &\psi_{20} > 10^{36}. \end{split}$$

5.4 Agrawal-Kayal-Saxena (A-K-S)素性检测

2002年,Agrawal,Kayal 和 Saxena 给出了一个素性检测的确定性算法,简称 A-K-S 素性检测算法,并给出了证明. 该算法及证明涉及后续抽象代数的相关知识,这里仅给出简单的理论表述.

定理 5.4.1 设 a 是与 p 互素的整数,则 p 是素数的充要条件是

$$(x-a)^p \equiv (x^p-a) \pmod{p}.$$

定理 5.4.2 设 n 是一个正整数,q 和 r 是素数,S 是有限整数集合,其元素个数为 s. 若

- (i) q整除 r-1;
- (ii) $n^{(r-1)/q} \pmod{r} \notin \{0, 1\};$
- (iii) 对所有不同的 $b, b' \in S$ 有 (n, b-b')=1;
- (iv) $\binom{q+s-1}{s} \geqslant n^{2[\sqrt{r}]}$;
- (v) 对所有的 *b*∈*S* 都有 $(x + b)^n \equiv (x^n + b) \pmod{x^r 1}$,

则 n 是一个素数的方幂.