Normalization for Cubical Type Theory

Jonathan Sterling Carlo Angiuli Carnegie Mellon University

> $CT 20 \rightarrow 21$ August 2021

ITT: cubical type theory

TT is a variant of Homotopy Type Theory based on an interval:

- a new sort $\lceil \Gamma \vdash \mathbb{I} \rceil$ and context extension $\lceil , i : \mathbb{I} \longrightarrow \Gamma \rceil$
- with endpoints $\Gamma \vdash 0, 1 : \mathbb{I}$
- and potentially further structure: $r \sqcup s, r \sqcap s, \sim r$ [Coh+17]

Has a "standard model" that's Quillen-equivalent to homotopy types, ¹ therefore usable for synthetic homotopy theory.

Computer scientists like **TT** because it has stronger computational properties than HoTT while retaining its good semantic properties (function extensionality, univalence, effective quotients).

¹Paper forthcoming by Awodey, Cavallo, Coquand, Riehl, Sattler

Computation in **TT**

Canonicity is one such computational property. Let \mathcal{C}_{\square} be the syntactic category of $\square TT$.

Theorem (Cubical canonicity [Hub18; AFH18])

If $M : \mathbb{I}^n \longrightarrow \text{nat}$ is an n-cube of natural numbers in \mathcal{C}_{\square} , then there exists a numeral $m \in \mathbb{N}$ such that

Therefore **TT** can be used as a programming language [Ang+21], and we have multiple implementations, *e.g.* Cubical Agda, redtt, cooltt [VMA19; Red18; Red20].

Syntactic decidability and injectivity

Canonicity was a surprisingly difficult "dry run". Real goal of **TT** was to show:

- 1. **Decidability of equality.** It is effectively decidable whether two morphisms $\Delta \longrightarrow \Gamma : \mathcal{C}_{\square}$ are (strictly) equal or unequal.
- 2. Injectivity of type constructors. If $\Pi(A, B) \equiv \Pi(A', B')$, then $(A, B) \equiv (A', B')$; and the same for dependent sums, etc.

Decidability and injectivity are needed for implementing proof assistants (like Coq, Agda, Lean, etc.). Both are corollaries of **normalization**, which is much more complex to state.

Normalization for **TT**

Idea of normalization: ITT has a "standard" presentation by operations and equations. If we could present the theory *with only* operations and no equations, then both decidability and injectivity would be trivial. A *normalization argument* is:

- 1. **Normal forms:** define a family of sets $\nu : \mathbf{Nf}(C, A) \longrightarrow \mathrm{Hom}_{\mathcal{C}_{\square}}(C, A)$ such that $\mathbf{Nf}(C, A)$ satisfies decidability and injectivity by inspection.
- 2. **Normalization:** prove that each ν is an isomorphism.

Both steps require creativity.

What are normal forms?

Insights due to Gentzen [Gen35] and Tait $[Tai67]^2$ teach us that normal forms are in fact divided into two classes, **Ne** ("neutral") and **Nf** ("normal").

- 1. Ne(C, A) represents "eliminations": projections, counits, etc.
- 2. $\mathbf{Nf}(C, A)$ represents "introductions": universal maps, units; includes $\mathbf{Ne}(C, A)$ when A lacks universal property.

The reason it works: represents morphisms by "maximally introduced" (η -long) and "minimally eliminated" (β -short) terms.

²and many others

Normalization by gluing

Normalization results are proved by *Artin gluing* [AGV72; Wra74]; application of gluing to logic and type theory has a long history.³

Idea: embed the syntactic topos $\widehat{\mathcal{C}}_{\square}$ via *open immersion* into a topos \mathcal{G} in which normal forms can be internalized. Then define a model of \mathcal{C}_{\square} in \mathcal{G} that restricts to the generic model under the open immersion.

³To name a few: Freyd [Fre78], Lambek and Scott [LS86], Crole [Cro93], Lafont [Laf88], Altenkirch, Hofmann, and Streicher [AHS95], Fiore [Fio02], and Coquand [Coq19].

Synthetic Tait computability

Normalization is **not** an immediate consequence of the "obvious" computability model; normalization of type theory and λ -calculus is not abstract nonsense.

Artin gluing provides the correct setting in which to state normalization, but the normalization proof is a further construction.

Most easily phrased in the internal language of \mathcal{G} using open and closed modalities [RSS20], called "synthetic Tait computability" [SH21; SA21; Ste21] by analogy with SDG, SDT, SAG, *etc*.

Tait's Yoga for ITT

We must construct our model carefully, following Tait's yoga:

- 1. For each type A, normal/neutral forms internalized as objects \mathbf{Nf}_A , $\mathbf{Ne}_A : \mathcal{G}$ that restrict along j to y(A).
- 2. Need morphisms $\mathbf{Ne}_A \to g^* y(A) \to \mathrm{Nf}_A$ ("reflection/reification") that are *vertical* in the gluing fibration $j^* : \mathcal{G} \longrightarrow \widehat{\mathcal{C}_{\square}}$.

Resulting normalization map is automatically injective; prove surjective by induction on \mathbf{Nf}_A .

The above *almost* works for $\Box TT$.

⁴Hint: we only really want $g^*y(A) \to \mathbf{Nf}_A$, since it assigns normal forms to terms in the model, but to close under exponentials we also need the map out of neutrals.

Instability of cubical neutral forms

Neutral forms for $\Box TT$ have new features not found in ITT, disrupting the classic gluing argument. Consider the *path* type:

$$\mathsf{path}_{\mathcal{A}}(\mathsf{a},\mathsf{b})\cong\prod_{i:\mathbb{T}}\left\{x:\mathsf{A}\mid(\mathsf{i}=\mathsf{0}\to\mathsf{x}=\mathsf{a})\wedge(\mathsf{i}=\mathsf{1}\to\mathsf{x}=\mathsf{b})\right\}$$

The evaluation map ϵ : path_A(a, b) × $\mathbb{I} \longrightarrow A$ must be representable by a neutral form, but its restrictions to 0,1: \mathbb{I} may *not* be representable by a neutral form since a, b need not be representable by neutrals!

Instability of cubical neutral forms

Neutral forms for $\Box TT$ have new features not found in ITT, disrupting the classic gluing argument. Consider the *path* type:

$$\operatorname{\mathsf{path}}_{A}(\mathsf{a},\mathsf{b})\cong\prod_{i:\mathbb{I}}\left\{x:A\mid (i=0\to x=\mathsf{a})\land (i=1\to x=\mathsf{b})\right\}$$

The evaluation map ϵ : path_A(a, b) × $\mathbb{I} \longrightarrow A$ must be representable by a neutral form, but its restrictions to 0,1: \mathbb{I} may *not* be representable by a neutral form since a, b need not be representable by neutrals!

Solution: neutral forms e are indexed in a *frontier* of instability $\partial(e)$ valued in $\Omega_{\mathcal{G}}$.

$$\partial(\epsilon(p,i)) :\equiv (i=0 \lor i=1)$$

Write $Ne[\phi]_A$ for the "neutrals away from ϕ ", *i.e.* $\{e : Ne_A \mid \partial(e) = \phi\}$. We will ensure that $Ne[\top]_A \cong j_*y(A)$.

Stabilization of neutrals

Stabilization of neutrals

Unstable neutrals are **glued together** with compatible computability data along their frontiers of instability.

Stabilization interpolates between neutrals and computability data.

Theorem. Every type is closed under the **stabilized** Tait yoga.

Summary of results

For univalent **TT** with a countable cumulative hierarchy of univalent universes, we have proved the following results:

- 1. Every type and every term has a *unique* normal form.
- 2. Judgmental equality of types and terms is decidable.
- 3. Type constructors $(e.g. \Pi)$ are injective.
- 4. Type checking is decidable (corollary of 1–3).

To learn more, see our LICS'21 paper and S.'s forthcoming dissertation (soon).

- [SA21] Jonathan Sterling and Carlo Angiuli. "Normalization for Cubical Type Theory". In: *Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science*. To appear. New York, NY, USA: ACM, 2021. arXiv: 2101.11479 [cs.L0].
- [Ste21] Jonathan Sterling. "First Steps in Synthetic Tait Computability". Forthcoming. PhD thesis. Carnegie Mellon University, 2021.

References I

- [AFH18] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. "Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths and Equalities". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 6:1–6:17. ISBN: 978-3-95977-088-0. DOI: 10.4230/LIPIcs.CSL.2018.6. URL: http://drops.dagstuhl.de/opus/volltexte/2018/9673.
- [AGV72] Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Théorie des topos et cohomologie étale des schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J.-L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 269, 270, 305. Berlin: Springer-Verlag, 1972.
- [AHS95] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. "Categorical reconstruction of a reduction free normalization proof". In: Category Theory and Computer Science. Ed. by David Pitt, David E. Rydeheard, and Peter Johnstone. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 182–199. ISBN: 978-3-540-44661-3.
- [AK16] Thorsten Altenkirch and Ambrus Kaposi. "Normalisation by Evaluation for Dependent Types". In: 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Ed. by Delia Kesner and Brigitte Pientka. Vol. 52. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016, 6:1–6:16. ISBN: 978-3-95977-010-1. DOI: 10.4230/LIPIcs.FSCD.2016.6. URL: http://drops.dagstuhl.de/opus/volltexte/2016/5972.

References II

- [Ang+21] Carlo Angiuli et al. "Internalizing Representation Independence with Univalence". In: *Proceedings of the ACM on Programming Languages* 5.POPL (Jan. 2021). DOI: 10.1145/3434293.
- [Coh+17] Cyril Cohen et al. "Cubical Type Theory: a constructive interpretation of the univalence axiom". In: IfCoLog Journal of Logics and their Applications 4.10 (Nov. 2017), pp. 3127–3169. URL: http://www.collegepublications.co.uk/journals/ifcolog/?00019.
- [Coq19] Thierry Coquand. "Canonicity and normalization for dependent type theory". In: Theoretical Computer Science 777 (2019). In memory of Maurice Nivat, a founding father of Theoretical Computer Science Part I, pp. 184–191. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2019.01.015. arXiv: 1810.09367 [cs.PL].
- [Cro93] R. L. Crole. Categories for Types. Cambridge Mathematical Textbooks. New York: Cambridge University Press, 1993. ISBN: 978-0-521-45701-9.
- [Fio02] Marcelo Fiore. "Semantic Analysis of Normalisation by Evaluation for Typed Lambda Calculus". In: Proceedings of the 4th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming. PPDP '02. Pittsburgh, PA, USA: ACM, 2002, pp. 26–37. ISBN: 1-58113-528-9. DOI: 10.1145/571157.571161.
- [Fre78] Peter Freyd. "On proving that 1 is an indecomposable projective in various free categories". Unpublished manuscript. 1978.
- [Gen35] Gerhard Gentzen. "Untersuchungen über das logische Schließen I". In: Mathematische Zeitschrift 39 (1935), pp. 176–210. URL: http://eudml.org/doc/168546.

References III

[Hub18]	Simon Huber. "Canonicity for Cubical Type Theory". In: <i>Journal of Automated Reasoning</i> (June 13, 2018). ISSN: 1573-0670. DOI: 10.1007/s10817-018-9469-1.
[Laf88]	Yves Lafont. "Logiques, catégories & machines : implantation de langages de programmation guidée par la logique catégorique". PhD thesis. Université Paris 7, 1988.
[LS86]	J. Lambek and P. J. Scott. <i>Introduction to Higher Order Categorical Logic</i> . New York, NY, USA: Cambridge University Press, 1986. ISBN: 0-521-24665-2.
[Red18]	The RedPRL Development Team. redtt. 2018. URL: https://www.github.com/RedPRL/redtt.
[Red20]	The RedPRL Development Team. cooltt. 2020. URL: https://www.github.com/RedPRL/cooltt.
[RSS20]	Egbert Rijke, Michael Shulman, and Bas Spitters. "Modalities in homotopy type theory". In: Logical Methods in Computer Science Volume 16, Issue 1 (Jan. 2020). DOI: 10.23638/LMCS-16(1:2)2020. arXiv: 1706.07526 [math.CT]. URL: https://lmcs.episciences.org/6015.
[SA21]	Jonathan Sterling and Carlo Angiuli. "Normalization for Cubical Type Theory". In: <i>Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science</i> . To appear. New York, NY, USA: ACM, 2021. arXiv: 2101.11479 [cs.L0].
[SH21]	Jonathan Sterling and Robert Harper. "Logical Relations As Types: Proof-Relevant Parametricity for Program Modules". In: <i>Journal of the ACM</i> (2021). To appear. arXiv: 2010.08599 [cs.PL].
[Ste21]	Jonathan Sterling. "First Steps in Synthetic Tait Computability". Forthcoming. PhD thesis. Carnegie Mellon University, 2021.

References IV

[Str98]	Thomas Streicher. "Categorical intuitions underlying semantic normalisation proofs". In:
	Preliminary Proceedings of the APPSEM Workshop on Normalisation by Evaluation. Ed. by
	O. Danvy and P. Dybjer, Department of Computer Science, Aarhus University, 1998.

- [Tai67] W. W. Tait. "Intensional Interpretations of Functionals of Finite Type I". In: The Journal of Symbolic Logic 32.2 (1967), pp. 198–212. ISSN: 00224812. URL: http://www.jstor.org/stable/2271658.
- [VMA19] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. "Cubical Agda: A Dependently Typed Programming Language with Univalence and Higher Inductive Types". In: Proceedings of the 24th ACM SIGPLAN International Conference on Functional Programming. ICFP '19. Boston, Massachusetts. USA: ACM. 2019. DOI: 10.1145/3341691.
- [Wra74] Gavin Wraith. "Artin glueing". In: Journal of Pure and Applied Algebra 4.3 (1974), pp. 345–348. ISSN: 0022-4049. DOI: 10.1016/0022-4049(74)90014-0.