

(19) BUNDESREPUBLIK
DEUTSCHLAND

(12) Offenlegungsschrift
(11) DE 3247875 A1

(51) Int. Cl. 3:
B41J 27/00

DEUTSCHES
PATENTAMT

(21) Aktenzeichen: P 32 47 875.5
(22) Anmeldetag: 23. 12. 82
(43) Offenlegungstag: 11. 8. 83

(30) Unionspriorität: (32) (33) (31)
28.12.81 US 334954

(72) Erfinder:
DiGiulio, Peter C., 06430 Fairfield, Conn., US

(71) Anmelder:
Pitney Bowes, Inc., 06926 Stamford, Conn., US

(74) Vertreter:
Zimmermann, H., Dipl.-Ing.; Graf von Wengersky, A.,
Dipl.-Ing.; Kraus, J., Dipl.-Phys. Dr.rer.nat.,
Pat.-Anw., 8000 München

Behördeneigentum

(54) Tintenversorgungssystem für einen Tintenstrahldrucker

Die Erfindung betrifft ein System und ein Verfahren zur Einstellung von Tintenpegeln in einem Zwischenspeicherungstintentank (24) eines Tintenstrahldruckers (14). Ein Mikroprozessor (16, 18) ist mit einer Suchtabelle verbunden, aus der die zum Drucken einer Reihe von Zeichen erforderliche Tintenmenge hervorgeht, und eine Steuereinheit (16) steuert die von einer Pumpe (20) dem Tank (24) zugeführte Tintenmenge. (32 47 875)

DE 3247875 A1

DE 3247875 A1

P a t e n t a n s p r ü c h e :

10 1. System zur Einstellung des Tintenpegels
in dem Tank eines Tintenstrahldruckers, gekennzeichnet
durch eine Einrichtung (12) zur Eingabe einer auf
einen von dem Tintenstrahldrucker (14) wiederzuge-
benden Textbezogenen Information, eine mit der In-
formationseingabeeinrichtung (12) verbundene Steuer-
einrichtung (16), eine mit der Steuereinrichtung (16)
verbundene Speichereinrichtung (18) zur Speicherung
einer auf die zum Drucken jedes einzelnen Zeichens
aus einem Zeichensatz benötigte Tintenmenge bezogenen
Information, eine Tintenvorratseinrichtung (22), eine
20 mit der Tintenvorratseinrichtung (22) verbundene Tin-
tentankeinrichtung (24), eine zwischen die Tintenvor-
ratseinrichtung (22) und die Tankeinrichtung (24)
geschaltete Pumpe (20), die mit der Steuereinheit
(16) elektrisch in Verbindung steht, und einen mit
25 der Eingabeeinrichtung (12) und der Tankeinrichtung
(24) verbundenen Tintenstrahldrucker (14).

30 2. Verfahren zur Einstellung des Tintenpegels
in dem Tank eines Tintenstrahldruckers, gekennzeichnet
durch die folgenden Verfahrensschritte: Zuführung
einer auf einen von dem Tintenstrahldrucker wiederzu-
gebenden Text bezogenen Information, Bereitstellung
eines Speichers zur Speicherung einer auf die zum
Drucken jedes Zeichens aus einem zur Erzeugung des Tex-
tes verwendeten Zeichensatz benötigten Tintenmenge
35

1 bezogenen Information, Bereitstellung eines Tintenvorrats, Bereitstellung eines Tintentanks, Bereitstellung einer mit einer zwischengeschalteten Pumpe versehenen Verbindung von dem Tank zu dem Tintenvorrat, Verbinden eines Tintenstrahldruckers mit der Eingabeeinrichtung und dem Tintentank, Feststellen der zum Drucken des Textes erforderlichen Tintenmenge aufgrund der in dem Speicher gespeicherten Information, Buchführen über die in dem Tank vorhandene Tintenmenge aufgrund dieser Feststellung, Errichtung eines voreingestellten minimalen Tintenpegels für den Tank, und Aktivieren der Pumpe, wenn aufgrund des gedruckten Textes und der Feststellung der zum Drucken dieses Textes erforderlichen Tintenmenge festgestellt worden ist,
10 daß die Tinte den vorbestimmten Minimalpegel erreicht
15 hat.

20

25

30

35

PATENTANWALTE
european patent attorneys

Dipl.-Ing. H. Leinweber (1930-76)
Dipl.-Ing. Heinz Zimmermann
Dipl.-Ing. A. Gf. v. Wengersky
Dipl.-Phys. Dr. Jürgen Kraus

Rosental 7, D-8000 München 2
2. Aufgang (Kustermann-Passage)
Telefon (089) 2 60 39 89
Telex 52 8191 lepat d
Telegr.-Adr. Leinpat München

den 23. Dezember 1982

Unser Zeichen krc
B-710

PITNEY BOWES, Inc., Stamford Connecticut, USA

Tintenversorgungssystem für einen Tintenstrahldrucker

Die Erfindung bezieht sich auf ein Tintenversorgungssystem für einen Tintenstrahldrucker, der allgemein einen Tank zur Aufnahme einer dem Druckkopf zuzuführenden Tinte aufweist.

Üblicherweise ist eine Einrichtung vorgesehen, die dazu dient, die Tinte im Zuge ihres Verbrauchs während des Druckvorganges nachzufüllen. Beispielsweise kann in dem Tank ein Pegelanzeiger angeordnet sein, durch den bei einem Bedarf an Tinte eine Sichtanzeige für eine Bedienungsperson gegeben wird. Auch kann eine automatische Einrichtung vorgesehen sein, wie beispielsweise ein Schwimmer, der der Tintenoberfläche folgt und durch seine Betriebsweise eine Pumpe anschaltet, sobald die Tinte unter einen vorgegebenen Pegel absinkt. Mit solchen Arten der Pegelsteuerung sind gewisse Nachteile verbunden, was insbesondere deswegen der Fall ist, weil Tintenstrahldrucker gelegentlich einer Reinigungsspülung unterzogen werden müssen, wobei diese Reinigungs-

1 spülung eine große Tintenmenge erfordert. Das manuelle
Nachfüllen hat offensichtlich den Nachteil, daß es
von der Wachsamkeit der Bedienungsperson abhängig ist.
Der hauptsächliche Nachteil der Verwendung eines Pegel-
schwimmers besteht darin, daß er als mechanisches
5 System oftmals nicht einwandfrei arbeitet, weil es
gegen Tinte störanfällig ist, die sich an seinen
beweglichen Teilen festsetzt.

10 Die Erfindung ist auf ein automatisches System
zur Versorgung eines Tintenstrahldruckers mit Tinte
gerichtet, bei dem der zu druckende Text elektronisch
zugeleitet wird und zum Zwecke der Betätigung einer
Tintenzuführungspumpe auf einen Speicher zugegriffen
wird. Im einzelnen liegt die Erfindung in einem technolo-
15 gischen Gebiet, demzufolge eine einen zu druckenden
Text betreffende Information einer Steuereinheit zu-
geführt wird. Diese Steuereinheit kann entweder dazu
dienen, die Information vor dem Druckvorgang zu spei-
chern oder kann im Echtzeitbetrieb arbeiten. In der
20 Steuereinheit ist ein Zeichengenerator vorgesehen,
der mit einem Speicher verbunden ist, welcher eine
auf die zum Drucken verschiedener Zeichen erforderliche
Materialmenge bezogene Information speichert. Dabei
erfolgt ein Zugriff auf den Speicher und wird die
25 zum Drucken des durch die zugeführte Information
vorgegebenen Textes erforderliche Tintenmenge von
der Steuereinheit bestimmt. Durch die Bestimmung der
zum Drucken des Textes erforderlichen Tintenmenge
vermag die Steuereinheit eine an einen Tintenvorrats-
30 behälter angeschlossene Pumpe zu aktivieren, so daß
ein Tintentank zwischen zwei vorgegebene Pegel einge-
stellt wird. Durch eine Erfassung der durch die Pumpe
von dem Tintenvorratsbehälter zu dem Tank geschickten
35 Tintenmenge vermag die Steuereinheit festzustellen,
wann der Tintenversorgungsbehälter seinem Leerzustand
entgegengesetzt.

1 Weitere Merkmale, Einzelheiten und Vorteile der
Erfindung ergeben sich aus der Zeichnung, auf die be-
züglich aller im Text nicht erwähnten Einzelheiten
ausdrücklich verwiesen wird und in der ein erfindungs-
5 gemäßes Tintenversorgungssystem für einen Tintenstrahl-
drucker dargestellt ist.

10 Wie aus der Zeichnung hervorgeht, weist ein
allgemein mit dem Bezugszeichen 10 bezeichnetes Tinten-
versorgungssystem für einen Tintenstrahldrucker einen
binär verschlüsselten Dezimal (BCD)-Eingang 12 auf,
der mit dem Tintenstrahldrucker 14 und einer Steuer-
einheit 16 verbunden ist. Der Eingang 12 dient der Zu-
führung einer auf zu druckenden Text bezogenen, binär ko-
15 dierten Information. Bei der Steuereinheit 16 kann es
sich um einen Mikroprozessor handeln, der mit der Speicher-
einheit 18 verbunden ist, welche vorzugsweise einen
leistungsunabhängigen Speicher für Zwecke der Tinten-
versorgung und einen PROM zum Zwecke eines Tinte/Zei-
chen-Tabellenvergleichs aufweist. Die Steuereinheit 16
20 ist ferner elektrisch mit dem Ein/Aus-Schalter einer
Pumpe 20 verbunden. Die Pumpe ist über Leitungen 26
bzw. 28 an einen Tintenvorratsbehälter 22 und einen
Tank 24 angeschlossen. Der Tank 24 ist durch eine wei-
tere Leitung 30 mit dem Tintenstrahldrucker 14 verbun-
den, wobei sich der Pegel der Düsen (nicht dargestellt)
25 des Tintenstrahldruckers ungefähr auf derselben Höhe
befindet wie die Tinte in dem Tank, um den Tintenfluß
auf die beim Stand der Technik bekannte Weise zu er-
möglichen.
30

Der Tank 24 weist drei angezeigte Pegel XF, XE
und XS an, während X den tatsächlichen Pegel der Tinte
35 in dem Tank 24 anzeigt. Der Pegel XF stellt denjenigen
Pegel dar, bei dem der Tank voll ist, wobei sich die

-4-

1 Tinte während einer Reinigungsspülung der Tintenstrahlköpfe des Druckers 14 auf diesem Pegel befindet. Der Pegel XE stellt denjenigen Pegel dar, auf den die Tinte unmittelbar nach einem Reinigungsspülzyklus eingesetzt wird und ist als der maximale Pegel anzusehen,
5 auf den die Tinte während des Druckbetriebs eingesetzt wird. Der Pegel XS stellt denjenigen Pegel dar, bei dem dem Tank 24 Tinte aus dem Tintenvorratsbehälter 22 zugeführt wird.

10

Die Tinte wird dem Tintenstrahldrucker 14 aus dem Tintenvorratsbehälter 22 über den Zwischenspeicherungstank 24 vermittels des Betriebs der Pumpe 20 zugeleitet. Der Tintenpegel in dem Tank 24 wird zwischen den beiden Pegeln XE und XS gehalten. Wenn von dem Drucker 14 Tinte verbraucht wird, fällt der Tintenpegel unter den Pegel XS ab und es wird aus dem Tintenversorgungsbehälter 22 zusätzliche Tinte in den Tank 24 gepumpt, um den Pegel auf den Pegel XE anzuheben. Der Pegel XE liegt niedriger als der tatsächliche maximale Füllpegel XF des Tanks, um zu verhindern, daß unbeabsichtigt Tinte durch die Tintenkopfdüsen des Tintenstrahldruckers 14 hinausgedrückt wird.
15 Bei der Einleitung eines Reinigungsspülzyklus wird durch die Düsen des Tintenstrahlkopfes Tinte hindurchgepumpt. Bevor ein Durchtritt der Tinte durch die Düsen hindurch beginnt, muß zuerst mittels der Tintenpumpe 20 der Tank auf den Füllinhalt XF aufgefüllt werden. Nach der Reinigungsspülung besteht die letzte
20 Stufe des Zyklus darin, die Flußrichtung umzukehren und die Tinte zum Tintenvorratsbehälter 22 zurückzuleiten, um den Pegel X auf XE abzusenken.

35

1 Um zu erfassen, daß sich der Tintenvorrat in dem
 Tank 24 auf dem Pegel XS befindet, erfordert das Verfahren
 die Kenntnis der in dem Tank vorhandenen Tintenmenge,
 der in den Vorrat bei jedem Füllvorgang des Zwischen-
5 speicherungstanks 24 von XS auf XE hineingepumpten Tinten-
 menge und der aus dem Tintenvorratsbehälter 22 während
 einer Reinigungsspülung herausgepumpten Tintenmenge.
 Der Tintenvorratsbehälter 22 enthält anfänglich eine
10 festgelegte Tintenmenge, wie beispielsweise ungefähr
 950 cm³ (1 quart). Wenn an die Leitung 26 ein neuer Vor-
 ratsbehälter 22 angeschlossen wird, wird die Steuereinheit
 16 von der Zustandsänderung der Tintenmenge in Kenntnis
 gesetzt. Die Steuereinheit 16 führt eine Aufzeichnung
 über den Tintenvorratspegel, wenn sie den Tankfüllungs-
15 und Reinigungsspülzyklus einleitet. Jedesmal wenn der
 Tank 24 von dem Pegel XS auf XE gefüllt wird, zieht
 die Steuereinheit 16 die hierfür erforderliche Menge
 von der in der Speichereinheit 18 gespeicherten Aufzeich-
 nung des Tintenvorratspegels ab. Dies erfolgt durch
20 Software. Ebenso zieht die Steuereinheit bei jeder durch
 sie bewirkten Einleitung eines Reinigungsspülzyklus
 die hierfür erforderliche Tintenmenge von der Aufzeichnung
 des Tintenvorratspegels ab. Wenn diese Aufzeichnung
 des Tintenvorratspegels negativ wird, führt die Steuer-
25 einheit 16 die geeigneten Schritte aus um anzugeben,
 daß der Tintenvorratsbehälter 22 leer ist. Der Tinten-
 verbrauch erfolgt ziemlich langsam, und das System wird
 gelegentlich abgeschaltet. Daher ist es nötig, daß die
 in dem Tintenvorratsbehälter noch vorhandene Tinten-
30 menge in dem leistungsunabhängigen Speicher 18 ge-
 speichert wird.

1 Die Steuerung des Tintenpegels X in dem Tank macht
es erforderlich, daß sowohl die Anzahl der gedruckten
Zeichen als auch der pro druckbarem Zeichen benötigten
Tintentröpfchen bekannt ist. Die Zeichengenerator-Soft-
ware stellt ansprechend auf den Eingang 12 die zu druckenden
Zeichen fest. Für jedes durch den Drucker 14 gedruckte
Zeichen greift der Mikroprozessor auf eine Tröpfen-pro-
Zeichen-Suchtabelle in dem Speicher 18 zu, um die zum
Drucken des Textes benötigte Anzahl von Tröpfchen fest-
zustellen und den Tintenpegel X wie erforderlich einzu-
stellen. Wenn der Tintenpegel auf den Pegel XS abfällt,
gibt die Steuereinheit 16 einen Befehl zur Lieferung
einer ausreichenden Tintenmenge an die Pumpe 20, um den
Tintenpegel X auf den Pegel XF anzuheben. Wenn das Tinten-
system gespült ist, wird der augenblickliche Tinten-
pegel X auf XE zurückgesetzt. Sofern die Einschaltfolge
des Systems keinen Reinigungsspülzyklus beinhaltet,
ist es erforderlich, daß X in dem Speicher 18 gespeichert
wird. Es wird darauf hingewiesen, daß der Unterschied
zwischen den Pegeln XE und XS nicht so groß ist wie in
der Zeichnung angegeben, wo sie zum Zwecke der Verdeut-
lichung übertrieben dargestellt sind.

25

30

35

- 9 -

1

Verzeichnis der Bezugszeichen

5

- 10 Tintenversorgungssystem
- 12 binär verschlüsselter Dezimal (BCD)-Eingang
- 14 Tintenstrahldrucker
- 10 16 Steuereinheit
- 18 Speichereinheit
- 20 Pumpe
- 22 Tintenvorratsbehälter
- 24 Tank
- 15 26, 28, 30 Leitungen
- X, XF, XE, XS Pegel

20

25

30

35

-10-
Leerseite

COPY

Nummer:
Int. Cl.³:
Anmeldetag:
Offenlegungstag:

3247875
B41J 27/00
23. Dezember 1982
11. August 1983

Zwischenspeicherung -
Tintentank