Национальный исследовательский ядерный университет "МИФИ"

Доклад по параллельному программированию на тему: "Реализация алгоритма решения СЛАУ методом сопряженных градиентов при помощи технологии OpenMP"

Зимич Григорий. Данилишин Ярослав. Б20-505 2022 год

1 Описание алгоритма сопряженных градиентов

Система линейных алгебраических уравнений (линейная система, также употребляются аббревиатуры СЛАУ, СЛУ) - система уравнений, каждое уравнение в которой является линейным - алгебраическим уравнением первой степени. Пример:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Задание СЛАУ в матричном виде:

$$\left(egin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}
ight) \left(egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight) = \left(egin{array}{c} b_1 \ b_2 \ dots \ b_n \end{array}
ight)$$

Метод решения:

Метод сопряженных градиентов — один из наиболее известных итерационных методов решения систем линейных уравнений. Он может быть применен для решения системы линейных уравнений с симметричной, положительноопределенной матрицей.

Это метод при котором к искомому точному решению \mathbf{x}^* системы $\mathbf{A}\mathbf{x}=\mathbf{b}$ строится последовательность приближенных решений $\mathbf{x_0},\mathbf{x_1},\cdots,\mathbf{x_k},\cdots$

- 1. Матрица A называется симетричной если она совпадает со своей транспонированной матрицей ${\bf A}={\bf A}^{\bf T}$
- 2. Матрица A называется положительноопределенной если $\mathbf{x^T A x} > \mathbf{0}$

После выполнения n итераций метода сопряженных градиентов (n есть порядок решаемой системы линейных уравнений), очередное приближение \mathbf{x}_n совпадает с точным решением.

Если матрица **A** симметричная и положительноопределена, то функция:

$$\mathbf{q}(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} - \mathbf{x}^{\mathrm{T}}\mathbf{b} + \mathbf{c}$$

имеет единственный минимум который достигается в точке \mathbf{x}^* , совпадающий с решением системы линейных уравнений.

Итерация метода сопряженных градиентов состоит в вычислении очередного приближения к точному решению.

$$\mathbf{x}^k = \mathbf{x}^{k-1} + \mathbf{s}^k \mathbf{d}^k$$

где:

- $1. \ \mathbf{x^k}$ очередное приближение
- 2. $\mathbf{x^{k-1}}$ приближение, построенное на предыдущем шаге
- 3. $\mathbf{s}^{\mathbf{k}}$ скалярный шаг
- 4. $\mathbf{d^k}$ вектор направления

Перед выполнением первой итерации $\mathbf{x_0}$ и $\mathbf{d_0}$ полагаются равными нулю, а для вектора $\mathbf{g_0}$ устанавливается значение $-\mathbf{b}$

За (\cdot,\cdot) обозначено скалярное произведение.

Алгоритм:

- 1. Вычисление градиента: $\mathbf{g^k} = \mathbf{A} \cdot \mathbf{x^{k-1}} \mathbf{b}$
- 2. Вычисление вектора направления: $\mathbf{d^k} = -\mathbf{g^k} + \frac{((\mathbf{g^k})^T, \mathbf{g^k})}{((\mathbf{g^{k-1}})^T, \mathbf{g^{k-1}})} \cdot \mathbf{d^{k-1}}$
- 3. Вычисление величины смещения по заданному направлению: $\mathbf{s^k} = \frac{(\mathbf{d^k}, \mathbf{g^k})}{(\mathbf{d^k})^{\mathbf{T}} \cdot \mathbf{A} \cdot \mathbf{d^k}}$
- 4. Вычисление нового приближения: $\mathbf{x}^{\mathbf{k}} = \mathbf{x}^{\mathbf{k}-\mathbf{1}} + \mathbf{s}^{\mathbf{k}}\mathbf{d}^{\mathbf{k}}$

Тем самым, новое значение приближения \mathbf{x}^k вычисляется с учетом приближения, построенного на предыдущем шаге \mathbf{x}^{k-1} , скалярного шага \mathbf{s}^k и вектора направления \mathbf{d}^k .

Как можно заметить, данные выражения включают две операции умножения матрицы на вектор, четыре операции скалярного произведения и пять операций над векторами.

Как результат, общее количество числа операций, выполняемых на одной итерации, составляет: $\mathbf{t_1} = 4\mathbf{n^2} + 11\mathbf{n}$

Для нахождения точного решения системы линейных уравнений с положительно определенной симметричной матрицей необходимо выполнить ${\bf n}$ итераций.

Следовательно, для нахождения решения системы необходимо выполнить: ${f T_1} = 4{f n}^3 + 11{f n}^2$ операций.

2 Параллельная схема

Выполнение итераций метода осуществляется последовательно, следовательно наиболее целесообразный подход состоит в распараллеливании вычислений, реализуемых в ходе выполнения отдельных итераций. Основные вычисления, выполняемые в соответствии с методом, состоят в перемножении матрицы **A**

на вектора **x** и **d**. Дополнительные вычисления, имеющие меньший порядок сложности представляют собой различные операции обработки векторов (скалярное произведение, сложение и вычитание, умножение на скаляр).

В последовательном алгоритме всего 2 умножения матрицы на вектор на шагах 1 и 3, именно здесь и задействуется параллельная схема. Рассмотрим параллельный вариант умножения матрицы на вектор. Распределение данных - разбиение матрицы на строки.

Базовая подзадача для выполнения вычисления должна содержать строку матрицы \mathbf{A} и копию вектора \mathbf{b} . После завершения вычислений каждая базовая подзадача будет содержать один из элементов вектора результата \mathbf{c} . Для объединения результатов расчетов и получения полного вектора \mathbf{c} на каждом из процессоров вычислительной системы необходимо выполнить операцию обобщенного сбора данных.

Если число процессоров \mathbf{p} меньше числа базовых подзадач \mathbf{m} , базовые подзадачи могут быть укрупнены с тем, чтобы каждый процессор выполнял несколько операций умножения строк матрицы \mathbf{A} и вектора \mathbf{b} . В этом случае, по окончании вычислений каждая базовая подзадача будет содержать набор элементов результирующего вектора \mathbf{c} .

Распределение подзадач между процессорами вычислительной системы может быть выполнено с учетом возможности эффективного выполнения операции сбора данных.

3 Примеры решения

Поясним выполнение метода сопряженных градиентов на примере решения системы линейных уравнений вида:

$$\begin{cases} 3x_0 - x_1 = 3 \\ -x_0 + 3x_1 = 7 \end{cases}$$

На первой итерации было получено значение градиента $g^1=(-3,-7)$, значение вектора направления $d^1=(3,7)$, значение величины смещения $s^1=0.439$.

– Соответственно, очередное приближение к точному решению системы $x^1 = (1.318, 3.076)$.

На второй итерации было получено значение градиента $g^2 = (-2.121, 0.909)$, значение вектора направления $d^2 = (2.397, -0.266)$, а величина смещения $s^2 = 0.284$.

– Очередное приближение $x^2 = (2,3)$ совпадает с точным решением системы x^* .

Итерации метода сопряженных градиентов при решении системы второго порядка.

Пример №2 для СЛАУ 3-его порядка:

$$\begin{cases} 4x_0 - x_1 + 2x_2 = -1 \\ -x_0 + 6x_1 - 2x_2 = 9 \\ 2x_0 - 2x_1 + 5x_2 = -10 \end{cases}$$

Возьмем начальный вектор x_0 равным:

$$x_0 = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}$$

На первой итерации было получено значение градиента $g^1=(5,-10,\ 12)$, значение вектора направления $d^1=(1.4086366$, $-0.53557677,\ -1.37480788)$, значение величины смещения $s^1=2.0245,$ очередное приближение к точному решению системы: $x^1=(0.39955357\ 1.20089286\ -1.44107143)$

На второй итерации было получено значение градиента $g^2=$

 $(-1.48482143,\,0.68794643,\,1.19196429)$, значение вектора направления $d^2=(0.07722983,\,0.0834236,\,0.03615877)$, значение величины смещения $s^2=0.1191$, очередное приближение к точному решению системы: $x^2=(0.98123643\,0.97973161\,-2.00878504)$

На третьей итерации было получено значение градиента $g^3=(1.48492330\text{e-}15, -2.42861287\text{e-}15, 2.37310172\text{e-}15)$, значение вектора направления $d^3=(1.48492330\text{e-}15, -2.42861287\text{e-}15, 2.37310172\text{e-}15)$, значение величины смещения $s^3=0.0000$, очередное приближение к точному решению системы: $x^3=(1.\ 1.\ -2)$

Получили корни, удовлетворяющие уравнениям системы.

4 Анализ эффективности

Вычислительная сложность параллельных операций умножения матрицы на вектор при использовании схемы ленточного горизонтального разделения матрицы составляет (здесь и далее L – количество итераций, выполняемых методом)

$$T_p^1(calc) = L \cdot \frac{2n \cdot (2n-1)}{p} \cdot \tau$$

- Все остальные операции над векторами (скалярное произведение, сложение, умножение на константу), также выполняются в многопоточном режиме.
 - Следовательно, общая вычислительная сложность параллельного варианта метода сопряженных градиентов явля-

ется равной:

$$T_p(calc) = L \cdot \frac{4n^2 + 11n}{p} \cdot \tau$$

 Общее время выполнения алгоритма в худшем случае составляет:

$$T_p = L \cdot \frac{4n^2 + 11n}{p} \cdot \tau + L \cdot (2n^2 + 14n) \cdot (\alpha + \frac{64}{\beta})$$

– Для построения точной модели необходимо также учесть коэффициент кэш промахов:

$$T_p = L \cdot \frac{4n^2 + 11n}{p} \cdot \tau + \gamma \cdot L \cdot (2n^2 + 14n) \cdot (\alpha + \frac{64}{\beta})$$

Общая оценка показателей ускорения и эффективности:

$$S_p = \frac{2n^2 + 14n}{n(2[\frac{n}{p}] \cdot (2n-1) + 13n)}, E_p = \frac{2n^2 + 14n}{p \cdot n(2[\frac{n}{p}] \cdot (2n-1) + 13n)}$$

5 Результаты вычислительных экспериментов

Параметры оборудования: Intel Core 2 Duo CPU E8500, 3.16 GHz, 2048MB RAM.

Длительность au базовой скалярной операции - 0.000000015 сек

Параметры передачи между процессами на одной машине: латентность α - 0.000024 сек, пропускная способность β - 267506473 байт/сек

График зависимости ускорения от количества исходных данных при выполнении параллельного метода сопряженных градиентов.

- График зависимости экспериментального и теоретического времени выполнения параллельного алгоритма сопряженных градиентов от объема исходных данных при использовании двух потоков:

- График зависимости экспериментального и теоретического времени выполнения параллельного алгоритма сопряженных градиентов от объема исходных данных при использовании *четырех потоков*:

Таблицы:

размерность матрицы	последовательный алгоритм	2 процесса	ускорение 2 процесса	4 процесса	ускорение 4 процесса
100	0.00398184	0.00579593	0.69	0.0141547	0.28
200	0.0255704	0.0210043	1.22	0.0376483	0.68
300	0.08509408	0.0553403	1.54	0.131018	0.65
400	0.198999	0.116307	1.71	0.184714	1.07
500	0.379677	0.213407	1.78	0.299482	1.28
600	0.658378	0.35659	1.85	0.417103	1.58
700	1.02645	0.590921	1.73	0.678388	1.51
800	1.54995	0.841979	1.84	0.970116	1.59
900	2.38614	1.39978	1.70	1.60877	1.48
1000	3.42194	2.31082	1.48	2.44232	1.4
1500	11.6192	8.9307	1.3	9.577	1.21
2000	27.5323	20.92	1.31	22.15	1.24
3000	94	73.6611	1.28	74.6728	1.26

Таблица сравнения времени экспериментов с модельным временем:

	2 процесса		4 процесса		
размерность матрицы	T	T*	T	T*	
100	0,00323336253966435	0,00579593	0,00177248594889392	0,0141547	
200	0,0249136816010678	0,0210043	0,0130504066803965	0,0376483	
300	0,0830409571842104	0,0553403	0,0428337621945078	0,131018	
400	0,195615189289092	0,116307	0,100122552491228	0,184714	
500	0,380636377915713	0,213407	0,193916777570557	0,299482	
600	0,656104523064073	0,35659	0,333216437432494	0,417103	
700	1,04001962473417	0,590921	0,52702153207704	0,678388	
800	1,55038168292601	0,841979	0,784332061504195	0,970116	
900	2,20519069763959	1,39978	1,11414802571396	1,60877	
1000	3,0224466688749	2,31082	1,52546942470633	2,44232	
1500	10,1754308728776	8,9307	5,11965794140732	9,577	
2000	24,0895889899237	20,92	12,1014823276735	22,15	
3000	81,2014269631464	73,6611	40,7280387089016	74,6728	

6 Вывод

При рассмотрении параллельного варианта метода сопряженных градиентов, распараллеливание было произведено через параллельные алгоритмы выполняемых вычислительных действий — операций умножения матрицы на вектор, скалярного произведения векторов, сложения и вычитания векторов. Такой подход позволил организовать параллельные вычисления с достаточно высокими показателями эффективности.