KET / MET

Nejistoty měření x MSA

Nejistota měření

 intervalový odhad výsledku, ve kterém se s jistou pravděpodobností vyskytuje skutečná naměřená hodnota

Analýza systémů měření (MSA)

- stanovuje velikost chyby v procesu měření a posuzuje adekvátnost pro kontrolu řízení produktu a procesu
- zaměřuje se na systém měření jako takový, nikoliv na produkovaný výsledek
- rozhodnutí: vhodný x nevhodný
- používá se zejména v automobilovém průmyslu

Systém měření

 soubor operací, postupů, měřidel a dalšího vybavení, software a osob použitých k přidělení čísla měřené charakteristice

Ideální systém měření

- produkována jen "správná" měření
- každá naměřená hodnota odpovídá hodnotě etalonu
- nulový rozptyl naměřených hodnot, nulová strannost, nulová pravděpodobnost nesprávné klasifikace produktu ... N(µ, 0)

Reálný systém měření

- existují chyby měření
- kvalita systému měření se určuje na základě dat produkovaných v čase

- Chyby měření
- Zdroje variability způsobují chyby měření
- Rozdělení chyb měření podle účinku:
 - 1) Systematické korigovatelné (po odstranění příčiny chyby)
 - 2) Náhodné nelze odstranit
- Typické variability v systému měření bývají popisovány:
 - **1) Polohou,** resp. změnou polohy k normálové (skutečné, referenční) hodnotě váže se k systematické chybě měření
 - 2) Rozptylem variabilitou kolem určité hodnoty váže se k náhodné chybě měření

a) Effekt einer systematischen Meßabweichung

b) Effekt einer zufälligen Meβabweichung

c) Kombination beider Arten von Meßabweichungen

ADD. 1/13: Auswirkungen von Meniemern am die rrozenvertenun

Chyby měření

- Model aditivního působení chyby:
- Y pozorovaná hodnota
- X skutečná hodnota (znaku jakosti)
- ε chyba měření

- a platí
$$\mu_Y = \mu + \mu_arepsilon$$
 a $\sigma_Y^2 = \sigma^2 + \sigma_arepsilon^2$

- a) jen systematické chyby měření
- b) jen náhodné chyby měření
- c) obě chyby měření

$$Y = X + \varepsilon$$

$$Y \sim N(\mu_Y, \sigma_Y^2)$$

 $X \sim N(\mu, \sigma^2)$
 $\varepsilon \sim N(\mu_\varepsilon, \sigma_\varepsilon^2)$

- MSA základní charakteristiky
- 1) Strannost míra změny polohy měřené veličiny
- 2) Opakovatelnost míra rozptylu měření veličiny

- x měřená veličina,
- f(x) hustota pravděpodobnosti měřené veličiny x

MSA – základní charakteristiky

5.

- MSA kombinované charakteristiky
- kombinace základních charakteristik
- ucelenější pohled na samotný systém měření např. možnost sledování interakcí
 - 1) R&R měřidla kombinovaná charakteristika opakovatelnosti a reprodukovatelnosti,
 - 2) strannost & linearita kombinovaná charakteristika vzniklá stranností a linearitou systému měření,
 - 3) hodnocení systémů měření pomocí indexů způsobilosti Cg a Cg_k kombinovaná charakteristika strannosti a opakovatelnosti (vzhledem k indexu Cg_k).

MSA – další charakteristiky

- většinou se jedná o kombinace předcházejících druhů

DALŠÍ CHARAKTERISTIKY SYSTÉMU MĚŘENÍ

Systém měření je možné samozřejmě popsat i pomocí jiných charakteristik. Většinou se jedná o kombinace předcházejících druhů a lze je z předcházejících výše uvedených stanovit. Proto jsou zde uvedeny pouze doplňkově.

Přesnost - Pojem přesnosti souvisí s těsností shody mezi průměrnou hodnotou jednoho nebo několika naměřených výsledků a skutečnou (nebo referenční) hodnotou. Pod termínem přesnost se zahrnuje strannost a opakovatelnost.

Shodnost - Shodnost je používána k popisu očekávané variability opakovaných výsledků měření v rozsahu měření - tímto rozsahem může být velikost nebo čas.

Konzistence - Konzistence je rozdíl ve variabilitě měření v čase. Může být považována za opakovatelnost v čase.

Způsobilost - Způsobilost systému měření je odhadem kombinované variability chyb měření (systematických a náhodných) založených na krátkodobém vyhodnocení. Tato způsobilost zahrnuje složky neopravené strannosti nebo linearity a opakovatelnosti a reprodukovatelnosti včetně krátkodobé konzistence.

Výkonnost - Výkonnost systému měření je celkovým účinkem všech významných a stanovitelných zdrojů variability v čase. Výkonnost kvantitativně vyjadřuje dlouhodobé posuzování kombinovaných chyb měření (systematických i náhodných) a zahrnuje složky dlouhodobé chyby způsobilosti, tj. krátkodobé chyby a stability a konzistence.

MSA – strannost

- výpočet $\mu_{\varepsilon} = \mu_{Y} \mu$
- rozdíl mezi střední hodnotou pozorované
 hodnoty Y a skutečnou hodnotou sledovaného znaku jakosti X
- střední hodnota $\mu_{arepsilon}$ normálního rozdělení pravděpodobnosti chyb měření

MSA – strannost

- data pro výpočet strannosti x_i
 se získávají z provozního měření
 (pozorované hodnoty Y) při opakovaném měření v krátkém časovém úseku, na identickém objektu, pevně stanoveným postupem, stejnou obsluhou, na stejném vybavení a stejném místě.
- pro výpočet potřebná referenční hodnota x_{ref}
- počet naměřených hodnot n = 50 (nejméně 25)
- Příklad na etalonu s ref. hodnotou $x_{ref} = 20,302 \ mm$
- byly naměřené následující hodnoty x_i :

20,303	20,311	20,311	20,313	20,306
20,301	20,297	20,309	20,303	20,296
20,304	20,295	20,308	20,308	20,306
20,303	20,302	20,304	20,298	20,299
20,306	20,304	20,298	20,306	20,300
20,296	20,298	20,308	20,303	20,302
20,301	20,295	20,302	20,310	20,303
20,300	20,301	20,294	20,304	20,307
20,307	20,307	20,302	20,309	20,303
20,305	20,312	20,304	20,305	20,305.

skutečná

(nebo referenční)

hodnota

f(x)

průměrná

hodnota

strannost

MSA – strannost

- Statistická významnost

Zjišťování statistické významnosti strannosti se provede testováním významnosti rozdílu mezi průměrnou naměřenou hodnotou provozního měření \overline{x} a referenční hodnotou měřeného objektu x_{ref} .

Je formulována nulová hypotéza ve tvaru $H_0: \overline{x}=x_{ref}$ proti oboustranné alternativní hypotéze $H_A: \overline{x}\neq x_{ref}$. Nulová hypotéza H_0 se zamítá na hladině významnosti α v případě, platí-li

$$|t| > t_{1-\frac{\alpha}{2}}(n-1), \tag{1}$$

kde $t_{1-\frac{\alpha}{2}}(n-1)$ $1-\frac{\alpha}{2}$ -ní kvantil t-rozdělení s n-1 stupni volnosti.

t je vypočtená testovací statistika podle vztahu

$$t = \frac{\overline{x} - x_{ref}}{s} \cdot \sqrt{n} , \qquad (2)$$

kde s je výběrová směrodatná odchylka vyjádřená vztahem

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2} . \tag{3}$$

Je-li nulová hypotéza H_0 zamítnuta, pak je strannost statisticky významná na hladině významnosti α a je třeba ji korigovat.

Příklad:

$$x_{ref} = 20,302$$

$$\bar{x} = 20,30348$$

$$s = 0.00465653$$

$$t = 2,2474$$

$$t_{0.975}(49) = 2,0096$$

H₀ zamítnuta korekční činitel:

odhad
$$\mu_{\rm e} = 0.00148$$

MSA – opakovatelnost

5.

$$\widehat{\sigma}_{\tau}^2 = \widehat{\sigma}_1^2 = EV^2 = s_1^2,$$

 kromě variability uvnitř zařízení zahrnuje opakovatelnost veškerou variabilitu "uvnitř" (dílu, etalonu, metody, operátora, prostředí).

MSA – linearita

- rozdíl mezi hodnotami strannosti v předpokládaném pracovním rozsahu měřidla.
- v praxi se hovoří o linearitě, pokud je střední hodnota systematické chyby μ_{ε} na každém místě v pracovním rozsahu stejně velká (konstantní)
- data pro odhad linearity: nejméně 5 vzorků, jejichž pozorované hodnoty jsou v celém pracovním rozsahu
 - prostřednictvím přesnějšího měřidla zjištěna referenční hodnota
 - každý vzorek je následně nejméně 12-krát změřen

MSA – homogenita

- sledování opakovatelnosti v běžném provozním rozsahu měřidla.
- rozptyly rozdělení chyb měření \mathcal{E} pro jednotlivé referenční hodnoty provozního rozsahu měřidla.
- data pro testování významnosti stejný způsobem pomocí stejného experimentu jako data pro testování linearity

MSA – stabilita

- celková variabilita v měřeních získaná měřicím systémem
 - na stejném etalonu nebo výrobku (výrobcích)
 - při měření jediné charakteristiky v delším časovém úseku.
- pomocí stability se tedy sleduje změna strannosti v čase.
- data pro výpočet stability
 - opakované měření v delším časovém úseku, na identickém objektu nebo objektech, pevně stanoveným postupem, stejnou obsluhou, na stejném vybavení a stejném místě.
 - naměřené hodnoty se vynášejí do regulačního diagramu

MSA – reprodukovatelnost

- Pojetí I: variabilita průměrů měření provedených různými operátory při použití stejného měřidla při měření znaku u jednoho dílu
- Pojetí II: pod termín reprodukovatelnost zahrnován také vliv různých měřicích pracovišť, různého přístrojového vybavení nebo vliv různého prostředí (teplota, vlhkost). Z tohoto důvodu se reprodukovatelnost nazývá průměrnou variabilitou mezi systémy nebo mezi podmínkami měření.
- Data v krátkém časovém úseku, na identickém objektu (nebo objektech), pevně stanoveným postupem, pevně stanovenými postupy, specifikovanou obsluhou, na definovaném vybavení a definovaných místech.

MSA – R&R měřidla

METODA ZALOŽENÁ NA PRŮMĚRU A ROZPĚTÍ

Metoda založená na průměru a rozpětí je způsob, který poskytuje jak odhad opakovatelnosti, tak i reprodukovatelnosti systému měření. Data se získávájí obvykle třemi opakováními (m=3) měření na více než pěti vzorcích (g>5) třemi operátory (n=3). Doporučuje se volit g>15, obvykle se ale používá g=10.

Pro každý vzorek a operátora se určí rozpětí R_{ik} z naměřených m opakování, tj.

$$R_{ik} = \left| \max \left(x_{ijk} \right) - \min \left(x_{ijk} \right) \right|_{*} \tag{6}$$

pro

$$i = 1..g$$
, $j = 1..m$, $k = 1..n$,

kde x_{ijk}

je naměřená hodnota na *i*-tém vzorku při *j*-tém měření *k*-tým operátorem.

Dále se vypočítá průměrné rozpětí \overline{R}_k jednotlivých operátorů, tj.

$$\overline{R}_k = \frac{1}{g} \sum_{i=1}^g R_{ik} \tag{7}$$

a celkové průměrné rozpětí $\overline{\overline{R}}$

$$\overline{\overline{R}} = \frac{1}{n} \sum_{k=1}^{n} \overline{R}_{k} . \tag{8}$$

^{5.} i = jednotlivé vzorky, j = jednotlivá měření, k = jednotliví operátoři

i = jednotlivé vzorky, j = jednotlivá měření, k = jednotliví operátoři

MSA – R&R měřidla

Poznámka: pozor na vzoreček (9)!

Určí se aritmetický průměr x_{ik} pro každý vzorek a operátora z m opakování

$$x_{ik} = \frac{1}{j} \sum_{j=1}^{m} x_{ijk} \ , \tag{9}$$

aritmetický průměr x̄ pro každého operátora

$$\overline{x}_k = \frac{1}{g} \sum_{i=1}^g x_{ik} \,, \tag{10}$$

aritmetický průměr \bar{x}_i pro každý díl

$$\bar{x}_i = \frac{1}{mn} \sum_{k=1}^n \sum_{j=1}^m x_{ijk} , \qquad (11)$$

a celkový aritmetický průměr \bar{x}

$$\overline{\overline{x}} = \frac{1}{n} \sum_{k=1}^{n} \overline{x}_k = \frac{1}{g} \sum_{i=1}^{g} \overline{x}_i . \tag{12}$$

Z aritmetických průměrů se určí rozpětí R_k mezi operátory

$$R_{k} = \max(\bar{x}_{k}) - \min(\bar{x}_{k}), \tag{13}$$

a rozpětí R, mezi díly

$$R_{i} = \max(\overline{x}_{i}) - \min(\overline{x}_{i}). \tag{14}$$

MSA – R&R měřidla

Opakovatelnost EV je pak určena vztahem

$$EV = K_1 \overline{\overline{R}} , \qquad (15)$$

kde K_1

je K_1 -faktor, který je funkcí počtu opakování m a součinu počtu vzorků g a operátorů n a je tabelizován v podobě $d_2^{\bullet} = 1/K_1$.

Reprodukovatelnost AV je určena vztahem

$$AV = \sqrt{(K_2 R_k)^2 - \frac{(EV)^2}{gm}} \,, \tag{16}$$

kde K_2

je K_2 -faktor, který je funkcí počtu vzorků g a operátorů n a je tabelizován v podobě $d_2^* = 1/K_2$.

Vzhledem k tomu, že variabilita operátora je ovlivněna opakovatelností, musí se upravit reprodukovatelnost odečtením variability způsobené opakovatelností.

Hodnota GRR se určí sumací rozptylů opakovatelnosti a reprodukovatelnosti vztahem

$$GRR = \sqrt{(EV)^2 + (AV)^2} . \tag{17}$$

což je vztah (1). Z předchozího lze určit variabilitu mezi vzorky PV (Part Variation)

$$PV = K_3 R_i \,, \tag{18}$$

kde K_3

je K_3 -faktor, který je funkcí počtu vzorků g a je tabelizován v podobě $d_2^{\bullet} = 1/K_3$,

MSA – R&R měřidla

a celková variabilita TV (Total Variation) jako sumace rozptylů opakovatelnosti, reprodukovatelnosti a variability mezi vzorky

$$TV = \sqrt{(EV)^2 + (AV)^2 + (PV)^2} \ . \tag{19}$$

Procentuální vyjádření jednotlivých variabilit EV, AV, GRR a PV se provede vztažením k hodnotě TV (nebo ke směrodatné odchylce procesu σ), např.

$$GRR[\%] = \left(\frac{GRR}{TV}\right)100. \tag{20}$$

V případě, že tento vypočtená hodnota GRR[%] je

menší než 10 %, pak se systém měření obecně považuje za přijatelný,

mezi 10 – 30 %, systém může být přijatelný podle důležitosti použití, nákladů vynaložených na měřicí zařízení, nákladů na opravu atd.

větší než 30 %, systém se považuje za nepřijatelný, veškeré úsilí se musí vynaložit na zlepšení systému.

- MSA ukazatelé způsobilosti c_q a c_{qk}
- hodnocení variability vzniklé stranností a opakovatelností
- index c_q zohledňuje pouze opakovatelnost měření,
- index c_{qk} strannost i opakovatelnost měření.
- hodnocení se provádí před použitím měřicího prostředku.
- při výpočtu těchto indexů způsobilosti je nutno respektovat požadavek zákazníka na konstrukci těchto indexů (vhodný výběr metodiky a konstant pro výpočet indexů).
- data opakované měření etalonu o jmenovité hodnotě odpovídající středu tolerančního rozpětí. Měření provádí jeden pracovník jedním měřidlem v místě používání, nejméně 25 měření (50 měření)

• MSA – ukazatelé způsobilosti c_q a c_{qk}

Indexy způsobilosti měřicích prostředků c_g , c_{gk} se obecně určí podle vztahů

$$c_{\mathbf{g}} = \frac{k_1 \cdot T}{k_2 \cdot s},\tag{1}$$

$$c_{gk} = \frac{k_1 \cdot T - 2 \cdot \left| x_{ref} - \overline{x} \right|}{k_2 \cdot s} \,. \tag{2}$$

kde T

T = USL - LSL je tolerance (technická specifikace) daná rozdílem mezi horní a dolní toleranční mezi USL a LSL,

 k_1, k_2

zvolené konstanty podle vybrané metodiky (viz níže).

Tyto indexy porovnávají určitý podíl šířky tolerančního pole s šířkou pásma variability naměřených hodnot. Při porovnání obou indexů způsobilosti platí, že $c_{gk} \leq c_g$. Systém měření se považuje za způsobilý, jestliže hodnota indexu způsobilosti měřicího prostředku

$$c_{ek} > c_{emin}$$
 (3)

Metodika podle	k_1	k_2	C _{gmin}	$\frac{6 \cdot k_1}{c_{g\min} \cdot k_2} \cdot 100$
General Motors, Bosch	0,2	6	1,33	15 %
Ford	0,15	6	1	15 %
předpisy pro automobilový průmysl ¹	0,2	4	1,33	22,5 %

¹ obecné předpisy vycházely z požadavku 4 σ (95 %-ní spolehlivost) a přípouštěly tím vyšší variabilitu měřidel v rámci variability naměřených hodnot (22,5 %)

Děkuji za pozornost

• Ak.r. 2015/16