玩转 Milk-V Duo

Camera & Yolov5

本章内容

- Camera GC2083 的使用
- Yolov5 图形检测算法

CAM-GC2083

传感器尺寸	1/3英寸
分辨率	200万像素
有效图像尺寸	1920*1080
帧率	30 fps
动态范围	74dB
功耗	128mW

开始前的准备

写入 duo-buildroot-sdk 生成的 image

https://github.com/milkv-duo/duo-buildroot-sdk/releases/tag/Duo-V1.1.0

连接 GC2083 和 MILKV Duo

通过 usb 将 duo 和电脑连接

运行 camera-test.sh

camera-test 实现

https://github.com/milkv-duo/cvitek-tdl-sdk-cv180x/blob/main/sample/cvi_tdl/sample_vi_fd.c

1. run_tdl_thread

从 VPSS 获取视频帧, 使用 TDL 进行人脸检测并存储

2. run_venc

从 VPSS 获取视频帧, 在帧上绘制人脸矩形框, 通过 RTSP 发送处理后的视频

API参考链接:

YoloV5 图形检测(Duo 256M)

https://doc.sophgo.com/cvitek-develop-docs/master/docs_latest_release/CV180x_CV181x/zh/01.software/TPU/YOLO_Development_Guide/build/html/3_Yolov5_development.html#

仓库:

- 1. https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x
- 2. https://github.com/sophgo/tpu-mlir

步骤:

- 1. pt 模型转 onnx 模型
- 2. 准备 TPU-MLIR 环境 docker pull sophgo/tpuc_dev:latest
- 3. onnx 转 MLIR 模型
- 4. MLIR 转 INT8 模型
- 5. 板端推理

谢谢

Scan the QR code to add me as friend

微信 (备注 milkv duo)

QQ