LinearAlgebraFor-CAP

Category of Matrices over a Field for CAP

2024.10-01

24 October 2024

Sebastian Gutsche

Sebastian Posur

Fabian Zickgraf

Sebastian Gutsche

Email: gutsche@mathematik.uni-siegen.de Homepage: https://sebasguts.github.io/

Address: Department Mathematik Universität Siegen Walter-Flex-Straße 3

57068 Siegen Germany

Sebastian Posur

Email: sebastian.posur@uni-siegen.de

 $Homepage: \verb|https://sebastianpos.github.io||$

Address: Department Mathematik Universität Siegen Walter-Flex-Straße 3

57068 Siegen Germany

Fabian Zickgraf

Email: fabian.zickgraf@uni-siegen.de Homepage: https://github.com/zickgraf/

Address: Walter-Flex-Str. 3 57068 Siegen Germany

Contents

1	Cate	gory of Matrices	3
	1.1	Constructors	3
	1.2	Attributes	4
	1.3	GAP Categories	4
2	Exar	nples and Tests	6
	2.1	Basic Commands	6
	2.2	Functors	11
	2.3	Homology object	12
	2.4	Liftable	13
	2.5	Monoidal structure	14
	2.6	MorphismFromSourceToPushout and MorphismFromFiberProductToSink	15
	2.7	Opposite category	16
	2.8	PreComposeList and PostComposeList	17
	2.9	Split epi summand	17
	2.10	Kernel	18
		FiberProduct	19
		WrapperCategory	19
In	dov		21

Chapter 1

Category of Matrices

1.1 Constructors

1.1.1 MatrixCategory (for IsFieldForHomalg)

MatrixCategory(F)

(operation)

Returns: a category

The argument is a homalg field F. The output is the matrix category over F. Objects in this category are non-negative integers. Morphisms from a non-negative integer m to a non-negative integer n are given by $m \times n$ matrices.

1.1.2 VectorSpaceMorphism (for IsVectorSpaceObject, IsHomalgMatrix, IsVectorSpaceObject)

 \triangleright VectorSpaceMorphism(S, M, R)

(operation)

Returns: a morphism in Hom(S,R)

The arguments are an object S in the category of matrices over a homalg field F, a homalg matrix M over F, and another object R in the category of matrices over F. The output is the morphism $S \to R$ in the category of matrices over F whose underlying matrix is given by M.

1.1.3 VectorSpaceObject (for IsInt, IsFieldForHomalg)

▷ VectorSpaceObject(d, F)

(operation)

Returns: an object

The arguments are a non-negative integer d and a homalg field F. The output is an object in the category of matrices over F of dimension d. This function delegates to MatrixCategoryObject.

1.1.4 MatrixCategoryObject (for IsMatrixCategory, IsInt)

▷ MatrixCategoryObject(cat, d)

(operation)

Returns: an object

The arguments are a matrix category cat over a field and a non-negative integer d. The output is an object in cat of dimension d.

1.1.5 MatrixCategory_as_CategoryOfRows (for IsFieldForHomalg)

(operation)

Returns: a category

The argument is a homalg field F. The output is the matrix category over F, constructed internally as a wrapper category of the CategoryOfRows of F. Only available if the package FreydCategoriesForCAP is available.

1.2 Attributes

1.2.1 UnderlyingFieldForHomalg (for IsVectorSpaceMorphism)

□ UnderlyingFieldForHomalg(alpha)

(attribute)

Returns: a homalg field

The argument is a morphism α in the matrix category over a homalg field F. The output is the field F.

1.2.2 UnderlyingMatrix (for IsVectorSpaceMorphism)

▷ UnderlyingMatrix(alpha)

(attribute)

Returns: a homalg matrix

The argument is a morphism α in a matrix category. The output is its underlying matrix M.

1.2.3 UnderlyingFieldForHomalg (for IsVectorSpaceObject)

▷ UnderlyingFieldForHomalg(A)

(attribute)

Returns: a homalg field

The argument is an object A in the matrix category over a homalg field F. The output is the field F.

1.2.4 Dimension (for IsVectorSpaceObject)

Dimension(A)

(attribute)

Returns: a non-negative integer

The argument is an object A in a matrix category. The output is the dimension of A.

1.3 GAP Categories

1.3.1 IsVectorSpaceMorphism (for IsCapCategoryMorphism)

▷ IsVectorSpaceMorphism(object)

(filter)

Returns: true or false

The GAP category of morphisms in the category of matrices of a field F.

1.3.2 IsVectorSpaceObject (for IsCapCategoryObject)

▷ IsVectorSpaceObject(object)

(filter)

Returns: true or false

The GAP category of objects in the category of matrices of a field F.

Chapter 2

Examples and Tests

2.1 Basic Commands

```
gap> LoadPackage( "LinearAlgebraForCAP", false );
gap> Q := HomalgFieldOfRationals();;
gap> vec := MatrixCategory( Q );;
gap> a := MatrixCategoryObject( vec, 3 );
<A vector space object over Q of dimension 3>
gap> IsProjective( a );
true
gap> ap := 3/vec;;
gap> IsEqualForObjects( a, ap );
gap> b := MatrixCategoryObject( vec, 4 );
<A vector space object over Q of dimension 4>
gap> homalg_matrix := HomalgMatrix( [ [ 1, 0, 0, 0 ],
                                    [0, 1, 0, -1],
                                    [-1, 0, 2, 1], 3, 4, \mathbb{Q});;
gap> alpha := VectorSpaceMorphism( a, homalg_matrix, b );
<A morphism in Category of matrices over Q>
```

```
gap> CokernelObject( alpha );
<A vector space object over Q of dimension 1>
gap> c := CokernelProjection( alpha );;
gap> Display( EntriesOfHomalgMatrixAsListList( UnderlyingMatrix( c ) ) );
[ [ 0 ], [ 1 ], [ -1/2 ], [ 1 ] ]
gap> gamma := UniversalMorphismIntoDirectSum( [ c, c ] );;
gap> Display( EntriesOfHomalgMatrixAsListList( UnderlyingMatrix( gamma ) ) );
[ [ 0, 0 ], [ 1, 1 ], [ -1/2, -1/2 ], [ 1, 1 ] ]
gap> colift := CokernelColift( alpha, gamma );;
gap> IsEqualForMorphisms( PreCompose( c, colift ), gamma );
true
gap> FiberProduct( alpha, beta );
<A vector space object over Q of dimension 2>
gap> F := FiberProduct( alpha, beta );
<A vector space object over Q of dimension 2>
gap> p1 := ProjectionInFactorOfFiberProduct( [ alpha, beta ], 1 );
{\ \ }^{\ } Morphism in Category of matrices over {\ \ }
gap> Display( EntriesOfHomalgMatrixAsListList( UnderlyingMatrix( PreCompose( p1, alpha ) ) ) );
[ [0, 1, 0, -1], [-1, 0, 2, 1] ]
gap> Pushout( alpha, beta );
<A vector space object over Q of dimension 5>
gap> i1 := InjectionOfCofactorOfPushout( [ alpha, beta ], 1 );
<A morphism in Category of matrices over Q>
gap> i2 := InjectionOfCofactorOfPushout( [ alpha, beta ], 2 );
<A morphism in Category of matrices over Q>
gap> u := UniversalMorphismFromDirectSum( [ b, b ], [ i1, i2 ] );
<A morphism in Category of matrices over Q>
                                    Example
gap> # @drop_example_in_Julia: differences in the output of SyzygiesOfRows, see https://github.co
> Display( EntriesOfHomalgMatrixAsListList( UnderlyingMatrix( u ) ) );
[[0, 1, 1, 0, 0],\
 [ 1, 0, 1, 0, -1 ],\
 [-1/2, 0, 1/2, 1, 1/2], \
 [1, 0, 0, 0, 0],
 [ 0, 1, 0, 0, 0 ],\
 [0,0,1,0,0],\
 [0,0,0,1,0],\
 [0,0,0,0,1]]
                                   Example
gap > KernelObjectFunctorial( u, IdentityMorphism( Source( u ) ), u ) = IdentityMorphism( MatrixCa
gap> IsZeroForMorphisms( CokernelObjectFunctorial( u, IdentityMorphism( Range( u )| ), u ) );
gap> DirectProductFunctorial( [ u, u ] ) = DirectSumFunctorial( [ u, u ] );
```

FiberProductFunctorial([u, u], [IdentityMorphism(Source(u)), IdentityMorphism(Source(u))

gap> CoproductFunctorial([u, u]) = DirectSumFunctorial([u, u]);

IdentityMorphism(FiberProduct([u, u]))

true

>);
true

gap> IsCongruentForMorphisms(

```
gap> IsCongruentForMorphisms(
      PushoutFunctorial([u, u], [IdentityMorphism(Range(u)), IdentityMorphism(Range(u)
>
      IdentityMorphism( Pushout( [ u, u ] ) )
>);
true
gap> IsCongruentForMorphisms( ((1/2) / Q) * alpha, alpha * ((1/2) / Q));
gap> Dimension( HomomorphismStructureOnObjects( a, b ) ) = Dimension( a ) * Dimension( b );
true
gap> IsCongruentForMorphisms(
      PreCompose( [ u, DualOnMorphisms( i1 ), DualOnMorphisms( alpha ) ] ),
      InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism(Source(u), Sou
>
           PreCompose(
>
               InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( DualOnl
               HomomorphismStructureOnMorphisms( u, DualOnMorphisms( alpha ) )
>
>
      )
>);
true
gap> op := Opposite( vec );;
gap> alpha_op := Opposite( op, alpha );
<A morphism in Opposite( Category of matrices over Q )>
gap> basis := BasisOfExternalHom( Source( alpha_op ), Range( alpha_op ) );;
gap> coeffs := CoefficientsOfMorphism( alpha_op );;
gap> Display( coeffs );
[1, 0, 0, 0, 0, 1, 0, -1, -1, 0, 2, 1]
gap> IsEqualForMorphisms( alpha_op, LinearCombinationOfMorphisms( Source( alpha_op ), coeffs, bas
true
gap> vec := CapCategory( alpha );;
gap> t := TensorUnit( vec );;
gap> z := ZeroObject( vec );;
gap> IsCongruentForMorphisms(
      ZeroObjectFunctorial( vec ),
      InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism(z, z, ZeroMorphism)
>);
true
gap> IsCongruentForMorphisms(
      ZeroObjectFunctorial( vec ),
      InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism(
>
>
          InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure(ZeroObjectFi
>
      )
>);
gap> right_side := PreCompose( [ i1, DualOnMorphisms( u ), u ] );;
gap> x := SolveLinearSystemInAbCategory( [ [ i1 ] ], [ [ u ] ], [ right_side ] )[1];;
gap> IsCongruentForMorphisms( PreCompose( [ i1, x, u ] ), right_side );
true
gap> a_otimes_b := TensorProductOnObjects( a, b );
<A vector space object over Q of dimension 12>
gap> hom_ab := InternalHomOnObjects( a, b );
<A vector space object over \mathbb Q of dimension 12>
```

```
gap> cohom_ab := InternalCoHomOnObjects( a, b );
<A vector space object over Q of dimension 12>
gap> hom_ab = cohom_ab;
gap> unit_ab := VectorSpaceMorphism(
            a_otimes_b,
            HomalgIdentityMatrix( Dimension( a_otimes_b ), Q ),
            a_otimes_b
            );
<A morphism in Category of matrices over Q>
gap> unit_hom_ab := VectorSpaceMorphism(
               hom_ab,
                HomalgIdentityMatrix( Dimension( hom_ab ), Q ),
>
>
                hom_ab
              );
<A morphism in Category of matrices over Q>
gap> unit_cohom_ab := VectorSpaceMorphism(
                  cohom_ab,
                  HomalgIdentityMatrix( Dimension( cohom_ab ), Q ),
>
                  cohom ab
                );
<A morphism in Category of matrices over Q>
gap> ev_ab := ClosedMonoidalLeftEvaluationMorphism( a, b );
<A morphism in Category of matrices over Q>
gap> coev_ab := ClosedMonoidalLeftCoevaluationMorphism( a, b );
<A morphism in Category of matrices over Q>
gap> coev_ba := ClosedMonoidalLeftCoevaluationMorphism( b, a );
<A morphism in Category of matrices over Q>
gap> cocl_ev_ab := CoclosedMonoidalLeftEvaluationMorphism( a, b );
<A morphism in Category of matrices over Q>
gap> cocl_ev_ba := CoclosedMonoidalLeftEvaluationMorphism( b, a );
<A morphism in Category of matrices over Q>
gap> cocl_coev_ab := CoclosedMonoidalLeftCoevaluationMorphism( a, b );
<A morphism in Category of matrices over Q>
gap> cocl_coev_ba := CoclosedMonoidalLeftCoevaluationMorphism( b, a );
<A morphism in Category of matrices over Q>
gap> UnderlyingMatrix( ev_ab ) = TransposedMatrix( UnderlyingMatrix( cocl_ev_ab ) |);
gap> UnderlyingMatrix( coev_ab ) = TransposedMatrix( UnderlyingMatrix( cocl_coev_ab ) );
true
gap> UnderlyingMatrix( coev_ba ) = TransposedMatrix( UnderlyingMatrix( cocl_coev_ba ) );
gap> tensor_hom_adj_1_hom_ab := InternalHomToTensorProductLeftAdjunctMorphism( a, b, unit_hom_ab
<A morphism in Category of matrices over Q>
gap > cohom_tensor_adj_1_cohom_ab := InternalCoHomToTensorProductLeftAdjunctMorphism(a,b,unit_c
<A morphism in Category of matrices over Q>
gap> tensor_hom_adj_1_ab := TensorProductToInternalHomLeftAdjunctMorphism( a, b, unit_ab );
<A morphism in Category of matrices over Q>
gap> cohom_tensor_adj_1_ab := TensorProductToInternalCoHomLeftAdjunctMorphism( a, b, unit_ab );
<A morphism in Category of matrices over Q>
gap> ev_ab = tensor_hom_adj_1_hom_ab;
true
```

```
gap> cocl_ev_ba = cohom_tensor_adj_1_cohom_ab;
true
gap> coev_ba = tensor_hom_adj_1_ab;
true
gap> cocl_coev_ba = cohom_tensor_adj_1_ab;
true
gap> c := MatrixCategoryObject( vec, 2 );
<A vector space object over Q of dimension 2>
gap> d := MatrixCategoryObject( vec, 1 );
<A vector space object over Q of dimension 1>
```

```
Example
gap> # @drop_example_in_Julia: MonoidalPreComposeMorphism is very slow because multiplication of
> pre_compose := MonoidalPreComposeMorphism( a, b, c );
<A morphism in Category of matrices over Q>
gap> post_compose := MonoidalPostComposeMorphism( a, b, c );
<A morphism in Category of matrices over Q>
gap> pre_cocompose := MonoidalPreCoComposeMorphism( c, b, a );
<A morphism in Category of matrices over Q>
gap> post_cocompose := MonoidalPostCoComposeMorphism( c, b, a );
<A morphism in Category of matrices over Q>
gap> UnderlyingMatrix( pre_compose ) = TransposedMatrix( UnderlyingMatrix( pre_codompose ) );
gap> UnderlyingMatrix( post_compose ) = TransposedMatrix( UnderlyingMatrix( post_docompose ) );
true
gap> tp_hom_comp := TensorProductInternalHomCompatibilityMorphism( [ a, b, c, d ] );
<A morphism in Category of matrices over Q>
gap> cohom_tp_comp := InternalCoHomTensorProductCompatibilityMorphism( [ b, d, a, |c ] );
<A morphism in Category of matrices over Q>
gap> UnderlyingMatrix( tp_hom_comp ) = TransposedMatrix( UnderlyingMatrix( cohom_tp_comp ) );
true
gap> lambda := LambdaIntroduction( alpha );
<A morphism in Category of matrices over Q>
gap> lambda_elim := LambdaElimination( a, b, lambda );
<A morphism in Category of matrices over Q>
gap> alpha = lambda_elim;
true
gap> alpha_op := VectorSpaceMorphism( b, TransposedMatrix( UnderlyingMatrix( alpha ) ), a );
<A morphism in Category of matrices over Q>
gap> colambda := CoLambdaIntroduction( alpha_op );
<A morphism in Category of matrices over Q>
gap> colambda_elim := CoLambdaElimination( b, a, colambda );
<A morphism in Category of matrices over Q>
gap> alpha_op = colambda_elim;
true
gap> UnderlyingMatrix( lambda ) = TransposedMatrix( UnderlyingMatrix( colambda ) );
true
gap> delta := PreCompose( colambda, lambda);
<A morphism in Category of matrices over Q>
gap> Display( EntriesOfHomalgMatrixAsListList( UnderlyingMatrix( TraceMap( delta ) ) ) );
[[9]]
gap> Display( EntriesOfHomalgMatrixAsListList( UnderlyingMatrix( CoTraceMap( delta ) ) ) );
[[9]]
```

```
gap> TraceMap( delta ) = CoTraceMap( delta );
true
gap> RankMorphism( a ) = CoRankMorphism( a );
true
```

_ Example

2.2 Functors

```
gap> LoadPackage( "LinearAlgebraForCAP", false );
true
gap> ring := HomalgFieldOfRationals( );;
gap> vec := MatrixCategory( ring );;
gap> F := CapFunctor( "CohomForVec", [ vec, [ vec, true ] ], vec );;
gap> obj_func := function( A, B ) return TensorProductOnObjects( A, DualOnObjects( B ) ); end;;
gap> mor_func := function( source, alpha, beta, range ) return TensorProductOnMorphismsWithGiven
gap> AddObjectFunction( F, obj_func );;
gap> AddMorphismFunction( F, mor_func );;
gap> Display( InputSignature( F ) );
[ [ Category of matrices over Q, false ], [ Category of matrices over Q, true ] ]
gap> V1 := TensorUnit( vec );;
gap> V3 := DirectSum( V1, V1, V1 );;
gap> pi1 := ProjectionInFactorOfDirectSum( [ V1, V1 ], 1 );;
gap> pi2 := ProjectionInFactorOfDirectSum( [ V3, V1 ], 1 );;
gap> value1 := ApplyFunctor( F, pi1, pi2 );;
gap> input := ProductCategoryMorphism( AsCapCategory( Source( F ) ), [ pi1, Opposite( pi2 ) ] );
gap> value2 := ApplyFunctor( F, input );;
gap> IsCongruentForMorphisms( value1, value2 );
gap> InstallFunctor( F, "F_installation" );;
gap> F_installation( pi1, pi2 );;
gap> F_installation( input );;
gap> F_installationOnObjects( V1, V1 );;
gap> F_installationOnObjects( ProductCategoryObject( AsCapCategory( Source( F ) ), [ V1, Opposite
gap> F_installationOnMorphisms( pi1, pi2 );;
gap> F_installationOnMorphisms( input );;
gap> F2 := CapFunctor( "CohomForVec2", ProductCategory( [ vec, Opposite( vec ) ] ), vec );;
gap> AddObjectFunction( F2, a -> obj_func( a[1], Opposite( a[2] ) ) );;
gap> AddMorphismFunction( F2, function( source, datum, range ) return mor_func( source, datum[1]
gap> input := ProductCategoryMorphism( AsCapCategory( Source( F2 ) ), [ pi1, Opposite( pi2 ) ] )
gap> value3 := ApplyFunctor( F2, input );;
gap> IsCongruentForMorphisms( value1, value3 );
gap> Display( InputSignature( F2 ) );
[ [ Product of: Category of matrices over Q, Opposite( Category of matrices over Q ), false ] ]
gap> InstallFunctor( F2, "F_installation2" );;
gap> F_installation2( input );;
gap> F_installation20n0bjects( ProductCategoryObject( AsCapCategory( Source( F2 ) )), [ V1, Oppos:
gap> F_installation2OnMorphisms( input );;
```

2.3 Homology object

HomologyObjectFunctorial(

```
Example -
gap> field := HomalgFieldOfRationals();;
gap> vec := MatrixCategory( field );;
gap> A := MatrixCategoryObject( vec, 1 );;
gap> B := MatrixCategoryObject( vec, 2 );;
gap> C := MatrixCategoryObject( vec, 3 );;
gap> alpha := VectorSpaceMorphism( A, HomalgMatrix( [ [ 1, 0, 0 ] ], 1, 3, field ), C );;
gap> beta := VectorSpaceMorphism( C, HomalgMatrix( [ [ 1, 0 ], [ 1, 1 ], [ 1, 2 ] |], 3, 2, field
gap> IsZeroForMorphisms( PreCompose( alpha, beta ) );
false
gap> IsCongruentForMorphisms(
      IdentityMorphism( HomologyObject( alpha, beta ) ),
      HomologyObjectFunctorial( alpha, beta, IdentityMorphism( C ), alpha, beta )
>);
gap> kernel_beta := KernelEmbedding( beta );;
gap> K := Source( kernel_beta );;
gap> IsIsomorphism(
      HomologyObjectFunctorial(
          MorphismFromZeroObject( K ),
          MorphismIntoZeroObject( K ),
>
          kernel_beta,
          MorphismFromZeroObject( Source( beta ) ),
          beta
      )
>
>);
true
gap> cokernel_alpha := CokernelProjection( alpha );;
gap> Co := Range( cokernel_alpha );;
gap> IsIsomorphism(
      HomologyObjectFunctorial(
>
>
          MorphismIntoZeroObject( Range( alpha ) ),
          cokernel_alpha,
          MorphismFromZeroObject( Co ),
>
          MorphismIntoZeroObject( Co )
      )
>
>);
gap> op := Opposite( vec );;
gap> alpha_op := Opposite( op, alpha );;
gap> beta_op := Opposite( op, beta );;
gap> IsCongruentForMorphisms(
      IdentityMorphism( HomologyObject( beta_op, alpha_op ) ),
      HomologyObjectFunctorial(beta_op, alpha_op, IdentityMorphism(Opposite(C))), beta_op, al
>);
true
gap> kernel_beta := KernelEmbedding( beta_op );;
gap> K := Source( kernel_beta );;
gap> IsIsomorphism(
```

```
MorphismFromZeroObject( K ),
>
          MorphismIntoZeroObject( K ),
>
          kernel_beta,
>
          MorphismFromZeroObject( Source( beta_op ) ),
          beta_op
>
>);
true
gap> cokernel_alpha := CokernelProjection( alpha_op );;
gap> Co := Range( cokernel_alpha );;
gap> IsIsomorphism(
      HomologyObjectFunctorial(
>
          alpha_op,
          MorphismIntoZeroObject( Range( alpha_op ) ),
>
          cokernel_alpha,
          MorphismFromZeroObject( Co ),
>
          MorphismIntoZeroObject( Co )
      )
>
>);
true
```

2.4 Liftable

```
_{-} Example _{	ext{-}}
gap> field := HomalgFieldOfRationals();;
gap> vec := MatrixCategory( field );;
gap> V := MatrixCategoryObject( vec, 1 );;
gap> W := MatrixCategoryObject( vec, 2 );;
gap> alpha := VectorSpaceMorphism( V, HomalgMatrix( [ [ 1, -1 ] ], 1, 2, field ), W );;
gap> beta := VectorSpaceMorphism( W, HomalgMatrix( [ [ 1, 2 ], [ 3, 4 ] ], 2, 2, field ), W );;
gap> IsLiftable( alpha, beta );
true
gap> IsLiftable( beta, alpha );
false
gap> IsLiftableAlongMonomorphism( beta, alpha );
gap> gamma := VectorSpaceMorphism( W, HomalgMatrix( [ [ 1 ], [ 1 ] ], 2, 1, field |), V );;
gap> IsColiftable( beta, gamma );
gap> IsColiftable( gamma, beta );
false
gap> IsColiftableAlongEpimorphism( beta, gamma );
gap> PreCompose( PreInverseForMorphisms( gamma ), gamma ) = IdentityMorphism( V );
true
gap> PreCompose( alpha, PostInverseForMorphisms( alpha ) ) = IdentityMorphism( V );
true
```

2.5 Monoidal structure

```
_{-} Example
gap> LoadPackage( "LinearAlgebraForCAP", false );
gap> Q := HomalgFieldOfRationals();;
gap> vec := MatrixCategory( Q );;
gap> a := MatrixCategoryObject( vec, 1 );
<A vector space object over Q of dimension 1>
gap> b := MatrixCategoryObject( vec, 2 );
<A vector space object over Q of dimension 2>
gap> c := MatrixCategoryObject( vec, 3 );
<A vector space object over Q of dimension 3>
gap> z := ZeroObject( vec );
<A vector space object over \mathbb Q of dimension 0>
gap> alpha := VectorSpaceMorphism( a, [ [ 1, 0 ] ], b );
<A morphism in Category of matrices over Q>
gap> beta := VectorSpaceMorphism( b,
                  [[1,0,0],[0,1,0]],c);
<A morphism in Category of matrices over Q>
gap> gamma := VectorSpaceMorphism( c,
                   [[0, 1, 1], [1, 0, 1], [1, 1, 0]], c);
<A morphism in Category of matrices over Q>
gap> IsCongruentForMorphisms(
      TensorProductOnMorphisms( alpha, beta ),
      TensorProductOnMorphisms( beta, alpha )
>);
false
gap> IsCongruentForMorphisms(
      AssociatorRightToLeft(a, b, c),
      IdentityMorphism( TensorProductOnObjects( a, TensorProductOnObjects( b, c ) ) )
>);
true
gap> IsCongruentForMorphisms(
      gamma,
>
      LambdaElimination( c, c, LambdaIntroduction( gamma ) )
>);
true
gap> IsZeroForMorphisms( TraceMap( gamma ) );
gap> IsCongruentForMorphisms(
      RankMorphism( DirectSum( a, b ) ),
>
      RankMorphism( c )
>);
true
gap> IsCongruentForMorphisms(
      Braiding(b, c),
>
      IdentityMorphism( TensorProductOnObjects( b, c ) )
>);
false
gap> IsCongruentForMorphisms(
      PreCompose( Braiding( b, c ), Braiding( c, b ) ),
      IdentityMorphism( TensorProductOnObjects( b, c ) )
>);
```

true

2.6 MorphismFromSourceToPushout and MorphismFromFiberProductToSink

```
Example .
gap> field := HomalgFieldOfRationals( );;
gap> vec := MatrixCategory( field );;
gap> A := MatrixCategoryObject( vec, 3 );;
gap> B := MatrixCategoryObject( vec, 2 );;
gap> alpha := VectorSpaceMorphism( B, HomalgMatrix( [ [ 1, -1, 1 ], [ 1, 1, 1 ] ], 2, 3, field )
gap> beta := VectorSpaceMorphism( B, HomalgMatrix( [ [ 1, 2, 1 ], [ 2, 1, 1 ] ], 2, 3, field ), A
gap> m := MorphismFromFiberProductToSink( [ alpha, beta ] );;
gap> IsCongruentForMorphisms(
      PreCompose( ProjectionInFactorOfFiberProduct( [ alpha, beta ], 1 ), alpha )
> );
true
gap> IsCongruentForMorphisms(
      PreCompose( ProjectionInFactorOfFiberProduct( [ alpha, beta ], 2 ), beta )
>);
true
gap> IsCongruentForMorphisms(
> MorphismFromKernelObjectToSink(alpha),
>
      PreCompose( KernelEmbedding( alpha ), alpha )
>);
true
gap> alpha_p := DualOnMorphisms( alpha );;
gap> beta_p := DualOnMorphisms( beta );;
gap> m_p := MorphismFromSourceToPushout( [ alpha_p, beta_p ] );;
gap> IsCongruentForMorphisms(
>
      PreCompose( alpha_p, InjectionOfCofactorOfPushout( [ alpha_p, beta_p ], 1 ) |)
>);
true
gap> IsCongruentForMorphisms(
      PreCompose( beta_p, InjectionOfCofactorOfPushout( [ alpha_p, beta_p ], 2 ) )
>);
gap> IsCongruentForMorphisms(
      MorphismFromSourceToCokernelObject( alpha_p ),
      PreCompose( alpha_p, CokernelProjection( alpha_p ) )
>);
true
```

2.7 Opposite category

```
Example
gap> LoadPackage( "LinearAlgebraForCAP", ">= 2024.01-04", false );
gap> QQ := HomalgFieldOfRationals();;
gap> vec := MatrixCategory( QQ );;
gap> op := Opposite( vec );;
gap> Display( ListKnownCategoricalProperties( op ) );
[ "IsAbCategory", "IsAbelianCategory", "IsAbelianCategoryWithEnoughInjectives", \
\verb|"IsBraidedMonoidalCategory", "IsCategoryWithInitialObject", \verb|\| |
 "IsCategoryWithTerminalObject", "IsCategoryWithZeroObject", \
 "IsClosedMonoidalCategory", "IsCoclosedMonoidalCategory", \
 "IsEnrichedOverCommutativeRegularSemigroup", \
 "IsEquippedWithHomomorphismStructure", "IsLinearCategoryOverCommutativeRing",\
 "IsLinearCategoryOverCommutativeRingWithFinitelyGeneratedFreeExternalHoms",\
 "IsMonoidalCategory", "IsPreAbelianCategory", \
 \verb|"IsRigidSymmetricClosedMonoidalCategory", \verb|\| |
 "IsRigidSymmetricCoclosedMonoidalCategory", "IsSkeletalCategory", \
 "IsStrictMonoidalCategory", "IsSymmetricClosedMonoidalCategory", \
 gap> V1 := Opposite( TensorUnit( vec ) );;
gap> V2 := DirectSum( V1, V1 );;
gap> V3 := DirectSum( V1, V2 );;
gap> V4 := DirectSum( V1, V3 );;
gap> V5 := DirectSum( V1, V4 );;
gap> IsWellDefined( MorphismBetweenDirectSums( op, [ ], [ ], [ V1 ] ) );
gap> IsWellDefined( MorphismBetweenDirectSums( op, [ V1 ], [ [ ] ) );
gap> alpha13 := InjectionOfCofactorOfDirectSum( [ V1, V2 ], 1 );;
gap> alpha14 := InjectionOfCofactorOfDirectSum( [ V1, V2, V1 ], 3 );;
gap> alpha15 := InjectionOfCofactorOfDirectSum( [ V2, V1, V2 ], 2 );;
gap> alpha23 := InjectionOfCofactorOfDirectSum( [ V2, V1 ], 1 );;
gap> alpha24 := InjectionOfCofactorOfDirectSum( [ V1, V2, V1 ], 2 );;
gap> alpha25 := InjectionOfCofactorOfDirectSum( [ V2, V2, V1 ], 1 );;
gap> mat := [
     [ alpha13, alpha14, alpha15 ],
      [ alpha23, alpha24, alpha25 ]
gap> mor := MorphismBetweenDirectSums( mat );;
gap> IsWellDefined( mor );
gap> IsWellDefined( Opposite( mor ) );
true
gap> IsCongruentForMorphisms(
     UniversalMorphismFromImage(mor, [CoastrictionToImage(mor), ImageEmbedding(mor)]),
     IdentityMorphism( ImageObject( mor ) )
>);
true
```

2.8 PreComposeList and PostComposeList

```
Example
gap> field := HomalgFieldOfRationals();;
gap> vec := MatrixCategory( field );;
gap> A := MatrixCategoryObject( vec, 1 );;
gap> B := MatrixCategoryObject( vec, 2 );;
gap> C := MatrixCategoryObject( vec, 3 );;
gap> alpha := VectorSpaceMorphism( A, HomalgMatrix( [ [ 1, 0, 0 ] ], 1, 3, field ), C );;
gap> beta := VectorSpaceMorphism( C, HomalgMatrix( [ [ 1, 0 ], [ 1, 1 ], [ 1, 2 ] |], 3, 2, field
gap> IsCongruentForMorphisms( PreCompose( alpha, beta ), PostCompose( beta, alpha ) );
gap> IsCongruentForMorphisms( PreComposeList( A, [ ], A ), IdentityMorphism( A ) );
gap> IsCongruentForMorphisms( PreComposeList( A, [ alpha ], C ), alpha );
gap> IsCongruentForMorphisms( PreComposeList( A, [ alpha, beta ], B ), PreCompose( alpha, beta )
gap> IsCongruentForMorphisms( PostComposeList( A, [ ], A ), IdentityMorphism( A ) |);
gap> IsCongruentForMorphisms( PostComposeList( A, [ alpha ], C ), alpha );
true
gap> IsCongruentForMorphisms( PostComposeList( A, [ beta, alpha ], B ), PostCompose( beta, alpha
true
```

2.9 Split epi summand

```
_ Example .
gap> LoadPackage( "LinearAlgebraForCAP", false );
true
gap> Q := HomalgFieldOfRationals();;
gap> Qmat := MatrixCategory( Q );;
gap> a := MatrixCategoryObject( Qmat, 3 );;
gap> b := MatrixCategoryObject( Qmat, 4 );;
gap> homalg_matrix := HomalgMatrix( [ [ 1, 0, 0, 0 ],
                                    [0, 1, 0, -1],
                                    [-1, 0, 2, 1], 3, 4, Q);;
gap> alpha := VectorSpaceMorphism( a, homalg_matrix, b );;
gap> beta := SomeReductionBySplitEpiSummand( alpha );;
gap> IsWellDefinedForMorphisms( beta );
gap> Dimension( Source( beta ) );
gap> Dimension( Range( beta ) );
gap> gamma := SomeReductionBySplitEpiSummand_MorphismFromInputRange( alpha );;
gap> Display( EntriesOfHomalgMatrixAsListList( UnderlyingMatrix( gamma ) ) );
[ [ 0 ], [ 1 ], [ -1/2 ], [ 1 ] ]
```

```
gap> # @drop_example_in_Julia: differences in the output of (Safe)RightDivide, see
    https://githuk
    delta := SomeReductionBySplitEpiSummand_MorphismToInputRange( alpha );;
    gap> Display( EntriesOfHomalgMatrixAsListList( UnderlyingMatrix( delta ) ) );
```

```
[[0, 1, 0, 0]]
```

2.10 Kernel

```
Example -
gap> Q := HomalgFieldOfRationals();;
gap> vec := MatrixCategory( Q );;
gap> V := MatrixCategoryObject( vec, 2 );
<A vector space object over Q of dimension 2>
gap> W := MatrixCategoryObject( vec, 3 );
<A vector space object over Q of dimension 3>
gap> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W );
<A morphism in Category of matrices over Q>
gap> k := KernelObject( alpha );
<A vector space object over Q of dimension 1>
gap> T := MatrixCategoryObject( vec, 2 );
<A vector space object over Q of dimension 2>
gap> tau := VectorSpaceMorphism( T, [ [ 2, 2 ], [ 2, 2 ] ], V );
<A morphism in Category of matrices over Q>
gap> k_lift := KernelLift( alpha, tau );
<A morphism in Category of matrices over Q>
gap> HasKernelEmbedding( alpha );
false
gap> KernelEmbedding( alpha );
{\tt <A} split monomorphism in Category of matrices over {\tt Q>}
```

```
_{-} Example .
gap> Q := HomalgFieldOfRationals();;
gap> vec := MatrixCategory( Q );;
gap> V := MatrixCategoryObject( vec, 2 );
<A vector space object over Q of dimension 2>
gap> W := MatrixCategoryObject( vec, 3 );
<A vector space object over Q of dimension 3>
gap> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W );
<A morphism in Category of matrices over Q>
gap> k := KernelObject( alpha );
<A vector space object over Q of dimension 1>
gap> T := MatrixCategoryObject( vec, 2 );
<A vector space object over Q of dimension 2>
gap> tau := VectorSpaceMorphism( T, [ [ 2, 2 ], [ 2, 2 ] ], V );
<A morphism in Category of matrices over Q>
gap> k_lift := KernelLift( alpha, tau );
<A morphism in Category of matrices over Q>
gap> HasKernelEmbedding( alpha );
false
```

```
gap> Q := HomalgFieldOfRationals();;
gap> vec := MatrixCategory( Q );;
gap> V := MatrixCategoryObject( vec, 2 );
<A vector space object over Q of dimension 2>
gap> W := MatrixCategoryObject( vec, 3 );
<A vector space object over Q of dimension 3>
```

```
gap> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W );
<A morphism in Category of matrices over Q>
gap> k := KernelObject( alpha );
<A vector space object over Q of dimension 1>
gap> k_emb := KernelEmbedding( alpha );
<A split monomorphism in Category of matrices over Q>
gap> IsEqualForObjects( Source( k_emb ), k );
gap> V := MatrixCategoryObject( vec, 2 );
<A vector space object over Q of dimension 2>
gap> W := MatrixCategoryObject( vec, 3 );
<A vector space object over Q of dimension 3>
gap> beta := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W );
<A morphism in Category of matrices over Q>
gap> k_emb := KernelEmbedding( beta );
<A split monomorphism in Category of matrices over Q>
gap> IsIdenticalObj( Source( k_emb ), KernelObject( beta ) );
true
```

2.11 FiberProduct

```
_ Example
gap> Q := HomalgFieldOfRationals();;
gap> vec := MatrixCategory( Q );;
gap> A := MatrixCategoryObject( vec, 1 );
<A vector space object over Q of dimension 1>
gap> B := MatrixCategoryObject( vec, 2 );
<A vector space object over Q of dimension 2>
gap> C := MatrixCategoryObject( vec, 3 );
<A vector space object over Q of dimension 3>
gap> AtoC := VectorSpaceMorphism( A, [ [ 1, 2, 0 ] ], C );
<A morphism in Category of matrices over Q>
gap> BtoC := VectorSpaceMorphism( B, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], C );
<A morphism in Category of matrices over Q>
gap> P := FiberProduct( AtoC, BtoC );
<A vector space object over Q of dimension 1>
gap> p1 := ProjectionInFactorOfFiberProduct( [ AtoC, BtoC ], 1 );
<A morphism in Category of matrices over Q>
gap> p2 := ProjectionInFactorOfFiberProduct( [ AtoC, BtoC ], 2 );
<A morphism in Category of matrices over Q>
```

2.12 WrapperCategory

```
gap> LoadPackage( "LinearAlgebraForCAP", false );
true
gap> Q := HomalgFieldOfRationals();;
gap> Qmat := MatrixCategory(Q);
Category of matrices over Q
gap> Wrapper := WrapperCategory(Qmat, rec());
WrapperCategory(Category of matrices over Q)
```

```
gap> mor := ZeroMorphism( ZeroObject( Wrapper ), ZeroObject( Wrapper ) );;
gap> (2 / Q) * mor;;
gap> BasisOfExternalHom( Source( mor ), Range( mor ) );;
gap> CoefficientsOfMorphism( mor );;
gap> distinguished_object := DistinguishedObjectOfHomomorphismStructure( Wrapper );;
gap> object := HomomorphismStructureOnObjects( Source( mor ), Source( mor ) );;
gap> HomomorphismStructureOnMorphisms( mor, mor );;
gap> HomomorphismStructureOnMorphismsWithGivenObjects( object, mor, mor, object );;
gap> iota := InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( mor );;
gap> InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructureWithGivenObjects( capp> beta := InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( mapp) IsCongruentForMorphisms( mor, beta );
true
```

Index

```
Dimension
    for IsVectorSpaceObject, 4
{\tt IsVectorSpaceMorphism}
    for IsCapCategoryMorphism, 4
IsVectorSpaceObject
    for IsCapCategoryObject, 5
MatrixCategory
    for IsFieldForHomalg, 3
MatrixCategoryObject
    for IsMatrixCategory, IsInt, 3
{\tt MatrixCategory\_as\_CategoryOfRows}
    for IsFieldForHomalg, 4
UnderlyingFieldForHomalg
    for IsVectorSpaceMorphism, 4
    for IsVectorSpaceObject, 4
{\tt UnderlyingMatrix}
    for IsVectorSpaceMorphism, 4
VectorSpaceMorphism
    for IsVectorSpaceObject, IsHomalgMatrix,
        IsVectorSpaceObject, 3
VectorSpaceObject
    for IsInt, IsFieldForHomalg, 3
```