Practical Round-Optimal Blind Signatures in the Standard Model from Weaker Assumptions

G. Fuchsbauer*, C. Hanser[†] C. Kamath[‡], and D. Slamanig[†]

*École Normale Supérieure, Paris †IAIK, Graz University of Technology, Austria ‡Institute of Science and Technology Austria

September 2, 2016

Blind Signatures

2/22

Overview

- Desiderata:
 - 1. Round-optimality (hence efficiency and composability)
 - 2. No heuristic assumptions
 - 3. No set-up assumptions
- ► Hard to construct: [FS10]
- ▶ Possibility: [GG14,GRS+11]
- ▶ First practical scheme: [FHS15]
 - ► SPS-EQ + commitments
 - ightharpoonup -CDH, EUF-CMA \Longrightarrow Unforgeability
 - ► Interactive- variant of DDH ⇒ Blindness
- Our contribution: weaker assumptions!

Preliminaries

- ▶ Asymmetric pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$
 - ▶ **Bilinearity**: $e(aP, b\hat{P}) = e(P, \hat{P})^{ab}$
 - ▶ Non-degeneracy: $e(P, \hat{P}) \neq 1_{\mathbb{G}_T}$
 - **Efficiency**: $e(\cdot, \cdot)$ efficiently computable
- Structure-Preserving Signatures [AFG+10]
 - Signing vector of group elements
 - Signatures and PKs consist only of group elements
 - Verification via
 - pairing-product equations
 - 2. group membership tests

SPS on Equivalence Classes

- ▶ Equivalence relation $\sim_{\mathcal{R}}$ on \mathbb{G}^{ℓ} : $\mathbf{M} \sim_{\mathcal{R}} \mathbf{N} \Leftrightarrow \exists \mu \in \mathbb{Z}_p^* : \mathbf{N} = \mu \cdot \mathbf{M}$
- $\blacktriangleright \ \mathsf{SPS}\text{-}\mathsf{EQ} := \mathsf{SPS} + \text{``change representative'' functionality}$

SPS-EQ: Security

- ► Class-hiding: $ChgRep_{\mathcal{R}}(\mathbf{M}, \sigma, \mu, pk) \approx Sign_{\mathcal{R}}(\mu\mathbf{M}, sk)$
 - ▶ Malicious keys: $ChgRep_{\mathcal{R}}(\mathbf{M}, \sigma, \mu, pk)$ uniform in space of signatures on $\mu\mathbf{M}$

SPS-EQ: Security

- ► Class-hiding: $ChgRep_{\mathcal{R}}(\mathbf{M}, \sigma, \mu, pk) \approx Sign_{\mathcal{R}}(\mu \mathbf{M}, sk)$
 - ▶ Malicious keys: $ChgRep_{\mathcal{R}}(\mathbf{M}, \sigma, \mu, pk)$ uniform in space of signatures on $\mu\mathbf{M}$
- lacksquare Unforgeability: EUF-CMA w.r.t $\sim_{\mathcal{R}}$

Blind Signatures from SPS-EQ

FHS Blind Signature

- ► Bob:
 - 1. Commits to m using Pedersen commitment C = mP + rQ
 - 2. Obtains signature π from Alice on random $\mathbf{M} \sim [(\mathcal{C}, P)]_{\mathcal{R}}$
 - 3. Derives σ on (C, P) using $ChgRep_{\mathcal{R}}$
 - 4. Outputs $\tau = (\sigma, \text{ opening of } C)$ to Charlie

Blindness: Honest-Key Model

Blindness: Honest-Key Model...

Blindness: Malicious-Key Model

Blindness: Malicious-Key Model...

- ► Solution:
 - 1. Interactive variant of DDH needed
 - 2. Rewind Alice to generate signatures ($ChgRep_{\mathcal{R}}$ uniform)

Our construction

- ▶ Idea: Bob chooses parameters for commitment
 - Must be perfectly binding
- ► Bob:
 - 1. Chooses "one-time" keys (P, Q) for El-Gamal encryption
 - 2. Commits to m using C = mP + rQ
 - 3. Obtains signature π from Alice on $\mathbf{M} \sim [(C, \mathit{rP}, \mathit{Q}, \mathit{P})]_{\mathcal{R}}$
 - 4. Derives σ on (C, rP, Q, P) using $ChgRep_{\mathcal{R}}$
 - 5. Outputs $\tau = (\sigma, \text{ opening of } C)$ to Charlie

Blindness: Malicious-Key Model

- ► ABDDH+ assumption: hard to distinguish ruvP from random given: rP, uP, uvP, $u\hat{P}$, $v\hat{P}$
 - ▶ ABDDH+ ⇒ DDH
 - Hard in generic group model

Blindness: Malicious-Key Model...

Multiple rewinds required: fails for single rewind!

Comparison

	[GG14]	[FHS15]	This work
Assumption	DLIN	Interactive DDH	ABDDH+
Public-key	43G	$1\mathbb{G}_1 + 3\mathbb{G}_2$	4© ₂
Communication	> 41@	$4\mathbb{G}_1+1\mathbb{G}_2$	$6\mathbb{G}_1+1\mathbb{G}_2$
Signatures	183G	$4\mathbb{G}_1+1\mathbb{G}_2$	$7\mathbb{G}_1 + 3\mathbb{G}_2$
Computation	9 <i>e</i>	7 <i>e</i>	14 <i>e</i>

References

- AFG+10 M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, M. Ohkubo Structure-Preserving Signatures and Commitments to Group Elements.
 - FHS15 G. Fuchsbauer, C. Hanser and D. Slamanig. *Practical Round-Optimal Blind Signatures in the Standard Model*. CRYPTO 2015
 - FS10 M. Fischlin and D. Schröder. On the Impossibility of Three-Move Blind Signature Schemes. EUROCRYPT 2010
 - GG14 S. Garg and D. Gupta. Efficient Round Optimal Blind Signatures. EUROCRYPT 2014
- GRS+11 S. Garg, V. Rao, A. Sahai, D. Schröder and D. Unruh. *Round Optimal Blind Signatures*. CRYPTO 2011