WZMACNIACZ OPERACYJNY

T. Fas

18 maja 2018

STRESZCZENIE

W doświadczeniu zbadano właściwości wzmacniacza operacyjnego oraz skonstruowano układy oparte o ten wzmacniacz. Wszystkie konstrukcje zachowywały się zgodnie z oczekiwaniami.

WSTEP

Wzmacniacz operacyjny jest układem realizującym operację wzmocnienia różnicy sygnałów wejściowych. Symbol wzmacniacza przedstawiony jest na Rysunku 1.

Rysunek 1: Wzmacniacz operacyjny.

Jeżeli na wejście "+" znajduje się napięcie U_+ , a na wejściu "-" napięcie U_- , to na wyjściu wzmacniacza otrzymamy sygnał $A(U_+-U_-)$, gdzie A jest pewną stałą wzmocnienia. Układ ten wymaga dodatkowo zasilania z dwóch źródeł, tu oznaczonych jako V_{CC} i V_{EE} .

Korzystając z tego elementu można stworzyć: wzmacniacz odwracający fazę (sygnał na wyjściu ma przeciwną fazę), wzmacniacz nieodwracający fazy, układ różniczkujący (sygnał na wyjściu jest pochodną sygnału wejściowego) i układ całkujący. Schematy tych układów przedstawiono na Rysunku 2.

W przypadku wzmacniaczy, zależność napięcia wejściowego od wyjściowego jest zależnością liniową, a zależność napięcia wyjściowego U_{wy} od częstości ω napięcia wejściowego U_{we} jest zależnością filtra dolnoprzepustowego, tj:

$$\left| \frac{U_{wy}}{U_{we}} \right| = \frac{k\omega_g}{\sqrt{\omega^2 + \omega_g^2}},\tag{1}$$

gdzie k to stała wzmocnienia, a ω_g to częstość krytyczna, dla której stosunek napięć wynosi $1/\sqrt{2}$.

UKŁAD DOŚWIADCZALNY

WYNIKI POMIARÓW

Rysunek 2: Schematy układów [1].

ANALIZA DANYCH

DYSKUSJA WYNIKÓW I WNIOSKI

Literatura

[1] Praca zbiorowa, Instrukcja do ćwiczenia "Wzmacniacz operacyjny", FUW, Warszawa, 2016.