Practical 1

Aim:

Implementation of Data Partitioning through Range and List Partitioning.

Objective:

Implementation of various types of partitions: Range, Hash, List

1) Range Partitioning

This type of partitioning is useful when dealing with data that has logical ranges into which it can be distributed;

for example, value of year.

Performance is best when the data evenly distributes across the range.

To partition the table's records, use partition by range clause of create table command.

When you partition a table or index using the range method, you specify a maximum value for the partitioning key column(s) for each partition.

The ranges will determine the values stored in each partition.

> Creating table sales:

```
CREATE TABLE sales (year number(4),product varchar2(10),amt number(10,2))
PARTITION BY RANGE (year)
(PARTITION p1 VALUES LESS THAN (1990),
PARTITION p2 VALUES LESS THAN (1993),
PARTITION p3 VALUES LESS THAN (1996),
PARTITION p4 VALUES LESS THAN (1999));
```

> Inserting some values in it:

```
insert into sales values(1989,'Shoes',3000000);
insert into sales values(1985,'Formal Trousers',50000000);
insert into sales values(1991,'Belts',10000000);
insert into sales values(1992,'Pens',2200000);
insert into sales values(1995,'Pencils',100000);
insert into sales values(1998,'Books',2500000);
```

insert into sales values(1997, 'notes', 10000);

```
insert into sales values(1980,'Pouch',12000);
insert into sales values(1996,'Pen',12000);
insert into sales values(1984,'Pouch',11000);
```

➤ To retrieve the data from partition use following query: select * from sales partition(p1);

YEAR	PRODUCT	AMT
1989	Shoes	3000000
1985	Trousers	500000
1980	Pouch	12000
1984	Pouch	11000

> Drop partition p4:

DELETE FROM sales WHERE year=1997; DELETE FROM sales WHERE year=1998; ALTER TABLE sales DROP PARTITION p4;

➤ After drop query if we try to select data from partition p4 , we would get the following error:

select * from sales partition(p4);

```
ORA-02149: Specified partition does not exist

More Details: https://docs.oracle.com/error-help/db/ora-02149
```

- > Add new partition p5:
- Note- this query will not work if last partition is defined as MAXVALUE. ALTER TABLE sales ADD PARTITION p5 VALUES LESS THAN (2005); select * from sales partition(p5);

YEAR	PRODUCT	AMT
2004	laptop	3490000
2001	calculator	123000

➤ To display the partition names using User_tab_partitions (data dictionary table) select PARTITION_NAME from USER_TAB_PARTITIONS where TABLE_NAME = 'SALES';

PARTITIO	ON_NAME
P1	
P2	
P3	
P5	

To display the partition table details using user_part_tables (data dictionary table) select TABLE_NAME, PARTITIONING_TYPE, STATUS from USER_PART_TABLES where TABLE NAME = 'SALES';

TABLE_NAME	PARTITIONING_TYPE	STATUS
SALES	RANGE	VALID

2) List Partitioning:

Unlike range partitioning, with list partitioning, there is no apparent sense of order between partitions.

You can also specify a default partition into which rows that do not map to any other partition are mapped.

Use list partitioning when you require explicit control over how rows map to partitions.

In List partitioning, you tell Oracle all of the possible values, and designate the partitions into which the corresponding rows should be inserted.

List partitioning allows unordered and unrelated sets of data to be grouped and organized together very naturally

> Creating table customer:

➤ Inserting some data in the table:

```
insert into customers values(1,'rupali','Ab Road','DELHI',450000); insert into customers values(2,'hafsa','New road','DELHI',500000); insert into customers values(3,'abdulla','sec 5','CHANDIGARH',450000); insert into customers values(4,'rashmi','Z Road','CHANDIGARH',450000); insert into customers values(5,'ayush','sec 2','KOLKOTA',100000; insert into customers values(6,'maya','c Road','PATNA',230000); insert into customers values(7,'rahul','sec 2','HYDERABAD',230000); insert into customers values(8,'mayur','c Road','HYDERABAD',230000); insert into customers values(9,'vishaha','ab house','BANGALORE',230000); insert into customers values(10,'mina','c Road','CHENNAI',231000); insert into customers values(11,'riya','sec 72','CHENNAI',340009; insert into customers values(12,'ramesh','sec 74','BOMBAY',450000);
```

insert into customers values(13,'aarti','sec 73','BOMBAY',340009); insert into customers values(14,'nafia','V road','GOA',500000);

➤ Retrieving data from partition east: select * from customers partition(east);

CUSTCODE	CUST_NAME	ADDRESS	CITY	BAL
5	ayush	sec 2	KOLKOTA	100000
6	maya	c Road	PATNA	230000

Adding partition central_India consisting of values BHOPAL and Nagpur and inserting some data in it: alter table customers add partition central_India values('BHOPAL','Nagpur'); insert into customers values(17,'tina','main road','Nagpur',520000); insert into customers values(16,'tejal','V road','BHOPAL',2340222); insert into customers values(15,'maahin','Av nagar','BHOPAL',234000);

Retrieving data from partition central_India:select * from customers partition(central India)

CUSTCODE	CUST_NAME	ADDRESS	CITY	BAL
15	maahin	Av nagar	BHOPAL	234000
16	tejal	V road	BHOPAL	2340222
17	tina	main road	Nagpur	520000

➤ The following query adds new set of cities (KOCHI,MANGALORE) to an existing partition list:

ALTER TABLE customers MODIFY PARTITION south ADD VALUES ('KOCHI', 'MANGALORE');

> After inserting data perform following query:

select * from customers partition(south);

CUSTCODE	CUST_NAME	ADDRESS	CITY	BAL
7	rahul	sec 2	HYDERABAD	230000
8	mayur	c Road	HYDERABAD	230000
10	mina	c Road	CHENNAI	231000
11	riya	sec 72	CHENNAI	340009
19	mahira	z road	MANGALORE	3445222
9	vishaha	ab house	BANGALORE	230000
18	ravi	bg nagar	косні	234000

> Following query will drop a set of cities ('CHENNAI', 'BANGALORE') from an existing value list:

ALTER TABLE customers MODIFY PARTITION south DROP VALUES ('CHENNAI', 'BANGALORE');

select * from customers partition(south);

CUSTCODE	CUST_NAME	ADDRESS	CITY	BAL
7	rahul	sec 2	HYDERABAD	230000
8	mayur	c Road	HYDERABAD	230000
19	mahira	z road	MANGALORE	3445222
18	ravi	bg nagar	КОСНІ	234000

[&]quot;CHENNAI and BANGALORE values are dropped from partition south."

➤ To split the partition west into two partitions give the following command:

ALTER TABLE customers SPLIT PARTITION west INTO

(PARTITION northwest VALUES ('GOA'),

PARTITION southwest);

select * from customers partition(northwest);

CUSTCODE	CUST_NAME	ADDRESS	CITY	BAL
14	nafia	V road	GOA	500000

To display the partition names using User_tab_partitions (data dictionary table): select PARTITION_NAME from USER_TAB_PARTITIONS where TABLE_NAME = 'CUSTOMERS';

To display the partition table details using user_part_tables (data dictionary table)

SELECT TABLE_NAME, PARTITIONING_TYPE, STATUS FROM

USER_PART_TABLES WHERE

TABLE NAME = 'CUSTOMERS';

TABLE_NAME	PARTITIONING_TYPE	STATUS
CUSTOMERS	LIST	VALID

Q.1 A. Create book table (book_id(pk), title, author, price, book_rating) with range Partition on rating with 1, 2 and 3 for three different partitions. Insert at least 10 record in the table.

B.Display all the books with rating 3 and price in the range 200 and 1000.

SQL Query:

```
Create table book(book id varchar2(20) primary key,title varchar2(50), author varchar2(50),
price number(10),book rating int)
partition by range(book rating)(
 Partition p1 values less than (1),
 Partition p2 values less than (2),
 Partition p3 values less than (3),
 Partition p4 values less than(MAXVALUE)
);
insert into book values('A01', 'Rich Dad Poor Dad', 'Robert KioSaki', 750, 5);
insert into book values('A02', 'Anna Karenina', 'Leo Tolstoy', 900, 4);
insert into book values('A03', 'Madame Bovary', 'Gustave Flaubert', 550, 5);
insert into book values('A04', 'War and Peace', 'Leo Tolstoy', 250, 2);
insert into book values('A05', 'The Great Gatsby', 'F. Scott Fitzgerald', 750, 2);
insert into book values('A06', 'Lolita', 'Vladimir Nabokov', 150, 1);
insert into book values('A07', 'Middlemarch', 'George Eliot', 850, 4);
insert into book values ('A08', 'The Adventures of Huckleberry Finn', 'Mark Twain', 650, 1);
insert into book values('A09', 'In Search of Lost Time', 'Marcel Proust', 280, 2);
insert into book values('A10', 'Hamlet', 'William Shakespeare', 120, 1);
insert into book values('A11', 'Middlemarch', 'George Eliot', 850, 3);
insert into book values('A12', 'The Adventures of Huckleberry Finn', 'Mark Twain', 650, 3);
insert into book values('A13', 'In Search of Lost Time', 'Marcel Proust', 280, 3);
insert into book values('A14', 'Hamlet', 'William Shakespeare', 120, 3);
```

SELECT * FROM book partition(p4)

WHERE price BETWEEN 200 AND 1000;

BOOK_ID	TITLE	AUTHOR	PRICE	BOOK_RATING
A01	Rich Dad Poor Dad	Robert KioSaki	750	5
A02	Anna Karenina	Leo Tolstoy	900	4
A03	Madame Bovary	Gustave Flaubert	550	5
A07	Middlemarch	George Eliot	850	4
A11	Middlemarch	George Eliot	850	3
A12	The Adventures of Huckleberry Finn	Mark Twain	650	3
A13	In Search of Lost Time	Marcel Proust	280	3

Q.2 A. Create 3 Partition in table cabinet using range partition on cid Column of cabinet (cid, mem_name, address, state_rep, phone_number, sal) P1 cid < 101; P2 cid < 501; P3 cid <1001.

Insert at least 10 records in the Table.

B. Display the Contents of third Partition.

```
SQL Query:
Create table cabinet (
```

```
cid number(5),
  mem name varchar2(20),
  address varchar2(30),
  state rep varchar2(30),
  phone number number (12),
  sal number (8)
)Partition by range(cid)(
  Partition P1 values less than (101),
  Partition P2 values less than (501),
  Partition P3 values less than (1001)
);
insert into cabinet values(900, 'Onkar', 'Canada', 'USA', 7020767185, 100000);
insert into cabinet values(95, 'Rasika', 'Ratanagiri', 'Uk', 8160124511, 20000);
insert into cabinet values(200, 'Atharv', 'Ramgad', 'SouthAmerica', 8060124511, 25000);
insert into cabinet values(800,'Abhi','Devagad','England',8067124511,200000);
insert into cabinet values(922, 'Sonali', 'Canada', 'USA', 8064021211, 120000);
insert into cabinet values(611, 'Vaishnavi', 'Europe', 'New Jeresy', 8060664511, 285400);
insert into cabinet values(422, 'Rahul', 'Goa', 'New Jeresy', 8770124511, 20000);
insert into cabinet values(80, 'Aniket', 'Ratanagiri', 'New Jeresy', 9060124511, 206540);
```

insert into cabinet values(90, 'Esha', 'America', 'New Jeresy', 8055124511, 200080); insert into cabinet values(210, 'Aditya', 'Phonda', 'New Jeresy', 7060124511, 207800);

select * from cabinet partition (P3);

CID	MEM_NAME	ADDRESS	STATE_REP	PHONE_NUMBER	SAL
900	Onkar	Canada	USA	7020767185	100000
800	Abhi	Devagad	England	8067124511	200000
922	Sonali	Canada	USA	8064021211	120000
611	Vaishnavi	Europe	New Jeresy	8060664511	285400

Q.3 A.Create table Employee with attributes empid, name, age, salary and joining date by using hash partition based on employee salary with minimum 3 partitions. Insert at least 10 records in the table.

B.Display the contents of the third partition.

```
SQL Query:
CREATE TABLE employee
(empid NUMBER,
empname VARCHAR2 (100),
age NUMBER,
joiningDate date,
salary NUMBER
PARTITION BY HASH (salary)
(PARTITION s1, PARTITION s2, PARTITION s3);
insert into employee values(1,'Rupali',22,'12-jan-2013',450000);
insert into employee values(2,'Vishal',23,'21-feb-2015',529999);
insert into employee values(3,'Mahek',24,'10-jan-2011',480000);
insert into employee values(4,'Hafsa',22,'1-march-2013',600000);
insert into employee values(5,'Nafia',21,'18-aug-2017',740000);
insert into employee values(6,'Mahesh',25,'29-sep-2013',370000);
insert into employee values(7,'Mayur',24,'25-oct-2014',620000);
insert into employee values(8,'Rahul',21,'16-nov-2015',762000);
insert into employee values(9,'Onkar',23,'18-dec-2020',400000);
insert into employee values(10,'Aditya',26,'22-jan-2022',250000);
```

select * from employee partition (s3) order by empid;

EMPID	EMPNAME	AGE	JOININGDATE	SALARY
1	Rupali	22	12-JAN-13	450000
2	Vishal	23	21-FEB-15	529999
6	Mahesh	25	29-SEP-13	370000
10	Aditya	26	22-JAN-22	250000

```
Q.4 A.Create test_record(test_id, test_type, patient_name, employee_no, labno,
result) with list partition on result field as below:
       P1 = (positive)
       P2 = (negative)
       Insert at least 10 records in the table.
       Display the test records which have negative result.
SQL Query:
Create table test record(
  test id varchar2(20),
  test type varchar2(50),
  patient name varchar2(50),
  employee_no number(10),
  labno varchar2(20),
  res varchar2(10))
partition by list(res)(
       partition res1 values('positive'),
       partition res2 values('negative')
);
insert into test record values('A101', 'Haemoglobin
Test', 'Raju', 7020304010, 'LAB01', 'positive');
insert into test record values('A102', 'Haemoglobin
Test', 'kaju', 7020304011, 'LAB02', 'positive');
insert into test record values('A103', 'Haemoglobin
Test', 'Paju', 7020304012, 'LAB01', 'positive');
insert into test record values('A104', 'Haemoglobin
Test', 'Naju', 7020304013, 'LAB02', 'positive');
insert into test record values('A105', 'Haemoglobin
Test', 'Haju', 7020304013, 'LAB01', 'negative');
insert into test record values('A106', 'Haemoglobin
```

Test', 'Biaju', 7020304014, 'LAB02', 'negative');

insert into test_record values('A107', 'Haemoglobin Test','RAMju',7020304015,'LAB01','negative');

insert into test_record values('A108', 'Haemoglobin Test','Rja',7020304016,'LAB02','negative');

select * from test_record partition(res2);

TEST_ID	TEST_TYPE	PATIENT_NAME	EMPLOYEE_NO	LABNO	RES
A105	Haemoglobin Test	Haju	7020304013	LAB01	negative
A106	Haemoglobin Test	Biaju	7020304014	LAB02	negative
A107	Haemoglobin Test	RAMju	7020304015	LAB01	negative
A108	Haemoglobin Test	Rja	7020304016	LAB02	negative

```
Bank table based on Location as per following.
  BK1 = (Mumbai, Pune, Nashik), BK2 = (Lucknow, Kanpur, Varanasi),
  BK3 = (Chandigarh, Mohali, Amritsar), BK4 = (GandhiNagar, Ahmedabad, Surat)
Insert 10 records in Bank Table.
       B.Add values "Ratnagiri" in BK1 partition.
SQL Query:
CREATE TABLE Bank(BankId number(5),
           BName varchar2(20),
           Location varchar2(30))
partition by list(Location)
(partition BK1 values ('Mumbai', 'Pune', 'Nashik'),
partition BK2 values ('Lucknow', 'Kanpur', 'Varanasi'),
partition BK3 values ('Chandigarh', 'Mohali', 'Amritsar'),
partition BK4 values ('GandhiNagar','Ahmedabad','Surat'));
insert into Bank values(101, 'Talere', 'Mumbai');
insert into Bank values(102, 'Talere', 'Pune');
insert into Bank values(103, 'Talere', 'GandhiNagar');
insert into Bank values(104,'Talere','Mohali');
insert into Bank values(105, 'Talere', 'Ahmedabad');
insert into Bank values(106, 'Talere', 'Kanpur');
insert into Bank values(107, 'Talere', 'Chandigarh');
insert into Bank values(108, 'Talere', 'Varanasi');
insert into Bank values(109, 'Talere', 'Lucknow');
insert into Bank values(110, 'Talere', 'Pune');
```

Q. 5 A.Create table Bank with fields BankId, BName, Location. Partition the

ALTER TABLE Bank

MODIFY PARTITION BK1

ADD VALUES ('Ratanagiri');

insert into Bank values(111,'Talere','Ratanagiri'); insert into Bank values(112,'Talere','Ratanagiri'); insert into Bank values(113,'Talere','Ratanagiri');4 insert into Bank values(114,'Talere','Ratanagiri'); select * from Bank partition(BK1);

BANKID	BNAME	LOCATION
101	Talere	Mumbai
102	Talere	Pune
110	Talere	Pune
111	Talere	Ratanagiri
112	Talere	Ratanagiri
113	Talere	Ratanagiri
114	Talere	Ratanagiri