

COSC 522 – Machine Learning Unsupervised Learning (Clustering)

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville

https://www.eecs.utk.edu/people/hairong-qi/

Email: hqi@utk.edu

AICIP RESEARCH

	Part	Part 1: Statistical Methods		
	Baysia	Baysian Learning		
<u>08/20 (T)</u>		Introduction		
<u>08/22 (R)</u>		Baysian Decision Theory and Parametric Learning		
08/27 (T)		Baysian Decision Theory and Non-Parametric Learning		
08/29 (R)		Case Study: Representation for Natural Language (taught by Andre Cozma)		
<u>09/03 (T)</u>		Parametric vs. Non-Parametric Learning: Some In-Depth Discussion		
09/05 (R)		Homework and Project Discussion (taught by Fanqi Wang)		
	Neura	l Networks		
<u>09/10 (T)</u>		Biological Neuron and Perceptron		
<u>09/12 (R)</u>		Perceptron		
<u>09/17 (T)</u>		Back Propagation and Gradient Descent		
<u>09/19 (R)</u>		Back Propagation		
09/20 (F)		TRUST-AI Seminar		
<u>09/24 (T)</u>		Kernel Methods and Review		
09/26 (R)	Test 1			
<u>10/01 (T)</u>		Kernel Methods and Support Vector Machine		
	Regre	ssion		
<u>10/03 (R)</u>		Regression		
10/08 (T)	Fall Br	l Break (No Class)		
	Unsup	pervised Learning		
10/10 (R)		Logistic Regression; k-means		
10/15 (T)		Hierarchical methods and auto-encoder		
10/17 (R)		recap		

AICIP RESEARCH

Questions

- What is unsupervised learning? What is/are unknown?
- What are the new distance metrics introduced to measure point to cluster distance and cluster to cluster distance?
- What is kmeans? Objective function, optimal solution, procedure, geometrical interpretation
- What is winner-takes-all? Objective function, optimal solution, procedure, geometrical interpretation
- What are the differences between batch processing and online processing?
 Pros and cons?
- What are the potential issues with kmeans or wta?
- What is hierarchical clustering? What are bottom-up vs. top-bottom hierarchical clustering?
- What is agglomerative clustering and the different linkage of agglomerative clustering
- What is a dendrogram?

Unsupervised Learning

- What's unknown?
 - In the training set, which class does each sample belong to?
 - For the problem in general, how many classes (clusters) is appropriate?

Distance from a Point to a Cluster

- Euclidean distance $d_{euc}(x, A) = ||x \mu_A||$
- City block distance
- Squared Mahalanobis distance

$$d_{mah}(x,A) = (x - \mu_A)^T \Sigma_A^{-1} (x - \mu_A)$$

Distance between Clusters

The centroid distance

$$d_{mean}(A,B) = \|\mu_A - \mu_B\|$$

Nearest neighbor measure

$$d_{\min}(A,B) = \min_{a,b} d_{euc}(a,b)$$
 for $a \in A, b \in B$

Furthest neighbor measure

$$d_{\max}(A,B) = \max_{a,b} d_{euc}(a,b)$$
 for $a \in A, b \in B$

PART I: KNOWING K

kmeans: Procedure

- Step1: Begin with an arbitrary assignment of samples to clusters or begin with an arbitrary set of cluster centers and assign samples to nearest clusters
- Step2: Compute the sample mean of each cluster
- Step3: Reassign each sample to the cluster with the nearest mean
- Step4: If the classification of all samples has not changed, stop; else go to step 2.

kmeans: Illustration

AICIP RESEARCH

kmeans: Objective function

- Find r_{nk} and μ_k such that J is minimized
 - K: number of clusters
 - $-\mu_k$: cluster centers
- $J = \sum_{n=1}^N \sum_{k=1}^K r_{nk} \|\mathbf{x}_n oldsymbol{\mu}_k\|^2$
- N: number of data samples
- $-r_{nk}$: a mask
- Optimization

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \\ 0 & \text{otherwise.} \end{cases}$$

Exhaustive search

$$2\sum_{n=1}^N r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0 \qquad \qquad \boldsymbol{\mu}_k = \frac{\sum_n r_{nk}\mathbf{x}_n}{\sum_n r_{nk}}. \qquad \text{Newton's method}$$

Winner-takes-all: Procedure

- Step 1: Begin with an arbitrary set of cluster centers μ_i
- Step 2: For each sample \mathbf{x}_n , find the nearest cluster center μ_{α} , which is called the winner.
- Step 3: Modify μ_{α} using $\mu_{\alpha}^{\text{new}} = \mu_{\alpha}^{\text{old}} + \eta(\mathbf{x} \mu_{\alpha}^{\text{old}})$
 - $-\eta$ is known as a "learning parameter".
 - Typical values of this parameter are small, on the order of 0.01.
- Step 4: If the classification of all samples has not changed, stop; else go to step 2.

Winner-takes-all: Illustration

Winner-takes-all: Objective function

Same as kmeans

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Optimization: Gradient Descent

$$\boldsymbol{\mu}_k^{\mathrm{new}} = \boldsymbol{\mu}_k^{\mathrm{old}} + \eta_n(\mathbf{x}_n - \boldsymbol{\mu}_k^{\mathrm{old}})$$

PART II: HIERARCHICAL CLUSTERING

Hierarchical Clustering Algorithm

- Agglomerative clustering (bottom-up)
- Divisive (top-bottom)
- Dendrogram
- Cluster linkage
 - Single linkage: d_{min}
 - Complete linkage: d_{max}
 - Centroid linkage: d_{mean}
 - SLINK

Agglomerative Hierarchical Clustering – Procedure

- Step1: assign each data point in the data set to a separate cluster
- Step2: merge the two "closest" clusters
- Step3: repeat step2 until you get the number of clusters you want or the appropriate cluster number
- The result is highly dependent on the measure of cluster distance (or the linkage function)

Comparison of Shape of Clusters

- dmin tends to choose clusters which are ??
- dmax tends to choose clusters which are ??

Agglomerative clustering: example 1

Agglomerative clustering: example 2

	а	b	С	d	е
а	0	17	21	31	23
b	17	0	30	34	21
С	21	30	0	28	39
d	31	34	28	0	43
е	23	21	39	43	0

	(a,b)	С	d	е
(a,b)	0	21	31	21
С	21	0	28	39
d	31	28	0	43
е	21	39	43	0

	((a,b),c,e)	d
((a,b),c,e)	0	28
d	28	0

Distance Matrix

Example from https://en.wikipedia.org/wiki/Single-linkage_clustering

TEN	INIVERSITY OF NESSEE
-----	----------------------

Dendrogram:

- Treelike
- Leaves
- Nodes
- Height

Comparison: kmeans vs. hierarchical clustering

- Algorithm/procedure (cluster structure)
- # of clusters
- Cluster shape
- Deterministic?
- Complexity?
- Interpretability

