open Pewka

$$V_2$$
 V_2
 V_3
 V_4
 $V_$

$$= d_1 e^{-d_1 \cdot 3_1} \dots d_n e^{-d_n \cdot 3_n} \longrightarrow \max_{x} \lim_{x \to \infty} \frac{1}{|x|} = \lim_{x$$

$$\frac{\partial}{\partial P(x)} \qquad \frac{\partial}{\partial P(x)} \qquad \frac{\partial}$$

P·P(
$$x$$
) + 1 - P - P(x) + P·P(x) \rightarrow min
P(x)

P= y_2 P(x) - Abosaq
P< y_2 P(x) = 1
P> y_2 P(x) = 0

Yhac he beporthouth

BVD [Bias-Variance Decomposition]

$$y = f(x) + \varepsilon$$

•
$$y(x) = y(x, \varepsilon)$$
 $\varepsilon \sim (0, \varepsilon^2)$

$$MSE = (3(x) - a(x))^{2}$$

•
$$a(x) = a(x, X)$$
 an reputer zabucut or obyze this.

· harectbo uzmepseta na tecte x

$$\mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{X}} \mathbb{E}_{\epsilon}$$

Q(a) =
$$\mathbb{E}_{x}$$
 $\mathbb{E}_{X,\epsilon} [3(x,\epsilon) - a(x,X)]^{2}$

KNRECTED & L TECTOBOLI

TOTALE, NO $\forall X, \varepsilon$

Karected yeregh no tectly

$$\mathbb{E}_{X,\epsilon} [3(x,\epsilon) - a(x,X)]^{2} = \frac{1}{(x)+\epsilon} (1-a(x,X))^{2} = \frac{1}{(x)+\epsilon} (1-a(x,X))^{2} + \frac{1}{(x)+\epsilon} (1-a(x,X))^{2}$$

$$\mathbb{E}_{X,\xi} \left[f(x) - a(x,X) \right]^{2} =$$

$$+ \mathbb{E}_{X} \left[a(x,X) \right] - \mathbb{E}_{X} \left[a(x,X) \right] +$$

$$+ \mathbb{E}_{X} \left[a(x,X) \right] - a(x,X) \right]^{2} =$$

$$= \mathbb{E}_{X,\xi} \left[f(x) - \mathbb{E}_{X} \left[a(x,X) \right] - a(x,X) \right]^{2} +$$

$$+ \mathbb{E}_{X} \left[a(x,X) - \mathbb{E}_{X} \left[a(x,X) \right]^{2} +$$

$$+ \mathbb{E}_{X} \left[a(x,X) - \mathbb{E}_{X} \left[a(x,X) \right]^{2} +$$

$$+ 2 \cdot \mathbb{E}_{X} \left[f(x) - \mathbb{E}_{X} \left[a(x,X) \right] \right] \cdot$$

$$\begin{array}{c}
\mathbb{E}_{\mathbf{X}} \left[\mathbf{q}(\mathbf{x}, \mathbf{X}) + \mathbb{E}_{\mathbf{X}} \left[\mathbf{q}(\mathbf{x}, \mathbf{X}) \right] \right) \\
-\mathbb{E}_{\mathbf{X}} \left[\mathbf{q} \right] + \mathbb{E}_{\mathbf{X}} \mathbb{E}_{\mathbf{X}} \left[\mathbf{q} \right] \\
\mathbb{E}_{\mathbf{X}} \left[\mathbf{q} \right] \\
\mathbb{E}_{\mathbf{X}} \left[\mathbf{q} \right]
\end{array}$$

$$Q(\alpha) = \mathbb{E}_{\mathbf{x}} \left[\text{bias}_{\underline{X}}^{2} \left(\alpha(\mathbf{x}, \underline{X}) \right] + \text{Var}_{\underline{X}} \left(\alpha(\mathbf{x}, \underline{X}) \right) + 6^{32} \right]$$

	pazspoc	chensenne
Depelo	bucokur	HIZKOE
arropus en 5000 Engen Coægen	Huzkun	высокое

Pazspoc myuni

& HCO KUN

Double descent risk chave