Prof. Stefano Bregni

IV Appello d'Esame 2020-21 – 17 gennaio 2022

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

NB: In ogni esercizio, ogni risposta non giustificata adeguatamente, anche con pochissime parole, avrà valore nullo.

Domanda 1

(svolgere su questo foglio nello spazio assegnato) (6 punti)

Bob adotta il sistema di firma elettronica di El Gamal e pubblica p = 113, $\alpha = 5$, $\beta = \alpha^a \mod p = 93$, tenendo segreto l'esponente a (1 < $a \le p$ -2).

Bob estrae il numero casuale segreto k (nonce) con MCD(k, p-1) = 1. Usando sempre questo stesso valore di k, Bob calcola le seguenti firme A_1 e A_2 per i rispettivi messaggi P_1 e P_2 .

$$A_1 = (r_1, s_1) = (21, 35)$$
 $P_1 = 14$
 $A_2 = (r_2, s_2) = (21, 47)$ $P_2 = 18$

Oscar intercetta i due messaggi firmati. Sulla base di essi e delle informazioni pubbliche, calcolare k e a (attacco del

$$S = R^{1}(P-Qr) \pmod{(p-1)}$$
 -> $SK = P-Qr \pmod{(p-1)}$
 $(35K = 14-Q21 \pmod{12})$
 $\{47K = 18-Q21 \pmod{12}$

Qi = 1,14,(33) 49,65,81,97, (mod 112) = (d = 33)

$$K_0 = 10$$
 (mod 28)
 $K_i = (10) 47, 25, 103 (mod 112)$

$$n(0)(21,112)=7 \Rightarrow 7 \text{ robusion}$$

 $3^{1}=11 \pmod{16}$ Dir tak publi

Doi dot pullha:

519 = 21 (mal 113)

1 & d (mod p)

Pag. 1/8

Sicurezza	delle	Reti
Prof. Stefan	o Bred	mi

IV Appello d'Esame 2020-21 – 17 gennaio 2022

Prof. Stefano Bregni

IV Appello d'Esame 2020-21 – 17 gennaio 2022

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 2

(svolgere su questo foglio nello spazio assegnato) (5 punti)

Bob adotta il sistema di cifratura a chiave pubblica RSA. Pubblica il modulo n = 20413 e un esponente di cifratura scelto tra $e_1 = 37$, $e_2 = 497$, $e_3 = 498$.

- a) Fattorizzare n con il metodo di Fermat. Verificare la correttezza dei dati forniti in base alle ipotesi del metodo RSA. Scegliere il valore corretto tra i tre esponenti e_1 , e_2 , e_3 .
- b) Alice trasmette a Bob il messaggio cifrato C = 9, calcolato utilizzando il valore corretto dell'esponente e. Decifrarlo e calcolare il corrispondente messaggio in chiaro P.

a)
$$M = 10413 = 137.149$$

 $Q(m) = 136.143 = 20128 = 2^5.77.37$
 $Q(Q(m)) = 9216$
 $P(m) = 9216$

Sicurezza	delle Reti
Prof. Stefan	o Bregni

IV Appello d'Esame 2020-21 – 17 gennaio 2022

Prof. Stefano Bregni Cognome e nome:

IV Appello d'Esame 2020-21 – 17 gennaio 2022

(stampatello)

(firma leggibile)

Matricola:

Domanda 3

(svolgere su questo foglio nello spazio assegnato) (7 punti)

a) Una funzione di hash h = h(m) può essere invertibile? Che differenza c'è tra la proprietà di unidirezionalità definita per una funzione generica e quella definita per una funzione di hash?

b) Vi viene proposta una funzione di hash h = h(m) asserendo che è resistente alle collisioni. Desiderate provare che non è vero. Per cominciare, proverete a dimostrare che non è fortemente resistente, o debolmente resistente? Facendo cosa? (o tentando di fare cosa?)

- c) Una tabella raccoglie i valori di hash, di lunghezza L = 20 bit, calcolati su N = 10.000.000 di file MP3 diversi.
- Qual è la probabilità che almeno due file abbiano lo stesso hash in tabella?

Quanto vale questa probabilità, se i file sono solo N = 2000?

Quale dovrebbe essere la lunghezza minima degli hash, perché detta probabilità sia <50% ancora su 10.000.000 di file diversi?

Domanda 4

(svolgere su questo foglio nello spazio assegnato) (5 punti)

- a) Si disegni lo schema di un generatore di sequenza PRBS basato su registro a scorrimento LFSR, realizzato come scrambler autosincronizzante con polinomio caratteristico $P(x) = 1+x^4$ alimentato con tutti "1". Si indichino la sequenza binaria in ingresso con $\{I_k\} \equiv \{0\}$ e la sequenza binaria in uscita con $\{R_k\}$.
- b) Si inizializzino gli elementi di ritardo D_i (i = 1, 2, 3, 4) con $\{0, 0, 1, 1\}$ al passo iniziale k = 0. Ricavare la sequenza PRBS $\{R_k\}$ generata all'uscita, evidenziando la sua periodicità. Qual è il periodo P della sequenza?
- c) Scomporre il polinomio P(x) in fattori irriducibili, se P(x) è riducibile. Perché il periodo P della sequenza $\{R_k\}$ non è un sottomultiplo di 15?

Prof. Stefano Bregni

IV Appello d'Esame 2020-21 – 17 gennaio 2022

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 5

(rispondere su questo foglio negli spazi assegnati) (13 punti) (NB: ogni risposta non giustificata adeguatamente, anche con pochissime parole, avrà valore nullo).

1) L'equazione $x^2 \equiv 10 \pmod{79}$ ha soluzione? Se la risposta è sì, calcolarne le radici. L'equazione $x^2 \equiv -10 \equiv 69 \pmod{79}$ ha soluzione? Se la risposta è sì, calcolarne le radici. (2 punti)

P=79 pmm -> L'eq. horalmoione re 1039 = 1 (mod 79) 1039 = 1 (mod 79) => 51

79=3 (mod 4) =) l'eq. x²=10 (mod 79) he 2 modici X2=-10 (mod 4) non he rolu 2 jour

 $X = \pm 10^{20} = \pm 22 \text{ (mod 9g)}$ = 22,57

2) Cos'è un elemento primitivo dell'insieme \mathbb{Z}_p^* ? Quanti sono gli elementi di \mathbb{Z}_{233} ? Quanti sono gli elementi di \mathbb{Z}_{233}^* ? Quanti sono gli elementi primitivi di \mathbb{Z}_{233}^* ? (2 punti)

233, 232, 112

233 pima

³⁾ Se trovassi un algoritmo per risolvere il *Problema Computazionale di Diffie-Hellman* in modo efficiente, questo mi potrebbe essere di aiuto per risolvere il *Problema del Logaritmo Discreto*? In che modo? (2 punti)

Sicurezza delle Reti Prof. Stefano Bregni

4)	Se dalmio PC in ufficio mi collego con un web browser all'indirizzo https://www.stefanobregni.org , posso dirmi sicuro che il sito sia proprio quello così denominato e non un altro camuffato, oppure no? L'admin della mia Azienda può osservare che ho visitato questo sito? Può osservare i titoli delle pagine che visito all'interno del sito? (2 punti)
5)	Per quale ragione può essere consigliabile utilizzare modalità di concatenazione in un cifrario a blocchi, anche se il vettore di inizializzazione è pubblicato e quindi la chiave della modalità non concatenata non viene estesa? (2 punti)
6)	Un hacker è entrato in possesso del file di sistema dove sono memorizzate le credenziali degli utenti per l'accesso a un server web. Descrivere la procedura che l'Amministratore deve seguire per ricavare la password dell'utente POTUS, se ritiene che la sua password appartenga a un vocabolario di 1000 parole. Di quanto aumenterebbe il tempo necessario all'hacker, se le password sono salvate nel file con un <i>salt</i> di 24 bit? (3 punti)