Chapitre 1

Théorèmes limites

Considérons une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes de même loi. Supposons que ces variables aléatoires ont une espérance, notée m et une variance notée σ^2 .

1.1 Lois des grands nombres

On a vu dans les chapitres précédents que

$$E\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} E\left(X_{k}\right) = nm \text{ et } Var\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} Var\left(X_{k}\right) = n\sigma^{2} \text{ (si les } X_{k} \text{ sont } iid)$$

et l'inégalité de Tchebychev : Soit X une v.a et $\varepsilon > 0$, alors

$$P(|X - E[X]| \ge \varepsilon) \le \frac{Var(X)}{\varepsilon^2}.$$

Définition 1.1 La moyenne arithmétique (ou empirique) d'une suite de variables aléatoires $(X_n)_{n\geq 1}$ est la variable aléatoire

$$\overline{X}_n = \frac{\sum_{k=1}^n X_k}{n}.$$

Lorsque n devient de plus en plus grands, les résultats concernant ce problème sont appelés. Lois des grands nombres qui sont décomposé en deux parties :

- Lois faibles des grands nombres.
- Lois fortes des grands nombres.
- **Définition 1.2** 1. La suite $(X_n)_{n\geq 1}$ satisfait la loi faible des grands nombres si la suite de terme général $\frac{1}{n}\sum_{k=1}^{n}X_k$ converge vers $E(X_1)=m$ en probabilité.
 - 2. La suite $(X_n)_{n\geq 1}$ satisfait la loi forte des grands nombres si la suite de terme général $\frac{1}{n}\sum_{k=1}^{n}X_k \text{ converge vers } E\left(X_1\right)=m \text{ presque sûrement.}$

Théorème 1.1 (lois faibles des grands nombres) : Soit $(X_n)_{n\geq 1}$ une suite de v.a indépendants de même lois et de carré intégrable, alors : \overline{X}_n converge en probabilité vers $E(X_1) = m$ lorsque $n \to \infty$. Autrement dit,

$$\forall \varepsilon > 0, \qquad \lim_{n \to \infty} P\left(\left|\overline{X}_n - m\right| \ge \varepsilon\right) = 0.$$

Proof. Soit $\varepsilon > 0$, d'après l'inégalité de Tchebychev

$$P(|\overline{X}_n - m| \ge \varepsilon) \le \frac{Var(\overline{X}_n)}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \underset{n \to \infty}{\longrightarrow} 0$$

on dit que \overline{X}_n converge en probabilité vers m. \blacksquare

Pour la seconde famille des lois de grands nombres, on a la loi forte des grands nombres.

Théorème 1.2 (lois forte des grands nombres) : Soit $(X_n)_{n\geq 1}$ une suite de v.a indépendants de même lois. Si $E(|X_k|) < \infty$ (X_k est intégrable $\forall k = 1,...,n$), alors : \overline{X}_n converge presque sûrement vers $E(X_1) = m$ lorsque $n \to \infty$. Autrement dit,

$$\overline{X}_n \stackrel{p.s}{\to} E(X_1) = m.$$

1.2 Théorème central limite

Le théorème "central limite" donne des conditions suffisantes dans lesquelles une somme finie de variables aléatoires indépendants de même lois et de variance finie, (lorsqu'elle est bien normalisée et lorsque n est très grand) suit approximativement une loi normale.

Théorème 1.3 Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendants de même lois et de carré intégrable. Posons $m=E(X_1)$ et $\sigma^2=Var(X_1)$, alors

$$\frac{1}{\sigma\sqrt{n}}\sum_{k=1}^{n}\left(X_{k}-m\right)\stackrel{\mathcal{L}}{\to}\mathcal{N}\left(0,1\right)$$

 $lorsque n \rightarrow \infty$. Par conséquent,

$$\forall t \in \mathbb{R}, \qquad \lim_{n \to \infty} P\left(\frac{1}{\sigma\sqrt{n}} \sum_{k=1}^{n} (X_k - m) \le t\right) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

Proof. Pour $k \ge 1$, posons : $Y_k = \frac{X_k - m}{\sigma}$.

Les v.a Y_k sont indépendants de même lois, avec

$$E(Y_k) = \frac{1}{\sigma} (E(X_k) - m) = 0 \text{ et } Var(Y_k) = \frac{1}{\sigma^2} Var(X_k) = 1.$$

Posons pour tout $k \geq 1$,

$$t \in \mathbb{R}$$
: $Z_n = \frac{1}{\sigma \sqrt{n}} \sum_{k=1}^n (X_k - m) = \frac{1}{\sqrt{n}} \sum_{k=1}^n Y_k.$

On note par φ_{Z_n} la fonction caractéristique de $Z_n,\, \varphi$ la fonction caractéristique de Y_1

$$\varphi_{Z_n}(t) = E\left(e^{itZ_n}\right) \text{ et } \varphi(t) = E\left(e^{itY_1}\right).$$

Pour $n \ge 1$, on a

$$\varphi_{Z_n}(t) = E\left(e^{itZ_n}\right) = E\left(\exp\left(\frac{it}{\sqrt{n}}\sum_{k=1}^n Y_k\right)\right) \underset{ind \neq ps}{=} \prod_{k=1}^n E\left(\exp\left(\frac{it}{\sqrt{n}}Y_k\right)\right)$$
$$\underset{i.d}{=} \prod_{k=1}^n \varphi\left(\frac{t}{\sqrt{n}}\right) = \left(\varphi\left(\frac{t}{\sqrt{n}}\right)\right)^n.$$

D'autre part, les Y_k ont moyenne nulle et variance qui vaut 1, alors la fonction φ admet au voisinage de 0, le développement limité suivant

$$\varphi\left(u\right) = 1 - \frac{u^2}{2} + \circ\left(u^2\right),\,$$

donc

$$\varphi\left(\frac{t}{\sqrt{n}}\right) = 1 - \frac{t^2}{2n} + o\left(\frac{t^2}{2n}\right).$$

Pour n assez grand, on a

$$\lim_{n\to\infty}\varphi_{Z_n}\left(t\right) = \lim_{n\to\infty}\left(\varphi\left(\frac{t}{\sqrt{n}}\right)\right)^n = \lim_{n\to\infty}\left(1 - \frac{t^2}{2n} + o\left(\frac{1}{2n}\right)\right)^n = e^{-\frac{t^2}{2}}.$$

Donc $(Z_n, n \ge 1)$ converge en loi vers une v.a de loi $\mathcal{N}(0, 1)$.

Proposition 1.1 Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendants de même lois et de carré intégrable. Posons $m=E(X_1)$ et $\sigma^2=Var(X_1)$, alors

$$\frac{1}{\sqrt{n}} \sum_{k=1}^{n} X_k \xrightarrow{\mathcal{L}} \mathcal{N}\left(m, \sigma^2\right)$$

 $lorsque \ n \to \infty$. Par conséquent,

$$\forall t \in \mathbb{R}, \qquad \lim_{n \to \infty} P\left(\frac{1}{\sqrt{n}} \sum_{k=1}^{n} X_k \le t\right) = \int_{-\infty}^{t} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) dx.$$