Homework 1

Corey Mostero

Student ID: 256652

Units and Vectors

1	Boo	Book																								
	1.1	1.21																								
2	Lab	Man	uel																							
	2.1	172.																								
	2.2	173 (b) .																							
	2.3	174.																								
	2.4	184																								

1 Book

1.1 1.21

Variables:

$$\overrightarrow{AB} = ((0)\hat{x} + (2.6)\hat{y}) \text{ km}$$

$$\overrightarrow{BC} = ((4.0)\hat{x} + (0)\hat{y}) \text{ km}$$

$$\overrightarrow{CD} = 3.1 \text{ km}$$

$$\theta = 45^{\circ}$$

$$\overrightarrow{CD}_{x} = ?$$

$$\overrightarrow{CD}_{y} = ?$$

$$\overrightarrow{AD} = ?$$

Finding components of \overrightarrow{CD} :

$$\cos(\theta) = \frac{\overrightarrow{CD}_x}{\text{hyp.}}$$

$$\overrightarrow{CD}_x = \text{hyp.} \cdot \cos(\theta)$$

$$= 3.1 \text{km} \cdot \cos(45^\circ)$$

$$= 2.2 \text{km}$$

$$\sin(\theta) = \frac{\overrightarrow{CD}_y}{\text{hyp.}}$$

$$\overrightarrow{CD}_y = \text{hyp.} \cdot \sin(\theta)$$

$$= 3.1 \text{km} \cdot \sin(45^\circ)$$

$$= 2.2 \text{km}$$

$$\overrightarrow{CD} = \left((2.2)\hat{i} + (2.2)\hat{j} \right) \text{km}$$

Finding the vector \overrightarrow{AD} :

$$\begin{split} \overrightarrow{AD} &= \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} \\ &= \left(\overrightarrow{AB}_x + \overrightarrow{BC}_x + \overrightarrow{CD}_x \right) \hat{i} + \left(\overrightarrow{AB}_y + \overrightarrow{BC}_y + \overrightarrow{CD}_y \right) \hat{j} \\ &= \left(0 \hat{i} + 4.0 \hat{i} + 2.2 \hat{i} \right) \text{km} + \left(2.6 \hat{j} + 0 \hat{j} + 2.2 \hat{j} \right) \text{km} \\ &= \left(6.6 \hat{i} + 4.8 \hat{j} \right) \text{km} \end{split}$$

Finding magnitude of \overrightarrow{AD} :

$$\|\overrightarrow{AD}\| = \sqrt{(AD_x)^2 + (AD_y)^2}$$

= $\sqrt{(6.6\text{km})^2 + (4.8\text{km})^2}$
= 8.16km

Finding direction of \overrightarrow{AD} :

$$\begin{aligned} \tan(\theta) &= \frac{\text{opp.}}{\text{adj.}} \\ \theta &= \arctan\left(\frac{\text{opp.}}{\text{adj.}}\right) \\ &= \arctan\left(\frac{4.8\text{km}}{2.2\text{km}}\right) \\ &= 65.38^{\circ} \text{ N of E} \end{aligned}$$

Solution:

Magnitude: 8.16km Direction: 65.38° N of E

2 Lab Manuel

2.1 172

a) Prove that $\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{B} \cdot \overrightarrow{A}$

- b) Show that $\overrightarrow{A} \cdot \overrightarrow{B}$ can be interpreted either as \overrightarrow{B} times the component of \overrightarrow{A} in the direction of \overrightarrow{B} , or as \overrightarrow{A} times the component of \overrightarrow{B} in the direction of \overrightarrow{A} .
- c) Calculate the dot product of the two vectors, $\vec{A} \cdot \vec{B}$, given below: (No units)
 - 1) $\vec{A} = 20$ along the +X axis, $\vec{B} = 15$ at 37° above the +X axis.
 - 2) $\vec{A} = 6$ at 20° above the +X axis, $\vec{B} = 10$ at 70° above the +X axis.
 - 3) $\overrightarrow{A} = 3$ along the +X axis, $\overrightarrow{B} = 4$ along the +X axis.
 - 4) $\vec{A} = 4$ along the +X axis, $\vec{B} = 4$ along the -X axis.
 - 5) $\overrightarrow{A} = 0.3$ along the +X axis, $\overrightarrow{B} = 0.5$ at 135° to \overrightarrow{A}
 - 6) $\vec{A} = 12$ along the +X axis, $\vec{B} = 7$ along the +Y axis.

a)

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

$$\vec{A}_x \vec{B}_x + \vec{A}_y \vec{B}_y = \vec{B}_x \vec{A}_x + \vec{B}_y \vec{A}_y$$

Which can be rewritten as

$$\overrightarrow{A}_x \overrightarrow{B}_x + \overrightarrow{A}_y \overrightarrow{B}_y = \overrightarrow{A}_x \overrightarrow{B}_x + \overrightarrow{A}_y \overrightarrow{B}_y$$

Begin by finding "the component of \vec{A} in the direction of \vec{B} "

$$\overrightarrow{A}\cdot \overrightarrow{B} =$$

- 2.2 173 (b)
- 2.3 174
- 2.4 184