Kelompok 23:

- Nerisa Afiani (5025221064)

- Nadya Saraswati Putri (5025221246)

- Aryasatya Wiryawan (5025221256)

Tugas Komnum Pertemuan 3

Dapatkan akar-akar persamaan berikut :

a.
$$x^3 + 6.6x^2 - 29.05x + 22.64 = 0$$

b.
$$x^4 - 0.41x^3 + 1.632x^2 - 9.146x + 7.260 = 0$$

dengan:

1. Metode Iterasi

Jawab:

a.
$$x^3 + 6.6x^2 - 29.05x + 22.64 = 0$$

$$x(n+1) = \frac{(22.64 - 6.6x(n)^2 + 29.05x(n) - x(n)^3)}{3}$$

$$Misal: x_0 = 1$$

Iteration	x(n)	x(n+1)	Error
0	1	1.6667	0.6667
1	1.6667	2.1111	0.4444
2	2.1111	2.3333	0.2222
3	2.3333	2.4000	0.0667
4	2.4000	2.4012	0.0012
5	2.4012	2.4012	~0.0000 (convergence)

$$x \approx 2.4012$$

b.
$$x^4 - 0.41x^3 + 1.632x^2 - 9.146x + 7.260 = 0$$

$$x(n+1) = \frac{(22.64 - 6.6x(n)^2 + 29.05x(n) - x(n)^3)}{3}$$

 $Misal: x_0 = 1$

Iterasi	x.n	f(x_n)	Kesalahan
0	1	8.260	8.260
1	8.260	0.873	7.387
2	0.873	2.258	1.385
3	2.258	1.124	1.134
4	1.124	1.652	0.528
5	1.652	1.372	0.280

 $x \approx 1.5$

2. Metode Faktorisasi

Jawab:

a.
$$x^3 + 6.6x^2 - 29.05x + 22.64 = 0$$

Jawab:

#	b_0	a_1	a_2
1	0	6.66	-29.05
2	-0.779	7.379	-23.034
3	-0.971	7.571	-21.676
4	-1.044	7.644	-21.069
5	-1.074	7.674	-20.808
6	-1.088	7.688	-20.685
7	-1.094	7.694	-20.632
8	-1.097	7.697	-20.606
9	-1.098	7.698	-20.597
10	-1.099	7.699	-20.588

$$x^3 + 6.6x^2 - 29.05x + 22.64$$

$$= (x - 1.099)(x^2 + 7.699x - 20.588)$$

b. $x^4 - 0.41x^3 + 1.632x^2 - 9.146x + 7.260 = 0$ Jawab:

Gunakan metode Newton-Raphson untuk mendapatkan akar persamaan-persamaan:

3.
$$f(x) = -0.875x^2 + 1.75x + 2.625$$
 (x_i = 3.1)
Jawab:

$$f(x) = -0.875x^{2} + 1.75x + 2.625$$

$$f'(x) = -1.75x + 1.75$$

$$x_{0} = 3.1$$

$$x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$$

$$x_{n+1} = 3.1 - \frac{-0.875x^{2} + 1.75x + 2.625}{-1.75x + 1.75}$$

Iteration	X _{aa} n.	$f(x_{aa}n)$	f'(x <u>.</u> n)	x_{n+1}	Error
0	3.1	-0.45625	0.25	2.85125	0.24875
1	2.85125	0.0296875	-0.1125	2.8203125	0.0309375
2	2.8203125	0.000083125	-0.08125	2.81875	0.0015625
3	2.81875	0.00000015625	-0.07875	2.818734375	0.000015625
4	2.818734375	0.0	-0.07875	2.818734375	0

 $x \approx 2.8187$

4.
$$f(x) = -2.1 + 6.21x - 3.9x^2 + 0.667x^3$$

Jawab:

$$f(x) = -2.1 + 6.21x - 3.9x^{2} + 0.667x^{3}$$

$$f'(x) = 6.21 - 7.8x + 2x^{2}$$

$$x_{0} = 1$$

$$x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$$

$$x_{n+1} = 1 - \frac{-2.1 + 6.21x - 3.9x^{2} + 0.667x^{3}}{6.21 - 7.8x + 2x^{2}}$$

Iterasi	xn	f(xn)	f'(xn)	xn+1	Kesalahan
0	1	-1.4625	2.41	0.872328	0.127672
1	0.872328	-0.0545412	2.19143	0.850525	0.021803
2	0.850525	-0.000089469	2.10733	0.850436	0.000089
3	0.850436	-0.00000007023	2.10678	0.850436	0
4	2	-1.4626	2.41	0.872328	0.127672
5	0.872328	-0.0545412	2.19143	0.850525	0.021803

 $x \approx 0.8504$

5.
$$f(x) = -23,33 + 79,35x - 88,09x^2 + 41,6x^3 - 8,68x^4 + 0,658x^5$$
 ($x_i = 3,5$)
Jawab:

$$f(x) = -23,33 + 79,35x - 88,09x^{2} + 41,6x^{3} - 8,68x^{4} + 0,658x^{5}$$

$$f'(x) = 79,35 - 176,18x + 124,8x^{2} - 34,72x^{3} + 32,9x^{4}$$

$$x_{0} = 3,5$$

$$x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$$

$$x_{n+1} = 3,5 - \frac{-23,33+79,35x-88,09x^{2}+41,6x^{3}-8,68x^{4}+0,658x^{5}}{79,35-176,18x+124,8x^{2}-34,72x^{3}+32,9x^{4}}$$

Iterasi	xn.	f(xn)	f'(xn)	xn+1	Kesalahan
0	3.5	-14.2665	112.0375	3.414329	0.035671
1	3.414329	-0.0140379	103.8928	3.414214	0.000115
2	3.414214	-0.000000121	103.8443	3.414214	0
3	3.414214	0	103.8443	3.414214	0
4	3.414214	0	103.8443	3.414214	0

$$x \approx 3.414214$$

Sekarang gunakan metode Secant untuk maksud yang sama dari persamaan : Rumus Secant :

$$x_2 = x_1 - \frac{f(x_1) \cdot (x_1 - x_0)}{f(x_1) - f(x_0)}$$

6.
$$f(x) = 9.36 - 21.963x + 16.2965x^2 - 3.70377x^3$$

Jawab:

Misalkan nilai awal $x_0 = 0$ dan $x_1 = 1$

Sehingga

x	0	1
f(x)	9.36	-0.0103

Pada Iterasi 1:

$$x_0 = 0 \text{ and } x_1 = 1$$

$$f(x_0) = f(0) = 9.36$$
 and $f(x_1) = f(1) = -0.0103$

$$\therefore x_2 = x_1 - f(x_1) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

$$x_2 = 1 - (-0.0103) \cdot \frac{1 - 0}{-0.0103 - 9.36}$$

$$x_2 = 0.9989$$

$$\therefore f(x_2) = f(0.9989) = -3.7038 \cdot 0.9989^3 + 16.2965 \cdot 0.9989^2 - 21.963 \cdot 0.9989 + 9.36 = -0.0097$$

Kemudian pada iterasi berikutnya $x_0 = x_1$ dan $x_1 = x_2$

n	x_0	$f(x_0)$	x_1	$f(x_1)$	x_2	$f(x_2)$	Update
1	0	9.36	1	-0.0103	0.9989	-0.0097	$x_0 = x_1$ $x_1 = x_2$
2	1	-0.0103	0.9989	-0.0097	0.9789	0.0022	$x_0 = x_1$ $x_1 = x_2$
3	0.9989	-0.0097	0.9789	0.0022	0.9826	-0.0003	$x_0 = x_1$ $x_1 = x_2$
4	0.9789	0.0022	0.9826	-0.0003	0.9822	0	$x_0 = x_1$ $x_1 = x_2$

Sehingga Perkiraan akar persamaan 9,36 – 21,963x + $16,2965x^2$ – $3,70377x^3$ menggunakan metode Secant adalah 0.9822

7.
$$f(x) = x^4 - 8.6x^3 - 35.51x^2 + 464x - 998.46 (x_{i-1} = 7 dan x_i = 9)$$

Jawab:

Nilai awal $x_0 = 7 \text{ dan } x_1 = 9$

Sehingga

x	7	8	9
f(x)	-39.25	133.7	592.83

Pada Iterasi 1:

$$x_0 = 7 \text{ and } x_1 = 8$$

$$f(x_0) = f(7) = -39.25$$
 and $f(x_1) = f(8) = 133.7$

$$\therefore x_2 = x_1 - f(x_1) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

$$x_2 = 8 - 133.7 \cdot \frac{8 - 7}{133.7 - (-39.25)}$$

$$x_2 = 7.2269$$

$$f(x_2) = f(7.2269) = 7.2269^4 - 8.6 \cdot 7.2269^3 - 35.51 \cdot 7.2269^2 + 464 \cdot 7.2269 - 998.46 = -18.0653$$

Kemudian pada iterasi berikutnya $x_0 = x_1$ dan $x_1 = x_2$

n	x_0	$f(x_0)$	<i>x</i> ₁	$f(x_1)$	x ₂	$f(x_2)$	Update
1	7	-39.25	8	133.7	7.2269	-18.0653	$x_0 = x_1$ $x_1 = x_2$
2	8	133.7	7.2269	-18.0653	7.319	-6.8718	$x_0 = x_1$ $x_1 = x_2$
3	7.2269	-18.0653	7.319	-6.8718	7.3755	0.8082	$x_0 = x_1$ $x_1 = x_2$
4	7.319	-6.8718	7.3755	0.8082	7.3695	-0.0298	$x_0 = x_1$ $x_1 = x_2$
5	7.3755	0.8082	7.3695	-0.0298	7.3697	-0.0001	$x_0 = x_1$ $x_1 = x_2$
6	7.3695	-0.0298	7.3697	-0.0001	7.3697	0	$x_0 = x_1$ $x_1 = x_2$

Sehingga Perkiraan akar persamaan $x^4 - 8.6x^3 - 35.51x^2 + 464x - 998.46$ menggunakan metode Secant adalah 7.3697

8.
$$f(x) = x^3 - 6x^2 + 11x - 6 (x_{i-1} = 2.5 dan x_i = 3.6)$$

Jawab:

Nilai awal $x_0 = 2.5 \text{ dan } x_1 = 3.6$

Pada Iterasi 1:

$$x_0 = 2.5$$
 and $x_1 = 3.6$

$$f(x_0) = f(2.5) = -0.375$$
 and $f(x_1) = f(3.6) = 2.496$

$$\therefore x_2 = x_1 - f(x_1) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

$$x_2 = 3.6 - 2.496 \cdot \frac{3.6 - 2.5}{2.496 - (-0.375)}$$

$$x_2 = 2.6437$$

$$f(x_2) = f(2.6437) = 2.6437^3 - 6 \cdot 2.6437^2 + 11 \cdot 2.6437 - 6 = -0.377$$

Kemudian pada iterasi berikutnya $x_0 = x_1$ dan $x_1 = x_2$

n	x_0	$f(x_0)$	x_1	$f(x_1)$	<i>x</i> ₂	$f(x_2)$	Update
1	2.5	-0.375	3.6	2.496	2.6437	-0.377	$x_0 = x_1$ $x_1 = x_2$
2	3.6	2.496	2.6437	-0.377	2.7692	-0.3141	$x_0 = x_1$ $x_1 = x_2$
3	2.6437	-0.377	2.7692	-0.3141	3.3961	1.325	$x_0 = x_1$ $x_1 = x_2$
4	2.7692	-0.3141	3.3961	1.325	2.8893	-0.186	$x_0 = x_1$ $x_1 = x_2$
5	3.3961	1.325	2.8893	-0.186	2.9517	-0.0897	$x_0 = x_1$ $x_1 = x_2$
6	2.8893	-0.186	2.9517	-0.0897	3.0098	0.02	$x_0 = x_1$ $x_1 = x_2$
7	2.9517	-0.0897	3.0098	0.02	2.9993	-0.0015	$x_0 = x_1$ $x_1 = x_2$
8	3.0098	0.02	2.9993	-0.0015	3	0	$x_0 = x_1$ $x_1 = x_2$

Sehingga Perkiraan akar persamaan $x^3 - 6x^2 + 11x - 6$ menggunakan metode Secant adalah 3

9. Buatlah sebuah paparan untuk menjelaskan tentang metode Bairstow dan metode

Quotient-Difference (Q-D). Dan buatlah sebuah kesimpulan mengenai kemudahan/kesulitan kedua metode tersebut didalam menyelesaikan masalah dibanding dengan metode2 yang telah anda pelajari dalam materi ini.

Jawab:

Metode Bairstow

Metode Bairstow adalah teknik numerik untuk menemukan akar-akar polinomial. Metode ini menggunakan pendekatan iteratif yang berdasarkan pada pemisahan polinomial menjadi faktor-faktor kuadratik, memungkinkan penyelesaian polinomial tingkat tinggi yang kompleks tanpa harus memecahnya menjadi polinomial linear. Bairstow mengasumsikan suatu bentuk kuadratik dan menggunakan proses iterasi untuk menemukan koefisien-koefisien yang memberikan residu (kesalahan) minimum. Metode ini melibatkan banyak perhitungan turunan numerik dan persamaan simultan yang memerlukan ketelitian dan akurasi komputasional.

Metode Quotient-Difference (Q-D)

Metode Quotient-Difference (Q-D) digunakan untuk menghitung eigenvalue dan eigenvector dari matriks. Metode ini sangat berguna untuk analisis matriks simetris dan tridiagonal. Q-D algoritma beroperasi dengan mengubah matriks menjadi bentuk yang lebih sederhana menggunakan rangkaian transformasi yang menghasilkan dua tabel: tabel Q (quotients) dan tabel E (differences). Dengan mengolah tabel ini secara iteratif, nilai-nilai eigen dapat diperoleh secara efektif.

Perbandingan dengan Metode Lain

1. Kemudahan dan Kesulitan Metode Bairstow dan Q-D

- Bairstow:

- Keuntungan: Sangat efektif untuk polinomial tingkat tinggi dan dapat menangani akar kompleks.
- Kekurangan: Metode ini rumit dan memerlukan komputasi yang intensif karena iterasinya yang bisa menjadi lambat dan sensitif terhadap nilai awal dan kondisi numerik.

- **Q-D**:

- Keuntungan: Efisien untuk matriks yang besar dan memiliki struktur tertentu, seperti tridiagonal, yang sering muncul dalam aplikasi fisika dan rekayasa.
- Kekurangan: Terbatas pada jenis matriks tertentu dan bisa menjadi kompleks dalam implementasinya.
- 2. Dibandingkan dengan Metode Iterasi, Faktorisasi, Newton-Raphson, dan Secant

- Metode Iterasi dan Faktorisasi:

- Metode iterasi dan faktorisasi (seperti dekomposisi LU atau QR) biasanya lebih sederhana dan mudah untuk diimplementasikan tetapi mungkin tidak seefisien metode Bairstow atau Q-D dalam kasus tertentu, terutama untuk polinomial atau matriks yang sangat besar dan kompleks.

- Newton-Raphson dan Secant:

- Metode Newton-Raphson sangat cepat dalam konvergensi tetapi memerlukan turunan yang dapat dihitung, membuatnya kurang fleksibel dibandingkan Bairstow yang tidak secara eksplisit memerlukan turunan.
- Metode Secant adalah variasi dari Newton-Raphson yang tidak memerlukan turunan, namun kedua metode ini kurang efektif untuk polinomial tingkat tinggi atau sistem non-linear dibandingkan dengan Bairstow yang bisa menangani akar kompleks lebih baik.

Kesimpulan

Bairstow dan Q-D adalah metode canggih yang menyediakan solusi yang kuat untuk masalah spesifik dalam matematika dan rekayasa. Bairstow sangat sesuai untuk menyelesaikan polinomial tingkat tinggi dengan akar kompleks, sementara Q-D efektif untuk menganalisis matriks khusus. Dibandingkan dengan metode iterasi, faktorisasi, Newton-Raphson, dan Secant, kedua metode ini menawarkan keunggulan dalam kasus-kasus tertentu tetapi dengan kompleksitas implementasi yang lebih tinggi dan potensi sensitivitas numerik yang harus ditangani dengan hati-hati.