Messages Monitoring Model Capable of Detecting and Deleting Spam in Public Telegram Group Chats

Ahmed Almohammed's Capstone Project for MiSK DSI Program

Contents

- Problem Addressed
- Data Acquisition
- Preprocessing Data
- Model Development
- Model Deployment
- Problems Associated with Current Solution
- Conclusion
- References
- End of Presentation

Problem Addressed

Data Acquisition

uciml

team-ai

@DeshDSingh

HuggingFace

Kaggle

Kaggle

GitHub Repository HuggingFace Datasets

Preprocessing Data

Main Steps Taken in Preprocessing the Data

Examining the data

Fixing target imbalance

Main Steps Taken in Preprocessing the Data

Undersampling


```
max_tokens = 10000
cutput_sequence_length = avg_token_length

# create a text vectorization layer
text_vectorizer = TextVectorization(max_tokens=max_tokens,
standardize="lower_and_strip_punctuation",
split="whitespace",
ngrams=None,
output_mode="int",
output_sequence_length=output_sequence_length)
```


Tokenization

Model Development

The Optimal Model

Model	Accuracy	F1-Score	Custom Data
Model 0	0.9599	0.9599	0.7500
Model 1	0.9599	0.9598	0.5000
Model 2	0.9775	0.9775	0.7500
Model 3	0.9855	0.9855	0.7500
Model 4	0.9727	0.9727	0.7500
Model 5	0.9839	0.9839	0.5000
Model 6	0.9743	0.9743	1.000

Model Deployment

Telegram Bot

- Built a Telegram Bot through the power of `pyrogram` package
- Loaded the model in the Bot script to implement it.
- The script gets the messages from the chat, passes it through the model, and determines the action based on the predictions.

Problems with Current Solution

Current Problems

- The training data used doesn't really represent the status of messaging in today's life
- Must have large data for both classes to avoid overfitting
- Model might not always make accurate predictions

Conclusion

References

- https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset
- https://www.kaggle.com/datasets/team-ai/spam-text-message-classification
- https://github.com/DeshDSingh/SMS-SPAM-Detection/blob/master/sms_spam.csv
- https://huggingface.co/datasets/sms_spam
- https://docs.pyrogram.org/
- https://www.tensorflow.org/tutorials/keras/save and load
- https://www.tensorflow.org/api_docs/python/tf
- https://towardsdatascience.com/dealing-with-imbalanced-classes-in-machine-learning-d43d6fa19d2
- https://www.geeksforgeeks.org/how-to-handle-imbalanced-classes-in-machine-learning/

Thank You

All questions and inquires are welcomed