实数即收敛有理数列的等价类

题目

数学史告诉我们,由自然数集 № 构造有理数域 ℚ 的方式非常朴素,但实数域 ℝ 的构造却是费解的. 幸运地是,我们可以借助高等代数描述实数. 以下仅讨论 ℚ-线性空间.

- 1. 记 V 是有理数列空间, 子集 V_c 由收敛的有理数列组成, 是 V_0 由收敛至零有理数列组成. 请证明 $V_0 \subseteq V_c \subseteq V$ 是真包含的线性空间.
- 2. 我们尝试给出 $\mathcal{L}(V_0,\mathbb{Q})$ 中的部分元素. 一种自然的想法是将 V 中元素与线性映射 $a\in\mathcal{L}(V_0,\mathbb{Q})$ 都写作无穷矩阵, 线性映射定义作逐点相乘求和:

$$a:V_0 o \mathbb{Q}, \quad egin{pmatrix} u_0\ u_1\ u_2\ dots \end{pmatrix} \mapsto (a_0\,a_1\,a_2\cdots)\cdot egin{pmatrix} u_0\ u_1\ u_2\ dots \end{pmatrix} = \sum_{n\geq 0} a_i u_i.$$

请验证, $\mathcal{L}(V_0, \mathbb{Q})$ 中形如无穷矩阵的元素构成了一个线性空间 (记作 V_{00}), 并给出该空间的一组基. 注意: 需要着重证明, 为什么符合条件的 a 有且仅有有限项非零?

- 3. 上一问的构造的可数维线性空间是 $\mathcal{L}(V_0,\mathbb{Q})$ 的真子空间. 证明 $\mathcal{L}(V_0,\mathbb{Q})$ 是不可数维的,并尝试找出一些 $\mathcal{L}(V_0,\mathbb{Q})$ 中的其他元素. 注意: 这表明延拓公理在某种程度上是反直觉的.
- 4. 请证明: $V_{00} \subseteq V_0 \subseteq V_c \subseteq V$ 中相邻两项的商都是不可数维的线性空间.
- 5. 用分析语言解释自然的商映射 $L:V_c o V_c/V_0$ 中的 L 与 V_c/V_0 .
- 6. 依照惯例, 我们将 V_c/V_0 中的元素记作 $v+V_0$, 此处数列 v 是商空间的代表元. 定义数列 的逐点乘法

$$(v+V_0)\cdot(u+V_0)=v\cdot u+V_0.$$

请证明: 该种乘法与代表元的选取无关, 因此是良定义的.

- 7. 验证 $(V_c/V_0,+,0+V_0,\cdot,1+V_0)\simeq (\mathbb{R},+,0,\times,1)$ 是通常的实数域. 这里 0 是全零数列, 1 是全一数列.
- 8. 给定函数 $f: \mathbb{Q} \to \mathbb{Q}$. 同以往定义, f 在数列上的定义是逐点的, 故将数列映作数列. 请证明, f 在 0 处连续, 当且仅当对任意 $u \in V_0$, 总有

$$\{f(u_n)\}_{n\geq 1}\in V_c.$$

此处 V_0 可视作无穷小量. 通俗地说, 连续映射是保持收敛数列的映射. (注意: 请勿将这一定义迁移至一般拓扑空间).

- 9. 证明连续函数 $f:\mathbb{Q}\to\mathbb{R}$ 可以被唯一地提升作连续函数 $\widetilde{f}:\mathbb{R}\to\mathbb{R}$, 使得 $\widetilde{f}|_{\mathbb{Q}}=f$.
- 10. 为何引入实数?

解答

本套题目旨在用 \mathbb{Q} -收敛数列的某个商空间定义 \mathbb{R} . 由于有理数列的极限未必是有理数,因此第一问不应出现 $\lim_{n\to\infty}a_n=a$ 之类的语句. 以及 ε - δ 语言中也应注明所取的是有理数.

(1) 下验证 V_c 的线性性. 任取定

$$\{a_n\}_{n\geq 1},\ \{b_n\}_{n\geq 1}\in V_c,\quad \lambda\in\mathbb{Q},$$

下证明 $\{a_n + \lambda b_n\}_{n\geq 1} \in V_c$. 对任意**正有理数** $\varepsilon > 0$:

- 1. 存在 N_1 使得对一切 $m \geq n \geq N_1$ 总有 $\sum_{m \leq i \leq n} |a_n| \leq \varepsilon/3$;
- 2. 存在 N_2 使得对一切 $m \geq n \geq N_2$ 总有 $\sum_{m \leq i \leq n} |b_n| \leq \varepsilon/(3|\lambda|+1)$.

因此对 $m \geq n \geq \max(N_1, N_2)$ 总有

$$\sum_{m \leq i \leq n} |a_n + \lambda b_n| \leq arepsilon/3 + |\lambda arepsilon|/(3|\lambda| + 1) < arepsilon.$$

因此 $\lambda\{a_n\}_{n\geq 1}+\{b_n\}_{n\geq 1}\in V_c$. 从而 V_c 是 \mathbb{Q} -线性空间.

- **(2)** 容易验证, a 可以取**仅有限项非零的**有理数列. 此外应证明: 对任意给定的无限项非零的有理数列 $\{r_n\}_{n\geq 1}$, 总存在**收敛的** $\{s_n\}_{n\geq 1}$ 使得 $\sum_{n\geq 1} r_n s_n$ 是无理数. 不妨设 $r_n \neq 0$. 证明方式包含以下两类:
 - 证明对一切形如 $\{r_ns_n\}$ 的**部分和收敛数列**, $\sum_{n\geq 1}s_nr_n$ 可取的结果是不可数的;
 - 找到收敛的 $\{s_n\}$, 使得 $|r_ns_n|=1/p_n$, 此处 $\{p_n\}_{n\geq 1}$ 是递增的质数数列.

其余从略.

- (3) 这在通常公理不可判定. 这告诉我们, 不应轻易承认 $\mathcal{L}(V,k)$ 比 V 大.
- (4) 由 (2) 知 V_{00} 是可数的. 下证明 V_0/V_{00} 是不可数的.
 - 先证明可数维 \mathbb{Q} -线性空间是可数集. 任选定一组基. 对任意非负整数 k, 基中 k-元子集数量可数, 从而由 k个元素线性表示的元素也是可数的. 对 $k=0,1,2,\ldots$ 取并集, 即得全空间. 因此全空间可数.
 - V_0 包含数列 $\{2^{-n}\}_{n\geq 1}$ 及其所有子列,因此是不可数集,从而是不可数维的线性空间.因此 V_0/V_{00} 不可数.

后文将证明 V_c/V_0 同构于实数域 (作为 \mathbb{Q} -线性空间). 而实数是不可数集, 从而是不可数维 \mathbb{Q} -线性空间.

最后证明 V/V_c 不可数. 定义线性单射

$$V_0 o V_c, \quad (a_1, a_2, a_3, a_4, \ldots) \mapsto (0, a_1, 0, a_2, 0, a_3 \ldots).$$

记 $\widetilde{V_c}$ 是 V_c 中偶数项收敛数列构成的子空间,则 $\widetilde{V_c}/V_0\cong V_c$ 是不可数维线性空间,因此 V_c/V_0 绝不可能是至多可数维的. 这表明 V_c/V_0 是不可数维的.

- (5) 本题已经给了答案, 只需依照实数的定义检验即可. 也可以将 V_c/V_0 视作实数的定义式, 检验工作见 (7).
 - 一种常见的方式是**将实数定义做无限小数**, 容易证明 V_c/V_0 与无限小数的等价性 (但请留意 $0.\dot{9}=1$ 这一等价关系).
 - 另一种常见的方式是用收敛的单调递增数列描述实数,这与基于 Dedekind 分割的定义仅有一步之遥.

假若分析中定义实数的方法是 Dedekind 分割,则检验分作以下几步:

- 1. 对任意 Dedekind 分割 $A \sqcup B = \mathbb{Q}$,假若恒有 $x \in A$ 小于 $y \in B$,则任取 $x_0 \in A$ 与 $y_0 \in B$,依二分法构造 A 中单调不减的收敛序列,使得 A 中所有元素不大于序列中某一 项.
- 2. 对任意 $\{r_n\}_{n\geq 1}\in V_c$, 定义

$$A = \limsup_n \{r \in \mathbb{Q} \mid r \leq x_n\} := \bigcup_{m \geq 1} \bigcap_{n \geq m} \{r \in \mathbb{Q} \mid r \leq x_n\}$$

为 Dedekind 分割前项即可. 当然也可以等价地写作

$$A = \liminf_n \{r \in \mathbb{Q} \mid r \leq x_n\} := \bigcap_{m \geq 1} \bigcup_{n \geq m} \{r \in \mathbb{Q} \mid r \leq x_n\}.$$

3. 收敛至相同终点的不同序列构造出相同的 Dedekind 分割, 直接检验 A-项的相互包含关系即可. 对任意给定 Dedekind 分割的前项 A 构造出的数列 $\{x_n\}_{n\geq 1}$,

$$\widetilde{A} = \limsup_n \{r \in \mathbb{Q} \mid r \leq x_n\} := \bigcup_{m \geq 1} \bigcap_{n \geq m} \{r \in \mathbb{Q} \mid r \leq x_n\}$$

其实是对二分法算法的解释. 因此 $A = \tilde{A}$. 这表明 V_c 中一类具有相同收敛终点的数列对应一个 Dedekind 分割, 从而 V_c/V_0 与所有 Dedekind 分割一一对应, 即对应所有实数.

(6) 良定义意即与代表元之选取无关. 下证明: 若 $a,b,x,y\in V_c$, 使得 $(a-b),(x-y)\in V_c$, 则

$$\lim_{n o \infty} (a_n x_n - b_n y_n) = 0.$$

先将上式极限内部化作 $a_n(x_n-y_n)+(a_n-b_n)y_n$. 由于 $|a_n|$ 有上界 M_1 , $|y_n|$ 有上界 M_2 , 因此

$$\lim_{n o\infty}|a_nx_n-b_ny_n|\leq \limsup_{n o\infty}M_1\cdot|x_n-y_n|+|a_n-b_n|\cdot M_2=0.$$

注: 不能轻易写下 $\lim_{n\to\infty}x_n=x$, 除非 x 是有理数.

- (7) 略.
- (8) 同数学分析. f 在 x 处连续, 当且仅当 f 将收敛至 x 的数列映作收敛至 f(x) 的数列.
- (9) 利用 f 保持 Cauchy 列的性质, 直接检验即可.

(10)(为何引入实数?)示例回答:实数不存在,因为实数就是有理数列的极限.为了不让一堆箭头影响排版,我们假想出实数这一概念.