Package 'loopevd'

May 30, 2025

Version 1.0	.0													
Description	Performs	extreme	value	anal	ysis at	t multiple	locations	using	func	tions 1	from th	ne '	evd'	pac

Description Performs extreme value analysis at multiple locations using functions from the 'evd' package. Supports both point-based and gridded input data using the 'terra' package, enabling flexible looping across spatial datasets for batch processing of generalised extreme value, Gumbel fits.

License GPL (>= 3)

Imports terra, evd, ncdf4, stats, utils

Encoding UTF-8

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, zoo, ozmaps, raster, sp, methods

Title Loop Functions for Extreme Value Distributions

VignetteBuilder knitr

NeedsCompilation no

Author Julian O'Grady [aut, cre]

Maintainer Julian O'Grady <julian.ogrady@csiro.au>

Repository CRAN

Date/Publication 2025-05-30 09:00:05 UTC

Contents

ld_nc_atts	2
nnual_max	3
entredAndScaled	4
f_qevd	5
f_to_netcdf	6
vd_params	7
st_fevd	8
etcdf_to_df	10
lot_empirical	10
evd_vector	11
ster_fevd	12
ster_qevd	13
ster_se_sig	14
e_sig	15

2 add_nc_atts

Index 16

add_nc_atts

Add Global Attribute Metadata to Netcdf File

Description

Improve FAIR metadata record with consideration of CF conventions https://cfconventions.org/Data/cf-conventions/cf-conventions-1.10/cf-conventions.html

Usage

```
add_nc_atts(
  outfile,
  r,
  creator_name = "",
  creator_email = "",
  references = "",
  title = "",
  summary = "",
  keywords = "",
  history = "",
  licence = "",
  Disclaimer = ""
```

Arguments

outfile	character the file to be edited
r	SpatRaster the dataset in raster format e.g. r = terra::rast(outfile)
creator_name	character, optional. The name of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.
creator_email	character, optional. The email address of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.
references	character, optional. Published or web-based references that describe the data or methods used to produce it. Recommend URIs (such as a URL or DOI) for papers or other references. This attribute is defined in the CF conventions.
title	character, optional. A short phrase or sentence describing the dataset. In many discovery systems, the title will be displayed in the results list from a search, and therefore should be human readable and reasonable to display in a list of such names. This attribute is also recommended by the NetCDF Users Guide and the CF conventions.
summary	character, optional. A paragraph describing the dataset, analogous to an abstract for a paper.

annual_max 3

keywords character, optional. A comma-separated list of key words and/or phrases. Key-

words may be common words or phrases, terms from a controlled vocabulary (GCMD is often used), or URIs for terms from a controlled vocabulary (see also

"keywords_vocabulary" attribute).

history character, optional. Provides an audit trail for modifications to the original data.

This attribute is also in the NetCDF Users Guide: 'This is a character array with a line for each invocation of a program that has modified the dataset. Wellbehaved generic netCDF applications should append a line containing: date, time of day, user name, program name and command arguments.' To include a more complete description you can append a reference to an ISO Lineage entity;

see NOAA EDM ISO Lineage guidance.

licence character, optional.

Disclaimer character, optional.

Value

see https://wiki.esipfed.org/Attribute_Convention_for_Data_Discovery_1-3, http://cfconventions.org/cf-conventions/cf-conventions.html

Examples

```
## Not run:
tf = tempfile("test.nc")
tf
file.copy(system.file("extdata/50km_AnnMax_agcd_v1_tmax_mean_r005_daily_1980-2019.nc",
package = "loopevd"),tf)
r = terra::rast(tf)
add_nc_atts(tf,r,creator_name="add_nc_atts examples")
```

annual_max

Compute Annual Maximum and Mean of On-the-Hour Records

Description

annual_max() takes a data frame of daily (or sub-daily) observations and returns a summary of the annual maximum and mean values, the date/time of each annual maximum, and the fraction of "on-the-hour" samples (data completeness) for each calendar year.

```
annual_max(DF, record_attribute = "sea_level")
```

4 centredAndScaled

Arguments

DF

A data.frame containing at least:

- date: a Date or POSIXIt column of observation timestamps
- · a numeric column of values

record_attribute

A character string giving the name of the column in DF containing the values. Defaults to "sea_level".

Details

For each year, only observations exactly on the hour (minute == 0 & second == 0) are counted toward completeness. If no valid data exist for a year, that year is dropped from the output.

Value

a data.frame containing a date column and a numeric column (specified in record_attribute) for years where at least one nonNA value is present, containing:

- annMax the annual maximum
- annMean the annual mean (calendar year)
- datestr the date/time of the annual maximum, formatted "YYYYmmddHH"
- date the POSIXIt timestamp of the annual maximum
- pc_complete the fraction (0 to 1) of hourly-timestamped samples available in that year

Examples

centredAndScaled

Centre and Scale Numeric Data

Description

centredAndScaled centres (subtracts the mean) and scales (divides by the standard deviation) each column of a numeric vector or matrix.

df_qevd 5

Usage

```
centredAndScaled(nsloc = NULL)
```

Arguments

nsloc

data.frame. If NULL or of length zero, the function returns nsloc unchanged.

Details

If nsloc has only one column, the function computes the mean and standard deviation of the entire vector. If nsloc has multiple columns, each column is centred and scaled independently.

Value

A numeric vector or matrix of the same dimensions as the input, with each column centred to mean zero and scaled to unit variance. If nsloc is NULL, returns NULL.

Examples

```
# Centre and scale a simple vector
centredAndScaled(data.frame(1:10))
# Centre and scale each column of a matrix
mat <- as.data.frame(matrix(stats::rnorm(30), nrow = 10, ncol = 3))
centredAndScaled(mat)</pre>
```

df_qevd

Return a data.frame of EVD Quantiles

Description

Return a data.frame of EVD Quantiles

Usage

```
df_qevd(x, p, evd_mod_str, interval = NULL, lower.tail = TRUE)
```

Arguments

x	data.frame of EVD parameters, e.g. loc, scale, shape
p	probability value.
evd_mod_str	either a string "fgumbel", "fgev" or "fgumbelx" from the extreme value distribution (evd) in the evd package
interval	A length two vector containing the end-points of the interval to be searched for the quantiles, passed to the uniroot function.
lower.tail	Logical; if TRUE (default), probabilities are $P(X \le x)$, otherwise $P(X > x)$.

6 df_to_netcdf

Value

gives the quantile function corresponding to p

See Also

```
evd::qgev(), evd::qgumbelx()
```

Examples

```
df = data.frame(loc = 1,scale = 0.5)
qevd_vector(df,1-0.05,"fgumbel")
```

df_to_netcdf

Convert Data Frame to NetCDF

Description

This function converts a data frame to a NetCDF file for a list of points (rows are different stations). It attempts to identify CF-compliant coordinate variables, such as latitude and longitude, using default or specified column names.

Usage

```
df_to_netcdf(
    df,
    output_file,
    lat_var = "lat",
    lon_var = "lon",
    global_atts = list(),
    units = list(),
    longnames = list(),
    cf_standard_names = list()
)
```

Arguments

df A data frame containing the data to be converted.

output_file The path to the output NetCDF file.

lat_var The name of the latitude variable in the data frame. Default is "lat".

lon_var The name of the longitude variable in the data frame. Default is "lon".

A list of global attributes to add to the NetCDF file. Default is an empty list.

A list of units for each variable in the data frame. Default is an empty list.

A list of long names for each variable in the data frame. Default is an empty list.

cf_standard_names

A list of CF standard names for each variable in the data frame. Default is an empty list.

evd_params 7

Value

None. The function writes the data to a NetCDF file.

Examples

```
# Example data frame
example_df <- data.frame(</pre>
 lat = c(-35.0, -34.5, -34.0),
 lon = c(150.0, 150.5, 151.0),
 variable1 = c(0.1, 0.2, 0.3),
 variable2 = c(0.4, 0.5, 0.6)
)
# Define units, longnames, and CF standard names
units_list <- list(variable1 = "m", variable2 = "cm")</pre>
longnames_list <- list(variable1 = "Variable 1 Longname",</pre>
                       variable2 = "Variable 2 Longname")
cf_standard_names_list <- list(variable1 = "sea_surface_height",</pre>
                                 variable2 = "sea_water_temperature")
tf <- tempfile("test.nc")</pre>
# Convert example data frame to NetCDF
df_to_netcdf(example_df, tf, global_atts = list(
 title = "Example NetCDF",
 summary = "This is a test NetCDF file created from an example data frame.",
 source = "Example data",
 references = "N/A"
), units = units_list, longnames = longnames_list,
 cf_standard_names = cf_standard_names_list)
```

evd_params

Function to return the EVD (Gumbel or GEV) parameters as a vector.

Description

Function to return the EVD (Gumbel or GEV) parameters as a vector.

```
evd_params(
   x,
   evd_mod_str,
   nsloc = NULL,
   empty_evd_params,
   ntries = 3,
   silent = FALSE,
   returncs = TRUE
)
```

8 list_fevd

Arguments

x numeric vector of data to be fitted.

evd_mod_str either a string "fgumbel", "fgumbelx" or "fgev" from the extreme value distri-

bution (evd) in the evd package

nsloc A data frame with the same number of rows as the length of x, for linear mod-

elling of the location parameter. The data frame is treated as a covariate matrix (excluding the intercept). A numeric vector can be given as an alternative to a

single column data frame.

empty_evd_params

A preallocated vector or array used to store the return value when fitting fails

ntries number of tries to fit the evd

silent logical: should the report of error messages be suppressed? returnes logical: should the centered and scaled values be returned

Value

a vector of estimate, var.cov, AIC, centered and scaled values

Examples

```
# Ten records of 20 random data generated from the fgumbel EVD
am = lapply(1:10, function(x) evd::rgumbel(20))
tab = as.data.frame(t(sapply(am,function(x) evd_params(x,"fgumbel"))))
```

list_fevd

Fit EVD Parameters to a List of Annual Maxima

Description

Fits an extreme value distribution to each element of a list of annual maxima series, optionally using non-stationary covariates, and returns a table of fitted parameters.

```
list_fevd(
   lst,
   evd_mod_str,
   nsloc = NULL,
   outfile = NULL,
   pc_complete = 0.8,
   minyear = 1800,
   maxyear = 2100,
   mslAtt = "annMean"
)
```

list_fevd 9

Arguments

1st A list of data. frames, each as returned by annual_max(), containing at least:

• annMax: annual maximum values

• annMean: annual mean values

• datestr: timestamp strings for the maxima

• date: POSIX timestamps for the maxima

• pc_complete: completeness fraction per year

• zero: the zero level

• nsloc: optional covariate matrix used in non-stationary models.

If non-stationary fitting is required, each element may also include an nsloc matrix of covariates.

matrix of covariate

evd_mod_str A character string specifying which fitting function from evd to use: "fgumbel",

"fgumbelx" or "fgev".

nsloc Optional matrix of covariates for non-stationary location modelling. Must have

the same number of rows as years retained after filtering.

outfile Optional character path to a NetCDF file in which to write the results (not

currently implemented).

pc_complete Numeric scalar (0-1). Minimum completeness fraction for a year to be included.

Defaults to 0.8.

minyear Numeric. Minimum calendar year to include. Defaults to 1800.

maxyear Numeric. Maximum calendar year to include. Defaults to 2100.

mslAtt character. Name of the attribute to be removed from annMax in each data.frame

(e.g.\ "annMean" or "zero"). Defaults to "annMean".

Value

A data. frame with one row per list element, containing the parameters returned by evd_params() for each annual-max series.

Examples

10 plot_empirical

netcdf_to_df

Read Station-based evd NetCDF File into a Data Frame

Description

This function reads a NetCDF file with EVD parameters (e.g. loc and scale) with a station dimension and converts it back into a data frame. The function assumes that the NetCDF file has a 'station' dimension with associated variables such as latitude, longitude, and other station-specific data.

Usage

```
netcdf_to_df(netcdf_file, exclude_cov = FALSE)
```

Arguments

netcdf_file The path to the NetCDF file.

exclude_cov Logical, if TRUE, variables starting with 'cov' will be excluded. Default is

FALSE.

Value

A data frame containing the data from the NetCDF file.

Examples

```
tf = tempfile("test.nc")
# Ten records of 20 random data generated from the fgumbel EVD
am = lapply(1:10, function(x) evd::rgumbel(20))
tab = as.data.frame(t(sapply(am,function(x) evd_params(x,"fgumbel"))))
tab$lon = rnorm(10,sd=10) #station latitude
tab$lat = rnorm(10,sd=20) #station longitude
loopevd::df_to_netcdf(df = tab,output_file = tf)
tab2 = loopevd::netcdf_to_df(tf)
```

plot_empirical

Plot the Empirical Return Level Data

Description

Plot the Empirical Return Level Data

```
plot_empirical(x, xns = NULL, unitz = "-", ...)
```

qevd_vector 11

Arguments

x A numeric vector, which may contain missing values.

xns A numeric vector, corrected for the non-stationary change in location, which

may contain missing values.

unitz y-label

... parameters sent to base::plot

Value

r

Examples

```
ns = seq(-1,1,,50)
x = evd::rgev(50,loc=3)+ns
xns = x-ns
plot_empirical(x,xns)
```

qevd_vector

Return a Vector of EVD Quantiles

Description

Return a Vector of EVD Quantiles

Usage

```
qevd_vector(x, p, evd_mod_str, interval = NULL, lower.tail = TRUE, nams = NULL)
```

Arguments

x vector of EVD parameters
p vector of probabilities.

evd_mod_str either a string "fgumbel", "fgev" or "fgumbelx" from the extreme value distri-

bution (evd) in the evd package

interval A length two vector containing the end-points of the interval to be searched for

the quantiles, passed to the uniroot function.

lower.tail Logical; if TRUE (default), $P(X \le x)$, otherwise P(X > x).

names of the values of x (optional)

Value

gives the quantile function corresponding to p

12 raster_fevd

See Also

```
evd::qgev(), evd::qgumbelx()
```

Examples

```
qevd_vector(c(1,0.5),1-0.05,"fgumbel",nams = c("loc","scale"))
df = data.frame(loc = 1,scale = 0.5)
qevd_vector(df,1-0.05,"fgumbel")
```

raster_fevd

Turn Raster of Annual Maximums into Extreme Value Distributions parameters for Netcdf Output

Description

Turn Raster of Annual Maximums into Extreme Value Distributions parameters for Netcdf Output

Usage

```
raster_fevd(
    r,
    evd_mod_str,
    nsloc = NULL,
    outfile = NULL,
    cores = 1,
    ntries = 1,
    silent = FALSE,
    seed = NULL
)
```

Arguments

r	SpatRaster
evd_mod_str	either a string "fgumbel", "fgev" or "fgumbelx" from the extreme value distribution (evd) in the evd package
nsloc	A data frame with the same number of rows as the length of x, for linear modelling of the location parameter. The data frame is treated as a covariate matrix (excluding the intercept). A numeric vector can be given as an alternative to a single column data frame.
outfile	filename to write to netcdf
cores	positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created and used. You can also supply a cluster object. Ignored for functions that are implemented by terra in C++ (see under fun)
ntries	integer number of attempts at fitting fgumbelx
silent	logical: should the report of error messages be suppressed?
seed	set the seed for fitting.

raster_qevd 13

Value

the parameters of the evd in a SpatRasterDataset

See Also

```
evd::fgev(), evd::fgumbelx()
```

Examples

```
require(terra)
r = rast(system.file("extdata/50km_AnnMax_agcd_v1_tmax_mean_r005_daily_1980-2019.nc"
,package = "loopevd"))
r2 = aggregate(r,4) #lower the resolution for a fast example
gumbel_r = raster_fevd(r2,"fgumbel",seed = 1)
plot(gumbel_r$loc,main = "location")
```

raster_qevd

Return a raster of EVD Quantiles

Description

Return a raster of EVD Quantiles

Usage

```
raster_qevd(x, p, evd_mod_str, interval = NULL, lower.tail = TRUE)
```

Arguments

x	SpatRasterDataset of EVD parameters, e.g. loc, scale, shape
p	probability value.
evd_mod_str	either a string "fgumbel", "fgev" or "fgumbelx" from the extreme value distribution (evd) in the evd package
interval	A length two vector containing the end-points of the interval to be searched for

the quantiles, passed to the uniroot function.

lower.tail Logical; if TRUE (default), probabilities are $P(X \le x)$, otherwise P(X > x).

Value

gives the quantile function corresponding to p

See Also

```
evd::qgev(), evd::qgumbelx()
```

14 raster_se_sig

Examples

raster_se_sig

Calculate One-Sided Confidence Level (%)

Description

Computes the one-sided confidence level, defined as (1 - p-value) x 100, for testing whether each mean (mu) differs from zero under a normal approximation.

Usage

```
raster_se_sig(muvari)
```

Arguments

muvari

SpatRaster, of mean (location) values, variances corresponding to each mu to test against zero.

Details

For each element:

- 1. Calculate the standard error: se = sqrt(vari).
- 2. Compute the absolute z-score: z = abs(mu / se).
- 3. The one-sided p-value is 1 phi(z), where phi is the CDF of the standard normal.
- 4. The confidence level is $(1 p\text{-value}) \times 100 = \text{phi}(z) \times 100$.

Value

A SpatRaster of confidence levels (0-100%), each rounded to one decimal place.

Examples

se_sig

se_sig

Calculate One-Sided Confidence Level (%)

Description

Computes the one-sided confidence level, defined as (1 - p-value) x 100, for testing whether each mean (mu) differs from zero under a normal approximation.

Usage

```
se_sig(muvari)
```

Arguments

muvari

Numeric array, of mean (location) values, variances corresponding to each mu to test against zero.

Details

For each element:

- 1. Calculate the standard error: se = sqrt(vari).
- 2. Compute the absolute z-score: z = abs(mu / se).
- 3. The one-sided p-value is 1 phi(z), where phi is the CDF of the standard normal.
- 4. The confidence level is $(1 p\text{-value}) \times 100 = \text{phi}(z) \times 100$.

Value

A numeric vector of confidence levels (0-100%), each rounded to one decimal place.

Examples

```
# Single value
se_sig(muvari = cbind(2,1))

# Vector of values
se_sig(muvari = cbind(c(-1, 0, 1),c(1, 2, 3)))
```

Index

```
{\sf add\_nc\_atts}, {\color{red} 2}
annual_max, 3
centredAndScaled, 4
df_qevd, 5
{\tt df\_to\_netcdf}, {\color{red} 6}
evd::fgev(), 13
evd::fgumbelx(), 13
evd::qgev(), 6, 12, 13
evd::qgumbelx(), 6, 12, 13
evd_params, 7
\texttt{list\_fevd}, \textcolor{red}{8}
netcdf\_to\_df, 10
plot\_empirical, 10
qevd_vector, 11
raster\_fevd, \textcolor{red}{12}
raster_qevd, 13
raster_se_sig, 14
se_sig, 15
```