

Control and monitoring of a solar thermal system

Kevin Bundschuh HTWG Konstanz, Ubiquitous Computing Lab

Mobile Computing WS2018/19

URL: http://uc-lab.in.htwg-konstanz.de

Table of contents

- Introduction
- Project Targets
- Control Unit
 - Hardware
 - Software
- Monitoring System
- Final Solution
- Conclusion future Work

Introduction

- Carrier fluid is heated up in Collector
- Carrier fluid circulates trough heat exchangers
- Therefore pumps and valves need to be controlled depending on meassured temperatures

http://www.jumo.nl/nl NL/branches/Duurzame-energie/toepassingen/thermische-zonne-energie/solarthermie.html

Project Targets

Control Unit

- reliable
- low cost
- easy to maintain

Monitoring

- Real time data
- Data Archive
- Compatibe with many different devices

Control Unit → Hardware

- Arduino uno
- 8-Way Relais Module
- 6 x DS18B20 temperature sensors (1Wire)
- 1 x PT 1500 temperature sensor

5

Control Unit → Hardware

Control Unit → Software

- Arduino *.ino sketch
 - Reading temperatures from 1Wire devices
 - Calculating temperature from PTC
 - Controling relais module via GPIOs
 - Watchdog timer to increase reliablity
 - Providing data over serial port

© Prof. Dr. Ralf E.D. Seepold Ubiquitous Computing Lab

Monitoring System → Architecture

- Software runing on the Raspberry PI
- Managing real time data and data archive

Monitoring System → AMQP Broker

- Exchange has multiple bindigs to certain queues
- One queue for each temperature value and current status of the system

Monitoring System → Node RED

- Is a programming tool for wiring together hardware devices, APIs and online services
- The runtime is built on Node.js
- Nodes for a live data dashboard

Monitoring System → Node RED

Final Solution

Raspberry Pi	39,49	Raspberry Pi 3
Relais module (8-fach)	10,69€	Relais Modul
Temperature sensor(s)DS18B20 (10x)	2,016€/Stück 20,16€	Temperatur Sensoren
Arduino Uno R3	20,12€	<u>Arduino</u>
Power supply 220VAC - 12VDC 5A 60W	9,99€	<u>Netzeil</u>
Step down Converter 5A 75W DC DC	5,99€	Step down Converter
SUMME:	98,38€	

Conclusion Future Work

- System is now tested for several days without any failure
- Every target reached
 - Real time data
 - Data archive
 - <100€

- Email/sms alert in case of failure
- Controling system via dashboard
- Adjust regulation parameters for efficency

Thanks for your attention. Questions?

Kevin Bundschuh

URL: http://uc-lab.in.htwg-konstanz.de

Twitter: /UCLabHTWG

Facebook: /UCLabHTWG