```
# Loading the data
train <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
test <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
training dat2 <- read.csv(url(train))</pre>
testing_dat2 <- read.csv(url(test))</pre>
dim(training_dat2)
[1] 19622 160
dim(testing_dat2)
[1] 20 160
# Cleaning the data
# Removing variables that are having nearly zero variance
non_zero_variance <- nearZeroVar(training_dat2)</pre>
training_dat2 <- training_dat2[,-non_zero_variance]</pre>
testing_dat2 <- testing_dat2[,-non_zero_variance]</pre>
dim(training_dat2)
[1] 19622 100
dim(testing_dat2)
[1] 20 100
# Removing variables that are having NA values, threshold is 95%
na_val <- sapply(training_dat2, function(x) mean(is.na(x))) > 0.95
training_dat2 <- training_dat2[,na_val == FALSE]</pre>
testing dat2 <- testing dat2[,na val == FALSE]</pre>
dim(training_dat2)
[1] 19622
dim(testing_dat2)
[1] 20 59
# Removing non-numeric variables which will not contribute into model
training dat2 <- training dat2[,8:59]</pre>
testing_dat2 <- testing_dat2[,8:59]
dim(training_dat2)
[1] 19622 52
dim(testing_dat2)
[1] 20 52
# Partitioning the data
partition <- createDataPartition(training_dat2$classe, p=0.6, list=FALSE)</pre>
training5 <- training_dat2[partition,]</pre>
testing5 <- training_dat2[-partition,]</pre>
dim(training5)
[1] 11776
dim(testing5)
[1] 7846 52
# Decision tree model
DT_model_fit <- train(classe ~ ., data = training5, method="rpart")</pre>
DT_prediction <- predict(DT_model_fit, testing5)</pre>
DT_pred_confusion_matrix <- confusionMatrix(DT_prediction, testing5$classe)</pre>
DT_pred_confusion_matrix
```

Confusion Matrix and Statistics

Reference Prediction В С D A 2032 633 635 557 340 42 536 58 249 299 В 126 304 532 192 342 D 45 143 288 31 67 394 Е 0 0 0 1

Overall Statistics

Accuracy: 0.482 95% CI: (0.4709, 0.4932)

No Information Rate: 0.2845 P-Value [Acc > NIR] : < 2.2e-16 Kappa : 0.3222 Mcnemar's Test P-Value : < 2.2e-16

Statistics by Class:

	Class: A	Class: B	Class: C	Class: D	Class: E
Sensitivity	0.9104	0.35310	0.38889	0.22395	0.27323
Specificity	0.6144	0.89760	0.85119	0.95640	0.99984
Pos Pred Value	0.4842	0.45270	0.35561	0.50174	0.99747
Neg Pred Value	0.9452	0.85260	0.86835	0.86276	0.85935
Prevalence	0.2845	0.19347	0.17436	0.16391	0.18379
Detection Rate	0.2590	0.06832	0.06781	0.03671	0.05022
Detection Prevalence	0.5349	0.15090	0.19067	0.07316	0.05034
Balanced Accuracy	0.7624	0.62535	0.62004	0.59018	0.63654

rpart.plot(DT_model_fit\$finalModel, roundint=FALSE)

Random forest model

```
RF_model_fit <- train(classe ~ ., data = training5, method = "rf", ntree = 100)
RF_prediction <- predict(RF_model_fit, testing5)</pre>
RF_pred_confusion_matrix <- confusionMatrix(RF_prediction, testing5$classe)</pre>
RF_pred_confusion_matrix
```

Е

0

Confusion Matrix and Statistics

Reference Prediction A B A 2230 6 C 0 D 0 2 1505 25 1 0 0 7 1342 17 8 0 0 1 1266 2 0 0 0 2 1432 В С

D

Overall Statistics

Accuracy : 0.991

95% CI: (0.9886, 0.9929)

No Information Rate : 0.2845 P-Value [Acc > NIR] : < 2.2e-16 Kappa : 0.9886

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: A	Class: B	Class: C	Class: D	Class: E
Sensitivity	0.9991	0.9914	0.9810	0.9844	0.9931
Specificity	0.9989	0.9956	0.9951	0.9995	0.9997
Pos Pred Value	0.9973	0.9817	0.9767	0.9976	0.9986
Neg Pred Value	0.9996	0.9979	0.9960	0.9970	0.9984
Prevalence	0.2845	0.1935	0.1744	0.1639	0.1838
Detection Rate	0.2842	0.1918	0.1710	0.1614	0.1825
Detection Prevalence	0.2850	0.1954	0.1751	0.1617	0.1828
Balanced Accuracy	0.9990	0.9935	0.9880	0.9920	0.9964

plot(RF_pred_confusion_matrix\$table, col = RF_pred_confusion_matrix\$byClass, main = paste("Random Forest - Accuracy Level =", round(RF_pred_confusion_matrix\$overall['Accuracy'], 4)))

Random Forest - Accuracy Level = 0.991

Final prediction

Final_RF_prediction <- predict(RF_model_fit, testing_dat2)
Final_RF_prediction</pre>

[1] B A B A A E D B A A B C B A E E A B B B Levels: A B C D E