Applications linéaires

On désignera par \mathbb{K} l'ensemble \mathbb{R} ou \mathbb{C} .

QCOP AL.1

Soient E et F deux espaces vectoriels. Soit $u \in L(E, F)$.

- Donner une condition nécessaire et suffisante d'injectivité de *u*.
- ${\mathscr F}$ On suppose u injective. Soit ${\mathscr F}$ une famille libre E. Montrer que $u[{\mathscr F}]$ est libre dans F.
- **%** Écrire la contraposée du résultat démontré.
- Le résultat est-il toujours vrai si *u* n'est plus supposée injective?

QCOP AL.2

Soit E un espace vectoriel. Soient $u, v \in L(E)$.

- **(a)** Définir les ensembles Ker(u) et Im(u).
 - (b) Quelle structure ont-ils par rapport à *E* ?
- Soit $k \in \mathbb{N}$. Compléter par un symbole « \subset » ou « \supset » et démontrer les inclusions :

$$\mathsf{Ker}(u^k) \cdots \mathsf{Ker}(u^{k+1})$$

 $\mathsf{Im}(u^k) \cdots \mathsf{Im}(u^{k+1}).$

Compléter par un symbole « ⊂ » ou « ⊃ » et démontrer les inclusions :

$$\operatorname{Ker}(u) \cap \operatorname{Ker}(v) \cdots \operatorname{Ker}(u+v)$$

 $\operatorname{Im}(u) + \operatorname{Im}(v) \cdots \operatorname{Im}(u+v).$

QCOP AL.3

Soit E un espace vectoriel. Soit $x \in E$. Soit $\lambda \in \mathbb{K}$.

■ Compléter :

$$\lambda x = 0_F \iff \cdots$$

Soit $n \in \mathbb{N}^*$. Soient $a_0, \dots, a_n \in \mathbb{K}$. Soit $u \in L(E)$. On note

$$P := \sum_{k=0}^{n} a_k X^k$$
 et $P(u) := \sum_{k=0}^{n} a_k u^k$.

On suppose que $u(x) = \lambda x$.

- (a) Justifier que $P(u) \in L(E)$.
- (b) Montrer que

$$\forall k \in \mathbb{N}, \ u^k(x) = \lambda^k x.$$

(c) En déduire que

$$(P(u))(x) = P(\lambda)x.$$

(d) On suppose $x \neq 0_E$. Que dire si $P(u) = 0_{L(E)}$?

QCOP AL.4

Soient E et F deux \mathbb{K} -espaces vectoriels. Soit $u \in L(E, F)$.

- \blacksquare Définir « u est une application linéaire de E dans F ».
- Soient $x, y \in E$ avec $y \neq 0_E$. Soit $\lambda \in \mathbb{K}$. Entourer les égalités vraies et rayer celles n'ayant pas de sens.

$$u(0_E) = 0_F$$
 $u^2(x) = u(x)^2$ $u(\lambda y + x) = \lambda u(y) + u(x)$ $u(xy) = u(x)u(y)$.

Que dire d'une application linéaire constante?

QCOP AL.5

Soit E un espace vectoriel. Soient F et G deux sous-espaces vectoriels de E tels que

$$E = F \oplus G$$
.

On note p le projecteur sur F parallèlement à G.

- Définir l'application p.
- \nearrow Montrer que $p \circ p = p$.
- \nearrow Montrer que $E = Ker(p) \oplus Im(p)$.
- (a) L'application —p est-elle un projecteur de E?
 - (b) L'ensemble des projecteurs de E est-il un sous-espace vectoriel de L(E)?

QCOP AL.6

Soit E un espace vectoriel. Soient F et G deux sous-espaces vectoriels de E tels que

$$E = F \oplus G$$
.

On note s la symétrie par rapport à F parallèlement à G.

- Définir l'application s.
- \nearrow Montrer que $s \circ s = Id_E$.
- **№** Montrer que $E = \text{Ker}(s-\text{Id}_E) \oplus \text{Ker}(s+\text{Id}_E)$.
- (a) L'application $0_{L(E)}$ est-elle une symétrie de E?
 - (b) L'ensemble des symétries de E est-il un sous-espace vectoriel de L(E)?

QCOP AL.7

Soit E un \mathbb{K} -espace vectoriel. Soit $H \subset E$.

- \blacksquare Donner la définition de « H est un hyperplan de E ».
- **?** Soit $\varphi \in L(E, \mathbb{K})$. Montrer que $Ker(\varphi)$ est un sous-espace vectoriel de E.
- Soient H_1 et H_2 deux hyperplans de E. Quelle structure a l'ensemble $H_1 \cap H_2$ par rapport à E?
- Montrer que les ensembles suivants sont des sous-espaces vectoriels d'espaces vectoriels que l'on précisera.

$$\begin{cases}
(x,y) \in \mathbb{R}^2 & | x+y=0 \\
(u_n)_n \in \mathbb{K}^{\mathbb{N}} & | u_n \longrightarrow 0 \\
\end{cases}, \quad
\begin{cases}
(x,y,z) \in \mathbb{R}^3 & | \begin{cases}
x+y-z=0 \\
3x+2y=0
\end{cases}
\end{cases},$$

$$\begin{cases}
(u_n)_n \in \mathbb{K}^{\mathbb{N}} & | u_n \longrightarrow 0 \\
\end{cases}, \quad
\begin{cases}
M \in M_n(\mathbb{K}) & | \operatorname{Tr}(M) = 0 \\
\end{cases}.$$