

Imperas Peripheral Model Guide

Model Specific Information for altera.ovpworld.org / Uart

Imperas Software Limited

Imperas Buildings, North Weston Thame, Oxfordshire, OX9 2HA, U.K. docs@imperas.com.

Author	Imperas Software Limited
Version	20150901.0
Filename	OVP_Peripheral_Specific_Information_Uart.pdf
Created	26 August 2015
Status	OVP Standard Release

Copyright Notice

Copyright 2015 Imperas Software Limited. All rights reserved. This software and documentation contain information that is the property of Imperas Software Limited. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Imperas Software Limited, or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Imperas permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the readers responsibility to determine the applicable regulations and to comply with them.

Disclaimer

IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Model Release Status

This model is released as part of OVP releases and is included in OVPworld packages. Please visit OVPworld.org.

Copyright (c) 2015 Imperas Software Limited

Table Of Contents

1.0 Model Specific Information	4
1.1 Licensing	4
1.2 Description	4
1.3 Limitations	4
1.4 Reference	4
1.5 Location	4
2.0 Peripheral Instance Parameters	4
3.0 Net Ports	5
4.0 Bus Slave Ports	5
4.1 Bus Slave Port: sp1	5
5.0 Platforms that use this peripheral component	5
6.0 Peripheral components in the library	6
7.0 General Information on Peripheral Models	8
7.1 Background	8
8.0 Building peripherals easily with Imperas iGen	8
9.0 Peripheral model internals	
10.0 Parts of peripheral models	
10.1 Configuring the Peripheral Instance with Parameters	
10.2 Net Ports	9
10.3 Bus master ports	9
10.4 Bus slave ports	9
10.5 Packetnets	9
11.0 More information (documentation) on peripheral models and modeling	9

1.0 Model Specific Information

This document provides usage information for an Imperas OVP peripheral behavioral model.

The document is split into sections providing specific information for this peripheral, including any ports for connecting into a platform, registers, other component parts, and configuration options and general information for peripheral modeling with Imperas OVP.

1.1 Licensing

Open Source Apache 2.0

1.2 Description

Altera Avalon UART

1.3 Limitations

No Support for pin level transitions

1.4 Reference

Embedded Peripherals IP User Guide, UG-01085-11.0 11.0 June 2011

1.5 Location

The Uart peripheral model is located in an Imperas/OVP installation at the VLNV: altera.ovpworld.org / peripheral / Uart / 1.0.

2.0 Peripheral Instance Parameters

This model accepts the following parameters:

Table 1. Peripheral Parameters

Name	Туре	Description
baud	uns64	
dataBits	uns64	
fixedBaud	uns64	
parity	enumeration	
stopBits	uns64	
syncRegDepth	uns64	
useCtsRts	uns64	
useEopRegister	uns64	
console	bool	If specified, port number is ignored, and a console pops up automatically
portnum	uns32	If set, listen on this port. If set to zero, allocate a port from the pool and listen on that.
infile	string	Name of file to use for device source
outfile	string	Name of file to write device output
portFile	string	If portnum was specified as zero, write the port number to this file when it's known

log	bool	If specified, serial output will go to simulator log
finishOnDisconnect		If set, disconnecting the port will cause the simulation to finish
record	string	Record external events into this file
replay	string	Replay external events from this file

3.0 Net Ports

This model has the following net ports:

Table 2. Net Ports

Name	Туре	Must Be Connected	Description
irq	output	F (False)	
endofpacket	output	F (False)	
dataavailable	output	F (False)	
readyfordata	output	F (False)	
RXD	input	F (False)	
CTS	input	F (False)	
TXD	output	F (False)	
RTS	output	F (False)	

4.0 Bus Slave Ports

This model has the following bus slave ports:

4.1 Bus Slave Port: sp1

Table 3. Bus Slave Port: sp1

Name	Size (bytes)	Must Be Connected	Description
sp1	0x20	F (False)	

Table 4. Bus Slave Port: sp1 Registers:

Name	Offset	Width (bits)	Description	R/W	is Volatile
reg0_rxdata	0x0	32			
reg0_txdata	0x4	32			
reg0_status	0x8	32			
reg0_control	0xc	32			
reg0_divisor	0x10	32			
reg0_eop	0x14	32			

5.0 Platforms that use this peripheral component

Peripheral components can be used in many different platforms, including those developed by Imperas or by other users of OVP. You can use this peripheral in your own platforms.

Table 5. Publicly available platforms using peripheral 'Uart'

Platform Name	Vendor	
AlteraCycloneIII_3c120	altera.ovpworld.org	
HeteroAlteraCycloneV_HPS_CycloneIII_3c120	imperas.ovpworld.org	

Copyright (c) 2015 Imperas Software Limited OVP License. Release 20150901.0

${\bf 6.0}$ Peripheral components in the library

	eras/OVP peripheral models (158 mode	Ĺ
Peripheral	Peripheral	Peripheral
amd.ovpworld.org/79C970	arm.ovpworld.org/AaciPL041	arm.ovpworld.org/CompactFlashRegs
arm.ovpworld.org/CoreModule9x6	arm.ovpworld.org/DebugLedAndDipSwitch	arm.ovpworld.org/DMemCtrlPL341
arm.ovpworld.org/IcpControl	arm.ovpworld.org/IcpCounterTimer	arm.ovpworld.org/IntICP
arm.ovpworld.org/IntICP	arm.ovpworld.org/KbPL050	arm.ovpworld.org/L2CachePL310
arm.ovpworld.org/LcdPL110	arm.ovpworld.org/MmciPL181	arm.ovpworld.org/RtcPL031
arm.ovpworld.org/SerBusDviRegs	arm.ovpworld.org/SmartLoaderArm64Linux	arm.ovpworld.org/SmartLoaderArmLinux
arm.ovpworld.org/SMemCtrlPL354	arm.ovpworld.org/SysCtrlSP810	arm.ovpworld.org/TimerSP804
arm.ovpworld.org/TzpcBP147	arm.ovpworld.org/UartPL011	arm.ovpworld.org/VexpressSysRegs
arm.ovpworld.org/WdtSP805	atmel. ovpworld. org/Advanced Interrupt Controller	atmel.ovpworld.org/ParallelIOController
atmel.ovpworld.org/PowerSaving	atmel.ovpworld.org/SpecialFunction	atmel.ovpworld.org/TimerCounter
atmel.ovpworld.org/UsartInterface	atmel.ovpworld.org/WatchdogTimer	cirrus.ovpworld.org/GD5446
freescale.ovpworld.org/KinetisADC	freescale.ovpworld.org/KinetisAIPS	freescale.ovpworld.org/KinetisAXBS
freescale.ovpworld.org/KinetisCAN	freescale.ovpworld.org/KinetisCMP	freescale.ovpworld.org/KinetisCMT
freescale.ovpworld.org/KinetisCRC	freescale.ovpworld.org/KinetisDAC	freescale.ovpworld.org/KinetisDDR
freescale.ovpworld.org/KinetisDMA	freescale.ovpworld.org/KinetisDMAC	freescale.ovpworld.org/KinetisDMAMUX
freescale.ovpworld.org/KinetisENET	freescale.ovpworld.org/KinetisEWM	freescale.ovpworld.org/KinetisFB
freescale.ovpworld.org/KinetisFMC	freescale.ovpworld.org/KinetisFTFE	freescale.ovpworld.org/KinetisFTM
freescale.ovpworld.org/KinetisGPIO	freescale.ovpworld.org/KinetisI2C	freescale.ovpworld.org/KinetisI2S
freescale.ovpworld.org/KinetisLLWU	freescale.ovpworld.org/KinetisLPTMR	freescale.ovpworld.org/KinetisMCG
freescale.ovpworld.org/KinetisMPU	freescale.ovpworld.org/KinetisNFC	freescale.ovpworld.org/KinetisOSC
freescale.ovpworld.org/KinetisPDB	freescale.ovpworld.org/KinetisPIT	freescale.ovpworld.org/KinetisPMC
freescale.ovpworld.org/KinetisPORT	freescale.ovpworld.org/KinetisRCM	freescale.ovpworld.org/KinetisRFSYS
freescale.ovpworld.org/KinetisRFVBAT	freescale.ovpworld.org/KinetisRNG	freescale.ovpworld.org/KinetisRTC
freescale.ovpworld.org/KinetisSDHC	freescale.ovpworld.org/KinetisSIM	freescale.ovpworld.org/KinetisSMC
freescale.ovpworld.org/KinetisSPI	freescale.ovpworld.org/KinetisTSI	freescale.ovpworld.org/KinetisUART
freescale.ovpworld.org/KinetisUSB	freescale.ovpworld.org/KinetisUSBDCD	freescale.ovpworld.org/KinetisUSBHS
freescale.ovpworld.org/KinetisVREF	freescale.ovpworld.org/KinetisWDOG	freescale.ovpworld.org/Uart
freescale.ovpworld.org/VybridADC	freescale.ovpworld.org/VybridANADIG	freescale.ovpworld.org/VybridCCM
freescale.ovpworld.org/VybridDMA	freescale.ovpworld.org/VybridGPIO	freescale.ovpworld.org/VybridI2C
freescale.ovpworld.org/VybridLCD	freescale.ovpworld.org/VybridQUADSPI	freescale.ovpworld.org/VybridSDHC
freescale.ovpworld.org/VybridSPI	freescale.ovpworld.org/VybridUART	freescale.ovpworld.org/VybridUSB
intel.ovpworld.org/82077AA	intel.ovpworld.org/82371EB	intel.ovpworld.org/8253
intel.ovpworld.org/8259A	intel.ovpworld.org/NorFlash48F4400	intel.ovpworld.org/PciIDE
intel.ovpworld.org/PciPM	intel.ovpworld.org/PciUSB	intel.ovpworld.org/Ps2Control
marvell.ovpworld.org/GT6412x	mips.ovpworld.org/16450C	mips.ovpworld.org/MaltaFPGA
mips.ovpworld.org/SmartLoaderLinux	motorola.ovpworld.org/MC146818	national.ovpworld.org/16450
national.ovpworld.org/16550	ovpworld.org/Alpha2x16Display	ovpworld.org/dummyPort
ovpworld.org/DynamicBridge	ovpworld.org/FlashDevice	ovpworld.org/ledRegister
ovpworld.org/SerInt	ovpworld.org/SimpleDma	ovpworld.org/VirtioBlkMMIO
philips.ovpworld.org/ISP1761	renesas.ovpworld.org/adc	renesas.ovpworld.org/bcu
renesas.ovpworld.org/brg	renesas.ovpworld.org/can	renesas.ovpworld.org/can
renesas.ovpworld.org/clkgen	renesas.ovpworld.org/crc	renesas.ovpworld.org/csib
renesas.ovpworld.org/csie	renesas.ovpworld.org/dma	renesas.ovpworld.org/intc

renesas.ovpworld.org/memc	renesas.ovpworld.org/rng	renesas.ovpworld.org/taa
renesas.ovpworld.org/tms	renesas.ovpworld.org/tmt	renesas.ovpworld.org/uartc
renesas.ovpworld.org/UPD70F3441Logic	smsc.ovpworld.org/LAN9118	smsc.ovpworld.org/LAN91C111
ti.ovpworld.org/UartInterface	xilinx.ovpworld.org/mdm	xilinx.ovpworld.org/mpmc
xilinx.ovpworld.org/xps-gpio	xilinx.ovpworld.org/xps-iic	xilinx.ovpworld.org/xps-intc
xilinx.ovpworld.org/xps-ll-temac	xilinx.ovpworld.org/xps-mch-emc	xilinx.ovpworld.org/xps-sysace
xilinx.ovpworld.org/xps-timer	xilinx.ovpworld.org/xps-uartlite	altera.ovpworld.org/dw-apb-timer
altera.ovpworld.org/dw-apb-uart	altera.ovpworld.org/IntervalTimer32Core	altera.ovpworld.org/IntervalTimer64Core
altera.ovpworld.org/JtagUart	altera.ovpworld.org/PerformanceCounterCore	altera.ovpworld.org/RSTMGR
altera.ovpworld.org/SystemIDCore	altera.ovpworld.org/Uart	

7.0 General Information on Peripheral Models

This document provides usage information for an Imperas OVP peripheral behavioral model.

The document is split into sections providing specific information for this peripheral, including any ports for connecting into a platform, registers etc. and configuration options and general information for peripheral modeling with Imperas OVP.

7.1 Background

Imperas OVP simulation technology enables very high performance simulation, debug and analysis of platforms containing multiple processors and peripheral models. The technology is designed to be extensible: you can create new models of processors, peripherals and other platform components using interfaces and libraries defined by OVP.

The peripheral models created using the OVP APIs run on the Peripheral Simulation Engine (PSE).

The model is typically written in C and compiled into an executable for the PSE processor architecture. The model is compiled for speed of execution and to protect IP. It is dynamically loaded by the simulator at run time.

8.0 Building peripherals easily with Imperas iGen

To aid with model creation, Imperas products include iGen, a model generation tool. iGen takes the laborious and error-prone task of constructing the various hardware model and software element files required for a typical model, and automates this process. iGen creates the needed C files. iGen also creates the C++ SystemC TLM2 interface files needed to run peripheral models in SystemC simulations.

iGen takes as input a simple script specification that includes device internals such as registers and memories, port information, component descriptors, and other elements. iGen then builds the C code model files and user editable templates. These include model frameworks with registers, function calls, memory map, and other items. It ensures that all component parts of the model are well-structured using best practices, and are consistent throughout the files, thus eliminating a common source of errors.

More information on iGen can be found: <u>imperas.com/products</u>.

Please contact Imperas to get access to the Imperas documents: Imperas_Model_Generator_Guide.pdf and Imperas_Peripheral_Generator_Guide.pdf.

9.0 Peripheral model internals

Each instance of a peripheral model runs on its own virtual machine with an address space large enough for the model. This processor (the PSE) and its memory are separate from any processors, memories and buses

Copyright (c) 2015 Imperas Software Limited www.imperas.com

OVP License. Release 20150901.0 Page 8 of 10

in the platform being simulated; they exist only to execute the code of the peripheral model.

Interception of functions defined in the peripheral model allows the use of features of the host system in the implementation of the behavior of a peripheral. As an example, a real platform might contain a video display device. When simulating this system, it is generally more convenient not to simulate the complete video display device but to use a video package available on the host machine, such as SDL, and to use this to render to the host display. Also models of uarts, ethernet devices and USB components can make use of the host PC resources during simulation, to allow, for example, a simulation to browse the real internet, or the simulation to connect to a real USB device.

10.0 Parts of peripheral models

10.1 Configuring the Peripheral Instance with Parameters

A peripheral can include the behaviour of several configurations. These are controlled when the peripheral is instanced in the platform by setting parameters defined on the peripheral.

10.2 Net Ports

Peripherals may be connected to other peripherals or processors with signal wires (nets). These can be used to act as interrupt signals or used to control behavior between peripherals.

The wires are created in the platform as nets and this net is connected into the peripheral using a net port.

10.3 Bus master ports

A bus master port initiates (and controls the address of) a bus cycle. Bus cycles are generated by behavioral code within the peripheral model.

10.4 Bus slave ports

A peripheral can be defined as having several bus slave ports. The bus slave ports can be split into several address blocks. Each address block be either local memory or memory mapped registers. Both of these can have associated callback functions. A memory mapped register can also be defined as specific read/write access, whether it is volatile, and also whether it is associated with a reset pin and mask. A memory mapped register can also have specific bit fields defined.

10.5 Packetnets

A peripheral can be defined as being connected to packetnet ports. A packetnet is used to model packet based communication such as Ethernet, CAN bus or GSM. A packetnet is created in a platform, then connected to packetnet ports on model instances. A packetnet can have many connections, each able to send or receive packets. A packetnet is used as an efficient method of communication within OVP models.

For more information on modeling with packetnets, please see the peripheral modeling documentation: OVP_Peripheral_Modeling_Guide.pdf, OVPsim_and_CpuManager_User_Guide.pdf and the example: \$IMPERAS_HOME/Examples/Models/Peripherals/packetnet.

Copyright (c) 2015 Imperas Software Limited www.imperas.com

OVP License. Release 20150901.0 Page 9 of 10

11.0 More information (documentation) on peripheral models and modeling More information on modeling and APIs can be found at: OVPworld.org/technology_apis.

Specifics on modeling peripherals can be found: OVP Peripheral Modeling Guide.pdf.

A full list of the currently available OVP documentation is available: OVPworld.org/documentation.
#

Copyright (c) 2015 Imperas Software Limited OVP License. Release 20150901.0