Tema 10 - Demostraciones

María Santos

Proposición. Sea f una forma bilineal (sesquilineal) con matriz G en una base $\{e_1, \ldots, e_n\}$. Sean G_r los menores principales de orden r (las submatrices de G formadas por las primeras r filas y las primeras r columnas con $r = 1, \ldots, n$). Entonces, f es un producto escalar si, y solo si G es simétrica (hermítica) y $\det(G_r) > 0 \ \forall r = 1, \ldots, n$

Demostración

Denotemos por E_r el subespacio $\langle e_1, \dots, e_r \rangle$ y por f_r la restricción de f a $E_r \times E_r$, con lo cual

$$\begin{array}{ccc}
f & E_r \times E_r & \longrightarrow & \mathbb{R}(o \mathbb{C}) \\
(u, x) & \mapsto & f(u, x)
\end{array}$$

La matriz de f_r en la base $\{e_1, \ldots, e_r\}$ no es otra que G_r .

Supongamos que f es un producto escalar en E. Entonces, f_r es un producto escalar en E_r y por el Teorema de Ortogonalización de Gram-Schmidt existe una base ortonormal de E_r .

Si tenemos que P es la matriz del cambio de base de $\{e_1, \ldots, e_r\}$ a la base ortonormal $\{u_1, \ldots, u_r\}$, tendremos que

$$I = P^t G_r \bar{P}$$

de donde

$$\det(I) = 1 = \det(P^t G_r \bar{P}) = \det(P^t) \det(G_r) \det(\bar{P}) = \det(G_r) \det(P)^2$$

Con lo cual,

$$\det(G_r)\det(P)^2 = 1 \Leftrightarrow \det(G_r) = \frac{1}{\det P^2} > 0$$

Así ya tenemos que $\det(G_r) > 0$

Supongamos ahora que $\det(G_r) > 0$ para todo r y vayamos a construir una base u_1, \ldots, u_r tal que $f(u_i, u_j) = 0$ si $i \neq j$ y $f(u_i, u_i) = 1$. Entonces, de esta forma, la matriz asociada a f será la matriz identidad I, con lo cual sabemos que f será un producto escalar.

Para construir la base ortonormal anterior, haremos uso del método de ortonormalización de Gram-Schmidt:

• $f(e_1, e_1) = g_{11} = \det(G_1) > 0$. Por tanto, existe $\sqrt{\langle e_1, e_1 \rangle}$ y podemos así construir el primer vector de la base:

$$u_1 = \frac{e_1}{\sqrt{\langle e_1, e_1 \rangle}}$$

que es un vector unitario y es base de $E_1 = \langle e_1 \rangle = \langle u_1 \rangle$

• Supongamos ahora que u_1, \ldots, u_r es una base de E_r tal que $f(u_i, u_j) = 0$ si $i \neq j$ y $f(u_i, u_i) = 1$. Construimos el vector $u'_{r+1} = e_{r+1} - (k_1u_1 + \cdots + k_ru_r)$ con $k_i = f(e_{r+1}, u_i)$. Este vector es ortogonal a cada uno de los vectores u_1, \ldots, u_r . Si ahora demostrásemos que $f(u'_{r+1}, u'_{r+1}) > 0$, entonces el vector unitario

$$u_{r+1} = \frac{u'_{r+1}}{\sqrt{f(u'_{r+1}, u'_{r+1})}}$$

será tal que $u_1, \ldots, u_r, u_{r+1}$ formará una base ortonormal de E_{r+1} . Calculemos pues

$$f(u'_{r+1}, u'_{r+1}) = f(e_{r+1}, e_{r+1}) - f\left(e_{r+1}, \sum_{i=1}^{r} k_i u_i\right) - f\left(\sum_{i=1}^{r} k_i u_i, e_{r+1}\right) + f\left(\sum_{i=1}^{r} k_i u_i, \sum_{i=1}^{r} k_i u_i\right)$$

$$= f(e_{r+1}, e_{r+1}) - \sum_{i=1}^{r} \bar{k_i} f(e_{r+1}, u_i) - \sum_{i=1}^{r} k_i f(u_i, e_{r+1}) + \sum_{i=1}^{r} k_i \bar{k_i}$$

$$= f(e_{r+1}, e_{r+1}) - \sum_{i=1}^{r} \overline{f(e_{r+1}, u_i)} f(e_{r+1}, u_i) - \sum_{i=1}^{r} f(e_{r+1}, u_i) f(u_i, e_{r+1}) + \sum_{i=1}^{r} f(e_{r+1}, u_i) \overline{f(e_{r+1}, u_i)}$$

$$= f(e_{r+1}, e_{r+1}) - \sum_{i=1}^{r} f(e_{r+1}, u_i) f(u_i, e_{r+1}) = \begin{vmatrix} 1 & \cdots & 0 & f(u_1, e_{r+1}) \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & f(u_r, e_{r+1}) \\ f(e_{r+1}, u_1) & \cdots & f(e_{r+1}, u_r) & f(e_{r+1}, e_{r+1}) \end{vmatrix}$$

La matriz que aparece aquí es la matriz de f_{r+1} en la base $u_1, \ldots, u_r, e_{r+1}$ y se obtiene, por tanto, de la matriz G_r por un cambio de base.

Es entonces de la forma $P^tG_{r+1}\bar{P}$ y su determinante es $\det(G_{r+1})\det(P)^2 > 0$ por ser $\det(G_{r+1}) > 0$ por hipótesis.

Queda así finalizada la demostración.