

A Priority-Based Policy for Autonomous Intersection Control

Chenglong HU Liang ZHANG

School of Computer Science Fudan University, Shanghai 200433, China

May 5, 2019

- Introduction
- Related Work
- Background
- 4 Our Work
- Conclusion
- 6 Q&A

Introduction

something

- Introduction
- 2 Related Work
- Background
- 4 Our Work
- Conclusion
- 6 Q&A

Related Work

something

- Introduction
- 2 Related Work
- Background
- 4 Our Work
- 6 Conclusion
- 6 Q&A

Background

Point1 the point 1 is **◆□ ▶ ◆** 🗗

- Introduction
- 2 Related Work
- Background
- 4 Our Work
- Conclusion
- 6 Q&A

Motivation

Introduction Related Work Background Our Work Conclusion Q&A

Definition

Block Title

Something in block

Find highest priority request

Algorithm 1: Find highest priority request

```
Input:
The hashmap to find vehicles in a lane, 12v:
The hashmap from vehicle to its request, v2m;
Output:
Highest priority request, request;
Function
      nearest vins ← empty
      foreach lane in the keyset of I2v do
             v \leftarrow \text{null}
             foreach vin in I2v[lane] do
                   v ← nearest vin in this lane
             end
             nearest vins ← nearest vins ∪ v
      end
      if nearest vins is empty then
             return null
      end
      foreach vin in nearest vins do
             request ← highest priority request
      end
      foreach vin in nearest vins do
             if request is not v2m[vin] then
                   set v2m[vin]'s priority as twice
             end
      end
end
```

Demo

Something description

Experiments

Table: average passing using for different policy

Passing Time(s) Policy		
	FCFS Policy	Priority-based Policy
Sim Time(s)		
50	10.24	9.96
100	14.98	13.56
150	18.83	15.46
200	19.34	15.38
250	21.23	17.86
300	22.65	20.05

Analysis

- Introduction
- 2 Related Work
- Background
- 4 Our Work
- Conclusion
- 6 Q&A

Conclusion and Future work

Future work

- Introduction
- Related Work
- Background
- 4 Our Work
- Conclusion
- 6 Q&A

Thanks Q&A

