CELL

Ca2+-TnC binding

$$\frac{dTRPN}{dt} = k_{on} \left(\frac{[Ca^{2+}]_i}{Ca_{T50}}\right)^{n_{trpn}} (1 - TRPN) - k_{off} TRPN$$

Length dependence

$$Ca_{T50} = Ca_{50} [1 + \beta_1 (\lambda - 1)]$$

Cross-bridge cycling

$$\frac{dXB}{dt} = k_{xb} \left[pt (1 - XB) - \frac{1}{pt} XB \right], \quad pt = \left(\frac{TRPN}{TRPN_{50}} \right)^{\frac{dxb}{2}}$$

Active tension generation

$$T = T_{ref} \cdot g(d\lambda/dt) \cdot h(\lambda) \cdot XB$$

TISSUE

Cardiac strain energy function

$$W = W_g - p(J-1) + \frac{\kappa}{2}(J-1)^2$$

Transversly isotropic constitutive law

$$W_g = \frac{1}{2} C_1 (e^{Q(\mathbf{E})} - 1)$$

$$Q(\mathbf{E}) = C_2 \, E_{ff}^2 + C_3 \, (E_{ss}^2 + E_{nn}^2 + 2 E_{sn}^2) + 2 C_4 \, (E_{fs}^2 + E_{fn}^2)$$

VASCULAR SYSTEM

Three-element Windkessel model

$$\frac{dv_{LV}}{dt} = \frac{1}{Z} (p_{ao} - p_{LV}) \qquad I_{out} = \frac{1}{R} p_{ao}$$

$$\frac{dt}{dv_{ao}} = -I_{out} - \frac{dv_{LV}}{dt} \qquad p_{ao} = \frac{1}{C}v_{ao}$$

$$\frac{dp_{LV}}{dt} = \kappa_{diast}(\mathbf{p} - p_{LV})$$

INPUTS

DCA, AMPL, TP, RT50

calcium properties

 $Ca_{50}, \beta_1, k_{off}, n_{trpn}, k_{xb}, n_{xb}, TRPN_{50}, T_{ref}$

sarcomere properties

hemodynamic properties

tissue

property

deterministic mapping (full model simulator)

probabilistic mapping (Gaussian process emulator)

OUTPUTS

EDV, ESV, SV, EF, IVCT, ET, IVRT, Tdiast

LV volume features

Peak P, Tpeak, ESP, maxdP, mindP, Tau

LV pressure features