

TÍTULO DISEÑO Y CONSTRUCCION DE UNA PLACA DE

DESARROLLO PARA EL MICROCONTROLADOR

STM32F103C8T6

GRADO Ingenería Electrónica Industrial y Automática

ASIGNATURA Nombre de la asignatura

**ESTUDIANTE** Garcia Camoira Cristobal

FECHA Octubre de 2020

## Índice

| Li | stado de figuras                                         | 3  |
|----|----------------------------------------------------------|----|
| Li | stado de tablas                                          | 3  |
| Li | stado de códigos de programación                         | 3  |
| In | troducción                                               | 4  |
| 1  | Lista de materiales y presupuesto                        | 4  |
| 2  | Montaje                                                  | 6  |
|    | 2.1 Guía de montaje                                      | 6  |
|    | 2.2 Programación del dispositivo                         | 8  |
| 3  | Códigos de programación                                  | 8  |
| 4  | Sección Planos                                           | 8  |
|    | Esquema electrónico de la placa Blue pill                | 9  |
|    | Esquema electrónico del expansor de entradas-salidas IIC | 10 |
|    | Placa de evaluación ST                                   | 11 |
|    | Fotolito PCB parte delantera                             | 12 |
|    | Fotolito PCB parte trasera                               | 13 |

## Listado de figuras

| 1     | Vista de las pistas de la cara delantera de la PCB tras el proceso de insolado | 6 |
|-------|--------------------------------------------------------------------------------|---|
| 2     | Vista de las pistas de la cara trasera de la PCB tras el proceso de insolado   | 6 |
| 3     | Vista de las vias de la cara delantera de la PCB tras el proceso de insolado   | 7 |
| 4     | Vista de los componentes de la cara delantera de la PCB                        | 7 |
| 5     | Vista de los componentes de la cara trasera de la PCB                          | 8 |
| Lista | ado de tablas                                                                  |   |
| 1     | Lista de materiales                                                            | 4 |
| 1     | Lista de materiales                                                            | 5 |
| 2     | Presupuesto                                                                    | 5 |

# Listado de códigos de programación

#### Introducción

El presente proyecto tiene como objetivo la realización de un sistema de evaluación que nos permita el uso de diferentes periféricos así como el uso de diferentes tipos de comunicación con diversos dispositivos.

#### Características técnicas

Este sistema poseerá las siguientes salidas:

- 1. Salida para comunicación UART
- 2. Salida para comunicación IIC
- 3. Salida PWM

Y también las siguientes entradas:

- Entrada ADC
- 2. Entrada JTAG para la programación del microcontrolador
- 3. Entrada para una batería que usara el DS1302 para que no se vaya de hora

Este sistema incorporara internamente un LCD de 20 caracteres x 4 lineas que se conectara a nuestro microcontrolador través del expansor de entradas/salidas IIC PCF8574, ademas incorpora un DS1302, un reloj en tiempo real el cual se ha pensado manejar con el sistema de conexión 1 wire (conexión experimental), para el cual intentaremos usar el periférico interno USART. Todo esto nos permitirá el desarrollo de drivers para el correcto manejo de los dispositivos internos que posee y aprender de ello. Ademas las salidas que tenemos disponibles nos servirán para manejar otro tipo de dispositivos, dado que tenemos salida PWM, IIC y UART y una entrada para un ADC.

El microcontrolador que se usara en el proyecto pertenece al fabricante ST microelectronics, concretamente es el STM32F103C8T6, que incorporaremos a nuestro sistema ya en una placa de evaluación comúnmente denominada por la red de internet como «Blue pill», de hecho, si descargamos las librerías adecuadas se puede usar el entrono de Arduino para su programación, como si de un Arduino se tratase.

La alimentación de este sistema se hará a través del conector micro USB del que dispone la placa de evaluación de ST, un cargador de teléfono móvil sera mas que suficiente, 5V 1A, el resto de componentes internos se nutrirán de la alimentación de 5V que proporciona la placa de evaluación de ST dado que usa un regulador interno para ello.

### 1 Lista de materiales y presupuesto

| Category   | Quantity | References | Value | Unit Cost |
|------------|----------|------------|-------|-----------|
| Capacitors | 2        | C1,C2      | 6pF   | €0,35     |
| Capacitors | 1        | C3         | 1.0u  | €0,35     |

Tabla 1: Lista de materiales

| Category            | Quantity | References               | Value           | Unit Cost |
|---------------------|----------|--------------------------|-----------------|-----------|
| Capacitors          | 2        | C4,C5                    | 10n             | €0,35     |
| Resistors           | 1        | R1                       | 1k              | €0,15     |
| Resistors           | 8        | R2,R3,R4,R6,R7,R8,R9,R10 | 10k             | €0,15     |
| Resistors           | 1        | R5                       | 100R            | €0,15     |
| Resistors           | 1        | R11                      | 100k            | €0,15     |
| Resistors           | 1        | R12                      | 4k7             | €0,15     |
| Integrated Circuits | 1        | U1                       | STM32F103       | €3,50     |
| Integrated Circuits | 1        | U2                       | DS1302          | €2,50     |
| Integrated Circuits | 1        | U3                       | PCF8574         | €2,50     |
| Transistors         | 2        | Q1,Q2                    | 2N7002          | €0,50     |
| Miscellaneous       | 3        | ADC,PWM,UART             | CONN-SIL3       | €0,40     |
| Miscellaneous       | 1        | BAT1                     | BATTERY         | €2,00     |
| Miscellaneous       | 2        | IIC,JTAG                 | CONN-H4         | €0,40     |
| Miscellaneous       | 1        | L1                       |                 | €0,25     |
| Miscellaneous       | 1        | LCD_20X4                 | CONN-H16        | €4,00     |
| Miscellaneous       | 1        | RENC1                    | ROTARY_ENCODER1 | €2,50     |
| Miscellaneous       | 1        | X1                       | CRYSTAL         | €0,50     |

Tabla 1: Lista de materiales

| Category            | Quantity | <b>Unit Cost</b> |
|---------------------|----------|------------------|
| Capacitors          | 5        | 1,75             |
| Resistors           | 12       | 1,8              |
| Integrated Circuits | 3        | 8,5              |
| Transistors         | 2        | 1                |
| Miscellaneous       | 10       | 11,25            |
| Total               | 32       | 24,3             |

Tabla 2: Presupuesto

## 2 Montaje

#### 2.1 Guía de montaje

El proceso de insolado no se explica en esta guía, con lo cual se explica el proceso de montaje una vez tenemos la PCB tras ese proceso y el proceso de taladrado de los agujeros. Se incluye como ejemplo la Figura (1).



Figura 1: Pistas PCB cara delantera



Figura 2: Pistas PCB cara trasera

Teniendo como referencia la PCB por la cara delantera, tal y como se representa en la imagen (3), los círculos señalados en rojo son las vías, es decir, los puntos que conectan ambas caras, delantera y trasera, esta conexión la haremos con unos cables rígidos que circularan de un lado al otro de la placa, soldados por ambas caras, para ello se puede usar un trozo de cable rígido pelado previamente.



Figura 3: Vías PCB cara delantera

Una vez soldadas las vías, se recomienda ir soldando los componentes que vayan de menor a mayor volumen o tamaño para facilitar este proceso, Se recomienda empezar por soldar los que van por la parte trasera (5). Por la cara delantera irán soldados los componentes: R4, R5, R11, R12, Q1, Q2, RENC1 y LCD20X4. En la imagen (4) no se pueden visualizar los componentes R11, R12, Q1 y Q2, dado que están justo debajo del LCD. El resto de componentes irán soldados por la parte trasera.



Figura 4: Componentes de la cara delantera



Figura 5: Componentes de la cara trasera

#### 2.2 Programación del dispositivo

Para la programación de este dispositivo se deben ejecutar los siguientes pasos:

- 1. Conectar los pines del conector JTAG con sus homólogos en el programador stlink-V2.
- 2. El código se encuentra en la siguiente dirección: https://github.com/cristobalgc/STM32\_PID\_CONTROLLER
- 3. Esta sección se completara cuando el código este acabado.

## 3 Códigos de programación

El código de programación del dispositivo estará localizado en el siguiente repositorio de github: https://github.com/cristobalgc/STM32\_PID\_CONTROLLER

#### 4 Sección Planos

A continuación se introducen los planos. Cada plano figura en una página separada con numeración impar. La parte posterior de esas hojas deben estar en blanco.







1 2 3 4

### PCB CARA DELANTERA



В

#### PCB CARA DELANTERA ESPEJO



| FECHA NOMBRE FIRI                                                       |            | FIRMAS | TÍTULO DEL PLANO |                                    |  |
|-------------------------------------------------------------------------|------------|--------|------------------|------------------------------------|--|
| DIBUJADO                                                                | 10/02/2018 |        |                  | FOTOLITO PCB CARA DELANTERA        |  |
| MODIFICAD                                                               | 0          |        |                  |                                    |  |
| ESCALA                                                                  | TÍTULO DEL | TFM:   |                  | Autor:<br>Cristóbal García Camoira |  |
| 1:1 DISEÑO Y CONSTRUCCIÓN DE UNA PLACA DE DESARROLLO PARA STM32F103C8T6 |            |        |                  |                                    |  |
|                                                                         |            |        |                  |                                    |  |

1 2 3 4

#### PCB CARA TRASERA



В

#### PCB CARA TRASERA ESPEJO



|            | FECHA      | NOMBRE   | FIRMAS | TÍTULO DEL PLANO                   |  |
|------------|------------|----------|--------|------------------------------------|--|
| DIBUJADO   | 01/11/2020 |          |        | FOTOLITO PCB CARA TRASERA          |  |
| MODIFICADO |            |          |        |                                    |  |
| ESCALA     | TÍTULO DEL | TFM:     |        | Autor:<br>Cristóbal García Camoira |  |
| 1:1        |            | CONSTRUC |        |                                    |  |