Deterministic Policy Gradient Algorithms

Changyou Chen

Department of Computer Science and Engineering Universitpy at Buffalo, SUNY changyou@buffalo.edu

May 2, 2019

Stochastic Policy Gradient

$$J(\pi_{\theta}) = \int_{\mathcal{S}} \rho^{\pi}(s) \int_{\mathcal{A}} \pi_{\theta}(s, a) r(s, a) dads$$
$$= \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} [r(s, a)]$$

$$\nabla_{\theta} J(\pi_{\theta}) = \int_{\mathcal{S}} \rho^{\pi}(s) \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(a|s) Q^{\pi}(s, a) dads$$
$$= \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s, a) \right]$$

Deterministic Policy Gradient

• Consider a deterministic policy: $\mu_{\theta}: \mathcal{S} \to \mathcal{A}$. Let $\rho^{\mu}(s)$ be the discounted state distribution:

$$J(\mu_{\theta}) = \int_{\mathcal{S}} \rho^{\mu}(s) r(s, \mu_{\theta}(s)) ds$$
$$= \mathbb{E}_{s \sim \rho^{\mu}} [r(s, \mu_{\theta}(s))]$$

Theorem 1 (Deterministic Policy Gradient Theorem). Suppose that the MDP satisfies conditions A.1 (see Appendix; these imply that $\nabla_{\theta}\mu_{\theta}(s)$ and $\nabla_{a}Q^{\mu}(s,a)$ exist and that the deterministic policy gradient exists. Then,

$$\nabla_{\theta} J(\mu_{\theta}) = \int_{\mathcal{S}} \rho^{\mu}(s) \nabla_{\theta} \mu_{\theta}(s) \left. \nabla_{a} Q^{\mu}(s, a) \right|_{a = \mu_{\theta}(s)} ds$$
$$= \mathbb{E}_{s \sim \rho^{\mu}} \left[\left. \nabla_{\theta} \mu_{\theta}(s) \left. \nabla_{a} Q^{\mu}(s, a) \right|_{a = \mu_{\theta}(s)} \right] \right. \tag{9}$$

On Policy Deterministic Actor-Critic

 Use another DNN (called critic) to approximate the Q-function, as in DQN.

$$\delta_t = r_t + \gamma Q^w(s_{t+1}, a_{t+1}) - Q^w(s_t, a_t)$$

$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w Q^w(s_t, a_t)$$

$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu_\theta(s_t) |\nabla_a Q^w(s_t, a_t)|_{a = \mu_\theta(s)}$$

Off Policy Deterministic Actor-Critic

• learn a deterministic target policy $\mu(s)$ from trajectories generated by an arbitrary stochastic behavior policy $\pi(s, a)$.

$$J_{\beta}(\mu_{\theta}) = \int_{\mathcal{S}} \rho^{\beta}(s) V^{\mu}(s) ds$$
$$= \int_{\mathcal{S}} \rho^{\beta}(s) Q^{\mu}(s, \mu_{\theta}(s)) ds$$

$$\nabla_{\theta} J_{\beta}(\mu_{\theta}) \approx \int_{\mathcal{S}} \rho^{\beta}(s) \nabla_{\theta} \mu_{\theta}(a|s) Q^{\mu}(s, a) ds$$
$$= \mathbb{E}_{s \sim \rho^{\beta}} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu}(s, a) |_{a = \mu_{\theta}(s)} \right]$$

$$\delta_{t} = r_{t} + \gamma Q^{w}(s_{t+1}, \mu_{\theta}(s_{t+1})) - Q^{w}(s_{t}, a_{t})$$

$$w_{t+1} = w_{t} + \alpha_{w} \delta_{t} \nabla_{w} Q^{w}(s_{t}, a_{t})$$

$$\theta_{t+1} = \theta_{t} + \alpha_{\theta} \nabla_{\theta} \mu_{\theta}(s_{t}) \nabla_{a} Q^{w}(s_{t}, a_{t})|_{a = \mu_{\theta}(s)}$$

Experiments

Figure 1. Comparison of stochastic actor-critic (SAC-B) and deterministic actor-critic (COPDAC-B) on the continuous bandit task.

Figure 2. Comparison of stochastic on-policy actor-critic (SAC), stochastic off-policy actor-critic (OffPAC), and deterministic off-policy actor-critic (COPDAC) on continuous-action reinforcement learning. Each point is the average test performance of the mean policy.