INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL 22/23

06. PESQUISA LOCAL –
MELHORAMENTO ITERATIVO

Carlos Pereiro

Índice

- □ Índice
 - □ Problemas com restrições
 - □ Técnicas de Melhoramento Iterativo
 - Trepa-Colinas
 - Recristalização Simulada
 - Pesquisa Tabu

- Problema com Restrições (CSP-Constraint Satisfaction Problem)
 - Trata-se de um problema cuja solução só é válida se satisfazer certas condições
 - Um CSP é caracterizado por:
 - Variáveis: Os seus valores finais representam a solução
 - Domínio: Conjunto de valores que as variáveis podem assumir
 - Restrições: atuam sobre as variáveis
 - Problema: Assinalar valores às variáveis sem violar as restrições

Problemas com Restrições

■ Exemplo

Problema das 8 Rainhas

- Variáveis: Localizações das 8 rainhas no tabuleiro
- Domínio das Variáveis: As coordenadas de cada um dos 64 quadrados do tabuleiro
- Restrições: Quaisquer 2 rainhas (combinações da 8 duas a duas) não podem ficar na mesma linha, coluna ou diagonal

□ ...

- □ Num CSP <u>interessa determinar apenas um "estado"</u> <u>final válido</u> e não um caminho que leve a esse estado
 - O "Estado Final" é desconhecido e constitui a solução do problema:
- □ No caso do exemplo das 8 rainhas
 - Dispor 8 rainhas de modo a que nenhuma seja atacada: Interessa apenas conhecer uma disposição das rainhas, um estado final, e não a ordem pela qual se devem colocar no tabuleiro (é indiferente!):
 - O estado final, ou solução, é composto por 8 rainhas dispostas de modo a não haver ataques

Problemas com Restrições

...

- Um CSP pode ser resolvido por técnicas de pesquisa, contudo são geralmente ineficientes neste contexto, dado gerarem muitos estados desnecessariamente.
- Existem <u>algoritmos especialmente adaptados</u> à resolução de CSPs:
 - Hill-Climbing
 - Simulated-Annealing
 - Pesquisa Tabu
 - **...**

- □ Heurística dos "Conflitos Mínimos"
 - □ As rainhas são <u>inicialmente</u> dispostas 1 por coluna, e ao acaso, numa linha qualquer.
 - □ Os <u>operadores</u> de modificação movem uma rainha de cada vez.
 - O movimento faz-se colocando essa rainha na posição em que sofre menos ataques, isto é, produz menos conflitos.

Problemas com Restrições

□ ...

□ ...

Melhoramento Iterativo

- 10
- Os algoritmos de melhoramento iterativo caracterizam-se por:
 - Não anotam os estados intermédios que conduzem a uma solução, apresentando apenas a "configuração" válida que a compõe.
 - Partem de uma configuração inicial completa (que viola as restrições), eventualmente gerada aleatoriamente, e melhoram-na sucessivamente até alcançarem uma solução.

Melhoramento Iterativo

11

□ Trepa-Colinas

- Também conhecido por "Hill-Climbing" ou "Gradient-Descent"
- O nome e ideia base provem de uma analogia com a decisão tomada por um agente que, perdido numa encosta, pretende atingir o topo:
 - Deslocar-se-á na direção "em que o caminho sobe".

...Trepa-Colinas

12

...

```
function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
next ← a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current ← next
end
```

13

□ ...

- Implementação
 - Parte de um estado inicial dado ou gerado aleatoriamente
 - todas as variáveis com valores atribuídos
 - Gera os estados sucessores do estado actual
 - Através de uma Função de Avaliação, avalia cada estado assim gerado e escolhe o de maior valor
 - Pára quando o estado seleccionado tiver um valor inferior ao escolhido na iteração anterior
 - isto significa que a solução "piorou" e que se "está a descer a colina, em vez de a subir"

Trepa-Colinas

14

Problemas

- Um máximo local pode ser atingido sem que corresponda ao máximo absoluto (melhor solução)
- Nos "planaltos" é necessário escolher uma direcção aleatoriamente
- Um cume pode ter lados tão inclinados que o passo seguinte conduz ao "outro lado do cume" e não ao seu topo. Neste caso a **solução poderá "oscilar"** nunca atingido o máximo pretendido $f(x,y)=e^{-(x^2+y^2)}+2e^{-((x-1,7)^2+(y-1,7)^2)}$

15

□ ...

- Tentativa de resolução dos problema relativo ao atingir um ponto de não progresso:
 - Reiniciar a pesquisa partindo de um estado inicial diferente, gerado aleatoriamente (Random-Restart-Hill-Climbing)
 - Guarda o melhor resultado obtido nas pesquisas anteriores
 até ao ponto de não-progresso
 - Pára quando atingir o número de reinícios máximo ou quando o melhor resultado guardado não for ultrapassado durante "n" iterações (valor "n" é pré-fixado)

Trepa-Colinas

16

- Problema da Mochila
 - Um conjunto de N objectos,
 - caracterizados por um peso e um lucro.
 - Uma mochila com capacidade limitada.

■ Pretende-se:

- Encontrar o conjunto ideal de objectos para colocar na mochila;
- A capacidade não pode ser excedida e o lucro deve ser máximo

17

- □ ...
 - Representação de uma solução
 - Os objectos que estão na mochila, sequência binária com N posições (1 significa que o objecto está na mochila)
 - Exemplo, para N=8:
 - **10100000**
 - Esta representação admite soluções inválidas!

Trepa-Colinas

- ...
 - □ Como definir a vizinhança de uma solução?
 - Adicionar ou remover um objecto
 - Exemplo:
 - Solução actual : 1 0 1 0 0 0 0 0
 - Adicionar objecto 8
 - Solução vizinha: 1 0 1 0 0 0 0 1

19

□ ...

- Como decidir se uma nova solução é relevante para a pesquisa?
 - Através da Função de avaliação
 - Associa a cada solução um valor numérico (a sua qualidade)
 - Permite comparar soluções alternativas
 - Neste caso, devemos considerar o lucro e garantir que a capacidade não é ultrapassada:

$$fitness(x) = \begin{cases} \sum_{i=1}^{N} x[i] \\ x \end{bmatrix} & se \ x \ for \ uma \ solução \ legal \\ se \ x \ for \ uma \ solução \ ilegal \end{cases}$$

Trepa-Colinas

20

...

Qual a solução ótima?

21

- □ ...
 - □ Considere-se outro problema:
 - 8 objectos
 - Capacidade da mochila: 35
 - Propriedades dos objectos

Objectos	1	2	3	4	5	6	7	8
Peso	11	18	12	14	13	11	10	16
Lucro	5	8	7	6	9	6	5	3

■ Solução inicial: 1 0 1 0 0 0 0 0

■ Q=12

Trepa-Colinas

22

- □ ...
 - □ lteração 1
 - Vizinhos (considere-se a distância de hamming de 1):

Vizinhos	Qualidade
00100000	7
11100000	0
1000000	5
10110000	0
10101000	0
10100100	18
10100010	17
10100001	0

■ Nova solução: 1 0 1 0 0 1 0 0; Q=18

23

□ ...

□ Iteração 2

Vizinhos	Qualidade
00100100	13
10100100	0
10100100	11
10110100	0
10101100	0
10100000	12
10100110	0
10100101	0

- Fim da Optimização!
- Solução: 1 0 1 0 0 1 0 0 Q=18

Será a solução óptima?

Variantes do Trepa-Colinas

24

Variantes

- □ Permitir o deslocamento ao longo de um planalto
 - Deverá ser sempre autorizado este tipo de deslocamento?
- Trepa Colinas "First-Choice"
 - Visita os vizinhos de forma aleatória
 - Aceita um vizinho de melhor qualidade e termina iteração
 - Útil quando a vizinhança é grande
 - Algoritmo não determinista
- Random Restart
 - Aplicar o algoritmo diversas vezes com diferentes pontos de partida

Recristalização Simulada

- Método de Recristalização simulada (simulated annealing)
 - Usa a seguinte estratégia para ultrapassar máximos locais:
 - Quando encontra um máximo (pode ser apenas um máximo local!), o algoritmo prossegue "durante algum tempo" a pesquisa no sentido descendente.

Recristalização Simulada

6

- ...
 - Em vez de se escolher sempre o estado seguinte de maior valor, escolhe-se um, aleatoriamente
 - □ Se a sua avaliação
 - for superior à do estado anterior, <u>é sempre escolhido</u>
 - for inferior, é escolhido mas apenas com uma certa probabilidade (<1) que baixa à medida que um parâmetro 'T' tende para zero ao longo das sucessivas iterações.

۷.

Recristalização Simulada

27

□ ...

- Quando T for muito pequeno, a escolha de estados de pior avaliação quase nunca ocorre, e o "Simulated Annealing" comporta-se (quase) como o "Hill-Climbing".
 - Com a continuação, as descidas vão sendo cada vez menos permitidas, de modo que no final apenas a subida para um máximo (que parte já de um valor elevado) é permitida: Com maior probabilidade, este poderá ser o máximo absoluto

Recristalização Simulada

28

...

- O nome do algoritmo (Têmpera Simulada) provém de realizar uma analogia com o processo de têmpera de certos metais ou arrefecimento de um líquido até que congele.
 - O parâmetro T simula a temperatura, que baixa com o tempo

Recristalização Simulada

29

- function SIMULATED-ANNEALING(problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" static: current, a node next, a node

 T, a "temperature" controlling the probability of downward steps

 current ← MAKE-NODE(INITIAL-STATE[problem])

 for t ← 1 to ∞ do

 T ← schedule[t]

 if T=0 then return current

 next ← a randomly selected successor of current

 ΔE ← VALUE[next] − VALUE[current]

 if ΔE > 0 then current ← next

 else current ← next only with probability e^{ΔETT}
 - $e^{\Delta E/T} = 1/e^{|\Delta E/T|}$ porque só ocorre com $\Delta E < 0$:
 - A probabilidade de um "movimento para um estado pior" decresce com o tempo

Recristalização Simulada

- ...
 - Algoritmo probabilístico
 - O resultado é não determinista,
 - Deve-se executar o algoritmo mais do que uma vez.
 - Se o arrefecimento for "suficientemente" lento é sempre atingido o ótimo global!

- □ Princípio de funcionamento
 - Durante a pesquisa, forçar a exploração de novas zonas do espaço de procura.
 - Pode assim evitar-se entrar em ciclos
 - Implementação:
 - Recurso a uma <u>memória de curta-duração</u>
 - Indica quais os movimentos proibidos (movimentos TABU)

Pesquisa Tabu

□ ...

32

função Tabu (problema, vizinhança, Memória): solução

It ← 0

Solução ← Gera_solução_aleatoriamente(Espaço de procura)

Repete enquanto (it < Max_it)

Lista ← Obtém_vizinhos (Solução, vizinhança)

Lista ← Retira_Tabus (Lista, Memória)

Solução ← Escolhe_melhor(Lista)

Actualiza_memória

it ← it + 1

fim_Repete

fim_de_função

Devolve Solução

33

- □ ...
 - □ Aplicação ao Problema da mochila
 - Solução inicial: 10100000
 - Vizinhança: soluções a uma distância de Hamming = 1
 - Memória:
 - Guarda os movimentos recentes (Tabu)
 - Janela temporal escolhida neste caso: 2 movimentos
 - Solução inicial: 1 0 1 0 0 0 0 0
 - Q=12

Pesquisa Tabu

34

□ ...

□ lteração 1

Vizinhos

Vizinhos	Qualidade
00100000	7
11100000	0
1000000	13
10110000	0
10101000	0
10100100	18
10100010	17
10100001	0

- Nova solução: 1 0 1 0 0 1 0 0; Q=18
- Memória
 - Posição 6 n. de iterações Tabu=2

35

□ ...

□ Iteração 2

Vizinhos

Vizinhos	Qualidade
00100100	13
11100100	0
10000100	11
10110100	0
10101100	0
X 10100000	12
10100110	0
10100101	0

- Nova solução: 0 0 1 0 0 1 0 0; Q=13
- Memória
 - Posição 1 n. de iterações Tabu=2
 - Posição 6 n. de iterações Tabu=1

Pesquisa Tabu

36

□ ...

□ Iteração 3

Vizinhos

Vizinhos	Qualidade
2 10100100	18
01100100	0
00000100	6
00110100	0
00101100	0
300100000	7
00100110	18
00100101	0

- Nova solução: 0 0 1 0 0 1 1 0; Q=18
- Memória
 - Posição 1 n. de iterações Tabu=1
 - Posição 7 n. de iterações Tabu=2

37

□ ...

□ Iteração 4

Vizinhos

Vizinhos	Qualidade
X 10100110	0
01100110	0
00000110	11
00110110	0
00101110	0
00100010	12
X 00100100	13
00100111	0
00100010	12

- Nova solução: 0 0 1 0 0 0 1 0; Q=12
- Memória
 - Posição 6 n. de iterações Tabu=2
 - Posição 7 n. de iterações Tabu=1

Pesquisa Tabu

38

□ ...

□ Iteração 5

Vizinhos

Vizinhos	Qualidade
10100010	17
01100010	0
0000010	5
00110010	0
00101010	21
X 00100110	18
X 00100000	7
00100011	0

- Nova solução: 0 0 1 0 1 0 1 0; Q=21
- Memória
 - Posição 5 n. de iterações Tabu=2
 - Posição 6 n. de iterações Tabu=1

Características

- Vantagens
 - Escolhe sempre o melhor vizinho, desde que seja válido, exibindo assim um comportamento determinista
 - Ao aceitar soluções de pior qualidade, pode evitar óptimos locais
- Desvantagens
 - Nem sempre é fácil ajustar o limite de memória e número máximo de iterações