性能测试报告

1. 测试目的:

- 1.1 验证 PrestoSQL 搭载 MySQL 是否可以提高 MySQL 的优化效率?
- 1.2 验证是否可以通过水平扩展 PrestoSQL 的 Worker 节点数量或内存来提升 优化效率?

2. 测试方案

2.1. 数据准备

采用 TPC-DS (采用 7 张事实表,17 张纬度表平均每表含有 18 列,其工作负载包含 99 个 SQL 查询,覆盖 SQL99 和 2003 的核心部分以及 0LAP) 作为数据来源支撑。 利用 TPC-DS 基准测试工具生成 1G、5G、20G 的数据分别进行单大表测试和多表关联测试

对于多表关联测试,选择了 15 条具有代表性的 SQL 语句,对于单大表测试,选择 TPC-DS 生成测试数据集中数据量最大的表 store_sales 并选用了 9条使用频率高的常规性聚合 SQL 语句进行测试,几乎所有的测试案列都有很高的 IO 负载和 CPU 计算需求。

	单表数据量(行),以`store_sales`表为例
16 数据	3022922
5G 数据	16973841
20G 数据	56561113

2.2. 服务器配置

2.2.1. 数据量 1G 服务器配置 (Presto 单节点部署)

服务器	配置
MySQL-5.7	2 核 2 G
PrestoSQL-346	2 核 16 G

2.2.2. 数据量 5G 的服务器配置 (PrestoSQL 分布式部署)

服务器	配置
MySQL-5. 7	2 核 2 G
PrestoSQL-346 (Coordinator)	4 核 6 G
PrestoSQL-346 (Worker)	4 核 6 G
PrestoSQL-346 (Worker)	4 核 6 G

2.2.3. 数据量 20G 的服务器配置 (PrestoSQL 分布式部署)

服务器	配置
MySQL-5.7	2 核 2 G
PrestoSQL-346 (Coordinator)	4 核 8 G
PrestoSQL-346 (Worker)	4 核 8 G

PrestoSQL-346 (Worker)	4 核 8 G
------------------------	---------

3. 测试结果

3.1. 多表测试结果:

数据量为 1G 的多表测试结果 (S)		
SQL (TPC-DS)	Mysql	PrestoSQL
SQL_01	4. 45	5. 45
SQL_02	0.08	4. 63
SQL_03	1.86	1. 67
SQL_04	1.84	14. 17
SQL_05	4. 53	5. 21
SQL_06	5. 48	7. 9
SQL_07	2. 55	9. 12
SQL_08	4. 17	4. 34
SQL_09	1. 63	0. 63
SQL_10	6. 41	6. 43
SQL_11	3. 09	8. 93
SQL_12	6. 13	6. 79
SQL_13	10. 98	21. 22
SQL_14	12. 12	20. 22
SQL_15	1. 37	3. 26

数据量为 5G 的多表测试结果 (S)		
SQL (TPC-DS)	Mysql	PrestoSQL
SQL_01	43. 91	22. 85
SQL_02	1. 12	37
SQL_03	53. 01	33. 05
SQL_04	33. 57	53. 64
SQL_05	64. 94	36. 21
SQL_06	95. 99	44. 06
SQL_07	41. 47	44. 84
SQL_08	43. 54	20. 26
SQL_09	16. 03	0. 73
SQL_10	84. 87	39. 86
SQL_11	41. 42	44. 43
SQL_12	81. 41	39. 74
SQL_13	261. 39	68
SQL_14	272. 02	60.06

数据量为 20G 的多表测试结果 (S)			
SQL (TPC-DS)	Mysql	PrestoSQL	
SQL_01	170. 85	113	
SQL_02	3. 01	139	
SQL_03	209. 82	109	
SQL_04	130. 25	213	
SQL_05	240. 83	140	
SQL_06	342. 83	175	
SQL_07	152. 51	175	
SQL_08	167. 66	105	
SQL_09	4. 31	0. 62	
SQL_10	310. 28	160	
SQL_11	149. 03	175	
SQL_12	313. 91	160	
SQL_13	1067	286	
SQL_14	1048. 43	290	
SQL_15	132. 08	125	

3.2 单表测试数据

数据量为 1G 的单表测试结果(S)		
SQL (TPC-DS)	Mysql	PrestoSQL
SQL_01	0. 92	1. 43
SQL_02	1. 27	1. 33
SQL_03	1.54	2. 76
SQL_04	0	0. 97
SQL_05	0.75	1. 33
SQL_06	12. 19	6. 89
SQL_07	12. 25	5. 83
SQL_08	3.8	12. 91
SQL_09	4.72	13. 31

数据量为 5G 的单表测试结果 (S)		
SQL (TPC-DS)	Mysql	PrestoSQL
SQL_01	22.9	25. 19
SQL_02	25. 47	36. 46
SQL_03	28. 22	28. 64
SQL_04	0. 01	23. 52
SQL_05	22. 45	25. 03

SQL_06	210	38. 13
SQL_07	208	37. 36
SQL_08	41. 05	46. 39
SQL_09	28. 49	28. 89

数据量为 20G 的单表测试结果 (S)		
SQL (TPC-DS)	Mysql	PrestoSQL
SQL_01	100. 14	110
SQL_02	110. 25	111
SQL_03	115. 95	118
SQL_04	0.04	98
SQL_05	97. 67	108
SQL_06	1087. 26	147
SQL_07	1081.66	138
SQL_08	159. 97	125
SQL_09	114. 98	116

下面是通过直方图形式直观比较 presto 和 mysql 的 SQL 执行时间。数据量 1G 服务器配置

PrestoSQL (单节点, 2核 16G)

数据量 5G 服务器配置: PrestoSQL (分布式部署) Coordinator (4 核 6G)、Worker * 2 (4 核 6G)

数据量 20G 服务器配置:

PrestoSQL (分布式部署) Coordinator (4 核 8G)、Worker * 2 (4 核 8G)

4. 测试总结

从上面的测试结果可以看出,PrestoSQL 综合性能要比 MySQL 好一些,在其查询性能和支持的数据源方面要突出一些,同时在多数据量、多表查询、多节点、单大表聚合操作方面体现出了优势。

由于 PrestoSQL 是完全基于内存计算的,所以 PrestoSQL 在查询时占用的内存不少。

5. 测试结论

PrestoSQL 搭载 MySQL 可以提高 MySQL 的优化效率(本次测试)可以通过水平扩展 PrestoSQL 的 Worker 节点数量或内存来提升优化效率(本次测试)

6. 参考文档

https://prestosql.io/docs/current/installation/deployment.html#jvm-config (PrestoSQL 官方部署文档)

http://tpc.org/tpcds/default5.asp (TPC 测试相关官方文档)

https://bbs.huaweicloud.com/blogs/173486 (PrestoSQL 调优相关文档)

https://blog.csdn.net/hancky/article/details/88954567 (TPC-DS 使用文档)