Chapter 7

解析延拓,伽马函数和黎曼 zeta 函数

7.1 引言: 素数与 Zeta 函数

素数,作为整数通过乘法构成的基石,几千年来一直吸引着数学家。一个核心问题是:素数在整数中是如何分布的?虽然它们的序列在局部看起来不规则,但在全局上存在模式。

18 世纪,高斯和勒让德推测,不超过 x 的素数数量,记作 $\pi(x)$,大约为 $x/\ln x$ 。这在 19 世纪末被严格证明(素数定理)。

伯恩哈德·黎曼在他开创性的 1859 年论文中,将素数的研究与一个复变量函数联系起来,这个函数现在被称为黎曼 Zeta 函数。

定义 23 (黎曼 Zeta 函数 (初始定义)) 对于复数 $s = \sigma + it$, 其实部 $Re(s) = \sigma > 1$, 黎曼 Zeta 函数定义为绝对收敛的级数:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \tag{7.1}$$

其中 $n^s = e^{s \ln n} = e^{(\sigma + it) \ln n} = e^{\sigma \ln n} e^{it \ln n} = n^{\sigma} (\cos(t \ln n) + i \sin(t \ln n))$ 。

黎曼证明了这个函数可以被扩展(解析延拓)到几乎整个复平面,并且 它的性质,特别是其零点的位置,蕴含着关于素数的深刻信息。

7.2 素数计数函数

定义 24 (素数计数函数) $\pi(x)$ 计算小于或等于 x 的素数个数, 其中 $x \in \mathbb{R}^+$ 。

$$\pi(x) = \#\{p < x \mid p \in \mathbb{Z}\}\$$
 (7.2)

定理 37 (素数定理 (PNT)) 素数计数函数渐近于 $x/\ln x$:

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1 \tag{7.3}$$

这通常写作 $\pi(x) \sim \frac{x}{\ln x}$ 。一个更好的近似是对数积分函数 $Li(x) = \int_2^x \frac{dt}{\ln t}$ 。

虽然 $\pi(x)$ 直接计算素数,但在技术上,使用加权计数通常更方便。

定义 25 (冯·曼戈尔特函数 (von Mangoldt Function)) 冯·曼戈尔特 函数 $\Lambda(n)$ 定义于整数 $n \ge 1$:

$$\Lambda(n) = \begin{cases} \ln p & \ddot{\pi}n = p^k \text{ 对于某个素数} p \text{ 和整数} k \ge 1 \\ 0 & \ddot{\pi} \in \mathbb{R} \end{cases} \tag{7.4}$$

 $\Lambda(n)$ 挑出素数幂,并用对应素数的对数进行加权。

定义 26 (第二切比雪夫函数 (Second Chebyshev Function)) (第二) 切比雪夫函数 $\psi(x)$ 是冯·曼戈尔特函数的求和函数:

$$\psi(x) = \sum_{n \le x} \Lambda(n) = \sum_{p^k \le x} \ln p \tag{7.5}$$

讨论 10 和 $\psi(x)$ 主要由 k=1 的项(即素数本身)贡献。高次素数幂 $(k \geq 2)$ 的贡献要小得多。具体来说, $\sum_{p^k \leq x, k \geq 2} \ln p = O(\sqrt{x} \ln x)$ 。这意味着 $\psi(x)$ 的行为与 $\sum_{p \leq x} \ln p$ 非常相似。素数定理等价于 $\psi(x) \sim x$ 。

7.3 黎曼 Zeta 函数的性质

7.3.1 收敛性与欧拉乘积

引理 3 (收敛域) 狄利克雷级数 $\sum_{n=1}^{\infty} \frac{1}{n^s}$ 在 Re(s) > 1 时绝对收敛,在 $Re(s) \le 1$ 时发散。

证明 10 令 $s=\sigma+it$ 。各项的绝对值为 $|1/n^s|=|1/e^{s\ln n}|=|1/(n^\sigma e^{it\ln n})|=1/n^\sigma$ 。 绝对值级数为 $\sum_{n=1}^\infty \frac{1}{n^\sigma}$ 。 根据积分判别法,此级数收敛当且仅当积分 $\int_1^\infty \frac{1}{x^\sigma} dx$ 收敛。

- 若 $\sigma > 1$: $\int_{1}^{\infty} x^{-\sigma} dx = \left[\frac{x^{1-\sigma}}{1-\sigma}\right]_{1}^{\infty} = \lim_{b \to \infty} \frac{b^{1-\sigma}}{1-\sigma} \frac{1}{1-\sigma} = 0 \frac{1}{1-\sigma} = \frac{1}{\sigma-1}$ (收敛, 因为 $1-\sigma < 0$)。
- 若 $\sigma = 1$: $\int_1^\infty x^{-1} dx = [\ln x]_1^\infty = \lim_{b \to \infty} \ln b \ln 1 = \infty$ (发散)。
- 若 $\sigma < 1$: $1 \sigma > 0$, 所以 $\int_{1}^{\infty} x^{-\sigma} dx = \left[\frac{x^{1-\sigma}}{1-\sigma}\right]_{1}^{\infty} = \lim_{b \to \infty} \frac{b^{1-\sigma}}{1-\sigma} \frac{1}{1-\sigma} = \infty$ (发散)。

因此,该级数在 $Re(s) = \sigma > 1$ 时绝对收敛,在 $Re(s) = \sigma \le 1$ 时发散。 通过欧拉乘积公式建立了与素数的联系。

定理 38 (欧拉乘积公式) 对于 Re(s) > 1:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{n \text{ * * *}} \left(1 - \frac{1}{p^s} \right)^{-1}$$
 (7.6)

证明 11 从 Re(s) > 1 时的 $\zeta(s)$ 开始。

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots$$

乘以 $(1/2^s)$:

$$\frac{1}{2^s}\zeta(s) = \frac{1}{2^s} + \frac{1}{4^s} + \frac{1}{6^s} + \frac{1}{8^s} + \dots$$

从 $\zeta(s)$ 中减去此式

$$\left(1 - \frac{1}{2^s}\right)\zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{9^s} + \dots \quad (移除了含因子 \ 2 \ 的项)$$

现在乘以 $(1/3^s)$:

$$\frac{1}{3^s} \left(1 - \frac{1}{2^s} \right) \zeta(s) = \frac{1}{3^s} + \frac{1}{9^s} + \frac{1}{15^s} + \frac{1}{21^s} + \dots$$

从上一个结果中减去此式:

$$\left(1-\frac{1}{3^s}\right)\left(1-\frac{1}{2^s}\right)\zeta(s) = 1 + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{11^s} + \dots \quad (8 \& 7 \& B + 2 \& 3 \& 6)$$

对所有素数 p 继续这个过程(一个"筛选"过程),我们移除了所有合数,右侧只剩下 1。这依赖于算术基本定理(唯一素数分解)。

$$\left(\prod_{p \not\equiv x} \left(1 - \frac{1}{p^s}\right)\right) \zeta(s) = 1$$

整理得到欧拉乘积公式:

$$\zeta(s) = \prod_{\substack{n \text{ *} \\ s \text{ *} \\ }} \left(1 - \frac{1}{p^s}\right)^{-1}$$

或者,使用等比级数公式 $(1-x)^{-1}=1+x+x^2+\dots$ (因为 $|p^{-s}|=p^{-\sigma}<1$ 对于 $\sigma>1$ 成立而收敛)展开每一项 $(1-p^{-s})^{-1}$:

$$\prod_{p} \left(1 + \frac{1}{p^s} + \frac{1}{(p^2)^s} + \frac{1}{(p^3)^s} + \dots \right)$$

当把这些无穷和相乘时, 展开式中的一个通用项形式为

$$\frac{1}{(p_1^{k_1})^s} \frac{1}{(p_2^{k_2})^s} \dots \frac{1}{(p_m^{k_m})^s} = \frac{1}{(p_1^{k_1} p_2^{k_2} \dots p_m^{k_m})^s}$$

根据算术基本定理,每个大于 1 的整数 n 都有唯一的素数分解 $n = p_1^{k_1} \dots p_m^{k_m}$ 。因此,乘积展开式中每一项 $1/n^s$ 恰好出现一次。

这个公式直接将 Zeta 函数与素数联系起来。

推论 5 (Zeta 函数的对数) 对于 Re(s) > 1:

$$\ln \zeta(s) = -\sum_{p \neq x} \ln \left(1 - \frac{1}{p^s} \right) \tag{7.7}$$

证明 12 取欧拉乘积 (公式 7.9) 的自然对数。因为 $\ln(\prod x_i) = \sum \ln x_i$ 且 $\ln(x^{-1}) = -\ln x$:

$$\ln \zeta(s) = \ln \left(\prod_{p} (1 - p^{-s})^{-1} \right) = \sum_{p} \ln \left((1 - p^{-s})^{-1} \right) = -\sum_{p} \ln (1 - p^{-s})$$

7.3.2 解析延拓与函数方程

定义 $\zeta(s) = \sum n^{-s}$ 仅在 $\mathrm{Re}(s) > 1$ 时有效。黎曼证明了 $\zeta(s)$ 可以延拓为一个在 s = 1 处的简单极点之外对所有 $s \in \mathbb{C}$ 都定义的函数。这个延拓后的函数满足一个非凡的对称性。

定理 39 (函数方程) 解析延拓后的黎曼 Zeta 函数对所有 $s \in \mathbb{C} \setminus \{0,1\}$ 满足以下关系:

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)$$
(7.8)

另一种通常更对称的形式涉及完备 Zeta 函数 $\xi(s)=\frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s)$,它满足 $\xi(s)=\xi(1-s)$ 。

证明过程比较复杂,通常使用泊松求和公式或 Theta 函数的性质,超出了本入门讲义的范围。

例子 77 (计算 $\zeta(-1)$) 级数 $\sum n^{-(-1)} = \sum n = 1 + 2 + 3 + \dots$ 显然发散。使用函数方程(公式 7.11),我们可以找到一个有意义的值。考虑 $s \to -1$ 的极限。

这个令人惊讶的结果在物理学中有应用 (例如, 卡西米尔效应, 弦理论)。

7.4 Zeta 函数的零点

 $\zeta(s) = 0$ 的位置至关重要。

命题 2 (零点的分类) $\zeta(s)$ 的零点分为两类:

- 1. 平凡零点 (Trivial Zeros): 位于负偶整数处, $s=-2,-4,-6,\ldots$
- 2. 非**平凡零点** (Non-trivial Zeros): 位于临界带 (critical strip) 内,定义为 0 < Re(s) < 1。

此外:

- 对于 Re(s) > 1, 没有零点。
- 在直线 Re(s) = 1 上没有零点 (由 Hadamard 和 de la Vallée Poussin 证明, 等价于素数定理)。
- 非平凡零点关于实轴对称 (因为 $\zeta(\bar{s}) = \overline{\zeta(s)}$) 并且关于**临界线** (critical line) Re(s) = 1/2 对称 (由于函数方程 $\xi(s) = \xi(1-s)$)。
- **证明 13 (简述)** Re(s) > 1 无零点:在此区域,欧拉乘积 $\zeta(s) = \prod_p (1-p^{-s})^{-1}$ 收敛。每个因子 $(1-p^{-s})^{-1}$ 都非零 (因为 $p^{-s} \neq 1$)。收敛的非零项无穷乘积不可能为零。
 - 平凡零点: 考虑函数方程(公式 7.11)。对于 s=-2m 其中 $m \in \mathbb{N}$: 项 $\sin(\pi s/2) = \sin(\pi(-2m)/2) = \sin(-m\pi) = 0$ 。我们必须检查其它 项不会引入抵消此零点的极点或零点。 $\Gamma(1-s) = \Gamma(1+2m)$ 是有限且 非零的。 $\zeta(1-s) = \zeta(1+2m)$ 是有限且非零的(因为 1+2m > 1)。幂 2^s 和 π^{s-1} 是有限且非零的。因此,对 $m=1,2,3,\ldots$, $\zeta(-2m)=0$ 。
 - 临界带内的非平凡零点: 如果对于某个 Re(s) < 0 但 $s \neq -2m$ 的 s 有 $\zeta(s) = 0$,那么 $\sin(\pi s/2)$ 项非零。 $\Gamma(1-s)$ 项有限且非零(因为 1-s 不是 $0,-1,-2,\ldots$)。幂 $2^s,\pi^{s-1}$ 非零。因此, $\zeta(s) = 0$ 将意味着 $\zeta(1-s) = 0$ 。如果 s 满足 Re(s) < 0,则 1-s 满足 Re(1-s) > 1。但我们知道 ζ 在 Re(s) > 1 时没有零点。这迫使所有其它零点(非平凡零点)必须位于带 $0 \leq Re(s) \leq 1$ 内。Re(s) = 0 和 Re(s) = 1 上无零点的事实将其细化为 0 < Re(s) < 1。
 - **对称性**:对称性 $\xi(s) = \xi(1-s)$ 意味着如果 $\xi(\rho) = 0$,则 $\xi(1-\rho) = 0$ 。由于因子 $s(s-1)\pi^{-s/2}\Gamma(s/2)$ 在临界带内非零, $\xi(\rho) = 0 \iff \zeta(\rho) = 0$ 。因此,如果 ρ 是一个非平凡零点,那么 $1-\rho$ 也是。这显示了关于直线 Re(s) = 1/2 的对称性。

这引出了数学中最著名的未解问题之一: [**黎曼猜想 (The Riemann Hypothesis, RH)**] 黎曼 Zeta 函数 $\zeta(s)$ 的所有非平凡零点都位于临界线 $\operatorname{Re}(s)=1/2$ 上。也就是说,如果 $\zeta(\rho)=0$ 且 $0<\operatorname{Re}(\rho)<1$,则 $\operatorname{Re}(\rho)=1/2$ 。数十亿个零点已被计算出来,并且都发现在临界线上。然而,证明仍然 遥不可及。

7.5 连接零点与素数:明确公式

零点如何与素数相关?这种联系是通过 $\zeta(s)$ 的对数导数和围道积分建立的。 **定理 40 (Zeta 函数的对数导数)** 对于 Re(s) > 1:

$$\frac{\zeta'(s)}{\zeta(s)} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}$$
 (7.9)

证明 14 我们从 Re(s)>1 时的 $\ln\zeta(s)=-\sum_p\ln(1-p^{-s})$ 开始。对两边关于 s 求导。左边是 $\frac{d}{ds}\ln\zeta(s)=\frac{\zeta'(s)}{\zeta(s)}$ 。对于右边,我们逐项求导(一致收敛性允许这样做):

$$\begin{split} \frac{d}{ds} \left(-\sum_{p} \ln(1 - p^{-s}) \right) &= -\sum_{p} \frac{d}{ds} \ln(1 - p^{-s}) \\ &= -\sum_{p} \frac{1}{1 - p^{-s}} \cdot \frac{d}{ds} (1 - p^{-s}) \\ &= -\sum_{p} \frac{1}{1 - p^{-s}} \cdot \left(-\frac{d}{ds} e^{-s \ln p} \right) \\ &= -\sum_{p} \frac{1}{1 - p^{-s}} \cdot \left(-(-\ln p) e^{-s \ln p} \right) \\ &= -\sum_{p} \frac{\ln p \cdot p^{-s}}{1 - p^{-s}} \end{split}$$

现在,使用等比级数展开 $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$,其中 $x = p^{-s}$ (因为 $|p^{-s}| < 1$ 而有效):

$$\begin{split} \frac{\zeta'(s)}{\zeta(s)} &= -\sum_{p} (\ln p \cdot p^{-s}) \sum_{k=0}^{\infty} (p^{-s})^k \\ &= -\sum_{p} \ln p \sum_{k=0}^{\infty} p^{-s(k+1)} \\ &= -\sum_{p} \ln p \sum_{k=1}^{\infty} (p^k)^{-s} \quad (\text{$\underline{\underline{\phi}}$ if $\underline{\underline{\kappa}}$ $\underline{\underline{\zeta}}$ } | k' = k+1) \\ &= -\sum_{p} \sum_{k=1}^{\infty} \frac{\ln p}{(p^k)^s} \end{split}$$

这个双重求和遍历所有素数幂 $n=p^k$ 。回想冯·曼戈尔特函数的定义: 如果 $n=p^k$, $\Lambda(n)=\ln p$,否则为 θ 。所以这个和恰好是:

$$\frac{\zeta'(s)}{\zeta(s)} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}$$

该定理将 Zeta 函数的导数(与其变化率相关,因此对零点/极点敏感)与涉及冯·曼戈尔特函数(与素数相关)的和联系起来。

最后一步使用复分析,特别是佩龙公式 (Perron's formula) 和留数定理。 我们将公式 7.12 乘以 x^s/s 并在复平面上一个合适的围道 B 上积分。

引理 4 (佩龙公式 - 简化版) 对于 y > 0, c > 0:

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{y^s}{s} ds = \begin{cases} 1 & \not \equiv y > 1 \\ 1/2 & \not \equiv y = 1 \\ 0 & \not \equiv 0 < y < 1 \end{cases}$$

这个积分的作用类似于阶跃函数。

应用这些方法(细节省略,请参阅解析数论的高级教材)可以导出**明确公式 (Explicit Formula)**,它直接将素数计数函数 $\psi(x)$ 与 $\zeta(s)$ 的零点联系起来。

定理 41 (冯·曼戈尔特明确公式 (简化版)) 对于 x > 1 且 x 不是素数幂:

$$\psi(x) = \sum_{n \le x} \Lambda(n) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} - \ln(2\pi) - \frac{1}{2} \ln(1 - x^{-2})$$
 (7.10)

这里,和 \sum_{ρ} 遍历 $\zeta(s)$ 的所有非平凡零点 ρ ,通常按 $\rho,\bar{\rho}$ 成对并按 $|Im(\rho)|$ 递增的顺序排列。项 $\ln(1-x^{-2})$ 与平凡零点有关。

解释:

- 主要项是 x。这对应于素数定理 $(\psi(x) \sim x)$ 。
- 和 $\sum_{\rho} \frac{x^{\rho}}{\rho}$ 代表了素数围绕主要趋势 x 分布的波动或 "误差项"。
- 每个非平凡零点 ρ 贡献一个振荡项 x^{ρ}/ρ 。如果 $\rho = \beta + i\gamma$,那么 $x^{\rho} = x^{\beta}e^{i\gamma \ln x} = x^{\beta}(\cos(\gamma \ln x) + i\sin(\gamma \ln x))$ 。虚部 γ 决定了振荡的 频率,实部 β 决定了振幅 x^{β} 。
- **关键在于**,**黎曼猜想断言对于所有** ρ **都有** $\beta = 1/2$ 。这意味着波动的 幅度增长像 $x^{1/2}$ 。在 RH 下,明确公式变为:

$$\psi(x) = x - \sum_{\gamma} \frac{x^{1/2 + i\gamma}}{1/2 + i\gamma} - \ln(2\pi) - \dots \approx x + O(\sqrt{x}(\ln x)^2) \quad (7.11)$$

 $((\ln x)^2$ 因子来自于对零点和的仔细分析)。这为素数定理的误差项提供了最佳可能界限。如果 RH 是错误的,则会存在 $\beta > 1/2$ 的零点,导致更大的波动 x^β 。

明确公式表明,素数的精确分布与黎曼 Zeta 函数在临界线上的非平凡 零点的位置密切相关。