Höhere Technische Bundeslehranstalt Salzburg

Abteilung für Elektronik

Übungen im Laboratorium für Elektronik

Protokoll für die Übung Nr. 17

Gegenstand der Übung

LDO

Name: Leon Ablinger

Jahrgang: 4AHEL

Gruppe Nr.: A1

Übung am: 07.04.2021

Anwesend: Leon Ablinger

Inhalt

1	Inventa	Inventarliste		
2	Messai	Messanweisung		
3	3 Übungsdurchführung			
	3.1 Sta	abilisierungsfaktor des Längsreglers	5	
	3.1.1	Beschreibung des Messvorgangs	5	
	3.1.2	Schaltung	5	
	3.1.3	Dimensionierung	5	
	3.1.4	TabelleFehler! Textmarke	nicht definiert	
	J. 1. 4	rabolic Textilarie	ment demnert.	
	3.1.5	Berechnung		
			nicht definiert.	
	3.1.5 3.1.6	BerechnungFehler! Textmarke	nicht definiert.	
	3.1.5 3.1.6	BerechnungFehler! Textmarke Erkenntnis / Schlussfolgerung	nicht definiert. 8	
	3.1.5 3.1.6 3.2 Sp	BerechnungFehler! Textmarke Erkenntnis / Schlussfolgerung pannungsfunktionen	nicht definiert. 8 9	
	3.1.5 3.1.6 3.2 Sp 3.2.1	BerechnungFehler! Textmarke Erkenntnis / Schlussfolgerung bannungsfunktionen Beschreibung des Messvorgangs	nicht definiert	
	3.1.5 3.1.6 3.2 Sp 3.2.1 3.2.2	Berechnung	nicht definiert	

1 Inventarliste

Gerätebezeichnung	Inventarnummer	Verwendung
Keysight DSO-X 2014A	MY52011016	Spannungsverlauf
Digitales Multimeter	Platz 1	Strom-/Spannung
DC-Quelle	Platz 1	DC
Trafo	Platz 1	AC

2 Messanweisung

31-01-2021 LAB4_v0 Messanweisung

LDO (Low Dropout Linear Regulator)

1. Lernziel

Nach erfolgter Übung kann der Lernende,

- einfache Spannungsregler für den Betrieb elektronischer Schaltungen entwickeln.
- Kenngrößen zur Bewertung von Spannungsregler benennen.

2. Vorbereitung

Wiederholung der entsprechenden HWE Grundlagen aus dem 3 und 4 Jahrgang, sowie Spannungsquelle: https://www.elektroniktutor.de/analogtechnik/u_konst.html https://www.ti.com/lit/ds/symlink/lm1117.pdf

Durcharbeiten der Kontrollfragen Steckbrett, Messkabel, Werkzeug Modell für BD139 in LTSpice einbinden

3. Übungsdurchführung

1.1 Entwurf eines Längsreglers

Es ist eine Konstantspannungsquelle durch Serienstabilisierung (sgn Längsregler) zu entwerfen. Ue = 15V +/- ____tbd____mV/100Hz, Ua = U_Z - U_{BE} , I_L = 0.01 - 0.5A BD139 mit $I_{C, max}$ sowie B laut Datasheet Zenerdiode: U_Z = _____, I_Z geeignet annehmen (etwa 15 - 25mA)

Gefordert sind:

- a) Dimensionierung der Schaltung bei gegebenen Uz
- b) Simulation der Schaltung mit LTSpice (.trans und .op bei I_L=100mA)
- c) Stromlaufplan der Messschaltung
- d) Aufbau am Steckbrett

Messungen:

- a) Bestimme mit dem Oszilloskop die Eingangs- und Ausgangsspannung
- b) Bestimme den Stabilisierungsfaktor $G = \Delta Ue/\Delta Ua$
- c) Bestimme $U_a = f(I_a)$ sowie $U_{CE} = f(I_a)$ Vermindere R_L von $1k\Omega$ absteigend bis zum Erreichen von $I_{L,max}$.

1.2 Entwurf eines Längsreglers mit OPV

Der unter Punkt 1.1 gegebene Längsregler ist durch eine Variante mit OPV zu ersetzen. Eingangsspannung und Laststrom bleiben gleich.

Gefordert sind:

- a) Dimensionierung der Schaltung für Ua = 7V.
- b) Simulation der Schaltung mit LTSpice
- c) Stromlaufplan der Messschaltung
- d) Aufbau am Steckbrett

Messungen:

- a) Bestimme den Stabilisierungsfaktor des Längsreglers.
- b) Bestimme Ua = f(Ia) durch schrittweise Verminderung von R_L .
- c) Bestimme die Ausregelzeit infolge eines Sprungs der Eingangsspannung von +/-2V.

SRES HTBLA-Salzburg 1/1

31-01-2021 LAB4_v0 Messanweisung

4. Protokoll

Im Protokoll ist anzuführen:

- · Messanweisung, Inhaltsverzeichnis, Inventarliste
- Angabe des Übungszieles
- Schaltplan und Dimensionierung
- Kurzbeschreibung der Messungen (Quellen, Messobjekte, Messgeräte, ...)
- Messergebnisse ,Oszillogramme, Diagramme, Interpretation
- Zusammenfassung, besondere Vorkommnisse
- Ort, Datum und Unterschrift

5. Kontrollfragen

- a) Erkläre die Begriffe Line Regulation und Load Regulation und Ausregelzeit eines Spannungsreglers anhand realer Kenngrößen aus einem Datenblatt?
- b) Stromlaufplan und Dimensionierung des L\u00e4ngsreglers LM1117 incl. Dimensionierung auf die Ausgangsspannung unter Bsp 1.1.

Gib die Größe des maximalen Ausgangsstroms (Datenblattauszug) an.

Übungsdurchführung

Stabilisierungsfaktor des Längsreglers

3.1.1 Beschreibung des Messvorgangs

In diesem Übungsteil soll der Stabilisierungsfaktor des Längsreglers bestimmt werden. Dafür muss die Welligkeit der Ein- & Ausgangsspannung gemessen werden.

3.1.2 Schaltung

Abbildung 1: Längsregler, Schaltung

3.1.3 Dimensionierung

 $P_{tot} = 500mW$ (aus DB)

$$U_{\pi} = 5.6V$$

$$U_z = 5.6V$$

$$U_e = 15V \pm 1V$$

$$U_a = U_z - U_{BE} = (5.6 - 1)V = 4.6V$$

$$I_L = 0.01 - 0.5A$$

BD139 (aus Datenblatt):

$$B = 100$$

$$I_B = (0.4 - 2)mA$$

$$I_z = (8.9 - 89) mA$$

$$R_{v,min} = \frac{U_{e,max} - U_z}{I_{B,min} + I_{z,max}} = \frac{(15,2 - 5,6)V}{(0,4 + 89)mA} = 93\Omega$$

$$R_{v,max} = \frac{U_{e,min} - U_z}{I_{B,max} + I_{z,min}} = 770\Omega$$

$$R_{v,gew} = 560\Omega$$

$$R_{VL} = \frac{U_a}{I_{L,min}} = \frac{4,6V}{0,01A} = 460\Omega$$

$$R_{VL,gew} = 470\Omega$$

$$R_{L,max} = \frac{U_a}{I_{L,max}} = \frac{4,6V}{0,5A} = 9,2\Omega$$

3.1.4 Berechnung

dUa	0.004	V
dUe	1.724	V
G	431	

$$G = \frac{dU_e}{dU_a} = 431$$

3.1.5 Oszillogramm

Abbildung 2: Spannungsdeltas des Ein- & Ausgangs

3.1.6 Simulation

Abbildung 3: Simulation des Längsreglers

Abbildung 4: Spannungsverlauf des Längsreglers bei I_L = 100mA (Simulation)

Abbildung 5: Ausgangsspannungsdelta des Längsreglers bei I_L = 100mA (Simulation)

Abbildung 6: Eingangsspannungsdelta des Längsreglers bei I_L = 100mA (Simulation)

3.1.7 Erkenntnis / Schlussfolgerung

Der erreichte Stabilisierungsfaktor ist ungewöhnlich hoch, im Normalfall liegt dieser bei etwa 200. Dies ist auch in der Simulation zu erkennen, welche einen Stabilisierungsfaktor von 166,66 erreicht. Der Wert von 431 spricht daher für eine sehr geringe Welligkeit der Ausgangsspannung, diese beträgt lediglich 4mV.

3.2 Spannungsfunktionen

3.2.1 Beschreibung des Messvorgangs

Nun sollen die Spannungen UA & UCE in Abhängigkeit des Ausgangstromes IA gesetzt werden und dessen Kennlinien ermittelt werden.

3.2.2 Tabelle

Nr _	la <u>▼</u>	UA 💌	UCE _
-	mA	V	V
1	4.39	5.08	9.64
2	10.03	5.08	9.60
3	15.29	5.08	9.55
4	19.82	5.08	9.51
5	24.95	5.08	9.46
6	30.29	5.08	9.41
7	34.66	5.08	9.37
8	39.80	5.08	9.32
9	44.66	5.08	9.27
10	49.85	5.08	9.22
11	55.70	5.08	9.16
12	59.90	5.08	9.12
13	65.80	5.08	9.07
14	70.30	5.10	9.03
15	77.10	5.12	8.95
16	80.50	5.13	8.92
17	85.80	5.15	8.87
18	91.80	5.15	8.81
19	94.80	5.15	8.79
20	101.00	5.15	8.73
21	170.00	5.11	8.12
22	239.00	5.13	7.49
23	318.00	5.17	6.76
24	497.00	2.56	3.10

Tabelle 1: Messung bei variierender Last

3.2.3 Oszillogramm

Abbildung 7: Spannungsfunktionen

3.2.4 Kennlinie

Spannungsverlauf mit variierender Last

3.2.5 Erkenntnis / Schlussfolgerung

Zu sehen ist, dass die gemessenen Spannungen bei geringen Lastströmen (0-300 mA) geradlinig bzw. mit einer leicht negativen Steigung verlaufen. Im oberen Bereich des Laststromes brechen beide Spannungen auf ein Minimum ein, bis I_{L,max} erreicht wird und dieser durch einen Kollektorwiderstand begrenzt wird (Hier nicht verwendet, da die maximale Leistung des Widerstandes um ein 16-faches überschritten werden würde). Die geringe Dichte der Messpunkte im Bereich des höheren Stromes lässt sich dadurch erklären, dass die Einstellmöglichkeit des Schiebewiderstandes dafür nicht ausreicht.

10 Leon Ablinger 07.04.2021

Zweiter Teil der Übung zeitbedingt nicht durchgeführt.

Unterschrift:	Leon Ablinger
Uniterscrimi	i eon Admidei

<u>Datum:</u>	Note:	Punkte:	Unterschrift: