2015-2016 学年第二学期《线性代数》考试卷(A卷) 飞飞.

年级专业_____ 学号_

				Y		
题号	_	_ = ;	=	总分	审核	
题分	27	28	45			
得分						

评阅人 一、填空题(共 27 分,每题 3 分)

- 1. 六阶行列式中的项 $a_{21}a_{53}a_{16}a_{42}a_{65}a_{34}$ 前面应取_(正, 负)号.

$$3.$$
 若 $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ $X = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, 则 $X = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$.

4. 设方阵 A_3 可逆, $|A_3|=3$, A° 为 A_3 的伴随矩阵,则 $|A^{\circ}|=$

5. 设
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 1 & -1 \\ -3 & 2 & 4 \\ 0 & 6 & 1 \end{bmatrix}, \quad \text{DIA} = \begin{bmatrix} -3 & 2 & 7 \\ 5 & 1 & -6 \\ 0 & 6 & 1 \end{bmatrix}.$$

- 6. 设 $R(A_{5\times4})=3$,且 $\alpha_1=(3,-4,1,2)^T$, $\alpha_2=(4,6,8,0)^T$ 均为方程 $A_{5\times4}X=\vec{b}$ 的解向量,则 14 + c 7
- 7、已知 3 阶方阵 A 的 3 个特征值为-1, 2, -3, 则|A| = 6

8. 若
$$\begin{pmatrix} 22 & 31 \\ -12 & \lambda \end{pmatrix}$$
与 $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ 相似,则 $\lambda = \frac{-1}{2}$.

9. 二次型 $f(x, x, x, x) = x^2 - 2x^2 + x^2 - 5x^2 + 2x + 0$ 的原际里

9. 二次型 $f(x_1, x_2, x_3, x_4) = x_1^2 - 2x_2^2 + x_3^2 - 5x_4^2 + 2x_2x_3$ 的矩阵是 秩是 4

得分 评阅人

二、计算题(共28分,每小题7分)

$$2A-B-AB = (A-B)+(A-AB) = (A-B)+(A-AB)$$

$$= (A-B)+(A-B) = (E+A)(A-B) = E$$

$$= (A-B)^{-1} = E+A$$

得分	评阅人	三、简答题(共	45 分)

3. 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 2 \\ 0 \\ 3 \\ 0 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 0 \\ -4 \\ 5 \\ -2 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 3 \\ -2 \\ 7 \\ -1 \end{pmatrix}$$
 的秩和它的一个极大线性无

关组. (10分)

$$(d_1, d_2, d_3, d_4) = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 0 & -4 & -2 \\ -1 & 3 & 5 & 7 \\ 1 & 0 & -2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & -4 & -4 & 8 \\ 0 & 5 & 5 & 10 \\ 0 & -2 & -2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

: + (d1, d2, d3, d4) = 2.

一个机大无关组为 凶, 处.

- 4. 设向量组 $\alpha_1, \alpha_2 \cdots \alpha_{m-1} (m > 3)$ 线性无关,而 $\alpha_2, \alpha_3 \cdots \alpha_{m-1}, \alpha_m$ 线性相关,证明: (1) α_m 可以由 $\alpha_1, \alpha_2 \cdots \alpha_{m-1}$ 线性表示。 (2) α_1 不可以由 $\alpha_2, \alpha_3 \cdots \alpha_{m-1}, \alpha_m$ 线性表示。 (11分)

 」, $d_1, d_2, \cdots, d_{m-1}$ 5元 十至元 关 => 元 7 万 50 d_1 $d_2, d_3, \cdots, d_{m-1}$ 5元 十至元 关 :

 ② : $d_2, d_3, \cdots, d_{m-1}, d_m$ 5六 十 注 节 7 .

 ∴ d_m 万 1 d_1 d_2 d_3 d_3 d_3 d_4 d_5 d_4 d_5 d_4 d_5 d_4 d_5 d_6 d_6 d
- (2) 若的可由此,以, ", dm-1, dm线性表末, 他可没 d=Kd+Kg+"Km-1, dm-1, +Kmdm, 再将例以入, 罗思的可由此, ds, ", dm-1 践性表末. 从面的, de, ", dm-1 践性相关, 多题没"d, dm,", dm-1 线性无关"矛盾. ... 出不可由此, ds,", dm-1, dm 残性表末.

河海大学常州校区考试试卷 第 4页 (共 4 页)

