

UNIVERSIDAD POLITÉCTNICA DEL **ESTADO DE GUERRERO**

ALUMNO:

Alexis Ubaldo Alvarado Vázquez Martin Said Chávez Trujillo Uriel Mejía Campos

CARRERA:

T.S.U. en Inteligencia Artificial / ING. en Tecnologías de la Información e Innovación Digital

GRUPO: TI-16301

CUATRIMESTRE: 3er

MATERIA:

Proyecto Integrador

PROFESOR:

Marco Antonio Valois Flores

ACTIVIDAD:

Implementación de sistemas de seguridad

www.upeg.edu.mx

Introducción del Proyecto

En la actualidad, la seguridad física y lógica representa un pilar fundamental para empresas, instituciones educativas y hogares. La implementación de sistemas de videovigilancia integrados con redes LAN seguras permite no solo monitorear espacios en tiempo real, sino también proteger la integridad de los datos y prevenir accesos no autorizados.

Este proyecto tiene como finalidad diseñar, planificar e implementar un sistema de cámaras de seguridad conectado a una red LAN privada, fortalecida mediante protocolos de seguridad de red, garantizando la confidencialidad, integridad y disponibilidad de la información capturada.

Objetivo del Proyecto

Diseñar e implementar un sistema integral de videovigilancia mediante cámaras IP conectadas a una red LAN segura, que utilice protocolos de comunicación cifrados y control de acceso, con el fin de garantizar la protección del entorno físico y digital de la institución u organización beneficiada.

Fase 1: Requerimientos del Proyecto

Durante esta primera fase se identificarán y detallarán los requisitos necesarios para el correcto desarrollo del sistema, abarcando aspectos técnicos, humanos y materiales.

1. 1. Requisitos de Hardware

- Cámaras IP con visión nocturna y detección de movimiento (mínimo resolución 1080p).
- Switch PoE (Power over Ethernet) para alimentar y conectar las cámaras.
- Servidor local o NVR (Network Video Recorder) para almacenamiento de video.
- Estaciones de trabajo (PCs o laptops) para monitoreo y gestión.
- Router o firewall con capacidad de segmentación de red (VLANs).
- Cableado estructurado (categoría 5 o superior).
- UPS (sistema de respaldo eléctrico) para garantizar continuidad operativa.

Dispositivo	Características	Costo Neto (MXN)	Unidades	Costo Total (MXN)
Cámara IP	1080p, visión nocturna, detección de movimiento, PoE	\$1,200	8	\$9,600
Switch Capa 2 (PoE)	16 puertos, VLANs, IEEE 802.3af/at, administración SNMP	\$4,200	1	\$4,200
NVR o Servidor Local	2 TB HDD, 8 canales, salida HDMI/VGA, acceso remoto	\$4,800	1	\$4,800
PC para monitoreo	i5, 8 GB RAM, SSD 240 GB, monitor 21"	\$8,000	1	\$8,000
Router profesional/firewall	VLANs, control de acceso, filtrado de contenido, VPN	\$2,500	1	\$2,500
Cableado estructurado	Cat6, blindado, 305 m (por rollo)	\$2,000	1	\$2,000
UPS	1000 VA, respaldo de hasta 30 min para cámaras y servidor	\$1,800	1	\$1,800

Tabla 1 Requisitos de hardware

Total, estimado: \$32,900 MX

1.2. Requisitos de Software

Para la implementación de nuestros sistemas de seguridad, necesitamos los siguientes requisitos en materia de software.

Software	Función Principal	Licencia	Observaciones
Sistema Operativo (Servidor)	Ejecutar servicios del NVR o software de gestión	Windows Server / Linux	Linux (Ubuntu Server) recomendado por estabilidad y costo
Software de Videovigilancia (VMS)	Visualización, grabación y gestión de cámaras IP	Gratuito / Licencia	Ej: iVMS-4200 (Hikvision), ZoneMinder (open source), Blue Iris
Navegador Web	Acceso remoto a cámaras y configuración de dispositivos	Libre	Google Chrome, Mozilla Firefox
Administrador de VLAN/Red	Configuración y gestión de VLANs y puertos	Integrado	Generalmente viene en el switch/router (por interfaz web o CLI)
Software de Monitoreo de Red	Ver estado de dispositivos y uso de ancho de banda	Libre / Comercial	Ej: Zabbix, The Dude, PRTG (freemium)
Antivirus / Antimalware	Protección del sistema de monitoreo contra amenazas	Gratuito / Comercial	Para PC de monitoreo, Windows Defender o Malwarebytes recomendado

Tabla 2 Requisitos de Software

1.3. Recurso Humano

Para la implementación de nuestra red y sistema de videovigilancia, necesitamos personal que logre cumplir el siguiente perfil que se muestra a continuación. (Ver tabla 3)

Puesto	Funciones Principales	Horas Estimadas	Costo por Hora (MXN)	Costo Total (MXN)
Administrador de Red	Configurar VLANs, direccionamiento IP, switches, seguridad de red	20	\$250	\$5,000
Técnico en Videovigilancia	Instalar cámaras, configurar ángulos, pruebas físicas y PoE	18	\$200	\$3,600
Especialista en Ciberseguridad	Implementar firewall, ACLs, 802.1X, buenas prácticas de seguridad	16	\$300	\$4,800
Responsable de TI/Coordinador	Supervisar avances, coordinar equipo, revisar cumplimiento de objetivos	12	\$280	\$3,360
Soporte Técnico	Mantenimiento preventivo y correctivo post instalación	10	\$180	\$1,800

Tabla 3 Tabla de RH

Fase 2: Diseño

Empresa

Nuestra empresa donde implementaremos nuestra red LAN y sistema de videovigilancia es la empresa privada: Construcción, Diseño y Supervisión Administrativa (Codysa). Una empresa con fines lucrativos, dedicada a la construcción por lo que cuenta con amplia gama de vehículos, así como equipo sofisticado para la construcción, por lo que la implementación de nuestro sistema de videovigilancia será de gran ayuda para evitar o vigilar algún robo de estos equipos.

Ubicación

Av. Industria Turística, lote #39. Colonia Ciudad Industrial del Valle de Iguala C.P 40025. (Ver Ilustración 1)

Ilustración 1 Ubicacion de la empresa

Ilustración 2 Fachada de la empresa

2.3. SUBNETTING (VLANs, DR, DB, Gateway, IPs)

Laptops y Computadoras

Usaremos el bloque 192.168.100.0/24 dividido en subredes /26 para organizar mejor el tráfico y mantener la seguridad:

VLAN	ID	Propósito	Dirección de Red (DR)	Broadcast (DB)	IPs Asignables	Gateway
VLAN 10	10	Cámaras IP	192.168.100.0	192.168.100.63	192.168.100.1 - 192.168.100.62	192.168.100.1
VLAN 20	20	Administración/Monitoreo	192.168.100.64	192.168.100.127	192.168.100.65 - 192.168.100.126	192.168.100.65
VLAN 30	30	Red de usuarios LAN	192.168.100.128	192.168.100.191	192.168.100.129 - 192.168.100.190	192.168.100.129

2.4. VLANs y Distribución

Para un mejor control en le trafico de la red, utilizaremos las siguientes segmentaciones de red

VLAN ID	Nombre	Función	Dispositivos
10	VLAN-CAM	Tráfico de cámaras IP	Cámaras IP, NVR
20	VLAN-ADMIN	Administración del	PC de monitoreo, Router,
		sistema	técnico
30	VLAN-	Usuarios de red general	Dispositivos de oficina (si
	USUARIOS		aplica)

2.5. Protocolos Aplicables

Nuestra red debe estar correctamente aplicada, por lo que aplicaremos los siguientes protocolos de red

Protocolo	Función
DHCP	Asignación dinámica de IP por VLAN. Se puede configurar por
	interfaz lógica
Ethernet	Aumentar el ancho de banda y la tolerancia a fallos entre
Chanel	dispositivos de red.
VTP	Si se usaran múltiples switches, para gestión de VLANs
802.1Q	Etiquetado de VLANs en puertos troncales
ACLs	Control de acceso entre VLANs (ej. bloquear que usuarios vean
	cámaras)

CISCO PACKET TRACER

Ilustración 3 Cisco Packet Tracer: Topologia Fisica


```
Router>ena
Router#config
Configuring from terminal, memory, or network [terminal]?
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #hostname CODYSA
CODYSA(config) #line console 0
CODYSA(config-line) #password cisco
CODYSA(config-line) #login
CODYSA(config-line)#exit
CODYSA(config) #line vty 0 4
CODYSA(config-line) #password cisco
CODYSA(config-line) #login
CODYSA(config-line) #enable secret cisco
CODYSA(config) #no ip domain-lookup
CODYSA (config) #exit
CODYSA#
%SYS-5-CONFIG I: Configured from console by console
```

Ilustración 4 Cisco Packet Tracer: Configuracion basica del Router

```
CODYSA(config)#interface f0/0.10
CODYSA(config-subif) #encapsulation dot1Q 10
CODYSA(config-subif) #ip add 192.168.100.1 255.255.255.192
CODYSA(config-subif) #no shut
CODYSA(config-subif) #exit
CODYSA(config) #interface f0/0.20
CODYSA(config-subif) #encapsulation dot1Q 20
CODYSA(config-subif) #ip add 192.168.100.65 255.255.255.192
CODYSA(config-subif) #no shut
CODYSA(config-subif)#exit
CODYSA(config)#interface f0/0.30
CODYSA(config-subif) #encapsulation dot10 30
CODYSA(config-subif) #ip add 192.168.100.129 255.255.255.192
CODYSA(config-subif) #no shut
CODYSA(config-subif)#exit
CODYSA(config)#interface f0/0
CODYSA(config-if) #no shut
CODYSA(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
%LINK-5-CHANGED: Interface FastEthernet0/0.10, changed state to up
%LINK-5-CHANGED: Interface FastEthernet0/0.20, changed state to up
%LINK-5-CHANGED: Interface FastEthernet0/0.30, changed state to up
```

Ilustración 5 Cisco Packet Tracer: 802.1Q

```
CODYSA(config) #ip dhcp pool Usuarios
CODYSA(dhcp-config) #Network 192.168.100.128 255.255.255.192
CODYSA(dhcp-config) #default-router 192.168.100.129
CODYSA(dhcp-config)#dns-server 8.8.8.8
CODYSA (dhcp-config) #exit
CODYSA(config) #exit
CODYSA#
$SYS-5-CONFIG I: Configured from console by console
```

Ilustración 6 Cisco Packet Tracer: DHCP


```
Switch>ena
Switch#config
Configuring from terminal, memory, or network [terminal]?
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #Hostname SW-CODYSA
SW-CODYSA(config) #line console 0
SW-CODYSA(config-line) #password cisco
SW-CODYSA(config-line)#login
SW-CODYSA(config-line) #line vtv 0 4
SW-CODYSA(config-line) #password cisco
SW-CODYSA(config-line) #login
SW-CODYSA(config-line) #enable secret cisco
SW-CODYSA (config) #exit
SW-CODYSA#
%SYS-5-CONFIG I: Configured from console by console
```

Ilustración 7 Cisco Packet Tracer: Configuracion basica del Switch

```
SW-CODYSA(config) #vlan 10
SW-CODYSA(config-vlan) #Name Camaras
SW-CODYSA(config-vlan)#exit
SW-CODYSA(config)#vlan 20
SW-CODYSA(config-vlan) #Name Administracion
SW-CODYSA(config-vlan)#exit
SW-CODYSA(config)#vlan 30
SW-CODYSA(config-vlan) #Name Usuarios
SW-CODYSA(config-vlan)#exit
SW-CODYSA(config)#
```

Ilustración 8 Cisco Packet Tracer: VLAN's

```
SW-CODYSA(config) #interface range f0/1 -8
SW-CODYSA(config-if-range) #switchport mode access
SW-CODYSA(config-if-range)#switchport access vlan 10
SW-CODYSA(config-if-range)#exit
SW-CODYSA(config)#interface range f0/9 -16
SW-CODYSA(config-if-range) #switchport mode access
SW-CODYSA(config-if-range) #switchport access vlan 20
SW-CODYSA(config-if-range)#exit
SW-CODYSA(config)#interface range f0/17 -24
SW-CODYSA(config-if-range) #switchport mode access
SW-CODYSA(config-if-range) #switchport access vlan 30
SW-CODYSA(config-if-range)#exit
SW-CODYSA(config)#interface range G0/1 -2
SW-CODYSA(config-if-range)#switchport mode trunk
SW-CODYSA(config-if-range) #switchport trunk native vlan 1
SW-CODYSA(config-if-range)#exit
SW-CODYSA(config)#
```

Ilustración 9 Cisco Packet Tracer: Asignación de puertos

