

or a pharmaceutically acceptable salt thereof, wherein

A is -CR₇;

B is -NR₁R₂, -CR₁R₂R₁₁, -C(=CR₂R₁₂)R₁, -NHCHR₁R₂, -OCHR₁R₂, -SCHR₁R₂, -CHR₂OR₁, -CHR₁OR₂, -CHR₂SR₁, -C(S)R₂, -C(O)R₂, -CHR₂NR₁R₂, -CHR₁NHR₂, -CHR₁N(CH₃)R₂, or -NR₁₂NR₁R₂;

Z is NH, O, S, -N(C₁-C₂ alkyl), -NC(O)CF₃, or -C(R₁₃R₁₄), wherein R₁₃ and R₁₄ are each, independently, hydrogen, trifluoromethyl or methyl, or one of R₁₃ and R₁₄ is cyano and the other is hydrogen or methyl, or -C(R₁₃R₁₄) is a cyclopropyl group, or Z is nitrogen or CH and forms a five or six membered heterocyclic ring fused with R₅, which ring optionally includes two or three further hetero members selected independently from oxygen, nitrogen, NR₁₂, and S(O)_m, and optionally includes from one to three double bonds, and is optionally substituted with halo, C₁-C₄ alkyl, -O(C₁-C₄ alkyl), NH₂, NHCH₃, N(CH₃)₂, CF₃, or OCF₃, with the proviso that said ring does not include any -S-S-, -S-O-, -N-S-, or -O-O- bonds, and does not include more than two oxygen or S(O)_m heterologous members;

Q1
Sch
B1

R_1 is $C(O)H$, $C(O)(C_1-C_6 \text{ alkyl})$, $C(O)(C_1-C_6 \text{ alkylene})(C_3-C_8 \text{ cycloalkyl})$, $C(O)(C_3-C_8 \text{ cycloalkylene})(C_3-C_8 \text{ cycloalkyl})$, $C(O)(C_1-C_6 \text{ alkylene})(C_4-C_8 \text{ heterocycloalkyl})$, $-(C(O)(C_3-C_8 \text{ cycloalkylene})(C_4-C_8 \text{ heterocycloalkyl}))$, $C_1-C_6 \text{ alkyl}$, $C_3-C_8 \text{ cycloalkyl}$, $C_4-C_8 \text{ heterocycloalkyl}$, $-(C_1-C_6 \text{ alkylene})(C_3-C_8 \text{ cycloalkyl})$, $-(C_3-C_8 \text{ cycloalkylene})(C_3-C_8 \text{ cycloalkyl})$, $-(C_1-C_6 \text{ alkylene})(C_4-C_8 \text{ heterocycloalkyl})$, $-(C_3-C_8 \text{ cycloalkylene})(C_4-C_8 \text{ heterocycloalkyl})$, or $-O\text{-aryl}$, or $-O(C_1-C_6 \text{ alkylene})\text{-aryl}$; wherein said aryl, $C_4-C_8 \text{ heterocycloalkyl}$, $C_1-C_6 \text{ alkyl}$, $C_3-C_8 \text{ cycloalkyl}$, $C_3-C_8 \text{ cycloalkylene}$, and $C_1-C_6 \text{ alkylene}$ groups may each independently be optionally substituted with from one to six fluoro, and may each independently be optionally substituted with one or two substituents R_8 independently selected from the group consisting of $C_1-C_4 \text{ alkyl}$, $-C_3-C_8 \text{ cycloalkyl}$, hydroxy, chloro, bromo, iodo, CF_3 , $-O(C_1-C_6 \text{ alkyl})$, $-O(C_3-C_5 \text{ cycloalkyl})$, $-O\text{-CO-}(C_1-C_4 \text{ alkyl})$, $-O\text{-CO-NH}(C_1-C_4 \text{ alkyl})$, $-O\text{-CO-N}(R_{24})(R_{25})$, $-N(R_{24})(R_{25})$, $-S(C_1-C_4 \text{ alkyl})$, $-S(C_3-C_5 \text{ cycloalkyl})$, $-N(C_1-C_4 \text{ alkyl})CO(C_1-C_4 \text{ alkyl})$, $-NHCO(C_1-C_4 \text{ alkyl})$, $-COO(C_1-C_4 \text{ alkyl})$, $-CONH(C_1-C_4 \text{ alkyl})$, $-CON(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$, CN , NO_2 , $-OSO_2(C_1-C_4 \text{ alkyl})$, $S^+(C_1-C_6 \text{ alkyl})(C_1-C_2 \text{ alkyl})\Gamma$, $-SO(C_1-C_4 \text{ alkyl})$ and $-SO_2(C_1-C_4 \text{ alkyl})$; and wherein the $C_1-C_6 \text{ alkyl}$, $C_1-C_6 \text{ alkylene}$, $C_5-C_8 \text{ cycloalkyl}$, $C_5-C_8 \text{ cycloalkylene}$, and $C_5-C_8 \text{ heterocycloalkyl}$ moieties of R_1 may optionally independently include from one to three double or triple bonds; and wherein the $C_1-C_4 \text{ alkyl}$ moieties and $C_1-C_6 \text{ alkyl}$ moieties of R_8 can optionally independently be substituted with hydroxy, amino, $C_1-C_4 \text{ alkyl}$, aryl, $-CH_2\text{-aryl}$, $C_3-C_5 \text{ cycloalkyl}$, or $-O(C_1-C_4 \text{ alkyl})$, and can optionally independently be substituted with from one to six fluoro, and can optionally include one or two double or triple bonds; and wherein each heterocycloalkyl group of R_1 includes from one to three heteromoieties selected from oxygen, $S(O)_m$, nitrogen, and NR_{12} ;

R_2 is hydrogen, $C_1-C_{12} \text{ alkyl}$, $C_3-C_8 \text{ cycloalkyl}$, $C_4-C_8 \text{ heterocycloalkyl}$, $-(C_1-C_6 \text{ alkylene})(C_3-C_8 \text{ cycloalkyl})$, $-(C_3-C_8 \text{ cycloalkylene})(C_3-C_8 \text{ cycloalkyl})$, $-(C_1-C_6 \text{ alkylene})(C_4-C_8 \text{ heterocycloalkyl})$, $-(C_3-C_8 \text{ cycloalkylene})(C_4-C_8 \text{ heterocycloalkyl})$, aryl, $-(C_1-C_6 \text{ alkylene})\text{aryl}$, or $-(C_3-C_8 \text{ cycloalkylene})\text{(aryl)}$; wherein each of the foregoing R_2 groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, and $C_1-C_6 \text{ alkyl}$, wherein one of said one to three substituents can further be selected from bromo, iodo, $C_1-C_6 \text{ alkoxy}$, $-OH$, $-O\text{-CO-}(C_1-C_6 \text{ alkyl})$, $-O\text{-CO-N}(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$, $-S(C_1-C_6 \text{ alkyl})$, $-S(O)(C_1-C_6 \text{ alkyl})$, $-S(O)_2(C_1-C_6 \text{ alkyl})$, $S^+(C_1-C_6 \text{ alkyl})(C_1-C_2 \text{ alkyl})\Gamma$, CN , and NO_2 ; and wherein the $C_1-C_{12} \text{ alkyl}$, $-(C_1-C_6 \text{ alkylene})$, $-(C_5-C_8 \text{ cycloalkyl})$, $-(C_5-C_8 \text{ cycloalkylene})$, and $-(C_5-C_8 \text{ heterocycloalkyl})$ moieties of R_2 may optionally independently include from one to three double or triple bonds; and wherein each heterocycloalkyl group of R_2 includes from one to three heteromoieties selected from oxygen, $S(O)_m$, nitrogen, and NR_{12} ;

or when R_1 and R_2 are as in $-\text{NHCHR}_1R_2$, $-\text{OCHR}_1R_2$, $-\text{SCHR}_1R_2$, $-\text{CHR}_1R_2$ or $-\text{NR}_1R_2$, R_1 and R_2 of B may form a saturated 5- to 8-membered ring which may optionally include one or two double bonds and in which one or two of the ring carbons may optionally be replaced by an oxygen,

Svb
B1

~~S(O)_m, nitrogen or NR₁₂; and which ring can optionally be substituted with from 1 to 3 substituents selected from the group consisting of hydroxy, C₁-C₄ alkyl, fluoro, chloro, bromo, iodo, CF₃, -O-(C₁-C₄ alkyl), -O-CO-(C₁-C₄ alkyl), -O-CO-NH(C₁-C₄ alkyl), -O-CO-N(C₁-C₄ alkyl)(C₁-C₂ alkyl), -NH(C₁-C₄ alkyl), -N(C₁-C₂ alkyl)(C₁-C₄ alkyl), -S(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)CO(C₁-C₄ alkyl), -NHCO(C₁-C₄ alkyl), -COO(C₁-C₄ alkyl), -CONH(C₁-C₄ alkyl), -CON(C₁-C₄ alkyl)(C₁-C₂ alkyl), CN, NO₂, -OSO₂(C₁-C₄ alkyl), -SO(C₁-C₄ alkyl), and -SO₂(C₁-C₄ alkyl), wherein one of said one to three substituents can further be selected from phenyl;~~

R₃ is methyl, ethyl, fluoro, chloro, bromo, iodo, cyano, methoxy, OCF₃, NH₂, NH(C₁-C₂ alkyl), N(CH₃)₂, -NHCOCF₃, -NHCH₂CF₃, S(O)_m(C₁-C₄ alkyl), CONH₂, -CONHCH₃, CON(CH₃)₂, -CF₃, or CH₂OCH₃;

R₄ is hydrogen, C₁-C₄ alkyl, C₃-C₅ cycloalkyl, -(C₁-C₄ alkylene)(C₃-C₅ cycloalkyl), -(C₃-C₅ cycloalkylene)(C₃-C₅ cycloalkyl), cyano, fluoro, chloro, bromo, iodo, -OR₂₄, C₁-C₆ alkoxy, -O-(C₃-C₅ cycloalkyl), -O-(C₁-C₄ alkylene)(C₃-C₅ cycloalkyl), -O-(C₃-C₅ cycloalkylene)(C₃-C₅ cycloalkyl), -CH₂SC(S)O(C₁-C₄ alkyl), -CH₂OCF₃, CF₃, amino, nitro, -NR₂₄R₂₅, -(C₁-C₄ alkylene)-OR₂₄, -(C₁-C₄ alkylene)Cl, -(C₁-C₄ alkylene)NR₂₄R₂₅, -NHCOR₂₄, -NHCONR₂₄R₂₅, -C=NOR₂₄, -HNHR₂₄R₂₅, -S(O)_mR₂₄, -C(O)R₂₄, -OC(O)R₂₄, -C(O)CN, -C(O)NR₂₄R₂₅, -C(O)NHNR₂₄R₂₅, and -COOR₂₄, wherein the alkyl and alkylene groups of R₄ may optionally independently include one or two double or triple bonds and may optionally independently be substituted with one or two substituents R₁₀ independently selected from hydroxy, amino, -NHCOCH₃, -NHCOCH₂Cl, -NH(C₁-C₂ alkyl), -N(C₁-C₂ alkyl)(C₁-C₂ alkyl), -COO(C₁-C₄ alkyl), -COOH, -CO(C₁-C₄ alkyl), C₁-C₆ alkoxy, C₁-C₃ thioalkyl, cyano and nitro, and with one to four substituents independently selected from fluoro and chloro;

R₅ is aryl or heteroaryl and is substituted with from one to four substituents R₂₇ independently selected from halo, C₁-C₁₀ alkyl, -(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -(C₁-C₄ alkylene)(C₄-C₈ heterocycloalkyl), -(C₃-C₈ cycloalkyl), -(C₄-C₈ heterocycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₄-C₈ heterocycloalkyl), C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, nitro, cyano, -NR₂₄R₂₅, -NR₂₄COR₂₅, -NR₂₄CO₂R₂₆, -COR₂₄, -OR₂₅, -CONR₂₄R₂₅, -CO(NOR₂₂)R₂₃, -CO₂R₂₆, -C=N(OR₂₂)R₂₃, and -S(O)_mR₂₃; wherein said C₁-C₁₀ alkyl, C₃-C₈ cycloalkyl, (C₁-C₄ alkylene), (C₃-C₈ cycloalkyl), (C₃-C₈ cycloalkylene), and (C₄-C₈ heterocycloalkyl) groups can be optionally substituted with from one to three substituents independently selected form C₁-C₄ alkyl, C₃-C₈ cycloalkyl, (C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), C₁-C₄ haloalkyl, hydroxy, C₁-C₆ alkoxy, nitro halo, cyano, -NR₂₄R₂₅, -NR₂₄COR₂₅, NR₂₄CO₂R₂₆, -COR₂₄, -OR₂₅, -CONR₂₄R₂₅, CO₂R₂₆, -CO(NOR₂₂)R₂₅, and -S(O)_mR₂₃; and wherein two adjacent substituents of the R₅ group can optionally form a 5-7 membered ring, saturated or unsaturated, fused to R⁵, which ring optionally can [contain] include one, two, or three heterologous members independently selected from O, S(O)_m, and N, but not any

X1
Sub
B1

-S-S-, -O-O-, -S-O-, or -N-S- bonds, and which ring is optionally substituted with C₁-C₄ alkyl, C₃-C₈ cycloalkyl, -(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), C₁-C₄ haloalkyl, nitro, halo, cyano -NR₂₄R₂₅, NR₂₄COR₂₅, NR₂₄CO₂R₂₆, -COR₂₄, -OR₂₅, -CONR₂₄R₂₅, CO₂R₂₆, -CO(NOR₂₆)R₂₅, or -S(O)_mR₂₃; wherein one of said one to four optional substituents R₂₇ can further be selected from -SO₂NH(C₁-C₄ alkyl), -SO₂NH(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -SO₂NH(C₃-C₈ cycloalkyl), -SO₂NH(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), -SO₂N(C₁-C₄ alkyl)(C₁-C₂ alkyl), -SO₂NH₂, -NSO₂(C₁-C₄ alkyl), -NSO₂(C₃-C₈ cycloalkyl), -NSO₂(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), and -NSO₂(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl); and wherein the alkyl, and alkylene groups of R₅ may independently optionally include one double or triple bond;

R₆ is hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, -(C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), or -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), wherein said alkyl and cycloalkyl may optionally be substituted with one hydroxy, methoxy, ethoxy or fluoro group;

R₇ is hydrogen, methyl, fluoro, chloro, bromo, iodo, cyano, hydroxy, -O(C₁-C₂ alkyl), -O(cyclopropyl), -COO(C₁-C₂ alkyl), -COO(C₃-C₈ cycloalkyl), -OCF₃, CF₃, -CH₂OH, or CH₂OCH₃;

R₁₁ is hydrogen, hydroxy, fluoro, ethoxy, or methoxy;

R₁₂ is hydrogen or C₁-C₄ alkyl;

R₂₂ is independently at each occurrence selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), and (C₁-C₄ alkylene)(C₃-C₈ cycloalkyl);

R₂₃ is independently at each occurrence selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₈ alkoxyalkyl, C₃-C₈ cycloalkyl, -(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), aryl, -(C₁-C₄ alkylene)aryl, piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine, and thiomorpholine;

R₂₄ and R₂₅ are independently at each occurrence selected from hydrogen, -C₁-C₄ alkyl, C₁-C₄ haloalkyl, especially CF₃, -CHF₂, CF₂CF₃, or CH₂CF₃, -(C₁-C₄ alkylene)OH, -(C₁-C₄ alkylene)-O-(C₁-C₄ alkyl), -(C₁-C₄ alkylene)-O-(C₃-C₅ cycloalkyl), C₃-C₈ cycloalkyl, -(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), -C₄-C₈ heterocycloalkyl, -(C₁-C₄ alkylene)(C₄-C₈ heterocycloalkyl), -(C₃-C₈ cycloalkylene)(C₄-C₈ heterocycloalkyl), aryl, and -(C₁-C₄ alkylene)(aryl), wherein the -C₄-C₈ heterocycloalkyl groups can each independently optionally be substituted with aryl, CH₂-aryl, or C₁-C₄ alkyl, and can optionally include one or two double or triple bonds; or, when R₂₄ and R₂₅ are as NR₂₄R₂₅, -C(O)NR₂₄R₂₅, -(C₁-C₄ alkylene)NR₂₄R₂₅, or -NHCONR₂₄R₂₅, then NR₂₄R₂₅ may further optionally form a 4 to 8 membered heterocyclic ring optionally including one or two further hetero members independently selected from S(O)_m, oxygen, nitrogen, and NR₁₂, and optionally including from one to three double bonds;

R₂₆ is independently at each occurrence selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₈ cycloalkyl, -(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), aryl, and

Sub
B1
d1

~~-(C₁-C₄ alkylene)(aryl); and~~

~~wherein each m is independently zero, one, or two,~~

~~with the proviso that heterocycloalkyl groups of the compound of formula I, II, or III do not include any -S-S-, -S-O-, -N-S-, or -O-O- bonds, and do not include more than two oxygen or S(O)_m heterologous members.~~

Q
Sub
C1

6. (Amended) A compound of formula I according to claim 1, wherein Z is O; B is -NHCHR₁R₂, wherein R₁ is -C(O)H, -C(O)(C₁-C₆ alkyl), or -C₁-C₆ alkyl, wherein said C₁-C₆ alkyl is optionally substituted with from one to six fluoro atoms or one or two R₈ independently selected from -C₁-C₄ alkyl, hydroxy and -O-(C₁-C₆ alkyl), and wherein R₂ is -C₁-C₁₂ alkyl optionally including from one to three double or triple bonds and optionally substituted with from one to three substituents selected from fluoro and C₁-C₆ alkyl; R₅ is phenyl, pyridyl or pyrimidyl, substituted with two or three R₂₇ groups selected from halo, -(C₁-C₄ haloalkyl), -C(O)R₂₄, -OR₂₅, -C(O)NR₂₄R₂₅, and C₁-C₁₀ alkyl which is optionally substituted with one to three substituents selected from hydroxy, C₁-C₆ alkoxy, and -NR₂₄R₂₅; and R₄ is -C(O)NR₂₄R₂₅.

7. (Amended) A compound of formula I according to claim 1, wherein Z is O; B is -NHCHR₁R₂, wherein R₁ of -NHCHR₁R₂ is -C(O)H, -C(O)(C₁-C₆ alkyl), or -C₁-C₆ alkyl, wherein said C₁-C₆ alkyl is optionally substituted with from one to six fluoro atoms or one or two R₈ independently selected from -C₁-C₄ alkyl, hydroxy and -O-(C₁-C₆ alkyl), and wherein R₂ of -NHCHR₁R₂ is -C₁-C₁₂ alkyl optionally including from one to three double or triple bonds and optionally substituted with from one to three substituents selected from fluoro and C₁-C₆ alkyl; R₅ is phenyl, pyridyl or pyrimidyl, substituted with two or three R₂₇ groups selected from halo, -(C₁-C₄ haloalkyl), -C(O)R₂₄, -OR₂₅, -C(O)NR₂₄R₂₅, and C₁-C₁₀ alkyl which is optionally substituted with one to three substituents selected from hydroxy, C₁-C₆ alkoxy, and -NR₂₄R₂₅; and R₄ is -NR₁R₂, wherein R₁ of -NR₁R₂ is C₁-C₆ alkyl, C₃-C₈ cycloalkyl, or -(C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), and R₂ of -NR₁R₂ is C₁-C₁₂ alkyl optionally including from one to three double or triple bonds and optionally substituted with from one to three fluoro atoms.

C
Sub
B2

9. A pharmaceutical composition for the treatment of (a) a disorder or condition the treatment of which can be effected or facilitated by antagonizing CRF, or (b) a disorder or condition selected from inflammatory disorders such as rheumatoid arthritis and osteoarthritis, pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic; phobias, including social phobia, agoraphobia, and specific phobias; obsessive-compulsive disorder; post-traumatic stress disorder; sleep disorders induced by stress; pain perception such as fibromyalgia; mood disorders such as depression, including major depression, single episode depression, recurrent depression, child abuse induced depression, mood disorders associated with premenstrual syndrome, and postpartum depression; dysthemia; bipolar disorders; cyclothymia; chronic fatigue syndrome; stress-induced headache; cancer; irritable bowel syndrome, Crohn's disease; spastic colon; post operative ileus;

Sch
B2

ulcer; diarrhea; stress-induced fever; human immunodeficiency virus infections; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease; gastrointestinal diseases; eating disorders such as anorexia and bulimia nervosa; hemorrhagic stress; chemical dependencies or addictions, including dependencies or addictions to alcohol, cocaine, heroin, benzodiazapines, or other drugs; drug or alcohol withdrawal symptoms; stress-induced psychotic episodes; euthyroid sick syndrome; syndrome of inappropriate antidiuretic hormone; obesity; infertility; head trauma; spinal cord trauma; ischemic neuronal damage, including cerebral ischemia, for example cerebral hippocampal ischemia; excitotoxic neuronal damage; epilepsy; stroke; immune dysfunctions including stress induced immune dysfunctions, including porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, confinement dysfunction in chicken, sheering stress in sheep, and human-animal interaction stress in dogs; muscular spasms; urinary incontinence; senile dementia of the Alzheimer's type; multiinfarct dementia; amyotrophic lateral sclerosis; hypertension; tachycardia; congestive heart failure; osteoporosis; premature birth; hypoglycemia, and Syndrome X in a mammal or bird, comprising an amount of a compound according to claim 1 that is effective in the treatment of such disorder or condition, and a pharmaceutically acceptable carrier.

10. A method for the treatment of (a) a disorder or condition the treatment of which can be effected or facilitated by antagonizing CRF, or (b) a disorder or condition selected from inflammatory disorders such as rheumatoid arthritis and osteoarthritis, pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic; phobias, including social phobia, agoraphobia, and specific phobias; obsessive-compulsive disorder; post-traumatic stress disorder; sleep disorders induced by stress; pain perception such as fibromyalgia; mood disorders such as depression, including major depression, single episode depression, recurrent depression, child abuse induced depression, mood disorders associated with premenstrual syndrome, and postpartum depression; dysthemia; bipolar disorders; cyclothymia; chronic fatigue syndrome; stress-induced headache; cancer; irritable bowel syndrome, Crohn's disease; spastic colon; post operative ileus; ulcer; diarrhea; stress-induced fever; human immunodeficiency virus infections; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease; gastrointestinal diseases; eating disorders such as anorexia and bulimia nervosa; hemorrhagic stress; chemical dependencies or addictions, including dependencies or addictions to alcohol, cocaine, heroin, benzodiazapines, or other drugs; drug or alcohol withdrawal symptoms; stress-induced psychotic episodes; euthyroid sick syndrome; syndrome of inappropriate antidiuretic hormone; obesity; infertility; head trauma; spinal cord trauma; ischemic neuronal damage, including cerebral ischemia, for example cerebral hippocampal ischemia; excitotoxic neuronal damage; epilepsy; stroke; immune dysfunctions including stress induced immune dysfunctions, including porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, confinement dysfunction in chicken, sheering stress in sheep, and human-animal interaction stress in dogs; muscular spasms; urinary incontinence; senile dementia

of the Alzheimer's type; multiinfarct dementia; amyotrophic lateral sclerosis; hypertension; tachycardia; congestive heart failure; osteoporosis; premature birth; hypoglycemia, and Syndrome X in a mammal or bird, comprising administering to a subject in need of said treatment an amount of a compound according to claim 1, that is effective in treating such disorder or condition.