Pitkä matematiikka 24.9.2003, ratkaisut:

- **1.** a) $x = \frac{1}{2}(3 \pm \sqrt{29})$. b) $f'(x) = 1 \Leftrightarrow 2x 3 = 1 \Leftrightarrow x = 2$. c) Kuvaaja on suora pisteiden (0,-3) ja $(\frac{3}{2},0)$ kautta.
- 2. Neljäkkään ABCD lävistäjät ovat kohtisuorat. Olkoon niiden leikkauspiste E, AE=x ja BE=2x. Koska kolmio AEB on suorakulmainen, on $x^2+(2x)^2=5^2$ eli $5x^2=25$, josta $x=\sqrt{5}$. Neljäkkään ala on $4\cdot\frac{1}{2}\cdot x\cdot 2x=20$. Vastaus: $20~\mathrm{cm}^2$.
- **3.** a) $f'(x) = 2e^{2x-2} + 3x^2$. b) Koska $f'(1) = 2e^0 + 3 = 5$, on käyrän pisteeseen (1,1) piirretyn tangentin yhtälö y-1=5(x-1) eli y=5x-4. c) Tangentti leikkaa akseleita pisteissä (0,-4) ja $(\frac{4}{5},0)$. Näiden välisen janan pituus on $\sqrt{(\frac{4}{5})^2 + 4^2} = \frac{4}{5}\sqrt{26}$.
- **4.** Olkoon P=(x,y). Tällöin $\overline{PA}+\overline{PB}+\overline{PC}+\overline{PD}+\overline{PE}=(-1-x)\overline{i}+(1-y)\overline{j}+(1-x)\overline{i}+(-2-y)\overline{j}+(2-x)\overline{i}+(1-y)\overline{j}+(2-x)\overline{i}+(3-y)\overline{j}+(-2-x)\overline{i}+(-2-y)\overline{j}=(2-5x)\overline{i}+(1-5y)\overline{j}$. Tämä on nollavektori, kun 2-5x=0 ja 1-5y=0 eli $x=\frac{2}{5}$ ja $y=\frac{1}{5}$. Vastaus: Pisteestä $(\frac{2}{5},\frac{1}{5})$.
- **5.** Jos seoksessa on päärynämehua 100a ja omenamehua 100b, on seoksessa sokeria 14a+7b. Toisaalta seoksessa on sokeria $\frac{11}{100}(100a+100b)$ eli 11a+11b. Tästä saadaan yhteys 14a+7b=11a+11b eli 3a=4b eli a/b=4/3. Vastaus: Neljä osaa päärynämehua ja kolme osaa omenamehua.
- **6.** Jos $|x| \le \pi/2$ ja $\pi \le y \le 2\pi$, on $\cos x = +\sqrt{1-\sin^2 x}$ ja $\sin y = -\sqrt{1-\cos^2 y}$. Siis $\sin(x-y) = \sin x \cos y \cos x \sin y = \frac{1}{4}(-\frac{1}{3}) \sqrt{\frac{15}{16}}\sqrt{\frac{8}{9}} = \frac{2\sqrt{30}-1}{12} \approx 0.83$.
- 7. a) Unioni $T_0 \cup T_{60^o}$ on kuusisakarainen tähti, missä kukin sakara on tasasivuinen kolmio, jonka sivuksi saadaan $\frac{1}{3}a$. Unionin ala on T_0 :n ala lisättynä kolmen sakaran alalla eli on $\frac{1}{4}a^2\sqrt{3} + 3 \cdot \frac{1}{4}(\frac{1}{3}a)^2\sqrt{3} = \frac{1}{\sqrt{3}}a^2$. b) Unioni $T_0 \cup T_{120^o} = T_0$, joten sen ala on $\frac{1}{4}a^2\sqrt{3}$. c) Unioni $T_0 \cup T_{180^o} = T_0 \cup T_{60^o}$, joten sen ala on a)-kohdan mukaan $\frac{1}{\sqrt{3}}a^2$.
- **8.** a) Olkoon $O = (0,0), A = (2,\frac{2}{5})$ ja B = (5,0). Tiheysfunktion kuvaaja koostuu välillä [0,5] janoista OA ja AB sekä muualla x-akselista. b) $P(x \le 1)$ on sen kolmion ala, jonka kärjet ovat O, (1,0) ja $(1,\frac{1}{5})$. Siis $P(x \le 1) = \frac{1}{2} \cdot \frac{1}{5} \cdot 1 = \frac{1}{10}$. P(x > 3) on sen kolmion ala, jonka kärjet ovat $(3,0), (3,\frac{4}{15})$ ja B. Siis $P(x > 3) = \frac{1}{2} \cdot \frac{4}{15} \cdot 2 = \frac{4}{15}$. $P(1 < x \le 3) = 1 P(x \le 1) P(x > 3) = 1 \frac{1}{10} \frac{4}{15} = \frac{19}{30}$.
- 9. Olkoon O kolmion ABC ympäri piirretyn ympyrän keskipiste ja R säde. Jos sivu BC = a, on $\angle BAC = \alpha$. Vastaava keskuskulma $BOC = 2\alpha$. Leikatkoon 2α :n puolittaja BC:n pisteessä D. Kolmio ODC on suorakulmainen, hypotenuusa OC = R ja α :n vastainen kateetti $DC = \frac{1}{2}a$. Siis $\sin \alpha = \frac{a}{2R}$ eli $R = \frac{a}{2\sin \alpha}$, mikä piti todistaa.

- 10. $\ln y > 0$, kun y > 1, $\ln y = 0$, kun y = 1 ja $\ln y < 0$, kun 0 < y < 1. Edelleen, |x-2| = x-2 > 1, kun x > 3, $0 < |x-2| = x-2 \le 1$, kun $2 < x \le 3$ sekä |x-2| = 2-x > 1, kun x < 1 ja $0 < |x-2| = 2-x \le 1$, kun $1 \le x < 2$. Siis f(x) on $\ln(2-x)$, kun x < 1, $-\ln(2-x)$, kun $1 \le x < 2$, $-\ln(x-2)$, kun $1 \le x < 3$ ja on $\ln(x-2)$, kun $1 \le x < 3$. Selvästi $1 \le x < 3$ ja on nolla, kun $1 \le x < 3$. Funktio saa siis pienimmän arvonsa arvoilla $1 \le x < 3$. Derivaatta $1 \le x < 3$ ja kun $1 \le x < 3$ ja kun $1 \le x < 3$ joten $1 \le x <$
- **11.** $f(x) = \sum_{k=1}^{n} (x a_k)^2 = \sum_{k=1}^{n} (x^2 2a_k x + a_k^2) = nx^2 2x \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} a_k^2$. Tämä on ylöspäin aukeava paraabeli, joka saa pienimmän arvonsa derivaatan nollakohdassa. Koska $f'(x) = 2nx 2\sum_{k=1}^{n} a_k$, on f'(x) = 0, kun $nx \sum_{k=1}^{n} a_k = 0$ eli kun $x = \frac{1}{n} \sum_{k=1}^{n} a_k$. Tämä on juuri väitetty pienimmän arvon kohta. Pienin arvo on $f(\frac{1}{n} \sum_{k=1}^{n} a_k) = \frac{1}{n} (\sum_{k=1}^{n} a_k)^2 2\frac{1}{n} (\sum_{k=1}^{n} a_k)^2 + \sum_{k=1}^{n} a_k^2 = \sum_{k=1}^{n} a_k^2 \frac{1}{n} (\sum_{k=1}^{n} a_k)^2$.
- 12. Korkotekijä q = 1,015. Ensimmäisen vuoden korko on $200 \cdot 0,015 \cdot (12+11+...+1)/12 = 19,5$. Pääoma ensimmäisen vuoden jälkeen on $K = 12 \cdot 200 + 19,5 = 2419,5$, toisen vuoden jälkeen (1+q)K, kolmannen vuoden $(1+q+q^2)K$ jne. **a)** Kun poika täyttää 18 vuotta, on tilillä rahaa $(1+q+q^2+...+q^{17})K = K\frac{1-q^{18}}{1-q} \approx 49\,574,0446$. **b)** Jos kaksioon on talletettava n vuotta, on $K\frac{1-q^n}{1-q} = 135\,000$, josta $q^n = 1 + \frac{q-1}{K} \cdot 135\,000$ eli $n = \frac{1}{\ln q} \ln(1 + \frac{q-1}{K} \cdot 135\,000) \approx 40,84$. Vastaus: a) 49574,04 euroa, b) 41 vuotta.
- **13.** Tilavuus $V = \pi \int_1^e (\ln x)^2 dx$. Osittaisintegrointi antaa $V = \pi (\int_1^e x (\ln x)^2 2 \int_1^e \ln x dx) = \pi (e 2(\int_1^e x \ln x \int_1^e dx)) = \pi (e 2e + 2(e 1)) = \pi (e 2).$
- **14.** Jos $F(x) = \int f(t)dt$, on $G(x) = \frac{1}{x}(F(x) F(0))$ ja $G'(x) = -\frac{1}{x^2}(F(x) F(0)) + \frac{1}{x}(F'(x) 0) = -\frac{1}{x}G(x) + \frac{1}{x}f(x) = \frac{1}{x}(f(x) G(x))$. Jos f on kasvava, on $f(x) \ge f(t)$ kaikilla $t \le x$. Tällöin $\int_0^x f(t)dt \le f(x) \int_0^x dt = xf(x)$ eli $f(x) \ge \frac{1}{x} \int_0^x f(t)dt = G(x)$. Tämän perusteella $G'(x) = \frac{1}{x}(f(x) G(x)) \ge 0$, joten myös G on kasvava.
- **15.** a) $y'(x) = \cos x \sin x$, joten $y'(x) + 2\sin x = \cos x + \sin x = y(x)$. Lisäksi $y(0) = \sin 0 + \cos 0 = 1$. Siis y(x) on differentiaaliyhtälön ratkaisu annetulla alkuehdolla. b) Yhtälön Eulerin menetelmä on $y_0 = 1, x_0 = 0, y_{i+1} = y_i + h(y_i 2\sin x_i), i = 0, 1, 2, ...$ Kun h = 0.5, on laskettava $y_{i+1} = 1.5y_i \sin x_i$, i = 0, 1, 2, 3. Kysytyiksi arvoiksi saadaan

x_i	$y(x_i)$	y_i	$y_i - y(x_i)$
0	1	1	0
0,5	1,3570	1,5	0,1430
1,0	1,3818	1,7706	$0,\!3888$
1,5	1,0682	1,8144	0,7462
2,0	0,4931	1,7241	1,2309