Han Xiao, Minlie Huang, Xiaoyan Zhu

Tsinghua University

October 26, 2016

Website: http:\\ciia.cs.tsinghua.edu.cn

Home Page: http://www.ibookman.net

- Motivations. Geometrical positions as knowledge representation could hardly explicitly indicate the semantics.
 - The representation of the entity *Table* in TransE:

$$(0.12, -0.22, 0.55, 0.60, 0.71, -0.01, 0.00, -0.77...)$$

- Could we tell about something semantic?
 - being a furniture?
 - being a daily tool?
 - being not an animal?
- The GAP between knowledge and language remains.
- Thus, developing a semantics-specific representation triggers an urgent task.
- A well-fitting model for knowledge graph is encouraging, but is still insufficient for pragmatic applications.

- Knowledge Semantic Analysis (KSA)
 - Definitions: A knowledge representation methodology that is supposed to explicitly provide human-comprehensive or at least semantics-relevant representation.
 - (Stanford University) = (University: Yes, Animal: No, Location: California, ...)
- Knowledge Feature is a term we introduced for describing semantic aspects of knowledge.
- Benefits
 - The trade-off between *Human-Comprehensive* and *Machine-Computational* Knowledge Representation.
 - At least, in this way, it is more elegant to joint multiple information sources and knowledge triples.

- A Naive Example in the scenario of information retrieval.
- Query: What private university is most famous in California?
 - Extracting the keywords: private, university, famous, California.
 - Mapping to knowledge feature: (University:Yes, Animal:No, Location:California, Type:Private, Famous:Very, ...).
 - inferring the possible entity/relation (Stanford University) as the answer with link prediction task.
- Notably, our model KSR is a generative model, which could generate the representations, while is also capable to infer the entities/relations.

 Model Descriptions KSR leverages a two-level hierarchical generative process to semantically represent the entities, relations and triples.

For each triple $(h, r, t) \in \Delta$: (First-Level)

Draw a knowledge feature f_i from $\mathcal{P}(f_i|r)$:

(Second-Level)

Draw a subject-specific category z_i from

$$\mathcal{P}(z_i) \propto \mathcal{P}(z_i|h)\mathcal{P}(z_i|r)\mathcal{P}(z_i|t,f_i)$$

(Second-Level)

Draw an object-specific category y_i from

$$\mathcal{P}(y_i) \propto \mathcal{P}(y_i|t)\mathcal{P}(y_i|r)\mathcal{P}(y_i|z_i,f_i)$$

- Model Descriptions KSR leverages a two-level hierarchical generative process to semantically represent the entities, relations and triples.
 - In the first level of our model, we generate some knowledge features such as University(YES/NO), Animal Type, Location, etc.
 - In the second level of our model, we assign a corresponding category in each knowledge feature for every triple.
- For the example of Stanford University, we assign Yes in the University feature, California in Location feature and so on.

```
(University: Yes, Animal: No, Location: California,
Type: Private, Famous: Very, ...)
```

 In this way, the knowledge representation is semantically interpretable.

Probabilistic Graph Model

$$\begin{split} [h,r,t,z_k,y_k|f_k,\sigma] &=& & [z_k|h][z_k|r][y_k|t][y_k|r][z_k,y_k|f_k,r,\sigma] \\ [h,r,t] &=& & \sum_{k=1}^n [f_k|\sigma] \left\{ \sum_{i,j=1}^d [h,r,t,z_k=i,y_k=j|f_k,\sigma] \right\} \\ &\xrightarrow{\text{First-Level:Feature Mixture}} \\ &=& & \sum_{k=1}^n [f_k|\sigma] \left\{ \sum_{i,j=1}^d [z_k=i,y_k=j|f_k,\sigma][h,r,t|z_k=i,y_k=j,f_k,\sigma] \right\} \end{split}$$

 Semantic Representation are generated by adopting the most possible category in the specific knowledge features as the semantic representation.

$$\begin{split} S_e &= (S_{e,1}, S_{e,2}, ..., S_{e,n}) \\ S_{e,i} &= \underset{c=1}{\text{arg }} \max_{c=1}^{d} [z_i = c|e] \\ S_r &= (S_{r,1}, S_{r,2}, ..., S_{r,n}) \\ S_{r,i} &= \underset{c=1}{\text{arg }} \max_{c=1}^{d} [z_i = c|r] [y_i = c|r] \end{split}$$

- (Star Trek) = (Film:Related, American:Related, Sports:Unrelated, Person:Unrelated, Location :Unrelated, Drama:Related).
- Entity Inference is conducted as followed, approximately.

$$\begin{split} e|c_{1..n} &= \text{arg} \max_{e \in E} \prod_{i=1}^n [z_i = c_i|e] \\ r|c_{1..n} &= \text{arg} \max_{r \in R} \prod_{i=1}^n [z_i = c_i|r][y_i = c|r] \end{split}$$

Clustering Perspective (Basic Idea)

Clustering Perspective (Simple Illustration)

- Identification Perspective
 - Second-Level. The false triple is supposed to be assigned to any category in a low probability.
 - **② First-Level**. Even if some features of this negative one holds high certainty, the corresponding relation also weights the feature with $[z_i, y_i, f|r]$ to filter out these noisy information.
- Summarizing: Our model could discriminate the plausibility of triples in a two-level filtering form, leading to a better performance.

• Experiments: Knowledge Graph Completion

FB15K	Mean Rank		HITS@10(%)	
Methods	Raw	Filter	Raw	Filter
RESCAL	828	683	28.4	44.1
LFM	283	164	26.0	33.1
TransE	210	119	48.5	66.1
TransH	212	87	45.7	64.4
KSR(S1)	178	87	55.6	75.7
HOLE	-	-	-	73.9
KSR(S2)	170	86	56.9	80.4
TransR	198	77	48.2	68.7
CTransR	199	75	48.4	70.2
KG2E	183	69	47.5	71.5
ManifoldE	-	-	55.2	86.2
KSR(S3)	159	66	57.2	87.2
KSR(K4)	1	1	1	1

• Experiments: Entity Classification

Metrics	Type@25	Type@50	Type@75
Random	39.5	30.5	26.0
TransE	82.7	77.3	74.2
TransH	82.2	71.5	71.4
TransR	82.4	76.8	73.6
ManifoldE	86.4	82.2	79.6
KSR(S1)	90.7	85.6	83.3
KSR(S2)	91.4	87.6	85.1
KSR(S3)	90.2	86.1	83.1

- Experiments: Semantic Analysis: Basic Setting.
- Task Description.
- Consideration.

• Experiments: Semantic Analysis: Case Study of Features

No.	Semantics	Categories(Significant Words)	
1	Film-Related	Yes (Film, Director, Season),	
1	riiii-Neiateu	Yes (Producer, Actor), No	
2	American-Related	No, No,	
2	American-Relateu	Yes (United, States, Country, Area)	
3	Sports-Related	No, No,	
		Yes (Football, Basketball, World Cup)	
4	Art-Related	Yes (Drama, Voice, Acting),	
	Art-Relateu	Yes (Film, Story, Play), No	
5	Persons-Related	Multiple (Team, League, Roles),	
	Persons-Relateu	Single(Actress, Director, Singer), No	
6	Location-Related	Yes (British, London, England),	
	Location-Neiateu	No, No	

- Experiments: Semantic Analysis: Case Study of Entity
 - (Star Trek) = (Film:Related, American:Related, Sports:Unrelated, Person:Unrelated, Location :Unrelated, Drama:Related).
 - (Football Club Illichivets Mariupol) = (Film:Unrelated, American:Unrelated, Sports:Related, Art:Unrelated, Persons:Multiple, Location:Related).
 - (Johnathan Glickman)=(Film:Related, American:Unrelated, Sports:Unrelated, Art:Unrelated, Person:Single, Location:Unrelated).
- Experiments: Semantic Analysis Case Study of Relation
 - (Country Capital) = (Film:Unrelated, American:Unrelated, Sports:Unrelated, Art:Unrelated, Person:Unrelated, Location:Related).

- Experiments: Semantic Analysis: Statistical Justification
 - Semantic Correction:
 - 68% Totally Correct.
 - 19% Incorrect at Only One Feature.
 - 13% Incorrect at More Than One Feature.
 - 2 Correlation Heatmap:

- Experiments: Description to Entity
- Task Description.
- Case Study for Film: An American 2011 biographical sports drama film directed by Bennett Miller from a screenplay by Steven Zaillian and Aaron Sorkin.
 - MoneyBall
 - Social Network
 - Schindler's List
- Case Study for Scientific Definition: The social science of human social behavior and its origins, development, organizations, and institutions
 - Sociology
 - 2 Economics
 - Philosophy

- Case Study for Sports: A professional baseball team located in Chicago, Illinois, USA.
 - Chicago Cub
 - Chicago White Sox
 - Minnesota Twins
- Case Study for Person: A man who is a contemporary writer, playwright, screenwriter, actor and movie director in Kannada language. His rise as a playwright in 1960s, marked the coming of age of Modern Indian playwriting in Kannada, just as Badal Sarkar did in Bengali, Vijay Tendulkar in Marathi, and Mohan Rakesh in Hindi.
 - Girish Raghunath Karnad
 - Tanikella Bharani
 - Sunny Deol
- Case Study for Others: An infectious illness of the liver caused by the hepatitis B virus that affects hominoidea, including humans.
 - Hepatitis B

- Case Study for Partial Focus: A ball sport played by tall men or tall boys, famous for NBA
 - Basketball (Concept)
 - ② Dwyane Tyrone Wade, jr. (NBA player)

 - Mobe Bean Bryant, nicked as Black Mamba. (NBA player)
 - **5** Lebron Raymone James, nicked as King James. (NBA player)

Question Answering for Factoids

- Who proposes the Relativity Theory? Albert Einstein
- 2 Who proposes the Hawking Radio? Stephen William Hawking
- Which company is best at chips? Intel Corporation
- Which company is best at MultiMedia? Adobe Systems Incorproated.
- Which company is best at selling operating system? Microsoft Corporation
- Which company is best at selling phones? Samsung Electronics, co.
- Which company is best at selling sport shoes? Nike, inc.
- Which are the most famous cities(city) of Germany? Hambury, Bonn
- What is the Chinese province with capital Taiyuan? Shan-Xi
- What is the Chinese province with capital Changsha? Hu-Nan

- Question Answering for List-Type
- Which provinces are the neighbor of Beijing?
 - Beijing
 - 2 Tianjin
 - He-Bei
 - Peking University
- Which provinces are the neighbor of Macao?
 - Macao
 - @ Guang-Dong
 - Jiang-Su
 - Su-Zhou
- Which countries are the neighbor of China?
 - China
 - Burma
 - Vietnam
 - India

- Question Answering with Latent Semantic Results
- The people in which Chinese province is richest?
 - China
 - Macao
 - Su-Zhou
 - 4 Hong Kong
 - Jiang-Su
 - O Zhe-Jiang
- Which universities are famous in Kyoto?
 - Wyoto University
 - Ø Kyoto
 - Fukuoka
 - Mansai
 - 5 The University of Tokyo

- Question Answering for Fun
- Which programming language is the best in the world?
 - Open Python
 - 2 C++
 - 6 (
 - Java
 - Perl

Knowledge Representation Framework

- An Open-Source Knowledge Representation Framework.
- Contributed by XiaoHan in Tsinghua University.
- The functions contained in this project are listed as
 - Testing Framework.
 - Dataset Loading Framework.
 - Logging Framework.
 - Parallelism Framework based on OpenMP.
 - Report Framework.
 - ...
- URL: https://github.com/BookmanHan/Embedding.

XiaoHan 肖寒

Home Page: http://www.ibookman.net

CV for Faculty: http://www.ibookman.net/res/CV.pdf

Thanks for your attention.

