13. Isolierte Singularitäten

Vereinbarung: In diesem Paragraphen sei stets $D \subseteq \mathbb{C}$ offen, $z_0 \in D$, $\dot{D} := D \setminus \{z_0\}$ und $f \in \mathbb{C}$

 z_0 heißt dann eine **isolierte Singularität** von f.

Definition

 z_0 heißt eine **hebbare Singularität** von $f:\Leftrightarrow \exists h\in H(D): h=f$ auf \dot{D} . I.d. Fall ist heindeutig bestimmt und wir sagen kurz: $f \in H(D)$.

Beispiel

 $D = \mathbb{C}, z_0 = 0$

$$f(z) = \frac{\sin z}{z} = \frac{1}{z} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + \dots \right) = \underbrace{1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots + \dots}_{=:h(z)}$$

Dann: $h \in H(\mathbb{C})$. h = f auf $\mathbb{C} \setminus \{0\}$. f hat also in 0 eine hebbare Singularität.

Satz 13.1 (Riemannscher Hebbarkeitssatz)

f hat in z_0 eine hebbare Singularität $\Leftrightarrow \exists \delta > 0 : U_{\delta}(z_0) \subseteq D$ und f ist auf $\dot{U}_{\delta}(z_0)$ beschränkt.

Beweis

⇒: klar

 $\Leftarrow:\ M:=sup_{z\in U_{\delta}(z_{0})}|f(z)|.\ \text{Def:}\ g:D\to\mathbb{C}\ \text{durch:}$

$$g(z) := \begin{cases} (z - z_0)^2 f(z) &, z \in \dot{D} \\ 0 &, z = z_0 \end{cases}$$

Für $z \in \dot{U}_{\delta}(z_0)$: $\left|\frac{g(z)-g(z_0)}{z-z_0}\right| = \left|\frac{g(z)}{z-z_0}\right| = |f(z)(z-z_0)| \le M|z-z_0|$ $\Rightarrow g$ ist komplex db in z_0 , also $g \in H(D)$ und $g'(z_0) = 0$.

Fall 1: g = 0 auf D. Dann: f = 0 auf D

Fall 2: $g \neq 0$ auf D. Es ist $g(z_0) = g'(z_0) = 0$. 11.8 $\Rightarrow \exists h \in H(D) : g(z) = (z - z_0)^2 h(z) \, \forall z \in D$.

Dann: h = f auf \dot{D} .

Satz 13.2

 z_0 ist ein **Pol** von $f : \Leftrightarrow \exists m \in \mathbb{N}, \exists g \in H(D)$ mit:

$$f(z) = \frac{g(z)}{(z - z_0)^m} \, \forall z \in \dot{D} \text{ und } g(z_0) \neq 0.$$

I. d. Fall ist m eindeutig bestimmt und heißt die Ordnung des Pols z_0 von f

Beweis

Seien
$$m, l \in \mathbb{N}, g, h \in H(D), g(z_0) \neq 0 \neq h(z_0) \text{ und } \frac{g(z)}{(z-z_0)^m} = f(z) = \frac{h(z)}{(z-z_0)^l} \, \forall z \in \dot{D}.$$

Annahme: $m > l$, also $m - l \ge 1$. $h(z_0) \neq 0$. $\exists \delta > 0 : U_{\delta}(z_0) \subseteq D$ und $h(z) \neq 0 \, \forall z \in U_{\delta}(z_0).$
Für $z \in \dot{U}_{\delta}(z_0) : \frac{g(z)}{h(z)} = (z - z_0)^{m-l} \stackrel{z \to z_0}{\Rightarrow} g(z_0) = 0.$ Wid! Also: $m \le l$. Analog: $l \le m$.

Satz 13.3

Hat f in z_0 einen Pol, so gilt: $|f(z)| \to \infty \, (z \to z_0)$

Beweis

Folgt aus 13.2

Beispiele:

- (1) $f(z) = \frac{1}{z}$. f hat im Nullpunkt einen einfachen Pol.
- (2) $f(z) = \frac{e^z}{z^{17}}$. f hat in 0 einen Pol der Ordnung 17.

Definition

 z_0 heißt eine wesentliche Singularität von $f:\Leftrightarrow z_0$ ist nicht hebbar und kein Pol von f.

Beispiel

$$f(z) = e^{\frac{1}{z}} \quad (D = \mathbb{C}, z_0 = 0)$$

$$z_n := \frac{1}{n}, f(z_n) = e^n \to \infty (n \to \infty), z_n \to 0. \ 13.1 \Rightarrow 0 \text{ ist nicht hebbar.}$$

$$w_n := \frac{i}{n} = -\frac{1}{in}. \ |f(w_n)| = |e^{-in}| = 1 \ \forall n \in \mathbb{N}, w_n \to 0. \ 13.3 \Rightarrow z_0 = 0 \text{ ist kein Pol von } f. \ f \text{ hat also in } z_0 = 0 \text{ eine wesentliche Singularität.}$$

Satz 13.4 (Satz von Casorati-Weierstraß)

f habe in z_0 eine wesentliche Singularität und es sei $\delta > 0$ so, dass $U_{\delta}(z_0) \subseteq D$. Dann:

$$\overline{f(\dot{U}_{\delta}(z_0))} = \mathbb{C}$$

d.h. ist $b \in \mathbb{C}$ und $\varepsilon > 0$, so existiert ein $z \in \dot{U}_{\delta}(z_0) : |f(z) - b| < \varepsilon$.

Beweis

Sei $b \in \mathbb{C}$ und $\varepsilon > 0$. Ann: $|f(z) - b| \ge \varepsilon \forall z \in \dot{U}_{\delta}(z_0)$. $g := \frac{1}{f - b}$. Dann: $g \in H(\dot{U}_{\delta}(z_0))$ und $|g| \le \frac{1}{\varepsilon}$ auf $\dot{U}_{\delta}(z_0)$. 13.1 $\Rightarrow g$ hat in z_0 eine hebbare Singularität. Kurz: $g \in H(U_{\delta}(z_0))$

Fall 1: $g(z_0) \neq 0$. O.B.d.A: $g(z) \neq 0 \forall z \in U_{\delta}(z_0)$. $f = \frac{1}{g} + b$ auf $\dot{U}_{\delta}(z_0) \Rightarrow f$ hat in z_0 eine hebbare Singularität.

Fall 2: $g(z_0) = 0$. 11.8 $\Rightarrow \exists m \in \mathbb{N}, \varphi \in H(U_\delta(z_0)) : g(z) = (z - z_0)^m \varphi(z) \forall z \in U_\delta(z_0)$ und $\varphi(z_0) \neq 0$. O.B.d.A: $\varphi(z) \neq 0 \forall z \in U_\delta(z_0)$. Def: $\Psi : D \to \mathbb{C}$ durch:

$$\Psi(z) = \begin{cases} \frac{1}{\varphi(z)} &, z \in U_{\delta}(z_0) \\ (z - z_0)^m (f(z) - b) &, z \in \dot{D} \end{cases}$$

 Ψ ist wohldefiniert: Für $z \in \dot{U}_{\delta}(z_0)$: $\frac{1}{\varphi(z)} = \frac{(z-z_0)^m}{g(z)} = (z-z_0)^m (f(z)-b)$. Dann: $\Psi \in H(D)$ und $\Psi(z_0) = \frac{1}{\varphi(z_0)} \neq 0$.

 $h(z) := \Psi(z) + b(z - z_0)^m (z \in D)$. Klar: $h \in H(D)$

 $h(z_0) = \Psi(z_0) \neq 0$. Weiter: $\frac{h(z)}{(z-z_0)^m} = \frac{\Psi(z)}{(z-z_0)^m} + b = f(z) - b + b = f(z) \, \forall z \in \dot{D} \stackrel{13.2}{\Rightarrow} f$ hat in z_0 einen Pol. Wid!

Satz 13.5 (Klassifikation)

Die isolierte Singularität z_0 von f ist

- (1) hebbar $\Leftrightarrow \exists \delta > 0 : U_{\delta}(z_0) \subseteq D$ und f ist auf $U_{\delta}(z_0)$ beschränkt.
- (2) ein Pol von $f \Leftrightarrow |f(z)| \to \infty \ (z \to z_0)$
- (3) we sentlich $\Leftrightarrow \forall \delta > 0$ mit $U_{\delta}(z_0) \subseteq D$ gilt: $\overline{f(\dot{U}_{\delta}(z_0))} = \mathbb{C}$

Beweis

- (1) 13.1
- $(2) \Rightarrow : 13.3$

 \Leftarrow : Vorr. und 13.1 $\Rightarrow z_0$ nicht hebbar. Vorr. und 13.4 $\Rightarrow z_0$ nicht wesentlich

 $(3) \implies : 13.4$

 \Leftarrow : Vorr. und 13.1 $\Rightarrow z_0$ ist nicht hebbar. Vorr. und 13.3 $\Rightarrow z_0$ ist kein Pol!

Beispiele:

- (i) $f(z) = e^{\frac{1}{z}}$. Übung: $f(\dot{U}_{\delta}(0)) = \mathbb{C} \setminus \{0\} \ \forall \delta > 0$.
- (ii) $f(z) = \sin \frac{1}{z}$. Übung: $f(\dot{U}_{\delta}(0)) = \mathbb{C} \ \forall \delta > 0$.