

FIG.1

Elution profile by measurement of the optical density at 218 nm of the product of tryptic digestion of urate oxidase ${\sf constant}$

TOP THE STONE SECTION

FIG. 2

Elution profile by measurement of the optical density at 218 nm of the product of digestion of urate oxidase with protease V8

12 200'C PCI/PTU LO MAR 1991

-	AAACCCTCACTGCCTCTCTCATTCCTTCCG	AAACCCTCACTGCCTCTCTCTTCCTTCCG GTGCCCCCGATCCTCAATCCAACTTGTACA	09
19	TACTICICCCAACTCTCTGCTATATCCTTC	ATATTCCCATACTACAAGATGTCCGCAGTA	120
121	AAAGCAGCCGGTACGGCAAGGACAATGTC	CGCGTCTACAAGGTTCACAAGGACGAGAAG	180
181	ACCGGTGTCCAGACGGTGTACGAGATGACC	GTCTGTGTGCTTCTGGAGGGTGAGATTGAG	240
241	ACCTCTTACACCAAGGCCGACAACAGCGTC	ATTGTCGCAACCGACTCCATTAAGAACACC	300
301	+ ATTTACATCACCGCCAAGCAGAACCCCGTT	ACTCCTCCCGAGCTGTTCGGCTCCATCCTG	360
361	GGCACACACTTCATTGAGAAGTACAACCAC	ATCCATGCCGCTCACGTCAACATTGTCTGC	420
421	CACCGCTGGACCCGGATGGACATTGACGGC	AAGCCACACCCTCACTCCTTCATCCGCGAC	480
481	A* AGCGAGGAGAAGCGGAATGTGCAGGTGGAC	GTGGTCGAGGGCAAGGGCATCGATATCAAG	540
541	TCGTCTCTGTCCGGCCTGACGGTGCTGAAG	AGCACCAACTCGCAGTTC1GGGGCTTCCTG	009
601	CGTGACGAGTACACCACACTTAAGGAGACC	TGGGACCGTATCCTGAGCACCGACGTCGAT	099
661	GCCACTTGGCAGTGGAAGAATTTCAGTGGA	CTCCAGGAGGTCCGCTCGCACGTGCCTAAG	720
721	TTCGATGCTACCTGGGCCACTGCTCGCGAG	GTCACTCTGAAGACTTTTGCTGAAGATAAC	780
181	AGTGCCAGCGTGCAGGCCACTATGTACAAG	ATGGCAGAGCAAATCCTGGCGCGCCAGCAG	840
841	CTGATCGAGACTGTCGAGTACTCGTTGCCT	AACAAGCACTATTTCGAATCGACCTGAGC	900
106	TGGCACAAGGGCCTCCAAAACACCGGCAAG	AACGCCGAGGTCTTCGCTCCTCAGTCGGAC	960
196	CCCAACGGTCTGATCAAGTGTACCGTCGGC	CGGTCCTCTGAAGTCTAAATTGTAAACC	102
021	AACATGATTCTCACGTTCCGGAGTTTCCAA	GGCAAACTGTATATAGTCTGGGATAGGGTA	108
180	TAGCATTCATTCACTTGTTTTTTACTTCCA AAAAAAAAA	алалалала	

=16.3

Nucleotide sequence of clone 9C and of part of clone 9A

: start of clone 9A

109	ATGTCCGCAGTAAAAGCAGCCCGCTACGGC	AAGGACAATGTCCGCGTCTACAAGGTTCAC	168
	MetSerAlaVallysAlaAlaArgTyrGly	LysaspasnvalargvaltyrLysvalhis	20
169	AAGGACGAGAAGACCGGTGTCCAGACGGTG	TACGAGATGACCGTCTGTGTGCTTCTGGAG	228
	LybaaspGluLybthrGlyValGlnThrVal	TyrGluMetThrValCysValLeuLeuGlu	40
229	GGTGAGATTGAGACCTCTTACACCAAGGCC	GACAACAGCGTCATTGTCGCAACCGACTCC	288
	GlyGluIleGluThrSerTyrThrLysAla	AspAsnSerValileValAlaThrAspSer	60
289	ATTAAGAACACCATTTACATCACCGCCAAG Ilely8A8nThrileTyrileThralaLy8	CAGAACCCGTTACTCCTCCCGAGCTGTTC GlnAsnProValThrProProGluLeuPhe	348
349	GGCTCCATCCTGGGCACACACTTCATTGAG GlySerileLeuGlyThrhisPheileGlu	T32/T33 AAGTACAACCACATCCATGCCGCTCACGTC Ly8TyrAsnHisIleHisAlaAlaHisVal	100
409	AACATTGTCTGCCACCGCTGGACCCGGATG	GACATTGACGGCAAGCCACACCCTCACTCC	468
	AsnlleValCy8Hi8ArgTrpThrArgMet	AspileAspGlyLysProHisProHisSer	120
469	TTCATCCGCGACAGCGAGGAGAGCGGAAT	GTGCAGGTGGACGTGGTCGAGGGCCAAGGGC	528
	PhelleArgAspSerGluGluLyBArgAsn	ValGlnValAspValValGluGlyLysGly	140
529	ATCGATATCAAGTCGTCTCTGTCCGGCCTG IleAspileLysSerSerLeuSerGlyLeu	ACCGTGCTGAAGAGCACCAACTCGCAGTTC ThrValLeuLy8SerThrAsnSerGlnPhe T31	588 160
589	TGGGGCTTCCTGCGTGACGAGTACACCACA TrpGlyPheLeuArgAspGluTyrThrThr	CTTAAGGAGACCTGGGACCGTATCCTGAGC	648
161		LeulysGluThrTrpAspArgileLeuSer	180
649 181	ACCGACGTCGATGCCACTTGGCAGTGGAAG ThrAspValAspAlaThrTrpGlnTrpLyg T28	AATTTCAGTGGACTCCAGGAGGTCCGCTCG AsnPheSerGlyLeuGlnGluValArgSer T20	708
	F16.4	FIG. 4 (cont. next page)	

709	CACGIGCCIAAGIICGAIGCIACCIGGGCC ACIGCICGCGAGGICACICIGAAGACIIII	ACTGCTCGCGAGGTCACTCTGAAGACTTTT	768
201	HisValProLysPheAspAlaThrTrpAla ThrAlaArgGluValThrLeuLysThrPhe	ThrAlaArgGluValThrLeuLysThrPhe	220
169	GCTGAAGATAACAGTGCCAGGCG ACTATGTACAAGATGGCAGAGCAAATCCTG	ACTATGTACAAGATGGCAGAGCAAATCCTG	828
221	AlaGluAspAsnSerAlaSerValGlnAla ThrMetTyrLysMetAlaGluGlnIleLeu	ThrMetTyrLysMetAlaGluGlnIleLeu	240
829	6CGCGCCAGCAGCTGATCGAGACTGTCGAG TACTCGTTGCCTAACAAGCACTATTTCGAA	TACTCGTTGCCTAACAAGCACTATTTCGAA	888
241	AlaArgGlnGlnLeuIleGluThrValGlu	AlaArgGlnGlnLeuIleGluThrValGlu TyrSerLeuProAsnLysHisTyrPheGlu_T29/	260
889	ATCGACCTGAGCTGGCACAAGGGCCTCCAA AACACCGGCAAGAACGCCGAGGTCTTCGCT	AACACCGGCAAGAACGCCGAGGTCTTCGCT	948
261 _T	261 127 IleAspLeuSerTrpHisLysGlyLeuGln AsnThrGlyLysAsnAlaGluValPheAla	AsnThrGlyLysAsnAlaGluValPheAla	280
949	CCTCAGTCGGACCCCAACGGTCTGATCAAG TGTACCGTCGGCCGGTCCTCTCTGAAGTCT	TGTACCGTCGGCCGGTCCTCTCTGAAGTCT	1008
281	ProGlnSerAspProAsnGlyLeuIleLys CysThrValGlyArgSerSerLeuLysSer	CysThrValGlyArgSerSerLeuLysSer	300
1009	AAATTGTAA		
301	LysLeuEnd		

FIG.4 (contd.)

DNA sequence opened by ATG in position 109 in Figure 3 and polypeptide coded for.

The sequenced peptides obtained by hydrolysis of A. flavus urate oxidase with trypsin and protease V8 are shown by arrows opposite the polypeptide coded for, according to

: tryptic peptide

: peptide obtained by hydrolysis with

protease V8.

FIG. 5
Plasmid p 163,1

FIG.6

Plasmid p 160

<u>FIG. 7</u>

Plasmid p 373,2

FIG.8

Plasmid p 462

FIG.9
Plasmid p 466

FIG.10

Plasmid pEMR 414

FIG.11

Plasmid pEMR 469

FIG.12

Plasmid pEMR 473

FIG.13

Plasmid PSE 1

State of the William State of

FIG.14

Plasmid pSV860