Projeto 1: Questionário Sobre Efeito Stroop

William Moura Mesquita

5 de julho de 2017

Questionário Projeto 1

Questão 1: Qual é a nossa variável independente? Qual é a nossa variável dependente?

A variável independente seriam aquelas que não dependem de nenhuma outra e a qual controlamos. Nesse caso, seria a condição da lista, se foi usada palavras congruentes ou não. A dependente seria o tempo total de leitura. Outros possíveis fatores a se eliminar como variável são a hora de aplicação do teste, ordem de aplicação e os participantes serem uma amostra aleatória ou representativa da população. dentre outros

Questão 2: Qual seria um conjunto apropriado de hipóteses para essa tarefa? Que tipo de teste estatístico você espera executar? Justifique suas escolhas.

Segue Tabela com definição de variáveis.

Parâmetro do teste congruente	μ_C
Parâmetro do teste incongruente	μ_I
Estatística do teste congruente	\bar{x}_C
Estatística do teste incongruente	\bar{x}_I

A hipótese nula é de que as duas listas serão lidas em tempos semelhantes. Isso pode ser inferido pelo fato $\mu_I-\mu_C=0$

A hipótese alternativa é que a pessoa teria alguma alteração no tempo de leitura. Logo seria um teste bicaudal. Pois não foi prevista se essa alteração é para mais ou para menos. Matematicamente isso poderia ser inferido por $\mu_I - \mu_C \neq 0$

A escolha da hipótese nula é trivial. Afinal há somente uma variável independente. Na Hipótese alternativa considerei colocar que o tempo de leitura deveria ser maior. Porém preferi uma abordagem mais conservadora para uma primeira análise.

Espero executar em um experimento controlado um teste t com duas amostras dependentes.

A escolha para o teste t com duas amostras dependentes se deve ao fato de não termos acesso a μ_I e μ_C somente a \bar{x}_C e \bar{x}_I . Ou seja. Não temos acesso as médias das

populações. só a media das amostras. Portanto precisamos do teste t para inferir o comportamento da população.

As amostras dependentes se deve ao fato de que o carry over effect não é muito influenciador nesse experimento. (considerando-se que as listas não tenham a mesma sequência de palavras ou cores). O ideal seria que fossem feitos testes preliminares para o individuo se acostumar com o procedimento. Diminuindo o erro entre a primeira vez que ele se depara com a situação(teste 1) e a segunda vez (teste 2)

Questão 3: Reporte alguma estatística descritiva em relação a esse conjunto de dados. Inclua, pelo menos, uma medida de tendência central de pelo menos uma medida de variabilidade.

Segue na tabela a Mediana, média e desvio padrão. A primeira coluna é representativa do primeiro teste. A segunda é do segundo teste(Aonde há discrepância entre cores e letras), o penúltimo é da diferença entre os resultados. Para poder se ter uma média que ignora mais fatores individuais. O último é uma ideia que tive de utilizar nesse teste a diferença percentual também. Pois ela pode ter um melhor reflexo da diferença real.

Foi notado que a média e mediana são bastante semelhantes.

	Congruente	Incongruente	Diferença	Diferença Percentual
Mediana	14.356	21.018	7.6665	0.634
Média	14.051	22.016	7.965	0.634
Desvio padrão	3.559	4.797	4.865	0.4231

Questão 4: Forneça uma ou duas visualizações que mostre a distribuição da amostra de dados. Escreva uma ou duas sentenças sobre o que você observou do gráfico ou gráficos.

Nessa Figura 1 já notamos de forma clara a tendência ao aumento do tempo para o teste 2 pela disposição das colunas.

Já na Figura 2 devemos olhar para a positividade dos valores. Pois é o gráfico da diferença. Nele vemos que a diferença sempre é positiva e alta.

Figura 1: Histograma dos resultados dos 2 testes.

Figura 2: Histograma da diferença entre os dois testes.

Questão 5: Agora desempenhe o teste estatístico e reporte seus resultados. Qual seu nível de confiança e o valor estatístico crítico? Você rejeitou a hipótese nula ou falhou ao tentar rejeitá-la? Encontre uma conclusão em relação ao experimento da tarefa. Os resultados estão de acordo com suas expectativas?

primeiro. Calculei a estatística t utilizando:

$$t = \frac{\bar{x}}{S/\sqrt{N}} \tag{1}$$

e obtive $t_1=8.021$ para a diferença e $t_2=7.342$ para a diferença percentual Para meu level alpha vou usar 0.01 por querer precisão. Logo meu intervalo de 99% de confiança é $(-t_{crit},t_{crit})$

Que substituindo o valor encontrado na tabela resulta em (-2.807, 2.807)

Em ambas as análises tivemos $t > t_{crit}$

logo rejeitamos a nossa hipótese nula e sabemos que existe um aumento significativo no tempo de execução do teste ao se colocar as palavras de forma incongruente.

O que está dentro da minha expectativa dado dos gráficos e minha própria experiência pessoal fazendo o teste.

Questão 6(Opcional): O que você acha que é responsável pelo efeito observado? Consegue pensar em uma alternativa ou tarefa similar que resultaria em um efeito parecido?

Uma possível causa do efeito Stroop é que lemos mais rapido do que identificamos cor e isso gera um conflito quando os dois dados não batem[1] setas escritas direita, esquerda, cima, baixo, dentro delas. Numa condição congruentes as informações e noutra incongruente.

Referências

[1] Stroop effect. (n.d.). In Wikipedia. Retrieved July 5, 2017, from https://en.wikipedia.org/wiki/Stroop_effect.