

## **NOVEMBER 2002**

## GCE Advanced Level GCE Advanced Subsidiary Level

## **MARK SCHEME**

**MAXIMUM MARK: 75** 

SYLLABUS/COMPONENT: 9709/3,8719/3

MATHEMATICS (Pure 3)





www.studyguide.pk

| Page 1 | Mark Scheme                               | Syllabus   | Paper |
|--------|-------------------------------------------|------------|-------|
|        | A & AS Level Examinations – November 2002 | 9709, 8719 | 3     |

| EMUED.                                | State or imply non-modular inequality $(9-2x)^2 < 1$ , or a correct pair of linear inequalities,             |           |     |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------|-----|
| EHIIEN.                               | combined or separate, e.g. $-1 < 9 - 2x < 1$                                                                 | Bi        |     |
|                                       | Obtain both critical values 4 and 5                                                                          | B1        |     |
|                                       | State correct answer $4 < x < 5$ ; accept $x > 4$ , $x < 5$                                                  | Bi        |     |
| OR:                                   | State a correct equation or pair of equations for both critical values e.g. $9 - 2x = 1$ and $9 - 2x = -1$ , |           |     |
| · · · · · · · · · · · · · · · · · · · | or $9-2x=\pm 1$                                                                                              | B1        |     |
|                                       | Obtain critical values 4 and 5                                                                               | Bl        |     |
|                                       | State correct answer $4 < x < 5$ ; accept $x > 4$ , $x < 5$                                                  | B1        |     |
| OR:                                   | State one critical value (probably $x = 4$ ) from a graphical method or by inspection or by                  |           |     |
|                                       | solving a linear inequality or equation                                                                      | B1        |     |
|                                       | State the other critical value correctly                                                                     | B1        |     |
|                                       | State correct answer $4 < x < 5$ ; accept $x > 4$ , $x < 5$                                                  | B1        | 3   |
|                                       | [Use of ≤, throughout, or at the end, scores a maximum of B2.]                                               | a.        |     |
|                                       | 5.21.                                                                                                        |           | -   |
| EITHER:                               | State first step of the form $kx^2 \ln x \pm \int kx^2 \cdot \frac{1}{x} dx$                                 | Ml        |     |
|                                       | Obtain correct first step i.e. $\frac{1}{2}x^2 \ln x - \int \frac{1}{2}x  dx$                                | A1        |     |
|                                       |                                                                                                              |           |     |
|                                       | Complete a second integration and substitute both limits correctly                                           | Ml        |     |
|                                       | Obtain correct answer 2 ln 2 $-\frac{3}{4}$ , or exact two-term equivalent                                   | Al        |     |
| OR:                                   | State first step of the form $I = x(x \ln x \pm x) \pm \int (x \ln x \pm x) dx$                              | Ml        |     |
|                                       | Obtain correct first step i.e. $I = x(x \ln x - x) - I + \int x  dx$                                         | A1        |     |
|                                       | Complete a second integration and substitute both limits correctly                                           | Ml        |     |
|                                       | Obtain correct answer 2 ln $2-\frac{3}{4}$ , or exact two-term equivalent                                    | A1        | 4   |
| <br>(i) Use la                        | w for addition (or subtraction) of logarithms or indices                                                     | M1*       | -   |
| Use                                   | $\log_{10} 100 = 2$ or $10^2 = 100$                                                                          | M1(de     | •   |
|                                       | $n^2 + 5x = 100$ , or equivalent, correctly                                                                  | A1        | 3   |
| 1.5                                   | a three-term quadratic equation                                                                              | Ml        |     |
| State                                 | answer 7.81(allow 7.80 or 7.8) or any exact form of the answer i.e. $\frac{\sqrt{425-5}}{2}$ or better       | <b>A1</b> | 2   |
|                                       |                                                                                                              |           | -   |
| (i) Obtai                             | n derivative $e^x - 8e^{-2x}$ in any correct form                                                            | Bl        |     |
| Equa                                  | te derivative to zero and simplify to an equation of the form $e^{kx} = a$ , where $a \neq 0$                | M1*       |     |
|                                       | out method for calculating x with $a > 0$                                                                    | M1(de     | (*q |
|                                       | n answer $x = \ln 2$ , or an exact equivalent (also accept 0.693 or 0.69)                                    | A1        | 4   |
|                                       | ept statements of the form $u^k = a$ , where $u = e^x$ , for the first M1.                                   |           |     |
|                                       | out a method for determining the nature of the stationary point                                              | M1        |     |
|                                       | that the point is a minimum correctly, with no incorrect work seen                                           | Al        | 2   |
| BION                                  | that are point as a minimum vortoout, tital no moulton from boots                                            | LLI       |     |



| Page 2 | Mark Scheme                               | Syllabus   | Paper |
|--------|-------------------------------------------|------------|-------|
|        | A & AS Level Examinations – November 2002 | 9709, 8719 | 3     |

| 5 |              | imply at any stage that $R = 5$                                                                                               | B1           |     |
|---|--------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
|   |              | formula to find $\alpha$ nswer $\alpha = 36.87^{\circ}$                                                                       | M1           | _   |
|   |              |                                                                                                                               | A1           | 3   |
|   | (II) EIIIEN  | : Carry out, or indicate need for, calculation of $\sin^{-1}(\frac{2}{5})$                                                    | M1           |     |
|   |              | Obtain answer 60.4° (or 60.5°)                                                                                                | A1           |     |
|   |              | Carry out correct method for second root i.e. $180^{\circ} - 23.578^{\circ} + 36.870^{\circ}$                                 | M1           |     |
|   | OR:          | Obtain answer 193.3° and no others in range Obtain a three-term quadratic equation in $\sin \theta$ or $\cos \theta$          | A1 🖍<br>M1   |     |
|   | OA.          | Solve a two- or three- term quadratic and calculate an angle                                                                  | M1           |     |
|   |              | Obtain answer 60.4° (or 60.5°)                                                                                                | A1           |     |
|   |              | Obtain answer 193.3° and no others in range                                                                                   | A1           | 4   |
|   |              | eatest value is 1                                                                                                             | B1: <b>✓</b> | 1   |
|   | [Treat work  | in radians as a misread, scoring a maximum of 7. The angles are 0.644, 1.06 and 3.37.]                                        |              |     |
|   |              |                                                                                                                               |              |     |
|   |              |                                                                                                                               |              |     |
| _ | <b>45. 5</b> | A = Bx + C                                                                                                                    |              |     |
| 6 | (i) State or | imply $f(x) = \frac{A}{(2-x)} + \frac{Bx+C}{(x^2+1)}$                                                                         | B1*          | •   |
|   | State or     | obtain $A = 4$                                                                                                                | B1(dep       | ·*) |
|   |              | relevant method to find B or C                                                                                                | M1           | ,   |
|   | •            | both $B=4$ and $C=1$                                                                                                          | A1           | 4   |
|   | (ii) EITHER  | Use correct method to obtain the first two terms of the expansion of $(1-\frac{1}{2}x)^{-1}$ ,                                |              |     |
|   |              | or $(1+x^2)^{-1}$ , or $(2-x)^{-1}$                                                                                           | M1*          |     |
|   |              | Obtain unsimplified expansions of the fractions e.g. $\frac{4}{2} (1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3)$ ;     | ****         |     |
|   |              |                                                                                                                               | Λ            |     |
|   |              |                                                                                                                               | √+ A1 ✓      |     |
|   |              | Carry out multiplication of expansion of $(1+x^2)^{-1}$ by $(4x+1)$                                                           | M1(dep       | *)  |
|   |              | Obtain given answer correctly                                                                                                 | A1           |     |
|   |              | [Binomial coefficients involving $-1$ , such as $\begin{pmatrix} -1\\1 \end{pmatrix}$ , are not sufficient for the first M1.] | d            |     |
|   |              | [f.t. is on $A$ , $B$ , $C$ .]                                                                                                |              |     |
|   |              | [Apply this scheme to attempts to expand $(6+7x)(2-x)^{-1}(1-x^2)^{-1}$ , giving M1A1A1                                       |              |     |
|   |              | for the expansions, M1 for multiplying out fully, and A1 for reaching the given answer.]                                      |              |     |
|   | OR:          | Differentiate and evaluate f(0) and f'(0)                                                                                     | Ml           |     |
|   |              | Obtain $f(0) = 3$ and $f'(0) = 5$                                                                                             | A1 ✓         |     |
|   |              | Differentiate and obtain $f''(0) = -1$                                                                                        | A1 ✓         |     |
|   |              | Differentiate, evaluate f'''(0) and form the Maclaurin expansion up to the term in $x^3$                                      | M1           |     |
|   |              | Simplify coefficients and obtain given answer correctly                                                                       | A1           | 5   |
|   |              | [f.t. is on $A$ , $B$ , $C$ .]                                                                                                |              |     |
|   |              | or C omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use                            |              |     |
|   |              | a relevant method to obtain A, B, or C, but no further marks. In part (ii) only the first M1 and                              |              |     |
|   | Al           | √+ A1 √ are available if an attempt is based on this form of partial fractions.]                                              |              |     |
|   |              |                                                                                                                               |              |     |



|        |                                           | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | avania | e nk  |
|--------|-------------------------------------------|----------------------------------------|--------|-------|
| Page 3 | Mark Scheme                               | WWW StU                                | Paper  | C.pix |
|        | A & AS Level Examinations – November 2002 | 9709, 8719                             | 3      |       |

| 7  | (i) State or obtain a relevant equation e.g. $2r\alpha = 100$                                                                   | BI          |   |
|----|---------------------------------------------------------------------------------------------------------------------------------|-------------|---|
|    | State or obtain a second independent relevant equation e.g. $2r \sin \alpha = 99$                                               | Bl          |   |
|    | Derive the given equation in $x$ (or $\alpha$ ) correctly                                                                       | B1          | 3 |
| (  | ii) Calculate ordinates at $x = 0.1$ and $x = 0.5$ of a suitable function or pair of functions                                  | M1          | _ |
| `  | Justify the given statement correctly                                                                                           | A1          | 2 |
|    | [If calculations are not given but the given statement is justified using correct statements about the signs                    |             |   |
|    | of a suitable function or the difference between a pair of suitable functions, award B1.]                                       |             |   |
| (i | ii) State $x = 50\sin x - 48.5x$ , or equivalent                                                                                | B1          |   |
|    | Rearrange this in the form given in part (i) (or vice versa)                                                                    | B1          | 2 |
| (i | v) Use the method of iteration at least once with $0.1 \le x_n \le 0.5$                                                         | MI          |   |
|    | Obtain final answer 0.245, showing sufficient iterations to justify its accuracy to 3d.p., or showing a                         |             |   |
|    | sign change in the interval (0.2445, 0.2455)                                                                                    | A1          | 2 |
| I  | SR: both the M marks are available if calculations are attempted in degree mode.]                                               |             |   |
|    |                                                                                                                                 |             |   |
| 8  | (a) EITHER: Square $x + iy$ and equate real and/or imaginary parts to $-3$ and/or 4 respectively                                | M1          |   |
|    | Obtain $x^2 - y^2 = -3$ and $2xy = 4$                                                                                           | Al          |   |
|    | Eliminate one variable and obtain an equation in the other variable                                                             | M1          |   |
|    | Obtain $x^4 + 3x^2 - 4 = 0$ , or $y^4 - 3y^2 - 4 = 0$ , or 3-term equivalent                                                    | A1          |   |
|    | Obtain final answers $\pm (1 + 2i)$ and no others                                                                               | <b>A</b> 1  |   |
|    | [Accept $\pm 1 \pm 2i$ , or $x = 1$ , $y = 2$ and $x = -1$ , $y = -2$ as final answers, but not $x = \pm 1$ , $y = \pm 2$ .]    |             | • |
|    | OR: Convert $-3 + 4i$ to polar form $(R, \theta)$                                                                               | M1          |   |
|    | Use fact that a square root has polar form $(\sqrt{R}, \frac{1}{2}\theta)$                                                      | Ml          |   |
|    | Obtain one root in polar form e.g. $(\sqrt{5},63.4^{\circ})$ (allow 63.5°; argument is 1.11 radians)                            | Al          |   |
|    | Obtain answer 1 + 2i                                                                                                            | Al          |   |
|    | Obtain answer $-1-2i$ and no others                                                                                             | A1          | 5 |
|    | (b) (i) Carry out multiplication of numerator and denominator by 2 - i                                                          | Ml          |   |
|    | Obtain answer $\frac{1}{5} + \frac{7}{5}i$ or $0.2 + 1.4i$                                                                      | Al          | 2 |
|    | (ii) Show all three points on an Argand diagram in relatively correct positions                                                 | B1 <b>✓</b> | 1 |
|    | [Accept answers on separate diagrams.]                                                                                          |             |   |
|    | (iii) State that $OC = \frac{OA}{OB}$ , or equivalent                                                                           | Bl          | 1 |
|    | [Accept the answer $OA.OC = 2OB$ , or equivalent.]                                                                              |             |   |
|    | [Accept answers with  OA  for OA etc.]                                                                                          |             |   |
| 9  | (i) State or imply that $\frac{da}{dt} = ka(10 - a)$                                                                            | B1          |   |
|    | Justify $k = 0.004$                                                                                                             |             | • |
|    | ·                                                                                                                               | B1          | 2 |
|    | (ii) Resolve $\frac{1}{a(10-a)}$ into partial fractions $\frac{A}{a} + \frac{B}{10-a}$ and obtain values $A = B = \frac{1}{10}$ | Bl          |   |
|    | Separate variables obtaining $\int \frac{da}{a(10-a)} = \int k  dt$ and attempt to integrate both sides                         | M1          |   |
|    | Obtain $\frac{1}{10} \ln a - \frac{1}{10} \ln (10-a)$                                                                           | A1 ✓        |   |
|    | Obtain 0.004t, or equivalent                                                                                                    | A1          |   |
|    | Evaluate a constant, or use limits $t = 0$ , $a = 5$                                                                            | M1          |   |
|    | Obtain answer $t = 25 \ln \left( \frac{a}{10 - a} \right)$ , or equivalent                                                      | Al          | 6 |
| (  | (iii) Substitute $a = 9$ and calculate $t$                                                                                      | Ml          |   |
|    | Obtain answer $t = 54.9$ or 55                                                                                                  | Al          | 2 |
|    | [Substitution of $a = 0.9$ scores M0.]                                                                                          |             |   |



| Page 4 | Mark Scheme                               | Syllabus   | Paper |
|--------|-------------------------------------------|------------|-------|
|        | A & AS Level Examinations – November 2002 | 9709, 8719 | 3     |

| 10 | (i)  |            | ection vector for AB or CD e.g. $\overrightarrow{AB} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$ or $\overrightarrow{CD} = -2\mathbf{i} - \mathbf{j} - 4\mathbf{k}$                    | B1          |   |
|----|------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|
|    |      | EITHER:    | Carry out the correct process for evaluating the scalar product of two relevant vectors in                                                                                           | Ml          |   |
|    |      |            | component form                                                                                                                                                                       | IVII        |   |
|    |      |            | Evaluate $\cos^{-1}\left \frac{\overrightarrow{AB.CD}}{ \overrightarrow{AB}  \overrightarrow{CD}}\right $ using the correct method for the moduli                                    | 3.61        |   |
|    |      |            | Evaluate $\cos \left  \frac{\overrightarrow{AB}}{\overrightarrow{AB}} \right  \overrightarrow{CD} \right $ using the correct method for the moduli                                   | M1          |   |
|    |      |            |                                                                                                                                                                                      |             |   |
|    |      |            | Obtain final answer 45.6°, or 0.796 radians, correctly                                                                                                                               | . A1        |   |
|    |      | OR:        | Calculate the sides of a relevant triangle using the correct method                                                                                                                  | M1          |   |
|    |      |            | Use the cosine rule to calculate a relevant angle                                                                                                                                    | Ml          |   |
|    |      |            | Obtain final answer 45.6°, or 0.796 radians, correctly                                                                                                                               | A1          | 4 |
|    |      |            | vector is incorrectly stated with all signs reversed and 45.6° is obtained, award B0M1M1A1                                                                                           | l.]         |   |
|    |      | [SR: if 4: | 5.6° is followed by 44.4° as final answer, award A0.]                                                                                                                                |             |   |
|    | (ii) | EITHER:    | State both line equations e.g. $4i + k + \lambda(i - 2j - 3k)$ and $i + j + \mu(2i + j + 4k)$                                                                                        | B1:✓        |   |
|    | ` '  |            | Equate components and solve for $\lambda$ or for $\mu$                                                                                                                               | M1          |   |
|    |      |            | Obtain value $\lambda = -1$ or $\mu = 1$                                                                                                                                             | Al          |   |
|    |      |            | Verify that all equations are satisfied, so that the lines do intersect, or equivalent                                                                                               | A1          |   |
|    |      |            | [SR: if both lines have the same parameter, award B1M1 if the equations are inconsistent                                                                                             |             |   |
|    |      |            | and B1M1A1 if the equations are consistent and shown to be so.]                                                                                                                      | ÷ - ‡       |   |
|    |      | OR:        | State both line equations in Cartesian form                                                                                                                                          | B1.✓        |   |
|    |      |            | Solve simultaneous equations for a pair of unknowns e.g. $x$ and $y$                                                                                                                 | M1          |   |
|    |      |            | Obtain a correct pair e.g. $x = 3$ , $y = 2$                                                                                                                                         | Al          |   |
|    |      |            | Obtain the third unknown e.g. $z = 4$ and verify the lines intersect                                                                                                                 | AI          |   |
|    |      | OR:        | Find one of $\overrightarrow{CA}$ , $\overrightarrow{CB}$ , $\overrightarrow{DA}$ , $\overrightarrow{DB}$ ,, e.g. $\overrightarrow{CA}$ =3i -j +k                                    | Bl          |   |
|    |      | 021.       |                                                                                                                                                                                      |             |   |
|    |      |            | Carry out correct process for evaluating a relevant scalar triple product e.g. $\overrightarrow{CA}.(\overrightarrow{AB} \times \overrightarrow{CD})$                                | M1          |   |
|    |      |            | Show the value is zero State that (a) this result implies the lines are coplanar, (b) the lines are not parallel, and                                                                | , Al        |   |
|    |      |            | thus the lines intersect (condone omission of one of (a) and (b))                                                                                                                    | A1          |   |
|    |      |            | 210 210 1110 1110 (COMMON OF ONE OF (C))                                                                                                                                             | •••         |   |
|    |      | OR:        | Carry out correct method for finding a normal to the plane through three of the points                                                                                               | M1          |   |
|    |      |            | Obtain a correct normal vector                                                                                                                                                       | Al          |   |
|    |      |            | Obtain a correct equation e.g. $x+2y-z=3$ for the plane of A, B, C                                                                                                                   | A1          |   |
|    |      |            | Verify that the fourth point lies in the plane and conclude that the lines intersect                                                                                                 | Al          |   |
|    |      | OR:        | State a relevant plane equation e.g. $\mathbf{r} = 4\mathbf{i} + \mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}) + \mu(-3\mathbf{i} + \mathbf{j} - \mathbf{k})$ for the |             |   |
|    |      |            | plane of $A, B, C$                                                                                                                                                                   | B1 <b>√</b> |   |
|    |      |            | Set up equations in $\lambda$ and $\mu$ , using components of the fourth point, and solve for $\lambda$ or $\mu$                                                                     | M1          |   |
|    |      |            | Obtain value $\lambda = 1$ or $\mu = 2$                                                                                                                                              | A1          |   |
|    |      |            | Verify that all equations are satisfied and conclude that the lines intersect                                                                                                        | A1          | 4 |

(continued)



www.studyguide.pk

BI ✓

M1 A1

A1

| Page 5 | Mark Scheme                               | Syllabus   | Paper |
|--------|-------------------------------------------|------------|-------|
|        | A & AS Level Examinations – November 2002 | 9709, 8719 | 3     |

| ) (con | tinued)      |                                                                                                                                                             |             |
|--------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|        | (iii) EITHER | Find $\overrightarrow{PQ}$ for a general point $Q$ on $AB$ e.g. $3\mathbf{i} - 5\mathbf{j} - 5\mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k})$ | B1.✓        |
|        |              | Calculate $\overrightarrow{PQ} \cdot \overrightarrow{AB}$ correctly and equate to zero                                                                      | Ml          |
|        |              | Solve for $\lambda$ obtaining $\lambda = -2$                                                                                                                | A1          |
|        |              | Show correctly that $PQ = \sqrt{3}$ , the given answer                                                                                                      | A1          |
|        | OR:          | State $\overrightarrow{AP}$ (or $\overrightarrow{BP}$ ) and $\overrightarrow{AB}$ in component form                                                         | B1 🗸        |
|        |              | Carry out correct method for finding their vector product                                                                                                   | M1          |
|        |              | Obtain correct answer e.g. $\overrightarrow{AP} \times \overrightarrow{AB} = -5\mathbf{i} - 4\mathbf{j} + \mathbf{k}$                                       | A1          |
|        |              | Divide modulus by $ \overrightarrow{AB} $ and obtain the given answer $\sqrt{3}$                                                                            | <b>A1</b>   |
|        | OR:          | State $\overrightarrow{AP}$ (or $\overrightarrow{BP}$ ) and $\overrightarrow{AB}$ in component form                                                         | B1 <b>√</b> |
|        |              | Carry out correct method for finding the projection of $AP$ (or $BP$ ) on $AB$ i.e. $ \overrightarrow{AP}.\overrightarrow{AB} $                             | Ml          |
|        | ·            | Obtain correct answer e.g. $AN = \frac{28}{\sqrt{14}}$ or $BN = \frac{42}{\sqrt{14}}$                                                                       | Al          |
|        |              | Show correctly that $PN = \sqrt{3}$ , the given answer                                                                                                      | A1          |

Use the cosine rule in triangle ABP, or scalar product, to find the cosine of A, B, or P

Obtain correct answer e.g.  $\cos A = \frac{-28}{\sqrt{14.\sqrt{59}}}$ 

Deduce the exact length of the perpendicular from P to AB is  $\sqrt{3}$ , the given answer

State two of  $\overrightarrow{AP}, \overrightarrow{BP}, \overrightarrow{AB}$  in component form

OR: