

Statistika Deskriptif

Memahami data dengan lebih baik!

1.1 Variabilitas dan Visualisasi Data

Misalkan diberikan data sebagai berikut!

Nilai	Squid Game 1	Squid Game 2	Squid Game 3
10	5173	5169	4374
9	3936	4046	963
8	2792	10663	1471
7	1430	21076	1906
6	552	19837	2429
5	236	9669	3387
4	118	3933	3715
3	73	1720	3993
2	54	880	4612
1	124	859	8557

https://colab.research.google.com/drive/1KDEGgYP8T-mnNuq8spRJVFJ3v9zUlEAS?usp=sharing.

Histogram untuk Masing-masing Film

1.2 Statistik atau Statistika?

Statistik (*statistic*) adalah suatu besaran ______ yang mewakili suatu _____ untuk memberikan gambaran secara ringkas mengenai populasi tersebut.
Statistika (*statistics*) adalah ilmu yang mempelajari tentang ______.

1.3 Ukuran Pusat Data

Definisi. Diberikan suatu data berukuran N dan secara terurut naik x_1, x_2, \ldots, x_N .

(a) Rata-rata dari data tersebut didefinsikan sebagai

$$\bar{x} = \frac{1}{N}(x_1 + x_2 + \ldots + x_N) = \frac{1}{N} \sum_{i=1}^{N} x_i.$$

1.3 Ukuran Pusat Data

Definisi. Diberikan suatu data berukuran N dan secara terurut naik x_1, x_2, \ldots, x_N .

(b) Median dari data tersebut didefinisikan sebagai nilai yang berada di 'tengah' data, yakni

$$M_e = egin{cases} x_{rac{N+1}{2}}, & N ext{ ganjil}, \ rac{1}{2}(x_{rac{N}{2}}+x_{rac{N}{2}+1}), & N ext{ genap}. \end{cases}$$

1.3 Ukuran Pusat Data

Definisi. Diberikan suatu data berukuran N dan secara terurut naik x_1, x_2, \ldots, x_N .

(c) Modus dari data tersebut didefinisikan sebagai nilai yang paling sering muncul.

Bagaimana cara mencari rata-rata, median, dan modus dari tabel film di atas?

→ ▼	Tabel	Statistik:			
		Statistik	Squid Game 1	Squid Game 2	Squid Game 3
	0	Mean	8.621963	6.574243	4.339424
	1	Median	9.000000	7.000000	4.000000
	2	Mode	10.000000	7.000000	1.000000

1.4 Ukuran Variasi Data

Rata-rata, orang memberi nilai 8,6 untuk film Squid Game 1. Artinya, pada umumnya orang memberi skor di sekitar angka tersebut. Seberapa mungkinkah ada orang yang memberikan penilaian yang 'abnormal', yakni memberi skor yang cukup 'jauh' dari 8,6? Di sinilah, kita memerlukan ukuran variasi atau penyebaran. Misalkan Alisa memberi skor $x_A = 7$ dan Bobi memberi skor $x_B = 9$.

- Hitung simpangan kuadrat $(x_A \bar{x})^2$.
- Hitung simpangan kuadrat $(x_B \bar{x})^2$.
- Manakah yang memberi skor yang lebih 'normal' relatif terhadap keseluruhan data?

Definisi. Diberikan suatu data berukuran N dan secara terurut naik x_1, x_2, \ldots, x_N .

(a) Variansi dari data tersebut didefinsikan sebagai

$$S^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}.$$

(b) Standar Deviasi dari data tersebut didefinisikan sebagai

$$S = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}.$$

Statistik ukuran variansi menyatakan tingkat _____ dari sebuah data.

Dalam mata kuliah MATH1042, diketahui rata-rata nilai akhir mahasiswanya adalah 65. Robby memiliki nilai akhir sebesar 71. Berapa besar 'simpangan' nilai Robby dari nilai rata-rata?

(a) 6

(b) -6

(c) 36

(d) -36

(e) 71

Mengapa kita tidak mendefinisikan variansi menggunakan $\sum_{i=1}^{N} (x_i - \bar{x})$?

Berikut ini merupakan statistik dari nilai akhir mata kuliah MATH1061 dan MATH1062. Diketahui semua mahasiswa yang mengambil mata kuliah MATH1061 juga mengambil MATH1062.

Statistik	MATH1061	MATH1062
Rata-rata	80,43	73,07
Standar Deviasi	2,79	25,18

Catatan.

- Syarat mendapat nilai A, nilai akhir di atas 91.
- Syarat untuk kelulusan, nilai akhir di atas 41.

Secara 'kasar', manakah kesimpulan yang tepat?

- (a) Banyak mahasiswa peraih nilai A dari MATH1062 lebih banyak dari MATH1061.
- (b) Tidak ada mahasiswa yang tidak lulus baik pada MATH1062 maupun MATH1061.

Nilai	Squid Game 2		
10	5169		
9	4046		
8	10663		
7	21076		
6	19837		
5	9669		
4	3933		
3	1720		
2	880		
1	859		

Dua buah termometer diuji untuk mengukur benda yang diketahui secara absolut memiliki suhu sebesar 38° . Pengukuran dilakukan sama-sama sebanyak 100 kali untuk setiap termometer. Rata-rata hasil pengukuran kedua termometer sama-sama sebesar 38° . Standar deviasi dari pengukuran termometer pertama adalah 0,05 dan termometer kedua adalah 0,03. Manakah antara kedua termometer yang memiliki kualitas yang lebih bagus?

- (a) Termometer pertama
- (b) Termometer kedua

- (c) Keduanya sama bagusnya
- (d) Tidak cukup untuk menyimpulkan

1.5 Ukuran Lokasi dan Boxplot

Definisi. Misalkan suatu data berukuran N dan secara terurut naik x_1, x_2, \ldots, x_N .

- Kuartil 1 dinotasikan sebagai Q_1 adalah nilai data ke _____ dari data terurut naik.
- Kuartil 2 dinotasikan sebagai Q_2 adalah nilai data ke _____ dari data terurut naik.
- Kuartil 3 dinotasikan sebagai Q_3 adalah nilai data ke _____ dari data terurut naik.

Definisi. Suatu data x_i disebut ______ jika

$$x_i < Q_1 - rac{3}{2} \cdot IQR$$
 atau $x_i > Q_3 + rac{3}{2} \cdot IQR,$

dengan $IQR=Q_3-Q_1$ yang disebut sebagai nilai ______

Untuk memvisualisasikan ukuran lokasi dalam data, kita dapat menggunakan ______.

