Recommended Viewing:

Since this is a pictorial presentation, I've gone through the effort to type up what I normally say in the "notes" section.

To enjoy the animations, I recommend printing out the "notes" then watching via the slide show viewer.

--Gary Kumfert

A Pictorial Introduction to Components in Scientific Computing

Gary Kumfert

with

Steve Smith, Scott Kohn,
Tom Epperly, Tammy Dahlgren,
& Bill Bosl

Once upon a time...

As Scientific Computing grew...

Tried to ease the bottle neck

SPMD was born.

SPMD worked. **But** it isn't easy!!! CASC

Meanwhile, corporate computing was growing in a different way

This created a whole new set of problems...

Interoperability across multiple languages

Interoperability across multiple platforms

Incremental evolution of large legacy systems (esp. w/ multiple 3rd party software)

Component Technology addresses these problems

So what's a component ???

1. Interoperability across multiple languages

2. Interoperability Across Multiple

Transparent Distributed Computing

3. Incremental Evolution With Multiple 3rd party software

Now suppose you find this bug...

Good news: an upgrade available Bad news: there's a dependency

Great News: Solvable with Components

Great News: Solvable with Components

Why Components for Scientific Computing?

Interoperability across multiple languages

Interoperability across multiple platforms

Incremental evolution of large legacy systems (esp. w/ multiple 3rd party software)

The Model for Scientific Component Programming

Parallel Distributed Component-Based Application

CASC

Research Issues:

#1. The "MxN Problem"

Research Issues:

#2: Programming Model

Is This Still SPMD?

Is This Still SPMD?

No

Each "component" may be an entire legacy SPMD code

Multiple components (possibly distributed) working together on a single problem

▶ MPMD, MCMD, DPMD???

But

Will look like SPMD to application developer

Business components look like serial code.

Why Components for Scientific Computing?

Interoperability across multiple languages

Interoperability across multiple platforms

Incremental evolution of large legacy systems (esp. w/ multiple 3rd party software)

The End

Work performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48