forecasting-with-XGBoost-2017-2019 Partho

January 11, 2021

1 Load forecasting of Bangladesh using one time series analysis technique of machine learning (XGboost) (2017-2019)

```
[65]: # # Hide the code by default from the web page:
      # # (from: http://stackoverflow.com/questions/27934885/
      \rightarrow how-to-hide-code-from-cells-in-ipython-notebook-visualized-with-nbviewer#28073228)
     from IPython.display import HTML
     HTML('''<script>
     code_show=true;
     function code_toggle() {
      if (code_show){
      $('div.input').hide();
      } else {
      $('div.input').show();
      code_show = !code_show
     $( document ).ready(code_toggle);
     </script>
     <form action="javascript:code_toggle()"><input type="submit" value="Click here_</pre>
      ''')
```

[65]: <IPython.core.display.HTML object>

```
[1]: #Importing necessary files
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import xgboost as xgb
from xgboost import plot_importance, plot_tree
from sklearn.metrics import mean_squared_error, mean_absolute_error
plt.style.use('fivethirtyeight')
```

[3]: df.head(10)

```
[3]:
                           loads
    date_time
    2017-01-01 01:00:00
                         4807.0
    2017-01-01 02:00:00
                         4525.0
    2017-01-01 03:00:00
                         4395.0
    2017-01-01 04:00:00
                         4211.0
    2017-01-01 05:00:00
                         4197.0
    2017-01-01 06:00:00
                         4415.0
    2017-01-01 07:00:00 4620.0
    2017-01-01 08:00:00 4957.0
    2017-01-01 09:00:00 5515.0
    2017-01-01 10:00:00 5518.0
```

```
[4]: color_pal = ["#F8766D", "#D39200", "#93AA00", "#00BA38", "#00C19F", "#00B9E3", □

→"#619CFF", "#DB72FB"]

df.plot(style='.', figsize=(25,10), color=color_pal[0], title='Load_□

→distribution curve of Bangladesh (2017-2019)')
```

[4]: <matplotlib.axes._subplots.AxesSubplot at 0x22b26695d88>

2 Yearly demand distribution

```
[5]: df['loads'].loc[(df['loads'].index <='2017-12-31')].

→plot(figsize=(25,10),title='Demand in 2017')
```

[5]: <matplotlib.axes._subplots.AxesSubplot at 0x22b27500888>


```
[6]: df['loads'].loc[(df['loads'].index <='2018-12-31') & (df['loads'].index >=⊔ 

→'2018-01-01')].plot(figsize=(20,10),color='g', title='Demand in 2018')
```

[6]: <matplotlib.axes._subplots.AxesSubplot at 0x22b2705f288>


```
[7]: df['loads'].loc[(df['loads'].index >='2019-01-01')].

→plot(figsize=(20,10),color='y',title='Demand in 2019')
```

[7]: <matplotlib.axes._subplots.AxesSubplot at 0x22b27117b48>

3 Preparing data for training and testing

[9]: <matplotlib.axes._subplots.AxesSubplot at 0x22b2724cd48>

4 Create Time Series Features

```
[10]: def create_features(df, label=None):
          Creates time series features from datetime index
          df['date'] = df.index
          df['hour'] = df['date'].dt.hour
          df['dayofweek'] = df['date'].dt.dayofweek
          df['quarter'] = df['date'].dt.quarter
          df['month'] = df['date'].dt.month
          df['year'] = df['date'].dt.year
          df['dayofyear'] = df['date'].dt.dayofyear
          df['dayofmonth'] = df['date'].dt.day
          df['weekofyear'] = df['date'].dt.weekofyear
          X = df[['hour','dayofweek','quarter','month','year',
                 'dayofyear', 'dayofmonth', 'weekofyear']]
          if label:
              y = df[label]
              return X, y
          return X
```

```
[11]: X_train, y_train = create_features(df_train, label='loads')
X_test, y_test = create_features(df_test, label='loads')
```

5 Create XGBoost Model

6 Feature Importances

Feature importance is a great way to get a general idea about which features the model is relying on most to make the prediction. This is a metric that simply sums up how many times each feature is split on.

We can see that the day of year was most commonly used to split trees, while hour and year came in next. Quarter has low importance due to the fact that it could be created by different dayofyear splits.

```
[13]: plot_importance(reg, height=0.9)
```

[13]: <matplotlib.axes._subplots.AxesSubplot at 0x22b27da4548>

7 Forecast on Test Set

```
[14]: df_test['MW_Prediction'] = reg.predict(X_test)
      df_all = pd.concat([df_test, df_train], sort=False)
[15]: df_all.head()
                                                              dayofweek quarter \
[15]:
                            loads
                                                  date hour
      date_time
      2019-01-01 01:00:00
                           4984.0 2019-01-01 01:00:00
                                                           1
                                                                       1
                                                                                1
      2019-01-01 02:00:00
                           4644.0 2019-01-01 02:00:00
                                                           2
                                                                       1
                                                                                1
      2019-01-01 03:00:00
                           4487.0 2019-01-01 03:00:00
                                                           3
                                                                       1
                                                                                1
      2019-01-01 04:00:00
                           4399.0 2019-01-01 04:00:00
                                                           4
                                                                       1
                                                                                1
      2019-01-01 05:00:00
                           4350.0 2019-01-01 05:00:00
                                                                       1
                                                                                1
                                  year dayofyear dayofmonth weekofyear \
                           month
      date_time
      2019-01-01 01:00:00
                                   2019
                               1
                                                 1
                                                             1
                                                                          1
      2019-01-01 02:00:00
                                  2019
                                1
                                                 1
                                                             1
                                                                          1
      2019-01-01 03:00:00
                                1
                                  2019
                                                 1
                                                              1
                                                                          1
      2019-01-01 04:00:00
                                  2019
                                                 1
                                                             1
                                                                          1
      2019-01-01 05:00:00
                                  2019
```

MW_Prediction

```
date_time
2019-01-01 01:00:00 5314.390625
2019-01-01 02:00:00 5042.840820
2019-01-01 03:00:00 4879.201660
2019-01-01 04:00:00 4754.636719
2019-01-01 05:00:00 4639.765137
```

```
[16]: _ = df_all[['loads','MW_Prediction']].plot(figsize=(15, 5))
```


8 Look at first month of predictions

9 Error Metrics On Test Set

[21]: 1342.1403727369614

I like using mean absolute percent error because it gives an easy to interperate percentage showing how off the predictions are. MAPE isn't included in sklearn so we need to use a custom function.

```
[22]: def mean_absolute_percentage_error(y_true, y_pred):
    """Calculates MAPE given y_true and y_pred"""
    y_true, y_pred = np.array(y_true), np.array(y_pred)
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
```

[23]: 15.75549170701343

10 Look at Worst and Best Predicted Days

```
[24]: df_test['error'] = df_test['loads'] - df_test['MW_Prediction']
    df_test['abs_error'] = df_test['error'].apply(np.abs)
    error_by_day = df_test.groupby(['year', 'month', 'dayofmonth']) \
        .mean()[['loads', 'MW_Prediction', 'error', 'abs_error']]
```

11 Over forecasted days

```
error_by_day.sort_values('error', ascending=True).head(10)
[25]:
                                    loads
                                          MW_Prediction
                                                                          abs_error
                                                                 error
      year month dayofmonth
      2019 12
                             5956.880833
                                             8994.115234 -3037.234076
                                                                        3037.234076
                 6
                                             9361.252930 -3017.344881
           1
                 10
                             6343.908333
                                                                        3017.344881
           12
                 7
                             6320.187500
                                             9319.593750 -2999.406576
                                                                        2999.406576
           1
                 9
                             6363.221667
                                             9161.496094 -2798.274508
                                                                        2798.274508
           12
                                             9392.729492 -2673.378364
                 8
                             6719.351250
                                                                        2673.378364
```

```
1
      8
                  6237.279167
                                  8760.261719 -2522.983020
                                                              2522.983020
2
      8
                                  8713.820312 -2520.924337
                   6192.895833
                                                              2520.924337
11
      10
                  5761.699583
                                  8265.178711 -2503.478904
                                                              2503.478904
4
                  6392.049167
                                  8748.759766 -2356.710884
                                                              2356.710884
2
                                  9089.299805 -2331.056390
      10
                   6758.243333
                                                              2331.056390
```

12 Under forecasted day

```
error_by_day.sort_values('error', ascending=False).head(10)
[26]:
                                             MW_Prediction
                                      loads
                                                                             abs_error
                                                                    error
      year month dayofmonth
      2019 9
                               11009.269583
                                               5729.312988
                                                             5279.956656
                                                                           5279.956656
           7
                  1
                               10337.151250
                                               5714.646484
                                                             4622.504928
                                                                           4622.504928
           8
                  1
                              10166.137500
                                               5778.122070
                                                             4388.015613
                                                                           4388.015613
           9
                  2
                               10606.080417
                                               6344.965332
                                                             4261.114963
                                                                           4261.114963
           5
                  2
                               10157.819167
                                               6190.872559
                                                             3966.946608
                                                                           3966.946608
           6
                  1
                               9460.925833
                                               5594.115723
                                                             3866.809989
                                                                           3866.809989
           8
                  5
                                               7237.166992
                                                             3794.329674
                               11031.496667
                                                                           3794.329674
           5
                  12
                               10497.548333
                                               6782.184082
                                                             3715.364394
                                                                           3715.364394
                  1
                               9198.228750
                                               5561.261719
                                                             3636.967235
                                                                           3636.967235
           9
                  11
                               10432.721667
                                               6944.091309
                                                             3488.630256
                                                                           3488.630256
```

13 Worst absolute predicted days

```
[27]: error_by_day.sort_values('abs_error', ascending=False).head(10)
[27]:
                                      loads
                                             MW_Prediction
                                                                             abs_error
                                                                    error
      year month dayofmonth
      2019 9
                  1
                              11009.269583
                                               5729.312988
                                                             5279.956656
                                                                           5279.956656
           7
                              10337.151250
                                               5714.646484
                                                             4622.504928
                                                                           4622.504928
           8
                  1
                              10166.137500
                                               5778.122070
                                                             4388.015613
                                                                           4388.015613
           9
                  2
                              10606.080417
                                               6344.965332
                                                             4261.114963
                                                                           4261.114963
           5
                  2
                              10157.819167
                                               6190.872559
                                                             3966.946608
                                                                           3966.946608
           6
                  1
                               9460.925833
                                               5594.115723
                                                             3866.809989
                                                                           3866.809989
                  5
           8
                              11031.496667
                                               7237.166992
                                                             3794.329674
                                                                           3794.329674
           5
                  12
                              10497.548333
                                               6782.184082
                                                             3715.364394
                                                                           3715.364394
                  1
                               9198.228750
                                               5561.261719
                                                             3636.967235
                                                                           3636.967235
           9
                  11
                              10432.721667
                                               6944.091309
                                                             3488.630256
                                                                           3488.630256
```

14 Best predicted days

```
[28]: error_by_day.sort_values('abs_error', ascending=True).head(10)
```

```
[28]:
                                   loads MW_Prediction
                                                              error
                                                                       abs_error
     year month dayofmonth
      2019 12
                 13
                             5860.575833
                                            5924.279297
                                                         -63.703687
                                                                      187.391653
                 25
                             6347.953333
                                            6202.634277
                                                         145.318934
                                                                     206.137241
                 2
                             6650.836667
                                                         -72.034915
                                                                     236.179754
                                            6722.871582
           2
                 22
                             6266.400000
                                            6257.895996
                                                           8.503780
                                                                     238.930253
           8
                 8
                             9040.593333
                                            9024.657227
                                                          15.936453 239.272146
                             6441.729167
           12
                 26
                                            6202.634277
                                                         239.094767
                                                                     242.420614
                             5961.616667
                                            5738.749512
                                                         222.867358
                                                                     246.763298
           1
                 18
           10
                 27
                             7544.520000
                                            7500.739258
                                                          43.780681
                                                                     256.312747
           12
                 20
                             5898.452083
                                            5647.488770 250.963497
                                                                      260.353350
                 17
                             6360.139583
                                            6166.881348 193.258236
                                                                     262.713232
```

15 Plotting some of the best and worst predicted days


```
[30]: f, ax = plt.subplots(1)
f.set_figheight(5)
f.set_figwidth(10)
```


16 Comparison of some other predicted loads with original loads

```
[31]: data=df
y_true=df_test['loads']
X_test_pred=df_test['MW_Prediction']
```

```
[33]: plot_performance(data, X_test, X_test_pred, data.index[0].date(), data.

index[-1].date(),

'Whole scenario of Original and Predicted loads')

plot_performance(data, X_test, X_test_pred, y_test.index[0].date(), y_test.

index[-1].date(),

'Original loads Vs. Predicted loads (2019)')

plt.show()
```


17 Plotting the load distribution of individual month wise original Vs. predicted loads in MW of 2019

```
[34]: | df_for_plot=df_all.drop(['dayofweek','quarter','dayofyear','weekofyear'],axis=1)
      df_for_plot['Error'] = df_test['loads'] - df_test['MW_Prediction']
      df_for_plot['Abs_error'] = df_test['error'].apply(np.abs)
[35]: df_for_plot.rename(columns = {'loads':'Original Load', 'MW_Prediction':
      →'Predicted Load'}, inplace = True)
      df_for_plot.head()
[35]:
                           Original Load
                                                        date hour month year \
      date_time
     2019-01-01 01:00:00
                                  4984.0 2019-01-01 01:00:00
                                                                        1 2019
      2019-01-01 02:00:00
                                  4644.0 2019-01-01 02:00:00
                                                                 2
                                                                        1 2019
      2019-01-01 03:00:00
                                  4487.0 2019-01-01 03:00:00
                                                                 3
                                                                        1 2019
      2019-01-01 04:00:00
                                  4399.0 2019-01-01 04:00:00
                                                                 4
                                                                        1 2019
      2019-01-01 05:00:00
                                  4350.0 2019-01-01 05:00:00
                                                                 5
                                                                        1 2019
                           dayofmonth Predicted Load
                                                            Error
                                                                    Abs_error
      date_time
      2019-01-01 01:00:00
                                    1
                                          5314.390625 -330.390625
                                                                   330.390625
      2019-01-01 02:00:00
                                    1
                                          5042.840820 -398.840820
                                                                   398.840820
      2019-01-01 03:00:00
                                    1
                                          4879.201660 -392.201660
                                                                   392.201660
      2019-01-01 04:00:00
                                    1
                                          4754.636719 -355.636719
                                                                   355.636719
      2019-01-01 05:00:00
                                          4639.765137 -289.765137
                                    1
                                                                   289.765137
[36]: #Function for showing month wise data and plot.
      def month_wise_plot(data_frame, lower_limit, upper_limit, Month_name):
          f, ax = plt.subplots(1)
          f.set_figheight(5)
          f.set_figwidth(10)
          _ = data_frame[['Predicted Load', 'Original Load']].plot(ax=ax, __
       ax.set_ylim(0, 15000)
          ax.set_xbound(lower_limit, upper_limit)
          plot = plt.suptitle(Month_name +', 2019')
          #Sorting data monthly based on best and worst error
          #Selecting the defined month
          # Select observations between two datetimes
          month\_selection=df\_for\_plot[(df\_for\_plot['date'] > lower\_limit) \ \&_{\sqcup}

    df_for_plot['date'] <=upper_limit)]
</pre>
          error by day = month selection.groupby(['dayofmonth']) \
          .mean()[['Original Load', 'Predicted Load', 'Error', 'Abs_error']]
```

```
# Best predicted days
best=error_by_day.sort_values('Abs_error', ascending=True).head(5)
print("Top five best predicted day of " + Month_name + '\n\n')
print(best)
print('\n\n')

# worst predicted days
worst=error_by_day.sort_values('Abs_error', ascending=False).head(5)
print("Top five worst predicted day of " + Month_name + '\n\n')
print(worst)
print('\n\n')
```

18 January 2019

```
[37]: month_wise_plot(df_for_plot, lower_limit='2019-01-01', 

→upper_limit='2019-01-31', Month_name='January')
```

Top five best predicted day of January

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
18	5961.616667	5738.749512	222.867358	246.763298
1	5925.474348	5858.959961	66.514472	274.440352
12	5982.397917	5859.058594	123.339242	309.170168
25	6119.320833	5859.861816	259.459241	319.346545
19	6244.218750	5898.401367	345.817261	352.373576

Top five worst predicted day of January

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
10	6343.908333	9361.252930	-3017.344881	3017.344881
9	6363.221667	9161.496094	-2798.274508	2798.274508
8	6237.279167	8760.261719	-2522.983020	2522.983020
6	6286.012917	8440.374023	-2154.361025	2182.439801
7	6291.183333	8140.192871	-1849.009314	1849.009314

19 February 2019

Top five best predicted day of February

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
22	6266.400000	6257.895996	8.503780	238.930253
15	6438.321250	6286.580566	151.740602	269.275856
21	6485.888750	6591.068359	-105.179386	286.510660
18	6879.629167	6566.274902	313.354061	333.157365
3	6926.820833	6830.114746	96.706189	347.109713

Top five worst predicted day of February

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
8	6192.895833	8713.820312	-2520.924337	2520.924337
10	6758.243333	9089.299805	-2331.056390	2331.056390
9	6426.216667	8748.236328	-2322.019743	2322.019743
7	6992.995833	8718.208984	-1725.213619	1725.213619

20 March 2019

```
[39]: month_wise_plot(df_for_plot, lower_limit='2019-03-01', 

→upper_limit='2019-03-31', Month_name='March')
```

Top five best predicted day of March

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
2	6296.000417	6383.906738	-87.906525	289.253354
1	5640.456522	5874.680176	-234.223845	367.365914
15	7765.475000	7418.315430	347.159550	377.133036
27	8011.993333	7763.619141	248.374355	441.248957
5	6547.645833	6870.837402	-323.191650	474.961808

Top five worst predicted day of March

 ${\tt Original\ Load\ Predicted\ Load\ Error\ Abs_error\ }$ dayofmonth

31	9753.000000	7168.158203 2584.841797	2584.841797
9	6701.942500	8900.352539 -2198.410263	2198.410263
8	6324.370000	8452.825195 -2128.455460	2128.455460
10	7269.612500	9257.068359 -1987.455371	1987.455371
6	6809.566667	8691.629883 -1882.063481	1882.063481

21 April 2019

```
[40]: month_wise_plot(df_for_plot, lower_limit='2019-04-01', 

→upper_limit='2019-04-30', Month_name='April')
```

Top five best predicted day of April

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
3	7287.521667	7427.816895	-140.295085	418.926222
14	7650.373333	7509.375977	140.997560	484.202716
22	7896.402500	7528.789062	367.613193	575.364276
5	7697.041667	6990.322266	706.719401	730.059173
4	8288.891250	7451.548828	837.342279	837.342279

Top five worst predicted day of April

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
30	11262.000000	7160.357910	4101.642090	4101.642090
28	10244.366667	7410.598145	2833.768705	2833.768705
29	10315.234167	7504.068848	2811.165197	2811.165197
25	10359.937500	7553.582520	2806.355164	2806.355164
27	10086.745417	7421.382324	2665.363092	2665.363092

22 MAY 2019

Top five best predicted day of May

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
25	7695.712500	8048.838867	-353.126184	769.449540
6	9712.941250	8880.041016	832.900682	832.900682
24	8941.805000	7864.389648	1077.415392	1111.665555
10	10109.279167	8983.996094	1125.282849	1125.282849
5	8186.658333	7282.168457	904.489998	1150.913354

Top five worst predicted day of May

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
2	10157.819167	6190.872559	3966.946608	3966.946608
12	10497.548333	6782.184082	3715.364394	3715.364394
1	9114.847391	5561.602051	3553.245341	3553.245341
11	10655.714583	7341.770508	3313.943974	3313.943974
29	10834.490000	8216.803711	2617.686228	2617.686228

23 June 2019

```
[42]: month_wise_plot(df_for_plot, lower_limit='2019-06-01', 

∴upper_limit='2019-06-30', Month_name='June')
```

Top five best predicted day of June

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
10	8996.546667	8972.277344	24.268875	353.482414

9	8209.229583	8891.756836	-682.527334	682.527334
3	8082.697083	7266.474121	816.222759	847.299002
5	6563.944583	7586.475586	-1022.531186	1084.590715
4	7216.300417	7687.170898	-470.870685	1204.721548

Top five worst predicted day of June

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
1	9399.270435	5614.981445	3784.288798	3784.288798
12	10368.508333	6927.874512	3440.634045	3440.634045
19	10890.991667	7826.645020	3064.346667	3064.346667
20	10805.680417	7871.243164	2934.437395	2934.437395
25	11112.370000	8295.655273	2816.714727	2816.714727

24 July 2019

```
[43]: month_wise_plot(df_for_plot, lower_limit='2019-07-01', □ 

→upper_limit='2019-07-31', Month_name='July')
```

Top five best predicted day of July

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
13	8601.066250	8673.873047	-72.806492	312.066082
10	9582.856667	9153.814453	429.042356	464.499543
9	9504.611667	9024.975586	479.636386	480.219543
15	8478.608333	8789.789062	-311.180811	523.676452
7	9551.075833	9055.420898	495.654731	528.261284

Top five worst predicted day of July

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
1	10270.114348	5736.083984	4534.030512	4534.030512
2	9991.745833	6518.429199	3473.316675	3473.316675
4	10556.155000	7781.363770	2774.791149	2774.791149
3	10142.347083	7420.746094	2721.600888	2721.600888
5	9818.353333	7645.402832	2172.950359	2172.950359

25 August 2019

```
[44]: month_wise_plot(df_for_plot, lower_limit='2019-08-01', ⊔

→upper_limit='2019-08-31', Month_name='August')
```

Top five best predicted day of August

	Original Load	Predicted Load	Error	Abs_error
${\tt dayofmonth}$				
8	9040.593333	9024.657227	15.936453	239.272146
18	9235.520833	9133.299805	102.220581	294.474588
9	9044.594583	8997.736328	46.858560	390.792478
10	9272.768750	9137.162109	135.606376	451.622974
17	8500.280000	8986.620117	-486.340239	598.076685

Top five worst predicted day of August

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
1	10115.849130	5796.235352	4319.613736	4319.613736
5	11031.496667	7237.166992	3794.329674	3794.329674
2	9653.793750	6363.291016	3290.502938	3290.502938
4	10708.810833	7732.458984	2976.351869	2976.351869
31	12122.270000	9164.111328	2958.158672	2958.158672

26 September 2019

```
[45]: month_wise_plot(df_for_plot, lower_limit='2019-09-01', □ 

∴upper_limit='2019-09-30', Month_name='September')
```

Top five best predicted day of September

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
24	9207.109583	9478.904297	-271.794876	279.851107
23	9714.711667	9454.111328	260.600339	344.671807
13	8708.723333	8287.946289	420.777431	472.015704
27	8442.962917	8944.430664	-501.467646	501.467646
26	8901.879167	9308.004883	-406.125675	510.727700

Top five worst predicted day of September

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
1	10952.116087	5742.763672	5209.352203	5209.352203
2	10606.080417	6344.965332	4261.114963	4261.114963
11	10432.721667	6944.091309	3488.630256	3488.630256
3	10716.906667	7282.371582	3434.535166	3434.535166
12	9837.114167	6693.325195	3143.789053	3143.789053

27 October 2019

Top five best predicted day of October

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
27	7544.520000	7500.739258	43.780681	256.312747
10	8345.825000	8324.266602	21.558297	272.423567
28	7690.441250	7511.120117	179.321296	336.172046
8	8729.710000	9088.077148	-358.366681	438.654965
7	9348.894583	9058.773438	290.121248	502.713993

Top five worst predicted day of October

	Original Load	Predicted Load	Error	Abs_error
${\tt dayofmonth}$				
2	8839.276250	6328.343262	2510.932927	2510.932927
1	8318.854783	5887.277832	2431.576929	2431.576929
12	8773.742500	6381.913086	2391.829434	2391.829434
3	9215.486250	7229.967773	1985.518314	1985.518314
5	9461.597917	7546.149414	1915.448686	1915.448686

28 November 2019

```
[47]: month_wise_plot(df_for_plot, lower_limit='2019-11-01', 

→upper_limit='2019-11-30', Month_name='November')
```

Top five best predicted day of November

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
22	6138.894167	6023.465332	115.428733	265.407249
23	6583.315417	6291.457031	291.858589	321.948066
20	6989.655417	6617.222656	372.432862	372.432862
15	6748.109583	6362.473145	385.636500	392.379594
11	6651.044583	6271.474121	379.570625	399.753226

Top five worst predicted day of November

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
10	5761.699583	8265.178711	-2503.478904	2503.478904

9	6851.944167	8937.322266	-2085.378079	2085.378079
8	6905.000833	8916.869141	-2011.868002	2011.868002
2	7902.788750	6421.697266	1481.091464	1481.091464
1	7184.074783	5843.333008	1340.741966	1342.006859

29 December 2019

```
[48]: month_wise_plot(df_for_plot, lower_limit='2019-12-01', □ 

→upper_limit='2019-12-31', Month_name='December')
```

Top five best predicted day of December

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
13	5860.575833	5924.279297	-63.703687	187.391653
25	6347.953333	6202.634277	145.318934	206.137241
2	6650.836667	6722.871582	-72.034915	236.179754
26	6441.729167	6202.634277	239.094767	242.420614
20	5898.452083	5647.488770	250.963497	260.353350

Top five worst predicted day of December

	Original Load	Predicted Load	Error	Abs_error
dayofmonth				
6	5956.880833	8994.115234	-3037.234076	3037.234076
7	6320.187500	9319.593750	-2999.406576	2999.406576
8	6719.351250	9392.729492	-2673.378364	2673.378364
31	6226.000000	3939.781738	2286.218262	2286.218262
5	6659.963333	8017.568848	-1357.605738	1390.931780

30 Load forecasting of 2020

```
[51]: time = pd.date_range(start='2020-01-01 01:00:00', end='2021-01-01', freq='1H')
```

[52]: time.shape

[52]: (8784,)

[53]: data = np.random.randint(1, high=100, size=len(time))

```
[54]: df_new = pd.DataFrame({'date_time': time, 'loads': data})
      df_new = df_new.set_index('date_time')
[55]: X_new = create_features(df_new)
     X_new.head()
[56]:
[56]:
                                  dayofweek quarter month year
                                                                    dayofyear \
                            hour
      date_time
      2020-01-01 01:00:00
                                          2
                                                    1
                                                              2020
                               1
                                                                             1
                                                           1
                               2
                                          2
      2020-01-01 02:00:00
                                                    1
                                                           1
                                                              2020
                                                                             1
                                          2
      2020-01-01 03:00:00
                               3
                                                    1
                                                              2020
                                                                             1
                                                           1
      2020-01-01 04:00:00
                               4
                                          2
                                                              2020
                                                    1
                                                                             1
      2020-01-01 05:00:00
                                          2
                               5
                                                    1
                                                           1 2020
                                                                             1
                            dayofmonth weekofyear
      date_time
      2020-01-01 01:00:00
                                     1
                                                  1
      2020-01-01 02:00:00
                                     1
                                                  1
      2020-01-01 03:00:00
                                     1
                                                  1
      2020-01-01 04:00:00
                                     1
                                                  1
      2020-01-01 05:00:00
                                     1
                                                  1
[57]: df_new['MW_Prediction'] = reg.predict(X_new)
[58]: df new.head()
[58]:
                            loads
                                                              dayofweek quarter \
                                                  date
                                                        hour
      date_time
                                                                       2
      2020-01-01 01:00:00
                               37 2020-01-01 01:00:00
                                                                                1
                                                                       2
      2020-01-01 02:00:00
                               12 2020-01-01 02:00:00
                                                           2
                                                                                1
      2020-01-01 03:00:00
                               55 2020-01-01 03:00:00
                                                           3
                                                                       2
                                                                                1
                                                                       2
      2020-01-01 04:00:00
                               87 2020-01-01 04:00:00
                                                           4
                                                                                1
      2020-01-01 05:00:00
                               17 2020-01-01 05:00:00
                                                           5
                                                                       2
                                                                                1
                            month
                                   year dayofyear dayofmonth weekofyear \
      date time
      2020-01-01 01:00:00
                                   2020
                                                  1
                                                              1
                                                                           1
      2020-01-01 02:00:00
                                   2020
                                                  1
                                                              1
                                                                           1
      2020-01-01 03:00:00
                                   2020
                                                  1
                                                              1
                                                                           1
      2020-01-01 04:00:00
                                   2020
                                                  1
                                                              1
                                                                           1
                                1
      2020-01-01 05:00:00
                                  2020
                                                  1
                                                              1
                                                                           1
                                1
                            MW_Prediction
      date_time
      2020-01-01 01:00:00
                              5314.390625
      2020-01-01 02:00:00
                              5042.840820
```

2020-01-01 03:00:00 4879.201660 2020-01-01 04:00:00 4754.636719 2020-01-01 05:00:00 4639.765137

[59]: _ = df_new['MW_Prediction'].plot(figsize=(15, 5))

[60]: #df_new.shape

30.1 Predict hourwise load

[61]: df_new['MW_Prediction']['2020-01-01 01:00:00']

[61]: 5314.3906

[62]: df_2020=df_new['MW_Prediction']

[63]: df_2020.shape

[63]: (8784,)

[64]: df_2020.to_csv(r'C:\Users\Md Samsul Alam\Dropbox\Anaconda_directory\Load_

→forecasting\2020_forecast.csv',index=True)

[]: