CS 344 LECTURE 8 GRAPHS, PATHS, AND BFS

Suppose we have a graph, and do DFS search from S:

We should get the following tree:

We should get the following tree:

But if we were interested in getting to C, this gives a rather inefficient route of $S \to A \to B \to C$ instead of $S \to C$

Imagine the graph as a physical set of marbles connected by string:

When we pick up the graph by S, we see immediately how to get to C:

BREADTH-FIRST SEARCH (BFS)

- Proceed layer by layer
- ullet Find layer d+1 by scanning neighbors of layer d

```
procedure bfs (G, s)
Input: Graph G = (V, E), directed or undirected; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
dist(s) = 0
Q = [s] (queue containing just s)
while Q is not empty:
   u = eject(Q)
   for all edges (u,v) \in E:
      if dist(v) = \infty:
          inject(Q, v)
          dist(v) = dist(u) + 1
```

Let's run BFS on our graph, starting at S:

Let's run BFS on our graph, starting at S:

Order	Queue contents
of visitation	after processing node
	[S]
S	[A C D E]
A	[C D E B]
C	[D E B]
D	[E B]
E	[B]
B	

IS BFS CORRECT?

That is, for each d, at some point:

- ullet all nodes with distance $\leq d$ are correctly set
- all other nodes have distance set to ∞
- ullet the queue contains exactly the nodes at distance d

BFS RUNNING TIME

- Each vertex put onto queue once
- Examine each edge once (directed) or twice (undirected)

$$O(|V| + |E|)$$

Edges are often weighted with some kind of length:

We could compute shortest paths using BFS:

Break edges into unit lengths with dummy nodes!

Suppose this is our graph:

We can break up each edge based on its length:

And then run BFS as usual

But what if this was our graph?

Then BFS is a slow, boring process:

Then BFS is a slow, boring process:

What if we could tell BFS to wake us up when it gets to the interesting part?

ullet ETAs for A and B are 100 and 200

G:

- ullet ETAs for A and B are 100 and 200
- Set alarms for 100 and 200

G: 100 A 50 S 200 B

- ullet ETAs for A and B are 100 and 200
- Set alarms for 100 and 200
- Wake up at time 100

G:

- ullet ETAs for A and B are 100 and 200
- Set alarms for 100 and 200
- Wake up at time 100
- New ETA for B is 150

G: 100 A 50

- ullet ETAs for A and B are 100 and 200
- Set alarms for 100 and 200
- Wake up at time 100
- ullet New ETA for B is 150
- ullet Change B's alarm to 150

Set alarm for node s at time 0

- Set alarm for node s at time 0
- Repeat until no more alarms:

- Set alarm for node s at time 0
- Repeat until no more alarms:

- Set alarm for node s at time 0
- Repeat until no more alarms:

Say the next alarm goes off at time T for node u

lacksquare Then the distance from s to u is T

- Set alarm for node s at time 0
- Repeat until no more alarms:

- lacksquare Then the distance from s to u is T
- For each neighbor v of u:

- Set alarm for node s at time 0
- Repeat until no more alarms:

- lacksquare Then the distance from s to u is T
- For each neighbor v of u:
 - \circ If there's no alarm for v, set one for T+l(u,v)

- Set alarm for node s at time 0
- Repeat until no more alarms:

- lacksquare Then the distance from s to u is T
- For each neighbor v of u:
 - \circ If there's no alarm for v, set one for T+l(u,v)
 - \circ If v's alarm is later than that, reduce it to this

This is essentially Dijkstra's algorithm!

(This is essentially Dijkstra)

DIJKSTRA'S ALGORITHM

Given a graph G and a starting vertex s, find shortest paths to all reachable vertices

DIJKSTRA'S ALGORITHM

We need to use a **priority queue** with these operations:

- insert
- decrease-key
- delete-min
- make-queue

```
procedure dijkstra(G, l, s)
Input: Graph G = (V, E), directed or undirected;
           positive edge lengths \{l_e: e \in E\}; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
H = makequeue(V) (using dist-values as keys)
while H is not empty:
   u = deletemin(H)
   for all edges (u,v) \in E:
      if dist(v) > dist(u) + l(u, v):
          dist(v) = dist(u) + l(u, v)
          prev(v) = u
          decreasekey(H, v)
```


A: 0 D: 6 B: 3 E: 7 C: 2

A: 0 D: 5 B: 3 E: 6 C: 2

A: 0 D: 5 B: 3 E: 6 C: 2

Finally, we get this tree for paths from A:

Dijkstra's algorithm is basically just BFS:

- Instead of a regular queue,
- use a priority queue to account for lengths

Another way of looking at this:

- Start at s
- ullet Grow the "known region" R to larger distances
- ullet Next node added to R is the one closest to s

How do we find the next node v outside R?

- ullet Consider shortest path $s
 ightarrow \cdots
 ightarrow u
 ightarrow v$
- ullet u closer to s than v
- $u \in R$
- ullet So s o v path extends a currently known path by one edge

How do we find the next node v outside R?

- Try all single-edge extentions, find the shortest path
- ullet Its endpoint is v

That is, v is the node outside R where $\mathrm{distance}(s,u)+l(u,v)$ is minimized, for all $u\in R$

```
Initialize \operatorname{dist}(s) to 0, other \operatorname{dist}(\cdot) values to \infty R=\{\ \} (the ''known region'') while R\neq V:

Pick the node v\not\in R with smallest \operatorname{dist}(\cdot) Add v to R for all edges (v,z)\in E:

if \operatorname{dist}(z)>\operatorname{dist}(v)+l(v,z):
 \operatorname{dist}(z)=\operatorname{dist}(v)+l(v,z)
```

DIJKSTRA'S RUNNING TIME

- ullet makequeue: at most |V| insert operations
- ullet |V| deletemin operations
- ullet |V|+|E| insert/decreasekey operations

Time depends on implementation, but if we use a binary heap:

$$O((|V| + |E|) \log |V|)$$

How can we implement the priority queue?

- Array
- Binary heap
- *d*-ary heap
- Fibonacci heap

ARRAY

- insert, decreasekey: O(1)
- deletemin: O(n)

BINARY HEAP

- Complete binary tree (except last level)
- Key value ≤ that of its children

BINARY HEAP

- insert:
 - place node at bottom of tree and "bubble up"
- decreasekey:
 - "bubble up" (it's already in the tree)
- deletemin:
 - remove (and return) root
 - move last element to root
 - "sift down"

Let's say we have this initial heap:

We insert 7:

Bubble up:

Bubble up:

Now let's run delete-min:

Move last node to root:

Sift down:

Sift down:

d-ARY HEAP

- ullet Like binary heap, but with d children for each node
- Height reduces to

$$\Theta(\log_d n) = \Theta((\log n)/(\log d))$$

- Insert/decreasekey slightly faster
- Deletemin slightly slower

Which implementation is best?

Implementation	deletemin	insert/ decreasekey			
Array	O(V)	O(1)	$O(V ^2)$		
Binary heap	$O(\log V)$	$O(\log V)$	$O((V + E)\log V)$		
d-ary heap	$O(\frac{d \log V }{\log d})$	$O(\frac{\log V }{\log d})$	$O((V \cdot d + E) \frac{\log V }{\log d})$		
Fibonacci heap	$O(\log V)$	O(1) (amortized)	$O(V \log V + E)$		

Suppose now that the graph has negative edges:

Can we just shift everything into the positive range?

Note that the distances in Dijkstra's algorithm are always \leq the true distance.

```
\underline{\text{procedure update}}((u,v) \in E)
\text{dist}(v) = \min\{\text{dist}(v), \text{dist}(u) + l(u,v)\}
```

- If u is the second-last node in shortest path to v, gives exact distance
- Cannot set dist(v) smaller than the true distance

Dijkstra's algorithm can be seen as a sequence of these updates

Consider the shortest path from s to some node t:

- ullet This path has at most |V|-1 edges
- If we did updates in this order:

$$(s, u_1), (u_1, u_2), (u_2, u_3), \ldots, (u_k, t)$$

we would get the correct distance to t.

Consider the shortest path from s to some node t:

- How can we update the right edges in the right order, without already knowing the shortest paths?
- ullet Just update all edges |V|-1 times!
 - \Rightarrow Bellman-Ford algorithm, $O(|V| \cdot |E|)$.

Bellman-Ford algorithm:

```
procedure shortest-paths (G, l, s)
       Directed graph G = (V, E);
Input:
           edge lengths \{l_e:e\in E\} with no negative cycles;
           vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
repeat |V|-1 times:
```

for all $e \in E$:

update(e)

Bellman-Ford algorithm:

	Iteration									
Node	0	1	2	3	4	5	6	7		
S	0	0	0	0	0	0	0	0		
A	∞	10	10	5	5	5	5	5		
В	∞	∞	∞	10	6	5	5	5		
C	∞	∞	∞	∞	11	7	6	6		
D	∞	∞	∞	∞	∞	14	10	9		
\mathbf{E}	∞	∞	12	8	7	7	7	7		
\mathbf{F}	∞	∞	9	9	9	9	9	9		
G	∞	8	8	8	8	8	8	8		

What if there is a negative cycle?

Two kinds of graphs that cannot have negative cycles:

- graphs with no negative edges
- dags

SHORTEST PATHS IN DAGS

Key idea:

 In any path, the vertices appear in increasing linearized order

SHORTEST PATHS IN DAGS

- Linearize the dag using DFS
- Visit the vertices in sorted order
- Update all outgoing edges

```
procedure dag-shortest-paths (G, l, s)
       Dag G=(V,E);
Input:
           edge lengths \{l_e : e \in E\}; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
Linearize G
for each u \in V, in linearized order:
   for all edges (u,v) \in E:
      update (u, v)
```

Recap: How can we linearize a dag algorithmically?

• List nodes in decreasing order of post numbers

 $\mathsf{Order} : B, D, A, C, F, E$

Now let's add some lengths:

Order: B, D, A, C, F, E

B, D, A, C, F, E

B, D, A, C, F, E

	0	1
A	∞	3
В	0	0
С	∞	∞
D	∞	1
Е	∞	∞
F	∞	∞

B, D, A, C, F, E

	0	1	2
A	∞	3	3
В	0	0	0
С	∞	∞	6
D	∞	1	1
Е	∞	∞	∞
F	∞	∞	∞

