Synge Theorem and Corollaries

$JiangZao^*$

November 13, 2024 4:20pm

4 Abstract

Introduced the basic concepts concerning Synge Theorem and the prove of main theorems.

Keywords: Riemannian Geometry, Differential manifold, Space form, Synge Theo rem

9 1 Introduction

1

3

- When I was doing exercises in Riemannian Geometry, some well known results are found,
- which are helpful to have an inner sight into Riemannian Geometry, but hard to remember.
- Hence, I have to write them down for reviewings in the future.

2 Space Form

- Definition 2.1. act in a totally discontinuous manner
- Let (M,g) be a Riemannian manifold. We say group G (some homeomorphisms of M)
- acts in a totally discontinuous manner on M, if for every x in M, there is an
- neighbourhood of x denoted by U, such that for all $g \neq e \in G$, $g(U) \cap U = \emptyset$.
- 18 **Remark 2.1.** Since G is a group, for any $g_1, g_2 \in G$, $g_1^{-1} \circ g_2(U) \cap U = \emptyset$. Thus
- 19 $g_1(U) \cap g_2(U) = \emptyset$.
- 20 Definition 2.2. Covering transformation, deck transformation
- Let (Y_1, p_1) and (Y_2, p_2) are covering spaces of topology space $Y, F: Y_1 \to Y_2$ is called a

^{*}Sun Yat-Sen University, Guang Zhou, China. Email: Jiangzmath@outlook.com.

- covering transformation if $p_2 \circ F = p_1$ and F is continous. Directly from the definition we
- have F is a covering map. So if F is an injection, then the it's a homeomorphism when
- 24 we call F a covering isomorphism.
- If F is a automorphism, which means $Y_1 = Y_2 = Y$, $p_1 = p_2 = p$, then we call it a deck
- transformation of (Y, p). And Deck(Y, p) is all the deck transformations on (Y, p) which
- 27 forms a group.

28 Definition 2.3. Regular covering map

- A map π is a covering map, and in addition for every $x \in M$, any two elements $x_1 \neq x_2$ in
- $\pi^{-1}(\{x\})$, there is a deck transformation f such that $f(x_1) = x_2$, which means Deck(M)
- acts transitively on $\pi^{-1}(\{x\})$.
- The group action is discrete and free means that trajectories of G are discrete and
- there is no fix points for every $g \in G$. G acts transitively means that Gx = M. Then for
- any G acts freely and transitively, there is a natural projection $\pi: M \to M/G$.
- If we let M be a connected and locally path-connected topology space, and G be the
- sets of homeomorphisms that acts in a totally discontinuous manner, then the quotion
- map $\pi: M \to M/G$ is a regular covering map. And homeomorphisms in G is consisted
- 38 of deck transformations.
- Proof. Apparently π is a continuous and surjective. Given ant open set U of M/G, then
- 40 $\widetilde{U} = \pi^{-1}(U)$ is a open set in M, take componets of $\widetilde{U} = \bigcup_{\alpha} U_{\alpha}$. Since G acts in a totally
- discontinuous manner, U_{α} doesn't intersect each other, thus
- 42
- Universal covering map is a covering map such that $\pi_1(\widetilde{M}) = e$.
- A regular covering map also means that $\pi_*(\pi_1(\widetilde{M}))$ is a normal subgroup of $\pi_1(M)$
- 45 Theorem 2.1. (Differential Geometry Xu senlin Page. 395) M has a universal
- covering space, then the covering space is unique up to the equivalence of covering isomor-
- 47 phism. M is semi locally simply connected, then M has a universal covering space.
- Theorem 2.2. (Xu Senlin Page.395) Let (\widetilde{M}, p) is a universal covering of M. $x_1, x_2 \in \widetilde{M}, p(x_i) = x$,
- Then there is a unique deck transformation \widetilde{h} such that $\widetilde{h}(x_1) = x_2$
- Theorem 2.3. (Do Carmo Riemannian Geometry page.165) Let (M,g) be a
- complete Riemannian manifold with constant sectional curvature $K(i.e.\ a\ space\ form)$,
- without loss of generality K is chosen to be -1, 0 or 1. Then M is isometric to \overline{M}/Γ ,

where \widetilde{M} is the universal covering space of M, Γ is a subgroup of isometries which acts in a totally discontinuous manner on \widetilde{M} , actually it's the group of deck transformations on \widetilde{M} and the metric on \widetilde{M} is induced from the covering map $\pi: \widetilde{M} \to \widetilde{M}/\Gamma$.

 \square

57 Remark 2.2.

- Now the covering map is regular. [prove it]
- If the fiber of an universal covering map of M has finite cardinality, then the fundamental group of M is finite.

61 3 Fix Point

- 62 Definition 3.1. (orientation)
- 63 Theorem 3.1. (Kobayashi Transformation groups in Differential Geometry
- page.63) Let M be a compact orientable manifold with positive sectional curvature. Let f be an isometry of M.
- If dim(M) is even and f is orientation preserving, then f has a fix point.
- If dim(M) is odd and f is orientation-inversing, then f has a fix point.

68 Proof.

- Theorem 3.2. (Kobayashi page.65) Synge Theorem let (M, g) be a compact Riemannian manifold positive sectional curvature, worth noting that every compact Riemannian manifold is complete by Hopf-Rinow theorem.
- if dim(M) is even and orientable, then M is simply connected.
- \circ if dim(M) is odd, then M is orientable
- Proof. If dim(M) is even and orientable, then we consider it's universal covering \widetilde{M} , with $\pi: \widetilde{M} \to M$ is the covering map, we choose the orientation of \widetilde{M} which forces π is orientation preserving. And the metric on \widetilde{M} is π^*g which is locally isometric to M.
- We now have every deck transformation (i.e. covering transformation) f on \widetilde{M} is orientation preserving. Since for every $x \in \widetilde{M} = \pi \circ f = \pi$, then $(d\pi)_{f(x)} \circ (df)_x = (d\pi)_x$.
- Then they must have fix points, but every covering transformation must have no fix points, and the proof is at following.

If $f(x_1) = x_2, x_1 \neq x_2$, $\pi(x_1) = \pi(x_2)$ and there is a fix point x of f, then we lift the paths from x to x_1 , and x to x_2 . By the uniqueness of lifting, the two lifting curves should be identical, which contradicts $x_1 \neq x_2$.

84 4 Citation

85 I am citing [?] as an example.