#### § 45. МЕХАНІЧНІ ХВИЛІ

Механічні коливання надзвичайно поширені в природі та техніці. Коливається поршень у двигуні автомобіля, а разом із ним коливається (вібрує) сам двигун, коливаються земна кора під час землетрусу, повітря в духових музичних інструментах, поверхня води від кинутого у воду каменя і т. д. Якщо, виникнувши в одному місці, коливання поширюються в сусідні ділянки простору, то говорять про хвильовий рух — хвилі. Про те, що таке механічна хвиля і які особливості має хвильовий рух, ви дізнаєтесь із цього параграфа.

#### Яким є механізм поширення механічної хвилі

Поширення в просторі коливань речовини або поля називають хвилею.

За фізичною природою розрізняють електромагнітні хвилі (наприклад, радіохвилі, світло, у-випромінювання) і механічні хвилі. Механічні хвилі бувають двох видів: пружні хвилі (наприклад, звукові та сейсмічні) і хвилі на поверхні рідини. Ми зупинимося на вивченні тільки пружних механічних хвиль.

Пружною механічною хвилею називають поширення коливань у пружному середовищі.

Середовище називають *пружним*, якщо між його частинками існують сили взаємодії, що перешкоджають деформації цього середовища.



Рис. 45.1. Поширення хвилі по пружному шнуру



**Рис. 45.2.** Механізм поширення поперечної хвилі ( $\lambda$  — довжина хвилі)

Наприклад, якщо взяти довгий гумовий шнур, один кінець якого закріпити, а другому кінцю надати коливального руху, то ці коливання поступово передадуться іншим частинам шнура — по шнуру побіжить хвиля (рис. 45.1).

Розглянемо процес поширення такої хвилі на моделі: подамо гумовий шнур у вигляді системи однакових кульок (кульки моделюють частинки гуми), з'єднаних пружними невагомими пружинами (пружини моделюють пружну взаємодію частинок) (рис. 45.2, a).

Якщо відхилити кульку 1 (кінець шнура) від положення рівноваги, то пружина розтягнеться і на кульку 2 почне діяти сила пружності, у результаті чого кулька 2 теж почне рух. Оскільки кулька інертна, то її рух почнеться не відразу, а через певний проміжок часу. Рух кульки 2 викличе рух кульки 3 (рис. 45.2, 6).

Якщо надати кульці 1 коливального руху, то кулька 2 теж почне коливатись, але з деяким запізненням; коливання кульки 2 спричинять коливання кульки 3, далі кульки 4 і т. д. (рйс. 45.2,  $e-\partial$ ). Зрештою всі кульки почнуть рух і будуть коливатися з тією самою частотою, що й кулька 1, однак їхні коливання відрізнятимуться фазою (рис. 45.2, e).

У загальному вигляді механізм поширення пружної хвилі є таким. Тіло, що коливається в пружному середовищі, — джерело хвилі — діє на прилеглі до нього частинки середовища і спонукає їх робити вимушені коливання. При цьому відстані між частинками, які коливаються, і сусідніми частинками то збільшуються, то зменшуються. У результаті виникають сили пружності, які зближують частинки середовища, якщо вони віддаляються одна від одної, і навпаки — розштовхують ці частинки, якщо вони зближуються. Поступово всі частинки, одна за одною, долучаються до коливального руху — у середовищі поширюється хвиля.

# 🖷 Які особливості має хвильовий рух

Повернемося до моделі пружного шнура (див. рис. 45.2) і виділимо деякі особливості хвильового руху.

- 1. Будь-які хвилі мають свій початок від джерела коливань; коливання частинок у процесі поширення хвилі є вимушеними, їхня частота дорівнює частоті коливань джерела.
- 2. Хвиля поширюється в просторі не миттєво, а з певною швидкістю. Після того як одній частинці було надано коливального руху, інші частинки починають коливатися не відразу, а через деякий час.
- 3. Хвильовий рух не супроводжується перенесенням речовини — частинки середовища тільки коливаються біля деякого положення рівноваги. У будь-якій механічній хвилі одночасно існують два види руху: коливання частинок середовища та поширення коливань. Оскільки частинки середовища можуть здійснювати вимушені коливання тільки тоді, коли їм передається енергія, то під час хвильового руху відбувається перенесення енергії без перенесення речовини.

## Поперечні та поздовжні хвилі

Зверніть увагу на поширення хвилі в пружному шнурі: хвиля поширюється вздовж шнура, а окремі частинки шнура коливаються перпендикулярно до поширення хвилі (див. рис. 45.1, 45.3).

Хвиля, у якій частинки середовища коливаються перпендикулярно до напрямку поширення хвилі, називається поперечною.

У поперечній хвилі деформації являють собою зсуви одних шарів середовища відносно інших (рис. 45.3, б). Деформація зсуву спричиняє появу сил пружності тільки у твердих тілах, тому поперечні хвилі можуть поширюватися тільки у твердих тілах.

Розглянемо інший приклад поширення хвилі. Візьмемо довгу м'яку пружину і закріпимо її один кінець.



Рис. 45.3. У поперечній хвилі частинки коливаються перпендикулярно до напрямку поширення хвилі (а); коливання частинок супроводжуються деформацією зсуву (б)



Рис. 45.4. Поширення хвилі в м'якій тружині



Рис. 45.5. У поздовжній хвилі частинки коливаються вздовж напрямку поширення хвилі (а); коливання частинок супроводжуються деформаціями розтягнення та стискання (б)

По другому кінцю пружини здійснимо серію послідовних ударів і побачимо, що коливання витків пружини передаватимуться вздовж шнура — по пружині поширюватиметься хвиля (рис. 45.4). Однак у цьому випадку окремі витки пружини коливатимуться вздовж напрямку поширення хвилі, а не перпендикулярно до нього.

Хвиля, у якій частинки коливаються вздовж напрямку поширення хвилі, називається **поздовжньою.** 

У поздовжній хвилі деформації являють собою стискання або розтягнення одних шарів середовища відносно інших (рис. 45.5). Але деформація стиску завжди (у будь-якому середовищі) супроводжується виникненням сил пружності. Тому поздовжні хвилі можуть поширюватись у всіх середовищах (рідких, твердих, газоподібних).

Зазначимо, що хвилі на поверхні рідини не є ані поздовжніми, ані поперечними. Вони мають складний поздовжньопоперечний характер, при цьому частинки рідини рухаються по еліпсах. У цьому легко переконатися, якщо поспостерігати переміщення на воді кинутої в річку легкої тріски.

## Як визначити довжину хвилі

Повернемося до рис. 45.2. Нехай кулька 1 здійснила одне повне коливання, тобто час її руху дорівнює одному періоду (t=T) (рис. 45.2,  $\partial$ ). За цей час хвиля поширилася до кульки 13. Неважко помітити, що надалі кульки 1 і 13 коливатимуться абсолютно однаково — синхронно, в однаковій фазі. Очевидно, що однаково коливатимуться також кульки 2 і 14, 3 і 15 і т. д. (рис. 45.2, e).

Довжина хвилі — це відстань між двома найближчими точками, які коливаються в однаковій фазі.

Довжину хвилі позначають символом  $\lambda$  і вимірюють у метрах (м). Зверніть увагу: за час одного повного коливання (час, який дорівнює одному періоду коливань) хвиля поширилася на відстань, що дорівнює довжині цієї хвилі. Отже, можна дати ще одне означення довжини хвилі:

**Довжина хвилі** — це відстань, на яку поширюється хвиля за час, що дорівнює періоду коливань.

Оскільки швидкість поширення хвилі для даного середовища — величина постійна, її можна обчислити за формулою:  $v = \frac{s}{t}$ .

Якщо час дорівнює періоду коливань (t=T), то відстань, на яку пошириться хвиля, дорівнює довжині хвилі ( $s=\lambda$ ), тому швидкість поширення хвилі пов'язана з довжиною хвилі співвідношенням:  $v=\frac{\lambda}{T}$ .

Згадаємо, що  $\frac{1}{T}$  = v, де v — частота коливань частинки у квилі, і запишемо формулу хвилі:

$$v = \lambda v$$

Зверніть увагу: швидкість поширення хвилі в основному визначається пружними властивостями середовища, в якому хвиля поширюється, тому, якщо хвиля (наприклад, звукова) переходить з одного середовища в інше, то швидкість її поширення змінюється. Частота коливань частинок у хвилі визначається частотою коливань джерела хвилі, тому залишиться незмінною. Отже, відповідно до формули хвилі в разі переходу хвилі з одного середовища в інше довжина хвилі змінюється.

#### Два роди періодичності хвилі

Формула  $v = \frac{\lambda}{T}$  пов'язує два роди періодичності хвилі, тому що хвиля періодична в часі та в просторі. Що це означає?

Розглянувши рух будь-якої частинки середовища, де поширюється хвиля, можна зазначити, що ця частинка здійснює періодичні коливання в часі. Через певний проміжок часу Т коливання частинки повністю повторюються (рис. 45.6). Період Т характеризує періодичність хвилі в часі.

Якщо зафіксувати даний момент часу, то через відстань, яка дорівнює довжині λ хвилі, форма хвилі повториться (рис. 45.7). Частинки, розташовані на відстані, яка дорівнює довжині хвилі, коливаються однаково. Тому довжина хвилі характеризує періодичність хвилі в просторі.



**Рис. 45.6.** Через час, який дорівнює періоду T, коливання частинки повторюються



Рис. 45.7. Через відстань, яка дорівнює довжині  $\lambda$  хвилі, форма хвилі повторюється

## Учимося розв'язувати задачі

**Зодача.** На рис. 1 подано графік поперечної хвилі, що поширюється вправо. У якому напрямку в даний момент часу рухаються частинки A, B і C хвилі?





Розв'язання. Нехай через певний невеликий проміжок часу Δt хвиля змістилася на відстань Δs. Оскільки хвиля зміщується вправо, а форма хвилі з часом не змінюється, то її графік через цей проміжок набуде вигляду, показаного на рис. 2 пунктирною лінією. Хвиля поперечна, тому її частинки рухаються перпендикулярно до напрямку поширення хвилі.

З рисунка бачимо, що частинка A в наступний момент часу виявиться нижче від свого початкового положення, отже, швидкість її руху в момент початку спостереження напрямлена вниз; частинка В переміститься вище, отже, швидкість її руху напрямлена вгору; швидкість руху частинки С напрямлена вниз.

 $Bi\partial no Bi\partial b$ : частинки A і C рухаються вниз, частинка B — вгору.



#### Підбиваємо підсумки

Поширення в просторі коливань речовини або поля називають хвилею. Пружною хвилею називають поширення коливань у пружному середовищі.

Хвиля поширюється в просторі не миттєво, а з певною швидкістю. Під час поширення хвилі відбувається перенесення енергії без перенесення речовини.

Хвиля, в якій частинки середовища коливаються перпендикулярно до напрямку поширення хвилі, називається поперечною. Хвиля, в якій частинки коливаються вздовж напрямку поширення хвилі, називається поздовжньою.

Хвиля періодична в часі та просторі. Періодичність хвилі в часі характеризується періодом коливань кожної окремої точки хвилі. Періодичність хвилі у просторі характеризується довжиною хвилі.

Довжина хвилі — це відстань між двома найближчими точками, які коливаються в однаковій фазі; це відстань, на яку поширюється хвиля за час, що дорівнює періоду. Довжина  $\lambda$  хвилі і частота  $\nu$  коливань частинок середовища, в якому поширюється ця хвиля, пов'язані формулою хвилі  $\nu = \lambda \nu$ , де  $\nu$  — швидкість поширення хвилі.



1. Що таке хвиля? 2. Які хвилі називають пружними? 3. Опишіть механізм утворення хвилі, 4. Назвіть основні особливості хвильового руху. 5. Які хвилі називають поздовжніми? поперечними? У яких середовищах вони поширюються? 6. Що таке довжина хвилі? Від чого вона залежить? 7. Що означає вираз «хвиля періодична в часі та просторі»?



У результаті вибуху, зробленого геологами, у земній корі поширилася хвиля зі швидкістю 4,5 км/с. Відбита від глибоких шарів Землі, ця хвиля була зафіксована на поверхні Землі через 20 с після вибуху. На якій глибині залягає порода, густина якої різко відрізняється від густини земної кори?

- В океані довжина хвилі сягає 270 м, а її період 13,5 с. Визначте швидкість поширення такої хвилі.
- 3. Людина, стоячи на березі моря, визначила, що відстань між сусідніми гребенями хвиль, які йдуть одна за одною, дорівнює 15 м. Крім того, вона підрахувала, що за 75 с повз неї пройшло 16 хвильових гребенів, рахуючи з першого. Визначте швидкість поширення хвиль.
- 4. На рис. 1 дано графіки поперечних хвиль і показано напрямки їхнього поширення. У якому напрямку зміщуються частинки хвиль, зазначені на рисунку?
- На рис. 2 дано графіки поперечних хвиль і показано напрямок коливань однієї з їхніх частинок. У якому напрямку поширюються хвилі?
- **6\*.** За графіком коливань джерела хвилі (графік залежності x(t)) (рис. 3) побудуйте графік хвилі, яка йде від нього (графік залежності x(s)). Швидкість поширення хвилі 20 м/с.





В. В. Панасюк

#### ФІЗИКА ТА ТЕХНІКА В УКРАЇНІ

Фізико-механічний інститут ім. Г. В. Карпенка НАН України (Львів)

Інститут, заснований у 1951 р., зараз є всесвітньо визнаним науковим центром у галузі механіки руйнування та міцності матеріалів, водневого матеріалознавства, фізико-хімічних процесів корозії та протикорозійного захисту металів, контролю матеріалів та діагностики конструкцій. Науковці Інституту створили теорію адсорбційної та водневої втоми сталей; розвинули теорію граничної рівноваги деформованих тіл із дефектами типу тріщин; започаткували новий науковий напрямок — фізико-хімічну механіку матеріалів.

Інститут займається також математичною теорією дифракції хвиль, теорією сигналів і теорією електричних кіл. Результати наукових досліджень співробітників Інституту опубліковано більш ніж у 250 монографіях, серед яких — 12-томна фундаментальна праця «Механіка руйнування та міцність матеріалів».

Із 1971 р. директором Інституту є академік НАНУ Володимир Васильович Панасюк (див. фото) — лауреат багатьох наукових відзнак, зокрема найвищої нагороди Європейського товариства з цілісності конструкцій (ESIS) — медалі Ґріффітса.