Device Modeling Report

COMPONENTS: MOSFET: OPERATIONAL AMPLIFIER

PART NUMBER:NJM3404A

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

Spice Model


```
*$
* PART NUMBER:NJM3404A
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM3404A OUT1 -IN1 +IN1 VEE +IN2 -IN2 OUT2 VCC
       +IN1 -IN1 VCC VEE OUT1 NJM3404A_SUB
X U1
X_U2
       +IN2 -IN2 VCC VEE OUT2 NJM3404A_SUB
.ends NJM3404A
.subckt NJM3404A SUB 1 2 3 4 5
 c1 11 12 9.5263E-12
 c2 6 7 33.000E-12
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 14.301E6 -1E3 1E3 14E6 -14E6
 ga 6 0 11 12 260.13E-6
 gcm 0 6 10 99 8.8626E-9
 iee 3 10 dc 39.741E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 4 11 3.8443E3
 rc2 4 12 3.8443E3
 re1 13 10 2.0981E3
 re2 14 10 2.0981E3
 ree 10 99 5.0326E6
 ro1 8 5 50
 ro2 7 99 25
 rp 3 4 1.8043E3
 vb 9 0 dc 0
    3 53 dc 1.8080
 ve 54 4 dc 1.8080
 vlim 7 8 dc 0
 vlp 91 0 dc 29.500
 vln 0 92 dc 29.500
.model dx D(ls=800.00E-18)
.model dy D(ls=800.00E-18 Rs=1m Cjo=10p)
.model qx1 PNP(ls=800.00E-18 Bf=267.80)
.model qx2 PNP(ls=864.3162E-18 Bf=296.92)
.ends
*$
```

Output Voltage Swing

Simulation result

Evaluation circuit

Output Voltage Swing	Measurement	Simulation	%Error
+Vout(V)	+14	+13.994	-0.043
-Vout(V)	-14	-13.994	-0.043

Input Offset Voltage

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Vos (mV)	2	2.0352	1.76

Slew Rate

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Slew Rate(v/us)	1.2	1.195	-0.417

Input current

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
lb (nA)	70	70.010	0.014
Ibos (nA)	5	5.1327	2.654

Open Loop Voltage Gain vs. Frequency

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
f-0dB(MHz)	1.2	1.2046	0.383
Av-dc	100	100.053	0.053

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

CMRR=20*LOG(100612.05/3.1545) = 90.074dB

	Measurement	Simulation	%Error
CMRR(dB)	90	90.074	0.082

Remark Output Voltage Swing

Before

Remark Input Offset Voltage

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain vs. Frequency

Before

Remark Common-Mode Rejection Voltage gain

Before

