

www.**eritecampinas**.com.br

Colégic

PROFESSOR DANILO

ITINERÁRIO DE CIÊNCIAS - ONDAS ESTACIONÁRIAS UNIDIMENSIONAIS - 13/05/2024

Veja teoria abaixo e discussão com o professor utilizando programa gráfico. Vamos ver mais detalhes em exercícios.

AMBAS AS EXTREMIDADES FIXAS

- Imagine uma onda produzida em uma corda com ambas as extremidades presas
- Quando refletida ela volta com inversão de fase

- Se o comprimento do fio tiver tamanho adequado dizemos que a onda no fio é uma onda estacionária, pois vemos a onda como se estivesse parada
- Vamos estudar os harmônicos nesse caso

Q. 1 – ONDA ESTACIONÁRIA EM CORDAS – PRIMEIRO HARMÔNICO

Q. 2 – ONDA ESTACIONÁRIA EM CORDAS – SEGUNDO HARMÔNICO

Q. 3 – ONDA ESTACIONÁRIA EM CORDAS – TERCEIRO HARMÔNICO

Q. 4 – ONDA ESTACIONÁRIA EM CORDAS – QUARTO HARMÔNICO

Q. 5 – ONDA ESTACIONÁRIA EM CORDAS – n-ÉSIMO HARMÔNICO

www.**eritecampinas**.com.br

PROFESSOR DANILO

ITINERÁRIO DE CIÊNCIAS - ONDAS ESTACIONÁRIAS UNIDIMENSIONAIS - 13/05/2024

RESUMINDO O QUE APRENDEMOS:				
	1° Harmônico	$\lambda_1 = \frac{2L}{1}$		
	2° Harmônico	$\lambda_2 = \frac{2L}{2} = L$		
	3° Harmônico	$\lambda_3 = \frac{2L}{3}$		
	4° Harmônico	$\lambda_4 = \frac{2L}{4} = \frac{L}{2}$		
	n° Harmônico	$\lambda_n = \frac{2L}{n}$		
TUBOS SONOROS				

- Instrumentos musicais cujo som é produzido por sopro segue a mesma lógica
- Em geral um dos lados é aberto e o outro é ou aberto ou fechado
 - Quando ambos os lados são abertos, chamamos de tubo aberto;
 - Quando uma extremidade é fechada e a outra aberta chamamos de tubo fechado.

AMBAS AS EXTREMIDADES ABERTAS/LIVRES

Q. 6 – ONDA ESTACIONÁRIA EM TUBO ABERTO – PRIMEIRO HARMÔNICO

$O_{1} = ONDA$	ESTACIONÁRIA EM TUBO ABERTO -
	SEGUNDO HARMÔNICO

Q. 8 – ONDA ESTACIONÁRIA EM TUBO ABERTO – TERCEIRO HARMÔNICO

Q. 9 – ONDA ESTACIONÁRIA EM TUBO ABERTO – QUARTO HARMÔNICO

www.**eritecampinas**.com.br

PROFESSOR DANILO

ITINERÁRIO DE CIÊNCIAS - ONDAS ESTACIONÁRIAS UNIDIMENSIONAIS - 13/05/2024

Q. 10 – ONDA ESTACIONÁRIA EM TUBO ABERTO – n-ÉSIMO HARMÔNICO

RESUMINDO O QUE APRENDEMOS:

Figura 1: Representação de um tubo sonoro com ambas as extremidades abertas e em seu primeiro harmônico

1° Harmônico	$L = 2\frac{\lambda_1}{4} \Rightarrow \lambda_1 = \frac{4L}{2} \Rightarrow \lambda_1 = \frac{4L}{2 \cdot 1}$
2° Harmônico	$L = 4 \frac{\lambda_2}{4} \Longrightarrow \lambda_2 = \frac{4L}{2 \cdot 2}$
3° Harmônico	$\lambda_3 = \frac{4L}{2 \cdot 3}$
4° Harmônico	$\lambda_4 = \frac{2L}{4}$
n° Harmônico	$\lambda_n = \frac{2L}{n}$

UMA EXTREMIDADE ABERTA E OUTRA FECHADA

Q. 11 – ONDA ESTACIONÁRIA EM TUBO ABERTO – PRIMEIRO HARMÔNICO

Q. 12 – ONDA ESTACIONÁRIA EM TUBO ABERTO – SEGUNDO HARMÔNICO

Q. 13 – ONDA ESTACIONÁRIA EM TUBO ABERTO – TERCEIRO HARMÔNICO

PROFESSOR DANILO

(19) 32SI 101S

www.ecitecampinas.com.br

ITINERÁRIO DE CIÊNCIAS - ONDAS ESTACIONÁRIAS UNIDIMENSIONAIS - 13/05/2024

Q. 14 – ONDA ESTACIONÁRIA EM TUBO ABERTO – QUARTO HARMÔNICO

Q. 15 – ONDA ESTACIONÁRIA EM TUBO ABERTO – n-ÉSIMO HARMÔNICO

RESUMINDO O QUE APRENDEMOS:

Figura 2: Representação de um tubo sonoro com uma extremidade fechada e outra aberta. Como tubos sonoros com ambas as extremidades fechadas é impossível para um instrumento musical, dizemos que isso é um tubo fechado

1° Harmônico	$L = 1 \frac{\lambda_1}{4} \Longrightarrow \lambda_1 = \frac{4L}{1}$	
2° Harmônico	Não existe	
3° Harmônico	$\lambda_3 = \frac{4L}{3}$	
4° Harmônico	Não existe	
•••	•••	
n° Harmônico	$\lambda_n = \frac{4L}{n}$	

Note que não existe os harmônicos pares

Veja animações bem interessantes, clicando ou lendo o QR-Code:

