#### Digital Image Processing (CSE/ECE 478)

Lecture 6 : Spatial Filters (Part 2)





#### Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

Point to Point





Neighborhood to Point

Global Attribute to Point



#### Smoothing as Averaging

H — Mask

1/9 1/9 1/9

1/9 1/9 Filter

1/9 1/9 1/9

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$

$$I'(u,v) \leftarrow \sum_{i=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$
 •  $H(i,j)$ 

#### Effect of Mask Size

Original Image



[3x3]



[5x5]



[7x7]



#### Effect of Repeated Smoothing







Before After

NOTE: Can get the effect of larger filters by
smoothing repeatedly with smaller filters

After repeated averaging

#### Gaussian Smoothing

Mask weights are samples of a Gaussian Function



| I | 4  | 6  | 4  | I |
|---|----|----|----|---|
| 4 | 16 | 26 | 16 | 4 |
| 6 | 26 | 43 | 26 | 6 |
| 4 | 16 | 26 | 16 | 4 |
| I | 4  | 6  | 4  | I |

 $5\times5$  Gaussian filter, $\sigma=1$ 

## Sharpening Filter

Objective of sharpening is to highlight fine detail in an image or to enhance detail that has been blurred.

▶ Smoothing → Averaging → Summation → Integration

▶ Sharpening → Difference

#### First Derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

#### Second Derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$



#### Laplacian Filter

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2}$$

$$\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)$$

| 0 | 1          | 0 |
|---|------------|---|
| 1 | <b>-</b> 4 | 1 |
| 0 | 1          | 0 |

# Laplacian Filters $\nabla^2 I(u,v)$

I(u, v)



 $abla^2 I(u,v) + 128$ (For Visualization)





I'(u, v)



#### Unsharp Masking (and Highboost Filtering)

High boost filter: amplify input image, then subtract a lowpass image

$$Highboost = A \ Original - Lowpass$$
  
=  $(A-1) \ Original + Original - Lowpass$   
=  $(A-1) \ Original + Highpass$ 

# Sobel Edge Masks

#### Original



| _       |                    |   |          |
|---------|--------------------|---|----------|
| Sobel X | $\lceil -1 \rceil$ | 0 | $+1^{-}$ |
|         | -2                 | 0 | +2       |
| Sohel X | -1                 | 0 | +1       |



#### Laplacian



Sobel Y 
$$\begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$



| 0  | -1 | 0  |
|----|----|----|
| -1 | 4  | -1 |
| 0  | -1 | 0  |

#### Edge Magnitude and Gradient





## Image Padding



zero



## Spatial Domain Filtering - Approaches

Linear

Non-linear

# Other Spatial Filters (non linear)









max filter

# Other Spatial Filters (non linear)

salt noise







min filter

# Other Spatial Filters (median filter – non linear)

salt & pepper noise







 $\max$ , min, median  $\rightarrow$  also known as order statistic filters

#### Other Spatial Filters

- Geometric mean
- Harmonic mean
- Contra harmonic mean
- Mid Point filter
- Alpha trimmed mean filter



# Bilateral Filtering







Bilateral Filtering















**Figure 3.20** Bilateral filtering (Durand and Dorsey 2002) © 2002 ACM: (a) noisy step edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d) bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

#### Bilateral Filter

$$g(i,j) = \frac{\sum_{k,l} f(k,l)w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}.$$
 (3.34)

The weighting coefficient w(i, j, k, l) depends on the product of a *domain kernel* (Figure 3.19c),

$$\longrightarrow d(i,j,k,l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2}\right),$$

and a data-dependent range kernel (Figure 3.19d),

$$r(i, j, k, l) = \exp\left(-\frac{\|f(i, j) - f(k, l)\|^2}{2\sigma_r^2}\right).$$





#### Bilateral Filter

 $_{\rm I}$ 







The weighting coefficient w(i, j, k, l) depends on the product of a *domain kernel* (Figure 3.19c),

$$d(i, j, k, l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2}\right),$$
(3.35)

and a data-dependent range kernel (Figure 3.19d),

$$r(i, j, k, l) = \exp\left(-\frac{\|f(i, j) - f(k, l)\|^2}{2\sigma_r^2}\right).$$





$$w(i,j,k,l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2} - \frac{\|f(i,j) - f(k,l)\|^2}{2\sigma_r^2}\right).$$
(3.37)









The weighting coefficient w(i, j, k, l) depends on the product of a *domain kernel* (Figure 3.19c),

$$d(i, j, k, l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2}\right),\tag{3.35}$$

and a data-dependent range kernel (Figure 3.19d),

$$r(i, j, k, l) = \exp\left(-\frac{\|f(i, j) - f(k, l)\|^2}{2\sigma_r^2}\right).$$



When multiplied together, these yield the data-dependent bilateral weight function

$$w(i,j,k,l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2} - \frac{\|f(i,j) - f(k,l)\|^2}{2\sigma_r^2}\right).$$
(3.37)

## Usual Gaussian Filtering





Same Gaussian kernel everywhere.

## Bilateral Filtering



The kernel shape depends on the image content.

Noisy input

Bilateral filter 7x7 window





Bilateral filter Median 3x3



Bilateral filter Median



#### Other Important Filters

- Laplacian of Gaussian
  - Noise Suppression

Robert Collins CSE486

#### LoG Filter

- First smooth (Gaussian filter),
- Then, find zero-crossings (Laplacian filter):

$$- O(x,y) = \nabla^2(I(x,y) * G(x,y))$$

Just another linear filter.

$$\underbrace{\nabla^2 g f(x,y) \otimes G(x,y)} = \underbrace{\nabla^2 G(x,y) \otimes f(x,y)}$$

Laplacian of Gaussian-filtered image

Laplacian of Gaussian (LoG) -filtered image

Do you see the distinction?

#### Other Important Filters

- Laplacian of Gaussian
  - Noise Suppression

Robert Collins CSE486

#### 1D Gaussian and Derivatives

$$g(x) = e^{-\frac{x^2}{2\sigma^2}}$$

$$g'(x) = -\frac{1}{2\sigma^2} 2xe^{-\frac{x^2}{2\sigma^2}} = -\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$$

$$g''(x) = (\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})e^{-\frac{x^2}{2\sigma^2}}$$



### Other Important Filters

- Laplacian of Gaussian
  - Noise Suppression

Robert Collins CSE486

#### Second Derivative of a Gaussian

$$g''(x) = (\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})e^{-\frac{x^2}{2\sigma^2}}$$





LoG "Mexican Hat"

### Other Important Filters

- Laplacian of Gaussian
  - Noise Suppression

- Difference of Gaussian
  - Band-pass

# Efficient Implementation Approximating LoG with DoG

LoG can be approximate by a Difference of two Gaussians (DoG) at different scales





#### Remember this?



A system  ${\cal H}$  is **linear** if it satisfies the following two properties:

#### 1) Scaling

$$\mathcal{H}\{\alpha x\} = \alpha \mathcal{H} \quad \forall \alpha \in \mathbb{C}$$

$$x \longrightarrow \mathcal{H} \longrightarrow y \qquad \alpha x \longrightarrow \mathcal{H} \longrightarrow \alpha y$$

#### 2) Additivity

If 
$$y_1 = \mathcal{H}\{x_1\}$$
 and  $y_2 = \mathcal{H}\{x_2\}$  then  $\mathcal{H}\{x_1 + x_2\} = y_1 + y_2$ 

$$x_1 \longrightarrow \mathcal{H} \longrightarrow y_1 \qquad x_2 \longrightarrow \mathcal{H} \longrightarrow y_2$$

$$x_1 + x_2 \longrightarrow \mathcal{H} \longrightarrow y_1 + y_2$$



A system  ${\cal H}$  is **linear** if it satisfies the following two properties:

#### 1) Scaling

$$\mathcal{H}\{\alpha x\} = \alpha \mathcal{H} \quad \forall \, \alpha \in \mathbb{C}$$

$$x \longrightarrow \mathcal{H} \longrightarrow y \qquad \qquad \alpha x \longrightarrow \mathcal{H} \longrightarrow \alpha y$$

#### 2) Additivity

If 
$$y_1 = \mathcal{H}\{x_1\}$$
 and  $y_2 = \mathcal{H}\{x_2\}$  then  $\mathcal{H}\{x_1 + x_2\} = y_1 + y_2$ 

$$x_1 \longrightarrow \mathcal{H} \longrightarrow y_1 \qquad x_2 \longrightarrow \mathcal{H} \longrightarrow y_2$$

$$x_1 + x_2 \longrightarrow \mathcal{H} \longrightarrow y_1 + y_2$$



A system  ${\cal H}$  is **linear** if it satisfies the following two properties:

#### 1) Scaling

$$\mathcal{H}\{\alpha x\} = \alpha \mathcal{H} \quad \forall \, \alpha \in \mathbb{C}$$

$$x \longrightarrow \mathcal{H} \longrightarrow y \qquad \alpha x \longrightarrow \mathcal{H} \longrightarrow \alpha y$$

#### 2) Additivity

If 
$$y_1 = \mathcal{H}\{x_1\}$$
 and  $y_2 = \mathcal{H}\{x_2\}$  then  $\mathcal{H}\{x_1 + x_2\} = y_1 + y_2$ 

$$x_1 \longrightarrow \mathcal{H} \longrightarrow y_1 \qquad x_2 \longrightarrow \mathcal{H} \longrightarrow y_2$$

$$x_1 + x_2 \longrightarrow \mathcal{H} \longrightarrow y_1 + y_2$$

## **Linear Systems**



### Shift-Invariant Systems



E.g. 
$$x1[n]=[4,2,3,1,5,9]$$

- Mean filter (w=3)
- Zero padding
- y1[n] = ?

### Shift-Invariant Systems



E.g. 
$$x1[n]=[4,2,3,1,5,9]$$

- Mean filter (w=3)
- Zero padding
- y1[n] = ?

$$x2[n]=x1[n-3]=[\mathbf{0},0,0,4,2,3,1,5,9]$$
  
 $y2[n]=?$ 

- Linearity and Shift-invariance are independent properties
- Shift-invariance does not imply linearity (and vice-versa)
- Linear, Shift-Invariant Systems?

| Input —                        | → LTI system —          | → Output                  |
|--------------------------------|-------------------------|---------------------------|
| Pre-synaptic action potentials | Synapse                 | Post-synaptic conductance |
| Visual stimulus                | Eye                     | Retinal image             |
| Stimulus contrast              | Retinal ganglion cell   | Firing rate               |
| Injected Current               | Passive neural membrane | Membrane potential        |

- Impulse Function

$$\delta[n] = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$$





#### **Impulse Function**

#### Impulse Response of a system T













If system is linear



If system is shift-invariant









$$x[0] = x[0] \cdot \delta[n] = 2 \cdot \delta[n - 0]$$

$$x[1] = x[1] \cdot \delta[n - 1] = 3 \cdot \delta[n - 1]$$

$$x[2] = x[2] \cdot \delta[n - 2] = 1 \cdot \delta[n - 2]$$

$$x[n] = x[0] \cdot \delta[n-0] + x[1] \cdot \delta[n-1] + x[2] \cdot \delta[n-2]$$

$$x[n] = \sum_{k} x[k] \cdot \delta[n-k]$$

A signal can be written as sum of scaled and shifted delta functions



$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k]$$

$$\sum_k c_k \cdot \delta[n-k] \longrightarrow \text{system}$$

$$y[n] = \sum x[k] \cdot h[n-k]$$

Because system is LSI

$$T\left(\sum_{k} c_{k} \delta[n-k]\right)$$

$$= \sum_{k} T\left(c_{k} \delta[n-k]\right)$$

$$= \sum_{k} c_{k} T\left(\delta[n-k]\right)$$

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k]$$



Because system is LSI

$$y[n] = \sum_{\mathbf{k}} \widehat{x[k]} \cdot h[n-k]$$

Convolution of x and h : y = x \* h



$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k]$$

A signal can be written as sum of scaled and shifted delta functions

2-D





$$x[m,n] = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j] \cdot \delta[m-i,n-j]$$

A signal can be written as sum of scaled and shifted delta functions

$$x[m,n] = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j] \cdot \delta[m-i,n-j]$$

$$y[m,n] = x[m,n] * h[m,n] = \sum_{i=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j] \cdot h[m-i,n-j]$$





$$x[m,n] = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j] \cdot \delta[m-i,n-j]$$

$$y[m,n] = x[m,n] * h[m,n] = \sum_{i=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j] \cdot h[m-i,n-j]$$





$$\begin{split} x[m,n] &= \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j] \cdot \delta[m-i,n-j] \\ y[m,n] &= x[m,n] * h[m,n] = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j] \cdot h[m-i,n-j] \\ & \text{input} \\ & \text{input}$$

 $+x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1]$ 

$$x[m,n] = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j] \cdot \delta[m-i,n-j]$$

$$y[m,n] = x[m,n] * h[m,n] = \sum x[i,j] \cdot h[m-i,n-j]$$

 $j=-\infty$   $i=-\infty$ 



$$\begin{split} y[1,1] &= \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j] \cdot h[1-i,1-j] \\ &= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1] \\ &+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0] \\ &+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1] \end{split}$$



$$x[m,n] = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j] \cdot \delta[m-i,n-j]$$

If the filter is symmetric, flipping kernel is not necessary

$$y[m,n] = x[m,n] * h[m,n] = \sum x[i,j] \cdot h[m-i,n-j]$$

 $i=-\infty$   $i=-\infty$ 





Above convolution works on linear and shift invariant system

 $y[1,1] = \sum x[i,j] \cdot h[1-i,1-j]$ 

### Blurring and Impulse Function



Point



1 4 7 4 1 4 16 26 16 4 7 26 41 26 7 4 16 26 16 4 1 4 7 4 1

### Filters for Image Analysis

We learned filters for image enhancement

But also very important for image analysis tasks

- Fundamental tool for Feature based Image Representation
  - Necessary Computer Vision and Machine Learning

# Visualizing Gradients



Face



Person

#### **Gradient Orientations**





### Histogram of Gradient Orientations





### Learning Filters



Central to Convolutional Neural Network

### Summary

 Linear Filtering – moving a weight mask over the input image, multiplying weights with intensity values, and summing them up to produce output image

- Linear Filtering as Convolution
  - Part of larger LSI systems

 Nonlinear Filtering – min, max, median, bilateral (mask is datadependent)

#### References

- ▶ GW Chapter 3.4, 3.5.2
- Szeliski Book : Computer Vision and Applications
  - Bilateral Filtering
- Convolution and LSI:
- http://www.songho.ca/dsp/convolution/convolution.html
- http://www.ceri.memphis.edu/people/smalley/ESCI7355/Ch6\_Linear\_Systems\_Conv.pdf