Selected Subgraph in Comparing Different Genotypes

Select the most different 5% vertice pairs based on degree distribution, using Wasserstein distance. Comparing genotype 1 vs 2 on the subgraph.

The average connectivity is shown:

Here are one with legend.

Genotype=1

Comparing genotype 1 vs 2, stratified by sex. Assuming Female: sex=1, Male: sex=2

The count of the each category:

```
## ## SEX= 1 SEX= 2 ## GENOTYPE= 1 6 3 ## GENOTYPE= 2 5 7
```

Reference: The subgraphs of two sex, averaged over population.

The vertice pairs are the same ones that were used to differentiate genotypes.

Regression of the median degree of the top 5% using the predictors (age, sex,genotypes):

In here, we first compute the degrees of the selected vertice pairs for each subject, and choose the median as the point estimate of the connectivity for each subject. Then we apply simple linear regression on this outcome. Here are the summary:

```
##
##
## lm(formula = medianDegree ~ as.factor(covariates_geno12$GENDER) +
##
       as.factor(covariates_geno12$GENOTYPE) + (covariates_geno12$AGE_WEEKS))
##
##
  Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
                    -6.365
                             10.356 134.625
##
   -70.079 -38.006
##
##
  Coefficients:
##
                                                      Estimate Std. Error
## (Intercept)
                                                      182.2180
                                                                  69.1370
  as.factor(covariates_geno12$GENDER)SEX= 2
                                                        4.4893
                                                                  24.7332
  as.factor(covariates_geno12$GENOTYPE)GENOTYPE= 2 -33.1916
                                                                  25.0177
  covariates_geno12$AGE_WEEKS
                                                       -0.7804
                                                                    0.9180
##
                                                      t value Pr(>|t|)
## (Intercept)
                                                        2.636
                                                                0.0174 *
## as.factor(covariates_geno12$GENDER)SEX= 2
                                                                0.8581
                                                        0.182
## as.factor(covariates_geno12$GENOTYPE) GENOTYPE= 2 -1.327
                                                                0.2021
```