Curved Yang-Mills gauge theories and their recent applications

Simon-Raphael Fischer

國家理論科學研究中心 National Center for Theoretical Sciences (National Taiwan University)

Table of contents

- Infinitesimal Version
- 2 Integrated Version
- 3 Applications: Singular foliations (joint work w/ Camille Laurent-Gengoux)
- Future Prospects

Infinitesimal Version

Infinitesimal curved Yang-Mills-Higgs gauge theory

Guide: Infinitesimal curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E
	& E-connections
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $M \times \mathfrak{g}$	

Guide: Infinitesimal curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
$\mathfrak{g}\text{-action }\gamma$	Anchor ρ of E
	& E-connections
Canonical flat connection $ abla^0$	General connection ∇ on E
on $M \times \mathfrak{a}$	

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \leadsto We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

Definition (Lie algebroids)

Let $E \to N$ be a vector bundle. Then E is a Lie algebroid, if there is a bundle map $\rho: E \to \mathrm{T}N$, called the **anchor**, and a Lie algebra structure on $\Gamma(E)$ with Lie bracket $[\cdot,\cdot]_E$ satisfying

$$[\mu, f\nu]_E = f[\mu, \nu]_E + \mathcal{L}_{\rho(\mu)}(f) \nu \tag{1}$$

for all $f \in C^{\infty}(N)$ and $\mu, \nu \in \Gamma(E)$.

Example

•
$$E = TN$$
, $\rho = \mathbb{1}_{T\Lambda}$

Definition (Lie algebroids)

Let $E \to N$ be a vector bundle. Then E is a Lie algebroid, if there is a bundle map $\rho: E \to \mathrm{T}N$, called the **anchor**, and a Lie algebra structure on $\Gamma(E)$ with Lie bracket $[\cdot,\cdot]_E$ satisfying

$$[\mu, f\nu]_E = f[\mu, \nu]_E + \mathcal{L}_{\rho(\mu)}(f) \nu \tag{1}$$

for all $f \in C^{\infty}(N)$ and $\mu, \nu \in \Gamma(E)$.

Example

- E = TN, $\rho = 1_{TN}$
- E a bundle of Lie algebras, $\rho = 0$

Definition (Lie algebroids)

Let $E \to N$ be a vector bundle. Then E is a Lie algebroid, if there is a bundle map $\rho: E \to \mathrm{T}N$, called the **anchor**, and a Lie algebra structure on $\Gamma(E)$ with Lie bracket $[\cdot,\cdot]_E$ satisfying

$$[\mu, f\nu]_E = f[\mu, \nu]_E + \mathcal{L}_{\rho(\mu)}(f) \nu \tag{1}$$

for all $f \in C^{\infty}(N)$ and $\mu, \nu \in \Gamma(E)$.

Example

- E = TN, $\rho = \mathbb{1}_{TN}$
- E a bundle of Lie algebras, $\rho = 0$

The classical formalism will correspond to:

Proposition (Action Lie algebroids)

Let $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}})$ be a Lie algebra with a \mathfrak{g} -action γ on N. Then there is a **unique** Lie algebroid structure on $E := N \times \mathfrak{g}$ as a vector bundle over N such that

$$\rho(\nu) = \gamma(\nu),\tag{2}$$

$$[\mu,\nu]_{\mathcal{E}} = [\mu,\nu]_{\mathfrak{g}} \tag{3}$$

for all constant sections $\mu, \nu \in \Gamma(E)$.

Mathematical basics

Classical formalism	CYMH GT
Lie algebra \mathfrak{g} as $M \times \mathfrak{g}$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E
	& E-connections as lift of ρ
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $M imes \mathfrak{g}$	

 $[\]leadsto$ E-connections similar to vector bundle connections but Leibniz rule along $\rho,$ i.e. only lifting vector fields in the image of ρ

Mathematical basics

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E
	& E-connections as lift of ρ
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $M imes \mathfrak{g}$	

 \sim *E*-connections similar to vector bundle connections but Leibniz rule along ρ , *i.e.* only lifting vector fields in the image of ρ

Example (E-connection $E \nabla$ on V)

 ∇' a vector bundle connection on $V \to N$, then

$${}^{E}\nabla_{\nu}v := \nabla'_{\rho(\nu)}v \tag{4}$$

for all $\nu \in \Gamma(E)$ and $v \in \Gamma(V)$. In short denoted by ∇'_{o} .

Example

For ∇ a connection on E we have the **basic connection** given as a pair of E-connections on E and on TN by

$$\nabla_{\nu}^{\text{bas}} \mu := [\nu, \mu]_{\mathcal{E}} + \nabla_{\rho(\mu)} \nu, \tag{5}$$

$$\nabla_{\nu}^{\text{bas}} X := [\rho(\nu), X] + \rho(\nabla_{X} \nu) \tag{6}$$

for all $X \in \mathfrak{X}(N)$ and $\nu, \mu \in \Gamma(E)$.

Remarks (Encoding of Lie algebra representations)

Test this with trivial bundles and canonical flat connection ∇^0 , i.e. $E = N \times \mathfrak{q}$ and $\nabla^0 \nu = 0$ for constant sections ν .

Example

For ∇ a connection on E we have the **basic connection** given as a pair of E-connections on E and on TN by

$$\nabla_{\nu}^{\text{bas}} \mu := [\nu, \mu]_{\mathcal{E}} + \nabla_{\rho(\mu)} \nu, \tag{5}$$

$$\nabla_{\nu}^{\text{bas}} X := [\rho(\nu), X] + \rho(\nabla_X \nu) \tag{6}$$

for all $X \in \mathfrak{X}(N)$ and $\nu, \mu \in \Gamma(E)$.

Remarks (Encoding of Lie algebra representations)

Test this with trivial bundles and canonical flat connection ∇^0 . i.e. $E = N \times \mathfrak{q}$ and $\nabla^0 \nu = 0$ for constant sections ν .

Definition (Basic curvature)

Let ∇ be a connection on E. The **basic curvature** R^{bas}_{∇} is defined as an element of $\Gamma\left(\bigwedge^2 E^* \otimes \mathrm{T}^* N \otimes E\right)$ by

$$R_{\nabla}^{\text{bas}}(\mu,\nu)X := \nabla_X([\mu,\nu]_E) - [\nabla_X\mu,\nu]_E - [\mu,\nabla_X\nu]_E - \nabla_{\nabla_{\nu}^{\text{bas}}X}\mu + \nabla_{\nabla_{\mu}^{\text{bas}}X}\nu, \tag{7}$$

where $\mu, \nu \in \Gamma(E)$ and $X \in \mathfrak{X}(N)$.

$$R_{\nabla^{\text{bas}}} = \begin{cases} -R_{\nabla}^{\text{bas}}(\cdot, \cdot) \circ \rho, & \text{on } E, \\ -\rho \circ R_{\nabla}^{\text{bas}}, & \text{on } TN. \end{cases}$$
(8)

Definition (Basic curvature)

Let ∇ be a connection on E. The **basic curvature** R^{bas}_{∇} is defined as an element of $\Gamma\left(\bigwedge^2 E^* \otimes \mathrm{T}^* N \otimes E\right)$ by

$$R_{\nabla}^{\text{bas}}(\mu,\nu)X := \nabla_X([\mu,\nu]_E) - [\nabla_X\mu,\nu]_E - [\mu,\nabla_X\nu]_E - \nabla_{\nabla_{\nu}^{\text{bas}}X}\mu + \nabla_{\nabla_{\mu}^{\text{bas}}X}\nu, \tag{7}$$

where $\mu, \nu \in \Gamma(E)$ and $X \in \mathfrak{X}(N)$.

Proposition

We recover the curvature of the basic connection:

$$R_{\nabla^{\text{bas}}} = \begin{cases} -R_{\nabla}^{\text{bas}}(\cdot, \cdot) \circ \rho, & \text{on } E, \\ -\rho \circ R_{\nabla}^{\text{bas}}, & \text{on } TN. \end{cases}$$
(8)

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Definition (Minimal coupling)

Minimal coupling \mathfrak{D} , $(\Phi, A) \mapsto \mathfrak{D}(\Phi, A) \in \Omega^1(M; \Phi^*TN)$, by

$$\mathfrak{D}(\Phi, A) := \mathfrak{D}^A \Phi := \mathrm{D}\Phi - (\Phi^* \rho)(A), \tag{9}$$

where $D\Phi : TM \to TN$ is the tangent map.

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Definition (Minimal coupling)

Minimal coupling \mathfrak{D} , $(\Phi, A) \mapsto \mathfrak{D}(\Phi, A) \in \Omega^1(M; \Phi^*TN)$, by

$$\mathfrak{D}(\Phi, A) := \mathfrak{D}^A \Phi := \mathrm{D}\Phi - (\Phi^* \rho)(A), \tag{9}$$

where $D\Phi : TM \to TN$ is the tangent map.

Definition (Field strength)

Let ∇ be a connection on E. We define the **field strength** F, $(\Phi, A) \mapsto F(\Phi, A) \in \Omega^2(M; \Phi^*E)$, by

$$F(\Phi, A) := \mathrm{d}^{\Phi^* \nabla} A + \frac{1}{2} (\Phi^* t_{\nabla^{\mathrm{bas}}}) (A \stackrel{\wedge}{,} A), \tag{10}$$

where $t_{\nabla^{\text{bas}}}$ is the torsion of ∇^{bas} on E and $d^{\Phi^*\nabla}$ the exterior covariant derivative of $\Phi^*\nabla$.

Infinitesimal cYM

Definition (Field strength)

Let ∇ be a connection on E. We define the **field strength** F, $(\Phi, A) \mapsto F(\Phi, A) \in \Omega^2(M; \Phi^*E)$, by

$$F(\Phi, A) := \mathrm{d}^{\Phi^* \nabla} A + \frac{1}{2} (\Phi^* t_{\nabla^{\mathrm{bas}}}) (A \stackrel{\wedge}{,} A), \tag{10}$$

where $t_{\nabla^{\mathrm{bas}}}$ is the torsion of ∇^{bas} on E and $\mathrm{d}^{\Phi^*\nabla}$ the exterior covariant derivative of $\Phi^*\nabla$.

Definition (Generalised field strength)

Let ζ be an element of $\Omega^2(N; E)$, then we define the **generalised** field strength \mathscr{F} by

$$\mathscr{F}(\Phi, A) := F(\Phi, A) + \frac{1}{2} (\Phi^* \zeta) \Big(\mathfrak{D}^A \Phi \stackrel{\wedge}{,} \mathfrak{D}^A \Phi \Big). \tag{11}$$

Definition (Curved Yang-Mills-Higgs (CYMH) Lagrangian)

Let κ be a fibre metric on E, then the **curved Yang-Mills-Higgs** Lagrangian $\mathfrak{L}_{\mathrm{CYMH}}$, $(\Phi, A) \mapsto \mathfrak{L}_{\mathrm{CYMH}}(\Phi, A) \in \Omega^{\dim(M)}(M)$, is defined by

$$\mathfrak{L}_{\text{CYMH}}(\Phi, A) := -\frac{1}{2} (\Phi^* \kappa) (\mathscr{F}(\Phi, A) \stackrel{\wedge}{,} *\mathscr{F}(\Phi, A))
+ (\Phi^* g) (\mathfrak{D}^A \Phi \stackrel{\wedge}{,} *\mathfrak{D}^A \Phi) - *(\Phi^* \mathscr{V}), \quad (12)$$

where * is the Hodge star operator related to the spacetime metric η .

Definition (CYMH GT)

Assume we have additionally the compatibility conditions

$$R_{\nabla} + \mathrm{d}^{\nabla^{\mathrm{bas}}} \zeta = 0, \tag{13}$$

$$R_{\nabla}^{\text{bas}} = 0, \tag{14}$$

$$\nabla^{\rm bas} \kappa = 0, \tag{15}$$

$$\nabla^{\rm bas} g = 0, \tag{16}$$

$$\mathscr{L}_{\rho}\mathscr{V}=0,\tag{17}$$

then we say that we have a **curved Yang-Mills-Higgs gauge theory**.

We say that we have a **pre-classical gauge theory**, if ∇ is flat.

Definition (CYMH GT)

Assume we have additionally the compatibility conditions

$$R_{\nabla} + \mathrm{d}^{\nabla^{\mathrm{bas}}} \zeta = 0, \tag{13}$$

$$R_{\nabla}^{\text{bas}} = 0, \tag{14}$$

$$\nabla^{\rm bas} \kappa = 0, \tag{15}$$

$$\nabla^{\rm bas} g = 0, \tag{16}$$

$$\mathscr{L}_{\rho}\mathscr{V}=0,\tag{17}$$

then we say that we have a **curved Yang-Mills-Higgs gauge theory**.

We say that we have a pre-classical gauge theory, if ∇ is flat. If we have additionally $\zeta \equiv 0$, then we say that we have a classical gauge theory.

Definition (CYMH GT)

Assume we have additionally the compatibility conditions

$$R_{\nabla} + \mathrm{d}^{\nabla^{\mathrm{bas}}} \zeta = 0, \tag{13}$$

$$R_{\nabla}^{\text{bas}} = 0, \tag{14}$$

$$\nabla^{\rm bas} \kappa = 0, \tag{15}$$

$$\nabla^{\rm bas} g = 0, \tag{16}$$

$$\mathscr{L}_{\rho}\mathscr{V}=0,\tag{17}$$

then we say that we have a **curved Yang-Mills-Higgs gauge theory**.

We say that we have a **pre-classical gauge theory**, if ∇ is flat. If we have additionally $\zeta \equiv 0$, then we say that we have a **classical gauge theory**.

Summary

→ Together with the compatibility conditions we have gauge invariance, that is,

$$\delta_{\varepsilon} \mathfrak{L}_{\text{CYMH}} = 0.$$
 (18)

Remarks ([S.-R. F.])

If $\rho \equiv 0$, then $\varepsilon \in \Gamma(\Phi^*E)$ and

$$\delta_{\varepsilon} \Phi = 0,$$
 $\delta_{\varepsilon} A = [\varepsilon, A]_{\varepsilon} - d^{\Phi^* \nabla} \varepsilon.$

Summary

$$\Phi^*E \qquad (E, [\cdot, \cdot]_E, \kappa, \nabla) \\
\downarrow \qquad \qquad \downarrow \\
M \xrightarrow{\Phi} (N, g) \longleftrightarrow TN$$

→ Together with the compatibility conditions we have gauge invariance, that is,

$$\delta_{\varepsilon} \mathfrak{L}_{\text{CYMH}} = 0.$$
 (18)

Remarks ([S.-R. F.])

If $\rho \equiv 0$, then $\varepsilon \in \Gamma(\Phi^*E)$ and

$$\delta_{\varepsilon} \Phi = 0,$$
 $\delta_{\varepsilon} A = [\varepsilon, A]_{\varepsilon} - \mathrm{d}^{\Phi^* \nabla} \varepsilon.$

Motivation

- Are there CYMH GTs which are neither pre-classical nor classical?
- Difficulty: There is an equivalence relation of CYMH GTs keeping the same Lagrangian and preserving the physics, possibly turning theories into (pre-)classical ones.

This was provided by Edward Witten in a private communication with Thomas Strobl about a specific example of a CYMH GT.

Motivation

- Are there CYMH GTs which are neither pre-classical nor classical?
- Difficulty: There is an equivalence relation of CYMH GTs keeping the same Lagrangian and preserving the physics, possibly turning theories into (pre-)classical ones.

This was provided by Edward Witten in a private communication with Thomas Strobl about a specific example of a CYMH GT.

Definition (Field redefinition, [S.-R. F.])

Let $\lambda \in \Omega^1(N; E)$ such that $\Lambda := \mathbb{1}_E - \lambda \circ \rho$ is an automorphism of E. We then define the **field redefinitions** by

$$\widetilde{A}^{\lambda} := (\Phi^* \Lambda)(A) + \Phi^! \lambda,$$
 (19)

$$\widetilde{\nabla}^{\lambda} := \nabla + \left(\Lambda \circ d^{\nabla^{\text{bas}}} \circ \Lambda^{-1} \right) \lambda, \tag{20}$$

$$\widetilde{\kappa}^{\lambda} := \kappa \circ (\Lambda^{-1}, \Lambda^{-1}),$$
(21)

$$\widetilde{g}^{\lambda} := g \circ (\widehat{\Lambda}^{-1}, \widehat{\Lambda}^{-1}),$$
(22)

where $\widehat{\Lambda} := \mathbb{1}_{TN} - \rho \circ \lambda$, and for all $X, Y \in \mathfrak{X}(N)$ we also define

$$\widetilde{\zeta}^{\lambda}(\widehat{\Lambda}(X),\widehat{\Lambda}(Y))$$

$$:= \Lambda(\zeta(X,Y)) - \left(d^{\widetilde{\nabla}^{\lambda}}\lambda\right)(X,Y) + t_{\widetilde{\nabla}^{\lambda}_{\partial}}(\lambda(X),\lambda(Y)). \tag{23}$$

Proposition ([S.-R. F.])

- Field redefinitions define an equivalence relation of CYMH gauge theories
- $\widetilde{\mathfrak{L}}_{\mathrm{CYMH}}^{\lambda} = \mathfrak{L}_{\mathrm{CYMH}}$

Let us now apply a field redefinition in order to study whether ∇ and ζ can become flat and zero, respectively.

Proposition ([S.-R. F.])

- Field redefinitions define an equivalence relation of CYMH gauge theories
- $\widetilde{\mathfrak{L}}_{\mathrm{CYMH}}^{\lambda} = \mathfrak{L}_{\mathrm{CYMH}}$

Let us now apply a field redefinition in order to study whether ∇ and ζ can become flat and zero, respectively.

Example (Lie algebra bundles (LABs))

• E = g an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_g \in \Gamma(\bigwedge^2 g^* \otimes g)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

What happens in the case of Lie algebra bundles?

Example (Lie algebra bundles (LABs))

• E = g an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_g \in \Gamma(\bigwedge^2 g^* \otimes g)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Compatibilities

 \bullet κ needs to be ad-invariant

What happens in the case of Lie algebra bundles?

Example (Lie algebra bundles (LABs))

• E = g an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_g \in \Gamma(\bigwedge^2 g^* \otimes g)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Compatibilities:

- \bullet κ needs to be ad-invariant
- We need

$$\nabla_{Y}([\mu,\nu]_{\mathcal{Q}}) = [\nabla_{Y}\mu,\nu]_{\mathcal{Q}} + [\mu,\nabla_{Y}\nu]_{\mathcal{Q}}, \tag{24}$$

$$R_{\nabla}(Y,Z)\mu = \left[\zeta(Y,Z),\mu\right]_{q} \tag{25}$$

for all
$$Y, Z \in \mathfrak{X}(N)$$
 and $\mu, \nu \in \Gamma(\mathfrak{Q})$.

What happens in the case of Lie algebra bundles?

Example (Lie algebra bundles (LABs))

• E = g an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_g \in \Gamma(\bigwedge^2 g^* \otimes g)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Compatibilities:

- \bullet κ needs to be ad-invariant
- We need

$$\nabla_{\mathbf{Y}}([\mu,\nu]_{\mathcal{Q}}) = [\nabla_{\mathbf{Y}}\mu,\nu]_{\mathcal{Q}} + [\mu,\nabla_{\mathbf{Y}}\nu]_{\mathcal{Q}}, \tag{24}$$

$$R_{\nabla}(Y,Z)\mu = \left[\zeta(Y,Z),\mu\right]_{\mathcal{Q}} \tag{25}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(q)$.

Theorem (Invariant for LABs, [S.-R. F.])

We have

$$d^{\widetilde{\nabla}^{\lambda}}\widetilde{\zeta}^{\lambda} = d^{\nabla}\zeta, \tag{26}$$

and $d^{\nabla}\zeta$ has values in the centre of g.

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\widetilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra $\mathfrak g$ has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $\mathrm{d}^\nabla \zeta \neq 0$.

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\widetilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra $\mathfrak g$ has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $\mathrm{d}^\nabla \zeta \neq 0$.

However, by $R_{\nabla} = \operatorname{ad}_{\sigma} \circ \zeta$ it may still be that ∇ becomes flat.

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\widetilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra $\mathfrak g$ has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $\mathrm{d}^\nabla \zeta \neq 0$.

However, by $R_{\nabla} = \operatorname{ad}_{\mathscr{Q}} \circ \zeta$ it may still be that ∇ becomes flat.

Turning to the field redefinition of ∇ :

Theorem (Differential on centre-valued forms, [S.-R. F.])

 ∇ restricts to the centre of g and induces a differential d^{Ξ} on centre-valued forms. Moreover, d^{Ξ} is independent of the field redefinitions.

Sketch of proof.

Recall

$$\begin{split} \nabla_{Y} \Big([\mu, \nu]_{\mathcal{Q}} \Big) &= [\nabla_{Y} \mu, \nu]_{\mathcal{Q}} + [\mu, \nabla_{Y} \nu]_{\mathcal{Q}}, \\ R_{\nabla} (Y, Z) \mu &= [\zeta(Y, Z), \mu]_{\mathcal{Q}}, \\ \widetilde{\nabla}_{Y}^{\lambda} \mu &= \nabla_{Y} \mu - [\lambda(Y), \mu]_{\mathcal{Q}}, \end{split}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(g)$. Then insert μ with values in the centre.

Theorem (Differential on centre-valued forms, [S.-R. F.])

 ∇ restricts to the centre of g and induces a differential d^{Ξ} on centre-valued forms. Moreover, d^{Ξ} is independent of the field redefinitions.

Sketch of proof.

Recall

$$\begin{split} \nabla_{Y} \Big([\mu, \nu]_{\mathcal{Q}} \Big) &= \left[\nabla_{Y} \mu, \nu \right]_{\mathcal{Q}} + \left[\mu, \nabla_{Y} \nu \right]_{\mathcal{Q}}, \\ R_{\nabla} (Y, Z) \mu &= \left[\zeta(Y, Z), \mu \right]_{\mathcal{Q}}, \\ \widetilde{\nabla}_{Y}^{\lambda} \mu &= \nabla_{Y} \mu - \left[\lambda(Y), \mu \right]_{\mathcal{Q}}, \end{split}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(g)$. Then insert μ with values in the centre.

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. \tag{27}$$

Definition (Obstruction class, [S.-R. F.])

We define the **obstruction class** by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (28)

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. \tag{27}$$

Definition (Obstruction class, [S.-R. F.])

We define the obstruction class by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (28)

Proposition ([S.-R. F.])

An invariant of the field redefinitions.

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. \tag{27}$$

Definition (Obstruction class, [S.-R. F.])

We define the obstruction class by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (28)

Proposition ([S.-R. F.])

- An invariant of the field redefinitions.
- If ∇ flat, then $\mathrm{Obs}(\Xi) = 0$.

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. \tag{27}$$

Definition (Obstruction class, [S.-R. F.])

We define the obstruction class by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (28)

Proposition ([S.-R. F.])

- An invariant of the field redefinitions.
- If ∇ flat, then $Obs(\Xi) = 0$.

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Remarks

Second theorem follows as a result by K. Mackenzie (General Theory of Lie Groupoids and Algebroids. *London Mathematical Society Lecture Note Series*, 213, 2005). Mackenzie derived $\mathrm{Obs}(\Xi)$ in the context of extending Lie algebroids by LABs.

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Remarks

Second theorem follows as a result by K. Mackenzie (General Theory of Lie Groupoids and Algebroids. *London Mathematical Society Lecture Note Series*, 213, 2005). Mackenzie derived $\mathrm{Obs}(\Xi)$ in the context of extending Lie algebroids by LABs.

Infinitesimal cYM

Example (Zero obstruction class not necessarily pre-classical)

Let P be the Hopf fibration

$$\begin{array}{c} \mathrm{SU}(2) \, \longrightarrow \, \mathbb{S}^7 \\ \downarrow \\ \mathbb{S}^4 \end{array}$$

Then for the adjoint bundle

$$g := P \times_{\mathrm{SU}(2)} \mathfrak{su}(2) := \left(\mathbb{S}^7 \times \mathfrak{su}(2) \right) / \mathrm{SU}(2)$$

we have a non-flat ∇ satisfying the compatibility conditions such that all of its field redefinitions are not flat either, but $\mathrm{Obs}(\Xi) = 0$.

Classification

Summary

Remarks

Locally, LABs are always pre-classical but not necessarily classical. In general, $Obs(\Xi) = 0$ does not imply a flat connection.

So, what actually happens in the adjoint bundle of $\mathbb{S}^7 \to \mathbb{S}^4$? \leadsto Integration

Classification

Summary

Remarks

Locally, LABs are always pre-classical but not necessarily classical. In general, $Obs(\Xi) = 0$ does not imply a flat connection.

So, what actually happens in the adjoint bundle of $\mathbb{S}^7 \to \mathbb{S}^4?$ \leadsto Integration

We will only focus on Yang-Mills theories:

	Classical	Curved
Infinitesimal	Lie algebra $\mathfrak g$	$LAB^1 \mathscr{Q}$
Integrated	Lie group <i>G</i>	LGB ² 𝒯

 $^{^{1}}LAB = Lie algebra bundle$

²LGB = Lie group bundle

Definition (LGB actions, simplified)

 $\mathscr{P} \stackrel{\pi}{\to} M$ a fibre bundle. A **right-action of** \mathscr{G} **on** \mathscr{P} is a smooth map $\mathscr{P} * \mathscr{G} := \pi^* \mathscr{G} = \mathscr{P} \times_M \mathscr{G} \to \mathscr{P}$, $(p,g) \mapsto p \cdot g$, satisfying the following properties:

$$\pi(p \cdot g) = \pi(p), \tag{29}$$

$$(p \cdot g) \cdot h = p \cdot (gh), \tag{30}$$

$$p \cdot e_{\pi(p)} = p \tag{31}$$

for all $p \in \mathcal{P}$ and $g, h \in \mathcal{G}_{\pi(p)}$, where $e_{\pi(p)}$ is the neutral element of $\mathcal{G}_{\pi(p)}$.

Definition (Principal bundle)

Still a fibre bundle

$$G \longrightarrow \mathscr{P}$$

$$\downarrow^{\pi}$$
 M

but with \mathscr{G} -action

$$\mathscr{P} \times \mathsf{G} \to \mathscr{P}$$
 $\mathscr{P} * \mathscr{C}$

simply transitive on fibres of \mathcal{P} , and "suitable" atlas.

Connection on \mathcal{P} : Idea

But:

$$r_g: \mathscr{P}_X o \mathscr{P}_X$$
 $\mathrm{D}_p r_g$ only defined on vertical structure

Connection on \mathcal{P} : Idea

But:

$$r_g:\mathscr{P}_{\mathsf{X}} o\mathscr{P}_{\mathsf{X}}$$
 $\mathrm{D}_p r_g$ only defined on vertical structure

Infinitesimal cYM

Connection on \mathcal{P} : Idea

Use
$$\sigma \in \Gamma(\mathscr{G})$$
: $r_{\sigma}(p) := p \cdot \sigma_{\times}$

Ambiguity in the choice of $\sigma \Rightarrow \text{Fix a horizontal distribution}$

Connection on \mathcal{P} : Idea

Use
$$\sigma \in \Gamma(\mathcal{G})$$
: $r_{\sigma}(p) := p \cdot \sigma_{\times}$

Remarks (Problem!)

Ambiguity in the choice of $\sigma \Rightarrow \text{Fix a horizontal distribution}$

Definition (Fundamental vector fields)

Fundamental vector fields defined by

$$\overline{
u}_{p} \coloneqq \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (p \cdot \mathrm{e}^{t
u_{\mathsf{x}}})$$

for all $\nu \in \Gamma(q)$ and $p \in \mathcal{P}_{x}$, where q is the LAB of \mathcal{G} .

Definition (Darboux derivative)

For $\sigma \in \Gamma(\mathcal{G})$ we define the **Darboux derivative** $\Delta \sigma \in \Omega^1(M; g)$

$$\Delta \sigma = \sigma^! \mu_{\mathscr{C}},$$

where $\mu_{\mathscr{G}}$ is given by

$$(\mu_{\mathscr{C}})_{\mathsf{g}} := \mathrm{D}_{\mathsf{g}} \mathsf{L}_{\mathsf{g}^{-1}} \circ \pi^{\mathsf{v}},$$

 π^{ν} the projection onto the vertical bundle.

Definition (Darboux derivative)

For $\sigma \in \Gamma(\mathcal{G})$ we define the **Darboux derivative** $\Delta \sigma \in \Omega^1(M; q)$

$$\Delta \sigma = \sigma^! \mu_{\mathscr{C}},$$

where $\mu_{\mathscr{C}}$ is given by

$$(\mu_{\mathscr{C}})_{\mathsf{g}} := \mathrm{D}_{\mathsf{g}} \mathsf{L}_{\mathsf{g}^{-1}} \circ \pi^{\mathsf{v}},$$

 π^{ν} the projection onto the vertical bundle.

Remarks

If \mathscr{G} a trivial LGB with canonical flat connection and if Lie group additionally a matrix group, then

$$\Delta \sigma = \sigma^{-1} d\sigma$$
.

Definition (Modified right-pushforward, [S.-R. F.])

Define

$$r_{g*}(X) := \mathrm{D}_p r_{\sigma}(X) - \left. \overline{(\pi^! \Delta \sigma)|_p(X)} \right|_{p \cdot g}$$

for all $(p,g) \in \mathscr{P}_{x} \times \mathscr{G}_{x}$ and $X \in T_{p}\mathscr{P}$, where σ is any section of \mathscr{G} with $\sigma_{x} = g$.

Proposition (Well-defined isomorphism, [S.-R. F.])

We have that

$$T\mathscr{P}|_{\mathscr{P}_{x}} \to T\mathscr{P}|_{\mathscr{P}_{x}},$$
 $X \mapsto r_{\mathscr{E}*}(X),$

is a well-defined automorphism over r_g .

Definition (Ehresmann connection, [S.-R. F.])

H a horizontal distribution of $T\mathscr{P}$ with

$$\nu_{g*}(H_p) = H_{p\cdot g}$$

Definition (Ehresmann connection, [S.-R. F.])

H a horizontal distribution of $T\mathscr{P}$ with

$$\mathscr{V}_{g*}(H_p) = H_{p \cdot g}$$

Definition (Equivalently: Connection 1-form, [S.-R. F.])

 $A \in \Omega^1(\mathscr{P}; \pi^*_{\mathscr{Q}})$ with

$$A(\overline{\nu}) = \pi^* \nu,$$

$$r_{\sigma}^! A = \operatorname{Ad}_{\sigma^{-1}} \circ A$$

for all $\sigma \in \Gamma(\mathcal{G})$ and $\nu \in \Gamma(\mathcal{Q})$.

Remarks

$$\left(r_{\sigma}^{!}A\right)_{p}(X)=A_{p\sigma_{X}}\left(r_{\sigma_{X}}*(X)\right).$$

Proposition (Connection on q, [S.-R. F.])

We have an induced vector bundle connection on g given by

$$\nabla^{\mathscr{G}}\nu := \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \Delta \mathrm{e}^{t\nu}.$$

Infinitesimal cYM

Remarks

Recall, \mathcal{G} a principal \mathcal{G} -bundle.

Definition (Compatibility conditions, [S.-R. F.])

 $\mu_{\mathscr{G}}$ a Yang-Mills connection (w.r.t. $\zeta \in \Omega^2(M; \mathscr{Q})$) if it satisfies the compatibility conditions:

- $\mu_{\mathscr{C}}$ a connection 1-form on $\mathscr{C} \stackrel{\pi_{\mathscr{C}}}{\to} M$;

$$\left. \left(\mathrm{d}^{\pi_{\mathscr{G}}^* \nabla^{\mathscr{G}}} \mu_{\mathscr{G}} + \frac{1}{2} [\mu_{\mathscr{G}} \stackrel{\wedge}{,} \mu_{\mathscr{G}}]_{\pi_{\mathscr{G}}^* \mathscr{G}} \right) \right|_{g} = \mathrm{Ad}_{g^{-1}} \circ \left. \pi_{\mathscr{G}}^! \zeta \right|_{g} - \left. \pi_{\mathscr{G}}^! \zeta \right|_{g}$$

Proposition ($abla^{\mathscr{G}}$ a Lie bracket derivation)

Let $\mu_{\mathscr{C}}$ be a connection 1-form on \mathscr{G} , then

$$\nabla^{\mathcal{G}} \Big(\left[\mu, \nu \right]_{\mathcal{Q}} \Big) = \Big[\nabla^{\mathcal{G}} \mu, \nu \Big]_{\mathcal{Q}} + \Big[\mu, \nabla^{\mathcal{G}} \nu \Big]_{\mathcal{Q}}.$$

Proposition ($\nabla^{\mathcal{G}}$ a Lie bracket derivation)

Let $\mu_{\mathscr{C}}$ be a connection 1-form on \mathscr{C} , then

$$\nabla^{\mathcal{G}} \Big(\left[\mu, \nu \right]_{\mathcal{Q}} \Big) = \Big[\nabla^{\mathcal{G}} \mu, \nu \Big]_{\mathcal{Q}} + \Big[\mu, \nabla^{\mathcal{G}} \nu \Big]_{\mathcal{Q}}.$$

Theorem (Curvature of LAB connection exact, [S.-R. F.])

 $\mu_{\mathscr{C}}$ satisfies the generalized Maurer-Cartan equation w.r.t. ζ if and only if

$$R_{\nabla^{\mathscr{G}}} = \mathrm{ad} \circ \zeta.$$

Remarks

Both compatibility conditions are related to a cohomology, that is:

- $\mathbf{0}$ $\mu_{\mathbf{g}}$ closed
- 2 Curvature of μ_g exact with primitive ζ

Definition (Generalized curvature/field strength F of A, [S.-R. F.])

We define

$$F := \mathrm{d}^{\pi^* \nabla^{\mathscr{G}}} A + \frac{1}{2} [A \stackrel{\wedge}{,} A]_{\pi^* \mathscr{G}} + \pi^! \zeta.$$

Curvature

Proposition (Properties of F, [S.-R. F.])

- $F(X, \cdot) = 0$, if X vertical,
- $r_{\sigma}^! F = \operatorname{Ad}_{\sigma^{-1}} \circ F$.

Proposition (Properties of F, [S.-R. F.])

- $F(X, \cdot) = 0$, if X vertical,
- $\mathcal{L}_{\sigma}^! F = \operatorname{Ad}_{\sigma^{-1}} \circ F$.

Theorem (Gauge transformation, [S.-R. F.])

Let s_i , s_j be two sections of \mathscr{P} over U_i and U_j , respectively, which are open subsets of M with $U_i \cap U_j \neq \emptyset$. Then over $U_i \cap U_j$

$$F_{s_i} = \operatorname{Ad}_{\sigma_{ii}^{-1}} \circ F_{s_j},$$

where $F_{s_i} := s_i^! F$ and σ_{ii} a section of \mathscr{G} with $s_i = s_i \cdot \sigma_{ii}$.

Theorem (Lagrangian, [S.-R. F.])

- κ be an Ad-invariant fibre metric on g,
- M a spacetime, and * its Hodge star operator,
- $(U_i)_i$ open covering of M with subordinate gauges $s_i \in \Gamma(\mathscr{P}|_{U_i})$.

Then the Lagrangian $\mathfrak{L}_{\mathrm{CYM}}[A]$, defined locally by

$$(\mathfrak{L}_{\mathrm{CYM}}[A])\big|_{U_i} := -\frac{1}{2}\kappa(F_{s_i} \stackrel{\wedge}{,} *F_{s_i}),$$

is well-defined, and

$$\mathfrak{L}_{\mathrm{CYM}}[L^!A] = \mathfrak{L}_{\mathrm{CYM}}[A]$$

for all principal bundle automorphisms L.

Back to the roots

- 2 Equip $\mathcal G$ with canonical flat connection
- $\zeta \equiv 0$

Example (Hopf fibration $\mathbb{S}^7 \to \mathbb{S}^4$, [S.-R. F.])

Let P be the Hopf bundle

$$SU(2) \cong \mathbb{S}^3 \longrightarrow \mathbb{S}^7$$

$$\downarrow$$

$$\mathbb{S}^4$$

Define $\mathscr{P} := \mathscr{G}$ as the inner group bundle of P,

$$\mathscr{G} := c_{\mathrm{SU}(2)}(P) := (P \times \mathrm{SU}(2)) / \mathrm{SU}(2).$$

This principal $c_{\mathrm{SU}(2)}(P)$ -bundle admits the structure as curved Yang-Mills gauge theory; there is no description as classical gauge theory.

Applications: Singular foliations

(joint work w/ Camille Laurent-Gengoux)

Curved Yang-Mills gauge theory

Singular Foliations:

- Gauge Theory
 (Ex.: Singular foliation ↔ Symmetry breaking → Higgs mechanism)
- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry
- . . .

Definition (Smooth singular foliation)

A smooth singular foliation \mathscr{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is involutive.
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation \mathscr{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,

Foliations

it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$.
- it is **locally finitely generated**, i.e. around each $p \in M$ there is an open neighbourhood U and a finite family $(X^i)_i^r$ $(X^i \in \mathcal{F})$ such that for all $X \in \mathcal{F}$ there are $f_i \in C^{\infty}(M)$ satisfying on U.

$$X=\sum_i f_i X^i.$$

Peter Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math. Soc., 29, 1974. Héctor J. Sussmann, Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc., 180, 1973

Remarks (Leaves)

Following the flows in \mathcal{F} , this gives rise to a partition of connected immersed submanifolds in M.

Peter Stefan, Accessible sets, orbits, and foliations with singularities. Proc. London Math. Soc., 29, 1974.

Theorem $(\mathcal{F}$ -connections)

There is a connection on the normal bundle of a leaf L:

- Horizontal vector fields are in F.
- Parallel transport PT_{γ} has values in $Sym(\tau_{I}, \tau_{I'})$.
- For a contractible loop γ_0 at I: PT_{γ_0} values in $Inner(\tau_I)$.

Example of a transverse foliation τ :

Remarks

- Inner (τ_l) maps each circle to itself
- Sym (τ_I) allows to exchange circles
- Both preserve τ_I and fix the origin

Idea

Idea

Generators of \mathcal{F} given by $\mathcal{F}_{projectable}$:

$$X^{\uparrow} + \overline{\nu}$$
,

where $X \in \mathfrak{X}(L)$, X^{\uparrow} its projectable horizontal lift, $\nu \in \Gamma(\operatorname{inner}(\tau))$ and $\overline{\nu}$ its fundamental vector field.

Idea

Idea

Generators of \mathcal{F} given by $\mathcal{F}_{projectable}$:

$$X^{\uparrow} + \overline{\nu}$$
,

where $X \in \mathfrak{X}(L)$, X^{\uparrow} its projectable horizontal lift, $\nu \in \Gamma(\operatorname{inner}(\tau))$ and $\overline{\nu}$ its fundamental vector field.

Idea

Fix I and given τ_I : Reconstruct \mathscr{F} .

$$\begin{bmatrix} X^{\uparrow} + \overline{\nu}, {X'}^{\uparrow} + \overline{\mu} \end{bmatrix} = \begin{bmatrix} X, X' \end{bmatrix}^{\uparrow} + \dots$$

$$= \underbrace{\begin{bmatrix} X^{\uparrow}, {X'}^{\uparrow} \end{bmatrix}}_{\sim \text{curvature}} + \underbrace{\begin{bmatrix} X^{\uparrow}, \overline{\mu} \end{bmatrix} - \begin{bmatrix} {X'}^{\uparrow}, \overline{\nu} \end{bmatrix}}_{\sim \text{connection}} + \overline{[\nu, \mu]}$$

Curved Yang-Mills gauge theory

Curved Yang-Mills gauge theories:

Classical Curved Lie group G Lie group bundle \mathcal{E}

Remarks (Why a "curved theory"?

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \leadsto We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

Curved Yang-Mills gauge theories:

Classical Curved Lie group G Lie group bundle \mathcal{E}

$$G \longrightarrow \mathscr{G}$$

$$\downarrow$$
 I

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \leadsto We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

Definition (LGB actions)

$$\mathcal{F} \stackrel{\mathcal{G}}{\longrightarrow} L$$

A **right-action of** \mathscr{G} **on** \mathscr{T} is a smooth map

 $\mathscr{T} * \mathscr{G} := \mathscr{T}_{\phi} \times_{\pi_{\mathscr{C}}} \mathscr{G} \to \mathscr{T}_{\phi}(t,g) \mapsto t \cdot g$, satisfying the following properties:

$$\phi(t \cdot g) = \phi(t), \tag{32}$$

$$(t \cdot g) \cdot h = t \cdot (gh), \tag{33}$$

$$t \cdot e_{\phi(t)} = p \tag{34}$$

for all $t \in \mathcal{T}$ and $g, h \in \mathcal{G}_{\phi(t)}$, where $e_{\phi(t)}$ is the neutral element of $\mathcal{G}_{\phi(t)}$.

Definition (Principal bundle)

A surjective submersion $\pi_{\mathscr{P}} \colon \mathscr{P} \to L'$, with \mathscr{G} -action

$$\mathscr{P} * \mathscr{G} \to \mathscr{P}$$
 $\mathscr{P} * \mathscr{G}$

simply transitive on $\pi_{\mathscr{P}}$ -fibres of \mathscr{P} , and "suitable" atlas.

Connection on \mathcal{P} : Idea

But:

$$r_g:\mathscr{P}_{\mathsf{X}} o\mathscr{P}_{\mathsf{X}}$$
 $\mathrm{D}_{\mathsf{P}}r_g$ only defined on vertical structure

Connection on \mathcal{P} : Idea

But:

$$r_g\colon \mathscr{P}_\mathsf{X} o \mathscr{P}_\mathsf{X} \ \mathrm{D}_p r_g$$
 only defined on vertical structure

Connection on \mathcal{P} : Idea

Use
$$\sigma \in \Gamma(\mathscr{G})$$
: $r_{\sigma}(p) := p \cdot \sigma_{\Psi(x)}$

Connection on \mathscr{P} : Revisiting the classical setup

If \mathscr{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Connection on \mathcal{P} : Revisiting the classical setup

If \mathcal{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Remarks (Integrated case)

Parallel transport $PT^{\mathscr{P}}_{\gamma}$ in \mathscr{P} :

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p\cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p)\cdot g$$

where $\gamma: I \to L'$ is a base path

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\Psi \circ \gamma}^{\mathscr{G}}(g).$$

- 0 $\mathcal{G} \cong 1 \times G$
- 2 Equip \mathcal{G} with canonical flat connection

Connection on \mathscr{P} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\Psi \circ \gamma}^{\mathscr{G}}(g).$$

Back to the roots

- 2 Equip \mathscr{G} with canonical flat connection

Definition (Ehresmann/Yang-Mills connection, [C. L.-G., S.-R. F.])

A surjective submersion $\pi_{\mathcal{T}}: \mathcal{T} \to L'$ so that one has a commuting diagram

1 Ehresmann connection: \mathscr{G} preserving $\pi_{\mathscr{T}}$ and

$$\mathsf{PT}^{\mathscr{T}}_{\gamma}(t \cdot g) = \mathsf{PT}^{\mathscr{T}}_{\gamma}(t) \cdot \mathsf{PT}^{\mathscr{G}}_{\Psi \circ \gamma}(g)$$

Yang-Mills connection: Additionally

$$\mathsf{PT}^{\mathscr{T}}_{\gamma_0}(t) = t \cdot g_{\gamma_0}$$

for some $g_{\gamma_0} \in \mathcal{G}_{\phi(t)}$, where γ_0 is a contractible loop.

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathcal{G} there is also the notion of **multiplicative Yang-Mills** connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

- On G: Multiplicative Yang-Mills connection
- On \mathcal{P} : Ehresmann connection

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathcal{G} there is also the notion of **multiplicative Yang-Mills** connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Definition (Principal bundle connection, [S.-R. F.])

- On \mathcal{G} : Multiplicative Yang-Mills connection
- On \mathcal{P} : Ehresmann connection

Remarks ([S.-R. F.])

This gives rise to a generalised gauge theory by contracting the involved curvatures.

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathcal{G} there is also the notion of **multiplicative Yang-Mills** connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Definition (Principal bundle connection, [S.-R. F.])

- On \mathcal{G} : Multiplicative Yang-Mills connection
- On \mathcal{P} : Ehresmann connection

Remarks ([S.-R. F.])

This gives rise to a generalised gauge theory by contracting the involved curvatures.

Remarks

There is a simplicial differential δ on $\mathscr{G} \overset{\pi_\mathscr{G}}{\to} L$ with Lie algebra bundle \mathscr{Q}

$$\delta: \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k \text{ times}}; \pi_{\mathscr{C}}^{*}g) \to \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k+1 \text{ times}}; \pi_{\mathscr{C}}^{*}g)$$

such that the definition of the multiplicative Yang-Mills connection is equivalent to the **compatibility conditions**

- Connection closed
- Curvature exact ([S.-R. F.])

Remarks

Infinitesimal cYM

On the Lie algebra bundle q we have a connection ∇^{g} with

$$\nabla^{\mathscr{G}}([\mu,\nu]_{\mathscr{Q}}) = \left[\nabla^{\mathscr{G}}\mu,\nu\right]_{\mathscr{Q}} + \left[\mu,\nabla^{\mathscr{G}}\nu\right]_{\mathscr{Q}},$$

$$R_{\nabla^{\mathscr{G}}} = \mathrm{ad} \circ \zeta. \qquad \text{([S.-R. F.])}$$

Given a short exact sequence of algebroids

$$g \longrightarrow E \longrightarrow TL$$

with splitting $\chi : TL \to E$, then

$$\nabla_X^{\mathcal{G}} \nu = [\chi(X), \nu]_E,$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_E - \chi([X, X']).$$

Remarks

Infinitesimal cYM

On the Lie algebra bundle q we have a connection ∇^{g} with

$$\nabla^{\mathscr{G}}([\mu,\nu]_{\mathscr{Q}}) = \left[\nabla^{\mathscr{G}}\mu,\nu\right]_{\mathscr{Q}} + \left[\mu,\nabla^{\mathscr{G}}\nu\right]_{\mathscr{Q}},$$

$$R_{\nabla^{\mathscr{G}}} = \mathrm{ad} \circ \zeta. \qquad \text{([S.-R. F.])}$$

Example

Given a short exact sequence of algebroids

$$q \longrightarrow E \longrightarrow TL$$

with splitting $\chi \colon \mathrm{T} L \to E$, then

$$\nabla_X^{\mathcal{G}} \nu = [\chi(X), \nu]_E,$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_E - \chi([X, X']).$$

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on $\mathscr G$ and a Yang-Mills connection on ${\mathcal T}$, then there is a natural foliation on ${\mathcal T}$ generated by

$$X^{\uparrow} + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(q)$.

$$\begin{split} \left[X^{\uparrow}, \overline{\nu} \right] &= \overline{\nabla_X^{\mathcal{G}}} \nu, \\ \left[X^{\uparrow}, {X'}^{\uparrow} \right] &= \left[X, X' \right]^{\uparrow} + \overline{\zeta(X, X')}, \end{split}$$

where $\zeta \in \Omega^2(L; q)$.

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on $\mathscr G$ and a Yang-Mills connection on ${\mathcal T}$, then there is a natural foliation on ${\mathcal T}$ generated by

$$X^{\uparrow} + \overline{\nu}$$
,

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(q)$.

Proof.

We have

$$\begin{split} \left[X^{\uparrow}, \overline{\nu} \right] &= \overline{\nabla_X^{\mathcal{G}} \nu}, \\ \left[X^{\uparrow}, {X'}^{\uparrow} \right] &= \left[X, X' \right]^{\uparrow} + \overline{\zeta(X, X')}, \end{split}$$

where $\zeta \in \Omega^2(L; \mathcal{Q})$.

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- ② P a principal G-bundle, equipped with an ordinary connection

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $oldsymbol{Q}$ P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{G} := (P \times G)/G$, the inner group bundle

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- 2 P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$
- $\mathfrak{T} := \left(P \times \mathbb{R}^d\right) / G$, the normal bundle

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- 2 P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$
- $\mathscr{T} := (P \times \mathbb{R}^d) / G$, the normal bundle

Remarks

- \bullet Think of the induced connection on ${\mathcal T}$ as the ${\mathcal F}\text{-connection}.$
- ullet $\mathcal G$ acts on $\mathcal T$ (canonically from the left).

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- 2 P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$

Remarks

- \bullet Think of the induced connection on ${\mathcal T}$ as the ${\mathcal F}\text{-connection}.$
- $\mathscr G$ acts on $\mathscr T$ (canonically from the left).

The associated connection on $\mathcal G$ is a multiplicative Yang-Mills connection and the one on $\mathcal T$ is a corresponding Yang-Mills connection.

Remarks

Thus, we have a singular foliation on \mathcal{T} , which, by construction, admits L as a leaf and τ_l as transverse data.

Future Prospe

Lemma ([C. L.-G., S.-R. F.])

 $\mathscr{P} := (P \times P) / G$, the **Atiyah groupoid**, is a principal \mathscr{G} -bundle

$$\begin{array}{c|c}
\mathscr{P} & & \mathscr{G} \\
(t,s) \downarrow & & \downarrow \\
L \times L & \xrightarrow{\operatorname{pr}_2} L
\end{array}$$

where t and s are the target and source arrows, respectively. A connection on P induces an Ehresmann connection on \mathcal{P} .

Definition (Associated bundles, [C. L.-G., S.-R. F.])

$$(t,s) \downarrow \qquad \qquad \mathcal{G} \qquad \qquad \downarrow \\ L' \xrightarrow{\operatorname{pr}_2} L \xleftarrow{\pi_{\mathcal{G}}} \mathcal{G}$$

Equivalence relation on $\mathcal{P}_{s} \times_{\pi_{\mathcal{T}}} \mathcal{T}$

$$(p,t) \sim (p \cdot g, g^{-1} \cdot t)$$

defines the **associated bundle** $\mathscr{P} \tilde{\times} \mathscr{T}$ over L'.

Theorem (Associated connection, [C. L.-G., S.-R. F.])

$$\mathsf{PT}_{\gamma}^{\mathscr{P}\tilde{\times}\mathscr{T}}[p,t] \coloneqq \left[\mathsf{PT}_{\gamma}^{\mathscr{P}}(p), \mathsf{PT}_{\mathrm{pr}_{2}\circ\gamma}^{\mathscr{T}}(t)\right]$$

is a well-defined connection.

Associated connection independent of the choice of connection on

Future Prospe

Infinitesimal cYM

Theorem (Associated connection, [C. L.-G., S.-R. F.])

$$\mathsf{PT}_{\gamma}^{\mathscr{P}\tilde{\times}\mathscr{T}}[p,t] \coloneqq \left[\mathsf{PT}_{\gamma}^{\mathscr{P}}(p), \mathsf{PT}_{\mathrm{pr}_{2}\circ\gamma}^{\mathscr{T}}(t)\right]$$

is a well-defined connection.

Remarks ([C. L.-G., S.-R. F.])

Associated connection independent of the choice of connection on P!

Remarks

Corresponding to \mathcal{P} there is an Atiyah sequence:

$$Ad(P) \hookrightarrow At(P) \longrightarrow TL$$

Via pullback to $\mathcal T$ we have a transitive algebroid over $\mathcal T$:

Remarks

Observe

$$\pi_{\mathscr{T}}^{!}\mathsf{At}(P)\subset \mathrm{T}(\mathscr{P}_{s}\times_{\pi_{\mathscr{T}}}\mathscr{T})$$

Explicitly, one possible way:

Remarks

Corresponding to \mathcal{P} there is an Atiyah sequence:

$$Ad(P) \longrightarrow At(P) \longrightarrow TL$$

Via pullback to \mathcal{T} we have a transitive algebroid over \mathcal{T} :

$$\pi_{\mathscr{T}}^{!}\mathsf{Ad}(P) \longrightarrow \pi_{\mathscr{T}}^{!}\mathsf{At}(P) \longrightarrow \mathsf{T}\mathscr{T}$$

Remarks

Observe

$$\pi_{\mathscr{T}}^{!}\mathsf{At}(P)\subset \mathrm{T}(\mathscr{P}_{s}\times_{\pi_{\mathscr{T}}}\mathscr{T})$$

Ad(P) and At(P) the adjoint and Atiyah bundle of P, respectively:

Future Prospects

Remarks (Why curved gauge theory?)

- Associated connection invariant under choice of ${\mathscr F}\text{-connection }\nabla^{{\mathscr F}}$
- Associated connection has the form

$$\nabla^{\mathscr{F}} + A$$

where A is the connection 1-form on \mathscr{P}

Thank you!