Journées de l'APMEP 2021 - 2022

Programmation en Python des mécanismes de l'évolution

Anne Juras et Jean-Louis MARCIA Groupe de travail MATH-SVT

Sommaire

- Le concept de l'évolution en SVT
- Un peu de génétique : allèles, génotypes et reproduction
- La loi de Hardy-Weinberg
- Simuler l'évolution des fréquences alléliques au cours des générations
 - Modélisation
 - Les fonctions python et le corps du programme
 - Premiers résultats
 - Analyse des résultats
- Comment intégrer les autres forces évolutives ?
 - Mutations
 - Sélection naturelle
 - Appariement non aléatoire
- Ressources

Le concept d'évolution en SVT

Mutation

Espèce A Population génération o Plusieurs générations = au cours du temps

■Définition d'un *paramètre* observable/mesurable dont la variation rend compte d'un changement/d'une évolution

FREQUENCE ALLELIQUE

(support génétique)

- •Définition de « forces évolutives » capable de faire varier le paramètre:
 - Mutation
 - •Dérive génétique
 - •Sélection naturelle

Espèce A Population génération 100

Le concept d'évolution en SVT

Espèce A Population génération 100

plusieurs générations = au cours du temps

Espèce A'

SPECIATION

Espèce A"

Reproduction des individus

Extrait du PNF enseignement scientifique de terminale – Thème 3.1

Génération g

Allèles : différentes versions d'un gène Dans ce schéma: deux allèles A et a d'un même gène

Génotype : les deux allèles présents chez un individu pour un gène donné

MÉIOSE

Séparation des chromosomes de la même paire

Génération g+1

Génotype du descendant : a//a pour le gène considéré

Résultat

FÉCONDATION : Rencontre aléatoire de deux gamètes

gamètes	A	a
A	A//A	A//a
a	A//a	a//a

Génotypes possibles pour la génération n+1 : A//a ou a//a ou A//A

À l'échelle d'une population

La loi de Hardy-Weinberg

Hypothèses:

- La taille de la population est supposée infinie ce qui permet d'assimiler les probabilités à des fréquences (loi des grands nombres)
- Le choix du partenaire se fait au hasard
- Pas de migration, ni mutation, ni sélection naturelle
- Les générations sont séparées

Notations:

- p et q les fréquences respectives des allèles A et a
- f_{AA} , f_{Aa} , f_{aa} celles des génotypes respectifs A//A, A//a et a//a

$$p = f_{AA} + \frac{1}{2} f_{Aa}$$
; $q = f_{aa} + \frac{1}{2} f_{Aa} = 1 - p$

$$oxed{f'_{AA}=
ho^2}$$
 ; $oxed{f'_{Aa}=2
ho q}$; $oxed{f'_{aa}=q^2}$

les fréquences génotypiques.

Calcul de
$$p'$$
 et q' : $p' = f'_{AA} + \frac{1}{2}f'_{Aa} = p^2 + pq = p(p+q) = p \times 1 = p$ et $q' = 1 - p' = 1 - p = q$.

Conclusion : Les fréquences alléliques sont stables à partir de la génération 0 et à partir de la génération 1 pour

Provenance

Allèle choisi

•
$$f_{AA}$$
, f_{Aa} , f_{aa} celles des génotypes respectifs A//A, A//a et a//a

Liens entre les fréquences alléliques et les fréquences génotypiques :

$$p = f_{AA} + \frac{1}{2} f_{Aa}$$
; $q = f_{aa} + \frac{1}{2} f_{Aa} = 1 - p$

Vers la génération suivante : on note avec un « prime » les fréquences
$$f' = p^2 : f' = 2pq : f' = q^2$$

Que devient la loi de H.W. avec une population de taille finie ? Un exemple chez des tortues

On imagine une espèce de tortues dont la carapace a <u>trois couleurs possibles</u> (phénotypes) : marron, verte ou beige.

Le gène contrôlant la couleur de la carapace existe sous <u>deux versions possibles</u> : l'allèle **m** responsable de la couleur **marron** et l'allèle **v** responsable de la couleur **verte**.

Ces allèles sont co-dominants : le génotype m//m révèle la couleur marron

le génotype m//v révèle la couleur beige

le génotype **v//v** révèle la couleur **verte**

Vers la simulation

• Comment modéliser cette population de tortues ?

• Quelles hypothèses doit-on retenir ?

• Comment construire le programme renvoyant l'évolution des fréquences alléliques au cours des générations ?

Hypothèses de travail

- Chaque individu est <u>assimilé à son génotype</u>.
- Dans un premier temps, on suppose qu'il n'y a <u>pas de mutation</u> au cours des générations, <u>ni de sélection naturelle</u> et que les <u>appariements se font aléatoirement</u>.
- On considère que <u>la fréquence des allèles dans la population ne dépend pas du sexe des individus</u>. Les couples seront donc formés par le choix aléatoire de deux individus de cette population.
- On travaille avec une <u>population à effectif constant</u> au cours des générations. Chaque couple engendre donc <u>deux descendants sans chevauchement entre génération</u>.

Population de génotypes

Traduction en python

Comment faire « évoluer » cette population ?

Les fonctions Python et le corps du programme :

Les fonctions

```
def Pop(n):
    U=['m','v']
    P=[]
    for i in range(2*n):
        I=[choice(U),choice(U)]
        P.append(I)
    return P
```

```
def Dist(P):
    N_m=0
    N_v=0
    for I in P:
        N_m=N_m+I.count('m')
        N_v=N_v+I.count('v')
    return [N_m/(2*len(P)),N_v/(2*len(P))]
```

```
def Pop_suivante(P):
    P_suivant=[]
    while P!=[]:
        I_1=choice(P)
        P.remove(I_1)
        I_2=choice(P)
        P.remove(I_2)
        E_1=[choice(I_1),choice(I_2)]
        E_2=[choice(I_1),choice(I_2)]
        P_suivant.append(E_1)
        P_suivant.append(E_2)
    return P_suivant
```

Le programme

```
import matplotlib.pyplot as plt
n = int(input("Nombre de couples dans la population : "))
g = int(input("Nombre de générations : "))
plt.axis([-0.1,g,0,1])
plt.xlabel('Générations')
plt.ylabel('Fréquences')
P = Pop(n)
L = Dist(P)
plt.plot(0,L[0],'m.')
plt.plot(0,L[1],'gx')
for i in range(1,g+1):
    P = Pop suivante(P)
    L = Dist(P)
    plt.plot(i,L[0],'m.')
    plt.plot(i,L[1],'gx')
plt.show()
```

Premiers résultats

Cette fluctuation des fréquences alléliques au cours des générations est appelée « <u>dérive génétique</u> ». Cela fait penser à une marche aléatoire.

Analyse des résultats - La dérive génétique

On note N la taille de la population (N = 2n)

<u>Pour simplifier</u>, on considère que la génération g+1 s'obtient par 2N répétitions indépendantes du choix au hasard d'un allèle dans la génération g.

Fréquences

- Génération g = Urne de taille 2N
- Choix au hasard d'un allèle
- $P(succes) = f_g$

- Génération g+1 = Echantillon aléatoire de taille 2N
- X = nombre de succès

•
$$f_{g+1} = \frac{X}{2N}$$
, où $X \sim \mathcal{B}(2N, f_g)$

Intervalle de fluctuation à 95 % $\approx [f_g - 2\sigma \; ; \; f_g + 2\sigma]$

Les autres forces évolutives

Mutations génétiques

En SVT: Une mutation est un changement de séquence d'un gène qui apparait aléatoirement et qui peut conduire à l'apparition d'un nouvel allèle chez un individu de la population

La fonction "mut"

La fonction "mut" s'applique à une population P formée de 2×n individus. Elle simule <u>les mutations</u> que peuvent subir les 2 allèles de chaque individu avec une <u>fréquence f</u>.

L'allèle muté (ou l'ensemble des allèles mutés) est noté 'a'.

- Comment intégrer cette fonction dans le programme?
- Faut-il modifier les autres fonctions?

Solution

Les fonctions Pop et Pop_suivante sont inchangées. Seule la fonction Dist est modifiée :

```
def Dist(P):
    N_m=0
    N_v=0
    N_a=0
    for I in P:
        N_m=N_m+I.count('m')
        N_v=N_v+I.count('v')
        N_a=N_a+I.count('a')
    return [N_m/(2*len(P)),N_v/(2*len(P)),N_a/(2*len(P))]
```

• Que choisir pour f?

Vers ressources

Intégration dans le programme :

```
import matplotlib.pyplot as plt
from random import *
n=int(input("Nombre de couples dans la population : "))
g=int(input("Nombre de générations : "))
f=float(input("fréquence des mutations : "))
plt.axis([0,g,0,1])
plt.xlabel('Générations')
plt.ylabel('Fréquences')
P=Pop(n)
L=Dist(P)
M=[L[0]]
V=[L[1]]
A=[L[2]]
for i in range(g):
    P=Pop suivante(P)
    P=mut(P,f)
    L=Dist(P)
    M.append(L[0])
    V.append(L[1])
    A.append(L[2])
abs=[k for k in range(g+1)]
plt.plot(abs,M,'mx')
plt.plot(abs, V, 'gx')
plt.plot(abs,A,'b.')
plt.show()
```

Résultats mutations

En attendant l'extinction des allèles d'origine

En l'absence de dérive génétique, les allèles d'origine seraient en **décroissance géométrique de raison 1-f** (représentée en **noir** sur le graphique).

Avec dérive génétique, la fréquence des allèles d'origine est représentée en **rouge** et celle des allèles mutés en **bleu**.

L'extinction G vérifie : $(1 - f)^G < 1/2N$.

Sélection naturelle

La fonction selec

La fonction "selec" s'applique à une population P formée de 2×n individus. Elle simule la sélection naturelle que peuvent subir certains génotypes. On choisit ici de simuler une <u>sélection défavorable</u> <u>au phénotype associé au génotype ['m', 'm']</u> en le faisant disparaitre de la population avec une <u>fréquence s</u>.

Conséquence: L'effectif de la population n'est plus constant au cours des générations.

• Créer cette fonction sachant que l'effectif doit rester pair.

- Comment intégrer cette fonction dans le programme ?
- Faut-il modifier les autres fonctions?

Solution

Les fonctions Pop, Dist et Pop_suivante sont inchangées.

• Que choisir pour s?

Vers ressources

Intégration dans le programme :

```
import matplotlib.pyplot as plt
n=int(input("Nombre de couples dans la population : "))
g=int(input("Nombre de générations : "))
s=float(input("facteur sélectif sur ['m','m'] : "))
plt.axis([-0.1,g,0,1])
plt.xlabel('Générations')
plt.ylabel('Fréquences')
P=Pop(n)
L=Dist(P)
M=[L[0]]
V=[L[1]]
for i in range(1,g+1):
   P=Pop_suivante(P)
   P=Selec(P,s)
   L=Dist(P)
   M.append(L[0])
   V.append(L[1])
abs=[k for k in range(g+1)]
plt.plot(abs,M,'mx')
plt.plot(abs,V,'gx')
plt.show()
```

Résultats sélection naturelle

Appariement non aléatoire

Les appariements ne sont plus équiprobables. On choisit de forcer l'appariement en priorité entre les individus ['m','m'] avec une fréquence c.

- Dans un premier temps, et avec une fréquence c, on choisit un individu ['m','m'] dans la population, s'il existe!
- Ensuite, on choisit un deuxième individu ['m','m'], s'il existe encore, et on reproduit le couple ainsi formé en créant les deux descendants.
- Dans les autres cas on procède à la reproduction des individus de façon équiprobable.
- On réitère le processus jusqu'à vider la population.

Quelle partie du programme ou des fonctions initiales faut-il modifier?

Solution

Seule la fonction Pop_suivante est modifiée.

- Quelle(s) conséquence(s) sur l'évolution des fréquences alléliques ?
- Quelle valeur donner au coefficient d'appariement c ?

Vers ressources

```
def Pop suivante(P,c):
    P suivant=[]
   while P!=[]:
        if random()<c and ['m', 'm'] in P:</pre>
            P.remove(['m','m'])
            I 1=['m','m']
            if ['m','m'] in P:
                P.remove(['m', 'm'])
                I 2=['m','m']
                E 1=[choice(I 1),choice(I 2)]
                E 2=[choice(I 1),choice(I 2)]
                P suivant.append(E 1)
                P suivant.append(E 2)
            else:
                I 2=choice(P)
                P.remove(I 2)
                E 1=[choice(I 1),choice(I 2)]
                E 2=[choice(I 1),choice(I 2)]
                P suivant.append(E 1)
                P suivant.append(E 2)
        else:
            I 1=choice(P)
            P.remove(I 1)
            I 2=choice(P)
            P.remove(I 2)
            E 1=[choice(I 1),choice(I 2)]
            E 2=[choice(I 1),choice(I 2)]
            P suivant.append(E 1)
            P suivant.append(E 2)
    return P suivant
```

Comparaison avec et sans appariement aléatoire

On choisit ici une population initiale avec deux fois plus d'allèles 'm' que d'allèles 'v'.

Appariement aléatoire

Appariement non aléatoire

Diminution de l'amplitude de la dérive génétique ? Et les phénotypes ?

Du génotype au phénotype

```
La fonction « Phéno » traduit le génotype en phénotype ; 'm' et 'v' sont codominants : m//m en M m//v en B v//v en V
```

```
def Phéno(P):
    P_ph=[]
    for I in P:
        if I==['m','m']:
            P_ph.append('M')
        if I==['m','v'] or I==['v','m']:
            P_ph.append('B')
        if I==['v','v']:
            P_ph.append('V')
    return P_ph
```


<u>Les fréquences alléliques théoriques</u> sont les suivantes : p=2/3 et q=1/3 (voir ci-contre).

Ce qui est ici vérifié avec ou sans appariement aléatoire mais <u>un appariement fort estompe la dérive</u>.

Dans le cadre du <u>modèle de Hardy-Weinberg</u> on obtient pour les phénotypes :

fmm=4/9, fvv=1/9, fmv=4/9.

<u>Cet équilibre n'est pas vérifié en cas d'appariement fort</u> (voir ci-dessous).

Nombre de couples dans la population : 5000

Un petit historique de la loi de Hardy- Weinberg

"Pedigree de brachydactylie de la famille Drinkwater" extrait de Mendélisme et relations avec les maladies aux Actes, Punnet (1908)

« La brachydactylie est un "cas simple de mendélisme" cette maladie est dominante ».

George Udny Yule (1871-1951) statisticien écossais

« Si la brachydactylie est dominante « au cours du temps, on pourrait s'attendre [...] à obtenir trois personnes brachydactyles pour une normale. »

DISCUSSION ET
CORRESPONDANCE
JULY 10, 1908 SCIENCE

Godfrey Harold

« Si la brachydactylie est dominante, la proportion de personnes brachydactyles de la deuxième génération est [...] le double de la première génération; la proportion n'aura plus tendance par la suite à augmenter. [...] »

Ressources

Propositions d'activités classe et programmes python sur le Drive suivant :

https://drive.google.com/drive/folders/1Uuu6uRnGVGMnUhwYHNHnqO8B7YUbAPtB?usp=sharing

FIN

Merci de votre attention