CSCI 5521 (002) Hw3-Written

Asal Shavandi

TOTAL POINTS

70 / 70

QUESTION 1

1Q130/30

√ + 30 pts Everything correct

- **5 pts** Forget to update of $\$ based on the second term of the objective function: $\$ triangle $\$ w_h^{'} = -\eta \cdot 2w_{h}\$\$, the final update of $\$ should be the sum of updates from both terms
- + 2 pts Correct use of the chain rule for updating $$v_h$$$ based on the first term in the objective function: $$\star v_h$ = -\epsilon \sqrt{\rho rtial} E_{\rho rtial v_h} = -\epsilon \sum_{\sigma v_h} \sqrt{\rho rtial v_h} \frac{y^t}{\rho rtial v_h} \frac{y^t}{\rho rtial v_h}$
- + 3 pts Update \$\$v_{h}\$\$ with the first term (a), correct derivative for \$\$ \frac{\partial E}{\partial y^t} = \sum\\limits_{t} \frac{y^t-r^t}{y^t(1-y^t)}\$\$
- + 2 pts Update $$v_{h}$ \$ with the first term (b), correct derivative for $$ \frac{y^t}{\rho a tial y^t} = y^t(1-y^t)$ \$
- + 2 pts Update $$v_{h}$ \$ with the first term (c), correct derivative for $$ \frac{\rho r}{\rho r} = z_h^t$
- + 3 pts Correct update of \$\$v_h\$\$ based on the second term of the objective function: identify that the update is independent on the regularization term (the second term in the objective function E) / Directly using the first term as the final solution

- + 2 pts Update \$\$w_{h}\$\$ with the first term (a), correct derivative for \$\$ \frac{\partial E}{\partial y^t} = \sum\\limits_{t} \frac{y^t-r^t}{y^t(1-y^t)}\$\$
- + 2 pts Update $\$ w_{h}\$\$ with the first term (b), correct derivative for \$\$ \frac{y^t}{\pi ac} y^t}{\pi ac} = y^t(1-y^t)\$\$
- + 2 pts Update $\$ with the first term (c), correct derivative for $\$ \frac{\partial \alpha^t}{\partial z_h^t} = v_h\$\$
- + **4 pts** Update $\$w_{h}$ with the first term (d), correct derivative for $\$ \frac{z_h^t}{\rho x^t}$ w_h)\$\$: $\$ \frac{z_h^t}{\rho x^t}$ if $\$w_{h}^T x^t+w_{0} > 0$ \$ and 0 otherwise
- + **5 pts** Correct update of \$_h\$\$ based on the second term of the objective function:\$\triangle w_h^{'} = -\eta \cdot 2w_{h}\$\$, the final update of \$_h\\$\$ should be the sum of updates from both terms
 - 1 pts Arithmetic error
 - + **O pts** Unattempted/incorrect

QUESTION 2

Q2 30 pts

2.1 (a) 15 / 15

√ + 15 pts Everything correct

- + **7.5 pts** Correct vector for figure (2) (1, 1,0) and the scaled versions
- + **4 pts** Partial credit for figure (2) (e.g., one of the coefficients is missing/incorrect)
- + **7.5 pts** Correct vector for figure (3) (-1, -1, -1) and the scaled versions
- + **4 pts** Partial credit for figure (3) (e.g., one of the coefficients is missing/incorrect)
 - + 0 pts Incorrect/unattempted

2.2 (b) 15 / 15

√ + 15 pts Everything correct

- + **7.5 pts** Correct W coefficients (stacking of vectors from part (a))
- + **4 pts** Partial credit for W (incorrect coefficient for one/more of the W matrix)
 - + **7.5 pts** Correct v vector (-1.5, 1, 1) (AND operation)
- + **4 pts** Partial credit for v (incorrect coefficient for one/more of the v vectors)
 - + O pts No attempt/completely incorrect

QUESTION 3

3 Q3 10 / 10

√ + 10 pts Everything correct

- + 1 pts Reasonable reporting of the validation set accuracy over different hidden layers
- + 1 pts Reasonable reporting of the test set accuracy over selected hidden layers
 - + 1 pts Correct 2D Plot (Correct Formula)
 - + 1 pts Correct 2D Plot (Correct Distribution)
 - + 1 pts Correct 3D Plot (Correct Formula)
 - + 1 pts Correct 3D Plot (Correct Distribution)
- + 2 pts Correct Explanation. (Specify that some data may need to be mapped to higher dimensions for separation, and compare the results)
- + 2 pts Code Submission Compensation (selected as long as problem attempted)
 - + 0 pts Unattempted _only_

(1) E(W,U|X) = - \(\sum_{t}\) \(\begin{array}{c} (r^t \logy^t + (1-r^t) \log(1-y^t)) + \sum_{t} || \omega_n ||^2 \\ + \text{1.1} || \omega_n ||^2 \\ \end{array} yt= Sigmoid (5 yzt+Vno) = = relu(w, xt+who) Nh= - DE DE DY DVh DY DVh DY DVh DY DVho DY DVho BE = 5 (1 1-12) yt (1-yt) = 5 (1-yt) = N BVh t=1 yt 1-yt) yt (1-yt) = 5 (1-yt) = N $\frac{\partial E}{\partial V_{No}} = \frac{\sum_{t=1}^{N} \left(\frac{r^{t}}{y^{t}} \frac{1-r^{t}}{1-y^{t}} \right) \cdot y^{t} \left(\frac{1-y^{t}}{y^{t}} \right) \cdot 1}{t=1} = \frac{N}{t=1} \left(\frac{r^{t}}{y^{t}} \right)$ -> N= 75 (rtyt) & , DV = 75 (rt-yt) DW = - N DE DE DE DE DENT DWA 3E = \ - \frac{7}{2} \(\frac{1-r^{+}}{y^{+}} \) \(\frac{ 1 = (v+ 1-v+)-y+ (1-y+)-v+0 = = 2w, otherwise > Owh Tel (rtyt) Vt. xt & Dw y whaten 1 × 2w, $\sum_{k=1}^{n} \frac{(r^{k}y^{k})v_{h}^{k} \cdot x^{k}}{v_{h}^{k}} = \sum_{k=1}^{n} \frac{2w_{h}}{v_{h}^{k}} = \sum_{k=1}^{n} \frac{2w_{h}}{v_{h$ DW = { 2 (rtyt) vh. 1 if who > 0 with CamScanner

1Q130/30

√ + 30 pts Everything correct

- **5 pts** Forget to update of $\$ based on the second term of the objective function: $\$ based on the second term of the objective function in the second term of the objecti
- + 2 pts Correct use of the chain rule for updating $$v_h$$ based on the first term in the objective function: $\$ \frac{\partial v_{h}} = -\eta \sum_{partial v_h} = -\eta \sum_{partial v_h} = -\eta \sum_{partial v_h} \frac{y^t}{partial \alpha_h}
- + 3 pts Update $$v_{h}$ \$ with the first term (a), correct derivative for $$ \frac{y^t} = \sum_{t=0}^{t} \frac{y^t}{1-y^t}$ \$
- + 2 pts Update $$v_{h}$ \$ with the first term (b), correct derivative for \$\frac{\partial y^t}{\partial \alpha^t} = y^t(1-y^t)\$\$
- + 2 pts Update $$v_h$ \$ with the first term (c), correct derivative for \$\$ \frac{\pi v_h} = z_h^t\$\$
- + 3 pts Correct update of \$\$v_h\$\$ based on the second term of the objective function: identify that the update is independent on the regularization term (the second term in the objective function E) / Directly using the first term as the final solution
- + 2 pts Update $\$ with the first term (a), correct derivative for $\$ \frac{\partial E}{\partial y^t} = \sum_{t=0}^{t} \frac{y^t-r^t}{y^t(1-y^t)}
- + 2 pts Update $\$ with the first term (b), correct derivative for $\$ \frac{\partial y^t}{\partial \alpha^t} = $y^t(1-y^t)$ \$
- + 2 pts Update $\$ with the first term (c), correct derivative for $\$ \frac{\partial \alpha^t}{\partial z_h^t} = v_h\$\$
- + **4 pts** Update $\$ with the first term (d), correct derivative for $\$ \frac{\partial z_h^t}{\partial w_h}\$\$: \$\$ \frac{z_h^t}{\partial w_h}=x^t\$\$ if \$\$w_{h}^T x^t+w_{0} > 0\$\$ and 0 otherwise
- + **5 pts** Correct update of $\$ based on the second term of the objective function: $\$ triangle w_h^{'} = -\eta \cdot 2w_{h}\$\$, the final update of $\$ should be the sum of updates from both terms
 - 1 pts Arithmetic error
 - + **0** pts Unattempted/incorrect

2.1 (a) 15 / 15

√ + 15 pts Everything correct

- + **7.5 pts** Correct vector for figure (2) (1, 1,0) and the scaled versions
- + 4 pts Partial credit for figure (2) (e.g., one of the coefficients is missing/incorrect)
- + **7.5 pts** Correct vector for figure (3) (-1, -1, -1) and the scaled versions
- + 4 pts Partial credit for figure (3) (e.g., one of the coefficients is missing/incorrect)
- + **0 pts** Incorrect/unattempted

2.2 (b) 15 / 15

√ + 15 pts Everything correct

- + 7.5 pts Correct W coefficients (stacking of vectors from part (a))
- + 4 pts Partial credit for W (incorrect coefficient for one/more of the W matrix)
- + **7.5 pts** Correct v vector (-1.5, 1, 1) (AND operation)
- + 4 pts Partial credit for v (incorrect coefficient for one/more of the v vectors)
- + **0 pts** No attempt/completely incorrect

3	My validation accuracies based on number of hidden units;
	4 hidden units; 0.844 ~ 85/
	8 0.845
	16 , 3 0.918
	20 . : 0.897
-	24 ~ 8 0.901
	So and IC hiller with the transport with
	So apparently 16 hidden units works the best among other numbers with highest validation accuracy at first it starts to get better, but higher than
	16 will give us lower accuracy.
	My vest accuracy with 16 hidden units is 0.917
	Then we can decide to use 16 hidden units.
	c) Overall by Looking at the 3d Plots we got a better understanding of
	class distributions.
	2d plots allow us to visualize classes around 2 hidden nodes but in
	Some regions its really hard to distinguish different classes.
	However, 3d plots with 3 different hidden nodes, we get a better visualisation
	by comparing it to 2d plot, we no longer have datapoints from different
	by comparing it to 201 plot, we no longer have datapoints from different classes stacked upon each other and instead they are easily predicted now!
	I guess at the end we can make better predictions by doing 3 hidden
	I guess at the end we can make better predictions by doing 3 hidden units and doing the plots just holped us to visualize this property.
	us to visualize this property.
cs Sc	nned with CamScanner

Test 2d plot

Test 3d plot

train 2d plot

train 3d plot

valid 2d plot

valid 3d plot

3 Q3 10 / 10

√ + 10 pts Everything correct

- + 1 pts Reasonable reporting of the validation set accuracy over different hidden layers
- + 1 pts Reasonable reporting of the test set accuracy over selected hidden layers
- + 1 pts Correct 2D Plot (Correct Formula)
- + 1 pts Correct 2D Plot (Correct Distribution)
- + 1 pts Correct 3D Plot (Correct Formula)
- + 1 pts Correct 3D Plot (Correct Distribution)
- + 2 pts Correct Explanation. (Specify that some data may need to be mapped to higher dimensions for separation, and compare the results)
 - + 2 pts Code Submission Compensation (selected as long as problem attempted)
 - + 0 pts Unattempted _only_