## **Assignment**

## Data Mining

## Topic

Weka Implementation of Algorithms (Apriori, Apriori TID and FP-Growth)

Submitted by

Junaid Iqbal (70070342)

Master of Science in Computer Science The University of Lahore Lahore, Pakistan



Q.1. Consider an example with the following set of transactions. We wish to find associations with at least 30% support and 60% confidence. Find the frequent item sets and then the association rules. Implement using Weka with different algorithms of association rule mining (Apriori, Apriori TID and FP-Growth) and differentiate among them.

| Transaction ID | Items bought |
|----------------|--------------|
| 1              | BMTY         |
| 2              | BM           |
| 3              | ATSP         |
| 4              | ABCD         |
| 5              | AB           |
| 6              | TYEM         |
| 7              | ABM          |
| 8              | BCDTP        |
| 9              | DTS          |
| 10             | ABM          |

## **Solution:**

## Frequency Item Sets

| Items | Frequency/ Support count | Support                                       |  |  |
|-------|--------------------------|-----------------------------------------------|--|--|
| Α     | 5                        | 50%<br>70%<br>20%<br>30%<br>10%<br>50%<br>20% |  |  |
| В     | 7                        |                                               |  |  |
| C     | 2                        |                                               |  |  |
| D     | 3                        |                                               |  |  |
| E     | 1                        |                                               |  |  |
| M     | 5                        |                                               |  |  |
| P     | 2                        |                                               |  |  |
| S     | 2                        | 20%<br>50%                                    |  |  |
| T     | 5                        |                                               |  |  |
| Y     | 2                        | 20%                                           |  |  |

## 1 Apriori Algorithm

Data for Apriori [1]

| TID | Α   | В   | C   | D   | E   | M   | Р   | S   | T                                       | Y   |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----------------------------------------|-----|
| 1   | 63  | YES | 6   |     | 57  | YES | 5,5 |     | YES                                     | YES |
| 2   |     | YES |     |     |     | YES |     |     |                                         |     |
| 3   | YES |     |     |     |     |     | YES | YES | YES                                     |     |
| 4   | YES | YES | YES | YES |     |     |     |     |                                         |     |
| 5   | YES | YES |     |     |     |     |     |     |                                         |     |
| 6   |     |     |     |     | YES | YES |     |     | YES                                     | YES |
| 7   | YES | YES |     |     |     | YES |     |     |                                         |     |
| 8   |     | YES | YES | YES |     |     | YES |     | YES                                     |     |
| 9   |     |     |     | YES |     | 4   |     | YES | YES                                     |     |
| 10  | YES | YES |     |     |     | YES |     |     | 111111111111111111111111111111111111111 |     |

#### **Results:**

```
Minimum support: 0.3 (4 instances)
Minimum metric <confidence>: 0.6
Number of cycles performed: 14
Generated sets of large itemsets:
Size of set of large itemsets L(1): 4
Large Itemsets L(1):
A=YES 5
B=YES 7
M=YES 5
T=YES 5
Size of set of large itemsets L(2): 2
Large Itemsets L(2):
A=YES B=YES 4
B=YES M=YES 4
Best rules found:
 1. A=YES 5 ==> B=YES 4 <conf:(0.8)> lift:(1.37) lev:(0.09) [1] conv:(1.04)
 2. M=YES 5 ==> B=YES 4 <conf:(0.8)> lift:(1.37) lev:(0.09) [1] conv:(1.04)
```

## 2 AprioriTID Algorithm

The difference between Apriori and AprioriTID is only that it doesn't uses the database for counting the support of candidate itemsets after the first pass. It is implementable by using SPMF Open Source Data Mining Library [2].

### 3 FP Growth Algorithm

Data for FP Growth Algorithm [3]

```
@relation supermarket
@attribute 'A' { t}
@attribute 'B' { t}
@attribute 'C' { t}
@attribute 'D' { t}
@attribute 'E' { t}
@attribute 'M' { t}
@attribute 'P' { t}
@attribute 'S' { t}
@attribute 'T' { t}
@attribute 'Y' { t}
@data
?,t,?,?,?,t,?,?,t,t
?,t,?,?,?,t,?,?,?,?
t,?,?,?,?,t,t,t,?
t,t,t,t,?,?,?,?,?,?,?,?
t,t,?,?,?,?,?,?,?,?,?
?,?,?,?,t,t,?,?,t,t
t,t,?,?,?,t,?,?,?,?,?
?,t,t,t,?,?,t,?,t,?
?,?,?,t,?,?,t,t,?
t,t,?,?,?,t,?,?,?,?,?
```

#### Results

# **References:**

- $[1] \ \underline{https://github.com/junaideqbal/data-mining/blob/main/assignment1/Apriori-Data.csv}$
- [2] http://www.philippe-fournier-viger.com/spmf/
- [3] https://github.com/junaideqbal/data-mining/blob/main/assignment1/FP-Growth-Data.arff