Лямбда-исчисление

Косарев Дмитрий

20 марта 2023 г.

Косарев Дмитрий 20 марта 2023 г.

Оглавление

- Введение и историческая справка
- 2 Лямбды как апгрейд языка предикатов
- ③ Написание алгоритмов с помощью λ -исчисления
- Мак писать интерпретатор на Си?
- Вопросы к экзамену

Косарев Дмитрий 20 марта 2023 г.

Введение: λ -исчисление

Alonzo Church (1903-1995)

Алонзо Чёрч 1935 открыл λ -исчисление

Аналогичный подход от А. Тьюринга с его машинами Тьюринга

Это разные подходы для формализации понятия "алгоритм"

В принципе, могло быть изобретено уже в 1910-х г.г.

3 / 40

Изображение из Википедии

Косарев Дмитрий 20 марта 2023 г.

Оглавление

- Введение и историческая справка
- 2 Лямбды как апгрейд языка предикатов
- \bigcirc Написание алгоритмов с помощью λ -исчисления
- 4 Как писать интерпретатор на Си?
- Вопросы к экзамену

Косарев Дмитрий 20 марта 2023 г.

Состояние математики в 1910-х

Матан, алгебра, геометрия...

Информатики (computer science) явным образом пока нет, как часть математики

Математическая логика

- Пытается формализовать интуитивно понятные утверждения
- Языки (т.е. синтаксис), чтобы на них можно было правильно сформулировать теоремы
- Различные "семантики" как интерпретации синтаксиса, потому что формулы могут быть верны и не верны в зависимости от семантики
- "Исчисления" правильные способы доказательств
- 🧿 Теоремы, которые невозможно ни доказать, ни опровергнуть.

Начинают задумываться, что такое "алгоритм", "вычисление" и "вычислимая функция"

Косарев Дмитрий 20 марта 2023 г. 5/40

Зачем формализовывать то, что и так понятно?

"Наивная" теория множеств

Множества можно делить на два типа

- набор не является элементом самого себя
- Расселовские: набор является элементом самого себя.

Рассмотрим $P = \{y: y \notin P\}$ и задумаемся про $P \in P$?

- Если формула верна, то нарушается определение
- Если ложна, то не принадлежит, но по определению должна

Изображение из Википедии

Bertrand Russell (1872–1970)

Некоторые известные языки и исчисления из математической логики

- Нулевого порядка (высказываний)
- Первого порядка (предикатов)
- Высших порядков
- Исчисление конструкций (calculus of constructions)

Важное замечание

То, что нельзя записать в языке, нельзя использовать в исчислениях/доказательствах

Косарев Дмитрий 20 марта 2023 г. 7/40

Знакомая вам булева (бинарная) логика

- Логические константы True и False
- \bigcirc Логические переменные x, y, z, \dots
- **③** Бинарные связки \lor , \land , ⇒ и т.д.

Правила вывода в исчислении, например:

$$\frac{P \Rightarrow Q}{Q}$$
 modus ponens

Теорема (Язык и исчисление "хорошие")

Верную формулу можно доказать за конечное число шагов. Ложную можно опровергнуть.

T.e. существует алгоритм, который всегда завершается и говорит да/нет.

Язык и исчисление "плохие", потому что не всё можно записать (где кванторы?)

Косарев Дмитрий 20 марта 2023 г. 8 / 40

Разрешимые и неразрешимые задачи

Определение (Алгоритмически неразрешимая задача)

Задача, которая имеет ответ "да" или "нет", но для которое невозможно реализовать алгоритм, который *всегда завершается, и выдает правильный ответ*.

Определение (Полуразрешимая задача)

Неразрешимая задача, для которой можно предъявить алгоритм, который либо дает правильный ответ "да", либо не завершается. Полуразрешимые $^+$ умеют говорить "да", полуразрешимые $^-$ — "нет".

Как доказывать неразрешимость

- Разбирать случаи и искать противоречие в каждом
- Сводить каноничную неразрешимую задачу к нашей

Косарев Дмитрий 2023 г. 9/40

Язык и исчисление 1-го порядка (предикатов)

Термы:

- Предметные константы: 1.0, 42, π
- Функциональные символы арности $1\leqslant n$ от термов. Например, $+,\times,f,mod$ и т.д.
- Предметные переменные x, y, z, \dots

Формулы:

- Логические константы True и False
- Бинарные связки $\lor, \land, ⇒$ (и т.д.)
- Предикатные символы (от термов) арности $1 \le n$
- Кванторы ∀, ∃ от имени предметной переменной и формулы

Важно

 $+, \times, f, mod$ это названия функциональных символов, никто не гарантирует, что + это сложение чисел

10 / 40

Пример:

 $\forall xz \; \exists y (x < y) \land (y < z)$ верно, если $x, y, z \in \mathbb{R}$, неверно, если $x, y, z \in \mathbb{N}$

Преимущества и недостатки языка 1го порядка

- Для некоторых формул из синтаксиса можно понять, что они верны (общезначимы). Для них есть алгоритм, который их докажет за конечное число шагов (см. "метод британского музея")
- Огромное количество формул верны только в некоторой семантике, для них нельзя предъявить, алгоритм, который завершается и выдает вердикт.
 В общем виде проверка формулы на истинность/ложность – неразрешимая задача
- Язык недостаточно богат. Кванторы пробегают только предметные переменные, нельзя выразить "для любой формулы Р, верно...", например, принцип индукции

$$\forall P. \quad P(0) \Rightarrow (\forall n.P(n) \Rightarrow P(n+1)) \Rightarrow (\forall n.P(n))$$

Косарев Дмитрий 20 марта 2023 г. 11/40

Оглавление

- Введение и историческая справка
- 2 Лямбды как апгрейд языка предикатов
- \bigcirc Написание алгоритмов с помощью λ -исчисления
- 4 Как писать интерпретатор на Си?
- Вопросы к экзамену

Косарев Дмитрий 20 марта 2023 г. 12 / 40

Но можно попробовать вывернуться

Введем специальный синтаксис

$$\lambda P$$
. phormula(P)

Опишем принцип индукции, и применим его для
$$P(n) \equiv 0 + \cdots + n = \frac{n \cdot (n+1)}{2}$$

$$\lambda P. \quad P(0) \Rightarrow (\forall n. P(n) \Rightarrow P(n+1)) \Rightarrow (\forall n. P(n))$$

Косарев Дмитрий 20 марта 2023 г.

Но можно попробовать вывернуться

Введем специальный синтаксис

 λP . phormula(P)

Опишем принцип индукции, и применим его для $P(n) \equiv 0 + \cdots + n = \frac{n \cdot (n+1)}{2}$

$$\lambda P. \quad P(0) \Rightarrow \left(\forall n. P(n) \Rightarrow P(n+1) \right) \Rightarrow \left(\forall n. P(n) \right)$$

применение/подстановка ↓ ↑ абстракция

$$(0 \equiv 0) \Rightarrow (\forall n.(0 + \dots + n = \frac{n \cdot (n+1)}{2}) \Rightarrow \left(0 + \dots + (n+1) = \frac{(n+1) \cdot (n+2)}{2}\right))$$

$$\Rightarrow (\forall n.0 + \dots + n = \frac{n \cdot (n+1)}{2})$$

$$(1)$$

Косарев Дмитрий 20 марта 2023 г.

Правила работы с новым языком λ

α -эквивалентность

При выборе новых имен, они не должны случайно перекрыть старые.

Предложения языка, отличающиеся только переименованием переменных, считаются (α) эквивалентными

Например: если ни P, ни Q не встречаются в phormula, то $\lambda P.phormula(P) \stackrel{\alpha}{\equiv} \lambda Q.phormula(Q)$

β -эквивалентность

Если у нас встречается $(\lambda P.phormula(P))X$, то мы можем продолжить с этим работать совершив подстановку X вместо P в phormula (записывается как $phormula[P \mapsto X]$), т.е. заменив все свободные вхождения P на X внутри phormula.

Косарев Дмитрий 20 марта 2023 г. 14/40

λ -исчисление

Синтаксис:

- Переменные: x, y, z, . . .
- Абстракция $(\lambda \nu.A)$, где $A \lambda$ -выражение, а ν произвольное имя переменной
- ullet Применение (AB), где A и $B-\lambda$ -выражения

Определение

Редекс — это λ -выражение вида $(\lambda \nu.A)B$

В терминах программирования:

- Переменные
- Объявления 1-аргументных функций
- Вызов функции от одного аргумента

Процесс вычисления — это процесс устранения редексов (возможно, не всех) путём подстановок λ -выражений вместо переменных.

Косарев Дмитрий 20 марта 2023 г. 15/40

λ -исчисление

Синтаксис:

- Переменные: x, y, z, . . .
- Абстракция $(\lambda \nu.A)$, где $A \lambda$ -выражение, а ν произвольное имя переменной
- ullet Применение (AB), где A и $B-\lambda$ -выражения

Определение

Редекс — это λ -выражение вида $(\lambda \nu.A)B$

```
enum Tag { VAR, ABS, APP };
struct ulc {
  Tag tag;
  union body {
    struct Var { char* name; } Var;
    struct Abs { char* name; ulc* body; } Abs;
    struct App { ulc* f; ulc* arg; } App;
  } body;
};
```

Каррирование

Определение

Каррирование — это представление n-арных функций через 1-арные функции

В λ -исчислении функция n аргументов представляются как функция одного аргумента, которые возвращает функцию от n-1 аргумента.

В мире названо в честь Хаскеля Карри. Впервые появилось в 1924 в работе М. И. Шейнфинкеля.

Изображение взято с Википедии

Моисей Исаевич Шейнфинкель (1888 – 1942)

Символ λ работает как квантор

- свободные вхождения
- связанных вхождения и т.д.

⁰TODO: сказать про скобочки

Подстановка

Редекс $(\lambda x.(\lambda x.x)x)y$ вида $(\lambda \nu.A)B$, где

- $A \equiv (\lambda x.x)x$
- B ≡ y
- $\nu \equiv x$

$$(\lambda \mathbf{x}.(\lambda \mathbf{x}.\mathbf{x})\mathbf{x})\mathbf{y} \to (\lambda \mathbf{x}.\mathbf{x})\mathbf{y}$$

Подстановка "x вместо A в B" в лит-ре обозначается по-разному:

- $[x \mapsto A]B$
- \bullet [A/x]B

Определения алгоритма

Теорема (Тезис Чёрча)

Используя λ -исчисление можно реализовать произвольный алгоритм (с точностью до представления данных).

Теорема (Тезис Тьюринга)

Используя машину Тьюринга можно реализовать произвольный алгоритм (с точностью до представления данных).

Т.е. теперь под алгоритмом понимается только то, что можно записать в формализме (-ax).

Косарев Дмитрий 20 марта 2023 г. 19/40

Как происходят вычисления (редукция) λ -исчислении?

Определение (Процесс вычислений регламентирует стратегия)

Ищем редексы $(\lambda x.P)Q$

- Если редексов нет, то вычисление закончилось
- Если редексы есть, стратегия регламентирует какой на данном шаге редекс стоит β -редуцировать
- Или же, стратегия может сказать, что все редексы нужно оставить как есть, и выдать ответ.

Косарев Дмитрий 20 марта 2023 г. 20/40

Дэмка на С++ (2/5): объявление стратегии

```
struct Strateav {
  ulc* (*onVar)(Strategy* self, char* name);
  ulc* (*onApp)(Strateay* self, struct ulc *f, struct ulc *ara);
  ulc* (*onAbs)(Strateay* self, char *name, struct ulc *ara);
};
struct ulc* applyStrategy(Strategy *self, struct ulc *root) {
  switch (root→taa) {
    case VAR: return self→onVar(self, root→body.Var.name);
    case APP: return self→onApp(self, root→body.App.f, root→body.App.arg);
    case ABS: return self→onAbs(self, root→body.Abs.name, root→body.Abs.body);
  assert(false): return nullptr: // unreachable
```

Косарев Дмитрий 2023 г. 21/40

Две стратегии: Call-by-value и аппликативная

Call-by-value

Applicative order

$$\frac{e \xrightarrow{ao} e'}{(\lambda x.e) \xrightarrow{ao} (\lambda x.e')} \text{ Abs}$$

$$rac{f_1 o (\lambda x.e) \qquad extit{a}_1 o extit{a}_2 \qquad [x \mapsto extit{a}_2]e o r}{(f_1 extit{a}_1) o r}$$
 App-abs

$$\frac{}{x \to x}$$
 Var

$$\frac{f_1 o f_2
eq (\lambda x.e)}{(f_1 a_1) o (f_2 a_2)}$$
 App-non-abs

Косарев Дмитрий 20 марта 2023 г. 22/40

Две стратегии: Call-by-value и аппликативная

Call-by-value

$$\frac{}{(\lambda x.e) \xrightarrow{cbv} (\lambda x.e)} \text{ Abs}$$

Applicative order

$$\frac{e \xrightarrow{ao} e'}{(\lambda x.e) \xrightarrow{ao} (\lambda x.e')} \text{ Abs}$$

 Подходит для написания произвольных алгоритмов

- √ Не считает под абстракцией, поэтому ответ иногда длиннее, чем хотелось бы
- Считает под абстракцией, поэтому ответ короче

$$rac{f_1 o (\lambda x.e) \qquad a_1 o a_2 \qquad [x \mapsto a_2]e o r}{(f_1 a_1) o r}$$
 App-abs $rac{f_1 o f_2
eq (\lambda x.e) \qquad a_1 o a_2}{(f_1 a_1) o (f_2 a_2)}$ App-non-abs

```
struct ulc *evalApplyByValue(Strategy *self, ulc *f, ulc *a1) {
  auto f2 = applyStrateay(self, f);
  switch (f2 \rightarrow taq) {
    case VAR: case APP: return app(f2, a1):
    case ABS: {
      auto a2 = applyStrategy(self, a1);
      auto r = \text{subst}(a2, f2 \rightarrow \text{body.Abs.name}, f2 \rightarrow \text{body.Abs.body});
      return applyStrateay(self. r):
  assert(false); return nullptr; // unreachable
```

Косарев Дмитрий 20 марта 2023 г.

Оглавление

- Введение и историческая справка
- Лямбды как апгрейд языка предикатов
- ③ Написание алгоритмов с помощью λ -исчисления
- 4 Как писать интерпретатор на Си?
- Вопросы к экзамену

Косарев Дмитрий 20 марта 2023 г. 24/40

Что нужно для представления алгоритмов?

- Принимать входные данные
- Делать ветвления в зависимости от входных данных
- Совершать некоторое количество однотипных действий в зависимости от входных данных (т.е. должны быть циклы или их аналог рекурсия)
 - Чтобы понимать, сколько действий уже сделали нужны натуральные числа

Косарев Дмитрий 20 марта 2023 г. 25/40

Ветвления

$$T \equiv (\lambda x.(\lambda y.x)) \equiv \mathit{fst}$$
 $F \equiv (\lambda x.(\lambda y.y)) \equiv \mathit{snd}$

$$\begin{array}{ccc} \textit{ite} & \equiv & \lambda c.\lambda th.\lambda el.(c \ th \ el) \\ (\textit{ite} \ T) & \equiv & \lambda th.\lambda el.(T \ th \ el) \xrightarrow{*} th \\ (\textit{ite} \ F) & \equiv & \lambda th.\lambda el.(F \ th \ el) \xrightarrow{*} el \end{array}$$

Косарев Дмитрий 20 марта 2023 г.

 $^{^{0}}$ Здесь $\stackrel{*}{\longrightarrow}$ означает редукцию за несколько шагов

Историческое напоминание: числа Пеано

Первым ввел аксиоматику арифметики в 1889 году. Натуральные числа определяются через "базу" и "следующий"

- 1. 0 натуральное число
- 6. Для любого натурального $n,\ S(n)$ тоже натуральное. т.е. натуральные числа замкнуты относительно операции $S(\cdot)$
- 9. Аксиома индукции.

Peano's axioms in their historical context Изображение взято с Википедии

Giuseppe Peano (1858 – 1932)

Косарев Дмитрий 20 марта 2023 г. 27/40

Представление чисел (нумералы Чёрча)

$$0 \sim (\lambda s.(\lambda x.x))$$

 $1 \sim (\lambda s.(\lambda x.s \ x))$
 $2 \sim (\lambda s.(\lambda x.s \ (s \ x)))$
и т.д.

Сложение (один из вариантов): взять два нумерала m и n, взять f и x, а затем к x применить n раз f, а затем к результату применить m раз f.

$$add \equiv \lambda m.\lambda n.\lambda f.\lambda x.(m\ f\ (n\ f\ x))$$

Косарев Дмитрий 20 марта 2023 г. 28/40

$$(\lambda m.\lambda n.\lambda f.\lambda x.(m f (n f x)))22 \xrightarrow{cbv}$$

$$(\lambda m.\lambda n.\lambda f.\lambda x.(m f (n f x)))22 \xrightarrow{cbv}$$

$$(\lambda n.\lambda f.\lambda x.(2 f (n f x)))2 \xrightarrow{cbv}$$

$$\lambda f.\lambda x.(2 f (2 f x)) \longrightarrow$$

$$\lambda f.\lambda x.((\lambda f.(\lambda x.f(fx))) f (2 f x)) \xrightarrow{ao}$$

$$\lambda f.\lambda x.((\lambda x.f(fx)) (2 f x)) \longrightarrow$$

$$\lambda f.\lambda x.((\lambda x.f(fx)) ((\lambda x.f(fx))) f x))) \xrightarrow{ao}$$

$$\lambda f.\lambda x.((\lambda x.f(fx))((\lambda x.f(fx))x)) \xrightarrow{ao}$$

$$\lambda f.\lambda x.((\lambda x.f(fx))(f(fx))) \xrightarrow{ao}$$

$$\lambda f.\lambda x.((\lambda x.f(fx))(f(fx))) \xrightarrow{ao}$$

$$\lambda f.\lambda x.f(f(fx))(f(fx)) \xrightarrow{ao}$$

Косарев Дмитрий 20 марта 2023 г.

Рекурсия через комбинатор неподвижной точки

англ. FIXed point combinator

Не понятно как вызвать самого себя, так как имен нет.

Идея:

- ullet записываем функцию f, чтобы она принимала первый аргумент, который будет вызываться вместо рекурсивного вызова
- ullet Везде, где надо вызвать эту "рекурсивную" функцию, будем писать Yf или Zf

FIX для
$$\xrightarrow{ao}$$
 и \xrightarrow{cbv} : $Z \equiv (\lambda f.(\lambda x.f(\lambda v. \ x \ v))(\lambda x.f(\lambda v. \ x \ v)))$ FIX для "ленивых" стратегий: $Y \equiv (\lambda f.(\lambda x.f(x \ x))(\lambda x.f(x \ x)))$

Откуда такое название?

$$YR = (\lambda x.R(x x))(\lambda x.R(x x)) \rightarrow R((\lambda x.R(x x))(\lambda x.R(x x))) = R(YR)$$

Косарев Дмитрий 20 марта 2023 г. 30 / 40

Рекурсия в call-by-value (упрощенно)

Настолько упрощенно, что даже не совсем правильно

$$FIX R = R (FIX R)$$

Факториал: $fac \equiv (\lambda self.\lambda n.(\text{if } n < 2 \text{ then } 1 \text{ else } n \cdot self(n-1)))$

$$\begin{aligned} \textit{FIX}(\lambda \textit{self.}\lambda \textit{n.}(\text{if }\textit{n} < 2 \text{ then } 1 \text{ else }\textit{n} \cdot \textit{self}(\textit{n}-1)))2 \rightarrow \\ & (\lambda \textit{n.}(\text{if }\textit{n} < 2 \text{ then } 1 \text{ else }\textit{n} \cdot \textit{FIX } \textit{fac}(\textit{n}-1)))2 \rightarrow \\ & 2 \cdot \textit{FIX } \textit{fac} \ (2-1) \rightarrow \\ & 2 \cdot (\textit{FIX}(\lambda \textit{self.}\lambda \textit{n.}(\text{if }\textit{n} < 2 \text{ then } 1 \text{ else }\textit{n} \cdot \textit{self}(\textit{n}-1))) \ 1) \rightarrow \\ & 2 \cdot (\text{if } 1 < 2 \text{ then } 1 \text{ else }\textit{n} \cdot (\textit{FIX } \textit{fac} \ (1-1))) \rightarrow \\ & 2 \cdot 1 \rightarrow 2 \end{aligned}$$

Косарев Дмитрий 20 марта 2023 г. 31/40

Оглавление

- Введение и историческая справка
- 2 Лямбды как апгрейд языка предикатов
- \bigcirc Написание алгоритмов с помощью λ -исчисления
- 4 Как писать интерпретатор на Си?
- Вопросы к экзамену

Косарев Дмитрий 20 марта 2023 г. 32 / 40

Дэмка на C++(1/5): представление выражений

```
enum Tag { VAR, ABS, APP };
struct ulc {
   Tag tag;
   union body {
     struct Var { char* name; } Var;
     struct Abs { char* name; ulc* body; } Abs;
     struct App { ulc* f; ulc* arg; } App;
   } body;
};
```

Косарев Дмитрий 20 марта 2023 г. 33/40

Дэмка на C++(2/5): объявление стратегии

```
struct Strateav {
  ulc* (*onVar)(Strategy* self, char* name);
  ulc* (*onApp)(Strateay* self, struct ulc *f, struct ulc *ara);
  ulc* (*onAbs)(Strateay* self, char *name, struct ulc *ara);
};
struct ulc* applyStrategy(Strategy *self, struct ulc *root) {
  switch (root→taa) {
    case VAR: return self→onVar(self, root→body.Var.name);
    case APP: return self→onApp(self, root→body.App.f, root→body.App.arg);
    case ABS: return self→onAbs(self, root→body.Abs.name, root→body.Abs.body);
  assert(false): return nullptr: // unreachable
```

Косарев Дмитрий 2023 г. 34/40

Дэмка на C++(3/5): тривиальная константная стратегия

```
struct ulc *evalVar(Strategy *this, char *name) {
  return var(name):
struct ulc *dontReduceUnderAbstraction(Strategy *this, char *name, ulc *body) {
  return abs(name, body);
struct ulc *dontReduceApplication(Strateay *this, ulc* f, ulc* ara) {
  return app(f, ara):
struct Strategy NoStrategy = {
  .onvar = evalVar.
  .onApp = dontReduceApplication,
  .onAbs = dontReduceUnderAbstraction,
};
```

Косарев Дмитрий 20 марта 2023 г. 35/40

Дэмка на C++(4/5): Call-by-value

```
struct ulc *evalApplyByValue(Strategy *self, ulc *f, ulc *a1) {
  auto f2 = applyStrategy(self, f);
  switch (f2 \rightarrow taq) {
    case VAR: case APP: return app(f2, a1);
    case ABS: {
      auto a2 = applyStrateay(self, a1);
      auto r = \text{subst}(a2, f2 \rightarrow \text{body.Abs.name}, f2 \rightarrow \text{body.Abs.body});
      return applyStrategy(self, r);
  assert(false); return nullptr; // unreachable
struct Strategy CallByValue = {
  .onvar = evalVar.
  .onApp = evalApplvBvValue.
  .onAbs = dontReduceUnderAbstraction };
```

Косарев Дмитрий 20 марта 2023 г.

36 / 40

Дэмка на C++ (5/5): понятие наследования

```
struct ulc *evalApplvBvValue(Strateav *this, ulc *f, ulc *ara)
struct ulc *evalVar(Strateav *this. char *name):
struct ulc *dontReduceUnderAbstraction(Strategy *this, char *name, ulc *body);
struct ulc *dontReduceApplication(Strateay *this, ulc *f, ulc *ara);
struct Strateav NoStrateav = {
  .onvar = evalVar.
  .onAbs = dontReduceUnderAbstraction.
  .onApp = dontReduceApplication,
struct Strategy CallByValue = {
  .onvar = evalVar.
  .onAbs = dontReduceUnderAbstraction
  .onApp = evalApplyByValue,
};
```

Косарев Дмитрий 20 марта 2023 г. 37/40

- Введение и историческая справка
- 2 Лямбды как апгрейд языка предикатов
- \odot Написание алгоритмов с помощью λ -исчисления
- 4 Как писать интерпретатор на Си?
- Вопросы к экзамену

Косарев Дмитрий 200 марта 2023 г.

38 / 40

Вопросы к экзамену

- Разрешимые и неразрешимые задачи
- ullet λ -исчисление. lpha и eta правила
- Нумералы Чёрча. Сложение
- Рекурсия и факториал на "пальцах"
- Наследование, но оно будет ещё в других билетах

Косарев Дмитрий 20 марта 2023 г. 39/40

Ссылки

Peaлизация интерпретатора на Си https://github.com/Kakadu/kakadu.github.io/tree/master/papers/lambda2023/cpp

Peaлизация интерпретатора на OCaml https://gitlab.com/Kakadu/fp2020course-materials/-/blob/master/code/Lambda/lib/lambda.ml

Косарев Дмитрий 20 марта 2023 г. 40 / 40

Проблема останова

- Дополнительные слайды
 - Call-By-Name
 - Call-By-Value
 - Аппликативный порядок
 - "Нормальный" порядок

Косарев Дмитрий 20 марта 2023 г. 1/16

Проблема останова (1/2)

Вопрос

Можем ли мы написать алгоритм, который будет брать на вход произвольную λ -абстракцию и аргумент, и говорить посчитается ли для их применения нормальная форма?

Косарев Дмитрий 20 марта 2023 г. 2/16

Проблема останова (1/2)

Вопрос

Можем ли мы написать алгоритм, который будет брать на вход произвольную λ -абстракцию и аргумент, и говорить посчитается ли для их применения нормальная форма?

Положим наши программы либо зависают, либо выдают значение true.

Положим существует гипотетическая ($Halting\ P\ w$), которая всегда завершается, и возвращает true, если ($P\ w$) редуцируется в true, иначе ($Halting\ P\ w$) возвращает false.

Покажем от противного, что Halting не может существовать.

Косарев Дмитрий 2023 г. 2/16

Проблема останова (2/2)

Вопрос: во что редуцируется E, в true или в false?

$$E = Halting((\lambda m.not(Halting m m)), (\lambda m.not(Halting m m)))$$

Если E редуцируется в true, то применим функцию $(\lambda m.not(Halting(m,m)))$ к аргументу $(\lambda m.not(Halting(m,m)))$ и получим

$$not(Halting((\lambda m.not(Halting\ m\ m)),\ (\lambda m.not(Halting\ m\ m)))) = \neg E$$

что является отрицание истинного факта выше.

Если E редуцируется в false, то это означает, Halting иногда зависает, что противоречит определению функции Halting.

Косарев Дмитрий 20 марта 2023 г. 3/16

- Проблема останова
- Дополнительные слайды
 - Call-By-Name
 - Call-By-Value
 - Аппликативный порядок
 - "Нормальный" порядок

Косарев Дмитрий 20 марта 2023 г. 4/16

Нормальные формы

У нас как минимум четыре возможности

- Редуцируем ли под абстракциями? (да/нет)
- Редуцируем ли аргументы перед подстановкой? (да/нет)

Редуцируем аргументы?	Редуцируем под абстракциями?	
	Да(strong)	Нет(weak)
Да(strict)	Normal form $E ::= (\lambda x. E) \mid xE_1 \dots E_n$	Weak normal form $E ::= (\lambda x.e) \mid xE_1 \dots E_n$
Hет(lazy)	Head normal form $E ::= (\lambda x. E) \mid xe_1 \dots e_n$	Weak head normal form $E ::= (\lambda x.e) \mid xe_1 \dots e_n$

В таблице E_j – это выражение в соответствующей нормальной форме, а e_i – произвольный λ -терм.

Косарев Дмитрий 20 марта 2023 г.

5/16

 $^{^{0}}$ То, что у некоторых E нет индексов – не опечатка

Порядков редукции бывает много...[?]

- Call-by-Name
- Normal Order
- Call-by-Value (OCaml)
- Applicative Order
- 4 Hybrid Applicative Order
- Head Spine Reduction
- Hybrid Normal Order

И ещё есть оптимизации связанные с мемоизацией (кешированием) нормальных форм подвыражений.

Так Call-by-Name + кеширование = Call-by-Need (Haskell)

Косарев Дмитрий 20 марта 2023 г. 6/16

- Проблема останова
- Дополнительные слайды
 - Call-By-Name
 - Call-By-Value
 - Аппликативный порядок
 - "Нормальный" порядок

Косарев Дмитрий 20 марта 2023 г. 7 / 16

Call-By-Name → Weak Head Normal Form

Редуцирует **самый левый внешний** редекс, который **не под абстракцией**. Например, $(\lambda x.(\lambda y.M)N)$ уже в WHNF, потому что единственный редекс $(\lambda y.M)N$ под абстракцией.

$$\frac{e_1 \xrightarrow{cbn} x} \text{Var} \qquad \frac{}{(\lambda x.e) \xrightarrow{cbn} (\lambda x.e)} \text{Abs}$$

$$\frac{e_1 \xrightarrow{cbn} (\lambda x.e) \qquad [e_2/x]e \xrightarrow{cbn} e'}{(e_1e_2) \xrightarrow{cbn} e'} \text{App-abs}$$

$$\frac{e_1 \xrightarrow{cbn} e'_1 \neq (\lambda x.e)}{(e_1e_2) \xrightarrow{cbn} (e'_1e_2)} \text{App-non-abs}$$

CBN может посчитать 1 аргумент несколько раз по сравнению с CBV.

Косарев Дмитрий 20 марта 2023 г. 8/16

- Проблема останова
- Дополнительные слайды
 - Call-By-Name
 - Call-By-Value
 - Аппликативный порядок
 - "Нормальный" порядок

Косарев Дмитрий 20 марта 2023 г. 9 / 16

Call-by-Value → Weak Normal Form

Редуцирует **самый левый внутренний** редекс, который **не под абстракцией**. Например, в $(\lambda x.(\lambda y.U)V)((\lambda z.M)N)$ самый левый внутренний – это $(\lambda y.U)V$, но редуцироваться первым будет $((\lambda z.M)N)$.

Стандарт для большинства языков программирования.

Косарев Дмитрий 20 марта 2023 г.

10 / 16

Нормальной формы может не быть!

Определение

Нормализация – процесс поиска соответствующей нормальной формы с помощью применения β -редукции согласно соответствующей стратегии

Пример: комбинатор $\Omega = (\lambda x.xx)(\lambda x.xx)$

$$(\lambda x.xx)(\lambda x.xx) \xrightarrow{cbv} [(\lambda x.xx)/x](xx) \xrightarrow{cbv} (\lambda x.xx)(\lambda x.xx) \xrightarrow{cbv} \dots$$

Косарев Дмитрий 20 марта 2023 г. 11/16

CBN vs. CBV

Call-by-Name чаще завершается

$$(\lambda x.(\lambda y.y))\Omega \xrightarrow{cbv}$$
 расходится
$$(\lambda x.(\lambda y.y))\Omega \xrightarrow{cbn} (\lambda y.y)$$

Ho Call-by-Name иногда вычисляет аргументы больше одного раза

$$(\lambda x.(Ax)(Bx))((\lambda y.y)C) \xrightarrow{cbn} (A((\lambda y.y)C)) (B((\lambda y.y)C))$$

$$(\lambda x.(Ax)(Bx))((\lambda y.y)C) \xrightarrow{cbv} (\lambda x.(Ax)(Bx))C \xrightarrow{cbv} (AC)(BC)$$

Косарев Дмитрий 20 марта 2023 г. 12/16

- Проблема останова
- Дополнительные слайды
 - Call-By-Name
 - Call-By-Value
 - Аппликативный порядок
 - "Нормальный" порядок

Косарев Дмитрий 20 марта 2023 г. 13 / 16

Applicative Order → Normal Form

Редуцирует **самый левый внутренний** редекс, и **под абстракцией тоже**. Например, в $(\lambda x.(\lambda y.U)V)((\lambda z.M)N)$ самый левый внутренний – это $(\lambda y.U)V$.

$$\frac{e \xrightarrow{ao} e'}{x \xrightarrow{ao} x} \text{Var} \qquad \frac{e \xrightarrow{ao} e'}{(\lambda x.e) \xrightarrow{ao} (\lambda x.e')} \text{Abs}$$

$$\frac{e_1 \xrightarrow{ao} (\lambda x.e) \qquad e_2 \xrightarrow{ao} e'_2 \qquad [e'_2/x]e \xrightarrow{ao} e'}{(e_1e_2) \xrightarrow{ao} e'} \text{App-abs}$$

$$\frac{e_1 \xrightarrow{ao} e' \neq (\lambda x.e) \qquad e_2 \xrightarrow{ao} e'_2}{(e_1e_2) \xrightarrow{ao} (e'_1e'_2)} \text{App-non-abs}$$

N.B. Аппликативный порядок совершает больше редукций и выдает более простой ответ по сравнению с CBV, но не гарантирует, что редукция завершится.

Косарев Дмитрий 20 марта 2023 г. 14/16

- Проблема останова
- Дополнительные слайды
 - Call-By-Name
 - Call-By-Value
 - Аппликативный порядок
 - "Нормальный" порядок

Косарев Дмитрий 20 марта 2023 г. 15 / 16

Normal Order \sim Normal Form

Сначала редуцирует **самый левый внешний** редекс. Встретив применение (e_1e_2) вначале пытается редуцировать e_1 как CBN. Если не получилась абстракция – принимается за аргументы.

$$\frac{e \xrightarrow{nor} e'}{x \xrightarrow{nor} x} \text{Var} \qquad \frac{e \xrightarrow{nor} e'}{(\lambda x.e) \xrightarrow{nor} (\lambda x.e')} \text{ Abs}$$

$$\frac{e_1 \xrightarrow{cbn} (\lambda x.e) \qquad [e_2/x]e \xrightarrow{nor} e'}{(e_1e_2) \xrightarrow{nor} e'} \text{ App-abs}$$

$$\frac{e_1 \xrightarrow{cbn} e'_1 \neq (\lambda x.e) \qquad e'_1 \xrightarrow{nor} e''_1 \qquad e_2 \xrightarrow{nor} e'_2}{(e_1e_2) \xrightarrow{nor} (e''_1e'_2)} \text{ App-non-abs}$$

N.B. Нормальный порядок сочетает две стратегии, позволяет получить более простые результаты, чем CBN. Чаще завершается, чем AO.

Косарев Дмитрий 20 марта 2023 г. 16/16