

Anual UNI2016

- Aptitud Académica 4
 - Humanidades 4
 - Matemática 🔺
- Ciencias Naturales

Marinera norteña

www.ich.edu.pe

Introducción a la geometría analítica I

NIVEL BÁSICO

1. Si OABC es un cuadrado, calcule las coordenadas del punto B.

- A) (3: 6) D) (2; 5)
- B) (3:7)
- C) (2; 4) E) (5; 8)
- Si AM = MB y $\tan \theta = 0.6$, calcule las coordenadas del punto C.

- A) (8; 0)
- B) (9; 0) D) (10; 0)

A(1;0)

C) (12; 0) E) (6; 0)

 \overrightarrow{X}

Calcule las coordenadas del baricentro del triángulo ABC.

- A) (4: 4)
- B) $\left(\frac{25}{3};12\right)$
- C) $\left(12; \frac{25}{3}\right)$
- D) $\left(\frac{25}{3}; 8\right)$
- E) $(8; \frac{25}{3})$
- Si ABCD es un paralelogramo, calcule el área de la región sombreada.

- C) 35 D) 80 E) 42
- Del gráfico, calcule la suma de las coordenadas del punto P.

- A) 16 D) 12
- B) 14
- C) 18
- E) 10

Calcule $\tan \alpha$, tal que la suma AP+PB sea mínima.

- A) 5
- B) 3

D) 2

Del gráfico, calcule la distancia del ortocentro al circuncentro del triángulo ABC.

- A) $\frac{3}{4}\sqrt{10}$ B) $\frac{1}{3}\sqrt{10}$ C) $\frac{2}{3}\sqrt{10}$

D) $\frac{3}{2}\sqrt{10}$

- 10. Calcule la abscisa del baricentro del triángulo MBC.

 $\tilde{G}(5:6)$

A(3:9)

NIVEL INTERMEDIO

7. La base de un triángulo isósceles tiene por extremos los puntos A(2; -1) y B(-1; 2), y los lados iguales miden cada uno $\sqrt{17}$. Calcule las coordenadas del vértice opuesto a la base.

B) (-2; -2) y (1; 1)

- B) 7
- D) $\frac{17}{3}$

E) 8

Dado un triángulo ABC, cuyos vértices son $A(-2; 4), B(-5; 1) \vee C(-6; 5)$, calcule la longitud de la bisectriz interior del ángulo BCA.

- E) $\frac{15}{2}$

11. Calcule el área máxima de la región triangular sombreada.

- A) 2 D) 5
- B) 3
- C) 4
- E) 6

12. El área de la región cuadrangular *MNCB* es el cuádruplo del área de la región triangular *AMN y NC*=2(*AN*). Calcule la suma de coordenadas del punto *M*.

14. Calcule la suma de coordenadas del punto C

perímetro es mínimo.

si el área de la región sombreada es 64 v el

A) -8 B) -9 C) -10 D) -16 E) -12

distancia AB sea mínima.

15. Del gráfico, calcule el valor de n para que la

- A) $\frac{57}{5}$
- B) $\frac{37}{5}$
- C) 15

D) $\frac{47}{5}$

54 CADEMIA

NIVEL AVANZADO

CESAR

A) $\sqrt{200}$

D) $\sqrt{310}$

- B) $\sqrt{240}$
- $(C)\sqrt{148}$ US EN LA E
- E) $\sqrt{244}$
- A) ±2
- D) ±1
- B) ±5
- C) ±3 E) ±4

B(6; 0)

Introducción a la geometría analítica II

NIVEL BÁSICO

Calcule el área de la región sombreada.

- A) 5
- D) $\frac{5}{2}$
- B) 3
- C) 2

4 Si las rectas

el mavor valor de a.

 $\mathcal{L}_1: 3x + (a+1)y + 5 = 0$ v \mathcal{L}_2 : 2x-ay+1=0 son perpendiculares, calcule

- A) 2D) 3
- B) 2
- C)-3E) 4

5. Si las rectas

 $\mathcal{L}_1: x+y+5=0$

 $\mathcal{L}_2: x-y+3=0$ $\mathcal{L}_3: Ax - 4By + 16 = 0$

- concurren en un punto, calcule A-B. C) 4
- A) 2 D) 3
- B) -2
 - E) -4

P(2:2)

Del gráfico, calcule la ecuación de la recta \mathscr{L} .

- A) 37°
- B) 53°

Calcule el valor de n para que el par de ecua-

D) $\frac{37^{\circ}}{2}$

ciones

E) 16°

NIVEL INTERMEDIO

A) x-y+4=0B) x-2y+3=0

C) x-y-4=0

D) x-3y-1=0E) 2x-y+2=0

A(-6; 5)

Del gráfico, calcule las coordenadas del punto B.

- A) 3
- B) 2

 \mathcal{L}_1 : (1-n)x+3y-2=0 y

 \mathcal{L}_2 : (n-2)x-2y-1=0representen rectas paralelas.

- C) -4
- A) (-3; 3)
- B) (-4; 2)
- C) (-1; 5)E) (-5; 1)

 \overrightarrow{X}

D) -1E) 4 D) (-2; 4)

tanθ

- Calcule la medida del ángulo agudo entre las
- B) $\frac{3}{4}$
- rectas \mathcal{L}_1 : x-y=0 y \mathcal{L}_2 : 5x-3y-15=0.
- A) $\arctan\left(\frac{1}{4}\right)$
- B) $\arctan\left(\frac{2}{3}\right)$
- C) $\arctan\left(\frac{1}{5}\right)$
- D) $\arctan\left(\frac{3}{2}\right)$
- E) arctan(2)
- 10. Calcule la pendiente de la recta \mathcal{L} .

A) -1 B) $-\frac{1}{3}$

D) $-\frac{1}{2}$

- E) -3

C)-4

11. Si m∢ADO=8°, calcule la ecuación de la recta \mathcal{G} . (ABCD es un cuadrado).

- A) 3x-y+7=0B) 3x-4y+7=0
- C) 4x-3y+7=0
- D) 4x-y+7=0
- E) 3x-4y-7=0
- **12.** Si ABCD es un cuadrado donde M y N son puntos medios de BC y CD, respectivamente, calcule la ecuación de la recta \mathcal{G} , donde B(3; 7).

- A) 5x-4y=0B) 4x-3y=0
- C) 3x-5y=0
- D) 4x 5y = 0E) 5x-3y=0
- Prohibida su reproducción total o parcial sin autorización de los titulares de la obra. Derechos reservados D. LEG N.º 822

NIVEL AVANZADO

13. Del gráfico, calcule *OM* si $AB = 2\sqrt{2}$.

- A) 8
- D) 4

B) 5

C) 7 E) 6

- A) 13x+9y-49=0
- B) 13x-9y+49=0
- C) 13x+9y+49=0
- D) 13x-9y-49=0
- E) 13x-8y-49=0
- **15.** Si el área de la región sombreada es 16. Calcule la mayor ordenada del punto M.

- 14. Calcule la ecuación de la recta bisectriz del AIA ángulo agudo que forman las rectas
 - \mathcal{L}_1 : 3x-4y+6=0 \mathcal{L}_2 : 24x-7y-177=0
- CÉSAR
- , ,
- D) 6
- $\frac{8}{3}$
- C) 5
- E) 8

Ángulos en posición normal

NIVEL BÁSICO

- Si $\cot \alpha = 2.4$ y $\csc \alpha < 0$, calcule $2 \sec \alpha + \frac{1}{4} \cos \alpha$.
 - A) -2° D) 2
- B) 1

- 2. Si $\theta \in \text{IIC y } \cos^2 \theta = \frac{2}{9}$, calcule $\sqrt{2} \tan \theta \sin \theta$.
- A) $-\frac{4}{3}$ B) $\frac{2}{3}$ C) $-\frac{3}{4}$
- D) $-\frac{4\sqrt{7}}{2}$ E) $-\frac{1}{3}$
- 3. Si $-\pi < 0 < 0$ y $\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$, determine el signo de las siguientes expresiones. $A = \text{sen}\theta + \cos\alpha$
 - $B = \cos \frac{\theta}{2} + \sin \frac{\alpha}{4}$
 - $C = \operatorname{sen}\left(\frac{|\theta|}{2} + \frac{\alpha}{3}\right)$
 - A) +, +, -B) -, +, -
 - C) -, -, + D) +, +, +
- E) -, +, +

E) -5

Del gráfico, calcule $tan\theta$.

A) - 1B) -2C)-3D) -4

- Si α v β son ángulos cuadrantales positivos v
 - menores que una vuelta, tal que $\cot \alpha > \cos \beta$. calcule $\frac{\cos \alpha - \sin \frac{\beta}{2}}{\sin \frac{\alpha}{2} - \cos \beta}$
 - A) $\sqrt{2} 2$ B) $\sqrt{2} 1$ C) $\sqrt{2} + 1$ D) $\sqrt{2} + 2$ E) 1

- **6.** Si AOB es un cuadrante, calcule $tan\theta$.

- E) $-\frac{24}{7}$

NIVEL INTERMEDIO

Si ABCM es un cuadrado y AM = OB, calcule $\cot \phi$.

- A) $\frac{\sqrt{2}}{2}$
- B) 1

E) $\sqrt{2} + 1$

Prohibida su reproducción total o parcial sin autorización de los titulares de la obra.

8. Si O es el centro de la circunferencia, además OA = AB = BC, calcule $\cot \theta + \sqrt{10} \tan \phi$.

- A) 1
- B) 0
- C) $\frac{1}{2}$

D) $-\sqrt{2}$

E) 3

- A) 720°
- R) 900
- C) 180°

D) 270°

- E) 360°
- 11. Si $\alpha \in IIIC$ y $\beta \in IIC$, además $\tan^2 \alpha + \cot^2 \beta + 13 = 2(2\tan \alpha 3\cot \beta)$, calcule $\sqrt{5} \sec \alpha + \sqrt{10} \csc \beta$.
 - A) 3
 - B) 5
 - C) 7
 - D) 0
 - E) 12

A) 1

- **12.** Si $\frac{4}{5}$ sen $\theta = \frac{1}{4} + \frac{1}{28} + \frac{1}{70} + \frac{1}{130}$ y $|\cos \theta| = -\cos \theta$ calcule $2 \sin \theta + 3 \cos \theta$.
- Del gráfico, calcule senα si se sabe que /// $\tan\alpha + \tan\theta = -6$.

- A) $-\frac{\sqrt{10}}{5}$
- B) $-\frac{2}{5}\sqrt{10}$
- C) $-\frac{\sqrt{10}}{10}$
- D) $-\frac{3}{10}\sqrt{10}$
- E) $-\frac{\sqrt{10}}{2}$

10. Dada la igualdad

 $\sqrt{\cos \alpha + 1} + \sqrt{-1 - \cos \alpha} = 1 - \sin \theta$

calcule $\alpha + \theta$ si cada uno de ellos es un ángulo cuadrantal, positivo y menor a una vuelta.

- A) 8/5
- B) 5/7
- C) 7/17
- D) 17/7
- E) 17/3

Prohibida su reproducción total o parcial sin autorización de los titulares de la obra Derechos reservados D. LEG N.º 822

14. Si el área de la región triangular AOB es 5, calcule $\tan^2\alpha + \tan^2\beta + 1 + 2\tan\alpha - 2\tan\beta - 2\tan\alpha\tan\beta$.

- A) 1
- D) 16
- B) 4
- C) 9 E) 6

15. Si *OABC* es un paralelogramo y OA=2(AB), calcule $(2\cos\alpha+1)\tan\theta-2\tan\phi\cos\alpha$.

B) -1

- A) 1
- D) -2

- C
 - C) 2 E) 0

Identidades trigonométricas fundamentales

NIVEL BÁSICO

- 1. Si sen x + cos x = a, calcule $\frac{\sin x}{1-\cot x} + \frac{\cos x}{1-\tan x}$
 - A) 5a D) 2a
- R) 4a
- C) 3aE) a
- Coloulo al aquivolente de la signiente appro

۷.	Calcule et equivalente de la signiente expre-
	sión.
	$sen^2 \theta cos^2 \alpha - sen^2 \alpha cos^2 \theta + cos^2 \theta + sen^2 \alpha$
	$(1+\cot \theta+\csc \theta)(1+\cot \theta-\csc \theta)$

- A) $\frac{\cot \theta}{2}$ B) $\frac{\tan \theta}{2}$
- C) tanθ
- E) 1
- Reduzca la siguiente expresión. $sen^2\theta tan\theta + cos^2\theta cot\theta + 2sen\theta cos\theta$
 - A) $sen\theta + cos\theta$ B) $\sec\theta + \csc\theta$

D) cotθ

- C) $tan\theta + cot\theta$
- D) $tan\theta cot\theta$
- E) $sen\theta cos\theta$
- 4. Si $\sqrt{5} + \sqrt{2} \cot \theta = \sqrt{7} \csc \theta$ calcule $\frac{1+\sin\theta}{\cos\theta}$ $\cos\theta$
 - $\frac{1}{1+\sin\theta}$ cost A) $\sqrt{5}$ B) $\sqrt{10}$

 - D) $2\sqrt{5}$

E) $\frac{\sqrt{10}}{2}$

C) $2\sqrt{6}$

- 5. Si se cumple que $n(n+2) = \sin\alpha + \cos\alpha + \sin\alpha\cos\alpha$ $n > 0 \text{ v } \alpha \in IC$ calcule sen $\alpha + \cos \alpha - \sqrt{2}$.
 - A) $\sqrt{2}n + 1$
 - B) $\sqrt{2}n$ C) $\sqrt{2}n-1$
 - D) $\sqrt{2n} + 1$
- E) $\sqrt{2n} 1$

Calcule el valor de *n* para que la expresión

$$M = \frac{3n(\sin^4\theta + \cos^4\theta) + \sin^6\theta + \cos^6\theta}{1 - \sin^2\theta\cos^2\theta}$$
sea independiente de θ .

- A) $-\frac{2}{3}$
 - B) $\frac{1}{2}$

D) $\frac{2}{3}$

E) $-\frac{1}{3}$

NIVEL INTERMEDIO

7. Reduzca la siguiente expresión.

$$\sqrt{(\sec \theta + \sec \theta)^2 + (\cos \theta + \csc \theta)^2} - \left(\frac{\sec \theta + \cos \theta}{\cos \theta}\right);$$

$$\theta \in IC.$$

- A) cot θ B) tanθ
- C) secθ
- D) cscθ
- E) senθ
- De las siguientes condiciones

$$(\sqrt{x} - \sqrt{15})\tan\theta = 1 - \sec\theta$$

- $(\sqrt{x} + \sqrt{15})\tan\theta = 1 + \sec\theta$ calcule el valor de x.
- A) 10
- B) 11
- C) 12
- D) 13
- E) 14
- 9. Se sabe que
- $sen^8\theta(1+sen^4\theta)+cos^8\theta(1+cos^4\theta)$ $=x-y\sin^2\theta\cos^2\theta+z\sin^4\theta\cos^4\theta-w\sin^6\theta\cos^6\theta$ calcule el valor de x+y+z+w para que la igualdad sea una identidad.
 - A) 4
 - B) 9
 - C) 16
 - D) 25
 - E) 1

NIVEL AVANZADO

calcule sen x + cot x.

13. Si tanx-senx=1.

- 10. Si $a\cos^4\theta + b\sin^4\theta = \frac{ab}{a+b}$ calcule $\tan^2\theta$.
 - A) $\frac{a^2}{b^2}$ B) $\frac{b^2}{a^2}$ D) $\frac{b}{a}$
- - E) a^2b^2

- 11. Simplifique la siguiente expresión.
 - $\frac{\tan^2\theta \sec^2\theta}{\sec\theta + \cos\theta + 2} \left(\frac{\tan^2\theta + \cos^2\theta 6}{\sec\theta + \cos\theta + 3}\right)$
 - A) 1 B) 2 C) 3
 - D) 4 E) 5
- 12. Si se cumple que
- $\tan\theta + \cot\theta = c$ $sen\theta + csc\theta = a$ $\cos\theta + \sec\theta = b$
- elimine θ .
- A) $a^2+b^2+c^2=2$ B) $a^2+b^2+c^2=1$ C) $a^2+b^2-c^2=5$ D) $a^2+b^2+c^2=4$ E) $a^2+b^2-c^2=3$

- A) $\sqrt{2} 1$ B) $\sqrt{2} + 2$
 - C) $2 \sqrt{2}$ D) $\sqrt{2} + 1$ E) $\sqrt{2}$
- **14.** Si $\tan^{16}x 14 = 13\tan^2 x$, calcule
- $(\tan^2 x 1)(\tan^4 x + 1)(\tan^8 x + 1)$. A) 13
 - B) 12 C) 10 D) 15
 - E) 14
- **15.** Elimine θ de las siguientes condiciones. $\tan\theta - \cot\theta = a$ $\sec\theta + \csc\theta = b$
 - A) $4(a+4)=(a+b)^2$
 - B) $4(a^2+b^2)=(a+b)^2$ C) $4(a^2+4)=(b^2-a^2)^2$ D) $4(b^4+4)=(a-b)^2$ E) $4(a^2+4)=(b^2-a^2-4)^2$

Prohibida su reproducción total o parcial sin autorización de los titulares de la obra.

Identidades trigonométricas de ángulos compuestos I

NIVEL BÁSICO

1. Si se tiene que $\alpha - \theta = \frac{\pi}{3}$, calcule el valor de

$$M = (\sin \alpha + \sin \theta)^2 + (\cos \alpha + \cos \theta)^2$$

- A) 0
- B) 1
- C) 2
- D) 3
- E)-1Si $x-v=15^{\circ}$, calcule
 - A) $\frac{\sqrt{6} \sqrt{2}}{4}$ B) $\sqrt{3} + 2$

 $(\operatorname{sen}x + \cos x)(\operatorname{sen}v + \cos v) - \operatorname{sen}(x + v)$

- D) $\frac{\sqrt{3}}{2}$
- E) $\frac{\sqrt{6} + \sqrt{2}}{4}$
- 3. Si $\tan(\alpha 15^{\circ}) = 2\sqrt{3}$, calcule $tan(\alpha+15^{\circ})$.
 - A) $-\frac{7}{3}\sqrt{3}$
 - B) $\frac{7}{3}\sqrt{3}$
 - C) $-\frac{5}{3}\sqrt{3}$
 - D) $\frac{5}{3}\sqrt{3}$
 - E) 1
- 4. Si se cumple que $a+b=\frac{\pi}{2}$, calcule el valor de la expresión $\sec a \cos(a-b) - \tan a \sin b$

sec b sen(a+b) - tan b cos a

- A) 5
- B) 4
- C) 3
- D) 2
- E) 1

- Calcule el valor de tana de las siguientes condiciones. $\tan(\theta + \beta) = 1.5 \tan \alpha$ $\tan(\theta - \beta) = 0.5 \tan \alpha$
 - $\tan 2\theta = 3\tan \alpha$ A) $\frac{2}{3}$
 - D) 1
- B) $\frac{1}{2}$

calcule $\cot A \cot B + \cot B \cot C + \cot A \cot C$.

- E) 4
- 6. Si se sabe que sen(A+B+C)=senAsenBsenC
 - A) 0B) 1 C)-1
 - D) 2 E) -2

NIVEL INTERMEDIO

7. Del gráfico, calcule el menor valor de x.

B) 5

C) 9

E) 7

- A) 3
 - D) 12
- $Si \tan B = \frac{n \sin A \cos A}{1 n \sin^2 A}$ calcule tan(A-B)cotA.
 - A) n
 - B) 1-n
 - C) 1
 - D) n^2
 - E) 1+n

- Del gráfico, calcule tanθ si $\tan \alpha = \frac{2}{11}$.

- A) $\frac{1}{4}$
 - B) $\frac{1}{6}$
- **10.** Si $tan(2\alpha+\beta)=4$ y $tan(\alpha+2\beta)=3$, calcule $tan3\alpha$.
 - A) $\frac{19}{8}$ D) $\frac{24}{71}$
- B) $\frac{1}{13}$
- 11. Si AM=MB, calcule el máximo valor de tanx.

- A) $\frac{\sqrt{2}}{3}$ B) $\frac{\sqrt{3}}{4}$ C) $\frac{\sqrt{2}}{2}$

cotAcotBcotC.

- **12.** Si cos(A+B)sen(C+D)=cos(A-B)sen(C-D), calcule el equivalente de la expresión
 - A) tanD

D) cscD

- B) $\cot D$
- C) $\sec D$ E) tan2D

NIVEL AVANZADO

13. En un triángulo ABC de lados a, b v c, respectivamente, se cumple que a+b=5c. Calcule tanθ

- A) 1 D) 4
- B) 2
 - E) 5
- 14. Del gráfico, calcule el máximo valor de α si $AM=MB \vee AN=NC.$
 - A) 45° B) 30°
 - C) 60° D) 37°
 - E) 53°
- N

C) 3

- 15. Si se cumple que $\frac{\sin \alpha}{\cos \beta} = m; \frac{\cos \alpha}{\sin \beta} = n$
 - calcule sen($\alpha+\beta$).
 - A) $\frac{m^2 + n^2 1}{mn}$
 - B) $\frac{m+n-mn}{mn}$
 - C) $\frac{m^2 + n^2 + 1}{mn}$
 - $D) \frac{m^2 n^2 + mn}{mn}$
 - E) $\frac{mn+1}{m+n}$

Anual UNI

INTRODUCCIÓN A LA GEOMETRÍA ANALÍTICA I

01 - B	04 - B	07 - C	10 - B	13 - E
02 - A	05 - A	08 - D	11 - C	14 - D
03 - D	06 - E	09 - D	12 - D	15 - E

INTRODUCCIÓN A LA GEOMETRÍA ANALÍTICA II

01 - A	04 - B	07 - E	10 - A	13 - D
02 - A	05 - C	08 - B	11 - B	14 - D
03 - E	06 - C	09 - A	12 - A	15 - E

ÁNGULOS EN POSICIÓN NORMAI

01 - C	04 - D	07 - E	10 - D	13 - D
02 - D	05 - A	08 - B	11 - B	14 - C
03 - E	06 - E	09 - D	12 - D	15 - E

IDENTIDADES TRIGONOMÉTRICAS FUNDAMENTALES

01 - E	04 - B	07 - A	10 - C	13 - E
02 - B	05 - C	08 - E	11 - A	14 - A
03 - C	06 - A	09 - D	12 - C	15 - E

IDENTIDADES TRIGONOMÉTRICAS DE ÁNGULOS COMPUESTOS I

01 - D	04 - E	07 - A	10 - C	13 - E
02 - E	05 - A	08 - B	11 - D	14 - D
03 - A	06 - D	09 - C	12 - B	15 - E