Weighted LISA (Local indicator of spatial autocorrelation): sketch, v1

F.Bavaud, UNIL

July 2020

1 Introduction

To perform local (or global) weighted auto-correlation, two ingredients are needed:

- a $n \times n$ exchange matrix $\mathbf{E} = (e_{ij})$ between "positions" i and j, which is symmetric, non-negative, and normalized to $e_{\bullet \bullet} = 1$. In addition, \mathbf{E} has to be weight-compatible in the sense that the weights $\mathbf{f} = (f_i)$ defined by $f_i := e_{i \bullet} > 0$ are the relevant strictly positive weights under consideration.
- a $n \times n$ matrix of squared Euclidean distances $\mathbf{D} = (d_{ij})$.

1.1 Markov chains

Let $\Pi := \operatorname{diag}(\boldsymbol{f})$. Define $\boldsymbol{W} := c^{-1}\boldsymbol{E}$, that is $w_{ij} := \frac{e_{ij}}{f_i}$. By construction, \boldsymbol{W} is the $n \times n$ transition matrix of a reversible Markov chain (we assume to be regular, that is irreducible and aperiodic, with stationary distribution \boldsymbol{f} . It obeys $\Pi \boldsymbol{W} = \boldsymbol{W}^{\top} \Pi = \boldsymbol{E}$.

1.2 Relative autocorrelation index δ

Define the global and local inertia by

$$\Delta := \frac{1}{2} \sum_{ij} f_i f_j d_{ij} \qquad \qquad \Delta_{\text{loc}} := \frac{1}{2} \sum_{ij} e_{ij} d_{ij}$$
 (1)

The relative autocorrelation index δ (a weighted, multivariate generalization of Moran's I) is

$$\delta := \frac{\Delta - \Delta_{\text{loc}}}{\Delta} \in [-1, 1] \tag{2}$$

1.3 Local autocorrelation index δ_i (LISA)

There are many ways to define a local autocorrelation index δ_i such that $\delta = \sum_{i=1}^n f_i \delta_i$. Presumably the most elegant (unpublished, but cited in "Flow autocorrelation : a dyadic approach" by F. Bavaud, M. Kordi, C. Kaiser, The Annals of Regional Science (2018) Vol. 61, Issue 1, pp 95–111, https://doi.org/10.1007/s00168-018-0860-y) is

$$\delta_i := \frac{(\boldsymbol{W}\boldsymbol{B})_{ii}}{\Delta} \tag{3}$$

where $\boldsymbol{B} := -\frac{1}{2}\boldsymbol{H}\boldsymbol{D}\boldsymbol{H}^{\top}$ is the matrix of (unweighted) scalar products and $\boldsymbol{H} := \boldsymbol{I}_n - \boldsymbol{1}_n \boldsymbol{f}^{\top}$ is the (idempotent, generally non symmetric) weighted centration matrix.

By construction, $H\mathbf{1}_n = \mathbf{0}_n$, and $H^{\top} f = \mathbf{0}_n$.

Note that
$$EH = E - ff^{\top}$$
 and $H^TE = E - ff^{\top}$ and finally $H^TEH = E - ff^{\top}$

By construction,

$$\sum_{i} f_{i}(\boldsymbol{W}\boldsymbol{B})_{ii} = \operatorname{trace}(\boldsymbol{\Pi}\boldsymbol{W}\boldsymbol{B}) = \operatorname{trace}(\boldsymbol{E}\boldsymbol{B}) = -\frac{1}{2}\operatorname{trace}(\boldsymbol{E}\boldsymbol{H}\boldsymbol{D}\boldsymbol{H}^{\top})$$
$$= -\frac{1}{2}\operatorname{trace}(\boldsymbol{H}^{\top}\boldsymbol{E}\boldsymbol{H}\boldsymbol{D}) = \frac{1}{2}\operatorname{trace}((\boldsymbol{f}\boldsymbol{f}^{\top} - \boldsymbol{E})\boldsymbol{D}) = \Delta - \Delta_{\operatorname{loc}}$$

which proves $\delta = \sum_{i=1}^{n} f_i \delta_i$.