Математический анализ 1. Лекция 2.7 Необходимые условия и достаточные условия экстремума функций нескольких вещественных переменных.

Метод параметризации границы поиска глобального минимума и максимума

23 ноября 2023 г.

Необходимые условия экстремума Определения

Достаточные условия экстремума Квадратичные формы Достаточные условия локального экстремума

Глобальные экстремумы
Нахождение глобальных экстремумов функции на компакте
(метод параметризации границ)

Локальные экстремумы

Пусть дана скалярная функция $f:X o\mathbb{R}$, где $X=D(f)\subset\mathbb{R}^n$. Пусть \mathbf{x}_0 – внутренняя точка X. Точка \mathbf{x}_0 называется:

- 1. точкой строгого локального минимума, если $f(\mathbf{x}_0) < f(\mathbf{x})$ для всех \mathbf{x} из некоторой *проколотой* окрестности точки \mathbf{x}_0 ,
- 2. точкой строгого локального максимума, если $f(\mathbf{x}_0) > f(\mathbf{x})$ для всех \mathbf{x} из некоторой *проколотой* окрестности точки \mathbf{x}_0 ,
- 3. точкой (нестрогого) локального минимума, если $f(\mathbf{x}_0) \leqslant f(\mathbf{x})$ для всех \mathbf{x} из некоторой окрестности точки \mathbf{x}_0 ,
- 4. точкой (нестрогого) локального максимума, если $f(\mathbf{x}_0)\geqslant f(\mathbf{x})$ для всех \mathbf{x} из некоторой окрестности точки \mathbf{x}_0 .

Точка \mathbf{x}_0 , удовлетворяющая одному из этих условий, называется **точкой экстремума** (строгого или нестрогого).

Значение функции f в такой точке \mathbf{x}_0 называется, соответственно, строгим локальным максимумом, строгим локальным минимумом, (нестрогим) локальным минимумом; обобщенно, экстремумом (строгим или нестрогим). Точки (множества) локального максимума и минимума функции f иногда обозначают через $\operatorname{argmin} f$ соответственно.

Определение экстремума не использует ни непрерывность, ни дифференцируемость функции f.

В силу элементарных свойств неравенств:

 \mathbf{x}_0 – точка (строгого) локального минимума функции $f(\mathbf{x})\Leftrightarrow \mathbf{x}_0$ – точка (строгого) локального максимума функции $-f(\mathbf{x})$.

Примеры. 1. $f(x,y) = x^2 + y^2$ (n=2), $f(\mathbf{x}) = x_1^2 + \ldots + x_n^2$ $(n \ge 1)$.

2.
$$f(x,y) = -x^2 - y^2$$
 $(n = 2)$, $f(\mathbf{x}) = -x_1^2 - \ldots - x_n^2$ $(n \ge 1)$.

3.
$$f(x,y) = (x-y)^2$$
 $(n=2)$, $f(\mathbf{x}) = (x_1 + \ldots + x_{n-1} - x_n)^2$ $(n \ge 2)$.

4.
$$f(x,y) = -(x-y)^2$$
 $(n=2)$, $f(\mathbf{x}) = -(x_1 + \ldots + x_{n-1} - x_n)^2$ $(n \ge 2)$.

Необходимое условие локального экстремума.

Теорема (обобщенная теорема Ферма)

Пусть функция $f:X\to\mathbb{R}$, где $X=D(f)\subset\mathbb{R}^n$, имеет частные производные в точке $\mathbf{a}\in X$. Если \mathbf{a} – точка локального экстремума функции f, то

$$f'_{x_1}(\mathbf{a}) = 0, \dots, f'_{x_n}(\mathbf{a}) = 0 \Leftrightarrow \nabla f(\mathbf{a}) = 0.$$

Если f дифференцируема в точке $\mathbf{a} \in X$, то $df(\mathbf{a}) = 0$.

Доказательство. Рассмотрим функцию одной переменной

$$g_1(x_1) = f(x_1, a_2, \dots, a_n).$$

Точка $x_1=a_1$ является ее точкой локального экстремума. По определению частной производной и теореме Ферма для функций одной переменной

$$f'_{x_1}(\mathbf{a}) = g'_1(a_1) = 0.$$

Равенства $f'_{x_i}(\mathbf{a})=0$ при $2\leqslant i\leqslant n$ доказываются аналогично.

Замечание. Пусть функция $f:X\to\mathbb{R}$, где $X=D(f)\subset\mathbb{R}^n$, имеет производную по направлению $\dfrac{\partial f}{\partial \mathbf{e}}(\mathbf{a})$ в точке $\mathbf{a}\in X$, $\mathbf{e}\neq 0$. Если \mathbf{a} – точка локального экстремума функции f, то

$$\frac{\partial f}{\partial \mathbf{e}}(\mathbf{a}) = 0.$$

Важно: необходимые условия экстремума

$$f'_{x_1}(\mathbf{x}) = 0, \dots, f'_{x_n}(\mathbf{x}) = 0$$

следует рассматривать как **нелинейную систему** n **уравнений для** n **координат точек локального экстремума** x_1, \ldots, x_n . Она может как иметь несколько решений, так и не иметь их совсем.

Определения. Если $\nabla f(\mathbf{a}) = 0$, то $\mathbf{a} \in X$ называется стационарной точкой функции f.

Если стационарная точка не является точкой экстремума, то она называется **седловой**. В сколь угодно малой окрестности седловой точки функция принимает значения как больше, так и меньше $f(\mathbf{a})$.

Примеры. 1. $f(x,y) = x^2 + y^2$ (n=2), $f(\mathbf{x}) = x_1^2 + \ldots + x_n^2$ $(n \ge 1)$.

2.
$$f(x,y) = -x^2 - y^2$$
 $(n=2)$, $f(\mathbf{x}) = -x_1^2 - \dots - x_n^2$ $(n \ge 1)$.

- 3. f(x,y) = xy (n = 2), $f(\mathbf{x}) = x_1 \dots x_n$ $(n \ge 2)$.
- 4. Пусть $f(x,y) = x^2 + cxy + y^2$, где c параметр. Уравнения для стационарных точек таковы:

$$\begin{cases} 2x + cy = 0 \\ cx + 2y = 0 \end{cases}.$$

При $c \neq \pm 2$ эта система уравнений линейная однородная и невырожденная, поэтому (x,y)=(0,0) — единственная точка возможного экстремума. Дальнейший анализ алгебраическими методами теории квадратичных форм показывает, что при при |c|<2 это точка строгого локального минимума, а при |c|>2 это седловая точка (см. ниже).

Если же $c=\pm 2$, то система однородная и вырожденная и ее общее решение имеет вид $(a,\mp a)$ с произвольным a. В этом случае имеем $f(x,y)=(x\pm y)^2$ и поэтому любая точка $(a,\mp a)$ — точка (нестрогого) локального минимума.

Квадратичные формы. Рассмотрим квадратичную форму

$$(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}=\sum_{i=1}^n\sum_{j=1}^na_{ij}h_jh_i$$
 с матрицей $A=\{a_{ij}\}_{1\leqslant i\leqslant n,1\leqslant j\leqslant n}.$

Она называется: 1) положительно определенной $\Leftrightarrow \ A>0$, если

$$(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}>0$$
 при всех $\mathbf{h}\in\mathbb{R}^n,\;\mathbf{h}
eq 0$

(почему исключается $\mathbf{h}=\mathbf{0}$?)

2) отрицательно определенной $\Leftrightarrow A < 0$, если

$$(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}<0$$
 при всех $\mathbf{h}\in\mathbb{R}^n,\ \mathbf{h}\neq0,$

3) закопеременной, если она принимает как положительные, так и отрицательные значения при некоторых ${f h}.$

Необходимые условия положительной и отрицательной определенности и достаточное условие знакопеременности квадратичной формы.

- 1. Если A > 0, то $a_{11} > 0, \ldots, a_{mm} > 0$.
- 2. Если A < 0, то $a_{11} < 0, \ldots, a_{mm} < 0$.
- 3. Если среди a_{11},\dots,a_{nn} есть числа разных знаков, то $(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}$ знакопеременная квадратичная форма.

Доказательство. Результат следует из определений анализируемых свойств и формул

$$(A\mathbf{h}, \mathbf{h})_{\mathbb{R}^n}|_{\mathbf{h}=\mathbf{e}_1} = a_{11}, ..., (A\mathbf{h}, \mathbf{h})_{\mathbb{R}^n}|_{\mathbf{h}=\mathbf{e}_n} = a_{nn},$$

где ${\bf e}_1,\dots,{\bf e}_n$ — стандартный координатный базис в \mathbb{R}^n (проведите рассуждение самостоятельно).

Напомним два алгебраических критерия положительной и отрицательной определенности квадратичной формы и сделаем дополнения об условиях ее знакопеременности.

Теорема (критерий Сильвестра положительной и отрицательной определенности квадратичной формы с дополнением)

Пусть $(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}$ — квадратичная форма с симметричной матрицей $A=\{a_{ij}\}_{i,j=1}^n.$ Пусть

$$A_1 = a_{11}, A_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \dots, A_n = \det A = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$$

— **главные угловые миноры** матрицы *А. Тогда:*

- 1) квадратичная форма $(A\mathbf{h}, \mathbf{h})_{\mathbb{R}^n}$ положительно определена (т.е. A>0) $\Leftrightarrow A_1=a_{11}>0, \ A_2>0, \dots, \ A_n>0$;
- 2) квадратичная форма $(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}$ отрицательно определена (т.е.
- A < 0) $\Leftrightarrow A_1 = a_{11} < 0, A_2 > 0, \dots, (-1)^n A_n > 0.$
- 3) дополнительно если $A_1 \neq 0, A_2 \neq 0, \ldots, A_n \neq 0$ и поведение знаков A_1, \ldots, A_n отлично от указанных в пунктах 1 и 2, то $(A\mathbf{h}, \mathbf{h})_{\mathbb{R}^n}$ знакопеременная квадратичная форма.

Замечание. Пункты 1 и 2 этой теоремы опять эквивалентны друг другу, поскольку рассматриваемые миноры матриц A и -A связаны равенством $(-A)_k = (-1)^k A_k$, $1 \leqslant k \leqslant n$.

Второй критерий. Напомним задачу на собственные значения для матрицы A: найти вектор $\mathbf{e} \neq 0$ и число λ такие, что

$$A\mathbf{e} = \lambda \mathbf{e}$$
.

Симметричная матрица A порядка n имеет ровно n вещественных собственных значений $\lambda_1,...,\lambda_n$ (с учетом кратности). Они – корни характеристического многочлена матрицы A:

 $\det(A - \lambda I) = 0$, где I — единичная матрица порядка n.

2-й критерий положительной и отрицательной определенности и знакопеременности квадратичн. формы:

Теорема. Пусть $(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}$ — квадратичная форма с матрицей $A=A^T$ порядка n, а $\lambda_1,...,\lambda_n$ — ее собственные значения. Тогда:

- 1) квадратичная форма $(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}$ положительно определенная (т.е.
- A>0) тогда и только тогда, когда $\lambda_1>0,\dots,\lambda_n>0$;
- 2) квадратичная форма $(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}$ отрицательно определенная (т.е.
- A < 0) тогда и только тогда, когда $\lambda_1 < 0, \dots, \lambda_n < 0$;
- 3) квадратичная форма $(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}$ знакопеременная тогда и только тогда, когда среди $\lambda_1,...,\lambda_n$ есть числа разных знаков.

Пункты 1 и 2 этой теоремы тоже эквивалентны (почему?). Нетрудно дать и аналогичные критерии неотрицательности и неположительности квадратичной формы. Достаточные условия экстремума функции при n=1 даются в терминах 2-й производной в стационарной точке, а при $n\geqslant 1$ – 2-го дифференциала в такой точке.

Теорема (достаточные условия локального экстремума)

Пусть функция $f(\mathbf{x})$ имеет 2-й дифференциал в точке \mathbf{a} и в ней выполнено необходимое условие экстремума $\nabla f(\mathbf{a})=0$. Этот 2-й дифференциал — квадратичная форма

$$d^2 f(\mathbf{a}, \mathbf{h}) = (A\mathbf{h}, \mathbf{h})_{\mathbb{R}^n} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} h_j h_i, \ A = \{a_{ij}\}_{i,j=1}^n = \{f''_{x_i x_j}(\mathbf{a})\}_{i,j=1}^n,$$

где $A=H_f$ — введенная ранее матрица Гессе.

- 1. Если эта квадратичная форма положительно определенная, т.е. $(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}>0$ при всех $\mathbf{h}\neq 0$, то \mathbf{a} точка строгого локального минимума.
- 2. Если эта квадратичная форма отрицательно определенная, т.е. $(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}<0$ при всех $\mathbf{h}\neq 0$, то \mathbf{a} точка строгого локального максимума.
- 3. Если эта квадратичная форма знакопеременная, т.е. $(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}$ принимает как положительные, так и отрицательные значения, то точка \mathbf{a} седловая и экстремума в ней нет.

Свойства положительной и отрицательной определенности квадратичной формы записывают также как свойства положительной и отрицательной определенности ее матрицы: A>0 и A<0. Очевидно также, что $A>0 \Leftrightarrow -A<0$. Поэтому в теореме пункты 1 и 2 следуют друг из друга (после замены f на -f).

Идея доказательства состоит в использовании формулы Тейлора 2-го порядка с остаточным членом в форме Пеано

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + df(\mathbf{a}, \mathbf{h}) + \frac{1}{2}d^2f(\mathbf{a}, \mathbf{h}) + o(|\mathbf{h}|^2).$$

При выполнении необходимого условия экстремума $d\!f(\mathbf{a},\mathbf{h})=0$ и

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \frac{1}{2} |\mathbf{h}|^2 \left((A\hat{\mathbf{h}}, \hat{\mathbf{h}})_{\mathbb{R}^m} + o(1) \right) \quad \text{при} \quad \mathbf{h} \to 0, \quad \mathbf{h} \neq 0,$$

где $A=H_f$ — матрица Гессе и $\hat{\mathbf{h}}=rac{\mathbf{h}}{|\mathbf{h}|}.$

При $(A\hat{\mathbf{h}},\hat{\mathbf{h}})_{\mathbb{R}^n} \neq 0$ отсюда вытекает, что знак разности $f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})$ совпадает со знаком $(A\hat{\mathbf{h}},\hat{\mathbf{h}})_{\mathbb{R}^n}$ при достаточно малом $\mathbf{h}\neq 0$ (т.е. как если бы остаточный член отсутствовал вовсе).

Контрпримеры. Рассмотрим функции $f(x,y)=x^3\pm y^3$ и $f(x,y)=x^4+y^4$. Легко проверить, что обе имеют единственную стационарную точку (0,0). В ней для обеих функций матрицы Гессе A=0, и последняя теорема неприменима.

При этом для первой из функций точка (0,0) не является точкой локального экстремума, а для второй она является точкой строгого локального (и глобального) минимума.

Для функции двух переменных теорема о достаточных условиях экстремума и дополненный критерий Сильвестра легко приводят к следующим явным достаточным условиям экстремума в терминах 2-х частных производных.

Теорема (случай функции двух переменных)

Пусть функция f(x,y) имеет 2-й дифференциал в точке (x_0,y_0) и в ней выполнено необходимое условие экстремума $(\nabla f)(x_0,y_0)=\mathbf{0}$. Рассмотрим матрицу Гессе функции f(x,y) в точке (x_0,y_0) :

$$A = H_f(x_0, y_0) = \begin{pmatrix} f''_{xx}(x_0, y_0) & f''_{xy}(x_0, y_0) \\ f''_{yx}(x_0, y_0) & f''_{yy}(x_0, y_0) \end{pmatrix}.$$

- 1. Если $\det A = f_{xx}''(x_0,y_0)f_{yy}''(x_0,y_0) \left[f_{xy}''(x_0,y_0)\right]^2 > 0,$ то (x_0,y_0) точка строгого локального экстремума. Более точно: а) если $a_{11} = f_{xx}''(x_0,y_0) > 0$, то (x_0,y_0) точка строгого локального минимума;
- б) если $a_{11}=f_{xx}^{\prime\prime}(x_0,y_0)<0$, то (x_0,y_0) точка строгого локального максимума.
- 2. Если $\det A < 0$, то (x_0,y_0) седловая точка и экстремума в ней нет.

Vказание. Для обоснования п. 2 запишите характеристический многочлен матрицы A и примените теорему Виета и второй критерий свойств форм.

Отметим, что в случае $\det A=0$ данная теорема не дает ответа на вопрос о наличии или отсутствии экстремума в точке (x_0,y_0) , и необходимо дальнейшее исследование с использованием специфики функции f(x,y).

Пример. Вернемся к уже возникавшему примеру $f(x,y)=x^2+cxy+y^2$, где c — параметр. Здесь матрица Гессе постоянна и такова $A=\begin{pmatrix} 2 & c \\ c & 2 \end{pmatrix}$, откуда $\det A=4-c^2$. Поэтому

согласно последней теореме стационарная точка $(x_0,y_0)=(0,0)$ при |c|<2 является точкой строгого локального минимума, а при |c|>2 она является седловой точкой.

Случай |c|=2, когда $\det A=0$, был рассмотрен выше и дает контрпример к этой теореме.

Отметим также, что характеристическое уравнение матрицы A имеет вид $(2-\lambda)^2-c^2=0$, откуда $\lambda_1=2-|c|,\ \lambda_2=2+|c|>0$, и поэтому 2-й критерий приводит к тем же самым выводам, что и последняя теорема.

Пример. Найдем и классифицируем (строгий/нестрогий максимум/минимум) все точки локальных экстремумов функции $f(x,y)=x^3+y^3-3x-3y$. Для нахождения стационарных точек находим первые частные производные функции f и приравниваем их к нулю:

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) \equiv 3x^2 - 3 = 0\\ \frac{\partial f}{\partial y}(x,y) \equiv 3y^2 - 3 = 0 \end{cases}$$

Решением системы являются точки:

$$(-1,-1)$$
, $(-1,1)$, $(1,-1)$ и $(1,1)$.

Для классификации стационарных точек находим 2-й дифференциал функции f в произвольной точке (x,y):

$$d^2f(x,y)(h_1,h_2) = 6xh_1^2 + 6yh_2^2.$$

В каждой из стационарных точек исследуем эту квадратичную форму. Получаем:

- 1. квадратичная форма $d^2f(-1,-1)(h_1,h_2)=-6h_1^2-6h_2^2$ отрицательно определенная, следовательно, (-1,-1) точка строгого локального максимума,
- 2. квадратичная форма $d^2f(-1,1)(h_1,h_2)=-6h_1^2+6h_2^2$ знакопеременная, следовательно, (-1,1) седловая точка.
- 3. квадратичная форма $d^2f(1,-1)(h_1,h_2)=6h_1^2-6h_2^2$ снова знакопеременная, следовательно, (1,-1) седловая точка.
- 4. квадратичная форма $d^2f(1,1)(h_1,h_2)=6h_1^2+6h_2^2$ положительно определенная, следовательно, (1,1) точка строгого локального минимума,

Глобальные экстремумы

Пусть дана функция $f:X \to \mathbb{R}$, где $X=D(f)\subset \mathbb{R}^n$, и множество $Y\subset X.$ Точка \mathbf{a} называется:

- 1. точкой строгого глобального минимума функции f на множестве Y, если $f(\mathbf{a}) < f(\mathbf{x})$ для всех $\mathbf{x} \in Y$, $\mathbf{x} \neq \mathbf{a}$,
- 2. точкой строгого глобального максимума функции f на множестве Y, если $f(\mathbf{a})>f(\mathbf{x})$ для всех $\mathbf{x}\in Y$, $\mathbf{x}\neq \mathbf{a}$,
- 3. точкой (нестрогого) глобального минимума функции f на множестве Y, если $f(\mathbf{a}) \leqslant f(\mathbf{x})$ для всех $\mathbf{x} \in Y$,
- 4. точкой (нестрогого) глобального максимума функции f на множестве Y, если $f(\mathbf{a})\geqslant f(\mathbf{x})$ для всех $\mathbf{x}\in Y$,

Значение функции f в точке а глобального максимума (минимума) на множестве Y называется глобальным максимумом (соответственно, глобальным минимумом) функции f на Y. Обычно они обозначаются через $\max_{Y} f$ (соответственно, $\min_{Y} f$), а точка (или множество точек) максимума (минимума) символом $\underset{Y}{\operatorname{argmin}} f$.

Конечно, в общем случае точек максимума/минимума функции f на множестве Y может не существовать.

Пусть функция $f:X\to\mathbb{R}$, где $X=D(f)\subset\mathbb{R}^n$, непрерывна на компакте $K\subset X$. По теоремам Вейерштрасса f(K) – образ K при отображении f

$$f(K) = \{y \in \mathbb{R} : \mathbf{y} = f(\mathbf{x})$$
 при некотором $\mathbf{x} \in K\}$

ограничен (на самом деле это компакт), и существуют точки $\mathbf{a}, \mathbf{b} \in K$ такие, что

$$f(\mathbf{a}) = \min_{\mathbf{x} \in K} f(\mathbf{x}), \quad f(\mathbf{b}) = \max_{\mathbf{x} \in K} f(\mathbf{x}).$$

Таким образом, глобальный максимум и глобальный минимум непрерывной функции f на компакте всегда существуют.

Для нахождения глобального максимума (минимума) функции f на компакте представим компакт K в виде объединения его внутренней части и границы: $K=\operatorname{int} K\cup \partial K$. Точки глобального минимума и максимума либо принадлежат $\operatorname{int} K$ и тогда являются точками локального минимума и максимума, либо принадлежат ∂K .

Нахождение экстремальных точек на границе компакта представляет собой самостоятельную задачу. Она может быть решена **методом** параметризации границ (а также методом Лагранжа). Для простоты ограничимся случаем функций f двух переменных.

Пусть граница ∂K компакта K представляет собой объединение отрезков кривых $\Gamma_1,\Gamma_2,\ldots,\Gamma_m$, причем каждый отрезок Γ_i $(1\leqslant i\leqslant m)$ задан параметрически (с помощью взаимно-однозначного непрерывного отображения из сегмента в Γ_i):

$$\begin{cases} x = u_i(t), \\ y = v_i(t), & a_i \leqslant t \leqslant b_i. \end{cases}$$

Тогда

$$\max_{\partial K} f(x, y) = \max_{1 \leqslant i \leqslant m} \max_{[a_i, b_i]} f(u_i(t), v_i(t)),$$

$$\min_{\partial K} f(x, y) = \min_{1 \leqslant i \leqslant m} \min_{[a_i, b_i]} f(u_i(t), v_i(t)).$$

Задача свелась к m задачам нахождения максимального и минимального значений функций $f_i(t)=f(u_i(t),v_i(t))$ одной переменной на сегменте $[a_i,b_i],\ i=1,\ldots,m.$

Решение задачи нахождения максимума (минимума) функции f на компакте методом параметризации границ приводит к наименьшему количеству технических сложностей, если, во-первых, функция f и все функции u_1,v_1,\ldots,u_m,v_m дифференцируемы, и, во-вторых, компакт K представляет собой криволинейный многоугольник с вершинами $A_1A_2\ldots A_m$ и сторонами $\Gamma_1,\Gamma_2,\ldots,\Gamma_m$, т.е.

$$\Gamma_1 \cap \Gamma_2 = \{A_2\},$$

$$\Gamma_2 \cap \Gamma_3 = \{A_3\},$$

$$\ldots,$$

$$\Gamma_{m-1} \cap \Gamma_m = \{A_m\},$$

$$\Gamma_m \cap \Gamma_1 = \{A_1\}.$$

В этом случае можно не исследовать стационарные точки на экстремальность (!). А именно, решение может быть таким:

- 1. Находим множество P значений функции f(x,y) во всех вершинах $A_1,A_2,\ldots,A_m.$
- 2. Находим все стационарные точки в $\mathrm{int}K$ и множество Q значений функции z=f(x,y) в них.
- 3. Для каждого $1\leqslant i\leqslant m$ находим все стационарные точки функции $z=f_i(t)=f(u_i(t),v_i(t))$ на интервале (a_i,b_i) и множество R_i значений этой функции в них.
- 4. Тогда

$$\begin{aligned} \max_{K} f &= \max_{P \cup Q \cup R_1 \cup \ldots \cup R_m} z, \\ \min_{K} f &= \min_{P \cup Q \cup R_1 \cup \ldots \cup R_m} z. \end{aligned}$$

При этом $\operatorname*{argmax}_K f$ и $\operatorname*{argmin}_K f$ состоят из тех рассмотренных точек, где достигаются $\operatorname*{max}_K f$ и $\operatorname*{min}_K f$.