

LAMA ItW: Federated Learning Classification

Einführung in & Experimente mit Federated Learning

Léo Brucker & Cyril Rudolph

Einführung: Federated Learning (FL)

Problemstellung:

- Normales Machine Learning: Alle Daten in einem Ort
- Federated Learning: Daten über verschiedene Geräte (Clients) verteilt und können nicht zentral gespeichert werden

Motivation:

- Datenschutz (Bsp: Patientendaten im Krankenhaus oder persönlichen Schreibdaten auf der Handy-Tastatur)
- Echtzeit-lernen: Modell wird kontinuierlich geupdatet und passt sich zu Änderungen und neuen Daten an.
- Lokale Modelle: Jedes Modell auf Nutzer personalisiert

Einführung: Funktionsweise

- Erinnerung:
 - Convolutional Neural Network
 - Transfer Learning
- Ablauf einer FL Epoche:
 - Lokale Modelle trainieren
 - Aggregation der lokalen Trainingsergebnisse
 - Update des globalen Modells
- Herausforderung
 - Class Imbalance in lokalen und globalen Datensätzen

FL Step 1: Initialize Global Model

- Modell erstellen (CNN)
- Globales Modell initialisieren
- Parameter bestimmen
 - Anzahl an Clients berücksichtigen
 - Lernrate
 - Aggregations-Strategie

Source: https://flower.dev/docs/framework/tutorial-series-what-is-federated-learning.html

FL Step 2: Local Client Training

- Modell wird an Clients übergeben
- Bestimmte Anzahl ausgewählt, die das Modell trainieren
- Clients verändern die Parameter ihres lokalen Modells

Source: https://flower.dev/docs/framework/tutorial-series-what-is-federated-learning.htm

FL Step 3: Aggregate Local Models

- Server erhält die Parameter von den lokalen Modellen
- Mit gewählter Strategie werden die Parameter zusammengeführt

Source: https://flower.dev/docs/framework/tutorial-series-what-is-federated-learning.html

FL Step 4: Update Global Model (& Repeat)

- Update des globalen Modells durch die erfolgreiche Aggregation
- Kritische Punkte:
 - Schlechtere Leistung im Vergleich zu klassischem Transfer Learning
 - Datensicherheit gewährleisten und trotzdem Leistung verbessern

Source: https://flower.dev/docs/framework/tutorial-series-what-is-federated-learning.html

Einführung: Unsere Aufgabe

- Federated Learning Model für EMNIST-Datensatz erstellen
- Reduktion der lokalen Komplikationen
 - Class Imbalance messen können (MID, WCS)
 - Parameter des Models verändern (z.B. Batchsize, Clientnumber ...)
 - Versuchen das FL Modell gegen das Centralized zu konvergieren
- Erkenntnisse auswerten

Vielversprechende Parameter

FL-Modell:

- Batchsize
- CNN Model
- Learning Rate
- Epochs
- Fraction Train
- Aggregate Strategy

Simulation:

- Anzahl Clients
- MID & WCS

- Viele Iterationen mit unterschiedlichen Parametern notwendig
- Eine Vorlage, in der wir die Parameter schnell anpassen können
- Speichert automatisch die Ergebnisse in Dateien
- Auswertung und Interpretation für die nächsten Modelle bleibt manuell ©

```
MAIN PARAMS
CENTRALIZED = False ## False if Federated
SPLIT = "digits" # Choose from "digits, balanced"...
MODEL = "internet" # Choose from "chatgpt", "internet", "tutorial"
*********
## OTHER GLOBAL PARAMS ##
PROGRESS BAR = CENTRALIZED # set to "CENTRALIZED" to only progress bar
USE GPU = True # False for CPU
VALIDATION SPLIT = 0.1
OPTIMIZER = "sgd" # Choose from "sgd" and "adam"
CRITERION = nn.CrossEntropyLoss()
### CENTRALIZED PARAMS ###
LR CENTRALIZED = 0.01 # Learning rate
MOM CENTRALIZED = 0.9 # Momentum
EPOCHS CENTRALIZED = 3 # Epochs
BATCH SIZE CENTRALIZED = 256
### FEDERATED PARAMS ###
LR FEDERATED = 0.01 # Learning rate
MOM FEDERATED = 0.9 # Momentum
EPOCHS FEDERATED = 1 # Epochs
BATCH SIZE FEDERATED = 128
```

Umsetzung: EMNIST & FEMNIST


```
# Create Federated Dataset

def get_federated_loaders():
    trainset, testset = get_dataset()

num_images = len(trainset) // NUM_CLIENTS
    partition_len = [num_images] * NUM_CLIENTS

trainsets = random_split(trainset, partition_len)

#
global TRAINSETS
TRAINSETS = trainsets
```

- Datensatz: EMNIST
- keine Datenaufbereitung notwendig
- Gute Baseline erstellbar
- Aufteilung des Datensatzes für FEMNIST (siehe links)
- Class Imbalance Simulation möglich
- Verschiedene Splits ("mnist", "digits")

Umsetzung: Class Imbalance Creation

- Class Imbalance erstellen wir selber
- Parameter für globale und lokale Imbalance
- (links) Globale und lokale imbalance Parameter sehr hoch gestellt

MID & WCS

Multiclass Imbalance Degree

- Messung des globalen Klassen Ungleichgewicht
- Verhältnis zwischen dominierender & minoritärer Klasse unzureichend
- Maßeinheit (zwischen 0 & 1), die insbesondere die Größe der einzelnen Klassen eines Datensatzes betrachtet

Weighted Cosine Similarity

- Messung des Zusammenhangs zwischen globalen & lokalen Ungleichgewicht (von Klassen)
- Erweiterung von MCS, hatte nicht die Datensatzgröße berücksichtigt
- Gibt Werte zwischen 1 1/sqrt C

Hat am Ende des Tages uns nicht viel weitergeholfen.. die Werte bleiben selbst bei sehr ungleichmäßigen Datensätzen sehr nah an 0 bzw. 1 und sagen nicht soviel aus wie wir es uns gerne erhofft hätten

Scenario 1: MNIST

→ Parameter Optimierung

■ Model: ?

Batch Size: ?

Learning Rate: ?

Strategy: ?

Scenario 1: MNIST

→ Parameter Optimierung

Model: Internet

Batch Size: ?

Learning Rate: ?

Strategy: ?

Scenario 1: MNIST

→ Parameter Optimierung

Model: Internet

■ Batch Size: 32

Learning Rate: ?

Strategy: ?

15.02.2024

Scenario 1: MNIST

→ Parameter Optimierung

Model: Internet

■ Batch Size: 32

Learning Rate: 0.001

Strategy: ?

Scenario 1: MNIST

→ Parameter Optimierung

Model: Internet

■ Batch Size: 32

Learning Rate: 0.001

Strategy: FedAvg

FedAvg: 98, 1%

FedAdam: 4,0% uff

Andere: ~97%

→also wenig Einfluss

Einfluss von Client Größe:

- Desto mehr Images/Client, desto näher an Centralized Baseline
- Clients, Fraction_Train nicht einfach generell vergleichbar, Datensatz abhängig

Einfluss von Imbalance

Ergebnisse

Imbalance beeinflusst wie erwartet das Ergebnis negativ

WCS:

■ Balanced: 1.0

Unbalanced: 0.74

MID:

■ Balanced: 0.0

Unbalanced: 0.09

Global oder Local Imbalance?

Ergebnisse

Local Imbalance Scenario:

WCS: 0,66 MID: 0,07

Global Imbalance Scenario:

WCS: 0,9 MID: 0,14

→ ob die imbalance global oder local ist macht kein großen unterschied.

On a "real" Scenario

Testen unserer Modells auf den "ByMerge" Split, der schon vorunbalanced ist.

Conclusion:

Unserer FL funktionieren fast genau so gut wie die centralized Variante!

Und respektiert Privatspähre ©

Herausforderungen während des Projektes

- mit GIT rumgeschlagen
- Lange versucht mit einer momentan kaum benutzbaren Bibliothek zu arbeiten (Warnung vor Tensorflow_Fed)
- Fehlende Orientierung im Projekt

Was haben wir daraus gelernt?

- Klarere Zielsetzung
- Nutzen-Kosten-Analyse (auf Zeit bezogen)

Zusammenfassung:

Zentrale Ergebnisse:

- Parameter mit Einfluss
 - CNN-Modell
 - Learning Rate
 - Batch Size
- Schwierig zu verallgemeinern
 - Anzahl an Clients
 - Anzahl der genutzten Clients
- Auf Unbalanced Dataset funktioniert unser angepasstes Modell gut

Mögliche Fortführung des Projektes:

- Kleingruppen Agglomeration
- Eigene Aggregate Strategie erstellen, Strategien noch mehr anpassen
- Erstellte Ergebnisse genauer auswerten, deutlich mehr Parameterkombinationen ausführen → größerer Datensatz

