(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11) 許出職公開 号 特開平7-45748

(43)公開日 平成7年(1995)2月14日

(51) Int.Cl.4

FΙ

技術表示信所

H01L 23/14 C30B 29/04

X 8216-4G

H01L 23/14

D

審査請求 未請求 請求項の数3 OL (全 4 頁)

(21)出顯番号

(22)出顧日

特顧平5-192118

平成5年(1993)8月3日

(71)出題人 000002130

住友電気工業株式会社

大阪府大阪市中央区北浜四丁目5番33号

(72)発明者 山本 喜之

兵庫県伊丹市昆陽北一丁目1番1号 住友

電気工業株式会社伊丹製作所内

(72)発明者 今井 貴浩

兵庫県伊丹市昆陽北一丁目1番1号 住友

電気工業株式会社伊丹製作所内

(72)発明者 蘇森 直治

兵庫県伊丹市昆脇北一丁目1番1号 住友

電気工業株式会社伊丹製作所内

(74)代理人 弁理士 上代 哲司 (外2名)

(54) 【発明の名称】 半導体装置用基板

(57)【要約】

結晶性は比較的悪く、しかし放熱性の高い安価な半導体 実装用ダイヤモンド基板。

【目的】 高い放熱性を保持しながらかつ安価に製造で きるダイヤモンド基板。

【構成】 ダイヤモンドの誘電特性、結晶性を低下させ ることにより、高熱伝導性を維持しながら、ダイヤモン ド基板製造のコストを大幅に低下させることができる。

PARTIAL TRANSLATION OF JAPANESE UNEXAMINED PATENT PUBLICATION NO. 7-45748

Title of the Invention: Board for Semiconductor Device

Publication Date: February 14, 1995

Patent Application No. 5-192118

Filing Date: August 3, 1993

Applicant: Semitomu Denki Kogyo Co., Ltd.

DETAILED DESCRIPTION OF THE INVENTION (EXCERPT)

Example 1

Diamond was grown to 300 μm on a polycrystalline Si board (25 \times 2.5 \times 5 mm) by use of a heat filament CVD method. In the above composite condition, high purity hydrogen including methane of 6% was supplied as a raw material, the pressure was 70 Torr and the temperature of the board was 850°C. The film growing speed was 7.5 $\mu m/hr$ (sample A). On the other hand, as a comparison example, the composite condition was modified to hydrogen including methane of 2%, a pressure of 30 Torr and the board temperature of 900°C to allow the diamond to grow to 200 μm . The film growing time was 100 hr and the film growing speed was 2.0 $\mu m/hr$ (sample B).

Example 2

Diamond was grown on a polycrystalline Si board $(25 \times 25 \times 5 \text{ mm})$ by use of a heat filament CVD method under a condition as shown in Table 1 (samples C to E). These samples were subjected to the same treatment as in example 1. The results from Raman spectral analysis, dielectric characteristic measurement and thermal conductivity measurement are shown in Table 1.