Section 3J. Interaction Terms Statistics for Data Science

Victor M. Preciado, PhD MIT EECS Dept of Electrical & Systems Engineering University of Pennsylvania preciado@seas.upenn.edu

Nonlinear effects: Interaction terms

► Consider another dataset where the output variable is the number of sales of a product in 200 different markets. The input variables are the amount invested in TV and Radio advertising in each market; hence, we can build a linear model

Sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times Radio + \varepsilon$$

- This model assumes that the effects of TV and Radio investments are independent of each other
- However, spending money on Radio advertising may increase the effectiveness of TV advertising
- ▶ In statistics, the synergies between variables are called *interaction* effects and can be modeled by introducing new artificial variables in the model, as follows

$$\mathsf{Sales} = \beta_0 + \beta_1 \times \mathsf{TV} + \beta_2 \times \mathsf{Radio} + \beta_3 \times (\mathsf{TV} \times \mathsf{Radio}) + \varepsilon$$

Nonlinear effects: Interaction terms (cont.)

After performing a linear fitting with the output variable $y_i = Sales_i$ and the input vectors $\mathbf{x}_i = [\mathsf{TV}_i, \mathsf{Radio}_i, \mathsf{TV} \times \mathsf{Radio}_i]$, we obtain the following table of coefficients:

[Credit: James et al, ISL book]	Coefficient	Std. Error	t-statistic
Intercept	6.7502	0.248	27.23
TV	0.0191	0.002	12.70
radio	0.0289	0.009	3.24
${ t TV}{ imes { t radio}}$	0.0011	0.000	20.73

▶ **Interpretation**: The interaction between Radio and TV advertising is important (*t*-statistic is large).

Interaction terms: The Hierarchy Principle

Hierarchy Principle: If we include an interaction term in our model (e.g., $TV \times Radio$), we should also include the main terms (e.g., TV and Radio), even if the t statistics indicate that those main terms are not significant.

- ► The reason for this principle is that the interaction terms are hard to interpret if we do not include the main terms
- ▶ In particular, the interaction term could carry the effect of main terms if these are not included in the model

Interactions between Qualitative and Quantitative Variables

Consider an example in we want to predict the **Balance** of an individual using as inputs his/her **Income** (quantitative) and if he/she is a **Student** (qualitative)

Model without interactions:

$$\widehat{\mathsf{Balance}_i} = \beta_0 + \beta_1 \times \mathsf{Income}_i + \beta_2 \times \mathsf{Student}_i = \begin{cases} (\beta_0 + \beta_2) + \beta_1 \times \mathsf{Income}_i, & \text{if } i \text{ is a student} \\ \beta_0 + \beta_1 \times \mathsf{Income}_i, & \text{if } i \text{ is not a student} \end{cases}$$

Model plots: With no interactions, we have a change in the intercept

Interactions between Qualitative and Quantitative Variables (cont.)

▶ Model with interactions:

$$\begin{split} & \mathsf{Balance}_i = \beta_0 + \beta_1 \times \mathsf{Income}_i + \beta_2 \times \mathsf{Student}_i + \beta_3 \times \mathsf{Income}_i \times \mathsf{Student}_i \\ &= \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \mathsf{Income}_i, & \text{if } i \text{ is a student} \\ \beta_0 + \beta_1 \times \mathsf{Income}_i, & \text{if } i \text{ is not a student} \end{cases} \end{split}$$

Model plots: With no interactions, we have a change in the intercept

Copyright 2020 University of Pennsylvania No reproduction or distribution without permission.