ICPC Templates For Africamonkey

Africamonkey

2017年4月12日

目录

1.2 树上莫队	1	莫队	算法	3				
2 字符中 2.1 哈希 2.2 KMP 2.3 可动态修改的 KMP 2.4 扩展 KMP 2.5 Manacher 2.6 最小表示法 2.7 AC 自动机 2.8 后缀数组 2.8.1 倍增算法 2.8.2 DC3 算法 2.9 后缀自动机 3 数据结构 3.1 ST 表 3.2 线段树小技巧 3.3 Splay 3.4 可持久化 Treap 3.5 可持久化开奋集 4 树 4.1 点分治 4.2 动态树 2.5 图 5.1 欧拉回路 5.2 最短路径 2.5 最短路径		1.1	普通莫队	3				
2.1 哈希 5 2.2 KMP 5 2.3 可动态修改的 KMP 6 2.4 扩展 KMP 6 2.5 Manacher 2 2.6 最小表示法 3 2.7 AC 自动机 8 2.8 后缀数组 9 2.8.1 倍增算法 9 2.8.2 DC3 算法 10 2.9 后缀自动机 1 3 数据结构 1 3.1 ST 表 1 3.2 线段树小技巧 1 3.3 Splay 1 3.4 可持久化 Treap 1 3.5 可持久化并查集 1 4 树 20 4.1 点分治 20 4.2 动态树 2 5 图 2 5.1 欧拉回路 2 5.2 最短路径 2		1.2	树上莫队	3				
2.2 KMP 第 2.3 可动态修改的 KMP 6 2.4 扩展 KMP 6 2.5 Manacher 2 2.6 最小表示法 8 2.7 AC 自动机 8 2.8 后缀数组 9 2.8.1 倍增算法 9 2.8.2 DC3 算法 10 2.9 后缀自动机 1 3 数据结构 1 3.1 ST 表 14 3.2 线段树小技巧 16 3.3 Splay 19 3.4 可持久化 Treap 17 3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 2 5 图 2 5.1 欧拉回路 2 5.2 最短路径 2	2	字符	字符串					
2.3 可动态修改的 KMP 6 2.4 扩展 KMP 6 2.5 Manacher 2 2.6 最小表示法 8 2.7 AC 自动机 8 2.8 后缀数组 9 2.8.1 倍增算法 9 2.8.2 DC3 算法 10 2.9 后缀自动机 1 3 数据结构 1 3.1 ST 表 1 3.2 线段树小技巧 1 3.3 Splay 1 3.4 可持久化 Treap 1 3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 2 5 图 2 5.1 欧拉回路 2 5.2 最短路径 2		2.1	哈希	5				
2.4 扩展 KMP 0 2.5 Manacher 2 2.6 最小表示法 8 2.7 AC 自动机 8 2.8 后缀数组 9 2.8.1 倍增算法 9 2.8.2 DC3 算法 10 2.9 后缀自动机 1 3 数据结构 1 3.1 ST 表 1 3.2 线段树小技巧 1 3.3 Splay 1 3.4 可持久化 Treap 1 3.5 可持久化并查集 1 4 树 20 4.1 点分治 20 4.2 动态树 2 5 图 2 5.1 欧拉回路 2 5.2 最短路径 2		2.2	KMP	5				
2.5 Manacher 2.6 最小表示法 2.7 AC 自动机 2.8 后缀数组 2.8.1 倍增算法 2.8.2 DC3 算法 2.9 后缀自动机 3 数据结构 3.1 ST 表 3.2 线段树小技巧 3.3 Splay 3.4 可持久化 Treap 3.5 可持久化并查集 4 材 4.1 点分治 4.2 动态树 5 图 5.1 欧拉回路 5.2 最短路径		2.3	可动态修改的 KMP	6				
2.6 最小表示法 8 2.7 AC 自动机 8 2.8 后缀数组 9 2.8.1 倍增算法 9 2.8.2 DC3 算法 10 2.9 后缀自动机 1 3 数据结构 1 3.1 ST表 1 3.2 线段树小技巧 1 3.3 Splay 1 3.4 可持久化 Treap 1' 3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 2 5 图 2 5.1 欧拉回路 2 5.2 最短路径 2		2.4	扩展 KMP	6				
2.7 AC 自动机 8 2.8 后缀数组 9 2.8.1 倍增算法 9 2.8.2 DC3 算法 10 2.9 后缀自动机 11 3 数据结构 12 3.1 ST 表 14 3.2 线段树小技巧 14 3.3 Splay 15 3.4 可持久化 Treap 17 3.5 可持久化并查集 16 4 树 20 4.1 点分治 20 4.2 动态树 22 5 图 25 5.1 欧拉回路 25 5.2 最短路径 25		2.5	Manacher	7				
2.8 后缀数组 9 2.8.1 倍增算法 9 2.8.2 DC3 算法 10<		2.6	最小表示法	8				
2.8.1 倍增算法 9 2.8.2 DC3 算法 16 2.9 后缀自动机 1 3 数据结构 14 3.1 ST 表 14 3.2 线段树小技巧 16 3.3 Splay 16 3.4 可持久化 Treap 17 3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 2 5 图 2 5.1 欧拉回路 2 5.2 最短路径 2		2.7	AC 自动机	8				
2.8.2 DC3 算法 16 2.9 后缀自动机 1 3 数据结构 14 3.1 ST 表 14 3.2 线段树小技巧 16 3.3 Splay 16 3.4 可持久化 Treap 17 3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 2 5 图 2 5.1 欧拉回路 2 5.2 最短路径 2		2.8	后缀数组	9				
2.9 后缀自动机 1 3 数据结构 14 3.1 ST 表 14 3.2 线段树小技巧 14 3.3 Splay 15 3.4 可持久化 Treap 17 3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 2 5 图 2 5.1 欧拉回路 2 5.2 最短路径 2			2.8.1 倍增算法	9				
3 数据结构 14 3.1 ST 表 14 3.2 线段树小技巧 15 3.3 Splay 16 3.4 可持久化 Treap 17 3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 20 5 图 25 5.1 欧拉回路 25 5.2 最短路径 26			2.8.2 DC3 算法	0				
3.1 ST 表 14 3.2 线段树小技巧 15 3.3 Splay 15 3.4 可持久化 Treap 17 3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 20 5 图 25 5.1 欧拉回路 25 5.2 最短路径 25		2.9	后缀自动机 1	.1				
3.2 线段树小技巧 14 3.3 Splay 15 3.4 可持久化 Treap 17 3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 20 5 图 23 5.1 欧拉回路 23 5.2 最短路径 23	3	数据结构 1						
3.3 Splay 15 3.4 可持久化 Treap 17 3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 20 5 图 25 5.1 欧拉回路 25 5.2 最短路径 25		3.1	ST 表	4				
3.4 可持久化 Treap 17 3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 20 5 图 23 5.1 欧拉回路 23 5.2 最短路径 23		3.2	线段树小技巧	4				
3.5 可持久化并查集 19 4 树 20 4.1 点分治 20 4.2 动态树 20 5 图 23 5.1 欧拉回路 25 5.2 最短路径 25		3.3	Splay	5				
4 树 20 4.1 点分治 20 4.2 动态树 2 5 图 23 5.1 欧拉回路 25 5.2 最短路径 25		3.4	可持久化 Treap	7				
4.1 点分治 20 4.2 动态树 2 5 图 25 5.1 欧拉回路 25 5.2 最短路径 25		3.5	可持久化并查集	.9				
4.1 点分治 20 4.2 动态树 2 5 图 25 5.1 欧拉回路 25 5.2 最短路径 25	4	树	2	0				
4.2 动态树 2 5 图 23 5.1 欧拉回路 25 5.2 最短路径 25			点分治	20				
 5.1 欧拉回路		4.2		21				
	5	图	2	3				
5.2 最短路径 29								
		-						

		5.2.2 SPFA	5
	5.3	K 短路	6
	5.4	Tarjan	:9
	5.5	2-SAT	0
	5.6	统治者树 (Dominator Tree)	2
	5.7	网络流	3
		5.7.1 最大流	3
		5.7.2 上下界有源汇网络流	4
		5.7.3 上下界无源汇网络流	5
		5.7.4 费用流	5
		5.7.5 zkw 费用流	6
6	数学	3	
	6.1	扩展欧几里得解同余方程 3	
	6.2	同余方程组	
	6.3	卡特兰数 3	
	6.4	斯特林数	
		6.4.1 第一类斯特林数	
		6.4.2 第二类斯特林数	
	6.5	错排公式 3	
	6.6	Lucas 定理	
	6.7	高斯消元 4	
		6.7.1 行列式 4	
		6.7.2 Matrix-Tree 定理	
	6.8	调和级数 4	
	6.9	曼哈顿距离的变换 4	
		线性筛素数	
		杜教筛	
		FFT	
		求原根	
		NTT	
	0.10	区间 lcm 的维护 4	: (
7	几何	$oldsymbol{4}$	7
	7.1	凸包 4	:7
8	黑科	技和杂项	8
-	8.1	 	
		高精度计算 5	
		1.4.1146(4).1.21	

1 莫队算法

1.1 普通莫队

```
1
  struct Q { int 1, r, sqrt1, id; } q[N];
2
  int n, m, v[N], ans[N], nowans;
   bool cmp (const Q &a, const Q &b) {
4
        if (a.sgrtl != b.sgrtl) return a.sgrtl < b.sgrtl;</pre>
5
        return a.r < b.r;</pre>
6
7
   void change(int x) { if (!v[x]) checkin(); else checkout(); }
8
   int main() {
9
        . . . . . .
10
        for (int i=1;i<=m;i++) q[i].sqrtl = q[i].l / sqrt(n), q[i].id = i;</pre>
11
        sort(q+1, q+m+1, cmp);
12
        int L=1,R=0; nowans=0;
13
        memset(v, 0, sizeof(v));
14
        for (int i=1;i<=m;i++) {</pre>
15
            while (L<q[i].l) change(L++);</pre>
16
            while (L>q[i].l) change(--L);
17
            while (R<q[i].r) change(++R);</pre>
18
            while (R>g[i].r) change(R--);
19
            ans[q[i].id] = nowans;
20
21
        . . . . . .
22
```

1.2 树上莫队

```
1
  struct Query { int 1, r, id, l_group; } query[N];
2 | struct EDGE { int adj, next; } edge[N*2];
  int n, m, top, gh[N], c[N], reorder[N], deep[N], father[N], size[N], son[N], Top[N];
  void addedge(int x, int y) {
5
       edge[++top].adj = y;
6
       edge[top].next = gh[x];
7
       gh[x] = top;
8
   void dfs(int x, int root=0) {
10
       reorder[x] = ++top; father[x] = root; deep[x] = deep[root] + 1;
11
       son[x] = 0; size[x] = 1; int dd = 0;
12
       for (int p=qh[x]; p; p=edge[p].next)
           if (edge[p].adj != root) {
13
14
               dfs(edge[p].adj, x);
15
               if (size[edge[p].adj] > dd) {
16
                    son[x] = edge[p].adj;
                    dd = size[edge[p].adj];
17
18
19
               size[x] += size[edge[p].adj];
20
```

```
21 }
22
   void split(int x, int tp) {
23
        Top[x] = tp;
24
        if (son[x]) split(son[x], tp);
25
        for (int p=gh[x]; p; p=edge[p].next)
26
            if (edge[p].adj != father[x] && edge[p].adj != son[x])
27
                split(edge[p].adj, edge[p].adj);
28
29
   int lca(int x, int y) {
30
        int tx = Top[x], ty = Top[y];
31
        while (tx != ty) {
32
            if (deep[tx] < deep[ty]) {</pre>
33
                swap(tx, ty);
34
                swap(x, y);
35
36
            x = father[tx];
37
            tx = Top[x];
38
39
        if (deep[x] < deep[y]) swap(x, y);
40
        return y;
41
42
   bool cmp(const Query &a, const Query &b) {
43
        if (a.l_group != b.l_group) return a.l_group < b.l_group;</pre>
44
        return reorder[a.r] < reorder[b.r];</pre>
45
46
   int v[N], ans[N];
47
   void upd(int x) { if (!v[x]) checkin(); else checkout(); }
   void go(int &u, int taru, int v) {
48
49
        int lca0 = lca(u, taru);
50
        int lca1 = lca(u, v);
                                upd(lca1);
51
        int lca2 = lca(taru, v); upd(lca2);
52
        for (int x=u; x!=lca0; x=father[x]) upd(x);
53
        for (int x=taru; x!=lca0; x=father[x]) upd(x);
54
        u = taru;
55
56
   int main() {
57
        memset(gh, 0, sizeof(gh));
        scanf("%d%d", &n, &m); top = 0;
58
59
        for (int i=1;i<n;i++) {</pre>
60
            int x,y; scanf("%d%d", &x, &y);
61
            addedge(x, y); addedge(y, x);
62
63
        top = 0; dfs(1); split(1, 1);
64
        for (int i=1;i<=m;i++) {</pre>
65
            if (reorder[query[i].l] > reorder[query[i].r])
66
                swap(query[i].l, query[i].r);
67
            query[i].id = i;
68
            query[i].l_group = reorder[query[i].l] / sqrt(n);
69
70
        sort(query+1, query+m+1, cmp);
```

```
for L=1,R=1; upd(1);
for (int i=1;i<=m;i++) {
            go(L,query[i].l,R);
            go(R,query[i].r,L);
            ans[query[i].id] = answer();
}

......
}</pre>
```

2 字符串

2.1 哈希

```
const int P=31,D=1000173169;
1
2
  int n, pow[N], f[N]; char a[N];
3
  int hash(int 1, int r) { return (LL)(f[r]-(LL)f[1-1]*pow[r-1+1]%D+D)%D; }
  int main() {
5
       scanf("%d%s", &n, a+1);
6
       pow[0] = 1;
7
       for (int i=1;i<=n;i++) pow[i] = (LL)pow[i-1]*P%D;</pre>
8
       for (int i=1;i<=n;i++) f[i] = (LL)((LL)f[i-1]*P+a[i])%D;</pre>
9
```

2.2 KMP

接口: int find_substring(char *pattern, char *text, int *next, int *ret);

输入:模式串,匹配串

输出: 返回值表示模式串在匹配串中出现的次数

KMP 的 next[i] 表示从 0 到 i 的字符串 s, 前缀和后缀的最长重叠长度。

```
1
   void find_next(char *pattern, int *next) {
2
        int n = strlen(pattern);
3
        for (int i=1;i<n;i++) {</pre>
4
            int j = i;
5
            while (j > 0) {
6
                j = next[j];
7
                if (pattern[j] == pattern[i]) {
8
                    next[i+1] = j+1;
9
                    break;
10
                }
11
            }
12
13
14
   int find_substring(char *pattern, char *text, int *next, int *ret) {
15
        find_next(pattern, next);
16
        int n = strlen(pattern);
17
        int m = strlen(text);
```

```
18
        int k = 0;
19
        for (int i=0, j=0; i<m; i++) {</pre>
20
             if (j<n && text[i] == pattern[j]) {</pre>
21
                  j++;
22
             } else {
23
                  while (j>0) {
24
                       j = next[j];
25
                       if (text[i] == pattern[j]) {
26
                           j++;
27
                           break;
28
29
                  }
30
31
             if (j == n)
32
                  ret[k++] = i-n+1;
33
34
        return k;
35
```

2.3 可动态修改的 KMP

支持: 加入一个字符,删除一个字符。 时间复杂度: $O(n\alpha)$, α 为字符集大小。 代码中的字符为 '0' -' 9' , 可自行修改为 'a' -' z'

```
1 | char t[N];
  int top, nxt[N], nxt_l[N][10];
  inline void del_letter() { --top; }
4
   inline void add_letter(char x) {
5
       t[top++] = x;
6
       int j = top-1;
7
       memset(nxt_l[top], 0, sizeof(nxt_l[top]));
8
       nxt[top] = nxt_l[top-1][x-'0'];
9
       memcpy(nxt_l[top], nxt_l[nxt[top]], sizeof(nxt_l[nxt[top]]));
10
       nxt_1[top][t[nxt[top]]-'0'] = nxt[top]+1;
11
```

2.4 扩展 KMP

接口: void ExtendedKMP(char *a, char *b, int *next, int *ret);

输出:

next: a 关于自己每个后缀的最长公共前缀ret: a 关于 b 的每个后缀的最长公共前缀

EXKMP 的 next[i] 表示: 从 i 到 n-1 的字符串 st 前缀和原串前缀的最长重叠长度。

```
void get_next(char *a, int *next) {
   int i, j, k;
   int n = strlen(a);
```

```
4
        for (j = 0; j+1 < n && a[j] == a[j+1]; j++);
5
        next[1] = j;
6
        k = 1;
7
        for (i=2;i<n;i++) {</pre>
8
            int len = k+next[k], l = next[i-k];
9
            if (1 < len-i) {
10
                 next[i] = 1;
11
             } else {
12
                 for (j = max(0, len-i); i+j < n && a[j] == a[i+j]; j++);
13
                 next[i] = j;
14
                 k = i;
15
16
        }
17
18
    void ExtendedKMP(char *a, char *b, int *next, int *ret) {
19
        get_next(a, next);
20
        int n = strlen(a), m = strlen(b);
21
        int i, j, k;
22
        for (j=0; j<n && j<m && a[j]==b[j]; j++);</pre>
23
        ret[0] = j;
24
        k = 0;
        for (i=1;i<m;i++) {</pre>
25
26
            int len = k+ret[k], l = next[i-k];
27
            if (1 < len-i) {
28
                 ret[i] = 1;
29
             } else {
30
                 for (j = max(0, len-i); j<n && i+j<m && a[j]==b[i+j]; j++);</pre>
31
                 ret[i] = j;
32
                 k = i;
33
34
        }
35
```

2.5 Manacher

p[i] 表示以 i 为对称轴的最长回文串长度

```
char st[N*2], s[N];
1
   int len, p[N*2];
2
3
4
   while (scanf("%s", s) != EOF) {
5
        len = strlen(s);
6
        st[0] = '\$', st[1] = '#';
7
        for (int i=1;i<=len;i++)</pre>
8
            st[i*2] = s[i-1], st[i*2+1] = '#';
9
        len = len \star 2 + 2;
10
        int mx = 0, id = 0, ans = 0;
        for (int i=1;i<=len;i++) {</pre>
11
12
            p[i] = (mx > i) ? min(p[id*2-i]+1, mx-i) : 1;
13
            for (; st[i+p[i]] == st[i-p[i]]; ++p[i]);
```

2.6 最小表示法

```
string smallestRepresation(string s) {
1
2
        int i, j, k, l;
3
        int n = s.length();
        s += s;
4
5
        for (i=0, j=1; j<n;) {</pre>
6
             for (k=0; k<n && s[i+k]==s[j+k]; k++);</pre>
7
            if (k>=n) break;
            if (s[i+k] < s[j+k]) j+=k+1;
9
            else {
                 l=i+k;
10
11
                 i=j;
12
                 j=\max(1, j)+1;
13
14
15
        return s.substr(i, n);
16
```

2.7 AC 自动机

```
1
   struct Node {
2
       int next[**Size of Alphabet**];
3
       int terminal, fail;
  } node[**Number of Nodes**];
5
  int top;
6
   void add(char *st) {
7
       int len = strlen(st), x = 1;
       for (int i=0;i<len;i++) {</pre>
8
            int ind = trans(st[i]);
10
           if (!node[x].next[ind])
11
                node[x].next[ind] = ++top;
12
           x = node[x].next[ind];
13
14
       node[x].terminal = 1;
15
  int q[**Number of Nodes**], head, tail;
16
17
  void build() {
       head = 0, tail = 1; q[1] = 1;
18
19
       while (head != tail) {
20
           int x = q[++head];
```

```
21
            /*(when necessary) node[x].terminal |= node[node[x].fail].terminal; */
22
            for (int i=0;i<n;i++)</pre>
23
                if (node[x].next[i]) {
24
                     if (x == 1) node[node[x].next[i]].fail = 1;
25
                     else {
26
                         int y = node[x].fail;
                         while (y) {
27
28
                             if (node[y].next[i]) {
29
                                 node[node[x].next[i]].fail = node[y].next[i];
30
                                 break;
31
32
                             y = node[y].fail;
33
34
                         if (!node[node[x].next[i]].fail) node[node[x].next[i]].fail = 1;
35
36
                    q[++tail] = node[x].next[i];
37
                }
38
39
```

2.8 后缀数组

2.8.1 倍增算法

参数 m 表示字符集的大小, 即 $0 \le r_i < m$

```
1
    #define rank rank2
2
   int n, r[N], wa[N], wb[N], ws[N], sa[N], rank[N], height[N];
3
   int cmp(int *r, int a, int b, int 1, int n) {
4
        if (r[a] == r[b]) {
5
             if (a+l<n && b+l<n && r[a+l]==r[b+l])</pre>
6
                 return 1;
7
8
        return 0;
9
10
   void suffix_array(int m) {
11
        int i, j, p, *x=wa, *y=wb, *t;
12
        for (i=0;i<m;i++) ws[i]=0;</pre>
13
        for (i=0;i<n;i++) ws[x[i]=r[i]]++;</pre>
        for (i=1;i<m;i++) ws[i]+=ws[i-1];</pre>
14
15
        for (i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
16
        for (j=1,p=1;p<n;m=p,j<<=1) {</pre>
17
             for (p=0,i=n-j;i<n;i++) y[p++]=i;</pre>
18
             for (i=0;i<n;i++) if (sa[i]>=j) y[p++]=sa[i]-j;
19
             for (i=0;i<m;i++) ws[i]=0;</pre>
20
             for (i=0;i<n;i++) ws[x[y[i]]]++;</pre>
21
             for (i=1;i<m;i++) ws[i]+=ws[i-1];</pre>
22
             for (i=n-1;i>=0;i--) sa[--ws[x[y[i]]]]=y[i];
23
             for (t=x, x=y, y=t, x[sa[0]]=0, i=1, p=1; i < n; i++)</pre>
24
                 x[sa[i]] = cmp(y, sa[i-1], sa[i], j, n)?p-1:p++;
```

```
25
26
        for (i=0;i<n;i++) rank[sa[i]]=i;</pre>
27
28
    void calc_height() {
29
        int j=0;
30
        for (int i=0;i<n;i++)</pre>
31
             if (rank[i])
32
33
                 while (r[i+j] == r[sa[rank[i]-1]+j]) j++;
34
                 height[rank[i]]=j;
35
                 if (j) j--;
36
37
```

2.8.2 DC3 算法

注意:

N 至少为字符串长度的 3 倍

接口: suffix_array(int *r, int *sa, int n, int m);

r 表示字符串, sa 为后缀数组输出, n 表示字符串长度, 下标从 0 开始。m 为字符集大小。

```
1
   #define F(x) ((x)/3 + ((x)%3 == 1 ? 0:tb))
2
   #define G(x) ((x) < tb ? (x) *3+1 : ((x)-tb) *3 + 2)
3
   #define rank rank2
4
5
   int r[N], wa[N], wb[N], ws[N], wv[N], sa[N], rank[N];
6
7
   int c0(int *r,int a,int b) {
8
        return r[a] == r[b] &&r[a+1] == r[b+1] &&r[a+2] == r[b+2];
9
10
11
   int c12(int k,int *r,int a,int b) {
12
        if(k==2) return r[a]<r[b]||r[a]==r[b]&&c12(1,r,a+1,b+1);</pre>
13
        else return r[a]<r[b]||r[a]==r[b]&&wv[a+1]<wv[b+1];
14
   }
15
16
    void dsort(int *r,int *a,int *b,int n,int m) {
17
        int i; for (i=0; i<n; i++) wv[i]=r[a[i]];</pre>
18
        for (i=0; i<m; i++) ws[i]=0;
19
        for (i=0; i<n; i++) ws [wv[i]]++;</pre>
20
        for (i=1; i<m; i++) ws[i] +=ws[i-1];</pre>
21
        for(i=n-1;i>=0;i--) b[--ws[wv[i]]]=a[i];
22
23
24
   void dc3(int *r,int *sa,int n,int m) {
25
        int i, j, *rn=r+n, *san=sa+n, ta=0, tb=(n+1)/3, tbc=0, p;
26
        r[n]=r[n+1]=0;
27
        for (i=0; i<n; i++) if (i%3!=0) wa[tbc++]=i;</pre>
28
        dsort (r+2, wa, wb, tbc, m);
```

```
29
        dsort(r+1, wb, wa, tbc, m);
30
        dsort(r, wa, wb, tbc, m);
31
        for (p=1, rn[F(wb[0])]=0,i=1;i<tbc;i++) rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++;</pre>
        if(p<tbc) dc3(rn,san,tbc,p);</pre>
32
33
        else for(i=0;i<tbc;i++) san[rn[i]]=i;</pre>
34
        for(i=0;i<tbc;i++) if(san[i]<tb) wb[ta++]=san[i] *3;</pre>
35
        if (n%3==1) wb[ta++]=n-1;
36
        dsort(r, wb, wa, ta, m);
37
        for(i=0;i<tbc;i++) wv[wb[i]=G(san[i])]=i;</pre>
38
        for(i=0, j=0, p=0;i<ta && j<tbc;p++)sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j</pre>
39
        for(;i<ta;p++) sa[p]=wa[i++];</pre>
40
        for(; j < tbc; p++) sa[p] = wb[j++];</pre>
41
42
43
    void suffix_array(int *r, int *sa, int n, int m) {
44
        dc3(r, sa, n + 1, 256);
45
        int top = 0;
46
        for (int i = 0; i < n + 1; ++i)
47
             if (sa[i] < n) sa[top++] = sa[i];</pre>
48
        for (int i = 0; i < n; ++i) rank[sa[i]] = i;</pre>
49
```

2.9 后缀自动机

下面的代码是求两个串的 LCS (最长公共子串)。

```
#include <cstdio>
1
  #include <cstdlib>
3 #include <cstring>
4 #define N 500001
5 using namespace std;
  char st[N];
7 | int pre[N<<1], son[26][N<<1], step[N<<1], last, total;
8
   int apply(int x) { step[++total]=x; return total; }
9
   void Extend(char x) {
10
       int p = last, np = apply(step[last]+1);
11
       for (; p && !son[x][p]; p=pre[p]) son[x][p] = np;
12
       if (!p) pre[np] = 1;
13
       else {
14
            int q = son[x][p];
15
           if (step[p]+1 == step[q]) pre[np] = q;
16
            else {
17
                int nq = apply(step[p]+1);
18
                for (int i=0;i<26;i++) son[i][nq] = son[i][q];</pre>
19
                pre[nq] = pre[q];
20
                pre[q] = pre[np] = nq;
21
                for (; p && son[x][p]==q; p=pre[p]) son[x][p] = nq;
22
23
```

```
24
        last = np;
25
26
   void init() {
27
        last = total = 0;
28
       last = apply(0);
29
        scanf("%s",st);
30
        for (int i=0; st[i]; i++)
31
            Extend(st[i]-'a');
32
        scanf("%s",st);
33
34
   int main() {
35
        init();
36
        int p = 1, now = 0, ans = 0;
37
        for (int i=0; st[i]; i++) {
38
            int index = st[i]-'a';
39
            for (; p && !son[index][p]; p = pre[p], now = step[p]);
40
            if (!p) p = 1;
41
            if (son[index][p]) {
42
                p = son[index][p];
43
                now++;
44
                if (now > ans) ans = now;
45
46
47
        printf("%d\n",ans);
48
        return 0;
49
```


图 1: ACADD 构成的后缀自动机

我们发现 fail 构出一棵前缀树

和后缀树相同,为了使每个前缀都是叶子结点,我们不妨在串 s 前加入一个没出现的字符'#'

图 2: 串 ACADD 按 fail 构出的前缀树,与图 1 对应

图 3: 串 #ACADD 按 fail 构出的前缀树

3 数据结构

3.1 ST 表

```
int Log[N],f[17][N];
1
2
  int ask(int x,int y) {
3
       int k=log[y-x+1];
       return max(f[k][x],f[k][y-(1<<k)+1]);
4
5
6
  int main(){
7
       for (i=2; i<=n; i++) Log[i]=Log[i>>1]+1;
       for (j=1; j<K; j++) for (i=1; i+(1<<j-1) <=n; i++) f[j][i]=max(f[j-1][i], f[j-1][i+(1<<j-1)]
           -1)]);
9
```

3.2 线段树小技巧

给定一个序列 a ,寻找一个最大的 i 使得 $i \le y$ 且满足一些条件(如 $a[i] \ge w$,那么需要在线段树维护 a 的区间最大值)

```
1
   int queryl(int p, int left, int right, int y, int w) {
2
        if (right <= y) {
3
            if (! __condition__ ) return -1;
4
            else if (left == right) return left;
5
6
        int mid = (left + right) / 2;
7
        if (y <= mid) return queryl(p<<1|0, left, mid, y, w);</pre>
        int ret = queryl(p<<1|1, mid+1, right, y, w);</pre>
       if (ret != -1) return ret;
10
        return queryl(p<<1|0, left, mid, y, w);</pre>
```

给定一个序列 a ,寻找一个最小的 i 使得 $i \ge x$ 且满足一些条件(如 $a[i] \ge w$,那么需要在线段树维护 a 的区间最大值)

```
1
   int queryr(int p, int left, int right, int y, int w) {
2
        if (left >= x) {
3
            if (! __condition__ ) return -1;
            else if (left == right) return left;
4
5
6
        int mid = (left + right) / 2;
7
        if (x > mid) return queryr(p<<1|1, mid+1, right, y, w);</pre>
8
        int ret = queryr(p<<1|0, left, mid, y, w);</pre>
9
        if (ret != -1) return ret;
10
        return queryr(p<<1|1, mid+1, right, y, w);</pre>
11
```

3.3 Splay

接口:

ADD x y d : 将 [x,y] 的所有数加上 d

REVERSE x y : 将 [x,y] 翻转

INSERT x p: 将 p 插入到第 x 个数的后面

DEL x: 将第x个数删除

```
1
   struct SPLAY {
2
        struct NODE {
3
            int w, min;
4
            int son[2], size, father, rev, lazy;
5
        } node[N];
6
        int top, rt;
7
        void pushdown(int x) {
8
            if (!x) return;
            if (node[x].rev) {
9
10
                node[node[x].son[0]].rev ^= 1;
11
                node[node[x].son[1]].rev ^= 1;
12
                swap(node[x].son[0], node[x].son[1]);
13
                node[x].rev = 0;
14
            if (node[x].lazy) {
15
16
                node[node[x].son[0]].lazy += node[x].lazy;
17
                node[node[x].son[1]].lazy += node[x].lazy;
18
                node[x].w += node[x].lazy;
19
                node[x].min += node[x].lazy;
20
                node[x].lazy = 0;
21
22
23
        void pushup(int x) {
24
            if (!x) return;
25
            pushdown(node[x].son[0]);
26
            pushdown(node[x].son[1]);
27
            node[x].size = node[node[x].son[0]].size + node[node[x].son[1]].size + 1;
            node[x].min = node[x].w;
28
29
            if (node[x].son[0]) node[x].min = min(node[x].min, node[node[x].son[0]].min)
30
            if (node[x].son[1]) node[x].min = min(node[x].min, node[node[x].son[1]].min)
31
32
        void sc(int x, int y, int w) {
33
            node[x].son[w] = y;
34
            node[y].father = x;
35
            pushup(x);
36
37
        void _ins(int w) {
38
            top++;
39
            node[top].w = node[top].min = w;
            node[top].son[0] = node[top].son[1] = 0;
40
```

```
41
            node[top].size = 1; node[top].father = 0; node[top].rev = 0;
42
43
        void init() {
44
            top = 0;
45
            _{ins(0)}; _{ins(0)}; _{rt=1};
46
            sc(1, 2, 1);
47
48
        void rotate(int x) {
49
            if (!x) return;
50
            int y = node[x].father;
51
            int w = node[y].son[1] == x;
52
            sc(y, node[x].son[w^1], w);
53
            sc(node[y].father, x, node[node[y].father].son[1]==y);
54
            sc(x, y, w^1);
55
56
        int q[N];
57
        void flushdown(int x) {
58
            int t=0; for (; x; x=node[x].father) q[++t]=x;
59
            for (; t; t--) pushdown(q[t]);
60
        void Splay(int x, int root=0) {
61
62
            flushdown(x);
63
            while (node[x].father != root) {
64
                int y=node[x].father;
65
                int w=node[y].son[1]==x;
66
                if (node[y].father != root && node[node[y].father].son[w]==y) rotate(y);
67
                rotate(x);
68
69
70
        int find(int k) {
71
            Splay(rt);
72
            while (1) {
73
                pushdown (rt);
74
                if (node[node[rt].son[0]].size+1==k) {
75
                    Splay(rt);
76
                    return rt;
77
                } else
                if (node[node[rt].son[0]].size+1<k) {</pre>
78
79
                    k-=node[node[rt].son[0]].size+1;
80
                    rt=node[rt].son[1];
81
                } else {
82
                    rt=node[rt].son[0];
83
84
85
86
        int split(int x, int y) {
87
            int fx = find(x);
88
            int fy = find(y+2);
89
            Splay(fx);
90
            Splay(fy, fx);
```

```
91
             return node[fy].son[0];
92
93
        void add(int x, int y, int d) { //add d to each number in a[x]...a[y]}
94
             int t = split(x, y);
95
             node[t].lazy += d;
             Splay(t); rt=t;
96
97
        void reverse(int x, int y) { // reverse the x-th to y-th elements
98
99
             int t = split(x, y);
             node[t].rev ^= 1;
100
101
             Splay(t); rt=t;
102
103
        void insert(int x, int p) { // insert p after the x-th element
104
             int fx = find(x+1);
105
             int fy = find(x+2);
106
             Splay(fx);
107
             Splay(fy, fx);
108
             _{ins(p);}
109
             sc(fy, top, 0);
110
             Splay(top); rt=top;
111
        void del(int x) { // delete the x-th element in Splay
112
             int fx = find(x), fy = find(x+2);
113
114
             Splay(fx); Splay(fy, fx);
115
             node[fy].son[0] = 0;
116
             Splay(fy); rt=fy;
117
118
    } tree;
```

3.4 可持久化 Treap

接口:

void insert(int x, char c); 在当前第 x 个字符后插入 c void del(int x, int y); 删除第 x 个字符到第 y 个字符 void copy(int l, int r, int x); 复制第 l 个字符到第 r 个字符,然后粘贴到第 x 个字符后 void reverse(int x, int y); 翻转第 x 个到第 y 个字符 char query(int k); 表示询问当前第 x 个字符是什么

```
#define mod 1000000007
1
2
   struct Treap {
3
       struct Node {
4
           char key;
5
           bool reverse;
6
            int lc, rc, size;
7
        } node[N];
8
       int n, root, rd;
9
       int Rand() { rd = (rd * 20372052LL + 25022087LL) % mod; return rd; }
10
       void init() { n = root = 0; }
       inline int copy(int x) { node[++n] = node[x]; return n; }
11
```

```
12
        inline void pushdown(int x) {
13
            if (!node[x].reverse) return;
14
            if (node[x].lc) node[x].lc = copy(node[x].lc);
15
            if (node[x].rc) node[x].rc = copy(node[x].rc);
16
            swap(node[x].lc, node[x].rc);
17
            node[node[x].lc].reverse ^= 1;
18
            node[node[x].rc].reverse ^= 1;
19
            node[x].reverse = 0;
20
21
        inline void pushup(int x) { node[x].size = node[node[x].lc].size + node[node[x].
           rc].size + 1; }
22
        int merge(int u, int v) {
23
            if (!u || !v) return u+v;
24
            pushdown(u); pushdown(v);
25
            int t = Rand() % (node[u].size + node[v].size), r;
26
            if (t < node[u].size) {</pre>
                r = copy(u);
27
28
                node[r].rc = merge(node[u].rc, v);
29
            } else {
30
                r = copy(v);
31
                node[r].lc = merge(u, node[v].lc);
32
33
            pushup(r);
34
            return r;
35
36
        int split(int u, int x, int y) {
37
            if (x > y) return 0;
38
           pushdown(u);
39
            if (x == 1 && y == node[u].size) return u;
40
            if (y <= node[node[u].lc].size) return split(node[u].lc, x, y);</pre>
41
            int t = node[node[u].lc].size + 1;
42
            if (x > t) return split(node[u].rc, x-t, y-t);
43
            int num = copy(u);
44
            node[num].lc = split(node[u].lc, x, t-1);
45
            node[num].rc = split(node[u].rc, 1, y-t);
46
            pushup (num);
47
            return num;
48
49
        void insert(int x, char c) {
50
            int t1 = split(root, 1, x), t2 = split(root, x+1, node[root].size);
51
            node[++n].key = c; node[n].size = 1;
52
            root = merge(merge(t1, n), t2);
53
54
        void del(int x, int y) {
55
            int t1 = split(root, 1, x-1), t2 = split(root, y+1, node[root].size);
56
            root = merge(t1, t2);
57
58
        void copy(int 1, int r, int x) {
            int t1 = split(root, 1, x), t2 = split(root, 1, r), t3 = split(root, x+1,
59
                node(root).size);
```

```
60
            root = merge(merge(t1, t2), t3);
61
62
        void reverse(int x, int y) {
            int t1 = split(root, 1, x-1), t2 = split(root, x, y), t3 = split(root, y+1,
63
                node[root].size);
64
            node[t2].reverse ^= 1;
65
            root = merge(merge(t1, t2), t3);
66
67
        char query(int k) {
68
            int x = root;
69
            while (1) {
70
                pushdown(x);
71
                if (k <= node[node[x].lc].size) x = node[x].lc;</pre>
72
73
                if (k == node[node[x].lc].size + 1) return node[x].key;
74
75
                k \rightarrow node[node[x].lc].size + 1, x = node[x].rc;
76
77
78
    } treap;
```

3.5 可持久化并查集

接口:

void init() 初始化

void merge(int x, int y, int time) 在 time 时刻将 x 和 y 连一条边,注意加边顺序必须按 time 从小到大加边

void GetFather(int x, int time) 询问 time 时刻及以前的连边状态中, x 所属的集合

```
1
   namespace pers_union {
2
        const int inf = 0x3f3f3f3f;
3
        int father[N], Father[N], Time[N];
4
        vector<int> e[N];
5
        void init() {
6
            for (int i=1;i<=n;i++) {</pre>
                father[i] = i;
8
                Father[i] = i;
9
                Time[i] = inf;
10
                e[i].clear();
                e[i].push_back(i);
11
12
13
14
        int getfather(int x) {
15
            return (father[x] == x) ? x : father[x] = getfather(father[x]);
16
17
        int GetFather(int x, int time) {
            return (Time[x] <= time) ? GetFather(Father[x], time) : x;</pre>
18
19
        void merge(int x, int y, int time) {
20
```

```
21
            int fx = getfather(x), fy = getfather(y);
22
            if (fx == fy) return;
23
            if (e[fx].size() > e[fy].size()) swap(fx, fy);
24
            father[fx] = fy;
25
            Father[fx] = fy;
26
            Time[fx] = time;
27
            for (int i=0;i<e[fx].size();i++) {</pre>
28
                e[fy].push_back(e[fx][i]);
29
30
31
   };
```

4 树

4.1 点分治

初始化时须设置 top = 1。

```
1
   void addedge(int x, int y) {
2
        edge[++top].adj = y;
3
        edge[top].valid = 1;
4
        edge[top].next = gh[x];
5
        gh[x] = top;
6
7
   void get_size(int x, int root=0) {
8
        size[x] = 1; son[x] = 0;
9
        int dd = 0;
10
        for (int p=gh[x]; p; p=edge[p].next)
11
            if (edge[p].adj != root && edge[p].valid) {
12
                get_size(edge[p].adj, x);
13
                size[x] += size[edge[p].adj];
14
                if (size[edge[p].adj] > dd) {
15
                    dd = size[edge[p].adj];
16
                    son[x] = edge[p].adj;
17
18
19
20
   int getroot(int x) {
21
        get_size(x);
22
        int sz = size[x];
23
        while (size[son[x]] > sz/2)
24
            x = son[x];
25
        return x;
26
27
   void dc(int x) {
28
        x = getroot(x);
29
        static int list[N], ltop;
30
        ltop = 0;
31
        for (int p=gh[x]; p; p=edge[p].next)
```

```
32
            if (edge[p].valid)
33
                 list[++ltop] = p;
34
        clear();
        for (int i=1;i<=ltop;i++) {</pre>
35
36
            update();
37
            modify();
38
39
        clear();
        for (int i=ltop;i>=1;i--) {
40
41
            update();
42
            modify();
43
44
        //be careful about the root
45
        for (int p=gh[x]; p; p=edge[p].next)
46
            if (edge[p].valid) {
47
                 edge[p].valid = 0;
                 edge[p^1].valid = 0;
48
49
                 dc(edge[p].adj);
50
51
```

4.2 动态树

接口:

command(x, y): 将 x 到 y 路径的 Splay Tree 分离出来。 linkcut(u1, v1, u2, v2): 将树中原有的边(u1, v1) 删除, 加入一条新边(u2, v2)

```
1
   struct DynamicTREE{
2
       struct NODE {
            int father, son[2], top, size, reverse;
3
4
       } splay[N];
       void init(int i, int fat) {
5
6
            splay[i].father = splay[i].son[0] = splay[i].son[1] = 0;
7
            splay[i].top = fat; splay[i].size = 1; splay[i].reverse = 0;
8
9
       void pushdown(int x) {
10
            if (!x) return;
11
            int s0 = splay[x].son[0], s1 = splay[x].son[1];
12
            if (splay[x].reverse) {
13
                splay[s0].reverse ^= 1;
14
                splay[s1].reverse ^= 1;
15
                swap(splay[x].son[0], splay[x].son[1]);
16
                splay[x].reverse = 0;
17
18
            s0 = splay[x].son[0], s1 = splay[x].son[1];
19
            splay[s0].top = splay[s1].top = splay[x].top;
20
21
       void pushup(int x) {
22
           if (!x) return;
```

```
23
            pushdown(splay[x].son[0]);
24
            pushdown(splay[x].son[1]);
25
            splay[x].size = splay[splay[x].son[0]].size + splay[splay[x].son[1]].size +
26
27
        void sc(int x, int y, int w, bool Auto=true) {
            splay[x].son[w] = v;
28
29
            splay[y].father = x;
30
            if (Auto) {
31
                pushup(y);
32
                pushup(x);
33
34
35
        int top, tush[N];
36
        void flowdown(int x) {
37
            for (top=1; x; top++, x = splay[x].father) tush[top] = x;
38
            for (; top; top--) pushdown(tush[top]);
39
40
        void rotate(int x) {
41
            if (!x) return;
42
            int y = splay[x].father;
43
            int w = splay[y].son[1] == x;
44
            pushdown (y);
45
            pushdown(x);
46
            sc(splay[y].father, x, splay[splay[y].father].son[1]==y, false);
47
            sc(y, splay[x].son[w^1], w, false);
48
            sc(x, y, w^1, false);
49
            pushup(y);
50
            pushup(x);
51
52
        void Splay(int x, int rt=0) {
53
            if (!x) return;
54
            flowdown(x);
55
            while (splay[x].father != rt) {
56
                int y = splay[x].father;
57
                int w = splay[y].son[1] == x;
58
                if (splay[y].father != rt && splay[splay[y].father].son[w] == y) rotate(
                    y);
59
                rotate(x);
60
61
62
        void split(int x) {
63
            int y = splay[x].son[1];
64
            if (!y) return;
65
            splay[y].father = 0;
66
            splay[x].son[1] = 0;
67
            splay[y].top = x;
68
            pushup(x);
69
70
        void access(int x) {
```

```
71
             int y = 0;
72
             while (x) {
73
                 Splay(x);
74
                 split(x);
75
                 sc(x, y, 1);
76
                 Splay(x);
77
                 y = x;
78
                 x = splay[x].top;
79
80
81
         void changeroot(int x) {
82
             access(x);
83
             Splay(x);
84
             splay[x].reverse = 1;
85
             Splay(x);
86
87
         void command(int x, int y, ...) {
88
             LL ans = 0;
89
             changeroot(x);
90
             access(y);
91
             Splay(x);
92
             //then you can modify the Splay Tree
93
94
         void linkcut(int u1, int v1, int u2, int v2) {
95
             changeroot (u1);
96
             access(v1);
97
             Splay(u1); split(u1);
98
             splay[v1].top = 0;
99
             access (u2); changeroot (u2);
100
             access (v2); changeroot (v2);
101
             Splay(u2); Splay(v2);
102
             splay[v2].top = u2;
103
         }
104
    } lct;
```

5 图

5.1 欧拉回路

欧拉回路:

无向图:每个顶点的度数都是偶数,则存在欧拉回路。

有向图:每个顶点的入度 = 出度,则存在欧拉回路。

欧拉路径:

无向图: 当且仅当该图所有顶点的度数为偶数,或者除了两个度数为奇数外其余的全是偶数。

有向图: 当且仅当该图所有顶点出度 = 入度或者一个顶点出度 = 入度 + 1, 另一个顶点入度 = 出度 + 1, 其他顶点出度 = 入度。

下面 O(n+m) 求欧拉回路的代码中, n 为点数, m 为边数, 若有解则依次输出经过的边的编

号, 若是无向图, 则正数表示 x 到 y , 负数表示 y 到 x 。

```
1
    namespace UndirectedGraph{
2
        int n,m,i,x,y,d[N],g[N],v[M<<1],w[M<<1],vis[M<<1],nxt[M<<1],ed;</pre>
3
        int ans[M],cnt;
4
        void add(int x,int y,int z) {
5
             d[x]++;
6
             v[++ed]=y; w[ed]=z; nxt[ed]=q[x]; q[x]=ed;
7
8
        void dfs(int x) {
9
             for (int&i=q[x];i;) {
10
                  if (vis[i]) {i=nxt[i];continue;}
11
                  vis[i]=vis[i^1]=1;
12
                  int j=w[i];
13
                  dfs(v[i]);
14
                  ans[++cnt]=j;
15
16
17
        void solve() {
18
             scanf("%d%d",&n,&m);
19
             for(i=ed=1;i<=m;i++)scanf("%d%d",&x,&y),add(x,y,i),add(y,x,-i);</pre>
20
             for (i=1; i<=n; i++) if (d[i]&1) {puts("NO"); return; }</pre>
21
             for (i=1; i<=n; i++) if (g[i]) { dfs(i); break; }</pre>
22
             for (i=1; i<=n; i++) if (g[i]) {puts("NO"); return; }</pre>
23
             puts("YES");
24
             for(i=m; i; i--) printf("%d_", ans[i]);
25
26
27
    namespace DirectedGraph{
28
        int n,m,i,x,y,d[N],g[N],v[M],vis[M],nxt[M],ed;
29
        int ans[M],cnt;
30
        void add(int x,int y) {
31
             d[x]++;d[y]--;
32
             v[++ed]=y; nxt[ed]=g[x]; g[x]=ed;
33
34
        void dfs(int x) {
             for(int&i=g[x];i;){
35
36
                  if (vis[i]) {i=nxt[i];continue;}
37
                  vis[i]=1;
38
                  int j=i;
39
                  dfs(v[i]);
40
                  ans[++cnt]=j;
41
42
43
        void solve(){
             scanf("%d%d",&n,&m);
44
45
             for (i=1; i<=m; i++) scanf("%d%d", &x, &y), add(x, y);</pre>
46
             for (i=1; i<=n; i++) if (d[i]) {puts("NO"); return; }</pre>
47
             for (i=1; i<=n; i++) if (g[i]) { dfs(i); break; }</pre>
48
             for (i=1; i<=n; i++) if (g[i]) {puts("NO"); return; }</pre>
49
             puts("YES");
```

5.2 最短路径

5.2.1 Dijkstra

```
1
  #include <queue>
2 using namespace std;
3 | struct EDGE { int adj, w, next; } edge[M*2];
4
  struct dat { int id, dist; dat(int id=0, int dist=0) : id(id), dist(dist) {} };
  struct cmp { bool operator () (const dat &a, const dat &b) { return a.dist > b.dist;
        } ;
   priority_queue < dat, vector<dat>, cmp > q;
7
   int n, top, gh[N], v[N], dist[N];
8
   void addedge(int x, int y, int w) {
9
       edge[++top].adj = y;
10
       edge[top].w = w;
11
       edge[top].next = gh[x];
12
       gh[x] = top;
13
14
   int dijkstra(int s, int t) {
       memset(dist, 63, sizeof(dist));
15
16
       memset(v, 0, sizeof(v));
17
       dist[s] = 0;
18
       q.push(dat(s, 0));
19
       while (!q.empty()) {
20
            dat x = q.top(); q.pop();
21
            if (v[x.id]) continue; v[x.id] = 1;
22
            for (int p=gh[x.id]; p; p=edge[p].next) {
23
                if (x.dist + edge[p].w < dist[edge[p].adj]) {</pre>
24
                    dist[edge[p].adj] = x.dist + edge[p].w;
25
                    q.push(dat(edge[p].adj, dist[edge[p].adj]));
26
                }
27
28
29
       return dist[t];
30
```

5.2.2 SPFA

```
struct EDGE { int adj, w, next; } edge[M*2];
int n,m,top,gh[N],v[N],cnt[N],q[N],dist[N],head,tail;

void addedge(int x, int y, int w) {
   edge[++top].adj = y;
   edge[top].w = w;
   edge[top].next = gh[x];
```

```
7
        gh[x] = top;
8
9
   int spfa(int S, int T) {
10
        memset(v, 0, sizeof(v));
        memset(cnt, 0, sizeof(cnt));
11
12
        memset(dist, 63, sizeof(dist));
13
        head = 0, tail = 1;
14
        dist[S] = 0; q[1] = S;
15
        while (head != tail) {
16
            (head += 1) %= N;
17
            int x = q[head]; v[x] = 0;
18
            ++cnt[x]; if (cnt[x] > n) return -1;
19
            for (int p=gh[x]; p; p=edge[p].next)
20
                if (dist[x] + edge[p].w < dist[edge[p].adj]) {</pre>
21
                    dist[edge[p].adj] = dist[x] + edge[p].w;
22
                     if (!v[edge[p].adj]) {
23
                         v[edge[p].adj] = 1;
24
                         (tail += 1) %= N;
25
                         q[tail] = edge[p].adj;
26
27
28
29
        return dist[T];
30
```

5.3 K 短路

接口:

kthsp::init(n): 初始化并设置节点个数为 n kthsp::add(x, y, w): 添加一条 x 到 y 的有向边 kthsp::work(S, T, k): 求 S 到 T 的第 k 短路

```
1
   #include <queue>
2
   #define N 200020
3
4
   #define M 400020
  #define LOGM 20
5
6
  #define LL long long
7
   #define inf (1LL<<61)</pre>
8
9
   namespace pheap {
10
        struct Node {
11
            int next, son[2];
12
            LL val;
13
        } node[M*LOGM];
14
        int LOG[M];
15
        int root[M], size[M*LOGM], top;
16
        int add() {
17
            ++top; assert(top < M*LOGM);
```

```
18
            node[top].next = node[top].son[0] = node[top].son[1] = 0;
19
            node[top].val = inf;
20
            return top;
21
22
        int copy(int x) { int t = add(); node[t] = node[x]; return t; }
23
        void init() {
24
            top = -1; add();
25
            for (int i=2;i<M;i++) LOG[i] = LOG[i>>1] + 1;
26
27
        void upd(int x, int &next, LL &val) {
28
            if (val < node[x].val) {</pre>
29
                swap(val, node[x].val);
30
                swap(next, node[x].next);
31
32
33
        void insert(int x, int next, LL val) {
34
            int sz = size[root[x]] + 1;
35
            root[x] = copy(root[x]);
36
            size[root[x]] = sz; x = root[x];
37
            upd(x, next, val);
38
            for (int i=LOG[sz]-1;i>=0;i--) {
39
                int ind = (sz>>i) &1;
                node[x].son[ind] = copy(node[x].son[ind]);
40
41
                x = node[x].son[ind];
42
                upd(x, next, val);
43
44
45
   };
46
47
   namespace kthsp {
48
        using namespace pheap;
49
        struct EDGE {
50
            int adj, w, next;
51
        } edge[2][M];
52
        struct W {
53
            int x, y, w;
54
        } e[M];
       bool has_init = 0;
55
56
        int n, m, top[2], gh[2][N], v[N];
57
        LL dist[N];
58
        void init(int n1) {
59
            has_init = 1;
60
            n = n1; m = 0;
61
            memset(top, 0, sizeof(top));
62
            memset(gh, 0, sizeof(gh));
63
            for (int i=1;i<=n;i++) dist[i] = inf;</pre>
64
65
        void addedge(int id, int x, int y, int w) {
66
            edge[id][++top[id]].adj = y;
67
            edge[id][top[id]].w = w;
```

```
68
             edge[id][top[id]].next = gh[id][x];
69
             gh[id][x] = top[id];
70
71
        void add(int x, int y, int w) {
72
             assert(has_init);
73
             e[++m].x=x; e[m].y=y; e[m].w=w;
74
75
        int q[N], best[N], bestw[N];
76
        int deg[N];
77
        void spfa(int S) {
78
             for (int i=1;i<=n;i++) deg[i] = 0;</pre>
79
             for (int i=1;i<=m;i++) deg[e[i].x] ++;</pre>
80
             int head = 0, tail = 1;
81
             dist[S] = 0; q[1] = S;
82
             while (head != tail) {
83
                 (head += 1) %= N;
84
                 int x = q[head];
85
                 for (int p=gh[1][x]; p; p=edge[1][p].next) {
86
                     if (dist[x] + edge[1][p].w < dist[edge[1][p].adj]) {</pre>
87
                          dist[edge[1][p].adj] = dist[x] + edge[1][p].w;
88
                          best[edge[1][p].adj] = x;
89
                          bestw[edge[1][p].adj] = p;
90
91
                     if (!--deg[edge[1][p].adj]) {
                          (tail += 1) %= N;
92
93
                          q[tail] = edge[1][p].adj;
94
95
                 }
96
97
        void dfs(int x) {
98
99
             if (v[x]) return; v[x] = 1;
100
             if (best[x]) root[x] = root[best[x]];
101
             for (int p=gh[0][x]; p; p=edge[0][p].next)
102
                 if (dist[edge[0][p].adj] != inf && bestw[x] != p) {
103
                     insert(x, edge[0][p].adj, edge[0][p].w + dist[edge[0][p].adj] - dist
                         [x]);
104
                 }
105
             for (int p=gh[1][x]; p; p=edge[1][p].next)
106
                 if (best[edge[1][p].adj] == x)
107
                     dfs(edge[1][p].adj);
108
109
        typedef pair<LL,int> pli;
110
        priority_queue <pli, vector<pli>, greater<pli> > pq;
111
        LL work(int S, int T, int k) {
112
             assert (has_init);
113
            n++; add(T, n, 0);
114
             if (S == T) k ++;
115
             T = n;
116
             for (int i=1;i<=m;i++) {</pre>
```

```
117
                 addedge(0, e[i].x, e[i].y, e[i].w);
118
                 addedge(1, e[i].y, e[i].x, e[i].w);
119
120
             spfa(T);
121
             root[T] = 0; pheap::init();
122
             memset(v, 0, sizeof(v));
123
             dfs(T);
124
             while (!pq.empty()) pq.pop();
125
             if (k == 1) return dist[S];
126
             if (root[S]) pq.push(make_pair(dist[S] + node[root[S]].val, root[S]));
127
             while (k--) {
128
                 if (pq.empty()) return inf;
129
                 pli now = pq.top(); pq.pop();
130
                 if (k == 1) return now.first;
131
                 int x = node[now.second].next, u = node[now.second].son[0], v = node[now.second]
                     .second].son[1];
132
                 if (root[x]) pq.push(make_pair(now.first + node[root[x]].val, root[x]));
133
                 if (u) pq.push(make_pair(now.first - node[now.second].val + node[u].val,
134
                 if (v) pq.push(make_pair(now.first - node[now.second].val + node[v].val,
                      v));
135
136
             return 0;
137
138
    };
```

5.4 Tarjan

割点的判断:一个顶点 u 是割点,当且仅当满足 (1) 或 (2):

- (1) u 为树根, 且 u 有多于一个子树
- (2) u 不为树根,且满足存在 (u,v) 为树枝边 (u 为 v 的父亲),使得 $dfn[u] \leq low[v]$ 桥的判断: 一条无向边 (u,v) 是桥,当且仅当 (u,v) 为树枝边,满足 dfn[u] < low[v]

```
1 struct EDGE { int adj, next; } edge[M];
  int n, m, top, qh[N];
   int dfn[N], low[N], cnt, ind, stop, instack[N], stack[N], belong[N];
4
   void addedge(int x, int y) {
       edge[++top].adj = y;
5
6
       edge[top].next = gh[x];
7
       gh[x] = top;
8
9
   void tarjan(int x) {
10
       dfn[x] = low[x] = ++ind;
11
       instack[x] = 1; stack[++stop] = x;
12
       for (int p=gh[x]; p; p=edge[p].next)
13
           if (!dfn[edge[p].adj]) {
14
                tarjan(edge[p].adj);
15
                low[x] = min(low[x], low[edge[p].adj]);
            } else if (instack[edge[p].adj]) {
16
```

```
17
                low[x] = min(low[x], dfn[edge[p].adj]);
18
19
        if (dfn[x] == low[x]) {
20
            ++cnt; int tmp=0;
21
            while (tmp!=x) {
22
                tmp = stack[stop--];
23
                belong[tmp] = cnt;
24
                instack[tmp] = 0;
25
26
27
```

5.5 2-SAT

```
#define N number_of_vertex
1
2
   #define M number_of_edges
3
4
   struct MergePoint {
5
        struct EDGE {
6
            int adj, next;
7
        } edge[M];
8
        int ex[M], ey[M];
9
        bool instack[N];
10
        int gh[N], top, dfn[N], low[N], cnt, ind, stop, stack[N], belong[N];
        void init() {
11
12
            cnt = ind = stop = top = 0;
13
           memset(dfn, 0, sizeof(dfn));
14
           memset(instack, 0, sizeof(instack));
15
           memset(gh, 0, sizeof(gh));
16
17
        void addedge(int x, int y) { //reverse
18
            std::swap(x, y);
19
            edge[++top].adj = y;
20
            edge[top].next = gh[x];
21
            gh[x] = top;
22
            ex[top] = x;
23
            ey[top] = y;
24
25
        void tarjan(int x) {
26
           dfn[x] = low[x] = ++ind;
27
            instack[x] = 1; stack[++stop] = x;
28
            for (int p=gh[x]; p; p=edge[p].next)
29
                if (!dfn[edge[p].adj]) {
30
                    tarjan(edge[p].adj);
31
                    low[x] = std::min(low[x], low[edge[p].adj]);
32
                } else if (instack[edge[p].adj]) {
33
                    low[x] = std::min(low[x], dfn[edge[p].adj]);
34
                }
           if (dfn[x] == low[x]) {
35
```

```
36
                ++cnt; int tmp = 0;
37
                while (tmp!=x) {
38
                    tmp = stack[stop--];
39
                    belong[tmp] = cnt;
40
                    instack[tmp] = 0;
41
                }
42
43
44
        void work() {
45
            for (int i = (__first__); i <= (__last__); ++i)</pre>
46
                if (!dfn[i])
47
                    tarjan(i);
48
        }
49
    } merge;
50
51
   struct Topsort {
52
        struct EDGE {
53
            int adj, next;
54
        } edge[M];
55
        int n, top, gh[N], ops[N], deg[N], ans[N];
56
        std::queue<int> q;
        void init() {
57
58
            n = merge.cnt; top = 0;
59
            memset(gh, 0, sizeof(gh));
60
            memset(deg, 0, sizeof(deg));
61
62
        void addedge(int x, int y) {
63
            if (x == y) return;
64
            edge[++top].adj = y;
65
            edge[top].next = gh[x];
66
            gh[x] = top;
67
            ++deg[y];
68
69
        void work() {
70
            for (int i = 1; i <= n; ++i)</pre>
71
                if (!deg[i])
72
                    q.push(i);
73
            while (!q.empty()) {
74
                int x = q.front();
75
                q.pop();
76
                for (int p = gh[x]; p; p = edge[p].next)
77
                     if (!--deg[edge[p].adj])
78
                         q.push(edge[p].adj);
79
                if (ans[x]) continue;
80
                ans[x] = -1; //not selected
81
                ans[ops[x]] = 1; //selected
82
           }
83
84
    } ts;
```

调用示例:

```
1
        merge.init();
2
        merge.addedge();
3
        merge.work();
        for (int i = 1; i <= n; ++i) {</pre>
4
            if (merge.belong[U(i, 0)] == merge.belong[U(i, 1)]) {
5
6
                puts("NO");
7
                return 0;
8
            ts.ops[merge.belong[U(i, 0)]] = merge.belong[U(i, 1)];
9
10
            ts.ops[merge.belong[U(i, 1)]] = merge.belong[U(i, 0)];
11
12
        ts.init();
13
        ts.work();
14
        puts("YES");
        for (int i = 1; i <= n; ++i) {</pre>
15
16
            int x = U(i, 0), y = U(i, 1);
            x = merge.belong[x], y = merge.belong[y];
17
18
            x = ts.ans[x], y = ts.ans[y];
19
            if (x == 1) puts("0_is_selected");
20
            if (y == 1) puts("1_is_selected");
21
```

5.6 统治者树 (Dominator Tree)

Dominator Tree 可以解决判断一类有向图必经点的问题。 idom[x] 表示离 x 最近的必经点(重编号后)。将 idom[x] 作为 x 的父亲,构成一棵 Dominator Tree

接口:

void dominator::init(int n); 初始化,有向图节点数为 n void dominator::addedge(int u, int v); 添加一条有向边 (u, v) void dominator::work(int root); 以 root 为根,建立一棵 Dominator Tree 结果的返回:

在执行 dominator::work(int root); 后, 树边保存在 vector <int> tree[N] 中

```
1
   namespace dominator {
2
       vector <int> g[N], rg[N], bucket[N], tree[N];
3
       int n, ind, idom[N], sdom[N], dfn[N], dsu[N], father[N], label[N], rev[N];
4
       void dfs(int x) {
            ++ind;
5
6
           dfn[x] = ind; rev[ind] = x;
            label[ind] = dsu[ind] = sdom[ind] = ind;
8
            for (auto p : q[x]) {
9
                if (!dfn[p]) dfs(p), father[dfn[p]] = dfn[x];
10
                rg[dfn[p]].push_back(dfn[x]);
11
12
13
       void init(int n1) {
```

```
14
            n = n1; ind = 0;
15
            for (int i = 1; i <= n; ++i) {</pre>
16
                g[i].clear();
17
                rg[i].clear();
18
                bucket[i].clear();
19
                tree[i].clear();
20
                dfn[i] = 0;
21
22
23
        void addedge(int u, int v) {
24
            g[u].push_back(v);
25
26
        int find(int x, int step=0) {
27
            if (dsu[x] == x) return step ? -1 : x;
28
            int y = find(dsu[x], 1);
29
            if (y < 0) return x;</pre>
30
            if (sdom[label[dsu[x]]] < sdom[label[x]])</pre>
31
                label[x] = label[dsu[x]];
            dsu[x] = y;
32
33
            return step ? dsu[x] : label[x];
34
35
        void work(int root) {
36
            dfs(root); n = ind;
37
            for (int i = n; i; --i) {
38
                for (auto p : rg[i])
39
                     sdom[i] = min(sdom[i], sdom[find(p)]);
40
                if (i > 1) bucket[sdom[i]].push_back(i);
41
                for (auto p : bucket[i]) {
                     int u = find(p);
42
43
                     if (sdom[p] == sdom[u]) idom[p] = sdom[p];
44
                     else idom[p] = u;
45
46
                if (i > 1) dsu[i] = father[i];
47
            for (int i = 2; i <= n; ++i) {</pre>
48
49
                if (idom[i] != sdom[i])
                     idom[i] = idom[idom[i]];
50
51
                tree[rev[i]].push_back(rev[idom[i]]);
52
                tree[rev[idom[i]]].push_back(rev[i]);
53
54
55
    };
```

5.7 网络流

5.7.1 最大流

注意: top 要初始化为 1

```
1 struct EDGE { int adj, w, next; } edge[M];
```

```
int n, top, gh[N], nrl[N];
3
   void addedge(int x, int y, int w) {
4
        edge[++top].adj = y;
5
        edge[top].w = w;
6
        edge[top].next = gh[x];
7
        gh[x] = top;
8
        edge[++top].adj = x;
9
        edge[top].w = 0;
10
        edge[top].next = gh[y];
11
        gh[y] = top;
12
13 | int dist[N], q[N];
14
   int bfs() {
       memset(dist, 0, sizeof(dist));
15
16
        q[1] = S; int head = 0, tail = 1; dist[S] = 1;
17
        while (head != tail) {
18
            int x = q[++head];
19
            for (int p=qh[x]; p; p=edge[p].next)
20
                if (edge[p].w && !dist[edge[p].adj]) {
21
                    dist[edge[p].adj] = dist[x] + 1;
22
                    q[++tail] = edge[p].adj;
23
                }
24
25
        return dist[T];
26
27
   int dinic(int x, int delta) {
28
        if (x==T) return delta;
29
        for (int& p=nrl[x]; p && delta; p=edge[p].next)
30
            if (edge[p].w \&\& dist[x]+1 == dist[edge[p].adj]) {
31
                int dd = dinic(edge[p].adj, min(delta, edge[p].w));
32
                if (!dd) continue;
33
                edge[p].w -= dd;
34
                edge[p^1].w += dd;
35
                return dd;
36
            }
37
        return 0;
38
39
   int work() {
40
        int ans = 0;
41
        while (bfs()) {
42
            memcpy(nrl, gh, sizeof(gh));
43
            int t; while (t = dinic(S, inf)) ans += t;
44
45
        return ans;
46
```

5.7.2 上下界有源汇网络流

T 向 S 连容量为正无穷的边,将有源汇转化为无源汇。

每条边容量减去下界,设 in[i] 表示流入 i 的下界之和减去流出 i 的下界之和。

新建超级源汇 SS,TT , 对于 in[i] > 0 的点,SS 向 i 连容量为 in[i] 的边。对于 in[i] < 0 的点,i 向 TT 连容量为 -in[i] 的边。

求出以 SS,TT 为源汇的最大流,如果等于 $\Sigma in[i](in[i]>0)$,则存在可行流。再求出 S,T 为源汇的最大流即为最大流。

费用流: 建完图后等价于求以 SS,TT 为源汇的费用流。

5.7.3 上下界无源汇网络流

- 1. 怎样求无源汇有上下界网络的可行流?
- 由于有源汇的网络我们先要转化成无源汇,所以本来就无源汇的网络不用再作特殊处理。
- 2. 怎样求无源汇有上下界网络的最大流、最小流?
- 一种简易的方法是采用二分的思想,不断通过可行流的存在与否对 (t,s) 边的上下界 U,L 进行调整。求最大流时令 $U=\infty$ 并二分 L;求最小流时令 L=0 并二分 U。道理很简单,因为可行流的取值范围是一段连续的区间,我们只要通过二分找到有解和无解的分界线即可。

5.7.4 费用流

注意: top 要初始化为 1

```
1
   #define inf 0x3f3f3f3f
2
   struct NetWorkFlow {
3
       struct EDGE {
4
            int adj, w, cost, next;
5
       } edge[M*2];
6
       int gh[N], q[N], dist[N], v[N], pre[N], prev[N], top;
7
       int S, T;
8
       void addedge(int x, int y, int w, int cost) {
9
            edge[++top].adj = y;
10
            edge[top].w = w;
11
            edge[top].cost = cost;
12
            edge[top].next = gh[x];
13
            gh[x] = top;
14
            edge[++top].adj = x;
15
            edge[top].w = 0;
16
            edge[top].cost = -cost;
17
            edge[top].next = gh[y];
18
            gh[y] = top;
```

```
19
20
        void clear() {
21
            top = 1;
22
            memset(gh, 0, sizeof(gh));
23
24
        int spfa() {
25
            memset(dist, 63, sizeof(dist));
26
            memset(v, 0, sizeof(v));
27
            int head = 0, tail = 1;
28
            q[1] = S; v[S] = 1; dist[S] = 0;
29
            while (head != tail) {
30
                (head += 1) %= N;
31
                int x = q[head];
32
                v[x] = 0;
33
                for (int p=gh[x]; p; p=edge[p].next)
34
                     if (edge[p].w && dist[x] + edge[p].cost < dist[edge[p].adj]) {</pre>
35
                         dist[edge[p].adj] = dist[x] + edge[p].cost;
36
                         pre[edge[p].adj] = x;
37
                         prev[edge[p].adj] = p;
38
                         if (!v[edge[p].adj]) {
39
                             v[edge[p].adj] = 1;
40
                             (tail += 1) %= N;
41
                             q[tail] = edge[p].adj;
42
43
                     }
44
            return dist[T] != inf;
45
46
47
        int work() {
48
            int ans = 0;
49
            while (spfa()) {
                int mx = inf;
50
                for (int x=T;x!=S;x=pre[x])
51
52
                    mx = min(edge[prev[x]].w, mx);
53
                ans += dist[T] * mx;
54
                for (int x=T; x!=S; x=pre[x]) {
55
                    edge[prev[x]].w -= mx;
56
                    edge[prev[x]^1].w += mx;
57
                }
58
59
            return ans;
60
61
    } nwf;
```

5.7.5 zkw 费用流

注意: top 要初始化为 1, 不得用于有负权的图

```
1 #define inf 0x3f3f3f3f
2 struct NetWorkFlow {
```

```
3
        struct EDGE {
4
            int adj, w, cost, next;
5
        } edge[M*2];
6
        int gh[N], top;
7
        int S, T;
8
        void addedge(int x, int y, int w, int cost) {
9
            edge[++top].adj = y;
10
            edge[top].w = w;
11
            edge[top].cost = cost;
12
            edge[top].next = gh[x];
13
            gh[x] = top;
14
            edge[++top].adj = x;
15
            edge[top].w = 0;
16
            edge[top].cost = -cost;
17
            edge[top].next = gh[y];
18
            gh[y] = top;
19
20
        void clear() {
21
            top = 1;
22
            memset(gh, 0, sizeof(gh));
23
24
        int cost, d[N], slk[N], v[N];
25
        int aug(int x, int f) {
26
            int left = f;
27
            if (x == T) {
28
                cost += f * d[S];
29
                return f;
30
31
            v[x] = true;
32
            for (int p=gh[x]; p; p=edge[p].next)
33
                if (edge[p].w && !v[edge[p].adj]) {
34
                     int t = d[edge[p].adj] + edge[p].cost - d[x];
35
                    if (t == 0) {
36
                         int delt = aug(edge[p].adj, min(left, edge[p].w));
37
                         if (delt > 0) {
38
                             edge[p].w -= delt;
39
                             edge[p^1].w += delt;
40
                             left -= delt;
41
42
                         if (left == 0) return f;
43
                     } else {
44
                     if (t < slk[edge[p].adj])</pre>
45
                         slk[edge[p].adj] = t;
46
47
            return f-left;
48
49
        bool modlabel() {
50
51
            int delt = inf;
52
            for (int i=1;i<=T;i++)</pre>
```

```
53
                 if (!v[i]) {
54
                     if (slk[i] < delt) delt = slk[i];</pre>
55
                     slk[i] = inf;
                 }
56
            if (delt == inf) return true;
57
58
             for (int i=1;i<=T;i++)</pre>
59
                 if (v[i]) d[i] += delt;
            return false;
60
61
62
        int work() {
63
            cost = 0;
64
            memset(d, 0, sizeof(d));
65
            memset(slk, 63, sizeof(slk));
66
            do {
67
                 do {
68
                     memset(v, 0, sizeof(v));
69
                 } while (aug(S, inf));
70
             } while (!modlabel());
71
            return cost;
72
        }
73
    } nwf;
```

6 数学

6.1 扩展欧几里得解同余方程

ans[] 保存的是循环节内所有的解

```
int exgcd(int a,int b,int&x,int&y) {
1
2
        if(!b)return x=1, y=0, a;
3
        int d=exgcd(b,a%b,x,y),t=x;
4
        return x=y,y=t-a/b*y,d;
5
6
    void cal(ll a, ll b, ll n) { //ax=b (mod n)
7
        11 x, y, d=exgcd(a, n, x, y);
        if (b%d) return;
8
9
        x = (x%n+n)%n;
10
        ans [cnt=1] = x * (b/d) % (n/d);
11
        for(ll i=1;i<d;i++) ans[++cnt] = (ans[1]+i*n/d) %n;</pre>
12
```

6.2 同余方程组

```
int n, flag, k, m, a, r, d, x, y;
int main() {
    scanf("%d", &n);
    flag=k=1, m=0;
    while(n--) {
```

```
6
            scanf("%d%d",&a,&r);//ans%a=r
7
            if(flag) {
8
                d=exgcd(k,a,x,y);
9
                if ((r-m)%d) {flag=0;continue;}
10
                x = (x*(r-m)/d+a/d) %(a/d), y=k/d*a, m=((x*k+m) %y) %y;
11
                if (m<0) m+=y;
12
                k=v;
13
14
        printf("%d", flag?m:-1); //若 flag=1, 说明有解,解为ki+m, i为任意整数
15
16
```

6.3 卡特兰数

```
h_1=1, h_n=rac{h_{n-1}(4n-2)}{n+1}=rac{C(2n,n)}{n+1}=C(2n,n)-C(2n,n-1) 在一个格点阵列中,从 (0,0) 点走到 (n,m) 点且不经过对角线 x=y 的方案数 (x>y):C(n+m-1,m)-C(n+m-1,m-1) 在一个格点阵列中,从 (0,0) 点走到 (n,m) 点且不穿过对角线 x=y 的方案数 (x\geq y):C(n+m,m)-C(n+m,m-1)
```

6.4 斯特林数

6.4.1 第一类斯特林数

第一类 Stirling 数 S(p,k) 的一个组合学解释是: 将 p 个物体排成 k 个非空循环排列的方法数。 S(p,k) 的递推公式: $S(p,k)=(p-1)S(p-1,k)+S(p-1,k-1), 1\leq k\leq p-1$ 边界条件: $S(p,0)=0, p\geq 1$ $S(p,p)=1, p\geq 0$

6.4.2 第二类斯特林数

第二类 Stirling 数 S(p,k) 的一个组合学解释是:将 p 个物体划分成 k 个非空的不可辨别(可以理解为盒子没有编号)集合的方法数。

$$S(p,k)$$
 的递推公式: $S(p,k)=kS(p-1,k)+S(p-1,k-1), 1\leq k\leq p-1$ 边界条件: $S(p,0)=0, p\geq 1$ $S(p,p)=1, p\geq 0$ 也有卷积形式:

$$S(n,m) = \frac{1}{m!} \sum_{k=0}^{m} (-1)^k C(m,k) (m-k)^n = \sum_{k=0}^{m} \frac{(-1)^k (m-k)^n}{k! (m-k)!} = \sum_{k=0}^{m} \frac{(-1)^k}{k!} \times \frac{(m-k)^n}{(m-k)!}$$

6.5 错排公式

$$D_1 = 0, D_2 = 1, D_n = (n-1)(D_{n-2} + D_{n-1})$$

6.6 Lucas 定理

```
接口:
初始化: void lucas::init();
计算 C(n,m)\%mod 的值: LL lucas::Lucas(LL n, LL m);
```

```
#define mod 110119
1
2
   \#define \ LL \ long \ long
3
   namespace lucas {
4
        LL fac[mod+1], facv[mod+1];
        LL power(LL base, LL times) {
5
6
            LL ans = 1;
            while (times) {
                if (times&1) (ans *= base) %= mod;
9
                (base *= base) %= mod;
                times >>= 1;
10
11
12
            return ans;
13
        void init() {
14
15
            fac[0] = 1; for (int i=1; i<mod; i++) fac[i] = (fac[i-1] * i) % mod;
16
            facv[mod-1] = power(fac[mod-1], mod-2);
            for (int i=mod-2;i>=0;--i) facv[i] = (facv[i+1] * (i+1)) % mod;
17
18
19
        LL C(unsigned LL n, unsigned LL m) {
20
            if (n < m) return 0;</pre>
21
            return (fac[n] * facv[m] % mod * facv[n-m] % mod) % mod;
22
23
        LL Lucas(unsigned LL n, unsigned LL m)
24
25
            if (m == 0) return 1;
26
            return (C(n%mod, m%mod) * Lucas(n/mod, m/mod)) %mod;
27
28
```

6.7 高斯消元

6.7.1 行列式

```
1
    int ans = 1;
2
   for (int i=0;i<n;i++) {</pre>
3
        for (int j=i; j<n; j++)</pre>
4
             if (g[j][i]) {
                  for (int k=i; k<n; k++)</pre>
5
6
                       swap(g[i][k], g[j][k]);
7
                  if (j != i) ans *= -1;
8
                  break;
9
10
        if (g[i][i] == 0) {
             ans = 0;
11
```

```
12
            break;
13
        for (int j=i+1; j<n; j++) {</pre>
14
15
            while (q[j][i]) {
16
                 int t = g[i][i] / g[j][i];
17
                 for (int k=i; k<n; k++)</pre>
18
                     q[i][k] = (q[i][k] + mod - ((LL)t * q[j][k] % mod)) % mod;
19
                 for (int k=i; k<n; k++)</pre>
20
                     swap(g[i][k], g[j][k]);
21
                 ans *= -1;
22
23
24
25
  for (int i=0; i<n; i++)
26
        ans = ((LL)ans * g[i][i]) % mod;
27 ans = (ans % mod + mod) % mod;
   printf("%d\n", ans);
```

6.7.2 Matrix-Tree 定理

对于一张图,建立矩阵 C ,C[i][i] = i 的度数,若 i,j 之间有边,那么 C[i][j] = -1 ,否则为 0 。这张图的生成树个数等于矩阵 C 的 n-1 阶行列式的值。

6.8 调和级数

 $\sum_{i=1}^{n} \frac{1}{i}$ 在 n 较大时约等于 ln(n) + r , r 为欧拉常数, 约等于 0.5772156649015328 。

6.9 曼哈顿距离的变换

$$|x_1 - x_2| + |y_1 - y_2| = max(|(x_1 + y_1) - (x_2 + y_2)|, |(x_1 - y_1) - (x_2 - y_2)|)$$

6.10 线性筛素数

```
mu[1]=phi[1]=1;top=0;
1
2
   for (int i=2;i<N;i++) {</pre>
3
        if (!v[i]) prime[++top]=i, mu[i] = -1, phi[i] = i-1;
4
        for (int j=1;i*prime[j] < N && j <= top; j++) {</pre>
5
            v[i*prime[j]] = 1;
            if (i%prime[j]) {
6
7
                mu[i*prime[j]] = -mu[i];
8
                phi[i*prime[j]] = phi[i] * (prime[j]-1);
9
            } else {
10
                mu[i*prime[j]] = 0;
11
                phi[i*prime[j]] = phi[i] * prime[j];
12
                break;
13
            }
14
        }
15
```

6.11 杜教筛

getphi(t, x) 表示求 $\sum_{i=1}^{x} i^{t} \phi(i)$ 。

推导过程:

记 $S(n) = \sum_{i=1}^{n} f(i)$,取任意函数 g 有恒等式

$$S(n) = \sum_{i=1}^{n} (f \cdot g)(i) - \sum_{i=2}^{n} g(i)S(\lfloor \frac{n}{i} \rfloor)$$

其中, $(f \cdot g)$ 表示 f 和 g 的狄利克雷卷积: 即: $(f \cdot g)(n) = \sum_{d \mid n} f(d)g(\frac{n}{d})$

关于恒等式的证明:

将 $\sum_{i=0}^{n} g(i)S(\lfloor \frac{n}{i} \rfloor)$ 移到左边去,即只需证

$$\sum_{i=1}^{n} (f \cdot g)(i) = \sum_{i=1}^{n} g(i) S(\lfloor \frac{n}{i} \rfloor)$$

将狄利克雷卷积展开,得:

$$\sum_{i=1}^{n} \sum_{d \mid i} g(d) f(\frac{i}{d}) = \sum_{i=1}^{n} g(i) S(\lfloor \frac{n}{i} \rfloor)$$

即:

$$\sum_{d=1}^{n} g(d) \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} f(i) = \sum_{i=1}^{n} g(i) S(\lfloor \frac{n}{i} \rfloor)$$

显然相等, 恒等式证完。

取 $f(i) = i^p \phi(i), g(i) = i^p$, 则有:

$$S(n) = \sum_{i=1}^{n} i^{p} \phi(i) = \sum_{i=1}^{n} i^{p+1} - \sum_{i=2}^{n} i^{p} S(\lfloor \frac{n}{i} \rfloor)$$

其中有用到等式 $\sum_{d|n} \phi(d) = n$

```
#include <bits/stdc++.h>
   #define N 5000020
   #define LL long long
   #define mod 1000000007
   #define div2 ((mod+1)/2)
   #define div6 ((mod+1)/6)
9
   using namespace std;
10
11
   int n, prime[N], v[N];
12
  LL phi[3][N];
13
   map<int, int> mp[3];
14
15
```

```
16
   int sum(int t, int x) { //calculate 1^t + 2^t + ... + x^t
17
       if (t == 0) return x;
18
       if (t == 1) return 111 * x * (x + 1) % mod * div2 % mod;
19
       if (t == 2) return 111 * x * (x + 1) % mod * (211 * x % mod + 1) % mod * div6 %
           mod:
20
       if (t == 3) return 111 * x * x * mod * (x + 1) * mod * (x + 1) * mod * div2 *
           mod * div2 % mod;
21
22
23
   int getphi(int t, int x) {
24
       if (x < N) return phi[t][x];
25
       if (mp[t].find(x) != mp[t].end()) return mp[t][x];
26
       LL ans = 0; int r = 0;
27
       for (int 1 = 2; 1 \le x; 1 = r + 1) {
28
           r = x / (x / 1);
29
           ans += 111 * qetphi(t, x / 1) * (((LL)sum(t, r) - sum(t, 1 - 1) + mod) % mod
               ) % mod;
30
           ans %= mod;
31
32
       ans = (LL) sum(t + 1, x) - ans + mod;
33
       ans %= mod;
34
       mp[t][x] = ans;
35
       return (int)ans;
36
37
38
   int main() {
39
       memset(v, 0, sizeof(v));
40
       int top = 0;
       phi[0][1] = 1, phi[1][1] = 1, phi[2][1] = 1;
41
42
        for (int i = 2; i < N; ++i) {
43
           if (!v[i]) prime[++top] = i, phi[0][i] = i - 1, phi[1][i] = 111 * i * phi
                [0][i] % mod, phi[2][i] = 111 * i * phi[1][i] % mod;
44
           for (int j = 1; j \le top && prime[j] * i < N; ++j) {
45
                v[i * prime[j]] = 1;
                if (i % prime[j] == 0) {
46
47
                    phi[0][i * prime[j]] = phi[0][i] * prime[j];
48
                    phi[1][i * prime[j]] = 111 * phi[1][i] * prime[j] % mod * prime[j] %
49
                    phi[2][i * prime[j]] = 111 * phi[2][i] * prime[j] % mod * prime[j] %
                         mod * prime[j] % mod;
50
                    break;
51
                } else {
52
                    phi[0][i * prime[j]] = phi[0][i] * (prime[j] - 1);
53
                    phi[1][i * prime[j]] = 111 * phi[1][i] * (prime[j] - 1) % mod *
                        prime[j] % mod;
54
                    phi[2][i * prime[j]] = 111 * phi[2][i] * (prime[j] - 1) % mod *
                       prime[j] % mod * prime[j] % mod;
55
               }
56
57
```

```
for (int i = 2; i < N; ++i) {
    phi[0][i] = (phi[0][i] + phi[0][i - 1]) % mod;
    phi[1][i] = (phi[1][i] + phi[1][i - 1]) % mod;
    phi[2][i] = (phi[2][i] + phi[2][i - 1]) % mod;
}
62
    }
63
}</pre>
```

6.12 FFT

```
1
   typedef complex<double> comp;
2
   namespace FFT {
3
        comp A[N], B[N], omega[N];
4
        void transform(comp *x, int len) {
5
             for (int i=1, j=len/2; i<len-1; i++) {</pre>
6
                 if (i<j) swap(x[i], x[j]);</pre>
7
                 int k = len/2;
8
                 while (j>=k) {
9
                      j-=k;
10
                      k/=2;
11
12
                 if (j < k) j + = k;
13
14
15
        void fft(comp *x, int len, int reverse) {
             transform(x, len);
16
17
             for (int h=2;h<=len;h<<=1) {</pre>
18
                 for (int i=0;i<h/2;i++) omega[i] = polar(1.0, 2*pi*reverse/h*i);</pre>
19
                 for (int i=0;i<len;i+=h) {</pre>
20
                      for (int j=i; j<i+h/2; j++) {</pre>
21
                          comp w = omega[j-i];
22
                          comp u = x[j];
23
                          comp v = (w * x[j+h/2]);
24
                          x[j] = u + v;
25
                          x[j+h/2] = u - v;
26
27
                 }
28
29
             if (reverse == -1) {
30
                 for (int i=0;i<len;i++)</pre>
31
                      x[i] /= len;
32
33
34
        void work(int n, int *a, int *b) {
35
             int len = 1;
36
             while (len <= n*2) len *= 2;
37
             for (int i=0;i<len;i++) A[i] = B[i] = 0;</pre>
38
             for (int i=0;i<n;i++) A[i] = a[i], B[i] = b[i];</pre>
39
             fft(A, len, 1); fft(B, len, 1);
40
             for (int i=0;i<len;i++) A[i] = A[i] * B[i];</pre>
```

```
fft(A, len, -1);
for (int i=0;i<len;i++) {
    LL r = round(A[i].real());
    a[i] = r % mod;
}

45
    }
47
};</pre>
```

6.13 求原根

接口: LL p_root(LL p); 输入: 一个素数 *p* 输出: *p* 的原根

```
#include <bits/stdc++.h>
2
   #define LL long long
3
4
  using namespace std;
5
6
   vector <LL> a;
7
8
   LL pow_mod(LL base, LL times, LL mod) {
9
       LL ret = 1;
10
       while (times) {
11
            if (times&1) ret = ret * base % mod;
12
            base = base * base % mod;
13
            times>>=1;
14
15
        return ret;
16
17
18
  bool g_test(LL g, LL p) {
19
        for (LL i = 0; i < a.size(); ++i)</pre>
20
            if (pow_mod(g, (p-1)/a[i], p) == 1) return 0;
21
        return 1;
22
23
24
   LL p_root(LL p) {
25
        LL tmp = p - 1;
26
        for (LL i = 2; i <= tmp / i; ++i)</pre>
27
            if (tmp % i == 0) {
28
                a.push_back(i);
29
                while (tmp % i == 0)
30
                    tmp /= i;
31
32
        if (tmp != 1) a.push_back(tmp);
33
        LL g = 1;
34
        while (1) {
35
            if (g_test(g, p)) return g;
```

```
36
            ++g;
37
        }
38
   }
39
40
   int main() {
41
        LL p;
42
        cin >> p;
43
        cout << p_root(p) << endl;</pre>
44
```

6.14 NTT

998244353 原根为 3 , 1004535809 原根为 3 , 786433 原根为 10 , 880803841 原根为 26 。

```
#define mod 998244353
1
2
   #define g 3
   LL wi[N], wiv[N];
   LL power(LL base, LL times) {
5
        LL ans = 1;
6
        while (times) {
            if (times&1) (ans *= base) %= mod;
8
            (base *= base) %= mod;
9
            times >>= 1;
10
11
        return ans;
12
13
   void transform(LL *x, int len) {
        for (int i=1, j=len/2; i<len-1; i++) {</pre>
14
15
            if (i<j) swap(x[i], x[j]);</pre>
16
            int k = len/2;
17
            while (j>=k) {
18
                 j-=k;
19
                 k/=2;
20
21
            if (j<k) j+=k;
22
        }
23
24
   void NTT(LL *x, int len, int reverse) {
25
        transform(x, len);
26
        for (int h=2;h<=len;h<<=1) {</pre>
27
            for (int i=0;i<len;i+=h) {</pre>
28
                 LL w = 1, wn;
29
                 if (reverse==1) wn = wi[h]; else wn = wiv[h];
30
                 for (int j=i; j<i+h/2; j++) {</pre>
31
                     LL u = x[j];
32
                     LL v = (w * x[j+h/2]) % mod;
33
                     x[j] = (u + v) % mod;
34
                     x[j+h/2] = (u - v + mod) % mod;
35
                     (w *= wn) %= mod;
36
                 }
```

```
37
38
39
        if (reverse == -1) {
            LL t = power(len, mod-2);
40
41
            for (int i=0;i<len;i++)</pre>
42
                 (x[i] *= t) %= mod;
43
        }
44
45
   LL A[N], B[N];
    int main() {
46
        for (int i=1;i<N;i*=2) {</pre>
47
48
            wi[i] = power(g, (mod-1)/i);
49
            wiv[i] = power(wi[i], mod-2);
50
        memset(A, 0, sizeof(A));
51
        memset(B, 0, sizeof(B));
52
        NTT(A, len, 1); NTT(B, len, 1);
53
54
        for (int i=0;i<len;i++) (A[i] *= B[i]) %= mod;</pre>
55
        NTT(A, len, -1);
56
```

6.15 组合数 lcm

```
(n+1)lcm(C(n,0),C(n,1),...,C(n,k)) = lcm(n+1,n,n-1,...,n-k+1)
```

6.16 区间 lcm 的维护

对于一个数,将其分解质因数,若有因子 p^k ,那么拆分出 k 个数 $p,p^2,...,p^k$,权值都为 p ,那么查询区间 [l,r] 内所有数的 lcm 的答案 = 所有在该区间中出现过的数的权值之积,可持久化线段 树维护即可。

7 几何

7.1 凸包

```
typedef complex<int> point;
  #define X real()
3 #define Y imag()
4 int n;
   long long cross(point a, point b) {
6
       return 1ll * a.X * b.Y - 1ll * a.Y * b.X;
7
8
  bool cmp(point a, point b) {
9
       return make_pair(a.X, a.Y) < make_pair(b.X, b.Y);</pre>
10
11
   int convexHull(point p[],int n,point ch[]) {
12
       sort(p, p + n, cmp);
13
       int m = 0;
```

```
14
        for(int i = 0; i < n; ++i) {</pre>
15
            while (m > 1 \& \& cross(ch[m-1] - ch[m-2], p[i] - ch[m-2]) <= 0) m--;
16
            ch[m++] = p[i];
17
18
        int k = m;
19
        for(int i = n - 2; i >= 0; --i) {
20
            while (m > k \& a cross(ch[m-1] - ch[m-2], p[i] - ch[m-2]) <= 0) m--;
21
            ch[m++] = p[i];
22
23
        if(n > 1) m--;
24
        return m;
25
```

8 黑科技和杂项

8.1 找规律

有些题目,只给一个正整数 n ,然后要求输出一个答案。这时,我们可以暴力得到小数据的解,用高斯消元得到递推式,然后用矩阵快速幂求解。

使用方法:

首先在 gauss.in 中输入小数据的解(n=1 时,n=2 时, \cdots),以 EOF 结束。依次运行 gauss.cpp,matrix.cpp ,得到 matrix.out

将 matrix.out 中的文件粘贴在 main.cpp 中相应的位置中。注意模数一定要是质数。

```
1
  //gauss.cpp
  #include <bits/stdc++.h>
   #define N 102
   #define mod 1000000007
5
   //caution: you can use this program iff mod is a prime.
6
  using namespace std;
8
9
   int n, m, k, a[N], g[N][N];
10
   int power(int base, int times) {
11
12
        int ret = 1;
13
        while (times) {
            if (times & 1) ret = 111 * ret * base % mod;
14
15
            base = 111 * base * base % mod;
16
            times >>= 1;
17
18
        return ret;
19
20
21
  int test() {
22
        for (int i=0;i<m;i++) {</pre>
23
            for (int j=i; j<=m; j++)</pre>
24
                if (g[j][i]) {
```

```
25
                     for (int k=i; k<=m; k++)</pre>
26
                         swap(g[i][k], g[j][k]);
27
                     break;
28
                 }
            if (g[i][i] == 0)
29
30
                 return 0;
31
            for (int j=i+1; j<n; j++) {</pre>
32
                 while (q[j][i]) {
33
                     int t = 111 * g[i][i] * power(g[j][i], mod - 2) % mod;
34
                     for (int k=i; k<n; k++)</pre>
35
                         g[i][k] = (g[i][k] + mod - (111 * t * g[j][k] % mod)) % mod;
36
                     for (int k=i; k<=m; k++)</pre>
37
                         swap(g[i][k], g[j][k]);
38
39
40
            int t = power(g[i][i], mod - 2);
41
            for (int j = 0; j <= m; ++j)
42
                 g[i][j] = 111 * g[i][j] * t % mod;
43
        for (int i = m; i < n; ++i)</pre>
44
45
            if (g[i][m]) return 0;
46
        for (int i = m - 1; i >= 0; --i) {
47
            int t = power(g[i][i], mod - 2);
48
            g[i][i] = 1;
49
            g[i][m] = 111 * g[i][m] * t % mod;
50
            for (int j = 0; j < i; ++j)
                 g[j][m] = (g[j][m] + mod - 111 * g[i][m] * g[j][i] % mod) % mod;
51
52
53
        printf("%d\n", m);
54
        for (int i = 0; i < m; ++i)
55
            printf("%d_,", g[i][m]);
56
        puts("");
57
        for (int i = 0; i < m - 1; ++i)
58
            printf("%d_", a[i]);
59
        puts("1");
60
        return 1;
61
62
63
   int main() {
64
        freopen("gauss.in", "r", stdin);
65
        freopen("gauss.out", "w", stdout);
66
        k = 0;
67
        while (~scanf("%d", &a[k++]));
68
        for (int sm = 1; sm <= k - sm; ++sm) {</pre>
69
            n = k - sm - 1;
70
            m = sm + 1;
71
            for (int i = 0; i < n; ++i) {</pre>
72
                 for (int j = 0; j <= sm; ++j)</pre>
73
                     g[i][j] = a[i + j];
74
                 g[i][m] = 1;
```

```
1
    //matrix.cpp
  #include <bits/stdc++.h>
3 #define N 102
   using namespace std;
4
5
6
   int n, a[N];
7
8
   int main() {
9
        freopen("gauss.out", "r", stdin);
10
        freopen("matrix.out", "w", stdout);
11
        scanf("%d", &n);
12
        for (int i = 0; i < n; ++i) scanf("%d", &a[i]);</pre>
13
        printf("#define_M_%d\n", n);
14
        printf("const_int_trans[M][M]_=_{\n");
15
        for (int i = 0; i < n; ++i) {</pre>
16
            printf("\t{");
17
            for (int j = 0; j < n; ++j) {
18
                int t;
19
                if (j < n - 2) t = i == j + 1;
                else if (j == n - 2) t = a[i];
20
21
                else t = i == n - 1;
22
                printf("%s%d", j == 0 ? "" : ", _", t);
23
            printf("}%s\n", i == n - 1 ? "" : ",");
24
25
26
        printf("};\n");
27
        printf("const_int_pref[M]_=_{");
28
        for (int i = 0; i < n; ++i) {</pre>
29
            int x;
30
            scanf("%d", &x);
31
            printf("%d%s", x, i == n - 1 ? "}; \n" : ", \");
32
33
        return 0;
34
```

```
8
9
   struct Matrix {
10
        int c[M][M];
11
        void clear() { memset(c, 0, sizeof(c)); }
12
        void identity() { clear(); for (int i = 0; i < M; ++i) c[i][i] = 1; }</pre>
13
        void base() { memcpy(c, trans, sizeof(trans)); }
14
        friend Matrix operator * (const Matrix &a, const Matrix &b) {
15
            Matrix c; c.clear();
            for (int i = 0; i < M; ++i)
16
17
                for (int j = 0; j < M; ++j)
18
                     for (int k = 0; k < M; ++k)
19
                         c.c[i][j] = (c.c[i][j] + 111 * a.c[i][k] * b.c[k][j] % mod) %
                            mod;
20
            return c;
21
22
    } start, base;
23
24
   Matrix power(Matrix base, int times) {
25
        Matrix ret; ret.identity();
26
        while (times) {
27
            if (times & 1) ret = ret * base;
28
            base = base * base;
29
            times >>= 1;
30
31
        return ret;
32
33
34
   int main() {
35
        int tot;
36
        scanf("%d", &tot);
37
        while (tot--) {
38
            int n;
39
            scanf("%d", &n);
40
            start.clear();
41
            for (int i = 0; i < M; ++i) start.c[0][i] = pref[i];</pre>
42
            base.base();
43
            base = power(base, n - 1);
44
            start = start * base;
45
            printf("%d\n", start.c[0][0]);
46
47
        return 0;
48
```

8.2 高精度计算

```
#include<algorithm>
using namespace std;
const int N_huge=850, base=100000000;
that s[N_huge*10];
```

```
5
   struct huge{
6
        typedef long long value;
7
        value a[N_huge];int len;
8
        void clear() {len=1;a[len]=0;}
9
        huge() {clear();}
10
        huge(value x) {*this=x;}
11
        huge operator = (huge b) {
12
             len=b.len; for (int i=1; i<=len; ++i)a[i]=b.a[i]; return *this;</pre>
13
14
        huge operator = (value x) {
15
             len=0;
16
             while (x)a[++len]=x%base,x/=base;
17
             if (!len)a[++len]=0;
18
            return *this;
19
20
        huge operator + (huge b) {
21
             int L=len>b.len?len:b.len;huge tmp;
22
             for (int i=1;i<=L+1;++i)tmp.a[i]=0;</pre>
23
             for (int i=1;i<=L;++i) {</pre>
24
                 if (i>len)tmp.a[i]+=b.a[i];
25
                 else if (i>b.len)tmp.a[i]+=a[i];
26
                 else {
27
                      tmp.a[i]+=a[i]+b.a[i];
28
                      if (tmp.a[i]>=base) {
29
                          tmp.a[i]-=base;++tmp.a[i+1];
30
31
                 }
32
33
             if (tmp.a[L+1])tmp.len=L+1;
34
                 else tmp.len=L;
35
             return tmp;
36
37
        huge operator - (huge b) {
38
             int L=len>b.len?len:b.len;huge tmp;
39
             for (int i=1;i<=L+1;++i)tmp.a[i]=0;</pre>
40
             for (int i=1;i<=L;++i) {</pre>
41
                 if (i>b.len)b.a[i]=0;
42
                 tmp.a[i]+=a[i]-b.a[i];
43
                 if (tmp.a[i]<0) {</pre>
44
                     tmp.a[i]+=base;--tmp.a[i+1];
45
                 }
46
47
             while (L>1&&!tmp.a[L])--L;
48
             tmp.len=L;
49
             return tmp;
50
51
        huge operator *(huge b) {
52
             int L=len+b.len;huge tmp;
53
             for (int i=1;i<=L;++i)tmp.a[i]=0;</pre>
54
             for (int i=1;i<=len;++i)</pre>
```

```
55
                 for (int j=1; j<=b.len; ++j) {</pre>
56
                      tmp.a[i+j-1]+=a[i]*b.a[j];
57
                      if (tmp.a[i+j-1] >= base) {
58
                          tmp.a[i+j]+=tmp.a[i+j-1]/base;
59
                          tmp.a[i+j-1]%=base;
60
61
                 }
62
             tmp.len=len+b.len;
63
             while (tmp.len>1&&!tmp.a[tmp.len])--tmp.len;
64
             return tmp;
65
66
         pair<huge, huge> divide(huge a, huge b) {
67
             int L=a.len;huge c,d;
68
             for (int i=L;i;--i) {
69
             c.a[i]=0;d=d*base;d.a[1]=a.a[i];
70
                 int l=0, r=base-1, mid;
71
                 while (1<r) {</pre>
72
                      mid=(1+r+1)>>1;
73
                      if (b*mid<=d) l=mid;</pre>
74
                          else r=mid-1;
75
76
                 c.a[i]=1;d-=b*1;
77
             while (L>1&&!c.a[L])--L;c.len=L;
78
79
             return make_pair(c,d);
80
         huge operator / (value x) {
81
82
             value d=0; huge tmp;
83
             for (int i=len;i;--i) {
84
                 d=d*base+a[i];
85
                 tmp.a[i]=d/x; d%=x;
86
87
             tmp.len=len;
88
             while (tmp.len>1&&!tmp.a[tmp.len])--tmp.len;
89
             return tmp;
90
91
         value operator %(value x) {
92
             value d=0;
93
             for (int i=len;i;--i)d=(d*base+a[i])%x;
94
             return d;
95
         huge operator / (huge b) {return divide(*this,b).first;}
96
97
         huge operator %(huge b) {return divide(*this,b).second;}
98
         huge &operator += (huge b) {*this=*this+b; return *this;}
99
         huge &operator -=(huge b) {*this=*this-b; return *this;}
100
         huge &operator *=(huge b) {*this=*this*b; return *this;}
101
         huge &operator ++() {huge T; T=1; *this=*this+T; return *this; }
102
         huge &operator --() {huge T; T=1; *this=*this-T; return *this; }
103
         huge operator ++(int){huge T,tmp=*this;T=1;*this=*this+T;return tmp;}
104
         huge operator --(int) {huge T, tmp=*this; T=1; *this=*this-T; return tmp; }
```

```
105
         huge operator +(value x) {huge T; T=x; return *this+T; }
106
         huge operator -(value x) {huge T; T=x; return *this-T; }
107
         huge operator *(value x) {huge T; T=x; return *this*T;}
108
         huge operator *=(value x) {*this=*this*x; return *this;}
109
         huge operator +=(value x) {*this=*this+x; return *this;}
110
         huge operator -=(value x) {*this=*this-x; return *this;}
111
         huge operator /=(value x) {*this=*this/x; return *this; }
112
         huge operator %=(value x) {*this=*this%x;return *this;}
113
         bool operator ==(value x) {huge T; T=x; return *this==T;}
114
         bool operator !=(value x) {huge T; T=x; return *this!=T;}
115
         bool operator <= (value x) {huge T; T=x; return *this<=T; }</pre>
116
         bool operator >=(value x) {huge T; T=x; return *this>=T;}
117
         bool operator <(value x) {huge T; T=x; return *this<T; }</pre>
118
         bool operator > (value x) {huge T; T=x; return *this>T; }
119
         bool operator < (huge b) {</pre>
120
              if (len<b.len)return 1;</pre>
121
              if (len>b.len)return 0;
122
              for (int i=len;i;--i) {
123
                  if (a[i] < b.a[i]) return 1;</pre>
124
                  if (a[i]>b.a[i])return 0;
125
126
             return 0;
127
128
         bool operator == (huge b) {
129
             if (len!=b.len)return 0;
130
              for (int i=len;i;--i)
131
                  if (a[i]!=b.a[i]) return 0;
132
             return 1;
133
134
         bool operator !=(huge b) {return ! (*this==b);}
135
         bool operator > (huge b) {return ! (*this<b| | *this==b);}</pre>
136
         bool operator <= (huge b) {return (*this<b) | | (*this==b);}</pre>
137
         bool operator >= (huge b) {return (*this>b) | | (*this==b);}
138
         void str(char s[]){
139
              int l=strlen(s); value x=0, y=1; len=0;
140
              for (int i=1-1; i>=0; --i) {
141
                  x=x+(s[i]-'0')*y;y*=10;
142
                  if (y==base)a[++len]=x,x=0,y=1;
143
144
             if (!len||x)a[++len]=x;
145
146
         void read(){
147
              scanf("%s",s);this->str(s);
148
149
         void print(){
150
             printf("%d",(int)a[len]);
151
             for (int i=len-1;i;--i) {
152
                  for (int j=base/10; j>=10; j/=10) {
153
                      if (a[i]<j)printf("0");</pre>
154
                           else break;
```

```
155
156
                 printf("%d", (int)a[i]);
157
158
           printf("\n");
159
160
    }f[1005];
161
    int main(){
162
         f[1]=f[2]=1;
         for (int i=3;i<=1000;i++)f[i]=f[i-1]+f[i-2];</pre>
163
164
```