MAIR_EL1, Memory Attribute Indirection Register (EL1)

The MAIR EL1 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations at EL1.

Configuration

AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System register PRRR[31:0] when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System register MAIR0[31:0] when TTBCR.EAE == 1.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System register MRR[31:0] when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System register MAIR1[31:0] when TTBCR.EAE ==

Attributes

MAIR_EL1 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Attr7	Attr6	Attr5	Attr4
Attr3	Attr2	Attr1	Attr0
21 20 20 20 27 26 25 24	22 22 21 20 10 10 17 16	15 14 12 12 11 10 0 0	7 6 5 4 2 2 1 0

MAIR EL1 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

Memory Attribute encoding.

When FEAT_AIE is implemented and stage 1 Attributes Index Extension is enabled and AttrIndx[3] in a Long descriptor format translation table entry is 0, or when FEAT_AIE is not implemented, AttrIndx[2:0] gives the value of <n> in Attr<n>.

When FEAT_AIE is implemented and stage 1 Attributes Index Extension is enabled and AttrIndx[3] in a Long descriptor format translation table entry is 1, see MAIR2 ELx.Attr

Attr is encoded as follows:

Attr	Meaning
0b0000dd00	Device memory. See
	encoding of 'dd' for the
	type of Device memory.
0b0000dd01	If FEAT_XS is
	implemented: Device
	memory with the XS
	attribute set to 0. See
	encoding of A'dd' for the
	type of Device memory.
01 0000 114	Otherwise, Äunpredictable.
0b0000dd1x	unpredictable.
Obooooiiii,	Normal memory. See
(0000 !=	encoding of 'oooo'
0000 and iiii	andA 'iiii' for the type of
!=0000)	Normal Memory.
0b01000000	If FEAT_XS is
	implemented: Normal
	Inner Non-cacheable,
	Outer Non-cacheable
	memory with the XS attribute set to 0.
	Otherwise, Â unpredictable.
01-1010000	If FEAT XS is
0b10100000	implemented: Normal
	Inner Write-through
	Cacheable, Outer Write-
	through Cacheable, Read-
	Allocate, No-Write
	Allocate, Non-transient
	memory with the XS
	attribute set to 0.
	Otherwise, unpredictable.
0b11110000	If FEAT MTE2 is
	implemented: Tagged
	Normal Inner Write-Back,
	Outer Write-Back, Read-
	Allocate, Write-Allocate
	Non-transient memory.
	Otherwise, unpredictable.

Attr	Meaning
0bxxxx0000,	unpredictable.
where xxxx	
!= 0000 and	
xxxx !=	
0100 and	
xxxx !=	
1010 and	
xxxx !=	
1111	

'dd' is encoded as follows:

dd	Meaning
0b00	Device-nGnRnE memory
0b01	Device-nGnRE memory
0b10	Device-nGRE memory
0b11	Device-GRE memory

'oooo' is encoded as follows:

'0000'	Meaning
0b0000	See encoding of Attr
0b00RW, RW not 0b00	Normal memory, Outer Write-Through Transient
0b0100	Normal memory, Outer Non-cacheable
0b01RW, RW not 0b00	Normal memory, Outer Write-Back Transient
0b10RW	Normal memory, Outer Write-Through Non- transient
0b11RW	Normal memory, Outer Write-Back Non- transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

'iiii'	Meaning
0b0000	See encoding of Attr
0b00RW, RW not 0b00	Normal memory, Inner Write-Through Transient
0b0100	Normal memory, Inner Non-cacheable
0b01RW, RW not 0b00	Normal memory, Inner Write-Back Transient

'iiii'	Meaning	
0b10RW	Normal memory, Inner	
	Write-Through Non-	
	transient	
0b11RW	Normal memory, Inner	
	Write-Back Non-	
	transient	

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

R or W	Meaning
0b0	No Allocate
0b1	Allocate

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

Accessing MAIR_EL1

When <u>HCR_EL2</u>.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic MAIR_EL1 or MAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0010	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MAIR_EL1 == '1'
```

MSR MAIR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0010	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.MAIR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x140] = X[t, 64];
        MAIR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        MAIR\_EL2 = X[t, 64];
    else
        MAIR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    MAIR\_EL1 = X[t, 64];
```

MRS <Xt>, MAIR EL12

op0	op1	CRn	CRm	op2
0b11	0b101	0b1010	0b0010	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV1, NV> == '101'
        X[t, 64] = NVMem[0x140];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR EL2.E2H == '1' then
        X[t, 64] = MAIR\_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) &&
HCR EL2.E2H == '1' then
        X[t, 64] = MAIR EL1;
    else
        UNDEFINED;
```

MSR MAIR_EL12, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b101	0b1010	0b0010	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV1, NV> == '101'
then
        NVMem[0x140] = X[t, 64];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        MAIR\_EL1 = X[t, 64];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) &&
HCR\_EL2.E2H == '1' then
        MAIR\_EL1 = X[t, 64];
    else
        UNDEFINED;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.