Math 111C Midterm

Apr 29, 2021

- This exam is worth 35 points.
- No collaboration or discussion with others. No search of solutions online.
- Good luck!
- 1. (5 points) Show that $\mathbb{Q}(\sqrt{5} + \sqrt{2})$ is a splitting field for $(x^2 2)(x^2 10) \in \mathbb{Q}[x]$.
- 2. (5 points) Let F be a field and $K \subseteq \overline{F}$ be the splitting field for a non-constant polynomial $f(x) \in F[x]$. Show that if $\gcd(f(x), f'(x)) = 1$, then K/F is separable.
- 3. (5 points) Let F be a field and $\alpha, \beta \in \overline{F}$. Show that $m_{\alpha,F}(x)$ is irreducible in $(F(\beta))[x]$ iff $m_{\beta,F}(x)$ is irreducible in $(F(\alpha))[x]$.
- 4. Let f(x) be an irreducible polynomial in $\mathbb{F}_p[x]$.
 - (a) (5 points) Show that if $\theta_1, \theta_2 \in \overline{\mathbb{F}}_p$ are both roots of f(x), then $\mathbb{F}_p(\theta_1) = \mathbb{F}_p(\theta_2)$.
 - (b) (5 points) Let $K \subseteq \overline{\mathbb{F}}_p$ be the splitting field for f(x) over \mathbb{F}_p . Show that $[K : \mathbb{F}_p] = \deg f(x)$.
- 5. Let K/F be an algebraic field extension.
 - (a) (5 points) Let $E = \{ \alpha \in K \mid \alpha \text{ is separable over } F \}$. Show that E is subfield of K containing F.
 - (b) (3 points) Given $\alpha \in K$, show that there exists an integer $m \geq 0$ such that $\alpha^{p^n} \in E$ for all $n \geq m$.
 - (c) (2 points) Suppose that K/F is finite. Show that [K:E] is a power of p.