Study.com – Math 104 - Calculus

Fundamental theorem of calculus:	
If f(x) is continuous from a to b	$\int_a^b f(x)dx = F(b) - F(a)$
	dF/dx = f(x)

Mean value theorem:	$\frac{f'(c) = f(b) - f(a)}{b - a}$
Pythagorean theorem:	$a^2 + b^2 = c^2$

Squeeze theorem:	
If	$g(x) \leq f(x) \leq h(x)$
and	$\lim_{x\to c}g(x)=\lim_{x\to c}h(x)$
then	$\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = \lim_{x\to c} h(x)$

L	trieri	x→c	$x \to c$ $x \to c$
	Average value theore	m a	everage value of $f(x) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$
	Chain rule (formal de	finition) <i>L</i>	$O\{f(a(x))\} = f'(a(x))a'(x)$

Rates of Change and Derivatives

Average rate of change	$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$
Instantaneous rate of change	$\frac{f(b)-f(a)}{b-a}$

Equation for a definite integral	$\lim_{\Delta X \to 0} \sum_{k=1}^{n} f(x_k) \Delta x_k = \int_{a}^{b} f(x) dx$
Equation for an indefinite integral	$\int f(x)dx = F(x) + c$

Equation for a unit circle	$x^2 + y^2 = 1$
Equation for an oval	$1 = x^2 + y^2 + xy$

L'Hopital's Rule:	
For functions $f(x)$ or $g(x)$ that approach 0 as x moves to a number:	$\lim_{x\to c}\frac{f(x)}{g(x)}=\lim_{x\to c}\frac{f'(x)}{g'(x)}$

Volume of Basic Shapes

Volume of cones and pyramids	$\frac{h}{3}$ (area of the base)
Volume of a cylinder	$V = \pi r^2 h$
Volume of a square:	h(s²)
Volume of a sphere	$\frac{4}{3}\pi r^3$
Volume of a hemisphere	$\frac{1}{2}(\frac{4}{3}\pi r^3)$

Trapezoidal Rule

Area of a trapezoid	$A = \frac{1^1 + w^2}{2 * h}$
---------------------	-------------------------------

Six Trigonometric Functions

- Cosine = adjacent / hypotenuse
- Sine = opposite / hypotenuse
- Tangent = opposite / adjacent
- Cosecant of an angle: hypotenuse / opposite
- Cotangent of an angle: adjacent / opposite
- Secant of an angle: hypotenuse / adjacent

Linear Equations

Point-slope formula $y - y_1 = m(x - x_1)$

Logarithms

Change of base formula $\log_{b(a)} = \log_{z(a)} / \log_{z(b)}$