





## Analyse experimenteller Daten

Testverfahren



#### **Human Centered Multimedia**

Institute of Computer Science
Augsburg University
Universitätsstr. 6a
86159 Augsburg, Germany



### Vergleich von zwei Systemen?



Ist Interface A bedienfreundlicher als Interface B?

Time Stack

Time Pie







### t-Test:

- Entscheidungsregel auf mathematischer Grundlage, mit deren Hilfe ein Unterschied zwischen den empirisch gefundenen Mittelwerten zweier Gruppen näher analysiert werden kann.
- Schätzt die Populationsparametern basierend auf der Streuung und des arithmetischen Mittels, die mit Hilfe der Stichprobe geschätzt werden.
- Liefert eine Entscheidungshilfe dafür, ob ein gefundener Unterschied zwischen den Mittelwerten rein zufällig entstanden ist, oder ob es wirklich bedeutsame Unterschiede zwischen den zwei untersuchten Gruppen gibt.



### t-Test



- Nullhypothese: Die Populationsmittelwerte von zwei Gruppen sind identisch und deshalb ist eine Mittelwertdifferenz von Null zu erwarten.
- Erklärung:
  - Wird aus zwei Populationen mit identischen Mittelwerten je eine Stichprobe gezogen, so kann die Differenz der Mittelwerte der Stichproben theoretisch jeden beliebigen Wert annehmen.
  - Die Stichprobenmittelwerte sind aber normalverteilt um den jeweiligen Erwartungswert, dem Populationsmittelwert.
  - Da die Populationsmittelwerte identisch sind, wird sich die Mehrzahl der gefundenen Differenzen folglich in der Nähe von Null befinden.





### t-Test



- Aus diesen Überlegungen resultiert nach unendlich vielen Ziehungen von Stichproben eine Normalverteilung der Mittelwertdifferenzen mit dem arithmetischen Mittel Null und einer von der Populationsstreuung und den Stichprobenumfängen abhängigen Streuung.
- Diese Verteilung heißt Stichprobenkennwerteverteilung von Mittelwertdifferenzen unter der Nullhypothese.
   Schätzung der Stichprobenkennwerteverteilung mit Hilfe der Stichprobe

$$\hat{\sigma}_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} \qquad \frac{n_1}{\hat{\sigma}_1^2} \qquad \frac{\hat{\sigma}_1^2}{n_2} \qquad n_2$$

 $\hat{\sigma}_{\bar{x}_1 - \bar{x}_2}$  Standardfehler der Mittelwertdifferenz  $n_1$  Anzahl der Vpn bzw. Beobachtungen in Sp 1  $\hat{\sigma}_1^2$  Geschätzte Varianz der Population 1  $n_2$  Anzahl der Vpn bzw. Beobachtungen in Sp 2  $\hat{\sigma}_2^2$  Geschätzte Varianz der Population 2





### **Beispiel: Vergleich von Interfaces**

- Verarbeitungsbedingung
  - Time Stack
  - Time Pie

Anzahl von Fehlern des Nutzers

$$\overline{x}_{\text{Stack}} = 7.2$$

$$\overline{x}_{Stack} = 7.2$$
  $\hat{\sigma}_{Stack} = 3.162$ 

$$\overline{x}_{pio} = 11$$

$$\overline{x}_{Pie} = 11$$
  $\hat{\sigma}_{Pie} = 4.14$ 

- 50 Versuchspersonen pro Verarbeitungsbedingung
- Standardfehler der Mittelwertdifferenz

$$\hat{\sigma}_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{4,14^2}{50} + \frac{3,162^2}{50}} = 0,737$$



### Fragestellung des t-Tests



- Wie wahrscheinlich ist die gefundene Mittelwertdifferenz unter allen möglichen Differenzen?
- Beispiel:

Versuchspersonen müssen sich 60 Wörter merken



Ränge der Mittelwertdifferenzen





- Für die Bewertung der Auftrittswahrscheinlichkeit einer empirisch gefundenen Differenz ist ein standardisiertes Maß für eine Mittelwertdifferenz sehr hilfreich.
- Die Standardisierung der Stichprobenkennwerteverteilung erfolgt ähnlich wie bei den z-Werten an der geschätzten Streuung.
- Die empirische Mittelwertdifferenz wird unter Kenntnis der entsprechenden Streuung in einen t-Wert umgerechnet.
- Die standardisierten Stichprobenkennwerte heißen t-Werte, die standardisierten Verteilungen t-Verteilungen.





Allgemeine Definition des t-Wertes:

$$t_{df} = \frac{empirische \ \ Mittelwerts differenz \ \ - \ \ theoretische \ \ Mittelwerts differenz}{gesch \"{a}tzter \ \ Standardfehler \ \ der \ \ Mittelwerts differenz}$$

$$t_{df} = \frac{(\bar{x}_{1} - \bar{x}_{2}) - (\mu_{1} - \mu_{2})}{\hat{\sigma}_{\bar{x}_{1} - \bar{x}_{2}}}$$

- Theoretische Mittelwertdifferenz unter der Nullhypothese:  $\mu_1 \mu_2 = 0$
- Vereinfachte Formel:

$$t_{df} = \frac{\overline{x}_1 - \overline{x}_2}{\hat{\sigma}_{\overline{x}_1 - \overline{x}_2}}$$

 Anhand der t-Verteilung kann einem empirischen t-Wert eine Wahrscheinlichkeit zugeordnet werden, mit der exakt dieser oder ein größerer t-Wert unter der Annahme der Nullhypothese auftritt.





 Die Auftrittswahrscheinlichkeit eines positiven t-Werts entspricht dem Anteil der Fläche unter der Kurve, den der t-Wert rechts abschneidet.







- In Abhängigkeit von der Anzahl der Freiheitsgrade (hängen von der Anzahl der Versuchspersonen bzw. Beobachtungen ab) haben die t-Verteilungen unterschiedliche Formen.
- Bei einer hohen Anzahl der Freiheitsgrade entspricht die t-Verteilung nahezu einer Normalverteilung.







 Bei einer geringen Zahl von Freiheitsgraden sind große t-Werte unter der Nullhypothese wahrscheinlicher.





## Analyse von experimentellen Daten T-Test



- Vergleicht die Mittelwerte von zwei Stichproben.
- Zeigt die Wahrscheinlichkeit p, dass beide Testreihen den gleichen Mittelwert haben (Mittelwertdifferenz = 0)
- Zeigt, ob die Unterschiede der Mittelwerte per Zufall entstanden sind
  - Wenn p = 0.05 ist, dann ist zu 5% der Mittelwert der beiden Testreihen gleich.
  - ➤ Es ist relativ wahrscheinlich (95%), dass ein Unterschied der Mittelwerte nicht durch Zufall entstanden ist.



## Analyse von experimentellen Daten Signifikanz



### Signifikanzstufen:

- Ein Testergebnis heißt statistisch signifikant, wenn der p-Wert unterhalb des vorgegebenen Fehlers liegt.
- Dabei gibt es klassischerweise drei Signifikanzstufen:
  - p ≤ 0,05 signifikant \*
  - p ≤ 0,01 sehr signifikant \*\*
  - p ≤ 0,001 höchst signifikant \*\*\*



## Analyse von experimentellen Daten T-Test



- Es gibt T-Tests für Within-Group Experimente und Between-Group Experimente
- Es wird unterschieden, ob bei den Werten eine
   Abhängigkeit von den Testpersonen besteht oder nicht.
  - ➤ Within-Group Experimente benötigen abhängige T-Tests, da jede Testperson alle Level durchläuft.
  - Between-Group Experimente benötigen unabhängige T-Tests, da jede Testperson nur einen Level durchläuft.





Mittelwert vor Verwendung des Systems:

$$\bar{x}_1 = \frac{291}{10} = 29,1$$

Mittelwert nach Verwendung des Systems:

$$\overline{x}_2 = \frac{248}{10} = 24.8$$

Mittelwert der Differenzen:

$$\bar{d} = \frac{43}{10} = 4.3$$

Standardabweichung der Differenzen

$$s = \sqrt{\frac{\sum_{i=1}^{n} d_i^2 - \frac{\left(\sum_{i=1}^{n} d_i\right)^2}{\sum_{i=1}^{n} d_i^2 - \frac{\left(\sum_{i=1}^{n} d_i\right)^2}{n}}{n-1}} = \sqrt{\frac{359 - \frac{43^2}{10}}{9}} = 4,398$$

| Vp | vor | nach | d  | d <sup>2</sup> |
|----|-----|------|----|----------------|
| 1  | 30  | 20   | 10 | 100            |
| 2  | 22  | 24   | -2 | 4              |
| 3  | 38  | 31   | 7  | 49             |
| 4  | 34  | 28   | 6  | 36             |
| 5  | 25  | 20   | 5  | 25             |
| 6  | 28  | 28   | 0  | 0              |
| 7  | 33  | 27   | 6  | 30             |
| 8  | 21  | 24   | -3 | 9              |
| 9  | 29  | 21   | 8  | 64             |
| 10 | 31  | 25   | 6  | 36             |
| Σ  | 291 | 248  | 43 | 359            |





### 1. Berechnung der Prüfgröße t und der Freiheitsgrade df

Prüfgröße t

$$t = \frac{\left| \overline{d} \right| \cdot \sqrt{n}}{s} = \frac{4,3 \cdot \sqrt{10}}{4,398} = 3,092$$

• Anzahl der Freiheitsgrade df = n-1=10-1=9

| 2. | Prüfgröße t mit Wert in         |
|----|---------------------------------|
|    | Signifikanz-Tabelle vergleichen |

| df | p=0,05 | p=0,01 | p=0,001 |
|----|--------|--------|---------|
| 1  | 12,706 | 63,657 | 636,619 |
| 2  | 4,303  | 9,925  | 31,599  |
|    |        |        |         |
| 9  | 2,262  | 3,250  | 4,781   |
| 10 | 2,228  | 3,169  | 4,587   |

- Wert in der Tabelle für 9 Freiheitsgrade und p = 0,05: 2,262.
- Der errechnete Wert von 3,092 liegt über dem Wert aus der Tabelle.
- Damit ist der Unterschied signifikant nachgewiesen.
   t(9)= 3,092, p<=0.05</li>





### Anwendung:

 Vergleich von zwei unabhängigen Stichproben hinsichtlich ihrer Mittelwerte (Between-Group)

### Voraussetzung:

- Normalverteilung der Werte der Stichproben
- Wissen über die Varianzen nötig!

### Vorgehen:

- 1. Überprüfung auf Varianzhomogenität
- 2. Berechnung der Prüfgröße t und der Freiheitsgrade df
- 3. Errechneten Wert t mit Wert in Signifikanz-Tabelle vergleichen





### 1. Überprüfung auf Varianzhomogenität

Berechne Prüfgröße

$$F = \frac{s_{major}^2}{s_{\min or}^2}$$
  $s_{\text{major}}$ : größere Standardabweichung  $s_{\text{minor}}$ : kleinere Standardabweichung

 Die Prüfgröße F ist F-verteilt mit (df ist die Anzahl der Freiheitsgrade)

$$df = (n_{major} - 1, n_{\min or} - 1)$$

- Varianzenheterogenität wird bei einem Signifikanzniveau p < 0,05 angenommen.</li>
  - d.h. die Varianz (Streuung) unterscheidet sich signifikant





### 2. Berechnung der Prüfgröße t und des Freiheitsgrads df

Bei Varianzhomogenität

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2}}} \cdot \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}} df = n_1 + n_2 - 2$$

Bei Varianzheterogenität

$$t = \frac{\left| \overline{x}_1 - \overline{x}_2 \right|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = \frac{n_1 + n_2 - 2}{2}$$





### **Beispiel 1:**

### Situation:

- Zwei Systeme A und B werden hinsichtlich der Antwortzeiten miteinander verglichen.
- Die Mittelwerte der dabei auftretenden Messwerte zeigen Unterschiede.







# 1. Überprüfung auf Varianzhomogenität

Berechne Prüfgröße

$$F = \frac{s_{major}^2}{s_{\min or}^2} = \frac{3,05505^2}{2,51661^2} = 1,47369$$

- laut F-Tabelle ist dies bei (2,2)
   Freiheitsgraden ein nicht
   signifikanter Wert, da 1,47 < 19</li>
- Für eine Signifikanz müsste der Wert größer als 19 sein.
- Varianzhomogenität

| SystemA                  | SystemB                 |  |
|--------------------------|-------------------------|--|
| 12                       | 8                       |  |
| 10                       | 3                       |  |
| 6                        | 5                       |  |
| Summe: 28                | Summe: 16               |  |
| $\overline{x_1} = 9,333$ | x <sub>2</sub> =5,33333 |  |
| s <sub>1</sub> =3,05505  | s <sub>2</sub> =2,51661 |  |

|     | df1   |     |  |
|-----|-------|-----|--|
| df2 | 1 2   |     |  |
| 1   | 162   | 200 |  |
| 2   | 18,51 | 19  |  |
|     |       |     |  |





### 2. Berechnung der Prüfgröße t und der Freiheitsgrade df

$$t = \frac{|9,33333 - 5,33333|}{\sqrt{\frac{2 \cdot 3,05505^2 + 2 \cdot 2,51661^2}{4}}} \cdot \sqrt{\frac{9}{6}} = 1.7504 \qquad df = n_1 + n_2 - 2 = 3 + 3 - 2 = 4$$

### 3. Prüfgröße t mit Wert in Signifikanz-Tabelle vergleichen

- Der Wert in der Tabelle für vier Freiheitsgrade (df = 4) und p = 0.05 beträgt 2,776 (siehe nächste Folie)
- Für die Signifikanz von p = 0.05 müsste der berechnete t-Wert also größer als 2,776 sein.
- Der Wert ist also für df = 4 nicht signifikant, da 1,7504 < 2,776</li>





### 3. Prüfgröße t mit Wert in Signifikanz-Tabelle vergleichen

 Der Wert ist also nicht signifikant für 4 Freiheitsgrade. Für die Signifikanz von p = 0.05 müsste der berechnete t-Wert größer als 2,776 sein!

| Freiheitsgrade | p=0,05 | p=0,01 | p=0,001 |
|----------------|--------|--------|---------|
| 4              | 2,776  | 4,604  | 8,610   |
|                |        |        |         |
| 10             | 2,228  | 3,169  | 4,587   |

- ➤ Damit kann die Nullhypothese **nicht** verworfen werden
- Nicht einmal mit 95% Sicherheit kann auf die bessere Leistung von System B geschlossen werden





### Beispiel 2: Varianzenhomogenität

- Mehr Testwerte (6) als in Beispiel 1
- 1. Überprüfung auf Varianzhomogenität
- Berechne Prüfgröße

$$F = \frac{s_{major}^2}{s_{\min or}^2} = \frac{2,73252^2}{2,25093^2} = 1,47368$$

- laut F-Tabelle ist dies bei (5,5)
   Freiheitsgraden ein nicht signifikanter Wert, da 1,47 < 5,05</li>
- Varianzhomogenität ist also gegeben

| SystemA                 | SystemB                 |  |
|-------------------------|-------------------------|--|
| 12                      | 8                       |  |
| 10                      | 3                       |  |
| 6                       | 5                       |  |
| 12                      | 8                       |  |
| 10                      | 3                       |  |
| 6                       | 5                       |  |
| Summe: 56               | Summe: 32               |  |
| $x_1 = 9,33333$         | x <sub>2</sub> =5,33333 |  |
| s <sub>1</sub> =2,73252 | s <sub>2</sub> =2,25093 |  |

|     | df1  |  |      |
|-----|------|--|------|
| df2 | 1    |  | 5    |
| 1   | 162  |  | 230  |
|     |      |  |      |
| 5   | 6,61 |  | 5,05 |





### 2. Berechnung der Prüfgröße t und der Freiheitsgrade df

$$t = \frac{|9,33333 - 5,33333|}{\sqrt{\frac{5 \cdot 2,73252^2 + 5 \cdot 2,25093^2}{10}}} \cdot \sqrt{\frac{36}{12}} = 2,7676 \qquad df = n_1 + n_2 - 2 = 10$$

### 3. Prüfgröße t mit Wert in Signifikanz-Tabelle vergleichen

- Der Wert in der Tabelle für 10 Freiheitsgrade (df = 10) und p = 0,05 beträgt 2,228 (siehe nächste Folie)
- Für die Signifikanz von p = 0.05 müsste der berechnete t-Wert also größer als 2,2278 sein.
- Der Wert ist also f
   ür df = 10 signifikant, da 2,7676 > 2,2278





### 3. Prüfgröße t mit Wert in Signifikanz-Tabelle vergleichen

t = 2,7676 ist größer als 2,2278 => Signifikanz.

| Freiheitsgrade | p=0,05 | p=0,01 | p=0,001 |
|----------------|--------|--------|---------|
| 4              | 2,776  | 4,604  | 8,610   |
|                |        |        |         |
| 10             | 2,228  | 3,169  | 4,587   |

- Damit kann die Nullhypothese verworfen werden
- ▶ D.h. mit 95% Sicherheit kann auf die bessere Leistung von System B geschlossen werden. Formal: t(10)=2.7676, p<=0.05</p>





### Vergleich der Mittelwerte:

Beispiel 1: Die Spitzen trennen sich nicht klar voneinander.



- Keine Signifikanz
- Beispiel 2: Die Spitzen trennen sich jetzt (mit mehr Versuchspersonen) klarer voneinander.



Signifikanz





### Globalübung

\_

Beispiel für ein Laborexperiment



## Beispiel für ein Laborexperiment – Problemstellung



Ist die Usability der neuen Webseite des HCM-Lehrstuhls besser, als die Usability der alten Webseite?

Aus welchen drei Kriterien setzt sich Usability zusammen? (ISO Norm)

- Effizienz
- Effektivität
- Zufriedenheit



## Beispiel für ein Laborexperiment – Variablen



- Unabhängige Variable: Eingesetzte Webseite
  - Level 1: Alte Webseite
  - Level 2: Neue Webseite
- Abhängige Variable (hängen von der eingesetzten Webseite ab):
  - Effizienz
  - Effektivität
  - Zufriedenheit



## Beispiel für ein Laborexperiment – Hypothesen



### Hypothesen:

- H1: Die Effizienz der neuen Webseite ist besser als die der alten.
  - H0-1: Es gibt keinen Unterschied bei der Effizienz.
- H2: Die Effektivität der neuen Webseite ist besser als die der alten.
  - H0-2: Es gibt keinen Unterschied bei der Effektivität.
- H3: Die Zufriedenheit mit der neuen Website ist besser als die mit der alten.
  - H0-3: Es gibt keinen Unterschied bei der Zufriedenheit.



## Beispiel für ein Laborexperiment – Messung der abhängigen Variablen



- Wie misst man die abhängigen Variablen?
  - Effizienz
    - Zeitmessung für die Erledigung einer Aufgabe
  - Effektivität
    - Messung der Fehleranzahl bei der Erledigung einer Aufgabe
  - Zufriedenheit
    - Messung der Zufriedenheit mittels eines standardisierten Fragebogens



## Beispiel für ein Laborexperiment – Messung der abhängigen Variablen



### Mögliche Messtechniken:

- Effizienz und Effektivität
  - Interaktionslogging
  - Videoaufzeichung
  - Screen-Recording
  - Beobachtungstechnik
  - Objektive Daten
  - Quantitative (Interaktionslogging) und Qualitative Daten (Videoaufzeichnung und Screen-Recording)



## Beispiel für ein Laborexperiment – Messung der abhängigen Variablen



### Mögliche Messtechniken:

- Zufriedenheit
  - Geschlossene Fragen (SUS-Fragebogen)
  - Offene Fragen zu Problemen und sonstigem Feedback
  - Befragungstechnik
  - Subjektive Daten
  - Quantitative (SUS) und Qualitative Daten (offene Fragen)



## Beispiel für ein Laborexperiment – Gruppendesign



### Within-Group Ansatz

- Jede Testperson durchläuft jeden Level, d.h. jeder Teilnehmer benutzt beide Webseiten
- Reihenfolge wird beachtet:
  - Die eine Hälfte der Testpersonen fängt mit der neuen Webseite an und benutzt dann die alte Seite.
  - Die andere Hälfte benutzt erst die alte Seite und dann die neue Seite.



## Beispiel für ein Laborexperiment – Durchführung



- 20 Testpersonen, die auf die Spezifikation der Personas passen, werden eingeladen. (z.B. Studenten)
- Durchlauf von drei Tasks für jede Webseite:
  - 1. Suchen sie nach Informationen zur Vorlesung "Multimedia 1: Usability Engineering"
  - Laden sie sich den aktuellen Foliensatz herunter.
  - Informieren sie sich über ihren Prüfungstermin der 2. mündlichen Prüfung
- Beantwortung des Fragebogens jeweils direkt nach der Nutzung einer Webseite



## Beispiel für ein Laborexperiment – Auswertung



- 1. Nötige Vorarbeit für die Auswertung
  - Annotation der Video- und Screen-Recordings
  - Annotation der offenen Fragen
- 2. Durchführung einer statistischen Analyse der Ergebnisse



## Beispiel für ein Laborexperiment – Auswertungsbeispiel: Effizienz



### Nötige Zeit in Sekunden für Task 1:

| Versuchsperson | Alte Webseite | Neue Webseite |
|----------------|---------------|---------------|
| VSP1           | 23            | 15            |
| VSP2           | 43            | 32            |
| VSP3           | 23            | 14            |
| VSP4           | 43            | 23            |
| VSP5           | 22            | 10            |
| VSP6           | 34            | 26            |
| VSP7           | 33            | 27            |
| VSP8           | 24            | 24            |
| VSP9           | 44            | 12            |



## Beispiel für ein Laborexperiment – Auswertungsbeispiel: Effizienz



- Nötige Zeit in Sekunden für Task 1:
  - Mittelwert
    - Alte Webseite: 32,11 Sekunden
    - Neue Webseite: 20,33 Sekunden
  - Standardabweichung
    - Alte Webseite: 9,47 Sekunden
    - Neue Webseite: 7,73 Sekunden
  - T-Test
    - p = 0.0051
    - ➤ Die neue Webseite ist sehr signifikant effizienter für Task 1 als die alte Webseite, da die Wahrscheinlichkeit, dass die beiden Mittelwerte der Testreihen gleich sind, kleiner als 0,01 ist.



## Beispiel für ein Laborexperiment – Auswertungsbeispiel: Zufriedenheit



 Nach dem SUS-Fragebogen zum Statement "I thought the system was easy to use." (10 Punkte Skala):

| Versuchsperson | Alte Webseite | Neue Webseite |
|----------------|---------------|---------------|
| VSP1           | 4             | 7             |
| VSP2           | 5             | 8             |
| VSP3           | 6             | 2             |
| VSP4           | 4             | 5             |
| VSP5           | 5             | 4             |
| VSP6           | 3             | 6             |
| VSP7           | 5             | 7             |
| VSP8           | 5             | 3             |
| VSP9           | 5             | 5             |



## Beispiel für ein Laborexperiment – Auswertungsbeispiel: Zufriedenheit



- Nach dem SUS-Fragebogen zum Statement "I thought the system was easy to use." (10 Punkte Skala):
  - Mittelwert

Alte Webseite: 4,67

Neue Webseite: 5,22

Standartabweichung

Alte Webseite: 0,87

Neue Webseite: 1,99

- T-Test
  - p = 0.525
  - ➤ Die neue Webseite ist **nicht signifikant** zufriedenstellender für das Statement "I thought the system was easy to use." als die alte Webseite, da die Wahrscheinlichkeit, dass die beiden Mittelwerte der Testreihen gleich sind, **größer als 0,05** ist.



- Statistische Analysen sind nötig, um sicherzustellen, dass der Unterschied zwischen Mittelwerten zweier Stichproben kein Zufall ist.
- Null-Hypothesen werden widerlegt bzw. die Hypothesen werden belegt, wenn die Mittelwertvergleiche signifikant unterschiedlich sind.
- Der t-Test erlaubt die Betrachtung von 2 Mittelwerten.
- Was, wenn 3 oder mehr Mittelwerte vorliegen?
  - Beispiel: 3 Gesten zur Datenübertragung mit einer App werden miteinander verglichen?
- Varianzanalyse



## Varianzanalyse – ohne Messwiederholung (Between-Group)



- Bei unabhängigen Stichproben mit mehr als 2 Mittelwerten, kommt die einfache Varianzanalyse mittels ANOVA zum Einsatz (ANalysis Of VAriance)
- Die unabhängige Variable nennt man auch Faktor, welcher die Daten in die einzelnen Faktorstufen gruppiert.
- Null-Hypothese: Alle Gruppenmittelwerte der Variablen in der Grundgesamtheit sind identisch.
- Voraussetzung: Normalverteilung der Grundgesamtheit, Varianzenhomogenität



## Varianzanalyse – ohne Messwiederholung (Between-Group)



#### Einfaktorielle ANOVA

- Erweiterung des t-Test für mehr als 2 Mittelwerte.
- Wird auf eine Testvariable angewendet, bei der die Werte verschiedenen Fallgruppen (mehr als zwei Level) angehören.

#### Grob erläutert:

- Das Prinzip der Varianzanalyse ist eine Zerlegung der Gesamtvarianz (über alle Gruppen) in eine Varianz innerhalb der Gruppen und eine Varianz zwischen den Gruppen.
- Die Betrachtung der Abweichungen der verschiedenen Varianzen führt zu einer Prüfgröße, welche einer F-Verteilung folgt.
- Signifikante Unterschiede der Mittelwerte, falls die Varianzen innerhalb und zwischen den Gruppen nicht zufällig entstanden sind.



## Varianzanalyse – ohne Messwiederholung (Between-Group)



#### Einfaktorielle ANOVA

- Die Berechnungen hierfür sind sehr rechenintensiv.
- Als Ergebnis wird die Prüfgröße F (bei gegebenen Freiheitsgraden) und ein p-Signifikanzniveau erwartet.
- Beispiel: F = 4.467, df\_innerhalb=27, df\_zwischen=2, p=0.021
   Ergebnis formuliert als: F(2,27)=4.467, p<0.05</li>
- Bei signifikantem Unterschied der Mittelwerte ist lediglich bekannt, dass es einen Unterschied gibt. Nicht, aber welche Mittelwerte bzw. Level der unabhängigen Variable er betrifft.
- Hierfür gibt es Post-Hoc-Analysen, welche die Zwischenergebnisse der Varianzanalyse nutzt und die Unterschiede zwischen den Gruppen aufzeigt. (ähnlich einem paarweisen Vergleich)



### Effektgröße



### Achtung:

- Die Tatsache, dass ein Unterschied signifikant ist, heißt nicht unbedingt, dass er auch bedeutsam ist.
- Die Größe eines Effekts ist für die inhaltliche Bewertung eines signifikanten Ergebnisses wichtig, da durch eine Erhöhung des Stichprobenumfangs (N) theoretisch jeder noch so kleine Effekt signifikant gemacht werden kann.

#### Beispiel:

- Vergleich der Intelligenzleistung von Kindern
- Unabhängige Variable: Lehrmethode (Level 1: neu, Level 2: alt)
- Bei einer sehr großen Anzahl von Kindern pro Stichprobe (N = 5.000), können schon Unterschiede von beispielsweise 0.1 IQ-Punkten zwischen den Gruppen zu signifikanten Unterschieden führen.
- Ganz klar bedeuten 0.1 IQ-Punkte Unterschied aber trotz eines signifikanten Testergebnisses kaum eine Verbesserung.



### Effektgröße



- Effekte auf zwei Ebenen:
  - Empirische Effekte, die das Ergebnis einer Untersuchung beschreiben
  - Populationseffekte, die entweder angenommen oder aus den empirischen Daten geschätzt werden müssen.



### Effektmaße



- Effekt als absolute Größe
  - Unterschied zwischen gemessenen Mittelwerten zweier Stichproben
  - Unterschied ist eine Schätzung für die Größe des systematischen Effekts
- Effektmaße sollten standardisiert sein, um die Effekte unterschiedlicher Untersuchungen miteinander vergleichen zu können.
- Standardisierte Effektmaße
  - Effekt als Distanz zwischen Populationsmittelwerten
  - Effekt als Varianzquotient



## Effektmaße — Distanz zwischen Populationsmittelwerten





Abstand der Mittelwerte (d) zweier unterschiedlicher Populationen normiert an der mittleren Standardabweichung

$$d = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{(s_1^2 + s_2^2)/2}}$$



## Effektmaße – Distanz zwischen Populationsmittelwerten



## Konventionen für die Effektgröße d für t-Tests mit unabhängigen Stichproben:

- Die Beurteilung, ob ein Effekt eher groß oder klein zu bewerten ist, unterliegt den inhaltlichen Überlegungen des Forschers.
- Mit der Zeit etablierte Konventionen für die Größe von Effekten sind:
  - Kleiner Effekt: d=0,20
  - Mittlerer Effekt: d=0,50
  - Großer Effekt: d=0,80
- Beispiel: Experiment mit TimeStack und TimePie (Anzahl der Fehler)

$$\bar{x}_{Stack} = 7.2$$
  $\hat{\sigma}_{Stack} = 3.162$   $\bar{x}_{Pie} = 11$   $\hat{\sigma}_{Pie} = 4.14$   $\hat{\sigma}_{x} = \sqrt{(3.162^2 + 4.14^2)/2} = 3.684$   $d = (11-7.2)/3.684 = 1.03$ 

> Es handelt sich um einen großen Effekt.



## Effektmaße – Effekt als Varianzquotient



- Zwei Gründe für Variabilität zwischen Stichproben
  - Manipulation durch das Experiment
  - Individuelle Unterschiede
- Effektstärkemaß Ω²

$$oldsymbol{arOmega}^2 = rac{oldsymbol{\sigma}^{\scriptscriptstyle 2}_{\scriptscriptstyle \mathit{sys}}}{oldsymbol{\sigma}^{\scriptscriptstyle 2}_{\scriptscriptstyle \mathit{Gesamt}}}$$



 drückt aus, wie groß der Anteil der systematischen Varianz an der Gesamtvarianz ist. Systematische Varianz

- erfasst die Größe des Einflusses einer experimentellen Manipulation auf die Gesamtvarianz.
- Bewertung von Effekten hängt von inhaltlichen Überlegungen ab
- Richtwerte:

• Kleiner Effekt:  $\Omega^2 = 0.01$ 

• Mittlerer Effekt:  $\Omega^2 = 0.06$ 

• Großer Effekt:  $\Omega^2 = 0,14$ 



## Effektmaße – Effekt als Varianzquotient



#### Effektstärkemaß Ω<sup>2</sup>

Schätzung anhand empirischer Daten

$$\hat{\Omega}^2 = \frac{f^2}{I + f^2} \quad mit \quad f^2 = \frac{t^2 - I}{N}$$
 N Anzahl aller Versuchspersonen

Beispiel: Experiment mit bildhaftem und textuellen Interface

$$t(df = 98) = 5,16$$
 df = n1+n2-2

$$f^2 = \frac{5,16^{2}-1}{100} = 0,256$$

$$\hat{\Omega}^2 = 0.256 / (1 + 0.256) = 0.20$$

Der geschätzte Effekt zwischen den Bedingungen beträgt 20%.



# Fehlentscheidungen beim Testen



### Wiederholung:

- Fehler 1. Art (Signifikanzniveau): das unberechtigte Ablehnen der Nullhypothese
  - p(Fehler 1. Art) =  $\alpha$
- Fehler 2. Art: das unberechtigte Beibehalten der Nullhypothese  $p(Fehler 2. Art) = \beta$

| α    | Nicht existierender Unterschied wird als Effekt ausgegeben    |
|------|---------------------------------------------------------------|
| 1-α  | Nicht existierender Unterschied wird auch als solcher erkannt |
| β    | Vorhandener Effekt wird nicht entdeckt                        |
| 1- β | Vorhandener Effekt wird auch entdeckt                         |

Die 4 Möglichkeiten des Entscheidungsproblems



# Fehlentscheidungen beim Testen



- Falls die Alternativhypothese gilt, dann machen wir in  $\alpha$  der Fälle einen Fehler, in 1-  $\beta$  der Fälle liegen wir richtig.
- Falls die Nullhypothese gilt, dann machen wir in  $\beta$  der Fälle einen Fehler, in 1-  $\alpha$  der Fälle liegen wir richtig.





### Fehlentscheidungen beim Testen -Der Einfluss des Effekts



 kleiner angenommener Effekt: Verteilungen der H<sub>0</sub> und H<sub>1</sub> liegen eng zusammen und überschneiden sich in der Regel stark.



- $\triangleright$  Die Wahrscheinlichkeit eines  $\beta$ -Fehlers, d.h. dass ein vorhandener Unterschied nicht erkannt wird, ist relativ hoch.
- größerer angenommener Effekt: die  $\beta$ -Fehler-Wahrscheinlichkeit bei gleichem  $\alpha$  und gleicher Streuung wird kleiner, die Teststärke größer.





### Fehlentscheidungen beim Testen -Einfluss des Stichprobenumfangs



- Je größer die Stichprobe, desto schneller wird ein bestimmter t-Wert signifikant, da der kritische t-Wert für ein bestimmtes Signifikanzniveau von der Freiheitsgradzahl abhängt.
- Dies gilt aber nur für Stichproben, die kleiner als 30 sind.
- Bei größeren Stichproben schmiegt sich die t-Verteilung bereits eng an eine Normalverteilung an und die Wahrscheinlichkeit für die t-Werte verändert sich nur noch geringfügig.







### Achtung:

- Ein nicht signifikantes Ergebnis nach einem t-Test erlaubt nicht unbedingt die Entscheidung für die Nullhypothese.
- Die Wahrscheinlichkeit für den β-Fehler, d.h. dass man einen vorhandenen Unterschied nicht erkennt bzw. die Nullhypothese fälschlicherweise annimmt, sollte bei 10% oder weniger liegen.
- Ist sie größer, so spricht ein nicht signifikantes Ergebnis für keine der beiden Hypothesen.
- Es ist keine Entscheidung möglich.
- Aufgewendete Zeit und Mühe waren umsonst, da keine weiterführende Erkenntnis durch das Experiment gewonnen wurde.
- Sowohl die Nullhypothese als auch die Alternativhypothese sind immer noch möglich.





 Mit Hilfe des β-Fehlers kann eine Aussage darüber getroffen werden, wie gut ein t-Test konstruiert ist.

#### Teststärke oder Power eines t-Tests

- Fähigkeit eines Tests, einen Effekt zu finden, falls dieser tatsächlich existiert.
- Wahrscheinlichkeit, die Alternativ-Hypothese H1 anzunehmen, wenn sie auch in Wirklichkeit gilt.
- Wird mit 1-β bezeichnet, da sie die Gegenwahrscheinlichkeit zu der β-Fehler-Wahrscheinlichkeit ist.





#### Teststärke oder Power eines t-Tests

- Spielt bei der Planung und Beurteilung von t-Tests eine große Rolle.
- Sollte mindestens 1-β=0,9 betragen.
- Wird abgeschätzt durch den Wert λ:

$$\lambda = \frac{\Omega^2}{1 - \Omega^2} * N$$

 $\Omega^2$ : Effektstärkemaß,

N: Stichprobenumfang

Beispiel:

| Test-<br>stärke | 0,1 | 0,5 | 0,6667 | 0,75 |
|-----------------|-----|-----|--------|------|
| λ               | 0,0 | 2,7 | 4,31   | 5,30 |

Je größer der Effekt ist, desto weniger Versuchspersonen sind nötig, um eine Entscheidung für bzw. gegen die Nullhypothese treffen zu können.



### Zwei Arten der Teststärkebestimmung



$$\lambda = \frac{\Omega^2}{1 - \Omega^2} * N$$
  $\Omega^2$ : Effektstärkemaß, N: Stichprobenumfang

### A priori:

- Vor der Berechnung eines t-Tests ist es notwendig, eine gewünschte Teststärke festzulegen.
- Die a priori Bestimmung der Teststärke führt zusammen mit der Entscheidung für einen bestimmten inhaltlich relevanten Effekt zu der Berechnung des Stichprobenumfangs.

#### A posteriori:

- Die Berechnung der Teststärke eines bereits durchgeführten t-Tests ist dann notwendig, wenn ein nicht signifikantes Ergebnis auftritt und der Stichprobenumfang nicht im Vorfeld geplant wurde.
- Die Annahme der Nullhypothese ist nur dann möglich, wenn die Teststärke ausreichend hoch ist.





#### Beispiel:

- Nach einem einseitigen t-Test mit  $n_1=n_2=15$  ergibt sich bei einem Signifikanzniveau von  $\alpha=0,05$  ein nicht signifikantes Ergebnis.
- Der Forscher erklärt einen mittleren Effekt von  $\Omega^2$ =0,1 als inhaltlich relevant.
- Die Berechnung von λ ergibt:

$$\lambda = \frac{\Omega^2}{1 - \Omega^2} * N = \frac{0.1}{1 - 0.1} * 30 = 3.33$$

| Test-<br>stärke | 0,1 | 0,5 | 0,6667 | 0,75 |
|-----------------|-----|-----|--------|------|
| λ               | 0,0 | 2,7 | 4,31   | 5,30 |

- $\triangleright$  Die Teststärke dieses t-Tests, den Effekt von  $\Omega^2$ =0,1 zu finden, falls er wirklich existiert, liegt zwischen 50% < 1-β < 66,7%.
- Die Entscheidung für die Nullhypothese, dass kein Effekt von mind.  $\Omega^2$ =0,1 vorliegt, wäre also mit einer β-Wahrscheinlichkeit von 33%-50% behaftet. In einem solchen Fall erlaubt das Ergebnis keine eindeutige Entscheidung. Der Test war also schlecht konstruiert.



## Beispiel für die Durchführung eines Experiments



- 1. Aufstellung einer Hypothese
- 2. Prüfung der Voraussetzungen
- 3. Festlegung des Populationseffekts

Beispiel: Ein Vergleich mit bereits durchgeführten Studien zum Thema "Zeitabhängige Datenvisualisierung" ergibt die Erwartung eines großen Effekts  $\Omega^2$ =0,2

### 4. Festlegung des Signifikanzniveaus

Beispiel: Das Signifikanzniveau liegt per Konvention meist bei  $\alpha$ =0,05 und wird daher auch von uns so gewählt.

### 5. Stichprobenumfangsplanung

Beispiel: Die Teststärke soll **1-** $\beta$ **=0,9** betragen  $\rightarrow \lambda_{90\%}$ **=8,56** 

$$N = \frac{8,56}{\left(\frac{0,2}{1-0,2}\right)} = 34,24 \approx 36$$

| Test-<br>stärke | 0,7500 | 0,8000 | 0,8500 | 0,9000 |
|-----------------|--------|--------|--------|--------|
| λ               | 5,30   | 6,18   | 7,19   | 8,56   |



## Beispiel für die Durchführung eines Experiments



#### 6. Bestimmung des kritischen t-Werts (vgl. Tabelle)

Beispiel:  $t_{krit(df=34)} \approx t_{krit(df=30)} = 1,697$   $\alpha$ =0,05 einseitige Fragestellung

### 7. Prüfung des empirischen t-Werts auf Signifikanz

Beispiel: Wir gehen von folgenden Werten aus:

$$N = 36$$
  $\overline{x}_{Pie} = 11$   $\overline{x}_{Stack} = 7.2$   $t_{krit} = 1.697$ 

Berechnung der Stichprobenstreuung aus den Daten:

$$\hat{\sigma}_{1} = 4.14$$
  $\hat{\sigma}_{2} = 3.162$ 

Schätzung der Streuung der Stichprobenkennwerteverteilung:

$$\hat{\sigma}_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = \sqrt{\frac{4,14^2}{18} + \frac{3,162^2}{18}} = 1,23$$

Berechnung des empirischen t-Werts:

$$t_{(df=34)} = \frac{\overline{x}_1 - \overline{x}_2}{\hat{\sigma}_{\overline{x}_1 - \overline{x}_2}} = \frac{11 - 7,2}{1,23} = 3,1$$

| df | 0,95  | 0,975 | 0,990 | 0,995 | 0,9995 |
|----|-------|-------|-------|-------|--------|
| 30 | 1,697 | 2,042 | 2,457 | 2,750 | 3,646  |
| 40 | 1,684 | 2,021 | 2,434 | 2,704 | 3,551  |

 $t_{emp} > t_{krit}$   $p < 0.005 \Rightarrow$  Das Ergebnis ist sehr signifikant.



## Beispiel für die Durchführung eines Experiments



#### 8. <u>Interpretation der Ergebnisse</u>

- Ein in der beschriebenen Form konstruierter Test erlaubt die eindeutige Interpretation jeder bei der Auswertung auftretenden Mittelwertsdifferenz.
- Signifikantes Ergebnis:
  - Annahme der Alternativhypothese
  - Fehlerwahrscheinlichkeit beträgt bei Signifikanzniveau von α
     = 5% weniger als 5%
- Nicht signifikantes Ergebnis:
  - Annahme der Nullhypothese
  - Fehlerwahrscheinlichkeit beträgt bei einer festgelegten Teststärke von  $1-\beta=0.9$  weniger als 10%



# Entscheidungsdiagramm für die Bewertung eines t-Tests







# Entscheidungsdiagramm für die Bewertung eines t-Tests







### Zusammenfassung



- t-Test ist ein wichtiges Auswertungsverfahren für den Vergleich zweier Gruppenmittelwerte.
- Er liefert eine Entscheidungsgrundlage dafür ob es einen systematischen Unterschied zwischen zwei Gruppen gibt oder ob sich der gefunden Unterschied zufällig ergeben hat.
- Eine auf der Grundlage eines t-Tests getroffene Entscheidung ist mit einer bestimmten Wahrscheinlichkeit falsch.
- Wahrscheinlichkeiten der möglichen Fehler beruht auf ihrer gegenseitigen Abhängigkeit, der Größe des Effekts und dem Stichprobenumfangen.