MAT 150A Homework 6

Hardy Jones 999397426 Professor Schilling Fall 2014

1. The matrix is:

$$\begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

2. (a) To show that $\mathcal{O}_n \leq GL_n(\mathbb{R})$ is a subgroup, we need to show that it is closed, has the identity and has inverses.

Proof. i. Closure

Choose $A, B \in \mathcal{O}_n$.

AB is in \mathcal{O}_n if $A^TAB^TB = I_n$.

$$A^T A B^T B = (A^T A)(B^T B) = I_n I_n = I_n$$

So \mathcal{O}_n has closure.

ii. **Identity**

$$I_n^T I_n = I_n I_n = I_n$$

So \mathcal{O}_n has the identity.

iii. Inverse

Choose $A \in \mathcal{O}_n$.

Since $A^T A = I_n$ $A^T = A^{-1}$, so \mathcal{O}_n has inverses.

From these three, $\mathcal{O}_n \leq GL_n(\mathbb{R})$ is a subgroup.

(b) If we show that $\mathcal{SO}_n \leq \mathcal{O}_n$, then from above $\mathcal{SO}_n \leq GL_n(\mathbb{R})$. Again we need to show it's closed, has the identity and has inverses.

Proof. i. Closure

Choose $A, B \in \mathcal{SO}_n$.

AB is in \mathcal{SO}_n if |AB| = 1

$$|AB| = |A||B| = 1 \cdot 1 = 1$$

So, \mathcal{SO}_n is closed.

ii. **Identity**

$$|I_n|=1$$

So, \mathcal{SO}_n has the identity.

iii. Inverse

Choose $A \in \mathcal{SO}_n$.

Since $|A| \neq 0$, we know that A is invertible. So, $A^{-1} \in \mathcal{SO}_n$. Thus, \mathcal{SO}_n has inverses.

From these three, $\mathcal{O}_n \leq \mathcal{O}_n$ is a subgroup.