Genome variation and function 3

Marie Saitou Assistant Professor, CIGENE, BIOVIT 17. Oct. 2022

Learning Outcomes

We will learn about:

- Methods and significance of RNA sequencing
- How to analyze genetic variants

that are associated with gene expression (eQTL, expression QTL)

Discussion Review

Q: Do some literature search about the top-associated genes and assume how this gene is associated with the trait, "Short-sightedness".

To further understand the mechanism, what experiment would you plan?

- Function: PRSS56 (serine protease: Type II transmembrane).
 This gene produces a protein that is involved during eye development.
- Gene-editing in cell lines, organoid (3D cell model from Induced Pluripotent Stem (iPS) Cells), or animals
- RNA-sequencing, cell development observation

Functional genomics of molecular traits

- Transcriptome anslysis gene expression in a genome-wide manner
- eQTL analysis connect genetic variants and gene expression

RNA-sequencing

Examine the gene expression pattern in a genome-wide manner

Fold change vs p-value

Fold change is (expression treated - expression non-treated)

expression non-treated

p-value is the probability of obtaining results as extreme as the observed results of a hypothesis test, assuming that the <u>null</u> <u>hypothesis</u> is correct.

Case study:

Observed expression of gene A

High fold change – high p-value

Observed expression of gene B

Low fold change – low p-value 7

Functional categorization of genes (Gene Ontology Analysis)

Transcripts Per Million (TPM) Unit of gene expression

Let's assume that we got the following read count table.

gene	geneA (2kb)	geneB (4kb)	geneC (1kb)
sample1	10	20	5
sample2	12	25	8
sample3	30	60	15

gene	geneA (2kb)	geneB (4kb)	geneC (1kb)
sample1	10	20	5
sample2	12	25	8
sample3	30	60	15

(1) Normalize the read counts by gene lentgh

gene	geneA (2kb)	geneB (4kb)	geneC (1kb)	sum	
sample1	0.33	0.33	0.33	1	
sample2	0.30	0.31	0.40	1	
sample3	0.33	0.33	0.33	1	
	geneA (2kb)	geneB (4kb)	geneC (1kb)	(In real	al read counts will be one lity, 1 Million) cripts per million
sample1	10 reads	20 reads	5 reads	- trails	cripts per million
	<u>=</u>				
sample2	12 reads	28 reads	8 reads		
sample3	30 reads	60 reads	15 reads		12

eQTL (expression quantitative trait locus) analysis

historically... **QTL analysis:**Conventional analysis based on limited number of genetic markers

- (1) two parental breeds are crossed
- (2) the resulting F₁ generations are selffertilized for several generations, resulting in inbred lines
- (3) use genetic markers (100-) to distinguish between parental lines
- (4) the phenotypes and genotypes of the offspring are scored

Expression Quantitative Trait Loci analysis

Variant -> Gene expression -> Phenotype

How eQTL SNPs work

sQTL – splicing QTL

Alternative Splicing allows a single gene to code for multiple proteins

Let's explore the GTEx Portal... Human Gene expression/splicing/eQTL database

• 54 tissues, 948 Donors, 17382 samples

Let's explore the GTEx Portal...

https://gtexportal.org/home/

Example – CKMT1A gene expression and a variant at chr5:43504700

Hands-on exercise