PRACTICAL-8

Gauss-Siedel Method

Prachi Mittal{20211061}

Ques-1

```
In[41]:= GaussSiedel[A0_, b0_, X0_, maxiter_] :=
       Module [ \{A = N[A0], b = N[b0], xk = X0, xk1, i, j, k = 0, n, m, OutputDetails \}, \}
        size = Dimensions[A];
        n = size[1];
        m = size[2];
        If[n ≠ m,
          Print["Not a square matrix, cannot proceed with gauss jacobi method"];
          Return[]];
         OutputDetails = {xk};
         xk1 = Table[0, {n}];
         While k < maxiter,
          For [i = 1, i \le n, i++, xk1[[i]] = (1/A[[i, i]]) *
               (b[i] - Sum[A[i, j] * xk1[j], {j, 1, i-1}] - Sum[A[i, j] * xk[j], {j, i+1, n}]);
          OutputDetails = Append[OutputDetails, xk1];
          xk = xk1;
         colHeading = Table[X[s], {s, 1, n}];
         Print[
          NumberForm[TableForm[OutputDetails, TableHeadings → {None, colHeading}], 6]];
        Print["No. of iterations performed ", maxiter];
       ];
     A = \{\{2, -1, 0\}, \{-1, 2, -1\}, \{0, -1, 2\}\};
     b = \{7, 1, 1\};
     X0 = \{0, 0, 0\};
     GaussSiedel[A, b, X0, 15]
```

X[1]	X[2]	X[3]
0	0	0
3.5	2.25	1.625
4.625	3.625	2.3125
5.3125	4.3125	2.65625
5.65625	4.65625	2.82813
5.82813	4.82813	2.91406
5.91406	4.91406	2.95703
5.95703	4.95703	2.97852
5.97852	4.97852	2.98926
5.98926	4.98926	2.99463
5.99463	4.99463	2.99731
5.99731	4.99731	2.99866
5.99866	4.99866	2.99933
5.99933	4.99933	2.99966
5.99966	4.99966	2.99983
5.99983	4.99983	2.99992

No. of iterations performed 15

Ques-2

```
In[46]:= GaussSiedel[A0_, b0_, X0_, maxiter_] :=
       Module [A = N[A0], b = N[b0], xk = X0, xk1, i, j, k = 0, n, m, OutputDetails],
        size = Dimensions[A];
        n = size[1];
        m = size[2];
        If [n \neq m]
          Print["Not a square matrix, cannot proceed with gauss jacobi method"];
          Return[]];
         OutputDetails = {xk};
         xk1 = Table[0, {n}];
         While k < maxiter,
          For [i = 1, i \le n, i++, xk1[[i]] = (1/A[[i, i]]) *
               b[i] - Sum[A[i, j] * xk1[j], {j, 1, i-1}] - Sum[A[i, j] * xk[j], {j, i+1, n}]);
          k++;
          OutputDetails = Append[OutputDetails, xk1];
          xk = xk1;
         ];
         colHeading = Table[X[s], {s, 1, n}];
          NumberForm[TableForm[OutputDetails, TableHeadings → {None, colHeading}], 6]];
        Print["No. of iterations performed ", maxiter];
       ];
     A = \{\{4, 1, 1\}, \{1, 5, 2\}, \{1, 2, 3\}\};
     b = \{2, -6, -4\};
     X0 = \{0.5, -0.5, -0.5\};
     GaussSiedel[A, b, X0, 15]
```

```
X[1]
            X[2]
                         X[3]
0.5
            -0.5
                         -0.5
0.75
            -1.15
                         -0.816667
0.991667
            -1.07167
                         -0.949444
            -1.02128
1.00528
                         -0.987574
1.00221
            -1.00541
                         -0.997129
                        -0.999362
1.00064
            -1.00128
1.00016
            -1.00029
                         -0.999862
1.00004
            -1.00006
                        -0.999971
1.00001
            -1.00001
                        -0.999994
1.
            -1.
                         -0.999999
1.
            -1.
                        -1.
1.
            -1.
                         -1.
1.
            -1.
                         -1.
1.
            -1.
                         -1.
1.
            -1.
                         -1.
            -1.
                         -1.
```

No. of iterations performed 15

Ques-3

```
In[51]:= GaussSiedel[A0_, b0_, X0_, maxiter_] :=
       Module [ \{A = N[A0], b = N[b0], xk = X0, xk1, i, j, k = 0, n, m, OutputDetails \}, \}
         size = Dimensions[A];
         n = size[1];
         m = size[2];
         If [n \neq m]
          Print["Not a square matrix, cannot proceed with gauss jacobi method"];
          Return[]];
         OutputDetails = {xk};
         xk1 = Table[0, {n}];
         While k < maxiter,
          For [i = 1, i \le n, i++, xk1[[i]] = (1/A[[i, i]]) *
               (b[i]] - Sum[A[i, j] * xk1[j], {j, 1, i - 1}] - Sum[A[i, j] * xk[j], {j, i + 1, n}]);
          k++;
          OutputDetails = Append[OutputDetails, xk1];
          xk = xk1;
         ];
         colHeading = Table[X[s], {s, 1, n}];
          NumberForm[TableForm[OutputDetails, TableHeadings → {None, colHeading}], 6]];
         Print["No. of iterations performed ", maxiter];
       ];
     A = \{\{5, 1, 2\}, \{-3, 9, 4\}, \{1, 2, -7\}\};
     b = \{10, -14, -33\};
     X0 = \{0, 0, 0\};
     GaussSiedel[A, b, X0, 15]
```

X[1]	X [2]	X[3]
0	0	0
2.	-0.888889	4.74603
0.279365	-3.57178	3.73369
1.22088	-2.80801	4.08641
0.927039	-3.06272	3.97166
1.02388	-2.97944	4.00929
0.992174	-3.00674	3.99696
1.00256	-2.99779	4.001
0.99916	-3.00072	3.99967
1.00028	-2.99976	4.00011
0.99991	-3.00008	3.99996
1.00003	-2.99997	4.00001
0.99999	-3.00001	4.
1.	-3.	4.
0.999999	-3.	4.
1.	-3.	4.

No. of iterations performed 15