Recordemos que

$$[while\ e\ do\ c]\sigma\ =\ Y\ F\ \sigma$$

$$F \in (\Sigma \to \Sigma_{\perp}) \to (\Sigma \to \Sigma_{\perp})$$

$$F w \sigma =$$

$$w_{\perp \perp}([c]\sigma)$$
 si $[e]\sigma$
 σ cc

Veamos el cálculo del caso:

[while
$$x \neq 0 \land x \neq 1$$
 do $x := x - 2$] $\sigma = Y F \sigma$

$$F w \sigma =$$

$$w_{\perp \perp}([x:=x-2]\sigma)$$
 $si \ \sigma x \neq 0 \ \land \ \sigma x \neq 1$
 σ $si \ \sigma x = 0 \ \lor \ \sigma x = 1$

Podemos darle una mejor forma a la F:

$$F w \sigma =$$

$$w([\sigma|x:\sigma x-2)$$
 $si \ \sigma x \notin \{0,1\}$
 σ $si \ \sigma x \in \{0,1\}$

Calculemos la cadena del TMPF:

$$F \perp \sigma =$$

$$\bot ([\sigma | x: \sigma x - 2) \qquad si \quad \sigma x \notin \{0, 1\}$$

$$\sigma \qquad si \quad \sigma x \in \{0, 1\}$$

Simplificamos la definición de F \perp :

$$F \perp \sigma =$$

$$\begin{array}{ccc} \bot & si & \sigma x \notin \{0,1\} \\ \sigma & si & \sigma x \in \{0,1\} \end{array}$$

$$F^2 \perp \sigma =$$

$$F \perp ([\sigma | x: \sigma x - 2)$$
 $si \sigma x \notin \{0, 1\}$

T

Simplificamos la definición de F^{-2} \perp :

 $si \ \sigma x \notin \{0, 1, 2, 3\}$

 $[\sigma | x: \sigma x\%2]$ $si \ \sigma x \in \{0, 1, 2, 3\}$

Postulamos que la aproximación k es:

En tonces ya podemos dar el menor punto fijo. Recordar que:

Si $w = \bigcup_{i=0}^{\infty} F^{-i} \perp$ entonces tenemos dos casos:

- la cadena $F^0 \perp \sigma$, $F^1 \perp \sigma$, ... es la cadena idénticamente \perp en el dominio Σ $_{\perp}$: entonces $w\sigma = \perp$
- la cadena $F^0 \perp \sigma$, $F^1 \perp \sigma$, ... no es idénticamente \perp en el dominio Σ $_{\perp}$: entonces si $F^n \perp \sigma \neq \perp$ se tiene que $w\sigma = F^n \perp \sigma$.

Concluimos entonces que :

[while
$$x \neq 0 \land x \neq 1$$
 do $x := x - 2$] = w

 $w \sigma =$

 \perp $si \sigma x < 0$

 $[\sigma|x:\sigma x\%2] si \sigma x \ge 0$