Medição de Probabilidade de Estados Quânticos em Qubits Únicos

David Santiago

27 de março de 2025

Resumo

Texto a ser colocado posteriormente

computação quântica, estados quânticos, qubits. algoritmos

1 Introdução

Texto a ser colocado posteriormente

2 Definição matemática

Nesta seção serão apresentados os modelos matemáticos utilizados para a implementação do algoritmo da medição de probabilidade dos estados quânticos. É importante salientar que esses modelos já estão bem estabelecidos pela literatura da computação quântica, com destaque para Nielsen e Chuang[1].

O objetivo desta seção é detalhar o processo de transformações algébricas aplicadas aos modelos, no âmbito da obtenção de um modelo de menor complexidade numérica, que elimina a necessidade de operações com raízes e permite a implementação de um algoritmo clássico computacionalmente mais eficiente, conforme demonstrado nos resultados dos experimentos (seção 5).

2.1 Representação do estado quântico de bit único

Um estado quântico de um qubit único é representado pela notação de Dirac $|\psi\rangle$, conforme é ilustrado na equação (1):

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \tag{1}$$

onde as simbologias α e β são números complexos que definem as amplitudes de probabilidades, de tal forma que $|\alpha|^2$ determina a probabilidade de obtenção do qubit $|0\rangle$ e $|\beta|^2$ determina a probabilidade de obtenção do qubit $|1\rangle$.

Estados quânticos conhecidos, tais como os de Bell e de Hadamard, são tipicamente representados por frações envolvendo raízes quadradas [1, 2]. Por exemplo, o estado de Hadamard é definido como:

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \tag{2}$$

Neste trabalho, propomos uma representação alternativa para α e β , expressando-os como frações de números complexos com denominadores reais:

$$\alpha = \frac{x_1 + y_1 i}{d_1},\tag{3}$$

$$\beta = \frac{x_2 + y_2 i}{d_2} \tag{4}$$

onde:

- $x_1, y_1, x_2, y_2 \in R$ são as partes real e imaginária dos numeradores,
- $d_1, d_2 \in R$ são denominadores que garantem a normalização do estado $(|\alpha|^2 + |\beta|^2 = 1)$.

Essa representação elimina a manipulação direta de raízes quadradas durante o cálculo de probabilidades.

Exemplo prático

No estado $|+\rangle, \sqrt{2}$ é tratado como símbolo, evitando cálculos explícitos de raízes:

$$\alpha = \frac{1}{d}, \quad \beta = \frac{1}{d}, \quad \text{com } d = \sqrt{2}$$

Isso permite que operações como $|\alpha|^2 = \frac{1}{d^2}$ sejam realizadas sem calcular $\sqrt{2}$ explicitamente, simplificando a implementação computacional.

2.2 Cálculo dos valores de probabilidade

Um bom ponto de partida para a medição das probabilidades é calcular diretamente os valores de $|\alpha|^2$ e $|\beta|^2$. Dado que α e β são números complexos na forma $\frac{x+yi}{d}$ e dado que $|\alpha|$ e $|\beta|$ são os módulos do fatores de amplitude, tem-se que:

$$|\alpha| = \sqrt{\left(\frac{x_1}{d_1}\right)^2 + \left(\frac{y_1}{d_1}\right)^2} = \sqrt{\frac{x_1^2 + y_1^2}{d_1^2}},$$
 (5)

$$|\beta| = \sqrt{\left(\frac{x_2}{d_2}\right)^2 + \left(\frac{y_2}{d_2}\right)^2} = \sqrt{\frac{x_2^2 + y_2^2}{d_2^2}}$$
 (6)

Como os valores de probabilidade de $|0\rangle$ e $|1\rangle$ são dados, respectivamente, por $|\alpha|^2$ e $|\beta|^2$, tem-se que:

$$|\alpha|^2 = \left(\sqrt{\frac{x_1^2 + y_1^2}{d_1^2}}\right)^2 = \frac{x_1^2 + y_1^2}{d_1^2},$$
 (7)

$$|\beta|^2 = \left(\sqrt{\frac{x_2^2 + y_2^2}{d_2^2}}\right)^2 = \frac{x_2^2 + y_2^2}{d_2^2} \tag{8}$$

Para simplificar operações, definimos:

- $\bullet \ z \in Z$ como uma representação simbólica para $x^2 + y^2,$
- $w \in \mathbb{Z}$ como uma representação simbólica para d^2 .

Assim:

$$|\alpha|^2 = \frac{z_1}{w_1},\tag{9}$$

$$|\beta|^2 = \frac{z_2}{w_2} \tag{10}$$

Desta forma, tem-se $\frac{z_1}{w_1}$ como a probabilidade de medir $|0\rangle$ e $\frac{z_2}{w_2}$ como a probabilidade de medir $|1\rangle$.

Exemplo Numérico

Para $\alpha = \frac{1+3i}{\sqrt{10}}$:

Passo	Cálculo
Tradicional	$ \alpha ^2 = \left(\sqrt{\frac{1^2 + 3^2}{\sqrt{10^2}}}\right)^2 = 1$
Proposto	$z = 10, \ w = 10 \Rightarrow \frac{10}{10} = 1$

Fluxo do cálculo do Algoritmo:

- 1. Recebe $\alpha = \frac{x+yi}{d}$
- 2. Calcula $z = x^2 + y^2$
- 3. Calcula $w = d^2$
- 4. Retorna probabilidade $\frac{z}{w}$

Figura 1: Processamento sem operações com raízes

2.3 Cálculo de normalização

Uma vez calculados os valores de probabilidade, é necessário verificar se estão normalizados antes de tê-los como resultado final da medição. Como citado na seção 2.1, o estado quântico está normalizado quando $|\alpha|^2 + |\beta|^2 = 1$.

A partir das equações (9) e (10), definimos:

$$wf = \operatorname{mmc}(w_1, w_2), \quad \operatorname{com} wf \in Z,$$
 (11)

$$zf = wf\left(\frac{z_1}{w_1} + \frac{z_2}{w_2}\right), \quad \text{com } zf \in Z$$
 (12)

A escolha de $wf = mmc(w_1, w_2)$ se deve à necessidade de um denominador comum, pois w_1 e w_2 podem assumir valores distintos.

Assim:

$$|\alpha|^2 + |\beta|^2 = \frac{z_1}{w_1} + \frac{z_2}{w_2} = \frac{zf}{wf}$$
 (13)

A partir de então, tem-se que o estado está normalizado quando $\frac{zf}{wf} = 1$. Por outro lado, caso $\frac{zf}{wf} \neq 1$, é necessário realizar o processo de normalização, o qual consiste em recalcular novos valores para as amplitudes de probabilidade α e β . Este processo se inicia com a identificação do fator de normalização, que é a raiz quadrada da soma dos quadrados dos módulos de α e β , dado pela expressão:

$$F = \sqrt{|\alpha|^2 + |\beta|^2} = \sqrt{\frac{zf}{wf}} = \frac{\sqrt{zf}}{\sqrt{wf}}$$
 (14)

Uma vez em posse desse fator, pode-se calcular os novos valores de amplitudes de probabilidade normalizados. Isso é feito dividindo valores de amplitude α e β iniciais pelo fator de normalização. Desta forma, definimos:

$$\alpha' = \frac{\alpha}{F} = \frac{\frac{x_1 + y_1 i}{d_1}}{\frac{\sqrt{zf}}{\sqrt{wf}}} = \left(\frac{x_1 + y_1 i}{d_1}\right) \left(\frac{\sqrt{wf}}{\sqrt{zf}}\right) = \frac{\sqrt{wf} \left(x_1 + y_1 i\right)}{\sqrt{zf} \left(d_1\right)},\tag{15}$$

$$\beta' = \frac{\beta}{F} = \frac{\frac{x_2 + y_2 i}{d_2}}{\frac{\sqrt{zf}}{\sqrt{wf}}} = \left(\frac{x_2 + y_2 i}{d_2}\right) \left(\frac{\sqrt{wf}}{\sqrt{zf}}\right) = \frac{\sqrt{wf} \left(x_2 + y_2 i\right)}{\sqrt{zf} \left(d_2\right)} \tag{16}$$

Uma vez normalizadas as amplitudes, conclui-se que $|\alpha|^2$ representa a probabilidade de medir $|0\rangle$ e $|\beta|^2$ representa a probabilidade de medir $|1\rangle$. Portanto, a partir das equações (15) e (16), pode-se definir que:

$$|\alpha'|^2 = \frac{\left(\sqrt{wf} \cdot x_1\right)^2 + \left(\sqrt{wf} \cdot y_1\right)^2}{\left(\sqrt{zf} \cdot d_1\right)^2} = \frac{wf \cdot x_1^2 + wf \cdot y_1^2}{zf \cdot d_1^2},\tag{17}$$

$$|\beta'|^2 = \frac{\left(\sqrt{wf} \cdot x_2\right)^2 + \left(\sqrt{wf} \cdot y_2\right)^2}{\left(\sqrt{zf} \cdot d_2\right)^2} = \frac{wf \cdot x_2^2 + wf \cdot y_2^2}{zf \cdot d_2^2}$$
(18)

Para simplificar operações, definimos:

- $z' \in \mathbb{Z}$ como uma representação simbólica para $wf \cdot x^2 + wf \cdot y^2$,
- $w' \in \mathbb{Z}$ como uma representação simbólica para $zf \cdot d^2$.

Assim:

$$|\alpha'|^2 = \frac{z_1'}{w_1'},\tag{19}$$

$$|\beta'|^2 = \frac{z_2'}{w_2'} \tag{20}$$

Desta forma, tem-se $\frac{z_1'}{w_1'}$ e $\frac{z_2'}{w_2'}$ como a probabilidade de medir, respectivamente, $|0\rangle$ e $|1\rangle$ após o processo de normalização do estado quântico.

É importante ressaltar que estas transformações algébricas demonstradas diferem das simbologias e demonstrações mais formais encontradas na bibliografia. As transformações algébricas realizadas nas equações 17 e 18 tiveram

a intenção de resultar em uma expressão especialmente útil no contexto de eficiência computacional. Na transformação:

$$\frac{\left(\sqrt{wf} \cdot x\right)^2 + \left(\sqrt{wf} \cdot y\right)^2}{\left(\sqrt{zf} \cdot d\right)^2} = \frac{wf \cdot x^2 + wf \cdot y^2}{zf \cdot d^2}$$

observa-se a eliminação da necessidade de operações de extração de raízes (operações computacionalmente custosas).

Exemplo numérico completo

Dado um estado quântico:

$$|\psi\rangle = \left(\frac{1+2i}{\sqrt{10}}\right)|0\rangle + \left(\frac{3-i}{\sqrt{10}}\right)|1\rangle$$

o algoritmo proposto segue os passos da figura ??

Fluxo do cálculo do Algoritmo:

1.
$$x_1 = 1, y_1 = 2, d_1 = \sqrt{10}, x_2 = 3, y_2 = -1, d_2 = \sqrt{10}$$

2.
$$|\alpha|^2 = \frac{x_1^2 + y_1^2}{d_1^2} = \frac{1^2 + 2^2}{\sqrt{10}^2} = \frac{5}{10} = \frac{1}{2} \Rightarrow \frac{z_1}{w_1} = \frac{1}{2}$$

3.
$$|\beta|^2 = \frac{x_2^2 + y_2^2}{d_2^2} = \frac{3^2 + (-1)^2}{\sqrt{10}^2} = \frac{10}{10} = 1 \Rightarrow \frac{z_2}{w_2} = \frac{1}{10}$$

4.
$$\frac{zf}{wf} = \frac{z_1}{w_1} + \frac{z_2}{w_2} = \frac{1}{2} + 1 = \frac{3}{2} \Rightarrow \frac{zf}{wf} \neq 1$$
, não normalizado!

5.
$$F = \frac{\sqrt{zf}}{\sqrt{wf}} = \frac{\sqrt{3}}{\sqrt{2}}$$
, fator de normalização

6.
$$\frac{z_1'}{w_1'} = \frac{wf \cdot x_1^2 + wf \cdot y_1^2}{zf \cdot d_1^2} = \frac{2 \cdot 1^2 + 2 \cdot 2^2}{3 \cdot \sqrt{10}^2} = \frac{2+8}{30} = \frac{1}{3}$$

7.
$$\frac{z_2'}{w_2'} = \frac{wf \cdot x_2^2 + wf \cdot y_2^2}{zf \cdot d_2^2} = \frac{2 \cdot 3^2 + 2 \cdot 1^2}{3 \cdot \sqrt{10^2}} = \frac{18 + 2}{30} = \frac{2}{3}$$

8. prob.
$$|0\rangle = 33.\overline{3}\%$$
, prob. $|1\rangle = 66.\overline{6}\%$

Figura 2: Processamento sem operações com raízes

3 algoritmo proposto

Texto a ser colocado posteriormente

3.1 modelagem simbólica

Texto a ser colocado posteriormente

3.2 Implementação

Texto a ser colocado posteriormente

4 Testes e validação

Texto a ser colocado posteriormente

5 Resultados

Texto a ser colocado posteriormente

6 Conclusões

Texto a ser colocado posteriormente

Referências

- [1] Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
- [2] Preskill, J. (1998). Lecture Notes on Quantum Computation. Caltech.