ESE 524: Detection and Estimation Theory Linear algebra review

Washington University in St. Louis

Welcome to The Matrix

- This review is intended to cover the important topics from matrix algebra that are needed for linear models and other lectures later in the semester.
- An $M \times N$ matrix A is indexed by M rows and N columns. The i^{th} row and j^{th} column are indexed as A_{ij} :

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1N} \\ A_{21} & A_{22} & \cdots & A_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ A_{N1} & A_{N2} & \cdots & A_{NN} \end{bmatrix}$$

• The transpose of A is achieved by switching the rows and columns and denoted A^{T} .

Common Matrix Operations

- Elementwise addition and scalar multiplication: for two matrices with the same dimension, $c\mathbf{A} + d\mathbf{B} = [cA_{ij} + cB_{ij}], \ \forall i \in \{1,2,...,M\}, j \in \{1,2,...,N\}, c,d \in \mathbb{R}.$
- Matrix multiplication: For $A \in \mathbb{R}^{M_1 \times N_1}$ and $B \in R^{N_1 \times N_2}$, the product is a matrix with M_1 rows and N_2 columns: $AB \in R^{M \times N_2}$. Note that this is not symmetric $AB \neq BA$ in general.
- Multiplication is associative (AB)C = A(BC)
- Multiplication is distributive A(B+C) = AB + AC.
- $\bullet \ (\boldsymbol{A}\boldsymbol{B})^{\mathrm{T}} = \boldsymbol{B}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}$

Different ways to express Matrix Products

• Given two matrices $A \in \mathbb{R}^{M \times N}$, and $\boldsymbol{B} \in \mathbb{R}^{N \times P}$, express \boldsymbol{A} as a matrix of row vectors and \boldsymbol{B} as a matrix of column Vectors:

$$C = AB = egin{bmatrix} m{a}_1^{
m T} \ m{a}_2^{
m T} \ m{b}_1 \ m{b}_2 \ m{b}_2 \ m{b}_1 \ m{b}_2 \ m{b}_2 \ m{b}_1 \ m{b}_2 \ m{b}_1 \ m{b}_2 \ m{b}_1 \ m{b}_2 \ m{b}_1 \ m{b}_2 \ m{b}_2 \ m{b}_2 \ m{b}_1 \ m{b}_2 \ m{b}_2 \ m{b}_1 \ m{b}_2 \ m{b}_$$

• Conversely, expressing A as column vectors and B as row vectors:

$$oldsymbol{C} = oldsymbol{A} oldsymbol{B} = egin{bmatrix} oldsymbol{a}_1 & oldsymbol{a}_2 & \cdot & \cdot & \cdot & oldsymbol{a}_N \end{bmatrix} egin{bmatrix} oldsymbol{b}_1^{
m T} \ oldsymbol{b}_1^{
m T} \ oldsymbol{b}_N^{
m T} \end{bmatrix} = \sum_{i=1}^N oldsymbol{a}_i oldsymbol{b}_i^{
m T} \ oldsymbol{b}_N^{
m T} \end{bmatrix}$$

which is a sum of outer products.

Identity Matrix

The identity matrix I is defined as:

$$I_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$$

- Any multiplication with the identity results in the original matrix: IA = B or BI = B results in the original matrix.
- This is a special case of a diagonal matrix i.e., all the off-diagonal entries are zero.

Determinants

• Given a square matrix $A \in \mathbb{R}^{N \times N}$, the determinant is a function:

$$\det(\mathbf{A}): \mathbb{R}^{N \times N} \to \mathbb{R}$$

which is also denoted |A|.

- The determinant represents the area of an N-dimensional parrallelogram spanned by $\sum_{i=1}^{N} c_i \mathbf{a}_i$ for $c_i \in [0,1]$.
- Some properties:
 - $|A| = |A^{\mathrm{T}}|$
 - ightharpoonup |AB| = |A||B|
 - For N=2, $|A|=A_{11}A_{22}-A_{12}A_{21}$
 - For N=3, $|\mathbf{A}|=A_{11}A_{22}A_{33}+A_{12}A_{23}A_{31}+A_{13}A_{21}A_{32}-A_{11}A_{23}A_{32}-A_{12}A_{21}A_{33}-A_{13}A_{22}A_{31}$
 - ► For larger N there is a recursive formula relying on something called "expansion by minors".
 - ▶ If |A| = 0 we call the matrix singular.

The Trace Operator

• For a square matrix $A \in \mathbb{R}^{N \times N}$ the trace operator is the sum of all the diagonal elements:

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{N} A_{ii}$$

- We have already seen the trace in lecture 2.
- Some properties:
 - $\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B})$
 - ▶ tr(AB) = tr(BA), and tr(ABC) = tr(BCA) = tr(CBA), and so one for the product of more matrices.

Eigenvalues

• Given a vector $m{x} \in \mathbb{R}^N$ a constant λ and a square matrix $m{A} \in \mathbb{R}^{N \times N}$, $m{x}$ is an eigenvector if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

- Eigenvalues can be found by computing the roots of characteristic polynomial, $|\lambda {m I} {m A}| = 0$
- Interesting Properties:
 - $\blacktriangleright \operatorname{tr}(\boldsymbol{A}) = \sum_i \lambda_i$
 - $m |A|=\prod_i \lambda_i$ singular matrices have at least one eigenvalue equal to zero.

Norm

- Given a vector $x \in \mathbb{R}^N$, a norm is a function $||\cdot||$ that measure the "size" of x and satisfies:
 - ▶ $||x|| \ge 0$
 - $||x|| = 0 \iff x = 0$
 - ightharpoonup For $c \in \mathbb{R}$, $||cx|| = |c| \cdot ||x||$
 - ► For all x, y, $||x + y|| \le ||x|| + ||y||$
- The most common norm we will use in this class is the 2-norm:

$$||x||_2 = \sqrt{\sum_{i=1}^N x_i^2}$$

Inverses

- For a square matrix $\pmb{A} \in \mathbb{R}^{N \times N}$, an inverse is a matrix \pmb{A}^{-1} such that $\pmb{A}\pmb{A}^{-1} = \pmb{A}^{-1}\pmb{A} = \pmb{I}$.
 - Note: Do not try to divide matrices by one another in your homework.
- Not all matrices have inverses. For example, non-square matrices.
- The determinant is $|A^{-1}| = \frac{1}{|A|}$ thus only non-singular matrices have inverses.
- If the $\{\lambda_1, \lambda_2, ..., \lambda_N\}$ are the eigenvalues of \boldsymbol{A} , then $\{1/\lambda_1, 1/\lambda_2, ...\}$ are the eigenvalues of \boldsymbol{A}^{-1} .
- For a 2×2 matrix, the inverse is:

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{bmatrix}$$

Orthogonal Matrices

- A square matrix A is orthonormal if $A^{\mathrm{T}}A = AA^{\mathrm{T}} = I$.
- In this case each column is at a 90 degree angle from every other column.
- Orthonormal matrices preserve norms, i.e., $||Ax||_2 = ||x||_2$.
- Proof:

$$||Ax||_2 = \sqrt{(Ax)^{\mathrm{T}}(Ax)} = \sqrt{x^{\mathrm{T}}(A^{\mathrm{T}}A)x} = \sqrt{x^{\mathrm{T}}Ix} = \sqrt{x^{\mathrm{T}}x} = ||x||_2$$

Symmetric Matrices

- A matrix A is symmetric if $A = A^{T}$.
- ullet Symmetric Matrices have real eigenvalues, and the matrix containing all the eigenvectors $oldsymbol{X}$ is orthonormal.
- This means that the matrix can be decomposed as: $A = X\Lambda X^{\mathrm{T}}$, where Λ is a diagonal matrix whose non-zero elements are the eigenvalues of A.
- This means that

$$\max_{\boldsymbol{x}} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} = \boldsymbol{x}_{\mathrm{max}}$$

is the eigenvector corresponding to the largest eigenvalue.

• Why is this important? Covariance matrices are symmetric and positive semi-definite (p.s.d.).

The Covariance matrix is p.s.d.

Proof. Let $x \in \mathbb{R}^n$ be a random vector. Then

$$C \stackrel{\Delta}{=} \mathbb{E}(x - \overline{x})(x - \overline{x})^{\mathrm{T}}$$

Let $u \in \mathbb{R}^n$ be any deterministic vector.

$$\boldsymbol{u}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{u} = \boldsymbol{u}^{\mathrm{T}}\mathbb{E}(\boldsymbol{x} - \overline{\boldsymbol{x}})(\boldsymbol{x} - \overline{\boldsymbol{x}})^{\mathrm{T}}\boldsymbol{u} = \mathbb{E}\boldsymbol{u}^{\mathrm{T}}(\boldsymbol{x} - \overline{\boldsymbol{x}})(\boldsymbol{x} - \overline{\boldsymbol{x}})^{\mathrm{T}}\boldsymbol{u}$$

Define $s = \boldsymbol{u}^{\mathrm{T}}\boldsymbol{x}$. s is a random variable with mean

$$E(s) = E \boldsymbol{u}^{\mathrm{T}} \boldsymbol{x} = \boldsymbol{u}^{\mathrm{T}} E \boldsymbol{x} = \boldsymbol{u}^{\mathrm{T}} \overline{\boldsymbol{x}}$$

.

$$\Rightarrow \mathrm{E} \boldsymbol{u}^{\mathrm{T}}(\boldsymbol{x} - \overline{\boldsymbol{x}})(\boldsymbol{x} - \overline{\boldsymbol{x}})^{\mathrm{T}} \boldsymbol{u} = \mathrm{E}(s^{\mathrm{T}}s) = \mathrm{var}(s) \geq 0$$

Matrix Calculus: Real-Valued Functions

• Given a vector $\boldsymbol{x} = [x_1, x_2, ..., x_N]^T \in \mathbb{R}^N$ and a function $f : \mathbb{R}^N \to \mathbb{R}$, the gradient is:

$$\frac{\partial f}{\partial \boldsymbol{x}^{\mathrm{T}}} = \nabla f(\boldsymbol{x}) = \left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{N}}\right]$$

• The "second derivative" is given by a the Hessian matrix:

$$\nabla^2 f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_N} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_N} \\ \cdot & \cdot & \cdot & \cdot \\ \frac{\partial^2 f}{\partial x_N \partial x_1} & \frac{\partial^2 f}{\partial x_N \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_N^2} \end{bmatrix}$$

Matrix Calculus: Vector Valued Functions

• If $f = [f_1(x), f_2(x), \dots, f_M(x)]$ is a vector valued function, the Jacobian matrix is:

$$rac{\partial oldsymbol{f}}{\partial oldsymbol{x}^{ ext{T}}} = egin{bmatrix}
abla f_1(oldsymbol{x}) \\

abla f_2(oldsymbol{x}) \\
\vdots \\

abla f_M(oldsymbol{x}) \end{bmatrix} = egin{bmatrix}
rac{\partial^2 f_1}{\partial x_1} & rac{\partial f_1}{\partial x_2} & \cdots & rac{\partial f_1}{\partial x_N} \\
rac{\partial f_2}{\partial x_1} & rac{\partial f_2}{\partial x_2} & \cdots & rac{\partial f_2}{\partial x_M} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
rac{\partial f_M}{\partial x_1} & rac{\partial f_M}{\partial x_2} & \cdots & rac{\partial f_M}{\partial x_N} \end{bmatrix}$$

• Then the Hessian becomes a third order tensor, "stacking" the Hessian matrix of each f_i :

$$abla^2 \boldsymbol{f}(\boldsymbol{x}) = [\nabla^2 f_1(\boldsymbol{x}), \nabla^2 f_2(\boldsymbol{x}), \cdots, \nabla^2 f_M(\boldsymbol{x})]$$

Quadratic Form

• Given $m{x} \in \mathbb{R}^N$ and a symmetric matrix $m{A} \in \mathbb{R}^{N imes N}$, then a Quadratic Form is:

$$f(\boldsymbol{x}) = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$$

- \boldsymbol{A} is positive definite if $f(\boldsymbol{x}) > 0 \ \forall \boldsymbol{x}$.
- A is positive semi-definite if $f \geq 0$.
- The eigenvalues of a positive (semi) definite matrix are all positive (non-negative).
- This is a multidimensional version of a quadratic equation, and the derivative follows a similar formula:

$$\frac{\partial f}{\partial \boldsymbol{x}} = 2\boldsymbol{A}\boldsymbol{x}$$

Matrix Decompositions

- It is often useful to express a matrix $A \in \mathbb{R}^{M \times N}$ as a product of other matrices with useful properties.
- Eigen-Decomposition: If the eigenvectors of **A** are linearly independent:

$$\sum_{i=1}^{N} = 1^{N} a_{i} \mathbf{x}^{i} = 0 \iff a_{i} = 0 \ \forall i \in [1, ..., N]$$

then $oldsymbol{A}$ is diagonalizable and can be expressed as

$$A = X^{-1}\Lambda X$$

- QR Decomposition: $A \in \mathbb{R}^{M \times N}$ can be decomposed into QR where Q is an orthonormal matrix and R is upper triangular.
- The QR Decomposition can be used to solve linear regression problems, find eigenvalues, and save computation time.