Comparison between ingress controllers and methods to secure applications in k3s cluster based on authentication and automated certificates

Presenter → Dikshita Kalita Supervisor → Prof. Dr Martin Leischner Mentor → Richard Clauß

Agenda

- 01 Research Questions
- **02** Ingress controllers
 - Introduction
 - Types
 - Comparison
 - Preference
- 04 Demos

- Oscurity in Kubernetes
 - Introduction
 - Access Control
 - Pipeline
 - Users
 - AuthN Strategies
 - AuthZ Modules

 - _ AuthN Protocol Comparison

<u>01</u>

Research Questions

- **1.** Basic properties of underlying implementations
 - a. What are the principal point of differences between Traefik, HaProxy and Nginx?
- 2. Security in kubernetes
 - a. Analyse modes to authenticate running applications inside the cluster.
 - b. Compare manual vs automatic authentication based on scenarios.

02

Ingress controllers

02 Ingress controllers | Introduction | 1

- Object that allows access to the Kubernetes services from outside of the cluster.
- Controls how the external users should access the services running in a kubernetes cluster typically via HTTP/HTTPS through a single externally reachable IP address.
- Operates at the application layer of the network stack.

Continued ...

02 Ingress controllers | Introduction | 2

Fig: Ingress workflow

02 Ingress controllers | Types & Comparison

02 Ingress controllers | Types & Comparison

	Nginx	На-ргоху	Traefik
Build on	nginx/nginx plus	haproxy	traefik
Protocols supported	HTTP(s)HTTP2TCP/UDP	HTTP(s)HTTP2TCP+TLS	HTTP(s)HTTP2TCP+TLS
Traffic routing logic	 Host Path Header Method Query params 	HostPath	 Host Path Headers Query Methods Path prefix

02 Ingress controllers | Preference

03

Security in Kubernetes

03 Security in Kubernetes | Introduction | 1

Fig: Architecture in bigger picture

Dikshita Kalita | K3s ingress and security

03 Security in Kubernetes | Access Control | 1

03 Security in Kubernetes | Access Control | 2

03 Security in Kubernetes | Security Pipeline

Fig: Kubernetes security pipeline, Source: Click here

Continued ...

03 Security in Kubernetes | Users

03 Security in Kubernetes | User 1- Humans

For human users

Kubernetes does not have

User, profile database /
lookup table to store
usernames, passwords to
store usernames, passwords

i.e.

NO API calls to create user

RELIES on a **variety of techniques** to delegate that

Instead

03 Security in Kubernetes | User 2- Pods

Service Account / SA is

- 1. Internal representation of a set of credentials that are typically stored as Secrets.
- 2. Pods uses this SA to authenticate when they talk to internal API endpoint
- 3. By default, SA have no access permissions but can be configured using RBAC to give them access permission and role-based control so they can query and manipulate

03 Security in Kubernetes | AuthN Strategies

Basic Authentication

Pass a CSV with the following:

<password>,<username>,<UID>,"<group1, group2>"
<password>,<username>,<UID>,"<group2, group4>"

Not scalable

X509 Client Certificates

root@masterdev:/var/lib/rancher/k3s/server/tls# cat client-ca.crt
----BEGIN CERTIFICATE----MIIBdzCCAR2gAwIBAgIBADAKBggqhkjOPQQDAjAjMSEwHwYDVQQDDBhrM3MtY2xp
ZW50LWNhQDE2Njk2NDU3MjEwHhcNMjIxMTI4MTQyODQxwhcNMzIxMTI1MTQyODQx
WjAjMSEwHwYDVQQDDBhrM3MtY2xpZW50LWNhQDE2Njk2NDU3MjEwWTATBgcqhkjO
PQIBBggqhkjOPQMBBwNCAASBll28qpxgEkZlrKH/ZWcu9hxv8PSVlrCITKII/CsK
g8GaDkoUl7r7M3dmM87Mh5h/9wRkIxd0JvgT7EN7zCCdo0IwQDAOBgNVHQ8BAf8E

BAMCAQQwDwYDVR0TAQH/BAUwAwEB/ZAdBgNVHQ4EFgQUmfJYGHagEFd7W9P5bX8/ A519FZgwCgYIKoZIzj0EAwIDSAAwRQIgDzZi/F/MIPAwD+DQzU+f7ryqu+Tv15kZ 5/fKrL7nfLYCIQD1cJgFyyJ3F4lEEYQyt7cNEg5M8V6mBizNAZu1NsQXeA== -----FND_CFRTIFICATF-----

- Insecure
- Long-lived and can't be revoked effectively
- Makes it hard to use groups with RBAC

Bearer Tokens

- Service Account
- OpenID Connect

03 Security in Kubernetes | Authz Modules

03 Security in Kubernetes | Auth | SA

Very useful if we have an automatized application set-up in the cluster to deploy the pods after its build up

- root@masterdev:/home/masterdev# k3s kubectl create serviceaccount sa -n default serviceaccount/sa created
- 2. Create a Role:

k3s kubectl apply -f <u>default-role.yaml</u>

3. Create a RoleBinding:

k3s kubectl apply -f role-binding.yaml

03 Security in Kubernetes | Auth | OIDC

- 1. Widely accepted as a solution to authentication of users on web services
- 2. Easy to use because it sits on top of existing technology OAuth2.0
- 3. Typical use-case: Identity Federation

03 Security in Kubernetes | Auth | OIDC

03 Security in Kubernetes | Auth | Comparison

	Kerberos	Lightweight Directory Access Protocol LDAP	OAuth2.0	Security Assertion Markup Language SAML	OIDC
Function	Aids in network authentication	Used for determining any individuals, organizations, and other devices during a network regardless of being on public or corporate internet. It is practiced as Directories-as-a-Service and is the grounds for Microsoft building Activity Directory.	Authorization framework that grants limited access to the user on its account through an HTTP service	XML-based authentication data format which provides authorization between identity provider (Google, AWS, Microsoft Active Directory or Azure) and service provider (Salesforce and other CRM solutions).	Authentication protocol that has API-centered architecture that uses JSON tokens (ID token) and is currently supported by many popular web services, including Google, Paypal, Microsoft and Amazon.
Pros	Supports many OS Authentication key is shared much efficiently than public sharing	Automated protocol which makes it modernize easily Supports existing technologies and allows multiple directories	Simple protocol and is easy to implement Provides server-side authorization of code	Reduced the administrative costs for the end-users Provides SSO for authenticating across service providers	Fast and easy implementation Lightweight and more performance-friendly than SAML Provides a frictionless user experience for mobile and single-page web applications.
Cons	Used only to authenticate clients and services used by them Ulinerable to soft or weak passwords	Directory servers are required to be LDAP obedient for deployment No 2FA Not scalable	Vulnerable to manage different sets of code	1. Dependent on the identity provider	Still new and evolving and lacks some high-security features that are needed by certain sectors, such as the banking industry.

03 Security in Kubernetes | Demos

Resources

- https://kubernetes.io/docs/reference/access-authn-authz/authentication/
- https://www.tremolosecurity.com/post/kubernetes-dont-use-certificates-for-authentication
- https://cloudinfrastructureservices.co.uk/oauth2-vs-openid-whats-the-difference/
- https://sysdig.com/learn-cloud-native/kubernetes-security/kubernetes-rbac/
- https://www.geeksforgeeks.org/types-of-authentication-protocols/
- https://www.strongdm.com/blog/oidc-vs-saml#:~:text=OIDC%3A%20What's%20the%20Difference%3F, to%20obtain%20the%20security%20token.
- https://www.varonis.com/blog/what-is-oauth
- https://dinika-15.medium.com/identity-federation-a-brief-introduction-f2f823f8795a

Note of gesture

Thank you for your attention and patience

