A Book of Abstract Algebra | (2nd Edition)

Chapter 16, Problem 2EC	1 Bookmark	Show all steps: ON	
Problem			
Let G be an abelian group. Let $H = \{x^2 : x \in G\}$ and $K = \{x \in G : x^2 = e\}$. Find the kernel of f .			
Step-by-step solution			
Step 1 of 3			
Suppose that G be an abelian group. Consider the following sets: $H = \left\{x^2 : x \in G\right\},$ $K = \left\{x \in G : x^2 = e\right\}.$			
Then the function given by $f(x) = x^2$			
forms a homomorphism of G onto H . objective is to determine the kernel of mapping f .			
Comment			

Step 2 of 3

The kernel of any mapping $f: G \rightarrow H$ is defined by:		
$\ker f = \{x \in G : f(x) = e\}$		
Where <i>e</i> is the identity element of group <i>H</i> .		

According to this definition the kernel of *f* will be:

$$\ker f = \{x \in G : f(x) = e\}.$$

Since
$$f(x) = x^2$$
, so equivalently

$$\ker f = \{ x \in G : x^2 = e \}$$

That is, the defined set K is nothing but the kernel of mapping f.

Comment

Step 3 of 3

Hence, $\ker f = K$.

Comment