Module 5

Determine your ASVs

Module Outcomes

- 1. Denoise your data by trimming your reads and removing low quality reads using DADA2 or Deblur
- 2. Cluster unique reads in your data called Amplicon Sequence Variants (ASVs)
- 3. Distinguish between ASVs and OTUs

QIIME2 workflow

Yellow: processing steps

Green: inputs/outputs

Blue: R analysis

Denoising (visual)

Sample 1

GGTCATCG

CCCTACGT

Sample 2

GGGTTCT

GGTCATCG

Sample 3

CCCTACGT

CCCTACGT

Sample 1

GGTCAT

CCCTAC

Sample 2

GGGTTC

GGTCAT

Sample 3

CCCTAC

CCCTAC

Sample 1

CCCTAC

Sample 2

GGGTTC

Sample 3

CCCTAC

CCCTAC

TRIMMING

REMOVING ERRORS

Denoising Tools

- DADA2 or Deblur (no consensus on which is better)
 - sequencing errors are detected and <u>corrected</u> (DADA2) or
 - detected and <u>removed/filtered</u> (Deblur)
- DADA2 and Deblur are unique algorithms that essentially achieve the same result in different ways
- We use DADA2 in the Moving Pics Tutorial

qiime2/q2-deblur

Denoising code

```
Calling on the DADA2 tool to denoise single end sequences
--i-demultiplexed-seqs demux.qza \
--p-trim-left 0 \
--p-trunc-len 120 \
--o-representative-sequences rep-seqs.qza \
--o-table table.qza \
--o-denoising-stats stats.qza
```

File: demux.qzv

Overview

Interactive Quality Plot

Click and drag on plot to zoom in. Double click to zoom back out to full size. Hover over a box

Forward Reads

The plot at position 141 was generated using a random sampling of 10000 out of [object Object] sequences without replacement. The minimum sequence length identified during subsampling was 152 bases. Outlier quality scores are not shown in box plots for clarity.

Why does the quality drop at the end?

- Remember that you are reading bases in a cluster
- There is higher synchronization in the beginning
- More de-synchronization leading towards the end that contributes to poorer quality
- Of interest: Fuller et al.,
 2009, Nature Biotechnology

Denoising code

```
qiime dada2 denoise-single \
--i-demultiplexed-seqs demux.qza \
--p-trim-left 0 \
--p-trunc-len 120 \
--o-representative-sequences rep-seqs.qza \
--o-table table.qza \
--o-denoising-stats stats.qza
```

Cluster into ASVs (visual)

Sample 1
CCCTAC

Only have 2 ASVs:

Sample 2
GGGTTC

CCCTAC

abundant by 1 in sample 1 and 2 in sample 3

Sample 3
CCCTAC
CCCTAC

GGGTTC

abundant by 1 in sample 2

Operational Taxonomic Unit (OTU): the out approach

- Uses a reference sequence to find representative consensus sequence (subject to reference bias)
- Combines sequences that are very similar to compensate for potential errors (eg. 97% similar)
- Table then summarizes sequence "clusters"
- Lose some diversity information through this approach

Amplicon Sequence Variant (ASV)

- Describes "exact" sequences with high confidence (higher quality sequences only)
- Removes sequences that may have resulted from errors (eg. artifacts)
- No reference is used (until we start to assign taxonomy) so there is no reference bias
- Disadvantage: may throw out real sequences that were present in very low abundance
- Can also be called exact sequence variant (EZV) or zero-radius OTU (zOTU)

ASVs versus OTUs

ASVs	OTUs
No reference bias (reference not assigned until taxonomic analysis)	Subject to reference bias
Defined by exact sequences	Defined by consensus sequence of multiple variants (similar by 97%)
Keeps unique sequences separate	One sequence can represent multiple species
Can be used to compare between studies	Cannot be compared between studies

Clustering methods can impact inferred community structure

yellow stars = biological point mutations

red stars = sequencing errors

Open Access | Published: 21 July 2017

Exact sequence variants should replace operational taxonomic units in marker-gene data analysis

Benjamin J Callahan ☑, Paul J McMurdie & Susan P Holmes

The ISME Journal 11, 2639–2643(2017) Cite this article

Exact sequence variant = ASV = A <u>unique</u> postquality-filtered sequence. It just takes one single base pair difference to define an entirely new ASV.

https://www.frontiersin.org/articles/ 10.3389/fmicb.2017.01561/full

Denoising code

```
qiime dada2 denoise-single \
--i-demultiplexed-seqs demux.qza \
--p-trim-left 0 \
--p-trunc-len 120 \
--o-representative-sequences rep-seqs.qza \
--o-table table.qza \
--o-denoising-stats stats.qza
```

Converting your files to qzv

```
qiime feature-table summarize \
--i-table table.qza \
--o-visualization table.qzv \
--m-sample-metadata-file sample-metadata.tsv you need your metadata file here
qiime feature-table tabulate-seqs \
--i-data rep-seqs.qza \
--o-visualization rep-seqs.qzv
```

QIIME2 workflow

