FCAI fcai.fi

Reinforcement Learning

$a_t = \pi(s_t)$ Actions

$S_{t+1} \sim P(\cdot \mid S_t, a_t)$ Transition function

 $r(s_t, a_t)$ S_{t+1} , State, Reward

States $s \in \mathcal{S}$

Actions $a \in \mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state s_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathscr{A}$

Markov Decision Process (MDP)

 $s_{t+1} = f(s_t, a_t) + \epsilon_t$

Reinforcement Learning

Markov Decision Process (MDP)

States $s \in \mathcal{S}$

Actions $a \in \mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state s_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

$$s_{t+1} \sim P(\cdot \mid s_t, a_t)$$

Transition function

$$s_{t+1} = f(s_t, a_t) + \epsilon_t$$

FCAI

fcai.fi

Reinforcement Learning

Markov Decision Process (MDP)

States $s \in \mathcal{S}$

Actions $a \in \mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state s_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

FCAI