Data Mining 实验报告

1. VSM and KNN
运行代码
实验环境与实验数据
实验目的
实验步骤
数据划分
词干提取与词频统计
建立向量空间
KNN - 验证集调整参数
测试数据
耗时问题
代码实现
实验结果
暴力搜索
用BallTree 对比
最终结果
2. Naive Bayesian Classification
运行代码
实验环境与实验数据
实验目的
实验步骤
数据划分
词干提取与词频统计
模型训练
测试模型
遇到的问题
实验结果
多项式模型结果
伯努利模型结果
混合模型结果
3. sklearn 聚类算法
运行代码
实验环境与实验数据
实验目的
实验步骤
读取数据
聚类及评估
1. KMeans
2. AffinityPropagation
3. MeanShift
4. SpectralClustering
5. AgglomerativeClustering6. DBSCAN
6. DBSCAN 7. GaussianMixture
实验结果

1. VSM and KNN

项目地址

运行代码

python src/knn.py

实验环境与实验数据

• CPU -- i5-4570

• 内存 -- 8GB

• 实验数据: 20news-18828

实验目的

通过对已有标签的文档进行操作,最终实现对无标签的文档进行正确分类。

实验步骤

数据划分

- 60% 的 Train 数据
- 20%的 Cross-Validation 数据
- 20%的 Test 数据

为保证数据的均匀分布,从每个类中挑选相同比例的数据组成训练集、验证集、测试集。

实现文件:『src/SplitData.py』

词干提取与词频统计

首先需要对实验中所有文档进行词干提取和词频统计,这里是将数据包括训练集、验证集、测试集全部进行统计,由于实验数据量过大,提取词干和统计词频所耗费的时间会很多,为了节省时间,将所有统计结果保存到文件中,以便用之后的每次实验。

运用『TextBlob』进行词干提取得到一个list,再用『collections.Counter』对list的每项进行计数,存储到一个字典中,键值为文件名,对应的值为词频结果。统计结果保存到『data/tf_15_5.txt』。

实现文件:『src/utils.py』

建立向量空间

统计所有 Train 文档中出现的词干,由于文档数目太多,词干的数量会很大,所以对词干进行词频过滤,过滤规则有两条:

- 1. 需要在5个以上的文档中出现
- 2. 需要出现15次以上

过滤完成之后,就建立了一个维数与词干数目相同的空间,每个文档在这个空间中由一个向量表示,这就是『Vector Space』。并且这样一来,完成了训练操作,每个训练数据都对应一个向量。

实现文件:『src/vsm.py』

KNN - 验证集调整参数

读取验证集数据,像上一节一样,得到对应的向量,通过比较差异,计算向量之间的距离,再投票得到每条数据应该属于哪一类文档中。这里计算差异采用了两种方法:

- 1. 欧氏距离
- 2. 余弦相似度

经过验证发现,欧氏距离的分类的正确率没有余弦相似度计算分类的正确率高。而 K 值的变化对于验证集分类正确率没有太大的影响,分类的正确率会上下浮动 1-2%。选择一个表现最好的K值作为下一步测试数据所用的 K 值。

实现文件:『src/knn.py』

测试数据

测试数据步骤与在验证集上验证的步骤相同,最终将在测试数据上的分类精度记录下来。

耗时问题

耗时主要在两部分:

- 统计词干和词频,主要原因是因为IO操作太过耗时,并且文档数目过多。
- KNN,查找距离测试点最近几个点的标签,主要原因是暴力搜索的时间复杂度太高。

解决方法如下:

- 对于统计词干和词频遇到的耗时问题,采用『一劳永逸』的方法,将全部文档的数据一次统计完成,保存到 文件中。
- 对于 KNN 耗时问题,采用KD-Tree,减少KNN 耗时,但KD-Tree在高维的表现并不是很好,所以采用Ball-Tree

当使用BallTree的时候,由于余弦相似度在KNN上的表现要比欧式距离好,所以想采用余弦相似度来作为创建 BallTree的metric,但是由于sklearn中没有余弦相似度。通过计算发现:

$$cosine(d_i,d_j) = rac{v_{d_i}^T v_{d_j}}{|v_{d_i}||v_{d_j}|}$$

$$dist(d_i,d_j) = \sqrt{\sum{(v_{d_i} - v_{d_j})^2}}$$

当对向量进行且一化之后, $|v_{d_i}|=1$ 、 $|v_{d_j}|=1$

$$ar{m{m}} dist^2(d_i,d_j) = \sum (v_{d_i} - v_{d_j})^2 = (v_{d_i} - v_{d_j}) * (v_{d_i} - v_{d_j})^T = 2 - 2v_{d_i}^T v_{d_j}$$

与 $cosine(d_i,d_j)=v_{d_i}^Tv_{d_i}$ 的效果相同的,所以先将向量且一化,再计算欧氏距离就可以将余弦相似度用于BallTree中。

代码实现

代码结构如下:

I— data

其中『data』文件夹存放数据,包括:

- 所有文件的词干和词频 『tf_15_5.txt』
- 训练数据『train』
- 验证数据『cv』
- 测试数据『test』

『log』文件夹存放程序运行的日志文件:

- 『logout-1.log』是没有采用BallTree的方法,暴力搜索,耗时 47622s。
- 『logout-2.log』是采用了BallTree的方法,跑完一遍验证集的日志。
- 『logout-3.log』是将程序完成之后运行的日志。

『src』文件夹存放源码:

- SplitData.py 的作用是划分数据集
- utils.py 提供了读取文件、获取一个目录下所有文件词干和词频、建立词典确立维数的函数。
- vsm.py 提供了建立向量空间的函数。
- knn.py 是程序的主体,里面实现了实验流程。
- test.py 是测试程序子功能的中间文件。

实验结果

暴力搜索

predict 3765 data has cost time 47622.646603s Predict Accuracy is 82.416999%

用BallTree 对比

predict 3765 data has cost time 418.819660s Predict Accuracy is 84.780876%

最终结果

Start Choose K value

Start evaluate k value is 2

k value is 2, Predict Accuracy is 82.549801%

Start evaluate k value is 3

k value is 3, Predict Accuracy is 83.771580%

Start evaluate k value is 4

k value is 4, Predict Accuracy is 84.037185%

Start evaluate k value is 5

k value is 5, Predict Accuracy is 84.515272%

Start evaluate k value is 6

k value is 6, Predict Accuracy is 84.249668%

Start evaluate k value is 7

k value is 7, Predict Accuracy is 84.488712%

Start evaluate k value is 8

k value is 8,Predict Accuracy is 84.249668%

Start evaluate k value is 9 k value is 9,Predict Accuracy is 84.249668%

Choose K value has cost time 3273.398342s

max accuracy is 84.515272%, k value is 5

Start Predict Predict has cost time 408.537486s Predict Accuracy is 84.701493%

2. Naive Bayesian Classification

项目地址

运行代码

python src/nbc.py

实验环境与实验数据

• CPU -- i5-4570

• 内存 -- 8GB

• 实验数据: 20news-18828

实验目的

运用 Naive Bayesian Classification 的方法通过对已有标签的文档进行操作,最终实现对无标签的文档进行正确分类。

实验步骤

数据划分

- 60% 的 Train 数据
- 40% 的 Test 数据

为保证数据的均匀分布,从每个类中挑选相同比例的数据组成训练集、测试集。沿用了上一个 Homework 采用的数据集,由于 NBC 方法中所调超参数较少,所以将验证集与测试集合并为测试集。

词干提取与词频统计

首先需要对实验中所有文档进行词干提取和词频统计,这里是将数据包括训练集、验证集、测试集全部进行统计,由于实验数据量过大,提取词干和统计词频所耗费的时间会很多,为了节省时间,将所有统计结果保存到文件中,以便用之后的每次实验。

运用『TextBlob』进行词干提取得到一个list,再用『collections.Counter』对list的每项进行计数,存储到一个字 典中,键值为 文件名,对应的值为词频结果。统计结果保存到『data/tf.txt』。

实现文件: 『src/utils.py』

模型训练

分为三种模型,训练过程是相同的:

- 1. 计算每一类文本出现的概率 $p(d_i) = rac{c(d_i)}{c(d)}$
- 2. 建立字典,确立一个大的空间,保证每一类文档的特征都是相同的
- 3. 统计每一类文档对应的词频,这里 伯努利模型与多项式模型、混合模型是不同的,伯努利模型不重复统计同一 文档中多次出现的词。
- 4. 再将计算特征 -- 词的概率 $p(w|d_i) = rac{c(w)}{c(w_{d_itotal})}$

至此模型训练完毕。

实现文件: 『src/Model.py』

测试模型

在测试模型中会遇到如下问题,测试集中有的词没有在训练好的模型中,这样会导致这个词的概率为0,从而影响模型分类的结果,这里用到了一个小 trick -- 平滑技术。平滑技术分为两种:

- 对于多项式模型, $p(w|d_i) = rac{c(w) + 1}{c(w_{d_i total}) + c(w_{total})}$
- 对于伯努利模型, $p(w|d_i) = rac{c(w)+1}{c(w_{d_itotal})+c(d)}$

这样,即使c(w)为0也不会使预测概率为0。由于每一项的概率很小,大概是 10e-3 级别,所以为了方便运算,对每一项都取对数,简化计算。由贝叶斯定理可得:

$$p(d_i|x_1, x_2. \dots x_n) = rac{p(x_1, x_2, \dots x_n|d_i) * p(d_i)}{p(x_1, x_2, \dots x_n)}$$

而由于对于同一文档, $p(x_1,x_2,\ldots,x_n)$ 是相同的,所以我们只需要计算 $p(x_1,x_2,\ldots,x_n|d_i)*p(d_i)$ 即可,对该式子取对数得到 $\sum log p(x_i|d_i) + log p(d_i)$ 。

遇到的问题

一开始我采用的是对每一类文档提取一次字典,正确率只有3%左右。更换成全局字典之后,效果提升非常明显...

实验结果

实验结果保存到 『../log/logout.log』中

多项式模型结果

PolynomialModel Test Finished cost time 23.390124082565308s, Predict accuary is 6232 / 7517, 82.90541439404018%

伯努利模型结果

BernoulliModel Test Finished cost time 26.7016499042511s, Predict accuary is 6445 / 7517, 85.73899161899693%

混合模型结果

MixModel Test Finished cost time 31.27314591407776s, Predict accuary is 6192 / 7517, 82.37328721564454%

3. sklearn 聚类算法

项目地址

运行代码

python src/main.py -f data/Tweets.txt -l log/logfile.log

实验环境与实验数据

- CPU -- i7-8700K
- 内存 -- 15.6 GB
- 实验数据: Tweets.txt

实验目的

熟悉 sklearn 库中的常用聚类算法 API, 对 Tweets 数据进行聚类, 并比较效果.

实验步骤

读取数据

对 『Tweets.txt 』中的数据进行读取, 每一条数据都是是 『JSON 』格式的,所以通过 Python 的 『json』 模块对 『Tweets.txt』 中数据的每一行进行读取.

实现文件: 『src/main.py』

聚类及评估

通过 sklearn 库中的 API, 对数据进行聚类.运用了如下几个方法:

- KMeans
- AffinityPropagation
- MeanShift
- SpectralClustering
- Ward Hierarchical Clustering
- AgglomerativeClustering
- DBSCAN
- GaussianMixture

进行聚类.通过 NMI 对聚类结果进行评价.

$$I(A,B) = H(A) + H(B) - H(A,B)$$
 (1)

若用 $P_A(a)$ 、 $P_b(b)$ 表示 A、B 的概率分布, $P_{AB}(a,b)$ 表示 A 和 B 的联合概率分布 [11],则:

$$H(A) = -\sum_{a} P_{A}(a) \log P_{A}(a) \tag{2}$$

$$H(B) = -\sum_{a} P_{B}(b) \log P_{B}(b) \tag{3}$$

$$H(A,B) = -\sum_{a,b} P_{AB}(a,b) \log P_{AB}(a,b)$$
 (4)

其中I(A,B)是A,B两向量的mutual information, H(A)是A向量的信息熵。

1. KMeans

- 1. 首先,选择一些类/组来使用并随机地初始化它们各自的中心点。
- 2. 每个数据点通过计算点和每个组中心之间的距离进行分类,然后将这个点分类为最接近它的组。
- 3. 基于这些分类点,我们通过取组中所有向量的均值来重新计算组中心。
- 4. 对一组迭代重复这些步骤。

结果: KMeans cost time 38.968318462371826s, score is 0.781562372454415

2. AffinityPropagation

Estimated number of clusters: 3

AP算法的基本思想是将全部样本看作网络的节点,然后通过网络中各条边的消息传递计算出各样本的聚类中心。聚 类过程中,共有两种消息在各节点间传递,分别是吸引度(responsibility)和归属度(availability) 。A

P算法通过迭代过程不断更新每一个点的吸引度和归属度值,直到产生m个高质量的Exemplar(类似于质心),同时将其余的数据点分配到相应的聚类中。

结果: AffinityPropagation cost time 13.451494693756104s, score is 0.7836988975391974

3. MeanShift

均值偏移(Mean shift)聚类算法是一种基于滑动窗口(sliding-window)的算法,它试图找到密集的数据点。而且,它还是一种基于中心的算法,它的目标是定位每一组群/类的中心点,通过更新中心点的候选点来实现滑动窗口中的点的平均值。这些候选窗口在后期处理阶段被过滤,以消除几乎重复的部分,形成最后一组中心点及其对应的组。

与K-Means聚类相比,均值偏移不需要选择聚类的数量,因为它会自动地发现这一点。这是一个巨大的优势。聚类中心收敛于最大密度点的事实也是非常可取的,因为它非常直观地理解并适合于一种自然数据驱动。

缺点是选择窗口大小/半径r是非常关键的,所以不能疏忽。

结果: MeanShift cost time 19.27985906600952s, score is 0.7278545708737196

4. SpectralClustering

- 1. 根据输入的相似矩阵的生成方式构建样本的相似矩阵S
- 2. 根据相似矩阵S构建邻接矩阵W,构建度矩阵D
- 3. 计算出拉普拉斯矩阵L
- 4. 构建标准化后的拉普拉斯矩阵
- 5. 计算拉普拉斯矩阵最小的 k_1 个特征值所各自对应的特征向量

- 6. 将各自对应的特征向量ff组成的矩阵按行标准化,最终组成 $n*k_1$ 维的特征矩阵F
- 7. 对F中的每一行作为一个 k_1 维的样本,共n个样本,用输入的聚类方法进行聚类,聚类维数为 k_2 。
- 8. 得到簇划分C(c1,c2,...ck2).

结果: SpectralClustering cost time 40.73340439796448s, score is 0.8067027949127966

5. AgglomerativeClustering

层次聚类(hierarchical clustering)可在不同层次上对数据集进行划分,形成树状的聚类结构。 AggregativeClustering是一种常用的层次聚类算法。

其原理是:最初将每个对象看成一个簇,然后将这些簇根据某种规则被一步步合并,就这样不断合并直到达到预设 的簇类个数。

- 1. 我们首先将每个数据点作为一个单独的聚类进行处理。
- 2. 在每次迭代中, 我们将两个聚类合并为一个。
- 3. 重复步骤2直到我们到达树的根。层次聚类算法不要求我们指定聚类的数量,我们甚至可以选择哪个聚类看起来最好。此外,该算法对距离度量的选择不敏感.

结果: AgglomerativeClustering cost time 7.590268611907959s, score is 0.7847178748775534

6. DBSCAN

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法,类似于均值转移聚类算法.

- 1. DBSCAN以一个从未访问过的任意起始数据点开始。
- 2. 如果在这个邻域中有足够数量的点(根据 minPoints),那么聚类过程就开始了,并且当前的数据点成为新聚类中的第一个点。否则,该点将被标记为噪声(稍后这个噪声点可能会成为聚类的一部分)。在这两种情况下,这一点都被标记为"访问(visited)"。
- 3. 对于新聚类中的第一个点,其ε距离附近的点也会成为同一聚类的一部分。
- 4. 步骤2和步骤3的过程将重复,直到聚类中的所有点都被确定,就是说在聚类附近的所有点都已被访问和标记。
- 5. 一旦我们完成了当前的聚类,就会检索并处理一个新的未访问点,这将导致进一步的聚类或噪声的发现。这个过程不断地重复,直到所有的点被标记为访问。

结果: DBSCAN cost time 46.81977677345276s, score is 0.611995415736244

7. GaussianMixture

K-Means的一个主要缺点是它对聚类中心的平均值的使用很简单。

高斯混合模型(GMMs)比K-Means更具灵活性。使用高斯混合模型,我们可以假设数据点是高斯分布的;比起说它们是循环的,这是一个不那么严格的假设。这样,我们就有两个参数来描述聚类的形状:平均值和标准差以二维的例子为例,这意味着聚类可以采用任何形式的椭圆形状(因为在x和y方向上都有标准差)。因此,每个高斯分布可且属于一个单独的聚类。

为了找到每个聚类的高斯分布的参数(例如平均值和标准差)我们将使用一种叫做期望最大化(EM)的优化算法。看看下面的图表,就可以看到高斯混合模型是被拟合到聚类上的。然后,我们可以继续进行期望的过程——使用高斯混合模型实现最大化聚类。

- 1. 我们首先选择聚类的数量(如K-Means所做的那样),然后随机初始化每个聚类的高斯分布参数。
- 2. 给定每个聚类的高斯分布, 计算每个数据点属于特定聚类的概率。
- 3. 基于这些概率,我们为高斯分布计算一组新的参数,这样我们就能最大程度地利用聚类中的数据点的概率。
- 4. 步骤2和3被迭代地重复,直到收敛。

结果: GaussianMixture cost time 5.616118431091309s, score is 0.7834852894647376

实验结果

需要对聚类方法的效果以及时间 cost 进行综合评估, 发现虽然 SpectralClustering 的方法准确率是最高的,但是耗费时间也是最长的.综合看下来 GaussianMixture 的效果最好.